diff --git a/.circleci/config.yml b/.circleci/config.yml deleted file mode 100644 index acd79c92..00000000 --- a/.circleci/config.yml +++ /dev/null @@ -1,100 +0,0 @@ -version: 2 -jobs: - build: - docker: - - image: cimg/python:3.10.5 - - working_directory: ~/repo - - steps: - - checkout - - - restore_cache: - keys: - - v2-dependencies-{{ checksum "requirements.txt" }} - - v2-dependencies- - - - run: - name: Install pandoc - command: | - sudo apt-get update - wget https://github.com/jgm/pandoc/releases/download/2.18/pandoc-2.18-1-amd64.deb - sudo dpkg -i pandoc-2.18-1-amd64.deb - - - run: - name: Install tex - command: | - sudo apt-get install -y texlive - sudo apt-get install -y texlive-latex-extra - sudo apt-get install -y dvipng - - - run: - name: Install 7z, unrar - command: | - sudo apt-get install -y p7zip-full - - - run: - name: Install InkScape - command: | - sudo apt-get install -y inkscape - - - run: - name: Install graphviz - command: | - sudo apt-get install -y graphviz - - - run: - name: Install standard libraries - command: | - python -m pip install scipy matplotlib numpy cython pandas pyquicksetup - - - run: - name: install dependencies - command: | - python -m pip install -r requirements.txt - - - save_cache: - paths: - - ./venv - key: v2-dependencies-{{ checksum "requirements.txt" }} - - - run: - name: check list of dependencies - command: | - python -m pip freeze - apt list --installed - - - run: - name: compile and build - command: | - python setup.py build_ext --inplace - - - run: - name: run tests - command: | - python setup.py unittests -d 9 - - - run: - name: wheel - command: | - python setup.py bdist_wheel - mkdir -p test-reports/dist - cp dist/*.whl test-reports/dist - mkdir -p test-reports - cp -r mlinsights test-reports - -# - run: -# name: documentation -# command: | -# . venv/bin/activate -# python setup.py build_sphinx -# -# - run: -# name: copy documentation -# command: | -# mkdir -p test-reports/doc -# zip -r -9 test-reports/doc/documentation_html.zip _doc/sphinxdoc/build/html - - - store_artifacts: - path: test-reports - destination: test-reports diff --git a/.github/workflows/black-ruff.yml b/.github/workflows/black-ruff.yml new file mode 100644 index 00000000..9a047430 --- /dev/null +++ b/.github/workflows/black-ruff.yml @@ -0,0 +1,16 @@ +name: Black + Ruff Format Checker +on: [push, pull_request] +jobs: + black-format-check: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - uses: psf/black@stable + with: + options: "--diff --check" + src: "." + ruff-format-check: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - uses: chartboost/ruff-action@v1 diff --git a/.github/workflows/check-urls.yml b/.github/workflows/check-urls.yml new file mode 100644 index 00000000..e3fc14d0 --- /dev/null +++ b/.github/workflows/check-urls.yml @@ -0,0 +1,47 @@ +name: Check URLs + +on: + pull_request: + branches: [main] + schedule: + # ┌───────────── minute (0 - 59) + # │ ┌───────────── hour (0 - 23) + # │ │ ┌───────────── day of the month (1 - 31) + # │ │ │ ┌───────────── month (1 - 12 or JAN-DEC) + # │ │ │ │ ┌───────────── day of the week (0 - 6 or SUN-SAT) + # │ │ │ │ │ + # │ │ │ │ │ + # │ │ │ │ │ + # * * * * * + - cron: '30 1 * * 0' + +jobs: + build: + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v3 + + - name: urls-checker-code + uses: urlstechie/urlchecker-action@master + with: + subfolder: mlinsights + file_types: .md,.py,.rst,.ipynb + print_all: false + timeout: 2 + retry_count# : 2 + exclude_urls: https://github.com/microsoft/onnxruntime/blob/ + exclude_patterns: https://github.com/microsoft/onnxruntime/blob/ + # force_pass : true + + - name: urls-checker-docs + uses: urlstechie/urlchecker-action@master + with: + subfolder: _doc + file_types: .md,.py,.rst,.ipynb + print_all: false + timeout: 2 + retry_count# : 2 + exclude_urls: 64,14: https://github.com/Kitware/CMake/releases/download/v${cmake_version}/cmake-$,https://developer.download.nvidia.com/compute/cuda/$ + exclude_patterns: https://www.data.gouv.fr/fr/datasets/r/e3d83ab3-dc52-4c99-abaf-8a38050cc68c,https://dev.azure.com/ + # force_pass : true diff --git a/.github/workflows/clang.yml b/.github/workflows/clang.yml new file mode 100644 index 00000000..0c30a714 --- /dev/null +++ b/.github/workflows/clang.yml @@ -0,0 +1,10 @@ +name: Clang Format Checker +on: [push] +jobs: + clang-format-checking: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - uses: RafikFarhad/clang-format-github-action@v3 + with: + sources: "src/**/*.h,src/**/*.c,test/**/*.c" diff --git a/.github/workflows/cmakelint.yml b/.github/workflows/cmakelint.yml new file mode 100644 index 00000000..36265e9d --- /dev/null +++ b/.github/workflows/cmakelint.yml @@ -0,0 +1,23 @@ +name: Cmake Format Checker + +on: [push] + +jobs: + build: + runs-on: ubuntu-latest + + steps: + - name: Checkout repository + uses: actions/checkout@v2 + + - name: Format CMake files + id: cmake-format + uses: PuneetMatharu/cmake-format-lint-action@v1.0.0 + with: + args: --check + + - name: Commit changes + uses: stefanzweifel/git-auto-commit-action@v4 + with: + commit_user_name: cmake-format-bot + commit_message: 'Automated commit of cmake-format changes.' diff --git a/.github/workflows/documentation.yml b/.github/workflows/documentation.yml new file mode 100644 index 00000000..8f05f7a0 --- /dev/null +++ b/.github/workflows/documentation.yml @@ -0,0 +1,91 @@ +name: Documentation and Code Coverage + +on: + push: + pull_request: + types: + - closed + branches: + - main + +jobs: + run: + name: Build documentation on ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + + steps: + - uses: actions/checkout@v3 + + - uses: actions/setup-python@v4 + with: + python-version: '3.11' + + - uses: tlylt/install-graphviz@v1 + + - name: Install pandoc + run: sudo apt-get install -y pandoc + + - name: Install requirements + run: python -m pip install -r requirements.txt + + - name: Install requirements dev + run: python -m pip install -r requirements-dev.txt + + - name: Cache pip + uses: actions/cache@v2 + with: + path: ~/.cache/pip + key: ${{ runner.os }}-pip-${{ hashFiles('requirements-dev.txt') }} + restore-keys: | + ${{ runner.os }}-pip- + ${{ runner.os }}- + + - name: Build + run: python setup.py build_ext --inplace + + - name: Generate coverage report + run: | + pip install pytest + pip install pytest-cov + export PYTHONPATH=. + pytest --cov=./mlinsights/ --cov-report=xml --durations=10 --ignore-glob=**LONG*.py --ignore-glob=**notebook*.py + export PYTHONPATH= + + - name: Upload coverage reports to Codecov + uses: codecov/codecov-action@v3 + env: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} + + - name: Install + run: python setup.py install + + - name: Copy license, changelogs + run: | + cp LICENSE* ./_doc + cp CHANGELOGS* ./_doc + + - name: Documentation + run: python -m sphinx ./_doc ./dist/html -n -w doc.txt + + - name: Summary + run: cat doc.txt + + - name: Check for errors and warnings + run: | + if [[ $(grep ERROR doc.txt | grep -v 'validation.cuda') ]]; then + echo "Documentation produces errors." + grep ERROR doc.txt | grep -v 'validation.cuda' + exit 1 + fi + if [[ $(grep WARNING doc.txt | grep -v 'validation.cuda') ]]; then + echo "Documentation produces warnings." + grep WARNING doc.txt | grep -v 'validation.cuda' + exit 1 + fi + + - uses: actions/upload-artifact@v3 + with: + path: ./dist/html/** diff --git a/.github/workflows/rstcheck.yml b/.github/workflows/rstcheck.yml new file mode 100644 index 00000000..4a48174e --- /dev/null +++ b/.github/workflows/rstcheck.yml @@ -0,0 +1,28 @@ +name: RST Check + +on: [push, pull_request] + +jobs: + build_wheels: + name: rstcheck ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + + steps: + - uses: actions/checkout@v3 + + # Used to host cibuildwheel + - uses: actions/setup-python@v4 + with: + python-version: '3.11' + + - name: Install requirements + run: python -m pip install -r requirements.txt + + - name: Install rstcheck + run: python -m pip install sphinx tomli rstcheck[toml,sphinx] + + - name: rstcheck + run: rstcheck -r _doc mlinsights diff --git a/.github/workflows/wheels-linux.yml b/.github/workflows/wheels-linux.yml new file mode 100644 index 00000000..8445674f --- /dev/null +++ b/.github/workflows/wheels-linux.yml @@ -0,0 +1,40 @@ +name: Build Wheel Linux + +on: + push: + branches: + - main + - 'releases/**' + +jobs: + build_wheels: + name: Build wheels on ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [ubuntu-latest] + + steps: + - uses: actions/checkout@v3 + + # Used to host cibuildwheel + - uses: actions/setup-python@v4 + with: + python-version: '3.10' + + - name: Install cibuildwheel + run: python -m pip install cibuildwheel + + - name: python version + run: python -V + + - name: Build wheels + run: python -m cibuildwheel --output-dir wheelhouse + # to supply options, put them in 'env', like: + #env: + # # CIBW_BUILD: "cp310* cp311*" + # CIBW_SKIP: cp36-* cp37-* cp38-* cp39-* + + - uses: actions/upload-artifact@v3 + with: + path: ./wheelhouse/*.whl diff --git a/.github/workflows/wheels-mac.yml b/.github/workflows/wheels-mac.yml new file mode 100644 index 00000000..97f19028 --- /dev/null +++ b/.github/workflows/wheels-mac.yml @@ -0,0 +1,39 @@ +name: Build Wheel MacOS + +on: + push: + branches: + - main + - 'releases/**' + +jobs: + build_wheels: + name: Build wheels on ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [macOS-latest] + + steps: + - uses: actions/checkout@v3 + + # Used to host cibuildwheel + - uses: actions/setup-python@v4 + with: + python-version: '3.10' + + - name: Install cibuildwheel + run: python -m pip install cibuildwheel + + - name: python version + run: python -V + + - name: Build wheels + run: python -m cibuildwheel --output-dir wheelhouse + # to supply options, put them in 'env', like: + #env: + # CIBW_BUILD: cp311* + + - uses: actions/upload-artifact@v3 + with: + path: ./wheelhouse/*.whl diff --git a/.github/workflows/wheels-windows.yml b/.github/workflows/wheels-windows.yml new file mode 100644 index 00000000..eb514ee9 --- /dev/null +++ b/.github/workflows/wheels-windows.yml @@ -0,0 +1,39 @@ +name: Build Wheel Windows + +on: + push: + branches: + - main + - 'releases/**' + +jobs: + build_wheels: + name: Build wheels on ${{ matrix.os }} + runs-on: ${{ matrix.os }} + strategy: + matrix: + os: [windows-latest] + + steps: + - uses: actions/checkout@v3 + + # Used to host cibuildwheel + - uses: actions/setup-python@v4 + with: + python-version: '3.10' + + - name: Install cibuildwheel + run: python -m pip install cibuildwheel + + - name: python version + run: python -V + + - name: Build wheels + run: python -m cibuildwheel + # to supply options, put them in 'env', like: + # env: + # CIBW_BUILD: cp310-win_amd64* cp311-win_amd64* + + - uses: actions/upload-artifact@v3 + with: + path: ./wheelhouse/*.whl diff --git a/.gitignore b/.gitignore index 71852dbb..b129d9e0 100644 --- a/.gitignore +++ b/.gitignore @@ -1,289 +1,58 @@ -################# -## Eclipse -################# - -*.pydevproject -.project -.metadata -bin/ -tmp/ -_virtualenv/ -*.tmp -*.bak -*.swp -*~.nib -local.properties -.classpath -.settings/ -.loadpath -.eggs -*.pyproj - -# External tool builders -.externalToolBuilders/ - -# Locally stored "Eclipse launch configurations" -*.launch - -# CDT-specific -.cproject - -# PDT-specific -.buildpath - - -################# -## Visual Studio -################# - -## Ignore Visual Studio temporary files, build results, and -## files generated by popular Visual Studio add-ons. - -# User-specific files -*.suo -*.user -*.sln.docstates - -# Build results - -[Dd]ebug/ -[Rr]elease/ -x64/ -build/ -[Bb]in/ -[Oo]bj/ - -# MSTest test Results -[Tt]est[Rr]esult*/ -[Bb]uild[Ll]og.* - -*_i.c -*_p.c -*.ilk -*.meta -*.obj -*.pch -*.pdb -*.pgc -*.pgd -*.rsp -*.sbr -*.tlb -*.tli -*.tlh -*.tmp -*.tmp_proj -*.log -*.vspscc -*.vssscc -.builds -*.pidb -*.log -*.scc -*.so +*.pyc *.pyd - -# Visual C++ cache files -ipch/ -*.aps -*.ncb -*.opensdf -*.sdf -*.cachefile - -# Visual Studio profiler -*.psess -*.vsp -*.vspx - -# Guidance Automation Toolkit -*.gpState - -# ReSharper is a .NET coding add-in -_ReSharper*/ -*.[Rr]e[Ss]harper - -# TeamCity is a build add-in -_TeamCity* - -# DotCover is a Code Coverage Tool -*.dotCover - -# NCrunch -*.ncrunch* -.*crunch*.local.xml - -# Installshield output folder -[Ee]xpress/ - -# DocProject is a documentation generator add-in -DocProject/buildhelp/ -DocProject/Help/*.HxT -DocProject/Help/*.HxC -DocProject/Help/*.hhc -DocProject/Help/*.hhk -DocProject/Help/*.hhp -DocProject/Help/Html2 -DocProject/Help/html - -# Click-Once directory -publish/ - -# Publish Web Output -*.Publish.xml -*.pubxml - -# NuGet Packages Directory -## TODO: If you have NuGet Package Restore enabled, uncomment the next line -#packages/ - -# Windows Azure Build Output -csx -*.build.csdef - -# Windows Store app package directory -AppPackages/ - -# Others -sql/ -*.Cache -ClientBin/ -[Ss]tyle[Cc]op.* -~$* -*~ -*.dbmdl -*.[Pp]ublish.xml -*.pfx -*.publishsettings - -# RIA/Silverlight projects -Generated_Code/ - -# Backup & report files from converting an old project file to a newer -# Visual Studio version. Backup files are not needed, because we have git ;-) -_UpgradeReport_Files/ -Backup*/ -UpgradeLog*.XML -UpgradeLog*.htm - -# SQL Server files -App_Data/*.mdf -App_Data/*.ldf - -############# -## Windows detritus -############# - -# Windows image file caches -Thumbs.db -ehthumbs.db - -# Folder config file -Desktop.ini - -# Recycle Bin used on file shares -$RECYCLE.BIN/ - -# Mac crap -.DS_Store - - -############# -## Python -############# - -*.py[co] - -# Packages -*.egg -*.egg-info -dist/ -build/ -eggs/ -parts/ -var/ -sdist/ -develop-eggs/ -__pycache__/ -.installed.cfg - -# Installer logs -pip-log.txt - -# Unit test / coverage reports +*.dylib +*.so +*.so.* +*.dll +*.vcxproj* +*.tcl +*.sln +*.cmake +*.whl +*.def +*.jpg +/*.png +/*.onnx +.build_path.txt +_setup_ext.txt +coverage.html/* +_cache/* +_deps/* +simages/* +.vs/* +*.dir/* +Release/* +Testing/* +plot_*.csv +plot_*.xlsx +x64/* +CMakeFiles/* +dist/* +build/* +.eggs/* +*egg-info/* .coverage -.tox - -#Translations -*.mo - -#Mr Developer -.mr.developer.cfg - -# py* packages -temp_* -out_* -*/sphinxdoc/source/index_* -*/sphinxdoc/source/readme.* -*/sphinxdoc/source/LICENSE.txt -*/sphinxdoc/source/filechanges.* -version.txt -_doc/sphinxdoc/source/python_template/*box.html -_doc/sphinxdoc/source/python_template/*toc.html -_doc/sphinxdoc/source/jyquickhelper/ -_doc/sphinxdoc/source/coverage/* -*/sphinxdoc/source/all*.rst -_doc/sphinxdoc/source/notebooks/* -*/sphinxdoc/source/gynotebooks/* -_doc/sphinxdoc/source/gyexamples/* -_doc/sphinxdoc/source/examples/* -_doc/sphinxdoc/source/gallery/* -_doc/sphinxdoc/source/gallerynb/* -build_help.bat -_doc/sphinxdoc/source/blog/*.rst -_doc/sphinxdoc/source/blog/rss.xml -_doc/sphinxdoc/source/phdoc_templates/*toc.html -_doc/sphinxdoc/source/phdoc_templates/*box.html -_doc/sphinxdoc/source/blog/feed-icon*.png -_doc/sphinxdoc/source/_static/reveal.js/* -_doc/notebooks/.ipynb_checkpoints/* -dist_module27/* -auto_*.bat -auto_*.sh -auto_*.py -auto_*.xml -auto_*.db3 -_doc/sphinxdoc/source/_static/require.js -_doc/sphinxdoc/require.js -ex.* -m.temp -_doc/notebooks/*/.ipynb_checkpoints -_doc/notebooks/nlp/frwiki-latest-all-titles-in-ns0 -_doc/notebooks/nlp/sample*.txt -_doc/notebooks/nlp/completion.prof -_doc/notebooks/nlp/profile.png -_doc/notebooks/nlp/completion.dot -_doc/notebooks/nlp/completion.png -_doc/notebooks/nlp/completion.pstat -_unittests/run_unittests.py.out -*.err -_doc/sphinxdoc/source/_static/style_notebook_snippet.css -dist -_doc/sphinxdoc/source/mlinsights -_doc/sphinxdoc/source/nbcov.png -_doc/notebooks/example.test.txt -_doc/notebooks/example.txt -_doc/notebooks/example.train.txt -_doc/notebooks/simages/ -_doc/notebooks/data/dog-cat-pixabay -_doc/notebooks/graph*.dot* -_doc/notebooks/sklearn/graph*.png -_doc/notebooks/sklearn/graph*.dot -mlinsights/mlmodel/piecewise_tree_regression_criterion*.c -mlinsights/mlmodel/direct*.c -mlinsights/mlmodel/_*.c -_unittests/unittests.out -_doc/notebooks/explore/simages/* -_unittests/ut_mlbatch/cache__2/ -_doc/sphinxdoc/source/_temp_custom_run_script* -mlinsights/mltree/_tree_digitize.c +CMakeCache.txt +onnxruntime_*.json +_doc/LICENSE.rst +_doc/LICENSE.txt +_doc/CHANGELOGS.rst +_doc/examples/*.dot +_doc/examples/*.png +_doc/examples/_cache/* +_doc/auto_examples/* +_doc/examples/simages/* +_doc/examples/*.xlsx +_doc/examples/plot*.csv +_doc/examples/plot*.onnx +_doc/examples/plot_*.png +_doc/examples/plot_*.csv +_doc/examples/plot_*.onnx +_doc/examples/plot_*.xlsx +_doc/_static/require.js +_doc/_static/viz.js +_unittests/ut__main/*.png +_unittests/test_constants.h +mlinsights/_config.py +mlinsights/mlmodel/*.cpp +mlinsights/mltree/*.cpp diff --git a/.landscape.yml b/.landscape.yml deleted file mode 100644 index 3b83d706..00000000 --- a/.landscape.yml +++ /dev/null @@ -1,15 +0,0 @@ -doc-warnings: yes -test-warnings: no -strictness: veryhigh -max-line-length: 120 -autodetect: yes -requirements: - - requirement.txt -ignore-paths: - - _unittests - - _doc - - dist - - build -ignore-patterns: - - .*Parser\.py$ - - .*Lexer\.py$ diff --git a/.local.jenkins.lin.yml b/.local.jenkins.lin.yml index 403b9d91..79f62505 100644 --- a/.local.jenkins.lin.yml +++ b/.local.jenkins.lin.yml @@ -9,7 +9,7 @@ virtualenv: install: - $PYINT -m pip install --upgrade pip - - $PYINT -m pip install --upgrade --no-cache-dir --no-deps --index http://localhost:8067/simple/ jyquickhelper pyquickhelper cpyquickhelper pandas_streaming --extra-index-url=https://pypi.python.org/simple/ + - $PYINT -m pip install --upgrade --no-cache-dir --no-deps --index http://localhost:8067/simple/ pandas_streaming --extra-index-url=https://pypi.python.org/simple/ - $PYINT -m pip install --upgrade --no-cache-dir --no-deps --index http://localhost:8067/simple/ scikit-learn>=0.22 --extra-index-url=https://pypi.python.org/simple/ - $PYINT -m pip install -r requirements.txt - $PYINT --version @@ -19,9 +19,7 @@ before_script: - $PYINT -u setup.py build_ext --inplace script: - - { CMD: "$PYINT -u setup.py unittests --covtoken=1ac0b95d-6722-4f29-804a-e4e0d5295497", NAME: "UT" } - - { CMD: "$PYINT -u setup.py unittests_LONG", NAME: "UT_DEEP_LONG" } - - { CMD: "$PYINT -u setup.py unittests_SKIP", NAME: "UT_SKIP" } + - { CMD: "$PYINT -m pytest _unittests", NAME: "UT" } after_script: - $PYINT -u ./setup.py bdist_wheel diff --git a/.local.jenkins.win.yml b/.local.jenkins.win.yml deleted file mode 100644 index cbab1bad..00000000 --- a/.local.jenkins.win.yml +++ /dev/null @@ -1,25 +0,0 @@ - -language: python - -python: - - { PATH: "{{replace(Python39, '\\', '\\\\')}}", VERSION: 3.9, DIST: std } - -virtualenv: - - path: {{ospathjoin(root_path, pickname("%NAME_JENKINS%", project_name + "_%VERSION%_%DIST%_%NAME%"), "_venv")}} - -install: - - pip install --upgrade pip - - pip install --no-cache-dir --no-deps --index http://localhost:8067/simple/ jyquickhelper pyquickhelper cpyquickhelper --extra-index-url=https://pypi.python.org/simple/ - - pip install -r requirements.txt - - pip freeze - - pip freeze > pip_freeze.txt -before_script: - - python -u setup.py build_ext --inplace -script: - - { CMD: "python -u setup.py unittests", NAME: "UT" } -after_script: - - python .\setup.py bdist_wheel - - if [ ${DIST} != "conda" and ${NAME} == "UT" ] then copy dist\*.whl {{root_path}}\..\..\local_pypi\local_pypi_server fi -documentation: - - if [ ${NAME} == "UT" ] then python -u setup.py build_sphinx fi - - if [ ${NAME} == "UT" ] then xcopy /E /C /I /Y _doc\sphinxdoc\build\html dist\html fi diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index 07246680..00000000 --- a/.travis.yml +++ /dev/null @@ -1,27 +0,0 @@ -dist: focal -sudo: true -language: python - -matrix: - include: - - python: 3.10 - name: "Py310" - env: - - sklver=">=1.1" - - jlver=">=1.0" - -before_install: - - sudo apt-get install libgeos-dev libproj-dev proj-data graphviz libblas-dev liblapack-dev - - sudo apt-get -y install graphviz - -install: - - pip install pyquicksetup - - pip install -r requirements.txt - - pip install "scikit-learn$sklver" - - pip install "joblib$jlver" - -before_script: - - python setup.py build_ext --inplace - -script: - - python setup.py unittests diff --git a/CHANGELOGS.rst b/CHANGELOGS.rst new file mode 100644 index 00000000..4fbdf493 --- /dev/null +++ b/CHANGELOGS.rst @@ -0,0 +1,116 @@ + +=========== +Change Logs +=========== + +0.5.0 +===== + +* :pr:`118` major refactoring, changes CI, builds against scikit-learn 1.3 +* :pr:`115` Updates tree decision criterion for scikit-learn 1.2 (2023-07-02) +* :pr:`113` Removes normalize attributes (deprecated) (2022-11-29) +* :pr:`110` Fixes perplexity issue with PredictableTSNE (2022-08-06) +* :pr:`109` Use f strings in more places (2022-07-22) + +0.3.649 - 2022-07-22 - 2.35Mb +============================= + +* :pr:`105` Update for python 3.10 (2022-07-22) +* :pr:`108` Uses f strings (2022-07-19) + +0.3.631 - 2022-05-19 - 2.21Mb +============================= + +* :pr:`107` Updates CI for scikit-learn==1.1 (2022-05-18) +* :pr:`106` Fixes failing import _joblib_parallel_args (2022-02-18) +* :pr:`99` LICENSE file missing in PyPI release (2021-11-20) + +0.3.614 - 2021-10-02 - 1.73Mb +============================= + +* :pr:`103` Updates for scikit-learn>=1.0 (2021-10-02) +* :pr:`94` Fixed Numpy boolean array indexing issue for 2dim arrays. (2021-09-27) + +0.3.606 - 2021-08-22 - 2.35Mb +============================= + +* :pr:`102` Implements numpy.digitalize with a DecisionTreeRegressor (2021-08-22) +* :pr:`101` Update CI to build manylinux for python 3.9 (2021-08-18) +* :pr:`100` Support parameter positive for QuantileLinearRegression (2021-06-23) +* :pr:`96` Fixes #95, PiecewiseRegressor, makes sure target are vectors (2021-05-27) +* :pr:`95` _apply_prediction_method boolean indexing incompatible with standard sklearn format (2021-05-27) +* :pr:`80` Piecewise Estimator` binner not a decision tree (2021-05-06) +* :pr:`72` Optimal decission tree for piecewise estimator (2021-05-06) +* :pr:`98` Fixes #97, fix issue with deepcopy and criterion (2021-05-03) +* :pr:`97` piecewise_decision_tree does not compile with the latest version of scikit-learn (2021-05-03) +* :pr:`85` Fixes #70, implements DecisionTreeLogisticRegression (2021-05-02) +* :pr:`93` Include build wheel for all platforms in CI (2021-01-09) +* :pr:`89` Install fails` ModuleNotFoundError` No module named 'sklearn' (2021-01-03) +* :pr:`92` QuantileMLPRegressor does not work with scikit-learn 0.24 (2021-01-01) +* :pr:`91` Fixes regression criterion for scikit-learn 0.24 (2021-01-01) +* :pr:`90` Fixes PipelineCache for scikit-learn 0.24 (2021-01-01) +* :pr:`88` Change for scikit-learn 0.24 (2020-09-02) +* :pr:`87` Set up CI with Azure Pipelines (2020-09-02) +* :pr:`86` Update CI, use python 3.8 (2020-09-02) +* :pr:`71` update kmeans l1 to the latest kmeans (signatures changed) (2020-08-31) +* :pr:`84` style (2020-08-30) +* :pr:`83` Upgrade version (2020-08-06) +* :pr:`82` Fixes #81, skl 0.22, 0.23 together (2020-08-06) +* :pr:`81` Make mlinsights work with scikit-learn 0.22 and 0.23 (2020-08-06) +* :pr:`79` pipeline2dot fails with 'passthrough' (2020-07-16) +* :pr:`78` Removes strong dependency on pyquickhelper (2020-06-29) +* :pr:`77` Add parameter trainable to TransferTransformer (2020-06-07) +* :pr:`76` ConstraintKMeans does not produce convex clusters. (2020-06-03) +* :pr:`75` Moves kmeans with constraint from papierstat. (2020-05-27) +* :pr:`74` Fix PipelineCache after as scikti-learn 0.23 changed the way parameters is handle in pipelines (2020-05-15) +* :pr:`73` ClassifierKMeans.__repr__ fails with scikit-learn 0.23 (2020-05-14) +* :pr:`69` Optimizes k-means with norm L1 (2020-01-13) +* :pr:`66` Fix visualisation graph` does not work when column index is an integer in ColumnTransformer (2019-09-15) +* :pr:`59` Add GaussianProcesses to the notebook about confidence interval and regression (2019-09-15) +* :pr:`65` Implements a TargetTransformClassifier similar to TargetTransformRegressor (2019-08-24) +* :pr:`64` Implements a different version of TargetTransformRegressor which includes predefined functions (2019-08-24) +* :pr:`63` Add a transform which transform the target and applies the inverse function of the prediction before scoring (2019-08-24) +* :pr:`49` fix menu in documentation (2019-08-24) +* :pr:`61` Fix bug in pipeline2dot when keyword "passthrough is used" (2019-07-11) +* :pr:`60` Fix visualisation of pipeline which contains string "passthrough" (2019-07-09) +* :pr:`58` Explores a way to compute recommandations without training (2019-06-05) +* :pr:`56` Fixes #55, explore caching for scikit-learn pipeline (2019-05-22) +* :pr:`55` Explore caching for gridsearchCV (2019-05-22) +* :pr:`53` implements a function to extract intermediate model outputs within a pipeline (2019-05-07) +* :pr:`51` Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26) +* :pr:`46` implements a way to determine close leaves in a decision tree (2019-04-01) +* :pr:`44` implements a model which produces confidence intervals based on bootstrapping (2019-03-29) +* :pr:`40` implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28) +* :pr:`39` implements a custom criterion for decision tree (2019-03-26) +* :pr:`41` implements a direct call to a lapack function from cython (2019-03-25) +* :pr:`38` better implementation of a regression criterion (2019-03-25) +* :pr:`37` implements interaction_only for polynomial features (2019-02-26) +* :pr:`36` add parameter include_bias to extended features (2019-02-25) +* :pr:`34` rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23) +* :pr:`33` implement the piecewise classifier (2019-02-23) +* :pr:`31` uses joblib for piecewise linear regression (2019-02-23) +* :pr:`30` explore transpose matrix before computing the polynomial features (2019-02-17) +* :pr:`29` explore different implementation of polynomialfeatures (2019-02-15) +* :pr:`28` implement PiecewiseLinearRegression (2019-02-10) +* :pr:`27` implement TransferTransformer (2019-02-04) +* :pr:`26` add function to convert a scikit-learn pipeline into a graph (2019-02-01) +* :pr:`25` implements kind of trainable t-SNE (2019-01-31) +* :pr:`6` use keras and pytorch (2019-01-03) +* :pr:`22` modifies plot gallery to impose coordinates (2018-11-10) +* :pr:`20` implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22) +* :pr:`19` fix issues introduced with changes in keras 2.2.4 (2018-10-06) +* :pr:`18` remove warning from scikit-learn about cloning (2018-09-16) +* :pr:`16` move CI to python 3.7 (2018-08-21) +* :pr:`17` replace as_matrix by values (pandas deprecated warning) (2018-07-29) +* :pr:`14` add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19) +* :pr:`13` add transform to do model stacking (2018-06-19) +* :pr:`8` move items from papierstat (2018-06-19) +* :pr:`12` fix bug in quantile regression` wrong weight for linear regression (2018-06-16) +* :pr:`11` specifying quantile (2018-06-16) +* :pr:`4` add function to compute non linear correlations (2018-06-16) +* :pr:`10` implements combination between logistic regression and k-means (2018-05-27) +* :pr:`9` move items from ensae_teaching_cs (2018-05-08) +* :pr:`7` add quantile regression (2018-05-07) +* :pr:`5` replace flake8 by code style (2018-04-14) +* :pr:`1` change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05) +* :pr:`2` save features and metadatas for the search engine and retrieves them (2017-12-03) diff --git a/HISTORY.rst b/HISTORY.rst deleted file mode 100644 index 9fab670c..00000000 --- a/HISTORY.rst +++ /dev/null @@ -1,117 +0,0 @@ - -.. _l-HISTORY: - -======= -History -======= - -current - 2023-07-03 - 0.00Mb -============================= - -* #115: Updates tree decision criterion for scikit-learn 1.2 (2023-07-02) -* #113: Removes normalize attributes (deprecated) (2022-11-29) -* #110: Fixes perplexity issue with PredictableTSNE (2022-08-06) -* #109: Use f strings in more places (2022-07-22) - -0.3.649 - 2022-07-22 - 2.35Mb -============================= - -* #105: Update for python 3.10 (2022-07-22) -* #108: Uses f strings (2022-07-19) - -0.3.631 - 2022-05-19 - 2.21Mb -============================= - -* #107: Updates CI for scikit-learn==1.1 (2022-05-18) -* #106: Fixes failing import _joblib_parallel_args (2022-02-18) -* #99: LICENSE file missing in PyPI release (2021-11-20) - -0.3.614 - 2021-10-02 - 1.73Mb -============================= - -* #103: Updates for scikit-learn>=1.0 (2021-10-02) -* #94: Fixed Numpy boolean array indexing issue for 2dim arrays. (2021-09-27) - -0.3.606 - 2021-08-22 - 2.35Mb -============================= - -* #102: Implements numpy.digitalize with a DecisionTreeRegressor (2021-08-22) -* #101: Update CI to build manylinux for python 3.9 (2021-08-18) -* #100: Support parameter positive for QuantileLinearRegression (2021-06-23) -* #96: Fixes #95, PiecewiseRegressor, makes sure target are vectors (2021-05-27) -* #95: _apply_prediction_method boolean indexing incompatible with standard sklearn format (2021-05-27) -* #80: Piecewise Estimator: binner not a decision tree (2021-05-06) -* #72: Optimal decission tree for piecewise estimator (2021-05-06) -* #98: Fixes #97, fix issue with deepcopy and criterion (2021-05-03) -* #97: piecewise_decision_tree does not compile with the latest version of scikit-learn (2021-05-03) -* #85: Fixes #70, implements DecisionTreeLogisticRegression (2021-05-02) -* #93: Include build wheel for all platforms in CI (2021-01-09) -* #89: Install fails: ModuleNotFoundError: No module named 'sklearn' (2021-01-03) -* #92: QuantileMLPRegressor does not work with scikit-learn 0.24 (2021-01-01) -* #91: Fixes regression criterion for scikit-learn 0.24 (2021-01-01) -* #90: Fixes PipelineCache for scikit-learn 0.24 (2021-01-01) -* #88: Change for scikit-learn 0.24 (2020-09-02) -* #87: Set up CI with Azure Pipelines (2020-09-02) -* #86: Update CI, use python 3.8 (2020-09-02) -* #71: update kmeans l1 to the latest kmeans (signatures changed) (2020-08-31) -* #84: style (2020-08-30) -* #83: Upgrade version (2020-08-06) -* #82: Fixes #81, skl 0.22, 0.23 together (2020-08-06) -* #81: Make mlinsights work with scikit-learn 0.22 and 0.23 (2020-08-06) -* #79: pipeline2dot fails with 'passthrough' (2020-07-16) -* #78: Removes strong dependency on pyquickhelper (2020-06-29) -* #77: Add parameter trainable to TransferTransformer (2020-06-07) -* #76: ConstraintKMeans does not produce convex clusters. (2020-06-03) -* #75: Moves kmeans with constraint from papierstat. (2020-05-27) -* #74: Fix PipelineCache after as scikti-learn 0.23 changed the way parameters is handle in pipelines (2020-05-15) -* #73: ClassifierKMeans.__repr__ fails with scikit-learn 0.23 (2020-05-14) -* #69: Optimizes k-means with norm L1 (2020-01-13) -* #66: Fix visualisation graph: does not work when column index is an integer in ColumnTransformer (2019-09-15) -* #59: Add GaussianProcesses to the notebook about confidence interval and regression (2019-09-15) -* #65: Implements a TargetTransformClassifier similar to TargetTransformRegressor (2019-08-24) -* #64: Implements a different version of TargetTransformRegressor which includes predefined functions (2019-08-24) -* #63: Add a transform which transform the target and applies the inverse function of the prediction before scoring (2019-08-24) -* #49: fix menu in documentation (2019-08-24) -* #61: Fix bug in pipeline2dot when keyword "passthrough is used" (2019-07-11) -* #60: Fix visualisation of pipeline which contains string "passthrough" (2019-07-09) -* #58: Explores a way to compute recommandations without training (2019-06-05) -* #56: Fixes #55, explore caching for scikit-learn pipeline (2019-05-22) -* #55: Explore caching for gridsearchCV (2019-05-22) -* #53: implements a function to extract intermediate model outputs within a pipeline (2019-05-07) -* #51: Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26) -* #46: implements a way to determine close leaves in a decision tree (2019-04-01) -* #44: implements a model which produces confidence intervals based on bootstrapping (2019-03-29) -* #40: implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28) -* #39: implements a custom criterion for decision tree (2019-03-26) -* #41: implements a direct call to a lapack function from cython (2019-03-25) -* #38: better implementation of a regression criterion (2019-03-25) -* #37: implements interaction_only for polynomial features (2019-02-26) -* #36: add parameter include_bias to extended features (2019-02-25) -* #34: rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23) -* #33: implement the piecewise classifier (2019-02-23) -* #31: uses joblib for piecewise linear regression (2019-02-23) -* #30: explore transpose matrix before computing the polynomial features (2019-02-17) -* #29: explore different implementation of polynomialfeatures (2019-02-15) -* #28: implement PiecewiseLinearRegression (2019-02-10) -* #27: implement TransferTransformer (2019-02-04) -* #26: add function to convert a scikit-learn pipeline into a graph (2019-02-01) -* #25: implements kind of trainable t-SNE (2019-01-31) -* #6: use keras and pytorch (2019-01-03) -* #22: modifies plot gallery to impose coordinates (2018-11-10) -* #20: implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22) -* #19: fix issues introduced with changes in keras 2.2.4 (2018-10-06) -* #18: remove warning from scikit-learn about cloning (2018-09-16) -* #16: move CI to python 3.7 (2018-08-21) -* #17: replace as_matrix by values (pandas deprecated warning) (2018-07-29) -* #14: add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19) -* #13: add transform to do model stacking (2018-06-19) -* #8: move items from papierstat (2018-06-19) -* #12: fix bug in quantile regression: wrong weight for linear regression (2018-06-16) -* #11: specifying quantile (2018-06-16) -* #4: add function to compute non linear correlations (2018-06-16) -* #10: implements combination between logistic regression and k-means (2018-05-27) -* #9: move items from ensae_teaching_cs (2018-05-08) -* #7: add quantile regression (2018-05-07) -* #5: replace flake8 by code style (2018-04-14) -* #1: change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05) -* #2: save features and metadatas for the search engine and retrieves them (2017-12-03) diff --git a/MANIFEST.in b/MANIFEST.in index 63d9565b..d8089806 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,4 @@ -recursive-include onnx_extended *.c *.cpp *.h *.pyx *.pxd *.pxi *.py +recursive-include mlinsights *.c *.cpp *.h *.pyx *.pxd *.pxi *.py include pyproject.toml include MANIFEST.in include setup.cfg diff --git a/README.rst b/README.rst index 9ed49db0..fd68d7ab 100644 --- a/README.rst +++ b/README.rst @@ -1,13 +1,11 @@ -.. image:: https://github.com/sdpython/mlinsights/blob/master/_doc/sphinxdoc/source/_static/project_ico.png?raw=true +.. image:: https://github.com/sdpython/mlinsights/blob/main/_doc/sphinxdoc/source/_static/project_ico.png?raw=true :target: https://github.com/sdpython/mlinsights/ -.. _l-README: - -mlinsights - extensions to scikit-learn -======================================= - -.. image:: https://travis-ci.com/sdpython/mlinsights.svg?branch=master +mlinsights: extensions to scikit-learn +====================================== + qqa +.. image:: https://travis-ci.com/sdpython/mlinsights.svg?branch=main :target: https://app.travis-ci.com/github/sdpython/mlinsights/ :alt: Build status @@ -15,8 +13,8 @@ mlinsights - extensions to scikit-learn :target: https://ci.appveyor.com/project/sdpython/mlinsights :alt: Build Status Windows -.. image:: https://circleci.com/gh/sdpython/mlinsights/tree/master.svg?style=svg - :target: https://circleci.com/gh/sdpython/mlinsights/tree/master +.. image:: https://circleci.com/gh/sdpython/mlinsights/tree/main.svg?style=svg + :target: https://circleci.com/gh/sdpython/mlinsights/tree/main .. image:: https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights%20(2) :target: https://dev.azure.com/xavierdupre3/mlinsights/ @@ -28,17 +26,13 @@ mlinsights - extensions to scikit-learn :alt: MIT License :target: http://opensource.org/licenses/MIT -.. image:: https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=master - :target: https://codecov.io/github/sdpython/mlinsights?branch=master +.. image:: https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=main + :target: https://codecov.io/github/sdpython/mlinsights?branch=main .. image:: http://img.shields.io/github/issues/sdpython/mlinsights.png :alt: GitHub Issues :target: https://github.com/sdpython/mlinsights/issues -.. image:: http://www.xavierdupre.fr/app/mlinsights/helpsphinx/_images/nbcov.png - :target: http://www.xavierdupre.fr/app/mlinsights/helpsphinx/all_notebooks_coverage.html - :alt: Notebook Coverage - .. image:: https://pepy.tech/badge/mlinsights/month :target: https://pepy.tech/project/mlinsights/month :alt: Downloads @@ -65,9 +59,7 @@ It also explores *PredictableTSNE* which trains a supervized model to replicate *t-SNE* results or a *PiecewiseRegression* which partitions the data before fitting a model on each bucket. -* `GitHub/mlinsights `_ -* `documentation `_ -* `Blog `_ +`documentation `_ Function ``pipeline2dot`` converts a pipeline into a graph: @@ -76,4 +68,4 @@ Function ``pipeline2dot`` converts a pipeline into a graph: from mlinsights.plotting import pipeline2dot dot = pipeline2dot(clf, df) -.. image:: https://raw.githubusercontent.com/sdpython/mlinsights/master/_doc/sphinxdoc/source/pipeline.png +.. image:: https://raw.githubusercontent.com/sdpython/mlinsights/main/_doc/sphinxdoc/source/pipeline.png diff --git a/_cmake/CMakeLists.txt b/_cmake/CMakeLists.txt new file mode 100644 index 00000000..d38daa3e --- /dev/null +++ b/_cmake/CMakeLists.txt @@ -0,0 +1,109 @@ +cmake_minimum_required(VERSION 3.24.0) +project(mlinsights VERSION ${MLINSIGHTS_VERSION}) + +# CUDA is not used. +set(USE_CUDA 0) + +# +# initialisation +# + +message(STATUS "-------------------") +message(STATUS "MLINSIGHTS_VERSION=${MLINSIGHTS_VERSION}") +message(STATUS "CMAKE_VERSION=${CMAKE_VERSION}") +message(STATUS "CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}") +message(STATUS "CMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}") +message(STATUS "CMAKE_CXX_COMPILER_VERSION=${CMAKE_CXX_COMPILER_VERSION}") +message(STATUS "USE_SETUP_PYTHON=${USE_SETUP_PYTHON}") +message(STATUS "USE_PYTHON_SETUP=${USE_PYTHON_SETUP}") +message(STATUS "PYTHON_VERSION=${PYTHON_VERSION}") +message(STATUS "PYTHON_VERSION_MM=${PYTHON_VERSION_MM}") +message(STATUS "PYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}") +message(STATUS "PYTHON_INCLUDE_DIR=${PYTHON_INCLUDE_DIR}") +message(STATUS "PYTHON_LIBRARY=${PYTHON_LIBRARY}") +message(STATUS "PYTHON_LIBRARY_DIR=${PYTHON_LIBRARY_DIR}") +message(STATUS "PYTHON_NUMPY_INCLUDE_DIR=${PYTHON_NUMPY_INCLUDE_DIR}") +message(STATUS "PYTHON_MODULE_EXTENSION=${PYTHON_MODULE_EXTENSION}") +message(STATUS "PYTHON_NUMPY_VERSION=${PYTHON_NUMPY_VERSION}") +message(STATUS "USE_CUDA=${USE_CUDA}") +# message(STATUS "CUDA_BUILD=${CUDA_BUILD}") +# message(STATUS "CUDA_LINK=${CUDA_LINK}") +message(STATUS "USE_NVTX=${USE_NVTX}") +message(STATUS "ORT_VERSION=${ORT_VERSION}") + +# message(STATUS "ENV-PATH=$ENV{PATH}") +# message(STATUS "ENV-PYTHONPATH=$ENV{PYTHONPATH}") +message(STATUS "--------------------------------------------") +message(STATUS "--------------------------------------------") +message(STATUS "--------------------------------------------") + +# Don't let cmake set a default value for CMAKE_CUDA_ARCHITECTURES +# see https://cmake.org/cmake/help/latest/policy/CMP0104.html +# cmake_policy(SET CMP0104 OLD) # deprecated +file(WRITE "../_setup_ext.txt" "") + +list(APPEND CMAKE_MODULE_PATH + "${CMAKE_CURRENT_SOURCE_DIR}" + "${CMAKE_CURRENT_SOURCE_DIR}/externals") + + +# +# Packages and constants +# + +include("constants.cmake") +include("load_externals.cmake") + +# +# modules +# + +message(STATUS "--------------------------------------------") +set(ROOT_PROJECT_PATH ${CMAKE_CURRENT_SOURCE_DIR}/..) +set(ROOT_UNITTEST_PATH ${CMAKE_CURRENT_SOURCE_DIR}/../_unittests) +message(STATUS "ROOT_PROJECT_PATH=${ROOT_PROJECT_PATH}") +message(STATUS "ROOT_INCLUDE_PATH=${ROOT_INCLUDE_PATH}") +message(STATUS "ROOT_UNITTEST_PATH=${ROOT_UNITTEST_PATH}") +message(STATUS "--------------------------------------------") + +# +# standalone modules +# + +include("targets/_tree_digitize_cy.cmake") +include("targets/direct_blas_lapack_cy.cmake") +include("targets/piecewise_cy.cmake") + +# +# write version +# + +file(WRITE "../mlinsights/_config.py" "${config_content}") + +# +# test +# + +include(CTest) +enable_testing() + +# +# Final +# + +set(CPACK_PROJECT_NAME ${PROJECT_NAME}) +set(CPACK_PROJECT_VERSION ${PROJECT_VERSION}) +include(CPack) + +# +# Final check +# + +get_property(targets_list GLOBAL PROPERTY PACKAGES_FOUND) +message(STATUS "-------------------") +message(STATUS "CMAKE_PROJECT_NAME = ${CMAKE_PROJECT_NAME}") +message(STATUS "list of found packages") +foreach(target ${targets_list}) + message(STATUS " ${target}") +endforeach() +message(STATUS "-------------------") diff --git a/_cmake/clang_format.sh b/_cmake/clang_format.sh new file mode 100644 index 00000000..1134b607 --- /dev/null +++ b/_cmake/clang_format.sh @@ -0,0 +1,16 @@ +#!/bin/bash +clear +echo "--ruff--" +ruff . +echo "--cython-lint--" +cython-lint . +echo "--clang-format--" +find mlinsights -type f \( -name "*.h" -o -name "*.hpp" -o -name "*.cuh" -o -name "*.cpp" -o -name "*.cc" -o -name "*.cu" \) | while read f; do + echo "clang-format -i $f"; + clang-format -i $f; +done +echo "--cmake-lint--" +find _cmake -type f \( -name "*.cmake" -o -name "*.txt" \) | while read f; do + echo "cmake-lint $f --line-width=88 --disabled-codes C0103 C0113"; + cmake-lint $f --line-width=88 --disabled-codes C0103 C0113; +done diff --git a/_cmake/constants.cmake b/_cmake/constants.cmake new file mode 100644 index 00000000..36775dfc --- /dev/null +++ b/_cmake/constants.cmake @@ -0,0 +1,63 @@ +# +# python extension +# +if(MSVC) + set(DLLEXT "dll") +elseif(APPLE) + set(DLLEXT "dylib") +else() + set(DLLEXT "so") +endif() + +# +# C++ 14 or C++ 17 +# +if(MSVC) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /std:c++17") +else() + if(CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL "11") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17") + else() + if(CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL "6") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14") + else() + message(FATAL_ERROR "gcc>=6.0 is needed but " + "${CMAKE_C_COMPILER_VERSION} was detected.") + endif() + endif() +endif() + +set(TEST_FOLDER "${CMAKE_CURRENT_SOURCE_DIR}/../_unittests") +configure_file( + ${CMAKE_CURRENT_SOURCE_DIR}/test_constants.h.in + ${TEST_FOLDER}/test_constants.h +) + +# +# Compiling options +# + +# AVX instructions +if(MSVC) + # disable warning for #pragma unroll + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX") + add_compile_options(/wd4068) +else() + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC") +endif() + +if(APPLE) + message(STATUS "APPLE: set env var for open mp: CC, CCX, LDFLAGS, CPPFLAGS") + set(ENV{CC} "/usr/local/opt/llvm/bin/clang") + set(ENV{CXX} "/usr/local/opt/llvm/bin/clang++") + set(ENV(LDFLAGS) "-L/usr/local/opt/llvm/lib") + set(ENV(CPPFLAGS) "-I/usr/local/opt/llvm/include") +endif() + +message(STATUS "--------------------------------------------") +message(STATUS "CMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}") +message(STATUS "LDFLAGS=${LDFLAGS}") +message(STATUS "CPPFLAGS=${CPPFLAGS}") +message(STATUS "--------------------------------------------") + diff --git a/_cmake/externals/CPM.cmake b/_cmake/externals/CPM.cmake new file mode 100644 index 00000000..70aebf10 --- /dev/null +++ b/_cmake/externals/CPM.cmake @@ -0,0 +1,1154 @@ +# CPM.cmake - CMake's missing package manager +# =========================================== +# See https://github.com/cpm-cmake/CPM.cmake for usage and update instructions. +# +# MIT License +# ----------- +#[[ + Copyright (c) 2019-2022 Lars Melchior and contributors + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in all + copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + SOFTWARE. +]] + +cmake_minimum_required(VERSION 3.14 FATAL_ERROR) + +# Initialize logging prefix +if(NOT CPM_INDENT) + set(CPM_INDENT + "CPM:" + CACHE INTERNAL "" + ) +endif() + +if(NOT COMMAND cpm_message) + function(cpm_message) + message(${ARGV}) + endfunction() +endif() + +set(CURRENT_CPM_VERSION 0.38.1) + +get_filename_component(CPM_CURRENT_DIRECTORY "${CMAKE_CURRENT_LIST_DIR}" REALPATH) +if(CPM_DIRECTORY) + if(NOT CPM_DIRECTORY STREQUAL CPM_CURRENT_DIRECTORY) + if(CPM_VERSION VERSION_LESS CURRENT_CPM_VERSION) + message( + AUTHOR_WARNING + "${CPM_INDENT} \ +A dependency is using a more recent CPM version (${CURRENT_CPM_VERSION}) than the current project (${CPM_VERSION}). \ +It is recommended to upgrade CPM to the most recent version. \ +See https://github.com/cpm-cmake/CPM.cmake for more information." + ) + endif() + if(${CMAKE_VERSION} VERSION_LESS "3.17.0") + include(FetchContent) + endif() + return() + endif() + + get_property( + CPM_INITIALIZED GLOBAL "" + PROPERTY CPM_INITIALIZED + SET + ) + if(CPM_INITIALIZED) + return() + endif() +endif() + +if(CURRENT_CPM_VERSION MATCHES "development-version") + message( + WARNING "${CPM_INDENT} Your project is using an unstable development version of CPM.cmake. \ +Please update to a recent release if possible. \ +See https://github.com/cpm-cmake/CPM.cmake for details." + ) +endif() + +set_property(GLOBAL PROPERTY CPM_INITIALIZED true) + +macro(cpm_set_policies) + # the policy allows us to change options without caching + cmake_policy(SET CMP0077 NEW) + set(CMAKE_POLICY_DEFAULT_CMP0077 NEW) + + # the policy allows us to change set(CACHE) without caching + if(POLICY CMP0126) + cmake_policy(SET CMP0126 NEW) + set(CMAKE_POLICY_DEFAULT_CMP0126 NEW) + endif() + + # The policy uses the download time for timestamp, instead of the timestamp in the archive. This + # allows for proper rebuilds when a projects url changes + if(POLICY CMP0135) + cmake_policy(SET CMP0135 NEW) + set(CMAKE_POLICY_DEFAULT_CMP0135 NEW) + endif() +endmacro() +cpm_set_policies() + +option(CPM_USE_LOCAL_PACKAGES "Always try to use `find_package` to get dependencies" + $ENV{CPM_USE_LOCAL_PACKAGES} +) +option(CPM_LOCAL_PACKAGES_ONLY "Only use `find_package` to get dependencies" + $ENV{CPM_LOCAL_PACKAGES_ONLY} +) +option(CPM_DOWNLOAD_ALL "Always download dependencies from source" $ENV{CPM_DOWNLOAD_ALL}) +option(CPM_DONT_UPDATE_MODULE_PATH "Don't update the module path to allow using find_package" + $ENV{CPM_DONT_UPDATE_MODULE_PATH} +) +option(CPM_DONT_CREATE_PACKAGE_LOCK "Don't create a package lock file in the binary path" + $ENV{CPM_DONT_CREATE_PACKAGE_LOCK} +) +option(CPM_INCLUDE_ALL_IN_PACKAGE_LOCK + "Add all packages added through CPM.cmake to the package lock" + $ENV{CPM_INCLUDE_ALL_IN_PACKAGE_LOCK} +) +option(CPM_USE_NAMED_CACHE_DIRECTORIES + "Use additional directory of package name in cache on the most nested level." + $ENV{CPM_USE_NAMED_CACHE_DIRECTORIES} +) + +set(CPM_VERSION + ${CURRENT_CPM_VERSION} + CACHE INTERNAL "" +) +set(CPM_DIRECTORY + ${CPM_CURRENT_DIRECTORY} + CACHE INTERNAL "" +) +set(CPM_FILE + ${CMAKE_CURRENT_LIST_FILE} + CACHE INTERNAL "" +) +set(CPM_PACKAGES + "" + CACHE INTERNAL "" +) +set(CPM_DRY_RUN + OFF + CACHE INTERNAL "Don't download or configure dependencies (for testing)" +) + +if(DEFINED ENV{CPM_SOURCE_CACHE}) + set(CPM_SOURCE_CACHE_DEFAULT $ENV{CPM_SOURCE_CACHE}) +else() + set(CPM_SOURCE_CACHE_DEFAULT OFF) +endif() + +set(CPM_SOURCE_CACHE + ${CPM_SOURCE_CACHE_DEFAULT} + CACHE PATH "Directory to download CPM dependencies" +) + +if(NOT CPM_DONT_UPDATE_MODULE_PATH) + set(CPM_MODULE_PATH + "${CMAKE_BINARY_DIR}/CPM_modules" + CACHE INTERNAL "" + ) + # remove old modules + file(REMOVE_RECURSE ${CPM_MODULE_PATH}) + file(MAKE_DIRECTORY ${CPM_MODULE_PATH}) + # locally added CPM modules should override global packages + set(CMAKE_MODULE_PATH "${CPM_MODULE_PATH};${CMAKE_MODULE_PATH}") +endif() + +if(NOT CPM_DONT_CREATE_PACKAGE_LOCK) + set(CPM_PACKAGE_LOCK_FILE + "${CMAKE_BINARY_DIR}/cpm-package-lock.cmake" + CACHE INTERNAL "" + ) + file(WRITE ${CPM_PACKAGE_LOCK_FILE} + "# CPM Package Lock\n# This file should be committed to version control\n\n" + ) +endif() + +include(FetchContent) + +# Try to infer package name from git repository uri (path or url) +function(cpm_package_name_from_git_uri URI RESULT) + if("${URI}" MATCHES "([^/:]+)/?.git/?$") + set(${RESULT} + ${CMAKE_MATCH_1} + PARENT_SCOPE + ) + else() + unset(${RESULT} PARENT_SCOPE) + endif() +endfunction() + +# Try to infer package name and version from a url +function(cpm_package_name_and_ver_from_url url outName outVer) + if(url MATCHES "[/\\?]([a-zA-Z0-9_\\.-]+)\\.(tar|tar\\.gz|tar\\.bz2|zip|ZIP)(\\?|/|$)") + # We matched an archive + set(filename "${CMAKE_MATCH_1}") + + if(filename MATCHES "([a-zA-Z0-9_\\.-]+)[_-]v?(([0-9]+\\.)*[0-9]+[a-zA-Z0-9]*)") + # We matched - (ie foo-1.2.3) + set(${outName} + "${CMAKE_MATCH_1}" + PARENT_SCOPE + ) + set(${outVer} + "${CMAKE_MATCH_2}" + PARENT_SCOPE + ) + elseif(filename MATCHES "(([0-9]+\\.)+[0-9]+[a-zA-Z0-9]*)") + # We couldn't find a name, but we found a version + # + # In many cases (which we don't handle here) the url would look something like + # `irrelevant/ACTUAL_PACKAGE_NAME/irrelevant/1.2.3.zip`. In such a case we can't possibly + # distinguish the package name from the irrelevant bits. Moreover if we try to match the + # package name from the filename, we'd get bogus at best. + unset(${outName} PARENT_SCOPE) + set(${outVer} + "${CMAKE_MATCH_1}" + PARENT_SCOPE + ) + else() + # Boldly assume that the file name is the package name. + # + # Yes, something like `irrelevant/ACTUAL_NAME/irrelevant/download.zip` will ruin our day, but + # such cases should be quite rare. No popular service does this... we think. + set(${outName} + "${filename}" + PARENT_SCOPE + ) + unset(${outVer} PARENT_SCOPE) + endif() + else() + # No ideas yet what to do with non-archives + unset(${outName} PARENT_SCOPE) + unset(${outVer} PARENT_SCOPE) + endif() +endfunction() + +function(cpm_find_package NAME VERSION) + string(REPLACE " " ";" EXTRA_ARGS "${ARGN}") + find_package(${NAME} ${VERSION} ${EXTRA_ARGS} QUIET) + if(${CPM_ARGS_NAME}_FOUND) + if(DEFINED ${CPM_ARGS_NAME}_VERSION) + set(VERSION ${${CPM_ARGS_NAME}_VERSION}) + endif() + cpm_message(STATUS "${CPM_INDENT} Using local package ${CPM_ARGS_NAME}@${VERSION}") + CPMRegisterPackage(${CPM_ARGS_NAME} "${VERSION}") + set(CPM_PACKAGE_FOUND + YES + PARENT_SCOPE + ) + else() + set(CPM_PACKAGE_FOUND + NO + PARENT_SCOPE + ) + endif() +endfunction() + +# Create a custom FindXXX.cmake module for a CPM package This prevents `find_package(NAME)` from +# finding the system library +function(cpm_create_module_file Name) + if(NOT CPM_DONT_UPDATE_MODULE_PATH) + # erase any previous modules + file(WRITE ${CPM_MODULE_PATH}/Find${Name}.cmake + "include(\"${CPM_FILE}\")\n${ARGN}\nset(${Name}_FOUND TRUE)" + ) + endif() +endfunction() + +# Find a package locally or fallback to CPMAddPackage +function(CPMFindPackage) + set(oneValueArgs NAME VERSION GIT_TAG FIND_PACKAGE_ARGUMENTS) + + cmake_parse_arguments(CPM_ARGS "" "${oneValueArgs}" "" ${ARGN}) + + if(NOT DEFINED CPM_ARGS_VERSION) + if(DEFINED CPM_ARGS_GIT_TAG) + cpm_get_version_from_git_tag("${CPM_ARGS_GIT_TAG}" CPM_ARGS_VERSION) + endif() + endif() + + set(downloadPackage ${CPM_DOWNLOAD_ALL}) + if(DEFINED CPM_DOWNLOAD_${CPM_ARGS_NAME}) + set(downloadPackage ${CPM_DOWNLOAD_${CPM_ARGS_NAME}}) + elseif(DEFINED ENV{CPM_DOWNLOAD_${CPM_ARGS_NAME}}) + set(downloadPackage $ENV{CPM_DOWNLOAD_${CPM_ARGS_NAME}}) + endif() + if(downloadPackage) + CPMAddPackage(${ARGN}) + cpm_export_variables(${CPM_ARGS_NAME}) + return() + endif() + + cpm_check_if_package_already_added(${CPM_ARGS_NAME} "${CPM_ARGS_VERSION}") + if(CPM_PACKAGE_ALREADY_ADDED) + cpm_export_variables(${CPM_ARGS_NAME}) + return() + endif() + + cpm_find_package(${CPM_ARGS_NAME} "${CPM_ARGS_VERSION}" ${CPM_ARGS_FIND_PACKAGE_ARGUMENTS}) + + if(NOT CPM_PACKAGE_FOUND) + CPMAddPackage(${ARGN}) + cpm_export_variables(${CPM_ARGS_NAME}) + endif() + +endfunction() + +# checks if a package has been added before +function(cpm_check_if_package_already_added CPM_ARGS_NAME CPM_ARGS_VERSION) + if("${CPM_ARGS_NAME}" IN_LIST CPM_PACKAGES) + CPMGetPackageVersion(${CPM_ARGS_NAME} CPM_PACKAGE_VERSION) + if("${CPM_PACKAGE_VERSION}" VERSION_LESS "${CPM_ARGS_VERSION}") + message( + WARNING + "${CPM_INDENT} Requires a newer version of ${CPM_ARGS_NAME} (${CPM_ARGS_VERSION}) than currently included (${CPM_PACKAGE_VERSION})." + ) + endif() + cpm_get_fetch_properties(${CPM_ARGS_NAME}) + set(${CPM_ARGS_NAME}_ADDED NO) + set(CPM_PACKAGE_ALREADY_ADDED + YES + PARENT_SCOPE + ) + cpm_export_variables(${CPM_ARGS_NAME}) + else() + set(CPM_PACKAGE_ALREADY_ADDED + NO + PARENT_SCOPE + ) + endif() +endfunction() + +# Parse the argument of CPMAddPackage in case a single one was provided and convert it to a list of +# arguments which can then be parsed idiomatically. For example gh:foo/bar@1.2.3 will be converted +# to: GITHUB_REPOSITORY;foo/bar;VERSION;1.2.3 +function(cpm_parse_add_package_single_arg arg outArgs) + # Look for a scheme + if("${arg}" MATCHES "^([a-zA-Z]+):(.+)$") + string(TOLOWER "${CMAKE_MATCH_1}" scheme) + set(uri "${CMAKE_MATCH_2}") + + # Check for CPM-specific schemes + if(scheme STREQUAL "gh") + set(out "GITHUB_REPOSITORY;${uri}") + set(packageType "git") + elseif(scheme STREQUAL "gl") + set(out "GITLAB_REPOSITORY;${uri}") + set(packageType "git") + elseif(scheme STREQUAL "bb") + set(out "BITBUCKET_REPOSITORY;${uri}") + set(packageType "git") + # A CPM-specific scheme was not found. Looks like this is a generic URL so try to determine + # type + elseif(arg MATCHES ".git/?(@|#|$)") + set(out "GIT_REPOSITORY;${arg}") + set(packageType "git") + else() + # Fall back to a URL + set(out "URL;${arg}") + set(packageType "archive") + + # We could also check for SVN since FetchContent supports it, but SVN is so rare these days. + # We just won't bother with the additional complexity it will induce in this function. SVN is + # done by multi-arg + endif() + else() + if(arg MATCHES ".git/?(@|#|$)") + set(out "GIT_REPOSITORY;${arg}") + set(packageType "git") + else() + # Give up + message(FATAL_ERROR "${CPM_INDENT} Can't determine package type of '${arg}'") + endif() + endif() + + # For all packages we interpret @... as version. Only replace the last occurrence. Thus URIs + # containing '@' can be used + string(REGEX REPLACE "@([^@]+)$" ";VERSION;\\1" out "${out}") + + # Parse the rest according to package type + if(packageType STREQUAL "git") + # For git repos we interpret #... as a tag or branch or commit hash + string(REGEX REPLACE "#([^#]+)$" ";GIT_TAG;\\1" out "${out}") + elseif(packageType STREQUAL "archive") + # For archives we interpret #... as a URL hash. + string(REGEX REPLACE "#([^#]+)$" ";URL_HASH;\\1" out "${out}") + # We don't try to parse the version if it's not provided explicitly. cpm_get_version_from_url + # should do this at a later point + else() + # We should never get here. This is an assertion and hitting it means there's a bug in the code + # above. A packageType was set, but not handled by this if-else. + message(FATAL_ERROR "${CPM_INDENT} Unsupported package type '${packageType}' of '${arg}'") + endif() + + set(${outArgs} + ${out} + PARENT_SCOPE + ) +endfunction() + +# Check that the working directory for a git repo is clean +function(cpm_check_git_working_dir_is_clean repoPath gitTag isClean) + + find_package(Git REQUIRED) + + if(NOT GIT_EXECUTABLE) + # No git executable, assume directory is clean + set(${isClean} + TRUE + PARENT_SCOPE + ) + return() + endif() + + # check for uncommitted changes + execute_process( + COMMAND ${GIT_EXECUTABLE} status --porcelain + RESULT_VARIABLE resultGitStatus + OUTPUT_VARIABLE repoStatus + OUTPUT_STRIP_TRAILING_WHITESPACE ERROR_QUIET + WORKING_DIRECTORY ${repoPath} + ) + if(resultGitStatus) + # not supposed to happen, assume clean anyway + message(WARNING "${CPM_INDENT} Calling git status on folder ${repoPath} failed") + set(${isClean} + TRUE + PARENT_SCOPE + ) + return() + endif() + + if(NOT "${repoStatus}" STREQUAL "") + set(${isClean} + FALSE + PARENT_SCOPE + ) + return() + endif() + + # check for committed changes + execute_process( + COMMAND ${GIT_EXECUTABLE} diff -s --exit-code ${gitTag} + RESULT_VARIABLE resultGitDiff + OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_QUIET + WORKING_DIRECTORY ${repoPath} + ) + + if(${resultGitDiff} EQUAL 0) + set(${isClean} + TRUE + PARENT_SCOPE + ) + else() + set(${isClean} + FALSE + PARENT_SCOPE + ) + endif() + +endfunction() + +# method to overwrite internal FetchContent properties, to allow using CPM.cmake to overload +# FetchContent calls. As these are internal cmake properties, this method should be used carefully +# and may need modification in future CMake versions. Source: +# https://github.com/Kitware/CMake/blob/dc3d0b5a0a7d26d43d6cfeb511e224533b5d188f/Modules/FetchContent.cmake#L1152 +function(cpm_override_fetchcontent contentName) + cmake_parse_arguments(PARSE_ARGV 1 arg "" "SOURCE_DIR;BINARY_DIR" "") + if(NOT "${arg_UNPARSED_ARGUMENTS}" STREQUAL "") + message(FATAL_ERROR "${CPM_INDENT} Unsupported arguments: ${arg_UNPARSED_ARGUMENTS}") + endif() + + string(TOLOWER ${contentName} contentNameLower) + set(prefix "_FetchContent_${contentNameLower}") + + set(propertyName "${prefix}_sourceDir") + define_property( + GLOBAL + PROPERTY ${propertyName} + BRIEF_DOCS "Internal implementation detail of FetchContent_Populate()" + FULL_DOCS "Details used by FetchContent_Populate() for ${contentName}" + ) + set_property(GLOBAL PROPERTY ${propertyName} "${arg_SOURCE_DIR}") + + set(propertyName "${prefix}_binaryDir") + define_property( + GLOBAL + PROPERTY ${propertyName} + BRIEF_DOCS "Internal implementation detail of FetchContent_Populate()" + FULL_DOCS "Details used by FetchContent_Populate() for ${contentName}" + ) + set_property(GLOBAL PROPERTY ${propertyName} "${arg_BINARY_DIR}") + + set(propertyName "${prefix}_populated") + define_property( + GLOBAL + PROPERTY ${propertyName} + BRIEF_DOCS "Internal implementation detail of FetchContent_Populate()" + FULL_DOCS "Details used by FetchContent_Populate() for ${contentName}" + ) + set_property(GLOBAL PROPERTY ${propertyName} TRUE) +endfunction() + +# Download and add a package from source +function(CPMAddPackage) + cpm_set_policies() + + list(LENGTH ARGN argnLength) + if(argnLength EQUAL 1) + cpm_parse_add_package_single_arg("${ARGN}" ARGN) + + # The shorthand syntax implies EXCLUDE_FROM_ALL and SYSTEM + set(ARGN "${ARGN};EXCLUDE_FROM_ALL;YES;SYSTEM;YES;") + endif() + + set(oneValueArgs + NAME + FORCE + VERSION + GIT_TAG + DOWNLOAD_ONLY + GITHUB_REPOSITORY + GITLAB_REPOSITORY + BITBUCKET_REPOSITORY + GIT_REPOSITORY + SOURCE_DIR + DOWNLOAD_COMMAND + FIND_PACKAGE_ARGUMENTS + NO_CACHE + SYSTEM + GIT_SHALLOW + EXCLUDE_FROM_ALL + SOURCE_SUBDIR + ) + + set(multiValueArgs URL OPTIONS) + + cmake_parse_arguments(CPM_ARGS "" "${oneValueArgs}" "${multiValueArgs}" "${ARGN}") + + # Set default values for arguments + + if(NOT DEFINED CPM_ARGS_VERSION) + if(DEFINED CPM_ARGS_GIT_TAG) + cpm_get_version_from_git_tag("${CPM_ARGS_GIT_TAG}" CPM_ARGS_VERSION) + endif() + endif() + + if(CPM_ARGS_DOWNLOAD_ONLY) + set(DOWNLOAD_ONLY ${CPM_ARGS_DOWNLOAD_ONLY}) + else() + set(DOWNLOAD_ONLY NO) + endif() + + if(DEFINED CPM_ARGS_GITHUB_REPOSITORY) + set(CPM_ARGS_GIT_REPOSITORY "https://github.com/${CPM_ARGS_GITHUB_REPOSITORY}.git") + elseif(DEFINED CPM_ARGS_GITLAB_REPOSITORY) + set(CPM_ARGS_GIT_REPOSITORY "https://gitlab.com/${CPM_ARGS_GITLAB_REPOSITORY}.git") + elseif(DEFINED CPM_ARGS_BITBUCKET_REPOSITORY) + set(CPM_ARGS_GIT_REPOSITORY "https://bitbucket.org/${CPM_ARGS_BITBUCKET_REPOSITORY}.git") + endif() + + if(DEFINED CPM_ARGS_GIT_REPOSITORY) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS GIT_REPOSITORY ${CPM_ARGS_GIT_REPOSITORY}) + if(NOT DEFINED CPM_ARGS_GIT_TAG) + set(CPM_ARGS_GIT_TAG v${CPM_ARGS_VERSION}) + endif() + + # If a name wasn't provided, try to infer it from the git repo + if(NOT DEFINED CPM_ARGS_NAME) + cpm_package_name_from_git_uri(${CPM_ARGS_GIT_REPOSITORY} CPM_ARGS_NAME) + endif() + endif() + + set(CPM_SKIP_FETCH FALSE) + + if(DEFINED CPM_ARGS_GIT_TAG) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS GIT_TAG ${CPM_ARGS_GIT_TAG}) + # If GIT_SHALLOW is explicitly specified, honor the value. + if(DEFINED CPM_ARGS_GIT_SHALLOW) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS GIT_SHALLOW ${CPM_ARGS_GIT_SHALLOW}) + endif() + endif() + + if(DEFINED CPM_ARGS_URL) + # If a name or version aren't provided, try to infer them from the URL + list(GET CPM_ARGS_URL 0 firstUrl) + cpm_package_name_and_ver_from_url(${firstUrl} nameFromUrl verFromUrl) + # If we fail to obtain name and version from the first URL, we could try other URLs if any. + # However multiple URLs are expected to be quite rare, so for now we won't bother. + + # If the caller provided their own name and version, they trump the inferred ones. + if(NOT DEFINED CPM_ARGS_NAME) + set(CPM_ARGS_NAME ${nameFromUrl}) + endif() + if(NOT DEFINED CPM_ARGS_VERSION) + set(CPM_ARGS_VERSION ${verFromUrl}) + endif() + + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS URL "${CPM_ARGS_URL}") + endif() + + # Check for required arguments + + if(NOT DEFINED CPM_ARGS_NAME) + message( + FATAL_ERROR + "${CPM_INDENT} 'NAME' was not provided and couldn't be automatically inferred for package added with arguments: '${ARGN}'" + ) + endif() + + # Check if package has been added before + cpm_check_if_package_already_added(${CPM_ARGS_NAME} "${CPM_ARGS_VERSION}") + if(CPM_PACKAGE_ALREADY_ADDED) + cpm_export_variables(${CPM_ARGS_NAME}) + return() + endif() + + # Check for manual overrides + if(NOT CPM_ARGS_FORCE AND NOT "${CPM_${CPM_ARGS_NAME}_SOURCE}" STREQUAL "") + set(PACKAGE_SOURCE ${CPM_${CPM_ARGS_NAME}_SOURCE}) + set(CPM_${CPM_ARGS_NAME}_SOURCE "") + CPMAddPackage( + NAME "${CPM_ARGS_NAME}" + SOURCE_DIR "${PACKAGE_SOURCE}" + EXCLUDE_FROM_ALL "${CPM_ARGS_EXCLUDE_FROM_ALL}" + SYSTEM "${CPM_ARGS_SYSTEM}" + OPTIONS "${CPM_ARGS_OPTIONS}" + SOURCE_SUBDIR "${CPM_ARGS_SOURCE_SUBDIR}" + DOWNLOAD_ONLY "${DOWNLOAD_ONLY}" + FORCE True + ) + cpm_export_variables(${CPM_ARGS_NAME}) + return() + endif() + + # Check for available declaration + if(NOT CPM_ARGS_FORCE AND NOT "${CPM_DECLARATION_${CPM_ARGS_NAME}}" STREQUAL "") + set(declaration ${CPM_DECLARATION_${CPM_ARGS_NAME}}) + set(CPM_DECLARATION_${CPM_ARGS_NAME} "") + CPMAddPackage(${declaration}) + cpm_export_variables(${CPM_ARGS_NAME}) + # checking again to ensure version and option compatibility + cpm_check_if_package_already_added(${CPM_ARGS_NAME} "${CPM_ARGS_VERSION}") + return() + endif() + + if(NOT CPM_ARGS_FORCE) + if(CPM_USE_LOCAL_PACKAGES OR CPM_LOCAL_PACKAGES_ONLY) + cpm_find_package(${CPM_ARGS_NAME} "${CPM_ARGS_VERSION}" ${CPM_ARGS_FIND_PACKAGE_ARGUMENTS}) + + if(CPM_PACKAGE_FOUND) + cpm_export_variables(${CPM_ARGS_NAME}) + return() + endif() + + if(CPM_LOCAL_PACKAGES_ONLY) + message( + SEND_ERROR + "${CPM_INDENT} ${CPM_ARGS_NAME} not found via find_package(${CPM_ARGS_NAME} ${CPM_ARGS_VERSION})" + ) + endif() + endif() + endif() + + CPMRegisterPackage("${CPM_ARGS_NAME}" "${CPM_ARGS_VERSION}") + + if(DEFINED CPM_ARGS_GIT_TAG) + set(PACKAGE_INFO "${CPM_ARGS_GIT_TAG}") + elseif(DEFINED CPM_ARGS_SOURCE_DIR) + set(PACKAGE_INFO "${CPM_ARGS_SOURCE_DIR}") + else() + set(PACKAGE_INFO "${CPM_ARGS_VERSION}") + endif() + + if(DEFINED FETCHCONTENT_BASE_DIR) + # respect user's FETCHCONTENT_BASE_DIR if set + set(CPM_FETCHCONTENT_BASE_DIR ${FETCHCONTENT_BASE_DIR}) + else() + set(CPM_FETCHCONTENT_BASE_DIR ${CMAKE_BINARY_DIR}/_deps) + endif() + + if(DEFINED CPM_ARGS_DOWNLOAD_COMMAND) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS DOWNLOAD_COMMAND ${CPM_ARGS_DOWNLOAD_COMMAND}) + elseif(DEFINED CPM_ARGS_SOURCE_DIR) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS SOURCE_DIR ${CPM_ARGS_SOURCE_DIR}) + if(NOT IS_ABSOLUTE ${CPM_ARGS_SOURCE_DIR}) + # Expand `CPM_ARGS_SOURCE_DIR` relative path. This is important because EXISTS doesn't work + # for relative paths. + get_filename_component( + source_directory ${CPM_ARGS_SOURCE_DIR} REALPATH BASE_DIR ${CMAKE_CURRENT_BINARY_DIR} + ) + else() + set(source_directory ${CPM_ARGS_SOURCE_DIR}) + endif() + if(NOT EXISTS ${source_directory}) + string(TOLOWER ${CPM_ARGS_NAME} lower_case_name) + # remove timestamps so CMake will re-download the dependency + file(REMOVE_RECURSE "${CPM_FETCHCONTENT_BASE_DIR}/${lower_case_name}-subbuild") + endif() + elseif(CPM_SOURCE_CACHE AND NOT CPM_ARGS_NO_CACHE) + string(TOLOWER ${CPM_ARGS_NAME} lower_case_name) + set(origin_parameters ${CPM_ARGS_UNPARSED_ARGUMENTS}) + list(SORT origin_parameters) + if(CPM_USE_NAMED_CACHE_DIRECTORIES) + string(SHA1 origin_hash "${origin_parameters};NEW_CACHE_STRUCTURE_TAG") + set(download_directory ${CPM_SOURCE_CACHE}/${lower_case_name}/${origin_hash}/${CPM_ARGS_NAME}) + else() + string(SHA1 origin_hash "${origin_parameters}") + set(download_directory ${CPM_SOURCE_CACHE}/${lower_case_name}/${origin_hash}) + endif() + # Expand `download_directory` relative path. This is important because EXISTS doesn't work for + # relative paths. + get_filename_component(download_directory ${download_directory} ABSOLUTE) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS SOURCE_DIR ${download_directory}) + + if(CPM_SOURCE_CACHE) + file(LOCK ${download_directory}/../cmake.lock) + endif() + + if(EXISTS ${download_directory}) + if(CPM_SOURCE_CACHE) + file(LOCK ${download_directory}/../cmake.lock RELEASE) + endif() + + cpm_store_fetch_properties( + ${CPM_ARGS_NAME} "${download_directory}" + "${CPM_FETCHCONTENT_BASE_DIR}/${lower_case_name}-build" + ) + cpm_get_fetch_properties("${CPM_ARGS_NAME}") + + if(DEFINED CPM_ARGS_GIT_TAG AND NOT (PATCH_COMMAND IN_LIST CPM_ARGS_UNPARSED_ARGUMENTS)) + # warn if cache has been changed since checkout + cpm_check_git_working_dir_is_clean(${download_directory} ${CPM_ARGS_GIT_TAG} IS_CLEAN) + if(NOT ${IS_CLEAN}) + message( + WARNING "${CPM_INDENT} Cache for ${CPM_ARGS_NAME} (${download_directory}) is dirty" + ) + endif() + endif() + + cpm_add_subdirectory( + "${CPM_ARGS_NAME}" + "${DOWNLOAD_ONLY}" + "${${CPM_ARGS_NAME}_SOURCE_DIR}/${CPM_ARGS_SOURCE_SUBDIR}" + "${${CPM_ARGS_NAME}_BINARY_DIR}" + "${CPM_ARGS_EXCLUDE_FROM_ALL}" + "${CPM_ARGS_SYSTEM}" + "${CPM_ARGS_OPTIONS}" + ) + set(PACKAGE_INFO "${PACKAGE_INFO} at ${download_directory}") + + # As the source dir is already cached/populated, we override the call to FetchContent. + set(CPM_SKIP_FETCH TRUE) + cpm_override_fetchcontent( + "${lower_case_name}" SOURCE_DIR "${${CPM_ARGS_NAME}_SOURCE_DIR}/${CPM_ARGS_SOURCE_SUBDIR}" + BINARY_DIR "${${CPM_ARGS_NAME}_BINARY_DIR}" + ) + + else() + # Enable shallow clone when GIT_TAG is not a commit hash. Our guess may not be accurate, but + # it should guarantee no commit hash get mis-detected. + if(NOT DEFINED CPM_ARGS_GIT_SHALLOW) + cpm_is_git_tag_commit_hash("${CPM_ARGS_GIT_TAG}" IS_HASH) + if(NOT ${IS_HASH}) + list(APPEND CPM_ARGS_UNPARSED_ARGUMENTS GIT_SHALLOW TRUE) + endif() + endif() + + # remove timestamps so CMake will re-download the dependency + file(REMOVE_RECURSE ${CPM_FETCHCONTENT_BASE_DIR}/${lower_case_name}-subbuild) + set(PACKAGE_INFO "${PACKAGE_INFO} to ${download_directory}") + endif() + endif() + + cpm_create_module_file(${CPM_ARGS_NAME} "CPMAddPackage(\"${ARGN}\")") + + if(CPM_PACKAGE_LOCK_ENABLED) + if((CPM_ARGS_VERSION AND NOT CPM_ARGS_SOURCE_DIR) OR CPM_INCLUDE_ALL_IN_PACKAGE_LOCK) + cpm_add_to_package_lock(${CPM_ARGS_NAME} "${ARGN}") + elseif(CPM_ARGS_SOURCE_DIR) + cpm_add_comment_to_package_lock(${CPM_ARGS_NAME} "local directory") + else() + cpm_add_comment_to_package_lock(${CPM_ARGS_NAME} "${ARGN}") + endif() + endif() + + cpm_message( + STATUS "${CPM_INDENT} Adding package ${CPM_ARGS_NAME}@${CPM_ARGS_VERSION} (${PACKAGE_INFO})" + ) + + if(NOT CPM_SKIP_FETCH) + cpm_declare_fetch( + "${CPM_ARGS_NAME}" "${CPM_ARGS_VERSION}" "${PACKAGE_INFO}" "${CPM_ARGS_UNPARSED_ARGUMENTS}" + ) + cpm_fetch_package("${CPM_ARGS_NAME}" populated) + if(CPM_CACHE_SOURCE AND download_directory) + file(LOCK ${download_directory}/../cmake.lock RELEASE) + endif() + if(${populated}) + cpm_add_subdirectory( + "${CPM_ARGS_NAME}" + "${DOWNLOAD_ONLY}" + "${${CPM_ARGS_NAME}_SOURCE_DIR}/${CPM_ARGS_SOURCE_SUBDIR}" + "${${CPM_ARGS_NAME}_BINARY_DIR}" + "${CPM_ARGS_EXCLUDE_FROM_ALL}" + "${CPM_ARGS_SYSTEM}" + "${CPM_ARGS_OPTIONS}" + ) + endif() + cpm_get_fetch_properties("${CPM_ARGS_NAME}") + endif() + + set(${CPM_ARGS_NAME}_ADDED YES) + cpm_export_variables("${CPM_ARGS_NAME}") +endfunction() + +# Fetch a previously declared package +macro(CPMGetPackage Name) + if(DEFINED "CPM_DECLARATION_${Name}") + CPMAddPackage(NAME ${Name}) + else() + message(SEND_ERROR "${CPM_INDENT} Cannot retrieve package ${Name}: no declaration available") + endif() +endmacro() + +# export variables available to the caller to the parent scope expects ${CPM_ARGS_NAME} to be set +macro(cpm_export_variables name) + set(${name}_SOURCE_DIR + "${${name}_SOURCE_DIR}" + PARENT_SCOPE + ) + set(${name}_BINARY_DIR + "${${name}_BINARY_DIR}" + PARENT_SCOPE + ) + set(${name}_ADDED + "${${name}_ADDED}" + PARENT_SCOPE + ) + set(CPM_LAST_PACKAGE_NAME + "${name}" + PARENT_SCOPE + ) +endmacro() + +# declares a package, so that any call to CPMAddPackage for the package name will use these +# arguments instead. Previous declarations will not be overridden. +macro(CPMDeclarePackage Name) + if(NOT DEFINED "CPM_DECLARATION_${Name}") + set("CPM_DECLARATION_${Name}" "${ARGN}") + endif() +endmacro() + +function(cpm_add_to_package_lock Name) + if(NOT CPM_DONT_CREATE_PACKAGE_LOCK) + cpm_prettify_package_arguments(PRETTY_ARGN false ${ARGN}) + file(APPEND ${CPM_PACKAGE_LOCK_FILE} "# ${Name}\nCPMDeclarePackage(${Name}\n${PRETTY_ARGN})\n") + endif() +endfunction() + +function(cpm_add_comment_to_package_lock Name) + if(NOT CPM_DONT_CREATE_PACKAGE_LOCK) + cpm_prettify_package_arguments(PRETTY_ARGN true ${ARGN}) + file(APPEND ${CPM_PACKAGE_LOCK_FILE} + "# ${Name} (unversioned)\n# CPMDeclarePackage(${Name}\n${PRETTY_ARGN}#)\n" + ) + endif() +endfunction() + +# includes the package lock file if it exists and creates a target `cpm-update-package-lock` to +# update it +macro(CPMUsePackageLock file) + if(NOT CPM_DONT_CREATE_PACKAGE_LOCK) + get_filename_component(CPM_ABSOLUTE_PACKAGE_LOCK_PATH ${file} ABSOLUTE) + if(EXISTS ${CPM_ABSOLUTE_PACKAGE_LOCK_PATH}) + include(${CPM_ABSOLUTE_PACKAGE_LOCK_PATH}) + endif() + if(NOT TARGET cpm-update-package-lock) + add_custom_target( + cpm-update-package-lock COMMAND ${CMAKE_COMMAND} -E copy ${CPM_PACKAGE_LOCK_FILE} + ${CPM_ABSOLUTE_PACKAGE_LOCK_PATH} + ) + endif() + set(CPM_PACKAGE_LOCK_ENABLED true) + endif() +endmacro() + +# registers a package that has been added to CPM +function(CPMRegisterPackage PACKAGE VERSION) + list(APPEND CPM_PACKAGES ${PACKAGE}) + set(CPM_PACKAGES + ${CPM_PACKAGES} + CACHE INTERNAL "" + ) + set("CPM_PACKAGE_${PACKAGE}_VERSION" + ${VERSION} + CACHE INTERNAL "" + ) +endfunction() + +# retrieve the current version of the package to ${OUTPUT} +function(CPMGetPackageVersion PACKAGE OUTPUT) + set(${OUTPUT} + "${CPM_PACKAGE_${PACKAGE}_VERSION}" + PARENT_SCOPE + ) +endfunction() + +# declares a package in FetchContent_Declare +function(cpm_declare_fetch PACKAGE VERSION INFO) + if(${CPM_DRY_RUN}) + cpm_message(STATUS "${CPM_INDENT} Package not declared (dry run)") + return() + endif() + + FetchContent_Declare(${PACKAGE} ${ARGN}) +endfunction() + +# returns properties for a package previously defined by cpm_declare_fetch +function(cpm_get_fetch_properties PACKAGE) + if(${CPM_DRY_RUN}) + return() + endif() + + set(${PACKAGE}_SOURCE_DIR + "${CPM_PACKAGE_${PACKAGE}_SOURCE_DIR}" + PARENT_SCOPE + ) + set(${PACKAGE}_BINARY_DIR + "${CPM_PACKAGE_${PACKAGE}_BINARY_DIR}" + PARENT_SCOPE + ) +endfunction() + +function(cpm_store_fetch_properties PACKAGE source_dir binary_dir) + if(${CPM_DRY_RUN}) + return() + endif() + + set(CPM_PACKAGE_${PACKAGE}_SOURCE_DIR + "${source_dir}" + CACHE INTERNAL "" + ) + set(CPM_PACKAGE_${PACKAGE}_BINARY_DIR + "${binary_dir}" + CACHE INTERNAL "" + ) +endfunction() + +# adds a package as a subdirectory if viable, according to provided options +function( + cpm_add_subdirectory + PACKAGE + DOWNLOAD_ONLY + SOURCE_DIR + BINARY_DIR + EXCLUDE + SYSTEM + OPTIONS +) + + if(NOT DOWNLOAD_ONLY AND EXISTS ${SOURCE_DIR}/CMakeLists.txt) + set(addSubdirectoryExtraArgs "") + if(EXCLUDE) + list(APPEND addSubdirectoryExtraArgs EXCLUDE_FROM_ALL) + endif() + if("${SYSTEM}" AND "${CMAKE_VERSION}" VERSION_GREATER_EQUAL "3.25") + # https://cmake.org/cmake/help/latest/prop_dir/SYSTEM.html#prop_dir:SYSTEM + list(APPEND addSubdirectoryExtraArgs SYSTEM) + endif() + if(OPTIONS) + foreach(OPTION ${OPTIONS}) + cpm_parse_option("${OPTION}") + set(${OPTION_KEY} "${OPTION_VALUE}") + endforeach() + endif() + set(CPM_OLD_INDENT "${CPM_INDENT}") + set(CPM_INDENT "${CPM_INDENT} ${PACKAGE}:") + add_subdirectory(${SOURCE_DIR} ${BINARY_DIR} ${addSubdirectoryExtraArgs}) + set(CPM_INDENT "${CPM_OLD_INDENT}") + endif() +endfunction() + +# downloads a previously declared package via FetchContent and exports the variables +# `${PACKAGE}_SOURCE_DIR` and `${PACKAGE}_BINARY_DIR` to the parent scope +function(cpm_fetch_package PACKAGE populated) + set(${populated} + FALSE + PARENT_SCOPE + ) + if(${CPM_DRY_RUN}) + cpm_message(STATUS "${CPM_INDENT} Package ${PACKAGE} not fetched (dry run)") + return() + endif() + + FetchContent_GetProperties(${PACKAGE}) + + string(TOLOWER "${PACKAGE}" lower_case_name) + + if(NOT ${lower_case_name}_POPULATED) + FetchContent_Populate(${PACKAGE}) + set(${populated} + TRUE + PARENT_SCOPE + ) + endif() + + cpm_store_fetch_properties( + ${CPM_ARGS_NAME} ${${lower_case_name}_SOURCE_DIR} ${${lower_case_name}_BINARY_DIR} + ) + + set(${PACKAGE}_SOURCE_DIR + ${${lower_case_name}_SOURCE_DIR} + PARENT_SCOPE + ) + set(${PACKAGE}_BINARY_DIR + ${${lower_case_name}_BINARY_DIR} + PARENT_SCOPE + ) +endfunction() + +# splits a package option +function(cpm_parse_option OPTION) + string(REGEX MATCH "^[^ ]+" OPTION_KEY "${OPTION}") + string(LENGTH "${OPTION}" OPTION_LENGTH) + string(LENGTH "${OPTION_KEY}" OPTION_KEY_LENGTH) + if(OPTION_KEY_LENGTH STREQUAL OPTION_LENGTH) + # no value for key provided, assume user wants to set option to "ON" + set(OPTION_VALUE "ON") + else() + math(EXPR OPTION_KEY_LENGTH "${OPTION_KEY_LENGTH}+1") + string(SUBSTRING "${OPTION}" "${OPTION_KEY_LENGTH}" "-1" OPTION_VALUE) + endif() + set(OPTION_KEY + "${OPTION_KEY}" + PARENT_SCOPE + ) + set(OPTION_VALUE + "${OPTION_VALUE}" + PARENT_SCOPE + ) +endfunction() + +# guesses the package version from a git tag +function(cpm_get_version_from_git_tag GIT_TAG RESULT) + string(LENGTH ${GIT_TAG} length) + if(length EQUAL 40) + # GIT_TAG is probably a git hash + set(${RESULT} + 0 + PARENT_SCOPE + ) + else() + string(REGEX MATCH "v?([0123456789.]*).*" _ ${GIT_TAG}) + set(${RESULT} + ${CMAKE_MATCH_1} + PARENT_SCOPE + ) + endif() +endfunction() + +# guesses if the git tag is a commit hash or an actual tag or a branch name. +function(cpm_is_git_tag_commit_hash GIT_TAG RESULT) + string(LENGTH "${GIT_TAG}" length) + # full hash has 40 characters, and short hash has at least 7 characters. + if(length LESS 7 OR length GREATER 40) + set(${RESULT} + 0 + PARENT_SCOPE + ) + else() + if(${GIT_TAG} MATCHES "^[a-fA-F0-9]+$") + set(${RESULT} + 1 + PARENT_SCOPE + ) + else() + set(${RESULT} + 0 + PARENT_SCOPE + ) + endif() + endif() +endfunction() + +function(cpm_prettify_package_arguments OUT_VAR IS_IN_COMMENT) + set(oneValueArgs + NAME + FORCE + VERSION + GIT_TAG + DOWNLOAD_ONLY + GITHUB_REPOSITORY + GITLAB_REPOSITORY + GIT_REPOSITORY + SOURCE_DIR + DOWNLOAD_COMMAND + FIND_PACKAGE_ARGUMENTS + NO_CACHE + SYSTEM + GIT_SHALLOW + ) + set(multiValueArgs OPTIONS) + cmake_parse_arguments(CPM_ARGS "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) + + foreach(oneArgName ${oneValueArgs}) + if(DEFINED CPM_ARGS_${oneArgName}) + if(${IS_IN_COMMENT}) + string(APPEND PRETTY_OUT_VAR "#") + endif() + if(${oneArgName} STREQUAL "SOURCE_DIR") + string(REPLACE ${CMAKE_SOURCE_DIR} "\${CMAKE_SOURCE_DIR}" CPM_ARGS_${oneArgName} + ${CPM_ARGS_${oneArgName}} + ) + endif() + string(APPEND PRETTY_OUT_VAR " ${oneArgName} ${CPM_ARGS_${oneArgName}}\n") + endif() + endforeach() + foreach(multiArgName ${multiValueArgs}) + if(DEFINED CPM_ARGS_${multiArgName}) + if(${IS_IN_COMMENT}) + string(APPEND PRETTY_OUT_VAR "#") + endif() + string(APPEND PRETTY_OUT_VAR " ${multiArgName}\n") + foreach(singleOption ${CPM_ARGS_${multiArgName}}) + if(${IS_IN_COMMENT}) + string(APPEND PRETTY_OUT_VAR "#") + endif() + string(APPEND PRETTY_OUT_VAR " \"${singleOption}\"\n") + endforeach() + endif() + endforeach() + + if(NOT "${CPM_ARGS_UNPARSED_ARGUMENTS}" STREQUAL "") + if(${IS_IN_COMMENT}) + string(APPEND PRETTY_OUT_VAR "#") + endif() + string(APPEND PRETTY_OUT_VAR " ") + foreach(CPM_ARGS_UNPARSED_ARGUMENT ${CPM_ARGS_UNPARSED_ARGUMENTS}) + string(APPEND PRETTY_OUT_VAR " ${CPM_ARGS_UNPARSED_ARGUMENT}") + endforeach() + string(APPEND PRETTY_OUT_VAR "\n") + endif() + + set(${OUT_VAR} + ${PRETTY_OUT_VAR} + PARENT_SCOPE + ) + +endfunction() diff --git a/_cmake/externals/FindCudaExtension.cmake b/_cmake/externals/FindCudaExtension.cmake new file mode 100644 index 00000000..2d03836c --- /dev/null +++ b/_cmake/externals/FindCudaExtension.cmake @@ -0,0 +1,220 @@ +# +# initialization +# +# Defines USE_NTVX to enable profiling with NVIDIA profiler. +# CUDA_VERSION must be defined as well. + +if(CMAKE_CUDA_COMPILER STREQUAL "/usr/bin/nvcc") + if(CUDA_VERSION STREQUAL "") + message(FATAL_ERROR + "CMAKE_CUDA_COMPILER is equal to '${CMAKE_CUDA_COMPILER}', " + "CUDA_VERSION=${CUDA_VERSION}, " + "CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}, " + "You should specify the cuda version by adding --cuda-version=...") + endif() +endif() + +if(CUDA_VERSION) + find_package(CUDAToolkit ${CUDA_VERSION} EXACT) +else() + find_package(CUDAToolkit) +endif() + +message(STATUS "CUDAToolkit_FOUND=${CUDAToolkit_FOUND}") + +if(CUDAToolkit_FOUND) + + message(STATUS "befor1 language CUDA_VERSION=${CUDA_VERSION}") + message(STATUS "befor1 language CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}") + message(STATUS "befor1 language CMAKE_CUDA_COMPILER=${CMAKE_CUDA_COMPILER}") + + if(CMAKE_CUDA_ARCHITECTURES STREQUAL "") + set(CMAKE_CUDA_ARCHITECTURES "native") + endif() + if(CMAKE_CUDA_COMPILER STREQUAL "CMAKE_CUDA_COMPILER-NOTFOUND") + if(CUDA_VERSION STREQUAL "") + message(FATAL_ERROR "No CMAKE_CUDA_COMPILER for CUDA_VERSION=${CUDA_VERSION}. " + "You can use --cuda-version= or set " + "CUDACXX=/usr/local/cuda-/bin/nvcc") + else() + set(CMAKE_CUDA_COMPILER "/usr/local/cuda-${CUDA_VERSION}/bin/nvcc") + message(STATUS "set CMAKE_CUDA_COMPILER=${CMAKE_CUDA_COMPILER}") + endif() + endif() + + message(STATUS "before language CUDA_VERSION=${CUDA_VERSION}") + message(STATUS "before language CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}") + message(STATUS "before language CMAKE_CUDA_COMPILER=${CMAKE_CUDA_COMPILER}") + enable_language(CUDA) + message(STATUS "------------- CUDA settings") + message(STATUS "CUDA_VERSION=${CUDA_VERSION}") + message(STATUS "CUDA_BUILD=${CUDA_BUILD}") + message(STATUS "CUDAARCHS=${CUDAARCHS}") + message(STATUS "CMAKE_CUDA_COMPILER_VERSION=${CMAKE_CUDA_COMPILER_VERSION}") + message(STATUS "CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}") + message(STATUS "CMAKE_LIBRARY_ARCHITECTURE=${CMAKE_LIBRARY_ARCHITECTURE}") + message(STATUS "CMAKE_CUDA_COMPILER_ID=${CMAKE_CUDA_COMPILER_ID}") + message(STATUS "CMAKE_CUDA_HOST_COMPILER=${CMAKE_CUDA_HOST_COMPILER}") + message(STATUS "------------- end of CUDA settings") + if (NOT CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL CUDA_VERSION) + message(FATAL_ERROR "CMAKE_CUDA_COMPILER_VERSION=${CMAKE_CUDA_COMPILER_VERSION} " + "< ${CUDA_VERSION}, nvcc is not setup properly. " + "Try 'whereis nvcc' and chack the version.") + endif() + + set(CMAKE_CUDA_STANDARD 17) + set(CMAKE_CUDA_STANDARD_REQUIRED ON) + + # CUDA flags + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr") + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-extended-lambda") + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --use_fast_math") + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -O3") + + if(CUDA_BUILD STREQUAL "H100opt") + + # see https://arnon.dk/ + # matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/ + set(CMAKE_CUDA_ARCHITECTURES 90) + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_90,code=sm_90") + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_90a,code=sm_90a") + set(CMAKE_CUDA_FLAGS + "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_90a,code=compute_90a") + + else() # H100, DEFAULT + + if(CUDA_BUILD STREQUAL "H100") + set(CMAKE_CUDA_ARCHITECTURES 52 70 80 90) + elseif(NOT DEFINED CMAKE_CUDA_ARCHITECTURES) + if(NOT CUDA_BUILD STREQUAL "DEFAULT") + message(FATAL_ERROR "Unexpected value for CUDA_BUILD='${CUDA_BUILD}'.") + endif() + set(CMAKE_CUDA_ARCHITECTURES 52 70 80 90) + else() + if(NOT CUDA_BUILD STREQUAL "DEFAULT") + message(FATAL_ERROR "Unexpected value for CUDA_BUILD='${CUDA_BUILD}'.") + endif() + endif() + + if (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11) + message(FATAL_ERROR "CUDA verions must be >= 11 but is " + "${CMAKE_CUDA_COMPILER_VERSION}.") + endif() + if (CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12) + # 37, 50 still work in CUDA 11 + # but are marked deprecated and will be removed in future CUDA version. + # K80 + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_37,code=sm_37") + # M series + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_50,code=sm_50") + endif() + # M60 + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_52,code=sm_52") + # P series + # set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_60,code=sm_60") + # P series + # set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_61,code=sm_61") + # V series + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_70,code=sm_70") + # T series + # set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_75,code=sm_75") + if (CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 11) + # A series + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_80,code=sm_80") + # set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_86,code=sm_86") + # set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_87,code=sm_87") + endif() + if (CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 11.8) + # H series + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} -gencode=arch=compute_90,code=sm_90") + endif() + endif() + + if (NOT WIN32) + set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} --compiler-options -fPIC") + endif() + set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --threads 4") + + if(USE_NVTX) + # see https://github.com/NVIDIA/NVTX + include(CPM.cmake) + + CPMAddPackage( + NAME NVTX + GITHUB_REPOSITORY NVIDIA/NVTX + GIT_TAG v3.1.0-c-cpp + GIT_SHALLOW TRUE) + + message(STATUS "CUDA NTVX_FOUND=${NTVX_FOUND}") + set(NVTX_LINK_C "nvtx3-c") + set(NVTX_LINK_CPP "nvtx3-cpp") + add_compile_definitions("ENABLE_NVTX") + else() + set(NVTX_LINK_C "") + set(NVTX_LINK_CPP "") + message(STATUS "CUDA NTVX not added.") + endif() + + execute_process( + COMMAND nvcc --version + OUTPUT_VARIABLE NVCC_version_output + ERROR_VARIABLE NVCC_version_error + RESULT_VARIABLE NVCC_version_result + OUTPUT_STRIP_TRAILING_WHITESPACE) + # If the version is not the same, something like the following can be tried: + # export PATH=/usr/local/cuda-11-8/bin:$PATH + if(NOT NVCC_version_output MATCHES ".*${CUDA_VERSION}.*") + message(FATAL_ERROR "CUDA_VERSION=${CUDA_VERSION} does not match nvcc " + "version=${NVCC_version_output}, try\n" + "export PATH=/usr/local/cuda-" + "${CUDAToolkit_VERSION_MAJOR}." + "${CUDAToolkit_VERSION_MINOR}/bin:$PATH") + endif() + set(NVCC_VERSION "${NVCC_version_output}") + math( + EXPR + CUDA_VERSION_INT + "${CUDAToolkit_VERSION_MAJOR} * 1000 + ${CUDAToolkit_VERSION_MINOR} * 10" + OUTPUT_FORMAT DECIMAL) + + set(CUDA_AVAILABLE 1) + set(CUDA_VERSION ${CUDAToolkit_VERSION}) + if (CUDA_LINK STREQUAL "STATIC") + set(CUDA_LIBRARIES CUDA::cudart_static + CUDA::cufft_static CUDA::cufftw_static + CUDA::curand_static + CUDA::cublas_static CUDA::cublasLt_static + CUDA::cusolver_static + CUDA::cupti_static) + else() + set(CUDA_LIBRARIES CUDA::cudart + CUDA::cufft CUDA::cufftw + CUDA::curand + CUDA::cublas CUDA::cublasLt + CUDA::cusolver + CUDA::cupti) + endif() + + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args( + CudaExtension + VERSION_VAR "0.1" + REQUIRED_VARS CUDAToolkit_FOUND CUDA_VERSION + CUDA_VERSION_INT CUDA_LIBRARIES NVCC_VERSION + CUDA_AVAILABLE) + +else() + + if(CUDA_VERSION) + message(FATAL_ERROR "Unable to find CUDA=${CUDA_VERSION}, you can do\n" + "export PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH\n" + "PATH=$ENV{PATH}") + endif() + set(CUDA_VERSION_INT 0) + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args( + CudaExtension + VERSION_VAR "0.1" + REQUIRED_VARS CUDAToolkit_FOUND CUDA_VERSION CUDA_VERSION_INT "" "" 0) + +endif() diff --git a/_cmake/externals/FindCython.cmake b/_cmake/externals/FindCython.cmake new file mode 100644 index 00000000..867e69da --- /dev/null +++ b/_cmake/externals/FindCython.cmake @@ -0,0 +1,130 @@ +# +# initialization +# +# output variables Cython_FOUND, Cython_VERSION function cython_add_module + +execute_process( + COMMAND ${Python3_EXECUTABLE} -m cython --version + OUTPUT_VARIABLE CYTHON_version_output + ERROR_VARIABLE CYTHON_version_error + RESULT_VARIABLE CYTHON_version_result + OUTPUT_STRIP_TRAILING_WHITESPACE ERROR_STRIP_TRAILING_WHITESPACE) +message(STATUS "CYTHON_version_output=${CYTHON_version_output}") +message(STATUS "CYTHON_version_error=${CYTHON_version_error}") +message(STATUS "CYTHON_version_result=${CYTHON_version_result}") + +if(NOT ${CYTHON_version_result} EQUAL 0) + # installation of cython, numpy + execute_process( + COMMAND ${Python3_EXECUTABLE} -m pip install cython numpy + OUTPUT_VARIABLE install_version_output + ERROR_VARIABLE install_version_error + RESULT_VARIABLE install_version_result) + message(STATUS "install_version_output=${install_version_output}") + message(STATUS "install_version_error=${install_version_error}") + message(STATUS "install_version_result=${install_version_result}") + execute_process( + COMMAND ${Python3_EXECUTABLE} -m cython --version + OUTPUT_VARIABLE CYTHON_version_output + ERROR_VARIABLE CYTHON_version_error + RESULT_VARIABLE CYTHON_version_result + OUTPUT_STRIP_TRAILING_WHITESPACE ERROR_STRIP_TRAILING_WHITESPACE) + message(STATUS "CYTHON_version_output=${CYTHON_version_output}") + message(STATUS "CYTHON_version_error=${CYTHON_version_error}") + message(STATUS "CYTHON_version_result=${CYTHON_version_result}") + if(NOT ${CYTHON_version_result} EQUAL 0) + message(FATAL_ERROR ("Unable to find cython for '${PYTHON_EXECUTABLE}'.")) + endif() + set(Cython_VERSION ${CYTHON_version_error}) +else() + set(Cython_VERSION ${CYTHON_version_error}) +endif() + +execute_process( + COMMAND "${Python3_EXECUTABLE}" -c "import numpy;print(numpy.get_include())" + OUTPUT_VARIABLE NUMPY_INCLUDE_DIR + OUTPUT_STRIP_TRAILING_WHITESPACE + RESULT_VARIABLE NUMPY_NOT_FOUND) +if(NUMPY_NOT_FOUND) + message( + FATAL_ERROR + "Numpy headers not found with " + "Python3_EXECUTABLE='${Python3_EXECUTABLE}' and " + "Cython_VERSION=${Cython_VERSION}.") +endif() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args( + Cython + VERSION_VAR Cython_VERSION + REQUIRED_VARS NUMPY_INCLUDE_DIR) + +# +# ! compile_cython : compile a pyx file into cpp +# +# \arg:filename extension name \arg:pyx_file_cpp output pyx file name +# +function(compile_cython filename pyx_file_cpp) + message(STATUS "cython cythonize '${filename}'") + set(fullfilename "${CMAKE_CURRENT_SOURCE_DIR}/${filename}") + + # dict(boundscheck=False, cdivision=True, wraparound=False, + # cdivision_warnings=False, embedsignature=True, initializedcheck=False) + add_custom_command( + OUTPUT ${CMAKE_CURRENT_SOURCE_DIR}/${pyx_file_cpp} + COMMAND + ${Python3_EXECUTABLE} -m cython -3 --cplus ${fullfilename} -X + boundscheck=False -X cdivision=True -X wraparound=False -X + cdivision_warnings=False -X embedsignature=True -X initializedcheck=False + DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${filename}) + message(STATUS "cython cythonize '${filename}' - done") +endfunction() + +# +# ! cython_add_module : compile a pyx file into cpp +# +# \arg:name extension name \arg:pyx_file pyx file name \arg:omp_lib omp library +# to link with \argn: additional c++ files to compile +# +function(cython_add_module name pyx_file omp_lib) + set(options "") + set(oneValueArgs "") + set(multiValueArgs SOURCES DEPS) + message(STATUS "cython module '${name}': ${pyx_file} ++ ${ARGN}") + get_filename_component(pyx_dir ${pyx_file} DIRECTORY) + + # cythonize + + compile_cython(${pyx_file} ${pyx_dir}/${name}.cpp) + list(APPEND ARGN ${pyx_dir}/${name}.cpp) + + # adding the library + + message(STATUS "cython all files: ${ARGN}") + python3_add_library(${name} MODULE ${ARGN}) + + target_include_directories( + ${name} + PRIVATE ${Python3_INCLUDE_DIRS} ${PYTHON_INCLUDE_DIR} + ${Python3_NumPy_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} + ${OMP_INCLUDE_DIR}) + + message(STATUS " LINK ${name} <- ${Python3_LIBRARY_RELEASE} " + "${Python3_NumPy_LIBRARIES} ${omp_lib}") + target_link_libraries( + ${name} + PRIVATE ${Python3_LIBRARY_RELEASE} # use ${Python3_LIBRARIES} if python + # debug + ${Python3_NumPy_LIBRARIES} ${omp_lib}) + + target_compile_definitions(${name} PUBLIC NPY_NO_DEPRECATED_API) + + set_target_properties(${name} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}" + SUFFIX "${PYTHON_MODULE_EXTENSION}") + + # install(TARGETS ${name} LIBRARY DESTINATION ${pyx_dir}) + + message(STATUS "cython added module '${name}'") + get_target_property(prop ${name} BINARY_DIR) + message(STATUS "cython added into '${prop}'.") +endfunction() diff --git a/_cmake/externals/FindLocalEigen.cmake b/_cmake/externals/FindLocalEigen.cmake new file mode 100644 index 00000000..831c7126 --- /dev/null +++ b/_cmake/externals/FindLocalEigen.cmake @@ -0,0 +1,50 @@ +# +# initialization +# +# function eigen_add_dependency +# output variables LOCAL_EIGEN_FOUND, LOCAL_EIGEN_TARGET + +if(NOT LOCAL_EIGEN_VERSION) + set(LOCAL_EIGEN_VERSION "3.4.0") +endif() +string(SUBSTRING "${LOCAL_EIGEN_VERSION}" 0 3 SHORT_EIGEN_VERSION) +set(LOCAL_EIGEN_ROOT https://gitlab.com/libeigen/eigen/-/archive/) +set(LOCAL_EIGEN_NAME "eigen-${LOCAL_EIGEN_VERSION}.zip") +set(LOCAL_EIGEN_URL "${LOCAL_EIGEN_ROOT}${LOCAL_EIGEN_VERSION}/${LOCAL_EIGEN_NAME}") +set(LOCAL_EIGEN_DEST "${CMAKE_CURRENT_BINARY_DIR}/eigen-download/${LOCAL_EIGEN_NAME}") +set(LOCAL_EIGEN_DEST_DIR "${CMAKE_CURRENT_BINARY_DIR}/eigen-bin/") + +FetchContent_Declare(eigen URL ${LOCAL_EIGEN_URL}) + +# This instruction add all the available targets in eigen +# including unit tests. +# FetchContent_makeAvailable(eigen) + +FetchContent_Populate(eigen) + +list(APPEND CMAKE_MODULE_PATH "${eigen_SOURCE_DIR}/cmake") +# find_package(Eigen3) + +set(LOCAL_EIGEN_SOURCE "${eigen_SOURCE_DIR}") + +# find_package(Eigen3 ${SHORT_EIGEN_VERSION} REQUIRED NO_MODULE) +set(LOCAL_EIGEN_TARGET Eigen3::Eigen) +set(LOCAL_EIGEN_VERSION ${Eigen3_VERSION}) +set(EIGEN_INCLUDE_DIRS "${eigen_SOURCE_DIR}") + +# +# !eigen_add_dependency: add a dependency to eigen. +# +# +# \arg:name target name +# +function(eigen_add_dependency name) + target_include_directories(${name} PRIVATE ${EIGEN_INCLUDE_DIRS}) +endfunction() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args( + LocalEigen + VERSION_VAR LOCAL_EIGEN_VERSION + REQUIRED_VARS LOCAL_EIGEN_TARGET LOCAL_EIGEN_URL LOCAL_EIGEN_SOURCE + EIGEN_INCLUDE_DIRS) diff --git a/_cmake/externals/FindLocalPyBind11.cmake b/_cmake/externals/FindLocalPyBind11.cmake new file mode 100644 index 00000000..c2b0ffc8 --- /dev/null +++ b/_cmake/externals/FindLocalPyBind11.cmake @@ -0,0 +1,100 @@ +# +# initialization +# +# defines LocalPyBind11 pybind11_SOURCE_DIR pybind11_BINARY_DIR +# and functions local_pybind11_add_module, cuda_pybind11_add_module + +# +# pybind11 +# + +set(pybind11_TAG "v2.10.4") + +include(FetchContent) +FetchContent_Declare( + pybind11 + GIT_REPOSITORY https://github.com/pybind/pybind11 + GIT_TAG ${pybind11_TAG}) + +FetchContent_GetProperties(pybind11) +if(NOT pybind11_POPULATED) + FetchContent_Populate(pybind11) + add_subdirectory(${pybind11_SOURCE_DIR} ${pybind11_BINARY_DIR}) +else() + message(FATAL_ERROR "Pybind11 was not found.") +endif() + +set(pybind11_VERSION ${pybind11_TAG}) +message(STATUS "PYBIND11_OPT_SIZE=${PYBIND11_OPT_SIZE}") +message(STATUS "pybind11_INCLUDE_DIR=${pybind11_INCLUDE_DIR}") +message(STATUS "pybind11_VERSION=${pybind11_VERSION}") + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args( + LocalPyBind11 + VERSION_VAR pybind11_VERSION + REQUIRED_VARS pybind11_SOURCE_DIR pybind11_BINARY_DIR) + +# +#! local_pybind11_add_module : compile a pybind11 extension +# +# \arg:name extension name +# \arg:omp_lib omp library to link with +# \argn: additional c++ files to compile +# +function(local_pybind11_add_module name omp_lib) + message(STATUS "pybind11 module '${name}': ${pyx_file} ++ ${ARGN}") + python3_add_library(${name} MODULE ${ARGN}) + target_include_directories( + ${name} PRIVATE + ${Python3_INCLUDE_DIRS} + ${PYTHON3_INCLUDE_DIR} + ${Python3_NumPy_INCLUDE_DIRS} + ${pybind11_INCLUDE_DIR} + ${NUMPY_INCLUDE_DIR} + ${OMP_INCLUDE_DIR}) + target_link_libraries( + ${name} PRIVATE + pybind11::headers + ${Python3_LIBRARY_RELEASE} # use ${Python3_LIBRARIES} if python debug + ${Python3_NumPy_LIBRARIES} + ${omp_lib}) + # if(MSVC) target_link_libraries(${target_name} PRIVATE + # pybind11::windows_extras pybind11::lto) endif() + set_target_properties( + ${name} PROPERTIES + INTERPROCEDURAL_OPTIMIZATION ON + CXX_VISIBILITY_PRESET "hidden" + VISIBILITY_INLINES_HIDDEN ON + PREFIX "${PYTHON_MODULE_PREFIX}" + SUFFIX "${PYTHON_MODULE_EXTENSION}") + message(STATUS "pybind11 added module '${name}'") + get_target_property(prop ${name} BINARY_DIR) + message(STATUS "pybind11 added into '${prop}'.") +endfunction() + +# +#! cuda_pybind11_add_module : compile a pyx file into cpp +# +# \arg:name extension name +# \arg:pybindfile pybind11 extension +# \argn: additional c++ files to compile as the cuda extension +# +function(cuda_pybind11_add_module name pybindfile) + local_pybind11_add_module(${name} OpenMP::OpenMP_CXX ${pybindfile} ${ARGN}) + target_compile_definitions(${name} PRIVATE CUDA_VERSION=${CUDA_VERSION_INT}) + target_include_directories(${name} PRIVATE ${CUDA_INCLUDE_DIRS}) + message(STATUS " LINK ${name} <- stdc++ ${CUDA_LIBRARIES}") + target_link_libraries(${name} PRIVATE stdc++ ${CUDA_LIBRARIES}) + if(USE_NVTX) + message(STATUS " LINK ${name} <- nvtx3-cpp") + target_link_libraries(${name} PRIVATE nvtx3-cpp) + endif() + + # add property --use_fast_math to cu files + # set(NEW_LIST ${name}_src_files) + # list(APPEND ${name}_cu_files ${ARGN}) + # list(FILTER ${name}_cu_files INCLUDE REGEX ".+[.]cu$") + # set_source_files_properties( + # ${name}_cu_files PROPERTIES COMPILE_OPTIONS "--use_fast_math") +endfunction() diff --git a/_cmake/externals/FindMyPython.cmake b/_cmake/externals/FindMyPython.cmake new file mode 100644 index 00000000..0bc26951 --- /dev/null +++ b/_cmake/externals/FindMyPython.cmake @@ -0,0 +1,140 @@ +# +# initialization +# +# defines python3_add_library +# use FindPython.cmake or use the python defined in cmake variable +# if USE_SETUP_PYTHON is set. + +# +# pybind11 +# + +if(USE_SETUP_PYTHON) + message(STATUS "Use Python from setup.py") + set(Python3_VERSION ${PYTHON_VERSION}) + set(Python3_Interpreter_FOUND 1) + set(Python3_Development_FOUND 1) + set(Python3_INCLUDE_DIRS ${PYTHON_INCLUDE_DIR}) + set(Python3_LIBRARY ${PYTHON_LIBRARY}) + set(Python3_LIBRARIES ${PYTHON_LIBRARY}) + set(Python3_LIBRARY_RELEASE ${PYTHON_LIBRARY}) + set(Python3_LIBRARY_DIRS ${PYTHON_LIBRARY_DIR}) + set(Python3_EXECUTABLE ${PYTHON_EXECUTABLE}) + set(Python3_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION}) + set(Python3_MODULE_PREFIX "") + set(Python3_LINK_OPTIONS "") + set(Python3_NumPy_INCLUDE_DIRS ${PYTHON_NUMPY_INCLUDE_DIR}) + set(Python3_NumPy_VERSION PYTHON_NUMPY_VERSION) + + # + #! python3_add_library : add a python library + # + # The function fails because it is not adding Python3{version}.lib. + # The code is here: + # https://github.com/Kitware/CMake/blob/ + # master/Modules/FindPython/Support.cmake. + # + # \arg:name extension name + # \arg:prefix MODULE,SHARED,STATIC + # + function(python3_add_library name prefix) + cmake_parse_arguments( + PARSE_ARGV 2 PYTHON_ADD_LIBRARY + "STATIC;SHARED;MODULE;WITH_SOABI" "" "") + + message(STATUS "Build python3 '${name}' with type='${type}' and " + "PYTHON_ADD_LIBRARY_UNPARSED_ARGUMENTS=" + "${PYTHON_ADD_LIBRARY_UNPARSED_ARGUMENTS}.") + + if(PYTHON_ADD_LIBRARY_STATIC) + set(type STATIC) + elseif(PYTHON_ADD_LIBRARY_SHARED) + set(type SHARED) + else() + set(type MODULE) + endif() + + add_library(${name} ${type} ${PYTHON_ADD_LIBRARY_UNPARSED_ARGUMENTS}) + target_include_directories( + ${name} PRIVATE + ${Python3_INCLUDE_DIRS} + ${PYTHON_INCLUDE_DIR} + ${Python3_NumPy_INCLUDE_DIRS} + ${NUMPY_INCLUDE_DIR}) + + set_target_properties( + ${name} PROPERTIES + PREFIX "${PYTHON_MODULE_PREFIX}" + SUFFIX "${PYTHON_MODULE_EXTENSION}") + endfunction() +else() + message(STATUS "Use find_package(Python3).") + set(Python3_EXECUTABLE ${PYTHON_EXECUTABLE}) + if(APPLE) + find_package(Python3 ${PYTHON_VERSION} COMPONENTS + Interpreter Development.Module + REQUIRED) + set(Python_NumPy_INCLUDE_DIRS ${PYTHON_NUMPY_INCLUDE_DIR}) + else() + find_package(Python3 ${PYTHON_VERSION} COMPONENTS + Interpreter NumPy Development.Module + REQUIRED) + endif() + + if(Python3_Interpreter_FOUND) + if(NOT Python3_LIBRARY) + set(Python3_LIBRARY ${PYTHON_LIBRARY}) + endif() + if(NOT Python3_LIBRARIES) + set(Python3_LIBRARIES ${PYTHON_LIBRARY}) + endif() + if(NOT Python3_LIBRARY_RELEASE) + set(Python3_LIBRARY_RELEASE ${PYTHON_LIBRARY}) + endif() + if(NOT Python3_MODULE_EXTENSION) + set(Python3_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION}) + endif() + if(NOT Python3_MODULE_PREFIX) + set(Python3_MODULE_PREFIX "") + endif() + if(NOT Python3_NumPy_VERSION) + set(Python3_NumPy_VERSION ${PYTHON_NUMPY_VERSION}) + endif() + if(NOT Python3_NumPy_INCLUDE_DIRS) + set(Python3_NumPy_INCLUDE_DIRS ${PYTHON_NUMPY_INCLUDE_DIR}) + endif() + + message(STATUS "Python3_Interpreter_FOUND=${Python3_Interpreter_FOUND}") + message(STATUS "Python3_NumPy_VERSION=${Python3_NumPy_VERSION}") + message(STATUS "PYTHON_VERSION=${PYTHON_VERSION}") + message(STATUS "Python3_VERSION=${Python3_VERSION}") + message(STATUS "Python3_EXECUTABLE=${Python3_EXECUTABLE}") + message(STATUS "Python3_INCLUDE_DIRS=${Python3_INCLUDE_DIRS}") + message(STATUS "Python3_LIBRARY_DIRS=${Python3_LIBRARY_DIRS}") + message(STATUS "Python3_LIBRARIES=${Python3_LIBRARIES}") + message(STATUS "Python3_LIBRARY=${Python3_LIBRARY}") + message(STATUS "Python3_LIBRARY_RELEASE=${Python3_LIBRARY_RELEASE}") + message(STATUS "Python3_LINK_OPTIONS=${Python3_LINK_OPTIONS}") + message(STATUS "Python3_NumPy_FOUND=${Python3_NumPy_FOUND}") + message(STATUS "Python3_NumPy_INCLUDE_DIRS=${Python3_NumPy_INCLUDE_DIRS}") + message(STATUS "Python3_NumPy_VERSION=${Python3_NumPy_VERSION}") + message(STATUS "Python3_Development_FOUND=${Python3_Development_FOUND}") + message(STATUS "Python3_MODULE_EXTENSION=${Python3_MODULE_EXTENSION}") + message(STATUS "Python3_MODULE_PREFIX=${Python3_MODULE_PREFIX}") + message(STATUS "Python3_SOABI=${Python3_SOABI}") + message(STATUS "Python3_SOSABI=${Python3_SOSABI}") + else() + message(STATUS "Python3_INCLUDE_DIRS=${Python3_INCLUDE_DIRS}") + message(FATAL_ERROR "Python was not found.") + endif() +endif() + +set(MyPython_VERSION "0.1") + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args( + MyPython + VERSION_VAR MyPython_VERSION + REQUIRED_VARS Python3_VERSION Python3_EXECUTABLE Python3_INCLUDE_DIRS + Python3_MODULE_EXTENSION + Python3_NumPy_INCLUDE_DIRS Python3_NumPy_VERSION) diff --git a/_cmake/externals/FindOrt.cmake b/_cmake/externals/FindOrt.cmake new file mode 100644 index 00000000..bf09e435 --- /dev/null +++ b/_cmake/externals/FindOrt.cmake @@ -0,0 +1,196 @@ +# +# initialization +# +# downloads onnxruntime as a binary +# functions ort_add_dependency, ort_add_custom_op + +if(NOT ORT_VERSION) + set(ORT_VERSION 1.15.1) + set(ORT_VERSION_INT 1150) +endif() +string(LENGTH "${ORT_VERSION}" ORT_VERSION_LENGTH) + +if(CUDAToolkit_FOUND) + if(APPLE) + message(WARNING "onnxruntime-gpu not available on MacOsx") + endif() + set(ORT_GPU "-gpu") +else() + set(ORT_GPU "") +endif() + +if(ORT_VERSION_LENGTH LESS_EQUAL 12) + message(STATUS "ORT - retrieve release version ${ORT_VERSION}") + if(MSVC) + set(ORT_NAME "onnxruntime-win-x64${ORT_GPU}-${ORT_VERSION}.zip") + set(ORT_FOLD "onnxruntime-win-x64${ORT_GPU}-${ORT_VERSION}") + elseif(APPLE) + set(ORT_NAME "onnxruntime-osx-universal2-${ORT_VERSION}.tgz") + set(ORT_FOLD "onnxruntime-osx-universal2-${ORT_VERSION}") + else() + set(ORT_NAME "onnxruntime-linux-x64${ORT_GPU}-${ORT_VERSION}.tgz") + set(ORT_FOLD "onnxruntime-linux-x64${ORT_GPU}-${ORT_VERSION}") + endif() + set(ORT_ROOT "https://github.com/microsoft/onnxruntime/releases/download/") + set(ORT_URL "${ORT_ROOT}v${ORT_VERSION}/${ORT_NAME}") + set(ORT_DEST "${CMAKE_CURRENT_BINARY_DIR}/onnxruntime-download/${ORT_NAME}") + set(ORT_DEST_DIR "${CMAKE_CURRENT_BINARY_DIR}/onnxruntime-bin/") + + string(REGEX MATCH "^([0-9]+)\\.([0-9]+)\\.([0-9]+)" ORT_VERSION_MATCH ${ORT_VERSION}) + set(ORT_VERSION_MAJOR ${CMAKE_MATCH_1}) + set(ORT_VERSION_MINOR ${CMAKE_MATCH_2}) + math( + EXPR + ORT_VERSION_INT + "${ORT_VERSION_MAJOR} * 1000 + ${ORT_VERSION_MINOR} * 10" + OUTPUT_FORMAT DECIMAL) + + FetchContent_Declare(onnxruntime URL ${ORT_URL}) + FetchContent_makeAvailable(onnxruntime) + set(ONNXRUNTIME_INCLUDE_DIR ${onnxruntime_SOURCE_DIR}/include) + set(ONNXRUNTIME_LIB_DIR ${onnxruntime_SOURCE_DIR}/lib) +else() + message(STATUS "ORT - retrieve development version from '${ORT_VERSION}'") + set(ORT_VERSION_INT 99999) + set(ONNXRUNTIME_LIB_DIR "${ORT_VERSION}") + set(ONNXRUNTIME_INCLUDE_DIR + "${ORT_VERSION}/../../../include/onnxruntime/core/session") + set(ORT_URL ${ORT_VERSION}) +endif() + +find_library(ONNXRUNTIME onnxruntime HINTS "${ONNXRUNTIME_LIB_DIR}") +if(ONNXRUNTIME-NOTFOUND) + message(FATAL_ERROR "onnxruntime cannot be found at '${ONNXRUNTIME_LIB_DIR}'") +endif() + +file(GLOB ORT_LIB_FILES ${ONNXRUNTIME_LIB_DIR}/*.${DLLEXT}*) +file(GLOB ORT_LIB_HEADER ${ONNXRUNTIME_INCLUDE_DIR}/*.h) + +list(LENGTH ORT_LIB_FILES ORT_LIB_FILES_LENGTH) +if (ORT_LIB_FILES_LENGTH LESS_EQUAL 1) + message(FATAL_ERROR "No file found in '${ONNXRUNTIME_LIB_DIR}' " + "from url '${ORT_URL}', " + "found files [${ORT_LIB_FILES}].") +endif() + +list(LENGTH ORT_LIB_HEADER ORT_LIB_HEADER_LENGTH) +if (ORT_LIB_HEADER_LENGTH LESS_EQUAL 1) + message(FATAL_ERROR "No file found in '${ONNXRUNTIME_INCLUDE_DIR}' " + "from url '${ORT_URL}', " + "found files [${ORT_LIB_HEADER}]") +endif() + +# +#! ort_add_dependency : copies necessary onnxruntime assembly +# to the location a target is build +# +# \arg:name target name +# +function(ort_add_dependency name folder_copy) + get_target_property(target_output_directory ${name} BINARY_DIR) + message(STATUS "ort: copy-1 ${ORT_LIB_FILES_LENGTH} files from '${ONNXRUNTIME_LIB_DIR}'") + if(MSVC) + set(destination_dir ${target_output_directory}/${CMAKE_BUILD_TYPE}) + else() + set(destination_dir ${target_output_directory}) + endif() + message(STATUS "ort: copy-2 to '${destination_dir}'") + if(folder_copy) + message(STATUS "ort: copy-3 to '${folder_copy}'") + endif() + foreach(file_i ${ORT_LIB_FILES}) + if(NOT EXISTS ${destination_dir}/${file_i}) + message(STATUS "ort: copy-4 '${file_i}' to '${destination_dir}'") + add_custom_command( + TARGET ${name} POST_BUILD + COMMAND ${CMAKE_COMMAND} ARGS -E copy ${file_i} ${destination_dir}) + endif() + if(folder_copy) + if(NOT EXISTS ${folder_copy}/${file_i}) + message(STATUS "ort: copy-5 '${file_i}' to '${folder_copy}'") + # file(APPEND "../_setup_ext.txt" "copy,${file_i},${folder_copy}\n") + add_custom_command( + TARGET ${name} POST_BUILD + COMMAND ${CMAKE_COMMAND} ARGS -E copy ${file_i} ${folder_copy}) + endif() + endif() + endforeach() + # file(COPY ${ORT_LIB_FILES} DESTINATION ${target_output_directory}) +endfunction() + +# +#! ort_add_custom_op : compile a pyx file into cpp +# +# \arg:name project name +# \arg:folder where to copy the library +# \arg:provider CUDA if a cuda lib, CPU if CPU +# \argn: C++ file to compile +# +function(ort_add_custom_op name provider folder) + if (WIN32) + file(WRITE "${folder}/${name}.def" "LIBRARY " + "\"${name}.dll\"\nEXPORTS\n RegisterCustomOps @1") + list(APPEND ARGN "${folder}/${name}.def") + endif() + if (provider STREQUAL "CUDA") + message(STATUS "ort: custom op ${provider}: '${name}': ${ARGN}") + add_library(${name} SHARED ${ARGN}) + + # add property --use_fast_math to cu files + # set(NEW_LIST ${name}_src_files) + # list(APPEND ${name}_cu_files ${ARGN}) + # list(FILTER ${name}_cu_files INCLUDE REGEX ".+[.]cu$") + # set_source_files_properties( + # ${name}_cu_files PROPERTIES COMPILE_OPTIONS "--use_fast_math") + + target_compile_definitions( + ${name} + PRIVATE + CUDA_VERSION=${CUDA_VERSION_INT} + ORT_VERSION=${ORT_VERSION_INT}) + if(USE_NVTX) + message(STATUS " LINK ${name} <- stdc++ nvtx3-cpp ${CUDA_LIBRARIES}") + target_link_libraries( + ${name} + PRIVATE + stdc++ + nvtx3-cpp + ${CUDA_LIBRARIES}) + else() + message(STATUS " LINK ${name} <- stdc++ ${CUDA_LIBRARIES}") + target_link_libraries( + ${name} + PRIVATE + stdc++ + ${CUDA_LIBRARIES}) + endif() + target_include_directories( + ${name} + PRIVATE + ${ONNXRUNTIME_INCLUDE_DIR}) + else() + message(STATUS "ort: custom op CPU: '${name}': ${ARGN}") + add_library(${name} SHARED ${ARGN}) + target_include_directories(${name} PRIVATE ${ONNXRUNTIME_INCLUDE_DIR}) + target_compile_definitions(${name} PRIVATE ORT_VERSION=${ORT_VERSION_INT}) + endif() + set_property(TARGET ${name} PROPERTY POSITION_INDEPENDENT_CODE ON) + get_target_property(target_file ${name} LIBRARY_OUTPUT_NAME) + # add_custom_command( + # TARGET ${name} POST_BUILD + # COMMAND ${CMAKE_COMMAND} ARGS -E copy $ ${folder}) + # $ does not seem to work. + # The following step adds a line in '_setup.txt' to tell setup.py + # to copy an additional file. + # if (provider STREQUAL "CUDA") + # file(APPEND "../_setup_ext.txt" "copy,${cuda_name},${folder}\n") + # endif() + file(APPEND "../_setup_ext.txt" "copy,${name},${folder}\n") +endfunction() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args( + Ort + VERSION_VAR ORT_VERSION + REQUIRED_VARS ORT_URL ONNXRUNTIME_INCLUDE_DIR ONNXRUNTIME_LIB_DIR + ORT_LIB_FILES ORT_LIB_HEADER ORT_VERSION_INT) diff --git a/_cmake/load_externals.cmake b/_cmake/load_externals.cmake new file mode 100644 index 00000000..dcc1b0d6 --- /dev/null +++ b/_cmake/load_externals.cmake @@ -0,0 +1,165 @@ + +# +# Packages +# + +message(STATUS "-------------------") + +if(USE_CUDA) + find_package(CudaExtension) + if(CUDAToolkit_FOUND) + message(STATUS "CUDA_AVAILABLE=${CUDA_AVAILABLE}") + message(STATUS "CUDA_VERSION=${CUDA_VERSION}") + message(STATUS "CUDA_VERSION_INT=${CUDA_VERSION_INT}") + message(STATUS "CUDA version=${CUDA_VERSION_MAJOR}-${CUDA_VERSION_MINOR}") + message(STATUS "CUDA_HAS_FP16=${CUDA_HAS_FP16}") + message(STATUS "CUDA_INCLUDE_DIRS=${CUDA_INCLUDE_DIRS}") + message(STATUS "CUDA_LIBRARIES=${CUDA_LIBRARIES}") + message(STATUS "CUDA_TOOLKIT_ROOT_DIR=${CUDA_TOOLKIT_ROOT_DIR}") + message(STATUS "CUDA_cudart_static_LIBRARY=${CUDA_cudart_static_LIBRARY}") + message(STATUS "CUDA_cudadevrt_LIBRARY=${CUDA_cudadevrt_LIBRARY}") + message(STATUS "CUDA_cupti_LIBRARY=${CUDA_cupti_LIBRARY}") + message(STATUS "CUDA_curand_LIBRARY=${CUDA_curand_LIBRARY}") + message(STATUS "CUDA_cusolver_LIBRARY=${CUDA_cusolver_LIBRARY}") + message(STATUS "CUDA_cusparse_LIBRARY=${CUDA_cusparse_LIBRARY}") + message(STATUS "CUDA_nvToolsExt_LIBRARY=${CUDA_nvToolsExt_LIBRARY}") + message(STATUS "CUDA_OpenCL_LIBRARY=${CUDA_OpenCL_LIBRARY}") + message(STATUS "CUDA NVTX_LINK_C=${NVTX_LINK_C}") + message(STATUS "CUDA NVTX_LINK_CPP=${NVTX_LINK_CPP}") + message(STATUS "CUDA CMAKE_C_COMPILER=${CMAKE_C_COMPILER}") + message(STATUS "CUDA CMAKE_CUDA_FLAGS=${CMAKE_CUDA_FLAGS}") + message(STATUS "CUDA CMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}") + message(STATUS "CUDA CMAKE_CUDA_COMPILER_ID=${CMAKE_CUDA_COMPILER_ID}") + message(STATUS "CUDA CMAKE_LIBRARY_ARCHITECTURE=${CMAKE_LIBRARY_ARCHITECTURE}") + message(STATUS "CUDA CUDA_NVCC_FLAGS=${CUDA_NVCC_FLAGS}") + message(STATUS "CUDA CUDAARCHS=${CUDAARCHS}") + message(STATUS "CUDA CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES}") + message(STATUS "CUDA CUDAToolkit_NVCC_EXECUTABLE=${CUDAToolkit_NVCC_EXECUTABLE}") + message(STATUS "CUDA CUDAToolkit_BIN_DIR=${CUDAToolkit_BIN_DIR}") + message(STATUS "CUDA CUDAToolkit_LIBRARY_DIR=${CUDAToolkit_LIBRARY_DIR}") + message(STATUS "CUDA NVCC_VERSION=${NVCC_VERSION}") + set(CUDA_AVAILABLE 1) + else() + message(STATUS "Module CudaExtension is not installed.") + set(CUDA_AVAILABLE 0) + endif() +else() + message(STATUS "Module CudaExtension is disabled.") + set(CUDA_AVAILABLE 0) +endif() + +message(STATUS "-------------------") +find_package(MyPython) +if(NOT ${PYTHON_VERSION} MATCHES ${Python3_VERSION}) + string(LENGTH PYTHON_VERSION_MM PYTHON_VERSION_MM_LENGTH) + string(SUBSTRING Python3_VERSION + 0 PYTHON_VERSION_MM_LENGTH + Python3_VERSION_MM) + if(${PYTHON_VERSION_MM} MATCHES ${Python3_VERSION_MM}) + message(WARNING + "cmake selects a different python micr o version " + "${Python3_VERSION} than ${PYTHON_VERSION}.") + else() + message(FATAL_ERROR + "cmake selects a different python minor version " + "${Python3_VERSION_MM} than ${PYTHON_VERSION_MM}.") + endif() + # installation of cython, numpy + execute_process( + COMMAND ${Python3_EXECUTABLE} -m pip install cython numpy + OUTPUT_VARIABLE install_version_output + ERROR_VARIABLE install_version_error + RESULT_VARIABLE install_version_result) + message(STATUS "install_version_output=${install_version_output}") + message(STATUS "install_version_error=${install_version_error}") + message(STATUS "install_version_result=${install_version_result}") +endif() +if(MyPython_FOUND) + message(STATUS "Python3_VERSION=${Python3_VERSION}") + message(STATUS "Python3_LIBRARY=${Python3_LIBRARY}") + message(STATUS "Python3_LIBRARY_RELEASE=${Python3_LIBRARY_RELEASE}") +else() + message(FATAL_ERROR "Unable to find Python through MyPython.") +endif() + +message(STATUS "-------------------") +find_package(OpenMP) +if(OpenMP_CXX_FOUND) + message(STATUS "Found OpenMP ${OpenMP_CXX_VERSION}") + set(OMP_INCLUDE_DIR "") +else() + # see https://github.com/microsoft/LightGBM/blob/master/CMakeLists.txt#L148 + execute_process(COMMAND brew --prefix libomp + OUTPUT_VARIABLE HOMEBREW_LIBOMP_PREFIX + OUTPUT_STRIP_TRAILING_WHITESPACE) + set(MAC_FLAGS "-Xpreprocessor -fopenmp") + set(OpenMP_C_FLAGS "${MAC_FLAGS} -I${HOMEBREW_LIBOMP_PREFIX}/include") + set(OpenMP_CXX_FLAGS "${MAC_FLAGS} -I${HOMEBREW_LIBOMP_PREFIX}/include") + set(OpenMP_C_LIB_NAMES omp) + set(OpenMP_CXX_LIB_NAMES omp) + set(OMP_INCLUDE_DIR ${HOMEBREW_LIBOMP_PREFIX}/include) + set(OpenMP_omp_LIBRARY ${HOMEBREW_LIBOMP_PREFIX}/lib/libomp.dylib) + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}") + find_package(OpenMP REQUIRED) + if(OpenMP_FOUND) + message(STATUS "Found(2) OpenMP ${OpenMP_CXX_VERSION}") + else() + message(FATAL_ERROR "OpenMP cannot be found.") + endif() +endif() + +message(STATUS "-------------------") +find_package(Cython REQUIRED) +if(Cython_FOUND) + message(STATUS "Found Cython ${Cython_VERSION}") + message(STATUS "NUMPY_INCLUDE_DIR: ${NUMPY_INCLUDE_DIR}") +else() + message(FATAL_ERROR "Module cython is not installed.") +endif() + +message(STATUS "-------------------") +find_package(LocalPyBind11 REQUIRED) +if(LocalPyBind11_FOUND) + message(STATUS "Found LocalPyBind11, pybind11 at ${pybind11_SOURCE_DIR}") + message(STATUS "Found pybind11 ${pybind11_VERSION}") +else() + message(FATAL_ERROR "Module pybind11 is not installed.") +endif() + +# message(STATUS "-------------------") +# find_package(Ort REQUIRED) +# if(Ort_FOUND) +# message(STATUS "ORT_VERSION=${ORT_VERSION}") +# message(STATUS "ORT_VERSION_INT=${ORT_VERSION_INT}") +# message(STATUS "ORT_URL=${ORT_URL}") +# message(STATUS "ONNXRUNTIME_INCLUDE_DIR=${ONNXRUNTIME_INCLUDE_DIR}") +# message(STATUS "ONNXRUNTIME_LIB_DIR=${ONNXRUNTIME_LIB_DIR}") +# message(STATUS "ORT_LIB_FILES=${ORT_LIB_FILES}") +# message(STATUS "ORT_LIB_HEADER=${ORT_LIB_HEADER}") +# else() +# message(FATAL_ERROR "onnxruntime is not installed.") +# endif() + +message(STATUS "-------------------") +find_package(LocalEigen REQUIRED) +if(LocalEigen_FOUND) + message(STATUS "Found Eigen ${LocalEigen_VERSION}") + message(STATUS "LOCAL_EIGEN_URL=${LOCAL_EIGEN_URL}") + message(STATUS "LOCAL_EIGEN_SOURCE=${LOCAL_EIGEN_SOURCE}") + message(STATUS "EIGEN_INCLUDE=${EIGEN_INCLUDE}") + message(STATUS "EIGEN_INCLUDE_DIRS=${EIGEN_INCLUDE_DIRS}") +else() + message(FATAL_ERROR "Module eigen is not installed.") +endif() + +message(STATUS "-------------------") + +if(CUDA_AVAILABLE) + set( + config_content + "HAS_CUDA = 1\nCUDA_VERSION = '${CUDA_VERSION}'" + "\nCUDA_VERSION_INT = ${CUDA_VERSION_INT}") +else() + set(config_content "HAS_CUDA = 0") +endif() diff --git a/_cmake/targets/_tree_digitize_cy.cmake b/_cmake/targets/_tree_digitize_cy.cmake new file mode 100644 index 00000000..9743b904 --- /dev/null +++ b/_cmake/targets/_tree_digitize_cy.cmake @@ -0,0 +1,9 @@ +# +# module: mlinsights.mltree._tree_digitize +# +message(STATUS "+ CYTHON mlinsights.mltree._tree_digitize") + +cython_add_module( + _tree_digitize + ../mlinsights/mltree/_tree_digitize.pyx + OpenMP::OpenMP_CXX) diff --git a/_cmake/targets/direct_blas_lapack_cy.cmake b/_cmake/targets/direct_blas_lapack_cy.cmake new file mode 100644 index 00000000..d4eafaae --- /dev/null +++ b/_cmake/targets/direct_blas_lapack_cy.cmake @@ -0,0 +1,9 @@ +# +# module: mlinsights.mlmodel.direct_blas_lapack +# +message(STATUS "+ CYTHON mlinsights.mlmodel.direct_blas_lapack") + +cython_add_module( + direct_blas_lapack + ../mlinsights/mlmodel/direct_blas_lapack.pyx + OpenMP::OpenMP_CXX) diff --git a/_cmake/targets/piecewise_cy.cmake b/_cmake/targets/piecewise_cy.cmake new file mode 100644 index 00000000..28ff7490 --- /dev/null +++ b/_cmake/targets/piecewise_cy.cmake @@ -0,0 +1,30 @@ +# +# module: mlinsights.mlmodel.piecewise_tree_regression_criterion* +# +message(STATUS "+ CYTHON mlinsights.mlmodel._piecewise_tree_regression_common") + +cython_add_module( + _piecewise_tree_regression_common + ../mlinsights/mlmodel/_piecewise_tree_regression_common.pyx + OpenMP::OpenMP_CXX) + +message(STATUS "+ CYTHON mlinsights.mlmodel.piecewise_tree_regression_criterion") + +cython_add_module( + piecewise_tree_regression_criterion + ../mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx + OpenMP::OpenMP_CXX) + +message(STATUS "+ CYTHON mlinsights.mlmodel.piecewise_tree_regression_criterion_fast") + +cython_add_module( + piecewise_tree_regression_criterion_fast + ../mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.pyx + OpenMP::OpenMP_CXX) + +message(STATUS "+ CYTHON mlinsights.mlmodel.piecewise_tree_regression_criterion_linear") + +cython_add_module( + piecewise_tree_regression_criterion_linear + ../mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.pyx + OpenMP::OpenMP_CXX) diff --git a/_cmake/test_constants.h.in b/_cmake/test_constants.h.in new file mode 100644 index 00000000..0a8c21b8 --- /dev/null +++ b/_cmake/test_constants.h.in @@ -0,0 +1 @@ +#define TEST_FOLDER "${TEST_FOLDER}" diff --git a/_doc/sphinxdoc/source/_static/git_logo.png b/_doc/_static/git_logo.png similarity index 100% rename from _doc/sphinxdoc/source/_static/git_logo.png rename to _doc/_static/git_logo.png diff --git a/_doc/sphinxdoc/source/_static/project_ico.ico b/_doc/_static/project_ico.ico similarity index 100% rename from _doc/sphinxdoc/source/_static/project_ico.ico rename to _doc/_static/project_ico.ico diff --git a/_doc/sphinxdoc/source/_static/project_ico.png b/_doc/_static/project_ico.png similarity index 100% rename from _doc/sphinxdoc/source/_static/project_ico.png rename to _doc/_static/project_ico.png diff --git a/_doc/api/batch.rst b/_doc/api/batch.rst new file mode 100644 index 00000000..db69a1f0 --- /dev/null +++ b/_doc/api/batch.rst @@ -0,0 +1,15 @@ + +Speed up batch training +======================= + +MLCache ++++++++ + +.. autoclass:: mlinsights.mlbatch.cache_model.MLCache + :members: + +PipelineCache ++++++++++++++ + +.. autoclass:: mlinsights.mlbatch.pipeline_cache.PipelineCache + :members: diff --git a/_doc/sphinxdoc/source/api/blaslapack.rst b/_doc/api/blaslapack.rst similarity index 52% rename from _doc/sphinxdoc/source/api/blaslapack.rst rename to _doc/api/blaslapack.rst index d07c5769..7300a9fc 100644 --- a/_doc/sphinxdoc/source/api/blaslapack.rst +++ b/_doc/api/blaslapack.rst @@ -8,4 +8,4 @@ Blas & Lapack Lapack ++++++ -.. autosignature:: mlinsights.mlmodel.direct_blas_lapack.dgelss +.. autofunction:: mlinsights.mlmodel.direct_blas_lapack.dgelss diff --git a/mlinsights/plotting/gal.jpg b/_doc/api/gal.jpg similarity index 100% rename from mlinsights/plotting/gal.jpg rename to _doc/api/gal.jpg diff --git a/_doc/api/helpers.rst b/_doc/api/helpers.rst new file mode 100644 index 00000000..bdbd3e7a --- /dev/null +++ b/_doc/api/helpers.rst @@ -0,0 +1,22 @@ + +Helpers +======= + +.. contents:: + :local: + +Formatting +++++++++++ + +.. autofunction:: mlinsights.helpers.parameters.format_parameters + +.. autofunction:: mlinsights.helpers.parameters.format_value + +.. autofunction:: mlinsights.helpers.parameters.format_function_call + +Pipeline +++++++++ + +.. autofunction:: mlinsights.helpers.pipeline.alter_pipeline_for_debugging + +.. autofunction:: mlinsights.helpers.pipeline.enumerate_pipeline_models diff --git a/_doc/sphinxdoc/source/api/index.rst b/_doc/api/index.rst similarity index 100% rename from _doc/sphinxdoc/source/api/index.rst rename to _doc/api/index.rst diff --git a/_doc/api/metrics.rst b/_doc/api/metrics.rst new file mode 100644 index 00000000..b5a32b65 --- /dev/null +++ b/_doc/api/metrics.rst @@ -0,0 +1,5 @@ + +metrics +======= + +.. autofunction:: mlinsights.metrics.correlations.non_linear_correlations diff --git a/_doc/api/mlmodel.rst b/_doc/api/mlmodel.rst new file mode 100644 index 00000000..c6d94004 --- /dev/null +++ b/_doc/api/mlmodel.rst @@ -0,0 +1,225 @@ +======================= +Machine Learning Models +======================= + +.. contents:: + :local: + +Helpers +======= + +model_featurizer +++++++++++++++++ + +.. autofunction:: mlinsights.mlmodel.ml_featurizer.model_featurizer + +Clustering +========== + +ConstraintKMeans +++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.kmeans_constraint.ConstraintKMeans + :members: + +KMeansL1L2 +++++++++++ + +.. autoclass:: mlinsights.mlmodel.kmeans_l1.KMeansL1L2 + :members: + +Trainers +======== + +ClassifierAfterKMeans ++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.classification_kmeans.ClassifierAfterKMeans + :members: + +CustomizedMultilayerPerceptron +++++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.quantile_mlpregressor.CustomizedMultilayerPerceptron + :members: + +IntervalRegressor ++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.interval_regressor.IntervalRegressor + :members: + +ApproximateNMFPredictor ++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.anmf_predictor.ApproximateNMFPredictor + :members: + +PiecewiseClassifier ++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.piecewise_estimator.PiecewiseClassifier + :members: + +PiecewiseRegressor +++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.piecewise_estimator.PiecewiseRegressor + :members: + +PiecewiseTreeRegressor +++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.piecewise_tree_regression.PiecewiseTreeRegressor + :members: + +QuantileMLPRegressor +++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.quantile_mlpregressor.QuantileMLPRegressor + :members: + +QuantileLinearRegression +++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.quantile_regression.QuantileLinearRegression + :members: + +TransformedTargetClassifier2 +++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.target_predictors.TransformedTargetClassifier2 + :members: + +TransformedTargetRegressor2 ++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.target_predictors.TransformedTargetRegressor2 + :members: + +Transforms +========== + +NGramsMixin ++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_text.NGramsMixin + :members: + +BaseReciprocalTransformer ++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_transform_inv.BaseReciprocalTransformer + :members: + +CategoriesToIntegers +++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.categories_to_integers.CategoriesToIntegers + :members: + +ExtendedFeatures +++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.extended_features.ExtendedFeatures + :members: + +FunctionReciprocalTransformer ++++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_transform_inv_fct.FunctionReciprocalTransformer + :members: + +PermutationReciprocalTransformer +++++++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_transform_inv_fct.PermutationReciprocalTransformer + :members: + +PredictableTSNE ++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.predictable_tsne.PredictableTSNE + :members: + +TransferTransformer ++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.transfer_transformer.TransferTransformer + :members: + +TraceableCountVectorizer +++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_text.TraceableCountVectorizer + :members: + +TraceableTfidfVectorizer +++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.sklearn_text.TraceableTfidfVectorizer + :members: + +Exploration +=========== + +The following implementation play with :epkg:`scikit-learn` +API, it overwrites the code handling parameters. + +SkBaseTransformLearner +++++++++++++++++++++++ + +.. autoclass:: mlinsights.sklapi.sklearn_base_transform_learner.SkBaseTransformLearner + :members: + +SkBaseTransformStacking ++++++++++++++++++++++++ + +.. autoclass:: mlinsights.sklapi.sklearn_base_transform_stacking.SkBaseTransformStacking + :members: + +Exploration in C +================ + +The following classes require :epkg:`scikit-learn` *>= 1.3.0*, +otherwise, they do not get compiled. + +SimpleRegressorCriterion +++++++++++++++++++++++++ + +.. autoclass:: mlinsights.mlmodel.piecewise_tree_regression_criterion.SimpleRegressorCriterion + :members: + +SimpleRegressorCriterionFast +++++++++++++++++++++++++++++ + +A similar design but a much faster implementation close to what +:epkg:`scikit-learn` implements. + +.. autoclass:: mlinsights.mlmodel.piecewise_tree_regression_criterion_fast.SimpleRegressorCriterionFast + :members: + +LinearRegressorCriterion +++++++++++++++++++++++++ + +The next one implements a criterion which optimizes the mean square error +assuming the points falling into one node of the tree are approximated by +a line. The mean square error is the error made with a linear regressor +and not a constant anymore. The documentation will be completed later. + +`mlinsights.mlmodel.piecewise_tree_regression_criterion_linear.LinearRegressorCriterion` + +`mlinsights.mlmodel.piecewise_tree_regression_criterion_linear_fast.SimpleRegressorCriterionFast` + +Losses +++++++ + +.. autofunction:: mlinsights.mlmodel.quantile_mlpregressor.absolute_loss + +Hidden API +========== + +_switch_clusters +++++++++++++++++ + +.. autofunction:: mlinsights.mlmodel._kmeans_constraint_._switch_clusters diff --git a/_doc/api/plotting.rst b/_doc/api/plotting.rst new file mode 100644 index 00000000..22a7469f --- /dev/null +++ b/_doc/api/plotting.rst @@ -0,0 +1,9 @@ + +plotting +======== + +.. autofunction:: mlinsights.plotting.gallery.plot_gallery_images + +.. autofunction:: mlinsights.plotting.visualize.pipeline2dot + +.. autofunction:: mlinsights.plotting.visualize.pipeline2str diff --git a/_doc/api/search_rank.rst b/_doc/api/search_rank.rst new file mode 100644 index 00000000..ad0f2566 --- /dev/null +++ b/_doc/api/search_rank.rst @@ -0,0 +1,21 @@ + +search_rank +=========== + +SearchEngineVectors ++++++++++++++++++++ + +.. autoclass:: mlinsights.search_rank.search_engine_vectors.SearchEngineVectors + :members: + +SearchEnginePredictions ++++++++++++++++++++++++ + +.. autoclass:: mlinsights.search_rank.search_engine_predictions.SearchEnginePredictions + :members: + +SearchEnginePredictionImages +++++++++++++++++++++++++++++ + +.. autoclass:: mlinsights.search_rank.search_engine_predictions_images.SearchEnginePredictionImages + :members: diff --git a/_doc/api/timeseries.rst b/_doc/api/timeseries.rst new file mode 100644 index 00000000..7d89b199 --- /dev/null +++ b/_doc/api/timeseries.rst @@ -0,0 +1,77 @@ +========== +Timeseries +========== + +Datasets +======== + +.. autofunction:: mlinsights.timeseries.datasets.artificial_data + +Experimentation +=============== + +.. autofunction:: mlinsights.timeseries.patterns.find_ts_group_pattern + +Manipulation +============ + +.. autofunction:: mlinsights.timeseries.agg.aggregate_timeseries + +Plotting +======== + +.. autofunction:: mlinsights.timeseries.plotting.plot_week_timeseries + +Prediction +========== + +BaseReciprocalTimeSeriesTransformer ++++++++++++++++++++++++++++++++++++ + +The following function builds a regular dataset from +a timeseries so that it can be used by machine learning models. + +.. autoclass:: mlinsights.timeseries.base.BaseReciprocalTimeSeriesTransformer + :members: + +build_ts_X_y +++++++++++++ + +.. autofunction:: mlinsights.timeseries.utils.build_ts_X_y + +BaseTimeSeries +++++++++++++++ + +The first class defined the template for all timeseries +estimators. It deals with a timeseries ine one dimension +and additional features. + +.. autoclass:: mlinsights.timeseries.base.BaseTimeSeries + :members: + +DummyTimeSeriesRegressor +++++++++++++++++++++++++ + +The first predictor is a dummy one: it uses the current value to +predict the future. + +.. autoclass:: mlinsights.timeseries.dummies.DummyTimeSeriesRegressor + :members: + +ARTimeSeriesRegressor ++++++++++++++++++++++ + +The first regressor is an auto-regressor. It can be estimated +with any regressor implemented in :epkg:`scikit-learn`. + +.. autoclass:: mlinsights.timeseries.ar.ARTimeSeriesRegressor + :members: + +ts_mape ++++++++ + +The library implements one scoring function which compares +the prediction to what a dummy predictor would do +by using the previous day as a prediction. + +.. autofunction:: mlinsights.timeseries.metrics.ts_mape diff --git a/_doc/api/tree.rst b/_doc/api/tree.rst new file mode 100644 index 00000000..5d70c44c --- /dev/null +++ b/_doc/api/tree.rst @@ -0,0 +1,28 @@ + +Trees +===== + +.. contents:: + :local: + +Digging into the tree structure ++++++++++++++++++++++++++++++++ + +.. autofunction:: mlinsights.mltree.tree_structure.predict_leaves + +.. autofunction:: mlinsights.mltree.tree_structure.tree_find_common_node + +.. autofunction:: mlinsights.mltree.tree_structure.tree_find_path_to_root + +.. autofunction:: mlinsights.mltree.tree_structure.tree_node_parents + +.. autofunction:: mlinsights.mltree.tree_structure.tree_node_range + +.. autofunction:: mlinsights.mltree.tree_structure.tree_leave_index + +.. autofunction:: mlinsights.mltree.tree_structure.tree_leave_neighbors + +Experiments, exercise ++++++++++++++++++++++ + +.. autofunction:: mlinsights.mltree.tree_digitize.digitize2tree diff --git a/_doc/conf.py b/_doc/conf.py new file mode 100644 index 00000000..cd24d4f1 --- /dev/null +++ b/_doc/conf.py @@ -0,0 +1,267 @@ +import os +import sys +from sphinx_runpython.github_link import make_linkcode_resolve +from sphinx_runpython.conf_helper import has_dvipng, has_dvisvgm +from mlinsights import __version__ + +extensions = [ + "sphinx.ext.autodoc", + "sphinx.ext.intersphinx", + "sphinx.ext.todo", + "sphinx.ext.coverage", + "sphinx.ext.mathjax", + "sphinx.ext.ifconfig", + "sphinx.ext.viewcode", + "sphinx.ext.githubpages", + "sphinx_gallery.gen_gallery", + "sphinx_issues", + "matplotlib.sphinxext.plot_directive", + "sphinx_runpython.blocdefs.sphinx_exref_extension", + "sphinx_runpython.blocdefs.sphinx_faqref_extension", + "sphinx_runpython.blocdefs.sphinx_mathdef_extension", + "sphinx_runpython.docassert", + "sphinx_runpython.epkg", + "sphinx_runpython.gdot", + "sphinx_runpython.runpython", +] + +if has_dvisvgm(): + extensions.append("sphinx.ext.imgmath") + imgmath_image_format = "svg" +elif has_dvipng(): + extensions.append("sphinx.ext.pngmath") + imgmath_image_format = "png" +else: + extensions.append("sphinx.ext.mathjax") + +templates_path = ["_templates"] +html_logo = "_static/project_ico.png" +source_suffix = ".rst" +master_doc = "index" +project = "mlinsights" +copyright = "2023, Xavier Dupré" +author = "Xavier Dupré" +version = __version__ +release = __version__ +language = "en" +exclude_patterns = [] +pygments_style = "sphinx" +todo_include_todos = True +issues_github_path = "sdpython/mlinsights" + +html_theme = "furo" +html_theme_path = ["_static"] +html_theme_options = {} +html_static_path = ["_static"] +html_sourcelink_suffix = "" + +# The following is used by sphinx.ext.linkcode to provide links to github +linkcode_resolve = make_linkcode_resolve( + "mlinsights", + ( + "https://github.com/sdpython/mlinsights/" + "blob/{revision}/{package}/" + "{path}#L{lineno}" + ), +) + +latex_elements = { + "papersize": "a4", + "pointsize": "10pt", + "title": project, +} + +intersphinx_mapping = { + "onnx": ("https://onnx.ai/onnx/", None), + "matplotlib": ("https://matplotlib.org/", None), + "numpy": ("https://numpy.org/doc/stable/", None), + "pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None), + "python": (f"https://docs.python.org/{sys.version_info.major}", None), + "scipy": ("https://docs.scipy.org/doc/scipy/reference", None), + "sklearn": ("https://scikit-learn.org/stable/", None), + "torch": ("https://pytorch.org/docs/stable/", None), +} + +# Check intersphinx reference targets exist +nitpicky = True +# See also scikit-learn/scikit-learn#26761 +nitpick_ignore = [ + ("py:class", "False"), + ("py:class", "True"), + ("py:class", "pipeline.Pipeline"), + ("py:class", "default=sklearn.utils.metadata_routing.UNCHANGED"), + ("py:class", "sklearn.ensemble.RandomForestRegressor"), + ("py:class", "sklearn.set_config"), + ("py:class", "unittest.case.TestCase"), + ("py:func", "metadata_routing"), + ("py:func", "sklearn.set_config"), +] + +nitpick_ignore_regex = [ + ("py:class", ".*numpy[.].*"), + ("py:class", ".*sklearn[.].*"), + ("py:func", ".*[.]PyCapsule[.].*"), + ("py:func", ".*numpy[.].*"), + ("py:func", ".*scipy[.].*"), + ("py:func", ".*sklearn[.].*"), + ("py:func", ".*metadata_routing.*"), + ("py:func", ".*.*"), +] + +sphinx_gallery_conf = { + # path to your examples scripts + "examples_dirs": os.path.join(os.path.dirname(__file__), "examples"), + # path where to save gallery generated examples + "gallery_dirs": "auto_examples", +} + +epkg_dictionary = { + "bootstrap": "https://en.wikipedia.org/wiki/Bootstrapping_(statistics)", + "cmake": "https://cmake.org/", + "CountVectorizer": "https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html", + "CPUExecutionProvider": "https://onnxruntime.ai/docs/execution-providers/", + "cublasLtMatmul": "https://docs.nvidia.com/cuda/cublas/index.html?highlight=cublasLtMatmul#cublasltmatmul", + "CUDA": "https://developer.nvidia.com/", + "cuda_gemm.cu": "https://github.com/sdpython/mlinsights/blob/main/mlinsights/validation/cuda/cuda_gemm.cu#L271", + "cudnn": "https://developer.nvidia.com/cudnn", + "CUDAExecutionProvider": "https://onnxruntime.ai/docs/execution-providers/", + "custom_gemm.cu": "https://github.com/sdpython/mlinsights/blob/main/mlinsights/ortops/tutorial/cuda/custom_gemm.cu", + "Cython": "https://cython.org/", + "cython": "https://cython.org/", + "decision tree": "https://en.wikipedia.org/wiki/Decision_tree", + "dataframe": "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html", + "DOT": "https://graphviz.org/doc/info/lang.html", + "eigen": "https://eigen.tuxfamily.org/", + "gcc": "https://gcc.gnu.org/", + "Iris": "https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html", + "JIT": "https://en.wikipedia.org/wiki/Just-in-time_compilation", + "KMeans": "https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html", + "k-means": "https://en.wikipedia.org/wiki/K-means_clustering", + "L1": "https://en.wikipedia.org/wiki/Norm_(mathematics)#Absolute-value_norm", + "L2": "https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm", + "matplotlib": "https://matplotlib.org/", + "MLPRegressor": "https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html", + "nccl": "https://developer.nvidia.com/nccl", + "numpy": ( + "https://www.numpy.org/", + ("https://docs.scipy.org/doc/numpy/reference/generated/numpy.{0}.html", 1), + ("https://docs.scipy.org/doc/numpy/reference/generated/numpy.{0}.{1}.html", 2), + ), + "numba": "https://numba.pydata.org/", + "nvidia-smi": "https://developer.nvidia.com/nvidia-system-management-interface", + "nvprof": "https://docs.nvidia.com/cuda/profiler-users-guide/index.html", + "onnx": "https://onnx.ai/onnx/", + "ONNX": "https://onnx.ai/", + "onnxruntime": "https://onnxruntime.ai/", + "onnxruntime-training": "https://github.com/microsoft/onnxruntime/tree/main/orttraining", + "onnxruntime releases": "https://github.com/microsoft/onnxruntime/releases", + "onnx-array-api": ("https://sdpython.github.io/doc/onnx-array-api/dev/"), + "onnxruntime C API": "https://onnxruntime.ai/docs/api/c/", + "onnxruntime Graph Optimizations": ( + "https://onnxruntime.ai/docs/performance/" + "model-optimizations/graph-optimizations.html" + ), + "openmp": "https://www.openmp.org/", + "pandas": ( + "http://pandas.pydata.org/pandas-docs/stable/", + ("http://pandas.pydata.org/pandas-docs/stable/generated/pandas.{0}.html", 1), + ( + "http://pandas.pydata.org/pandas-docs/stable/generated/pandas.{0}.{1}.html", + 2, + ), + ), + "Pillow": "https://pillow.readthedocs.io/", + "pybind11": "https://github.com/pybind/pybind11", + "Python": "https://www.python.org/", + "python": "https://www.python.org/", + "Python C API": "https://docs.python.org/3/c-api/index.html", + "pytorch": "https://pytorch.org/", + "RandomForestRegressor": "https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html", + "scikit-learn": "https://scikit-learn.org/stable/", + "scipy": "https://scipy.org/", + "sklearn": ( + "http://scikit-learn.org/stable/", + ("http://scikit-learn.org/stable/modules/generated/{0}.html", 1), + ("http://scikit-learn.org/stable/modules/generated/{0}.{1}.html", 2), + ), + "sphinx-gallery": "https://github.com/sphinx-gallery/sphinx-gallery", + "t-SNE": "https://lvdmaaten.github.io/tsne/", + "TfidfVectorizer": "https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html", + "torch": "https://pytorch.org/docs/stable/torch.html", + "tqdm": "https://tqdm.github.io/", + "TreeEnsembleClassifier": "https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleClassifier.html", + "TreeEnsembleRegressor": "https://onnx.ai/onnx/operators/onnx_aionnxml_TreeEnsembleRegressor.html", + "TSNE": "https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html", + "WSL": "https://docs.microsoft.com/en-us/windows/wsl/install", + "*py": ( + "https://docs.python.org/3/", + ("https://docs.python.org/3/library/{0}.html", 1), + ("https://docs.python.org/3/library/{0}.html#{0}.{1}", 2), + ("https://docs.python.org/3/library/{0}.html#{0}.{1}.{2}", 3), + ), +} + +preamble = """ +\\usepackage{etex} +\\usepackage{fixltx2e} % LaTeX patches, \\textsubscript +\\usepackage{cmap} % fix search and cut-and-paste in Acrobat +\\usepackage[raccourcis]{fast-diagram} +\\usepackage{titlesec} +\\usepackage{amsmath} +\\usepackage{amssymb} +\\usepackage{amsfonts} +\\usepackage{graphics} +\\usepackage{epic} +\\usepackage{eepic} +%\\usepackage{pict2e} +%%% Redefined titleformat +\\setlength{\\parindent}{0cm} +\\setlength{\\parskip}{1ex plus 0.5ex minus 0.2ex} +\\newcommand{\\hsp}{\\hspace{20pt}} +\\newcommand{\\acc}[1]{\\left\\{#1\\right\\}} +\\newcommand{\\cro}[1]{\\left[#1\\right]} +\\newcommand{\\pa}[1]{\\left(#1\\right)} +\\newcommand{\\R}{\\mathbb{R}} +\\newcommand{\\HRule}{\\rule{\\linewidth}{0.5mm}} +%\\titleformat{\\chapter}[hang]{\\Huge\\bfseries\\sffamily}{\\thechapter\\hsp}{0pt}{\\Huge\\bfseries\\sffamily} + +\\usepackage[all]{xy} +\\newcommand{\\vecteur}[2]{\\pa{#1,\\dots,#2}} +\\newcommand{\\N}[0]{\\mathbb{N}} +\\newcommand{\\indicatrice}[1]{ {1\\!\\!1}_{\\acc{#1}} } +\\newcommand{\\infegal}[0]{\\leqslant} +\\newcommand{\\supegal}[0]{\\geqslant} +\\newcommand{\\ensemble}[2]{\\acc{#1,\\dots,#2}} +\\newcommand{\\fleche}[1]{\\overrightarrow{ #1 }} +\\newcommand{\\intervalle}[2]{\\left\\{#1,\\cdots,#2\\right\\}} +\\newcommand{\\independant}[0]{\\perp \\!\\!\\! \\perp} +\\newcommand{\\esp}{\\mathbb{E}} +\\newcommand{\\espf}[2]{\\mathbb{E}_{#1}\\pa{#2}} +\\newcommand{\\var}{\\mathbb{V}} +\\newcommand{\\pr}[1]{\\mathbb{P}\\pa{#1}} +\\newcommand{\\loi}[0]{{\\cal L}} +\\newcommand{\\vecteurno}[2]{#1,\\dots,#2} +\\newcommand{\\norm}[1]{\\left\\Vert#1\\right\\Vert} +\\newcommand{\\norme}[1]{\\left\\Vert#1\\right\\Vert} +\\newcommand{\\scal}[2]{\\left<#1,#2\\right>} +\\newcommand{\\dans}[0]{\\rightarrow} +\\newcommand{\\partialfrac}[2]{\\frac{\\partial #1}{\\partial #2}} +\\newcommand{\\partialdfrac}[2]{\\dfrac{\\partial #1}{\\partial #2}} +\\newcommand{\\trace}[1]{tr\\pa{#1}} +\\newcommand{\\sac}[0]{|} +\\newcommand{\\abs}[1]{\\left|#1\\right|} +\\newcommand{\\loinormale}[2]{{\\cal N} \\pa{#1,#2}} +\\newcommand{\\loibinomialea}[1]{{\\cal B} \\pa{#1}} +\\newcommand{\\loibinomiale}[2]{{\\cal B} \\pa{#1,#2}} +\\newcommand{\\loimultinomiale}[1]{{\\cal M} \\pa{#1}} +\\newcommand{\\variance}[1]{\\mathbb{V}\\pa{#1}} +\\newcommand{\\intf}[1]{\\left\\lfloor #1 \\right\\rfloor} +""" + +latex_elements = { + "papersize": "a4", + "pointsize": "10pt", + "title": project, +} +imgmath_latex_preamble = preamble +latex_elements["preamble"] = imgmath_latex_preamble diff --git a/_doc/examples/README.txt b/_doc/examples/README.txt index 2caae3ca..4e1a8d46 100644 --- a/_doc/examples/README.txt +++ b/_doc/examples/README.txt @@ -1,6 +1,2 @@ -.. _examples-gallery: - Examples Gallery ================ - - diff --git a/_doc/notebooks/explore/data/dog-cat-pixabay.zip b/_doc/examples/data/dog-cat-pixabay.zip similarity index 100% rename from _doc/notebooks/explore/data/dog-cat-pixabay.zip rename to _doc/examples/data/dog-cat-pixabay.zip diff --git a/_doc/examples/plot_constraint_kmeans.py b/_doc/examples/plot_constraint_kmeans.py index 7b8c2be9..ae707d31 100644 --- a/_doc/examples/plot_constraint_kmeans.py +++ b/_doc/examples/plot_constraint_kmeans.py @@ -7,28 +7,37 @@ approximatively the same number of points in every cluster. -.. contents:: - :local: - Data ==== """ from collections import Counter -import numpy + import matplotlib.pyplot as plt -from sklearn.datasets import make_blobs -from sklearn.cluster import KMeans +import numpy from mlinsights.mlmodel import ConstraintKMeans - +from sklearn.cluster import KMeans +from sklearn.datasets import make_blobs n_samples = 100 data = make_blobs( - n_samples=n_samples, n_features=2, centers=2, cluster_std=1.0, - center_box=(-10.0, 0.0), shuffle=True, random_state=2) + n_samples=n_samples, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(-10.0, 0.0), + shuffle=True, + random_state=2, +) X1 = data[0] data = make_blobs( - n_samples=n_samples // 2, n_features=2, centers=2, cluster_std=1.0, - center_box=(0.0, 10.0), shuffle=True, random_state=2) + n_samples=n_samples // 2, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(0.0, 10.0), + shuffle=True, + random_state=2, +) X2 = data[0] X = numpy.vstack([X1, X2]) @@ -38,8 +47,8 @@ # Plots. fig, ax = plt.subplots(1, 1, figsize=(4, 4)) -ax.plot(X[:, 0], X[:, 1], '.') -ax.set_title('4 clusters') +ax.plot(X[:, 0], X[:, 1], ".") +ax.set_title("4 clusters") ############################### # Standard KMeans @@ -50,26 +59,24 @@ cl = km.predict(X) hist = Counter(cl) -colors = 'brgy' +colors = "brgy" fig, ax = plt.subplots(1, 1, figsize=(4, 4)) for i in range(0, max(cl) + 1): - ax.plot(X[cl == i, 0], X[cl == i, 1], colors[i] + '.', label='cl%d' % i) + ax.plot(X[cl == i, 0], X[cl == i, 1], colors[i] + ".", label="cl%d" % i) x = [km.cluster_centers_[i, 0], km.cluster_centers_[i, 0]] y = [km.cluster_centers_[i, 1], km.cluster_centers_[i, 1]] - ax.plot(x, y, colors[i] + '+') -ax.set_title(f'KMeans 4 clusters\n{hist!r}') + ax.plot(x, y, colors[i] + "+") +ax.set_title(f"KMeans 4 clusters\n{hist!r}") ax.legend() ##################################### # Constraint KMeans # ================= -km1 = ConstraintKMeans(n_clusters=4, strategy='gain', - balanced_predictions=True) +km1 = ConstraintKMeans(n_clusters=4, strategy="gain", balanced_predictions=True) km1.fit(X) -km2 = ConstraintKMeans(n_clusters=4, strategy='distance', - balanced_predictions=True) +km2 = ConstraintKMeans(n_clusters=4, strategy="distance", balanced_predictions=True) km2.fit(X) ########################## @@ -79,24 +86,28 @@ cl1 = km1.predict(X) hist1 = Counter(cl1) +########################################## +# + cl2 = km2.predict(X) hist2 = Counter(cl2) +########################################## +# + fig, ax = plt.subplots(1, 2, figsize=(10, 4)) for i in range(0, max(cl1) + 1): - ax[0].plot(X[cl1 == i, 0], X[cl1 == i, 1], - colors[i] + '.', label='cl%d' % i) - ax[1].plot(X[cl2 == i, 0], X[cl2 == i, 1], - colors[i] + '.', label='cl%d' % i) + ax[0].plot(X[cl1 == i, 0], X[cl1 == i, 1], colors[i] + ".", label="cl%d" % i) + ax[1].plot(X[cl2 == i, 0], X[cl2 == i, 1], colors[i] + ".", label="cl%d" % i) x = [km1.cluster_centers_[i, 0], km1.cluster_centers_[i, 0]] y = [km1.cluster_centers_[i, 1], km1.cluster_centers_[i, 1]] - ax[0].plot(x, y, colors[i] + '+') + ax[0].plot(x, y, colors[i] + "+") x = [km2.cluster_centers_[i, 0], km2.cluster_centers_[i, 0]] y = [km2.cluster_centers_[i, 1], km2.cluster_centers_[i, 1]] - ax[1].plot(x, y, colors[i] + '+') -ax[0].set_title(f'ConstraintKMeans 4 clusters (gains)\n{hist1!r}') + ax[1].plot(x, y, colors[i] + "+") +ax[0].set_title(f"ConstraintKMeans 4 clusters (gains)\n{hist1!r}") ax[0].legend() -ax[1].set_title(f'ConstraintKMeans 4 clusters (distances)\n{hist2!r}') +ax[1].set_title(f"ConstraintKMeans 4 clusters (distances)\n{hist2!r}") ax[1].legend() @@ -104,8 +115,7 @@ # Another algorithm tries to extend the area of attraction of # each cluster. -km = ConstraintKMeans(n_clusters=4, strategy='weights', max_iter=1000, - history=True) +km = ConstraintKMeans(n_clusters=4, strategy="weights", max_iter=1000, history=True) km.fit(X) cl = km.predict(X) @@ -117,7 +127,7 @@ def plot_delaunay(ax, edges, points): for a, b in edges: - ax.plot(points[[a, b], 0], points[[a, b], 1], '--', color="#555555") + ax.plot(points[[a, b], 0], points[[a, b], 1], "--", color="#555555") edges = km.cluster_edges() @@ -125,21 +135,17 @@ def plot_delaunay(ax, edges, points): fig, ax = plt.subplots(1, 2, figsize=(10, 4)) for i in range(0, max(cl) + 1): - ax[0].plot(X[cl == i, 0], X[cl == i, 1], colors[i] + '.', label='cl%d' % i) + ax[0].plot(X[cl == i, 0], X[cl == i, 1], colors[i] + ".", label="cl%d" % i) x = [km.cluster_centers_[i, 0], km.cluster_centers_[i, 0]] y = [km.cluster_centers_[i, 1], km.cluster_centers_[i, 1]] - ax[0].plot(x, y, colors[i] + '+') + ax[0].plot(x, y, colors[i] + "+") ax[0].set_title(f"ConstraintKMeans 4 clusters\nstrategy='weights'\n{hist!r}") ax[0].legend() cls = km.cluster_centers_iter_ -ax[1].plot(X[:, 0], X[:, 1], '.', label='X', color='#AAAAAA', ms=3) +ax[1].plot(X[:, 0], X[:, 1], ".", label="X", color="#AAAAAA", ms=3) for i in range(0, max(cl) + 1): - ms = numpy.arange( - cls.shape[-1]).astype(numpy.float64) / cls.shape[-1] * 50 + 1 - ax[1].scatter(cls[i, 0, :], cls[i, 1, :], - color=colors[i], s=ms, label='cl%d' % i) + ms = numpy.arange(cls.shape[-1]).astype(numpy.float64) / cls.shape[-1] * 50 + 1 + ax[1].scatter(cls[i, 0, :], cls[i, 1, :], color=colors[i], s=ms, label="cl%d" % i) plot_delaunay(ax[1], edges, km.cluster_centers_) ax[1].set_title("Centers movement") - -plt.show() diff --git a/_doc/examples/plot_decision_tree_logreg.py b/_doc/examples/plot_decision_tree_logreg.py new file mode 100644 index 00000000..55d1310b --- /dev/null +++ b/_doc/examples/plot_decision_tree_logreg.py @@ -0,0 +1,467 @@ +""" +Decision Tree and Logistic Regression +===================================== + +The notebook demonstrates the model *DecisionTreeLogisticRegression* +which replaces the decision based on one variable by a logistic +regression. + +Iris dataset and logistic regression +------------------------------------ + +The following code shows the border defined by two machine learning +models on the `Iris +dataset `_. +""" +import numpy +from scipy.spatial.distance import cdist +import matplotlib.pyplot as plt +from pandas import DataFrame +from tqdm import tqdm +from sklearn.datasets import load_iris +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import train_test_split +from sklearn.tree import DecisionTreeClassifier +from mlinsights.mlmodel import DecisionTreeLogisticRegression +from mlinsights.mltree import predict_leaves + + +def plot_classifier_decision_zone(clf, X, y, title=None, ax=None): + if ax is None: + ax = plt.gca() + + x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 + y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 + dhx = (x_max - x_min) / 100 + dhy = (y_max - y_min) / 100 + xx, yy = numpy.meshgrid( + numpy.arange(x_min, x_max, dhx), numpy.arange(y_min, y_max, dhy) + ) + + Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + + ax.contourf(xx, yy, Z, alpha=0.5) + ax.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k", lw=0.5) + if title is not None: + ax.set_title(title) + + +iris = load_iris() +X = iris.data[:, [0, 2]] +y = iris.target +y = y % 2 +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, shuffle=True) + +######################## +# + +lr = LogisticRegression() +lr.fit(X_train, y_train) + +######################## +# + +dt = DecisionTreeClassifier(criterion="entropy") +dt.fit(X_train, y_train) + +######################## +# + +fig, ax = plt.subplots(1, 2, figsize=(10, 4)) +plot_classifier_decision_zone(lr, X_test, y_test, ax=ax[0], title="LogisticRegression") +plot_classifier_decision_zone( + dt, X_test, y_test, ax=ax[1], title="DecisionTreeClassifier" +) + + +###################################################################### +# The logistic regression is not very stable on this sort of problem. No +# linear separator can work on this dataset. Let's dig into it. + + +###################################################################### +# DecisionTreeLogisticRegression +# ------------------------------ + + +dtlr = DecisionTreeLogisticRegression( + estimator=LogisticRegression(solver="liblinear"), + min_samples_leaf=10, + min_samples_split=10, + max_depth=1, + fit_improve_algo="none", +) +dtlr.fit(X_train, y_train) + +######################## +# + + +dtlr2 = DecisionTreeLogisticRegression( + estimator=LogisticRegression(solver="liblinear"), + min_samples_leaf=4, + min_samples_split=4, + max_depth=10, + fit_improve_algo="intercept_sort_always", +) +dtlr2.fit(X_train, y_train) + +fig, ax = plt.subplots(2, 2, figsize=(10, 8)) +plot_classifier_decision_zone( + dtlr, + X_train, + y_train, + ax=ax[0, 0], + title="DecisionTreeLogisticRegression\ndepth=%d - train" % dtlr.tree_depth_, +) +plot_classifier_decision_zone( + dtlr2, + X_train, + y_train, + ax=ax[0, 1], + title="DecisionTreeLogisticRegression\ndepth=%d - train" % dtlr2.tree_depth_, +) +plot_classifier_decision_zone( + dtlr, + X_test, + y_test, + ax=ax[1, 0], + title="DecisionTreeLogisticRegression\ndepth=%d - test" % dtlr.tree_depth_, +) +plot_classifier_decision_zone( + dtlr2, + X_test, + y_test, + ax=ax[1, 1], + title="DecisionTreeLogisticRegression\ndepth=%d - test" % dtlr2.tree_depth_, +) + + +######################## +# + + +rows = [] +for model in [lr, dt, dtlr, dtlr2]: + val = (" - depth=%d" % model.tree_depth_) if hasattr(model, "tree_depth_") else "" + obs = dict( + name="%s%s" % (model.__class__.__name__, val), score=model.score(X_test, y_test) + ) + rows.append(obs) + +DataFrame(rows) + + +###################################################################### +# A first example +# --------------- + + +def random_set_simple(n): + X = numpy.random.rand(n, 2) + y = ((X[:, 0] ** 2 + X[:, 1] ** 2) <= 1).astype(numpy.int32).ravel() + return X, y + + +X, y = random_set_simple(2000) +X_train, X_test, y_train, y_test = train_test_split(X, y) +dt = DecisionTreeClassifier(max_depth=3) +dt.fit(X_train, y_train) +dt8 = DecisionTreeClassifier(max_depth=10) +dt8.fit(X_train, y_train) + +######################## +# + + +fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True) +plot_classifier_decision_zone( + dt, + X_test, + y_test, + ax=ax[0], + title="DecisionTree - max_depth=%d\nacc=%1.2f" + % (dt.max_depth, dt.score(X_test, y_test)), +) +plot_classifier_decision_zone( + dt8, + X_test, + y_test, + ax=ax[1], + title="DecisionTree - max_depth=%d\nacc=%1.2f" + % (dt8.max_depth, dt8.score(X_test, y_test)), +) +ax[0].set_xlim([0, 1]) +ax[1].set_xlim([0, 1]) +ax[0].set_ylim([0, 1]) + +dtlr = DecisionTreeLogisticRegression( + max_depth=3, fit_improve_algo="intercept_sort_always", verbose=1 +) +dtlr.fit(X_train, y_train) +dtlr8 = DecisionTreeLogisticRegression( + max_depth=10, min_samples_split=4, fit_improve_algo="intercept_sort_always" +) +dtlr8.fit(X_train, y_train) + +fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True) +plot_classifier_decision_zone( + dtlr, + X_test, + y_test, + ax=ax[0], + title="DecisionTreeLogReg - depth=%d\nacc=%1.2f" + % (dtlr.tree_depth_, dtlr.score(X_test, y_test)), +) +plot_classifier_decision_zone( + dtlr8, + X_test, + y_test, + ax=ax[1], + title="DecisionTreeLogReg - depth=%d\nacc=%1.2f" + % (dtlr8.tree_depth_, dtlr8.score(X_test, y_test)), +) +ax[0].set_xlim([0, 1]) +ax[1].set_xlim([0, 1]) +ax[0].set_ylim([0, 1]) + +######################## +# + + +def draw_border( + clr, + X, + y, + fct=None, + incx=0.1, + incy=0.1, + figsize=None, + border=True, + ax=None, + s=10.0, + linewidths=0.1, +): + h = 0.02 + x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx + y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy + xx, yy = numpy.meshgrid( + numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h) + ) + if fct is None: + Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()]) + else: + Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()]) + + # Put the result into a color plot + cmap = plt.cm.tab20 + Z = Z.reshape(xx.shape) + if ax is None: + fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3)) + ax.pcolormesh(xx, yy, Z, cmap=cmap) + + # Plot also the training points + ax.scatter( + X[:, 0], X[:, 1], c=y, edgecolors="k", cmap=cmap, s=s, linewidths=linewidths + ) + + ax.set_xlim(xx.min(), xx.max()) + ax.set_ylim(yy.min(), yy.max()) + return ax + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +draw_border(dt, X_test, y_test, border=False, ax=ax[0]) +ax[0].set_title("Iris") +draw_border(dt, X, y, border=False, ax=ax[1], fct=lambda m, x: predict_leaves(m, x)) +ax[1].set_title("DecisionTree") + +######################## +# + + +fig, ax = plt.subplots(6, 4, figsize=(12, 16)) +for i, depth in tqdm(enumerate((1, 2, 3, 4, 5, 6))): + dtl = DecisionTreeLogisticRegression( + max_depth=depth, fit_improve_algo="intercept_sort_always", min_samples_leaf=2 + ) + dtl.fit(X_train, y_train) + draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 0], s=4.0) + draw_border( + dtl, + X, + y, + border=False, + ax=ax[i, 1], + fct=lambda m, x: predict_leaves(m, x), + s=4.0, + ) + ax[i, 0].set_title( + "Depth=%d nodes=%d score=%1.2f" + % (dtl.tree_depth_, dtl.n_nodes_, dtl.score(X_test, y_test)) + ) + ax[i, 1].set_title("DTLR Leaves zones") + + dtl = DecisionTreeClassifier(max_depth=depth) + dtl.fit(X_train, y_train) + draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 2], s=4.0) + draw_border( + dtl, + X, + y, + border=False, + ax=ax[i, 3], + fct=lambda m, x: predict_leaves(m, x), + s=4.0, + ) + ax[i, 2].set_title( + "Depth=%d nodes=%d score=%1.2f" + % (dtl.max_depth, dtl.tree_.node_count, dtl.score(X_test, y_test)) + ) + ax[i, 3].set_title("DT Leaves zones") + + for k in range(ax.shape[1]): + ax[i, k].get_xaxis().set_visible(False) + + +###################################################################### +# Another example designed to fail +# -------------------------------- +# +# Designed to be difficult with a regular decision tree. + + +def random_set(n): + X = numpy.random.rand(n, 2) + y = ( + (cdist(X, numpy.array([[0.5, 0.5]]), metric="minkowski", p=1) <= 0.5) + .astype(numpy.int32) + .ravel() + ) + return X, y + + +X, y = random_set(2000) +X_train, X_test, y_train, y_test = train_test_split(X, y) +dt = DecisionTreeClassifier(max_depth=3) +dt.fit(X_train, y_train) +dt8 = DecisionTreeClassifier(max_depth=10) +dt8.fit(X_train, y_train) + +fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True) +plot_classifier_decision_zone( + dt, + X_test, + y_test, + ax=ax[0], + title="DecisionTree - max_depth=%d\nacc=%1.2f" + % (dt.max_depth, dt.score(X_test, y_test)), +) +plot_classifier_decision_zone( + dt8, + X_test, + y_test, + ax=ax[1], + title="DecisionTree - max_depth=%d\nacc=%1.2f" + % (dt8.max_depth, dt8.score(X_test, y_test)), +) +ax[0].set_xlim([0, 1]) +ax[1].set_xlim([0, 1]) +ax[0].set_ylim([0, 1]) + + +###################################################################### +# The example is a square rotated by 45 degrees. Every sample in the +# square is a positive sample, every sample outside is a negative one. The +# tree approximates the border with horizontal and vertical lines. + + +dtlr = DecisionTreeLogisticRegression( + max_depth=3, fit_improve_algo="intercept_sort_always", verbose=1 +) +dtlr.fit(X_train, y_train) +dtlr8 = DecisionTreeLogisticRegression( + max_depth=10, min_samples_split=4, fit_improve_algo="intercept_sort_always" +) +dtlr8.fit(X_train, y_train) + +fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True) +plot_classifier_decision_zone( + dtlr, + X_test, + y_test, + ax=ax[0], + title="DecisionTreeLogReg - depth=%d\nacc=%1.2f" + % (dtlr.tree_depth_, dtlr.score(X_test, y_test)), +) +plot_classifier_decision_zone( + dtlr8, + X_test, + y_test, + ax=ax[1], + title="DecisionTreeLogReg - depth=%d\nacc=%1.2f" + % (dtlr8.tree_depth_, dtlr8.score(X_test, y_test)), +) +ax[0].set_xlim([0, 1]) +ax[1].set_xlim([0, 1]) +ax[0].set_ylim([0, 1]) + + +###################################################################### +# Leave zones +# ----------- + +# We use method *decision_path* to understand which leaf is responsible +# for which zone. + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +draw_border(dtlr, X_test, y_test, border=False, ax=ax[0]) +ax[0].set_title("Iris") +draw_border(dtlr, X, y, border=False, ax=ax[1], fct=lambda m, x: predict_leaves(m, x)) +ax[1].set_title("DecisionTreeLogisticRegression") + +######################## +# + + +fig, ax = plt.subplots(6, 4, figsize=(12, 16)) +for i, depth in tqdm(enumerate((1, 2, 3, 4, 5, 6))): + dtl = DecisionTreeLogisticRegression( + max_depth=depth, fit_improve_algo="intercept_sort_always", min_samples_leaf=2 + ) + dtl.fit(X_train, y_train) + draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 0], s=4.0) + draw_border( + dtl, + X, + y, + border=False, + ax=ax[i, 1], + fct=lambda m, x: predict_leaves(m, x), + s=4.0, + ) + ax[i, 0].set_title( + "Depth=%d nodes=%d score=%1.2f" + % (dtl.tree_depth_, dtl.n_nodes_, dtl.score(X_test, y_test)) + ) + ax[i, 1].set_title("DTLR Leaves zones") + + dtl = DecisionTreeClassifier(max_depth=depth) + dtl.fit(X_train, y_train) + draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 2], s=4.0) + draw_border( + dtl, + X, + y, + border=False, + ax=ax[i, 3], + fct=lambda m, x: predict_leaves(m, x), + s=4.0, + ) + ax[i, 2].set_title( + "Depth=%d nodes=%d score=%1.2f" + % (dtl.max_depth, dtl.tree_.node_count, dtl.score(X_test, y_test)) + ) + ax[i, 3].set_title("DT Leaves zones") diff --git a/_doc/examples/plot_digitize.py b/_doc/examples/plot_digitize.py index b1ee7608..ecf04cc4 100644 --- a/_doc/examples/plot_digitize.py +++ b/_doc/examples/plot_digitize.py @@ -1,36 +1,27 @@ """ - -.. _l-example-digitize: - ======================== numpy.digitize as a tree ======================== -.. index:: digitize, decision tree, onnx, onnxruntime - -Function :epkg:`numpy:digitize` transforms a real variable +Function :func:`numpy.digitize` transforms a real variable into a discrete one by returning the buckets the variable falls into. This bucket can be efficiently retrieved by doing a binary search over the bins. That's equivalent to decision tree. Function :func:`digitize2tree `. -.. contents:: - :local: - Simple example ============== """ -import warnings import numpy -from pandas import DataFrame, pivot, pivot_table import matplotlib.pyplot as plt from onnxruntime import InferenceSession -from sklearn.tree import export_text +from pandas import DataFrame, pivot, pivot_table from skl2onnx import to_onnx -from cpyquickhelper.numbers.speed_measure import measure_time -from mlinsights.mltree import digitize2tree +from sklearn.tree import export_text from tqdm import tqdm +from mlinsights.ext_test_case import measure_time +from mlinsights.mltree import digitize2tree x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([0.0, 1.0, 2.5, 4.0, 7.0]) @@ -41,7 +32,8 @@ ########################################## # The tree looks like the following. -print(export_text(tree, feature_names=['x'])) + +print(export_text(tree, feature_names=["x"])) ####################################### # Benchmark @@ -66,44 +58,53 @@ ti = measure_time( "numpy.digitize(x, bins, right=True)", - context={'numpy': numpy, "x": x, "bins": bins}, - div_by_number=True, repeat=repeat, number=number) - ti['name'] = 'numpy' - ti['n_bins'] = n_bins - ti['shape'] = shape + context={"numpy": numpy, "x": x, "bins": bins}, + div_by_number=True, + repeat=repeat, + number=number, + ) + ti["name"] = "numpy" + ti["n_bins"] = n_bins + ti["shape"] = shape obs.append(ti) tree = digitize2tree(bins, right=True) ti = measure_time( "tree.predict(x)", - context={'numpy': numpy, "x": x.reshape((-1, 1)), "tree": tree}, - div_by_number=True, repeat=repeat, number=number) - ti['name'] = 'sklearn' - ti['n_bins'] = n_bins - ti['shape'] = shape + context={"numpy": numpy, "x": x.reshape((-1, 1)), "tree": tree}, + div_by_number=True, + repeat=repeat, + number=number, + ) + ti["name"] = "sklearn" + ti["n_bins"] = n_bins + ti["shape"] = shape obs.append(ti) - with warnings.catch_warnings(): - warnings.simplefilter("ignore", category=FutureWarning) - onx = to_onnx(tree, x.reshape((-1, 1)), - target_opset=15) + onx = to_onnx(tree, x.reshape((-1, 1)), target_opset=15) - sess = InferenceSession(onx.SerializeToString()) + sess = InferenceSession( + onx.SerializeToString(), providers=["CPUExecutionProvider"] + ) ti = measure_time( "sess.run(None, {'X': x})", - context={'numpy': numpy, "x": x.reshape((-1, 1)), "sess": sess}, - div_by_number=True, repeat=repeat, number=number) - ti['name'] = 'ort' - ti['n_bins'] = n_bins - ti['shape'] = shape + context={"numpy": numpy, "x": x.reshape((-1, 1)), "sess": sess}, + div_by_number=True, + repeat=repeat, + number=number, + ) + ti["name"] = "ort" + ti["n_bins"] = n_bins + ti["shape"] = shape obs.append(ti) df = DataFrame(obs) -piv = pivot_table(data=df, index="shape", columns=["n_bins", "name"], - values=["average"]) +piv = pivot_table( + data=df, index="shape", columns=["n_bins", "name"], values=["average"] +) print(piv) ########################################## @@ -114,8 +115,12 @@ fig, ax = plt.subplots(1, len(n_bins), figsize=(14, 4)) for i, nb in enumerate(n_bins): - piv = pivot(data=df[df.n_bins == nb], index="shape", - columns="name", values="average") - piv.plot(title="Benchmark digitize / onnxruntime\nn_bins=%d" % nb, - logx=True, logy=True, ax=ax[i]) -plt.show() + piv = pivot( + data=df[df.n_bins == nb], index="shape", columns="name", values="average" + ) + piv.plot( + title="Benchmark digitize / onnxruntime\nn_bins=%d" % nb, + logx=True, + logy=True, + ax=ax[i], + ) diff --git a/_doc/examples/plot_kmeans_l1.py b/_doc/examples/plot_kmeans_l1.py new file mode 100644 index 00000000..6d20202e --- /dev/null +++ b/_doc/examples/plot_kmeans_l1.py @@ -0,0 +1,125 @@ +""" +.. _l-kmeans-l1-example: + +KMeans with norm L1 +=================== + +This demonstrates how results change when using norm L1 for a k-means +algorithm. +""" + + +import matplotlib.pyplot as plt +import numpy +import numpy.random as rnd +from sklearn.cluster import KMeans +from mlinsights.mlmodel import KMeansL1L2 + + +###################################################################### +# Simple datasets +# --------------- + + +N = 1000 +X = numpy.zeros((N * 2, 2), dtype=numpy.float64) +X[:N] = rnd.rand(N, 2) +X[N:] = rnd.rand(N, 2) +# X[N:, 0] += 0.75 +X[N:, 1] += 1 +X[: N // 10, 0] -= 2 +X.shape + +######################################## +# + +fig, ax = plt.subplots(1, 1) +ax.plot(X[:, 0], X[:, 1], ".") +ax.set_title("Two squares") + + +###################################################################### +# Classic KMeans +# -------------- +# +# It uses euclidean distance. + + +km = KMeans(2) +km.fit(X) + +km.cluster_centers_ + + +def plot_clusters(km_, X, ax): + lab = km_.predict(X) + for i in range(km_.cluster_centers_.shape[0]): + sub = X[lab == i] + ax.plot(sub[:, 0], sub[:, 1], ".", label="c=%d" % i) + C = km_.cluster_centers_ + ax.plot(C[:, 0], C[:, 1], "o", ms=15, label="centers") + ax.legend() + + +fig, ax = plt.subplots(1, 1) +plot_clusters(km, X, ax) +ax.set_title("L2 KMeans") + + +###################################################################### +# KMeans with L1 norm +# ------------------- + + +kml1 = KMeansL1L2(2, norm="L1") +kml1.fit(X) + +######################################## +# + + +kml1.cluster_centers_ + +######################################## +# + +fig, ax = plt.subplots(1, 1) +plot_clusters(kml1, X, ax) +ax.set_title("L1 KMeans") + + +###################################################################### +# When clusters are completely different +# -------------------------------------- + + +N = 1000 +X = numpy.zeros((N * 2, 2), dtype=numpy.float64) +X[:N] = rnd.rand(N, 2) +X[N:] = rnd.rand(N, 2) +# X[N:, 0] += 0.75 +X[N:, 1] += 1 +X[: N // 10, 0] -= 4 +X.shape + +######################################## +# + + +km = KMeans(2) +km.fit(X) + +######################################## +# + +kml1 = KMeansL1L2(2, norm="L1") +kml1.fit(X) + +######################################## +# + +fig, ax = plt.subplots(1, 2, figsize=(10, 4)) +plot_clusters(km, X, ax[0]) +plot_clusters(kml1, X, ax[1]) +ax[0].set_title("L2 KMeans") +ax[1].set_title("L1 KMeans") diff --git a/_doc/examples/plot_leave_neighbors.py b/_doc/examples/plot_leave_neighbors.py new file mode 100644 index 00000000..c954a1e3 --- /dev/null +++ b/_doc/examples/plot_leave_neighbors.py @@ -0,0 +1,188 @@ +""" +Close leaves in a decision trees +================================ + +A decision tree computes a partition of the feature space. +We can wonder which leave is close to another one even though +the predict the same value (or class). Do they share a border? +""" + + +############################## +# A simple tree +# +++++++++++++ + + +import matplotlib.pyplot as plt +import numpy +from mlinsights.mltree import predict_leaves, tree_leave_index, tree_leave_neighbors +from sklearn.datasets import load_iris +from sklearn.tree import DecisionTreeClassifier + +X = numpy.array( + [[10, 0], [10, 1], [10, 2], [11, 0], [11, 1], [11, 2], [12, 0], [12, 1], [12, 2]] +) +y = list(range(X.shape[0])) + + +# In[5]: + + +fig, ax = plt.subplots(1, 1) +for i in range(X.shape[0]): + ax.plot([X[i, 0]], [X[i, 1]], "o", ms=19, label="y=%d" % y[i]) +ax.legend() +ax.set_title("Simple grid") + +############################## +# + + +clr = DecisionTreeClassifier(max_depth=5) +clr.fit(X, y) + +############################## +# The contains the following list of leaves. + + +tree_leave_index(clr) + + +############################## +# Let's compute the neighbors for each leave. + + +neighbors = tree_leave_neighbors(clr) +neighbors + +############################## +# And let's explain the results by drawing the segments ``[x1, x2]``. + + +leaves = predict_leaves(clr, X) + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +for i in range(X.shape[0]): + ax[0].plot([X[i, 0]], [X[i, 1]], "o", ms=19) + ax[1].plot([X[i, 0]], [X[i, 1]], "o", ms=19) + ax[0].text(X[i, 0] + 0.1, X[i, 1] - 0.1, "y=%d\nl=%d" % (y[i], leaves[i])) + +for edge, segments in neighbors.items(): + for segment in segments: + # leaves l1, l2 are neighbors + l1, l2 = edge + # the common border is [x1, x2] + x1 = segment[1] + x2 = segment[2] + ax[1].plot([x1[0], x2[0]], [x1[1], x2[1]], "b--") + ax[1].text((x1[0] + x2[0]) / 2, (x1[1] + x2[1]) / 2, "%d->%d" % edge) +ax[0].set_title("Classes and leaves") +ax[1].set_title("Segments") + +############################## +# On Iris +# +++++++ + + +iris = load_iris() + + +############################## +# + + +X = iris.data[:, :2] +y = iris.target + + +############################## +# + + +clr = DecisionTreeClassifier(max_depth=3) +clr.fit(X, y) + + +############################## +# + + +def draw_border( + clr, X, y, fct=None, incx=1, incy=1, figsize=None, border=True, ax=None +): + # see https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/ + # https://matplotlib.org/examples/color/colormaps_reference.html + + h = 0.02 # step size in the mesh + # Plot the decision boundary. For that, we will assign a color to each + # point in the mesh [x_min, x_max]x[y_min, y_max]. + x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx + y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy + xx, yy = numpy.meshgrid( + numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h) + ) + if fct is None: + Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()]) + else: + Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()]) + + # Put the result into a color plot + cmap = plt.cm.tab20 + Z = Z.reshape(xx.shape) + if ax is None: + fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3)) + ax.pcolormesh(xx, yy, Z, cmap=cmap) + + # Plot also the training points + ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k", cmap=cmap) + ax.set_xlabel("Sepal length") + ax.set_ylabel("Sepal width") + + ax.set_xlim(xx.min(), xx.max()) + ax.set_ylim(yy.min(), yy.max()) + return ax + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +draw_border(clr, X, y, border=False, ax=ax[0]) +ax[0].set_title("Iris") +draw_border(clr, X, y, border=False, ax=ax[1], fct=lambda m, x: predict_leaves(m, x)) +ax[1].set_title("Leaves") + + +############################## +# + + +neighbors = tree_leave_neighbors(clr) +list(neighbors.items())[:2] + + +############################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(8, 8)) +draw_border( + clr, + X, + y, + incx=1, + incy=1, + figsize=(6, 4), + border=False, + ax=ax, + fct=lambda m, x: predict_leaves(m, x), +) + +for edge, segments in neighbors.items(): + for segment in segments: + # leaves l1, l2 are neighbors + l1, l2 = edge + # the common border is [x1, x2] + x1 = segment[1] + x2 = segment[2] + ax.plot([x1[0], x2[0]], [x1[1], x2[1]], "b--") + ax.text((x1[0] + x2[0]) / 2, (x1[1] + x2[1]) / 2, "%d->%d" % edge) +ax.set_title("Leaves and segments") diff --git a/_doc/examples/plot_logistic_regression_clustering.py b/_doc/examples/plot_logistic_regression_clustering.py new file mode 100644 index 00000000..6a4027f3 --- /dev/null +++ b/_doc/examples/plot_logistic_regression_clustering.py @@ -0,0 +1,204 @@ +""" +.. _l-logisitic-regression-clustering: + +LogisticRegression and Clustering +================================= + +A logistic regression implements a convex partition of the features +spaces. A clustering algorithm applied before the trainer modifies the +feature space in way the partition is not necessarily convex in the +initial features. Let's see how. + +A dummy datasets and not convex +------------------------------- +""" + + +import numpy +import pandas +import matplotlib.pyplot as plt +from sklearn.linear_model import LogisticRegression +from sklearn.ensemble import RandomForestClassifier +from mlinsights.mlmodel import ClassifierAfterKMeans + +Xs = [] +Ys = [] +n = 20 +for i in range(0, 5): + for j in range(0, 4): + x1 = numpy.random.rand(n) + i * 1.1 + x2 = numpy.random.rand(n) + j * 1.1 + Xs.append(numpy.vstack([x1, x2]).T) + cl = numpy.random.randint(0, 4) + Ys.extend([cl for i in range(n)]) +X = numpy.vstack(Xs) +Y = numpy.array(Ys) +X.shape, Y.shape, set(Y) + +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(6, 4)) +for i in set(Y): + ax.plot( + X[Y == i, 0], X[Y == i, 1], "o", label="cl%d" % i, color=plt.cm.tab20.colors[i] + ) +ax.legend() +ax.set_title("Classification not convex") + + +###################################################################### +# One function to plot classification in 2D +# ----------------------------------------- + + +def draw_border( + clr, + X, + y, + fct=None, + incx=1, + incy=1, + figsize=None, + border=True, + clusters=None, + ax=None, +): + # see https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/ + # https://matplotlib.org/examples/color/colormaps_reference.html + + h = 0.02 # step size in the mesh + # Plot the decision boundary. For that, we will assign a color to each + # point in the mesh [x_min, x_max]x[y_min, y_max]. + x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx + y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy + xx, yy = numpy.meshgrid( + numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h) + ) + if fct is None: + Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()]) + else: + Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()]) + + # Put the result into a color plot + cmap = plt.cm.tab20 + Z = Z.reshape(xx.shape) + if ax is None: + fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3)) + ax.pcolormesh(xx, yy, Z, cmap=cmap) + + # Plot also the training points + ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors="k", cmap=cmap) + ax.set_xlabel("Sepal length") + ax.set_ylabel("Sepal width") + + ax.set_xlim(xx.min(), xx.max()) + ax.set_ylim(yy.min(), yy.max()) + + # Plot clusters + if clusters is not None: + mat = [] + ym = [] + for k, v in clusters.items(): + mat.append(v.cluster_centers_) + ym.extend(k for i in range(v.cluster_centers_.shape[0])) + cx = numpy.vstack(mat) + ym = numpy.array(ym) + ax.scatter(cx[:, 0], cx[:, 1], c=ym, edgecolors="y", cmap=cmap, s=300) + return ax + + +###################################################################### +# Logistic Regression +# ------------------- + + +clr = LogisticRegression(solver="lbfgs", multi_class="multinomial") +clr.fit(X, Y) + +######################################## +# + + +ax = draw_border(clr, X, Y, incx=1, incy=1, figsize=(6, 4), border=False) +ax.set_title("Logistic Regression") + + +###################################################################### +# Not quite close! + + +###################################################################### +# Logistic Regression and k-means +# ------------------------------- + + +clk = ClassifierAfterKMeans(e_solver="lbfgs", e_multi_class="multinomial") +clk.fit(X, Y) + + +###################################################################### +# The centers of the first k-means: + + +clk.clus_[0].cluster_centers_ + +######################################## +# + + +ax = draw_border( + clk, X, Y, incx=1, incy=1, figsize=(6, 4), border=False, clusters=clk.clus_ +) +ax.set_title("Logistic Regression and K-Means - 2 clusters per class") + + +###################################################################### +# The big cricles are the centers of the k-means fitted for each class. It +# look better! + + +###################################################################### +# Variation +# --------- + + +dt = [] +for cl in range(1, 6): + clk = ClassifierAfterKMeans( + c_n_clusters=cl, e_solver="lbfgs", e_multi_class="multinomial", e_max_iter=700 + ) + clk.fit(X, Y) + sc = clk.score(X, Y) + dt.append(dict(score=sc, nb_clusters=cl)) + + +pandas.DataFrame(dt) + +######################################## +# + + +ax = draw_border( + clk, X, Y, incx=1, incy=1, figsize=(6, 4), border=False, clusters=clk.clus_ +) +ax.set_title("Logistic Regression and K-Means - 8 clusters per class") + + +###################################################################### +# Random Forest +# ------------- + +# The random forest works without any clustering as expected. + + +rf = RandomForestClassifier(n_estimators=20) +rf.fit(X, Y) + +######################################## +# + + +ax = draw_border(rf, X, Y, incx=1, incy=1, figsize=(6, 4), border=False) +ax.set_title("Random Forest") diff --git a/_doc/examples/plot_piecewise_classification.py b/_doc/examples/plot_piecewise_classification.py new file mode 100644 index 00000000..b23c380d --- /dev/null +++ b/_doc/examples/plot_piecewise_classification.py @@ -0,0 +1,185 @@ +""" +Piecewise classification with scikit-learn predictors +===================================================== + +Piecewise regression is easier to understand but the concept can be +extended to classification. That's what this notebook explores. + + + +Iris dataset and first logistic regression +------------------------------------------ +""" + +import matplotlib.pyplot as plt +import seaborn +import numpy +import pandas +from sklearn import datasets +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LogisticRegression +from sklearn.dummy import DummyClassifier +from sklearn.preprocessing import KBinsDiscretizer +from sklearn.metrics import auc, roc_curve +from mlinsights.mlmodel import PiecewiseClassifier + +iris = datasets.load_iris() +X = iris.data[:, :2] # we only take the first two features. +Y = iris.target +X_train, X_test, y_train, y_test = train_test_split(X, Y) + +######################################## +# + + +def graph(X, Y, model): + x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 + y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 + h = 0.02 # step size in the mesh + xx, yy = numpy.meshgrid( + numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h) + ) + Z = model.predict(numpy.c_[xx.ravel(), yy.ravel()]) + Z = Z.reshape(xx.shape) + + # Put the result into a color plot + fig, ax = plt.subplots(1, 1, figsize=(4, 3)) + ax.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) + + # Plot also the training points + ax.scatter(X[:, 0], X[:, 1], c=Y, edgecolors="k", cmap=plt.cm.Paired) + ax.set_xlabel("Sepal length") + ax.set_ylabel("Sepal width") + + ax.set_xlim(xx.min(), xx.max()) + ax.set_ylim(yy.min(), yy.max()) + ax.set_xticks(()) + ax.set_yticks(()) + return ax + + +logreg = LogisticRegression() +logreg.fit(X_train, y_train) +ax = graph(X_test, y_test, logreg) +ax.set_title("LogisticRegression") + + +###################################################################### +# Piecewise classication +# ---------------------- + + +dummy = DummyClassifier(strategy="most_frequent") +piece4 = PiecewiseClassifier(KBinsDiscretizer(n_bins=2), estimator=dummy, verbose=True) +piece4.fit(X_train, y_train) + + +###################################################################### +# We look into the bucket given to each point. + + +bucket = piece4.transform_bins(X_test) +df = pandas.DataFrame(X_test, columns=("x1", "x2")) +df["bucket"] = bucket +df["label"] = y_test +df = df.set_index(bucket) +df.head(n=5) + +######################################## +# + + +ax = seaborn.scatterplot(x="x1", y="x2", hue="bucket", data=df, palette="Set1", s=400) +seaborn.scatterplot( + x="x1", y="x2", hue="label", data=df, palette="Set1", marker="o", ax=ax, s=100 +) +ax.set_title("buckets") + + +###################################################################### +# We see there are four buckets. Two buckets only contains one label. The +# dummy classifier maps every bucket to the most frequent class in the +# bucket. + + +ax = graph(X_test, y_test, piece4) +ax.set_title("Piecewise Classification\n4 buckets") + + +###################################################################### +# We can increase the number of buckets. + + +dummy = DummyClassifier(strategy="most_frequent") +piece9 = PiecewiseClassifier(KBinsDiscretizer(n_bins=3), estimator=dummy, verbose=True) +piece9.fit(X_train, y_train) + +######################################## +# + + +ax = graph(X_test, y_test, piece9) +ax.set_title("Piecewise Classification\n9 buckets") + + +###################################################################### +# Let's compute the ROC curve. + + +def plot_roc_curve(models, X, y): + if not isinstance(models, dict): + return plot_roc_curve({models.__class__.__name__: models}, X, y) + + ax = None + colors = "bgrcmyk" + for ic, (name, model) in enumerate(models.items()): + fpr, tpr, roc_auc = dict(), dict(), dict() + nb = len(model.classes_) + y_score = model.predict_proba(X) + for i in range(nb): + c = model.classes_[i] + fpr[i], tpr[i], _ = roc_curve(y_test == c, y_score[:, i]) + roc_auc[i] = auc(fpr[i], tpr[i]) + + if ax is None: + lw = 2 + _, ax = plt.subplots(1, nb, figsize=(4 * nb, 4)) + for i in range(nb): + ax[i].plot([0, 1], [0, 1], color="navy", lw=lw, linestyle="--") + plotname = "".join(c for c in name if "A" <= c <= "Z" or "0" <= c <= "9") + for i in range(nb): + ax[i].plot( + fpr[i], + tpr[i], + color=colors[ic], + lw=lw, + label="%0.2f %s" % (roc_auc[i], plotname), + ) + ax[i].set_title("class {}".format(model.classes_[i])) + for k in range(ax.shape[0]): + ax[k].legend() + return ax + + +plot_roc_curve({"LR": logreg, "P4": piece4, "P9": piece9}, X_test, y_test) + + +###################################################################### +# Let's use the decision tree to create buckets. + + +dummy = DummyClassifier(strategy="most_frequent") +pieceT = PiecewiseClassifier("tree", estimator=dummy, verbose=True) +pieceT.fit(X_train, y_train) + +######################################## +# + + +ax = graph(X_test, y_test, pieceT) +ax.set_title("Piecewise Classification\n%d buckets (tree)" % len(pieceT.estimators_)) + +######################################## +# + +plot_roc_curve({"LR": logreg, "P4": piece4, "P9": piece9, "DT": pieceT}, X_test, y_test) diff --git a/_doc/examples/plot_piecewise_linear_regression.py b/_doc/examples/plot_piecewise_linear_regression.py new file mode 100644 index 00000000..b235468e --- /dev/null +++ b/_doc/examples/plot_piecewise_linear_regression.py @@ -0,0 +1,178 @@ +""" +Piecewise linear regression with scikit-learn predictors +======================================================== + +The notebook illustrates an implementation of a piecewise linear +regression based on +`scikit-learn `_. The +bucketization can be done with a +`DecisionTreeRegressor `_ +or a +`KBinsDiscretizer `_. +A linear model is then fitted on each bucket. + +Piecewise data +-------------- + +Let's build a toy problem based on two linear models. +""" + +import numpy +import numpy.random as npr +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.tree import DecisionTreeRegressor +from sklearn.preprocessing import KBinsDiscretizer +from sklearn.dummy import DummyRegressor +from mlinsights.mlmodel import PiecewiseRegressor + + +X = npr.normal(size=(1000, 4)) +alpha = [4, -2] +t = (X[:, 0] + X[:, 3] * 0.5) > 0 +switch = numpy.zeros(X.shape[0]) +switch[t] = 1 +y = alpha[0] * X[:, 0] * t + alpha[1] * X[:, 0] * (1 - t) + X[:, 2] + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X[:, 0], y, ".") +ax.set_title("Piecewise examples") + + +###################################################################### +# Piecewise Linear Regression with a decision tree +# ------------------------------------------------ +# +# The first example is done with a decision tree. + + +X_train, X_test, y_train, y_test = train_test_split(X[:, :1], y) + +######################################## +# + + +model = PiecewiseRegressor( + verbose=True, binner=DecisionTreeRegressor(min_samples_leaf=300) +) +model.fit(X_train, y_train) + +######################################## +# + + +pred = model.predict(X_test) +pred[:5] + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], pred, ".", label="predictions") +ax.set_title("Piecewise Linear Regression\n2 buckets") +ax.legend() + + +###################################################################### +# The method *transform_bins* returns the bucket of each variables, the +# final leave from the tree. + + +model.transform_bins(X_test) + + +###################################################################### +# Let's try with more buckets. + + +model = PiecewiseRegressor( + verbose=False, binner=DecisionTreeRegressor(min_samples_leaf=150) +) +model.fit(X_train, y_train) + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], model.predict(X_test), ".", label="predictions") +ax.set_title("Piecewise Linear Regression\n4 buckets") +ax.legend() + + +###################################################################### +# Piecewise Linear Regression with a KBinsDiscretizer +# --------------------------------------------------- + + +model = PiecewiseRegressor(verbose=True, binner=KBinsDiscretizer(n_bins=2)) +model.fit(X_train, y_train) + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], model.predict(X_test), ".", label="predictions") +ax.set_title("Piecewise Linear Regression\n2 buckets") +ax.legend() + +######################################## +# + + +model = PiecewiseRegressor(verbose=True, binner=KBinsDiscretizer(n_bins=4)) +model.fit(X_train, y_train) + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], model.predict(X_test), ".", label="predictions") +ax.set_title("Piecewise Linear Regression\n4 buckets") +ax.legend() + + +###################################################################### +# The model does not enforce continuity despite the fast it looks like so. +# Let's compare with a constant on each bucket. + + +model = PiecewiseRegressor( + verbose="tqdm", binner=KBinsDiscretizer(n_bins=4), estimator=DummyRegressor() +) +model.fit(X_train, y_train) + +######################################## +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], model.predict(X_test), ".", label="predictions") +ax.set_title("Piecewise Constants\n4 buckets") +ax.legend() + + +###################################################################### +# Next +# ---- + +# PR `Model trees (M5P and +# co) `_ and +# issue `Model trees +# (M5P) `_ +# propose an implementation a piecewise regression with any kind of +# regression model. It is based on `Building Model +# Trees `_. +# It fits many models to find the best splits. diff --git a/_doc/examples/plot_piecewise_linear_regression_criterion.py b/_doc/examples/plot_piecewise_linear_regression_criterion.py new file mode 100644 index 00000000..abd64299 --- /dev/null +++ b/_doc/examples/plot_piecewise_linear_regression_criterion.py @@ -0,0 +1,395 @@ +""" +Custom DecisionTreeRegressor adapted to a linear regression +=========================================================== + +A :class:`sklearn.tree.DecisionTreeRegressor` +can be trained with a couple of possible criterions but it is possible +to implement a custom one (see `hellinger_distance_criterion +`_). +See also tutorial +`Cython example of exposing C-computed arrays in Python without data copies +`_ +which describes a way to implement fast :epkg:`Cython` extensions. + +Piecewise data +++++++++++++++ + +Let's build a toy problem based on two linear models. +""" + + +import matplotlib.pyplot as plt +import numpy +import numpy.random as npr +from mlinsights.ext_test_case import measure_time +from mlinsights.mlmodel.piecewise_tree_regression import PiecewiseTreeRegressor +from mlinsights.mlmodel.piecewise_tree_regression_criterion import ( + SimpleRegressorCriterion, +) +from mlinsights.mlmodel.piecewise_tree_regression_criterion_fast import ( + SimpleRegressorCriterionFast, +) +from sklearn.model_selection import train_test_split +from sklearn.tree import DecisionTreeRegressor + +X = npr.normal(size=(1000, 4)) +alpha = [4, -2] +t = (X[:, 0] + X[:, 3] * 0.5) > 0 +switch = numpy.zeros(X.shape[0]) +switch[t] = 1 +y = alpha[0] * X[:, 0] * t + alpha[1] * X[:, 0] * (1 - t) + X[:, 2] + + +################################# +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X[:, 0], y, ".") +ax.set_title("Piecewise examples") + + +################################# +# DecisionTreeRegressor +# +++++++++++++++++++++ + + +X_train, X_test, y_train, y_test = train_test_split(X[:, :1], y) + + +################################# +# + + +model = DecisionTreeRegressor(min_samples_leaf=100) +model.fit(X_train, y_train) + + +################################# +# + + +pred = model.predict(X_test) +pred[:5] + + +################################# +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], pred, ".", label="predictions") +ax.set_title("DecisionTreeRegressor") +ax.legend() + + +################################# +# DecisionTreeRegressor with custom implementation +# ================================================ + + +################################# +# + + +model2 = DecisionTreeRegressor( + min_samples_leaf=100, criterion=SimpleRegressorCriterion(1, X_train.shape[0]) +) +model2.fit(X_train, y_train) + + +################################# +# + + +pred = model2.predict(X_test) +pred[:5] + + +################################# +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], pred, ".", label="predictions") +ax.set_title("DecisionTreeRegressor\nwith custom criterion") +ax.legend() + + +################################# +# Computation time +# ++++++++++++++++ +# +# The custom criterion is not really efficient but it was meant that way. +# The code can be found in `piecewise_tree_regression_criterion +# `_. +# Bascially, it is slow because each time the algorithm optimizing the +# tree needs the class Criterion to evaluate the impurity reduction for a split, +# the computation happens on the whole data under the node being split. +# The implementation in `_criterion.pyx +# `_ +# does it once. + + +measure_time("model.fit(X_train, y_train)", globals()) + + +################################# +# + + +measure_time("model2.fit(X_train, y_train)", globals()) + + +################################# +# A loop is involved every time the criterion of the node is involved +# which raises a the computation cost of lot. The method ``_mse`` +# is called each time the algorithm training the decision tree needs +# to evaluate a cut, one cut involves elements betwee, position +# ``[start, end[``. +# +# :: +# +# cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, +# DOUBLE_t *weight) nogil: +# if start == end: +# mean[0] = 0. +# return +# cdef DOUBLE_t m = 0. +# cdef DOUBLE_t w = 0. +# cdef int k +# for k in range(start, end): +# m += self.sample_wy[k] +# w += self.sample_w[k] +# weight[0] = w +# mean[0] = 0. if w == 0. else m / w +# +# cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, +# DOUBLE_t weight) nogil: +# if start == end: +# return 0. +# cdef DOUBLE_t squ = 0. +# cdef int k +# for k in range(start, end): +# squ += (self.y[self.sample_i[k], 0] - mean) ** 2 * self.sample_w[k] +# return 0. if weight == 0. else squ / weight + +################################# +# Better implementation +# +++++++++++++++++++++ +# +# I rewrote my first implementation to be closer to what +# :epkg:`scikit-learn` is doing. The criterion is computed once +# for all possible cut and then retrieved on demand. +# The code is below, arrays ``sample_wy_left`` is the cumulated sum +# of :math:`weight * Y` starting from the left side +# (lower *Y*). The loop disappeared. +# +# :: +# +# cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, +# DOUBLE_t *weight) nogil: +# if start == end: +# mean[0] = 0. +# return +# cdef DOUBLE_t m = self.sample_wy_left[end-1] - +# (self.sample_wy_left[start-1] if start > 0 else 0) +# cdef DOUBLE_t w = self.sample_w_left[end-1] - +# (self.sample_w_left[start-1] if start > 0 else 0) +# weight[0] = w +# mean[0] = 0. if w == 0. else m / w +# +# cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, +# DOUBLE_t weight) nogil: +# if start == end: +# return 0. +# cdef DOUBLE_t squ = self.sample_wy2_left[end-1] - +# (self.sample_wy2_left[start-1] if start > 0 else 0) +# # This formula only holds if mean is computed on the same interval. +# # Otherwise, it is squ / weight - true_mean ** 2 + (mean - true_mean) ** 2. +# return 0. if weight == 0. else squ / weight - mean ** 2 + +################################# +# + + +model3 = DecisionTreeRegressor( + min_samples_leaf=100, criterion=SimpleRegressorCriterionFast(1, X_train.shape[0]) +) +model3.fit(X_train, y_train) +pred = model3.predict(X_test) +pred[:5] + + +################################# +# + + +fig, ax = plt.subplots(1, 1) +ax.plot(X_test[:, 0], y_test, ".", label="data") +ax.plot(X_test[:, 0], pred, ".", label="predictions") +ax.set_title("DecisionTreeRegressor\nwith fast custom criterion") +ax.legend() + + +################################# +# + + +measure_time("model3.fit(X_train, y_train)", globals()) + + +################################# +# Much better even though this implementation is currently 3, 4 times +# slower than scikit-learn's. Let's check with a datasets three times +# bigger to see if it is a fix cost or a cost. + + +X_train3 = numpy.vstack([X_train, X_train, X_train]) +y_train3 = numpy.hstack([y_train, y_train, y_train]) + + +################################# +# + + +X_train.shape, X_train3.shape, y_train3.shape + + +################################# +# + + +measure_time("model.fit(X_train3, y_train3)", globals()) + +################################# +# The criterion needs to be reinstanciated since it depends on the features +# *X*. The computation does not but the design does. This was introduced to +# compare the current output with a decision tree optimizing for +# a piecewise linear regression and not a stepwise regression. + + +try: + model3.fit(X_train3, y_train3) +except Exception as e: + print(e) + + +################################# +# + + +model3 = DecisionTreeRegressor( + min_samples_leaf=100, criterion=SimpleRegressorCriterionFast(1, X_train3.shape[0]) +) +measure_time("model3.fit(X_train3, y_train3)", globals()) + + +################################# +# Still almost 2 times slower but of the same order of magnitude. +# We could go further and investigate why or continue and introduce a +# criterion which optimizes a piecewise linear regression instead of a +# stepwise regression. +# +# Criterion adapted for a linear regression +# +++++++++++++++++++++++++++++++++++++++++ +# +# The previous examples are all about decision trees which approximates a +# function by a stepwise function. On every interval :math:`[r_1, r_2]`, +# the model optimizes +# :math:`\sum_i (y_i - C)^2 \mathbb{1}_{ r_1 \leqslant x_i \leqslant r_2}` +# and finds the best constant (= the average) +# approxmating the function on this interval. +# We would to like to approximate the function by a regression line and not a +# constant anymore. It means minimizing +# :math:`\sum_i (y_i - X_i \beta)^2 \mathbb{1}_{ r_1 \leqslant x_i \leqslant r_2}`. +# Doing this require to change the criterion used to split the space of feature +# into buckets and the prediction function of the decision tree which now +# needs to return a dot product. + +fixed = False +if fixed: + # It does not work yet. + piece = PiecewiseTreeRegressor(criterion="mselin", min_samples_leaf=100) + piece.fit(X_train, y_train) + + +################################# +# + + +if fixed: + pred = piece.predict(X_test) + pred[:5] + + +################################# +# + + +if fixed: + fig, ax = plt.subplots(1, 1) + ax.plot(X_test[:, 0], y_test, ".", label="data") + ax.plot(X_test[:, 0], pred, ".", label="predictions") + ax.set_title("DecisionTreeRegressor\nwith criterion adapted to linear regression") + ax.legend() + +################################# +# The coefficients for the linear regressions are kept into the following attribute: + + +if fixed: + piece.betas_ + + +################################# +# Mapped to the following leaves: + + +if fixed: + piece.leaves_index_, piece.leaves_mapping_ + + +################################# +# We can get the leave each observation falls into: + + +if fixed: + piece.predict_leaves(X_test)[:5] + + +################################# +# The training is quite slow as it is training many +# linear regressions each time a split is evaluated. + + +if fixed: + measure_time("piece.fit(X_train, y_train)", globals()) + + +################################# +# + +if fixed: + measure_time("piece.fit(X_train3, y_train3)", globals()) + + +################################# +# It works but it is slow, slower than the slow implementation +# of the standard criterion for decision tree regression. +# +# Next +# ++++ +# +# PR `Model trees (M5P and co) +# `_ +# and issue `Model trees (M5P) +# `_ +# propose an implementation a piecewise regression with any kind of regression model. +# It is based on `Building Model Trees +# `_. +# It fits many models to find the best splits and should be slower than this +# implementation in the case of a decision tree regressor +# associated with linear regressions. diff --git a/_doc/examples/plot_predictable_tsne.py b/_doc/examples/plot_predictable_tsne.py new file mode 100644 index 00000000..a381159c --- /dev/null +++ b/_doc/examples/plot_predictable_tsne.py @@ -0,0 +1,188 @@ +""" +.. _l-predictable-tsne-example: + +Predictable t-SNE +================= + +`t-SNE `_ +is not a transformer which can produce outputs for other inputs than the +one used to train the transform. The proposed solution is train a +predictor afterwards to try to use the results on some other inputs the +model never saw. + +t-SNE on MNIST +-------------- + +Let's reuse some part of the example of `Manifold learning on +handwritten digits: Locally Linear Embedding, +Isomap `_. +""" + +import numpy +import matplotlib.pyplot as plt +from matplotlib import offsetbox +from sklearn import datasets +from sklearn.model_selection import train_test_split +from sklearn.manifold import TSNE +from sklearn.neighbors import KNeighborsRegressor +from sklearn.preprocessing import StandardScaler +from mlinsights.mlmodel import PredictableTSNE + + +digits = datasets.load_digits(n_class=6) +Xd = digits.data +yd = digits.target +imgs = digits.images +n_samples, n_features = Xd.shape +n_samples, n_features + + +###################################################################### +# Let's split into train and test. + + +X_train, X_test, y_train, y_test, imgs_train, imgs_test = train_test_split(Xd, yd, imgs) + +######################################## +# + + +tsne = TSNE(n_components=2, init="pca", random_state=0) + +X_train_tsne = tsne.fit_transform(X_train, y_train) +X_train_tsne.shape + +######################################## +# + + +def plot_embedding(Xp, y, imgs, title=None, figsize=(12, 4)): + x_min, x_max = numpy.min(Xp, 0), numpy.max(Xp, 0) + X = (Xp - x_min) / (x_max - x_min) + + fig, ax = plt.subplots(1, 2, figsize=figsize) + for i in range(X.shape[0]): + ax[0].text( + X[i, 0], + X[i, 1], + str(y[i]), + color=plt.cm.Set1(y[i] / 10.0), + fontdict={"weight": "bold", "size": 9}, + ) + + if hasattr(offsetbox, "AnnotationBbox"): + # only print thumbnails with matplotlib > 1.0 + shown_images = numpy.array([[1.0, 1.0]]) # just something big + for i in range(X.shape[0]): + dist = numpy.sum((X[i] - shown_images) ** 2, 1) + if numpy.min(dist) < 4e-3: + # don't show points that are too close + continue + shown_images = numpy.r_[shown_images, [X[i]]] + imagebox = offsetbox.AnnotationBbox( + offsetbox.OffsetImage(imgs[i], cmap=plt.cm.gray_r), X[i] + ) + ax[0].add_artist(imagebox) + ax[0].set_xticks([]), ax[0].set_yticks([]) + ax[1].plot(Xp[:, 0], Xp[:, 1], ".") + if title is not None: + ax[0].set_title(title) + return ax + + +plot_embedding(X_train_tsne, y_train, imgs_train, "t-SNE embedding of the digits") + + +###################################################################### +# Repeatable t-SNE +# ---------------- +# +# We use class *PredictableTSNE* but it works for other trainable +# transform too. + + +ptsne = PredictableTSNE() +ptsne.fit(X_train, y_train) + +######################################## +# + + +X_train_tsne2 = ptsne.transform(X_train) +plot_embedding(X_train_tsne2, y_train, imgs_train, "Predictable t-SNE of the digits") + + +###################################################################### +# The difference now is that it can be applied on new data. + + +X_test_tsne2 = ptsne.transform(X_test) +plot_embedding( + X_test_tsne2, y_test, imgs_test, "Predictable t-SNE on new digits on test database" +) + + +###################################################################### +# By default, the output data is normalized to get comparable results over +# multiple tries such as the *loss* computed between the normalized output +# of *t-SNE* and their approximation. + + +ptsne.loss_ + + +###################################################################### +# Repeatable t-SNE with another predictor +# --------------------------------------- + +# The predictor is a +# `MLPRegressor `_. + + +ptsne.estimator_ + + +###################################################################### +# Let's replace it with a +# `KNeighborsRegressor `_ +# and a normalizer +# `StandardScaler `_. + + +ptsne_knn = PredictableTSNE( + normalizer=StandardScaler(), estimator=KNeighborsRegressor() +) +ptsne_knn.fit(X_train, y_train) + +######################################## +# + + +X_train_tsne2 = ptsne_knn.transform(X_train) +plot_embedding( + X_train_tsne2, + y_train, + imgs_train, + "Predictable t-SNE of the digits\nStandardScaler+KNeighborsRegressor", +) + +######################################## +# + + +X_test_tsne2 = ptsne_knn.transform(X_test) +plot_embedding( + X_test_tsne2, + y_test, + imgs_test, + "Predictable t-SNE on new digits\nStandardScaler+KNeighborsRegressor", +) + + +###################################################################### +# The model seems to work better as the loss is better but as it is +# evaluated on the training dataset, it is just a way to check it is not +# too big. + + +ptsne_knn.loss_ diff --git a/_doc/examples/plot_quantile_mlpregression.py b/_doc/examples/plot_quantile_mlpregression.py new file mode 100644 index 00000000..691f3032 --- /dev/null +++ b/_doc/examples/plot_quantile_mlpregression.py @@ -0,0 +1,66 @@ +""" +Quantile MLPRegressor +===================== + +`scikit-learn `_ does not have a +quantile regression for multi-layer perceptron. +`mlinsights `_ +implements a version of it based on the *scikit-learn* model. The +implementation overwrites method ``_backprop``. + +We first generate some dummy data. +""" + + +import numpy +from pandas import DataFrame +import matplotlib.pyplot as plt +from sklearn.neural_network import MLPRegressor +from mlinsights.mlmodel import QuantileMLPRegressor + + +X = numpy.random.random(1000) +eps1 = (numpy.random.random(900) - 0.5) * 0.1 +eps2 = (numpy.random.random(100)) * 10 +eps = numpy.hstack([eps1, eps2]) +X = X.reshape((1000, 1)) +Y = X.ravel() * 3.4 + 5.6 + eps + +######################################## +# + + +clr = MLPRegressor(hidden_layer_sizes=(30,), activation="tanh") +clr.fit(X, Y) + +######################################## +# + + +clq = QuantileMLPRegressor(hidden_layer_sizes=(30,), activation="tanh") +clq.fit(X, Y) + +######################################## +# + + +data = dict(X=X.ravel(), Y=Y, clr=clr.predict(X), clq=clq.predict(X)) +df = DataFrame(data) +df.head() + +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(10, 4)) +choice = numpy.random.choice(X.shape[0] - 1, size=100) +xx = X.ravel()[choice] +yy = Y[choice] +ax.plot(xx, yy, ".", label="data") +xx = numpy.array([[0], [1]]) +y1 = clr.predict(xx) +y2 = clq.predict(xx) +ax.plot(xx, y1, "--", label="L2") +ax.plot(xx, y2, "--", label="L1") +ax.set_title("Quantile (L1) vs Square (L2) for MLPRegressor") +ax.legend() diff --git a/_doc/examples/plot_quantile_regression.py b/_doc/examples/plot_quantile_regression.py new file mode 100644 index 00000000..44886715 --- /dev/null +++ b/_doc/examples/plot_quantile_regression.py @@ -0,0 +1,129 @@ +""" +.. _l-quantile-regression-example: + +Quantile Regression +=================== + +`scikit-learn `_ does not have a +quantile regression. +`mlinsights `_ +implements a version of it. + +Simple example +-------------- + +We first generate some dummy data. +""" + +import numpy +import matplotlib.pyplot as plt +from pandas import DataFrame +from sklearn.linear_model import LinearRegression +from mlinsights.mlmodel import QuantileLinearRegression + +X = numpy.random.random(1000) +eps1 = (numpy.random.random(900) - 0.5) * 0.1 +eps2 = (numpy.random.random(100)) * 10 +eps = numpy.hstack([eps1, eps2]) +X = X.reshape((1000, 1)) +Y = X.ravel() * 3.4 + 5.6 + eps + +######################################## +# + + +clr = LinearRegression() +clr.fit(X, Y) + +######################################## +# + + +clq = QuantileLinearRegression() +clq.fit(X, Y) + + +data = dict(X=X.ravel(), Y=Y, clr=clr.predict(X), clq=clq.predict(X)) +df = DataFrame(data) +df.head() + +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(10, 4)) +choice = numpy.random.choice(X.shape[0] - 1, size=100) +xx = X.ravel()[choice] +yy = Y[choice] +ax.plot(xx, yy, ".", label="data") +xx = numpy.array([[0], [1]]) +y1 = clr.predict(xx) +y2 = clq.predict(xx) +ax.plot(xx, y1, "--", label="L2") +ax.plot(xx, y2, "--", label="L1") +ax.set_title("Quantile (L1) vs Square (L2)") +ax.legend() + + +###################################################################### +# The L1 is clearly less sensible to extremas. The optimization algorithm +# is based on `Iteratively reweighted least +# squares `_. +# It estimates a linear regression with error L2 then reweights each +# oberservation with the inverse of the error L1. + + +clq = QuantileLinearRegression(verbose=True, max_iter=20) +clq.fit(X, Y) +######################################## +# + + +clq.score(X, Y) + + +###################################################################### +# Regression with various quantiles +# --------------------------------- + + +X = numpy.random.random(1200) +eps1 = (numpy.random.random(900) - 0.5) * 0.5 +eps2 = (numpy.random.random(300)) * 2 +eps = numpy.hstack([eps1, eps2]) +X = X.reshape((1200, 1)) +Y = X.ravel() * 3.4 + 5.6 + eps + X.ravel() * X.ravel() * 8 +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(10, 4)) +choice = numpy.random.choice(X.shape[0] - 1, size=100) +xx = X.ravel()[choice] +yy = Y[choice] +ax.plot(xx, yy, ".", label="data") +ax.set_title("Almost linear dataset") +######################################## +# + + +clqs = {} +for qu in [0.1, 0.25, 0.5, 0.75, 0.9]: + clq = QuantileLinearRegression(quantile=qu) + clq.fit(X, Y) + clqs["q=%1.2f" % qu] = clq +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(10, 4)) +choice = numpy.random.choice(X.shape[0] - 1, size=100) +xx = X.ravel()[choice] +yy = Y[choice] +ax.plot(xx, yy, ".", label="data") +xx = numpy.array([[0], [1]]) +for qu in sorted(clqs): + y = clqs[qu].predict(xx) + ax.plot(xx, y, "--", label=qu) +ax.set_title("Various quantiles") +ax.legend() diff --git a/_doc/examples/plot_regression_confidence_interval.py b/_doc/examples/plot_regression_confidence_interval.py new file mode 100644 index 00000000..a23b3f96 --- /dev/null +++ b/_doc/examples/plot_regression_confidence_interval.py @@ -0,0 +1,252 @@ +""" +Regression with confidence interval +=================================== + +The notebook computes confidence intervals with +`bootstrapping `_ +and `quantile +regression `_ on a +simple problem. + +Some data +--------- + +The data follows the formula: +:math:`y = \\frac{X}{2} + 2 + \\epsilon_1 + \\eta \\epsilon_2`. Noises +follows the laws :math:`\\epsilon_1 \\sim \\mathcal{N}(0, 0.2)`, +:math:`\\epsilon_2 \\sim \\mathcal{N}(1, 1)`, +:math:`\\eta \\sim \\mathcal{B}(2, 0.0.5)`. The second part of the noise +adds some bigger noise but not always. +""" + +import numpy +from numpy.random import binomial, rand, randn +import pandas +import matplotlib.pyplot as plt +import seaborn as sns +from sklearn.model_selection import train_test_split +from sklearn.gaussian_process import GaussianProcessRegressor +from sklearn.gaussian_process.kernels import ( + RBF, + ConstantKernel as C, + WhiteKernel, +) +from sklearn.linear_model import LinearRegression +from sklearn.tree import DecisionTreeRegressor +from mlinsights.mlmodel import IntervalRegressor, QuantileLinearRegression + + +N = 200 +X = rand(N, 1) * 2 +eps = randn(N, 1) * 0.2 +eps2 = randn(N, 1) + 1 +bin = binomial(2, 0.05, size=(N, 1)) +y = (0.5 * X + eps + 2 + eps2 * bin).ravel() +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(4, 4)) +ax.plot(X, y, ".") +######################################## +# + + +X_train, X_test, y_train, y_test = train_test_split(X, y) + + +###################################################################### +# Confidence interval with a linear regression +# -------------------------------------------- + +# The object fits many times the same learner, every training is done on a +# resampling of the training dataset. + + +lin = IntervalRegressor(LinearRegression()) +lin.fit(X_train, y_train) +######################################## +# + + +sorted_X = numpy.array(list(sorted(X_test))) +pred = lin.predict(sorted_X) +bootstrapped_pred = lin.predict_sorted(sorted_X) +min_pred = bootstrapped_pred[:, 0] +max_pred = bootstrapped_pred[:, bootstrapped_pred.shape[1] - 1] +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(4, 4)) +ax.plot(X_test, y_test, ".", label="raw") +ax.plot(sorted_X, pred, label="prediction") +ax.plot(sorted_X, min_pred, "--", label="min") +ax.plot(sorted_X, max_pred, "--", label="max") +ax.legend() + + +###################################################################### +# Higher confidence interval +# -------------------------- + +# It is possible to use smaller resample of the training dataset or we can +# increase the number of resamplings. + + +lin2 = IntervalRegressor(LinearRegression(), alpha=0.3) +lin2.fit(X_train, y_train) +######################################## +# + + +lin3 = IntervalRegressor(LinearRegression(), n_estimators=50) +lin3.fit(X_train, y_train) +######################################## +# + + +pred2 = lin2.predict(sorted_X) +bootstrapped_pred2 = lin2.predict_sorted(sorted_X) +min_pred2 = bootstrapped_pred2[:, 0] +max_pred2 = bootstrapped_pred2[:, bootstrapped_pred2.shape[1] - 1] +######################################## +# + + +pred3 = lin3.predict(sorted_X) +bootstrapped_pred3 = lin3.predict_sorted(sorted_X) +min_pred3 = bootstrapped_pred3[:, 0] +max_pred3 = bootstrapped_pred3[:, bootstrapped_pred3.shape[1] - 1] +######################################## +# + + +fig, ax = plt.subplots(1, 3, figsize=(12, 4)) +ax[0].plot(X_test, y_test, ".", label="raw") +ax[0].plot(sorted_X, pred, label="prediction") +ax[0].plot(sorted_X, min_pred, "--", label="min") +ax[0].plot(sorted_X, max_pred, "--", label="max") +ax[0].legend() +ax[0].set_title("alpha=%f" % lin.alpha) +ax[1].plot(X_test, y_test, ".", label="raw") +ax[1].plot(sorted_X, pred2, label="prediction") +ax[1].plot(sorted_X, min_pred2, "--", label="min") +ax[1].plot(sorted_X, max_pred2, "--", label="max") +ax[1].set_title("alpha=%f" % lin2.alpha) +ax[1].legend() +ax[2].plot(X_test, y_test, ".", label="raw") +ax[2].plot(sorted_X, pred3, label="prediction") +ax[2].plot(sorted_X, min_pred3, "--", label="min") +ax[2].plot(sorted_X, max_pred3, "--", label="max") +ax[2].set_title("n_estimators=%d" % lin3.n_estimators) +ax[2].legend() + + +###################################################################### +# With decision trees +# ------------------- + + +tree = IntervalRegressor(DecisionTreeRegressor(min_samples_leaf=10)) +tree.fit(X_train, y_train) +######################################## +# + + +pred_tree = tree.predict(sorted_X) +b_pred_tree = tree.predict_sorted(sorted_X) +min_pred_tree = b_pred_tree[:, 0] +max_pred_tree = b_pred_tree[:, b_pred_tree.shape[1] - 1] +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(4, 4)) +ax.plot(X_test, y_test, ".", label="raw") +ax.plot(sorted_X, pred_tree, label="prediction") +ax.plot(sorted_X, min_pred_tree, "--", label="min") +ax.plot(sorted_X, max_pred_tree, "--", label="max") +ax.set_title("Interval with trees") +ax.legend() + + +###################################################################### +# In that case, the prediction is very similar to the one a random forest +# would produce as it is an average of the predictions made by 10 trees. +# +# Regression quantile +# ------------------- +# +# The last way tries to fit two regressions for quantiles 0.05 and 0.95. + + +m = QuantileLinearRegression() +q1 = QuantileLinearRegression(quantile=0.05) +q2 = QuantileLinearRegression(quantile=0.95) +for model in [m, q1, q2]: + model.fit(X_train, y_train) + +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(4, 4)) +ax.plot(X_test, y_test, ".", label="raw") +######################################## +# + + +for label, model in [("med", m), ("q0.05", q1), ("q0.95", q2)]: + p = model.predict(sorted_X) + ax.plot(sorted_X, p, label=label) +ax.set_title("Quantile Regression") +ax.legend() + + +###################################################################### +# With a non linear model… but the model *QuantileMLPRegressor* only +# implements the regression with quantile 0.5. +# +# With seaborn +# ------------ +# +# It uses a theoritical way to compute the confidence interval by +# computing the confidence interval on the parameters first. + + +df_train = pandas.DataFrame(dict(X=X_train.ravel(), y=y_train)) +g = sns.jointplot(x="X", y="y", data=df_train, kind="reg", color="m", height=7) +g.ax_joint.plot(X_test, y_test, "ro") + + +###################################################################### +# GaussianProcessRegressor +# ------------------------ +# +# Last option with this example `Gaussian Processes regression: basic +# introductory +# example `_ +# which computes the standard deviation for every prediction. It can then +# be used to show an interval confidence. + + +kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) + WhiteKernel() +gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) +gp.fit(X_train, y_train) +######################################## +# + + +y_pred, sigma = gp.predict(sorted_X, return_std=True) +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(12, 4)) +ax.plot(X_test, y_test, ".", label="raw") +ax.plot(sorted_X, y_pred, label="prediction") +ax.plot(sorted_X, y_pred + sigma * 1.96, "b--", label="q0.95") +ax.plot(sorted_X, y_pred - sigma * 1.96, "b--", label="q0.95") +ax.set_title("Confidence intervalle with GaussianProcessRegressor") +ax.legend() diff --git a/_doc/examples/plot_search_images_torch.py b/_doc/examples/plot_search_images_torch.py new file mode 100644 index 00000000..ee7b8579 --- /dev/null +++ b/_doc/examples/plot_search_images_torch.py @@ -0,0 +1,338 @@ +""" +.. _l-search-images-torch-example: + +Search images with deep learning (torch) +======================================== + +Images are usually very different if we compare them at pixel level but +that's quite different if we look at them after they were processed by a +deep learning model. We convert each image into a feature vector +extracted from an intermediate layer of the network. + +Get a pre-trained model +----------------------- + +We choose the model described in paper `SqueezeNet: AlexNet-level +accuracy with 50x fewer parameters and <0.5MB model +size `_. +""" + +import os +import matplotlib.pyplot as plt +from sklearn.neighbors import NearestNeighbors +from torchvision import datasets, transforms, models +from torch.utils.data import DataLoader, ConcatDataset +from mlinsights.ext_test_case import unzip_files +from mlinsights.plotting import plot_gallery_images +from torchvision.models.squeezenet import SqueezeNet1_0_Weights + + +model = models.squeezenet1_0(weights=SqueezeNet1_0_Weights.IMAGENET1K_V1) +model + + +###################################################################### +# The model is stored here: + + +path = os.path.join( + os.environ.get("USERPROFILE", os.environ.get("HOME", ".")), + ".cache", + "torch", + "checkpoints", +) +if os.path.exists(path): + res = os.listdir(path) +else: + res = ["not found", path] +res + + +###################################################################### +# `pytorch `_\ 's design relies on two methods +# *forward* and *backward* which implement the propagation and +# backpropagation of the gradient, the structure is not known and could +# even be dyanmic. That's why it is difficult to define a number of +# layers. + + +len(model.features), len(model.classifier) + + +###################################################################### +# Images +# ------ +# +# We collect images from `pixabay `_. +# +# Raw images +# ~~~~~~~~~~ + + +if not os.path.exists("simages/category"): + os.makedirs("simages/category") + +url = "https://github.com/sdpython/mlinsights/raw/ref/_doc/examples/data/dog-cat-pixabay.zip" +files = unzip_files(url, where_to="simages/category") +if len(files) == 0: + raise FileNotFoundError(f"No images where unzipped from {url!r}.") +len(files), files[0] + +########################################## +# + +plot_gallery_images(files[:2]) + +############################################# +# + +trans = transforms.Compose( + [ + transforms.Resize((224, 224)), # essayer avec 224 seulement + transforms.CenterCrop(224), + transforms.ToTensor(), + ] +) +imgs = datasets.ImageFolder("simages", trans) +imgs + +####################################### +# + + +dataloader = DataLoader(imgs, batch_size=1, shuffle=False, num_workers=1) +dataloader + +####################################### +# +img_seq = iter(dataloader) +img, cl = next(img_seq) + +####################################### +# +type(img), type(cl) + +####################################### +# +array = img.numpy().transpose((2, 3, 1, 0)) +array.shape + +####################################### +# + +plt.imshow(array[:, :, :, 0]) +plt.axis("off") + +####################################### +# +img, cl = next(img_seq) +array = img.numpy().transpose((2, 3, 1, 0)) +plt.imshow(array[:, :, :, 0]) +plt.axis("off") + + +###################################################################### +# `torch `_ implements optimized function to load +# and process images. + + +trans = transforms.Compose( + [ + transforms.Resize((224, 224)), # essayer avec 224 seulement + transforms.RandomRotation((-10, 10), expand=True), + transforms.CenterCrop(224), + transforms.ToTensor(), + ] +) +imgs = datasets.ImageFolder("simages", trans) +dataloader = DataLoader(imgs, batch_size=1, shuffle=True, num_workers=1) +img_seq = iter(dataloader) +imgs = list(img[0] for i, img in zip(range(2), img_seq)) +####################################### +# + +plot_gallery_images([img.numpy().transpose((2, 3, 1, 0))[:, :, :, 0] for img in imgs]) + + +###################################################################### +# We can multiply the data by implementing a custom +# `sampler `_ or just +# concatenate loaders. + + +trans1 = transforms.Compose( + [ + transforms.Resize((224, 224)), # essayer avec 224 seulement + transforms.RandomRotation((-10, 10), expand=True), + transforms.CenterCrop(224), + transforms.ToTensor(), + ] +) +trans2 = transforms.Compose( + [ + transforms.Resize((224, 224)), # essayer avec 224 seulement + transforms.Grayscale(num_output_channels=3), + transforms.CenterCrop(224), + transforms.ToTensor(), + ] +) +imgs1 = datasets.ImageFolder("simages", trans1) +imgs2 = datasets.ImageFolder("simages", trans2) +dataloader = DataLoader( + ConcatDataset([imgs1, imgs2]), batch_size=1, shuffle=True, num_workers=1 +) +img_seq = iter(dataloader) +imgs = list(img[0] for i, img in zip(range(10), img_seq)) +####################################### +# + +plot_gallery_images([img.numpy().transpose((2, 3, 1, 0))[:, :, :, 0] for img in imgs]) + + +###################################################################### +# Which leaves 52 images to process out of 61 = 31*2 (the folder contains +# 31 images). + + +len(list(img_seq)) + + +###################################################################### +# Search among images +# ------------------- +# +# We use the class ``SearchEnginePredictionImages``. + + +###################################################################### +# The idea of the search engine +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +# +# The deep network is able to classify images coming from a competition +# called `ImageNet `_ which was trained to +# classify different images. But still, the network has 88 layers which +# slightly transform the images into classification results. We assume the +# last layers contains information which allows the network to classify +# into objects: it is less related to the images than the content of it. +# In particular, we would like that an image with a daark background does +# not necessarily return images with a dark background. + +# We reshape an image into *(224x224)* which is the size the network +# ingests. We propagate the inputs until the layer just before the last +# one. Its output will be considered as the *featurized image*. We do that +# for a specific set of images called the *neighbors*. When a new image +# comes up, we apply the same process and find the closest images among +# the set of neighbors. + + +model = models.squeezenet1_0(weights=SqueezeNet1_0_Weights.IMAGENET1K_V1) + + +###################################################################### +# The model outputs the probability for each class. + + +res = model.forward(imgs[1]) +res.shape +####################################### +# + +res.detach().numpy().ravel()[:10] +####################################### +# + +fig, ax = plt.subplots(1, 2, figsize=(12, 3)) +ax[0].plot(res.detach().numpy().ravel(), ".") +ax[0].set_title("Output of SqueezeNet") +ax[1].imshow(imgs[1].numpy().transpose((2, 3, 1, 0))[:, :, :, 0]) +ax[1].axis("off") + + +###################################################################### +# We have features for one image. We build the neighbors, the output for +# each image in the training datasets. + + +trans = transforms.Compose( + [transforms.Resize((224, 224)), transforms.CenterCrop(224), transforms.ToTensor()] +) +imgs = datasets.ImageFolder("simages", trans) +dataloader = DataLoader(imgs, batch_size=1, shuffle=False, num_workers=1) +img_seq = iter(dataloader) +imgs = list(img[0] for img in img_seq) + +all_outputs = [model.forward(img).detach().numpy().ravel() for img in imgs] + +####################################### +# + + +knn = NearestNeighbors() +knn.fit(all_outputs) + + +###################################################################### +# We extract the neighbors for a new image. + + +one_output = model.forward(imgs[5]).detach().numpy().ravel() + +score, index = knn.kneighbors([one_output]) +score, index + + +###################################################################### +# We need to retrieve images for indexes stored in *index*. + + +names = os.listdir("simages/category") +names = [os.path.join("simages/category", n) for n in names if ".zip" not in n] +disp = [names[5]] + [names[i] for i in index.ravel()] +disp + + +###################################################################### +# We check the first one is exactly the same as the searched image. + + +plot_gallery_images(disp) + + +###################################################################### +# It is possible to access intermediate layers output however it means +# rewriting the method forward to capture it: `Accessing intermediate +# layers of a pretrained network +# forward? `_. +# +# Going further +# ------------- +# +# The original neural network has not been changed and was chosen to be +# small (88 layers). Other options are available for better performances. +# The imported model can be also be trained on a classification problem if +# there is such information to leverage. Even if the model was trained on +# millions of images, a couple of thousands are enough to train the last +# layers. The model can also be trained as long as there exists a way to +# compute a gradient. We could imagine to label the result of this search +# engine and train the model on pairs of images ranked in the other. +# +# We can use the `pairwise +# transform `_ +# (example of code: +# `ranking.py `_). For every +# pair :math:`(X_i, X_j)`, we tell if the search engine should have +# :math:`X_i \prec X_j` (:math:`Y_{ij} = 1`) or the order order +# (:math:`Y_{ij} = 0`). :math:`X_i` is the features produced by the neural +# network : :math:`X_i = f(\Omega, img_i)`. We train a classifier on the +# database: +# +# .. math:: +# +# (f(\Omega, img_i) - f(\Omega, img_j), Y_{ij})_{ij} +# +# A training algorithm based on a gradient will have to propagate the gradient: +# +# .. math:: +# +# \frac{\partial f}{\partial \Omega}(img_i) - +# \frac{\partial f}{\partial \Omega}(img_j) diff --git a/_doc/examples/plot_sklearn_transformed_target.py b/_doc/examples/plot_sklearn_transformed_target.py new file mode 100644 index 00000000..65ba7a79 --- /dev/null +++ b/_doc/examples/plot_sklearn_transformed_target.py @@ -0,0 +1,392 @@ +""" +.. _l-sklearn-transformed-target: + +Transformed Target +================== + +`TransformedTargetRegressor `_ +proposes a way to modify the target before training. The notebook +extends the concept to classifiers. + +TransformedTargetRegressor +-------------------------- + +Let's reuse the example from `Effect of transforming the targets in regression +model `_. +""" + +import pickle +from pickle import PicklingError +import numpy +from numpy.random import randn, random +from pandas import DataFrame +import matplotlib.pyplot as plt +from sklearn.compose import TransformedTargetRegressor +from sklearn.metrics import accuracy_score, r2_score +from sklearn.linear_model import LinearRegression, LogisticRegression +from sklearn.datasets import load_iris +from sklearn.model_selection import train_test_split +from sklearn.exceptions import ConvergenceWarning +from sklearn.utils._testing import ignore_warnings +from mlinsights.mlmodel import TransformedTargetRegressor2 +from mlinsights.mlmodel import TransformedTargetClassifier2 + + +rnd = random((1000, 1)) +rndn = randn(1000) +X = rnd[:, :1] * 10 +y = rnd[:, 0] * 5 + rndn / 2 +y = numpy.exp((y + abs(y.min())) / 2) +y_trans = numpy.log1p(y) + +######################################## +# + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +ax[0].plot(X[:, 0], y, ".") +ax[0].set_title("Exponential target") +ax[1].plot(X[:, 0], y_trans, ".") +ax[1].set_title("Exponential target transform with log1p") +######################################## +# + + +reg = LinearRegression() +reg.fit(X, y) +######################################## +# + + +regr_trans = TransformedTargetRegressor( + regressor=LinearRegression(), func=numpy.log1p, inverse_func=numpy.expm1 +) +regr_trans.fit(X, y) +######################################## +# + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +ax[0].plot(X[:, 0], y, ".") +ax[0].plot(X[:, 0], reg.predict(X), ".", label="Regular Linear Regression") +ax[0].set_title("LinearRegression") +ax[1].plot(X[:, 0], y, ".") +ax[1].plot( + X[:, 0], regr_trans.predict(X), ".", label="Linear Regression with modified target" +) +ax[1].set_title("TransformedTargetRegressor") + + +###################################################################### +# TransformedTargetRegressor2 +# --------------------------- + +# Same thing with *mlinsights*. + + +regr_trans2 = TransformedTargetRegressor2( + regressor=LinearRegression(), transformer="log1p" +) +regr_trans2.fit(X, y) +######################################## +# + + +fig, ax = plt.subplots(1, 3, figsize=(14, 4)) +ax[0].plot(X[:, 0], y, ".") +ax[0].plot(X[:, 0], reg.predict(X), ".", label="Regular Linear Regression") +ax[0].set_title("LinearRegression") +ax[1].plot(X[:, 0], y, ".") +ax[1].plot( + X[:, 0], regr_trans.predict(X), ".", label="Linear Regression with modified target" +) +ax[1].set_title("TransformedTargetRegressor") +ax[2].plot(X[:, 0], y, ".") +ax[2].plot( + X[:, 0], regr_trans2.predict(X), ".", label="Linear Regression with modified target" +) +ax[2].set_title("TransformedTargetRegressor2") + + +###################################################################### +# It works the same way except the user does not have to specify the +# inverse function. +# +# Why another? +# ------------ + + +by1 = pickle.dumps(regr_trans) +by2 = pickle.dumps(regr_trans2) +######################################## +# + + +tr1 = pickle.loads(by1) +tr2 = pickle.loads(by2) +######################################## +# + + +numpy.max(numpy.abs(tr1.predict(X) - tr2.predict(X))) + + +###################################################################### +# Well, to be honest, I did not expect numpy functions to be pickable. +# Lambda functions are not. + + +regr_trans3 = TransformedTargetRegressor( + regressor=LinearRegression(), + func=lambda x: numpy.log1p(x), + inverse_func=numpy.expm1, +) +regr_trans3.fit(X, y) +######################################## +# + + +try: + pickle.dumps(regr_trans3) +except PicklingError as e: + print(e) + + +###################################################################### +# Classifier and classes permutation +# ---------------------------------- +# +# One question I get sometimes from my students is: regression or +# classification? + + +data = load_iris() +X, y = data.data, data.target +X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=7) +######################################## +# + + +reg = LinearRegression() +reg.fit(X_train, y_train) +log = LogisticRegression() +log.fit(X_train, y_train) +######################################## +# + + +r2_score(y_test, reg.predict(X_test)), r2_score(y_test, log.predict(X_test)) + + +###################################################################### +# The accuracy does not work on the regression output as it produces +# float. + + +try: + accuracy_score(y_test, reg.predict(X_test)), accuracy_score( + y_test, log.predict(X_test) + ) +except ValueError as e: + print(e) + + +###################################################################### +# Based on that figure, a regression model would be better than a +# classification model on a problem which is known to be a classification +# problem. Let's play a little bit. + + +@ignore_warnings(category=(ConvergenceWarning,)) +def evaluation(): + rnd = [] + perf_reg = [] + perf_clr = [] + for rs in range(0, 200): + rnd.append(rs) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rs) + reg = LinearRegression() + reg.fit(X_train, y_train) + log = LogisticRegression() + log.fit(X_train, y_train) + perf_reg.append(r2_score(y_test, reg.predict(X_test))) + perf_clr.append(r2_score(y_test, log.predict(X_test))) + return rnd, perf_reg, perf_clr + + +rnd, perf_reg, perf_clr = evaluation() +######################################## +# + + +fig, ax = plt.subplots(1, 1, figsize=(12, 4)) +ax.plot(rnd, perf_reg, label="regression") +ax.plot(rnd, perf_clr, label="classification") +ax.set_title("Comparison between regression and classificaton\non the same problem") + + +###################################################################### +# Difficult to say. Knowing the expected value is an integer. Let's round +# the prediction made by the regression which is known to be integer. + + +def float2int(y): + return numpy.int32(y + 0.5) + + +fct2float2int = numpy.vectorize(float2int) + +######################################## +# + + +@ignore_warnings(category=(ConvergenceWarning,)) +def evaluation2(): + rnd = [] + perf_reg = [] + perf_clr = [] + acc_reg = [] + acc_clr = [] + for rs in range(0, 50): + rnd.append(rs) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rs) + reg = LinearRegression() + reg.fit(X_train, y_train) + log = LogisticRegression() + log.fit(X_train, y_train) + perf_reg.append(r2_score(y_test, float2int(reg.predict(X_test)))) + perf_clr.append(r2_score(y_test, log.predict(X_test))) + acc_reg.append(accuracy_score(y_test, float2int(reg.predict(X_test)))) + acc_clr.append(accuracy_score(y_test, log.predict(X_test))) + return ( + numpy.array(rnd), + numpy.array(perf_reg), + numpy.array(perf_clr), + numpy.array(acc_reg), + numpy.array(acc_clr), + ) + + +rnd2, perf_reg2, perf_clr2, acc_reg2, acc_clr2 = evaluation2() +######################################## +# + + +fig, ax = plt.subplots(1, 2, figsize=(14, 4)) +ax[0].plot(rnd2, perf_reg2, label="regression") +ax[0].plot(rnd2, perf_clr2, label="classification") +ax[0].set_title( + "Comparison between regression and classificaton\non the same problem with r2_score" +) +ax[1].plot(rnd2, acc_reg2, label="regression") +ax[1].plot(rnd2, acc_clr2, label="classification") +ax[1].set_title( + "Comparison between regression and classificaton\n" + "on the same problem with accuracy_score" +) + + +###################################################################### +# Pretty visually indecisive. + + +numpy.sign(perf_reg2 - perf_clr2).sum() +######################################## +# + + +numpy.sign(acc_reg2 - acc_clr2).sum() + + +###################################################################### +# As strange as it seems to be, the regression wins on Iris data. +# +# But... There is always a but… +# +# The but... +# ---------- +# +# There is one tiny difference between regression and classification. +# Classification is immune to a permutation of the label. + + +data = load_iris() +X, y = data.data, data.target +X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=12) +######################################## +# + + +reg = LinearRegression() +reg.fit(X_train, y_train) +log = LogisticRegression() +log.fit(X_train, y_train) +######################################## +# + + +( + r2_score(y_test, fct2float2int(reg.predict(X_test))), + r2_score(y_test, log.predict(X_test)), +) + + +###################################################################### +# Let's permute between 1 and 2. + + +def permute(y): + y2 = y.copy() + y2[y == 1] = 2 + y2[y == 2] = 1 + return y2 + + +y_train_permuted = permute(y_train) +y_test_permuted = permute(y_test) +######################################## +# + + +regp = LinearRegression() +regp.fit(X_train, y_train_permuted) +logp = LogisticRegression() +logp.fit(X_train, y_train_permuted) +######################################## +# + + +( + r2_score(y_test_permuted, fct2float2int(regp.predict(X_test))), + r2_score(y_test_permuted, logp.predict(X_test)), +) + + +###################################################################### +# The classifer produces almost the same performance, the regressor seems +# off. Let's check that it is just luck. + + +rows = [] +for i in range(0, 10): + regpt = TransformedTargetRegressor2(LinearRegression(), transformer="permute") + regpt.fit(X_train, y_train) + logpt = TransformedTargetClassifier2( + LogisticRegression(max_iter=200), transformer="permute" + ) + logpt.fit(X_train, y_train) + rows.append( + { + "reg_perm": regpt.transformer_.permutation_, + "reg_score": r2_score(y_test, fct2float2int(regpt.predict(X_test))), + "log_perm": logpt.transformer_.permutation_, + "log_score": r2_score(y_test, logpt.predict(X_test)), + } + ) + +df = DataFrame(rows) +df + + +###################################################################### +# The classifier produces a constant performance, the regressor is not. diff --git a/_doc/examples/plot_traceable_ngrams_tfidf.py b/_doc/examples/plot_traceable_ngrams_tfidf.py new file mode 100644 index 00000000..34856847 --- /dev/null +++ b/_doc/examples/plot_traceable_ngrams_tfidf.py @@ -0,0 +1,141 @@ +""" +Traceable n-grams with tf-idf +============================= + +The notebook looks into the way n-grams are stored in +`CountVectorizer `_ +and +`TfidfVectorizer `_ +and how the current storage (<= 0.21) is ambiguous in some cases. + +Example with CountVectorizer +---------------------------- + +scikit-learn version +~~~~~~~~~~~~~~~~~~~~ +""" + + +import numpy +from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer +from mlinsights.mlmodel.sklearn_text import ( + TraceableCountVectorizer, + TraceableTfidfVectorizer, +) + + +corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "Is this the first document?", + "", + ] +).reshape((4,)) + +mod1 = CountVectorizer(ngram_range=(1, 2)) +mod1.fit(corpus) +######################################## +# + +mod1.transform(corpus).todense() + +######################################## +# + + +mod1.vocabulary_ + +######################################## +# + + +corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "Is this the first document?", + "", + ] +).reshape((4,)) + +######################################## +# + + +mod2 = TraceableCountVectorizer(ngram_range=(1, 2)) +mod2.fit(corpus) +######################################## +# + +mod2.transform(corpus).todense() + +######################################## +# + +mod2.vocabulary_ + + +###################################################################### +# The new class does the exact same thing but keeps n-grams in a more +# explicit form. The original form as a string is sometimes ambiguous as +# next example shows. +# +# Funny example with TfidfVectorizer +# ---------------------------------- +# +# scikit-learn version +# ~~~~~~~~~~~~~~~~~~~~ + + +corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "Is this the first document?", + "", + ] +).reshape((4,)) + +######################################## +# + +mod1 = TfidfVectorizer(ngram_range=(1, 2), token_pattern="[a-zA-Z ]{1,4}") +mod1.fit(corpus) +######################################## +# + +mod1.transform(corpus).todense() + +######################################## +# + +mod1.vocabulary_ + + +###################################################################### +# mlinsights version +# ~~~~~~~~~~~~~~~~~~ + + +mod2 = TraceableTfidfVectorizer(ngram_range=(1, 2), token_pattern="[a-zA-Z ]{1,4}") +mod2.fit(corpus) +######################################## +# + +mod2.transform(corpus).todense() + +######################################## +# + +mod2.vocabulary_ + + +###################################################################### +# As you can see, the original 30th n-grams ``'t is the'`` is a little +# but ambiguous. It is in fact ``('t is', ' the')`` as the +# *TraceableTfidfVectorizer* lets you know. The original form could have +# been ``('t', 'is the')``, ``('t is', ' the')``, ``('t is ', ' the')``, +# ``('t is ', 'the')``, ``('t', 'is ', 'the')``\ … The regular +# expression gives some insights but not some information which can be +# easily used to guess the right one. diff --git a/_doc/examples/plot_visualize_pipeline.py b/_doc/examples/plot_visualize_pipeline.py new file mode 100644 index 00000000..bcfcf77b --- /dev/null +++ b/_doc/examples/plot_visualize_pipeline.py @@ -0,0 +1,243 @@ +""" +.. _l-visualize-pipeline-example: + +Visualize a scikit-learn pipeline +================================= + +Pipeline can be big with *scikit-learn*, let's dig into a visual way to +look a them. + +Simple model +------------ + +Let's vizualize a simple pipeline, a single model not even trained. +""" + +from numpy.random import randn +import pandas +from PIL import Image +from sphinx_runpython.runpython import run_cmd +from sklearn import datasets +from sklearn.compose import ColumnTransformer +from sklearn.impute import SimpleImputer +from sklearn.linear_model import LinearRegression, LogisticRegression +from sklearn.pipeline import Pipeline, FeatureUnion +from sklearn.preprocessing import ( + OneHotEncoder, + StandardScaler, + MinMaxScaler, + PolynomialFeatures, +) +from mlinsights.helpers.pipeline import ( + alter_pipeline_for_debugging, + enumerate_pipeline_models, +) +from mlinsights.plotting import pipeline2dot, pipeline2str + + +iris = datasets.load_iris() +X = iris.data[:, :4] +df = pandas.DataFrame(X) +df.columns = ["X1", "X2", "X3", "X4"] +clf = LogisticRegression() +clf + +###################################################################### +# The trick consists in converting the pipeline in a graph through the +# `DOT `_ +# language. + + +dot = pipeline2dot(clf, df) +print(dot) + + +###################################################################### +# It is lot better with an image. + + +dot_file = "graph.dot" +with open(dot_file, "w", encoding="utf-8") as f: + f.write(dot) + + +######################################## +# + + +cmd = "dot -G=300 -Tpng {0} -o{0}.png".format(dot_file) +run_cmd(cmd, wait=True) + + +img = Image.open("graph.dot.png") +img + + +###################################################################### +# Complex pipeline +# ---------------- +# +# *scikit-learn* instroduced a couple of transform to play with features +# in a single pipeline. The following example is taken from `Column +# Transformer with Mixed +# Types `_. + + +columns = [ + "pclass", + "name", + "sex", + "age", + "sibsp", + "parch", + "ticket", + "fare", + "cabin", + "embarked", + "boat", + "body", + "home.dest", +] + +numeric_features = ["age", "fare"] +numeric_transformer = Pipeline( + steps=[("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler())] +) + +categorical_features = ["embarked", "sex", "pclass"] +categorical_transformer = Pipeline( + steps=[ + ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), + ("onehot", OneHotEncoder(handle_unknown="ignore")), + ] +) + +preprocessor = ColumnTransformer( + transformers=[ + ("num", numeric_transformer, numeric_features), + ("cat", categorical_transformer, categorical_features), + ] +) + +clf = Pipeline( + steps=[ + ("preprocessor", preprocessor), + ("classifier", LogisticRegression(solver="lbfgs")), + ] +) +clf + + +###################################################################### +# Let's see it first as a simplified text. + + +print(pipeline2str(clf)) + +######################################## +# + + +dot = pipeline2dot(clf, columns) + +dot_file = "graph2.dot" +with open(dot_file, "w", encoding="utf-8") as f: + f.write(dot) + +cmd = "dot -G=300 -Tpng {0} -o{0}.png".format(dot_file) +run_cmd(cmd, wait=True) + +img = Image.open("graph2.dot.png") +img + + +###################################################################### +# Example with FeatureUnion +# ------------------------- + + +model = Pipeline( + [ + ("poly", PolynomialFeatures()), + ( + "union", + FeatureUnion([("scaler2", MinMaxScaler()), ("scaler3", StandardScaler())]), + ), + ] +) +dot = pipeline2dot(model, columns) + +dot_file = "graph3.dot" +with open(dot_file, "w", encoding="utf-8") as f: + f.write(dot) + +cmd = "dot -G=300 -Tpng {0} -o{0}.png".format(dot_file) +run_cmd(cmd, wait=True) + +img = Image.open("graph3.dot.png") +img + + +###################################################################### +# Compute intermediate outputs +# ---------------------------- + +# It is difficult to access intermediate outputs with *scikit-learn* but +# it may be interesting to do so. The method +# `alter_pipeline_for_debugging `_ +# modifies the pipeline to intercept intermediate outputs. + + +model = Pipeline( + [ + ("scaler1", StandardScaler()), + ( + "union", + FeatureUnion([("scaler2", StandardScaler()), ("scaler3", MinMaxScaler())]), + ), + ("lr", LinearRegression()), + ] +) + +X = randn(4, 5) +y = randn(4) +model.fit(X, y) +######################################## +# + +print(pipeline2str(model)) + + +###################################################################### +# Let's now modify the pipeline to get the intermediate outputs. + + +alter_pipeline_for_debugging(model) + + +###################################################################### +# The function adds a member ``_debug`` which stores inputs and outputs in +# every piece of the pipeline. + + +model.steps[0][1]._debug +######################################## +# + +model.predict(X) + + +###################################################################### +# The member was populated with inputs and outputs. + + +model.steps[0][1]._debug + + +###################################################################### +# Every piece behaves the same way. + + +for coor, model, vars in enumerate_pipeline_models(model): + print(coor) + print(model._debug) diff --git a/_doc/sphinxdoc/source/i_ex.rst b/_doc/i_ex.rst similarity index 87% rename from _doc/sphinxdoc/source/i_ex.rst rename to _doc/i_ex.rst index 628c06ea..55c272e6 100644 --- a/_doc/sphinxdoc/source/i_ex.rst +++ b/_doc/i_ex.rst @@ -1,6 +1,3 @@ - -.. _l-EX2: - Examples ======== diff --git a/_doc/sphinxdoc/source/i_faq.rst b/_doc/i_faq.rst similarity index 82% rename from _doc/sphinxdoc/source/i_faq.rst rename to _doc/i_faq.rst index 26ded95c..ae19d792 100644 --- a/_doc/sphinxdoc/source/i_faq.rst +++ b/_doc/i_faq.rst @@ -1,6 +1,3 @@ - -.. _l-FAQ2: - FAQ === diff --git a/_doc/sphinxdoc/source/index.rst b/_doc/index.rst similarity index 57% rename from _doc/sphinxdoc/source/index.rst rename to _doc/index.rst index a2ab3703..3f484f11 100644 --- a/_doc/sphinxdoc/source/index.rst +++ b/_doc/index.rst @@ -2,25 +2,13 @@ mlinsights: tricky scikit-learn =============================== -.. image:: https://github.com/sdpython/mlinsights/blob/master/_doc/sphinxdoc/source/_static/project_ico.png?raw=true +.. image:: https://github.com/sdpython/mlinsights/blob/main/_doc/_static/project_ico.png?raw=true :target: https://github.com/sdpython/mlinsights/ -**Links:** `github `_, -`documentation `_, -:ref:`README `, -:ref:`blog ` - -.. image:: https://travis-ci.com/sdpython/mlinsights.svg?branch=master +.. image:: https://travis-ci.com/sdpython/mlinsights.svg?branch=main :target: https://app.travis-ci.com/github/sdpython/mlinsights/ :alt: Build status -.. image:: https://ci.appveyor.com/api/projects/status/uj6tq445k3na7hs9?svg=true - :target: https://ci.appveyor.com/project/sdpython/mlinsights - :alt: Build Status Windows - -.. image:: https://circleci.com/gh/sdpython/mlinsights/tree/master.svg?style=svg - :target: https://circleci.com/gh/sdpython/mlinsights/tree/master - .. image:: https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights%20(2) :target: https://dev.azure.com/xavierdupre3/mlinsights/ @@ -31,17 +19,13 @@ mlinsights: tricky scikit-learn :alt: MIT License :target: http://opensource.org/licenses/MIT -.. image:: https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=master - :target: https://codecov.io/github/sdpython/mlinsights?branch=master +.. image:: https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=main + :target: https://codecov.io/github/sdpython/mlinsights?branch=main .. image:: http://img.shields.io/github/issues/sdpython/mlinsights.png :alt: GitHub Issues :target: https://github.com/sdpython/mlinsights/issues -.. image:: nbcov.png - :target: http://www.xavierdupre.fr/app/mlinsights/helpsphinx/all_notebooks_coverage.html - :alt: Notebook Coverage - .. image:: https://pepy.tech/badge/mlinsights :target: https://pypi.org/project/mlinsights/ :alt: Downloads @@ -71,14 +55,20 @@ which trains a multi-layer perceptron with :epkg:`L1` norm... .. toctree:: :maxdepth: 1 + :caption: Documentation tutorial/index api/index + auto_examples/index i_ex - gyexamples/index - all_notebooks - blog/blogindex - i_index + i_faq + +.. toctree:: + :maxdepth: 1 + :caption: More + + license + CHANGELOGS Short example: @@ -109,11 +99,3 @@ version... from sklearn import __version__ print(__version__) - -+----------------------+---------------------+---------------------+--------------------+------------------------+------------------------------------------------+ -| :ref:`l-modules` | :ref:`l-functions` | :ref:`l-classes` | :ref:`l-methods` | :ref:`l-staticmethods` | :ref:`l-properties` | -+----------------------+---------------------+---------------------+--------------------+------------------------+------------------------------------------------+ -| :ref:`modindex` | :ref:`l-EX2` | :ref:`search` | :ref:`l-license` | :ref:`l-changes` | :ref:`l-README` | -+----------------------+---------------------+---------------------+--------------------+------------------------+------------------------------------------------+ -| :ref:`genindex` | :ref:`l-FAQ2` | :ref:`l-notebooks` | :ref:`l-HISTORY` | :ref:`l-statcode` | `Unit Test Coverage `_ | -+----------------------+---------------------+---------------------+--------------------+------------------------+------------------------------------------------+ diff --git a/_doc/license.rst b/_doc/license.rst new file mode 100644 index 00000000..0a5d0fb9 --- /dev/null +++ b/_doc/license.rst @@ -0,0 +1,6 @@ +LICENSE +======= + +.. literalinclude:: LICENSE.txt + :language: none + \ No newline at end of file diff --git a/_doc/notebooks/README.txt b/_doc/notebooks/README.txt deleted file mode 100644 index 7b4bf21e..00000000 --- a/_doc/notebooks/README.txt +++ /dev/null @@ -1,3 +0,0 @@ -================= -Notebooks Gallery -================= diff --git a/_doc/notebooks/explore/README.txt b/_doc/notebooks/explore/README.txt deleted file mode 100644 index 5cb20f43..00000000 --- a/_doc/notebooks/explore/README.txt +++ /dev/null @@ -1,7 +0,0 @@ -Exploration -=========== - -Notebooks about experimentations. - -.. contents:: - :local: diff --git a/_doc/notebooks/explore/search_images_keras.ipynb b/_doc/notebooks/explore/search_images_keras.ipynb deleted file mode 100644 index 5a4cab60..00000000 --- a/_doc/notebooks/explore/search_images_keras.ipynb +++ /dev/null @@ -1,1512 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Search images with deep learning (keras)\n", - "\n", - "Images are usually very different if we compare them at pixel level but that's quite different if we look at them after they were processed by a deep learning model. We convert each image into a feature vector extracted from an intermediate layer of the network." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get a pre-trained model\n", - "\n", - "We choose the model described in paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861). Pre-trained models are available at [deep-learning-models/releases](https://github.com/fchollet/deep-learning-models/releases/)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:From c:\\python372_x64\\lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "WARNING:tensorflow:From c:\\python372_x64\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from keras.applications.mobilenet import MobileNet\n", - "model = MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1,\n", - " dropout=1e-3, include_top=True, \n", - " weights='imagenet', input_tensor=None,\n", - " pooling=None, classes=1000)\n", - "model" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'mobilenet_1.00_224'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.name" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model is stored here:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['densenet121_weights_tf_dim_ordering_tf_kernels.h5',\n", - " 'imagenet_class_index.json',\n", - " 'mobilenet_1_0_224_tf.h5',\n", - " 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224.h5']" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "os.listdir(os.path.join(os.environ.get('USERPROFILE', os.environ.get('HOME', '.')), \n", - " \".keras\", \"models\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_________________________________________________________________\n", - "Layer (type) Output Shape Param # \n", - "=================================================================\n", - "input_1 (InputLayer) (None, 224, 224, 3) 0 \n", - "_________________________________________________________________\n", - "conv1_pad (ZeroPadding2D) (None, 225, 225, 3) 0 \n", - "_________________________________________________________________\n", - "conv1 (Conv2D) (None, 112, 112, 32) 864 \n", - "_________________________________________________________________\n", - "conv1_bn (BatchNormalization (None, 112, 112, 32) 128 \n", - "_________________________________________________________________\n", - "conv1_relu (ReLU) (None, 112, 112, 32) 0 \n", - "_________________________________________________________________\n", - "conv_dw_1 (DepthwiseConv2D) (None, 112, 112, 32) 288 \n", - "_________________________________________________________________\n", - "conv_dw_1_bn (BatchNormaliza (None, 112, 112, 32) 128 \n", - "_________________________________________________________________\n", - "conv_dw_1_relu (ReLU) (None, 112, 112, 32) 0 \n", - "_________________________________________________________________\n", - "conv_pw_1 (Conv2D) (None, 112, 112, 64) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_1_bn (BatchNormaliza (None, 112, 112, 64) 256 \n", - "_________________________________________________________________\n", - "conv_pw_1_relu (ReLU) (None, 112, 112, 64) 0 \n", - "_________________________________________________________________\n", - "conv_pad_2 (ZeroPadding2D) (None, 113, 113, 64) 0 \n", - "_________________________________________________________________\n", - "conv_dw_2 (DepthwiseConv2D) (None, 56, 56, 64) 576 \n", - "_________________________________________________________________\n", - "conv_dw_2_bn (BatchNormaliza (None, 56, 56, 64) 256 \n", - "_________________________________________________________________\n", - "conv_dw_2_relu (ReLU) (None, 56, 56, 64) 0 \n", - "_________________________________________________________________\n", - "conv_pw_2 (Conv2D) (None, 56, 56, 128) 8192 \n", - "_________________________________________________________________\n", - "conv_pw_2_bn (BatchNormaliza (None, 56, 56, 128) 512 \n", - "_________________________________________________________________\n", - "conv_pw_2_relu (ReLU) (None, 56, 56, 128) 0 \n", - "_________________________________________________________________\n", - "conv_dw_3 (DepthwiseConv2D) (None, 56, 56, 128) 1152 \n", - "_________________________________________________________________\n", - "conv_dw_3_bn (BatchNormaliza (None, 56, 56, 128) 512 \n", - "_________________________________________________________________\n", - "conv_dw_3_relu (ReLU) (None, 56, 56, 128) 0 \n", - "_________________________________________________________________\n", - "conv_pw_3 (Conv2D) (None, 56, 56, 128) 16384 \n", - "_________________________________________________________________\n", - "conv_pw_3_bn (BatchNormaliza (None, 56, 56, 128) 512 \n", - "_________________________________________________________________\n", - "conv_pw_3_relu (ReLU) (None, 56, 56, 128) 0 \n", - "_________________________________________________________________\n", - "conv_pad_4 (ZeroPadding2D) (None, 57, 57, 128) 0 \n", - "_________________________________________________________________\n", - "conv_dw_4 (DepthwiseConv2D) (None, 28, 28, 128) 1152 \n", - "_________________________________________________________________\n", - "conv_dw_4_bn (BatchNormaliza (None, 28, 28, 128) 512 \n", - "_________________________________________________________________\n", - "conv_dw_4_relu (ReLU) (None, 28, 28, 128) 0 \n", - "_________________________________________________________________\n", - "conv_pw_4 (Conv2D) (None, 28, 28, 256) 32768 \n", - "_________________________________________________________________\n", - "conv_pw_4_bn (BatchNormaliza (None, 28, 28, 256) 1024 \n", - "_________________________________________________________________\n", - "conv_pw_4_relu (ReLU) (None, 28, 28, 256) 0 \n", - "_________________________________________________________________\n", - "conv_dw_5 (DepthwiseConv2D) (None, 28, 28, 256) 2304 \n", - "_________________________________________________________________\n", - "conv_dw_5_bn (BatchNormaliza (None, 28, 28, 256) 1024 \n", - "_________________________________________________________________\n", - "conv_dw_5_relu (ReLU) (None, 28, 28, 256) 0 \n", - "_________________________________________________________________\n", - "conv_pw_5 (Conv2D) (None, 28, 28, 256) 65536 \n", - "_________________________________________________________________\n", - "conv_pw_5_bn (BatchNormaliza (None, 28, 28, 256) 1024 \n", - "_________________________________________________________________\n", - "conv_pw_5_relu (ReLU) (None, 28, 28, 256) 0 \n", - "_________________________________________________________________\n", - "conv_pad_6 (ZeroPadding2D) (None, 29, 29, 256) 0 \n", - "_________________________________________________________________\n", - "conv_dw_6 (DepthwiseConv2D) (None, 14, 14, 256) 2304 \n", - "_________________________________________________________________\n", - "conv_dw_6_bn (BatchNormaliza (None, 14, 14, 256) 1024 \n", - "_________________________________________________________________\n", - "conv_dw_6_relu (ReLU) (None, 14, 14, 256) 0 \n", - "_________________________________________________________________\n", - "conv_pw_6 (Conv2D) (None, 14, 14, 512) 131072 \n", - "_________________________________________________________________\n", - "conv_pw_6_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_6_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_7 (DepthwiseConv2D) (None, 14, 14, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_7_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_7_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_7 (Conv2D) (None, 14, 14, 512) 262144 \n", - "_________________________________________________________________\n", - "conv_pw_7_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_7_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_8 (DepthwiseConv2D) (None, 14, 14, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_8_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_8_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_8 (Conv2D) (None, 14, 14, 512) 262144 \n", - "_________________________________________________________________\n", - "conv_pw_8_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_8_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_9 (DepthwiseConv2D) (None, 14, 14, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_9_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_9_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_9 (Conv2D) (None, 14, 14, 512) 262144 \n", - "_________________________________________________________________\n", - "conv_pw_9_bn (BatchNormaliza (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_9_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_10 (DepthwiseConv2D) (None, 14, 14, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_10_bn (BatchNormaliz (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_10_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_10 (Conv2D) (None, 14, 14, 512) 262144 \n", - "_________________________________________________________________\n", - "conv_pw_10_bn (BatchNormaliz (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_10_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_11 (DepthwiseConv2D) (None, 14, 14, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_11_bn (BatchNormaliz (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_11_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_11 (Conv2D) (None, 14, 14, 512) 262144 \n", - "_________________________________________________________________\n", - "conv_pw_11_bn (BatchNormaliz (None, 14, 14, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_pw_11_relu (ReLU) (None, 14, 14, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pad_12 (ZeroPadding2D) (None, 15, 15, 512) 0 \n", - "_________________________________________________________________\n", - "conv_dw_12 (DepthwiseConv2D) (None, 7, 7, 512) 4608 \n", - "_________________________________________________________________\n", - "conv_dw_12_bn (BatchNormaliz (None, 7, 7, 512) 2048 \n", - "_________________________________________________________________\n", - "conv_dw_12_relu (ReLU) (None, 7, 7, 512) 0 \n", - "_________________________________________________________________\n", - "conv_pw_12 (Conv2D) (None, 7, 7, 1024) 524288 \n", - "_________________________________________________________________\n", - "conv_pw_12_bn (BatchNormaliz (None, 7, 7, 1024) 4096 \n", - "_________________________________________________________________\n", - "conv_pw_12_relu (ReLU) (None, 7, 7, 1024) 0 \n", - "_________________________________________________________________\n", - "conv_dw_13 (DepthwiseConv2D) (None, 7, 7, 1024) 9216 \n", - "_________________________________________________________________\n", - "conv_dw_13_bn (BatchNormaliz (None, 7, 7, 1024) 4096 \n", - "_________________________________________________________________\n", - "conv_dw_13_relu (ReLU) (None, 7, 7, 1024) 0 \n", - "_________________________________________________________________\n", - "conv_pw_13 (Conv2D) (None, 7, 7, 1024) 1048576 \n", - "_________________________________________________________________\n", - "conv_pw_13_bn (BatchNormaliz (None, 7, 7, 1024) 4096 \n", - "_________________________________________________________________\n", - "conv_pw_13_relu (ReLU) (None, 7, 7, 1024) 0 \n", - "_________________________________________________________________\n", - "global_average_pooling2d_1 ( (None, 1024) 0 \n", - "_________________________________________________________________\n", - "reshape_1 (Reshape) (None, 1, 1, 1024) 0 \n", - "_________________________________________________________________\n", - "dropout (Dropout) (None, 1, 1, 1024) 0 \n", - "_________________________________________________________________\n", - "conv_preds (Conv2D) (None, 1, 1, 1000) 1025000 \n", - "_________________________________________________________________\n", - "act_softmax (Activation) (None, 1, 1, 1000) 0 \n", - "_________________________________________________________________\n", - "reshape_2 (Reshape) (None, 1000) 0 \n", - "=================================================================\n", - "Total params: 4,253,864\n", - "Trainable params: 4,231,976\n", - "Non-trainable params: 21,888\n", - "_________________________________________________________________\n", - "None\n" - ] - } - ], - "source": [ - "print(model.summary())" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "93" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(model.layers)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Images\n", - "\n", - "We collect images from [pixabay](https://pixabay.com/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Raw images" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(31, 'simages\\\\cat-1151519__480.jpg')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pyquickhelper.filehelper import unzip_files\n", - "if not os.path.exists('simages'):\n", - " os.mkdir('simages')\n", - "files = unzip_files(\"data/dog-cat-pixabay.zip\", where_to=\"simages\")\n", - "len(files), files[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAADGCAYAAAD7R7czAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYHOdd6PvvW1Xd1ft0z76vWqzFli1ZXhQ5cRw7jrODsxAOCZBACOdm4XDg3sO551wM5/AEuCGQhHOfBAIJOYQQME6cQBJjW94V2bIlW7s00uxrz/S+d1fVe/+YGWlmNDOasWRrFL+f56lHvVRXV1f1qH/969/7e4WUEkVRFEVRFEVRVke72jugKIqiKIqiKNcSFUAriqIoiqIoyhqoAFpRFEVRFEVR1kAF0IqiKIqiKIqyBiqAVhRFURRFUZQ1UAG0oiiKoiiKoqyBCqAVRVEURVEUZQ1UAK0oiqIoiqIoa6ACaEVRFEVRFEVZAxVAK4qiKIqiKMoaqABaURRFURRFUdZABdCKoiiKoiiKsgYqgFYURVEURVGUNVABtKIoiqIoiqKsgQqgFUVRFEVRFGUNVACtKIqiKIqiKGugAmhFURRFURRFWQMVQCuKoiiKoijKGqgAWlEURVEURVHWQAXQiqIoiqIoirIGKoBWFEVRFEVRlDVQAbSiKIqiKIqirIEKoBVFURRFURRlDVQArSiKoiiKoihroAJoRVEURVEURVkDFUAriqIoiqIoyhqoAFpRFEVRFEVR1kAF0IqiKIqiKIqyBiqAVhRFURRFUZQ1UAG0olwmIcT+12i7fyuEiAohjr0W21cURVEU5dURUsqrvQ+KoixBCPFmIAt8S0q5/Wrvj6IoiqIoM1QGWlEukxAiO/vvnUKIp4QQ/ySEOCOE+GMhxH8QQrwghDgqhOiZXa9HCHFACHFQCPGHc49fTEr5NBB/HV+KoiiKoiiroAJoRbmydgCfA64HPgpsklLeAnwd+MzsOl8CviSl3A2MXZW9VBRFURTlVVMBtKJcWQellONSyhJwDvj32duPAp2zl28H/nn28j+8vrunKIqiKMrlUgG0olxZpXmXnXnXHcB4/XdHURRFUZQrbd0E0K9hJ4N3CCFOCyHOCiH+y2vxHIqyRgeA+2cv/8LV3BFFURRFUdZu3QTQUso9V3qbQggd+F/AfcBW4CNCiK1X+nkUZY1+C/htIcQLQBOQWmolIcR3gJ8Cm4UQI0KIT7yO+6goiqIoyjLWTRs7IURWShkQQtwJ/AEwCdwIPMRM/ejnAC/wfinludmOBt8GdODHwG9LKQOLtnk78ICU8t7Z678HIKX8/OvzqpSfeXZ5hT+gpb+f5vN5vF4vQgj+8bvf5Tv/+F0e/t5Dq3o6KUAIsfwKzqLdkTbM/o3P/K3PXBZCgNBg3rakWLi/YsGmnNmVrtD/Fyu9htfEuskVLE03Xu8DoiiKolyG9VqTuQPYwkwLrz7g61LKW4QQn2Omk8FvcaGTwXeEEJ9aZjstwPC86yPAra/dbivKpb300iE+/bnPIqUkXBXmb7/+11du40JcdpB7PkC/3GB5cZA8t73XPXhWFEVRlCtrvQbQB6WU4wBCiMWdDN46e/l24P2zl/8B+MIS21nqk3p9pNyVN6w77tjLK4cOXe3dUBRFURTlVVqvAfSV6mQwArTNu96K6rurvKZe21IBIVn6a+GcxVnji7LA5++4sP6idebKupZ8muWyx6vJVl9u5nmJfVUURVGUq2GdFwauaDWdDA4CG4UQXUII9+x6P3g9dk5RrgpNuzjInHddCHG+RGOl8Q9L1lnPX1/KhcvrQQXPiqIoyjpxLQfQl+xkIKW0gE8DjwAngX+SUh5/XfdSURRFURRF+ZmyLrpwTMQycn5m7EKGzEZKgWODbUssaZ2/v5DP45ntZPBvD/8LD3//Ib75v7+Dg4aUctns2ty2dSHPZ+PmP/fM8154/NL7JResv2JXhGUslQVcbjtz+1OxJbqwefBbf81ffuFP6O7soZDNYVtldKHR0NBAsVhECElddQ0C0BwHWSkyNj1NdXMbn/7vf0hjzzY8GqDNf+3Osvux1LFcal8vrKctuH6p99hy98/dbktx0TpLnYOGsOf1T1Ha1govzll0feH3VTlvb8Ul/gwXrLvi+82efb/MXTeRjoWmOziOjS6XyU4LsbouHBft2BI7vtwgxJUGJ77m2eV1nitQXTgURVGuKeviU0UIgaatbVeOHnmZ++6+g3fctZdvffNv+P0/+J+v0d5dsFSw/XrSdZ3hvjN8+Qt/hmNrJGNxioUcGhJN06hUKvj9fpqbmxkdHSWTyeA13Th2Ga9bp+9sL9//l+8CFovjqKvpcr6AKAtJdCQ6mtTQJNiVBKViEmnZaFK/2runKIqiKD8T1sUgwrngeanMp+NIHOfipNUtt+3hkX3PzQTfOBcF4EJcnLVckHFeIqM2/zHzs86rqRldvP9LPfelHrP4tvnbkFJi2WVeePoJ7tpzGwMjU2BlMN0uPC43sUSauro6crkcQ0NDdHZ2EvD7qaRjVHIZIsEgFUfQe+IkUAbpBiEXvM7LdWEbC4/DUudiqccudcwcxwHE+fsXHxsVSF8gpURoBo5dBqvCdHSE6rAXxxagaQiPf14753kDBS/nGK702OXuU+dMURRFucatiwz0UmY+4GfKMRxp4cjyggBLkyAciSbnr89MMD27zJRpXFh0Ic/ft1wmebmyjkuts3jd1WxnNWZKUmxsbBLj/Tz/wk/Z9+zTpJNjVIcj6JqB6fURjtQwODSC48Dut9yJGQgwPj6Orut4g0EK2QIezaCzrp50JoMutVXv3+LXsprXs9wXkUsd18U0TUMICTjn/527PP92cakaiDcI6VjYlSLDw70EvJJyLkcxnSCbncYuJq727imKoijKz4R1G0ADOI4zm4FcHzRNW1WpyZUs9dBwZkL+SoXjr7zMmVOnSSWSpFIphoaG6O3txTAMKrkCVaEQTR1tnDlyBM220aRkairK9HQUTQefxySXTHL4+ecp2+XL3rfLsZovJ9c+bdGykJAXlkuZv+7iGn8pbXAEAkEhFWPi3EnqfAZTE1NIS+DS3Vi5AsV0GuwC0tGRaBd/6ZOr3KeVunGsdUzFcutf9tiMlY+9oiiKolyOdfHJslzQNJN9XDmQWlzmsNzAteUyoWvJwi43OHGlEoXVZrrnL3PPI6UEx8aWGsnYJPse+XeK+QLXb92GXbHQNI2WlhaKxSIlaROqqiIbT1JMpxkZGCAU9COEJJ1OAg6BoA/TdpgcGcZlGisOtryS1pJxXm695bL+PxuB9uXSkMIBWSafmCAUMMlkCxiah3N9vYyODFEq5Mln0xSzKRCVq73DiqIoinJNWx8B9PzM16LgSNf184G0hoOQNjjWbFmHhcResC3pCKQjQGpIR6ALgQaIFQLFpQLJ1QaXS5VwLHzc/JKDxV0vll7mb8uRLoS0OHv6BC+9+AJVgSCObdPW0krZKlNfX49Lc9HY3k6pUsYqFWltayNQFWJ8fJRsNksqm6NiS/x+P60dzbgqFYqV4iVf2/nXKJdelj9eF8oq5korLvVFYqVjqwG6mDmX8++bn1/U32CB9MXjBWwoZImPDpBJp0mmcpTLZUzDoFwoMDI6jK4JnFIOq5xFE87C9+lassfzn1uIhctqtzW3zqXqpNdBlyBFURRFWWxdBNDLOR84z5ZOLLXATKnH/Kzt4uXVPvdaO4NcaTP7LpBWiWeeeIJYLMG5c+fQdR3LsmhsbCSRSuKrChKpCuM4Dh6Ph9HRUaITY1TKRfKFLD6fD8dx0DTBQN85YiOjmKa57PMudYxXspZ1f7ZKNNYHxwarlOVfv/eP1IVrsUpgml6CQS+m28DjdeNz6/hdOoV8mkRsgmXb0imKoiiKcknrogvHYvODq/lB2Vw99OIyjYUlFOKi2xdnh5e6ff72Fm97LQHfatabef5Lb0tKSbGc5+UDT/L4Iz/Btm28Xi/xeJyqYADbho6eTfT1D9LVZmKXK2TKFbymj0I6STo1haELcrkcXq+XcrlMdSjIwMlTlPJ5TNO37POu9rWupsPGSo+fe77lzsXi7S/VoeSNGIzPP2a6YXD60IvsvPEmSlLDtouU8yUc6SE2nSAY8BMbncArHWx/kGC1STmdxAhVgdQQzM1eONPx5AJtmcuwbAC+2nNxpddTFEVRlNfRus5Az1lczrEg4yk1LMfBsS/ORNusPEHHenW+PEJqWOU8f/+tb9B/boCenh5qa2qIRCIkk2kEOlNTU/iCAdLJ1MxkKxWbXCaD26XjMXUcq4jX48ftdmNZNoVMlo1dHYyODL1+r2cV9eXzL68mIF5L1vtn1flfWOwibc3NeL1e8vk8OBaaZZGNx+nuaiebStJU34DfGyCXyYJVQZbzOHblwheUK/k3sdTAwuUGGb6eU4EriqIoyhWy7jLQ82tr5fkyyIszzraUlMoWdrlC0cqD7WBoOroA4TIwDBPpCISuo+s6Ugi0JTKdc9tbzlyQstpM9MXZ1PkB3lwGfeWe0RoOUgosCQNnj+A2TIKhELnUzIQYvuoaQlURdty0i0QsxvjoGJZt09TaQsDnob/3FMmpGAYCx7Hx1zRStBwaI41EB8bITw+fb/93/nXNn1llcYyjLb2vSx2JpTPSzkWJxLk2hfMft9x25med9XmXVdg1o5hJ4nbpxKfS2HaFcqmIsBy8LjeldBQnF8f01DPWd44te++kZFUwfT4ceaFM6HWlAmZFURTlGrfuAuilzA+m5gLUUqmCXcqTnBonk4syPTmN26WTTWWJJ5O0d3TT1tmFx1NFoDqCbnqQjsRxHAzDOL9d4KIs5moy1CutMz+IXi5gX24dKSUWEik1XKLCT773A8aGR2hpaUFYFaanY+i6zubNmzl25Aj5bI5QIAh2gdjoIIOZNH7DwKvpOLqLMhoe0w+6m+hUgtq6arJOhkrFXvXEMBJ5UTC70nFYqsxi6XVWN/HMpSZNeaOVcAjp4AgDKQW6LrFLBUxhEAnXMpGbwK2ZpLLT+CIayfEkXt0kF48zMTRA4Zl93HTbXk4cOUx9WyvBumZcnggCAdJeNLDvCtVJSzk3Y8tMa0oxM9W4rrtwKhYVx8btdqMbBrJSnjmfl31OV55GXVEURVEuxzURQM8nhMC2baRlk4xFmRw5x1DfED/43sOEQyG6utuYnJxk+Mw5wuEw1XW1NHZ003PdNmoaWnAcB9u2zw9QXGtGes6lSgdWE0Qux8ZB2hojg+fIJFMcevEldu7cyXDfOQKBADU1NWQyGWoitfhNL+VCEU84jFUo4TiSilUCXcO2NTzhJkI1TbiNMnYpDz4PQgiqQtUzk9Q4M10/9BUnlFv9bIyrNfMF4tU//o0WNC8w+zONpoFTKuB26TjlMpZlgbSxKiVMXSM9PY2vOkghB96qCBs7NpAeHeEfH3yIX/7Ex4klYpi6RqWUA8PLa1UNIzFmftVwbIQNumMxNTVOKh0nFp+kob6FusZWvL4wmvEGPq+KoijKNeOaCKAXd9OYC6JHB05x5PlDPProY9TUVOPze+jrPcvNu3bx2L8/itfrxTA97LljLy8+/ST3/fzPoXlCNHZuxOUycGyJrgPOxTMTrhSgXWhDt5K57PLFt8FMAD4XvM7ewtzU5cIWFOwShw/sx3IEjY1NvHjwIB0tzZRwGJucYEvPRvrP9REKhSiVSniKKVxCgFMBTwC9UMERBtX1G/B5PNilPNJJU3F8+KubSKcnqGmsRXPA0XQcMb9t3KLpsuftt1jFz/0OSw8AvLhV4MIWhAstX96x1LbeUAG1FCBAVopkkzE0u4SLmS9DTrlEKZNGs8tYxTzugof+46eoadtABQOPz2Dj1h386sc/yac//Uls26G2uQMLHQC3acJc2ZI2O7hwLV+a5taVcibCl5JiPofXNECWOHHkJZobwoS8OgGPoKulG8NThXQ0hHRAc70GB0xRFEVRrqxrIoBeisvlYnBwkP3796PrOi7dIBadwuc1GRkZYffOXRw+fJjR0VGKhRzlSoV0PEE8l+FDv/RLtG++gbr6JqTwgCbQWRigX8qlMtCXKl9YGDzPmBsE6TgOspwlnpjm4YcfxmO6CAaDdHR2smHDBn66fz+jY2PouotCqYjP5yM6NojHMLBKRTzlLIYtCQTr8XgDZNJx7GKC+rpaDLeHcDhMcnoKZ6tBRQoMKjiOPm9/FpaWLNUlYzXHZrlJbS7Hlc6EX8s0x8EuFfD4PFApEggEyBoGwq1RTJcQtkXZtrj19luoau7g6f37KRR9UJb80ef/FJco03+ul7q6OiqaiV22sCwLt9s9Wxc/m+nW9QuB8WreB3MBuONQqVTwiCJHD71IV2sdzbVuDMNNdDKO2+3GpRfQvQJ/2MQw5Otdja0oiqIor8q6DqBXmvnPMAxKpRIADdW1aIDpD+AyNKbHJ0npBm1NzbQ0N/LKkSMEw1UcP3qIWDxFNpli4+Zu3vPBX6Rry03oHi/OEiUdlxpceDnm97CeyUbL85n1YrHI0UMHscsV9u7dy+FDL+L1mPSPDDEVjRIOhkhlM2zbtJlYLEYgFKRcqkbaFvHYFMWyQThQhRmIgNRAFjDdLgzNSzAUJpFN4hHgsfI4emh2whNtXkeGha9xqQF9S52T+Y9ZagDgauqnL0UFziCFhqRCuZLFrduzX8gEqdgUmfQ02WQcn2GgS4tzJ0/ja27muqYubtz9JiamJmmqa8ZxihTsEuOjw/QdP8TGm9/MWHqCkDtCyWXir4tQSmUwg8HZjLeDdBwEy32hktga6FJgOw6VYgYrH2di+BzhKpPm+iCJZJ66+ibymSyG5kbDwHZKmJ4aNFcAIUwuGsF6xcz/xUjVQyuKoiiXZ10E0A7zBtQt8/m5uBxA0ww6WjuQVBgdHaWhvo6A34vf76WlsQFhO8RiMVxuk5uuv4GJsXEam5s4UTjF5PAgk2PjPPP08+y+/XY+9KufZOOWbTOBLDODmwxpowlwtKUP0eqzshd/WM+PAYXQsW1n5udroVEoVRjuPc5Q3xkG+/vZ9+w+/LobTfMSNgPksllqwhEaa+p46eCL1NTU4Pf6qBRthIBAMIy089iYGLqXXCEOpTxujw+Xrxo3RaYsP6P7/pmO9lp8PbfjcywcBAKBBIS2fJZ3VVOZOwsziXPbhYWdVS6VTV5Lj+k3UmAthYNe0cAW5F0OpmZQLpcp51JYhQw+DeKjQ+Rikxi2ge7TcVdyGL4wdiFHKRdnejpKWZY5cfIINTV+Nlg5jr3wFAFvNcdP9rL3LXtJpQvUNzbT1bMBW9eRQsMpWxiaC6FfON6OkKAJtIoX7CzRkePEpsbZ0NGC3yPIZopURQL4/W4mJiYwDReBQAApJYWSg8cbRNMNEIv7UF/qQKwhK64oiqIoV5D+wAMPXO19IF+sPHA+gJ53+1Ih0dzgP8cBQ7M5uH8/+UyOoN+Pz2OiGTqaYWB6vPiDITRNZ2oqhmEYhCJVuNxuSoUidQ31lApFhKFz6Pn9BANeGppbQTPQxYWuAWKJUo2ZfV1dAO04y8+QOBf0OY5DWUIqEWdqYozYyBCp1BST0Wl0BKbb5DOf+Qz7HnsUv89Hd2cXtmWTyWSxbZtoNEoqnWIiOoGha+CY1NTUo2kSL2VEuUxjSw/+unpMl4anUiHT9xi+qiaat+0+3xFjbtbH+S37VrOsiZh/DC9cvnibaw+KvKbxB2t+0OWSzgOv+1NKByF0Dj7+Q1rNMrZmUiqXkPksUyMjZJNJ0tNRUhOj2MU82USMwydOEmntwLCLfOWLf8pNN96E0HWEJkim09Q31lBOxOjZsInvP/QgI/1nqY5UkU3GOHzwAKViliq/D7fhQjgSNJCOg2VV0BDIooYoTfPU439Hc20Ijwa9vX2Eq2sx3UEQLizLxuf3wezfRDabpbq+FTNYixA6yHlZ4tW8r+avs6b34ToMuDXt9X/vKoqiKK/aushAr9b8oMsRUN/SRXVdPVoZPC4X0nbwmT4Mw00gHGFiYgKvx8QfDBDw+dFMnfxIHp/XSz6ZZPOGHkbGJ5iKT/GPf1diYniU7bt203PdVgy3idBdGLMlFkvtw3JZ6IUt93Sc2VpQx3FwuVwL2thJKbEsi9hUlOhYP/n4JMl4EseqcPLkSYQjqWms5y++/CUaGxpwuVycPn0aDUEkEmFoaAjDMHC5dLp6upkaG0P3+6iuraVSKKCZLgx3BOkxcfld+HVJTfksI7YEy0ZYDlIX5wcHXqpUY6nXeanztSDbvEyt+VKDAtdae/1GoUmDCiUifo2vfvoT/NZ3fkzF0JkuFXCbPvKZArbQ0VwmyWKO9Mgw4Z7tBA2T546+ws7tWymXClTXtPLWO+8llUrg0g02b97M2YEBNM1h69atTA2fmxmI6w3z8tNP8MTD36empZnrd99KZ1sXwuVG0zT6zxzjmcce4sP3v53rN24nl8zhCYRo77qO6FScLRvbKVTK5BIxdE3DEIJiPo+u63hDNbP92q/2UVUURVGU1VsXxYBCXlguue5shtKtCXCbVByH8egk0Wh0JoNqz2wkkUgjyw6VsmTjlu2Y/hCpaJzG+iY2bNxMsVQhPjVNd0crtm1z8KcHeOjB7/LlP/4jnn/qJxSzSUqFHLZt41gVcC50jLgwCcjFi5QCKWcGA5Zti2K5TKmYIzYxRCo2RTmfI5dKkE4myOfSxKenyGXSjA+epJKK4eRzJBIJXLqb22/ZjQTueMubaW9vJ5PNUyiW8bi9lLJFJkfGsByb6WSCqeQ0hsvF8MQ08VSSwbERCuUspUIaszpEtlwmn8oQT05RFTBpaukm6PJSdunol+h4sfj4z9F0gaYLhLZcFnnhORNCMDNx9Mwy/7xfnM12Zmuzl160JZ7z6nBWWK4kDRDg2BQqaRK9Rxno7WMynWN8cgKrlMJlSFyFPAO9p2ndup2eW25DouENBJga7OcvH/g92js7uPe976Gtq5toMsH/9Xv/hVI+zdneM1jCppCY5gPvfhtf/JM/5/odN1DITeOtClNb38KBAwcQpSIb21p4+gcPkpgaJFwdYPzUc9z/rrdTVdWIL+jBcmyE4aPiaDQ0NVO0wUIQDASIjY1jYBOuClIVaWDmzePM9KCefw5XO0Phq+oZvdI5u9LnTVEURflZtO5KOOZb6uPzQqmHxEHS2dnKE48+SiQQJOD10tnTyVg0SnNrCxs2bcYWEsux0d0u2ro6SGezuNwmvkAA02uSSMRpb2unproWpGBgoB9d0zh57AgtNdWY4VqE7sJBwGxgvJzzZRkO2JZNKpEim0mQjEfJZdJksymmpyYoFLIkYpNkUzEK6RSZZIzh/rN4DINMJsPo+CS5XJ54PI7b42F4ZISBs31ouoauaTM9sNMp2jo76NmwYWZwl1snlyvw4Q9/hN4zp/F5PUyODhEwPfhDEXKZFE4picsXonvHm2hrb8eDSWD7DlwSJAsHUa4mIF2uRd+r8qoevvBBHrd+FUo47AeWv/NKBvWz3zSkw/SJJ0lEz/L8o89x13vvY2R6mo2NDaRGxnjlkZ8Qz2Z51698HMPr4dl/eYhKGcYnotx443bGp0b5/r89wu/+tz9k08YtfPxXP86TzzzJtus28d1v/w1SajTV+YlNjHIuVuJb3/knwqYLTyhI79AguXKZPXtuoy5SRbjKzw++/W0mR0/S3NFDPlcikyxSV1+PhQtvKIzb7SFfyFNIpUhMT9DYUI3mciF1F4GGVqRmsOTEKfNvu1St8xWvhb4KX8ZUCYeiKMo1ZV2UcKw2e7h4PR2djg2beee7383+x/bh2DavHH6JptYWcpk0U24dfzCALqFUKFIoFqmtrWdoYJA9d76VvrO9BH1e8pksmXyORGqa+LTOjx7+IW0d7Tzz5D7+2+f/jM4NG/F4Aziz3T/myguklBiGcb4l3Vxv52I2w8jgII5VxDR1KpUKmhBYxQK6rmMVCyRjUTSgqqqKWCxGNpnGKhaZjkUpFovE43GCwSBdW67jyMFDtLW24vV6Cfr86LrOdreb4cEh0tksNXV13HXzPfzTPz3IX3ztazTWNtI/Osw9b3kLLz//PIa/Cp9bortdGLbNSKKEaGmnRZcgK2j4kGsMnmH1A/cu7v/8xhnwd+U4szP6OYyeOcV0Jko6keS6e95GpKGL6MH9nD52CF91Lduv28aEDZ0376R3aBxvIMx0Ls9/fc97GM/lcUIDfPDX/g9+93Of4dbbdpLNlTjyymk0IwxGFc+/eIT/+Knf4C8ffJLRWJ6fe//7+cZ3vkt7eztVVRFG+wc5NzxITXWI2HSCu++8E0O3sZ0y6Aa95/po7d6CZrjxeby4TDcFp0IlY6FrNrrLwNb0mTKTV5VBVhRFUZSra10E0K/G7FwSYLiprq+hp6eH1OQk4WCIc8dOUtfWRsmxqK2KkJiappIvY7hNTK+H7g0byBfzCCEYHBqiUCixoaeLil2kqbEeXddJZJOUHcmPH/oOb73nXnxV1XgDEQzDwOv14vP5kELD6/ViOeA1XeSzmZngd2oE28qiORUS0wXyxTKmaeI2fWjoaJqOYZjYtsXA0MjM9OIanDhxglK5AHImSB8dHWVkeoqp0TFsx6G1tZliLk97eyvxeJzO9nYGR0dA15ken+bmXbvZ6/PTtWk7+x75IZPJDHXNDRguSXJ8kgPPnuOuPTlMFzR0byLp5IhIEym11dXPrPbcrKGOerGfrT7PlyoHmF9BtdK6GlLM1tMXi5RtDY/hwqgxsZ0AlUyes6NR/LjpS4wQdrtxLBs7lucvv/l3fPI3/iO7d+6maesNPPPgw/jC1TQ3N/LlL32Rp5/YR097G9/7l4f45Kc+Qbi2iaBnNy7pYBczZNIlxlIZgn6T1tZ29j9/iJ88/hQvH3mJj334QwgsHv7RY3z4A+/B0Ww2XHcd+WyJeDKLx10AzYVH2pQcG4/Xj1WROMKiqrX7/K8eK1opu/yadeFY+VwoiqIoyjXxabDsVNKaxBAGjV0dHDtzCqlrTEajbLl+O5lUgoGjRxjrO0tjfR2dG7to2thD17attPdsIBqPs3X7Dvbe9TbueMc7EIEADa1xBXmSAAAgAElEQVRdXLd9B9dtvYHu1nbcVoVUMsNjP/oxwimRjY2SjY+Qig4RHTrD2LkTREeGmRgdIDo6yMjASaYn+ohPjpNNZ7CljqG7qQoEKWRzaI5NIhZleKCXXC7L2NgY5WKe8eEBTvf2MjIywvjYJOl0koMHnqeusZnMdIKBwUE2btxIYjqGrsHhQy9SLOS46567aGlvQ9cNdu/dS11bK4FgkN4Th7jlxh30HjuK7ujU1tbiQqfjus00b72eojeCU8owPT6Gy3GwNGdBV5DluoVcdJ8z2zhBigX3L153ufMpBeeXpdZRLhAAFYdiOonE4onH97Fh0wbCgRDT8TS3vOVuBkYneeaZZ/j1X/sd0tNxCsUSzxx/hV13v5mxiQn+02c/w9nRIVoaavnW336D1uZmPnj//fT39/Orn/g4u27ZzaHDh7FxMzQ6zlve+hZ++P3v8mf/7xeYiiX4wIc+xPve9x4efvh7fPCDHyA6PoHX7+OOO+9lcHScSKSGvrP9lGyHYrmATonJ0TOMDp7F5XIRqWukLN2U7JkZB5fqcKMoiqIo14J1UQNdKFoX7YSUM63kFg8SW3zZcRwaGpux8kWOvfIK27ZtZ3Cwn9TEKNHhQSam4jS2tZOpOCTicXLZLLqmYQsXuUyeqViSYDBIfV0NuqaRz+cYGBwk4A9iaBojI6M4QMgfAErkMik0YeMCpFOmmE2SjU/j2GUsq0QyMU0ulUUXGl7TMxMkl8sYhkE2m0PXNdymi3KljC6gXCyQSsbJZPK4XG5isTiBUICKmJkwY2RwiLq6OgYGBiiVi4wMj+IPBKmvb+Dll4/wgQ98iBMnT3Hs2Cu01tXj1jVq6uroP3uOibFRtm/dipYr4/h9NDZ3IIMhalo7CdgFDCGov3Enury4dd1iK5V3rNSSbkWXPfhvHdRAO4veu6+6ndpKGXc5s1gCu5Ck//QBGmprKFUq3LD7FiypI60yk2fPcPPNu9h44xb0UDW9vaeZjk5Q3VRPbipGKBzi3R/+IH1nz9DQ0MjIcD89Pd0cO3ESl8fLwPAg1fXNdHZ2UVtTQ+emHoIeD2NDwzzwx59naHSMRDxG0O+jUChQHQ7zzHP7ec/7349AUl1TSzyRJZ3OUhUOY7p0TI+bQKiGimWTy+WxbZtIYyuGv2oNx2mZY7ua8g8pr3CG+jX6YqdqoBVFUa4p12wJxxxN0yhJg2BVDY0tLZStCnUNLciKRBheHE0wMRolGKknFPBQSGUZi6cpVcp4/X66d2zF0HTGR0dp62ynf3iIrduvx2MYHJqOU6lU6Bvo58zp07QXWolEIiSmBmlsaZ2pf7YrWJZFPptDCoG/KkR0YoBQKIS0HTweD1JK+vr6qK6uQUoHw6VhWRbJeIxiIYdVKpFIpBgbG6Ozs5NjJ15hz9vuIugJko7FiUQinDt3Dq/HQyQS4cy5PvxVEUYmYnzta1/jpm2bOXToEG7hMJlOYBR9tLe38+JP9xOqDWBMxNAaa5kcjNM7PoFNiS3v+Hl8AT+m5UIakrUEBio7/BpasWQBMuk4dTVhzoyP4A/WkE/HMXUfPq9BMjVF2pZ85GO/TtRx4w2aGLGNJIoZUmeH+NdHf8QHPv5xKsUsO2+7nYnhfl555TAbN2/i+ZcO43IZBKpq2bTpOr76lS/xKx/7KPe+7V2E6qrI6Tp33/U2EskkTz/5GL/2qd8kPjHNL//Kx6lvbuMbf/1X/OLHPoLP76GcrRDy+LDRsRyNktAplSqIUonG+lo0fwBn9uVpPwuVOoqiKMobzrrLQMvZOTSW68CxVGZTQyNU56fv2FE8hodIbS0uTeDzezFdIewKJOMT2EUo5vLkshm6Nm3GF/LzxOP76NmyAWHoGIaL6nA15XyeRGyKQjGLZrhpam6j5DgIbBLxBDhlCsUCxUKOXCpFIZdlZHwMhKRYKmCVSrjcBmigGTq6S6f3bC81tbXk8xmsconTp05TXV1DoVimWLZwuQ0caWPZFpl0Hpfbx6P//hMsywIpCQWDnOs/S019LV/7m7/lL/78z9m2oZtyqUSuUCRUFWI6nsDj9hD0BShLm87OLuq9PmQowHgsTcWWFAp5uro3Ut1QzYYbbsf0etCEtuD4Lj7Wl5rSfDU9m5dsb3d+mTnhYt5tc78+rEwuWDzuqzCRirOoC4cQa6jNnb//8x6/5ON0HCfN0IkXSI0P0Tc6zZabbmVidJxwfR3RySnSU9OcO3aS/micve+8l7Gzxzl24igHnnuKYE017nAttbW1PLHvaU4eOcb4+CiDIyP84i/+B+7Yewfnes/xf/7e53nvu97O3/zV16irq+Xut99DIlMiZDr80v33cy4aJZVI8cTjT3DnnXs409/HDbt2Y3pMxoYGaair4/jZXjq7N5DKZAgG/ORjMUxZQhg2rlAII1CHsGfL7sW8173g0Mw7hmvJIi+Vpb6i5ArLZTyXykAriqJcU9ZdAL3cZ9BSJQRzlzUB/kCAk0ePUpiewuvWqW1pxxNsJRipxxAOslym4jhoOjjYTIyPMjYxwc179uDz+4lNTVHI5cmm09iWRXRygng8RsDv5/33/xwHDj5PY10jU9EpdKHzo0ceQUpwKjaJeJLBwUHq6+uJxaZJxhMgBLqh49YNKqUyjmWBpiGYmeba5/MzNjZGqVQiHo9TLBaxLIvGxka8Xh+5Ygmvx6S7oxPD7cLr97Fj181svm4rf/6FL1BfW0drcwuRSATTNEmnU6TSaZpbWpiMTlEol2huasLw+MgVK2STcfK5NF2bN+MN+Ni2bSut3dedn3lw7nheTnZ5ufKOxbdfqgxk5oYLty83KHFxUL5uAuilLl8uCblsAllIEh/t563veBfCW0U8naf3zGmaGxoI+j24TJ10JUcg6KE4NcGTzzzD2++9l+07buSxJ/ZhlWze/a77ONt7nB033cS9b7+HX/nYL/PNb/4t7a1t3P+B9/HTnx7gf/yP3+fZfT/ivne8i+07d/FXf/PXxMbHeOvb3sotu3az79GfsOOGbdy+5w5Mr4+fPvk4He2tbN25i1CohsGhQepr65mcmKA6YKAbggoa0gzi8YWQcmbqnvP173N9n2eXi8Y8SHnxfw1LHd+r+uuICqAVRVHeKK6pAHrxjIBzH7K6BEvohEM++k6coa6hjmLZpramHb/Ph2G6cblDoFuUKkUqdoVIVZCuno0cOn4Cyypjuly4dJ2XXnqJeCxGuVQkGAxQKZU49PIrVNfXMjo8hks3cGyHhsYmRoZHyaTSlEplTLcL27YJBAL4fT5Mj0kmmyWXzTE6OkpTUxPxZIp8LovHdFMuVwiHw+fb4JmmSaFQIBgMMjI8Skd3N8eOHmFjzwZOnjrFJz71SXbsvJnjx44RCQXoaG8jn80zPj5OXV0d8VSCpuZmqsJhYokEyXSKrq4uGhvrkZUKlbJDRQg000VrWwuN9fU4Lh/BYPCKTUhyRUs7FsShq9uvqxJA24tqoFfKll7O8REahVyK6OAZCuUyZqiW42f6aGxooFzMMTk5ChpYhuC2vbfi0ST9vSe46+538MWv/CWPPrGPe+95Gz/+t3/lLW/eyx137CUYCvLNb36Dd73jXjZ2d7BxYzdvfds9DA4P0tbSwuGDz/GB+3+exx5/jN/+vf+bDU1N1NUGiSfTeN2Cnz73HG7Tw85du/ncb32W977n3QRCETKFEtKBSqmIz2OSik2gGQaR2gYquhfdcGPbMwNMLdu++BclXV8woHXm0F38xXlNx3V+T+nXLMhWAbSiKMobxboIoPMl64G53+7F+Z/yxYJR+it/gOoI4VDb1EgiPsKZV07SFm6kUogjrRwuA1y+KkDgMX1Iypw7dYp4Mcs73/cuwr4g8ckppiam6ereAEKSTacoFvJ4fD6E7iISqWbX7p08u/9ZbMchl8uxZ88eylaF3nNnCYRChEJV5HJ5pGMTCYeZGBvH5/YwGY2y74kn2LJpC7lsnlyuQCqRoJDPU1tTw/jYGKbXTyRSTaFQpLo2zJv23sEzT+0jl8vT3tPFH33+Tzh08CUc26KYz1FTXU2pXKGppQXhcROdiLJp02aGhobp7e3F5/Wxbds2sqkUTqWMbUMsncIW0FBXS3UohC/gx19Vi6HNBC1LHtvFxLxaC+YH3joX7lhdYeuKJR8seJpVbcvjWgeDCOe7kuUEEjxug+Ezx+jZfiOWmJ263iU4d/YsJ08eZdett9Ha2YGuSaS0cfl8WLZkw3Vbeetd9/C9B/+Znp5OOrs62H7rHpKTkxQLBfK5NG+/+y7+15e/wqatW3n3u9+LY9v827/+gMb6OmqqPNS0dhIbH+Prf/UVPviRj9HT3Upfby/9A4PcuHsPuVyBUMBHKptm83Xb8ZgeqqvD2BULj8fF9OQktS2tTE3HGBgcYSo6zdj4GFalQjqTRkpJsVikXC6jCYFt29i2jWVZ6PrCeb4Xd4hZVTeP1+qXgYVP8uofqgJoRVGUa8r6CaBnLfgIWilonne7EBc6cmTSSWTFppBOMz4xQsXJI3QNNxKPaeL3BtFdBg31jQyNjjI8PEw4WMVzL77Am+7ai8ttcOrIy2QyGUKhIC6Xi1giSSaX45mnn+ad972TuoZ6+vv6OHz4MDAzGYrf78eyLOrr67GtCtFoFMMwSMTjWLZNMBTE0F0MDw/j9Xpxuwzy+TyxWAyPx4PlzPSeTaVSPP/CAT74oV/g6JGXufOeu7Esi5tu3IFdqbB9y1asikW+UEQCU1NTnDx+glQqxcjICN3d3eezdm1tbZwb6qe+qQnNZWBpkve+61109HQSaWjAMFwIXcf0+dC11QbQy11Zop53pc2sJYhZ5arrLoC+HPMzpoCUGk7FIjp0Bl3T0HQXxVIWr6njMtzsvuUWAn4/ppAMDZ6ltqGWqnAdQvcwOjLM1ESUXC7P/R/+MI89+jhWIc+RE6fZfsMOsrk8ff39/Pbv/A5nTp+hqakFxxFUCmleeuEge9+yl0BVGNtxeOrJJ3nl5Zc503eWYwcPEq6upqOnm+2bNzLQ30f3dddTKpX4+3/4NjftuhlbCEwJpi6xXH4mx4bZ/9QTQIUTx18hGPTy/P5niSemeOXlQ2gCes+cJp1KMBWdoFAszB4CgV2ycWwLB4kzW9JxYWbSSxzHtd73qqgAWlEU5Y1iXQXQUsqZAWWz5kKxxSUGFw90m5tiW6OprZPDLx7AKmTQsMlkspQqFcqJKEKb+cnY7THRNRdve/OdHHn5ZfyhMD1bNpHPp3nlwHNUSkW8Pi/tHV2MjAwTS6QIhEJoAiYmJylJm8R0jGAwiNfrpampiXK5TD6fZ3p6mkgkjGVZRCIRioUCFdvCsm1M00MwGCSfz58PoE3TpL+/H8Plpqenh3w+z5Yt1/HykaM8+/RT3HPfOzl86BAej4ddN1xPbDpGvljkhp03gePgdrvZuGEDErj11lt5+eWXSSaThMNhent7Mf0BohOTbNqyiW03biMSrMIbDGF4vHjcJrqugeHG0I2LMn1LWi6AXpSZfjWWOs9CiCXfB0u5GgG0tCsPLL7ttehSIjQDaZUZOXsUt9eN5lQwNIdAMEhdTYiA34vf5yEbnyIU8FAqlHCZPqyyTT6XxTTdGIYBSH7pYx8FXUNqboTuYmhojE989nd46F8eZPtNuwiEqwjURHj5wH5CbsH2m27CML1ous773vd+ujrauPe++3jT7pv56lf/PxpbmrnlttupCgWZmJzmhje9iT233EJ0chKfz4c3UkfJcghWV/PwP3yTfCZJsZBj544bEJqDVcmTik/i0WCkv5dyPsXA2ZMcP3YI4VQYH+wnk4hxtq+XyckxSqUiXq8PgYHLcJ8vnUZcyEifH9S6XJ30/MGec7dd/ll69Q9VAbSiKMo1ZV0E0LnihSBkwZj2izLQzuznnEQIbV4wNRM8AzjoRKqrSEyO4BKCQtGmnLeITUYpWAXCwQC1tdXUVleRzZepbqwnmklz+NBLFOJJStkCgUiEQDiM5VQwTYPGpmYOvPQ8XZ3dZPM5HMvm13/zN3jqmafZe/sehoaG8Hg81NXVEQwGcXvc5PI5YvEYXp+PuoZ6MrksPp+fSrmMY9tUBQI4ls25wX68Pi8NDfVUVYUYGx2hd2CAU71nGB0ZZWhggOq6Os6cPIXX48PRBE/s24fP42HL1q1ous6LL75IIBRk+/XbGRoeorunm4bGRqrCMz+hb+jp4eDBF2hsbKC6vp5CqYTH68XjcaPpM8GG2+29UGc+GwzLeWdDnA+O55kru9GWGAC4moXV1V7P79Ixf3Dh+QB7NhBaFzXQK7joNc5P1l90bBffoOFYZVKTA+geN6VcCpdLkM4XcEpFAgEvk5NjDAyPsnnLZsZGBoiOjFCyirS2NhEOB/H7PNjlHGfOnKKmro4bb9jBdHSCe+66m6d+/AitrR288PxBqqtrqK2ppq2xhsnhPto3bsBGo1ixqK9vpKYmQiqT5sFv/z233bqbj3z0YxRKFU6fPMGWbddj6jrRyUn8fj+appGYHiMY8CIMk+9+46u0dfRw/Y4baW5rw7ElDXX1FLM5sIqMTUSZnJwkk8lQWx0m4NHweVzUhINMRYfRnArJeJxiNoOjCSQ2CAfbsSmXKyvWTl/i5Kz2NK60kVf/UBVAK4qiXFPEepgyeSqZX3Inlg6gxfls8/z7pJQ4joNt24DDvh8+zNDRQwRdPsqWTiqdJp+NUsgUCEWqsYWgvXMDuUqFRHKS0f5BBoYG2HPnXspli23btvDSoYNMTk7Sd26Arq4ejp05xaZNm8jn83hDAf7jp36TP/h/fp+bdtxITU0NxWKRUCiE4dJIJpNs2bKFsZFRhK6RzeeITSeoCoawLQu/x2R4eBhpaHR0dFAulwEYHh7GH4lQFYlg2JLJyUnK0uaO2/ZgIzl06BAdrW2cOHac3bfewv79+4nH42zYsIFAIMD4+DjNzc2kUinuvvtuvvrVr+FyGXz4Fz7I8PAgb37znRhuDy63icttEKwKo+kuqutacbvdM1locXHwsdL7ZH4QuyaLpiBcaRvnA6MVYpSQ1/W6t2CQ5cKinV4pKl7epQI9x3FITowycPwZpBB4TZ1cPk1VVRUuaZMvZMnlMoSC9XgCGlMTfWTH4jieAF6Pn1gshWPDc889R1NzHTuu28iZE4McOH6Gvokp8sk49TUBSkWbaLrE29/3Af7sL36fR3/wMLt27sHlc2O4TF786bNQLlABeo+8wm/87u8y0DdE59abiA+eJBrP0dLaRSI5jcf0EQxXgVWimIvz9L4nOH38JFuv30FrTw+R2gay2TTTk1FS8RgHX3iBeLaE4cx8kRNunaqQm03d3QTCtbjcbrBLVAermEokCVSFMX1+6ptaqTiSQCiI3xtGSi/egB80gcfrxapUMJBIOVMmJYx57e+vaG30ZcysqBtXs32IoiiKskbrIgOdL176Z/D5tc4z15fpyOFA0ZHgFLCySYYG+9nU3UmuWET3uEHomF4ftY1NDA/3I2SJyeFhgh4XoUiYvoEhHNuhWCrSUFdHb18/97zjPp565hna2tuwbZuNGzfSe+LUTDu6YACpCUKBIABut5ve3jNomsbAwAAHfnqAVDpFIBjEsSUtzS1IKamUSzQ2NlKqlHG5XOi6jhCCQCCA1/Tyrz/6NwKml9/8T5/l6EuHefzRx9h+0w5u3LED0+UGKRkaHqKzs5OtW7cyPj5OTU0NW7Zs4ejRo9i2zcmTJ4nHE7z//e/jueeepbOzAw0NTWhU19Sg6RrlSgWv14fb48cwjPPHefE5uFSP6FdXtrDUOV5+JsT55RxLMa9CCYdTKT+w1NTnMwH/8nX7y1nuPiklsckxZClBOZ+mXM7hMTSsYo7o6BDp5DSlfIZMapJSIs6R54/xlb9/mOmiztf//iEyFZ3rdtzKHW+6jfd/8hPU1jSx5fpd5C2L7p52/vNnf50P/Py9/PcvPsijj3yPQ0//kE//5z/gT7/4JXRfGJfPRNg2Qlr4fT7SqRQ+n4dUIoXbG8BlA5UijS3dVHQvtY1N+Hx+0qkUiVgMDcmzT+4jnU7S1dVJTV0doKHrUCmXaWpoJJVMMjU9xo7rt/HM/v10buzh6NFjHD9xmiPHTnHo5cOMjQzidmnctGs3mXSCSLgaTRN4TJPE9BTDfb0MnjtBJpskNj2BtCSFQoWSVUJ3mQjdQDr2heM9c9DnDv6reAcsOHuv/qEqA60oinJNuWYD6LkPq8XrOWg4SOpCJl//4/9KTW0dE2dO0NDcSKZkIxwb3eOjnM9SzkaZHh8mUFWFYbhorK4jk8nR3NDA5Pg42VSG4eFRkpkMNU0N1FZX09TagiYENdXVDA4McOrsGd553324NB3LskjE42zY2EM8HufkyZN8+EMfIhaP09rSyvDwCNWRCH6/n0cfeQSv14sUUC6X2bFjB1NTU9TW1vLiS4fYsmULmzdt4t8ff4yQ18/P3f/zBKpChIIhRoaG0TWdtvZ2TNNkbGwMn8/HwMAAGoKt27YRCoWoqalh585d1NXV0dXdSSgUxOvx4PF6KGTyGB43Hq8Px5FohhuXMRfIL30Oljs3r97at7MeA+iFt1ycgV5NH+zl7ltQkmCVGTjzCnapgMdwkU3HOHv6FGMjY7Q0N1EqFpE4TEfTPPbkIapaurh+Ywef/c1P8qZbb8SgxPbrtzE8MIAWCOGpaSQcrmKw9yQbNnZTcPk5PjLFb/3u77Hzxq18+Wv/m1/56EfxBX1IXCBt0rEpem7aSe/RY/8/e+8dJdd53mk+N9/KuatzRKMbGSBIAASTSElUsihZlhzGQZa9nrE9ttden5md3ZnZ4fGeM7PrcZStI3ltr9f22NaY1q5lBUoySTMnkEQOjW50TtXdlcOtm/eP6m42QJCSLFmErHpw7unCvbcKF3W/6vp97/d735fFxSUiiQ5GDxzB11QcCWxRQkBB1wK4ro9jO0QjAZaWlpmbmSYaCeCaTURJQlIVECCVTFCtlrHMJpoqkozFSHZ18tg/PMXKepGNYoN8qYrdKCOL8IEPPkSqs5eenj5i8STRWBRVVgkHgwQ1laAO//D4l3j0C5/n2WeeZ2b6GoFQAF/w8X0B2zIRRXG7Bvq2iL4hcfObF9RtAd2mTZs23yvcEgK6brREyFsJDUEQkDa/7Fqe2M0sfPztDd9vtQj2fRBUCpde5NWnH8UzmtTkIJoiIdVLLC7M4wgqomuz7+BhuoZ20dPXRzSVIpxM0TQbRKJRRElGDuo89eST+I6LpmqslQr82E9+nPzaKrVGg6GhYbq6uzHMJnMzM9x710nOnT5DMBQiEo0SDAQJBYOs5XLce/+72Vhbw7YtBgYHqDcaxGMxBgcGqJXK+LSSFF89c4a77rqLpmnS19lFKBzGcRzW11aJRsIEgjqT1yY5efddLC4vYjkWnZ0d7N+7l450mrmFOZLJBKIoYNsOlmUxceUqoXAIJaAS0DR0TaFpGPi+gCJJiLJEIBhBkATEt4gqfyPi7xuvJ/3Wr3XTJiybf27sXCjw9gho1zYfvn7P17dwXB+l/sbwfR+nWadeXEbXVBStZQHq6Owgmewgnekgt1ZgZbnKXNEi2NnDhx+8i31jo5hGlUJ+lWhYI1/M05ON0TAM9GiWrnSWv/rT/4fb7rwHVYHqyhJ333GUfLnOn/3lX/OXf/R/8WM/8gOo4SR2s8ZX/u5zeI7Agb3jpDMZeod2kewbQXZlQvEEB/qH+bM//Ay9PZ3sGt1NKJrAsRtEwjE0RaZcXAPPoVypMb53nHyhQNNsIgoCTcNgfXEZo+nwp5/9G4p1A1UPUaiaOI5NdybGB973Hu44fidqMEYwFEaWZHwPPMFDFGQkUUaRBGavXuLy5QtMTF5hZvYaz7/wNBfOnqVaKjK6awxJkd8wvlrpFTvqRLcFdJs2bdq0eRNuCQHdMJ2H36rL3PZ2w/Gtn+KOrHsPEcW38GUdo1IhUCpheC6hjj4wKpx9+QVq+RWGR0cRtRCiomI2KgiKyuWZaWrVMrlcjrX1dZaWl+kbHqSnuweAg3v3kUmmCEXDXLx0hUgsRkcqxRe/9EUefM97mJm+RjbbQSQcJp3JUCgWOX/uHMlkklqtxsS1aVRFxrYszpw5zcDAAJqmEQqFqFWq9PT2Ek8k2DWyi4W5eTRFpbMjy7WpaxQLRXbt3kW9XqdYLOK6Lr7gkU6n6OzMMnX5KguLCwwODSJKIlNTU3R2dlIslKjVauzZs4dAOEwkEgFBpF6vEwgEEGUFTdPwRYlQOIYoiW94378Zbmb7ePPX+sZe+6ZC+ibX9XYIaN9sPiz4PlvbTkn8ukh+M4vHzmS37WdxY5zd931sx6FayZOfn6JeXKFYLGBaDpeuXOO1c5eZml/hc195kb/8+1dwPI/C4iSi4DHQk6WQ32B2eg7P9bly/jVcy8Yxasxcvcrg7jHe+y8+zvrUJTQ1wO1HDjO7NEeqL8sf/uXnWVoq8v67D5Pp6iCsB1jPrbF//xhnzr7C2vI8sb49JJIxLl8+TUfPIA/ec5Kf+Ll/yRc/8ymK5jp7h3e1klQ1Hde2EfGQNZV0OsPi3AL9vV3kNvKkO7qIRkIM7x6jVqswPT1HMBjBBwzTRBZ89gym+IEf+BihSIJQOIrvOHheqwKP69rYro0guuSWFzj18vOs5YtU6xZ108E2mgx0ZUhHVcqFNaauXUXSFEQ9gOsLeH7LwXzdWGsL6DZt2rRp8yZ8C1kv3z48z8PbrIP8LSMKSPi4iNz24IfYaLgMHrqNqmFy9uw5NvJFzEaVK89+kWRAxMgvolkNsBzSsQT1Won+wQFCkTB9A/1MXpmgUCpSsZvsOrCXsB7gM7/7+/zkJ34az/d59pmn6Ovpoqe/j6XVFUqVMhMTE5RKJRRF4cEHH0QQBA4ePMiR24/S099HIpnk3nvvbdWDVlXW1tbwfZ/u7m4qlYSI7egAACAASURBVAqXLlxkZWmZ4cEhjhw+zNju3XR3dW1/sa+urqLKChhNVmdmqa1vMD8zy/TUNR574nEEQSCTydBoNFAUhUAgQKFQwDRNDNMCRAKhCLquoygKAI7j0Gw2/3HJgN/DvJn/eee2Nb63trc65832O2aDjdUlFpfmcV2BWDTFyvIar7xymi+dusYf//cvkS8WuG04Qcgv82/+p19kaLifyxOT9A0McejIUeqGyd33v4tKw+S1V8+wMXeOxcsvsDFzib3vfDeTc0tMLa1xeWqBT3/6T4gIPiOZEH/9V48gIdFsNhno7aHRMHjHA+9i/6Gj2K5Hs1hEalj8xA/8CN394+jBEB/80Ef4yEc+yhOP/i34JkpA5MLF00iiz9pqrpXs2tvDxkaJkeFxIuEEiXga8BkbHSEW0qnXq1xdWMN0wLYcVFWl2WyiqioAiqIgiuJm4nAL0zTxPI9YNMMP/eCPIQoKuhYmGY7ywgsv8Mj/+zmmJs8QC3hszE9TWV3Fd0xk0f9HTRjbtGnTps33JrdGBLphPSxAyzog7Ixc+tvWREFoHX9jZY7rHwuAJ8iIeAiSwuq1cwT1CI6kU11bQJMU5hc3KNsezY0csUiU/j37QAIEkVK1TrG0TrYzw/kLZ+kbHCDbkWFsZIR6uczC0jLvff/7eeKxr+G7LiO7RkGS8AUB07aIBoMouoYgtqK8jtFAFCQuXLjC/Q++EwcXWZJwHZtCsUgmkaRaqXD02B2Uy2W+8uhX2D22Bw+fYrVCtVRAVRWef/45dF3FMi1Ov/Ya8XgUDwhFokSjcbKdXYyNjRGPRlDUAMFACMu0WVhYYHBwEEEQ0DWFVCJOJBRBkRRsz0MSRVzXQfBBCYQJh8LbXvN/CkFxfYTvLbabRPPebJVii7fFwmEaD+8Uu+4NQhneaNm42c8b923heR62beM7JsvTl5GcBqGASqVa5eVTp7BsG7fZ5MRt+/ngA3dy74nbWVpeJJ5I8f73vY9qbR1ZEUBwOHL0IP/7//ZrnLzrHsb2HqCvt4fXzpzntnse4OzLr3HXXe9gcHQ3+w8e4b77HuBffvAe6nPncZpNHnjwAfDrxMMCczNT1Os1YrEYqa5+ysvX6EgFOHbiCA2riecaOA2f7n37GR7dzYvPPk1QD/LkE1/DrFUJ6gF6BgZIdXQQDOj4okQ4EsM2DVzBo7ieY3F5AVnVWSlUcSwTRRQY7k1y58m7iSfTyKreKgnpeZtCWsCybRzbol4uUSkVeeRz/x91w6JQrlCqOzi+QDAa5x333Ek2kyYcCtOsNXB8j4CmIskaCBLC5orBdQmG3xDtCHSbNm3afK9wawjopv3wthgSaNUiBkTxjRaOr1v5YUd9aF8S2XPwdpYvX6B7zwjhcIpQLEU4kyUxMEg83UW5WiGSyaKFIyzncizlcli2SzSW4Mhtt+N4PufOXeDpp58l1ZEikcmQzmY5sG8flmVRqVRQZYV6o86Bgwd58bkXGRjowzRNAIIBHS0QRJRkbEHizrvuol6tUi4WyOfzpBNJLly4wPDICFevXiWbzbI4O4soCiwszhOLRLl69SqHDh3CaBisrizT29vFxYsX0ESJ0vo612ZW8e06jmWTynTy1488wunTpxkcHGRpaYlsNktXVxdN00BVVURRIhyOUK3XWpYOQFZUYqkOZFm+7n3/p+Lrv/abJzC+mZBWle+8CLGNxsM7I8Wu/3oU2XXdN0Sg3yimr3+91wV06/+49ZzFuWssTl3AadZAdChXypszS5G+nh7e9+GP8vQzzxDQw8STnYTjSf7iv/03nnjiFKFwmj/4zJ9y/Ph93HfnUWbmFnAFla6hfajBONl0Bl3RyS3P4bguG7kcsuthNKtMXT3PqXNXmZ+9QFQ1OPfSE/R1d4LjgO8RUHX+6Pd+i2Mn7qVabeCaFg/c/z7+j9//DAXbQ0eiK5PGME1CikZxYw1RFNm9dwzTssitrBBPJ6jVq8giOK6N3agyNzMNwMzsHI4Hiizy4H3HuP2O47iegBYIIUsSqqq2Puu+hwDU6w1Ez+Ha1EX27BvHdn08z+XQeB+Hxwe5Y+8oeihKV/cg4XAITZMwDZNKsUQgGMH1W3kVW7+DvqE24du0BXSbNm3afK8gf/1Tbm3erAaxIAgovkc9kuaOhz7A9IUpgl2daI6LV61QKaxSc3VGhnejx9P4koLluezZM8bFSxP8w5NPcffdd5Pp7uS2O27n5D13c+TIQZpNiytTU6yvrDA8PExvby/zs3MEghqrSyukkhmWlpYYHBwkFArxzFNP8vFP/BShpVU++JHvp1KrsXvPXoxyhUAgwOzkNfbt28fFixcZGBhgYWEB2zEZ37ObYDjAhQsXOHDgAJ7n8chnH8G06siKj++ZrF19kbAeYKno0ds3RCSaQA5eQRAE7r//fs6fP8/o6Ci9vb00Gg2y2SzVapV4rOXJ1jRtuxvi1jJ4ewn7m+PGSLNwg0D23NetSb54fZKlv6ORjLxjP4KAJfoIno9lmjSqVWavXgLPbk2CtCiaFsFyRXwUfvxf/Qr/w7/+Vd7/7ncytbzE1LVJXNemv7+XQDLCxOwUR+84RFc2wef/5quUK0V8x8cdHeLimRdxmyVisSiSqqOLIhXbptaskk4kCWa6+Y//yz34vsHGzHlikk1Ec3F8C9cpU166zMc+9BDBgSF6s/0Ya0Vmi1X8Zh2vkKNKE0UJ0aiVOHvuNaKRAJZtszg7R7VapW+gn2p+DUnRCMRSNGtl8G00RaVeKxMIRzDLNpoqUy/VyK9v0D0Q2+6q6Pqb2aS+iOdCUA9QWKwSCoV57vkX6ejsY9dAP/Vynngyxd79+xEUjc//7d+QTKXIZruIB8PIaisXINE9iCDo+NBqmb55X759pe7atGnTps0/B26NCLTRKmMnCALCjuinSOu7UdwRfd7iZnWJ4QYngCCg4KFFM5iyRlD0qJQ2OH/mIpIHwYDG8NAA9VoFSfDJZNIkYgmGhnexuLSAaVvs3jXI7PQUB/btYXk1h65reI7NQN8A0XCEs6dPc/DgQVKpNE89+RTLqzlGh0dIxJPk8wW+7wMfYHRsnP7REUKhENFwmGg0Ss9QP5Iv0JFKEYqHCehhFhYW0TSdQDCM0bQIh6IEAjqCa/Gbv/0pCtUaG45NQelDSCfJdvXQ19vJXeNjPPX8y3RkB9h78BCu71IobnDHsdvwBYGl5RX0YICXT71CR7YTfbN8nut7SLKMqqkIgkQ0mUGWZaTNRMJvBnFHVYy3anayk7e0iXwda8fNnvN2RqDhdTF9Y7TZdd2Wx9/18BwXPB/PdcHzEHwfbuJ9xvdxmiYba2usr60ydeFlFMHGbDQQFZ10NksynSHV0cmll59kMbfMC2fOcubqFHsPHGF5cYlMQub2g2P84EceYnx0CM93yGaTdPb00D84zpe+8vf89M/+PI1Gk4mr1xjePU4hX8FxLVaW5sitLtHdkaI7k+Y3fuO30QWBjqhEKhOgafkEwwEE3+XsmdMM778dxxfZyOexmiZmtUBudoJibpFIooPlxXlkUcAyG+DarCwv0dvTzdzMNUqlDfAdmkYNwROoFIv4ooisadSaLq4rUK9VGe1PcOfddxOOxUCU8TwPURRbqz2CgGlUqZeLSLKAKqtUqg0uTVxhZb2A6NnsGhsnEAgg2Q7LS/OcOX+e5155hXy+9ZxifgNZhKAewfd83M28DEmS3ljq7qa0I9Bt2rRp873CLSeg2SGqJFF8g2j+RhF3PFcURRKJBKISQA7p2E6d+dUctXoDp2mRyXSgR4I0LZPPf/FLuL7PHceP0zc4yLlzZ1lYXKS7p5datUpnNks8FmNpaZnlpWWSySSlUomFhQVcz6OzqxtJgHq9zsLCArValUQqRSKTpiPbSSAQQJZlHMdmcX6Bvt4ezpw9i6qoRCIRqtUqk5OT9Pb2ksvlqBlNrpx9GtOqYSWGGH/3Q8RGj5NvNJnOz3HPsX3s2buLA4M9hAa66eob5+DBMbq6uvA8l2Sqg87OTkRR5ODBg0iShGmamKZJqVgkHoujazqyohKKJggEAts+9G+GnWd/owL6H8ebv/jbbeF4q2RAANdxtsW057r4vovnbW4+2500W8dtmk0Dx7Yo59d48cmvsLoww9DQAHoogqYFOHbnSRoNg8X5KaIhnbiuonkmom1z24FDNM0qnbEozz79DIMDI5TKFTzPYn0jR1dXltF9h6gbBo7n0dXTTdOEQDBIRypB/0CWnu5uEpEgf/jpT9E7sh/PclmcmiKeShIKJ0hlMlQrFVzTJhLvZr1UZiDbQTgWpbC+zEB/L4FIEtOymZ+dptmok0klePH5Z6hUyjSbBuVSAVGQWM9tkEykURUFRVJBVnj8mWdZKTSYm54lE9U4vH+E248dw/FBUjRkWbku+Ti/tkp+dQnbcVhZX+el02d45cIs8yslVssVVlZWET2H/t5OXMfl4qUrmJaD5frk11aJBFRURWajvIamqURiqe1Exe0odFtAt2nTpk0bbkEBLWx+WYmieNOydTdysyjmzXzSvu8TCAdJpDsxCkU2NooYpkXf4BCeJKDqAa5Oz6AGVM6dP0s4FicSTdI/OEBv/wB6IMRgby/nzp4jHAqRzxf47F99lvvvv59SqUStXkdRVSRZwTQaHD9+nCtXrvDAA/fjuB59g4NImyXjVFVFEBV0RaVcLDG2fx9BTSeTySCKItlsFkEQSCQSLM9OYhUvUxBU1moCJ44d4cyjX8XPTSKbAUKHOzjRUWZfV4Brk4uEBw/jGAUcx2H36F4KpSKyLKMoCuvr6zhOqy60LMuogkStXEHwfLRgiEgi3Zq4yNJ3XEB/40mLt5aAdprXJxFet7k2nufie27LVwvge/i+h++5OK6L67o4jgNey+7hex74Pq7r4QsStmFw4fQpKsUFZEWmXCyhSAqG5VFtNOnMZhgc2Us4GOY9D9zL+9/3HnzbxGzUcFyFcqXMu9/7AeqNBrlcnnhHhp6+Poxmg/mFeTzfQcKlXq+QTHTw9HMvcPgd91FfXUGiiVMrMpKNcem1l3AadcrFMmbTJpxOUFpfATFMdaOKH4qih+LUGxbTV6+ysryA47rU63XkQJQzp14gFJC5Nn2N9ZUc+/cf4vy5i2h6gDPnz7Nn314s20TTAzSbTZrNBs888xxVy8dxXUKazP6xAYp1g6GRcVRFxvN9JEnB9z0atRKVaonTp57nK1/8Ai++9hoTk7PUTR/LE/FcB9swCQU06laFSrnI8GA/hlXHs20s2wNZIRIOEQ2pTE/NIitBAuEwkiK1vOqS2Opyf90Y3Von+xZnjW0B3aZNmzbfVdwSArresB7eEs34HpJ4vWVjq2vY1uOb8Xo93Zu3mW55pVsVdmvVIo7vcfLuk2Q708g+WLKArOv09g5y+5HbMGoVRNcknkkjABu5HEajztzcHJOTk8QiEfr6ellcXCCdTiErGqIgEAmFiEajPP300+zfv59qrc7egwdR9QDxeHw7oqUqMr4Akq6RL5W5euUCqq5SrVfxJZnphTl6O1Kcff45Am4B7VCWudk6jYJNfukivieiK0mUzjrvPRCiS8kQtJeoqkdIdcXp6u6hUMijySpBPUAmlcaxbNbX1ujp6iag6zQMg6Zp4vkeiVQSTQ2ihwLbbcW/GXzh9e1b5c1qSbd2vL4JXH+vVfk7L0L8zUYqO695KwK91XjccRwcx8FzPQRBeD3K7Du4rrMZhfZwPQfXc7AsE6NWoVBcZ/7aFYobC6ysrjA9PcNKLkdHRycf+v6P4HoukZCOIAsgwspKjkuXzjPY202jmqcjnWIlt8qhQ4dwPZ/R3WP0Dw9TqtQIhSNYtQapaIJCocz581dYX5niHSfvIOg30HwL2xZpNJto0RhdHWk+/VeP8vy8yUuXZ7nznR9HDUa4spwjEJU5fPtRGpZNMJykq6cHUVHxfZ9oLMzS3AwqDtXSBpXiBroWYH5+gXy+gKxIHDl8mEQ8jq5pJFJpJFlCkiRURWI1l6fuiJjNJu995wnuvOcBwrEUqiThCyKNWhWjXmJ66iqvvPgsp155lZW1EqWyTTLTSb5cJhIL47suQ33d7N09yHve+U46M50Im7WfHaOOpEiM7tpNf28niiCzlsuRX1ukUq0TDcdRFB1RVBCFG7sUfpuWW9oCuk2bNm2+q7jlkgi32+t+m6pAiKK4vcwrCAKWZREMBjlx4gSW2aRczGNoVUq1CsPDw1y5eAUpk6Snr5dmo06jViccCBIOhsgX1jFNk5MnT2LUG/i+TzgcZnZ2lv0HDjExMYGqKqysLDMyMsL6+jp33313qwyZ7yNJLWGwRTwe3/bIZh94F6urq4SjcQqFIiOjI+RmppmYmeATJwJY7xjh6WeeZOHyBSRZwvdd8GqMp3tIKHF6u8J8/vEmvSMBBgZ6mZ6cwnEcoqEoxWIRVVVRFIVwOMylS5dIJpNEIpHt99u2bZrNJvF2ktQ3xY2NfHaO2617uzPRdWdlDt9vWTkAHM/eHp/NZpNapYQW1EnFA2wsC+TzBUbH9iBKML+a49XXXiYWixAOKli2gWVZ3H7iJE88Vsa0mwR0mc6uFPsPfRSjUWNhOcdXH/8H3vu+D7BrdBjbdRndu4tScZ1gWOBHf/zD1G2NWKiV5Pf5Rx9FcXw+/CM/RNNx2N3VTbrzvzNZ2uDY3Sd46qt/wbuOHeXlF87y67/+n3Fx6cikaaIjajqJTJpzr7yMFY8hYXPpygR7R4e4cuE88WSaQqFAKpVidGQX9VqFqXKRY8eOMT8/T3d3N4IgUC4W6e3KcG7mItmQgihKuK6PomhYTQPbdfDsBstz17hy5jQXz53FE2QCiQ5W8ksUazkkScKzHQRRQdUkwkGVWqVKR2cXtuvR09uPer9MOJnBdXyKhQ2WF5bxHZNwMMbq3CS20eDo8ZMEokkCuooky9d3LGzTpk2bNt9z3BIC2vO8HVHPNzY02BlJ3hlp3mJLvOwUMTvZKaIlSSIej1OtVrHM5vb+UCiEYbSEiKTIlCoVNtZWCegVxkZ3MzM9zdDIIJlMhldffZVwMITjOCSTSVRVZeraVfr6e7h06RJ79+wnl8sRDocJhULIsowst1oHbyU+iaKIJEktb7Yoks+tEgpHqNfrqGoretfZ2clKFXb3+HR2BFF/64P8p5//Al691TnQCUnsSgXpDQVx7Rpe+iSpvhSWZTE/P080HMGoGVSrVaLRKK7rkslkWolUkkSlUqGvr2/7WprNJo7jIEnSdR7yt4Ob/dtvVnHl7WQ74XVzjG2XPxOE7X6Cruu2jm9W5Gi9tz6SAILPdR5pwffRFAW0EMVikdOnnmLy0mmOHT5EvV6lu6+LO+97P6eefYyOVIz1jRyhaJLdY2NUq1WO3XMftfw6K8uLzCxOcySZIZvN0je8m3ve8U5kWad/aBhBlLl0+QKWm8Dx6lTLFo4osri6TDCoM9g3yNiuAcxGE0dUydlB/ssnP8P3ve/DfPmrT/Dz7zrO8f2HWay4EI5QK1aIyCApErICKh7Dvd1MXblMdqAHwxepNj0EQcIwDNLpNIbR5PSrp+js7GB8fJzixjqiHsa2bVZXV4lEoqwbEq7rEtODaGoATdMQBAFNC1DZ2GBu+jyr8/M8/9wzGK5LoVyj2oSa2cTzfDy/JbpdXCyrQdNsEAiFQdPoHx9D9sCoN6gZNtmubmRN59rcLPsPH6Kru5/8+gZqIMjc7AT9u8YQhQT61moZfNsC0G3atGnT5ruLW8LCUa03HhZFAUkS3xCB/nrNM3buuzEKeKPIBjAbVRzTxPc9qpUK62u5zebJAvF4DNs2mZuZpa+7lz1je5m+No1Zr7Fn/ziVXJ7llXUCCrz44mO8/OIZHv3a47zyymlePPUq73vgPmr1Bg2jyvHjd5BMd9A0TZLpNIIkEI8ntsXWzutWVRVJ0bEdG891EDURwRMxzSZ/+8Rr3JnMc+z+48SUBnvu28tjf38RPTzKg+/Yw319JodG+vnoT30SuesEh/YPYdaamE2TfL5ApVSmr68PRVGoVquIokgwGKRQKFCv11lfXyeRSCDJEsFImGAoiiRKyJLMDq/ELcP195rrLB1vh4XDdayH/daFtewrHoCPjwuILQ+07+K51ub1g+PYred6Pq7ns2X28Hwf33OwrSaWbdGoldnIrxEOBVlYmKRu1ImGM0iSRldPN/l8gWbdo95sEAiEsF2feCKDrAYZGd3DPXffx9994StUy0UkSeK2k3eTy61SLFWpVkqkEmGioTCaomAYJaqldRLJNJ6gksl2EwgnqZsu4UgcPdBqn/3Q972XP/vzP+dXfulnyZkiH/rEz+CHkuiajodPtVimaRhEsx0U11bxfJevfOmrZBMx+rqzXJm4wtHjR4lGIjSNBqbjML+wiofEyXtPUK9WaRgG8XiCpeUcn/njL9DZkabZqBAJuGS7e4kl0kiSgFWvsjw7zVpunV1791IzHKauLaIqKqIqYzYtFFFAEUUsBKrFGsViHl0RMBoNUvEksqoRjqXIZDIosk4gEGKgv5d6vQ54KKJArV5ElqC0UQFRRNQCeIAsepvJha17/i1t4ne+CVCbNm3atPnHc0sI6Fq9+fCWN3ingH4r3uqcmx3zfb+VQNc0sJoGruvQqNcJh4IIgkQkFiVfKKAFAlh1g6Ae4NVXXuH4iROsrSxyZWKCWrVCfnWBV57+CkVXJFfxaaoSthxDCAhMnH6ZD7/3g0QSKdY3igwPD2F7HtFoFFGSiCeS25H2ncv8rSV9H1GA1ZVl4okkgi+iiBKTU8tcWZngI71TpCIJorrH4WMjHOz12T/4Kj/y4R8iFjb58ss+H/3hH0XTfWZnFrh48SLRaJTBgQGef/55enp6mJ2dJRQKYZomtVqNVCqFrut4nocW0FF1nY7uXgS4zmpyKwnot+Jt8UA71sOwY5WEVlMPBB9vs4mH73vge3iuv11ve2f7+m3PtCDgey7VaoVapcLa2gKvnHqBi+fP05XNsJpbwXMAv45l1gnHU8QzGbAcOroHESSdREcWUVaIJpJMTc/wjneeYHpqEqvpkUl0U6us4HsOsiywsLDG0K4xJifnCAbDjB06TFALcvHcJc6dPkfddonEEihakGq5iCrC5JUrXDp3lpcuXuR//q+/ieNCvdFgfXEe33dJZrKszM/wO7/+X9D0IHPzy0iyxIULFxkcHqarq4fZmRkUWUJTNULhEKZpEw6HWV5ZYHBwiFq9AYLICy89T6WRpzPbiy44/ODHvp/dew8gIFIrF1ldnmVh5horSzkee+wJYkGdcEDd7LapkUlE2L93F/m1BVTJJxnWefCBezl24jh79h5AkiRsx6FhNNADGo7tIkkiiCqKGkCUVEKhKKIkYlkNOjrS1CoNwtEYwUAACRFfEL75joU7V1G2ntcW0G3atGnzXcUtYeG4WdLfjce3uHEJ/63OvXG/tNm5zNgU6rquk18v4zgOtmXi+z6zc3MkwxEkSaKrq4vz588TUBUGsl08+exTBOqz9HZFWdyQIZpifn2S/v6jOPY6+r4Af/Kp/4AUTPNL//43sG2bdDpNPp+nQ+3EcRxkWX7DUr8oiqiqiq7r9PX10bQdam6ViYkp3PVr7P+Fx/jTM7/CT4bL3Ll3P92aQeaBQXTjXTzyl4/w95du58d/8d8hOQ2WV6vYtt0qRweoqsr999/PxMQE/f39277ncLi1VN5oNAgGgzTrDTzLplGrEwwGt6+xZUW4tWwT8NZj4jt9HVv2ja1SZ6Io4vmt8eZ7Eq5rb06Urm/bvZVQuGXtsW0b22xSr9cxjSbT1y6SiAVJHzpEZ2eSo7cf4eyrZynk1wiHosQSaRAFwvEUoizhWBY4Dr5r40kCPf1DCKZBX7aDteVJTr/wV4ztvwtPFpAVmUgiRtP22HfgCOHuNEtTl3Bsj+7xcUaPHsWzRWq1BkbTYWNjjVJJJRRLoCgKv/pzv4y5lkeLxYlqAaL9/SA44LpMz8xxx7ET7BoZwbYs3GaFI4cPYDTriLJIMpnBNGrIsszMzAylUhVd1xnfO8TKygqhaAzLstD1AL/wS7/Mpz/95+zuTZLp6gZaqw+O1WTyygSvvPwSG4Uyu4aHOLB/nEQyjSCJ9Pf24TgO5XKZh95zD+ulKqlElo6OFKFYAlcQkVUFq1YhEAzQbDZo1C0ikQi+LyDgEQwGqFcbVCoVjGYVz1kgt1bAlxQGRsY2295/i7PLrTJ80luf1qZNmzZtbi1uCQF9Y3LdW7EzcnsjW8lcb8ZWhFsUxZZotm1isRi16grBUBBRlhgYGGB1bgHHsink8+TW1jiwdzeXXnqNCy+d4QN3plmNprBWVnEMj8FkFslTcC2TwQ++i1/9eD/PfXGWz/75H/ITP/eLCI0G4XAYTdOwbRtN0256bb7vb3ZXA0lUCIYCjAyPcs9Ygo0nPoV2z3/ihz71a8SMP6K/J8H5mTyjh97H8N538TM//xBINdYqCivzOWzborOzk3PnztHb1UrIGhgYoNlsMj8/T2dnJ4Ig0Gw2SSQS2LaN57gYhoG/VSFih8hv8+bsrBTj+yBKrQi0jwS+j+dujjfba3lxNwXzFpIk4ThOa4In+IiaSldXF0a1xJ6945w/c5ZzZy5w9z0/TX9PhquXrnD//e8hFIxjNB2iiSAN26dUydMwaqyzmYwoq4BHVWjSd+AgWrSDzkwvpXoOy/NJdCQYHdvF7OwC4VAUd9EkN7PKyO5RarUaoipQrjcIh1oTrmSig9nZeb761a9RrhrokRCeKuPKHo5joQUD2JUSlmFw7zvfTa1UIr++RDmfw7dq6JpCo+IQj6U4sP8QL734NIND/diuw+VLVxnfM0aj0SASjrWSbgWYX8rxyGOfRFN0evr209UzgNG0SOhBjEaVA/sO8tLTjzM82MOd99zL4SMnkDWZUqnE4mr3YgAAIABJREFU1YsXMZp19uzdjSjC6IEDJBNdrOc3cD2wLRfLM6lUKihWk0AggGVarNbrlAtrWJbFzNwcpmmTz6/zjnvvIRJOsmd0mAuXztBoNBkYHiOZbuUwiG/1+2vrd9JOsX2LefnbtGnTps03xy0joOGN1gthW7/drFX364+3RbNwk3N31FWz3Va9V08AxYdUNE6pVCIYaSX7NdebdCRTBFWNc+fOUaiWsVyDjZJJpq+XQ3u6ef9D45zZMPjC4xNISgbFczFrDVQxRE0TCMU7+cSPBDj7++dolitkR0dQVA3PFQER3xfwvDeW41MUBcuyCMWS1EpFQnqEnJVD7t7Lsc4BRHGNf/WvfwFFar1HH4rF0CM6kiRRbRbxBZlqvkhHRwpXkLDNJu9//3uZujxJKBRqRZxNi2QmjajIrcizHqBSKhONRpE2JxXOZiS1LZ6/MQRBpJX42tJEHi5IIvgynuCAICGKMvgigueB5+H57uuVYRQFwfdxTBvLskDwEUUolDbo7RukM9PBJ378x3jhpVewero5ftednHrxGc6cneDf/fv/yHp+Dc8XGR0+Sm6tQECVsFyHarWMJtjIokwmkyG/uEK9mSeW6WJycgbXXyMWihHSNKrlAg1DYWDXEPlSkfnFZYaGRpi4OEFnNo1jmWQzGVanr3HHnnFG+3tQgq0EVU0L4Dtgmk2Mhk28K0t9o4ikaSTSWVbW8+zb1UNucY5wPEFvfx+nXnoBQZJ49cxpfAuyHRlmp6+RziTRAhGatQZqwCe3WiAZTyHYNnvH9wAQCgZZX1thZuISCzPT/OQnfgwlHEePxrEEH8FtNQoa2bMPAY/V5Xni0ShuzUMSixTWVjl7/hJ7du9hZnqKRCKG0bToyCR55HOfIxTPcPLkSVbW1lCjEeYmpjh/4RK7xsZ54umnOXL4TjrjQa6cfh5fAEEdJx6Ntj4vN0ajbxTJO5q+7BhAbTHdpk2bNt+F3BIeaNv1H74xAv16cs7X52Y1n7c3dviN8cHzMZt16vUqdaOBJ0A0Gt2ufmEYBuvr68iyTDwe58jtd1CpNfCDOvuyQcZ76yAZTEhB1iZyyJaHL7SaYey5K837OgW6AyLheAd/+1SB/fvHiUQjqLpCKBxFUZQ3LPvfWFlElEUMs8nlS5fpG93H0N5xZlcXGNu/l96hQaKpJEgysVgcQZSpVGv4vs/K0jKpVAJFUqiXKxhGHVGQ8DZ92LlcjmqpjOe4ZNMZSqUS4XCYSqWCrmnE02n0cAxFUbavs3Vh3/o9/qdk614r0nfeAy147sM7E1iBHY+FVrtuWq25XaflhzY3q784jrNt3RCAZrNJpVqhVCoiuA6l/DqaLnDl4kV2DY3wlUe/SmffMCN7D9I/OIjvNglqCpLvc/qV56hXVnjiia/h+T56MEAiHgXPI18qMbLnIDXTw2kaiGKdeDTG+to6kixs+pFVQEAUJfr6B/A8n67uTnoG+ihXa2ixKJnuLkbGxth//A6SyRSC6CPgYtTLuI6FqirMXZshFApRr9f45Cd/j4OHj/K7v/97eI7N4UOHKRTyyJLE3NwcAT1Ed2cXxWIRTVMZG9+NoqlEIjEWF5d5/oWzKFqAenWNfXsGGd89imU2SUTDXL1wBlXx6d+9j2iml2Smg8LyIkajBJ5PvDNLOBIjk+0DQUUWfCYnrjJ9bZqz5y8yv7SIrMp8+ctf5JVLV1E1jSeffZG55TWeeeFVLl2e4OrkVeaXVghFotQrNRLROCg+qUSKVDIJlo2kKahqEFmWX49CbwniG4TxTVfHtj77ktL2QLdp06bNdxG3RAR6ywP6T102bcsHLcsysqoguw4hLUy1XEHTNAzDoFwuo+s6uq6TSCQoVIsM9WdBUnnqb17i5374OKn1FX6YS/yfL9s0DQnRVPDiJsd3CyQdlXppkl/+kyb9egnfF7Btl2BEQlGU7WvZShzbuaT/eiIllEolevp66eztwzRNenr6sJsmZa9EKplEFiVMu0mhUMBybDRF5cSJE/zu7/wmt99+nK6ODhzbRJXczdbhrfJ0HR0dlMvl7QmDKIqk060WyrZtb9+Ht7OE3XcjOydwrzf98VsTpU2BLYoiov+6hcjzPEzTRJZlLKcVlTYMg0gkxFpug0xHJ7FYjNnFIlOzMyiijWtV6cjsJxIOkMutIPsKtlchENIRRZEPfeAhVjbKIMhIcoCGLZDuyjI/P4/jOKgihEMpQiGNRqNGrZInEIqiaRqyLCPJApqm4fsC0XgED5GBXbuRFQnHMIlGIjj4SAGFSnEDz7WRBQ9ZUdF0HVUPUi4X+eM//mM++rEf5lf/7b9ho2rSPbCLpaUlenp68D2TAwcOYJoWoucxPDzMysoStm1TrzVJZ4JoWoCBvn56dw2QW4vT0dGNjMfc3BypZJxoUGPf0ZMEU/1Isobg+gQjUUy7iaqH0eUArmuzujSHruuUylVmFubpHxwiurDElUuXuXL5Il1dWagYrK+tcu99d7OwukEyqNDdlWVs9yhLi2vsP3CAeq1CbmUJy7ZBEvFFl/nFSSxZQtdiyHqrkdJ1kegtvXzdClmbNm3atPnnwC0hoK9D2IrefZuWNYWt6C7IggSagifpCJKKpvo0GwaNRgNRFLEsi6GhIQzDwDTqpBNRypU8sY5OYrE49374J1grT5JOxbgncA/K/9jP5Q2DR5+o8PEf3c175DniygiTG6/yS//2T6k+80l0UabWNFGbrbbN23YVH0Th9Q6Ljvf6sr4qa/T3DhANx3B9j2q1Snd3N55rI0kShUIBANe1mbo6SSKRwEFgIrfGQx94iKZRZ2V5kccff5z+/n6OHj1KqVQi25lheWkFVVW5ePEig4ODqKqKaZqouoakKui6vl2zertk3E0tNALijt3ujnPeyqf+z47t6htbf21NgEBAFjw8UQRBwhNkXFxM28XftBWJCMiihNU0wWtNpDRZ4tmnn6Q7HeTk8WNISpDxvQcwjAYr89dIJWJMXr2Ma9YxDINMIo5rmhw7dojFuRVkVWY9N0OgHiOfX2N8fB9zc3Mk4zFEMUCtViMUjLCRX8FzW411RMHDqFVxdZ9AOELTbCDKEuViBTUYIhAII0tgeOAAsqzg2waqLCH6HqoSwHMcauUNjFqJR7/8VV4+9RJXpyf5rf/6W/z6f/411nJF4uEApfIaoXCSdDpNrVZj6soExWIR27Z54cVXGN61i96+AJcvX2G9sMSI0odjmlRLZfRICMeqEwlk2XfnPSQSXQRCUVqNgEwUPUQ6242iKOQLG5TXVllZmGXq2gxXpmaRQik++8jfokse3b29HDp0iJ6+fr7wxS9zdfIa+/fv51989GNoNBkZ3Y2mBajureJ5UNZ1+nq6uHThIp5jUTcNdu0eYnLiMrFYEj0WQxElJH9n7sDNV3C2JlNt2rRp0+a7l1vCwmHZ3sPwum3jnyr6+XrJOA/bbCBLrUigKAqYpolt2xSLRZLJJLnVFURB4My5szxw/zvxfBBDEc5N1bhjd5ShZJSDgwmGo2G+71iDBw9E6U8dwi69wPv/wwUCTpy9YzoFU0bTdSLRKMlkcrsKh7xZzm7bviEK290Kt4S14zhcm75GNBrFtm2ikTCu62JZFhcvXmR9dRVNUbGaJrFIBF3XWV9fZ2pqkmw2yx133EEqlSIej+N5LSEejcRYX19H13UMw9juTigrCuF4nGS6E13XbygneHMBvfMu+Tccezt4OywceO7DO/+6c/Ig8rqdw3VdHLvVptuxLVzXAf/1lQizaZDP56nVqqTSSaLxKEtLS/T2drGxvszF0y8SkAVmr00geD6KLNHT30+qs5doOEPdcOjqGUFWo3R19FApVqnXLZKpOJqqIggCGxsbGIZNQFfZWF9j98gQa2tLbKyvEgrKNIwCkiAgSzKCL6IFQ5uTJx+zXiEQCiJIErVyHtdtUittYBplLKNMobjOq6+eQpaCnHntLH/0F3/G7/z2bzE7OY3n2PT39vCzP/ezLC4tkEqmEEVxu3mR47rk1tbIFwqMjo6SSCZJZzJEIlGmrk5yaWKRxaUch8d306wuUTcK7B4/QTiWYKuLpu+36murqorrulSrJaxmnScefwJJ1pidnePK1DUO7Bnn3rvuZHh4iIOHDjM8sov73nE/R48epVqtc+nCJTrScbq6exElBUXXiUUTpFMZ1tZbn7funh6ynZ14vk+1VODUq6cIhEPEY8ntVZ3N0XDTIXNT8SzJbQtHmzZt2nwXcUsK6O3H32a2ltcFQcA2GzQbjc1Wyj7BYJBGo4FhGMTjcfA9jEaDRDSG60E0HGF8fJCSJfB///lznH/8qxw6MMBAvAu3miOpuvzBH5zirPiTHD55Fx/7vjvxYl3IwSCd6Qw9fX0tn6Qotn4K4rZ4EkVxO8oriiL+ZhUMTdNIplLbX7iRSJhqtUq9XieRiDFx+QK7dg1Tq1YoFUs0m002NjYYGRkG2C7bJ4oii4uLlEolZmfn6O/v3+6iGI1GCQaD6IEAeihMIpVFUZQ31IG+WYMa4fo39223frytAvqGCQWAv3l/Pc/DdV1cx8WxLRzbwrYtXMfFtm1c10VTFZrNJsFggNdeexXDbDA8MkQgqNEwTLoGRhkc24vhSfT2dLGyvIzpOIiKRqNZIxzTeOKpx0B0sO0G1coGvuART6YRRZFqtYqiKGRSCTzHQcKnmF9mbXWRZDxKqZjDaVawrSauaeL7DqZlIPk2Rq2I5zQIRUKU8uuU1hdZW11AwqGwkaNUzGMYDRLJJEMDo3zu83/HzNwMT/3DU/R3Z+jIZMh0JEkmEyCqpJIx1jc2qNXr6LrOyvIKFy5cIJ1Oo+s6wVCIUrlMs2GQTKc5fXkO0ff4wQ/cTzAkEk8mSWdH8BCuG6ea1hLPhmFgWk1i4RDPPfsskUiMmbkZfuanfpKR4T4y6Q4OHjpEOtNBwzCQJJlAIMDY2Di7RkZZmLvG8y+8SDqdIRiJoak6giBSKhcwGw1kRcHzfTRdw7EsBMGlsJ5HkDRi8QSqqm4Oia/fBIrN0oeIbQHdpk2bNt9N3FIWDt/3eV2GCNv2i2+UryfetqKBsiwjB8IIjQbY5nWtqwVJBFEglcliGU0W5uaZmpqibjQwXZtjR/YRVHwqhfv4X//sa9jmHM2aSbW8zrH7H2TvviyD/f8/e28eJMl9X/l98s7Kus++j7lvDK4BMAAIkiBI6lhR4C5pkUtL4bBWXoftkOyg5YiVvbZW9sZqHZLWosJeLbWybEkrUZTIFS9QAEGAxEmcg8Fc3XP29F3ddR95H/4ju3t6BgdBUhIGdL2IjK6qrsrKzvx11ft9f+/73l0EQYBs+6QzSZSEHuubERARkLaRZ0mSNv5ukCWZIAjiFDshlnNomrYls9gM4QgcCy/weeDBh2is1+h0+mRTKbLZLEePHuXixYuYpkmn1aRSGeb1M6di71wvQAh8aqsr5HI5RAlcz6bd8fECn1SxtFURv9EHeiuC/C0uyfbHw+/Dobc33P24YbsWWpLiBs7NKPfN5sxeJ3bcCDw/Js+ahiiK7NixA0GIUNQH6K3PY7ZaRCPjKHKCfDZPfb3JLYdvZbVa5cBtd5FUodlsUhoao2fWueeOuwg8m8mJCSREEtlJFNmn3++TTqcpFArMX5nB6vdRJAnX7jFULCELIildobq0DKHAjulxTrz2KqlsiYSiYJk9xkdGefHsq2QKReYvzRIGMDm1k0hSkLUEjbUqr772NJbzKB/68Ad44qnnOXjwIJoi89GPPMTBw/uYu7LI7j2Hqa1dZmxiCkmSOH/mHK12l1q9yejYROy5bFl86UtfYmRsgrHpXYiKgO+0MK06I1N7SBcqSLqAsPHxtdnX4PsuiqLg+z7JZJLHH/na1grLPXfdTlqX0I0Eq2sNnnjiCcYmJpk5fwEjmcZ1XY4fv4/hoVEOHDiAkcrQbrdp9frs3XuAVMIglczgm+bWe0QOjE3spFgp0u8L1NdrrK6uMj4+vhE5fv2YuGGg/H0NyQEGGGCAAf4OcFMR6O3Yimr+O4AoiiQSSUxFww67W81zURRtJfOtV9dIJYytL+fJyUnOnTuHKssoksTewwfJVUooUkyOVFXFD0M0RUdVVZaWlgiCgEwmg+M48RfqBsncJKPbQzWAa37ACIRBGKcWbpCwUqnE+vo6mm6QzeXpdDp0u/GxHzx4kK98+cvcc889PPbYY4RhyL3H72ZpYZ6ZmRkuX55DURSCIKBSLDA7O0u5XObw0VuI5BDHs8kXSmiahuu6W4Ruq6HwR5Rrbl+y3tR5/9hgq2Esus6STBAEQlFE2PD2RpKIZAkECQEJ3/WICBFE6Js92r6P1GoyOjrM1I4dnOq3SaYzZNJJFhYXWbjqUCwWCX0HQ5PR82OszM2wfHmWp574Ng9+6MOoRpIwkKm1XEqj+5C0BFavTiqTRRRFllerqFqSTLaI5zuIvkp9bY1iLkNttY0fCPSrC/g7Jjl0+FbOnTzB0voiw+MTBILIrn17QVAoj4xi9h1c16XVapEvpPnylx5HUxP82m/+Fr/yi/8VRw7sZW5O57/77K/yG//jP+UXPvVPeOChBzl3/iQ+Ema7ieuY9M0uO3dPcOrsONVOl2PHj1Jv1inkSxzadwsWPrZpsWe8gK6oGOkMerZI6IEghShaAgLwN6LSQ8/m6sUzXDh/Dt91efjhh+l1TVLpI5w89Tp/8sWv8uGHPsr42BCu6/LtR/+G//yX/mvWaw0ee/xJwgCOHj6A50M6nWZ5eZVLs+cwDINKpYKkGQiSQlJTUFUVIYpwPZHh4TIjiortmTSbLfLlCrpwg9Z5QJoHGGCAAX5scFNIOBw3tgLbxLUq3jvfx3Y98fZ9vBniiq9I6PtY/R4Q0u/3Y1eMDYKX0HUCz6dcKlMZGWZldZVsNkutVqPb7eK6LmvVNbL5HLKiICDgOi61Wp1kMonneeTzedLpDOPj43FISvTGBL3tFmibpDpe4o/T6zY60lAUBVnRkGSFRqPOnn370DQVQ0+QNAyUDaIWTw4S5HNZzp45TbW6xoULF8lkYqeFcqlIFEUMDw8jCSKZdBpFltEMAyOdwUjlttxCtog+14jA5iTgbc/vtsrbWy1jv9X2/a7x2+FdkXBE12ug4foq9OaYDIK4idR3XcxeD8c2CQIfx3G2HFJc12V2doaZmXM8/fSTRIFHs1nn5RMvYvf71GtrpJIJPNcjldSJfJtet01trUauVCJfHiZXKtMzTXKZNLbZRdViCY9lWWSzWaIgIJk0UFSZMJIIXY+EIrI8P8dwKYtrO7z02mnGpnYzvWcftheQL5TwA5FMtkTCSOE5IYQuiiQyOjLE3zzyCHNz8/zSL/0SZ15/mWKpRBDCL//yr/Dv/+j/Ye7CZUShh+d0sSwBXVewuj2IIs7PzPCnf/FF/EgnndEYKhVIJAxOnz7L6dnzfPVbT1POGrz/2AE+8OD9iIkkRjKPKBhIUkS44WITRRGe59Btt5BEUDQRL3CJEKg3ahsykbNMTE3zta/+NZlUiqXlZR768EcZHhkjk83hhyGqovHiyVcgijB7Pfp9E9M0kSSJRCJB0kjQaNRRFBlVU2i1O1SGRhFEFUkUQRBJGFkUVdlqxt02MN44frYkHIMo7wEGGGCA9xJuigr0ltvDDUv7UXjt9/GNawT5DVKCDRnE95MPbO5PBBRZR9E1iPwtqURs4RWRSCRwdIfA9eg1mlh9k2w6w1q7CkCxUKJSLBM6Pp4fYfk+oiKj6gqtVovJ6R30LSu2iNto4oqICKIQMRLwg7jSKxERRiECAqIgAuGWO4MkSoQbVSxBiMhkU2iqjCztp1Zb49KluMEw8gOmdk+TTBh0Wi2qK6uYvT6ZVIqRWypMjY1iWRa6rpMwUmgbseFJw0ASRSRZJptKoMsSrmnSFwQUTUFVEwhRGHcIbuigg41rJNwgsdl+Pd5K5vF2CG9Y7n4rB4+b1uFjOznadmybk6LNtE1RFLfsCj3/mmVgo9HYimC/evUK//Dhf8DMyZNcvjhLPptlqFigVqsxUi5x6fI8a7hY3QbtVo87730f6UwubibNZkkmdGYvnGdsNNbdd7tdKpUKrVYL23YwDCOugvs+gW8ze/oMd9x5jGa7i54uMr4vQS6bxrJ9pnftx+u2OHPmDL7VJ5Ik+qaNIoucPHmS8fFxDuzdw/se+AD1epPVlRrLi8ucO3+Ff/eHf0R1vUW/22NtfYGr88t87nf/gIXlK3RrNQQERoeH2b3/AGdm1sl0e7RaXTwvpFjKszx7GdcV2TM1xKf/8SeQ0yVAxLFNUpk0gecQBtHWefU8j1Qqhe+aIMpcubqEKKzyxBPfYXp8lJ7ts7dc4ac//CHuufc+hsYmqIyMIkQisqJx6JZbqK6uU6zkuXDuLMu2xdGjt5HP52m348Chem2VREJD01VEEfLFAkEoEgqgqxLN9TaOp6AZCYKNnoc3jI83uz/AAAMMMMB7CjdFBdr1wl/fXrW7EW8W6PFWXz/RDUTsrSAJMWHtdtp0Wo0tT+ZqtYqu6zQaDUzTxN3QHkuCSKlSxjAM1tfXabZapNNp5ubmsG2bhYUFEASyuRyyrFAZGqZcGSaTSqKq6hbh810PRZKQFCnWO3sBAsQODY5DFIYQhBBGeK6LJEsgxtpsIYqr1IZh4Hk+U5NxZdt2HVRJxnc8PMcjnc4gCLBeW0cWpa0mNi2hE4kiiqwgiSK9dodGq4Wu65RH4+AJZ6PRzfP9jWBHgYhrzY7Xh0Nckyv8qHQgeocTn7fDzVKB3sT2492UrgSuh2PF48oPPDzPw/d9AFzXxrIsMpk0Vmud8eFh7rj1NoqFHKqmUywWWFlawrYdhMim226hKkmmDxygVC6TSeo0Vi/y+c//ex76yE+iJlLUa2tEiHE1u9FAEkVc20FRBMSwixzZ9FtrVCYmiYwKejoPokTgmKTSacx+n7nZGczOGl/767+klEsT+RZ79x/GSCQ2iKBArdFEFBReevEkd99zF7v37GJ5ucq973uAf/k7n+OP//iLJLQEly6dIV+oMD0xSq/TZX19jUa3TyRoTIzlkQWJCxfP8+lPfZJvPv4dUpkhfv6TD1EqlxifPoSsyAgSqLpOFIYoqk4EmP0OgecCAetrVaprLY7echu/97l/S+AF3HvPMYZGx7n/+L2873330TP7yKpOs9WmUW9Qb7epVCo4lk0umSSTSjE0VGZ1tUoikaBQKGCaJrou0+s06fa66LpBvlhGkQ3CKKTTbmDoBsgayLGbzlYg0fcj0IMK9AADDDDAewo3DYGGtyZIPyyBvrGqvV0mEIohYSRh2zah7+Bu2NhlMpktQlMoFOJKbiZDLpej3mwwMzPDnj17GBsb56mnnuKuu+6i3+8zPj5OvljA830qlSEKxSLJVBo2EueiKE5BjIIAwogwDBAjiPwAERACn8j3UUSRiJDA9xBFAcEJEA0NUZII/HBrWdgwDFw/oNszqQyPMHNhBt0wmJ+fJ5nNoCcN0pk0dx8/zp1338341BSRIKAnEgwNDXHLkVvo9vsgiSSzaYqj4yTTaaIwTlXsdJo4loMf+ngbEoOYQG+/JtvObfT9Ce7b4fsR6HfiaHBTEOjtE8Ftk40oiiAICYMQ07IIAg/XtIjCELPfxQ/9rUa4D3/kQ5w7d5rbjh3Di2Bi5y5k3SCVzTC9czetXgsdjxeefZZdBw8hhw5+JCBEITOvPsrPfea/oVrroSgRRkLFl5I05s4yP3eG4aEKVmsNTXaoLl0lUx4ll05w5eJZ1mstVN3AsUySqszMhbOEvkexPIrjOnz4J36KUJDJV0bo9S3UZApBVnnmhZfwHI/x8VEuX5zFdj3qtRqf+cynMS2LbzzyKDPnz6MrkNdCfv6f/jJf/8pfsbJ4FS/wuePOu5ieGuOp7zxFy3RYq9Z43123Eah5zp07wcM/+QDjo7vJ5ou4noOsKgjICJKEIKgEoY8gRvSaVRbmrxJFAV/9xiN0Ox0+86lPMDkxwrG772B6agokGVFUUTWdbzzyDV5++WVOvX6OqR3TXL16lUwySSqTQdyQbKSMJLIk0e104rRIq0unuYqRTFAZnoxlVaJC4MfH0O30iASFVKFIMpEAuBauIkggxDKP+BNs2ya+C2N3gAEGGGCAHxo3hYTjXUEkIkkC6VQO3+rgey6WZeG67nVR1tlsdkuC0Wm24kauMMQ0Te6//34ajQb9fp+dO3eSzKQxUklkKZZIRFEc4awoCq7rosoynmWDAIooEUQR0oY+VZdFosDHdhwESUIRRQIhwKq30TNJZFUmFLwtJw5BEEilUoyOjrK6usp97/8A7Xab8YkpUrpGrb6OJERcunKZdruNIslcvnyZYrHI0SOHmZ29QK/Xo1gpU65USKczIAokk0kc18VybGq1NaRmE1lTqVQqFPJFRFlCkeT4bxOiWNv9d4AbNe3vKdywmrJpXRiqIYoWJ/a1WrHu3nFsDMMAKR4Hi4uLfOlLXyKXjMecoijIkkqulEEkwvZ8yskkthXwqU99ir7nYXZdjJRPp7lOIlHEai3idC2kzDBnz5xiaHIH9eWzJDwXr1MlsGpYUoqpPQdJ5kcJ2jp60iBUygiyThgGJHWFSUFG01MIosLhShnLNhnOluNr44UbumOPAzun8f2QhKbzwIMPceHiZe68805efPFFlldrfOvJxwjFAFHyObh3J5/77d/k2G1HWZm7gBcEvPjyCf7m288A0BUCjhw9xsLyCo9/4z+yb7TEgUN3kK9MxoE/WmwRF4YhUiQSCR4iIeAjRFBdXebpp5/k1kNHKJfL9PpN8oU0tVqHqZ27cD2PxcVFLly6yOzsLJXhEVLpDGdfP8XFizMUyllGhnawY+cUE2OjEMUTypHCEP1+n+X5JWyzxv5DB7fCbzZXF4QIdEXGdCzq62skRsfja7uJzUakWcDiAAAgAElEQVTTAQYYYIAB3vO4aeKw3lS6sVWsicmaGLG1bUcoXNu24+0ImCRICEJEIpVAVBPIukEmmUYMIkLPx3dczG5vyxO51+tRKJeoVCqcfPUEZqdDu9Wi1zPZe+AgFy5fIhJA1TQyufyGbV3chLcZ1227LoooEPg2rmOB6xI4NnIY4jkeSgCC4+AGFr3IR17vUkipcVOf618XBLPdei+bzXJ55jxh38Ttd5m/ehnfthARSOk61YUF5i9eJKWqDJfyPPL1rzI/d5FUNsPo+BiSImPoGpqiIisKum6gygq6pmD225iNNa5emKW6vEC9to7j2rENWxji+T5BGBIQXXcdftDtrcbEu+0t/SPhhgZJUZKQVIVE0iCVSsVWgqJIq9VieXmZdrvNoUOHGBkZwbZt2u02Q0ND9PoddFlAVwQUUSCVTbC4to4t6CQzFUamJogkFVVLMb3/TtpODcGrMXf6OQ7uGEZ0m7i9BrIIvmchqQI9s0/gxk2Mkp7FFlOoCQNRSWBkcrx68nUUOYGRSmFk8oSRRDKZRxAUkkaOVC6Pruusraxy8MA+VFlidXWVbs/k+PHjNJtNdu/ezfj4OFOVIRKqTqfvE4oqEyNDLK9WY2caJFardRaW12mbPmu1JideeZl77zyKoUT8F7/48+RzFRCirUbLzWAaMYLQc/Fdi2ajyjNPf5tKqcjHf/YT3H37nciRxOsnz/LHf/IFVqp1/tmv/U9cXVzg8ccfp9frMTs7ywsvvMDC0nk67SqaKiMgUV1b4bXXXqXZquP7LlevXiGKAgxDx7VN1lZX6DQbRBv/35IkxfaE3Ta9Xo8w8MlnM1tONgMMMMAAA/z44aaRcLzZEv2NOo3vJ9t4M7wl+drg1ptVtE6ni+uYuK5DGIakUqm44qWqsX2cpmF7Lp7roUlKnCxYLJLPF0hnMkxN70AUJDLZLOl0JragE4TrIvoiAkTbQdpwYxCCgND1wA8QXB/fdZAFiJqQl/vIa5dwK1MESQ0pCAk3PKw3G9MEMb6vaRqiAK5j0263SKbTKIqKpupYrk06k0WVVRBE3MBncmqanbt2k8pkkFWFbD6PkUwiKyqCICJJsUzEtm2iKMLq93Bsi363idnrI4sKQRShqCphGGujRfGNLip/H9hOUBVJeBckHNGvX78cf8OkbUMfvl1S5Pk+nhfQ73eIgpDQD/E9H99zmbtyEc+zuP+++5iammRu/gpDQxVUWSN0XFzbJBQjSkNjpNJlNCOHG3hoyTSyIGO7fdKpDKlEArOzRuiFGKpAvbFOMp2iNDKFLAhMTE4RKhoiYmy7uLhCthxbGfpexK49B+m02/hhhChJKHoCz/FJZXKIkozTabC2eAXbMckWS4yO7yRXKjE0NhSv2CDEYzGZ4PnnnuF3P/c5nn3+Wer1JpIg8HOf/nlefv5pEgmDRx57gl27d5FL6+yolLj90ASHjxzi8swpfuqnf5b08BSSLCJuBMYLogIiBH6AEDnMnn2V9dUFZs9fYHxiClGSeO7Jv0FPJnn+5bOoRok//ZM/o1Ao8LWvfIOHP/FzNNotPvSBB9BEj6yR4sjhI3zwAw9i2y7lUol77jjGc888g+1aVIaH6XT6GHJEo7ZOLqMyMjZGIpVH11K4vkMkQqdTp1GvYfsRueIwiYRxgwY62vgQi964DTTQAwwwwADvKdx0BPq6iuPfJYHm2vtJsorveVRXFqmurTBcGWZtbQ1JknAch2QySa/XI5tMk81mEXWVXqdLu9NhvVanWCphOi6ZbBZVT6Br2jX99bb3EaQIa72BLor4nosURohhROR6iEGIGIWEoY//zCMk/uwP4P0P4pQmcAUPVRAJEbcq0GEY4rix3d2lS5doNuokEwkW5ucx0hmSRhJN15nYuYPyyAipfI50LkcmnSZCIAhD0tkMumGQzmZIJAxESUIQpa1zsxm3vF6tEgYekWsTBQG1ZgvHcVH1BGEYIcsKwjbP23cvyvvdINCxfn/bA298zps0WYZEhL5Pv9clCgJkRSGKQhzHYnx8lFdPvECn22Xv7r3MXZlnqFKiUa/jeA6eZ2LZFtlcfqPBE1RFYG11gXS+hGYUECWN8sgQXijhODaa5LO+dJmh4XG6/T7tnsfo1F4s06TTaZPQZfRkGgGRVDKDZdkYySSaniAUQJE1VE2j3+tiWxahCLlihbHpvSQyJRzHYmZmhl6rzcLcArKicPrMGUaHh1lZXiWTK/Ctbz1OuVjkwoUZ/urL/5FKMceVhXl+7hd+kW9951mqKw0uzM/xX/7SL5ArFqlkDfYcuh1VTxMRy50UWUUQISKESODM6ROkExoJVWXPnn20W21OvHqCpWqTM2dnWVy6Sjatsrq8Qj6nc/DAbuYvXyBjaEhCxGc+85+y5/ARhkfHKI8MMzk1iSwrzF2+yMT4KFMTE6yvrbFr90567QZPPPEtJiYmGJ6YRFaTuFFEv91hfWkZ2+xRKpfo9i3KI9Mkk8kte8ot6cZb/W8MCPQAAwwwwHsK71kN9Du1q3vLxzeLhRFIioyu64yOjqOpKrIsk0knCTwX03VBCGm26riuSyKRIAxDxsbGkDWNbs/E9Tx0I0kqlSKbTiMJIiIxgY7YFpYSKUilHPZajUwiBZ5NIPs4YRK/t44UQSSLBK/P4N//EPbILiIpQglEHAKCMECW5S0dtCLJKJLMjqlpTLtPr92iXCiSSCRjWz5NIWMkWVhYQBJE0uk0nSjijqO3cu7cObwgoJDJI6saIQKyICAIESEgyyKalqDf7zM2tZNGfYVGrYrr+PhCm8DvIUtQLI6hKTKKZBCFb7Fy8CZ6ZkEQCN9G4ixsI6JvlnK4KWe5qSUewtbBbtwVthIJNU1H0XQSyQREDr1GF8u1MNIpSpUR6vUqqVQKTdPIZ9JcPD/D8Ogo2WyWZmMVQzdwHAsjmcb3I8TAYXX1IiPjuxBEEUlNEgSQyAq4nkkmkyYcKpFJ6Th+SCKVp7q4RK6QhyjAcSLazQ6VSoVupxGfU1lBlNTYM524SVEWI8QoYPHiSYaHJ7FFBcfzMP24OqsKMoVyicsXzyOLApcunEcRJFrrdXRJ4Vc/+1n+4gt/Sqlc5vWTJ9A1mW8+/jhXFxaRBZVUNkeuUMJ2XEpD4/hCHHGuJnSQICREAFyzj6YmsXp96tVldkxN8sqL32Nubp6pyR1kj97KH/y7z/NP/rNfoFjK89nPfpaAkEQiQUJW6fdNJE2na7kYqSyaKrO4OE+5WGKoUiKbMWg16qyurrJjYox2bYnXz5zi+N33sGP/bhLpLJbZwxBEFDHk/OnXmdi5k5WlRVZqHUoj6xQKheuDVDbHws06XgcYYIABBnjHeM8S6L9NyKJAsVImCn16po3nmqQzOXzPwWmuMTd3kbNnz3LszvtYXV3F931UVaU0NIQkSWQyGWRVi+O7ZZkoCLcI3vZNkVRERUWbGKZTXyDz9BPY9TbJBx+m3zEJXR9XCBHe/36CWw9gaRpJSdo6zmAj2GS7jCMMQwzDwA89QiLK46MIgkwymcR2LJrN5laaouu67Nixg+XlZQzDIJHQyGQyeGGwJTnZ9HiOdZ3CltZaklVCJEbGRlhaXWFttYrgBoR+gKTt3rLqkyQpDpS4AW+qcX+zau2PMTbP72ZyZTKVYdH36fQ7G9ZsClbb5MnvPMWRwwd59dVXmRytcPrUSXbu2kM6k6LZbjFUGcfxPCJBxPdDZFGhsbaAJgcEnk8kgCLF48TybbLZDK7QY7XeRKpWkdQ0GUHAD0wkIUsikSQSNbAtOs0WjmPh+z5GrkRGS4IoIwoRtbUaVq+JEPi0mn1Gp9KYVo9+t4GRzCEQ0u6b7Nid5bnnnsV2He646xgff3iKnhPyL3/jn7OyPI8fBNi2zb5DtyAFARM79/DnX/g6d9wyRmN9GUMTURSDwtgO9FSO0PGQBBmEEN8PkIUAx7ZQJJVMJsP09CRWr83k+ASHDx4iCCIuLM/z6X/8CW6/6x6GRyZw/Qjd0PA8j8DzSWoZvMAno4IoyNTWq4h+wLmTJ9h98DCiKhGJEa5toysijz/2bQ7edge7xibBMOh0LTRRxmw3mZ+fx3L7+L6L7zn4nkW/38eyrGsSjhuxMananFgK0hufMsAAAwwwwM2Lm4JAv50H9Dt97SZuDGP5fq8VBAExChEEhWJlBD+IWJm/hBf6+H4IyGQyBR544EE8N6DZbHLs2DHq9TpXFxe55ehtKIqC7Tix00IYIm0jt5IkbXlMO56NJAj4kUwmtY/mz40jvjbLlVqVXN8D1yeUBLxsGas4jiHIW3HaMaGVto7bdd0tf2fTNKktL3P+wgzHjt2JoGhAnF4YhRGqGjsXSJKEaZooShxDXKmU6JsOshY3Km4mDwqIG7dB03VM18FIZimVBRZWF7G7fRKySqfXg7UFAERhB5lMJm54FOR31AAovQ2BDrfnh79JM+hNXXm+EZsa2A0vbUmS0HSdZDZLIT9Mv1Gn3a4TRmB2+kiCjCTFE7uZ02ewen30ZApNVujU6rzy7FO8/4MfodW3GRot0WnXWZx5hYN33I+sKrheAJKMa/cJA4iikHbH5MiRo1SbHuVKnnqjzsTwOEsLsxRG92LbLqooE0oRjuOQS2fQtBS25ZDKqHSbLYTQIfBMCpkC+269A1lPkNWSSHISQ9e59dYkhiLwr//1v+KDH3oIL4jIJNMU8yV2FXJEwML8HIcO7GXv/iPU15f5m0cf5dTlqxw+OE3QrlLKqLheSLES9xbYtomgqKiyiGN5uGYdMXIBjTCSGR7Ks7q6SjabJwzh5GvnuLo8z8Of/HnyhRKylgJJQwraSJJBs93Cd11azSalYpkoEhDFiMrIOEExj9Vr0G23SOgpKsUhFuaX+evHvs1PfuyT5DNZ2vVlpCBJJpvD7PdYW16k0+1SbbcZsV3W1paRjTQvvvQ8Q5OTcW+BICASbXREE4/nTeL8rg3KAQYYYIABfhTcFAQa3hl5jrY3qr3FcySEN5Wh3ojrJCCSiBhFKIKMkU6hp9J4Vg/H6iGJCvjQ63ZACtmzdwd6SmXp/BqpTIa+53B4cpzIjwnzZgV6yzf5ur8xXr6NoghHtlBDEXnvHjJXV3C6iwieTaSnEUaGcSOPKJQQNwTem9Vty7IJw41gk43KsiQJ7D54kGQ2RzqTxDdtQkA3kti9DpIQx0jLohhb0aoagiTRd1xkTUFRrsWAx3KL+LaqgiDIRFGGniBueFmP0FfbsXex49LvdAms80Seiz+9h1w5D25M1mUldjoRf0Q7uutSCt+r1nbbIEkSykYVOpfPU0tnoLZMs9nEcSwa7RYnTvQJvT7JzAEiPLJJg2ajRrfXpjJaJiQkmUzjWgGB1aE0PIYqS6wvL1EeGaHbbaHLHlrKoLu4hKEnCIw8UfsCfbNNJqli2X0ShoFnmQRmh7YPw1M70dUsdq9LYJqohkG90cE2u+SzeXq2Raoyim3byALYvS7PP/0kExNTLC0t8eW//AKabtBuNykUSoyNjNAzTfr9LktLSxQyWY7ecivrjTaZdJaJqSlOPfkc6/UGE4UMD9xxiNAJEAWFIIxXRXRFjfsRfBdNkek0WyiGih9YG6s7EvnCEL/2P/wq6VSeD/3ER0ini2QyWVzXwey2abdqJFrrLC5X6fVMnnrqKT72sY/x27/92/zP/8u/wPDSyKLAyMQ0iwvLEEkYSZ19+/cyNT1OLp2h123TWltlpX6JHXv2srIwz7krVwEBy3KYuXARIXLprDQZmjpMr9fDLxY2+h/Ea9GqvHt9AgMMMMAAA/zt4OZoIvTf6MIBbLHkTWL3TvBOv5berPFwM21PlmRsx8K2LHRNI5fNoeo6qWKJdt/iyNHb2LdnD5OTUywvr6DrOqqqkc1mtxoHtzf7bRLecMM3FkCIQvwoJJQElGQCXxPRmhahoiJPDGF7HrqgxImAEQSej+t5W/INWZaRZHlbhTtEUUQ0TcYJfTRNxTdtfM8lm81g2zYAiqojyjKyqm29fns1V5LisIdN3XJ87uP3sG0bSYrJtuu6gIjr2AiCCFKAaZmokookq8iyhCDGQnPxhyAL0bbXvNNq87vaRLhJ7N/uMLdVojcnA6EPlmNSW1mi3qjR6bSxHJOxiXHWq8vs37eX991/L7PnZkgmEuzavYt8oYjrRaSSKVzXJnD7+MRNfVLk4XsWsiwQ9675eK5DOpXB9zw0PLK5Ip7rsr6yQKmSRxR0bKuFrGjkimMgJdD1eJxcnD1HaPfQlZAoDEjnyrTaHVKGQmNtjW9+85vcd/xefuW//RUunnudT3zyk3z0Ix/B81x832d5aYnf//zv8+IrL3Jwzx4UQSKVzVNrtLj9tlv51re/xdWVOhEKQ+USsuJSKBex7D6aphH6IZquIwoinWaVxflLiJFPMlVElEXWq0tYlkOt1uDC+Vmmd0xz7/0PkExn6XZbfPeJR8mkDWw34l/9r/+cYqHIq6+8yvPPPMPY6BCh77C2vsrywmU6nR5+JJJOJLg6v4CRThGGHoVsjtWVJWbOnmZ5tcF/+Kuvs7Le5LkXX6TRtghCgaGhIQRRZm19jXS2gCQn0FNZxkZG4lUuQUAQrn2OvWE8S/KgiXCAAQYY4D2Em4JAe0H05gch/OCVmh+FQG92zEuyQuj7hIGPZ9kEIuw9sJ9cqcCF2VmSeoJ6rYZlWpTK5bjpMJu99uUIW9KLMAxjWQMgy7EEIwxDAgJ8z0ORZFzPQ9ASKJqMhIppyCSNJP2+SRCFGwl1PuLG6zfJue/72LZNEASEYYCqylimCVGAqio0mw1SyQSO4wCQSCTwwwhJUUG85iMd/xSvTVSEa48DSJISx45HEb2+BcRaVEmKHTts26Lb7yOHAX4QoCczqKoSk2gBRN5IgLdLPN5M7hG9xXV/OzL9rhBool+/3mFhu29htO3xa9i0tQMINxIc62vLrKwskcunWF5Zpbq2TimfQVUE1ldWOX36FEEUkCsWQTJIJjN0u00Cv4ueyFEYm8bxfNYWZ9B1BVVPQQCh38VXMkhRxFNf+3M6DZORiUkERcLpr6PJAkaijI9HMpnFZeO1UTzZGx8qMvvS01y5cJpcNk0YRISRi1mr8rv/x+e4MrfAn/35F/m1f/bfMzU+zMTEJJKq0Wp2eOq7T+G4DnNX51lbrbIwP8eLzz/HqXMXeenlE3TaLU6cOIGHTq3eZn29xuX5JnNX13j15dc5eeJ1XvreiziOy4Xzl1AVEAlIqAkEQSEUZFqNKkZS4ercHIEfEAQee/Yd5PkXnqFSLpFNpXn6qae570M/ga7Aa6+dYHxsjPfdezdjIxU++OD72btvF/1uh+9973vs3neQV154icO3HKXVbeN7LouLV1leWmJmdoZHvvsaKx0byxe5srQWO20gsFpdY3JinHqjRa3eotbqMj65h+mpKWRZQpLE68f55rbp0DFw4RhggAEGeE/hJiHQ4a/fmGx7XWz3D0CiI+GdbTdiSw+9oVE1UmmCEPLlPO31NdarK1w8PwO+R7/bwbNsdFVDVmRUTSeZSqOpCZAkFEmME+Q2Yre3qtGBj+d5iIKA2bdQBBnXcoi8kHa7gSTKnH7iaYYnJ+kGDsgiIiJEUWxZ59pEYUAUBARRRBSGiEKEosgUCkWsbpdMOolvdnAtC02VKJWHcf0gtqeTJARZQVYUgiCMI5FFEUEUESVx6/YbKmUCqJqCKApoqkZETLI9sx97QCsarmkiCSIJTcELQ7REAlXTiIgJQhiBIF6zc3s7hxRBEBCiCIF4i4RrfrnixuMibG2bz5XfjShvoo2xGxOi+NxsbnESUHzkb7SyE2DDkg2a3S5r60usV5fo9l1cy2Nqepjdk2NEjkckQqE8RLEygigpdG2LwHcJbZPK8DiO4+F2+xRKFRBUHKuPpEpEKKRUlbXFOXbt28GOvYep1er4nkskKegJFdeN8CUZXa/gRn3MnomIyfmzr+N6HnOXL/D88y/yvedfoJzP8X//n7/PF//yy/zsz/wMr7/6CoYq8+EP38/ufQcIRYVvPPEsL7x0ijCC5196mXPnVygWs6h6hquLNS5eXcICTBca1VVm55eQXImR8SHuv/9+6s0mK9Uqt91xFyfOzOAGEefOn+fQwcO0GhbPPvcSoqKxvLLE8FCFfqtJbXWZ737nKY7fcxwkhdWFOSZHJ2l32gyPlDlz7jzj4yPcduQgO3ZPMToyjO/Z6Kk8dr9Dr9vHsl3wfW675z40Xce2bByzhxQJGHqabs/l4mIdQ09gdruUiyUqxSIAduAhBAHNRhspkSFAxkgWOXzoIJqmIG38X7GdPG+XJImDCvQAAwwwwHsJNw+BfhtcV5ncZgn2d4VNIi0rKqZpEngeVr+P4IXIokyr3sQNfNbrdbL5PK1Oh+npKVzPRVE1RKKtBj/XdbfCWnwvTlHz/ZhIa6qK53oEvo/nOMhegBpEdPsmTuAjb1TDgyhElCRE8VpssChAEMayEM9z8RyLhKbQbTcpFvK4roPv+TiOGacEhhKRGFfCoigm3fJGZXyz8rw1iRCkbZXpaxVpRVEQtoVXeq5NrV5HUxQkEaLN6qsYz4BUTYvT94RYziGKbySRN17LN0uP3D7heavXx42Wf/8EOnqDD/Qbcc3dJLruse1ODIEX0ey0aHQaLC3P0+qZ9G0bwpDG+jozF2ZpNFsUCjmMZIpsQuHsyZfxXZfL1TVWllcoloaJFIlAEHAcG0mUkBUN13NIpbL0zIDTZ14gV6ygZ0uMTd9Br19jpbZILj+FYej0+z1Cx+ORr/wZkenyb3779/jKVx5l144xVleWuDx3iV17d/PBj3yYTr/NP/pPPsZHP/pBbDfgS1/9Jr/3+T9mvesiyDp6ssCJmUsY6QyBINMzTY7efpixkQp3334btfoaP/uxn+GxZ14gncjRc3pcvHwZ3/e589gxzs3Msm/PPk6dPsX09DRWKLJea1IZHeMr33yU2cvLvPzSK6RTWc6cvcCBI0dIGinqzSZHjtxOuVJiYf4KTz3xJLcfO85wuUiz1SCTzhC4Fnavh9kzaZkBgaCyuFpn5sIVvvXkt8gX8/zJf/gTup0+333uOV4+NcN3XzqB6XpEAuQKeSJRoNFq0ux00XSNZreH6fi0TY9de46wd+9+9u/bgyiCJG3Gqm4NgGs/BxXoAQYYYID3HG6aJsJ3gh/EYeNHxWaIiCZPxNZjukbUt0AQ0BYX0bIGU1M72L/vAKdOnaHbaZEwUniOBRs64c2mQoibAFVF2ZBbxLIO0zQRog1JhuvRsR2E4RwJRUdNGbiuS6/bRtU1kMTrNMtRFCES4vsuQeAh2AEZrYQqS9RqNTRNi/cbRUCIJIMoS1vxwptxyFuJiWwnetfrj9nQdAuCQDKZRFEUfN8nKA3R6vTo9ZoYmo7v+7Tb7Xj/YYAgSFSGx5BSIqqkbJDjN16/t4tc/7HExvkWZRlVlpFlmb179+IR8PqZGcrFSRq9yzTbJk8/+z0efOBuhkfHOXToEKdfP0mj1WPnaBmzWWPn1AQ7j7+P1x75CrJXw/XiMafLGqIg4XkBluVgJBKUhnfRaS4xuf8QK8trNGqr9Hom2UQez23Q7wk4pkVKT3Pb4b388R99gX/08E/y/DNPIws+H//4T7Fzz15Wa3V27zmILMtcvbrAbHWeC1fnee3MeWq1BqEAQirNjvEimZTE8vw6t926B10OOH77fq5cmuPwrklWl6+QTKfpWja4XbSURELXQVZ45eRJAtdjcnIKWdXZvXc/Z2bP8IF77wffI1fI8fqZi3iOTcsJmZ+f4z4lSbYwwtj0Lib2HqW6Msetx45TXe8wVCnhWCZGMguILC6scvLsWR576hV6TohpO0iyjh9G6LrO5z7/BXq9HheWegiSiOU4JLN5+p0eiqYiylIc2w34noumJfAiaLa6JJNp9uw9iKqquK6LLKtvHAP/fxvzAwwwwAA/ZhBuBvLSd/y3PYjtpHnz9o9y3G+lo92s7m7uPwzjtDM3sOnW6/S6bSBkpDKE5ZmsLFfJpbP4vk86kyISRAwjRUTc5BdF0daXaBRFRGFceQ6CAE1WcByH0PEw+32kKESIIhJJHV+UECLwAh9VkhAliUiOK1ibVeFNSUjgWbGMwjNxfY/R8Wk6nc5WxdhyXZDkeB+igCInrp3DbVXm7VVoouvdQ0KuOYGEQdxA2Ov1WG/UUQQ48eJz+L6PrsR2eGLkk0hlyVXGKQ+PUhkexjAMRCmKXVL4wVYQtjumiG9z2VVF+nu3NojC68eu8MMOyyjWmPu+zxf+/M/4wz/9QxYun2f/VIWp4Ry3HTpCsVjgtjtv4erseey+CULI1NQUZqtKeWSY9eoSxaEKhcoomdHdOP0+PdtHkxVkQhr1KnrkE6DQ8USMZJZ8RsE2W6wuLVMo5MkWCvTaPV577RVa9SrTUzsZ332AhJqi17f58l//BR+47xgvvfwygWOTK4zw7adf4tGnX2TH5BD/8jf+Bb/zf/1bClmDT3/iH5I1UnFapRKgqCn8QKXVqNLu27xy8hQ9V+HPv/ooAgqVYgbHMmm3u4xPDBMELrlckdBxmJqcIAx9DF0nmdSQVIUz569QrVaRpDgIqVxIo0kCnXadn/yJn+EDD9xPdXWRfquDpMt89etfo9lscuTwUZ557mXUVJr5q4ust3qUSiX6fQvP87CsPsVimUw+x+rKWuyZrinYtsn0rmlmz5zhIx99iKeefIJCeZzq2grFYiG2J1QzPPzxz5DL57n/+B0MV4YQxGhrIh0Pkm3DdPNzTNEHthwDDDDAAO8h3PQE+q2I1lsRqesszwBxm3UUvDHg4+0QRdGG/CHENE16nQaeY6PIIiLXoqs30+U2K7tqIoXv+7GLwIaUIwgCpCgmob7vEwZe/NPxtohrEATxfqRNSYKExIZ9nxhLK+JqtUsYOESegygEiHuTuugAACAASURBVIToWgrbNxFEFcvxqAwP0TP7yJKCF0ZIsgriNX/m+Av9mu5bEN/cu1mIl5eBjWP3QlzXZX19ndr6Cq1WC7PTpddvY5sW2VQa17FIplNk8hWMVIbRqV0Ui0UUTUUg2rL4u/7aXH/dfphx+Z4m0PFSBIHvA/G5XllY4Ld+6zd4/cRzTI6OMD01zvrKMu9/6EFqi1f4ifffw+hwiZqrEgoymiIyWklDIGI7EYoqYAUOgQd2p8NQOc+J177H5OgYASqNrsfIyAjtRpVep8PBw7fwve89x7E7b6HRqNG3PNrrqxSHhkmmsyDISHqadMrg5IlXePyRr3NxZpaPf+JT1Lt9Ll6+yrPPfY+pcor//Xf+Da9fWuCLX3uML335KxSMFLfuGefWw1O8euoCw2M72Ll3Ly+8eoqLV+YYLhZJ6xKNVptkpky12UdU4nAes9vDMAw0RSaZMmg26yQSCRaqVUqlMutrcUoofkDKSJBJG9x15608+OCDaJKE5zsU8zm63S69Xo8//H//lEuLVZB0dE1B0w0WFxeJopjoHjq4n0uXL9M1ra2eiEwmg+M4FItZlhcXGSqXMQyD1eVl8sUKXihRGZvkttuO8fBP/wwjwxUSaty4e93klLf4TBsQ6AEGGGCA9xRuag3021Up3+o3IdfHO1+fdvcDOnoIwpb+VpIkBEJkSYIojBvcNt5HVVV837/+NhGuY+N5LqlUEssyCQOfMAyA6FqqoCQhyRKRJCKpCqISV4u3SKYibfTPxXpn3+4ROV0Et0/o9iH0CaModvIQFcIoQFYT2I5DKpvFc10kWcH3AxQ1Dli5VnVWEEUpbhoU4+r29i/7zfsI220Er/3OD3zCICSKBDzPxnM9hAgkUY6b5kQBIQoQJRk9kUSUZORtbgRvN535YaQ674YGWgjDX3+TvtcfAvE4FUUxtjyL4nO2/+Bhktkcjz7xOK+8dopEMsUzL71Iu77G/t07+O4zz3PP8fsoFgsYkoCkqgSCiqoaiJKEIHoQhqgiNOprDA8XWF68yvTkGLVmk0wqiyiKlEtFAnQy2RSXLl1krbqE5pk8++1HaFfnyWRyyBs9cE4YUSoUuPPYMUZHR/it3/zfSCYS3HvvcRKayny1xVe/8Sg7xob56H13sGd6nPm5Kqsdk+zICHumd5LLF0gnk9x3/E6Gcxq375+glFGp1etcvnCOSiGP3e+SyyfRjSSW65Ev5nE8j3a3x/jkDhCg1zURBIlUKg2ihKYbXLkyx2unT/PiS6+yVqtjZDIkEga7duxgeWmR9fV1LMdHUHVq9RbtVpPyBiEOwxDXsTEtC9O2iaKITCaztZrUabbI5wsECDheiBtE9G2PfGGE4/e9n7uP3c3OHaNkU0lUVblOIgW8NYke2NgNMMAAA7yn8GNHoCP4WyPQ2/cHEAYeYeATF4TjCvFmlVnTtK2KdBQGCESkkgaWaeI6NtIm4YxCIiKiTaK04XwRSWJsaSWKMfGRxJi8C/FRCEGEbfaIQpfAbCNELhESSDKhoCCJEREykiwQIKPoOn4QkjISuL6PIEqxE8e28yMI24j6NvJ8Y1PhJoHebDDc0mGLYqyz9X18z6LdaiGJIpqeiCvprociSgRhEHtDqxqyfO29fhwINOENY/eHZtHXl65DMUIQJBK6Ri6VYnl5gXa7xdLyIh86dhuHdk2wZ98R7vrgPyCVMrAcn/raOtXqPKoqoxkpQllBFgSEEBy7Rau9hNuPVy6aLRNBVGg1G7z0wiukc2n+v/buPDjO+zzs+Pf3+73HHsACWIIAAZIiKYqiKIoSdViyZMp23KSuXU/qcew4dRIfsetxM0ma9Ig7derxH810pkmT6STp1Feb1rEbx45j63DiWJJdN3Es2YosR6JOHuBN4gb2fI/fr3+8u4sFCJJYSo0A+/nMYHDsgd1335193ud9fs/jFQpEzTpDgwN85Uv3MTS8lXxhkJgi1Yrlye89jkqqlEoh1YUKfYNlSgNDbN++je9+9wlGh8vsvfYaxnaM8/BD3+D5w0d44fkXecMbfoKb9m/n4I27CXVIYi0TE8d4yz9+M889/X1u238dNmkS9g9x6J43sHfPNvbv2cZQn0/UjDh67DiVaoXIwdxChcTCwmIDi6VSq1NvNCgPbyJXCFE4qvUmv/wvfo2Jkyep1+t857HHeOibjxAWcuzZvYs0qlGvN6lUatTqdYrFYue9nKYpi4sLjI+Po43XqmHOvheLReJmk9mFRYp9gzilMUObeO3rfoz3/8IH+Lm3vZ1rrxmlmPPxfX9Zj/Vli3KRAFoIITa6dV/CAasHU90lHHbFxd3XX0sJx8rbm9aiOVgqJcg6ajSImnWcTZY9gPZwk/biuiAIqFUqYBN8P6S6uIC2KU6BTRxoh3MKC2id1Ua2g1utNVZl5Q3OplgcJDFEddKkQRo30S5biKhNkE040x5ogzI+xvOzD2vPzzLa1sMLA+I0wUKnJ7UxBlqnp7Px3eaiD/il7ag728IpSJKEZrPJzPwM1YVFTk6cYPbCeRrVKnMzswyWh+jv7yeKIoIgIJ/P01fewvjWnQxv2ZwN6dAa1FIWf2U5x1rrnru9EiUcJM3V5oxf/f0pBdYCDpumNBoNpqam+PKX/5D7//QL3HbjtWwt57jj9rsplMo89/xRrr9uOwdvvZ1Krcbi4gLDoyP4QYjSHtY2sElKUpllbu4MC2dPkNg8M9WUW249wKOPPsr4th2MjF2DFwa4tMnp0xOUNw0RmBz1ep1KpUIUO/7oM5/h1LFjNKsV3vWed3HN+DZ27L4Wv1Tk1LGzvO+9/5zf+/3f4oa9+6nUKkzNzPPVrz7Cl+57kDDwGC6XePfP/TwnT59i1+7dTJ0+xk03XEO90eT6/Qc5dW6KsyePYXD0FwPm5+aYnJnnLx7+a06eq3KuahkYGMAYQ7FYJE1jtNZUKhWcc+zatZuJiQny+TyNuEEURdx6y01sG9/KE9//Lu9/z7v56n33YbTH9HyFZ48eo9ZMGd9cZmZ2nnJ5mEqlBp4in88zMz1NX5hnZm6WoU0jVOoNhjZt5vob9vHBD/0iB265mZKLO+0ql17Cy7/+UsIhhBAb37oPoNdSA90dbK28/tUE0CsDtvYkwSSJaNSraOXQniKO406WKQzDrDVdGFKr1cBalEsBTdSoo9IElTQ69dBJK0g3xmT10V64bOiKTWNckhDbNHs8LgWbABbb9TyMH2DRBJ7GotEmC+a156M8g0eAVWB8rxWw66UBKa0smdYa3OrZ52x76s6BRGLTTh33QqVCo1ZjcX6BhZlZpicvMDs9ibUpYRhijCEIgqw/9MAgmzaPsXPPXvL5bCGj0l3lJD+KAfSl3nvO4Vw2wbJerzN9YZI/+fyn+fMH7ue973wbc/OnuffQa+nrK2Gd4snvf49/9OY3Ua1W2VQeolKpUBoYRPseJEnWqSWaZ3Jygs996rO8+32/yEKtSZTUKZf6efLxx7lx317I5QhyOdJEMVgeolZZBCCOYwp9eTSGiWOnePTbj/LQNx4iZ3y2bx3l/R/6IGFhiMAv8LrXvZk777qFf/fRD2OMyQ6kmpbf+NjHuOnA7dz3wP3cfvutvP41d+G5iIFSSJDLU+wbBO2jkhoTx16gEATMzkyRz4f88Zcf4mxVM3G+gud5hGHYmoqpyOVynffQwkKFUqmUtZ4k20/7izlKff0MDpVIo5jK4jzDm7YwNTdHtdagEVmqzSpYh3KG2mKF8ZFRzl44j5/PUY1jAj/HwNAgv/DPPsj73vnzGG3JBR6eydYtBIUCLo7XvMtIAC2EEBvfui7hgMsM3Oj62V0mgF5LCcfKwSqXLA9p1z5nRRid4C8MQ6Io6ozV9jwvK/HQCmuzxWEasuEnSpM6UNZl68ZSi6cNcRKDyzpr2DgijRq4NMLGEUa1hofoVl229nDaw9MaMFl7OtUa1tEOgLUBpVBOo4wmtRbbCtg7p5aX1TxfHDgvBdDLNnAnAFfao1apUa83WFiYp1arU6vVqbYCL601jUaDwPMwgQc48n0DnYy91l3/Z0UJw5V6P6/mFSnhcPZjLynjvFrfa+da49mzDPT01BSaOqMjIxQCj9tvO8TIyFa2jm8l9HxuuWM/Nk1YnJ9mqFQkbtbxPZ0ddAHOappxykKlTupyWJWjVC4zOztLmMuTC0Kmzp3nwfvvY9NQmWt27AQUnmfwPI9KpYLvBURRQn+pnwO33Mzdr7qb6YUFHvnWX3PixBlGtgyzZWyIn/wnb+Rzf/IFPvmJz9JfyvHqO28Hpbn9VXfypfsewBqfc+cvsHPbCIsLs5Q3jTBfqRLHjnJ5OBvbbTziZkRpcJBaI+KZIxMsNlIuzGQBstaam2++mSDwOyPqwzDE87LhRf39/SRpQrlcpr+vyOSFSS5MTlEeHmbi5BmmZhaZmauQpI5ms0m1Ws+mj6IwuQKVKKZv8zClzZv5L7/7e3z033+UX/3lX+LWAwco+JrQ1/iqNWHTGFya9lRytOp1pYRDCCE2lHWdgb7ch9LlSji6b7vW7OVaJElEM8pGWbf7N7eD5vYCwjiOO9laYwxRM8tGp0kjuyyJW+3nsrZlJFHWLk8rrAowNsqCR5sSN+toVGv0todTF7fgU8ZvTbxznVPJRnso44HRaBN2MsvGGJxa6vBBV+2zVt1dOMxF/wdarf26hsTEUUqtVuPIkSPMTJ1h5sIki7PT+CYgimMGy0No30O1eusWCgUGtmxn+649DJb6MV5XbfUqHTmuxKrlZxRy3kuJZK9SGrVrfa54VWcv3XWk3UKx3eM7TSOSxDI/M8vU5FnSxmm2jo4R+poTJw/TqC2y65oxFmenKQ1vBxvTrFSozM/g+z5+ENKwhk0j44RBH7mwjySJ8EKPJIHENqnMzdCo1xkcHOS5Z18gWZzmr779V7z17T+FCjQ2zc4gFAp9pGlKsVhkcnqK0dFNGOdz4vwUY9uu5ZMf/x/84X/7NPv27eB3fvc/MV+vsrjQ5L4v38fM1Hn+9Uc+wuDQMMeOn2Dn3n1MXpjiq1/4DLt3jjO8ZYyxsTH++6c+zb/8V/8GP1/k+LGjFAKfF154gYHBMs4YnnjmCH/wic9RqVRIkoR8mCNOI+68804WFhY4cuQIYZjHOZeN1/YcLk0ZGdlMvVqjNNDHidPnqNVjmg1LLpejVquxeWQTN+7Zx6lzZ/mVD/86h173evx6hHKOwPMJgoA0TVEuxiiF8ixOGRwme5/Q+37r3FIHnw7JQAshxIaybgepXM0ism5LNcwv39TCdm/lNI3BXvwh2Gw2lw1OiaIIZQzWObTx8WyWv04AbFZLrLXOSkH06i+FMh6JBaN1JwPdbnm3NCkw63iRpunyfrMrHru1FmXMsr+tFihfdvHmilrPfD7P+Pg4fQODhLlTGC/H4vQktVoNPwzoGyiRJklngExjcY5aZZG+Qh5tsnIV51w2vLBHfx9TKddstcewIqhW7f2l6+9Lz2F55tniSFOL72kCY5mdn+Hs4iTHT54gHzhqlQWe+MYjHD/2Iu/6wAfIeR4Tx47z7OGnOHTP3cxVqoxdu4+4XufEi8/z7DOHueeuO7Eqq7vP5QIWK7MUS0M4Glyza4xiYReJTTh57CjX7duDVT6gSdKsh3mtvoDGcfrkOfpLZQaKfVTnpnnnO95KEHi89p7X8NBfPsx1+/dTLA0wWB7iqcNPMzc9RaXaIFcocfgHz3Dk2ASPPX2MnXv2Ukk8Spu386rX/AN+8l3v5jf/w2+zZ8/1BLmQO3fcSJo4/uDjn+CRb32LSBtSP8AZD5vL0Zxr8sKRCZRS3LD/JraMDHHXXXdRqVT42tf+EmMMzUZMahXT8zHGLzFcKvL6176We19ziN27dzNYHiIf+ERRRF++AA503u9aC5DiaQC/8zqr9mvo0s55k7XUQLeve1HwLIQQYsNZVxnoXhbfXCkDvdr1rkY7I5gNVklIbYxzKcqxbKqf53nEcdwJVLXWnUDIpRabZplml8bYNIYoyi6PGlnbO6M7GWiLW8pAezlQBu37KGvJKjO6C4Q9tPE6U4KVUnjGxyndyUB3d9fozjorYzpZa0V3xwBzydfCshTkxVFKs9mkXq+zuLjIudOnmDx7hqlzZ7KsndEU+vtwSUp/fz+5XI5isUhp9Bq27dxJPhdmg1e0xruKGLidgW7vw3n/asLwl6idge5F93uutW/Ryuxbm/XZjpKYtNmgMT+Foc782SMsVmYJPOgL+3ng/q+wc+soYyOb2bFrC3/x0MPccdc9fPOR/8u5UxOYQPGhX/010H1UF+dJk5ip8+cwJiafG6TZbBJFc2zfvp2FxTphrkhx02ZsYpk8d56oVqc0vJl8sY+R0TFm56YJgzz1epPh4WFqzRpxogjCAXwvz9Tseb7ypQcY2zLEPYcOkS+UeO75o2jf58Gv/Bk/809/lsHyZpSf4ztPPEUldpw5c4Ybb7iOUq7A6OgoR04cZ/fO6wnDkP5SsbNvWKdwaJx2nQOxubk5XJoyMzNDmmb7YTGfQ6lsWma5XCYMs/0r2/cDtErxcHhKd4YFZZ1lVpQPeRcHuJc6WOv+vXOdqwmQvXAdHAUKIYRYq3URQNeidNUHYVj554s/mNoBbvfv3VyrDnS1y7LLHe1FcqtnkWzn/tsBjrUW1NIpd2stytlOQN39d+ccrrWgSaUxaZxlY12aYpMmLmmSRE2UDrA6QLsGOEOaNEmjGB2EncDWaY0yCuVUJ+HZLsdQrSmFzrmsttnzs8EpxoNWAN0u22j/rJW3tIiw675WbufubdzdlaS9oHB6eprJ8xeYnrpAdWGemQsXaDQaJFFMqVTC+FmQnsvlGBoaIhwYZuyanQwNDGaDJoy6qgA6XVEdvSED6M7vWQCdJAnVapWFmfNMnZ4grk7Sl1cMDZV54dhxKvNT5ALD7NR5fAVJXGfv9fspDw/x9DOHGSmP8OTjjzE+uoXcUJmBkXH279vL95/4W559+inuPnQvU5OzzM1PM3vhBAcPHqRQ6Of0mQuEuQKl0c14fsjWsW0898xhxrdtxzqF8rLWbFOT0xQKfURxytCmEYzxcWjm5uaIYvjjz3+Wn/npd7BlbDuVRkLiNMdPnOTAgVtQtNoo+j6x0zibrRuwzZRCoUCqgdS2Nkna2TbaakCDSro2mUMZn8SmXWVUSweBadoElrK9DpuVQymHU4Z2ZX32Pl9xpkCtPQBe9UCzXZZzhcXJy0gALYQQG8q6LeHoRftDbLWDgbVktVfe7Eq3yVqwLf1ujMGlywe4dO5LO3Ct7hbOw3kKtCElQuNjnUV7FkWrF7T10E7hjI/T6bKuGVZrVHtAiVLoVk201hpHq5Sjq5MGSnUC5s5iwZU9nrue8yVPPV/iIKudZc/n84S5AkGYZyaZISzkwWgq0TyLi4sU+/swxlCv1wnDEOUvsji/wED/YOu+ry52uNzrvq61t3P7cSvViuGyBZvNZkRtcY5o9jzHjj/Pq+99DYMjI2yuLtBXyBH4lgM330jUqGCUZnjzAF/84tfYPDTIg/f/GX25AG0c73zLW3jkgQdpLsxQKPbz029/J88dPcHQpjK791zLc09Df38/qBwHbj7IE088zuRTk1x/4CZMzmN0fCfzCxXGtm6lUqnRbCR4fhEd5MkZh+cFxIkFbQnzBVLb5D3v/RDW86gTEPb1EWqPW24dWzoDQqsUSimcaw32yXvgUrRlaVdoBbEW2zqesyhlWpvNZVtKOXytAde6XSvAdmQDjzqbO8tgZ/9stf7jq2eVe96vVrx/LgqYl73eG2yfFUIIscyGz0DD8g+8i4PAtSzyuVzGyS7LvrZLNqxLOv/bOYdRS+3u2tfNrmA7WWmX2s4CvCRJcGmEipskcZSVRegARYR2urXQsIluTQ8E0MqsCH67SzOy522MwWkHKhuy0l4c2F220fm9ddnKgQ/t7bEykOj+3r2gsF6vU6lFnDt9iumpC9QX55ibn6VZqZGmaWfITJqmlAf6yJWGKG/ZwY5d19HfX8R4WQlHr7XM66KEI24sFTF3f1+L7veeyvo/p2nK/Pw8z/3gUeZOHEHrhLn5C+y77hqsNvzd4ecJleXgwYMcfeEZduzYRqM2S+T6+eKX7qcyNcnBA3t5y1vexLMTx/n0p/4X//Y3PkKjEZE0I7bv3E6lUqFYzJPUp3ni8Se59da78cKAxMZUF2uUt4yA51MolDBhSKXaJB8W0E5RKA3QbGT9lz0/T+Icnh+CF3YW1tkV+0827XLpLMbl368rN9HF17lc7ftS7bLq3Ha1//1yednuTxYRCiHEhrKuV7O0A7VX2mrZ2e7pfRdN7uu+jdNdAWoWYBjjt9rJ+RiTdUzw/ADf9zst3kyrPrn7q7sFned5GN/LWth5Bu0FGD/Mhql07n8pWF7t+9V++C/VhGcHBEEQkMvlGBgYYKg8TKG/jzAMyfcVUUrRaDQ6z6vZbJIkCZX5GRYXF2k2m50DjA3NZe0KsXbpq/23S321zxK0guc23/cpDZbZsmMXs7OzaJtw3c4dfP5zn2d8yxivvvdefus//z4z83WqjSZHj5wk8BV/89h3eX7iLIWBMvU45bHvfo83vvUdDAyPM7tQ4aY7XsW5cxcolQb5+tcf5vDzR3nx2Bmefu5FJmfniB1su243w5vHiOoJnge1Wo0gLFBrpCivQJp6JHjgFzFhkSA/gA6LOJ3HqgDr5TDGwxgPrU0neIZVOsisYf/rfl+t/LrSdS49GOjl034vdH8JIYT44bfuSjiWLw5cHt8bVrc8u3Q1baWu3Me1+4MxTVOUdsuyXEv/f+n6nWyusyiVTfFTWkO7/R0Opzx00somO4dz+eyJ2tb4bbM05SybUkhnBHi7yFJp3bneygDCrezv3L2g0F2+I8ClgoHO8+2qI03TmDRN8T0PG0OzFmOTrFuJ7wcopYnjBI1CV6rgNAsLc5TLg+AUaVacsvRcL9HWzqqlevV1H6xc4fEtq91vf28dHI2MjvM3zzzF8RMTjAzleX7iPG/7qZ+lGVX5/tOH+c3f/h2ef+5p6nYBL9/PkRef4rbbbmR863au27ebar3KwVvuoLBlO+dOn2F8yxbmF+bQxufJv/sBP/HGf8iFc2fJ5TaTKxQolgYIwpBqbAkLhnq1jovqPP23h9l/6yEGBzbjhQGphb7+PpQXgjat0giNh8JqgIszxmspiVjL4rw26WIhhBDilbahPole7oCpl9O6q2WYV/69u1RiZbYXlmetlcnKKUwrc2z8AOMHaM9vfQX4Ya51WYj2AvB8tPExXpB9b93G+AFGe50vZdqLB80lM+Vrfd4rt8FqGbckSZZdlisUGCwPYQKfIBd2FjdqrYmjCOWycem1Wo1Go7Gs9OVKr9dFJTKvtO4s8pW+Vt4UOtlo5yzOZSO8fd9joDzG3tvuZmznDczONWhGNUzg+PZj32H2wlnm5mY4eeoMo5vHGdm2E8IBmtbjwYcf44++8CAnLkzSVx7mjtvv4tuPfoebbjoAzmfXnj1cu3sPtVqDj//Xj7PvloPsvvk2ygODlMrDxJU6546f5Nvf/Ba/8ksfRoeD9I9sJxwcxSsME/YNo8N+nMnhlE974Z7TrafZVXa11kzx5bLL3bfrXg+w2uWXuv0rpbO/XuL1F0IIsXGtuwz0S9FuBwYvf63jWnQW+3Wdjl9aN5RN++t06dBeazGURimLamdWW8GkcgblLK6ru4a76HR0V92zu0Qg0squdwJ5vRTM49YecFxqgaZSWbeRRiMbFBNF2SCYxVoVlMIEPoalAD5pNKlXa+RyBRqNBrVajWKxiOdf6vzCD6HuoLL1vXv7GmPwFFx7wz6uv2Ev9blpvvV/HmT70Bbueu2PZ5n+QplDP/YmHrzvT7nr0I+zeHwBXdzOna9/FV/43/8TvzDKjfs0+2+33Hrbnfz51x/h1XcfYmLiOL5nGB/fytD4bqYWIkb7+zBFj+riAvniZh782kOcWoRf/4+fJF/oI8wNtHpYtF5v5zpPYfV9R4LFbisH6Kx29kS2mBBCbCzrbhHh2icMdn8oXaYMoWtd2dqn3S2/v+WLCBMcaeexdLJjXeUM1iadwHJlXWSnftglF13WDq512rVYr+uhrMx6O3VxAHxRZrzdOmxF5nm1jN3S/Vy+rKOTeW61sbPW0ogSJicnmZycRNuU40ePUVmYwfc8AuN1unDU5uYpDQ1SGhqkb3CQ8tgutu7YSX8hXJYhX8tp/5VekUWESfOlt7GDVvZ5ibWOVDms02ANHo40jVGpRXuKuB7j+z5WWxJlySmPZuqIYofSKdbFTJ89jRcYjI2YOH6U0S3bGBrclI35tgnPvnAMHQRsHt3CpsEBPCwmzON0Vp8f4eFr09mfu11+S69+4WrB9kWBZA8Hviv3kfWSeb4aKshv3AcvhBA/gtZFBvpKq/Ffygfj5e57rV0AVmoPSln2+LomHnb6MavlNdLdH/Td9b4rH8vy0u/L1CF3lYcs+3v3dy4OnFdef63bd2XA3x7CEsdZV4ZcLkcQBMxNTaKUolAoYFsdR9pDZrxcSJKmxI0mjXqdZr2OukQAtNbg+RUNnK6ipGT1666o81UeWsWgwKkUSFGeJnUeTicEXjYZT5uAgu/j6hGetoQ6wSqP1Muzc88g9cQR6pTx3Teh8IhtikGRJhG3j+7GWosxJivD8Qxxo0kYhIDFt9n/V5rOgVjnoLarv/rLodOv+SoO6Ddy4CyEEGJjWhcB9Hrzcgb03YF2d/ZWcXEgu1p9b3dme1kArhR2lceylgD65Qo42hn29n0aY+jr68NGTZIoZvJ8pTNpLwgC0jQFrbIWfkmKS1JskpLGSac94NUsEFsqmfn7LwPpHpxzKVdajNn6bfl1lQVM120NyoGHA2s6SV5lwTZj0AqDAWNay/oALAUPQONShyPubCFjTNZ7WYGzCUYDHkUwCQAAAttJREFUNiUMPBTtMqPWqHUc7cW5pvNUlu9nvSwQXO3yXgLnjRowb9THLYQQ4mLrooRDiI3KRfV18wZabSLnWhdnwsVZ4LXc9qWWZfQSgK+nUo3LPe+1PN6LtpGUcAghxIYiGWghBLCOOptsAL0E87JdhRDih48E0EL8ELpU0Ha5YO5ypSZXur/VFrJezqWuc7ns7XrIPK+02nb5UShHEUKIH3USQAshXjFrqw//4dU5UHiFH4cQQojeSAAtxAbXS53z5fz/6oRzufvqzjj/qATNQgghNr4NNYlQCCGEEEKIV5p04RBCCCGEEKIHkoEWQgghhBCiBxJACyGEEEII0QMJoIUQQgghhOiBBNBCCCGEEEL0QAJoIYQQQggheiABtBBCCCGEED2QAFoIIYQQQogeSAAthBBCCCFEDySAFkIIIYQQogcSQAshhBBCCNEDCaCFEEIIIYTogQTQQgghhBBC9EACaCGEEEIIIXogAbQQQgghhBA9kABaCCGEEEKIHkgALYQQQgghRA8kgBZCCCGEEKIHEkALIYQQQgjRAwmghRBCCCGE6IEE0EIIIYQQQvRAAmghhBBCCCF6IAG0EEIIIYQQPZAAWgghhBBCiB5IAC2EEEIIIUQPJIAWQgghhBCiBxJACyGEEEII0QMJoIUQQgghhOiBBNBCCCGEEEL0QAJoIYQQQggheiABtBBCCCGEED2QAFoIIYQQQogeSAAthBBCCCFEDySAFkIIIYQQogcSQAshhBBCCNEDCaCFEEIIIYTogQTQQgghhBBC9EACaCGEEEIIIXogAbQQQgghhBA9kABaCCGEEEKIHkgALYQQQgghRA8kgBZCCCGEEKIHEkALIYQQQgjRAwmghRBCCCGE6IEE0EIIIYQQQvRAAmghhBBCCCF6IAG0EEIIIYQQPZAAWgghhBBCiB5IAC2EEEIIIUQPJIAWQgghhBCiBxJACyGEEEII0YP/BxsSJFeER4ZiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from mlinsights.plotting import plot_gallery_images \n", - "plot_gallery_images(files[:2]);" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(480, 320, 3)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from keras.preprocessing.image import array_to_img, img_to_array, load_img\n", - "img = load_img('simages/cat-2603300__480.jpg')\n", - "x = img_to_array(img)\n", - "x.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALkAAAD8CAYAAAArOAWDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvUmwZclxpvd5RJxz7n1TvszKzJoSWSMKBEGARBXAJsEBJMiGaGq1xF6oZZTaJGuTmVbaaatVb7TQTsuWSa1Ft6wpNUWCkLEpkTKAIBsEQQwEQAzFQs1ZlVVZlfnyzfeeE+Guhcc5976sAdSi1VmwirJbN997dziDh8fvv//uIWbG++P98eM8wr/rA3h/vD/+bY/3jfz98WM/3jfy98eP/XjfyN8fP/bjfSN/f/zYj/eN/P3xYz/eN/L3x4/9eN/I3x8/9uN9I39//NiP9O/6AADuu7RrIQRSSoTg805ESCmR2o521tF2m6R2RpEI0qAmRIwmCiEExCAE6PuegEGINM2c2WyGNAkzoelaUtNgZsRU6LpNmm5OKYouB3SxpF+coMtDQoQQAmaGqpJzZhgG+v4EzAgUAoaIsLVzjm6+BanBZltsbGwQ8feGkEixBSB0Dc18A0lzUjMDAtGU5eKUsjyhLE/Jx/ss9l5D85KCkVGyQgiRYJDzAFYQU0SEJhgMJ+RS2Dx3kW5jmzSbIbEhxESIhVKM7B9CjAkJLSJCsYxZwcze8kAjYpz5nYgAYAKaVqajqpgZpRRUlZD1zPtUdXqNxobYzdja2mL73C6pnRFjREJEQ8T8KzAzhmFYe6+AxTP3Y3ydmfE///f/rbyTfd0VRr5+McANPMZISokYI03T0HUd3XwDCQ0mkdi0tG1LE/01aGa5XDIsF4AbKCEyn89QAooRoxAipNSAuhHmZQ8IpoXl6SH98hTrj6fJlks/3aCcM6UURCAIgGEYw7JHOcFiJBTFhgWiUs8nEGNE1WjnDbP5Fmm2SdttEFILAv3RMcPyhLw4RRdHDMsFQ38CwcgYkChAUTciNJNS9OMbCoJCiORSiDlDzgQCSADx6+tDCCEhIQABwfDF3IBSn/1hEuvZrf7Teq8w0LySg6iO9w9UwRTM/AGChOTHWO/z0C/Y2xs4ODiimPr9USWQz9jEaA+r4/d7VrJNDmialO8y7gojDyFMXmL8eXyk5J4wxkgIgVwyEt1zl2KEAKaF3GeWfU+TGkopLIeelFo3/FIQEUKKpJzIMdLEhBXobQlqDMtT+tN9ytATyxLw41EtlFLIOdP3PSKBGAM5gJXsF/v0lJQVSYmQM7pMlLK68DE07pF6QU8OSLNNymyDrpuTgcXxCccnhyxPT9DFMeXkELFMCFACpNAA481WRA1jAKlmGsBE6PueIsckVULKxCaRkl9bk0gSQc0QVdQMkMkYrXrJ8VHqFBgfiLjhVYPSXCZDvHMViBJW761fMBm9QCmFUnpMF5hQjw9k6AlSP78a+PoYfxdEKKW8t4y8betyXg0bmIxeMYqpL10sSKklBQho/auffJ8HRCLLYUDMEImAMgxLcs6YKSklLEZyMEhzmqajH3rQQu6XlOUReegZhp6A+JJeL2YpBcsZk4hYBClYGcjVw6dGiU3ClovquXU6l5TcyMvJkkVsaJqG5WxOCIGSjcViwaCFYRgIORNLj+lAjIKIkVkAbqy+QEWsGBKCT/joK8KgBUohaEZzNbDYEKUhxUhsEphg1Xvrmse981E4a7giPiF0sqdxBQAzxZ2CIQLDmgGOY+WVc4VD6saaC6WuNkENqc7F1L9zPA5QQqjQKNvf2sDhLjHypmkcl4lMxu03NKBl5cHQTClCLBFM0VIAMCsMywWqShR1jx4brASsZPp+4QaFG16MQg4LN14FrKB5wJbHaFlSBp2OZTTw0dhT0yH1gqOGlkIpS4ahEGJDbFcTNUb3jrl3w0/iN1ZUyac9QiSbf4YWJahi5IrlA0Lx14sgAiJMK9q4+hUgpKa6c1bXsZ6nEB3OhYCpAIKawyhl5aknz+4X36+vrAEYqx67Gl2oP4+eHNYNWd9igD4R/Fr7TFJyLogYwXzKZBLDCMol1veNnxHJJWMWULSuYhVGvY3XXx93hZFvbm6ugpq1AEZVUSv0vePilJRSTjgqe4SQ0CCIxIqTjSZEhnxKCpGjoRA1oZrRMlDKgNiIpw1SRGL1bGYEERpTohiEhJpgavWzBSSSUqRJgUYCKShGhBgZzJBqSCG2buQyXnhFRN1IU0NKiTZFUgALBjliQVDpMYGSAxoMmzCzEaXQdR0SGwjVyGNCRBzPJv/OVFeflKqhR1bHJQmJyQ09BExBgjsPU0VC9dj1HkQ1QjVqNXVsv47PxY1VABuNrJ5zJE+vG++p1OtcdHDDLYponuBJwIjBUAlnJ4esJst4LKZvDWzfbdwVRp5qpL5+sCtsWGAYqjf19dKXz+LLrzjLEcwoeXAPo0YQJRFRBMVGH0U0Q8TQGuSE0GIGwYRgEA0WqhBYYdDqWRljBVkxL6UUAvgyG4KzIGNgFxyLeiDtARjRGYRiRiQSUkBUaKRBoyIUsjpzJAhqAypQTPzYwQPKGBBJxCAggZAiUhlh9/IQBbSuiASfACFGRIIfA0M9Nw8epcKG8TlUQxVZGZlhlHo93TuPD6ZnORt5+iSYsHn1/poxzb4SjRMp+ndP77MKrNYCZ48n9IyBh/cCJrdx9oaIDRlT0MGNQxIEDR7wSaAEJcgqmBIL1YxBxJexULGriUOaUg2/hm1gQlAliiChEOo1cvznN5MKhQKrWCGFQJsCcaS5cCQqUJkbQYOCGCmlujolhzkp0aRITIkQpXphHEObe1qVQgxGTAqlfnpwWjWrT7hGfAVIElBRAomYGghCcPIUITpel0B0qyGIIaaYOFApYjS6WjE90A31Sk4cS/XGFY5U441mSHHjqvC6GpwbnU+K1fsERVTdIYhhWiglo+aORiskC2Wor2eCirY+WcwQqw6tlErlrk+Ctx93h5HbGOV7MFRK9ZAhEDRiwZDxAgLUiDwQ6xIpjA4g4AEngAorXBlW3xHFA9N1/A8gzguSKh5cH+sYff2S6trfQ1j9PAZr698x4mU1Pyj/WyBUxiRanTgiSIC6nPjyDBDcUCQGD6aDEFIioG7gUjmhatBiYJqRYu79Q65e3qGQBEjikzurYKprRjOepbkTsfFZq3Gpe/XizsKqdxfMmZM1TC74yqVWKHlAy4BVSLrOvwtMDgd8ZS9rV3vde9ua4f+ocZcY+erAxyBvxOUpRHcVUL2ETBH4ZFKia0aj03McvYk4CxzF6gQJhIAHPX4EThuIL/gWziaCp8AvjJ5+BVdGQ54epn58WgPF4F41BjlDld45Cda/K1WYga3d4mrspRRiiRQpxHGS2wCakOCcs6CYRIoqSYNDN3VYI8Xji9E7qjnsEMsTnPDVySeYe3l/LpadubI1bKxG0VUQ6nHU2USN1uMupUDJaC4ebHOWhRGVM+9b/9u0wqz97m9r6HeVkY8XY522Us0ExQOSGjR5NC5IMBwuWmWwPEh0P+zMw9sZUYzRcbxUY1YjNQ1pZCze5qKJCEEgBqsMTSCYeLSvDlFMiydazHFoSIEYIAT38n58oU4QZ4WEGghXYBAxVISuTagGVDPCKqs4OoK2bR2SqGGWKVF92QK0Tl0VsOUplhKaIqFCH8FZn17UPWzN4kye1ZgC8jP3pmJhdGW4Ts/ekdnkLLty5t6WfMaJrZ9XsLMJnnHlHG3EV+OzweZ7xpOXMqydbPGbH6xG/1RqUGpWbIXhUqiBTjV2Q6ZgCXDvKR7YRanBoCmhenOHPAKRaZkWgyCVPqsX0GGGs3Spshrrj/UbNrITIUaCGZGK6zmbBxjH+D4043wmpAr6Y4AYEqJGVmOwCieqwYgqVpSY8Dim1BWgHoMRkAA2RCTWySURETfyBeWMYVvRKdgbqdv1R7aVE/L7dtbIx+swff/aYzLoeq8nz742ssqZVf1OBzVomT57fUX8UeOuMPI7D/QMlqXicATRAsERuDj6c6+jFROagdiUyJHgSRkqFkaLL9kiHoiN3DMVjlQsKsIUsZt5hjAER/uy9j4/bodGE3SyGvhKBVVj4GRG6fvJCMfPHm920DLhXkkJrEzwxleOOMUDo5FInfhFfQINfSZr5SvGGKLCNwn1GgSPA7IqPQ4DrGi9jv4s6jHLnQmhMxqUO2DIunG+lTc/C0fNqEHqWw3U3++XbH0S6JqmZfzs9xhcWV2cKreo7MIaBhuXNDWscrrUgMys4m2oXppKRfnvPfVhWMW5UtPZ0/fDGc9gehb3nfEuNfO4vpSue7cQtBqnMQzqq9I4aasHPXvulQbTAjbeVE8aqWqFXmFlQFmRFKfrYSJQDBWl73OFCxXjiqAMiIR6QXAGS4VBC7nyUlaU6CIXN/CRBLjDyNcfhTUMfof31vL271m7rZgJIunM9Sij06icvMQVARDWnPrbQZl3G3eJkdu0TI44+s6lahpr9JR7Xp2W33UmQ4gIOmktxu8ZjWN8bTBc+aaGjlhSyxk1HFoxripYII0UZv2soXrhYFCkygeKe1+phutYXybvNHpoEalwxHljM6PkSNd1TpUBuawCuXGUWFbnUVypWEqp6556MsuMKEOdxLHqRDJZ/VwyK3gQDdqYMB0nSJhYQMETY9O/8edQvUmIq+ykmUEMZwx7Pf/Rq03XVuzs3wJvdQDTv2WVQT7zXbxHjFyK01Jj4kXP4LVRA+IwoQwZyYJFqsKuGmuoRFpVH8KSNHqbPMDaauFpkwoBolT+XBllpyM+d4MXVMKUaLFgDKPXXzuH8UJLcC1LExNZhH7N62uFAyF4oqiNiRjD9H5Pkih5GCh9TwhuPE2qMYgEAtGZiSFTBFcVip+yiZ+ZikMrRGhsthJB1cBN1GOOzmSiUteZn5ElutMLn/HkElZxyNqENzNfLc7AnDzh/WjBk0ljUo8RdijK2c95Oxh75/V+z2ByHfJb2AOdPF7Agk+AokZMNdldbNJgrJRso/4lImIULe6hLdeLWgNDEZoQq+5hLYiplNaY9PCDk5pQGb+jaifqz+NNBiqerV6w8vJIZWCwaUKaKaEIJfrNBnODrss0IoQQiWGlW0lCDZ6NYP47P28jhAYJyeOIWG+pOf6O6x5VKvXJ6BRWeqE7IdiZif42j2FNuwJnPeuo4hqlxsUiJXhQGtXjnSldb6uAX8bPqg9EJq9/57A7nt9t3BVGPorj1+nDSVY5eYUx4BnfVemEsbip6lisGnlEaCY8v6K1oqfTRtFcXZYnoFj/vcZ/h+iZ0XEixLVgMLBmGNUzjdR9qsIoW0EdkxWz4lqNRHXkmEQI/rsQIVVJbxAhJPEVwJgMKDSR6Gs4Jp0bb1glnMC5brEVHPDr6a8LIVDugIXrHvlOOu9OSa0wqjPPBotmrgMa4wUzEJMal8t07Y2CFZuyxozOQ23KtJqtmLKzQ85MqvcEXBmW/dtfSBFW2VBBDbSsdBKm2TnfyZNXRgJ1mpERn48e2zzzd6dWegomo+NMK26guBa8aVpikxBWCsAY3ICc/vNVZ9Ch8vmZGOOKETGnEq2K/qmwSKLfWGdB8GqiYLRNS4iuzgzm2h7VSn1WI7cgpBDQEDDSGcgRoweRIXhaZ92Q/firVqg6BsATPbLSl4sGpxKnRJyQJ3YFPx+DsjYZtBIBccyGGlgNon0V1ZrkCnUVLlNeSsaYSGqiCUOCTBCy3vF668+uOj9q3BVGvu7Bx7G+hI7DL+QKq8fg6fFQPUQMzgdLXYZjTP66NboxVO8bGzfCs2zJqOJLmLh3bedbNPMtZrMNkEjUuAqQTB1vDj2IElUZxJV2wQy0IFYIVf24msBxMnSrmVEJpYq83FhT09B2XVUcNmip5XZmXrAgCtH1NONqFqiUaF2oBKua9LW0efCkVjDIjoJX197Wj7Ea99pzsHVx1ArarTsnD2KdfQlqKOLle5arN6+TXg2jECoT45nUPAnwpsm1llgar2Gw1fm8ZzA5nGVU1vnhMWkzQog4Gb2SMExW3jWkpspc4zTTRdzQkzQVv7poKUz1pP4IIZBiQ0otkqIHm82MrQv3s7l7iTjfxkKDeQ1YDWgzsWTKcOpGq5mYe4L2sDiG4RTRBZYzQQtqS/ewapgFsELBJQmN+uohMTGbzWhmmzTzOTE2FAHJxQ2hZFIHJjpBpoRnhjWXlazAilOowdWMlWElEYjit72xtwaNk0FVVmjlyVd0oU+IVf3rnUZeJDNqzIoJQfHCFDPn7UeKVotzBHXSqDFOu8m4w/pxrSXo3nOBZ1zjQ0dDjzUBwoRj60lNGM2lq3GtVE5qQcHESQeXz0owUk2GjImi2FQjtyqUjYHUbdK2MyzNkDQjtC2z8/dh3RZDmmMhUSQAnmm05LRfjgkxz/7FphB0gJCIQ4PkFutPvdJnKNVDeoSquRBqsBnNSKLEmIhpRldrQSVExJQsA6gh4omnIC7UiiI0QC6CFYVSSAKmGXcETfXgbhAJSOIsT9H8jkYOSrCzRp4tV5bKA1+tUlup90XNTZQKN0Y8GEIgU+MhtcqKFUz8eEwce4/+S01drVj/U1np3BlXxLfYwzuPu8LIQ3M2hBYRQgxIWOU7mZ5X5XEWVnppqYXPMmU8KzNjRpBmxUmPQaPg2hXBBVkpweY2bGyTunuwMCOmhmWaU0hoP6BBaWq1v+ZCLgMUxQgUNYxEExIpJJIIpJaQl1hssdIzixHNhZIXXh8qucYNVvUrQooN3eY5QnsOTTMUr90UEiYFC1o18z1tTJSYKCYgDVE9Dol5QTSlMWOodbAufXDjkaHq58UnwvpwdqfKjrFVMUVwmDDKolXdSDUIJfjKFMxrSBuFbA4nM5DVaFpBitXCIANpGCeSe24IY5IPx+kV3UzEQKzF51M8ZVYTe++BwDOls4cxBp0i4gzCHWPl7aWyFDL9O8hYGhYdQ49p/Mgq3S9CwgMzI0DbQbtJu3Wedr5DCR0SvAona6HPmV49cGwqRVd0wHJhGPrpJgRTSAlJkVkzhxC8uLltfWketpCckbyAvMTyKfRLhwbaE1IizXeIsy2km5MJDFlZDLWCpuJfHXrIS/o80KaGHCJd1yKpcbAdBXJPyZkqvCSUUuOSUBNqIwx8a+JtxMhF3p4nhzGOCjUhNwafocohPBeBQiMCAUqpaSoZ4Y7z527khbF7gpiRp+8aK43CeOPfYgejrbyrfb3rX///GuHsYTilJJgISd46S6cMdWUEgoxqP5e2ek1jhDgjNYFkUtPC3pxCxOlFpIHUwGybOD9HabZYai0c0KUnPHJkqNjSEEruJ0ypxXuxWB58QoZAyRlrWmLXEqQlpoaAa2W0VbT0yLDAygLpF4TuFEHpLKNRCO0mvXTOZhRlUQZKLk5XqpGH3outlyc0MdF1hTZ6KWAMiaaRmuRq0VRo86lz3lJpSPGA1KJ70THmuVPwpHfiYTtL7VGZI6kefKVz8aqkoEoIrgTFBEUpjjlw6nFYSYXVK7hGlWOipvgVdK38baQOf1S5253jrjDyeAeX64ZbkyAwcb1j4CGTR3av3cRETB0Sk9NuKZLaOZI2SMlxq5VMFMNqMUYiQOyI8y2s3WQIHcscOTw9RTkikzEVJLWQGlI784nTZ8hewWJm5H5J3y8qywFN6ihxwVA2SNF7w4xB7imBEDLIEspASkuiLmhSIOtACIFeEod9oSwX5HozGwlozpTck/sFw9DTL3va5JXui2AsgTYFZl3DLLTEqLQRZgGk9CSoojGF6EaZSNNK95aA7gwb9NYsZK4sV1ZPcoWJJxcgUsZVok4kDUZUXE+uWitYXb+ikp1QKK4hDXVVLrixj7hbhbdddX7UuCuM3FvnrMbIBoxawxVlt0o2CECMvgqERIye9bPYYMGhioTkdZWVhnOtt1WeraOZbUJqKaGjHwqnywW5X5At1yob9zQxGOSKUvslVnwFETWsDJAzWo18MQzEmCilkOZziimSEyF4F69AxkpBSkZU6UKkIzFUrcgwKMd9j5oRAzTRmQYsT82NypAnOtFKoZjQ98ZQXI46pEgXEpYSXWhICMGGuqKol4hKzdDK2bpK1ozGKbuKj/VsZiGKr3hJhIz6zxMzI3hVk0+WSNX4B9cUhQhSUi2aKC6jrq8ro66lZqIjte2R2Rl48rflyN2+7oKR7gh+sCp/5a1YS5zZJkjAQvJMoTRkE4JETJ0SLGKEsiA2DSElCJFEwiqcCRvn0fmcIoF+KAyaOV0cUoYeQiRKIjSeaLKhoDpgeJFCFPc2XgRQailXFVFpRnN0Pl/UA8zUECRRghdFGMVL0rQwqLIomTY6zu37nsXyhDZGZk1lu3Xwz1cvGzP1VUnIlAJNgFxFjDlnaDskebesU0l0nkwlKISQK/sEKayo2zs99XQrRsNd+zfUYNkCRZRGXZYrFtbfOM0JleDHq47JpUI/E5smi1hAxUj4pAkhTFLciBMMZu9luPI2NJCQq5GHt/wtiBADFCLFAmXwypaoigZPlMSowNIpuXYDaVuQgZCE+cYGTbuJNB3ZYCg9p0NGSw+WSSHVqh5fR/ribRRCSCSp6XK8f4lrPMqqEg8FU8iBvDAv3cuDT8iEe3yxWi1fEIWl9SyzYLmQs3clSBRUjJKVIS8A8wlUihtnzRukKJXe86xSKYWF83t+zJ1CCCQi0QaCJFKQqsvXqqVf9TBZhwbrBn9nW7YweVPPb07UXq1f9X/XhUG8xHrU8bvxKuCljaNBhyogi+YePYr3ynEbgcKahmiabO8RdsVkTeQ0Lkmhsq+W8Yoe8DuTyBIYJKGxYShj+VYm4kyNqbBcLhASxEzIBVkmJM3pZoF2HrxWcshYzpTTY6xfIubF0UKNA6xgWlkZU79RKGKFkgs5D86uUKvgQ8Jk7p8tnnnNqhAU0QHtV82BRIRWUk1hCzqcQslI7gmlr0pModhA7pfIOIuqrHfWJhdy1W5dMjbbDIG8VBYpUywTmXt2N0DTzbzCPxbn2dUDUTNFazJqtBeZMo4uOShTxyzDxBAb/HYUIyavgirV02atmVHnLusHBvfEGpDQOo5xEh3RjESn0K0GqQ4rFaTUPivi3rwSjiGu61feA0a+buDj8/oy6ot2hSUEigR/LoqXJ/ptKL2uyrFUIGRvbaGJ1MxpUwvRl8d+eczJ8T7DsESLG6wOHlB6SjpV3jZ7YgmvkI/iktyxN6KqTs1JQ0gokVSbCE1Bko6cM6vUNlDWBVE41Cl5IPfH9Dqw0NrZKy+naxUw18XIjBhnFesP07Xq+37SzJRSaCwilghdYCYNKRbmwZNtVBhjVvnuGq+YGTE2Xo2j6gwKVjOSI/031uvXpkHVAFUMS65VUcNVm1JrWtXPOahgIbjRFq3Gq2iSqRhjlUGNVYIMNor10qon49tBrDvHXWHk4V2MXKzyuSFBbFDzC6Vj5rLWLo768wmviQdAzqE3pKZj1m3QdR1mxvHJgQdyQ65wQ8llqFx7UyW12ZdfGTu26rR8llKcLjSjSZ55dae1kseOysnxnAJjD8KzgTachQZTujxnyjBMjIRPBqNpGvp+1SpO5Gxd5HgdVZVFLhCMlDpmJBpzJxFNQZQyFQefZViyrRtv/TxkShJpqFVFYlPCbtSDl1LIWhkagqsvi2LRZRjZDCvB2ZKooMmzxwUwce7dzJsSaa4/i68KNsoiRr3NiIneedwVRn7nWDfyYLEqmCIaE6OCUAAtY5rbMd563Z/faCWIx/YxNcSmBQkMJTMsTteKeN0za+mdiaGBemsNwAqqq4Y2cNYoJ49tholX5Bc9O+m8SmisZuKO43R4NH7iKDcwkSp5WHlmWPXn7vsegJTCmfS7Y1w/t1N6tPZDbIdI0yUGjygmiYABmbHusMoMUqz4uuJsmHT2hkzt3MbXjJVIZoJE1417zxv38F7/YbWts7nRF0FzAc2gwckEVgYuZoimyZBFx2v8Djr2dxh3hZGP8tFQC/lEjRg9uJNa6WPJqUITqRdACEHeIg6C0YCUtmkQ8f7lbTub1IlDXmvgGaDo2NoCmhBJMUGN+k2LF+3WQo5R3GSqE5VoxSlHYkBM0JLPXPxRwqqh1Kabq8acY59xNDrW7DqWuvBjpUIGWXnp3C+9++1YoCxelDFJgKsOaKycz9lQbRkltRDYiA1Eo0ljT3Kgdq8CX1m9fdCa2m/U3Zt5IyNzOYOfoyeARgP2+1CzplY7KARF1IsgxvUwSIvI4LLekqnZoqmx1Hp21e2jTizV2mOdSd77buOuMHJ4B6gi3lNcKxdutc9gCpDLuESP7SDWblh9lqqvGHuNECO5euSm6r1LKVOv7S51tK3z6mo421HrK9W8+ajrzVeMz/oEE7MpQzdWDK3DiKYWNbhSEkKMpPo71YAFMA1obih1hQqTF/TiEnCaMAX/2b8/Tbt0rB+PwwYl98WTNhIJMrDdNZUoT7WbmEzFIPUmgIWJ1zIJvnI6heJ0ZP2eguv8gxklGqi34HMDry3lRg8uRqPieF68+LqIB7+lMi9iTg9rXdmU1c9Qpb1r6kldY4TeadwVRl599vRfqH0PRYQSIkW8iqWIL5VBIg3GoizO9PpYH4Iy5FwraVZezlsdR2ay6YHa6TE5Q7DknO4gWDJnTuouE75Kehmd4s043aPVlaMMqBXHmFWiMBYKUEvuGFkzqfhXzFWAjetrYtOcMXLTwXUKOHORUq1sb1uGYfDMbjXqMQBeL8WbPGr2LVl0MSBhiYTEYVECjSe5hBrItqtrJ07djm0ghLHHImNmyPU2ZkRCrRl1LO1QZMxMjxOu1OsB2QpJjCK1QCIEMDf2YS141Vo8oSjFyiQnUHO6eB2evSfgSiaS6oxOE3VoEKKndcdGV6q1BsxF+b4VR6HUKvfAuH9QoWT1LrixRduOEjvaNEMoSBnIWij9QNZM1gErShMFNa/sKeZyWhh8uVZ1g5ABCEhMiERKNlf/KZ79i2OlT2VB4kp3PVgt3zPnigNwslzQaGHWzEghef9GEiFskOMCFYXhFFBSExiLOqIUJHgPxKKwXA7Or1ePLiN1F/w8VIepyWYphpaIFiO0sSo2aybHeMMiAAAgAElEQVS5UrUigtZMtFaN0EjgCVb7H4JZRqJDNjFfZYokN9ZxVUEZm4E2VgNXgVINuDYWqd0JzH9n6u0raosNU0WLF6OMq+YYeNrbOLn1cVcY+chGjP2yAzI1x0G86xPA2LpsvGg5Z8rYlGd0NUWdWiyFYtHbvzVzmq6t+NkchvQ9OXuqfIQrucKKsf+JirqAiVo2BlgJSEhuJIZPOhnZZBBZedg7IdjUjddqgbUUxoKZQcEq7Rijb58SwxzLPdYvKVa5+urdpS7fVvXdIzy5syER4Kn86IZsJaNlzCR6WiuJIGEgmHclCN76lpHUKABSO3ZVujOph6xZfYeNnJVgwZuWWu1BPgX2nt1FFavBu6hvOjC1/jJ10Vb1/KLO1Utx7tFUkbLapSLX+z72hnm3cVcYeayNNyNWK9LxwEI8NU0IZHP+WosXHpQhO8dtKy/u3iegxdyLp0g326Kdz2ja2YSRh2Egj0v82D64rgagU3paQoJU26uNy+VQm9yHSEyrIGpgVEQmN3rx9WbV6sEFCf5doTZDknoDhUEHDJ02AwuBqaWctp0npgwP+upElJF/X6MMR8hyRj8vwdvWhVVPdfeCSjQh4X3ZvVa1ICZT03wMkq3iHzObOvDmyj8dH5/WGtREyZmmNuhHdUXxFYcZUn8nqjUvkFdF7GObiuJGLwXvL6nqkoDRc5tNOhep/WDebdwVRl7teeo8ZdSWDiJe31h1Dr7segJoGIbaVbVShxKrBLeg5o18umZGt7HJbDYnpeReW716Ri1XhsQ9CKNXgerJxwxfQNWVdLOuoZSBFJRl7jETYtugBIp40XEoq8jf89vUXuFCCLWJKZ6McYrUM6kh+BYlUvGrmncqkGhYO0ODVF1MT78cCBIhVuNklSleD3ihMhMpvoV5yTljqTIVxXfOcDhQtT869kkB6q4TI/xwQ/TE0RATsenY39tnGI6ZzWa0oZ8MeWJk8ujZtfLfLjoLNl73VS2pUrwwBEh4TOFZ5UrqjkF5pROnrVreYdwVRm6VOsyj/EoCJgmJLUUigxpLLeS628TUfy87ewLuxcZ+tqogqaPdOs/mzi7dfNt7jhQjaAYbaoNQGBNBVmsiJXjVjF829+I7mxtezTOccv/9HfNZg4RNvvf9Z8mLlnbjArHbou97cjmZGBQ3CF1RfOodvWIUGlLFk8Wb0geBJlUtTJW81L0q26YjNI0HwxJpzMjDwrOQUlzlF+MEvyZDHA0/G6HuimeVdvXXmncVNSXoQBKopcMotabUIBTh6OiYrd1znA6ZokpJDTl1vHzjFsfDwPkLF9k/uYWmwoVmhCmroLBI8Qyy1mauVO8sq0cW76iQJDCIb69iRm0JEkafMUkNXLn4VvntneOuMHKtbSKkNsd3mWyLSqSYa5aHrKtdxbQ2fo9CsMBQjSnGQKmeMzQt3cYWoZlDTK7eG/cHYjTueiPFfDc1cThA8E1dQ2wIUeiXx8wa5ZOf/Ch7N19kf+8WsWn5zd/4JS5eusI/+xe/x7A8ZXf3HvZPZAqGzNzbaf1Zxw1WU0JS3YtI88TghBzRpqFputoQf1WuF0Kgi7XKPzdk610SXBTCCqqMnnycaBOVmDNts0pEjSuiVmjidPyKgg2xVlqZG9jm5iZ9UbIE0tYmr+8dcuHey7z45nNI05LTIdubW1y4eJ5w+7ojiCk4rYIu3koVw7qR1oBXClL3ERUp7sGroMx0tZOF1Jhk3O7lncZdYeSE1vlsXFccYoulDhWhZBiKB5n90NeGPSv5Z9FaFl5hxbjz8nxzm3a24dz45N1qVy6rnHb1MgGplb5uJCEGQgzQeF/xo6N9/oP/6Df48hf+Nec2tzneP2FY3uRPX3iJnQsX+G/+6/+C3/+DP+TpZ59Hu90KC0aWCKB206rHgRWCJq+bRNyTi5FrJzE3UN8mxbOfZeqr2DYzKJmiA2WQ2iJi1RexaZppYoy049DrFIu0cZUddRK0BpuSiDjTEURcNDcKnkXY3N7mdr/k+OSY5eERV37yo/xvv/v7LNKMnY2OmwfHUAqPP/wQ7N8AbNLvOzNVe6+IZ1QrpVPVi85cjatMVchhaBVwiRczmx9tFHGSwPzere9G8bbm9W/FaP8/DovRd1qu3lNS9PbFtUjXgyWbPNL0WGvmjqjfmBhoZxts7JyjnXXVOIaK/Qpyx66/1MzhuqrNo/axf7ny93/j13n+mR8w71ouXryPfmlszHe4dPEye2+8wT/7p/8D5zbgv/ov/yHz1ij9ce01HtYyjbXDrTrMKpXSg5XexIqiVacCzjaFCE3XTs2Kmq6rccaM+XxON5/RNC4Ia5rGd6muP0+1s+ZbeC8XJ3Xz3kyvRq57BpWxSVI4u4mWiDi0ENjbv831mze57+FHmF+6lz/4wpcoXUdoOhaDcbjseXNvj63NeZ02KzpyfEiVWIS1h2uT4uo61SAdXJSnuMDLS/VWsGS1Enh/yHcbd4Unl9ThN7sWwBqIOOvgO7XVZbb43o+j58rZq88jnoVTM9rtTWa752i3d4hdi4gSyql7zLzEBqcOreQa8I0XKFJy9eRa2QALzDv4pU/+NP/j17/Ei69c5/bxwIOPPsTh4SF/9d2/5pFHHuEbX/sqkjZ45m/+Of/g7/06//x//Ryn6TJddw6iYGRSqmq7gPd2BIdXwRsURRrf914EnZI7idg0ELuqiU3OQLVCFKdBiwaGZfKEUK6qyEBNq6kXTwwwLBdkbVhG4bhsEYqxkwNFhRJAQ91pz68KTRPpT05JIbHoT0ndBjHN+ItnnufL3/w2993/ELHtuHzpfgZN5MUWl7ciQTONwLLvaZuGZR7qjhxgaqTKhqkpWY2Ed9oS836PGavn6h4+YS63Fak73oGVykrh6sX3RMazDU6phZqUQKKrAG3FFIz6BX+uxhg8W+gtKQJdajl37gLzzR2atiWE6Mu3GcvFMafHJy5qshVVNzIOfd+vGuJLVTXmzO3bB9y+fZvbt29z5coVHnrkCb7//e9zz+45nnzqE9zeu8XuhYscHJ3QBuNf/Yv/nXsvXGLn0kWuXX+TvheaboO8hBhtUk2OuRpvpr9K8oyKyr7y+KUUkikhJpqYSMGbA7Vpi9wuyUOiaTri6QlHR4XcL+jNpmIKDSumZcTswzCQc+a0nXNCZEbj+v2qXwkEyrLQznfYOzkhzzYZYsu//L0/4Pz9D7CzfQkQHrj/ChfuuUyvkWd+8H32+gUnJ5dBe5o2kPNQ9UWGBO/1ojJuJuCxilZZgCsYPQI1qhbdXM5iEtBYyOpZ2CJGCdSOw17s/G7jroArTTAa8e37UsC3yJ46Z630IbAqOogx0oxbm8RE183Z2j3PfL5J27akGJHgpWqL5QnHx8ecnJww9MszmHWdCQGmIG9c8ufzOXt7e7Rty7Vr17h48SKf+MQnuLV/wM2bN3nz5i0++9nP1gLqhqsPXmV7PufCTuQnnniQYCeQ+6kCJ6ZATCtBVUotbTvzY67HM0INEa/0WS5PGfrligJFvBIIp1gdxvhnmLj+uh8Kyz5PO1Lc+bnjhroewzl1Gc1IakRTJHYcnGZyt8nrS+Vrz77ER372U6jMuPLgo3zkIx/hwQevcPPmTba3t0lR2JzNKMuFC8lMa8NP98yOXMSPr8YCGqM/gtSejh4baYj+OvFuaFrfZ2H10Cras5Sw+O6++q7w5NFyTcnjUKVqnTWXGkyuDHzcjmO8cSaBtpkx39pmY3Obja3tyjGHCYosT045OTpGq2pwHd+t7zYHtQeM+p4/asZsPnNmo+u4cuUKb968SQiJ3d1dzp8/z6evPEjf93z84x/nj/7w/2I4HTAbKKFHCfx7f/fT/D9f+ApJmkqRCTln5vP5KsiUSIorffjIkEyUYClQd4Ow8RrUY1crxHHCNomu61iYb3UeamHEeF5jJhWqNn44pdmMhDKQKAQKXTfn8OSUJR2HWfjh9Vd47vU30W6DW/uv8OgHHuWll1/hjZuv8cQHH+Pee+/nxo0bvPbqdT7zH/46y71XYZTiCs6l156IZkIJnszSGohaTW6ZMBVl+MQrWMTjrDGBJM69i1jNjNqkSn23cVd48mhKxD1JrKVm4CKnMbC809OORt51HRtbm2xu79DNt5EQpyAsxkgelhwfHzPkHhGhS55NBCZN9ggNxu+Yz+fTv2/cuOHHWKttbt8+YHd3l5/5+FOYGc889zxHR0ccHB7x87/4i5y/eJFbBwfMuk2+9IWv8Jd//m/48BOPYuWoZlUL8/mcnEc9yKolxJ1io9Gzj3/L2fu89HnwoNugZCVn3zdIJBIbP3eJjVfu17bY4xhXB5czeFGGaoUH7Yz9kjlqGr75/AscSsu5ex/iuIejU3XlZ4SP/vTH+MhHP8Z8vsnly5c5Pjhka2PGRtsw7xoX0+HCul6q140tmpJvBFCrghSpXtu99+jBR0/tnK730NEYVwHq2Jm4BrLyXgg8k9f5uO64zv5Jy7wGVYDVUgs0MdK2HZubW3QbOzRtR8G3OwkGp/0pi9NTSvXgTRPpWu8UW9Zu9vg8arxzzoSQyGZcvnyZl156iYsXL6Ih8sSHf4qnn36a+++/nwv3XOL05IjrN97gxvVXaWYd1jR89KlP8u2vfZ1f+oWf56VrLzOfb/LpTz/FF7/6XUSEvl9gJhUmVQ+nK9ZnfRL7NudexDwsnXlw2DFuIqCUNf16jA1N4zHMYuFdBkbotZ7+zzkzNJHTDF1KHGkihY4jjGv7+1w7zbz56nVeeOkVHv/QRygGTz/7Q7a2Zrz0ygtsb27ys089yfHJgp2dHY42t+i6jjeODn3FsECZOuIy5ShMs8uRSZjUsrYYPOUfPEFW674Qz+UD4p25zDuAKeaVYjUBaO+FZJB3dvIUNypYdCwd6w2Ncczk+etHTD7b2GK+sc1s8xxN25LN99cxMfreOO2XLJdLurb1oC0F32FCleXgXnH0dKNRjWPIS5puEysDmzvbvPLKwN6tWzSz57n//vvZ2tpha3ubN994nQsXLvDoQ1c5Xixptrb40y98kY3tiywWICS+9tUvs1ju89THf4lvf/s7XpepgeUie9IlBFJ08VTWtRZ59XhjcnltUUUGRaJfF/GOKgzliOViSRSw4tnNtq1ZzZKnSQNM2JggnIYZR3GTmGbsny75wXe/D/M5ZTbn9dOeK7sXOX/5fm7ceJPN2ZwHLl9ic2vO6aLjwx/6CQC+9rWvsr25w/33XmLv5pv+He3GSiFo4i07JnFdpWnH4vXatU5CQmKpCalAoECtMhLBCy60yh+QauAJgpJ+RIeKu8LIi8SpZUESj6g11F2TiQhjoW41Rkk0sSPOdkjzbVI388/JS/q+r4pCRYvQhMYLE8LYnB6GnBkqRMFs1S+RCApZs6f2FwukDRyfnlAUdrfPQS6cni45OHydzaMlV64+zF/8mz/h8PYeTevZ2q2NOY8+dJULF3bZv/UgX/yTL/DmzSO2XvgWT33kcebdBV5+9SYvXb/JqcF8Y4uT49t0qWNA6fuBGIO3SwuKNDO67V1SSpy/5xKLxYKNrU363kVqi/IGVhqHZKGQpBCTMJsFjg8HtARyEDZmG4QQ+MBjj7F3a5/Z7gVsY4PXT4755je+zvHJIY898ghyfJuHH7ifvf3bXLp4L4eHhzz/wgt86lOfopGGDz36BOd2N9jaPMe5c+e48eor/OrP/gw6HDHf2GZZ94ByrOyNW0WdEpRYy9l8C7SpK4BYjTmqU04EshSSirO55jmQYkrCi6RLVGzkH99l3BVGPu2jWU9wTCY4/paJ6vPEmbdZ9pK2RNNE4pTIKfTL06n7Vailb13b1BSwFx+XUqYqm1GlN+17X5f/Uoyum3N8fMpDDz/Mt7/xNeZpRjvbYGvjPq6/foPNzU1ef+Ua21sb/NzPPsmf/cmXaDc22N/fZ3d3l+eff5FnfvB9Hn/sg7zwwgt866++y09++Ge4vXeTbq587GOPU9ptDg5P0HAVNSE2HcthAIw8LGmD8OCVq7SzDUKKdN2MvsKp2WxGKQMHe2/Sny44OLjNyfEhRweHLE5OyMtTgs3Y2NoiinHhwnm2tzZ4+AOPQnmO+XzOyy+8yGJxAgQefPBBnnzyST7/f36OcONNPvj4h7h27RpXr17ls5/9LPP5nKeffoa9vX0uXDzPCy+97FnUJnLp0iVuvHSbWRKieM5CRhoYT8l7gsgpwiBVVcrYZGLt/+IyZyhQJdgeV4xiLvfo3lLDfmTG864w8pEzjniGzWoHpRAKsS7NRQM5j1qH2gJORkGWTu3THE87D902HSkGTItH+cPAsFhOwqepBwpOGVLbToi3wCUPymK5IITEuXPnWByeMu8avvWNrzKbb3J0e4/9w2N+7Vc/zfHBIffeey/d1jkOD4954cWXeegDD/PAAw/w/A+f5TOf+Qyf//zn+e3f/m1+67f+Y/7m2ed49bWXefiJT9A1CW3mXLh8H/dcupdsga5rMM0cHx5hZty6vY/0hTdefMX17AK7586zvbnJbPMizVw5f98jHkjngZOTE4819m+ys7NNtMzp4W2aqDz9vadJUXh9/xp7ezcZ8pIHH3yQ++67zD/5J/8d//gf/yO++72nuXbtGm0745vf/BZXruzx2GOP8eSTT5KL8b0f/JBLly5xcHDAZtOyOZ87FCyDF5+IUGrb6KJexqd4vxffrMy3mCljlhmqaNkoVSQmY9EGtYpIc+2H4wUz0QR07J/wzuOuMPKpRx9eJIt4h9MwYVNBBiE2rXeA6ma0sy3aWUNoPJGkVggom52XcTlV6O3YSk2ADMPAYugJITCrSzcANuqvnckY1CdKUWibOfdcup8XXnqFqw88QO57Lp7b5ejoiNPhiKv33cef/skXufrwI1y5epX9o1Me/+CHuPHa6zz3wotcvHiRT/3iL/PSSy/x8U/+HA8/9AC/97nfYRiW/Ce/9Y/48le/yfXr+3zsqb/DV7//LbbPXWD38n3cunWL7Y1NTo4PefDKFV588WWapqGZdfTLzHLoOXzjOqrK9uYOITaYeNp/PtsktR1DUZi33Dzc59WXn0VPj2jouXyuo0kNr15/AVNhd3eXV1+9xubmnKc+8Qlu7x/x8ac+wYsvvMwDD1zhox97EjPjhz98FgkNuxcu8OCVh3j9tetcPLfFE1cf5JXnnmani4Tiu0IX8yp8LXi5WvZuY1L8PpkZQ1kVYvjOcNm7itWeLaMWtNQ6XqlyaC1joUUtrHgvVAaN+pGxRYKryqqm5E7VWgyEmJCmXdsShVXGkBXtWMy3+c5aGPoVD9403SReGpmbURY76UZiIOIsxhe/+CV2dnZYLBYs21kNYhOlpv6bbsbtgxP05eu8fvMmP/mTP8lPfewyF65d4C//8i959dVX+fCHfoIbN27wzN98F80LsMyzzzzD66+8xPndy3ztT/+Yey7fizXCc999lZ2dXaRRFrff4HYLu5stJycnXNw6xzA3bu4tKWXpMuH+iOPFgtNFZmf3HIdVleA5hWOODm5zcPsNLmzNeP31V9DFFjYMXH/tNR566CEef+wRnn/+eQ4Pj3nksUfZv33IzmnmqZ/9OxwcHJCL8fLLL/PTH3+KxWLB/v4h2+e2OLq9xwbGIw/cy/HrL0N/hJQlMdTNwdSqGA5vO0HAtJ88r9hQoY3fcxWrLIp77yBSt2OnihRW8PtOHcu7jbvCyD3oq5m5WjAQGZM2q3YRKbaEpqXp5nTd3CGGeNGDanF2Ig+UYZhKwQCG7DsUp+TKvlGpt753+1hw6/LYscysIQbl8OCIRx57lJeeew5CYrEcaJqWUpTbt29zcNLzM5/4Bc5fvAf5/vd55ZXrvH79FTY3NwHYmG/x8rVX2d3d4ehwjw998KM89/Qz/PDpF/mFn/skTdfxh6++zOHeG6hmZlu7LI722S89QQpt23J7/wgR4bXXXiMkbwmds7I4OSYFRWxg1gXy8oTFYjHRd9YfkI8OmAvMQmB5cMRyoyVG4eqVKzz8yFX++I//iA984GEODw/Zu33Ar/3a3+UP/+8/4pvf+jaf+tSnOH/+Hj796cc5Pj7lgQeuEIJvF7p/4zpycIPh8BbDyQEbsRCt0Bdz7bxmpNQETg021cpkqd7lwjuLTTtBE2r7iliNPyJSHHcHAattv8rY3Ciuil3eYdwdRs5o6DCq8mDlvSe1WRBiSp4Cbz17V4oXJGut8lmentZ2bgGJNinqUgq0TbtqNbaWfAnTtuWhpr9bYupAO4TCs8+/wH/+W/+AN65f5+Rk4Wl0CZy/cJEHrz7EpQeusn3+Im035403bvLaa6+iBRaLBY8/8QRd03Dt2jWe+sTH+c63v80r124w67Z54Ycvs7OzxeX772F7e5sQZx4QL5cse2Vv/zb33Xcf+wfHHJ8uiU2tU81LduabLBbH7B2fsrm9xSIXYgTVJRIKbfD4Ih+fIMtM1zYc3Nxj1s44Phr4zd/8Tf7wX/8OX/3zr2AEds/v0C+Vf//v/X1+9/c/zwc+8AH29vYQEd588002NjbY3NziO9/5Drduvcn2Zsv2LNIvThgWR3TBiGVA8hJCW9OXRm3GwtoGrCvV5do9kFG8ZkBxXtG15YYFcQrRQqUeg/djJOC7br0HPLkBmG+iikSUVLXFTK3GgiQsRprGNRptm9A8kJfDlP4upXC69CLaJtqUOAohEFPySvDiXacawlT5TaraldqeQeKMNnbQRDKRkC4wMOO+ey6xOLxF0zUslsr+yRHHzz3P17/9XRaLJZ/85CfpB5fS/vKv/gpN49To//I//VN++qMf4env/ZDP/PKv8/TTT3P9jRtsX9jlxt5NshT+0//sH/K7/8fnOT49ZXnQMxTnmJcHewSMTiKL40N2di+wWA6c22h49aUb3p5jtgPHCxaLU5oEs5Q4XRyTgnDjxg0uXT7P4f4tFstjtrc7fuXTn+Fzn/sdUhy45557IDTs3TrmkUcf5S+/8XUeuHIvXTPjgQfvJzUN3cYcaQOpjfz0T3+U+XzOMz/8Acu9N/n5X/gU/d6rvudmcWakESAoJYy7ao/evNYL4MUu3ozfG/YX845eVtP3rkK0M4+aI0VUiUZdeRXL7wF2RTFyrRKXWjihFlBWxQCxaUhtS9t1NE3jWbve98UZ092np6feUTZGtLYULsNAaDsUTxQta+Ap7bwmRtIUdHpvRKONLRq8xbFEl7t++S++wSc//BF+8M2vcHJywpsHx0ia8ZGfeoKrTctjjz5CSomj42NSI3z+85/jV375l/jc7/0r7rt4nldfeYH9gyXb29uYGbPNDa5cvcrx4oDvff9pjg7/JU8++RRf//o3efGlF4ix4QNXH+b+e+/h+Rdf5urVq9ig9Mf7vHb9NZaLI7oQOD45QbTn3OYMmSVuvvk6Qwo0Yrx67RptYxwe7HF4tMf5C9tcuLDLd/76mzz+wUd59tlnWPSG6cAHn7jKc88+w9bOJo88epXN2TbXX7vBzvldRGfk5ZK/+sHfcO+lS+zdvMXl+y/w3We+y2d/5nEWwxa9DSwte0lizeJ6VtMDf+qmWa64BCokddmt20HtNsLom0Vqwt7wel+LLuKqkwjzvIbIu8OVu0K7UmoSoFQ21StWbFKrERxPd11XA77CYrE4I0dd12iMFemK7/XjE6C2V5NE28wwVoUahNb3BxL/OTPuYVObZi4Hrr32Ohfve5DX3tzDQkM38+ahX/3qV/nyV/6cL/7Jl/jTP/sznnnmrxEyH/7Q43zlL/6Mhx+58v9S9+ZBdp3neefv7Ofc/Xbf23ujG40GGjtAACQAbiJBUjQpWo4kWnLkmlgTT6bK4xkrlYwzTlVqSjP/TNVkMnZmRk7GluVIsuXdWilLFCmRBAGCC0DsewON3ve7n3vPPn98595uaiQmqSRV0Fd1C6xqdlcv3/3O+73v8/werISJ4zZJJg3K5XU+/ksvoCgK6+ti2DI+PkE+n+dP//RP6OrKMTDQRyaTol6vcvLkayzOz1DszrOyOIvXrIPvUl5ZQpV8fKfG2uIst69dInJtWvUK5bUl0qaKHHokkgaaJrFlZIBKpRwrMuucOXOapdUSkmKg6gYrK0vk81kMVea906dZXVkik07SncuTtkwyCYsnP/IoU1OTGKbKzNQkXZkMKytLrK6uUq/XxURWNYkkHUkykBSdSDGQZF0k4Cl6rEvZMGaEEp0BUNtcIQvR/QcMFUKzEg+L5HifyNKGzuVD1n1xkouOqPCMiOgM8UMEsZZFkoRzX1UFk1ts7lAEwMYa6Q7bMBZnqaoqnC5RhBPnZ6qq0RksyaqYkrapt47voRoC3aCqBoamdqawViKF14y4fXeaLWPjlCsVMpbIBBobG0NRTSRJptCdo7S2QE8xTyaT4crVC0zs2I+uyVy/bHN78h779x3ghz/8IZ/61Kf40pe+xNj4VvK5bk6fOsnQ0BCNRp1SeY2hwS0Ueoq8/vosvZkMM/fuce/eVBxF7kEQMX3nFt1dRQzZx62W6C8e5L23XhdCMKeBEgXUanUMU+PWrWl2TIyztLTEQw8eY2RklPMXb1Lo6adWKXP79m0SlkYmZTE6MszsvSlqTZdisci+PXupV8rMztzl8ceOs7iwwNL8JFsHetF1nRaAqiGpEn4QIEkqoRLjJKQNCBSBwENLUhxNKPliABTFZmZkNnz7iM0cBh3jciBJMW2Yjm0ukILYI/yz132xyUNZQZFiHl78zvSiOCsGkFQFLU5ZRhI4ssD1ULQNxAKILHpN00gkEvEIOMJxnNhUET8JYv21ZBgoctxlIULRdWRFi98gusj0IQBfTFElwAtCqrUaruvSrFRYWVnBdRweOv4Yh448SDqZwHfKXDz/Pqfffo+BoUG+853v0FMoMDI8yMBAD6qm8OijD6OqMkePHmV9vczu3TuxrCS9vX3cvn2bQk+Ru3fvMjM3i2FozJNbgUsAACAASURBVM3NocgauqphGQbNpk1XLodMSGV9WQTmthosL8wwumWQ2ekZlhbnGRwcZGp2ma1jIxw6dIj10iqpVIqTJ0/y2c/+KoGU4Nq1G3z6xU8wO32byxffR1c1kqbFjeW7rJbKaBK8/P3vcvDAAQ48cIDJu7eZnp4mn0tx9+4kO3rySJpBO/kpkCPBXyEkDMQMM4gLUtFNkYBQDIgkmSBQCBGe1VAWwMAo9oYKy1A8vY6EnonYNCO6zSFyHKb1Yeu+KFciCQJJcKx9JIIwEiyadoa6LKNoQi+92ZHe/m8QF0bLskgkEpimiWEYyKpgtqi6QSqVwtDNDS+kqmHoKrqhYukGlmWSsAxMQ0MmEsMG3xF5PYGH57jcvn2bnXt2M759G3ajiir57N+9k+m7t3jvzCn+9e/+K+7cvs32bdsJfJ/lxSVURefAgYMYhsXf/+xnaLVsGo0aX/7yl5FlGV3XeeONN0lYKRbmV9ixfTeu42MYRkcG3F3oYfv27WzdupVrN66TTqex7QblcolcLkt3NoOqSNy6cYNGrU4Y+aiqyuLiPKZpcujQIU6efJNyqcrU3WmWl9f40h/+O4pdRZ568iP8yde+Qi6XYefOndi2zZUr19izezfHHjyC7zkcPnCApdk5rly6SKNW4SOPHSffVSCbzeOGEaGiE6omgZog0pIEmkGkGgSaTqjpBJpOoJoEqkGoW0SqePmqQaTqRJqOpJoiIEFViGRZyHFVVURQxq9IaktwRdr2hgz356C7EkQiwsSXRHnhEdIKfXwkQkntqOjao3vCCEPX8WON+GYrW3vI43s+biCiuS0rgaEZnXaVquoYmowkjP/4kY8UygShj9sUZFW/ZRN6Nn4Y4QbgOg2UloGye5T56XvY1RKFXI6ZO9dpeTA/e49GvcnZWpVrN26Tyxb4jd/877h58yZd+TSLc/OcOvUmc3MzHHrgQR588EEcJ2B9vYIi6+zYM8GZM2c4cWIP7753nogAwzSFr1PTuTszJy6siTSLyyt05/Ok0xlsu8nayhq7du1EkiTOnTtHEIVomoLvw/axMd4+8y6pVAZZ1njqqY/y7W99j3/6T36HV199ldnZWY4/eITZ6XsoikS5XGV4eAtIIvt0bHgLbtMmmzJp1SvUnSZvnSlhN1q06jX27xhH00xCSbh6IklG0hGtQ6GxRQlCfFXAoOR2VyQIkXzR5o1Cj0gJIXBi5mFsUEfCFzm2ndG/hESoBALiL4cxVevDN/l9cZLLiKGHYGwIkqm4UstIqAg4j4rjeIREKJqKrEqxoVnoWwxD5HeGRLT8AC8QhZ6uGsixJsULwvjdL9EKQ2w3oOG42HaLarVKvVrDbtSw6xWarQYtV2hAPKeOHPr09g/SPzyE6/tkMjny3T00W8K9pCsGAMOjQxw8eIDHH3mQd06fJGVqTIxvw643qNUDWq7EG2+e4cyZd5ifn+XK5UsEnk+j6bJernH+0kUUTY4v1j66ajI2PMxzT59gYmyUlKmT0HU0RWFtZRWn2SKKQpaXl+kbGKB/cJAHH3wIZI18dw9u7BAa6N/C4SPHePe983z02Rf4Z7/zz+kuZJifu0VXV4ZEQjzlPvcPf42Dhw6i6WJwtlSqMrNU4b1Lk0xOr5JMFglCnWQ6z8GDR0Cz8GQTX7EIpBSSliVQNdAMZM1E0gxk3ULSk4RagkjTQNWJNJVAswgMi0i3QLcIFAMUnUjWQNGRZBVZ1jcunsgQCSeV2DdKHPXyc7DJFToSZzp01TD6AKJ3M0ATYmRvECArErquf8Cr2TmxY6Nz2yQAdKadLden1WrRarVoOqJTE7gegbuBbnBdV5gZAvE95PPd2HaT2dlZFEVjamoazw2Yn1/EMAxM02Rmbg7brnPu3FmKhS5mpqc4d/YsTz75JK4TUi5Vqddtnn/+BXw/5JOf+BT1uk1vbz9DI1uwkiny+TzJVIqeQpFEIsHxh47yox++zKXz7zPQ30+r2cTzPLq6uoiiiF/7tV+jVCrRaDTwfZ/l1VVGR0exLIve3l7qdZuxsTG+8pWv0ZUvIskqv/nf/xavvfYaH/vYx3jppZc4e/Z9EokUtt3CNE2Kvb0cffg4Dz/6KINbRugZGCSSNE6feY+XX36Fy5evcPP2Hap1m0gCTTcxE1YcKakjKRpK/FIVvdMCllUdVTNEeaJpoGhEqkEk6/GbwkLWE8iqIfJY4xVFQZztGjPbEVi99uvD1n1RriixokyOZIK4Xx6GEUEs9JFVbUNTssnd0i5VdF2nTdbyPI8Q+QNO/DbDT91UzoRxf51QQESlUFBtCSP8wCeMo8RFKFNEJpPBDwJWVtfZvXcfd2/eptlyUXQD3TBYXl0hmUyi6Crr5RJPPnUC1/Go1mosLS/z13/zDX7xlz7FtWs3qNUa3Lxxi8cefQJJUjh+/BEuXLjECy+8wJtvvMbq6iqpZJIg9BgeGiGTyWBZFmNjY/QODHLhwgWCMMS2m2zdupVXX3mZ9dKq0IJLEu+88w5Nx8GykswHTY4dOyb67kNbmJmZY2l5nYsXLzI+voOTJ9+it7eXarVMo25z984Ujz76KFMz93jllVeo1RroWgLPc9B1ne7uPLohk8/nUFWZUnkNRYrwfRdNtdBMY5OeSIzpAz/qSJkjJCI5QpL8+FIp2JTtXncUB9hGMcEriiIhtItkAklcOgnbrMS21uXn4OIp+SGSH0IQIgVxPEoodaJHfhJL0a7P2z5OwWARAyHH2ZDSbh7ft93wEBuAfU9s5KidiymAl54vEpfDSHDP2z34tiVO0wy6CkUc36dSqxIBumlQ6C2wa+8uHnnkEQ4ePChq8a4udu/ezeTkJHv37uW1117j13/917Esi+npWebnF/m77/2AqbszVKtV1pbXKJVK5LJZFEUhk8lw+9YtVlaWeOSRR2g2m0xOTpLJZEilUjz++OOMjW3FcRw+/z/8FrquMz42hiRJpBIJQt/Ftm0mJye5efMmExO7+OUXP8PnP/951tdXOfPWu/T1DjE7syjUhvsOsL5e5t/+2z8A4IUXXuBXfuXTBKFDGPosLS0wOztLrVYhCD1cT5RKtXqZRqNOy6kLskCsHWr/rRRF6XS+VM1AUXVk1UDRTVDEqR6pBpGWAC0pTnPNQFbNjgFb2AClDW16+xTHR94EjPppS/nCF77wn3/X/keuv/w3v/sFCaExDiKJAJmGHxEoGnKs12inKWzGEivtwUAckeIHoixR489RY8glbYVinHnZarUIYleQFG2Ig3zXE2jowOtccKNABMFaiQQDg4O89dZJ3FaL1bX1OMMTvNDn0JFDbBkZYWJigsnJScbGtvG1r34NWZa5fv06rZZDX38/3/rWt9mzZy83rl+nu7vI4UNHyeXytFot9uzdy5tvvEm+K8POnTvozueZmJjg4oULnD9/nqNHjyLJCpVKhfX1der1Bjt3TnDu3Ls8+OARvv/yD0hYSca2bqXY08Pg4CDJpE691mJwYAuqavL+++eZvDNJb28PqqziOi0+//nPUy6V+Mu/+kvK5RLFYjdBGFCpVOjp6WH79nEkKcRxW4RhSKMhyjlNVkiaBlEQ4fkOvidktlIMShVHtWApypu0+yiCkyNymWLzshRHyLcvsLIq2slR2OmNS5FQLAa+gKT6gSsynQKXX/q13/hfftb+ui9O8jajEMRF2YtCXMBn49Te7ORplyJtkU9buwJgmmbHtLtZ/KPEG7z9dQQUXjwaCQNkREgWoU8U+rQBRiDc+709fRS6i1iJFEsrq7iOj+eH1Js2z7/wMaZmpukbHGCtXKLluXzrO99hZGwr80uLoMjkuru4dfsaxx9+kMXFeT72wvMcOXKI/v5eLl26hNPyqFVqbNmyhWeffZbz594nk8mQz6YplUosLy+TTqcZGxtjeXmZwcFBisUi09PTnHjiCVaXl1ldXuH982e5c+cOE9u3c+/eFNVqlR07drC8vMrhw0cYHdnG7t17OXv2LIcOHeLFF1/kn/72P+HM26c5eHA/Dz10hOWVJd58803u3L3NN7/1t5x7/x2eePJxTpx4kkRCtGebTZcoEllMjuPSarrYdpNarUa9XqfRaHSeqptLTVkBTZHQlY2OmBjOxeWlIkIOpLbDXzGI1IRoO8Y4QVnRQFGRJXXjQvoh677Y5CAiuMXIIMINA5zAx5cinLhU2Gw2bm/uzW77ti5cOHw2avf2L3GD5Bo/DZA6J3UYs02iIIxRdDFePhJy3UwmQ7FYpNaw8f2AaqVO3W5Qq9UIwpDV1VU+85nP0HIc3nzzTaanp9E0jaWlJW7fvs0jjzxCoVBg3769yHLEyOggpdIa2Wya733vJUZGhvnc5z7H17/+dXp6erh98xa5XI50Molt20RRxHPPPceNGzfo7e0liiIOHz5MvV5HVVW2bt3KyMgIqiozdecut27fYG5ujnQyRTKZ5Fvf+hb9fYNcvXKdbDbP7du3eeqppwD4xje+weOPPs5zzz2HJEWsri2RTlsUe7oplUpYlpAifOMbf0OtXqFUKuE6PqpiEoWSwGEEEZ7n02g0qVbqVCoVKpUKtVoN2xbS3zbyo70lZSlCUzbCwgQ9jA9seiQZFNFzl1QLWbdQjASybqKoBpKqiSfEJp7MT1v3xSaPYuh9KIl7c1szIhjXAbJMZ1T/AZD8JlwxxLU77U6MEPOouraJVqXGCka9czmK4p6s23LwWg6hJ54Igp6VJJPLM759J/liEUkRWgrHcVhbW8MLAxqNBhMT2ymXy9y8dZ1isSigmrETaWRkhIsXLxKGIWfPvUtXVxcrKyusr6/zu7/7u0xN32N8x3a+852XSKYyDAwMcOnSFZ579lnm5+c59MARbNvm5MmTaJrG4uIiR48eRdd1TN3g4oULpFImhqHRbDZJpVLkszlmpqd5+PhxLl64zDNP/wK6aTJ5dwo/9FBV0aI88/YpDhzYi6JInD59mmQyyfXrNzlz5gKypFEp17l3b4Z33nmPZrPJ9Ru32LNvL7l8Bl3XCUPwwohIUQkRIQeO41Gv16nVap1XvVHFaTbxHLeTFtGOn0ERhnUR6yJ3SGMSCppuohhW5yVrBpJmIGk6kaYhKTqoxs8HQUtk3oAnKTiygOLoisjFUVWB1dJUCdNQkSUJx3EIPF8EPYWiZhMJZgqO44Es6npJUQn9CCvOC1JkCaSIwPNRZYlIlvC8kMDzxGb3XXGih9CKPGRdYXhwmOLAMLICzXoVfI9sKk0tYWLbNbbv2s5b75xifHwHN67dZGVxhZGREbpzBlNTUxx+4CB/9Ed/xJbBIfAlvvW33+bFT/8KZ94+y4uf/gzpXIH33nuf9y9c4ZOf+ATFriQpK8F775zl2NGHMYwEExO7OHXmFOVGjVQ2hZWyOH36NH2FHrYM9XP5ygV0zcJQDXw/5JkTz7C0OM+9yZuMjYwzOTnHL378YSIlAbLD2++9zb/45/8zE9tH0TSFH7/xY44cOcKNW3fZu+8wu3ZH/MJzLzA1fY9cLkurZWOYCiuri0DI+voa1XId2VQJdQtfUQWYM4TIaVH1GihNGdNsYjQN0skUSgiYJr6vi1aiLARWApst0BQBIYosUNZSoGww1AmJVCBM4uMKEKysg+IQeR4o+ofur/vi4vn13/+9L0Syhi+peDF9KYpHtlEUoml6h+Pnd3gpPu347nYsdssROApVEye2iEuUsAwd0zRRZAnf82k2mzhOHcdt4voOrtvCC1x8z0VRFSQjgWqYJJJp9uw/gJUw8Jp13GadoFUnl0vRbDaQ5JCPf/yX6O7q5Xsv/YBMOsvxYw9y6tSbrK2tYzeaeJ5PV1eRarXGnv37CUMxVUSSuXz5CocPHWLb2FYy2SLf/ua3WVlaYGV5huGhPvbu28XM3DR9g0OcPXuOPfv28dhHnuRP/vTPOH7sEboKBa5cucrHP/EJ/upvvgnIPPbow+zbv5u7d27x+Ece4b33zuEFcPbseXp6e3j5h9/jsYeP8/ijj2HoJmfOvINpJPjsZ3+V69dv0mq1qNfrTN27ya1rl0knTU6+9irTd++yvr5O4AWYhklXV4HBwWFWVsUF2DQMUskEkizjBwGuF2A3WzTqNg272TFYe16cExS1A9CEaUXepP2X5DhZAjrIvwgJWVU36vU4ME2SVSJZ4xdf/PTPvHjeFyd5KGv4kiCHByGxAlGK0yECVFXU0Y7j4Ln+B7osQm2odIJbdV3HMAyBQZa1Tp0XhYIUa9t13GaLMPIIQ7+DbgsCwecOJVA1EyuZYXB4iHQ6TbNRRSHEbzUpl9dp2lXCMOCJJ57g/XMXqNXqPHjkOKomc/HKZVLZDK2mx+i2MWZm59k5sRszLhfWSmXMRJKBgQH27NnL6VMn6e3pp1bxOXDgAW5dfx8rYbBtfCth5DExsY2XX3mDTDbH1Ss3mJ2dZ2R0nMWVVVoNm2yuwI0b9/jkJ3+FP/x/f5/p6WkGh3oZGOwlmTTp6S2wZWQX33/5dU6efJ1/8F/9KqHn8pWvfIWBgSH27jtMuVzmytUbOK7LxMQEV69dJp9NMX3nJooc0NfbQxAEzM8vUC9XsRIJAknm7tQ0A4MjeF6ArOqYiRS6rhPIQNTACR2CMKBpO0RBGdd1sZItzFasL7JMdN1A0bWOWG6zK0xApKAdpR6EsqBtqcQ5TCrIHpLkfej+ui82edRpI8lxaIRCFIiwWUXe+CFbrRZRSOeiomli8BDG4vsgkjohroqioHVOfxc3CHCbNm5cL0eRix8E+H47rZj4Magiayr5ngI9/X3IsY3MadWplkusraximAq7d+/GMpNksx6rq2tUKhVu3ryJZogOzs6dO6lUahw5/BBXrlwjk8kwOjJGo95k29h2ZmfnyGSyHDy4n8uXL3P02POcOnWK9coqaStkbW2V/fv3cG/6DuPj41RrLUrlKhcvXeehY4/wo1deoSuXY3BwkHx3H67rYJgWKCLJzvddcvkMteo63/ved3n00af5m2/8LbZtk08n2L1rFxEKCwuLLC8vcenSBQxTodlsksvlKJXWmNi5jTdPvYFpJCiXqxQKRQYHhlkrrUMUUijkaDRbbN26FU2RQTUwDJNkCIqsIzfrOLbA9DmeS2iLZoFnuLQcnXSQxTd9jMBE0wIkZSMlA+gAUQX+TnReQHiACWQkTQFJQ8L50P11X1w8hahVFvzpTZmUnR+OD2bitE/y9gWyfUndjD9uv4LQx3EcWo06tm0LTUqzgef6BJ7QnUgoSIqBrBoEkYhlyabSWJYVA3xEz9i2bfL5bnQtgWGYrK2tcefOHXbu3ImiSlSqJY48dJixbdsY2TpKoVjE9QVCeWzbdpZWVlA0jddPnuTChQucPn2K9bVVPvL4Y/zev/5XzMxOMbF9B7/5m7/Bnj17WFlZQVV1Rka2AvD4E0+xtlrhzt05Rse3E8hgWBYtJ2BsfJxCT5EDBw7Q19dHtVrl5rWbFArd2PUKr7z6Mp/73D/g1Buvk06nGR8fp16v8Xc/+DsiCXr6ihR7+ti2fTsra6usrZUwzBRPPPkUxd4+du/ZS4TMerlEFImSK4wkMrkss/MLKJopZhqqiZlIkkikSCUzJFIZrFh7H0URrZaNbduxlqdCrVKlVqt2JAkfaDfKG4jrdkdsw/cb99llWcTSf8i6LzZ5OzYljOjUWUgbPyBsIJZB/ALaEzTgA+VL++OKoiDJEHg+rZYdJ7O5ccoycetL3OJVVUdTTZKpHNlcgUwyhSxByrI6Xz+IwPF80pk8mmaxuLBKrVbHcRzeffcdqtUyBw/u5+TJk+zZs4ezZ8+yZcsod+7cIZ/voqurG8NK8sjDj3Hs6MO8+OKL7Nu3j1/+5U/xx1/6QwYGe3DcBqm0ydtvv4Vt18XToFxlfn6e1ZV1fvzj1/n43/sUu3buZWBwhK1j22h6Lrv37eWll15iaWkxRkZUGB4e5d7ULCPD/Rw+/ACHDh7kq1/5dwRBwM3rN1hcXGS9tMxzzz3DU099hETS5OFHjmEYBul0hp179lO3HVKZPDNz8+zcs5da06a7tw8jmWB0dJTu7m7BgzcTtBwP14/QTZOElSGRTJNOC4xcNpslmU5h6FY8rxBzjUatLjoxlSrVaqXDkG8HIrT/lh2fboz7kzuvD+6Rn7m97oeL59e+/OUv+MgE8dQrjMD1XCRE5AhsOLs1TVwiTdMiikIhpPK8eKIpLpyGaWJZCdyWAH76jkOz2cR3xYRS/GLi9GNVR1U1NN3CspKkMzlGRrawZ/du+voGKFcqBFGAqshYCYuslSYMfArFHhYXF+npKeD7Ps888zRnzpzh+PHjNJsOL37q02QyWfbs3s+VK1cZGBgiQqO3b4AfvfZjMrksCwvzLC8t8tnPfoY3Tp6iXC0x2N/DgX27CIKAZDLF9Mwch48cZWV1lYlde3n40cdxPIdfeO6jZNJJMcJPZenpKxC4TZaXFrh96waHDx8mCkM0VabZ8njpBz/Abtl89Lln2LVzgm9/65s8cOgA9+5Ncvv2DdZWV2LYv0d3Vzelyjqu7yEhpMqpdJrp6Wl27NhOvV4j391Ny/PQjJT4HtJpTF1HUzSSpil+p5qBpqkYZgJdUzFME13TkGUx/fQ8Dz/wcJwWTquJ7/k4rheXkR6yLNrAG7V6nNkpfM4fYOZ87IXn7u+LpyNreNJmxG+IGpOUIl8RGTthiBo7dwzDQNMU7JaL47mgiFGwoglzhSzLeIEbcznACwXTRdNNiGlMCiqSKoT3iqbiBB7IEWbKIJsvoJlZbDfCbvkEPiiyQTalce/mVTRFxrZtFE2nYbv09Q8hKQrJdJp8tsjY2Bh/8Vd/Tb1ms2fPPoZHhrkzNcnDx57k7bPn+MSv/CqLi4sc2bqN3VuGWF1eZnxsmNUzc8hSxMz8HPl8nvMXLrJlaAsz9yYpFLP4XoW3Tr/K9l278FybYneBRqXK1N1JRrcMsWvnXhKmIuJMNBUroVJd8blz+xrj24cJFR1VVylV1vntf/aPWVuvIQHL8/d4+NA+TNNifnGVVLqLmUVIWDqFQgFLV6iV1zi8fy9+s0FpZRndtGg0PaxUN5ZuoCKRNEzkKCQMg44qVFVVPM9DknUUzyPUa2iei+96RFKd0A/wfZcgDLAbVaKWTcsxSSQSuK6LmUiBLCCv7SCC9iRcmKIjIRH4kHVflCub6672NHMzl6Ndn7dr5HYt3uYeypL6AYmt7wsZbfvz2mrFzV9bVVU0w0DRRKy5bhpIqkI+302xt0AunyIIPKJInCotxyaK6V6VSgU/CCgUCqiqzvnz53nn7fc4evQoU/fuMTc/T6Grm2eefprJ2zdZX13jo08/zbvvfp/uXERPl05tfR7Zb6ECk1dvkLGSDPcN8M7pU/T39NJbLLBt2zbeePMkq+vrjI6Osm3bNvL5LI7jkEwlMEydsbGtPP/889y6dZOzZ89y8OBBpqenuXbtGoVCD1pCZ9/+PVy/fJldo1vYMTzI0YMHufT+ed46e5a3L15irlTljTPvoZoGtUaZuYVb7Nk9we7de8hmc0SSzPziErKuI+s6iXQGVRFdrJWVFTzP64jlNkJ6N+QUuq6TSCRIpVIk01nS6QypTIZ0KksimcYwrNgv4ODYTZr1OvVKlXqtQqNWEXcop/mBe9oHXj8PHk9ZVZADSZBnwxj2o2ht6wQgJpCmaX4AlC/0KuIH3IyVEMkLAjMWRRGaphFJ4vFIFBNxVb0TxRFKMn4IKd1EiZEXfiRai5IcoukKKStHq1ERAiRFplAoUq/XKBQK7N37IomEydmzZ/nEpz7J9evXyWbT3LpxnaeefIJSqcQPX/4+80u3mJ67y+unX0fTdGambqC4DQ4fOcCp02c49tAhnGaFfDrN0vwitUqVEydOMDO3QLVSp+X4jIztoG94mCDwSCYt7DDg0qULjI6OMnnjKmEIyWSSYiHP6uoq5WoJ33X4yLGHOHbwAFevX+fWnVt87et/Ss/ETtLZLuanpimkU/zuF/8NfcU8L37qBQLPYW59nampe+RyOXw/ZGFxGU0zCELo6+tjrVwhKekkjASZTAZdEywcIYmIiViS0A2KZDsZWTGRZRU5Dut1HEcMg5otvMAnCgOclpgW665D6HmohkFgGCiqiaroQt+CGBJuvov9rHVfbHJJEugvKWqL0GSI04d9JBS5rW0QJ34nDiQEYhurkMEKMm0URR1ppizLaIqM7wirXBiIS6uh6rh+iI94k2mKiqxpmFYS1dCRZQnd1IS3NFRYW1uhsrYsVJIhjI5tZWZmmoX5Wc6ePYthaJx4+ilef/N1TFWjkO1msVFDigKu37jKwuIsF25OM7RlmJHxcUxTZ3lhgf/7S/8Pf//TnyZXzFMrlVEkISEtFrqo1W1efeVlItnkyINd6IZGV1cXqVQK121h6gZWwiCbzdKVy/KtRlWARR84zNrqItcuXyaXMVAVCcvSsHIJlux1rFwP/+0XfpuK3ySZTOFUHdbvLXPj/fPkugt89zsvc2D/bgzDoFErUyh009vby9LyKqaVprdvIG7R6tjuRp6ThIKmyfj+5vE9AiVBzFNRDCRUFFUEoSmahaIZqLoTB3oJpWMYeDRtl9APMFyPyPWQ9RBVdVE1A1lTO+pRWf458HiGsYEpbMN7JRlJ1eIkGAmls4HFapcmQEy51bGsJJqhx1Qy4RJXYvGPpsi4zVYM3Rc1uev6SIpMwjKRdQNUg8HRbezYs5+h3gK6rtJ0XKr1KiuNOrpuYFgmlpEAQry4n1+tNdi+fYLV1WXeOnWaIPSoeAGtUoXAafHVr/0xDcdGS5j8T//7H9CwS1y9doEnTzzKjWvnUbpM7rVWad27Q2T7PPXsUwShQ8t2uHL1Mk+ceIaVdSF62r13L6l0Ak2T0LQUYeCiqhIDg/0kDJ0dO3aIp0jaYm5mmv7eIt25FH1bhqnKAdcqs9TyGnJ/AuNXqQAAIABJREFUhhvNEsNDXQyPjFAv1XjggX08//xH+b3/9V9yeOcBvEad6+fPYiZSKIHL9NQkji+R7ypQLlcpFntZWFhgaHQ7+UwO00ggBb6IBVdUZPknYaoRyAp+GBIhGJaKnkQ1JFQzie556LqO22zRbDZpOTbNZpNmU7i3BAXN6Pyt1XiAxL+nHof7pCZvb8pOH5xNEy95I/avPQ3rZPzIWmcopCgbYbPtFuPm9mNbuN9OkHPdFmHod4RYppWgr3+Q3oFBcvluMpkc6VQWy0ohqxrNlotlpkGW0HWTN958k0qlQr1e586dOzRqtnCoeAE9Xd1EfkClvE6h0IUbeXzk6Sc49sQDLKxN849+87/mR2+8ws27kzz06BOk8r2Eqkz3QDdn3n+XcrWMLMv09QgZbrPZpNFosHv37o2EuMgHKUSSIzKZFK7XYmJiAsdpsrKyAsDK8hq+LLNcrxFkEtxenMfszqJ48No3Xyah9WEmivQPbEHWfEK5zsh4Pzfv3GBscIAdW4dJGzKTN6+iyxGV8jpn3jrF4vwCFy5cpNl04o6XFptzxEVTlj746oRXRTIiJ0L8G0hiTC+rBoaZxEzlsdI5rHQOM5HBSmZRNUE/82KgVLPeEFLempDzei2HwP15mHhGcVxdJBGFIKkCFxcpgqa0WX3YSUBzXTQ90SljBB1V7mxwVdfEpNN1hdAr9nq23yBRFCGpSmyKVlANg3w+TyKZIplMCzMFKoZuQSTR29tPq14hlbSYnZ3FcRyuXr+GXa1SWlsnYRm4LZtiPkNtbR1LUxnbNkaqK8OdpXuMT4zz1tvfY2J3H9/77p+TSWkUsgMszKxw5NBjlIe2cPHd02zftZ3+/n6cpkNXVxeJZJpmIEok27bpGRgUTzFpA6bpui6maTI8PMQrPygz2N+LqWuMbx2jSourk1P0bN9CfX2FQqFIsOqSb8pIrSS+k8BIeChGFTUK2HdwnO9e+w5DQz1sHe5iZmGZ6blltESGhx8b5PK163R199JsedyavIum6qTTaWFB9DyI5cmbGYbtElOc7FIcZBVBKONHEUocuaJqeiyvVZHUDQlt2ILIFyYJx/FxfE8EgBk6umZ+IOvpp6374yQPRS9ckiIkOSAiENmWUiyv1fTOL8rzXZymTRT4BH5L5D0GDqHn4rlNAt/BDzw81yHwXPxmk9Db0Lv4gWC6oBpo8XBCURQSiQQjW7bQlclgJTRMS8UwBd+j1XJpuT52y2VtvUKj3iIMQZFk+nqL9BfTpIyQseFeegs5urISRx/cxbEjD6ApJqZuEEVNerstcqkEtbrNlrFd3F1cw1UgsmS27NmPlCnQjCL+4q++TiqhkU2aFLu6eeCBB5FljUy2h/nFVQLfRZYi5FARcSmqhKYaZLt6OXDgAAM9XTx89CCS4vPa62c4eOBB7t6bptjfS6YrS2RJlKpLorwLQirrJarldZoNG7/lYOkWqibKuGJPH0ceepAdE9up1irs378X09SJFBU9mY0viw5Bq4qETySpSHKErIgYlEgKBeRQlmKpsrgydmJ+IpkgkvBDoWFSVBNVt7ASWaxkhmQqRyrZhWEk0TTxtT3foeXUses1GnURIfNh6744yX/akmI/X9QGOscmCcdxOinDURSJuEBPRlU9FM2IHUEi0pDYL9o+WTzPo9USFxsjFhMpitZpd7Wd/Kos2NcgnEZWMoEiRwRegvL6KuX1EglTY9+hQ2RTCeZnblIprXFw316mJifZvmcfA309GLrGres3qJaqdOXyXLs3TaSYDIyOs1a3WShVGdu9m8XaCl29eYa3jaDaDRaup7h48SKHH3iIyanbtCSdoeERFhdX2DYxjqLENW4ko6KgSCHNMKDRcqjX66zO3cLQInL5blbLC/hBg0zaYtvYCKffeYe+ri3Q8qjXV1GWW+SzCgkzCXWbi+cvkU6mqNRq+IHD9u07ePu980zNzBEpJuvlCltGtjGzeBsrmRBgKNcjkMNY9iyJiPH4silJSgf3F0btkIX//0WxXbKKxoMKSoRlJZEjGUWKnWBuQCSpBM2mEOtFLRy32fHu/qx1X5zkP7l+UrPQ7n23N3ibPAUbmpYN1dqGqaJtdWtn1du28CaqqkoymSSRSqOZKWTNFGg4SYJIvJEAdFWjp9CFrio0G4J85btiSpfJpvB9n0qlQhBEjI6OYTeb7Dmwi+5iD44Hsi6GKcXuPmYmF0gm0wRhSLleotRcZ3zfGHdXplh3y5Sb92h4c4zu2IJspHnp+69TrdWxTKhVVhgaGmB9fVWUa25A4EcC8hWGeIEwepRKJebm5jhy5AiaplGv18kXkihmyHMffZzK6jxPf+QRWrUSn/yNf0h/t8RgQSWjymSVNM21FjevXGdooEB3scDA4BA128ULQjTTIpvN0tvbSyqVoJjP0pvPUczmsBsN6tUGjVoNu9nYZGSO/ZwoCGfExixk82vDcC5ciYHw4Yuul2lgptKkMhkymV4y2SLJVA4rmRIlaRDQsO0P30//hfbpf9L6aVEZPy2xGOikMpum2dGztE/u9iAC6NSEsix3anbNsDASCcxEEt2w0GQRsWjoGpZpYBjahsPfcyitrbO4MM9Qfx9SBNVqhfHxcRRVI5XJMDA0jGVZIGv09A6i6zoPHDpAPp3h5ZdeZairi31jIyTlgP5cgpH+HH0Fk907BqmWF3jg4G7W1lZwfIW+oS04vsfwlgGuXrvE3PwMExMTcftQZJpuHpa5vkcqk+bEiROU10s0qjWm7tylVgu5/P4tausNejN5VM/j4J6t7N+3hUwiwggccrpOZAd876+/Sy6V5tFHjjG3uIBiJPDDiLX1Ep4b0HRcGo0mMzMzaKpMMmWhKSrNhk2zUaNp13DsGk7LxnNdPC9WfErEXTPlp57i7b9vpwERiCm1H/POFU1F1g0Uw8JIpkUZk0iTSmVEp+Xfc5LfF+WKQIBFHSotsowsiZRe0QOXO6nDYSi0C67rCuF8FKGbltjMsvqBr9U+9Tso5xhNAdBqueiWhG6YyKpJ78CgYClaBroi6n9NVcmmU3R35bly8X3sRoVk0sLzPJIJnXw+z40bN0in05w7d57pmTs8evwQ6VSepNUFco1t20boLRa4fPka63enGR4b5cEd21DTCWYX52hmVSynTjaTQwk1Lk4vigu1ZjN1b45MWuXQoYPMz89Qq9XQSgl0Q1y2Ay9EU1R000RSVEZGRvjOn3+ViS1FBnqKvPvuWfbsPM67758mnb7Ktp0DJDSZ3i4L39cg0EgZSeqlOn/55T9n+vYdnn3qCRRFY9ueHZw/f55SpUqpWiOXL1KuVpnYOYSiKFSrVXLFAUwtBc0afr1BFHq4TovQF4G3iqqhqDqhGoKkxpi3Dx5csCkPKmpLpkPhHyUQgRWhLzQssi5S/UxLTFN9AW2V/z0qxPtik3ue1+Hdtd/n7URfWdlIE94MFhKpvhsfC4IA34tv8LIw2Grx57Q7Mu3PdRwHXzWwwhAdFUM3yWTzJJNJZCkijHyiUOjTwzAkmUySzabR5YigaRMGHjLQbDbZtXMHVy6fp69/gIGBPgYGe7l04Sb79mgkLIVLl8/zyb/3ApEP3/6zb/LkMycoDvVhZhLkDR2LgOpqGV3PcOad97h24S6jveNcXVhlda1Md9dRJhcW2Do2Qnd3l4BdhohkjkjcPVzfwwtEasOxY8dYmbqGbdvC4XN5kj3j+zh36j0Cu8rE7lHcvEmlVsWrS+TT3Zz80ess3rvL8cMP8NxHn8W2be5M3uXdcxcIgoixsTHu3ptl/8ED2LZNLtdFJtuNqugM9Q+w7juU3DrNZh0/9HEDj8hrIceXV023BDUrZoz/rLUhu5AJpZAwlAjaFrgwLn9kFd0QLWPV1VFkFfh54JNHUefxKzJ8pI04jTAkCjbktEKqGefJsFGve54n+IcgPJ6BIGa1EXGd/nJcw+uKJqIUQ8FHVHUDWSFGA0fIikoYQssRPeooikin0wxsHWX63l0yqQTVcpmlpQXy+TzLC/MgRVy8cAVFSnD5yg0OHtpOsZCjXFrn+V94jv/t/7zEX/zZdzn44AH2H9mPrEZEUkAUhpz68dtcv3oXTU1x5fJVSuvrDBZyNG2fVCpFrVZDVVWqtk0mkxJ6EVUjIkCR5c7v686dOwx35VhbWeHQwQf46t+9w9rSXSwz5MyPTnPt/EUGR0QptDS3hl2t0Sit8dyJj/Ds08/i2E3wZeYWVrAdl5XlNdLZPJqhoyo6uZyF63vkuntR9TS5XBf1xVnCwCVybYgCgiAiDFxkt4XqWoSGT2iFKKp42m6Wz7aHeu3VMaNLcizMkzskhygS1C05is0tCmiaBMbPwVg/MESyMIgfTo6ELiESnDGhL2m7RAiR4raf5zlIcYcFWbQa1bi3ahgSqqzg+y6moSEpQp/iBSGyopPNdVPoGSCRyZIrFin0FjA0IbsNA1dkg3oBhqaTTSfJZdPIoU8YOAz291AplUEK0WO3uBdGZJIpZqdnadQXuHnnJhevnmXvvp0MDwyyWFvnX/zOb7O8uMC96Sn+4otfwm45KHoSPwRNNpFlmYazTCLbzSc+86vcuHye2cUlBrfvZ0vvMJJmkE5rGJqC57ikMqaIb4xAjRG9zzz7Au+e+jGF3mGm7p7ioX07SeoepuqytjCH6/rU7s5TadR55uHjZDMZ9GSKufV1lio2b7xxksgPSCQNmrUqhUKB986e56Fjx0lnczhNG1wX27UZ6R8mUSiSHBzFsut40l30Rhnfb+K6EaGsISstIruB3Kij6QaqZnXYlR1cCAL/5sZRKbIioESEwskfRbFTyBP7wG/fy2SFSJWQEz8HJ7mqG+ALra04ceMTfFP50l5tED/EkdNhJLygkoyiipiTKBJ88TbmLQoCFEk8AaIQZEOP1XBprGyGXC5HwrQEw6XT+oplA7JMImFimgb1so2OihSFdBcLyKpEqVIGQvK5bu5OTmLoFp4exIxwnRvXJ3n1ldd59tlnWViYI/J9hvv7+B9/6x9j2zYvvfwj/EAiYeiMbRkWyc+SyWrNJpW0qJTKaEtr7Dp4HMMw8H035jkKm52sKoRegGbpRIQkM1nMZI56q45spki4HpbqcWj/TvQDOwiciKYXkOnO0ShXyeTzLJcbHDp8lK//+V+g6yYaMrdv30Y3TVKpNCdOPI3rexiajqnJbBkeZHa9hJU0MZIJCgND6EqI3ZWiujLD0tIijWaTpuPh+j4RHmoYQuDHdyNzE8NSi8uUWGgVSZ2ocghROuIOKaYdfzAwK4zCuDX5s9d90V2Rf0pr6Se7KO21+eNe4Hf4Jh3rlLwB+wx8oVHxAr+TMRREoiPjBSGOHyBJSpxFJHcup4qy8X2oqko6nSadTovWYzqFomuUa2XMZAI/FAiMfHcXmXwGzdDZd2AvEbC0ssz84hK5rm7Ovn+Or/7JXzIwOEoQyZQrNUzT5NFjD3HiieM8fng3PUmJgaxB1KyyMDXJ1uEhFufmiSIBHIWNqHRFUTrjfs93BSgpktCNBI8++VGWq03evzpJrVbDNBLk891YlkU+l2FixzYir0VXsYisJrhx6w5f+vIfMzA4wsrymkjD1ky8SEKWVe7NTDPY30fC0iAMaDTqJBIpMpkM6XSaYrEbM5Gi2nJpeiF9vUWK3d2kTA0t9JEDB8+u4tZKOHaFZqNKq1nHi0MGfD8kREGOxKBIkUSeqyopsWZcvDqsnE2gqM3cnZ+17o+TXFWJohjMLon37Idtctq1dQChJKNKce0dIvLcFZEuofk+ruegSDqCHSoREfM84sAsTVbIpjMk4w6NEnNe2h2Z9gBKlmWSySRDQ4P09BaoVCqsLi9RSSVQZRnXbTG6dSuzU3c5d+4cAwMD1Go1xsfHmZ+fp9FooGlp/q8v/gFbR4Y4uG83vl/B0GUGBvqIahVCx0Q1Ely9cpp1O2K5dJmkLrNzz15By8ooJBImuqoShgGplBhoVes1kCJkWXC8l1fX2XvwKC/94DXuLayRL2Z4/cw5nnvqCVzbpVxr4YUKb735NucvXWdgdCupdJ7LV64xNDiAIsl09/aRyeTQTYN+Q8c0DDynhWXo2C2H3tFRuroKomVrmnQXi6wtdlMrl1hZmcUwDLryObKZgLX1ErVaDWQZN/CQtBa+qhOFoRBdaRaaqiOp7RZjHIyFCALwJRnkAEUJN/XUP3xjf2B//efYpP+pS9O0OFVZ9LZDP+h0TdrmCN8XYqp2PswH3gSyjBbXecgSsqoLlIWuYQRGHHCl4AchtusRhNBwWqQDcZlMmhYJy8I0VJQ4YK/dftQ0jUwmw9jYGHP3pnjttdfoKXazdesIqqrSlcsJZ4vnipgWXaevr4/V1VVKpQqSpFCr1fB9n+OPPoXdqLM4P82rJ0+TSyXYsX2UpjPF0QcOszAzzc3paaotmF2pMbx1Oyvra2wdn0AzTMIwFCezrpNKJYmCMP7+UiiKht1yiCKZdCZHIplFT2YZnXiA0++/zoF9W7lXdlieWyFh6FjJBHPrNTAShJLGyuoSqVSau1PTmIbGyOgYumnQbNR56PDjLC/Ms7q6SqGrG8fz8fwIRRMXXxQZSdNRzDSRlsRMpPE9wXd3mi26Mhn8lo3nuBB4hH6LQDNoBT6alSHUA3zFEJdbVUWWFCRZ2vD5Rhu5UP8hT/ufXPfFJm+Dg9rNkTbkExC4iE1uHt3QCFxRnqAI6IxiJNAtC8NMYplJdC1WGtZdwjiXXVZldM0Q/28ihZnPY6WS6KaFqRsoCE6foojOzOaOT6vVYn19neXlZRqVKrONKkoUMjQ0RKm0Rj6XI5NOUiq59A0O0NPfx+3bd8h2ddNqukiKhqmbXL9+neXVFfoGBpDUBBUv4uXX3sXQVGYrEl25PEvliK6RnXg5j9VynY8+/ymsRAY/cGNHlHictwdbvu+Le0nkIkdCmdmK36hf/OIX+Zf/x+9z5JET7Ns7TveWUSbn36V3aCuv/uj7eFqaUmsVb7nEA4ePcfHieXK5bvr7e7h85SL/6Nf/Gy5dPMftm9dotVrkurqxvYD+wa0MDG8lkUgREOD5HlXbodYK8dUsRsIhcltouo9munitOtlsHq9p02rWcD0bt1XH0xp4dlUg4HQLRU+iGWKop6g6imbE9yMxMA1DqdOZaf/7k+EMP3V//Rfdvf+Bq5P1E2xY3dqslTZ3Q5IlEXalSKBsjPL/P+re9Me29Drv+73DHs5Y05272X2brSYpk7ZoxxRF04DFKIFtRLHsBEYsw4kiJXDkxHEAA4kTJECQIMiH/AUGEviDLcsO7ABBLNkWIcvRZEo2aZOUSDaHbvbcd66qU+ecPb1DPqz33efUZfelAwfB7Q0UbndV3Vun9ll7vWs961nPI1snhrKoqSvx1hw3h0JAlig83gVsCWVZs1wuObh2netXr7FcLhPhX7KFytbX7BqcxWIxmm09+8xNHj24zyvf/g5D3/Lh52+Dd6xOT1EhcHh4yBtvvMGVK1d44/W36Pue69dvAvDyt7/Fj/2bfwyH4fU33ubkylU+8fv+ANOq5Itf/xbXnnmRFz9+BV1M+fm/8/f46Z/6aZbTCVVVsT1bp6WSyMFiQdd1lLYgKjBlgetaCq0Yho55XWLrKe+8e5///Gf/Y779yu/ykY8+zwsv/gDf+eZ3eefOXe49OOX4yhEn12/x+z7xQ/yLL34p0VoD5+sNf+on/gTf+ubXiN7x7W++zNHRCQfHV7loeo61oahrgXKtRGBVTygmM4I6pVcV3iiM9qAMBYreB5RxYgUTRXi/6xucGhhcA11BMT3G+QFXVtjCURAvKTew5ySS4ccc6E+6noog3+epwJ7Y576iEmbEufMlX7ciKVHs7ApxiX+SrVgQsldVVZST2bgp7gdHYTSzyYTCGJT2kNY3YowkHz2UUhwfn/Do4AFudcYjHkIIvP3G22wv1pSF1PknJyfcu3cPqzRKR06ODpjNZrzwwovcu3ePz33uc0znM96685AP/8BLFLZiOwy89LGP8ns/8zmeuXmVZ69d5b/6r/9bPvsjn2JZGz758Y+w3Vwwn88xRiDRtu8p0pBsu9lQBZHAk1sl+uvDZsNsNsE3HX/ks5+mc1vOHzzgz/7kn+ZXf/VXieGzTOYLXnvtNT728Y9zfHTCa69+m0ltIQw8uH+XG9dOWK0Ms0mdFh4iH7pxi6PjK2kVUWOMRpeW5dEBV6/d4PRszcW9c3RhiEGWKGwZqfwUYxRm6/AmbX91Hd61xN4Q3ECkGBebbdHjw4AuJlhbim7iY0PBx/98v+vpCHJjMbokqgEfg6jVEolK6j7QIowfRf108EGcfANiLqssNrnEua4flyK868RLUhsqW8kNSzucZVkymdaUhYE4UBidgl+0yWPiaxdG4bPH52SG07Ido62cMEU14ez8nNOHD3nt9Tf5yEsvcniwZFaVzKqK+cEB79x9yMV6y3RxwLe+9R0cho9+7ON87BO/l77tePjwPr//mRssFgvONw0//R/9DIeHhyyXS7quY7tuksFZyKbFGAXr7YbCWgiS8TrvaQOUdUnXNmg9MD+uaX2HTupUbbdhOhPLxw+/9BGu3rjBX/2rf5XnnvsQV5Zznr15jaFZU9uBvm945rlnODvfYMoZ0+Ux0+Uhx8dXKLUWs2CvMFpTWs3ByYL5wZyL9ZyhayAGtLEyuS4KMZefzAlaUSmNCwMKQzs4eh9wF+f4Yo0ppwzTKT7MKCcKnMeYAqdz4pPebQgiDhU/COtvooHSp+mljHFlk6ekLOuEnCSMNaYyJSv/7umPZ+Zh27b0XQO+J/iIrSdjYFtrx2OuSgGfyxLv37tjN8Ywm82YzWa0bYspNAcHB2y36yTd/FEenT6QDfP1mvt37hCD4/r167z1+hl3Hjzixq3n+PKXv8z8UEqEq1evUtqClz7+A9SlFfHLGKmqiueee46u6y7BmISIcwNFVeJ6RxFl2FUYw5CoxyguGQ30fc98mgV9wgiRfvazn+Wll17iwekZUSt+5md+hl/7tV/lQ88/R20Uz1y/ggoNEBhCxAXD8vAK0+UxN2/eFOrxnrJZ3svNciFVWdD7IblEFEQivqjTWL/AKCtKW1Ghug5Ui+oHgu9wXuEHhw6evnPUHgpbURU1FIlyG0UjESDqXVP6ftdTEeTSRFkUu/pqMplR16VYEu59n03razLi35FzQgjoGPFhoOsb8YwEERuaSJD3fU87DNR1zVIpplOp4UH4M9rkYdTl15epuVevXuW5557j9JHoi6/bDoLjO6+9ysFiztUb1zmcz7g4O8P3jeyZ2pKP/p7fw5e/8ju8+NJH+cM/+jmaduDFl16irqcURlEV+2+D4PSZCFYUhthbVqs15aSGIPfjzjt3eHjvPi98+DazxVKQqcJitKVrO4qqpCrteN/2PU6zjvnB0TEHZ2ecnJyglKK2mkmh6bdr7rx7n6I0XL12g+MrE5o+cOPmMxweHo9MzxACMZVJXSdc9u12SxhEqSwqCNoyREVUBUEHvOrReoEKHZWuKOotVbvGtQ2n6xVDCLRuoDtvCLamb1tsWVNVE4ytZKZRVGK9gqLQRZqQv//1VAR58JctDHMQK2WwKTiBS2tVIkeRueOpGYFUswdQAWssRptxrzPEAZXW5Q4PDzk6OhJntcJSqIDSITU2O6Ol/GaKUtWcZ5+7LQFTVMznS5QS9GU+nzKfzuj7DlOWGKsojGU2X9I5x4//+I+zvHabIUSGEDg+PhaJNS2TXpMC3Tk3ym7kvdZVey7rftWEzbZjOV9w7doNrp1cwfkBrTXn5+fMl4udkgFxpKDu/w6jkkESUK0q2fb/gZdeYp0ezu12w8n1W0xSckAZDk+mzGYzlNk1f0pFAgrvA33fc3FxMWrHZ21xF4G846nBF5ZoPMqXWBVR2lAhg5+5d2y6noAjetj2Dd4FXN3jh46qnBHcQD2V8kx8hr7/PPOpCHJRpk2GpGnKZrRwUIZhuNSIyqZ9z+AGKVmUR1sZ2uiQHeKCNEXaQJR/Q6mANnGE3/YlLvax1/x6xg1zGAOjrmuWh0f0vRM/SntGXZeszs9wzvFotUFHmNQVR4sjYgisNxvKasLFpqG9dw9dlBxfvc7Z2YquGzicTyAGjLe7ZW0lNott2wJQTmpMPzCZzbAO2sFx/uAeMbQcHCxZb0UOT7S6Faen59y4dXN0Tctlyr4+Sc7umjxz0NSzGd5qoSQojUnaN1pr5otDynoy7tvmII9K45wgYmUpEn4rhNYAYiQr/VXin2iS27PCM5VpptZYbSmjJ9oO1Q/o3qG0Z+s8fbdm6MWpoprUoGLaBzVgrPz5hOupCHJx3HVjoOXgi0HR+z75baYs64Yk3jlQmEqsEKN8DK4jRp/+DcHaY0A0sI1BpyWKqqouLTUHrdCFTvBh3MtUu6DPkmez+QEKy3S25OBgxcOHDzk6qlA6azUWlNYQXcd2fcFsecyjR2eoYsWt42c4OBRK72S2kJ+hodKWfu/n5uFXzsD1dMK66Xn3zj3W2571es3hoqJtLqinNXffvU/XdYS0nH3v3j2uXLuaSGz9eF8Fndkpx2otbL4qPcAXQ0c/eCbTOXU5k73MtBZYVtV4MggNGmA3eVRKjT3PblAjkKzKp2sUXhJaE4xGmxleGwlSbTEqUhQdquuF2NW1OCW7ut4POBeIviVGL95BpkDbAvXBsFNJSkgJDpRfyo9DoSCEYjkC3TDe2P3SRbL1ZX65DpHgd+I3el/SOY3s97M1e8Sf9+JHyPdYOTa9RkWxwfZDh7Win+2Cx/WN6HUDm82GZ5+/LbotqdGdTCb0fc/h4ZJSQ/QOq3fNc/4dmqYBYHARjObVN1+n7WTv9Ntf/B1OThZCRHOyv/rFL34RFwM3b95EKSUP4OHsktdpniEURUFEyqNsPlbXU1HzrSvRfzQGZXSqwdUlCNe1pb0zAAAgAElEQVQoizAsFMZorNXjLMGakkEPiSgX09KyBHqMEJWc1l4VQhHWsqGvo6fUJdp0iWqrID0D3TDgBi98l+jRbSPCRGWFsU82xnoqghzlwERspSgGQ0wmWUPYjXJzN5hLB2E4NAy+xw9T9FBSV0s8DnCE0CXoyaDSErN3gW3viKrgqnNpvQ1QAyiDT9yZnSucJ7j0GhJ8WZQKW1jZCy0jk3nFZnMhX9dyxHddJ/Xu4oRy0QnUOJ2ibCmZRymiH3B9z3S5ZBgGms36Eu5bVRVukAf8f/jv/xd+9s//Bb70m/+E17/7LS5Wp1w9OhRH5V98FR0GttstN27dwhQl3/gX/5yDuua5Fz4s1GW7axTF6sQx+LCju8ZIqWTgNp0v5BQtpOwTMTP5XoJw14Wn6VBKvDaJFpGU7KRRVhqlS2JwwgXyHmK2vkllS0o+ypR4XRD0BBUKMA6nG5TeUpUbdHNB0a/pdEenPF3j6DYrhhjprViVm2r6xPB6KoI8B64xslOZM2yMe/biSRhoiFJm+BBxIeKcR+Mpc4ZB0foB17aUQO8HtLFoE/FK5OeGvh0hRWCsMSFpkac+YL9Z2y+lck2v6jppuPjEAow0TTfWp845ZrMZwLhIfX5+jjGGGzduEEIYbQpzjazUzpg3lz//wU/+af7KX/5P+aFPfJSP3b5Bqa/ht2uGu6/wwknF4APVszc422y4efMqdrJgdlBz5dohRV0TYxytBufz+dhQZtGlLLyU6/b9KeL+kO79rqxIJoxCt4fkKJGH2Tsl2SNPP0600qYgKoUl4HXEGEXUQGHANBjdovCElCD8MNC3Hbprn/j6noogD4BNNaMtC+FjJG97yBhsQkicGUsY5xweg1EKZbNbmJONeufAyxKttSVWG+p6RlVPmc+n4/EtZYuw3faP430hyexHlD+/HwDCiZaMPwwDxhjatsVaKzj1fM6NGzLoWW2EGguwWCwEtkz8k2ldEWNks9lwenrKycnJGHgf/ciH+Qt//qf5m3/9f+PaJz9ObC64Ni3pcXTNitlsgrY91ZUF9cTyQ3/wk1y/eQ2MQHu5RMqCqfkByk0pMD5ou0soE/sN+Ptdud7PNOB8b0IIAuXK5oP8W3xvU5+vaKxk+gJUcufTKmJ1AbqkSAxV321RUaOdF+3Etn/i63sqghx0goOiZPMyKVxpwIVLGTRfMUacD4JylFUa8jgG1+GDKDk5J8vOOSNOp1Mm0zlVVeG9p2kavJ/T9wFbFpcCeL8232e96f2Thj2FqOjGmveZZ57h6OiIt956i0ePHnHnzh0ODg54JsGP8/mcphG9kPV6LQGSHm5rLbdv32az2ex6Bq341z79w/Tdhr/zN/4aj955lX/nj36Ow2mJjZaIZ1ZP+IVf/QI/8rk/xg+89DF6CraNo6zUSBXOgZdlOfKDmGv23YlqEiPiX25snsVXc+LYSYOE8TQmiemHuPs3H38/vdLJnKwgrQjJhNdUaKXRSLIZuobgPLWOKB3o+yd7Bj0VQR4SAxA02lqKUMkwIUZRXyJcCrqMEOQ3IrtMALh+SEMhEZi0RYXSqdGMgSF4YtuOTseyJFFehikfy9r7+PKOobgTO5rPp1w9uYLWmrt373Jxcc75+Wn6/oEXXnieYRAT18xxKYpCFh6SRkm73YwN8Xa7pSiKEUIcTMXWe37ohz/Dyy+/zD/7tYb764EhKIZWSoSXrr/I7OAWP/ZH/yRDKAhYZpMZaEGj8mm03W5HGDBn9yE5dexPjuUE2A2Q9iHWfTg34NHa0g+7n5N5REpFXBguZfI8qd4/KcdGX/wjQCmULRBb80ikRysDOFTUlENLjJF+swEfUMUHAF0JHhyypW1MQbBgy7SAHMNYmuSGLkOIvYvUJSJhMS7Fij5gCAFbTKmmE6rpMmGqNdpOoCjHMX1VVWidiDDp2pexGF9jegi6VNfO53M26wtCCJyfn9NuJTPLeprG2jIZaR3w4ME9nn/+eTAT3n77bfq+59133+XWrVvcuXNHYMKy4N1332UYBi4uLi5RCbqwYTGdsWpafvxP/Xt8+MWP8Su/9Peojm7xT774NX7i3/rj/NqXv8mf/pmfZXb1Omebltm05uLiIdqaS8E5m81GrZqMMOUs33XdGMBSTnVjZoZdYOYAj1HoFkRBke7fvy8GBamngLjD5nNtrr73lBzh2ihTUtHEjISoiKZAKUO0Ho+SBnUI1KoSGeimhe3mifH1VAS5iwEV1AhZKbcrD+SNcEQ/0DRNEq0ZiAS0NkLuMjtbw9Jaeq8IxmCKkqgKlLYUE6nHy3rOZCY+kvnhKR/DWfffgPzw5KZwMbvCarXi9PSUIvUBdV1DkHG5SnSBHKgvvPAC5+fnvPrqq8wPrnJxcYHWmuvXr9M0DXUt1iHNZs2NGzfSBlEx1s/ee0K7YeM6CqUxpeVTn/oUv/WF3+A7b7zJvbMV/+zrv4OpDrj1wnO0bkDpyGbbUlcGFWe7/sV7iqJIcKsaeTwgjXFVSV/Q9z2r1YqqKsbP7S8t5HuklOjjeCf3q+tkKEX6Xi2NjryXY6+zOyH3S6QYIyF6yfghjGKJMShiUPiocXZC8AGKKXEYsEUtFOriA8BdUb7HBwPRoENBoQ1RgVaBPi3sur7FtVt8GpREBboUGqbMSwe0kgZ1GCy2Etw2S5NVpUWrCKFHeUvb9nTdQHCOaDVBRRQmcTE0yS4BvEuWHfLmX5xvidEzqas9TUbo+j6dCCIQ+sILL3J6esrLL38LYwx1PWV98YCf+BN/nF/8xX+ANRWf+tSnmE0XfOMb3+DFH3ieBw8ejMQxpZQEWlFiTIWPkenyiLt3HlIoxZ/5sz/FF37j1/n6y99hdvgM//af/FO8/urrzBZLyrri6OgA5z0hrOi6hqqqxvp7Mqkx6dSJMaYHvqdpZEm6qgpcH6WZjtLUTSYTQVG6Pk2LxfGaIPfXKIMbgqwfMowELl2ocfc2jgM2KV+C9yijxsBWXsheEY+PniCG40mOIkrlakp8McMVATdovDGE8gNQrghvW5G5KPn4hN1Ucuj6UaNQhCU1hn0eekjQlRmZhdpKls9DGBC0IYTALJvWBkER8pZ4iEkoFAngKmW+pm3k5z62f5ozW54mXr8qXOtXXnmFyWTCfD4fmZGf+ZEf5hf+r79H2w/8kT/yIzRNw8X9U65fv853v/s6fS+ozND1aK15+PAhVhumiyl9N7BatSIpcb7ChsD1mzd45tnneOHFj3Ln3Xs8e/s2VV3iQmC93lJUFVVRUJY1Whtmszzml6xuS4u1sp9a17U46fVyn+ez2YhiKaXYbDZUVcV0OhV+SnJhM9owZDQrNbVldDvPTSueTiAqt/497t3jyNV+/f9eV0ATdUmwPYNxeO3e93vhaQnyx6795QmCJwyOvm/HhtOFKBorCSHIUFj+ezJalr1DrSwYGTCRXJ8xQl3NzVhISIlK9hxKR2ziX3dd+0QqZ1HI8Gc2m3Hjxg1ee/UVNpvNiJNPp6KhfvXqVb7wT36boij4zGf/MN/+9it0bc+NW88wmVZ4P3B0dERRFLzz1tuUZcl8Pif6wOZiTVVPaLZrtLKcHB9y7523uXf/Pp/+9KcBQTguLi4YvKOsxX802zrmcqCuSyaTyaWypCgmIzafIcusBFCWsoySJ6SZblBVFSHpGrb9QFCwaTZcXJyxuTglmoCKU2lAQ1q10kaydB4K7U2VLy3HPCG4s9xzVBCMIlhNLAwhlk+Mp6cyyHOTNwwDfbulaS/o22YckmBLbFFSTaZjJ5+JXMYIdm3KkhjTlr6S2XA1nVFPJhSFSFC0my0X2yZlbIVNvkVFUY1ZzaRGSaUMI8d8RndEQq4oCk5PT8dgKsuSYRj40Ic+xGaz4exMnCOee+42WmsePHjA/fv3+cxnPsOdu/d49OgRV67I5vubb76J935k9AXn6fo2PXAdfTdw/+5dpnXNyZXjlC0VSkcePnrAESecX6wAmM6XzKdT6lrc12T4FeWU0orZdMJms2E2m8kDkYJ5MpmwuVhferjruma9XkuwB8+QhlcUhvXpiqa9oG3PeXjnDVxVMswWTCZTirKmqCfCQoRLPPTHh0H/spncK8WgFL22hLIimg/E0kR288pH146P4pyjb7sxsDyRIlmoZEJQhhX7vmc2mybExBC0xpoSUxZSj3vH0IsJ7nazpmkaImCrEqMVFofVMPTDriEK6ciO8qb4GMYMXZblONwRtVnREZlMJty+fZuvfvWrXLt2bXxg87Dkrdff4NOf/jRf+cpXJEM3DR/5yEdYrVaizmvsuACybTesLs45f3SKtWL2dfXKkQSkFUkKVKCqKlrnMVY6FBCYeT6fitIuSZQqBKo0eFqv12PwZigxY+oZTsyZNmf2zCcqCkPvHE0/cHR0wNe+8s95+atf4aXnnuO1V78NcUAFoVwowJQKZQwxxPfM3FKe7mTj9ifM+f8DAyqq5BZoKKsJg9FE94FgIe42fXKQj7X40BHckOpDl1wnLCaVKsAY4PuoiLUGrQ2m0JSl4Ogx9HSbjjjUaJOPX8HbVaGxyhJ9B3sPXG6WdFLQDT5wdHQka2nb7aWpqDGG5XKJUopvfvObXLt2bcyQn/zkJ/nKV36Hw8NDfvRHf5QvfOEL3Lp1i/Vmw4svfpjvfOeVETJ0vdTwk8mE4DwaGXH7rmWzvWA2mTGpD2mdQIAKRVUVeIWUR4kCUaaeIMa8FaQoK8swdBLUndTm+eTJ5cp6vebo4HCEFHfvy24yGp0XTcIY+frvfo1Caz73mU/zd//2zzOZaJrNhOXhFZYHV4gxMl0YrKqT1MR7vP9clpsAxjJ0H0ePCZ2x2hKUh1hi4pMz+VOhoLXfgDx+hGVOiE57fcaKV0xRlN/TuOSjsG1byUgqYGKA4ITv0HV0mzXNdkWzXY9Q4HrTiFBRCGk8v3Oz2K/7rbUsl0s2m804ncywXK5Zl8sl1toxs8cY+cQnPsEv//Ivc+P6TYqi4Etf+hLXr1+XGnoYOD8/5+rVq2NzNyQntPl8zvHxMbPZjDohLoUxIntXyu86XQhmX1Wyt6lUHI1h67oihJ3Bq9K7pi+EMLolj4vdKaDquh6hzP1Ay1PioiioTYFCjAqun1yh3zR86bd/m7/yl/8Lus053eaC9fl9Th/dZXX+kG2zouubHauUy8pp++///kcuC733svsbgjAblUJHTYGm0B8EFmIUz6D9SyU6pvwpR6cByqqinswSZyR5f0awejeda9sWNwyo4CnLmipGylrjY8S7Du8ddrKkSy6/NtXZTjsZSEQx2RLcPXGwk+HT+fk5k8lkRGkyfzqEwPXr17nzztvjsW6M4ebNm3z5y1/m6tWrPHh4f5Sb895T1zW3X3iBf/bF3+bWzWd5/vnneeedd5hNpmN9bK0lRI/vB7SGo+MDhq7HmIKD48QY9LIPejBb0A29bPCk16TNboiT8fKqKpJGZGAymdC27Thhnc1mMvbXu+Yzo135gd5ut0yKWpTMBkez2aK942Q+5ef/2v/Kj/zID/NP/+kXuX9/y5GPdL1DFSV+GJgsjtCmGIWg9t9vl3QNffogBFx0AifG3Y5qvFTHi+LZk66nIsi1qRIXZPeUC12zQJcTdDnQ94qiqCiqbD1eEFxPIGCNIWqD1opJWQnOHiNdN9A0HQdKo4xGa8ukKlDGcDCrmVUlR4s5bugIhWZIbtCm0ONEsO+F5xFTc5t3RTPBKdsmlmXJnTt3MIWlG3qOj49544036N7uuXJNsvR8PuN8dcZyOefs7IzDw0O+8fXf5eTomPPzcznWpxOcd0QVReBSwWwua231fE7XdZipjL4H50A56roayW1lXaEQeE8rIHiU1rJil2vcpFRmUrDnh6Asy3ECasqU3WMQspQCZSwBsXg02vDg4oI7d04JFyv8xYpDo5neOOHVV7/Lf/af/Cx/63//O5yuZLm7bS5YHh6xbBrq6YKqrjGl6MZ4H1OAK3wUbNyFgX4QtwrnBVRQIXFsEuVDRUDp79t4PjXlyv7HPm4KpBUsOzrBicKSTdnJoVREa2jbLV3XUBSGxWI2QmUAhdmVHRo4OzvDGsWDB/dGRa7cZGXMu+/78UjPgb1fTuV63FrLgwcPKMtyhODeffddDg8PR++e27dv0zQNBwcHbDYbTk5ORm5KlUTl1+v1pZW83ADmP6uqElm72WzccMoNcD499nk2+e/uj+P3qbO5fwHGE21/zJ/xbfm+/G8ZYlScnW3xQUq4r3z1q9y9d4/G9ZTTCdePjvn83/9F/t2f+BPM6oo4dPTNBY/uvcujh+9wfnqH9foRTbsWP9UoOPeunNo1n/IC1Ljk/niPkEvKJ11PRSbfwUUKpdUl6Eopk8b2Ubx9ypKYlmdjYhrmm+Jcz/n5KUodUhSGSVngnGXoO2Kcg3fpoTBUpaVpGlbn51wcngMBM61QGHzsx5q7bQUnz9kgv7Zco1pruXPnzjgk0Vpz5coV+r7n0aNHoypubiS990ynU/q+Z5GUsLz3HB4estlspBQY0ZBUZkQvgp5Go7Wh0uWIvgBYuzMEyzDm/pDs8SSSX38+jfKDkcf9siSeNSrF4UHuRzlOeMvpgrfefZtf+43f4GPPPcc//9Vvcjw3rJsOg6K0Bb/yy5/nP/xzP8n/+Qu/yFvvvEvTrIUp2m9xbkvRzdHlhLKaYss6WekosUmMiKKaKYTLEuVEkr5J2J6ayw/t+11PRZDnNyXEQNgLItgtTaCTxHIhwp69dwxdOyIv+8vH2+1WxtflBKuEeNS1DcYWuGGgKCD0LWcP7qOU4sH9KTEESrXAzKY4N4y1aN/7S68zoz7WWikdzM7pWRrTOavVimEYxiDO9e7jgZa5I+NQKvNgYMzE+d7sZ+LcC+SmLJ9Q+1l8x5oM4wOwHwy5Gc11dtZ5yT83n2xVNUkITC33WckaIaaiHzxn5+f8zV//dT7ze3+QV771VWYzw63jw7Gf+Id//+/z43/sj/LXf+5vsF2dyrpe39A3KybLY+rZIWEqSy/1fEFZlLjgRb7ZGFSnx4fOD/JnSK8769l/v+upCHLge0qUEQ40WhZVYxw18QJCCtLaogxYWyRsXIsGuU8bOoOTzOB3W/+DT1lg6Ni4QFFXbOcL5vM53k9p2pZ6Ul5i6O1TRCeTCTHKcsPNmze5f//+iKzcvHmTe/fuAIL0nJ+fjzDiPv4LO3jMGMNms8HY8hIp7PL9yFSC/JDESx/7/+5748/vPUnc1518/OtSlmR5EAn6GMC7HlOUfPeN7+IVMhhyjoum5asvf4sbN68wKUoODhZMq5q5tvyjX/o8N06OUK7nYr3GuZ51lzaVDnqmwaHigK9rtBUfVZK+sCA8aXMqu2rnBBifTMzK11MR5JemXOlmj1PFpKniU8YzZUGRtstNLKnKYlRuKsuS8/NzTk9POT+/oNEChxVljXM9SlX4wbEZBtnXnCjwPg1xBHacTieXaj+bmIaZKrrZbKjrmitXrvDgwQMmk8lYL9+7d2/8Pfq+H6m0GXbMNiIhhHHsn4MwL3bkDZt9frtSOxgvZ+z8fe+FLe9za/a/5/ErN505U17uiVT6mogdaWVwSSnh9M5dbD3jH/3CL/Hyt7/F+WrFL/zi5/mxf/3f4Of/9s8xmVQ8V1Xoasp0UnFrueThu+/w6d/3+/nq177Ktum4aFq2zQN819I1F7SLJdFDNVtSVxOZhyDTZ2NEOtDqxExN21ReuRExetL11AR5vvZ5KzGKoL6UMpJdCluloQVURjOtq/G4Lou0uZ3q+i7VrEpbhrbbQXJBRDG1LWi2ax4+ukdVF9y6eV2Ydk0/lh+5+cxXVcnIP8NrTdNwfHzMarVKEhADWgvdNm/9CL129/vtN4C59NlvMPdLL6UUiu9tyB8P7sfv3/7/vx8vJH8tZ/L9JQbIpZHUxrau6HtHiIb7D8/59hu/SwiB+3fusLp7Fz0M/NzP/xz//k/9FC9/40s0TjEoC7bmfLPCdT0qeOZ1hY0K5QOhlbnF4MUswRYyW3CTGeV0Jtoqxsohvve7j1tO36cWz9dTEeT7WTyvlO245APeDyhlqcoJZTlNgxmFwhF0EqzR0AwtLrhMVUEpzeAdZmihEcx4NpuBUXSD4/TsAXW3YRg6JlVB5AfpvEd5MCriB4e1qdmJgUgkuMDy4JDVaoXznnoy4WKzAg1dN6CxKKRZFn55JDKMxz5wqYYGklRdQGuV4L+IImA0Uo4E8TRVSOk16gEqi9ZetudDKq1yOaZF7k78Gi4H+tjvRPmaRmG0IXiBC7XS2FK0aYzyWKVwQ0/rIo8uGh6sWu7dX3GyPOZkOWM4V1y0a67fOOJrX/0ivqppVY2fnBBmE8pyxmFV0pw/4Ef/0Gf4tf/7V6imNZUyPNpuWW8bVsOAQjOdzhnmS2b9EltNKeeHyK6pIqqEbuFRKoDyRBwhDk+Mr6ciyCHX4GFck8pTrpzRrd0JA8nyb0+/bYiJ7y1yZrIVXhhLqCp0kCZxu92y3W7H9ay6rtF2B7mtLs54vvow3/n2t5gvlty8doJiJwcdQhhnVRmyUkoIU4vFgtVFM36tsELN3W4zpzqMbnb5e94L0tsv2fbrcnn4pfaWeyTy0nlp+72y+uNj8v3mLP+snK3f79pPPEFB2/XUkzmrN9+ha7f0w5Z//Cu/zoP7d5hMKi5WcPfePe7eucP12x/mhRdexMdA72E5mdF3a8z8iN95+VWe//BH+e6rrxD8OYupwTUDrhs4fXCXTX3BvNnQDT3zxRFBV0naz+Kyy0gIgrw4+fg+vlhPR5CPI9woL37/GjHblI0KLYsNIoPQjzqJZbIIVyqOFuS4YZyA5o+MZuiyoigqzs/PWSyWvPn6a7xgSp599ll5DcXlrJeDxSrheVdVxeHhgeDjlUCNZVEnJMLi/CCZVGsMJuHO5lIG3y8PHg/M8eFiN/7OD/z+x/4D8vjff6/5w35jz+iRnP/M916R9SBDCHSDox8cr3zru7z6+us8fHSGazccHi34c3/mL/Hf/Tf/JcE5qmnNcrHgL/7Fv8Q3vv6ylJf1jNZ1VJNDLoaAqQ45vn6Nd+7e46R0rDZrFkG4KA+3DZ0X3cNh8DgXWFBQ1jNMUeLT/VSRtDidFzA+ABDifnf/+DCjbwb80KOipm02NEWJKSx+6FitVvRdmxoxxcHBAYeHS2wS8AlpL3Q2m404cKbCYqtkHy749uvffYWL9TnBd7z44kt7GiiChRsrdf50KcOc6XTKgwcPLvE/QnQUVqwGi8Kk7X0jZrKEESUY+w29203dnw3sZ3GllIj6GFnuUCqOGVxr4Wdn2sN+Y7oPOz5ei4+IihZtG6VELogkMKTSpDSg6Jzn3v0HnJ5vePOddzg8POTzn/8lXL9lGDr+5//pf+TP/ORP8n/83b/L7du3eebGs3z9a9/k2Q/dZtv1rNaiJtbGEj85oVIDX3v9Pr/nh/8wX/3SP2KCx5qSaRPog6d1nu1Gdma7pqVteqazJeVkiqmFURnRolUUJcDNk0mIT0eQX85sEoR9QhqUUqk2F23BsiyZ6uTVGbP9isd7TdNsKAqTXNwUQyt7oVn78BJUlnZKP/vZz/Kbv/mb1IcHbFYr3n7ztZHwJA+a/PzMelyv1xwdHbHZbMaGdKQiRFEWkPrbPlY+7HDv/Y/d33v/+7IfpHmA8//F9XiJtP/hgxiI9b2j7R2n52e8/e47fONrX+cP/oFP8o9/5fO88+abVLWhLGs+8tEf5Pr1m8ymC65eu8GNG7d44+23IGbfJ9AU+MpQX7nBy6/fQU+vMqvmbDgn+IYFcwrXo7Vl2zk260f4GOj6htmwpCZijaawJSF62e2Pecv//a+nIsh32Wcn1LnfnKno6Z1PGVQCkMSuU6L7jFKeoetYnZ2hdd4OMjt9vhSQOcuVsyWf+PjH+a3f+i2Wy2Wq+y1D2qSfTmVtbbmcM51Ox8yYN1syKiIKWpfx7dw0w24kLqgJlzL5k65LKFMQKWqlZS8yJmUDpWQ/8l/timTk9vLQSYEHa6GoSqbzJdYUPPvss1y7do17b7/LcrHg6OSQ3/zNL/CpT3+GYXAcHZ6gbcXFZjs+kJFkKqs0PgRKY6A+YjFb0pzdYaIqVHHKdLVG9xaDQ6uWTdfTbM/xoce7La1zBNczmS0wRQnIwoj+PrfgqQjy/UxuksRvXr0aoTV2bmcynYuiep2+boucKYU3HWNksZhzdHTE0dHROMEc6bgeTk9lvzKzF/tWtoS6puHOnTv0fU9dlyOVoKpEtHOz2YzDnHxlh2FhCJo9MVGN1u+hFvX/IpM750Zex36fsP89/yr3fr+82S9xlFZEUzIfIufrbjzJfukf/EN+8Ac/zsXFOcfHx1y5coUf+qFP8s2XX2G+OEJFw9nZGVevXmV1eib0i3S/gg40XjGZLDlYLPC9JxYWpSNDHyF2aONFB13Bum/Zbk7ZdlvqAYIXw7PJZCYaj99H0RaekiDXKgVEMGCEi6GtxZYl9XSB9xF0R1CB3rfoLi0OR4cpdyzA0QLQGGazBUVVMlksWRwcMZ2Kd704yMFsvqRpGgnWwdF2W/pGJp2mmGCVY2gvaLdrFrMJIWgiehx/7+skamUpbEXX9igl36e0km10pfAhEJ2j0KlmjgHvduw/gifrkWgtiEy+pBTzqJBLl3RaKCXsQkgCnEg3lj6vonRnwVhUzKdCROPla84TaVE2QZ62xmhZTNbaEBSy4BAi80nBtavHPPPMMzRdz2bb8GOf/UP80uf/AYvZgsVkzte/8jWu37jFummY1RWlVegYcE52R4uoUEGcQJxzrP3Au6qnPjigO3foiaWcDqKW0DVSb0/EBaTpBppuYAgPWQ1bKSGTKH9dTrH2A7DjacyOCCS1q2U+X2JtyWI2o1kciOZKYgN6F9BKAjnricQo9ionJyc7EcuqZLk85PjKiWiCT0qy5YoAACAASURBVGTxYDKZXGrQ3CAbMO1mQ99LoPoUGOuLM7QK2KLi8PkFzbDj1ICcPnU9GZtHo0W5NQTxhzfapIoiEMLlSWTOyMYYkV7Yq+1zQ7r/ucez+Pjfj33+0hU8QQVh+nmPx+N6mT0QHCqWGFWiYsCoAq2ylrlGk05WXaB0ydHREcfH51zcuMlrb76BtZaD5QJUxCi4cvWYi9ffxnlZnh5cN9rVZMKrGgK6sLgYWLUddrkg1DNRX5ifUBU1ulijzJrCtKgYqBVMFGyGlvZsy92+ZzI7oprMmU6XzCfzJ8bXUxLk5tLRHWMcMerSivZ1NanHjZ/RciSC0gMmjcmnszk+iIZiXVYcHR5x/dp1rl27njjoaTJalqDV+G9ky/NhNiMMDoj0/SBSFE3D6aN7zGYz7t8rqOspKtmcay36LFoFBtehldTK+feA75VdeK+SZVfvX4b4nlTOXPp3nnBvNUJ6c67D9R0hOlQQcXytd5BmbvLld1JjU6fVTn98vpD1vMVszoN33+Tm9RsYIr4f2IYtr3/3Ndzg6ZHSLU+Ls0ak1hplhZMefUDj2PYe50UdIVYzUOLIXCRF3NnQUfgeGyIRQwyedrtm3Q907ZahaxmG5onx9VQEOVoJkSrKDp+2sgCQBeBtWVI5hy0bpvusPedQ7VaCvrC44KmtYTKbslguuXHrGW7cuMFyOU98a9LQKGBNmd7QMBJ/NPNEqw24oSckrsp2u6Wua84f3kcfHSdTpiTsX5ZED35I4//3gOz2YdFLmov7S7tc/nuPE7q+3/V+mdx5Ce6229L3LUYFCqsprcXY8hKlYB/N0UajUsIoMFRFycFiyXI+Y7GYcXYXnn32Fm+8+qokmLrm7OyMkyvX6PpmhFYndSaepbdaW2Ja2iiNRWlwGCIRXc7QqkTrAhsTrj806OhQBBxAMMTesd6ci7Gtb/HhAxDkWtlktpoGHkFJnag1Sof0JgyATsOWkLZ2etB6J3tWlihTMFsccOvZD3Hl5BqTyYTpdJ4yVcbfNTFlzyI3WoSdlrZyVL4cl3yXyyXGKprNFucGQpDjuJxOJVO6juh7lMlDctAkeC5mze/vxaov8VPUZcgwB+178aXz1/fl6/YfoHzKyKL2lr7ZMvS9YOrWUBixVDTq8tRV7rMhkhALrWXDyICxatRnnE4mXLt2jdlkinc90WrOzk6ppzOWixkPHrUjQrYvIrr/sKM0zjtcL5/vfaSIlmgLGZrFSEFgaDdo5zHGURmIhcclB7xt39L0HUP3AVC1FbNROSZRENKH0hqN3CSbxIHyqD9zQfK2ivC8A0VRMZ3OWSwOqGdziqrGljWZkoqORK3HTK4MWKUTb0S4IjEmxl8YMM5RaEPf95RHJdv1ZsfawxN8xA2BGDwxiAR1Jnft19P7g5ociOPvH2NSpbtcd++XLPDepc/+9+RAV0qNKFTXnCX9mHQqGln8tcaCvrx5tBscJbQrRoIKYhsDWA3WaLGOCXFc+HDOUZQ7sf/MrswKvfL/2YkOohYKhwaR5w5azFaCKBwrLKaYyieqLX4IBBcwZkMVC7F6URZiz6br6TbrJ8bXUxHkRVGOeLPIUQScEzK/R2pOnz6Utag81AkeRSkZmMQXj9D5wJA4DdaWxLgLHKO0WJgbi1YaM4pSCl9ZaRhi0mIMFlsIR6QsLNF7ZlHq3KwmNSTZhly/l9UwQo15Ipm1Rrzf1d/ApcZSPeZFuR/IGarcf0jy18bp5WOIT9/3nJ+fE4Y7TOsZ5XROYQsqW1KaGmtKgg3jAylBnnoDoYLJsD8FvVU7iNEqmRfcvXeH6bSW00BJafPw4X1sWY2JIPicZZPovxqEFBYtxqc9WWMwwTBEGHqH9wGlLaZcoBcD1lawrTFbYNMyLSyq7VGmRJeaxn0ARPhtVeP9BhUdWkXE6WtnZKWUSA8ZBDOW/VVNqQ1ayxGsg2fbD2P2WDdb5q5nEgJlEG1DMZ9KWWqkkka0jngUGLFj0VEyujIGjcjKRTwYiwqpGSscehio6zBmyt4NBN/jHQSrUNqOgkhaaXRUGCX658LwS3CfEqgOILsqj1nbB6JO5lxRoaOCKBoxxLQXGQMhRvoQITjiMLBdP6JfnVNMRQuxsBVFVaGtJWiNNxGlCgIadEmMBqWNNJxaoYNKtBbRiByzu9YjbLsTU6rQNuJ9R6EsCo8bBqye4HxPUVQonYZjQX5/Fx3KCLMwBLGGx3hEf18R3EBUilgucBQ4CmzU6LjC+1NsrcE5tFWY4QMgLlQUBYPV+E4opvm4tcVudQu4lKmUEsk2nWzIQ1TMkoRF27acnp8xn6el36Q5srN7vIyA5CvGiCNiU0MqGUqNfyfiRkgs+PQ6okhLWGupvWweuRDESaIsMLpAaZUkondj/VwajLJpe6/hvZpI7524YhojUKCOIlYqC1P4GBl6MYpt1qe0mzN0GLBmhtHF5do+NfpaCbvvvfgt+XdWSo+lVF5QEHRrt+AhSI3Av94PYn8SIz44BK4X81mlAlFlSPX9N5qUiiMs6gPoYkJljDw8aEzfSqzEgFGB8vtMfZ+KILdaUZcVzdCLcIzRBCd1d95kz1de3lV5GJKaKJ3clH0/0ALnp2cs50sWiwWTspQgT/fCe3WpJoZMikqBb8RBWOp4IULJzyxBZfNci7WBEDSG3c5lEQJt39M0YhhQ2Igu7Fh27NfR+6UL8b3r7LEHGQTvBtAxNZk+QLTgk/DPek3bbthcPCQMWw4W03FRROtUc5P3Pc2lCefjl8qz/sj3vC5hcnYJItQYnSkYBh/Y9SzOpY2incrtPmHw8S2m8X1VCp22o4aU2BQaUy0wUWH6Vno1tkQ3jEOx942vJ371/6dLR8ekKvCDyJXpGDGGS1lPaz1KMu/DcJl4IUEv3A6CYugaLi4uWK/XHMzn2GLnHuEcGOP2FoUT10VfbuwIiqgiMZusAjFRPbWOqKIi+OxXKViwtZZZUYjTRNvgnadzQ/r3d1SAzJV5rzd6n1IrepDDjgfiPEPwiW4aUGrARBiGjtX5IzbrRxAGykIMeI2xI3YfPGkR4/LxPt7nx96XEdpkj2psrcwwNHRdw7TcbTKhBCLcX6sr7OVTM+yRv/cfrsf/WynGpljWHyPe1FArzNxR24p2s8I3a2L8ALi/dc2WxWIhEmleyDwq7ohOOePsB7n3XhyIlR5H+T5IljdJbKZpGtbrtWScoh5/Xg6erF9orcBt2tgxo6fvTGt3ecgTZAKfnIyV9yhVigRdEIWuyhqUMVhbUk8ndO3AarNOKly7IzrjyGOAvwe5K3Pm27ajMAatNIPzuL4b5wTRC7LTN1tWZ3fohy11XVCU08cUZBXWmDHAY1AEFYiPKR3k16cSWUAphdEanTaSdquAgaoqUBkqTV73gjzuoMkY46WVvv1Vu/1ktZ/M5DXshoLee1mRC6BMhZ4do2xFYSoR5d9+ANCV9fkjJlNpitCKOOzgsKwnqJS65L3Z9z2u94KCpEw8OMGlow9E71KAtJdKg/0FhHxz84M0Ih2jnodQf+XTgqOT+dZANEaaH1NQpPramvSC0CLUqQswmtVqRbsRpCG/cY+LFMEOcckPYt/3RJcaNaUILs0H8gPQrIlDS9ducf2GqpBBj1biOR9CguZCEjZVAbxBmWxUtdMbJAdmCDzuV6/TPKJpGrbb9U6g3+z5CZlCptDseo7HSV9mD0Ldv+fxsQSgQnpdCXiICoa+k2UJFLqcUqbv9/ED0Hiuzk5ZHhxSL4+YTedcbLaYhDJkEZ19pmLGdYMFHAgwIse/H3qiHxgGg3Fu5LyEEMDkLMNYo+Yh0X69mRVs5QhPKAN58SGTotKxm7X4tMUocTHOEz554xR1LRtD7aYbVbPyNVIUuAwJ5t97twKoUHFI1jJifNt1LduLFcFfEIeeujBiw63SAxp3np37cCVqb1k67AQ1VS47YrJvREqQzGUBEVNdrVa07TYFdgpmZdHGoJEGUcqXvVW7EcvfKRG8lw/R7oFg/JrWGhM0VkPvepxTaCJEi7ITyukHoPFcPbrP6vCAYjJF6wJTFJgYxmMuX/mG5WPYe0FMxClCRD8HsjptT7u9YFMUXGw3zOdzrNn9wpclHR5bYuB76ay70Xv+rLyZqrDoMTg1OhGipISSHsNgmJQVdS165nmIcimj75UoecAyWhM6qZe9U/R9S7NZc372kL7t2K7PqKzHKNDVRMqRKIu/Iewe1hgum1G9F9a+H5A5wPPvb4wQ2yaTCXVZ0irQlahbobPXUuKhK3Pp39sPcvbKkpy88v+/l9ve7k0IGIU4hAQnMtspRqrp4onx9VQEedyes310n9liTrk4oigNoZMmaf9Iy39mSeGY9zWdwqeN/dIavAfftygGuq3oHZZVzXHKErU1BC3ZKcYcxHu2HgYpOUxqu9ROpiyqeAnT1iiCkGvldIkKpTwhDijvMUp+htWWuq4oS5OyebI8T3CbsbtMG5yjbVuGIU93I2EQebV2u2azOqO5OENFjxoGGRbbEo+l9UrcioMeS5AI+OhQLstbBxQWEOgzOg+mIHgvMKWKBO2ToGb+3Qvm0xnHB4cs5zNaE9l0DlUscNFisBADpQWtKoE5vSdEGHxAhzCWIfKmR2ziDBEDMUTKIrM3FQ4vSsKFyNIpNNGJmW1hFOAJRuFQqOIDIN0cu47V/btoW3D0jKaaH9IacAFU3A1GsgDP44u9QSuK0jB0sozr+oGh94S+YxvOePv114hR4Z3j+PgYP50yt54QpAQRmq4ZF411amYFI86LvvlEyTyUIDBcQl90hBgD2moiou60w8M1xpB4NFM2my3n5+dU1YSqnEgz5zU+5qbYsdl29L1wQLrNmu16w3p1RrPZEIceECtBRUA3IuemjKbKkF1qrPeVwB5v9Jzv90oFT4xaFGQdtG2DtYWoCE9naBWZz6fcvHGN1flznD56h2b9BoeqoVCl8FBCQW9rFpNiVP/te5lkRy5rL+5n8B2QkO7wY034fjmTp7P5BNxNyt//eiqCXA0DvtmwOXuErSfUkyl1PeVi0xCSLd8+UrCPuGT4UCduhoqym6nwhKEHFem2F9x/9y0MuyPbEghhp72docTdDZOMthtt50DPtaUoAwjdNwhjTxkEkcnAGxmAG/uITCHOcnbBi+5KTJRU732iFDf0rYgYrR7dZ7u+oNmucf1AHFpc3+D6AWMV4JhO5yiz48EH1E53PeHW+w24wKeg9ZAWmkvJ2Mom+G6naCuzi0hpNQeLGVevXuX41od4+OAew/acajLF2glBlThvRodn2exKWujhMjybg3y/rPH+sklWfr/3+7H8uVy2Zo7Ok66nIshDuyXqSLc6Yzub4ftrTGaHNN1A3+9cH/af7LwU4b2n653UelqhC4sJgVgWRIRD4fqGzeqUs7JEGyi0ptSiipuNbkWPPAd4aoi8gWR1qJNkg9H2UtDLg7HbnJc+dTdEgctTzLyG1zQNxjgUSYYuZT7vPQ/v36NrNrRty3q94tHdd+lbcXIjeAbX0TVr4WRrqazqeksgcugku83T8GW6ONw13uzgPWNMZgyn1+jHeYDWltksUZHzNwWPNpa6LLh69SqHJzcpJwuaB29hfM/ssBSJbcWoXrDv0NF3lx802GkxjjV58Jf+btaK3A9qY8yoNJx/jzwgfL/r6QjyOKB6zWDW9OsVm9Upy5Nb1LbAp6c1N2oZqx3hKWvQThPcgNWZmG+w0eKcjPNLrQlDS7ddsz0rONUK4sByuUwen7vtlRCgqgr2yxMyJMb+UZsHRFLPS0NliLjL2ShmhECNrz3/Hn3fU5VSTnTri1Eb5uHdd1hvLmjWG9brFZuzh5CZkTHSD+24yA0yNu97MfBte8d8PmfZdhweHjJbHkkfUl+eE3gve5QhuAQxFlibsqyOKJsw7zxmB5HGSBJ4zz/3YU7feYMvvfI7km2rNdW0xHpLrxmza5nYifuLMfk1PN78XoqJvQy+n9n3B4SPY+vvdz0VQS430eP6lm67YvPoFHMbltMZzvWXnuQcJPtYqzGG6B0xBlTKApFE5vIRo6GwGuVbus0FZzHQ+56ub1guDplOpynD2HSzw/hzrM7YbYYbBYIcA508Ed2vd/d/N/m+yOXP5TKiaRqhxPYN2+2W89NH3L/zNn3b0PUNrusJvsdqpK71nsLIgyxENjc+9E3T4AKs12vWWzHkWh5dGTNg3oXNZcJ7iRVdGgplW0KlIHpUNBitWExqrh4d88LtF3n58Cqrh3dgdc6JrZgVmmCXYy8wOleYy25yl0hoI7yoL5Wl+V49TinIGXw/mz/peiqC3MWA9gPBO3yzZfXwHmf37nH11nNMk1Ryng4qpcT2I5K25qFIkm8ET2HysMER00DEMlBYgwqBod8yuI4HqzPu37/P0eEJh4eHLJeHzGYLyqKiLpNK7qSkLG1alzPJkkXG+mOg518i/D/UvWmPJdl55/c7S+x3yZtLZW1d1V29cBUpihxBM9o1hMceCQb8UfQJDBh+YxgY+yMYfuFvMLBhc2R7RgYtkiIpLiK7u/bKqtzvfmOPc/ziRMS92aSaNmwDxQAuqjszq/IuJ855nv/zX9qFLgXCOO6LbaNIHKNR9jeJtY6LPZvNyPOS1WJJnq6wpiTbpBTZBoFBW4sUDehuR5OgFZ27ld9OceuWW2+FQ2bWWcZyuaYqSvxo0Isrdk+RXTWQaINn+9pdALZqGZ5bkbCQToiM8DgcD7Hvv8+Xv/7P+PH3v8ticYFoTrBZTLP3EC+IEBaqsgElCD13qpbFtmzSnsSa7e9VbYnSuZzt2gR2N8zuBLWLwPztaDylhxDgS7DZmsbzuL46IZmMieIxZeNgNKU86tqQ5TU68PF1gDG1q8UN1NZSGYnna5RpCEPHZ2nKkkY5HiHC1eK+ENiqYL2cOaettCBL8hbx0AwGCXGVUCUBwvMJlXY3DY2rYLpjvMPPpYFW4GEFCOsjbIO1BrDIdif0vAA/CinqkuvpBeXG7dZlNgdRo0yDh2u2JQKpfWq7rWeN2e0LtkIL90a63c3XCoPA1CWz6bSPP+/iF5XyUJ52C1g6oUfT2NamGpdxLxtXallnj2ylC0kQyr0HPpbJeMDxvXe4c37O458tmC8X1NmKAyvx9m4j40NM4ByvhJYIW6CU14IHldObtpyjusJBs20zr4REadnH2DR13aaKtFNOXE2vBIT+bwGE6PBc999WOqrs9eUF48Pb3BntM4gTTN2a+hiHDe/WZN3I35g2M94qwiByCiPjkA8pRYu7g6VByQBjoMhzyrykyHKyjUuo8D1FlITs7U84vncfqUY3YK9uF/98CfG2VIG2tpXuecZxjJZu0ivqCmVNS1HFTQ1bOq9qhQqe8H61SfsMo9HBdDusRumO8On0Cs9THB4eblEp3aI8O54lu1Z1XbO3qzTqrt2bKggCHj16RL7ZkK3mvHryC+bZBrFcMVIRAxk4HacfoVSAFSHadtz4kqZs2ufbeTW6DWG3Vt993d1NDttYm9+amty2YIR1W6TjrKQp84tzRnv7RMM9BknEJs2xjdh24DvHv1Kqj+szxmAFKM/H992bKjEorfC0U7Uo4feoSVVVZOmKfL10x5+0aF9xnN7l1t07v4LtfpYL/bmvbbdJaolkwzjh9q1jfqkkdZ7jSYlRWwmakaYfOCnlxCO7DmBCiBvlG7SL1NDXqrT+iHmWsdlssGZrtN/zSXoy1PZU2OXy/NqJJZ3Cyp1Yk/1DHj565Ehqdc3J86dMFylFfYkxMBEGnxEyOsCoAB0CTY2QQd9vdbOHeoe+caM32NnQute6i7btTkp/3fVWLHKkbi1XWm6zEJCvWV685NTzePjhF0nCAWleo4NtvmYSxzRNtXOHu79fVo4jkvghYZT0yc5SCHcjCYkUXs+FrlVBWWRkmVvkaZlTGOcAoLXf1teuzldqK/wVbJvNTm1vTbvT0pGiOm6KwAgLyuXUf/DBR5yfvOBvv/NvuXO4jx8FiHYCWO+QrrvGqgvN7T7UXR/G7vXXje2/hnSLXRUFTVX2thAGQdUIbA2B3DZ83c2z2+CB6fks3TPqqRXCgNCEgcfB4S3qxqKCiDsP3ufkycfkqwWb1RRTpsTjETGC5OA2nlI0KDwb4Om6R866wc5uLmoHIe6mbHTPrTtpOsH2511vySIXWOE4EAiBQoCpsEXGan7FYjbl9v1hu4ArtHHj4/7D7fSEZvtiu7oNQCqPQErKMnc2CX5Ao90o3goQWuETUFUxSlYuF7KukMJ3JKAbjLytE+xnr93dRkrnCNDJ7ax1tnYWgfBDRsMx73/wRb7/f/zvbIqSJHSJdFZJZHcU6y7RbavD7EqJ7Ws2ffTMLv/adkr8qnLhYZVjZPphhG8MnthV6Mseqfi808mRrnb+2zZ4UnIwHhKFPnfvHPPlL3+Zk6df4Of/8AN++fMfM51eMcwzbusBUljKcIBQzrXLOV9JrC1oTHWDX98t6t2k6O57n32ev+lEfSsWuRsiOF6fsrJtJBtMkbFZLrm8OGVydJsgjsgWLhkio0YJjTF1Hy0oJb0SBhwvpFepKNk2PYLagJaSGouSCiWUU9nrCis0wyjGN4YoHKGUT2euecPq2LoC67P1amO2RKvdD8OVCVBXltoIPD/m8Pguk+M7XJ2fEBuDJxXS0+StFV23yLuadZfOsCtu7rwcEWp7o3W9Sos2bTYbyirvd8HKNKha9DthlwD92TKlf/S1eSvKtq430cKgfe3KwCShHg4ZRAOE1qS14dnTj9lsNqzmF6gqQ+3dRkUDpNAIutOpjVZsttj/r7vhdie2uyfYbwe60te7ynn8Ceej55IicmaXF5yevubOoy+RZpVLF2jH30ptG5Iu415ZiTVOCeO+7iNblpxt2klc4EFjXMIYGoRGq4qGBqQh8j18L3Llh9A4KXWF7SRyANgbi6K7uoW2i/UKp1DefnjaY29yxJ37D3n9+oTFckXo+QxiF7RV1XXP7DPmpib0V28eV1tXtdk+n/a5dLK8i4sLju7cIQgH6MAtwkYImkb0dN/dkqHbKHabwN1F1wsihKWucieawM0k4sEeDz/8Io3y8ZKEF5/8I4urN4h0TqBjQuXjaUUYbN21lFKU1vanUneydDel+3+77Vv+Hyzy/2+Mrv9fXrJ/GJStkbYCYTCmQtUFzWbJ7PQUpTyGwyHCWDwtaOocISy6tZLrhREt0aqxJbWpEFqhfJ/Aj0E4Xz/HT/bQrlpGKkMQB0gPpPawSGphwRPUplPwuPz3BusU7VptNYutOHjb2CnnG9OOxW1LQRVCoCUo0eAHmnff/wLD/bukec1itaauGpT20EGAUhqlNFJ5jr5qBY3BNZjadzs3EpTECwOsMNSmcgp21UawNDWeEqwWSy7PL1gvVy68t25JW1UnpnD6TIukMWCsCyNrrKSxDs82LjMXiaCxjh9j0AgVIJRuxc0eIhAMRxHvv/eQB++8T5AcMkszrhZT1lfPKOcnkC0xlUFKF35llEG1LMSuTq9bNmbfWNrO38blJJmm7h+fd70VO3lHAgKLFS1M1n5PFBuEtUzPX3Py9DF3Hr5HkiRs1vN+NwnD8Aa01O06URS577UNDC0SU9c1wjiDG2MbhFQ4b3QHi9WNwCjFaDTqsdmGBlFblN6ShKqujrXd1LYLmzIuk54Wi+hH0QopbQt11kgJ9++/w52793h2+YrZbIa1lrv37+F7Hka3pvvqJqd+SyiT7c3sdvA43qIu1lq09vGkIC8qTNXw7PETptM5X7OKO/cFQUsYk+pmirMQogUDtuZDu7+/q/nB3bzda4TtsCaSinh/wjd/7/fZpDXz05eU8zecvXlDmhaM93MmRy7Z2fM1FT5VlfU8om7QA91JbzGN7ZVe3fP8rWk8nTmQG6dLBMY0rg6WFi0VVAVWZyyvzhhP9gjDmKKIUNL09fiuAKF7o6ENlzWdlcKW6FWZBk8qlPD6pLgwdDwZjcK2CpblcsnBwQFC6B0YbXs55GHXTkEAbjHTLn5j2wZUacdJtAKMIzL5YczR8R1eeyHr9ZI0TVkul4zHY4LYpSE3ZsvA25XN9cZAbMUkHTOvI2VJ5SFlQ9MYsnRDbUErgalK8rJCKI2n3K6tEK5ZZjtW3+0tdnkjhpv2ILvQn6oNVjivmf39fb781d/h/MUvef3YMDt/w2a5AiHwoxAjSjw7RFpnf90Jw7sy67Oj/93f9etE4L/ueisWuaN4SoR1qQS2ERhlkI072rOqQfohs/NXjPcnHN19gPQ0AkO6WGCMIUmSGwILoJe+7Y3HN6AqcLpHGfiAGxYFkUuvKOtODK16jaizOYu2pkNdSQI7qMTN+thYgZHC+d3hdnSvRQ9ujtQFg8GAo8NDiuW1S6pbb/A8jyRJ8DzFpihvLLTdUbZDRtxO1i2Mrp5uGid8aJqGss6xxtCULpZGKUGYDLA2dKUWHWJi+9/RvZbdBnS70293+M+Sr7AOuarqEiskh4eHaD9BqhitQrJ8SdkUeLFHUReESU0QTAj9wPVczc2kEfe7nTtv93t206R/S3Zy6wzjW4WNEcK92UKQNyVSKKfI9pdcn50wHO0RRUOyfMNwOOxjvXfV4Z1fS6fYr+uauj0CZbtbdQ2XIxo6I1ApdY83d292t3NorZFqByak1ZzSiSgcDm2tRVjrTOilG9Jo2oWhtYNKpUJqj9HehMNbx6zu3qXJlpyenrJarRDCsf1GoxGB59PYrdGSm+5uTT2F7PwM6YXfUmpMGxMupUuwro2TCv7sJz/mK1/7HQ6P7yOU+znbNv6SVv3E9tTYbfaghezkthHefbiF52BQKaARTtXvjEIHVHFIXa8xtmJ2dUZZ1jS1RAw00XDUuxgA/et1n9O26d3drLoy6/Out2KRu90QMBIrBFo5J76W4+e8T5oSky1ZXr3hYjjk+MEHhL6H7yd9qdI0au0i3wAAIABJREFUDcPhsL+zu8TkNHWiW9MpzIVAKU1V1zTGoJUiKwt8LXsz/CJNiZPBDeiu27Gh3bU7LLoVRrTf2TLtBL3DwG4JtXv5vjO3Xx0eUi5vUZYlFxcXLNoj21OaeDS+YdK/y+ory7LHxLvv7dbsVsqWXGbwcakN19eXXJ6dcnD8gDBOXCRkGx5m2xOp2dk1u/ez+3ebpnHuYDvMwt0BjbWCyjRY4YZSfuBx5/YtFqdD0qmbOFtj2KxSsvzSLXJrEXp7QtxgmFpnHcgOarW7yH/T9VYs8ra9x6oG0QpwlbBuRxcaaV19ruqCcjXj9fPHSB3y8IOPWK+d58buuBtgPp/3i1wKx6e2/UIVFHWFrzSe5+P7Hk1dYxqQQmNMTrdou1CtHlu27Cz8rfAZDEhBbZymU0qF2nleTqskaRpD0zj/v6pqUNrn9p17DL/yFcrllCzLyPOcNE25uLjAWsuDMEL73o2Re5+m4XnkxXZnC3yNku1wSDbUSvVIRdM0RIFHVlScn51ydP+aeDShsYKB8py9h3XOsprtJHT3lOwWlbF16+vorLYbUyFa3B0VO/akdRAw2jDZS0iXU3wPJnsjlquMMi0o64KL8xPW6ytGeUUUj3soeLfPyLKaqrpZlsHNXf2fut4KCBFhQDrZWG2hsYZGuF29RlB12HRdIuocipTpm1do5eL1Vssl1jRUWUZTFz3U1A1KqroG4Wpk2z6qqgIlKZu6bXIV67RwcJlU+F6A1D5xPGiHLU6w3NTQGEFjBLURDmIzLsavKi22qpGmQTQWUzfu0VSOomorrKkxTYUUFq1cy6qkpAzHhAfH7I1jDkJBpKGsGxZFyfVsSmfmszsIooUxpbCuYTM12IYw8Np/2zgfROEmjFiJkh6eVKSrNS+f/ZLLsxcURUZloDQtOiQ6Doulrg0GQVm7BD4rpENWGgGNwFQWU1nqoqHKa6q8xtSZK5XwsUZisprhcAxehCc9Eu2TRDFa+a1IuyFbplTLa8rVJR41tnGbjjXCwb2412pwkYZSK6RWKE/33i//1PVW7OSNcXW5lC2Zqb33TKuU760RpMU2TuOYrxeUWc5oNGY6vcIYS2MtRVERhoqiKCiruhcJdLtDZ/XQlTdR5PJ+wjBks3JuWxZLYw1RFPVmRuBkbg0G2QcXb0uQ3vKhdlTcjvvhfqybQt60gOsuIQTh+AB/MEZKzdH+iMoKlsXKWd0NEgZJxMHBAcPhkM1mc8OWoztt1uv1DSGB1hrTh2Jtf28URdR1zZvTE+LRmPHeAUE8QvshtXQ8dpdv1KIbDdSNC97dRjtWfZPbhYX1w6qGdlNwuLttIPBD4tGE66uXhF7IOIiphYddLcnTDINhfn1KkG2w1uKFI1Sr2qrb3si0p+juzt39zs+73oqdvBFuuNDYFne1tvdScSWGM+CHFkprDGWRcvLqJVpLDg6OQCjCKEF7LjtoMBw5J6gWMSiLAgH4noduF0AHVXX1bBQ55fx4PO6PxN0u/tct0O5nupLgs0en2CmRdmvX7u9sGXUSIX2XiyM89oZ77I+GeLZhOb3m+uLSxboEHqPRCMf5aLWufohUHkr7WCTGCpT28YMIVDsIi2OiwQDZer4r30dLxdXFBa9fn2BMA6Z2CJKFxji+d/cntiHPVjR1TlO52UFHB/isC8DuazPGUNYVtZWgfYTyabSP0gGDwcD9G03pkuGqnNX8kvM3L1mvr6irHGxNY2vQ2+a2K0urHUeCz7veip0cFWFM6Y5J4zBzayVNL8DCwVyig5QaFDWvXzxl/+CAydERq82asmqjOSpLHA9o6roPaOpQlY7oFIZhb3sWen6/q69Wqx57312QzqfbjZb7xq6FE0X7M8a4caQQ3k1cuee4dBO97cja1ecuwygvaqraIIxz+T2ajGlMSZplLBdzzt94eA89RuMJRVFRVCV1ZdxiYJt9ujso0vamtUMcx2SZy9jRWrOcL3j+7BkPHn2EGAzAehgBVhqEa5XcR6QUnoKXz59weHCLZLjXMwR3m10HW0qEqnCzYUVZGNKyxqiAQvgsNwtmsxlvzs4oygxPCqIwIA7dLCLdzOCqu1kmxAOXMPdZYtruxvN511uxyFU0IM9WCGvwZKvgaRmJrkSwrSmNw0uFraCEdPaGT3/+I77+rT9gMhpyNV3iRyHzxZQkiFwMSpYT+YFbuNZFp0R+0HftHZJQliXpesP+/j55kVHVdd/87e/v0dQGJWy/yAEMnZXyzi5W1+h2KtpNS2VnT9ea8ncflNuBHAOwqUsUliLP8a3FUDOMfPTxAS9fn7Gaz5z4AwEPJMPxHp4fsl5vaHAoi9eWZt3iq6oKP4j6k6oTF2svcP7pgDU11+dn/PgHf8dHX/wy+/v7/XANKfB0S4aqXULe1cUlgzjBD5P+NNx9bDYbhKcIw5iyqLHK43q25tmLU04uV5yuGs5fz9isZsjGEHoRxjYs0py6lgSeh/IE68WUxXzK0d2H2OaQeDjE86J+Ucdx3I/8fyt28mTv0LlK2aIlF7kSw1gNwiKtY70Z4yyTMTXSWEIRsLh8w6unn/Doi19DK0GVpQ6CbKrevqCrxYVw+lCtNUa4na8oChq25cRisQBhaRxxg9ls5mJSPPdcwPSQoLXbwIBugKLb02b3GDUdnMd219k2kG6Hur46ZTm7QIp6B7Ux+EoyGg/Iy6r3IQwuL4niEbVxJC6M7eMEuxOoq9PTrOh7ku706t6LpqrxlIuW+fSTjzHG8PWvfx3fD1HKWcCZukFLZ7m8STMO9iZo7fflWXdTdWXLarViOBn370eWFazWa16cXtIoDz06Ii4MtdKUi0tKURG0EeKLzZrIhzDAiSjqmtnFa4RtkELgxTe55ruj/c+73opFPpzss17MqFYFVhqsNVijHT6OdcenNSg6GKtB1g2GDTqUnJ28YHJ4i9HkiMvLS+qiAj+grLaNEXCj6YStu2zdThSDdicUEhCWsm64urpiPp+zP9nDCsc76YYxot1Bnauc7BcTbKGtbjDkJH6q31W7G0NKd5Lkmznnr1/gmZK6LrFK01iQomYYxxTDijQv2Gw2VK/P2Ds4ZjgeEw9G5GWGansLz/OcG2471u9q2O7kCgLnRRMEAaWFsqypG8el+eSTjxFC8PCdd5kYiR+EblahJKapyTcZg3iItDft+zoKwWrlGuVkPGazcb4xeQWXl9ekeYFRATKaEO1LaiR1kWHLlLQsXJSLCMlKizEVsa8IfEW2WjHFoWvByDIajXqYeFcG+HnXW7HIvSAiiBOK1bQ12xStz4jLd3QuVe1gyFpXzhjwhIsX3CxmPH/yKd/8g2OSMGS5yEhrVw+GYdjv5p2BZl27uPIuwMpUju2WpxlBELC3t9fuFk5hNJ8vGSQxCtFm3G9N7cMwpC4KqqpyJZFwp45bBO71WeMAaNs4q2lrLUWVI6XGE4oqr7g4eUmZLfClRWlBZRsH0dmGSPkcjEfYZkZRNxRlxunpKSoMOBrvEcbbXsKhLRFlWbpgX9vge35Lg3A3ZTRIWvtngRAVVW4YJhFlUfP0k084O3nNvfc+4v47DxgNB5iqZr1ecv/eHfJ0TRwn1MLpbXd39OXSKasWs7n7c7Vkscx5+eYCTyUMQk1pEpfBZC1ltqTczGhSi6DGi2LqPKOoKrSyqMadusVmw1lxwqRWaGkJw4GTQGrP9UrNb8Eit1Izmtwi36zJNzMCKfCwWFsibcefEK0Uqx37S4nNC4RniWPNZvqG55/+nPsPPnSIo5Au9AmI4xgpBVm6QQiLVjFaB2zWGb7vY5BI7SM8QV5V1HU7QjcWjeDNyWv29yYIJQkDj7oyaCWo6wrbuCQIZ7Jfk9cVGu3ECkKC6LxDW4NSU2O0YV2skVKRiCHFJmf5+gW6yDBKYkuLEAblgv+QJmVgBUQel8s1eVWzWs84Pw+JR0NGw33C2EVvdzusyzGSlGVrA507JAILQRighcb3QteEalduxEP3/9cXb/j5x79AaM17777PvXv3OD6+w8nZJZPJhFlWIcNWstYRwaxhsVmQxDHpcsHZ2RkvT95ghXRc+XjAKIop/JjGBMT7x6zzHLwIY8BspqTZ2lFo64omE5TGEge+63OA5cUzVLNB7j8gSIbUjQThoYLfArV+VTk3q/rgiDfrBbVxPt+Ydri/A8F1NZgxBl8pis0Kr1VCv3jyCXfuPaJuDGnuUsmCIKCoCpJkgFaK8/NTFosF0bAlYVVul1etK63bqQ1V5SwQ6rpkuZyjhOX9jz5E6RgjoGhqyrZZNNalnVVVwVgHVHUBukVgEFQtsy4IAoyQWKPx9YjldEpjVvz4+99l+vopXlMiKpyna1tSWRx6WlU1YRiyLz2uV2vS5cIR0PKCew/f48GDB2Qbt5t30Ohw6HD3jmTWxbaXZdm/j52xUlmWfW0bhiH3b4es12vePH/MydPHGGN4+N4j3nnnHQ4Pb+EnbjKJdWEA8+srBoMBZ5dn/PiH3+X09BztB9y+e48oGVIXKTQlg9gnSCSzRcp+pFkVkmgYk9mU6+XUWVBU7vkVhcYMQnylsY2DEs/PTylryWA0YbJ/C6Fhk6Wfu77ekkXe0Hge0XDIYG9CtpgibNVCWFuq5y4Tz30gDsarypwgjKjznDRbc+fOQ569eMVqtWpdtCqur69dwnM3TGhcbF9TVSRhxGK9IUkShLFcXFz0tXMQBCRRzOXlJcPhkOH+mDAMUUr0wVCmrkizlDzd4EmvDYX1kAjm8zlSQhJFlHWFRWOVxlMxs+snPP/F95ifvUI1haMU43Lnne61FTH0Kpka3/cYDRIuN7l7XVcXRIMBh4f7W8y/dQIra4O1FRaJF0QgNUXVUPbcHpfArJTHYDBqUYsBg0HJer1EC8g9B7mmac7zJ5/w6vkTtPLR0RDPVwgLebp2VhuhuzGqMmU0jEAolospSgmSZEhZlZj1jDCOkcWSy5OneBKyzYr5bNa/ziBOnJ+SbZxDQxThS5ejKgzMpheUZY4xNZODfZLgt6DxbJqGLC8YxCNG4wPWy7lLOKsKxI4VQ4fHAi0n3LRwWUVVZgR+xD/+5Cf80dFd7ty5w3I5Z7lcooRr8DpBgWtGc+7du7ezqwnS1qw/8D1Wq5UT0tYlslXo/+ynP+H+uw/Z35s4PamvyNYbjG14+fwFxtQoKxmNRtjahdYqBCevXnJ8fMxgb+wYjlIhjGVxPeX1i2f4oqApUxKlsI2btkqjMRKsdDQHkK7+bKeMwzhinZfYpubk5AStNR994UsIrVgtNyhPUxQVRweHPR8GYDQa9XODuq7ZbDYYYxgMBo7mm6YYYxgOh3iex/7+PkVRcHioWSwWLoOpriiyaxaznKpwIoYkDhF25JLwAo8kGZCXBVIprGlavxmPy6sltal4ePuAxz//MW/O3oCtKbKMuCWJdfAnQFm5PiOJQ0KtUFpQVxnzWYH2JNiC8eTgc9fXW7HIvSAgyzb4niYajgnjEdXy8gaWDb9q9ti0dboQ1tkuVBn5csbLx5/y4IMvkCQJV1dX+FqitY9WzmKta9BevnjB0dGR+wCiiMViwaIldkkpiaLIHf91g/QksrH84O++x2Q05t33HrBZppimcikRjSGJo37QEnia1XzRlwOL2RzpRwip8LRmOrvi7PQlVV4QhhLlR6R57kyIUNT0w1qEaD8mITFK4euASDtB9GKT4lvJ8ydPuP/OQ+LBCCtguVwTJwlZXjrToda5CmvRniAIY9LNBqU8h9hUzmouSYbt6876Btb3Q4oi4/DwkOEocVEuVU5dV5R5Gz1e5pi6IAxDpEp68yIhNcPBiM1mQzwYEUYBSkmqdM23vvFVvv93KScnLxkPE9arZT9Q6oc8DZQ02E2GiiKU9LBUeEHI/PqCuqzw1Ocv47dikTtOt6asHDd6MN7j/PqMUAkQv+p42mPNrR7RSrB1SZ2n+KMxr55/yuGtY6wXOJ5GmaO1JktTRiP3hqdpSlnmpOmaJEkoyxzPa22BbY2woLVklLhSJdu455Gt1nz/u/8n4yRGe5KqcoQwrRS+9liv16wWS9cPaM+xIFuO+Xq6xgs9Mrnh+bNfcj0949adO6iypNGKVXMFVYOULSQvnB21VV7LfXEDJVRA4GmkF1M0V5RVgVKKTz/9lOM79wjjxJHdasO6WuP7/g2f8o6zPRwOKcuSzWbTY+xd3d4NmjpXLuX5CAWejEi0R2SGCAtpuiYMAooia0Ulgkb4ThhiHbHL4BwSjIE4GbBarVBSkAQ+3/q9r9FUGa+eP8PTntPPdtQJa0Fp52FTGlZ1Bki0L6iKnMAPSdcbpuLzl7H4v8PH/f/7+uYf/yc2iBKEsOyPhhTrOZ/++Lto0SAaR+kUwnmzODy6VaXoAGEsWnVpy5LBwT2WWcO7H36Jd7/6uzRNw/Mnzzk4mDirOdHg+z55nlOWZa8o0lr3A5XOhQsg9HxXd7bHved5LtZ8veaLX/iQg4MJoe9EAVVVsEozrq+v2R+PiKIIT2sWi5kzpjchpxevWGVzrqbnDEKPkZ8wSkb4HqyWU+ZXl2hbITF9GeWMSx1/WyiFUB6NcAIPYy2vXp8wn8/58ItfxCJ58Oh9xnuHLDdrdGs1V2R5D/WBw+lHQ5e10zRNT/pqmobZbIbSXi+MiOOYsizwPNX/vKfdCZWlaTt1rMA4DWZNRRjGeEFImmcoL8AKxwnKs4L1eo2SAmEd7FpVBWdnZ3z/e3/nGm1gGzCmnFeNBa+xWFszGIYMBg5NEq3Y4/nJq3/SfOWt2MkHcUTROF3QsqwJgpjRrVtcn53gt2kPUgikVDSii7xzScyiFVgIY5FKk6dLRoMxb149Znz7iNvH9wnjAYtVQRxqmqqmyDYkw3EvE/N9/8aAIQndKHy9Xrs3WkoGI8f+C2LfZcDLhp/+9B/AOM7LZLzHneMjTk7fcH5+zu2jQw6PXD272az55JNPEMbBbXfv3mUvTACoLKzKnKDRDEZHZEXJZj3DU7r1QvTwpO8oDm1+aINFB2G768Hk6A5ZUaOFoGxqLs7OsWiXpSM9GmupkQRhgmhRKwzkRbl1OFDaGTdpTRjFGNPg+Wobo2gtSrodOgwCijJzw6dAUaxztOfcf4MkoiozEAKpJcPhGKE8aivYpJkr7ayhqtwi9sMBw/EBo71b/OLJM1bzKyeMLgsXhGUNxrqFXllHtM2KBmROFARI6RJCPu96Kxa5awYVQvrUZcne3pCDgyOml2cI07RjbonDQ27+vZbRghFu2JKvN3hBghCap598wjAeQluHV4VhbzzAD3U/rtdaMxgMUEqx2bjGcxDFvfStrmuiKGp36hYTxk0WJ/t7bJYLlotrXr94yj/UJdY6bsrlm5eA2zF9X5NlGQcHk54w1sF3RVE4aDQI8BrF8e27vHqZuhJIe44z0x7j4ATXUivSsnSpGspjOIk4qAuy9t9dL5cI6fPuo0es0xzf93tS2ma9dOgNWx1rHMf9pLTb7aWU5FmrLZWSQeIGSL4XtpPVrUdKd0kpESiyZo0xECgfpOPzCO0TBAEXp6ckScJsNutff1eH/8mf/An/29/8O9LlHC+MMWXh5iOiRZqsQQhJUeU0LUc/DEP837CM34pFjnSogedBkRVsNi74dDw5JJtdOS6LEMhfics2GOsIirahpQQI8s0aPx6SLhacvHzBnQcfUJ1fk20W5LnGeoKjoyOm0ylSSjabDYeHhzfe9Kpyb2AXR1gURWunbNFe6Gp2YHDL41rUKCqaymV5FkWBrwOKokInIcbA3mBI1dogx3F8w0ajW2BnqwVHh/scHN1menVJZQVCKgprHWVWufEQUqMCzWK15PLymtenpyznc37v618j8gPieECxWXN9esbg8KAlihnSbO0MiITAC9zgJ4oispbfMh5PWkzdtLV5ThzH/YnWYey+75MVeWtC1DqWWUmWugmxVRasoGpqQs8HK/ADR5IbDodYaxm2pVJXfzvlluHb3/42/9P/+G8pNht0m8EkcPwlq5VTLllDbRqyPP8Vy4xfd70Vi9zBRpahHyCEZb1eEWnF7bvv8ng+Q3TGk6JtyLrLQQ+OpSicyibwfYp8gx9o6rLi9OVzvvCV3yXNS4x10JmpDFaseyZb9+GlbX25mi+4devWDf7yZrNBCIGWCqnA15ooSSiyFb72GI+H+J5Cm5LVaoVpBLePbpGmeTvEUvjjAVdXVyzXG2e8WVVO37leM4gjJgdHNAj2xiPWadFybiy1BYWiNg6bny+mfPz4U9I0JS8L4jgmSGLenF3x6OEDirxCRZrp9SV7t4/JMkdXWK/XJGHiGk3Po6pr6lY+GEURaZa5sX8cg7QMRgPG4zGffPIJWZETBAFpnrFON4zHYwaDAVXV1vl2q9zPG1f6VVWN9kEpyXq1pKobwtaKDmC1WhGGIUmSMJ1OQVpWqxV//mf/kr/5zv9MXZXIvjZvTUtaT3OpaCkFZd8r/FPXW9F4fuvP/7XtaJtCOMPP0XDAZrWmXl1w8uKJM8FpJ4jO2aRl6knH03Y7vbOXU9IgpSYeH5BZj6/9iz/nwQdf5PLykquzM7S1xGOHLLgy4oA0Td1E0hjSlUMkgsChM+v1Gikle3t75HlJnndMxxpfC6wpKfMMa2pGwwjP81jNV2w2G5J4SFFULBYLjN66sHY3TxRFDo+vXMZP07ije29vj9nsmhfPn/Lm4pJNmlPXzdavsFXp1HUNtmilZAZfKj56/z32Bgm+0hRK8rvf/BbL5ZJBMnQytsJlDA0HMdPplP39/XbCWBAEQTtEKymKrOfhdz1KZ8LZKY86eaCUumcjpjsWEV1kTHcyaqlupLVp7UrHrumNoohNlmLqik8//gUvn36CNTWBr2lqix9oIj9wVAnZxcIb3lzO/snG861QBu0aTiahM9QxVmKlZjjeQ2m/hb8+kyqMw6dtK9fqv2YaqEvW8zmD0OPp08c0zXZhdR+a1rofjnQfcFVVvWSug9g66O3q6oqyKTECGiEpjSGvDX4wJBkdEcQTyspDyAEySPDiEdbzkWHA4d07rqkLQ0ajUeup4vXH7Xh/AkoTJQMmB7dQXsj+rdusi5o0K1Fe6PgpUiOFT6AjQi8m9EI85WNqd1rkdcWT5y9ck9bKCX/64x8xmUyYz+dOaCAk8bCF8lrbjsvLS6qq4vz8vJ8KB23Cc1nWVFVDkgxbZEs7cpaF5XpFmhVcXV9zenZB3Vjqxji3svbzGg6HLZdG9ze21pogCHruelEUVC3LcjgYof2Ar3/jm3hhgNYSX0n2RgNGUUKgJKIxUNUOcv0NBK23YpFrz0NrRVWVmBatWK9ShPIoq4aj28dU9daiuJOjYeyNRd8Y4wKyGgPWhdU2ZcFyMefv//77+L7P7du3EcLF4qVpSlVVJEnCaDRisVgwGAz6RixNU6IooqqqLR+7qYmS2BnQHxwxHO3TCEVZW8JkDxEkZI0AFdHgU9SQVTVFY5hMJlvlf1X1GtK+AbWW2liWq4zFcs1yueYb3/oWUvu40C5B5Ed0/opSusGQJ93N21hBEETkVcnzl69orMHipofPnj3jzr27TjkkoDGWMEoYDsaURc1wMMbTAYNk5NT3bR8C3NDJRlFEEASEoesrPM8jz3OGwyGDwaD/szNgLVoevO87Dvpy6VzC6rrm4uKCoij6BR/HMVnqOPPDwahvRg8PD5ns7RFIjTQW2xg0EikEGoEnPn8ZvxWL3BMSLRS+8livN6xWKxbLa6LAIxocMB7fwdcRgQDZ5GByGhpq45TwmBLRVEjjlDZWOPsHKSzL60v2ZMPzn/4IW2xYZRmL2lC1j+VqQ5Y5udvF6RnXl+dsNpseS6/rmlu3bvV1ZF1W2MZgy5qqDZNV2qdsTC+/u7q6YjAaozyfeDAmSsbkpWGTlWg/IkpGjCeHlLXFCk1jJYNkAiiKvCKOXZ2Klfgy5MGDB2w2KzzlrB+056zelLQgLcFwQjya0MXJ+F7A1fWM8+s5Nm/wkSyvppw8f8H19XW/OZRlyTrdOLsL4eytvcBnnW6QwqcqLUeHdxB41FVrCtpYBoMRUmiqsqGuHONRCEGarplOr0jXG2xjUEIShxFabSmxg9GQZDggHiTcuX8P2iS7vYN9atEwGEZIAVm64XCyTxgkfP13f5/ZOqOmompKB60C1jhD0vLzHSnejkW+q9PrkIYoikjTNVfzJbNlyr37DzBN1bpt7eTK9J4+btcyWBrRJhML4WwaqpzDvQE/+8k/MBqNuPfgIXleMJnsA5CmKfP5nLt377Jer13kYKtA7xKS89w1XsJYyswNhjrl+2q14uDggE3uiErdoGI4HCKlZH9ygO851ENKjecFratAjDGQ5yVZXlKVTRua2/R1OcDvfu2r3L19Cyudq1hjHWbcCNlOBCVGOP76er12JKnG8PEnj11ppp2v49mbU5IoJt+kiGarcOoYj1rrHla9desWo9GI+XxOHMcYY8izEqykrswNi7gsy3oV/2AwQErZi1M66HU3zvHq6soJLJZLsjQl8H3msxlCKEZ7E/KyIIoCTi/OqY0lGo75vd//5zTGIj0ngunWtRXGmRh9zvVWLHLYuqV2dWuSJGRZxr2HDxgfHeIPEnIrqVtRhTRtR7/zsEb0D2OdZ4uRgvlyRlXmrOdTXjz5lEC533N9fc3h4SFBEDCZTAD6IznPXSpFZ9nW1Y5RFPXii868qDvapdAUVYn2PV69PmE82SMeJL1fSJoV5EVFGCUo7aO9gDQrqGrDJi8om5q8KsmrkrPLC5abNX4UcnCwz1/91V9y//590jyjNg0lUGDJG+sCakcTPvzoSxzeukvdCK5nc96cnfM3f/vvOb04R2hFUZV88otfoqyhXK8IPJ/RaNQv8uVy6fqD8Zj5coHyNGEcMRgNef/DDzBYhuMRZV3RYBmMR0hPowMnyjAC5i3/5Pj4GCkl8/m837gODg6Qdy0IAAAXFklEQVTYbDbs7bns1Ol0iu/7rFYrV7YlA9IsZzKZsFitHdFNKJbrlKPDW/zzP/xTDo/u9I66Tk3jptifd701ixy2Ru9dUrIQgul8QS0sRiqEF9Kgt74s4tc/mlYyV7eWxlmWOUeupuLjn/+EYej3Xh2daijLsl6XOJtfcz29pG5KBsOYssrJi5Rnz59QteFNZVkym816LeVisXCJCqsNTWM5PLzF69en5HlJmuZMJgfcun2Hg6NbLNcbkuEIpOLhe49IhqPW30WSJEMmkwMePfqAKEpaczEXRPuHf/iH3L17l6o2FGVFNBjyznuP+OiLXyKKIp4+f8ar1ydkZYHneRwd3wZP8eLkNZXphM2a8zev8T3Fk6efAp2oRPY3cyddW6/XCOHownmec3h4CIAO3HPtTqP33/+QsqyJogSlnKRwsViQpilxHPcIzWq1YjgcMpvNWC6XJEnSk/CKoqBpFVrdBPrs4ryt4+f84Id/z/e+90MCP9oyUXE7ufkNO/lbASH+wV/8le1IQ7uwmjGGRmiiwHdSqcUVj//xZ4yTiKosWwai+LWPzqlVCYlQLi4lGEworeK9Dz7k+J0PWK1WgMX3PIRw1IDlat5rIruTRWtNFEWAC19N07Tf1dM0xfd9ksSx86LQ71GTTkb3+vVr9vb2sNaVPkniRvrd8R3HMVdXV8RJ1A+LiqLg+PiYy8tLjiYjnA2d5no25/s/+CFWKWqLS2yuG6azK6osw9fKvRZrqYqcZbbGVDVHh4f8+Z/8KevlGl972Kbh/a98hVcnb3j06BGLxaK3kkuSBOn5/WAsCALyPG85LG6eEMZRP7mdzWa9B+VqtcLTPoPB4IadW57nbDYbotAxTjuMvGvoz87OGI1GzmqjcP6Vrj9atSzRkPnVJbYqoarc9A+LlW6Rn11t/kkI8a1Y5L//Z//aJolLaVuv1233Hrq6Tmj2RkM34i3XPP/0Y/L1Ak9tA5F2F3fv3ye2X9dCUhlDMtgjHu9TVIY//lf/GaenpwwGCavlkrLMGcYJ09kVURT0qEHHp57NZty+fZskHvfoQJqmPRoznU77Wrxb/Ov1mgcPHvSTvsY4vLwTUHf8dqUUTVX27gK72PR4PCZuMfvaGqrGLaR//x/+ljTd9HxwASjhBAhNVVKXhcPjA783Ov3w0ft89ctfoWynt3gB7z36gCdPnrg8zrZEE0LghVErlkg5Pj52CzSK+ufdGLuNmtSa+XzeQ7S7JLfdHfvy8hIl3XRTSkmapjdMPV+9eEZdVkynV62bQIXnuZNlvVo50YinGOjAJe+JVuQu4Oxy/nYTtDoRMNC/Af1wyEhWiwVJFFLWDcd37/H4k5lLJaZd6DsP0+3kQtAI0NLl9URRRJlnlPUVB4fHrFYroiji6uqKw4MD5vOqV3931nEdbry3t8dyuXSLblSTJEmPKKzXzlpuPB73E9P5fM7BwQGHh4dIKXtrt7t375Jucs7PzpFScu/ePcfnuLggCCKm0yvAlW37+/tkWeaowauUpi4YTUbMTk8RAs7fnLhEhzBksVhQFBlNkSOsaXc58Bz3lSJ3M4BPP/2U8XjM0eE+AtisFjx7/oQvf+WLLJdLyip3C7w1KdK+R20aXr0+4fDwkLwseq63FIokSTg/PydJkn63797DbpJc19vgsslkQrZasFrMEEIwmUy4urri/PzclYuVa/ajQNPUNVmRsl5kCGmJI4/lOqWqJMJvw8oABPymbfqt2Mn/xbf/U1sUxQ0n08FgwHK5hKYhGQ7Qno/yAk5ePMWzFecnzwlVO+IVup18OqaD28klRvkoYVEtS9H3/Ra/DSjlgD/5i78gGI45Pb9kOp3y5fceYauSj58+Rii3CK+urkjTtB/zz+fz3kbO8zzn0wLcunXL4fiNa+AODw8py5LDw0OWy6X73bbuhz9ddMpqseTRo0c8efKpW0htWbBYLPoS6fbt25yfnzMejnj+4hmjJObBw/v8t//mv6EsS8q6IIpCfM9jtVo4XneLP9StB1kb2YlE8Bd/8RfQGgENkiFCSUb7B4zGE0YHE9LU7ejdsKb3lNGa1WrF8fExby7O+1Ij37iJZhxGPHnyhOPjO+R53iJPC1arFXHiBkDZYsFm6b7mmIz0Pc18dukMUXds57qTw5WQzpdxMpnQVNtUP4CTs/O3e+LZXd1RZ4xhNpu1QwjbGlm6QcntO3eZHBy6BSU0tfSpWgque0gaoTHC2T/LzqJNSRqcmqixlnES8sPvfQ9Mw+HhPrdu3eKXv/wlWdY2bUfOw2U0GrXj67jHz+u6ZjAY9GSlsix58+ZN74N+dHTEfO5q++Vy2S/YOIxI1xsWszme0oyHI27fvs3JyUk/Xe1CBTpb5jAM2aRrZvMpZVWwv7+HEILvfOc7/PVf/3XPA8+ynKurq/69tMgtvEofeEFRlfwv/+47jMZjgsCjMTVFkQOG6+klT58+dVrXdszfLfCyLB0PXClOXr/uhz3nb85YL1fsjcbM53MODw+5ODsl8DQvnj9hkMSEgebNySt++IPv89Mf/4iTVy8oiwxhLZcXZzx/9oTZ9ALZmSrZrSXcrk+5FtsaHykQatssf+66eht28m/+8b+yXfpu1+gtFguHWy9mzmReeqggZDKMqbMVH//sxzTtiBpaDagFIwxt/jFKtjEtXUoatDi1h8BH+gHvfvgF7jx8yOPHTzncP6DKnXYwTVO+9KUv8erVq96zxRgXFRiGIb7vc+fOHaqqYjqdcu/ePZqmYb1yHBj3uxyi8M477/DkyRPeuX+336G679V13Y76B7x8+ZIkSfpBFDgcen9/n8Ew4dmTpwC8fvnCoR6za7797W/zX/4X/7nzg1wuWkXOFm1wFh7b97pbEHEc8+d//EfuBgwT0jzny1/9Gq/fnLF3sI9SXk/s6mSA3efTWENeOHRpPByhhHst9+7dczdJ5Le7d8iPfvQjwA2GjDEEnvNfXK/X1E3e9ieOwuy1idOfpfB2JkkK0WPxnXND93j26uTtbzxhG8LUNW5aa0xTu5H7csODd9/l7M0JoaegLnj8+HFPS7TWlSUI08ebKFO6jHkZtD6EXYJxw/HRbUpjsUrzH//lX/Lq9Sll7d7g/b0xVVFwenrK7du3UUoxm83Y33fDo/Pzc5RSxHHM0dFRL7hYLBYc7B9xfX3Nw4cPWSwWjEajvnxZLed9s9npSNfrdTuEcdEwl5dO23pwcNDfEPP5nDAMmYz3mM6uKdKMzWZFWRRICaO9Mf/Df//fEURxa6sHnW20tfbGIleepmwzhj58510++vB91usUpX08z+dg/4jKNMTJGD9ydNxuUXWib2MMxkrq0u30wyRBCOe1mKcZT5/8nOVyyWw24/79uyyXS66vrtqbRLqJsbXkhethfF/3es5dJ+HuZO9OtV0HYrgJODx58fLtLlfq2jVzu+kBcRwTBA7lqBuD72uXjLZZI7XnMiTrAi1A0+BL6yi5psGaEmxDIxS18CiMZl0LpmnFdJ2zyWvSzIluTVXy3b/9W+LQp2oaouGozxja29sjyzI2G4didM1mR+qaTqdcXl72EONkMmGxWHDnzp0+2Ori4qJXwQshuLy8ZDweA67JjqKo/zDn8zm3b99mOBz2k1SnnqeH71bLdStscEhGELif++jLX3WNXkstcAZJXh942002na2dgMbw9MmnPH3yKYf7EwJfY+qaq8tzIk9zcX6KJwV1kUNT93+uF3OkhVArfK1dmFie8/jTj/nR97/Hj3/4A8osxVcQ+YrnTx5zef4a0xTUVUZZbKibnMa4G7Rb4N1G0dkxd6zPwWDQE7p2rw59gt8cqfJW7ORf+Wd/apMk6dU4RVEwGAz6I7JDOuI43jHbtBTzM85OXwPOqdXpC1t7Z6HAD0H7oBOQiijwSZcLVvNrxrFmGMaMhm7g8uWv/A6DW7e5mM4o12tCf5sWHMex8xcsS05PT/nGN77B2dkZe3t7bDYbPvzwQ169euUayeUGgL29vX4X7z64OAo4ODjY/n8c9wtvuZz3CzFpVTh7e3ukacpwOHaqpNppKS/OzgjDwGlWAe0rXr95xX/4m/8VPwrAGIbDAZvNBiubfmdUwsW6KOHovuNBSOj57B/e4v0PP+J6tkB7AWVZ8uDRB1xdz3jw4IGjCbe2FUmSkOc50+tL3rx5Q56uCds+ZZOuuLo472m11lrKKm8/w5Z33ph+juBee03T2BaFSnoYcjd9rrs+CxnvXo+fv3i7y5Xf+6P/yPZaw5b30Bk7FkXBrVu3evbaeDx2DanymJ+/4PWrE9KycjEfygMVoP0AqTRoBTrCKIf5DkKParNmNb1EsmKSDBnFEeUmY53lfOuP/4xN1TCOot6NqsPJu/q0U8p4nvNmOTw8RAjBarXiww8/5Oc/+wVHR0fEcczJyQn37t1jNps5ccTSQYvd4KUb+ozHY6qq6Dkem82m/VrVQpNuoSxmc6IooMxzpBTtom9cCrOUPHjnHv/mv/6vGLSQZZLEpNUG2Yami8YSao+94Yj9vQmedhhzXdfsHR4hPN+9j0jiwZh33nmH169fMx6Pe+79dDptb7iSsizYrJcsZlMsTqYYev7/1d6Z9MZxXVH4q1dzz02KikRSouQklu0YUYwAAZJ18kcCBPmNAbLJIotYDhDAdmLLsgaalMhmN9lDzdPL4tUrNi1ZdhYGmEYdoABOaDRYp2/dd4dzQHjkebqm6quUetXhUWu0q/TH97t4bkeVjKsCnWa9yaNTm3bB69H76eF3LzJfi3QFVIqiDzb6oKf3LufzOUDTfi9kpdIEr0//xi2c/hal08fsbmN1thD+EOH1EU4XLKV1mKUFi1VMXkIlTCqh1sfCcMXW9ojxoE+Z57z37gMmkwlhENf1cIflcslgMMC2lcuDtk28desWRVE0VYUwDNndu8Xp5BVxHHP//n3CMGwWJTqdDlEUNQpguqGk9bbLsmwez0mS4Hkes9mM09NTpJSMRiPyXA9uqfWyNM9YLBbkec6jR4/445/+TFALI1nCwjbAQjLsdTnY2+XBz37K3q2f4AiDqlCW3VJKXr161ajvSlkyn5/XJdAtLi5mPH3ymOX8nHC1YHrykqMXzzh68ZwoWOF6NrZtYgkD0xLNrLk0AGHguH4jBa0jt+d57O7u0+12r6QiOv9+UxdbNu9Pvna9Ddcikv/qd7+XWqTSrXcBdcdT58J6+H4+n3NwcMDx8TG93oCsNPj866f4wzFZXmIZAosSIamHuS71wDGtZrNlNT3EMSpco+Lu7m1MTNz+Ng8/+g2n51PKIme1mOE7qtojhWB2sWJ/fx9L0HTsdKVEp1mOo27YaDTi6OiosQwRQjQz651Op7mZeijKNC63hvQSQa93qVGiZ9u1lIbneQCNrEYcrDAF5GnMxWzGJ4/+QZZlvHew2ywsrM/iK6k82UzzVYYgLXLu3jvg8Ogl7z74kNnFObYtiMIFcRSQxRnL5ZKO55MlIYZlUgiDspBqxqY2xtUSInp9ULf/1VYTTa9gXWPcMJTsxDpxvx21qze0ffTvnh8dX/+Op46QellBj7HqGqke3dS1Z9M0VRs7WrI9HBDJEmHIeounjpSoNVA9bmq7DrIC23EhGxFcTKiKnOPjY37x/vucTs94dXxIdzzm5GSG7zoUdbvdc1zGY0Eahxie14yk6u0anWfqxs90OmU4HHJ6etq4N2jrkTiOmyWCwWDA4eEhw77SadE3TSsFaOihpSzLGkPaXk/5jMZpguV6GFVJnC65e+9eo+RFPK9z47ypXjWjzTVndD3d8zwmkyk3btxgsZjjWBZPnnyBrDJG/QFJEmEaNTktEwyhFl2kgSzVe7aFDfXra/tzvQWl/gf5lTFduExBWCM2XFqf/xCSvw3XIl3xXY8kirGESRLF9DrdWh8lwUCCrPBchzgKkVXJxfmM7a0xRZLgGJK7t3dIlxe1hIEkrwySvKJEYFgOpmXj+WrSzrEthAHdTgfHUoes6XTKJx9/jG9VfPbPv+OaFQ9+fp8oiuj2+gRhxPn5nEGvhywrdQ4IQkxDifb4rocsK4osJ40TyrwgDiPiMGLv9i7hKqDj+eRphiHBsWziMKIqSpbzBcP+oHGQ1k2hIAiaqK3rxEAzoakPp5ZjI0yHyjBIi5LtGzepEOwdHLC7v0+aZmRZTp4rH8yyrFC8MOryqokwbQzLpiyVTmS0ijApMKqMsrZdicKlEgSqW6em5VNKE8/vY7s+ok5HpDTodrtKHLW+1m3QG7e8NXLqp4uuka8bbukxgnWjrW8bi32fncq1IPn6goKONHr/sqoq5vP5FRNafRCczc4QsiKJAkYDZZBqVCXCVLYptmVgUtFxHDxLWWFfnJ1w+OW/iZYLur6rHo1FQRAGmELS63p89um/SJOYnZtqtHQ4HKtunyGa9zEYDDg5OWFnZ6fpVLqu20Tc7e1tJpNJYzuoI6sQok5rnCZ10eO6ulQphKgFS5eNq4X++bpjXFmW9eurDxfQVKK2x2P29/cIowRh2tiOR1FKytqrUyLUFKdlYtSyEo7nIqtLc13PscmLlAqJNES9MtfHdjpUwiSvJItVSFFJTMe+UhKFqyKt63m1vt5E2PUFmvXfrxP8TdfbcC3SFeBKA0BPv1V1oqd81SuyLGFnR5XgZrMzfL+L7fkkWcqo3+Ni/hLT6SIL6A/7qhZLxdGzL5BVScdzlHxE1yJazEiDgCpT5HAdt9lwWcYxq3t3SfOKw2+O+OCDDxmNRjx5/BV5qernZ2dnTQVAz1aoLRql1RIEAffv3+fs7KxZibt9+3Yzt+77fqProlMY13WbA7ce8ppOp+zc2G7OKMvlsvlASClxbYcsVodky1BrcXEW8eLZM5areZPHax9ToCnTKUUuZUCGMC57/wimswt6/Q6W7WKYFkVVUUpBkaoyZlxriNt+h7IWXFLeSG++v5cHxNcPjU0OLi8j/JsOltVa9NcfGP23b8O1iOSmIS7di4tSKaXWj3xLmLi2Q1WUuLbTfJ/GCVlRkqQZnW4XZMXB3i3Ggy6mrHj61eecvPiKyTdPGXcsHJmSzacEs2OMZEG+uqDKY1zPwa295b988jXD0RYYkv98/im9Xod33nmHk5MTqqpi0O3R9TtsjcZsjcb0uz1ePHuOwODxF18SBSGe41LmBfPzC148e872eEs5VgjlXBEFIa7tYJtWsy9aFeUV/cXRaMT+/j5pmvLw4UNOT0+bx7ce3tIRcjAYUOYxFClJuOD5k8ccvXjGq5eHzE5P6PR7zQJJiVSDbPVeJcJEGkpjEqn9mBR5TMcliBLSvCROCsIoIykkSaHW7ly/g+l62o63JuDrZT+4apT7fRH5f7n+r6orv/7tH+S6Q4I2birLEtuxcByrObQ18862jTDV9rwQaqJu984+f/nr3/D9HlvDEYvZMcFiTr/Xod/zyaKQIFiSJSm2reZLtMh9WRNs/84+XtcjCGM+/OVH9IbbvHp5Rq/rM+73WC4CLFeVFff29kiShNVq1Wycm6bRpBK6caUPjJZlNTPoOjLrw3UpVYqmJyXjOObOnTtqoz2JieOYmzdv0uv1mEwmSqMwSYhWS4xK5fBpHBOsFmRJpOwibbsZE16f8Gy6hcLUVWkA1QnVcU+YCEsQhEviJMGwTJK0IE7LevtH3YeKEkNIbAwcYWKZBo64WuhYJ6KU5WvkbL6urkbm9Q8GcGXg7NuVl8n5d+uuXAuSt2jxY+JapCstWvyYaEneYuPRkrzFxqMleYuNR0vyFhuPluQtNh4tyVtsPFqSt9h4tCRvsfFoSd5i49GSvMXGoyV5i41HS/IWG4+W5C02Hi3JW2w8WpK32Hi0JG+x8WhJ3mLj0ZK8xcajJXmLjUdL8hYbj5bkLTYeLclbbDz+C6yNaB7P9WzfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.imshow(x / 255)\n", - "plt.axis('off');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[keras](https://keras.io/) implements optimized function to load and process images. Below the code with loads the images without modifying them. It creates an iterator which iterates as many times as we want." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "params = dict(rescale=1./255)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "I suggest trying without the parameter *rescale* to see the differences. The neural network expects numbers in ``[0, 1]`` not in ``[0, 255]``." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2, (480, 320, 3))" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from keras.preprocessing.image import ImageDataGenerator\n", - "import numpy\n", - "augmenting_datagen = ImageDataGenerator(**params)\n", - "itim = augmenting_datagen.flow(x[numpy.newaxis, :, :, :])\n", - "# zip(range(0,2)) means to stop the loop after 2 iterations\n", - "imgs = list(img[0] for i, img in zip(range(0,2), itim))\n", - "len(imgs), imgs[0].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr4AAADKCAYAAABDq0OLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvVmspdd15/dba+/vO8Md6lYVq1gUJ5EUJYrUaJGKBg9SYkkty1Z3YgTpJMiTXxMkCJAgeQvylCAOgn5v2EAn7XZsOOh0um3JTqtbkgfZUmswKUoixeJUrGKNt+pO53zft/daedjfuVUU7cQBNNxr7R9xcIZ77jnnnlrA/nMN/yXuTqVSqVQqlUql8rcd/Ul/gEqlUqlUKpVK5cdBFb6VSqVSqVQqlZ8KqvCtVCqVSqVSqfxUUIVvpVKpVCqVSuWngip8K5VKpVKpVCo/FVThW6lUKpVKpVL5qeDICF8R+dMf0ev+HRH5noh8X0T+mx/Fe1R+uvkRxu5viMgVEXnmR/H6lUqlUqn8tCF/m318RSQAzwGfAC4AXwX+Q3d/9if6wSqVvwEi8vPAHvCP3P1dP+nPU6lUKpXKcecoZXz3xuuPicgXReR3ROQ5EfkfROQ/FpG/EJGnReSR8XmPiMhXROSrIvLfr37/B/gg8H13P+/uPfDbwN/98f1VlZ8GfkSxi7t/CbjxY/xTKpVKpVL5W82REb4/wHuB/xx4N/CfAG939w8C/xD4z8bn/APgH7j7U8DFv+Z17gVeveP+hfGxSuVHxQ8rdiuVSqVSqfyQOarC96vufsndO+AF4A/Hx58G3jre/jDwu+Pt3/prXkf+isf+9vZ2VI4CP6zYrVQqlUql8kPmqArf7o7bdsd9A+L/j9e5ANx/x/37qBm2yo+WH1bsViqVSqVS+SFzVIXv34SvAL863v77f81zvgo8KiIPiUg7Pu+f/Tg+XKXy/8LfJHYrlUqlUqn8kDnOwve/AP5LEfkL4B7g1g8+wd0T8J8Cnwe+A/yOu3/7x/opK5U38/8ZuwAi8k+APwPeISIXROTXfoyfsVKpVCqVv3UcCTuzu+864SEEQgjEGGmahtnaOhubW0zXT6ChwSUymc0RCTRNYHmwAEuYGa+9+jLXrrzOBz78c6BC27Y0TYMScCnavtvfod+/hff7BCBnI+fEMCSWQ88kRoKC4rTTGXE6R2czmqbBkmMuBFVSSpw4scFkfYvJbI1pM2V35ybdYp/h1jb93g08dwzqqAZwLZ8zJ2JU1EGDITTEtTWmayeI7RSNpR3ZCDTtFNWIueBk3Mq1ZQ7vZwSykXHEnIxjDu6OmeHuuDuYHz4mIoePDxhmRjZwUcyMxlP5DONzV5QQccwcd8PM+fw//6d/Vf/0Tx01dmvsViqVSuX4cCR6DqfTKSJCCAERQVVxgWSZ5XJJCJnJdIb1HTRTJDmXL1/iuWe+Ae7EpuFd730/i/1dRCA3DUsRNqYbJDdS6ukXe+TlDmm5IIyHpZkxDAOp7wnTOZmE54Gu62iXCfb3CCFgZqgqMTbYMGC7V2kmLdP5Griyv79Plwa86wi5B+8JQTAAFFWIMeKDQwigE5I7w2IBoUGGgXY6ITQT2mmDiBTh4I6ZjmJADq8TjIe4jc/1URQIZuWQh3Lo53yHkGAlLPLh77sZJiAGyY2AkL28bhElmYAw2AAZMhmxqhtW1NitsVupVCqV48OREL7z+ZwQAlCyPqpaMkTueB5wjGFhWOjxtqMDNtamvO8DT2GWaLQh9QM7e1ex3I2Zt8DNrOOBmhDPSFri+Xb2yMzIOaOqSE4ICTEj9T057xObhlw+FqqQRYhRCaGhoYfOGRxgABtwEsmMNuiYgTNiFFAlhIjGAC74ZE4UAdEimKIgEtAYwRUTITuA4OKYgLmDCu4gbxIDfsfFxsv4HLeiIlaZ/fG+5AQ2oIC6Ia50tGTAEXBwHFAGT5gHXIpAyZ5/vAFyhKmxW2O3UqlUKseHIyF8p9MpUMqUKSVSSmQc9vcJoS+ZoZRRjXgYS5tBsDQQQmDRM6aIetwGes8M4jCJIA24EM2JeCmNjtkkEEIspeUmgBLxLASAoEgTUVWQMYskGY0B0QZVJcSS1YJIQyZ5JLvinjEbCMFLiTi2aGzQECEoWcvrigZCUFQDrloeCxGVCAi4kBkQgcPqrUOw4tMm3NYF7layXRh4kQDgKIav/nNHRvGQLGFpKM8vcoGopVx8O8tWbosZMmYZSwnaflyhceSpsVtjt1KpVCrHhyMhfCVE3AVyj2XBsiEx4BlES/ZGY0BVcFGilAM9xhYVh8ZK36Mbbj4ehU5IuRzOCAKYOekOG99SAo4lyxYdd6VICogRPAoilPfRIlraNhJigzQBE0HUiZaRADEOZBJkAylCoctOIxADNCHgKsSmvJ4zZstCyZiJQFDDMaII2Z3GBrI55gkkgFiRBVJKuaVdMpdDPudS2h4PejMDbBQAXsrB2ehzAsvkNJSfqRMQyEP5XkTG3wXc0VEweM6371eAGrs1diuVSqVynDgSwnfVA5izMwwDno0o4GpYGIdVgpQeSsoBKqMgAMdVcJdyqI4l1aihZKFEbj83CFHC4fuuejJVbg/Q2Ph4CIE0Pm/VJxlCQDWW3kkvr+pOEScOLoKrlqEg99KD6A4+oDHQ9z2hbYgklDjmq8rzJAdUDRUBTbgEgpesl4iTsLGEmwEByUSB5IkAmKcxozUgLognxEs5fFUaB8r91GP9QEodZHB1suv4b+GHf/Mqe5bxN2XSKoUauzV2K5VKpXJ8OCLC93bP4uHQyh0lSlU9XMEm4iCOjH2CIoKuegMFMhC1ZMR0nHRfLWtTVcDx8cVKqba8ZikHF9GwOhxLaRVK2TUQVAnC4XMPnydFnIgIAQeFnEdxUv7AsdxdJuPdEl7UBiG2OIanJXgD4igRkXJ4Z7VDUWDJMTLievid2fidmRmeMkNOeMqk1QDROORD5nDIJ6Uey4k8DG8QCYIeCp5yf+zPhFKKdjDKtH2lUGO3xm6lUqlUjg9HQvjmPJBzJucB91xKxJ7BBMsgBDw7ooJIQhBUuaNfz4lBESsZLAVUi0IIUjJnYXXg6+3sTwiOiCFj2RggSigixjPBS/YoSCRiNBqICmDjZxjzdmaIZdSN0IQiOJoAuUzelzK2oQieDWwgr3pB+yXmTqsBCwFbBtCISBEx+2P5WbxkvIrFkxwe4tkNS7n8DBhGQfAGMea3B4kOH8tD+Wz59rCPm9xRZr7j3+eOrNmd2bNKjd0au5VKpVI5ThwJ4XvnYSUiZXJ7HHQRE1wppdlyjCFebJCUciBrjCVD5OUaG6fdx1JrXGWvxuyZc3vwJYRAE8Jh5qxk4sYJcxN0lRGDwxKwj593dSinlMbJeoMYEW6XlwEkJXLOpFS8W1MuGbxl15f+UFV6N4JKGSJSAZRkxhIv0/wOkksWTCQU79MfEAR5/Cz5jkzanZ/zzuuUMjmncWDegds+qYeDQMDK/amKh7+aGrs1diuVSqVyfDgiwrdkbkRBg2DJ3nBIid1paJ8xkdI/qJThGi8iwSglXvdcDngR1MHEELldYmVVijXIpmQbiBoOS8Cr3sIgXgSABXofSKqwMuf32yVmM0Nzj5kRgzCJpQcyj88r3qIBHw94spEMUkrjpL6gnkCLMECFZEVU9YBnQx0aHwed/I2CwN0x3iwQBA6ttXBw8yLCREreL0S4Qwg4Zcxe4Y1LAITDv7eKhzdSY7fGbqVSqVSOD0dC+OooDhQ5PBhzzmMGzcolGc4w9j0qFhSzQMpCECPbgKcB3EpJFojS4AEoLqWYpcM0kHt5L0VIknEphzdjD6I7DMEQyUxiw9BnNFAGgcbXb6OiQcuXmBPZMr0L3k4woWTrxIkSoc9kMlkDwRJlZj3jXrKCZlpK26plccH4nJiVENrbw05jBnDldwpFZGScLPIGQeHuOHG8vSoTWxEOXkQZPk7Vu5EJh+LjDeJhVRavwuFN1NitsVupVCqV48OREL65Hw4zVauSqoiSzRnMCLEcmqkvh5yLjhuyAiKB4KVEbJ7GA9HGAaGMjKVgZByYWR26XoZ+QEGcPgJ2OzsEEBKIaBnKEcGG0VnUS5+m6GrK3nENWB7L0ZYJqoj4+A4+FmRzyfY1ExqNRHcIEUHLc7wY/k90lEiquMRD0bCiiIc3Z8mGcRIebh/0cphhK0M+q1JyyKO4sHQoHtQNDCyU9xpnmDgss1fx8CZq7NbYrVQqlcrx4UgI367rxgGhfHhAhbDK9hj5sI3S8JwARUIRD6qRybiiVDDMc8msBUaXfFgZ6peUnKAhECTSti0wTrDHQBNiKTubgSWGfHuifjVAdFj6dSeqoLGUpLNEgjZogDaUKXoNoVg85VSyVG3ENOAyLRP4eseqWy9/n0gow08UgZSCoC6YOOpCxsp9A8xJlsdMWCa6YkHGVa9WKsFjBrA4rCqDZQaENgTMekp/pCEuYGUF7CrDBlqykC6l5G63ryuFGrs1diuVSqVyfDgSwrdfdm8ocYpISdngOMaQDl1JCYfDQlYWA3jJXkl0AhEnE2S0hGqKuChZp0AAYoy4QJysMV3fYjrbAITGxhGkPOBDj5PpKGXoYoLfo5Zp5LZPKJ7JKWEiRE24Cm0zYzqf0TQNGhos5/KphoRLWW6ANGMWrGzxcjKNBlSL4gkqqJS/La2+B3dYvfe4DrZ4mGZMR0socrk/brwyLwsBMj6WoBWzAVYT/57HrFouJv+ecCuvGQDPjh2uRSii5fZ1BWrs1titVCqVynHiSAhfuO0vquP6Ux0Hdor//+qwMiKOhKYY8scG0Xj4+2A02o7+pkJsmjJwgxI00jQNoZ1g2jA7eZYTZ+4nzLew0bQ/54T2PXlY4JYIwwK1Hpb70O/BsEBtwK0vvZ3mGBEsEzwTwoTpdMp0bYtmMiULSMqIZdrWcCmT+K0UGyzLTqBslQpShoDES99lkPJ3NX57uv2wh9FvZxffMAXv+iYbKPOB7BDMUVOw4pNaxEJGEfCMuWEuGIau3svH28LhY1LLxW+ixm6N3UqlUqkcD46E8I2TcNiTF0QJTUS4vaXqzt5FCSUjFmIkxjJUo1pKyzr2FJYtVUpTjEtBAjqd0cy3aNfvxuKEdr5FN98sQzGxbLTKQ0fWBp9Myf1AaNfAjNjuE9MuLHbwbp+Z9Qz9olhAWSJIJkpGY8t07RTt2hmkbcnDgIaMp4HsGcFp2qZk3pa7TFDo92gt4zmgoojk8h1kyjCTdoffweq6TMJncCExAKWc7GaYOqm4auEqmJXezpBH/1gRNOu4lSsQcMwpm7jcSFgpu1PWwRbBoJh5+R25/VkqNXZr7FYqlUrlOHEkhG/TNG+4v1rV+ob7q6xaMJoQiDHc9huV5tDSScMoQJBSWpaAtxPC+ikmW2fwdgsNE1Jo6BYHLLMQY0QRhtSRum60STImIdLGwHS2ieSItjNCHtChQ7t9vNuHYb/4oPpAu3aSuH4Sa2d0yVl2GRXHTch9htTRTxLT2DBp1/G8IIohfVeGnBzUB9SkCB5RhFX5fDWdXi6ZgGG02tzOoKkXyylWE/I6roYt9ljukMVKsV3Kpit1Q0ZXguw2esbCqkRdrLhuZzTvFHKVGrs1diuVSqVynDgSwlfl9sc4FAlSprVvPwbgRKBRIUQlhpYYI9Ku00xaghtCJnhZDhAl4qFB107i66c5sJa07Mi2wEND0ohrQ9d1BCtbpvp+SU59Gc7RhqFtSZMJk7hGmGwSFFpzbLmH9HsEW9JgTOlJccoBM/o+06VETokoSho6+oMD+m7BfNoybSdsMifGhvl0E42Z0O/RkFBXICOqpbzscmgHBeOUO46aHVo1rcrDAScHIRu4lkUBZCG4Izb2l4qRlTIRnzLmTrBIZkCsCDATIXvxcC0ZsjdaQtWs2W1q7NbYrVQqlcrx4WgIXy/T7mCl5IvRwOrMKpPbjIfomCmLzYwYWqSNtLM12nY6+oQWe6hGAyFMoJ3j0w12k7DoEvv9HhlHwwRtpjTtHMuZ3HeIOKnrSf0SVcVCIHWRlOYMszmxDajHcQPVHAkQJLDWRswGBpSDZWKwjGimoRj9d11HP/SknOhTmejPBwfERrF2wkSVE5N1bNgjYsTS6FnK5x4Os1VQRqZUwO9YaqA6LhsQQ7KDgo12UGgoywl0zERKYDCHDAlDc8BIiCsJSt34cKVuMbOyceCqCoc3U2O3xm6lUqlUjg9HQvhOJCPu+Dgkgzjqb+yTDKoEVXKc4tqSaUAbzALWZZIPaIxlaKhZJzUts41ThMmEZZfZO7jFwe6tciDHlqCC9YmUlmPGaUAR+qHD+h4XJ1kCCfTdAZNhg2YyRUMzTqknfBgIGAc506iwXC5YdgfM28i8EcwGzBKWBmzoacQQ68GEg2WH9oqnzMZkRmgis2ZGMKGRoQgCgfgDB/fq7F6VjW0sA7uDWMDU0TwuyHWBDFmVsgys9DuKMPZZBhhLx6VvElLRcKNFrJPv6M+8cz1vpVBjt8ZupVKpVI4PR0L4Bhwkj/cSyuoEK4iAihO0/LQfDPeeYAETow+Z0PeEdo5MFI3G2mxGbtdwbRh0yTAMOD1RJ8SoIEpOAyvP0YCWDBQriyTKAJAbJCV3C4IbFgMSIqJGJmMOfeoJDqnP5OzYUDZhDWkJODn1RAWhLAUwM5JlQggsh770dWpEgzL1gGrxWUUppW/RQ4snREa/0lXGTA8PddUyzIM6PvY5CmXdbHEXkHF7WJmiX3mujg2aiDnBy1rY4r9aLGXvdIBarX6tFGrs1titVCqVyvHhSAhfF3vjhifxsYQJSoMTGDTSSUtPJOWE2EAznmHZBDSikyV0c2brp5lbIHdLMkvS/h5hGAgWysGaE0hHcBAfexO9J/U9fb+E0WfVdK0czCFglAUADIbmTIyRVuN4qAv0e8iwQNMBaXD2SOR+cXjYihuzSQOxRTDUMjkN9GlALKN5HZ1GppMp02agDRn1RPCyySBbJgYdM3xFWpkoGUG09E5iqQz5iOAuoyNqHjfdKkhxIMCAQVEXkid8HEBKUbBceidNDDcjj44FWbx4xVJERqVQY7fGbqVSqVSOD0dC+Oodk++rS3AlqJTSsAlJlY5SFxUpk9/DMADgJnjMSD+hbYXJZEKygZs390nDQEpDWS1rA+Krcq/hKDZksjtRMl3XkVKibVuaGDEJyGgXBeB3rFQ1buf1Vh6hOWeGvqfvO9KwgNwfZpjaGFCmtG07Zqs49DIdhoF9XyIaWZ/OSAKoEjziksdMWMJMsPF+HjNjGRl9S52BIhrKoq/yHdm4ACC7YBJH+ycnx0AGXAJmgazFYspzHuvQRTyUTF2DjENIUsvGb6DGbo3dSqVSqRwfjoTwvTNjdrgIIAVElRwjSNlYxbiaVBVyzqTDrVgQrKXRhulkjRAbFt0Bw/Lg0DR/6Ptxy5TiXhYDuCeGoaybzbKyUfLbn0esfAYbDvsUY4ylpzPffu6dqGopt6qCKyklUkooTtd1qCqTSfOGAzjnzIF1GJnppGESJ0y8LGp1TYg5iVj+bsqAlBmYjpkxh+yOiJKtrGldiQpxRS0XD1NADcCx7OjQkFOP5wFyBkIRCVaWBGBGcC9rd8fHfdWUWQFq7NbYrVQqlcpx4mgI33FoRUQICIqU9aixRZoJqCIGIQsm/bjhqQgHd6eJEZXiaRqaFlD6fnm45nXoEjI+r4kNjtCnbsxaDeCCEPFcnmdpKCVWDaShbJZalX09DUgoFk1N0xDDuEAgQ5QZHT24kdUQu+0fulwuwdL4OrmshR17HFNK9Kmn6yIuoayoXWuZN8IkKoKOG6qKkb8hMLqWqgbcZBzmMaIolm+XdskQ3Ulmo9+qIWagglGst1Qhi4ApuVif4irlthsqTlKISMm0pZo1W1Fjt8ZupVKpVI4PR0P43mnyP659dW3IITCM3pwxNJAS3VhivRPPPdkEkUAMLckyEhqmTUtKCTMlaEOMJVvW9z0p92R3kuViNQWlhDyuPx2SIeNWLaBsfzIjAyEGQgi4gkaljQ0WYxk0twkpJ1QadJysyTmT+g4RGcvDHG7pKq9tSDYWQ0abgWuxZz6NeNsQtSWEgNzxPR3mrERLj6b7aOifEReQUkoOY78jDsEEdUWtiAPpM4lUHAJcSVoWJ2QvosLMyTIKCSuv5WZlW1YtFx9SY7fGbqVSqVSOD0dC+GYPtOI0qqUUi5LHXsQyAV4m412FnI009h8GUdSNvkuYRmbtBGkmxCbSWCb3PX3f06cOzDFPoJlkeRwSsmKmT0ADSGiwDJLKFzPEfFgOjiHgomQ3BldStmKoz5KMM29moBGXBm+mpKQwLEAik+mUqEKQsg1rGDLDsCDGeLj5q2iAzDD0JJvSJ0gp4q0jGhDx0k/qJWNnFBstDas1rE4glAGhAJiThzTaQY3G/ozDPz5uynIlWSJjxUPWofeEeRkMEiuldMsDnnPJGtqYdasANXahxm6lUqlUjg9HQviqggZBpPT6iYJoKAb2Y8kyk8hdohs6LGeCFKGRUmZIMNmcM51tEJsJlgf6bsmwXJJSIg8J8UyXAC9DRRIFlYCEQE6CyAQTRYJhksgMqM7f3L/pioRIzuPA0VDM8xfJymBRMylZv07wNDB4QgnE2CLegds4fzNurAqBGMs/Q2jKd2FpII8l2YAzEUG0CB0Z+yFtzIyZpVIedkNNSBhWtgQg5qgN4ImxzgvJwROenGwDOhjZBsIb7me8WAHAKBwYbazMrDgEVIAauzV2K5VKpXKcOBLCN2oxuw9K8ShVIcQpGSG7kXLGLDP0S3LusZQxCSQRLAuElrUTp5hvbCAxkPslqV+Q01AsjiyVHkXncCMUPsVMiFE5sTmn2+8Yho44m2AEEkq0hKzG2M3QEBAVgjqGEkPJ2mnJ84ENRBFUA9JMcRHatiWnJf1iD9GIenn71XBTziUzl1JCmttT+MMwlMn/ZGhwWjdIGVCylNKw5lIqzqvBHROyCKmdcOXqdQDumjeIDWgG94Qmxz1BMhgfVxvwXLxWxdNolVW2iLlnjOILG8aeSs91QGhFjd0au5VKpVI5PhwJ4etaDj2j2BlJmGIS6HMm5WKsn1Ii54znkrHJORO0wcyJazPWNreYzDbKSldLYKtS72rK23EgFGt/RIStjXWwjmlY8Jb7J9y40XPx2jXa+Sm6FEGXhLBauwpQtnBZzoQgNCjuhqdMIhNi2USVUhkqapsJ2jR0neI5k4YlLo5SzPvvnO53d3JKh9m01eBQSgahHPAqxc7JyKg5motQGfqBhJO15fuvX2GpkbNnz/LKyy9y1/yusrygfLtkycX2X0t5OEumEchqRRSIFhsqLZP3wcsCgtVigIyPCwUqUGMXauxWKpVK5fhwJIRv1gYYh4TiBNcpgwvd4CyGvjzJnKgBvGy/wgXzgDaB9Y3TyGReTPFT6aFUjJRTsTWSYuAvIqCBZtKibeTmzSt89P1v59KLz7Hz+lVmMfLvPPkYB0n51rPfp5cpgpHTONFuZYPUMCRiVKQJKELOiUGdPPRMp1OUSNMUs/8QGqYCpOLJmoYeJb1hyElViTGyt1wUgTTaT5mVYSWlrLzVbGVtbdCyScsU14jMIi9fvEh78h7O39xnYdBJ5P1PPoVffhV1xz3jbpRz30tJ3oVRSRXLKJWSYRTBpfjFIhmVgYAX4ePlulKosVtjt1KpVCrHB/1JfwAAYguxQZoWHYd8ksGQE33fH5ZOu6FnSPmwxOoCs7UN1re2iLHBc4daRkjoyhx/tGFaWTMZDhoRET7zyY/x6gvfI6eefgGba5t88y/+mBe/8xU+84vvYxIzqdtDHVZflZPxcalA13WY3V4MMPQdOWdiEJo2MJlNaZqGyWTKfGOT9fUN5utrxUoqRiaTCZPJhKZpDqffFwd7LBYLuqGnNyfn4kVqmWJFNdpRKYKq4E3gRt9x5tHHeObVC7x45QZhvsV+n3ntwiWiKIoQJCKj3RRFjhxeRMp1ERE6+s4qrm9ezlDeO/yEAuUIUmO3xm6lUqlUjg1HIuMb4pRGSkbHHaIkREbrIXOGNJR+PTPMIAbBPTFf32Lz7BnmWydRFTQvSP3AsDhguVyiIkyaduxDDOWwH8XHfBp56t3v4JXvfZNnnnue+8+9ha177uPAYHNzk+89+zz3zBe884Mf4P/83FdoZ1ulyTJ6aehUkKiMhVoainVT7jq6lBCfovMpiKKhYT4LzCaBbrlPv2w4ODgg9UtUHBkPYxGn75cso7I7zGHInMkNSRULgewZR1GFAHQ589zLr3JxgN3Lu5y+5wFO7i5xIubG/Q/ci148D7lHRFHP+NgDGUhAxsURFwYRFNCxRJzVCGPfJbHBLWM5k0XHNbIVqLFbY7dSqVQqx4kjIXyjCgFFg4OUA0vk9vT4nZcQIkEDEpTpZEbbTA8nzMWdoVvQ9z2CE2PJTq3WxBaf1XJ7f3+f5XLJ9vY2H//4x3nmL7/N5cuXOTg44Omnn+b0yRMMy312d5a845F7Of/KVeJkndQ7MVLeT0pfpEg4nHDPOR+ucvWloCHSRhBVQmixppSzm6Fk3Vara2PTHPqurtbBmhlLApmmuAaYoSienANLHITI7Nx9fOvzX2Tz3FtwCzz11FNkprz6/LdLmTwPTKLSp1IuF7VSJiaAgGFkYSwBl1EgVLBcpu8tGJaNhGBBRnupOhm/osZujd1KpVKpHB+OhPCdqhWfTwENga7UKw8P0xhj8UNVJWqDxobZ+gk2T51hNpuhQVCMvf1ddm/dInUd8/mcGOP4u7dXtMYQ8aahCc6FCxfKytWDA97znvdgZvSLAwBef/11rr12lQ9/6KO89NqLvPPtZzn/wjaNzpBghFiWFQA0TUOj4dDYfzXcM9hA00wIoqCBwRwNLTEak9mUnDN7Ox1dn8hS/r6m0cPNWCEEgmfUe8KQiGRMnE5arvfGi3u7fPvlS+zkhreePMfm5oyzZ87x3PlXOXvmLu679y1cuPg83dATNJLc8QwWhJyVQb3cdsNci/2WUta8CphmzBosCC4ZH4WF/8AShp9mauzW2K1UKpXK8eFICN9gA0HL9ir3sedwGA4zXau1q6tVq2vbRGfeAAAgAElEQVSbJ1k7eYa19RNIUNqmpesX7GzfZOg75mPfoZkdZqaGYUBVmU6nLLKzWCzY2NgghMBkMmFjc4u+77l58yaPP/Euzt59jmt338MffuELvOc9j3P+e9/lscef5MLF6+z2maaZlUEkCaiUcu+qFzPGOPZ3dgy5rGLFDBEjp674mWoch5VmLBYLrO9H8TABimVU13V422MDyERYJGcRhWfOv8K9b3+cv/zG9xjijAcfeRv33Hc/m+stOSW6gwUHu1c52LlFcsXDpGz6AjxEshkWIScZFy0YDrhlwPGUcHUkx3FNbCDkjFPK9fjRaA0/CtTYrbFbqVQqlePDkTgFIkZ0J2KoePHcvOPnqwzSZDJhOp2yceIU87VNsiigRTjs7JDSwGQyKRkzuS1CVkJERBiGARFhOp2yu7vL1tYW44wPIsLDDz/M5WvXmUwmPP3CeR5//1O8euEGp9ZP852//CoPPLDJcrlkGLrRsqnYNg3DUAZ7RrGiqgQFt8TyoJSw3QWXsna268rnmEwmxBjpuuEwswelVD4MA3s5su9TLg8Tzi9b/um3XuKRn/8Ef/ad5zl1+l52r91iNmuIM2FtvoGZMZ/PeeoDT3Lx1Qt4MyE3U3IzxZopOTZ40+KhLDPwOy4aGiQGNDZIbJAQ0RCJFIGkGomqqB6J/186EtTYrbFbqVQqlePDkRC+oEU0IESFoA1Bm8NyrHseh33mzDbPMl87URxBh47FYo/t7W1sMNZma6zN5oQQStZpuaBbLvBsRG0IUvoYI858MmGvW3Dt2jWG/Y69/QXtfIMbOx1n7r6X/f0Fp0+f5sEHH+Rjv/gJLl67yvrmJjvbN/n4h9/NWhAaGsxbcpyQgL1+oPfArf0Fy37A45xBJ+Q4odcWXdvC2y1SnLHonUwgNC3z6ZRJUMRKn2hoJ7Tr69C2DOtnuMSEp28e8K+f/S6/8IlP8L/91m9x8dJl9hd7PPbOt/GB976Pk2snOHnXJufuuZeLL3+f0xszBMNiizcTvJlAKHZbri2mDR4irKbftQiX4GEsUyuBQPSABiGqjKtrlVAtoe6gxm6N3UqlUqkcF45E+kNQRIxQipYEhRCascexx10JsaVtp7STCaENkDO7B7skywiRpp0ybZtidD9aM62Gb1Zeo+5+21g/9bzl3nsxg2FxwNp0wnL/gI21Na5fu8Tjjz9GnM549tnv8ujbHmbz5ClElT/5kz/jqb7n0YcfYXdpnLrnIa5s75NF0WZGN5Q1qYHEvfc9QDudM1ub06eMamQ6n7F95SL7O7vs3Npm+/o1rN2l66ac3NpkfT7l7JlTvO1tD/PSS+fZ6xa8/Oplrl+7wmd/5dP87u/8NhpaHnrrQ8znc0QCOzt73Lhxg1N3neSb33qaJipp6MpwVIY0eqo6jopjDk1peURwXMAEXIysjpqRxRk0kz0T3RjEUIFBHaltkofU2K2xW6lUKpXjw9EQvlq2UomWzFk57MvgTUqRZBkNDaGZEkI4FAGWyianyaShiYpbJuWBg709UkrEpi3T8BJomrYMCmlm6GDRJba27mJra4uu67j40vfZOViyXPb8/M9+lNlsxomtfc6/+DKf+/y/5Mknf4ahX7K2scWXv/SnfPLvNJw4eZrnv/t1Tpx8KwttePD+t7C5dZKu69i5eZ1rOwfsX7pKaCIpGdmM6XTOiY0T6OQUJ+8/xz2PzknZ0bygFePGpRc52L7C09/8Fk2AK9cucfnyZT796U/xj/7Xf8yjb3+Evkv0KXN24yR9nzhz9hwhtnztG99msbvD2ZOnyIt9JkFRUfpsZW0uDm7YuKo2eRFsjpPdcMlkyaRxja26kcXINuBmDDkTHNzqZPyKGrs1diuVSqVyfDgSwlfHbI5S1pqKZ6BMmktQGo3EdkYzmxMnsaxNxVibTcq2KOvJfVm12vc9XRpo27ZsoBLBjcP+Q4AYWwBeeuUiZ8/dza1r22COLResTSa89MqrXLp4mZN3n+MTn/gUz3/vOYbUcXLrDL/8mc/yL37//+KFF17g7W+H7avXuXjhdZYDLK6+RphtsLW1xdXLl7j7LfeQ9/Zp1+YElFs7O9y8tMDuupuDxRJCZL5xkmRGEzO7O9e48vL3ibbHmc2W4M6yW/DJT/4iv/d7v8dstsbN7T3e/o53cu3aNXZ391lfX+frX/8Gn/7MZ1h79WWWN6/x8JlNdO8KkjoCZRFCsZhyPBfBRRqIllADO7wecMtEp5SaMXRcGYunMtiUDbymzVbU2K2xW6lUKpXjw5EQvuVgd8K4blQRghbP/aANhEg7X6Odr9O0xd8TDM+J3HWHwz99MpDAbLbGZDLBzMb1qnLoUQpGbBsU5bvf+R7DYo/pdErfZ+bzNfoh8/wLL/Nvf+rTXLhwgVcuXOLmzg7b29tsbW7yy7/yS/zB5/4F5+5+gBe+8yof+rmPgipf+uJX2bl2gcn6FiEdwHAAqScPHT5Eln1iPpuAO+oLuv3rtNM525duYDhpucdyf5vGM1dfu0ibTxGC8O4nHuNzf/DPedvb3kY7WePJJz/I5/7wjzhz5gz3PfAQ9913H2+5cZO+T6zPprz27Ku866630S12mWoimxJywnIi5EzOpccxew9C6Y/EysVXG67Kv0mgTM4jAcEpSwNk3KBVgRq7NXYrlUqlcpw4GsKXcliVIqQWT1RVUCGEBmKZim/bFrMl/XKJu3Owt0fXdcwmUwilzNxMGiQ0pJQOzfSDxsNFAU27Rgwz3JTvv3KRj7zvUc5/+9tsnjiFe+DdTzzG+z/4ES68fpVu9FSdtRPuv3/grlOn+NKX/jWPPPII3/zGX3Lm9Fl+4x/+Bp/6pY+zvj7noFuwGIybN29y4sQJrl27gWhgb9lhBs10jf1uh9g07C4HTs8F856midy8/Dqb6zN2draxlDl96h7e+ta38n/83m+ytnGSnDPvete7uH5zmyfe9Ti7O3u004b9xQFbW1vknLl+7QrzNpAWO8yCI0OHE8EM/PbF3VFVxCFbWaGLCyZebLkY1+qqjIICUEXMxtWxNWu2osZujd1KpVKpHB+OhPDNZXQFocEJuEgpGxOIbSC2E2azGUgmHQwMXfEJ3T9YjhuovJSEo2LAwWIXRZi2s3IwqoAqKWemsk7btmXDVnOWd7/3KdqDm+wcHPD69oLPf+GLdKacOrnFrAns797i5Qsv89jbHyX3e1x8+QU0TDl96gzrWxu063O+9s1v8f73PMWFCxfRYcnBYuCujQlp9wrztQ1ubF+i6zPxvvu5a32CzOacOHGCq1deZ2M2Ae+wtOC1Vy7i9PzCL3yIvb09bt66wn0PPMzOzj43buzw5S9/mVNnN5nEGXffcy8EYfdgF0uZ5f4BKs5DD9zL+lQY+l2kadHkqAioYy7IuLNVAKGseh0wkjohC0ZxIUhmZVJ/9Vx3xEHMDx+v1NitsVupVCqV48QREb5CGo+z7OV2diE0kWYypZlMMTP29vag70kpsRwzZyLC4IYnAevxIYMG2ukMQ3FVPLRYyQXReSCak0WwPvHFP/kz0o1tzAWdlOUBf/ynf8JbH3iQra0pa+ub3H3mFM89/wzWLYgNTCYT/t6/+1n+/Kv/hvvufYDNE+s888zTPPLI27h85RqTaeDZZ58mxpbPfOaXufjaq/RD5pXn95lMZ5w4fQ5PA+vR2b95hUkjdMtdzpzdomnh1QsvkZPz1a9+lcnsBG+55x7OnDnNzq3r3Hz9Ek+8+2eYTRqmIpy59xznnz/P3u4trl16kYff+zi7O1cIQybE0lEqAoSAuGHquGdcEtFgJQPUwVDUy+S8UjKZgoBkUMW02HOZ13Lxihq7NXYrlUqlcnw4Ej6+HgJZAiZCDoHBwQXipKVpijVU6nuGg+XtqXgzQghsbm4yX99A26YclCGyNvZJTuabzDdOEqczmuka61unOHn6FJPZlGkbWVtb47vff5En3vczSNPw2isvc3przkc/9EEuXbrIyRPr7O9tc+niKzz//PfY2d9hSIkb21f53d/933nyySc5ceIkOTmvvXaRixcvsn3zOpcvX0JD6T385te/zusXXmFY7hKtwxd7+OImzz3zdR667yxXX3uZW9euIBjXb1xl++Z1Lly4wHK55GMf+xgf/rmP85GP/hzL5ZLN+ZxZE0ndkn/1f/8RF18+z8Gta9x7z2ne8+53YGlJCCAxIrM5Oc7xZo3UzrF2jdTMsWaKNXMsTElhQg4NWXS8RDy0eIyYRjw0iI5LA7RFmik0Uzy0P+mQOTLU2K2xW6lUKpXjw5HJ+KooLgHL0EvJ5mgIxLY57Hcs16XPr2kaZrMZ6+vrJISDfqCZtMznc1QCbdui7aRYSKEQirk9rpCNzEDfO+5OlzIPPHg/559/lhPzlm/+mz9jbTrnwksv8sijj/H7v/95ll3Hh576IF//2p/zyU/+Iju3Ftx3330c7PcsuwMeffQd3HX6LNnA2Wd3d5fNjTXOnTvHlStXOHXqFMMwkFJPK8bZUyf42le+gltie3ubNgY+/Uuf4stf/iL7eze5dvU8ly5eY9kLZ89u8ff+7qf59re+wWLRkVPiwXvfAqnna3/6x5w4eZLH3/VONjY2ILbkOMOllOCJglkmWSYFw3srzgM+wXJCNOHWlVWvlsnZyAa0EbKXHsuc8CC4ZdwUC9USakWN3Rq7lUqlUjk+HA3h60IQR9xJWDmzRAmH269KF2XbNKTUl0GfMZsG0A09hjOfTmmbYhMVY6RpQilzGoQQxun4gbw4wPPAQTIkJdZnc777zDfpF/vcun6ZK5cuky1wPiX+/Ktf51f/vX+fF19+hQceeCsba3Muvf4a16/u8bk//BJN23L33XeTU0/bTpnPN3nplVeZTqdc377Jc+fP006n3Lq1g7vz+uuvEzVilpnNZly7foUQAjdu3OTzn/sjzt59F/feey85BT7zmV9hNl/jO88+zfPf+y6bm1s02tAPA54SN65eIaWevSD8k9/+x0zbGe9+5BEmocFCEWOs3AHMkeCYDOSUUWnQYcBlgAwuEXKHY7gYZmDByK4gAdQwV1wo5rUVoMZujd1KpVKpHCeOxCmgJEQcF2Pw4mkqREQiw1C2WElQXAxsIEZlNpugMbAYEp5hNpkTNJaNVxpwURZD4mDZsbe3x7Wrl7m5fZ3d7evc2t1h+9YtlrvbbMymSDNFRLjn3H1cvnyNJrQEER58+AF+/ud/jmG5x4WXXuAD73svQVuWnbDsjRiVz/zSL3H96nXuOnsvt/b2+f4LL6DS0uiMD33gA3z2059msbeHuLO1ucnJE1tsb9/g7Lm7OXn6NP/Whz7K7kHHWx9+iFOnTnH9xg4vvnSRE1tn+K/+6/+WX/8f/zuakDl9+iQf/uiHeOJ972FtfY62U7b3My+8ep3dg8z9D7ydB+5/GJ2uM8Q1UtjA4iY2WSfMNwizDeJsA52dQGbr0MxI7RSbrmPTdZjM8TjDQotrg8QGpAENmCtB23FLWUCpfZIrauzW2K1UKpXK8eFIZHxbhAgYQhAhJydZIjSlH281CORexlnm8znuzjCWNptmgruX7VbuzNbWye4cLA4wM4ZhwLMRRRn6ZckieUIdTp06xf7BksViwc7ePkOfubp9ndg23N88wNmzd9H3iYcfepB/9YUv8J73vp/nvn+eZ555lk984lN859nnuO++B2imMxZdj5kxn8544okn2Jiv8ZU/+WPe88TjfOGLX+Idjz3G/fffz3w+49KlSzz+rnfx2qVL/OzP/jyXL76MamRx0HH69F1s39zhP/j7/xHTuOBrX/s6ly69xoULF/m1X/s1Tt11F7/+6/8z2zf36bNxc+eAV5/9NvedO8vdp7fYmM3ZOnGK6XTGYEMZCAqOJAfJaIyQMzY0WB4wVdAWl4hoIqaOIfWAAWXda8YJ7jiZ4LVcvKLGbo3dSqVSqRwfjkTGV4YBSQnJhudSqnQvPYzDMByKh5wzbVs2Wg3DwGKxoO/LgQ0c/lxVycNA6jt86GkE1DJDv8TSgOWenDPL5RIkcOXaNu9893tZJkPbCWsb6zz2xGM8+NBbMZyXX32F/YMD/uUXvsBv/uZv0jQT7rvvAf7iz7/B0Du3bh4wbabs3LzJic1N5mtTvvPst3n00Uf4yEc+wkMPPcS5c+cYhoFz586xfeMaWyc3OXf2LK9fvMgzf/lNzp07x2Qy4UMf+jAf/9gn+OxnP8vnP/8HuE04/8IFHnzwEd7/vif59f/pf+FLX/oSv/qrv8rWyXWm08iFC6+Q80DbRq5evcze/jY3b13j5q1rDENZklBW6UbatmUymRCaKTKZopM1dLKOt+t4u4m069DMCe2slOQ1oOKIDQRPREsEH36yAXOEqLFbY7dSqVQqx4cjIXyDZSSXfr5spW9SYzHy70cLKHcnxoiqMgwDOWdSSqhqEQu5GNPfKSwwQxw8l+s8JCwN/w97bxpk13mf+f3e5ax37b3RaDQAEiAILiIp7qREiTIta3NsaRQvo7HkPZ7E40ylxpNJOamRU5OqOGVPVTIpT1LlmRo7sTOSJVuyrJEsWTs3SQT3nViIrRtAb3c/+/vmw7l9Ac6SbzG7y+dXdatBNAhcXD5V58//8jwUaYbNC3JryK3h3Ooab5w8TZLmJFlGgeW973uYW2+9lY2NDY4fP87LL7/M1tYW58+f59y5N1lZWWF9/TLLywc4cuQG1lYvsXmlQxiGRMMBDz/8Hh599FG+8IUvTEIBOp0OBw8eZG3tIvfefQ+bW+u8773v5ZOf/CRXLq2R54av/dU3+fa3v8vnP/95br75Zp584of85m/+Y+bnFvnc5z5Ho1HjzJkznD9/jp/4iY9w6PAyyweWyLKCXm9AFEUM+iO6vS06nU0Gg8HESUAIgdYarTXKddCuD9oDXX4VbohwfXAClBuCG2IdFyE1IMsDLZNhiuTtFcwuotJupd2KioqKir3Drih8rS0oKMixRCYjGo99k+Rqx0cphdZlilWall2vMAzRWk+6ZkqpMv41TdFaI4oCW+SQZzgCNBZTZGCLyb+/b+kASjmcOn2Oja0O7dkZfvGXf4lTb57hO49+j1ES88UvfYnLG+scvO4wRsD6xhonT77Kpz71czz2+HdZW7vIyy++wqFDh7jvnnvpd7vMzUxx/vx5XNel2Wxy7tw57rzzTp566il+6uMf55WXXuA73/om3/3etwl9n06ngzGGO++8h0/83U/yrnc9xGAw4LbbbuNP/uSPOXnqdcBw5s2T9Ho9vvb1r/K9R7/F9EyD/fv30el06Gz3kdIljhP6vRHb2z02NzfZ2tpiNBpNOpBSSjwl8ByFq2TZHXMdlBIo7SIcj0L5GB2OO2llUSEcH6HK3cmKkkq7lXYrKioqKvYOu2LH19oCa12MkKTGlt2sPEVKgZTOZEScpimiyCgs40hYRVZYCmvwfA+sQAiB4zgIa8jjcsRcZBlJXpCnCYUt8H0fx69x0y234voeXuATRRHDUZ+XX36ZH33/+2i2G6RpyhtvvAFAu91ma2uLhYU5BsMu8/OzPP3MCX7+F36Bzc0ODz/yY7z26nN885tf44EHHuDI9TcghKDT6XDqzTM89NBDHDx0iDOnzrBv3xxxHHPimWfwXQ8lJYcOrzDd3s/8/ArPPv8cG5trzM7OkqQjms06G5tXyIuMc+fWmF/cz+Z2h9XVC/y9T/4cr7z4OocPH6buNxmOEtx2gzw1mLzPYDRiNBpRT1KCIKAWNnBdF0drxLgTaU2BtQopFbm0oB2UdrDaR6cRBoORisKCtAZRrUlOqLRbabeioqKiYu+wSwpfQY4mNhpjBaFSCGlRSuP7HlppoigiTzOKIsMgcF2XYZQgtUIrjyQtCEO/7JZhSZIcSYGxOVkakScpJi8oJAyilIPLh9m3cpgij8mSmPmZWTpba7znvQ/y9W9+nTCss7J/meV9y2itWZyfJ4lTFhcXOXnmTS5eWOO++9/Lp//H3+bhH3k/r7zyVR5+910IYzl88BCeF7K4uMTq5VV+6md/hs9//s/5+tf/mmbQ4I3TJ0mSnJrf4L/45V9BK8Hi3CKvn1yl05csrUzz0EPv4vz5NdYvn2aUxCwuLXPn3fdy3XXX8cqrryPOnMSYnO8/+TQPPvgAR244yhe/8O+YXpghFR6hL0gjy2DUpx8N6fZ7NOsNWq2YRqOBG4Ro7YDUKFE6CUgJRgmcQo9H9AajXYzbxIoYJV2s9il0/HZLZtdQabfSbkVFRUXF3mFXrDoUQpf7kQaQioIy4UophTGGKIrIsuwtu347e5Kl56mD4zi4uvRHjeOYXq9DkkYkaUSWJRRFBtLi1lpMLy5zYOVQWTjEfbpbl6nVHebm5hBC0dkeEo1y8jzn8ccfZWtri8cfe4IsK3juxZeQQrO4uMT+/fv43d/9XULf4+d+7lN89zuPIiVoLfnhU4/yyI89gkXyl3/5FX7w1DPcc+/9eGHAgQPHOH/2CnGW8tzzJxhFXebmZjh44ADXHznMc889S57nLM7Pce7sOvfd+x4G/QhrBefOnSP0LK+9/AzK5px85TWefeoEb7z8Gp7nMb+wj7PnL2CkQ3Nqhlq9jRCKfn/I5fUNVldXuXTpElsbmwwGfdIsxpjS3mpnh/Lal9QuygvRfh3rheUhkd94uyWza6i0W2m3oqKiomLvsDs6vsKlUJrMWqTQ5FmCEGXiVZIk5Flp6u95Ho4z9jmNIgLPw3VdXKf8Xp6lDKIRo36PPIsxJiPPC7Iix44TtlzPZ+W661jcv5/+9jpxd4tkNGR7sMXdd99NFEV4nkdne8APtp7Cr4UIpbn19jvY2OiSZQWXL5/lkUce4Vvf+hYf/vCHiaMun/nMZ7iwdo5GYFg+sI84jSgM3Hrr7bz34Q9w8+338s2//muOHD2KlSEPPfwI5y6+yezsNM1mnc72FZ597iX6j/+Aj/7nHyGOhhQZHDt2Ky+8+DInT50dj8glro5pNjyKPOHd73qQF194hZm5WW6//XZOnnmTozfejOcqamGAUA6OF9LvbpMkMd1+jyiJaUURwTCk3mgRhjXcwEegkLI8BFJKoWxpw5WhYOyBKoRGSe/tlsyuodJupd2KioqKir2D+vSnP/12vwf+zf/5Lz+dFZpUKDIhyPIc13UQQo6PWspfV6vVcV2HJC0v4z0/wHFdfD8ky1NGwyHJaMgoGpBEMWZ8aS+Fi3I8tOOjvYCjR44yPdWm09lie/MKWRwjrEQqOH/+HK1Wi0a9ya23H+fcuQs0W23e+c572NjYptvtEycZp8+c5iMf/jCmyLl48QKnz17k3jtv42Mf/QAbG5eRSlOrT5Olli9/9Zu0puaZX1hk9dIqK8vX4TiaINDMTrU4feokH/7gj3Hx4mWO3nCcr3/9K7z//T/K2uplrDRkecZdd7+TpeUlHNfh2LEjTM/Mc/bsWTr9AY16A8cLMEimp+e4vL7BwuJ+pNb4fg1HlXuPjlYIBAhLlqYUeU6SpGR5hjUWiwAhEKJ0G7CIsTWXABj7zZZpsD/+4x/67bdRMruGSruVdisqKioq9g67ouOrtIMpBEI6YEAIOfE+NcagpMb3/bIzlqdkWYbneRN/TykgjROyOGI4HGKKHCEEoJBC4Tguyq3TaDRZWJhl5cASQVin0WiwveGxuLzCYGOTrc1NfN9nYWGeRqOJ60vuu+8+br31dtZW17n33vs48fSztGdmOfnaqzz55JN8/O98lNDXzC+0aTR91i6tsrWxydL+ZQ4enME93uTAkVuYmV/i9rtu5cXnn0LhEg02ubJ+iXffdyeOcjlz5hSvvf4Kr5/+FoevW+bggRXWVzdwG4r1jVVeefVFwrDGaDTi9jtuYRCl/MPf/O/4/d//fWaXluh0OgRBQJwmTM3MEScZvt+g5vt42sF1NXHsk4QD0iQiHQ0pioxRVHYmR6MRQa1JrVHHdX2UUoAcuxFkCCTGSJSS4+9VQKXdSrsVFRUVFXuJXVH4RjoklwJrQRQJ2maYTGIF44e/QxAEKCUYjBKstBjAdcodyazIMVgyU5T2UdIpd/+EixUS7TrktkBqWFw+RL0+z/rWJnFimJ9ZJI16jKTE82pkRUyvP0JqTRDMcecdN/Plr/4VreYUeW644YYbkDrguuO38NwzT3P6zYs8cN+DfPXr/xP7ZkIcp871R44y3Z5h0N/k/Noljt1yO/uW29Q8yb6ZWV557SSiyLjrzvtYX9/k4uqbPHj3vcy0anzgI+9jbn6RJ374OHffdQfPPvcyc82QO2+6HqwiNZpnnz5BkSeceHLI0twUjslIBz36tQauF+IqTbPRwBESTBmMoHUbxw3x/CZxPCIPeiRRTBKPSNMRJouI45jhqE+90UB7Pr4XIqVGISgoEOOOmlC7YjV8V1Bpt9JuRUVFRcXeYVcUvkoplBDkBqxUIEUZ4SqgXq/jeR6+70+OhJR0JjGvcZxOfqyUAl3uWSqlcF0fEOSUHp+1VpvFpQWUK8iyiDRN8JVlc3OdXr/H7bffxomnf8jGxha1Wo3mVJsvf/UrfPiDH2Jt7TL33/sA/+4rf8GLLzxGLhxuOv4OkkGH2r45fvpjP8lnP/sn/Lf/5B9x8uRJut0+i0vLHD58mDzPCUKfWj3k0KEVao023/irrzAabpKHDlEU8dqp17j+yGEuXbzCvQ89xCCO+PM//Sw/fPMim2trHN43z76FKSQZx2+5lSTOKArDDTfezBtvvMHR47dgpEOWW4rClrZXArAGYyxSKlzXw3XHn2XqktQiklHIaDBgOBxSxKOyoxZFOL5HGNbwgxpa+ajy8gljzMR7tqLSbqXdioqKioq9xK4ofKV2ILNAURYARlHkTK7eXdelKIpx8QBWWDwvQAhFUZTdHKVU+VBEIDDlOFk4ZEWBlIpCCJTrlj6p0uB4mkazRh51kVqgHQ+hFLfddhvb25s8/n0SXq4AACAASURBVPijrK6vcd3BQ2xubGDShN/9vf+ZqZk2L73xBmGtwUuvvIQnNKH3d+hubfKffeiDXDz7JjU/YHZhju985zt85Mc/ypGjK8zNzZEkEZ7v0Ols8cCD93Hx/Gm+9uUvsH9pgX63A3lO4Dusdzb47d/7HX7ypz7OOx+5C5VJ/vrP/pJWu0bdEzx74ikWFvbRaE1jrGUYZSjt0my2GAxjtPLxfR9R5NiiTL6y1mIp08FQEsctD58EDkZAYQRJ1CNOE/I8x0ljbJpjshzHy3E8F6QGa5FSvN2S2TVU2q20W1FRUVGxd9gVha8VAqTAGotAopWLFaVB/U6ilTFmEl/qeAGe56EclyI3WAyO4+DVa0SDIaYodyiz1CKUonAclPKYW9rP7OICrufQ6w+4tHaBPOqR5BnC1aR5TlFYRqOYxcUlHKlYv3SZoyuH+OHzz3L58iovnzrFhz7xX5FkPfrdK2yur/KXJ77BsZlD9EcR7VZIkad0Oh3e+973YYzhxhtvwEgHx1GYNGb5wH7SUZ+XXujQbk+zsLDI0uwU09PrPHfqDZ68+Crv+ZWfwSzOMbs0RbId81//03/EH//v/5pjiwc4vN/l0pW10tYpzjlyw03kFjzXZzjMqNVqaOViCouQIIQdd7psOZKXDoWVSKnxpIt2PLSuEQ81sjcgikYkcUaadImiCDcsAwRcLwAlsVXTbEKl3Uq7FRUVFRV7h12x8GYMk5GvUBKURquyW7ZjUVSa0lsc7eF5AVq7WFN21nzfnyRkBUGA7/ukaUqSxQilaLenmZ1f4Jbb72T5wGHm5/YzPbNArdEkSw3tqTkW9u3n1Jk3eeqpp+h0Otx79z24SGYbLZ5/6gSNmk837vIzv/QJ2svTfPxTPwWBxvg+x955D83lGdZ7Wzi+Yt/CIuvr61y+fJlXX32V4XCIlGApENIyOzvNvn37aLVa1Ot1Nta3COotRo6keeNBzHSNdmuav/iTL7KwdJxb7ngnjTmXn//Vn+H86kUOLsyyPNPAJH06G5f4/uOP8fyJZ/je9x5jMBjg+8HY1slBSI2QGjn+MUJhrKBAUwiNdms4YZN6e5bm7BKt2X3U29N4tQYWxSiO6W5tsrm5zvbWBsNenzypQgB2qLRbabeioqKiYu+wKzq+xjAZaYJCynK0qbWexL0mSUKapgS1OlqMfz1lIIB2FMP+ADC46tqAAAfHc5Fasbi4yNzcAq1WiyLPqdfLwmFuYR9b65fY6nTp9/tsb29z6eI5Ni+vkvR75Af3846bjjO7vJ8nXzrBDTevcGnU5Wtf/VNmZttcubTJw+/7CM88+S2O3nyM/rDHkYPXcSBZ4vCxW/n+D07Q7w8JGk0sBlFAFg/QWtPr9RgN+rzrgftIpaKo1UAKphyJO5B4myNMNIXyUwq1jhdm9IeXmJtrceT6+zl6pUsnynnj9HmEE3Lq3Cqd3pAg8FHCIpUCxqPisa9WURTAuFOJJDMFWiiUlriyhpAO0nFJoxF92SFPYgbDHkk3YTgc4oc1XMd/m5Sy+6i0W2m3oqKiomLvsCsKX6wYX11bhLCl2bxWCFXGj6ZZQhKNUEqQJfFVSyjtIpVFGk2RJriuS57nDIYRRiqCWgPXD5BS0qjVmZ+eIvA1aWqoNWu4vocqFAWKSxcvsbRvhvvfeRur51/HU5CORhw9up+lxXm6Q8moPwKTYGxO0F6gk/dZLzJe3zjNDffcxbmnT/D8N/6a5dkFklFCp9Ph+iM3oqQPtkAKENanFVhGVuN4Pr5j0CrnD/7oX/G+j36AZi1gdfMSizMrJIMOly++hrYBDQVkMD81R24ljek5umfWWLu8ydziAq32LNujHBwX8gRDRiE9kAIhLdaUka4WDcagTHk4BJLcgrVg0CgtCWsSzw1xtc9g0MdKwWg0YjQaEUURjltZQk2otFtpt6KioqJiz7ArVh2uRcrSgH5nNzJJErIsQ0qJ67pXx8rjoyCAOC7Hl0VREMcxSZLgeR5hvYEf1pGOj+uVI9QkKa/mp1oNXK0YDHtEwz55kZGnCd1ul6IoD5Buvu04M3PzJBk02y3mZhZRxsN1fDqDbZy64tZ7b2Yr7XDx8rMcumEF6TXY7AwJfOh311leXsJzA7K0oMjL7lVW5DiOQ73Z4K677qLIc4xIUb7BFRmPvOdB4v42H/v7v8i+OWhqSUs1+Nz//XmWl2aZmZtluz8kKwz7DxwkSRLq9ZCpRsixw4cZDYf0uz0Gwx5pmpadMiURKJASxp/vzmvnMzUGCiwWidQKJwipN5s0W/PUG1MEtTpIy3A0ejslsmuptFtpt6KioqJid7NrCl9jzFsOgnbGm3mek2UZAGmaYowhDEMajcZkjxLK0TIw6agp5eA6PmGzRWNqlvl9SwSeol4LCXyPwHOp1+ucPXOaM6dOc2BpH2EYctNNN9HrD3jx1dc4d+E83UGCG7RYXl6iXW/wZ3/0WQ4261w3HXL79XMcnFYcP9Di0NI0r73yKr2R5RvffpSl/Qv0B1tcXD1HlmXkeRlukOc5Umv6wwG1Wg2TF8TDEc3GCt/6qxMstRYJ84SHH7yZh951lIVQESQZr//wRfpXtvnE3/1pOoMhBYphkvH4k9/HWEGn02H/vkVmp6fJohFxv8Oou0l3a53RsE8ajTA2xwCGq0UajK/lKTtnWW5Ic0NqLEaAcD28sEmtNUVrao729Dy1WuNvVhy7nEq7lXYrKioqKvYGu6Lw3SkK4OqDbGdHcue1U0TkeQ6URcXO7mSe5+Ul/Ngr1VpLFEUM4oQst7hejYWFBUI/wBYZWRJhrWV6qk2jVmPlwDJ5liCBYTSiPTPL1NQMc/NLPPXUy2jd4Nz5M/yXv/oLdC5u8lf/z5doZoJ92mUlDNFbHTpn+jz//Zc5ev2N+GGTem2KZquO5yuUUuU1uS0/7qzIQUkW5xcY9vs0anVee/Us+1oH+dN/9Tk2T60xvLzO1oWLdN7c5Mv/9s/48mc+w6//6q/R6wzIcsuf/8WXQSjmFhY5dOgQYVin1mqxcuAQBxf34xQxDDaIu5eJtq8w6m6SDAeQxoiieMvu5LUIIUEKCgOpsSSFIZcS7deoN9o0GzM0G3N/I7rYC1TarbRbUVFRUbF32B07vpSX8YwfZjuX8JiycHAch9xYpJTkpiw2lFJkhUUoiSMlxhiKopiEBTD2RpXKwQ1DwloDrQTClqPmPEuJogjPc9i/eJCk3yHPc7a3N7n++uvJ4iWefOJx9i0d4duPfp/3vvcWLp57k4/95Mf5o89+lu88/jR3PXgn+5bmWL14jpPPrGFx+eHZp7n16HX0OgnTU7NkRYHneRgBSZJQc+ugC1xcDh48yKkTHmsXL3JweY4Xn/0hohjwh//ij8HxGAwjXKm4bnmen//ET1PEIx77wdN8+/uPMz2/wMxCyvrmBiBRjqTZXmD/ykGKK6uQxYhsCEYTZQkyjpFRhFdroJ0Aqd3/IL5VoLDCYIUEZSks5MZiTQGFQUsXx5XUa87boJDdS6XdSrsVFRUVFXuDXVH4FkENk6Xj8aUECoSSk31IEGWcqxJgU7IswQnqeGGIsAYpIM9TXEchpCZH4gRNZhb205iaZuHAMmHog5XkeQGUv+90u04Y+GBSZmdnyJKU7vYWptHg+088QTQc8sbJb3P0huv4whcvU5iET33qU/zy3/soK8uLPP7oE3zuX/85Qb3NaBhzy83HGczMYdyAje42De96jt5yByhJ6GriuMBreAzSBGMKjHDYGkn63Yjbjx5HqxH7WpDGBWdXL7Fy3WEOTE2ROAE2bPK9x57kledf5MYj17PZ7fHaq6c4dvMtFEWGsJYo7hG2m0zffAcjkTO6fIb1K2tEWc6g30FGZbSrV2vgejUcxylDETBIIFMWKQQWgS0EDhIpFKmxZReNAiMsRXUgNKHSbqXdioqKioq9w64ofB3HAVOMi4dyjHltvpIQZfFgTEGaZ1gjcfIcv6ZxlCKNI+I4BZOCzcmlQ933QSiUdGi1WmhHkuUJjquxtrSSmp6eJggClCqIs5Q4HZGalO6wy93338NLzz3PbXe8g2effZZ6owbAv/nD/4uF6XniOOHYsWP8xj/YT5obWjZFa5dTl/ucvLjBy8+9wM33L7CysoLjOEgpcF2Xzc1NhKtxPZ/CwMd+9lP889/5Zww7m+yf83jHO24n6va57757WL10Ecef4vvfP8GLp99kad8KBw6usLG1wfy+A0Rpxp233UI6GhLUQ5z2PI1GA087dC68TtSpcejQITqdDquXLpEkQ+I0Ih32cBpT+EGI59fR2kUojbZQmnFZhIBceBiRIkRpI1UUxaQ7WVFSabfSbkVFRUXF3mFXFL6u64Ip41ttkf1HiwchBEVhsEYgHIfcWrKswNWaMAxJswRlFFaWO4lRmpLkGbkpmJmaphXW8WS5i5nn+WTvcmVlhal2yKC3Tb/fZ9ivUQ9Der0OU1MtXn/9der1OmmSMjMzw/TULFvdiC999ZvMtGq8+4G7aYY+C/UpLl9e55lnnuPV1S610OfXHn6EXq9HEYS0m/XycElIDBYlJEIrkiTjoQ98lC9+7ot8+8QztOanuPeOO+mPIt64sM7UrMtGP6Y9tcDM3Dwvv3iZqblF0sJw3z130+91WJiZIsstBw9dj+s7KKWYXlhm48oV+turDPp9plstrLVcvnyZPO4TFynFKCCvtXH8Bq4XIrRCSo1AIRBYKcBqtC4m1/MVb6XSbqXdioqKioq9w64ofB3HIUvisnig3JMsioIsy1ACfM/DIACDERLl+tTCBn5Qww99kmiI0g4KyjFzLtCuzyjN2OcHNIMaWil8X1Nk+eQq3Pd9Op0Oj37760w1A+6//34iz8F1HOamW7zy4gvc/64H+c53vket3uDKRoeXXjnFocNHiDLF3e96P0+ceIKaq2nOLLA0P4doLRFdliwsHmBmfj+FyaiHNfI8JQjqOEqDFEhh6fWHGKu5/sgxXjp5gYfe+yFsq8WjL62RxEMee+oNLl38Fh/6yE8wHEZEccaRYzeydukid7/zLq6sXsTzXTzt4AR1mo1p8jwlLyC1ChHMQDzCtwKbJCSjLktzc1xcPY8ZbpNEPfJoiA4aOEEd7Ye4XoByPKSQSAk7DTJ5jY1UxVUq7VbaraioqKjYO+yKwldrjdZ6Mo40xiClQmuNqxWe51EIiTE5Wkiko3Fdt9zxk5ps59IbUEIRhj5Ti4u05peZm5sbd+NyikK+5RpcSll6poYhnY1NXnjmORYW5xCmIE0S7r//fk6dOsVNN91EmuSczy4yNWVoT0+RWMsXv/INHA3tWg3T9uidWWPhwGEW+or3/9gHcV2XUZQSxzGNWlB6tDouhQBhC3ytEI7LYBTxD3/jH/C9x77GBz7ws5w48QKPPfpdDh09jldv8s3vPsbK/mWGgx6d7jrvf997uHzpAulohHYUvVHE9StH8MIQpRRxmpEaiAuBVTWMkyOFgwfEvS2mmi2iQY9hllAYS0EBIiczBdYWuNYitQtCoFS5M3lt8bBjJVVRabfSbkVFRUXFXmJXFL5KlbZJeZ5TjAsBpRTWWrTWpZ0S486Nsbiujx/WUI6DMWZsEyUx1oBU1BstlCqLD8/zaNbrKL3jr3o1BtX3febm5+ns28/54YA3XnuFQa+D6yhCz2er18WRisIWbPf73H777VzZWEe6HvvCJkoF3Hrrrcy0WyyurHDH8Rv4x//kt/jR9zzAh37kPSTxqLzOl5BkGY6SpGlads20RAhLEkXMTbf44I8+wEd+7F7SIuIjH3w/jdDj5KnXaM3M8tGP3ciV1Uusnj+NEoeJoyG1wMWVgFRov0ZjagZHKqSUhL7L0sEDDIYZZ1/votwGRsZoYQmxZCNBQIYajuiOhiR5TBr3kUFCmtZx/Bjt+jjuzgi5LLqu7qtWY+MdKu1W2q2oqKio2DvsjsJXewgVkRVDsqJAa4Xr+xSFpTA5FAXFOKIUClzlIixkcemFmo6G5RW941LzAvxaefXdajZohB7WpDiyRlGkWFtghUFLg+/7BI0Wwg2YW1xAKInULmGjybk3T+M6iqlmk9BRHLv+IH6zxaXL68xNzxO2p+n0Y44cP8Zsu8WB/csMk4zf+h/+e5IkQUqIhgnGGFKT0mo2QElkYcnzAqMUmZVIT7Ld20ROFWUXUDlE8YBb33ETQehy8tx5lg4sM0oibmwcI+ptUfMM2nEohMYJ27RnFlnYt4SgwOYJSrm0Gw3m981y+UqbeNCBIgflgVcghEULqEkHoRX9UUScxqTRJVIvQNabOF6DwE9xXR/paATlWL8sfqrL+B0q7VbaraioqKjYO+yKwhdAICmK0u80CDy0djEmJS8KhLwaT6qUg5Sy7K4hGUUDiixDKYXjlMcxw+EQnZcLfq7rTuJgpbJcO+lUSjE7O0u91STevoRUityUxcXSgWVEkSOMYTTo4vs+l1fPIYWl0Wpy8623se/AIWZnZ9FyfN1P+dXzPIbDIY2wRhRFaKlxpEfU60Oe49VCrLU4jsN2r0sQBG+Ju3UcB2std9xxB8sHD5GPR9zD7Q0GnkOe9mlPTyOki9Eehw8fxnXdSVSulHYSmCApu12F1GTWR7gKK32s9dC6Rl25SNHDGfQY5CnDUUKSJCT+gMRvE9aauF5QHnEJjdYOha0u46+l0m6l3YqKioqKvcGuKHxNAVKWb8VageN4eJ5HHMdlFKy4es2uHJc8NzjGYIXBmBzXc1CyHA1nWYYUivbMLIuLiywuLtJsNnGEAVFgTJmeJYRAjYMCbr75Fk6Ro/0Aa3KiOGZueg5lMvIsod4IqYc16u1pPvTOe8BtM8xSWq0WtsjACHIBRZGPjfUt9XrI5qUNBoMRftggGuVo5RD4PjngOC5JklDkBtcrPWCvjbv1fR8hBO12m1GS0Gq3EUVGkcVYExLUGwipabSm8cPapKAS45H09vY229vbZEmMyQsKBEZoBBrhBCB8VBYgpUNDObhSIaM+RAmjLCXul0VElgwJgxZ5rY7SLkiNrI6EJlTarbRbUVFRUbF32BWFr1KqvLgeFw5KOsRxXD4MJRTGEEURRZZhbIFyy33Kwppy9Kk0RW5I0xQpDZ7jjUMD1Fv+DAQIUT6cd+JhPc+j3W5z4OBRvKBBNBiSxCPSNEU4LlPTc2hpCFyPJCvoD2Iy1aHWbHPlyhWmWjVwNWkhyyMnU3ap0jTDq4eM0gLHr7HZ6dPbXmeq6bO11aHRbDI9Pc2VKxscO34jUgqyLHtLAQHjIkJr+oMRnl+jPT2H53kIoZBa0W63S6sppcb7i3Y8ctfU63WMyTE2R9jygW8FYMFqh1zVUUqjtEJLl1rgI/oROhrhZDm9bMSwNySLBgRZGzdooLQHukq/2qHSbqXdioqKioq9w64ofK0VSKFxHA9TpBRFafZfFAUmL7BF6VsqrMVayHNDlhUgy7FllmUUuUH75VjT87xJBy3LsvFBEMDVWNmd4sFai5IO09OLeH6NzfUNiizBdV1Sm5OnEdrkbHW2aDTbJIUlqAUsLi4S1Gq4WiLzDCPl5OEfx3E5tlUuOvD49hOPUa+1uXjmVQ7sn6UR1Llw8SJZltGanmL/gWXCwMVxymJHSkme5ziOgyky0rT8O3hhQLtVp8hLNwHHc9FaTSy0lCg7b1orgiCgVqvheQFZGiOExRoDlMc9hRRI6ZBJBUqC9NCJIlQhaBcnSyAWDJOYJB0SbyUor4fr11Fe8DaoZHdSabfSbkVFRUXF3mFXFL6IHOlYHEeRo8jHTSMpJXZsEyWlRFgo7BCbCVQS4tYCICPLhjhKI6wlyw1xt48T9pGiHAcjMiwSayzCWkxeFiVYi7BlR80LNUb4zOtZhsM+EkFTlyPdOI6ZCdulN2tQww9rCCGIhkPCmRlyJNFwMLFM8lyfOI757X/6v/Brv/r3+eM/+Jf4Guam2rysPGQeE0URR248zkanC3nGux9+L1I7CCHI85w0y8kKU+5+Wosrykt+pRTWGR/5KIOSAomc7EMKFFK4KGVRWiCURkgXa3OkkjDecbRITGERQpHqGrnv4eCT2yFaBIhkSFNJNIJhFhGnI5KoT+oOcMLm26eV3Ual3Uq7FRUVFRV7hl1R+BbWorWL63vkRTbxRHUcB+VqUgFpmlJkBXlugJwAkBbyNMHGMbm0WATKK9B+DZtnk13D0l6q7JLlWTYpRkorqXGRMvZFVVIgJZi8YDQqu1+u66KUmnTFVlZWyqv6ICCKIhzHoXBd8jxnc3OTqakpXNflVz75s3z583/IHUf2s9jyMaMes60Ga1sDlN+m2ZbcdvcD3Hnv7QhdjnPTNMVxHBqNRvn7ji2yJp04KTGmtLb6T2FMOTrPrjmcMqL8eey4azgeH+f51VAE4fooAcqVSMdFOA7C8VBiC9XPsaOE4WCbLBr8/6yIvUOl3Uq7FRUVFRV7h13i5i5BShzHw3U8pNJIKSfhADum80VRkFlwx2PhJIlJs5g0iUjjmCLPqAUB8zOz1OoBw+GQOC47VDuj4R12vD13fFiVKj0/HcfBdV2MMSilmJ+f59ixYwD0ej2UUvR6Pba3tycP9DRN8X0f13VZWVkByhH2oesP8Mlf/Hk6nQ5f+Pxn0CZm6+JJplww0ZAzZ97kwXe9B9evY60lSZLJdXu/36fX6zEajYiiqPyUrvlMrv1c/n2Koph8rxwf60mBcO1r5/s74/NMaArHxzg1CJqI+jS6NkO9NUWj0SBwNA0FTlwVD1eptFtpt6KioqJir7ArOr7GCgQC5Xi4fkGe55gMwEw6aDs7jznlA1QoSR5nCGMwSLyghnZcksKQFgXpYDT2JJWTZK2dyNJro0t3Hp47+5T1ep2i8BAWoiii1+vQ63WwtmB+fhaEYHNzk8XFxckRU7/fZzToU6/XJ4b5SiliLLGBX/r1/4Y/+BdgG4tYt8EoTcCv8cuf+nWGqYO2CtfT9Ae9sjtYFOMjIEEYhm+xigJIkgylrhYFO38fYwzW5FirGQ6HdDodoNypFHYclmB3fh2TAsIYUxYtAqxVIB2sVBihkNLBYNDG0ixg0O8i7S75/6VdQKXdSrsVFRUVFXuHXfEUKIoCU1xNwbr2gb7TNYrjmDzPsaI06t+5fJfConwf5YfooIkbNHFrbZqtGdrt9sQjdIedXcZrk5yyLKNWK3cfh8Mh/X5/PEYFz3PwPIcoGnLDDUcIgtLn9PTp0/i+T57nTE1NUavVAOj3+3S7Xfr9Ppvrq2iR43guv/Rrv8GXv/UD+qJG3pzCNKYRjZAoi0iyDnESlTuWnkej0Rh7wgaTi3etNcaYSWfN87y3dAJ3ipad12AwmHT2dgqjnc7gtZ3Ct3YNGR8SCSwSpMJqn9SbovCnkGELN2ygnOpAaIdKu5V2KyoqKir2Drui8DVFQpGnUJQdHiUtWZETRRGjQZ8kKi2aCqHQjo8aH8cEnkBpl7BWn3SQfN9FUVo9jeKI4WhUHgQZgynAILDjC3KlFK6WCFuQxBFyvI9praCwoJQDSJaXV5iamuH110/S63TZN99mNOxw5tRJms0mp06ewfFcClvudkopwVg87TAajcB1sW6N3/r0P+PZ517l/OaI+x/6EU6dOsXly5eJk5zLVzZZXbvExmaHtUuXGQyHRHHMcNjF2oIkGZJlCb6vMXlGGifYwuA5bul1muUooRFWoBAUhSGOctIsQSqD0ICyCEeBlkjtvOUl1NUOnMGWLyvICwvSQ7otcrdN4bQhmHq7JbNrqLRbabeioqKiYu+wK1YdEFePXbRUpEKUtlDxiHg0LA978hwhNN44/coWGVqXl+9CuSjHxQvLFKnRaERmIRqOMLkFBNYajCkwtjyI0eODnzSOUEqRZ8WkmwbgeR7zszNsbm5y9uxZFhYWuHjxIsePH+fJJx9ncWk/QghWV1c5ePAg586fxvM8+t0eRVEQDUf0hj2U1CzuO0A8Shj2e1x/9Cj7Dx9kfX2d1tQ01lpGoxg7PpKSEsKwjjHl2LwWuiRJNEnU2hkTu65LmqZEUTTZe8xNgdIOwygljmOG/S5pNMIRfpmoJdT4et5Mzouu3R29tqP4lp+3kAuB1R6545O72d+EKvYGlXYr7VZUVFRU7Bl2R+H772GMweQZWZZMUq8KC55fXnkLURrmS1l2vqTWCKHLy3jHxQsaeLV6WYCkKXlh0YC1Bu2U3aEkGpX+oddcvJcm+lCv1xFCcOHChcl4dXNzk3e84x28+OKL1Go1giCg1+tRaxhGrku9XifLMhqNBuvr6ziOw+z0DAhJHA1J4pStrQ0Wl/YhpaTb7dJsl92ntx4AyXF0rDsOEygv5aMootFo0Ol0qIc1siyb+L3udLq04xClKUIpknTEYLhNPuijRRslNFKV8brlqLwsDnb2R8uCgbcUUBPGxV0hwGgJnvc3I4Q9SKXdSrsVFRUVFbuXXVH47hyqWGspTDHuZo2IhiOSKCLPc/x6E9cLCYIAIQRJkqCULBOeUGUq07h7FAQBge8RDQcMRn2MnaEQFk9LsrxMzrJjq6W8yMuH6diDdGFhgbW1NbTW1Go1ut0urutSFAUXLlygKApmZ+fZv/8ASZKQF4aTJ09y4MCB8Xh7iJSSfrdHnERkcYLrajpbXer1Ou3ZGdpTTRCCbq/DZncb13WZnZ1ldnYWx9EYU6CdMlTAcXxGoxG+X/qrTk9P0+t0CcNwUlgYY5BCkOQZxgq2tzd57aXnaQcOr752FhMP0LOLuEET5aixBdbV/cqdA6GdH8PVIkJKiTUCtKRQChnWEP+Ji/y/jVTarbRbUVFRUbF32BWFbxn5WhYPdnywkyQRJs8oigzHcRHKwQn9SZcrSWKCwEdKiec4OJ6L6/oIKehvb5AndRzHI01zcgu+FyBtgjKSgmLywNw5wKnVQoqiYGtra9KNUkoyNTXFxsYGnufR7XZp3cm1BAAAIABJREFUNBrUag1qtRovv/wyrXabm2++ic3NLcIwxNUO/X6feBRRZCl+o0Zn8zL7l2YJ/Bo5ijQZ0mi2SYscv1bHdV3a7SnE2K/U8x2SJJoUDJ7nkec5Sim2traYarWJ4xgpJWma4roueZohpIMQio0r6zzy7nfxv/3e7+DKgvW0izAF9VZC2JjGCUIsV22xrnbKrikYxt+DMipWCIWjHAQgHPv/9Z/zbxWVdivtVlRUVFTsHXZN4Wt3ioedh5Ypvzpa47guQaOOo8sx5c6Vt+OUD+p2o45VEivAmJzRKC2jTh2XK1caLC8v4ykQNiPNMpDlfqW1FluUYQH9fn/SgdopHpaWlnjhhRcmdkxpmtLpdFDS5Zmnn6XdbtMfDOgPutTC5sS0PwxDPMdl2O9R5CmuMChpkY5Eoml6TZQj0V5Is90eH+aUn4XSYuzDWnbxlJQURTEJA/A8j8FggOd5E8/TJElKf1RZ7nse2LfEd7/yRWZqHktLbZ5+7nnSNGUqGtHKc2r5FG4QTlwIdl5FYTDmqg1XPu4wpkUOxiAROON0rYqSSruVdisqKioq9g67Yu4nhI9QEiMMVgBCI90AqxysW0f6dTwvwNMCm2U4QuAIha89lJV0u6UNUxRFYAxaWaS11P0A11FIBNYKkhyE0mUULEw6RMPhcNKB2tnBnJ6e5uLaKo1WE4NFaoUX+Ow/sExBRqtdJ45H7Fucp9VoIqUgy1KssFhhka6i3m5Tn5ohnFlEN+fRQQvtuKggwA1rtKba5fsTFmyGFAUSixIgy43GybHOjgWUlBKhIbdZ+ZlhQSqEUIxGA7rxiCtnL1BPU65r1xludfjET/8s2hSsXzrLxuopehsXyAdDSFMwBcbkZCYhAVJhSW1GlI8Y5QOGWZ8sy4jTlBzIERRKvZ1y2VVU2q20W1FRUVGxd9gVHV8pJRZbXq9fO8JUCkdJHK+MWFXawWQJQiokluGoN45HLUe5NrQ4SgIOUitGwy6uWiaNR2SeQGNxHac8qtlJfEpitNbkWToJDPA8j0uXLqGUmHTMdkIIwjAkSRJGoxGNRoNut0sQBNQbLbrd7qS7pZQCWfq77ox7d0a+nl+mV+0UBqW5v3lLMtW1gQU7vrA7XT3XdcnSAivtxLbKWsgLyfrGJs88fQJ/uE2jUccvEk488Tgf/sAj/NvPf4HO5hp5npKmKY2paZygVnqeComkwNidDp3AFBZrwJoyMtcUBUrISRhBRaXdSrsVFRUVFXuJXVH4Tnb0pJxYFUmpcV0fx/MJwxBL2c0q0hhjygdxeRVumZuew/ddkjjC1OsURYaUkrrvcfb0KYIgQIt9hL6LpXy4S2x5GS/LQxwB4+OfWc6ePYvneczNlZZQQRAQhiFhGNLpdCZdtziOcV23NNrPDYPBgGazOeluGVuAsGhH4wfleDeKIoLAm+xnQllgXHuVPtlPHBc4O/+cZdl4dKwJgoA8L0e6juOVxYPVnDl3kZXDh/juF7/P7JSPJy3NWp3nnz7Bu++7kx889TTdK+eIRz2iaA6v3iZoTOMGdTytUcJF2PLPAiiKDJOXxQtCoMTVyNiKSruVdisqKioq9hK7ovC11iKkwNhyT88Yg8FihcRxPZR2EMohjiKkAWN2/EINcZzS6W6VD+sCRsMBuSnQUnFl9QLaD9lav0KrXkPLJkqXO37GjqNOTQEw2YNcXV3F98su3dbWFkIIXNdF6zJKdSdJSmtNvV4niqLyAW8MjUbjLQWAUmLcAbMURTbe7VSTYkBr/ZbEqn/fjmnHA9ZxnLEXbPlejCmjX7V2sdaQZwVSO3SjAeubG/zZl77E++6+je997xsc2j+H8nwa9RYbq5c4uDjL6uoqvY1Vot4WYWuO5nzM1PQcXn0a39Fo6ZNqjdRll67Iygv8IsuwhfkP/wP+LabSbqXdioqKioq9w+4pfLk6Gi1jYMuveZ6TW4M/tnryVYjvl520PM9ZW1uju93D910c16coMorc0Ot3qddaCCxpmpJlWRkba8sHYjlWZnIhvnMYtON9eq1HaJqW41Wt9eSw6FrrJOAtcapXvycnv8+137+2wLi2kPiP+pACeZ5P/ozSnF9M3oMUiiRJWF+7xOPPvcyjTzzOZq/HP/9f/w9+4mM/zhtnXiZoNQkabZaWltlcW6Xp+MjCsj0c0E1yiiKDPCLPoNZool1vUqhkRYGW5fsvhCBL0sn7qai0C5V2KyoqKir2Drui8IWdByOTrpmQpjT4lxrPreF5PlIrHAGh7yGUBFOAhtFgSGFzAizRUNFuTZdX7N1NGjbn4oXThDWPmblp4v+XvffqsXRNz/OuN3xphQpdoXt39+7eszmJM5whRySHpCiZsg2YMkUIsAHBQQJ8wgPrX4wAw7/DR5ZsYCQwiJQ5FGiQYhqONORwc8/OqVPltWqlL7zJB++3VlWP6HTA2VXgewGF6sprrX6A58ET7rtp4gV5iL/f9Ran0gfqukEpSTUocMFhulhQ7O6Oubg4Y7Va4IOlyIdorXEudtyGw2H/HARCBEK/8xicRIQAXqCURiLRMoNgESG6SgkhUFIiEMjejnZdRAEEJMHHvcvg4hg6y+PoWXmPzHOWree9j084enZCO7tkNj1BlvDNb/4LDh/c59Hnvsigi12wnZ0dvvz6q/zpv/82VYCT2ZLz50+Y1TMOlx07u3sMtnYQWY7KS0SAIDzIgNYSazwhuE8tTm4iKXZT7CYSiUTidnBjFt7WRcN6RBo7M548K6mqIWU5wFtHW6/i2LaNnaxcZ5vkPZ/POT095WJytrF3bduG05PnHO7tczE5p67rzRHP+r0Qgq2tLYqiYHt7m6Zpeg3SCmMcs9kMraN71HpHcH3EEwsc+VIXbP2xlMRiIjjA4318Tv93h0DXfw+8bMl6nU2BIQWt6Ti/mLBYLTk9e8E//u/+EaNhTjXM2d7Z4r/97/8JXmYM9w4ptvfxxZi3P3nB40evszUecHenYqQ89fkZTz76Pk8/fpuToyfMJ2fRNrczGOMILnbvnPWbrmAikmI3xW4ikUgkbgc3ouMbR58B148h14lXIiA4cBYZMppmRbda4rxlMBhQVQWj0YBQ5Fhr8d7Tti3z+RwXAtYLtNb86Je+zK/96jf523/n7zJ4/BqhuDq8UTom7MlkQlVVUetUx+TcttFqtTMtzhm0ykGBUnrzOLXWm6LnevIPISCV3GiLrse767+7/ng9Pv7BwmH9ugjhiUNt0b+PRzsA08slT4+OmdeGN974HrPJKf/z//TPMKtLuqZhZ7zFt771LX7qp/82nVcsXUZW7RG2FDZ0hEwxHMN+0OQLwUm75ORFzWrVMNo+YGfPkw8G6DKaLQQrCV5FV4AEkGI3xW4ikUgkbhM3ovD13qOk2OwRKqXw1tF1DXW9pMirflzqWMxncX+ya9Fyh0wNyItic6W+PropypLheIfpdMr7778PwL//zh8zGgz7fci4LxmQjMdjWl9vxPSt6wAoypy2a1BK4L3o5Zf8S52zddGwLhBeco4KHikhhJjwY3EQEEK+VGz8YNFxvbgQsv+dOIQUSAV4h3Ge08mUF6dnvPHG9zk7PeKDd7+Pt4b/8Z/+U379V3+DR49e4+7hfT77uS9wPpmxChaJhmqH6XLKj/zEz/DJe3/G0E0QvqExgvmiYTE5xbRxt3S8u8f4zmG0vr1WJCUiKXZT7CYSiUTi9nAjCt84cgWlJCIU5HmOlBLbdVx2U5TQlFUe9yKdxRuDlZ7pxQXzywlKZQwGg42WqRBRXury8pLPfe5zVxql1vLOO29RFAU7O1uMx2O0VnRdR1VV0UQANt2ssNEFXRcECqXyjTPV9av268SLe0/wHoQn4IiWqlcuV//fCQgRdzDXo+lojwtSK6aXC+bzGT//cz/DR2+9gRqP+a3f+hY/8VM/y96dA8bjXYLQZLmOY3gfix8x2uakNqjx64z0GSE74s6yo1Qtk+WCtp5y3q1o2ymtadje2kNXFVIJXHJ93ZBi9/+JFLuJRCKRuFnciMI3doxiEYHWZFnWd88EPkistbRtGy/BpSTPc6qqwHuL94HBoODg4IDd3V2KoogjXOBzX/gSb7zxBjs7O1jb4Yylrete9imnqiqk6vf/OvNSNyjLMrx1myv5692iHywW/qriAeLvFfKqC3b9a/9/X58f3K0spGS0tcODVx8yuTjn//itf0MIgc++/jl2dnc52L9Lng+QQjGdTtFSoAVYKbHOYUNAWsVocAjKY+0Sa2sCki44RNcxa5ZcTAxOVgCMuIPOCxCpa7Ymxe7/++uTYjeRSCQSN4UbUfhK4cADSpIVBXlZsr1zgOsLhyAdy9UsXoWXBQA6L6iqiqIoqIYjtvf22TvYo6oKyrIkyxVCOL7ylR/F2Q7btjRNgwsS5RsuL04ZVgXel9y5c4e2Xm70RrUqIKjoyIWMK4oEnPcIZxBBRPcs13eggicQx8D0Ngbrjpvw62JBEIQAIZCi77T13b3oxEX/cyBCBzZ2+YSokZRoVZHJHKk0QQpkEGyPSg73djm4d5+Dh4/RQjKohmwNxrz6yn1eHJ0gMk2Rw3AwYj6fkyMR3mFch80ExcEh8xcGUUkq/ww/izuppQTlYV53LE8+xjWXmK5lPNxnVIx+yBFyc0mxm2I3kUgkEreHG1H4ap338koSpTJ2du5QFQXVcEBd13RdtxHDl0L1Tkya0XiHLIuX8ft7B7zyyisMhxVZlrG9Paaz0abUOQPBsVqt8CZe3XvXcHr0lIePHjObnFEUBd7ZqHda5NR13cs7SbxzvZZp7Batj3w2h0BSEse6V3uO66Oh61zfgfzBr0k8eIszHdY2BGcIIf7dLAsvdc68ACUVw+GQO3cco9GI8XDE13/xF/ned7+Dt4Z33nmLh48es1wuN7ujseOmgAIhFK2znF8uEEojhmMU+5RkBHGGUg3SO/IgmNQti4sT6qaj3l7S7h7+cALjFpBiN8VuIpFIJG4PN6LwlVrhQnS8UpkmV4o8zymqiqZpeper+N52DXVdRzF+AdVwwKPXPsPrr7/O1taIPM/I82jvOhiWvdYo4B1+1yOCw3QtddMwn89RwTCfXWCrUUzQZUmQgeA6VC+GD1cyTN57EGxGyGsnLCGvxsDXrVo3x0I9627Z5t891rZYU7NczcG3ZFqS55osG6O1fskkQOuoG5sLxXhYcfdgn7t3Dzg+eo7zvUJA3eCto2kaqqq6Jn8V/56SmkxqGtPigyIvB4hwgFIVFRKjpijXoYPBe8Wyc1ycH9G1NW03/2uOiNtDit0Uu4lEIpG4PdyIwhep0Xl0jXJBoFVGJjOUzpGqwFpLXgyx1tK1NULFkXEQGbt7d3nw6mcYbe0w2tpCiIBUcedSyQypIJMStd5xpMXbAZU17O/v05mGalDQ1kuKIkMGjWlacB4RMqSQaBmv3FV/4PODxYBzDinUS5+/rnMKV0dDa/3UeIB0pcfatpfUyxn4QJ4pSpWhhUb237t2z4rjZfC9bFauM6qyYGs84v2P3kMhcLZjvLXD8+dPyctqs2fqnMP7fu9SCRSQ+wzrPU23QssCUUjUFqBzfGdQnWWQB6ADXzJZzjirFz+MqLgdpNhNsZtIJBKJW8ONKHyzLO9F/wXeh+iCJQQ+Xg1FdyjvCVKivUdb34+MFVleorUmz8vNAY8ABCoK90uJVAopAlKARaBVQGeOgEMaTZa1DPIMYwz18vJq5BugKIp4LOQ9wZm4Min0S2Nf7z0iXB3NvPT5a2Pl619fj5NDCNR1zWz6jExJxqMReVaSZyVa56DlpmsmpYzFA9EmF8RGt3V9PBWNBgTWdngUPvexeKDtR8YgJaCAoNAhxDG4U5jWY50n00MoFYwMwXoyZ6m8xMmOsXLMjfkhRcbNJ8Vuit1EIpFI3B5uRuFbVtjFDI0nWIcxkrwoEX3id87FwxqlyLQkFBkBh/GOi8spl8sl23t75C6A8GRCbyxjoU/WEoRSKAdSg0T1fzzHuYJgLMa04C1d19GslpiuRuCQogQRrWKl7BPueoy8vqb3AQSbJO6swwu3+Vh4iV4XHVhsiCNn3zVcnj3DeMv44A5FOSDPC5AZQUmkyPouoQYRHa+kFyCiwYA1Hq01VRX1YgeDAVI4fLAgPXkmMV2NJKBUhpDxtXQuEIIn0wrjBUpmuNxCJ+msQcicsHUIIkMjsWFCGTxCW1T3KQTJDSXFbordRCKRSNwebkThWxQZthY473Eh4I2hKKu+C3RlM6qUIs9yAJwHL6LV68nJCXfu3EGL2EWSCELQm05VfCdwzpFJGUfKfTdL0IvwK42U4K0gyzKqosQ4S9N1LBYLdJ6h85Kua5HZVYds3anzXHXLru9QGtOhpUYGiZXxQQsNbWepmwWzi2Nsc8mdvQMyXSBlX9RIAVKgVb45DPpBhFB4b+IYvetQWkKQEDxaS1wQ2M4QrjlwiRC7b544+na9o5YX613QgJC9IgGaausONniMlDDxyAAl9q8nEG4hKXZT7CYSiUTi9nAjCl8dHIPBgOUyoILA+ZjQ8jxHqSjS3zQNAEEqhNRIabGmwUk4PT3l7t27DIqCXGgMJo5EWbtUAeJKQB8vCBKEkEghEcoRAiidX7tuN6hMU1QVbWtYrJYsl0uyLKPrYttIiFhorLleOHRdh7EdzjpQILyI+43eYxGsVgumkxOaesLWuOyfqyZ4gUAhhOqv2K/Gy1Kpzd+lL3zWe5ebx+UdRf+YpNQ0TdOPmft9y955y3N1bb/+nRsnrn4Y3dmWxgbEYJdcKpAFfnpGt5r9tcbDbSLFbordRCKRSNwebkTh29YrysGQZd2CDwjh+2MWv5Ezstb2Y2OJlGrTSVJKILxnsVjQdR15cTUibtsWIQR5rnFubdO6PtYJveQThBDHsEJolBB4Z+isINcSoRRa5+RlwfnkEmMMLlwd+kCfzPsO3/XioWlaMhUPh9p6FYsLYwjWsphdMJ+dkuWgswFBqGt7lX3R4MWma7juwsm+aEAIlIy7oFePI+C8RYgMKTUeER3F+tH2+jVb/y4hxEb/df08lFIIEYu3LMvwBIwXyHIb5SHzgc7/MKPjZpNiN8VuIpFIJG4PN6LwPTt+yqPPfB6d5Zi2Q2tNXdeEECjLeABUliV1XeOCQGZQhAJrarAGYwyLxWKzk7hOpusE6ZxD6fheiLAZE8cr8ThOllojgovC/iqjKBRKOMI6mUvB3t4e5+fnzKcLyrLcJHatNfSdLe/j8VLbtnjjMQ6C83RNEx/nbEZbn2PqBZkWFNkYKTKc8zgXzQCstSgkQodNQSKEJesLlLUxwbrLtVgsOD8/xZgW0T9nJbPYhetH5teds2LxxGYMf/1qP8syRN+1RPcj73pFFzwqG1KMwG+MDRIpdlPsJhKJROL2cDMK3+dP2T+4RzXcxfpArtVmjHm9e1YUBV1n8S7gZUAphbUdq+Wc6fk5k9klw1FFkeV9Isw3XaAQ+s4T4sp5SkS72dAn4oBC5QK5vmp3Ai88UoKWGiUFO+NtFpdLVqsVg8Hgqpt3rWvWti1t2xJsvGBvg2N+OeVyes5iNkf5OXkmKbMBMkicl5tkvn4T/Xt57feq/vNBxIGuEIKiKBhVA5QQlLnGOUHUxNJIpZEqFk3Bry/1Y8Egpca56NC1lqhaFxPRkKEfIcuAFA7XWrxQiCAZbO9/GmFyI0mxm2I3kUgkEreHG1H4hvmEixefcPAjA4oiwxlPlmWb/UBg0z1TssE0HqSi1IrOK0I3Yz71fPhhRZYXqMOMQVUActMZi5JKAqEEQqte2kkQRECKK/eq9R6hBELIEFgCtt8czCiynK2tIS9eHOF9/zi9IEgLSIyxLJc1zjmstZimZXY5YXZ+jO9qpLegLE5V2KDovECbOGJ23mNMSwiOEBwEjRADpJWgMoKLo/QOhyYgpEJLxd27d3nl7iEXH79JriuC11jv0EpS5AOkczRNR2ssyl11xmSIu6LBeYIPSBkQIeC8iR1HLRBBEoQk67VqOxcQef7pBMoNJMVuit1EIpFI3B5uRuFrDYvJhO3Vgmy4G21Ze7H6EEJMdmtBfRGTf6kqRIhJzjQrbLtidnHOdHLBzvY2eZ6Ted8fCm2UQxGsdwpjwbAmHuQEpOh3CNePjYAPfRepH0UXRUEIgaZpYgcuk3il8N5ijGXV1HFkvFywWiyZnJ9glkugBWNR2jEI8QAqL91Ll/TXdVIBnDcorwjB4YPDdo6mqSmKksFWjtIZo2HF3t4eNsvIXUupJa0H4zJKocgyibW+15u9GqOvX9N1V06qq0v/69a06zHz+udN0kLdkGI3xW4ikUgkbg83ovAVTU0zPWPy4gmPv7yP8Rmryzl5HuWQnHMYYzZi+NZ0CCEoy2jrqmmw1rK6POfpR+9TZjnqwQO8u/oZiJ0eIQTCKbz0faIUrIsLKTWSQBAudtJEwAcfu2Lh6pI877tGl5eXDAYDqjJgpcR0HXW9ZHox4fJywuzshNVyTr1c4E2NaRqc7VAqsLu3jzGGIBRCaaq2Ren437EuloQQKCHx2uJ97CIqpSjLKiZ+HxAERoOSV199lb37r3H05repRkPy4g4maNq2pcyjVqq1Fh/roJd2SNfFirVuc+l/vZhZO3V571FKsVwuf5jhcaNJsZtiN5FIJBK3hxtR+NpuiVsGFucn+NWS7eEdzCoe1BRFtHhdd3N0niG6KLKfZRrpHTIrEb4mk4Hl9Izjpx/ibMPBwQGDwYCyHPTJr4gFgly7bDmEVEgteg3SuDcZz4dCHBNf6y7RX9VfHSwdI4TAdI5V2zCfzzk/fs704oLJ5Izl9ByCIwSP7Rrwrn8clvlyxeXlJZfzJfuHd0Fm0eQgyzbFkhACqWM3Lrpaxe/RRcVat9Rbg1IZd+/e5Utf/hov3vouZxfn3DmoqLKCzmQ03jIcjsnzHGuudeTW+qj983PO07btDxwSxR3Vrus2e5ta34iwuRGk2E2xm0gkEonbw43IAjEJdrTzCSdPP+GzX7lHMxwym89fStbWWly/m2i8AxFiB8sNMM6jhSOXntXlOc+amsn0nDu7+9y7dw9rPWUZ9w/LsqTMoxOVyqI+6CZhEgCFILpEwVXxELVTryxcu67DOcdyUbNYTjk9OWZyeoRtaqxpkbjYmfKOItOAxpgWrXNCCCwWCxarD5lcztB5RV4U5Hm+sXi93rlad618vCSKl+9SAB7hHdtVxZc//6M8/epP8d0//F3U9JQ9byh2HmCEeKnreH0krbXeyEJlMtvsd27MDfpRMrDZXV0rDyRS7KbYTSQSicRt4kYUvkEqZHDY+YTJ0SdcPvwMw619Vm2HUhrvwThPllW4ZoVWBVY6gswoqwwhNUppnG1BQBcMoZnTnNQsZzPq5ZL9vXvovGJ7OGB3b5euyqmGAwqZoZQA0V/Ly75QCBBkQDgQBLyxIBxCKIpigC5yTi9OMHXD7HzKanGMM5bQrCiVJqyPk2TA94WAlJIi11dSTDKOc2fTCc+ePaEaDNjZ2QFA6xypFUJlIPPN5bwzFokiqIAXGShJwIGAgztDfvwnf4YP3/+As4/epL0846BbUd55laCHGFdQlhIdLE0bLXKFDP1IPqCkREgQio3+rGk7rO02klKSgJZJEmpNit0Uu4lEIpG4PdyIwtc6jxQeISyL2SVPPnqPr3z9PlujMXVd4wl0re2tSuMhT1UNqeslHsF4vM2iH+UqDVqKvrtTYIzh6PkzVoslmS44LTJ2Jjvcf/SYamsQj5B6aajYHQsvPTYvBASJlLrXUY1JdDQaUS/nXBw9RwePdy2ZkuiyQCJQZQHiyhRAKfXSTqL3fuPIJXXGxekZT4qCR48eRT3XTJPneSweuOpeqf4QKXbVPIT+uh9Pnmk+85nP8NM/+/P87sUJF6fPcCen7JGzc1ihBuuuWUbmJXXTxAv8/jleNxtYa7quR8Zr+SjgJcevv+mk2E2xm0gkEonbw40ofJGCIOLY1rUNl8fPOXv+Efv3H2OMwQdB5yw5Gp1lhBAPWZQSNG2NLiqq4YgaQDjyIgMfKFWJ05blcsnk9AXGtjSmYTDeYmd/L9qgyqsL+b+qeFgTR8RRUxUp2d3a5rOvPeYPPniLYZmh8hzZH9wAvRnB1aGP6Ee2698VR99R8F8oTesMi9ll/zgUSE0QKnayru0srke5a71UIWXM/SHKRY1GI774Y19lMpnw3ttvcvTx+3QvXqAJbO3dg+wVRDlmmAUQ8bUJXoC4Kg6AzTHQepQcjQjES0VEghS7KXYTiUQicYu4EYVvEAqpRN8hCtAsOHnyEQd3XyHLMpatJcsKyrxA6xxj2pfE61tryXRBpwzOtZjO95alEpXlVJUneIvwHV0IrFYLQPadIovSAiF6e9S++yZF/Po6Ya6LB3AEoCgKPv+5L/J73/pNnIeqGEY9036HcD1ezbIMKeUm6YcQrgqMEHdAg5DYpomJ2Vqsd1jrkSr+B60v069LOEl5VeRsLtgFCC842L/DT//cz/PZL3yBpx98yHtvfJeT449onGFHKrYPC1yQaJWTZy7ue3oD/UjbGPPSXuZ6h3T9midJqCtS7KbYTSQSicTt4UYUvl6KeKGOJCMQ2iUXxy84O3rB9r3HmLCirpeo0FGWI+p62R+7xCttLXOsc1GrVOaYrgUZECogEOiiYoBgiWRvsIUREiVLpFyPPR3Q7zL2Cfp6kl/vOIZeE1UBTmQc3HvM13/+P+Xbf/hvuZ95qtGQpm2jyUB/XKT6a3et404ksCkiMpVFmSYEuZZ4a1gsZhhj4vPxnrx/HNZa8jz/j46GwqZzFkfkWgS2hxWjzzzGP36VL33hS7zy8CG/8ev/khfHz3H+I0TbIHdfQZBR5INYHHUOgtgUCyGETZFwXRJqveOZiKTYTbGbSCQSidvDjSh84zhU9ccqILHQrfjw3bf56uGrjEfb4CxO2beMAAAgAElEQVTWNHSy2fxcURQEPF0drVeLokQI6ISkqMp4ce89SmRIFLoxeAHDwZjgFVJoog2q3Fy7i37Hcv0xxGRv+3GplJJAQErBYDzix3/y6/zBH/w+s9mMnb075EVBa03fZfL92Fi91G0SfXLujNvsO4YQ1QGeP3nK1u4+QlcMlMLp2MXKsoyu61BKoXWOD4HYyAuwEfWPO5QKjxASKwJ5WfLFr36Nxgt+51//K44+fhPtGkpdUlV7eBk1YHWR0S07uq57aSQdL+rlS/uS11+bv+mk2E2xm0gkEonbg/y0HwDEB6GCRwQP3iBCQDRzmskJTz/6cCORpITH2o6yzFEqJrPgIS8zpBagJLooULrA2YB0AukDwVu0hrzKQQpEprHCYL3Be8AFHAEvwPp4xONjiQDEI6F1wgeQUqGEI1OBvf0DHv3Ij7KsG06OTwGB1hlKaXRWIFUW9yFd2HwslKYYDMnLAqkVeZ6zMx6hpeLpkye8987bnBwf0SwWeLMubkT8WanxQoPM4i6lj2YA+IAL0Q7XIgii785pGJaKH/vSl/jaT/8CW/sPefr8CRdP3sItzvGmi6+HZCMRtXa6stailMCajrapoz6sd1jTfVqhcuNIsZtiN5FIJBK3hxtR+LIW5A8xCXrvkRjoFkxffMLZs/cZj8eIbBS/vR9prrs4Qgh2d3fZ2traiNQbY/vxr0aoeGk+HA7Z2t5lOByyXC5fOuYBXtII3Yj/C9X/W0aZpyBAaoTKaI1DqIwHrz7GOcfFxQWTyYQsyzYj4jzPUWo9Po6dvqqqyLKMPM83JgdCxub7crng3XfeAWswTU3TGaRQ+ABBSnzfvbo+ul0f7Rhj/iML2QKBJrC3tcMXvvxV7r/2eXSxw/nxCc+ev81q+RTMCm3LzcFUURSb3cjrrF/bH/z832hS7KbYTSQSicSt4WasOgQHvbWqdSYmLusJNrA8e8qz4NnZ2yNIRbCBi4sL9vb2NgcrUkpOT0/Z3dnBGLMZq3oRLVqFCAxGA5pVTbtq8N5vxqJaD1AqgOqtXxFIenF9FQXzgxP4IDGmIxeSoqzIAZXl2IsLtnfvcO/wkKOjI45fHFFVFYeHh6w60/+NqH96lXQleZ6hdU5d1+S5xHZtdKfqHK5ref+9t3D2NYbbe7gABIFC4fu9ybW81LrDpbXGEzaj6bVsk3Me5QNGGB49ekRejsnyEbOLMxZP3sbTMdx+lZ2d18iqiul0SlEUG8crreWmILHWvrQ/mkixm2I3kUgkEreJG1H4WmtRQhCkRCtBCA4fAoQOv7xgiePpB29x/0e+hKq2KYoC5xzj8RjnopvVahVtVEMIOGvJsgzrHLauybOM5aImEJNg0zS9pFTsZikl8SJ2yrSUm+LBs+5QCZCC0Wi0ORZad+6GwyGvv/469gtfpOs6Tk5OePHsOcNqwGBrG1/EZLvel7TWYv167Cw3xzhCKHQuGWlP3Rre+f6bKAKHDz8bu2xa48JVsXD9gEdKSV3XZEV0zlon+9j5yuicBQVKK17/zGOWz99ldvExwQaeffwJ+3chF4psfAel1LV9zOjWtT4+WhcNqWt2RYrdFLuJRCKRuD3ciFWHzYFMsPH63MfdQCEEMhiEabk4eoHtWrz30eoVNsmsaZpoFtAn9PWoM4SYWPM8j5qeqE1iXRcP65HzevR6fWRsPQQvCCKOSTNdkGflJpGudUIPDw/Z2dlhWA3I85zlcsl0OgV4SUdUqbgTqWQW5aZQZLog0wU6zzYdwDLXCAKzyylda2mNw7mAcwHbj9OBl67UQ4huVgiP84bONBjb0nmHCxbnW0IwaAXNckZVlFGHwMHF+TEXk0+4vLzcvBbOuY2c1fWx+l81Rv6bTIrdFLuJRCKRuD3ciMJX4AkCfBC4AB5JFyQ2AM4g7Ir68pTLoyeUgyHnZ2eYrsU2DcE7mqZBa03TtiAEXkCQIl6oa41Ums4GOudBabIsx7lYQFjvaI3DuujCZVw85mk7j+8MwVukB28dxrZRwumaGL+UmiwrGL/2eV65t8eDnQpvDS8mU14cHxGCQ8rYGQRikSCB4PDOMKgKlIQ8K9EqJ3iBVjmFzjg/OeXtt7/LcjmncwFjA97Hwx1jHC6ACxCEBqkQXmJbhzeBrjY0yxbbRIcw6xW+6bh//z7zumNvPGI4GEPI6OqGo0+ecHn0EdK1BOfxDiQKFQApMM6i8wydZwh1I8LmRpBiN8VuIpFIJG4PNyILdP5qFOlDwBNwQhBkL3pvLa5d8fzjD/HWMRgOGQ5HNMagteb09HRztV4UBaPxGGMtxphNZ2xnZ4embimKAqUUZVkCV12y+HYlqO+9xxmLM3ZzeOOcw3mDc+Yl+1YpJeX2XYTMOdi/w97OLsvLS05Pjjg+OmI8Gm3+bghx7FwUxWb3sCgKsiyjLEuqqgJgMBhQliUfvv82p8cvWK1W2L67GB+LwVtDCI7Z7AJrOxaLBQCr1SoK+zuHdR3GGIz1tMaSFwPy4TY6H7B/eMj+4R4CMG3NyfMPePLhuyznF/jQ4b1F5/nmkGn9Oqne6CCRYjfFbiKRSCRuEzdixxc9xPkOgUCE2D2TvYh+kJIgBNI7mvk5b73xPb7yta/x5OkReZ7jybh7eAiANYamrinLkrIoIARWqxVqMKRtW4bDIT64jcOTtZaAQwSPCvGIx0sQfVcsWEdRZJs9QfoCxYeoESqEoOtiF815hbEBnOT+wQGdbVlNppxay3gw5MHj12hbw6puaaxB6Zw8HsWTZRlOdIgQyGWUtarrGiEl1hj+/M++y/beIVqB1Iogfb/LGXC+o57PqIHR1i51XW/Gus45bOOQOnp2da1n3lhaShaN5fnzTzifnoOzjEdDcu04Pf6QztVUq1229/bJ8wG2tRvb2uuj9QQpdlPsJhKJROIWcSM6vqoagSo2Sc/LqP3pQsD7QAgC4QyyW3L80du0ixnDQYkucqaXFygEXd1Q5QWuM+A8udKUZbnZU7y4uNjIPFlrmc/nm07YWvdzLXq/Hu1aazdfb9t2c02/Hhe3bbvZKZTC0zZN3MEU8PDuHmUmmU8nPHv6hNn0kjzPGQ5HCK1praUYDKhGI7wQFOWAshpSDUYU5YDx1g46KyhVwfnxEX/2nT9htZjH7lnrCCJevQfraOolTb0ErrqAzjnatmUymdB1HcvFjOOzM956/xOOVobvfTLhg9NLuqDxMuNivmS1ahDBc3H8jKMn7zO/OMG7ulcXEAwGg5fkrRIpdlPsJhKJROI2cSMK3zuvvIoJVxqfIYg4Mg7EI50Q8K5FmhXKXPLmf/gTtsYDmsUcupbpdLo5EmrbFucc29vbG2mj1WpF0Xei6rqmaRomkwnT6XRTIKxHt9Zauq6jaZrNwU7XdRupqbZtN/at62LCOccn7/4FMjSEYPDCUmjBvcN9hmXBar7gg/feo161GBdQWoMQKK1x3lNW1SbpZ1m2Gc1KKcEH8lzz9lt/ybf/+A+ZXUxoGsvsssHUjtViRbds0UJjjKFtW4wxNE3Tj9EFTdOwWCw4Oj7lrY+eMNx7yPjVLzA8eExHjlE5hozzmWE+awidpVte8uSDt7k8P8WYOB5vmmbjAJaIpNhNsZtIJBKJ24P6xje+8Wk/Bv73f/WvvzE9O0aFODINIiYnIQSC2KERwSNCwIfAfNmwvbvL7u4e08k5UulNcRD6EbEQglVdMxqNMF3HfLGgM4bdnV18CLStifuWozhKrqoBIXiyTOP7jpNUEh8cAoH3juAh4PHW44NjWS/RKqdZNvzFn/wOob5EBoPzAe87Cp1TlhWLxZxVa7EeHrz6iJ3dO0Ach5dlRdO0GO+ipFOe0VlDNRigMo1CUTcNRZlzenTKk08+Yb5qGQxGtHXD0YsjtrfHbG1tE7SiM4ambVk1C569eEamMxbzBU+fPOWd9z4EldN5oBghtMLZjrZtYsdSaNq2IcsEWiictVycn5PlFVU1wDuPlJquM/wP//gf/bNPLWBuECl2U+wmEolE4vZwIwrf/+Wff/MbudZML85QIiBEQIYQbWD7txACAQhdR1kWnJ2f8fDxY6QsKQYjAgKtJGVZMLu8YLy1hTGerjNkeYFUmrYzlHmB6WKna7VYcHh4j7ptGRQVgUDXNXSmw5gGh8A7DyquSAoCeVaA91jluZhNyITm9MlzPvrOv4XWIF0A2yJ9AFOTB4dWmvliSYcnKMnB4X2kYHPANBwOUVKDh+ADzjq2x9sUWYHKc0IIKCHJM8VifslfvPE9/viPfj8eK3lPWY0xCBrnWSzmNG3H0YtncaxrLX/w+7/HBx98yHI+RZoF26OSpc2oRlt4kVHPp7jlhLqp6dqGxarGEX0RgrPMZ+doFKPxLtaD1Jp/8t/8V6l4IMVuit1EIpFI3CZuxHGbtZ6dO/ucPh9iuiXKWILwm73Gtf6mUgrtHc1ySl5WvHj2nFcefZ4Xx8eMx2OsteR5hVKK87MTBls7LFdLhBzhg2Nre8RqtcD2JgEXF2d88N473HtwPx7QdAYlHM47lnXNtspxIqBsHA2L/jBI5jneFnQryfHpx/zpH/42opkjvcR6SxAQAK3iIVJZFmyNSmbLOU/efY+yGPL5z39+Y9UaQmB3d5emaTaj6fPzc4QQlP2F/HK5ZDQaYa3l8YOCi8mE9996kz88OeP+vVfYPzxkd/8+w2HFcrGgrpcURcGffefbCAVlOeTew1fBW5rLc17Zussbb31AqBfc2RpyMgm0TY3wUQO1aQ0KQVnmBGd5+vR9WmN48Pg1lnX9aYfMjSHFbordRCKRSNwebkTh23Udw3LEwb2HfPzOX1CqQC7FpnhYOzkBZFLguxbfLnn/rTd4/Qtf4eDggLOz2HFbrVabA5lcKe7cu4cxhtPTU9RwSF5kNG0NIqC15u23vs+L588YDn+BLFPYboUPjnfe+j6vPXzM1tYWRsejmI8/fJ9XHz9Gh4APEh0U/+J/++fslC2V7RAhmgwIqfFKYK0BEZ2yRoMhZI5V1/DuO2+xvTVib/+Q+bLGBE8lNTovcUGwtXNns4NZ1zXGOO7c2Wc6nZJlBaNRxmhQ0XUdjx4+4Pj4mOfPPuLtd97A27jPub+3i9aarWFGNRyzalraZsnunQOMC3TTI37s8QG/9mt/hDcrfNcwGAzi9bvpsDa+ljvbYwZFjheO588+QEjL/uG9Tzlibg4pdlPsJhKJROL2cCNWHf7Xb/76N2aXlwzHQ2aTC/Adiii/tC4g1v/2QoCUOGsYjLaYTBe88uAR88UCZw15njEYVDjnOD+/QECUjvKe1XJJ13VRL3U0ol4sKbOcjz74kNVqxd7uDvP5FNd2ZFKyWCxZrVaYrqWrG6w1CC+wJhCwfPuPf5/F+Qu2yhzbGTobCEJgQ9Ry9VITpCKoHF0OUUVF3XQY67mczdjdvYPvZaWsDUilsc6jlEYIidYZVVmxWCzJ84IQYHt7hywr8ATKoiKIwHg8oCgL9vZ2KKuCw4M9JIEiVwy3dsjyAp2VbO/eYbFYMhyNgQDO8vjhK7z55vcQQNs2URnAOZyPmrBtayhUhlYCnSlWizlSSH7lV34ljYtJsZtiN5FIJBK3CbEWz/80+fp/9g9DlmVsVQWXRx9z9OGb5ITNqPj6uNiLAq0cSEG+tYcVW/zsf/4PaKzjcnLO4eEBpmuYTqcbiaf79+/Tti1KKVrTYdqOKi8YDYYs5nOyLOPk9JzPfe5HeHD/kCLTVFXBZDbn/PycUVUyGAzwzlDkQwQ5nxy9x/vvfY/Mew4GOzh7ydnzI3ToyJREaAFCE4RCZTlS5XiR4RA8ff4EqTLuPXzEq5/5LErn4OPzXfYFznA4jPJSOmq0Xl5ekmUZs9mMoqxYrJaMx2Oc6zYSVpkeUK8WvW6rp21brDforCAISVAaZMZwOOTifII1DYWCtmv43d/9XVbzGb4/zop7qQLpA7mHaqAoqjyaJ4ScD59+lHShSLGbYjeRSCQSt4kbUfj+wi/+16GxgnJUUfiat7/771C2QYtoq4rUffGQIZVG45Ei4EXO1uFd1M49vv5z/wkffHwUC47Q0TUzxtt75HmO1jpeukuJFnF30RhD3h/fSAXWdpwen9CtVlRVxeMHD5nMJhwfH3PvYJ+dvR1m0wnvv/8uXb3i4cOHSCkZDAbkec7WoGJy9oLlYkKhJLnK0TIHIQha4pHoosQGz2LZcXrynFfv30dVY/bvPyTPouuVbTu0EuADbdsilIx7i9d2KL13SAXex13SLMvI85zOGLyHxWK5cdtq6xpkQOYlQhXYIJjNZoj+Z5VS5HnO2dkZv/Gt34CuJcfgjCWQ4wPgo8vYeDhgUJYoJfj42fNUPJBiN8VuIpFIJG4TN2LH13tPnhe0dY3Unnv3X+X0yQex0yMU4qXvdXjiWBYdaFZLTHfE8YtnVEXJ5HLOoJBsbW0xm883uqV7e3vUdc3h3n7cZewTZ5ZlOOdQQbA93kKNhzx/+hF/+uxDvGux1rI4fxYNCYynGFSUZUmWZZvH5JzjfDLl4O49VCZpFiuckASlQCiElHghcAgQilmzovOBed0iW0deDLn7SonrC5m2sygp0b09VggCrXNAYoxDyng9DwKpFF1rUTLDudh5y/McKTTeBYKAtnOMyqi/KkUseGzbbjpxbdty9+5dfukX/z6/+S+/iZECKRUihOiypRTOe6azS1ywDAeDH15w3HBS7KbYTSQSicTt4UaouQsl+yMg0Foz2roDIgOpQP5AcyYEHPEteE+7XJCLwCfvvcvB3h2cM71gv2U8HnNwcECWZVRVRVVVTKfTOPKEjeD/2tFpb3eHdrXk7sEBrz68x/27d9jfHbEzqtjf2WZ/Z5uH915B5wXLukEoTWssTWcQSrFctezu3cWhcELSIbBS0QlJFyRPXxzxe//uj/mjP/0Ob737HvNljVY5y8s42m7btnf88qzqOmq2dh3L1QofonlAXhQIpdjdu8OqqWm6ls4aFqsl1tpe0zVsjABWTYtH0NQdXdeR9cdOWZaxu7vLeDxmMBgwm80oywFf/MpXQCiCUPH/RgSEjG9S0jt+2R92iNxYUuym2E0kEonE7eFGdHyttQglyLSm6zryfEC5vUM7uyTYEJM7ApzFCxBCAVFoP9cSZZacHz3BB8ODBw+4vDhF9hfpbduyu7sbJZ36Q6Ou68iyDO/9xh2rKkqEcOzfvYftljhbUOU7eBfoGoPKctq6YzKdMhqNCCFQluXmgp0iwwnNrHbsHD5kMj1lOlsxnR9zcTGl7Tq8DxjjUHlGrgre/eBjqi8PGeJ55+03+fGf/CkupzO2dneYz5cY73EuIKWmqoZIKWmajiKvOD4+YTze2oyQrXXoPGc6m5GXA8bjMW1raJ2laRoAms6wurggz3NMe+XoVRQF1lqKKue1x5/FO3jvnbfQyiKlxNqAzjLKIqPQijhDTkCK3RS7iUQikbhN3Igd35/4u/9FqKqKQVGyXNaUZU7hlvzln/8HCiWRgBQiXssLTxAZAUEmAlpYCIrtB5+BnXv8vb//y7z1vTcYVSX03TiA+XzO7u4u7So6Ykkpmc1mZFlGlmV0zpIpgbeGcVXhbIc3HaPRiMVytrF3FUIwn8efk1JS13XclaxyqnJElhVUVcVv/86/4ejoGKl7EX8UWuf9juaczkSL11zCz/3U13ACApKv/PjfYtW0dDZe9M8nFxRFwXK5JITAYDCgbWu89yyXy824u2kagohdxzwraZqGPC9RRQFSYE23KZTy/OogSQjB+fk5TdPgjWVnf5/J9IxuteQP/s/fZlRmVMUApRTOtAgBIsDTi2nakyTFbordRCKRSNwmbsSqQ1mWeO+o61V/Da+pu0A5GKGUguAQ3mGDBx/iuDJ4nDcE5xF46vmUenbB0dMn7B8cYBxkWRE7YlXFwcEB077j1bbtZp9wd3eXRb1ia2cbpCagQZUIPURV27QhIxvsErIBRmhWnaEoSpTShADj8RbD4QgpdUz6JnB6dsHXf/bnkTonz0tAonVsrmdZTllU5HmOCwHrAx89fYJzDikEz58/31zxN23HcDCGIKnKIePRNkpmtG10zVIqQwhBVQ2pqoosyyjLkrquKYq4Yxk7apbtnV0WiwWDwYCu62jblvlywcnJCdu7O0gpGW6Nmc1mbG/vcnBwwH/5S7+M1hrhA1iHRqJcAP8pBssNI8Vuit1EIpFI3B5uROEbrCNXGSAAz3R6QeMUjx5/Hm8M0rZ41xJCwHqHCA4RDABWKpyHejZlaGt+77d+lawsmbQd08sZ1WDEZHKJaVqa5YqzszOstSyXS5RShBAYlhWLySUKwdbWFvPlApREa8lqtaAoCoq85O7hfXb37qLzAdVwG6lLsmLIYtWRZUPyrCQEx/b2NsIL/uEv/xLDKiPLBUEKggyx61SOEVlM8qvVirfe/YjlfAU+cH58gpaKxeWMTEg6azDOojJNVuQsVksePniE6QJb4x2cFayWDXk2QKBw9qqDX1UFRRZHw1oqlNQ0dYs1jsUqdtyMi93AIGA4HtGZlma1xCMJquCrX/871KbG2i7+XwmJvxFRczNIsZtiN5FIJBK3hxuTBtY7i3HMmfPg8SOWzmGFokMRgojdmyA3b8ELghd4qfBSMJ1NePXBK3z8/ru89vCVjYzSuoO0vb1NVUXXqMVigRCCrus23+eco67rmExDoDUdOs948uxp7CxpRd20zOZLymrIYDhmVbcY6zk6PaExHY3peH58RF6V7O3d4Zd/+R/EzpV3dEAdoOksr9x/wOe+8CWsE1xML/n13/xNXpwcgxS88/23UMHTLea93qkDYLlcsr29zXR2STmoGG2NubO/RzUc0FlDNRoiM40ucnSRs6hX1G3D3bt3WSwWsVjobWZ3dmKnbH9/n/l8zmg0YlU3cafUOrz3WA8H+4f8rZ/8GXyI0+EgHQj3aYXJjSTFbordRCKRSNwObkThq5TCWotSiv39ffb397mcLxiMt7j36uu0XqKKQTxWQWzenJA4ET/nQywE5tML3vnLP+eV3R3yPGcymbCzs8NyuaSqKparOdZ1lFXO02efML28IC80IQSm0yltG7tzk8mErrMURcXW1g6LxYrZ7P9q78565LiuA47/762tq7t6mY0ckhlRlmTLkmPEsS0LSSxb3pdvkCBfKEGeAwRBECDfIYnzGCcOLNiW4zhcJFEcDkckZzgz3dNbrbfuzUN1F6kEeTQwxJwfQLAHJNHD5gHq8Nx7zllQ144r16+TVRVPx2N0GDLc2iLsxBSVwSnNSy9/hqwocQ6MqfmzP/1zTO24dv0GL7/2WYbDIUdHR9y5cwc8zdWrV7lx8yY//+WvmqoalseHD5icHnFwsM+VK9v4vmY+n3J6+pSoG7PIUpZ5RmEqeoM+cdJjkWYMRhvkZcUizQg7cXPsnOcYY+h2u+2M1PHpCcv5jCJLiQKf8ekJs+k51tRoHIeHB+x//BHvvfceZ6cToiimdhbnHFbJefGaxK7ErhBCiBfHhWhu+9q7P3ZJkjCZTNqtTwaP7VGfxeSEcjHn8P4HBN6zNbDPb8ayinbAv8Vj89oeXjzkzS+9TZouKfKcdD5rZp+Gir29Pe7du8dwOASazvykN2ordt1ulyzL8DyPOI5J0xTnHEmSNE1GZXPM28xwDUnTlDJvmnaMMVhr2d7ephuGRFFEWRvOZ1N++m//TpZlzGbTpuHJGebTc8o8a5uZQs/nRz/4IeXqruTOjZscHx/zyiuvNKOi0pSgE5PnObu7u+33nOc5DsV0OmUwGDCdTldd7aatDq7nv37y6JDNUfN3n8/ndLvNGKn79+4yORvjsE2F0jpOz57iKdC2JulEOOWoNRydSIMQSOxK7AohhHiRXIhxZuvRRHEco7XG8zz8uhl/pLyAqJ9gNGgNntI0pSWF0xqnV0VrrVDK4WzNydETusP1qKOK88mE4XDIxsYGx08fsb+/TxAETKfTtplmY7SD53lMJhPyPCdJErIsY7FYMBgMMMawvb3N/v4+/dGQrGhmrgZVjdZecxy8ekAn/QSLI4oTytKQLwvm43M2kx6/vf8RWZFjTY2vHbYqUcpAHaxGXcF//PxnvPvuu0wmEz748A7vvPMOH3/8Mb1ejyiK8IOAuNfl0ZPHbG5uUpqKoipR2muPjmtnKYqSbufZ8bhefVabm5tk83OMMVRVxfu3/xvP89B1gXYli9kcV1fNCC2TUWLpBBHK0yincZI2tCR2JXaFEEK8OC7EVYd1lQogz/NmdNHijCxbUKqQ3uZ1XnvjD/G9CF87PE+jPQ9Uc2Rs/A61Dql0By/qEPrg2ZJf/Ou/0Otodm5cY5GXzCbnZMucK1d2iaKYsjQkyQDPCzg5PWY2P8cPNKYuqUzB9vY2g8GgvTv54MEDrLUknYiNfkLkadLZFJNnuNqys7WNqy11ZVjOFyjf8eTpIVbXlGVOL4lX1TZDEGq8MABPg+c3R980w/tPn57x/i9/zcZgg1EY8vOf/hSNojSgoy55WVBVFUmSMJ/PSdMUlMIqB54iTdOm+lhbPvzwHtY20wdMXaE9xaPDhzy8d5/7d+8yOT6iXE6Zj58yPjtmMj6lrHKMs6RFjvID4rBLHPeajV5+k9yJhsSuxK4QQogXx4W46vCVd37gjDF0Oh06nU5zJKphkeVcf+kViiwl1oa7v/klRjdFaqUc2mmUcvjarI6QPRwarX2iMCaMEhal4d0f/oCz0yn5Yk6316EoinYjlrUWpRQnJycMh0N6vR7j8Zhr164xny3b5qL1EXAURWjlmE6n7Wgp5xxp2jTghGHIbDYjjmM2NzdJ+j3u3LrN2dNjlFLs/d51/vZv/poo7oJyaNfcOXROYVfVqHV1q9vt8idvfw2cJs1zXnr5NVTg43kBaZqysbFBnud0Oh1qZ5nNF2wMR6SL5WphQA624vz8nHQ55/DRQzylMbhZliYAAApbSURBVHVFleZMZxOCwMOYspnXqjVlWbafSV3XeJ5H6Pl0u91PHdPvH34itTMkdkFiVwghxIvjQiS+b33zR279sFo/0Af9hKKsUF4zpH86PiGfjZmcj9GrRhWtXLOW1FagPZyKMUBZGtLpnNde+xxeEPGN736Hwikm0ym2LBgkCePxeLVqVhPHMUVRsFw2ycLu7i5ZlpH0Bu19ydlsRrfbJUkSPvrwLoPBgJ2dnWam6HyOtYbBYNB22ff7fbIsoyxLlvMF/V6XLFsS+D6ff/N1/uov/6J5SDvLerjoOnkoTQXOEvf7fG7vJfr9IVEYE3V67O3tMc9KwrjTJhl1XVPXNVd2rnL37l3eeP110uWM27dvM376BFMXDAYDHj06ZD6fE4Y+tWk2WymlMKbZhBV6YbPJiyaBiaJmoYFZ/d7171dK8fHBQ0kekNiV2BVCCPEiuRCJ7xff/paL47g9hlw3sjSboip6vV4zzqgseHD7F2itqW3TUW+txSgfF3SwXrdZz7pckC+mXN/eYjhIcGi+/u3v8Hh8Tno+Y2PYpyiKdhPUbDbjypUrWGux1vL6669zenrK0+PT9uE5GAxI07Rp2tneJAgCTk5O2iNbpRx1XdPv90nTlKqq2NraAaAqSh4dHhCGAdbU5GVGN474yU9+QpEt8TwNHpRljrd6OAM451BVwVe/+jXCThelAsIoYmPnGv5q69X6YW6MYXO0xa3f/pqTkxPiToBzjuOjxyyXc/ygSTSsNTjnCLS3+rw1y+US0IShTxzH7fuvPd+UtSbJQ0NiV2JXCCHEi+NCNLet1XVNUTQVnqIo2hmg1lq01pQ1dLoDFllO7Rx17eP5IbUfoMIuLkjo9fsEnSXGGNK6JDYVWEeZ5vR7Ca6oKIqCJEnaJqDt7e3VNimPfr/PwcEBRVFgjKEsS0ajEUEQNCtVw5D5fE5ZlnQ6Hcqy5MaNGzx6dEhRFO3mqq2trXZVq6c0YRjieZoiy+n3+8ymE2aTCUm/B0CaL/H9prvf1RZMzdZog9FGj9n4jM+9ucvZdMF8uaA7yEjTBZ1OB6UUvu8zm074r/d/xXDQw9U5+/sfY62l1+0TBEFTDVMWeLbutapqlssF3Tih3+/jbNkmcNY+G/uk9IW4Cn6hSexK7AohhLj4LkTF98tf/75LkgRrLVVVEccxx8fH7bGt7/tE3Zi406MuM/7z1h2sF1ErHy+ImrFQfoBxAdSWCMN8/Ig4qPFNxWdvvsSjJye88eW3SdOUfi9uK3Knp6dcu3EDs0oG4jhmuVyS5zk3b97kk08+YffqdU7PntJPhkSdAE1TpVp30He7Xc7PxwyHQ2azGUEQkOc5s9mCa9eukS7mDPvNStXFbMYineN7Hlev7vAPf/93BGGA5zuwNbvbO1zZ2MJXmrqssK6ico7c1Ox95hXK2lLV8NZbb/PRRx9wsL/PYDDg6PFjJuNT4jhCaUddFni+xhFSmhpsjR8G2FXHu60MvV4PpTy0Wv3/x1X4vt8mbWu1s+190DW5J9mQ2JXYFUII8eK4EInvF9/+ltNaMxqNyLIMrTVV1ax1Xd9h3Nvb4+zsjLKw3H34CV6vj9Y+vjXNAoDatpUvpT2crZg83idwFVeGPeKwx8buS+y9+ioHD+4z6kVEUcQ8LxmMNogDn6qqmEwmJEmyqtpVXL16FYDFYgHAYDBot2OtE5s0Tbmy3dyZjONmTqnWGmfrZkapcyyXTdOOc46410UZQ1FmfPYzN/nnf/wnNroeWNs2Ha3fQ9WOWoFDk1YVfhhy8+XXKMuSe/du4Suoiqa5qq5yChxlbXGr53/Hb46V100/nU6HKIqw1rQJQXsUbF0z5P+5iplzDsunY8Q5x8Gjx5I8ILErsSuEEOJFciES3y/98Xfd+kFW1zVhGBKGIXEcM5lMiKKI5XLJzs4Ooefh9wb87P3fUKsQT2kcqu1gX89SDQPN7Pgh05MjVLnkD77w+yzTkm98/0c8eHhAni3wPI/haIsgiinzlNPTU4bDIZubmxhjKIqMoijodrvtg7+u62ZFapqytbXVHg9jm89xOp3S6/WaFa2DPs45FosFeZ4zGAyaFbDOURY5gaexZQHWcHDnt+Cah/z632T9s9Z+M/vV9xltbuL7IbUtODy4T1VVeMqjyCv8MCC3zcauNE1xtcVffTZRFLUNUU3H+7Nnf/t+dfPezycQ/1/y8MnRsSQPSOxK7AohhHiRXIgLcHVl8JTG1x6DpE+3E4OzzKbnbG6MmM+m1KbCVCXZYs7Z8WNCVdOL/GZDVdRB4Ug6HZJOyGJywv5v3ifUirgTUeU5H9y9RRxpfv3+e2xvjcAphoNNlvMFTw4fcnZyyrA/IOn2mJ1POXr8hDzNsKam24k52H/AfDrDU5qqKFEO7ty6ja89TFl9apFBURT4vs9yuWQ8HjfH2avNWMaYdgJAVVUEQcBoNGK0tY1DU5SG2oJ1CpQHfoAKQrwwwtMB8/M5mIrx8QllWRIEAdYpur0hxgXkpSUtK8KgQ6/Xp9/vE4ZhmzgAbSJkrW276quqal+vq2zPv37+6/99nHyZSexK7AohhHhxXIiK7xffetfBs053gKgTAra9t7d+MGMVyvc4XyzIjcK4kGI54/TkiH4vJvChyjKW8wUmW4C1eL7GU4ovvPl5ZnnON7/9PYzzSNMcVTsWs3NK61b3Hc8ZjUar6ljzdV3X7binqqrY2NjA9/22SWj9WmtNv9/HWsvZ2Rl5lrK7u8vJyQlZlhEEwWqWKISeD65ienZGni2Znj2FunlIr4+9tdbUuqmaKaWwNYDG8xTj6RhTlyzTHE9HOKWoncP5GucsofYIPU2knxW3nr/r6FYVuua1W42noq2aferHc/Wx9Z8/Oj2TqhkSuxK7QgghXiQXIvH9yh99z63nkK6H1/eSLtB0xGdZ1nah90fb1HUJnubW7Q8w1qOjDZOTY/pJl6TjMxmfUuQ5Hb+DVRpT19TO4fs+L796k6jX540vfJnDh08YdiOm0ylbO1ex1jZ3J+dzut0uvq/bO4vL5ZJer+li9zyPuq7xfR/nmqTD2Jper9ce9zrnKPKMLMt49dVXOT4+btevVstzppNzinzJdHJG4GmMMe3s0fUkAKUUVjdjmwA8VluntIdVhsn5OcZBZRzGauq6Au1AWUKliTyfznOLqtbfFzwbDfX88fA6eWh+3f6f5OH5UVVPxxNJHpDYldgVQgjxIrkQia8QQgghhBC/axfijq8QQgghhBC/a5L4CiGEEEKIS0ESXyGEEEIIcSlI4iuEEEIIIS4FSXyFEEIIIcSlIImvEEIIIYS4FCTxFUIIIYQQl4IkvkIIIYQQ4lKQxFcIIYQQQlwKkvgKIYQQQohLQRJfIYQQQghxKUjiK4QQQgghLgVJfIUQQgghxKUgia8QQgghhLgUJPEVQgghhBCXgiS+QgghhBDiUpDEVwghhBBCXAqS+AohhBBCiEtBEl8hhBBCCHEpSOIrhBBCCCEuBUl8hRBCCCHEpSCJrxBCCCGEuBQk8RVCCCGEEJfC/wC3r9I4aLhnIwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images(imgs);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But you can multiply the images. See [ImageDataGenerator](https://keras.io/preprocessing/image/) parameters to see what kind of modifications is implemented." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAIQCAYAAABqjx2sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvUuMtFuWnvWstfb+vojM/C+n6tStL5ZRC3OXaVluyUIghIxkPAGJCQgxYgqyxYgpjCwhIZkRIGBgZEBGZoCYYEsYEALjFpaNbRqs5tJyF6Wurjp1zvn/zIzv23uvxWDtiPzPqap29bnVf6rjlVIZGZkZGZGxv73Xete73iURwRVXXHHFFVdcccUVV/ysQH/aT+CKK6644oorrrjiiis+S1wD3CuuuOKKK6644oorfqZwDXCvuOKKK6644oorrviZwjXAveKKK6644oorrrjiZwrXAPeKK6644oorrrjiip8pXAPcK6644oorrrjiiit+pvDWBLgi8j99To/7x0Tk/xSRXxeRf+Pz+BtX/N7G57h2/2MR+a6I/M3P4/GvuOLzWLsi8osi8pdE5NdE5G+JyJ/4rP/GFb+38Tmt24OI/BUR+etz3f6bn/XfuOKLhfws++CKiAF/G/ingd8EfhX4FyPif/+pPrErrvgJICL/BPAa+DMR8Q//tJ/PFVf8JBCRbwHfioi/KiLPgP8V+Oeu++4VbzNERIDbiHgtIhX4H4E/ERF/+af81K74hHibGNzX8/M/KSL/vYj8ORH52yLyp0TkX5qZ1d8QkV+aP/dLIvKXReRXReTfOv/+x/ArwK9HxP8dETvwnwP/7Bf3qq74vYDPae0SEf8D8N4X+FKu+D2Gz2PtRsR3IuKvztuvgF8Dfv6LfF1X/Gzjc1q3ERHn++v8+NllAH8P4K0JcD+GPwj8CeAfAf5l4A9ExK8A/yHwr82f+dPAn46IPwz8fz/mcX4e+DtvfP2bXDfaKz5ffFZr94orvmh85mtXRH4/8MvA//I5PN8rroDPcN2KiInIXwO+C/zFiLiu2y8x3tYA91cnC7AB/xfwF+b9fwP4/fP2HwH+i3n7P/0xjyM/4r5rRnbF54nPau1eccUXjc907YrIHfDngT8ZER9+9k/3iiuAz3DdRsSIiH8U+AXgV0TkKg37EuNtDXC3N277G187UH4Xj/ObwC++8fUvcGXMrvh88Vmt3Suu+KLxma3dqWH888CfjYj/8rN5eldc8SPxme+5EfE+8N8Bf+xTPbMrfqp4WwPcnwR/Gfjn5+1/4cf8zK8Cf6+I/D0issyf+6++iCd3xRW/A36StXvFFW8j/q5rdzbr/EfAr0XEv/NFPbErrvgd8JOs26+JyMt5+wj8UeD/+GKe3hWfB77MAe6fBP51EfkrwLeADz7+AxHRgX8V+G/IRoc/FxF/6wt9lldc8cP4u65dABH5z4D/Gfj7ROQ3ReRf+QKf4xVX/Cj8JGv3HyO1kP+UiPy1+fHHv8gnecUVH8NPsm6/BfwlEfnfSHLsL0bEf/0FPscrPmO8FTZh/8wf+eXoIXQPRgQeEL0h3mAMhAEMxAMiiBD2EQgCAj949ZrvvT7x93/rJQARASogQkQQ5/tCEAQPZSB0hCEKKC6gOKBEAH3gDNwHY3RUBFGlHo7UZaEsK8e1IAjhAT6ICEQggnl/Pp6IMBxCBB8DU4UYWFmo1VAGy3rg9vlLbr7yLrdf/QbrukIYZpVSCrZW6uEZUm8otjLaTnt8zfbBd9ne+y22V+/R6OzzdRrC6Dt4x1RZYqOPxt07X2e9fY4uB7Qo7oM/9W//uz9Kq3zFT4Bf+oWvh7vj7rk2HWIEEYFHfj5DRBARAjAzSi3cnzZeP574xjsv8AicQNVY14Va53u/LIjm75rkGlOUCKH3jvedMQaqihKoai7C0Pn3NJ8fgCq1Vg4aGA7u7O64rlg1UCilUpcVtcrd3ZG7r3yD51/7RQ43d5wedvrjK8br99g++D6NxhaBojAcHzsSzqrg/QFbD7x89+fQ5QZbCr3v7N1RNawcCByPntdpRD7PoRDg7iQZCC4QJauNY4x83Xvjz/4nf+a6dj8BvvX1d+K8vpZl4fbFS+6evWQ53EI5sqwHihVM4fT4QLgzRqfWBS0FVPit73ybb/+//w//+B/944CwP95z+uB7SHtARWit0Xtn2zbUjKLk2jjeYuuBcjwCQm7XhuDc3txwuHvJ7d1zeu98+P4PuH/vtxj3H4LvuAVFa+61MeY2r2gRQgxbj6y3LyjLihXFykKpBxDDXeYaCyIc97xGB3kfgI+BR/7cGOOyLoHL+sz7HPeeP0Pu7YyBReCR11p4gATu4/J77o4T/Ld/4S9e1+0nxB/6xZeXTfXNs/789eW8ByQEELrn5xDlvcedV48nvvnVrxCAExBOvPE+RSf383wURARVQQ20CKZKKZVSC1ZX6rpSi6EBrTWYjyUzBlGRp+6fCELq03439+RKUGQwemMfga23HJ7dsh5vWG5uqfWG490LXnz1Xe6+8jWk3lJspe8b/fE1px98h8fvfydv0+gOpkb0jo+GhHPQwMcJXQ68fPdb6HLEamV4o7UBqpitIILT31jv+VzVC//ef/Dvf2nW7luhCSxjAymYGgNl98BrJaISbYPoMAy0Izjiwelx49d/6wMgF9svff1FBpVELioPIBBThBTjIBDhaN7EQukRDAEVBalIDBzwYhiG9I0qhqM4Qdt3hsMyAtlzwVtRBEElP5spEoJoQSQDd1QIBzUjRFjKQhXAO703Ng+krMjNI/rqA2Q8ZzneUUohIihlJWxBpeTm2ne8n/DH17TtNY7TZoBlpnjvRDgCFAEfHbFCXW+wUkCUiMEY/tN6238moFKggERukoRfNgXzGfD6PBjJoG3vgw9Pr+fvCy+OB06n0+UxS6kMVUSCiAHSqWaIFigFFVCdm3cIIwyd6x4ERVAzlNzoh4CoQgiqSlVhqUqE4vuOWUVNsboADt5pp85SC4/vP9AfX+OPr1mOt+xd2E6P2HbP2B+JxQgxRDUP9nmwKB0Haj2gVmay6ZdA4hy4Ilw2/suhhFyChDNC7en2Oej46efmX1rUWjGzTIpU8/1zZ993Vi2MJoga+7bTuxPeEYLf/u53+LW/+dfzMZaFP/jLf5j+cE9rO+10z/7wPr6dUFHGGIwxaPtOqSvIwEdj23bqeoPevwLIv4+g4rQPlbJ8h/fU6COvFd83tDc0OmaOa+7gy7pkMicO9QaPGeT4ILwTHNBSAcUdPITh5wAXQHCCPoPSmJ91JlcRHz3cY17DcTn0OzE6kL8zMPZQglyrQRIyF9ImguHBj+59vuInhYhlQHre84JJJnE572N+nM/8Uxt8+/1HIAPVn3t5hzEYkcErYngxJBx8MGRkEo4RLnhkstN7g+6oBM0qZalYd7oHXhRRwH3uzQMRxUyZK/xCcuwj15JqyT3ZhNUURiBqGS+I0LcTfT/RtkeW5Ybt/hXiJ0YENy+/id1UYjR8bPj2yGgbLo57Mm0CeDgSGWxL7ETAerhFrWYcwEz2ABO93PcmzgTh20CI/m7wVgS4hiPR8RiIGKLGCKEHjLoiLHjbwZMVFR28eHbkD92sgOTmhdBDyBDZ8bmHxAzg1DTfHJHLm6dAFcHmWSnAYDJkIngIuhwwPA3xIhiSfy/2na6CiDNM0WLJeFhBBIopEhAIpQjuGWgQeajcLJYXYh9oMbbuPLy+R2th7Dun4z23L76KvniX5faAlAXRiojivTHajm8b7fE1vu+45KYtImhA95EXK6C+0SM4HG/RUggtWMkD6BxwXPHJIDNhgtwkQwz0zB48MQLqmeDgYKqstXyEGYrhswIguAx6a8AgTImhdFGsGFZXrFbMBKMT832WyeyKCGUGjyK5SQpAJMshqpg8BYlDBDNBlprMHBB0YFCKcayVpQqnD7/LD74/2HpA69joySYfKqUe2EWJ4ZjZDKYHiFDqgojOADfXW27yOl/7uPwPLp9/xCZ6vj6fgtsf/XNX/GS4vb29JBlmxhjOGA1EGM3w3hnhjG1jjI57R0M4lMo/+A/8Q/jYKUXZ73/Atz98P9mq6Eh7yLUGc3/Jg7XaQMQpQO+dLjslCqIQCh5BWQuLFQ4lwIJNYEQnxPPwVcMMisKyrqgVtJTcE+txLvEZUKggZohosqtiEIFq5qGT5kMdqpP7J1kpcHEEzzU8OT4Lx3kj4A3HRyd6QyUfMEmScvkZOX/2gc4qj0xW+IpPjpF1Ki600xv5wvm8P1e8IN/Bu2PhDxzu8nuRe48zcISBMOIcGCuhmtUAyWrYCMFciNFRy0qAzP1n3zs6Ah+RR4AKaoGoZtWXihCICpYbMUFgFshMhMQUm9m6i+CqFC1EqWixJKK2Rx7bTimFD/0BRsd8oPsDp1ODsdO3h2Rr5VwJVDKzyv+JieQaLIW6LJkMqBLR39iXz8mZf3RPBjSMM6f9ZcFbEeAKSiE3MQ2nRKeLsmilqdI9kGXFYyF6A8/MWSyXp4qjU7owQumhQGAMROUSQAi5mM7ShaS4ctMVgoiCSbK9DoQKiCNW58FtxMhs3MdAfOBtZ4wOY0AJWAAVfCQThYIiIJHMaQhqmkz0XMwKrGuBsrA/3LM93lPqB7SHB16/913e+cbP8c7hOYeloCLs+4mx39MfPmB/eMUQp4cTDqUYo83AB1hM6a2hy8rh5jlWK6jh3ujdufK3nw5H6UTIPAZzs3QkN10pqM21NNkcIQ+6s6TBPQkoYJbZ5m7twX7agGQLRApaDS07pSxUFZQZ2GomZIZhpRIa2NTKiLyxQamhBRZNJjdZ5UzMMkHq1GUBFkSEtVa0kM/Bcp2WONH2RoQDA9l2xvYAkmW2GEJIYbMArSk7IjB9OmwyuL3UVX5oI/2h27zxbzmzZ+PLtdG+bTgcDhepR++d9vhIa41iCz7eT1a1GDKDPIkAB+2Kj8YYJ5wBCrFUlII4rBFsZMk+UMSMUitrUYoG3gU1ybW8HjIp06xUWF2gFGKyyqVKrtUQ+gxrPE65PwdJJtSKaUVrJv+qmtWLWbbOr8tFHuY+JW/6RjkbTwZXYMSY1a9AZzXGRyaRGp4yIj//zGD0nR4+ZUO5SJPEi6drfl7rjIFeg9tPjapJ5ozQpLMi5YVKzLUUH2V1RZA3JYsyEw+cglKA0KzmRhgDKFZgymaUIFQIXXCBimOTLEMtibAZExDOYEw5g2ILRC0pg5CBoIRkMqTqGQhbUOZa9d2T0a3GqJmoqRwYvqEKVWGh8fi93+DD7/4dbH2Ga0ER1rFn1aFm1qhF8daSFARMcj0fbp5jy4GQgpoQLoxIaVzuzfPE+pg8h49J7r4MeCsCXBdJZpO4BLoSjsdHpQvNAy8LwVm6MIihiM6wYjhlamCTAa5oJKN7PiAvjG6ZmcolyztvRLlYzWaQokYphpgSCGKKh9CHEaMl++UD/CyfGHhzXGdwG1meFZRigVSjTEmET62mmrGUQtSVMToiTvSd0+v3qafgXp2bu5eYw7AFbxtjO9EfXxOj4zgjsvTC8ClNSN2PxU4X4Xh8htVKSMFsst5zUV/xySH0ZG6YbH0IgeCR1QDPNGeySMk86BuSBpuHKEAthfDMuiPyOogYk00C74OIxpgaVhfPx5FkTtGSh2tRXJ40aMkMZ3nMSHmDKpf7kmVTwhsShVIKqqkRVk0GLHxgKkhZcBMidgJHNTgs5bL+RITBILTiEZz2DdsaByuIxCXoEEk24EcFtx9HvMnGnDdZv6ZmnwpaiBb4SM24qV6YLS25QERKru0ZwKHOkOxNGA49lddUJ1lMgUYm9gKX97qoohoZZGqGgUWDQc8ysBlgLHWlFCNUcSTJB9cMBorP/bkAwd4GYoOqyiiwyoqZMIIMdCIQ76j3fG6a5wupLLwkSkCeOPPw18h+D4/cy3VKEXo/68SdMZzeW+7D+365fs/XWhD4rMgEk+2dkrmrtOYzgMk86wNQhgeB0iP3VZv74rmKC28wuz8kYTjvQU5FCR2UKUlIfirrWWfJQJByL1WjlDr3IWO4I2GIO943JIJC6sS9OaLCkPM+rKCCulLKwrLUPLtRSrWpy5UMrCPyvNAFM6WIYiaUCmUIr0/vs+0D6c5jbyyHQiwrVm8Yw+cJlNe3xoarsayHTA5Vce+XKouc5QkypsSTjwS556+/THgrAlxDsjQEEJaSBTy1hNEZkXoYVWNIShFGPaQOR7KRKnxMRvcp0H1a+DoX/VOgq3OfUTsf8pnZEXnwFysMK6BGXZdsDCMD5wjBZEAtuDfEZ8MDM2v0bEDIP+SgFVFnDGUthWK5mMExFNPCMENksK4LwxvugelgEWN79R6vv/PraHukUxkhlHZif3w92dvMaM1sZmx9HiKzrFIX6nrEygKquDfGSPbiHJxd8cmQFYKnYEvOGljIslMITq4bP7O78ycRw8XQs6RhBp1u+XsWSrhQJUW3okZM9lNnU4t7m/0VjkgnBqmtJTVqJkKkSHhqyZzwkhWJcyUDQcZARFg0k7u5BwPnTQ7UAwvBDQgjr6CBmLFYRS015yOEKAttPubj4z0jBqVWbEptVI0RY5aznzZNcXvS4l4azPQiT3gTX7bN9m2CezZRtdaTDi1jNtJolkxFnlZq9vLyRAXMBAlQFUyzAobPZhp7ksiIZJ9CRFz0vhFZwpVwYgRqms2Us7IAvLEG8veKZKLjg0tSNnrPZk1VwndcLPswohLesa2BdLQsKb0I6JG64N7aJco562vH6PQx8JGP3XrL22NMnWJ+5O93YjT2fX+jGS2rMakfn5rz4BLkhn/5GLC3EUEBG7nmIi7l/TOxNSLvMUnW/UdKGOyNPeXSDxApJ5ApJ5gSw0VgRGRPhCgiuUdmwl8BGG5Z5g+nVEOnbExlPpAHHj2rEAhoxa0S0Skmk1SYEpogYxvP9W1SESsstab8xoRgJImhmVx69Iwx2gnGhvSeWvWAuq75Wn1MidsB0axyBMEYH5eN/bD+Vr38UF/ElwFvRYB7boLMfUEYU9WoEVNnkxuy0RliVC10EXoYrofsVu97OhmMjliyXnah2uVSzhCCRYOQ1EKqKgwjJEtt23C6GK2kANtEkHqLFKMWxeoNgtMf7xl9x2PNjU0D7+n04H1HozHaI4TjewMr+DCUE3jJw97SwSEITLP0pbXOAGCliLAWYbHg9Oq3ee9736G7oVa50SwfluPKkMmZDL9oMosq5ie6O8/uXlLWA2EV1SyLj+GXpOGKTw6Vp9IXnOWHT3IEyASu5NaZH1PScPYHQVILJZDsPTIrCwrFspFxumlIBB7p+iGjU1nRSHZVDfTM2Ho2S4REBr4uuBo05bQJpsslchEdLOtKqeusQsz1MzfAfEXzsIigCrg6EYLKwt6CRWA55EYcKGqVeg6YSkm9ZF0o5UCgDAd3IyKlCiIjN1ZVOCeHfFSecGYTfpxO94qfHClNaFmyD7JRRZPRNSmIZRIlkpUGZSb/KoRlGmdT56dz/7GS73fMMnHmZYJZsJQ6EyqdgWLyvyJCoVAl11VqyaeLgQ/wAaNTSyZ2UtOtY/csvYY73gdjPyXx4X5JIlcR2n3J5kxR9nB2H1kh6fN1e9CznIVH0FpLZ4Xeab3js1HuzWaz88fZJeIpaP2o+wLkfuBnptg/Ksm54pPB6wHxMSUIfjnvJaD4ObmYEgZJCYPNVSEypSPn3pOIi3wBmLKD/OTe0LCs6kr2zrhVrCh1OVxIgoFdJBGZvKXDk0gQfTZ6jYZ5y56DyDU9ese1sPVGn1Uz15gShYqFsJpRTdCiub+bMSKAgvtgtQoW7LO5zQyUAX6iaKG7E3unqzJEOB6WZKO14LMn4lzJFS3whs78hyQKX0K8FQGuXJjTlAWYy0XwL+cO8QujO7IZTSsmKQBvIXhZs+R5kS4MxLLz903pAiTjkOUzA1XCFlCji+IFmo8MIkYki7U75sZNWVjXG4oF1RTf7hm9EWM2n2l27BJHxAd9HJHWkBj0tjH6Ay0M+kqMbIQzSyswb41SK6mcULRUlmLJ9kYn3DNz6yfa42vu3TETNG6wckOpC8MHZ+cEk9xopdTsWDabF3E6JzhQ1LL54opPjjMjkHTWORZ7owQ2v45zGTNZ8yAD3wjBmeWtM3uVgpnZNDM3vDJZ1XlYhweUmskh8RQgB5PFSgul8IZGNpJ522l0nGCMRkQ2FWQDZsuDYP69vRzQbaPMxjP3lFMA1KK4VkbPjtw4s1q9U0w51iNhlto402xsnFrJkLQ385CpZ5yJbeqBUq6kJQOb+d/4YXnCl3vTfRsQMfeKS0I2sol3JAMbkX0DxNR6k4dgzGat1Jf61AgypS+z+Ya5/t2nNhyyPieXasOkx3IPjkG40vtOtKfnOMZg9I5GJyzJiaopWbB5DYR7uhSMPDO2raX2V6DRZ0e6AcI20mmG4agH4k92fmfJwhgpT+hvBLKpw33DImyuvxECUuarlXnNR2qX52tNJnGePRdW8LpuPw20rhCRzkDeCdfUmYpfjrOzhCFCZq00YwXBMfHLGj67MDCrCsyqg7zRnOtRwJRiym4LUha0rkixTNzqEZXBOJ3wseW1M99vt5RjJY2VjZwmQhWnnR5ofafHxugNQjGpDBXEneUoU6IWFE09+1NHRy4m9cgeIg2QlBwsi1HXbMAvNZM+rDJGWkLufSBj5D7uuRovzWUfLajl/9Ln9+JpL/6y4K0IcFXSruW86TFpfYuULgzOge4b0gVvDCRtNkTpszQ66jElC9Kmn+a4lDPUgyKeDTgILorLQrdCWGWI0noHM3T2BfQx2PuOjtz0pCwcDwfW4zNMYO3p1bs5NDNYjqxa8dE47RtrrZTRaffv8/DwA9rY2IfTH5fM2GygR8GsUM1YpkDSikzrJQhZQLKprlgyERDEaIyHga6D3jJ4OHexn50Tjse76ZxQP+KccNECXfGp8OYFfy5/ne8XfeN7PAW8l2BXBPHcgHPJy9PeMvVaocpSF2ypqBTUlCFrHprepwZ3smizsUe1UK0wJBgINzfPWJaV/vAh0jZinOjtnr1ttN5gZNNYj8Fj7ynbiUcohbIsmFWyk3xgasnuqWLLwv54umhkzw4e0NIWRzIYEc01KaYUqwwkZTzS8iJTpnyCC5uWmuDcFdjG1KjJLN9dS72fFhGZMHtw8W3mzUYSDzwGKpJNMQqqkTrT2aUdMQhP+UyQ8XAGhOOibRzeGG7ESLeDIOi9Z3ArnjaIo6QtpCi9ZyBgs7IkPtjbhplyWFf23i8NhiFZagbAnT6SjfXI56P0yd42mjt9DCLSsqmazeZfuSSd+eVs/PUnbby741qn08nItRtBwwgf5wwt7QDRj65NkYvW5+Os2BWfDIumTFGk4rHMpvOWZf0xexbOckVPPbZOychHJAwfc2HIFDvtPhlJLrkWTgO6Gpsaw5XSnKFQtCBaOS5HahEoleiV2HcYnpantWDrHXU5wkj/pmW94bhWTq8/IF6/Tz+9T+sPbO3E3h6RoeytIjZ1494Z/sTspjsIWDgjssH+bEOKLQyBqoZZScbXIcoKrSEinE6PdIQjK5A6YFWbcf7g4wyu8sO2jV8WvBUB7ojMR86Brkxx9TnQPQe9P166IJgYoUYXaFpwS6bB245EJ8ZAtTPpTZCCiNF1ZZyDaKkUjBaNPvrc4IJ93yEatE4Dbp5/hcPhlhd336SqUASKGKOsDCtovSWicFTh5mZFRdk++G2ef/c3aA/fYz+9z6v7D2jjhIxstlnWZG99GNUOqfmV8yJLC6ZlZGnQS0VGw1Qo6oz9npAMbKSsoMoWO8vNLYebZ0ips2v+yTnBJnv7cb+7K353GBRsVhgywHzj8HpDcyfwVAqTc+OXEHbWKsLwHY2UrZgaaoVWVmQ5UmqFUjisK7beYRqwPRLnYSgeDDG8rujzr1OPd7jccVgr6+0z6uE2m9Qe7un37zE++C1i+5D99CGn/RV4Mr5jOG1P25jSNqzvSDHwZL92VW5ubvKAMMM05RJEOpVgjvdTPp4VXAZlROrMItXJaU0zMljQsyYNdATFoZNsWfcsO+Y1IBdv0rkL8CUjE94qyMj/rUSW0HNQiKSdXRsMT+Z1iNLneyba00mg7RdTfEMQq2DCPvZknM6MqGfI0KUz9JTrHi50pogzSqGJcjrLfDxQFdZaKGdrxzFouzP2HVWjluxyL25E67hKmu4XnYd9yssyLQNUOEAGBthFa3zBbAI7SxD6ZQjEU7n2fC1HCG3kgAdzuXjuzlJGBsMz4D0nA3mGCSF+DW4/A6w0FquXvobued779J7NoQaziqtTxvBjJAx97iaLpHuBltmbUA6EGmHZQNYchDIJr0ZHsDZ4OO0ct8HNi3c4Ls+p6x3rceQSrwvj8JxRD5TlBvQAVinrgVpX6hjw+Ir2vb+Dv/4u/f77PD7+gNa2DMa3Bx72lEYUS8KhLgfqshARWCThVUt6mvdZ/fARjOGUqmCKLgfEDFtmIKvpzuAoZVkQLBtAUmjEm+42Ek8J25eNvYW3JcAVQcMv1HgGugCRjNAMfO1sx/Qx6YIgaMQb0oXM8JqDTB/daI/IHOzgolipuK4Empm9KOJZVmt9uzQTiKRmzKwiOPsYxOmELHfE7deQmxvGaJweT+wj2PZgpbOuC9SVD1lZ64HyteeU5Tn6g29T3v8ORuFxf0Xf97Td2YNtFh76CEprOc3MjLM7Q0Rqzqo4YakfW5bK9HIiQuhzaIZIQXQhVEEsbSBdLnqb1N4GwfhRb8kVPyFUUlc7zh3o01bmspjf3BNmOR+eGN4z8yoi02aoMELZbAEtjCi0bdBkQUOgGKuDloV6u0DfKQSMgOWWOD6jrc/Q5YjqgtcDH1KJHW6Od8RyRG+eIbcv0cdX6OMH1IfvwXYP7R4bO2XA8JzGI2eWT4TRO9E7m+TGWUSyj17ASmGMwek0KLXQx36ZeHVcDkjvWRY7jlybIlSy2zmYR9CUZCCeVj2SFmPhM+CYQcaYVPiXb7t9e9BO22UQg3vq8cWTAXOb2lsfMGUJIlOHOFL7yiydoorlG5i6xUj7REjTeIncn2MGlXqR8QTqWXnQkonP8IDZ/CNmlwqIaKFqslK1GFoVG8TOAAAgAElEQVTmtdIGpRpDlbAjZkaoUCwnTMqURZyTMC3lqRNemEErKc2Y7ggeTolBeAb5fnalmY1G4eeGy7O6a8oTIqY+PlneHHoyG83Owe4kbq4ShU+HEk6MDUVxnUk2yoiguxKy5g4se1Zwz8yunJnd+KiEQbIhW0VmP43SzLIJzArRIxu5+rhoxHvv9NnQvvug2cLjUXnx/AX19jmLGSPgfh+cToH0E8tBMYT7xxPqws3xBikFqwV99Q719ffpH36HePwB2pK88OHsvbG1E6Uo1TvDK2e/KVkqQl5Xy7LQtp2z6miM9DJfSzbLO7OqqEbMiYRCITAizsY06Z4SlyRNL4neNcD9hMgDVDP4OjczwIXBTdZGLg08FoLn0A9kui6E5PQQ9Z2OoJpm+D2gO8iSwnSmVjY9Syvb2NPXtg+iDTbfGL5no8WZQSayq7IUDrcvOD57yXq8QyVH8J7C+OD+nn7a6MCrTTkeX1COt1A663Bubm4oz75KqQu63LJaZTx8D3n8QS5kd9ppx/vAbEeXJVkCy1JdnSyZEWk3wrRsIh0ftJSzpoKwhdY7FkGfGp0cK+lTY6QX9vbKKHw6FHWYZcnsmFZGnMPbmJbkM+D92P6g8y6bU8bQQlhhBLQpxslJc87YN8wGW+ssW+Nw+4zDzS11uYFauDncMqTwOODVKRjba1SUcvOMIQUXo/WOSl5Ppd5koFmP1LriD98nHhVtD/joqNu0DZvekumyewlsYgxCHdUFQvGedkoSwX7KIQGiJS2ntp2x7tS20/cNs0qvZz9qnYxaQc7yAyGnAYng0Sb9PSsNEkhwnQj1KbFtWza5TFmCGfm/d6dLrrlkwNK5IweEFBYgM7WgKDy5hqebuMpTU2G1hfV4g2qlaJkTHh3v2Wyzzwa2YoXwwSI5bSy8I8p0z1EKaSW2HirLsmBTo61LJkJaDLTO4DmoJe3Lzmb7Ooc/BDIlQk/+txFnCWYwpsNCpJFYNuFMj1wNfxolPwZ9zOTM+7QS8+nmk4/jU2oz5v8q5cxXecJngYtn/jn5RRiSwxHKdMsYAV6XC6t7CXbPov+zbDGyuTFbX5RQY5cFV017sOlm45fRzP6RoQiqSh/wsO/IKoTd0o8v6KqcXr/iw1cfsncHAz1t1MMduhzQEYy9IQaGUm5fYnVF68Jy/wwe3yce3yd8x8pKm030Ho62hsbO8MFpLNwcDsgcHTxmEJqjhAtFFMlXgmKoLSkpKwWzZco8prf/7ImQ2Q8BhcvN8eUkwt6KAHeYoSFZVhBw0mRb3ggAPH6EdIHJLJF2GGefw49LF2p6zOCWTJvXA/ePg33f2H1PhqGfTbtb5uQlf9/j3Hl5y/HmJbfPv4YdD+xt53vf/w6Zk+XwhfBGWW6JMLbTxpACVfB9pz0+5GZdjPLi69iyUB7eRV99l7j/HtEe6fvG3ge9PVL6ieJ7lqgR3CTnVVuWr3PSVbK9VnNxi9VsHFLFuqNWeDidCEvtDiRzLXKeWHWdqvNpEWbJCCDY2dAdyKD3bA+mZ3kjZL6cU8AQrJRZLl1wWxjF6COZBTwDj95zhCrsIIWH7UQdO+tQ3vnKc+z2azzeHHi4f82r1++xPdynjtAWrAV2PBJSGY8PmdlPpw0rheOycnf3VWqt6LLir76LzyB39LROwqGIw1Ko9cBhWbM0GwP2PhvlBh45nW/EoI0B3fFTsJtjDyesVootjJL/t8XK1OkKdTm8YdA79ZERlBHoyFrD7n7R4BJPjdBX/O7Rth1gJhc2nRDOnf75Ueb3bE6jUyszcJzH37T1KsuSI011TnNcFgbKs6/9Is/f/XlYjojbnPy14+2Ejwa+E9tr2O6R/oCOlJMxjPAZfA9nrUI93nG4fc7h7jlDINqOtM6iihThINBHI0bHYs8SroJFVhnqNEVN4nYyqWcvXB+XBrMxBiAfaTAbYzCiUR1a5Bh4I4PbiD57OhwXpwuoj9lSNKs5whN7e91vPzWGGBLThnEGuzZZWpvBrlihx9T1X9yWktVP2eKYAxAaXScPXwroAnak+5i+ulmV2NuJ0Z/OS/dgqbMX4ficF1/5BuVwx4jO/fvfI0ZwOp1o+6sMJGPBh9O3HcPop20Go4L7wEr67d/dvkspK1aNzoCe14qaAiOTJSJf23Bi23j0QEph0elCrVml6PvUJUdOL7Oy5DAoO6CMlLlpqpHDc+Q0+MwBJBvtZyVCxFL+8yXjFN6OADeUEE/9i5OdkdP78k3pwpus7selC2cf3Teb0c7ShfAc2+i20DHu+6CNzmnfGNEpaqhnZ3nqp5Qhsyw6BmEH6rNbDrcvoS48nHZoJ4icMpUVOc0Rqgpild0D39OuYx+dUSo9nCJKWVfu1lvqDRTv9PaQvqlWkbbjvWGWLJnFCdzZ1LJsaEYtBSuVre2X/2EbnbWurGVJs3OL7LifYwe755QztdThjNGvm+1ngNBlbpSzbpmK0tyIPCgXF4X8mPP0UA3KbJwShK5GL4pbSfu6vTNo0690ZuCaJt9IRSgs6xExI8bG9uGJx9ev6NsjxM5an6Gl0vogTh2Xwd43RCVlMR6Z9PTB8fkzdH2GWuoW5fQB7f59gi1ZNoK1KHq4YTkcWQ83BIOxbVC2LOeKMKQiapjnQePu2ZjjnQAeThvuJ8bsVl61YCIUU7Se5lQfm4GuXFiSjE0spwVNDd2FPLziE6GWHECjIpg9SZYAYo6erTr3tKnhz4atDIRrSQtFVaMsFSKDisPty1xLhxtuv/aL+PEFbocc3jA63jd62/DWUW/o+pqyv0L21/D4ATZ2OlsGujKTQRVubp6zPPsadnzGaA20E7Yxwqk1Gd5xek1lR08fsBJ0rZiBqaccwiFHUczXORPOLhkEmGZQ6iM90V0lR2RrNmnsMi2fZok77aF0eq1mQmZ5MKV+XNO2T87+05e/fMWngfFUwc19IS4uBTrP/GQck5EtkhahPdJikTolDCNtwCKcoYbYArbQRiYyw53Yt2zG9T3f31n9hBzmUQ4rN7fPsfWGvXdOj69wn2Nxz03HBsWUNsCjE76B79OnNmi9YVZYlpUoz6iHO4id0k7E4wCZdnjprUhYDk+hHPO1ziA2wilS0ga0d2L2IbWW+29Zl/QhX3pa/NWSvRSahAcRxHRjCHEYud+Oc5Pel5BReCsCXKExYiFtO5J5TCleT+uLOJd650SjmUm8KV3QKeTPha8zwzv7gOY0JiEX+tYHp9OJ3nd67wwRFtHZQZwWH71lgKtaefbVn+P23Z+j3L2ge6eoUtcD+/ZAb53W9xzD64qMQGJDpcLISTpO0Htj23e6GcvodH3GuhzQ43Nsu8PDaf2BEjX1YjJHRc5D3XtnqGDLkuUZyW7gFKDniD2znCZl2NQzCpQVrXU2BC1TpztZ8B/lCXLF7w71SIyZ/YanF/Fcx9jUMQEyG6bO67ho5GAQydG2XeZMdAfD0Bhs/anREZiSlcqyHFlvnrMej7S2czo9ZCIWju89A5LpZyuj49IykFHobadvJ4hgHzmk5NVSOR6P1OXA7cs72F5Rl+/hH3ybsr3G/BGpN9TblxzunqNLZe8NsROylZQ0iKPU2SlPdvUGcB4HG474wtZ2Yu94OHtsGCnHQE+XJo9L99h52uC87kMkk2B9aoq44pPB1ulSIDlSlDccVZQpz7Is/9dasgFNFaHMkr9cfMSrCS6VOBypX/0m5eZdpBzZbOX0sNOkpauHN8beMtD1zmqFu8Pz3J8ON+jhDm0bZX/ATx8gbUO9Uw8H6u076PEFDx1O20hioUHfN6oJYz1wWG6JoVh0ou2Y57h2m64cOif3yRuDQwIQn1OqAlycodMyzDP9dHeQklXCCIaQsh1L2yeZOt7BU9URmf638bTDXhnczwaZOEztM8wEeLphTGeEs2iGKWEQMYqmLjaHRUFIzTXhAXWhU+hNOPWNHpmc973Rxonhg6KpC/fY8e6MpVKXG+rhjn04o20ZWJ/37j4oywLD6JIDeQpTl54ejpy2E33fiVpRD06HI7oUDocXVHGKCv3hffbe6SgdR6MhUrGysqxlBvMOLSUyiNC6o2OwZ/ybk9F2Z10a2htERwW0HqAUJJQypTRDfDrz+GX4lfugR2QfyJcIb0WAe4hgsJNhQsElmxzU0gj+h6QLk8HRHytdyKB3YFRJL9uhxlDj8bHx+v50MekeIy1kHh1Wy2AjMzSjHA989Ru/wMtv/j7K4ZbeGt63S1bUthwdcVwWpByTUfa0zgnJCVSmAaHs+0Y/nYiS+rGtLhRZuVmfYc++lqzICTYeGUyd2tlDTw31Ps3ZB8ta0oBahaJp/VVE0qydQGzBJKdGRV3RuqbXbsZf83+aDU3XJrNPh1KygzcuB9nUp/pAzg0OnuyuXNqpIgNAUSiFsBsEpXmOVuzeeGyP9LET7piWtGuZ1Yy63rLcvGAfwdhepR8kuRkHg8LdHBThiK7I2DF1vHtupr2n40EMHk4POGmxZMuBU7mllpV6e+BQb1n8xLK/j6y31Ofv4LZy6k7YhqxHzI4UGmJC6Tu97/iY5ul6Hm5R0+c02yLofmZ3x/Q6bYx9o7VGu2/Z+ERcxg2fjfLFdI7JzED4Git8cpS6Xm6r6hyKM7+Ws9lMMvfp1V2wdcWWO2oRzCcLhGBW0cNL4u4rPNgdD6ed4SeiHuhSMzEZYw5laGynh3SWscq4vWVdbrH1OeVYWCIY2z22vU+JRpGOqXFvK/vmmSB1xwhO9w9sD68pCg83wd3tkaVUnt18hTKcu/1DLE6otKx+aVBmwxyclS5BuZRiz4xVBrjdM8gNFUIMmwEulmPjozeajGzE8Z5yNU+rKfGRTWnxUZ+aa4D76aHnNj05n/YkWSNcnJYk8nRj2oClhKFTgC7GajPOCMNL2oG1Ljy0nYfHE6KR77cnWx/u7B3ckh2VsvLsa7+P9avfpNw+x9sjt+uR0QsP96+yic2EYnmd9Z4sKt0pZUclY4jRB9F6+uTrYyZW73yFfrzl5u45sr6L3f82h/d/g3h4D/WNUEWON6x3LyjrTUoW2iNxemTsO6HBPj2aI5y95Xh37xt9G2ynSn145PSwUZaVUY0yB1egOUhKwnCyfycdF5LhvbDSXxK8FQGu9EHR9IId0WeDTZbDfpx0IcIvTTr5IE/ShXMzWgFMoYgSVugdHnuwbRtMW6ezXYypZrYigtSFd56/pD7/OnfvvMvh7gWtb7TtntP9fW5+PZmItVQWWVMUMTyDUwZjbEQvNJUnRwYH33ME5GOpuZDqyu3dN1l1wbUQ27cZBJsp6i3Ht5aaGtuLGXmbHZ9zMIDnbHTdBaSji2Nrfl8ZFM2GC7RkM50PhkcGIlcW7FPhoNMBILJiPuLMBuX2ytxYz928ROQBSoAWzA50WVLG4jm9qW8ntp7rLDvRBz46+wBZF3Q5UpaFxzE41pUolYf7D2fDjlGtcB4P2vZHRgiLQet9OoNIWnhRiNEZ2yO7KaU3ejkhEtho3NnKi8MNdrili/EwjNE7ve/UyNHXMoJFC7frgTKbf2Lk+GydWrisJABS2adGrg2f9lS5aUY/0GfS2bYTzZ3WO+204T5yQpWfpw6d1/N17X5SaGRiq5ouLXU27wWkb6jOxrKyYHWl1IXleEM9PKfYHOjgg2oFq7fIzUseqTw+Nu73ewaBlp263EIpjMdHALw3+uxHGCKMvrHePGM9HBHLMqgMRWNlEeN2rYy2c/+w08dgrWkRubWNfU8nCEXY2k573SgmjOOR22WlLkeOAyqG2hysM6teT2xqXrs6J6zlk1RcIuU6k4kVIDwokV0ecZ6IRU7PVDTdHMggVlWn1/PTGv2yT4V6W/Bm83dqUtPJJYdEAT8kYXiq5l4IszGyudeU0JUuxj5Gjl7uO+59ttWeJ9Nln0sfQcjKs3e+wTvf/HmWwzN6a0jvbGOwb1u6LmjhcEgteibsg+Gd4dA1XTf6yCbKHLSjxGi0/ZHt4TXu0NZbVl1Z6jscnndKPaKnHyDirC/exY4vsap4NPwx52WqPjKis4jhkVUaXdJ7uo8Bbae1YO8ntuZgj0Q1lmVJ6aNZTmmrK6LTjWT2PWg8kQ5fFrwVAa76gDDc22xcMIa0HL1I/Yh0QYMUREtuUipMo+7po5g7EYJi6lQlR5RKZR/ONuaEmWDOfRbWekgtb6m5Kb54h7uvfB0tR5bjHW0M+umRsd2npddkniQGfQSnBt72ZJpUZ8ZutDZH4bmjljqxcCXGzr49UvZHpFZsfYbcLFgodX+k3P82a3vAjSxd1APr8YCPRvSRTRotGYLWRuptg2wKIqjLoLTBYT1QRLF1hUhfXREHnV2/Ae7XIOHToPg2DzyFWQKLeWiOIDVfOrt58bReip6Lr6zsYrQOj33QfRDDGW3Ot3fPkYoSjDaQcuDmna9zePFVdDly005YwP3r1xDKUhbWw0pzGK2nbc4YOMo+lN4zqFnXFZsOHLKs2ZTgTtvuKSyp0x3O8KAH6Q3d9/Ss1/SMdJy+neinexYTxgjeuTuitSHeWfdTJmxENi1rwSAnCqI0hSZCNyFGoathpWK9Y3VBe6eMgdWFPhreOr05ozVG63Tff8f35YrfGcus3FjOMZ3+y2QZXqe1VllB86NJIYbS947VMrV8C70u3L3zTTYXHh8eeP3qPUKglCVts7aN2AclHNVgHx1vLYONkclMjM7oO1ZqCnqkQ+s8Mvhw78To7KcTqwWrO813PEZ2mEsOo5Bo7LvTVXktioRCFYourJFDJcyEMiVrl6lkkUMsfE5dcxF8jhoeyoXVBX3DySYDqmS1lJiSMCKn9xWNS1mYiJScqaQdJTxJcK74RDhbVs0dFWYFV+IsZfq4hCEbqXRKxAQHYcobc4Jpa4O99RzV7J6JdjTcYVHmnghWV27e+Tpf/cbPcbx9SR+dtj9yur/P32vpBb0U43QCpzNiZDN8BJK0G33k+rNSKHXNqpYtgDC203SKaWyqFB880yPP/n/23vxJsuy67/ucc+9972VmVfU23T0bgMFKEsRCghQlkzZhcJGozbQjGGGHI/T3OcK2TEXIpEVKlkiBBAkQhAhiGywEMPtMT/f0UlWZ+d5djn84N6sHIVlWzPzAbkefjo6Orl6r8uV7557z/X6+l55hfXSJZhXWR1ga2RfDbEYHRZv3MEF8Q1dKZ/6q0IYBq428uBeolMzZfutbDFXGmIghMAyRYZiRmAjDgGhAY0QJWD1whB+feiQaXI+ja67vaAJqqAgxhAvpQsUZhvUnpAvFjWXyH0sXwFyeoIppYjFhZ4FSzx1nBGgIrKcVKa0Zj09I04bUH/6WJoZhQGzvze3ujLq4AazkhdZ8clBLpiwZHRKI0Zo3uClMWIPSI3jHYUBC8pQdmwCouzP2zYMkhhBY6THHlz/IsDpGz98GywwnVwnTESEo1TLLfgu7M+oy06wyd2lGtcqy2wORvDTGZYZlhppRMcK4RmNilEBpRrbqCW5P7rXvq5Iv0zGTixWYL8bc4ACKK6SkN7uOLTIDYmApgd0yc77bIQrJhCBCMDc6YEouhunE1RvPc/Xp55E0kvc7dmcPaLWSlxmzSgtKad6Y1m58qdaIYfCHb8nEGC+wZSHSDzpKK8Ub3VIcOaNKa/DgfOtNclk4Tsp6FJr4qrjMM8u8ZUzO7g0pMaaBzfoYTIi2oB22rj1RKGqlISQOhAlPIMyiFIUSA1mFFIXcAiEFaj1sLvokoiyUeaGW8rf4yj/elfpD3q/UnvhI1zWL8z8XSWx3GS0QQnXZgZyhUdHxiHF9hStPXSOT2M87tufnaCuuqVVvYKsZMRqB4oeuvMcsO6owTX0bVpB5R11chx2iGy1bg1YrbXcOy45FFu5vC3XZ+RSveSOR0gg0KJnSGmclk/NMTmvSOjGMwpgaieyGZDO65QIe2pG9udbmIRZdj6itUcU5uu5vFLBIAyy7FrxQMDI1OEWhtkRrD4cb7RBYEe1hOt+Tes9VOjf/0OQKD+WKB8+D4c/Fd0sYvL3wGOokTtnIXcufa2W73XazlrlpsVZi8Ht2iANhc8xT159j2FxhWB1TDOqyo+3PsOYyg5wzYo19AZWEREXUOqe3EcPKN1e5EGN0/KgIaVBUHrZjJe/9yRGVnTUKkAns9Biziu0bIc9YLQzmtI7AyBjgaDUQ8xnLsqeV2qViSktCHdY+uGiN1WZDXprLNZeZnBfK+Z5d2DrdJ0VCjFgQYkjOqNZHomX8L65H5H/rDQLdTKIdONzMLia6jf+EdOFdZjQ3kXWtXmfbHcwPVRNzgdK6GBsIcWBMK1bHV9lsVsTVMZr8yyHRo0WtZsq8Z7/bUbLrX91UYH63UyU0MPXVR+iNtUsljGqlJzUKYl0LFPzC99OlUJYtKTSWquRa0ZSIR9dZTWvMCnGzgTA4EqmeOYqq+pu7tkIywYh+0RPJtbqWc3cAufvXNo4zOk6EacQsutGJSn0S1/u+ymFy5pGPB20Yjs2iP8wUj4VGQj+8efNbNFLmypJd7lKXTDYP2su5gCZaEzQm1lducOmpZxhXR+SyUJc9pcxYdT6j1cJcQKUi0TXsB5e4tP42d52PR6nWQ0RvNw/F6GmApfQHuksBtBZk2RHKjmaBuUPPzRqtLCRpKJVqlbvbLcfrgZAmwihM+QFC7i6HAhjpkA4FF2EsEYhmlOYfUxOiGaGjnjKuHQ/mpqegK1Q8YehJvcfSh+B26bctweNPZ00UfGLl0qqGaqZVnEaThRgGBvV70L27b7PsZ3LZ+z2HdwUaSGQpBZVCyZn9fk+MkRQjTWInODgS7+Jb8SbGdeeV1vrquG5p+3Ooi4fvCGxWEyEoIXRCr3lTuSwL5xY4mlYsMlClMUroa2q/L9LDFzr11/Xhpp4IaOLBIj3opNZKadDEgflmjSqBquJEh5awWqGJm6Nbc3TzAbN0SDV8l2n0Sb23cm7+Ac942OL61/ThJrfLGLqE4SBblH6oCWoEwIIyV2Xu1zocmtvGNKxowDitGaYN68tXWF+57iE10TWtNe+hFVpZXIrWiTfejWT3QGhExQNqgmSs+s9FXUYmtUAVmnofE0IkaHSyQfWAk9IqD/YL92vByp71kJgGZVBhseaN9rJnim6kPB42iFYCfp/34BRvVg2lSWJuwjKZb36Lvz/zMlPnmXk3Y7s9IYYL7wO9L3qc6pFocK27H62frjhIEppi5gargyasSvY86Q4hVmlIiGjzGxedQCCqmESaRpoou6oseUtplZgm53muNpxcvsywWpFLI1eYoocAz/stu7Nz5v1M0AOMXghNqdrQ1k+PIQLJcUYNTBoBJ0KYCOGQzNQKUpziYLFBV/hIUCiVFhwo/qCIc27DxucpzRPWtLqJIYYj0oivCS2juVGbm/PCMJJy9QZoFpbcKG1PqaBpC6uRcTcyjCs0JDef2eN1wT5ypdJ5rMHXu4eb7sXjuq/CzK9PUen6UZct1OYTrINO29mbMGifMmngyrWnWHXOYjF8xVtm1IzcCjUvF3MoswqMSHe+t+qn+6a4trGBlfwTzu5ShFCD/5meX46o/32t+Ml+3pJ3GWiMQQmqBIFpUKJ6IMNun2lWkNWK1ZioNjC0huI3bsTQHuzQzJDqLMaLPHUraBXXQxrkZixmxO5or0BGKapU8WbjSb23+okEPVW0BSR40AgSqByS9fQn+LBihsrINK1ZTRPLMrPfnWG1dINhJspEa51Kbj4Y4GC4au0i0cwPXB7a0Vojxog0vZiivTv62nWzXSNjgZwzhpHzwm6nFzID8Gs650yuQkqBYdgwxEjSClqdhd43fo4yCf3Z42g/wLt+c4SfI/+ax0h381InqWF5RpNr28kLtQlWg09+++HAMZZ+jfuZ80mD+36qxeiXjh2OJvhz39oBsOTf5WEiqje64h4b6SEl4vfhko3cHMPp5CQIYSCFgWlzwnh8mc2RYxebwDQmaJXl/IE3g/PceeEOgdR+WbksLbgMUCCUhISBQmegV6GR/b0B3VDubHCRCsXllaaepMe89UbaY/WQLNQAZVmoeWbeb6lDQhCmq5eIaSDWPcO8pwSfarfmIViqgaAwaCCXQG6BWgaGaaLsdyzzTMkL885RfJXW37OP18r3kWhwGwnDM8z/o0aX5nqqw8RUxadfZCpQiK6dUnzE38zTmkTJEilh4jwbu2Xp0XUTw2rDNB2xWg0Mq4mcF7a7LcWMs/7Q3J+fY625iSwmJERSSuSc2e12FKsONZ/WaAxo2XPz2lX288zZWeE8KwyKCqQMmYZ0ADmlr9XEfBKVM4FIQCi5cWvuqwc1pjESkzBa6zfWTELZjEesIshyxnK4sYpiKZFLYomJpRZyKdx5cB8JCTk9Zz2OjEMiDW4aicP4n31tntR/vkJ38vY7FIZQ3zWhkXc1vXTXuYknzuSlstvvL0wn2g9SUZU4JGIc2Fy9waUbz6BpxZCEUM7JyxZqppbskgJzMoOqNySi0bXlIXI8JPa7QqmCJgUK0qTf883NlVZd200l0JyiMAyuKWtKCq45LEum1cz5vCeqsF6vWU2X0Bip3SAm1jhHeRBA4kBqjVEEU6dJBHEiRDPnm1ZrhKo0aQQRqlY0Z9cyCmhtpNqoVlhM0BagNVLtLNwn9Z5Kml8vKuJGxhCxNNKih8WE5mQAs3LBYTZrjGlENTIMa0wCu/2O6CIdrLYep+ta2rnMF4jEKM6LtlpoJfuUV0NvnP1arLNhPfhkHEdSxxvWYBSFZSk+ZzU/vJ2fPuB864dDEfOUsxC6jKW4hjFXcguUKyv0ZGDywDVv7nvD7IdQX1U3M4/qNaOZUMz61sw/lszQ1gitoaX58wjBmrOsFY/0bWbUrumtPWbdE6OehOu838pNfYglgkr0prYZB9kz0CWLD5vdd0sYBvVk0qaRRmDBMFsA12mnMLI+usxmvWE6uYwMK8BIQ8I0sD17wPb0jNd/LtgAACAASURBVDwvHh2twU3iobHf72mtIMOKNK6QVolaWaVEzrNLF9JAC4a1BZHRtycitFb6dk78+h9GtLOWsUYtmXl7jrJnnpUskGJAzKhlIfWp9b4Z7+x2XF6PhNUVXB2TkVado45vFCKOVM1AVmUZhNYGlhAYphU5Z8bVzFwK8zKzbHe0kv8WXvH3Xo9Eg1slod3xX/F1/sNG1xM8XLpg7nBV80QvlIrz4WrPNRH1k5CJUnRgNtg2JZeGxIkhRY4uPcU4jW4GqJll3rPMfjLS4NG3m9XaMR+ilObtyQEtdphCiCZCjIxS+PUv/D2++42/5Pr1id3lNT949T5FJ5pWSjN/IzY/XraamVtBbUQY/Ka4OHsuWMbynlIrMUU0VIIEqh0QOQtSZzjaENdroiQCC1Gc3kCI3iCFFWNr7EsmDIm5o9F2ZUfZzgwpkudCGNPf7ov/mJd0Q+MBWQOOlznwPQ4BJBzsBWr9Yw4SL6U4EaRPqGKMqA5sTi6zOjph2hyT4kBIiaTC7vwB+/Nzcs7QPG4yRKXm4jeycSSkSKTwkeeuMc93qSeRV2+dUnRN6f/XoG7KUFWSCLk2ctew11KYRvOEKmlQZ1gCkpInloVALZlWMsuyXEzPrLkJbNYd+31iNQWaBEIwH2lo7TdyXxVK9YjeSqX2gZ52al2trhOLKKJCbIaVikmhtkbsjcaTem/1E9NbVUwHqkaqBpIkZK4s3UF+uLIFX8vq0AghUa1BCIyaOD87QyQQggLKsiyUMjtZpJV++AKRRmvZDTD6cAJ/0KZaNcyUmmFMTgRREtIGSgkQehMZI+M4IjRCCMzzfKGdhH49lsZM5nzJbPPE3gKDeOCNfz4guBzHupQsNKB5WEClUxOaEx8OprRcFn+vKdQg1CY0sa6DNAqV0uN9a6tozdTW+sr5SYP7fiuyUC3gsDgfHoj2O6zhkcnvkjB4JK//We1b1aBK00BulaUFmrlxXTW60fz4EpuTS5goc16IIbDkzHZ7j9P7D5yglAZCiMTkQSjzPHt0b1OEgAblZB34uZ/6ELdee4nL157mzTs7XnrrnCVO1OARwdoPXEEj2YqjRVshEH2IFgLL4uhEoVL2M3fLnkBjNU2koAwpEIIb6GubOd1VD51KA1OaGKp5wETHfKkZor4VVvE44ihCMZ8iV3nIyW6xICEQ48CS9387L/p7rEeiwW1dB9rwVJgLYqY5hoWfaHQP0gWXJ2jws3eVRjUFSe4al0iWyK4acxPGaUJiYlitWB1tkLZ0Pa0nKU2DY5NiSoQQ3QZjlbK4JKLkcrGqc7h5pMVAyzv+2f/82/ybP/w/mU/v8c4bhSvXL/GZj32I//C9t6hxJNAQNWjdndxXv1azC9iDA6Rrq1hZWOY9VneIJY8ZXCBEdeh0ngnWOJ8TQxq4NAyI7tF55+L7YAyaGNT1x6lGkk2Mw5qaM/vtOXVZ2O9mcqnEcfjbfOkf+3qIrOEn1mA+K/Awh8MOTcQIIogGioR3EYh9GpFSYowD0+YSR089zTiukeDmLZHG2dkZp+/c8xtSDKRu0lmWhbyUjr2JqFR+9b/6Bb79F3/Eej0RVfiVn/8Yf/K1l5B0TKvbh9xTgRBDb1i8oVkwZN5zvIqY+PpXg5Akgo7M80wphXnesywT0qcph7VyKYU5F8oQYTWgCYIVpHnz41rH1nXCXSvc6HGwfSUs5r9fDa3mDl60o/iERH0S1fs+SvAkMg8aF0qfwtbW+mFEqdmDDMAbg1aqo+nWAYkjMQ4EzeT9TC6FkhdoLrkqrWFt6Stjn86bOvSeKsRq5Ngebi1iotRKNvXghdqw/Y5SK6thBRKQeMTSFMl7mhSGaYXa4k1zFfb7hRAC4+hTZgu+47OWKWXB6sbDKaRvB0y7+cibB7NGMD88Ye7ZMAwK5HaQDzlAv9bq+vRSnXnbCtb8560WpDSk9oa2ZGje7Jb2pMF9vzUYjt2SeiFXdP24SwQlHrw5tRvRrDP0e+iORkwCSCQ3pdZMrYWYJoZxxXp1zDhOoG4iPz99gMTUD14LKjBNI2NMF73LYWsAEEOgiTBF+M1f/gxf/rM/ZdLAK9+9xVIrn//Fz/PFv3qJpal7JrrhU3poUxMlWyOWwjAMDFERC0hTSr94WxPqUnjw4AHTkAhHa+LqGGjsl4Vkxm5eGCXSQsT6Js7MKUpY8fRUKz5waD7cSAjBArP5NnBWvy9niQ+TJh+jeiQaXBlX1OIj9Nbc1XuY4gqlr3nr/7d0ISrEhjVl34ydNRaLSFJWccDUL5792QPoN6nWioObgZBcO1trYSmOJlpKd9R2G1EIgRhdp5Zi4jd++Rf59//2D7h09Tq35srxJnF2723u3v4q/9Vnf5kvf/M1Kn5zizF5Q66BatGje9WxMuMYyaWxFINaqGXm7tldRGE9JMbRTR3B/O9ZqnG6ZNI4cDytSdYY8971a7JguHljpYGtKsuQyNU1Nq0Ulv2O/fac7f2zv+2X//8XpeKN7U84eQ8Psq5bSp0OQoh+gxJfx9bqE7HVuGZ18hQnJ5eQcUUxYRBhyTPbszNO7z8gqTIOIxIiwzD4JBcIwRFFVhr/9L/9O3zzL/+EqgNxOCafPeCbf/ZH/E//w+/wv/zuH6Krax5GYn3CIaDq0awaor+nSnEgfwigiRJWGBFpxTm7KRFjYFlmR4cNg08vikdAn+qO9eqYLKlPjCOoG9O00yKsGRV3XjZxnWJrRosBqb3rBaIJhcAgAYLTKoRKkScUhfdaqkLsKGFTwULyptbMyTD7wj5vaa0SRJ10sWR0OGZ96RrDtKaWzG67pcwzpcyUslBz1zuKomlAJQCVuk9IjMSkGJlFFpTRD/4433gIAZXo/yYueK3A3O+7q9VICEILLgOyGmhFUCtolB7cU3viX3BJwZhAhGXJtFLRkplECS2j5rKuWoubhatrgWmeILkNiQfbPfM8c32lvjHoASVWK7VVKAXtH9NSoTZCf47RmtNNfKxIEG+0PA7+Sb3XCtnN2y5XVBqZ5rJUComOs784PHmz29wfIz5nrzKwaOI8K3POaBhYHW1Yry+xWk2MY6TmhXnvRl4oDGkiHR2DNTeN5Uqujf08syzLxZBCw0BFeOGZp/jjf/dvuHLjWXZn59xbGkdD5Gt/8ntcv/4BXrvvfH5RsNoQSYwp0nDTZW6VeZ4JGi+a5pSEVgNxGNjXQllmavCNiZkbiLVVf/9inIuyWQeGNHmyX/BtcDD/ke4P0VovDnFU9xilZgxEZjOyCUGF8kh0jP/l9Uj8d3c6MQ7BY0X7d+lWnYfShT5W/3+TLlhAtGGWmEXJ1TVREgIpDYgESs7M+0zQh0aEeZ4REaYYEIFlWWim5OaZKBKST8ZMUDzVRwxaCLSy5ebVDV+/f58rN5/hs5/7Bb71119HpiO+/a3v8PFPfYrcFlJyXZtZe6h9U6XURimVHCorEXcWRyGor71njDrPPNjvWE8jrFeMQyQEf0hsZ2M1BV+VDEeklsEq1jKqI663LGwkkhCWFJiJ5HjIn1eW+HitHB61KvRknUMve/h+McU9fNwfcKpCRbsh0T0zvhoLjKsN682GtBrZ7reU2liApVbKPDMNifXYc9RF2G63Fw/1lBIaJwjK1Usbcm186MMf4XvffpEXPvQh7u9n/uBf/St+57//+/yvv/enMBwB5m7yfsAbx5GoyacgeJKV0EgxUoeJssssja4PdvNarYVl8QY+xtgbDKO0HeM4cjwOXBlGkAxSIaSLkAAJAbFGqIbnn1fHA+MbGWvSG126ThIC6ii2aAQer2nCo1Sqh2vPmwSNA6WbwEopLHlPq9XTG9XDOoopm/UR66NjNAbKssOqg/FryVitF+tgA4g+Vbu0WfvUFWNfjRYncvPDkrXDQ9axjaqFKEKKAawirfSBh0EfPg3DCgvKfndGa7nfm92kdpikHTi30j8nRNyYVpxikswHJwW82W2CVSMbaIwsGvn2S69y5amb3Dk95ebqmIuwFvr2QczRkP1H1Mg9yUzVp2wqSpB6EXkaOhP3Sb2PsuzT9+aBG6LefAUNNMtUgWqBQrhAInqEfUeN6kDWyL5CLoZoJETl+PiEaXVMDI5FBEghYENEiMTkEEjDyPPC+X7uIRBdYtCfqaaK5T2/9POf4g/f+iFHJ8d8/OM/xQ9e/A5vvPE6RUY+/cmP8caXvgUc+SZZlFa9R4ghIjGQmnsrlnnPOI4Uc4RfiBGz0ocjlbLsqUNknh8+y0XEt3FzJg+JGl3+JnIA4hlqAWvQrLk7RIRy4GOLbzO0ZtSMWN0/sjxmy4dHosENMXoAg0bGUJCy0Kqvfg6cQrUAlD65bbxbuiD9gUwL1Aq5wb4ZRQJDx8e4QcZfndYacz91gT+YXbvlrt2UElFHQuiGmHpAh5g7hUWIAX77t36dr/+Hr3L56lW224V5/xar1YqSFz74wgu8/dbbpHyHpjdcHNyMVoVI9GjTGHwK0CplqaQhomZoAAlGiAErfmPOWWk1EeMKEZiXhRAbu/3MKMoUU3cheySgteqOdM1kBgQldnZg1MSSDHA27pN679WQjqjzkoO5wXj4MXwlGtSvcaSvhFujYaRhYhjXDKsjUkq01sjzzG7ZoyERw8h6tUExUgfGz6V0965Pq6ZhZG4GdeH7330RxJN3bj77HA9OTzk6OuLF77zM7/2Lf84Xfvnz/Ns//xExrSD4tkAqVIxmhWaewBSCuimsegJUHCcChTI745Tm7f2yFFqDcfTMcquQW+N8bjxYCvvNCkmGWp9OmLerQXpKkOIPKgk0m4GKmhLflZoTUKJCa0awiMRGticx0++1TJRCj4vWgUpgLpncKjl74+mHC3XSlSoaE5tL15iOLiHqW7ZglSDmkhNzt7eIIiEQYmTQykeeuUrUBxxvjjnfGV//zmtYGz12KjijrFUnFbRaPBrYom/ZrFLqwjhOnbbjh8E4JI/+zZmc9wSrvdl4SGQAH1hMw+pCXlBNofk/3foB7oKOE5Q4jXzzRy8Tj69xOysslRc+9nH07LafSPGprGuYD4i1enGyNaWTTMRT90zcISKCiUuWnmTrvL9yKVQ/aJggVbGmLllU7TLAhxKG1htbxScKswRnypozGKbVijCMTOuNh5Hs9pSafYqaM1YbGqNLFmsjt0pdsvuFxA8xqpGgbvjK1bh6sub73/2W/50ycO/+KXfeeYcYEw8ePOBf/u4/5x/+d7/DH/zxN0jrSyANywtzbaxWE0lTTx8W9wrRSClgNjKXjFVnRscYidEb3WVZnN3ftfWOtvOprsQIsTGAY0ZV/NekQYMowYcK3m15Clzs13L1h5mVTHzMtg+PRoObBlTdaTrXgMVECoVkxaULtWI0T16y1vWDpVMXqp9HgtJUOK/CeTFfz6bUJ7Vd62VOWKidI7ter33NW4ozaA3SNFEMUgcaH4wLIbgOspKpiyB1zysvf5e3377DU89+gOeff567d+8yz3s+9MKHee2112j7hV/5u7/En33tb3xiMTTK/pxqyuZoTYwDQ59y5LIHBs84l4hqYJUi54tCqz3daqSUghN2Km2pLDEyh8SswjomVr3BrYC04tGU1c0ei6lfvCxEAnOIiDxpcN9P1dBVjPaQxQi+InP0YjefaMADIxMFJROoZUuKI2FcuWv3eONT0JwJYqxSQjQxDP4amTV22y3budM4TEhhIERlv8xYnLi0HljmLU8/8yyr1TE/9dM3uf32LZbdlqNXX4Wl8kd/+K949qOf5M23H0CNXTbRqF3X2pqRMWR3zmq1AQtEDcTket6zZaYRiCGg4qDwQ+xpjANFCqLVp1wE5hAYVJ2nOEwugTBPWbPmCKmaC7VVmg00yVirWPOGu1JpCpgiBRJKaflJo/A+qsbRD2ZpwuKKeTH2c2a37AiiPQbd15UWAlaFqzeusz65SrOuke0+iXqY3AbX6ZpCSiMxCn/vc5/m1Re/yv505m0ay3zG5ah84R/9Fv/i//4rcu2bOhWqFWyeXbZSAilGrDV2ZQEzpmnFOI3ddyHE48vEIOT9lmV/ikjukzRlGAaaGduzM84MxqCcHW3IRWhRkCgXSVZaM8MQuZ8rbzfhu/fPWbUBWV/iR7fusQ7wgSsrtmcu5zJ8sJK8xenfeiyqVoJpf8Z0LmtQ74F7RyyPWZPwqJVY7SIw6ECufg8WPz1IeJeEIbiEQd3EVRHmPgCbLZCmRIoJNHB6/4ELEavf0/adcHM0eZDIsrj0z1RI08SoATN8ctxgWfaUUplG+Gf/4+/wr3//f+fa9ac5OTlBRHj6uec5vXeXYUic34788b/5Az7y0U/yylszVrunwIyyGFIzYDRVZL1yP2btfUkI7CUQNHF8NPnnb64DPkxpfYthVAvsj1e+hQlCFEHUdeKD+lbGVDh8Rd106SmwUiok6f6hBuLR7o9TPRINbjXXENKdfAc8UW6RKSkSik90S0FFKCja11LNxQsUBjKRu7lQdc3UMRduYIg+Fcue+DQMk69jo+sYt8vCdrtjKZVs3gyGUTu3UC8ICq15JrUhXL5yxK03XufqyTWo8PQzzxFjYr87Z7/f89GPfIyv/tmf0gZP0amzb2ituUOyLrNrtQR0nBhTRKkMQ6LWSKkjlN0FjJ3uaM55vnAKA5SSyblQh6FPFNRTR2ohSHBxvaq7eGtFLZOb9PSi6DrmJ/Weq5q6xFY6cLy/pQ4mB3A5gdGRQajzXRuUBmGYWG2Ofe0bGmXxm6rijSZt8SS05hSNPC+gHvscQwL0gmAQKPzSz/8iL3/va04KGSdqdTzR+XbLJz/5s/zgxe9y4/KaDz13lVtv/RCRE/yeOYAYSyuYVZKOzgRtlTQOBE0+7cJ6Ex4orfQgFr2YnLXWaCqMw8rXxmKMKClFXFNriAYMQaNHoNbWkFTQUmm1YsHh/rVUTBZy6VNlU1oyTCrSBrQ+aRTea0laE6Rh6g1h63SKViqlzU7EqP76GY24OWJ97QZhjCgLsS6UvL9Aw8XgD9Zd2UFzKsJqED7xwet8/cunXL58jZQS2ztQ8syXv/QVPvPCJb79g3fYtyOXDsSMqUeKE5VMwaQy6gi1kvc7AkZajRASgcDJyWXqNLDbKtvtljzvaLWAeUx0q5llgf2ycJYr+5YomihSO2ZOaeI+hbe2W/74xRcJJ1c5Or7Mdm6spyNOH9zjPI7uvTv0UD3ch3YQfB44umBSHT9mjsereHBEtur85ieAu/dVDb0YHPAT3hyfqGKtGwjVNz4iJHUtdkVYmpFNsRD6xNMpHGXOpOg+Ak818+FW7zvREBmGyRvAjqNzxJcbcQkgLdLawmuv/YhaBG1KGkbWqxV337nNPM9MqzWv77Y8+9xTPH3jiFdfe4Dp4ImP0X0GhIYVyC0js7oJuPgkdRxGpG3I8xk1K1I7J3z2aOGUvD+wpixlx+nxMbvVSE1KlkaI6hLPltGuJzLzLY3/wdpDqXx77vHZfpA4cKkfl3okGtzWDLSTCENE1VyPK8K+jQiRUT1CtNaK1C5P6EYz08ReRs6LMFdDx9TX+tnlBjGScyYKjJsjBKU0I4bINmd2efH89GF0HU1wOHO1SoyKNTdNECra1miq/PoX/hv+4t//a1ozNtPA3funrE+ucf3GjjdffYlb9++j08j3vvsin/+Nf8JX/vKHNDpGJxim1uMcK4VGDAJxQFGiRow9S3+DrdYjUdR/b/EV3gHzcwgIqLkhm0jq7nTtjbE16QlurrGpJZOkUWph6EaLJ/XeS8k0C1i3RB7kdSLNJ5ZdTW6iVIkUjcxNKM1Iw0BarVlvNsSkLGe7bhpr7M7PXb/XjVylT4DCMBC7rCRoRMR/PVdIKvzMz3ycH7/4VxzHDdvdnvXmiCtXrrKZJr74pT/l6Mpl7tx6i+3Xv8HHPvzTfP9vXietjrspw6fMKokUXCqx7PcoMBz5+0IZGccVrRTynFkWN7kd1sIeSRpIKZFi9K2IVAYU0Z7qZAMmjSxC6VQJk4BoITbXqdfmMoiWB0L1VLhaG6061cRCoz2R17znOiAQRSOmPn0/BCUcAkdEQpcaJE5OLjNOEzEmhqjsTk/Znp05LqkPCw73XPpU9/TBA+7cucPx8THr4xOmvj599ZWXufX2bZbtGR9/4cO8/vZdbt3Zga0JwYgxdSqHEEJiHEbn5PY1bGmVNI6s0ugmtjgwTCtq88nbbntGrQ0dYt++ueGsIWSUZk6P0J4KsJWBN7YLX/nhqyyy4YUbz/Pcczd5+859xnHHx27cJJy+TqseJNBdz7QWHfkXoIpP4AwfdjURmlY68LJLmbRrcR+vJuFRK7+bVGpvv9T84PzuRhecTqB9gCMhQIWmylKgKARNPuXMs+uju0k25+xSh37tFAPLlXEzsi0zKspgya8xCbQe1uMpX8rxyYrvfuc71KVwcrJhnhdWmyvcePoDXDra8NKbt/jgRz/BD77zTe6f7hjiUz7l78MCwDfKIqQD7kyEafL3gUqlloU8C0JEg2LUC4oD+MChlkKRgV2GbTVmEkP0YUhRI0qC5gEkYhXFY9tND/l+wQ9peHJlwjeWj1M9Eg2uNZ/FetS3w8c1JlzeVGgtMLeISWIIhdAcPi61YCrMGpktsogyTgExZzdO03ShSZmSj+itwVwytRk5OEVvGlYMx6OvOABJI6Ue0B8LtS6kKBxNT1GK0Mop+/O71KWwOh649/YtXnr5FX7zH/xDNqsVJomPfvRjLNuZUPec3rtHJFOCMgypo5EaC4WoidqNQiKVWgpRA2mc0DqR50YkgDVPvrp4+PgDaS5GjAst+EMmqqE2Iy1ieHNrpadpibrUo3Y8SSmE8mQK9n5qah7B3Hq8wyEM2hmN2s1a4rG8EllQdk2xIKzGiZAG9vuFut0jJV8EiZgZ0zCgnSs6rQYkDBfaKmsPmxKjoZLIubo7XpTc9rz+/dd4+vkPoao8uHeHj3z446zWI6u05o2Xf8jdOz9Gkp/MVR2PF0N0xnSfUPjWIGP7LathRYqBK1euMA7K7lzZ7s48rNiMcRyptbJdXLIwqLj2uC2k0kjihgyjUKN/Xaq5Hjl213MWJfuAxqODRdDqDGmthVQTFhslzNhjlov+KNVKzU2EUcn99TvcVw5mmRQGhmnD0ZWrXLp6nZgGNHrK452336bVwma9vjjYlFIuNmaEgfVq4t7de7TWOLl0GQyeuXSJ4+Nj3nrzDe69fQd79Yeg8E//wa/xe//XnyGbiRC1NxhOYUjp4eucc2bebal5YTiJWBWaVRBlnFbkrk2fcyZ0Rm7qUrVaFrQYWgZCgpIiOwu8fNb4xku3eDtHrly6yub4MsuSuXnjJl/9ypd57tN/l/unb2Lq2sQqRmtQ1TzSuBlNA02MVvsdQArSvIHwBMFGbC60syf85vdVRaIHIHBIh3NPjnQTutC3ZgYHBKOZkZuxq5C7DNJX+Z4uqSKQd4gEVqtVp3asqCLcu3ePVhu73YymAQmBUn3o5dHPjTgIyJoggc9+6uPcf/slpmni9Zd+zGLCi9/6Nr/wCz/P7dvvcP+duzx98zo3b3yQ7/3gRf7Rb3+Gv/7+W369dy61yOAH0G6OrPOOcS3E1eTd+TiR9+fkmZ68Fi44zYeypKSopGhoiOSolDghGMShp69Vams93bKbIaug0oMvuiRDNVC7fONxqkfmCWFNu2ixUfu43HVdPtHVVqlVyBbIEhk1IxqYa2NvgaLRpz6lMk0rUkoMaSTnzJIrwSqtOZrofLcnpJF1Gn1qJUorrtNdrdaElKii7OYCS/AHqQw+wUrKGC5zev8Bl688Ram+Vn32+jXeePnH3Lx5g9yM7/31N/i1L3ye3/8Xv8srr3yfMB5j/YJ9eDF6iIOayyFiCIzDQKsZGNnv/PeJuval1so8G6qOADMzqhn7VNnlisgKlUaQEcjU4j5SQqCpMy5jv1ARw6pi4ck04f2UlAbSXIGnzjl2j6ongzXxhD0Dshn7Yiyd+5mGgVIa83ZP7KsxT8I5BInAkgvDauUxtXnHqNHlUH1y0FrDpBLTCtXK66+9hqhSloVVEN585cd86lOf5saVY3786ht861vf4kMffJ4rN65z/8E9/sk/+cf80Re/Tq4NawWVSDFHfR0wO8uyUPZ7ahhI6prjcRjANszzTCuLTwRDf9ibBz4oozfLEpBSO/MRzyCsHuIQTNyA0/WQdGD+VBoVZRcCWRrSXCUm9ClwUGR4ZG5fj11Fy9117lrR2vFuB4OKmTGkxKUrV1lfvk4cJoaUKK1yenpKLgtH08rT6Ppk9QC6j9G1jvv9vmPz4Omnn+HevXucnT5gzpnN0TG5wr27b7OZRr7ypS/y9M0j7u6gtYLq4Kaufv0d/l9u9vVN1Ha7JSV/PuT9Quum5NVqxdlZZb/fs9lsAPdS7JfMWR44txEJI2/tM9946RWG1ZrtDPPpzHBDyW1mGq/xyiuvcrQ5opZCG6buOLcLnbq17BNDOTQWjpNU8YZbmrNwUwM3RRtRlCqPV5PwyFUaXIbSPB3GvTna6QCdK2v02XnFNFIFts04rRUbJg9uWJYLM2LOGVFhGken2ohLv85zxkQZVxMxRGJMZPNfax2zWGthM5wQQyBnIw3K7du3uX75KWiV7dkZH/3Ac1y/cpmzsxvcO9txdHTEdHnD5WuXCSlRcnb+vgRUfHI8xHCxVWmtkUtGaiSo9zaraUXNO+qyuzBYHj4XAB1GpnHFEJRRA6N6+ISIgUVIybX0tWIhuiSsFIrl3ncYjU6swNxoyuO18X20nhCGUxHenSvewdwS3KVoF9IFBWI3m4zknvQ1pHBxYnNSgiNjijRUFERZrdeOBgmRXIu720NgXK2x6I7LqIGT44FcVtSGpyiVjKaRK0cR251BnSkWmKYVTSKvv3kbSRM5Z46Ojjg6OuLytWucnZ/xq7/5y/z5X/y1r3JDJMRAPKwjciYvnpYyFlLvZgAAIABJREFUDIkYBueFdvyIEAjRE6AuwPg4oLo0IVfITcgEio40ZtcnBY8sVBNKE+gOXzPHMrXoa5sn9d5LLD/UMfdEI9fkOrrGDzUOIM/tEHAQuhwAWqnEELAuPxERhmFgvV5TzZFNu3nxY7oE2uBTA1VfHcUUGNIRVtdYPScvM0Ma6KF5HI0DP/rhD/m5n/s5Ti5d5tKlK5yd7UjDyOmDc/7l7/4un/n03+XVN8/ZEzifd0wBWBxvN3Rtd6uVVjJNA5WCqEsWQgzMu0wtEFMil0zNM8uyY25rT3gSJQnE1shURBvRGlr8/ejJZpVCpMTAYiANohSSGaHRlfaVLIKIG1Ll8brXPlIVzQhmfePg15P0qddhgjtNE5vjy6Rx8vvHvLAvC8tux9F6wzQOqBnbXLpHoV34HZo0pj55HYeB2++8w8nREVevPUUQ46Uf/oCrz32Ar//F17AmvP7q6/zMZz9OWF/iwf0z5n1Gg6GhIVaoHa84Jo+wnueZXIw4RiRFWp7Z7vYeXpEGhpRode/3T1WaeAzwbrzELRJ/9s3vcZpnnnnhBV576WXSsOK5557mwx98gc1mxcnlY04enDLZzIO7d7Aw0nxo6KYRuvbWClC9me2cVQwiRjEhmm9rDEEqNH38dIyPWtU4kULBmrOIpVYcfuUHjIP5vHIIeUjsGDivxlltrNALA9nBz2Ktsl6vPU2sNpZ2IMXAenPEalxRayXGyBhHmglnu63LKwlYR5JqCnzohY8jp3d59c07rFJATLh/tuOLf/plPvKJTxBi5Hvf/xsuXzrmmWee5d/+6z/kN379t3jz9sxrb98lJW8jS+c/p5QuqE+myvEqEoaBcHyEtR3nrVxsdA8T4KUWxuDBEYPAoMJKGkPXFGNKs0gdQFujdk9DzQutODnCyoKVSKsZoVK0OHXlMapHosE9vDCHcpPpId3sP5YuiPlEdy6BTCLnhWWZCSGS0siyLNRSCSFh5hOBhjAMAdHYJwGxNxQ993ycvJnYz4DLrFJKDNPkcbihUUNimws/+4mP8aOvf4laCnMLHF9+it/6x7/Nm3fe4Uc//AGf//yv8aU/+SKvv/4W12/c5FvffIvU9nz2Ez/NV/7qOx1N46fA1GP+PNqyUFpmiBMxJF/5lpllf3oR5wcPf9QQEIUQHMuzBCWn6JF7y+KIGjO0FReTV6O52BLBJQ/Y46WpedTK7GGUKbgUhH4A8a4sogiZRC1uMGMKXTtbfBLZGlZ9xb9a9e3DNPJgu6PWRhpGhjSg0dP2PHGsXZgcTlbHhCkQphNu3PwgP/7m18klsN6ccHz1qhM8pmOm9Y4v/Npv8Ndf/w8crVfsl8b29B2e/9Bl3rp7i8/9nV/nzbs7bt++zb1799me32NVdoxDIs+efgeChkpbvHnQENE4sOy36DL3h0AihkS1zk1SpYVC0+aaMSloVSQGzpZKPDnmzTv32NfKrdN7hBgYBZ4/Sp4GhccKx2ZgzelSZpQnmLD3UUrEqTItBKKOqO5orRE0Mo0bpkvXmTYbSs3szs/JrSIWWU9rUgwIjXm3Z7/b9+jagBIouXiAThNWx0cEjZzduc1mfcTZ+cybb7zGU5cv8eL3foAG4bkXPsg7p3f42le/xaXLR/z93/zHvHFny3BynQfbhaVBSBNLXqAsPPvssxxdusowTWgaMIPd2X2W3Y7T0wfcevN1bHtOuXObS1cv8dS1K1y7csJu+4Db99/huz+6RQyGhsDt11/j2Wee4/x8x/XrNzjaHJNL5t7Zlu9//3v85q/8EuH0FiE5GaFa602TX5ehi5Na/2bSqNrQWihiNGlUW5wZLc0Pck8oCu+rahwpNmCtEa2SYr5YtXuz22j49YkIWRLnNbIYF2buht9vh2HwgxmRWhpz3TEvmZBGpmlN6ATuOWeGYWRaTYQYqaaM6xWOFlUsLyylgQS29+9xevcW144G3j7L/PRnP8cnP/3zvHX7HV5++cc899wH2aw3HB9v+MiHP8rXvvY1Nkcj8xtv8omf+Vl+/PpbLPt77OeZFPyg6XKKmZgDNro5VFSYVhtqqey3Zy5HSINvtrcFIRBVmEJkYiFJYFUdc2cy0DTRMJeEhUQJAiGRSqYZ1Fx8Q70sWF26Sf/xOpw9Eg3uYVVwME+9u/7T0gVoEmk90rfVQrSCynChGVQJ/qCNEbPKbl7YzZkYjTSuUInE5OiQ1tdpOWcXd2uglupJZvsZNWOMhqU1MSo3r13itfURhjKFgQ9/+GO89eZr3L13n5s3b/J7v//7fOj55/njf//v+NX/+le4des2X/3qlzm++iyf+fnP8o3v/g2hLJ1R1xjHsedNL8QlkzSRgnJ0tMJshrZn3j+EOB9A5mFITNMRYwqsoq/v3DwasaSgwSMkq9Cq58Er6hxHLQTzVfqTeu8lZv41PJj63m1ykE76aI0ssFSjEEndzHCo2jIi5povA5XAbnYzzWp9xHpa+2FoGJA4kc3IuRBq65DySDajLq5PvHJpw5u373K2H6hpxU998tPEtGK3m/nWN/6UB/fvc+XyCav1xGuv3eN3/4//jY//9Gd4/eUfcibHfOpzf480bbj/zi1uvfojNyvkPUGUPG+h7iht64coXHO5Fz+kHaJSU0qugY/++Xgog5vtWs4kjViK3DnfcnV6ir969S3Oi8d2P32y5pnnbpK2dyhWO1vSH170LUYrreuQn9R7qQPDVXFzTYzSH/YLSEDDQIoH7WphWfxwczCUicBuuyPPy4XuNkWnepTaqGZs58z66JhlWbik8P1v/zUhDHzipz7BU1evUAm8+uorvPLKa/zqF36dv/zqX/DjH/2Yr/zFF3nq6Wd4sD0lTdc5uvYMN5//ICEmHtx9h/OzB7z10iuYKOfbLev1ESebYzQE1lc/wMee/hjNBK1bbHef13/0Xc5eeonQtty6/RbLknnuuWd45507GHDpqnH9xtOU0rh77wHFGvdfe4MksEmBNA6UOVOlUfBtQ7VGbP5Mqn2rVptRLaN2sJU5es9q6deuS230yXX7viqkAavFNdFNKebx5EOsSM3OR24VqY0WAnsimUBTuVj/j2NkHCa/z5aMmBsIDxPKg0yntEoMyjStiDFytrhvRcyczRwiesA5R2WXMyfHa0oYuXPvlEvXniEOK9547RXOdjNXr17lK3/+5+Rlz8svv0QQ5ad/9mf46l9+iaduPseQhM997hd56/YdXvrR33B2fp+637Me0//D3nv9WJZl552/vfdx18YNbzMjva3KLF+V1V3tyGZ3k03TpAjKDAaERFF6mZm/RTMQBGge9DAEOKAokZLYzSbbVpsy2ZlZ6X1GZnh/TVx33N57HvaNaFKaB7FaAKuEXEACGWkCEfeeOGfttb7v9yFyS57mJGmK5+Emq0KgfCfP1FoTBAEaTZ6lpEmMLBYoBB6BMigjUUmKVILcJuClSOkhhULgMKlWSPKBsc5YBrI7D515SOWTP9fg/t1LCHlgaDmIwv2bdSBd+LkRIjc4RyzOWKOFQBuLsIbAdw/YUqmMEJZ4oA0LAg8/DJAqxFiLVCGekmR6AAHPUjypsFqDzsm0y2KXAvrWYkWPStHHpD2GR4f52eWrvPLam7z77rtMTk7y5ptvsrS2ztkz52g0djl/7kWufnSNZmObifESsrPD2PRxXn/jDW7cuE4Wd9Bp9jem17mLyQMQLgCjEEXkaeK+b37O5TXWnRbDMKQQ+BQ8n5L6OY5JSAkmwJocnaWgcrIsBzIEArRGiL89OX9ef/fSzmIF+7G3+wvIwbpXIzDCp6cNfauQoYvXzfOcKHJyFg/hpgF2oBXUOUIoIj8abCHcex5FEcLz8Q3YQgEhFcJ6oGOXbiIsxXKZRjch0YL548eoVkdQNqexs47v+1y4+DLW5Ny6cYPZ2WlWF59icsHkyATX716nm3j0Ww0mj54E4TE0NoUXFRwH11NEYcjm2jKL96+T6AaesSg/QCDIc0ctOdg0mJyCkBRMTLA/bZUCI4s0MWw3O6y1U771nR8zVBsnrBbpxClZpimFAfTVQC+m8YQD8ytcTKpnLejnh7OPW1JwEDogYbDVclHNyg8JCgW8wHNSJ6sJPc8ZJjGgM/pJTK/XBymIouIB8N6FdUiUtFgRMjV9CD8MkRaKnke33+XJw4fsDI/iRSVOnT7HU/8Jm1u7zM4epp+ktDttzo2e4spHD+jGCwSlGiuPx1FhRNxpMzk1SZrkVIYqFIoe7c4ujb06xlhSYyhXh0nzHCVTNlefItI9At0jFDn9XpuXXnqFhadLlCs1Dh06jPQClPJo7e1SHRqhXK042ZBI8XUPG7fwrGtUZa4RuUEag9GpUyqYAS7KZRRirUsttAOskgu/OMiCeC6t+QVLCIEYHL7koJm1UpJYD6yHrzTK5BiZk2oX7KCFIstSpHTUj/2tadKPD2R7yvPwPHVwPejB/SWKogNKSLzPIDeWXq+PkgolJD4ZuVdAWsPmxhqtThfpBzxeeMKjhWdMT05x6dJbrGxs8sprrxIqyc2bNzl+4hD/9t/8a8LA8vrrl/jW937Ey29/mdLQGJ/76gW2N5Z5dv8m/X4PpHADFWvQGudzGFxLUnkk/YR+nGAHEk9rMnJrscLxcwMh8SwDv5FBp07a4eF8SFoppBWkUuBhyDwfowW5zRC+Nwi0+HTdcz8ZDW6lisgybBIfRC3uIzr+tnTB3SIMln6m0QMclhAS5RdRyqNSqRzoVvpJTL/bx1icSSIMnRNYOri97/sgLCJNSRON1Y4DKZVCpynGWrTJkFJh85ww9PncZ95hY22JG1c+oFYq8uD2db7whV+m09oljASry09pNBrMTo6R9huUSwXmZy9y5+Y1ZmaPc/Xy+5x79fN87qu/RZxm3Ltxhc76U8LASQXy3OVPG08CDj3ieR59rfHUABWCJM4zPKkIpKDse5R9QUHl+LgpLtZDC0nu+SgvcOubIEfHPXKdY4RC2BRrsr+X9/x/lspFMHDv7nMZ9xN2wPECAmIb0Eo1ifIJchd/un+T9X3fGSC1JUlTl1DnhxSLIdo6BFwwME12Mo1Ic0yeo5Q7UUsDQvcRXgGjE7Y318kMdLodtjZWyfN9HF2fne0txkbH+OjqhwidEspZktjg+wW++93v8tal11le67C3tUivtQMIJmemSbRChgW0VcggYmJimtd/6XfA5jy8dYWt5QWEnyJ1D6VclKRUzjiZEzhUjTLERtNODCvbdXayjM1OQmu3w6kz51DKUhuZ4NnSGq+9eIhCfY00zxCoAf1j4PAdTB6FSZHPzTofu6SwqAG/WWAGQSQuqCMolgnKQ4SFyBm+hEPQJf0+RiRoa8lyeyDt2icwOJSXYxZ7QYjC5/r120jfI9EW5fkUQktUqnH09IvEScza2hoIhc402sD09BT9dpvLP7nBq2++Sj/p8+jJJnubS+A5CU+/3WSvl9KPY8qVqiPM6Iw4dtdfc7OBlJKkVYe4g6cse602X/rS57lz+zK3b99kemaeS595h1u377K3t8PU1DTnzr+IMfDo4X2qJcVQALa9TZj3yAGRO3ylNBo0aAxSueePNm7TYI3DPWE1VionV5JqEEKQD/7u+XX7i1Sm7aAvECj1c9M21oWS5MaQyQAtDNnAhJZlOQye+VmW0ev2B//PxeOaQXiHzjRIS6QClO8mvrmxJN0uOs9hoAXXmYso14NIX4xGiAZjw1WGKkWKBZ9nC485cuwMR0+eY3lpmSAwbG0s4/s+2+vL9DptJseGGR2epFVvsL6yzfiQx82ffpvRmWNsrs8RFiscPnmeodExQs/D6ozNtSXqm+vkaZ+s18WafCCbsGQmR1hBEIQUoqLrhaRE+T5CJi75ze3A8RGoHLR1wzwl3WtgfI9Ea6IAQmOIBaTKEZis/nSdzj4RDa7neRgp0Z6HzHNs3Btk2uv/X+mC0zy5KZcEUG7MHoYhYRgO0stcEonGmV+CIMQLfMIwwmjXOORZSpLEpGnmoPy5dngZqTB5jjYpeoCAwVqOHz9D4Gl+9O4HFPyIXqvJXi/h3/3f/4Z/+S//kFu3rqOUZWdnlZFqQL8fUysP89G1W+jUMDYywrPFNR5cf4/6XpsT51/hrc99ifraEutrq9Q3VzFp332PJsfmKUq601mm3cMjCAIym5FnKUoFRJ6k4HkUZYZvBYEZNOoyQgofBcRKgvQcazSSiCzFihwtFOSfiEvgU1sG7yAq2gwmuA5C7vBhOR6pVSAVoRR4yg701W4qkCRugmByx9FUyjsw6mijKRZK+L5PnuckiYuwNtol97hQlBx0Rmb3CJXFF5bAl8SdBmJ0GEHGyRPzbG2u4PkB3/7rv+TI3CzNep2//PZf4PsFMquZOzpPs93FV2CRdDpdhkeGMAZajV2mp6cIiyGNVpONZ13qW5tUhsc5fO4tJo6+yNbiE/LWGuQ9PKUplgv4yqcTBiz3M5qdPgs7W1x44SwbWYPV7Q57ccb0xAxpbjg0OUGmJdJqVJ6gky5q0AwY7SYmnhlwGgev63OzzscviXC8bMRggisGhBefICwQRhFCQNzvY42h1+mQZxlBELj7cejhB6FDDA0a3P1hQ+CH+GEBa3zuLyxz6cUzLD68jx8UCIfLHDlxhvruLuVKmcOHD7M3NESpGHL7+hXGZ2Z593vvojzJj376U44eO4SwOeQ5edqj1dtDpzHFyhChZwmkoZ0kZEaSS7cdKXgCY1Jam+uEgaXR3uVLX/wC77//E8ZHy6QhGCu5fOVDhISxsWGmDk1THqmgtOTSW2+x/OwB54dHyetrLvbaWrTU5FKDNAMUrkBZOTjgQi6cEdIIM2i4nJxGDH5J6ww9nzbU0iet7IBiAA4H5qRguI2WVAhjwO4LGC3aaKxO8HwfECRJ4sxoQlEohIAjbPSTFD8MiIIQbcH3HAVGD24zNs/Zf6NNrp0mfIAlM1oTBh6nTp2m0dhifXmR6dFhWjsb/GBxiWPzh7lz5xaPH91naLiKyN3X88Mffp/yUI2N7U3uPLzL/KHjZLpLp7VLEEY0Vp6ST8+wtbFOUKqA9Dl06BhHTp3nxgc/orP8CM9ohHRUnSRJBtriEM/zKRQKFHyXRKmUhzGDiGEylJZYKR3WMQzJtcVIj1tPFsi1ZmZinNFigAA8JEUE6XMN7t+9giAYRNBKjFIu/jRNIEv/G+mCu2CdyNoTOITFwJDl+/5BmlK32z1oGKSnCAsRYRSRJzndwc36YPUv3Q0pjTNsbtAIcmuRngtXUJ5HsVhmeHQc31cUoiLN7R16vT5BGFIIAv7Dn/5H5o4eY+HpU8JQUt/dIo4zxsYmCQoh63s7rK0vk/YzgmJKY+0pD7KYJLPMHj3B5JGTHDt9nt2tVZo7G6R7Owd4nHSQyGYNxGlGpp1jmQHOKfIlke/haY2ntfM3mQTtZUjhEwC5sORKoq2HFOB5AVnqodXzCe4vUmJgUsCawY3VHkTUGilJUKSDOEQp3EYiDCOUVE73naaDKZrAC0KHysLB9sVAB7aPYNJ57jBkxmCMpZ+7htdFqubMnTpBbXSEzbUVJoZrtHY3uXbtOkuPH/DGpUv86Z/+e4zVrHmQxQnHjx/jwkuv8+//w5+wurqGEpKxsUlae5sYq4iVpRcVSHXOVqPNiPAx1hCImPr6NrsbK3Rnj+IXy4xMT+FPDNPeWsO3McKkGJuxuLbOh+vLlIohp06fYmF1g816B2UDZiZGmJweQwnJ6Og4y6vbKJ2RNHeIrAEhB8SPATFBgCBHGIuyzuLzvD5eGQGGAIOHEW73IFAoXw10tpI8ickSh67r912Com8tubZ4gUcv6aONphAUsQKQAm2dq9xTITbwyGXE4aMn6e+ssr7ToN3a4/CxM8xOjSOVYmFxkbv37tLY2aRW8ll8tsjbb3+Gn37wU0LP5+atO3zpC7/M+x9cZm+vx6nTZ+n3e0S1Mv12g+3NdSwSGZaYnJqEXNLvNNhYWyEMBFr3qVaL3Ll7C6VgZWOXqYkZqpUS/bjNWG0EP4oYqVbo7+3x6P5DyqUSjc1F3p5/g2YLtBaOu2oHfFVhfs5eFS5qHQvSWgxuc+Ho1e4KzYXFCjcosXLA7X1eH78GkkUApFvZW7EfmWwH+llxoII2RiNtDsZtxYABqaZEEHj0B/6WUqlEEIVI6Sg0ga/wlIfUOTY3ZNZissF2GceO1dpNT/MsY252Binhzu27aC1YXd3BCEG3H3Or2eTXf/d3ybJrLC8tMTc1xsbm9sH38ealN7lz9wbvfPZLrK79DKOKrG+sMz5aI/IV/VadatEnzTIePrjHzPQhzr7yDpsTMyw9vEne2kQJg/Qcymx/KKhMTsU3lGxMkOuDVDKpItKkj/B9GiZhtFajFVtu3LmPJmB8rMpeHDMeOOYzwr3mnzaq6CemwfU872Bqm0uJ9X33kE9TbBofNLpWCYwU+EqhBjGlUaGIEqCNPoDkG+vMAUEYYiwDXFhMmqZ0Onuk/Rhr8gHBwSEXsyR3pxWp0NJHCZ/p+XmOHz1CtVpjY+0Z7z27TavVJs1yNJZWe4+R8REuXfosjxeW+MxnPo8vcyqVkLt3H3H67Dnu3H/A66+/xuZ2neMn53n2bB2TZTQ2VqgNVdGdHRY215CFKioscP7lz9HcXuHW+99F5T3k4Ic2znLIGegxCxSiEvghkScIPUlgNb4QZMZgiBG5RaIIpecYfdK59xMpyaQgx0Grn9fHr75fRhiNh0HhTCRYgzaG1EgSq8iFW5FJqQ9WZP0sJs+NI3xYi+cHg/WYwfOLRKHvVklCOgRTNjBCaI0w1kX2msxtM4yhGEbUasNsbW2Q54b13V26vZhqqUyep9y4fovf//0/4Nq1K0xPjFIsKe7deczVqz9jcnKakZEhbt28BmyivADlK7a3VpiZmSDWPXr1HuO1stscFIpkOqNYVOys3HdmybxHs7mDbzNGSh5jw0OsrG5Qqw1z5swZ3n/vpxSLRSrVYTrdPWZm5jhy5AjVapViscDS0goLC8/4nV+6RLJ6l8wUHPsZ46IypSWzbguhRU4+iEx9Xh+vcisH6nGBxmnFvTAgjApIKem029gBvrDf7x8gwLSQaJ0Td3ooPyAMi1jlXN56kOAl/QA8H4NDLN17skSsJYVqjawTc+3aFQ4fPsKxIzNEgeX0qaM8FjGezUh3drh56yPCsMDY6Ci1oWGuXPkZeRYzOztJp9tkc2OToUqRTrtNrx8TxwlRocKDlcdcuvQm3/vJh9SqVaynQGQM1Wp0u11mZ+YRQZVqqcDi04cMVyJ2VjssbjbYXFvl7bfe4uKLp/F9xfvrD9jYXMeXAbKg0JlEe9ahqVI9SHtyAxLPaEyekxvrGliU03VK55NAKWymcQSx7HlAyf/A2pctWlx8MgPbtEWSDdLN3PM8wAK+51EsVomiCKUUjWYDbUB5AWEU4YcRvufM6kpK0iSm2+2CztDakPYTZyHONbkTrpClhnJ1iGMnT7Kx9pRMW7a3dykWimidY4WlUClQ397mf/nH/yvN1i7PFu4xP3+ER4+WQPgYA7XaKH/yJ3/M8PAIjeYK0zOH6DYsfrGMDIpsbm0xXKuRt/Zo2IytlUWGpw5z/p1v0Nmr8+D970DSJAoF2qQEYUjkeVgc+jSXkOsMTcheP6EtCywvb/Lo2SqliRbWGqQXEid9KknO/NgwKms7D4SxmFwPnGefnvpE/KT5+83s30jR2f/YSIn2fafRzWJyYxDKI/B80MaJzXVOojVpGmO1wQ8LRFFEWCwhB7Dk/oCS4N6kQayoAa2d+xDhsEUmzzFeQG10hlKlzIWLFwlDj1ajzsb6MtsrS/jCEoYer73yGqVyGeUpisUCZ08f58ULF3n33R/Qjxs0m02ePFkgjEJ6vT5pktFqNdnZ3WTEgglKpHmF5eVljszPg4J6p8nNWzc5ffIMF9/+Fe5dew/b3T6IqjRGEgRuvR2GIdUoxA9DPE+BSNGWAfQ6R2kB2pKkfaTnEwpJrjy8gVgd6ZN8Mi6BT205OYEkt5ZsMG2U1uApQ55ptAgwSCz5gfQg7sdIqfC8AGsFQnmkaYoxOVGx5KZESPzAdyloWmNS4RpgBigynZHlCSAx1jI0PexIA0rQ6SV4XkCctsitoZxVkHGHTmOL3/udb/D9732fx2tPmZ2d4/rN73Ps+AlGR8cYHZkgKkZ0uz20TomTLuicTmuXnVaXen2XkbFJ5o6ddodKCTkpvUYdL0upKsHu7i5lWeXawiN+7etf5/qNW9TrASdOnqZYLtNPMsqVIQqFElJ6pGlCEPnU6zucmBmls7uGEArrK4zMXdypdlMYY/UgoFM5jM2nbF32SSojJRqJFYrMikFUuaPOYC1Jt0/gq4P7cBAEDA0NkWPdNFe6pCffC1BRxaXQGYPnO/SSshZrctIk5t6DR8zWFK1Wi42NDY4dPc78/AzVcsj1m2tc/egGcdzlxJHDvPnmq/R7OUIVuHXnNpOTEyRxzOrqJsoL2anvYjQsLy/Tau8RhiHFYpGRasTW5h4LD+4iMTSbdYYqZfxAEPgRCxvPqFbG2NrZolIKeOnCaR7cu4PQhkPTU/hWc+vqzxifnmRqZoIwirB+gBY4KZcSaKPJjZMpmEwDISrPSU2GlRlI6Rrg3GDFIB5YWpcSNeBWG+noP8/r49d/jRXdr/1mF2HJjB5cu27qLv0Q3/MpFosH/od+3CfXGi8I8QOHZozCiDRJ6XW7mCx17FlyjNFo7aKgTWocdtMPKZTKVMoVzpw9i0WxvbvF3vYmSZrhBzlz83NMz85QLlfotrvcuXmVyclJxsdHuXz5KrWRaR49WqQ6VMYaGB0dIyoWMFaSJH1ybSh3yviFjEpxiF6cux7IxHSabQSaNOlRqY3y6ue/BnEbEzcZq0UsLT8jDEK6vuXZXpvEalq9DpUyFEpVfnz9Ol5QxIbu2XHy+HGW1rYmWeZoAAAgAElEQVSplCPGRwvUhAHhOVnGvtH3U0Zd+kR0N1J5B0k1+9oal1ijD3KhjVL0TY6wxmUvaycr8HyPuNcl1xnCWKTEJdoMDCjWgEBSKhYdhktK0r5PnPUACFRAJoz7GvwAneV4xRLnX36JidFRjE7Iky6760v0W022tjYoRiF/+C/+gHK1RK06xPb2LkmcUG80+b/+z39FtTbC+uY65VKFdrtLtTJEuVLk8aM6i4vPKJeLlMpFfD9EiRQti6xvNxiuDSGyPjpNWHzyiNkjJ7jwmV/l9rUfY9pdFB2CwMX5KekeRjWVMuRHRGikVVgsRoGnlQu28D0GcjCk0eQaMl9hjCawBvWcovALleMyGxhoEff1iBm4CYIV6CQeuKdd7OJ+X+b4hpYky0EoyuUSnh+C8Ah8n0IUonVGmsRgctDOgGiNIctyhOe02kZIzp17gXa7weUPr5EkCc1ul6GRGi+98jKVaoXZ2UPcvXOP7b/6NhOT07x/+Qq5LhBFIUtLy7T39uh0YurNNnHcJc1TTC64desW09PT7O7uQgpJp8HCvRvMHz5Eu9Oi02yQtZq0u3sIZTg0N8fI8Bh52qXVajA2Pka5XCMIIkCS1OscP34aACE9Vja2mfMCmvUdvv7ZX6W+/ACjfBd7ioexOUYYjI5dPKojimKMRD9fPnzs0kKiB9GzqQt+ci7ywCdNsoP7rxAODRZFEVEU0c5SrFQMDw0DbjgRRh5ISdkPwErHae4n6LRLogVJ1uXFz77Dlcvvo0yMSTv823/9r5gcG2d2/ghvvvYmy6srvHj+DMiEBw+usr3TQxtLo76HkgG+F1Gv7wESISUqDMkbmqNHZ9nd3aXVbDE9PQXgqDlCsrm5w4kTR9DaImXAFz//K+zWG7Sa2zQadRqNFofn5gl8j9HaMN29BtubqyytPqXVaJGfPonwI4TyEUIhBugp6WtIc6wxaJkh8hikjxUKY2IMjlGtjYv1RXpIheM2S4NLjHheH7f2saL7oQb/ddkBjcbgZIxCQOAHB5tigH6/T7cfIwasfKk8/CAgzTL6cUzc7ZCksUv5shoE5NqiMyelFEGE8AvUxqe48NIrCAxb60u02x2ajRaFQsjIxBivvPYqtVqNjY0tKlWPbrfLX/yXb1EZHqFcGeOjazc5dPgoWueMDo+z125SKVd5+mwJkMxOHaa5s0kmmwyPpQgvIiqPslHfpRgFdFo7tPfqbK0ohCdo72xxeGKE5qbB9yWLa6vc67bZrW9w4uhRpk+cZnVjlZU7NygOj9La6zA3NYsxXayQTExM01x/yuHxGVhfQkg10CArZzITn65r95PR4ErPJT5JgzT6gEG3r701xhDHfReVJ12jYLIUIyRZmrrJ5uDCQwYOtRS7i9cPAgrFMnmeUSoUAYNOUwpRABriVKOw5BaqQ8PUaiPMzEwzd+QI9d0tGlurrD59SBrvYW3Mb/+DX+fevVv4kcf1Gzfodrtsb+2SJRn9Xo9qtcaJk2e5e+8xZ05fZHJyksWlZXa2dpgYn6NQCvjZlSts79aJghJvXfoMO3s9dC+jMD3O8sY2hydH2F55QLfdZHzmKMcvfoH+zHHqq4/oN1exJASeRxh4lPyQijQUbYYSggy3u82MwJOSzXabvgAblEhSQ6Fa4emTJ/Q6LS6cOEognk/BfpHSTnzobrb7yBZrscaFQOg8A6sdUSBzr3UYhpRKZcIwotmsoy1uPRYEhGEBKQV5mrHX7BEnfUyekOcZaZKTJylW24G0JGL26HEuXLyIsIbtx2usL68S9xNOnT1NqVJkam6GJ4+ekKY5jx8/Jk1Tlla+Q6FQ5u6dh9Rqo0ipmJ0/wurmJp1ulyzL8byQ+eNHKRUi1jc3KRacW77oWSplj0jEXLtxhdGxUcpFRbFQQuuEPO/R6e6SZpqFhRW8oMD8sdPs7jbZazU4fHieo0ePs7fXJkli5g4dxsQdvvDaSyT1dcKB0zw1hty6YBJhJEJ4GAlgMBasJ/8bZvbz+u8vi0VblyyXGrCi4FKcspw81wSBR5bm+L7bFCEkceLIMqViEXCBXqHnk2jjmOGtttNMa0OeJeRpgjY5U2MjTExPkqYps9OHePZ4kZHqEHHWZ2xsmJmZWcqFgKVnyyyuLVMpD9Fub/A7v/O7/Pmf/SdWt7Y5fmKeZwtP8FXIr/zKLxN5krWREXq9Hmsrq7zxxus8fvyYU2fOMDw6ycjIKJtrixw6dITbd++yU+9y9fptmruOcnPu3Bm+8rWv0u/3qQzVMNpjrd6jtVvn8ZP7zE1N0MkEQ5UKUVgm1SlisKolM2S+S7Y0XoYxgTvgpilCxwilEUkPmWUYkzqDmZQom+MZcKSV5/VxS3g+WucHLPH9re9+tLjGTXCVEnhCYfAHGyd3v+j3+wNWvkdULKJ8J0lot7suSjxNXXTv4DBtrcIYkFIhwghrNKXRGc5fvMDM5CRpv0WzvktvZ51eswFezslT53j7nbdZXl7m2fIyaZLR3euwtLREsVJhcnKayx9e5fwLF9G55uGTJ2xtbVEsBCw8XcIPvYMBn9YaP8zZWn5KsVpjOAioFkN6/R6hL0jjjLTZILc5YShYerLESKXAbqtFmmi++tWv8P57PyEIA65/8FPGRseRgY9OMw7PT1EpVThx5AW0ldy/f5/f/OIlmo+u40lLlmcOJ2gswli8T1m78IlocLXWgwvUwyBR0mCNPpjq5nmOtS71iwHXVUjltDBZepAFrnUGUlGuDjloORIhXTMcdzqowCdQHoUoIE0HgG7lTBFKeczNH+HokZOMjU/Q7bXotFs06rsIo/F9j9de+wzjE2Mo6fGDH7yLTnO8IKDX6zE7O8fKyiqr6xuEhSfMHz5KqVilvtvixz/+KWEUYfLEGRSEw0l5nuT9937C0Ogk5dooSwtPyHOPRidGeB553Gbl6R2i8jDjE6McOnmOvD3NSEWxs7uOyTW2ENA2GSoqkmddpFAkOTSyHOUr+kGZb773PrNTc/TTFCE9Do+Pcmh8lMAkYD5dK4dPWv1NNy8H0coMdGCODao8D5O5f1cqlSgUCoRhSK/fJzM5flDA8xxZwfcUvW6PbrdDFsekWexoz9aQpdoFfHgKr1SjOjTM6TPniIpFmrtbJO09drbW8ZRldHSUN95+g29981tI4XH12nUAioUSp06d5PD8Mf7ym9/hy7/8a3zve98ntYtMTkyQp33GR6t4ns+bF17g+s1bqEHyX71epxAWKEYFbl+/gTUZczOTPLh/l0OHZtitd4gKAc1mk2J5lJ3dOt/4xhe4cesjRsfHGBsZojY2Qj+JqdWGefzoAb7SZM1tzp+aQ+9tE4qc1IIaXJfWWreVsI4pmjPgi+6nxT2vj1U+btuVW1zCIQZ8MZhmSYw1mDynXK0CkBtLZiyBF4B0TvRiuYIQgl5vQL3JnAHQWkua9MG6j2u1YR4+fEyztUe30aLRbLoDXTHg7LlzNJsNtNHcvX+Pl155g+9857t87p0vcPnDa7zyyht8/cgc3/vuX1EulTh29AQ/u/wh83OzvHDxJR49ekSlUiFNEuKkx5uvv87KygoLC4/58pc+z8P7j9jdafDP/ukf8K1vfZtea5NKdYhrV29y/tyLpElGp9OhUCixubmGtWbw8xnQ6e6ByYjDmEKphJQSb0D2EEqhpSIXHhjfhY6IDJP7QIqyDieFNZg8cXgx68xOyj439v4iJUtlTJ4jsgzy9MC7sx84ogcJZp5UCBwZRGDJc02WJsRJSlSoEHieYzhLiVGWOOkPPocztGeDtMbQC9xB2wsIoxKe5zE2Pc2h2Vm67RZJZ4+1Zw/JkzZBqPjtf/B7XL16he3tTZqNJu12lwcPHnLx4kUK5TLK81hf36TRaDFUGWNza5Op6TkOH53n3p0baG0RqWV4bIJjp05x7crPKBaLRFFE3uuwcOsaL736Kp3dFomSdFot2lubRIWQZprgeZJqKeIP/+Cf8ed//p+5cuUKxkpW1zeJohLGCN5443WePVticnSS2dlp9potllc26O7usL1oBrHqEoQecN2NC5HKP139wieiwRUo5wYfoGpADRI0XCSv1hlKSLRJDtbAQghM7ugCB5pazEGSkvJDEIJcG5K+Q2/5cqDH7ffp9/t4fkixOkQ3zSmVyhw9cYJDhw+zu9NkY2MLT3oEUQSFMmFU4dmzRd577wNGhic4cfwkP7v8AWfPniNPU+7du0ehUGSoVuLWrZv0ezmvvPwWV65cYf7YSSYmR7l25X329pxuTCqP06fOsrS0hC8t3eYuYJk9fIo4TtFAknYJgpDWxmO2Vu6SJzETtSrtUkS1UqLT67GQxbR3N6mEERuNHc4fP8JobZh379xGeiGhCJiYnKc2NkYQJ+w09+h0u5w5MoO/vYR+3uD+QmXNz928YA+iDF0SjINsSylRniIIAgqFwgAPltCP+yjPYe38MMALPNIkI0lT+p0OWercvZkxA/ir7yRRQlIZHuPiq69QLRdJui02Fh8zOlqhVIr44pc+y+LiM27fuslQeYhnS0tYaxkfH6fX61NvbJJlmq997assLDzla7/6ddq9Fvfv32RoaAij3ZRueXmZ0ZERnjx9yubGJlNTU2xsrPPqq6+wtrYKCB4+eEgURty/f59KpczjRwt4foE42+OViy/wg+9/l1LBozg7Q1goEgQBVlp8X3H2hbPcu/oBZaXRrU1C3cdYgdAWkRuEES71Kdduc2Mt0hrnTCd3zdnz+liltAYUUgqMtgdoq300Y5IkfytGvJ+kSC8AGCQmhQfG4DxNkICHJc3d9MuazH2+NEMqH6TH+OQ06yvrlKtVamM1Xn71FTrdDqtra3Q7PSYnJ/noo4/4rd/6Bt/9zrv8w9/7xxSLFTZ21jl29ChzM1Ncu/IRb7/9Np1WkyiK6HQ6Thdpcv6P/+1/Z3u3zuuvvcYPfvhDbly/Tp4ZXn/tLdbXtxgdHebFMyd5/PgxteESV69+RJrGfPbz73Dy5El8X/H//vGfDKZ2hnZ7jzztUyykWCEoFAoI5Tl2NZALA4NAgDw3g9fTA5kgBE5p64PMcjS508uZDJMlf2/v+/8MtY8VdUb0EJll2CwBY8iMi0IWAwICxmClM+qmWUKepCglsCZ11yXuUKeUolQqoYTEmJwsjlES1CC4RAO5gUKpwNzcPKfPniQqltlcW6KxtY7NU6w1fP3rv8reXpuh6jjvv/czjs7PE/o+F144z61btygUipTLJXrdnLfffps0zTh16hyalOs3LmOtZW52DiEkb73xGqvrG1SHhvE9RaPR4NiREQJPUSv6fPDoDtMz08StJiOjFXr9PT7/+TfIMst3//ov+E9/ptBWUB0aRkqPk6dOsLS4zMjICM1Wn1dffZ3FxUV3rXe77O1s8mu/9A7x8i1yFWJ07oy8RjtGMPa5ROHjlJTeALhsMWZg1NlfN1iBSzk0BzdTpRRZ5vKnlSed1lQYdJ4jvTJplpPHqYONDwTpSik6nQ69Xg8vDAnLQxSKRbzyCNMj47x56W1GKxF7e206vSZ50sGXhkhIVFRke2eVJO1SqVR5/OQRm9tLvPjCRR4/eky5VGZmcop6vc7c4aMMVce5eOF1Ar/E2MQUpUqBbq9OIYqYHJ/CWnj15Zd4uPCUfpphBk74Slbk0bX3Offii2w360SFAq3tLeLdJqWhISKlaWw8gUrEg4dN0sRw5MgRTp06ycrKIsL3Way3ubOwQXX4MN24PzhxZqRZxtT0PHH3Aa+/cIKRtEtH+Aj5fM37P6IODA649W9uNAYxYLkqQs8/cO5qren1euS5ISxE+GGIMZa9Vmfg0M0HyXuhi5y03oFRIipUKBQKTM7NMD05ydbGCjtri7Tr2zTyHr/xG7/OkydPiPuWQjTEDz96l6mpaU6fPMGtW7c4dvQ4nW6bmZkpnj59QqPe5a1Ln2Fp+SlXr1yhNlTk1MlTBEFI3OszN3+EvU6H6ZlZpIB6fZu9ToexyUnCUgVlE4qFogPrJykXL7zEuz96j5nZCQ7NTTJc8em2Gqwtr9Ltx/zy5AQTI5P86Mc/olwKoVvntZfOke4sIiWgnSmHXIN27FBjM2zu5Iu+MS7cwmTuTPG8PlaJPENbF8uZaoEqOIbsvufB932kNaSDda0xBjWQhGitEYHTkydJArkzWGFcEAJ5Rp7FCKFQgY8fRvzkgyt4Nqef5swcGkV4gonpKb71zW+7YBtjkdKjXAm5fPk9/sk/+Yf80R/9MdXKMBdeepHtzW0g58ILZ8jiPjdu3OCdL3yRNE2Zn5/n5QsX2dna4K/++juMT0zxL/75P+eP/p9/x8T4HK+9dokPL3/I+vo6oVD0+z38ACrVArdv36SbdHi2+JiJiQm++KXP8ad/+mcEMqB3OCHtJ3Q7KZ1eQqlUoliuUIhKeEGA7wk865ErQSqsw6Rl7i6QGYux0kk/jHDmMiuRxplQn9fHryiKBoZr1xMYz8NGEcYYkn4XNYgPN1ojpePo9/o9sjwl9H0YbIV1z+lO/TDA9wpkaYaQ7p4zMlwjTRN0auhpgxAevvI4++JFzp49T6Yti08X8D0fLwiJgjK5Uly9+pHzBqkC1WqVnfouoR+w12pzeHaOdrvN1voGUzPzzM3OsrXZYHl5mfGJYcZGxlhfXaLb6fCVr3yFjdUVAs/DZimr67uMjY2xvr7GyMgI3/7mXyAVjAyVqW+tgfAZHinz3vs/ptuJmZyZY3O7RaFY4eKr51hb22RpeYNiZYjN7TrTU9PstXvkQvLwyTIrTx/ye7/6K7TWHiNkgA5wFJtcY2SOVYPff8qMvZ+IHZ8xGqdjdMJxN9EdUAPyzIUxZClxEru/V56LTRwwQa11Gt041Qg/Ai/E80PXBA8qjmPiOMb3fYaGRqgM1QgKFWbm5rj0mXc4deYsExMzBFFE3O/Tj/fY3dmgWd+hn/SpDA0zPjHN0aPzHDtxiMmpKaJCgbBQIiyUibOcE6fOcPfuI4z1KFeqtNt73Lhxg8cPH7DwZAGtczrtNmMjw2RJjE0TSlGItZAkKUOVMiePzBLKnIX7N2lsLZM2dsmyLpurj9jZXCPuZWhj+ae///ucP3eGJOlz+WeXUdIjCEOyNCPVGa1mnXIlBGU4cuQoJ06codePGY4EaWOLfmMb32qs/nRdsJ+G2mc1I7TL+Zb+gC3qpj1xHAOCMChQLFYoFEr4XogcSHLCcN8MYVHKI4wceB8BUTHk0JEjvPnGm4RBgDWGvU6XYqHC0NAoy8vLbG5uMTExzfXrH1EbGaHV7rCyssbZMy9QLJWJihXixIAK6CQxS6vrRFHI9NQEczMzjI+Ncvf2Hc6dO8fu7i4vv/IKL7zwAo3GLl/96lc4Mj9Pr9tlc3MDow2+H7C6vk25OsZPfnqZM6ePMTlao76zxfbWDsXiEOVSkWoxolffQdiEV146T6+5yRsXX6DXbqC1M+UY48KOjbQgXcrWvlRJyH0mbo7EIJ6n8H3sMmiMNMQmo280udYDkoc50DRaY0gz92fOECkGD291IB2TUiIsTi6lHUbIRYi6Znh0dJSh4RGU8tna3qXdaSOU5Ld++xvU6/UDZnkURczPzxNGHmGk+PZffYssS5ibm+Y//tl/pFQokmc5n/3sZ9nYXGNubo5Ou83coUMIIbhy9TLHjx+nXt9ldWWZWq3Gq6+/wtbWDn/+5/+ZN9+8xOjoKN1em0Ih4sKFF1lcfMpbb73J9tYu9x885Natm+zW68zPz1OrjRFnBm0VvV6P3d1dtre32d3Zodls0u92BlGuFiEFypPOI6IUUim8oIAqlJHFIWyhjChUEcUyIipjw8rf75v/KS/f9/F9nyAIBqEGwUEglO/5eH6IEo4GkhsnS7DWaUjTNCXPNWEUUalU8DxncLdZRtbvodN0wB5P6Ha7JHlKuTqEXyxSHRllem4OL/Rod5pkWR+0oVaqYoyh1+sTx07f2+m0mJwZZ2RklDjN8cKIbi/h8JFj1JsdhmrjrK5v8uDxYy5evMjW1iZYzVC1yhc//1nu37kNQJplHJ6fp1qtMjU1iZSSucOHGZsYx1jBg/sPGBkZZnt7C601xUKZcmWIkfFZEB5nz57h5vUr5LrL5MQYY2PjvPrq6xw9dpJCqUKtVmOkUuQzL72I7TYJsfhKDIJgFFYEWBk6VraQaPWJmIn+d9cn46sVbiVkrUII6bi0Vjg3+iCRLM9yfE+hfB+ER7FYJAh9sjihm6UYCzIoYIUkjIoIIMxTbJ7R6/XIMucMDqKIcnUI4UdkxnD2zAu8+MKLDJV8mk1JmmiMNWRpn1aridWWqfExer02jx7dQ5uM6akZur0eSaoJozKNZofx8VmWVtZ453NfpFgc4sbtu0xOHqJYKlAbLlPOPMZHqqSZZnpygna7TblaJcxzHj58xGuvvcrm5iZBEPD48SOEyTh38jh3bt2iNlxAqQLnzp1ndWWdmzcu84PvVylVh6gxQjEp4QdFClax19rj0qVL7OzsIJRkbnaOYhSQZpaVpx/yj37pNbpL9xEKsjwfEASf18et/YnXfhMGDAJ7LZ5UDumlPOSguU2zhKQfExUq+EHoTJTaopSi6BfxlHKRk3mOjQI84dFLc3IrUJ7HxPQMZ86/gB+WWX62gK9CDs0doru9TZJ22Ntrk+cZe3tNhGeYmp5BCok1iqdPn4GUjI6MMDs7y+H5iAsXX+bmrSeUI4MvFRdffIl6o0Ecx1QqFZ49e4bn+yRJwisvXUAKQZa6gIm5mWnefvN1VlfXCfyIYrHCiRMnmD80QqfbxlrNm5feYGV5HZHE1IrjLD19wur6Ehdffpm9Rp0okMTW4kVF8jRB4PB91mRYo7HkKCGR2uHvDI46bhFY8Yk4n38qyxpDZiWpFmhjUSZHKfBUiBKCOE3JMxe7K5VCG8itASXxfQ+pFJEnyLUzBSZxQpqkkGtMmiBCn5GpGS68+jrK9wi8gL1mg9xmNPZ22dhY4/L7H7C6vMzJkyep1WosLz6l3+szPjmNsSHDo1M0ul2+/JXf5OqHP2So7LPX7KFEgceL95icneLhwiMmxscplwT3H9yhWqrym7/xDUSekPczSqUJjp0+zTf/6r/wta99nVs332d5aYWHjxf45S//OlmW81p5inp9C2MMZ8+dZXZulu99913a2TRBqYgnPVp7u7T7Xcc9r/VJh4YoFstEpdLPHf0KpAgcCzfTODp+jgwqGOEjhY9AIVT/7/vt/1TX/uu9H+okB3H2LqpZocQ++nPg4UkTpHLTdXBSnDAqEBUKWCS5saSJa4KllMRxTK+fYISiUCwRVaoUgiJvvP02p44cptfvYYUhChVGaJaXlun1ehRKJYKgyonj8ywuLXLr5m1qtVFefOFlPnj/MtVKleXVDeaPHiPLMvwg4Mz5F1hYWuXyhx9SGy7ya1/7Mj/84btsbe7w5S9/mbXNLcIw5I033uD+vdv4vk+326VQKlOMM2Ynhun3exw9ehylPDbWnvLlr/w6cdqnVd/l7u3rRJHHkbmL7O7uMXP0CJVKFVLL7VvXiXxLQSfMn5hB7+1S8ixxDgZDZgwSR6VAehjhJHefpvpEPCG0dS8oIscySOnCTQa63R5p7GQJw8PDFIpVlBjE16b74Q8eYbnG0OgkhfLQwYptX2sbhj5hVEBIiUYhClUKI5Ocf+l1zp8/Tyl0Uby9pMvi4lOkgUJUYnJ6jpn5QyCgUqkwNzfH1PQsU1NzpCmUy8NMT83x+S/8EvfuP2Jru87m5jbnz5/DU5L1jTrnzp5laWGBw7MznD93jpWlJRYWFhidmKTRaLC9vc2pU6doNOr04xhtXXiE1oaf/vjHHD9xhO2dDfbaTW7fvkWv3yUqDnHnzmMWn63z+huXKA2NYmRAGJWZO3SENLMcO3aS8dFRPE+ys9vgyocf8o++/mW6m0toK0kGSS+ftgv2k1b7h7A0TYnjeDAhcJMt3/NQQiCVIk9Ter0eSa+PpwRZFtPvd0iTPkaneL67aeeZww+Vy2WX8GcNYbFAUK7gl8scOXma2kiVftbF6oQ07ZEnCbu723S7fXItGB4dJcsSDs0d5sjRo+zW91hd26If52xs7vL4yTNu375NuRSysrTIXnPv/2PvTWPsSs87v9/7nv3c/d7a95XFfW0uva9qSZbUkrV6mQwyFuzYBgYJMBMnQYAAwSTfjEGCmcSDOFFmNLGiQPI2Y0uytXSrd/bGbrK5s1hFVpG1193vPfubD+eSToAAQVoB1G3w+VJFkCgU65w653mf5////1BJRH9fkYmpCRwng+nYZEpF5hbmUImi1aiysLDA+ffP8fOXfsavfulLrN1d4b33zvHOO+c5cfwMk5OThIHP9Wsr3L2zRTZTZHRknGeff46FA4eQbonNWpdmy+Ovf/hDMpksjbZHYrkEVonEHsC3c0RWgcjIERtZ4l78khIi1TQrerwiUl3yg/pIFaMRJDoJBpZuIogxDQPbNnqJHQFhmE674jih0+32fA7pC8+2LAxdI/R9/KCNH3YJwg4drwmGhjQzjIxNks1nUbGHJGRmZpz+gQqPP/4Ur7/2NsVShUqlQqfTYXenCkpy4uQZms0Os7MzPPLIIwwP9vHqK6/z5FNP4bo2YdzmC198nv6BITpeiB/CxOQ0TmYAJ9tPIiR+0KJW32RgsILnN9naXOfMmdPsbG8x0DfFo488h2Vl2Nre5Y033+D6pbfZXr9F2Gnxsx/9mA/eOYfrZkgUbFdr5EoVypUhTCNDpxuycucOi4uL3F65xeb6Ojs723Q6rZRcpmnoPeqmrqd6XWU6CDuPcAtIt4LM9P2yL/8nuqRmoukGem+Ka5omhpGCcXStlz8cpYbzpGc+U3FqUr/XHMdxTL3RouN1Cf1UE63raYxXvV7HsG1KfQNkCiUKxTLPPf8ZTp1+nNHRKQqFPnTdpNWqs7x0kyCIOfPYI0fwBrkAACAASURBVOTzBcIwYm1jg3yuxFe+/GucPvUII8MTLCzsp+1FhJGiXmvx5JNPUKvuUMj2cWvpJo4l2Ts3w9zsfra3aoyMjDA2OYXv+zSbLXRd8Nxzz3D69EkOHzzI7s4OQ4MD+H7AyOg4tZqHpmeZm92HRPHh++/wxc8/z8hgH3qScPaNN4lCH0dKlq5dY/XWEvv2zVO7c5tTeycRu6tY/i4i8BBhFxl6aHGAnkQ4hFhJjI5CfsIGYh+LN0SsFIkSvY+qN9ENezEZEaZpks9kkZr1d9qbKEwZ00ohhU4mVyBTKJLN5HEzqbsXAYoEzwuIEFi5PvpHpzAzBQaHxzh+/BiDA33kXANNkwReF9/rEMcRfhCxubXJtevXyGQygKLV6hBFAbV6lamJcW7cuM7KnRVef/1tsrk8Tz/5FKVSkT/70+/R7YbYpk27VeWxR0/jez5vnT1HFEZMT0/T6XR46umnkVLD99o89NBxPvuZz2CaJqXKAJaTZXt7h6WbS7hOBl0zGR4eptVNGBqe4JHHHmd6epo333kDy7Ko1xqMT8zQbHe5c3eNeqvN7bUtas0OF8+f4+mH9lNdvUaIJNItImkSCEn4oMP9xSqbRzgZhGEhpNbT3yYo0cvHBmRPMx70zCX3MIqKnhENiOOIsNMh9LqoOCGKUoJUGIXYmSylSh8LBw5x+Nhx+gcHsW2bIPFoNHdptmu4uSzjExP09fVhGjZhHHNw/1E8P2bPnr3YtsP0zDwPPXSKh888wkB/H163w+3bd5iZHaO2u8nQcD+GoQhjn0KxzNDIGKViPxk3w+zsOCsrS2xv75BxM9iWxWOPnqHZ6PCpT32WbDZPo1FnsH+Qze0thodGuXlzme99789YXFyk0Wiwvb0JUufKtWWEsHjmmefpxoLYyKCsLInjEhk2oekQWy5R72Os2SjNIEmDKlBKIpIUXf2gPlol6ERKECOJ7+czpyvcbs+Uq2kpzOGe8cyyLBzbxrVTA0qz2cTvtgkCjyjy01B8KUiEIFvuZ2JqinazSdBusrO1SavV4te+8ev89CcvksSSZquN5dh4QUSuUCJBY/XuBokSnD9/HsuUrK/dZu++ffzgBz+g3akzOjbA0NAAM9NzbG03kYaL4eYZGp0mXxzAD0LGx0fp7+/DNKC6u8Xi9Su8/9679FcqmJbLG2+epdHscOXKNUZGxzhy9CCtVp0bN25QKpaJooTJyUn8MKZYGUBYWbLFCsVyP7lcCU0z8MOAWq3K1tYG1Z1dGrUq3W7r/kbnvo5ZSjTDTPOyNRNl2Cjd+SVf/U9+pXJGAyF1tN7aXAAqiXqpS6mvJQpT3L0UAqUSoshP71GZShniWEGvCfZ9H9/3cRyHbL5IrlDEcHMUyv1MTU1TKWSwHYMoSmjUG2hCI5MrkCsXWV9fJ5vL4Xke21u77D90EM/zqDfaLC4t8va777B330GymTwvvPAFmo06n37+Wbww4tatqxSKLvv2zVOtblPpr2C6Nt2gy2c++9nU2zM8xM7WFu+fO0e9XufwoUPsbK6haRq+H7G9XUUIg2arxhuv/Zi9CzPcuHGNjbVN5ub3Yekate0NZOJTyFjUqlt8+M5rfOapM+hhB5mknqYkiVBhiIgCRBShRSEi9DDiGCNJsJJP1kP3YyFRSGLoweWRpBo8TQhiQpSK7jcE7U6HOApSjRiKMAqI4hjTyZHLVTCdbKpD9bt4fqq3laaJ54dolkOhb4DJ6Tkyff3Mz84zPNiHTkwcKTTN5NqVy8RRSKu+w62lZSxNoMKAv/nRjygV8gyP9FPb2iabydKROocP7McwTa5evcb0gSeRkcfxhRn+1f/wP9JN8uxdkLz37uvs/fWvYlgGU0qytnmX0kAfd1fX2NzcYnBwkJGhCs1Gk4GhLO12m+3tLSrFHMeeeZrbt28zPTVLp+PjeZJCocLQQJELH5xjbHyI2fk5dnfbzC/MYTk2p08/ilIK2zWwTIPz773NqcMHsYmJJXjSQGmSREgSBIgHVJ1fpAzDQPUIZUopfL+bmh+lRCXpgU2ov0tXiOMYz1cYpk2xWExD4HWNOE7D4XVd7+Gk26AZ2JaDabtkiyX2HzzC+OgYURhSb3TQRNpQ+37A4UOH2N3eRPrpy7XS18+775+jv9LP1uYOIyPDVPrGWFnbYnntDr/1G1+lurtFmMSs3LrKgb1TFPIZmq0mumGTy5c5+/YHNNoBKoo5cfI0r736CqVSP1/98pe5tXyT6nYDyy6zsbnDwsIcZ996hYcOH2Fz4y6dbot8Pku9XqXVanHixHEGBwf51//rt4nigDDqcvnyh/SXKxQKBcJYgeYhNAuhByA8EnxErBP3Po+TmEiloIxEJKgHeaIfuSKpEyuBEoI4TkjDaHqAgijBslIISJSkza1hpXIayzRI4ohGrUG71cT3OkBClCjQU/kY0mRocJBMJkO3XWdre7v39XJcuXKV4eFhTNPmw4vnGRkd5uDhg3jdBMtusbq6TibrMjs7w53VFTKuQ6gAEfH5z/8KSaw4f+ECU1OzZLMVjhztZ2p6jLWVu1TrDaZnZ+l0OqyuLPP4o2d46efvoxkZ+iolgjBA0xNOnj5Oq9Ukm8uwurrC5k6DhQNHsC2XO6t3KVT6iOKEvv4BumFCmEA5X8Y0nBSR7lh0u22ioIvX7d7HGft+gJPJYTsOmm4gRGpu1pMYNEmSpH/WHuDRf6FKYoWQqicL01BKggqJlSKKIqLAv+93ECLVR0dBkm4mQoVp60hNx3WzPVlUQtDDUd/TlvthRN7NY1kue/fuo5DPQeQRI2i0GzSbTRKlyOcLrN29g4gjLF0yNDSE0BQ725tYukUxl2V6epYjhw9x/sNFKmNTLK3c4cDcBK+++ja37uwilceJ448yOj7M1as3qdWbjE/PcOPGEq/eeQ09AcNUrK+vU63usr2zSaPRplTKUS4NIHWTx594iosXLxJ2qwwMVLh79w7PP/8pyqU+/CCgnM/TabVZXVpkYnaGVtNkIDOIEQe0atsYACI1lipiVJJAHPViGlMSjBbzANX7USpSMVqU6hiVAE2XIMV9w4OuafhRqsWVpHmYnt9FJArTzuNmi0jDxPd92u0modcCJFKBZphoGEg7S6ZQIVuscPDgAUbKZXKmhRQJEZKtzXVuL13n2pVLVLe2mBgZopBzsfR+5sfKtOp1bl67Si6bI8jn2Kjv8OOXfkyoWZTyJgPbG8xOLdBte1iZPAPlPq5ePsvXv/ZFBgb72N7Z5acvnqfSP8Ts/F5uXF8iDrax9IS52Vm+893vMjk9w+HDh6nXaxw7chgpDSw7y4VLN4mDkH379pCxTOZnxzHwiYIuly9cZH7fIeZmZ9jYqZLLZ9GExtk3XiRu1Tgy0ceIGaL7XWIhiIVKYRDoJFIjUcEv+/J/ouueo/fexCCOQ4RKgSRxGCA0/b5kQZc9xGwC1r1VWhynbVpvUxFFEd1uF03TyBbKmE4GdJOJyWmOHztGoeDQ7kjiRKFrJoVcCaHg7XPncA0dx9LxugGmozE5Osvq7TsszEzy45+9yM3l90iwmJ0/xEsvvczs2CiL1y4wMFhCyHGKxRJ+oMjlKxRKPqZdYGDUpttucGe9ybvnPuTUiUNsba8yNz/Bj3/6c9zcONlinhvLV0iShKWV61QGSgz0lbh2/RKmqfPyKy+xuXWXZ555DtOSNJo+hDFxFNBqVdGkIF8sI6UJGhjCIBEmiRYggjYREk1oxFKgZJckTinw6mOxf/pklpImidIR0oA4QGqyF3cVoWsGjuNgmgbdej1F7+o6lmUiUHS7XZqNOr7fTadmSqYmV8PCzRQplIpMT4xSKhTptBsYtsvk1Dxeu8naxgpCxMzPzxFGHsMjI/RV+unvH8PQLzE6nkY6+VHM7Nwc46OD/OG/+J+ZnZtge3eHw4eO0FcZ5eevvcWzx46xtbvDwUOHuHvnLnN75mjU1rly9QqHDuzn1tItWu0qnbDK6cdPcP3GZQYGBlhdWUKoBFsfwzGzZPIwMjTMlatXOHb0ELdu3yZSKp28xgrXdrAME9swyWZzuJkcvu8Tek28TotOt02n3cTrttAtB9NxyBWK2E4WoWkp4lSo+5NdzfhYvHY/saVpetp4JWk+NuLe5sEjDkMMQ0e3XGQYYFsuUihUlEZe6YaJmyugpHH/67XbHWQSYVo2QRIjhU6uPIC088zMznH06FEqpRyGrlFrttlaW0WT0Gh3uL14g1zGYnt1nc31dRzH5cTR/SxeuITUJOcvX0JJyXZ9l4zrMD29FxUK9k2Ms7h0k3KlzJmHniSfTSUzfQPjmHaOfGkYTZNk3AJJHPKzl97gzq0VyuU+hvsGKJcCLn5YpVDoJ0kEFy9d4FPPPcN3vv1vGBwYYf/+OVQiOXPmDBvb25xteGytbOAuL3Jz5QaVcj/Ts1N02g1MyyaKQAsEURwSc294oHqpEoJEKISKEeqTFSv6sfhNkypAoROjoSmBpozUhU56QksbhwhdQhCkoIcoCtE1lwSJ1AwUAj/o0G01U6SiJrEtB8N2yDg5yJbIlyrs3buXsYEBdJGkpKlYEYQB1e0d6tUdBitlzCTGsQ2GB/twLR1Nlajv7jAzWaFU6CM2XP7kL/+UX/u938fpm+bahbe48cFZ4qBBJePgWhZea5fx8SHq9RqW4xAGoJsun3vhK3x46Tpz8wu8+tKLPPn0Sc6efZMgCFleXiafK1LIOdy4sUShWOHQoWME771Hu7WDoMvQYD+LN66xfHOZnGOz2+7y+qsv01cps39hP6+9+jqDQ8OYxJQKFlNlBz1opIHjaMhEoamkd+oFHpDMfqG6p+mCnh7X93rZzOnpN12bxb39mcIwdAhTIlQYxcRJlEbVwH0CXxzHOG4mvXcLJdBMJiYmMQ2DJE4zn4PQJ04Sgjih0ezQabW4tXaHQi7HQH+JnGnzzquvk8ln+f57b1Jttpk9+hCWDPn5q3/LF5/5LKHn8dipk3hhiz179tBpdxkeGebCT37O8Ycep1AZ5MjR/fzgr/+SKIjZf3A/83tmKZcKrN65jePYjIwMkc9bTE3s5dTR47x37h0cR1Jvekgth5vJs7q2xJWrlxFC4HkeYRCRxNDtdBFJgiYNDMtJnfpa6obWlUIoiFWCEJIk0kn8ezKmgEhTPWDKg/ooFegOsZKkqYwRRCm6F3UPzZtiS2MVI4WBZuhIXRIFaVRQohSmaZPEIbowQWooqYFUFMolBganqTY8ut2QYr7Czt1lvHYb03SQmsK0HHZ36xw98hDvvHeOkZFdojBmYHCEWqtNqb+ft95+l9mRYaJOncjPMz01Q61aRwhBuZJl7e4iew8ewrUNZqen2Vi/y9bmDgf3zmOaOqu3bzE7OUqt7WMLwb75Wd65dI2hwVG27iwhRMDp0/uJVcztW7cxdJ1by8uEsUJ3XLa2txnsG8AyU9KV1mtQHSeDbbuEToowtjoOXrdLq9mg02nieV2iMMRxO9iOg2lkkEJg6DpxnPTSFx7URy2lBEJIhEhR6FGYymOSKMaxLSzTAGkSJKnRzw9C0mZN4thZ3GwR07CxDEk3iZEyzcLt+B6mk6UyMMrw5CxOvsj8nj3kXBOZRAR+kEpzGnXWV2/Rqu9iGBqShImxIQ4vTFLd3ubO0iKhF1IaqNAMWxw4doonDj3C8rX3qa4t4+02CbsdxgcHub54jWeePsP4yCg3bixhWLCw7zDPPv85fv7yT4l9jz0LB1lf3yARki9/5QVCv8t7524Sx1lqjS4LC3Msr9zgtVde5Z/+03/CH//xHxMnHouLi6xvrJMAW1tbJFInWx7H85tcv3qDw5Pj6KZDjEUiLBIiwjAgiSGROiQhggCJQMZJuvH9hD1yPxYNbloRMolQQkcpPY2Z6bkjozhAF3o6xQkDkh6lREodqVkoIfGDLt1uC5IoRerpBtlCGTubw7BsBidnmZ+dY7Cvj5xjoKNSTU4MQRSxvXmXYs7F1g0skdBpNWk1Gmx36kxPjDA1NYKpJxRyg3zvBz/hiU89Tn6qwMrqNUbmxtmtr7Jau8vS2hKzE8N8eOUiX/nVX0PXdLZ3ahSKBUbHt5ma20+rG3DurdfZe+Agna7gxvVlirkSJ08+xN2tdTKZDHGoc+TwCUzbIo4jOs0WpjHFzcWbPP3MExQLRVZurzI3MIip6XiNGndXl3FMnVs3LzJdyjKayaJ5dfSgTSBNSGJElEAvj9FQivgTdiL7uJVhGPdpZvcmtSqJ7q+7IHWsC0nP3JAaI6UCpZmYpo5SMQbQ6XTupzF0PB8jUuRMl8npWUbHxihkbGxLp95s0Wk1CQOPTqfN1vo6BxdmKTiSrKlR3a1yd3cTv+0xOTuBdzPga9/8DzErEyzdvMzegsOrl97ksUOnCb0mA5Ui1y9dZnh8klu3b3PoyCEqlRynHjmKJiRDg8M0G1UCv0M+n2Nne5cTx47yox++Srtd49y713n+uWfJ5soMDU2yeOMqmp7+f7vdNoV8P2NjY2TyJWb3zHHh3BUyTpYkEfh+SKPRRjebCKFh2ik1zdI0QqGnDZiQ6cRFpecEIQxEDMmDe/cjl9ANRKxQcZzKE+KEJIlwXRfXddOs8U4HTTPubye8rk8Sp1IcwzCIenpT07RQQqA0E92yGRwaJl92ad5ZJ0lidF3Q9VM9+djYBF2vSbfrUa5U6Hhdjhw6QMbNsbp6h8uXX02JS5kCzz7yJP3lAi989tO8/PLPSIKAVqdDLl9kcGCYmZkpKn1ldENjenoC1zE5f85la3OLwHMplgpkbJ2jBw+i6Yrv/+gvyExN0qzGrK3cZXVjjShuMzQ8ztLSTRSSRElmZuZwszl26x2KhXLqtg9Tz4eAHlZeoNsuQjPQTBvd6qKERqdVw/M9GtUAv93BcR3sTIhhmT2wAOj6A4nCL1KKEJVoQNroJnEaswlgWzamZeMHYc8AHKBISJRA023yhXIqIzEtotAnjMI0zUbaJH6IbjrodoZipY/JmRlGhvqxTRNBhEJjfX2N6s4mXruJCgL6igVKBZe8o9NfzlLKZzh5bJpyoZ/VXQ9rtMjhZ55l8dYGM4f3s1Y02Ll9i1q3xtrKEsP9ReLAZ3Nzi+HhYV554x2eeOqzNFseX/3a1/nT738XL0jwfI9jxw5x/MQhFq9fY2Njm+nZ40zMTXPuw7McPnqYKx+c41vf+l9YWJjFtCS1Wg0/DHj22WdJEnjr7LtcuXKJQjHD8PAomO79CTgyJBA+odQIE4lI0hxr4gTie1RJ0kPsJ6g+Rg0uIHoBQEmafZkkCUoINCHQNEHYi/KIkyg15yQ+plYkiAKiKCWP6KaFbhpYTjY1/SiFXexnbnKcvdMTZFwbXSbpdChO8KOIzfU7rK4sY1s6ie8xPjJMt5ulVMrz4QdrXL5ynpGhUfYtLLC+0+L60iLf/PKTVGWA79VRYZs7m9uMjQzy41dfJI/Bp59+ggvvn8PO5OkfGKLe3OW3f/f3uH1ngxOnzrC5sUY+U6C2u8bevQscOryXwPd5551VYpXlxENHuHLlBtm8zamTD/Hn37+JaWSYOTiLbWU4feYMlnuepevL6EbMlYsfMOG32NnZQYYeU3PDhLUNiAOUbiCjFKWpIoVM0lOwoWJ0Plk37MetpGYgNXW/Cbh334aBj5QacRRAkmDoOgk9YInQ0EWKpbZshzgM8Lqd9P41LII4IZMpUOofxMoV2Lv/ACNDAxgi/boCCLptLl+8QKdeY3xkmMGBPooZA1NGMDGELjrMz+3hZ2cv8ytf/DSFCRPT8XC3E95+d4lHH36ExcUlRmdGGCgU2dmtcffOCo8+8RxXrt3k4JGDZHMukedz5PBhfvyjv+aZp58h8JtYps75cx8Qx/DhxQ945OETWIbFX//w3xNFMVub6ygV4bgGQnUJvZC1WyHV7XVGRkc4eeo4zVab2MxB6NGt1QnjmG7Xp1SukM3l0yxRAxQ2ntDSsHElUMIkoY2IQ4T/IG7po5Y0TISKkUqkq9kwxNTM+zCS1HATgNRwnAxSN4jCtBm2LAvHNPC6XQxdQiIJEkWARHczVIZHcFyHXDFLvblNo1onQlHs60+HE7rJzk4VIQRR4JHJZHntlRe5fOMqE0cf5dDTJ9nZvc0r195l7adLPLr3JKdOHePWzesIw+LO3XX27D3Ewt55IgSGLilXCuSyLrNzs9S21hBoWJrN3sP7uLK+StPSqTxznMOH57GlxZnZ3+MP/4v/lrCb4f03XiYRGqZbYLfVZWtrhzE7g+O4ZDJZNGkQa6nEQCkFvQl2go7SJJptkHPymE6enFegWW9Qr1Xpdj06nQ6y3koz0+1UT494YOz9RSpWCini+ybeSAWoJEmlNNKg0/WIQh9DT9ORoigGoZPNFrGsLEkU04k6dFo1kihBopCaiZNxEU4OzXKZmZ1jcmwU19CIoxAhIAwDNtdWiQOP2ZkpdtbXCP0ulVKJlaWrXL20xfPPPcZgpYRlF/neD/+Er/zul9kM64wM29xeXuWHf/NjvvnNb/Lu3/6UJ599lLDbZXdji6QPbq2scfTYMQ4cmidfLON3u8zOLHDnzi28oMmZM0/z3e98h6eefDzFXrdbNJubPPzQSaIgZn7vHJEK8KOAi5cvsX//Hq5eu4Lntzh18gzLyzdZXl7GMvvJDZRot5rk82UMO4sftMBwUGFArNokwkAkProvEPgkiU8Sh6Ros09OfSxUbPeCxYFUFC61HpYzvr9+8D0Pr9vB81OdTZSAbrhI3UQIPeU3x0mayyg0fD8gUgo7m2doaIixkRHyro1taCiV9FZFaf5dq9GglM8zPzPN/J55dhtVpNRYu7tBf/8grWbMzcVNsrkixUqBKIyQrsXtjV1ktsLLZy/w6JPP8PTjn6J/dIBjxw+RJBHdTofx8XHyhTL5QgklQp544iEq5Rx79x9mc3ud7Z1Nnv/sM8SRh+satDoBfpAgDIvVjVssLl6DOMa0DFZXV3jllVd48823eOfdd1lZWcXJFpncd4KWF7O1vY4UcGT/fjrtJtI0EKZJnBiESZrNqkSMiiOECklUhEoeYCN/kUpzm3Wk1BFIoiTGD0OSJEbTdQxdTwlIlp2aHnUDw3ZxMrmUtNdDf8a9sP2OH4DUKQ+OMjoxxfTMDCPDA7i2iSYVCMludYfq7jalfJa+UhGhIrxOhxvXr1FvtpiYGmFh3wHcbIXbt28zMzND1w9odkLc0jAba9ucPv00Zs5ht7nLnj1zaRxNq8ObZ9/miWeepNxXwdAlui4IA59mo8rhgwdYXVmhXC4hNZ0Yj1OPn+TUw2d46603mZgcZntnjX0HFjh5+hRz8/OMjk0QBD6GodNtddlc32Jp+RaDQyPU63VMxyFBsF3dYae6Ta26TbfTJgpDNAG6JrB0DaFpCM1CaTrCsJG6g9CM//cL9KD+H0v1YgLT1YKO3rsP7zVxURQhhMA0LUzTxjBSzLTruuSyWVzXJZ/PYxgGYZxOKPsHh5hZWGDv/oOMjI7RPzBENlfED2Ky+SJBEuMFAWEY0Wy00ISktVvl2sVLmIZkz6EFfu8P/hMKoxXyQ320VMyRx56gGjTwEp/xyVE0IQiCgI2NTRqNRjp9VmlestQEJ04cp7q7CwgKlX5W2w3EYInC2BBn/+pF8vlZxqbm2azf4tRjh4gJ+PTTDzM5WGaoL49UEfXaLhcufEin7ZHNZpFCQ5M6mjTQpIEUOihJojQSdBKho4SO5WRxshXy5UHypX7sTB6kju951KtVdra3qVertBvNX/bl/0RXorifugSg4hippfSyOElSMl4cE4Uh7U4br9NB0y0000JJie97VHe3Cbw2URySSB3LzdA/NMzE3AJTs7OMDQ5RyWcpZBw0LfU8RElMp9VCqBidGFMXlEsFDFPDsm00Q7K5U8cLNfKlCm2vSzOIMLNFdjoRHy5tcOyRx5jfc4hMOUOjU2d+zxytdpv1jU1OnDjJsZOnKJbLZLIuWdfhwP69TI+NszA3z/bmJvsWDnBz8Qb9A4NoBly88AG1apWBgSGkcHn++c/xwgu/yuc+/1Xm9pxke6eB53XYrW5TLpfx/RAVp1vFdqdBp9PAD7vohoHQTaTuIqwc0nbBcIl1l1CzCXWDUOrED1C9/99L9E60UugIoSElxFFIEKRkkNjrEschge+T9HSz2WKJXLGC1A0Cr0PY7SCkxHRdDMPEMB2yuRzDU3McPniQYj5HFAUgBEL0DEE9oMPOzgYXL3yAVAELC3sYGOyDJF3ZXXjvPbqdLkPDefyog6GbNHd3scIARwNfhEAXrWQR2RZoOrlchnbTY3RsnGbbI24HPPXc8/QPj2EaBjqCfMblqace4y/+7E8IfR9D18lmcygleej0Q/zspR/xhc8+z4ULF7h0+QPOnD7JlSsXmZ+fZXNrnT375vn850/yb/71n3Dr1i3CMGBIzyEiD1PXkbpDnJiEQkdGIXEiiBOJirsgUmekFKIXnP+gPmolcZJuHoRIQQ5+uhozDAPdtInDlGOfTncBKXEyOdxsDtN0MU2dTivEMi2kbSPCCKSJ1C00w2ZoaBBb01BhTKJDHIYE3Q6B32F8bJROvUroexRLRSr9/axvbLIwN8FuLWByMoOm69S2muQni9zcrNP0FKe/8BkaokVhbJqIZarVbQr5PNW2hwL6+gewbRNNUyhDMjU5gWFo3L59i3379rGxsU6n3UEGPg/tXUD5XRzb4O7tJT715GnOX7xGtWoyMjLI3Tt1NCuDH8U4jku13mR0bJzVuxvMTU+RcTRUEtPZ9tjZqRKHMaaR0v1s102NZJrEUDpoESrRiBONSJoo7UHc0ketJFH/tw2Z6GW23kNJ+76PJnUMw0qfz4qUpkdC4AfI3nMjCALiJMY2Up3u8NAohb4B8pZFPuejEhgdnaC2s87m5garK7dpbG9CHGIbOs2czdHDh3BKMJT/5QAAIABJREFUBcK8zvLKWYaGDbyuwfrqOl/+0m9yMfo5weYWW9tbCAT5TCbVn4cRTi8q0jYsIplQKJUZHxtmeKBCLCX54WEwQ1w3i+aFiMDF7yjCTp1K2eHiy0v0P7nAyVyJEAOlZ7DcHGs7HbwoRCQ+QhpITQNiojj1hggkMlEksYJ7hwUAw8IUGjklMQwHQ3NpttbxPJ9uu4vve5im+cu67H8vKkkESiYIBJqmIzQNqUkEAi/wgRT04Ac+YRSg0UsMURIQdLot4jhAJgppariZHJl8GcPN4Dou83PzZG0bKRJ0TRAECUpBu9WkWttGl2A7Fn19fdSqO9imQy6XZ3tjlfPnFnno2CnCxAelyNkGm60m3bDDxZd/zH/0z/4ZgRViFsqsXr/O/tk58rkcsWbx9jvv8sjTz6JZdprs0BHYpsH5C+8xNTnBQF+BoNNke6vO6spdVtc2+cbXv0TWLfLhxYu8/dZbuK7J9MwEgd8mjENcJ8v8wjEuXblKHMZYZoZCJo+UGq1mB10z0Qwr3dJoGloi0E2TqGcyS6IQ0TOdqSQh4ZOVuvQxaXBNUCEIiYZGGHi02nUatR2a9SqxH6QrApXq+nQ7S748gNQMvG4bv1sHv0Oi65hOBi+MiEXMxNAEUxMTDPZVKDgm6QMqvL9OTpKYdruVImwzNovXllmYnaavWGRzc4MoDjFtkyD0qNY2+PO/+AGfe/5zzO05wA++/7d85bd+ldXWLsanTzA97bD43lkG+4rcWrwKysJXOv5mg9/5/d+nMjSM5ThEQYDUddqtOlcuvs/RQ4eQAkaHR7l45TJRnCBEyEAlz8baJqEXUKn00/E87EyGN948y/zCDK+9/grtToN8weXDC1dAJGzcMXn45HGklSNWCiUiCAO8pEskTSLVRWoShYdUITIG+cCK/gvVfY1iHBNFCXEU4dgWuaxLGKcr2CROQSZKgSYMCoUKTraI0CR+p43v+4BAagaW7oBukWg6U1NTzE1OknFM7hESI5WgkhhTkxBHjAwNsLG+hu95NJpNJicnee3VD5BSI1/K8+jpk3z/O9/hD/6bPyAu+6y1WgjDxHCqDI0Y3FyOuHljkb6+QfpHp5mcP0YYS5SKiCIFQidRPgf272Pzzgq5jE05X0SgeOEbL/CtP/vfGBwbQWRyfHjhEhs7u5w+fohDh4+xtHIT05hja3Ob3WqN8uAg426GessjV8riZAsYpk4WHT+MadSq7OzWAEG54lGqVMjk8qn7XAct0VOTGQJhgxIPGoWPWunwS5GoGEPTQehohpkiR9utdIKuawSeIon9dFMmFbqCoNPBtu1UxhBE2NkCpu2gaxozk1MUMhkcQ1Es5zEsCz8OqDc7bKxtMj0+jhgqkrE0ChmXYg727z/IG29fI1PKs7u9TlcZhG4Z6Vqs+FtU5iaIcw4//6sf8Q+/9ps0/YBa10IKG1Ta6MR+TCzAjwVJ7JN1Db713W/z+d/+BnFjG92UHHviMXY3r+AaffQZOd4+9yKjQ/0EiYYXRTS7rR48wMDSIZ/L0W21iDSJtLLoWipJiklIkCgV96ibfydRihWpPMJ20KSGaVrotk6r3UK06jSbVZrtxi/78n+iK0xitESkk1WVIKWGbpioJEYkAte2CPw0xUaXWi8TXycRkk63BUQ4pg5InGwOw7TxggCzkmN2eoqp4X4KWRMhE8Io3az5UUyrWSPsdtjd3WJ8dACjlKNQzHBj8Tq7G5ts77QZGS3wg7/595w8cZQvPP8r/MW3/g++8du/TmnOxvrP/hH5UsTW1vsMDxa5+26DoNMh42RpJTpf+JVfQRoGmq5AxWiGgeuYlAo5GrVduq0qE2OpcX1gtMzBY8exTIvh0QFefOWnzO6ZJONmWV5exNB8tjfvYlsu3//fv0P/QB+nHz7NnTvraBmXOJG0Wl3CGGIl0TQDw7TS2EuRHuDCHmwrigxioZGomOgTlpv/sehupNRBmPenq77fpV7bpVndpdNo4Hld2l0PhUAaGfKFMpZlp+upyCMOfITUenpIDV3X0HRJtlxmbHgI19SRUiA1gXYvnqmXW5okCe1WmzCMiKOQ1ZtLVLc2KBfz3Fy8jlIJtuOgmwbNVod20ORLn3uWt8++z63FVUSzw8npSdzAJ6c7XLlwjXJpiHKlzNye/Rw4fIy+wSF000CKGElMJuOwu7vBc88+jYpCNtZX6Tab3L2zTbPZ5O7qTb7xta9x6NBRZuf2cndtG6UkX3zhy3z1a7+Bm+kHFLdvL/Hww2fQDfC8DoW8QxR6eN0Wlpsn0fJguUS2S2jYxIZNrDvEuo6SRhp+/UmzRX7MKvWXpYkUqclMwzJsQBIEaWazaRj3/61hOWjSIAxDuu0OrfouKk415Zphks8XGZueZX5hH0MDQ7iWScY172t7fd+nXkujtfoH+mi0WxiWiR94ZNwc59+/SNvr0g26VGvbTI1NUsz18++++1eMZfIcHRvksw8dxA49WjsNbt/eQgkD3YioN+okicKyDKRUaLGFLUBIg831dZaXblIpVcB1uLKzxm1aDD96mMLJfcw/vpff+Mf/ASKf4ex77/H2Oy8ilGJmegbLMjl57CgZQ1KtNRCahmFYxHGC7bpks0UKhTL5fAHDsmh12tSqu+zubNNptYjiCF3v0aF6mNhEM1HGgwb3F6l0oSB7jnSBUoowDHs/bx0pNYKeWefe3wdBauYJw/C+KdLNZFPPg26iaRKhUtx5xnWwLZN2q4XXaWNbFpqUTE/PIqROrpBjZHyKVidgZHSEsy+/w3D/ILpIiFWbPY8doavqaFadgdEhQuHiRwFxVKdcKaTh/F76/SlASEEmm6FcLKVbMcvh1s3bzI6NUHJ1Hn1kP3PjGUoGtNYafPjuec6cOY40HdAMzn94CdGTypUKOfpLZRq1evoeatXwul0C3wOR5gen76v0hX/v56OUIorTdJNIgDBNrEyBbL5ModRPodiHadq/pCv+96Ok8lHqXkpNiuzWdfM+sjc1+sa9/FZFEMUkIpXjKJVOIsMgJFEJQRARhiG6rjMxMcHo0GBK7FNp2kWcxOnWOApBkcbjNZu0GzUyroumSQaHBqj0V5idn+HWrSVur2yyvLJBvpTnxo0NXv7Jm6xcvM6x8VH6Io/RQh+Xz1+jVg9IAMOVjI1PUSwPkyQBcRShopCMY2JZBpVyiVKphG2Y7Gxu0KxV+epnnmfP0BBht8nm5ia2rtjeWmdpeZGR0VGOHj/KiYdOEYYhp0+ehFhx8cJlDhw4RBgBhksYK1qtFrVajVanTRTFKZhIamimiWbYCNNBGTaYDhgZlP7Junc/JhNcgZAKYohVTNfv4ndadNstfN9DaBqmncV0smRzRVzXxdQTVBwgiNF7EUOGZmBnshQKZcxMlgN791IqZjH0JA3cB0QvWuj/+sBO/FbqIM7lqLc7tBeXGBzsZ9++fWxtbXHz+k2USsjlsnz729/lP/8n/5j/9Hd+i3/5z/8npo/soVDOU2v4bK43GMkNUKoUaXfrXLu5zNd//ZtohgWERFFClEiyroOKQzbW7zA6OkIp7xLHMWsbazz7hWc5tu8AzXqLeqvF5vZmmo3q+Xxw4TzddpN2u83JU4+xvr7EpUuX6LQ9TNNO0xS6XbqmRcdrY9kmcWymZwc0VAJRAiKMSRKPUEUkDxrcX6xEz/zUY5zrerrmDcKUtqdrvVxPz0NKEyENlBQoFdNs1Yl9j0SB6bi4uRJ2JkMsdCrlMuVyCVOTKV1GKZIkNbjEUYQQcHdtlYGBAYRKSKIIKWFnc4O7d1dwXYe//Hc/4Ytf/AL/8B/8Jv/8X/xLQl3y+NNn8KtN3nnrMlcu3WKoNIrnB0xNjvD25V0mJiYBUvgJglgBmo7fbXHq2AJR3OHCrWXKC9Pcqe4wNTzF7bUNZh55GMPz+fQTz/Bf/f4foMU2QafB3771FpOTM1y6dgPXySANkyCMKeQdSvk8ptQRtiSXyyNI0HVJu1mj2+2AEGi6QUEphOtyzzUtZRqYT/KxeHx9QitF7d3LZlWJuq+9vdeoqSTGtlxyuVzKoic19RiGkVLLlMK2bXTDJFMoIq0MbsbFtdI8Zk2LKBWLvPnKS2ytrzM62I9pGlRrNaJY8f6FC8Ah5mbnmZoeYOt7WzSWVjh1ZD+1JGBjwMTNWmRlkZ/8+RtUBsa4ubzC3OwAN1eXUT2Dt5Tps01JQT6fJwgCpLJpVAPefvkypXyRwbEsleEMtqaTdAL+6F/8EScPH6WvVKEdBbz9/nliJRBSI5fLY4YJ42Pj7EYereoaHb9N6GQwbRfDyd3Xf99rcO9/rlJCYawgThRxnJAIHc22yehaCn94sHn4/6GiNAg7lkDvfo1Tw1gYpjSzMAwJwwhpuOi6hRCSOIQk7CUt9Sbshm2TLRSZnZ5mbHQEC5UmN+k6SZKmLUmREEYhru1QzDhcvnARU5NUKhUqpSKbq6vs7OxQLJVIgNffeIv63jr/5X/8O/zhf//f4Qz28Uj3JK2az8Uri2S0CnEItqOzulplYdjFcV00XaIpgYgdpKnhddvcuHaVYtYh61hMTExiFfK8feUDLl+7zvZOg0xxiKdPn6BoSbxAECSS/sExNjZ2GRyd5PbqXTTNxA8jrl2/QT5fpOsHOLpJs1MjqkXYjgNKkisUMDQNISWxrqFiK/3d0gWxFoD2yZI0fmzeEIIUWxqHAZ1WSoWJFTiOi2a7WJk8hUIZy7KAdJIVxxGGaWM7BkK3MN0sbqFCBOQK/ZTzWaSKIBGpYqyn1wrDEEgd7dmMw9jICNdaNaSmMTE1zubGBo1GgyiOCMMIy8nQaDRYubPJsWOn+bff+T7/4Otf4usv/Cpvvfch7751AWFnSIRE1tdwHztAJylw6uF9jE6OEyc+Ohp6YqOUTxQHLC9eR1dTDPaV2Fq/y+XLVzl+YB/DYxN4rTozc3t45bVX6HRrHDi8l0Ihz/raHYp5jdCLeefNV5icnqRYKWI7NqMDI2ScLH7XoyGa2JksUsuhaQaaZqEMjUhppAxZnZh03RuF7V/eRf97UKnRQfViwMAwdMJebnMSR3hBTBQGJFGIYdroSpIoQeB1iSIP0zAwLAvLyZIoRRCElIfyTI2PUHQNLFMnDL00PUQlxJFPEHRpN+ps3FpmtL8f27YxTYOVVpNKX4lGs5ZOt0Kfn774EvNTM/zB7/8O9dou/+q//iMSw0ApA6WZNO9eZebxU+zs+kzPTmNnc8Rxgi4t4sBHSZ1ut0N/OYdpGvzgb/+a4597io2ghWZLrly7zP4Dj2OIAYqlbe6ufUi9tsZE/0muL11npFJgfX2dXKGCQlAq9+OFisHBIWzTRMUxCIGbyaMbNpaTxzIN2s0GXrfL9uYWnudRKPXhZjOpmU8TSJkQ69Yv+/J/YisMA5RIaVD3sOb3DGYqUfihD4I0JzOO8b0ApEDGCl3X8X3/fq6x6HQwi4r+QoVKpZIeuMKAMAxxHZtSMc9gcT+dZo1Wo8nQ7DjbgYdh2rzzzhW6XcGhI1P87m/9I771b7/Nz//mDb7wa1+gYtuEW13+9Hsv4Xcl2xu7FDXJ7MQ4pUoaEwWSKEwwpPZ3DTuCwPPoKxa5eXeTP/vj76KbAiOb+T/Ze7Ngy67zvu+3hj2f+dy55xkAMRIgCHASCZIKZVuTaclSHJdKkRPH9kPmcqKHTFVJ7BdXJY5TFSllJbGcRE6cVKiUJVEkJUoUKZAE2ACIoTH2PNy+w5n3uNbKwzp9m4rLKotITEDVX9Wp+9Ln9j1n7b32t/7ff2C6n6Oakp//mT/P2nCDNy9c5JuvvsRskdPr9tjY2CJOUgbtPqdOn0PubZPfehNbFyzyKQsVEmRdwrSFDhJ0GB+AJeAQQoJ0OCmxKBrb0LgaGotAkSQ9lLjHHX835Q8SEikUgVaY2mKanEWRY8qcqsip6xrT1NggZqU3JIgj8mLGYjYmMAWECUGSUTSGJAjprG4x7HYIpCTUyxh1ezfyFzwVZTYdEWVtwrrhtZdeZm1lSKvbJkoTnJQ0Fsa7+5w9e5avP/siG6sr/LV/9a/wxlvv8Bu/+mWs09RWgtjj1IljJFFCZ6B57LEnMM5gjUQYiZY1RSP55re+xf0nN+gPVim15vdfP89UGyarMUn/AT73wAl0qRm9scO3fv9rnDiyyQ9/7s9x/vx5WmlM+8RxdvfH1GVFGHkLNK0U66tDmnxM4xzjyR43btzAGkcgQHV7AARSYrQ+EPWJMEPx/qIovEcaXOsRBFN7Xlcxp2oa0AFh2qLV6aKC+AA5sNaPLIMgQAUJSEUUJSRZRrvXJ0wzHn7oYbrthFCKu5QE40921lqMNRhrUUg6vRW6vVWsMezs7JEkCfO9XYp8ztr6Bjdv7JKmLdqdHjdu3SJUEb/5pa/w1OMPsdKO4GNPcHGv4s0b+4xuvEO+MKi4zf33P0zd1EgN1mqEqhFhzGI85dGH7mc+m2MtJL0u2caAl157na9851tcfecyZx55ip945hMoU7A3zcm2tmi1ElwDu7u7nDlzjtdfeY2mrnno4UcoywqnI5qmZDbPyWYLojBBKO3Vpc4/mGwQLzlMIc6E90Rm77KMA7V8qEnlo3ONsVjrAxnK2o90pZQ4ARZBWeU0TYlWErG0XWkag2ga2oMBR7a26LQyn6NOg1TgnBc9CgFBFBMl3jz+pe88z4Mf+ACTpkIKh45CGmORQlLkNVE84NnnXiIMNI89eI6f/7mfJVAKJTRXdmbcmFQkmSQn4pH7HkJKz21rKovAgIpIk5g0UJSLnPbqFtP5lJW1Nu1el9HVBWEC+fgqcb4gyms6acLGSkqrdR9vXr7Jpes7XL1+i7W1TaKkS6vTo9fpoV2DMf6gqYQkCEKU0ihKlA6YjEeUxQxnjec2KkkUJQihlvnyP8iVf3+Xw++LUgiEAGMtdnnwV9r7kEspqOvK0xSQCCdQgT6wZJJSUtYNWdYhSTK6/Z5PQNMK5xoEgiDQpGlMFig6iWbn9jZSahZlRae7wt7uFb59/nlGs5ucOXkf/9ov/BVeeuk8v/y3/2uECigbS0AL46DVW6VEo1TIytoZpJZEWmOqhqiVAhJTN/Q3jmOmO6RK82c+/kFCO2G0P2NvvuDJp58m6nSxaZff+dZ5rr1zGakbwqiFkyFxmiBszXS2TzocMHzoCUptqS88T1EZH+RQN+iiIEwykrSN1tqLnZzDLj1ypZQEVgDetadxngxWO4PR9y7cd1NSSnAKiU/fq+qSMi8o5jOq+cRPZo0FIUmTNnHa9jG9+RzqkqqpCGSAbRqE8sLB/mBAv98hVHcpJ9633BzQwwC6nYzd7QVxGjPsbfLSCy/w1IcfRwBZ1kKKAJC8dfE6H//kZ3j229/hqccf5L5zpzi62idr97m2O+PlK3ustQSNVTz0yMMkrTZaKbTwoVVWSubzGW9feIVH7zvC9v4Ob9zaJt4aYIKGD518kP/iP/sv+YnP/wTNfMIHjp1lfOU6SjY8/+1n2Tp8jHfeeQclJf00Yt9ZVBCggsgHYIUxoRA0tQcLZ/M5encXrQNkHBOEEUiFlA6txDL8QWHl+8u55r3R4C5z0KuqYrFYUFUlYRiTpAGtdpswDLGN584Yc8dcPCQIQmqncUISZS0fi1oWDDYOsb6+QhhorwB0zvMcv4dLJhAIB0posqzP1qHjSOeYTvZpxSGRs+w2JWVZ8OSHn+DFF1+lO+xjRMjbr79BUeacHc+47/BRJnu3uTkuOXFkg3kLRHeTR+9/kLTdQ0pBqENsBSaQGAtf/s0v0E4E/XYfl7T5w7eeh3bIfCWlfXydH/mJZwhtzN//tV/jo488yOH1NV46/11Ont3ijQvXWd04xIXX32JzfYOyMtzeuc3m1mGQAYaGqiiYTCaEYUxXhweHAWcFpWqQQYwFjGuw9v2linyvlTWgAi840UGI1iHWGbTUaKmxTY11BuugahZol+FvuwpjDLZx6Djx9nhK0eoO2draYtDrEQhLY/6ojZu30/NhEq1un6apeeHF7zLotegNBmit6Q+HOCtQQcSNm7c598DDvHHpBmGgOH54ndjUuLrhNjUuH1MKQevck6xtnSYMvMgzyiKc1FQoyvkeTVHw2oUL7M5TRucv8pkfe5qSkqc/dI7+eodQSlKT8o/+4a9w5uhJ74matPjAQ4/Q6DZlIyhK73V7/PjQUwwai5AKccfyR0icdERJB6Qf5452DWVZUO3vogJN2u6QxG2UUveu3XdRNk4QTYNC+GQoKQ7ISkII7xrgDLWpaZDESYaSCmcb6jL36nILKk4ZrG6wcegwW4c2wVqayh/KhHNkSUySxIimxOEYDAcYa2llHbZv3iDPZzgsFy/e4NVX3+LEsaN89plPcnilD0LxxjsXOXPoEN1ujxffusrFy1eZjkc8/cyjxHGEEiCFYD6bkbTbSKV46mOf4td+9X9AhRmhhKcef4xqVlJiESLk8q1dvvp73yQMYtq9LrWpCOKU9bU1eu2MQEkKHdPtdgmkYHT1dVbXN3BNw41btxjPZhTlnGoRU1cFSdLyAQFhghLL71FIjAi99kPebZLuvO7V91/+Gb48mDUlk8mYxXTMbDrBVKUXoSpNmLVptzsEQYgxBc6Uy5TIjqfVZBm94Tpxf43jR48Sa4kQzQGd0RjzR1LnWq2MldUNxpMJ09kEJyzHTxzj8qVLnD5xAuXgzYtXKcuavFxw/rvf5dzpc7x15RZhFHJ2a4PFfA7VglYArswp1IAPPPRhHBKEoaktuAqnEppqzOnjW7jG8LvPfo2nfuRjjF3DaFHz9pV3ePDcw0RqjcFqTDjLGe3s8ciHnmJv9Bbf/tY3kToiDENyVSPDmMZChKTVahFFKToIscb3XVVZMlvMiSY+ebXd6RJECUiWoIeiEQor3hst4z9vvTf+Wuso8znzuc/0ro2l1e6QJAlCShwOISxKOJIgJEkziqKglWWkQQRBgo4y0rZflMObG/SzBGkaUHf9de9wyw5GSrZBaogSRX/QRyEoijl5PiWNA9I0YW9/xJsXXqc2hum85rEnn+DQ0TNQF3z5/Itc26tZjPf5nW+cp9dO+fhj9/HRZ36MNE681UdTIKzEkVO6lPl4n9Dm9Hod/tcv/J88/szHCYZdktUeP/GBx/i1f/wFzv74o1STEZ//ub/Ed77yu7Tamo994hGuXb3Oow9/gBu3dljd2GIxm1Mbx9rWEcIoIcsyrILdYsbt3R2QXgwxGK4ihFiOzyN/QhQSZxyE9zbbd1PGNSir0Ep5tDyMsLV3RXDWTwyapqGqG4I4QYUxAiiLAlGXBGHk0V0U7XabtNOjlaYIlv7QKsTa5gBJAMiyjLWVHvvb1xAK7nvwAa5dusSVy5c5dfwYoRC8fOFtjh07wevvvE2jAiZ1wJe/8RKt8Lucue9+Ilfzhy++w7Q0PHLmCH/hw08TaE0cBkgc89mCuN2GxqJFwGC4SlW/xu1bVynevsmX8n2e+uQTtJOAFSPYvXaLv/N3/3tOH9niL/3lH2e0v888L7l46QqT2Yyjx07xnVfeYfPwEXqt0CcJSonAu5vYpZjDobA6IlABLRlhnGS8d5uimLNz8ybtPKfuVqRJG3mPPv59VxRF1Pjt0TR/9KAglQRjKaua2gl0WaKjlCgKsA0sjEU6i8HTAYrKWzeuDoYEgUJI33y45dRoMBiSaMvmxiq3b2+zv7NDb6WH1LC7u+33LWtZ3zjEvFT8N7/0Dzh7fIuHHjzHhz/4EH0tuHZjmzdefZVL+wWtzoA/NxxSVRVpHBEnCUGtUUpijaMOUz76wz/JF3//P+HirRusHz/BsLPOaH+b1996k/1ZQVFBf9jn5vUrHD99mkhLttZXGO/t0mm3WT15ChVIsnab4eGT3HjnHaj2SeKETpJy+/YtrxMpJpRhRpj2COIuQRwRLv2tUVBbHxBxZ/p4r959CRFxZ88oi5zZeJ/p3o73v7WWIG2TxC36/cFSm2NoZI2QiqTVJc46PhAq61M7yaDbo5MlmKY6aODqsvynpr0azZHj57BGsr6+xWy0y+EjR1iM9rh88S16wxUklq3DR1ixcPTUOS5dvMLJI6f4vede5eZJQzmf8NwrF9nb2+PDD5/lk5/7MeIkWXKHK+IwwUhDIzWvnf82kWu4fm2bwyc/zNVLuzz+yYco37zI/s6MJ3/4h6jn16mLBXa6INQlD5/p8sprMXu7Y6yAbm+F8XjCoN1BhSnttM1ar4vEEYQxUoAQBuEa8sWM6XiMlIrGGNq9HkmcYbX2bhVhiH1v+BL8c9d7osGtqoqiKJjPZ1RVjlQaIaUfUZUlrlmgliMDACkzXGMpFjlZWxEqH4HaVCXtXp9+p+PH8c7hGudPIXdMod1dkZmU8sCzNIoDWt0MHQUEcUipoNvtk7RHfPZHn+B3vvYsDzz0CEm7RxTHXHznLZ753I+wf+MK33j2OURnl3OPPMAHP/0x6rpGZSnCSWIVIaUiSDMsiqtvvkY/1rz66uvIzhASQa+XsD+bc/7ay3z04z9KOz5MmKZ0uwFf+ce/jt3aIp9OUEpx8dJlVvqeixwGIZNZTtzqYo0hyTqUwhDnGePxPuP9EUmU0MraxFHgDcuVopEaK8Eqg5H1D2zd/zSUcDXWSCD0rh7LKYOzDVWeUxQFTV3RCE231SWMYvJiRpUvkHWOcxYVRFhpmS4KTrfaDHodwiUt4f/tciGlpN/vsbl5mN3dPcrFnIuXL7M6HECZ8uYbr9PtdTl+9DANkmPHT3P0xGmy7jqBhKpYkPUH3LxyCZOskLYTfvrn/zpKKYqi8IfIKEalispatPTpVFdu7lM1kq1Usnb4MN9+6QL/0ysXUWGIrXKafMZf/Mmf4oMffJSyLKmc4PW3LnL56nW2Dp+gqWtW+j3WB32aokBE3hZNCC+cE06Cdd7ejhBH4zn11oGtYd+xWMyZWudHiwPFuUibAAAgAElEQVRBFKU/mEX/U1B+KtbgbOPdAJzDWK8c14HCOrfksyrCKPYBJVGMkZIoilESaisojWNW5IRhSDvLiMMALT36JRB0Om3a7RZf/dJvcPLoYe6//xzBypAkjnj2D/+QRx59lPPnXyCMYm7d3sM6zbFT96HjiOdffpuVXkYQtei0WthsDWUdT3/28zjnSNMMZ2p04ANVnLDUTUMUhqysrPGRT36GxWIfPTjOhau32N2b88JrF5nNcz70xIe5ee0qR0+cJEsTFIbZZIyUPYZpm42NIwjpKJuaWd5gsyFSSUKdUU136XZ6LCb7TBdTTJGzKOYErTmyaBGnGVHcAu3dSO5wm+8I+u4huO+ylpxxaxvKuqYuck9BtA06zkiyNlm7S5IkOGcODhZJ2kLpCB2EpJ0urd6AtNXm/rP30e91UMv9+w4QdrBuQmKdRWtIkhaDlU2CcQhOMptN0FHK+uYmO7sj1tZWqIiZT+YEQcSP/9RPYcuSx57+BKLOefmll0lWYKt/hB/7V34OtXR9koBtGhZFQZSluKqhnM9YW1nhldfeZJRX3Np9g0ceO81Tj5xmdz8nbncQjSV1EV//6u/x0Mn7ydoxZ8+cphYx71zb4YXz5/nkpz7Nje19upFmc2Md5Sw03i5VByFp1qduLEpAPp/6MAuhvP2aCjyvfCnwVepe0MOfuJraN7h1lVPXDa3WgHbHj/exFotXneb5HOccnU6HLEtZ5DlhFKOCmkWxQGtNK0np9jo+xMAYwCGc895uy1fTNDRV4W2dBDgpCYMQGxmviHeOWoWM5xNKK9gezfjQU08zXNsga3XIsoTTJ44hESzGY65ev82f+dyP8MPPfJz19S6m9ic/iXdpEFqjdQx1wUvf/jqHhh2++o0XOfbwB9m5OeHoI0fY3bnK9Ys32TzyIMVsm1bXsb99FVuV9NKUNy+8wrQwpK0uV27cJJAKFXvk2jpBu9UljGOE7VAkFXI6ZTJbEO2PaHd6qKCLFBbFncQXBzpAuHtNwrstsYySDqxgYUuKsqQpc8p8QVmVYCwqSwnjxMf45jnO1FjnAEEYhrS6fbJul8ObW0SRxrr64HfbxhygCdZaAhUwXDvM1taEPJ8S72WECmQQcPzECW+BIxXXbu0zKWryouLsfefodDpsrq2ytbnJr/zyL7NZBTz++JMcO36MxlSEWhEoT2eRSuCMwFhB2Riee+Udprtz7j+1ycceP8knP/Qk333rTUIZUKqAoyeOkqiQ8c6Urz3/TfbHE2azGd3egK1Dh1jM5xw6dBiT58zKnLDlSNIUrX24i5EGnEBY4fPRkVgHcdJCYGmsIi8riqL0FkAipNUxf+y63Kt/dgVBQCWlTzQzBpzFLfeGLE2py5KqEkgZEqUJSZwSBBFFkWMB6QRRFNNJOwyOHmO4uoaWCmctTt31hm2aBqU1/U6HS2++STWfsbG2yr4zrA4G3N7b5fjJk+zvjVlf77G9s0OUZlzdGbGYFxw/8whXdkf02us89uENnmyt8+jDj1LXNVVRsDockOf5MjzBEgaSpm5YHXb5yz/z09zevsyhw+u88MJrvHrBcvTcAwy6Ay69/Q5hkrC+eYhI1uzeusWszImzDiJqEaV+XwyiiN7aJua1tzGqRomQKLM4PUOYmsBUjMuK+aKkqBaouEdVt4nqkiBKUWF80Cjdef7cAWru1fdXQvhjvw8k8WL0xkGYZKTdAWHaIU2zJcXAp0omSYIVISCJW5kXq5uKrNNnuDIgVN9j+cbd6/cggh0PLgShoL/SRQhDp+cFvYGrcNWctDPkyNGjvPzWDT5y/CTHT51hsER121mL7Zs3+eKXvkqxKPnFv/nvs7HZw1pDXdfEYUCapsyLHGcdgVK0e6tc+O5zXL+xz04+YzG5ze/8X7/Nx//s07Q6PdbilHIm+a3/4wu8+M1n+cV/89+mqGd0huscaQIWjWRl4xDnX3yZo8dOsDIYEukQ11QYqTDWoIQkDCM6nT5aeHeJyWTMYj5HKokOY5IsRUoF0k/S30/1nmhwBY66KimLGTrIWF/fJEwSyjInjWOSYBWEI88X7O/vUdclSXI3BrWxDYEWWCdIkoQgCAnDAG0dlWm8vZL1D0PbVLjluNctUQutJd32CrdubVOWNUopOiubxJ0h3W6PNMvor6xRlBVxINHOIrUCJPc98AD/0X/8i1RVjcTfGEkSEShFmiQ0SU1lDU1TEUjJsZMP8PZL3yToDnjh2a/THSru+8Aan3jiLA+fO0GcRdiqJM7hv/pbf5cf/thnePKhDa5cfJH5OMcJTas7JI1jhA6YLmpWV3qs9XvEUUgoFNYY8vmU6XjMaDwi3dkBKcmyFmiFFIKgaTACH9V5r77vkkKjUEvktiFf5CwmY4rFDGuMDycJY/rdAVEYeX6YqwFB1OoTZ20IImQQoeI2YaSQ1mCX4jPbNDRNjbN2iXSCxJFmGRubh5lOJqwMNyiqAuVqbDVnOh6xtr7JRz99gnnlWFnfoNsb0Ou0UEvP01/4q3+VsiyRUlLkc6IkpGrqJYqhQGm0dNRFSWMEJx96gitvXeHlyy/wiY8/Rb8l+MiwxzS3fP257/DihYvcvL5NPVsQpYKkN2RR1jzwgYcIo5i0u8rqylF23nyV0e0rzIo5tjckzjJUmGKFTyfCNl6nK3xWlpMBQdylM1A01jDZ2yUvF5Q7tynL4ge48u/vCoIQqRRVXVI3jd8vpUJ6R1kceE9RHZGlPla6bhqqIgcHNYIsbZG220RRRDtL6WQxgVL+esWAaEjThI2NQ7T7a1Abtm/vMtrbpygKkiRkdTign6YMO23mNWzqkP3xhI998hlW1tZpqpqf+bmPehvFGzc4fvwERZFTlQYRCOZ1TigVdeltnWonqJwjn+6StWOGK6eRUvKRjz6ODgwPP/oor7/1Jp1+j26sseWcWAtOnHyCvVFOb+0QJ87eTxZFSNsQBwGHttZ4bX3IdNdSljMCl4EUXhSkNXIxJcrnjBcFRX6DcrLDvDMgTvtEUeqpSUoteeM+DOJeff8lHFjTLLmjBY116CglyzI6vf5SqCqo6gopBUEQeLRfBlgUUdKm1RsgpKTbadOOIvSSI62UT1aEu2iuUgqHxeAnH84Z1MqAprGEUUgxn3F7MkFGGUa3ePiDH6LdHzBcWaXbShE4lNIMV1f5d/+9fwfwUblKK+rKkMY+sERrTa/boSwragtHTj7Af/v3/jtOHd7i8z/6YaY7O3zp977FL/2tf4jSIZgF3SThI09/hH/rr/11clujdMJ3X3uTIO1igCBMMEFCb7jK+uqaT98TCqF8Hp+xXoyno4iWGCB1sMwGmDDZqxAqpOcc8VIn8r22eO+Hek80uMYYynxMVdYE2k8gPKq7IA0DiEOUDpBFRdNYitkcZxxx2gL8KDeOW6ysrHD65EnSOISmwroS8NGTWHMQL+mcbxaUFFRVg20cVVGyWMyREjqdDu12m9u3bzPPS1Y3Nj3K1kqR1qehhUoihENKCMOAxWKBRKAjxdIDHNM0SKVIg4CyNsxmM27tjnj90i2O9yLu2zjG1771HM/97oucefQEW5snUIUBq/n1/+V/49yx0zz24ClGecFTH/kob16+zrPPv0JVC44/8QTXrm+zsbrB5sYG0jZIZ9FRRJMkdDodrDFUVc5sOiGKE6TSy+/MIZTwNJD3Wbb0e63u3PDGNORFzmI6Zj4de1qCdegoJgpjwjBESYMWIJQia3exKFSc0e6tEqUZw7VVVvp9lJYHgki73GzvRAEDKCVxTtFf6aNCQVPVpK6DbUoWY8h3dhnPcqJ5Qbu/gtIhUaDANDjlR09JEqO1Zj6fewPz6ZR2p4XDo27CGiINcSApqoLPPvMZ/v7lX+WBJz7Ghe2G29cuEsiC8+dfotUdMJrepM5zAqWYjSuOrxzm1Jn7aXe6OBwrG1scO3yS8YXvYIsJVkrKKThniDJwKvIN/HITvZsMZZAClI7Isj6uETDeYTqdUDX36DXfbykd4hDUjT1oZlUQH0y2nPBxvloHYKGpG08hKwqMtSSttheeaU0YBMRR4KM8l1aMd0oIQbvTIUlTbDtFSEev2yYIFLvbt7l57RrO1qxtbjIeTRlNCnSScvzYcTYPH2Z1ZUgS+rjgOI7JsozFYk6kNIWpkVZjjEEu7w+tAvI8R4cBQRgeBPtIKXnyyScpG8PqxjpvvfUmqRJU8xFVMSYIUwYrbY4cO0a32102owYpNXXTIKz1dBqpqGUMoQYZo1xIqGJUECLtLuP5gkVdke8ZqrwiTFokWY8kTkAplFToewjuu66mrsjznLLMUUFIu5sRhCFBGGKqGhFIAiFJkpSqqRDOEgcKGcQQ+mdeq9Wm22mhtfJTIwvGWcRyH7pDJ6mqCmdqTz38nrUrCn/ADpOU4eZxsiQmSlusbWwidYhtKsrCLYM9vE95miZUVU2xyGmaBpTDCINGUpsGYR1SOEIdkHaHmLDL9d19lAo4eugQ//LnN/mh3W2UU8yQ3H/mNEpF3Lh5i0u3rnDz5i3qxtDp1ayubTCdFRw7coTVQRdRjiHsIaREWkAKDI2nwjkJQUIUQ5wVVFVNXswZ7e+gtMBgiaPWPYrC91ONtTRViWkcZVFiTU1d5Uz296iiCIQjiiIm+ZiqLqEBHYYEQcBiMSeMYnQY0u/30Fqi8KlSfpTp7o7g3N1m4a6i1dHUNThDHIc0jWE2m7C/v0uUpGxsbtDpdBiNRmxtbSFsQ2MNjWkIgoCyKEmShFgFNE2DaQwi8TdHWZYEkUYKRVOVWKd55e0bXLw+4i987hEOr2Wc3drgV379i3zli8+yvtajXExxDWyur/A3/vVfQDrD9es5l27cYn3zCE9/pMPV63u88MJ3OXn2PrY2t0i0xhoBS9++KM7I2n2MaZiNvPXadDpGBwFBGKOUBKWQOqCx9+CEd1fCW3iZisVizmI6oSoLjGlQUUqUtElbnhNe1zVS+ge1UN5xodVqEYaKVpaytbFFFAZL4v9du5o7dTDaXP4MQ68ENmHDYlFQ1JK4s8aJMz2SNCbJuqxvbBKEIThDYxxKBPiwW4nWkjDQjCcTojRGCz++EtqLdYrlkVAoybFDG/yNX/hZ0k7E7/zus5hon8vXd7i4PeJjpx/k9v7roDRpr0O72+XQkUOcPH6MYj4j6ffp9DqEnQ6iv4bcvogtcnI7whofYRxlPYRU/mS4LD8i9Ib5OAijmCxrYWxFUeXkZf4vbJX/9JUA51GqIAxJ0oS6YWlvp3BILN5r1FqHVFCUOdzRLEQRZVlSW0tfiCXf0Zvsf+8y6uWU7fDxY1w3OePZlEtXr7C+usra5gZ1O0NiUDrgvjNr7E1rTt3/ECtra/S6PeIwwJiaIAiwtqEoFoShZrIzJml1MQ3sbm+zsbYC1h3EjDb1XfrKnWZFKYUTkpWVFe9pOtpjamtkoElbfpLS7Q0OGhshvD5kf3+f2XzuqWcGGqERaEQQI4iQOkLrkLb1DbDIc0zZkM/2qOocWze4rIWOEoSO7xkzvsu6k+hYlv4wFgQhcZIuhXw1rinQWuKwKCUI0UwnUxyQKYWpJLnZRylNGkeEYYBpDAiHkj7kQAnvcR4oAVbQOEkYBFhr6LTapGvrzOdz6tqwWCzY39/3/NmWR+pbrZRAS1xdYp0B5wgCTVXVCOGo8xIZalpZG1tbqmV6oA4VTbFAaI9AZ511jh4dMNNd+t0Oer7LifYpbu2OWFs/xO89/wIXX7uAVopcNAQ6JE0zBsMVwqXfeavXop7NyJMIJSpC7UD42BaB9D2Q00gEMkxI2z3qxlHXJWWxYLy/7wN2VIhy76/D2Xuiwe33ekwHm6BHxGFMVRVMp1Pm0wn5XKIVuHYLiSCNgqVa0iM7RZ4ThQnlYs5sOqUuC5oyIIw1YdbyYgdnaaoC5wRN7UdZWmuCIKDT6XhaQRQynU4JQ810OqWqG+a5V6/HccyJEyeo65rxeHawWd5JS5FKMJ7OCMOUJIypZyVB5EAItAwwVUESaKZ5SX/1MPHwOmMjua+7yblshf/g31inyWsmRjBcGzCf5KRZi2leUlUVb166hgpTvvWd8zz40KOMim2yrMfhrSNkSYJoapwUWHfHcULS7gyQgJKSyWif6WQGzjdXYZxiWbpJ3ENw31UJpXAO6sr4BJ3lYUnrgCjrkPV6ZEm2HKc7Wq2MtN2mcQFSKsIkxaCZzheEQYByDmEcVoh/ij1irfXIcF35YBRr/EPdeU7lHUQ2iBOK2iGW8dOtLCVLU8pygTHm4LrV2uexR602poFi0bAY7zIYDFBhgBReROEEZLpi69gGQgieeeajfOELO3QHH6Tf2+D1V19FBRHOWnQYcubUKUydM9q9zdpwSDrc4tz9DxMELVY31pGLE8wnu1y+dot5URFVDR3r0FFryaW8W855j2BnfIykShJSMaBqLM1o51/QKv/pK2cFUgZYC0oFCCTG1AeIZ1mWNFWDCP01LYUEGuIkAidoGv9gj7OM4XDIYDAga7UIpcVhcM4gpaRp/IP77Nn7aEcx3f4adVWQzxfUTUVv8whZ5H13ndCcefAoMkoRQlIVC0q1tHbEorTE2AapBFb7xKbpaMJsViDlbUajKf3BgKKuWNtYR6uApqkOGlalFGEYoIKA2TynKkuGgSKOWwghiOKYrN2563+KB1+iKCKJY8bzfRwGgb1zPsBEES4MIExQOiJNu+h8jp5MmBU502rOdD9nMQvRcUqYdpH3onrfVVVlyWKxIM+nNE1NkrYQOsDixebOOMoyX+oWGjY2tphMZtS1j+etixlWaMK0g9YhOgyIVICyFUW9fKbjUMLdBcqWAVF1XYJ1jMf71HVDnhc+7ERIBoMVur0e3W4XgNlsgRKgA4EQfoJ7p++wUmMaSV1YXn3lBc7dd9bfL0aysAJRV3SymL/9n/5NZGR57vxL/NZz3+X61VfYv3mdXn9AXj3LZDRma3WFW9tX/SQtzzl1+hyrq2uIIKLjEhIUVy48z7QMSYVExAkqjLAYL+qVzgt8rUTKgDjzFn3SGW5v32Q6HmFr77SSJN0f5NL/ies90eAmacpwdQWppOcw5nPqYoEW4Ggoy5xOp0W3lZEv3d0XiwXWVCRhRFWWZGmbOIqwywagDgTNYoGWYmnErfxGZxr/3u/xIxTOcjP3aFC+/LnIS8I4ZTgcUtc1eZ4TRRH9fp/RaOTFE0pR1w3WlTQoQhVSlA3VdA/bbZO2WjTWMCtrAu1Iooif+4s/zbEjQwb9lAuXLrLWluztzagNEEZcvj3j4oXX6be7bC/2sY1hOplw6MhxTp46Q1VVrK6ssra+TqIMGoEVy4fVMq6QZfBAnCU41yFfzCnynNkMJrMFHakJogiEvSd4eJclhcDcEYAZi1Ma4xKSJKHT6xEEPm2rrisv3pKSSIckQYyTmiCKabV7RHFKFPoc9cY6JAbb+LGoktJTaqKIJAqYTn2ja0xzwO1rmjllWSCXwSYIHyO5uroKwHgywTbeQ1oIgZKKyWSCChLefuc6i3nFkc010sAxns0QStDqdLDGLUUG8qBhGQx6/NAPfYKXX3+D3/7ylzlz5hSyKYhCwbCbce3y23TaHYIwonGSrcPHUUr7pkdFTMoGmpp+J2N3f0w1HzGRirTtwCaEYbQU4PmygMFPYqy1IEOitEX7ng/u911Sap85LzVKBVgDdV0jnKFu/H6nkBgDxjhMUxwIdK1xZElKGIbEcext8KrKo55K4GU64o8Iq8IgZn3jKFmrx60b1xkOvB1ZWS0IsMynY4JIk6Qt4pa3iGy3M5RzOCn83yYEi8XykIbg69/4A9KkzfbVtzlzYotLb19mtpgzWBnyqc982kendj3IcefaDbWiqWqMaWi12yRBD9OA1L75vUOPkcIdqMbTJCFJU2ajEGsLfNr70pVHgBEaEWY4IXAiQMmUlAARTBALmM5z8tmYxXxEUCwIks4PcOXf/9XU5VKUXiBEQKs1IEkzjKnJwgApBVorptMJTVNj6hqlJFoqwiAEGnTaZnUwYNgf+ObNWWpT49wyVdX6ia9Y+hrfTTSTSzau/z+apiIMNdYJmiWtTGtNHMdEUcR8OsEa32cEOmQ6mxDFGbujCaBpasP6+jrz2YIgitHLe0woSSsNabV9Q/n0k0+yt7vLxatvcGl7xOMf+RTf/uazOAR5XbFx5CRFWfKJpz/IxvoG49Euvc0hx48+wPUXvo02BUU1J1cKcGgEUoU4YfCpAG75OSVCSoIoIWr3iOcz5pOJB05GU5x9f/UL74kGN4pSWp2+T8uRe9jGoMMQqRVaQpnn7O7cptvp4pxjMBiwvb3N/v4+/cHA+yHSQ4eBXyjnBT9hGPoxRuWjTpX8HiK5c4RhSFWVB2RygFarRZqmDIYditIShClJknDr1i0m4zFRGNButw8898qi4utff455uWBldZOzJ4+QaZ9YlecFOgwxxuAExJGklUb8+R/9LK+9eYXnn3uZL//Bc5CPGQyG7Iz2aaUtpLVMRvu0VleQYUDSEj7IAZjNcw5v9WlFGlOWNCpFShBWoGTgwxuc8dF6OiZMLFm7Q1PXmKpgPN5HhwGpVCAUcE+J/q7KeR5pXdc0TbVM1QvIsjsHLo+KhTogSWKKoqDdankKXxggTEM+nSCl9gIvh6fUCIcOtOfe1hWm9ibl1jQe1sT75FoHxtRoLel02tS1j5dOWt4m586G2+12MXXFeDzGGOOb4tryT/7vL/HahZc4fOw4t673+cB9x8lnBVmrRX855u0NBkverzt479FjR9FJyo2bN0kCTT0f0QoN+WJC1s6w4NMHOysMVtaQgWYxyxkvKlAZqBmSkmGvw63tbQocFotzvbv8N3xzgwAhJTWe4ykEREl68D3cqz95Odd4OpfWS69PvwdaY6ir6iDytm5yyjIlUDEgaZrKp3YJQV03FKV3wAmCAOs8DQtA4t0/jDE44/fcOI2wpKxtrlPm+ZLP1yNfzNFJB60DGjx1SmJ9E64U8+nkgKqjpGYxz/nf/9Fv8rXf/y3SUDLsdHjpaxJFgw5CLoYhJw8f4rEnP4xcfr7GWp8wWFQopYikBwU8+FEjJWjlxchSKfwOHiAIsDb3rCAhUTr0CX/Oo3qOZbwxYGWMCgVOxCgUkdIIrZFuhLKGvCiY7t1Gxvfi0d9NeeqSR2rDKKDf6+OkoCwtcRwRBgGhDqjrhv39fSajfW9JmLWoqwqEd4gZDvoEgUQKQVV7LipCoOQdXQVL8MIcAFqtVgut/Hs80GUpy5yiag4OdFVVMZvNyLKMNE0ZjUbUdU0YhjS15Uu//VVu3b7OkeOn6WQhZ46uUU6mFE3D+uY61jiiMFhaiHmOeZxowgA+9cxn2Fg/xPkXXsFJxQMPPki32+HW9k0eevhBVlcGYEu2jh5Gp10GGxtceTkAU+CqkmquEQJSqXGh8hS05fd6x+2jNg4nA8K4RZx2qcuGRT5lPB7h7onM/uRlhCROWkgVEMcp0/Ee8yngHJ1Oe3kxG29OXtdMp1N6vR5aa0bTBe1Oh9H+LhKD1BKER2dNXR0Ide5krN9pbO/QDFYGfW7fvs1sNqPdblMUBdvb2+zt7bB1+CjFYk4UJcRxTC1gZ2fHNynttv9dSL78hX/AqdMn+N1fv8CPff5nGQ66RGHM4SNHEIHfkPvDgR9Ba4W1gqNHNuj3M4Ybh7j4Vskg6iFUybVrN9naWMEpze2dfVbWNjh3/xniOPW+oL2Q0MC1t17BxBEtFRFFS+RBeKsfZwUNdzg1KUmrT1U1jEc7TEb7COlPm1nWvYfg/n9QTV17RKGpiZKMdruN0j5yEWH8yxlCHaCEZDIeEwQRvb5kscgRUiODEKUCdBj45tdUlHXtT/POItxdf8YDAZZxGOuoq4b19U20loxGI25t77BYLFhZWcFay/7+PmVZEgXa+58upxdxGJLJOT23T7aQvH7hm3z916eEScLK5iHuf+RRPvHpTzGfzxDEB2ixlJLaWLq9Hp/+9Ge4ffM6oppz/fIbbBw6TG88IWoNWVnb4OTJs4Ra+gdHEDJvFEan2HhAiCYf32a93+P6zjZlXeCKHNuDOG0jQ40CrJCARTtFvfRqNc6i9D2Lu++3LJYgiojiCGMaamOXgQQxwlmq2uEaQ5EvCOMuIZqmbnBFQSMdSmuEjhHap0rKpb2cj5S2VMuI6jsPfaUUWOldbrSiTuIl5WtKEEYEwObmJnHSAinY2NgAliK1dpvFYsGtW7dYW1sjTVN+5FNP8vbzX+T0Vo/NbsZitINuZdi4xeEHn+DkfcewssE5H+scLoGGO04GdzjDHrH9Z7Ni7/wb8Hxia308t1gi1I25ez8652h0DDJAKIUMQ4KkQ08rwkAyH+8jJxMWk9v/v6/vn+ZyzlHnE8qyIghTjKkpy5rZZEQTR7TbbRpdMy/nlOUCV0u6vQFgmU7HdDp9FIbxeESZL6gDSRIpojTznrnWAwxhGGKamsVicaDbmc/nNFV5MLHwTWjIQ2dPUVaG7dsjBoMBdV2zt7vDYj5nOBweXHdpGHHltW8y6MZ8+4vfYrh2hJe/GbJ1+AjtbpfD+0c5duI4URShtT5wcTDG8DM/+zN86/yLXLp6jeHmOrEwxGlEoB1pIBnv7RBIWB0OyQabfOChJwiCFv21FURxjsvvvMFoNqFpLLVxtPtrSB0eXN93ruPGGiQCITXtzgpYiXOSyXSPqnl/AWLviQbXOudFT0FI5KAoFsTOEShJmqSEQYDUkl6nTZpEzGczrly5gtAh/U6GkIpWp0deLJYcHIuVBpREOIN1Dmuag4u01+sxn8+ZTCbM51PKvEBrTVmWbG1tsb+/z3g65cqVqygVUFaW2XxCkvjouzsUh96gj1WKDz3xQSZXXuUjZzd5+au/Qe5CHnjkUW7cvMnWkcM8+sHHiOMYre/abAyHfc6ePc3DTzzOt4a+EwIAACAASURBVP/wWZ79g6+DaXjiqSeJwohr169w9uQJTp3wJvmT2YQ0Xee+Ew9x+blvkFCyWBTkUYSSPVQUYwRY4Tk1znq2WKBioqRDnFWU+ZzpbMJ8MvFRx1GCep8lk7wXq6oq6rrCGOstanSA0iFVmVMXc6z1SNZkYllb22A6nUMIDoeWgBSEyvPCrbE4LHVTYay3k3HLBvcOpcYYQxAE9Pt9ZtMpe1XJ9vY28/mcNE0JA8XZ+04xX5Sed2YtURhw+dKlA9651hqlQz70kaf5wv/8S7QfPMWxVsjhbkalYgo3483XXqTXbfNDn34GITnY0P1PQSJ9Kl6r1WZ0e0p/7RBaK4Zrbfor62xsHVo2EhZnDFpK4ixhHEQImyFMTZJ1WIz26GrJZD6iqBuE8hGScZahwwSJwgFSGIRolhuxo/ljGpN79ceXQyK1JoxjqsLj51poH9VcFkskp0EFMToKaZqKuiqwZY7DEScdBoMO7U6Ppmko8pw8dLTi6OA6/V6zfCEEWLUUsWnqyiNGx48fYzqdsr+/x6VL77C+sUWUZMzn84NrTeLI85zNzU3Av2/z5Ak++S/9Wf7Jr/2PjFfabPQyIqH4jd/8Cn/rJ38BHXQpCgPCi2wXiwVSSn9/LAXK4MXIxtiDg99BlPvSlcEJRV3XmCXA0jTLMYtbfr7vmSIYY7DCgRSIIPQpnCpA2AHaSRILVVkj3PsLBXuvlcUjq01tKPOSpi6pSu9gs5gJGlOTZQnCQRwGnjvblB6pdNBUlT+EOEeVL6gijVYx9WxGqL0mxRhDVZXI7/HPD4Jguc/7/bfb7TIajXDOceG1N7AITp06i9YBdT0lSyJM0/DKK6+wseHF6uiAT3/20/y9//w/5Ec//QkW+R43dnNeuPQmw80jbGxsEAQB5v9h781iNM3O+77f2d7t22rpqp7uno3riJJIyZIomrIc0o4USIZiwQEEOEGCCIiDAEGA3AS5CZwLIwhgGMgGJAh8m5sggYAkhiFHFizLcEhaEiUOxZFG5DRneqbXWr/1Xc+Si/O+b1UPlSCaScQeph+gMF2o6aqv+jvvOc/5P//FWro+JGRwEGk7y0svvcTLL7/M0f4Mu1uTqZa2ralSw263Y+/wmHR2wCc+8cNIpfE+9j1nl2teuHnE6q177LYbOqHRaYHJvlf3AALrHCF4pJLkRUFnK8pqSVVv/5zf7Q9Xz0SDG0IYOXcueKRKSBLQWlLMpkyKgsVsznQ2IUkUB0c3WCwWPLlYcfvWLf74j9/kyaMHzBd7mF6BPvBo6G8lw8ZqjOHRo0dkWQZ46rrl+OYxZVlydnLKvXvvcnR0zIFJ6LqOYjKlbS3gqaoK11nSNMarnpyfMsmmHBzf4p/82v/Av/rlL5BNO+p8wvbsPg/uv8vnf/rzPVHdYq0YEbC27fjLX/oSX3/9m/z+N1/nhdsvMM00i8WM1Bhmk09GBXFbMS0K9Ow2L3/sk0z3DtiszrDlEi8UtsxpTEKiNIiY5uNDzIEPIfrcKZNQTGd09YLdrqQqt5ilIc0mpMlzFOzD1CDYGqgu2iSgeiWukqis6CcPLdZGPrkxChGiFUwIMcJ3sZgxn00I3mODw7uAVIpEK7xtoxhICozJ2O12MSHNWlzXjoLHoih45ZVXuHv323zjG3/AfL7PrVt3WK+25Lnh8PCQsizHRrh2jnQ2487Hf5g3797l8z/8KqmMP3u73fCv/3v/Jh/7xKfRaRyTOe/xxCYg1YZd2fMyvePg6CYEQds2KK24cXzzKoY4BIQUtE1H8A5tDE2nCEqhk4RsWmBag+s6ltWacqUBiwsdkylIncaxYk9dGPiUzxOhPnh5Akoo0izvqQkdvk838t7HdW0tSSJR2oxi3YAgyQoQEusCVefYbDYjFWaIlA48HY8+hD4IISiKAklgu92yXF7GfbYoepqP44X9/THe9vT0lHK7oaoq2rbl5s2baK2pvecnv/glTp6csjl7xJ+8+xY/dvNj3P70j6Mn+1gXwDf40PVKezOitvSvbfCBzrKMpmn60BExrlnnHZ6O5XLJblfG5LceURscKFT/vUbXkxD33+BkFIqqlC7dx1kJrSOd1jj3vMH9MDWZTMim+1i2pElC1zXUVUnbRMcCO8lRs4L5bEqr1QhmxYCoCVVTsT+Ldoyjo1JwaKUpy5I4cBLIng8LkbpYliX7iwVNlnFxccHJyUmchGUZx8fHuADvvP0OL9x6EectDx9fMCkKXnjhBaSUbMsdUhsOX7iD9YqHD+4z14E7ixl7exPUVLG+PGV1esHs43eAqwui9/HZM8bwQz/0Q5w9vE+zuSRLOuqmJinmeJFycHjE0UufZDqfE5Rmu9xyvq4QMuH87BHHh/s8fHJKt1uySVKmRBBQmfSpZ9V5T+jpYDJJSPMZJp9Rtx8t3cMz0eAOELxSkgQopcAJyd5sn89+7nMc3zgizxOMkRAcdV0hP/Yxzs7Oubi45Pj4iPV6HS22xht1wIchUQxMkuCdo2ka9vb2xuQbYwwXFxd0XccLtyNC8OD+Iw4OD+is5dGjhxwf3wTA2xj7t7pcMp1OySYZrtzx2R/5Mf74p7/ETipctyXINWXb8Nmf+CLbzZI7L96JvK4ehRNCIJWkbi23bt3ib/7Kr1BvLlmePqRILE9Oznnw3n1uv/gS88Wcy9WWn/65v8bxzZfoasfRK6/SVWfszs7oVhc9FVEi89no4TeOHRA4BCrJyecHJJsd1WbJZr1CpwXT2Udr5PCsle0FiF1bEoJjNt1nOtuLMYiTCUWaoqSkbmqePHnM6vyCNCuYTGTvu6wQBNq6ZLdeURiFMoIsz0fOrdZ6HInVdT1uqkMzEZvau3jvefvtt/nkJ1/j7tvfpes63n77u8znC+4/uB8PcamoqopIKXQIkfCr/+6/z9/7z/8Opyw4yjJ++ytf5+/+N/898+MXqDtJaJpegR6pPbrnNeIcuZZMjo57c3SJUCo+x6lGSYVzHQiDbSvuvfeYs5NH2KokEHAywycCFRRq2lKEC/xuxeXmjGXbkM5bXHDkkwUogxS9vOOaV+7z+mBlbUAaiVQGk6RUZXSMaesmXqCaGmcd+SLpL+UCJUFkBTqbYiYL0tke070bHN04Gpu+gdA3NIpXNncBYwx1XbNeV4j+8FZK4L3l+PiYpqnYbjd85zvf5vDwBkdHR9y+fZuLs0ghG5rSqqoocok3ki///C+yOj/lP/1P/mOS4xf5G//Wv82q3BB09K6VKqFpWrx3zOaWLE1wro3WZ1KitaAqYwpmDFGJvtJap3FMKyTWOuq6xQhLn1oKKISXKC8jWdN7gpAE1yFDoLUWH0ScwogEkcwJecDtHKHIvy/v+Q9K7e/v4+3LrFYrdpstu3JLU+0wPV2m3K7xrmVvsUfXdRwcHLDb7bi4uKDtOkw24eLyMcWsYDb/izBcvhguLz13vPcgH8TBZVmO7gxKK27dusXXv/51Dg+O2OxK5vM5SZay3qwiYDGf8/jho3gZt479wz2CcxhhmL3wcVjc4uGTe7x255g/+Ma3+OV/46/yhS//LMqkqGHPtw7vHZM8BxcdPYwxHBwessLhbMV8fx+dH3L0wh1u3n6R+XQR9UZA6wJPLiqSbIYOjmZ5wq3DBQ8eP2Qnon5jPj8gI7pPWgQuBDwxHc51FjwIkzGdH4xWqx+VeiYa3PFW3fsIaqnxKiCNZrHYZ+/gkCxLMArAM/Vx7JQkCdNJBr4jTw02KJqmIc9TQI1j3zxJ44hKKfZmE3bbkqraXQkXlOLg4IDlchmpB/tzvLf92MqxWq2iIrJu2Gw20SZkvaSxU04t5ELzu3/wOirU/I1f/Ff4P373df7Wf/Af8pm/8Dny6RxlNEJKrPXIEBtcoSRGa0yScnh4iJ8mFMYT7I5iviCbzLE2YGXKZz//RQ5v3IpCBudYr5ZkkwnzuuHJcksod5BkTE2KUIbrx773Ho9DCIVOiohIVyVtV7Ner2IE3/P6wBW8HXPQpUiiuCzLqKod3nb41MTNquyiAMzWSCUJIgoehFKopmK3WXN5ccEkSzCzCdvtNl7CvKes63EqMfAIQwjs7++zurzg4cOHCCFGhOLx4xOcCxweHrJcXnJ5ueSVV17i4YOHMXxECB49fowyBusluUz4a7/8r/H3/7v/ik995jX+9n/xX6PnezgfD+6mcaNSPh9CRLwfUbb4HMmY8KNAKXHdzjbGE9uIQPguegS7EAAdY7KVROWWzEekYtdcUu/WVM4SlASpSNLJRzJJ51mt4GqcCKQ68kVr4uW9Kbd0TU3XOdC9CIsWbRSVTkj69axNTLrz7Y7drqSsa/YmKS54AorgowuBFGE0yXe2QyuJd9GGC6nYW8xZrVa8994DhFB87NU73Lv3DkoGjNZ859t32ZVrlJK0dcNqtSJLUlAgRMp2vUN5+PgnP8NrP/zjpCalKXcsncOkKUa1aC1JszRO0pLoHqG16i+LNlLgpLyi86RpjCPWirKKIrrtdsUkkf30TvfPY4hCyB71iusz8sWvr1MBBBFwQuESg3Pp9+tt/4GoNM2ZLQ5RJkUqje1a0tTjdPSyF/g+KKoeKYVAFNr2PYJUmlu3XuD0/Iwbiz28FTgCut9bg3fjtGi4VEW+reTg4ID79+9z/+EDDm4c8sLxLe7dv9dTCVKOj485PT2Lz1MT+bpKSN5+5x4HBzcxSvKr/87f4u//t/8lL9/e5x9+5Zv87b/zdzm8fQedzAhESszg/uS9om6jA85mvUZKhUkSjm+9SNPUdF3D3o0Jh0c3mUymGNNTe5RES4nJUtrGoM2EdLKgWp4wNQnL3RILlFKjdI5OUqQU+GARvVWuJVLklBSkeYHt9r6/b/6fsZ6JBncYbQXnRxPsJE0iYtSnkxiTIGVAyEAiUrK0wLmWLIlK9UmesWs8y+WS2WxCksZfLenHDpNJERXkvsNb+g2tZTKZUNd1HE30r2MY9y6XS/K8QCpDudtFFWTbsV6vmc2nJInDCE1VbvnhH/0LvPnt17l7seU/+s/+XgxaYErTejLlRy9G1/PSFILWRf5XnmWcr85wSLLJHrasePFjnwKd8/GPf4Kbt19EaU3dWB49fMim7HDrLfPZlJPzJXW5wytDks0wqRyFY8NoIyolfT+Om5IXLe3qMeVuh9bv5988rz9LGROdO5q6QSuJ61q6RrHZrMDGi1gxybFdg9TRhsU6R1uX8dDtOnziYsCDBNe1VJWkmGQ4G31s1ZjsdbXpTqdTTk6eYG1Haztu37nNO2+/w9nZGS+99Aqb3bZfB4GDg31OTk4IPtJsmqrGB4dJEjRQ7jZ0nePzP/NlfvGv/xInp2cEk3C4l6HMDO/FOJoVQlDX9YjODWJN51rgqgGNQJdHSDM2BISoPo5BE+CFAAxOC0S6QAVL7jv26i0X25pdtWG3viSgmRYBnWdjSuDzZvdDlhhG9bLfm6J7QlWWdE2D9aB0NvJgQ4jNnVAGpTOSNCOgqDtP13bY1vZah+jQIFV8f9qmITj7FL9VSjmGlDx4791IeUljY/D48cMYqxoC9++/1yfhRc9mLeO42VqLkTrSe4zk9OFDPv8Xv0DT1Dx69Iibd+4glKIahZWG2WxKkiaxJQ0RjSuKIu77SZwgFkURqTjOEbTC9TzvutmwPHuIT1OY75FPFwgZ1QtCxX/H0XJSiGg1dX1tht4zV0JnNIHnDe6HKmVIs4Jo1ZWw3azYCYHrLNPplMlkQgiOYjJlPs2RQnB6espmu0Vow0/++I/zO7/7dX7/936Pl17+GN51DK2QC7ZvcD2TSeSCDyLJGzcOuLi4YLPZ9PG/BUopHp8+ZD6fImXkq56cnOK9JzEJeZ7H/VbCtJhg24YgPcvlmrqFVz7zk/zyr36B/PgGjbP4zZJiko8c9EFsluc5bdvi2pZZkSPylLZzFNN57+Ecw1qU1L1NpKDrPJttiVQBZww+GBKlSPMpvqkw5Y5uu6RBofSEdCIwRiOJQkoZRJ+w5ul8h0aTpB8tSuMz0eBGuxgZfQRDIOBQIo70hYiE59a2pMagpUHrBKk8MuTkWY4xhr29Sy4ul+ArJJEKYHoEt65jcETA0XWBRBVkWUJnNZvNGu/DKDoYOGKD9U2a5VxcXMQxBfH2hnd0dcX9sxO6zoMN3H75RT7zY5/lRz77WVZVTb7o8H6H8ymXlyXGmGgxovWYaLJbrfDWkaYJd156laZp2JVrZoeSYjLl5q075GmBSTRI8EHy7oNTEBqRL9hsLrh5uOD+w8d03rJOC2Yzj0lSEP3BJAS2s3hrUSJgkpxiOqXppqyWF1xcPDfL/zCltSa4eIjvmh11XSKNoCm37DYbtJYcHR8znRUcH+7T1A3r9ZqT0xOEFJg0Z7k6x4nAevVxXn35RWRvMJ7oOBr2zqF7Ssvh4SFPnjyhrmtC8BwdHfHo0SNOTk8pppP+88fkeUrTNkB0HZjP52zXmyh2W664OD9Dq/i9gxdY3/Haj7zGer3m4OiIaldyKRVpucG6yCGfTicjTWG4PMVGl9GWb2g84wEfP7wTlGXNcnlBZwNxEByQoY/aVRKfFyBBC0HRtrThAl81LC/P6JoOO2+Y+RuYNENKhceOiW7P64OX70WMdV1TbldUu2iIr4sZee9127YNbdswmRQgDVKlgCDN8+jTGSyXy0tuHh0gZSDTgrrr6KyNivRr8b0D6t91HZeXl2itmU6ntG3L2dkZd+68xP3798myjIvLSy4vzymKgt1uh7eRknN+cU5Z7UhUTOIzRvDyq68iFUilKKsdm92W6WLOYnEQL0RSoFT0+pW9YKgsy/HSNtB/Bo1E8I7GOs5OnrC7OEdWl9y/f87xrRdZHNwim+yh0+wpSobqPUYH7uT4nCiLCJFvnhdzurb5fr3dPxDlQwzC0VlOUJrC97zn4MnylLQomE2mHB0fMZ3mKCV55RMfZ7erEEJx//79KLhar1men3KwmF+h8AACZvNF7BmCZzGfj2llIQTquubo6IjtNj4rk8lkvOhv1kukimI0oaNPdJZlnJ+e0DZVdBhpLF3T8OWf/5eZLQ7oWseD997jxtFhBDqU6HU6LW3bjj3JMF2AuPUp3UUva6WRvTjOexfP/NpzdrbhW298m67aIohAlzc5IWmYTnJcbbgsK8r1E4RWWHvAZLofw4eCwiIIvun3emjxBGm+b+/7B6lnosE1xqBEDapHd4InTzPyYho9ba3FK5BphlJxnGR6r0SjNZJAnsbG8fHJGev1ipcPP05X1+x2O6SMno2DCjxNTRQFBUsIDudblFcjslD3I+HJdB5zzXX/zyQhLTLm8xlnj9cspjkhSOrWgw501rHZ7ZinKZtNie0se3t6tPs4Pz9nPp9jrRkFDUYKkuks+uSlE4rpDGM0WZGTZXkc6QUfk/WcJ0hJ6wJS5eh8Qbc+IVURZah2lyRmGMFF3DaEGLcaBHTeISSoJCXN5gi5pq6fx51+mNJJxmS6YFfW0HX44GjritB2BNvhhWK3XZNnBqNikMPNmzdZr9eUZUmCYDpbsCu35HnG+eUF+9MZMTcqpun4fvypteb09HRM4ktTw3a7Jc8jp29/f58nT54gZbRFSpIEoxUIuLy8QAlFURQcHR2RasHJo/scHh7gvSTs74Pw7MqKqq5BSaz3FFlE8fb25lEo5yxVtY0Z7/3YrGnqUYU+UBZGCybigWS9p9pt+2e9j9IezcWjFVhIciQLxKykEAonVtTbLbt6DcTErdx7pEnRUtE9V6N/4Boy5aP4y9E1DW1d03UdKInWCWkRRVlt35DN5zOSxKCThDSbIFzL6vKUeRA0TYv1gUmeEmwVHQRCiAEl/Z+LvGC73caRbd9Y3rhxg7OzM4QQ3Llzh3feucd0OufRo0fM5vO4TkJgsViw22xZLBYoIal2Wy5OH5JmmoObN9k1lkRLkiwlKM10tiAt8r65jQ2B91HnMaC0eZ6PDgmDUBPoLfRynBLM8gmn99/jtVdu81vv/DEntFgXmHvHhD1MVnwP13gQNQ++0a2NNpfBeQwKKZ9PzT5MheFj2GOkQukUZzuK6R6vvvoyLxzdZP9gjtYqNnc9lWy93kBwXFxeYoxhuVzRtm0U/kpJQDKbTPpgpwRrO7blBm/pgz+ibd2giYB4acvzPAbnKEXbU108HqVVdE/wlnvf/ROOj46wNtB0kQPQdg4fPInWtJ1DoCirJSE4bhwexP2yf1asjSBCXFddP0ETCBEQwceYYSEIIk6L667DtjVd2/UCYQkyQyUL6Cwm25L1cbzb9RkJGqkk0piY1BeuXByi73X3kRP2PhMNbggBLQW+swhviS1ZbDYTbRCyn/H0Y/brymwpFWmRIxXsExPO5oVhuzwnSYsryxcfOS2pSaibEmM0tvVIJVDBjDYgQ+qN957tdovq/R2hF04gSSdTiv1DMuFoLOjMMZ1l1E0cFyul6Jwj8XB2viR4y1Hv/NB1MVe9qqrxd5ESpIy/s1Q52sjeNxKccAid0HWOi9WautrRmRQTLFpHK6lpmtNsV/jdmtrkCJmQF9NoG0ZETxwB6x04j5AakxWYNKNqyu/fG/8DUEVRcHDjBkLIXpxTYV2LDZY8z0kzQ9c2nDx+RJrmo2BMSslkMsGiOD8748d/4qe49/ZdDg8OxnScEAJdcAQCXe8aMEwCYhZ71TcgLfP5nMvLS5IkGZuXQZjjfGwoVaoIIpBPc5yd86J6Ee86nEwRUoK36CwlyRK22y0LrREiJUk0EHoVusOYFGtbvO8IIXIRu64jy7LxEhl/blQnN43j4uKit+OTdC6KLBGKGPLT8xiFptZTVLqP8oLUeXLb0VQ76u0SrTQBH/m4JkM9pyh84BJCEPyVf2sg8g5VfwHOigKlkhF5NSbaEAkCWkqwFdZKyqpFyISTkxNefvllJkaAt1gXfUSVANc1/Z5XjiDC0BBeXFwAUaX+zjvvMJvOmc3mCCVHh4PlchX5iCJ+npiEOs8oMo23HUIbZtkUrQJKG0yakhcFRPdJhBQQPMEDIsaZp2k6cjQ729tGSYH1IfJzyx21UKzOL9iXkj9+/ff4m7/yK/yP/9Ov0XTfpWlK2oMbHBy+jDKRrtAEiyPQiUAbojVVYxt8F3rRUlThuee6hw9VSRIdjoIQkWMqoJECLyUHh0fcvvMyx0c3mE0LlIzIbpzedkwmUyZFynyScn5xQdtUXFxckGUvkGYmCiGrmjRNWa2WaBO52amOFxnnO6qq7K3CrtZxWZYRXRUS52ugp1FJgU4Nk/mCj3/sY3hr8Soh9wHbNfgguFxdIrcbDv1NiiwjSRJmsymb7bYPHbkK9rHW9lHS3QgmPEXXEhIhNeBxNtDs1jjfEbwgIOlkCkrQJh6T78i7jtqu2e52NJwhlUSYFJ1OkDKM6WzjPvERE/Y+Ew2uDx5lFNpJtIDWO2xXo7ViUuRkSdqjQtGb0Ps41vcCkAJIUBnkSvKqeZXV6oK2it6bJs1QJiVLJ1gbxQ7AGP2oVRKTSfpmc1CmS6XJTeRmAVd2Iriee3MzchG9J9j4WpvOgdKcnZ2wt3eA6xqKomA+n7Nar5FKkSZmtJYagivAjj9fqfgrxeXqcUFg64ZHjy95441vU67PkDhsiDfHpMhJ2i1WCJbbS0oXorm5SjFJDHtABGQfFND6Fo0iyaIq0j+PO/1QlaQ5+4c3SfMJZVmyvLyI6tsgCN6RFQVHs+mYgrPYm5H2nsvrzYbJfJ+6rnl4/10673nh+IhPfeq1OFlwAm1kJPwD1nWkWcJmt8Z1Aa00OpGjAAyuRqUD4ouIogpgDGoILjDfP6DK8ijWFAIpPFpFc+9sMh2bi4E7KWRAKsaUn7quKYoiTjikGvnpSqme3qki31YInjx5zHfvvo3tDdOVUggZ8LZPgOrDGyC6foh0gQ8SjWbqHSFY1mXL8uIR26akmO6TTRco9UxsXx/JEiIDFT3CgxAonaPSnMZDUcz7xCaQ3pFqjdEarTR1WVPtKg4Ob5BkGVkimWSaSWqQItA5j/eCJE16tCcCDGVZIrhKwiuKgtPTU4SS3Lx5HK0bi5z9G5EvDpDnOVW5ZTaLFIbQ56iqRDHRc7LJpLcWsxHASNPR41YQAZB4rAuUlEhxpU/ousjrtdaSpAnORlzQmASQeA/vnZ7y1htv0Jw94fbtW7z5jT/gy1/8aX7rq/+Cs0cVm9VpjImf76HSnKCSuHkPQSze42y03RsbAyH+FN/R5/VnqUFkOwhvpTIkxqOTBIzCJCl5PsEkaUQ3ZUBKxUQC3jHtz+SDg0NWmx222YC/AYCzDqMUTVP366NF9aJE56NdKMIT6IBkPLeBXshuxgnb0Hi64CgmEwLRM10LgQwdQhS4IDBZHqcGeU6R56N2Is9zvOuQiUQIR13XZNmUstySZcmI6MKAZiuEkDgnuVyvOXnymK6zRDjWEedpEq8MIpui7CGFtwjX0dRLqnWHFSBNSu5BmWS0ZLxu+fdRqmfihPA9gmC0xKUJqnTgO2xX4a/ZyUTz5ZY0NQQcIUhkEEgFQmg6AO/Ji4JqVxKcQgSNQlE1NkbaSt2LIaIvbpIk42hqgOSHPwsRnRxsz/2SIsToRSmRKuvV4S0qjdxE1bbkxZT9GzfITFx4qrdNyvMcKTxtW5GmOWma0jRNz8e9GtkNH1KAkIogZD86bmjKNW1V43s/yk5GwYfKUrLWEJZbumaDLM8xWYaWc5AGFTRd8MjgEFbS+S4q05OcxEy+T+/6D0gphREZqY9rUOuEui4RYhmb2mKC1pqiyDk4PGB/f0Gep71aF9abHV1nubi4oKoqTk9PeemlVzBGobQkdIJJFgUGs9mUXbmJt/igSfIU6zqEgKreYHQ+ej2XZRn5hj2lZ4jtBQjCo41ipqcjJSdJ1VOiBu89iN42R/jeISHBdnZU+O564SU+9BdPf8U7DJ40ybCN5XK5Zrct0SG+NdoCFgAAIABJREFUViklBAnyin4xXC699yATQpIjgsVM9si9x9lLbF1Sr87YWks3+JE+rw9UUkYkM7h+zNrP8bVJMWnWo6wxmtcYw3a7Zn9/n/l8zmazGX3FnWupdyXBWzbLFZNEk2ox+hSLEBMlpZQ4G8GFNE159OgRaZqyWMxYrVYopaIrSO9Y45wbx7FXNpJXSXouWJLUkOUxWGI4F4b9+0oEyVNNyPU1Ouz7thumDipOJARYNO89eMzZcsmTe+9x89Cwlxecn5zw13/h5/j13/gNtucbvO+YLg5Jp/tM92+S5wXaaBQ5SiqkVLieHuetBX91xjyvD1YDj9s5h7eupyx4cNDUNS4EuuAxzqKVRglFYpK4FgCjNXlesJhOMY+fsCtrVstLFocH2Lqh7UE0H+L6SJOEzsaz2jmPkhqh1WidOIzup9Mpnb0a4Q+g2OC3O5tNaZqWqqowSdQOGW0waRYdHHpqgVQChEfI8FREurWW3W6FURrbdSRp9K4dKJDeB4KIcdt1XbNZreJkWidYbG9/1hGUIsiEkM3Qriapa7KkpG066s2arVkhvSKZRLHa9d/no7Z2n4kGV4q4QEOPDhkVUd2mqqO9UAgolYw3m/dXbAgliTTI4CFNUcHjiTelrvFoaUBKnIuLVkg18niuv2nXk3fGBdrnkDsfLZAgLiptFFkeG8QBlQAQyoy3eKUjChdvPoOlTJ+SIhVluYv8n2u+kYPtEkIiMARvWa83uLaMLhBeEFB4kZLJAm8WyKQhVVuaZku5kegsIlxJPgXABYnvR5IgsT6gZEqazP+/eVP/f1Q2BIKUUfTQG2U6F3lSTkj2FnNeeflVbh7fYDaborUkBI/WirIsKXcbJoVms97R1A0PHjzg05/+JJlJxovPMCIOvVdjsL0FnHc9D6s3mhdXjgdx/T1tXg+Mh34IMJkWSCV6GsJVY6CUQuLjpbBHg4fvM3DSh4OmrSNCPPBwAwFhNNumpm0djx89otptmOYKqTRBBKSXBDFQcxjRgYjogjBp3FuDJ/Mdoa2pdkuaqqFcnmOHUI3n9YFqEAH6AZWRAqUMWZ5QTCZ4BLbr6KrIm478xSWpMWRGxwjfJMFZS5K2vPfO22htmGQGOS3orB8PfwkjQj9Qv/I8H31xh/U9jF+H9Tt8PqCtg5Bn+LqUVxG6ztmnQALoL1Lvs+y6Hqs7/F1rPUKoyNN18f9fVx3ny0t+5/e+zk996lX+8Ftf49Mv3eFgb86bf/gGX/rCF/ja177K5ckDyuU5xeIYgceIm2T5jMSYGEyiNE7H9CvXdXRN++f5Nv9A1hVn2hPEcMkNKC1w1vW+sxarJUoOlyKNUgIlAkIrksSQJJJbQrBer6mqLdvLc/J8ih0ina0nTRO6/oIWp76yt0KUT53Zw7qMUzCF6y+OakyA1ChlYnqlkUh5zSc6OIyUvRBSxQaXAAOo0F8WsyzDWjsCEN46VN/cDmFZPjjKsuHRoyfYtkEpibcRBMRLArEp9kIgTIbN5oRpQ9bUNH5D1dRUu8sIHkhJ0nPMHQGURPrnCO6fvYJEJxrX+rhwlEEGQVeXbDYbFvM5mVBobRDCI2TcoGQAEAQHQssI/RuP7m1cmmpHuV1HpHZygCBgnSVJ+9GrtzE+0jlEP+4cNuLrwoEQQkyxcWDSq4jHNDUjP3dABuIrskilCFpFDpgIuK6j8RGVGEbG1nakxkT+Izz1oEAki1vreXx6xtnjh9SNQwzjBgEhaLpkjg4CbTvydEPdbaMwJz2N1iRKgsoAx6DuHW6c3nvU9DmC+2FKSElwDiFlXEdaI5RGmpTOembzAz7xydf49Kc/xaTISYxG6+g1KIUmeEvX1Oxubjg/OaHtPKHbUJdbpBakSYLv7HjAt/1mm6S6RxjiaCpNiqim7dfSMCYbhRh98yikwnqLHlW3niTR4zqGYQQYn8UB/RLEiNLhmRhQ3LqsRqrNgCY4F7C+o+489++9w1tvvo72HnV4xHxxAFIRlI/UpBAI1kZfhRAIwkfvRQdeKEimULRo2zEr14S2JdQ77HmJfc5l/MA1IEUj9cr7+L6EAL3YJvgw0hWSJOHs7IwnTx6TZylpWtDUJU3TYrRmF2C7XkVxjlFMZ3HqYJSK9o/eo5Uc979xSkBcS4Nw5zrFZlhTIYhx/Y+ARIj7mdY9ouuumturPZTxe13/va9b3kUKjuwbkggCrNcb3rx3n9/8rd/k7bt3+eZXv0aSSWRi+MxsxtHRTZaPz/grX/gi/+wrX+Fyu+WivEfd7Cg3G+Z7N5ns7SG06UVOUSgUlCI4N9LkntcHq/HMdQ6LAzz0Z2uWxWhw7zzBeYKO7+tQXsRYdBuiR+xUSWazGdvtirrese0ajElJJlNUmlLXDYnR0ebNtSjVuzhJRrHi9fU2WuGJuE5te91hI/YCSWLGzwddRQgOIWIPoWSf2igiPWBoap1z0VM5hN7dpAVr0doQvEQpTdNa7r37Lk8ePkD04VlOSoRQePxTlDAvE3y6j7GebN7ReujElovNGa6L0xeISZJGalrv6Juuj0w9Ew2ulAJPgk4NbWuRKjojKALVdkNXl1ij0Xq4+VwtKLhCIwb/t2EDS9MU11k25Q6dtiRpHA0rEfOshbhSYsaIxXDtNcnvWbRChH7EpAm+G1EtuOI3Dl6l42YrnvYLFUKM4zcRBgTBomQ0Rw8ybug+BEIXKKuai/NL2roiTQ2uEwSiLZXAg1Z4nyGTCZM870McGurdGpnl6CTDTCIa57hCyoZD7cp5+Hl9kBpGplUV3Si0ijdxbxRtI7HBo5OULCtIswKtBQhHolKEiCEHLs+ZTCbMioLNesNmu2W3WTKfz2LzWDejmlwpTZoY2qYdm9n4GsxT49cBwR3W3ohaeQdeIIJEKnHN6ut7UeDhz9cvehA39jF6VQVs6BC9Oh0gT3KqIKm3lzSbFauH75ClCakSTPIJyuQIqfoUKz/SE5AK4UPkagYXOfcorJriTIPOZiRZQ2FDFO/4j1aqzrNUwyX6qbVBdLRQKolUFZNwOJ2gjSZNUy4vl2x2W1zXxfXm4kVps9kwl4azs8csVzc5OFhE+opJcDji3C3Qth1t16F79LWzDlBMJtPecqkmAFlajKixcw6jJKK/ZMX1IvC2b3ZRSCRaakTwkWrhXc+5Zdx/ry550UhZhCiyU0qhTBIFdiHghGZVw3fuPuRoOueh6tiJkp/9qb/ERdVQJzdwkynzJOXi9CFHhSHpUlZNx8nZE6qqpFyecePWS2TzA2SS4/qfPbj2PF+3H66GKZJSitB1qN55yVk3isKTdLjshytdjdRIIei8Q8tINzRmSlPtKCZzbHdB1zXo1CB8R910KK1HBwYpFc57pLcIceVCcv0C9b19Q09pCPEEvt4HwNX5cd2x4DoqfH1/ttYyyYtRwzNM0rxQyETRNI6qajk5ucB1bdRuBB/3WRcnZnD9WQ8IBE5PsGZBUlgy32G6iq5esd2I6FiTBoTSaKH6FvmjU89Eg1sUBVVdkpqEzmh8mpGEDiE92+U5q71Zzw1U8QaldEQfpEQMVkE+4EKIljBaY0KCxDOZTvq0GQshQUsI3kfXhmsq4ohSQQiO70n38o4QrozKu65BCtGTtp+mNUSUVD19awtXPLBxNNbzaKy1Y8OQ5znOCYQEh2C93nL/0SPOTp6Mqud4OxQEGUe9CAlJQrAFykxI0i2ps5S7DSQ5SuUYlRL6kcr1xQ3vMyR/Xh+ohk0rcmPBKY1UfjQCr7omHnKAc5GaoGSKUgLdx0sG50gzw2QyYbrdcnl5yXZ9TvA2hnGIflMneigrHaOmbedGFOv6e3m9Wb3e5NJvcuAhxOdHCWLE8zWqznWRxFADamutHde2FAqBirQEpaPBfrmjkQmhbXnw1p/w2isv8Edv/hFSePLJnGKuYmqOkt+zDq+jza6/dAZ05OXqHJUUCNWSIOMF73l94BLiiqIQ7bJahEzJsujXrbzFixjbWTUVQoPUks5ZVutLnI8xqB64uDxh15Z89nOf4+TslL3pNDaXWuJFvEbP5/PY+KYpZbXFOY8MBqPjXmkjKHuNgnC1HgX0lITh8IeuGxrGKzHb/93HVeLY8F1D//finyxwen7BW3fvslyeoJRjt9tgUs1v//N/xhe/9PNIbSDJqYPDTY/5oc/d4s03fhdZrqhXjtXlGU/KLZ0LLI4sk/kNRJL0TXXAOQj+o8VjfNZq4E4LAUlm6CoRJwW2xjbVkGEy7mFd1/WIq0AqhRIC2VNSCJ4szehEw3waRbPBNjQ+9gFaGlz//ZSSiJ5XLoIgOBenHe8DA8amNAznbAA8wUUHEkFM+bsCDq6E7FdI79W+m6bpKCIexJbXeeUBj5Apne949/49Htx/l2kqMWl0efBWIIPEBzECsAOvV6IIOsHkBcFXpHbCZFex7Eo2m0uCySiCR5scpcxHrl94JhrcYUFoqVGy542GDuc73nvwLkJLkiRmMEeo3qN1Esc/3iNFj0YoEMiYFqY0bStQWjOdz7m8XEUFrjTE2PQrNHUcWxmNRKJU5G5FBKFHSomjrHibi1zcq5tY5GAKwWjdcR1dg7igBnswIMa09ptumkahROccUiWxYWgdb997l3fffQ/pLELExhYtEFbhx9ceCMIg0ilhsocOjsRJaFaUqxUIg9YpaZHHhv5aU34duXleH6zqumY6nY7CGN/ZeOkgJjrZtmF5sYwWSSGQpYYkya4JZiIHXSmNSCQ6SUnyjMViwXa7jvZYOiHNC4RMadqYEuXdMGqNKVQM3Kj+Z193/xjHZlLifdzsgXFUqtSw5gfBV79+BaPI4P0XI6BX1xoitzxycLGBbQeXmyXvfePrpMtznjy5z958wrvvvY00U24A870jlEzedziA91c/J4TQHxKOLkgaUVArSygSlO8Q7jmf8cPUmNoVri7OSkoyY5BacblcsbmsUFpSFBmTIiNPE3x/Ma/rmsePH5NN5kilmC80v/1P/jE/9fmfpnjlVdIkorBCRupKWUbebuSSxzS7PE9puybSbkwGxGdhsJsb9qnryNZgERknUY44vfNx8tWL364sGK8Q3Pi7uthsIhEirnfvOqwPPHjwhDf+5LvoJOGtN7/Jowfv8Eu/9Av8o1//db7whb/Ea5/5UZCGdQOKCSEz1KtT5i++ij95h1vBkKqSi7rh8btvsV2vmR0cM79xm8ls1tM+BEI8E8fuR7aUUljv6EOhSfMM5zva3Y7N+pzL9Yobx8fMlBhFthB6saxEiKg/CL0lnJAKLQQKCEIRXMdyucSkE7Q2KKmRsgcCelQ2osLEuOY+LEXKKzvREHrbPRV9aoemXKlhHQMEpFLRxo7vBZuG53KwLh0sy7RO8M7HxNW0oLKOXbXlwbv3ePObv8ejd97hxdsvoeUBQhukknTC9QYfYTwLQoigIFIi0gngUAgm1Q7b1myrLeuzR3TWotOMpBfGfZTq2XjSRMCo+A+ndEIIHYk22K7BWlhdXrJcLpnP9zEmJU2jAj16usaDcWw0I1uQQLzBSTxKCPKioGk6yDTCg9YC+6d4u11HWa3tcJ2NanZ8vyjlKLyBpxGy+A2+d5EO/++AfBljsF07xuqN3rsBkIqmblmtNjx47wFdXZIoBcOi9D0a58K4aQshaESCNjNU2pBkNVlds+pK6nJJUyxiM64TRBCjvZpE8rzB/XB1hRDEw9QyHKxxXWa9n23bthRZesV3pN9skAQZuWEKhTOCLEloxJapmNFWO3wIaOHwtsZoCcKM7gPDuh+jUHvbNxH6iGZxhQg4213bNLtrqJZ8qqG4jg4M/48L4MMVPz0214YQBFJGRTNB0HSB823F177yFZbffoM7e5JJUXAwmXF+vuby7AFpZlAqYTLfRzyF4n7vc+VDdHCwwdNKsEbjQop3GuGeR55+0Iri2au9K04gWoKTlNstWZHhuo7l5UVETv0e+/uL2KC2LWlvyQUwW+zRdPGysbo44w+/+fvMp9M+fSmKf6IjwhWY0dm4/qxrkRJCECNC9D1roN+nr6hiAkE/eu0pYfSo2PD3rv93qHGvDwGhYqMjVfQUbdvArmk5X13y1re/w+MH9zl7csJXv/ov+NHP/gSvfuLTGJMzmc/YbXd0zqOkQcwOOVjcofEGH95jrjQibTlbbtmuTqmbHV1wWHtElk8R0fLnz+ld/gGt4f0N/ZksBUYJgtH4rmOzWlHXNW4SHS0i8u9Gal4UAkcxMFwDqKSK4kAlyNOE2rY4l5KoOKGKTayMKHy4srwTSiL9EKwYm13bdUgZaSkimHFvez/aK0Xk2gohnhr/D98brixNlZJxzYkoXhRCUFUlXiVIF7j7rdd543e+ymyaUW9m5GlOWhjQKjbvMuCkIl7vwGERrp/nCYVXOSrzpFlOnqxpasd2s8QDJitoswJtPlp77jPR4BpjCFbQtFUvhIkOBRKNVoGmqrk4PWc+20cIiTEKrTO8B3xAJRpkQITYiMr+oBY9KVoIQTEp2O7OCa1AmshtwftIOgOQ4qlNdOB/hRDwro8XFdEPNN71rhbpdXQhfoGRzzs0oNfTbRDxaQjRMhFrLXkWEdbNtmS33fDwwUMePnyXRZ4iJhOEluBABUkHCHE1nh2bFpXTyTkqb0nrDdo2NLst7WSNMhrTN1/Cq2irosJHThX5rNWAMA3+m94GnPDQBlSI1BYYaCp9s9jfvuO6iakxHki0QMt4mcnzAqsUqZTsyi1tvcNaSzZZ9JOGnuoiBdYFrl/UhBAIJcE5hOhNdLzDdm1P7enXoJDj5np9HV9vcCE2JQKBEjpqe4gG5tGFpD9skGy3Wy53jrvv3ed3vvY1XplnvHuy5NbenO3qkl/6xZ/nf/1H/5iTR+8iZU6WpsgkjWPmELDOxejgcPX7eBEPpCAFIcmizY2WMdXPPacofNAaLmE6UTHgQyuEd2zrDZvNEpPESHJvLS44tpsVtq3QWvXTMz0ipZ2zfO5zn+PevXss5jO6quKtt75DnhexKe5FvWmSxBFw/95qrem69pqvqeqnYvxfTpcGvrazXfRS7l07pPp/OPYXV1OKYYqitUJoyf7hDbIsx3YdX/rZf4lvfesbHN885gs/87Psdh0i9EmXYotQ0DlLh+TR0pHNXmHqLShFWO1wC1hXNavykicPA21TM5nvM9+7gXzu3/zhKqio0TEaFSxBKVoRG1RrG3arC1bLJQfzOUkyrDU1Tq6i5obeJq+3GBMRECMYghfMFnvIqsJ2Mck0ANIzOj1dDz6I9JkrmqK1XUxfFXGfjJZfsm8rr17D+/fawSbMX9vHB7TVOU/X2X660UfE+0DtoLIN6wdPaM5P+IW//AX+wf/+DzBJQpYVKJ2hZf6UJgN6v3EUUXwe91+UwStDSKeYbE2625H6km59hisTZDZFp/mf05v8/049E0+aFIptsyWRUX1etjXOgtEZwXY03Y7TJ/cJztPefpFEv0qaaHQSXQyE7G9CCkSw0UbL2WjXRYeUGqMhnxRUu5rGN6My0fRq3mEvvT4W4Nq4NKIGKvYFsVsZF+dAVRgWeRytDmIx99RIYLC+GUjv9GhwudkisgJfd7z1rW/x27/56xilye68QmoSTFbETVUEemel8XXF5hlQBpXnECZkVcGkaWi7muXqCU4IMh9QJkOL6K/rQiCI54KHD1MD9UQpFY25rYXakUiBF5K2aWiqaowsjYpZeg/kyDs0UqNF9IYVApQW4CVGSqw2URzoOqpdyXa7ZToVo0do8FGg6HrKwojE9j6NV9MIG+ksg/MIYlTRw3Xf0Kcb3vf728KVLZ/USbxE+oB1gjfvvsdFueN//l9+jZNv32XyyVd5553v8OWf+lH2Z1PeeP0bZMKyvXzMo+BAWfL5ISYtsAist1jvaLsdzlqCjz8fZ5FIEpUg8ll/CMSIy+f1wUqpKMLSSiPznDyfsMsnWFdTNyWbrcL1gTpJmpDlGVJKZtMZ+weH3Llzi7zIyLKcvf19drsd+4sfYbtd0TUtSjgeP3wH/G2c22O+tz82t0JIlEyii4iKuJXz8aCFXh/RAwPxY2h04/vtvaXrbP812ac0RZ/yKKTsD/IerYt+vJbQtVhbkxqJNlOMNChlYjQxkuNDyac++Sl2VcPDt7/L8dEL7M1mnD58jM6mpEbQVDHMRAuBFNHusRSO/HAPF+4gXcJMX8AykEpBLiTnm0vOtktWsz2qGy+xmB98f970H5CKE1QFrSJIjSlSVNchXEchBaEtuXzygMO9KRDttbTOUFLHdW8UIoQ4bA1EMIDBszahbSJ6Gj2fd9R1hUoSBIG099EfL+FciwwegDHrri5nXkTaWIiUr+uN7fW+ARhBMCFkDApy9HSKKC4G0XuRuxil3sHdh6ecPHrI4zde5zCs+M4f3eXn/spf5Tf+6T8HmYJJWKRp/H5/Cs0shIDz4HwEXrzMsSpHmBlpXlNULa1rsW2LrXd0H7HL2TPxaqWUzGezyAn0kjyfoBNFsA6hJFmasN2seHtzSdNuyOcp2bxgMpn2tmKD4CsqHUUIBKliUo+HELroCZskLM9XiOxp0UHoD3nfBzoE0fMLeZqCENHX/lYVwlOL8/oN7vpITRFRL6kHcYTpUS+Bcx5jEjSSSnSUVc3mwUMe3X2TX/zSz/C//cN/QHuwj5/MIkdGynjnUvEwENesyXzErhEhxScFIpuRVTVZWbNeX+BlghOSvAClTCTQC417Pi77UDUg/aO9nJLkkwJCR1NB6Eraasm2rtgPhwhxZXk0oKtxXQ3fj563JfF9s2mMiTZ4SiPKHc5WOBkIQiGFJLxvlHslphFPfX59Y4tfA8nVhUxc+xo87RnqQ+9RikOKGN0LnrqzeG9ZbhvuvvuQb37zdZYP/0/23rTXkuw603v2GBFnvGNm1sQiKUqtksR2y3J7BAwPDRj+YjRg+Gf6a9uwrW7YbVjtBixLanEUa8zKvJl3PnNE7MkfVpxzb1JqwCyixSwiF0CABSZvZeaJs2Pttd73eV9yc/U1/9tXv8B4zZ/88SccuZqmCvz+xx/zVz/5Eeubl1w5xzxEpkMSXNaaEuTy2fUtOZbhoE/oAqYoNF5Wbaq8a3B/jTKPNla+apgfn+CMZrVa0bYtfRewzuLrZnhmK87OzrBOPA3Hp6fM53O8t0wmE46Pj6AU+v5Egh8KpKJYL+/QCubTCRRBOxljqKuKtmsPTel+CibbhvLGsOBgkBzq3zbd/eVnXH5xJIaW0LeQO6BQ7OgwxdV6CIYfYoBPjo+YTiZyqQNKTCzu7pgcKcjiATHaDQ2KwnlFSZnb5ZaSFXZ6jDaWOoqe0eVIDo7FrmOzuOEyRHa75b/DT/a3v6pqvybP9KGj8Z7gG0Ip2NxTQsvV6wtmJ/OBPyuBDFrng5l8X2rw28Bw2VdKIngRrfZkOuX16ysMUNl6kGIVzKMhwOOzFnjYCvPmWfpYFPFYRvPLZ/XDe0GGf1oZlLEDSeeBJX296Pj0q+f863/+p5yUFv/EUnnP4voao2Bxd8loMqWeHOOHv7MHyeSb35VD8xsjRdUkVYGpQFuc0viSCSmQyrcLcfdWNLibzYazU3n5h7bDWI9RimgKVlekrsM6x/3insubl/yh+WNmswnGOooGc4hlFEbsHmK/vzxRNMOJSwjhACA/TK/24OShYcw5S0SfsgcdzN5Bvn8QBISP/NxH69z9lFZpROuipZEgK5Q16AEDppUBFBTFapf56vUtqW25+dFfUt1f8vnmNV27YrW4pmlmuGaOGaImD4e9NqAlOEIpSTdLWlNsg/MN2QuaSW17uvU92npSKVRVjbMV1lZvrKLf1a9e1trDgautIe8Kqsg6NlSefrul3224vbnh9OSUymoq3wyg8P1ESkJJjKwgyFl+BgqUtfhSkZMcLKPxmPV6zWa3pR5NJL7XmkOT8G9rZvf1y4dxefS/K6BkKEPzq/YTsYHP+DDlFaJHCIGLyytu71asdx2ff/ZzLi+/4vRozNd5R6Hn/Nl3CfaI5MaMxoVj7/iqaQiLBTcXX6O0xzrLuBlJKEUWvqNWEVQmpgilkPJwaZXdIoaMLe+e3W9azjn60JNLwVvD/OiIpvaMZzPW6zV9H9BaEWyLUppmMqEozXR+zMff/T4ffvQB4/EI7z32wHstpCChBobEdrdju92SuhVXF18ymR4BirquZd+bAtr7N9jje0nPY626feTefrxmhV8yP/4dmtu+W7PZLCipp/IGX1WHjYsZdIzOiP7Ra8fx8TFPz8+4OT/h68/uKDnSd4Xj4znr9Vr8EsoOv2cxRhejyH1Pry1ogxl7XCkoMip0jPuWkhO6i9wtb7nutv+OP93f7uq6biDQWEkS1XbgKjthx+ZA6ta8ePGCUTMRrq2vDwbwkjJ6oAqh1YHEpPYpeYOnQWuD85pq1EggSe4PG7I9oSEXOY/2uM3H5t43zuAiQQzWWrnMMcgEHjW2IrdJ4iQaIp+VsL4AqKwk+rV94vPPv+Kz16/5i7/8Cz7/m1/QfOecy7sd750cs1osaLyl67bc3Vwwn7+HUcCj6ev+q/LG9yfLRjCmTI+lZYxuEiq1lNRjlcGVb9fG961ocFOMLJdLUj/cDgYGplUKazS7bHF+yvGp4we/9wkfffw7NL7GWcegSJUYXaUhiNxAHpQ9TsQOE95CjD1dZw8PuzKG2PeHg7PrOkopdLGl8hU5PDLfwN/iix5MOCmjFaQBWSP/4jw0CgalZM2Qk7gZU5FYwbt+zcX9mn/1r/4Mt10z2rxiUmfWyw0Gxe31FdbPGB2do60YFN6czOVhjZEPUoVsnESdVg1N7Wk2meX6TiJOJ3PaeoSrGup6jPffLtH421bGWJpmTAgdIcVh7SVpOc4bSvCknLj46jNmkynOfYeqSqjBwWvtYIyxRhB3SqPk6o5SFnIUPmwRN3rjPVXVcL9csNlsqF1DKHsTgsEMEym1htP6AAAgAElEQVRVBIdXBuds7MMbOvGcM344pA8SHKVQRHLsySkenmtVOvxoLLGXxg4NcKHrMld3K370k5/w9VfP+dG/+X/Ybdf80//uv+VHf/GvmR8/5Z/+9/8DbRfR4ykm1dxe/JyPnxwTlysuNituLr4AFajqKePJdIg1HmOtJ3QtIQRC1x3kFI9fBo+neu/qVyttPU5JsAHKUtWWuh7R9D3NaEbKmRQj2+1ahgHGMTs+45M//CHvv/cexyfHKCV3bGu8GMmMxei9xq9nEnpyjBil2bUb2u1azmgHXUiyHi4WZ4aIUsrhwvWY7vCGKbM88EIfT8H2jcc+1reUQrvbsVm9xA4T48Y1mEE/LE2u6DZF4MBgdlbUlWc2nvD0/Ix2t8I5z3a9oes6qqqi5P5BYmYyKhsq5JyPMbILoP0RamopyWH7wCgrLImcWla7dw3ur1Nd11HXXuRcxlDQGFthUmTUjMgpojBsFkuef/4VsS0iYykJracoA5ph4KS0bH1VoWRQOVOUBZ1RKqPQTCYTNsstIW8PaaVa68PmN6WEynsjeU9M4WAGO/QKj5i2h63vEDylD3KGLO+AQ8rZQFsoggfb7lqubhZcXC34xRdfMqodf/Yv/pRwt+SHv/d9vrz4lPFkynQ85Z/85/+Af/a//i/cX3bcHp0y5z38aEKfC0VBSpL29iCLgEQikdnlnqALwVtyGaNijUoFUwIqtn/vn/evU29FgxtjpO97YieGg8o7tFHokig5ox2kZDmbfsTv/t6/x2x6hKJQShgoCnt2AiirxQgz6Ge1suSs6GPHbrejbVvk8TZoVei67nBQppQGzlxCG01OGYOiFI3xDyvb/QMaY0ApQXXJik2E39oUlHYDemk4iIsYfVKKhKLZdplNm/h//+ov+Muf/ZTLL79E3d/xwbHmg9Mp3jr+6//yv+B//hf/kuXiis3qKcp53AD0f+w8zwMfN5VMypmcC1FVFF2jTI3JYENHSpE2tOhmgq8nxBjwvv57/rR/uyoDIRUyVgDz1qGKcAd74ynaUqlC7lvur18xmzSMvBkuFtXQ5A7aMKXkJyo1bB4GNqK1RBBMjdGUopjPjth1VzLtHPRcv9zA7hvXFCOJQMnDuuuXVmsHZExK5Lih7XaE0OHswN7VYmqzWmQSaEMCfMm4qqbvAl9+8QVhs2O1XPDjH/+Uf/iP/gPOTs4oRTMez0jKktyENDrj+x98j7vbFf3tHa/WS16/VoxGJ8AHuGaMMRbrFVYP3+qcHzBoPHBS/6419bv6/1fKmGFVmkml4M2Qeuc8piAv3RDwKZPyjq6PVPUIYz3O1+xZ4Qqw1gv+yFpJcFIQUXjjoURySoy1pnGWvu/pdusHOQ2apmmkwdiTPdinkyV+WY7w2CPxy+znx0beFCPX11d4vWU0P8abCmdGh4CAPatcLnXyJ9lfEp1zpBSYz6d07RpKZLW+xzp/wJ4d1rxkGAykzhqKkm1DigrlG5g/xYcdqdxgypppTmjz7rn9daqqnFw0yGhl6UMPyIUjZzDKU1mJEF/cXZNTgpyx6kO53ExGDzhPJbQbo4rQFbSSrijJSMwAXkvI1HK5PXgfQDa/b8i4cibk/qAf18WCGqa15SF8x1pLiq0Yf2Ngz3fOuTBqnISUGCNpqKXQdZHXN/e8fHnJ1y9e8fzlKxbLO4xO1Cayjgvu76/otSFpi/GeyxcvmVrD5XLB9cUX9CkxPX5KNTkiJzH0htxLymBMxJxkyjy8w4KrZJtiNMREjokSNUq/w4T9ymWGGLp9Qkka4utGVUMMLTWFtIscPT3n9Ok5tfcYGwcdrD7w3VSREX8GeViL3ND1INTebLbc399zdKSxxg/mAkXJcsiHEETCYC1GGfpdjzMSrVpiFr2qkmai73tyXABFYPtODxF+hrqqsVYc8vKQMnAje+4XS+4XK5abwMXra/6vP/szLl59wevPn5MWC8InH3A2G9M0DqsKhJb18pp+10EXyDzcCveTjccH+6HxLVoyhIzDupomZfoU6Hdrcuho2zUxdKT6XVTvr1OlKGEaMyTsGE/fF1zd4JskjWKJ2BJY393w0hnqumI2OxqmTQ6lEtooit4jY0BeuAWUoRSRxwgBTGKBjRFpxPJudWAT7skMajhI9+uylCIxRIwW3aozHmVkwhsfJYm1uy2hv0WjcFbjtMeYQlU1WF9JY2CGLYK2VGRmkxFn5+dMpjPSds7H3/uY2fSI0+8/YzqZY7Wj6yMpK6IqeH3EfUgkk6ibzDgU7m5veOU+pZTE/OwZppnLxkUpwfYkwe7siSTwoI1/V9+sfNXQ7tbonCkxkPIgV1IPoSDGGJw1pMoRU+J+tWS13RBiIqYiE66B6SrNRUZZef5MAvHQGvCZ7BwlWFwVqUNHCIFutyXFltAXjPXEIoMKpwx50DlqYw4R0fvGIadM0ZmQA0YZTJHnv5hASIXQtazvXxHWd0yevo93NaZyZKcoWgs3XFlQhqwQqYuSi2Pf96ScqXxDF1qcMxhnSKnDakOkRdlMwcq7JgtwyRhDLpqSFMooSsjEXCi6xs3fJylHVK/RKVKrdw3ur1OP4+xTDpQ8MLhLkumptxStqb1nubhlvb5lvb4hqR0fV7/L8ekJ6nAZU8OUNItssCSKQkgzRQEWpQIgaMUY42HIVR5tGnLOdF1HLnF4FjLoiNGyhYv5wVi22WzI4Z4YEzH2+MrgnUcpB0WCKJzRKONIJWErQxsyL15f8fLVBZ/+/MesN0u0itzcvCZs1/zs05/zh3/8j1HTZ/iRZffiM86mc7bbDfdXL1HGY32DH42Hd4z0O33fElNAF4tRSrCoGJz2KK+INkh/EXoIVsItvkX1VjS4lfcorWUM37UcTaeAIoRIjAmU4+h0znc+/pjpZETJceDE7c0uHBqMEAOkJJNULX+8lBLL5Yrnz5/Ttj2hT6zYYAeiQQyBkodbFwpTFNt+AyXRAZWr6LSiCx05R3LYkPqe0bxhNJ5S+QpvFVoHzICLstbhrEEbTyKjtOXi5pq/+ewrPvvsc25v77i7u+L66gWrqxdslxekrmPTnrLVhtN6xJeffsaToymvbu+4uf4SU2nG6oSiLBlIWaYj+ypFGI8p9vShJyZLnxqybrC+oKKjMpGQA2G3InUtW+f/vj/u36rS1jNqKrS2hNBRVY6cpQkdNWMJCimRUiLrdsHq+RaU4aOPPiYlQSM1TYVJEk/LsDLTexMMWYxWSsD4OSdQEWsM09GE+5t7drt4mMg65+QZGA7evu+HLUWRdaoy5BCpnCeS6EMg9zva9R27ruX86THNaIK3NbX34CzeV3hfYa1HaZlKZAXaOppmDEozHY8Zvfce89mUo6NjmskRTT2iCz2Vs8SS6VImVzVfLG6Yvv8DyoufQWjp0oqrV8/pQ6JPmuMnnjxMtCXeNJCLmNkE1/cm7/Rd/erVjBtSvyEmacRCCDRN87DizxnrHCZVw6TLsNvt+OKLL5hOZzhnMVZRuYIfdLRKFXTRxBjx+xATlFgUdEJZK0MEpaiqitFoRD8ERmzXS1zVyCZOP+CRjDFCe3kkS4kxEgZGuQxEEjkVrILtbs3V6+eEbsnZiQSwyPfJyspXP0Sj7mtvLlL7Ka7W9HHHrt08yNCw8j0ygnvap1NmHugj8EAjOaRopZ7ez+DYU/kpUX9NWN7+hj71347a+1ystcxmM3bb7SBryVT1mFwSMWWsr6mqEezWfH3xBe995zvMjuZ4J4MnzUA0IotH5pBNOqAdMeQCuQiia7PZYK3HuxqtA6XvD89m27akkPDeQoJUAgpN7Styr2hjBykQ2iXbXcd05hiNp4yqmsobtNHYakxdN7iqkd5F6UEGA+PxBG0sL198zWc//Qkh9bTtig8/+g5P/tE5R8fnfPzxDxjP5qAC48mI3/3OE/rdiuXFFYurC1zlmU+PaaYzjFIEJwO9kgMhBvo9NjWDUUawZVb6l2QrUhUH2sm3p96KBne/JkrDQ6sHXZS8oBNZaaxSnJ6e4r3B5ghak5VM0EVeK+t5rTWxFNG6anEh5pJZrFe8vHgp7LeiUdZgrANkUqG0xhmLyoWNKpTYix6MQiVoUvq4I+eepjLM5ifMpifUTYNVBu/kQdSupqoqjKsFQTMcqkUVtK/Zth2vXr3ii09/zsuXX1HVjrvb14CklU2ffIgdPxkMN/De8QnXl69Y3LzA1TURRTM9IVMIJVFShPRYjyhcyD4GQg70qhDdBG1rbNiSwxaXDE4nutTTt5vf0Kf+21ExdJRcSSIMcvj6SoIPKl/hXQXZ4F01TFQtd9eXWGXpdkH8A2WKNWNQ5gAm31MWtDKQleDctGgUZcRghgQygX0758hJjAxqmMDlnNlut+SQcd7Qp0hJrTTAxhFjYL1Zsl5dU5nE0ck5o2aGr2q8r7HagROKg3NOJDgolM5QDH4wW9RVxXwyZtltMEDfdVQ5k3OHt4oUC15r2pxpKVSTcxp9TL9Z0fUvOTKwvb5nt1xwf/Ua58dU0ynFGFJMxJCJQfT0qH3M8AOD91396pXbHU3TsMkZUx62Qc65N+LDMQaVDMZGck602zW3t7c8OT2lNl6azbB3VstFfr+KFQbi3rluyKrIuaZqcork1FHXNVVV47uOu8VKGlryGxilPYrp8aWt3XU0VUW/6yEnYt+jc2G5uuP++iXzoxHGWfFjFIUaTL179Nxj0ogSfhNGmwPPWmvNcnkvGzxdkRia173ZUu/TCvfs03j4Z601emhwyYV115Gx6HpGffRUNmvv6htXVVWHz69rW5qmoW872TAl8TGIYcajlKcazTitaz78zu8wGk1FClbygBeVtzxaWN5iCB8aXCWhCCkldrsd2+0OZyv0xBI7STaLoZeNRuwlDldr+thK0E7OJOtJObLeLOnaBU4nprMjJuNz6lGD1ZbaeorTOF9hfSU8XiWDhFQU2gheshmNqcZzzs7Pefr0jKIKT56+x2Q0ZjI+oihDSNBbR9Yj1ruCQ3FsPZeLe+6amunxRxjn0d7jvKPONUZp2tKSy0AwMZqsLFkXVM64orBKk6wjlfib/Oh/5XorGtwSE9a7A87DOUfsA12MooOxjg8++oiT42Ockg9cwAiZlBiQHcN0KwrGo5QMRZrdQubm6pLPP/8FlXGEWBiNGkIMaASTo4xhVDlKLhgFXhWMUYScGNeaylmM1UyPZszmE8bTY5pmhPUO6yqcsmALztdYX2OtA2UHmJIwRy0KZx0pRV49/5qUAvfre46OjpmNJjTNhA/e/5D52VOKLnh1ydnpCV981XB1f4P1Y2w1wY9mKGMoKdFH0daqJNovioCiE0WSn6wh1xUlykNrTIWNW3LsqJXC63dGnV+nGu/YbFu0loOwqpy85JRGKYPWjkTCOo9RBWcty9WK68sLdpstsW15/6MPKKpwfnaGtoOhcWAmUjJ7Dug+WvQhhWdgKG+3h8lCVoKjiTHShUjXtegiPy+GlpwSIfSoFOjbHZvtPa6C0XxO3Yxxzou7XGuKVRhdo22N0n6AlT+EmaQiAHtFYVQ7QuXRWpJ3YtcRrTo41kHhdCHFlk5n1GSKn5ww6je0N4r5KHK33XJ3/ZJ6PMFUHuc8JULJBopHMtszZcDovBvgfvNa3l5x+uw9NruOkssbU3/v/WFSmhA5TB9ayBJcslwuZeI7qg5yhraVdX4eVrFlACIJ1mgwPSotJpoiz4N1BWvl17uqoijD/f09fR+oqooQgjSb9iHxMcbIbrcj9YmgA7EPhG7Her0ibBd0myWNUzgzSBDyA8oPZdBKAn5Ski2LmIrUgVGac2a1WrHdbkQvWQ/fRyMcVPQDHkp+PX8LYWbMgyzOWosPHbvQE5JC2zH19Df2sf/W1P7ys16t5PPtZZU+BDcPKX0Z4w0pGz48+y5Pn3zIqB6jtKSbGmNQDF4FirC1lQLlUBS03mtguwGf1zFqEuvdFtXLMxlCEOa+Uqis6Lsd3U6enRwDugRy7OnCltHYM5nPGU+PZFLrPMZ6lLEYK72P936Qz4hUraAoxQBaNggp8uT8KfPJhKfvPaMaz2maMTHIpTSmzCqDMzMW/ZqoC02TsSFzd3vJ0dWXeKup58cY43CVxgwbsdj3B1TqfkByMPPmgv0WkmveigbXWov1HhMCVmm6XTt80KLnOn/2Hp988gfU3uIMB9yFKkmA8BRSzgezgGhkBOGxj/rsVgs2Vy9RVc2m37C5LrRtIuUhqjEmmsrhfc2oqZlOxszGY5qRRVVTvLU04xGz+Zx6dCrrPOuxQ9a1ch5tHW7A0ChlBgyISNVz1oRUWG225KL57ve/z9F8QlVXjCZTmqqWL59xWNfgTGZ0dMx87DgfNdws1mwWN4xmc47PnlD7CRjNLkbabnfQ0SigxIDF4GxFqZEIw75Hx0ToLDrUKJ8wYY2Ku9/Y5/7bUCF0w8WsxhglYQ8lEbtCF1qMdeQ+0vVRVlvGMvIVy+UNd9cXfP7lX/MP1j/kT/7D/wTr5bDTakg5U0W2DVmMZxyMhWpwBRf6PrBarQHDeAw5yLqhbVtiEG1wCpHYt3SbJV27ZbdrcWpH7SRGd9wcUdVjjK0kRdB4tLYY4+UCt0fiDC91XRwlQwyZzXZHu1oS2h059aIhM4aCsIG9r8SEqTRGG5wfsws96xjJ9Qm66RjPCjH1FArX6xteXHxBLInZ8TnOS9yrMmAQOc1Bb/4uhe8b1xef/YyTQTu9WK0xigNBpqoq6rqm6zrICm01Pnnafke323F3d8dmu2UyHWG8eWRyfGgmZW2/N/8Ka1QuOoaiFG4w3ZBl+mutZT6dYZTh5YuL4dmRCbF1jsLex9DSti0lFmII7DZL7m6uub+9xpQ13mmO58eAISc3NMUZbYL4J7RCaT2gHDUGRdKixSylMJtMmc/n6NxTuZqiGor2+NqgGCQWKaMGbKQZUFF7D4k39oC3yyWincZEA12hEOl1QY8nv7kP/regYrelaMdmsxEZU0oHuYoyIg30TpNDYKRg22WefvcjpsczwWUhmzSRqchFWStNimWQNwoiTJdCHwv3qxUvXrwgxkzXBtAQUyL2HfvoX50joe/IIeJUwpBBJbyDSVPTjEdMJxPqZk5V1WjjBp6yESzqML3VphqGGGJi1EUThmAgoxSNLejJiFFdEfpAMzVoAs6IvDLlTJ8y2IrrzZrxk2eEsOasL7xYrXn59ack4LRE6unJQU5Te0874Cr3McF7rfNeHrQ3fX6b6q1ocHNOcpiCQMbbjmfPntH1LZP5iWhvp5JK0qeMQeOtQWmDUXrQ5kFJHEboMllISNCSptvt6NYLjhtNYwf2oiuUVOhyxphMCi2bbstqkbk1lqOjGc+ePWMym5NNg3YjlBmhtR0aAIe2bjAXOaz3g07RiN5rgDUr5BDsQ5CM6tRzfnrMeNQwnR0xO3kiTnWt2Ww29DGzCIEq15wUmSpPlOVmtWR1f0273uJdhbOWqq4JMcoqN0b5ciqFLgVXDMrWGG2IxpLSIO1wEUKgMMO40W/qY/+tKFuPKaEdOIx7qYiiqIhSUI9GoApGFbSzxFywVU1djVClsN6ssV5u9mYA3athI7F3amM0BZkIk/SwBtaEENjtdux2LXU1ZpmWRAQ/17WSGtW3O9rNmna3weSAUxlywo+r4fmVA7ZQHabDOSPYm7LHcj2MSnUZpgpKsWtbVquVTGtTpKr88Pt+aHRCH4e1LYN5zZOVoU+ZYj15NMXEHr9dMw6B3o9Y3l1yo2TzcXz6DGWt6ONKogybb82jafK7+pUrLa5klf/sO1R1hSllQBxKI1nXQlcpOZNDwhtNMpbUbehWmRcXL/BNI4gw43DODjSb4bk1gBnW/2Shf4iI/KCBNUohY4lAyT0aR+MrptMRr19fktIIaxwFRc7ykt1sdodJ7vL2htXdDe36Hp16ig5o3dAlsFGmaylnYgqoAFDQKqO0SCjEtKbZhR6XM7a21JXng2fvcXR6xmpxR6UyIfUUGurKY4xhu20Pno/9JHGvXU4pIWnbcvnaNwV7yknO+ZGk4119k6pGMy4vXwOgnRND4vD3GwajbVN7MUQpx/yoYT6fU1WeUjKliKF3L1NQJZMZInHZs5bF4IuGtt3x1ddfQEhsty3WGLq+pW/bwUCecUZMaqO6oqoMI19R15qmOUL7GudqnB+hdHXoHdTAd9Z6H3st7VgevEAUDVpTUmK5XNLvNvhBmqkUpJTpux21H+MrR7vrscYQU6IFjJ3SjD/ANTf47S1V7Vgu77m9usQ3R2g/pdj9pDjLlmVoZh9vKR6nr33byDVvSYMronGj5GY0mUyEUlDAWMPTp0/Z77oiku9cijDqjFEo4yElUukgHii0oBz7HOiYYTQeoTDUTtOrIqlItuCMpg0tIWZiSWitaNstV1c7tDWcPjlnojVog7UVzvvBNVzICYwWN+5jPmPRCpMVUcsEN/aB5WJBbLeczKZsl1k0vwqgYFSWpDKr5favDF6PCU6RVE/dZFhH7hY3nC1vcFWNaxpx09c1GsUu79hHBWYURRksCqMVRlmiCsSRIcYe1VuyCZTw7Vo5vG2llKbtOllFDhMnYwzj8VjoCkrhQoXREiVdVMIohzY1rtKc1iPOzz+kqadidBxWtupgdBCJTUFYjnIIloF7XLi/v2e73RL6RIg9fddyf3tDiOL43a0W5Bwl9lkACDS1RbsTqqYmK9GpGePZx0KmLNqrxxDwg+mnKCISnNKFwHK1Zrm45Wg2ZbXsMdaATejhWygoPZngFbNnTRb60JMKeH+EHoNf3TLpW7Ldsm0j6/sbtKsZ+ynj0YxiIKmMMg8TwXdBZt+8TOy5ffk19fQIX0/pu3gw7e0bN2MMKUayVmiSrFrbSNiuePHl5zTNiLqqqAZJg7C+xdAlOLr9JWR/IsuL0uhBq1oKmiHOHNGOCwd5RNd1hJCoqwbHiDBofdfbLbvdlt1yyeuXz2k3S0gdYbfDmMR0foT1NcZKCtteT7z/M+Wh4TXZUYohpUjX9aSUGbka6+HJ6ZyPfvcTPvvZX0PpqOspu6CxWiQTTdOw99o8/o48pP7lw79rr9EV9JhMfffDnHf1zUopTVPXtG1LXdcHqcC2azmezbFG07XCoy1FEWJiNBrhrMEwBEFRBqmTXOJj6h+deQNesYgMS6XE/esLTMl07QalC30bSEkRYyBF8UeoorhVBZNhNp9wdDSjGY/JGIrx6OEyqJDLkMkIvYM30ydRYnSPypByYbVu2Wy2rO+umc0mpH47nMey5Ytx2A6KmxOrFbu+RdcVNp8wOjpj17bMgfV2wW69Ynl3jasnuNFIGL0xkNL+7wxAD9r1N+Pcv231VjS4fd9Leoh2aOvZ7lqq2hNiohmN8M4Q+x3FqAOHLhVDGfKTUYYhk4k4nDzG1AIyTh0lZzZdx3K949n8SA5sBdHuDyeH7vSAzdjrTyI5w/X1Na9eX9FMZoxnc+zAz8slkXNEqeqRi1YwO0VrdAG0aMDaLnF9fcfFi5csLi8g9hhd6PuOD06/x67dYaqKSdMQO+H0hhhpK0eZjKlPzqjbHUcm8vr+jsuvf4E1MD55ivJjKldjlYac6ZUC8+b0oKSELRmHIRpPNJ7kIrHqye+mCb9WTRrPbPSU9Xp9uOBUVcX9/T1PnzxhvVoNmqaEyqBVwZqCrSzZKE5mJzx58h2aaiTou3107l7qqoZUsVIOGehaKcoQ0Xt5/Yqf/fRHmFTo2ntyVuy2LRTR2moSIs1OpBgGbqnm4+99H6UN1tfycxGqZwgdpSSMrijFP+iwhgtmRliReUAqde2OzVqSopx1YAypaGLo0UaBTlhfgYqkIgFWbmh7dhHapDFuipudU9oN43rHrOtZdDuuX3wOaE5OnlK5Gu8qSS3SFqwmvcMtfeNSmw3r1y+4rGu+/8N/n7ZXxLY9mMz6vhf9tBNUkas9Wo0xBmKb2dxf8ulPEqHboX7we0wmDdZ6RqMROYO1BaWcRDuj0N4OsaPlEBOsyWQiJam9+ubw/UkpsVisGI8iatuy61oWd7dcXrzg/v6Wu8sL+t0GRRLNYwyUkmjGExarDU+ePGHbdtTjGfDmJU1bQ86RUizWWKbzGQfcZOwZ154/+uEf81f/97/k65/+OU/OnzL2c7pO1rfj8ZQUywHD9wDLVweH/36Vuz8TjDGHya21b8Vr91tb2+UCXeSinFOSZzaEw6VMG8Nu16EoxFL48KOnPH36lMoYnNFCNWLw7JCGJk6MaSXK5k0XSIhW1xtLv14wb4yc2xlsJYloxUIXCnHQrJfh8n5xcc9yORXJYtVQNSO08YINVUN/kSLWOsGaFmls80DxoChKhr5P3C0WvHp1wXa1RpUeYzTWWaqqfkM6sG/OrXY4B32OhMoQ3Tn1dEsdFbNJYLFbcvX6S6rJjCPvyCkT+kyMihQVKCGiKM0wRHjEjP6WGR/eim+a9w7vK+4W99SNiK9LFiNNVVV03Q5LRtXVMKHMmCLheCVnnJXpp9aa8WhCHzqsEwOEhDv0vL68ph4ag1FTs9MapyDGdIB7931/OIjkViezs8vLS6bzI45OnrzhwC0lk1MHA4eU4YDTSom2C0UusNxuuby+ZX13S+g7uu0aazVVPRri+NRBXyY3/0TKPb2qWHce2zzF2FucS5iuY7m4Y7beYEc9VjkYzEfCSk0U9XAbLKUQ96JxlbEDCDtZh1aGZL9d4Oa3rZrKc3V9fXBeP8TZahaLBaHtDppwX3tULmiLTB76xNHJCeN5I8k5mYNJbH+QlP0UCFFlpUEfFrIkkTXOEle3EpWae0yBxiZUUYSiSGUgKiBRwoINi7x8+RK0xfqK2cnpYe27Z+oemMp5j58TMyhOcEuFzM3dPVcXz+m6HbpEvB1TlEUVNfy8JOkUMQ54MUXREpNZsjjqQ+jFhGmnJD8nbjfUviekQtcFbq9fEPMWZ2uqarB6g94AACAASURBVEzlG7yvqV0zYALf1TepknvCdsHm5jXdcsFsfM593x1wYfsmzDpLCPL0aWdxuSKFjopC7jYsLi/4yjtOT0+ZTucAVFUjEgSz5+rK1G2fzCTPdj4EmexJBjLx5fD9adsWhWa1XnF/d8PF189Z3F7Rbtek2GFUIYWAMdIqK6Vo25YXL15we3vLex98yPzkHKXUwdNxaAZylvO7ZFQpEoOulOC/VOFkMuOP/+Q/5frVC65ub/hBMyFPngAi4RD9pD40udbaw/dHaWly92fwvgHex76/kyj8erVYLA7PSOoDk2ZEMOGgHa2cZ5WWGKsZjaccn5wyHjVABq0wyqDJFG0H42QZZDD5gIvLKMgQElTNhNOzJ3TLa0aNp48Boy0pFmxVYaKh6zr0/r2LyA37GLi8uqEZT2Wb8KgRlWcikLPHFftw3gI6FdAaZSwh92y2Laub1xI2QsJ5S1IR4xg2e7BerwcOv2xCtKpQEZZti7UGXU+omzXjnWXXa9arG25vL3HO04znMihEo7VsNspgKJXvaxpAVXsayben3oo3RNfuMFoTuo7KeUourFZLilJUzhO6QNGZetSQszBu1XBzsUoLTJwoiSDWUtUTeYi0oR6Nub29ZXN7RbuVuMXRbIKTRwOtpbkNQVyYVVUdDncdEyFEbu/uOVsuCcPNfN8M1HUtgRLyq4XeoBQqF4oW52OIkc1my9X1NTfXrzg/PeZVv5bIUwrL1QrnHZVvCCGILlIXjLZ0pWOde1wzx09GuJSoQ2S1WnF3c4NvjmiMQ1mDsPvK4RDfl9aCGNn/vlMSdI0tCWMqQnkrHoFvbYWYaHc7iBGroBs0drvtFjUaEQfWslKKmAqNd4xGFff9HVXdgFbD8zZsE/aMWSUTChhc2o8mQqlkNGLaOp7NaTdLpiczrKlIuRAHNmdTedrQDmtauexYo0lZtiYvXrwg5sLR6RMm0x7v/fAMymoslzSs8RgwSIMxaDBHUGB5d4VSGWctxjnQXuJ9tbwo9mk8e+PR/tIlsK8CppBDoriGMjnDd/f0u5bGQKcy18t7ut0K6yvqeoSranxd492Iyje/gU/8t6OUgZR6uvWCy+df8cmffI8+dGy3W2kSKhkm9DEI5zZIQIg1mhgTOu6oTKHf3PPp32y5uj7mow8/JsZE03Q0TQ1MqL2YFo02w4sXIRagD2EeSsnESmsG9qc0jvf3d7zuXnN58ZLQbVjd36JzxJFwdvj/DdNY70YDKUE2Wfd3dyilOX/6grqumUwmYgqzgm5kiClOMaIJFFsoSjYQWcGoMnzyR3/IZ5//nD//P/85r57/nPmTLdXJh4Q4R9UWpwMpaQpB0HnIJM5qmdIVpNEVreYw4c0Zq79dU7C3rrQlxf7QEDrn8EkuMKvVCnd0PGwfDPOjI773ve8DYkoNsTwMIxApYSpAipQch03W/jKWsTrh65p22BY3dYXqIOaMMfK+bVxz2HyEIJHoNiVCLtzd36Oef814Nj/0DSGEB+NukXe1IOWQqfDgucgZVusNy+WS7WZJUzlylMEAaFKQVLwUO4wVqUYiiIwtKjSaLhe0b1DVHO3XNH7FxDq6LrK+fU1V1ShrMa4hxwQaDJZSBolNTpQBzSitzjtM2K9cpWRWqwVGK9arpcTpWY91jt1uw91yzbPzU8rw0s0hkPa3t8mInIVWkAuQMmRLTMKok0M6MaflYjBxnb//DJQESVhnsVZuJfsYPYnrLZiY0bpn5DyhFxYePKydyvDf96xHYegVWUFoTdGGu+UdF6+vuLr4mpvr12ysTKWzNlSNfFGts+x2u4PJRxVQtib1Lbu+B1ej62PcJjAbZ1btHYvb14xGY0wzwmaHAvq2JWWBMSsExbNvKvbrm4dGV8v0+1uG/Xjb6tXzLxnNT+TAdJ7d4h4bE7mUYR0FRcsK1loxmW22LanI7Xs8mQgeRhvQov+mJFIsB+w4MGi15Dnbh3toN+K9D7/H7OQMqzPeOdoYsWYw8RiDLw/Ip77vxfgVAgVN17VcvHzBxavXjCdTmqY5NBeFfMBygQREdF0gZcVkPsJoxXQ8oSKQjUO5Mcp6jLW4Uog5YY0dDJdq358/WqU9MESNMbRdjx2fomIP2x6dl4yLYRsUMWZy2LDZrAU/pTXKWdy7mOlvXKEoTErk9R23Lz9j8YPfZzY/J0Yx4bRdwlUVqmScNeRUKEZRNxatPe1uTdGSa++Vol2v+fRnP+Xu8pa6HtPUFU/eO2d+dswHH3wEtkIRhhQ8AJmWZpVRxaGLGCy1Au8bpkcznn/1KWG3IWxXWF2YeKBY7KgSUsFweQTeSJRKGbyzqJL56U9/zHw+4+nTp8MlqYbBPxFClG2ESZSsh4CWYZKcA0+fnPNf/ZP/hlFV87//s/+Ru6+ec7aNvP/dCqPnlGpMrSK7NtD3PUqJpleRDr+nOKy8Y3yY3n3bjDpvWzVNTe0nXL5+TacLd0uJ7o2dJI/e3Nwwm01JKMbTCU1TUVIkKAkw0CnLeQwS3FGUJJdhCLnHoHCVUES60Akpx43Zbr5k9J2P0MYQ8mAo1MICb9v2gLXbb4NdEsTYerXk+vqG9XrNaDR6mOqXjB3eD1AIKVJiQI9GaOMoaO7uFvzoR3/N3c0VhsKoacRbhKLrOlzlZaqag3g8soKcsFnm0DFnYvHY+ohq2pPW18z9mtAXru4uBd2H4fTkPbSVsxXEzCteUSHXpJSk+Vbvgh6+UYUwTApKYjweDcL/wHq55OT8BGU0bddSDS/vGCOjRl5wXddijMZ5Q0yaUnoYplgpw8gojJKGLsZIZYVVqrQdXuYiJdi/bAG0cTiVKUDIhdVmdZjwHtieStikDO73lDPddsNoNMY5cY7fL5b85Kc/5eblF3g76K/0MNlKmqwiOQaU1YAl5YA2FoXFGMtq11IVjaoafO3wfaHyhu3ujvvlNbMnH1CUImdNShCCTHK1ScNQ0FDK307aMca8oRV7V9+sbl9/zdH5MzZtj9KZ2XQqF4j9ulIJp9bV9TCpKkOoSQZbOD2V9Zm1Gm0Gxyp54BEOjlYMifBggDBeMEU6Mz8+Rlcj0vqWZjaj7HZg9CCLMAfJzX5qkFKi73v6MERj+4r7u1vB0AyXIJkuAIOzWJ4XzXgyEakBMgmejjy99aiypVGePlu8F4lC7MQkqvZrN/1wudpPcfdZ8Az/jj5GdD3HjI6h79EpM6sHvmUx9LEQC6RcSF1HeGfW+caVipxtuhTa7YaLLz/nd354ymw2Yb0WFNeDt6DQNCPabou2jroZE2PAqELlLRSFNXJJv7p6QU6BmCJP79/nH//H/xnaPCTPHcggf0fJZF/O0/efPONkPuXi9oKRk1CTfYMohjExez3GGIFsGlIeNg5a0243Qo9BU5Qkjxml3miM5ZkULBTDfzTCsj47f8J3f+/3ef71f8Srzz/l/v6W2c1X1OV9KvcedeOBMTEmUpZLYSkP0elyzj7EH+//nO/qm1fKkbaNh81rDFkkNykTui3T6ZTVeoV2Nd57jNbE0KGNFnlUKags15ASo1xqNDjv8M4Sc8a6CrRIuja7jrBZ0rYtXR/QzuGywbpCTjIUk8S8B4kagMkizTHOsVqvDzIVa+2AUgQZHgyoMqPZ7Vo2u5aJqw8EJrW7o/YWvTeyWy+DPIFLH74DISYhhCiRahAz3hq2m0hSCmtrlK6x2lA5TdUWtve3LPyIWTOn8jXaaqKRQYtSZtiYgzYKrfwh0OTbUm9Fg9t1HX3fMx6PJflluTxk0P/sxz/m6PyEXbfD6sFUFhPaaCpviV0YDAMapR3Gevo+DtiWQuh7lst7lFLCdmxbmVw6T0z50fp0QDHpfbKZHQ5JQ7fdMqornjw5l9SdqpFoPWsOLwFjtDSmStGFhK1latW3Pdu7V+y2K+yg9dXW02dp6q0X+YAqCWsUxQiGKceCQdHHIQnIjlGuwdsNtTZsQ8/9YsnJ8pbp7EyoCVmjcIM2WCYHqATlYYL2mPSwly68q29ei+tXOKvRQAgtDofThpKyrD+Vwll7uBQ5Y0VDZh31aMrZ2Zm8vFM8pCRppTFOSAEZRQo9qgg8v6AFYE8h5x5rDaPZGcvrC55Yx3is6VOURDPUG9rgEMKhudTGieSmFG5vb1AIlN5VtTTmxqCNO0wacgE7oOzIGW0M48kEV41YX3zOxAB2TEyGUSXT3pgSpWjRPxbRD++3HofDXumDLKIvhYTHzs6xKdKnhPEZWzKUTOWGdKCcCUkRvl3DhLeq9qYatCGnyPLya+4vn/Hkg++y7RIohXMG77xMNpVsz/q+Z+xrnK8JoRVSi9I469GNYrW4JXY7dt2W62uD1vs0MZmOaq2hDJzc4czNav+SzgcJw2Qy4Yd/9A/5xb/5c2Znx1jrCSlJ6NRwhjVNc8Bu7Yce8mwLjSEVCG1Hv2sJoReck1e44fsgfw8PDcK+ymDoRCcaZ/mDTz7hg/ff5+Kr5/wff/o/8Ytf/IizXc+TnIjTMyHzVGO2aUlMPc64wwVu/517jBH8thl13rbabbZYo9lsVkKnyGFoyDTFOvqYGDdjNn3AWsNuu8GqjPVCslByjTqQPIwR5osoXszhvVhKwVU1d4slYwL3ObPZbDg+GzwLqaBNwRh7+Jz3TbexfggR0fQxsV6vD0EOznlc5UUbuz/ztcZYxWw2owwEEqNED55zFBmmbVDOYl2NMWGgdVi0dcMwr6BKOvBrYynEoiimQFZkXRPdhKDucKqnMpq2b1ksXlOPxzT1lKYeUbsGbzzZZorOKCMm/pQi3zIJ7tvR4O6bxH7Xso/tBdhtN9zd3rO+vWd5dIN1ikImhp73n7xH2wWslYlATJHcK+jzQYMqq7aei+fPGbFj5uH1qqcPgfH8CDMgZPbi9GYsOq6QMimEgUEXcdbyySd/wNnZk+FBkDWXUgINV0oN6amaynsUYsQB6Lst3foOh0HXI6wzaO0hheHPLje5/RqZbNE6YwBXEqFEYqdx1Qw/PiZtl8xMpjWwWl6xuL9CW0/VjGXdYMDgBglCoeQ4SCj2ek57+Dt/PLF+V9+sSrvE64LKPe1mRanHBx1W6oNc2oDQB7KKuPFEGjvvmM3nnJycSopULuT4gAQzqggSKwsLUWmDsmIE+P/Ye7Mny67rzO+3hzPeMafKqkIVQBDEQFKkKFIiTYbVHWopuvvJ4Qf/cX60w+EIh9WS261uOWS1pNZASSQlTgAJEMRQc86Zdzr3DHvywz73ZkJ+aiCiCShqRdQLh0IVzsl91l7r+35fmhUk3rMwhtY4Mi1ZLBZcXl2xt7dHkFEnKfoJLrAF58cPr8KHgE4zmrZlWBRMpzvoNCNJ49Qjqm3ixSj0B2dwHVJmMYDCG4pyzKsvv8Lf/OJHqGrBaHAbaxqczhkMBnSt/QhXUfZGDkEg1f0mxrmoCdcaZVta71DZmGRkka0lsIzvsHcQTPwgEchCBLI/r49Xvp/WC6mig2F+zsN3f87O3i2k0jH+WXoEgqapo3NbK5wAj0LIhDQVNG0bo1IBlaQMx7tUMiEfTEgHE6QokCJBSB/5yjfO9+1wgetLjyD6EnU25Cu/8W3effcXPH7nJ9zZH+KFwPrepBjYJl/KPrhhIy/zvckx+ECeaZ4dPeVzi1fJRzuIJEXJ65+HDdZv+576iJVESqR35Ap0kTLMD9jfu8PeCy/yf/3+/86Dt/4Rc3XEzhvfpsjHZGmB0gk61XR1R9d18d+z9z2RIk7tNjKh5/XxqywKvLN9IwrT0QghBGdn52RlQZFlVFWNSjS2s7RNi9OBrMhx1hBsIPSbrSJN+uFPPJcsDrzCmHipN9axPyy4e7DH0ZOHLOcLDg8PcUqhfL8B8DGiWkiiHyFJUP07KFTA2DUHe3uRxVuU5GWJSrL4l5Fxw+qJTahMNLofIighyQclJsnQdkWWaJqgKAqNMwLff2c2F76bMrCPXtwC3juMg3Z4G13PMW1HIR0tjtnskiemJS8GFIMhRTGhLEbk2YAiLUlUClphpOu31Z+d+lT8afM85iFvMqY3LESdJoynQ957+20Wl5dU8zkf/vJ9Flfz3mHbZ9QHUELHxCZr+4lwFHOfnZzz+J238C6g0gFWxrX/pqHMsoyyLLfA7ngLS5FSIWXAu46sKBhPp0it8TGw7iOrCJBxYudj8pQUAnwEJ9fB0TiHFhaFwEuNzGQ/yY23RdXfwKy/kdIkwQSH1gnOeUwQeJkhhSbTkCqB9JbZxTnrxYLQOIRwKC0IwiGU6FfNCYSINvE+pumEYG+QIJ6vyz5JWdPw6IN3KRJNWY5w/hrP5lzE3GmtY9qOc5ydnaF0nxDTWxqs6bbO6tDf+p0XdI3v0V7xIlLkA7K83L53aV4glGYgo3llMZtvpQhZHp3wPsRGVUiNUBKdJLAhNISAwEc+tIzTYRdiKMlWZ751/G7Wqw6HwwvIU7j34kuU032Wq4rCVygl6bouToP7qfXmz7vRnm0kE947fLARa6fiBM91cdWIyknLCflwh6TcQeUTRDqBZEBQBV7mBJX9t3/g/0wqwNZspSRI17FeXPHh+79kPJ6QaI1pu0i58B6lJFmekaU5zjmSJCPPB2RZQVYUSK0QSpNkBYnOESojyQY4T5/CR0yWJCB6k1XYhJpEzEK8BKnIzk20ZDAc8LXf+jZXy4blas2gHJDlOUmS9lQOBUL1zYVGKEVWFLhgUYlEqSjBWFxd8vTxYxbzGbbpCDZe8qwL8RIX6ah4VOTb+ujn8DLBiRTRJ/uRBu4c7vLlr36LwcGLXCyXLJ/+nLC8wrU2Gt70tQRhazoSAtO1mK4leId3n60176et6tbhnOnPE0vbNDhrsdaQKs35+Rl1XdG2NVVVMVtUZGnZI6/iVrdpGmwbLyHGmO3q3brQn8Ux9p4AhYj67tFwxLqqaNb1dliwCT+QUsY+RqcIreLuTV6ngu3t7ZKmvf677x82w4dNFK4MsclWPWZUi0A2GFPohG49Q4QOQeToxn++wNiAswHvP8pj3mwzAFT/s+Wco8xzZLlPyAYoLclUQoLArpYsz884ffaI85NHnJ494OT8IeezI66qC5p6iWo9yWcMAPKpmOAC+N78snkQdV1TlgVaBZ4+ecTbb+Z86UtfZDIc0DUt66oiUZLlYsF0OkZkKUHA5fKcMh2hpeD89IQHP/0BzeUxwkFRFKSzOaZrSFPNarUiz3PKsqRarwkIVL+WjR/4lDSxEWOkNC7E6OBNfvqmAYBevxsCEhch5/2cQqkMs15SYFDpEIMkTXIa14C7nl5vUEyb32vDHnU+EJTHe4EXKVblmCBIZSCXguXikkU5YZANGYgRVjuEDFGL42Kjq0h7E4brpQsChP1MYj8+bSUDrJYrDu5qrHekWUaaKJqmxnQ188U8cma9xzjfR6A2CKV7cnPfEIuAtIoggR5jhPNxnEXUaDntQabRdNU30Wmacu9gyi+yjKauqeuaw8mEqmm3Zgeg17fHSYNxsRG1rd2C533/UQ/y2pC4qU2a2WZ1K4Lo9V+O3b1dJnt3uHjyIfX8BL+To7Nie7Bv3uWbwP3N1gSuL3SbSYjSEmsMQSmKyR6ZGeBM118CWryz0WTqOsLzRuFjlwRk8MgQECFO9FWz4PLJI1764m9GFm3T4r0ly5KeANCfV1rgnUCnaXxvTEypAxe9EHlCsDbKr0Q0vQYXQMUm1zrf/+/jT4DvaQqbI1BKBbZDysCdO3fJipLT01PSLGM8ncT3WMStxqa5SNN4/gshKPwmOleDC7Rdx8/eeovBZI/RaIzJUnQ/+UVG6U90zV9TPoLfIJI2l0FPpjReCL785a/w9ptvYmcnHB+dYINmX1iy8QHCpCjlrs9wH2UXzoWtJvf5UOGT1eXFBdNxNJYB1HXFeh1ItGQxn6G02uLCLs9PObx9gA/xPdA4nIvek1E56CfqcRIqZJRudZ3t+5D4Hl12gSyVjDPBfNWxXq+Z7h9QFJK2bbffcKFkTPxzjhDaKLlpGxIt49kq4hBBqGtpwvW2OWwHDjZYpJJ4rxhlBbvTHd6rGgYTR1JorInEmyzLtlsyQdSQG+fihbH/PWWPGws2SsI6Gwj5CJmPCKsZaeoZOUFtFSYEXGeoLi+oFjOSvGA9mpGXQ7J0wHCwQ5kNfmXP/ePUp6LBnV9dMhyMyPOc+XzOeDymbVtsF8iUYn865mdv/pizZ8/42je+zsV8RnCW9XSHpq3JswS0JoiMxbwhneTUVc1f/vv/FbG6RHZrUBllLhkkUK9WSCEYjUZIvTkk017f5wghNrrBRW2vdYFHj54w2bvDrVvXH+w0TW9MqMR2MuZFPIB9gFGiwAfm6xV74wSpii2tobEdxhIdnEoBbqsluzk9I0BnDMgMm+8h1GNS6chl4Gq94vLyCUFYJuMDhsWYVGfITGGFiysQ73rpQopzKk4JvYvSBfX8sP0kZUzN2dEzvvz171DVHT5YbNdRFgXz+RWorNd7B7ROuFosuX2wz3Jdc3V1RVWtUCE2A3HSG5m13nuCdZRlTgibxtATXIu1mxWUIE1Sbh/e5tb+Ac+Ojzg9PuHevXsMBvojjWTU9saDdTgcsV6vKQpNXa1p64bjoyPywYRRj7Np25Ysyz6y2RC9ISwAosce7e3f4pvf+e85e/qAR0fH3CalPHwVFwqy1IO5js7evNuIa93k5pfrge2bdbNxFpGmyCxDC4EOgcJagjEE12HbqKt8Xh+zvI9IQyEILkZ1arvGLk958M6P+fwbX2HuHF233l52NtQCpRTTyYS6rlFK0bYNRZ4jCSR5iko0bRcvT2dnZ7z44v04ad00jDcu8tH63X+QrcN5SLIcoRKqqkKnOS+9+DLv/eR7PHr4kNeK15lMJjTGIKTavqtJkmwb3LIs+y2BRRYCU62pVguuzo65mI4pyxE6k/gQp8UR//jR4AapFKJH+G2aEd8FlA/s7k75zr/8V/y/p0+ZHT/h0Yc/Y1mdsn/4ZSbTF3CZp+lDM7quI3C9Bbn5M/m8Pl4J6RBB45xnsVgwGAy2DOLONjhnONjdY72uOZpd0ZiW3f0dgjfkicK0bXyPjSZV0XzuvOlZyjYOEHwkx1jrePTO23SrJbujMe+dLjhZrJg2Fd5Hmcx4PKZpIhlHKUmSxOcb38uMpjPU1ZrVak0x3gHvMCZuLzZ8Zoi6+NCbHOPWzVOkjt2DWxgkbTVjdzxlZTPSnggi+Og5Gs30PYNaboQX1+mEa2PR2YhkchuxWuHdFXmhyJzdDhlqE6JMc7VktlqCUugsoxyOKYajX+GT/6+vT0WD6+y1blYIwWKxYDQe09Q1mZYUmWZvUvLw4du8/bMfc+vOC+z/m3/NuqriiqL1oCxCJTx8512OZMsHb/4Uf/kUSUCpgMegRTRPuC46s4fDMVW9RgmFVobOeZRUaJVi6LA+OnpNZxkORyRKIQNY41BabY0ymyQUIWKKGWymboEs16R5yXx+Rq4ca19HuHOS4T04G6cYwofeiOOuJ7rAJrPduLgiTvKcLpkgpUcEiw6B9fwKZw2dqVnlY4aDKWO/Q6ozSAK2hz9776JTf6PRDW6LnHpeH69c1yFNS7NaMh6POT07BudYVyvAIwmsqyVpnhGI+j5jHMIHnIkxocIbxlmKczYmjoWY0JP271jXtehERQ2k9xhzPQkNCGYO9gvHIhXMm475csVgNML7ODHeBJ4gFUol24+vM7EJWdcNb7/zDjv7d7h39x7eeKTSWBcP+k34A1x//DcNUpoohuMpr3z5a/zjX/0Z52dnlKNdBsMhQWuCi5cARJxKaHREfcHWXAbXDfBmi9N13TZN62Z0rEwSBCXpwJM+B+Z/7JKECLlHYnH9NsfjveTy8XscHN4mGUwIrmW1WjGZxItPlmUxMne1iui5foLlvUdqhdIaKQRNa/qY5nhRj8bF+M9WokchihDlOL3ZEdWHpOikl94ogpC88cUvYmcnfPjgQ46fHVHmBUVZ4ok856IoeonXZmUc/y5SBrxwFEVB4gNv/uRHjEcjbr3wMnlZIvpthAyBrruWCUU+aSDN0q22N/4MCFrbIRLN4eEuBwe7HKcK1wbOj84gPEDhUeV0azJLkoS2iXjJm7SH5/XxazQcxhQwKZlOp7RtS13XjMdjRnlJVVVUyxVd17FcLHh6esK3v/VbKAVd41mtFtzZv43tDCKR/Tdf4YwjyIC1ccgFlsV8ydEH75B2BpVkDFKJqRaYriPLy+2mSic5wdhI4SBuRpVKCNoT2o5nx8dcXc3Yv3WIDALnPFmW3jgD+wHZTQqDAJ1l3Do8xLnA/OKIdDBG797H+5gIuEF/AtsLVAys6NGl3m9ZuwgPrsMgUUmBzAa4pgYUYFDKo71DKxtlkV7Q2OiTcOuKRdOwnF/9Cp74x69PRYPbmYbZLIr9y7KMaywRSIuc9XrJoCip1wvuHe5wFE6YnT3hj//DH/LaG28wGk7JsynltOXRo0f85Z/+EXd2U/LFOSm6X60FVDA4mZClGT5A11qKUmI6h1dRp2itIc9zrACdJPgQyADjO7q2RsuYcKKkAhGB+Tpc68iu11nR/biZKOgkwzYNvlsih8PtBDd4gRXXiTeCCPcX6lqzGHWUduuCB4XIS0x1hU4CiVIYa2gXc87bmnIwphkvaNs1g8GUsk9/csrH95jIUZVKQEjw/rlE4ZOUlpoyS3n64H1ufe5VbGcoi5wiz1itVjT1mt29PZbLFQpBqiXL5TxO8NeWalUjtWDoZIxE1TKuzHoCQtM0kRKCw4eEECJTE8BaT9t5lhdXKF0wHE44v5gxW8yZ7k6pKtO7dhOMpb9Ehj41ShGCQUhJwFHkOYmC1lhUkiJ74L5UCi9SnFDIILbYr023kmnFq6+8zN7uFDrDBz/7B6qrY/LpHjI/oChSOrPGmvjPdk4iRehX1B/VK29YpsC2gW/bdvvzobXeInaUUsg0/W/9SRpVcQAAIABJREFUuP/ZlLVmi2jTSkTSSgBsS7c45dG7b/H5X/8mk8kkbtOsjQ7vfu1Z9dHUG5mMdXGiv163MUzEBYLzPaZJbSVYm02AFJFdbr2MZ6fSDNKUqMyNZ51zDq01n3/lFR7/7Ifs7e4xm804OjrixZdf3qZXbtBLdRNXz4nOIEiU7MNFbBwEeOd59uwJ91+ryIoBOk2QAXxUT2ylaUAMOcEReqOR8wahB0gZCHSMhhm4lulkgL30dHXL2cljum7BaP91xuNJNHJqTRP81sy2CQR4Xh+/vLXsTMas1hVdF9f1g8EA73z0B3iPCx7rHXv7+/izC+YXF0gZpV5XVxcM05LpdIrtPA6DEZCnKZ0wnM/P2R3domka3vqHv0Y2M2IKg2R3kHG+qqkWS/YPDmiaDqEkUjgIPsafqzRquUOHB4RKSJRmNIioSLdhortNMyy3A7IoAQPRT/0lguFowp17L/H0vTcpLk85mN7H+BQZxBb9uDWp97W5mG3JHUrgjMc6g3GCNIAuxqTG4kyLMw3BGYIwES+pPYl3pMpivaC1gc4HXNv8ip76x6tPRYOrtWI4HLKuV9we3+HsLEafDodDkuGUYC3TvbuMX7jNYDiiXTc8eXrMD//+71GJ5Ic/+Bt2D/bRqeTV+y8Q1hc0nUEEg+6TafCggmEnETytWy4uFxTDKTrLaJqGvGcqSqXQicNYByEeSlpJTLMmLccIpXtunkIoiUoLglQ9f07EjGwB+IAjUJRD7r/0OR6+8yOuzo7Yyab4YoLr8V83HbxbpqOx6KRfBUeXEEopamuxIoFiF5Ev8Z1hkHZkStHYQNN2rNszqtkVi9EFg9GEohwzGd9iWIxIdYZIE6yMP4jOhs8c9uPTVjaAbSs+ePALXn7jDY6dwNmATK4P0/F4iBSBdbWKRkoCTVszHIx48ugBt+/fxXiH8YamM/jOorMU14ASUQ/ojce6aI6JQSRxanZ+/JSTh++hXWB/Z5dFteLi5Jhb+3vs7+3SGUsQkjRR1LZDCBnNDj0nWhhDieTk6WOePjzklTe+GtFR8BEzmurf8R6vgJcaIQKawCBPKQ5v8W/+x/+J329qfvnmD5DlU/Z1SsiHJDqj6wwEgXNtDL/oD/JNI2Nt12spky2T959uMrz324Z302g9r49Z3hOkxAeP8wKBxAkV5+vtiqtnDziZ7HD/tV+jqirSRNM16xiOk2ZU6zWTyQQjLbbnviqh8UjWrcELSaoTkiRDaUVnHbh4jnkpUERTYXAmetC8i7KUGOG3lWkJoRjffZkXXvsiqV3wTr3k0ek5nZR86Y3Xth93qRVZGt+ntm3Jsyxu9sgJPmIoy7zg9Nkz/vH7f8Fv/+7/QC5TkiSgTIuPAdkkmaRpO6QUyCb+GTbGTZ1ZhMrxxqGDZOf2S1x++DOSOyOuVmtOT46ZnZyzmq3x918jH+2gdUKR53QucscJMTL7eX38ar3EuDj0mUwmcXpvLaZpScuSsiyvyQLCMpkW/NEf/gFf/42vcf/+fbIk48mjxzTrip3xhGdHT3jp5c8RZIoJiqZyVGbGj//6T3n4zg9I7IqgMoJ0jMclp1dzZleXfEG9gRykVOuGLC/pOtP7e1K8k4QsIwBDqajqlsuzE+6+9CpCKQIC2aeZoTJQGt/raMUm5y8EnHfs7Ez54te+yeXVnIv5BXv1jOHuAJHnkTfeG8w2zHNgKwG7yV7eBFEIYTHGko92SLIC29Y0zRpnWmzX4m2Ddwa8QStHgiPvBxDWfbY2EJ+KBreu15RlQZZlrOvqI+7CzWRnOppiXEcxOkCoFS/cS2nqmsvVnIODgxjBm42ROoO8pCFDCIv3EaAsncUQIiTZV6ybinI0xlcrmrYFIcjKEm8tQWpUGtDW0nWRhpCWY3RWRDNE79yFPhFFR0dv8MQQh173EkJE0Qwmu2STQ+bVirEx6EEBWqPCddDCzSQeRAB7DSKPqWkeEQw2xPWCyEZ4uUQmGZmyaOVIrYv6Ge9o5jOa9Yq8nGNsQ5WNGQymjMsJqc7xSYh8vE8HSOMzW845umqJGGbMrq4wpmPlOvIUsqz4yARMa0ndrpmMxgSfYLuWH//DP/AV8XUGRY7SARE8Tb1mP93DdB1eCZQQpDrDG4cRLdW6osiHrJYLfvp3/xnZLSIfVHh2hxlPL5ecnZxw69YdbGiw1pFmBXXdRKdxmmINKJnQBUOiFdZpOmtpOotKEqSQvW4yfphvmsQCAhHMFlYuhCSIwHhnzG9867c5Oz1idvyQtCjJpiBISJOctl1Hk+ON+F4A7+22ofFti5YCqRXOxSSezWZk0/A+J4B88rI+tnSIeGmRQhBEfLYyWIKpOXv8gNd//ZvMZ1eoXrISgNlstp1GZlnGcrHAOUc+mZCnGVcXl+R50adEaugZyFG2FeN6/eZSby1KRX25VGG7vt2ce845lM7Q+QhUxu2DW6xPTpmdnjC/tc/B4SGd8bgQyPKSQLOlI+TFgLrryLUmyfPYqOc5p8fHXJwec+d+TpAaL1xE0QGmaui6liwrIgnnhvHMGIvwHS4E2tZANqRTJfPVkqOTE9bLBcNBQVfPOH76Pru371OOJmR5iTfx92qa5rkG9xOW0prOeJqmi4Ox9TpKrm7wvjebBZzA+haC5S/+/E9547UvMtnZRac6SnSsI9EJTesICrzxvP2jH7E6f0D98B2SEEjQ+NARZEDrlLLIscbF2N8s6w1lgSTNIpVESXTiIonDRQlPohWopJdnCZAxbjeE6/CSyIimT/gTyODQwM6w5Hd+7/fYn+7w53/8hzTLc7LBkGQwIEkzrO0wtkH0nHKpBD7o6/O6P2u3fNw+4MnnOSJNScohuqlxXY1pa7q27hvdDm9bgjPQ9xjaf7be3U9Fg6u17h8ymB71tXkwVVVRlDnL5ZzhcEhHgkgLZBrd1GmaYX2gLEustTTWMsgn+DTHuQYXIthZi2tdDFJSrSscgTQfMOrDyLxzrK0lzeI01+c5jTHkWUZVL2iaCj8eAwIXPIm8NvJstbgIPDLqY4Vgfzrm29/5Du1yxff+7I+w9ZzhdB+SCcHGaN7QSxA2KwbnLEql1y5cGdfXzpjelKZQ2YCgiz4+r0NKRy4NiXIYJ6hMPJCb+YyubSiHI+p2QdvuMxxMKdKSNM2x6rP1wn7ayjuL62pkV7OcXSKEpm1rBsWQ2WyG9569vT2AaNoSkuVyye5owmyxYHZ5wds/eZP7t28jpKNpao6ePSH94q8xHo3ABTpnMJ0gzTJqa6m6NUpkfPiTH3H5+F1yW+FQIAWTyZDHZzPWyypSQgZjrupZNKRleVyVao3SHqmi2cshyTQcH59Q11VM5dHRDCScw8PWUASgU0eSpFtXeExXU5SJ5qV7LzLdu8+HH7xJNt1lJ5tQDsteL3yNH9tMGm5uLm4yc6McAdIbmDJjo4b+5mT3eX288kmB75s6EQIubGLH4wVe4jH1gscPPuD2C/c4O78kz3PGozHex49kU9fkeU6WZbRtS9M04Dzj8Zj1ukKnKV3XxQ9qsH1Eb6Qvyf5DG6wlzyMe0vcRqgi11WIbY5FCsapavBOMyoJ7e7scnZ3y8MMPGQyGTPcOWKwqmrYlSVPYaIKlpNAaZ6PUZTQa07Qtxjh++pMfMhyNKQclSgl0ouMfzDmOHj9iOJ5w6/CFrUO+rmuMd+TFAKEkDx495XzZ8oP3nnFx+oxUBmQwNNYyyjXGX1I3Fbde+ByHd+9vkyOfUxQ+eY3LDIInzzJWyyUX5+fcuX1nmyZmrY3GM+MosoxUC6qrY8pU8dabP2C1XHPvxRf55re+xXJ+xd7uLcq8Yd0c8/Of/pQffPfP2c8bRusVSqU4AkEKhBKUwTNJU67altlsznTvAJ0mzOfzaFpPEoT31MaiUrnVrGsZqNoOYx3GBRIdnTpKJVsd7la6CBACQSbbVL3xYMirX/4qP/jH7/HkFz9GDffY3xfoTGOtpjORdRt8jNpVQmL7AdpN0tNmkOCc214MtNbIcoAuSrQxZE0VG92uwbQN3rR41+FtB+Kz5Xv4VDS4IQjW64b1umE62b0BpI+HizOGJI86mwjyzrDeMkk0w9EoYo6I07S6qRmPpsgiw3lFGnNRsb2uJaBi8kjTspzPKYqy58XGPwNSI0KUFijd4ZynsR1dF/E2jRNkMkTHZbhGem00LypJSRKBUhofBFo5Dnb3+Be/+6/5/t/+GRezc9LJHuVkn0RqOrPA2RapNNJHVInr+EgDsIGFRwG6wXQOrXPKyT5NXeDaGmcbEA1KOXSwpNpinKMxgaZpqJqa1dVllC6MxxTFhMn4gEH+2XJFfurK9iil4Q4fvv8ev/kvfo/TZ0/xNjCZTJjP59t3w/YmhGAdVb1Gpwm37x5yeXHJD7/3PV5++T5SSnZGE549eUI9jROxk5NnfP4LX8AJDb7g9ME7PFz8hHf/8j+RBgcehGxABKRQ7AwHLJZLPnzwmNe++GWKwYCrqytGoxGZjGibfDjEmo5CiDjZ0pq6rZlfXZKVE1KlwTaEoLaH7+aX9ZE5udHMA3gbaR+7+4d87uVXefLTIcdPHpHokjQZ4yTYxGHXZhuEsdnQbKYXm4vtRqJwk5+7mRjCdUDAc8POx6+dOy9zfvQQTUw89L3xywbQPoA1iHbJuz/6W/am/5Y8y/Des5wvSJVGESOoFYLBYBCTI62jqtZYY9jb26Varzk6OuLzn/8cCouUG8pMgA0eqR8QdF1LCA6lY7rZhiELklW1wDdLgu8IIbAzLtFqlwdHF7z37ru8/KqiGI4Rym8pPBv9a1XVZHlBkmbUdR1XrEFw8uwJf/jv/g9+53d+l4P928gsRxFNOKlISKT+yHt6fn7OcDLBh4rZ4pK33n6fBydXjD7/dbpsSnX+COlrjLU0s5Zx4UnTlofvvEnwnuHObeA6he15ffySQrBYriiLDBkkRRGf7SYpbDAYxCl5qqidwVQVt+7coSwzDvcKnj56gl3P+eN//wdUbUOepRRFyc6tPUbDnJfv3YXVKeuqJncetTGAmcgAL/KMq/mSk4sTXnz9dbyxfYopSOdom4aiHG6ns269JtWa0+OnNM2afDhBuIALlqTXrt/UaKskiWlnyTWmrpMwnAz4xnd+h4e/fJurowekaU6+e7vXm2c9BaGNuL0QfQ7WWDrTbdFh116eqNPdYCSTJNk2u2q8QxqmZM7h6wq7bXZrnPlsxaN/Khrcu3fvMpvN4r9w01AWce1Q13Wc5CiB1imtsaR5XIkpkRK0xPvoCM/zPMKfgdF4ynw0xa6reANSCkmMeXQukCQ1tQvMZ1cMBsPtbX8wGLBcVuSDgmAdTdPEF9dYqtUa5zxKBBCe4GKMKlwz7Ky16J6CcJ27Dp2AbDjk7qtf4sGbP2SyXDK9G93oWivaNjo3vRNxmtAn8mwa782HfyMo74RFD4YUSYpO5rTNGtPW2HaNt01MnEoUubIkypEaR20jI6+eXVKvlxSDBcbUVMXkV/jkP/sVED3n1tKYjjyPjcBgNKZq6q37PITA1cUFL7zwwnZ9ZowhYBmPS95888ecPHvMr3/lq+g04fTinGZdMR6OyJKU9aojKSTLxSV/8Sf/kVGyJm/mMcIR8FLgBajQsVumrC7mLJdXJFnGqJgiVYIQITa3ec66binKIT4IRiqhWi3BBY6Pj7h198UeOn4tnRFK413oQ1Xiz4Dznrar0SrrpwSCgOq15SXV8oTTs0cM9g5IBjv49fWHfQNXj5SG62b25lptM33YNLg3kWcbY9Hz+ni1d+ceF+enhG7Rf4jj+xFCb3QNXYw/aBe8/ZMf8NX/7l9ydHxCnihafz0JMsaQFzmuDr2e2pLnOXXTYJ3l/Pyci4sLdkYliBB5zM4R+v9/qvWNqF3Xm7tiUlk0EOUsLk85fvo+uW8JQeFExOeNBiWz2Zz3fvlLvvGtb1OOxqQ9g1lKyXq9RmhFkscpWi5LpNa0VRM/2s7y1//lL3jl1S9x/+VXGBQ588tzdidDirzEOEuw8e91enGKJ9B1lgePjzk+PmJc7jDefyFKO4SgPn8IviZoWDU1I5kjZODxB7/gzj3DZOcWiBSpnpsjP0lFdGbAGoMz0aRdrZd4P9heuI0xJCoGmezsH+Lbmrz0jAd76CRHBNAccTu9xeVyxnBQoj0orwlpQjrewcyWEAwKjwjx2y+EJkkydLVmOZuxuJqxe7BP3hT9oKtGqqTHHqZRnhIEbVuzmFes12smwYOQBG9wJAjBdrK/Xq9J8wwfXWrbTVmKJNGaw1t3CGnJ/PIB+cF91NCjpEZKTd1UEQF6A8nonMP2OMU4SFAfMVPexDd2XbdNB9yG9IwmZIMRadtimxVdW/+qHvvHqk/FF+Ldd9/dol42zeLm9pymaVxZWU9BdI4HBNYFBuUg/udZRp6ldE6R6YyjsxnFYIerdQNJxBIpIeOEK0AxdKyvLrm8vOSLv/YVFosK7z2TyQiIB6OxhiTP6LoOIRStMVSrBbarI4jcBxwSpIp4L+fwwoEVdF0DZGgdSQwaKDOFVCXee+rLI+az+5TFCO/AWYGUgtCbNfABKeRHplSbRhf6WF/n0FlGkuyjmxrbVNRVim1rnGnwpiYQpQuFtCTKRumCDdiuo+6u6Jqacjj/VT32fxYVRJSZtKsFk3JMvZqTZTl1G2+6SZLESVd/cDRNjKNuN/+91CAdB7sTnj7+gJ/95EeUZcHB7UPSX/8qwRqscXiToYvAX3/3z8m0QyPpvCARHnyfw04MYlBJSpamdE3L+cUpL3/hdVSSoeVmW7KOyVM9M3SxWCCVJkHy6OEDPv+F15GM8WmU3MggUTg648iyHG9E1FQK6OhwSSQsoKJxYphJilSyVp6ri6eMzw6Z+oycnEZGw87m51uEmNYWQrjGRXE9udgcxP+UsPDcYPbJKsiE4WSH6myFijGHfYJdvLApKfBAaFbMjh9z9OE7TA/usVpVuCBjXK5zLOYzRuMR67pDSkVnW5p2xXg0QguNN5aHHz4ie/1VskRjuigZC87RtS0my9A3ZC5SCIL1tKJl2S0Yobh48AixXmKdQNOhscgALwxSHl/MWC8vefTkEV/6ytcYjMa09ZoQQi+VaPAmmjTzLKdIC+o0x14FBkpRVRV/9Rd/wuw/Vvzal7/CK6+8GnWNeo1Xgq5pYqBICMzOz/je33+P1oFxgUy0FOkeav8QKeDp4gyzntE0LaauaLuW0aBAGcOTh+/SNS237r6Mea7B/UQ1HJSYrkF4T2stSgmkTMjyhKvZBft7BwghWM0X7OzsRFOuF4x2Dunamny4R9vU3Ln/ElfzK4ZigtaaYU84WjcNo91dQn6Kd5KESNSwJDFuHMlwOGZlLJcX51sPUJZlFEXBbL4gH5S4ngEeUZ+arm25uDhj/9YhqS4g9JIrpZBCRvatAoSPPHVrUCpi7yQBj2I43iETmmVnqC+fkOy/hJciIj99lPMAN0yaH6XVeN+hpQApMOFa7nVzqNA0DW3borUmTdMoYSgKdJ6ju88We/xT0eBOp1OEENR1HdeoPdkAPEVRRB1uUaCTjEJqpJK0WmGNpSiHLBczVFKQZiOMCRTDAcbWPDg5ZzSeMh4NKbRmo+BW5Yju7Iw0zTm7mFHXDePJBI8kK66h0UopgoPFak1rOn725k+5tX9A8AU61YQQV6mrxlGWQ1IUQgaMbSNpQRBXvASEzNE6J88y5otTJk1LJ0uUSlFK0HYN+EAI/Y2qF8p3XYPUyUfMaF0fNbiZXOuiRJcDxuUY11a0dfxluxpvWxB1dEMGR2YtxgpqG2jrmmW9/pU++896eSSdEGAMAzynJ6eUu4esLs5o2ybGTudFZHFKRZ7nXF5eUhRFTDVrWso8J9MBszfhYLdkPbvi6ugB/8+DX0YKQojMxPv37+O8ZX+yQ5EkXBULmqYmEb7HdwWk0AQk050dLpc1D9//gPv3X6TIElarVUzzSzNWqypeJK2jHA0JDtp2ycnxM77/99/lW9/6NoPxmDTTOGcxzZq3fvYWX/3aNxBZuV1zJTZBe4/UBSFovFszO3mACmuccxjjOXnyiFQNGOzc2so1NtKewLVjHgLOmo9ID3SSIHrx5s0D+6a27Hn919eqbjl84SU+mJ/TdRW6J2z4TZiHlHgpEV2Hkor3fv4Tvv2vXiIITVFEw+D+/j6nJydcXlyQ5DnGepJURd2iM9GUFgLv/Pwtbh3uM5qMSLIE51tEcDRdy0BGDq6S4IxFStBpQvAF1fycdfMBP/r7P2HYVuBshHiI+As8hwf7HM+XPHj3HYyxfOM3v0lbR/RXkmim0524aWgbrq5mCCHI+58B7z3T6Q5pmnFxecHV6TP+9BdvI0IgK4YUozHeObpmTZamXF2eMRiWyLTg7t172PWKnUxxtrji6tH7BLNmva4heLKixLqO89mCnekY3bUcHz2gqtfce/H+r/bhf8bL2TVV1zFOMpxpEVJT12t2d6cY07JcLTDdNVe/aZq+UXSkec6i6/CpICiDbht2BsOoIe+i7rvQmmpdMdk/oJpf4YVA+TggE1LiQ2BUKK6Ojvnwg/e5d/8+RVHgApGYI2M6ZGta8rwkANWiQmnFP3z/+7x0/z7CWXSRoKVDC818tiDNChKlSVSKdQ7va3ywaD0g2IaQDvABBuWQJTmXF5fszI8Z7NzBqSh1aJt2i9fbbEY2g8PtNq7nM6ep2MrEOnstFbsZvlNVFcC22b3JRP8s1KeiwV0ul0wmE7Is4+Lignv37qG1ZjScbCddm0SZ+XweWbVhjSeQ5TmqzvACTBd1LJ0xCK15ejYnHF8Sgsc5S5Gl7E7HHBzss7O3h3eGwWAIQtM1JmJuvEfqlPl8RppolNYUfdb6+ckJq/kSmRYoBUIHTLvm8uKK7O6LmKARpAgVMKZFCBAhIUhoQ8LudMoTpbiqPW45RxV70WhBIDiH1slHEp5ugpuTNNsa2jZ8O+ccq9Vqqz1K8hyVZZTZgCSZ0zRrbFdjmoRgW4JvkYkkVxHmnFponiMZP1EFGWOZpVKs1zWnR0/59fsvMTux3D48xJiW4D1XFxeMR+Ood01TyrLk/OoyymLamjJJ2Nk9wJs1+9MJi/kC01iWqxVtCPH97Zvi1WqFTlLUcEqQAlyHlB4fFF5EOH4iFFnnmS+XvP/ee7z8+S+QFQNcCBTlACnj9Mo5R1mUCBSWAG3DkwcPGZUjvvS136RtLGUeL5OpVNjO4rTbsmidc2AEgugaToD5ypAgGBRj6nbBfH5JdvoeE+KFbHPIboItNiuyfypLALA3whwin/H6yHquZfz4ZYxB5CXTvdtcPHsA3sYP+I0tWgiBTHpMvSItBizmM6a7dzg9PWYwyDk+PsYaQ9c13BoMCTLq/YOMgRCLxTJGoec5P3/zLW6/cIcvvPoFnG0I3nB8dMTeeBqHGonm9OSE8WhAPhriQoIw8B/+4P8ka2YEb/AuRpIGJSLvVMQkst3pDmfzimdPnlAUBV/68ldYrNYY7xiNRywWC5ROmUx3th9tKRVpGgcpWZZz+/AQ7z337t6NCYPrFfPLRzHK1Rh2JiN2J0PyckiQiq5tGU2mLKsln7s1xVVT/u79n0bOrYkDiODjdkItKnZGA3wwLGenHInn2vFPUs26QYVAU69JdEpeFFRV1HsD7EyjnvQmqcUaS6ugqir2dnZRasrTp08oywHWGqbTaf8uZIBFZQVlMmC5qEBJSJMY3yQg6XGJgfj7X1xcMpzs4PG4oJA6Jekv6WVZopMEYxwpjqpuefedX/Klr/w60klciLrvajljcXXF4Z172yGW7oNyQmmRIqaMmWbOIFMo6VmuLlksj5B5QVAlzkTpwc3QEriWI9yMj77pcYpT2thPGOv6rSRb/fnNZvdmhPtnoT4Ve76dvQOqqmITXdc0DVLKbeO7cf01TUOaadZNQ71uycshjbHINKGqaoKUdC46KF3n0TpF6gypc7JiSNUY3n/4iL/5u7/D+EBrHGcXVwSlEUJSVRXWxTzq4XBEQG4jHJWQtNWCv/rb77JarmnqLuY2L1Y8fvjB9gPdNA1t3WGaKAlwvsMSjRXzs2O6dYczjqqZY80aLwNWmggU/yfOcmu77ctVryu8NRCu+bmbpr/rOlarVTRReE/Ic9KdA4bTAwbjPbLhFF2MEemIIAu8TFFpRpmljLNPxSvwmS0vJV4LENCsV5yfPgNr+4AGj+41T1ppmqZhsVjQNA3L5ZJEaYIPDEYTsmJCMdwnLfeY7L9IOTlg9/AO0/1bjCYThNLUbUwpS5KEpm3Yu3WIVYqQDxDJGJEM0dmAtBihsyGT6T7BGk5OTvA+ZrF7RMQpCYVKMjobL0mbhnWQF2Qa/vav/jN//md/wmKx4OjZKcurOffu3iMgPgIWv7i8pDXx77tet5ycz7icLZD5iMnuHqPphGAc89ML1rMTvHNbecKmub0ZY7r5fTfu+5s4MO8dpmu3v5x7fjv7uKWUYlGtme4fQlLg/P//OXjvsSE+J1uveOtHPyBPJIeHh6z6i1pRFCilePr0CVpJ8iylqdcs5jOKMkdpSbNec/b0GX/yn/6Y1WzB8mpOtVjSrCouLy85Oznl/OwMJSVXF5csZ2va9Zyf//xH4DqmO7dYOkmnUhoCTQh0CLzKCElKmg0YjyY40/H4wQNOTk/prKUzntl8CULhg0DpFJ1k7O7uY4wjywqSJGM4HKOTgqwcopKU6e6U/cNDPv/51/jcS5/ntddeZ3/vkOnuPlkxQOgMnZasmw6dJKyrihdu7XP/7h2q1RLTNjgf0WUoTVUbFrMG0xqCNVxdXP6qH/9nuh49+ICAp3aG2jQopdjd3SMEQVEMaJouxtj2qaiRYyzROmV3d58kS1lWKwaDAUk2YDTZw3miOdF7iuGEtBghkiFWpnRS00qNTRK80nQCrJaIJKPIck7PzmPqY5AY219epEbEehwJAAAgAElEQVSohNl8gfMepTV5kjEpc/72r/+cDx48Yr1qMY2na1tOnx5tL/9RFin64AeP7VqMT7GmpZ6fU189o+tqgrOcnx6zms1QTm8b1k1ITuzC/UfO2M1ZGtnjdttMbwgORZ6RJRrVG0I334VNyM5nbWv2qZjgehvjFjfRt2VZcnU5p2kaij6AwRgTb8NK4k1LnqdkeRFTZkxHlhfoNGM8GhG8Z/9gisAihSBNM5yFIosGGZcWXM3XjAc72KrGpTlKJwTnWa0qsiylLId0naWuK4bD8fbg/9mbP+Ls9Jiv/+a3+NKrr4AzvPHFr26d5huDWQgea1qcLpBeUFcXLI4+wLVXSGW5vHpEMhgxmLxAt7KwISX09U91MRt8UpHn25fTOL996UII28jCNE3JsgxdDkjKAWk5xm6lCytcD3NGNOjnmLBPVFZnJPjeoOPZKVLatmN/f4/VakmwUWLgQ5x67u3vcX5+zmQypmlagnOYpqVx0UGuZMKy9VhVsDY1o/0DwuyKohxiTGTYtqYly1KycszerfvML8/RSUIIEi/jBQ0BGoE5OiJRmp/9/G1eef1LdF3H1WwBCJI0Z2dnj/W6oqrWKJWgFJSl4PD2bd788fd5+MF7vP7GG/zG179FVoxogiW04NYVy8WSUc/5rZsVD59d8ejpKb94fMTDN99E+A7vWg4mY9pgePbgFwiVUY53kD4yTYy16Btc3A0iDPhIc7vRn28MZ0II3PNEqI9d1nukVBgkd1/8HE/euUTdmOpszxSv0cpj6yXjseGH3/0vfPlbv40xhsP9fZaLeXxueM7OTijLkjSNG6b5/IoijU2AbS27own/9+//O77+G18hSSSjwZDL2YyHFx+yv7dDWeTMrq5IHl7wi4c/4eTkEZPBAFUOGdzNmJ2dkCUa2UeUBlmgdAJaszPcQZdrHjz8kA/ef4/7L7+CSgtcCDR1gzEdkmiKGwwG7O7t0bYtRVFSras+ytz235ucaZ80tV7XWwxkva7QiaZMMoLK0EnKcjaLBBAv+MZvfYdbt17gu3//l2A7ZASj41Esmoq100zFiEx/tpzon7Y6Oz7m3hde53J2xSAbUNfxGQ2Hw21j15mGuqlIk5w0TVksV1gXI6M35kWZZnRtA70kpW4a8sEUIRWNielQs7rj7bff3hoihYxG8ERrpsOStMjp2jWd8xR53AhsAhWGowld27BYzPEekiQaLAdlwf/2v/zPfO3rv8nrr3+J115+kRfvvYjMrqN/AVar/4+9N3uyJLnO/H7uHvuNu+TNrK2rq1fsBAGQAMjhkBwuNjKJHGo086wH/Wt6nBfJZJLMKI64icRC7Euj0UB3V3dtuefdY49wdz143KgskGPiNGSGLlodszLrqsrMzsrr1+Oc73xLRhhHSKuQSiGM5YP3P4Bqx3g0pl5bVpcLkvgJQTQa+ifotQt932RMPWx/EU8F8ANNbC+Q7+9dKSWB7xP2FIauR3ZfNLgfsXTbOageNzGcnZ3S1B2TyZQ8zynLkiRJyDKH7iRJgtCazXLhGkmjETjfTikVWZEjI5gfHXF+cYW2lsBXjopQC6RULJdr7t2+xWq7Jj06pG1rFIIwCGmqGq+37IiimKZpkBLiOGGWxiwvznjrh9/jpTt3ufvSbVBONLS3NyvLkjCO8KWHRCNaw9XxGbvFE5SEpulYL3dMZwVJDL5SaJ7yhdwE1hGGwTNWSXu7sL1gyTOGummx/VoRGOyWuq4bODN+HOOFIV44wvfDgbrQ1Y668KI+enm2RSifDlCeIsu23P/523zuC7/BxcUZwvPYZRsODqZ0XcdutyVJErTphvVZELjM+6auiXw3icfxiNlszuX5GWEYoXV/7oVANR6TyZi81kSTIy4Wa6zwsQLAOlsb6xrIw5u3nKCgKcjKgjgaoXVHWRRD/Op0eoDW7txaqwHBKEm4NZ9T1zV/91d/iW07Pv2F32Q0SdnYBt9TLDZXWASb7ZaiMfz8/WNOljtMfIAeHaJ3V0SBZLnbMh9HmLYj213hR05J7geuETfGoHzPJVmZf5p2cP1y3Q+bLygKH7083AZL+SFEY1z716GEAKmwwkMKhVQeFoPEUmdLuq5ltzkjCUc8ObnCVxrTVYzHB09jbo0TdMl+K9V0LRrLeJbQ1CV/+Zd/AcYQByFat2TbLel0hJSChx9+QOgrbt26RRAESOGRdZqjw5comtolRUkFQiG9yFGEPEVrLaPDQ240DUoKHj14yGuf/Iz7N3o+4ygmz3ZIISl6d54wjIYQloGS4Uco5eEpn7Yr8H3nXBOGIVZr6rYhjDxsn7TneR6r1coBCp7HG5/4JJ3UfO8fvoZtGrBOi4EUdLpjs9n0YuYX9VGra2oQkkA8dR7wff9Zd5oeICqrnDgJGY1GT+0Gg4B0nNI0Jdoa6qrCDxNAukjbzuD6Q8tL917h/odPMKbDILAWsm1Oo0sWC8EknZCOUgIvoGndQKONodrtGI1GJMmoH5JqbD/wTCdTbh3Oefcnb1HmGXdu30EepnjCDs9ugM1uy83wDroo6GxHW7e8d/8xMkwZ+wm7xrDLNqyujiG6wXQ6u+alrxHoZ4CyX3RUUJ4//Pf1Zvc6UCelJAwCfO8pV/d5qo9Fg5tlGdOps6uSStE0Fek4JggVRZ4jhFvJR1GE53lst1u6riMMQ/K8YD6fDxcpQKhcY3f35dd4crZAG4sGpBeghY9EU7cVfuCRVwVxEpHtcoqiIurj9bSxz8TSxfEI3/d5+aW7LBYLnnxwnwf3f06QxASjgLi39tLaiSduhnfoyhrRuGbjBz/6EbECE8RgC5qyId8tGE9v0OpneTJCgBQWo7tnVgu/uGJQShFHjptbt09NxPeHta5dRGUURU40F8fusJYFbZVRFs514UV99LK6w+CS7ayGEMnlyWPsF79AVta8dvs2x08eEYbuMhmNRkjpOGF7+7f9GsjolrysiKzl5s0bLK6uSEYppqsJhHCJf3GALwHPp24gSkYsdwXv/+gnjp+tFG3XUdcV2nT4wvLbv/GbRFGMsr1xvpQEYYykJttljEaJM0bvOrpOMJ2O0brrxRIl84MDvvftb/LdH/yQV199lVdfewPf8zi6ccjPf/Jjjk/P8eOUdWUJkkP8yU3So5dY1zmtqWg7i8oa0tTj/OQBKgg4unWHPG+fcQeRUiID+XRj4XRz/6iui81e1EcrrbUTWlnLwXTGzZdeZnP62IUkIJH0FnhGY7BYBLvtlnk04ic/+AFf/MrvkpcVRVEyn6ZsdzuqquLw8HBYsar+IamUcg2gVGgUNw7nZOslq8UJVlfotiUzhRP7xgnCEz0S7JqVMAx5dPyEey+/wsmjD7HSx/geRioQzsnmcrXk/gdvcX52yu9+9aukowlnjx5z7803qeuati4pisop5bVGKo8gdF7lkTXUlUMBd3kGuIHKhVgEtG3naGlthVAenhXu52McqnV0dNSjggFFUXB4eIP50S2uzs4QRiOxWNELd0xH/eLO/SVL4qF6mtc+Ze7pXVIUTjg9mUyYzWZku8JRD+J46DPKqqKpGufClI4psh2N6SjXJZPJmKZtSOMEz09p24rAC1HSURkJLZ4GYyzbvGI8mpKt18TTKdZC4AcEXkBVlMiRuGZdJplMZhRFxst3brMIFjx6/z2++82v8YWv/g7ROEEpTeSHnJ+ec++V1yjLkro1HJ+dcrnY8N7Dh9Snl3gKyqpEYKl2Fc3mHDse06f2Yq0efHj3dox7CuTAxW3qfmPmwzVUF5661uytSaWUg0/u81Qfi+92PjugKAvCKMJ0Gokg8H22W2dh5fKT9eCVO5vN+uScwtmBZJkTyySJy2OWPtb6fOHXv8Tb77yLF8fcOLwBRrMIQ44fvE8UeHhRQltVGOOsleLUd01h2xGEoJTnmmNj2e4ytDF4fsTRzRuM0hF/+1f/F1//+jf4/T/8Y+6+8jJtVyKk4NbNu+x2O1oteHj8Ibus5Fvf+R4TEROkilGjWS6vWF6eIOKbzGaz4UBZazFdhza695V0qwUhn64erpvu7zk3ozjqVesdHTxDb6iqirIsB9cFNUrxRylBUtLW+a/wlX/+a6emWDxs09KWGbcI8UJFvl4ThyFPjp/w6quvkhWOY77Z7IiiEK0tR4c3KIqCq6urwYc5DUN3aVUNYZSgBBSFRLcNQZhgLIzH7oGKMOyynDc/9VkeHl+gjEYKRRgqPL+ibbdgFQ+OL/jkq69ycfyYlz/xKWdVZgRNp/GVR16UblKPYjyt2e62SM8nGo1BKfy45dXXX6asck6fvMPP3voHDg7mSOG5OEoUt+++ggoiYhETeT6j229SNB3d8iGegbwoELYkCBtOH75LHIZ48XSg3tR1/cwWQgiB+AVV795CD14IzH7ZssIlJqbJiMVyydHtV1heXiCsQQoXJ2qt8/vupARtUQqK5QXexCB1yb17dzk9O6Zr3XpYKdd0HB4eUlUVk1E68Hm11pRtx2Q8ZpLGzKcjxuOIcSyoqwaQCHyyLKfBuEEvGaEtbLOc0XhG0cKt1z7L44cPqPOGB0+O2W4zjMUNdU1NPBrz43fe59c/+xkwhg8/vM9nPvs5jDZEozG7bY7uOjzrHFDSyZR60SCUh5Rq4CSWdUPddiRJivJDkjQm0m5bqLVmu91C/13vG4bFYuEaBuHxla/+DufHx/zgO98g8CD0I6IoQmI+HsKX57iSUDlgxmqEcYDQYrEijmPG4zHT6RRrrWuAfZ80TRmNRiyXSxaLBVEUEYU+ga8w1qesGoQMUEqTjBR+GHL35j226w3zWUScRNR1h1I+npDYKMDkLVYYHj5+wks3jzg+O+bzt29SlTVF4Sy2kAptLE3bIaSi0xV109AaSNIpUikODw9556c/5O+//ve88srr/Nrnv8BoPOLwcM7D++9zuVwj/IQHVyWXm5ItEY+ucihX+KJjHPmMYp+z4w8JRjOSyRxlHH3L9lvx/fsPGBpeYGhW2/YpNdLzfMQ19PY6heF5DNb5WDS4TdNQ5AV1VeMHHspzqThNVXP7zm2MtZRVSRzHVFXF1dUV8/mcLNsOxOx9bGjdVGyyNU+Ot4yThNX5GR1w/vgxYMmzjK4u2O06Hn74gJduvcR2vSFKx6jQRxmDaHw6bfspPukfvhrPk0jloYTEYLlxc8bFxSX/y3/6n/nUpz/Pb375t5geTPjw3XfJmxY/mnL/dMvFcs3FJuc7b32fJLD4wjCfTamLClsssNfCAIzpYO+HC4OqudtPW34wHD5g4M7sqQth6BScVd0MB/V62lqWZYRh6KaxJMGPol/dC/8voMzkZYT0mARw/uA+ZdtxYxryzls/5s1f+3XqzkN6iqOjo0EI2LaObmDR1E2JlO5tuF6vmU6nDplPRi5aV7dEWE5OVty6eYvlcsH24oLxOMVay3w8ptMdUjohpJQCawSRHyG6itoYLpcrXrt3l6oqKcocT/l4vu+CVHwfDP0qLXepgMbgCUNTlcRRhLEBSoZMtCEKR8ynB1RlRhBGKBWRlxVNXTCOY8rtloNowqrZMgokOwxZtkViEY0gDH3K3Y6TkzPuvTEZfIGvJ+xcr/353SPdwhNPtxnP4YX7cSmNRVjNdrtEITAq4pXXP8nD+z8nQLihHzd8aIvz66TDmBZTbvnW17/O//A//k8cnzwmimOk7w13Vtinnmmthzs7DEP8IGS5XiFtx3Q8Yn4jBF0zvzlhsVxgrWUcJWy3G9LxtA9RcVzxKB0jpI8XJASjKX//N39Fkk6x0ieQPoEv8cWOTncYT/GTn/2M3/nKb9BUBQ8fPuDmjVsUjSaZTCh3296izrJcrRDSw/PDftUd4Hm9X7VSbHZbpPBQntNpdK2lKHaOZqQ1pnMNb13XzkGh62jKisl8jndPEfiW0w/exdS9p7kF+U+tJV7UP7t012Bt46gKnmQynuKHDUc3b7O4POfOnTsDYntyfEqaOkrIvlGTkkFgJaxhu1qSpil12/RbI0FZVGhryPOSL3/5y3zruz+gxc3XQgVoWWO7mlZrmrbG99x9KpBMDmYURUVVFD1tIqIsnXNH0zRuwBGCeJRS1yVHR3PCSHFx9j7HD9/l9p2XKcqatmuZ37hNlE5JDm4QeCP8dE44PaRsCpQfsik2+MqCgjxfE8SxC6MI/SEREp7VMOzpXvv36H6D6D7O3cFSucTX63zd617kz0t9bBrcvYpPSYluO5bLJVJK8iwfPNiqqmI0Tvpmznm5Ob9cN404BCGjqWqCwOPR4w/ZbVZYAUEUE4Uh0zSGkfNxPL284Nadu5wen3Hrro+VncsuD3y8MCBQHk3TojyFaTTWgFCWwA+QUnDr5qso6TGKVywvH/B3f31FnpdoBK+8+SlQAemdT1Hj00VT5GiK7jJ0W9B2Dda0LBaX+OOb+H6EkhLTdQgpnkF0B9W5tbRNjVKeI53vo4yvHbw90XxPXWh66sL1aNS9kXMcx8+dr93HrTwhqFpLgUSFIzqvxljNerHAD3zqtYumffLkCWma0jQNvu9zcXExWOPt3UKm0yO01hwcHBDHMaenp6RpSlG1HN64SWctnu8TJRFt13Hj8MhdlFHAl77wBb73wx+jrDPLV6Ei8GZUmxVRFHJydoq5fYvm/vv82q9/karWqDACpSjzXe81K+idxula7dIBO0MQuuQlIRRwizae0lQlVliMFeCHjCcH+L5Puc1J44Dlk/fQTUFTZDR1hW4actsRBUcoKVidf8CNoxt44QikGIzFgX9kF7Yf0Nz38FQpLJ4zy5qPU+2FsEkYAYKmBS9MEJ6P7n2JjTVIYbHSx1owxqFW9XZDOL3Jt7/9Td5441MsT8/wQvfazWYzNpsN8/mcuigHdD6KIla7Nel0TBxG0GoaU6HCmMYqovEh263zHJ1MpoNDRpqOCcIQELSdZZtVTOdHfPm3fov33v0QdINS7g4LowTPaIraKet/fv8+b7z6GpvFkqP5UX+XtwjhAR2+H2Kta+aLouLgYE5RFBgjGI+nZHmOlB5hELLZrFBhjJSScTpxzYP0sB6MkpgwiSnLklgl5GrLbrviaH6AtC9zfnJKXV8hrcVz0udfzYv+L6TatqGpC5QSjJIxuyzn7t27dE3FbDZjtVoRBAFXV1eMU0dJyPN8eJ5WZcmu58gKIZhMJlirmY4naKNZbdYkoxG60chwxJ2XXuP2S5fUnUG3BqtdvPXV6YbAU2yzmsMg4fLiktsvvcyuqLAWhPIQ0gMhUV6AEC1N0wf8CEUYRfi+R+CnxPGCdDTm6vyEtloSezG+F1AXOw7mc2yd48cTvDDBn9ykyRYU1Q7bQlZ0xLHi6vwJo/GYOJ1hWjMMXEJJkGLQKe3rmbTVpnkKIgiB0RqzF/36wfDxz1vAzsfiu92v2qMowBjDxcUFEoHVhiIvyPOcPMvAOCEMOO/cPYEa6Cdqwygesd3s2K13tHXDV77yZazVlNma9eUpq7MnLC9OybKMDx4+clycuqGtSkJPsctzjAGjYblZ0/Z2L9LzKOuKsqhQ0kcIRTJKuHnjNV5++ZPcvnGL2TRhfjBlPp3QVgVJGCDrFVJ5pPM7ROmURiisH7PZZhij2W2vqOstiA7TtVgJ2jxdJ1zPjd6T57XuaJuapq6GB/++gW3bdohBlVKSxNFg+7Hn0fi+P0RZbjYvksx+meo6Q6QM1mj80ZjtzlkkRYEi2+7oqpo8z7l9+zZBELjhI3YPyu12y3g85ubNm3jKIQBd15Hnzj4p8BWeJ/ughxgviAjDiK51w9bl1YL1Zouwhs99/otIP2DXtFRSsqvaPqlGkWcFj47PmUQpHoqyKGm0JhylgCQaJRghMEJiEERJjBWC9XZDWTtLs7p2AQzKE4RxzPTwBlEck4zHTOc3KJoWvAAv8GnLnM+9fpfTh+/T1S6QJIhjoihmk+UY3Art+NEH6Lqhaw3SjzDCo7MCy9M43v1wtm9yBweRtn3GdeRF/deVblo8oTDGstlsqOqc2oS8+urn8E0LXYG2HZ3RYBqkbTBAIzyEsKjdgs2Dn2Hqklx4VHVHXjgbvEB5PPjgfeq6ZrfbMR6PCYIA0Rny9ZYyy9nlGX4UIYRlsVwync6YTg/xvAjpRcSjGfFohlAhUTym60Q/vAt85fPJNz5JmgT4kY8RBqMExo/opI+xgrwouf/gmAcPH2O05p23f8o4jFifXxLFEQhBUZbUTUOnOw4PD4mikUOJPZ9dVpCMU8I4RmPxoxAlJePxeEitklJiesDg9OQE3Z9Lg8IPI6qmpe4Mv/07v8cbb34abcAAiBfuH79MWSU4Pz9hdjDHCkG+y7k4Oeby/AKMJc9z2rZlMhljaWm7ks129Yx393w+H4RXVVUNnvJGG+IwYrNe44cBed6wXa7JlmvOHz3k4uQxjx894OzklKyoOL+84q//9m9ASHarDcIKlB8ghcTzA8qmpqhrgjghiiPSyRiDpW00VdkQBQl+IJhM5xwc3OWNN7/AnTuvM5nfYDKdcuf2bXSf2hbqHTK7YBQFyCDFdhqhAvKqo6sbdotL1lcncM15pq7rgZOsPA/lewgl+yAqMdytQ7BV33O0fdDUHlR7as34fInMPhYNrrMDiwYY/fDwkDRNGY/H7gIpyiH9KApChGUwcm4a5xW72WzI85LtZofuk8jG4ylf+NKXBvK5FU6TIKzBtm6O9pXCkxB53tP8ZSmxApQKXPyd8umMIYoTkJL1dkNVNXSdpjMtQRTjhzOCaMJ0NidJx0RRSOhLyrIh9RpCXyLHN5F+jJE+ZQ1FpWnqiny3cpee79YHQkqU/6yh/fU353XEtm1q2rYZDuP1bGl9zXM0CkOi4Klq8rqP7ov66BX4bt3veR6zSUpVVqz7oUEaQRjERMkIz3ONbRiGXF5ekqYpR0dHeJ7Her1mu90NXGkhBIvFAmMMeZYhge16RbZeUZYF2hqEkkRxRJIkVKWmbS1/8Pt/yI3DIybjSY8CO6/OTZZztVhwcnWBNoYH9z8EDdb0NjIaBM68XCqFF4QIpQjjhLZzW4AwionjBGMsXWvI84JOW5TnI6TH7OCIrtV0nUMpDsYJr927S1nkbmNQVZR1S1HWFGVF1xk26wXnF4+IfEtXZwjbEngKP4gQXohGoS1DfK937T0KPJecsI9LXV817h9s8xtHtFJSaoGx0jlaWDn8ssbRXzoE290G0zV86xt/x707N2iahoODg4H/uF/bN01N17WDK4zWekDOABdbKyUXV1ckaQpSgvTxghgrPFQQc7FYsd5loDyqtnMe3umEP/uzf4f0JLU1VAiSyYw3PvEpomREVtaUVc39xw85Xy4w1vD+uz/jaJaSZdmwBfB938VV73YUZcl8Pnfvq9TZRAZBxGQyQykfi1PsJ0kyiJm6rnOUil68lucZXdviex6nZ6ds1iu+9e1vs1ysieMRxsUB/Kpe9n8R1ZmWoqgpy4r1cgVdS1261Mgsy5ikY7qmpSrLwVlBCEtVZ1ja4dnYdc4z3/PUcO9KKXtE11KUOZqW5eKSz3/2U+SrK3brJaKrCJRlNh5x43DOwa0btFhabVheLuiqxlkYCsk4nRKFiTsr1lDWDVGcID2PoipZrJZo3QvHTUecpggVEkYJfpSAFzqKEBZZ5yQUlFdPiEWL6RryIiOvKsrOIISzULtaLAfK5p6OsO8F9mCi5/tITzlk9xqSu6cw7O/YvQ5oj3537fMFKnwsKAoASkm0tgNfy10cW+I4BqDMiz5l5Cm0PviC1jWekmS7FQIPT6mhCd7tdujW8UyENRjASPf3nlR4vqSqC07OTrgbRU6k1iOgSZJQbypA4HmO+1r2Ap0bRzPaph0su8R0QlUXLlii7foHM5gqo6tKTu4/ItAlZVfRFjnSQNd0KGHIN0v0zVtYEV7jCbkmGym4HnxzfcraN73WGEdd8Pxn7D2uN8L7Jjn5BdeFF2KdX64uHr3nfsbCI/As6I7VYsVrd+/y5IP3uPfZz3Jx/AQlLFGSkNea6XQ6rIQWiwXghrwkSYiiiKIomEwmXF1dDsrfrnOvV12XjEYj1zzUDZPxBN0ask1OoDyuTk8o6wrP87HWEPmK6GCGNWPef/CQm3fuoluNNJquqlF9Kp4fBv12ZM+FlSgl8Xwoipz1ZkOSpEgvIIxDijKnaRu0EXiBj1CK7eZyEIHqruMLX/ot7t//sP/59OpcKyl2NbEf0tiSbHPF8ipmdniDVmvarqJtDAjpuMJegLECbYzjGltnrXDdL/dF/dfXdUuv8XiM7/uss4x4MmZ64xbbyzM8a0FJnLmRQEiBFaL/PaxXS1RiOIhDLsOQ5XLpInebXhxrWuI45mpxyWw2w/cc6nlycsJ8PnfhPhim01mPpNWk6RjPU2jdUfUP0yhJCKyz6AqCAKEkeVmQRgF//Mf/DT9++6ds8hJdt7z99lvoumQ6SdG1x6bY8bWvfY3//k//HVJYfvrTtzh86R63bt1is9lQ1zVpmuJHIZ7vk1clYRRCXRHFCdY6IefelSaO48GWSkoJuiP0fapeI9IJwWp1ybtvH1MVBZ6v2K3XtE2JbRqmo6SnAb2oj1pZXvG5L97DGI/bt2/z5MGHDgwzhmy7w5t7TCYT2rZGCknXuD4B3GCX5Vv80MP3Pa6urvB998zff43Ly0uEEBwcHDifZ9ORxFNWqxXxKKLJWqzRSCnQBvAUm+WK+WzO1cU5d+/FxOmIoiiQnuqtPz2qqqRtNS26D3ECbWE0Stlut3gqwGgIQt+5fAjJrqiZHByhO/eMP0wj/ub+T9FtS6AsuuvQ1rl/KJGgzYZ6c04UvfqM5df1XmBvsXi9ATbGgP7HgMF1Du/+c56n+ljAd2EYDk1rGIZDUwtPydHWWsIwHHwL936xm81m4J12XcdmuyRMIqqmpqwqTk9Ona+tkFhL/8ti+695cX5FUVccX16wXC3Isi3b7RqlXE3uJH8AACAASURBVJSpHwQk8RiBj0Dh+QFWSFabLQbJeHpAWdQUdeki+sKIMJ0yns1RQYxSglkg2J3e5/HPf0S+XpHnGdtsw65p0FaSra9YrrJnDmNVVUOj6xqIZw2anbOEGJpxay26a/9J6sJ+ertOXRgN1IWPxRF4bmtCzsTuSPWK6vIJOttgdcdyccHJ8Qd4aIzu6LRGCEXQU0SCIOgjQ11DWTdOELBYLNyKramZz+dMJpPhcmpbF99YVRWj0ai3ycvZ5mt2xZqT48f8hz/7U6psw/rqjHxxwerimPXlKevlFZeXl3x4/z5d23D/3XfY7daEYTjYG/m+TxzF+F5EEk/wVISUHkHoUOisyCmrhrrp0NIjSqd0FsqqpixyDg8POTg46LnfLel4wu//238LSuAJjbQdWMelXCzWmLalLQsW5+esL89osjWeaZgmPgejgFEAmBLdZpg2R6L7gTJE+hGa5+uy/TjVfkBo27ZPoSvo2g7PCzl86RVMEKN9D6MkRkq0FC61Tym0UlhPYk1DQMf/8b/+J+7cuTPc2+PxmNlsxmSSstmsODw8oG1rqroa9BQXFxf9ue9Yb3bUTUc6nuIHEfPDmyxXO5QXEYQjoiSlbTqMtkRhTLbLqasOQYS0Hr/1G1/m9P57nD/+kN3ygmx1wfr8hN3mCmkswlj+/M//HJTFCM2Dh/cpq5xONyhPoG2HHwZssx3K99DW4AU+YRzRdB1+4NPqjsnUuX6s12uWS4eSVXlGVWTkuw0/+v53+dlP3+Li+CH56pJqt2R3dUZXbWnbEi9QoCRCBL/iV//5Lj+KadqOLNuyvrokSdIhsn46nVLmBdl2S77LWK1WTly9dZTFuqyextwXGVHiQLP5fD5s0JwTwwGmM2S7DN0ZfvjDH/Ppz34a3XYYAUK6IAitO0zT8p3vfAdjO6oqI6sypGS4Vx0i6oFVJPGEIIhI0wlCeTSdZr3NEMpndniIBhoraa3FDxNmB4e0nSbbbV1fkG94/eU7COPieC303s41GoGxmtPjRzRZgdXO+9/0m939xnbwxL2WGCmEAyqGXuMXKAzXP/d5qo9FdxPHTmizXC4HNWpd14xGo2GyklJS9iuHJHG+nVHkUkqauhoe0OPxmKqqaHQ3CAJevvcybdu55rY/mBaNxvLBo4d0dYtvLOv1CgeXWrR25uRSSsbTCZ3WfRqJ40EaC5tt5rxzxxO8cESrnfWMlIq20xR5Tts0FNmaey/dYBQ6Luy+wamriqru17fbJcYYyrJ8SvTunQ8Gv9Q9f+Zao7s/ePu1y3XqQtevJOApR/cXqQtxFP7qXvh/AVUVGbv1BW22IrAdQeDjByFnl5dIJQgUxEnMaDRBSUWx23Fxfj7wSLfbLUpJjo5mSGXodE3TVqzXq+ECatuW6XQ6rJjSNB0m781mQxzFNE1HXdW89957NHWFpwTCk72nsgFj0E3Lj370I8LIQ0hou5bl8oq6LqnrkqqqyIocPwyYzQ+omhopPTzPp2sNRuO8QaOQUTpGG0ucJMMZy7KMonCc+TRNKYqCg4M5NF3v7iVBQEdDZTSdVbRNx2695vjBE44fHnP+5JSr01NWV+eU2RoPwyT2mY0ikkAgqWnqjK7OkC9WvR+59lsgay1BELjgGNxK0o9T7r3xCYxSIHDoe2/bJoRrdBES3/ewpkHalocfvs+9e/ewOCrJerEcvv4+KjrLtkjlPs/z3Rncb6GapmG9Xjt6zmrB4dEcaw3atJje81wpxXq9pq5rptMpuzLn7PyU++/+nLu3b7HbrpC9uf1+9bqPSRVC8Bd//p8J/IhESB7df5/1aoMfjai1GDYou93OBZ4AddeAcv9ujOXdn78HyJ5iYVksznny4QPee/sdLo+fsFtdsr48ZXl1TlFmNF1Dozs0gtALnahNKrcaflEfuQ4OjkhHM+YHB1hjUf1zfy+qMsbg+25483vXo7A/403TEPoBRZZTVzX5LhtE7ntazXa7Zbvd0jS1oz5In7t37/Lbv/07TwEyazEWZE+ZqmuH/FthkEpwenrKbrehbWvquiYvctLJmMl0gtFgtMTvreOyIicvKhbLNSKICOMRQZSirXVhOH1KaRzHBPGEN978lENutcZ0HW3bobWhLGq0hqap2W2v8DzXx/hBhJU+2oqBurAXlw+R3Nea3f8SheF59B//WDS4bduSJAkHBwfM53OapnFNam+e3TQNo9HIuSH0bgpZluF5HgcHB4xGo+Fw7g+fVB5+FKNNy+/97r92L6QArVuw2vH6fMHF1QVB6KGUwJMeURwzShPwPKeUDXx2eU46ThGqh/oNdK1rtJPRmKrTBPGIIIqRSuEHPrptMdoZgftByO2bR2w3a2fcXNeDw4Hz2e3YLs9oNluU9J7hFu4P4HX+zPWDB0/RmD2iuyeCG6Npm3r4GvAU0d03znuE/EV9tDKmV5wbtx5omoq2qamrBoPm+OQx6XiMtZbl1YKyyJlOptRlxXiU0jUtde9q4VamFePxiPE0Zb1dIZRTuF5dXREEfh+BumG9dmdpOj3Akx51UfYXvOHmjZvozvT8dNCA2U/wQnB6dkZnNU+OHyOkpW6qPhAkQHgKI1yKzmQywQ/cn6nAJ04S8jynairyXUbg+WS7zLkt9GuvyWTC4eEh5+fnFEWB0JYvfvVfYVF9o2QRUmFxYpBGd1iraduCIttwdXHG8SPX7J48OuHy5JTF+Rnb1SW6qQiVYDaKmCQBofeCg/tRa2/7s0/RM8bQVBllmUMwIpocYU0v8FMewvPQQtAJBcpHS0VjoGobTFvz4Gc/ZrdZ4EcxJ8cn3L11Fyk9Xn75lcGpoGkaiiKjrArAsN1uhiZ435zUdU1X17R1DdaFfewH/73hvBCC5XLJLtsyGjnv86OjI+YHBzRN68AI2zt8WOf5a4FKt3zzO98C5ewiBYazJ0/wgO1mS1PVmK63/mo7zk5OMXVHtt4S+gF3bx1xdfaEd976Pu/8+Ps8vP8um+0VV4szTk4fUVUZTVMOK9/9nbsPKdoHFT1va96PW9299wpPnjyh7m0Nyz6ZrizLwS6z6zrSNB2ekXVV09YNVpth+5v0G4c0TVmv1y45T0oElqYuB7BNSglCsNlsXH9hbN9n9JaFWLS2/PQn76Bbwwf372Nsh/KclsJajeq3AMrzQAqqXrBlNGAlQRAwmx0gPQ8VRFghybKcbLfDV2qg9FRVxWR2yOTWHVAShHW8deVT5TXCSLquYbtd0FYblGhpqgxJRxj4CC+k6ylfew76nvZ4vdfYi9u968K0Fw3uR6s97+U6BJ4kCdbaIdFmSO6K46FBy/OcrPc0vHPnzmAbNnjKWuvU577PJ954lZcnMZMoxEfidx0UlePI6gZtXFDEo8eniCBGSEk8SqiamiAMMAJUFBCnY4wQxKkTSiw3a5f2YQx+GLHZ7pwwSAiCwLlCIDzGs1tobdD9IaqblqbV5EWD1s6Uer1doLXBCJ/OPovQ7ifMfaOrlPpnUxe6thlUkP8UdeFFffQybYvfh3B01y1Yequ31XLTcwtTQiW5c+s2GMvVxSVVVbmHu+fRVLV7oHbaNb29H61TZWuKyvEAZ7PZMIHXtUMHLi6uaNuOwA+ZHxzy3/7Jn9K1GqP75DvrnBg0FgN8/Rv/QFPVUJWser5ZEIcUdUE8SijrCukp/ChEC/DDiHiU4oURQZxQN87KzAk4Qqqypmlaov5zV5s1ylMoBHlecvPWHaazOVJYPAxKgpKWuqnRuqXuGuqupTUdxnZ0XUVV7thtFpwdP+bB+/f58Of3+fDn7/Ho/Q84efCAzdU5Tf7CAeSj1j6AYe9DvN1uEf25iiOX5viJz36e1h/TqYiGAC08QCDbog+jkVQtXC43KAR/+3//ZyJPEE1G7EzDYrFwvMU4xvM84jhmu90OyZXz+ZwoioYHqud5TvfQD3u+7w8De9cLh/epUL7vU1cN5+eXhGGMlB6f+cznuHPnjrPvsi5W1cWVarTtMEJzvrjgG9/8GrqrWV6cs11ekS2vCJQk321pq4pss6HOc+ajCeVuh21rvvuNv+dH3/sWj++/zcWTD1mcP+Ly5EPWq3OUbJFCIzCOjlQ3eEJyMJkyn844mExdwE7PeXzR4P5ypVTA0eEBZVHgecHTxrT3jE/TBN/3WS6XAyq51+pkWYZuO7qmpcxdUNTeprEoimuJaC3nF2e0pgNP0WlNvitoqwqMRUoPKy1gMFajheGtn/3U0avbhrosaTvDaJwiA+cuM55MqNqGdDohTkf4UYzwPEaTMUVZUtQF+S4jjhzPe++60zQN2+2Wqqo4ODigbmr+6A/+ALoWaQ3CtKCdyG293mA7TbFdsVlcIHXNfByShhJMhW4yFAbfDxBeSGuEQ6L/PygMwEBheJ7qY6HS2FML9hyuLHNxifs12nw+Z5dnxHHMZrMhCAJu3bqF1prF1SWj0Ygsy9jtdg6ZaEqOjm5SN32zayyhgPHREUf0kaD4NG1LVm6p8xzpRTy4f58bt29T7DKCKBxoEb7vGslQBtR1RdU0pN6I1nRE8WgQwxVFQRzH2L6x2FMq9g1JOp+TrRdIqzHKrZjrokGOE7TuWC0vObp9h7qsCIOYzjjEWWKHrO2n6KwZDuX+QF4Xo+3//Hoc7H/JR/dFffRyXq0SLJg+a1wIwXQ6oe0MhzdukMRjis2KsqqwykWAHh0dUebuEts3tPvtxf48jeKE7dpxzMdp6rhWRTEgb0pKtpsVvueiqQPPoygLzk4vmE2n7PIdWANSgOmjG6VAeArPV9S64/z8DC8eceP2HfL+a0vprOjrtunFao77uFlvcfQd4wRCQlCWTvRWlA5t2HueKqXo2gbPeiSjhH/zb36Pr/31XxAoF3cp3FdySFvXYaXAWkc6EKI/m0IMSVGdrtFFQ9F79gZBiB++oNd81PJ9nzAMh03ZbDYjzzKqqibb7WjaliiIEF2DUmB7NNVaS2UFjfEQQUDXGrq2IStLh1Baw+HREWdXl0xGo8GTdG/ptne00VpzcXGBQDGdTgdB8NXVFdNJys2bN9lsNozH44FfKaUkz/NhYzefH+FJj/VywSgZozzBwfyA//3J/wY4gKE1NaZtUUKgOo3tOoyw6LZCehZjJXVdsthsuXnzJkVZ9P7gHu+9+w6X5yckUUSWXXF1cUEURXS6wVqDlAK0wfN9OmvpWhiFKWHkO0/zfeoePLNxe1G/XPlehO1asBAm8YDY7kEwY8xAWZzNZgRBwOXl5fAM3et58qIYnqF733GlJEa7YWo6nTqdz3aLAJQv+de/93t86x/+gc5oLBprXPKfFBIrDLvdBs+PaZqW45MTXnvjE7T9cLbLM2d7qFxqJE2NtYauaVF+QFW7Rtxojaf8/ntTFJmjfGmtOT09ZTxNubq4JJ0ekG/W7M1tO9tS64DYSrpGc3W+oCpqxtOUII6I4pETyWlN1RRYKwj8EClD6rYD62Klr1Mk95u5fY/xvPULH4vvdrvdDojtvoEFhgl/j2YFgXuQl2XJYrFgubgaDvXl5SVaa04eP+Ts+DE//fH3uTh+xOrilMvzU5qqoGlatHar27rJwbSM4pjNauXI4rph1Cd7dU1LVZQEQcBut6OqG5TnobUhHY3R1jqbJOUu6LqukULR1O2w+o/jeDA6z/Idb7z+OkoIl5aiDViB0bZX1AvaJke3JUmoaJscYVrCIHT8mR553duj7dcJ10MypOc4c/8UdWH/ccDgozuoJ1/URy6LwZhevNhfNFIpXnrpDl4YMp0dcnl5SdPUT5NserRBa00UBUPAibCAsTSVW1/tB6Q4jhGIYTuxT6STUqB1xy7bEMQheVMRpSN01/Fn//7fo3ueddPWzu4OgzAW23V8+1vfIC9yBNZN/JsdbS/gbNuWoiich2JTEiUx22zXT/iKNE2pqoo8z4f3h3fNwq6qqn6rAUhB21R4XshL995EGIvUBtG1yE6jtEEZg9QGtMZ2GtM2aN3S6ZZGtzS6o7Nu++Ey1juapiDfrX+lr/3zXFmWDRHne09h0wdr5LsNUkiMDJhMp2gjaIxip31yMaIMD+nGd2DyMvNXPonxE1ZVDhi+/c1v4Ato6oa6rplMJoRhODjg7Oksl5fOIWQvtixLt9qP45gsyzjveerb7XZAsvbnau8Xvefjep5HGIYuprw1/Hd/8icY7azs2q4DaxEGbk0O+LXXPsGbL9/j6vSEusjRpuVyecmtm0esVwuePH7Ij374fX78ox9w/PADnjz6kPv338a0mVvx9ub9ygugH8S6zuD7EYfzG8Rxiic9BP2A1oMI1+OmX9y5v1wtFkvy3Zaqpyfsm689pXH/7N3fs3unDKXUM1xdbfRAeVyv17z++uvIXui+F7Nba4mS1AVFJSM++5lPc+fmDVIFvgBfKiLhEQKJgHffeZu2Krk8PyUNAuo+VAIY/Gir/szmWU4UxhgLWZEPCP9+m51lGZvNhslsStH7/3uex2axJp1M+fyv/wbefhsgLQhFqxuKssQYTV3tuDw/7bUNZ1ydnrLbLEC3zEYho8gDU1NXO5QwRGEv3u0pDMAzFIbnsV/4WCC4SZIMit599Oy+kZ3NZuRlQRRFw2V39+5djDGslgvnYbjdDofcl5a6allcnrPwHEUFIAkjtHEhCkr2yJtl4NPOe+7harshCJ1aXfRRdVYI6rYmaGuX4W4NAsFolLrGtr/AgiBwvLKuJU1TtplTbjrSu8+9u6/y1ve+i+xRPmtaGixZ2TDzPRrTOlVompCOxggpKJoc21mCMEFbQdu1rhnqm9j9+mA/Xe0FFV3X0St7gGd9g/eIbtunqryoX6b2ggMx/F53LcJTjP0pWZYhhAUDcTJycZDXkrn2BuN5nvPKK68MyWbZdjc0A0pItDXPiAOc5+NuGKL2Z6xsGsIoYrla8MlPvMnJk8cEnsR6HrEXEnmBu8ikIfEdynr25CGvvvYGRnrsNlv3/+gtUOuqpk1aij5R8PLyksPDI9q2pSxLwtBZhvlOh0Poe3ie51bee79l3yPb7fjSb/4m/+cH7xAJ9zHGCqyTZeIh3MCH7Wk8HextqdyPDzGIc1yAxQtE7Jertm0Jw3BYm+83A0EQgHBN8OTWa5xXj+m8CE8FzjpOeRjp0bUd612JNzogyy55dHrC6y+9xI+/930+96Wvcn5+wmp5xnw2Y1NUpOMUYwyTyWR42EtlqJuSRIWsNwuC4KlQ2KDRXYetzXBnlWU5iMHapr97JTRWY5Wia2qUEPzH//gf+Nu/+kvuHo4Je4qbtRZtGrrGgID1ckmYJHhByP2f/4zzi2O6KqMsKjzlg20JY0nbWrZ5iyekWwubPsY9dmKzPWoohMZTAowY0NuhqX0Rz/v/W8VRgG1qxpMp9TXOrQPBPLquY7fbcXBwgOd5w9ZrL9QajUbkhesp1us1cRwzHo9pGhfgMZvNBipgVVWIHkk1RrLeZqTTCTfG0d75EIl7zTUdFkEYeLSdoS4z6nNNmIyoitLxf8sKK6DsaiaHM1brNdZY4sgBfFVVDWEiQegQ591uR9M2BGFAnI7QuiOOYo6OjjC6RQmDFAqj3HdTNzWdTTC6QyGo64ymyVktBIEfEY0S0jRlNEkI44TRyDXZVVc4S1UZ4PkBxkqa1kUL732jnzcXhY9Fg9t1nVMTZhlp6iw/jo5cbGlRFAgp3Orf7oUKBXVVDquGs7Mz2rZleXmB7VqKPMPqliAZUe62zI9uDmIGTzjC+P5wCsBXkqauEb5lNBqxXq/x/YA4GVFmLSpI2G7WiM46zljftHZdN6AJ+1Va0oseVqsVSZKQjsfkmy2b7ZYgCpjNjyg2V3TapfIYsxeGCRQdp4+OGU3GTGcF6WzqhEgGsjIHoYiCiKazPSLnqAt7Ph3886gLwMB5e95WDh+3kj09QV9743u+T9NU3Lp7F98LUSOPvD9TkYoGdOApihsNE/L+766vkLuuQ3qKMAwHTvrFxQUHs9mgPM/znFZ3JKMxneczScb8mz/8I771939DKBxqJABjLKK/jE+Pn3Dr7j2atma1WdF0ltlsxna1dKKYZEzshVydX+B7Pr7ymE0m6LahLAqarkVICKREd85Td7te9nZnVyjlUVbOtg7g/Z/mvPbKm5wfH2OxWOEe+xZorHCiIkAJQSAUBlyza637+N40wVrQUjt1+4v6yLVP49qLeq+nIdZ1TZIkSKG4fecuZ9u8V39btHEouuoFtVE4Z1WuyTdbhIDN4pJ8taCpS6IgIMt2jCczirxgfjAbBGO73Y79S1jXFUIwoGtt2z7DM4/DCGPMQE8QQpCm6fC1jDEIKRlNZ9RljkHz+3/4R3z49g9pO3dwuu6aL3gv5i3LkqPxFKMrNotLPF/g+4qmdg4KSEUUR5R5idaGOAqH96ujePFMwI4xBsxTpHb/vt7Pv89bg/BxrHQ04snVJaPxlDiO+0CR5hk3of0dut9ySimJ43joAyx2eBbuaS9Zj7Raa4ftBr0o/XA+B+Ms9f7VV77Md772/1zTvtDTd5ygsa5rjFQs1yvCxBBFEZv/l713jdUsS++7fs+z1tr7fc+lqnq6p2fGc/PEYAcnzsUJMY4Hx5CrEyckhIBzE5EQgQhIgEgoiG8IISS+kE98SRSQUAghUgQJCIXEuaHExhl7jD0ZZ2Y8F4+ne7q663bOeS97r8vDh2e9b53qrh6P+zJTVd7/1lGdPnUuu8679rP/6//8n/+6e4eQXF1GA+vVigcXbov57Gc/y3vf+yKt1eMx17vdjiEp9+68xsnp2fHfFmMi18rm6oKo8B3f8R1cvPoqrTZQqL1I1pKxoNQuBgRRVIRcduQH7jNf3z/l9OyMk7M167MzVusTToYVUy7sp41bGIY10lOhaivIU7ZReyII7q1bt/w43t7yPATZ37x5k+1+x9DVXBHh/e9/fz8v3Fu38/xQERP8/OTdduPt2x4NdnV1dbRAIEIIkYoRRAGhWiMNA80CX/n5L3Dz1g1+7uc+x4svvsj7P/AtnAyJPA6cjisuLq/Ybnx68/T8xnFIa5omtptLUorHB28pxVsM5+dOGNYj//w/9yv4qU/cJtBVKTVyzeSWCWGgtokH92a2l1fc2u45v7lhdXrKrdNzplLZTRs0jMRhZC4epn4YLju0VIBjDFjsQf6tVj+LuuNAgJchs7eHqEqrivXIKg2R973vRfb7meeef4HWYDWOvLrbstZwjL47HNxwXTk7bOhOTk6OBXYcR4866p937949XnzxRT760Y/y1Zdf4tatW8dTz8Y00PLMkAK7/RahUva7o//PH7btWIzRQJ73kFbcuXuXj370W5mmPWena1brU/K8R0Li6v49Qvei1bzltVfvkqmoCLtphmlmHEfSmNAQmEuh7DdoCEfCPk2ZVmfu7CdOhkizRlXvPgiCiFt2DKGYUPqBDgok6fFUfXC0WgNkIQtvA6vVqp83763JUirDIfJonpinidU4IFTOV5Gff+kBkk5pphCFFONxgyytcXZ6ymt3b/NTP/mTfNd3/Ro+9ckf49d972/mpV/4ihPhGEka+OpLL/vBCiH2QVcP4T8kF7RSybWRQuTua3eO9oSDiPDgwYPjXMHdu3eP99Pp6Sn7eSbnQgiRMQyMZ4Fc/MTK2qpvRkURVZ9WD2652VxeceNsTZ73jOMptTROzm5wuduz3e9Jo3JyckpSReVRQnsgtdffP3iVH7ElPGXE4EnG5f17nKzdJrVarY4dy0Om9yHyLefMZrPp9pXcD3/IxyjOwxDjYfhRsKPFQVU9Muy1V9hvN3zpc/8MaMQQ+KI1culCUvBnamvmXS9TXrv9Cmm15uT8Fh/7tvd1vuJiVN7vuHnzPXz15a/yvhdf5PLBBTfPz7m4f4/aFdxXX32VGzfOeXD3Njdu3GC323nSw4MLVutTFzlSos47Pvyxb+cnXv4yoQpBBD+Wxe1yhmEGLfpwsUggqPa5hsZue8Hm6oIhrTi7eYPTs1NWJyPrsxvcOltRq7GdduTZCGEgjiOlPl3r+IkguOB+0ZOTk6OP5rD4UkrHAS6Ae/fuYc138MMw8OUvf5l5nrlz+6tIK9y/dxermbPzU7YXD3jhxfcfj/M97LgKgKhHFwFBA/deu8eNm2d8+tM/y9n5Kfvtnl/4wmdYrdbceu55Yoo9ckaxamgQ3vPii2gcWJ+eIQzQMtNuoqHcvHmTu3fvsjr1vNCQAkrjox/9Vj7/6Z9iHUZM/Xi+hhOPuc6oRaIouex47fbL3H01sjo95YX3Ps/67ITzUz/LejdfYRXG1SmlQSn5kUnSY0uue5RD363WWqHZ8fMWBfft4UgcPXKb1hrPvec57l5eMY5rXnn5Nc5WyQtyV8UOX7Pqp8pdXV0do4QOCRgHy86NGzfY7Hxg4rCxu7y8ZNo/LNLz7H7HNm3YbjbH3FsVz0fabP1BAIaK0MSDvDHj7t37jOsTbtxMfPpnPkmMhjXlweWOqMKcJ6b9FrPGfudDEcf7KfhmMQbl8qoi8vDBjtXjQGTNGRXYl5nz8QQJgpmrY5jhQTvGYf8lJsfNWDOh9RYg/aMBJXYyvOCtocwPYwcz/roVjP3e11qMyuXlBaMmMo2Pfeh9fOWVe0hcsxoD87TltZdeYb1KUAv7zQX56pKgjS///Jd47j3PYWXPjZs3mHPl/mt3KSX7aWGbzfFAkFrr8cCTg3J2enrqMU79XjlYAC4v3Qd+enrK7du3eeGFF7hz587x2NzVasUQAtN+x+3br3L/3h00RErJmIHG0O0Vh7Xnp2dSK6/evU/TxP3NhIYVu82MhYiu1tRm3U7zEA9JbX0D0T0Q3MP/t9aOCu7h3l/w1mGtEceBYb06JieJCOv1yMXFBQ8ePOADH/jA8UTUw+97mibOz8/ZTXuGlLi4uADgfe97HwLcvv0K5+fnfWZi5u6rt1GrXF48IE9bzs9PeXDvNc5umSBKegAAIABJREFU3EKTb9D0sPmOoCgmQq6F5557nlKNn/zEP+JkvWKezf2t2dXmoJHP/ExGNbhVsRSGcaSJUM04HU8ZY+Dl8hLDOHL3tduoCNuLBxACc544Oz3nbIy88MIHePDqK94Ks4DRGNXrY7VGzRlUaVaxcOhgK8ECijDnLffv7rn7GsQwXCO7K07Ozjk/W9HM7ZI1Lx7ct4TrJLTW6i3/7YaT8YT79++zWq14/vnnCSHwyldf5uTk5Ggwn6fJvbdzIeeZlAJWG6LxOJF+8OsdWqLikeAEgsfJiPHFz3+OIQXy5IbudQqQN7zyypW3RWtBLLBau2d4mn1wLYwj82bi5MQXxbBes99ecfPWc8zTxHDibZSaldP1yOnpDearS6IG1AzBaGK0YrQIc28rRDFQY3v1gJf2kwdF39pydvMWN09PmUvjaneFamQcVky5IlYReKjcXvN6Hkzsh49LW1pmbxe1GtUeEi0/RqQxjCs2mw2r1cA8TwyrNQQ9xr4AxBi4vNyy3W754Ac/+AjZPXQcDus2dsUMfFghqA9DHDoY027HvL1kv91y5/ZLnJyssNoPhcBVzyF6hFwTCCERVQgxsj49o+QtP/+Fz3J2umK39YHJWvbMGCEkUgCxBv0Uppg8b7FZoVjw1lW3GZRcENGjP9wtBsoqrlifntJqAUuoNEx8c0dXHrD+sQOdkE54RY4KryHM5p+74K2h9bZ9rQWrbre6eetGn6R2m4iGgGng1vlNrvZb5s0F+3zB1maGaLTLV9F2wubiPtZgNSaaNe7cv8cHP/wh/smP/yi/8lf/eq6urkgmtFK4ceMm4zhy+/ZtUkqsVgPgg7enJ6eeNVrbsYN3SOXQGI45sqenp3zLt3wLL7/0FT72sY/x8ssvs91uuf3SV9htHnBx7y7bqwdHC9dBDAGfn8ACrYHQEPMs0VyNF158P7s5s5sycwZqJ6bS1VjgsAt7vUL7tRTcQ2Ql8FT6GJ80bLdbJPZTy3r27aGDeTju/DCseLCCPffcc0cbDsB6vT4+By8uLqglH7uaB16htG6XmYkxQDPisGKeZ857trmJICF4Moz4BjyJdxywyr3bL3M1JDZXG2IY2O13oIlaM0brx5H7fIyGwFRmzk5vYuOWrUREYHthmCpWM6qw3U2AzyeMIXLz5JRX58KQfC0bMLeA0FCBUSLVfLbBbWF+4plF74SpBuKBe7WJB/de4/L+fYbVipu3brE+XTGuV5yc3UDGp+sUPllutgULFixYsGDBggXPEpb+9IIFCxYsWLBgwYJnCgvBXbBgwYIFCxYsWPBMYSG4CxYsWLBgwYIFC54pLAR3wYIFCxYsWLBgwTOFheAuWLBgwYIFCxYseKawENwFCxYsWLBgwYIFzxQWgrtgwYIFCxYsWLDgmcJCcBcsWLBgwYIFCxY8U1gI7oIFCxYsWLBgwYJnCgvBXbBgwYIFCxYsWPBMYSG4CxYsWLBgwYIFC54pLAR3wYIFCxYsWLBgwTOFheAuWLBgwYIFCxYseKawENwFCxYsWLBgwYIFzxQWgrtgwYIFCxYsWLDgmcJCcBcsWLBgwYIFCxY8U1gI7oIFCxYsWLBgwYJnCgvBXbBgwYIFCxYsWPBMYSG4CxYsWLBgwYIFC54pLAR3wYIFCxYsWLBgwTOFheAuWLBgwYIFCxYseKbwxBBcEflH7+L3DiLykyLyN9+tn7Hgly/erbUrIl8UkZ8WkU+KyD95N37Ggl/eeBfX7i0R+Wsi8rMi8mkR+d534+cs+OWJd2Pdish39Fp7eLsQkf/4nf45C75xEDP7Zl/Duw4R+U+B3wjcMLMf+mZfz4IFXw9E5IvAbzSz177Z17JgwS8FIvI/Av/QzP6CiAzAiZnd/2Zf14IFXw9EJABfAb7HzL70zb6eBW8NT5KCe9X//AER+fsi8ldF5DMi8t+IyB8Vkf+3q1nf1j/v20TkR0Xkx0Xkvzx8/WO+74eA3wP8hW/cv2bBLye8W2t3wYJ3G+/G2hWRG8D3A38RwMzmhdwueCfxDai5vxX4uYXcPt14Ygju6/BrgT8DfBfwx4FvN7PfhJPU/6h/zp8H/ryZ/YvAS1/je/13wH8GtHfvchcsOOKdXLsG/C0R+YSI/Ml38ZoXLIB3bu3+CuBV4C91a9hfEJHTd/fSF/wyxjtZcw/4YeB/fheudcE3EE8qwf1xM3vZzCbg54C/1T/+08C39ve/F/hf+/t/+XHfRER+CLhtZp94F691wYLreEfWbsf3mdl3Az8I/Aci8v3vwvUuWHDAO7V2I/DdwH9vZr8e2AB/7l254gUL3tmaS7fU/L5rn7/gKcWTSnCna++3a//f8OL59eL7gN/XvYx/BfhXReR/ekeucMGCx+OdWruY2Uv9z9vAXwd+0ztxgQsWvAneqbX7C8AvmNmP9f//azjhXbDg3cA7VnM7fhD4CTN75e1e2IJvLp5Ugvv14EeBP9jf/+HHfYKZ/edm9iEz+9b+OT9iZn/sG3R9Cxa8GX7RtSsipyJyfngf+B3Az3xjLm/BgjfF11N3vwp8WUS+o3/otwL/9BtwbQsWvBl+0XV7DX+YxZ7wTOCJSFH4E//6b7e//Df+Hv/hv/sn+PLLt/nEJz/Jv/Z7fxc5V/76//5/8vHv+z7e/4Fv4ctf+Xl+4hM/ye/5od/FvXv3+Tv/949gwEc//BH+6ac/zR/7I38UM0NEAGiqWFCsCV/8whf49Kd+hu/7/h/ArKBWoVWoM6XMTNsrNhf32W+umPYFIxDTQBwiKUbEKtEaUvdoa6g1RBtivkc4/MwDRASTiMUBYsJiRERRMZIZWgu0TK0ZRYBGEP9TRBADJFEQmoKEhKkiBFQjaiBqJDGkZcQqYq1fh4KAVMNUaBJBFTTQ1P9eEIIZQuN/+Ns/9ujFL/i68Wt+1bfbpz79Ob7zV34bV5str925z0c//AEAPv+lX+DFF97DyXrFVOHOa3f5zl/9qyhz5Wf/2c+CKM+953m++tKX+Y3/0scZYqK1QimFWguf+umfQvCX5gMf/DDf+pGPkHf3kZIJopRSya0y7fak1YqohgKrk3PCasV4do5qoiGkkNCUOLt5i9X5exjXN7FW2F9dUO6/xnT/FWresaNipkQN1DxBKwRVYttiIXLzPe8jndwgpESzzDRXRAMhDJhAs4KZ0VrDzKAJVnnkviwhICqYWf+3VmzKx69rrdHMCCdnfPDDH+Hs5nsYVyvCuKJpxMyotVJK4b/60//OsnbfAv6NH/rdVvLM3/w7f5cf+lc+zsX9u/zsF77Mx3/Dd3LrhQ/yf/zIP+B7v+d7eN/7n+fLv/ASn/ypT/E7f+dv4/Jyw9/9e/8As8aHP/IhfvbTn+GH/8gfOr7eUgNmxp07d/jHP/qj1NY4Ozvju7/nNxNCpLUKVJplpDU0Z0qdyPOO/dUl26sN827PNBUkJNI4kFJCxRAzomW0FqQVr8EYyOEucTxSi0VAE6ax1+GEqCIYCVBraM20NtNaQxHMKlGVR2txoKI0BAsBQug/N6ISULweRwy1glhBrPVLCJgAzVDz59L/8mP/bFm3bxF/8I//Sfvf/spf4o//qf+El778JT71iR/nB37Lb6fND/iRv/d3+Q2//rt57tYtvvDFL/K5z3+O7/l1v4b9fsNPfuoziAY+9u3fwT/96f+Pf+9P/1mGtEJEiKuRcPIeahX+2//iT/Fn/tx/Tawz072vsrnzMpnCbIZKgNpodYZWGYNiZcPq7DlObtxC0oowBGqt5GLEYY2IUhu0Bq01ajMMaNb8rfk6Nms0Kq0VrDUoFSvOU2rLtFaptTDtttR5x7TbM88TJWesNUpulFJ7/QRD0KBIjIQQfS2HBICKv4kIgqEYWEM6JxD6n9bADGn97zH+r09+8alZu08Ewf1jv/vjtj5/jvXZLeK4QuKAScXMmLM/QFUjohGThlllmiZCCAB89jOf43Of/Ty/63f8Tszs+DBtCNmEUhulZMAwKq3NaK7QMnnesN9csd9s2V1tyHOmSmJcnxBjdELKobDOSPPCZdKLnwi017/eStNICxGGEVG/zkEMrRW1Si17XziAYnhNNie7qjQLVOnFVAMiEZGAIqj6gow0pM2PLaSCYKKYBgjRL1EUUP8eVlEKSuMv/u2feGoW7JOGX/drv+sNN5C1ihmUeaLUAgY6jmgIKMEfpCGgMXL/7h3u37vPxz72rZD94dpqppUJjYLGBBoxIAnEOoP4emqtUWtFRBiGgSCNmjMWBsIwMqwSIoEQAikN0DLjOLI+u8GNG88xl8rF1RX58gE2bVAMi0IIA1ij1UKMwTdDZCSOnN58gfH8JmkcEDGmXIlxQDTRqH79naSaGVTFmj2W4B6u/80Ibjy7wYc+/FFOb9xiXK3QcU0TXQjuO4A/8EM/aNKMVjO0goowSKGWifH0Bqc3nieOI8QRpNCaMZdGa8YwrBANfPZzn+Fzn/s5fvvv+K2PbGqkBgyoCMWgNaO0ipjRLGMtE6thNTPtL5m2G/a7HbvLK/KUsWbI6gQdBqIoSiNKI7aKtgmtFaxicqh7chQaDuvMzDACFju5HRKi3q2OYsTWkFagFmp7o8gAIAgiihEoCBbE770QEILfWwhyqMed2DoRoH+tAIY2XGwggCp/9R9/alm3bxF/6N/+963ZzNnZOSGtqdsJy5l5e5cxeX0AuLq6Iuc9tILVmfMbN7lx63k+99JtvvT5z/MH/q0/jMrgz/kUGM7eg6YTgkTy7oq8vc98/zUuv/olKpmpGfgrTykzVmYChuUrdFizOr2JDiPEhKZADIk0nGIozYRGv0doOMU1pHq9xBrWKq0UrHZCWzN5zsx5os57Si6Ukpl2e0qemaeJecr9txKoZr55U6/5GhKIoIHjBlAOm8LXkVm1BryRzLoUdm2jB/yNp4jgvhV/yjuOGCK7zYXvMlRQ9Ye/SCaoUFoFIGjwQibGa6/e4R/8/X+IAcMw8Ft+4F8+PkDNjIZQEGprmDVU8YXVCmMzGpW57Jk6uZ13e/KUfUe3GtFhJCBEq0SbiTWjtG7q6C+9KIahQTDrPxvFdPAdfoyIBkS6WlCyk9s698VivRBaX0ACGqgWaAIW4mOLaRRDrXbl9iG5RQUpDYSvTW5xcitWqKV8Q1/rZw2tPRrOISK+ezYj50qeC6rKEP1hSRCmeealr3wFEEJQPvKRD7tiFBs1G9Yq0gqhCEZB0xrMC0xAmBEww0wQ9Q7DGAJKwYZEaeLKb/ViWutMy3tWQ0QKlKu73Lm6x1Qqc63YnAm1opbRAkX8WlOKWJ7RELGUKK2y2V1RNJDKSIwKmkC0b/S8nAgREVfqTBWw48bTf0cKr9tYH0jJox9TRI+lGZCH5OXa91vwS0drjRgCYuGoJFVNxFCZtlekNIIKQRMhJUR8bbzy6qv84x/9ccA3Vd//Ax8/fs+jchoELFBqo5rX3yAG2rzzlMEozPOW/dUV+92WvJ/IU0YJpNORMI40iQScjIZehwOV9kgNFgy8dvbHeGuGhIEmCmmAEB9VbWtFW/k6VdtAAyy60ID0LtpRtW1EAW1vrtpKV21NtKvJTw0/eGJhBqVk4rDGRFBVRBNm5bgOVRW6Fvng4pL/58c/iWpkXK/5wd/3+wG/D0SEVhs035wY5s9tTUga0BRpuSBUSmm02ih5R6BSrSGqlFK42lywlhtEEX/2B2eWhvQaWf1Zb60TTEB9o2XWMCpmM7XO5P2eab+n5Mw8T+R5puZCydm7XqVSKogOIEoIgSEoJsHFMjFU1H8evgbFmnetqf1j7Uh0XRRrR0ILh42jk3pBHrLkpwhPBMFtukLKhs3VfTQEVnGgIYQ0EGPGcqWZk1PRhJjywQ99Cz/8R/7NR5SDZgVtEQmRZv4grJhL8QqYkapgUsnzjunKye2huK5WJ8TVSIyRRiCIEWoltUJStyWYdKXg2vX7+04bjQDD6MTUOFoSpFa0ZcrXsiRooFjAFFcdHkNuA4Y+zpLQya1pbziE6JYEAST0JSoEKyh+Ize/Q76hr/WzhkOBfP3HDgpjLQUL6kqrCipwenbKr/wXvhMOxcQMxGgKLTRvZRHJAgEvTNrNCtmst3m9AGkIhJRI0ddQyTMxBoiBEAcQ35mLNEQjMQTGKDRVqkAlU8RoQAiBGBtRFQmhbzjVCcS48harqrfSWqURGdIAPGzBmYV+PypmQjVvxdm1343Nj9oYzAwxpQEaAogTrjzvufPaXa6utsRxRVqfksYBVW8PI09hxX1CIArNDNXQlfaZXBsSVlCv2G4eEGIipoFWBAmBGI33v+9F/sDv/73EOIAETBqtXd8kB1rryq3QrVTiukAzKIWCW8Lm3Y7d5op5t6fkyjCsCOuRlBKgYBAMxLLXYHE7QgBEIu2wyTlujvRIJiwmfw5o6J02Y2gNaRVtlVKn3j0DoRG012IO5DZ6f0uBa7UYlCjaCUTvotXc27n2hnoMYBowDYhGqrLU3LcLM1qDUryOmHjXUzVilo+d1RD8tUeE55+7xW/7+Pdw47kXCKc3Ob11C7otwMx6l6lhrWEBRAOGUKtRcmXabMjmVgDr9kIXt5xYx3HdO61uVTEe1meV6IptLYDXNv+51YWKOlPLTJkm5mmm5JlpmtjvduRpJudMLZXa7QeBQIojMoTe3bbebXAySuuklYI2Omn3982KP2/MwGp/rnQSfI3QAkdSe3i+vf459zTgiSC4U22swkirE5cP7hDiQFqdUIGQAilBzu4/CYBo8lav+INeVTvR6O0kg9Jl/0H7C9gMaqVaZntxn3m/Y3t5ybTbI1VZn99iXK98J2gNSoE6E9pMpJBCAgnexrWHStLh0V0t0OKA9JZyBII1JGfECq1O1EfUgmvktl93NaFdUwpUki9AMYK0bklwcguv83YVo10rpO1YSA+WhIaQfdeZZ/94jJimb/jr/Syh1pnrW1sR8Za7GWbV25cKtEJrboUWUyecx69pBITa21aooObrWhWiClZ9rWjvcPSvJGggOnugAU2UGARxWYmUkisUrTGuRlcj1DsPIVbWAlObMe3WmToRkxJjJAwjIaVOGEYSgqi6ctstFhIiZko1AXX1rAmHfwkNo3TLwYHUqnHtd2SY8dDSgHRVvNHyjtubLzlBEJCSUfGf4f5HgT/7p75Br/SzhSQwt9bVn0g1V7Dm2ljHgZJnLi/uENJIHMEYUBVSVHJp1JrdhsqBQAasKaUazdxyNUhXfayrRVSKzcxXF+yudc4UZXW+ZrU+IwioCNYKLc9InYhWnExq7IpUe9gxO9RgEyqBohFNw5HYBqto69awlql1pph71c0aoXcYjh20R1TbPrsg2r22elRtk/DI7AO8TrUt1tetOtE+/C4k8FRKYU8QSimoBmp1X6qoYE3QOGDzFvB6EoJbG6tVDBcZSp5IrTDPMzFG6LYBzNhe3IOwIYZEqJkHr73Cvde+yu7Vr2DTlhANldaFgMAwjsTkz3vGVSebShRBxXf8WmcIGQyESsPX4LTbYqW6QjvN1JwpubhqWwo5Z0rO0Px+CKsT0NifJwrNKOZ2DMGV2YDP45gUsIo0F0OaVYI56cbqw+cOcJDnpG+6ROURInu0YbIQ3LeFIokUKqVkdpsLRIMX1jqCQIzKnCut9V2Hxi7g+INSNWJNaQaYoeo7ccWHExoFo1B2V8z7HburDWXORI3oyYpxdUJUIQrQhGIzKoWooDKAQlIFayjQmvhDV/CFpgFNA2hCzC0EgYZZoRz9tv4WVHynZ77brxa7JcEtBf7Q0Ef9XbzRkmB9kEyEI7klROqbWBKUdo3cBiyssNWSv/528DiLwkEJEHUB1az1guNWFleC6oHLuicKXEUKAbGKEY5DAIqgMaK9Fdce+Xnmnuxuk4niD2If8KpYFWJKpBSJfdCxGYA/0NWEJIKJ+ZqRgVJ8TR1odFBFYuoFTtw2oNoJuIIkxKDajBwUY3AFrro6ffivihMS0YbV5kLCQcXuloODumGtUUs5FuTSnIz41bNYFN4GgigqfcAluBLUzIdKigzEUCnzxLzfIEFRCYSYgIyK9OGY6h0EXVGr+3OrGRIExFWk0DcvUgvTvGG/3bLb+iBZnmdiTMTVyJBWxBgI0tDmZLhZ6R7C4GtfIChOKsF9jZ2sFn+8I9EHexXvfETDO381U+p8TbW1R1RbRTAJj1VtvRb3du911bb7FA+q7aEeIw9VWx5RbcUrsi1nDr0dtFpJMWImtDIjYYQCGiLZ7Fi3DvWpVh80N2mU4jaSkmfKnNjvLihzpuZCDMXXoyptnrj72qvs5j1aJxe+pBKCMEQhDsnvh5gIGtEQey3s3Yo8d6tAIVSlWaPkzHbakvNM2c+0nKlzZs6VMmdyzrTSen1UhvWJW2tECXHwdWZ+j1mt3Svr/EbFkFLAXCU+1M9g1ms7R1vbEY9RZ38xQvu0kdwnguCaKKVWNKyIwdhvLwkxdT+uLx7RN/fjqoZObv3hqerEVhGsuo5Ey8y7DfO0PxZXRUlna4a0IsRIkkaoGaEwqNEqPoGoSugtqdALlImQDz8lKCGNNFHUIJihFaQW5jr7dWCPtSRUC7RfxJIQHkNujy0wdefM1/LbBvOvrSW7MhwiFgY4uYHG8Zv0qj8bkPrGh5Wb+O1aMbi2Iz6olrX2Frt1ktq9fbQjkTt04VVcxRXDN1ji30P7sFZStxeYGaHbIZSKNVAToiY0uB1Cr/nUtU8NqDixbjW7+oZRS6EV15RDDEQ5dCv0SBC0FaRl1OdmCLVRmyvB1r1nJoaIq8vGgewWJ8JSOxHyNrEdrsvc4mHNicRhE1DDGszvc/o9teCtIZi/plldwQrdqmA1k2tDwwq1HdvNA2JMqEZaCUgIpCRMc+kdBZzcmnSLifsSBPMOVqsImf3+imm7Zdpsmbc7ypSJcSCtVwzDiKiSqAzNE27MZiyazxK04DWY/iA3AWvU6jdHxhNiNLpvEtStCGaIVVrL5EMdtorKoZ3b3YWiXbUVWvAhnUNizddTi/t+Ea12TKk51PPHDfcK9Zvymj8raL3mtmaUkhnTmqLqxLRbE6WLASEEcoYDr5v3ezZXV7T9xLR5wLzdU/KENGjzRfeyBkIMBG3EUGgxUEtDTdwfqw1K8w5ZaFQykaEnEfhbo2KbLRYU+jXtp4mrPJOnmbYvWE9J8MQD867Z6MXUetqB9G6b4IkfYoIZ5NYINFrLaM39XjsM0rs100KXFczFDMMwfWPNPJDaX4zQ+nzR02WveSIIroaElZm5VoawJtQNm4s7YMZaQy+ciZQy5OYTuXUmxhHRFXMu1AYVQ2InBQbaKmgh73fsLx6wv9owbXeU/cy4Wvuk+TgS1O0E6zoTmN2nMgQa0QctOnFFGsEOfl/IFpGU0BBBlNTMC2ttUH2CPor2RAgvrgdFrkl0S0IQCH1Qh0AQH0rz9IbaF+3B36WYCHa0JHghfXNLQiFQjqotGpA40sYzdFhBOkHGk2/mS//UY97tgUd3vr4+jNpq994qh5QMrCBk31CLe6UleGtLZcJK9nZ9c5VKJbjFoVPAZg2kr8FWvL3cSfLxZzcvhCEEb/laI5hCtwWAWwRqaz1yDDS6SouZF+BeqIMoUhu1bPH4OaWYEssOysoJbrcx1B7lpFZp1Y5KstH8AUKDWpHqv5sItGrUWvzfZW5paKUgrVJzobbSfw9CaNmJxOE5shDct4ywOiHur3weASeSgejUq85M1Rh1RZu3XF7c4VyUQQVjQIIQFEqZu1fRN9whCEZFS+lt00zebZmmPbv7D5j2e/abHQAnpyfE1QkS1DdoNFLOJJtQMpIi1RIWImauuro9pRBwH7iouCUhRAjJiWszpHq3ipZpZcaa+8rp7WzfeolbIXijaksfIjsQW6GR+vd7nGqr1Twi75pq+/p6LNfqMXUhuG8Hx7kHU0rJrHtbvakiOmI2AzDtd5R5Is+T1xMrzLs9u+1MSJFqHscl7q5iHCKDKqukaBSEBCli00zLtXutB8yMec4e92VGGhKW91SFVhq5R3ZJq9DtWdVgN2X21b20oyZSSqTVmhS7+nu0nkGThpoPHNMa1JnUuya1NUIrlOrDyFAR5Tgf4bZ07cT5+A3f0G18Pa4LMgcve+sWHTr3kGvX+DTgySC4GqgaugesstIBqRPbzQOG1Zqk2ofOIjFWLHuBMKDV4uQw2HF4K3a/l1hm3m+ZNpujcpD3M6v1irA6IaRIUiFSibUyWgYKMQXfgWugmr+4AfNWlwRa8z1VCKnH6AhSG0F9l1da9xoe7hwTmhjWjiMNlB4BJhpAekYuei0CzN40Akx5tJjWx5BbxVMfWsnQVWbCgK1voGmEuEZWZ6DDN/z1fpYw7fbHQYaDf+kwZHYoKKqhe8AbFoVWIPeBRQnJ1dsQia24p6xvaFTUBxZSILeCdVsDgJmvpVoblieaBgi++Wl9/Q9Dcr92yyCCSc9A7Ltwaz5NHoISVAjSPb0hULqKSnafW6yBXGr/PsoYlBYm6rzr8UvCTmpPe7BjkRV6kkm/Lr9nG6VW9+U264ps9+Ka+d+VmVoypbY+7OCExFvJ3dRhb1QcFnx9GE9vUPc7ghgNf61DCKgFavMuVUEZQqBME/vtFWEYsGZQA1PO3gnqfttDO1hrBjVqzey3l0ybK/Ju737b/Yyqsjo5IQ6jD64FI9RMbJnRXAiI0TdMPiQbPBoO7Vnkh2FGaME/t4QBae5jF3wNUqs/G6xbeBC3T4j4Gu2qbUVcZettiMeqtubPkjeotjxUbQ31OL/Q6/RjVNvr8w8L3jpEDh0y9cxYM+IQkdmYrLLfX0FrzPs90zyx31wRhxUB93U3m5A4MIxDV/39e0oMnl2v/qYNQiuIKMVz3o4K7THNpVasBvI0g0DOhWlfepKORz6aCU2U3CopDJyenrFaeddYuvJ8sB/IYYi4HZ7/FVpBagGbMcw95EGJKpTbLE4sAAAgAElEQVR8GH5snaO4EOLXp25nMDsmd7yZrcvoKR9ySPs4EFq/N0zdn/60DfY+EQSXoEgLrsi02v24jVLm7seNxFEe8eNOubjyS+xeWHX/Vqk9+qKw214xbzbsNzumzZYyF1YnK8b1CZoGNEBqfULXCmK4KizWiadi0gcE8IGK0n1fEg5tM4Dg7bPaWxNWUHWVN5h7xcSUpoHSjCoPI8BAf0mWBBFo8rip3Ot+20PWrpNbHyYbsPUZOqxduR3WoN4aXPDWUV4Xs/b6GKuD0tNKpTTznb30ATQJSMigStDECjBqT00wLCgh+pry+DFXNp3cGSLeOahBKAJk6aRP3OPaGrU0cvbJYqoXtxQCISliQq6ZWYT1eo2ZUSwflVSLkVYrrbiaOs0Fw4fcMsX9lz0KrxnsxeNo1DzODHztX09QOGRBHobMan2YCemfb5RSseaROLW5sksfZMKu6bZPV619ohBPbxE2F7DfekvzaFVQzxuv/rtvukJly3574R2gYUWu1QlqTJhVUlq7kikFaY0qhWm/YXd16cLC1Z5SKsNqII0rhtX6OIwT2o5khWjVn5/RA+mj+EO3iWAau+9caTZ4igd4De6bHiSgXY2z1sj1YGUDMe0Dn92GoeppNd0rS4zQq2eQ4PqVGonWo78eM0hWrwkNBzLePZg+AKk9Rad2scGO5FbCUnPfDg4k7eRkzZB8VqW2ynb7gP3uAbbfQPOs/Gma+lBaIQUjBhfLJAgaone5onfYQkiE5OS2mSv9B19tFNAU+6YdrHh3LufsPl8RX3dzYc59XFgCSQc0JiQETkJgGAYkDISohKCoWd8E4XFhZfKs/ZrRVj0b16p3wULog5Hu5S5mhJ4OJa1nQx8Gfek8xVonudcG41uffeiE9bB+7bB2g1t06DnOfhiE49ApfFrwRBDcUtzc3Yo/DEutoAMpwv7qAjM4vfEeV4YkMOfJJ1NbRYISg5PSYIZpI+c9u6tLthcXTBcbpv2MhsDZzXOGcU1ICRUnt6MVj84KBr1VoKqE1lvIIlgYyGqY+KlQoXu0UsteVFsjtEZpM7XNqDZMQjeD41l5KKXZcSoXDT5yoNE9jeKnkmmdeMSSgE/fSmk0VZqoZzz6F4G7gl3xI/sutbplAw1+AtrqBpJWPgS3Ooewgn4AwNNmGn/S4MMOD+0BwHGXe/CBeVvHla5D8HuUHvESfFJbRb393vMUQi+uGtyHDuIPX/XcxUBgGF19N6yrAN7CKjVD7d9PGlTrXYW+/KQh2a/JDGqZ2eSMavAHRghEC7RcyH24xw7KqgWaNKR6Pi7MHl1WKwWBZk6gG92ewEP7gbWjT/54oMOh2B4Ibk9TKKX0U3/cquECx8M227Ju3x7S6Q3WN19gZ69i05YmhYxRrfVUBcNaZjaQptAyFw/uooMLBJjSSqCFgLWdj3hZo+42PNg+YLfdsr13RZ09FvHk1k3GcSSESAoBbYVY96S6IwjHdS09Ai6YPLTxaCCrUFRpVbA4EHu3Tqwi9ZAvWqltonKowVB6pEczFydKw++F0I3j2hMSNBxPh/TTyB6j2vb7QKvn2lbcXmaqb67amqu2tdt7JA6QFlvY28GN8zPmOjFPhbw3VnFiu92w3zxguv8qedpz7G4hbm+MgRRdBJtyIQZfc30SjKhu5wraDzZA+l8ZtWRaK+6HbdVFreaHzViFLEpD0ZYxDaQhoamv9QOfCEpKgRgiBPw0U+tWmlrQVtyOUAvNfO4AMao2P401efqGWiMbJAnkXtP9pDP8fJLmG7xSnHdUA2lQRajN+ZWl3knuCq31+wCuDZjhRoXQm9ByLS/3acITQXBFfSo3hEDtD7/SGhJGgham7SUghNUpuZPEtFZCH5pRKkGanwBS9uyuLthvNmwuNtT9jMbIydkZaVz5qU4CoU2kNpGkod14HULikJkYukzfEEo0VAay+DAZ4gstVEPpfsGW/QAGhUb3v1RowT1j/RAUT38w+kCR7wY9AsygXo8Ac3LtrQquRYCFx1oSekgOrXhLRIKCJlidIePaLQnDGgvrY5yJiKDx6fLUPGkIY3gjwe2ELQRv92Ohm/17m4tK6uqB9gEeetvdDSyJ0D1VsatLKj5JHlKkIqxOb3L+3HsxlJidcNYy0eYdte6Zmp9QFVWOubmt5yAGFf84PkM+DIkoblPQ4F2HQzyNKEgYEI19ItdzcWM7caIqEFqjYqyaXiOj3m6z7kP2n9/8/q29y9EVA+tHWNo1K0PtiRMPf3dyVCJarYAtDoW3AR1OiCc3GfNEK9lfw74BIXarglVamaAU993G5IONYqj5yV1WMpBdVc2Z3WbDvLlks53Y7ras04rV6ZnbEqIyaiC2mWh7gk2o9lQcCUe1DHwDE3tcV1bzQWNJhCF5TKS5LzEYqBm0mWoZrPoQZlRKFd841oqJt289ikH6A/1xqq0die3XVG01gASfoeDrVG01Yatzt4gteMvYbi7c/437XO/tJna7HXXek1omik85HAKxUgiE4CkY7RqJi2KUVjArSBhJ2teBKNK881VKoc4zrWYEY4jBYw9bI4IPb+WMRUXSSAqevxxTIqiS1PqQOqxi6DaCHkTX/Bheaj94CcNC45Bf4z/DT7E08xhJrX7tiiKq5M4P9JDeIV7TS9B+qIMP+pqBpdhnfTyj+hAD9dB560Jb5JCHaz5EffCd9/zepwlPBMGNYuRqfdimF49WyLUSdKTsL2mbS9q0Z1ifEtIArYceW/Zp7lqhzEyXF2w2V2wvtuz3e8Y0sjo9I63XDDGSBFLdE5sPMyT1RaCd9AHuuVVFTZmpvsuPybNwtecY1sIQFBoUitsKxP1Yc2/QqjSkJnKfEI8x0cxvCpqA+MJ50wiw4yk4X4cl4Zq/y/22o1sS4gqGMye3OryB3OrS531b0NhV1Ee8Te7uF/HNG+aZrYc2ETIgwZAQScPgk+E9m0BlREQI0ddkCAqmaEjefRhPkLRiffO9nL73wzRJTgrnHTrtqPsNMm9odcbmK2z/gFAm92O3SmsBa5VcKxrcvRXjyLhKxJBQFR/GqX4iXghKY+iDPNpzogX6sCUiHuiv6n51OPqQvar6gSKu1lbmrnw8VHArTZRWPVvVW38NRY+h6s16puQ168cSEfb2ENJIW60J5SZpnrCrgomR1QcQ1fyoaSlbxBopRNI4orEfA4oTR+qGPDUPq59nNpsdu+2eaZo4Gdacnt9gWK1IgzKIkWpmrDvUCkIhJo+Yc2EBOHSsep2V1nz4SxMx+XHX4PVTJRCre2KmMhGsERSfPjDp0Ukg0QkC4oqeaPQAj9cdtRtoaJt5w1G7Kmjx5Jx2OCHydYNkgqfn0FVbt3h46ojECDpgq1O3iMXVN+tlfyawu7zg8sFd6rwjWIMoiMSeMgO1eYpLkIft9WNCiyoxdQJZyzFVRpvXGCvlaGs41CfyBHmi1kIJvZsWlBjFI8JEPA88+OE6MYQeOWqkIARpSDNibSTPGPX13/xoKLR7YLFupzmQVf9Yw61eavhzwnzFBY1o63MMKuQM9AHMKoqP8Xp6gqCHG8F96eC2BoyA+CaRfl5AO5x05lY6s3rMMX/a2MITQXCTBFqo1FYJ6nmLtYDVzD67j9TkMCDQ3GtbZzTjxy32NtC037F5cMlmu2U3zZyfnHFyds4wDgxRGKwy1ExsO7THjgU8QgnjOCQkKKZCMcFkhYY1aRg9OkY8Zy+KYFN2S4IViJ6NW3Qktn7cqihFfFcfg3h2rvViqz50hOXu87p2Co4chhe0t78CFj3Ghj6M5udIFyK5WxLsaEkgnSCrMzQNSFpjw5l71Hq7RIL2GyQ4oVnwlhF7y/wNvtDe/pHeYYDD+vLPjgopKSH4cagSEiGN7skSbw1J9WECG9bo6XMMN15AVu8lxJE2DLw6C0QhpYFqiolbUFr2oZ2Qr0i7O9j2PuQdreywGmgtU6sRW2ZIifH0lPHsFmkYyTSkVCRPmDT3qhE8d9HcNi5qbtOha2Dqa7MGOR7CUJsrZgd1tlQnrtEeWg9qJ7k0+vsjpfkJcKG32qz5pLPRaNb9ZdYe9eIu+CUjjms/kQmf2ip5R5wMKGzmHZIzNm0ZB1du0zhiYqQY/eARm7Em5DLBbsc8Tcy5sJ8z2eB0fcrJ+U3GMTEEZU0h1oK2mSSz6wQhElWPmeUGXQx1ZSmbYmlEdU1KqQ/++oM4VWCq1DbTysQ6QBOjSqBphNpbqsEojFSaJ4KY+oAaQrOKSHPVth1OI3t4OuQx17bZm6i2PkTpxONw/Pn1wd7gqu36HI3dIjaeLQT3beLqzl20zpR5Twv+vA7R046kx7TF7nM+ZidrI8aDiNVJYK1diBDmaUsre69Vs58cFrSnyGC9nR8JITIMiSH5EdZRA9JAUkCHgRQGxIpvtqjIXBiSn4oaAc2ePa6hEeLBItg37YLfB51stuYbskMHqwGYoNXIh/xIAq0mrDWa5p7g01AJvs6bWzdrrYzWc9u7+GDd43sgs1g95lsfcBDADhn+PGXCwhNBcNUCSTyQuNZKDJFmmTpPBJtRMVRXpJVP3voSFmreo7kdz2re7/dstxPzNLEa1qzPzhlWA2NU1laIlgk2u2prQuzeGPdN27UToowsAYsJ1RFNKx8Kk0YAUsmYZUor7qMJQhM/dzo1XOCV4DmMErzh0AfSzFwZo/ogTe0PGelB4GaGNq5FgPkEox2VgsdbElD35rI6Q9IKhm5JiKt+KIb7QQ+qrfYHi/0i0SELvjZW/fwxeKgSHH3T5hp7lIdeVO0Ku2ogxYE4rj1ndjwljSfu3as+2JLMhxH17AXayXPsZcSqHxHZamFvXnQTrrrleeq+KWGdBk7Gc58gjyOSt+j+grrbQPYYJ1U35a7Pnmc4e8GjmcoOtCCSiNrQGFhbZc47bC6+068Nj753ohtNnIC2TnCBau4Pa+bxfVWav1ml0t/3kUxUjOy1mn0voH6gxeF36xvD2urRw8vRz7zgrULTiNYT0kllPLnJZr+n7HbU/QPIc7fJjIR+oleQQ2v1cIBNYZpm5t1MnffkUknjCWMaSMPA2ZhISRi7sKBWSFKPdhsOVjB6zJ1If12hELE4YiERwtgzvv1489iPSi1tdqFDGqb0oUvr6q24zc2tukRJVKEfV+qh/9a8W/E41VZE0Hrt6PM3if9yr21DcbuGL/+u2oYRG0+6aruGYeXkVhZb2NuBRk+hISWqGUkOucZuWUzRLV+tCwshQBSOw72t+YEPpRSsFkT7seR4esFhcDhqIAza5yQi0iPBVicr0rBCh5XHL7aCpkgcBtYizHkm1ErIE6vWqD1HP0hxy0zwLHHVbqE55ODJw5Mdsf+fvTfttSy5zvSetSJi733OuTfnrCqSxRJJiaKagloSIXfDdhvdaMOGAQPuL/6jtgEPgLtluS0bmtxqkRQHFcVJrLlyuPcMe+8Ylj+sODezyKYEV31gZiMDyMqhMhMn74kTe8Va7/u8zvr3zqlftvyudZaJuWkdi1gAs4Cm3AvaCsVlRK1/Xpt0EnmfhjWr1LpSW+nRwf3cpZs2u/HXrN10wgFetiP3hShw47TBlgNJKqsKJa9YPoH54ZWGRApgKm5QEKXVBcQ4zTN2OrKsmXXN5AabzY7tdsu0GdgMgaEWRitoy86W1XNKGP3W51xEHwuYUw/DiIURTaO7itUIEhnygvXIx0Bx9qP5gCvQR7LqB6iYd/G0H2jajRDWMo3swwfpgA/BRwf/kCTB/DBV6i/obR0BNkGakOnyl0oS3FyGOzRfMRk/01L5D3/9XE/bH9ymN5cyH2cliIOb/cJE1UgIAxJGRMUTlqwRJKDjjjre5lThcMrM9coNDXEkbm/RrFCqH9SlZGrJpBBpw4RtNmzSbUK6xWAVlgNhewWnp8h6TagnwrglXtynDhuW0ihZwRKooXVlE0dKCFiDGI7EfPCCXZN/fvC0KsxxX951cF3u87/W7CxN8O5utUap3WRGxdnpSuhyBrEedW3tRr9cyD4B0bMZ7SU7bV+g1awR0uBdnOoiq5wzh6snYKsXBWqeWtYalOphPAYahFoq87ywzJl1bYAS48CQRtI4sBlGLiLEVok4ji6Zp6AF9WaAx+SeDT29kKS5aSdMSJyIYejQ+8YgSuqGn1advEBwrWWT5Geh+di16LOmgQZHy6VqTnrCb17erSpwIw173vfQJ2hndFKIv8RIVhy4f9No8Esn0yWkEY0DMuwgbUDTzXn8an36Zer+ABPxwjEELxilI7fopqjuBWjF8aOl9MlrdVJLq67BVckQAiF4yqQHmwQ/h2PwItEqissMh/GScXfpUc7VoEJToWlglYiOBdqCpEiplVRXkvqzPyhuMpNICM+rX/v+6+clCM1AyZgp2fzvrwa1y2Q0JGf0o2QzpAasZD+rrXYfg3WsKc7QLYtPfGvx0Cw7G8rgXNBqRzL2Lg3nYvecZPkyrReiwN3ceY328c+wdUHyifn4FFkXVIxhNzn1ICW01a7dMlrJLOvKclo9y3mdCXFis9kwTRNTSlwEIbWVRCXUmUhDg3YUjmtzVPtbZoJpYDWoYUDT1nVqQQiqjK1AyVhZsbISaRAjuUsOYslUGkUH/3CF2IHk4piw5n0JNS9GKo2q4oVpbUjxbkELwfEdIVBdxAkIwUDkDArv+i4RJA1+eI5bwrBxSULagqZfkCSoaNd0egewLCuH4+FX+t6/9OuXJMOc+ZtONiiIRUfOxUSLG3I1OK3EGjEp6HElDitx8vdxd3kXbj1g3O64vr7m8fVHlPmAhokwjLRcaMfZR/adl7wuMzVnsghrTCzzhvX2PUIaCLolpgmVHSndZtKV0QpNAo9bpMyFXDKhNFpdWU9Hynxgt524mDbsthtCCkgekeXoWKeaexqaG4WS2g0NwcQoDhujSf9eG8WMJq4rK2pU+tenuRYM6/GSzaNaFZcqNDOiuTO4leZs3ZdsXPYirVYXJG4AYzle8/Gj99g//diJMBKQ1ljNaEtGpCKyMk0TxXwMihllyT41CAPDuGEcRsYUGZMwqTG2lYShJXv3tweahN69VXXtpLes/LwrEmhxIKSNY8gQVIVNbZSaaWUm5MXZtMF136IJSnWTcfAiwCcZSqhnI413pQIeZ9rqSrVCU6M079qeQxua/nKt7fOEBKViJXf6nnhQSvxk11aGqVNr9BPn8av16VcUaD3WGZwHq3JOhKS7/fuFuOEa1eZhG0FKN101YlCmIaJ4WMi42XnBF87TVDdYtWZEa4wRpnFiunyAbu5wyoVimdoKp/1TypoZhsjFdoemftkLxk4q1JnJIkk9bCQGIfWJsXUTF/hJ2jS6UaxBYaBJoGrECFjwidn5aqg0v6wWn5hJVMhCFX/tuWVyzd5cyNmNZ9aI6rVru5HkwE21i93gbsWedW9NtJukX571QhS4cXeHcP2E4/VT8vEK8hFVYRp8tG7NsFrI1XVSKrgk4XAi50YulZC2jOPEOI6MKbBNygYviEN1wkEIsTPkurGg36SlGaTEauKHZRpJ4wYTIYqwrQvWoNQVWnbzmLiRITbAsqeYdJC+EPvoocerVgP8tdOc4ASx7zC/rZVzt0ATFs5JIqFLEpzWEKxgtfof6eEATJdImpA0IuMFFieQ+InDNNwcri5JaK1Q18z1/imnw/5X8p7/x7JUfvFGe9YQevyuX5DQkWxuQCzNegpOo+LJTs0CrAuxzoR8yXhxn9qMvK6crq8gZ4IZMTntYF4LxuocRxVq9pQwK+4kz2WmFmc0hrRxZzwGrRBqZTcOzERyLhzXgx+40aAWlnkmrwulZEKOmPT9PSUsJRIQ63zzoPcBhd244aEbOs4YMNHOwBVEmqcOensCbYpV+mfBE3wsV1rFUVGt0dQ7aiYej3l2+L6qbz/DqgvH4x5ZDuTr9zk+/RCRhkWlmhAVkNp9gs5hzutKiw7oqmv2NLoYSdOWYRhJMbCJxqCgbfULXvWpVAh+/kTtEzPpPgBxfas/2Htkb5ogpe4bgGE9uZ67ZE+zw1PMavOJVOqFauUcPOF/dzNci9kaoQIhdzNRpUhDNLjmXMBKfSYNc3SIo8T+nq7ts4TIbjIa/SzWOCBj79pK/IUp2kuGEn3hVoqhX0LOhqie3mXcMGNry37paT1VkW46S4HtdME4DC6zComcRn/uAmLZL9VkggXvuuZKwrWsw7gjjpfMBPZ5pdVKzZnjnFmXI5NNZFNQIwbhIg20YSSpoc0YtJKiEEN9ZpoVv3r5JEJo1rm60fehiBN3TFye2Zpz0sWMgPrEwXrIT3H5F61Qaya0Qu0sZ3dWduNzk5ta1W6KXHmuo/tMFnmm7Tg791fznn/a9UIUuE2VpVaOhwPr6ciQAIxcFue+FiPURoyRSnaUWK603Cg5E4aJadowpsQ0BsYgzralEovLW0LQToh5dsA6JNxoKVFMIQ1IHBjTBgsuWo+WMRWuTzPTMBHz3Nu+Aap36Eyja3C7UczTcFxMHmpFaV0j5JF9EqJLGNw25kJ5AQjUIPy8JOGXIsDGC2RwV73rbTe/oLd1Y9BZkuDF7XqaOZ4O7K+ecJqPv7o3/j+GVT+pYT67wV2aIqj1h2VKCD2bvvl+rLV2DbZ001SgFthcjJjA6XTN1VUmLzMtLx6MULJHNRPcnNgqZpl1XajFZTuaNuSSoTXycsKKR58Sg3dWrTGfVhKQlxWxlcvk/5bcMq0s1HUhCbSysqqQDwtLGbg1TgxpQjFGMwbN/dBTonwSmabqxspm5pqx1pBcXRfcnjNUnMfCiE8zqLTQzToKrQUH/vev8flADu3l6ia8SOvjd36ErTPtdMXH7/8dUzLWLqeSbA6blwBWiSH4g7wUzuElFXWNbvIJ2xADCe90SasMAnpTjAZElKihB4Y5czYoPtVAMAnoMCJppGlC1R9OoWUWM45LZq2Nh36Y08yT96w2miiERBW7mXgZ/tnTPq4lZOgSsiqABgqGosRSqQhV9Zk07Dze64/7YPbMSNbOn1s/Y01SJyRsIY7oMPkUTfwsDiHcXHgVIbxCM36mJeIdyCyu/S8lI537bl1naz39S0RIITKOG9K4ZRgvmHZ30LjxSekw+bkIhHIilJlWV6a6dhJMdQ+DKCkIMt7muiqnUji1SmqQSyWX4j6BvFDUuv5bsFRZc2ETAyGNxFBIyeUU0i9htfs2muHSNXEedNCBIB1vK0pr3llNpjfUB0qmFi9mS12R4mERWp3K1GieotqllM1cZ+x6X9/bLqeTHvSgHUn2XEEr9P/38nHzX4gCd75+xEcf/YxSFyQE1iYMXT9juTMzc6al1DExUJcVpDFOI+P2gpQSgxiTGsGyhyZY9Qd+P1xSCI5GEu9miXjXtWlwM8O4Q6LTEiYqqesB97nx/Z+9y2tvfI7X05apc+yKZap4YlnjzJjryA0DaZWkzfWylmnaECJow4q59la1a3GCw6M7MNfF3qUjwBo1e9yqxogNOzeR9a4taYOJf220yy9UPDwgxGeShFYq++srTsdrDsc9h+PhH8ynfrX+/uX5389aMtIF+SoODxciFgdaGjGC59aba6BqLZ2qYaQYiPGCze420/YWp+VEng+AszRbKWhwg0JT/zvyfOqXKpjnmRAC4+iGnJiSP1i7cbHlFSU9w+aY0JYjth6xcuIUjGPLHgnZC4FhiKSorHlxDVd180K8mLgMiVCb58AHRaW5MaxLB9w3IX3y4Z1AVYF0Tpwy1NyUZsFRY4KAQsFHahX/c61ap0S6brO0hvbY31fr060PfvBtynLNbohcToHMgNrUi70M1ckvKtE7TRKYlxnLDryXoIRhQENiDIFklUEhricmAYseYBMFUhRPbtI+lj3LC0SpErGYsDCg45amkShCagtjcZ/B0QLvPn2KDondnTtcrEeCNVrN1NBAhWIB+lknqMtczPtiXpQ2N9SoXw5NlFgLAqxROXt9mv6Hu7Z+FnvX1mN5nVjTxkt0mJCYbrS29vNd2xBunkGvjL2ffeXa/BK+LH7hz17IDhqIsWtwiWgaCGkkjFtufe7X2d1/E4ZLZNhRgdwKaymU0gg0BjJaT0Tziw8oLWdaWzzsJigHCTzZryw5M8VGriulLmCF2PXktAqlUGplvy6cQmBOW9omeYe/CaIVkj/ri1nfTwFCcs+OKlUCtMbQu9T0fWzFtcOtFFrObpLM7u2R5gbiqm7GLQTknL4az58Nbxxo787W9lyWpHCTYiZyLnrPJIWX72L2QhS4p0c/Q8qJkBQLCW2upxGM2hopBmqtlFw6a9ApBUEDIU0OVMYYMMgrMXjXFivO9A4BCW6OSCFCTyW5OWBTQsIIw0hQT5LSWhhKpuTMR08OrDLw0X7mN3//d4jv/ZjT9ROcvOAJZRKimyVwbEyoHajfPCYyBMVR0Yaad7tKoOO+/GGgTQilOuJGim/E5nilsyTB4gaZLjwRZ9jCsPsFScLZSKYeQUWtmbpmjscj++snHE97N+eZsdlc/Arf+Zd/VQs3+ik3knknMohLQ6pGsihFBCSSqlEtU2vxJL6OiXFTRCCGESRQSiHdXOacjpCimwpKR2yVnj4mfYyMaj+LPBWqtuys6BCIorTcX6WcpVbuJs7zibnMlLK6zl2EIUU2w6XHWbaVnDO5ZGZrHCQSp8hmHJFBSRT0HG2J3/atH8mtd+LO5gkRo6qi1SgGph4WUat330JtEEP//PfI2DM3Wp2koOJM4XO++qv1/38drq/YJTqz2NCYiNXcTNsjQUXo+9T3iVlxuVODNHmsqcbAJgWnK9Tmzm+JztbUiKqTQxQlhIhSkTBQpJvDwgBpcHNs9GiHSHOkWPYx8wdPD7x3dSBNW15/OLEZYH7yCPALZqkGIWL98uaxp85N9iCIRqW4lEACTYxgxc1g9LhTAq22Hgl8Psef79qWHljyfNf2HH0+Ornm57u2N42GZ8beVn1s/nHG2ckAACAASURBVGp9+nU8npBlplZPsaPH1zYB0QGNESS652DckC7ucfn5ryLbB2QdyRjLPLOuC+uy0spK0ogMA6oJQkTD6FMLZvJ8TbBC0sDxNLM/nghUYim0fCSvM3mZEREmjQz9YgP0M084zAeKTWQz1t0G245Makiw/vwOvaB8xtAPkoHK0D0Ja2vMpXE4LdxSZ/9HK+5vCJyfPNDlk1jDgiCt4ETdShSlJjfHFStUFW+YnIUJIn1yAWdqk/+6/5teNnnNC1HgHp68zzBGKj66YnWeoNKIIRC64H9ZFlophOA8RNUJ1UhScQMZMNVCKgIpEjURgseYhrODtZvDmgQaisWhH1Cu/xLc9RvXTKsrMQRqHHh//zGhwL/77g/47c/dIhyvsOY8OqceJD/crDC24uOx6pvKgvYOlqM6qI0aknfvgjpP0txDnKRhYtBTgj6BABt3SMd/nSUJzxe3z0sSzp0Cs0qeFw7HPafDNfvDFafZP4y77W02m1u/4nf/5V7PO0s7Icgds3hqTsULsdaB9E3oBWp57mYMZc3ICCEmJCYUYdKB4+GISGAYIkMamXOh1NXdtM1xXp0T44aIUpAo1NK6RtUNjq0fdKFTSESE1i9oqj6OEhHWdfWC3YbeFZabrqyIUGvluC6k2Li1GV3K07W1VhuI0xOkd0Hc8BN8UhAMayta3QxhPWrSmnnR0DtmN+WxubNeLGBdhyvio3F3Bf9K3vL/KFarK2sa0aZMwwgoqo5qpPZY5uojWiuFJVeiVMIQUQmEkAghMUwjm2FkbU6JqRhIoqKYLRQqrWV2Mdyk4jUJbs6VAOPkI2B1Co2KEXNF1pVaCqSR2QLvXx3YMPKjD57w4NdfRw9Psdq8SE4Rk67ZpSHVH+havdAFL4QzDsVXFW8wqHmitWkPmwge+2tnaZgH+LRaulWiNxnS1tnUaYRh58VtT/u7iec+G3v1eWOvG33mef6Vvvcv+zodjozNboIbNARifBaRiyZiHNld3kV2dwmXrzPHW5zmldVWpBl5PbHOM+vxADQWAusQCclDSeo6U0rGmtccYpW6rrDmjhc7crCZeT5SF/c7BFWsDl2aVW9e3xlJdpxXTusFS1XSELkzBDb98qMiBAJRcK+BGVIK5IKWSqmNrJFv/80PISi/8+ZDkjift+F7V/u5qB3thbgeuQWF2rxOMY9tL9ogDa5/uJlAnlk/PCOQPFfUCtY7hy/PeiEK3O0oFEmUKp6OkwRqcZyM+QFTS/WOLIIWY9iOaAqkMbAbB08HEcFSJGtCTFEpVAVrxZl2ka6vipSuudLhAokBJTLgo8+wruTjAR1GHq8rf/X227z1G1/n/Y+f8u5VYTm8w9dfvyTmmSaxFyQRaY3YIqO64adSsOgcu2re6apmoBGLjssxc+i0FGhaqVYxjLxWd0nGgOkA29tIGp2nOF1gkhx3dtZ3dTNZiL4DW820Ujkdj+yvH3vX9nQil8I4bpjGCy529xjHV7non2VFbT/3c/GOkCgtKJomqjmTs5VMWTLz6tKQqMGT8PJKlZHdrfvE3W2CRqKtnE4r83Ki5JUWxKMjzfdzE27kJSLmD3ZrXav77DX55KMj9lJCZWAaJlIaKFHIAWY7gTQ37bTKcjpyOp0Yont1Y4xd7gA5Z055T2WHauAiTQSNoI69k9ZJCuYe39qav9Ze/BRx5J6ZUcWNY0Waa3RNsQg1O3ECIq3NmColdomEuElIrL10h+2LtCQoohENoeOIupPbjNOaaWV1CUzJGDAOA9vtJWEaGdKGoIk4jrQwsrfk4RuiZCtdNGgkHUhqJAYKwk4gGt5hCwoa0ZgIIgwWUFlhnQlrRru29oPDFe8+vea11x5Sm/I0B/76Jx/x1m5DYqVKhBARIqF1aY1WpHmQgwWH5bd2dt03pAo5qs/NxC9aZkbshrhWCrBCLdTmXVuJPbRhukDTpht7z13b50J01LtdN11bujyseaNhf7hifkWu+UxLDSQNLvsIkGJ0iVcaSDF5p37aEl97E90+wDRyfbzmWM0tEzljOVPLynK4RsyopXAUIwxuVA8aacFNxM5q7oEOdoKyMC9HjsuBWlakZnJ2zWtZvbOcUiDGeDO5ck55ZSnXmCi3twNjHNlGYVQInRClzSd8oVafctVKNmOOW77903d5IiNffHifdOc++uRD3LXuaLxklUCleM46jdjTUSvnpDQTUCLBGq7g9LS/ju9/VsyK9Ulfp1MIPe3s5eoqvBAFbm0gMRG0Z0Vb6xHNLhanVubsFIFhGFyaEEY0JdIwkcYd1QJmlVk8XKFWSF7GMmjCBLadM0dMrjMJwd3logwmRCotnyBndtPEqQnvf/QhbfDs8N/66pepTHzzL/6Uf/YHv8fV372NSPTbU/NNIGJY8YQyDSDmH4xCo2gnK8RuXpDgHYUWnEBeHZtkQIiD3wLjBGOPeEwblyXo8PcjwDol4XA4cDpeOS1h9pSWzeaCzXTJZrpk2lzQhhdiC7y0y4KPOYEuQKHLERSNA41Ebp40V2vpZjDnD7uLVShV2FzuuLx7j2GcWNeZ+Xi8MQ+0mlmKD6BEFImur44i7p4VcWOOgVYoXQ8LMMTkRS44LSQXYiykNPgoOnTihyohJtoaqTF6BnutfnD3rpSZQ9BzLTwqDQ2JexcQpoEpSt97ruYSpOOTOkWxevFhOHa0mfUOIVhtPcXHu4eNStNIUf+31VK8y9BRUK01mhTvAL5an2oNg6dp3Rhpgqd/LetKKQXJhdgK2SCkRBoG4rRhvLiDqY9wVwvMsz/sa4M4JNaWaa2S1H0OA4khQtXEbJFRxTW70UH2KhAx1Bbikil1Rgx3uMeAtZF9ecyd3cAX3nyTwwxvv/09/vE//30O7/0Y0eQFZXXzEdbQUsHWzjdXR0WpEc0/P6Wzpk1cnxjMkOra79ZcBlOyI6bOXVuGnXdt4+Bd2+HMtf0HurbNu7an04nTac9+/5R5Pv1q3/yXfE1jQkPHYIp6ul70Lu4QFA0jcXcPizsOy8Ky7lmqUUNgSFvKMkPtBt1SnIXc0xIrsADD4GeRBKcb0AtVRb2xpJ48GQS0N5WW05G1VVJaMXNZpd4YFZUQXRVbysJxmVnzhpYbISipZbR6sI1ZRqsRiGRVaog8JfHTJ3tef+tLvPfoI37jjQcMAlUaWfr5qaFPvdxI2aSBhc53dmOZds+HlNZZ/YYofaLoL1XptUyXzmGtT0JulLovzXohqpumEz0ChqBQWruB1pd17jStxu7ygjAkhmEixokw+mhoXwM1FwiBU10xK0jDR6fASKDFwFJg0EBqHu2nGhGBKJ4NrcvqI1RtSPN4vTsP36C++zaHw4mHDyO7aeStr3yVb/7wfT4fIURPKvMgEk8IoWc3q0pPeTJU1CHj3VHc1WKkECgl9+I4YjbS4ojVCiFRJCCxI8DSJyUJP3+gniUJdc1cXz/ldNxzPO05nvxA3Wwu2G3vspkuGMYtbYxdV/ZqfdplYejygE4EUJeLuht2ICPMpbHW4oSA1rtE3YDlVIyB3Z2HbC/uYCFgJ+d0WnNzYaula8pxKYwFrMIwJurRsABpDBiVzErQjZMc4BlrVIMn51nlNM9gMPbRtKQLVgtIWdAwMEyN0QpBvWPbmoc0iEg3fgprVQ5LZl+MrShJB0InRxgd1dTdwTcj3+bfSkf6WHNZQ2gN64VxbJUagZIJMdDCiuUVTCFWqNUz1KsHqbxan26ZGSkoQkNNqT0Jcl1XNB87ni2gMRJDgJgYNrcZpgssDMxFWXJhvxT219cM44jUQjPv+OZaUFWOQAwjV2smhcA0DDy4PXGpiUt18kJqhVBWpFUn23SCzW5ILNcnPnznQ77y5d/i6ukVX/3Nr3Pa77mqY0+FigQzNBhG83Ozc05D8MLXxCUvWQWI/tQ74+yqOaoO92sI3mQIGh23pF7cyrj14jZtbnwPcj6HnwvR+XkcY8uF/f6a0/Ga03xgf3hl7P2sKw7B2beaCBoY+s9TiExxRKZLdHeP66I83e8pbUE0oTpQyglaIylO4lDI1S94piMxJmKIvo/gZrpxpsIEVcI4URXqUrtUcvCzv1UPSgjenFtXl4QNw0CMLg8Ifc8suXE4zSxRsaAuH+tTLVX3DakFYkrYbsef/cm3eP3zX2CaLnmcP8KCkuvKOQDQh4HiCYBiIA3TQGveSPO0P29ASAVRN+I3oIpLyhxP3XoHoj7zltjLu19fiALX3/hOTSiFpeuvZPYulmhgs9kwTFvGi1ueTx4m7yAsC1dXH6HBo22r9RuZWU8WM2KY+OAkxKAMYeDurZHbNnFrgE1QhpbRPBOqj1UJ2uH5Hqk6TpdcXWXQkQf37/HkyRV/+6Mf8qVvfI24XhPx0XCrHuFbqQRVx5mF7riFfvhFHE8diHQ8iTVKc21ubFCAbOdEFqVoxHR6dqCqor24jR05Y815fPPpxPF4zfX1Y07zTM65SxJ2bKZbbLe3YRwodL3mS4b9eOHWcMHzHVwRT3siDRQdWY6ZeVkpLUPPBW+1Quv6a41c3r7L7u5rWBioNUMtboypGcEvTNKpGKIJjZFA4fN3NgwPZzRMfP9HH5I2dznlSAiFZsX1qqkfygHo6TxizaNOi8dTT9PourEVcllIOmF1QVqmmbCuniA2DAMhRBoFEaeblNJoLTq5I9D/fm8FVGlOpFFH3FhrTlCgc3CbYer55+5yb0g1pFWKuEGtqlBDRJqQm/mv4YlV7SU+eH/VqyxHkg2oDKzLzLJmlsM1LWdCH/uGs3HWGlGUmEZkvMupCPt175zm5lO3sswMyS84pRR/LztR5HQ6Ma8GOjBtN+TWqBcXhC1spgqtElrz7lJIFDISYW+NOUTS7g7vvvuYNCp5dTPkH//Jn/FPv/YFbiXXf7d5xswL7NZapyD43tPmD/8WFFL0S1gTlEBSo9VM0EgpkM1IIdGqTwhaGHqDYQdp+uVdW3nWZGjVJ2if6NoufnkIIbLbXf6K3/2XeyVRxmFEx0um7ZakPRVPlDjeIt56yEknrh89osxXxDiQ0ug0l3oixoSVmbyuLMuJGAJDCphGRI3aVqy2mzhps+aUphCZxpHaEq0EjnWhImQEQmbcxk4x8Dj1M1UmZw9HqbViKixhZh4Sh3nmKm24PQWm3mhDfcqlNHJZ+d577/PNdx9Tt3cwMx7cvcXTR7e5vPuAw8fvINaoBrlBjS5D8OlYn/g10FpJBYI0tBWqVIhgxahaaLWxttUlZj93pspzYVPAKw7up1nWChKSF7fLQskrsSy0ntSVYkJiJE470nRBmHYcV2XJmePaOCwrqpCCQhByXv2B2XVQ83pFLlBNmTZbioBVRXcDkyweAlF9hGXqkOWmxsmUo0RsHBARfvKzn/Lg/n1+7de+yHf++lsMl/ewxzPJZueLivloIIIVBSJrAJUBI3lRKp5Uop03JxJ8k1ZHiKkVMGFAKCY+cnDNuT8wVHunzIvdmzFYLRz2e47HK07H/U2nYBgmN5NNtxjHHUyDp0GdOX2vaPmfaQ3Bu7Dnr2KU0L1jrgFs+GhrnRfMelegNpIK1SrbOw+588bnieMAdUary1ushyRIx2215nSBtIlEha9+8XMc3/9bIiOaF/7b/+L3+Ytv/S0fHE80vMtvrVKLY19sXRiGwfE3VmilEWN32hZPERuGiYiR5z2lFFzFIzcH9HnPAF3P65Gt2hrJlFG9aFWc/Wtdd9taoVojGjR6TG8pbKuRNTrOxrxzVjCKQglCNaECRV3/dTYxnX/fq7376Ze0Ri2FubmBZjnNLPOMGUw6YBLI1UN1ohqhVUQHmiizVZb+8PTHoTcSSjPGMd3sFaCznitSjVyOzFp4su+BCXbJaIXLFBkkEaRStKEyOpbMlL99531Wa1StvPHGQ6bthq9+7av88f/5R3zxy19j+einsFz1VDzXIlo0rPZLVggQYu/WeVKaAxpTny5UtCSKGTEXZHCDUMGNm7kZxAnGCyA812To+C+ejz5/FqLzfNf2cDzSWiOlge3mNtP0ilzzWdYwjMRxJG23xGHrSC0NVEnI5UPY3SWXijVzsJU1Wln7Zg3Mpwxt7VPi4sVx78DW0jvv/fyNNIYU+5nTKNFbU6IDYbxAUoWyonnEk2o8eCH2grCUcnN+DsNArpV1mZnTyCkIhzIy58o4GBIqmKIMaBSeWmU/bEmXgcvLu4Tgn6vNdscyF1ZRgkQqztJv+AXr3H2V1lCpBLyRYNWT3Jq48bO0jHWqR6BS7fk43mcF7TmZk+b88pdpvRAFrrRGnmeWZWGZj4S8UM4jgdA3jnkHNAwXrGzd6NKg4JQBaxmkoppInZVZSgFwLePayNXIJRODQc1Y3TE1kEEJOqBaKeqmghgnqMJ2c4snT95mM0yEB7fZTJElF37ja1/n+z/4EV+9v0VKJtTVDQYRak1YChgJwkg9Y2VEfKQmgulAIPSHQXWcjSZKK7j8x0e8oXp3K+f8SzRe5TkE2OOfQ4DtmMZLdtu7pHELQ6R0d+e5uH3Vwf1sa9IbhQIGfXQm7hSvcnNQWudyurnMTTbTsOHugweMu0tiSkidKfNMPh1ptRBVMIne0c+575HIxdh46/Xb/PkP99y+fMD+6cf88b/5n3n9zS/wtX/yZf7Nn/+EEAasx0xaMXIuhFYh+AvNVEpZmaatd7NEfDyn4lKGvFJbI+B7pPRuf2uNpsJ45uk2nwRoE1IxaBkxpfZOcTSlNu8qhGos6mk9uVRyg9hmlxP1g5lmUFwfp7UhVv2grqXLEnzSYXmmvSpwP/USIOcZetJTyauzRIeREJ3pjSpGI9mKlN7NzzCXRjXzy7h0Y1oupHZ+MD57Cp4vIRIg4aP73IzrpRA4sBGfHmgAi42Ax+sWEd778Anb7W0e3t6wf/KU9vpDjocDtcG9B6/z03ff5R4rY+0hDiJYbNSiHRuWKAGQ5JzwjoxspgQ8FjUCpfr+bYMRW2ZFic1lcYlARm+kYTdpZMiz4hbXk7eaWefFpQhXT5mXo8uBgGnaMY07dtu7r4y9n3FJGKgy0XJlqTMWIlUSVYS7u4CsmTYffQJVG1Y9JMdQzDI5F0/n60VtK5kiICHSmoeZWJ80GcLaoNZGbgutVaJGYooMw4iZ680lCK1kcp7Jc6NYRa3eSLugT8Bq5ep44OmTR6jcw8bM/U1iGicGcsd+wWmFD1fhO+98xPUS+Pprb/Hg4S3eeO013v/gMful0JoRxtE1CrXTQHCCSLLKDfROnG5TpaLSyBREPDLdQ80E1E3y5w6t9M+qF7T+GbYeYf0yrReiwM3rQl5nluPRk5VEGMfRv/C1oFI8f1kS6MhqwoHg416RXuwJuTam1HE35jzHs8bUqMQgNHxk/IQOP7YtD7dCGaGNgSTCUA2NwqOrGXYPSE3YDIk6Z97/4Anvfvghl7ducXr0HsN0l7aKI3Q0EmxDDYFVB5pEsiRCGnwDqTPqRGNPuPJumjXXy9TWUBtczC6B0LsftXqOeynluW5BpbXKaX/geLrmdDhwfbjyQihEbl3eZzPdYpp26GbrLvb6SUnC+cB+tT79inW5+bEJRBeOUERoudxcsnwvtj7mH9he3OHi7j0uLm8TYiQE4bC/4vDkyp3g48QwDADs9/ubQqHmzG/+o6/w/b/+Jq998St89OgxT6/36HDB1X5F/u7v+O/++df5n/63P0GHOxD8UANjrStJgxsjEEpeKRrYbHekNDgmr/Yoaqsspz01zzdmCREnMZzWxR8Sg3X8UaYWH88l86jI1gqhGVKVlBKHdcVi4vFx4Vs/+gnTdsdX3vwC4/rUDR6tIdW/UStWi5viurFMmmNzxAzJLmXiVYH7qdd8OlBLT0kUYxw2hJgIcfDwGfEu62iGpttMu9tk2fL0lHl8ODGyQj6y3z/xBMr55HrD6GSXEPwiXqvHmjtb1xsMh+M1tW57EWEcqvHabuRB3LGzmVEqj2Pk7UdPqdNF54gLD+8/YL/PvPfxR3zl13+DR49/xv37kzcCpBBDZJFASwNrUy96QnJTsfkkQ9QxZxU3BoMRanFTpAasFIbm9ywzKMV13621m+7t81xba9VNacvK/nDN/Jzvwbu2I7vtLabxknHcETYbXgXwfba1XxptnWmcqAVaMIgj48VdtuuR4+kpp+OBsno9oQopJipOY6p1BTzoQAO0lqnZkJJdzAqkEG+ejRo8slcRtFWf0NXmj+9qWG0Mw5awEeo6M4ufrdZWUm8EeBe0+lRMIZeV03xiPI1cX47cLoUQPIVsjgN/8eP3WS/uI7Jj0JUaVjQklmXhdP2UcXgDuX3f/RkNhEYrTmCK4hNF38Mu5Wo45cHEQAOrWaePeBCVVu8yS8cpuMqsJ2/KOba3G9leovVCFLjrfGBZFtZlwUwYUnJElnUNjARSmZ2mUConhHwGZncA9zIv1OoSBz98nnUpSynEmADvhOXVO5xYIzbjZFveqA3SJXdkRW3mYIEfPNmj+ojt5cSPfvJD/sVX/ksM4a0vfJHb9+/xnccf8O+/+zb/ya9/Dl2bxzfGwTEyGiEkBh0pPXJPJPRN4xIEVJCqtI7vMBPW8iwJqolrGosqqq0XScWxM7WwnObetT1wOh3JOTMME9O0Y7e9xzTtYExUGq22T3Rtz9865fzV+pQr8slErdjlCkH89l9rvblsnZFbFxd3uPXgdcbNJTEmUhrINXP1+AktZ5cSdGrB8xecEAINeO3Bff7m3z/miw9e53d//xv81V/9FR+99y6bzYa8Vv7tv/7X/Pf/6l/xP/wvf4i1LdV6VHUQP+zMiBIZY/Kuw3wk0AjTiITENO6IKsxJOB2UXBYCXcOeInNeWeeZOSTqbtO710rAi2fEvEgyQVQ4FsO2O/7mvY955/rEMWxJaXNTSEE3xHXGuGsojSYNE4/2za2i4hpmk0oQKK80uJ961aVS28wQlDhMpHHrxV9MqBhJlSADMl4g0wXreMEqiat5Zj+vVBZsPXJ9PLGeTt5IWFeywjiOxBg6UcMv0jH6o8ZaYz4eKKWyzIm1bNmbgES2g7JVYxXl/Trx2m9/gx9/79vkPPPVr36NH/7op2y3O77+ta+DNL77/W/yB1/9PQ7vHonmEp5gA6IDFiKN0H/sfocq7l8AxUy989qKh/RIl4JpxJqjqGK/2JWibprDz8wYQ7/Yedd2Oc0uRbh+ymk+Mi9+6d1sLpjGHdvNHe/ajsklO/XVvv0s6zDPhOgG6eoPSWIYGIeBNa8sp2tqyd243hiiSwzbmqllcR4xlUFGYlBydl9V1EqT6AFJ0i80CFFBTBhioOWVnBeyQkoDqt1ElhJBIYXAMCTaeqS2leV0YplP5HWh5IWQUv88KJhPZg+nA8vYWDcjZdzw9vXM3a9/gz/9kz9nnSu3bl2wSRO//qU3efz0midXT0hpokpgCH5GNmtUHDNKzqhVzFbAEK1IVdAz6ceQJt0B5M8pFTdV/kJBK44hRbp5+iVbL0SBezzO1LyiIqRhJCQfWwmeIz5ZhXhJCxO5KPt1JS8ZaZnldHIc1ulEK5kUhBjPaTI9CtQg3aT2NPLpgOaVZRlYx4FtqSx1RxpWxqGQYuTjNfLjx0c2y89o1njrrS+RhpGf/vTv+NJXfgOxwIM3Ps/b/+/PuPynX+DxT66Jw0TRAdEtGgJDmmgyOs5J1SkJwg2qo4rQQnDsb6vUZozi2sPWGlY8p1qi84CxRjXHzvi/+foGAVZrZZp2bKYL79xuLvxA/Tm97dkcAUDwQOBX69OvKuETIGwV5wae07z8IuF7MMbIZtpw685dNttLJzAgLOuJ/fWenFe248BmGBxXsyys69q11N3gZY1pHNlut2y2Gx4/ueIb3/gGP/vJjznsr/nOt77N5Xbkz/6f/51/8Z//Pv/Hv/2uPwD6wXp+/4cQb0wQpWvflcZm2BBiZIhbxIezHA6wzkdHLpGARskry6Jc1ducKh48ETxWuol6amouiA48Opx4460v8oPv/JAfffCY3/r67/Dkg3e4c/s2fLj3osN68IWI453MOx5Ic/ia+jQHmv8e8c7jq/XpVm4z0xBIYUPYXML2HhKEIEIKA2naYemSVZxhW4A1N44OYuZ42lOXEyXXG05yyZlSCxt1fjJdO34OEAkhkFIiChxOexYDmk84Ho2R+6dKSAELA3/5gx/y8M03OOyvuH37DhoSFxcD9x++weWtu/zZn/7f3Hvji3x4deL1+69xfPQeNQREtp5mFSIpjtSbeGpBe0dKTJxaY+7FqOK2nlAbtRmhOS81BKUWl114N7p+glbTSuGw93P4dDpyOFyTi9MjttvbbKYLxuGCcdrShkh9Th72an36VVujdV2rG9RT9z5o/xo7IWY5nUg6ohqopZDzQm3ZZU8GEgrWNoQkNCnkTlOiOZveVN2T0ytgiYq2Si2ZrEZthc24dT02eEfUElOM6JhY16MHJQQll8oyH0kmECCEiGGs68qjeeD24nSGH77zId/74APGd96jUcht4d79LzKmib/90c/IrTKOG/b7a+4PI5IzpVVKLVh1pKpRXK4ZPMDHqkDoATrmfoaAUDX6GQuYaXc2aC9qvYt7TvbjZs++XHv3hShw83JkM20IcSTEAYKPglKDlCZ0vEA3d8njjqsiPN4vtLyS6oHj/prTfn+jdZkPJ6YhstlM5Mwn8UZmxBi53O44rQunw2OWU+wxlMZPbCXvRp7ubvH9j57w4fvvcPv2bZrBm299jidX13ztH/22O9pV2Uy3ufOFL/Ddd97j/nThiKe0gbQlhgg6+IPZFOkjOjGffWURpD17XThX2X9ei2uI15mSCzk7P3XNmbxW5vnUD9UDp3kmhMBud5uL3T2m8YI4jtSo3lF+bt0Ut53NJ4QOsX61Pu0KyM1n3iN63cHtrOZACCulLKgqY9qwvbjD7vZ9RJX96YpcK6UaUQK3L28xDpF2fr8X18GelQGXSgAAIABJREFUu1+5FBrCmALDOFKy8Wu/9nkOhwMSPanv81/+MtM48L1vfYt3fvYxv/dP/jP+8js/wiygGl1GE5ymcB4bt9Y8waycGMRT2SsVCYlh2lCt+Rh6nSk9yCHG5ImCQEHJ6gk+WjOgJB15zIFDNX50nflf/8c/5M7D1/jSl+/y6OmJIU6cHr3PriwMGlnMD1k1I1l3AOOw8qJ9qqHND2JRwjnx79X6VOv2xSW7zX1se496eQ9NEzFEgjRk2LHGC7Ilro57lnnfCQWgzU0rS/NCdNoGhEISbi5joh6ocB7z1lpvzliXnyUajdPpxJoXjscj77eGLRse3r1PiYkff/AB8WLL5a07PHj4eWoz9scjb31phwblt3/7H/PRhz/lL7//N/zLP/gd8nABcaCmDSlueqCPOl6uSwvMum7cHFXXEMwSqVVK80K9NG6mLi0XVgIpRZZlRQVKybRSWOaZ42nP4fop83JiXhZEpHdtL9ht7zAMG5gGcnPJzXm9Mkd+tqUKObvMwOUr6lHnTboudcOogcP1kVJWSqXzjVtHao1AJTKArdTaGDdbsl2wHp9i2pth1RngtmakVtrgiZIWjGRKaLCejmQRyjBAVIY4oONEM3WN9zAyilKKs8lPpxN1Xdjtdj5dtsYcRp5s7vHO4yu++b3v81//V/+S73znO7QKd+8+4Pad+yxr4fLWSBgDX3nr87z1+n2uf/pdtnXuHs/V9cPtzLZV1ASzxir08J9AM38dDUXFI7rJDQmG5khu9YZA8rzZTPv38pLt3ReiwE0a0LTt8OxIipEpBHS8oI13KTpwFKEwcMwLxYD1xNVypJWKDiMDZxBzj5vssOIwDL8w6lWF7TjQmmOOclk4HJT3cXPXrSny4w8fsdle8ujxU15//XNc7G7z7e98lzt37vP6m58j14W33/4eKRp/9Td/w3/zz/5Tjk+fEjVheskwRWpd3WEv5m5FeTayrq2RS6HUQiuVUitrruSaydlh63leoFZOa2VZF9a1kEtmXU+UkllzZhhGpvGCzeYW281tZBrwQLjKL5UkdHpDFMV4xcH9LEvlGfpaxW44sNrNZilGcvZhkIZEGpxRW2th7XnqMU6MydN4avUoSJfrGFGD76nqruAxRU7rTEOJpuTSeHx95MHrX+D+vfvcO5345je/ze07r5PU+MH3/x0PHnyZx08OPTilUx+kdb126B04pVaPEW3NCEF658K7W+Nm4rgvrDkTovbxXB9jtRNDU1KpRHEiwskm3lvhJ9d7Prgu3Lnzed588w3WNZOOFV1ALJNSIOfSm7f+APL/POt0KepuYFFMGkE8flJfMuj4i7Qub32BcOvzcOshR020EEE9MrzIQLXIacnkuvoDvylqzQNFYmXYbLCqiGW0OraQKmjvHLWS+3nnD90biU3NzKdCw0jJu6ulriyL8DRPDDqxHI6cTgsffvSI/f7Il770Nf7wj/4vfvd3f5fDekSvH/GTH/yA9bTHBH7w7nvcm0ZSnCBOlLglRghOv/culog/+IHScOSeeTBLEyFqoJwd6KI+KWsNNSOvqzcdyplru2fuDYb98dCJI4Hd1gkJ07hjmHa0FD7RtX3+LH61Pv1yGs0zmUdbD6xxS2mN7ThR88JpPvpUtFZn5LeKmEJMaBCmELl3GXnt7sSdO3eZhlv80R//KaMGlv+Pvfd41uRKz/x+55x0n7ve1S1zy1ugGqbg0ejmzLDZQ2pILhQzpEYhbRTz32ih0EpaKcSVhtQMR+3Itmh2o7uBhimY8vbW9f5+PjOP0+JkXYBkaEJELwAw6kXciFpUAV8h8zv55vs+z+9xcZVCFugBUnqcD9Hm2gVSh5RQS2oHLyvGGFxp8LGuhkYe7wWmCOe5kJK0FnTnZa5xThCnTUbHp5iZnqbf63L/3j1eeull/p/vfJ/RsRZnzlzCOcjzkqmZORyCqfFxVm5epexPEXmL8iWRj7ACfBQGA94ShAgVslFUQxgvFCJSwdugPNKJYOxVwQOBImzpDgYMj8MeAlc3NLdfLXnNl6LBjeqjqOYMMqmRKIlXMSJrItIxclEjLzXDvE/pc5y1RN6RV7otGadEXiFVEIDrOAna3IqML6RA+nADPtY26rISmUt5gN7QpmCYK3azGjWVoI3l9OnTbG1tkWYN+vmQI0eOIKRHFzlZJDl1aoGy6LMbOf7m57/kxWefpZ60EMKSD8uKoecx1uMclGWBdI7ChuZCVyu9sizROqBJBvkQ8BgdGt+gMwpmB+vCZFdXgvBgYBg7QICJWhokCf8Vva2o4ikjIXE+JGU9qc9fonKRw+NYx4CK897jgugpoN2ilKTRIqml1QTCoIQgqhrFSEmM0UFLnRcIGRrPSMUIodA6YFych9boCN1Oj5nJku2tDSbGpuh0OqQRLD54yKDf5ezZ02xvrLO902d+ZJfjM1PsdSQDA1oo8DmFNkhhSWNLHEVYKzFl0KtHUYT1Hp3nwSkcJ0RxQl70SWVysPY1xuBMQImVkaJUEblU3N3Yo0wyPrh1i6Q2ysL8JMbC9NQs5cYOE41xlNuhcLaioFSRvlJgnArYH2zA3ziL8yJIekQgS2jhMU/6hM9d0ex53Og0uZDkpQGtKb3HenBSY8wQZ0ucKRDe43wI5cBZhIrIag0EGaYYoHWJRhIlKhhWhMDKElOWQEQcR1WT7ChKfWCW9dIjZZgoWW85evI03sL25jrnzp3lww+v8vTlZ9DacuHCeRr1jDgSOF3wtacvsLO9zq2b+yxubDNy5hTIjDQdDbpKE3wWvpriPh4qOO+Cv6EaMPB4g2GCFEabMM11JpBEjAnPjlKXlGUwlOWDLoNhj7wosNYG38NnCAkySf7RBu0fncVP6nPXZ4MyhLfkhSPJRNAhekFZFOi8CMEfzgSO+EEql8QbTb2lOD7bYmXxDouffEizWefpU0c5duoMH9+8zcOlHtplKBWkvEoJlAqDgEAbSQ42a48/U1kadFkw8JIkTUmSCBOl5LnBuTj82UYNK0eZPbzA9NQUjVpMZ2uZ/fYWO9sb3LsXMzd3iHqjRXNkjHv3H/DiqXNMT8+ytrbG/bv3AGjU6/R2JU5FSCMqRnqCV5X3A01E8CI5a7BInBAHzxDhgwEUEUJ4pA+4NGeDGY3KmCy8O2hyBR7/FfM9fCka3PrsRRiZwIk4oLCkYqBqGJnS7Q8wtsQrj7RBw0qUkmZ1fJLibY40YTxvoxhve0RpRiQEWhcYG27yNE1BSbyx9PohtlZKifGGQNoQyDjl6UvPsvTwAZ3ODpOTF7l9+zbHjo3RbNbZ3d2gWUvY31ynrxRnTy3w1ltXKW1BOjrFzcU1Rhu71NIQ/2ssaFM1s9ZQ5kVoVD6THiaEwHoXXONCHWhmpYgQMiKJUixQF+CECqgTQCgFXqJIQiZ8rALI+h9MCz6VJFBJEoLZyTpNqYM57Ul9/pLiU32SqrYGiMBvlVKAc0RRQtocoT4yTlaPq2QyR6okRREMO3k5JC9CCpRKUuI48ESlUAihcE7hhUQbz9yhI9SbDXCG3ZUlHt29y0svvcTExATDwtAaGWN9Y43nn73C2uoSP/7Rj/j9b/1Lao2cMycukzSn0KqGddDtdensbDE20qDeGmN8fJy8LChzzerSPYrdTfSwSyQFtVoDW+bhYBcCJwUiihhGo7TjFrvdHku7e5iRUXxu2FlcJpV1JiZHmZwfZ7I1TlmUDLpdnj5/FLXbw+go3PMy8IGDWUJirMVKiSMYKz0hittV/3glQy7xk/pc5ebP0hn2GXa7lMMBtizAWUwZcIdKyuqMeZxw5MEbYiVJkxilauBM0D+m4SXZaUOsPJGSOBMiphUuhIx4jzYlSVkGaUJRossSITSeiPHpeQZ9T39/A6f7HD95ls2NFYSwZLWUztImh2bH2FxaoixyVpXAe02/3+XG8ionT1+kaLepDfuAwAnwTmCtwzgXqDP2cTNrwz1VDT4en5vafjpUwAU2ubEOaz2l0WirscZhbIXQUxGt1gS1rEWaNIhrdfzjc/i/ukH7Qi/9V76M01AFMVhtsV5Qq2XUazUgTB3xFlkZyb0Lv1dEEpkpIiX49r98g9/87PtMHzqGTJtYo2n3Dd/5L98lVTA+Ms6VV5/lb3/4d0RqAq8cKgpSFyUjBJKyLA8khsF8mFJYS9QcozExw9yRBVrjE1XKaow2gsI4PILB/iq3r73LcGeZ0VST97r8j//Df8fbv/0tRsMrr73OJ9dvMn/oEEYYSGFuboYtHJuLfYRUIanMJ1glECpGeI+xwSxpReXfceF7KypDvreBhwth+6K8wAtTpbEaQIcf/6lcMiDWPpUrfJXqS9Hgyqnj5CgEDi1kSOUwgrzsU5YDcCXCfTpF8M4RxWlwN5KSDzpAHYUnjZPKHehRKsYT4h+TJEyJjDEgowMAszEOXI6rxRw7+TR37i2C6YXoXmERWLa2tsmLkumpEa5dfYfVjR2OHppjd3UxMGrLiN+8/UtOnTzGsblpGrWsMpIJhkXJsBxiraMsTGCOSkFWS4nwqDhBxQlJPFI1rmn476oYL6KK1xEUML5qcq0Lh6fVYFyI93OfaZpDrGCFAHustxWP9bbhcNcmp9/vUgx7X8Ql/2dTFn/wwBISHAmOGCdEWOaICBVBmtVIs8BNLPIhzjqKwQCrDVEc8s6ljIiTFBlFlTY26F2tDRG7MkqIVMyN67eo1eoYa6llGUYbrt+4iXUhqen06dMIIVlZ2yBSKS++8jrvvvsb/uAPv8WN21c5f/FVHq6vcPTUWWbmjzAyOo4ucrpFydbiKghFo9Xi/LOvV07fkuWHD9jb3aDHI2p1xdhoi7HRgHAyEu5u7/LwwR0uXTzH0u1PaIxOsnBygVs3b/H0hYsopZicGuPunQeUgy7SGZyKcCKumgmPk646UA2eyiDhq3RBAgSdiqwg7Gd8D0/qn1y5c5XDO6fMB7iywBZFeBgKiUvrgVvrXWXmqzjFCKz2WFOiCMaex8lfYbYTh/THWooAEiXwaIwuiGyMVDEeSZJkmLKg0ytoTp3hxMUXuHvzA/p7ywy7u5w4fgxvLYsPlkiTBrUoZn3pHvcX1xltNhit1xkdaWAKyezMAj99801OL8zTqNfC5/SSQofGtdAlZVmCCxIxhDiITLVV8ysghI3YYFIKgypZUUdc1ZfGSOWRNpypcVyjWU1tRZJgJTjzj6e2nzX1PpaHPanPX9aYgybNe4ETEXFWI07SYHAVEiscxjuUEDgpcdaGJs06sjRmcqRGlNXoDQeoOCZNUzrtfZqtUfp7baaSiN++9TO+8doV3vrVxziXYq3EOYUTvtLU+rAFUynGOzIVcfzCM8wvnGR7r83aXo/NTk5E0N6K6r5rt/fot5fo7a4zksZsbmzy+//q9/lf/5f/mdHxGcYn5rhx6wZSliRRBlbT39sjHwxZX1tmZKQRAqVkhJURJpHgkipUB6wNS0UhwJvQwxw0+qbEGxe+v6rS1QuPpIoZdqbSN4tPf6peQgh5QFf4qtSXosEdxjX63W546/XgvMPYAGK2OoCypRQhH9pZ4khSS7LgpvY2aGWq49VpTfKYpOCCVieSHimCpsrasGILmlyDHkb0hp7Zw0+jVY3V7Vvo3jq1+ghv/vRNJicn0DawPjdWV0mlZ6SeIaXAWPBqhP3OBmOjEzxcfIQpSk4vLBBJQCis9ShiRCSQ0iOEJE2TA0e9ioJhSMqAtEElCBkYi86Hh7xwPpiRnEUbAIs1BhkLnC6x5v+/3taYklIPGQ775L19in7nC7rq/zzKfsZkFsBDVfqWF+HwiCKiKCLLMoTw6LykzEOMZ1EUREqhonC9o0RhhcPaEulE9ZoWDpYkTYjiOt5Irl2/QaQkw8ISS0Gj2WBs+jCHFk6yu7fLvQcPOTp/hBvXrzMzPcnK6jLDoeadX73DyPgsv/3Vj7Aio725RFJvUeZDZg8dYpBrojRDqpid3j7tjQ1UnNIcHWfiyGkmjpzl3NM5sRmy/ugu/f4eWeRpd/fY2Fzj1Vde4Xvf/Q6nT59kbnae7e0dnnv+CkWhabe3GZ8Y4+HDBxydGKfo7RPLmKAWCyQK4VxYsflKj2ttQOn5YJgQAoQSSC9DpO8XeN2/6jXoddFFAdbgjcEUOcKFyESXxKRKBTOWLUOghtVIHD6KGJYlsZRIAUmkKuRR4IQGZFL4TohK++qcD5B867G2mgbJGJvWOXL2MidPnGa/u8PW3gbbSyskUvKTn73F2GgNayybmxv0u3ucODLH8flDFLpkbGycvW7JoADnctY3VsEb5qYmaWYZ3kOpDYMyBIIY7bA6GDbjJELhEBWwX8kUCKbmEGoVpDAQQkqkUzhpcF6GybD3oQG2gjRr4j9Dq/lsfbpBqxoFH15i1ZM793cqXz3HqTCEUimESkNELQKh1Kf4QSmDidUVYTNqLP2hwzrQRcmpk2ewxlEWBZOTk7z/3rucuXSRG9evsbmxwebGHseOH2P66Ak+ubFIM0vp9Aw+ichqCaOzhxmfO8KJk6cReHq9Pnfu3KXUGm8Nw16XepJSlkP0457GW3ynTc3B7sYWL155gWvXPubMmfNs73Y4ceIEXpcIX5KNxvT327TSlDTynD59lLs3d1hcW2UkzkJKnwrSDIEIHHbr0cYjvcVFDuftQWiDkxohDUolCCExsgwBQsaghT1AmQoZeggvArsfFeOjBP+Eg/tPr3anS97dx+kSby22zEN8XpySxgmualTxtspKFhgRVk9RhXBRFZLGe4GKMlSkUBIkPrzF2QLt8pBfL1Qlws7IjpzhwlMvU6ulfPzez9nd22Y0Tjl+/Bg7O2usra1Sb03RaLTYXNtj4B2jI2MsHD9Oa2yCv/v5W2hd0u21iaKEuw+XUbLG2NQY9cYotXqdqbFmIClUaThKhc8YjDoiMHCFCg92Gdzu2jmw5iDL2nof9LfCHHy5nXcVDk0dmMoeT269DJSEwPLzWKcxpmAw7JAP+5SDLvn+FqLof9GX/ytdAbUSfq0EGKEwMqYkPCSjJKFer6O1ZjDIkc5SVmtaACclpfU4b5EotAuRjqqavBNFlFqTySZpUsNkipW9nG89f56d5busbe1joxqu3YalhzRHxvja156hyIc88+wz3Lp5jdOnTrKzsc3a0j7GwOkzp3i00iHv7jLothkZaWHzAfs7e4yOjdFqjVbRll3aO332NyJUnGIdOD9kZ3OFTGhSCuqRZ2V9g9dee4OrV68yd+gISdpkb7/HwvHT5HkOhSXKarx39RrSOS6ePYHobIZYYGux3qEJGxrhHcqHJCAVBAohpEQE/q10YAiN8BMt4+ev3mCIH/QROBKlcDJIpeIkQUYxnmCoMroIujxAqhAlrkRADikpMEVJPtQoqYijGFP0cDo0gkLIwFp2Dk8cXl5iRdya4/iZy7SmDrPfGbC09ojt1RuQG1KV8bXLZ1hZXUZbz7HT59D5gLGRBjt7eyRJyplzZ+gPc3aX1ynLkp3dLcrScufBMoO+5dSJoyT1FlkmqROc6t4HJF4aq3AGx3XSOGz5kCGpTIgIL4NByIWQK4StDMHOYq1HY5BeYrXDekdRMck/W/9fU9vHvgf9D37/k/qnVVQZoRzgnGRicow4TdBlQS02OFeitSaSgiRrHAx/rLXEEYgo5cHyBsPhgF6/x9TkHJ4eSsLFp7+GwPPc69/g9ifXiaXgzr2HPHy0zMzMNGdOnGC73WVy7jhbHYNI6mRpytX332awu83keJPBMDTLGo+sJbQ7bUabDXwZ9KwUBZvrqxT9NlJpHizeor3fpj/UNFoTbG9v0evsMDXa4O7te5Ra8+qLLzLod7j78B5TszO8/8ktXrvyLEQZXtVBBoCjwuMsSBtSIV21+RYu9A/COqTRWJPjVYLXBhUNSKIMWQwpVY6MsyB/kAqpYh6nGgoZ4WX8RV/+f1J9KRpcVxboPK+mCSXeGUpSaiII9a3TKATeBFand4phWYRVhBRkcYSTIV4viiKk8OBKtBcIH+DLzkk8EU46rIhw2QgLZ55i8ugFev0hD+/dR3d3qYmE3e1NTp88RLfbJooiZuYOMzU9RaI8Qhjm5+fR2tJu7/Lv//t/y9jYKJ1Om/v3H/Duu++ztrqBkTApE7RNacmMWq1OPc4Qggr6DyF/JGhlAv4ouMetrYIevAhT3PC3BhX+bsIJXBUK/Y+QM1IExzDRgZszOPNzhvmAQb9D0e+ge3vIYZdIfLVE41+2Mny6KjdShqm9F5QeUJIkiZCRwuUaW2qEEgcmmyiKaDQblNYGCLlzpElKnGYgYoQM2BaRxLgoxRJMArVGg1PnLnD/znV8FHH+0iWKwnBobg6lFG+/9y6NWo17d2+gnCaK69RrTXbbu4zPzPJgaYlGbYz25g6lcSTC0pFh/lyUhqaM6eVdaklEPy9otWJ00Qnu8s4udaNJYujsdxk9PMNrr77Mjesfk2YtZmZnaDZbrKyvs7O3h3Oeo0cXmJgc59HDe0wnlrjsE6HBW3ylC1NVDK+yFuU9kQ9sXeN92DxggYCoinBo/xjk/qQ+TwmrcR4iQdA/u2C4kgLwBqc9xpRhqCBEFRGuiGQwUsZS4nSA1xfeoJAQG8qDUBPwWEpZSRayjHhknvmjx5mZW2B3v8/Sw0W6e+v0u3u4vCD2nn5vn5XVZfbbOxxfOMnO9jbPPfMMt659wNTMFDMz09TrdZojI7z00kvU63Vu3LjO6uoa7777AbudHmP9nJpT6LLk0rmzIbGSgO4Dh4oSoihBikBRCFOpSs7lFdZbrAdvQqSrMwZvwnQQQJcalMQY/48Y48Dfm9oKJEKqMIDxBmMKymor+aQ+Z/lAoZFRhJeCqDVKUq+jpMc5TT4chGY2fkxD+DTZNI5iSi94+72rnDt5ilhFlNrQaDSI4oSsPsKDOzfZXdtAKMn5SxcwWKbGx3n77XeIYsG5C+f45MbbdLqK0hhmZg9hPdSzhN7uNlpl7HUGlFpTr9cxWtOcmGG4voQrc7JYoCLP4SOzeAq63TanTp/i/r1HjI5N0O/3OXr4MFvrq7z0/BWWVpcZdjs4a2jUm0DMsVMniZsTeGNJkwSUCAg7wEuBimOcDRI6YwzeOKR3CGmxYTmBJ0alHooU1BAfZahUExU5xnukVHgZ8JNCKbxMqqCUr059ORpca5EipIwJ7xFJnVjIak0fJgnaapTTyCjCOQJvVIFCUuR9rDNIIUnjmMKEw8b44Og1Kq5A+wqVjTE1O82p818jN5LlRw8ZtHfotbcwuaboduh29rl69QOmpicCCD8fMjs9y/7WOs6HSdzLL73C1atXuXv3DkU55N692ywcP8nJMyc4ffok16/fZnt7myipkTVGGSMiS2ukj5tbIcPqr1q9ugpn81nOnCQkiigVhdULjsiCjUVFQLAHAHLnguYorCrkgSTBWkNR9hkO+xR5n7y9g+nvI8ucRHoSmX5BV/2fR/mKpykQYbXpofQuNLjyceiIRHiIVMCAKaWo1Woh8SlNKft9UJ5mvYlSEVGSopIaDkHiwgM5STKELSmtpyhyNrb3kElGK2uyvrpCkjbodLq0WoqZ6TF2d3dJU4nXgfTwxjde5+3fvstgMGBleY3LT0+xtbVKHGdcvHCetY0tHBKnh+yYYUgPHD1ClA4oipw0CrGu60tLZJlkY3+LP/zDP+Kdd35NMeyyu7vH05dPMTU3x/5+h/GxCUZGxjly5AhZVueTT64SC835uUno75KIHOME0hqkdUjrwTlcFX0snEc6h3IOW5kkVDXldd4ivAmxvk/qc5XLh4ScJgNOY3QwilljUMriHEF2UKU5CSGQKsSAYmww+hiN9J5EhG3DZ4NEQoJkgTYaRMLo/ElOPfUsg9Jz6+YdykGX3a010kSFVWwtYePRDnNzs7gKrXXnzh2UrNFZOMG9u/eo1y9w9+59XrjyIpubm0HmUw65e/cmR4+e5IWXn8Nqi1IZ2zt71JujlCImTRPqaQ31GfQc1cuiJwwXgro4PPl91Yx6ZNgwEMJ3rLBBs1tNEIGDsJS/Jw2TlW9CyOBuP9iglQzzHnn+xNj7u9TQGLwICK80iUmTFOE0MlIMh30GgwHOaNI4CQSMsqzSTIM00Ytg9hqfmmbx7n3GpgXHTpzi1p37TI6PcuHCBXbaXba3t7n64Se8/upr7Lf3OH3+KXrdHb7/ne/wr//1H3P73iPWVtr09yVW1djayhlp1hkdj7H9bXRZMrQN6jG0t1Y4cWiKq++9Q3d/i/GRJsvLj5idm6QoSj7+6BMilfGvvvlNfvTD7+K8o9MbsttpMzI6SndoOXfuWTbf/y2ffHKD7n6bQWePw7MzRFFCXEW7SxUBosKhhuTHSEYY4dCVhEN6j5EKKx1Yh0OiRATKUJoCqTKktXgZjO6I8J1AyK/c1uxL0eBiDamK8JHAGEcqgxjK2RCrS6UhcVXEYhKFdU+qwhTBFkM0lVOycsQ+fnPTrgy5yyJlZO4oF597hZ1ewY3b95C6YGdzmTSNwZdMTI+y2d/l+PHjtDsb5MOcpaVVJsbn+fDqVfZ2l8ArFh+ucv/eI/r9DoO8j1SK0sDefoHwhnKQMzo2QaFLZudmKYyl0xswNTaO9dUbPlV0XgW3T0TgM/IPpgE4h1ARKIGzHiHiIG5zEVKWleQhSBRklcAjPeFAtQVFMaTfb1P2u5S9fXx/H2VLUhURRbUQrPGkPndlBEW/F4JIhk1CIHcIkIGAUBQlMgopOwJHo1FHiHDdCl2CEDRbI6Rxiveeei0Lb+AeVJRgnMOZEp/3gxxClyw9WuLkqZP8/Kc/Zm5mlm57l1YjYbw5wbtv/wakYNDvcun8abrdASurKyAkRR6mx4uLjxgZbZAkNX7+dz9mcnyatApbWX34gMPHjpErwVgs2dvdJW5lPHzwkNZIjKfg2MIc773/a5JU0ekVHDt6EoRnbeXCCgNRAAAgAElEQVQBszMzpPUJZuYPEycJ5TDnmeee5drbv2C6OY0pLUIXRMRBl+YMwjmEpYqTFISjODBDnHncPHDQbAlUuNGf1OcqXwxAKoZG4/QQJSW6LCicJYolwoWIdKkUDhPc1h60d9i8QDqLjAQyCkbANM4OEs0eh4dEUY2SiIWzT0FthI8+uU7R72DzLmPNOlEUmscsTRDGkI3U6Hf3iXWIDm21auzt9olixTPPfI2lpVWeeuop/uqv/hOjoy1qjRrLq0vUGy0mJzX9XptGrcZ+Z5usPoKXgrXtPSbHxkmiBKVCI/44WhoJ0gs0oVnyLhAjQiCPwAkZzl4nUYlAGoN3Mdrrg6YWPiOVeTy1FRIpFBJw3qJNQVEOyfMBeXUWP6nPX845IhmT1OqMTkzTqDdRShIpwU63S1nmtKqJrrZBEgaEJDvrEL5EGzh57hLvvv0OtbTOO7/8GY16i3isztbGPllzjFOnznLhwlN8dPVDtnc2+YM/+AO+/93/wpXLX+d7f/0jnnr2DP/uz/6UX/7yVyw+WqTbGzA/cZGVezfIshpxmnL9g/cYGWvRaoxy/2qfV199iTd/ep+l/W1ajSbLS6tcuHiOpUdrvPrqN/g//4//jZdevEKv3+Hf/Mm/4dChQ8Rpyg9/+FN++dabtNttpJS0+21WVldQ3hHHEXGakWUNkiQjTlMiFaPimEgFqZCMI2I8VikiFyGtQWiLtB4jJaWIEYlHGYNVJb4s/x7S7quKt/tSNLiRACts4F1WDap0YYX2eEUWV9GiQnqU8Hhj0MbhbVmt0ByS6AAe/nhNprXEe0M6foinX3ydOw+W6HX26G6vM1JLQVhKI6jVaijTA+nJ8yFnz57n9u1btFojdHp9hNA4l7CxusYbb3yT6zc+JssEc7NTDIaS0hhmp8cR1mLHHHvtLmOjozhdgPd0tcZJhYoDzsMLkITP6PABPh6JA7zMwVRAgqhwPMo7HJAIh3Ye7xOgCLKFikIhvEfbEm0GDIcD8rxP3tlF9/Yh7xN7TRqnwWCR1PBJ6wu77v8cSlaTLyq0UrhlBdo4RPxpsAeEla2MJEkSY5ynsBZQJCpBICiNIctqaC8YDnOsNgeQcGE9tuhRWkdZ5Bh9iPWVdXr7O3QjWNtq8+DObWq1OldefIXF5WVGTpwkjgyNRou8cLS7Q6yznDx+jrX1FU6dPMtHH3+ElFDkOcNBTmt0hMmxJnlnj+7eLgvHjtFM4N6N6xw/foyH9+9i/RDnRzh0aJ7bdx5x+twl5qYnWX50D+ENEXD+qXmUc2SR4oObH6KUJe/skKqjiDjGmCi8BECle3QIGay/kRMorygR1TotbDo8/iAP3QNPYqY/f0lMiNbVBcbo4FWo2K1ex0QeXGzC/2cXjDFUoPeQauaCocUrlAq6XSHEAd9bW4dXCeeevszkkePcuXUTqfscmR5lZw8ebWxy/MRJentbDLo77G0sQ9nnyNGjrK2u4vH0eznGC/LC89M3f83JhePs7nQ4dOgww7zD+FiLianX2N7e4Pb1a8RVRHsUZWEDYT2pTCiKAiFHw9RPVBQDEYYLzjsiEWRdn53KQmUm4zFSXSEiiTUekVT858pUZisd+d+f2jqsC6bewbBLUQzQgz7Dzg5++KTB/V0qSA0SarUGteYoUikioSiKcGZmaUaSJmAduixx1qBEQHe6iiMfyYQf/eQXHF04hh6UTI+Ns7u3x8bqKrmFyyfPsbm1Q2d9k7GJCebm5vjg/fd55cVX+MHf/JBuMWS/N+T//k9/yckTpynLAc1GRpwIer19kiiitIbJ8dB8KzTelty4dg3vBaV27O13OXXyFKUWqLjG8uomM7NzbGxsUBSazY0dfvLjn/Ha11/j29/+fQD+4i/+gv6jNjvbbSZbE+RaU5Ya1x0ioy5ZViNKYhq1OrUkQ8QJcZoiVQCBRUriBVhf4ftkdQYLhTWBIKIiR1zJOoADlrsQ4iCW/qtSX5onhLUGV6WNlfkQozVWB1g3zleHjQ3TSaMphgMGg35AfQmL81TgcEkURQfxo8ZaSqd45uVvsLy6Qb+9y2gME2Oj9ErL5OwRkIpYwMO7t+nv74OEjz68Rr02glQZW5tbdLsdbty6D0TMzs7S7w2o1Rrcf7DGmTNneeriaTp72ywu3md5bZV6q0WjWcd7gzWGWi1jb7+DjLMqMjWutFo+RElGKmhnqx+lVEhiw6FQeBPYil6XeFdidY4tc4wuMaXGlSWmGKKLLrrs0+93GfTb5J09yvY2Ytgl8ppMpQgZEyUZLhnDqicShd+lpLPhx1q8MVUwh8dXhkJdZabbit2SJEm4x8uSPC8OJvDOBq5mkiQUZcmgP6A/HJDnOeVgSL/XZpiXCGtQOGrNMR4uPmJico7d3T44QVmUXHjqPLHy1NOEb7zxBkpE3L9/n/fe+4DLl58hUglRnHHm9EWufXKT3b02zkG7P+TcxYukaUa/32dvb4dGGtPd32VteZnhsMfe3jZpmpClNYaDnLt37nHx4mXiKOGjj66ivGW81aCRZfzwB9+nt7/FsL3LleefJh+0efriOfb390IaUJLhZQoqwz/+kUnA0DyeGuArugJUY7dqaCsOIq+f1OcrawvwGrzBuxJPFTyiFFYIytiFiGRjg4nK+ypBClT0mSlldf/iQdtw5g6NZUDK89/8Q8YPHeP+7ZuY7g6jtYSVtVWStEarFnPtw/fZ3Vrn0OQ46IK9vT2uXb9BrzdkbvYweWkZabaYmpri0PxRer0hv3n7NywsLDA2Os79BxuU+YDRVhbkV3mfvCiZPXKYRqOBsyX5sEu70wUVEcUpUgXW+uPzV0bq4OH9WGLx+NcSQAZpW6xilEyQUQIy/kwCoEJFEVJGlZEsDBoCrWZAf9Bh0G8z7OwybG9Bfw9ZDr/Qa/9VLyEEaRLTaDap1ZpoK6ozs08cp2RZLcj6HkeQC0Ecx8RxTJIkJGmEdXD3/iq9YU6338ULQaPeoMgLnnvuBc6ce5qZmRmOHz9Ba3SUbm+for/Hmz9/k/PnzzIyMoY1EMUpa2ur6DJnYeEo1659TLuzT5qmdHs96vUGznn2223q9TpHjhxhbn6eenOU6dlZut0uK8trDAcFvV6Xu/eW2dnuU8tG2dnZo98f8Jtf/Zof/ugHvPWrN3njG6/SaNRxVpLnjrzwWJFQGsdee5/VzTVWVpZZXl5haXWFzc0Ndra22Nvdod9rU+YheU9VG8TH93ESRUSRJI5UmIZHwTsilQqx80Ie/JmvUn0pJrj5cIgu8tDQCdCmwDuN8goVVQlc3mFLG0TUPhAVfMUsTKIYpcINbJ1H65xSa4ZWMjZ7hBdffo3bt24yaG8jnGar62mNTDDesty/+RGH5w/x8PZ1vvV73+Sv//o/s7U1pNSO4yMjONehpwu+8fVv8P7Vq0xNjnL79p3gSYhq/Mmf/LcsLi5y5+5N5maanHvqMmfOXWJ58QHCWpbXtzlxah6hUgZFTm8wYLQ1grcW58qwjnUuNPImTLC1cTirsVbjnMdoG6YtpsB7S2nKCuHjMaUObGCrsa6g0IaiLDG6QA97uGEHpXNSFRGrDBmniLiFUTVcFiOSJxKF36UeP/SFEDgUubN0rcBFCbYo0FqTpilJkuCrt+WyLCl14DELIdAmsEezLCPP84BvMpZYgLaGvCzBhalZXmpmZ2fpdvucOX+B3771a6IowZYDZuZmaLSazMzO0O/3+cWbP0NEGUvL2ywsnOLHP/wR9XqT+SMLPFy6T6FLsqTO7NQ8L115loeLi+Ac46OjbG5tsbq6wuXLl1laegQiYnNzl16nzdFjhzh79gwfvP8Jd2/dIctSpidbNOo1pIiYmJhksrXB2sMHrHrHoaOHOXrkEHk+xDZTBFEIiFYCY0I8tSPIFJzPEcYCBcZWyVpCVBQSiyNwTK3kScz071DCB9SSs8HUq70hlQol6iCCwQQryaRkoPuAR7kI52xAtSGwzhDLDGstRlusU4g05eSFpzn39HOsra6w9uA2+2uLTM8f4fa9B0yPNVm++xHDYZ/Jeo1YGj557x3q9YxmY4R+njM6Ncv+/h5H5ueZnJrl5o3bXLz0NfZ2N3iqeZ7fvPMOx44dxzkY5EPyQYcLly7gRUx/ULC/u8X0xDg+VmTNBlGcsbWzx7HDR8JkivDWZF3QzgsZ1t7y72G+fPB5VGgwhMArGwzMQuJUjDcagcJaRSQc2hqMKbG2YDDskudDzLDHsL2Nz3sIXZAqQZJkX9BV/+dRcRyT1hrUGmNEkSIfdOgUQwSKelZHybABHQwGSClI0yyY/YISBe89SZYRiYijJ06ztniHXq9PvVbDRgkfX7uGdY6xsTE+uf4JM4dmuHVjFatzhnkHYwr+w3/4n/jeD/4G7yWbm+scP36WW7fusLO7R5JkWKmYO3SI/d1dlBDkgyFPX7rEo0ePOHHyJMPhkE63RzNTNOsNWiNTvP76G1y4cJ7e3h4ff/Ihe/sJzVZGp7vDo98scmzhKKtrG7z06ks8evSI9ZUt1ttNRluKqdFxas0W/X6f4XDI9u4+UoY47HpWI04SlIpJspQ0rRElKXGaoqL4IMY6FgIvZZX4aoMnqpKGAV/JgcKXosG1JkfbkggZGtoywIqFcng00qTICjfqXECshIjdEJpwYGxwBLyW93gZc/rS81x65gXu37tJd2uJkWadje0+9UaD7aU7RElEI3Y8vPERe1sbXP3gAyIVoeIaZy+cZGZyjLGxCZK4xqNHK4y2xrlz9w5nTp3kyotXKAvP5uYuN2/dIclqEI1y+ux5dN4nz4dkWZ0oSVnb3OLw3DzrK2uMtEZoJOAtFE6AzbFGY4zGWx8mzroMaTt6GNigxqDLHGtztJPYYhBYq5VMw3mDLXWA7usSbzRlWYawClNSj1KEipBRDOk4Ria4NIIsg/TJBPd3KeFtyLP3CoekcJ7CGGQMVHKTOA5olSDBcTjrSdMUL1SFtvNEkaIoisrxqh+711A+4OKsLkBILJ44SxnkJYUbkGQ1tjc3WDi5wOWvfY3pmWnu3XuAiiLu3rvH1k6Xl19+levXbtFqTXB84QTvv3eVickmzjlmZqaYmpxgZXmZVqPB7Tt3mZqeZmJ8gl6vyzDPmZ6dJU5r7GxtcPH8Wd6/ehWl6rzw4utsbT5ECU+jWefpp59if7eNUIKpySn6nR65HuAiy6Cfc2xmmvnxMawMfEWnDSYyOJugMQhrED7GUIJUOFHg0Djr8cKBVQgZwPzSG+xXDDr+ZSqJqLZCGoElEhKtBamwWLtPs54y2mxwfGGcgR5l6cFN8iImqik67Q7eZfhYYGMVEmisYu7wPAunT7O+2+E3P/8R3Z110kjS7/cY3rnJxHiTwf5WkL909hnuehqNOo1GnSxLqTebDIsC5zxTk3MMe32UkJjSglfs7O5xfGGeV2e/TrMxysbmLutrmzg89VbOofkZRkYcN25cxzpPa2QcW5YMBzqcfyoCW31fXUiO9M6Co3q5sljj8VbjvcO5gGK01uKtwTqDF1AaQ/DnBG+INUFep62mtJqiGDLod9CDLrrfhkEX5TSJUsQqrYxAT+rzlpJxkMVIiRCVOVVbkjiwmb01FMMhxjtqWSOYy4wL568LDXKSJggf8+GdNf7s23/E6o13uPNolZyEZy5e5tr1G5w/d5rzZ4+zuLTC+sYGWRLxxhuvsr6+xV/+1f9FUYR/19GjpxDAoF+iS8tos8kz585x//5djNbMHz5Mr9fn4YN7nDl3lhPHj9Pv94nimM21R0iRcf78Ja59cp3tnTW++dpr3Lx5nSNHDvPJ9Y8Zn5jiT/70T3n06CHLSw+w5iETo2PkYyVZrU5hHFlrnFh6kqxBNswpBr1wv1qL1kUVcDKk35dEkULGCWmtRhQnxElKHMWBoitEJQutkjgrbbr3rhosfrWa3C/HN82X4A3aOyKvUEmEdQorPUIorItwZkAch1UYVuFFWJk55w80U8ZqtJYkI2PMzx/mxKkzPLhzjaU7N3B5h+3ePvXmKKa3TaIcq4v3wGnqtYxTJ4+TJAlff+MNHi4usry0yO1bN2jVEqamZul1Nc899zLrO6scO36Kuekpev2Cv/zL/0iSRcxPTWOt46Or1zh96igXL17kF798i7GxSTY2t9laW6f0koETvPrsZcSwj7ZVaogZYrXGOsiNCeENuggIJaPBaUoTtETeebw2wUmOPEgnEwqk9qTS45WnkQp0SZjYypgoSfFxCxsluCSBNEHVakRfMa7dl60cj/V6Eu1jSh8RSYnyFqki0jQjiSN6vUE1kXeoOA5Rt84hFGHCUL0mR1GE1zpMdSt5jtMaCCl8cZpx4sQpjClZvLPC6sYGushxeKYPzbK7u8vO3h4b6xsM85z5+Tm+9/3vcubUBc6eucDW1g5JnLC/1+bc2bM8fPAAPVoyMTpJlmW0Wi329vZ44YUXaDRqTE5OI6OI//hXf8Xrr7zMoNel1RxDqoS9/TaRihj0u3Q6HSYmJrh48SLWe0ZGp7l58x51MUGpDROTY1x86jJmMAQkKkoQUR9lXWj6RR7090bjkEgXgYxADivphwtJUdbijcSpyij0pD5XKXzV3IVwHY+k1aox1Yg4s3COh7fuoIerfPzePY4tnKC9uYYuHUdPHOHExaPUa+NYX7LVA5kPmJw5xF6vw8bSbbrtPltrS6RpQo+IbnuPmfEW648ecuX559jdWKYWK5x3rK9v8OrLr3DjxnVOnT7NwsIC165dQ6mEPN+k3dnj+MIFCmNpjo1y9OhZfv2rX1OUSwz6Ba+/8Rqra8ucP3+e4XCHJIoZGxvj8tee56OPr9Hf3iEvDd3egBPHjlAXFu0ijAuIOusMONAmSImK0uKr1DajbUBS6QLtgubW+RAN66zFu5AUJYVHO02uyxDIo0vy7h520EaWORGWNEoDLizJIG5+0Zf/q10CpFQHkfdKChpZEshJeb+SgGlqae3AbB444wHfJmRMpBKEUliR8ne//ZDTUy1qrVFSFbGzvc709ATOWZYe3OMHP/wJzjkWzp+jLMOm9KUXrnDrzhK/fee3aGNACrJaQqPR4MSJ42zv7jA/Pw8qYjgYhM9mDJcunOc73/0ex0+c4rlnn+V/f+fXNJvjGGOYmT7E1s4qv/jVz6mPpBTa8Xu/922uX7/OrRsfkg/6tGopO+tb9Pe71EZGMc6H6GsvadQbZLUWjUZJkfdwtkQbHYz4FspK0lgWBlMMGfS7YfMdRWRphoizgAKMUxzBKOpdSI+11lbJr/oLvfT/1PpSNLjOanAWb0tKIclsA+9KotghrUG5krHRGJTDGcUwH+AxFNqifESeG5IkZXpkjKm5w4xOTbC+usNP/vNfUI8FudYUpUXqAa1hh0azzr0Hdzl8aJ4Hiw9x1rK/3+bo4cP88G//lj//8z8nyzJu375NmqWsLj/gyJFDbGztU2pYXlvm0eJDZmcPc+LUCTY2lxF6wKmF47R72zxavMewO8Fwf4vuzjpXXnyVpFbn0fIWhRPsdfrUXEGq+5jBPoXWGO9x1qNc0FhGukA4S+wdeIdTFquiCqMmMQhQKVZIhAqcXI9EuDCVMTpMvsrSMCzBqDo+UdXUNiaKU1KVET2Jjfydyoi0oigoCg+OQLyw1pGmwXiT5zlaa5wLph2sIy+HpLUM7wXSQ72WEkeKMi9wwlOaknyQg7NYrSGJqY+M8/o3/wVxFLG2ssj9+w8Y9Docmpni23/0h9y9e5cHDx6wtblDs9nimeeepd3e46mnzjHol/zq17/g8tPPokuLJ2SSX3n+ObzxvPvuu3z729/myJEjLK+sMjd3iKmJFj/8yU+58vyLfPtb3+KtX/yMSCW89NJrRFGC85Ysmubvfv4mf/zH/w0PF+/y/ntXeeHlF/BesLz8gOEwp9fvMD83QYrm6KF5almTKEtQUQ1vPRiHlwnWGLAGE4XoV6szvI5wUoPWeGNCWqwUVeLUV+uw/TLVYNBF68B4FTJCKIFymuPzM9z96DrOeVa291FRxLUbtxAiJY7g449uMDm+Qz2roTLF1s4uly5d4u6dd6nXY06cOM/DmzeIvUOYJpRDujvrSDfO9vYm3/3OIpMTMwyGQ4RSzM3M8O6773Ls6BHGRls0ahlPXbrIkcOHuWoNjxbvsb5e8NyVF1heXueXv/oF3/z6v+Ct3/yKKy8+y7VrH3J64Qinjh1iZX2ILh2DXoeP3n+Hq1c/5Oz5Sxw5fIzl7Q7X79zj5NwMdtA7kBII57DWUdjg43DFECM80prwYuktZfVi6kzAMZbW40K4KdaUCCewWGwRItmNNShToFygA0WqhlQxMq5j4hY+fvJi9ruUjFJEkhClEeBIk4jCBl+Ody6EG1V6x6EeEosoSPhVYOEXBoST1KuB2eLGHlcuv8KDlRVWFh8yNtKg2Rrlb7/7HqlS1GtNFk6e5N//+Z/xg+99jwcPN1lc3OX4wilefuk10jSjcIYkFnTau9y5fZs0USw+uM+zzz3Hu+9/wNzcLPVajavvv0+zlvHeb9+hUavxZ//23/GDv/kF2zt9jpwY4crzVxhpjvDTn/z4/2XvPWM0y847v989N7451Vs5d3V1zmlCz0zPcIZhhkkkpRFXYoBEa4W1LQheG8auPxj+YAg24N0FZK3WWnEli1pS0jIHkRM4HE5OnaanU3VVV3XlXG+98cZz/OG+3aQNAYaHBjS96AdoNLqqP1Td995zn/Oc///3x3Xh0ntXSKWS1LY3KeRTzN6aj9dNLQ6ESieTFDt7qLVccpks6VQCLSmJouwdg7OMWvFpb+DjuR6+7+E2Gniei9dyaUlFlSqKWHMrDBOhG+iGgWz3ElEU4gd+zMa+i+qD0eAGIUJGaEKPk8iUz87REn1dOWrra0zfuAJ+Es9zadSaaAI6usv4GgyPDlLq6cExBNVKk5tzV5m4vkUYGbhb2+ipDH4oqW9vxJGNYZOp6Q3SiQyVSgXDsMjlcly9fIVcJsuB/XtZWJwjDAJWV9cYGhrm5In7+MH3f8zYzsMIZZLN5qhVNrh86SLH7zuEpprU6lWW1le49N4FHj55mlsTlxnuypMvleksZrl28xbDQ0NsrG+STpmMD+2nvjjD6mwDxzbj4wLDoNloxFnRMiT0QpL4cca0iBNx0ECLIDR1ImUQYhC2mauR0OOj2yhC8wMizwU/otUMkZpCsy1IJLAME0NYmBjIe8e8v1JFxDG7kYg/DyV0ojC8c7TpeXFEqRCxEcU0LeotF9OycRwHodtYhoFlmHhui2q1ioo8XD+W7UR+HJ+LYZPOF0lnM4RBi8hvkU4mKHdk2LdvF2+88TqbaxuYpk06maS7s8ylixfo6upiZGSUV15+i6c//0XqtSb7Dx3lb7/xH6jVanSVC1y+fpWxsTF6enqYXVikv7+fmZlp8pk9VDY3uHD+LB/92FO8FIbsGt/L+M491BsNFhZn0XSLr3zlK/z4xz8ikh5h6FMsFzlx4gQPPXwfzzzzHBBPaev1OpXtjXaTEJBKpdD0OMoYIYiEThgaMY9URiCCNlzfR9M8UA20MDaeoSnEvaCH912+7xMGPkKBjBSWZRMEHm6rTsVr0dnZTdJtkclkGB4a5OLFi1hOkqO797A4t8Ceg3t55623GBoc5vyFq5y67yivvfICy3NbGJZJR3eBfL6LSqVCpGIvgWUZsT6wUmFsdAcyDDANg9XVNfr6+2k162TSSd5+83Vedj2e+tiTePVtVjcavPHaS2xubeP1lmm624yPjVBrbHHmweOcO3eev/vmNyjkUli6QUqXeLU1PvXUE7ihoNhZxkk4aJaN0sw4/MerIf0GgYrRlJGUcRR80MIWxNcmDGP5kIpiNm775EzXBIHSQNMJdInSFGYQoQTxRFhIQk1hmQ5oOobtoIw0obCRjgn3fA+/UglDx7Dj4/Uw8gl8D9d1aTRaJCwToWntCW+IH4QI22xvMBKESpJ0kqTTOQwVEEYRrRBeeOlV7js8TqOyjvSazK4sk00mMGyDvfv3E0URr7/6Em+//RYf/8Sn+du//SaXL1/j9INnWFhYotaqMzszRa6Q5MTxo/R29fKt89/ikUceIZlM8uDp07z2yqucOHOSGzemWVvd4tjhw6yuziOlx9zsNLML03zosfsIgogTJ0/zwgvPUSzlELpB/9BOVNSiq18nDCWljjLNZoNmq4nhpBC6wDKMtoEMdD3mr6NpREpHSIkpFVYiIAolYdal1azRbLTwfI9Wo4GSAa2mF4fqqHYanxa/x6IoIvglcsjdUh+IBvc2e0JTOhoaXV0ZUrbLtfMTpCyLAJNyqZvVlSWIWviezztvXuDYkWO88uJLpPJZNjbWyGULpLMGQ0ODpBJFpIow7TQbG5u8884C2VyeIPJw3QaBH2ElUwSeS9K2OXr0CLlcnmq1wnixwOuvvcbGVgVTGDxw4hhf/tLT/Lt//5ccO/oIrZpHq+ny27/9m1y5doVUroM3L18lu10nW+jm5uwqB8ePcPJAJ5vNkM1ai3KpQHV7m+6eLvzQI9NRplTqIDu8E299mpXFeXy/hTCTaE6M6XFSAaEMsJWGr1mo2yhyIVAxQw0pLSwtxicJoRMhQAbg+2iej2x5CFGNs9BMA8uwMXULQwmkrt91ySQfuDItFDHDOFAaEo1Ixpra28c6KI1EIoVtm/hBgGVZ2I6DYZg4tk0URbitJvXtCoHvIZVP4PsEQRgLz02Hjp4B9uzZQ6teJXTr1LdWyWQS+EGLsbFdPPfsCwwN9PLWW2+h63GoyNEjx9mubvP6a2/x6GOP8Td/+zfsO3CE9fNXabVcejp7GOgb5ebkIleuX+O+h0/T0dmB1/TZWF9G1+Pp8/T0NI7jsHffbpYXV/j6lb/lo09+lOvXr7J/1zg/+clPGBjsZXlljmvXJihMFYmkx/DwMJ///NP82Z99lWqlCZxR5RMAACAASURBVIM6tWqDMFAkM2kMw8C0NXQRJw5piDhbXdOIIgV4Me9W9xG+wJBB3IREXgx2l/cmuO+3wjAkprYqhC4Q7WSuQqFAIpWis6eXzp5eXNfFiySjO8exDANlO2xXttB0g9/64peZuD5BrlDm6rUJHCdHrerhRlU022T61iL5bA4lQ4rFMgtLS0gJPaUSPaUCtVqNK9cnOHXqJGfPnuPxRx+Oud9KIpRg59gYlimZnJxmYnKBlGOzML9IGAZcuXyJ4bExnn/tLNOzM3R2duD6BgfGRji5bxipNPJdfVyZnGNqcoIdY+OgOXT391O0dzL59nNoysTSFHY2g66LWE/re/gtl8hrokc+gYpZvTJUCCcklOBrBmhGfOqmqdh4p+KQlDDwY0Ow7+AHYRxxbeWQwkBZJjh2PGi4V++7DMNEGHFCXNQM8Vo+jUbrDjFJDzRCXBAGlhUbfE0nizAM0GIkqBAgmwFhq4rrBlSaEYZhYtkJ/AhqtTUMy2J9YxPD0tk5Ms7NqWmSqQSvvPIynt/CMuCll1+i3NFJrdFk796DVKur3JqeZvf4OI7jcGtulg99+EPMzy1gGzbzi8usb26TzqaZX5imq7NEVznD2QvXkUqjuyvFJ578FG+fPcdjj59h6uYNPM/DtBL09Q9izy9Q2drAVBEd2QxbrYBqtUoqlcWwbISMQCOO5W2HR6GZcRKqkFiO3ab6JDHsJHbKxW20SDgeXrOBa9Vptlr4vk+zLfeA2/HTOvZd5tn5QDS4keuBVAhDkEjadHVkmL96lpGxfVRbTQaKnayurHLi5P3M3LrFdq1OtneIHXv30zMywvzcPMWOLppNn42NRTLJFn//ynfYdXg384uzJJ00+XyGrcom6XQWpTQ8z6ev3MmhXeOsb2wwt7DI1tYWpVIHS0trfPKTT/GjH/2ERr3B7PwMjXqF3/+9f8Lzz73M+obLxPQkx08dZ9foIH/17a/z2X/+JfKFAv0dZZoLc/yf//qr9HZ/gXzBpLs7y7svvIgX6aQzGbK5PDfnrnD6oQ8zmj9KfX0v1967xPzsAgR1FDqhDNFViASqykDHIA4MipmNkdKQUqFHklCp+HsyQlMSAgvdToDuoetNdAMcDYgUphbv7OQvYW7u1fsv10yjoQhvRysHccqWwLqTMOfYCVKpFGHo43k+hmnHaBbLRkYhjXodr9WIIybDMBb0awa6ZcfJZnYqnrD29jA/fYONpRlC32d0dJRarcp3v/N9MukiN25O0T84iGk6GKbDlWs3aLoeO3ftYnJyis9+5tPYVpp3zt/AHB7CNAIKxSQffepxvvnt75HJFmi2btLd1U0mm+Ktd86TTeU5evQwW6sL+K0QJ1HioSP7eOGlZ3n613+D61fPMjVzA93SqFSaHDh4CtvJ8Nob56nWmvHva5hks0U8L8TSDVqtCpVqk1bTI5PLk0ykSaRSGLpG3OaaeIFEacQJOmhxUG8kUcpAi0D5fuyGv1fvq2LTSJzfhQzQAh/HTpAt9aL8t3HdBrqRIJsr3Enem5m5Rc7Q2bPnABcvXqRR9wnDiEbDQwiT0w+f4cI7F9lamGN9tUqhmMX1QlrNkNnZy7ieh26YFAtFCoUi6XSaPXv38dIrr7B//z5u3ponl9H5xKee4vvfe4aXXv45v/u7v01/33uMjy3y/M/e5NbiGgvrqzzx+Bn+t3/7x5z50mcZEHt4+MT9+Bvr/O//8//K2MiXcSyfeq3G5sYK2WwGKSX5vIMXtOjef5hUTz/NtTkWb17Bray211UDI5nGdEIi6WNEPqHU46RCFTfeoYRIKCIM/ChOi1QQ85oDlyAMCT2PsNWk4SlavkTaFlgmyjKxLAdDv+d7+FXK0E0sI+be3uYu3071dJwEGDrSC+LwAzuBZVkkkrHmVinwvSaeGxC2OfGajGgJ8KVFvqODa5euYFgWXuhx/wP3s3v3bq5cucYrL7+KlXBoVWtkswlGR8bp6e7n73/0PCdPnWZheZHpqVvcf/IICSfD/v0Hmbw5za89/XnePvsuha5uNrdCHj7zMf78z/+EkR0jLMzO8KUv/DqJ5E9ouoJCLo+hw/33HePZZ/+eQtqkf+cwfYM78GQdvb+XxYU5PD/mmw8PDlFr+nghGJaDCAMkEiFiUngsJ4+QQm8bJ9tkZ6EjbIGt21h2msDzCLw0flCk5bZoNRv4oUujVkMXRptSZaPfZZ6dD0SDKyMfpIbQTQIZUe7upbW9yuWbNygWOnBdl52797BZqeC6boz1ml/k9TffYGxsjNEd4zi2w/Z2lcVMgutXrzMwOopjpdg1vp9Wq8nq8jKZdI7l5TXq1QaOk6Lpupw7d47+/n5OnTzJufPn6e/vY21ljZszkzjJJLOzi1SqNXbtHGNxfp77Tu7n2sQcwgop2gYvvvoipz5xBi1nkuvtwUgm0bYNDp46yDMvPss/+/0vs11voQkDx7TiEb+SZBI6y0vTFDo6yHSU6RwaZa0WUt3UkXqcFe+Hftw0tXWyQlMoXYNIix2NGoSivUsTMepDUxoxx1yh63HCSUKLTRFoEZEE2WYFG20w+r16/6Ub7UdIKogAFWuoZaRQUYRtOSSTSXRdo9ZwkUJhWwambWHaBs1arI9yWy5KynbMqY5u2AjDwUmk6O7poqe7k3wuxyzQ9EISySybGzWarSr5fB7HSVBMJtjc2IZQsrK6xED/EIuXL9NozjA8OMj8/Czz88ssLtdJ2y327B7EcnTQbXp7BwhCQa7YyezcIrlslly+i4sX36Ovv5uhwW6uTdxgc6vBuXNv8+CDD+BYFvOz65w6eZrBoQHm52dZWFggEYZoEm5MTHH02BEe+9AjvPLKm5RFF2krhYrqNFt1/NCl5bkUcgVQMkb36EabA62hVHzCEOo6SlloVgoNC01GGFKh1L179/2WrgtkqNovvQjNd2mh8YPnXuLo+G5uzUwzMDpGf/8AqXSGrVqLI0dKmJpkfX2TBx58CM/zWV1d5eChQxSnHc6/8xaVSpUnHv8QXd29PPfTn+K2XPr7htDNBGvrq2gaLC8vMjd7i96uTh555BE++9nPcu7cOdLJFGsr6zz6+A4yuSIXL1/h0uWr1CpVdu/aQ+iHvHb2IjlDELaanPrEGaKMYv+BIwQWtKwWv/NffpmXfvQmH//waTwlyebyVKpNnISNk0hgGCErG7PsO3AfargfK5nm+nuX0aMmXhRj/zRCiCJ8dFSkxZGl8cONhkJFgNQxVIAiliNoSsRMYT8Eq4UULuhNNNNDmTrCsjF1E8uwMdS9U7NfpRzHaTe2EYSxPlq08VbpdBofcIOIZDKJ0HRAQ6kIz5d4rovnemhS4XstZBgSBj62ZTEzt8LI4DCX37tGrdFAMwQ7d43T8j3WNzfZMb4TgFbLZX1jGU0oLl2+zJETR0nn84xl8iQdA6VClHJ55Mz9fO3r36Jed9m99xC2ZRIGIe9dvUFv/wDLK+t0dvbgeR6FfIrXn32Fj458jI3qJp3FIjt37eHtN18lnckw//bz9Pb0EgSScrmD7WoTP4hYWFjCDyM6ugdQEoRuxWSfNu1AEg8KRKTad29cUkqiNlM8VAolNDTLxtBtLGFgJhxCN8TSU225goFhmHfdie8HosFVSmEKDU2XSA2WFxdJJhzymRS7d++m0XRJpVIYhmBgaITJySmQikwmx+LiMrowubEyTbFYxLJsfuNzv8n8/DxXrl8jkXQIQzh06ATzc/MMD2eZmZ1GQ7C4uMCunWNMT01x8uRJ9BMnSCSTrK2u8d6lGR5+9FEOH9WIogbbtSbdPf2sLS9wYM8OKhurLCzc4tLcBF29h3jv1QlKTx7Hb2yTtJOcfuxR/vTNf4Xr+vhBRMuL89aX1zYYGR4loSTbm+u4rRpWMkNnfy+JXIGrV65TWV/FbdaIlGwf1cYhF1IqNKw7UZh3GHVCoGmSSMVpPLfz0YVhoDQwFYTSI9Jj5qPRBjxrv5Tec6/eXwkj3tGKMHalC9NAKZ1IKkzLIpvNYpomvu/HE3dhItvX3HXdGDWkZBxOEqmY66zbYBgESqKbgoHhHZTLA2xsbZLLFHDGdtLa3ELKNFsVqFQ26OvrI1dM49hptjbrPPbo43heQKmjC4AD+/cwNNjPubMX+eb3niGdtigWi/h+iGEkWV5ZZ3mlwvCOXWxVK+zad5iFuWlOP/wgp0/fz/T0dWxLY2pqggNHjvLeuxdRfsTBQ8d55pmfMDM7R09PmZ7eTq69d56urh6qtRpT1ybQ9NjZjqZTb7qUMhmietRmNrq4TRcVKZKZLE4yiW5aceSrpgEmkaC9sArQAqSK4hS0e43C+y5N0zGMeIMgpUQohQGEyqRvaBdeq0l1c52piQk6e3uZmrpJ0GxgmwYtT7Ln8BEkOqOjO7l1a4rF5UWKxQwtt0m5XOCb3/w79u47xOzsHJOTU/QOjWBaFosLc9Tr2wz09ZNIJHjnnXdIpJLsPXiAiWuT7N5/gJ+98Aafe/q3OXf+Tc5deI+946PMLS5g2wZDvR3MTFxmbvUW1cECF37yMgP9x3DKKZxsjpST4dbyNPnyp1HC4NW3LoIwuHDhAg/c/yBd5QLbW6tYtobm5OjdsYvJ2XWatSroHpGK0GWAMsBTOrqKUVSa0IiT1DXCUGGEEYoYX6crFcsbpEIYCqUn0FQVXReIQMcQAkOYv5CGiXunZr9KGYaBrmm0PP8Oo9WyLBwnptFEQYBpGigJIRG2adHwo1j25fuo4Lb5KiCMAiIpqbeaaIbJCz9/FQwLO5nixKljpLIZfvjDH5LN5JEyIvR96ttVklaKieuTPPrYhzGtJNVqAyfVwdUrN9i5o0hHR57F5SWOHTvOm2+eY2jHLgxTUKms8chjj3HjWp5bMzfRh/vZWnPZNTLExOgU4wN9dOezfPe73+bK1hbZZIIX3zlPWigydo5mc4MgVGxvbbK0vE6x1I3ppHASeQzTQIskmjBQKv69pK4hwzgBlv+HflYpiKRCRhAqjUhBqCIwdDQpMGyTlGYSRlFs0NO48+66W+oD8YZQSAIZEgU+ketx8fosxe5RoiDgxsRVyuUO8vk8LV9xY2aRI0eP8/nPfY5HHj7DvgOHaXohpY4yx0+eIGEKZmau4gU1ivk02UyWKISVlQ3mF1YwnCQ7duyku7sT32+Sy6ao1rb52te+RiqTZGb2FoaTZHhsNwgbJ1UgkSnx9rl3mV1cJAJyhSLHjuzD01yOPXKKof5eCrbFt/7kj5ienMLQbCwzhdsMqKxvszq7iq4UvutS3a5QrW2xtrqGt7XGxtoaQklyaZu+7jyHD+8nU+iIQetKQxcglEQIvW1UEgghMM04Tcc0TUxdxHgPw7wzlTVNMzbtiXj2EGjx37eTh243t3ebaPyDVhIRy0U0gdJiXZhu2BimSaJtHARotVqEYYSumzhOkihSBH7MyU0mkySTSSzLIpvJYCcSoJsIyyGZzzM0MgS6xPOa1BtVZBSyVVmPDQRS4PmSWqOOCg0M3aazq4ellSWarQa6mSLb3c/lm/MszC/yzttvUtlcQGoSwzRJJtLk8gX6B4Z4/ImPsufAIQ4fO4YXhvT097K+scbk5CStmsfocD+ZdILJG1cZHRnGtmzOnn+bT376SQ4fOUKuUGBhcYk9+/YidEE6ncY0bOqNBqWOTmoNl2JnN/lyN8WOXlLpIgqTtfUtZmZvMb8wy+ryMo1alSD04mQtw7iTQmSYJsI0EU4GPZFHS+X/cT/8u7h0DRKJWDpjWRaaLrANDaTkmz/+GY9+9FNouqCyssL85HXC2iZBq06z3qBvcIjBwVEc00ATkv6hPja3K3iR5MiRA2jCZ3znAOfPvcPG2hoff+qT1LbqPHrmIwz0j7J/3wFWlpd4+OGH2NyscOXaVTwvIJEtsrpVpx6GZItlaq2A/sExml5IvdEimcmya2yE4/cdIzNQZHhwgN984kn+3b/450xcnQDpEAUmgR9hGAnWFtfwghA/CLDtFMNDw3itBqJVp17dQtNCMh15Tj9xhl1Hj5Iq92I4KSIzgadZIAwioSE1RYQeS8eiuMn1hUakmyjdaqcWmrFHQoGumxiJBGY6QzJdIGVncISNrulIw0A3PxBzpbu2dDNGf1mmgdl+5yWTcURtK4hRmrZh3+EUG4YBYUDguegohKaIfA8ZRkS+B1LGgQipDE6ywMbWNjPzt3jr7Busra1gCh0BREFAGER0dHSSyubo7O7m3Lmz2JbOwvwU16+/x/i+PTz8yGmWlhbxXJ/e3l62t7bp7urloYcf4vHHHkfKiHyuTFdPPxsbW1iOTa1VYedgN6YI+Td//Wc0R3N8/J89xWNf/DB/+Ef/PVY+RyLZwROnjzPUkeHY/nE+9uHHOH78ELlSicXNTVr1LXx3G9fzY3QZ8fsIXUeJXwy1oN0HtBNTlR7/Hym02CgZKoJQEiiFhyTQVDvE5O4zmX0gGlwhdBTtfO/ABd3mtfNXePwjn4TQZ/rmDVaWVzCEIGjVefXnL/Kzn/+c6ZszZLJ5du/Zy76Dh3j++efZrG7jBy6bmyuk0ja5XIpkwuHokcMMDQxRqzRYXdni0MGjDA0Oo+s6//T3fp9SqZNnn32OfL5A38AwmA7r2xUiTTK2czeFUh+FYjfVWpPl1XVMM0XvwBBSE4SRT3msh2MP30fRgYylmJ64RtLW0YXGm+fOMjezQLVWI5fL4XseaxvrrG5WWFmYg8BHRQFSRji2Tld3B7mObgwzviF1w2o3sEbc8Lab1NtNrjDMO83v7a/fZgMj5R1cyO1oytvfk1KiCP/xPvj/DOp2UIOUsj1VF+34Q/NOwEPYdmObRkxOsCwb23Kw7Vi+kMtlSafT5HI5HNuJ9bkJG912yBZKpLIZTNvEsHU0HTYrG2xt1xgcHqanp5edO8epVRsMjQ7jOA62qfPoww+hEbC6coHJq6+TTSiSukHaTkDgM9TfT7mzk7W1dW7N3OD48f0sL99kbKSXB06cpL+/D8u0GB4c4datW1SrFVp1l83KGmO7xjhy5Aj12ja79+zg5Vd+juc3aTSa5AsdrG81qLsBVjKNk85S6ujEdhyKHWWUMJG6RSpbolAsk8kVSKZTeIHP9tYW6+urbG5u0KjW8PzWnfv2dpiLrutIYSLNBMLO/CN/+ndv3dkct+/RKIrwAh8VeuhK54//7Ve5/6FHCQlwm03SqTTpZJJ8LsOOkSEqa4uMDA1S2Vhha20FVDxEKBS7UUrDSWbo6+vnoYce5sqVCQ7sPci3v/kddo7t5srl64yP72a7UuPRRx/l4IHDvPzSq/T2DnL42Ck+8anPsbqxxEMPnmFwaIyWF2FaCZKpLFIa5DvKBJpAEhJmNT71u1+kIyMwpYsW+ESez+rSEpffvYKlFG69jttqsrS0wMbGJsiIRr2JjCISlkFnKc34+CjFjs7YxqsEAoHWhoFpmv5/i/C9ff10QTwZ00Gi7gwfhC4wTRvLcjANC0s3UcIAPd6s3d703qv3V7IdriGMdtQ9IZZloguN0PfurBlRFGK1iRW+FyPhVBQiUNiG3mYYa1imwejoTjTDxE5nKWSylMsl7rvvPhYXVygUy0zdnMT1fY6eOEG13mJ5aZ1KpUalss3Vq5c5euQQpaJDo7HNxYvvsry8wvDQCKVihr6+HLXtRVAhuXyW4eEBEqkk29t1doyN43oBHfkS4+M7eHdpks5DO7m+MI+T7qZvZAzfaPLJ33iUl998Fik1xnaNY5gmvtfCMnU6C2kGe7poNF2qW1vUt9do1Kq0mlX8VgMZ+mgyfgfdvo9vl9JiuZIQIpYmaOad7//y6e4/9LW7oT4QT5qhGwhTEIZxsyVkSMPT+e6zP2ekI8/myjKOMlh15/CaTVQksUyTrp5eDh8+xsLsNMurS+w7sI8b19/l1sIC/T09jO0c4uw7lyiX+3jzjbdYWFjhX/6L/5Hv/uA7zM0us7FR4cDevawsr/KpT32SH/7475m4PsnQjj2MjO7ioTMPUa2sEvqS/QcOcvat19kzPkKtskHgeZRGhhgtjzC5Nc2uYyPcujHFUF+SxsY2P/n+37Nr1zhNzaQlFYOjO4jaTNT5+XlkECA1A9f1iCIZc/s0iaFDX08ntmXjN2tUt7djPWIkQZMINETsNgNAoiHaN66UtB/sGOuhNIUnPRTyTjNs3CYwKEUYeai7a0P2gSsl20EPREA8adc0806jGwRxqpxSCtux0XUz1koJgW1bhIGPlBLLsgiQ1Go1NGGQK5TBTnHkxEkGBwdpej6V6jZbRqxLHRgZJogiDNMiatTxg4DJyRssz89R7ijzN3/zNZbX1mgS0dPbzY+f/wFT/cOMDe3g6pUU2YTD9MQNduzaTRBpKM2kp7cL3RB0dBQRusnXXnmB0/ffz62bV+kol0inkozvGOTooX2sLC/S39/J0uoqDxzbjyF0sok0i6sLdHcPUNmqkE6lSSSSuH5AteGSSKeQCHTdJpkwMDQN09RxEzb16jah38JzXbY2NnFbLTJejmQ6i2HFkgVdgpQKw4hDMqJ7mLD3XUJrNwptI+Qd2ZMCP2hhmjZ/9Y0fcHjPAKsL81hOgkjTqTaa/OTZZxkZHePG5BR9PQVmZm6SdBLcd+o0hw8f4Uff+x7raxU2NzcR2i3W1jY5cvgog/399PcNcfzEA5x961UEksc//CEy2V1kswXOnT3Pb33pKyRSNnvGd7C2tkYmleLye+fJJHNUthuEUtA/vIP+egPXiCh2ZpmpbFJKK1ICJm/eZNfOEVqey42FRQqZLFYihZPKsLm5gdts4IWS0vIi5VIJJWJ+uGPrFAoZli2bIHDjxjUiTkBDA038gw2Chojje9UvBgWxCThEk/HGLNAEwoinZb88RbtX77dicx/t2F1dixs03/fxPBfDcjDNmBYQBAGqvRarINbrhkFAFATxv3VJJEzynV0YlkEy4dDTW6bR3GRleZ319U1azQClwcDAAItLy2xsVXDsJJ1dPZTLZXq6y6jIZ6C3yCuv/hydTo4cO8JWpUIkFYMDfXSUCySSDknHxrEEztFjzN2aYnVtE13Taboh+e4uTNNjuFSgaBdoLmu4KZukqFEsFvBaLn5koukavb29rGxs03BDbAOSjgORImzWUSqkpWlYpolmWAg7ga5bKBGvo6goTnxDomk6QmgYMkaRShFhWarNbZd3KArAXXnffiAa3BjbIXBdlzAMY6RVpGi6JpGZpdTnsLCwQDGbJ5Ur4Ps++UIer9XgysV3mJya4siRPUxMXGdhfolGw+PwU6fYXFvDsjOcO3eeMIBiscxLL/2M9ZU1nvjIx7h06SLf/vZ36est84Uv/hOe/OgZ1rc8Vta22b1rN75bY/+BAwTNBqWOAg8+eD+v/PynXLhwgb7uEkkZ8e2//gs+8YVPU1A66b5e3NUtvvEXP6RoJnns5AkuX7+O0nQwbMqlAs1mHce28QV09w9gWjp+4CFEIjY4aBrZjEMqlSQIAmampmjWqghTISMZL7wKpCbiJDPihzwMwzu7VjRJZAiiUGIaFoYeSxZ0rT0JAzyvSRAYhPeahF+5FCre2Wpx46pJhTAtwjCk5TYJPR/d0PG9BmHkYzlJTNtCD8Ct1e5sPpotj1BBKpnCchL0DY8wNr6PjnIXjWaLxeQy6XQe6Xs0mw1ef/ttDBlh6Bq5dAbhh6zOzZNOWEzcus7Hn/4tnK5hatVVlGwwcfkCb06c5fEnH8OQIa4Xsrq8TN/QGJvbNfr6+0kkTCIRodc09uzdje/5lEplJicn2bljiIwtyNiCv/7236Fn0ohknuXJm3Tn0tx/8gDjO3tpNn3WVlbxDA/P89DNJEI3qdcbDPcPYmqgKUUimcKyHbxUHjuZJ3S3abVauM0GrtugXquSzpdIZzMkkxk0YWAYsRtYGTpSRv/vH869+gfL9/045QntTmOrqbhRMOx4rfF9g5u3NvnQo2dYm5sham2zuumTSiXRhcRMmGxsbHH53AWypRJpW+Pd8+/gJG16uzvZ2Nhkc2uV3XvGSWcsNiqb1F2XheUqe/Yd5a23X+DDHzmD6zVIJnSSlqBWmcdJ9FIsD9PVVcAPQv6rP/hDLl+6wNe/9pecOrybjblb/ODv/iO/9QdfpiuZpnPPCGGjzos/O8srP36D/+YrXyBV7qF/eJSZm9P4YUAuVKwuL6NCH82w8UOfIPQxQh1ETFvu7+siCCSzUxNsV7YwzfYwoD1YkEr8YpJFm/ARRSgV3ZGGSRknDkoFQRQRtM3som3svScL+9Xr9gDn9mZBN0yC0CcM44mtMAyiKIwHZ0IgAMvS0ZVJ4Pm4XgvfdZFhiLBz5EqdFAolvHoVt7rJzRtT7Nu/n62tTZLJBKlUlvnFCqvra6SSOX7z6c8zOXmT9a0Wmp1hw42oLi7Qlc7w5Ice5ZWXfooIQ2rNGrliB47lsLwwz9GTp9DN+L1dKhV4+jc/z5/+8b9B+k327dnN2SuT1HMKx4L8cJmF2cv44RK7hrtp1UMUPrmOLJFUrFYXmZ1boHdgmHJnDmUkOLLvBDPnX2dl9ip+GFBHR2o6UrfQDBNh2ph2bHYUuoVuOKBFaIAudDQgQqBUiK7H9+jt04bbmzvush73A9Hg3kZV3d4xRO34yMD3uXbD59CBHYzuyjEzMUGxWCZQGosrK2xWW5w4dYqenl4W5xYYHRjEMm2EbuO3Wrz5xmukMnlGR0fo7u6lkC9SrzepN+ssrqwSKosnPvIpnn3mWywvL6E0DRV55NI2czPvMjL6YTzPJZl2GLTLoJl89Mmn0DSNZmUJ320y3jvIq89doNl8A1v4bK+tkddtPvOZJ3Ash5XlVWrVJqWOXqam59i/fzc95TSFcidBJEBJgsDHtMw2SULFpjF0yuUSjUaTNSkJfBdUEC+ihsIkDsW4vagC7YfewFcSEYFt21iG2Y4nNNAAJUPCnGdzFQAAIABJREFUMEATOkKY3Dst+/+n4gZXILS2oJ+4ibi9EOu6EQdw6L8gV9zeJUOs0fV9n3Q2j51MIoROR6lMZ6mIbQu8QCNCUm95REpnY2ObwPPQiGhWtokch+vri4wO9rBr9zhXl26y+8gOKqHH1vYW87cW+PBTT/Pyj7/PO5fP8fip+9GqLreWlsiWunnsQx/Cts34ZS4UpVKRwcFBzr7xKpr0STkJlFLsu+8wr81fZfDxkzi5NL3lDvb1fIVv/Ye/5srlSXQ0TDtBFEWUOrrYrtbp7+9nbmkVSzPJZrNogXdnndR1g0RCxzQNfM/ASjTvxP96nou/vornu7jpFslMDkMz0dEIIAaZ36v3VUIITKHhRzI2RwqBYQgMwyIMNUItQBcmrdDkmdfe46nHHuTaG8+TL3VQa7m8e/5N8ukUN6emiCJFR08ZIQT5YoGtSoVLly4RSZ+OcpFafYOf/uynaEJxc+oqXV29LC7OorCYm5vn/vsf4PU33mbvnkE2VhfIZrN4noudSWITgmZy4OBBvvQ7/5QXfvQNcpkE9x04wnf+40/J5dJ05G0mLl2mWfX49KOn6O/p4i//03doRTqmk2Skvw/b1skmLRpui87ePhzbbMuK2pHFCBKOwdBQH+Ht2F63hYoiNM1AQ8bDBGKtvVLql/602eS/1Ly6YZMoak98dR1Dj1Oz4vX63sbsVykp5Z0NmuM4KBm2UWESvc0llzLmO8dBMjoaCi8M8fx4yBCqECUUhmnR2dNDKptlbX6TIIwolXtYWd7EsuNmb2ioFyl9DN2gt7+fmdkZgsBj/54upmammL40z+G9+5F6SEY42IZgYXYG3bRouB6r6xVGd47HqZRSgaYIogA7kaBU7qQ3J8jlU1x79l0+/IWPEyYEa8vbdORNdo+WKDlJ/vJPvsaO4VEMYbK0vsr0zCwtz4/9G6kURipPrrOb/OBO6oGPvjWLH0TUmy6R5xLJ+JS4ZSUwDQvTSqIZCURbTqcbbamjpqA9RIC4p1CiTcxuUxfupvpAvCFu78ig3SjImPGqiGi5Ie+cu8HEzSW6+vtwLIOkEaAij77eMpcunsPQJWEkef6ZZ7n63ns4hsTQNbp7eojCgMXFeRrNLd67fI7pmUnS2TTFYppmo8Hrb7+LHwoMw2Sgrx9dg317RnEsndr2BkIDoevoduzgNkybx578JDh53KbLIyfvY2tqnpReYuXWBoPpJL/7uU/SVy4zcXOCat3l2Mn72KzU6enpR6CRSOXREORyBWw7cecaSKK2tTFCExGZVJLOrg400yQMIzRdgK4wMBDocbY2v5gOCKERygBNU9imSdJ2SCeTOLaDacQNbiQlUoKG3kYy3Zsm/Crl+7GgP5ISTWjoIk6P0XWdMAzvHAGHYYiu62SzWWzbjo/MpMS2baSUeJ6HbdskkklS6Sy6lSCTyaJpoKQi4SQoFfIYuiAIA7Y2NyiXSuwYHeHBB05xaP84hw6M8thjx6hu1egoFtjYmCVhmdiZMtdvzLLZqnH6qU+T7+1lcvI65Y4CXaUSmxsV0tlcbFoLAxTxVHh0dIhbt2YwTJOuvgGaus66IRGdWfwgpG9glMHxMULH5bO/9Rn6e8aJWg3mp66RSSaYmZ4iiiTVah3fi0inMxi6gWFYIHQiFUtslKaBMDCdDKl0kVSuQCpTwLISBL7L9uYmW2trVDfXcd0GYRhiGAJd/0AsX3dl6W0tvibj+1M3bl/LeOQoNB0roWE6JhKLH/7sLY6deZJ8sUQ2k0J6dfzGFvm2dnxtbQ2lSdbX1zh37hxKaOzbtxc/cKlVtikWC/R0lznzyGlq1Vn6B4YY33OA9c1NXnzx54wMD5NNp7AMg5mbEyBl7NjWBYYeNyyje/bRCAxkKDl+4AC6n8BRea6dm6TLMPjyU4+zf3wHF967gqZbdHb10WgFLCytohsOhXySgwf3k0o4RFIShgGRCuOTMWIzUiqRoKNcJFcsYpoWlmP/wrug62jGbY19zBCPdbe/5GsQ4EkPoekIXbvzTNu2jeW0n3vurbm/St2WHtzWPMeR0xGhjElCvu8jUURRfJ0ty4oDS1rNOKJZxnx5NIMoCLAME9uysBIJImFR7Oqhq7MXtxWSTOUplEpUqjX27TtIwrbp6iyxf99unn3+x7x98Tz5njKrYY3XJs/xxuQ7nHrkfjq7y+Qy6fj0VcCNiRtIqZBRiFAGSV1gWA7H7juN0HWiKCBh64RNl65kmj2j3Rw50E1eaNSXVlm6OcWnnvw4lY0a88trXJ2YImgPtJQMqVbXsFI2O44cZ8eBI6QLnXSU8gz0ddNdzJDSJaJVQ1ZX8baWqa/N0dycw60usl1ZoVbdoF7fwm3VkWFILLeLJ7iWYaKho2lxGufdVB+In1aoKB6lS9k+RgfTtAEbX/poOGxVNVzV5ONPPMrC1bexMpJao0m9ssbSDExNThFJDaXDdm0b1/fIZDJcunKZ3t4+5uZvYgobYSQY6O/j5PHDvPLS80RScfTkA3z3hz/hkUcepLPcwdzcLdY2ttnaqvBrv/7rhHacgKJrRgxENyw+/Ru/zf/xr/6Ise4sf/A7n+dbz73BvuERPv7EMfKFElXPZC3Iku4ymZpb4PGPfYxqvUpnPksumyIIAxLpIqlsAU0zUDKWJ8RmBVChQtMU6YRDNp9lu1JB+C66Joikj66ZbSyNIGxjfqKwRRT4hFGEaeogY+6dDAOioEWoBGEgiZREoFDSR2n3TGa/Sqn2zva2seHOFCeK7phSQj/WgRltDnIQuPFmJYgwTRPP84ii+Jiz6XqkO9KUugcYGB6ikEni2AZSgakLZqZusLq0QFexSCqhky/kECqk0FmkWByiWO4mtRIyP71ELlfm8swM1UDRoMW6rBK1NhkYH+DN//Qjxkd2Ui6lCcwyla0WqVwWTSn0KAXKQ1hp9u4eo6eUwtNgO4ggk2C8r48XvvsczZ6QxM4yCWcDLdii1lzi1x4/w1alwsTsKuWOTq5NzrCxWcFOZOgodsQbM51Y06j94npJEeuZlWGQyttYiTxOKkNlfYV6o069WsNvudSTdZxkGieZvINou1f/38s0bdBj34NQ8pfMZiFa+yQiChS6DkJEaIbNt599mdHOLHt37mJ5fpbA9fHcOnXf59DRQwwPD/PsT18glU3juh43rl9leGiERCpNvelimiZ/9Vd/we/9F1/h+9/7AVeuXcP3unjo/hO8e+EcaxsbDI3sxPUjVOTheyaWDYEfIZTE1uEP/4f/iT//1/8LO7pzfOK+cV6/MstDxw5z5vgOkk6GmqexXF1lcm6ZjsBkx659VLbWyOXy7Nq7jxtTNxgc6sE0HWgbmw0h0FSMUTJ0nc5SiSAIqFWrBK4bu/aJEJqB/kszodvT2ngSrBHpBqgIq828VRqxrEajnR4VxA2O9oF47d615fsuCdvCsQ2QEYEfEIZ+myrTBE0nYRpYdjIOhHBb1CpbtJp1lIqQSmBZCSwnTUe5m65SgY58B2urG/T3j6KFHjPX32NwaJSZWzexrZine23yGruGd7C9vcW3X/g6ZqHAl/+7f4kbbPLO2ZdI9Q7wwInTXHrteeYuz3J09zgWEZrv0dE1EjfMuk6oImSogQgZ2bmTuStvkZWwObfFG89ex3HeZf+BIfwg4NxbV1i8Ocd//ZUvsrlV4Zlnf0YqaZJJJCh3dLNjxw62N1fJp9M4CYNkOk3SOc7S4hLu+hxB5KKbKVLpiHQiSVTfouU2cX1Fs7mBRCA1C2HZSDuBaaWxzAR6m04hNYGh6SC0GM94l5l2PhBPmqHr+GEISoKm0PW2W7od22gnFJZhEmo2333+dY7s6qc7CVZlE79ZpVWvYAmDquuSLeYpFgvk80UuXrpENptlY2Odwb5+iqUSV69NMTV1g69+9d/zuc9+hp8+9zznz1+guzNDZX0D5XokUykEITqKZ370Iz7yiU/jJAykEGiajU6IcCy+8gf/LT/4+lfJmTa7B7vY2A5598Y6nYMWGHmS+QH2H+slkc6wvrWFblp09PRjmwIVBWRyHSSSqRgirvRY16VUO2UoDm1IJhx2DA5za3qWaqWCCHwMEUPuJXG+gKYkCkGkWjRaDVSkELpEUzqh1Ii8GpFUREpHRRDKEKm15QrR3XXDftBKS2cIAw8iiY7W1iqJO/BxXQmEabZ10hG+HxAr+sBsGyNkG1Pj+z6JVJ4IQb5UplgooCGRoU8QKZIJB8s06Cx3ELpN8j291Ko1ttZXuLi9yLEjJ0glOjh+4iDPvfgC23MLnNg1wvz2FsnPfIiR4TxGY5Omm0WZWaQmSDoRhXIHyWSSMIjiF3j7d1hYWEBGMRrmz7/2pzz9+18kbei0Wk12HtyPmdJpbq+iGx5mK0T5Et1OYCQC+gYGWN2sc/DgPm4uVHADSTJhIZCxlEMAbf1nfN/HORloGoamYyeMeLKhAMOiWa/jtuq4/jZN1yUdZLHt5D/iJ393l2maMddTSpSIcWyxdjRCEwqp6fhBhJGySNrxSU+15v5f7L1XsGbXeab3rLV2/tP5Tw7dp3MAGonIgREA8xAkGMakRM1II0sjja2S7XEse3zlmapxlctTNZpySeWxLNnSKJIUKUoUKYoRAAEQROpGNxqdw8npP3/Yca3li/Wf0+SNqwReEJjq7xaorlNn77P2t77vfZ+Xl08t0mrWqTWbrKVrpJWT4Jw6dYo7772bra0NpqenKbKMkVab7e0ely9fY6vTByn5wOOPkyQxD9x/D/v27uHrX/9rTr0U0Bqpo6Ric2OV5sg4Z06d5sCRW2mP1ZwgRYR4wmKM4Bd//Tf44u//Ngf37mfi4nXKMuCZV85z9wMPsdSvmDn0DkavrrPv0GF+8NxzfPITH+fA3jm2+yVTs/uJ66O0WqMwfNfdeTvMy5MSTwkCpagsw7Q8PZx27/z2xDAtym3OqrIgNyWeAiV85BADpnHndFUV7tumJVI5Es7NevOlpN0lDFWVIwQppQiCgKLSQ6qQIPSdFrfX7VJW+ZAAoFBC4XseYJG+oN4axyAIAp/tbk7gabKiYO++fSjf4403ztFuj4GBa5cvUWUFoxNtHv7QoyRjJWpQMjc3zV999e945H2PMX/3A7C+yNe/8lf8J5/4DLnO6fY75IMchEec+Ajhu3CbIMQPE4oi48SRQ5xZ3ETna1x46WWisMaeqTb/8HOfZmJmni9/7Rv0i4JCa0bGx8iLzP29JDHb3b57Uw1YT2GjEco4x6ge0i+oBTEUA6w0hGFAmvXxcheIUeQ9sqxLJQKyoIMX1fE8h7gMotgNcYRCW42xb6+B2FuiwUVJlBZorXcnCcZUWCvwZAgo1NBUYlXAD1+7xD1HZzl64BBbq8ts9AaUVUWe54yOtV3gQxwxNzfHtWvXuO3WW9i/7wDPv/Ajknqdq1eu89BDD7G5ucG73v0w++f38tprZ7h07gIP3n8P25vr1JOE61cvUmuOs7naoT3Rxg80vpRo7WGzAX6S8Jlf+DUWrl7i/FKfUy9/j4OHbmf18ib/1W/+AnlacuHiG8RJxD333ENauGSyLO1TDPrUahHSE4Dd1WrewHAYlFB4SpIkIVOTo1w+dxKRblOmHTzPpzRiqBernMazSl3kXlEilKSyGqstZZ65aa9wIQNWaErjkrbM2+xG9lYrZxxx8hKlBLosfiLtRSAQUqKrDG0EWiiSWtPpHrGYtEccBxRaoOIG7bFJ2mPjTM/OUK/XCZVCWyd12NraopbE7JudYmtthV63x4H9e9BlhqTgqadeZH1twP0P3sLHP/Jh/q/f/j/5z/+H3+DwRJvJmk9gNWkV8Z3vf5fp6b2cO3+JB+8/yqXLF7n3/vdSVZYk8jGlxUgYmxhjZKSFLnLuf/jdXL2yyB2P3M6pN87TTCR7ZwJaHjS9On/653/OY489QqENWV7R7aWMjo2xsdUFHEGCqqSSYFSMJ41L2ZEWgQTrvNHGCPRQ5yX8gKTRBuWjVIAxlizr0d92kcdxrfYzeur/MZRFFwXCWsLhZkHgmNtGeiA9x0muxUhr0IMuRW8bnRcsLm9y+10PsLG+TF49y4Xz53niE0/QbDYZHWmjK/euvn7mLO+49z5arTadbsE999zDd773FDaqo7e73HfH7XTWVrh06Q2OHN5Puz1KmpUMBl1OvnIKRERSuw2pKgKp0JWH7xtk1OZz/+Q3eem5p/Fak/zo1bNUwjJILvOudz3K6ZNneO+738ttd97F4x/4AEmSkPcHRIFCWEO9NUYQhkP6gcFaOTx3NaZ0MPtWs0FSq7PW6yN1hkIMt4vekHctXBCLNVhbufQoY4k8iZROb+/OVw3aUGk9lEIopLx55v40pbXF8yx5npNnBUp5BEGM50kqk+0a/pQnKfJqmFbmNmTWWAIvRPg+dqg7DSIf4VmCOCBu1Vm8fJ56e4RBXmCFJM8d/3Z6cpwfPf00txw7wrsffhgtS/qb56k1JhD1MbYXr5OGIGt9xpuzJOMzXLm+yK237OH6uUWybEBcH0dXFmENCoPwfBrtCRoMeOS++9j67gu8657bSERJLWkhAonvJ/zxn/wZqZZMze4l7Xepj4wyOzXJ+uoKaZwwNjGN74fukhUETO/dzxv9Em1By3wo5xAgJX6YI+MMP+tSZQPyNKNbFgzKkjQt6OcDwMk2g6QG0gUPaWvfdvrxt0SDq5RPplOkdbgkIW6syqyUpFlOSUi7VcdXglIFfO/ZF9na3M/7P/wEX/jjP8R4PtJTrK9vsriyzNT0FIvXr3P86FGeeeYZLl6+RhI3efyxD/D62fM8/8OXuP2+B+mfv8iH3vNO9s1PceXKZQpTkNQDpsbGWFvbwPMrLp0/g7XHaY2OYCONL0EahdCSSiim5w/xmc8f4FOf/6csLC3jGUM9DBhttxifaCGEwPN9RyyQko2tEJ0ku1ouqHbX226VNdTiColUGhVI9u/fw+WzbTpXN0hqkpXlZQQeWZmDrTB55ugTlcZoi9JgRIkxlspUTqqAwliBlRZphOPj6bfXjeytVnHs6BdWSNhlDUrsMGlOCoE2hryoEL5HXpTEdUkYemRpSlFUgKVE0Bobpd4aY2xympmZSayuKAtnWjPaUIsD4sjH6oLZmSlWV5bASiojWd8c4Ichr55+lWO37sVTAb/2q/8F/9u//LeEDZ9jJ46ytbnO6uUBYdxka32Du289zKAn2H9wv3OEIygLjZJQAbU4ohYENKKEV7/6PK3xOrJ6lVvv2YMMFLUgItvY5vd+/0/JOx32fmwajWB2/zjf+eM/Z3puLyPtMeamxmiOTNNZ3yALFF5cJwoDVBhhrURLixAl8JNmHW0tUgUkSYNQhigZ0Bus093u0e1u0+t1f5aP/m1dZTqgKjOMroiCmLRMMRoCP3JBJWFCFIX4CrJ+xqA3oCxyqqri1ZOvUWuO8MbrryGCmCyv+NIX/4JzF18nHVTsnZvl0tVL3P/Qg4yOTXH16kvccfvtZAW8672PcubkcywuXOHL3/gz5g7vpT43xsnLZzlczXL8wEE8f4xrq9dZXhxldnaWZnsEAk3kKwIZYQzoIOSedz3G0Xc8zOZWl6985Zs88uAJ7rv3BPffexf+cGtSGktaFKRZwdbWJqGS1OIYz3OxvDtGMGPMLkLJFwovCTm4by/LC1dYunYF3+RIKZBSoa2H5xkkIUYatM7JiwKQBIEEAvf3b3IqK7AEVJWmsgbfV7s4zJv15iovCqQUCOH8CIEvieMYY6pdjJvneY6RK53JLwwjqqrE8wVhFFMZA35IYSx+ktAea2Ol4OplQ5g0SJKENy5cYn19hf7mGnl3i9BmPHDvYe664xaEN87vf+XP+eg/epJ+noJM+eR/+UssLp7i8EQNk2bkKL7x7ec4fHAf8zOjWFswGGREsaLWSDBSEFjJQ+9+Py89+zQrvWuMt9qkmeb4iUO0mpNcuHqJl964TNyaZKIxQpZleIHTinc21lke9Jie20treh9Ga6TxSUK49cRR8qpi4aol7W5RFgKhIiqvhRdqpKnw8y5h2SPKUvwypZYVDPKMQZkzqHLKPKPTXXc9gxcg/BBT5j/rx//3qrdEg7vDYUSKG5xBa7BCYIRC+Iog8vGDCDPoUPS7WF1x+eoiT/3gVe575BGe/8HznHrlVbSxdDtd9u+f58iRQ3z/+9+lPTZBkiQsLi2xsLBInDSY2XMIXfZYWrvCf/+v/gUjMyMc3n+YbKFLPQi4evEsd9x+D71+h+9868vctrnGu9/zYQqhKERKuz5Cmg3wg9Alh3kuNvfEsYPoqgTpDrFarbYriAf30a5FAb0i2wXYWyspS0dICIIAf+i0r4yhsmY43fU5dvQWXlpewB90mWq3ybOU/bMTHDhwgDztc/rFlxEYRJGT5SkEwsXwVTFVGGA0aKtBu9hfVVoKe1PH+NPUDri9MiUMP5Smcqkvgad20UDSD5B+SBgnSM/D8z1CLHZ4KMtKk5cVpXVynJF6gzAIkErsIsh8370XjVbDYbYadZJmwuj4mDvslheo1+v81V//HWNjYxw9fIDf+MWfRwnJ17/5bdavb6KzipnpWY4cPUE12EDKgCPH34HnqyFOJ8BajZISP1b0e11sJhCi4tr5cyycf4lLZ+aYmJsi72tef+lFplptfunnP8/q0jrXNtZZWV4lSuo0R0YIgpDJ+gSTE3OsXhzQ765T5Cm2VicwBhVETrIx/LvfCSXZkS5U2jpTpBJEtZoDuIqQUlcMBjcb3DdbVTFAYPGV0/2bSiOVj/J9aokLFgkDn36vS9ofUAx5zQZLlqV0OtscPn43r736LBrD+PQU09MzLC9tcf7CdZRSZEWGRfOpT3+Sp55+hkff9zBf/ep/YHVrm3133spo0efo8VuIhMfiwjWsNPzuH/whH/vwExw9NM6V1Uu8dirixJ0P02jE6CIl8CoqYaklNUdtaDVoNhr8p//ks0Q+CKWQw0GBI0VAENSJooo8y4h8NaT2WITgJ7i2O7IwYwxCSUbaDfbNz5FtLHDpzEmEhbyq8PxgeIl1xl9hSnfGKx8r3BDDFi7KV1uJ57s1L0JjpI8z8t2sn6Z2ZCXWGnzfQylJXlZD1Yk7QwaDDDP0NsgkpsgVUejjSR8JeEnM6OQke/YfZnpyjChqsr66ydTMXjZWFsgLjSd9TtxynMjTtGoJgcqxQtEaqSMKwbVXLnDvY3fTUmCkIan5dJc3+JuvPUUzGmGpWODCpWX2zU8jPZ8oCknCgDxzRjg/ikH63Hn/wwS1Ns+8+O859b1XoDlKPfG5cGWT069fYrPTpxY3SJKId7zjNjZXrjM1MYIcH6M5PkvSHMEb9k3GSKSCKArd1tsIKqGwRoEn0VJjhUH6IbaqQZQR5h1UrFF5hp/1ibIehafpG02WpWR538nFbk5w30QNm4JgaBqpdIlUisqA5wX4QUCtljiqQlGR5jnWGDqdLp3tHj98eZVemhM3Wpw8eZKKnEtXLnHP3Q/SHh/jyOHD9FO3Is6yjHqjSag2ee3VF5g9cpTjEzW82OfOe97D+tp1tjc3yBeu81u//bv8+j/9Je6ZHmV9e4Fud4XRaC9JVCcrcpIwAumaAp1nSAH9QYe0yGm3msANFJQZTvSsscRhiGq1SNN0eNsMsdZzJoRKk1V6t/lFCEKlmJwYxzMWvbxMd/l1uvkAU7WwSrK8tIoucvbOzjE52iArKs5dfAPhVWAlGh9tLVUpMaJ0UwujoVDDCeLNerPleZ5rcItyN7HMUw6enUQRwhrAogV4UUKc1EjiGlI4NBjSxSkGKoAwISs1o6NjNOKIWuiD1biBviUMQw4cOMDi1YtMTY0TRRN0u12iJCSKA0ba7aGUoY9FcvnyIscO7eHjH/0QT378o/R7fcrNNUan5vjmj86y3dkkCiMarVHXcPseujQI38dXHkaXBI0p1hYuceu+fczdd5jVa+d5+dR5ls5fY356hk999GPccvwYpoJXXjnD5dXFoUdckMQ1wigmao6xf/4A1co1BisX0EIxKAfOwVxroPwYpNrdYNy45OI0otpgLBilUFGNCEHTaDz/5uXszVaZF3hKuVCCLMda8EOPQEkCT+ArQT7o0+123VbIgDYVwlg8Iel2u8zM7WF6z0FkWbC8co3t7T6bm+vMzx/glZOrVFVBo17nO9/9NvWkxvPP/oCzF67ynk/+PITgbVzh7NnLfPAT/4AD99zF1ZPPM3fiNr751HP44UPsmZ7k2uIbPPTI4wRh4EJqtCb2FFHgY3RFmQ2wKKQP+DtUA7lLLxFCYHSJQlCPgl1tvNO8p1jrPthCuJhdAOmFaCxhEjM1OUHtjtvZNxJw4fIbXLu6RD7oYUyFlKDzDGs0unR6ZgwU0joaibUYC1KFWAHGVhh8FG+vJuGtWFZbLBYlPYIgcEQV64I3di7KGJDD7WnSrJMPUpSEXm+A9EOH2IpreEFErd7ACwKa7TaLi9dQfkiv18MUJdPTM3S3VlleW+eeu45Ra4whpeJXf+kf8W/+93/H5XOneOdj78NLQkwh+eZXvs3lV5fQWnDrXfdwYWmdsWZIEDeIosi9N1pTSxKyqsT3AyrrceDordQnZ2hN76U5dYg4apB0Uppj6+w/Os7k+CTLSwt4wnLi+GGMLfHiJiPjE0xPT99AhkqoyhJjKrAKYzUSiRYaQQXSumh5FSP8AOPXsLKGVTnKS4n8GBU3CLMugTSkCtJ0wCDNeLtdzt4SDW6e9lwSjFQYNIM8I4kbBHFMUq8T+D6+p9ja2qDIUrK8wBhLWRb86OWXeOLjT3L2dQi2ujTbI8zO7mH//oNcvnSVzY0eK+vLHDp4lH37D1MWmrvvvIs/+bPTpKpFa/9xZhqWvNfh3PI19hyZJylCRm7dz+JGxlf+9jnecewAc9PjvPzqa3zwQ4ewQjh9ShAMJ00CpCLXhqIs8T2fLK+IwgBjyt1WiQ7tAAAgAElEQVS1a1FpGo3GLhJtx0i3g5jxf4yRuvuyao2vJJ4n0L7PuvC5styjP9ggKwpa7Tbtdpvm7Dy+LljLS3IBrX0t5vbPsbi0ji5SSm3IBn2McIY0YSqKQR9bFD+z5/4fQ0kVIKVPZfoUlcbzJH4YYaoKi6CsNFYIpPBIag3q9RZSeeRpzzXEBhCCRmuE9uw+JmbnmZmdRQnhVm7SOryMMZRFwbVrV1m5coX1peucOHErs9NTYDTXLl9iz8g8164t4HkxxiruuPtBPGX5vT/6EkcP7eWOW44hazVefPU1fvDDV/H8iLML29xWFIw0G9jhtCMvCgIl0Vbwrvd/lP/1X/4vrF27yrF9x7n3/e/lfQ89QilKqtLj9etL/MEXvkqn00UPBk7H1hzh8LFbCMMQ3xe0J9rUp6cZOXgL6ysXKLsd0u2MPMtRgx5RrYkXNXcjpnfc6QLpGjApqCoHzrdYZBjRkGMEwU2T2ZuttCjxPIsfeAgpEcYhrXbA+L0sJ88yrDFYU2GqEqGNa+wExK0R4tYIe+Q828uXGR0dIwwi6vUaWud84PH3s7W1jRCS9z/+Pt44fYbvfu/bSAUf+7lP8vIr36axLvjRq3/DS5ffYGQ85NjxMZavTeLLJt9/9nUeeSAiCX1yXREQYYAojvCV5zxbxhBEEd00R1hBlheEQfQTA4WicDpK3/cZHx93SYHDM9bzXGqZFNYhFocoP6tzEAoPyeT4NJ2FBbrXrtNAcuuBfWx3uwgpOHjgAEW3x7mzZ0CXFP0UqzRplWGLiJ6wCOlhjKCwGqsFpqxc43Gz3nT5wlIVGVYGJEMEW1VVGK2xxhAEEXFSd5515WRiwhqiKKIsMkpdDocMgiT0qYU+QkqSOOSuO29n4cpFrq4uUpUFs9NTaGtBKDrdPs+98BJV7jExMckj7zrBr/zyP+bi1RW+99dP01lbQBiJFzV58rF3cuvhg7x2cYGzlxd55oWTPPErdYqiQIQ+9WYDjCWJIqSw2KKgHgf8j//dP0eUFY0RjyCus7x8O889N8d2lpMkCdKXPPCO21i6dolev8PsngMEcYNarYZBU1XG0TsETE1NsLG+ST7YQqORFbu9hkU6FKsVIH0IFcKPETpG6TroCqULRLSCl2wT9bv4nW2yLPsZP/2/X70lGlxd5u6DDlhdoYRCSbeuD30XhdjZ2iQdpNhKAxZTVQgL2mjSLGVu/xFMmTHWTvBUwObGJtrkHDiwj3qSYDUUWYq1cP3qRS5eOMfxBx4mbinisKLW2s9f/c7v8MG5n+PAnlFGS4tGY6Xi7NUVVBRyx8Qq270uoR8QRQFZkYOxlP3S3SI9RT1O2OxsIxIFQmFMgZDKHc5RRJqmVFW1K0dwUa6pS17xvN3YwZ1pljHGmRqKiiIvWBmk9GWMV5vi6Wf/lrm5cfYfu4P5BtSiFoWoKH0QWnNuNQXZoD49QdbZQoY1F/mLQlclIigJdPmzffhv87LWghW7zMU4TlB+QK4ryrJADieRSvn4ykdrTZpmpIMupshAKcJaQlxvYoUkjkIacUDkK7fSNGbIRzbEccLo6Dimt8XC1Stcv3iJfqvBYDBgfn6e9fV1wGnMlOdz+epltvsZ9VqNp188y1rPMjE+wdWuQLX2sv/gQT79C7+K8tjFJfm+TxgHgEQKTVGG3Pee9/N3X/sG33/pHEduvR1T9Vi8fpGzFxdIjWRzq08tqVNJxfjUFEJJjh0+iDCaII7Zu3eekXabmb176F7dx0h/k8XFJTb7fShKxwCua+I43p3GSKCUOIkGjrogpMAUhlJX+MIf6h1v1k9TURijpcRUGk8Ndau6ctr9qkJJsEqhAo9BITFGo/yQfn+AtS4BDeFRS5psbvaRUpFmOYM0I05ijhw7yrM/eJp9M3NMjo9xfvkyV848zUgzoJ8lPP6pj3Hh0mlGGxO0432sLSyTdZyu/NULC8w3fS5fOMfMnnkatRrecDrrSeV+RuU2Yp1uj1JXxFENKdwAwUkNPILhxWkwGAD8WPyoJQh8hL3x4RdCIBDoqkIikZ6k2RzDq7fxiw2KrKTeqOMHEVub25TdLofn9zI1Pcnzz70AKiO2HlXhUwMqo9x3RJcO8l+k3Oxvf7pSQQRFBlLtsoh3nqmnAjzPH5KEFGEUU2QpeZoR+D6Vtig/IAhDEILt7S79Xg+mxqnFPlBj3/79vPj80yT1Gv3eNkuLhmPHDlEUGZ31JfISllc3+do3vsfkxCTHjx9n31ybrN+n1ayTFQVe3kP31rhw9izPnr7OsRN3oStNWRaEoU9ZlnhS4Xs+ZTHAU1DpiigRBF441JBXjI2N8pGPfIT1rQ55VXF9ZgbQ1FpjtCdmiGotao2Wox1Yi7ECodxmsdWoMzE5wcr1K44KJd0WQdidBtfcQN1hnY/EC7FKYasK64VuuEKANAq/EpQi+tk9+DdRb4kGN89zAj+g0BUIiQojlFT4wrlU07KiqErQBqNLsAKsxhpNEiX4UR0/UDTbY7x28bRzzeY5a2urjI6O0miN0B+k1BsNJsdHOfnqyyS1CGm7HDnUxvciXr+6xmOf/xTVYI2mjOksbNFb65D3DVMnTtBPNX/4p3/Ov3rfk1RKIaXnkj08gS1dgyC0m9aB5NSrpzh2y3FqceRc9VpTVRVra2t4nke9XscYg+cJpAzQWg2nwc5ktjPBtWIHPeXRbrQ4cstt/PC55zj/0iusr2zx+Ace44WTp2mPTVFYD1/5lKbCSjnE0+T0NnKiKCEt+wipsYVAa4mVHuatkfXxti1rnNnBubAFYRhhhTt0vSFnVOAaXJdnD3mRUhQ50mj8MHISF2MoKk2SJAS+5zRmxskbwA7ROB4qquGFMc32GJk2nLt0ld52h4OH9tGMYw7smWW9k6I8DzyPxkRIFNaZnZliYnqG40cOcuvyEpd/74t84LHHGRsdJcv6Lm1tB1ZvBZgSW5QEgc+DDzzE00+/xPjELNd6AZcvbvLG2Ut0O11uve0Olta2QShGJ6fxo5B7734HWb/HSLNBUWpGRseJopCx8XFSo9haX6fdHkHKDmtrm5R5j8qUVGWDpNYiDGsI5Q2ToximSCk8PAwGkOS6ukkA+SnKWovnecRxTGaMg+TrCq0NYZzgC0uOI62wEy2rDZSG3JTkeYlAuU1VrcGgL0miOpXOiZKIK1cWCAKP/PvfY311hTdeepWkFvHw3fdTbKyzkHVoTc0CFUceuJ1WKOkubrF2aY3uZp9f/LnPcfLM65xf2GDw1b/k1//5f4vn+XhBQKVLiqrEF5KyKFG+TxxFLF++ShzXUNKS1BIsTiJmrXVSC2sJAhehXZY54D7wrlk2u78XcA2vKXNEGKPjmCsbKZvLS5RUNGo1Wm3FSLNNozWBzVMubuRMH74L4Zesbayj8LA2I8sMZZVRVpX7XeYBVf72Muq81UpJz1EQhnKEnUZt553GWoypMKZESBC6wg5TUtM0dZf4KCKpNfCCiEqX+EphtSX0PQ4dOsj09DShAlmVYCr6/T4j7XEWF5bZ2lilNdJgcXmbhcVVTp1+HV8EzM1MgS3Zt3eWifEJFq8tU8UjjO1JsOEIQRBjrCFNM3y/hrGGbODOai0Emc5JBxkT42OOAjGMIgZoj4yQDnXe3c11lFLUag2CKKZWq6OkN3yXQeJhpUIpSRQHbnJdFm4oiBoOBm9c6na2yGaIubSVdJKxSkDQRBlFrj3KXKJ172f56P/e9ZZocLOiojIQ1xJK7V7SMAzdON8PSPMCXVYoBcIqPGsoU4GUgqys2NzcZHS0xchIi4mpPZSFRFeGOBkhLyynTp4hTQd87MknePFHPyIWkkcfeSffefYHfMQ8ytXOJqOxZk+zzvToLGsLK/zVl76K7Rf82mefxKPi60+/ynLZ4LkXzvCB97+LvMzp5wWe9Ailx+uvnWZ6bo6lpRWWV1Z45pmneeqbf8s//pVfpD7SxgK9Xm9Xs7m9vY0feEShv8tC3V2tIVBK4gc+xrhPvPAktVpI6En6aKoAktGEP/nTP+ae+x5EKbW7qgk84XA27sqGlj7GQhzWseUAYkuhBWUJvlU/68f/ti4pveGFSxCGMdYIsjJDVxUIGAyGWtM4pKwqPGOoqhypHK4mjCKn005T9h+YYH7vXpqNxnB679BjOxXHMZOTk6TrV+n1fMqyYG5+jiwdRecZl69eoV6v40lI6i1+9PIpHv3QE9xy2x3s2bOH+dkZyrJkanqW/+PfPoAQgk5ngyDyKWyF9DzKsoQKAt8HNJHnYRsJ/9N/889ojIRYPL7whb9ga9BF+yt0eiXCi1CBz8GD+8jSAadfeYnWyAhWehy57W7qjSa5zuimOaU/Rn18niLtoqTP7OQYG+sr9DYWMEFC2esQNSbxwwQ/DFHKA3bQTBal9O7fyY1J3M36+5bvO4mV1hoPCFTgDCnW6ffEUKqgjcFoTZGmlFWGthWe9AmShEJrJqb3kGUpk9KSdTosXbvKnr37UMq9n1vrHZKwRuatc/+dBzl05E7+zb//XQ4dO8zxj+5hbHaG64tLXD27xF/+4ZeJRcR//cufpeFbXu1tcnXDMH50Bl8llNWAjU5OFIdIAy//6AUOHz7ERqdLUZacu3iBlYVFpqYnOHrbLbvN6vLysjNnNhrkeU5VudAJIbxdKQPmxsYM4cJbvCAk65esbXc51+lx+ewi73zkIf7ya3/BHffex8F4gulmGxWMMchzhIbKFBS1UcYmWvS7WwRFDlWKbyVGa3SeQpr+TJ/9272MVCgZgnWTSmMMWTagzPNhjO8A5flESR2pS2xZ7coBrbUoKen1evj1Nu3GCEEYYXSFUAJrBEkcMzY+hskHhDJCWMvGxibjE2McvfU4q4uLrK6uUKs32N7uUpYVDzz8Pi5cOE9rZIQXv/k8s9NzBKNTfPKzn+cP/vgv+Lmf+wy6chHlla3IygLPCgIhKY1B+T4Cie8FGAueELvGc2dil3h+gpCSqipp1OsoKfB8hedZBBqJGprv3GDEU5J6vU4QxS5wSOTD4YVFOAT0jaAdY6iGkdXO6CuwwmmYK+VhgxBbi+BttjV7SzS44Nb3cZIgymqYSKLRFrc2FVBat6YV1hlOpHGrShGF5EVFFNXZ3tpCBAkj42N0VlYReJRlwcGDR5ASXnnhZUJPsXTtCu995E4m2v+Af/evf4dHP/Qot9y1H51p1i6t851vPc3a6+s88cSHmW4qigIajRpxCecvXaEc5BQ6BywmAC09onrLidKN4eKZ00RVSj0JKIqUqhohCPzd+NbFxSWiOCK2MVjtJthBsMsAllJi0cO1t9jVkqVpymB7i49/8OO8MDrCU9/6G7w4ckECOJ7o9PQ0K4sL+L7E2qHGV0i0NRht8cKIrCpR3HCr36w3X9ZqhBR4wwPUacNLrNYUZUFRFghjsVZitCAvUqw1KCnRlR7q/iSeEE5PNnwPfLWTkqZ3J/oAc3OzyHwbqXz6vW36WcboyBg669MeabKxscaRA0dYWN7g3e99jMNHj3Lo0CFGWg2kFEOTg8PqdLtdojByxsswokxLlHS8Q+159EtNKDWlzmmO1lBKUZYlh4/sp96KGJ2c5unvfZ9B1mdqtIHROVEgEXGIRhDVRxgZm8JapzdXYURJAKqODSURinR7jSRpIjpr9PqbLtWtqojqLcqyRhQ3UH7gJjHD3/muAfNmvenaoX9o6+JNd1fzpqQs8iEsX6KCAFOVlAUYYVx4ga5YX1lh0O0yPzvL5uYWeX+bMKnIipJme5RBlhEnCa+dPEna2+Kddx8nij0qPeCf/fIv8ydf+CK/9T//Fv0qpUIw4sNnPvYkyveo1UNMZdl7+ChrcoNakpCnKUhnvk17OZ4KOHj0OL1+B4BzZ1/n1Esv0WxGfOxTn8CaiqLQ9Ad9hHDv/ebWFlEcEPo+1ZB0IuWNLUvgB0jfNTkuUlcS+Iq9e/bSmJgg9Xz+5M++wORknXqtztrKKu2xGcqiQhuBERarJFUgWen3qNWaDHQH4YdQDQkhqoYKb8rCfroSKOkNyUvum1qU5fC/uIFQEAQEQeDM6p6T7O1ciLMsQ2jjjFhSoK10rHJtEVYTBAH79x3g3OsniWoJk+NjbG7WMLoiJqGf9pmYmGB9a4t6sw3AG2+8zt5DR8hKeOi9J9i/bx8HDh9mcnyUf3HshBvYDbcO2kiE9VhfXWV7Y50DR45Qao2nFBsbW7RaI7soOTHc4KqhzFEaQ6QkSvl4nsKYcvcit2PQBev0yBaM1k6QCwglUcbHigo5nOIaBFI6yafzfehdiaQQAjnkuAvfQ8V1PO/ttX14SzS4O9y60PMphhNLXbmMcK0d9l0J0KWb3hS5E4qDQSoPjUV4HqPjU1irif0AXVR0Nte5+577WV9fo9/bZm11k7S7xUPvOMDYeI3RyQYf+8AH+da3v8c3vvBVNnt9hBL8ww89yhO/+R6iOGRl6TrbA0ljdIJf+MC7GB2fRkUK07fYwumBq7ICL+GFV37I+tJ1Vi+fYbTpsXp1BWEVWVqRpQOQsLG5TZzUXJSuMBSVW5vt3ES11rurA4ezERhjhyzdgD3zB3nuK19hcWmJE3feycbqEq3RcfzQNUeb68u0RpoM+ukuBsfYEiEsUoEWO/+uqxvBEjfrzZRFIz2J5/tYoyl3DFLD1ZmUTkNe6gGqjJGBQwyZqsBq97v3fJ8wDH9yiu9JGLJpd/49KSX1Wp2pmf0gI9ZXlsjSPlmWEtZbNJOQeqtNXGvwwEO3UKmY+UNHqNcSFO6cM6ZyQPSqQClB0S+Q0qdMNVWesb69xeTsLMbY3XSrnWYI3Pty7733kBY5p8+eIy0yHnr4QQJbEkoXQZyVliAZZWb+AKPtUTzhjJjNRkJrcoz1hT7WCgJhCasC31NEZRfRN2xlHXpVRp738OvjaKMJ4hrCC4ccUrmLgLrZ5L75UkqhlPt4lXmOtgKlPIR1K0sPixcEWF3Sz/tOD24NQnooPyLxQwIpqLTCCyKKfEDkJ9THWlxZXGRtdY1rly4Qe5a77zjO+PQMcSPB8wOiWsJHPvQeRluf4erCOrVIY6uKqYkJrly7yvLWNheWekTxCJ//7KOklSCq+2SZxhQVRkjSoqLXzzh79g2qYsC3vvIljh6cIVaWKAxIBxpt9O65en1hkSgKhyQbg8DucsjFcFpWmgJVOflZVVV4XoiQGolhbXMd4Utq4zUWF69gX1S8670fdM0SEiEddlUYgfIUWngMco0MaxRZH2ksWkNlLULc3Jr9dFWBcKgvYwz2x1ju1lQY1BB3aCnygrLShNKhOIMgQFuDF0Q0m20mJyaQniTLCvzIQ0pJFARMTE6ytT7Jntlx1pYXGR8fw+qKehxiqoLt7W1KY9lY3+K22+7g0pXLFEXB3vlDHLv9Thq1Ogf2zeP7/u43vaoKBp0+ZV6RKcPY5BzpoM+1awvkeY7n+ywsL9EcaZHEPp7vuWQ2KclLNwSr1xLy7AZidEfG8ONNrjEaY0FbS5nn5GWJrSqkdAx8IT20MY7lP+TuO3MvCGF2z1UnW7AIK/H8EL+skPbtdea+JRrcHfd0VVUoC2KIDDLWOGOYkCjPR+HCCQph3DRBa/Sgy7VLlziwZw/Ts3sYpAVpb4P6WJvtfo+VjU3WN7Y4+9pJmrHHrcf3M7fvCBu9AkmXx9/3bg4dnKa7mTE+PcWVSxcRCM6cu0AQRqyub7FRRvzqr/1nNOt12qNj1Go1PE9SZAVbnR4bnQFPPfMsF0/+gDFVMeV18XLBleUO250BiRcBOVvbOb6SdDrbtNstjLVI6dy8+sdumOBe1CzLkNJDCO3y0gUkoe8SoYqCF189xZHDh/A9n4P793H56nUkmm53mziq0e/3h82Ah0YPXZM3moObze1PXwaJ8n2CKCTPMvQQGB9GAcIasjzFlJo8LwgTEMKjLCpMNnAHSFXRGwzIKs1+KWk2akj5YwlzxqLLavf9UFLRaLVRXoCnfExV4gUBeTHAFim97S1KFH7cII5q+H44TAWELE9/wkxjMVTC4nkR/axg0B3QSGKWl1eoNxsEUYi2hla9vvu+RFHkDJJ+wOHDh/ncz/08myvLVGmX61fOMT05zagX0BybZm7vPsLQvdtIpz8OA6d/S01BaQJE0gTPxzOGRtBB9bts9PpknXWK3jZ5e4K4PkoUNVC+i+C0Focik2+vw/YtVaZCefGuNlEbS1nm7rxRCiskge8xKDK0rjDayRY8GeGHCZUu6A5S/EAwMTXOZijY3lxncmavi6GOahw9fgvzM1OUWZfVzS6nz55mfHyaPFUcPT7LltjkytXzPPfcDxlrj1NvNanVm7xx4TJ33/dO3v/kZ9g7O7PbiPq+2yBsbmzT7RX84IWX0P0VLr/6InfujRHFMs9+6ywf+sQvsdXp4vkVaVpQVgbPcxdLd+G38GOTqh9P0NwZKgghqMqSsqzobm4wkozx7ve8m+uXz/LcU5tM79lLEEVIoRgda7OxukIUhkDopmZSUVnHF46iGpUuKI1FlLh89Zv1pktYZzhVQxIAuCRko7WL7hUe/X4fLwgBiVAe0vfxqhIpBINK40UJpTZgLL5SKN9zSV+49MnZuTkWrl/mqe8/Q3d1gXa7zcH981xaWcELfOIg4Oj+eYqZaeJmwuTkFK+fu8T8waMc3H+AeuKS1bQuh2enpihywnpEL684d/Eanudx/o3X2V5dosxyOpsbbPe61AKf+x95EKk8Kl3s9kcAaZqRJMnuIKQc4sCCIHA/+/CclsOBSLPepNICXaSEgY9SPgKFUmDlDSzjjlRnR8oBzlektdPn7/QNVry90IxviQZ3xzmtrUEbg7AlSvlYa4Y3aacXQwn6eR8hHQNPeCFBVCcOQrKsRMqQMIkJwnE215eIGjWMVJTGMjM7x9z0KB6aK9eWWFpdYN++o/zRH32ZfQfG8byQL335L1lYWKEsNYePHaPopqxtlTzxiScZbY/RGrJt+30HmPdCxcT0OGm1yvPf/Rvuv2WecZWTdzL6WcXxW26nsAWdpUV0VZHUanQHOVJCVZUoz71QuqwQnrcrYSiH65Ydh6gQ3nD1olleuk6zUeO+e+9n6fJlanGdJIw59cqLTM3uYX1tkyD0hmu34csqCvchMzc0N7srCPn20tS81coMHdhhGA9DHkqHpxkeGlprCl3hxzX8KKSqCvIshXSAFRBENeqtOkmz5ZpHBIgbz0mXxU8YX5RS4EvCOGBieoJsuIL1Mo/cC2lFTZQQqLBGEMXEYUAchwSeIsuzXRRSmqZkWUZlPZ576Yf4XkTe3+TEsX0sXV/G832COGJ6doaRkZHdsJKd3HchBHEQ4HkB9WaLnimZP3TcOfGlYGx8AjUMuWC4Ktvu9NjY2CDPUoyBUiikqmGDgCByurqa8LBVRafXp58XpBsubjOvFdTrI3hBAAgCzyO72Si86RK+77S2QqEEeIGL8S7KEoVECHcu6Kokz1wkqouZFWAr+lnK2uYmnU6H2fk5miMjLHgheVJnY20Vzw9YXVxnYnSUifFJ3jhzisoErKysImWbb3zz+047WeSMjU9w6OgdvHb6NKs9y8j0Qe564GFmpiaHbnKD1i5MQUgYmxwj0xt8+2tf5MS+cQ6NeYjeOpkxfPrTn+X6yjKT8xH97QGVEVjt5AjtdouyKjEWwjDYlX7tXPgd0aZAKR8pFb4XUGmLH9WYnprgzJmXuHb1Kp/7/C+wcH2FerNNHMf0tzdpj44Mt2YWISXWVg5PhZMtCOEjK0fKuakd/+lKKeV+x8Y1clbIG+EdVmKBPBvgRTXCaCitKlKKUiOEhqF0McsLdFUReAGB5+P7UJZuGuz5IdMzc/Q7m1zOeqwPzeHdbtdF5dZiVhevMzU1yZzn0dve5OChQxw+fJh6vY7EkA76BFGItVAUBWXl3i+rBC+8+DxZbwvyPldOn2TPzCjtZp098/PMH5im0iVquLHqdrsMBgM3wa3Xhzpy93MaY3fxfgKBLiukVFiJC32wJYPeBtn2BkkUuaFHmCCF+39+fFrr+MFDqoIxGGvIdUpVmiHS0vVdb6d6SzS47ubgXkxTFWgrCEOJEhKERSrpwOOla4CtrRBSoqSHpwKKIiPLByjPMDE5webWBklzFE96DPo9ED7aSo4cu5V80OWNM6egq+n1TpHnEee+9Qxaa3qDPnvm5pmcOcDps68TNcbYd/gEI5OTNFoN4jhG6xJQaKPpdDpsbW3zh7/3RSaaNU6ffJVLZ0/zvvc9Sm18jlfOneX45hbCC7ACet0O270e++fnd8Xj1lgYgp93pBo7gQHggNbKF859mWXkRU5lKi5cusLjH/ww5984R38wwFYVVy5cIK7VqEpADAX4VUWlfzytR+wiyLAuAvZmvfkyxiKlQigf3w8phySMnYtKWZaURUVU81GeT1HkCFOhsfiBQ66EUeRg36VDi1Wlkzz8/+mjlVJEUYQSkOcFWqdOczbchGRZTprnzM3NkWU5vapCWOPeCe34u2VR8cUvfp3nnv02k+Ntjh0+zNmXX2B1YZG4UWNyZpYnPvkk66trjI61duNMd5Kedl3LUtJqj+J5IeAurEm94S5vQ4mRc+m71KG+LrHGuuhoIRAqQMcecojJawxXjiJN2cr7ZFpTlSW2MsS1OtL3kTLAk2+vacJbqVwSF1i5E4jgUhatuCFfqEq3KTJWI4TEkz6+9IYhPIa19XUGlWF6chorfKKwznPPPkV7fJLKVHRWV1nf7CAlLrGpEIy3x3jhhz/CDxSDLCWJE0Dy+pnT7Dt4kG6mufPu+9l74ABhFLqGcRh4I5VgMBjQ6Szz//7fX2TPeJuqv81/+Mbf8LlPP8nKyjpqcYnbDmcsXLlEEEX4QUhWFMShPxwqSDzPDRWkL3b/XnYuby55EFzKSAnWUq/FpIMeg+1tVhdXePbZH3LLLSeYnBhnY7ODxLC93TQndmQAACAASURBVKGWNEhTd3mzaFCGChxubOdyyo2m4ma9uTLaYH3X3GpdYnfQmjieszUlReGaSS9M8KUkjhLKssSXjvuaVoa8zMmKAqsNZVFSeTtadEMQeExNz7C+sUFndYkwjsnylMNHD7G1uUnke8xNTaJ1SRxFfPD9jyPiUbwgZHV1lZFmjXoY7A453MXG0Ol2+H9+/0u88IO/5b0P3olKO9wz38CIPkWRY6s2zdYYFocS63bdMC0MQ6IouoFD89zE2Rioip8cPkgpwFNkRYUV4HuGK4tXacYRzcYIYdIgiBvDFLUbU1uHpOT/Y+9NYizL0vu+3xnu+OaYcq6qzOoaurrZc5MUW2KTDcF0y7DoNgzY3liwVzJAE/JCMOCFbcAwvPLKK2+8IQwvZBFe2CYtSpRMUhSpbrK7q6tr6BqycojIjOnN793pDF6c+15EtrwwqyhWViMPkKhCREbki7j3nfud7/v/f3+M8BhhKZqS2tQ4e6HvlerTJa95KgpcsKGQRYQkTgHOWYRU1BakdaTtqLOuasqiRhAKYCUsy9Wau/fvs3ftBl/44ue5zWc4PHzE22++Tj/p4oRiMR7zg9ff4urBiKw3YL1eopM+Dw/v0u13Wa1WKBnz8OiYxycT0l6Pz736Couy5saNG632t8D6C3NWJ+8iheI3f/M/xpQlq/Wad958E1cb3n77TRoG/PAHrwdDWa/L7v4eu6MRQkuk9LQZpNvfwubNEDbaCGc8UjpMUwamX6w5uLLLl7/0FZ577gUeHZ+wO19y9eoBp48PiWyDxFNKQbffo1iukVohhdqaRqRUATxl7NbM92x99GVtiRIZkVR4JSmMoa4K6nLFernEWINDEmV5WzgoBB6ddkk6PaJOH5F0IcoZ9gfkeYaSFyOjy+dlIQRKilbn6/HeMRwO8d7T7XY4PDzEubDR9Qc9kjQjy7LtBhap4B5erVYkSUKWZvziF1/k5J0/4rkRyEdvsCOhuyuo/JI8MRTLc27e/DxSh66vbp23yrevxxl2+v12gw3dA611UA941x7k5LYg11KGjdmGghvhEXhcHOGjAS6KUUqRpTliuYL5lEVVM58fU61XdHoDkk4fnXYR8inZvj6FazOSt1WQIHjnqY0LBkctiHWEdSYwcS1EcQLeEScxQimiNCZOYpargri/xyBVdHs5Sar5F3/0ByzmS2SkqaqKoqi4cfN5lFDM51M+98Uv8O47b9HJO0Rpxny5Znd3n9V8znB3j+n4FCWCm7tpKlSktwf+POugpOY3fuPvYNZrxuMx+7c/z+/83/+Ioliw/v67/Ed7t7n1/HNUZcl0uWA4HDIa3WqLTIm3DhGpLY/8clfVe48SCqkirDUUZcHdu/dR0vPKq69xenhEJ+0hDLz39o+5cv0m08mKONEsljME4VAnFbgmHIA3Gsdnpt6/nOWFBCdASmCjb/UopfHeYJwPo/WWPSyimEhr4rrCO4tWmmGnw+7+DmmWAz6k5LVcfWQgEPT7fV555VWW54+ZjU9oxo7TyZwsznFK0RlkDPtdnIV3797n5758nbTTYTQakWfBLDybTJBS0tShaTUcDvnN//Tv8Nsjz+/89v9KYgq+9UtfZ7laceXOa3z9W7/ObGFJzZw4ueA3V1XVhkiFZqCUkuVyTRRFqEt63I2UzdNgrGMxn/PlV17iR//0d1hTMsn7JJ0dur0RnX6fPNslTiKQjsZYbJtDKaUMgSpxDnGIsPbOBTrQp2g9FU8IoSJcYwhU8TDiEcLTmAYVaSBsDKauty4/JSJircMpDsdkOmVdNwyHe6RxRr8/YjI95/zkOPAQbcN6veboqObVV+4Q65ijo0P2rx5w+PABAFm3g2kcr7zyWeaLFe+882M+98WvbON2q9qgVeu4NI6iDrgZJxxRp0ukFM9/5jMIJ9m/+Twv3vuA88k5o9GAXr9PksQkSUysFL5FdcCTRq/gXFQ441AquBqVlgjhiCPB9av7DAdDZssDhsMhsdaszo957rkXuP/he4AjThPW6zmS4BaO4qTtHki8a1l4l5ySz9ZHXyJYTIIBSgga01Csl9SrBY0J+DudZGgpiKRBRp4yikmSHKQmyzskacJwMCDNUqxpII62zle4MJjZkNlLp9OhKkuK9Yr5fI5zYVPr9XoIIVgsFjRNw81bzwUqgbUtWFy0copwWFRa8cKrryB1wu/8X7/L3/7WXyN2NUnW4cdvvM1/8rf+HW4+/zxestXfbkw5m9eVJMlWnxVMdSI8d7xv7XEeUAginG+QSuC8ClnoSiB8GHs5AtpOxJ32awWxSMich2iJXTvW5ZrFrKao1qTdHVTy6YKOP01r0403DoyxCCVQm6xaHJ5AX1E6Rsd1CEMQkjSL8F6hk0AjmE3OccYgZUQnS7l9+wWK1ZKzk8fsHRxw42Cf5WzMZDJltDMi7eZk3Yz0fsZnP/ca9+49IE87pFkSxvxlwedf+yx5njGfL+h2EoT3oVNlDGVZhsmFVti8Rz+O+ZV/49f4xi//KtPpnHd+/Drr1Yq7H7zH/pWr7F05oD8YBJOtsCHo5qdMtpdxTN6CVx5nAknCC1BaMtrZ5YP33+PWnZdItaJqatQKDu/doz8cUFcVqpWZCe8xppUZ/RSrVQgRJpPP1kdeOkoQUuBpNaRcBHR4wgRCCxmkjUlMpBOkBI/CO4sTnm7eQQJCQt1UrRzSb43ZmyCmbrfL57/y8zz+8AMG43OUEHhHiI5uD4NVsebarTt4GbTrdbnGmTqQobIcpSSz2WxrOPPC88vf/tvUBv7h//JbTOWQd48OeXvyOl/8t/9DoEQYmC3Cvp0kKVL6gE1Fo5SkKAqyLOC/qqLcpqpeLnQjqdkd7vDH//Kfc3N/l5//pa/wD/7h/856uWQ2PmGws0vemdPpd5FxEjrhUUIWabxWpFFMUQcDqnSB+OOedXD/4kspFUgIbffSWYuzHtumN8VROE2HhB3XsjHDBq20QkeaNM+YzeY4nZJ3I+JU8o1vfIPf/8e/x/0P1+zuH7A76KKF5+xszGAwIOlk7B7ssFjMeeWzr3J2NmY2njI+P6bXHzHYGdHrdJASzsZT9nb6RFHCfLG4uImiaDuKnk/PEQLOFisiIfFS0uv1WhAzZGlCHGnwDqkUQvgLuQCb4jaYf4QAax1SAfjtqU0oTZam9HpdBv0BSRxz727Mw/feYTAcUVcrpPDBDS3CGAfRphJ5j3UyuKfFxZ9n6y9htd2ZpiooixV1WVIbi0pS4iRpu0QGIQIST0UxOk5CsVnXzKZjyrIO7iknsM7jZaAobKkawrNelRjjsdYQRRpvW1i9ViyXC27duoXWkvPpnLfeeouvfe1rW7Ph2dk5VVUxn8+5efMmQkkckl/79X+Pt998i5NSkznDy7dfpHNUc+eVL4HIMU3oCGxQdZ1OZ2tqgHDa30hr/j/vp1aK0zQNrn3PKEnoBrTYP9rOsEfQqBwVC6zP0F1BIjUD7/D1inWxZLVeUDc1Ud7/K7m0P4vLex+Qi84hhCJLYryQNMbijEWkPnRqkxjnsqDrloIojlivC3wlSJ2lXM44fHCf5MU7DHLFsNfjtddeYzGf8aM/+xMsjqyTgUiJswQtMz5z53mkD1Kel26/gK1Klqs158dHvPCZV+nkOcePH3Nw5So6ilFCsV7Mt+gna+324FY3K4xvWDQWEUd0BgOSpmLvyh69fg+tJEkSo0WQZ0kptkacC9lWIPfgQIgQEhAMoA1JpLh65QCvU/b29rj38IjTB3fJ44hyOUdKWM7mpJ0upqlwpg1+IYxzpXA4f9G9Fc5jxbMu7sdZKtJIBLiL/ca0mK08z6nrGmyIlI7jCKEVTVXiTUVjLSJKtoEfi+Uy7Gt1TVdG24Hq5lASxzHD4Q7pizH7V1ecnZwhvCXv5Kh2QpH2doM+d7lg/+p1APb29pAS6tpQrJbb1NKmafCAThO++Td/jV/8xW/w937j7wKWf/ff/w94/PCINO+Q5hlJEiRfq9WS4bCP0hKpFXVdk+c5RVEgWrxkXVXbRsN6vSaNEoQwWGfpeMn1fpc3vvc9/uYv/zJ37z/g3bt3efxgQtp5TLc/QMc5aWdA0ukR93bQWiGUIkkyjHVgw+/afcqMvU9FgRu0HZq6FU8b57eamvaJj1SKKIrRSYJwHrwlyYMmzChJHkcsJqfMxmfkyXWyCG5cu8p3vvMd7tx+gT/4J7/LcNhHY1ivlwz3Rpimy40r+2StpqyXJezcvEJRFNx8/jrPvXAH0iFNWdAb7hLHKYt1QX84ItaKqqpYLBYcHx+zs7ODt4Lz2RitIhbLJcZW3LxxhdoLojhGtN2vzUkroJcuurebk/0FcDzE6goRwM9Ktt0z4YgSTZ72UfJOcKYnKR/8+IdknR5VsUKrkK8uVRTGfS3OTLW6xc1J75nJ7OOtzcPSWEtVlayXc4rlMrBE44w079HrDwFao0BEp9fDkYCUSJ3SG+2QZB28bagaQ20Vsh3vR7GmqRqsMaH7Li5MglGUsKpX7O7uMZvN6Hb7nJ9PKMuKr375s3z3e99nNhmTd/scHT4izSLiJKHb7dLUDU1TYW3F/sEV/pv//n/gP//P/i77OxlvjAv+/n/937JsahLGpD6/9G9G207EBh220RaGQls/QekQYhMWAI0JB9QkSagrDzhwIiTrWPfECNdHOUIqtPIQx4g0R/KICMtitWR+doSIx5/INf9ZWEq2BZcImMJNYRBG9cFUgrAhManbo5NnCOcwpkHKEovHmZrVcsmff++77AwHDPLr4Go6ecZXv/pVqtWcw/sfIKVkd9jn2tUDJqdn3HvvfcanpxjrMGUB3nCwv8dLr7xC0hlQrlcMdnbBWc7Oxuzt7TEY7YCzrNdrDg8PL17z2nL0+DFp0qFYLdCxYHf/SnheaEXe7aJV2OOCvtZt8X3QIiqlahFJre8BFzwMkSZOYjrdDrt7uyxv3eD6jWu81esyPX5Iv5NzfnqEsw3WF0RJ3o7OBXGUXOyvHkL0NaDYGoSerY+20jSlqWrYPkstURyMtFIrhDUkIsZ7kFZgqjoUslWITtdaURQrfKU50Jq006Xb7ZAoQHj8JRniRi6Y5hlxGpPlSUjBc56iqNgwlkejEYeHh8xnUwbDEVVV0TQNJycnaCmoqou/uwkbcTpm5TX/xX/13/GH//T3iNIupq4wkaYsPYvVijyNGQ6H7U/uwuFLiO0BL45jFssFSkh0rHHeI5TGeSirhpPpnB9/eJ+RikiyjMnxMYnwfPPnv8obb7zOYjFhMjmh8ZK40yPr91nt3CLNuyRpEgIopKZxPsT2fsokjU9Fgbs5KflWOxNphVA6ZHe3v9QsTdFxRGJCOIISkjRNqesaUxtsvaZaxfzgz75H92/8DfrXDvC2Jk1i7ty5w/27L3L66CG9TsI3v/UrPDp8iAJOHz9mfHrOfLUmkp6z+ZQXnrtFpBTHJ6eknZrucI+mKlgsBLu7uzRNQ1mWnJ2d0Wk1N4vFgvlshjee5XrO9PwM6RuMqRjtXaFsLh7+lwsAKSXCs41J3Wy8wXQWdJbSOfCBpCCFaJ2jHrxh2Mu5fvWAoig4ORzw6OE9Yg3aabQGpTQ6jUi2cZQSJaMnnPnP1kdfm+vonaUxBltVONvgvUNHMXGaobUOLtqmQmtFGsetKS1DKt9+XFMVRXgWCoWS4YFbliWuNbuEyF+11Wr3ej201sxmszC+ak/zWmt+8P3XuX37DtPpFOM8u3u7PHr0EGss3jnm0xmD4YCyqnHeEEnF3/v7/yX/6Pd+l1//znc4PT5jVdTs7e2wXE2ItGa1WtDv91tsk8LasGGHJKFyG2ayKSDClMNjnKGpPY+Pj2nqQAjRSgEKj2upE36rU/TeYwSgNCLtBsyPTEibAu8Mpi6xTUPRQv6frb/4CnisTdiBQ8oBWjtsWVBVFQ6B1jHWeTp5ilKaxlYBtSV1OwIOUb9F3bAsCsqqopdqFJ5+p8uXv/pVrGuQtuGP/9k/Jo4knTTBNhYVRXTylN2dEcI58m5ObzDi3sNH5P1dVuuC1brgxRdfJM9zZrMZq9WKyfk5e3t7ANy/fx/bGJIooSyWLKZj+t2Mfi/HyRgR6y2RBMKeqtrJGdDy1Tcx2w7vQUjf7tGi1SFGoCRRHCZneZZh6oYPvOXhBz8JxAUVUFO+PchpERoX3lksgA+Ix8sA/Wfro680zXDGBo2th0iA1AnOBxSmkApnGyQCY5vgZ3EWrwRahmuzXq3QSUZTrpkvFhTVHnGmEW2nHxcQbxIRNK5RtN3v4jjG1BVV1XDnzm3u3fuQo6OHJEmMNQ2r1YrVasVgMOD69esUq+WWXHN8fEyxWrOu1gyGO+AFy/WC2y++iEoU0+mUuC4RSrOzt8toNAJ8eB85hXMC2T7LozawJI5jnDdbDJ4QEufD3nv/4SE+TvjDP/kT9g96XN8d0e91KVYlX3rt53hw9wPOJmMmsznF+IzF5JzZbEyedMl6fXrDA+JsGIrmNkzq07SeigLXWoPEt+MjGbBhWlNWdbiA3tHY4BRMspQkioi2WAtLaZptKMSDB/d5fHLM/u6IThyQSzuDIT//C7/Im2+8zmx8yv/2D36bUT9HOvCmZjpf0h/2yNKEnd1ddByT94ecjadEnQHz+ZLJbM7t27fDv1eWlGXJ1WvXsMZwen4WxrOt0WYynrAzGuHqCq9jyiZ0rbSOtxrGTZEr2vHYxgG5KXrDSLvGNSuMCM5fKRVKa0CgvMULQaQUw16X69euML3zCtZUnB0/wjqDtAanDN7FxHKDmQrCde9ECH5onm22H2cJGWGdvej+KIGQmijWdPoDkiTddu03PMOiKBj0YrQwSCLK+QRhDE1zlboxCKXQwm8F/a4F03vvsKbZppHN5/OL+0gInn/+eR49ekRRFHz+81/gweEhu7t7zOdTvBfs7OwwGU8o1mu0DqxIqRRKeibjU05PT7jz4otMplN2WwnCuqhat7Kj0+1RNw2xaVAqyF6qqmpjXzW2afDWhQ6LaQLyjNAhK23FYr4IFAnvEZv7vcWiwZNa9FDoSqwVeBkjEonLRyhj6DUW15win2HCPvIqijW6NZJJGYcDmdboFgGnpCKKIhKpW+B8g63rrSFLERBidVVR1YYPHzzixo1r5DYCHLKNi/7yV77G97/3pxxcv4FfL5gvliRZws1bN1gs5nQGOyyXK3avPo9B0R3tYEXE+Oycl155ORgb2z3TGMPVq1eZLeacnp7S6/U4Oz3DlA3nZ6fsjQas5mMGoxFRkm5DSi5zREOBKVtD80UXF1pjM4TnEKC3dzAI6dBSI/KY69eusF4XNMWa+eSE5ew8GNcEwdQr5Zak4oVruaPqiX3/2froK4pipI6wdR3SvVpfQV2ut8mdXgq89dRliWxDYpSSwSdRVyRplzSOsXXBZDqlNg0ItTUbbqhGm4mS1FEofp1DKU+WBjPsZDKm2+1S1yUvvPAC7773AauiJEkiJJ7ZfE3dlKzXS5qq3t6PqU+o1isW8yXW1OxfvUKWJ2R5RuMc3cGA/mDYsnlFsGR433IpL6a8G++D0qqVb0ZY69FK4FB4qfjeG2/S7+7yB3/6Z3z9y69yO07Z6/VwznFtd0QndqRNTekck3LN5OyElTxHn6X0dlZ0BjukSZek3yfST0XJ+P97PRWvViuBdQZrQ2xpHKdEUZAAeG+p6gDQd16EmyPPQ3qJdegoQVY1SkqyJEFozd17h1y5cpXb1w7wpiGOFNeu3yJJUu7dfY/x+RmRrTg7PQPh6fZ7NM7RGe5Rlg17155D5RlXOvuknS6dPGEynTMej5FSMhwOyfOc6WRO3QSxd9M0dKTEpimDwaCVByh0mwKldDi913W9NeYI7/BCAPKJG3ZT7NoqjL2dDm9gogi8RSodunwekIJeJ0Xrq1S1YTabslzNcVWDU4K4XmOMxcY9oGy7bzFedOjGETJ9Km6BT+0KVAofijskUkZ4HRMnGd1uL8QpNhVJHLibWZRQFCVTOyaKEgYjiakqVsawXMywxlFXDUrWNMYglCbPc2wTRlxWBaxRXdfbcVeahrjd+/fvUxQFSZIwmy24c+dF7t+/j7GWmzdv8vDhIXEU4ZKEs5NT5vMZOIuSoaAZ7e2we2UHISWz+ZRFsaLT7dPv9ej1OhgjyfMMIdjqbaMWZ+Z9QxxFW9OO9x6hFd6DMY6yrFnMFtTlijSNkVq1ZjOBdBJk6z4XMjy0vA3dZi9x3mO8oklGuNQicktcNVgWn/Tl/9SusqrJpdoeqiGMYlV7HZSUgb4iBHiIhWDeXtcoiqjrmtnZCXK1Jh/ssCpWPDqboPdG9LMYrSTdlhzy1Z//a3R6fR7cvUs2PWY6m3F8PqE/GGFFzM0XXyDudtBCkY8uisHZZELW6SClpNvtMhqNmIxnrNdrbt68yeOjR4x2RhTrNf1+n0hJdq5eCwzbKGIw7D9BLQisUJBc8jxcmmB578EZfF2BVnitkCKUue27nCzSXDvYb03HNdPpKSpOqeuKTGt0lCFVhNTh+xrj0OpCtvNMFvbxl45Skjh0SqVUwcgVRTRN8Ld4ayiqCuEFqBgZpbS3McYapPO42DBbLmjuP6B/5SaNseFzlySEP03YMLYhzTKWizlVKxuLYx0aFoMRDx8eEWlNXZfMpueh1ylDqtru7i2ODg8p1mHS8fjRYyIFtlrT7XboDQfIOCLVilGn25o4FfiQQKaE2h7INk2wC+KSpiwaoihpO9Ce5XLJo+Mxb/z4R9x7dMTq0RG2WvHdtz4ku3KH/OAKsfagMlyluPGZIbPJfdKlYbhKOK1LinrF6eF7jI8T4k5O0j+g1+t9Ytf9o6ynorpxzgapgW1w1rdavgypZAvPt6AhiRJUFE7zxbokjtp4W2Opq5Lx+SnDOOfo+DGPzifsDfukShLHiljDYLTLDdNg6oq7H37I1TihLNacTcZcv34dL2Ku3rhJb7RHJ8/akIlwA4+GXZw1PHr0iDzPKNdrPJ5ut0dVFQGDlKRhlCwExhm00uBBR6p9s0hMm0kuCSYOuLhhLzpYEmtqGrMGXwLBWOFtg4hDtwWpsAK0CJxF1Um5sr/LSy+9hLA1D37yA5qqRlOTxhmeijSOWDYS5U3YgMs1wiaf2HX/WVhSCjYoYeccSE2SZIEDqzUIifc13iuKokQIz87ODrPZgkgHHE0ax6gkZdjrIYTDO0ftCBKHOKapwsGkrutt8tRGGjEYDDg7PQlxv20RvV6vGfQVb7/1DkpL8k6H999/n4ODK6yXK9I05eDggDSOkMJTLCZknS5eRjjb0On2qa1BRjFJnjMcBFlCHGs8IQYyahFdm4fBxiUObONRjbOgNI2xLFZzTk4Oscs5qj8izTtoqfEK2kHu9uuFkAEhFvrWBDtSGI953aHRDY1ucOmze/ejru0D0l3sT7Y16ljrAp/bO+qqQtow+dl0Qq2128O4sIY8y7F1xXyxILp+NZBvnEFJiLVmNBrx4mdeRkcJ46OEvSs11gk6nT793pD+oE+aZ0Ea4RxXrlxhuZwzn49JsozpdMLbb77Bq69+Fusa0jRowgejIaZuyLIs3IM+dO+01tufKejM2/hzZ9spW/gdXI433UhqqvUa49aINCfBtfSF1uwZJteksWY0GPDcrZvMzo+59+5bGGdbfa8FBWncBzxxDEpFOMv2d/xsfbwV6oOQ5FiXZct2d0Ge4B1NXbfUmMDIF+s1UaeDEJamWSJ80O+iI+LhiMV0xtlkTC/bI1EXHfbN9do0n/I8Zzweb70zzoHwjoODq5yfnxNFEdevX+fu3Q/w3nP/wX1efuXVdu89oNvroZXeTkpMXWLKFWkSkXU7OKERGlR88V4LhTZcntRt7qHLkq6LBDJLpGMqYTk6PqOYV+z0M/w6Znpi+Ovf+CWKdUFhLHHcw0bgd1MiUZBHEp1PkZMpos5YN4blumLV1CynJywWC5ZZ/sld+I+wnooCNyAv8vbGCkJqcCRxTFHWQBDtb8adUgTWQFVV2wtflwXNek1vtE+mFbPZlFV9jSjP2s6QJ9ERo90DlJKk3T73PniPQTVn7+o1tE4Y9Hfp9fpkebq9ya9du8b7779LVRV85qUX+cm7d3n9h9/ltde+wGI5o2lKJpMJg8GALMuYnI+Jkmirt6XtjmwoCHGUtKNnvy0ONm8gpRTG+uC8NQ1lMSfSoJzDO9Pq5jxagnAOL0MhIEXAVV072CPPMq7uH/BnnYQP777H2b2fYKtT4iShowhGjaiDVAndPKbyny7sx9O6LviDgihJSdMMhKSqG5pihTGh+7VYzBj0e2RZsi1YnTMIY6mrgun5OVms6aXBDFgUBZGSlGXRhnOEIjBNUzqdDo8ePUJpRafb4ezsjCRJeOHObY6OjugPOkDARe7ujpjPZ9vEm94gdJdX8wnRoI+OU5zQaJmhIo0mZrCzi4w0kWxNZN6CtYQkvlAYxHFMVVXB8FNW2+5ekiQ01mFcw7o03L/7PlQLpqePoK6Qe1eIsz78FAD/p/88uUKx67TExBHWP3Ojf9QlvcNWa7xMnkg2VCoY+5w1VMUC1+LahPbbvQrC/YdUOKk5Oz0BHbGzs0d929BEEi1px8IBE7e3t0ee5yxu3mQ9OUXIGFNbhPbEWqG1pKrg1q1bHB8/Qgj4ws99jh/88Ee8/PJtHgvHeDIOOndrESLERzemQSoJIrB9vfOBrSzAe7t1y3sb0iJ/em0KdWtD99aZgpB25fG2wfu4RUeF940SAi8Fw14X6xxHV25w8ugBxlbUVhE1DuEcMwyJDBNJIVSrc9AkqcaaZ3vux1peIoUmjlPKdQFe4I3bJkmGtEaN8CVVVeNlRNLpIzyUVYVoysCk3T0gjjSL8TnnZxPuXD/Y/hOXu+xCCCKtWK/WxJFuD0yKKBIoAbPZDOcc169f5/Hjx3zxi19iMp3CVclsNmU0GmKMIc9zJl5EfwAAIABJREFUynVBnudkaRqCfUxDVdc4EZoCnTTfmneBdsJit6/j8qHs8pJSgtBI53C2YVHU1MZSm5Jf+dVv8j//T/8jVjhOT0/4N//Wdzg8PmNZGyBCJBFzq+lf/TnqkyNG2RnxfIyel0RKklWSlVIsVmvKavWv8cL+5a+nosA11mFMHfAq/kITpZXGuRJsSNxSSlAWy63OaXMjXIz1ZXCHVyWnR48pP/MSohuhIo+3Bu8NaSxRoxGDwYAbN25QF0tM2eBRgdMpQbfpNi+//BL379/j6tWDgIi594CvfeWLvPHGjzg/P2VnZ4+zs7NgrtGCsiyI03j7+rdOXVx46EeBZxcQYD7kQV9m4LadBISnadbhFEqEjBKEVzS1RyiDECpgxrynUaCdBxGQYqN+h1G/y62ru5ysKh4/uM87P/ou7737Ex4/foipCxCWQa/P8XSMj2KerY++NkjLpgkbq/Mebx1WhC5npD2d4V6Ib5SSyWTM2ckJaZaCl6xXSxpr6HUjju7dJU8z0lgT740wNrAYi6JAtsxH33ZK4zjm+PgYrTWDQY/1ek2WBbTMZDLZuuL7/T6r1YqqqredVQRIpej0eqQtbsZaizeGOA9d4yRJ2lExSNGyp9tiVLcFbxRFrFarLbImieJtFHBZluRJHt63xlKMx7xyfZ//88//H8rlCGMrhvs3yfJB2+X2TxS1l4vczfvbAk5JTKzx3RzSZ/fuR11RnOBMC7ZvU5M26LemWmNMBQiyTjeE7DhH5SzKeeIkTBWss9RNw+TsmMI6ZJTw2ZdfJY40KpG4FsIPF3KALMsouz0wDuNqvAvUBtsY9vf323s3ZTgc8sYbbyKF4MH9Q37uc59nuS44OjpiOBqR5ymPHx8/gWsUQoTJlLcYE34eJTRSi+0BdPM6LqYFAu8FztdU6xllNSOLNc7GeJ8HyQJJgDdKgfaeSAXz7v7OiDsvPMd6teLkvT9jPJ0TuSWRBOddSDYkoqoKpOqitURFMTJ9lsD3cZaUGrQgyzrUdUllLFq3XfgoCmE4dU1TlTTOECWBGNM0TZD7t3znVVXT9QotBWVdU1tL1FIvHArnHUKG52xVrkFc1Cabfdn4kDK2t7fH48eP8d7z5ptvMxwOGU8m9Ad9Dg4OWK0WjMfnre/Ao2MdTPMupa+CCTE0ucQTrPHw816m0rT7I4HZrKTGW4/3oONwX6/Lkp+88w7n56ccH97lX/7hO3zt619nOp1x84UXOR/Pee6553n06AhwGO9ZO8+qaOhevYVb9FByh35nip6PSYslvXjFUBnmVfNXf8E/xnoqCtxIx9R1s0VYbdrtSiliHUZNrgm0BC8UiZSIOMZWVasp1UFk7j1lseT40SNq45hMpvSyFPIILYM4WyK3X9Pv96nTlGZdI0TIO9+e/HXEyckxWoeR3Hy+DB3ayZQ4TqnLapsS1e31ODl+RKfbRYjA4qsucemUjMAJjKkvURR8G/MqcdYG402rPQvg/hrb1BDHWAHCWyIMtgnaR+UjxJa4EAwOdVGSZh2kFPS6HfqdnGu7B9x54QYPDw+ZTSZ8ePcD8k6Xl198iUVVMp0vP8lL/zOxNuN5Y5o2mCMNovwkxUeWQR6ctyrSLObLEM5gLUmaB2JA3VAVITvdmMCKdc4Rq5i6rlGtgOwy+WI6naK1Znd3l/Pz060WK03T7URgw15M0xQhFOPJpP3/FgbuDTpSDJJBiBauG6JY/iuGmA3h4HLRudHabormOAmGJaEU1odUoboq8FHC9GxM0tT88Ht/zK2bV3n/w4c4JE7GDKwj7vS2m/pmJOfcBR96k4vuxQbrFBPrDC2fjXs/6gruf4WyBs9FfLcn3MtprDGuHf3aJkzSpAhAeCWpG4tUkm6eUztDnmiSPON8es7uIMdHybY7KltTzOZeCfHOBuWT4LuQElLHYrEIISEoiqIKiVB5ztnZWXgmtBSEqiwZDHr0ex0QwZ3+RCGtIpw1oUPc1pKb5wlw8bNuZBZYfFNTlCukFyiZEBFQeI0F6YJXwjuHVQrlPUJ40ljx0p3bDHoDPtgf8aff/UMmDz5AFDOSzpJemrXmJIlIh+g4ojERKu1+Mhf9Z2Q5Z0A4dKzCgalYs5FaJ0mCcxHWGKxzGOPwXDSbvPdBkxslREmGTlI6WcbJ6TnrdU3WyxDCYSxbvFxV1xdyAELgTVEUW4qBQHBycoIQglu3bnHv3j063Q5VUyIlnJ+dPEFH2k53wytCa0WY8ortIQwuUzdkS0+6KHRdi27eIM3C7yUYz8/HE47PTnn7rR9TrlbMxlPO84xvf/vfwpOgo5Tjx4+Rvs0SECBdgwEmy4IsSqEvcFVEorvo9RQTnYFtcJ8yg+RTUeBqGRyyzhpQyfbBubnApl7jXU1jHb1eyLh3OCrnSIAkCeYrGkvJCuNPqIXi0fEJ+7v79NIEoRzeh812Y6zYGGRkHqDR1sq2o6BDRKRSeK85ONjj6Oho64APXwdlUSKlZDYd0+/3ieOYLO9ui49wEwcEjY4UTW1bjpxDyPY01uKfNqad0F0gAP2bCkE/PNx9QKjhGxwepWxw66sIpGg3eQU+xbuQtoL0pNqS7u2xMxqxWBfc/szLjIZ9sjihdICtP7kL/zOwNhqtTVoYeJI4Js+7SAlV1dBYg/KaqlzjpMVJT1GVIAVNtaKbZ6zLFaqIOT5+yHDUZ2932HJzY6RS+I2hQIWI0TRN6Xa7nJ+fI6Wkqir6/f4T+kggyCC8R0cJeZ4/0SXdFLIAaZoAnrSdQDxJ9RBbjSJcjHU3RXTQcjrwwT2udQwIGuM4W8x4cP8edj3n+t6A94+Pef76De4dPQ5WH1sycrdQvU54H7gGgwt/vG3jYmuMtVhjcMaikSAinHg26v2oS+sI02pShbfbItdZj5ACaz3O1qyXNjxglUbFOXGcgLPoNAuOaiHoxAkRnsV0zPHpKVd2Ryg8SbIxVIV7rK5DIlrYP1XojnrfcknDvlrVQfNa12Ffiltd+YMHD4jjDCkkxtTMZ7Ng2GpNW5fvaykEQqhw77R4xpAKeWHitU0DSm2pCc7WuKZGa4H0EodAOlo6TwPt93dCBP8E4J0nS2JuXj9gd9gl6g24+84b3H3z+5w9fsj5+SnKFMioAzJh2AsRryLKPpmL/rOyhMO1+1Oa56F2cA6ldZuI2IY/ONvKAOrQLEsyMAW+3TeUkPimZHze0IiI5aqil6coPMJbZBSzXq8BtjKeuC1qgW2B2+l0KKuS3b09jh4/otPrMl/MttHsdV2307UL2cO2eJUAGy5+9MRkQdLKhuRFcbtNtKT1KHiCJEd6vGtoTGgEeIIB+PadF1lNJ9y8cZOzkzMOrtxAYIgjiKMuVdskDKkDIkTySk9RVSjdRWYZSqd4mUAFkTj/K7rIfznrqShwoyjCixzhwo1jtjorgbcGZwxCQaTaLo+3rFdFgBBHCb4RNGXYIGUaIbVit5tw/+ED+p2U5MU7dNMIHQlU62g1xmCNDZBvLfBeoZQJSU15xqyu8UIiVMR0Ot2OwDZ6w7IsQTjqOhS5m49Nxmch3lLrkCh2CUWTJKErYF0DluDQFb5FhbEtTpxzlIWhXFdUWRVufBkMD842aO+x0qBEA4ljg1bTGwMaEicbICRISWGJhGDQSRnmSSjipSSVDtSzcdnHWduEoo0j2wWTGNbQWM9iOmFmLVmekucpWZoQjUZYG6D1Dx8+ZDgcEqU5qlhz8ugBLzz/AifnZ+z2eyghabzDY/F4OmlGvZgjlWIyG+O8R/qIwSBnNptgbY2ULbmjLYY376XNx7YIHBsK8tA9Ba3ltjDepqepcEi7PDLbdMCcc1RV1XJ+TTsyrGkaSxTFNKS8e/ddJJ7X336LvaFimOVUpubLr73E9994i6ZcsFou2L1yA5XmCJ3g23GdsQ1FtaJuKlzTGtpaVI5XGi+fYcI+6tJSUBtaTJzGGkPdXmNHKDBD0SBYzcbIJCdXMULFpElKL4pZrRYIFzjdUgh8seDd99/n6pUr7O3uhmJRgfcO4aF2fnv/hdCFjREsNDTK0uA87O3vc3ZyDMD5+TmdTofFYkGUxEgFQqjtPunrOtAftnIaAI/UEq2TdjRdIdVFY0MSwkcu9IyS5apkuZywM9zFSoHAIZxBmobSO+LYI5VGWIsTEqip64Y076OiiF4n5Ze/9Hm+9NoXmHzzW7z+wz/n0cP7nB8fcTaecmVvD7zjZDqmWq0/kWv+s7KM22RnSFSUkvcFTVWF6VdT0lQlRVFsmdveC6Sv6OWaQnSxDnScI7VGqIjBYESWRHx470P6/dfoZSmxDEl2QoT4Xx3FwXRZX/h+oigiTVMmk3M63S5nZ2cIIdjb22M8DiE0zjmyLNvumRtp5aaBIBBYY0niFIkMnF5nkUoBT0q2Lk8pnAtNsg2VY+PxiaKIa9eu8sUvKfJOhx++8Ravfe6LNPUa1zRI4ZnOZmRpmCyEZxcIpYkA4QNpIlEx1jZURuBFhuolKN3BrT9dE9+nosBVUhLpGO8jvDfbh6f3Ia50o5Oq6uCIdd0eUinipEPUYriEUkhASRX4rlXJajHj8VkAgw9714m0REiHc6ClovH19uQfRmDQ6/WYz+dbfW/QbgWe4mAwYDqdBj3ug/sMh0Mmk8n2lLaRSkAYFyAuQh2cc3ghQTStLCHo3zaf13KDlTGYpqEupthqRV31iaIYIWOcqxBSh0QrqfFK4QRtgeJxFhw6kBW0xrXjZeslylukUCGeU2gQPoze/Kdr5PC0LaUUMkkwdYySgrquwC9ZrxYkWUpTVxTrNaYpifWIpNMhbvWx3W63Rd1ImsawPDnhpVde4wff/y7f2hnie2GU6b1Htu7e5XJJHCcURYHHgg8n+sALVWF01ep1tdbbP7ScabxF4FBS4U0oXqVQW6cuXGymmwhTdclZDBdd68sjXyEUTRNQNaaxNHXD0emMk/E5/8dv/RZ3Dvqcz2Z89rkb9DsZ1WpFL5HMZmdU5YrGFOSDfTrDPfJOD5QEHdHoOERW68AVpdUQXzZiPFt/8aWEQEto2odpJCXeOlQUEekIKwXSOrSWNE3JajnDq4SOTsh1SAcrqhrXlFRNQ12X1NYyiFPOxmOmiwOiQZ9IeJx325CFjVRgc5jvdrvMZ1Mcso1FHW6nEpu9+Nq1a9Sm2eqEL7PEN5QboYJG/AkElxCtAa0lfHiJlB7TFrmbyYu1ltW6Zr2sGHQDQcJbh9eCxhiU89SAUq4tKFQwBjlHigt0m/Y50ksUnat77Oz8KufjKYcPH5AkMdevXMM4OD4/5+233v6kLvvPxHLet+SETYGnUdpup2hlUWDqisZYvIpb+Zjd7nE6iUBG7XPZtDG+hvF4zGS6IM9Dh92ZGpCkWYZpGpQUmLYo3Ow/p6enKBUaXBs84moVjFibpsJ2rxSXpmICpPDgJXgTpgSocBgUF1MyeNLwdtmrsPm7Ugq0CDWUkwKN4sbVfYqi5OR0zPS4oVjOMHXD4f373Hn5FabTSSjWhcaYJjTiVGA2Rx6iOKaqPSZuaBqHsw4nE3T309UQeyqeEpFSmCAyDOMlD9aDdOHha4RpETKGylqss6S9ncCt05q01Tqt10ucaQKQWwjK6Sn3H2ief/759tS9iU10T4yrth1d59GRIokveJ7D4ZDVaoWzwQU5nU5DFGMrMr+sp0mSZKsHuzz+vWxscF5gmwvt4DaadNNZsJaiXLMuKkxVkpRThIwAiY4ShGgw7QPeWEVMjPdt6pkAXIPTmmZjWNM6EByFRAmBE/H25w9vkmexkR9nhY2rDSdRAUVUlhVVURJFQVqANdjGM5tMKNYrtAqbXpqmW1OW1Ipvf/vb/Is/+ROc89z/8ANGg2FIqXEO5UNKmfUtkF4InPMoKciznLqp8L5B6/gJsPxmg93c55dXSMrzAcblPEpsqBzhv6FguBiPbV28IqQ2efHk97xsnHx8fMqj8yl/+r3vMl0sOdWKD+9/wP7eDtf398iE4q9/7ev84T//I2aLGSd1zaAowRnyJCGLErSUrRxHYeomRAS3YRLPYPkfbwkfQmKc9SFdtk3iggvpihOmRWoppG/wzqCCSwepIgQO0xiQjqauENIxH5/x4P49et0u/e5LaNVep0v30KbIlVKyWASW8ebjG7c5QLfbDZ+/JJHZFBZhIpawbkNLpHySvrFpkDhnw57vJc5fGv+29+3m33TFFF+tW760xUmHNR4woNtvYSw+TlDKE0UapXQbpx74uhvcnRTQSSL03g47gx5xFEICaisY7vS4feu5f92X92d6ORdMfA5PTDDzysjhbc3COqoqBDGZxqBVHA7+zlEUNVIK+nmOUIo0TUkl1KsZhfM4IRiNRoxGQ3QiwCuiKGAO4yiiWC2QSmEauw3uCSE38VZOtiE7XX7+Q2hchfRG107F2iRTJaBhi7LzPjSdfnpi9tNLCIFvGoRoUDJtp8Eh5RQh6HVzbt64wWw25/XxY65cOWAxDYiz46PDQGASIhTZtL4n73A2NFO8B9/+HKFWkJi64dOWrfN0FLhaYb2laDwoSJQGazDiArRsMSgRbTsKs/Nj0t6I7nCXbrdPlAiqugndIFeyXMwQOsa5Q956+226ec7z16+Qx+2IVcgnOglaa5JYU7YF6kaju1gstkXMar1GKEld11v8TJZlwQjUfq88z5/glG6TUKRsdWASK8X2Ib05kRljQgHaNFTrNcVqTVOugnyDcGqKYrPd4DcdY+8tkYvwHpTZIG8sWjuUjlAQOrkokB7rNzKIoAf2PDPqfKzl/Da4YzDaoyor6qamqFeItQcBaScnz3OUkigJg+EOV/b36A8G6PZE73XCgwcPuHnjBmVZ8vDDD+n1hty8eZP9/d0QjdvqtL2/kEakqWJdLLadDCHUJSbixVj2soN8sy5zHkNk65Of2xgiL6cvhVQ1AIFEgmuLjzgGZ7FNQ2Ul7x2e809+//eZHh+xXB7z/cN3+cVf+AXOakXP54y6PU4ePuALL73IO+++z+PpgvP6Q9brGc5r+sMd0rxDHKcIFZNENXVdY6Wkqert6362PvrSQuKlwvgggBGArSukjnB1hVIR3hqUisi0xrsabyukCpr/2gYCTqp16zIPAQvjww/57rrk5o1ryH5O1EpJpI6Q7mJvBDBChL1YwnA4ZD6fbw9j8+WSKIm3EjGt9RZDt7nHN6bKy/vtRooDYIzcJgLCRdfWyfbAby3L1YLpfE5ZLOkWM6TUpKkjsqC0xpoyaJBVjPYGkgwtNB5oalDSgFJt0eBxSDSWWEliGYpvh0IKg/OKJH0W9PBxlrNlmEAC1hi0zohUjFU1tqkoy7KV2PggF4yidsoVitCyLOnmAld7DBYhFU1VowZDmmLFfDYlHnbReFS7z8znc7RsJ6wmTJknk0lLsRkwnY6x1rK3t8dkekZVlUQ6JUnSf6XYvTzVDbKCUDtsTOibQ9NlJFjQ3baHMlMGhm6zRomMOHLbA54SEi8h1YrdYZebN67x6P5Vxo8PMdbgbEVVrRjt7lOsVyEVTkqcNyDU1u8jLxW3m3jrLMs+dRznp6LA9d6jpCTWnsZ6vCKkdjiLjpNwunFBExNON6plFjYBnyRkcKpKiW0MOhZY22AbA0IwfXSfd++OGA36KJWiN5pCpdGXHvJ2I/CWYZSfZRmz2WzbpbXuwtUdtalNYSxSY61E62hbGGw23AvTD1sphPce45onNmXhoGoaMA3eWExZ4o2lKUsKWSBkGpJY2s16e7JSIKQG6XCueeL0uCmEhIoDQdR7GmOom7p1hH66btancrXO/k6ng1YCJWG9XrNer8ODMgtyBCEUOzt7xHFMp9elv7PH7u6QNE2IYk0SpzRNTbFasV4uKRvz/7L3Hk2WJdmd38/VFU+GSFlZ1aW60QpqABBDjA1hXJB7UK+54mfgkgvu+TFmQ2E0GmkgABpnMAMNDETrLpU6I0PHe+++K1xwcfy+iGwMQEPXGCqrLY9ZWaWVVcaLiOvX/fj//AXN+pyL85LFYorSJVFpVEr5lp92a3CcDsgozO0oBdco1qt+sTtxo0poDSEMaK0Qv8VrT9qbDe7fbibTjX9Ezdv1HW3nefrijEcPP0Wrgf/kP/1N/qe/+Jf0m0u+/8Pv82v/7Dcploe4wjCNHUuXeOoe8tZsytFqzcXJEVY5/PYui/3bFIsDVFJElTBWo5JEAg/Dmwb3c5dYxpJCwGtNYd1OD6CtI/oBUzhKJZfmPgS6ZstQN+iiEnQrc1/7dktRT2m2DeerNcv1lh/9+BP0V99nf15RmIxKaZO9aiEM/bUgKEQqrSXmOVMRVqvVblzrcpMil7GBEAaKoqIsyx36NTYeQofI9Bv9KqAwvgty4YMYAl3TsFlfEYeBvmvRZgsoOU/CKHbL54MqiGyBEh01SolziE/uxsQs4pVmlBiHJPgukMWYb/ybP1epm+99IhKJ6dolQfaHHu3cmLOcBbpC1xq6gbNtS1GVzGcLJrMpVeHomw2b1QVPHz2kUF+hLizOGawzO3uv0Y/+WjhWcrW6IngwpqRte0gqX7Cu0dFXaJcpvdLkjiIx8eu3u/05xTHpVCYspEAMA5vVOTFuKZzCmGkWAStxI8nitBgjhTXMJhOmszkvvWc+XwA9KQ1cXp5gVJH3eSN9hIqEpP7WmWGtRaPw9K806l+Gek0aXNBJeKgxaXzORU8hClFcG4gRUziSD2htcU6hkicMHSTo+g4f8uaMom8bbFFDCBy9eEGnCu7fuQvcYW9is9JWCW6hZTznh2GHauXZ3G7DtdbSdV2OwxOCedsKmR0lam+LqCpHZfnuh1MS0DAiZLukp37YNZkpJELwtM2KzeqCbbvChpZGO0LaAArvZ6/wfAXNtdLgcu0dOiJy1ipi0JRW7V7Kvu+zejo368ObJuHzlNZO3CyKAmMt2ljq7ZZ53wniOHQiXJxOwRhcWXL//gMePLjPcrmgKByTSUXvAzqJ1dh2s6bZNPgIoW9YX50zn78NiYziXosKBj/ky04AFCFGdExiK8a1IAyuPRxlYtALUqAkJ0wcOP7+n3WHBOucvDf6nKpI9J7LqzWPnhzx408/46/+6i9oNhf8i7/5I2IMTA/2ee/Dr7JcHBJwtMnQMuXq7Iyv/8Kv8IPv/AHzAP2m4+jFZ7TthrbvOVAOU1QEhYjLot9NH/hy7bWvVY0UrBgj2ihC1MSYZC8MHm0sfRCXjKIq8J0cbn7o6Jo1lbUyknUGnwLRR3y3JQShSjmd+M7ffIeyLJh+48MdihuDNJdFUdC1gZiuubSjsG0EAoZhyM4f1zzEtm2Jachr9boZHicQ0uQGjLm2nAQYUr9b3yklCNCFgI6BOHhC35H8kJ1xGpS2ErWeKT6j125KgZKSQQsX1+a9VUfhLQpHXM6VqFRurkYamiRNRd4guP8+amcpmIXVY/KhQhIirSuo6xqnxeqtMBYdE/W0xDlL1/V0XctsNiMSCH3D88ePaNuO6WTC7f0FdV2RiBitUIJmYKxjXtWEIABaiD6v24j3YpEo35t+RYQ8in5v2j3GGCWSPU9ZRf+tUDvg4Hr/Dr6ja9dsmwuqymEQbYV8LWlyURpFtkZTirIsKCYT6umUQk84P38plNAIKXlCipRFhbXXZ8P4/Y6fL3s94p/uvlyb7uvR4MYc7IBGGUsbPH3wlNYRBi83DFeIqtEaaiP+iUOMdJsV3eYKU06o6pKuM2ir6bYtIYrXbDd4ytLxh3/wrzn5+jf5jV/7RSoLOiVCVHnDlQZWbl8Waw3eS/P5kyPfvvcYo9DaMZ3OCaHPvMhrlTBACh47omk38s/HMVqKkbbvGLoBg6LbSsN8dHzK6uocZwzWr9hsO8xqRUJRTebUdc1yuSSlRFlNZEGn3PAM0vAMPuAKKEppxMcDbRRVxJSyRc6bzfbzlHZODrJsCVMpgy1ElDAMA13boK3wBItqwvtf/Tm++fVvslhMKcsSa4WGE5XCaU0MAyolou/o2i3rzYZmdc7LpxKha4xwfYuykhhKJVZGaVxTKZJyLKg4aMgh4KPYPYkALXMngQxBk5SSfjFFsY76iZ/z5lh5FKzdDFsJMTFEOF+teXF0xNv3bvP//M6fE+LAb/1n/zXttufevQc8ePAexyenrCKoYkm9qLliTbF3wIHWVGrg4fqK0xeP2Gwa/ADTxSHFfI4xljhACIoUHf+/Hfmb+jur6zo5VMsKXCF+uErjjKL3A3HoKcqSlMAHmZJhNHqIbDcrPFDUM4qilKYz9ITVFsyG2fKAwfesTo/46ONPWCwWvHfvkDJHr6uUP18bVIxYV6GJtG27mxbs9sgkSWgizHGUpSHGV+3rRovFFAJWK5IyO1EbZGGRc7TNhkAQak2Aoevpthsuz17Sbq6wDGzXDT4Yah9241ljzG5aUijwriINHq3jzhHCmAS9UBrQo2gzMYSY99ys6OfN5OHz1s3kQxC7Nu8jShnKek45XdNH0MUkixIN3ovbS9f3XK3OODw8ZFbPuLy8xBmxwUsooh84J/Hy5SHWKCaTGt8PBKWwNvO4FdR1LdG16zXGKpIOFGWN9wM6X35GDcRNyqLQaUBsvuTfMbJD9UeQKiBC0HFthxDYNhesV2dUzlLoktLUIqrXY3MPaIVKBo1Ba0VVFCzmc1zpePzwU2aVIyVBe5U2O/Hy+Nk6i+iC96g0gmjyvQ0pEMOXa/rwWjS4Y6WUiD6gUiShCHkUkYJHGbu7rZeTmn7bomOkG3raZk2tjHBOraMPHq3Bdy1xGCQ9JiUuj5/zI235ua99wOGsospNJruxlsHHiC0KnFE0w5BvYeEVn1qTieaDD1RVgdgo6d2tTWIerxcmgNLSSEB+MWNCK43GEqOoGWOE1WrFtlnTbwa2cZ0zzhPdEOgGj3WOg1t3OTg44L333qOaTInKUJQGrUO+IYLWYrjfdg1Gu51XoIwJHX3boN5j4hvBAAAgAElEQVSMyj5/pZDR96wSJzsUWivJdLbAuEDXdRwcTplMF9TTGa6cYJyk1sWsgC2sRutKxlMUlHVFPZuSYqBZrxnaBq8EccC3qDBgimocNtzwSLz2bQR2gp7dt3wDVfh3jpyE24JKiRAz8pT9m9MwYOyA0QXO1VjjSBp0VMyXC+6+9RaPHj+mOT9jOV9y++5tPvzq17m62jKZzFFGY51cGENKNMbQ9iXV4c+hzTNCesmBUeirhtXmkqNnn7Lfb1mot5hOF4SYSPGNi8LnLaUU1FN0zrxPVlwUUqYRhL7DWYtypRzaJIy29GGD7wMRRwwaV9cUTnO13UDbYKw0ktEU3N9/i2694q+/+332Jr/G3qJGpUhpDZZAG8GVVfbgzJf/7LgwTsmstSgNvh+dQTRaW3YG+Hld36Q7qARq9BkduY5KY52lb3sGP6BiYuh72rbl9PxUXE+cI217yrgWuzufKKtqZxEp7g3XzctPCtpAEZShzCPprhPXn97nACFExHNTZPym/uG127eSAjRkj2OMoSxrXDnFtF1+XpqYEF3EdpMnoBWr1UZ6CKNpm4Z6Nheq4TDgQ+DjH34Ha0CZxMFsJtHUXPNn27bNnFR/Q/Q7ZMH36PDgsogXoVNqjVG8AnaB9AbRX6OmI+VGZXpYjJFhGDg5uYJwxfTgLsY5krWgLBHLyM9NScRyBplk11XJ/v4e08UeReGyhkK4yVpJxLVQJKOoKnRCJ6FpjlPf0bP/JsXny1KvzSkxPsSUEspaojIkZTBW4/sOlfm4YsqdR2kkrFZ0TYMPiWo6w7kC7w39sCW1a/wQqGZiNzPbvwPB853v/5hvfe0D7uzPUSlijcKKmBGbN9WRO3uzCRh95nwcCAwYLd+PTqP6URKYVHpV1CALSKFtNqaP19zcGCJDF4gqEkKkbRq2q0u6oefZ00fi5xc8EZ09Rx1np+fYQsItZrMFPgrKEsoCp7TYKqFROhGTWEONt8feB5Qa6LsNbdMwm+99AU/7Z6cMYkHjvcNYK+in1rvUpcJoUmnpu46ma2n6ljiOnLINk9ZWBGLGiIWXUXgkscsWJTEMgtg2G7EhiwNDP0gfmlEm4VNGQbDys37Fo9dcq8bHuokkjRvxSGsY17zBi0dq1xDTgIoBRUnh3A49UEqhnWE+1Rws59x/8A6//4MfsX9wh+VswfHzY6aLJYbI+vJCEnS0oguRNg4YWzKtvoJRiqQCrdeohSVerbhavWTwW7oY4c59bFmjsir6DYD7OWoyw+TmVqzkarpuSwpZqAqYGKiLgqFPgjClyBB81gZYer+lDPtU0wlaWYKxoodwBSiN79ecvtyy2jT86NYhH7z7DrcO9sBp6BrRWJQlQ98Rdmvx2vljtLjrfUcgYJTLEbg283HFPpKsPRipWUqJYf2Y9JgXdbZkUsQg+3HXtjRNw9XlBu0DWx/p/TkrLZ97fHLCbLFPXdfcv38fYyxFJV9wHN0Ow7C7WFYTh03swIQhT3ECPlPuoGu7L+Rx/yyV0k6e5a7RTaCvp1iuKCmKimoyFYEZcg5aW7C3t09dTzg5OeXyakXp5LyMybNcLmm7gfX6kqZruP/WfcLgmX/tQ5xzQMwCMNBOUiZF9HgdSS2CLfm8ru8p7atx47Jfvko9MMaQwrWb0thIxhsanXZzyfbsGdVsijUSsMLoHMJIf0FAFWNQSWGVoiwKFND5gBwSoFA7u7QYpaHu+x6jnXhX33AYSUnCX7zvcM7t0PMvS70WDe7oX6eUQlcTdFWhwyBccgXGFfTtFleUaFfSew9JIn7bsKVZX+C6QN8NFJMFZVXhey8IbBKLi8576uDZXp7yvb/6t2w3Gz587x0+eP9dGX2mAZMiyhWElL0+VSZ25/Sdoihptk02QDeE0DH4uNtUY1LiiQgYdd1A7FAED+jrm9aOWxMDfR/oup7j42POzi85ffmUl0fP8b6nKCpcWVAajTUK327otoo//Ne/j1aKB++8hy1qiqpmf7mHdQVOW6JPoBN9HFApQJRbJtnE/PEnH/P2V977Ih75z0xJFKcIUIwxO5VujFGMxF1BQjGZyOH77Nlz3nv3ffEedYLYanV9U8cI0m8xKGfQWBKOFCLOaGpf0XctIQTWqzWu8kynM6zW136cmZO9a3JTRKdrThXwysUNZL2bG+mBo9NG8Gu2mw0p9pSVUHfKcoHNzZEgDQqUuEnsL/c42Fuyt1xwMBdBZ9tsuHP/Hs1ms1PC598e1ge6GAjzGX04IA2K+QGY1RmGgL6Cq9WK0/YHxNAxnR0wn+xji5L0psP9qcuV5a6BHJvcsizpupZ1DGgTUFpRFdlysVlnEYwhWohhQ9dFwFDUFdZWJNuTEgyDxxY9fdcxWexRVyUf/fjHbFYr3nvvPb7y4D6FcVmbEPBBmuesixcrIsnzoB8GoVMpSMqj1fWUIsRIjF44i7vxb56ahevJRYpxByiEIdJv5e8MPnJxdsqwvWJ9ecn5xTHbHLEekqIbPIf7+0z3ZFr2rW99G2MdUTnKqkR5L242rkRrSzf0+JjEvD9TwYRCAf12C7xqUfamfrrSysmec6MS7PZg4wQY6PoeV9dUpsLOSvanE4qqRBlFPatp+wYfPP3qitPTEy4uLpjN5/ikefD2O/zL3/sdFntLuu0V3/jGtynLktl8Ik5OMaDieNERYW8/eIy+ybnVrwAKOycbY3bf/82GFjJlMIkmJ9LjfaJp1hw9/QSbtizdElAyUEPniYBn0BqljEwulBI8V2vKUnHv7m3u3n2L5vlHbLtETI5+6KGomVRZD+TFJxqu6Wg7/m26jtl+46LwU9QwDMLHqmpUviWIcKAX9StCUfBhYDadE4LJJswCLITQg2pIcS3+uWYfbRzaFvi+ZwgB5z1haOm0Ym+xz+rqgh/+sKUsa27fOmRSaFLUFFmwdh3/aFApMcTIxDnYjlB9NgnPjgVKW/D9jqpA9u/c+T7euMVFrpHdsfrgRYF8ec7p2QmnF6fo7LfrnCCBrqh2fDKV0YM/+5M/5unjJxzevcd8eYB/6y2mywMWWn4H3g+o7L8nqEfI6Jfi8PAO6kvGqXndKmm7o3qMQpSdLUxKO0RXGyAF+u2Gy8tL5pMJOlNHvLdoLRxupTUxKhkPKzEEV8qQlMfpKX23ldSoFLFa03pP361xZUVCk5Ki1GJhpFSmxSThqaGvm94Q/CsjXrhGd8cmYb26om+P0UoznUwoTYk1NvuRyqRDj3w4LSKJqiyYTqfs7y1Qoefs6IjKGLpmu4sNdnW52+yNqXAKzq8akk8U0znK38ZFqCPsdS0mKs63DcdPH9Hsd/i9yN5870un6H2darxojM2tMUY4edrStQO9HvAhMgwiuA3p2tZIowV1DZ6+b1BKUVY1Vie6boNzMsrv+56i72ibFTolPl6vaNstB3v7TCsjDUL0JEQrYY2R6RaJFOTCJEhoT8jUhbIqdn7ipEHiWaN4No+Ik9biNjKGOdwUzKSU8MkTt5H1es35xQXnl5ccPXnCan0hiKw1OFeQYmB1qWi2WzZXlywXC4xxzI0V14eywCAC5YjKgs0gzhR5fw95PJ47kjfN7b+HGs/RmxMopa8dilR2VfJDD0FRlhOUUfgUUcNAGmSCtFwuMdmRpigEka3KElfP+NpXPyR40ax89vFHxKi4e/cuDx7cp6wKqnoiIvc8qZOLlCSEjmtOLl76lbN+18j+ZMy4hsH3WAwE0SWpAEPfcXV+xnZzyXzmiGnA+4B1QmvARLQeQbZBeoMoHsEC7Tru3Drk29/4BhcvP2X10Q+ZqA6lK7phyTa1VGVJVVUSFHXjDLg5AUSJQ9XfVme83vVaNLhKa5jOJDYyE/p3iMK2wXsFWlKMNB5bVjRDh8/rWxmNSr3czlkxmc/R2mBcmRFcsc7o+x5XTiBFVqfHrIzlL/8y8Cu//E/QhwfCj2l7fJCxk86c2hg9KNg0TW588zgMicONCfSNmOGqcPLfg0dpg71hYQMQs9XXtc1YoOt7Lq4uOT56zvn5CclLepqz8jspyzL78Yr5tHRMkPotzx5/xtOnTzi4fYeXzx5z/9593vvmr+CKAlfVqJgFTLEXxWYyhEFxtd6y6d+gYJ+nXFES+4HoB9q2xTm3c7loty0Bg9ZxZ8ullGK7bRiGgbJyu1tx0zRUVYHS17dl2VhG3qEjKo+xBQAaQSts/rvb7RZX1iLOUXa3ydrMCyYJ90/EZ5GATEFMNJjk8mcFhiAOBXHoeXn0lLoM7O8fUrmKwtTSwFuLtdcILvmQiHr0nYoUxjAMkrVutM5WemFn6yQNrhwM1miGPjAo+V6L6W0ccmDM2zUqDHhvOGsuOe9bhq6h7Q7E+eFN/VQlwSRjzKc0t0oZjDXMZgtZk5u1xC5bcROIJGxV5ZSoHp0Sm82Kedswnc4xxQRjxHpObI0iOnlS13B+eYmrajbzGU8ff8bt27dwWlFaTVnLezCEG+E79pr+EoImJUukJ0QRVarMHYxRJhsjD9JaK9Hu49+9YZV33RAptkMvze35KUdHz7lYXWTPX0XhRJiktaQTGhKry3P+6i/+DGM0t72nnMzpy4r5dIbLfEVFRuy0IXlPjMie2294+vghk+mMO3ce0Pf9F/rsv+x1E0XcjfmVeLVeT5Xyf9fCuR2GlvV6JX7zVlFVJdO6IoXAarXa8U2ttRRK8dFHH3Hr1i20TpTWkPyG9cVLTlxiuVgyryuGGOSMTx6lHSoOaAqUzilj6Waze93ojpf7XWUxsPcDkYBOmuhFc+P7ls3FKb7bkCZ7Iq4fPNYGUuqx5MbeewHjlKSatcEDPa6eUpeW9955i9Wv/gaPH33G5dlTlvM9qmJO8JomBKbTee5V7M6RxFiFipq+C4x5LV82geTr0eDOFq/Eio6JNdLslmy3G7rBE1NiGAKVEfqAHzqS0pRFJZYdIdA0V5irkuX+XRbLW/h+lTcdUST6fku3vmC7Xku0qEr88Pvf4eTwFgf7e0yqgtJZitLkcdP40kBIEZcPhRgDzlYodB5LDFitsqVZ9mMkon3accNubrI+irVSjDCEyNXlJU8ffcrxi6cUJuHKAqNFrWmMoa7ra6/TkaNWO6yZMPQD267n8vSYi5OX/PgH3+O73/0Od95+wFtvf8C9t9/HGhnjDe3A1icuzk94+OmP+LM//RP+u//2v/mCV8CXt6pKLjO6cIQbPHLnnMRDogha0KkwtPRdz9XVaid8uU6KEdRUHPEEETJjokyUDTMptRMFBT8QvRjdV1VN07acXVzlCF52h/1NMdboIzoMQ0aVBMkLKchmrBXr7ZqmWXF19pz5xDLdf0BZ1JiyIFlDcgZlSrQpRYigFSYaktKkqBhyE+1DT10XXGaf3aurC4qqlsRAnzJ6m8AkUpJDRSvN4D3baDDVPmahSJsGM3gWKUGEy67l7PlDLs9fXHMs39Q/uHaTBi1ylJ2XcgRXVCyXh2hl2XYNkUKEXSZRFAI+tG1LpEUNPeurc5yBsnQ7cKJwMCkU9GuStkxKA6nn7OgJfzNsmc+X3L5zl/t3b3Oo9gixRyVwzpKSwsec8Jf9iZRSFK6WNRIC1hqc0WIMFQa5wJEwmF0TMTrapIxGDcNA1/W0bcfZxRnPHn/G44cf01xeYLXCuILiJi/ZlbL3G7FEuzw/4fd++//k/Q+/jrIF3/jGt7l15w6Hd97KrjghO5JIeqFMywLOWB7cf5unjx7RzvdJXzIe4+tW4xl6E50HhJNqXEYfNUZF+q4RsXkKrDcbNqsrIDKbTbBWJga3bt3i7t273Lp1i9l8zmJfEiTLIvvfDwMuX+hDaGmuBo7ClqKsCCEwn00ZYkcYOhRiradNBsYyH9c5R8o0MKUUYTdJk8t+23aEPqKNZttuiMPA5cU5zeqE7dUps4lY0A29NOLaSIppjJ4Ue2x+N6IxDH2XJ3gaYiT5xLTW/NI3v0nb/Zf8/m//Lzx8+BH3uo75co+uWOKHSNIlVWUojCH4wOBbYhSXkGEYdkDGl6leiwZ3HJeNfLBxdKa0kVEtEEPi/PyMbog4m3AZ5bIOSIm+axn8QOglxayezFnMKgo7petaCqcpCkNpEqnfCPk7QXN1yqOh4+ToOffuv8W9e/eYTyfMzYw09JkvmFXyVpH0GOCQoXwiRiNRqcahSTducND5FhWFTgBc81iSxqdA23vatuXk5XNePnuMUULDLAtBsKuq2v1OQF5qH8WqxBhHQvwXjRGRkhxUiaHZ8NmPf8TDTx5Sz/8ti+WS2WxO3/Z8/wff47OHn7GYzZjX5RfyzH9mKo1ogkHr69FkVYkbwjZFiAmXPQp9e8XF6QvOru5Tz6bUJTca0Wu0KWZF6xjYQRpRMUGwjHWClGmZMkyNJSTF5fmlXMScu75QZfRgbHC7riMMkcI5hm0n/rIJuhS5OD/h8vIIayKTyT2KohTVOKNy/Dol6t9VwyBIthY+BEVhMA5QXg79OKBUFomqLBhNYq1jjQZlGfqeAYMp5pjFHVzoCD4wLTTDkBjo6LfNGwbu56ibqC2w25P0yOVzMF8uSJcSja4Q7uAQkky6YnYEANptQz+dohT0fUddV2LJ1KzwQXxBl8slPkR8u+biqOfy5Biixw9bqklFs9mwnNaMHs3WXYdLGIQSpnVCESGKC4LSGpOFGiH6HVo78m0lYCWPWpPQIJS29N5zdvySJ0+esL48x2qFMwIolGW5O4sETJCJSUiQ0oBVhoeffERICt933Lp1yAdf/2Vu338g2g8M2iisivjMwY29Z+i9oGRYLpvNF/fgf4bqZnMrgQlx575RFCXb9QWbeIWzBYv9pQTgxCDc72GAKNOp5f5tlge3OLhzl/l8yq1btzCuoHQOowQhtca8wq9FiY89NpFCh/eJvm1pt1smsxmFc6AVISl0Ev/b8dL1k9/3TpDYeigSfghsViuOXx6zXb/AItScvgfTdhT1sNNAjDZ2g+8wVqGDxrkC64qsDxFPXRUUs9LwSz//y9g08Hu//X/w7Md/zeLsOZPFIeX9n6OaKZyuicWEOkVsq1mtruQcIexoQF+mei0a3DHTeXxgY3O7s4MxlslkRtv29O2WTdtRlhIxh9aUzhCDFw9blfB9x2Z1SelEsaiUwmmFVYHYt6zWA/V0Ql1VdO0GFQIXq0uIge12w2w24f6Dt6icY5ptYkKQ8bD4M5bgPcH3hOhxRjF0W1JqiElROEGy0IpuyEhCH3dCOjFMF0Su63tWV5ccPX3CenXOtCgorMJVMuouiuIGH1iUk6W5TrAKIWVunBiM+yEn9mhFaaXp7Tcrnl6eE2LCpIQJPR9+5R0Uif29Ny4Kn6fC5op6cZvVaiN2Rze8YVVez66uSL6DFPFdy+rilM8++ZjZdM6kKNAGUja81yqvWSv2NwqF0uRGRJ6xKZx4OHvxtB2VtLPZjL7tOT05Yzqd7taMuhHXOzagBHFN6NuW6D3ttiH2W1YXJ0Q6JssZyhb5xi4olsRHviqQhMzXUte8uJiSCDgIGCM8XR8SQxpAa4yO6CQ/QyL/vDoRlBwIWEhDoEsQpvfQHnSwpOE5k1qDcbQ9X7pc9Nepbu6vYh0kwhelskOFBlc45stF9rmVQIg4DHS92F+pJH6Zwfe7+PKxqYwhkHzEOvmMshALx23bUNgCbRyPP/uYh599hNWKwXvM2w8oy3I30m3blrKakPyAIjG0DdopDIGh3eKjxJwqROQZUMTYQcjR52MUe/aFbgdPs91yeX7Os4efsbk8xWlFYRXWGqqq2oEtu4mKlqQnoyJVtYCYaLYtJMWzJ494/uQx52dnvPPVb/GV9z6gnO5RlgUxeYauA+vwfeDyTBqF9bOnvHj+HP6r3/qil8DPTO0EUUamVnVd03UdVwTW6yuCj1R1JUlmzuIycDSbzVku9yiqkuXePvfu3Wc+n1FNasqixjqL1RqjNcYo0IkYxI0gxYiqAzrGfAGE0kl/4Ik0zYakFMaVgM9OS2nnrTzqcCSiV+J/hzAQGk/bNpyfHLM5PyKFDmUNbdujbY9qW+ph2IWijBexopJJmfJjOEkgJSshPgpQ8n7szRTf/vmfx4fA72zWvHzyKadHJ2z7xN07d4mLQ+o77wIRYyx1PafrWnzodsEwX6Z6rRpcud1olLY7cVaKCq0tpiw52NdsuxXbZsvgg9yuk6ThkHlQgw/E0LFt1gzzOSlF2lYUrMMwiMebUgx9x3yxJIbA+XqFs5Zts+LJwx8SUdy59xbOOR7cv8/9+w8AKEtLVVhuHR6wujonDT1Gg6kKrEZGxk6+19nMYYykXPkkze3l2Tnn5xc0TYOAsCLEePnsMVeXF7jYU5ZF5h+7PH6uduNDQUMMrpTGwxjJZR/RtZQSaiIJOjZ7AjdNQ5GNnUez8qq6Tdt2zOdzmu6Nbc3nqdNnD/ngztts1g1DPuTHRrKoSoahJ8VINa3RWuFVRz9sOX3+mM/qKVVVsYyBqqquLzM7tFRQ0LH0OE5WCRUj6EJSnZTHWYMOitl0wtGLF6zXgbKsCT7J5CEl2q6j6z3D0INPdG3LZnXB5fkZq6tzbGqY147JdIqzBTFqsZGJ4L3knZsxUlLLOHaHSKhX7WViGFg1K6qiBOwOtQghCI0iJbwPJOLuAnf9c2p09qj2KaHnhzjjsDHiV+cUbGW8+KbB/alL5TAEQW1FFCYHsJdkuiQeFWU9w7iKGAND1zFECPQ7a6HQd8Qy4KPPIssSYqKwBbZSVFkodvT8GYvlEleUdF1DDAF/JS4J/+b3t2zWV9y+dcjd+2+zXO5z9/Yek8kEraBycmn0Q4edTwiZz221IE5JKYqyRilNHwLttqXbdPR9S85qJQaxgbw4P+fZo095+fwRpU4UVUlZFzudwzhFHC+HKfN4R90FBqaqzvHwEqZydnTE6csjvvOXf87y4Db333mH+3fvkQKsN1u++4PvcnZ6zPnpKevzM6qy4H/8H/77L3YBfInrFfFTLrnka4rS4qw8q9XlnKQ6lFGcX5xSFiXT+ZJ+GFDaUVYTysmEd77yPu9/8FUODw8EaHMG5yqsFU66VXJ+ehVxLmFzw0hM6JSIQezgqqrKSLJY1PkQuVo1tH1HHNIrwSPGiE+99zLB7bqBrh/YXK04fvGEi5OXdOtzurYhxoG9g32m8w2z+YIhRA4Ob1PXNXUttC/VqV3SXt93uAQ2JpRxBBVJWoMyGDTL2YRf/bVfxzjH488+ZXO54ujRj/nuJz+icCVvnzynPLiPmywp3VQmNbqnW7d47/+Op/J61mvT4P7kyGxsbmVRyII1hWbqxKKoz3YuShcSERkjKWZUIQSC97tUL/l6iWk5wVhN4SxN03Dy8ojFcpEtljw+DPh8Qz8/O2M6qbk4fsHLo2NuHSwkfcpZmstjysIxmdSUzqJIVJkrOyo5bVFkfiPYZKmso7pbUFUVz54958WLlyil6NqB508eo+OKqi6x2mRRkd6hCNZaEhqbRUqC6kljUZUSZZliIKGJSlE6h85WUdP5DKsdyhiJFc5CiMViibUOF97wGD9Prc5OMTGxN59zej68KggEtDUMbS9IgLMEW2JTRxpazo+f8/LZHun2LZbLfYBdY6t9QiOxp2MMJSBjtgTaRDTSiIwjZKX07l26urpiMonU1ZQ+yPvTNC1d12VfxYb16pLNxTGxXRP9gJsURF3gccRk0XqkxcTc1F6/m957dOYPp9zgGiNxqy9fHtNuG0gjol2I+jbFa+9crcVWb+Sk39g4R6scayxee/rkUJMl5d59hqTor86yUPPLhSa8TjWituKPPI4e8/g2JVKS9MXoE1pbnLVokAmZb0nq2rXADz1hEBSqMCL2ubw8w/ue6XRK5QoUkdXlBWVVUlUlwQ90QyDEhNUwm0j6X7s6py5gc5UYtmucVUxuH2K0pqwLNAlX1dgsfFNKoa0VipY2hJAIsxnTuuby8pIXL47oupwiFhWXZ8dcnJ9hUo+zisKVlK7AFoL8jR7owt0Vx5oiX9zGaVlQo/1XGPtnsdhLgZMXT3l59IJ/s21ZTOecnx5x1bQYDXvTKe9+6xu8Mf/4fHXtJ3sdnHT9Z6HsTWYzHrz9AdumEZQ0yiTVuhLTtxRlSRcik9mC23feoppI+E42QMrcdCPCQSWOBCYptFFohVwKdWIMdjDGEaPH9z2F0RjnKNA4V7FqNlyeXbFerylL4XX7IcrUKiTatmez2dC0W46ePuT4+VM2V2ecH7+gaxtS8rw8OWY6XzKZTLj/9jv4kDg4ONh9PW0dEUMIaifAFDGe3gkuVT4vlNIUVvGLv/ALfPtb30KlxMeffMYf/+kf8ekPv8vjhz/msLlgun+PYu9DcRUparaxpSiKL+y5/zT1WjS4Ny1qIPvF5ai53earwm4hV5MZ1pWEDO171UvQQUyZ6xLxfsBngnRpS0LX04aB1CamE0nUib6jWa2wTpwJ2u2WNgtgDvaWTKdT6qpkWnqmpaGyivlMYnKn0wnaaJxK2KK6ttAxmr4fKDOi6owR6xgMRlfofWlCVqsVx8ennJ+fEoeOGCKTQnhg1hgRczh5wUbkduTraKUgI30pBnzwuKKkKisihoiInDCavu1ZLBZs25bFYo+rqyvqeor3nsvLS4x1f//DeVN/b/WrUy7OjlncfgtXlJBVra4oWTdrrLGkwsnmqBQxTEnRU2hN6tY8f/Qpm+aK+/cecPv2XUbzehmvyqg4KY12o6WXqNRVUtmxIHPRsivMON5tmi0yTTJ4pfDDwGazEtR2s+Hy+IjN6oLU9xBajE4MvsIWDlfW+DFiNMq7hGQL7r4+xpFCIqlAMEkUuNYwm80pi4LSKkJ0KGMx1mKUuC3EdB0qoY0h7RwVrptdSa8SI1TnHF23JSaFmexRxYj3QN+R3jS4P3XJ/moy5SQKRxpebW4DpOTzVCFS2hKjoOtzpC4QgqdQQaYKhEwN0JCR+a4bWOuAfFMAACAASURBVK+3pKHDFo7V+grvPZPJhMVyycHhLWbTCQD7yxn7yxmz2ZyDgz1mM5lwTCYTtLUQhp11mAKslQmYhfyZClNqUrC4uaWqKrbblidPntB1AzHAk0dPWJ8/o64cRsn4GX2dUDVa4PVDVpI7OZPGaVmKQkFLKeFsAnM9bRl8QEUx1T9YTKicJS0W3L19GxB+r9IWV7wWx+6Xtszud67ynif5kbJ3SvM5m1WUZY0fWnyI+QInvUTXtYQgwUxKF4QklzjZL6OspTR6KidMniZHoEgSMJXG/TxKglqKEYWlLDUqBytpLQ3xYj5HRVitLlmvO5wrMdqRsnfuZttydXXF0dFzHv3wu1xdnBGGlnazEnFxChL4NHiOj4/Zbju27cB777/PwcGBXECdw5jr/gnYodwp2V0YRFIGnSJOKYwzpMIQI3z4jW9w684dfrfe4282G54//YTy/JLhncB07wDlpkyqBdv28gt55j9tvRZvmtIWrc1Oxft3j8w0IUW0MmhboW3EhQGtIsPQiVeu95AioW9klKXywW806/UKII8EevA9xtkdN3Zvb4/JbMa28ywWC95++y1uHS7ZWyxYLpYsF3OKusY4ObRL50iJbMF1PTIxtsyJIeSXSAERbQyVrtALzde//nWU/TEff/ID0rBhWWZrtMKJ0b+16KwINdlzFKSBGUdpwxCwtmbTyM3KZuSw7XoioANUZcXZ+QWT6QyAxWKPtm2xzjGzjr4f/vEf+M9QbZuGRx9/n39y7wH7yyWbZsum6ZhgcboUQVXSDENHNSsxtqRRGlQgELlcnbLaXHF1fsG2aZnP95hOZxwcLJlMawpnqSuHNmJbJ96KEUXYJfnkbV7460HGuU3T4H1g23Rs2i2b1RUvj56xWa24ODsjdMIJ9ENP6Fq0TtT1hHfe/Qp37z8gKc1s0YmvYl7X1loG32GdwaRIiJ5u2+P9QD1dUM9K9pcL3n/nAd/9s8DEVaikxUN6WqOApmnph4CJWoIuRlP/LMAwVgRFQxhAiWCz0IlN2+GTRtsJ88P7hDBIzPab+qlKDvQIiAXidWMrgl4Q1xgVB/k3hqAsWhfU1ZSirik3BSolYjKEoUfrOT4E1pfnlGXNW2+9gzWO49Njrq6kYSzLkul0St/3NJsNe4d3+OCDD6hrx/7eIoMKU5aLqQSlGI2xDmcE1Xda7wIUUorUtgBy0INKkGTSoAsRQ77//nuUZcl3vvMdHj1+yOr8BTpGyqLI/FpNVY0WjGQwQda69x6bgCyyrHYIn0TJ9yFSVhVjTKrL9kpKW5rtFu89t2/fpe8FZOh6jytL+n77RTzyn5my5jo6Vi7cmQKlhPLiY8Rpw2RaodScEKIEhiCTImUdbdfhvefo5Jj66QztHPeNxmpwxqK12ukNXDJoQwaZ0s6VAwUpabRR0mSbhEHSJSVZzGMNkCzL+YLtrUMePnzE5eWKqpyANTTblseffcyzx59x/OwZzeoEqyEFT1U5AbPIwIVxFDHStw2fffwRV1cXvPvuu0ymc0JS2Pz/3RQB37QlS1rnkAmTBZcma5QipVXcPdjjv/it/xynDH/xr/4vLl884vvf+QP2Dg+Yzu9zcPAVXPnlEqW/Fg3udXOrdipeIY4HIUdnoUtI8v/4jCpooLAlqoy05XY3nvWDFwFLlDSeFAPr9RprLXt7cuM5Pj2hjwNFtuCazWZsNhuGruMr77zLt779TQ4O9phOavaW+0wmU4rSYYqCpKAwJosPtKg3bxy27iY3SH5CEh6lIkpZaltz69YdtLM4rfi///f/mZcvn7Gcz3BqymJ/D5QGrXa2Iii923T7vhdUzFliVExnM7Edi7LxKqUpnBDpUZqynpKSjJEVUJQVTdNgbYF1X65kktex2qsLTl485t4779N0HcHLpuIy2b+uK0L2Vnb1hK5rMEgsIimidcFmveLJw4fMpufSALR32bt9wOGd22AKlJJx6BgGoRIkFVHeoILNlyidR6eezWbDer3h6nJN1645PX7B1cUpoWvxw4A1ieB93ogDfS8G4o8ePWKz7bi7bZkt9rPnrd2JIQrZsfNozlCWhYzJrFB16tJx794d6sUe/fETFrMF21DTe6gLmV4E/2os5dhAe+/z+h1t0RLKkMNblHhAGk1RL3HyBb6gJ/7lrxgDqJBFgQhdZIfaZovDKJcMgERgiAMOhzEF88UBMUTi5QXbriemRD944f+XEyaTKdY4tNNMZ1NQkcrKvj76Rb///vu8+/673L69z2QyYbncoywrqrKkrCqiBlAURu98ySFPsJSCoLKTiCbFhKRRhzwxC2KlVBTcvn2LD772Vb73/b8h9BsqC6VzEiyhwGkjCLEaY4uvfairqgIgRE0MA/0wUJS1CIC1Iia9o0r4EKmrWoTPVcV63WTxtCUEcXtotxu69o0P7ucp58pdQzte8iU4QWGTJikYYsQak2n6CkKQKHCgdharoOuFh/70yROMMsxmUwngQWUR1/iJFpepk0rJNDUxTlEjSYHK2ogEsj5Tno7gBeQwhvl8Tl3XXFy8IEXoup7T81M++eH3OD89gqGjNErWcQ7Uuem6oJQRioExhBS4PD+j3W7phx7de8qywhiZaty0n1QmQhTXKCVOu3nvlbjzlBImX2qtjvzir/4HHD38MbbfcHyy4ezohPOzDdvmAjd98I/4pD9/vRYNriRr6Wx5ZHaUhFf5YDFvvlH+7DuMdniv0NpRV1NWpQh1lNL0SeOHgQT4JKiQcxV1PcMWjj4MbBvLtBROSdu2zOdz3n//fe6+dY979+4wmc2Zz2ZM6glFIQrboMGpnNykFEmBRl6kUWSTMldWCAY5wjdBTF6QNxR1WXFr/xazX/oV7hzc4kff/x5/8If/is+ePWd+fkFd10xmU6bTKdPJhKIsCVwrL8nIcO8DKTcf+we3dkEZk8mEdSMbqdUyXoshyOaqkPFNCBjzhqLwecoqDe2Kk6ePuHv/bVIaY08dZVESgohvqqrEe09ZVNTVnK7f4gqLilDZEh3h6uKYq7Mj+jDw8uwev/ZP/xnO3b+BVvAqf28UoilppA0RlSymcByfvaRfb7g4OSaFhr7rsDFSGI1HNnpbuOzVqIXbm9Onnj59yrrZcuvOfVwhvPFxNCz/eEaFlzagjEMrQwoebSyHBwfcvvs2P/z0+1QayuoOvu8IpqCua4KPIjC70eDu7NGGa2XwaGumlNop9IdBBB1vEqE+Z6mQgQO1s9C6dsjw6IzsjiW/78gQBwyaejJj8FFGvWqDNtLkSVNbUlY1QSWGVgRhdV3ijGWzWlFVlYxXb91i7+CQg4MDinLCdDbDueKGTaQWWswY6KEUxBxFqjUq09YSZJ/vnLgUZWRttMGaEoXhvXff4zf/o9/kD/7f3+HpJz/i1v6SRTVhMpuhjZXJoDG7F2zkGo77qfcR52pW60bOGGuxxtD1HozGGscwbMWlpOvRxuJcgfeRsizZbrcSSUx6xZv6Tf3DS1vR6qi8QKNCdACIY4wCvJczcUz9NBkcUkrhyhqUhIZ0fcugEi+PnnPv3l1K63BOmtOxQRQUVD47aSO6CIUIZI0Wga1KORgqMebdhChTLpCo6bIs2d/f58mTp1xcnvPy6IST42esL45xscMVBqss5OU+huKMiGwIAaWt2CvGxLbrePniGfPlPtpVNH3PBPF7JosijQXDNaVDgMRewqm0ONhorYhRUGOlFG89uMODd95m9exHlFc1Q9PRNz0vnzxlPm/+sR/356rX403LSl455ARZEEqCEv9BCYLCJ0EVhHMDIfZAwukCV9QcHtwhJc3m8pRtN0BeCEpbqtk+s+kUZQxDP6CVZj6fYbXm8vyc2WzGz3396+wdHnDr9h329w8oqym2LLFFLUiwrGpQKiPJwocUeZfeHdRKW8yN8bGJSuyQEN6iUglij7WayWTCOx9+g3c+/Cb/9Df/Y373d3+Xv/j93+Xq+XOALKAwLPf3cZMpy/mEw8NDpnWFdSWNHSjrCa4sadqedrvJXrlgC9ncm6ah6zrKoqQoSgbvWa031NMp3ZtUnc9Vxih0v+Xk6BlPHj9i762vcnZ2wjp0hFo8mJ2zWKsxGAIKlMHZkvWmYT6dEpSmqGqInm2zJg4tJycvMabAagfkNL5MdRlrtMdJ0plIXKjVHO7t4aLn+OgxFtmZXVkIDUAbtKro/bVH6CiqkQmAIMDDtuHTTz+lnsh6s9ZhC/FWRGlCiGg9wGAwRIyTdDUVBxaTCb/xH/5zTp98yrPPfsAHk5fYxV26rpOpgXXXU5uUdslOgoKFnRXNiEYXRbHzkTZG1vNPWpW9qX9YhYzc3kRtY35+I2oL15d2lQ/vlJQEKriSxWIBgA9BrOeUZu/gFmU5xRM5eXnMerMi+IHppGLoW2IIfPVr36aop+ztH3Lv3gOqek5ZVShToowjofAAMWKU3jUXZgx9SIhZOAaldW5uBTlLQYudU/LEmDAmUVcOZRf8+q//Br/487/Mpx9/xP/2v/4LfvTkCcvihMViQT2dMJvNmE0r4ZcrpCnNdmPGWQYfqadTQoy7Ua9zAiAUrqDYK2m2Hcu9KSjxTg0hsN40uKKUdD4Vs9j3Tf20NYY5gFx0nDGg5ILufUfot6jUs20i1WRKXdeZy98JjzrT/kogxEEE5v2WZ8+eM5tMKSsBJ7QGa0us1XnSpsGQRVt6x8VVSTyilVIYBSoliEKVSQi1xjhLQRIUd1bz53/8RzQXl3TNGROnUK5GJSgKK84N9tpJatwHJYVNXHq8SlSF5U//5I+JSnHv/rvcvv8AN5vJNAKFdpYh5njiDBSMe23MlpYScazy1NwCHUYV/MY//+f88K//ircOG7YHhsum4eTFM1aXx1/gk/+H12vR4Gr991MSJD88omP/E5uvjDJHVKGoauaLPXEUUKudXZMrDUVZ0ycIqxWbzfr/Y+/Nfu06zzPP3zetaY9n5OEoiRos27KVVOLq2K5UUshQqQTVQF/0f9cN9EU30ED3RaeRcqNSFTtOx4nn2JI1keJMHh6SZ9rjmr6hL761Nw9lO+hIBVsy+AKCJIoSN7XW/ta73vd5fg9N25AlmrapaOqK8cYWXigGgzHj8RZJWkQZgDRdox3fcoQMNNajRZf+4+L6NHLtu7WFiBB7KeIKAxWjdaW1eOkjIzJ4FAGpRZer7hkOh/z+H/w7+sMxD976LpMnB0ymU6rlgocHj1BJypEKPMxzBv0hw/EGvdEWSEU26LPT77NcpDRNQ2UtTdk13lojHEhtOJ2eUAwG9LOCuq7Q6rPlivy0lQwu0gLKKU/u3uX81S9jlEKLFu8tQkQzTJomWOdwjY/3lY76J5kk3du0Js0GtNYzTAtMb0ia9FHSgPDdNv6ptmqltYpIru6FUAQCnizNufrSVa7/9Aec2xqDVFjnCEqs/700T5+64O3TmOmVoVEozcHBPpcuX4xUEBOxdchI9IgTDtD4CE/3Fq81CIUQjksXz3H1c2+wf/8ORw9vMQigBzu0jUMZFc2XXYP6NENeoIVeN9tn4y3PatxXE97n9fHLd9cvbpYCBBvbyo9Mbc9qHcF0G4MQNa8+kgeWWYF1846XG9f61jYcz+cs5nOsbfBtjTGawWhMkAKjU0ajDfIiPpA9cfoaP1NAEU2UNgR0h+RanbVCCQhPSTLr7VkIyI4yIoLBE89ZHyxaSoQxhJ7h829+hf54zDe/+U3e++63WOzvozp+6mg0YnNzE9PrMRoN1oZPpKL2FheiRMiYyChfRXNXtcX5QL+fxAbd2uhv6GQORdHvdLmeov+peOx+ZsuYuKUVUkWfioohO0oKvNeU0xaHx3uxDlhIz2hHrbUEAdoIdKtp64p6ueDJowMSoxBaoVRChkZKj7UBpeKznhDTTdEe4UP0y8jICH9qfHOgFNIHvNfdhsSipWYwGLG3d57T4ydkwVJoidJPz79VimuWRbnB2YCIGOgQp8ZaOpTQ2LbhnZ/8lP39R3z1639Aog29fj8O9rrP13bc3FV57xEajDSdnK6T+ySKIBKsCxS9AReuvsb+O4eUsyUf3ryFa6sYxvMZqk/FNy0OoOzPSRKCX7kXn9WDwZnDN75c4UVASNNx4UYx8rMs8QFGSUaSZITgmE2mnBwf4WxLkii0FAxHY3SSolVCrz8ky3sEqfAhrrsMMR0salbig9cFDz5+Dh9CPFSFAB/ZiULICL8n6sQE4FRgdXs462LMKRKjY/PsEWxubfH13/+33Lt0iXs/+BbHx4c0x/c5LWFaRbzU5OSY5WzG4dEhOrlL2uuT5T22d/cYjoYMh2OUCyRZzulige74gHXbsLmzjfOA0uRSUVbVr+OS/8aUCAGER7qK2clj2qakyHOaqkURyLKUVRqZFBIrLHKl83MBGSJrEW9RaYauK1wI5MUIqRKU1AjRrrVScYobjQzWWVjprETUUCogy3u89rkv8uPzl6BZkCcJrbVrnNdKW7h6AVxpbKWUSBff7IOQVG2D7rTmSE0QCnUGX/d0wtCFjYToGBN4Bv0+b7z5Jvfv3OCD738Lxx22pEZvbSF1glAWYRXWVwjZ4ZaCREtF8AEfPK5bM66aXWPMc3nCf6Py3dnqCMhggada/LNN7Yovumpu16vOEOUokRiSkbQ1ZVnRVCWuadFKkuZ5xMW5aC7Lij7j8TZSKPLuzFImQ4jYPITYweJ93OQJGV+2rHcd7UAiEOtmICoeo/YyNt6wxok4hwgxFQp8ZJdq0Wm3HZcuXeJP/+zP6ff73Pzu3zCZTFjMZsxmMx6dnKKzjL2NERubG2xubpGmGYQWnWZdoptfNx/WQ683oGmj2306nVBkRdRCmhWRwcWworZZbyOe18crk/WRSqA6maAIMfAmOIcKjsFgwHQ2R3nWKWErbbWUkrIsEQKCt2RJivIW17aUkwPuu5KqrtBf+i2GwyGF85GHqxQhJEQVi48SieDR2kT9rXxKuUFGP0KQdGeii94JITHe8OLlK7z2ysu8++PvsdnPSUzSeSHAZCnen6HJdFu2ACR5hrQOax0KjUgEdjZnOp1Qtg2Hjx9GDXvRi0bLEGVtZ6kKq2GCbwOKKE1q26jZVcIRRMB6xWJes3vlZf7mr/+KW7dvA45eVjCrP1vbh09Hg0uL78b9vpuUhgAuOMRKktBNFn5uqiDMms8p8EidUBRF1O/5QN3ULKYztsY7CCFps2yN9xBB0xuM2djcBSRFf0Ce91EmhxCZiiE4GtGsH+pSEiPxZBSzKynQSkcNmw3dodw9FITopA3EL4MyBKUQbQvBdFICh5CGJCvopVkERjcNxRtvcvHyi9z84B1ufO9bqCcP2Bj0QYCnpKrBLeYcL+bUzZJqYjg8eIDQGUJKds6dBwE66bGztUtvc4PBcMBsOqPoDziZzEhNBEU/r49fbVPhrcSoFqFOufPuj7jy+pvUtmA6PWU8HiOlXB+yvV4PrRRNXZMkCd47pI16c6ECeZHTtIHBeIRKBA6LcQEn4zpZsGqqu5crWCNtIropILVi9/wVPvfm7/L9//yXbLz4AkVRUNm2a0qjDjDq1VcaM9eZFzvNoQ+0rsTbaD5rrMcEifnI92+dztP9/wghIIJFiYRLl67wla//IaeTKYf3blHevsGr2mA29xD5Jqn2LJaWqmoQxJfJgOumJHSa20hpWDOhpUB3uvnnU9yPX847CBbJsybTZ85X4vkqhPq56y2lQmoBWUGeR75ykrRMJ0+oqzlF0afXy7GDAeUCXFC0NtA6R2ES8l4foRKcI+LwRMD7GmNsZ8pyKCXQxq/PWi1kRDYFgbchro71apjQSXhCFIOhgFXwiHN4PFpG3J71cSp8/sJF/vy//x/48NJ5br/1AyaTE5aHDzhcOBazCTcf75OkKXneI+uNGG5uMdzc4OKVq2wUOYvFAqRgNi9pppNo5JGSNOthfeToCqmwtmFzZ5PDw0P6vSFV/bzB/SSV6KgXDa3DB0ddl9gmBuo0VcXepQsUvR6TeUmSRO1tWZbrIJ1+v4+zNt6zsqDVAtc0tNUpdnHKwa0loa44d/4SW1tjBoMBWifkeUGSRMlCDKdSKJOhdRK3bHQSbiHWBtjVhsE7hxYBlKDfH/AX//F/pF8M+N53/5aLxtMfDSPTnEgvkdLEza6I7F5jomxmtd2KkgUf2c0dBu2bf/3/8NWv/xtU2mc4GiJ1ABn5tzKsuOywKGNQTtu0z/gdlpMlOs0oa8v+owk3HjzBXPoyI71NNXnEcvqYYIpf12X/WPWpaHDPIsCelSS0IJ5qDp89fGU8fJFPJzpCoEMghJQ0bVgaA82Cti05fPKQXjGITUa/z9I7lDG0raN1HmmIq1wvsDZCmH2wSATOtR3I2aO1JAQV3+SMQHqFsz5C+UNAEx8MYcUI6zrzICSCziC2AjN38cLeOyRPH9hCaowW5L0eV157gycHT1geP0H5hjYEgnP0gsUagdka4YSmDhInUmrneHx8wmI+I8kyrJ1xUDeE/bvUwHhzi+0QGBY9jg6P6WfPG9xPUlH/6nDO48spx/u32bl4BZP1EXlO27br9ViSJEwmE0bDIW3TxlWZd6S9AuE9RZGxZI7QUSs1n88R4hwrx3A8iHyMfRCsmbKrzxFjbwP4miSVXH7hKt/xcHRywrm9PUx32EbzrAQRI3hDsGgTUXer8IUQPHma8OTwkKqqKKyjcS2mW/utmuOzv773vgtwiFPtPNF8/vOfZ9Dv8eE77/DT7/8dDx/fZ0MoxsUAKQ2JyWgai/MO79voSl41zUqxyn9YGc5Wk+OzKUbP62OUt9HI29XPT20VCP10eLCaJHV/eE/UCgJZltPrtYBnsnjMfDZjZqbsnNtDCMh7AwQCnRhq66nrlqPjCf3+BJ3lGK0gOLRUOBeDQeK2QuNsQHQ+2OAFVsTVcGQ/R/3jam/QfVAIASVNNPWuXvxCZ7ARMZJ3hZQ0ScJrX/l9xrt7vP9P3+XUVgyH0HjBbPaYSdlSVUvmTcNsesTjx33u3b7F1u4eGxsbXLh4GSkVJs2pnce7gEoETeVIsoyqaUl7BbPZjMRkIJ+SGZ7Xx6t6OaNeLuIWq22pqyV1U0epQV0TcOxdeYk0zxA+kBgTDV/dJHM1ybXWImSCUgKnFZKGtqmQ0jM/eYz0ltPDlGI0ZGtzhzzvoVWGkZKiyEj6CUmek6y04Z0ReFVSKoIKqG6Q5QEjoXGe8c4Ffu/f/jF39x9w8MHbXDAJ/UEfKUB3Ph7ZIfFWGywXIE2TNeFBKQdJiuq+k0rCu2+/hS5GvPr6l0h7I5QBI+PvPeCxS7BNyZ0b93jx6musQjNCCBweHbGxtcVyXrGYz5nNF/Q3zxOyIfPpLkf7t2mP7/46LvnHrk9Fg/vR5tYF98slCevmNoka1zPuQIFAakUiUlzWkiQZ1vZoqzmHTw44Vcdsbm1Fl3u/jwigkoSqaQhSc3R0Sn9wiCcmgMlI90ArTTTVSpQynavRd3zTeIhqrREBGu+QicQIjRSd/Uw8NcSsDl4vAqKLI3XeY0QHZSY6MldahjxLeOMrX+Xg/e/Tzubx8Lae1vm4tvOWICVZ2kOkfXraMNq7wAfXr7NclozHm2wMxhRFQluWzJ8EZkenuI7w8KB+LlH4RBUc3kdGIcFTz495ePcmV9/4V6h0xGKxYEUBWOmo5vM5rrW4rlGs6gbTYYritCxgnYthHXQa1dU7XHdrrA7SQMcwdVEOo0wC1tPULf3hGBECJ8cn5EXBeGtzne4XG5V4CAsj8QRSpVgsliijSGSgqR0nh0c8evSQYrRJkWe41nUxlFE+YEyyTsxdmd0QCuEdRsLWqM+o/3kunL9MHTz/73/9K9pwHxUsZuvymi86t6c4X5PoqCE/28yuoqrP4sSeN7mfsD7S3D5rJjOAeubMXem1z5r7vAsEAjpJKYoimljKKfg5PjiWyxlJmlL0emRZjieaWSbTOTfv3Kb2lsq2bGxs0MsySFafxUYY/orwEqL+1tlm/Z2QBKyMTbBkhTITUR8pVWShOxf1vc6DdzgXwyhCF/AQJW6aPMvYvfIKtUj54Z3biMUpWsB4NGI4tNgmsJjNmJQN9XxCaBtuT6fc0wl3794jyXK2tncZbu0iBTTOkWRJPBOsQ6U5oSxpfYt7bjD7xHX6+ICyWtLWFU3T0NQ1tq3xTY0KlkfLE1LlGV58lbppO0RbrBDC+gxM85zlco5WEiUMJgywQSCCRdNSL04pS8V0NmF6ckqR9UlMRD4iLa9+4Qtsn9uNpnM6iWLUPqxNcCvykZTxXA+he24Hx87uNn/4R3/G//bBO9y/d4/t3R129s5hlKbpJGOrMy42ofH3kJgMKSLKzrqGpmlpG0tqMnzb8qPv/x2D0ZjzlxNSkeKkjXHTIaCERHjHydEhl65cXb+4VlXFbDIlzQsODva5+eFd5k/2OT/aINCjyFL88hQbFr/y6/1J6lPR4LoQEWA++J8zO3z0IiM0osu2P7syO5uChIIkzRkOhxF6LyWnR4+oXYnD0u8NyHsFWdFfRwE3ref9D69zNDllOB7x4pUXGY9HDHt9Bn3dvTGFTj4RzQttG5FfIAihIgRobMNemkZ8iIw6HU+86YNScWorVOe6lDFVJMk6E0WNIDIqmyaalLz39Po5ydY2i/kJsq5iTKmAGoEVEnTE1qAlLYFlWfLBrTukacrjkzlC3MfbliJLMUqysb3NhUuXsY3FfWRF+bz+ZdUGMErRIDB4fDXl6P4tXrz6CrMWtAy0TUBJybxtI0mg4zMKKaltS5FGDNeyrAhBUJZLdrd3GAwGaxi9F13srVTrB7r1Ade2Uf+tA9rkEYujNMok9Icjrr5whRsfXufBvftsbGww6PVY1lHHWndx13me487E8dZ1DQikcCwWc/7hO99hvLFDv+hhpEZ1kdpCghcmGjGFJrhO16WiASiEVcPi6W0O+JM/+3Nu9fNyzgAAIABJREFU3r7Prbf/AZZHbJs+ebGNVBKlNFIoqqp6Rt8btyZ6vZY72+g+lyh8svr/O7U929yefbGItAuBNpo03aTXqyOOqS4RQpIVOWneI0kylDY456nahmBbqmXJrRs3OXp0wLnzlzh/fo8rFy+ilCSE2JRaEVOcmmaV5AhV1Tw15GSarSQl0Qaw0OHvBLHZXTnO6RImg4gJeUaD6zYVSoLrBhSXLl7i4Rf/NXd//E1EPccLgXQNxjn6RpDnA1oUThd4Yaid5d69e1y6dJH7d25SPDlGhEAjBXsXLnD+wkV88MymU6RQbGxssFgsopn6eX3sunf7GraqUETNrfAuTj1DlG+FpuTBe+/Qejh/9XOUrWd+Oo3np37aOyglSZKke3HSJFlOkvVo65IgPUJJEiVJdIF3jtOjxzT1IqZBtnOSPOPKi6/ico+UHu+f8poDAnz3gm4Mvm3xrkUpTRAS6y0uCC6/8BKvfvkr3PjR33Nw/wF1WXHx0iWG4xGOp9uyJElwPsREPm9JkygtaK0iMRk291R1DR3/92//+hu8/qXf5tXPfZ6iKDDaxNQ917CcLbl47iLeWeoQaNqasl4yLSf4+w1/+X/8nwxGGxS9PtXpY7bzDaq24sajuzzev/3rvvz/ovpUNLjerRBg//zaDJHEueOZ5vajuKDVwxERI31Xk7O2XYIw9IrY3Bb9IWmaI4SitZbWWfCB2WzGfD6nqRr29vbY2zuHSRRJEEgb8D4Kyb133cM2TnGr2ZKqXtL6iqyXsr2xE9/kCEghoWtuoxkNtDGdaziK411rI6BcyKdGos60o5TixStv8LPr7yCDw1uHFxIrgUTFIABpcCiE1vzD338PY3oxfrXxBBmxTtNFyfHxMaPphO//6MdoBHt75361F/s3rKILvYv87MyFtlpy89oHfPErX2MyOV03ZUeHhxRFQQCyIqeua6rFgl6vh5CKRTknMYY07wGSPC/wPlB1JgCIbMUgAClwPlI7jDToNMN17MbVrzcej3nh0iUmJyccPDrg0cMDXrz6Enmer1Fc66QbpUkSg3NltyIWGONofItvGxazCXVd0ev140q4Y0/aVXrTM5M+e+bFVBDwaCTjfo83vvwVjh7c5ujgGubhDbILCRRjvIagAq6Kxrc1Aze+HnZsS/u8qf1vVGevGfBzU1t4KjtZ/fXZiflakiJE5HcqjdaKbZMCUbKlTEp0u0dYnfQeo2KEc9M6bFvT1ILDRwdRoy4VG5sbZHlBYgxGNghx9jMImrqlXZY0rmK4NYyTYwJBg/ZdUy4743K32o2fW4HoXpZCgNAixIq13D1zBBQbI2oRpReqtXjnI6qykwgJrdBJgk575Fox2L3AT9/6CUXeZ2tDkmqFVIKHD+7z8N59sqyg6I9JjMFWCw4PHzMajX41F/k3tNTyBOVDt+CNtADZSfeCs1GLaxtOH9xhOByycf5F2rJeB4wYE5NBl1WN1mncxDpLlqf004LlXHaJjYYk1QgrybIMI1Wc7kpJEgzzaUlTWuRmNAJHmVjUvQbnI4IvPsIJUoJXOB9QxtBLM9K8QCcpb37lq2yEkvc+eJ/joyPquubFF19ksLW1frFP0hSpBEWexf6ksWR5jtTQOocMAZNm8XlRVRgdePftt7h16xZf+72vkxd9VNoD23B8dESv32fRWhpbUc7nnDw+JDjPX337L6nLGcFZXFtz8fIVnhwdMSx6fO13v8yPfvjZ2vh+KhrcX4wAO2tmiZNbKdQzh+/ZPz7641KpuPbtkpbSvCBVAqk1SVagdWR6uhBQbUPuDY3ztLZBKUE5P2b/QUxAK8uSoten3+vFLwcO791a6N2WluOjQw4P73M8fUJa5GTpgGG/RxCexlkUKupsCSTKoKTEdZQG4cK6WXbeRspBxz5dVnOE1uTDHq2UsFwQpKYNIrrakwKpUpzUtEJw7cNb6CQn1znCe3o9xWSxpD8ccvj4Cbvn9jg+ehwnIq3l4ODRr/6C/waVkJogZdf0RR6nFpbHD+/xJRFoWoeUGpPkjIZDhIjYFikEiTHUnWwBoN/rx9hoCcPhKP54CMRcj9XhGYkevvWRO4uIMHHtQGisi1sGHwRJmnPxygvcv3+f+WLOkydPGG9sMNrejhB0HTPMm6bBupV2URNU1yibhJ5UlHXLz376Yy6+8Ep82AexDjdxzlHX9bqxllIiOji+6aKs8QEVHCEIPv/FN7h7/We8f/KIw8cHoBM2964gkxHBxsjpFbpMdHrKqopr3dB95543uZ+8njGSSYPgWSPZ2cHBL2puVz8WU8TA0WJMQq+XIbXqoPca5z22W4/6ELqI8ZZAi5CBuqrBOaqmoZyfMBhvsrm1w3AwpJ/nBP90YusczE7nzCbHHB0/4MILLzAYbpLuFmh8NM5JiXRE2g1dgInSseF1kSWKjxpx352z1lratiEEwbkLL5AlBlsq8DXBxXO5QRGkRuoUaTKE1jQh8JO33+LR4SFaTrlx5wHDQY/LF3fZGu+gtGZZLZnMpmQmZT6bko836PWf+x4+SUnrkD4mlQbnwMVo3MAqIjfg6pbZ4QMefJiQpgO2xjscnR4DkrKsyXoJOskIbUOaRtmBtZY0L+gNRiznM6xvEY2LlBkhEElCT2ywXC5IlIKgmExmbO5u0ZcSi0MFgW+jdyfO2WQXChWlK8F7jI4NdqAlyzI+98U3MKcPmM1m2KZiNp1yc/+AF7Xk3O4uTes6w2eU+GR5b01WEFKS6AStNXVdr5FizrZIHIvZKf/lP3+Dtm2Y1g0vXL7CxmhMmuVsHm4wmZWcHh/y0x9/DyUDRsKw1ycIyWg45PDoiNF4k+l0gW8q/vW/+u1f89X/l9WnosGVoX6Gv7h64K/0YEI8XSsAz0gSVj9vVasJrhIKoWV0XecFg9EGSIFRkePZdlMB4T0iMQjrUM6hGoV1DcvZjHq5ZH50n0f3rpNmBVleMB6NSbVitlzgg8dIjbOOcj6hWs5ofcsP/vF7SHq88vrr9ApF0qWKSGNQXbSkcx7rWnxjI0ZMqOgGtXGS60NccWT9nCePTvng+gf4oo9XsFjWeCQyMyQ6pe0eHtdv3+Px4QlKp3Gikkpq59navYB1DUIdMTs9RroWAbRKnYkNeF4fp1wIMYgkyqpQWFS9QCG4e+1ddi6/Qlm3TE5PyIymaRpc09LIKrp5iwjJb6np5cXaXFU3dUc2cEjh0UHHX0TEyZRrLVlqsK6LguwkPs7FtXHwnuA9fnyBcT/F7A740a3HfHj/Aa+lhn5/QFXV8eUvy7DzJSDIs4y2tXHrQGxmiixhOjnl4aPH5IMx/X6f1nmQIpqVYB0Paa1FpxprDXWtOueywVtHkLC5OWJra5vRcJMnjz7k7s2fsign7J5/k36vYDI5IU3T9RTXd8aQp2ahsDaLPNfgfvyK+tMkhuyIf35q+9F/troWcR270oMLWusQypOJFGk62Lz3qNWWwPsoBzAJQhnSkFJXC1xbE+ojjqct08OH7N8yjIZj+r0+3lnKtiFNU4ILeGdZzk5pm4rJ7JQ82yD53QFbW0O0dAgfCJ3kJRJuFCF4GhugM4FFzL175vfjvad2Nf1iQMg24fA+oXVYF7ASRGoQJkGqDC+j3v3h4TEHj44BDVISpGRRtbx37Q6Hhz9CCM/uuT1euHSZczu7ZL2UkycPqU5Pfh2X/DemxGKBJ6bVrZFxMYc2ylNC1/wup8weXOdD2/CFr/4xOzvnmExOaa3Hzqb0ijzi3wiAoWkrqqYmMxlKZyhhcG2LlhJvFNLHF3epFVVd0XrH0ekTzld7ZConMfHMXPUvSsQACB8C3kkypSMzVwhaFyLTVir6/SEXf/ff8WS2IA8LHp8seXB8yofvT5kcHfHi1asMN3ZoWseyrimbJm79hEBpTV23kd5R5FhryfIC5zzzxQLnIroOB8Ms4eHtGxwIurhoT9ulq6ZGo6VkMBigkgE6zWJDLhVKJ0ixQCQp7WdstvCpaHBXtTo4nx6q+pnm9hdJEs6WOyPMFkLgbYtTUZ+V9wq0SggyppFJazt8VzeN0BqJIMs1wadUy4Dw0R0v7IyqLakXE0Q1i1OIENBJhheqS9yBXtFHiDirfffdtzFFwquvvoJSkqz7XIGIO/Jd3p8XUC1L0jQBZLcy8yilEUqhvGJ76yJZb4tFIzg3vkz/vGZZ1tT1IoKapcYheLD/KMYQhgDS0SJogd2NDa69/w5ZknByXCOVwHerHc9n7I79lFXwniA9IUSjlg4O2tiA3bn+HpdeeoX5okHYmkUT9a0rd6wxhizElRMIjo+P2draYlEuKMsY+ylDx3gWIhraugO9qWuMll0z4mOXIdQ6Ardpol61qlqcF6RJn63hgunkhEcPEnZ/602MiSETSipGoxGnp6cxvEFLAlEzaYVHSAHBcu3dH7Kzs4nJe2gRkKGF0G1VumkFQITrx2lFVVtUl9KDd2itSFQgNQHbWlrveLS/T5FtEsT59f+bKCtq19/3lfHso9PE5/XxSogkTm3lx5vaSilRMrI9tdYgBd4FrA9UbYuBdUxq0kXTrmKWUQopA0Io8uBwEiBFuCXeW2SAZnHCol0itELopEOGeGxdkSYJeZKh8pyDB/t8uHGN3vBNUiXITITlx88J1nmC78gP3fPBWk/TtHGQ4D3OBXQqOD5eIEuPDQ1lCAjvQac4AUIlaJUjkgynNIuq4f3rN+kNNhBeIHxFHRSLxZw8Twk+MN7e4uDxYw4fP8a2FmMUX/7SbzG4MPzVX/DfoApEZv7ThjYG4YQgOvZ8iHG2ztHWFbPjJ9x6721e/MKX2docc3Q6Ryiz3mCVZYyf1Z2BXKARSpMlGVZ3JnIHPsRYZpPEf9ephEcHB+yeO8fmq1fRSoCK01ot6Ta2xCxhIdfs8lUTviLGSCnp94b0ty5xzFtsjzRplvPg0QMeP9zHtZbXv1QgdYpWpou0NhgTI6Cj3LcjMHlBf9CnahqElEynU7a2dp6yfzc38N7H33e1oG5bEpMCEiUU1npsaMnTFJlkCJOvN3XL5ZKieI4J+1j1iyQJ/9za7GytZQlSnpkseKTs1p3e0dSWkCmUiPgNbSKHdvUghZj0FfOtLT0KgndxOtEusB0DF1fTSpDGkCUJeVLE5LUOTN/UlkBgPp9x/87dmLv+wmVMkCjnsSuXOT5ONJzD+UBV1SglMSahsbZDgUT9rG08W3vb6H6fhXOoxqBVRt5PGI43qdvAo8Mjxpsb1HWLlIK6aQkKsv6A6eQYGTwnR0egJA5PRAsHnvcKn6wCHuFsPMSkxKEIUiKahlCdcuOdH/O5L/8ODx4scMGSpim2bZnP5/E+NTG1pq3qdZwkCKbTKZPJKZujPiHEZngdp9ut8L33XePn0F6uG9x4P0cMTjWf01Y1MgSunNvlrq04PT5idjphe+88ddOyWFQIESUNq8Ov9SVJnqOShMVigckyjk+OuXv3LqPtS9EYRsB1+eXOO1oZG1NfWWSqcC5Od00KyiSdEa1hOOjTlEsGvQEn0wVNWbP/4H2GraDXj8ZQiFi1ZffZztbzBveTlxBqTU74RWfrL9qKPTu5jdKbmHonUdLQihgFba0F12JdZIcaE6NVtdbr6bzvGlalCkJIEcHRNIbQlrQ2NqJeaZTWpGlCqjO0Utg0gxCoKwtCMlvMeHTwkP39HV64cpkg1DoMIr5nxpgK5yzlsiJJniKivPcgPCZoGmA8OMdP3/shDx8dsjncRbQ1ZWURJmIdndJY76is5sdvv0uWFQgMQgm0TvHW8cK5Pfb3H7Cxs8P85AjpXYfvi3z3f/rZW/zoJz/4lV7r37QKXbJj6M5cv5JvQZdiGn+e7O6Fti45fXiHB1rzuTd/B600s7Ik2Ij4bJoaIQTDYT9O+5tIcPJCkGY55XIZr7HQCKko8oy6jlPRpqqZzWZ44ndmNYDwPnT+jICz0YvjVvQXGfBBrOVWEVcmKMY7OCQiOPqZ4dLuBncPTpicHPOzt97mxZdf5cKVF/FCxDPZxO+TEBFt2rYty+WSk8mUJEkJQZB2Z3q/P0RryWyxIJGaIDy51gxUQmJy5vMpPnh6w4ymqqjbljxT0E2hi16MPJ5Op7++C/8x6lPR4D6LAFOAeWZtdnZl9tE6m1sfpwqdiUsnCCWRQtN6hxeCclmiFagkX+dTr/67zrm4+gyBEAyqyMDZiPSyGdpGVqfVUVuYpAZhNLXzSK0QypBlhrwXdV5CJ0xOjnnnZz9Da82Vy5dQwnUYpc6V7C3BOTyBtrUor3DexzXcouTBvTuMxxu4VnHnxnXasiEpCurlEpNmuMaim4BQKcPxDn/0h5dBBDY2+5xO51z/8Db37+9zcO8ui8kx3rd455FSxC+kf97gftJqbeQLru7hdeqWALucs3/3FucvXUWohEFRsFjO2N7a5P69u7RtCi6QppK67e4/IcnSjLZpuXXjNuZzr1KkMVIxBI8MsYFVUlLWFaozejm/4uBGEoHWCXVVcfv9H6FcGXFOEi7sbnLj3iNu37qNTguK/giTwWQyoSgKsi4trOjHKdNyuWQr7zGZTJDe8ZMf/oCXXnmdotfD69V3N/55dvIEqRS9/lMTTYyXrKN2V4JtPcLkmDRnK03JBm3UCB9PqRZvsXvxKtloF6NTlHMIFZsRkybRcOHdGqL+fPnw8Wsl9/h4U1vQOl2fr0HGyVmWxDhqE2LCnrMNi0V4JmoUoN/vxy1E09A2DVJ4RHDkiUHJAdYSUUwClDboJIsYSRQizUikIet5qrKkn2QsphN++pOfIKXkhSuX4lalMxpL2W1ZnEMazWJR0u8XkWuOJXjBsqmiadNKLr7wAvl4Mza+/Yxxr0DrwLJccHwypXXw3R/+EJ0WWC9ItCMIRSsV4+1t5tMJtm1Znh4RmgqpwKKBEDXC9rNl0vk0Vtt1sIHwDJFijekSEohmQ7TBCImfn3J8811+XC740lf/BFSCredUi1OyXr9rErsXcmMYjUYoKVkul9E3YR3CGAhQtQ6pNOV8jkx8p32FpWvi90THAZaWEmcdrmkxRsUJc4hpqAiF9462tbSt7fqBGi8cwpW4YEiN4LWLu0wncx4e7vNBW/Lo6DFfevN32RgNWSwWXXSvIs17BFFRSE0eQEiFd44nT57Q7w/WG8EI2HNIIUmTnCzNaWxNkhra1tLUlkVZkxQ5TWsJDsrydN1I93q9X/0F/wT1qWhwn3IYNR918n5Ub3u2znIyV82tlPKZqYIXYFSMwlPdmqoql3jvybJsPS0SQqxZjnVd0zY1iPjfMMYglQYvaNsGIaC1RKel8uT54EwghKQ3GFDXDbaumFnLnTt32NraplekCGdxIX6RBCG64kOgqits8CTKIIXAGMPGeIvDJ4/wjeS73/4bNjc3SJMEZRKqqiIveohOg6NUBJjb4HFO0st6vPnGb/HCpZcwKtA2Nd/5h+/wzs/eQhCna0apZzKqn9e/vJwDKZ5qwdYNggTXVqQ49h/cZ+fya5yenpIXKScnJwghmM+mFIMx80WULeRFigxQ1yVN23L75g3On9/DbI3jYRMswbfYpkZqQy5SnPAIqTBK4lpLKxsWzZy+GDM/ntLMDjG2RkqBCwFjFDubGxxOJty6eZvXv/gGvf6gMzDEBt0kCVUVNbVFUay5kYQYJ/39f/x7vva1r+OkIukVCDwKx+nJEXlRUPSGa7mQtfHQNEmcdk8XDdMapq3k8OA+R8fHVOWMrY0hoZpy//Y1Lr+WoXoDgpIYDFLK9X26+r4+r09WH29qG6VTq4e4FBovQKkYg6qTnEwJ2nJO21TxIe4CZVmuk/POynNWk92mjSbFLM1QJiMTAlvXeB9f+ubLEiUVvX4aH9xdgEN/MKC1bZzOzufs7++zubnJoJehYth7vKddlLp4awlSUNY1zseG0zUt89ks4hnRlIsplS2xLRjjabyjrit2z53jwpVzCGOYNI7bd+7TtBVBZLTeUi1bTJYzmxwjQjQ/BaXiZwjdM0wASiLcc+fDJ6mVrE7IuG8Nq4aWSLuIUsBo+pXdX0s8wi5ZHNzn9vvvcvVLX2HmW1DR9HuWLCOE4PDwkCKPmtamifxl6yKFw/lAEHHDFKRiPl1Ena0Q0fQmI8u+dQ7XtjR1RQhxmGZts57gPtW7d5HUTRlDr2xAiTo2wm7JsFDU9DlZznn84C7vCMXnv/gliqJgWTVY71EuoHQS9cXOoojf293dXaazGUmasVgssF3Ueb8fw0fa1lI3DVtb25RVjUlSiuGIZdsgu22M6bbdTd0845X6LNSn4mkR+bb/vJP3o3XW7KCU6iQJKnLuzkwWtNIdg7HFhRj1KUSMgpzP53Ea2x28q4STJEli3ngbD1mhNFIbsjQj9xbbOtq2iQlkSkYdYog3rURh0iyuqxcVbVPz+OAJd+/e47VXX8Zbi2sbhJLrh3U8/ARVWbJsF/HNcT7j5PCIulryjf/0fyOlYLlcokxCUfQQUqO1YbFcYnRO3TTMHz/mwsWLPD46ZdwbkOVxinc0O2UyPWU4GPFHf/LvuXTpEo8PHvG33/oWTfV8ovBJygX/zJdorRkNkmBbmmrO3ZvXef3LX6GqlrFRc65b7WtGg/76XvStpbLRdJbnOSIEbt+8gU5fQ+ohzjYo4VmWS4a9YdwU4LuAkYiScUGzXDSkbs7Pfvj3qGoBDqRwCBwCz04iOG2XTKeH3N+/z+/8d1/Ho/A2NpHL5RIvIM+zaB4TUPR7lLOSqi754IP3yNKMV6++Ri9ojBIoHNIJjErWkxDn4rS5cZa+1MyWC977cJ+fXbvFg2Xg9sMTTGgw0nA8mTPIDcoIDu59yNb5S2xs7bAsm3VTdJag8Fym8MnqFxFoVj++OlsjK1R1RjKP1gapJEJKRHe+KhmjRHWaYbTsjLE92jbhdLYEKckT88zEeCUP0FqT5pG64J3tUiVbsjyl1x/hXPwuBFx8rgaFCgLno3s8zQuM98zmM5aLBffv3mNv7wLDwRXatl6fs5H04DpJT83CWYwyaCVJTMJytmC5nJMlI/7hW98iDQob4mdc1g1JklA2nkxLmkXDF17/Mq++/Dpprnjvg2u88/51Xnv1Ve7cvIUWcHR6Aq6Bjt7wdOMQqSe95+mRn6hiNLP8+Ya2++erP0uixyY6URTBS1Qz49Gt90iyjEtXX+Fk5mmrOYvFgs3NzXUfMBqNOD05ifd/d+82tkUnhl6SMp/OgLghiOecjfHQrsV6tx64RT9MjGpfEXQgIKTAhxiZvWwWGJ9h5w2+LJHOE3y7fkELzjHs5QiTMi0bHu0/5PjwkC/99u9QDMe0NuDcEq00ZVkhIAbyKEmapmRZTlnGrV5ZLtna3ubw6JAsy1gsS4IQHB4fk2UF5XSONilKG2xHyFEds79Vdp3K+VmpT0WDC+nPpZL9sub2o5IEGWU4UZIgY9KYF4CUJCZFJzk6Ucjg0aJPVVVMFxVCqWcO3mjIqVAqOr+N0QgZG1bnLARYlkuMNiRphkPQS1IQ4Kxj2bYkxuCF5HS6QApIkozGlrT1kuvvf4CUkkuXLhA8tOWCLI/j/tp5LLCsao4eHeBaz/HhEdiGf/zOtzl6dMBLl18gJAqpDNokGJPggsLIlNY7llXNYDRkf/8gJlWNNbWtqV1D3h8AkjzrE5zn4OFjQPDHf/InMU/9eX3sqkMMN1Adwi4C5AUuJCTC0SymDLfHPLj9Ifl4m8PDKcN+n34vZzKZcPvWDS5cuICSguUiHppZnqGNoqlKbr7/Abdv3+I//MWfYZsKZ2uuf3iNq1deYjQakacJJ4dHDDeGOCEIoseDm/f5Lz/8G/xkn6KcoYXGEScMSkZN+rlzOxyczLh/+wZbO3tcuXKFo6MjALa3t2kaG01BviUzGYNiwDSZI6ZTBsC1n/2E73z7m2yev8jrr3+R8+fOs721hc4LKtci2gbvPPfu3+Xc3gXm84eczio+uHmHuZWk5z/HuGyZPbpF3S4JbU15UjMoPGV5n+V8gvSfIxvurrctVVWtzWbP65PV2SYWfgkhoZtE/aKprVTxBVsnOaY7X11TM58e05RLRuMR21ubVE1La6PRa6XJ9t53Z2wXtS4MSmuyVKGUoLUti6YiT3ooE0gS3ZmGHYu6Jk0MSMNkvkQhSJOcxpZUyyUfvPc+4/GYXpHhfMA2JVmWEUJkSDugqmtOF6ekScJyPmd6coptG77x7b/i7o0P2NjYYDTeoG4tvV6ONileBJZlFc2/UmKyjCTN+O0vv8lvvfkV2sbxxtWX+bu/+1se3a1RWS+SQ1bNjpK0TcmwSHnx/Plf45X/7Ff4CP1nlSKm+IiMMQSC8xADPwnSkilBfXqfe29XLKdHXPnCb1MkY4zRLJfLGHrTvUzXTYPW0SPhvcfbNlIRvGdjY4PpdIpSkvlsxsOHB5zf28G3LUpLjDF453DdeaVllCQIqTq5WHxpd0pzfDTDuCM+eP/7iGqOFgLrwCnRMZgVQUh6/QG9ccJkseTBowNufXiNYjjmykuvEbTBetBpFpnAIZo6y6rB+4BJMkwiSLOU6XxKVvSigV4ZrI0M6mVV4h3UTYNKMlpr2draZjKZQICmrpGfscHCp6LB/agk4ZfBxX+RJGFlXjgrSZAy4jx0VmB0TAuzdZw+DccjdJKzqFeubPHMwas6hqeQGkKEgGdZTpJ0iCdvESiUNNgQ12pS2PilcA7nPVmWYxKDt502M8B8NuGffvxPPHnyhJdffgmCYHJ4zNbWJnVjKRfL6DR3gjxNOD084jt/918pUsWFnW3yXsGibkiLFKU0yJhucnI6JclzpFaUy5gCZb3jyaPHXTrPZR7cu48L0LaW0WDAbBHI+z2quiLtDX7l1/s3qXrDDcL8JE4UhAKhQGqkFARkNCKUM25ef5s/+NP/yGK+oLVQLqekSYIQgqqboieJoW4bZrMJ4/4Q1zbYtuHhg/sTDkYyAAAgAElEQVTcvvYhg0EBwbI73uTo8IjlfEGRJiSJYTGZo2uPThzX3v0J89MTxlphg8B5jxQCp8D6qP/SQjHs95nXLbdv3WB3d7dzw2taFyLGSRtaF5OYtJIkadolSsX7emdni7v3bnN6eEhvMOA//NlfUPmYANQ2S9q6oWlrnjy4z/vvX2fZWqbzks3NHRa9McOLr1A2Lfb0YQdqh7JqGfUSytmU2zeu8eLnh8+8hK50nPB8ivtJ6pdNbc+ercCZqW1Mr1tvxUyKTtI4tXUW29bMZxMWkxMmp8fcv3ODF164wmB7lyztgdDMFp7QNs9QMnTWQ0gH3T0FIIVEGhPRTzLev2maIrtkp9auztkMpTWLZYkUin6vYDY54a233uL1118jSxOaZYWUGoKg8R4foKxr9vfvoaVhPp1hpODBvVvcu3mDYX8IUnFyespovEndNAyGQ3SSsyxrAo7T6Yy983scHh2xNRxjjGEyn/L48WPO7Z1jb+9P+fwXv8A3/tM3uHPjXRA5bWvJ0h4vX77wXBb2CWtl6IoD0tV0vOPCrv824uC88DE5zHqkCFQ2xjX7+RMObzuywYjLV19l1slUquWC1GiOJjPyPIbxJKt4aCGYzWaEvGByesp4NKa1DeVyzvXr19kYD5G4jqWvoKN3VGWJE5Bqg4x5I9RtiTIK6w2j/jb/1//+P+PnJ2gCrY9JfC4Q80l0hkwjRSEow3i7hzc5s8UMk6Zce/8dXnr5daTRBDxV03lttMHWLSZJkDrKDWrryfJe3AYrTZYlMRyironG5HhvZkYxGo+p63pteE9MwsnR4a/0Wn/S+lQ0uL9MkvDPN7cx31kp9cxkQWvTGRNyEqMi3LupmU9OmJwecfR4n3MXLtHLcxwG7wN1acFGkoJSEeVk0k5fJiJKxNqoB8vyHAIYqRl0ZomFX8TDWmus90hnEa0gTVOGSTTHVHVJuZhz/do19u8/4PXXX8ckimsfXufC3nmasqGczXB1w/Vrd/nR979Dbjz9LGXvwh46H1KomJqmZBLfKoNg9/x5AlC3LeVyGaMy25aWll6vx9HRERtbW2SLkjovopO/yGnbNkopwnM92Cep3b0rHNycE6Ts2LGrFzWH6yJ0Z5MJicy4d+cWzmsm0znbmz1msylCxo0BxHuvn+aUHlrbooymamq2d8Z8+2+/ycXze7z80ovkecpsMmF6csx4NEJJQZb0QS7Yf3yHxfKYre1d0tDyZLLASKKUQQiQKVIqgkookoLGz5kcH/P2Wz/h9772b3j05AidpIz6fWazGcYkjDc2mc/nLBYx5WzlyoXAha0W7z2nR0/4X/+X/4ntvUsMxxsMe33KcsFoNOadt37IyemUKy+9TNof46sZgzTHDwe4nXMcLY9Zni6w1rJoG1CQKkE1m3Dy4DobW5cRpkDplKppiMc/T1e/z+tj12pbthoyxLPVI4R6dnAACBV/TOqUJEtQQhDs/8femzxbll3nfb+9T3/712a+bKuyGhQKIGkTIClQgEixMYMaEDbDkgfmyNTA1sQT/w0ee6aBZTvCnigccjAckkWCNAmRBMECUIW2ClVZTfYv8713321Pf85uPNjn3swCSCtUjBAyEbkibtSkKqMyzrn7rr3W9/2+lrrKqfOMdLVgPptSrpf4uuThzTW90336u3tce/XT9PYmlEVDUeZYC02jaFonE4ujEM/bxEdr+v1+J2OI6fV62+biyXO27aKlx5MJqmkp8hKE5c6t25yenvKzP+t0iuvpnIP9PZpWU+aZCx7BIwoC7k3P+e5bbzA/O2WQhAyTHjrw6PWHHUYqpFEWbVu8MKAoKpJ+j7t37zMajai0omxa+uMBvXJImqZgLbc+vM2169e5fu0ae3t7fOOvvoZSLXmlsN1vzfP6ZCVh29CCa2o3qZ+2Oxs2za9Dc2l8z7FyTSe7QdWYfMnxzR+wOx6xd3Sdk0fHbvIqfSaTHVTbuDCeuiYKQuLAndPaOGNXlmUOVSYlx8fH3Dk84NLRxS4uVwMKrRunxdUKX0gEzuyepStG4zHaKuqmZr1aMYn6yMkh6WKFlJYwcMmkRoRIP8H6IfhOGiTjiOM7twjChOFgwv2PPuDqq68SBAH9fh+lBXlROlKTNRhl8f2QQT9kuZpxeHDEw4ePXCCKdLKjIAod0Ux4tK0iTVOklOzt7bFarTh++ICd8bOFuHsqGty/LZUMPi5JcHow8YQezHM/1lI6SYIfEER9/MDDE6CrkjxbUhc509OH5OkKqpTVvQ+IR7v0JztceflVJoe76Fawzte0raZpFFW9JgxDkkEPayHP807L9dhMtFgunTnBGIIodNxS32e9XpMkiZv4au3SrXyfUX9Anhes5nPe/MYbGKMp04w7D+7x8gs3KIsls7MTdFtwsD9mf3LE3oVLaBOyyCrCMMHQYrWmNQI/DPDCCNUakn5CkWUkvR4VEMdOP1nXNW3rJiaNqlksFsRx7Fa+dUP/GdPUPG0lkwmNFfhIAiQCA9piBLTCg0bh+wZflbz95hv85pf/Ce/c/IDVao2UgkG/z3K55PDwkKIo0ELS6/Wo67pbrVo8YZHGMJue8M53vkmarjHaZZT3+gnWQrpeEIUhV69edc9WgIyG+LsXUE2OMC2xHzqduBfgBREekgv9Hd776H3S9Zo33/w2N159jbZVzOYuYnhjwBhPdmnqmtlsRhjGJIkDjUdxDBaOjhRptmKxmnN85wE30xRPSvpJgu/HHF3YR9UFw+EQaRVh9oj8+CHZySPqbEFdN2itCH2fLC8xUUAcCR4e3yMrGi4cXYMwQpi2Q+3ILXf3ef2H15NT243O0JOuZQiCyBl4pNtIbKa2fhDjRRGBJ7ZT2zxdkS7nrJdzimyNKFeEWiGMQeUZ69WM9aOI9fQhB5de5PL11xiOjjq5SYVFOmW41ZjWdtHPbDWLAMvl0oWWGIMfBqhWIQOf5WrFZDJB55psnW5/I6I4olit+fpffI1eL+bK1at8ePMmL730Em1dUqVryjTnnW9/j+9/95v4ouLi/pDLV665i1QYYrAoZQnDGN8PaI0zBBssTe0a1OV6RVLXhGHIYDQgSwsGwwlaKSSQJH3KqiAvKl75zGeYjMbsjIcc3/rgJ/XYfzrKuOkssI3xpusdNqatbS+BAAlKOC2550laA6G0eLZCZ3O+/8ZfcunTGS+89ArT2RJTK+LAxxcSpQ15mWKShL29PUcMsZYyayjqBt8P2BvvsEzXfPubb5K99ikOLxwQJnGXdNpQZCm3b33IKy++DMZi2obVekFTNvhewhvf/gtkqFEE9Hevsr9zien0mEZAID2CIKb1fIyQlI3iL772dRrVEkURy/QDrly8yNWjC9y99T4Gyed/4e+xzEr8OHIhRNZs44nLsmQ83qNqGl586Qbz+dxx/TODRRL3+rSN20hLYL1eM51OATi6eIliNfvJPPNPWE9dg/u3NbdCiE6SYPE8lybyY5KE4Ak9WN2QrecU6Zrl4px0fo6vCoRWqLqkyFOK80eU6YKDS9c5OLrB3t4+TdPSNJWL0bXuFiTpHJNWb93hxhhGoxF1XbNaLgnCkKTfdxIH35nYGq1AG1SrUHmBlxdMRkPSdAXCEvkBvid47cYN8joniiMODg5oq5TBoIcVkqLyCHs9dveclKCJWtpWMxj0yYqC5WJN3O9RnE+J497HTDgbfW1VZUgBZVmyv7/Pcrl05p+6olzP/+M+7J+yMkjipI9qKre677SuVoARLkkPVaOLFHo+pyfHHB1dZD2bkUQhWVEwHo+3Yn6j9FZ24wIgIAh89nd3SReaK1cu0DZDqtWSplFoDG2rGA4GjsSQJIRh6C43Tc3Fy1d5dHwbaUIMgiDsuWlcEDr9OJbdw0tIo6nLlKqqEEFIFISkqxVSCqqy2jIXe70enuexWq1cYo51OPMgiulLCJMhuq0xWlHXBcIYjAgRnnPZ101DP0qIfcOr1y6yfHSXKlsjpMDDra21aqnrmvGwTy+OWMxO0EZx4+VXkWHgHMv244ig5/UfVk9yw93Zan6Ma7s5W33fx+umtlK4AJ26SKnzjPV6wWJ2TrleEpoSoTTSaGgaUA3GKqyqSB81NOmC2dkxV1/5GUb7Fxjv7TBb5GRVRVtDHLiLSxhG2+Zba81kMmG9XlMVBUmvR9Jdyn3PoygKJ1UIfGe2bBv6vQGVabBGURUl773zNvk65Sv/9g/51Esv0TYFx/dv0xQZ/UHE5YNDkt6QIB5RGUGjLAKPwHOXwarVSN/Dj2J60qOqyy2XWilFr9fj3t17vPDii6xXa1aLOZ7nMH5aOqOPF0YubfLme9z+8L2f8NN/tkvy2KNjtr1DR6roYBWuj3BnhLaeC/voTF9CSqxwEjKha2jW3Hr7W1w5usho0KOsGtq6RLdqK6fJsoyqKhmMdlwP4IcESOq6QpkWo1uklXx48z3KLCXLUw7291BNgapqhkmP+/fuo9qWXhxhteLs0Sm33/+IdTbFaIXuhSyznH4Ucenai5yfPkIbQauhRXD73j1Oz84JkxG+1kg0SsPt44dUdcmNG9fxZMD33nyL6y+/Qp6WDAdDmqZ257pwW+WqclLGdZYiAx/p+8SJC3BQyhnJyqrC930mkwmLxYI0XbNczXjw/rN1OXtqGlz490kS/mYEmJQeQejMZEEgEUajmpo8XbKan7NazinWC4I2RWjrwNtl91L6gnmTUy7nnB3f5uKLr7NzcJGDnRHLrCKrFEXdkEhD01iSXn/LzN2gizZTrDx39AOsZZD0UEZjAdW2lHVK3Oth0cwXcxCW4XCIqiuCICArcgaDAdLCuD8A9gCDEKHTC+cOriw86aYCZUqvP6I/GDNfzElXS0ajEYvFgn7XZC+XS5Tqpny9HmXpzBZuQuLwTb7vMzt/bjL7u5QQgsOL1zm+9R4I5XS41um+rHQpSR4aXeUMdw55+wff5wu/8hukgPTkNnKxqqrtj+bmvd8YHIqiwFpLbzRCSoMcJMQH++RZQRBEpGlBYzWL5ZK8rGi12R7MRa24cPlFju/dI/A8WlzClOyMGmmacTydcjgeQ91wfO8Br772GmlREUQxVrdYbTrHr0VIj7ppCcKIuq6QGKQnicKQMAiQXohqHcc5jkeUeYmR1jXDCFojkH5Aka4QRvGLn/85suWU6Wnq8D/GgLVoDem6JA5CjGjIVucsz8ck/R5Cet325vkE95PW47NVdPgvl+KEFD8yOOgICYGHsAZT15RlSrFaslrOydIVTTon0jXCdAmRdQ1WYa1GegKlWgSGsimpy5IyLxjv7HHpxVc4vPYySQOr1RKtSujQRGEY4vs+SZJsMWObc3Y4GHTfjcSFpLQtGijqmjCKWaxXSByeTEg3BfOk4FMv3aCoU4S1HF28SJ2vkZ4lGQ6Y7B6iCKiznN3JiKIowFrCOCEQ0GqDFD6eH1KVBcPxsIPtB5yfnzMcDlmnGav1Gj+MEdJgaxgNh7TauKZLN5yePEQ8l9b8neoxTaUbitkueppNCIRFm81st6MnOA6cY3Z7oKzFNxZooTbEgeLNv/wT/pMv/Aq9ZMj5yRlhkCB8R9to24Y8WxOEMcKTrqE2hl4ccX5+jpCujwltyHs/eJuTPz/nv/jPv4wvDNYqEj8mW894eP8+uzsj7t+/w5vffIPQcyivnZ2ucfZ8tBCUDexfusHp6SmL5Zy337+NHwR4fkLoR87A1uYYawDJbJXi333Eyy9cp25q3n/3PS5fvkqdrolHG1mBRSkXDCQDnzhJqJsapHDfkzCCxv0WJXHM7du3OTw4ZL2cs14vmJ+fUjXPVr/wVDS4T9aPppJ5UiI6/qLnO0mCEJ6LzPPcZCFKYjwBpm1I0wVNnrNcnrM4P4MqI9A1Uhs3VWhbrG0RHo5HWGrquiSfn7Gezej3ekSTfa689Dq7+0d44QXWyylogzaW1epxEykE2LZluVyxM5m4A9VYmsBhnoyAPK/o93s0bU1TVviepK4bzs/P8D0PX3ocHh6SZRnaWnTrdETD0aRbxQXUSiGFpBfFtMpwcHgRay23b99mOOhtG6Ojo6MuaURutTjw+EDQ2tBLYpIkIYoi7ty5w2D4bGlqnrYKo4CqipzySyu0dMg3Yd0NW0iJFhJhLOn0ITsXJLYuMMmQvC4o8pyD/T1GgyFFWTAYDMjznCiKiKKI+XLBYOzSvXwLUsYEgcQohS9SwNAPezTzGRePLm/RXDs7u4CBIKFUlt2jF3jv/XdYrHOyLKdumm3qmfQs5+cLXr1xgzjMOb53l8nhBdq2cSa5psXWTceK7hNGznjWtmWXvheQrnOGw6HD8RnttN5xTNIbkGYrgijCahgmfdbrNVIAno8ygn/467/Nv/yX/4dzX5gGJ2zzUQam0wXjSR9PGO7fuovvu/hX6XkO0fe8PlF5ntdNbT08L/jY0ADp9KnSjwijECncWrUs1tR53k1tp1TrJaGpCbVGao1tG2z3AyqkU0QaIzHCJUZJD3Rd0CzPWGdzstNjbt18l/0rL3H0wqfwvBHrPEe3znTpEs8MoScdBjEv2JlMyNYpvudhez2Gw6G7AAqPwXBEVRf4HYKxVQ1h6GNbBaHDHo1HO6A1vgQzHnf6dx/jR+TpioODQ4IoxA8jmqahNxywXrmzuWkKVNMSBNHWGLqJBXZIs4K2rYCAKq+Ioog8c9I2VMOd2x8yP5+SJM9lYX+n2sSTY91l2ArHC0NgZYD1PGeKlN2FpK2xuiGQTrfbGvCEi6n3MUjdInUDxvLWV/8N1z71s+xefAHphVghKIuMXq9HU1cs51MuXb4CuI1olq5RSpEkEYNej6au8SRcObzAn37lK9RlSlNV6KYhzxbk2ZpBEhL6AQejMePdXearJb3WDZ4CT9IaS+iFyGjIhatD/MEU/84JUnpgNJ4n8PwAEe5QZRlhKEmXS9689z3eu/U+n3n9s1zcP+Tk+B55lrF76QrGGPYP9smyteP9+x5lXW3j0I21lHnKZDhmOV/gJYLJcMSH73yH6fSUtqlYpwukeLYuZ0/VL8SThodNcyul7Yxj7iBGds1tEBJEfcIkxhMWXVfk6ZJitWB69pDFbIosV3iqa26ryqGLuubWGIsRPkobxxO1ClNmlMs5xYNbvPOtr/HO1/+cux+8vW0KjfC4cOECSZJgraVIM0QQcu3aC2Cc5EBKSZ7nnJ6eUKYr52osC3pRzHA4AAxxHLIznhD6rjFN0xStNYPBAOMJRBhSVTW6SyIZj3fd+to62UFRFJyenjIej90hmuf0ej0ePHiw1U1ukoIeN7eP17lFUVBV1WPn/PP6xLVYr4hHA67eeIkWibACYQUWDzc9EFjrmty6bWlUw3e/8yYH+ztUZcVkMkFKSds0rFeL7VZgs83wpYdQBqEtrdIoIVlnFeuiIu5PEOGAxkpGo/FWZzUajToIuUBZiRf28XtD7jw4ZZmWtEYQ+D36/R16vRGBH9Eow/sf3kbrlsVi1jUHIb3REBlGLmrXOvuG1pakN6A/HBAlMas0RXiS6eycpmnp911WettoFoslrbG03cZgg+HzPJe4VpYuFvLXf/sfgVJIP2Dzw2VRtGiWaUnTaoxtaVVJ0+RU5ZoyX/0kH/0zXZ40+H74mBveNbee53dT2z5RHCKtRtcVRbogW8w5P3vIfHpKu54R6QKpFbJtsVUFqgaMO1+tRQuJsk63ipRY6ZpBaQ1GNYh6STO9y/E73+K9b/45i9MHDKKAwWC4RTO1dUVelgxGEy5duoJuWqLQ+R0WiwX379+lF0UYq93wIU7IspTFfE7dVqxWK8qqolWK0WiE1oZWGRptyRuD9WOMDMjKEul5nE7PWCxWLuVSeFRlQzLoMx708YRjpLswoMYhJ9frLafZGGeO6/f7T0QSO+3w2dkJjVIIL6As65/043+mSxvdBXVIZxT3I2zYg2iAl4zpTw4Z7h2xc3SN/cvXObr+CpouJbT7WGtBa4xq0MbQKk2dLbBVxr2P3mM46NFqy2KxwA8DN9FH4HmSe3fvUpUFWE0Y+kRRQFW5dw1ABj5+JJnsDOkPBkzGAwJfs7eT8OLlPSaDmFdffZmjo0u0Tcv+wQVH3xEeSa+H9H3wfcrKsaF3xvt88YtfwBNOKtNaQyskRdPyqc98FmUEeVVxePECShnefOstHj56SN3W4FsePLjL3v4Ox8f36fUHtFZSdpKFDZNaWjCt5tYHHzLs9fGE5YN33yFbz5lNT6iqDKOfPXPkU9Pd/M0IMNfcuumCjxHisd426hMEEolFVSV5uqTMUs6np+SrBX5bIJVykoS6Ad04h6UHWluMlBijsRuguRAI6yIjjWoJspaiWlEsT1g+vM3+0WX6O/vQi2ialjzLGAxHFEVNVWsCKZ2xQil8363EnCEnZDAcU5UFcRxuXyplXMM5HA4dzNxap/NpG4aDgZvsHRwAzmTh+z6r1YowDLcmtizLODg4YHd3l7ZtGQwGlGWJQVMUBTvjicOUVBWj0YgocilaXqdd29nZYTwe//89luf17ynfDwijHm0YU2uB9HAT3M7+IITACgf19nyP5XJBKBJGob81kTVN7Sb/TUNZlQicVmrznVgsFhweHqK1dhsOYTHmsTbRaAPad4e2bAmjiLJu8PwYKX0XMd0oPvf5X+Ctb38HgcT3AkAQBwlFW2OshwKyusBTNR+89y4///lfolaWZDAkWy6I+z3SIscY44IoPJ+yyEn6DjtjLFuJRBBEjHeGtK1ilWeOzYygyDNk9/drmma7gk7imM/98hd56+t/5Q77DpCOsSjdssrWTMbj7SrStf/PMWGftHw/7Ogznos2lZLA95FeQBAnBL7sCDQl+XpFmaXMzk+dtKTJ8dsGaQ20CtvUWKsQons3Nd35ah6D+IV7/g7lpPG66a5nc2xbkrc5Hy4ekoz32b18nRufeh1rBYvFjF5vwGy+QkjoB06b7r4LhrqqOK7u0euPONzfR2tFv5eglEts8oX82PnqeR5xL6FWLWHYRynjzkxj8H2PXm8AQnJ6ds6lS5ccIWQxJ44jlFIMh0OMMZ2/wRLHMVEUcXZ2RpIkLJdLPCm2lznf91ksFjTKEkUR48kuy8WzZdR52kpLp+kX0kcISdIb4IURXhgSxz3COMYPQrzAbXsMkumj+zSlwsfgmRqMRAOm+/0XQhAKTZuvCQKfv/rqn/CFf/jbjMdD7t67zbDX3/BxADg9PeHSpUvu7EoSkjDqdLoVu7u7Tr7iRxzu7dGWGUkoAcXOsNcRDmqS8YD+7h5lWaC1xvcDLJIkGaEVVG3mtsV+yMHBIV/+8u/wh3/8J53hPObKCy9y8+Z71EXOeDBgeX4KwmKV4Xvf+x4PHtzjN3/zN8nv3Od73/wmO3v7TKfnDCc7qFZxvp4yGnVyHEBawf7OLm9//zuki3OUqjk7feSQfo3G88NnLh1dPA3Q9N/6L/+p/XgkpN5qwqT3BH/RD/D8CC+KCD2HqGmbgnQ+Y7mYka6WqHSGp13DIOoa0bYu2tHbiNKlg95vUkKE57YbUhL4IYF06wtPCHxh0MrQyhAR9mj9hPH+EZdeeJUrL79C0zQslilCSOp8DgainluT9aKYssipO0NCXdeMx27Ktl6vt5PXyA/Y3d3FGLN1zldVhVKKoijo9/vM53N2d3fxfKeP2zyzTQLWcDhkvVrgBXKbxFYVpYv/61Kl2rbdZmzP53N8z/0Ajcdj/vn/9D8+7xQ+Yf3yr3/ZRlFEW6Xky3POHtz6GHJpG0MtwJcOEzM+uILfG/Mzv/Al1usV1jgzYpaviOOY8XhCmqadTCGmKustXDzLMrCaKIoIQ8dCruuaMkudVEU57AzWgrcxR1pGoxFYzfTshL/+5jfwZIQQnjNsYVnNZxhVEwc+X/zFX8T3PMZ7ByTDCV4U01Zdog0Co7W7cK1nW+lL2E05rKCbSGuCIGI4GVPUNap10PQ8z5G4BmBzsGZZ5tBPWpOuF/z1X/wpVrdbh38QeMShj9w0tEI43Rgwna2ev7ufoH7n9/47K4TvYkWlhx+EH/MxuJXqijJdsVrOyNI1Jl/g6cZ5GZSTrYACLEiLMW5q++ONLVjpHpMUgtDzXYAEAAZpWkBi/QjjRRD0iHePOLj+CldfeAGDJM1K2qbC1DnCi0j6fYTRCAGz82mHGGsBw+7uLuDeq16vB7q7kHXG2ziOycuCXpxsKSFuAusGFHnu5DYbs+disWB3Z8z5+TkXLlygKArKsmQw7NM2zXZSq7VmtVqRJAm9xMXAR1HEvXv3UEpxfnoCuqbMc27f+eD5e/sJ60tf+Ps2iBKCMCKKY4IoRnpuE2GQ3aZJYHC+AaUUoTAcf/QOzXqOZ1uHEuu2ZNuhGsJhNqVgcHCFhoSf+8V/gPZ8zs+mjCc7tPUKKX3qut7+1hpjiHwnCczz3F3mrcUoTRQHqKai30scx1k7pnNZVy7FLC8I5OMI8qZpQUiU1fR6vY7BH1LWJaNeiPBCvv3d73P/wTHn51OasqDMVqBaFxmPReEhLHhSoq3lN37jN2jK3LH9ESRxn8FgyHDzewIEQUBZ5Hz/O9+hqtasllOSKEAbSVO3W+N8v9/nh+/ffGbe3adigvujza3vh1u4ONKlePi+TxD1HBpLgqmqrSbs/OwR2XqJKVN8VSONgbZLU7LqCUmCSyh/srlFdlMFAKPR1iI9idKa1mg8q5DSYo0iDErWZy35asYP3/4ur73+OhcvX8NIn0qMwIBCEoWJY89Zy3i8g7Uar5MupKkDSAdBQK/XQytFWZa0bctoNKJtW5Rutugexxx1OkatNfv7+6jWkGUZ+/v7XQM8I4r97XQ4T93Nz1qLalqk7zEej0nTlLOzM65evUqe5+RZ6riNz+sTV1Wm+IFPNNp3STLhMdI0bir2xHTASAFCEgY+i9k5A+305vPZjJ0dN5kcjUYEgc/Dhw8Yj8cIYVGdRgoeN6npWN4AACAASURBVIKeFxEEPp7v43k+1laMdiYuWrQo6MejbvWk0NpwcHCAMYZer08vCbl97x4PTs6xwl2Y9nd32N/d596djzifnvBvvvKH/NZ/9ltUZ2dcDnus1xl7+/suZlKAMhpfBkzG+xRFwWq1QmAZDXdI8xSjTdd4V1RVhFKa0XjC2emJg6dXFUVRkKYp+/v7lGVJXZQkwyHD8Q57BwdU6zlxGOF7Hka1Ltqyu6w58Ts8n+B+8nLNbRdP7gWESeJYoUrRNiXFekWRrZmdn1GkS7y2wGvbbmrbQtM4L4Ogm9oKjJRoY5yE+onhgd00EtAZCBWILsgHjcWh8IxqkVZjTEu5FDzIFtz78Ie89vpn2b90FSsSsqWg1x9R1jWNVlR5QdLr48nHZIgNnnFjvI18B+ofdOa0zaXPIRTbbTR2EAQIIRgMBrRtu+VTj8djwihhMpmwWq06hrhPVVc0dcOgM4pqrRkOh/T7fc6nZ9R1vXWir1Yr9g4vsDh7SBjHP6Gn/tNR+5eu4QWuR7AIjJV0Nr6twXa77eo+Xhhw4doNbv0wx2iF15nAnwyRQfpoI/CEJZ+fMTq8wnfe+FN+9R/9LqtVyvR8xt4kce9aGFJVTmcthKBViqZptgOHOI6xQQCeZDgYYrWh6WQtyrhLWFmWCCRVkaMNxEmCDNxGYJWtaJTCU4q8cAZxowOiIOKFq9fZG434gz94h7YzcEZJTFuVWBxJwmHuWqywfOXPvsKr167x2quvkaYl69UcT1qWWcp4NEQpxQfvv0fbNJyd3AfRIj2fojZgtBvMCOEQj8+Ysfep+L+VUuJ7LkZ0uzrzgk4o3kXnhj3CKMAXFlO7SMh8tWQ6fcRqPoVyha9qPK2hrhGNS53ZNLdaSLTRP9bcblJRRKdT3dzitWpdg2Bd+pM1ClSNpwpsuSQqTvngu3/N1//kX/PDb30NXacEvocx7s9LswytDX4QsFplNI37MmymtRuKQdJhl4wx3L17l7opyfOc5WruVh9JgsVN7DbpP+u1E7a7g1yhdP1YG1Y680OeZayXK9dEaydZGAwGhGHIgwcP3PosCLYotuf1ySoIApqmoShL4iRBaVAyRnsRxgvQ0kMJD+tFKM+nMuB7FtOWfP+bf8mlq1eYLpYkccJ8Nu9WVS41z+FZ3BTKhY24d8Zp/1KqyrnG+4MRcTKgaQ1h3EP6AV4QuthqCyenZyDcTVwIn1/6pV/m6vXrXDi6xHgyZjo94+bN90izjPF4wnhvj1v37qG04vTRMXtDZ6rc0EPCTgOprWE4HrF3sA9SMF8u8IIAPwiIoqhrOETHBRV40me1XFNUFWEcMdnbpTWa4WRMEAfUVcnezoQvffEfMBiO8LEIZfCtQCpDLH0i6RMJjxCP8DkH9xOX2ESSR32iJHGmq7qmqXLS+Tnz2RnTsxOy+Rl+vUa2rTtbqwqaeutlsMI6faNg29zSpfpZKT7e3AJ0kb3u43SrxhjaLkbXWtdgiDqHaoWXPuLmt7/On/3r/4t7736bJHTTsyzLKfIKC927JugnrnGczWaUZclqtWI0GuFHrqFdr9fb72sURTRttW2KtdaUZekmbupxg6yUQgjB+fk5VeWmdnHPbd+sdRfQzSZt43mYTqduRe555HnOaDTabiOsDLaN8/P6ZOXFPawM0AS0xqNqNUXdkBXlNs7bMWjVdrpeVBXC73H9lU9Tt7aDtTxm5xoLGomWHsZ6oA2L04fEwvK9t77BpQt79HsJWVZQ5MVjopMQJEmCH/hbydWm8S07aYxqnFwmjCOEL7FYjh89pDcYsH94yM7+AcPJBC8M8cOAsmkIw5jADymKkl7PDfbCpE+jNHmRsVwt+P3/5vexRmOM3ZJ2sM7g7KQULsFSasO9Wx/x9ve+TRxJLJrZck4Y+Pi+5MHdj6hWZzy68z6RUC45Q7otmbWCXq/nwlaeseYWnpIJru91rt4OASZFl9YhPYIwxotiQl9i24amKSnSNbPpI9arJdV6SaQLhLF4SmOrCmtbkGAxmI3WxhpEN0Uz4vHB63Upai4NRT1+8dH4QqClRGDR1iNAQluDUGir8WWKTgVpds4Pzu/TGJ+jqy/z6c/+p/T7fcoq5+RsRVW1hJ5Btylxv781h0np3PVn0xOiKMaiKcucwaDHrVu3MMYSdtqejTFnNBqRpim7u7vcf3CH3V2HF1nM5/heh5XKcuq6ZjKZsFwuGY/HFFUJuMtEEARMp1MGgwFR9Hya8HcpIT2MNUz6PYpsxWjvAmm27lK2LAiDQCBVCTLAeAGtldBqvKJg2IsQGFbp2kHrtWV3d58HDx44fXZd4geS1dqtvvIiZXdnn9PTU4Ig4OzsjH6/TxgmxEnsmlgpSdMl1upuQuexTlN2x7tI6dPWFXuDEd/45htdxrpCVSlGtazzFuH7rJYrrl26TNOUvPve2+xevNLRPtzE3/d9WqPRWFqjmeztEuQRWZ4zHo+cNm0wpKwe62yNMUwmE7I8dbD0TqIQBAGNtoyGA6q6JisbvvRrv81ff/WPUHmOEG5SU29S9+xmcvt8gvtJK4wSgjjGlwKrFU1RUKZrsnTF/PyMMl3itSWRah3Xtm2hbZzWVgLCordTW90lOv0tU1vYwvkFYLSmNQbZ/TcI8KQ7gw1glAbZYlTlfqCKjCSMuP/uinu3PmKwc4HXf+7z+FHCfLFwoSRWEnqWwDNb5FIURdsffqtbktgRPAbDHrP5FM8TtG3DaLBPWZU0bcXyeM7ly5dZr9Ot+Xe9XnPx6AIPHz6g33fBP6EfMD09Y39/n7ZxTW6SJKRpShiG7O669L+yyKmqiitXrvDgwQP2Dg6Znjz6CTzxn57KK/XYKMZjc/omQnxr0u2aUHBDp6JpSeIhV1/6NA9uvUNgDR4ChNOie0KCMShAWIWwsJweo5TizcWc3/ydf8wHt29jy5IkTvA8j16vR57njjDTabAvXrzIcrlkMhoxm81IEvfvlmWJUk46NhpNEEKSFxWD0Q5t23B+PmMwGICnqeuKVjUEQbDFfxql8XwXcGO05c6de/zu7/5j3n7n+9x896bzLFinJa/aglB6SGt58egyvTik1Q233/+AZNjHCo9A+synDzm+/yFWKZxKIiQQHmXb4PkhvThwsfM/kjL7rNRT0ZJvEGDC87rmVuL7AX4QEyYJoS+wbUORLUkXM2bTExaz6RNOXoNoGmxVYWzj9LYYDN7foLf925pbjbB2e/Oz1tIYUFq7lB1raZRGGad9tcaglHZRlcsp9eIUv1kxf3CTf/dHf8Cdd79L7Fv2dwccXTggSHrIICLy3STu5NS5dddZRhQmLJcLoigkTVMePHhAkvQYDIbbyezmS/TWW285M8NqDrjpQxxGTM+mZFnGbHpO0zRYazk7O9uuTKLA/XMTAhBFUZdm9tzR+3cq4QgI6WoBCA4vXcW2BegKiQKtMLqlNh659lk3gtNlwem54xT/8Lvf5cqlI2qj8MKQk5MTyrLc0jpG3SEZhmGHo0mYzWZuMuX7rtFsW7LU4WiMbsFodicTkiimn/Qo84KmrgkTn7wqOJue4AtI5zPSpfvURY7VNZ5tMa1b/X7lj79Crx+DtKzTJet0SRj5ZLmbhHm+Q3VtmKUIyXA4QmtL0yhapbcNhjGGOI5dlrvWTE9PCH2XLpRnqZNxGMN8sQAheXjykMuXX0Bt4B9Sg+g+UnWfZ8/V+7RUmMQEEkxTUxcp6fyc2fSE2dkJxWJK0KRItZna1vCE3Mtd/+WPTW3NE1NbIcSPN7fWopWb3lrjxGLaWKx12kRtDa22tAaUVlgDrdYYo1DZErWeQzWnmN/nL//4/+bhrfe4dHGP/b1dAt9jlaXkZUPo+QwGA6y1jMdjDvf2aRu3sl6tF6RpiucJHj16xHw+Z7VeIKVLf7x69eo2DWvzXYzjmLt3b2GtkwC1dUPTNM5MlGYYrbHamdVGoxHWWu7fv+9kR12IizGGw8NDgiBg/8LFn9hz/2mozW/05gMdIz8IEJ4HUjr9bRfEoZRCNw1tqym0YHLpOheu3UAJD4N0Hp+NnMEYZ8rVbjovVEW9OsNWa776p3/E0dERfhyT5wXr1MWXR0HI+dkpZ2dnGGO4desWcRxT1yVhGJJlGQ8fPqRtWxdK4oeUVcP0fE6v12O1WmFwm4giT0mXC1Rdo7st7WDQUWnalnSdcT6dMRyO8YOItlFcunSVX/u1X0d6Hlo7aaQF4ijktZduEEcerW4wyoA11GVNU9eotkYYRVvVCIEz7XkJeaUQQdQlDAr0E33ts9bkPhUTXGcmc65u200Y/SDGC50kQdcNVZmSrxYs5+dk6xUUS3zVOr1tXSOU+hgCzArPhS38DXqwjSTBWgvGNcOPJQoaiUAbR3GwDmsK0oB15AVh3XR486XwBdimpm4b8Nb0hvvMH7zPvVs32dm/yM/+/Oe5fPVTfHTrFlWjqI1lMtklCHyaumKxWBD4UTdNtYBkOBxudWC+77Ozs0Pbtly/fn27HvO8gPVyhek0Pf2k55qdLNuaKpbLJUmSMBwO8aW7Re7s7JCmKbPZjKtXr/5kH/4zXs597QT4cRJTFBVBPCQrKlotkTJG+h4i6mH9BD8IEfYc1RZkVYk4Oea1z3yaVcfM3N3dZbVymKIocolOaZoyHA45ODhAKcWkYy57nrfVe5WlYxoOh0MePXpEHEdI6VBxcRx3soeWxcIdqvMi5fd+7/f4X/63f4EnBUEcYtoW67k1cRC44OF/99W/4POf+xzVcoUaj7h/ds7Fy5ep2oYgisnynCRJaLWiaRsmkx2m0+kWwB8EAfP5fJtIVVUVwiomnSa81+vhSUm5WnPvo5tk6RqBIElC8tUKz/fQVmGFwTxjDManuTwsqqrI0iVtWXA+PSFP1+gyJVQVwljHtq0qwOnANwQa22lt7d82tRXCbTAsYDteqTEdpkl3gdYKrdx572EJPBeD3giLJ1wi4JNTI2mdKa1Nl1BkhMmQhx9+n/ff+wFXX3yFV1/7LEpcYrVeUK9W+MagjOHk5Izd3QmDwYDlat6tW2Om0yn9fp8gcFPe5XKJtY6KsLe3hzGGa9evuia3Sp12Nwipqwqr3SahLivCMKQoCiaTCWmebaUIURRttxZBEJBlWaerF9up4vP6ZLWRlWzeN3BYuk2cM4CwFk84o5UUEoMlkB7W86iVYrhzQF1W5IsztAVPehijHC5LgMVzWlutoM5p1gtkEHFy530Gh1c5OT1nf3efuipRRrMz2aVpa1brBQeH+5zPztwlyzw2sm0M4UEnDdwQjoIgQNUVWm1Y4y6qPUkSFosFxhhH/4gdFeell17h/v27SCFQrWXQH7JerfjSl36FP/uTr+ABr186otfv07aN8x91F1HP85GeTxCFrBdLRsM+xlgaK2hbA0LhRbH7fuO+s7KjTD2L9VRQFP6rf/o/2I0kwfdD/KRH6EvQirYuKNYr1qsF8+kp5XpBZCqE1nhKY+oabNNNEVyCiRFdzK8UWLdPcyYfHh++bmrrDtJNY4txK2VtwEgfhMDDEvoeRgiM8PGtdmu2J7SrroEOuhQgh9xplGt8BqMJGo/GT9g7usrrr38WEQ+ZnT5kuVgSxxG+JxDGsrezy917twnjiNFoRJ7nW65tv+/Wa72ea2KNcuvn5XJBP0m2BqPhcLhtfJ5sgAD6/T510+D53haQ3rYt/+f//s+fzbf3Kahf+JXftuCmCpcvX3YJctbn5v1jtPCJPd9dlIKY1kqsBl8VZOtjJnHA0chFhL7+uV8gW6/I0pTxePwxTd/BwYF7lzoMXFU23Y9z4Cai1nLhcH+rF1wsFgSBT9s29Ho9Z3o5PwcEvSTm5OQEYRR1VXHj5Rf5X//F/9w1Hk5WYezjiyBCcOXyZW5cu4qxkpdefY3WCMI42q6BwVE6pO8RRjHL5ZKd8YTTRyfUdduRQQqqumQ0HFGuFpRlycNHD7tVt8E0OVVRkGUZ1missNR1yW7fRVSbzsy0SS9yZZnO8+fv7ieof/L7/73NN2lk6xX1ekagazAWXylMU4NxaWSPTbpyG5MspIs6tUJsCQmbwQHw8altd74Ky/Z8tcIDP6Y2mlBKApRraqWHEBbxhEZySyKxAuv7XfiPpFKWJEmQcUJrAvauvshrP/fzqKZlVVvq1ZwoDIijkKLICD2fssrxPIEQrmHYyL9cUEO1vVT2ej2apqFtG7Is5fLRJabTqfu7KL3VmOcdzrGua/r9PlXjGpOmcevlOI4d2nG1xBjDcDjk/v37/Om//VfP39tPWL/+5f/aPilRENYiO0rNppndGM1g8/tMl9QXIIXB70yrx+9/G9W2+AiktXS2NYzwkIAUtsOIeoggYvf6y5h4wuf+3he5+e57jMejLghFkeVrwk4jfnR0xP379+n1+hweHDnzd5ERho5VHoUJRVFspYdC0Pl+3LtXVRVVVVAUBaPRaDuYKoqStmlpmxbfE6xSR95p6wrQhJ7k/r271POzrc5dSuliiT2J54eONqEBJK1RlHVJYzRNayhr0xlH3WUh9iWJ7xF233FrLe/cfO+ZeXefignuBgEmvQA/fixJ0Komnc9YLWesV0ua9ayLhDTIpsE2LdCC3IjFnSd3ewD/yGThRyUJEj7W3Fo0xrg0FBn2aYwTOEjbII1FCoPCspnZb26SQgistCACHARSObdwqynOj9HWJ9nZR51q/urhHYLBLl/4wt+nl/RYrZbkeU5rNNP5gt3RiCByEPzNBMwYw+lswcWDfazR6FbRdAJ6T3hb7dEGnt/v97cH9GbCsLe3R57nWz1uURTbONjn9cmrbd2aPEkSbt265fRWvg9aITpZge95NGXZmSk9rB8g/YTlasnBoE++mFGuc2aLlIsHO1Rl5p5nGHJwcLA1xyil2N3d5fjBI3zf71atTgemlNqmmB0cHDCbTWnblrquKYqCKIoYDEZOxyUdn1MguXXrNqpRSN8tlK3FfZ+MRhuDkJI7927z0vUr+EJw+4P3OTi8SBIe0CqN9c22MajKmvPTc4eiOztHtS2hB6YtyFYLTk4fkqUpIY4Jul7MKUrXcLRNteX+biQ2oReA72O1+ViM9zM6THiqKlvMu6ntCltlBKo7V7XGVPWWkIB0scmffGrrTGQSMN35arwQ6cf0Rjsc7uxzevKQMp0TeSC0oyoI83jwsqHJOPOa38U5a6QQNFWOX2f44ZBqfspbX/1DRvtH3HjtZwgnV7n94UddVLD7/7x04TJ3PvqQ0f4OwDZMJ4qiLfR+gwaT0kVQx2HEdDp1JrQg3IZQbBqUxWKxdZgLC3Vdb/miq9WKyWTCYOimbNZaDg8P/+M+7J+yMkohBXjChUFZ4QYMbSct3DS0G2ThJumzNRqMJgwCykoRBD5Xrt3g/ZvvIrAIWlrpI61x5CQh0FYicX8eWpEvZ9SkvPPWG1y58RpVVTpaRkcw6vcTpJQ8evSIg4ND1uuUxXLGeDzG8+RWo5vnOfv7+6zXa6qq2iIfAfI87+QVjy9aUkrSNHVDj9YNPvIu0lprTdwfUuQZddty9foLnFjF/OzMXULptMi+M4PKTvZlrcX3QuJIgK5plZMqOLpJx3C3Fu3SgAE+dg4/C/XUaHD9MNnqbU1dU+Vr0vmM8+kjFrMz6tU5vqqQWiMbh6kxtnFgY2s7vS0/xrd90uzwo3pbd8tTneRAO9yIFyHCHqODi7z06Z+jv3eZSvtUNnDaMOV++DcYEmOM0+V2fFBlLMp0Lk3jNGfCNpSzM6Yn99H5EpWd85X/51/xxlf/CM/zeeWVF3nxxgsEUUCNJld625hIKdGqwRewTjMeHT+kaRqyLKOtm+7fq7rAgIaiKJjNZttErM2XY6PHraqKKHA63I1b/3l98vI9Sb+XsF4t0apFaAVKcelwD0yLtoJK2Q5r49ZDYRhy8fCIplHcvnWLXujz/W9/i93dMfPzKelqje9JlHIXl826U2vN2dkpQSgoq5SqzrAoLC15mSE997xXqxU7Ozvs7+9TVdWWgJCmOWdnZ+zu7jrzmZAMByP+23/2z5BSopT7BhnrdI8+EGAJjOEH33mTJPKxRlEVGdOzUwIpWM1ntFXJcnaOZwWBlDRFST8OWE7P+eCH3+OtN77Go3sfMTu9T7meM5+f8fDRPfJihVIVTVNtOaJbTR2iu7g5bb7X6Y03AP3N53l9sjo7fch6dobo6DNSa0RddybdBiGtm+JYiRbicXP7JF7xR/BfbsCuEVhsd7Ya7YxlLr7Zna9eNGSwf5HJ4RGjvX2uv/oZ9q+/RoVHayWqkxdsUqdccwIt/vaM1bjJv9Ua3daofM76/gfY1RnN6pRv/eX/y3vfe5OXX3oJKd0ma5am3PzoIya7e2RZxnq9pigKxuMx4/EYYy27u7tbXCPG/dBbK/ClRy9OOD09RUrpnPMdcmzTZKRputX+Vl1S1Ka5StNsu6ZOkuQn+OSf/YoC363ntaKsHTVBbxPzhIta7hL6lDUUdUWj3blijMZqje97lGUB0S43XvosUgisMUhjwUqsle7dt9a9/11ISbaaQ5MzO7mH7zm0adsqmqbl6qWrrFcpUvokSZ/p9HyrsV0sFvi+z4ULF7a64OPjY8efLUum0ymLxYLFYkHVYRQ3qNA4jlFKEQSOgb8hKgkhHNFGK+q2JYxCxuMRdVGQl6W7XAo3QNxstY0xDsxnN0M6s6UjeFJs/9yNgdfg+ib1FGz6P0k9FeO7qDciDD3QCl3VZMs56XrBajEnnZ0RmYpQGzylMLVLzdlEQn48lYzuli+3fNsflSSwOXyNAWMQwjWoVviIqEd/uENvvMt4/xA8n6MXdzg4usb6/CGz6QlNsSIQFmm6qZLnFrvSKKT0oUORGetmBsaKx1MN3WLyNU2VYYVP6wW8+8Yf8w4RjYUv/eqvInz//2PvzWItybLzvG+tvSPOcIccq6oHVs9szqRAWpRJ2oQBUpYgSLAtQRYN2xDk4VGibMAGDPvFNh886YFvFmC/2JZp2ABfZAu2aImmSYpNtmRSbHY3e2IP1V2ZWZXTHc45EbH3XssPO87JrO4sDjV0ZyX3B1zcm5k3zz3nRpyIf6/9r3+RUT71mc8Qi5OmO/RR2e1GFl3Harms1eZirE/Xh/D8zWZXkxtmIbTZbA6V3M1mQ9d13L17l2vXauVitVgevJ2NN4EVSppYLXuGoZr7ixmeEyGPZHeunJ4iFNI0ce/Vuyy6yHkaWfcd23v3ePjgLkfHJ6wXgQezj3YcJ5ax48tf/FJtVBlGjo+P2W6rr29/U12vVwc/14OH9SK6HTZMU130rNfrQywdPhEiPDx7MK/olW655Hc/+xn+1b/8l/m5v/N3yCnT9XXC3ruuP8dRv6SURCHze5/7LDfe9W7un93n+MR5cN/rIIa4wMT59Cf+CZfnF3SLQJpGXrl9m2mqTYyxU1Ia63azaG1qwBCMNBUo1Wd2dHR02I1wd2KMh6rMvqLQePNs792i31dtc8HHYZ5GRq3a2jyNzB9VbZEwW0WevCPmULvQ5ylj9btKtY2FJRqXHF25xpWbL7A6PoUYKR5IDkc3X+DK9Ws8ePU2r9z6KpI3BMtEVYh1WIR6wV3wObWhmFAEgs2TTr1wcXHG+eaS0K84Lzt+7c5X2VjPD3z/d3P63Hv5/Oc+z8Nhgy6WSE6HPPK7r96hlMLXXr4NVujm826z2TBsd4f32QsvvHAI+b927dqh+XccR05OTg7RZBebmkU+TdOhUejs7IwYlPPz82/VYX8mGNN0uCb0y2opKW6198aNMtXrTI3KrrZBMafkcpiAuN3W3oH+aA1RefE7v58vfvI30eKIOIgiKjWxYLYdmkKvxnbzkC5NfOwf/u+870Mf5cWPfievvnKfe/fvc+3qDe7ef5WbN29y7do1Tk9PUVXu3r3Ldrs9ZJIPw4CqHgZAvfLqHTQoU6qWwtiHmp6wWh+E6cXFRX2tOR2ui5vNBiuFYlsuzh/ye3fvcP/V25AT12/cZBzHw3VT6ksHeJT97844TfRdpHROLiPuEbNqdzPx2ZYk78jQmqdC4PZ9OFgSNudn3L93h/OHD6vftuxqBFgp2NzwAHuPyBxTM0eACfXPzCf3H2RJOPjBtEO6JUfXnufk6nXWV67i2mEuh5nNV9/9Pq7ceJ5bX/sSZ6/cotMaKxbmA7+v5ooZUFBX8FKfT6FaGBAQJ+AgjqixG7YsF5FF7PjYL/8/gPLi+z/Ae28+j4TI2b1XyaU271ycnxNRhpwP2Y17U3qt9q4Oq7302ICAfdULOGxl1y1qYbfbffMP+DOEiNThHDlztF4j2iMqZDfS9oLLXWF4eIej5Tyw4PISC8KwG7A0oBr48ktf4Xu+67t4+StfZHV0yt3791n1S/q+Tr05Pzvj5OSEkjJ97IiqBFEsF84fnh1ylEWELtQt/W6xPHh0V6sVm82G9Wo5R9XUi5eoshtGjo+vcO/+fX70R3+Uiwd3WAiHyv6Yt1BqTiSibM8fooslbsILz9/kE7/9WwjCZluruNM0ksvIlZMVwkToekpOcx4ldLF215fsTGNmtVxzdFLnue+f1/73uv/6nZi/+LQT01jD7qcJcq6WBK0JCbVq+6gx5bAjNhcN4Bt3xB6/trpVkVAbVQIee7rlCeur1zm9ep3VySmFgLmy3Q2HG3hQ4dq73sfq5Cp3vvgZdpsHmBjRZ1uEO1ZybRCm1GdRDNMaruEKmKMBvIw8vHebEBf0yzWf/Mcfx/sl/9yP/zhTMYZivHLnDpYyt1/+GjlNHB2fsDo64eKsNu4G0cPI38vLDSdzHvS9e/cO3luzmp6wWCw4OzurfQ7jiCIHq8Jms+HevXu8973vZbvZHKL2Gm+MruvIpVDc2M1iFjj0DOyLWp7ngQ/zEKnHBz8sl8var/DwAcenV7CyYnF6nfHyrN6b5+osj12HsvY1emwx7xRb4mtf+hK7YeLkNt08VAAAIABJREFUxg1qP1mNqbt16xanp6d1lPq8MNqncqzXa24+d4MvfvELaKij2mtjfSCXOhBqtVoR52pqKaU2/arWSXnLxcG6uJ8IuTl/wKu3XubVV27TBVD8cK3fD6N4HK9SBOGxBrvZZ/t4f5G7U+Zm+3ciT8Wdw3Ni2F5wcf8eD+7e4cHdVxnP7rLI22pJSBM27PC9JUHsYEkobocLsM2dlU8St6/X7LC3JBxde47rz7+Lo2vXca12hO1umJsPRi62A+dD5vlv+zAf/p4f5Pjd7yNJpMyNFsXrNp7NnhUrCadWcIvUZjeX+nWS2rSWsjFk40sv3+LO3btcDjuiFm6/9EU+9U9+g9u/91leeOEGzz1/s07OmUY8CH0X6LuOhw8fHm7+i8WCy8vNobFhH2guInWe9Rzsvo+92Ww2HM3VvcYbZx9v9UiQCVOayPMI0C4o6eIhaXPOtHmID2eky3uEMlSRagUQNsPIpz/1CbouEGPHsN2xvbjgyskp165cxYqxubzk4uKccRznprG5uWv2me0XN8vl8rC6XywW3L9/H7M6/a524uo8fScR+wWuymJ1xIvv/wC7zcAwjORcSKlOQstm7M+SYUyIC1jh47/+qzy89zJf/dJnuH/rJTRv6DqjX3ZcbBLDaHiaiKqsl0fE0KESUY2cnJxy8+ZzHB+f0sW+jpYUPXzsf59fX7Xd/91+8mHjjRFKwXcD5OlR+sxs9cr77V4BNDyK/4JH8V/14vaaeMVS8txcVijmmHTQr1msr3L1hfdw4/l3szy9QiEylUfX1/3CJvQLzrcjYXHMC9/+fbzvo9+HxRWFOqkqW21/qIK4jmqvF3id56EppkIWpwi4KIXCOI2UkggYv/KL/4Bf/vv/F7sH9/nA+z9Evzohdt3Bx3nn1i3EauzXfqT6XkzsdiPTNB0KCntLwmKxeE0RYberu2lmdki86ecIwMt5lGvjjbObRrLNDWSqyNxcpg5lnChTOiRdfH2j4n7a5/6Y9F3HlArdYs273v8hZLXGY6DmKFAH1YhQJBLEEC+YQXHl1XsPEJy7t17mXdev8eEPf5D7Z+eHc2Sf+73b7bh7t9oV3J3Ly0vu37/HjRvXCUFfM7I8T4nj9RF3bt3m+Oj48LxLKVy/fp0XX3yRbo4eu379OhcXF/Xx793H5+/NuRBiz+Wc4/z4dVLY72Q/YtH3h7QoFcHdZu0kh7kA9g4VuE9FBffi/iucP7zP+cP7bM4eEMdz+mKoGb7bfYMlwedw8W/whPHIklAjwKolYX8B9jlcPJvV/9MtOLpyg/WV65xcvYEulhiBYaoVp30XZpi9L0UC56MRF6c89+Ip1597N8Pllru3v8S426EOnY1zckN4lB8n1JUlNYJJxCklkX3Bjp7+5g02uy2Xu4Hbd++jeeRk0RNl5Nd/8QtMOB/6yEf54Ac/wMMHlyyCMGw2rPdC9egIqBfo8/NLrlw5OUyb2q8Y9/m3++Doq1evcn5+zunp6Tf5aD9b7MXt/uJpzqF5r24nFQ6d/z4b+7UGdRev/wZSB29cu8o0Ja5fu8lw8ZDzs3Pu37/P8fExAgy7gatX6/Habrf0sase7MsNl5eXvPvd7+bysk4+c6mVe1U9NKGtVzXhYLPZHM4JcmLdd6gXHty7y0c+8hE+++lPHZoPVRWJ1Tu8v5mUXAiy4/ZLX2K5jHVOOY7EJcUKIUbStKvnugqrOaZsvVodtr4OHdBiBJP5AvuoU9d5lLn4JFvCO63Z4aljt61V20BtiN0PxJm3/6uH5BurtszRivuEBDMjl1xnmohTfF+1XdCvTllfvcbptRssjk8wV5Ipu+GR53qfX+peK04UYzs5EjpWV57ng999zO78nDtf/QLFCtGd6BMuASGQjXnIRG02UhGK9JhAALIpF5sdY96yWF5w5eSE42Xk87/zW3zyN3+L09NTvuMHvpft5rJWaU9PGS8vKDkT+uUhu9S9TouqvsfI888/z4MHDzg+Pj6knqjqoet9L363Q73+7nY7uq7jypUrnJ2dfUsO+bNC0ABmpLm/RLSme+ScD77VfeFhb3VKKR2u0zXVZWAca+W0pMxkzuLqC7zvO9e89JlPYDYxakedauJEDJsmknYk6cnesZkmyr27nB4d8Su/+H/zHd/9fXzkA+/n1ksvsVwumcYtZ2cPcO24cvUaF+dnTNM027o6zh7cr8N8tjvWyzoB7fj4mHEcuX7tGpvZt43WItWdO3cAuHHjBiVnhmE4COnj0ytsHiZW6yM25w/ouo5he0nfHx9+b/UeZPNrguqwVcwLXehwm4gxoFr/vtqMqg2oXoPfedfcp0Pgnj2o03PO7tPZDilWLQnjUCPA4LW+sEPDQ/Xb+uv4bRU/XEj3ftsaUdMh/ZLl8RVOb76Lo9OrEDuKK8M4HqoKuvfemGGlsFDB5zfQxW7HMq5YXTvi245PuPvyl3lw61adDOR1i87cIYYqDKBGjRHxXL2HGxPkyk269VWW/SVpGpl2tximLZfnr/Lyra9x48ZN3vOe9/DpT/42Dx6c8f4PfTvnZxsWQUnbLXGxIs/dlPuBEBcXG5bL2sE/jrXqsO/yTSkRQuDVV1/l2rVrzaLwJjnkdO7TNGaBu7+weimH68L+8vBInO0vGsJqtUTmSuw0TYcGq72Afpz9cT05OZl9uTUl4eLi4lDZnHI6xIotFosaOH5xzosvvsjdu3fZ7XZsL844e3CPkkaG7SWXF+dcv3I6h/XXG0mIVeSI1u0yK5DGxDTuUA1o15OL0HU9l+PIaIUOYbU6ImogiB9e8z7t4/FdAzPDzQ7if+8n9j/gWtoE7pvj8cxwk2rz8n1vicYqah+r2sohIeHJ8V++99pKj/YLFqtTTm++wPGVq4TFAvPImAspDYcIp7AP5Z+vr70q0kdcoFusGIdLoi7pr6744NGaB3fvcn7rJYz5+YhjaN1SltrzUNsdDKFQ3BnokKMbrLslZw/vMl1ccnu34yjAe154F5dnr/CxX/oHfPt3fgfHx1dQXdRc5otzMD8klUDdGq+xi/Vae3JywiuvvMLzzz9/yCyNMXL3bk0SSSnRhTpa+/T0lMvLS27fvs173/veb81Bf0awx6xMj19/98dp3wAOHATv4/aExxuwu65jGGscZ7c+4ejohO/4nu/nd377nxJEEDeUPPt8lak7wZdXWZ9cg/OHnJ/dQtPItdMjPvfpT/KeXWJ5epVbt7/G9dMjRJR3v3CTs4cPmYYBqIk7Yb5Ob7dbjo6OiCHQxyq2X7l9h+PjY2KMXLlyhc1ue7i/jOPIvXv3CPO9/OjoqO7ULVcMIdD3CzYSMGp/xPHxMZvN5rG0pCcUC+Z7VieRFIyghfJYkde8NnVmd+I77Lr7VOTgNhqNRqPRaDQabxXNxNZoNBqNRqPReKZoArfRaDQajUaj8UzRBG6j0Wg0Go1G45miCdxGo9FoNBqNxjNFE7iNRqPRaDQajWeKJnAbjUaj0Wg0Gs8UTeA2Go1Go9FoNJ4pmsBtNBqNRqPRaDxTNIHbaDQajUaj0XimaAK30Wg0Go1Go/FM0QRuo9FoNBqNRuOZogncRqPRaDQajcYzRRO4jUaj0Wg0Go1niiZwG41Go9FoNBrPFE3gNhqNRqPRaDSeKZrAbTQajUaj0Wg8UzSB22g0Go1Go9F4pmgCt9FoNBqNRqPxTNEEbqPRaDQajUbjmaIJ3Eaj0Wg0Go3GM0UTuI1Go9FoNBqNZ4qnRuCKyD96mx733xORT4rI74jIz4nI8u34OY0/vryN5+5Pz+ftJ0Xkb74dP6PRaDQajWeRp0bguvuPvtWPKSLvBf4G8M+4+/cCAfipt/rnNP548zadu98L/LvADwM/APx5Efn2t/rnNBqNRqPxLPLUCFwRuZw//wsi8ksi8r+KyGdF5L8QkX9dRH5DRD4hIh+ev+/DIvIxEfm4iPxn+///BCKwEpEIrIGXvzmvqPHHhbfp3P0u4GPuvnX3DPwS8K98815Vo9FoNBrvXJ4agft1/ADw08D3Af8m8FF3/2HgvwP++vw9Pwv8rLv/SV5HtLr714D/BvgKcAs4c/e//zY/98Yfb96Scxf4HeDHReSGiKyBPwe8+LY+80aj0Wg0nhGeVoH7cXe/5e4j8AVgL0o/AXxg/vpHgP9t/vp/ftKDiMg14F8CPgi8BzgSkX/j7XrSjQZv0bnr7p8G/kvgF4D/E/inQH6bnnOj0Wg0Gs8UT6vAHR/72h77s1EtB39YfhL4oru/6u4J+HngLfdLNhqP8Vadu7j7f+/uP+juPw7cBz731jzFRqPRaDSebZ5WgfuH4WPAX5q/fr3Gsa8A/6yIrEVEgJ8APv3NeHKNxu/DH+bcRUSenz+/D/iLwM+9/U+t0Wg0Go13PuLu3+rnwH/wn/yM/+x/9Z/zH/7M3+LLX/oKv/5Lv8C/9m//TdLukv/xb//X/MgP/hCnfeClV17mdz7zeX78x36EzcWGX/2NjwPGe194ni98+Sv8pZ/4UxxffY7F8SnarQh94Jd/9df43c98HlXl+eef5yd/8k+j0XHff4A7mAWSQS4FwxEzwHAKbhlNBdyYxi1p2jINO4bNlmmcSOPIOEy4RELfEWMkBEUFxIyAgSXUMpSCuCHiCICDuyMi3/ABICI4gmsEDbgG6DrQePieKE5wR0pBMbwkimUEEAT3QlStP4z5ZzkgCgT+l499Wr4Fh/2Z4K/8tb/uP/8//bf8hT//L/Pw/it85rOf45//sR9jGAb+31/9Fb79Q+/nxumay93IF1+6xU/8mT9D0cgv/L3/A3f4yEe/i9/+zY/z0//xzxCWV1Ht8JyYLh/wP/ztv8X28gLB+cE/8b3cfO45Oo2UnLCSUJylZHIeObn+AsvjK0i3RIJRipEK9IsV7oK5UIpjZpT5vDcMd8esINT3g3nC3ZBUoBjFEjlPlDxRcmIaB8ZhRxkHpnFkt91RigNC8fmcVSXEDtWIxoCooEJ9o7khGGL1s+IIBmbI/O/qPq+87dG5Cq95T+y//nufeKmdu41Go9H4Bp4Kgfvv/0f/qYsI/XpNWByh3QlBlTTuSJf3mc7vs7t/m2k4J3khGbg5AXDLfPmlr/LSy7f50z/83ZgGTq8+R78+gW4BkjFzpmyEENHQA+BimIGVeuMv7hRmteuzUDTDc8JtoqTEOGwYLi8Zhl0VtbuRNCWiRuJyQYkLVJWAI16IgJahClsriBXAcTHElcd/94/ftPd/dmZBGyKEiMcAEur34nQiyPy46oVSJtwdRWAWL1XY2qOf4VSh7EpBMIWf/0efaiLhDfJT/9bf8JAz4/YctR0h1OMzTROXl+d1cUShC8rptRt0qyPCyXXW6zV44Iuf/xyf/uQn+Ct/9d9B19cIYYkKjJdn5MuHjA9us7l3myyZ0ZygoQrPPIIVFkGxdElYHLE6vkpYriAE3AtopF+sMQ+4C8Udc8NxHAMcNcNKXbyZFawkvBRKHhjHkTwMTNNEmkbSNJFzJg0jpRSmqeDz+aSqhFgXYSKAOAGZF3JeF3VmiBvVLTQvIt1Qpwrd+Sz8/QTt1y8A/+5vfamdu41Go9H4Bv5InsC3i5wzfd+T04R2Pe4Z844YO0q3JC6P6FfH5N0lQZwizp379/j/fusTuBt9jPypP/G9uEQsTYzDDu0XhNARux6YqAWkehMV6cil4AbZjH0xM+LIXN3Ca/UWKUzTjmGzYRoHtpcXTONEnjKKsjo6QbpAFyIuAXdQjGgFsUTwDDiI48Hrz0IRrzWqffV2L3b3FVvTCKHDVSHG11Rs+7kyLMVQz5hlshUUmV/nXLEV57VVMMUlUFxwAQ8BkXeyS+Vbj0TBihBCRym7uuhyR1VRDRQveBFMjJwm+sWK2y9/jV//lV/GgeVixZ/9C3+RUjLqeRaeAdWAdBHtFiD1uKqAmRFEcAfxwjQlxI0yjaTLh8RpIPZrutWSGAJW9wlwESQ4YrPY9II4uBREMu4Gnih5JA07pmFkHAamaWQcRkpK5JQpuVBKIWokLDo0dASt561qXR9itQoLBTXAM3gV0ZihVoBHolaE+hZhr3B/f1F7+N1L07aNRqPReDJPhcB1rzc8SxlLE8SESERDRGNfxerqGOk6NBlBjOdu3ODP/Ys/AaVQ8lRv8qKITIzDJYvlitgtKEVBIKjOW7NzFcsFY96ln2+y4oKY18qtZUqZGLeXjLsdw3bDuBuYhhHM6bqOuD4mxoiq4OZQCiZOSAmxgQ4nasEcDME91Ne7vy/ba4WtOVXY/kFWhPzIipBnK4I+bkWQWsEVkVk4KEggMwtb1frCQ+CdbcP+1qOq9TwKHebymr9XDZSimBTMjJwSZsbN557jp/7qX6silo6+77FSEMt1YSUBCRHVDukXaBexlBEv5GSUkihpIHhBKGiMOEDJdIBoOSycQgi4dCiOWwIK7lY/KKg7KY/kaSSNI8NuR06JcRgYdwMpJUrOWHYURbvIYh1BhKgdh1fsdRdBKYjWc1PdMctVlGOzQ6bU9xu8RtSKPhKz+8+/v6gVvC3OGo1Go/E6PBUCV9RJKdH3PWkcWPYLXAImC2K/xEumW2cW6ysMZ/cI4mS1euPUgEgAN1IxViGS08R2c450ffX2hUjKE6KPXq7PvkABKAV1qzdfCjkPTJcbxmHHuN2x224ZxxHPxmK5QruOGKrXVrHZz1pIJUFJBDIihU4j0BF93hCexexeaBN09gErpooQsBDgG6wIVCtCeWRFyLMVQWfvZFCdX8y+YisgAUfJsxUBDfVDBKH+3pRWBXszqApZlRgCGha4T3M1U4kxkvNUFxNeSNNIThMx1S1+VcWsilHPhpWMhFwXdxqYijNOiTRO7M7vk+dqPSWj4sTZ740q4egYRAkx0KkgYuCOeEa1VmtxwySTfWLcbPCcydPIOCbKWO0He1GbcsbN0RCIqx6JPSE8WmyZ1fdfPbELwUGKIT6LdMv1HPe66NPq8sUfW1DtRS38YQVtwFXrY6jirYLbaDQajdfhqRC4sK/01KfjKeGaEe1qs0rXo92CbnVMGi7x0VAxijmutanFXOcq7gKVzHZzgcQlxI7iTrda0Qc5CMuoARGHPIE4xQolbcnDwDiMDJeb2Wc7kMdE13fIKhLjgtBFwIk4nRnMHtsoRhHQEKhTgY1OItUPu29mqw1mVdgKWTpM6427+hf3Fdi33orgs4gGrRVGr4uLxhtnXyk1VTR0eBkPlpMQwiObAkqZdxs6y6SU6LqOeu5bFbtpopRLYEdnE8PDW5zdu8P5/Vfw3SUhOCE4MSixi3R9T+z7ulCKAZVA1IBKRM2gTGgGMUfdyVNilwbGYUsaJmxK5HEiTfX55DSLWhWWR2tclBi6KjKlVltlrsRmd9wN84yURLBqsRC32popjqsxr7pQ2y/m/PB7U61i9w8StVXM1veHiyAa8FB3JRqNRqPReBJPhcDd3/T2XtyUR/quwy3iooTYY90CXR3T7Y4p40hEMPVDFdfdoBgpF8gFVLm4eEi/XBEXazDDqBvyfVTcc71ZUyieyNOW3cU5No5Mu5FhOzCNEzisjlbEfoHHDtVaNVWckAd6nxAKhYJHJQfFTVCRWt2dG85qE49QRKrYQDGrW9sSu7nxy+cOcvsDrQhBdRYCX29FUDL6RCuCILWz3QEcVSe0ItibwkpCQoACGjtKqmL1NT7cInOSQSGlxMqqH9dsiZuxvRxJKWF5R9cv6VSRPHD3zi0uNxeQB0QVxOoxU6eLEVHFVQiiRAmEIBQ3vIwYgg4D06ioCFYy05Q4n2r6QdkmLGW81MUXAv2iJ3YdonUnwZkrqxhiTrdvvLSCeiZbIloVtUImBjBjbi7TatkQZj+uHATu457zPa8RtRpAHolaRGrj3Pz3e09yo9FoNBqvx1MhcKs9QTHLlBIQM0oYCRIx7WsVt18Sl2vs+Cp5GrDdOVEKyWvjVskJG7cEqZFHoeuJXY8GJQYnUiO60ASzj1fMGHYbLjbntWp7vqEMCcsZ7SJHx0fEfkHo+nn71Ame0JyJJRE81S7wABY6TBSTQDYI1ApXbehRvBSyCIX5xq+ChIBqRCTgJdeKqhmkDJ4PVgR5i6wIAog4Kj4nPeQ52aHxRknTQL88oagSQmRyrYuT2f9abQp6WFxNw67GbE2JtL1kHAbyOODmlN0ZQYVFH+m7AAZ9ZxQilgCc4hPiShkznQkRMC2EODeUOeRi5Jyopu7aTJmKMY2ZTU6klOkI9H1Pt+xZ9F3ddXiNp9UQCuQ8px9MqE+IGdmMTiCp1Z+pAUHqYslqSkPwR5FkZobPdoTHq7j1FVW7gc2VWqT+mXlXQ/RRlbY22tX0FPWaztBoNBqNxpN4KgTuMAx1u1b0D5eosK6JCjXKa2KaMp524BNBIMaIxEBY9GioL1EkIHkEMlbAzcjTyHaz4WLYMm4npu2OTiPdasV6vSZ0HTrfYCOOloloiWAJoSCx1nKDG66KoZgoYbYJiCdKNpRQPbZlFgP7JiKqZSG610pXmau1PpFzmoUth4rtm7UiyGyrqB30ec4kbbwZck4stVbmqyDrX+PDDY8lVbgLeUqcP3hYK5ICeRyxksCh74ReOxZRCcFxjVgIRJkwMuSESqCUatFJ1MrnYrnApoxpwbIzjBO5AO54nihWPeC7lBENHC3WrNZHc7VWCUEJ9UxD3A5ZzVomxOZFkFdPrWPEGEherTil9ozh+2i9QrUKzTF01TYkB0uOu1Os2orKLI6R+XOYz93ZeiD7D3Hi/Fhij7JycfuWHPNGo9FoPP08FQLXxh12dEQIituTEhXCaxMVlscYQt7uyHkL04SVkb6LxG5Jt+iRGJAQiCHUVNg81l6fbZ4rxYVpmthuJnbjwJQyq27Bcn1Ev1gQu0jUUBu8ykQoE2oDgTKLRbBZxEBEzTEEk0CQuRHGQSTWjF1zvGPO4dWDL7LGPWXUjWIjU55wM4LUira+VVYEqB3ulmrzEfv0htaJ/mYopQo/UcELhNBheUBVa/LGNDBut5gXghcsDfh2ixPRrtoLQlBcHDRSJGAEgkbUlZgLIoGshsSIWyaGagGont5MmpSic8ayOeNuqtnOBkIhdj0hRk4Wga7vCXFB10eC1mEkASeYgCXEEmoJbKqJIhQQgy5grqjVnQKVKopzqYMavDhYtSS4QTWj79dkjiMkUYqDhIAJh2ptFbWzH5dZ7zLn6L5G1NbcXPdCmZvzGo1Go9F4Ek+FwA15ZBgG1us1ovrERIWCoCEyTYnNZsPZw/tMlw9RLXQdLDvolx0SZrGH0+GoJRynzI09aUr4OJKLkbKxyxkNkSvHV1kdHdH1VRR3UujKbEWwod78NVfx6oJIB0CVujWA32YLQtFAEsFkgRejbuQqUSGUgrsekhvchZQNTwNiRhQw3TfhwO9rRZBQRe3rWBFq5Wu2Isw+4PpvAtQKYpMIbw4zwS2zXK+xIXFxcY+0vUBxpnFHGiemYajHSiGYI1LwIAgLun5Rq7xaPbtd30OIZJNHMV8lEYPWYud8wALCZBOWMnlOH/BSyHO6gcQlixhZxNokFmJg0fXEKGiMRHHUCgFDSkbLVO0FlmolVqvVAJXqONea8SwW6Jx6DkpgCjU72lQoJaEIlucIPo+1s1KFgkHoUGpiSI2GrnaFKrKrheMgaK2gzBYLL5jbwa5TK7vNotBoNBqN1+epELglZ8qwoywWxChPSFRI5HEk5A3jxavcfeXLDOO25s+KYmYkCpIywQNOQooQEDwobsYwjExTtSekccAcYrfgeL2i63uWyyWx7+gUeoxY6mjd4IkgGQKIdLUqOifT7zdIReo2dDRhxLAYauQXinRLoszd9mU6DJIQdzxliiXMEiY+R9LW6q6JY/Y6VgQNc4PRH92KIDI3D6kguVkU3iynp1dQhGm7ZdxtGHcPScOmJhTkzDRP/1oslnRaPddeCogSg+BiIIJqODQOighBwaygIiQ3LKVa5fVCAJI7VmqmbRkdjxEVJYZI7CNxsUQ10KkSAkQVFkHpVFHq4qrm7hYohTBXal1rhZXHJu05ddSvu4FGvFRHsWuYn1NNM6mNZIaHgAGms8lAZLZAVFkqs09XSvXL1ziz/fjeKmrNS22Ym+Pw9naF/VS+II/+ptFoNBqNr+epELh5Gui6nnEcCSEAfvDiPrz/yrxlL9jmIXdvf5W8u0CCU6jV1KiKE8nZyWUk5MBisaCkjJtgZoy7iZQKuRgSOvrY03Ud3XJBHwPLPtJp7RTXuaIVrBCk1CQHpA6D0Co6bfbN4lJ3ZkXIAkLENRLiojbPEKoAKAn1MIfgZyiJVCbcM50UTCFbrbqqCqXmn+HwFloRanMbuVbJbK7ONd4407BjIYFhGhm3lwyX50zbi3lol2MuiEYkREJUVLR6Z6tjG8OxnAjidF2Pss9jDjWnthTGcUJyzc5d9JGSC9md4JkoCsUJMdQicVgSukiMkRiULkAns4fcE71VX7f6PrPZZw1aR0NXhXtYw1GsgAsFpzph6wJLHYoESqC+D0sBCZRc8OCzTSdS8HnggxGK1YUd9TNWKCXPojZjXrB9VffrRG1tMNv/TR0z3CaZNRqNRuP1eCoE7nZzydXlmrS9JHUdQQIXZw+Zdls25/eIZcBLZtUHFkHxZZ0a5RnIpY7+9IJZFXklZ0Z3rO8BsCmT84QD3XLNcrmiDzVWadkFllHpcdQmwtxcEwUkCiodLnOSgdSIrnnWUh3M5JBFa55tF0FqQ5xroLbKGBRHRVF3ihipjLgnejGKODlGSjFMQEm1coWSamtRFaFfZ0XYN6D9UawIUuYwXp0DzDSAPhWnwDuW81e+yrAdGIYdeRrp3ehw0lzpd7OahyuCWUFUiDHOGbIFKVJ95+JoV49FSontPPXMLBNywvOIlcLl1gmxo4uBuAh02kEx+n4BXURCRxcigUIEJCVidDpRohSiKWKCSiIEPWS5RJQsAAAgAElEQVTRzobxuWGsTjoDagQfSnRnn7eRi8OcfiDS4S6UWM0D6rl+U5oQU+IcK3ao8pb6miwncknY7GHWx99Vbuhh6IPDYZFWH1p8tmQ0/3ij0Wg0XoenQt2kaSRNI50GLs7P8Gli2F4ybTeUacBIrBcLOgUUFqEnTwHRTNYae6UyTyYzp5SC50LRjFmtCNXIsI64WNHHjj5KtSNI9SAGgS4LKhMi1MlUOjd16dzkBTDLVqc2Bk1eI44srJDQEaRmn7rMAsEMLYZZqlOt8kiUggQnudbqr9XHVUod0+oRKwaxemoLzFaEupX9Rq0Idcu4bi2LhPrnVgR7U7z61S8TdD88pIPiZDdUtGbX6uyd1TkpI+wbEwNmpXpNRcAL47gDyzjKuNsiXoii82jnmnkbo9J3HX0XWa6PECCGrorTvqs+WzesOFoyqzKiHiCCkOZKaCBo3ZEIune1zhYZr+J1n3hQ5WXBvZ5P2WtSSEFw6dHYEefHLKUQXGtFWnX+v1IHnAhkNywNUEqt+PpjE8722c5wKB8/KtDWXRNhP72s+tBbj1mj0Wg0Xo+nQuCaGbvNBVNKJD+jpKl2npeE4khUsgmFgGgPVgWDuhKDPqqUuhNEKHNKAk7dklchdktC6Igh0geIXohWg/Mj1dfIY/5HnQP0Uatd3RqrJ9EADWQgueCxA+3rIAhV3BXBEFG6nLGSsZKwMtYK8ZwdWlzQoKgFglf/o6iSiHUEqgSCRNyEYA6ib9qKsBe2rvKoi70p3DeFpIyF2vUvQWcLi6Li+DxIQ1VRKUgIhKDI7Mk2K+Sc6+hp6iJG5h2IMuW6sOoji1nABqk+3biILI9O6dfHmNet+zBP+Ar9oorGNKBlxEv10nbuRAmIFEKs53kXYl3E1VdyOBPMHZ8TEUzq8IjsSlHFpAOUSMDmhk5xw6mNbyU73ewPdwpuhVSm2lSZM8X2dgPH3AhSRTSPJ4Xsn43XODGf/bsHUSvzYq1VcBuNRqPxOjwVArcU5/zBg5pLb1LDAVQJXaye1NihXcS0m6udTlABD/g0kqxOJRMzdqWAJSJKsOprJHa10hQDvRq9g9rEyjJ0HZGCUOiC4kGJ0tVuc1UERZxZsASyKlkUkxpbJqFaEuqWv9BbqXm2OWE5oWmglEQnzhQE9whS/Yw9Buq1ghWUUqRWtaIQnVqFkypGzfObtiLYIVi0lsIFqV7IxhumxEDUR9FWCvRdRBBMZ6+pZ8SqxSSlgts8BGEslFIYZUIRYpA5NzfQL1cH+0CZd+mDJGJcsFwesz65TlxfZSyFUmBME3kYkGmkD5GuXyOxx1XQIoSywW2kl0IMQNDqzQ21knxIJJBAdqeokAkUEbKGer5rBK0jgd2MMi8M3WvjmBi4CIYxeaKkhJVEKAnMEDE0OLnUpBAQzB2zeXFG/UXWiL05W9iZM55rikgdGyyznaIJ3Eaj0Wg8madC4KYxYWlLTobGjn51RIgdQQOxqxUom5u8VKrlwEphHAY8TaRxqPmgqpRi9F39f1EiMfYQI4tVxzL2YAUxozMB7QiuxBAIJGKQOtFJ5+rWvHVchWMd1lAkInFBCBFifzAGdiJIHulQhpwIeYIyIWIErTdqDdWvKF5QKWSthocUgQISq/3AqXFSxQqu4OpYmoXSG7AiuNb0hUfCltkvWRBaWP6bQUXman9daOhc0ZR5JPO+UltKrjFu5ogVsheKZUSMXgNRlNAv6LtFrYrO3mihxn65F4I7CxUWiyOkv8rAkt20xTGGYWK72dbIssWabpGRAMsQWIRICStWKkgZiQJ9rDkfIjXDF1eKcIjkKxLn86dOaAvaVXvAnAKiqnQIWgoUp5REziM2N1BqmZjbI2eLT91dKO71vDMFhTyL4prUoNhe0Ap1+tksamW2PMxhYvX33Cq4jUaj0XgdngqBm3OmQ+gXdShCqIGYmGfcI10IBApuWsPucybN8UueC5IGijmTCOvVisViQVz0LLpaBZO4ICxWxNjX5rQyYstVjd0yI/gEdHRklDp9Kki1JpgoRqQIWIgQFhB7JPaI1vCj3jJiiSLCNmUuhonrsRDxWtHSCA6dFfBEFsPmbVyKo7H6YcWr7aJaDgztwK1u8xZSFURPsiIUQ/JrrQg80YogKFID8ynMoyK+RUf92aCLWiu3Wm0JQWrlvKZd1WQANyHngnqujmotRA0sVwsWIeLS4bEj9usaGYYjUpMC1CGWia5kOpwggbhYQ7/kcjKGUr9nSJmxFCxNiAaSJYzCLkbWsWfqAqXrIQRiV1iEgkhkX0Ut7vXciRGXWCecdcu6sDwkFygdRkwT4ORiWK5VWk0ZzVNNCymZXp3iUKhpJ7jUEF8NiE9Awa2O4zWnNlZqFbuHSu2hAe61olZ4lAfcaDQajcaTeCoErgr0XV+9dbmglpBSKzhlqnFhQTvIic12yziO+LgjSt0CLrFHga6LLNZrVusTuvUxjqLSYRLYTontlDBzYt/jYkQUVWEpCwKJYomjTug6rw0tqmR3kgvSRTQu8FiD+OsgiYyUzCIVLCUGCXzy81/mxrvfhRB5PipWHEo+hOYX7ebJTtRSbVTE5gNhRsi14ocKaonimWKZ6k8Ee5IVQRSTR1aEfQXsNVYEvGaf1lEUCFDSVMVH4w3TxTA3TJV59IBTSsZ8nsRnBlboCMSuI3Yr1sfXWC6OkW6FxBXeLZj6vmbclgm1CdLEkvkxrR6vECPL5RFjuMJmV7gcpyqqy8RUEp4TQQz1iZKVXBJlhKTKZQhMi2OmVYS4JLqzEPDOq02AgERFwqJWSyXUlASvlphFEcwmTGAszjgNrHyu1u4rzOok6gCIlAVROQxviKFQzOjUyR7J825LMcM01Ia2g/+2uuq/XtDK/IUAqi3grtFoNBqvz1MhcNGAhJpXKyKYG9Ez4lpjhUIgYZQ0knIh74Y6IKHr6ENEQ0CpVgYNC+LqmH55yuiRMTs5TZxdbCk5EWNPSEa2mpawDj2bAAsC1i+ARzdTC3MUkdYbPyHURh93UCOmjEwJLwl34e75JReuTPcv+KHv+U76y7vkyzNKLcpW0elzA47ZIYM2uODF6medcAwn1UY5qTd+1dq9jjlSvtGKwBOsCMBcsa1WhCpunZImatjp3OnfeOOIUDxX60sRCHtfc8ZLQdxQ7eiXxxxdeY7+5AbLo+eR5THeLShaLQFWCoqhVkdC1yOoFCKWp5qNq8KkwtYDDy624JmlGlPaQU5zxJaA1klltXKcDwMbHg47BuvYFYPTNSe90quj8+AQUZ1F5b7hLCFeBXqfMmMxkgR+89O/y3ve+x7WC+ZdirrTsT9PwYmSMTGMQtb63hSZB0HMCcAiRqCKW0t7P3mt3irsk8vYJyqo+EEwY6X60BuNRqPReAJPh8BFasRQCIRYBZe7QymIONO4RebhD3lKlGzELqISMXTuwkl03Rxu351g8ZTtdouZMaTMLhlpGllhKJlcal5nZkcIgYUumEzJsmAictoFOqhJBzEiIkRROldEE5ozOo6kYYAQ2Wjk5bMNt863LEvg9752hw+dCCdRsFy3X4vVSDGXajEIUEuxVlAxNJR6s3erAfkaSAjBheJ1zC9zA9DXWxEeCdvXtyJYTvVXhYIKEjqIi2/60X6WSNOOPE1QrIpSC7PndPauhg7tFyyuvYejd32Q5fVvo/QnZFFSToxpqjsSxVjGjrBYYnaEh0DWJSVnpt2WkjaoGeqwGQY224mVZoSJcXdBTiN5GlGt6Rx9Hx9NIvManbfbbdhshd36FDTwwpUVVz2wCgFVJYjSWUB1Hi+SM5Yy5AQ5I3HBV1+9z+rGu7jxnm9jvHebdRDMau1avBAt415Aq8+7eKiCFPDic57zPJ7XHMyJcyrK/vmKPMq9DbOo5TB5rT7W/jEbjUaj0XgST4fAnUeEhriPUDKmedRpKWWuZtW826gd/XqJhojOcUvMTsFlmei7Fbo4YmPCpQlaIJljXh9nXw1Tqvd3MKPrOgYbeLjrePViYLVccvN0zfXjnqshsJZI1Ey0TMy1oc1tIhpo1zHFjuObz3H/Cy/z/M2bLE9ucuvhJT/03d/D8IVPUGIds2uxw/a1OS9QMlpqJ3qN/swUEqaOokw8url3XsWu4fhcpfsjWxFEkBhBIvQr6JdV5DbeMMPlgMyDDCTUsWHSLYmhQ+OSfrkmrE84fuFD6PVv40wiKWW8GMO4Zbi8oIwjuLHTiAYhdiukA7fLuhCzgZLnODgzGAckb7kcL7icBoZxi00j7kYfIyVNLJdLQqhDJWqTmkNJjJMwpIeELtDHSB+OOO6VXoxoU11EZcg+oSnjY4auJ6+OuHWZ+OyrZ8jqiLNP/C5/8jvejz68SxeEyeqsM1elaMQLs9ec+Xn7PDDFUauVXE0FEcNDHdVrZnOVtg57EC/V4sFrBa3MPt1Go9FoNF6Pp0LgCqVGEGGYOSklylQoqVDKCOqErmPRr+swhRirqPNaCerySA9IXILW5psNmVQKYZ7KJDiqYC4s+yWlVAuAz2NESykM40QusDwyJASiBnrpOI51OlXII7HM40TVUa9xUKkUfuHX/jFTibxw8wpHx0fYyQlfvv2AqxpnP2+dCCV0qBmRMrsEBCnUZiSYG4Rq1q2YzHFo8ZCtq0GRbJQ3YkXQCP0R3vVo6KFbIK2C++YwqYstDbXhbLGqv9vQ0S2P6a/dQE9fxNfX2OXC5TQyOWjO5DRRxoFhe4kCY6lb7rFf0C/XdUGmdapXlDrCuswjas0gZwezOvwjxnoODwNeAmbGYtFVb+t8jrsLGp3iiWka2QyBYbnEUkJd6XxCSsENVBNRapV/FGUnzqe++v+z96Y/lp13ft/n2c459966t/aq7q7eN7Kbq0iKIimKkkajkUYz1sx4DBiJDQdjGHlhIAj8Jn9A3vpFXjgTOwMEzswYiTF2ZkmgZaiFEjUSRXFp7t3srXqp6qrq2u96lmfJi+dWkZI4tiMFYGtwP0AvQHUX+tY51fd7fs/39/0uUwhBszGJEY6ZuXmKzvq+tUiqgPMitvrh4hJlAIJEOI+WnmADXni0FQgN0geCC0gZ/bj46oOUkJ8VtXuu2+hlAD/aNBsxYsSIER/NPSFwZfAx9st6ZAjYwlK5AucrEq1IVIpKMmQ2Poxlkgjh0UIgbUDVawidoWtjhHSSvlVsDwaoUCF8SZnHxTRbFnHLHVBDz69SsYHJez/Ml4V+f5deqtiVgUwpJrQjMQo5/PfFDHqNx4F1DKzg1rUl5o6fod4YY3p6io3NNu9cvs5jBxIaYzUCKnpsh8e50onYXeYrgrCgogDxIjovCRItiP5MGRBSR29wIL7xDxPv/79YEYLJkCZDakNQKSKpgRxNcH8ZZGIQUqK1RBuDSWvovQazRh3TnII0ZWBziiKQe/BIQlHgq5JQFYSqwnkHriKmE8RfY6VvQGgVa3J9IHgfkxaUHtp0MoKSSKMoigJvKyDqvzzPKYoKpRTGmJixO/z7AcgrR68/oEgkWVCE4FEh4AUooWK9dCLoOc+by+sMhGFyokFWb7C9vs5Or09NDnWmEFgvsWpoMRKS4IetDG7onXUSoRyqCngZ86qjG7capoVU+xXB8TV8IGrDMIaNoa1BhH2D7ogRI0aMGPFz3BMCt7IFZSnxNqAo8DiyJKWWTpIl47isia+3kFJjhI/+PSEwJsPLDBskVkApFS7Adm9At19QEwWi6tHrtcl7XaytMEoxGAxiMoMSGGPwPh6PCqkwEgSB0lp2BwWKDjVSZEOgVEImLVY4nJBobWhLR1tJJo+fpHSKspLMTE+zubGDRVOfOYS2/Zg+62OWrQ8OnMPb/rDIQiLtsAxYWMSwPcorTVACE2JarXeeEEAHj7AWvP1PWBHU0IpQ37ciCJ0gTA10GiOihNwvExjxi2GyDCN1FJFakUhFoiQqqWPGD1CIBu2dLv2qC0KjVIaQCd46jHR4QEtBaS3KpHgkyhgkAm+jTzzsLVMFF4WqSEAJvJaUZQeqGOAVQryfg48xXEpKKuv2p7jGmHhqIQVlWZJLQVdLumWdmlFkQqCkJXZBC8BRIdkuAusbPRqTszzwwP0onfHK1hZ5KZDDfFwLOKFiDF8QMV1BRh+9EXFZUqqY/RsrtD3WV7ElzTuU8NHe4KNoDcMpbXDRdzzczwTi4meQcj91YcSIESNGjPhZ7gmB6ypPsCXCRy/uWHOcZmMKlY0jG7OoegurVFyqCh6BJZgalaxTIRn0BxRlDx8c1llsFaPG+nkHV/Yp8nzo5RMURUEsVvJoraiqmIAQp1zDuCLnKKsCKQR9rehUKbXCoTOBMgGFQAVFCIqBgwJDP7eMNWrIFPKi4ux9p1lausHE7CEGd2+R4mLyQ3DDHxVexDpU7aMotXj8sHKVoc1QEsUDLsSNc+9B+mhBwCLx/+VWBJ3Gie3eprqU+9WoI34xjDYkJsHoWBudGUOqEkRtAmcaFFVFMegSvMUkGpzFO4+WBhU8lS2oqhwhiE16Ug+tNNFCo4XE+QDeobUmkQFjND7EbObKlXgUpXd4YWOBhxKIUCERpAqci5XAQsT73Ifo/1VS0lewW9ZoKEvSkDF+KwhE0FgUdyvL2yvrrO7mzKicdnfAzFTGzMwcN++scl9LgTQxl9kJRBDgYyxYcC76boUgiOiptcSHMj/06waGcbeBuJgW4mmKHDYWIoeClvgHA2KYkTvy4I4YMWLEiL+de0Lg+mqADoIkzag1JhmbPoppzkJ9giqrUwRB5QI6OJTWsZ5UpnghyYsq2hmcI8T5FzK44WQoHvsbbVBaYq2lEuCHiQ2CQFX5/S1zYH/aNej1IAh2g8dIgaWOUIIkyaj7Eu0tOXBnt8+OMOS7PaQLaHGYLNNsbe+gdEq3X9BIUmTVRWKpQjyOJfgoXoSPmbdBIHwYtqWpmH8aokUh+IBSArxFyejEFNITbGzI+i+3IgyjoIbCVijJXiDUiF+MNK1RH2uiZayXlsYgdAPdmqNQKYP+Ltb2MDrDSPDeQpB47yh9RVnkVGWJMQYhAiE4vB1m6XpH5T2GKG49nrKMpQiJTJBSk2aN+LnKHFUHgqXK+7H+VgDe/VSagtYaKSU73Q62yMFPouuWupKk9ZRGEChvQTg6MuNuP+fi4h3qE/PomuHu+gYzU5NsrN/l6OwEwpT4Ybaz3FuCEwEVwEdXOd47gvf44FBDYQsM49QEQoJyHoLDhmHd77ClLAyFrBjG9SGIdg2x1zs9YsSIESNG/Dz3hMBVUpHWJxmbO0bzwCnU5BEqk1JaS6fTphgM4pTSeaQUcVtd5AQXcKGM1bdAjBuzCGnQOkFkYzipUCFBCEvqLGWZ4H2syoVAkiT7FoU8zzHGkGUZ2IrO7iY9KXFumjwItJSMmUBDebzWXOmDPnqajUuXOHz0IEppZqdm2G2XXFm8TZJmlEVOzRWkLo+b4FKAjlI8OAHCUKkYbh9thWHorHUEK9BIhI9TWqH3FswkXgqUToZNZT9vRZCmRtApQsQosX1ROxS2cjgJU2o0CftlyMYa6FoLBJRIvKqRjE1iGpNUeYGwDh0kzpaE4KLPOkisjSkhMsTprKsCVsZKWuc/sBUQAhXgh21opeuTlJpK5aRJgpEyli2rBG3SWLZgUspBh6os91vWorAVMaVAxkzZqqoY5D0GgzHamWayLJFJ9P+2heHFyzegPs7hhZNsbe8wMz3BwfkDTExNUVU5wXt0WkcFix8mlXg/rCCuSmSIVgShHF548BKvY0GJCMPyCohZwkrGwhI8PjA8xRD7pSbxhGJP1EZhK0cCd8SIESNG/C3cEwI3qbVQrVkaB06QTB+mK1Iq5xkMBuSDAUW/N5w2xWreQMCkKUrImGsvReyzd/EYVEiQJiExCmcUtuzhrcQpQ5CglSaEGBQf5DBQ37lYtyolUkCWGqqqwFpHNcwq3c41ndRh6jXyQnDh2i0mOjlVkdPrFUxPz7CyusH4+ATnzz/A6tJt1tdWmZzNEAGM9MigcB6kVlgl8UFjVUCK6KGUgmEfFmgD1oVY8SoV1jtEWeGlRu1t4dPACYXUSfTWmmhFCB9hRfiwsI2vVQyX1Ub8opQW8m4XLxROapwQTCQeMehTdNs4m1PZghAsytSQUuFdhbPVcLIar4MPFutiokYQChFAK7VvIZFKRw+ukhgRUCEQfImXEu88IoBSBq0EpqEwRuOqHEJJVZRUVUVVxmmxNnr4YBM/d1mW7PZzesbRSxoEk3F5u8vCJ57myrtvk9ZSGlWNO7dXaGQN7qzepdkap6xKtKyT4rA+UHkbs2q9j2UlwqO0wNvot/EyIH2M+/NCoIQmSD88pQC0RgqH9T6K9p8StOJDP8fFVMQoC3fEiBEjRnw094TA1Y1Jaq1ZQjLOTgWdok3wDlcW2CLHFgNsPoDhprkfHm2SJEgxTEMQcdolRCBRmsQk8XNIifUCqT3BWVKpUCJgbYkrC5ytUMSYIz0sdLC2QkiJMQaosK5iMBiwJQRrukGlDTtlxer6Kru9bcbGxhlrNZmemSMEQVYfozU2zntbFwiypD52ALtTgLUgDNqkVFLhvcYFQVAGJwXeDbNUCaggsAGkF4hgsbpAOECXGFtROYf2xJpY7wgq+89aEQSglNoXtsH7eGQ+4hdmtzvAWofDIxJD0pilcgW2W9Lt7OJtjqtKtBQo4tfdu4oQLN5bpDAoMSxBqAJagNXxOiFCfFgTAiVidFYqJcFVOJeTFz76cpOENK1htEJogfDx/leiQVl0sUlFPuizW5Y4W+F8QGgR7wOgKAraxrCRaNKxGqurO/z43beYvHGd5dUNZmfmuP/+B5FSkmV1Ll9dpCwKpmfn0DhkNYhlJL4k+PiQGYJHSIEKsdDEinhKglAxCVpoUA4ZNFLHLOuociWEvXtS7N+38IGoFSHE5crRw9mIESNGjPhbuCcEbn32CHryFJXUDPodispiXYC8T7AVGnAh4J1FmhTJUHwGT2lLtJCEYAnek2iJw2H3/LhSU683wDu8c4hQQ2sIlcUWfZwrUSrmiVZVRZ4PGAyKeHyfqP2j4soWDHLJGlPkXnPx8iW+8ltf5dvfeZ5OZ8D82DQrd9d57BOfxJgUYxI+89lf54Wv/Rm1iVm2djYx2RhWaAhZbDRTCiE0watYYoHEhYCSCuvjZDm4CuED0sZcUucloexjQohH2VVMVrA+/GetCLFMIn4dQ/DYoiTP84/78v9KM+h3cA5QAo0indBUrqIocoIrh5GtgiRJEFLErOVqEJesfIVQHkSKTGo4YfHSIkNM3HDOgYre0+As3jqEVsOs44DFxwIIZ/GqJCQJ0gzb06QEYVAmi1XWSsUpa1kw6PcpBwOyLI33tneoWo2iNcNbd7e5cvkSn/vc51lduUMQGVm9Tlk5er02CwtNHnrwIbqbdxHtNSg9xg1iq6CEoOL0Vfjh5FUKBCo+nMkQE5qljhnWwQwX6ECbaG+QeJRnKJT3BK1H4JF4YgdE9PS6kb4dMWLEiBF/C/eEwFX1FhZLv9NnUFm80ECMDUskWBkji4IIKAlIFd/ebdzUHtgB0ses2gpFYR26LNAyHtUaGXM/nY3RSUoaTD0l1OpIXyGwWFdSlgVaa/Lc0O/3KfoFQniSJEHKjNbUDLWsQXt3h0G/x2uvvYaSCZNTs6zd3WR+fp7SFozPTlKWBTeuXCVrNNhodyDJ4pRWpQQ0RhuENDg0cvhGLQLIIHAElGc4cRXgPMIYShcXeaRuUlkfPcnaoazDV9VHCtsPWxGCD3gf61eLoqA/6FLmg4/tuv9dIC6D+TiRxOORiCAJQVDLGuSDHEmgLBxC9LE+LlPJEGPnbCkwQgAFOtP4UEOgsbaHVgpnLV4Mm8CKgsJLVKKj7nUeoxMEAmttzMwtS3RikGkGXlF5jystbpiiYJJY7OHbBa5yeCOZnj3M+fvPs7G+ys2bN2k2x3jttQvUGw3O3nc/u+0eeVmxcOQYc3MHufje24xlULcVmakRSGKlrouiOvrMY+ueEwElBE74GHcW9kRqwA0X0YQA4UAJQHg8Dh9sFLX7Nb82FkHslz1IhBp5cEeMGDFixEdzTwhcL1LanR69okMIEikTBBopFMJbgiuwtoolDwLA4UqPtSUEHyc6UlK4gGJoV0CipSC4mA2752lMkgSdxG1s6WNuKL5EKBUjtoTEBRiTksFggC37lJVgfHqO4yfOs3r7Opsba+zubrGzs8nCwlHOnj3L0soqUxPjFMWAbnuXqWaLI8cOkOge3//Jy3zxmaco+30wKcgMqRUGhRqmJCAlwUch7gl4F2JjmhN4HaL4dQ7rY8WwlgbhXMzDHR7i+hii9NNWBNi3IgTno6e5GFDk/Shwy/Ljueh/R7A2lhNoKRDWIT0E4UHHh5i+71NUBVIMLSFuWFigFDjB4YPTuGIXgEE/Z1DEKmarxFDxxXg7KR1ORc95CAHrQKl4krE3tffex3rrQYW3Dq0NxihQiqosKN1wim80jNWo1VscP36aLFG8/fY7uKJD8CULC6e4evUajbEJtrbbLC2vcP78A7TGJ2i1Wjz7mee4ffMydr2kOTFBe70fH6a0RspA8AKn4gqZFRbvxYeqdx3BO7zzSC9QOKwtkSJ+7zIsLbFY/M+KWhk9yUJKgtAxDm/EiBEjRoz4CO6JdwjrYdBtE3xJkmRIAtbmBCHpVwXeFhACtvpgKzyKuYCQAqMSIAoHrSSKQCIFvhzE5RocSZJQMylVXhCsjikEUiG0IXhB5T22qChLSxAKldRJdBOh6px74AmarQavv/ljqs5tql6bMyePcXd9g6yWxCQG18PoJi7v01m3jElHs5aym2V4k3HhyiKnjp6gXptEKUXlC0IISCFjgv1e4cIw0cFphfMBHzQieEobG6mkD8NyBkFVDZfSRBS0ZVn+J60IRTlg0O9GgVuW+9moI34ZPBCoyh6VdWTOkZQVmRgAACAASURBVOqM1Od0Ou2hAA6UZYEIPsZnCYM2CakOnDnUYunWErafI8s+xlYsnDzBgaNH+eGP3qT0DQIKO6yv1UbvW06MTlAqitsQwvDaC6ztMxjk1MbrtGYXaIxP471lfHIWIROCSrBB44pdNtduc/Xiy1Ds4PIujz7yEIs3btEab/DY44+xvLLCuXNnGJ9sko1lvPr6yygXqKo2RycbbOx20WkjLnmGWrReCIG1DCt/YzzfHsE5RKhQNoArka5ClpIq5BA8lhD3Hn0gIJDagJAEoWKOszLR2qPMKAt3xIgRI0b8rdwTAjdIiXcD8Ba8wntP8OCcpyhyJNGH530MxtdSwbCxK44rY3yYhLiE5j2VCGAt0sePUTkKF/2mWmvCUCBTa8R2MK2RaR0fNN5o5o+cYmzqELXWHEV/k/evX2RtfRm7s4mRkoOHmqRml52tdpyK9npsrtxibbNLPU3obR1ic+MuKpPcWLrDkcPH2e31KKoqTtyUHi6xSaQy+KoaNjOFmPkZHAQRF2qEwCiNC8P5roreYCMFQQmkTCirCmM0wfufsyIMBl2KfEBe9Bnk+b6wTdM6SZJ9XJf97wwyOGzp8Mqj9LBSmeF017th9q2Lwk0KlFEoIxn0d7l9/V1SlVB6j6xprO9z9coNLrz2GrNzC3z1q1/ir/6fb2J9DamTn/JYQ4wOc87GumlkfE5KWswfPcp9DzxC30JeWvCB9c02Qg6wtqLTblP0N9hZXyL1js3NNvU04Tvf/g5nz97HznaPt996G2U8Z06doVFLEWXBow+dQ0vYWFvm0luvceTRB3DOElRCIEZ7CaHQXmCdiPW/ZmhPICBciKkP2qNcSbAFXhpkABkkhvi9LZTCW0swGag4rRXKfFBkohKEuif++xoxYsSIEfcg98Q7hFUJWiY4F5dghFSEEN8cgy/wCIRgWP0ZCF6iZYXXKUKG6MUVgiAFoSjwzmJkPMJFgXclOh3bn3CFEN9kXSjpdQJaG0RrnNb8aQ42W8wdPEovd7S7fdpbG6zefp/Oxm3qQtP2gt/7/d/h9Quv0isr5ufmuXTpIr4cMD/ZQthNWjNT5P0e25vbHD59jhvXf0Kj9hb3nzjMWD2L2+7DoP7olYgpB0ZKglQIMZxQiz2/ITgfvbXOxQmZCw7hQfhYCiCChxBwrvrAilAOKAYfWBHKqhpWtqYkSUYta5EmtY/12v+qE3wUj9Z5lNEkaYIyGmcFclg/q0RMxBAEfAAznDyeOnYYOdhgIy+o11IatQyTZqytrTE7c4hWVucbf/lnnL//fjxjvPfeZbxpAQLvJNbG+XGqJbnQBJUwMzvLp57+DDu9nCs3l9jd2cVoSXd3m/F6g+3tLZrNJp3ODtbmiG6HohoQXMmzzz7Hd1/4Ntdv3OLQoaMYLdjd3uL6+++ysdPnwNwsp44f58Sp4xijaDRbFMKQGAMqAVND4tFeIoNAej9sBvRxmSz42M4XQhSvVoEwBEqESDA6B1vhTS02G1o7FLbqQ6JWxQg8qQl71oURI0aMGDHiZ7gnBC796P0rqwECR5a1cMHhqorgK2ywJEKjjcE6iZMBp0A4ix4e2Ttb4ghIQWx2CgGjNMILjMkwxsQ2qOGbbpyAKQoM5x77FGPT89xe3WSj02Nz6yK7m2sxyslWSOXJN7YQrk8IOT959W/Y3tqmvdsHucvURIMnH/sEP/j+i0yMT6ESQ0VCqRq88+57jI9PcvXaNYSvOHJwnlRpnAvRT+uKOEv2ASVjy5Q2Jgp6pQhBRiuDisfUUg4XyQLIAKWPEz3nHD5EH2ZV5Qz6PfKi/1NWhCSpUcvGSJI6iamRpDVI7o1b4FeVqooeaIdEmxStE5RO0LpCS4mrCiCgtcIPkxFEmUMQLK+sMpsWNGpjPPX0s1y9epWTp88g1XuMjY2xs72LH9RYWlxl8cYi8wtTPPbYp1i6fousNo0YG8dLw+T8QeaPnKQoLasrS7z95mvkgx7BOWYmJxkUfWpGopWlLPuUlSI1nppR3Npap7JdpqabfP/F75CmKUdOnMOWJd1OG+k9m6t3mT24wOqtWzQkrNy+xm7eZ2Nzhyc+8SS2rEhMik5TqmFkmA+ChCjAnYvV2C74WFQSPEFJnJJ4E/Cpw1sPZYF0FlUW+KpAW4+Xw9QFoQBF2Fuk3J9ijxgxYsSIET/PPaFuOt1dqmoQI7HksGHUOvxwiUx6RyUkSZAIH9AK8CllbpHGxQWeMNxkD/mH0gMkSqlhzWkMtHfOUVkbK1BNjU994UsEnXDl+k26u5sIWyG8RYUCh0Aoj/AVSTOj3O6wsHCAXq9Lkhp+73f/Hi/+4HWuXr7KzHiNBx96gHqjzpmz9/PXz3+L5z77NO+88zbd3g6251laWmeqOYVoSIRK8FVOWcVge2c93g7QJrZOaSmRUoEUBBdFlB02W3nvh81nw0Y0H3AEnA/7R+J5kVMNvY97VoQ0aZClY9GWoDVeR0E84hfHOR+XIoVAa0PlLMraWGQgBcE7lBDoNMN7T1mWCEK01OgUnQi8Lbl56zanTp/lnbffZHpuHhk8m90+qjaGkIr5Q4fo9rp846/+jH/w+/+Qdy9dxPY3mJg5yu7GXa6+fxEpFVoGBrtbzB06xNXrNymtY2JyhrwaIExKOtYiz/ukVCzfuYVQgcnWOFI6fHBMTU0yP3+Ic/edob2zwmsvv8xYc5yJyQkyY1hd36U+PkEIY+T5BleuXSFLFK3GGGlWR5tkmOEbrQZSyhhrpiTOR5+8dBJHIEgBHqR1aOEJSuMri1QGpesxOcE64KdF7Z6wFXI0wR0xYsSIER/NPSFwqyofNohJjNKxCck7grOIEJAqwftAJh1Cl1EIB0kqCkorKEuHLSUmqaOVHE5ow/6kNniovEcES145Bl4zf/gY5x96mO1Oj9U7l0hk4PD0OFvb23T7FbV6k9X1dVItaKWQ9ztICVtbW1hbMhjk/ODFl2jv9Dhx/BjWWXZ22+y2u3gn+MpXfpOxsSZ50eGJJz7Bn/7pvyMfeFY2t1loHKWuM8ZqdZpCkOc5pY2xZ0qJYeJDQKoU5y1SSKrKIqzFeQtBDv24Eu8dtqrwwZOXFh881n20FcGYDJmkBC3xweOd+7gv/a8+Ya+fQEafKgFh+6TBMqgqCGFYxJCS53v3eUy6KC08/cyzfPMbXyMveoQQOLRwhEajzu7ONtn2Llv9Pifuv4/l5cDk9DTvX7rMn/zpn3Lm7GEefvRxXvrJy+QDj5KaWmsCFwRpmrC2sspYo04mLd2tOzSSjJvXL3Pg4DyHjx7kjZ/8kGaqmDl4nMXrlwnBUpYlly8v4l3G+sod1levc999Z2g2m8zNz9KuNwi6zvvvX6bRqLG1tc3i7ZscO3gAW+akSQ2dZiQmxaQZShqEUhilYt2uECgtQXqkSlHOYn38Hi2Fx7qAQkUvMfG+l778aVE7XKr7cKvZiBEjRowY8bPcEwJXS4nA4ESgKi1l2cbauCgllEF4SSY8589MsLVyk/bmNsFbdroDHnrkE3Q7Owhd45NPfZJvf/dvaLcd3gXQKVVVEVxF6TWT83McnT/EuUefpNfvc/PqJYqdFeamplm8cYvdnR1mZucQvQ6Xr9zm+LFDnDg4xw+++3XKXo8DB2fZ2SpI0wZp2iDJGkjj6HXb2DKn3+9z+vQpfvjDH/HSj3/ExPQEs7OTLC0rTt13mgPz83TbA6RK2NjtcuTwYZqNOi1iLihhT3AqEKCEJRCPe30IWBuQ0lEWcQLtS0tVOnwoqayltA7vSnwIFHlJmjR+yorgBVjvhxPhEf+/4B1OVmRjTbKJKbSWaOkp+jn9Xo8kiTFezrkY4eUcOk0ReAoHptbi8JFDhEHF6updkqzOtcVlTh8/TOv+GkePn+K1V1/l1KlTHDp4gMbYBG+98xaL1+/Q3Sl44pNPYkPBhTcWKbrbFEVOlaSMtyaYmZ/j0vvv4YeJBJMTE+wuXcdvr5DKwO2biyzfhvFmizRNybIGc3OHWVvbwN69Qa1WY3X1Lt7D2bPnaIw1OXnyJI2xlBdeeIGyLLl54w5jaYNaohD0cEGgtSJJU7I0xRhDLasjdBITILRGCImSGqREywDouDNaVSgph377uHDpMcAHZb17YncvAm/EiBEjRoz4KO4JgauSGsI6Km9xNgpSvEMEAWhCcJjMs3bjGltrO4xPjiOylIVpxcX3L3N0bp6JVsb3vvV12rtdzp59gEazxpuXlpmo1xlvzTF/4jhOGFa22rz2wxcoBl0Ujry7g60sUilqsuL21XcQAmr08d0dvvvNVzh39gQXLrzK4uINpiYmadRbXFtcpNOxTE3PYauSDMMjDz/OexffYmpqkpu3riG0Yn2jzTOffpYiX2J3c5uNzR20SfEiYWO3g8nqTLfG0YJ9Ly2AEBIbSkJQMfFBSEDinCWpubhs5hyurLCupHKeoirjYp4LlHkVLRsfsiIEH4afW3zIhzzil8EPI7saaQ2tFAGHc4J+v4f3DhFiqsKePWavGS8ES6ZSXn7tDTQKX+TUDFy9/F6M/AqHUDqjlsFvfOk3aTabfPPr30AIwTPPPMPLL/2Irc0eL738CnMHp3j66U/wyiuvsLx+hxMnT/P+5XdYX59hfWOdyclJyrIiN4FGvcHq8u0ohKsKHwQPnDuC1oad9i6Xr1zn2Wc/y63F91hbWUPJhImJaV588UVOnjnF0aNHmZ2b4A/+4J/wh3/4v7DbLdnZ7iAnx9FGUxUD2r2C4ciWLMmo1+uYNCFL62hjMEkSU0t0MpzIxqW7PY+89zFZxZh4crN3r/6UqA3RljRixIgRI0Z8FPeEwJVKUQwGsJecMIwUUsOPqVQzMZmhBiUTCwcRQKvVwlYlJ0+e4uqVK9S3drh8/X0eOf8Ir/34FbJWQmt8jOee/Qyvvv4671xYZGbuGCtLd3FlTpLVGJSWwWBAY2eXmflptu/u0Ov12N7aZHpyAooewhUsLy1Rr43R6fXwSNrtDmdPn2XxxjJzc3NoLUmQvP7G6zTH6tTqGXfXd3nqmd/g3ffe5p03Xmd3e5upyUmSpEa70+H4qftxSPpFxWTwMExM0NrEtishwKfD4ocoSpWQxGmXRUmHlwpPQDqBdAKtDBAI1iO0o3Tup6wIe8J2TzCMFnV+eaTQ1OpNas0WxhgyZXDeMuj3kUqSJgYE5GWc4EoEeIH3lqrocW2xz1e/8hkuvPRjNtfWyCQM8oKrV67gZcojTzzBxUuXWb59kxOnTjHodbj03rs89+nP8/qbb9Dp7rJ2d4vVlRew1vLoJx5k8cYtklSyurZMLW3Q6XRoNpusrd1ldnqG2dkZpqanCcDb717k7Xff4eD8QXbbPX73d3+Pu3c3WFndwlt46MHH+N73vsfkVJOri9cYn2gyPz/NzMw8Tz31FK++coF2VZEJw3hap6YNoorT66py5IMOvUGfLEnRepckS1HSxMSJrIE2BqUVyqQxUCREC4fWkgAYo/cf+vZEbUxX8Xg7stiMGDFixIiP5p4QuM5aqqpEDJuMgo+h9l6AEB4hBYkUlFXF9IF5Dhxc4M6dOywcWqDMc2bbHbY6XT775a8yOz7B2OwMi1evsrayw7/+139EmnqOHDnIeLoAcwnvvn0LOTFB3u3QabdpLSxw8e0LHD18BNdvM9Wq46qcy1cukSUphw4vsLvbZsZ7bty8yWOPPMjqnRVmpmd56413+PRnPs31qxc5d9/9rNy9w/pGh3/xL/4HXnnlJzQST3d3E+8sg7xkYmae+sQ4RTmg3pyizAuk1PstZAQxDLYXw6+BIBBrdvdarGLLmcC6gBuWAFRYLA5sDMqvvMP5ODH8MHs5qgAoOZy0jfhFSdKU8ckZxppTSGXAVfT6PSBOS7XRlEVBVRZIAYlJ0NrgvURqR1UJXn/jCtJodnZ2mRifwGjDWKvF4596DnTK/Mw2s7Oz/OTll5hoaGYmW7z51mucPX2Wbz7/LT7x+KNcX7zM7PQML37vBxw4eJB2uwNIZg8eYmtzE1tZtJR0u10OHJinqirE0Dd89PB55qan6HYGvH/xKls7W9x3/zkeOnc/KyvLGKPI8z4zM1NIOcbRYw+ytLRIo1HjqaefYGe3j1Sa7U6fk8ePMu49g36foshxZYl15dBTX1EMAj4M8M7GODwR29h0kmCUHk52M4QUSGlwIeC9I3iPqyzWWqqqoqxybFl83Jd/xIgRI0bco4ifFUAfB8/97h+Ewe4GzjqqssBVMT3B+xCD800NLSxfePIs7737LsfO3MeRw8dZXl5icmIcKQRXr1yhX1TcuHGDxx9/nANzc2xvb3P56nVu37pCq9agGBTkLufZzz7Hyp27LC0tgdDMHzzAhQuvMzd9kCRJycuSyclJ+v0+zUaD5eVlfvu3fxuTpvz5n/85SWKYnmhCqPHww5+kOT7G7Nwkr7/2A7K0wYkTp7jwxgW2t7c4ON9ECChdYGenQ5JmjNczKpUgVYZOajz+yKPoQHzNhP2EBOcdAYEL7AtVv9d0FmLkVOUsNrgYk1a4+DHnYmzY8Pf7Czp7E9vh9vme7eHf/q//cjTG/QW578zZMLdwkrQ5QeXB24JeXmCEpJYaQnDkvT79osQYg5KaJMmoqipaUHyNzAT+4T/4dS788IcUFhIpUPUxApIHz58nyTIuvHmBI8eP8NLffJdmlnDl6nXuO/sABxeOcvHSZbq9DvUsQamEC2++QVlVCBR//6tf5dVXfsLM/AHurq9z8OAh1laXue/c/Zw+dZbLly/Hkwnbp9+1zM4epzaWcvfuMr7ImZ4ZZ2Nrk6mpKU6ePM21xWvUa4abi4tRsCcpteY4yIRGc5xTJ06QGYMK4GxJVeU4W0VLjc+xVUxGsFVJf5DjfLXfdKakQStBUBlKK6TUKB1bCquqoqpybFXuC1znHF97/juje3fEiBEjRvwc98QENzEJ1bC5aK+GVAgd3/hC9JqSZRxcOMHFd97C24qNjQ2yrEZewdLyEqdPn6EqK/Ki4urV63Q6PdrtNmdOn8EYwZWLlxEI+lXF8996npmpWer1jJW1NVZWl3HOsba+zrkHHmLn9i2qPKfMc2SzxZe+9EV2drcYG2vylS9/GecdL37vOxD6tLs9Ckp6/W3uO/sof/3N57l0aRGEZ3pmkmxshps336fZnKRRz2jV65TOMdFsMSgdaVqjqjxJYhAoJMMpLQ4hNcGD+FCU1761gBiTJIJEB1AywSUea6t9KwJ8IIyjsI2rOjF2SaGEGG2i/5IkSUyqIHhsMWBQ9BFoTGqGFb2xJjnNaiilCJ79LGYIpFmKFJLnv/cy5+Yn6O6s0S0C5UBx5v7zXHjzLR568AwPnj/N0vIKGxubhKlxvvrV3+LChbf40Us/pNWcQquUyal53n3vXXwISKE4dHCB3Z0djh8/zk6ny/nz5xFCsrG+yqkTJ3nzzddJ0xpHDi/w5oVX2Nrq0u3Bl7/yRW7cvsaxQ9MMBgVSGm7fXqbZHGeymbG2eoepiSaHDh3h2rUb7O7scujwMYJUbO10mZudpjXWwDuL902stfH1+oLKWpwtKStLUpS4vE+eD8jLEldZBtbivcV5TxAglUYKQQiOosz3Y/4+XP87YsSIESNG/Cz3RJBkUAaTZhglUQJqtRqNRoM0TZFKkRkBIfDn3/wen3jiKW4vXqe/28GYBCkEyntatTqTrRZHj57gM899nonJGeYPLNBp77K5usaXv/ybbLc7HDpwlIcfeoJ+XmCtY372IImpEbyiKioePH2SU4cXUErx8MMPs7u7y/e/9z3OnDjOu2+9yYvff4HgPV/8whdxNnD75hLLt++S1BLurNzhy7/5W0zPzjLWajA5NYW3gZmpQxxZOMD58+cpXKC00O4NmJuZwVUlgzxHpbV4xC1jhKjUJgpcpQhKIfenrgIhBQoPSmC0IVEGozOkzjAmLvAkw0UerTVCq9iWJuKDg5EGJcB7S1n1P96L/yuONrV4nC5CjLVzASNBuIoqH1D0B0ilSNM0Pnjgca5CSEGa1KnXUpJGRi80qM0dY2AlrclparWEO0s3WFiYZ3pqkvbWJjcWr2MrwbOf/jxZOob3lgPzB7h+/Sr1rMaPfvQyv/bFL5FlNSYmWlhbghS0221OHDuGrSouX77MxOQ0Es/1q1d46803CNby5OOfRKuMU2ce4AcvvcRD5x9gbu4EjzzyNO12SV5Y3njzbW4srTI1O0unP6BCsHDiOAtHDlMUORMTU4QQSLXBVhUhELN5TRJjw9Impj5O2pylNX2Q2fkjzCycZP7oaWYPHWfqwGHGJw9QrzdI0vjsPej32NrZYHN7k26vR1GWSKmo11u0WjMf78UfMWLEiBH3LPfEBJdQokVg4BxSRk/enqALIRAAGTy9geeBR5/k+o1r9Hd30AaWl5ZITcqlixcpvWLhxClcEDRbE+h+h0paJiebXLt2mfP3n+Vzv/YFvvaNb9CoTyAQnDoZl8XyQc6pk2e4vXyHhx9+mF6e86MfvcQgzzl58iTr6+vMTE9x88YtplrjjLfqPP30o3R7YJ3htVcv8Htf/W2+/rXnUQk4V6GqLkePneTQsYe4c+cO3/72d5BSMT0zx+7WJmt3VkAaGs0JJsYMGkERDJI4nfLEDF8RPrDKhuCRweIR6CAJeAIKoSDu8Gs0ewkJsdbXWwciVsZCwAeLcxbrcopi5GP8ZdhLvlCJJtESiSE4T1UWcXLpBVmtFhelvEd4B1rihcCWDpl4tBA463j76i1+/yu/w1/8+X+g3+sxPzPN9Y0VvvW1vyJLEtJ6kxNHj/LMpz7FH/2bP6KsNFfee4dHH3mMa9duMd6cot/JOX/uAe7cuc2hA/MkWvP+++/z1FNP8dJf/d985rnnuLt6l7Lqc/TIEZZur8Y/l8DEeI2bN66ytrHM8WPzPPzAo/zwRy+htOKJRz7F+ESTW7du0ZyY4kTWpNVqYgRcv3YVlY2xvrbC5MQMOs3i6xyWj8DQ6y0VwSm8DCgEKhGgEmSSInUNW5a4WkWej5EXA4qyYDDokBQpZVkipUarBK0TEpOhlPmYr/6IESNGjLhXuScErvIV+XDRTCu1f7S7d7TpvUcSEF7yP/2rf8NvffkzvPvqq8htmBxr0m532M5LHv7kM5w8e55L776NDx4pJYUtcMGxs73Gww9/gj/5k/+dM2cfYHl5ma2tbS5evk5zfIwJPUFZ5ty8dYt6ltJqtThz5gzWOW7fXiLVjiNHDiMQvPbaqzz00FlW7izS7Vmcr7Nyd4WXX/4xX/6NX+fu5ir9zg7vXXqP23dXaL6XcOzIUY7MT5GYlMVbt5lfOM7RI0foW8HttTUOzU6hbEnlBT5YlIrRXkLI/SxciEe1QigIkoAkBEsIfuinDSBCzBEVe9W/oHA45/eFrfMlZVmQ5z2qMv+4L/+vNiZBaIEkYIzBlgVlPoAQoiVBC5wIDIoemcnwQiGkIQgJqUKmNWpG4YKn3ct57a2LfPozz/LD7z5POdhhsNtFS8HEVIskqzE7M85PXv4xizev88yzv8bGxg5vvPEW//gf/QGvvnqBd956l932Bp/93DP8H3/yxzz99NN471lcXORzv/Y5yqJCAoOiYHp2jvevLKJNYGZmiiyF1fUt7jtzH++/d5Ej80c4tDBHVleUVc61q2tMTkxRrydMTYyxtLSMUop2v+T4gSmcMHhEzLlVMbtZygDDB7XgPV7GpBTrAyIASBwSqQ1m2D6IVsishilLkqyOtRX5IAcfk0KUMiht4pLkiBEjRowY8RHcEwJXEOjnfaqyxKQJ+LC/JCWCQASJ8w4XHLaQ/PV3fsJsS+B6XZqtCRpjLSamp1m8fo00MUjhSKRjam6Kr3/jL6jXUmYnJ2iMGZ785CO8/c41ZmbmaNSaiCRlZeU2zoP3FVlSY21tlcFgwOGjR1nf3KDVbLF4bZXf/O3f5eVX32N1/S7/9Ml/TL2W8NCD5/lXf/i/URQ5ZAkb22vcvH2L128u8uAj56kJzVs/fpVm5vnSZ55ge3uHxx8+x912weZuh4PTU2RdS+kCrtNBlR1KV+I9WOcJQmKRCO9wSoL3KKEARQjghSMIRRABoTQChfAyhjEE8HhcAOc91pcMBn3KMscWA4peGzfoftyX/1calaRok5BXA1xZ0esNGAwGGGMw3oPSFHkRa5eVwaQpKs2QUpFlGcZk+H4Hih7dfs7bvW2OHHoWk9bodXq0d/sQYnTY2fPnsNazsblJo9HgW9/6a2q1Gg88eD+Xr1zk3LmzvPra63zh81/kL//yz/iv/6t/xPnzD9NpD3jrvXf55//df88LL3yfw8dPsrm5xZmzj/CDv3mZU6dP88rLP+K//Wf/Df/2j/8vrl29zPhUnfn5aVbvrrK1foeZyTFqU3W2d1fIjt7P1tYWtVqNjc0d6mMt+nlBVQ2Ynl/AukAtzZDegogPal568AJpYyRekGH/4dV7cD7gKo8HKsAJjUgkiTYkNpClntJVBCkIDAtL7oEF2REjRowYcW9yTwhcgDIv8AR0YlDC42wFwcdpjVJoral8gas0eSH5wm98hR+88Dxlv08t0ywtL3Pm3EP85JVXefDBB8kSwY3Fq8zPziOE4rnnPs/q6k2Wlu9y5MgxalmD166/wfT0Af7eb/0emxsrvPvOBZ566ilarRb/8T/+BU4E5g8u0O1VPPjYEV768Zv803/2z/n3//6Peefi+ywcOsr7l67zxMMPEITkxOw0c+NNrrcET371k0zNzHB24ThPfvoB/uf/8V/y3Cf/CXMH5gky5dbdq9SyFGMUB2bqzB88yMSRY1x//QV80SEPghAklXUEH/BVjg8OLwRiKHwdHh/ABw0i4LQhoAGBEgYpAiiJ9QEbPNY7ykGPKu9TDbqEQRthq4/70v9Ko5SIIq5wlEVFnucxAcM5lE7xzuGCZ6w1RpIkmFoDkyQYYxBIcuXFrgAAIABJREFU+oMuZbdLmXdinJio0R0EkJLuIEeaBO+6nDx1kpMnT3Lt2iLPf/tbWOcAiUkEaSa5du0y7U6PM/edY3lthzRt4GxFXnT4yld+g3/3f/4HhDQcOnKCpaVlzp29jxu3V/idv//7LN64xfnzD7Gz1eX4sYO8+tbbPPLUF1hZW+LW4k3u9ksu3nyPREE52OHI4QNMNjJ+/Mqr1McmuXH7DmNjE2T1JmnWIj2RIEQAbQi+HDoUJB6QShB+ZmlSCoEXEqTEefn/sveeQZad95nf7w0n3ti5e6anJ89gBnGQE0ECJMgVSZGSKCq6VCXL6/WWa2W75FoHVa1TWfvF31yu9W6tZWp3lUWJYg4SCRKACIIg0gAYhAk9oadzvOmEN/jD6WmIKmpdJbqWQ/n+Pk0NUI259xzMec7/ff7PUzXuiSoazNtKxBrhMHi8dcOSkiFDhgwZ8v/KTSFwb0RZhUGIVApnHWVZCa9K3FZxVsYKdCRQIuHTn/1LfuGTP8Nb3/kLtnc6eG947ttPc8+997Fv3xSXzr+BKwqOHjrG5PQUB/bPkGcZabrEc889x/jYNJ/4mU8yP3+Vb37jaY4cmSOOE9bXN5ic2Mehg4d58823OXTkOMduOU2n00VpxeLqBo+8532ce+slGmmMcTk73S0iadhaWeTs+ddYn0o5NXaM2eMnURryfs5P/fxHeePtRR55+DT9zNDtdlFRnWa7EvDGGGaOnWJ75RpZtkXo8904pBJTlmS9LoNeB1cWFGWOQ+J9ifcCSod1jtKDERqLwOKRSIQSGFdNyryQlFkfn/cQZYF2JVqpH+3F/zFHKUVZlt8XzSaEII5jdByRZQVaacIgJAwCokChJPR7XYqixBQlZT7AFCXOGorScm1hidvvuZevfuFLrK6toaOAU7eeJisLNre3mZicpCgKJienmJ8/T6vV4ujxBs/+1Xe48+57+N5Lb3Dw0DG++8IL3HbHSa4vLnH82DFeffUcIxMzHDvRZmD7vO/9H2Bt5SrPfeurPPTAPRRZlyNz+zhxaIZDYyPsGx/jd//43/He/+iT3Nt+GLeT8/SX/gKX17h2/TUayjHaSpibvZ9BYVnvFCxvbtIf7KC0xhIjpEVKDbtNZNZXm603kiTejbCrBK6iWqoUzlf3szd7/+5fTwQZTm+HDBkyZMi/j5tC4JZZH61DokATBJp+voNwttq81nJXAO/mZEaaJAwwOuQPPv8Ux/eNsu/gBH5xkUHW5/qlc7z16vMsLCxy+MhhxienWLx6kd7OBpcuzdPtDoiigMefeA9j401efXWT40ePMig9S4ubnD5xnGywxeNPPMTmZ7Z5/vmX+Me//k+Zv3KVuUP7OPfaOW695TTzly5x7q2LHDwwxclbbuX+++7hnYUrTB6sc/r4Sf6v3/o/mPjN32LQ6NMIU46evoWvvfwZHg3O4Ero9PowMMwdPEycpKByVD3kvo9+kvVrl7j4xku4tQW88EgdEtUCwqiONxmq7Ff5t9ZTlgWYgtxaBhYcksJ5cm8wZY7LLMIW5LsCirIglBAIjQ4TkDfFLfBjixKC7k4H6Spxq5QiSRKazSYD56A01Or16sUNKK1jpz8gz3NcacB5ymI3K9YYNra3yK3j6099myCpI4KQYyeOk9RrXLx0kbffepMDswdQSnF9YZHpiRneefs8Dz70GMePn+DixXe47bbbWF9bQErN9YVrpEnCmTN3cvHKOo889iEshkMHprhy5Rpp2mBq3wGuXF0gjTXSF9x1+hhpIvnLd77HxONniA82mJ6bJbWeU7f9Cp/+F7/Hr/7UB0jSiIX1Pourm1gypifaDIwizwxFfxOpFV4ogkgjpELJAKSuprXsRtd5j5IOg0ALjbUC6SVGGSqzQiWGy/L74+++r7BkyJAhQ4YM+RvcFOqm2+sCEqXUXs6lExAEwV+b3FiQYIyj0CCcxaF5+9o6p953N2mrQZn3sIMdupsbREHEOxfOMzo5zpl77mZjfZNnn30Wj2T/7CRXrp7n3Lk3ePiRx/nui68yPj7L+MQs33r6r/jwhx9ndKLFJ376J3n2uVfZ2e4yOTnFLSdOMNluMTk1zaWL5zm4f4KlhXk6/T5aCmQSkzGgs7PJE5/8EM8/9Tnufc/djI612FrbRilFqGOQltX1LSampri+uMihg7O0kzbbO6scOHScZqNObixvZQJpeljriLDYoo8xOaFtgPUEzhGbHGFKCluQeIkpLbkzGGewpgrVLwZdSjXAFFAKqrY0qZFBiFDJj/jq/3gjpcSVBrd7n1a+2qBajPSeSEdIISiKglq9gXOWoigQzqHw5EUODmxRibkwDAnDhChtsbwwz+r6OslVzfLyIm+9+RYHZg+wvLzM2uo6h48cY2l5lbTewDnPU099ndtvv41Xz76OF5CbnPn5eZ784E+QxC3OvnGOleXznLrtDmr1lLkD++iNtPjqFz/Lz/3sx1hbXsD0O0xNTvGdd15nzefsH5+muG4Jjk3Tapb0ykssXr9G6VN8UVTC3bvd5BNBlCTEUUK+tYYZDKqWPaWQMoAgQoYxQlSCV95YKkOihahKToTCSoHQEgEoZ/e+Z6UUbtfeIITAy6HAHTJkyJAhP5ibQuCWeUYa16omr7LAW0cYRkgpd+OVStAhVkisBYmkFVbd9aUL+cbT3+F9D96BFFD4kLJwbGxucfDoYUZHRzHG8IUvfZF6q0mWZUjpmJgYo173IGB23xQz09OsLK+wunKFtbUNTp0+Rc9kPPzwAxTZOs32NOA4cGiWzY1tPvDkk3zm07/PWLtJr5cxPj7JxuoiPvZYUTAyMYrJLLOTKXUveOGVV7jv7vtYW9nkpdffYO7ALOcvXmVsfJo0igmcBWdxvoBAURudxMYjuIHEaU9ZDtCRwoc1Bga8E0gcwpfgSpQpCV0BRlXi3+ZY78DkmCylyPuYPGfQy6vvQMfYoI4XQ4vCD4MQEAYK7wXGVMkJOtBY77DW74ldQVXQ4Z3DmxKFwAsIJGR5gRQOYz1jrUnqzQYjE9PsrC6SpDEPP/owRWG5eOEKI60arZExvFBs7/RoNNv0+hl/9uef4RM//dN0draoJ57tgWVicpr22AQXL1xkemqGRx99COcKoiggrSUkYSUYH3vfe3nzzXco8w6YkkMnj+BbNQ6OznB85gj/4n/73zl+932s9jeYqLUIY4UMJM32COudJVZWVmmOjDM5NUVhJPtnD5AJy+Kls9gyIxcBxlMlSAQxUmlEEBEGAUqFCBkglK56SBBIIVHS45XE22raa21VO+12Na33w5KSIUOGDBnyt3NTCNxYa6QrKPo97G57WRTEZGVWHVsqBUIhgog0Smk0GihjMINtst6Ajd4Wl5cOcfK2O/mrp77FwBjGxseYOzRHe2yUjY0NxifGWVtbZ2pinFpax1vPhfPvUJaW++9/kGee+RZr610OHTvGpfnL3HLLCUZHJihtgXWesXaDOImo1ROSSFIYya/+2j/kS1/4LEWeg+nx6ndf4MO//FFEO6DdHiE5NU2+vc3li1s8942n+OhvPsILr77Ja2ffQoeeg3OHmBgfq2KQsgy7slw95EPJ3JGDBEmN118/R2dzlawnGJQG78FrhfIWJwVC7MYvOaAs0NYhvMF5i8RjLMiii8wHBP0ORvcoopLSGnwYQnBT3AI/thhjQFaLUj4vSeop3nuyoqS0fjfSrYrOKsuqllZ6h7MOby22NHhj8N4ig5SJ/QdImm3SziaTk2N4n6FUwBc+/yVOn7qda9cvUJiCAwcPcPHCAiePnmCQGQ7M5cxfX2VmZpoPPnGEF195lc/++Z/ygfc+yOX5eZIkZnRiP6sbm4y0mgShwmvF9L5JPvyRj/D1v/gK1y6dZ//sJK+9dYkjh08gZmJWV7d44hM/SdG5wmiriesAztNs16m1R3j5S9/gyrVFTjXHqqKHIKLebjHWvhsbRbidBbo7W3Q6HXqDHvnOBlJ4SqWrHFuh0TpFRhovNToIkUFYnTCoKuZOCLGXje2NqwokxFDeDhkyZMiQv52bIkgyjSNskWOKAkE1BbPeUhYFTghUkBInNWq1Go16ilaQlwWdTofBoId3nq2tHfql5tjp0zTabbY6HSanprDO8eKLL7KxtkajlnL82AmyrGB9c5s77rqTJEn4wz/8PX75l36BkaaiMIZ+Yag1GuRlxubmBnEY8L3nn0N4iwdEIFDKUmvUeeJDP0m92SQMNCfnDvDNrz3D9pUditVttq8u89Izr/A7/+oPeOzBh9nKPWfffBsnPGGtRWEdaZKwsLDA6voGeZ6TZxnae0LtmZ4cY2ZmBiEl3gm8kHghEBg8Fuct1gkcqkpV0CEuSHBBClEKOkGEES4dQaSjUJuE2ggyTRG1FJ9GyDT9UV/+H2tu7Do55xBa7TaVWcqy3F2iql5AKr9pdbweqOqlwpQlJs8wRY61Hh1G1OtNynyAL3PW1zeI45hrV69z5MhhsryPdQ5rDYcOHeQXf+EXUVqxurrKvgMHaI00iEPBWLtJKw45MjvL6vXrTIyNUGSVXaHX68HuC5DHI6VFhyGnbr2LsdEmjXrI8899A60yip11psYSjhxss6+taSl44ZtPc+rYSWzpefqbz7K+ucWx48dZ31in3+/S724yyLeZPXkLx++4B92YQADtVouJ0TZzM5PUI02Qd/GddVxnlWzrGltrl+lsLNHZXGZ7c5l+Z5P+9hZlluFKg/QgEARSU505WJwfJoAMGTJkyJAfzE0xvvPOMhgMcB4irTH4XTEg0UoRxBFJnKCDaqIz6HUYdLpkZbVhXRQl5y9cIkrrLF65Qjc3hHHKSy+9zAc+9H60VMzMzLC0tMTnPv95ztx9PwsLSywurROEEb/2a7+GtYbHH7ufP/nTz3Fl/gLd7W2uXr5MUm8gdcQgK/G22pYH0IQUg4woTRmfPYR2HW47fpKN1y7z+nOX+ItrbyCxFN2STzz+APfedQdPPf88UVyj0RxldWUZVMD1hWvsbKxhrWdi/1GwFuEMBpBSkCQBUkcgHBLwwleNWKKaagPft2FuhQepwFGdnzsQziFlgA8tRBFgkHiUUCg5tCj8MNw4Oq8qlNVumkJVMiK1xjmLUtX0UQpBHAZYCbbMKbDkNtst9ohojU4wMjGBtZZOr0ec1jF5TlEY1tZWuf3221lfX6GWNLBGcO6tc6ysLPOhD72XL37pj7h8fZlOt4ctMu6683YefOyBagLqPctLC8T1EbqZATzWlIRK4Y2mpEQlCW9fuEz7jmNI63j668/xsZ//CHFNErRjtlbWWbw6z7e+8lX+l//mv6fXz7l0/ip5r8f5C/OcuvV2ojCg3W6iFLRaDZLwGN2tDXY2t8F0kT7AFAOSpEmoAnx/m35Z0i8zZOExvk/hPMR1vA4QOiUKE7TeLXYQEkfl1bW2xDrzo778Q4YMGTLkJuWmELj9fkZWGISo2o/COKa0Hh1W8UqREkQKBmVBv9cnz3KEcdVDzlZTnK3ODjoIMSKhcJ7FpescPj7L4uISC9eXqTcSxicnOXnqNFvbAw7MHWJsfJrWyBjPvPg6J44e4ujsIT7+wQ/w8isTbKyu0G7UGOQZb77xKl6EvPn6G9zz4MMgDQ6DcBalFE9+5Kf48u//a8babQ6klzl7rcPtBw9x+8FJpsanqbVrLKxusbUzQOuERnuU68srPPmB99PbWkNrwf5Dx6k1G1hvsLbq53UOxsfaHD95grde6dHvd3BOIbSumt1E1XB2Q2B575He44XDit3poqy20gUC7wOCWg2CoEqmMFWRxpC/OzcmtXEcE0Uxtsgw1gEevKawBiVCIi1RgSZUipWtTZwZYGyGsaaqsHUQxTFxENJo1Fm6fpnWxAyJlxRlj9Exzfzlaxw+epTJyWkQ4Muce++6la98+XPkyTSPfOx9nLztCH/4B5+icfgIq9s76J2cQ/E0p44dYmmlg41rvPXGPLfdfYpSGISXaAmjY2M8+sSTJNkapw4e5noxyp/+6y/gzCbeOa4tbHBgZIRf/flfoojq/NGffI6ajojTBjP7D3Dy+BGSKECaErzEuBwfKtLxfeTpPgK7A9aS+AIz2MGZAaoWk5QljTyj3+9T5gMyYxkMNugbgUHR0QpJQBAFyDCpSk2kwtiyysoeMmTIkCFDfgA3hcD965mWSZKiogiTZURRtWhmrCW3nsEgoyyqBZ3CFuAErixxzoMF5x0zc0coOpuUgy6DQU6/l1Gvt2m3agSRptPrUpaGmen9nD37MrfddjunTszwzNNf5f9+/Sz7Dkwx0ZqgVwwYbzeZao4SRjGt0RkuvHOJE6fuIkoESgukiAgVdA0cvuUOuosXOHPnHYhggXrc57Y7biOKmvQKz4vfepGz78wThHX25Y7Tp2/jyuXLTI0lnDh5oppWRRHe+UrgUuXWpknAvulJlq9PUVw3COFxxoJwVdXp3xC4znmsdyjp8NK8mzUqQWmF9hHeepSXlMLghnWnPxTGmL00gMqaYDDWIpSmyAtUoNFyNwVASPI8xxY5ZZFhTImUISqISWtNalHA+NgIpfFMTc5hix6rC1fodHqEUcDs7D42NtZY31xjZmqaqYlRvvCFz3F56Qr/7P/8Xb539jk6/U3OvfIaH/6Jn2NqapRnv/oFzr59lu7mfsYmppCF58qVeY6fPoEOPKG0SClQUnLbXffwrU9/iiefeIJ/9cdfYXN1mVZYMNlo8ORH38/sxATp2AS//du/TbMxigqrXN/NnQ6mKFjv7jA6PslsewStNQLB1Ow+JmcPsrp0BVNmlIUjSJo4EyNkCtYSxTlBvI3LBvSzPro0RMaRGUvX5Bhb0M8txjmEDBFBiHMOW+Q/6ss/ZMiQIUNuUm4KgXsj+kdrTZqmlEIglERIiTGGME7wzlZiAgcCFOCcQeDRStAam6A+MgEuZ2t0jDgWPPLogzzz9F8xMzPJ8vIKzZGEsdFJXDMgjCNuOXkcUy7x6T/5KgdOnOSWR+/FUrC804fOOiuby0y36pw+djuZzZhfWGN9ZZXmaJsoVoRK4DJLGCecPnM/bwrF1soS15eeZ7Td4o++9CxPPPkRXjk3T/vAaebKkNl9h2g2m9QTSbsWM3dgil6WU6uPUEvrCClwWHCgtEfpgFoa0R4dpbu9RZ5lu84EicBXIpddcYtACId0Au+rEoIbWGur491dO4MVAqE1Sg4F7g+DUpJQa7QUlLmhNBbnLFJIjPVESUwQKGpJTFHkDLodsryPKUq8hyCI0GFMEIQ02qMoVaefd+gXGRGe3JaMjI3RHmmxublOGMasLq2wMH+FyWabY4cOsJFt0u28w4G5lPn5BY7edQ9XdpaxLUEyWUeWB/jc577Ob/z6P6S/vAxUQtN7T5RCURpcIIhrdUqvQGjaouTMQ/dwYq5JK67TmhhnUJT88We/SpYZdrorTE6MsX92P1OTE1xfuIqWCqdiJvMCvCOQilYj5tgth8mLLr3tTXJXUjiNC2KMrE4cMBkqSgmSjKToo/KMPM+JTUmQ9SiLgjzz5CavKr2tQ+CRuxFiQ4YMGTJkyN/kphC4QgiiKCKO4+qY3XliHSNgrx1KA9JZrDUIQEuBceALRylhUJrq2NYajDHkmeHcG+9QlgYhBnzwg+/n3Lm3uOuOu9nY3GJ9bZ16qvnsV57nQ7/8j3CBYXvnGp//08/wX/zGb9IYbXH+lW/Tvb7MF7/2dT72kSdoxdu8+OKzPPH+j+GdBg1x1CR3DoTkljvvI89y5jdKXj17nrGJwxy+80G2TI0o1Nx6++308srH26yljDYS+v0+aWOcpN6m3hyF3c+sBAgv8cKjJOzbP0NnZ5vu5iZFkeGMRUiP8J4bl9E5t9cK5xx7QfjOOZx3lCanKEtslY62V4E85O+OwKB0iDEl1hqkVIRhQBDF9LOCUAdorfDekQ0G9Pt9bGnQWiO9RukAFSgKV1JvNNChJxURI+OjrK9cJ7cloYgovWCn2yfvd9ne3CLVgqy7zgff/3HWdjo0laFrS4hC7v3gY+Smx0Bscfs9B/n20gan7n6Il155mwfvO81Kf51IBzign+U0kkYVwVd6PvJz/zHf/Iuv0rWKzR3LuctrvP99t3F1pctb85e5utFj9uAJ8qJg0N9hemYaaXNCLYnqbWojE4xNTIApcdKADKglcVXwYC0eTYkAAUILlPCIKMLaOtrtfodZQZD30TYjKPuUZY7PuvQ7G0Q7O5giJytK9LCkZMiQIUOG/C3cFE8I76u8UK0VDk/pfLWYg8B4i/AOYyqPbrVj5cgH1aa5dSUqadIaGUcKxXa3jw5jhE5YW+1irSSK67z9zgXqzTrGOzrdLUIlePHF7xGnmoceu4cXXnuGo1Nz3PHwo7yxcJFbx49QRD323XKUjaUB33z6RR5/7AzL2QZKWoQIcBbyPKe0hrReR+gYIRQf+/hP89Cjm3S3OsxOjTP38Z8gz6v2KqED+nlOt9sl6/WIkj71epsoToniCOEdOA+7ofYCh5AQKoVUisJYnPMorXBYFJpKroo9QVvZEiSwu3iGpXA5hS3wvpqUe+eGbVD/H1CWJVqbPXtCFCUkSURZGpTcTVfYTVKAqmMjCGO8M2il0UFAtfYl6BcFQRRQbzfZ6e0QhDEj45NI4J0LF9lcWybvbDEz3mBueopHHz5FvR6wb3ySV7/9OnP3n2B2rEEhPGWpODCaYDcyrl26TjuaZGl1h34XdFhl8IahRnhJWZRYIIwjrA+588HHGIiEV148x4X1S5wYhJxf6pOrJtNHTjA6Nk2eZUg/Qt7v0m5opvcdw4qIkclJ6rW0qpD21bKoc5ZGo0Fn7Tre+3e/F+9wHsRuw1khFE44dFQJf+9TbJmirUFEEV5pdJCQ9XuInS529zsdMmTIkCFD/iY3hcDVWmNMQRBorIeyyPCBJwgi3K64VQi01ijvsGVJ5g25LfA4PI4oTfFSEsQ1VFKnHUYUW1vU6zWsN+zs9AiCkK2tDXqdLmW3x8zEGKv9NcqdeU7fsp9L13a47YH7eOorn+PwbZOcvu0wm5c6JM0R3n7jHEcOH2Zk3wybvT7TtQahVpiypJakRGE1xTO2pJ4oxo8fRuJwogCqCtdGowFSoqOIIAjZRDAQglotQWpd+WZ3PbNV7avAO4OxAiUFQRhQOocSu1mgUiHRlY4QvsoJ9VXMmhCCwhiMBOur1AWtgt2pma6ErXOVn3fI35nSWKLdKllrq+scBCFZlqGVQmpZvVB4EKr6tXUeLzxJGgFV3qsNItoTk0zOzFJP08oGsLnN1GTI6uoSCM3xo8ew2RZHD+6n3axROElRWj7+sY/wP/7WP8f5jIceewCnBRvbYFe7PPPF59m8usUGHSanZri8vMK+/Qep9KcnCkOcqXy4gdYEWiDECO957HG++fTLTM8e5d77HiIMzzEY7HDq1ltZ29zi9ddf44lHHqIRCQJtsQ5kWCOt1fBCVrYj53ASkiRiYnKc9eUFynIDnAApqxOK3aTCyj9eCVajIpwIQFTpEtYW+CDCiwQhYyIZUTpNUfp/z5UZMmTIkCH/f+amELhCSZSl8p/mBWWRI6RCiBKtNOBRUhBpTeYM2WCAFwbrDF4opHV01jfAGCan9qFUiB10WSpydra2OHPP3SwtXafIM+YvXMGXGVfOX+DnP/lxkkaTV559jslbDuKcZTQJ+aVf/AmOzoywMr/Aq0+/yvX5baK0ydn5Ze40Awa9Hr3BAJKYOAqJoggA7x31JCBzsNNdx+NpNxtIKQmCoPqsQpCGGiES8jyjkcTVcbUEcN+3cAdUfk4UaRxyaP8BlhaW2FxeIlCaQCmCIMah0GFQ5ZoKAVLs1R1rpVBxgg8jHDWsA4EH7/HWUpbZf9iL/fcOgTFVXJ2UkiiqKmsdHk9lN8nzHGOrF5BWawRvSpyzaCXpD3LSNCZujVOrN2mMTtFONEeOSpZXluh1tigtdDodYg2P3PcAi9fmmb/8BmfuPMWVK/M88YGD/Hf/9a/z2T//Gv/Df/XPEYnC2YIYTZ55Hn/gAc7ccSvPnX2by5cXcLmh0+2SxglKCFqNBt57jDNo6XG+JJQl/+v/9E9JY4kIBO9//yN47+kPBlxfXeOhhx6is7WFMAOyfo+knhKldcbHpwnDEOMMkiqpLo0jpqcm2FyfJesPqqmutQgqQeu8wFq794LmhMcrgfcSLzRSCkqvIQ0QIsaQYk1IWQzv3SFDhgwZ8oO5KQQugFAKY96NXNKBwnmPQyKQsLvpnecZzlVHwlKFIAOarXFqaUoUpggVo7Qmx6PjGJSm3mzROX+efm+HteUVxhsxx45MEAUDHnvwAf7lv/033O8CHvkH96GUIs8zNq5ucu7Ft7j85mWO7pvlkUcf5fW3LvD0C69T2/8c/+Cnfw6tA0AwyDK8d9UkWmvyol9ZAJTatQq8u0gH1cQ6UopGkuxWB9+Y8pV7aQhwI13CI3elgA4ljUbCm68ukWCJkxitI2QQIXVAoFKCQGGpMkK9F0gpiKMY6wyl89WE3FjwBdZ6vBgumf0weOewxuEd6KDyNN+41t773Rc0iZQQaEUaJ+AM1lgG/S7OlpUfWnqaaUKoFIGWtNtNTp48ydNPfZ2tjTVqaUoSpywtrxLEMV5ori+usny9S/Kdl5icjHnwwfv58EefhLJPZ7vDTqeHxbM/1UjhWV9eYX4jIxMt6vU6gdJY5xjkGaGu6nKFN3jpCZOI0uagE9SuXUZKSbvVIqrVGWQZYRRT9HZIkpSk3iJOqkKWvVILIcFLhFAI74nTdLe62LzbQrYbea2U2stzFsIhhMVaj7WeG//nSCROawhDfBohguG9O2TIkCFDfjA3hcCVUuLQYKslKZwDH1CYkkCGVfkBVdWpLQr6vQxrLEJogiAEqs4DHWqiWBMkEaFPsWue5vgYr7/1NosrK+xsrDNWDzl96gi27BPMtez0AAAgAElEQVTGKUEo+OVP/ix/9Ok/4+Xnn+HA4aP4QHPu7GtkawNmpqf46HvvQTKgt7WBre2nU4RIqciynHo9xQuHGdjdh7UniWJ2uj2yIqtiz2T14K4izxx5mZGmKa1WC6jEbyVmZTXZ03p30UyC9zjpKVyBDhRBIEikY33xMmBRYYoKYoIgIEmaldUhEOTGIlVAHEcQpEi568n1DmktpfXVd+iGIuGHQWNx1uARJEkC7C5GWo/UkkCHhFFcpVpoiXEWZ6pmLo+AIEJpDc6zsrxCv98ljepEgWJycpJarU5W5IShpiwLOt0O42MtdBDw1tvn8T7hC1/6ImFYCevRkTYfePwJ5vbP4Fki0IJaWuP8pSuItE2+2ePI7fejlMY6S6AVToCxFl+WVXWz0BRFzo2I5Bse+co2o4hEVcBirGc1zxhpNhFoojhAScBZhFJAlXaAdMRxTLNZJ04STFlgKCr/radaDr1RVGJtlQtsQUmJk+WebUdKiVAKH2h0rYErih/JNR8yZMiQITc/N4XANcYQBAFFkWOMwXrIBxnOOWq1BkEYIwX0uj3yIsM7V00uUQRaYVxJr5+xtrHB3YfnaLYaLC0v0et0CIVnMBgQx3Ue+tC9bKxcY1A6jh4+xguvvkE9neCOO0/zG7/+n7C6nFG4nJGa5r65ozRbTbTWtLTijQtXUGmTIGxRipBQhNjAsL69SRSGqNKxvLLA1P79ZJ0CrQIunL/EqVsTkjggiEKyPK+EaBSR5/nuApLYm45Z68AbvHV7uaoACINzHmMs9bSG8o73PXAfaTPh81/4Mp28xAswJkdIiVYSaz1hUkNHIXE6gsRV/yxKkTrBV/6FPevEkL8bQZRSlgVBEH/fkp9WEq1DlNI45/eycst+v7IDeE+/PyCp1UlqdaJag0GWU2R94nAMgWG01eTOO+9g8fI7jLebCJOzsb5CmjSZmJyl18nIsz5j4xMICXleoMMaL752iRdfO481JSvL1xmd3E99dJqPfvwTRE8/z0995IPVApgQdLM+NZHgvKhKQrxHBQH4olrqFJVF6Ma9aIxBKYkDAglj7XZlg1ES7w2VzeavZzNX1cLeVQt5ZjfnWSiJ9iEeC3i8q6bESiqwFqha4G7YFgAsDokmjBLwgtDfFH99DRkyZMiQm5Cb4glRHWl6rKkWyryQCOGRspoC6WosRF5kmNJWtZ3eEQUhQimckGRlycAYxsYnCIIEHaQsLixibY6lIC8NF+cv88Ddd3H+rVf50lef4uSJORaubRAm8ySJY2RshvOvv8mZO8/QHp/iwoXzKCVZ3ejRnDzIwWNt8vlVfuYnn6SkoBwUSC/BKaQOiOKEXq/L229foNfvc2l+npF6g0NHDqFSRRzHWGvZ3t4mz3OSJCHYbRWTskpBEIRIsfvrG3YF5wiERMUxh+YOszZ3hPX5s1wyGeONlOP33kJe5rz68suUWZ+ibyjznGx7C4fAhFfBQhgGKJ0SJQ1UEKLjBD0UuD8UUgWE+GppalfgVnW9Fh14TNEHIZFK44kqcWverZiVUlTLaWFIvTWCDkOsNUSBxErHyMgIjVYThCcIA0ZGx1laXaZWT5k9PMeVixcoioLLl6+ilKLZyrm+skNcq6HDlFvPvJckSXnsyQ/ii5xfv/MuGo0GWZYR6wDpJN5Krl1foFWrSlaCMMR66Pb71GoNjCn2BHpRGmzuCMOQJIqwZbm31CiE3D0peLc+2nuL242yU0BRligcQlajW0mA5MbemXw3LUVIpKxeDG68CHovdpMTBAKBEzfFX19DhgwZMuQm5KZ4QgRKVFFK3iOEIolDHILS+ioAS4DwAqUCVFAd5+Ihiqp4IR8GhI0GYZwQN0ZoxAlxmnD5ykWKQY8iH6CkRErNwtIiOk7ZPzvH5maP6yubLK1fo9Fo0Ou/QJwkvHz2Is1mg1a7xZVrC9x2+xmO3fUAD565i+XVNRrNlDiOyR1sbe1gSkEmAxY3dgi0Y/7iJZavXSFQcOniG8wdmaEoArz39Ho9BoMBzWZz74EeRYp+v783yVZCft800HtPEiYU3tIrMlScIpImTaFJo5TN1VXyouCe2+/A5TnnL7zNzto6SZjQKQfsFBl5aRj0HdZvgg6RSuGVQIX1H+3F/3FHSaS44bOtpu75oI8zhiLvM8g8URST1Bqw6yatTiuqCWmZ52xtbaBrLfpZjrGV0PPWIZyj1Woxs28/q9evkrbrzB0+wMb6GoNej2a9xqXzb3PL6dN4qXAWpqf38db5d2iPHGD/4RNMzs7Rbrc4euggUNlhtNZEUUB3YwfnBXnuaY9Ns7W+yM7iMkIItnd2aI+N0ut2OXHyKDoMqmQIrak3GntLYTfEbZWCUE15tdZ7L2jOOZRQSClo1psYJ7HFgDAM0TKovEUIhPJ7k9obJxo3psA3fr6xBaWpcq6d3w1zHjJkyJAhQ34AN4XAdd5R5gXeW8IwJE1TBlmO9xbvPEJ4UBIdBiS+jvQOKSCOI/K8JAgUaRJRDHpoHZImmjBMePjhh/naV77M8tIKcRpTFAUrK+scPrSfZqPFS997kSSJqDVS1tfXieOE9bUtBoVHxjUCEibmTnPfez/EwYMHCOOEAwcOEIaVR1aEkiAJyHLLd777CmkIW8tXee3przA3O0YSxgTSURTVczwv+0AlYNbW14njmDgKsHa33GG3eEFrTZkXe79nvadwBpMZtna69IOEC8sdtjaukcYBI+NjjLTGGJSOSGrmpqZIDx/l8tWLtBD0ByF55hkoSVF6cmMwzpLlJUX3+o/46v9445FoFQICLyRFUVA6i1YKgSfUmlqthgqCKuPZewJuHPVXx/KB0tTrDcYnxymdo9fPaMQBUkASxxw+fIRWLeF73/0rkjhgYmyMfhTS297i3nvuZafXZXbfDN1OD/AcPXKcIK0BnjNnzjA7uw+Pw+79Nw2lKYmbNba2Brx9fh6tFJcuvM7lN1+n6PZwrqAx2uJjn/jZqnzBVXYWIQRra2u7iRHR3meohKjaTQSpaomddVXwrwTrLEJ7+t01umsr1OOYRqOJDmJQITJQiN0p8Q1xW5gSI6HEMCgHZGUfZ6r5rZSS4X7kkCFDhgz527gpBK61ltIUWOOQUlfpBH4AEryoMkZvxCzVajXiOMQWJd4ZyrKLimKEc/R2tllfW6UW7SONNftnpnnPe97D5toSNusxWq+xunyd1ZU1RsdGOXriBFnWZf7CBay1FNYiVMDkRBOrFLfeehoVpRy75SRj7dZurW3lR7TO4HEktZTMDPj2U19msHmdW/aNcnIiIqDLxbcv88gHf5FB7jB+B6UFxli6vWxPJJdWolyVHFGWJUVRkGUZSkjUbpKEUrrKUpABjbTOS2+9yV89/yJPPPoQX/vGl7nt1uMcjEaYmtiHtTkiaLC4tM4t9zzGlcvnUHlBXBQkRUZ/YHEuxxhLoXOcHubg/jB4bxAq2CsgueFVtdaCLfcWJwszwHmH84IwDJFSEMUxg9KjwgStgyrizVuQN040QAnJzL79XLtyCZB855lnadTr7J+aZGtrEyEFYaiZGRthO1Rs7fQxVnB49iQT0weqkwIPZZ7tRsk5ytJgrcFZh5OeF777bbpbK3TXlik3lzl+ZB8Wx5FThxgZayKk3Ls3e70eQRCQpuneFLdKAHEYYzFFlQRSUlmPgjAELfG2EvXNNGAn67CwNM/o+CRx2iBKm4RJA6kDlBQoAQNTYvF7BRlSSgIdgfYILxH+XV/wkCFDhgwZ8je5KQRuWRZ7x5NS7npypcAbhylKpAwQojoOjZMELRXCecqiSgoQUuGdod/vs7J4nX1TEwQypLCG9kiLI8dOcuX8G0gtmJmZJisygihgev8Meb/H5vo6Bw7OceniFaYm99Nqt8nykgvvvMWJ03eipUIKgTVF9efynizLsNays93hdz71aWKfs3+mTcqAQEGvU3D3vY+w0e3RwFJmGf1+gdYBZVkiJYRhgrWGIAwwxlAURVVmoapqV2NLlHw3P1dHGu8EaatNOjHJp//8i7z3sfv57tlXqI3PMTIdIYKUjD7BvhYLXUP70H1sLq8Q0ycf5ASDTcqyoCgy0qyHDYfnvD8MVQqAQAqxJ8bwlcD13uIFDAZ9gjBBSE0UBHhVNc+ZoqQ0jtA7tnc6ZL0+YRARhwla3/DqeoIgZGb/LFmvw+W8T6fTYTXaJgpjup0t8lywsdKj2aizf3qK2UNHOXTLGQoHg0F1P9bjEOcqj7uUEikkO90O/+Z3/oxzrzzLhx67l0HhiNMUxTY7uUf6kDhuUxYS6wcURUEYVj+nLEvAEcch3W5nz0agZTXFLXe9ud65yq5ROoo85+5bb+WVp75Mnu+QDbaIayOktSb1Zos0GSOIgyrJwVuEkIRaEaiYSAdk5W7ywu6LhB4K3CFDhgwZ8rdwUwhc56qHmfdu19cnCZTGGIfWIUmSgheoQKOkoN/rE0iB87tToSAkTWvErTZb3T5laSjKAimhXW9w//330d1eobe5wbEjB+l0txltNdECVhavc+cddzDIM44e2EcUhSyurlBaSdIc59DBOZxzbG9vUU9jhJfVcSuSQCtGRkb4z/7RL7Ny9QpPP/WXPPOtb3Dr6dPIRHH+5Zf5+K33c+3yJWQQEIYh1vYQwpOmoxhbIITHWIkUVVNbGIYURbHnb6y+H4c1JWXZp9tZpywLUFAbi/nClz7L6Pg4p06dYrtTkOsQ5wOcqrbkt7sG3R4hDSdxnR1E3iI0nsCW2ME2RXfnR3z1f7xRqjpaZ9cSKlV1AuGkQPgAZ0uyfhcZpqRpjUAHmCLHymq9ql6LGOQ5qt+jl2W40lIWBVbfWDp01GoJcwcPU5SWtaUF6q0W2zubZEVGq9VmemKCQb9LLYnxVbkzm5ubNEfH96atYRSxs70NgBAOa6sFtn/yj3+Fr32+zmd+/3cwnU3e9/C9uB3L8bvu5+Cpu+gMcoJyUKVBeNje2UYpiOOYNInIModzbq/spMzfXUi7YbFRzhEKGG21eeHFFzg2NUE3izh49ATPfud5ttcX8Qga7TGSWg0ZRIRxjSCp0W6OILXCKYXQVVSZMxbnqtbAIUOGDBky5AdxUwhcU+QIWfn5oija2zLfO4J0lViTVPWywlnsbvuR956iyOh0Osi4ycbWDp1Bxmi7Ds4igXZ7hOPHT7G6eI0XX3mZ8WYN8pwwUGytrbO90yGKQ95+4zWazTqHj5xg7vARZo/dzmanT1mWxI0aOggxpaHIyyryqSzRWhNEIWNzh/nJX/wV7nnwMVYWFvidT/02/Tzj4aVVRiaqkPvNzXVkoJnbP1t9RiEJgt0Q/d2g+xuLPNba3WmbqpbrlMIYSxjX2VjZ5vHH38e/+9S/RMYhBw8f4fw7F7j9zvtY39ysUhg8YD14S1FKSufwKsaFEqkEzlpQCUo3f2TX/e8Dzjpc4JFC4ozBy2rpSiqFNxYhBcVggBgMEDpCppo4re1mH1u0DgiSiLGJMZqt1u4amsT7yreK9GAhSRIOHjzIxvJxdtaXsVS/J7xgo5ezf2aOKNB4a5FBRBAohFQESrC9vUMWRURhldCxvb1NHMfVPajgnvd9gLje5s/+4Pcw9f088+xTvLK0zT+5/71sdbaJAoXzCq0q0R3HUVVogd8Tt3meo5QiqaWUebG3KJZlGRII4hrrnR2U9Yy2Rgi0ZW1xgUfvv4e1zU3OvXmOnZXL7AiBCiLCpEW9PYLL+oRJo7It6ar0xTmH9R7nhlW9Q4YMGTLkB3NTCFzh3V6I/A2krI4nFaLyCzqHtQV6t9jhxoa1UooiG5CVhqjRpigLOv0BvUFOLVBordDWcejwYbrdLaIwZWVxkfNvvEGz2cQLSZyEGOu4864zSAHNZoNef8D2+gpBfZRACQKtMbZqAovjeG8RJsuyypuY9RGmZHJmEhEk/Kf/+X/JM0/9JYuLixSmpN5qEiYJo+02UVR9BimqI27vHH53Ymt2t8RvfAfegzGWQAviNGWwuM7oSJOzZ19lZt8MvXrCxMx+RsYn2NjcYmJinLXlpUqASIWWBi0CrACDwLoc7zzWghcBLqz9h7/gf5/wIJwAJancCpXlQwqJEw5r/W6bnUMFISqI0WEAqo8rbJVtXI+RzpIXGXnWQ4pR/G4Bx40UgTAMqdVqnLrjDOsLV9jY3MQUFiUlaVpHRoo0DBn0+qACMuNxvR77Z2cZHR2tJp/OYYp8zwYzGAyqnx2HnDh9K//tP/uf+d1/+yk6ueChMw8y2OkRJhZTaIxzKCEIw4Ao0gRBda8GUUiWZYRhSFmWdDodQh2gtKpeQIVE6YBBP6OXlVxcXELlJU5IkjBga32dMhvwwF138Obrb9Dtd+lsbdDf6dDZWWdzc4V60iJKkv+HvTf5kSxLr/x+3x3eYJObjzFk5JzFzKosFouDIDbFbqjJVqtbUje40aYBQRsttdFGgP4Q7aSNoI0EERAaTU0g1AQodrOKXXNWVmVmZVRmzOGz2/iGO2hxn1l4sJISwJIyoxLvAA4LNx/smd/34p37fec7h2I8xeRjlLa03ea1R48ePXr0+Cy8EATX5kOCT/6Xm6psCGFrpVTXS5Q2DEYTRCJiLdJ5jW4IgDWWzGSMBgWL5YLGHzDO09szWhiMdnjnna+Ta8N7P/w+48lu0kZaTVVX7B7dIMbI/sERWW5ZLFdcLVfcOXqZR48e8dZgwHAy2fp0Xl2c8/TpU6qqSgSiajGZ5vj0Mg3lhJZ3f+PXmUwnlIMUpTua7jDd2SF4h9Yg6G3C2aZavSHOmw+tDSIaYuDi/IyPPvwpdbXg6cP7PLz3gK+9+1X+/j/493lw/ymZgauLEyaTCev1GmM0QSkUoEJEoyjLIU3b0Nr099Wi/x9Wpsf/G3QxSD52dDGzAJ091tYuy6QKfJ4ZsiJPulSf0usc0ulzFZeXVyxWK9Z1g1EZ2iSt7sapIMsydnf3GWYDDo9WzGaXBDxaIM9LVqsVw52coijY3d3l8ZNjrq6utvHB8/mctq6YzWYURUGeJ1/epl0RTcbFouYP/9E/Zbp7AKL4+GcfsX90mOKcteL2zZsMh2UKbwgOaw1Nlya2SePLsgwkEGIkQlfpFSDn4vIJP7r7Cb/9lVf5l//7t3jtzhG3bt1iundEqNZ88+2vcn7+mKf3H9NG4WI95+zylFMRlLYMxocMd/YpyhHZZIcyL76wde/Ro0ePHi82XgiCq7RNHEGemcR730LwBN8SomCznDzPUxXKe1RHCPM8B20IIqzXKy7Oz7nTtIhotLEIiZBarRmNx9x+9XWenl1wcu8DMgqc9+wf3QJtOTi4iSlyhoOCYqLJipKLizO+8vbXtu4GdV0zn88pMsvu7m6yhWpbHj96BETysmQxm3N1ecZoNKAYDMhzQ14WDAdDlKS26oaYb8Mc6CJeQ8BaS/QkbWeIiIk0redyPsNHz/nZGW+98RXqxYobhzf52fs/4ZVX3+Dp2RlFZpjNLzE6w/smpUppjxJFlEjUCokG1VlGIX2b95eBsQaJIPFZ6pbzAaNk265XbUNAsDp9b1U3tE2DaxvyocW1NbOZ52h6mJLNBkMyK4gK243OZuOnRGEzizZDbJ58lKN3tG26Hm7fvs3Dhw9o2xpgu9k5PDykbVtGwwGj0Wjrx3x2ckrVVhR5SQiK2eKKoxtH+OjZ290hhMBgVDKeTBhPxkC6TL33KAHb6WI3m03vPZGANRqlTNd9MCij0cbgjOa//e/+B/7g7/0eP3zvW+jxFMpdjnYn+NUlo9Ee9UHLanWOyjTFquB0WVE1FVcnD1nML7DFgHJnn+Fo/IWte48ePXr0eLHxQhDcqDQpACmCSq1N190wjVY0LkKMBNewqhqiQGZytImEyuHbhlY0y8WMp09PuHN6RrWqqApNbtMNWetIllkODg549+tf53h/wuL8jOVqRZEPybOc3f0DTGa21TVrLYeHh2k4R4S2bbl161aqWomwrhecn5+jELQxtE2TTPgXM3anA8oitaOjKMRkGGu2lT14FtF7HVo0vt0Y3XfVbJe8gEMIjCc73H7pJX72wU/5j/7JH/HJzz9muVzwsw9/yuHN21TVOvmVGumqzRqRSBscEVDxmdfoprLX42+PoihpqgoiRBGiT2EdRqXqa4Bk8xbBuwbnHHVT0YYU55t1VVDREbees1gsWDcNA1uQxtYigqTghwhaKSTLCA5injZ9TV1hjGd/f5fT01OKIme5XPD2O+/wwQcfpAHEqysm4ylPnj7m4uKUtmkxWqO0JosZ1XrFer2mXi+Y7O5QDodYAzbP0bllMpmQzE0ElUzrkC5pQWvdOYOkgJLgIw6HtTkiQlVVzBZLPv74Y35+71MW9Yr/6X/+Y/7u3/s9juctBy+PCOWIKBlrSu585RaPH/8UNT9GiSOzOcsYmC0bVk3Fqpkzn59TlD3B7dGjR48en40Xg+CGgBiNQgjO4wWIgieyWlXE2A1caQ3akhcjrFbUdY2PQpYneYILjuFkTBMCi9WaG7tjiClIYkPqsizj1q1b7O3t0a6WrJY11WqJGLBaEUJkva64c+cO9+59wtnZCT7CcLTDgwcPWC4WvPnWW9z9+BPW1ZLDw0MWsznOOar1GkFxeHCAeIfOCopRkjUUZYHWektoExlI1dONvVKMkRAjIhCCS18XUFqQGLnz8m2G012GozE3b9/hp++/z+7uHuvFDJUHTp485ODoJsv1KlXUAFGe2EZCN5zz1wl1Its9/rYYDIZE72nbSAgNSCTLC4iB1gWU0viYUsnadYM2bYpl1pHMZDR1BaLJtEWC5/7Dh9y5dZPpQKNCOjdcm9wCNlIFrTVaUsSzVoK1Q5bzBYvFjMEgxUEPhyUP7t/nm994hx/+6IfcuHGbtq3J84zxeMzl5SXr9ZpI5OT4BN82jMscWxim+zu0UTMaFOgs68iughgSyVVmS2Y30hprk9XdsxQyoWkc1lhAs3aax4/O+IO/+/v8bxePuZQVP/jh9/nP/4v/kidPzrmoFUoG+LLE+wZ19C7Tg7cZzI+pl8eUs4ZBsaCua9Z1w3JVU83PvsCV79GjR48eLzJeCHajlRBIJE+IIJsqoyb4zk9TIqvVgmK0m0ifsYyznJXWxOjRnQZXuzUXlxecn5/w6s391OLFo/UzLaO1yVtWIRibUQ6zVCH2LU3dMB4fcnFxxmAwQATGg5LL2RXvvvtr3L17n0/ufow2yQ5quVySlwUiwmAwIDgPMeK7CfONTZMxz2y/NrIEEZWqv/JsoAhS9RiJKJ0iTrVOf49cWYrMktkcbdJ7eXL3A4L3eO/QwXB2esxwNKKt16huoh+lQQIxyrZiu9H+Cr1E4ZeB1knK0riW0K1lluW0bUtwDVZrfEjEr6oqlM2JnRtB6x3BRbRNg4XHJ2fI8JjWewKCxLRW16Usm397D6PRiPnsaisPAIVzKXAhWXQZ3vvR+xwdHuKc4+7du4gIb7/9NqvVikFRUtc1d+7cSZs8HEZFMAVlVoARTJahlNpqgGP022PaSGuA7WDkdshO6WSbFj1BFGdnZ8TQ8Jd/+X/xd37/9/jnf/w/8u67v85Pf/IhX333Nzi/uCISk77XaBRTsgiIwdodSnOCWmWY1YLcrhnSMq9fiP++evTo0aPHC4gX4g5hlaIhJFuB7p6prcX4ZJRPBJHIarXEYwhisHmJznJ029JUa3xTMy6GEDzr1YqL+YLFumJcZuR5RiSiVDKojzFCTNVLRUApIYZUhTvamXJ5eYkxmiwz7O7u8uTJMQd7U7733e/y8iuv8/jxI4ajMU3TMBqNUvWqSS1aMoPq5ru11miT/r0Js9hUvhSgu4yF63rcjQ5XVAQ6f1xRaGVAC1oM+9MM/eabCEJ7dc7uZMLDe3cRiShpqeqYdLZGo5VBd2RjQ0o2JFcjxF6D+0tB6QxrAqAJITIYFOQ2VeNdcGmIq25wbQApqOsGXViMyXBtjSYS2pY6rJKTwuyC09MLbh/sUFrVbXYUSsUtkQ0hEEWxXq9TlLP3oDSiI4f7O9so3dFoxOnpKetVlci3UmR5xuXlBUVRUK3XFEVBWZa0OyN866mveTBnuSXP04Dc5tzR2m5J7nWEEDDKJMKuNVppIpHWBx4+esRyNefJ4/u4uuZ//Rf/gj/4B/+QPBtx4/YdZvMl1hqib/FoQltR+YrKaCbjKS0p8dfaIZLNcatLbPCIrD739e7Ro0ePHr8aeCGcdrTSSAQXA6IVrqkJobMBs7a7uSY7MddWGAVaZ9h8gLadwbxPN9NqvWZ5+pizy0vEZuisRCl7jVgKhIjuJAs2y1NFVxTj8Q4XV5dbKcPt23c4P79kNBrRNC3DwYTz0zNee+01MmsoywKlwLmW1rdESQTWZCbJChRoLRijyPOUAEXwXWUubitywDUCoQFBQkTcGnyD0AVgiGBUpMwUu5OCV+/c4ujOK1RNzUt3Xk6vYwzRh66C6AkxIMTuvQeMqESYSWS6bdwXt/BfAsQY0SajLAaIMrjwbJPinKOqUywy0dE0lyzn5wgZ1pQ0TcN6ccX84pTQVuzv7oCv+fFP36dqPb7biMjm3O2IZ241Ev12XbVOgSMAV1dXhBAoioLVasUbb7yBUpZbt26xszOhaRoeP3lIWRYgEAhEieRFQVGW7O3vcXC4z3R3B61TKtn10JFn52jS4+quC6HoiDbJ39e7GoisqooHjx7xwx/9gJ3xiOXlFTeOblPXnjfeeofReEpmhJ1JmZIKrSHPhwzyIVaVzGrPUjLqfIQf3UJ2X8EevonsvYGavPRFLHmPHj169PgVwAtBcEPriD6kEIdrhE8ZC1FQJpG+rCjIzEaSYGg7zV/dVHjX4n1LU1VU6xXLywtOzs9pWkcIsbMxkm260oYYKJ2snKbTKXVdY22WJt5txunp6fZrg8GA6XTKwcFRuhEXRRqAqytWq9U2yWnbotXJ+0LnozgAACAASURBVHQDazK0qO3XN/isz7UITV3RNg2EFNcqAoKgCSg8ZW7Y251ydOOI/cNbnF/Nuon6gCCozqIKIsF7XOsJXeFto0fe/LvHL4GoENFktsDaPMlAfHIZ8CHgu42aaEXwjnW1pm3qTkYQcW0DpFjeqnLULtA2LSEInq7iHiV9INsY3OvdAO895+fnlGWJUoo333yTtm1p25a7d+9SFAWPHz2mqlYMBwXTyc52E7chzimcQtJ5Jiky2xi1fZ3t9whbWY1w3QUkbdqUUiCpA+FdBUSG4wmj0YQnT5/ylbfeZm96wOHuEVaExXyG8w3z+XyrB0/DpYY8yzBiyHUGUWhbT+WF1ozQ05vI4etf4ML36NGjR48XGS8Eu0mtV0WIBu+7lnlItkvOObQxDAYDcpvsxIJzKFK2fdU0BB/JbYaSyGo5xztHPT/nwaPHrJqaNqYhnetDVptH7z3aZKxWq+5mn6pWw/Fk+33n5+esViuOjo6IAeZXM5xryDKb3BZMuvlvfU+736O1xrUeiWlAZyMP2Fg+bY7pmWxAEVyLa9cEv2JDkGNMTqLpmFP1FR/JtGa6s8Nwb4/BaEjs2tdKILMZ1ib9ZOsDrWu2lcXrWs4evxyUSnZYxljKckAIkcZ3FXdjt36zIUa8cwgRrRMpNSIENDovsMUQTMZgtEtmDMdn57SNT5szl8iyMYb1eo0Pz2tgR6PRlqxqY/n0008BePOtN8nLgsl0RIjJ3SHPk7PBxvUgvYcNwU2bskRwr1Vtg+9SAeNW6nJ9kwRd3LZKeve0eVRkmWU0GnD7zi3e+eo7fP0bv8Fwuk+Wl0Dg8cMHTEYFq9V6mwq4vR7wRBw6RnKtGdiMrDAoq/Ax0GAxRe+i0KNHjx49PhsvhAZXRhNMR1yjKJQRfNt0rmEaazKM1bTBUyjwdUO1WmDyIdYa6k4SsF4uKYYTYvA8evgEGf6Ul+/cJre7DGw3pKMNuvMV1Vpjjaau1hDDVs+48Q7Vxm5DGJRSfHrvHrt7uzTLCulsvkajEcYYmnZzY++iWiWmITnX0DRVsu6SuK2IhWvVai2CR6GkZbW8pK4uyYxCYqqgSfQp4IJI1Gm6XishzxQ3jg5o2pZqOef89ClatZhgQUAXGqvzjlBLV238Rf/dHn97hBBAAsoKg9GQtq2TT7MIxlhyq6ljYLVOm6k2VIQuojfYDGcNUTICEauhXl7ytF7y6ae32RuPkIFN0hIlnWtIch3RAkoblHDNeg7G4zFNWzMajLl3/z5aa1arFaPRKLl1dCSyrla0Lg2ObYiq1gbX1Pg2DUdabTq/2795M7Q5l9OplM5tqzVZd+1EpXnpMGdUDokhcnV5xet3bnH34w+xAg8++YS9wyMa1zJfXBGDJA9rLYSYLAGj1oCB7n267nXbuvlc1rhHjx49evzq4YWo4BprybIcm2fPDbTE4DE2xeiGIBhtu0lrT71c45oKJTolh3mHax3et9TVmvn8guXpYz786C4XV0vctarp9bZsCF1Vs2u3GmNYLpcAaGN46aWX8CHwymuvoo0myzLyPCfL0rHmeZ4cDrJ0Q9cqkdsNIUiODV1wBcmTdzOkE5yDrmKlCATfUK8XeOdRorEqg+iJkRTYAN3QERglWK2YjkcMBwXojKLMETE4MlzbsFp7Ghe27ei8sBhjnlWaVQTpNbi/FMQTifguxascDrE2SyEjm02E0njnu8hpT/CBzOo0kDYYUpQ5mbX4EFFZzngy5Wo+4+npKR6NMslXV6tUUbU2rWNRFNuOgFKKsiyTW0F3LFmWbYntdZkBJNcDay3WWrQSkgAioJUiBNd9hOc+gM/cHCmVhiGjW6NchcKl9DxJLh15ZpiMSl5/7VVefvlllqslubHUdQ0xsJjPads22YxFB5IevduEvvjnqsYbD+eNG0qPHj169Ojx1/FCEFxrN63corsJK6IofPCYLMXcNhsjea3xbc16taBar3C+xZgMHwWiZz2f4aoloyJHE/jogw85Pjsj8CySNojBhUQ8mtZv/WlDCAyHQ0Rk2/I9PT9HG83FxcVz5BDY3mibpsG5Fq2SftEY86ySqwVjNDGGdPMmAsnXdnPz3rRlXVvRNCu0pBhfIXmIupDswwAkhC6NLGkeyyLj1s2b/Npbb7G/M8aHFuNXlG6FaRuaKiQD/3qdiIJSGCuIGJSoPujhl4SPEKKkDYho8nJAMRim87Y7v9br1IJ3MQIa31ZITBKXPO+GHJXF+0QwBbg6O+Pk5IzlukFUSgtzbY21NlVdtaGqqufI5mbTtbe3R9M0W4JrjHmO5BpjyLKs87b1nRVduj42j5uBMaWeySE2H9fhXCB6T2hr2mqF98/swtKGUaOJDIqM6XjIwf4ew+GYwxtHQKBt1lTVDImetlnj24amabprym29dTcdDxHZEvPew7lHjx49evxNeCHuEFmWYYxJqUzWslwuoNWE4MmMgMpp6zUQca2ncQ2xqvFhRlaOKEZjXOtZVTNisyYfjFHasKoaCrPk3sNHvHTjkJ1hjpaAd3E7rAPgOleFYjiiqtZbEru3t8ejR48oigLn3DYq2FpL0zRbX93N89c1iRvCHEKqOCvdDR+FiFKR2OkZr1enLq/WrJZXFNNDlDE4FdBRYUJMGsUoiFIE5wiSKLAQOJiO+a3f+HUGueX773+Pn33/26zmJ5TjXYbDKa6YENqAx0KWtKEqt+QypKqqL2bRvyTwMRK7QIYkPcgwmYDUtM2adVVRrZaJuDmPydNmpq4blBKKosBmGSbLGJYZylVcnc7RJuND3zIcDim/8gaZUiiViGldV4lUdhsjgLZtOTk5wRiD92nT4r3n8vISEaFp1xT5cNuluF7NvT6sppRgre6qqZIs9PAImhhCcvFTSY3rY0yWXtWc4NbkXQdGEVEqndOEiJJAJDAoLYeHB5wdHvHznxx3DhQRJZGqWkNM9oCZzRBjkegJ8VmYxPUOTAwedC+x6dGjR48en40XguBam7w2ESEvBtR1wzpW3aCWQRnLer1G4iYEQYhhSV2tcDFiyyGQfl5EYWxGVBZlMsqy5MmjJzx99VXK7BCjQfBoMTgRQkzaQy0pRWxDTDfIsoz9/X3Oz88Btq3UpllhbZpaz/M8ORh0w2IbspsSnSIhQnDhObP+CNiuyhtCsvVq10tcsyHFkRgiUaV2cmzSzyptk4ZYFKICHo+WyLDM+PpX36bc2WFntMu3/89/ztXpKcPLCyaFIHYE4yPK8Q7eZ6jhDk4pYuwruL8Mgk9DgKEL9hAXyLTB4KlVStGr65qq6rxoh6bTdQfW64rxeEQuYCUS2hWKHJxL8bt7B7hqTdt6MAELLJfLbddg46PcNA07OzusVqutxjYEMCYnhDYlgym2Fdhn3xO2z22qoyHGpCnW3eCYGASVtL6dHjd2aXt4x2J5jqtW5EWq1G4cPxLBTeETyRIPFIqyyDF5QV7mBF9sZQyBZDu20fE+k0LI9li1KHTn0uDlF6vJPXr06NGjxwYvBMHVWiNKI5IIX1kMqaqaauXwLkJMwyTOuS6e1EAMBNcSVRoQI0aUMjgxeBQg+HbN4vKMML/k55/co8wyDnd3KHIL0aeKkTEUWYoZdU3VkeQ0ZT6bzTDGUNfttRsuONcgSogd4d5UYTdkFehaqsluiWtt5A2hSG4Hsq3iNusV88snKOokW3AebHo97z3SCk2MGAMSQTQs1hUxwmC0gyAUmeGdV17iYPeIvcmAb//lX/DJT9/j7PwMbedk9oKjvSkqzzHFDkU5hMHOF7PoXxKEmBwGRNI5GMgJAkpbQDpXjDatocmekwBszufLy0uKTre7s7ODtRlGw+zilMuLU46PnzIdD8mtRndXrNbJC3fTUdicU8PxkNnsCqLGWkOIkgJAYtLwbqQKm8frjh4b1xLXJt23iCIGoNv8bV5j8/2uXdGsk6TGiCXT5daBYVMdjkrQQYii0BoGZcFkMqYYlNSrlMJmjUWJThZksomU7o6Jzo4MIYZA630i4OoXLfd69OjRo0ePDV4Igqt0BrC9gdqsYDKe4p1n3TjKzHY6wsAgy/Btw3K1wAePr9eE0GKzHIkjKjyZtSiJOOcpRhmT8Q5PnzxGxYD5+rscZVPa4JHgyPOC1rluuObazds5sixL5LNpiFEhGGKELCvwIQkENhXfzWNyYmi3k+2xS0wDCM5fmzpPx6fFU60bZhfnXFxeMJ0Y2rqi0hlKNyjnUNoSg0OHDHynRQy+0yJmiAIJDiSgiRxNLb//7/w+73ztXe7du8cPvvNvWCwW7I7GfPjRj1kuVrjjM7L6gmJnCvxXX9TS/+ojNnCNZ4XgCMogUVDK4EPEu5bgW2yebaunVmvKLMeKpiiy7XDjyhqm04y6bdBKc/cnP6apKl5+9TX2d8YcHO4miy8hnbPiiSLUTUvTOi4vrvChRYlBa4VETYwWFZ/px6+T2vTY6cIlab1Dl/S32YxtLMM2xHjjw3t+dgp+yWQ0QemMoDQai48aUNeqwwqjgKiY7uxwdHjI0+kBjx98SplpJAbyLEd0qiC7EIl1g1YGYza2e2q7IYBI7evtZqFHjx49evT463ghCO52eCWqlGFvFHkWGQ0nrKo5behia5Umzy2tCLJaEX2g8RVNUzMa5eSmAFqUVilVynlcU1GtDa5a86CpERGGv/PbDHJDDA7V3bD9VhUbt44KMUYi4EKLDw6ry66ylKa3N3pG6IZyQjfEpTQ+hl8gCL51z3SEQWhdSxBwdcVidslydskgn1I3S1AZRmeYzIBriNbiY0gWYFol2zGlCBJT6pmOgENEQXTkVnPj4IDBcMT+wRHj0QCrLI/Pzvj003t859vf5uyT9zh98vALWPEvH7a+wlHw0aNiiqvVOn0Ym2NtkdYNj3dpg3I1uyDLLNPpDuPxkNnFOZm1uJCq+Ma2zC7POR+PKDJDuSywWlKsQppGRGmNa11nb7dKG0Vx+NBuJSgiquuQdFXY0FmZKcFfk6mkwch0rsIzLbkDTEconXPU1ZrZ+TnTnQKtbepodCERRPDeJa13d5wSUxJ3kWeIwKppyTKdtLwqp42OIi/JxFBVzXM2epvj2hzP9Sp0jx49evTo8Vl4MQhuSMEI0mn2QggoqxiMS5xvcL5FS+d00HnjxhjxMSDB01QrQpGRFcnCSxuDMprCajIFVEsul0uywYQyz1mtVygKdAxQNamqFSJs9IAhYKwlxtQKdq7trKAaJJrkSSubYwWiQzpt8ObGvBk4k2vPhRBwsU1aQwfBB6qmwa3W1Ms5KjqCc9RVg6iGJq8J+O3vMhty3KYIYN9KF2nskGjS30VBcmloUSgGueG1OzcRkivFK6OXeOWlm7xy53X+5Z/ucvdH3/oCVvzLg19olcvG2ipiTEZWjsiGY9Y+Itpu0/NcvSaE5L7RtnXqTuQFAOvFHFuUrFZLrGk4PX7IcjlDSUC0sDMoKMvyuePYdA/SRioNT8b4TGebdN0tRqWBSr85XBGUqO3v2Jy74a/ZgYVrjh9NXTE/f4xfX8DOS2xK2CLpugzO4X3abEmMRBFMBJRiWBbcvnmD1159jcX992mDwQRPaGFdlQzzQFmmRLgYftGObNMt0UYI3tOjR48ePXp8Fl4Igqt1auWHEIE2iUxjxNqcyXSXpqlxbUcy25q2Tp875/FBqNZrmsGgkwZ48jynyIVcHH49Q2yOVQEdVjx9fJ8ffvc7HN24wd7OhPGwYDgqcc4hMaB1avsm1R/keUlVge+quFoJbCNUAyG4TjsoWz3uNkZVd+QnRqSTKrRNzXrdYCQZ1dfrNafHD7k6fYgVx3rVEGVNiBrd2ZJtq4DGYINHKWgajTGgQ0DrgIsRHSPKWoiOVlLr15KIe+wG8ETSYNmbr95k/5/9J/z5n+5/wav/q41nBDdVb1GaGIQQPWI0g8GIerWibhxZUaK1oXZtSjWLkf39A6zNubi44PTkFGsNzrWM8QwGA5q25uryjNPTp9TVGt/W2Fdf6+yyNEgky2znrlBvbfaMMbQukd4Y2m7g69kAI6SByRSJrZ+TLKSNZEwTdEIKHPERpaB1Leenx5yfPqbMAkKS2hgrhJBCKIQk6/E+YrOsi/T1KEk2abeODvnd3/ltLs4e8uF730PPzxlO9nB+wHoVMFZTlkNEK4iSrk0RjBVi1DR1SP6GfQG3R48ePXr8DXghCG4itj4RW5L1EqjONign1wat65TkFCJV42ibmugcPsq2DetcoK5Talhd1+QmDdlMJhPK4Yi6rhEVuHf3Q9bLBe7lV1DsdhVS31WynlWxovNbYumb5GGbJs0lyRgIz7VKrz9677FpdJ3gnw2j+TYiIVksVVXFerXi+PgUadaQZayrmiga5wOiLFmePxcsEUPABUF8JIRmq+k0JiJKIc4RlUKUQiuNj0Li2F0b2rUQQIWWQVnwO3/ndz/Xtf6yQcSkib8oiOpkCjpxL98mxwJbFOhFOo+U1gQUNisYlSXj0ZS8KKjblsVyRmgb6rZhNr9iMBhQDAaIzsiynLs/+4CLy1POT97h17/xWwyHA0ajYaq8JtsDUnR0iuN1oUZdcxvQWqeBTHh+GDJspiE7xBQnvKoqjDJIEILzuAi+qZidn7BeXFDsjmhdQ9s6jHGI1ChtUUqDcxDTdaQR1s7h3JLhjsZaxeH+lN/8nd9jvlzz8+/+OXX7hOleZDicsIyKpmlAWQZlgVJC2waca7cxwG3j6GfMevTo0aPH34QXguBu0rQSsU3WXZFADOlmprUhWsiDxztFBFof0vCXMoiS55wMUjlY8JLst5ZLlVKfXIvWgeXVRfo+iQiONgZKaxiUxbbC5WgYlGU3yCJoZXDe4TwQ2+2wjtYKo57Py0jJZCTC0d2FN16ernW0VYvRQtM4Ls/PCes5rm2o1hVZXbNcrcnynPlyye7eIWVZMp1Ou1hVkwhEh01bOb1/t7Ugk+DxGqKo56p2EIiiaIMnxgXjyeD/x4X98kPEdufSM51oev5Zm1+pzuquqjBdUllAyMuCqIWqrTBGMxqPMVyz7AqBIssYTff52te+xvvvv0+MkSePHoFYXn/9NbzbZTAasLOzi6urJFVQKWChCR7Z6GCDRxv9nL588xreeZJLX3IqiJ23r289QQISwLeOtq5oq4rV7AwrEYnJbaRpGozOUDqloKXrY4hCCEET26RsVyoFlETvUErx9muvos0/plSRH/zln9E+vsf+uMSMDzDDm8RskM51m5FlEaVTaEmMECV2PZYePXr06NHjF/FCEFwfY/K7BCB23qKRQEg+nqLIdIYtSlrXoAh451J6mIXgHa33FNpQGEtbNxijyPMhk+GA2WzG5ekxtihYLRuUKOazc46f3sPqf4uT46fcvHHEzaMj8jzH+5ZykNM6ByHinAOEPMuTNRlpYEaUEL0nyqZyK8nb9pqvqL9mr7SZAm98w3odODs748njh8zOzri6OGU2O0e06drGGSbLuXHrNodHN/nqV7+KtZa8HGwJyqZ6u01DE00QQ5YlAtx29lStfxbHKyp2BMHgfQqf6PG3x0aicD3l6/pgobuWHubrBoKmLMfE6FnMr5hdBZROcoO93R1UhKurq61rgIhgs4zj42Nee+0VjIpYrclLTTU/5dQtyS5yfLXAmmQXVuYW5xWxXRH1CKMVSjTBJ/cDF4XcWtoQ0Btnhe74N37OTdPQNp7MGNqmpVotmM2uuDi5j1tfMhkNaWtPU7Vo06JNBSpu9eJR1kQy0Ml1xFqLsjkAEj3iI6WGd15/laPd/xhjc77zr/6Mk08eMCjOGI2ecnR0A+ePsDuHGGvJQ4nQWfr5irbpY6Z79OjRo8dn44UguKliG7dkK011ByQ4okRC1HjRGG2wJkO0RYjJKkkEozUaT9s68jzDuZb5fEFVrSiLEroghWGMFGUOMdD4iMTIYnbJe++9x42bN/jNb/4O+/v7lGWeqrtKszMeIyTvW7xgDVTrNZKlafZUBYu0waExiVB2scJbn9Guste2LSGkAaT5Ys7Txw85Ozvl7PEjLs5P8b7pgi00oi2EKyQETk9PmYyHjEZjsqZFjKfI7ZaIaK1T6lQmqI6kbMIjvPfJfcF29mQhhU4oK0TJcL6vgv0y2Gxern++gVLJzSMl3nliTPG3ubVUjWexrljNrhAJTCYTfJsnj+Uo3Lp1i/39fSaTCTfvvJT8jss8xT6HgNWm87/tBsnaNa1vCD6QmyGh9bT1Gud8krlkGZGI6wJEvFfb6v/Gbut6UEnbtvjG03hwbcPZ2SlX52esZ5cUmaZ2QOPQqxXa5lsLss05XyrBe4FWYW2GD57QNGibAYIXhyiDig370yn/7h/+e9y+c4d/86//goef/Jw6BB4/uU82u2Rn75JiOEGVO2jJMVoweUak/nwXu0ePHj16/MrgxSC4YTO0FYkEJHSDZh33igR89OiY5ApZXpDnRScl0ERSNTMCy+UMgLIsETFcXM4R32DzjLpZY+adH6i2RFlzdXFOmRkuz0750fe+w607r7C/N+Hw4IAsz8jE4ZoG17YUucUF8M2StqlwWY41ikAkiqb2FRLUVo4A3eQ3idxG76nrhtV6zenJE54+ecjp44fMrs7QCkCRZTbJHkyyInNteu2PPviAGzduIVoTVYYnUlqTKt8xkZSmqQn6mYXSxq80iEe8AS/bQaQQBMea1vVJZr8Mrldu//rzdKEHiehalDSsVwsWsxnGaoxWtG1D8C2KwGoBRVFw8+YdDm/dZn9vl9F4xMHBQQokyQuM1thu8NDqZ1papTvJTNxU80kJe22Ld5GVq0BptMkIMVLX9bNUvU2XgWf6ceccjW+QBqpqxdnxE+rFJaFtmFUtedtQuCR3iSJJA0xKJRQRXNN2w5GOpqkxMaJVQIvgidDpyUUELcLNG0f4EJnu7qNj5PHDB/zlv/5zzo6fsFp8xHRQUN76NSbDA5QqMVlO1bSf51L36NGjR49fIbwQBNcFj0Sf7La6gfQN1FbfGvDd4NV4PGW9f4twcYyvW5TStM7jiYQoDMoBBweHWJPx+PgR81mLdFXNTft4UGjWbaBar7hx4wZFkTEdFYyHGqs8q9kpjdFMCsEnzQTROdoYU+XMe4wKXRtZUzcNLgaIQlu3WJsIavDpPTTesW48y/Wak+On/OS9H3Hy6C4SPbbTTFpTbFvbWhuUNogocqV4/PA+f/Wtf8XXvvENDo4c5WCEmU5Rxm4dKKIAkiplW2uyCD5AvVqRZdmWjNV1zXy5oBgMP9e1/rLhb/JiTYNf6WtZllGWA1x1xWK+5tEDOLp5k9xacqORzDIYDRmPx0wmO2RFwcHBEXfu3GEyGVMOB9isILOWrHPWUEqIErrEsUAySQhE55FOwqPkGoEVoapb2tZT1zX49Ly1lqZp0qZIhLZpaJuG1aqiaRyr+YJHDz7h7PEDquUlVxfnNM2KrCgYDAbs7O4z3ply86VXuHHjBpPJpNtAmiSDiRpcIMYWLIgkiY8mzeaFqFB4jDK8evsGr94+IoTIr33tG3zzd3+fP/mT/4Wf/ui7PHn8AfHsnOnBLSa7B9jhLkPVp/D16NGjR4/PxgtBcCU0z1Vs4Zlx/nZwjIiPyb7LWEs5GNJUQ6JU11KWhHwwYTqZoIzB4SnLASJQdFZIxhjm8zl5nnPj6Ig33nidyWhAUWYUWUZZlIxHQ/Iikc2t32hoMFrT+khm1LNj0zqFKyhF6wLL1Yrz9QWz2RW2q7AqMTgRVqsVZyfH3P/0Y86PH6KCx2hQXbvZ2pTYlhLQUh5vIh5peOfx/U9YryruvHbKzVsvI7zKdLqH1TkugFJdCpRPUauBiDGKZr1AKU1VVV27POl2Ly4uGLa9CPf/a2wqorrT3urhiGFdU61KdFVR1xXz2RU2N+SDYbcekbIcgWh2dva4/dLL7Ex3GQxKTGbROksbHmu23rVeRwwR3QUsCBGxEe9cctyIkegdMXqyLCPPS0KEoq45fXrGqtv0GGNSyIoWWpfkO6uq4urqkrNHD3l4/y6zs2PmVxe09RrvG8wqY7FY8PTkjKwomS+WiAiDwYAY6c5lux2822jQlVKooJO7SAjJO1oUOqbzMIoGpYji2Z2U/Af/6D/Et4GTwvLJj7/Ho+VHnF/cZ7r3CpPJ7S9ymXv06NGjxwuMF4LgbuzBNtgM7mxujoJO5R4RJAaCaIqioB6OaZ2jqmrEWgblCJPlOIA6BUTE6BkOS3JtODk5wVrLm2++yeHhIdP9XY5u3GQ0GpFnOYOyJM8LskwhHWlWWqFFIJYYEbRvoasC13VFaS3G2qSBFcj3CowoTk5OuLi43BLcAJydnfLo/ic8ufcpOnq0TZZJxpgt0djoIVMFsIv4jTF5nnq4PDvm9OyMb/52JPga+9VvMhCFtjnOBXx0CB4JyT6tdoHF7JJPfv4x73ztN7fJa1VVMV/MaNfrz2uVv9TY6Fe356wIgsJYgQjj8RjXHqTAjZj8ZEUJWVESvMdkljZ4iizn8OZNBsMJxWCMMsnFI/1Ovf15NEgA0cniSwl0MSVokl9sDIGoFCqGrT8uREaDARxEjo9b5vM51uYoSZusVdOwWq24vLzg0b1P+PTjj1heHOOaNcE7skzjfYYxGaKSp7KvK86Oj/lQhN3plNFoRLi2W33WhWG7uVLJtgFInYeAuWZnFykkJaMd7I35x//kj/iTP644u/9zFvMTZmdnzGc148nJ57a+PXr06NHjVwsvBsHl2U3w+aqtBsxzz0U8uBSakOclVbZmtVphbI4ZF+TWMptf0ayWLJdzhoOSLDPU6yWDwYiXX3mFO6+9zt7eLtPplP3DQwbliDzPUtVJG7RWOCUoInajowSIAR3SnyzGiNYGoYvjFdA2QhSmkyl5niOi+Pjju118ruLTux/x9OF9Yn3FINdkNh2vzjRZlm3f/wbOOxrnMMZirEGJwrUtq8bz4+9/j/diI4EEqgAAIABJREFUZLlY8No732Q4HJENd9BGyJTQ+DqlqwHDcsjeeI96MYPxhEW1ZLWuWM1WfO/HP+Y/+0//2ee40l8ubDSwm2Gt589fTwxgbcZkukcxGHF4dCMNcHV7OmMsbZu8ZH3UIAZRGaCJUXAuhY+oTu6QPhe8714XRQyxI7pC9IIohRKViPOmGxA8EY9WyV5rNBgiN27QNC3Hx6dpg6Uz5lXF2clT7n38IQ8//Zh6tcAoT2YUGIPuNMXQxeaiOs1txYN7n/LynTvsHxyS1cnHtshMshEzhnaTsCYafEwyBQlEJMmUrl/nwROCEMKa6c6Av/8P/5Czj3+AYkm8EmbLhtPVk89zqXv06NGjx68QXgiC+wsVWzGA7pK3nj2fhmI0Ske0ScEHNsthNadtayQErEqt2fVqRbVOyU+ZNZRlzmiyi85KhsMR+/uHTHf3GA6HyZrLWLTJ0uspjY4uEQsRlJJUZBaVdK4A3mNsIqWECBIQSclP2mhssNy8eYNHjx5xfn7J7GrGkwefEJtLiiLDkFrC6NTOzfM8aXWbZvsri8GIrCNQyQosYmJk1LV+W+f5/l99i4dPHvL2136DV974WtLZSsB5lyJhm5Z6uWQwHJFlQ67Wa5ZXaxZXM/7sT/8PmvXsc1zpLx+un7tJOhBJgSDpPE6uBJEsN2RFDmGUbK6cI5IcOGzbUtU1VdNwtVzy4PEjDm/eRDJLbgzWbDZ/bWcfllwxbBcnnXyQn/kvbwa+pLu6dYSISucvbZL5GE2e5+zuTrl37z51XWNNzsnJU+5/epcnDz5FXENpko+v1rJN1NuQ+RgjkTTQKNrgqooH9+/x0isvkw8nRNFIzEnhKZqIwkXQYthUpTeuI2nALVXAN44MIWq8a4g6cHjjgGw8ZTwrGR6NKNYtx8c9we3Ro0ePHp+NF4bgwjMpgoh+rtX7Cx6jWqG7tr7WBmM0wbVcXpyi1RFlnlPlOW21wmrDcDxhOt1jMBiilWFv/5DxZEqeF6A0RucI6QbsY7rRxpDid/214yBEUDrF8nbm/hoBlSpRIcbuJg1FllweDg8PuXf/HsdP72PwuBAp8hwhJoJuzdb1QGuNsXnSCotgMtu1vRV13aBUxKPQklwZcpsSqy6ePuWvrv6Cy8s5b7z1a5RlkQZ7TE4MkXsPHlIOBlwt1pxfzfnxez/ixz/4Dr6Zsbsz+mIW/UsCrfVzpFYpvbXLQgTnHSFGQpC0+TBgbE7jHL5r10cR8kR3CVG4urrik08+wRjD3nQHMF2lOAWhWLt5DU9EMIAWlThj19qXCEoMSmJ3jib/Yx8cEEBSstpoNMJaw2y2YL264O7PfsJ6fop2y04+M8BoRSBsNeLbAcaQjldEiKLIfcvZyTEff/gReT5msndAJposSz+jtMGHSOvaFEjR6cHbtk3HLILS0Lq607fnCIrgBVzk3d/6t/nWySO0gssn93hyfPwFrnyPHj169HiR8UIQ3FSxfV6KsL2Bds4HsKngCsSkj7V5yWDQUNcjFlennK5W1OuK3f09iqLAtWXnsJAqvlEp9o6OGE92ycsxyliCj3hxaG1wLiASE49VqbomQuIDim6YRxGJiDIYncivJiVAESBKCzGglGUgJW+88RY+Bv70yQPcesao0FibrMAATJ6hrYGo8YHtTb/7y2A7EqvEdjrPVMnNbACtk4tDSPZLH7z3A37w/e/iQ+Rgd5/j46fcf/KY/ekuFyenGKMocouywo2jEdPJK1hTfP4L/iWCNWpbxUU2cb0KIRHO2FVTXYw03qeqq9BF9oLESFbkFFqxUpq6rqnXSx4/vJcqs6+9yu2bR1ilCMGjlEFkMygIQQRlNNqorqIqSZu7ceMQIMYkpQkQoyd03QmjLd57Do4Oef+Dn7A4O6W+PEHRMByUSIxdCEXqMGzkDptrMg2OeRBFiCERWef54Mc/4uT0nK+++w3e/Mrb7O8fYrTgQ0QpwXlP27Tb61ophfMOk2li0HjnOwLcItYS0LQObr7yFZajO/zg23/O5dU5RdY7gPTo0aNHj8/GC0Jw7S9IETYk7xfILUn3uIn+LIqCwWBEW81xzYzVao6YSJ7lFOWIEELywPUeGwVjckJUeB8BTyoeC0olu7EQ0qS3zTRtV/0SYxBIVaZkbpoeRdCiuuQyEG3wIRBCqgJbk1wY3nrjTYp/+kf89//Nf81svWQqhsloF20NbhuZGrfWYtsEK500mcn9AYxWXYoTRJX+FuVgRIyR5XKJCZFcCyozVItLrARuHx0Qm4ZXX77F7u4uPrS03jMe7iGicaFPg/ploI15jtTGTRWVVM21OrXhfdPgoifGSJbn6M63eavh1QZrkwdt6zzB15ydnTEejzg62CczSZ5jjO1IbuykBknfnWq7G/2MSkOZkHZmJIKLKJQyaSMWA4pIZkpu3rrF3nTCww/fZyeDIHZbEU4pbKnaa61FKcV6vU52dsYgxnc2Y5rSDnFNy7puOH78iMPDQ3KrGe/soYxFdLKtCyEi1zaurQ9Jb7ys0/BoXWOMSYElPmmTRWd8fO8htR6x+8Y3aB/do5mffr6L3aNHjx49fmXwghBc+UwpwubxOvmFRArSjVewdpKejB5RGhGL+b/Ze7Ney877zO/3Dmvc05lPTaxicRIlUqQkypbkoRtOw+2LGAgQtLsbfZVGLgLkA+Qj5BvkJgMSNAJkuEhu0mlP7bZly5QtUaJIieI81HTmc/a09hreKRfvPptlk7K7qY5ZFvYPKJBVrDpnH6616zzr/z7/51EJQimKwRAtxdJ2IKkbw/nFhPOLMTJJybIUKTxaKpwzKJUs/YUxwzRO5jReRLtCQETPY7gMto+hvXEiJwAZhUGwCBFwwSOkJO+VPH77Gf7Ff/Ff82/+9f/Ne2+9Qdcatra3yYs8tjKFgPMxM1XK6K9M05TWWGxnsMbirCTLC5Jc4lGrxR3vPYPREG8CnVv6O3UgzwuieAetU9quJSt79JOUIh/QdS3SStZ8dpRKHhK1YlXssGox0yn1YoJQ8aGtbRuKsiRJ4vR0VY+rFMIFsizDB0tXN8Cc+/fus7W9xfbWDv0iR8oEKWPT36WPVSm3nCCHZY30x/51hETgo4c8AeEEwkpEcAQgSSWbww1+5Zu/wsndD5gc3qHMS7I0wXmP1BqlP16ek1KRpPnSWgFFlqN1uioWSdOUALQ28OaPX+PeRx+ytX+L3StX4+JlAI9BBQBJCA6hJF1bkyYZdV2v/L3GGBZtQ1H0GV+MOT45JRuM6JGwk5RMx2efyzVfs2bNmjWPPo+EwAU+3YoAnxC2HyMRSpDqhGRzk7zssX/lGt5bhEpiUYLUIOLi1qJt6Kzl3sEDGme4fvU6169fY2u0QUgD0SLhl+JEx4IGAUFF0e2EQProY9TR9IiUMepIyih6L8Wu8B5rDOBRwke7g9Y8+ezz/Mvr13n55Zf5g//zf+Hs7Iwsy9jb32NnZ4fRYIAN8evsui5WrGYZvXJA0zTRp7sUwJ2JxRVFv0dbtxR5gdKatuuYzxcoFY+7h8MNOmdZLGoGo00EnkRniKWPt98f/F1d4l9IxCpZQMXlxCQDKdBKIIWIFoRkxHzicd6Dj3nI5VLkDgYD2ral6zqSVOG9QARHV89ppseYxRmvNFMee/xprl69xs72NkWqVw9BWico5UlT0FohgifL1MeWCRHtChAQQS6XIeNSGsSCiDRPuXnrSX7nX/yX/Kv/6b/j9OQB1zY22NzaxPhLbzkg1NK+E8VzlmW44GOaSdMghMJZS5YrkuX72XQNf/Fnf8jzX32JK489RdYbkiUCLyzOLNvUHNz94F16gwE7u9dWJzh1XdN0HU3bcf/+Aw4++imDJGW0UXKYXotxZ2vWrFmzZs2n8EgI3L8+uX1Y1MLH4vfjKdJyOuUt3kvSNCPPy+X0CpzzBCRexPrSFFASrAt45zg7PsG2Ld57siQlzYbLRTePUgkxniwem3oHjkCQsYgiDuskhHgMfflS44GxRAi/yrJ1Nm69O+9IdfTL9np9vvK1r/Ph229x/yffYz6fc/fOXc5Oz9jb22Njb5fBoB/9wMSj57quEVrjnUMtj79BxM1zG0h0wmKxwCNXE2CQ5HnJfD7HB0gTTTWfMRyMuLi4QGpFmuVMZrP/vy/vLzRJWqCSFKEEWi7948HHmCsbSxakCJRlybSqCTJObKuqIsuy1aReKYXpOoJNUJlHYjGdIJg51fiMj97uWEzGmFu3KIqMoigoyz5ap0ipSBNFmqUgBXlvQCoTwCzvy6U3dzlhDjK+N7yPy3ESsEKyf/1x/vFv/+f8H//7/8bh8SEqzej1ewitMMaglzW8bduuPPJSxb9C0iRHCotXHucNbdtBgDxNODu8zyvf63jeeJ585jk6J4iFvQECSGA4GGFNt6qSNsbQmJrZbEY7b/jun30H6wLCZYh2wV5/h/fvr1MU1qxZs2bNp/NICdy/bkV4ODx/dewrYqGCEHHq6n3AekeSLsPnhcCFQGcMirh3roocOklrLMZ1eG+xbc3BwQGDQR+tJAwGZEmc4grh4++xYtmS5lcRSRKPSgSpSgFLlLwhTsuIEUg2BHButZCmtcYHiUfigmG0scE3fuM3Odwsee+tn3J4fEQ9n/NeZ9laLNjd2mBvf5/BoIdz4HLBdD5DKkWa5mitiQVrcnnU7anqhjRNEVKR5yUXFxckSUKv12c8meC9I9Epk9kUnWi6zlDVY5RO/u4v+C8QeZn/VVFrYrlI2zbYtsEagzEtjz3+BMYL6rYjzdTKnuCcQylFWZbUQmClIM00iQaTJLg2CmLXVkxPD7jrWrySlL0+uzv7FFkP6yCTkJUpw+0Ndnd3AR6K2Xv4wVEQLh8QASHjyUSiwHvL0898gV/6xrf47u/+Xzy4f5+NzU1293YZ9Pq01q1iwmJdsKQz8T2qtSTRirZtUCqP5SbeU3cdaZYzn0343p//GWmWs7u7h5YSlWVY49EiYDtLkRX44Km6lqZZMB/P8K3hT//43/LhBx+yvbvH3v4+Os2YXRzxpds3Pscrv2bNmjVrHmUeCYELP9uK8HB4vpIfRzEppUAKvIvTqcbYZSRRiggBnSQYY1YRXEmWE6RFWkXTzKmrGW3b8sbrcw7ub3Pl+k329/YpioJMfZzzmSTp0ncb0FJjhGHvyj4qSWKgPsSFnuAIQoKPlaMySQhSEqzFuhht1h/2cc5hreXFF1/k8RvXuXLju7z9F3/EoppzNGk4Pz7k4vA+B3fvsHflGjt71+kNR9y8dZvOehbVHGcNSimyoiDLCuq6pqfSZVZuFOObW9vUdY33nrLsgwy0bUOa5fgQyMsMZeLC2ZrPTmgbXLA0iwpvLaZtaNqGtllQLxaYrsN0DQrHzo1biKTANnZZ4+xWSSHWWrI8X3pyW3SWI7QipAnz+ZRUelRomU5PCULQVDMujk9Ik4zgLZPpOUF6vvGrv8GNx27F9AQFEvVQ+kiIC5CA0gmBGBsmVUqQAm8taV7yS9/4FtPTE979/rd5cO8eF+fnPPHEE2zt7mKXotx7T5pnCOkJPsRTBqno9YdY53Ah4JynGMSTi6TrMM7zB7/7/5BmBc889SxJ3qcoc2azCf1+n43BiKQ2XExmHD24x49ffYWmnoIz7O9sxn05YDadMdra4+xs7cFds2bNmjWfziMjcOFnWxFiolZY+mplFJYyLtIE4ZFCxu3ztiUQSNOMNI3NZMYY2rbFSYlQCYmOYtQ0C4Jpqc7ntNWEyfkp02s3GY426JUZOtFkaYYQiq51BONominlRklv2KNf9uNiUYgCRbAUEVIQfLQ7SKHxGmzXIZbCV1wuI6mEcrjJtRd/hQ/efpPM3OX6TsHOZp+zi1NOL+Yc3LvH4eEZGzvbPO4tO7vX2NrcYDKZIHVKZw0BjZCaZjGn6zryNKfuWoSS9PtDjLXUdUNnDGleUtcNWidxkx1NGUfBaz4js8kZpqlp2pq2qWnqmq5tsF1D6Fo0Fu0tJx++TSCwfeNxZJ5S1y3emtWi4OUJRZpnhMYTXEeWZZBlCKVwxuJUIFvmJmdJiek66vkYZzt817CwDUcHB1gXl80QYbWQKcUyRVdKgvM4PFIq3DJ6Lst75EVBmhcIpfn6r/4D5PiAe/fuMZ5OeO+991h0hp29bbIspeuWhRFJgiBG3F36fnWaopanC03TxAlvkhC8oZcmeG954/VXODk942I2Z2tri9l4wmgwxDvH+WyC8B0iOLY2BmxtbYPMkEmBdR6xPHW4NOusWbNmzZo1f51HQuD+bVaEy4mtuBS3QuEFICSpSuKESAacbWlqBwjKskRrvSxTiN9oZaoI3iCzDC083jm8sQjbsJha7nUNW5vbaKWonaUsSvK0QATBfDZmPD0l7xVs7+wzHGwjcwUyoFAIrfDBE1xYeWCRILxA5jJO2hD4IGLlr4zHvP1en3z3ceanR0jTkGrFle0h/f6Q6fmY6fyUC9cwmZyzub3P7aeeYnd3nyAkB0fH5EVsWQtB0Ov1qeuarChZ1DXnF2P6/QFJniO0xjlHnguk0IzHE8qyXEuEn5OTg7s0TbMStcK0qGDRwSF89JiK4HHTCWfvv4OzHU88/3UCgsXM4JbZuGka7TWdM6RphukkFsjylL7OqKqKgCPJosdaeElZ9kl1QtfWZDqjTDZpF5au8VAkEAwWj0LgnUOEpbVHSJRWeGcIPt4/YvnwKJ0nyzKe+sIX6e68gJLQu29472RGe+8+VT3n2S98gcFggHOwqFsQAb1s4tM6/pVSLZq4iLZMCfHW43uBeVXFh9gQuLq3y872NnU15+oTt+KDqLP0BhohoMwL0iQneIkT0B8OcUh6RZ+2MxTrh7M1a9asWfMzeGQE7t9mRZBCxUxPGaOPsiRByASVpuTB0lZTpIjtTcYYFovFanlHSslwOIxHwUYTshR8Ds7QNCmhW0SRjKGbnVEnmiTNMa2krSq6ekFwHco7FvM5b/7kbbY2r1Fc2UUJiwkOaQOSaK1IlUIqRUBgrUUGhXUeqOPi2vJIOubdwpPPv8jpB69juwlYAd4zwFIOU7ZGfRbGMmkNZwd3OD05oRwM2NzaYWtvn8Ya8rRECoVxhoCkahqSvMT4itYaCBIhFU3bsLWxSd023Hz8Fs45OrfOwf15uHjwEToYhPekS+EmQkD4gLcGrEOEgMNi24rTrmLQG3D9ieep05yz8TneB5rWUA6GpEERvKUsM6ztMMYwKgckWcFiPqftDAFDmWmCEOiipJf1mU/GqETRGMvJ+RG9QU7wAZ0s2/8uPeJKIpRalpjEk4RUJ3gE1oVlGYMiy3Kufv03ODi7QHc1eX+Lg9MTzu7d5fWq4vpjN7l+83H6gwHGOarFgl4eI8OapkEpTXQaCYQXlEWJsRYhFV1nSJKMruuWIjXEyayMfnolC9JlrJ0PjizLMG1Lay1Fv8QT2wDN53vp16xZs2bNI8wjIXBX/fZ/gxXBPyR4pdLorCDRMq54OUGxscFsXmE7gxBRWAKrcPrLJiYhBG1TLydWgkwKQpoiug6hBFYrskSTJCmZzpGpwCUZnWkxxtLLMmaTKR/d/YjN3Q2ChyyJtaxSJSgBSioQHuviCpq3IRZIqGXIvQhLgdvhPRRFRhM8idTItiE4i/ExiF8KQ5akbBVDvNBMFjWHD+6zORxxdO8jkmKDq/tXSfs9nNCUWR4/r16WZwSBC540TemMYdFEX25VL3De0++vq3p/HhLbfCxqncdbQ3AeggfiIhkCkAHvOhazM+6/9xZC5lx54inysoczFussTbVYFSooFStu265l0bWkSYrSGUJJgnfx/tUqVvJqKPoFLniCUhwdHcWShVEfJUAqiVy+v9Qq9UMSZEB4h3Em5uTC8nXHn/R6I5LhHk68Ty/zPHHjGqdnRxycnhE8TGcLnvzCl9jZ2WMw7KjrGq01w+Ewvmd99OuOJzPqNvrGrXWEAGkaC1qElEznc4qiJARPJmP8nnOWNNM0jcM7mM1rRKrxi5qs7FHNp2Rp+jlc8TVr1qxZ8/eBR0PgSvG3WhG0UiidoJMcqSVaitXW+qKa0Ov1GPRKjK/xIXoVL7nsu7+0K/hlPmeAWIYgFZl1tG0dX4dKUUmC9zHnVCpFmZc0i7hQNK8XnJ2dMp3O2NneIBBIlkezUl56iR3eAt6tlubccqErhIfb2iRFPmSYJFTGIp0jOAdIOsB7AVqh0wyVluTDTfLRNueTCTpJQdR89P67yCzl6S99Ce8CWZ6yaC0qyZhPJ6topyzLmM9nFP0+s9mMze0tWtP9XV7qXziUsZ8ian3Mj5Nh1S3mfSCIQOoDi9O73BECtOTa7WeYzyta43DB00s1aZrTtjV2GTMntUCgQCrKLI9xYgiUFzhvkFpTlCXWWXxQHDx4wM2bN9kYDUi0wkdvAhCWDX4BZ6Nv3Fm3zMYFHwTGmFX5hFaC7Ss3OHpDoUJ8/bubA2xQTOdzTg47vJTcFrB/9QaLxYKu6xBC0B+MMNajpGYwjCUuOslI05yTkxPKMqWua6xzJFrTNotYIqHjqUtrowfZGIvWmivXbzBvasIy1xqIucJr1qxZs2bNp/BICFytP2lFCAKQilTrKDjTdDmxDTGZoGupZlNs2zIZn7Go5ly5dp3da4/RBoE1DjzLhrJYenDp2dOpRulYK9p5j1aK3mhIafu0TYs1HbN5Q5pmlEWOCAGJZDDqYYwBlTKfTnjzzTd54YUX2B71Cc7jCXi/jGbyEusMtm1JEo21Dms7Ag6/FLiWjsl8RmEVcxuQXUWwAevBioBPFCQFMimRaYFIEgzw3r27vP/B+4wGG+xt73L9yj6lsLzx49fAC7a3d9jZv879e3e5fu06xju6rmE2m1DXC7IiY7S5sVrAW/PZ8c2cEKJ/PMjlGDSEZTmCIsrJuPQVQsBbjxIdi7MjPnj9++AcN59+lvG8Y1LVVKLCWk/TxGluluWrEwmVKIIQFGVJ2yyP7IsSCZSDknqxoGkM3hguLi64dvUqrfDRCy6jj1UR829ta9BaxoctH0DE7OjLlA9rY05t182xWFRowEgIhuuFZC8fcTSZc3Z4j/OTY3avPsZXXvo6AJ11LNqONMkRgPNdtCV40Fqzu7dP0zQkaUboOoL3BC/orKEzlovJmDQvMC6WSLSdZdHNScpoc5BKkwSwdp0AsmbNmjVrPp1HQuAqrT9hRdAPWRG0jnFcwRqcNdSLOe2ioqqmVLMp1XSMbxfcnxwTTMPoynV6vSGzusN18Rt2nuer9qXOBJzvyPO40e29p24ayiQnSeOCWJKm0bfoJTJ4HPFYuOz3WCwaXNdxfnbGdDpl0C/BBxwBKWOpBN7jnKPtDJdHvtbaKIakQHpBlpYkKvDGj77HopmivI+NaErH0ookIagMnRRYqQhCcnx+zocf3UfnBS5IHpyccf/oiMeu7nH7sdtIrTg9OeXo6JQyz5meH3NeLdjc3KTXLxAyUNU12sblJtutnYw/F9JHm0zwBA9BLEWtCPHXluL2MoM23iAK4SyumvDgvZ+SZBm7N5+m6lzM0G1mZFkOsFq+jJnGPbRSsdRj2TDWdXHKO5vXKBEj8bquYzab4XzABgHWxyppGcW2t5ZFXVPky8W2rkXIsFo49N7jnEWpFN+0+K7DtvFMwXtPEAHvWrY2BphpTecdxwf3+LNvz3nhK18jL/sY63CuRgpJ23VIIRFBRK+tEJRlD+c8UOGDo5clzGbzeMohFVVVoZKU+aImz0pA0tQNzjl2dnY4PT1dLbStWbNmzZo1f51H4juEUsm/pxVhiu1aFtWMycUZ9aKiq2akvkF5T+gCx++9STOdsHvrcXav3mauUupmsay/NSA6ZJIAcdLa7w8xpqXtGoKQUXxqT5Zn2LbDWE+qQOoUISVJlqOto17UhKnk4OCA/f19hAwxCzcsj38FMaWBsFy2ia1PzsdCgIDDW0W/2OTo+JyqMlzdv83k/DQey6YalWQooemExCnF6fmY1994h/5wi2A7grV4lSIl3Ds45fUfv8mTT97mxq3HKXSG6Vo+/Oh9SHO2tjc4ODgkK/r0BrH6dz6dkSTrooefB+cCSBWFrADvo/H6YVErEDEjGQhLj6mSEuktbnrCOz9+FeMl+7ef4+L0AZpoaymKAmPMavlyOo2+066Ly2dJksSlMCUQUuG8R6gEAXRtnMJaJcFZZLh8ABPgHFKrWA+cJA89eLHMyXVcVOcM1IhqWiHaBmyLDx4PWAlBSIL3bG9t0XnB2WTO5OKCt978KWV/xNNffJ5FZxBCkaQ5kkDbxocpISXWtiiVkBc9FvWCqm4wziOEoizjAponELygaRoGgwEySdBJTAoBaJrmc7nma9asWbPm0eeRELioSytCgkoykuRvtiI01QzaOcoZMh+Q3oG1YCxdNeV0dsbk7AGPPb3g5lPPY0dDLsZjQoC6bkidp9crlhW3FSE48qxASoE3Fqlj8kJe5HRtR2M6EmS0DVQtSmiyXGGM5ezknLOzC7a3RlFwhjgZDd5ijYEQuJiNyYoSfPTXzqczYpKYQogUmQnyjQ3Iemzf2kUngouzY+pFDbrAInj1tZ/StIY06ZEkGaQ9SCXzeUWaaqbnY3Recnh6zlvvvY9G8OUvf5mnnnqC8fmYd19/DeM9eW9AN5+RJnFiNhqNPu+r//caC4TwccbxZcoHCMJDQvfSLSpEjIoLwSCCBOOQkwM+ePVlkAlXb95iPJtT13PG4zHb29urpbPRaMTx0dEq/s55T2s6BukApRMkgqaZ0hv0mE2n3L9/n5uPXSfYDmEFaZpibbQwAGghowdbSBASIUAJjxOKLN3gnTd+xEcfvoa0C7wLOA9exvcBOkPqjCQr0TKj3NjldDJjfHFBlqX86Aff4+atpyj6PVxwNJ0hy3KM9XRdx8bmJm3bMpvN0DoBZyjLAdPpFK1ysjShNQ1JmSI6BUp8zkiCAAAgAElEQVTSth1tZ8myjOFwyGxdM71mzZo1a34Gj4TATZLsYyuCeMiKUM9pq09aEbTvEM4jg0c4T2jb5fTUximUaanPj3jwzqvM52NuPPUcu9v7LOqaprMEqfDeYW1cWFFKLV9JFAFpmi4F4Gw5QYsb4VIKkiSlqRvatmU4GjCfjnnrrbf4xi9/HWcteLdsTwOtE+pFFZeF2i4uHHmHBO588AE721cIQfDh++/QzitEUIi6IXjL3u4+w23F6cUF77/7HlVjEUKhhIiLbAisDezsX6Nraw4eHNLPE8anp6g0wRrLD37wCj/4/it841vfZGtzRDutYoTabIK1js2dXQhrH+PPhYzxWwhJQMTEhGUr36WovRS58vKPeBftAHK5fBU6qM+585Pv4U3D/s0nMYlk9NByoPd+aTvweGPo92Mrng6epmnIk2ipGQ6HLOoKYxzvv/8+169dIfiAN1080g8BqTXz6RRPWJaZeISH1rQIBZ6MPBnw8ndehmpOkRW0VQsq1v7KVINMkboAnSN09IYPd3a4f3yIPL9gY7DNvQ/eY7S7y7WbNzGdwQVBliaEELi4GJNnBYP+iOl8xtbmHufn5+zvXeV8fMFwOKQ6X5DrlEIluODpTLNa0JxMJsu86TVr1qxZs+aTPBICNy3Lj60InWGxiBPbn2VFED7EtAHTgXNxGiZE/ObsA95ZEi+ozo5obZyYPv3i19m7cg0hDOezBa6DREG6jBp6uB54Pp/HZCcp43FzCCzaJm51W0t/OKAwBVVVIaTgwb373Ll6ld2dTVzXxnxSmVC7Founs56T03uM+kNs19JUCwhw7+4dXv/hq9QXF2itSdOUum0pix7jqiUv+ty49TT9zX3mL/85Z2dn9HslxjuC0ngZo8AODw7YHA05P7qHEhbhYqOUFAqH57uvfA/TNTxz+xbPfeFLnI+nSK04uzjh5Pj4c7rqvxgEoT5V1AKr7NkQVVkUuoAPHikEzliCDPHnNNix4O6bHcY03HjqS5iuJYRAvViQJYq6WpAkCV3b4p0jW/rE27alMybWArcdg+GAul7QHR5x7/59drc26LoWneSI4PE+emmbriFRGiWhazuOjw4ZbYxAOQgGZGC4fYXMe85PDzBtjVKCJClQMkEkOV5qHAITBL//+39AmiecnE946rZks9dnfn7Cu82CLz73ZTrjWLQOZILSIgrsLEUuJE3XUvZ7CCXZ39+nM4bBcBS96FIhgaKAtm1Xudnz+fzv+nKvWbNmzZq/J4gQPv8uq//qv/lvg7Mti9kU87AVYTGHZoZyBlZWBAfGQDAr32AgxMmOkLgQoqAgoJIEdI5KM8rekGL/MW4+8zz97ceYTM7x7Rypk1V8GMRM3rIsOT8/x3QdZVnil5FeXdtSliWZTpjPZvTKHtYZAoIgFbdu3eL27duE4Nje2abrGprFlK6puX/nIySS6WRKphWzyTl/9Ee/T7eo6fdLNrd34tZ8XpDnBTpLcE6TphlKxdrTNBccHx3zb7/9HfqjLdIs5/6HH9LWFc18AsFGawce52MWL0TxrgjsDfvsbe/QWkdvOMB6GAw2+KM//kPxN1yeNX8DX3n6VmzFXYrZlaBdIlbBCjFf9vL3iLjzhZIgCWip8DKBJMPnGzzz1V/hsWdf4MGDe2RZviwrGTEZn6OkpJrN6fV6cZJLYDabLcslYjFCUZTM5xUoyddeeomyV7K3v0PwFmMbmsWcDz94j92NHYo8x3cdUkoW1ZxUD/nw3tt8+9v/L9uDTfI0Y6Pfo2mmjM9PkUICCqcSFtbzg1dfx/mACxIlDM7FRsJcC77y5S8CCUmSsbm1w2Brl8W8ZnN7k/F4vHrANKbDLx8SVvYgYyAIrHcsFgsEcHR4hJKKtl1weO8uf/nyv1vfu2vWrFmz5hM8EhPcanZBV1XML60IswmuqUj+FitCXIoJUdgSYtzQUkEIIQlCIIVHOouvJswOA29Pp9x84Vvs3bjJfKJw3lHNJ7E2t98nz3PquqYoCpqmoW4aNkYjvPeky8pfLSU6SZa/lqF1wnxe8d7b73D44D7PPvss0/mUvZ0dFvMF3aKiSAucMdx5/0MODz7i/t0PSKXi2s4e5EnM6dUpxliGw5TOGvK8jNW7WUaSZyRpyf7+Ff7pP/kdDg6P+fPvfAdTTVksKpJELaPRAiCRxIUggSchsFn0ubpzFWMaVPAsZhU2BLJ0XXf68/BXprQs7Qjh8ud+NbWNwRp+GR/mkQi8DMggCVLQeoEWDulafDPl3Td+hBEJT33xi3x05wE6SWhPzxnkCVVVreqnsyxDpQmDwYDJxQQvJON5RaKjrcHbjpe/86c899xzdLZhczTC2oaubsDC6ekppu1ItCRLUu589D4fvvMuBwcfsbu7S57F90PbNJRFymNPPMOdj+4ShOD4YsZP336XXm9ACILgBd7MMYBxDuMF3/3+a3z1ueeQSnN4fMh0tuDmjWscHjzg2vXrjMcXzOdzNjY2MD5gnMU5j3ZxYXM8n5LnOYt6weZwgzRJwTW89dqr9PrZ53XZ16xZs2bNI84jMcH9z/7ZvwzjSyvCYk7qasRfsyII5/BLKwIyRGGLwAuxjC6KH0sIsYpqklqhpCbRGi08Skq8yhCja2w/9iQ3n3ya1gsyFadGbdsipSRVkuOz8zjZ8p4sy0h1QpamOAJN0+A6Q9N2+ADbow3quiKEQJqmzGdTZvM5129c54tfeIrFdEI1m/LeW2/x+muvIDHsbGxQFiV52afxnqIsEUKQ5wVCxZIJpEQoidYpe/v7nJ6dsre1hZAJhwcHdE3Fhx++z598+4+RSuLs0qrh4+tobY0ENso+t69epeuamG962bqWZYQg+P6PXllPwT4jX7uc4D4kaiEK2rA8TQhLUXv57yIs7S9SoJREq/i0ppRGKxHv0XxIpwqeee6rXHn8aWZVg3ddXKYEjDF475ES9vb2mcwW5HlO2zZIJfCdoakbiqJAKkHXNJyNx/z2b/82qRaYpsKZGGH3k5+8wbBXMp+P+c6f/jHBRo/vzZs3absOpRPSRCOVptfrkec9/vKVv+S9Dz4izUsyHe8jKQAtaa1jfHaKEoG6rlnMxnzxuef44heeRbqYfrC1u0vn4cknn+Do+DA2DiY5LBMj6jo27gkpOT09Y9gfkGnN4YMHfPDum0zHxyzqBQ8ODtb37po1a9as+QSPhMD9+rf+YaCZo1z3H2xFCGIpahGrgoiwPOoUQpBIhZKQyFhXmkhP6xTkfWR/g2tPv8j1J56mazvm0wlJmpKkKcPhBtPJBYlUNE2DtTbmkGYpbdMBsfUpSRWm7TBNQ5ImEALN0hsYAjRdRTWbgDXYZsbGKKdINUUxpHOCJC+xBIKxSJ2hlCIEwXQ+Z7gxisJ9GWo/GAxIswzTdkgJk4sz7t65w2Q85uu//HX+x//+f4gJDs7E5Tjl2R/02N/ZWWabRvEVpEInGYGY+fvKa99fi4TPyNeevBH3xfh0QRtv2GhJCMRf8/GmRUhFopbFIHrZ4iVETNdYtvq5rM+VJ7/MMy/+EpPzc+pFTZKXOG/YGAw4OjxACOgNN3HG0Ov1mEzG5HmONSZOds/PccYghWA2XxCCQQtPU9ecHh1QzS7IMkWqYtVzfzAipArnHMPRBt4H8jwn75UQFAgNIjCvpvzJt/+EvCggKGSSYmwgzTISLXn7zTcY9ktMvaCqK4L3/Mav/0N6vRzvA+N5zfPPPcfB4Qn7N26QZRnT6ZQ8zVYCvm1bNgYjppMLfvj9v0BKz50P3yNJUqy1HJ0cr+/dNWvWrFnzCR4JgfvLL74Q/iYrAuIhK8JDwhYemtgujY2XX40ScUNdItBKEHMSYj2pguh3TEt8ucX+jdt84avfxHjPZDIFqZECyizBGUNVVQB0Xcvu7g5N5wl4RAi0TUOWpVhjYsqClNjO0HQteZ7ibIftOnxXIzEkiabfK+j1dzgZTxBK0zYtW8MRi3pOXvRpuo6iLKibZjXNUokmz3LapmFza4Px+QXWWsZnp5gu1ppeTC64eeMGv/d7v0s9m5KlittXdzHGxgY2IRBCgVYIpSFICPCD13+wFgmfkZeeuB5iNXP0fXvvuUy/XdYqfCxqWd6rSoNQBG8ptEBJgZcKJWI8nRACKQJaCEgzQjZk6/rjfPHFl5hWfvkA53HG0LUNxrQkac5oNCJL0+gfN22MLPOBIs1w1mGtISs0XdMyn1xQTc7p2opRoWgWNdu7uxTFBrN5hRWCvMjRWuOcYzQaRRtQSJBSMhgMsNaS5vC7v/+HzKua2sKNW09Qz6bc++gDCq2ZjU+xXQ06oV3USCl4/NbjvPDlF+jqGuM9ZX+ASnKuXrnOomupmxoRfEx8kBLTtbz+wx8yGR/TNFPSRNEaBd5xcHy0vnfXrFmzZs0neCQE7jefey78PFYE5CeFLbD0o/o4JQvRjypFQAlFkDJ+81QFodgg7W/y1V/9Dcr+kJOzcfxzeKpqQZZnJDqhaxvm8yn9wQZFUZCmCV3XUc3nGNtCAIkg0ZrRaMR8Po+xXjgSrRDCIVDoJMUFSZ6nVFWFtZama1EIdJaSJAlJlnN+NiZNFYu6ItUxXklKuQzmD3RNS9c0SCHiBr3r4jJT8GyO+nzve98j8xa8wbq4ea6SBKEl1oMQChngB6//cC0SPiMv3twPITwsav3qpOFjUSsJOkHKKGyL/hCVZpyeHNATBi0CQSaIpbhVInqopYz3rSx6uKzP7mPP8NxLv8a9+/fRWmPaGq0kXdfE90nwbG1t0S0XxqSU0WsLFEURG/2yJHpuhWNyfoR1HaN+Sq83pO08HokNMYnEWYtSCZ11aJ2SZhlN0zDcGDGbz9nd3aNXSoTQ/OC1n/Dg8IRqUXF6dIw3LdOLE6QzKBWwXuGFQF5aOYTgt37zH1FVC5TSSJlw9co+49mC0TIjVynJ0eEBF2cnHNy/hzFV9DA7SFScMB+sJ7hr1qxZs+ZTeCQE7rdu3w4ESwjur1oRWC6P/XtYEcTl1xGIx8L41WJPCFHYaqlABKRSeDSpUgit8TKNWZ66ZLS9z7MvvkRaDJiOx2R5AVJTVTOUgOlkTJJo2tYwGPTp9UqapkEphfDxtRpjUErF9AKlcc6SZAm9ogchRh1liWDR1NGPuLWDc24lIBaLBplo6vmM4WDAdDomSWIkWNu2bG5uonXKZDIB71nMZ8hEMa8qEq1p2po80ZR5xsnRAXfe/AmoKHiUUsuHB4lHIoTk1dfWAvez8pXHdkIg4AOEcHlvSsJStAmpyXs9dF6SZQVZUZAWJVJpLs5POX7vx2RyWd8sBCKIZQPaMjt3Oc0NWY98Y5fBlaf46i/9GhfTKednJ2xtbtC1DW0bhWye5zjnmM/n9Pt9FPHBUGuNtRZrLf2yh3ctWkGWpATAWY9MNF3XLet7O4SPpQpCKk5OTpFagRAkWUpRFAz6A/CeVCfLXGbD//qv/mfOjg8QicJZixAB4eN70y2n2sgYlaZ8YG9zxDd++Zucnk9jg2Ga8PgTT3Nycsy9Ox9wdvSAYAzeG+bWIFWKs44iScmzjLfee3d9765Zs2bNmk/wSAjcb966Fi6tCPE4968KW/jbrQjAamIrAELAObecaIJSURxLGaPAhErRy4kZUi9zdCUh7WNEyrNfeYm9/ce4mNU0nWEw7DGfTCnyDO8tdV3TdR07O1Gcnp2dxVYw51FKrSatUkpklpClGdKHVc1qr8xZLBaUZUmv18c6T5IktNbguo7ZbEKynNp6b1dfo3OOPM8xxiKQtM2C8eQCIUSc0gUI3pNKRzOfceeDd3Btw2w2o9frffz/kujFFUKtBe7PwfPXdwJCEqSK95FKkCohL3vovCDLC7KiJM0KpFZR/BJLIUKAe+/8mGZ8SIIHHHIpcC9/SCnjtBIgzck2b7B//Ta3n3+Jg8P7CDR4i22nuBCLSwaDARsbG4zHY4o0I03TaJ0QgizLqLuWJEnI05TgPNZYrKkpl4uOddPQdi2L6YzN7W2klMs8CJjNZwQfKMuSrusYDocUWZ/FbMJ4csp0NmZ8fsHL3/0OUgh88AgfI9IucyWUlAg8wliefvwmAdi5ch2LIEk0TetYLCZUk3OaRR3Ft1Y4pZhVMZGkSDOUCLz9/nvre3fNmjVr1nyCRyImTKilsPUCLyQ+PBz3FYWth0+1IoR4Fszl9rp4SNgGH5YtUx7rZJzc+mUmv/Tgo4AQ3iPwKAe+7cjLPu+8/grjiwlf+8Y/YLZoOTw8wHpHKSUiSHplQZIkHB8f45zj+vXrnJ2dkelk1YY2nU65du0a48mEhOgfhrhBP5nOKfKUgGQ8mTIYDEiSBGMa6rZhNBxRVRVaa+ra0DSL1RS3qiqapolb68SyCiljVm5bLWIbnLd89ME7nB0d4rqG0eY2zrnlElv4WOSGh6sJ1vyHEpKYeqF1Rl6WcVKbx0ltkhVIFUWtDwInBD6AsQ7nHN57rt96gg+bBaaeIL0nnt6LlcUghEDnQCoBtsVV55w+gNp1PP7kcxyfXNB1DRuDgiSN0WDjcZz4Z1lGUzfkeb5KCXHO0TgD3qOIk9o8z/FdjOjyPtDrDyh8j2vXrjGZTOispSx7TCczyqLHbD6j6Vp6vV58SOsVdKFDJRrTxa/tN//xb/EHv/d7LFN/CQFkInCmQwbIhOLpp57C2+jDPX7wAJ1neAQbmzsc3r9PogNCEDOqdcakqkiKPt4HXAiotbRds2bNmjU/g0digvvLj18P/zGsCPGHi+H6AkJw+BDXyrxOIHgyJdBS4KVetn0JVPCrY2FCQHiLz3tkgy2sLPnKL/06xeYuVV1xejJGiUCvjM1jbduuJrFFUVDXNamKizmDwYDxeMzOzg5VVTGbzQDY2NhgNpuRpimz2Yzt7e2YyLDM1s1SzWw2I89zyrIEYDK5iJmnSnF6err63Cxfe9u2q5izenbB4b27nJ0eo2VAS4kxhjRNGQwGH7e2yfjw8KPXX1tLhc/Ir37r10PR65PlBSpJkVrhkSu7gvMB69zKN3354/J+zRJNrgUPPnyH+cl9Emy0JUgZPbnLxjAhQAkfI+TQlKMtiq2rfO1bv87x2YR6PqHMUmSiY/tZXcfUDZ1gum71UHN5j85mM65cubKsohbMphM2NkYAJGlG1xmGwwFVtWA6n1EUJW1TI/GkaRLb07qONI1pBnmecf/ePXp5wWw6jgJdC15/9Uc8eHCPpq4JIlCmgueeeBKCj0kJLop6lEboBB8EV6/uc3pyxOHxATJJaTtBkBqDj61vEkqpybTg3fUEd82aNWvWfAqPRJm7DT6u5jw0sQ0yBuBfilv1sLj1AYKLx5whYK3FOYt3ly4/h/MeFzRe54isx2DzCkYmGA/OGbyzeOfBGpxzGBOjtaxzcUrctSwujqC54Aff/RNe+8s/ZrOfkacK6wPnFxOm4zEhhLgUliTM5/OV/zaEwMHBAb1ej3v37+B8/DxSylUqQ13X7OzsxJQEpVZRZLHsYYhSislkwsHBAYumZrFYMJlMVgtDIQSm0+lq2tfv9+m6jpPTc4RSpFmOtY40S8FbNjY26JZiB1gu3q35edi+eoP+5jaq6BFUiiPBeEljHFUdi0K6rlv5Xy+vm5QSlSRIndA42L72WBSvIlbYOiGwQmMB7+O017uAtQYpPN30lPnJfV79/ss8fvux+Lzn/erjb21t4Y3l4OAeAF3XMZ/Pl1W3njRNOTo6oqoqJpMJaZbTGce8qmmalp2dHcbjCf1+j53NDYS3JEriXJwQXz4wee8ZjUYIodjZ3qOqFpRlHyk03sGVq9d54cUXKbKMYZ7x4jPPYK2hMxbnA0HEFsDLhwOtNScnZ0iV0XlB64EkwQRJ8HEa7JcPCdZ//g/na9asWbPm0eSRELiXwhap8UKthG2AZQoBH1sRvIOlsHXWYq3Bu9jgJYRfClsZF8eyHsVgm8HuNbavXmfvxlNYmWGReO8gmJXouDwy9t5jg8B5gQwBV89RdoabnPHvfv/f0M8VTz95i72r1xBS08uLuPmuFL1ej15ecHZ+Er2yRcpsPqHf7zOZXLC9vU2/3ydJEqzraNoFTbOgrqP/MU1Tzs7OOD075+IiNjy1XUtWxLSFbhkHBpBlGfP5HCnj0tjVq1ex1iKEYHNnbzmtHYLUGGtJsoLj42OstSilHvqf7z6PS/4LQ5AJDo1xgrqzVHVD0zTxYcna1T9XtgOtlwt+8dRh0TQ4JMVwh1vPvUgrNU5clvp+TLwvA9Z6TLPAtXNcdcH85AF/8Hv/mv2rV7EojAtMZxWTySzGeKUpXdfhnGVza0S1mIEIy5SCeB9kWYbWmmYZS9c0DcfHx9Fn2zarX7fLkoluWWGttSbPc87OzmLmc9MyHI0ICIQUbGzvsLO7y97ePv/kn/4Oe1ev0zQtzvloI0KAUIhEx87iIGIjWhBUbcfm1g693gAh+PjUAQge7CNw8rRmzZo1ax5dHgmLwlefeCz8x7IikGQIlVIONyiHm/SGQ3Sa44UCJF3Tcv/dV7GLGSJYhHfIy8+5OhpWBF1GX670eKEBQZplkPZJR3v8+m/9p8ynMy7OLuJGuJKxMU0KTo6P0ImiKHKapqbX6/HgwQP6/SFaawaDQYwoMwatNdW8Xk3DyrLk9OyU0ajHeBwD+/v9PtVs/ld8mWmaopRiNpshBVhrGY1G3L17F2MMJ4f3wRmq2Yxqes5g0KOZzxiMNlcTxMuv+Yc/+cl6kPsZ+U9++5+vcnAvrQeX99HDy5CX/y02mUX/qJIKKQUGCSohlwZXnXP/g3cJpoUQP45efhQvIKBQeHQwSKHwKmP36nXacpuXfu0fcXx6gq0bBv0e4PHGMp2N6fXK+DDoPXmeE7xiOBzGBcnzUwaDPs568rxYCdmtrS1M1/DgwQM2NjYYDoecnZ3RtnVM/UhThBA452iXdb+XEWUAs3kVTw3amiLRZInkzts/5e5HH6K1jk2DWkeP8tKrKx+KVrPe0riWatHG7OkQjxx8cKQSMqW5e+f9/6+9u/uRIzvrOP4951R1dfV0T/e0Z8Yz9nqzQBIkbrhFCpBIgOAGccOfyV0UgTaygrISIEC8iLBik+wqcuyxZ3pe+qVeul7OOVyc6rId7ws4K2Faz+d25NFMT1l66jnP+T3y7AohhHjDu9HB/RpHEQ6OTjk6e4/52UOmx6eY4QFORdQW8m2F1fDom7/DcH5K3uzinbqZSO9pUdTe4FyLdY7WetqmCQsbiiV2fYupMz78/l/h6pz52TktmqIo8d6TlwXT6azfZqW1ZrlcMp0ehctlqxVZlnFzcwMQLvHUdVj/ay2XVxdYG+ZpJ5MJCsXF02dhlanWZFmGc471ek2e58znc+4dH/eF73w+J45jRuMpcRyTjkagQuExGIZIs7IsX84ci1/L7gRgV9iaKEIZg1fhKN1287eubTHeMdSaJA6pHU3bsK0qNJ5hHJGXFXow5vTRt6mdD53cV+Z1sQ5sC95i0bQA3nK9eMFQW/7lHz7igwcP2G63ZFnW/1xpmqJ16MAWRYFzjk224uZ2QVWXpOkwdHQjzXq9Zjqd9rPezisePnzIcDhkuVzinOPk5JTxeMxkMsF7T5qmxHHUx5FBSCoZJDF5nofUEhyf/uynPL98jorCKQ1dtnVICdl1aPtXgr5QjozGmF3MSngZ3X02QgghxOd5Nwpcvq5RhHPmZw85Oj0nGR/iVETjFEXVUFVVWKiwral9xINvfJvzD77FtoXGOaz3OAXWh7B+CAkDrXVhVtB5bNPi64zlLz9lXN7xjz9+zCf//k/8xvsPMcaw3mzYbiuapmEyPqQsS5Ik5eHDR1RV1XdjrbX9WtIkSTg7P2WYDqibgiQZ0DQNw2RIW4ff+eDggDzLaaoaozTOOQ4PD/tCd7G4RmtNURR9FNh4MqFxoI1Bm5DbqyPDtsgYjUZYa7vfUYqEX8evFrXWub6o9V1RmxpDEofCr2rqMDLgLA4fLqV5S1lmJIMBZjBCjw6ZH5/QOk9rW5xvwgUr1wAtrtuM5ryiJVxiu3jyGcvnv+DvfvQ3PHr0iGGakiTDvqjdbrdddvMU71Xf/d/l5e5SPOI45uLiAoCiKKiqiqurK9brdUhnGETkZY5zjizLGA6HACHVQ+t+81ld13jr0DiqzZKf/td/8ovPfka+Wb02IhM62q9+oP1XqOuGQRQRRRGR9mj9yr8DLPLsCiGE+HzvxojCN9/3XzWKoLqjyS8cRZgcEiWvjCJYR13X/bGwc6GbitYhgaAsmRyMqPJbnn36MU2xIdIaHcUhbB+6gtthlQkrfr1FGY1GY5VGJyNGs2PKxvO9P/1zqsax2axZbVYY6zk9mnN5d8Xh4SFNt/JXa90nJ4xGI66vr7vtUxWbzZqj6YzLy0vm8zl5nnNyfMyzp8+YTqd47zk6OmKTZ6Rp2h8Hn5+fU1UVtzfXHBwcYK3lxYsXbLdbNjeXVGXxK4kKNYNB0icq/NvHH0s79y39/p/9pffeh/QN74m0wuiQ19w0Td/Z9V3H0RgTLhRai/UvRxuUUoyShKYJLx7aOny55uKzn4TnTneJfkZ3KSO6e55DfnOkDZgBycEhPj3hD7/3Xe6yjOXNHdNkCMYzP75HlmX9y02WZd0ct+bs7AxrbT8uMx6PaZqa1fqOo6MZNzc3jMdjgH7b2m6+d7foxHRd4t3McZ7nLK8vWd9es7h6wSAC5SzpaEzbdkskujEZrw27vdzah/duh2Lbllg8eVFRbB1KeVC+G1NQXD17Is+uEEKIN7wTHdwvG0XQhFGE9qtGEdLXRxF2mZ+7eUIdRaHDZi1FntO0jmXRMLl3zsPf/G2m9x9h0eEUuPuRnAtrb5WtwDU4PM5CS6jFfVuzur4g9hV///gH/ORf/5nz0yPuHR8zGI24uF0wOzqiaUIHOU1TTk5OUN3RbFEUL7dGeUWaDPuxA60UrkJMP8kAAAZCSURBVLVs1hvG4zHr9ZrBIFw2Uz4UT5PJBKUUFxcXfWZuURT9RbQoimi9QhnTdfN2iQr2jUQF8ZacJVYwjAyDOMI6R1mF5IRdMsguHUAbQ+sd26bGdkfyuwuKkdI458nzDOcsB7MZpAfce++DcCnSulAUu24jmFY4o3F92khIB6mKNVG95KMf/jXjYYRzltzVOGPI85ynT59ye3vL9fU1y+WSs7MznHOUZUkURUxnE+6WC4pyzd3ymuEwwXsfouzqOqwO7tqsm82m36x3//79fq78+Pi4/1qWFfhuJrlpLFGckG3W3Za/lx1ZBW+MKSgNkY4BMFqF4hbFLiTbSWkrhBDiC7wbBe6XjCK0b4wizP9Howi7wtZ0t9atDQH0yjmGUUSaRMRGsbi5IxrNOHnwDWYnZ1RdLqdzFusaag/Oe/Aa6xWW7mhYg1We2MA2W1Hnd7SbBY9/8H0mSczBaMB4OmHVzdbujorX6zWYmMPDw/DzGcMgCqH8VVVTVzVNVVNtq74bu91uSdOUpmn6G+xh3GLbdwjn8znDYRrik7q4sSiK+kSF8RuJCpf9JTfx9uIu3m3b5cLuiloTh6N1ZTS1bcOGul1R213w0x7aqsY1LzfVjcdjlFJc310TjyekRyf4OMVFEcQxzmi81rjdDLVSNCqh1THeGNouAzdS8Lcf/pDz+8cMkgF3WcZ6vWY4HBJFEbPZDGsti8WiH1nJsow8z7l//35/OrBerSnzgnyT4Z1nsVj0sXq71c9t27LZbJgdzYmiiKqq+uUjw9EBxhiG6QjvPVEU4Z3tL1XuvL5wZHfB1Heb3MJnGTYEmu7XVsiKEiGEEF/knRhR+N337/svHUXQA0bT//0oQn9z3Tni7ui46W6SewU6jvEu3GgfDlOapiaqNjz5+c9R21s8oFSE0+FIWGmNMuF7K63xUYzSBu0dqIim8Uync7yJ0Frze9/5AwqvuHx2QTpMyVdhQUOcpFgLi6sXXYaoQnm6WKeIsiypqpBFulsGYYyhqqrQ3dVhDtf6kEFaFEUfuv82iQr/8ckn0gt7S9/5k7/wQF+wNTbMyAIvL/J1xax3rn+pUEq9ViTuRFHUvexUeDNgFGmacs3V8ycU2R1xN67gtOn+Dxhi3eBROBK2FsqiYjqZcHQ0o6oavvtHf0zhFfndLU3TMBolrFcb8sry3oP7bNbrPjYsiQe0bd0ndewymmfTGZvuAtpqtWI6nZKXBbPZrJ/VjaKIODJhgUWS8OLFC+q6ZrW4oCpLrheXjEcD6rJgcjh7rYurlMJ1q6M1QDemUDYNXlksnizfUlYepTxeObx3LJ//Up5dIYQQb3gnOrhfNYowO3+7UQTbtmgfOrbOObbVFud9f2RcVVuUhjRNKYqQLJC7hLMPvkXV5eVa53EudOXcLu2h37RG2HrmIa89t/mWJ5dXZEWOtw0/fvwhV0+e8N6D90Epym1Fay3Xi2u8C13mQRxzkIaObFVVKKUZjUbMZjOWyyW2u2S2m99crVaUZUmapn02adM0DIfDLlHh5I1EhYPJlMFg0CUqmD5RoSxLyrL8v/3j/z9njMEpKKotVdt0L0UKpXU4yrcOW9U4a9+IEtsVd6/+DXeb8YwxRD6cxseTe8wf/BYmOqDVCZVOaVRCWLbrsNaxtYbMx7jRnDaZkDnLsshJYsVHP3rMarFg23hul2tWt3ckgwFnp/dYLVfkmwycp95WTKdTttstbduSZ1l4NuuG5d0dTdPw9OnTfmZY8XLmdjAY9M/pLkIMwlpq57vPYxeNFyesukSGV9M8wsy7fa0za7TB6FdPGboueBcrJoQQQnyed6KDK4QQQgghxNflnejgCiGEEEII8XWRAlcIIYQQQuwVKXCFEEIIIcRekQJXCCGEEELsFSlwhRBCCCHEXpECVwghhBBC7BUpcIUQQgghxF6RAlcIIYQQQuwVKXCFEEIIIcRekQJXCCGEEELsFSlwhRBCCCHEXpECVwghhBBC7BUpcIUQQgghxF6RAlcIIYQQQuwVKXCFEEIIIcRekQJXCCGEEELsFSlwhRBCCCHEXpECVwghhBBC7BUpcIUQQgghxF6RAlcIIYQQQuwVKXCFEEIIIcRekQJXCCGEEELsFSlwhRBCCCHEXvlvQ35Km+fO6QsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "augmenting_datagen_2 = ImageDataGenerator(rotation_range=40, channel_shift_range=9, **params)\n", - "itim = augmenting_datagen_2.flow(x[numpy.newaxis, :, :, :])\n", - "imgs = list(img[0] for i, img in zip(range(0,10), itim))\n", - "plot_gallery_images(imgs);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Iterator on images\n", - "\n", - "We create an iterator, it considers every subfolder of images. We also need to rescale to size *(224, 224)* which is the size the loaded neural network ingests." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 62 images belonging to 1 classes.\n" - ] - }, - { - "data": { - "text/plain": [ - "(10,\n", - " (224, 224, 3),\n", - " keras_preprocessing.image.directory_iterator.DirectoryIterator)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "flow = augmenting_datagen.flow_from_directory('.', batch_size=1,\n", - " target_size=(224, 224), classes=['simages'])\n", - "imgs = list(img[0][0] for i, img in zip(range(0,10), flow))\n", - "len(imgs), imgs[0].shape, type(flow)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAIQCAYAAACov1koAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvVmwZMd95vfLzLPWduuufZde0AsWQgBBcCcBSpQISiIlURK1eDSywhOj8ItDYylsh+UHe8K2xuEJRYzD49CTQ9J4GQ0l0dQ+oiRI3EWCAEHsQKMb6PX2vX3X2qvOkosfTlXd2xeNjWygm1J9ERW1nTonT1aezC+//P7/I5xzTDDBBBNMMMEEE0wwwQRvDPJmF2CCCSaYYIIJJphgggm+lzAh0BNMMMEEE0wwwQQTTPAmMCHQE0wwwQQTTDDBBBNM8CYwIdATTDDBBBNMMMEEE0zwJjAh0BNMMMEEE0wwwQQTTPAmMCHQE0wwwQQTTDDBBBNM8CZwSxFoIcTX36L9/qgQ4kUhxEtCiP/urTjGBP948Ra2298VQmwKIZ59K/Y/wQRvRdsVQhwRQnxRCPGCEOI5IcSv3uhjTDDBW9R2IyHEo0KIp4Zt93+60ceY4B8OxD/0PNBCCAWcAT4OrAKPAb/gnHv+phZsggleB0KI7we6wP/jnLvnZpdnggneCIQQS8CSc+7bQogq8DjwU5M+d4JbHUIIAZSdc10hhA98DfhV59wjN7loE9yCuNUU6O7w+aNCiC8LIf5QCHFGCPGvhRC/OJwZPiOEODnc7qQQ4hEhxGNCiP959PsDeD/wknPunHMuA34f+Mm376wm+IeOt6jd4pz7CrD7Np7KBP/I8Fa0XefcunPu28PXHeAFYOXtPK8J/uHjLWq7zjk3+twfPv5hq4wTfMe4pQj0AdwH/CpwL/BLwB3OufcDvw38i+E2/xb4t8659wFrr7KfFeDyvverTDrzCd463Kh2O8EEbzdueNsVQtwG3A988y0o7wQTjHDD2q4QQgkhngQ2gYedc5O2O8F1cSsT6MeGSkYKvAz8zfDzZ4Dbhq8/BHx2+Po/vMp+xHU+m8woJ3ircKPa7QQTvN24oW1XCFEBPgf8mnOufeOLO8EEY9ywtuucM865dwGHgfcLISb2uQmui1uZQKf7Xtt97y3gvYn9rAJH9r0/zET1m+Ctw41qtxNM8HbjhrXdoX/0c8DvOef+6MYUb4IJXhU3vN91zjWBLwE/+l2VbIJ/sLiVCfQbwSPAzwxf/5NX2eYx4HYhxHEhRDDc7s/ejsJNMMGr4I202wkmuBXxum13GIj1O8ALzrn/7e0q2AQTvA7eSNudF0LUh69j4CHg9NtTvAm+1/C9TqB/DfivhBCPAktA6+AGzjkN/Arw1xTBLH/onHvubS3lBBNci9dttwBCiM8A3wDuFEKsCiF++W0s4wQTXA9vpO0+QOFD/SEhxJPDxyffzkJOMMF18Eba7hLwRSHE0xTi28POub94G8s4wfcQbok0dv/pP//nbnqqhjM5eZ6js5wkSQjDkDDwWF9fZ2Njg93dXXwZInFgNYOkR7e9C86SG0dqBCdXZpmbm+Oeu9/BVLVEs7FDe3eLQZZircXzPGq1GmFQJgxDPM+jUqlQroRYazE2g9xgnCM3gnJ1hur0DFG5hHEWT/iEvsIZi8lTjDG0ex0qlRIqrlAqlajVatSnZrAWut0ug8EAmySsXTnL9tYGM/VZhJR02m1MltLsJ1gktVqNarXK8cPHuLR6lu2tXTwvotfrcGltnTguocKAxeUVsiyjXKmhtSUMStTrM1QqFYQQaK1Jkj55nrK9vY1zjrlDC/i+T7/dJssS2s0O1doUfhjRHXTR2vL8c6cxxrC51eTSpUvMzc1x+PAyypMkSYLWmjiMUEphjKHRaPDsc6cZDAY4B74f4HkeSik8zyMIPLTWdDod8lxjpWTU3kbPhVh1LV7ru+vBWvvGNnxr8KYvoH6/TxzHCCH4/d//fT7zmc/wJ3/yJ2/4fF9RgAPX8He6n+8WLm+Tda5ClhHOn8IJj6vP/xE7586Qpilf/It/RydzdHuacmWWPM2IfOh1DE0LaZYBgun6IXJr2NjcYWGmzqd/7Ed48tmnefbFZ5mqxaxd2QKrkcKjlSSUw4BIRXS1xTjItSVPc+bn58nznCTNMTbHOYu1FqEC8jxHSgnGoqQjCn0QGUmaI6WHsRJjDM5Bpi0A1hbPzipyo9HW4ZxASolSCozFGDP+D0b/i7UW5wRhpMBJBoMUkAgUz22lN63tLi4uuCzLcM5hLQjhUJ6gUvZwWHLdI/BLRLGH5ylmZ6fZuNrAupzZIGarlbLT6HHiyBxzS7MQRDQbbY4vVpDGkOeGRqc/rGeolKv4gUQIRafdZ2ZmhhxLu9PhyvY21lqsEfi+z9GlaZqdNlmeF/2ntczM1in7ijtP3IHNDHG1wkOf+CVmDx1m+fBSUd86JUsHXD7/FJcvvsSg0+fpZ8+xdOQ4H/34jyEDH+cEg36KpwTWWv74j/+YfrdJq9Xi1KlTLC0tEcZVHvjQB/i9f/dbdHpd1i5fZbGU0W530aLEVC1g0N5mdnaeu995L4KUv/7S13nXu+/H05YLV85z+LbD1BeXeeTRxwj7Xd558k6UF9I1HgjNpYurpLlgs7VJt9cjswkrdY8fed9JQmvodHp0vWna/RQ/tFjd56kXX6aXBcggJrIOX0C32SaKStw7M003SVntpGSZxjiFdQ5PKabKAUpKkiyhEvmcWFhm+ejtnN/o8oXHH+PCTosf+OFP8YEPf4QHP/wAs7Oz1Go1BoMBL7/8MqVSCc/z6DZb6Dzlf/zv/0v+6ivfuilt93f/xX827vCke5UxRF77mRCCNNcEnkIIwSMvnuObZ87xqz/xULG9c+TaDq9VQ5Zl+L4PwAc+cpKpaZ/tdp+gtEBp9jBBaR5jDOkgIQhLJNph0gSrDUmvCXlO2m0QCh/d6RMYi/ZAkaGCjMvrHdqtPkpGuOF/JKXE8zy0MQghqJZrxTGy3vAc1LisUnjFs5QgLAKFc3vnLKUcbzs6/9F7pRTOuevW26jfEkKAfO2/9+C+9/d5wr1yu4PlcOLa7yTimn0W/e3e9kIIhCj604Nld87tcYvhb5RSZEaPz9dS1NfP/Mt/dcPa7S3jybTW4kYD1LCylFLkScqg28NpQxyE+H7IoN8Fa+j3+2x3MhwQ+B5HFwoCGkUB5Tik2WzS6xQE1uAolUr4vk8URXiewtgcjCVNU/yg6LittXiyGDzDMEQpn2p1Cul5CCVRQqKEo9NqY7IE3/cpxyFRFFFfWKRcLqO1pjdIUBREW2cpNuvT7zSxOufiufNE5QitNc2dXRJrCaISWmd0Oi2yXsIgaRMEEUmao3yParVKqVwBT6B1Rhj69Ho9hFA4C9vbmmq1Or5AyuUyaSoRQpAkCZubm8zNzY0bmZSyqBdXNLQ8N5TLZXZ3d6lUKtRqNTzPo1wu4wfemHCMCLK1liiKho1aAA4pIYqC8WcjYlEqlcjznEGaY6y55n8fXWjuZlLgtxmPP/44v/Irv4Jzjnq9zu/8zu/c7CLdEAhRIyz7IFPQCUII1i+vcu7FZ8F5aBeQpT0QGe+9910Mkg5X1y/h8pzOoEsYSAaDHKsNXiARztFs7nLp0irLS4d56fyL6KRHvRKTJgPCMKSbDorOURuEkFhjisFDCjq9Lnme46kArTWep4rJ377OFgqTZK4tUkmk9HDOjAcr2OuPpCyupyGfHu5jr4OX1+nUR/2Y1hqcPx7YhBBYY9/S/+P1sH8QKsrK8Jr1yXWCswJjHErJ8bWfJCkbV7tcoYNSklNH5/G9vcHaWovWmlLkY4yhFAYkSYZS/nAQU/heiFB5MehR/BcKAVKSa4Mvi8HTDz0anSZCKrSxRb+DQ2tNluWUpURrTSWO0DrDWou0OVrndFq79HoNWrsNKpUKvq8KYpRYQNLv9cjzFCklCwsLrCZ96vUZFhYWmZmZQ6iQz372s4BgfX2d7Z0tfvahj5Pljr9/7EXOnn2SWBk++P4PsHToEE8//ST1qTmeffJZTh5Zot9tc+7cy6jdLvWFZS488QRPPP8iH3jPBzh85CiX1i9y4eo2SgYMjEVri3USJ0LOX95kpV5BWyhHPhJDKUwReFyemWGwkzHQkmwwIFQS4YWkOkdJKAeKsqeIpGKQGxxFOx4OrSRaUxYRqBDrBUzNzlIul5GNDqtXLnFns8iaOSKPvu9Tq9Wwtqj/KIpIXE6pFL1t7fRG4cLmNv/+S4/gHJTCgF/++IPX3c5aO77WAfI8JTOCMCwhlUI6AIvJM8IoRvk+JkuJqzV6jQalMKDV64DWGGeRCKyQOAsID+v6xKWAXm+AM25MFotxOEcMhaZOt4WUklFXJYQdPotr+q/9OHhNyyGXkVKOj/F6GPV19gbkWjhYVruf46k3b4DY4xvXYtzHHsA15N1dS+xvBG4JAi2EoN/vo4TD932StF8QagL6gx7GasqVEn7g0Wm1cSaj225hsj4LZQ/lCcpxBBZ8X3HstsPkWY9+t4l1Bj+KKfkFkZPDTldKSRiG+L6PVIVypLUmDENK5SrCj5iaqjO7cJhBmgDDP8MadJ4ShiEDnRKEIUqUOHr77VTKU+M/st1uk/b7NLbX2FhfpdNqsrt7lSAIyIymv9vEj2LuvOd+atN1+v0+vV6POI7xZUCchySDDCMUWudMz8xSm56h1WrhezG+F7JwaIY0Tbl8+TK+79PptIjjMkEQcOnSZarVMqVSiUqlwur6GnmeM1evI6Vkbm6GnUYTazXGOowxVKtVsiwjzQxLS4fG6nxciojjuFChsxwoLoTRhCMMQwCmp4vzF6KYjDgnSNNC+c+yDF8pnBkR6GsvAiuunX3ux6vNlr9X8ZGPfISnnnpq/P67XQV6q+rmzda79XKkJ9Dd51n/1mMopnn3O47wlT/9A65eXePeu+/gwWPHePzbD3P78VOUpkK+8PA23dYmM1NVOt0eWuR4IkM6wT0nj5DnOZdWL3JlfQ0lc5zTzM7M0283wabUooDMKlKd48cVhPIKMux5GOew7HW6Qgg8z8PmliAIinOUYLVGa4OxDukcOFFMrgFrHUrtKRqFQuX29rWPTDsHnueN3++H8gRpmo8JtbV7g8nNgnUaPygG1GSgKZViEJY0MVjn0BpwDmsdxuT4fsj8wjTVWkQViXOGKAoLYkBRz8YYjPPpJzmecwS+j3CSJMsxCGzuUMpjenqObruBlYJeb4AUgjRJyYxFGY9BNqA9aIF0pFmGEIJWp0McyEJV8j3y1DBVLZPlCX7uIYQgzxIGSYfN9Yu0drZp7TQJy4cQGK6uX6FamyGOynhCcvbCBVqtFnNzc4hjx2m1WoRxmTgq02q1KEUhqi+IlaK9fZWzL50DqTh+2xwrh97Poblpzp17mUcffwKjBQk+7zh1F63WDh964EewShBW6szNH+LrWiGM5tsvvMRLf/lFjt1+BzvtPoIM6eWEYUCv1WN71zJXizHpLisLc6xMVakszbHVWAdPcmh5jtXdl6hXIpI8JRCwND1NmvTomoyyr1iqhmTGstV3GCdwDnqpxjpHFJZoJylH7rqHJ154iQ988Ic4fOEyXRFy4fRznDt6jOjTPwcwJiS1Wo0rV64U40EUomTM7Nz0zWiywB7BHbW56+HgSqeUkjtXFvmNX/yp19y+2G+hBo9IpxcGaGtQTg0JmKXXbRIEEfglnBDEsSQIFSmGZqNJ1hkQaE2mDcIIAuHjlRQ+iiy1TNUC+p2YLBWABuHjADkkuJVKhV63TTG9FwgUSok9hZh95y8EuGvJ5f7Xo8nAiDw7AQgxpsdin4ovh+TdOYeQ15Lf/erx9er+mvFiX/0f3G40Ydhf50IInLHjOh/9zrk9Eu6GfdFoHweJ+ei3o++stfhSFcp28SOQN9a1fEsQaE/6YDO00fiewGoN1uLyHC8IWFiYI0tSur020sbsJB26nTaegOpMmTzPcfjUaxU+8J53k6Q9ms0m3V4P35NFJ68NVmcI32dpaRFPeOTWUSpXCYKgUFz9EOn7WOFTqU0RBAFGOMIwJMsyrDYgcrqDLlEUsXLsOP1uj+Wjx8iNpd/poPsdrM7p95tYAWuXLtHttjE6wWiJF8e88753IpWHFbC7u0tzewelFL6wtHe3UH6A74WUSmUEYD2J9nzydocjyyuEpRicxA9iqpU60gtpd1s0h0t5pVLA9EyNRrtBliaUojKL8ws0m002t7apTVWJyxXm5hdI05R+v48vBTpLmJ6aYqfRYro+NbSJlIhKJeJyUc9pr4vWGq0z4jgkrhRWhDiOOby0jNHFkomUkqtXr2JMjlA+5eoUUDT0YulrMG7wAHmeY50t1MEDfeL3Cnl+LcL5at/dyMnB69li9neAr3XM6y37jfBavxP44Hy86jKRl/LoF/6cc9MLfPKTH+HQiffzzYf/b+rT8L53vocs+SpLC+/nB3/gIb74hT/jwnab+elpKiVNJfZ44KMPcfXSJdrtNlu9hFQnKKGZma1zcaNFyRMoZzlUCugZwaWWxXUHQ3JaLNfh7HjZzvd9PG+oxukUEBgtQFniMMTkGicdwopilWQ8SDvADMmyHUp5AiWKblnKveXS/UuQUiqcG9lAHMYqhChU8v3LjTcTVhtK5bAgC8rHWI2zDoFBSNAGHBqTRgghae8OqNdiuljIDdWyjzMeAg8hFEoqpHA0d/pM1yt40hFHiqYe4HuKJLGUKjF+WCJPM4RVGFKEEGSpQakAm/cYDLrstjXlksRXPgkZUvkM+n3mKnN0u31WVo5wx213EAYKdIJJA/B8Ou02g/Y27dYmzg4YDBI0HapTda6uXoAly+e+8DmCqMQDDzzAfffdx/T0NDrpkScpa1tbDLIBH3rfe/mt/+PfcNeREh//yHs4trJIa/My97zrbp4/fZ56tYx0cNc7vo/w/EVWr6zxEx//CL12n6Mnb+eBBz7GI489yrvvu4e11XUWphd4+vknuLy2RVyZZnurQ70aUavP0uo1cTZjbrZKJQzp9jNuv+sO1rd36QeWjZ1Vwpkatx1e5K7ZNvboAs9dvsCJ2YAQwYzfxYY+mdGkJiMOfXQ/J80NYegjpE+aDDAWPN8US9rVOj/0U7/AXLnOe/odljea/N4f/C4vPvMYu7sNojAk8AXKD0jSPo3mDkEQYFMfkydsdK5776e3BfuvHcOrEDx37bZjYoU8oGIW44+xFoarIUIopCfJTXG95k4SeAKX9ohri+R5SlguYfGRopg4h1Kzs7lBt9su+powpLm1gTCaUnWOItxMIjyfpKMoVQKmZspsrrXwCbBKkmM5cccpLr98nkG3hyeLVRykwEqHEkV/4iOxaqjkAlhJwaMdQrz2xGJcV4VOMFTHC7IMe+T6YD1fM3a4V34GXGP5EEqO7WxK7K1Q7R9bjCzKYQQI51D7yjwmyBIQoIakQDiHEwLpQO/bbv+kygqHHKrb0jrccNVbKInR+WvWy5vFLRFEOCJViKIS1FDdUUoRhiFxHFOr1ajEhQVjMBgUkwkFnq/Gs6uFhQW63S7pICFJkrGFQGcJargEKYSgnwzwvIDpmTlmZuepTU2jwhjlR0gVUq7WqFQqeJ6HlIX/d3TROVeo5L7vF58rD+EMvrAIk9HvNWm3t9neXGP18kVg6HkNQmbr03iehzE5cRzTbbVRCKKosHNsbl1FqmL2qZQiTROiwCcOI6w2+J7i6voq2xtX2Vi/QqfbRmtNvV6nWq5RLpfpdrtIKYmiiKmpKdI0ZWNjHZ3lVCoVnHM0dpsYbccKvO/7Redo7dhvOFLqQz8gDkPiMCQKgoLoD7f3fZ9SGFErV6iVK1TKZaIoIoqiwvrh+0MvdDA+1ogwj/7fa7yiziJwN3yZZYK3EQIIZolm7iWswJXV55k7fIyp4/dy9zvu4eXzl5iaP8ny0bv5ytc+z9qVFxAipRJ5TFUCfOk4ceIESvmsXrmM8j0ajQblchknBTuNBk5I+klObgq7knQWnAIEWu95kK8p1j5lRim1p8Y4N16RwhTKx6if2D+A7LdxqH37GilVAMZZtDXjR26KJVzj9tq8EG48sNxsEj1a0h1d09YWHlCEHS//jhSp0bNSPp6QeF4ATmDN8HyEGtdHGIaFtC8FYRAQBAHOifEq3+g5CAovehRFSE+N62fkvxQOlINyFA77oQg3JEJBEFCuVmg1tzE6AZ0x6HfpdXfZ2b5Kv9fFV4KkP6DdbrO9uUWWpDz79NPs7u6ytLTEkSNHmJ+fRwjBypHDhU//7/6WKPBIBm1KIXzuc5/ly1/5Ct/85jeLvlIKzl1YZWZmlqeefIIvffHvOH/mWRbnZ/mt//3fsLq6Sp4N+NuH/wqTp/z15/+KZ556gnajwaG5eRYXl4nKMWk6YHnxEHEckmlDuVTn2OGTtJtdfD8k1QKrSjz+3Bk2mwlbzT7tzoDIj3BO0BvkbHUSWpmh7wVor/DAWgOJgdxJrAMpvfE4qApxFYDeoE9tapbNzU3CMKRarTJTr6CTPoN+j1arNVQG3Xi1Mcsykn6HTrdFs927qW33O5mEHryer/f7UT+xP5ZBWIevPKzVOKnI8wyhPNxYzbT0ej1Mbpibm8MaQ5b00XkKplDxtS2ukUwbgiBACVCBgGF/MLomLly4gBxN9IfX52is3N837X+8mi1jrCQfIKZjAnyACN9IvBFh6GA5rvnu1YSo4TmP1u5Gfdb11PCDMMa8IQvLm8EtoUALIcjyHN9jSMzUkAQWxCvwi8Yz6LVoNxv0up2iASpBv1f42JaXlyiXY7Ispd/rYIxGeYIg8FDCIwpCpmdn8cOQqFQmCmKUF1GrTZFLiZDB0POs8KTA5FmhilLYNvzAJ+0l9NM+1WqVOI4JwjJKeqRJn36zgcsanLt4iXarC16A04JGY4ssH5D3FX4QE8QRV65cZmNjg3K5zMzMDJtbOxhjWFk5QbkS0250sTYnDDx2d3cxxpEkGWEYMlWt0u71QAi2t9ZZvXKBqal5grhEt9tFCEeWHcJZ0LmlXC5jco3yJJnOMba4oDc2Npifny8mKVHhEZ2aqrK9vYtzjn6/sNH0+32qUzV83y/8o3kGQJIkeJ7H4tIhgiAgiiLCMMD3vaF9o/CcCynJjWAUrAR7F9do5jgaEEVeLO3om7y0PcF3BoGmmJPHVE9+gvc9eJanHvk8OjyJC1ZYeOenmH7pErd/3/vQqsLK8W1OP/M4K4fq3HHyKMILOXPhEvNLK5w8dQf/32f+X86cfQnrl+n1u3hesVwZhxG9JCFD0RaSxPggCvV0NPCNJ2tiqDgN1eGRH1AIgedbjCsGwbm5OTqdNr1eD2zRPkfEuiCPQ9KMQko33HehNI98vwI19k7r3IzbthB7S4sj24dzAnsgHuDthraGQZIQxzFT9Sq9XgcozrGISRE4IYrJSp6grWKqMovLwZeSTEOea/LMUCuX8MLhpDrw8ZViaXGZOI7QV7fQpo0Vep9dr1Dcev0+QVwiiEOMMQRKIj1F7IVECrxIFra31NIXKXlmhv2Gxg8kreY6jdY6Rw4dAelYvfACO9sb9PtdBl3B1maD3EtoJwbrl7AGPv3pTzO3uMTy8jL1ep2vfvWrNJtNFhYW+Kc//7OcOfs8X3jmEWTe4dSd9yKE4B0nD3Hs5O184euPsr56mTNnz/Kf/NxP8rWvfY1PfvSD1Ot1/tnPf4J//0cP89EH3sWXv/E4jz/+ODubLdqNTT75Yx8j1VW+/s2nmZktMzsbkwwazM0fIZIeec8SzkTMTi/ghxX+9mtPEMdVavOztFNN0rBcUj3uuv+9rKxUOHt+i/PbWxiTEnqGkpLMhTGRF2BdD2M9uqkjDC2+EEzFPrnzMc4hlMJTAb3mFoN+g9rUDGFU5p7jx3jxzBnOPvM47ZWjrBw9gtTFGKKUYmdnh63mFQZpwk7r5hNoeG0/8AjXWj4O/n5vu9Ek0fN8tDVIIRDOUSpHYHOSVEOvQ1SdwVlFEEQI4ZBSoERAKbB0Nq6S7rbJ2j3CoISwDoPDCku5EiI0yCTANwmVUOD7AisCwrJHqA3WGMQw5oCRhcI5JGJcPisOeIHdXtn314+U8pr3o+fRCu+4Trg+YX1Vi8aB+h4r0QfqfDSh3v/Fter/tfvZT7rHosYBHFTFR3aQ/eevxF69jayio9XEG22buyUI9GjJH+xQlSw6SLB4UlGOYpQSNBu7NBqNIsDPV4ShPx6QpCoUnizLMCYn1ylhUCbwPKKhClIqlbBQRLAiCaMI7SxhUEZ6/tjjmGX5nidoOBvM05SkP0B6HnFUhmHwnRhFhTpDc3eb9fUraOOo1GaJvJjG7jalcsja1Q3m5heZmpnGOsHS4iLdbpdKOaY3iIez/KJjy7OMUinE2LwIcAwjgjBkemaG7Z1N0ryYSUkc6aCPm7L02i20tigl6Ha7lMtlekm/KKMsZq7K90iShDwvljFGKn21VilsHL5PEHi4buH5zvOczc1N5ufnicoVhIN0FGg59HpOVStDpdrD8wqi4Q2DisIwBCHIu8k1QRnGGITba8wjAn2N94nXVghuRbymveFVvvtuz2d/p/NGj/9mj/lGth8FoRXwSCVMzb+PBx+YRlfr6G4DNXcHM7Mles3LuJKiv+uoTx0Hl3PktpM0Gg2E05w4eSfOORYXFzl/4WJxbXgBUgmMKbJkeH6IUJaBNiR6T4nYH31+MOBkvNLFqPO1SFFMzsMwJM8jut3uNe1yFEwjpUTnDrBIqVBCoK0Zk3IoIv/NsA1bZ3HDeHC5b/XKDCPsC7/0jVVD3ixG2XSyLKPuKxwWZ8EYibUOKT2sdegccJIs1XQ7CdYpjC2UdWuKpenRZNiYIhjZOUepUkMCvh+ipI8QhdJmrcVISRx6qMBHDhXw0X/lycJrKlEoofCkIsOCFXh+MBwsDUnS59DiLFevrpHWSmibc3X9Els7m1jjyAea1Fi8yGdmdo4jx46j04xBmo5jOpRSJEnC8ePHkSan09xm88plelubvHz6DGEpZHtzjZmq4JF2RrvT5NTJY3z8oR/k8sUz9LsNpO2xs9FkdvEExib83v8Pn4MLAAAgAElEQVT12+wONDPzhyj7Mfd8/EGubl+h2RJMTU1x8tQKvX6b7fUWvU6LxYVZeq02yaBBtRaws7vN/OIRBIrd3Sal2hSN7S0+9uCHee6Fl1g+doLl6TnWNhrkWtBPLLln8IVgkOU4cvIsJ9cS4wIi5REKARaSdGiZMZqk20VnCQtHTpAmfeqlEtXIo9fcphUXwfBK7nn/AS5cPjdWRW8mXs2Otp9Q71dgX83CZq0Zr4SOMJoQx+Uy/W4XsAhXBJ8WAfwhuXN4XlDEEBkzDmJt7jSJlCKOY3qdHCckoe8Reh4Wh801VltC5/BDhfI9ssxwdPkoqxcu4iExw+BiIWVBAocPMfLyymv7++Lrvf5u/4rRCPvtkqO4kBGVPEhT99fTQb95sZ9rJ/7j43Ht8Q760A/+T2rf6/3/ydgTfU0fvs8mMvps3/ejcxsT9rHB+7sb+14PtwSBHikzuBywxHGM1rrImBEHRFHA7s42ly5cpNtp4wwEsSKMPLLUUSnXOHx4mVIcsnn1CkYnzNSnqJbL+EohseNAQT+MiaISYRijnUOqwn/tsgwjPaT0EFgExZJjL+kRKI9emqKUwI+iQi0VgpJX+HzyPGer2WFzu0dlaoHBIMU5webVSwgSdOo4cuQI5WqVwaDHoaVl2o1dwjBkY+0K/UG3GEyzkM5gwNxMGWMc3e6AU6dOsbm9w8z0HGmaMj1VY5BmdDt9dJoRhjGbG1fo9XrUp+eRUtJoNCiVKszMzBP6PgJLrgsPXFG/Id3OAIByuTxMQ2eISxGVtMLVzebQamK4ePEigfL44Ac/iB+XEMKNLS2e51GvVRgMBkVH6wk8zx/bXoIgACFQgyI94cj+IopZB8aYIkgxjun1esNyjMjHBN9zcEV6rkIv0TB3L1JVUMkaSj8BvI8orvDwn32WyxvP8eD7f5zZ+ZMsnjjFkff/BNPnv81zL55m+fAd7DY2+dSnPsVTTz/Dlx/5NtVqlY2NraJD9w1JrrGaItBNRUgylO8XUexCjG0Wo8HfOnuN+mStJggl3Z5GCUGtVqOxs4OvinZvcePfCqXGg9SILO499hQNM7RIF9sWyjNDBRr0eEAq1OybPxH0g4AsH4AWZHlvmKHEFh5yu3eORhcDaJr18XzwJJQDidGFpYNhKj8oyEfg+czPzyNlQJKm+H6RLlRrjVCSPC8sbFs721Sna+QOpDP4yiMOfZwxWK1RfogyCqEtPpJguAoWBB4OQ6nssbr6ItiMx751lnIUcualy7R6AwQ+Vjuqc/N86MGPMX9omVa3iLtYXF6iWqtx8uRJzp07x9133023ucPjX/siJ5an+Mrn/5Cf+OGPMfveO7m6eYEfuP89fPrHP8Ev//pv0djdIqiV+Ou/+CxRvsl9776fagWqlQW+/I3HIG9zeOkw3/+uD/IXD/8d7Z0G240p/vI/foXq7BzKK3F1bYO77jrF2WdPMz+zRKe3zcpilYW5eS5cXGWqHHF5e5e56TmkGaAySc11OPPkl3A9j+dPv8CxesRttSmudHq0UksvzTE6QeLwZIKHz2y5hpQeSjhC5dAGtHWgDWmWs3r+DF4A71o+TKPVol6tcfzIUVZffoHDtx2nMxgwU6sUAfODAZcuXSKzho31c0TilRkPbkW8EYU6z/OxRWK0recV1rEoCMBZnEmJy1N4pYjBYEBlbhnPC8hzQ6fbwmV92u02tdlD9JrbaCVQ87PE5Rpx2ifrJyTtNsIoPD/E5gqvLKmv+Ny3dBdPfPPr+MP+RuKBc2hXTMYjz8cZu5fBQhXkce+83qjAMSSar0EiD9bViAjvTTheaZcY73efB/ogIT74GeyzbowmCW9EqBl2ncYalNgLOByVoyikG6vyIyZxsHw3CrcEgTYmH0vuvgqISyFaq4I8+wEbGxtcvHCebrdNlmkq5WA4SEqMyYYePoVOU4SDOIyGvrvC31gtx1SmalTrcyjlE0YVgjAsyHAYI62m3+uBkIWa7XnDvLEO6wSZsphcE0URtalpJJY0Sbm0fpF2q0Gj3UGogCR1RGFMbapEa2eTixfO4gcK7RlmZoo8zNVSielqhbYzGKOp1iqsrp5jfn6WUqWKMdDuNLHaUJ+exyA4ceqO4jyEoN30iI2jVEnodHsEQcR2a4fp6Sk63Ta+H9Jut5mdz/D8Ird0nvXZ2t7GGDdM5+WNvVTdbhfPF3iymA/GpYipqSqbm9tDdd+xtrY2DsTSrphxK09gjL3GkzXqiEZkeezTGip8I4VKSok/nPVHUUSe5xhjxqqGyYsgMOcKBW9Cpr+XIIt75+YeLtL0AkuUeFx+5POk7klWVxOsLPPQD/7n7HaeJ+sPeO+dn8bGK1RW+hw5egcmz+nsbrK4MMOjyWDozU/xvCL3abfbJc8MMvDRWKwrlj4rQ9/9aIIHoxzMQzX4gBIhpUIM/b5PPvkk3siHay1mmIHAuSI93X7ybNwrPZSWPRV8VA8cOKZz4o2OE28LpBIILcZZcvYrT9cOmnsDVLszwPdAuIjA8wj8cOyxtVYj5XAlUOcw/B+M3Qvk1MMB2PeLzCmHKvNc3d4pcjILge97WGmw2oxXio2DIkixsOLUajXm5+dxWHzl6A26VKohnWaD3XaXnVaKEB7CwaHZOeoz0/hhiJc7wiBgZrawrv36r/86aZryS7/0i3g24Z677uC5R/+aetmh6FCvwhPffIoH7zvKv/5Xv4HnynzsIx/iS3/zl/yTn/lhyuyytLxMv9dhkBZL7x947/s48+LL/OZv/ibTi8vcfvwoaZpSnZ5n8fAyza0WnhA89uhT1Koz3HfffaxfOc2J40f49hPP0u1klGIfaTOM7jNdDTiyNItMIjrtDQ4vvoPt5mXajTbGJmidIHyFMJYk1ShpEL5FyOLhBQGRZxEYlLZk2uBkQRp3N7aYqpdJBhmeF7B8+DY8X/LYs2f4/o//GFmSo0sWnKHbbXPmzGmCcMD9976T9cubN6XNvhUYEcAROYyCkERn+GGAkgoxVG+ttYihQiylZJD26XXa+FKx1WhSKlcJ4xq7jQ3KM9OUp6YwuSZrNUj6fcrTU0SlEt3dJkIU2WNO3XkHZ587jydVkcZXKoQToIqRT0qJyfW4nJ7nkQ9XvrCFHeP1uhMnKGwgI2V3+Bsnru8/3k9I9yvQMPRliz2FGBjHSwleSaxHosHo/XXLdx2v9uthPznff4xXbLPf6vOG9/7GcUsQ6Dwd0Ot08YbpomrlaSyGUjnC5JbNjatcvHiRPE3xFURBCDYjSRJqlSmOHllhkPQxgwG+JwmUJAoCyuUScRxTrVZRMiCOqjghybVD+IZaHNNstRA6w+RFQ8kzS5oNiMs+aa6J4imE57G0ssxgMGDQ2OGlK2fJ0z47W9v0B12mF5YpVWdJ+wOESGnv7nDl3FkUOVmmWVlZIQwVtWqdbqfD+dPPMTM/h3CKfDBAWINOdRF8ZAwztRqtxjbdzi4zh44hTBH57/sB84tHGAwG48wg0vdQ50O0tpTiDOM00pcovwgASbKMsFxh1gkGgwFJkpCmRaJ9P/Dodds40ydQAVGpgvMU9UqMcNNcvrJBuVKh2WrSSwbMlGJir0SaJ/hS4AtJ6hVe9SAICuVdGzzlI5WkVHJ4WYaYKewiWW6Ih7abcrkMFFlI8rwYwMdEep/dw1pLPoqiRWCvsxz0jxlvRT18J/vc+40sluZ8C9Qoz9yDqPSZznb4xuf+T6p+QChb3PPgz9PunGP60DJUTnDxm/+B7vYl7rn/Qzz7rf/I2uWXeOb0GboDic1ynMjxPEmaF0RPel5xKxIlENJRqtUohxFX1tfwAh9fFXYlAC9QOKeGA4LDGU2eG5wpaK6SRYqoXDpyoxGj6HRriyw4Qz9wcY4S68xw1BoOEDC+KcAoWE4O7V1iyJi1lUMVXOCcASe5qbf/ocjoVFhKHDrTOKORwpHl+20uAiFN4Yd2kjy1YCV5LHAmI5YxVliSQYcwDJmpVcmdJc1zlB8hgNTm4CuUJ3HGggtwZFTLAUHg4QtDbg1Ga3zfIkOFS1WRvi6IcdphcwNIwqDE/OwU9VrMIOvQ6rYwVhMKhZWKtZ0um80BURDiSclUXVCfnaMU14irjsCPCEsxURBz5oXT3Pfu+3n6sb+nKnq8/4Mf5s+e/xr/xT/7FF98+FHec99J/ulP/iCLS1Wqh6b54XsWWFieIWveTmP1ST72Mz9Nb3eHmaXb+Je/8b9y3wd/hD/5vc/y4Ecf4md/+qc4fvIE33rsSUymGfRbrF/MmZ+pUqvWaTc7DNI+X/v63zNTcnzx5XM0+wlxVGN9s8FDD76b559/llOHVwhFypFjx/nC157m0tVVvKpPkjiIIsqZRmcWjSPVjsBXeL4s/LnVMo4M8GghGFhHkjoSV4ypWdJnpXqY9UsXCaKAE/e+B6KQ9tcf5S8//+fc9q4Po5MK+Dmz8zNUp0o888RTfOjed/Ce++++ee1WeGNVxWKuWcoHXjFD3Z/T/SDGK0UwDuZP0xQEHDtxnCuXLuOUAhESSIG2jqhSJ017EJUpBT5pr8/MzGH8UkDSbjK3eBgRl3GdFt3ddWLrCEplVLUGvo9stjHCw7qYxs4mQZDjpMFzikRIpHD4QhJ6YTEmipHtS5IbDWgcAdJJtAAhitW1wukwWmkrsooIIbAShNkjnN5oYj/KVCIK6ivcXjpZKSXGWpSU15Ds/Rk19upwdEOXfVYMWyQDEIix53pEyK9Hll9tzJEInHV7tpWxnYWxzXPcT40Iv5JFv73PQlIIea/aDL5j3BJZOAr1Mi18RFoTxQHlUlSkNsGxublJu1ncdVNKgRB7VoDRnf+sNuOo1ULl3PMJSSlRgT/2KhY3W4lJ+32yXotk0KPba9JuN9EmpVwujdNP5cYyPz8PQKfTIelukSctdNphZ2eHLDcIFEnSx/MUWb+HEkXwYpZl3Hb0GM5ZSlFMFIbU63WWDy3S7TRJ+j363RaBrwj9wjriK4U2fSyC2tQMvi9I0x6KQuFFegRRCScUmbakSc5tt53gtttu46477uT4sROsLK7Q2N0tsgoYQ6CKeZLv++Nc2MXNZDxKpRKDbo9+r0M66IEzxHFMHMdIWQTwSClpNpvjrCSjmfAoOniUbUNKht71a7Md+L5PpVJhenqaubk55ufnqVarr5j5jy6u/UqeEAIpbolmOsF3iDyoUjl8P8vH7yNWhrW1NdTi7ZQX7iSJj+G8EkdnSzz21T/HCyvotE2lUqGfWLa220ObhEOb4m6CM/UavlKoUSL+fZ2o7/uv8P+NsN8jCIxXQ/Zn0hi18VFcxmj7g77KPTvGyPt7rd9vP/b/fn9nf7MxEpaEUOMVoGsV8+vHIRQre8U5j9UjYwu/83BlaZy+b+j5LqwXw5ssFXeiIIx8/ECiPDeePFsDRjuMs6RWk2YZjoI4JElCuRKT5BmtbodOr8vmboO19U26/Q6Z1mSpwRgBUmGRtLt9pPIJo5hqZZo4jlk+tMjx40d4z3vv587bj/OOU7fx45/8BI985WHuPnmY1ZdfZOvqeb75jb9jcWGB1UuXOXfmeRYWypx/+Sk+8dD38+EPvJsXT59lbWOD8xdW+bVf/W/4zB98jrvu/j5+4CMfZmN9jc2rV7m0epm1tTWOHV7gjhMrfPyhH6DRaLCyPMOdd5yitVukMD1x/Hbuu+c+lhcX6XR3+eqXPs+xlRn6rV0CYXjx7GmOHruDVrfDbrvDlXYHoyQyVPi+JQhVIZooSZppjJPs9BKEy0m0YzeTDIwg05bMaBqNHVqtBs45NjfWcEbjBSFzi8sYoXjh9GnyNCXPU4x2+H6IlB5ZlnB5bR15c+37Nwz7r8c8z8cr10JJZmZmxnc0FGKY8QeBEgWhG10raZoyNVfHGFPENU3NMj09Ta+zW/QhcUQ8PY0KFCbXmNzS7g5YXjla3Bm5XkY6i8HiK69I4euuTb9XFGI0Jr5+5Y9WbwWvfrfGV/xm3yavZ3s5eKyDCvDB1b5XeppfH2+2jxz1OSP+MOJ7byVuEQU6QecpnvDJsoQgmEYJaO7ucPn8Oc69dJZut0umHZWSj7E5oR9iNczMzKCUwOXF3ZGSQY9apUSS9HHO4Hk+1ggMinIpwvdCcJp+u4dJ+2RpH+l59PvFcuOhxXl2d3exTuEHEVO1Ko2tTfJswNbGOirZZePqZfr9hCCq44SiXq/T6fSYnS7z8umX6XXbDHpNpHD0u20qUzWcLu7OVg5DZG6RJqFSLtFptXnX993J2voGWbeFUh6pSTl26l52tlskgw5JOmDKD5Go4hatw4ayvHyYpNcvgq9kcYErC7kzKAuXLl5gdnaWYJjtYzAY0O12h5lNYlrtZnE3NwR6GFCjMgnOoxQHzE5Xabb7HDp0iEcffRTP8zh8dGWcXtAafS2Z9kZLXXo4eGqcs1Qq5WHWkgjfLyYyly6tsrOzQ7fbHae2GhEfPTSSCrfvDnBOXNd/davjegEUb/V+D0Yqv5H9XG/b6x3jjRx3pNQWr4dibel27v6F/wXRPst9URUXzBNIBWEVozPU3F08+NEfxubQawy4uHaZXlcjhI91mjzVaGcRSuLShDuPH6abGy6srZFmGdoZOlle3EFNilfcUnt/MNGIGBtTRNrLYbCOdBYpJEIJUBJjivzEBYEf7bM4r+ImE6JQku0w48aBW9EKUQQpIfYi6EcqNRQWkpuJ0eGLYMHizqK9Xu+agJy98ykSsgpR+Aqz3GItxY0iBJSdAm2LwChP4PkSKQvLSjmOCH0Pq3Nyo4s0YMKnVCqztbWBNglpmhUknmKATdMivV0vzyhHMbkDk6dYNKkzbDZ3ufzCKjtbV/E9ydLcNEFQJTOgLQRBhLQ5O41tnPKo1KeJwwpIh+9JXj79Ah961zu4enWNqgz40z/4bVZfPs1H7qnTbG3xcz/xAMeP1TF5jb958sv8D//1f8uLLz5B3mjyjb97mJ/+8R/h1MkjdJsN8CM+84d/yvfd+14+/qM/xjMvXeb0+St87VtPcOfRI7Sa26wcPsL29hXOvhhgc02S9qj7kmNLsxw6dIgzZy/znvvv58Xnvswdx5e5+3idmekKDW8bpRSV+kmeOvNtjCqROh9vbprNjatM1eqEXpN0kCP9EBVISs5HBCX6LiCXCVGlxpXLm0gHqdZ4StLvtmm3dtDOsrN+nqzf5PZ3f4i5o+8gXljm8aefptnaLGIDtnZZX7/Cyy+/TDfJ+LPPP8xtx2ZvUqs9kGHCXft+/3W+f/vrTVyvp4JmWYbwFRa4cuUKuTUIaVGeoNdJ8aIcl6Z45RCrTXHDnUqZtc11SlGE8CNKtRqdVpNSOcCXMZ4MsU6g2w367R5pqrnrnntpNjpYHzwc80rQiQMG7QQ/8HGiIObXnOteSYtztKO8z3v+5pGNYr8di2EyCrdvPL12b3uBhSMx4nr1s7+eDo7F+73SI5vHwe0Plut6+zlI3F+NyB/cz4g/7MfBQMZXE1a+G9wSBLqxu42vJHEY4KzGWkOeJrz4zDOcf/kM3WYDbR1BUASQWKPJdUqqi9yK2mQoHIOkuHFKv9/jyNElatU6CwtL1KfmyMKQQBQBhVtXryDTLql2dAYDjBPcduwUSZJw8cJllGc4fPgOvCDk6tp51P/P3pvHSpbd932fc+5e+9u73+t1pmef4XCGi4bkiKTEISlRq2lF3pFAsRHEAQwYAWLD/8SA80cSxE4AO0AsxYLlOIBiWYsjyZQsceeI25Ds6Znp7unpvV+/flu9Wu9+zzn541RVVzd7ZriJMxH4azy811V1b926de85v/P7fZeqQJc5YtwnTlP6vZgsNxx/cJ1ao44rPVrNOoPeNmUyZqXdZPvWJUyh6TqOdfESFUHNI4sNcW+PRisidDSxyenv3SId9mi1F8iLHEfWSPOS1kKLPI0JnJB+bweNIfA6LC8v43k+w/1b1FtNimJIpTIiz5ImkzglqEXIsWLQ6zMejnFDjygKqNVqVi96lNJsNqmqgqVDRybqAxW+HyCqjKIsWOg02dzcRDgBrVaLb3zjG6ysLc/sXYs8IxjHsyrTFOdstE0whDD4vksUBbiuRDqCOBkzHo/Z3t4mSRLyPKeqqhlefXbBi6kutEDoH0E2/v8c0zRRoXGajwIOQmWYaNFigj0PGvdx9OHn+K3/7b+hR8RTjz9FVkRcubHJwXiIdKAZ1SlVxU9//Dm+8vzXSEtr+6wcQeh4+F7IKB6DFJQT17/5yXO68JxXFdCT6853XSuNKWyKnFclFvMs0EZPJmqYSiHZwVpQleC6Pmoi0zg/oBul7D5dl3kpu2riBf4Wq9hNZCe9CYGqmlXUpzbO88RAKVxLGJST6rO2ELGiKnEciRKGrCrQKdSyGr7vEoa+XVgLq9+/6djFvao0tVqI4wRATBJb3X5jBAYrgekHEcqRpFmGE2qSJKbmOghZ8tL5V1CmojSaMIyIk5Qb2yNUFVOanFrdo+FJFtodkiTm5u51FpY6Ezk2j+1bN/g3v/prfP0zv8NPfOQ53v3gYZzRJst+hkvBUssn6V7hbF8TNVepNxK+9Pl/z1//K7/EEw9u0N/bJgqGqLjk5Re+QmNhg8FgxKc+fZ69YcXFixf4+3/3V7h55RyBI7jw2oAjG4d47eIFtr42YuXQCrs3RzRPOBxbW2Z7d4/jR4/SO7jF6kLERz/8LAt1uHD5EmfPlzz6+Bq9fId3vPPdnL1ywI3rWwhtGOWGuBiBAC/yiDyfPE8JhcYNHIrEcCN1OSpjfJmzPxJEjkQ6DoNBj7rvc/bcOd75wCmkTlk6fJRCSd7xzLNs9Qe8ev4sSgn+4FO/w+c//1mefPIJ/t7f+4ecPv1NvvjZ334Lr9w3jruTpGnS+Hpdqbu31dJ2tvf29tg4cQxDSVVVaA1lXhH6OVVl1Ts6nQ7j8Rhfa8hy1k/dz6i7TZVXhK0WWb9LEveoeRHp7hamdHjwyfeyv3WNsNXBr0Ly0YBab4T38CoH+Yi0rDCOXazeeXxT21OfqWdGpTXTRpyUElXNG4rYx5Wwid7rQRjENMG+i3BkXoewcbds3BvF62Gb75U8Tz/D9D3ueayvB/W4h2TfvY7lB51Avy1645HnUIs8fNe2TlG2pXfQ71JM2JNCQOi7eJNWS640nl/DD1xcIXEQqFJTKo1G4AYNmgsr1FuLaMfHFw5FMqJIx6h0xHA8oMgVAo/Ab5ImPcajPYb9faJaizRPSZIRQeBRamuIMEoTSqMIak2CZoNaI8J1JX7gMh708d0APwyotdocjAoyoRmPhyy266i8wOQxVT6kUjHpaMjgYAdTpYzjLmEIeRajipJwoYMrQZV94t6+3abICf2AlcU2WTpm+9YWjhTkcUzoOoSejypT9ne2qbKEuG8dkeJ4RFFZ6bo4TvG8AJCUlcUcS+niOy6NqEaWV6RliSMFrXoNo6pZVXtqANPd30Vqm4QgxQy+4bouUjhIYbVwpXRn0oK2RWwolSLJcvYPegzHCVlRkZeKUhmUMTPr5XnMFGDlfzBzONO3J63wzWAD9zr27/Wz3KsVNp/Avdn7vtG+7t7Pm73vmx3TBC6Mi48QlriH0ROJN40UE7mnxSWKqkkn9BmPMkrHQXi+Jf66Dp1mDdd1OX50g/biAq7UCDS+K22f0mQ4UiO0QunC6rPOJDJt2P/bH8dxrT+YFDOpOqShEgrpemjjYIRGI1EIjBRoMcUxg5nMUFEUIV17zU87MiDs88LuZ75iYqaKHuKt1TsXIicMHMtXQlIUNkkQQuM49rxYSIvBUOC4Btez2rVTB0YtPCqgVMLaRitAOpSlIvRChJZEUUQQRHgiwDECoTW6MlQopBug8RHanViSOQhpVTYcAdJoHARGOxRVDoAqKuJhSZZZtz3HFYzzGCU1db9G3fWJnBLPpLzjkVMcWl7DE5ankecpsqw46G3zC594jv71V+hEOTc2L7NQV9y3scRio0ZWKZqLhziycZhf+kuf5P7jxzn/4su4GKJ6SL/bZzDo0V5Y5tzlA65v98GDg1FMf5xx9dw36W1fYXl5kfe871l24xFRZ43W4hL93hitx3hGs7+/TzzMOPfKWa68dpGTR49w5eJ56u0WRjh89GMfZjze59iRDQ6tr1FpxSDJqZTACBdPhAzjDMdvUhPQ8H1yfHJl4XRGu9wcFvhunVBqtLTXcWUgyWHQ3UU6Hl67jcoyHKO4sblJZXJeuXCazVuXOfvqywg0S4uLHN44zgMPPcHK4spbdt3O5oLJdSula7HMRoKe/Ob2z90L6fmqpMbChab7E47EUYoqS5GOx4ljJ5HGQ5oAxwWjS5TrIIzECIcsTynyBGUEIohQ6ZgiTXFkRpkk5OMEWYJTViw0l/AbNa5cuYIQHqXUlDpHDRPKsmKhcgnaLSpHI43GOFCh7Ngm58WUK6uspUsEGrRBVwphsJ0fBxB2bHSExMVBGI0QVoZzOs9Of4M1LJLazM6aUQo5OSkGgZqcn3mYxzQhn+GaDaCtBtPstVLMzq8QgnLiDgvcNSbe+TPrPL/BfPNG1el7Qkb0Dz5veFtUoE8cO0KWZbbyoTRJGjM86FGVJXleTvAsFrNnVSQ8MA6j0RDPkagqJ89S0qSg0azRWlhgob3MYttKKVWVwkFhdEVR2raI6wUYfGsJLBwODg4QjsPxU48SNZaIPIcyj0nylMiTjNIU13UYxRmDwYBDR45Rq4VIIRgcdKnXQrQpieMRlbGKHS4lrUbAoL+DlJLR0BqWZFlBY3WJG7c28Ryfw2sLFEVKo+ESj8YsLyxSFSUSxerqKkFU42A4ptZqU2hBVG/ghxFlOiaOU4LAIfR9esmIXn8Hz69RazSRbkAt9Gm12ugJrrPX682wjmVpV9ZRaKvSw+GQeJwgQ0tC6Sy0WFtd4tbWPo1GDa1DLr56gfqTT1Kv19FGzSpYdoWuJ04/tqoXhqElfMH5dOUAACAASURBVCCIk5TxQZdbt3ZJkoQ0TWfMf9uyzd/0Onm7Js4/iu805oYb6U4GNAlCIsY7UCj6422efvhneOn0C2wPh8RJRlppQtdlZaGDxLC312U0HhPH8UzTXJkK4YDEEPgBGjVpScoJ3ILZdSommGc7sBqKorjjKIU0VivemAke18rV3V6Q3B7QHcfBnfAxXM+12ueANuXM/rtSGqPmJhrxg28lfi/hOh5LSx329w9wpMMoiS3+22UGR5lqvhvU5LkJt0G6yGmrF4+i1FSlJmpb7oQ7ka7zPEEYRvZ1QuCHAU6akGQp6bhHv38AgCM9tCpnryvLknq9jgTKMkfriqgVUZiSWi1CCpfuKCbWKc0gol2rgYZ6M0QIQeRVLLYaPPexj3PoyHEa9QXK0vI7fvVf/K98/Md/DLrnWX34EN1rLxM4BSc2jnPt0llKpVg7dIjrmzd54tT9bO1sU/cFly5dwgt8MAX3P/gIX/ryBRxvFdHa5sl3Pcqt3hDPlTz3gadYacHPPvfTfOZLp/m5X/hldv/oj7mSHGCiRbywjS/reEGI0RKlBqwfXmF1qcE3XvgqH3/uwwz6MVWuKHLDk0/8GAf9AWe+/jIYxdFDS5RVxkeffYxrl19lLz3M0ZP3EQWK/nDIN1+5QJGnBH4dpWG/N6RZD2cGVxhwvYBmo0m/t01axIRFnWy8R1wZBsM+J0+e4E/+5I946cwrDOI+STzm4sWL7G9tsdjo8Jd/+pffgiv23jHjNEzJcXflW3cXB+5o9Yvbz0/vb2U0DtDqtLl48SKPPVrHYCiLBNdr2nveERhTUSmNG0TWDh6BzlNcnZOnYwIhqLku8bBPIhwOemNyBavLDZQQuK6DGpcksSJYv59MhNRX6jTXltk8f/G2c566G188GTcnogvzVeN5qMTUVfRuzPTEHXuK7Li9X2PdVO9OQOefn3+7qa32m+GaNW9cqf1eu8t3wFTg22Aid4eU8o4FwA8i3hYV6FarQb0eWddAxyZT1kQkm7T17eu0BgVkeUmSFYR+iCvNhE1uCX9RWCdwPeph3So75AW6UrhSoMtqdgNlZYURUKmCNBtZbLTwqLXaLCwsIKhQeUrgwHDQo9/v24nWSOqtJr7v4ToOeZ7i+ZbQ5DsSKaG7u0OajJEIyiIjLzLKqqDX6zEeJ2RpSakAJyQrFEZ4COFSZDlllVkjAVUx6g/wwzo3b+0Q1ZtUJUTtRRzXWmnv7u6S5jlbW1u88sorDIcDPN+1ms8qJwwDjFEIo+j1erPJsKqqGUmwqiprf57nhGE4EZHXs/ZPFISEoU9RFCwvL1OW5czmdUoQnL/hpoPTVGxfCEGWZSRJQpblDIdDkthWxGe6lsbcIcL+o/iLG0Zh5ZqmSaQAqBjcepnx1hkevP8hRmnG+vphljp11leX0UgKpSnLkprvceHiRZIss66B3DY+SJIYpcoZH2Ael3dni09PzAC+vfJhjUMsNKGadb/u/Lk7+Y3jeJZsTl8zT7j9dgOXtwscSc44CVPizRRGdS/S5Dy+21brmdmW53lONdlHUVpbYj1pM2sgL0sUBuk6iEnPeYpbnCcbzxsuzd63stAbL/BBQrtTJ4x8PMfHFQ5lURE5PpHn4+qKui/oNAJWV5cRk4S/KDLicR+jSx45dYIbr51DqjGtEG7duMCPP/MeHGlwHEmzXiPNYo5trJMXGY1axPGNw3zwQ88Shv5kHDRs7405c+4K9dYKn/r9z3B4ucHpr71CPtpGkPO7v/XvCBsN/tt/8I/wfIcPfvDZmVypNi55qUnzkna7za1bNymKhI9+7CN093u8/PIrrK2sEkURK0uLbF2/itAZaTJAJwMeWF/m0HKd48dXMAr6u7uUcczW9Rt8/KM/xcMPPEieJva+0YosL1D6zkRDOuD5Dkk6Zu/WFum4y2C4y/nzZ9na2kQ6cNDbn12/29tb7G5vcevGdVY7yz/ka/X14826bPP33LwpyL3uaSkl0nOpjB1vNjc3EXJyXVYaV0irfmUMjrEFo8p6/JCmMXkek2cxulIk44FNyMsMpUuUkLzzqacYDYeUwhIVlQK/0SI6dBSabVrLq/THMcZxZwYv8yTn+c80f69MY/6138tYMz9mfqeL/Hvhy7+b+F63vdd390b7mVqm/yDjbVGB9nyXltucyU6hFVWeMewfkGU5SoHjWO3KstSEYUBeGQ4tLxGGAlfCQVKidcHSQpPFhQWycY+qTNEKDm8coYiHFHlClmWMk3TSGnYQaPrjAauHT7C8uo5wJePRNa6+dg6pFYPuAe3OElpIilIjfJ/1dttK42FAV4R+gzQeURYxw0GXPM8t9EMVdAcK4fkUVUx5a0CSVayubHCQ3WB5bZWw7rN5kDEcHHBoeYFG2CLOhrhVRaPRIq8Ejc4yWW7AFQzGCbXAoyozNu5/kH6/jxaS9sIKt3Y3KcoKRwrQJVU+QBU5vb1d6p1lsixjNBrNcFu3Lz7DaDSi1WqRJAkH/S5tI2i1G6ysLhBEIWcvXKRWqxFFdba2tjhyZH3GrJ9W1m4roMhJexfyrCRNU3q9HqMkpcithNg0wZFSzqrP1rnt3nipe/39dos3OrY3gj18t0TDN8KVfTfH9L1u893Et0FAJIBrKz8SMEOydMzupc/w0jf+I8++51f42qunuXZzk4cfOEYvTnntZpeqMmglOL5xhD/8zPMEjQ4gZ4OivZct7GA8HuIEocUEitsSdDMstJ5UrScJ47RzIh2NqqzUXVlpHEdS3YPBbv9vYRxaa8q8olQVrpzH4t1WlQGLn74bSjKtjL9VkWcKo7OZbvvtCrlzWyZMa1zXwUy6StKdNHldFy0qMK7Vl89LAi1JspI0zYmiOhpDrlKyUUmSjOmNuhRGERfJrOVrBQ0E0jG4k24WgDEecRwThqHV9ZbWWGIQpyytLrG21iBLtymUoR4EFElCEAR4UkOV4fkhcbrPwWALZax51qC3y2o95NbV04SURCIhHm6yvr7O+GAPaTKKLEZXJa2FZa5dfo1rVy/heR4/+ePP8PKl11heXCDNFNpt8hM/81Nc3ByxefkqP/+x9/CLP/dx/uZ//T/w7sdOceHCGX75b/wt/vv/5dcZpZp/9W9/F8dr82PPvJvLl16js7BEWvkkSUoWd2dV99PfOsPiQpvVxQUuvXqOdz51iuuXL/PIw6soJ6D65gVOvvcJiiQmLyrWjtxHZ9ewVPOIXAily5mXXsYYw+GNQ+xtD3DDOkmWIqWhGUocR6AqcD0PgyTNCm4d7GFe+hrnr99ASEUQOuSFQ55lqNLgeS6j0Ygk7aFz+Oqrp/mZ/+K/fEuu27uro7OET9gFneNMnCzl7YXa9Lqabn/3/u54XkqMtB4JjuMQhA2cKsNRijAIiPOMPB+S5AYvDOm0Arp724S1GuQj3CqlKkvS4S6d9hraZHj1Bk888Chf+9KfsdhcoRQGx4/I/Bq19QXc9hIaTdBqsX7fA1yvNMn2NgbQyjoJ67ljn8cP23FvQlLWd84N93RnndQtxOTf3cWr+WLYbG7CzCDYCHtOPTFflDB3bHuv5PuORfn893YPWOPdj9+dKE/Hq7ufm3//e+3jB+1f9bZIoKf6ixaTKzFlyUG3S55mKHXbQSzPtZ2IXB9PaHzHxxE2AR+nKVFDWAF5U5GlYzxd4AURw9E+VZaRZNnEjAE8z2d5aZmDgy0OHzvO4sI6YVRjONjHFCkLrWVUmbO2ukFWVATtRRzHQxcZ3YM9PM+2HFdXVznY3cUYzX53F9d1Oeh17cpTGLSRbHdjykrTbLaQQcDi2jq5UhwMEhwnp9Fq4nfWGJWC3ihFLtxCJhlBs4lJA7SuEF5Aq71A6Hs4novjNUA6rDQ6mM1NqixlfeM43e4eeTJib3uHqFEnzw2LS4cYDocUVUmtVqPf79PpdEgSa/Ud+JZ9n+c5y8vLjMZDBqMhtXoIqkIpa5Cyt7fH448+Sre7N3OKnOKfweKdbUvdTKrPANaFMM/zmdOgM3F2m0I3rGXsdOJ8/Wr02zl5/lF8FyFutw+73S5LK+t4ODx04kku3fg0Z0932e2lLK0Ore2yLygdnyQ3LC+vY4BSKaRwUSqdJcbTgVVK63bnefKOyfHuKvA0gZ1u47gVxjhoq5p3R8xPJlN1CcRt1o2FNTjfdo1Oq7suLpjJRIZ63UXQDzPG45hGw/m2BAPmTWEEUxqotSy2LeGyLFGU+J6997WCslCkWUGaF8RxTK/fxXUl7dYKrVaLi1diKkegsE6DOrdES6UUjudiOwJqUjFWE4iXQRiB43kkaYpbRezs7OEKh8CXiEqCygkjF6MrHMenMBUFBdJAt7dJVkAU1tjfuk641KKMu5x/7SyPfOIRnnzsIa5cucbGkVO8/MppThxdxReKs2fP8qGf/AivXbtJt9vlTz/7OX72l/4ayWifG9c28XSLv/sP/hGH7zvOO4+5PPTwKQ62r/NXf+kncYTL409/kP/0+a/zyV/8BOdfvkDlubzw0iblOOWxh08yGCb0xwmqKEnimE4r4OBgSJWW+N6YYxurtBtrbCy1yAY7XL1+k8bKOr/08x/n+vUbfOvSJkdPPYouQWY7BK01zp67QL2zzEgZut0uGkVRWB1f6XgoZTkvciKJKvARQlKWin6WcuNrX2LrYIjrOqyurpKkI8BhMB5Rry2gtebM2Rc5dfwUS4vhD/VanY+7IRnTREkLMRtXXk/f5ts4GvdIHtUkUwzDEOE6jEZjvGoMlXUdxg0Zj4cEzRV8z3ZZa4FvTVNGA/JsTDpKiFxIq4R6p44Turz80mlatRrKyTGOi3YEbqcFrofxDEFUQ4Y+nmiycnidzb09q0dv8V93HOfUORFsR+/ei3y4V8Y4TaCnz9492wphSdDOPFFQawzC4qPfBJM8Tz68m4hojDWmer2G85uNi69HLnyj4/nzjLdFAt2stekPe5NJUHP10gW2r98g0xpjrIi/0pIq0/ieIY4TwqBGre6y2Gqx1z8gNTnLXpvIk6gqRksP13iYMqOKDUGtSX84Ii9LOkuHqUVt+v1tWodOUo/q1MOQNI0p8hwhIlqLkSXjxQm1VpvACLQjUKMBh1ZWkRgqbaiKkkbksr11k1Yz4Jb08fyIuOqjc588lTzyyAMURUW93WH9yAa5Mpxc3phM8h6NZo3RaIDrugyHY6TXoKzV2O+OcOUtoqhOa6WBdgSFBmFs9SqO7TaEdZYPbbDQaqMvnGPz4mmMrpBGUItcsnQMwiVyHHp7eziez6C8hS4UXhgiXElnaQGlNI7jsbC0TDwaUpSKQxtHqMdj9rtDkqyyraUgZG+vy9rK8kx5Y9r6LcuSIIjwfZ+sMJRlQp4XlEWBLq0rpJSSRqM2S3TAqh5obdtm6Ti1pjVpNhkQv32VLCcQgLeWhvWDie82kXqrE6/vK8TcLwGLi8dRBjr3P8a1y1/i1o2bxCzSrypaC4cIxn0ePmZhRh/+0DNcungFv1ZHI1BCIISDrhTSrdAT3DKOmOgSCwQOOBamUJaZ1TZ3BEILciFxXI0jHXxZ4UgXEXmkMofSQWuFN5F4M9oghTO5R6wyhzIKhcGRAgeB4xib8OGgKJHCEnwcIRGOQZvbCbsQE3WPtzCSWOHIiqoU+J5kKoml1TSBttOr5Z+4QIHW87AY1yqNOA6l1BS6IC4dhqOcvKgwRrG42KEorDlFnuck5RBVFqSZpFQFAmOTkGDaTYBKaQ6GMSCoBNQjjSsEeSIonIRdV1P3PBZCB+lO8OeRQBoYDodITzIsBUYZbmxe5ObOGU4eXufZBx/gheefZ+vqOd710BoPHT/GreuXaDc8vvj8l1DK8PipNRY7NZ545OOMBzGj/YusrRzj05+7zOif/898+Lkf57f/+Cpbu2c4dqzGT773BO841eHytRuce+Ecly8d8K5nnuXrX7/Eo4+eYnTjRZ48tc7v/8nn+Vs/81EuXN/n8o192kuHCBzBS69eQbgeC27EpWsXOHXyFJkOWOw06O5u8Y0Xz7BxaIOF1pAbl87woaffzYu3NvnI+5/iX//2H/ITH/sEH3j6A6Rpyu5yyvvf/36+8eo5QkfQ7cfEgy5lWdJudRCVS1aA1OAHCfGwR1BfpTsaoYTmVm+AG/mESrO+uMboYJ9BPKYswPMN0pFs71yjHjlci9+cs/LnFfeqTNr2va0eCyFQ0mKiLYnOLlzlxFFwuh2AdG6r40wfc4VPZQRKGlApxvNBBBgkSif4SuD667i+x6B3DVNJpAjQJkcnB/ha4y60cE1JZlxahzp4wQKVVox7I3wvoOalVMbBNQWeH5LHPTzAbXaQuLhHj7P96mWqdIxwrDa6mPO2mDdKQaoZIdkzlveBkVTCgNRIR9jtpx24CT9kNo/o238bZc+FI+SM6C2EJRIixGS+tUVNJTTWXfW2NOhsP9rMHtdK26q+MbgItNJ3JNjzHYW7uwro22YwWggkt+Epr1flnpcMVWLu8Xv2t7+/eFsk0J7noHQFWLmo/f39Gb7RsmihKi17HSMoS0W9DtKxbcXu/gGe4+NNqiFKKQIvpBZGeJ5DlmX0trcRjsUl1mshxmj8qEYYRPiOO2l1YJ2xpCQZj9C6ZHllDen5VMoy83NVMipzwiCgqAxaK9I0oSwKWrU6/cEeZZlT5gKVV6ysHGG72+Wxhx/BCJc4TugsrSGEYGlpyeKqpUtneQ0pJetHTlJVOTdv3qTRXEBKSZIkMBwiXId6o0NVpLb1XOVgDJHrEo/6+I7k2LFjnPvm8zTqTVzXJS9L0qyg0ewwGPQpcSmVpr3UYnd/h7qU+JMWT1GUBIGFVbiOR5JkGGOo1awsVZ7bVmy9Xufg4ICVpcWZdfIUrzXFfNoL/HYL2/M8Oh1rqOJ5HktLS5OKlm2hJ7mFlziOQ9W0pgndbnfmmgiv0x56G5CxfhTfewhh24hhfZkHTv0Y2zf+EPSQWhCwtNBBN+uceOhhTp8+w6kHHqJSAvG106BKQtfFKIF2Q7SsLClRTLDNc/vXZmp2Yiu/0rENTFeAUprA83CdCZNdwkwpZMYWNzO4hlUVuRNSNGul3tVeFULguBIxcS98OxAH58MSmi1sbv7Y7Oe8fR/b/0/awRM78imR8vZr7LZKGaqqQEqXOEvxxy5qovNer9fIxyMcbcduFweYYDmlnBizaKpKIYSckDDv1N52BFR5gRESmNiHO5YQaRQUZYXr+iRpTlYpOsuHyZKULBlz5PAqX68y7j95lP3dTVrNOjeKnPF4SGdxias3tqjVapz++lf56Mc+TlGmPPnEe9naTfnxD36Eh46t0o37nHrsXXz5zO/xcx99io31VS7f2EKLGu/60M+Rh9/k8sVLfODDP4GqDMsnnmF7e5t3vet9/N+/+Ye4QcDT730/teYiV6/dII0HtBeWMMbwvvd9gFF/xJVLl7mwoGi3IoKah/Q8Tp06RVQP+dKXvsDVy5fwfZdWvUEYeKyvHSXLMh54x7t44Zvf4MrVLSokjucitMWQe47EER5lkiEMVK5hOB6z1OhMrlXbVRC+pKo0w/EIrQuCUBDHNjmyJiNWn/ig3/shXqnfHnfLqL1R1XP+NXffq9O4EyetcYSLlhopHA6vrXCwZcmupsxIc0VrUYEprTqWV8Nojec5VBiE6xDVa+TjPq7v4/kh+wc9aqFP7jl4oYdwHQwlZZrg4FBlOX40SSIdiR+EhM06SZGiq5Jp5WEKN5s3jZv/JHeQ5CYJd1VVuM5tqOXd8WbQw++2WzYPtZjuY1767gdVALoXnGX6/j+ssfZtkUAXVUmWpBRFzqi3T5alZGVJVSpU5VBVysorOQ6lMtTbIcePrbK22mGn22UwGLG2tkGrHVgyiitp1iK0rhgMEgajIY3WAvVGC+m5CCkpi5R6o0MU1HB0RZGMiJMBVAWVssx8JQS9g5haU5BliR1AlCXMBJ7L1csX2djYoB66fOvaRY7rY9QbLqUq6N8weDWX9uLK7ZvWkbheg4cefpJSlzP8cK29yDiJaTabeJ6H73qsHbmPLMvY2b2FHPTwhcPe9g5b169ZdrqU1hCl06HbHeB5HsV4CNLlnU+9h+vXLpEkGZWqMEawv7fL8vIy+1vbeEHEHob2QodarUZRVPiBS5kVHOztE9ZrSJmSFgWXL12l2apz34mTbG3vsLu9w5FjR9ne3mah3WJ5dWVGApp+HqUMWZahtcR1HZrNBouLC4S1gNXVVbTWBFEDmFoJW+OEKRkrHackScLS0gpaa4tbH1v96NFodKdT4Vt21f4ofiAhbUIaLj/O+qOatfOvEnYEvbGif7DHMMl47p3vYmllA8cPGKdjqkrzyP3rPP3kY/yHP/wcqXbJFfjYHNoYRTKBFyulMJPqrxAGrStCx8ULfEyWkk8rFMJDOIK8NEzqLpOKVYUUk0TN6kPd0QuZQkdgOqkLlNYTIqMAvAlcZE4t4IfgkPWdhKoMaZJPYG1mVqGzPkaaiQcMZaEmKhwCkJOk1sZUPUlNtK0rR5GVGYWSLC22GcYJ2lR4nktSDNG6pFZ3iSKf0bikLBVKa3RpoS6VNiRpNpEZnCRJUmDQCMdOlqooqVyXNJN4oQHHTKzGHWJlcCtFlReURUaWXqUVOZz+6p9x+fgy9x1Zou4Irma7DHav44sKrQTXbmxxY6+HUQUfev97qVRJXhlOn7nKTi8hRnL64g7Xbmxy8dV9/vbfeQ4vGzIcHKBqJ/iTzz7Pb315l7/9yQ+ii9N848/+A898+Gf495/6Jq4HZQWt5aP8k3/8D3nxq3+G4wc8+uApqrJESmg0F0gTTZ5pFlsBShk2N7d5+ul3sN8bcay9zMWLl3nHo49w8r6P0h/FPP5IyKWz57lZ3wPjcHUvoXvQI/AW8IQmPtglCILJNQqe56Jzj6pQZKVCxSNEf8DQlEivRlEURA2fhXaH7n7PuoEWI6LIAQrQDnmlMY7LXq//1ly0k5gVaQTICZxhHkIwrVSi9cwx6F4kM4vEEjOyq1IKbSqcADwcMBXXr13ENZp2s06vf0CFw2i8SZQ1kOWI8XhA1Fiy3RjfjhV+zSFONL6nGWcpjzz+KNcvfJ2F9SbDQY6JQBPDcIc4HlMLWqi8sLAyB9wgpL68wjgZoQcxrutN4I3WG0FKAUYhJ4v7aUwrrojbiwzHcajK6nYCC7Of6fl6vaR2HkN9r5gmx9Ooqmp2nufVMaYwz3nDtO83plCTey2mZl2y6WPf97vdO94WCXR3sI/RBWUyIhuNSLOYrCoxSlIWUBZMBm+NdA1KlRw9tE67GfGtl18h8AMOLdjV+vLyMq1Gk2Fvn9F4jBvUWF0/MlHPaCOkJM9LyrxkdX2ByIOt6zcJXQeKnJ2dHcJGh5MPPEh/MMIRkjyNiYddRC0gqje5ePEip+47Safd4PqlV/GdikYgeen8GXYHHnkZ8Oijx6zuaDJi/chxlpaPIP2A+049QFYUrKytYoyh3+9TloqFhSXa7TZ5niOMpt1uW1UMDKsrhxiODmh0moyGVr7LCBiNxzNJuIODA04eO25NIZpNHn7ne0BVfPnLnwcMtTAgTYbUayFlURHUGvQO9iiLjOWVNZtEux6ryyvc3NnFER5R2CDPYpLRmFbH5/DqIq+8dpmbN2/iuS5nzpzhIx99bgbjaLVahGHIeJxQliVFmSAdw8n7jrK6cgiErfQXRcEos0Qim2hrUA5FXhHHMd3dLkmSzIxWijKbYVnnK4lTMsKP4t7xegPjd1oF+KHgdI0EAbmqESw9wlM//tNcOPMSywo+89k/5al3v59LZ1/g3NmX8X2HF186Q8MNeObd7+Ghhx7g9/7g0yglWAoEmgrHCVAVZEU8WUz7ZFWBrUorhBQ4rpW2rDSgK9K8QqUSKm2liHFuy7Y51k3QcW3rUWuNcLzZIs5MDFLCMJwM6BNVIIrJ+bOku3mSy/zPWxu26qtUiXQkUjoTGFYFRiKE5SpMLbtxbXXeaEORK/xgrrrkGIt37tQIA2vE0huNCDwPI0p0UuD5EPgNRuN96jUPP4AkK8jyEi8MkY5HGscoI9GlotNpEtU8smJAnpcEUUSZF4TCwj20FEgvotSKnBYSRRAUVEohdIAjStCG9zz5FF/7zE1WvAovKNjb2ednP/4s4+51zl+4TBWsMBon/J1PfpBjxw9x/uWX+dwLrxGnDiaq8drlHZ5++n30umf5wNMP8s/+x/+Kb331NN84b/jsFz5NLNqcOT/guZ94kl/7f/6Uhg/vePQp/vE/+XWKsIkxiiiqo1TJ//5rv8n9Jw5z7tWXWF05bOVUq5SvfvXzHNk4SS3wCXzDa5s7rB86zNmzF1haaJKPu3z4mXdza2eP9z7zLP/0n/+f/NzP/DzDwZg//OxnaUQNnn76J/GjJucvXiIZ9tjyBWcvXieqN3jo1AkGgz6bcYL0NH6zRjIYMNrZYakZMd7fppKKZJzywWef5djJh/nUH/1HAi1o1hNUZeViByPN1775LaTrvWVX7fx9o+bIZNNkyXEclDG40jbt5yuVr6dcYYyxtt2eQ+CFVFoRBopOIwKV0VxYonvxOvWoRW/QJxrs0S82CcKQwJFAhGs0IpBUeYXIU1rNOqbIOPHgCa5cOoeohji+T+Qb0nRAR0qU6dtuD00oSigK/MBFV4qVk8epTMEg7ttCg7a+C1pr9CRxtGPQbTUKZzohGmtcNc8LmXE9JttNZSj1XBlqKr35nZ7/6f+nc8XdXIoZbGSOfzKN6fFM/56H47zRe81vf0+i4Pzr1LQ6LbgHteX7jreFjN08kz4ejW0lwuhZm1AIJispgfTk7IQUuRX+D0Mf6Wjq9TrtTtPqD0sr4G9B6y5+FFKU5ezLrAV1lNbc3LyK7/s4ruTGjRscOnSI4/c9TK8/Rmkoq9y2ZlSO0QVFUbCwsEC32yUKPNY3DnFr+yZK2VbiONVIp8nq2hLvffd7pOyM2QAAIABJREFUeOKxRwkdjzCs0ekssrKyQlSzFYZ6vUkU1anXo4nGdUGv12V3b5vLVy5y+cpFknE8g0gwgX2sr6+zvLzM4soy7XYb37fSStvbtwiCgCiKiBO7Tb1e59D6YYQQRFEESuP7Pt1+j05nkXq9Tndvn3g0xnUcJMIqjMyRFKZyd0VR4Loug8GAIAhmCe60Au26Lr7vz+TrhLByXla9wzLhq8pWqAGKwpKNRqMRg8Hgjr+n1ebxeGzlCMtyhpf+UfwFigl2L6g3qEwTIz3OvPIVmq06S50FPvjs+7l+5QLjYY941OOTv/AJjm+skSQZSVyizKRCUlVoU8wmyeli6/bgqme/lYFK2VqOVYJxb0+yE/zvdJEm5N2GMrelF6e/p4zweTm4u+PuQf6tT55tzBMwpzFbnBozwzjOMIWT8zLlPfi+dTP0fIEfuNTqIWEYEARW5UgriJMReZ6idWVdGM1tjKJmen6dyffmzY4BoWk0GrMKeVEUc/AwC9+rKoOqJEUpKLVrO3i+D0xMcxzYuXWTn/3pn6IWhTxw6iSNesjZs6+Q5gWPPf4Otnd69A9iHn/4BF/+wucQbh0j6rzy6gjjeLhBjcsXb/HIIw9x5OgqW9cvcPKhx1hYPcYv/md/jaeeepKHHztMp+Zy7rWrjESDP/riK9z36JM4Qcj+IKE76OP6IVeub/LKaxc5e/kaL587z+bWTXq9HvV6ZMfYMkcIQVBvsb23j6kUjVrEE48+xIvffIFHHnmMf/l//CqPPfokv/3vfgtp4BOf+AQPPHA/vX6XL37xizQjnxdPfwOpDK1Wi7IsybKUMPSp1UI8z6Esc1ZXVynLcqLIZB0oW80OaI2uKq5eucn+Xh+bdujZOTfGIJy3rvY2f38ZYY1VpnCFaThCzFRepnE33OrOv+cwwpXlMYDBlRZi2u8NQBhqjTpog8lLhMoQVAhToquCKAisz4SqKLLUkjep2N66CbqcEPIrpGN44P77Eaa0xk+OJeZpramKElVWoAWOHxDWa9+GDb477lCkmH5mbV73s0uD5Wwg7vBnufvc3ut95vf3Rq99vfFtPuGdxyq/mQPh9xN/nnCOt0UFGgVZkVMVGcqxRDRTTPREFYBd2QSBQmiDI+qk5Zi9/TGRK3A1rCxv0AhDyqzCq2mcKMSVES23hlfzKcsSx/GQQuB5Aa3FRUJTkFHg4HLm9IucuO9+/KUjVMawtLyCMYZR/4BksE2RjclwCKXgoQce5PkvfJp6LQChOX7sMK+8comrW5q00IySLt/61gG72zusrq5y8uRJRoM9vChkNByzvHIYVRZsXr+GlJKw1qBVq3P1ykUcRyCKis3Nq6RpbF3YfEvKi+OYJM9YO3TYfobWIkoplg8fodKKer1OEo94+cyLmLJCuDVOPfAejh7b4Gtf/Yy1Jj1+jJ2dHdpRk8BzqfIM3zF0OnUrkdeo4zkGEbpUlYTKQQlJqWwr7PDqCteu3WT50AajNOHqtSscO3YMx5WT6vOYIPDsgGQ0rh/QaS8S1RukZUElKkpKykJRlZoit/jIg/0e165ds5JVk7aTNgrpgK4MZWnNLqSU1rXwLZYA+15ivgr5/e7nO9nHGw1ib7b/7+R130m8URXcvoe0THCvg2gu0Nu7wic/+Stcv/Qazz73MertRX7s2Y/gSknYXKKxtMELZ/4ZRVGweeMCvsgx0pCaCJ0ZiiKZDMZWKq+scqS0qGWJg1GColKUlUIobEVaWbJf4UgEysInK2nJy6WDFAaMQQqDI6E0eqJlrNGqxBG3jYnsh7JyeNMmqTEKrQxSCqQrEEYjhXwb4I8stlkIgZBglGPdE42dFux3ZDHlYCvzVVVhNLiuxDGSMNQI6eJ7EVEUsdCxY1VVaQQ+RVERF11qgQuOC1iMcqUdtHYxKsVojaTElRrf1eBJ0qokSysEAY5okCUxeT4mCCWlZ5DGJcsrZFSiqVEUOWEkqDXqlFVFhV3MyKDG9eubvOdInYWlDZ7/7Oc5tlFjfWGFaxevcvriNocW2vyNv/SzjA5u0Ooc5bWLO/zln38/+/0/pr+d0h8n3Lp+lf/pn/7n/MnvfwZzdIWXvv4Vhn2f67sp//Y3n+fwyUVeOfMiP/ezP8XvfuqLDNIEf2vAQidkaWmRNInpdrt0dwxGl7Q86I/GrK5ssL+/y0On3kHTT2iGip/++Cf4jX/ze0itWF45TFTz+fXf/H2k12L4nz7L+z70E/zzf/EvefLdz/C5F19CUmcw7HL0vocpszGf/+yXeODkfZSmYlkvcP+JE1y+fJE8z4maEUYVjDJFOSqo1V2qQuNFNUzaJ4sHfOHLX8D7+gsIWTHMK2rCncCfNI5vOzyh8xZWoB0slEEIvMliDG1NPRwpcYyYOd/NE++mkA9Lipsmc7aKLScwD086KJHh+gE1BE7ax6kEQdRkz61x/dpFFldWiMsePopWY4VhnlGlO+TiKE6ZUIsCVD5AK4UjCw66u9SjEuEaXM+h9CK2Ny8QOoo8AmP6GDw8oal6EqdZxwsCHLei3m4h6w1EqVA6tZAFoXCdED0ZW2dJnLGmT0IYhCPs4ne64ETMcBtagDa3HRilMVajXUqMmiNYIqiEsSavYn4+kBjDxAHyTufbO+T15n7PkmYEauIkyV1zw7SCfS81D4lA3MXTmH2n5s7FwtTpUE7kCCc7B4z1IPgBxtsigdZaWxecssKdtiWMmRFT7Dm0LQuMtu3UskIIQb1eZ2mxZaXWgiZ+vU4FRLUF3LCB6/gk+WhWIZVS4nsuUeixfeMy7UZArzfmHU8+TWtxiUQ7RL4/w+ZO9YrDMLQKE7IkzsY89PiDdG/dIkvGtJs+o9RaZQe1Jq1mnaefeBhPCBqNBv3+kDCqMRgMEBLyNMFgsVaqMrgY9ne3KbMUJQQHe3uz9kyeJxZX5DSRjq2qbG9vA9BZivHcgPUjG5aIV5T4QcSDDz/CKy+9jGMK9vZ3cD3J0uIqm5tb7O/v20pCWdBLxiy029aa13FwXMt6XVhYYH9/f7LocCiKnKWlJcbjMb7vEwQeYRjSbDYZjUYzeTqBvKNF5nkeQRha/NPk8fnnp9XCoijY3d2l17PElHoUoZQiy7I7Wj9KqYkr3I+AG3/RQmuNU8Y02quYaBU/vE798Ak2b+2yeuJxDrp7+I0WWZFy5coV6u0Ox08cotboUKWKshQom/6CsMzvaVF1er1NZRbzUlEpbatMRqOwbUwhmJsM5o5N2UR/Il76bYnv/CQwvb7LSs0Gd+sIZktD85PD26EKffs4bleD7hW3P4uZJdxSWiMW6+zIRJ1k6k6qUZXE913GuZndz8JY6/PRWCOkh1aCqlRoJcCT+IGDMYKq8oiiiKLIrHGFlGgNqppUxKmoJsmTMiWO6yMMlJWaTe6OYxj0ujz+6MPs7ezwpc/fYnSwC2uH8JwGWgoGoxHtdsBiu07Y7HD+c2dYWzvKQbeL5wgWThyjfWSd/+7v/02++uk/QBXw/372RS6cfY1L18YsrKzR6UDcP2ChA7/6r/6IY0cjhqVhpzckLlJcCfXAJ6wFrLQ7aEqq0pBmOf1+H38iIyqVot1e4td/4/f4q3/lFzjz4mkGo5h6O+LRx9/HuXOv0Itzfuf3P8VT730/X3z+yyjH4xd/8a+zu7fJ0aPrrKxvICrJ8nKT3/i//jVSNjnY3aHRavK+J97P9RtXuXHjBoXSVCLH0RV1v05VWM5JpRR7gzGCArQgCpxJh/i2rrlSFY5b/+FeqHfFfPVyVsGcm1emZj1vFncncFprhOthtCSIHALfzv9Z2uPxh5/kyst/xqVLl3jwHU+j87HVlNeKLEupRzmqjCEKCEOfpEhJygzXC0ErpJH4XogxEmEkUegjypxCgSMMyJI46eN6BlHkyJqH43u4zRoqy6Cq8IQLRqHRSGk1642+c/y5O6a4Z5jk0PPds8mjjpBoMxUB/M7iboLht8En7nrd/PEwl3RP93E3GfAHEX/eY+zbIoFWZQXKkkPi0ZiqvN3ml8IBqXBckK5AI2k0IoqsJI3HHF5ZZmlhgY3Dh3BrNbJKEQYR0qvhhnU8R5CP92jX2wRBRJ7ndBZaJKMux44dY2vzBqtHjxNGTbKqoh76+J5kPM4pqwohDXEc47ouuzv79LOUtdVlFhY22Ll6jfGgx2BgOHejS6PR4ej6IdbW1jj1wCPUwojdvS1WVlZI05z1jQ1ubl5l7dAh+v0+g4F1KtrdvMHNmzdpNpsWPuHD3m53kkBbDeUdKUnTlP5wwOoha2Jy8+ZN2u0Fyirn8OHDbBy9D8fxqNdaIBxUkXL27HmuXr3CB599P+975lm+8pWvEAQ+tVqNWzsjbu3ssL6+TlhrEdYbE/iMZHlliVvbW9TrdRY6bdI0JQxD0jyhXo+IxwknTtzH81/49Oy4szTHnyw+AJZWlvGjGkEUzhYE00VMmhQzE5WDgwPiOKbdbk+MKXKy7PbEOQ/d+IsgW/f9xp/3oDDfLrwX5ux72debPe44Dtqv0zr+AZKbL2GqmGPvfJbr33yefm/MxvpRzrzwBc6/9ALrG4e4fP06r146R63e4VZ3C0f4VAo7WQGetFrvSk06WkrjuYCG/4+99wyyNDvv+37nnDfd3Ldz9+TZCbvYiN0FSUQSAANogKQZRcosiTZlW6UPcrksuVT6IH1xyVWWLJtVMmlZtEy7KCYbJAEKJIS4WOwCu9i8E3ZnZif0THdP55vvG885/nDu7YRZZnDXLD9Vt7r7ventN5zznOf5h6zQIxiBQRfORMQagdlXrfJH+q5au2q1lE4VQgqJJ+QuWSbyIwR77PIxhtD35e4i3Gmme7t/jyWdvhPtyj9rjM9DkQusgbFD4/7n9v8MfUVUcotoT4ZEkaQwmmBEcnIkLE1UitCFM7/yBm6CTocxniep12vstLoMkwSET6FzsAECQaWqUCpDa01z0ikJRZnEn5ogy2KMEO48K40QBqsLwtAnDEF4lm4nRQiF53sYmzE11eTKpYs88L7TzE+VCfI2c/WQ5599BhPOMzVxnJ/5yY/RXV0iap6i3GjyzRdf5IGzp/mxT/4Nfv1rL/DiU5f4+e//PH/4jTWefeEaFvjEh86Rdq/yyR96gD+y6/zQDz3C88/1eOjRKZ7/xovIiZCTpyZ57do2QhqGcYxpDZDWUqv47Gz3MMbS7sScO38GPI/rqztcXdpmtjnNL/0vv8x/8jM/xfXVTZ559TIl5dOYLPHqKxc4f/4cjZLkkx99EhUobl9+hs3lbeamFvndz36OD33Po/yHz32GaqBo9bapRGWiiUna7Q1uXr2KCstMNiZpDdapNsrUvQY7mz02Njr4YYigAF3gq4Ao9DGA8n18Ab5xFU5t4nfganUxnl9cUravaPM2lc8xge1eONuD+u4j8psCbAFFm0wUhMEUpj/k9VdeZapW4j0PnGOrPyASGUHWJ8BQ8gqw23R3NihVynhoktYOuV9nsuI6TpkuKJXKbG6uMdmcRYgChHEa5iJxKilZzrCzSRR6KNkEkbFw5gSd7S1ayQYCi8lzrM0osgxlAG8PgjaWj3PGUq7SLqV0ttt2pCBkJHJUiR4LZ0vjCgP7zVqsGUnnHYKC7D9ee8ZHB8eM8TEej3n7zU8cRv0gFG783sOf/ycl1fda8B+ev8bfa7D3XGD8ReJdkUA74opTYXArkVH1eYSB9nwIAkb4IZ9yJSDPEnzPo96oUiqVGA6HBEJQqTbQmUWVDBJDlhXUy9WRXJpLAtM0pVyt0hkMmZw7Tpzl2FASlev4FCSJI+b1+33q5RJxHOP5jnFeK5Uo+WWisMr9Dz5Ong/4X3/134BfIypVePKJJ7jvvvsIqw3i7pBao85g2MHEQ5ZXbqOkz5VLW+RGs7q6SpZl+L4iisps72wSBAGtzQ3SNCceppRKJYoio9frOVm6OOHK5TcIyyUmmpPUKnXevHSZy5cv84kfKhOVShS2cDrKvQHNZgNjWtxeWqZccVXjIHA33Pr6OrOz8wjlEacJWA3aIKMIz5MsLMyxvLxMMoypVCoHqmnb29ssHlk4YO1tzd4qXimFH4VOuUS6JGLcMTDG0Gn3d/Givu+zsLCAUop+v8/G2tqBKrU9tIL9/+OvZ+SeIpw5R3rnRZZuX+M9/RbNssflSxcQ6VHeuvgqG7dv4lfn2Fy+i+8JCltgBAhTMM79hBAYxh0kSZYWo6pwAsIS+hFSesTDdNSaHDkjsofxVPt0TY1wUA8rXXVbibH5iET6ylVQR92UsUX9uGK3v/M1nvjH8lPv9DW9fzLRxV5Cr7xDE5bdl0AHHlHg4/uuyu95HqawFDkURc6gn1AqlUbdp5Asj8FYhr0+ngwwRrC9vY3WAi+S5Jlw7WrlZNKwBUIolBIjOTxLKXIdwDgp040LkrggjCRBJPGlwvcl5aqkKDJUINCFwfcDQBGFHo3ZKZ5/6WXKjz/EuZPHuHnrKrPzCzz3yhKlqEooLFZ5fP1LTzM7O8+TT1QpTM7nvvAFLrzR5sGzHp//+ht8+aUOQTDBj313ie9+7Ai3r1xlpjbk+56YYbFaYqLR5uKbL/KzP/kYv/v5tzCyT5HlKF+RpYZKxSdOE6SEnJC52SqrK1tsbu3Q7raYm5llcrLJG5cuMTsxzVBXeOGFr9BoTjKzOMnO9hqnT57ikYcf5PWXX6BZDfju73qMYzOTnDoJn/3d3+TY0VM89dRXOHPuPl5+8SUqEdRqHqWy4bXXnyXyKwhlGPbXma3XKZcCrl+7RSkKKJWrNCYqHAlKtHb6dIYakxvS3IxgTAHKE2hjyYvhX81Feo/YT1Tbv6gfV1SFkN+WTO+PA5hivj3hDqQl8AoCk1CkCUZrfBSVUoKKmgwGHY4dP8nq7VtkaQ8hDTIv0MOCiYkp0v4OeZETKkknhmjYwrcRndY2lGs06k2iKIAiJ44HVIMJhII871GpeCSDHjbdIO85k6ggDCk3KpjFaYTWtO6uIbRblMqRPvL+/218LKRU+2TtHIXODTnOXAfBrlmKw2uPXmX3dLXtSPPZcrB4sj8h3i9Xt38/DutrHx7v7rX9MDHw7ZLn/aRIcPrV94r918d+HfC/rHhXJNA6zxj0u8hRtSbN9e5EJqXA9wVhpBgOCoIooF6tMGx3qNYifKWolELXeMgtvoxAKqzNsTohHabYIiasVKlW63i+TxBEFCbHL0cIGTBRDZBhBSGhtXaH0BdkaUwU+g6vIwWDQZ/FI/N845kvk/bOkheG+uQ05VKVQpaZX1jkxOIi1lrW1taYmgvcSQaW7qzQqFV4+eWXKbLMkRw9p7tZqVRJc2eRu7q6zvrGBlrHRGGJWq3piH1RxNkzZ7h69SozM1NkhSYMSqyur2G0ZjBwigO//r//KkGpzIc++kFHHvECwihgcqpBu91GyAZJkpAkMOwPOHHsGHFeUGjD5uY2x48eIY0HJENXXTh16hTdbpf2TmfkOiiZaE6Q55orb91mfn6erND0+32q1SqlqIy11lnq+j5K+aRZgV+yWMkug3hMihy33zzPo16vs7KyQrfbJU3T3dVtPiJ+vtPJxh8bhztfuyLE78C+vJtjdJzGh2v/YbNAiMH6NTJ/go984qdJ15d4+gt/yHOvXuTuRssRccsBQbGFMRpjfZJ0SKkckA8zUBKkR6FdJm2MQXr+SL8YwtBzNsaZRQhDJjRaylEF2Um3jQf8XY1V4XSkPekhx4m2csl1mjpcvqtU7+myuonD37XrdoO8GT0EVshdybt3Mg4SB8XuBGOtGamjuJ9yX2W+VAqp1ioMBh10IfH9CkIJWlsj5Z1UE4Y+WZZQrZZJ09hp3RtLluYYk1Iqe1gkaaYJ/BJSBiAKjJXo3DpYmy/oDzrYvubY0QnyPKZS9dBKsLk2JM8FlaoPwuApSxAUaJMhKAhCH+VZitzS6/U4dWSCU6fey6uvX6S7KTnaDEiLIY8+fJwnn3yQzuYtNraGnH/oMbA+y6yRyQH3vec4X3+tQ6VU8G8/s0Y/hw8+WOWTHzrPV7/1Et//Hz1Jd9Di/d/9BFcvXOXkCcH89H0QxChRsL2VUIt8SrUqcb9DOswpzQasb7YQvmRh/gjray2wHvNzC9y5dYVksM3jTzzAhVdu8Jk/eg5d1Dl732NcuPAN1lbbTEzX+eavfponHruPE/NHuXxjjWe/+SLnz5/n2NE5cr1GtVrmW9/6FqdPn+HaGy9y7tRRnnjvI9x/coYvPnMBv1QmmA7Y6sKd5WUef/xJrr91g6zQLM7McWpG0O4MeOr1t9y1nRuGaY7vC4KSI7zrInunLtsDMU6mhRD440TOlVHfNnke/xzzafaec/rvjYomUAWy2yMepGSDmHyQUm1knHvwSa5d/gbbKzeo1WropE827IDw6fY6nDj9PnS6SjrQpLnP+973flZuPkseazSahcUZejFuzoycqob0PYbDBGkNJpDEeQvTVZCGIBRRdZ5QSsJjk+g0I7cxDAuydg+lLek+jXkh9qV0wrBfJ0IyuudHKpTSfruG8vjY2JHZiZAOzibFHsYZ9t7nFtDaSU3uT4SFq2Dvh2w6LPYhKMeh8DxvV5hg//k6HMY4o6w/DaZ5XLj4kyT5/jzxrlDhyE2G8jxK5TLaGgqjMZaRHqlGSg9dOPihEoJSGJDkFiE9JiabhKUK5doE5XKEVgoZ+KRxwrDXpVoO8P2QwC9TrtSwQiJ8j9CPCJSHHyiE8jD5kHzYoVwuk2aFczSSkkHcp1qrobVmarrOB7/347z+ynPcvXOZ5VsX+epXP0d3AMfmmhxZWGRy7ihHT55nZmaGSingwquvsXpnmZdefMVNRipASJ88zUE6gl5/OKTfHxD4kavmaEe+S9KcZJC4Cx2NFQaMoFquEIQex44dYXZqijyO0WlKlsasr67w7FNPM+x18XyYmpwmiVOSpIOHJh72GfYHtLs9vMC1n+M4JQgjNrd3KIwkkJapyQnytCCIyvihxAsESMuwP6BarpCnCTutbaq1BtkwJUvS3Ta3M79R5Jklz127XCIOtNK0yfF8OarQBQyHQ9rttrMcz7JdgwellCMVCnHPi/VdcQHvv4n3a+XY8YY996t3A+71Txv3Glj/PLHrF2n2b9t7zu4+JRH5JuUgRDceIIzqTE/NM9NouMWYiNhODI+emECZFCEkUlts7iygPWlQKHypkNIjKzQWCcqiZYHnQRAqjBO8o5A5whZgc8SILOd5jn1vTY7AcTNEILHS3X8GJ/u2H3dpGElICddSFkKhpAFRgHTQECskSEVhLKk2ZNp8m3LAX3W4BF4yrj3t8g3wEUIhRXCAKORUMwxCGecESe6w3TZHemAw9PpD4qF20LNsQJYnRH6Ep0oUhcEKhcHHAsoqhDEIm6ExrnBiDcJT7tiNrophnKKtxg8Dp3trFNoqlLTkaYbOMgqTorXGVxD5BiEMuUk4srDAxsodHn7wDH/jRz/JkaOnmJqc4+rVZY4fnaU+M4PRHlubHV69eJNf+43P8u9+58s89MCH+IFP/W3mjoQ8/Ph7mDl6moqEDz4+hcnL1CcWIe5jUk0Rt8jiZa5fWuLN169Tio6jsU7/OcnZ3mgx2/B54oE57j/eYHKiShobnnvhNQqrieOM9ZVlolCRJSnXLl7l/rPHadQibCj5zc/+Pm9eX6E63WCyXmNxtsHczCyeV+f5i6ucuf9J/KjJykaHt67dZKoacO7EUTo7m5w5eYKlpZv87md+H4Tiifec59Fzp0gKQ2d7i/sfOsfO2hq+7xMPnCGYpz0aJUHh5ZQiQ9I35BkMBznWGiQaad7ZkXc/LADYJRI6MiG7D6TAWPcQ0sMgsUKhraAwoFAucVZugez5Ao8hNU8jdE4QKUw+QHiaLIbrtzdZ7Q/od7fJO31ErglTUMrHFx53N+7S2xjQ2x5gZUClbAiDClElRItpNla3QGqM1pi8wA88TJER91qIIkGQ4SmDMgkiayHybXSyhtBbSDMABpSrZfzGBEZLcgtGuHtXojA2x+KUPtxCWLtb1AqUkQgj0RKs5wh2u2OYJ9ECpHBkaUZjnbCOlLe/IuyUi9z5V7ZACYGH2HNdtaNSgZKj77YHdLvHye/+xPowL2p8TnfPo3FOguMw0pEKx7mBUzIx7nGPSrcQTpXl7SrVf954V1Sgh8MhYRiSDgbEcTwiLbiKjvLc9JrnmigKOLq4QLfdZqJRZmZ6gmazSalSBinxqk2ichUpFcP+gInpSQaDAbXmJEKF+KUy1Ymm0xYexrR7PY4dP4nv+7Rb247IMTrZaZoiMGytrdOoVyiX6rz5xnXurtzgBz7+Mbq9Np/5D09TGJiZOsqRI0dIhzts3hWsLN0gTnM2Nja4s7zEYOBIjFEU4fs+R48exZeuXVwKAwJvkjzXVCs+URTQ70J7awMQbGsns/XGtbdIkoTjR4+xsLCAwVIYQzp0+Oder8etpdskWcGVW7f44lPf4NyZ83z8+z9CGJYQpsNw0EWn7vieve8MV69dJyiVAOj1BDOTk7TiIWk8YEYLbt1eIixFVCuVXcaskzLKqVRLLC0tMTc3y5ULF/BDn4nm5O6NkGUZ0osIwmC3omewxLGrSFnrfh+vUMc46DzPKUaKG4Ef7EpYFbr4Dhhx/sWjAJSSCHLAYKVif1Iixsv9d0eq/46EU+DUWCUQ1kPsy6TtiByuGEC2ycVP/zOGvQ61ubO8vnydNy5dpDcY0qhWWNnpEYU+9XIJpWMCo9hMQYucQIwqDbbAmAI/8rHCEVQLrV2yqJzhhwoC+oMYizcyO5EUudlHgFPovHALdqmIpHN0EzpHACkaM7K3lkKA0U6+UQlEnrJXX2cXpuTth0tojS/Vbpv5nYpxhd3F/onn8AS0Z0ywC2sxxhGtgggpoVb3QBh2tmK6vTZClVGejy4cLtr3A2ZmqiAlvX6HvEjRRjpVJaXQGAqd7U7v806BAAAgAElEQVSeUcl1EbHKwfNC5zpZKpUoV3KMTVFGEoaWQBgUgjROqZbq6CwFO6DuC9JBnycffoSNu8t819EjeIt1Npdu85EPfxdn3v8kreuX8ao1ru1Ynnt1laOVHv/FLzzBb//+F/mdL/0Lzs9FfPrTl0mbZ/jFv3mEpWtXqTYnsaLOkVkPTwy5+MYNZo6/l503XqOdFjz97KtstVKsB5UyVCYaTDQDLDGnZ2d55YVVzi3WqdZCglBxe3OdoLLAdHMBnedcfuMGE7OLLC0tsb7Z5uMf/yjPfO0plldb3L29wun7TvClL3+T8w+e5+7ddZqhpHH8KO+57xjf3Fhl+c5NHnnkMe6uLFGeOcliGHLpwutsrK7wymuXmVuYpxoKZpuCk3NN1MBAX/HYwx+gs7XG/WdOkxVlKtduElVr5BtrpFq7Yx8FaGPJZPJXd6HeI3bhRsrfS8TYa9XvV404rCu8v6NpRgmaFIJKlNJsKEzSIu452cXAiyiyjLxIXUdl5Yucmf4o/ewFksEOJghQEjxTYKwmj3v0sh6VcpmdTsKzTz/N7EKTsD5DzcSgJDaJsUkMKCI/wC+VyMs5pcAnN5ooajq5x3w4chw2aAO+v4HwI+rlaTLPoquKQTdzUIyRbOd4inS/71Vx7TiB5CC84nAchmH8ccRAIQSaYtfIZuT7DRbU+OUSOIRzvtfnHcan3ysJ3v2O8TUACCkpRl2zwwn5uMN9GPf+lxnvigQaYDAY0B0lUUmi9x1zg7WuxVqrNqmWQ7Y22zQXGkibMRwOKQrN6TP3Y/0KWdpj2I+ZnV3A9wOMKphaOIYMSs6YpNDstLo0JyYIq3VnppBmoDWhUoDBD8roIkHkKY1ywM1rV+l22zzxxBPMztW4cukCG1vbhLVZ+tttzh6dR2tNmiZ85atfwFMBd1bvkqSaMFTkhZtwPc9VaFvtLjPNCWamm/hWI0zB9NQklUaD9e0dFhaOIsRdZ20derRbXXa6PYIg4uLFi0xMNqnWazSnplgbrnHs2DFef/11Hn/iUawQvPDia2xstbl58zq//MuXCMOQJx59kCfe+whR6DPspUw1a9RrJar1Bsura3iexKdgc32D+uQMXqvDwsws/X6XSq3OxYsXqdfrruIfhczMTHFr6Q6nTryPr33t6679d+QoYRgCe4L1YRhSFAW9Xo/C6F0stOd5lEol+r3hrv7zuAImhbvQx+3w8bZ3I4zDS5fR4VHAR43vbzta/SNHlsMg/prmz/tZ8PsHqwMDpPGcy7YCYxKEclOdwWIHa6iwiu0u0779Gt/65nO0MoNMX4ZsQFiuM0yH+EEEVjOMDX/48g36agKZFHiiQKgQrGu/FoXG85ytfJwkIJRb1EhBmlqU8pwCDhptvF3DlMzko/9nNLj7ClMYJweVG6zRhIHCV4IsLlBWUgp8MqMdw16N3c4cV0MID4HDYBu9v8XqLO6NMajvwID+Z4mDklEee+TBwyTCg38Phw6uUWSKKKoSEeEHKWmaMznlI6XruiRxhrWKQkNmNEqneKOqV6lUQvlu+jHGgNwjbTqysTO8Apc8JEmB0W7BUysLrC1RlhFHp8rUJ2oUXkHsa2aqNXQGU5MGT5Wx8ghv3rjC9/3UBwnSDcqyz2DYQu8UtG7epVme5rc/d5l+J+bsfQU/8OFf4Pc+/3USscVHP/o9/Oj3nuS3PvtN/t1n3qLx4e/l3MdP8Su/9hoP3e8xO/kI1y5fZ70XcekL36KfS6xXop4UnD0/x4VLm8xM+2xsd8gGEPiQnZ7gn/2j7+ezn38dVauRDPv4xSw3b22RZQVSwokTx1BKkGUJlVrEN775PI3pEzQmK9y6comV9Ta16Vla7SGnT52g093AD0+zducmlVKZQng89fRXmajX2dnuYoqEShRyfGGek0cWuX7rLZRSHDuxyM3NHbSK+egH38ud5SUeODfHjZtXeO+jpwiVZWtrh6lajc2dNp7JKPIBaV6Q5u/cWDwmye0PIcQB05S3TQ73JVPCYRNc0qegHGWEXkamOxQ6pTLZRPkBoWcRfkh7u8VUeYr11a+S5GVkmvHEk+/jueeeQ3W7NBs1SoGip+pMH1nAdAS6aCODkDhNmJltonTMsLOJRJGkhmGaUDUg0djCYIym0+sztTBDslFQjUrEcZciGaICifBCjD/A+JIwshSFItcKYRzURpixrsaopzaGVggxcik8WE02xuySmvcvLMbw2Xsdy/3kvrEOt4N67H2XtHsV5P2Fr8N6857nHSCF7teD3v+9++d+x4sCpHN9lUoeKq0dTJ7H/8MfpzL05413xbQ+rviOqzWH5xXH7sbpi+YpYRhSr0bU61V0XlAul0crNY3JY3Q2ZDAckuYFjXoTEQRO39j3KYyrMjkFDLHbojRak+cpAGmaMuz1uXNniYuXXnWDeRbzpS9/gW+9+BJrWzvsdGO2djqEpRomL3juued46ZVXaHV6rKxvMEw1QkGSaYQEL1AIJcl1sZtQbm9vs7q6jJKG4dBBF0pRhahc58ix40xMTqEUzM41KVciJ9WnXEVmaWkJz/OYmJhw8lBCYHPNsNthfnqS0LcIWTh5u0HCleu3eP3ym5TKVXKjabVaTE1NjZwQU7a2tpzDIZrV1bu88sorvPLKKxid02w2mZqaYnt7GyEsaZoCliiK0NpSqlYYJDHJMHaKB6OLVGtNlmXEcUySJMSxw1YrpXaT6LFJy7jyB/vY0KNuwLtF8utesfHip1Fjcw0B6BREgjBthOizy874axrjlt7493sPUDnGZgibIeUqIn0L4qvI7mX6178BO1dZufQUprfGIAnQGUivhPDK+EHFtfHQjjAzmiA8JRBGUwkkFNluW3F8nbhrdK9S5fCNPkL4B7YdaAFbufvY3yLOjXaThAcaZ/jkOAHeyGjFIsQY43ewhXivKs7eIuOdXRAe3s/9x3D/Y8xHcItj111y71HkmSbPNUZL0iQnCBRhOL6X3UQ7JlbCHvlnLIfpOgCOjDgeD4QQZFkxwl/L3e1mpMzk+QrPk0gtKPkeoSedOkgQ4ntOHqxWCVAip9mc4sTps1y+eo1+t83R+QVOnDjOyeMLUPS4c/Myn//Sa/zMpz7Ipz7yJL/0r3+NX/+D6/zcp36QB47Av/znv4UXevz495/nc1/8Gv/j//QMD9x/nutvtfilX/kap+9/ki8+u8nQlFjb1PSGOUlmSZKYbscQRoq8AD+oEPgR3dRyfHGBD37gMe6ublIrl+l114njjKwQbG60wWhKkcf7Hn8vlXLI0aNHSfOMt25cJyxFpBrCqMLOzg63b9/m5JmzfPbff4Gl28skac7Syion7zvP1MwMuS6o1Rp86P0fYPn2El/8wh9RjULKnkDqlEfPn+Zv/tQPsrm5zPzcBP3uBsdPnebCpcskcUzgO2tqX6nR/ecs3rPsnau9HYbCHb5e3+65e71/d/wak4RxVW3phcjAQ0Uew7i/u72duG759/7IL2CDKi+98gqZKfD8EklWkKYpWiikF3Ls5DGKIsOYAl1kSGMJfEVRZGhbIDwBStJPBwihGQx69HstpEnBZGxv76CNIUmc7K22kKWuel3kfZRy0pH74Q+H/9/D/7uVB/8+7My4H57xdsd0/3OWPbiMwWlq6zGcBnZdEvfP6fsT+HHyPI69HPDbiYmHv3/XQEd++/693Xv+suNdUYEeJgOscXqscTpi0wPK0ygJRjv959ym9PsFs1M1GpUqgecxvzhHGJaQ0hDYPmutNjOz81hP4kc+pXKFicY0eB5xa4tiGFMul9GpIC+cVI30ffA8GlPTTic2jel0dxgOOlQjj9Xlq0xOTiAKw0anxfp6FyMiFhaO4HkeW+0WnW6f+kQDkRRgM04dn2VtYwOMk99LU025FJEXKcYWDOMcrWNCNc3m6m2OHD1KFAScPX+W7W6PKIqYnFkkjODO0m3urm8xLDLK1QpLSzep1KpceO01jiwsgrE8/ND9bG7eJesldNo7VKMSRdEj9DxAsbnR5gur3+DatevEccwLr1/kF//Wf8ra6jJrq6t4QcTaxg7Ly7fpDYaUoxISgyly/CCi1+4wMznFxuoqU7MzmCyn5Ac0aiUmqhVWbrfZ2mmxEEY4YAMkwz5ZMiQbEam8wEeNXCI93yfLc7a3t2nvtHal6pRSZNolLMY6rBR/zKrxnRYCu33xG0zNHkVEFcSRD5CtP0eWbKPWl3nz2jVOP/JBGmcfJKs+SQ5EFFgEBoWxENkcLRUpkoC9DpUaY6kVWAqs9VySRsHY6OLPh2gZHbFRhRxhsHgjoEmGQiNsaYRB3W+oMU78QFhLW+RUlr+MJyRi6jiU5rBMInKL8aWTvtIZWlmUCVBFC4Zt1l79DbobG1y5eAHPDylXaszNzdNtbaORWOVTEh5CpAwJaG912ekkRKGkFEYoUWCQTJQ0sU2YKjfw+wV9E1BgMCpz7PPCURStteTaoKTADyQKQ64NvvLwlCBNPcCReawdOw8CVmGtM1XxRnbdceySZ7QliEInjSdAS4Xv+SjfJ0lylCcxRiMBbTQSs5usCyHwhUV5apcT8E5FEHjkuR7tm2ZvpXew9e0FgjByRF9PGbRW4BdoCTutLTzf0usOUaN2balSIQgVnoB4mJMg3VgrBFAQlSpYYfBCHy8MEGmKzlKU56AyEtdJkNKZ3whr0cbghxUqVUm90SRNC8pCcPr0SfpJTL/XxjcJEovyPLL+kKW7Ax4otbm+usm6bfGJT51nkKQ0T5xma/022e03SWLLgw9XeOapP+LLX2uTlqr8g3/0E5z/nicp7HO857tWmJw6yhvba/zwT/4sv/ebvwXJTf7e3/uv+Cf/7JcYiCaV+WlWtzrMHpminxSsrLdpFBFhBGk3JvRhZ3uAkPC1b91hvvI0M/ML3Fzp0i3gv/2vf5r//l/+33R3BqR5xrCwKGvxpeD+0yeYmpnhc196kTyDTFrMMOa1K7doVnwiG/D6hcscO3mcdpzSH2xx5swiWsdUG3PEy1c4Nj/D5UsXOHv2Pn7iRz5OYSxv3bqNtCFFa41Pf+tLfM9730fgewxUnaeefpb7ThznaKVBuzegUwjCUkSW92ltrKKCCp3uO5lAu8WZlE6FRypnSiTs3j4JRjJtQlDYvcWbW0iLXZKhFRZdGCJfMrMwjTQd8GbI85Tm1DQbGxuEMqLb7pH0e6gwQooyL3/l9/jI3/0nfP1//qecPrFIPixI+y2Ep7B5hQuvvcwP/sjfYS26RCMMGKaGzeU33DijYWp+itX1TULPI8JQikLiXpfZxWNsL1/HzzXlxiRWBQRRiSJLscpD+eDFKcZoRGAQ0SQqCEk7w9EYpkcKZtIdFztSnpAKLQEsUjjDGW/U1S3MXtdXILDGoqTv3AxHSacWoyozIxlO40iG0vgonIa0OyujZB4zgnLIXTtthSD3PYfq0OYQhOxgWAuMxt0xDnu8f1JKlBBubJXScZ2FZBd6ZqyDnHrOVAf2CimHa9V/0XjX1MbGCg15Ma4Oue0OSyMAgZQQhiGe51GrOJOUPM+J45iiKOi2t5hfXGCQpNQmGni+T6XutESFEaTJEJ0ntFvb5HnhcNNKYQtNGIYIqUjTlCJPGQ77pGmK1ZAmOTeu32Znp8ugH5MVlo2tNoPBAJ2nvHV9iXjYZ3trA2tzypHP5voGYSCJSj5GW5SCLE+c2YBxlp5BENDpdMiyjPW1NcLQEQf9MKJUqTIxPUO9NsWp02epNSaYnp5mqjnhDFjyAl95DPtOo7rd3mGntU2/13YW27m7kcaWu2Mx9Vu314nTnCzNqVQqHDtylCAISJKEK1eusLq6tgupyLKMzc1NWq3WLj55MOiRDProPEPi3Nc84VaXcZzuajdba0eKHwlm9P12xBYerzzzPKfX69Hr9XarVGO9xt3K4Luz8LwbO9sD7rz5Ei8/9Qdce+p3yLdvUZUpJVUw6Ruuv/YMxc0LBKSUrUbRwTMJgUmJAPo3ULY3wgGDwjBS1hzhxwCrkLDPbckwtsD+i8aYmuFhULhk0oW+5+tdcimoibu0br0Aww36N15luPQcVidgOo7sCmCGaJ2CSdB2CChmZxZRyice5mxsttna6XHt+k3STDOIc5QwCGkxphgZ8CjyXJKkBt8P3X2KR1YYhB8hvWDUvnU29GqkcLFr8iEEnlQoHEtfyfG+WUewGVVFxnb0+zsfcmQQshdOOcMbfafW+kDFBvi2vw8c631wl3dDR8UP1O59CTC2Mz5chQpCn9LIHGI/fjIIFGnqukvje9fBNvYk8XY1WI1BG2e9nuviAMve8RxG6h/steiFtNiRHKHbLyhFEVEYUo5CMl1gDMxOzxEEEVEQjMY6wcpGl6AyyaUXvsr8dI33v/+DvPraJXox1CemeOT9H2Bx8QzrO4KH3vMQ3/fRj/MP//FPMDk9z+0b1/j7v/D3KU+E/J1f/G/42lefoZdc5f/6t7/Fhz78ABcvbfOlp77Gf/af/zxfe+Z5Ot0BrU5OZjUbOx3CClgCPB98P8QgCAKPUskniHym5hYQSE6ePIr0q3zjmZc4d3aWKAxoNmvkFrZbbTZ3WrS2drBZMcL2G4eNFWpEvFVY4dOcmGLQjxkMEyq1JqVShWtXb7C5scPisUXywjA7P8eNm9dZuXMTazKOLs5x7Y1Xef8TD/KJj30fobDMz0zx6MOP8MiD96O1ZapS4fSxIygLRR4T+gGigJPHj/NOpg77TVTe7j4ae4sc7qyMt41DiBHpWAmCUIKCoFymUquzvbnF7PQM29stTOEIcpHnkyUxafcuz/3O/4GvBmzeuLsr5bq9s8mJk/cxPTsLGrJkyKDX59jiUbAF0haYInPcrEqVtN9n0GljrbNSzxMnrbm9vcnU1BSe59S8wlJEqeSKWqlO0XEKFKhQUor2FsBuHBu7RI6IfkodIO0dOE5/jM7y4cr0+D4eH/txcgt7c9P4NeP3jCvR4Eo3ReE68H/a2P38w5X0cVHnT2jw7t+f70S8KyrQxhh05vDMWZY5SJIanbCR461SkmatRuRDo1GnMJpqfQLAaYTGMbaAONXUG1OUyjUazSmCKKTf75LGGelwyHA4pNacQgpLpT5Fd2vVkYrabbTJGQ462DxjolGjWY146flvsb7Zxgsj7m5skRQ5CkGtFECWkGGohnDi5DTViQZ3V1YY9hOOHamx3erhBx5KQFZI8tyQZwavJAkDSeBByY+o1Rs0p6eYP36CUm0W5YckSUJzskI86DE9d5JP/ViV9bt3iIdduu0eQghmJqcwwpAkBadOnSDub5PHLknQuSNBGm2c9a4SKOEEI3rtmHwoefnV17l0+QLDOGen3aPVarmkJdcUNiM2BV1P8sUvf5VHHnmETm/A4sIid+/e5fiJs6ysrrO+vk4URSilGAwGtNttqtUqUkqSxOl6h2GIZ501MsYxe+M4ptvt7i4g9kM8xqvN/y9Ef2h57fkXCX3JcOUinVKdRn0Wv1Ihzi3FMOHyi98kunKNo8dPUMTbmGKA9QMaswuI3iq6cpbS/T8OorwLltZSoOgAFpFH4CnAx+JhBK6qyUGZoj9djBQXhDf6DM3YGUv3V/Gqk6OPVG/z/hitSqTP/gqzYZl+e5sQy82nf5tzPxUw7KxQPv5hMDG0NyGIoBSQd7fwwjmkxumcyxJDoWmvdSiXQhARQufUIkFhCrJYszNI6A0KhrkkQuCbGKRHJajQSwyF8Njs5BBUELnA5GZ3wgx95Y6Q50g7vhKEUmKNxeiRwo8Az1MHJmKnF68Jg5GUXQEyCA5MNEIIcl3sHk3f92EERRobqYxjjM28V/xZJpLvRDQadbRukaXFCM4GiGLX2cxNWlCvV/H8kdKAJ+j1epTLZaTnukb9XorW1qkYeJIsK8hzA2GA1sYVKwDwMSZHCAcLkBqq1eroOUGW5aOJWVOrVsiLePS3g9cILCZJqdZ9RCDZ7BXcunGXU8cUc9Oz5IVlZWOHOI653R7imbf47z4xy6AKLz39Bzz4wfdy4a0dfvix92K3b/LvP/9N6sffD/E2V65f5iM/9B/z2OOGf/4//D7/4KfBzzcpyYyPfeAJfurHv49P/95XmJkNufv4A3zm6dc4vrRNGFV5Y2mFozMRq1tDcjysD/04RQuBsTCILSVfgufR7g9ZWt3hwXMnyZIe9913jl5ni0cfe4iXLyxz7fpVFssVXr9yAyV93nPuLJ1+zrmzx9AW1u52KFVCOndu02o7neD1Vp/tzS2OHj9OpVLl4uXblKMyd+/cIZoOqQSTVEhBpHhKUfEtxD3+1o99mN7SJc4u3seVYcqNt65S5JBlPfI448kHz3Dx6lUeum+RzW6ftc0NiqLg7uo66fCdk7GzowoyQuD0neS33WNvp028W3ne7aopPGWZKGuSZIdAGqqNSQaDHoPOLXZWb7E4f4y4P2A4TKlPNPGCAG0N/eXLFOEsM1N9dvqGWlimEShMVKaxeBwrNEJYuoOMCxdfJhIFw3afynTTwZ5MjsRQqdYxVtDv92lMNlGlEhJB3Bsl1kpibEG6voHuDxj6kpIXIGWVemjIO6uUpKIwHrpwkFSpxIFZdKyR7dyc3bbxmGb2jX+Hx7ldmNd+FYyR2slhvLIWYNVYnWPve/efGTce7p2j8YL8nud533sPQO0OndfxPuye+9E5PmAK8x3iT70rEmgpJfEoidKHZEbESELV8yWeJ6mUnFJFo9lEa6c5rJSiXqu7iy2qgfTRwqM+0aTf72KMIfAMnWQI1pLkGfVKlbAUoXFe8Fkak+VDejsbxP0BxhRUyiGVekhQNrTbq06g38Li4hyeVGxvb9PtdDi2WOPk/BQb2xuEsmDu+DTbrQ7HFifp93MnVj5MKQXhSPs5pMhSJicmmKjW8JRmolalUq5hvJB6Y5LZOWcd3piYwvcV2lpOnDrJnaVbbK3dRQhBJfLobK/T6W0x9DX3HTtGo1JiY7NFtzfAaTJL8tyitbuBPE/iyFbwla88jVCQ5hrX7oY8L5AWhNBIBYU1zuAAp115e2lIp9Ph3PmHmZ5xuOixXnNRFAfaMuNV41gL1/dcJTXL3Ap8bAEO904m3g1Vuj8pstTSCATK5EhTpygMW601gniKTt+pr9hC49mcpTfucmR2kmF3gEZQDSJk7oHawXbegInHnR21yQixIFuwdQWCGaifBkoYfKQVYJ3G+J+LnGgNWhQoEhisoCsPIARItQqyCkRgPKzYU16A8YBWArFJEAdQreH1e/SShFYu6b3+NWozNVi/Qja4TTAcEszMMnhrh6hSB/82z3/9KVbvrtEaFBRGoFGIAm6tbLA4N0kYBQTJkDgbYHJLYUH5IZEvsbpHEFZGia1AC4XWFjPIKNcnyJIEYwqUUCjPJ81HLlgYMGCKkczVSL7NGoEaSSk68xO9r3qtdycbKfa57I06Osa4+8I59+1pmo+v5/1C/0WhsdbsVXbNPvvhdzCkhCDwXTco0xTawSaw/oFKeVTydrkNSZrsjgdGC5DSYUaFc3b0PA9dWKRyKjtpWrC3yJMjor5FmwKduzHF4c/3jp1Szj45GC1cbAGF1oQh2MLJf9VqNYyA9Z0eUm5w7uEzBOGArOiS2YDN1jYfeuwMx2tdrrQ3efz8fTz/wiv0YsDk9NqbzB5bYD3pYFo3eOD8k9y4fpM8z/nbP/sIf/effpT2jTvcufk8xxeq/Kt/8a/52A//IL/72c/ypW+lLN53FuVLnn/pCtUabO4kiAimGwG5zmHErcl0TpyDJUPqDF+CDZssre2wvNxh+e4LnD9/nCtvXKZcPUIp8phpTrCz3SbOCvpxghESJeGxhx/k19/4Q5aWY4KSR+ApjIGgVGP+SIUbt24yOTFBGBRUaxXIM6IgoLOzztzxIwSh5JFHHmF1+Toyz0kLw9zRk9zdiYn7A8pRCRNIbCRY6ayws76CHvZ48KEzfPVbL/PgA2dYa7VZXt/Cvk2H6q8iDvMu9m8fx/6k8MB8JPccCN02S6A0YZRTinwCJem2W2xvbdAslSisZeXmkoNnWkm322V2fp5Or4vXmOJ7f/Tn+cIffRZPbSL8EJMU3Lm9wokHJhH1BrIUEtUWaNYkvZtvsTVsUTETxElOe2uN2WYNFfhkWUa1Wt11TlXGwR9836e7sQHGote2R6TCmFilFEETI9YIdEIY1ZFFSppahHCdMqkOOQHum07d/e2KJMYcTDT3K+7s/s5BBQ+J2JWoO0wM/DYujBS777Xa7hI574WrdvtjDs4598Bg7/+e3c8ej8G7r4ExjG+8H3/ZSl7vigS63+8z6PdHhiCOLFIUhiDw8CKQ2uHvJqoVFmYb+KFHp9dnfnbOVUKk51p+ysMLIlRQYe7IMVq9HmqEw/GVot/r4Pkhx+ePUGQZ2lg8FbC2skKW9IgCQRHHWJOxtbnJV15/jWqtTL/V4dyJI9RrEa3tHaqNKv04xhQC2SxzbG6W9du3mZypY3KfUFjSQY7PEE+ViXs9jIByPaDVSqlUSmhPMoz79FpbfM/jj0AeIyg4MjfN0AiiWsVhA7XD9C0eO4EnFZn0mZhdwAf6O2vk27cg3iBpZQihSHptPGXxfElFOUymHyoGSYpSgjQxBIEPyrC903IsXTO6+EZrF39U9U+SDKMsgV/m0htvcvLkSRQOGuL5knI5Ym19a9dxDZxbY1EUhGFIqRQ6SEyRIYRryw77A6xwqiudToc0TUe48/Sduvz+QjFMh5R8D4Wkn3SpeU5Dt7+zTWoUQgp0muH7mkBa1lY1QpQQQrB6dRmrCkr1DlGngw6fw69OEEUWI3MYdinSIaJcQ9auo8oTqHIT1DT4k1hZ5c9agbZAnnQhTMFsYm58iaJ+me7qVWbf/1+CrXNYgH8cQggoNtl45n8j2dpgNowwJsaSMjlRI6yWsdTYvvwU3WGfzbfu8PAHv4vttSUqlXnW2ndY20h6d48AACAASURBVOzSTSxpDtYaMuMwedZarq1uUDFtpoiZLEes7PTQRhH5hkZV0CyF9PKUfpoiKIiUoJ/FBF5EaD1XqSlwsnJhQBzH+F6ADkKwkGQWJRW+r5DSYqwgiPzdSUFrsQvNEOD6wOZgBUNKZ8mLdNhKH5fwpbnGij3HTaUU1hiE9LACimKfSYs3djJ8uyr/X00IqSmVQqSEbhGjPFwb24a7EKswcrCZPM8wBiqVCmEYMhwO2dnKqNYEQeBjBOS5JgjYJQnmSYIu9vDeY9a9mwstQrqFt9Yak7kxJYp8yhWnlpQkKZ7noVREyRdUqq6FboRHUkCaFWwjyVo7LD39IlFQopNCZnya5RJi2GaivsD1l26wur7B3ETERz/8fvANNosRUtEINItnTnD8xGlkNMtr/+bXefzhU3zxN/6A5uJpnvrDr/DA+ftZOC55+fW3iHPJ/HRA1rvD3eWEVgf6BjwryAaW954MSYuCXi9hsuajhcQPNUkGtZrP/ESF//P/eZ5//A9/jqD6ItUwoLe9zbHjs3zpuVcRQvPGa28yf+o4YVhibWuZdDXl3IkTFHGKH0ia07O02z20jimFiuu3VrCmIApC0jTn/lPHUUry0pu3mKttc/7+01jbw+oKzzz7LDMzNYqhxIQpat5nbe0WpTAkLwxn7jvDW7eu8shjj6KtIC4Srt98nUpDsLRyHS8IiULL4kLzHbtu5UhlB0DYfRJ17E+mDyba3/YZo+1BYKhXPJoNDYWrxtphj2xrExtVGXZi9HDIerdPdWKKarVKu91G+R4LCw2e+YNf4+Mf+zm2Vt5k+cZlOr0BJxeqXHnjCkcW38fN1U0++skfp7X2GlFzlqaWSKE4feoMt7IBvgeetKyvr1MrV2j3Yyark2ys3MGPFEVs8LpD0t6AGI/y9Az5ym3m5mcJp4+ytbHEMEvwfI9aBXTHoAuJtNXdarsQYrfq7IoPBxUt9pOp9ye/90qGD1dyD0gEagc/FLgFzO579srIeJ5HtVxm2B/surEehmYcTJj3DJ4Ov8YVdL59ATXGc5t7MKT+siGh74oEWggxwh6P/uERq93pQBuElQSewvPdgcyyjIWFBZIkIU1TfF/g+w4/LDxDtVRibAzQbE6SJ+4CtECl5uAF0vPQpiDNM3zfI+knSC+g021x9+5d3rjyJv1+nxu3l5mo+Gy3evS7HUw+pFQpOxA/OdIK2q0t5ubmyPIBRZZjAsPi3BSra9v4ZZ9qrcwwyQh8j8lmlX67g+cpfFWlMTlN3B9w5PgxOjubRLUZbFDm/yXvzWMsvdLzvt8559vvVrfWru7qnTuHHHI4+4xGI2qi8ciKJSiIYViJI0GAkjjrPwaCBLYDA7FjOUEAJ1YCA4kFGJAgC5FiSaNon+GMRuQMOVyGZO/srbprr7r7/baz5I9zq7rIoYwkkEUqOQ2iG+y+t7pvfd/53vO+z/N70tVV4jhmZ2ebZrOLdAlKhbQ780wQJHFIhGaYpWRJzP7uFnHaJM8npHGIwCDFbKw8G6sEQYAJNHVdEyqIk5iiKAmjZIaM8ks7kMbTQ6w2oBz9ft9TO3q7hGFIuzWHY3ikYTw+ijm8wA8LhCMNpDHUpkCFAUVRMBmPjx7Uf1GX1hXTwpv8JCOMbqOcIAwkojQYo9BCYKqaSmpcZVHpxEPvNcgoJR9ZbFEQRPuYUUrciZlQErmASCXYcooKd3D1ECELXKC9oUPGQMiDENbZeG7WLjhkLL93hUmMEDlMtpFuShKOuHPtWyx/+m95k6CY8USdPHovI2aijt6bHNy8RKOVESsYG0scRsy3YqJ2G2cDJuN9BoMCGSbcu7eBMzWvvPoNsrk2joBSe527mt2jZaUJlMBKRZEbogyMPKQ3iNk9X5N0E2qtGc6SKkPlMLrCiBCMRsxOgIcyigeb82yTV2rWCZ45wO27kVjHuylGG6zxh0tzTCv93u6XcxaH706L4wWxO3SdHzJaH+iBlZJHHeoPclnri2gVCKQ6vGclYRCitcI6T9qBwyAERxD47nRd117u5XwHvypr6rpGyhSJQqJwCJQKsUoSqHBGOfCdeIc56gYCVLpEqgAhJAKFcxopZuEWKkCqABmADAPqWjLsDRFRgBYOIyT5tEZrSWkELgxpNpvU+YQrN25TacBJfvZnfprJeAfynOGwRxAtsnPlOo/9wBNcunSJpVXDK6/dZrnT5oWXb/LT/8EjfOy5pzh39lFq9Qy/+Kt/xOrpC6iWJUkDCtchfP0mr17ZoLOwCHaAqSt0bQkUCCyNVofyTkkUKSaTmnuTPs0W/OI//2UunjvDdJzTThVPPP4or1wZoqRmsSnY2dnh9Omz4DyRZGdnj0tc4czpVd6+eo+qNDSzkMGoIMtiTK1ZWphHFwWjYY6QjjhJefaZJ2i0Q+7cu4uu+3z2uUdpNBStk/O88vJL7Gzdo9Fd4fyF07z55nUuvf0m69v3efqJJ7l09QrnHnqYcv02J0+eZTwx7O3tsKIF1+4MP6jL9l3rXZ1Jd/z/vZ8+elZYCX94l85LuKJUkDYanvdcTNFFTjOJ2dvZIZAhWluSJCOKIu7c3mDt3BnyyZjx9dvMza/ya7/8j5lbOImspiytLLK9dZu55QXQhpWT54jilIODPmeaKVZIeoM+3bpGKYEMJGmj4TvQq6fQImSwv4XAIi2URQ6FJ5Q1Ty4hOk3ydUuaNXAqIW1klCanLMakSTBjMisUAVX9/aEi/hn9p1eRh1M44F3F7SHL3h0rqCV4v8sstTQQvjGAAKEeyDvc7M9GUYQMAvr9PqHwaFHpHhTLxtmjmkUIfJjd+3Se/Rf3r3XGzvaR9+l8/zmsD0UBbbU7Im846TfxIBDEiUdFtZoZ3bmMODA4XdNtz5MGESrwG/TyiZNoG6CcodHwuLpRb5/55RPU1lGXJXVVsbC0SJqmVMWU0viUnjSNGe2Pial467XX+MZL36bSkBc1g1HJeAzahuxPJiwtzJHFKfnOiFYjYnVxgVAqWq0OzljiSjMpG76jXlrCWCKFQWAoS41zNdgC4aCRZmAsaRhx8ZEnmeRjyuk+p+Yz3tnc5P7tkHangbIl7SylMhGj0Yi5ziJJENDb30MlKU8891l0XdDqtLlzZ52qGNGMQjpJxKAoCQNBUVY4B3leoxQkkQJrMFVJGvmOWJkXGA1x5Nm42ji/wRiFcIYkCinzKcL67lKe5zSyNs1m5o2DInigqZqNuRGGJI0pq4LhaIoY+VAbbWv2d3YYDYZUZY6x2qNwPuCC4v/NKisNVlDNCsm4hFBZoqBCSUVdl2gRUdQaYS1STIlchpTeLKfqgmY7oqoNRoWoomagHWEoqJSAuCBEQGERYYUdSVySg8uRCSDbEHZnW2IJxQFG5igyRNzCP1WG6IPrBM2PYJgjIARbY7c2kNOc/Tdfx1QK+t9ENM5jw3NYAUJMkEQIJ1HOQP9Vrn/1F+nt7yLlCju7m5w8fQZbanr2gIXWCcS4z2Q0JXSKUxfOglT8wTcvY2zAcKdkWo39QVeAQRCIgKrQDGoLoqYbBqRpzs5ggIozAq0ZjgxVXXFyqUUjkdhxzaiwZNLLKHw+3phuM2ajZzx1I4xABtTGIj0AleowFj4AKwRBHOPV5FBbg3COqqpmqC7fMTX2cASqMMZirUMbH5ziu8zMpCIPJBvOOYIkRRgzC02RCFE/GIsai3Mf/PWeT2ukLAhQJGmArSXznQQVRzgb0B9FtLtttPYSrzASGCswzlNIVGgocsdBz0uVGs02UZIw6g8xOiZMYtpzbVQSUM+MU056Y6gSliDM/OHCFQjjGyQijMhr4x38KvbcbikJ44jRdMRYa0otqV1JKCxx6HXutXT0+2PCNOPhs2u89PJ9PvmJ0zju4nD8nb/7XxDFjqybgqxpzc/xO7/6Ij/+/FOcO7/Ga2+v8/P/4H/lZ/69v8zLf/xNfvKnPsnexhW+eWmHqzfeYOztGXzx+TNs7N7jjVc26Kx1EGFGHMGkmtBwFf0JLHabNBoN9vd7bB/kWKCyECooNMwHIRv3a9rBXU6urtFsCH7/N36H4QjOnznNjfV1sjQiLypUkCEouLc14NyFi9x4+w1Wl7pcGe5R25jxFJImZO0Wu3tD5jsZW/0hDkOSxewMp+jdAowjn/S5cukqipqPPPUUjz75GKNxztqZh/jOa2/x2CPP8Pp3X+fsqTWWF5cIgoCXX3uVL33547xx+TqmLnn0zEO88fYNWvEHOT2RvF8RaMUDnTPWI2oBL3ebDZMCoRAKhPK/bnUcrcUIG8boomA6GlANxsRCoUvHXn+H1VMnGQ6HIAKsCIk7i4DAaIUUEy6cW2OrJ3j2qc+yef8V8nKPzz37Y9zb38Ulc+zt3qcalWzWY8ZFSRAYrr72KqtLbfqDEWFcsryyikoaTIYjmq0GRTmh2O8xGfSZX1zFGMOpJx9jvz9i4fwFbo96LHTWKISllbUIAkVvd5dG9wRCxUyGGlcJlAypLajAx1774ngWiOYsQs400DOEXyAeNB8OGzBCzvY/5wCHlX6qb61DOY/2xHkZZpQmjPMpSZbSaDQwxjAeehmtrmqoaqIgnCVGCg9xmJkRtfDCIKckkkM29ffrnyWe/wwzr5x7IC15X837MS70n7W96kNRQEscsZKkcci0DomyhOl0SqPVgqrkxFKbLAsIA4EKBMbWOAxhmNJut/1DKkoRjSZZo0VVG7rdLnVZIKVkOhnQ29tjZXWRJEnY3tknTiOSEO7dvgJO89Xf/JcsLC9x5+4+CysriCAmihSF7sG0IowkaaHYG4yJRUmkRlw8s0gcwpwA6ypyXTIYDRBSMc0NYZwwmfricq6dkig4yDWrywsc7O3TXuySxpasEWGIaCnBN3/7l0hap1n73Fm2799n+dQqg8GAKJ1nYWGBuhxhqpC1tTOUxZDBVsXJ84+ze/8W0+GAOJLcXN/i/NllrlxfRzZBBVAUkKYxWlsG/ZpWW1FVs/jiqGJx0T8087ymrDzVwBpLbUAJRxKGjIdDRsMJSRrR7/fJmjULCwu8886tY2Nwc6S7Msdcu74T7kkHZVmSZRlzc3Oz7nNJXny/KeVorPQhTCA8XGHaxGKZOEOlFW4KgdLIoiBQiR9Tu5L9odeNBRKi0hKEkjiOSCNFqWukgqB8wNx1LkBK391ESKLQel164bBVgTAlwloIlnFh13cB8k2YXEa4MbgapyWumuLqCjm4h9F/wNQMiaI5xtMtMhlzcHeP6bRE1YY3/7e/Tzjf4rHn/zpyYQ3ih0E1mALZzr/kzrd/l/v396ltwObWLnfubzAdFxz0Ruz2Djj9xAZlf8LGvZxaVly7t8u0sPSmjsrWlFWJmIWI1EeyIYmxGmE0ztZ025JxJaldk9pBXmuMNExMxs3NklOLgvNLMeNpxXCsEVIRxhlWCOIwAF1BEKBrkCLCOEcQeU1tVU89Dk0GSOk7rHZWIEdRhK01ZTkzshkf+nOczhHHsS+SQ3cUQlIbryV0jiO6hHMO5Tw6zziBFR5Jdsg0tvXMif4Ba/zruiZJ/Hi3zKHRUDQaCbUTOKGYm5ubdZ0VaZpgrWE0nFBWOVmWAoKD/T5KKc6eWyJJEvb29hj1R4wnI06fO4sKBFkUEzWbSByV9tMmowUqkMRpBiKkynPCUBIfYi4VFOMJ1kGj3QVrOdjYw5oY5wrSVBDGmjCIKKucdidBCMPW7i6XrpY89fSz3Nu8xrM//iN85qc+znB7myhtMJr2iPausHMw4R/87Z+GdMzVr73EM1/8WXanFQdbuzy2tsyvvbjJ/evrbOxDLaA1nzHdm3L91jbr9zZ5+lNP8vVvv01VDzABmPEUMm+eKsuaJCjIopDNexMsEGiDjARIR39UEyTQbWecP5Pxm792jR/84mlEX3H3xm12B5COK5qNA4wFGSScWmtz5cYtHnniOW7eukOcCCKpaMaCOHBU0wlhpBhOJ+zslUhg7dQC129t0EhDzp7IZqQSwXhcY3CousKUJbdvXKcha66/9QJPPHoaV0vWb13iI898lI9/7Kd47ZUXSUVAmIbMd2Pqh05w/U+ufWDX7fEAINwDr83xjul70weZ1dVOgpIBYWDIAksrLRBViUwMYSRoNNsEZc5kr0cYpSyeyKiCiJXzF+msLDG98wZ1MUB0Otjte+yNMtI45CNPPsfdjX0aSHqb9/jOC99EzZ0gL0oG+7ucPn+BrX6Pz//w57l/9RUGgwk2CHj4ifNURlMMHWkWo8sRe+/cpDwYc/vqTdrzSzz9hafY7PXInWR+YZmDsiRZXCSQmuH9+1Q2ZXlhmTroUPa2aM11QdWkjTny3PtknD18pgPuwXTOozuDd/k3DvFwSjzoAB/+fhAEBMbDCZRSKAs1hkLXnD59ho2NDX8oLmtGZd8XtTOJZyAV0jpqZxFRANoc1QU45+PAAaRCz9B37hiC0BhD6ATKQinheJr8uyaDD6yH/9p9VB+KAlpYPwJtNptMygKlHEkUoIQja2VEoUA6SxanhGFAlqX+kGktWZZRVDVB5MFbRVGgwpS6NjhtZiYufZSedfh1pvmIrbvrTId9Ll16i6effpoXv/NtWp2M/f19EIrhqCSMoNGM0KZi/2CbKEpwtiZqCEaDAw6qGmkq8tEQpyRzc12yRpsonXBva488h/nFFrYq6O2NaTYFw36PuXaTTjujKsZcuvQq8wsrREow6O0y3z3P/vYWrdaijwyOJXme02q1GI8K0jTl4OCALA4oSkNRG4SKSKKYZrPBYDxhrzdgZbnDve0BjSxEKrDGMhrVNBq+exDHAc4ZdOU7gmEgCKSlxOMEg8Af2KyW6EAeaZas8bp1gyYMG0doweMb2OGv67o+KkKOo6uyLKPdrhkMBhTvUzz/RVm1NmhTe7ls6G/i0FrfYQsMUeTRJ1WlicIQcUyEdTjSN9Zj6Q4PG8cxTUdIMAPOaaBChgGuqiCogVmkrgBX1YhyjDRTwBfYIh9jbImrc1QVkRaSyg6h1lRO4km7YISirmNcf8qd73yVveGYj37xywRnP0rqnoV8h8F+jRZeG1JU/u9dGcWt2xvkxvDSC7/P9kaPwYGiFDWTssQRQBB5pKITYBwWH4iiDyU/xncS2s0GwvUwxBhXYKxDmxnPGeklB06y1IkJ8NdMpR1WaArjMNMJnSxEC+GnitKBcTAz0Djh9ZO+cLc4IahrfWzzFRzvbB2XIR3X5sWzYA//wLEY7V93+K31D6WZ7EE6pHNY4ZASnPPm3OBDEk0ZBMGMmQ1hqFAqoNb+Ppcz97+UAqUExtRHmMrD5Y2IPiGwrmuKovK6Z+VJO0EQ0u22sdYQxXI2PveJe/IwJQ2HsSXSHn7OiihSTO0IhyKQEAQhSgTkdU0cePlJKL2JtCws1k4Q0tFoNNAGbnzvJf6tLzzJlIRkNKSdpf4vXBfE7SaTmzeohnsMd7YpVczXvvY1fvQ//M95/Zd+hcm0YLif0LN7WJ3T7Cry6ZT5+RRjDOfOnGZjewvtgCAkjgwnlhtIU7GwkDEYjxhNcpSKmFZ+D00S/wxJk4jpuOLkyYz5+UU6rRZf+tJ5fuyvfIW/9jd/gXYMZ1dTwjBkMi24ePFhvvvqW1w8d5a7d0fcvPEOKgxYmG8jjWBpocXptS6BDFi/c8PnB8y1mZ+fp7e3DcIgVUhVFYQBPPfcx9nc2aaZhGzcv0u7s0hVW1ZPL/Ppz3yMYX/Ei9/+HvOLc4zGfe7efof1zT5bownnHn2ca1eu0xtNmYxGf+7X6vF1pIH+U3/v/Qunw9eFShNFljhQCAzF4IAoSgiCAJ0mNBcX2C92ybKMZK7LrVs3iZbm2Lzf4+zZx5kEbVqrJ+nf3+P06dPcuXWNdmeNe9e2ybImUgYUoz7nHz3L+GCCMbCwsMB4XKKto704z73NPfq3bjHXbVKMx/R0hc2nxDJgUFSknS6r588y1pYoa1IUFVmrgYxCrANpa0xZsfbQo+TDKVHaZH9nm8WVhFoon0yopG+0HFvvDTV5r2nwKLjofTq6h4ZfoXxHWijJ6omT1MawsX7Pv/a4zEMIRKBmkdsGq32Q3WFq5J9W3x5+fXko7ziCE/jOuA+/4c+8o/z/dH0oCuiyKggDhQoDunMtFuaaDPojWq2WZynHgjROkC6m3W4wPz8/M7Mks05oB2stYZqQZE2StIlCMMqntNtN7m/c4fTaOcpy6h8YQmB1xXy7yXDzFhfOn+Hq22/R6/XoLi4gowkb9w+wFrqdJuWkQCqBdAFVmdNuQxY6Hn/oLLqu2N0b0F5cpa5rhuOSza0DJmVFo5GgYsdkOkRqw8Vzy/T7B7Q7cxhdEUcBkbTYYsDl128hZMaXvvI8b77+AvHmLZ567jMsNx5lOnUkjYxer4epSpJmGyEEVW1YWT3J4GAbhwRr2Li7SX9/FxVEFOMpywsJO/sFdQntdgPh/EPHWEuta18ke2MscSJAWOaWW+TTkjyv0bVF1IZpVXPj9i1CFXPm1BqNRoOyLmg2Y7IsAzgyE2rtddYq8MSNwyJaSnl0iAH/8G61WkgZkBfV9xkJj27eD7GyYzqdkmuNE96QVhtHFEDohNfomhIwaCtwrsaFAaFyPrbVeWYuQYAIHKFxD1zO0h9g1KypaoREKJBOgS7AJYDBhRPoAlh00SPMN6EUIEZYmyDyIULX1JUvmCeqBm0wdYQWoHHIUGJQBOEIVyTcubqDUPDW//m7VPqr9HWfjlhmMt0iL0OEtJQVVNryyhuXgZgcw6uXC1TYoAgmuCqBIKM2Fa4qZxu1RGt/UND4EaC1BoymkUakkSNWjo2dKUEiyUuNcZLQJdRoAgXVFJbiitW5BmYkGNaAkNR1zvJcRKvVYW9U0aus/7zxcbfWWoLQd5KrqsAJiRNekhGGIWVZEogH4SZ2xpw/jmo6lG0URfXAEIgC96AQP+TZB1Lh5AOetLbmqJOtPiSx9GVZsry8gNOOvd509m+VWFtjDCjF7NDsPz9v8g4JwpkBKxZ059tIyYzpPmE6yRHO48HKskTKCds7BY1milQQxY58mpOmGU5oinJEXgxnvG1LWdZUlSZQCWVZooKQWAmsKTFlQaVLLzcyIaQBVa4xJmB+ocl0OiEKY6RU/NH//HcwB3eImnPsb67T7/e5eOE8mS4hhNH+He5vzhOMRzz9M3+LV/7uP+RnfvSv8pmHGzz1qS/z+y/+Ok92HS9NYaQduJQTq/OU+ZA4bHDixBLffmeCqzVn2wpRFVRGs7CwxM5ojHIKVEppxyghMboiSSOsscx1Q0bjgqKo0FMLHPAL/+QXuHi2y7/9b/4Iv/GHv0deweLKGa7euEWUhLx16TLDoeXLP/wxXnzxVS5eXOPm3Xu0Gh2qMufy5Tt89OmTPPTIY/zuH76ElAHD0YQkSYgKweZozNkzJ3nhWy8hQ0lquwg7pbe3zom1c1y6tsHrb92kKuHM2hnevHyNMxfO4WrDxYceo1rv89LL1zi93OTcqQUeHn2wpcPxAvq4Ae6BAe24gc53oKUUHnknBM1GTRYVpM0VpM6ZHuxQTVNsIInnFyjyCavNOaI4xgYhF1opzZU5fvDzP8l3X3uB7OJnaS8+wSOPbjCsxuzev0yrc4Ld/ZpzFxeY7y5w//YNluaeYNobo1TIn3zj63zmU19i92BEb+8ajz79abSZUuUHNKWEYY+y3+PG5ZsYYs4/8QTZwiITJKU2PHr+ITbvb0Ajxu7tUYmUwCVUuqYwJfMrp5HC0ptUzC2vMhjX6Kkjdg4jfBPCez7eXRy/S042S/Uzs+L1eEPn8DXaWZSUNOfm2NnaYXL3HlEYEqkAZUA4i1aH3x9BqRwhEAchdaAw2qDqWRz3sX1QHkotxAM/yiGM73DqIGZ4vkPWxnFCyAexPhRtEFMbhJJYq2mmIUEgWFnpsthtkiYQKq/LscoRJjHaCsIkxtraY+yCiCBKsbMukJDWR+6GPmfdVTm6duTDHsLWs26W5c033+TWrVvcun6Fq5evsbR0it29PbZ2DgijgGYzZjTwcczG1FS6Jo5iplM4f+Ehbt6+xygvWV2aZzweM+oPvc7PaKI4YDotoHZ0shatVpN+f8ip1VWmkx5ra2tgc6zJGU+GdDpNnvrIQ/R2dyhczsH6O6xfe5PxyIeRFOMeVTFE6JKNrU0W57tU/U1UOaXbjFFodKWpqorptCIKApSwdJoN5lsh853QO+SpMLakdjVBmGGN7/C0shRlK06ttGhEkiywCO2QkUAFEVpbTG0Jg5TaGqSytJstRuM+C8tLoCTWMAsyMDhnqCsNzm9auBn2xlisNozHnhldFBXOzg5IM6Ln4Tq6wcWD/z5sqzSSyngNtNWCsjKUtaA2UGhDZQTGRTgnsEZiNFTGEyFqo6i1n744U6GtRTtNbUtqq6mtJx9o66hmP9vaes2Y0ThTIeqKEsBJJjt7kAuohxgTI6sxttYYLTEmxmiHqBxo64/O0mHq0t83CLSQVEr7lLgwJK8NxilUHdEfD8grb4Yra0thLUbImS4QhDNIDKYsMdrhqNGmwJkabaF2Ej3rPruZgU/jiRcGQaWd/yzrGhGBq0vysqKqpb9urDeXjGXM7ljRbSvi0JKFkkQ4ghBaWUSr4QiVf2+hApTylA2pmNE3fFPaGolwNVEUzEyFDuvZUVjhEGEEgTe+BUFEGMY4qZBhhBY1uSswOKSTBNIfQAOpEMYghZ2Z8vAYzMSSpZIgcYQpBJEkSgLi7IO9duvKYp0kSGIcwu/BIqK2MRqFcDXC1WAFurI4q4ljRxRKnHEoGZM1QpI0RITe9yCsI2sFxGmIFIaqnGKEwSKRMsAZMFXli0pboqtiZuY6/D4YBJqqmCJFhUJDXSCrnLoucbU8wglOEZRlTFE22Li3z+d+4Eepdt6h2buMSn0XF2KSzgoXn3kGE3W4sb4P1R4icJx/8klOP/cxGE94/vOf6eG8WAAAIABJREFU57FTa/zc3/yPOLWyxsMrjv/0577C8lxEMbbsDXLW7/XZvj+ktgWVCBDOIBRMcsugDJDWgSkotaOqQ0YlgPRTCGYa0UDS79W4yqGilNPn11jfCvmxH/8Jbq73+O/+2a/w/OefI4liXn/9Oge7E7IkYa7T5eHzi2zubPOTf/Un2NjZ5/yZE7i6xJQTHntsjVs3N9i6v8FHLq5x7uRJHrr4JCsL86ysLLGyOkdthjz80FnOn1phfvUiT3/sEzzx0U9wb2fCVDWomCeIOzjhuHj+HM1QcubUMq+9/A3ONHN+7LnTnF9M6N+/wcPL6Qd23Qonjwg50knU7MdhQqFzs4nV7GfwOt0jeYfVZLEiiUPqcoKuK4yGRjPG1QXT4YAwVORuyp2Nu4xFyNIjH+XO5bf5+ot/iFWCjz3V4YmnH2d9r0eWZYjGCjuDfb705a8gpgXju98l7gSUvR5VPWUw3CdZWEUlEl0ZFtdOE6iQue4Scdph0uuxe+cOxfYBk2FJ3OzQXjlBkKZ0uwvMNVsUxiHTjGJQYoxlOp7QnGt7xB0TbCBJu12I2kwnfTqRoBEpb8ZVCqEkMjiUccgjWUcgj1NNBFZb/55OEzqHNTUgMNZhpWR+eYm1M2cY7B+QBSGhlFitsVisglo6j66bPbOVhU6j6Z/v2h5JNYSzHJbDsxLBmwOlREkB7vs74IddcHOYUsxhbWBxziCw7yr2D9f/pznQ+bRkZWkegaaRJVR1TigFWRpTa5BCEYYxc3NtwiAhyzLqOsdUhvaip1MEUewd5KFnKh5GQO/s7dBptRGiZGf3vqd7ZJIkCmk3M6p2k83tnM9+9rPc39zAXM2ZayfkU18EttoJAGXpH4qxdLQzWL99g0cfOsfezhaBrsmyDOccmVQMhmOMC2k0UupSY03h+c8d/8R84vHHGI3GtNoZg/090rRBqWsuXb3EdFLQbHc4d/IcNt+nEUqEFFR1ThAq9nd2mTt5msl4yO/+5v/OJ577OONRnzSNGA57dNoZT3/kIb739g1WFua9htlpOs3GLNLYIiNwNZT5lDiOCZWkKAriyKHrknxQ0m6GXHzqJFdubWDMlKqGLBUc9HaYTPtEsaPTXiBKQ5wLybKMcpozHI5ZXKxn+Cn1rg6exVKWJcPhkL29PcbjMWVZYw1HPO/DkS7864eg/1msSTEBKUAoyrpCElALTzCRWGQdIITzccRSY63EzIJt/IagkFVN6BSh0/5hK4MjuUzBTDsuJAR+UwnQKGlxyhcbdkbgqCYjkBpsiZYB6IKqqjHap0JiHbquUTjSbkIWhQz2djDas3qNFRQz2ZNUUBqLrjXTyWE8bEBR+9CN2njrnlAKFSqyKEOXhqKyUEvK2vmCH98tsNagzQPgvTG+k+Fm04hhXZNX0F4I6GQSFYSIzR5OS6zzc/DlTkxZVRxMItIQzsw3Wd8bkzYb5NMSJxR5nvv31naGigtxyrOavanIdzetdQSBJEoS/9ngiSqxjLAopKgRzkst4tCbanWtcZUmchFZEODqirE1M+KG5yCrWJJmMTIQSBTtZkJVOnCKshKUdU2ltT/MBB9skEoQSqaTijSbpQU6x3A8wooYJSXW1RhdYmxAWRakqd9j4zhBSYMKJVJGR0FWjWZMlRe0Wk1P7xBeEy7w3WjrvBwmTdqYWfJgFAQEaZPKjMEJ0kaKqQ3O+qlVIwmx+ZjJtGAyrSiNIktiQGCHlqmeoBnzlee/wO//yj/jN/+nv8fyRx9m+K3fxooxN268RdCISW3OmcceZVLegeAki52z/N7vfJNPPPsMgd7g9772Ij/4gz/Ef/+Pfp6f/emf42/8tU8RBAWLnYzBsOJCFvDpT5/lypWr9AYxN67cwlqNFd4gqGvN2ZMdqqri9OnzvPzydUoLKgywWnPqzPIM21mRRMJrvCcH3L11iUvX9njsiXW+/KUneWdjwte//ie0507wl//SJ/naC99lvz+m2+2ys7PPw4+d42svfAOEIslaPrTKFLRaCaunWiwspKytLrKxccCNVy6xuHICpCNpzPHIxXNcv3UVpXMWF+fJNwZMS8Pezg67O+ucefiz3Lq3T2OuQRRIdD5mb3+T57/wA+zsHSBFiC6nPPbIk9ze3f1Ar91/1fKUl2OFl4JQxRhnCaUhDgxKTAgDhzWS8XBIFmUcDCYESUK31aWoS2pGrJ0/hQs063dvEJz8GGfELpcuXcHJDt/57rf45Mf/Emmieef+iN5kwM0N2JlaopZmPlFMdzeJbI0xjo9/8nOEaCZOkIqMm/dvkeopctAj7+2yvz1gPLSMpxHPPP0Jsm6H3qBPWFQ4oTjY3wUnKfsDklSRxZbxdIpUC8wtnCNMEyonmT/RZrS1Qa33CaIlSmKkkdjK77XyuIacmZQQj5t8QH4TKBGgHVghcaHi8cce5cbVa4wGA3Y2NonDGQ/eev67xflI7zAgSTyqdTQaIYXH1h6lFeKf8ErIdylt3huSchxnd9wk+H5oQulHDIjZM+fo/f7/oIEG/wGFQUgYKg+4qjWdTofp2HeprK5QwhGpgEA6rNZ0OvNIEXrzjrU0m43Z2NCPzGIlsPUUiaM/2ObkyRNs7WwzZyRTV9Ltdrj0xg6vf+9NnnzkAlEY8MiFs9w/GNHrHdBux1RViTXe/IPQSGpOrMyx2EoJhMbokqoK6PVzJpMci/REhjhhNB3QbrQZjUakcUyn2WBvb4dOK8LUBZOR4/HHn+TSpUsgAxYWFonCCWfPnsUUlno6JAoMe/0DVtfOEUQxo1kYSzONWD2xzMb9uwhnUG6KVJaiLBhOJ5w/fQoDGAtxsMSdrR1azQ7WZmjjKI1DVzGjyZgoScmnNfPdBYLQ8tijS9iiIAkMn3zyLMPBlCrskGvBQW9Mvz9keWGZjY0NklYDqWKyLKGYTI90vMY4nNNHJ0ZrLUiOYn+NMVRVRVX5Avqw4PYEj/r7ro0P67JW4w4xPjKh0hoIEIFA4hmfQoAzhmDmdHbSYO2hYVB6mYwQntji3NHI3GGwRmGFoa59sS0wGCFQhfZjLGse3MR5AZEDXWNFRW1qf4Cz+I7CrCivnWGp2wTt5TV1pRHCxwKr0PORa6tnhajBWYVAelybnhVb+JQ1pWYGDqWwASjtD0DCWYR7r75bHCELLQHW2SP2uLUwKT1iSdqaWkui0P+bc50TBYpOqNDCIawgdJbI5ixkATKQlFi29gecPrmARaNNcaSbC4IQrWd0DctMLiDQtQFZoHXl/6x0aDszzkiFcwJkSOlm6DnjN/Ew9thAJWoazuKsxFpBFoU02g2iVFLpEbquSZVAUqNigdABrU6L3nBMkMSgPtgCOo4DptMSIQRp5vWfURSiDw8XSqJkiMShpPdIyEARRQECBcoQRan/TIIAJSqyZowKA4Io9ExdZkmNs3j3KE4pqhwlvYysM9dGCMNo7PnxoQpmAQ2gcomsHWVVMp4UWKGIomgWsFJT6ZJatbHO8Pq3/pCf+4kfQu5e5c1f+iNWF0Ia7ZCPPfsk1965QhRHvPSNP6C3t85Hz61QlSU/8kM/jHOS+wf36Sws8i9+7df59/+dH2Vv8ya3rl5FkzKelIyG8PSaY9jbJi8dW70pvckEe6QZDX0ctJToWlOanMZcm2FviK01sYJB/4AoAJRCS02WxQx6A556+gco/8U7fO/KDaZT0Doha87x1ps3+cJCi6oydBbm2dg5IA0F+bQkDGKai222dgboakIkLdNrOY9cWOTe/T2s1ly9cpPl5WUeffIJrly6jJJN/vjbb3P3zh0+9ex5Nrf3mQz6LC6t0MxS3ImTIAz93g5vXNNINPOpoDvX5uq1u+wMxoRBytLqaXb3dtDuQ1M6fN+y1iKPISVra3yX1Vni2JKEFc6OsSak1ZpnMhhQlDVBq8Fev0cQdqhrSxw1EEKwcfsaZ06uceX+gMWFVVzSYPWxZ2Bui529giisOLF2ise685TDEY2VZfa3NjgfKsb5mLou6C6uMN9eZHdni7g1z8nVU7z43Rd4eqGJRfHCq9eZP3GRe/2KZ57+CFOaqFIj4wbWONrtDvt7e0RRRLfbJQgU1WCPJG0wFoq5qIOuS0yokM5fJ4QVUVKgRYN67AhmRrzDdaRplgI1Y0EfN+xbbXChwgnBuYvnuX7lKjiHrawP3ZlJF+M4RmtNkvpE4uks8fnwaxy+5fsj9TjymRzqnt8ryTl8rZTyKLzlveuQ36/+nIEDH4q7oNFoUBQFSacBwMriEs5qFrod2llKXVeMx2PSJCQMHXEkwTVRQZOqNsSNBijHZDIhy7KjAm17a4NYWmprSRsNJsWUM2cuYKZTLl+5ShQETIqcL/3wF+ltr7O/v8PtO/cpLDQbYHRJqx0zGnhtXhiBEJL1e33WPt7lodMnefLhi9y8eZvxZo+0YdEuQmrHcFwwzSEOasIwJAoUYaSY785RTSecWJxjNBpz+/ZtpuUUYyWbWz0WF+e4fuMKZ848zt7WDgc721gR0T/Yozm3wKnTZ5mUJVWe02qmxKFg/fYGF852eUtPEMKxstShKgXN9iKT6dSHlZQNDgYDbD3TjVVQ1xVKCTa3xrRbgs3tfZI0QOcD5hoxc1mD+U5KpiTX13fYG4yZWzpFHHW59NZlut0OZ9ZO0R9MEAT09weUhddCVpWm2fQ31GFohFLehXuct3tY1LgZczbP878QnefDFScBVe3B8WVde2yQmSF6HB5Fh8Vph5YO4zzf0kmHtoZaBzi0x62JgCCcmTWN74BK5aUvWIMuq5kwFSpXE9pDE6BncbasgbyiqnJyAcIU6BkL1FB5VFBZUlrN9vo244MDrPGHHWNqrAhRh+YMPCPVaIexU6IowWgf0ONmbFqp/NjfCZjkOUIoVCxZbmT0drdJWx3ubu5C4LXEZVWTJD5hs6qMDxg5VkAbJzBWIkXE/qD03WDpzWJOSJytwDmaSRMlClYX2ySFYDBxBGELIy2lE+S19Y2H2VjvyLDvxEz/n2OdwRhwOsQ6g8NLY4z1BZ+z3jgXJRpXGeIgIOsKmllCrg1OOk6e6JBITTFVSBexPJ+yszdFi5JmK2I0qlFSMW0ESBEyUiVJIyKRFqUq4vT9I2z/vNb8YoP12yOskTTbGa12gzAM0LpCBZCECucSdKnptFKErCh0TV2XBGECSlOVpY8C1wYoabRjz3tWkjCIAWbEE0ulc4IwJsk6OPooaWk3G7TaCXfXp+ztjomTKUop4izFjKYEQcJgPGFnUBKoxHd0rUXiMJEilDFtV/HL/+1/zEIa8Mrv/QpFNaEhlgjjLrv9DS6eO83NrRGPPPI0wcPPIlualVMLXL/yIo32EoWO+Ss/8hlOrZ3jrXdu8tHHzvHWtYKsu8T++ACp4NEnP8JX/+htjGowtaVPAD28lwFdFzjraUrLcyHXNqC2khhLGoR0O02UnVKFkt2+9qSMEv6rv/1bfP5zF/jNb97kl/7p3+e//kf/I3sHY86d7jAZ93n22ad55bvfo9FqEgWC4bgELMuNBps7A+JIkUYgogYVc+zcP+DytW3m2h1yrXnjrauUpeHq9UssLi7SmOvSnwqu3BvRVHDze5d5/os/SDy3yvUrV/npf/ev87/8899gbm6Ot+7eI7g3ohntcu7CeeqpY6gPWL+zTrb0wQWpwHEN9PdL/t77s1ReSxBKRbejCUNHM8oopyV9s0+nPcd4NCJJYk6fPk1dGJ548inWN9YpiyEnVs8TUPGRVcWVzRs88ugpmOzxW//Hb3FqbZXnv/Q86u7kqIDszp3i4We/wB//079H0F0jSQWNRociz+kN+iydOIEpJzx3bo2Da7f56u9+ixNPfZoXXnmDaRFyRqUkskUrDWinIYudNgf9PlJmnDp1hpv9PlkW0t/epHPmUayOEXbEcHufaPUcQZTSnJ+nLga4oERXBkKF0JJQSiqtj0z/h/6Mw7Ja4q9pL5mVLK2scPf2be5eewclZkmO1nqJRqjA+o5zbTRlWR4rfg8xdL6A9sU52BkZQ0iJeo8m8ziE4DjT+Xhh7Q6pK3w/nk7NJKCHrGqfSvhuBN6f9fpQFNBeRvDgQwuUmJ0gvcEnDAPanSZ1XWKt1/AmYRtrnTcGHHUCZl2AmYnNWe/2tkASNhhMpuzs7DCfhFy4cJ5rVy+ztLREI47YmA7Z3ttFhTH1YEKnGyKlZDgpKQpfTChlcFLxxJNrlJWmKKZUpTsyD1W6wFk366RWCCCOU5QSDA/26bZTVpYXWOk22Nq8TxgkJI2MwXhANa0QwjvXyQIarQ6312+ztDDP5v7gGKbHG536ByOMqZnWvrP28svfYTIZkSQJzUbKzmhEIMCamv29HYrphMcfucD9gyEqiNnaGnNvZwBC0OmEWKepazBGkyhopRBIQRQ5ugsJ3aGg0Znje9fXsU7Sai6yv7+PfOcdWs0uaewlLM1m62gK4Fx8dJN6d66vzJRSR4YseDCeOS75+IuyxCz0RyAwxhdgPgNJURtLMEva0876W17NNHrOo4WMcUhpkVYeHSb8AbAGJzFG4mafjVCz7q/Gb2ZWgPUYSABVa1xVUAtNLTRSz7rPeI6Fx8dpaqPp94fUUz2bFAicBe0MQlmk9C5sqULsjJABFo5IEhCEXsds8dOg2miUVChpaDRjvvLDP8arb1whjBJub+0zHo9ptbuMRqOjw9QhQu7w+x8FIUpZhHNoExHgEYpxEFE675OQykd0HGKNTA3OSWQUA4bheEptvJPcGIuzbtb9nEVxG2/MFNahZIh27qgrE0qJw+v/FtsBQhg6HUXkYuJIsdCENAkZlRlVPeVEWxIoTRkJlhcWcdWY6bCmxrDYCImto5xt+JNJTpoKrB3TSBxRaJhb+GC33zgOkSI4SkkEh1ICfcipxscBIyyBCtHmQZy5UgqDpShKBF46EyeKKInQNqCqKhIVHMmyrLVoqyl1TaxiX3ga3+k+7N46/FQqDEMSKQmED2rJK0FlH4TP2FkYTkjEXKIR+zdp2wHbtw4gkjz+yKN0Gm00hjMPf4zd669x6sLjJHrAd7/9InMnLrB04jwnyLl8dZOXXv82r/7jb/DWHchS+MynrnDi5HleeOkyjfYSYTTi2q372DBBW03aSBGDEjcDtxhn0ZU3FDfjBisNBc5gHcSBZGF+ntFol7XlNqO8oNNpU05zzj+8xv3rt1hdXeXk2TH/yX/2X7I3hR/5Nz7BW995mS88/zn+8Bvf4+ELp7i3O6AsCiIhcM7Q6/VmAU6OJIpYWJzn1r27OGcwleHu/V0++clzjCclVVVz6vRZoihisRVy/drbPPr4E5xeXaHRbiODkEvf+ROai6v86q//Ns1mB1BEjSWazSbNJOT2+jaD3pCiKllaWKQ6yD/Qa/f/7npQ0CmktCSJJJCzqZ8NSdKIIve4252dLRaXV9jb22eS5xgnmQz2uHD+LNNScu2dy5w7c57BOOR/+Ic/z+PPPc9Tz17g6rW3WW4m3L15i87iItJAb1yxNxxy7vQC/f3bLK064tjveysLC9QH99h85yavfed7PPHc5/lv/slvsHgSaiK+/tKL/I3nniVMFdrWDPoj0kZGXhhurd9nc3sPt9BkYeUENBdICsfOO2+SJQ0UiqqqCNIY61KMtIRSYIIAaw3SiqPn7FE3Ws7uc8BqOzsUOrSDg/6AuUaHuiq82d35jr7VlvnFBYSxjMdj7zebGan/VcvOxDXCf3O+T+N8/Pv2fmFTR13p92ic/dTz8I3//NaHooBe6maUZe5xdUqACNHV/8Xcm8dYeqXnfb9zvv27+619667u6mazSTbJJjmcGc5oFmk2eywl2iLbGliLE8NQDAORHQtOFMNJDCNWYjmwrASylDhQ4EBIFMmRRzOyMouGnCE5nOHaG3utru7qWu+9dfdvPefkj+9WdZMaJQgwNnmAQuNW3arqqjr3+97zvM/7eyK6B21cJ6AUhLiWh2PZOI6P701juwHGSCpBpVCxlMAOYNAbEbgeUXcLIQ2REnhewCAfYAmbxfk5Xn/1eaLhAZ2dbWQ4zfb2Nne3++z3UobDnPmZGmHZMBomZLGF4wj6/ZyVlQZa9ZipVslGHfb371GpVNje32U4zMjznCSHUZLill2mZqdIh2N826dRC/Fci9beDvONNaYa02xt38Z2GxxfPMbOzg5ZCQZRhI1hb/sW5aBMu72PtALKszP4boDtOrgobBmANOxv7OG7Ep2PafcTjtXL7Ld2aNZmGIxaBGGI63vM+CFSCvJRxF63RV8KPL9oUUX5GBubJMuYmiqj1YhOL2J1rkSjFqLziLXlaYzlUrY1SZJzdbNDP7F4ZPo8d7fvgexRqYYMh8VJPksVaZpjWUXwCpaFsSykcnA8qJRC4lGInnhqB6P7yrPjOO9IJzxKt38fWjkGSYplvMkjg6D4eYyyioFJq0io01rDhMJQXBSKojHKUswEXi/tDEfZqAxQkyJWFwc5TAaBKoZijIvDJAZVWojcgAVuDGkiSUSKICPWMcLkk+83QeMphclyxkleFPB5TpIV4SO5AguNa1XAtvGkjbYVFd8hilOkBlsptADfcYizlCjLSJXEQZHlY/763/oFvvy7v8/Umcd4tnYCvxSy8fYbLMzNUDn3NGZ7n+eff4GPf/RjqDzm8uW3uXjtBrfvjVi/fgORtBCOjWdZSNfgxBo3CAhVDyWsAmunNAdRziA3dBNJlhtCaWOZgI1oTKIV0uhCPU2HOFbRbhQiRUpNvSyZKguyRDCIFbb0KAchNSej2SghyJmb8glLDjoVpMrGsWw8JyXLhyzoCkI7BH5EpiPaekQ09DC2wQuKgd72KCE1Ob1RD2n7DHODb6f4vksrzRjlhvhA/dkb69/B8gOHSlXgSHCkoeJKbEeTRAkKQZy6CKHROinmI7ALek+W4bkJWudkSU4UR/iejWX7k0FjGA0jHOEhXYkRDlI4CCLyJMa2A1xPoISg076LredI8wRhadJ0TJJYyMBjfrrGqNNHqJyybZFKQZxJqq4Ax8H2y/z9n/kEH1z8FGZ4l05nHxR0tvbI5wOq1Tpm5zozj38KlpfZ/OJvU5uapt/3cXLo7m/i2xqcOl/4iSm+/eoGVzbrrJx6kpdeeoXmfMij+TQvvbrPixdjphoVkkzRGyUIx8ExGcaSpKlirmIhXZ9xmrC11WWrNcbgYlsJ29u7NKoOmztdTs0FbPWHqFyze2+TRgWUBRVHkJQdAitD4XP+o8/wtW+8TDTW3Nnq4pU9MJLeqM+xY8X9wvMtkJJ7+0MyZbAAz7I4c3qxwLWWLAZ7EWdWV9lr72Jpxdefv8aHnppnezfizt0r1AJFJfQ5c/YR/uQbL3NiYYa90YDZ+QViZXHt+i06Q0W1WuOxh8+y3e7QbDbp9Xrv2b6V5n6dpMT9dFBzpGgK5KSYEkKgjcB1Rrh2jDspFJUM8Rs+KhuSpQlerUzdmSIH5uem0XlKNxozf/IEw1SRGZcTj5xndOcWVpJw+rHnSDs7dNarIDQHKdTqdWaX5jHxgBvXXuFDn/8xuq27WAd1BqOcUTxgbqZKt73J9lsvk23cwz/1JL/5O3/ID31ukcBzqdsWtg/f+KM/4j/4qX+fMHDBShnnObVahbcvvM4TH/g4117+AyqPP0c3lZTDlEoakZiQEi6WK8CqovMMaZcIpppEo4TxvRyJhT1RdK1D8cJxkHkRZjLOM5zA59wzT/LGt16BcYSxLNzJQHWcZxw7cZybN28yaB8gdXZf3JPOA6rxfWFE6KJDqg9zTCYV9IMEFXin6swDH3vQ0lFcMYsAFwSIifKsTI42apKBKlGC4n5lHQ4ayoI/bX1/Bbr3RQGdZYUfuVItA5pqWELKMtVySBQNC/+dJ0EXpzitUtA20vLIVUquJUGpSprmOI5bqKhBiSSOmZ6eJU1zDrr7BI7N7Y3rTE01WD9o0Rqk3L78Blvbd4kimJuv4+V9FqdDdnsd2r0EpYu67eSJBv1+l4XpCo1Glb1Rh8Crcm9jmyiKCAML2w7Yb+dYBvJRjgjAtkDnGbVqiERzfGUZlWv6/T4zM1O0DzqovIdlSdJ4RGhpxkmG7TqoOKK9s0lzYZV6dRqjBbnKiMZ9ECnJaIjtGA46u7Rb+8w0PDwhsR3J0tIcozhhe6fFTKNKnmv293cIA4vFxTVevngT18pIMoPQhuEow/cK1m40NIR1Dy+sksQDon6barXOG5eu8MQTZxmNBqysWGinxNdf+iZO2GB6ZoWd4QF+4JLlCWkW4/lWwWXNcxzbIssy8lwxHo/J85xSqTTBYxXF82HnAArySjbxQh++pr5X+fxe2zyiSGNbBdbMkjZpXkDoNRmWkCRZisiLdM0kUxiT4FgS17ELxvbEYmHLwq8uRYwjBXlaJG3mUTHQF/o+KjV4jkOuMlyriqsVWClkpkjXGzjozCUhRaFQOiPL4yIwxLrf1tJaozNFnmvyPCVXhjTLwRS+Y6VyVCZJTI5tGSzXkA3HgCCbdA1srSCOcZyA8aDH8kMP8aN/7S9Bd8C5D34aZp6ltjSFShMWZp5AYxgYH9F8mCc+92Gub7zMwtw05x49y8m5gPa929x5xHD51Q2SbB5LjKh6gtx2SdIR5bKHyWNCxyYMJe3ERWFTCjTtwRgdCiRDov2I0Fc8ebbCra2EzkHCiYXCiuI6FTwvoFnrcuZkCVcCeQXXcgi9BonJGPQ7BF4J25JI4dDvaZJYI2WG5RWJmb4sWMeZabOTHXB5A5QcMuXbDDPNOHaRhCRaM4oLr/fe3piwUcJzoX0QYbT1Dj/ie7FU2mNuOkBoi8AvUwl8vLJHd9zHZBl+qVRgQksurldGS5BRtxhujWOMmQTCYI5CZnzfQylFtVYmjodoA7bjonKFsAQ6TxAyKdIYlaTXjUmjfTJRDHxKA0ZqWjv3OL50klK9RhRrHNsjloKmZ5BKFEOLMuZ/pf9sAAAgAElEQVRDs/v0710nU9Oocc7a6UdorJ3i4suvM/fQKqP2Pu23X+dYPaDXOWBxaY5/9hv/E5/6+DM8ce7D/A//5H+hPwI3qPPS2zk3tlp86+I36EQ55Yphp3uFsOagA4fNgwFeWCJJRqRKIIUHuWZ+qoI0fSwLOkPDVm9YxLqr4v7h+S5JnIEj6EURp2arbO8OmF+c4/HT83zxS9/iP/yFv8yv//MvsXyszJULbxIP+szNuCirQm5BxQ9IozH1SpOtrR3CMGR5ukmn0+HsySWSuMuxpWV822a23kQpxd7+FsJN2GltcPrkad58801OnZ6iF2WkWcpUrc6gu8PW/oB7m1/hoD9kbnmG/o27nJib48tf/ApPP/MYQXWK/XaXb7z0beaXltneu8ba2tp7tm+/lzIJ76Q0PEhtcpBUy4rpRkgS71CrNUiTnEYtoB/7OEEOQUCmKzSbTVTS4/atazx89sM4bpmrNy8xHEWcffwMpneAGXbZvPUqrUHMsdNzNOdmUamgPxzQaY/Z2bzDyROrbN66yVhZPPuDn2Hr3jXurm9wYmWRUbvF9ps3uHBnxBuda4TTgrGEqZUqtYpPU3gsjvq45WUO0h7TtQxLO3Raezz70c9y9849ls+co3UwxnETNq5c5NgTn8aWijjX4IXkwqMUzuG5DlmcYNke5kCQRSl6QkNigqsziSqkH6N55PFzXHrzLV574SUCLyAThlyAF/joJMWRFnt37lG2PSwE2rLvI+TeFWpziPC0rEmXSxZM6ner1AVazzryRP+/rcPPPfzaD+wKpBTv4NkZcX8m0lCEHMnvs2vufdEv9zwH13NIkghHFhxhrTVRkmG5HkIWCl2apoA+SiIUUqHU4QlIHBnJ42RcRPIagTIwGI6pVuqMRn067X2kEGSZQhsb4XjstkG6cNDvUa+WGQy7LC4u84EPnMcYWFmaRWUxrm2h8oTrV68ShiG7u/sgXRbml5DSZRynZLnGkRZTU1NsbbYZDiNc1+b4sRVCPyBNi2Jrbe0ErucwMzPDyrElmo0azUaVpcU5ZqYajEd9smiEZ0HU72Ah8P0iTQqtsEWBflNpgmWD51h4tl3cBB2XLE0YD/rMz84wMz1FPI5o1CrMTDdI4jHNmkuapiRJhuv6eJ4kyzRRFCGBwSChNxgigJmZOdbX1ykFNhu371EpN0hGI5phwAeffpS5Ro14PMT3fWxbFkXZZDArjuNJ4ZyjlJqELcQkSTG8dGjjOGLkWtY7XmCHto93JyIdrvd6wFABudJoNSlOzQOFKoZMq6Of3UzsArk2ZHmBb4OCoZtryDJFliqUMuS5JksnRW7G0WuCvAi+IVOQGIgVJAqURhoLoyxUagplP83JM0Weqz8ds07xuzz8usYUVhMhBLYobFBJFJOmKcaoI/h+OkpJByOeOneaL3zhRxE6ZW1lho996Dz7rzyPiiKWH/840CAZxEWr+SAi2o9I9sfEvRbj7h7dnSG7t9pcuz1gs61QdoPHH/kwVX8ashHVwEKkEY+fPYmDJHRKlJwK9VIN1wbPEfg2CCVQSYrONJ70qIYW803JI8sBDy8FPHqixiMrPk89VOfJU1UeP1Hh0VMrLE4FVAIIyhZeSaBFArnC0hKTamwhEVgoI5GOjULh+RLH1USxZhQL9noJ0liUnDK2E5JpSIzhIIrpDhO6g4RRpNltjVA4jMYZe+0+o0gRpTlavZdxyBSChCPxPYtyEBL6wdHAn23b+LZF4BbdFSMsHDe8j5FSiiw75LnfD1kq9lSK1kVxfXhNPmrJojC6KKDREz+kJUmS4rDs2pKKH+AJSZRFaFFc913HwrFtbKHJVcyJ1WOs1CzkaI/AgZu3rnDj5iVK9TK9u3dZWDoG0sEr1ajX63zxt36LRz/+Q0jbY31dMzO3Qri4xE/89OdoNOH2ZpvdFpw5tcBCc4HTD59lMC5uwN1eRqc9xnEcDlojQtc6UjKFMZR8C89zcCyBtF32ezHK5EgBWQ5pmk0GVy16I4g6fZZmm1y/scmT5x/lx3/80/zX//B/Y6/V5fKlTfb3+oQhDIcpx48t4TiSLFNUKhXa7c7RXEmBAY25e/cu+3s9Ll64Tp4Jbq3fZr/dotcfcvqhh1g7vcalyxcohT6jYZ8sS/Bcm4ODA7ygxDjRuEGTZ57+MBcvXGVmYZk3L13i8z/8WbA9+r0D+v0+K8dWGQ7H+H7IjRu33oMNe389GAByeG06fP877h92cT9xPQEUIWoHBwdoXYhY9akS2C7jyCMzmlGWEFQqnH3iSS5evsjrr7/K4vJJHjn3DFghkbKx/Aqri3M8urbG5o2b3Lx0mW63y/T0NM3GNA+dfRjfC/HDgEcePcete9ucO38eablEUdG5abcPmD51mpHJCWcChG3IM4Fl1xC+hW/H6DyjXGngemEhbGUabZUpVWtstQeUa1NIFK1Wh/1ewm67TZJkZEoRVGpoKyDKcyzHxfZcUpVPxJ3i3nSIjROiQM5lKuell17CdYtQtkzlRwVxpvKjA/+hhauYTZ/wpY8Y0w92WYvDTqbywjMNf+rv9I5Dz7v+nt+LuHFYON+3tIo/fZiaIPSEECijj37ew8//fq73hQJdrpQolQrsSaUUIHJNpg1eqYwrC/O/0hnlchWpk4I3m2WM4jFuBpV6QaawpZhcvFM8b5JGqAXN5hSjfh/HBsfSfOmLf4hSilcu3ObgIGFu3qdWCtA6RpDghiW++c2bPPHkCqUAlErpDyLm5ysEIseWgmqlxH6ng++FXLq+SabAWBLbrZCplFanjWWBBezudFH5myzOzuA5IUkUszk8QNqKNMsY9Po4jkPZdwg8SbNax/WqpIlh3LlLbXYFz5ZgG1yrxMDR3Lm3gWdZuI5gZ2sb13Wpei55PGJhcZbxsEspLJFnEdJYrJ1YxfUc2oM+abxLLXDJmpLWQcxwFGMMOLZFHCmaVQjDkI3NfR47scT1a7fJjUQ6Jdq9nPjqbT73yQ/y9tWblOyQxbmQi2/fZpyXsd37vuc4jo/8VkmSgBD0+wUrO89zMEVx6TgOTj5RYm37CG3m2nYxmDAZFhBHWPX3z1JaIlDFUVQbhFYYUxQK0hgkRbGaG13wMi2BEQrQiLRA+VgYoAj9sCQF21QWKMBUayzbEAuDK20kI6R2MGkGlkL7iu43v0vzMx9BxSNIMow25CYjJiMxCo3CkTZ5nhdDmgYwFnmmjuwkUKTkWcJG5WlBE4gTVFR4BjEWKtdYNoz6Y75zc5f5j/0UP/ff/jC0bmH6QzKzijW3ys5WiyRdRwYNclUiMhplUjwDw2GL/kGX9d17tN/aZuPtG9QbJR4/e45lpjjgGD/0g6usLdTZ2rnHjTt3WJ5xSJOYerXEVNnGZGNOL3rs94d0+oqZ4xVmGnXyTHN8STI3bXFs1mNhuYwlFDofIgFpO1gIctnB9kZsdxOGowGB50NawygX13JJDPQOIEk17X6M5ws8P0LGHRwb7hwYlKnSSVwqUYhjx7R2hriuZpTAcKyxrYhxlJGbgCwTeK7AdzXjsaISenheQD7ovjebdrJM5uL4hjAIaPhltE6Lg5cQBI7N0swMxhhSrZC2wyiaBP0oNUkIE/i+i2W7JHE88XqPsKxCIbYdqxjiJC+wgibBs20smSJUEWvv+TZCaCzbIUtzqpWAwAsJHRtta9b3NvHqTZIUZKIRRuC4Ns1ayH/1o+fpbr1IfWaG537wLKNhittYxQQ5Th5z48Il8CpUZxZ45NGn2FnfIk0Fv/mbv8yX//UfcOrxc4xzm7/4hR/jyg2XSu0Sn/vkKdZvXuFX/sVl/vwnl2j1LK5t7DJObU4slFn90AydfsyLb92gE2tcYVho+mjjYKU9VOgSlqqM9JBSKaR/MMTBUK74ZLkgrFT40HGgusRVuly48BJf+to6n/zUkwwHCesbVwjDKWwhmGpUqHqGuYrDze0BquqwsLBAq9WiUqmS5ZpEC5qNBpaBLB5yY32LPBtMshNy0lyTJRGrSzN84JmneOvi68S5IR3l3Dno89hjT7Oztc3dez06L13j/LkVOu27xHHCnbtXGI0TapVZGs1phBMgnIS5pRVeeOGF93TvHhVeR/NPNkY90P6XxcFMaY3jC/zQwfINw4MDHMsjGmUkkWKUb9LtRTz8+KfYGfZZXHuMV7/1Lc4/9QTV6R12NrfAq7O522ZxZZ65h85z4aWvMWO73NnexauW+dgnn2Wr3ePmjXWqM4ozD59i2D3AIBkN+6yceYSrd+9SqS+QEeN5JZLqCf7Xr7zEIBOkjRJPT68iqzVGmSHNUpaqDr/+j3+JX/y7/whDAyW2WV17hHudCFc6eAtnCKeOM9ru8fBzn8EKm6ixATdEuCXIJb5TIs3igmlvGcJqmaQ7LhCSFGmsUkoU8PQHnuFPXnie5fkF4nGEdIv7Rb1UYjwYotL4fiqrgByNEgZb3EfiHR6WjyK1J485VIIF99nNf0bn+LBAPhwcfHAdDT3m+TueX1hSQGuFJWRR2EPBkmYyFKkU6t+C1va+UKCDoICyh6F/dKoolUqEYYhl+2DZuI6P7xU+3jRNiZNx0e4z5ihK2rbcI2Uz04o4zbE9j/5wXFA+Ao/Z2Vl832fr7iZprlhcmiHLMmZmp+i2I9ZOrrKz3+HUWoULb97l5IlVDjpdLAFJHJHGCQsLC8VwDDBMIkrVcuHPxGZ3r8d4gmpzLYFtQxAUCN80LWgis7OzWJZFEARk2URBRxMEBZM5GnZpVkuoZIxtGRr1ElE0IopGGAO9gy5ZlmBJJvxpzWjQx7EsZmdmaLfbGGMY9rtHQz/1aoUoihgPBiwuzNGs19Eqw58MNihlyLKCTOC4NlmW4QchcZIzt3AMxw3ZuNNDOpJcp9zeuM6Zh07QPWhx+9bbPH7uYWynGHDJsoQ0LbBUcVyomHmeH238w1Po4Yn28NRaDIw6+L6P7/sEQUC5XMbzPFzHPYoYfT8NGpoHFGdjTNEe0/roTen7Ed1H75tkmeRKH/19Dge0VP6uf5U6srYkSUKSJKis+F2avAjPMeOEq9/+NjpP0SbH5IdkDVWQPrQ6Uv0ftMnAuxR8nReWqIliTpaTpxlRFBcdGw2WL/ixL/wkP/mf/wr+0gc52BmQJRaZV0Y0HyJOPVrrVxgcCJJMkpkxlgZLu+gI0t2E26+vM9hpcePKRYKKy/b+Hhu7Hf7wxRfZGmZcubXLsN+nfW+T3a0Nmg2HWsPFcRXIEZVqyNxshRPLDVaPVVk7VufEQsixpTJLcwHT9SqZ5YPtgGXIpSC3LUZZzEinGNMm0UPagx5ZOiZPx6AViU5IVEqOYrc14s52m84gotUfkpmcKBow7PdIREpmCzqjiM5Qom3NKDMMI43KXUIvIAgCPLfYy8Xv2VByBWVPYguNTiOqZfff9XZ9xxJ68lqbDABlaVoMIDkFT9+1bBxpFdYKYZGq/KjVats2lnQK/qvWeJ6H7/tHqjNMIoOlmYQrHWIUFVIcDnZqhFBY3n3VyiiNYxWdNCM0eJIcVahKE8Tj3t4er7z0IqHqE6fQ7efs3NtjOMqIYxdv9gRJFHPqmQ9w6vyzbNzZY+XYCXIFw1hx8+ZNKqUSw/aIemOJLLf43d//HYaDdeZKPov1nO4+/PRf/CzzcwGf/PiTOFbMI6eOEVqKcb/D2vGVIpLdlqg8Aa0IfJdK2Wcw6CMEhCUf1/VQwH4rplwuc2frgEY14OSJJVSq2Nm9x/LqGt94/g3eeOsKzz37NK1WGy0EK8fXGHc7rMxPsTg/RRRljMdjZmdniaKI1Cgq9Tr77R7tbpthNKI37FBrTOOVypx9/HFsx+djP/BJoiji4sW3yOIBy4vzzM3Mcvr0aba2dhiMxmztt/nLP/0ZTp6c5yd+5FP8tZ/5KT79sWc5u7ZInBTD91fevkaSJHz7298ugsDey737rs7jn/W4UFwVju+R5YqZmTmkLPbu3OwC5JLpZo3BsEWpPEOaOVQqi3zzhddpTi2Acdje2aPT7nHnzhal2hSxlkzNrzB34iTLa6f5vS9+mW63z2OPnWN1dbXoCOzvs7CwQK/dZmtnjzTL2e8MiNOMsFRmpCv0E8n2VsIrl3bYHRt06OHXbWIlkKWQ0ycX8B3QWhQhUJaD45RIMsXC6hp+qUGUJNTmV+i1Wwz6fcq1Jn5YRuU5Jc9FiEIVticJqYcF7uH9SqmChvSNF79JrVYjT7MjdfmRxx8r7hvjwhkARX5NoVxLcmHeUeQ+aK84fPy9/i7/X13jw87on/Wxdw8evtsr/e7vd/TxB2w936/1vlCgQ7fgtCajIX7gUZ9exEhBWKqABtuxyLLCCuGGIX6eEY2HSCmoNJoMswxPRDjUi8CSIERnY8gTOp19bMfHCjzSNKV9MOb2xl2ub40o1VxMNoBUc/HiDaplh87+Xc6unSCOFNNP1+n2O1iBQxZlnJytMt8sEzqGfr9Lp92hUq2gpcHSMIozcCXCtfHsHM8SzE6FtFsDquUaZccncDwuX7+EIw33dtvYtkvgV+m0DvCtWc48fpKLl66QZYo0i+js7ZAqm5nHDUIKEj9i1NpGjXaKzT0aodSQasnlxOoaSmfst/fJkgi3WuK1K9c5efIkty+9wfLiEq3dHWaE5ODggGZ9imS3S7nkkKscJvzV3sgQOEVbtZ9qFqZsVsQC/VGbu60DyqHD1dt7HDt+ilPLdUbdEWp4wMpClf39EVnsg1XQHZIkw7ZdRKpQKIwqYo7zPCedtG0ty6ZULg5RxphiAIT7L4jc3C9IUTxwMzbf95bM/99V8SVaT9LuDlE9ujh1q0mrC4p6IQUUFnISZW1UToLEEwJLKxAWSmqMKKJStdYYWUQ/y9wiSkFZCZbjoQUoe4SjYiqxorJrUElMYsbEqmjjJSInEwplClIGQJ5rbFti8oxcTXBGOsXGkIucRNmk41ERDDPhHiulyJLCAjIlJXe2+jSsc6B36d14na0B9Ht79IavoGWAMzVN2Rog4xLCCzBCoo1G5RGDZETYLHPp8iskccad/g5JlPDG4Nt0h22EUFzc2Of3vnWJecZ8/jPPMVPbR0qXVBWt7Ga1guUqGsJiaqxRyiKKElwrJ8VlmGqcJMPY+0T5PqODMWPbI+t7lKYkJ+o9Wq2Ab74Cf/s/+gv8m6/9ASof4EqPY8sBJlfcGxv2x5JpZ4AfKKTnYjkWp48/w9vfeA1DSmfPIphX9DqGmVoJz9GMUo1rS7Ksj+VWWW74dMaKbl+TJ0PqNY8kz/GFoBq8tygwJSS2rBRBOyYmy8G3JNVyQMkIGo2A/b5knIJwQrK4R9nzMXmOZRT4kjy1MCZn5dg0o2HKQRek5eF4AqUypAwQWYaRFlrbaCNxHIt+miBMjiM9AuwiMVNBlINMMyq2wbV8RqM2UoxxLBdkiiVtZDzkb/74cwyHQ95Yb/OJTzzBr/367/L0M4/zFx5tcO2N6zx0fIGNN97Ccit84GMf5Vv/5mtcuvgiP/TRZ7i5cYNht8vt27d45NQCF65FfO4jx4nymNY4Yu7kk/y9/7hOON4j3rjOmUcf5uc//wRn5pu8dsfj4NI9XK9H2bYo+ZLA1njC4uXNMZ12D2VLnn38Mb7znbfQQKNiUfYd9nb3kRJkZYZuZ5/Pf+qj7G3d5o/fvopxJP2R5vbGPo+eOEasEsajBFkqU7Udnqz7bNwJ2G1t40wCI/r9PtJIwkCSpDn1cgOjUzZ3timXq9y+u8flK1v4lQpJKknaEVnUozF9wLmza+y1+hxEJZ7/bosceO2lC9RrLouNkDu3b7Jxt8XpU4+SxDmliseiEnz39UvUpqYYjN87hrmR7yygDq1/6UQYkJMQIJsSQqTUShF2nmKiIVvdCN/zmJ2fZmdng3KjgbEcRNpnbfUjXLpxh4WH1whmaox7e/jNKdqdPepzq4S2RVht8NRHPkH7rZeplCp86JM/wsKpO5RCGA57uLmks7fLwsIcF67e5tSxVVbOnae932EcDchjw97WDcLVGTb/zxEjaWP3cv7g9y/yr/g2f++/+FlqFclgMOLcqXkuXXyd8x//BCap0s8kd/fusry0Qsn3SKKU/W7MsbNVKvUKod8oPNBAUG2Qao1fqmGyIshKBwJH+STtAxzLxrZdbGnzxIef5YX/+4+xsxzt2KydOMnly5e5+ebFYq4h9CfUjCLeW2iByRQOAssyqInVw2hZpJmao6BtADQWrrSLwC4B+WQQ/UFmc4GmvJ9eKJgkF+uJWn5kASsK4kyAx0QNNwaLvOjsymJg0KHAqx4q3mIS2vL9Ft/eFwX0cDik0ajh+4WCnGUZpWptgstykZaFIwovotQKbBfHcUjiHGSALV0CNyRTGa5nH6lsmcrxtCZNxljCIHRGp7XD7u4+1bJNWKlgkgyjNOW6RbM+hdBtVpbn+fIfvcTysVl8W5AMM5bny+TpiEZjiXa7xdbONgsLc4yjmE5ngECilcF2bCwhGY80Xs0FabG0PINQUK/X2W/tcetem5m5aWqVKbK4h1IFii5JItIkJwwq+F5IFI2o1z3GUReRjXDKZaxcEw1HjHp9HJ2xu7uN0inVSoAf2GxubhWKssnJhn0CV3Jn/Tqzs7NcvXoF3w8JAp+Ty8u8duUWfuAwGiZMNcv0ukM8zyVJUwQKJ2hy4+YdpF7Akhkrx+Z5a71DlKSULJuLb12iXK/RrAt2W3e4d+Cwcvw0Sd4nU3nBi7WLJD6tc5R552n1/hCVJAiCSUCCPiqgD5+X5Nn9YvldBfR7PYh1csW/rzALpyigjcGYItr8vmf7nT49IyVKGKQuIlJBkAqFMEV4SJJmhYJnS7SlcYTGxmC0DUqAEBgXhJ1gTAq68JlrU6jXuS5U7tSowu92dCixSBODbYMxDoYM0IVSGANolDIgFForCnaygzIGTM7rNy/x+V/4xQJzNmyzODfN9eEOb1xZR+GSKclauYrqH6CEzfTcQnGxlGDZDlrlCKPwPI9qtUrc7uC4NkHgU6otce3aZYTR9KSDXQr52osX+NmfOIljB8SZjTHgBi6tdptUJQwiQ5JKRlFUsEjNgGYjwLa7xKMho2jAYNCgk9p022PK45CaC6NxRFkJarXjaNGgGxnGScbM8j621GR5SJrFNOdSPN8HpTl28jjtdhtygRe4zM0KGhXNOB4xPV2n5Bj6Qwfo41WhPYooS0XqaqbnfDZ2PZQo06wJ6hWPQWvwXmzZoyVti0zl5KYonC1hsAQ0vRIN16ZW8SlVbOIBqDQhy1OcchXLiouWmu0gM029GhQWPFxcN8BxrQm+rlCsbSnINZgcjLZIM0WeFSiF0TDF+GMcJIkQxFmK6ityC4JSmVGU4pdKKCUYZhrhwK/8zb/Kw82M2+vX+YFPfJYoucHTH3iK9esbXL50ien5efA8KtUSll9C9Yd85NM/yInVJibu8rUXvsPP/PRfwkbxm7/525w88zRnHn2MRrPCq6+9RX+wz/HlJ9nc2uFDT51iZrrM7/zeK9w5tsQBddrtPj/0sfNkcovt7V06B2McAcNhRiaKkJ+3L7yFAxgJUaQIXYsgsMmVwSWnVKmxuXmNG7d2SEZQrdcwWZfROKPaKONYMI4GtLs9RoMhpco0uzubOEGh8odhyDAaI6UkDENKgQtaUa5WcGyPXq9PJ04o+7Bzb5N6yaNcb9AaGvr9nO++sctXvvk6tQa4fpWl2QU810Vqxf7eAf3+gGefeopvvfRdpldXGeSK0PeYnaowMz9NbxS/Z/v2eyXUHSqrh0KLsAVC5vieoVzSWE5GEseUgxBbSMbDEUZpgiBgPI6xXMXV15+nMXucoDzFzk4HI2uceeIYjvQQQYmNG1dIsZk+dpbpqVXu3r7K8996hY985CO0Oxts7bWpNhSrx9e4dPktmo1pcgT/46/9GqfWznLyzGkkFuVKnT/88m+QpiA8D1ReiEo64B//03/Jn/vUOZ5bdqk7A15946uceuI89ekZPLvM+Sen2NtrsdtuIbXPydNPsbm1z+qJU1y/9jZzx+dRygbpIkyGFDapirEsh0qzSqSGjEUxzDeMY/bHfVpf/SpYME7G1N06V65coeT5R938dyf6SXPfknGIozt6vylUuMJePfkcw/eM1v5e3mVbFPMU+j57653Pn3wN27ZB6Xd8ncPi2ExmCf9dYO3eFwV0pVZGWg7S8piZncJyPTw/wHY8bLuwdQRhddK+hzQZkUUSr+JheyU8L0SlKWk+RmhFnCZYrkPDK+P7AbduX+Lk6hpf+fof0NrbRUkoBRZ377SphTDdLCNtRTQc4PuK1195icCHJI0wKuWpJ0+wdW+D40vHmZ2f4cLWOtOzc2xu7yFsB9vxSaKYaAif/uHneOONtzBaYTk+3f6Iku8zVW9OUv8cKrUyG3dbLCxYhJ5kfqrO8dUVTJxx7do1zjx8jnubO0xPT3Pt2hWWV04Rd+4QNhpkIzXxd2foUQfLLvxfuYqJxj2OH1tiHNXY2W6zfvs2pVKFc489w8WLFxHkSMvh0qUrnDx+irJvg19mp7NHHA0phQ7dbkpzpgIqZWu3w3Qt4O2b9zj/6BI3bq7jWg79YUbXV8SxYe/aVZaOzVCtlyk1Kly+egWvvDCxbxQXqO/VdrEsqwisMAbHcY8K6ENGMNxXoMMHIjzz9L7y/H5QoD/0RB0oLhCRKq4lKjdkuaA4DhfAeiUstCoY9FmW3feNKT2JOJVFOxuBLR0sU3jBbARSgi/tAsUsi8hthSJVERofqRW5yhjnfRI9JFYRicpIyEm1Ipug7B4c1iAt/v+eDkizDJVLtCra8QiN4zgIrQvfMylhFbA0i0vLCCJia4BfL/HH//xfE2Ue5eYipcY0caIZDAY0pEU06KKnp5COAC0LMotjgVbMzM5x4uQaN2/eZP3WdXZ2N/FCb8KDtrDsCnc71zhz8hxKuOzt7uO4VVy/xKfi9NQAACAASURBVPbWLm9fvUW5VuUgssiVBGHRGyaUygOkM2Jl0edgOyWOXObqM4z3NGsrDv0sJc4W0fT53GfrXLh0gd1Ov6D2jBxSNcKS0GhWOIiGLM6FtHsZw4HiO6/dIIttKuUyo/GQtZUGzUpKu61R6ZBKaYEYgSDHslwc28f2XHwdc3xmjDRlelGFNBqzc3BAs/reKtBJnjCIJUJYKC9HaIcsypmvlJifmqJedZlulhiOhkRJjMlifFlnan6OftRjqCWN2TK1Skir3SKNCxtW0TYuEspsR+IJg227DIfjYj8KG8/xGaVjZG6TK4EnJK6wCg81glRIWt2MPBbYjRCBhZMozLjD03OSXmuX19fH3Oy8xa/+6ov8nb9zno0bt3jj5X/FRz7+GW5sZ+xs3eHVN6/xV//Gf0rUaeF5JdzA57/533+f9PoN3KZLpVTnv/snv8Vzzx7nx37sR/hzP/1z/Mvf+Gc8fPYEd77W5cxjD3Hhrdf5h7/6y/zEX/8HCLFPuRogVM7HnzjGK0LR3e+xPBfy8Q8e5/e/fpW5ZkCj7BGnGXZYJYmGHOwP0BoCz+PCdy+RS1AKlk6c5tkZxZW37xGlcPfuNsMDl8BNGcZ3KNVKnDl1hlffvIjrQhj4BVWq06Zer6NSVTC4bUGl7JLlI4b9ASvLK+zs7PLME6cwxtBpt3ntrZt84MnTXLh6nbm5Ek8+vcb6+m3OnD7F5esbtLsjluaqzC7W6MYjvvzVF3jo9Fl2D3J07pPFxYC+Njlav3cKtJhYEA6tCJZto41BWmDZE0+utLHlmHJgmKrX0NmQUjjFvVvrrD10mnavy/LyMrFKOdjboS/2WThxlhsXv8UHTzxKOawgqvNkDqhc095ssbJ2lo3rrzI71WTQz5lde4yz9RJvX16nUrJ45PxHGA87jIcR9eY09+5ucueO5mOf/CQPnX6M7VaL6doc3/jOH7O+fkC9GfCf/PI/4u/+4t9gNIrIlUFLn86eQ1RXDMUAx5b4YYVEu+hU4fs+84vH2NnbwPNLlOpNpi3B1euvMbO4Sq87wggXv1oicHzG6QjH8YpcjUoZtCHuRgwPeqw+/BCty5ep1mvML81y69YtRqMRjhHkafaOQb8jm6I2uJZDlqUFKSxXHALRFfeDTrAkRhuMLNJsPctBK8XU3CxZnExmmswRHCKOY3KtKHjO5ih85ZCocuSvtiYHpkmn+mgwvtgZyIkHWlAU0A8GqRw+9/u53hcF9H3va4jnBYXSLAsfnpQCrSd+JmGDBM8vT+D/No7jYNk2aTwqvLdJgjMZPtO2hZ1rHMvi4sW3SMcDDtr7lCslLKnxvMIEHvo+Tgl27rYI66AyaNZKnHrkEfZ27rG+tU2SaJIs5U9e+AanlheJ4pwsM6RJSqsF1XKBIXv78mWScUSzUqbf7fLQqUWKxoPF3v42jmeTJBmhD3mqqM81Ac1w2KdkB8zPz1OtljGLFnc3N5hbWOTqjaus7d5BlKdZWF6jVKtj2TZJOiZJY0phlXIg8H2fnZ0dllfm2d87YHXtJDsHA9bv3GFxbhYpLEapZn5pHtsTHD+2zOsXryMm8cajUYbvQ5IklEIXC+gOIkwOvd6AqWYTf7tDnGuas7O0uh3OP3aGg16HE8cWeesrV5idbtBPFZYURGmC77tFKAgWPEDUcF0XM0kgdJyJh33y5rjv9IYqo49eyA9+6EGixHu1pusFXF4ZTZxmpIlG2YJUZUXbyGhAIu1JgIq2UKawt4BA52pCe9BobSERCG1hTfiVjrSwJQTSwSiJKzw87WHnBQRTC43IzKRdBUYbtGGiChRph8oUKn3RCaD4vloBAqnSyUS2Rlp6QrfRExJDiutKgpJkZqbEKBrRnJ+H5iIuIfRe597WDrkMqc3Pk+aKRqNJb7ADRqGyBKNyhOMU7TMBvYMORhUDkt1u92goJM9TAhkUvm0MUrRIzQxff/FtfvB8BcsJSLIUbMnWXgclbIxwyE3OKEmRlkOUZtRsC8fKKHs5Zc8QOB6ek+JampU5xcEwJ001WeYwSne5t95Hk+M7Q6qBwhaTcA9rzMJCDWNSMi1J4rSILjcWDhpLaupV8J2EZt0jNQ5KQZpEeK5Ns16hO4owSiNNhudrAjvGCWvsZhp0/p57+Qt/vEGbDOFIVGIgzmk0AnJdECYqYYBvR4xUjCXAswWNcoC2IrKRIggConFCrztGK4ltW8Xvz3FQumDACxXj2IbAF5DbSEdCBhibNAcvp7As5UWwjoVEGcN4HKEniWZaK0w04m/9/E9x4Y1vsrvXYZCWeO5Dj1Oqv8IL373Nj//kD7Nx6wovPP8yX/ilX0T8ydc4Rwmtc2ZWV2Hcp727x//89/8BH3jmKc59/CnSJKMx1WRpcZbO7jZVWecDH/oo9dkp3njjLRaX5zlzZo0vfelL1Kp1js3Ps7HXo3XQ4cTySXrdNkG1zuqxBa7evkE19Kg3Z2jvbDIzO8XdrW18r+icLMyVsKjw8z/zA/yL/+P/4smHz9JXPrs338C2BdMNl6lalU6rzS/94l/hv/+nv029Wsy/LC8vU6353LixhWtL3EqZUVrQZ+ZmG4SeTRwdYFRGpVplr9UiilP6wxHr69sEgcXaQ6e5dXebH/73/jy2zEhjhySKeenF1/BLNn5jlht39oiHA0qhw+L8EqNc0O0NiJMxWa449/h51u9u0e6+d90TIydBVFIUYWrWpJAWBX+4uNjYOLZEEJMnKUkS40mb+aVFbty4wfGHTrG9t0utXqFZLfH25SsotwzSZ2fjKpXaPNqrkiQjKo0qYbVCqRTgrZzk3t0bPPLUB+knCXs7PaI0IQw92u0BaZJSr1SoVUOmKzWG0RCM5Ctf/SrT8/PMTS8Vw3lT8NxHP8fP/txf4b/8z/72RFQR5Kni6197mc+e/SjdUYzlTtHp9pg/Po+Q9oT0BLXaHMaSRIMe5aCMEpI0FzSn5ovhxVyTqeKQYZnCViEsgRP4RchRrUyr0yUZjNg1BpUnmExhv0uyPVJ11URBFhDlKY7nFjZCVSS4CqvA1QmnmJEQlsRyJHGaMjc7iy0k+3t77OzsFGFJ0sK25DuGBsUEFHAYOvbu9b2800fdiAfk6klI6FHh/aee+31c74sCOiiVkNImKJWxPBfX9XG9AD8so006meBW+J6L0gWw2wuLBENlGXKVADme7xIP+7ieR66LzdZu7aJVRqVc4tq1a+y1ugR1D2kkK8uzuKRcfbvFo0/NcHMdnv2RJTqtXZygzPNf/zbz/w9zbx5k2XmWef6+5Sx3X3LfK6uyNklVpd2ybEk2AmMbcNNNswcYiJlmmenpaGY6mhmIIWCiOxhiGEcT0NDDEjBjaDA0tsHGG/IirNVaqiSVVKotl8o9b9797Nv8cTKzZEfP/NFjRj4RJ+JWVEVl1Knv3O993+95fs9klc7Ap1bQGFaBxcVFBt19whgq9QphlKDaLnaxTKMxpFIqMT87y5lj8zz11BM8/ODDXL96hXq9ytfWb2JEeaRyyYClY1N0B32SwMcyJbvdTe65cAcrq9dQskgQBLTWN4kzuPLq17h/bJaBN0VChlG0ubW7jesO6fS6HJsZoVQs0pGwsrJCqVLj759/BUzFxNg4KysrzCwcI9jpUipYtHtd2v0IU0tGmxWKpSp77Q6d1hAtItrtkGpRYtuaRrPK7Pw8N5fXKRVNhn7A6sYWF85MsLe/Tb04jiHg3ruXePPaNmalTt/18fZyZN9hulg+Zb2dNni7aDaxi8WjqbRhmjlOTR8sz7ekTR75XtPsm24I+C+5bOlzyHGuFiCJNWkCiYzyeFGVB4wqnScPSqGJMzCkAQgSmaGkmR9xZ7mZSiQStEGW5TowbRzoxVKFSmxUZKEGGp2mZJmPjhVkGWYqyTKTWlYlSCPsNKEiQ4Q87OrTA0xeiu+FIFJMK6NUrpEmAq1jpBSY1sHUPAnIZMRI0cCsKISwqN/3b6FyD+Hu87zyJ39CuzvAKuY66jQMcPtddjbXGRYHjE1NEwUORbNAJlK8MEQckFf6zpBGfYS9vT1SMgpFi93dbZRSBIFPllaIayFBVGNlvUutZmGULCK/hzJKjE03SEREVSdIIySMErStaDRLFK1tKoWAmYkY07ZZ3e0wMl5mZNTHsjyiMMMLy+y7GbWxgOKYQUkmNKsKzxnmzUU0YGHqJL4TEqVQrJRRhkEcm8jUYWxklHpDoOKA+akR3lxxcIXDxKRFwSzQLHYoLRSx0oDmxAQ7nWs8cs9Zuh3Bxc0hpjFB4L29JsIoCvCVQZpmpIamvddHANrMkxqLJYM0UYhMksUJpWKRyWadmfFRyqEk3din0+0SBBG+l2KY+uD7WqO1omDl7/HQ9dBGwtxcg91eRKZjBq5LGOTJZKaOKduSJI2xCwUMaRCHEcWSJkugYObBSp/86B/SvfwFVruCUxceZMZ3OHdujn/6g2f4vb9usXhngSf/9joPvOMCn/yt36RQKvPAQ9/JcOjyF7/9Wzz6yHs4tnSGn/pv/yXBzjq/8IM/y3u+/XG+7/s/SLh/neb8PEFS4NT97+bGU3/DX38+4Hu/c5V/9P6H0AXJE1+7hY671AoGL1y6xbm5Co8/dIFPf/USa8sO546P8Nqtfa6u3GK0bNJqtchSKBUsyiVFt+ew2KzwyU98hkZzAiH7fPlLl5B2nf1Wl2pVEkYe5eYor75ykf/6x7+Pf/O//yfe9/551jaWKRYMyuUCw6EHmSTLIrSW9Pt9enFAlkU8/I57+funXsKyBL0hfPXFLR68b4GNjQ1ee/0aE+NV/u4Lz0KgWDpR4wOPP0qj+gJ4bba7HsXGCNv9AWIQ4qQK/9omWodcOP8gvV6PMNEEQUb8NiMYD4uuwzvLMrQAZej8tNLQFAxBwUxQWqCSFNfr06yOkilJQkahWmbQ62KQMTc5TjfwOX3XKZ753J/xge/7CZLiJHbJgDQljDwyT+L4mtGpBZ77yt9hNaYp2ZI777qbfn+XvVaH6ckTbNx6HWKP9uYGI+NjBL7P1Pwsd5w/z6svX6ZQqQLg9rd46qufx0+CnDCVJsReTCBgeW+Xu2bnOX76AtNzi1jlGlvrW8zNzTEc+tTrk7SHewjDZme/y7ETZyCRpEGMYZuUrBB3MMxlFIfTW0Oj0pRavcGt9i4VqVkcnyXRCUHfxdIGmcyRb2GW5mCpQ0Pgoe5cCLwkoFis0hgZod/t5tCCAzJPySpQr1TY2srJYGMHJJ+NjQ3IMqSdwwDEUTZavq+HYYhtWjm7Oc2O9NFv3eNzDfTtzyK+PU3ODuuCTCLTXGKSCDAOjY1kpElyu6b4Jl3fEgV0Y2Q6fwEMA6kUdqECUiOkgSlNLFMcTCoNTGkAYJlF4iylYBg5W1kbKCQS8mOmVLB89UWyyOPZrz3PG1eXUSJjcqTGTCPm9WseUwtVYt/nl3/hB/jFX/sYP/ih44w0LE4sTvPiq6tUq5osiEhSizhK6A98hJsQOj5pCm9c9xibMFk6PsXNlS0sq4yFj/b3mayc5NzJ83zlic/TGCly8sQokxOj1JujPP/iFR68d45rV29x993TLM4uIrKY9fU1tLJYW1vjrjsvUCyWGTgZ7V6XOI5xB0N8v0/VKhA7IX3Hx/Fcjh0/TtXK6PV61BtjdHpdrq+sUKlUOXF8BtM0GdSa7Hc7hN6AfX/I+OgcpaqBUopbrR79gUO7EyM0VCsl2q1hvnEGGV0notXusDA7wVOXNkgSiEOTjU0fORJzZqnG2voyjcY073roNH/+6deQBy7+wPPzRaskMkmJskMzW24iTAV5hXjwoqdZlmuhDON2Z6qMt2jevjHu++2VcHiORKQemR0h0gTDzFA6Ozi2liRpkB9ZpQqJlev1jSqHzUQqYkBSkBKhIwQKKSykaJCmkixL0EqgsgyBRmZmLg+qaogUWZIhyE0TWthYIsPMHFACaTgYQh0cf0UIecBLp0CSNnI9iTRIYkWaCFIchAAp8ndM4CJkyr4MsJ1xhrFNvVwn3n6eq1/9Wy5fv44fZESpi3fzDdwopVSqcP9D7yCOYwaDfXyni1Us5UlUcYTvegwHfZaWTjAceNRHmixyljcvv4Bl5wWlH3h4UZeCX0Ipg794ZpPve/Q0ZjpkcryBUgMM06QfRDRLNmVDIowWs4mF1gkTk+AGfbRhMDk2ScguorVO19XEcYQTgFIBXmRStAyywEVoRbs/AFL6HpilJgQeqdRI5VEqtBFZjf1uRrWaQhpw5XLI2aWQZiVksjnDhdNzLK89SYpHrSTR2T7T09ME0QpZnFEZCVjdWoMkwvX5/z129hsvQYpWCV4Uo/LwXoaOy/KGS9cZ0Bq6kAjcMML38u9YL4Urq+tMTpbIkpT9/pAsyqg1iigt2WsHkKUINcAyLQQWA0/gpynlRkoYxWRhShTHJGFKatjsdQPiSoo2M8qmJPZipC8plyvEaUSzaDDbaFLoXGYv7FBvLpBYZR77gZ9n742nuXy5w+bWNl/40gv88j+/B8E0WcGkOTpFY2qW4doWP/QDH6Z01zmSzS0+9nu/wUf/8En+6I//Ob/263/CLz68xOWbLjdeXaO+WGJwtcuJO8/xK7/UZ+j0qDUX+Ivf+3Pc7h6TzVmK/pATx6fY77vcsyRxHrgT3wu474Fj/M7ffoFEwXi9SBAo+r5LlqScPjHL9vY2991VJ2rHjE4fY7SRsHRiyGYHtITZkTJuGBOZIc+/cIWp8Qa/+j/+CH/5158lTnz2Wi1Ms4ltZ8TCx4w1iJzqY1s2hlnk1nab2bkpkiShUErodTt87cVVSiUo5T5tSmWb0fECQQJfe+FZxhoFzj5wLx/90y/w6GMnuPRGQK3WIIgVzjBGZQYvv3aVWq2G49+i22sjlPX/vrj+AS/TNm7j0EgwjLyYN4QFlsS08mFAzSpi2jaGqTGNlH6q6Dk9Rkeb7Ny6hWlbTC/MMOz1SZXm7OLdjE/N4/Se4Euf/jPe/2O/QD8QWAWbSrlJEEeUR0aREqZPV9jvtBmfXyTIMprNaYQ0SLRJbeIYbmeH0TmIggBbRBxbmGNrc5/phQUMv48WmrRzlTee+yg6yUhRZFgkaQoqZbZ2nDApcv6e92DWJojDhJGJWWIMlAVRHFC2SrhJxuhUgSwKcd0h0lT0Bn1sW6OVIElyTJ22DOIoQZo2933gPaRPP0tnZZs4TTCi3HjnRRHmAWM5JYODz77vc9/d93Dx4kVM06ReLKPjjNbyLdKCwdLxE7TbbQa9NsHAIRz6GJlABjG9nT0ykSGVwDQtHC9kYmIM13VwBoPbyDslDyQcufHvSO98ILvIcwpkji08IPIkIidQZwJSIdApkKZEb9HHZzL//STL0Ernp7PfxOtbggd2iNVKkiQ/2s9uQ7UzwcFxgM4/a5WbkkzjCKl0WFwrCVKbRGFCwRCsrd4kDDz29lukCOoVg431HlqaBGGK50VMTU3w0T/+GNMTMBzu0Bgr0e/30dqkVCrhBQG+HzA/O0ecJDiOg+t6FCtlRsZy0sKtrV2khBPHZnjn/eepV0wGvU1gyId/9J/x7e/9Nr723PMUC1W2traIY4iijJNL83iOw97WBqahSOIQQ5kMHI+bq2t4QcT15euYpsn8/DEyoQj6fZrNJuMzU4RJjGFZ7O/uMxgM8A8wZ+NjEwwHLu5wQBzH7G7tUizXuXxlE7tQolyqMj0zwfraCufP34WlM5SIc/i7bRJ4LjMzTbSRu2r9KGZvv8uli6+ytNjENPOyNQxDxkan6Q73OX1mifXVFQJnQLVSOpLfaOM2Ju+tvMjD+7DDTREIpUEeJhbGt7FvBzi3t+LhDv/f3+7Lc9MjM2OSJKSZR5q5aBFCMiSNO8RxjywZIglQMiJLI8hC0iQgjQOyJMzvNMgnuUmEM+wxHHQIA5csi0mTgCyNydKINI1ApWDEYEFqJGRmgrQFpq2wdESpkFEwY0wzxjACDCPCMPJfW3ZE0U6xzAxISNODZ53k/ze5pCLFCwMcL0C4ZWpn38fMd3yAq5//j+i0y0vPPku77+J5PiCxbZtyucjSiTnc/g5FFZFFPjmxLCMjgTRGG4o0jWm1Wmxs3mJ8fOzr9GlSSrTWR98JaZrSj2yeevkaFpIoTJFaIHSGFCkiiTG1RKse41VJ2Y7QKiMhoz8MGTghhUID2yrT7kUMPHB9CBMJSczmnkfPU3Q8k243pesJolSSpTZkGj8YEHghlq1IkhClJEqFSO2SkeToTUKmxpqYWuE6Xp6caqQUbIHnd1FKMHTg5q1VnCiiUtYoDfPHam/r2hVpitISJfOUVyXzzSsVEMUxfSdkv+vS7jl5kW0atB2XgRuytds98CqkGKZAqgNEndRolePo/CBGSE2SSlIMXC8i9BK6/VxnXijmemmBQSLyMAYlJJKMMD6I3ZWC/tYtfunn/hlKRSydOsn0/ALSzGNe/6df+S2+9NIGpWoTgebsqQWyWHL+3LncJOmHfPWrT/PFL36Z3/nFX6C1vUmv1+NXfvVHaI7OItOAWqlGrdZgeu4YI2NjjB5boLW2zpNPfpVjp+5iv+dQKleYmZ2kYBVpNqpMjzfY3BsQhCFLcxOs3Vrl6vVNFDDarFKvlo+O24XUyMinpDOmpir0Bi0uX36DWq3GiROLSNNifrZCtVxiOHQxDcXWVsj2Xpc/+sM/5bu+43GKlsK2jJz+1G5Tq47iOC5xlKGVhTBsDLtEb+Cys9thvz2gXKswUquyMNcgycAPIYwiUjI2NleJoohTd9xFq+vzzDNv8OBDk7z+2ipOt03BUFgFG2mYzMwtUG822NreRRma44tL+EHw9q1blYeBCCWRWiG1Qhkaadsoy8Ys2GRZglIyNwCnCd3WHo1SCaUU/X4f07byf9PWFtV6k1a3x/r6Gvv7HX7y33yE+sQcy1dfw3EGB3I7iWWWMKwyCIvm2DRn77gb06pQroxw48Y1hsMhl159jc2tfYqVJlIZNBoNLENz6cUXMJVJt9MHbTE2Nspw2Ccc7vAvfuYxhIiRKgZSRCGjUTKwiiMkFEiSLJ8eH9Q7h3vnoZGeTEImMYw8g6FSKR3toYcFqkIgpUYoixde+hp33nUWlWWkYfB1wSWQD7cOZYndfo9HHnuUiy+/jGkYZGne/HphQLFSZmJigjdff4NBp5sjKKVCIQ5MxLeTbw/TSwG2t7fzJOapSYRSxGS5Sf0t11tZ0t+owz4icMGBHPKtmDrBP4RU4//p+paYQJcqDSzLwvd9rEIFJQTatPOHIOVROIdlWQRhipA6l07IQ3D/QZpdlmAU8pekt7/J6aUTfP7zn+fWdp9KxWKkajE/YXFrrUu1AhurbZz9Nj/8oXcgChbRYIs4DtjZ2efq1RYzc03sUgN76LC9tcHURB3X86gWiwwHLmXbIs0U4zNzxM4AGW2wveUwGLSJpsqcPFnjuRf+lN3tIfXaGI9/+/v5v/70Tzi1VMOyFE89s8qP/+hjXH7xBbpDnyCIWNm4hTZsTKvE9Rs3aY5O0O0PcNyAqWIJ09TYjREWT1/g4Xc9yqVXXqKz3WJ+/iTzs6NcvvwGr7z6Og+94xGee/EixVKdwTCi1/e4844zDAYOd5y9i+npOSbW9vnyl7/K9PQUK6vrdDou1TrUK0XarTZpCoYG5UesGSHjtQJeNyRyILUjYkJa7Ra12giDwZBHH34nX/7qc8xNzXJ1ZZtisYLj+WSZQBuaLIxzs4eUB3KN240QUmMXywBomR6ZROAbuZJ5o3X7JXl7J9Cdzh56VJNkCeHApz4agYiJUhOpA+QBq1urMciM/OhVAkKSJBKEyDvjNEXGJYRQaFnCjYekaYwy6ySRoNV2URIqhRBDGmS+jxIGaIWU+SQKE0SaYCkFAsLQIJEJCRzJQaRKSYMELROQKZ7vksYWaZprpKWCKPGJwgw/9PA8hws/8jNsfPw3aF64j1MjJ3jlbz/O9avLZEaZRn2EVEjW11d55zvfSc0G4WwSupuIuEzkD0nSECkUkdvlxae/yNTMTD7hiAJcd8iFC+cYtLe5tXYzl5CYJnGcG0ss0yZUBZ6/0eGxe6C/3SI1JCpzKBclZd3DsiwGfo9ywcau1DF0RtcP6HRCHOca83N3kHkJjiNpd1LixIAkZWZUsxdYmFGEDAWnJ8a5updgqhAVtFk6t8jOfky/HTHsplTKEUUzol6LMYwhUmiKVh2RDXAjD8NQzM+WKZZjqiVNX/oMPJegD1Fm0mqFKAUjFU25pNna6L2ta1eKBEGMaQjSJMrzxARYOm96h65HGGTEcUChZGOXTTo9hzAMGcFGEFAsWbkbnoTAz52pcRRhCo3jpCiVN8BZnFEqGigMdm4NqFbN3IMiEiLDxHdDUlMQFUAXSvmUCZ/JkQJ/8L/+B3o3r6FKGc8/+RWwKyycOUe8tcInn7nFL/3Kr/GxP/xd9ndu0HEf4b733McnPvF/cvrcBT7+15+k2RylVqtw9z138uQTn2F6eppX33gD34kplgO2twc8+ewrfPWVHT784X+MtisYqohU8IlPPQWRyxefa3FsDrzekLvuOY7YDbi5ntCNFGtvvkC5VuTZF5cxDAgHfTpWgHUw1JmeHKFieshCitvv8eM/8SE+/blLvPT8s1y50WF1D0YrAlmzyUKQYUjPgc9+6RUWxhu8dPEik80axWqDYf8K5aLm9YvXqY3W8H2fbndIrVbEspq09jsUDMXszDTdzhY6hoI2qJU1htJs73oIoVBxRrC5S999jnK1wrDX5n3f/U9YXf0T3nHf3axubDNMQxYWFnj+hZeoNBpMTB9jZ2eHOG6hjLdPfmSaZo6yEyJnigNKazAytG2SMqBSyiAZ4vZiQndI1uuzurGLrhQRcUJtfIThsI/rulTrDU6cvYO1W1u8eeUSF69vszBzjOWbN5k3azQaDQqlKn6cYRhVDPLGPc4EURzgJykLmOFMPgAAIABJREFUS2dYWb7OmZOnsAoVHHeAWRqn3drEc4eYhSrO0KVeHyE1NdWKxfJ6jO/0mJ+b4CO/9oPc2uhRKRQp1BTe8mu8/2f/O8rN+TwCW0oQB5QRMhQcSR7TAxM6mcT3XUxTk2YxQuSmvnx/lVhGAW3ZBPU+N1ZuYBcMilri+ge5AElKYmj6vsfE2DgTExPcvHmT5555FqtUxPd9qtUqomBSq9XYXFunu9KnXCgCB43NwbRXikPcoMg9VoiDKO+MTAggY29v76jI16ZB0bRxXfeo4FZKEX/dXp9rmw/TFCH3aSjyn5sdpiu+RR6SpukRQz5Ovvl+qW+JCbSUmijK6RKHHdZhkSSlRikDrU1AHmDR8ocZhuFRkXWIrrPMArZdwHVdXrr0CtdurufIsDAgSxOKRZNyZYRqxSSOYNgnj8wsKDx3gBCaWq12YCDKCMMYqaBUKrC9t0uvH1Gt1Bm6Hv1egOe4XLnyJo1KkQt33EHkp2ijTJRo+t02dyw9xE99+CfoD3d44ouf44EH7qNer3P6zBLf8f7H+cRnvsLE1AkMu4YwDayDxVkqlWi3u6ytrTA2Pk693qTb71EdG8Oq1LBLdSqVGs7Q5fixRfrdPpcuXWJ8fJR3vetdvPTSRaIYbq5u8eb1NZaXV9ne3OTM2btIlcXpO++n0/F412PvYW+7RalU4fiSjeOAFBkTk3VqdZOJiSaLc5O4fkKtMcbYWInZ2SpBkBF40Ot3sM0alfIIX3v+ec7deRdKxNx373mUFpTL+culpHGEGTpEzx1KNA6DVLTWmKaZT7G0PiJyvLVDfiu25luBwlGtW0iZm0TjIM3zIWIJwgRMlCqhVBUhi2TCJE4FUQJRLIlijcw0WloYKp94kmmSJMnlSqaJUjpfp25GpxPg+BlhIIi8mNSLif2A2M9jqElSsjgjwyaKFL4PXpQRhCm+bzJ0JI6T4fsGUWqQpAZxnIJIkCpPGZQqRcpchiKlpFyu8uKnPooSCZ09zXNPv8hrr15l6LhE6QEuMspNgfVyiXg4IHF7ZP6AOPLY2do6cEOnOMM+RUuzMDvO7OQYi3NTNJvNo/fctnN00sjIyG3zSpaRBQOsygjCsEmiAIEiCByU9CmXXAyrhaUUqXAplQvYZp0oVKgD32qvv4EULkVbEybgBim77YQwCgjcPhUbyjpEKY/+IHd6C3xKdoZtZEyMgamgoMBSIWULilpStGN6vR6jYxUCbwfH2aNcLmLpAn6Q4ngJqbDZH0CYKkpljaWgYGvi0Gd/+21duvl7lyYIcZt4YxgK2ywc4KQiEBGmJTGtHEeZkTD0XPLRappPkEVGHKUIoUCkB8EpEs+N8YI8OCWOXKoFQaEgDnwBYKqMgoaCIUhjSRaDH6eEQiBMjQ4H/Pa/+V9w93epjVbpD1xOnDxFvV5nYnyCP/rjP+fdjzzK3338D/iZH36Y7/2O4yy897u4unqVufklGtURPvC+7+Shh99BvVGhYCne/+2Pc+ed53jqqZe5ePEiP/1zP8nksVNstrqsb7UQaUCns8dLX7vI4oljfOozayTC5Pzdi5w8Mcfk5CSkEZYBu+0+27sO9WaDU2dOYloV0giyBI7NzefGsAhsK6Xf2WXp2ByGLtHtdimXBffec4Ef+6EPMD1Z545TJ3DcIY89doGybVKogVUqIqwqy+vbFGyTwHMoGDa1comRpsXQ6VOrlxifqJClMXs72whSbFMShUMMITh75gSWCROjJTzHxzIgDBJmFpcoVSqU7ALry8vEUvLHH/00Y5NTvHTxEuPj4wx6PT75iWep1UcYOhG7ex0mJyfx/fBtxYdqrZFKIQ6mz9o0kFphmArL1JhGjrALgj5p4JBEHm6/RxbF+P0hWkh6rTah5zNSrfOVL32ZNBPUqwWOzU1y/z13MTY2xvziSabHx4iTgE5nn1SkZEKQIkErkAKzWMh/vl3m7PkLDPodECmWXUSbFYxChVK5Tq0+imkYDAcuMYrTZ04yN3scKFIwC6TOPlO1mPGSw6jyKEibYSyojjTISI6mrt+4/731JPdw3zg8DX1reFfP8XH8AIVAKMhESqYyAtLblCwlCdOMGIHvh2ytbyAzMJXGDQPGJyfoDgfs3Npgd30TgiiXTRxcQoh8mnxQVQp1O7CFNMtPI8npGBKRn3oJiaE0WZLiui6WZR2cXt/+/v/G6ygkh4Mk34M/cphAeHh9I3njHyKE7VuigFa2RpgahERpi1QqTMsmzQfQhKGPlPkDMbWBlookyruJtx7ph2GELlbw44RLr77KU8++jB9Bo6IpFQWmkiiZ4ftDtLLIUrj7XJmSrXj5pcv0uj7hYEitWKbr9NDCZXO3x/ETJ5mdnadSLVGvmbTbbUqWyfkLZymUysw0Ktx3zyk2N7YYnTjG6NgCDz74bTz8nh/CDfs88/Tf857Hv5tK0Wb5ykVE7JGi2NtfoVyZYJgVuLUzoFhsMuw7SJFCmnDfvXeztLREuVxmcm6eanOESm0cL5U0J6dxnYg00iwsHqPd9jl19m4Mu8HW7ibve/y7mJgcYXZ2lkqlyszYCPeeu0CWan7oB36Y55/+AhMTDXzHY+nkeR6479385r/7Xf6Hf/VzrO96OF5EuVql3XMxCxXCBJJMU6xU2dnuoxMYDA2OnThHkvpcuXaFb3v8Ea5fv0rFErz0/JO5/COMiOPckIBUhGGM64VHjVIYhkenC4cLXps2hlUAmfMslWGiTQvDsjHNnAF+WFi/nZMQgGpFogwD0yoyNjWOZc5gqinCoI7vVel7JgNf0OlHbLccdls+nq9x3IQ41nhRgf7AwA9KJLEmDDKCIEJlJnFoMXBStto99vYC+p2U/q6H2/NIQ0ngDEncAdJ38ft9gp5DGsR4gwSnn+B7gv3WgOvLO7z25i43Voas7xRY38/oDENaAxcvSAkISPCI4oQgBG0q7KLG9yGILMK9TSZ/4LeYfvS/4erVNd5Y3ibSBrWxEUzTzk2RSkEWkcUBrd1tQt9hfflNVBZDHEGasb+/xx0npuht3cBrb+F092jvrHPj6htoJajX65RKJVzX5djcPIYUucZNSaLQ5csvvckPfs97qdZCSoUqaSiollNM9mm1Q67vdNnZWGXY7dLu+YyOlDAlTI4nlGpAHFIScGIG5sZgdhIaKdx/3OLEFDjhgHpBIeOYhePQ6S9DlHF+KWVpGgxdAqEoFuu0hymWZePGEdc2WvSddVq9G/z9i7s8/UqHW9sJK2sZQeoTptDueVjSpmRBd2+IG8M77mq+rWvXtC2KZgHblGhTUa8VGBstUy2ZWIYiTiOUymiMmNRqCpEElEo2pYKm3+/iuAEGMUkYYBVsDNOkVrGpWHlTnJCRZjGGmRIEAVKlFEsGBdPCCUK0NChZikoBhJmzonu9iL3ukErS5T/9+48wvPIiReGSBD7VuTvoeIL5ukNv9SW293ssVbf5+Z94mFm1wXvvn+HGl77M9q0N9vb2uXTpEjevXeX3f+93mZ2dJUUz9GNqtRo/+ZM/TH+wz8ToLFgZUtlMjE2zu7HKv/jZ32Dx9AynZsa464zBwM0n9b1OyK3NXZx+hMSkXq/gehmDwYDBrU26aUQEVDT0fJcAm8kG2FGXM4vTDIdDOt2Iq1fbrG12eenVN4k8h5JhcP3mGotLC3zlK5e489Q8j73jNJ22w5tre9zcGhD5EYk7pFws0d1r0ekFWCI/xbGVYLRRZmq8wXijwvq6y/rKDr2ew1MvvIoXKAb9Ho++e56Z0SL+wGN9s49UOZFhdmKERrnG6nYHzCVmj53lzWsrmOmQn/2xB5ibmsZLNX4asrK2gxNGZOJtPLzWBmbBxjAUytJY0kZrnaNQVQz+PlE8JPJ9LCXB8RCJQEQh8XBI1h/SX9+kECYIBQuL81imJowDZiZrOHs3ULgYFZtYZXjDDq3dDaw0QYkMU0NCdnDynQ/1+sMhfgijE/PYpSrVeoNhnFIdm6E+0qRWrxBGEZK86L7n7H2MWRaDzX02VloY6RAr3mfcSJGDNj1ZYeHEeYIoQAoTKXNp61Ear5kb/oSWKBSGZSKNjDjL5XhSpKRZglCSSrNJsVBDZjDotzHQFGtFlK1zbOoBHStOEz74oQ9iWxpLCZIwQhYsmnNTVEbr7O/sUEQyVqogggiylEgLPJXhGRBqTbFaptyoUKxWqNbrFBs1So06Vq2CLheJLUkgM2J5W4YTxnlmR0rG0HUI4yifQicpUkJCQirS/CYlE1kuj85SsiwhVbkE5PDZJKTEWUIqsqNJNoBW6j9bkP9/Worf1L/tv/DKY5w1hjZRhpUnpQmBZZjEcUy5XD6IiM3wfCdfQAo87+t1WMos09/fwlIZL7zwElGcUCqZ1Ms2YGOXLDzPIfB9DNti8fgU5+6c4uLFi9z54HvobF1n0MsF+K1dGC8FZCm8eeV1BnWTSlni+SFBAo1aidZ+hzBOaFarrK+vIJSANKRUMNneWOFs9TSFxjxPv7xC97W/553nT1OrVZiYbvLqa1cpmBnvevABrly7Qme/zen5EayCJiajMTJKGCRstja549wxgihj8cxJDG1j25LICZiYmuO7vusfsXLjFbZ29thtdxEYLC4uIlLF6VNL7O51WFo8zmOPPMpXnnqWRx55gC8+8TkKZkbJhEa9QLUkKZZsPvr7v4sfCdIU9tsOpkxwOj5XwmtMT9S4sbJMo1xnpC6489gcw84er736Jhf+6ftYu/UC3W6LWr2CUawzNzPGC9e2kMKkVNYEcYDKDOLkAHQvFVor0pSjU4UjCL7INWdCfH1/l6bpkXv3qLN9m2XQ+12fUqFAnCUUZQFJCaEyfN9BaYmhIkQGXmaSoInDAMvPDRpJFuUGiChPayyYyYGOTZDECb4PW61dvMAnjYqINCGNUqIoIhEpWRyRBTGJCMDUGKYmDFNMyyJJEjQGvpeQhvlzDMKEqBcjVYLruggSqpaFMFIKtoXv5nHuiBxkv73rEccDUi1p3dylaWzRdj3cOGRkdBytNYOey+m77qa1u0Gv12Pr5gr72+vMJzGWUUIbEm1YpEIw2qiyv/s6BRmzvLaJLtTQtUkGvVzXGYbuUYy4PtD7xXGAti0spfj+H/0wPXefRiPDc2xcxyGJFUVb4wxitvtwvDGk129RrUvQPrVRCKKYIIJqVaOImZ0vc5Mex44Z1IsGIu0yOtnAWQ+ZHksI/ZBaTSKzmMhNKZcs4jBj4DgUy9Ad+Gxsw/h4hKUVy1sJGvIGXudTlo4bYFqKzn4CGPTDiBubiqIJM7UJwn7vbcfYGYaFQKG1wJRpnpSZHLD2wwTb0phWAW2AZZsEHhhaYpgKEaZ4boJhRogsj96VShL6IaVSbjaU2jg6YYrjLGfdxhFK5fixIPKxDIMsgZpt40eQJkPMIOL3fv1XyYYrVOuSsLvB5voGx04uIsN1nnh6mf2h4tF33Mf50++lPj3Okx/fot6cYnV1me2tFmPTk4yMjPDKK6/wUz/1U6yuLjM/P8/FV17l/MlpJsaa/Ov/+V/z/JNf5sEPfoDji7PYdoPpmXl+/r//CaZmLdZXt/mOb3sXf/fk00SZzdRoDXSMQGLZRZSUREnK5PgIkQfbV3e449Q4x0YqXFlZY+hI7j89xdy4RZIF9NyYlauv8aPf/042W5NML5S4cvVl+q0B2hI8/fQV5uearG3vMmh1OXmsQqqn2dnb5Y3rt3j03Q+zcmuFSq3E7NICW5sbedhFlhLEPp12yNhYjXPnj9Hb38ZxfSZmx4nDCNtucP1mh/0dl7Nn53np8ho3r8GpEzYn5ich85iZGefliy8SBTGLiwuMVA28KKbbu8X+bpfWVkq9UaHdcSmX3j6GubbMgzUESRYjDZkXUdEQMheVupSNInJ8FL/fzVn7B/tLpVoljRNKhSIlu0BppMHqyjppIlDS4OrVqwTDgJ1by9z7+PeDDrjV2mdmbBKzYjPse0il0CqnJGmdT1lH6qOEoY9ZqKCViZQwNT2HO+gTuW1arRZGZQpFjGnWOPPAu3nm2RexLIOh6+IOE+rVBnFSoVie5D0f/H4E8gDLl39PSCmPTubjOCYjjykXWXYg2chP8sjyVE/bKuCHEXu7+9hWBcgLUqE1mcjQliZTMYkBiR/x3R/6EJ/+zGco2QUSmTJ1cpFrb1xhxD5B++ZaTiEiw89iMpExMTNJqZhr/YMopN/vMxgMjqbL4kCnbByeMEuFXShgVquQ5hznw9juLMvQiKPpeRIdJiPfZkJLKXM5yAFs4Gj6nmXIg3Rj+Hp0nZQ5j1oIQRTH33Rt9LfEBFpKTbFQwrIKGIaBZRWwrAKmaVOt1klTME2bJMkIgoB+v0+n08H3fdKDuGTLsrBLFdrLr/Hvf+PX6PQ6NGqaakkj04wozAvbkeY4Y5M1igVBlrmY2uCBhx7hs597gpHmKIaWOG6P7/nAndQrBjPTGq0FoefhOT5hKhCmQYRmr72PlhlTUw2mJicoFC28YZfLr12i60f8uz/4Cz7yH/6Kpy+1uOv+7yEtnuLFqw6hnCSMTZIInvjsZzGSkH/8oQ8wOTHO/OwcczOnqNSneOCh9/Lgu95Hc/w4yiwzdCKSJKNUrFEqVUhiMAtlLNPgAx98H6fPnGcwDNht9+n0umytbRIEAaZp8Def+wJ3P/AOoizjwXc+zMLxM9x5eomyTpiqgrt7jaUxyYN3TvLjP/QB5qdqhK7P8WlFvVrA932iOOPYYpOBn/H5L65RkBnj45pyoc7SiTup16ocX5jnzWuXuO/e00yO1pmZaB582cVEcUCSxkRxSBRFR+Eob/381vs/d731GOtbQcIRJSX8RONHknbHYeAMcJwhyJiUhIIuY6kKRD5FI2N6TFAs9lHGPl33Kvv9FjvtHfbaG/hhSrfv0um6hEFG6MUQCcpWhWqpyMhoFatYIAozOp0O7Vab3p7DsO0SunnXvt/q4EUpYSrxY4GWFYpWlWbdpGQr0hAiL2bzVp/1WwMcN0WmIVkU0e732Ou26AwG7O13cT2B6wne/ej9FEuKZ/7y/+D63i7uQVN768YK5VqdldVVFhcXeOGFF7iyvIYq1TGsCmGc0e/2EFqTCElBxJhhl3SwD5HP/tYqcegyMz2JZVm4rku/36dYLLK+vs709PTR9CAMff7Vr3yEP/irZxmtapJoF2SAn0QIK2OkpliYsCg3fGojUC1nBFFC11G8ueIjzRrVqmZmBrJkwMykwNQRS8cU9QpAHwNYmO4yNR6jYmhUEyrFjIEbkGQhx4+Ns7Rwkn7fhxh6boI2Ddr70HLBzyxqDcn4uKLvgbQLJBkgIgp2nZVNm+sbkqCXMlks0wu9t3HlQhpJigULsoS5MRPbgELZykOa0phiUVKt5O+u67r0egOiIMRQklSaZNi0Ox5CGSRxSBYHlAuaQjGnzxgHBmItwdIGkR+hyRDEaMNE2YpMCHwvxLAVpm3x+7/8L/nsb/0yY2XB6psvsbv+Bq29FRZma7z+4rNcu7nBZ59r4Wdw4ViBr372L3HXbnD+wYc4feYBWns7PPzu+3D9gI2NDaamx/jYn32UqYkRKpN1Hvne9/P66xd59ZUX2Fq5yqmzZ9i9fJlHHjzPzs4qPS/ht3//j1heXcPxuqwvv8j0RJXNvT6GqanV832q09lnr9XDKtYx7BoOPrFvkAx3cxMuOct9abZBxZY8+cwWFEdoD6A5MoLTX2bl2k2ao6N877c1qRXhgx98EMdxWNvYpVgssrs6oLVxg4nxEdoePPniq9xc3+Q9j7+Py6+8TpIkjIyMUCgUmJ4cZX5mHG8YsL+/Q6/v8/hjDzLsBUSxT0SA4wlmj0+z1+lTqVsoG3b2fZ69uIJlligowUitRlao46QGV1Z2GYQ2Uehy77lFphp19js9tCEJ47dRwmEYR+ZBwzDIzJRM+mT+FkH7OlnYoUREq7dPoVQkjQNMLdnt7DPwHbb2thn6DsVamWe+9CTT9QZb169S0TbLb15H+S43X3mB57/0SdZee4ru+utce+Upst4mbreDISRp8vV84RSNNsvUGmMIZRMlikzYjE6eoDF1glJ1jDTzURrINIEu8MgHvxdNnYWJcxStewn9BdqDBnfc/U8ozj+EZRporb9urzv8PhTZAV4ygSQN8+IxkzkSNY7J0nzgVKlUmJmZY25+GqXEbdlHBtI2ScsWvsxo93t84Ym/o2jaTM5MMwg8TNNES8Xly5fJlKQ2McqZ+y5gl4oIJenvd9i4dYv1G8t0NrYJhy5GAkYmMDOBgcRColNQSUYShDj9Ab1WG6fbZ9Dr0+/2cIdOfrtuHqhyUOhmWW5GFgdYO5HeLprhtiQjl4ikuR5aiKNbAmmcQJyQJQmRhCCOvqlr8VuigM65zQmGZeZObG0ilUEOKZFIZRAnuUBcKYEQGYahjhbXoeh8b3udv/mbv6HVamGZeSemRIqWmtDzMS3N9nYLIXJweKNeZmVljUZzHD9IWb21noc1kOK7A8pFk7GRJvVahVq9jCEFlXKRVjui1x8yUh+hVmtQKZZo1kboOyH15hizc/P85ae+yKXlFu1BSLVa5fNf+Aq/84d/RX3iLL/xmx/l2vIOfS9hen4R09QMen263S79gUMQRMxMz3J9ZZUwFqyubaKVQa2Wu/Zd18V1XfY7LZAKxxkwPT0OQlMq1ymVa8RpytKpU7TaPS6/eYOt3Q6/+/t/TLU2wq//bx/h+so6drmBNgtIw6Q5NoohUxZnx1m5cYXx0Sa1WpWf/un/ip0tL+8KM8HA6dFs2kgBN274nDg+yac+9TFGx3I9Xa/bxTYt5qemSGIfz3WOJBq5DCc5KpYPyRr5hOp2d/hW7fM3FtRvdeV+K1yHHXMcx6AS4mRAgoMfDwgjl/2BQ3eQd+eRH5CmHmHmIpSPYQ0RBJB5GEauN1U6IUkjsizGNDWNepVSwaZcNrHN/Jn5foDvhQfPLN9EpFbEYb6p+WHC0Avw3FweY5omUsUIIkQWULQyKkWLRqWc45AKkowAJVIMxVHCU71ZYGy8ThTFFHXAoNfHS1OsUvkgJEYiTSsP7NnZZGtri91WGyeIEcZtMoCQGik0vV4PDogfe602QRgz6HeZmJjAGXp5saU1cRxTKpUYDoeYB8k5Ukoq9TFefn2Ffi+nYpimkU/gpKRSSZiYiNAGGEauQ1USXCchifOJqusFIAWddooU+UTV9/0DdF+KklCrQrWUk0PiGCw754laJc2dp88zM7GEZUimp4pIAUkS0KhLCmWFF4UkIsWwNPtt6A0jwhgKJSibJgWtGKlVSVWOhgsj5+1cugRBgGXnVJSybVCwNY1aGaUMlBLYpqRgqYOCOiWOEsIwREmJH0QkSYLnhTjDgCQKSaIQJVOUPjT3pqRpnNNSshQl8oLdtDRhnJIiEQKUFgy9NjodcqpsUpMJ+1sbVMwSs40xpufnEAvH+fgTl/iD//gsF86dwk5baFKKhQLr6+vUG016A4dCscobV5f5v5l70yDZ0ry873f2Jfet9v3ue+873T3D0KiHmUEgZiTZgYUAY+NQYFuKUGDLOBpZCgs5CCNky7IjZFkYgQwzg4UYPMD0Su/dt7vvvtW9tS9ZmZX72c95jz+cW7d7kD4RHXF5IzKqojLzRMXJN8/5v//3eX6PZeWQNZXQc1lfXWN7a4uVCxf533/pv+XKxUs88MADdPsjyguHeftP36BQyGVM5aHDMz/wMMeOHUOkEg+eO8LzTz/KYACdThshYuI4plQuZOZfSae510ZIWSDXzESNOALX80lFws72OqoqMztv8eFH11FNnWe/+Axnjp9GVUxcV+a5p59jaW4S3+kxMzVGpWgTRgEnj5c5fuQQt28sE3gQhR6DIfzBd/+EQ4emkGWZZrOJaZr4rovvOWiKDHFE3oROc4uyXaWcKzPeqGKaEdvb26iajDsKUFWoNuoYpoWi5zB0HcdxsHJ5rt+4ze5elzffep/5uVNMTZawcgLL0jF0C8e5v3P3s1rgJImQhI8/2icNRziDHp7nEI08ZCRkLbtuzkxNs7CwcM9Tc+HjTzi+tES/06FWKLB84wbHDi1SypeYm5unWMqztr5Ka3sNWSREYUCjVkAztX/v/xGZzBc/CEmEQFE17FwJgUQiaVj56l2KRrbDVq/XOXL4MKE/omhZSELH1GssHT1DopqgScRx+GcM9J9qnSUhUGUZ/a4BPQiCu40oBVmBJMnSP4cDh/39fVZWbgN3u9hk5063LbScxdmHH2RsbIwoihgMBqyvr3Pm+EnWrt9CNQ0SXWHxgVOEQcCFD86TOj52qqAlWYGrqerdALA0k4MkAkWWkSWJVIgssyHJvv9ZKkJW3CIyaWemZf4UV/fZnWj5brF/8JCBNElQ7/qpDhYEipQRfD77WsSnz6WSBEJ87hxo5aWXXvpcD/jnGTdvfPySJKlouomsaCClaLqeBWrIMpqepQ2mpKQiRqSCMAyQJeX7Tsi/+vV/xJU7m/T6HgVDYNuZ5llKVSClUdXodl16Q5dzZw+z025xanGBV19/i/LYBEfmJxFJiB96jHoD5saKrG57xJhEbhfLEmiqhmVkhrfO3gBV1jm0MM2dWyvMnXiACxcus7fv8tbH+xRzOns9h9tbPTb29um6HssbO4xPzdEPUlY21kkkg8jrIZPS3NtjdnEBUgnFMFFMi6OnHmFiZo6+56Pn82imhR/6dNs79DavYdo1WhtX+JPXvke+NMlDjzxOp7PHzOwsel7j7Q8uoxg1mh2P3tCnUGygqBpvvXOJbt/lkSeeRbIKLB45iS0nvPzqq1y6uEq+UKAzClm5fRXTkpBVA2foM+g7lMo1vFhwuxnz1edPsL62ytDpUTKLzM8fwyrkabfaDEOFQX9IqpjIuppl18oqpmmgaTphGGHlbFRVI0mzYJwDM+E9BrR0170rZeYjRVa+7zlZkfkrf/kxO5OaAAAgAElEQVQv//J9mrq0PvonL0mpwFBlhIBUdrLtJaHQGyRcWfa5dmvER7d87uwm7A8cBj0BFHH6fWpVlbFaganJPKkiIYjQDQNdSygULBQZTEMiTrwMtO+bKOhIQsYyDSRFIUoDnGjEyB0x8lxSXWVzq0kqJ9RqBsWCjuM2kdUISzNYmDGoVfNMTzYQUsBYdUS5lEeRLKoVM4tqDUIKhZSpiTJjD/4d3vzdf8XmVoJeKFApV7hxc5lStcbk3AKClI3V5Yx2UJug1dqjVGmgF8YZnz9BqTGBrCrsrC/jtjdwooRPbrdY2dphenKKzZ0mR46eYH1jBUXJkHiqLFEoFtE0naHnoSLwg4jZRoMv//BzxEEfy8ixMHucKJaplDoUSim6rqDrEshZFZ2zTKQEEhGxuy/Y2obxSY1OLySf1+h0Yoq5HCkRfgilvEYUCWTDIAgSNMXE9cCPYoqmSmdvl2IOJsdteqMQ308xFcFuM2UYpPQcCEOFYZRQKsv024JipcjuvoSSRFTrCb2BSmTUsKQO51546b7N3X/6P//Dl6ambEZOn4m6RShSCnmTVsdHQjA9WURXBUM3RFE0uvsu5YJFzjTY3OmhKALPzT6XvCmhKIJK0UIIGS8UCDlF19NsgSagVpLQJR0Mm43NfRRZQkljYhFRDPu88q//KWLvOpE3olgqIIkYKY1p7m6wfPES+0ONn/3Pfpaot8yzTz1K5cTD5BWFCJ3AFURJwP/9//w7LHuC1994lUOH5llcmOf119/mwkdXuHLhGv/Jf/wTjDUaXLt6jRPnHsOqj1PSsm714rFT5HSVk8cPsXLzCopa4QtPneO7f/gd1tsx41WNXLFKo1LBzOd49+M7IEJ0OaVSKtLpOgiRsrbeJlRVer2I5x+aptncAsVk4ehp1rdHfPz2e3zhySN4jkerM2R36w6PPfQ4nj+i0+5hyy6nz53l4sVlNtb3+et/7ctEg01MKSRfKjLyQja3e0xO1KnVariug4hjer0Ri4vTFEyJiYrJ2aNzbOxcR4Q+w67P2HgNKY0Zr1ep5IvopgIipdkacvjoETr7+9jFEpdurhIEEdVyGUXRWd9qsb7RRlE1nDAlERKyqvALf+cX78vcXb/60UuynEWvKqqMqSTo/gg9CXD2toi8GLteQnSHtLZ2KE6V8No9kjBhv9vGlBVUSSIMAybHGlw+f5449BAq2KrCypWryCSYBYvQ61Mo1BmbmmNle0izuYJMimoVgE8bOZIkQEpJERiGgThIz01idLtAjIosskaLplsIpYiVy2EaKnfuXCMcDpmcmObUY4/RmDuEaciksvIfbBQlSYIsAnx/RBR5mJZxV+KgQAJJ4iFLKoV8mUKxRBDGpEQosgT3dm8zZHCuWOaj986jhgkiTnj8madwen12trdozMxQK5bZ29giGTiEAwc5STFllUQIUjkrhkWaIuQMOSzST7nLGf3vLm7v7nPS3QhuOQVVVu5iK7PjpJ+VagAZijrLJJSkg2zCLHVQ4iB18u57kBGJgDS9+97spwwoCQQIlDQ7xvHnv/i5zdu/EAX0pfdefcnOZQYdWdXuFknZQ4gUwzCRZQVJUpDQskIFgaFrpChoksS3/+X/QZrELK9tY1kaBUNw9NAMzZ0BseQjywmEAgnwohjPHZG4EloqKNYbxHGfSxdX+ZEfepyVW8vMTpSpFnWWm4L1pktOT6lUNGKR4oxi4jihVi1TKRfY29/m1prD9147j1FtsNV1mV08yvnLa1jWOFHk8ff+7hP0WyGaJnP5+h7NTo8Uk57vcWhmkc6gx5OPnmC/PaReylFtLOD5KrWJRQYjDzeW0AyLOPGJnQARhSThiP3NVWRFZmp8nief/SECdHpbN/no+iW2Nne5cGWdziDGEQZmvsafvvMJ67sO/cjng0/usLLd43e//fu8+tbHXL7xEZYZIokIZ+igmxWCOCKJYjpdF0mCF7/8JKvru4xGLqcOWXzrj+/wtS8eZ35ilpmZCZxgyK31XYSkstPaR5aKSLqEJmnIskIhl8c2bZI0QTNNJEXGdT1M3cDQTWRVAxlEKkCSskjOu196WZbv/f3eA+5rAb378f/2UqvfQigKzXZEcwCDkcS1jZA72y1K1XHanRGepBCEKl7kUbFTcnbK5EQZv+cxOVvF8wfEiYQuxwRIaMJB03V2t0eouk3gxHijBHcQ4Lkx3ZaDEOAmIa2uS7c/pFDV0EwDN3TI5TTsYoxp9CmVRuRsi/qYj6UUKZWGqHIBSYqxCyM0VYEkwdAlFN3HtouYZoHJSg/TaINs8c47V0mIuLO5RzBy8EnQVYOpqRkMEqQo5MKVKzhOB9MsEHguE4dPMzZ/hHyhjEBGUVU+fP9dNvd6DByPwchldX0FU1dZPPkghqww6PdQNI0oSpicmKS1t0scCyKAxOMf/NLfp2bVUdUr5HIyueIYqWqhJH1C4ZG4OkMnIiShYOkU8nVsK4+uw04zwPVAkvKIRKAJCwmDgSuxshmgqDrXtxX2vQZbvQHLzZTVzQRdU2n1UgZem+Zun9VOhG5HXLgVstVLeWRWYrU3Sb/tEQcWfmrQqMQEbowXaWx2PDwfNMNgq+XQ9yVGjkLPi/jij/+9+zZ3/8df/eWX5uo6cRqTohDHEEYJ3WGEIoeUihoDN8g0jQmsbQ2xFIVyUcJzXFxPQtUSAk/GsCGNJTRZsLPXR0gSke9RsAwqRQ3DkIGQnufhBxEjN0sl8zbWeeu3/wk/+QPHSDZvsLV+i7yl0ty9zf/1m3/AzTu3EULlySeewx11WJgd4603X2dpbonzr73CsbMPUao12N7Y5sat22zuDdBNk1/4hZ/m1q1lut0Bk41pXvjhH6E/bLG1cYedVpOf+Mmf4vd/798yXipz9coFgv4eu2u3ee/iDQp2wulTj/Hh+bd445WP+Zs/86N87701nn3kDIo6xO0OefSJk3z7e5eo1ccY7G8hEGw2R4yiCDeJSYROLS+w0hGT9Qpxforf/c4n5PIazqBLq+9waMJifKzKiRMn2Vy7Td6CjTurTB86xa3bt1lr+RydVui12/zM3/gG7e1P6HcD7GIdM6eRyjrXb61TyNtousX0dJnt9XUKtsVgMCQJ+8wdfpAoGBHHPsXiON39Lqac0u02WV/z6To+09NFbiyvUyyX2d3eRlZT8naObq/P+HQNU5aYnlvg1p0V5mZnSdOUZrPPL/7Sf39f5u7G5Y9eyigcGoosIUU9Rs1lvHYTo5hHUyW0nEWhUiBwB0SxYHphnrWNNTzhUSgV2NjdpD49xofvX+DBB89hWQYnnvlhNls9dH/IpY8/4fjp04R3Y7r9yGfx8DGKxXEC3yNNPOIoxrBM4lQg82nN8lkEayqlJEl8N31Px86VMkMtAllRacwucuyBR5Fin4Xjxxg/egLNMkgBibv6XSAVKbKsIhJBGg8YDbvIURc/HLG/cxtIyOUsAm+ASLIubrPbYX5+ln5rG1WSkCQlw5kmCYpiYxVqWTiJ8PDdkFw+j2IblKpVes19Etdh0G6TUzVCSZBoMoqhEikKbhqzeOo4h48fxSrmUU2dgR8Qp5mhL5YSorvNziSOkVSZME2IpBS7VKAxPcnY1Ax2qYCXhLixjy7rRFGMoipZGJOUhakIibsYP4nonowjyc7P3Q60LJMZDGXumQwhzc6/nCKn2RmFlOPP/+DnNm//Qkg4DrYfDrZkDiDcB13GA63zvRN1VzAvBJAmqKR85csvsrGxRhSnxElEwVbxPIckFZh2Dtv4FHtnGhKKpJLL2UzPjBP5PmNjY/hRQiKpzM7OcuTIERRFIQolZFln0I9p7gQkUYwspeiagpymWLrBaOQRpTL1iRqrm7v4ocQbb18AAUk6wIsSUnOc557/EnEwAuFSLlWRVJVQyNxY3eLSzR3Of3IFxxni+C5eGJAv5rh6/QqxiFB1jTiFcNBGFhEkgk53RLs/QrdMzp47yajfo1gooBk5Dh86zmAUcO6Rp9lqdRibmmOv0yNBY21rh/WtDrvtEZ9cvsbjTz5PtTbLAw89h52bZryRo14vcGt5m6HrMBr5lCpFVE1BB/qdHlGqY9lF8jqceOBppuanaDZbjIZONsFFiqHpRFGUuaN1HdM0yeVyaFrWRS7mbQxNo1jK36NwyDLfh7aDT1E2n9U7H8g/7vfwQw9JeJA4aHpmJjM0GSkNUaSEYilkfMJjtq4w29Cp5mFiXKI+JqMpEpVqniTO1sq6EqLJEY63S4rPyG0j0jDTBg/7hGGGU+p2enhBjOdHhKGLJIlM0qTJgCCJQwxdxZBVDF0QRD1k1UfTBZoR3v1eCSRZZHHL+EiSi2bvosg+aSKhq4AaouUFG3deYX6qSqM+Tb2UY26sShJF2PkckOGHwjiiWCyj3N1SHIwcWvv7BJ8JXPCCCKtQJhQSlmVRLRcxTZNOp4Nt6rTbe/fwS+VyFcuykSX13s3I8yI0y2a7OWCvCc5Q4Act4nCfEXlEqoMuCBIYuRL9oSAB/FDB8TQkBXRd4ujSSabHj1EvHUOW8+z1BB0H+qFE15HpexL9Idh5Az9S2RtY9ENBd2TjSirXbyUEsYSMTRRCsWDx4NkHsvQ3Q0GJNfASnAEoWkxOk0nSEC/ws2sYOcIowRneX4KMoWTOfl2RSWJBmkqkQsK0VOycTpxEiDREUzLcYZKkjJwA1wso5HXiJLiLFBPEsSAVEnGU3JVw8GnYUSqTxClRFGUx7UCqyMRRwNt/8M+RequM9rZZXV2l0Whg5XPcXN5hYekwh44ssrCwwG/8xm+wu9fixs1rhInJ2x9+hGnpvPXW23hu9r2Ym11AyCrd4ZDv/OH3iGIYDB1a3S7f+r1vMjE9jmYaPProI4TDHocPzdF48BzOYMgXvvSDPPT4o8RCYXVlg2996zvU6hOA4Orla+QNGcuSaO7uUyrKxEEPTZVIiAhCQNVIUoleNyT0sp3SpaUloijKwiZu3WasptNqDalWSnS7Xf6/V66haSVWt4dcurFG5DvM1SSCYJ2f+Rs/j0jgoYd/kGLN4h//w3/BM4+f5X/5tV+mnFMo2AbLt7ewbZWtvS67rTbrG1vMzs8RRBKxSCk3Cty5dRFDUzh9+gF295skSUJvMOT48RP8/H/xNSqVPEEIuYLN5vY2hVKVSrmKYRgkCTR39yiXyzjuEFmC/U4LP3Apla37Nm8VTQVFJVVUIqGS+CHCd1FVnSCIUS0L3w/Z73ZoTE8SBZn87OixYyzNLhIHMU88+gSmYvD8C1/i5dff4PL1G1y9epVTx0+RKhpPf+F5Nra2cVyPSiFP4o/48N1X8bwhlXKefM4iTRMC3//3QsEOxkHNoigakqRg2pkn4kC7DVlnVVYVihMTBCIkCLzvCwr7DyFc0zTNYAhuFzUaUrQ0En+Es79LSpJhfzWLh554mhtXrwGQ3JVTgUDRbbwgxBn2cIZd5g8vkS+XCOKIjeU7LF+9jqXpBF4Iskoiy8SajBeHpLrCM1/6AksnjvHB5Qu8+cprbK2s0W22SIMAU5axFAVb1sipBoaQsDQdLYEcKpas4fdHNNe3uPTJBe4sL1OwcxxZOkR+rIJezuHEIcgZVu8gyvuz6Lp7Eo0/c64PRkIWRy4+Q9w4qCE+b+P2XwgKhx+4IKWEoU+pWkESn3KgNU0jjmOCILirw/My7ScaiUjBG/Brv/6PcTpNPN9lrF5CTn1MAjRVzm7CCMarJTodl0RApVDAHblMTJSwLZVhr8nadkS3D+39Hp7nUS6XMZQQRR1i2RJj9QKGFpAmYBRUXDfAsqws1UizyRcLXF9v0vcESAEhsDBeJE4GFPISf/zmDsOVFaYbBbo9mR/92tf5vW//BkPHJ41lVMXg6u0WTz58jmKxSKFSQcg5xmtV7qxucPzMo0iygeM7CBOEajK2dI7ZxSVWLr3D5avXMOwSh/UccSzz3odvcfnGCj0xwTC0uHDlDp3uCEVRGQ5H1CemUHIhTpzwW9/8Y0wVJOUoctzhxWce4U9eeYvnnz/J1ZV1akWbdj+m203Yu7POQ6fm+eZbHTZ3ejxxdoy//yv/gv/0bz7PYnUaIcWMJQrDYcjs9CSO2yVSZCzdIgZKxRJCCMycja6ZdHpdYgGlUgErlydJU4IovpdIJ39G63TwO3DvgnK/h5PuMTbuIhGRqmXG1CKmKZiYrNJq6mhpxJH5BkVLQlcr+IGCle9Tqyq4PQs916Hb7eH7DrqxS7VUZHV9iD2Xx87XGJ88RL+fMjc3RRor6EoXZB2iIpZhEgnnLj85QrVkpCQlpynYhiBvSRSLBkF8FzKfSJg5H0hR9CFh4BM5Evmci6TGJMkoI4CIPYQkQJaJ/B4TJcHCV77K//rLv4fbvsXS4RPYukm704Pl60jAaNijNtYgCqt0um0k1SBXrFIbn0JI2facYlisbLXYaXUQYQSS4OixE0xPTXD18nn2WjtIkkyvN6A0V6Pd6SGrKlIqyFk2/9Xf+i8ZBCk3bjXJM0Ovd40XnitRNctc3EpRRA/ZHuEnsLefklNVIsln0DEJQhkVi1pBo9e6RTCKyJUOEyQqQ09mKAzWNwIIdYxCymLN4NBcmeVgl97Axi4NWVvxmJyRkAqw2fOQpSojRSexTV7+47cpWFDJD+nth6z2oB+U0fI9pABiVSNMZGwrRxzFaKaGIt/fJMJirkLfcQCB73kga+imgaYm5HMqxYKOpCh4Q4EqK5Aq+DE4XsT0hMnAy270uRwEfoSRkzFNm0iSCJEx0JGklMHQZ+h41MtS1mFSYsaUEb/9P/0inQ++Q6lUYm+vy+p2Gzf20ba3GTkag2GfUiHh9Ze/x4kzDyI0i1xO453zd3jy0UX+2k//JGDjDzy63X0GXsDU9DTtdpux8Vlef+NVnnnmaZaX32J2bpparYw1O8761hoT42Vmp+qwuc7RpUWoV1h9+x18X8YPJNxRiJUPqY+XiTyXRj7kysUP0WSDpx8/haS4lHI2e+02ZxfnGI6GjE3UKAcpo+GASDK4cW2ZH3ligsnpGdrti3S7YOiZTEhEKbsi5d9881WOnqmzNohYSi2Onprnt7+7ysb6r/GNH/tL/OEffZd6o8ZP/PVH2Fjf5/U/fYkjsyfYbHtsFRVy5Qobuz0IBKVijr39AZIImJ5eYHPX5S/90BOsr7bY7vQ5deY4v/Nv3mVxUSdB4803XsV1R7Q70BhXUVIoVSe4cPFjul04dWoKgMvXbmHaKo88fJZPLl4nX8jTHwzv27yVdZMUgSpJWLpKd6eNM9hHxsKu5ijV6rjuiGq9jusOmRqf4dqVq0zOjEOUsLffoVyr4zge3v4ez734Ih+89R5nDx8hNTWsuUWmpiaxvIhQpOz2QxQzx/zUFKaeMBq1CSKJ8alDhGmMLBJQ1E8NbQf/570gsASQSVIJRTMwNZnAzQzElpV5kI489AjDbpdSqUAs5Hvpyp893sF9MEkSGmNlBrdvEnhtzHyDvKQw2t9BnzhMuVZHt6rgBZimSZIExHGMIqsIkTA2PcNgbY16rcT+XsjA81FzGjmpQNwdZt6GICA3UUczDcYnJuhsbrO7vQNewod//BpJklDxIdKg1migGTq5Qo4kjAjDkGazybDXJ07v6qEB4gQlAYXMaCgbOpIEvb09unsJociQc5amMjs/j+/7tHab92rBA5mKlGYNNEVV7i1cDoQuB68TEqSpQJaUeyi7FPkeqeNzm4uf69H+nCNNE1x3hCSn9yKcDwyCB9pXgDgOiaLgUyE9MgVb5fFHzzIzXSOME+K73bdiwaa510ZRdSQR0+/1mZmZQdM0xhoV8vkcvV6HTqdHsVImCgW1KuTtHFNTU/ccrJqmkQgfw5QQaYQqK2iqjKEpeJ5HEEcU7AJj1QLDoYMimwxHAUggGTA5VkNG5q033qNeqRDHIfujhHK5hjdyKJULBGGELBkMnZT+oEd/6GWdk3YPSTE5fOxkFsFdLFCfnGfkBwRRhBApimHjBgKzWKHdbhGGLsgK3U4HRVJpdYfIusn65i6qqtHtDwnjFCcYoBoSQ9fFKoATw0cXbpIv1/jo4lVGbky/28EdeWzt9LPcBAWiMEVXUpzRkNurPkns0etAHKkEUUQYJwz7fYIgwHGcbLdAZF0pyzKQZDBNk4KdI4x8TNOkWq0SxQFhmJkmDmDqB6tOTdPuwdU/azA8+Hk/x9Bx0CyJWIogjVC1Lpo+opw3mZspk7d0CrpFISeQ0iGNeglZ0vGCTCMWJSNULc3mjgJIAY3qNJato6gCw5TQdOkuDk6i3ihRrJiY+ZR8WaY6ViRXUsmVZCpVm0JRR1NjNDXFMjPHseeD647w3IBUckmJiUUf128SxAlJmsWzylKJwE9JlYAwGhHHKlGkoaKBIRg5Xb76ted5/NGz2YVdlkhFTKlUwLRsPM+jWCwDkCJz5twDKIpCmMSEcYRp2MzNLVAqFClWK2imzeLiEgDucMC5s6fxfZ98rkgsEqycTbVeJ00TioUC5WqNdm/E5l6LlmMwCqts7Zksr0Y89QNfpZhbYGM7xg0yuX0uV8TQc+i6Tr3awFTzTI/NoMkx81NjNOplBv0RjXoVKY1IYqjXTIa9Fr7r0dnZoVGA8WqB6coUjbKNqVrkCyX8EJBU+r6CmwSYlkxOg4UFg4kJg1EAXuASxhKxZKBiEAcCQ7VQVIc49JHF/U0i1DSNMJIIhYTvR/e6/6omYxs6hmFgmyamoSHJd7dFJYUwjrF0CUPL3O62deBRkEiJ7xYSCbquIskpXhARi4RUlggiCS1N+Gd//29jDrZwRx6dXszLb7yLn1rIikmvO2Bvf4/XXr2OaZr8+F/5Gm+88SqIhLXVLb7xjR9jfnaGD958l9H+PmalzMnTp7h+7SqWCpVijhtXb/D4I4/z+qsvM1avsHLnOjdvXKNRG6PXHWLmKoxNTNHq9Dn6xOP429tYho5tm3zly1+mUi/S2t/Ftk0mx8f4uZ/6cQ7PHeO55x5n+doyRirwXQdTMxkMuySJYGtzm257B8tQGA4GIEEul8P3QkqVGoYBUQQTY1WEyCLQExle/NJTnD19BCGp6IU8E7NHePDsMW5euYVtg+/EfPs7H9LsSxj5Kjdu3GB3Z4skSuj3OiRRBMh0OiP2e33OPXSO3fY+Q0fmu3/0CsvLNzF1hT/4f99lYdFk4dBRVte3qFfGOHP2BMeOz1Orj6NqJrdvr3D2zAM88sghkiRhr9lhdn6CM2fO0GlndJCJxji1WuO+zdsoBVUGTY5xe7t4oy4JKWPT44xPTzLo9dE0Dc9xCYOAXm/Aww8/zHA4ZK/VYunQIXL5PJVqlfn5eaZnF/nCCy/ywXtv095rohTyrDVboOuUag1UK4dVqOB7Ee5wQOBm9K6Pz39ImggiP7hX6P5ZzfJB4ydLDTQwDANV1e/5feI4zkKzbJtivU6YiHvBVAdx3AeF80E9lCQZj7rT3sUd9Ai9EZ3mFp3mBsQRw0GP/fYeO5tbWW6CoUMqEQsZzbDY2dpCkyV2d3fRLZvFxUNZEF0cMDk5yZHjx5Bsg2u3bnLy1Ck+/PBDOnstTFVDFik9EVCem+T0E49Qa9S5vnyTi5cv8f75D3nn/fe4cOkig9EQM2dz7sEHWDpymCCJCdIESVHuhtHcTRFMQUIgxSIrqmOBkqRsrq3T73RpNBqMj49/2n2XJAQpsqp8X1f5s3WARKax1pRPa8jPNt4+z/EXooDWNI3RaEQURYxGA6IouocziaLo3ms+qy1KkpQoDvnd3/qXnH/3ZUbDLQpFDVWTCTwHVdfwwixGWfIjDi1Os93cA0XGUCRmpxssLkxlgRWpiiQbHDlcRkqiexISx3GIApnNDZfAhzSxMDSNXsejmDfRbBvJNFA1iNw96rUKruujqwaaobO65dPc6XB4ocSRmQpFHYIEvvUnn3Dx0g0kkTLY61O0bRRJRbdsXNelVp/kjTfeR1JMDKuKapTpjRx6gy5761vIbhPRXyPpruM6AZpVpzq2xNz8FMu3r2EXbF744rMYikyt2iBFxVQ1hgOHWAgmagUK+ZTZ2TrnzhzDsvNMz03Qd+CTS+vsdARDB44uHUIECUkC/aGDAKxig8nJCSqGilCgNl7jq1+a4Vu/+T3aw07WJY5DNjbX2FhbpZjLI8sypXyB8fFxLMtCkrPEs3IhY3J22nt3P3OX4aiP53n3Pv/Ppip9toBWVfXe436OJC7Q68ls7sm02h3KpTaW3cXrBGh0GR9rY9u7IHv48ZDecEQsUgajgN3BdYKwR6GcMj+3BOlhAk/nyMISpWKW0BdFPpom36PP6JZOvlRmanYCq6CiaClm0cMq+chGgFUE3UxI8AjTJt2BhxOoNPeu0W6t0evfoNXepNO/Q99ZZXltm0GQsrLZotuTs9e7JqGfw/ECYqEQiknweuzvr/HY13+IVPeQVRnLMBkfa2RGj7tmT5ECkkSQpGzt7JGIlCjJOJ+6YVOvVrAtnem5w5x++EmOHzvJRGMMU4Ner8NTTz1FLlcgDGNURafb7fP1r3+dcqGI58cM/Zh+MuLD5T5r3Qr/7N92+D9fHrB3o0XsT2KbJ4jTCkuHLUzdQBIykxN5Jht1qlqdQ+OHEIMGeljmo/du8cip5ynrFY7PTGMhsTDpcXKhhGvUOHz0h5ianGdipkJrW8YuRaxsOOxt9Om2KvQHOvFwRF7u8iPPHecnvjJPpRRw9sESM2MFvvrcFKW4gqYmeM4AXR/R7zSZmPGQ04izR+5vAS3pKq1RQt9JGQ19XNcnjgWGqqJIGeM7CgUT4xWiYARSxuIPY5CThHzBIE0T8gUNw1RI8RGpTxBk3bVSqUSSJIShQFE0kFRSbJztLWruNtVcmUiucmdlm5ljT3JptQ9Sjm6rzwMPzvGDzx5j7dYOH5x/j7NnjjBezbPXcnjoocMcnZtFCJOd5i5Xzr+N73F7a3IAACAASURBVPvMTk/y1LkjLI7nGa/XcPp9mtt7/PhXX+CxB05ydHaOxaXD/MRP/+fotWmarQGNI6cIux1ix+f0icO89idX2Vi5xTd+8W/xsz//Uxw7foQ4cthceZ+iPc1otM5oX6AKOLlk02sPKdgyY5UaxxanWZqrkrey1MaF2Qn6/T4j16HVGXD48AKWBUmcyZryuoGkgdbvcbjiIZwudk7jkxurpInHjau3efDoHF94fonVpsprV9e4ueVx5PQj2PkcUxMVRJDw+Nmj2Q6BKjM7t8Sb73zCxMwcu70tlo48yMANEHGPJx6aIQxDXnn9Mo7ns3xjlevXrxHGHpevbBELCJOYa9du0u8NaTabRFFGHWk1m9SqJXK2zdbWDt32fUQwqgax18drbdK6cx5DTTh85gGkvIqkSyB8fM/BHzmEQwdDtxgOHXRJAU1BLdhcvHWdve4+SRBy5co1HE1j4eQCjaKOZuXJT0yQK9fxQ0HJkomHe5TUjEEsC9hvdWnUC+xsrxOHwfcVugdDkiQUWb3HncjMdZmZ7kDOqKoqIgqJvQBF0whDvq95CNw79kF3NY5jPMeHVEdIJt3OHusrN5hulBl1OrR3ttDkgHzOvEfdMO0is7OLJLGMlITkLYXa+ASylWd7cwvT1LEsg+t3lqnMTNBPAqZKDd79w1eoRhq1xTmMSomWM8QMU/qr2yx/cIGwM6AgaZRVkwIyNcOiKKtofkLcHXLr40s0l1exFA0lhdkjS1Qmx0gNFU2SkdKseFZkiNOYKAkRJKgCoiBkf3+fdrtNmqbYto1ZymMU8wRpcu9cR1F0LxlTCIGaZhJSJeWeBOZgHDRjP7ep+Lke7c85ZMUgGI1w9T6GVkSxlWzFFKUoeqafAxAoBAkgUmxdYeB2yQuXEwsVXr0kiEMHVZawVBj5Hp0uqIZH3lRw3BQ/SbFklcgP0CydQaeFp/eRJFjd8ChXTJxhl05/nVrxSfqORZS66BIMo5TEcSnNN8iVFGTVJBgNyRcK3NpoESUyjYLFMBQkyCyUZ7l5+xobfdgPBoxX8zzyw/8Rv//SP+CvfuU0OVXh5PFD3L5zm4EzQolTTj60RGVyCU/ozEyXcYdt9vf30HQFt7WBrikkqkXktGlurXPn2gWOHD5BYfIQ+519KvkGqrOLrEqMRoLZmWnefW0FNd8gNQWmVKOcC/DdPo8tfQMv/pBbV9pMFGRyOYk76zDwTbY2B+RtmZ3ddVLZQlED9Fhg2Bq7/V1m5+YQxKi6ztvnV/lvfuZFphZmkBMJ3/WYnJih3XWRVZUoTZEKdfScQc4ukrOzbd7hsI/jOMzNTBHHMbudAa7r33Xg+ohYQZUlJElFiAx7d7D98tmFlLjPNDs1tdjfH9F3NKZNC5KQRAbBDVJ1nL6zR07X0bUGceJg5yYo2Qp3NppIepXOcIhtq2hSlVTSUNUqSbyKYVmYRgHHyZCKplLGU7PwC11SkEjuBrBEpEkMsUl3b0DOLqJpCYoa4PsyRl7F76u4ySytfptZRUaRBJ7QiRIT24Q46VGp6Ozup+TtGmHkEIshydDAKrZIkxTnqk5dHzD0VeYXJpBlDTnsUDaqdPouqQRHl46gSLCyrlIoT7Bw6CRJkpKEIamqYtk6ZnmW0w8pkKr4fo8r166ys7nOQ6dPsNXcpTIxzs2VTWQhsbvX4tDh43TaA1w/ou8MkFSFNM7jJ018H6ozdVI54g8ubvLI4gwVYWNoR6mXNBz/FhPTD+EOmnidPk4/Yu/2NrduNBF+kenJKUY7PU4ceZq1nY/5+vMyWq6JolV4+R2fSmnA8uYMc1M+zJYh10SOdVJRQ+4HLIzLtL0ASTF4/+MrfOVZqBgy7VGPR04oTM+1eO+iycn5HCcXVayowYVLO7hejyNTQ06cuL9zNxIRQSAhpQZCuOieINQ8NAn6iY4iQyUnSITLYCQhixjkAAUNSTax9IhUS7CMFKWckkQWkqoiZIFIJQI/RktNwnREGsaEokSxqvP7v/oL9Favc+Pah1y4vMUohI31K1SnF/je62/ywjOncIOQo0en8dwO5eo4M3M1Xn9jmfVmm5oR0vTb+JHNflfm/Hvv8sKLX+T999/mwtUV1jY2mRif5MjRCeYnaly6eB5D17h1+yYTFz4g1G1Sv8/2zianNYuZpVk2b19BihV+4IXDzJ44xY1v/w6mkcMmpjJzhNnjNt/89nuc/zjgv/7ph/nOt36Hx2fgC4+e4o/e2KVeTHjr8hayrmOrMo+dOY403EY1G2zsDRBezI3rqxyZs6gVy7S2d6mP1/HDEq3hNl88fYJm4QTf/K1f5dnHTlIozpLXbzBTN9jd3eWFL53kjT+9AnkFy7IxJJnVvX0sHfx+k+OLJbaae4zXyty6fZv9/X3mx8col23OnVykmC9x4cYm/8Pf/Tle+kf/nJ1udg35yg8+wOa2A0Jip7XHRLWIpSR4wwEDF6r1IlGaw9bA830WFyb44KNLRIp93+at3F6h27qNbQhmpisk4QjfaUMcEaQGsmSS0xNipYSkmplcrGyTKCqkPhtrK0w0JrEUGdHvU9JkilaFXNlmdWsDzcghpzI7G1vZbmi5QsEsMhi0GKvW6Pe7VAvjyJqGWWwgRIacSwUoKtli8WBIKQd5YHIiIVKQyWSpsqyRpp+5n0UpmpaSpILMK6+ABKoskNMsClukWX0ji5CTZ45z4+M38IYjTh6bY3VlGb0myCk+bk9FU0HRa5SMPO2egxACy9YZRT5xquF0usgKRIFDqsLCmaPsrG/zwSuvU9cNAinm0MNn6TpD2tdWUJGoWXnUNFMFJEmCIitESZYaKDTtngY7DSNSQJCS3i1uFUVhc2U9+13XGDsyw6g/oL/fIQ4jZJGlEyYiRahZ3HeaxCiAkFJcd0Ti+KiqSr5Uh1TgDkckSChKhs+TUshwHjIJUkZGSdN7wIHPe/yFoHDcufnBS/vtJrEQqIaBnS+iGQZJmhlPDgT3QiQkYUAiJMIoIReECP86a6se3ahDFCgoUsLSpIWiG2w3fcplC0uNGflZuprnDKmXMs7mY48+Qj5n0xo49HpDpidyjOV0iiWbWnWWSr3Ov3vtPTyhUSzbOD0fJ3RQzTz7nRGKlqM/cFENHVWXQSTML86QM2QCxyeVJEy7RK1Wo9MZ8Nab76JrKpWijaKqTE1OsXh4EdVyKdgqFUPi2Sd+mDsr1xBqgX4o06iVufTBG7z63d9j0G1RLea4cfkSg36XQrFCqNiMzx+mWKnjDIeYpkHJkli5cZXZxSX2eh6RgPHSGI+eeYrWVp+CYdEZ7fPJx7cJ3IjFuTo7zX1ajiCMBXEQ8tADpylY4LgedqFAkmTGTVXEzE6UuXK7SSgkiuUC8WiFNPWYHptF01VGXkhjfJLmvoOZL6MVaqiqQi5XolAoMhj0760Yu90u29vbaKZNsVgkXyiQy+exbfveahvpUwD8Z7eyIAOl/9jXvnbfSAajK//6JdtW0ZU8v/lmzLn5PHtbKlIupTtsU63niVKfNIqIY4lm/w6q0KmU8txaXmVyymK/20XQJZH28dMultUh8FUSKeN7SgroWhkwiAKI4wFh3MM0VUaOhxBhRqxJIIpiTEshShLixMePVomSgChRCX0fL3AIpCKdpkUcKExO1gmDDWxb4AYelpUSBX3i2EFTqiSJR6J4SPIszzx/CnvuS0jRgO++fI1zJ5bIGRqKrFKp1zDTkLU7t1k69yTPv/ijFGvj6GbGS84WQCFua5vd1WvsbW0Rxz45XWF+agJVSTE1mdAbsrC0QCIEQXCwE+Vh2Tmm5g8zGGUdzvp0BaugYuZMJFVi1B1we6eLotVo90Oq9TGiXsDc1BJ7myvUChVePr/OTtthrDFOux+w3fEQco3ZpUdYmDsGmJSKARBz9fIaJxcqlPJP4w48fCemWGxTsQ0MZYYXfuAsXnANAhg3JYaRz8R4wKCXsrYWcu6cT54ZhGQwVtLJK+cwtAaKojM7K0g8j8AxOPaF/+6+zd1f+/VfeSkIfEhTwihG00zMQoHOyKfZ6VEvW+QNnaHTo7nvMgwULFshb0nMjWukSszmpqCYU5mdtJEkDTdKSeIEw9CI4gRSGPkBcSph6/Arf/vnUFrLjNcbXLqxTqoZtAZ9hv0hp4/OUSvneP+DC+RzOR54YAnXc5HVMlES8MknNzl1+gTNdpNnX/wyllXi44vXOHn6FAvzUxiGyXA44tjxozz88BlmZ6oEjk8YeiwuLqLrBoqicOL0KT54522+8qNfRfF64A547613OHXyEKlSYfnKbWw9QdMlKo0SaTLk3ffOo+SfYmf3JqIfM9GYZKul8PG1XYZhgJQo7Gw7nDo0j6mDREzg7GOZCjMzDS7d3gNdZrpRor+3xZkzp9nvtBi5MRttl6eef5RP3n6NZ59+nHeve1y/epFnn5nnyqVbfPjOiL/61WlMxWHPUfjT967RGoZYBnztq1+moIYZwzxv0W3vMDY1w/5+B1nRSeKEc6fPcPP6RcZqJf5/7t40xrL0Pu/7nf2cu6+1711d1dtMd8/Wsy8cUpRIUaQpWYmlOJYlyI4DG4mBIIiQfCAQJ0EEGQmcRUYiG9QSSaQMSqRISqSG4gyHM8OZ7ll6eqvuru7aq+6tu9979jUfTnVz6OhDBFBowS9wUMut5dx73nPf9/2/z/P83nzrPcbHi0xOwJ1NB1WMyWgq3aHFcOQQBR56PkulVuP48jwZTTqS4iUMeiP6gxGaphMLEf/0v/y1B5PC8e4ffKFWVkkiByEOCAIPz3NQRZ2RZaNmVGzXYzSwaOzuUy1U6I66+K7NXG2C2ek5NN1gMBygiDKddocoilm7dp3pqQm6/T6FYpEwiSmWCgy7PURRIhJ1VFVhZ2+HVrPPxOQ4rh+QCCGJKKNrOkjy/0ePe98Mf1ShliQJgR9CQdId7/h+VFsUR0f63TTOTZBVkGScICIMQjyriRjabKx9SDmv0R8MCRyfnY098tEIMRwhZbKEYYKLip4pki0U6Pf7WJaJLEkIQkov9H2XUw+fxbVs9nb28UY2juPy6X/0q3z49g/wD/sMN/Y4gtliuy56pUhxvMZDjz1CbWYSX0gQDZVRr0ccRoS+zzBwCaIQN4mwAg8nDkhEgan6GCdPnSRfyLPb2GVkjgjDgGK5iBMGRHGMmICWCIjRUXpGAhzF2SUIhFGE73n4nkMcheiqgqHpaIYOAoRhlMYIiiJJ8pGs6COd+vHnX/yx9du/FRXoNAAcHNcCIe1IKUFPv/84cLRqE4mJcZ0Raz/4PrJo0e65aIqILcnook9OV2gOPbJZCH0ftazSt1M5QEbXieMY27JwHIdMJofjeBgajFVKBEGEgYwb+Nj9kFgAPwy5ebPDdFHAsiGKTHK5HHt7bbJZlbwms7fVw3FAbXZRNQHbVbFHAaV6AQWBarVGFATksgajQQfd0Gi2Gmxe2mVldYzAi8lmM9xYu4JsGBy0h7z4yZfoNDYQYpdKuUAsJNy4eiXdhkhEYlFhYWGJOJHIFSvcvvohYmITWT7HlhbI1qY52P06s8cf4t33b3Gwb/PIEy9wY+0HCGGfog6FXJ69g31GowhBkLB9j8lanksfXOWnXngIkpBWa0g2myUMQ/wgIYoSMir0nJD9wxG1Z49z9uQsrf0Bda2KJEmMTDM1gcoaKArC0Uq8223T7w9RlJSyNDk5iSzL7B92EEQZu9vFyBfQNI1cLpeaR+8H5v/QTHBvAv6gjYSiaCJLLuNjeRTBh1ijb8ZMLs/S3V3DNJN0m84NsU0RMwS5GmLoMZaXhu93ug5B7CCKYGRyGL7PaDBAz2qocp4EAdcz8ewQWczh+j6ZnITr+kco0whFClHVzJHRcohju0hyTCJayHJInKQTHtcHK47xXYupCQ3P81Kdf5iQyeSIjwL44yjGdj0832FsqkS26LO5eYfp432MMEHRdILAQ9IzlAoZAkkjGg3J53QeufAsmfIkkqIBYprukESIkoiQRIhCxNLsJHe3NyhP1kiSAEPJQuTi2Q5SFDIzNc7c/CLXrt3ANHvo2SK+H+LYHplilo2dG8hKQi5fSgf4CO7sNPF9lcAeYPkOz6/M09jtoMQx4XDIoD+iG0UMRzaJaBBLOm7cYq4zojfyEIQcheIxXK/PMxfqZPUig1ClNnackXOXgnEKJ7B5+cWXyeRkciUJkS0yRszC1ABFgShqc+rEIu7QJJd5jrNncwhewumHn2Zt7UMy9SkKucfRlSat4WsPtO/e8xzEcUyElPa9bJGW6RInEmEEg5GNoMTIEiSigCQnyAoIYoyuCamULojRlJhsRmPkRynFUM/hh2kVOqXyBpi9Qx6aGUczXf7gt/4tP/P5v8u/+s3/jYnpRWqnTnBz7SrmsMOj5x9hYXka1044bFksrZR4//KbaIaOLKVI8K2bdxlaPi9+7BP8zhf/DcWcgqqq9HttTp86Sa1S5Ovf+H3mJ49TrVbodDrc3djmxIkT6Pkc+7vbbN26Tj2XZWg6ZI0c21t3eeXb7zI/PsXs+BwbGxuY9hi6OETVsvz6v/09NtdNdo9t8c/+858lvNElQkcUImbm59ByOo7pgCpx2Drg4eUpet02h4eHZDIGvXb6PlpSZFRNxrFGPHnhRf7kz7/NF7/yXV46PUuxlMNzbGQ9i+0HxIbIr/8fv0xB9njtjXXs0ZBsTmWz4aNWZb7429/khUer3NnocPbcMcaqOb5/aZ0nn3qSW7fWubuxgyYJiIKMH4U4bp/nHn+O27dvcnJlnuvXtvjYizWKuQytTo+JiTFa3Q693oDV5UVajX0mZxZo7DcpFkuIoojtOoSjByc/il0HL1QInYAggjBMkKQcgR+S0TVQJMrZGoHtU9AMspksnuuTrVQY9Ac4fkx5vM7Y+CTuaIgkJDS27jKzvIo1GGJoKoamYNkOo9GAQi6L49hkqlM4jsNYtUZtfAHHd7E8l6IqoYgR5qhDoTzxV8JP7skP7913ivTDYlCaDsYPf0dMf8cPbARZQkogEQSSJCaOXcQkJgg85ubm2L17hbH6BLIQc5hps7e9wer5hxmfmsa0PEwE9GyOjY0NJifHKZfztJuHJEl6HtPTU9y4cgUhFDEyGRBlPv8P/x5//Jv/moqawUpC/LyKN7L4iZ/+DEmS8MYbb3D7xho7G5sIR89JkiRUWbmfkqEkypEEMUDSlPvyll6vR7ffw/M8Ihlq5VSH3u/3ccMIIU6whyMCEZIwRkxSA3oUpakaQRQgynIKSRFJISlRjOM4JAKoqkqhUEhpoGFIEKTXIpV6Cj+SCvXjaH8rKtBvvfbKF1RZQJAkZD1LtTae5iAKUso9v+8+TbcKwtCnvX6RD773p7z14W2afYsk8glCFSKHU8dmuLLepFqt4dsjpqfLbByMKBoqrYbNymKdnKFSq9V45+IlsvkiT194hFwG5mePISQW+dIk7e6A19+7A4JO3ggRA0ik1Dl7eGgxM5WnUs4T2iYXHl2lXoGzq+NUcjL7e0OmJ/O4jk1GgaIhISUjIq/HysIMg36bg0aHalFCDTwMQaJWl9hr9SiPzfHkS5/FDRP6h/uY5ggtW6Q+fYxMeQI/BDtIuHXrDmtr1xgORlSKJXzHxw8DOu0DNja3mBib4Pb6dcIw4dTZp2gP93n9vcvUpyYZtTaplYvksjKtroPpJuiGTrWUR0hsJutlZEIiQaI/snDdAFVVkBKBpbkqQRIxdBJMJ8Yf9Vic0Gm2+5BAmIgMTYut/S6WG5JoeeKjNwrbto9ieFxM02RtbQ1ZlllaWk63b8IA1/VxPQ/HOSIgxvGPGCo+6kYWEvj8A8yB3rz4a18QNJc4NlmpKTj49MKAK5cbnDqR52DXRNclqqVx2k2Pw4GPlIxIkoQfrLsQJTihjOln2N736Y0S8hmJ3shD1QwGAxvdyCEJOrKkYA9dsnmNTEYj8lUQE4yMTBjbaGoeSY5x/R6KmkJZ4niXOAnpDVK5kSxkcXydsYmQal3h9t1DqpVxXFfBtAs4roiRVRmZDoIkkMnkyEjL7DVuo4pj1E59jP1rV1nfizASi7whk0QRuYyOkTGQ9DyTp59H1LIkvo1IRHAkvYmigHwmR7/TQA8dxseK4FtkNYXAc9NQ/cAkkmUEUeHV736P5198kZu3buEFHsV6gfmlGe5sXGV6qs6w10UWVWRR4dat22QKOWJ0+pbP2tYOS0sP881v/xmTOYHW/iHXujGOIHNrv0/HiTETg0TSIVNmYIWMTy8wNvUc+fFniONVFO0YPS9haKvYFJCVx8nmL3B1q8HmnZDWsIrnV/jgusuxhUep1p6jVHiUbG6JSvnjNNoB+wOXYm6Zu80upcllOrZBf5TB9CPmpj7GxMM/vmrIX7f9+m/8iy/cAxXIsspErUKtVqUxGOIHPrIg0enbFIo6vhdgOxGlgkomp1IpGmiywH7TRhBExmsSulZC0WSIIzK6jGn7CIqO5dqUCjne/saXka0B3e11FFXG7Xd4+olTbG/cojc0Gbkxp1YWqZYU7q7fotWNOexarN3ZwQ0CnnvhYzz90vOsHl+lVC7Qb7e4u3OI64745D/+FaJWi/Nnz/DwmZP82Te+yXi9QMEoMjM3h6qqLCwsIQjQbuyTy2bQJJg8cQrJt+i3W4hihCSrPHF+hWLZ4NjSKlfe/5BEcPny19a43HT51AsnyGfaHDR3WNvvYoYa5eoUjt3hhQvH2N5v0Rqk0ApNCJDVAv3hkDsbQ1ZWZ8nrCrqS0NzfJqsrrF2+zuKJZf7wT+7wP/y3/5Tf+9MvU8uX+dI3bvP3fvFn+epfvMcH6y02dw+5fmOfT336k3z7uzep1PP0+y75cgZdValWMozV8oiJw8/+zMd5483XuXxjyLmzy1hexBtv7TA9P8Wv/MOfo9vp0m2PWJqvs727T7ffQ5ISVD2DaVoUylW6XRPiiLnZRbrdNuMTkzTbhwjE1GtVdF3jH/yjf/5A+u6Nb/z2F6RQwHcChBCSSEHAQNIV4tgmBiRFpb27QbfVYDga0ut2OX/+UVoji1wxh5AkdAcDnG6LaiGPqmjkSyWmF2YRVJkoDgnCkOGwTxT5NPc2CREIwwjPdWg0unhBRKlYQhRihp0mIh6amk8rxvxoBfqHIBCOEjGE+z8DIEmpRFGWZZIoJI5CZFnC9x2U2EWMbMJBg5zk0jncYthtEdoDbLOHpkkc7m1TMPIUx+rMnnmEwdDFH3XJF1MP1Fi9zmG7ieNaeI7H9MxkGhsahwiCzML8EoqqYZkWly++y2ho8bl/8iscrN3GbfXIFgtsb2yyubGJ7EZkFQ01EVERURMBKUoQxCQlCyYJUiwgRyk0hSMKoSyk5uI4TospUhjimCb7e7sM+31sy2U0HKEbBvOrx1CyBu1OO8VvyxJBHKFIUpr9HccIxChSyjBASIEuXhjgez5RHOH5HgLJff14HKefn/zYx//DAqlcu/rWFwTUVO+ahFTrE2me7BH4MYxiBEFEEAUkWSSwLb7zpX/F4vISb1/eQUhiLBvQdPKaRzabZb8LE2MFMkrCwIzY3nOoV0Vy2QghiQmCmNOnz2CaFr5vM1aaJPRNCuMrtLY+YGrhDI3GkLXNPVzHRQng2IkxDEOl3RmR0eH0YpFKPkEKbcIoYnluCl10yCoC584/hC5H5BWVSkHg6YcnqRdFjs2Os7l1h5986Vlurt3FHCR89pOnmJoosnjqOf7OP/gvGFtcIpGyVGp1HD9kfOYYglYgljJk83USCSZn59GzJYqlHDffe50bN2/w4QcfUqpUqUzOcPf2Te5sbTI/M86Zc4/xZ99+EyHxyWUkPNNk6AW0rYDDvonrJSgazE/PUisIaDioqobpxJjDPplsFiOncXhogR+yvFAlCU1ubQ4JSIgTidgPWZiuUiynk5GtvSZXr91BlHUEtYAgxIS+z/TULGEQ0Ov2ieIIRdcIwpD337vM2MQ4AJqukssaab6w5wMJYhIThyHx0coyDvyjNJaQn/+5n3tgk5AffPN//cJB06DRU9lrDdm3y1iuy1QpZOFYlnp5llhs0z6MmJ6YYX29g14f4+ZGxNUtnVIuz639Pl0zJpIy7Hd9js8U2dlP2NmLyEp1AhsGfYesIREkEZIiE8YmsiaQRAojv0N32AUxpjPchiQgilwCBcR4n3a/QD5Xo90SERSFxuEBCHl6g5B6dZlG26PTk9K0Dq+LpDrEiYETdLFHKp7/AYXcKWaWJ6D6CN/60++zcX2TxekqYhwgxiGlUhU/FlHrx6jMHMOxh3TaLSRFoj/oIwgRXhSDlqVcrhG0bhO7JrIiEYcemioSRy6O6+F7EY7vcHuny42125x46BRebCGoHtmMyrDfZ/PONr3uEM8NaLfahIHPaNDAdBwKpSqtXoert7c57JmIUpYPtge8frPFoRczcBMGXkwmN41emWfky+y2bF5/d513ru7yvYu3cbU6b1/b58bmkEtXd7n44SZ/+NVv8tbla9xqRPSiAo5o8Pb1HYr1JczOkJEt4bXaXH//FsWSi+9b7O/2URSXGzfXKFTq3Lp9jTCIsayIVnfAmRc+88D67m/8y3/xhUI+g6ZITJRLlMo5Wr0OnYELQoQfCziBxPLxaTKaRqc34MzKLIYiYgcicSKQ0UWE2MfI64iSQeBFmG5ARhdJkBiOXKJYRiXmJ554gqvvvsMff/U7jI9nOfPweRylxKmVFf7gG6+Qz+VZmjOYqVXp9BUu3bhFsz9kf9/k7//iL9Md9HnrjXcoFXO0Gk02trd5843v8dlPf4LB2i2uXnkP1x/wh1/6EgeHLc6tLmC6Po3mNs3DBhMT03zrlb8g8npIYsjjTz6GoE8j4xOOGgyHNqXJOb74+1/nzPFHGLk3OL36GG4osDOsMpVLyMYbnFvQuXDhCWKtxuEgodXappTR6R602WzbqXRNTpgsG/iCrK9fsgAAIABJREFUihNCe+hBLLO6UOetS7fQDYFhy+bjzx3n7LJMpiTw3//Gn7DbGPHM+RXy+YTf/K1XORhBpzVEkiTCKOT29ZuoAux2ffIlnUqtxnAwIghcDvaaPHTqOBtrF/nlX/hJMorF1TtbhLaAK9i8dblN66CBLOsIusDB3TXOnztJa6AyNZ5FkBVGpoNnB/iuj+OHmI6P7we4rsns7BRRGLO9sUl9epFf+KV//IAm0P/mCwLg2haSFBAkNpbXJl+oI6sygWkSizpK4BA7NrIsoEoydzbvoBRKxKKIpuW5fWeb8UqR5vYBzY0tsoUcvX4bx/cYmilleGJsEtMdMVarIMYhqqxiWTbZco1srsigd4ihSmQLFQadJooQoxsFElFOtbgfld4KAnESp4oEUUaU0kOSlZS2K0okpBPtVK7qE4Y+Vm+X7vZVupsX8dsbSH6f/cY2kmejBgOSOERRJCIZQqmIoiSsv/8a2WyZmRMn6PcPcawQxHv8CpdBr0ssKRw7dpJeZ0gmW6FSn+St730PIUrQkoT9azeRVJXixBgZVUURJJI4xk9CfGJiIQEhJiJBkKWU0XE0mY2EhPjoCGWRGAjiCInUiBmHEUIMAgJBGBFH6eRbFoAoYtBsYfUGZHIGuVwWx/Mpl8uMTc+g5zKYpk2UxPhRlCZ6EBOEEbKioWc0NEMjISH2PWRJTKME4xQNfuKl/8BAKkEQYDkuqqqmovGjWJJ7Fcd7TkpJUohicG2TZ597it4gdQLXShqFgorl2OSzKp1Oh/3GEFUWCQOHTnsAMZimR6VSoVwuY+Sy9HpD8vkikiRx4vQZTq6cpD4xzcKxJTRNQ9MMFDVharpGMQ+eH9LtWWQyKvmMxHDQIvQspibqlMtlIMZQFT7+8Y9jWwPyWZ04dDl/5gRTY0V826RaKeBYPmtr1zn/8HF+4edf4vjx4+i6QbE2gRsFRKRpBq1Ol1ypQqc/QtYyiJKMOxpgDzqs37iCEPkEjk0mk2F2cox6rcD+/i5GtsTKiZPs7R/S6XR443uv0eq2kWUZRYrR1RCFEFUUmaiOMV7LMDVeQ8Jjf2sfgVTO0Wj1ME0f0zQpFEr4PmRyErlCBeKIE8t1oghanYBqffZ+NE8Qxezs7ZPP54njmMPDQ0I/IJvNAjA2NobjWDQa+9i2TRDGVKtVer1emmnsuLi2gyorSJJ0f9KcJOkKkntV6KOEjgfZRpZBs+UzMgvYrojngO/ozEznIZHY3x0QOCqOq9EbWeQKsL7bY6dtEktwZ6dDEILjJ9imgGmKdFshQ1NhOJIQNQFZ1bE9m4iAIPCxzYggFLBtkyC0sV0TyzGxLAuECMt2EeIEywooFXWSJKHdGeH68dG2msHA1Oj2EqJYJAgcgtAkjDwQYoIwBRsFYUIQRySJQRjKfOtrr4Am02kPqdfLxHG6lRgE3n1IkZbJE7oWsTOgvb/N+o2rdFv7iEJqgtFUAyOXIwh8BCG5H0EUhz6R72BZFoV8ligImVuYxwsDCqUsJ08dR9dVDg4OsCwLUVFZXD6eVhx8F+C+2Xh3bx9NzhCEMZJWYrvZR87XyBWNIzmJAIlMGIsMbRfV0NGyuVSznS0iKAa7+w0CQcaPBSJRwY8hn8/jui77O1u8/v3vcnt9i6xhsL+9wROPneDUiSlU1UfRQt56+zoHLRtZz6PnJvBjjdfeeJvRyOOtt9/n9bcucf32zoPsumiKjqqqyLJMxjDSWK04ObrPuK8f1BSdWq1GJqOjKgKlYoYoiXGDEF2T0XSRKAbfD4kjiSSM0v4gpdr3XEanUMjy3/za/8jlm3tkShMctD3++DuXCNQyRrFInMD05DhLSwtUyjWMbBZFzRGEIg+de4i9gwMGlk2zM6TZbPH2O+9y/tELvPzSC4zVaxCZhKFNnMhMTx/DcXxOnjjO0tISke+ztDhPq9XhiSeeYGZmiiTwaTT3QdZBy9BsNFA1BVlSGZ+e4cMP1hmrHmNru8nazXWKRZVPvvwkTz21yvKxRar1Knc3brOzvU8+m0ORYWjaaBmDKAnTPFvDQJZFur0BsqIxMC3CwEWQoTPwePLJYxweHiLh8MmXnyKRgAi+/Wevkc/1UUQolHPIqsK1Dw+ZW5rj3NnzrK5OYqhgmi7NZpPtfYtiscxD587SavdZOfkYv/3FryCGLoau4dgmOR1OnZhl7c4Or7/xHt/7/hWOrTxEpZxle3Mb23Lp9TrIikgsQKlaIpPN47g+QZRS8FqHHSRJolwuc/nKtQfWbzPZPEPTIUpkolCGSKJWrCJLAq7tIQow7HYQJY2ZuQXq9TqSLFCplpiYrNFqNZEkkUcfPcfeQZue5TG2sMB+85C9nX0Cx8Xq9/FdB8scous6JDKNRoPQ96hVK9jWACGKyOd0Nu6u0+/00FSDfr/LYNgnDoMfkRd+9PN7fIMUDHcvO1pEFGVATI3iqookCWmilyxB7COFFs3tmwybO0xW8khxSLtxwKDXIYoSWq0Wi6vH8TyL1dWTfPjOO7z2zW8S+x5hYBMnAZY5Ik4U/FCgVBzj+rWbLC8vs7Z2na2767zwwvOsrq5Qq1VIZBgMBuxv79JsNrEsi+QoQaSQy5HL5TAy2o8+v6NKMKRRcvBD6In4kdfi3hFxJM9MfphgIn5ElenaDsNBj2I2hzkasb6+zuFBCvdZml9gaX6B6elpJicnqVarGJpGEAQMBgPcI8jNfZLxj7UXHl3Lv4G/+ddugR+jaQaiKGIOTBxzhJ4pEAchbiKQyaTaTsf3COKE2G5x5f1L3NnucObUMXTBY7drEZsDCrk8QiKiyjbDQZdsxsBr+Zw9VaHd7JLP5xkMLSbqGa7duEEcaUiyTKvV5NbVN/nEz53H8qG3fpOpqRWeffJhvv7KRcbyAgfNLq4Pc3WVR08vcvb4GGEY0uk7lKdP8dWvfIkTy9N8/+23SQKTZ598hlppl2PLk5i9JrIIkxNjBD688+E+p1emGXZbrEcjFD3P+PgihWwF23Px4xhDVxFFkdmlcgqUSUKiXpsNf8DdtTWu726SK5Q588QnmagW2Vq/jqTnUPQ824cW584/hjtsEWIzO+ZSLunIokQcw8r8DD3Tp9duYTkugpSgCW1efGSMrYMW/U6T3gDKJdBkmdZhlyAA3cihZXIYhsGYoJM3BkyP17hy/RaL4ycJPB/bGlAq5EFKMPI5XNlgMOhhmkMcN11JPnR2hWvXb7F+Z48gTCiVi/R2duh1OkxMTd+X7GSzufs37j1t2b03nTAMSf6G3LX/f1vHsqnNBlxfa1DKqyhhj/npKZA6HOz2qJeWCYjpD4eY3ojKZJlXvztC1kokssd6U6JerkMUIuc0PEvh5kZEkOSJBI+tQYOcOI4SWTSaPSSKxF6TQqwxHNnohkLftBiYMTO1AmEscntnB3VpmoOtHot1DTnus92oIkgRtuPTG5ZoDARCT2Jk7zNR99ENH0nMYg1zCAWdhBDLVpGVgL1mAaGxh6FPMHr1dZzDJsrYLMNBi5weIyQRYWSjVmYpjc1x68p73Lx2hd2dPRAl8tUxegf7PHLhOYIgIKNpOJ6LLgsEvotIjOf7JESMjdUYDgcoagGEPuW6RruzgaLJlKvjSKJOXxph6DKjoU2SRPQHXYQkIaNl0bUckSKhiSpmFJLoEhdvbZFIDWJRQhIVREkiQSJKJI52GBEEkZFlkQgSw+GQRrvD1MQksijS7Q8wMjmSWp16pcDW2mX+q3/+z/i13/i/+c/+k89x/e1XkeM+wVDknWu3ORx46MV57tzu8/oPXmN24RhxolEtZdnf32Vp5RS+2eDq+t4D7buqqqJrGQLPSSe9boBrhcShhSzLhF6Q4oODiFyxSL5YIpOVKOUN+iOLwchmaqxCLATEkYITJfh+iK4nkHhosoyuxCh6RKEg8MrXdvnKq+s8/8QMSizxnUtb/E++xAvnylQMhVanx59/d5+F8hh7Vkx9bIonnl5kY2uX9e0tLl69STi0+Ce/+kt8/3uvc+fWHVRZ4dbNG8Rem89/7qf4zd/6Gju7TWoTU2mVv33A/PwSh/t9JDXL9vYmn/jY40yPj+E4Dvgere1DipVxdrc3OfX4SYpGloPRO2QKz3A4WOf0Q2fJbvexOnf53Gee4eJfvMVg0GS/M6JUX+XMksfWToNSbZLra9vUKlX2Wm0eXpnCG45QZYNY8BiYDuagg5rRsQOPD9e2ePbRZcrVArMrxzh+fIbzD03y2Sceo+tf4uUXVvmv/+XX2d0z+cQzMwSuSaYyxXIuw6XLBwS6ijXyefqJ44wGA97+4DpCGHD9zh5TtWkm544xYd7BFEbkCwXcMGHQy9AyPeYWZ3nt7WucPjnF4lKOw6GDIiocX51D0Cp8+5VXKVXr+EGMMxxx6sRxdve2GR0cMjs3zVj0440D++s0HxlFzaTFAD/Ed2yCocXkMQ0xcYldk7A7IJgdwxJkVCFG1TRIJBIZVk6v4g/6HOztMFmvYufyHAz6lAyDcmWM7s4eYxN1RsMOjj9CNwrMzy4gSipbu4dEjXYaySok7DRaWKbP9t11zpw9QyRlEZL4SDYQcS+C4/4k7t6EOeG+PlqW5VTWccQ1kEWIY5k4EYniCE0SiRwP0TYZNHYpzMxzcP19SpUaWi5DsTrG3uYerulw89aHzNYKfOurf86phQWmJ0uMun3UAviRhiIZuGQ4dnIOc9ClUoy5e+cGpbJE39oDL2LYahLZNrEfIvghWVklTMIjpHhM5AQEgCyKBEmYGtjj6EckK38VUObeawBH5MAoJvmIlCVJko8U7NPXUFZEggg6nQ6CIKArKrHr4ifQ7HdTuF4YIiSQCCJBlIB8FFd3dAr34wXTkvePtf2tqEBH0Q9jyUQJ/MCFOCTw3R8mMZAiv+PA5+Kbr6IpKo7nEvo2E7VyGqsSJlQrJTqdDoYqEgf3wCtQKefI5cEambS7XVRFSdGffsTExBSKKnPp3S1s28UNU83t4uIi1WKO5eNzKSdeAkWGxZkxQnfA3u42rmPRabX5P//1l6iMjVEojfPU08/x+c99mt//3S9TyClkdYVapcLs7CxvvfUWTz31EPNzFS48/hizM1PksiXOP/40ei7PYbONbfsYhoZhZEkECSNfIBYlSuU6iV6kPL7AT3z2P6YyvURpYonc+BKuZKBli2TzBQZDm2JtirtbBzTbPXzX45GHT2MO+uR1ESEYEdt9ttbXKWQk5ifLPHpmmWcfP445bDE5XufTn3qZQkFCVtOs5VbLxNDT69PrdHF9j0bjAAmBMIy5edvC0LMYqoYiAUKMYaR47kxWR9UUgiCg1W6ys7OD4zgsLCwAkCQC/eEQVVXTVf49mUYcY5pmWoX+97TPf9WN+iDavdD7bEbGDyVmxiUqFZ+hKeF7MV54gJGFajmbxvL4OSxXY+TEICgomRy2nxALMrEgEoUChdJ4Ch+JIxpt2D0IsZ0Y0wRRVMmXDRIhJEKl34/od0W6bZEwgCjWGNoid7d79PoB+w2P6Smd3QObVs8ljDNYToDtRsh6DsfLMBoJBL6M48hEQZkorBAGWcIwQxRniYUM9YkSpVIBc9Rn2GtTLBaoVcpomoYoivi+j6wVUNQM1qBHnICfJNh+wPbmXe7cvE7oWriui+O6H6FFRWnSjiqhSiKe46BqCp4XICoCk1N1crkMnuMiCzLtdhcSEdf1cJz0UGSN1CDi43kpCcsyPURJYeT4REoGP1bwg4g4EUGQMW2XTKFAt9tna2uHjbtbKIpCo9FAlmXGxsboDwe0222eePICG9tb9Ho91u9s0Go0+N6rrzA3O8OfffNPyRgKa7fu8Nu/8+9QszNgTHDx+hoXr62h5HPcuHuXvjMkIKZQKjI1M8EzLz7D8sryA+27oiDheV5qcBLEowE9RJI/ig6O7vsW7lXOfN9DRCIMSJG7kA6iSIgSKLKAIqemQlURSSIXIYlIxCyRkOPda7t899IWoShT0kSyssT5s2eZGi9x+vRpugOHi++uESQSX//mdymXplCNCssrjxEiIWcyfPrTn+b99y7hOhaBZ/H44y9CdZJiWeUnfuplVMXgsN1hd2uLr/3JXxxVqcZ58YUXmJ2bY393l6Xlk4DIcDhEN/Ks392m1+6wvHSMx58+z3/3hf+F2fk5dvcPeOL8CoN+m0GvjWmaVKtVTDdmr3HI7ESFY/PTiKKYmqM8H0EUQTIwNA1Fke4b5W3HoVAosnz8BOPTc0RRxMz8MsWsQb/f4fr1m7z5xh8TmCLVYh5r1OfMiTG67Q4TtSo3b33I/v5tHj9bYDT0KeU01tfX2d0/ZPXUOcanpvnET76Ikc/wl3/5A1aOrdA6HFLO58gb6bXJFwvc3dwhUjJcuXabkyeOc3jYp1DMcf3qVa5fvcypk0spm8GPGFnQbLcRBZlSpczu7i6C+ODedwulMpKagrUUFfIFnTh2OGjsoukKQhIzMzXOYDCiOlan3e1TKJRSaFdxguZeh1u377K0uIJld1CFgOliFrPbobW7iRwlGJKGLkuIYUhG1VlfX0dWdUqVOhPT05ijAZff/wDbdjl1+iFWV1e5dWud3f0GrusSBd6PgE/utXtj2P1kjqOksXvjWJrQIaGqOrqukyQCoqjT65sMTYeMUcD3Q6ZqNaLASQMW4oh8PsvkxBiLc8eJ7ICXnn+cneYmsRRjZHUEQYRER1ULTE3XGI469Lr7hOEQiEmSAEURCILU0JgcxeapipLC48R0wZRER+d/v6B1jw4c/0gW833d99Ei4aOm/4++Hvee90c//vu0YUkQUGUlBaMcUQcDz0/9cH6A8hEKZLoAkVKTYfJDI+ffVPtbMYGuVsYp5EuoikYSpsYw0zTJZDJEUXQfrEIUIwQWZmud25t7iJJC6JoUsirDUZ8oSghdG01RyGZFVDVGV2U0RcLuNVGl9OJGsURGy3N42EaQRfq9Ae++exFVhW9967u8f+02qq6xtb1LVtG4eWObke2haSJTFYXD7V1Cd4Qg6wxMF9scsjKvsbXdZf74efYORly+9A7PXzhJ5AzxRiOSwOfi25co5fN85qc/xS/9p7/AsNdCUVXmj5+kWK3jCzHzs+l2BEJAgo9hGEhCCq3Y3txC1DOUZ06glmZ47OWfZuX8BUJvRL5UZenc05w4/ySKojE9t8Jn/6Nfplifx48FVlaWESWBZy6c4+lHT/DcEys8dXaM00tFJisuo+Y1Hj1zhjNnTnHQafGVr30HWRKoFfNEUYQsSQQBGBIoQoLjJwwsF9/zGJk2sws5CoUSsiyyv7+NLAg4joPjWCwuLnLhwgU+9vJLnDp1glK5wLWrt+n3RoyN16iPlfDDNGllcnyCdvPwfjj6veMe3Obe10EQEATB/ZvtQbWMFNG6JXBsQmVhuszDp+rIckjHqiHnigz9IZs7MXt9lW4wzlYnj6RUsQOPQTt1Qg9Nh4Fl0xr6tPoug5GPZYoIQpGtzUlaI5Ez589h2g6dfove0KfRsbi743Ht9ojNA529Q41G22Fz12N9N8Nur8zQTnjtTQVdnUXU5mhaCtsNkUK+QphAGEm0Oj7dTp69/QxeNEHfVekMRQ6aIqLgELoFZibmSaSQqdklihMFPv3TL3O4sU4mo+P7AYqsMxp6SGKOBINmY4ubt64jKQKCnJAQsLt7F3PURdJVvDBI6YdRSBQEBJ5H5AeEgYdlmfiuh6qK6JmEbEEnoxaIfYmD/Tae7RFFYJkekqhArFEs1HDthEK+hjlykESFcq1Kp9VLtw8FCUXTUbUcqpaicqdnFhH1HKKsgigzNjmBH4Somk6jeUin1yUmQcsY3Lxzl2I1pYT5cYIxuci7Gy2sUYd8tczf/flfJFQnOfn0zyBUlnnj8gahlCcUdKrjE4xNjKOqaSa6qOq88847vPfee2xtbT/QvmtZDoKQDtayrFDMa0xOFJiZqVEu5SAWUsNOJCDEoCo6rpsOXP4owDQTbCsiiiH0A/wwwPFNdCXGUBN0JSaXEZFiGSHWGPo9JMGib4EL6FLMZ559mv/rf/8S80tLlKQekTPiwrMf5/yjj3Pl7gBHrPHK9y/y/bff59adXV586WWQE0yrw6/+8t/n/UuvU8iKcHyZxpX3ee7Zl/jqn36dbLaK6wmoUsLTF86RxD7Xrr/NBx98wN72DidXTxBJGQLXp1YqcmO7S2likb3mIX/5l69y4+4YA7fM1ZvrXLtxk/q4zjvv7JIIMsWxPKYX4YQ6pjfkiTPHOX9ynnxWZX5ynNh3sCMBy49ZPT5HRhMJIyEtiGkGnWaTQX/Eu9fuctA+4H/+9d8nb6jU6hUmx1ZYPbnAww8/zB/+0Rd5/umzHOwcMjk5hTMyGXZ7nD97nM9/6jkeXQTB8ZDkhGIxz872Pnv7LTZu3aXbaVKsGFx890OOnxpjd3uPMytTfPpjZ4mcHp4JV++00HPjeHbA8sIEuqqmFF6vRyUrQRIS+Q4z03UOm116AxMjkwPAHg4fWL+NZSiWcyiGgO/7JJKAVsiRLxco1cqMzUwzil2WJuaITIdcuY7rR0RJxKjbwHNGPPXc89hxQmlqFi2fRVYlyqUaoqRRyte4eeU2ghniHg4R44SNzW329w/p9EfMzC0TSVlmTpxk6cQKsRCj6EU63QH1UhFVFnEsEyGJiILwPuzro3LUexPFlFCo3H88Hc/uGQslcoUiUnaCE499nOrKU+hjqyDl6HQcVE2iVCrSaexB4oMY47T32Ll1k/W7uzz/qZ+l1e9zuHkdb9SjVqmCnNDfu4M7PEQUQuIkQCRCTGSkWCaJEhJkkDViSSAkwU8iREFASFJ5RTpdvpcMkhZB7lWXPwp8+WjFGX5UuvFXHfeaKHJULT7Kl/4IqjsR0v+eCHGaOS0LqeSQmJCESEg4Oqn0OGrpJPremf/42t+KCbSm6jiOQxgFFAoFTNMkigJ0VaFQKOA4DrZt4nsW27evUCtnCJMY1w8Y9kdcuXKFfi8kCODw8JCREyCIIUngYZomgiQyPzfNzOQ4SRLh2AFxJFAqFbBGHc49cg5z2KVSgavXbyGpRRRFYtDv0Gn1WVlaoHHgUyoWkAk4f3aGuemZ+1qb06dPYigKqmrw7/7oq/zu732JKAoIE1icn2N3a5NyfYxSJc/ExATffeU79Dvt9HvVGokAH1y+TCaXIwxDhv0OvV6PXq9Hc3eTq+9fZGdrA89x6DZ2kSIfQ5UYH69z+YNLOIcbjDp7SLKC7QaUy2U8P8ByAmQjTxCL/M7v/jbT0+PcvbvO6TMnMdSEqVqOjBpybKHMw6dm+aMv/zE3bt0mmy+zvDJJ6Ke643tIcwRQFQlFBiNTQJAkMoaE7/sIkkatOonn28iyiuNaiHL6WKVcwDA06rUxVldXWV1dZWnxGM2DBk8//TRJElHIpRN1RAHXdfE8L91xONqiubdK/+h20Ec/Pqh27tGY8brF2fMJk/WExl4Dx5ToDUJ6lkfoGewfKGw2CtzY9bm03qZYylOsGARuTBTEyJJOlKTY7ChS0NQsSljE6qamSVEUub2+zuJKEc2QCSKFTjem0/VR9AwjP8GOfJDymLaEG8DIEnFDgZ6dpT80GAwCvEBhZGvoch4hFhgNfAqqgDMaUC6WMc0hiubTt026A5d8UUKVRYRExNAq1FYfQaxM0hsNqWez9EdDFNnAMLLomQyyliGOY35w8Q267T06zU18q4Nj9/BsCxQJx7HwfR/HdgmDODXLRBG+7+IHEZIggSjgxy5xHKIpCnEskM+V6bZ72LbN8GjwHg5Ner0eoqBSKFZRtMxRBQdc3yOfM3BGw/sa7SSWcP2IWrWOqmcIw5BisUipVMK2HQaDAZVKJfUKKArD4RDLsqhUSuRyOUzTYunYcQJBA6PEw2fPcO7xp/jg5iZrmy1cSWHjYJ/zjz9GHCmMjc9RyNepVyap18eZnV2mXJmiNjZL46CHKD84GAUAooDjeGQyGQw9S7FgUKvlWJibZmlxFkFIq866oiIkCYqioCkqxDH9nolrBTh+QhylCa1BFKURd0KEICQEoYeqyMR+hO9GiFKMJieIKAiSSBTEvPG910mSEkni8NCpWYbDIa+/eZF3330X3chhuyGtThPNUNJEIRIuv/0Gb7z5OnK5yOqJJQrFLHdf+Qobm+t8+OEdstlJDpqH/M7/8y1WV1fZ2tpgd3eTsbE6gR+RIKJnNKRSHSWXxw9cbDfgxvoW67dv85nPPM/bF39AtgJPPvskP/u5v8Pld3/Ap376YyhqjuMrC0yMT6NIBQoFmd2NHQgSclkNTUgwdBXXizhsd4gCk/PnTpFECZqRpd0dMTs9wbDbYXq2yhNPv8wzzz3C7/7uH+DbI15/4xKvvnaF3eY6+aLMtSs3MQyJ7a0Gve6IMysTVCtjvP3eLRan88xOC1TLOUqFDK7romgGoa0gJjKFokitXufq9UMKxTJ/8KV3+OqX3+Tcwyd57sIiZx46we2NJoGfQBzS7fZwXY+MpnHu7BlWluYp5vM0Gi00Q6dUKmGaFseWV5iamnhg3dbI5nF9B01TCQOJVneElk2LAl4QYrkOuVqNfuuQ5t4O1mjAwsoKsWrQ6bSp1Eqsb29TmpyCTI3y0hlMLc/JRy9w8pGnuLuxg+962L0Bgh9ysLvHmTNniASBTK6IH4ks/L/cvWeQZel53/c7Od0c+3bu6ckzOzuzOWMRdkFgEUlADCLNANF0KPmDZdFVtqwCbVlS2a6SypIogTSTSDGBEDIBAiCA3QU27+zszE7sMN3TuW+OJ5/jD6e7d3bBj3ANyk/Vrdt177m37z33Pe/7vM/zD8fvwipUCRCx0ina/RHHT55mMBgwGg0STlQsHsAz9teu/QRzP5G+vQC0L3UXCUAs4vtJpVZQLRSrTHr8OGZlFtf10VN5JE3Hc21kUYA4RNZFLpz/HsNui+MnHmDoBIQjh9bmJrVSimaOzNkKAAAgAElEQVR7HXvUQBZEcEMkZERh3/RFAARUKdGcDvbIjojCHuQtiUjY8ykREtxyFL8zWb694h6yb2ISId6WuP6dyXP0o5APIX6nTffbSfTbnyOMIxATXktETBgncnfvTsr/v4qfiARallVifILAwTQTQ40wjOn2B4zcEflCGtPQwB9y9fXvUd/ZYKqapzpW4tF7j6GpBsW8SRCAqljkxyaZmikjeIACRkqm3VjHUmU0KSCTy9JoN/BDh3TKYHb+EMVClkOTs9xa2+Dnfv4fsnB9kY3Nqxw/eYzVhRVqVYVBo8N4pYisyyyuLLJ8fRW73eTW5k3m5ic5ciiHJHk89tjDjAITI5vnyLGjCLrO5NH7ed8Hf5pCqcrho1N0+z2K45McvessgWxw/K77yRgZBvYId9Qn8iKcXoedhZd5+btfoLGzwe7uJm9ducri0lUuXzpPY2OTublZTpx7CEk2CYMAdzRibHKS+VN30di5xdkHHuHTv/hrPP7IffzU0+/hrrvu5vXzb5HPGFg4lCyZJx59hEIhw1YTstkCuiwgBn2Ozpm02l02dhqIsoCAQK5UxXVDtltDwjimmLPIZDLsNNu8eekG/VGfesvGi0KCUML3Q6TAw9IT3Gu72UISYGaqxNGjs7z8wg+Znz+GqRmIskIsSQxsB0lKtCMdZ4TrugfV5v3K9AGx9A5joF3b4eQ5jdZuA9u9RSNKsd7poJoSN7cUImRspc3s1BnSloHt9RHsFilLo1RMoQo6mqiRMbLgeyiCg6J1uf/uKmN6gfc/aRDaEoGdplgY4Mcma5sN8pUScTiiks3ScQPiMOJvn68z6tr80984Q2r0Bq32gEAq89rlARmzScksgiiw2+rwxBmBDz8h84s/X+LTH72XiaKKrl7m2GGb3W2JSMmyu+uQzQY02wHHHvlZIuM0+vQ5jswfpWsP6fdGBDE0Wh2uXr9OpIEb9ffOTEAQePT6LdxRm0j0iUUjcbMDzEwRQZAZ2g6KKNPpD2h1e7i+R33YwxEcAsdlc2UL3UwRRRGmYWFYqQSPjEwQxuSzFqEQUpuaJVeeIAo82s1tvNAjm0onMlTECJKCKCtomkKhMoXvQbuREGO2tzexBwMkRWa3USeTyyIiIIsSvUGf7a11LMvg6PGTDB2Hc2fPIBCytL7Dq69d4//5iy+zMwq4dG056coEIYeOH2ZqbhrFUEkXs6QyafzIQVAjJEWkUCkzsu+gHTLguCGSrBALCv3hCHs4xHMdUkoM4QhFFUlnU6hqRMpUSVkaCBGeO8TxbFJKTG/k07eDZDENPORYIow84lggjFSiOHG+VGQPQQA/ktAVkbQUceHr/xqjUEUeyzNl+kzVDvGt7y7y7Gs3+OQv/DrtxgLve/w4uVyeldUdapNjPPf8C7jDAU+9/yN87c//mA/+4i8RBiJrN5dZXFhDtzRGtstmo8njTz/GD55/GSOd48byGrduNbi+tMIPX7tM3xEgEIEALZMjpQuomsmZUyd57fm/4b7jY5yeqRE6MsVikc5ul0IObq42CBwXfzRibWGbD9w/S3N3jRuL11nbbnLiyCR+MCIModnuUS2auL1dDE3Dc4ZoRo58ykSRJdY3+/yTf/ll1ustfvDsdf67v/8Y99w1RiCr/K+/9T0Oz54jpYuIcYjtDRmFI+4+XmJ74wq73R5oJoIs0NsYUM2KWBo0ukMKUylSOYN7ThymmAn52U+8F1FTGDjwK//lk1y/fhUdicbKNUI1xaUbN2l1HW4stNnYbqFoRS698RbN3Q263R66rrC10+TGzQ0arQ6Lq1v4bnDHxq0bg6xbuL6IpGlk0gWGgxGWYdFr7DIadMkoOtl8Gsf3SGVyNL2ImaOnSVWnafU8yrUp1re7OHFIKIg8/NBjvPzKc1y5+AMszUdXQ9YXrrBw8SL+0GZ34xa7jV2K1XH8WKQ7DBh5Hql0jfWdNmbGojY5hY+MH8W0Wi1CQSIIQiQhgUjdDl3Yh6UewBQk6W2rbgQiIZHxFWLw3T5RECCoKUozx7h04TK9YQc3EOgPBoRI2O0BgeuRMsvIYprVrQVE0cZt7pAbm+XSxQuogByL+JFPKATEcQCRv/d/AyBE0mUUQ0IQE+MTRZGJCQnikFCIQEwq47IsJxj0yD+osO9DLfchE76QVKTFKCSOgkQdKg6ICJPbXjVZIEIUYqLQJ47DA0wzQCiIhIJIRJhUn4UE4iLGIlEQQhQnRumCTCxIiHuvicXkOEIRIRJIfDd//IIDPxEJtOP28XyXkZ1UnjVNQ1EUfN8j9BPha1mW6DbrjFdLpFIZIkHg8KFZ0pkU2ZwFQoAsQrGUp9/v0++1GZ8YY2JiEk1RKZWKKIqCbdtEUUSr1UAUZcaqMwjIiLKEYamYOoRRxBsXbkAssl3fJZ02sSyLbNZgOBxw5coKY2NlHnr4LHNHD6MpAu2dNWZm8wC8dv5NVC2Dpsg899KrTM0e5nd+50/47vd+gKBInLnnbk7fdY6HHnqYlVvr6GaeTL6M545obK8ThSALPlLk0O/3mZqcSVilI5uxiTGy+QK5QgVZT2GkirR6LqXaDKqRJhJl6q0eYSSQKZQQRJV8sczUzAy/93t/wHuffD/PPPNRPM/h4UfupZAz+fa3v0e/5/Lk+w4RCwIKEcfmJpHwyFgKupZUnmJiup0+3V6fwI9IWxZB4BHEMWEEa5tbFMslTMPa241KB0zYKA4wTQPDMpCUpG2Vy+WIidjeWqPbt0GQDiaZBDP4NhZzf7e+v7Pcx0nvT0R3KixRQ4hDUmmRWBO5udZDtwqIYgdJyCIYMrKqo1gSKDblksjsRAElSsa4hIqhWkhhTCGf4ZFzx9CUIY7X5uTJk0SBwNSMiCI77O50uXZ1lU43YKcfMVUt0e9tI0QhjgMoKmfPTRHaLT7zqw9hkSIWNUZeyHufmCcatYicDuXskLMnJpkby3Nloce3nt3hwoUGphXiByN03cT1BuhaiKLHNOoeft9D0GagfouVpRv4gkwmlwVEDMNi/tARFEXF9WyymSIzM3MHk6ksq+iaRRQFeJ6HtFdLEEQRQZLRTANVM/CDCNv38CKHVqNOFILrenT7PVzXP6gIa5qGJCeVDtf16Xb6WJZ1sLnaHy/pdBrDMPYe22+LJhWXTqcDRHR77URPfK9bsrOzQ7/fZzQaoWka+Xz+AELm+z66rnP58mVUVaVYLBJEIYVSBUFWGNouuq7jOA7tdpvd3V0cx6G/d+32Ol1GgyH1+g618eod7554noeiKLiuS6c3wPEiXCdICJ66jiyLSJIAooAfhRiazGjoEEURmgGiECbOY5GAsKe4ESDg7xk/KIp0cA3LsswDD57FD0ImJqs8eu8sixee5/LNVVRNp5jN8dUvf4V/8Gu/QqVU5U//4q8RNI3LN65x/0OPIesGnhvgun2K+QKaYnL98ps0FhboDQY89NBDPP3009y4cQPH87nvvgcQVQ1ZN5iZmWF8fBxZljl2ZI58oUR27iiEAcQxmVqN3d1dioUCAydgsxFz4tghjh+dY2N7CyOd5cKFG9RqNc5feJNri8t4nseHfuohvvG1y0xOlDBNgaWlLRBhfLyaVBkFlXanv5ccQRBBrz8kIsYwDPA1MjkojB3nN37j79HYucZ7Hj5Nvxtw7uGz/Ic/eI7AHnH/fSeZninRbtu88Pxb+KMRP/fpjyGpFo8/8T4++PRdfPTD76e922TYD3j91dfY2NjgxsIC/qjD4o1LzM5OUhmDK9ev8c//5X9FIW1y9q45+u0BrZGLqGqcODWVGL0UdK5cXyCMBGZmy3iejygKWKaCpmlsbe3SaLbu2LjVTQPNSpMrjWFm8si6iZUtEOy5Fqctk42NDRRNR9MtYtFifXGRG2++RlYTOTY3QeT2yZoSKRU2bl1nbW2BM2fvYvbIHGY6leClcznGqmVSpsXJ4yd49IGHEEW4fu0KuayFPRygKBqH5o4jyhK3NtYplkrMz84nkMPIZ5/J9m5Xwv37/Qrr7ZhoIQoPMMhRFBEHCRQk6reJBj38QMDpdvdMVzTEKEaRZYQoZm52FlmVGAwGtJttpienkEKXqfFxvMD/O1Wrbscci7JIrIrEmkwoJCpMwd7zhmFgGAb5fP7gVigUfsSf4fbq7z708vZ4Ny754Ni9dSGWRW7vML/j+GgPxkn8I6/fm+J/5BzffsyPO34iEuit7TVcd0gYhti2jSSJKErCSA2cEf1+H6KAQeMWO6uL9LoDwkBCCgMKhULieBZ4jGVhZXmN0WhIKWcRRD6240DgoyoSE7UxKsUC7VafSqWCrpuMhg61sWky+QpjE+NoCuy22zz9oZ8inSsRxyEQsbnZQVVldF3l9Ok5HGfE5vYW9UaDXDaFKkVcfv0auUyKM3efYLezydZOA0HL8/kvfYP3P/0oTz3zIb773AV8xihNzPPHf/qXlMcmqEzNg6zSbmyys32LlY01lGjEC9/9GrdWVllZWcVzHJqNOs5wRBjFOK5HsVLj0OFTlKePo5pFtpodhl5ErzfAMAwOn7yHm+u79Ic+l69cozY+xX/607/g9fNvcu3GMtdvXKFcKbC1Wef64iL1RptOd4ihxoihjS4E+K7HoOvT73URgWzaIoqSroEYeChSxLDfIZfLoacsXn79AtPTh/bcBeu4fsDLL73AtbcusrGygK4ppNIm+VKRYjHP/KFpdBmOHz0Eexjn0WhEGIYoinKQLEdR9A7ntH089J3GQNemI8wUtFsRYRCR0zNIgUelGKDFHlcabXZ2erxx9SJDV0UKsjxwTw3JCTC1FKWiRamkc+pImSPjCrV8yOG5EoQSsbjF2jWYmdvC0CKymRJH5qaYmy2zcl1getbk8KkaWXPE1HSBTPEyharD735hiT/40nN86tMxmtwnDGRMz+DTHzrM42eP8/i5I/z1cw2+8H2RlVUVRwuYOhaicpjYnqY8toMaeZSKRbr9Hqu3tlCKdxMZc/g3r7C+ssRuo0OnN6BarXL92gKWlSYOQyQBssUqmxu7CIJEHAmM3Iiz5x4k8gMCd4hjDzCsFLYX4vkhvf6QnXqDkecRmyp9e0Sr1cJ1faq1KYa2iyDJKJqObiTjT5IkZAVkSaVYLOP7Ael0OpHS0zRs26bZbCbkRllFFCQEQUKWVQLXS4yX3BGuPUA3VDQ9kXErFAoHnY6dnR3a7TZBENDpdJiZmdkjq0QYhomuW/RGI9wgJIwlzHSW4chGQMQyNEQiivksqZSJQMRo2CedMqlUSnQ6Lc7cffqOjl0RAUkQGXR7rO3WWd/usbXTYenmGptbdQLfRYhChl5IoztAkaHfH+F7IblchmyugCpIKLKB7SachFY3YGCrOKGEmdZJyEXQ6/Zx/Sa1ap6djVv89V/9LnLcY/vmVebMHm9cvsTHP/kx+p3rBM5NJsYshkOLoZ3m3/z2XzE+Ps5EdYxPPPN+vvblvyJfSHPu7GlKY2NMTo1z8+ZNdnYSgrJhaMShzwvPv8B7n/oYkqLhuAGeH1Eoppkcq3L++y9AHBK6NogRC8vrdFotvvrNH/D4U+9hemKSUyeO8MgjjyCZKc7cf5q19VtcvrbB40//DIahsbqwxMc/eJhauUp1rMhmw6E/aHJ8fgJdVRAljcvXltEtg2ZziKrrDJ2QsbEKnjskn0mj6xqf+8Nv8sqbrzA1N8er1y6RGjvHn3/5Au/9yHu4a26CtAyr1xpUc3lO3ncXz7+0xv/0z/6IUWDxn7/4HRYXF3jphe/z9KOzfPJD51DUMjOz99AZaIyVCrz3iQe5duM6uqnz4g+2+b3f/j7NzjopTeCBc0fYaoYsrjZ57eIasSBy8fIyc4eOIAgSVjbF3KFpNNUgCCKGwyHlYpZRcOfmXS8KiQSdkR/jRjFOFDEKAmRNB1nBCWLKtSl2Gl2OnTqDFvSpZgzOnTnHrYVbNDdaLL+1RDwKCdU0c6fvIbby5I6doXb3gxx79HHGTx5Hz2cpjFUIhJhbt24RRRGKIjExUWVtZYHpyQqB56NrJpIkUBqrISgi/W4PgYT7sb+hh3cmdPt/h2F4APHYD1GAwNsrPAUhKiJiECGtXUO4/hq5OGBz9SaqpCHIBpaqM1ar0dytc+G1VylPlZElgUq+yq3rN7CkgO5ggKYaBw7Aqqoe2IjvJ/GiKIIEViGDWcwg6xp+GCDvPZfAU0Y0m00ajQaNRoNut/sO3PP+9/q7sND76/aBKgb8SMJ9QCIUhQOC8u2vEfbOXXjbMQl0I8kLIt6ZLN+efMex8GPPF34ijFS++62vfrZUKmHqJvlcgVQ2gyhJBGGETAySQrfZpL9+mazi0up0UNQsU9Uq7U6fja1dQkHi0QdOQNCjNQypFXNk9QxXVtbJWBJ3H52l2+6i6gqtto2ETyj4TM/UUNUqqWya0O5i5g3+8E++jDvq0mx2uHDxPJ1+QBBAIachCyF3nTpEHPrMT0wzWRtnfX2TXKGGrrl0XZmt7QaSbLG+XSdfmeH733ud3eY2H3zmp0HRSeWqjE3NYxkGhdIYPgnRsdPYpDw1zezsHC899200Q8P1IkRJYWOrydTEBOdffoOdzRV2tteIY5ud3QaiqrGysoylKSiKzNbaEjEyhbEp5g4dQhIFuvVtpqenuPv0XdTGqvz5F77BuXtOIcka69vLIEC/m0I3U5i6wM7WBvmigW5aDEYusSAiSwozNZPjR6dZvHULKXbJmDLdgYcsQC6t0h/t0Gx6yJpA15ZJpbPMzcyyvrJENBqyvLzMs99/lkKpSCabJfI9LEOjUs6wsbaB07dJ5XIHgz6VTuG6SeJsmuYBFnr/ooqiiF/55V+5Y2YU3/viZz+rSBaDrs/rSzF2FHN1scupqkZtvMkbyzLSKMKmwPpOh0Ktz6CxhGaU2doIiSQVx3XQRY8nT5uEgkEUOphKEW8kMHV0jWHT5Nw9KZYu+5y420COujz24ICrKxEvnd/isQdrON5Vnrh/mlvrCscq0zxw/DSyZpPPFbn7+DwTEy7l1DSd+CY3NtoEo4DIVRAFnfnpDocP51jfThOGdfRQwbddQt+gWQ956oPnyM79EqLu8Nwffo7VZpsn77+P3cGIYNThxPHD+HFEfuI43dGQ0WCILMT4QYBhmtx336OEyFTGx+n1u+C77N68gWPbEAXs7Owk1QMR5HwJ1ShS394ikx+jVBknWyzS7w1QdRNJVRGR2a1v4XkOx46cQJBEMtkCQeDT3NlISKeqQa/bwzAU4ihG101EUcaxPdqtJr7v4Dp9oiCBd+QrVRr1Oq7rUqlU2NrapFqtEoYhzUYd27ZZXlxAVRVUVUbTDErFCoEAs3Oz5PJ58qUqm+trCKJINpNGU1WiKETXNdzhCMs0CaMQSZGQJYlcLsejH/jwHRu7/+J//98+axoKhqax1Rtg920EWQRJpNtzIJAIg5D+cES7PcBSVYbDAbEXEYQmgpkhlzYxNZXucECr7rC96xH4CpmsSSFv0h2OcPsRqiZiZjTiAP7Hf/yPSI1W6e+s8+3nLpGvjPGNb13lPU++j1Mnpzh9eJKCEbO4uUur2+XobI7tzVvUikWksMMv/MyTfPmrnyeTy1CwUuQtiU6vz7VrS9Smj3HtxhL3nD7MxsoagQuILo1mB9dPsJaP3XuMbn2TyuwxPMfnN3/tv+Ff/Pbn6DXqfOADT3JlaZU//rOvo1hZSjkDa2acxQsXuHJ5kfbQRVYkGtvrvHl9lwfPTaJHuyzvBrxyo84TZw5j6DLff+0WuYzK/HQBSRSI9TSLq3XyuQwFK2Zmdob+8Abl0iHyGZ+nHyyze2vEAx/4JL/1r/+Cf/Cpxzh6/0OcnPAZL+ms3Vzl4ftniNs2J47VWGw73FreIp1WOXvv3QSByLlDWQb2iLfWttlqbhMhMVad4m++8yxTc0dpNocomsM9D87xV99eplZWuXz1FsgqmqWjSD6+61AtVygWC6xtbtPpeIxGA0YjD88LGR8rI8QBkaTxD//737wjY3fz9R9+tt+20XUFMXLJ59MoCmiZLKIqoygakpVjNOzT2d3AzWSIwxESAUpGBynAyqbQ0yZhJCIgYfsOsTdi2O8Rp/PkJ6cQJIlQ1RFNna4zojwxw2DoYBo6pqZg2z56yuLKtQuUsmXskUdK0QgjB9f1MIwiivo2QVC4TSkijt5Oqm+vPgNJ1z0KifdyvWg4ShJoxyXc3WRzZZFQ18lXC6giDJwhoqYgqjKFdA5fDiAUGTSb+J6NmE0TG1kUq0wEhIH/I9XigzU1DiEIGTW6+EMP0YuRgkSvOVHAePuziuIesnlPwu52TLcgCITEe+o+HMAu3xF7ee6BtJ0IUgwyIrGYIAFEUSI8IFeCKIgIQCDECHFEGCVY7RCRQNirou8dE4cRopDwM6IoBBQQIk687+n/fxmpIAtouo5i6rhBSBAmdo+BN0p2vkToaQ1V1Qm9pOpoD9qcufc03aENoo4qSuA26Y5Eeu2AsVKZa0uLKIAYwXipguMOEUWZlKkQR+A6IAoy7f4Gw26L1fUmcRhRyVbZaTdodB3yuTEsS6VWS+3pEMYsXFtAkhQEWWJgDzh69CjZtM7meoet3S22my2Wlm5y4sRpLr7+Mvffd5T/4pc/wxe/9FUmZ+c4ceokS4vXiAQdZB1dVRiMBqQKJaJAIVYUUorB2s1l7NCn3euzu7vL57/4ZV46f54fvnKBG8sbOJ5CvdlidWmR0WDA9u4aK4vXidyQxsZNHHdALOjEooYnhKTyWerNFppm8ImPPMX3v/s8l69eJZM/xNjkSdZ26izeWMNQPI4fHkcVwdIFquUshUIBRUu87nUjiyrJEIZM14pkLBWPmDgKCH0d1+4QuRGVrIbr9CkUy5QrRbrDAflcmnvOnOTG1Wu88OyzCcvWDVAllYnxMp4/JA5CfC9kNBwy7PUJfY8o8PEcmzgMksll7z7aU++4U3F1PeZv3+wwkiz6NrQ7Dr4PXXfAznYWQwjoB1mcnk1WsXhgvsatloGRaSGpIZIcESoqjVEf1w+w0i3iUCWOM7iRRyGvsbWxjuOOyGZF2u2bqEoE8g6arxH7Dt4w5NjMIVRZw5D6BHqH519r4QTgRTdo94co6RFXl5bQlIiCqaOQwzJHCFpI7MuooUPOlDElA9lQ0DMqmj7CtLqEoQCpkLDdIZMvEjoRz79+iTcuXsV1XbZ2NnH9CE3WEEOBwPMJA4GJ8Wk01aTRaCZmJxHosoYsCUhCgCiEdNp14sAnEgUiTWY48HC9iEyuiiRrIIjk8+MIKMiCTOAnUooJ9k3CTGdIpbMEQUDa0NBNE8/zCFwHQYgRFBNTSwhWoiyAFOK7QwgD4jDE8x36/S6yKJDOpMhk0/T6XVzXptttE4cBE7UqxXyatKWzeP06qqSRzeTZqTcoZDOk01msVA575FIsV7FtlyDwiGMfUQjptxuIQsho2Mcb9VFFATGKuMPNEwRJIgpCpBhSuoYb+8lC6QeIUYgmSBiRjCyKBIFPuzckRmLkgysIhHs4cdPQCAKdvhPukbtjiGVkGTxHwJMiREtFllWyeZVPfOITFCplhk6fDz86yRNnZjCyIv/qc19lECk0dztcu7TEiZkUtVyesydPMFVI88pL5ymls3z7G39DPmXy2Hs/Qm8wIERha7fLwJd47oevcGh+hguXbpDJjRNpHpHbI3IcBoMBjz1yL1//m29SHS9APESPG3zqZ5/i0ivPoqgRhmmytrTBH37+9/nYMx+gUqrA2jqlYoXDx2t4zZCF9YgnP/Up3vuec+iqgZVSmShbaBIIfp/AsREUUKSY3ZaLhMzly8uoqoxhaHixQjjoMDN1CkMWadZ7zB87TqPT5Htf/49MFCwuL13l9//Nb/PSc69QLJgoRoZ2u002IzM9UWB9ocvcocOEscg3v/EyX/veZUqFCg+dSnPX4Qp4PqqRpdfaQJJEHn/kUY4dnqDThOe+/Sr3nZ7n1Ys7BCH0hx47zSGeA4ZhEUYB5y+8ie0HSJpEv29DFKIr7EEJXdrNzh0bt5GUFHYIJQTZYuiNCGODmIBA0HBFA1WKSGcM9HSKqUIFKzvGdrtPfWODtKqT1gwCx8YdhdidIUIkoGV0ctU8rU6H5bUNIiuNF4TMHz/NPfc9yfbmNlrKZGAPGXSa4Hlsb25zePYYg2EHS5NB8AiCgEKliqwlPg5JceBtWEEClZASMhwxgpSQBwUJInyiKIDAJw5CCHzEKAJCCAMCx2N9vYHrizQbddxeD0ORiX0Pt98nFEjkTMWYdrOFkZ2hNH6UQmkKRTPQ9RTl2hTF8jilsUnK1UnK1XEyuSJmKouEArGEGwkHtD/V0FEEMdlQCBCJAqEAYhQjEiJIIoIkEkQhxCECEVEcIMXJfRQknclk3d6rTAORkLiZSpKCIEiEfuIFIEpvQzeiKDrAQxMlBMEgDBH31EKiWAJBIdxLnqUwIS3GcZhILUY+EBFJApHgH/wOP674iTBSqdUmSGUy2MMhESGmmcL3AxQ5wA37KGIWFZ9R6yZXrlwlkGU+8bGf4ut//VXqTZtms40givS6LZrtEamUxHDQ4wNPf4DnX3iZY4emef75H5Iq5BiNRkxP1bAHTWQjxfLNRXq2z+svvcQTjz3E5ctXePCBjzIMJvniX7zIb/2TX+P//L9/H7HnUS0pNEMYq5lECHtQA/+gtTF/dJ63nluiXClw8sgpXnr5dT78Ux9ifGKaNy9d494HH0WWU3z/+ZeoTUyRzZVptNooEuTzeVQ1MYfot+pcv3GedrPJ+s0moqTwxsXreFGCJVzd2OLG8iovvPIGqVQaSNyNdFVgZmqSE0eOYFkC+qULjM8coVjMc/e5h7hx9QqXFt5ia3OFWqXG+NQUimogSEVee+MC8/MZqjmNSt5ClGC7EREpOv1+g1Fk4AUuvu+xvHKTOI5xXRAim1olz9WVOooi0euHDIZD5r/JJAUAACAASURBVCpVevUeMiFBFKKbGQI/YuHaVXK5HFEQIksK1956k7WtXaam54glgUcefZDzFxbwA/egbZRKpxPTA/YE0vfiTmNIAXpRjLdjMplNEUU2jitQKqdZWHWREMmPGQj2OL/+ySf5/Ne+Q28lg+cP2dq2iSUbU/AJgwjbtkhnBYb2gDgYxx71mJ8fQ4y73H/uLKvLm2hhno6zxuR0jo2d42THC3zkUJXpCQ1F8vDCRebmpmhs5YmiIUJgM1UtMbI9FpZ2CcQMnhtQyOYZNra466zF3z7bxpxps7PdQ5NkKqU0oR4jaQ6xN2RuvoRjOyAGSFLA+vYO2WKV3Y0W6XQWWU/huT0Oj4/RbS2hChJZw6Wbhla7TbVSYmp6liAIcAcNECVWVpfAc+i06lhGCkd0iSwVI2PS6UWMBh3CSNxrjSqMRvaBzmfoB5RLFZzhKFHs2cNEB0FMEEe4foCqG3iuSyqdRVIVNNNAHAwYjXoJBlsW8LykCiPKCoqi0GolmM59yJCiJC6YItBqtfA8h83NTQQxPtC+7nQ6tNt1LCtNs9lmfHycRn2LMPRpdztYhkmz3sBzHPB9VFVFUZSkrYtMEN1ZAqxpJpjGiBjTUBgJicmM7yW4RyWOSZkWmpU4PTqjLrKsI8oqoigl8lVBgKQpeF4CsYpjeQ9io6DpIoIcIUhJwhAFMX1vxNjMGKhl7j97DxKH0CSJX//FZ3jz8hV+/uf/D77wR/8tn/mn3+HekyBJcPlKk3wuw8eeKqPIDg8++TjVyjiy32X61BF6iwt899lXQM1Rmz5Ob9AjCnus3GxQKh9jZLc4dPQUN3c6tPsBd5+9n3JlApwh7rCFZaW569x9GJrKlauXOXxkjq/82Z9gGSkOTRfY3t5hdXmV0yeq/PKv/jy/9btfotu6yE9/+r/m3/2r/4vHPvM+Zk8c49HLAqJUx3ZkdElG11Momsby0gqSCIaq4to9Fpba/PTTj3Dp4htEwYhOG775nVW0VJWMm+eZjxTYrd+g17/FxKFTHDp8lJmJm6zWl/lnv/krfO53/oqPfHSCIM6xevMqxZLMZz7xEb7x4gXe98QcJW2LY9Mllrda1Dd7fPzjn+A//Pt/y+MP382D9x0FwWdttwsSKKqJSfLbuV5EqzPE1AVkUWBqDxvu+ZDNm3iOj+vajM9MkrqD1JNI0ohEh363jywEhJFEKh2RSmVotzroUkxjt4muKmw3mngjD8FKUa2N02p2qPd9jHwF1bQINq6jSQaxJ5JSZ1jd2GJsbDrhWggxhpWhM4wIwwGZTBorcEgrIu0wwm5cIzdxDqfeRk/r9NstREVkMPQpj83gRiERb/N43h37c1ocx0RhokgkigJh6EPggbOXbIYBQhhBAAuLN/ElGTEOKJSK+K5PTKJI5HkBhfEstm0jxhJd0SZV0ljfXCJdEdHkNAIiQ6eLgAhCTBxBHPl7LogJRCUOI07ddZI3Xz6PECi0R300UWbPnpQE1BoTvEtJZF9dJAz3qxx7iTDRAaTjQKVDEIiExOo8CEMkUdyDZIi4vgf7To3x3iZDEJBEkZA9h3RRIIhCYmKIIyJRJA7CxK06TrgNAhBEYSLwIQoHJMcfZ/xEVKBTqaS6q2kagR8dtAcMw0jEvYcuYhiiySGaZaIZ5p701CgB+xdymJbO5OQUqWyGVCpF6Pmsb26iaCrZtMXU9DSKrOK7Hts7G6TSJpIs4vseV6/foDo2xn0PPEAYxozsHk++5ylUHXr9DtPTJSqVDEEQsNPwWVpe561LyywsLHD16lVGoxHZbJZ6Y4dSKc3CUotWs8uxoyfodvt0hw79gUc2U0bTLU6ePkuhXCXwfIr5HJIkYds2N2+uEkYB3qCLokO+XGJzp8O1hRVCQaRUrjBWrjA7NUUhmyObSiMIAv1+n06nw26jw8UrC0SiSrFcwRsNKOWz+K7HrfUdEBRm5+aRZJXL15Yoj81w7MQZDh8/RapQoJTLEbojHHdEo9Fg4PhcvbbNcBggCglmKogj1jc3ME2L8WoJWRHJWDqnjh+jNjGGJAl4HgcSdvtW3pKsMDYxzrGTJ5A1lUohTcpSMC2diYka8/NzpFNZ0uk0uXz6wOZ5/4JTFOVHiAr7upp3MrwQ+j0PsBIsqCPQ7UOjqxCiELghsgBf++oXiaKAdGYWRVAIgzxB4CAGHhljgKqCIFqk8l0KmSymESBLLmGgMDc9TzZTpj/qs7XjousBERK31ldxek3C0CUMQ/K1NLG/i6XLnDpt4dg2nueB0MUeRnj+gDiyaLeblEsxhfyI6bEUqu4hazlSloCqxfheB8uMcF2fpaWbKKoGvktkD/n4z/0il6/cQNE1arUq65u7XL+2wIs/fIFus8mw26GQyXDy+BFUJWZne4PQH+E4PexBk/rmLRQCuq0mkiAmpF5JQDUNgj2tYV1JTAQ0zcDQE3JguVx+B2N9MBigqiqe52GaJq6bGBeIQlITCMMQVVWxLCvBTe+3TsNgL9F7e0HzPA9N0yiXy0CyEBiGQRzHmKZJPp9HEATGx8dxXRdFUeh0OtRqNarVGq1Wi1qtlhBfxRhVVQmCgKE9otvt7hEZE1JtEAR4QaJjPhrcOS1dAEkS0AwdP0wWbtg3OkhuQZBo2GYshWJGI2fKGKqBLKnEUaKrKkkgSfE7oFVxHBOEicSUIL6NhfSjEDf0wRkQ725TKhQZO3KE1dWb1LeWePi+aZ56coKVlSv8+899hg9++KMcPV4hX8iytrVNLiVRKKa5sbDAiy+9wvlXXiRs1NnabmBaWTpdm4uXb5AvTTB3aJqPfPS9OEOPVK7E0uo2z794gf/051/kwhtvsbC0iu+4rK/eQlVV/vOf/jmHH3sPz/zCz3FofppOp0Oj3mJ8ssrxEyd49ZUrWKrB7//xn7G6ZnN47gjLSzeYmZ0iJKaxs4kixtj2kF7fhiCg3R2wtbNNsVhkajyHPRrR7Qzo9W0Wl5aQQpv7zp2gMpbh1mZAvdslXzlEEIXMTs2iKQLXl1e4euMKS9evc+jIUbYbS1y6tEylMMmg10RTwR0FfOkvv8TqVpPrK7uUshb33XWCW6s9RqHOD169zMc+9lGuXr6IlTKxbRtVk7n37HHCOMLzHNKWQbmSQtVUBt0BtVoNXRYpZjOUqwUiZCJRQjcNBoMBO7tbd2zc2q6P7XqIqoYoQi5bpljK0mn3KRby4Dsokkg+n2d6ehorZdBqtXj9jTcoFouYppXkCGFEKZ8jCj3K+Qz1rU0iz2Nicpp8KkOvPWDgh8RCktTFQciVl19mY2GR3Y0dbl65ycVXznPt0mUWrlxj69YmsigShxGN3fo7sL7vjnebqcBedToIEMIAIQrBt4l9HyESEMMYCYmNzV1yhSL5jJUUk6REfSJXKFGbmKIz7BLHApIgo6fS1Ft1sunMwfoZRgGyKKDIAiIxAonkZBQlpnNB6CFKsLG9gWboaIaKmbKIBQ4Ml9hbd/fxxu/GMO9zl25/fD9xPYCw7D++977RbRVn3vW+78ZN77/f7QRDIYpBEt+RH+yfUwBJeFtC8McZPxEJtGFYCEhomp5gXsIIAWmPOS8jxQMW3nqNre0Neo5Doz3g1fOvcv/99zMcDun1OhiGQrlcJURhOBxSKhV5/cIVXD8mbaoYKQtNs2i3+pi6jD1yCYOIfn9AhExvOOAHLzyPoWdodda4cOEGsgo79R3m5+cTjU1FYWYqR7VaZHq6wqFDhyiXy8iyzPb2NsVShZ2dPqIEzU4bSTZ47fxlFC3P2NQcIRIjJ8BI5RgMBmzcWsId9HA9hzAMOXb0OOm0xcbqFVK5Gi9dWGRtq0PfDgGRXrdD6PQpZgxKWZOsqRGMhszUxkjpMplMBs/z+b0/+mO+99zLrCwt8tYbL+COuhw6coLDx08ycnxSuRJr67f44WsX+aM//TJf++Y3cRyHUbfO3Mw4zWY9abmHSZtZUqA/dOgNfMYmZkEyGQ6HRLHL+FiN2ck8OxvLyJqKIMnousRglCiIZEyTE8eOc+reB5meP8F9D7+Hp5/5JGfue4BMvsz9D97HXaeOcfHSG0xOTmKaOqdOHWNicgxRBIFEmWN/dwtvTzj7upp3MrYWwfEDdoYKSiwhxCn8IEXXldlo9oiiNE7QJtBLdMKQb/zwm4ynJUZ9nbxpcuLIET7ynjKWtsLWrkJ9U8Xhqzz0cI443sJQUqxtvszWziJjMxI/+6vHkd0uU7UlHj13AllxufDmBsvLu/R2e8SRQm+wiO28xuz8OP1egKC0mKsdxfFWGXZFRn2HTLHOsNegXLEJoiyRcAhZFhg4AxYWb9Dr9VAoU8nOUihOgNdD1AT+0T/+nxmfP06hWKLdaDLo9njokSdIF8YI4xSqXqFcPUylUuOp972HT3z0acpZjVpBx21tkld9vOYGqhDiOgPcOMaJYyJBRFEtdndbtFstZEGlWhlPFEH2ZAwByuUyg8EggRQpSuIINxiQSqXoD4aUqmOIsoJhGAcV34HtYJoposAnChNHOIgRhMTOen+j1mwm+uuapiFJEv1+f6/67HHz5k0ajQaFQuGArJZOp0mns3s69T0Ggx6CAKmUxcbWDv2hjaobbO3UUS2DbKmAalnoWqLqk06n7uTQRRQDesM+oQiSnHS3oojErVFU9tqyPmPFFNOTebJplVIuTS6TQVBAU0QMQyCbVQ9+n2SDI9AfhezWbZyh93aiEITkMmmGdoSg5jl/6SI7K2u8+uZVquOT7O7u8sCD57h24Tz9689x9eYu1zdC4sjj2JE5Nuptnn/pPDMzszzx9Ps5ee9DNPs+2x0bXVOojVfZrvdYXd9kuzHkhZfe4OSZu+m6CivbQ9L5NKXyJD/z9/4+47OnEsfAMGZycpLjJ07QXV7lh9/8FgvXr7Bw+S2+/pUfoGk6b5x/nf/ls/8Dr752jdVd+KWfPkFWS/HlL30FVTMoVCfpdzZYW77CmbPnaAxsTs+P0+mNME2Drd0tDENCl6E1gHIpR6e1xac+/iS5dIqXrvTYslWMrMXnv/CHLC2cZ335Ck88dBglsjl9bIoPPHkGXXaxozRqusQjDx1Gjl10GUxT4cyJaVJpk1Jxnowh4/Z3OTwlMLQDLl65yV9+5btESpFGq0t36HLu1Aks0aVSKoIPcuTTH9g4vk8kSjRbXRqNJvV6E2fYYzQa4bgeXgA7zXaiJXyHQohjMikL05DIZFL4wYjhcEg2m6Vb30SVYxAlVtfWEUQZM5/niaee5v0ffAZNVbHtEVvLV2kuX8G3Q0wtQ3drh9jZRKXDt772BexBh7HJCcq1cRy7TzmXor62yV9/41nOv3mN7WaXN1+r853vnOfZH7yO3XDobHS4cfEmY6Uqgd0nCpy96+w2LeO/Q43jQGHKDwicBIsdjAbQbSAO+4hBhLi36beyeXRTRZZl/CAgUygSyQrN/gBB0+k0E3vrdmdAeeIIR+bPIEp5RMmCWErI1FGMEMWIcaJ8IcvygfZ9FELgR3trbowzGmIPB9QmJ4gFAc0y31bH2iPxv/v73a51DRzMDfsFsP3vHoRhotl8m7Z0RJzYney5F747CffCgHhPFSiIIyIBgjiBeYRhmOhC3xaRtKe5vSd39+OOn4gE2nODZOKOkpPd6w4AMWkDqimIhywuXWJ1vYcfg5XKsLi4wIsvvoisiHttWdhY3yIWoNEIaDXrDG3wAp+djXViIcIP4z09WQ1FMdA0C88NCPyYnZ0+g8EAWVK5tbLEn/zHzyMpUKlUWF5ePvhBJ0opTD2BiMQCe4towv7f3G4yciAM4YEH7mNxcZFCeZwXXznPK6+/hpXLsN2oIwgxKcvEkMHuNcjmLNJpC88LGAx7hEGP779wmcX1dsKaRaaUL2DqMtVCjrSuEthDhMAhl9YxVIG5yXFUKUBXBWRkrl9bxnED+p06QuDQ6bbYrde5+54H0fQMd585Tq5SQTIsXM/BGXRxbRvHcShVykxNTHLi8AyzEyaiAlEsEcWwurqDlSpRLpfQdRnfE+i362xuuGxubJPLFvEDkXq9jWVZhJHP177+FWTVwsxUMdIVzFyFTG2Kxz/4IQajEYNhj3K5iCBI6LrOyO5TLhcPxse+kcrtyfLt8lh3Mh48B4pisNYMKKazqKJEv9sBUUSSK9huAWSd7sBG8C0eP/sgJfP/5e69wyRJ7zrPT3iXkT4ry3ZVdXe1me4e19Oj0Rh0yAySkEFCgE7A3bPcPtLuYhYO9nS37vYebrllQRx7wB7LArsIrRASZhFIyM4gzYw0I43rnvamvMusSp8RGT7uj6iq6ZHEX8c9refe54knq6urMioyIt74vd/f18RYmootWYTpiHjg8JZHvxdPGpIvTaIpVXZ2X6RS0ul1d5k/rjA3P8XNWw2cbY1RojByI4JgmVwhwI91yvUCjlOi0ZAIkk00U2J5rYmiHkFISpRzZaYmEzS1jyKbuMEQ36vT7Ue0mgrbjV3CVKI7CIhTgeZ2n1KpSKlUQJQ0SAJw+kzNHaPVG9DYaVKuFDl2eJZLr7xCrjJBffYQgqGh5C0Mq4CqZEEmaRKhCBI5U2bUbWGpIsNBDzEFP40Jpex8Bn4EqUi9Xiefz9PrDchZBRzHwfd9BoMBhmEwGAwQRfGgc7WvYq9Wq1lwEhKqqmKaWbCKYVqkYjaxS1mXkDSNsaxMlW6a5gFSvE8b2l+c7avkXdfFMAympqYYGxtjZmYmCz3qDQ+6QKury6yurtLtdpmcnMKychRLZXTDRDZMkBVk3WCzsU2aJCjynZ1+VVXOFidRhJBFNpIkmf9snGRBCPEeRzOIPRRNRVFEhDRB0yTyBRNVE1HU7Bzse9mqmoznpWxv9/BH8l43Qct4kXEMcg5XsLn/gfvJlWps7g5pDGDoVRh6HR76nnfwpjc8zqVXXmRpTcDUTEadLqk5zsVrLba2Grzw1FfYbW6xvXid1997nNc9cIaZiRqHZkrcXLrB0mqP3XbEF5/8It84f52RnxBHHuVKgWu3FhFzRTx3RK1S4cqVK3zl6Se5dO06m1u7HJo+xAf/hx/n9Wen+fjv/B4Fy8TIy5Rqczz+1rs4XI258Pw3WFg4zsVXrhAnAkVbJZ/XqFbqSJqOnRMR1KywyNkms9NTTI6XEEXod7tMlE2SyGFxcRsrr/AXX3yOUn6O+pjKRDnPycNTrNx8nr///rcTDnaYnKgxXVZ59uI6/+h/+m959qsv8MzTK0xNjlOp1PCCBLfRwOu7fPovL6EpAo+87gSKFDFVr9Iepjz10i7PfmOJzUYHPIfm2hISIa97YAFRSHFGMWGUIio5tnYcEmS8AGanJhDSGNIEx4uoVSey8JU7NKLQwxv1SAIHz/OwciK+FzN0OgjEiKpGgsjM7DxBGLO50+bm2hajRESvzpGbOMzpe+/j6OHD2HkDd9RDCEMGux02l5d5y6OPsrW1jht7rN24ScFW2Vy7ydUXz3P2Td/Pf/zjz/NXTzxJ01+kE0ZEao3LL17ji5/9G4r2GI7jEPsBvu9/m8MG8BqU9Nu2MCL2XYQkRAoD5CTTCKW+j0fIsVPH0aWEqbn5zHrTGxHFKafP3EO70+PE0QXCMKJYrdHtD+n3u/Q8lyAUMh2JrO+5UYAoytm9Hqd77IyMjxzHCaEXEvsBpq4jJCm7Ww3K9RrNTotYyOo0RZAOFgPf6qJx4KbBaxcQ+0MURfYZbKn4auz37e91u4vH/teZdan/GjAts/zbC3G5bb+3jyyg8O8+XOW7ooAWhYCR12fgdJAVga2tFQZujzTyGbbW+F/++b/i7MNvxPVCXD+h0VxnZv4McQK6DDP1CndNzbGysY3vDZg9ZNH3BUwNBD9A0VS6gyE9NwLFRpMKCFLCViPh2NE6thLQG8HK8hbTs3MEHYlyXuaHf+QHeP7CMqHfwulFqFKMGwxo9RP6bsqNlRU2d9u0221Uq8jajodpga7B157+CkurG7ztbd+P5wz4t7/4i+TtMg899DCR00UKQtwY3DBFU3KYdpW19cs0rz3D73z0CS4uNjFyJcaqJSQ5u2DrY1MgqSSOx2SpTH2szHRljIKsY0gKDxw7xrilU6vZrG3v8rFPfYbO7gZx5HL3PWepjk0ycAc8+dUnM+6j4zI7WaO1PWDYT7Fsi06vy06zy9rGJs12i253hCJrBOFeOICb0vNi6hWT0HPIFQscmZvgve84zbDfp9d1MCxI8VCNIl6ic/rU3Vx98eksfSyNMjGmZpOisHD6LPc/8kbGSkVWbl5k+cYVJsfqxH6A63qM/ADf8wj8Eb7nEgYBSRwThSHxd4EP9HvfPMlk9XXkhUUuX+xxz/whZicqaKLO0emjOLGDN0jZbXpMzpfYdgLipE3FuEyt3seWWwwHdW5e38JtKJTLLlfbKjdXt/nGy+fxRimvfLNFf6igaFU++ekBL1+O+MY1ka3mFlJssBO0EZWbtJ2L3Nx6FlkPcTslAndIQXfYXQ25tvwl8kKKodQ4fdcUiQSjRGfmaEgY5LFyOv2+yLAjUCxMky+OM2ZBPNyiOH0GOj2+8df/lbxlUSoUmZ87ji4K3Lh5lWq1SOA5jEYjLCOHZuVRrQKSZjIzt8BYtYZdKFIem8EwLEYjJ4vxRkPL5ShWishKHtssoakiIgJxnFKsT6DlTKQ4YLOxiWxoDAYDPM9jfHwcRZYZdjuZUb8QEnghuqIiiSBKmeg4CROkOEVK9kQmigppCBJIRgEUCzNnHxTW/shFFUVIYyrlIkgQhT7Hjx0jXyqRCjKO5zJ/7Ch91+HG1QusLt6isbFJuMfT9+Jwr1VsYhcL3HvuLFY+jywp5O0CR44uoFoWoztoBQagGdmDLgoi0kRCSBLSICEmRhFjZBmQZDRTpFhUsWo5NnstHDGknDMp5A0UQ0WQQJVBREaWRXRDIBEjmu2QUTRC0V1kCRQ5JkljVFIwijjGHI21NX7mJ36YjaUGl65t8dSzXX73Czf5td//Mz70znMYRY9RDF4i0trZ5tTJo+z2gkwEZVvohkzHGfHMcy9z+uQk//qf/iMeuu8kmphQKaboisxDD9xLmDioapFbN64zc/gEmp6jWDUI/D6H52Z45MF7qNoxrz/3ALVxm/ZuDyF1+L73vZmz597E+tVtfvm3nmC8ZpOGEX//Z/4e7WaDB04fYWtjmcMLd2NpGsghQt8hbwscKhm4Q5e3f//3UxAlaqYGMlTL44yPj6OZJZ5+8cZBvMOv/cEXmD76IHkZ/uJzX2Fi7jGePf885y+s8u73nuBH3v4wy0vwsz//G/zZJ67y6KMzDLyIVmMTSZY5cWoeKerxlsfnmJodZ6Js8WPv/V7c7jZl22CyLGCWBM7cfy8vXLnGG9/yOGVbxzBUCqaKZUIYALJAkoIkp5h5iyBJ0WWZnCojSRKb2zuY+p27dlUtc4YQfQlFFYlEkeJUnZHvYuQKBGGCJMlEfog/8smVasSjDitXz7PbXGTt+nmuf/Np+hs32L5+jaC5TeR10CWRWqnMp5/8BsfPnOXC159Bivs88Z8+wcUvv4A8fZxPfebPKEwYTN5VYebeSd56NqEuX6Z+5hRnHzpNp9snHCUQKlnkfRCQxgkk3+IBnaQHISBpnBALAAlEPcSgixUHRIpEmISEvR6JF6EmKmW7gpEK9PtO5pbhjUiimOUb19DTgH5/iG3bxJGHqWSOI3kjj6IriIJPHLoIgrinYcjSrvfRaCHJik9ZlrGLJfpOhDdwKOgq0cil22ggpQntQSczDPC9jGoSR4hpFoaS8ZilA7Q5iiKCJELaCz2ThHQvAEXIgAxikiQiTWPiPTQ6IUUSBGQEIiEmFmKENBMGirKArEokxEhpFtKSiJlnthKlSCmIUXJbYZ39XiTECGmcubr9HY7vigJaErNVjyBISJKEH0RsbWwQjFyGbsCv/MpHME0L3bDp911sO0+j0aBQLjE9M4kkp1h5i+HQQZMVxDRBkgQEAbpd/8AbdnNzk1KpxOLiIrqu0263yOcLIAqMjeUolUr8+I//ONVqmWI+x6MPP8ITX36JXi/hyGGT48er5HI5lpZ2SdOUe87chWEoCGLKzVs3MI08lWKJhYU5SqUK//inPsT169c5ceIYH//EJ+kPBywvL9PqtFlcWeTMvWcoVYqIoog/GmBKAr1W8yDEIYoier0ewEFIRG/QJ4GMruFkMZ6WoeG7DktLS9TrdURRRhRFZEVj5EVcvHiRtbU1VFUlTuD+sw9y6fJVNjc3uXXrFn7gI8kxqiYzGAyoVivUahVc18M0LRzHR9MMJClDg19+8cIBuqdIEt5oRGsn84QcDAaoqkqhUEDXdUzTJE0FLl68yPrqLcLAww9GBx7OipK128/cfX+GLva6bC4vYhsKOUNn0Ovutcg9PC84iPkOguBgu5NjZ8MnDBpM1otU7QIbOytoko6VU+j32hRzIYfGPXIFg/mZQyTuiJ0tHVkyiV2brVaHWiWirHcZm/YYOiAlJWrVOYIwZWyiQK6oMeoOKVg5FMllYqKGP5IoFe9C0OqookkY5Vlfh9iz6HYjEm1ITIhhisweKrOy0cETBGq1ErISUy7KbK1vIKU2qiTjjWJCX2bg+wz6Mr2Whp/kQJahVGPQ7XH67jMYVp5iqYKhy8jETE9OMRqNqE/NIIoySZLg+yMgycIigNEoo2CIoohlZcEmgqSAmOkeLLuIYVgkCJSrFVTNQFY0BEGg283OvyyIRHux5vvX1UEHQhIzr3hepfXsB6u4rguAoigH7cV971NJkjBNE1mWD1CNNE0PfKRHoxG2beP7Pp7nZfdPHFOv1xn2+jQajYNELl3XD15zuRxhGB6Eqayurh6gUYIgoCjKd0Rl7sTY/0y/lXu4/z3f94mjlJEXks/nGDguXhAgKDJhHBElKVEoIQkykiBi6iqSsCf4jDJUW0ghiTN0KF+0Qcoeooqi0esP0U0Lid8KGgAAIABJREFUU0144MwCH/zv38lMVeFDP/WPEWUdWwh5+ZVr/Oqv/zrLq+v0hw6vvHKJZrPJR//oU/z2f/wi9fvv553vfJz52Rme/upXyGkSP/j2R/nZD/13zE+Ms7q6ju/7zM4colytYBVLiLrO+uoKlp1HFEUuXr7O1avLTL/xcQRJQ5bh8ccfp1wosXTrBkcefxPTU0UkOWV3t83I9Wg2W0iSwOrKOjeX12g0myzdus7a9g5T9Tqloo0kKVimSZTEyLJIHIPjOLieT6vVoVQ06PdDxsfL7DR9XC/CLuR58MGzbKyvcPXqDYIwZfnyDfqDEWOT8J4ffJTf/S8/ydVra/R6Pb7vLY9y+foypbFJlraabDV2SRKZQ3MLPPGlJ3nX9z+OrgmcOHmE8fFx1tebeFHKjVuLPPLII1y9fJnxsSppDJqWUSCnpwukaXpAWRqNsmCrnGkgSRLFQvmOXbNimoX1NFptwjhA03QUWccuVIhTgJREFIhIs2AvRUSTJcbH6miiyOzUFHGc0mh1mZyeoj4xRX1iHM/zqNTq3HvPXaytrXD88GEU3+PqyiIDQeT3/vAPcL0e41NFZAQMw8KyTUpFg0Pzc4zChEqlhKZm854sZcXxt97nt6OgB2jrPk0hikFQiGKQZD1L2EsiwmCE7zikQYCuasRDJyvMJZB0FSuXI5VExAQ8x0XP2XhRSqPVA1U98Ene2ythGOzpHl5bUIpiNs+2mg2OHJ4ljlOG7ogUMu68JHPy+AkKhQKyqnwbAr1fON8+vhNtZR+lvj1ERmQvvnuPapHw7aEsQrpnT8drUe9vHd8JbU72tr/LcedncGA4HL6aKifIVGrjaJrKH/zubzN1aAFRUAj9iM1GFzM/zj3nHmYUh1y8cYsXXvomxZJFJPjIcg5ZEigUM9J7LpfDtmWq1So7Oz1ydhErZ3P67jMIko7ru1y5skZ/OKJQKTMYjfj8l5/kV/7Pf83IafHyN1/EcaFcEJibnmTQ7SMmMWM1nZEfcP3qZTQ5JW9ZSKJCp93n8KE55FRi4fhdbKyv8/a3vYOtnR0eevQNbGw1yNl54jgmjCNa3Q7FWoWB06bfXqdAj7DfwjIMRo6LvNcSPXz4MIVCgW63y7G7zjA2PUN96hAP3H0/EhGFnMF4NUszTEUFVVXRNA0njPjsE89hmHnK+SxBqNkaUps+ytJWm/vPPch9Z89xZKFGfdykmDcYq1YwDY319S0U1URUNTTVYDgYMXKh1+tQLMhsra1SyJfY3FwnCmNSEnq9rPU9OTm5V4gY2IUi4zOzzB85QjRsE/s+8p5CN4oiDMPAtm1KE5McWTjK9731LciJS2vtJoYSI+Hj9Ac4fYdh16XXzQST+9v+AuNOjVtXQk4d0Rm3c7z/HeOgFei2G6R0ObOQZ9zY4cThBqeOBmxtvUQvGNDtGtx9T47HvmeHiaKAH7zCkSM9HBcuXnbJGzIXrrQ5fuJ+1ndcnn5hh5aT4/piD1EX2d4dMXLgs09e5k++dB4pTnnuvMPado1Td91Ft1XlmxeW2Wi2GQUjdCOk4RW4tpXj0oUtri1ewLaqyKLKxsouqupyZHqWTn+HfqSjqGV0JccorfHCjUV6V1ew5+YYBQlWpYphGNRsnbJtMDFziKn5BYzKNLKqEicJlqFh7DlVpGnKYOhSKJaRRYHIG9Ju7SAqOmgKtclx6uOzVOtz6IZNkkqIsky5NkY+nyeKQrqdDsVikWq5QhxF9Ls9kET6roMXBhntq9Nl6PSwbRtdNw/iZguFAuVyiU63BSQIQnrAcd7nP1uWdXA9FotFNjc3yRkmnuPS3tml2+1iGAa5XA5N02g0mvR7HbbWVkmSGNM0KBTyuK5LvV5nYmLiYPIeDAbYtk29niUPDofDA1pIv39nRYRxlD3UDFMlTrIYXVGEJM5ADSunEUYOt1bbrG9lNJrWYMAwiOi7Hq1+l82Gx2YrxTSK2TkqFVAVCeKEIEqJYokwTOn0A7xYplovI6gCsiRw8ZVrHD11luXNbR46M8ej90wzdSjijScKXLp0hRd3VA7XZ8hXq/zP//R/49CRkyycuodEtHjqa+fZceCDH3wnf/Ybv8HTT3yOG9eu8/RXnub0whTVXEyvucpgMKBYLlEplXEGHYqlCmEiQpzg9LI45DgVGbopbpTnL/+v/5tqZYrV5Vu0Ox2cQcT88UN86WO/R61mUK9aPPLQY7hOxJve9BjveufbSClydXkHhITuTpt81SZvyChEDNpdNlY3CBGZmJtGVWFta4CkWnz6r77KieOHmR7TaHf7pJLAH/7R02zvtrMADC1AVHKsbTlMHT6Dqhg898SLbK8p/Kv//Y94/G1vRECi19nlbY8/wuzMIQwzh2rWWFvfYXm9xdu/7yHWF5+nsbnL7m6X0B/iOClmocJqo8cnPvEJyvkiahpw78lZbEPHGYQcO3KUQXeIkGYC5Wq1iK7rjEYO9fEqQXTnKBwyOoORT35iDFmTGbgxK8sbDJ0A34tRZRA0DckwGEU+YhSyu7nJbmOHdqNBEgbY5THs8hidQZ/OYMgwCNHtIu2Bw+7mFSw5wYwddi5d5A3v+SC//KfPsObAg295mHsfPs6JEyeoTswwIkRQetxausn8yftQFRnVMJCV7BrL5/PfJlz72+gbURACIggGYaIhYpCmIqqUMOo1SbsNRu0dSvkyysAlikXyxRK5QplAEDHzJSLHQZIURKvI1PxJivUFPMUmFr6dQvGt2qLsb4vRNJV8waK5uYIfhRw5dopIBEWSScKI3dU13H6P2YX513CV4zB41WL2W/Z1e2G9Dx5Ie0i8hIAovJbGcftnBa9Gn+8X4nGcxXgrkowiSbxaHid7dKMMcf5OIse/y/FdUUCXSjU01UJVDALPJ4l88vkC7/rBH6HjOLhul43NVTqjEVu7HS5cXea5F66xtBVy7nWP4roeX33mWY6cWKBg6cRhxGjk74nSTFqtFrKSo7HTQ1ZNLl+9wtZWtnqdmTmFqtXoDWNWN9q0uj7PPv8Ulglf/usvYuZBFcFtt9FVjWZjm0bDo9+DK9f7rGy2efblW8j2HBNTk5iKgCrETE0f4p4HXs+1jR3e9M7303F9amMTxHFM4Do43Tad5jZOp41CwKizxuKV83QCCcswiYMQIUkplUp0Oh0ajQa7u7t8/jNfIERiFCWEscgoEEjQsApVdrt9HC8m8CNEISFv6ixtDfmFf/ZveebJzxMMdrB0C2cY8i9+6d9RrYwx6I8YuSGdHZecZWAZGmniUy6XWFzpgyIhSgmSDJIMlqny5u99jLJtkctXODI7j5xKFCyT+niGWgRBwHA4JIhCdMOiNjXLg4+9GdEsImkay6srCIJwEIzi+z5JElMen0A0chw5fR/HztzD6RMLPHDmOIoSkqYOntdj6PQZDAb0ej16vR6dTueOXrtXm31W17eYONyjE71M1BOZOywxXRlHkr9J39f5/FdAFzpMlhXmD6U8+NARGmspF56NmBkvs7ZZZKf9AO1On04Ys73oMjVRp91aYWV1SBAv8PT5La5s9ugMxllcUlhdaTJzeJrhwCcxKmxtCoxPVHnupQ6y2iUZzKPkazS2DJ5/cYvQqxBHBVbbEdfXRJ54ImJl26Ox02G30+b66hXypYR7Dk0S+B2G9HnmwqcJkhKFuSlodxk4Q6rjdc4+9CB+EpGfnidUCij5GsXqOBHZxOgNBweL4iRJqE9NkSAQhxHLN64gRgHzJ44zdmiG6thhLHuKIElpDRxagxGl+jSICs2dHa5euQRxwqDTRUwzIVrOMDP02tAJohBZljFklTjOUN5qZQzLsg64yY3GFlEUESchhqkeOPxEUUSpVDpAQyRJOkCH3aGDLEpUyxWq1SoTExOoqkq9XifwI0ZDh0P1MaamJ5ianmBrewNBEGi32wwGgwPEfWFhgVKphKK8GqgQx/EdL54BoujVxYQogmUZiBJ4nkdKjKpJ5GwNxxdZ2nJZXW7huzGe4xOHMApVBqHJynZEIpvoxQKFUo4kjDKuYhjheCEJOVo7I1RRobPV5qd/4Z8QJjFHjx/CnjqGZI3x9avrBPY0v/Rrf8iH/81n+LV//+fY9QXe92M/T9HO8/a3vo1ht8P6rUUee9O7uL7lcXzhGP7IQ1U00kQhIcf7P/Bu6uNFZLPKasvj4uI2ruNnrhN3n6BsaShmjnSwgybKjCIRXTd5w8MP8scf/yxnTsxSsiyOLhxmfGKMpVvr7DSXqc+PsXhzi4lqGUlSePKrT7K1cpFea4OdsMrzF5Y5dfI0L5zf5M2vO4YfQ6E8wU/+xLtJowEXb2zx4vnr2HkLM6cjqDnOPXI/D7/uXk4cncLxIsYmZ5CMTBdw9vQJPvT33o2oGBy5637OX7yOpArcf6/NmVMCG2ttPvfpJyiXCvRHCdfOv8yNq69QKNqUCjkOz05x/sVv0O7BvXffx4d+9I3MjVkcO1RFV7u89PwiO72Qsw+dY6JW5cbKFkQDAmdAMW+wePMW8/NjdLtNZFmmWCxi2zaqItPt7bK+deeivEPPZ6peo2zp9Hohs0dPMntoEsEPiMOIAJXAGZBGIX6copZnmD99P4lu4AoStfnDiLaGUS2QKxVYOHOa1XaH8SMLOH5EOW/iNZv8zWf/lJvbCe/7hY+wHci0+iq/9JEn+fhf3ECsFYhED3VyCqVWYdxycZ0e+XweMWdRnChjV4uEcfQa9BVey+3d5/VKSVaMyamEkojIiUjse0TBiHjkowkSWxdfxGtuEXoJpmZRmTqGkJqIqYyhWPhuwEgyUIoTmLUFBmikSgk5FRHTV/edpAEp4avbflEpJCAke4vpFEGVKOZN1pZuIQoCswtHEHQVWYQ0DLh56dLBsSVJQhqHRIFHGocH89z+ce936vZ/Nvv5BHkv9EQSRKRUQBHEjIaxV2Tvx3NLUmYmIKWZ/7SUgiyI2VwTRpn3855qQySFNM5yIm4TLaYCxML/DwtowzBug/dBIGHk+1j5QsZL9EfEcZh5JBIzGAxQVJsUMn5uEJDPF1lcvEm5VMQ0c3Q7PTY2NqjX6wfio2PHjrG5uUmlUuHQoUMcOXKEa1dvMRy4JLFIsVDlq089w/lXXuZH3/8D1Ks1RiMYHxuj3+9iWRb1aoVyWaJYUThyvI5plXBHKSvrO5mdXd5i4cgsc3NztHo97rn/AUTVwC6UUXUNwzLZ2toiCkKkBHzHRREFfG+E7/s0O4MD1WoQBHjuiMFgkNlAhQlnz9xHt9tlp91h4cRxrFye6UNz5IsVJiam2N5pUiwWkYTMf9ELEirVMmPlIp7To1C0ScIIM1ckny+wu7vL1laXYtGk2+kftJnTNKVYVFnfaGZK5zBClsE0TZrNJuVykVKpdGAlaNs2QRCgqir5fB5d1w9uLsOyCKIIRcshySqVcg1d1/fOt7DngxmSy+fRrBx2sUK+XEVSFRRJZGZmek/klJJGcbb6/C4Zqj6OaLVIVY+lFQ9LTymWLNZXN5g6ZLPV8pD0GWRznEsXrnB6uoQ76qOZHYz8gPOLHRJBp9dZZTTIkQSzTE1Ze24QAmfPHqU2lqeYM7F0gdCN0Y081co4G2t9xESj2Q4Z9iJ67Q7t3Spmfki/s46qCey0Ouy2A7otj93GBj4unq8QRkUMM08cK8SJCanMoOtTsVM6LZd+T6E2aeJ7CfghSPKBWtvzPGJkVCNHsTqGrBhwQAEQGO3Z5+1PXlEUIcoKnueBkCVK5qw8drGAbZewTBtVV9B1HcuySNM0o23ICqV8AUVRKJfLxGF08J6O45DL5Q6s5m5/SO3br+3fR1EUoevqgYf4/mQexzG9Xg9Fyf62IAioVjOaFrAnZOxlHrl7NnmCIFCr1fZanQGt1g7dbvsAyTYMgyDIUPFcLkehUMiCXaIIx3EOqE/7XtJ3euwfx3eyiNrnMAqCRIrKcOBnyvsw849NYgFEmVQQSSWJVAY/CUiTBFGUUZWM1oIgIwoqiR+SRin1sQmsvE2/34VqHUU1+c3fe4lbGz2ePd/g1MNv5W9e7PNbv/wb/NQH/yHOcMBHfuVXUWWFMHD5/Jf+hvf8yI9yz+kTbGxscPLkKRo7bV54+QJ+FHL12mWuX7nM9uY6Y2M15o4cZmpqiq3tTUp5i1G/S+Q59Hsd/DBGUXVGbp+JiSL/5WN/wNWLlxAFGUFImRif5E//7FN8/blnOffAUTY2Nuj1ekxNT3DfmVOU8jZ/9Mm/Znlpi7WlVbxAwJQTVjY2MUybXruBIgsMhiPiJLO5y+VybKxvYegWN29dZ2NtjaMLNfrDAamYCbO++tVv0mxscu+99yMrGovLS3iey7EjJ9jZ3uBDP/E49949w6lTp2i02swfP8lXv36R1c0W5ZLNN559mgfP3c9zX1/mM3/1NJHf4T3v/h7KpTyT9TyVSpkoye4FTVaYPTJDPqdz5tQsqqriui6qqjI/P08YhiwuLtNoNAg8l1bLZ+jdOQ60IKS4/R7ByCWXK+KMfHr9DrosUbBt7EKJnKbR3t2hkC+x2mghGgYTM9PMHDlGf+ShGXrGC5YkLl+9xvjEFJev30IURba3t6kVy+zubDM2ewy7bCFIIX4wIklEdGOK3UEXSOg4I4JURAiG+KMhmqaArCCoMl4QHlAUvhVZvX18K0oaeD5EIXESkSTRnv1mAknMoNtDFkXiVCBJJXKmTRQluI4DiYBdKqMYFjvtAaM9IFFIX/Vo/tv2D/u+1DFpGpMIkCIQBAECEXEQcvXGdbw4A7zSOEERpb3aK48kSQddv291HPnbUF9pj4Yh3FbcH/xenLzm37e/vvZaeNVb+m9Dr/eR7+9EL/l/O+78DA6kewKfKPZRNBVZNpFSEUlUUFUd27Q4/9IL7HRCxFhi1B9Rqdq4Dly7uchuJ7OxEmOZl8/f4PrSBrutkFK5wPRUjXy5xteee5HllXUUVUfWDf7iC89iyyO2hzssdgf0Wk18WWe30UdUKrgdH90IOTwvsrq2w+TMNMNBn3K5jGkW6Q9C/FGAO+wzP5Njp9UFVWZxtUmhWmejMWLyyH0MPR+7kEe3i7jdDs3VazQ3b+FHQxRZJojBNPOogszU7ByJqLHeaBGTQgT/8n/8MG9+8BFUVaVoWwxHQ165do3O0OELTz/D4naDFy5d4IVXXuGFF16g2+1y4fJVxFQijlIUKUUWNUoFG9cLaLZbmAWLF775dRbX13n/Bz5AlMB2yyVIEjr9LlcvbqIaRXKlCofqJVzXQZdkxARMXUOMPHZ7A/w4opg3EfQcqmyTsyvohoyQaESJwfpmn1ZngCJJlMqTTE7UsUyTWrVK5KfoWg5JMQgTOXvgigqWomHndEqlPA8+dI677jvNkckZ7jtxClNX0czM+3O/BZWGd1ZEODldodmKcJwRrV6VR87N4+5YyErM/PgMkiCjKRHXGl3ueWCcJ565ihAWEMITnH1gmntOTlEr6QzCXfJ2l872iL6Q8Po31Dl/I6BQXOeLX76G44i4/RyxlrDeCLhyeUDTzSOYCv12D1mdRtE6tIJNvnlhyAOPjbOx3qQbJAjmBIZRYXf3OJaRcTJjIcCLElzf4+TddyHIeUJfRrJzmMKQsXKLZ74W8sD9j0G+SjjoYOh5KuUxBkOP2aOn0fOTyEaeyvRRELPJUJQSojTOmmmpgBf4BFHMoN9BSAKsyePok0dRi2X0UhXDriIIAqNhgKTk6Pf7iLJGhMLm8hK721toqoDvDVGUrOjs9QaQSGiagSyLuO6Q6lgFUzOBBKQYRZEoFGwOH54jIUXVDERBRdNsDLOIrtlIskCtPEboRdhWDscZsby4goREzjZx3AHFUh7btLBNi0LOJvR8dFXC80bUpyYYG58kl8tTqZRASDKRTOCjmypB5DFwBnR7PRqNBkmSZB2XMKA/dDD3QpDu1EgiDSGJicMQUcg6R7KqI6YKURATej7tnT45A8ZKEMUiJAZJLNHxE4JQQhZjVCnC9T1GjofrRCRSgKom6LqOqORIUglJF+h7Ilsdl+2tWyxtdYllke6tTebve5iP/8HPcu/pBf7FT32AkrzJP/ihk/zch3+WtTZ84H0/xusffohTp06ytLaLpsF//eTH+dpLK9x19nsI0wQ/kTh+4ihHJqd4x5vfxpeeeZ62pzH0TJ5/8RK9/pCZmQkGYYAmxEgizM0v0N9tsrm5TXNji+NTNnfffx8/9+FPMDlZJm/r/Pbv/AceevB7MSOLyNthrHKYh9/239DpBmzubHD1Rhu9PM9nXgTJNHn03DyXbqwQjxyef/k8xbzFpcs3qFTzVO0cVcOm5/d58cYyz1+4zsriIkVdRnRTmu0OiSjymc/doDJR5j//py9z9eqzvPzi1ykXDvPcNy4wcWiM9//QB3nquSeJQp/22jU6vZC//PzzjI0VSASRP/nyLV64NWSz1aYbDugIGk+9vMmXn7jAxSuL9Ds+iupiaXn+/K++xlpjlSs314hSFc8bIpJ5nRfzBWZqZSrVGoqh4UZZyuT8TJ2pmnLHrtvm2g6paKDkJ+h3XLZXb6EqOoptkuoKoe8wGPrYhTJJGjFezXHxpVfoNZu01heJ+j2KVolh20VWTQzLRFJMpmcWKNYmGDd0mkuvUDr0Nv7JL/8xW9tDdlopQeiBIPDMM8/zH37/a4zQqIgqeTSCoE8QDNAqVSpjdQS1gqHYaIqazY0CrynebkdjhSTzUSeJYTRA8fr4nsOlP/0Tvvzv/j2h1yEOMxcg086hyQaamiPoDPBkC9mw6bsxWu0QpaOvI1QrqIDqg6QoCIpIEguIokQUBZCKkIqkiUCaCAgkpEmUFa2JipDKCEmKLIlECYyCDLASggg5TDJetgCpmGJLAv3tLTzPxYtivCjGDULkJEGNEwQpW/AESUgiJKRiSrKHFCdpVpwnYkRCSGZKlJAKCYgpURohxyJSJGSpgkKGWmeGQQICEVISkpAtVBBTBDLEX4y/3Wcb4O8YgP7uKKBh/4LKiqJ9YZg7GtJq7WDnLa5fv45lZqtz13UZHx9HTGFzu00qKEzPHkJSTaamJ4hTAc0UGA6H+F5IEMbU6hOEUcTI9xEkhfHxIrutDspeGENz1yeIEw7PaSiyzFNPfTUTKxk5ZmamGDhDJiYmuXjlxgF6ipAwGvmMTYyTL0j4/ojXP/J6thubFMoF6vU63W4XIc2OJQg9LNOmWhmjkM/CGXTTwhsFqIrOTrNL5KUU84Xs+L0RH/3oR2l1OkRphvqs7+yAJBHGEZevXGE4cjHtHI7r8uMf+FFqpTJhGB60PPaFTY4zoNveJWdabK6vYRgGExNTXLhwAVWRMQ2LOBZQZJ277j7KhUvLbDVbdLoDisUimq6gqqAqEmnkMwp8Bk4mdiyVynieh6ZpCIJEoVhElDPRVhAEB2igputIsgyCcFAA+76PLAksLS0RxzGO4+CNXMS9IJWjC8d58OGHWTh5gsnJceLQQ5Ul0ihEIr3jKF6/pzI9m8cPQEmKGPkV3vWeGf7XD7+eZucFfuYfvoGf+wf34WwVWbrU4gfefQw7p9HcTrh6s4nbX2d7MGDgG6iiQK46oLk54lOfuoTrCrzw8jWKRQlB0nBdN3OS0OHU2TwxO4xVLWIhwbBtZo5MISkCgTfN5Wt9NtYCQr9P4A6olsaw7Ty7zRZeDw7PnMaPPDQ1z+e+8CLtdov77pkjCjfodV1q5XECr8vlK89BHCPIElGa0Or2iFKRKBVBUlE0E1GQSZIUQczStHTNykSsskwYZMVsHMeEKai6gWXnQZCo1ycQZYk4Tej2ewR7ISeGYRz4O+8LRT3PYzjsI4tSJtKLIuIoe/Dszxf7aIeu6wdISK/Xo1DOaBrxXqJVgpAV44l4EJhSLBaJgpB6tZYV8XtixX2qhWVZaJrGxMTEbVZtLuJeiltmCfWqnVuxmHFGh8MhjuOQz+dJ0xTHcQj3UgnvtAB2/8Gyz2FMkle5hvviwiwWV8j44lL4ams1SkjSrBAVxL2QgzijhSQIJGmKLMt781CSPbBTgShJ+fqzz1KtTZCrLCCZFtcvXUZUFXa3lqmpLrbkc+zMWf7JP/t1PvCBx1lcWuP48XvY3F7ik1/7Clev3ERAIkHgS088w/pWn3vuPcuhuXlW1rb4zGe/wMzcETabDfqDDrIsc/XqdVZWVmjvtEliH1Fij8/ewLJtpmYmeeSxh2m1urz3vcdRVJ2lpSWOHj3K+soq/V6HOAFB0thYWWN6ZpJHHrqPixcvUi5WmJsEw5QJggjDzBZG1WoVQZDQVAM/GLC6toGmabheQr8PopAyPTuLlTOJk5AkymqoXF5H1gDB4/Sps1x4ZZEvPfFFxicO0WiuY5o6C4dP444ibi5t8Ppzd3P82BR5u0gaJShyjKYZXLl8E4GI+dkpXn6lwZeePs/JE6ewCwU+8P4fxvNdpqfHaewMMQyF9fV1FhdbVKtVwjDk1q1bmQA28HAcH13XMXSDpeXGXpDOnRm6aSApMo7rEqYixUoRUdlr80cJYaxQKpUQszYJaRxy/Pjx7J5WFRRVxnEcEAUau7soho7vj1AMBUUW6TW22G3s8unPf5FQzNIwH37oMTxvr1BDwhlECHqJruviRyHdVhNFk5B1DSQRUZGJ0gRE4TsWzvubKIoIspQBZkDgOMSDHoHX58rnPkPR7TMadAicBrqqYBoaTq+PLKiIlonnjhiOXEr1OkEq0usPEREZdDKNkKZppGnm8y4IoOyJs28vLl+DEO/FYKd7/GFByIKhFF3LrED3fZcFIbOWVbJjjcOQYr6AiIBlmK+i2gjIooS81/0TbxMJiikIe6/SbeEqkAWskIqkonAQkPKdPsfb6+E0zfyt+Zbv/X9hX7c/visKaD/wEEUZyyxg6HkEIbNB2dxcx1Bkdps7majFLmZcxjhmdXWV++5eYKfjE0s5Ll68Tj/02dlp4Ee+uOWXAAAgAElEQVTJHi9OIkJkdbPJ8kaDidmjrKw3uXz5Gpam0Wg7DLyUJIKhC7cW17AMA1USOfvAPaysrpMiM3D6+EHA+Qs3yeXK9IYOxXKJ5k6PQjnP0nqTIIjZbLRZXlvl1tIKnhfgeiGaptDc3mSnsY7rDimXK8wdPsGRhWN4wYhUTOkMWqxurSEZBrqWOQPouo5VyLPrOgyjCEGUsSsVtp0BfpywtLpKqV5nFARcuXGTa7cWefrpp1FEifHaGHEcH7SLt7e3qdVqTE9PMzszhSqL3Lhxi4nxKVq7Haanp2k0HHTDJogklta20HQVRcuh50o0mzu47ghNk5FCj/mpCWZmZhmNRkQp9AYOr1y+gixmnO2T9z3I2uYOkiTtCU9GJKT0hg4xApKq0djZZTAY4PS6tJtbeJ6H53lEUcSo36exsc7QdRh6PqV6iXOPnOMH3/cO3vLGxzh332kUMSb0HPyRd0ev3bXGS+BXKNnzPPaWLl9/5hpf/PNFvvaZVZZX7+ZzfzRg85rNL/z0PD/9k+/jTz/2PJNHe8h2F88/yuy0xfXtFtfWIo4cP8a9j7mMz91gp11ias7n5a/fxxvfWIXEIFcscOvqDcYree6/Z4S34XHqrjFGowGvXLnKlWsel66tcG1J5qnnO1j2NH7f4OwDh3CcBjDinnvPcGhaJp/vQ6pz8vgjmNYswcjj0vmXUaSI1z08RegJ/Oh734wQdDOlt6xTHZ9CNmzGZ44gajZWcQzDynyu4ygljX3CwEVMQZcVup0WmplRMhJRBM3G8ROK9SlS2UTXbHw/YDTyGBurk8vlQRQoVsr0eh0cdwAkaEam/J+eqJHTFVQxxdYltrY3MpRTFPF9H8uyKBaLKIpCs7mNYWioauYTPj41SS5vEyYxuVyWzCVLEmkcU8znIUk4cfgwaRJRLNgHPGbf93EcB0mSqNVqLC8vs7vTIAp8SsU87Z1tBr0ujZ0dVFWlVqthmiab6xv0Ol0USUbdo4js/1+lUsG27QOHkDs19lXwYRjie+Ee/SZzI4nCjBOeLxiEEWiySd4OMfIWkqllFIckRcCD1EEVwXM8klRA0gzCOHt/VVNwnBFhGO8FNMjkChaCLAF5hGTEsLtL2a7S2Bryq7//1zx3y+UXP/IxfuMjH+bpZ/6Gn/qZn2d+/iSCkPBzP/xDnDv3OlRVZWdnB1+q8uLFbUTF5KWXL3BjZZW+n1IfP0ShUKI2lsP3fWzb5r77H8yKD0UkHvXRZuc4d+4cuXwexVTY2F7n/rsfwMqbrG42ydklQm/AjevX+eH3vYczd5/i9/7zx/jn//J3uHL5FepjOepTUzQ2d5isjlGu5Dl14ihbzR7lchlDU9jcbiBJEpWCxdGjkwxHQ3TNZnLmCKZlc/PmGkHQpmjLaKrEwAnZanmUqxVOnppha3WdI4frTMwd4pN/8hnS0ODf/Or/wXt/8J3stIccO3WCJ/76KQ4fmmF+bo4vfuEGP/SetyKLCluNIbOTVWKvxxsfP8fE/BFuLK7i+fCbv/lRKpUi7W4f3cwRRQlRmDB/uHhQeO272ZDEaAq4wxHd/ohy1cIZ3bnFX31qEscb4Y1GTM7OUygVKBQNBHGIqAYohnSwQHVdF88b0m7vIssyw0GHkdtnZW2NUqWGnrNRdRW7YCMKCVLs0Ly5xPZGk9VhyOzxCo++boprrzyNaZVI4hjSlPXlLj/9C79FKAi4QUgURcwcniPVVARJJCElTjMe8O383/17Dl7l+WaOWTogEggh7vpl8rcuc++73szht72ZjpYj1S2ifB7yJbqjmLXVJoMAxipTlCoTFCaPIlllAj9mZ3UDNY1QlQxMSGNtj0oiQvpqxPZ+QfrqAvrV4jmKs2RCQUyBhITMQk6QsoTRKElISHGjADfJALtBL6OXFGwbQcoWiDKZV56QpMipgBAlpHv7UxCREpDTLGnxdqFfmmSofbz3OYopiHGK+P9w995BlmX3fd/n3nPzy6n7dZycd3Z2ZzbvYrEJCwKLxIVB0ggiCIhkUbZMAyAtS7TspSyXLZlWSbQpwbRNmTIzCEIkgUUiFliEzTs5p56Zzi/Hm4P/uN2NXdhmuVSoGhZvVVd1zevp9+57p8/5nd/5fj/fjS51nIQpMk/IKEhEm8mEydslaG+lhPyt5UBv6mgVRSNJJJIk7VyGUYBjj7l+9RqHDx+mXq9vFYWWZWGP+whdwwkTev0xYRhgmWmaTjabJ58vcP78RXKFMplCme5gRCIUYgkypoViFejZAZalY5gwtsG1xxw6eBBNUzBMjVary4E7DiEUifvuvwffg6XFHu12F0M3abYGdIYe9alZSODQwbt46l3vRWgWtuukx9POmN7aOtmMyfWbNzALeaIQ/CjViYaSSnFylmvLq1QnqlSrVcI4QlYEQ3vM5RvX046arkIUkfghu3ftZb3dJptPNxXIMlY+x8T0FHt272b/7j0IkXbsPc8j8F2ylkWv1+XkyZOUShUMw6Ren6bTbTE3m0+7v0Gqh6xWqywudlhZbGJZWRQ1/UNzHIc9+/eRz+fpNtc4e/4cURLz4EMPM+j3KRaL/Jvf/reMvBRRt4kM8zyP0dDGMrOoig6w0V10kUgoFApbRq7y5CTT89vQFBWRxKxcv8LC5fOUinkefug+Hnvnozz+zke5/96jmNbtDVLZv0dwz90TZLQCr313yNjN0QsSfGFwZqFDv2fzwpuvceZ7a3z3O1/mqQ++l2u3OulYGy9x6swS4RgEgi+/eJpTL04hAxESfs+kUMqje3na6z1QIEzKXLh4g15TwTA6dNo9qtUJiqUMVy65bN82iVVQyZXruL7Djl27sB2XfE5D1RI6nTFqRkKV+3QbHYb9ED1cpZApc8exR+iPFUxrxNUrp5mu1Xjfux/H76/jJRFCNaiWS2kghiIRhB7BxjhFipARJGFE4DsMB90tdFwYxvR7Y7xYIUImW6ySL9dIEo1EErh+mI7jKEIIwcnTp2i1Gpimju2kZkRd1wk8F9NQUPGR/BEiCraQdlGUeiM2O6impTMaDzA2omg3x2Ecx8iKwLbdNJZaFri2g+e4XD5/jjj00VXB0tJSOslvmP/W1ta2iBqKojAxMcFgMECBraTEzcCfJEnwHIdhv8/K4hIZIw1/aTabNBoNlpaWtnCMt/OKomjr/jaXgiiMNxZbgaLIZLMmve6Y4cBF11QUQ0+ZtbFEEqUmTeIIwxRouooQEgkyyClBSN0g7qSLGQihMOiP+I9++kMopkQSCyqFIk5vjGmWePT9n+IL31hEVeD8+bN8/vP/mq9/4yv855/5+8hyjk996tMUi3mmZyYwDIuvfvN7nLxwhXbfZuT4DIceg+GIQa/D3MwUD91/lHw+x2A45Pmvf41P/+Iv4Do+jc4QhEK71UDTTSoTE5QqRRqNBjeunWdmep6dB+/g4YcfZHKyxvlzF/niF1+i3Q24/8EDfOxnPsGZ0+d47cRZzFyeej1LrbYNUw+4695jaJpBp92g2+sQhja6IhgOR+iGSq/XpW+PaPRshk7Akw/fhRBpEaJrChPTRa5cWaVer/PIA/uI3Caj7ohn3v04b75yCtvt8y9+45+RJBG93oB3PXWMXqfN819+kb/3Sz/B6TdPc9ddd3LgjgNMVAvs2j5Nr7nCxfPXGNkBMXDgwDSuM+aBBx7AyhbRtbRrmMlkGAxG7N69m2KxiGVZFDYoMpoCui4Y2y6WZdyWMQtgj8YYQsUQarpJWV6mtbqOY6e4SaGpxMhIQqdUniCI0/XMMDTGgz6jfo/qRA0/DChmM/S7fVShYghor62Q0bJ0+j5TMzWyksfcpEq9CkkcIhED4UYnVUOOA/zxgGx5lurMjq2/J0VR0DTtbQi3t3Z+34p+k2UZWUpQTQu9MskggbVBH+PxJ1EffgfGroOE0/sIJrbhlOtUDh0m0RTKShY/0ZHUKq2OhzuK8dpdhOMiBWPyBQNJDpieqWPoWTQ19SVtmrs3JSRvp3C8RQ9NRBAEOO4Y33WQkhiZdI0O41TWoW3MG6pI1+E4jmm328RxhKIIxEahnMpDEuQf0TH/ddHacSKlaYNv0UlvGh3TMKyEgFTWEUv/zw70W02af6sLaM0wCKKIfm9Af5jKNhYXFzFNndXVZYbjEfWZWUb2GFmWmZufQdd1tu9IU8EcP8AJIka9Dtvn6pRzguGwj+261OozDMcenh/zxvHTzMxu48D+Qwz6XQIU/AB8P0RoMD1dJpPJ8erLL2HbNhcuNRg7CaOxhxtGnD51nlKtRq5o0GpDHMm4DkxO7eL8uSWmp7YRBBJ//hdfJ0lkVN0kjmPm5+fJmQZyAsORjTByxBLomkkQxkxM3YFZ2Euuuhfbk7dkD8PhkKX1NTq9NGL45s2b6HKaSlgu5nFCHyubwQ1CnCBkqd3mlz77GRpr60hRjOO5SJLE1PQ0np8WFqVSiXc//S5uLlxnMBjw0EMP8eTj72BisoJtD7CdMZ7tIEU++3bUmKlnyVsGlmWgGyq1yTqLS6vUa1XcYZ9Kucbqeoevfu2v0BTB8ePHWW50cf20+25qafhF4PkUSkX8MCSIQvL5PKVCkfFoSK/dwrTSY/8wSgu1RFYIAh971Cery2hJxPLiEtevX2ds99m3dxfvePQRPv6xj9zWsbttdpre8BW++bWTlOtZbq4E9KMu690QybM5eng23dQc6mOqu3nxxCVWO6uE8hLzhfupT72D9z6wH1OxWR/axOI87ZVt1GoVmrciHntXDrfX54F772R+fjtWucwYjZffLFHfC/2hjSErVPIZLDPLA0d3UCyYKEJFivK0RpdZXfYZj3yI8owGMZcuenRXZd754D7ePHWaTzx7H4f2HiQmYTDwqVb38tjTx1i+dQ5V8lGlIYpm0mw2kZIYTVFQZBnXGWG7IyQiBv0moZfqz4LQQQiJQqFAEIWMXI9ipUpv5OCFMiMnQGgmne5gy8h34cIFdEPFymSYnZ0ljmMGg0EqWRECWRGMx2P63Q66FJCMh4ROSthYX13eMrBs4o1yufQYfTAYpOEels7s/DwT9Skk0p/NZ9NOcxynbnB3g606Ho+3KB1ra2v4vo+qqrRaTQAKeQt33Ce0x2RzFooqs3fvfkqlEv1+f0vrPB6Pt07L1tbWuHjpAt1eh2w2u2VMvJ1XasZ0tqQWlplBEjKSIpMArpve9/Jqi/X1MUGsbhybphuRwI8YDZ00uVFykUWIpIKsGCiagWEYaJoGibxVlCMUJienWG2v88FPfpQoM0tmchcTc3W++vU/4/UXv8TH3r+f0Ic33nyNf/Lf/VPuf/AY23fXkaUiX//mt7l27Rqf+OTfwQsT3v2TzzK/Yzu3lhvMzW5HNXRK1RokIUs3rrF0YwFZSjh44ACPP/kYtj/GKFeZmtmBe2uFN14/zsmTJ7l5c42ZmRmWl5d573uf4POf/zzry6v84R/8KU8+9jgkKs9++C4efuQwg4HL4vIKRq5GKBucOnMGN+ixeGOVbq/FZKVAsVgkiUJqEzlq1TyVSoVCoUQSRqiGTKPbxMwWyeQriGTEh9/7OEQhSRyz1OgxP38QReQ4sG+CDzzzEHJs8Obrr/Kf/fInuOvwfsrFQ3Tb6Sljuztg5+6dfPQTP8G58yfotYesrSzx+vELPPLOx3jl+28geSMee/gOltebnL94k16ny47ts/z5l1/g0tUlwjDGyFh4nsuB/Tt56eUTHD16D4uLS6iqoNVqMVlLGzummcHM3D79vq6qECaEtku7sUZGMYjcGFObZqKyB1MvMzE1R7EygWZlMK08uVwOocjs27+XbC7DVH0C17VxRiNiP2BpYZGXv/sCShxz7vINlEKNfrPNfMEi9gd8+EMPghKzKUAIIhdBhsgeogQhxx55hkyhvkGOSMvsZEOisVmsbpqY4e1sZCEEipwwcjx8JU/9gfch3v8h5g+/k8rkdgozk+QOHiac243YuY9kZor5Ow8RrA0ZuTJBksHpJ/RWmoSdNsIfo6oRYDPoN+l1m/h+iOM4RHGw9fypXONHUxJDJDlBCAndMFA0BVXX0zmfNNwkJkrNkoCRpCQM4IdEEZFKNt4a4b35PiiyIAaiOCYWErGQSFXMbzf3JYlEREKQsCVvQUpIUQJsseaTJO1wx3EaVpMkyRa5Y/Nx8be9A60aMq7voRgmslCJooj52RkG7S7NtSbXbi7R7o5YXV3lnvuOsbp0g0GvTbszwHd84iDCDsMUNxdLhFGE63msNdZodntcunQNx3GJY/C8gOWlJdqDEX6QYCgyQkrwYuh2Oty42YE4wA5DggAiHxaWGiyt2ESxxutvXkIyLIo10HUTXVM5e/Y8xUqF1nqH4yfe5GMf/1kKlTy26xAmqVErUQX2eMTCtesUS1WQY2zbRdcs0BQCWWL3gSOMXJexPURNEkxVwVRlijkLJZEoWRbZnM7IH3H6wllC12U86hOSJgpdWVnnY3/3F8nns9xYX8ILQ1RDY/ue3bT7I5wgojI9g2LoaGqClbW4cv0irm2jSCpTtSq1okmsqnQHfWbqZWYn84w7DaIwFeBPFC1u3Vhg+foVCuUaWSvHcOjzyKNPYpgaZiaHrGZRdYPQ7aZEFdun12oRBRFjN8TbMG2FYYgsNLLFEmgaQtfQTA3DSCkNiqZhey6uLFDzOaIEtm3fSbU2iaQKZEWi0Wjc1rGby00SJtDpwjBq89v/6nN4fYmryy3u3l9gx17BzYsLLC1XGK63aK61uXNfiAGcurrMD15Z4P5jdR46to1ju3awa34KrdQnHpdx0Vi+vsLKSp1qLWLl1jK64rB/Wx0pV6JiqTjjNZJug+bNdYQqk2WEhkxWM4gCDUVMkqhL9Mc2650xuYxB1lKoTGYpVjQm5isMBz6WEVKUIsKBYOxUWVkM8e02K8sDJD8GScfQ9fRUQZKwRwMsXSOnCfyxQxwGRKFNknhIaKhaGmTiOTaJYpEpTWJZBpXaBN1uF1VTyJcr+L67EVzi0Ws0CLyI1uo6vjPE1FWy2SymriNUE8ePCOMETRIUM0VUxUAkMZE/RJYVdE1hPBqgihS2LySZYiZHnHh4vo3rhahG+rqyZpY4TCD2kSIfxx4wOT1JlIRAjCYUNKFQzOUZjIcEgU9CRBh5JKGDFI4xCFFUnXw+i4TCsD9A10wcL9jC48kCDEPHHg5JkgDTVGk1mgSei5Tc3iRCWdJSvTKp+15WZFRdBQEoKlGo4DoJYaLSGcf0XBU5ATVRieIAKRniuBJRJBH57pYWWkoiZOK0EyhtxOhGIUkEciwzGnrky1VMxeAvvvI81X2HiV2HT37yE4R+zFNPPcWv/urPg9smTgJ++iMf5b/6x7/G9Pw8r7z2MlGUcOXaGtcWm9xcWqeay5HL1+gNbXbv3U2uWKBYzHPn4YN0+jbOeESzscLJE2+mC3/oEnoOra5Ns9Vl2OuApDC/cxeGVeLW0jr33HMHpaLJz//cRwgDh7W1NXKZmJnpOU6eWWDfnfs58cYVHnngfvwInECisXiaRCmzeyJH4Nj0+j0kd8z0RA3H9cnlLFzXR0okhGSRzxkM+i7jscPSxdfIKQnVjEYSwuLSdRaWuvzeH/45+/cfxHY9Dh19kF7zOnvrdYaezPs+9A5i32F2tsiVqwucOH2WnfsPIkyXS5euU69YfP7//CIf+eln8Zw+vWGb6dk6U7MT7NmzF0OFSjGNZ5flVMuq6BrlvMpdR7bx2hsnubk44MLlZeJIZtRLmfsD2yG4jdK5UCRoloXQNCzdIghUNL1Eoki0WyvYgz4L167TbKzQbiyRSBLd3hA/FISJzER9iu76GpI7RjdNCrk8O2ZnOHjoEEksWO66KLVppChmenaSXfVZClqCFEOCihAmQgJfEUT+CFnLYE0fSBGXSERBkAajxDEkErIkSOIUliBLAgkZJBlZKCSkqY/IClYug5orIU3twirtQLIUIktFVlQSTZCfmUCfnKS2cy/Krv20GivEYYjtjfD6PURgE4y79OwGbuQROh5FyyLxbQQBJNFWhHZEQizFoLyddiGESoKMrGioukGiCmKREEsRiQSyIkjkmIQYOYwINv5favyTEUKCJERJJGISgiQGKcEjBEUiTCCUSX/nRuErkNIURAn8KCSI046xnEAsyUSSQpRERFJMLIuU+hOlWxkRk34lMXGcFimxlBCz0S3f0MHHSYiUyEjJj7fk/RtRQPc7Y+IooN9v4o47yEnIws1bZCt15ndsp9cdoKqC++69B0WVmZqZTY88VLGV8CWESqJnWV5ZQxES+YxBtlDgxo0VpqenmJ2Z5+D+vdjDAZlsFllWWF5r4rox9jgmm83hOfALn/o49911F73uiHsePEB5ooDjS6hWlrXuiD0Ht3PpYgchJNrdFlbWpNdP6A/7yJJAVTQuXLjEerONaekMuh2SwGNt8RKXLp/hngfvx5cVZvcd4dA9D4GiEw3XkYMBa6vrtIcBMzMzW8mDimGRLVT5pb//WZ5+zweplMpUy5U0GjSBQjaHrmmYpkE4HhGOBpy/fJEbS+uIRCXyQ6ZqU1Qq1a2AFdd12b3nEJXaNJXyFPc/8DCOGxBJMlahyMAX9B2JRt9jfeCQaGl3WIp87ti/jcAfoCgaciLT7LYZuiO+8/3vESp5vEQnjHwyukYub7G2fovRsMOtW5fpt9uoiow9HrDebOCHAXPz85QrEygkqEKiVCggRGoUC8OQTCaDbdsEfsRw2Of6tSssXL/KjYVrtFsNpiYnbuvYPffGCZYvwuFjddwBXD77KtsKJQ4d7JH4Cq98/wIPv2OC64tDcrVJPnTfJPtmtuGN4ObKLZ649zB/759/l4WrXarFJmfeXKVi7CdXUtl/9xxXFnXW3UUGIw9T06lnq2yfmSOj2zz+yIdYuq7Q6C/w7vfspJgH118k8Dwk0SWTcxn0HLLGBHfeOc/sTIkgCKjVJpma2Yvv5dlZqHDu8nX6nUU8ughzzFe/cppL52w0tYobhFy/dBzFlLEKFoE/Rsghhi4TRc7GuxCj6yqGodPvd0mSGCGnKLpMJoeQdaIwxZ4ZlkEcx7iuS+C7rK2tUSwWtwJMFEXZ0gZnMpktFqjtOLS6Hbr9HkEi0ZNSIkxeNyjlprC7XaQ4QldT2VI+nweg3eviui65XA7XddPgnmyWTCaz1WlOMYoRpmm+LY0Q0gTDrJkSOUr5DI2lW4wGHUxDI/A97PGQ5aVFlhdvoqoqQRCkiZrDIYVCgWZzndW1RWQBcRSxeOsGUZx2g0aj26uBVlSZIPQ3fCXJhvwk7f5IkoTjRQxHHrKk4zphapxSJRQRUTQkFAFCDlAFyImMFEeEGyxeIaXaRG9kb81lnudsyMkighD27t2L0A3++Pf+CLk4SaZS4WPPPsONMy9y/JWvkUli3nNsF/tnC/zOb/1LfuEf/gqKajJyYl557RSLSy6/8dxn8LFZuHkO13V57ZXrfP/7F3Fdn1dffZVapciBfXvQFYUnH30CMGjdWGAwbKNrsHvPTjKmztEn38nayi3mZnK0m6tcunSJ1199mfVOk5VWg1PnLtJqC7rdPg/cU+Piaz8gkA3+/Ze/QhDC4vU2ehLR7zVZXr2FKkvccXBPmuS3soqMwBmPkYRKHMdoquD6whISCpXyBLcW1zlybJpaNSRnSWzbsxvX97h4YZ1CvsIDDx/l+W98Fy+Z4sDRO6lWXb71wisIvcjcVJ1S1mJ5scX1mwNmpmb5H//5f8F//JEP4bg+33rxFfbtP8TjD91PNpul2+3z2uunWLixyK4dc0RJzGjs0O32uXB+lUajhWEYnDm/wh0HDyLHIMkB+ZKBKmSkJML1bp8GWo007FFMECt4aOilefphnlApgF7CRaBaBsVyiZnZ7Qw6bUbdJqE9wHXGdJotXM9GCIHruzieS2c4Yv3yRW6cO4+cneUb33yNQqlCuz+iNDnB3Owkv/bZp9FND0lxqEzWqCZj3HiCp579T8jl80hC3jIv/3XYuLdem7KOTQycruuoukYml6I0ZVlGVVV0XUcrVbCmplFmpsnu3k1xeobuhfMkjTbCcRBBgKQIahNT6Lq+hb+FGEmGKAqJohCiGOKQJIwgSqO0t0JIpFRnbFo6mXyGbCmHnjEQhoa+MT+qUnp/kZAI4lTjncjSxumVQBYipY5IP7xHJUm7wNFGuuBmtLmiKG/TYm9+L0kJfhRCFKZFcGo3RNpIIQw2TI6b8/Um2jaWfoirCzfSF6NkQxNN+vXjvMRzzz33Y/2F/yHXl/7o3z43PVlDSkJWVxaxfY9yuQqyhu97FLIW9997DIWAxVs3Gbku3qiP44xxvQBNNZicnCCbLZDNZXHcEBIZ24tAlnHGNi4ag8YashzTHw0IgoiRF29IKXSEUDCER0H1aLdWGbsRH/n4z/O//bu/xAt9VtZtusOYW6s9alUDQchErUpvMKDVT+iMYu688xCGafHu97wHjAy+77N26wZJaNNZuUF7FHLkngfJ5MtIskJvaBOFPivXTkHkkKgm2UKVm9eu0Gi00A0TL4iwzBwf//jf4fnnv8qw1yIMAogT8tkc/W4PTdUQQuHArt001tewSgXKhRKakNi1ZxePveMdlHPguD5aJo+Q4PzFKwz7XQ4e2MfNpRXePHEG2+nhxhIXrgwYjCNavQG2H+J44EcKkhSihn2OHrsbL5ZoNbtEQqI5CFltDllut/AiBdcJqVRrDHpNdDOLrhlcv3ieJI5ptVsIOUkZz5qGLDRUzcTvrqPqBqPRmDiRiKIQVVXwfQ8h67iuQ61WRZEFGcuiWqlQrZRRVImH3/meX79dY/f5P/lvnitU57jRWiEbwulz19k9X2L/9IM8+PgUa+2XiFv7CTVYvxmgE3D5gmDozNEe3eLgkXvZV68y7Ac4XZ1ddyV0xjHXbl7jxkKG0qRK4ArCIKGxtkhelxnYNqZl8IOfZUcAACAASURBVOYb32H3vh3Y/VkO7fX53ksneMfD07xxQqG52mbfngmEuoShW8SBx+rSOvX6BIoa4ESCM6eXwerQ7Jm864MfIxxCoTRJdwDb9k2wtnIT2xZoSp767vshSTDkBEGI7wx445Xvp5sfSTAY9fFdl3IpTxRG9Dpr+EGI40eUyhN0ez3Onz9PvpxB1gSBG9BurjEaDjh/7ixCluh3epQrFW7dWiSby6BpWqrXk1I8fj6XY211GTuIQFHptNvkVZ+C5NLxRgROqs2MgUG/lz4P0VZgj2Vlabfb5HSLnJllfnqWse0QBgFZ08JxXaKNAAAh0s25oiiomsBQFbx+m7ylkdVjPHeUBgBFMbqh01jvIMkykiwYjcdcvHAeTVMII5dWq4EmNOxRDyTwfCfVGAuVn/m5X7xtY/fffP43nguCTYKJRBAmKXFDGFgZkzBJsN2EseshKzKyoiBUncD3SRyXIPSRFYmMoZHRMghVxXVcZIn0ONUJsPuj9AQuSWklnu8ThRKqKlhbbxJLMr/7B7+HFkfMT9dYv7XAwtUrfObXfp25epF//dt/wS9/9hkcu8nJl77FU48/Tavd4sSZs/zhH/wW/+gzn8ONikxPzPGLn/lVvvPd51lcWeDo4bsoVyrEccittR75fIGDe+aZnNpGPitjKfDKy98h9FxUI8Op145z7z33k8/4jLpDds3P0VhZYsfunezas58TJy/S6wXs3b+D1ZVV5ucP8JcvnKZrB1xeinjkvl08eHACxSqAMFlcazMaO+yZq/DaqcucWxyz2urRswMyuoqmCGQpICPDA0d3s9ZI+NKLN3ny0UeYmp7nhW+9xGDQoFYts3BrEV2RmN82xT/4L/+Ue++fZXZ+O3/8Z2/iJBE5HWx7nU//3E/xxb98nm4jy5/+2VeYmNZI5Ay3FleoT04yP1/nBy+fJJEFs3PbsF2X0XBEs+9iGgalUo5ezyGb1+i1W9TrVW4sLZHJWEiKRH9os31+jma7RxBG/MN//NxtGbvnX/jOc8OxjaaZtHo2vjBIFINE09B1g8pEBVWKABnXC6lWy7SbDXJZA1WOkYnpNRvEvouqqGiKSrPZZO3CZZrtEcee/inuffwxHn3kEY7de4TzFy7TaQ0o5lSOHZvm2WfuR08CnvvVX+XDH/sc2fp+ZF1NiRE/IhGQ+P9mGG/+e/rYD3XSSFJa9MU/ZBvHcYwSScR+QOR69F0bU0Dv6gJuu4nj9qnUKxQmi6imhWapVGp1vDBCUhU8z0GoElHkk8Qh6UsNIYmRZBlIiOOITZGELGRkRaBoGrKpIYSMFKUZDOoG4UtOQJLl1BMhSURJqnGWhZx2kSUpjdyO4zTwJI5JZJEW3bKMkDd4HBvSCylK0p+PYiJSFrVIIgQJSZSQbPgpoigiTmKSjeiUIArx41QXLZAgSsvkSErf34gEJIk4STc1h9/13h/buP0b0YEuVwqcOXua1ZU1dMNCNfS0qyzFlGsT5HIFXn75B1w6f4H52dn0ZGQDV1UqlZBlGcvKMhr0EULghxHrzXT35boehpmh1WpTqZQo5gsYlkUQp6xaIQty+QyuM2KtAZPVCnPb5nFcj+PHT1IulwjChGwhQ7aYxTAM4hhGI3jzRAvHi5FkhQMH91KpVHjo4Yd5/mvfQFVSA0G1WqaYz3H9+gITk9MMxy6h6+KNByiK2DBPprioq5cvUcznOHjwIPV6PQ0xSGI67SZnT59GyODazlb32R6N0TfiiOMgJXU88dTT+L7PbH2CWq1K1tIIAp9quUIcx+i6ThRFaJrC9HSdP/7Cn2BmMkiKysiNabRsHrj3KKoq0NQ0ICUMfRzPxcrkkNUMiWxiBxFO6NPvO7hexPTMPGGU0Gq18IKI/tBB10163RGt9SZRGHL98mVqtRq5XA5JlhmORgRRiCxUHHuEZzsocmr22nTZbxIQNjWt5UqJMAooFPO4nrOxe759lypDOF4mAxQK0BtBbN3g5Guv8NJ3TrH/YIlSMWaquIsDe/bQsG06I4EXyzz26GN89Wtf59r1G0yU86gZFSdQuLnsUKhk6Q5aqJJJKQfDwZi5+TqSFrDWXMZ2Yu48ehShhkR4qHEBSQLPGWJYCdvmdmJaCrIsEQdZiFQ8Z4xjD+j2GnQHfbp9G1WUObxzPy+/8D0uXTvLtYWr2N6I02depViosWPnHgr5LFEcIRtGGr8apZPak4+9Mz2eJ8YZj1BlgQxoQiFjpeFIhXyJTqcNUkKhmGdxZZHpuSmyVobjx4/TbDQwdYM4jDAtAyHElv7Y9/3UCCulnRjXddNoXFVDIHA9jz21IkeqJvPFPLmstVX8BkGaUKjqGpqmbXWbN7tD0cZikM1kiIOUgbqZHmhZ1hbGbdN0E4Y+hq6iKRL5bIaMoTMajSgU8hCHFEv5LSNsNptFkiSWlpYYDPpAgmPbaIqKKgSO42AYGuVy+baO3beZm5A3FnJ5qyMWhQnIMqqqbLjxwfcDgiDEdiIkxMYCKQh8H5kYVSj4vo8ztkmiGFPVtt5DeAu/PQFN17m+eBMjU0BSTP74T79EdzBCyZb4ifd8mm+/cpL7Hj/G68dPY1glnnr8CTKGhO8MyFk6/+BXPsfhI3exuLhAoWjw3a89zx2H7+bpdz9DFEW0Wi1kWWFlvUW712diqkamVELWLTwv4P5772FmZgpFCIYDh0G7z6DTQRUp6uyJJ56g2+nTaTS559jdzM5OEQQuYZzju6+c4dzFJqCzZ3ueF75zDVmRub64ztCOsKwsqiKTy+eJJIWhGzJ004CfTXOtYWpkswZLS7eoTxaIgJdeP8FXvvo9itUcO3ftJlMq0egOKWRzTFQy/MKnj3D69Fn+p9/4HeZnFa4udGi0B6iKweLCdY4cOsiNlauEsmAwiGivL+O6LkM74H//P/4IwzCwxy79wRBNM3jHIw8wNVtlOLbpD4ZM1fMMh2N0XSeMRpTKWSCh2/HIWBZLN2+hqoLbKj5SJSzLwDQ0LKEx7HZQRYJpZLAyOXzPwx77eG4qpWq0muQKeWJZZjRKfRXlcpFCoUCv1WTY7TA3McnYixFmBjcYUKplmaxXiUn4qZ/8aR554ElWbvVp3GizenWJ//ZXPodQZSQtSxQnW0HSf50p7v/vlUgQ83Z6BEAkpzSMOAyRPAcHCTQNXVOwciaBiPGTiJHtpv6qIKBQKKAoMqahI8VxurlNklRPEick0dt10G+bE4QEikDVFWR1A7eXRDgboAGS5IfmvQ3dtxACNrrRbw0y2UTXbaUQvoWS8aNfm4V5QoSQ5HSO2XqOJOVqR/HGvPzD4LcgTuf0TSNhkiSESZwW7hsd8fDHLJv7G1FA+0F6VO+4doqWCmOGgx6BbxP0ljn+va8R2V3cIGS10WFm2zxzc3OAghDyRsx0wuTMFOuNDplskVgB2/GJYpXuyGf/7u1YWkQcDPDsIUEUI2IZRSSMRz6GiJkow6unz3Btuc2BO46SUWTGdo+VZZd+x4FAxw0UllouaCq1Grh+wt4j99JaW+fy5bM8/7VvMjU9RyTFyEInn8tgZCysXJWJ+ixZ08JQJAatFUatVkouUAocP3mZ+ZkJTr/6fV578ziRJJMrFpAFKCr8yRd+D0kO0DIWY9+jb4/J5vNIsmAwshl5Hk+97wN0BmMiz6c+VcXMahw9eg8TUxX6gWD34Xu4fPkyZ86cod9r44x97j12D//z//Kb2PYIYpOVFYfX3zxBsVBFyDKKvJH8NA6YnChvFB7pwExUwSvnbuL4HpouIUcK83O7SGQdSTFZag6Rhc5ao4Uby0zVZ6lWJ5CETpSkPM0o9BkP2qw3WkxNTSIJifXVW1y+eI5eu0m7sc5w2NuSn4RRzM5duxGKSqlc2UqNu13Xz35sPw/cvwPTh499eAcfeDqLnGQ5+uhBiomgs9alr76GCGAcnyObhRveCiNtyDde+AEffGqCXGUHi0OXQFxldaVHv22y2kyoTWVYX+swMVWmPjfD9eUuas4CWUPXMiwsxiAMctmQ2vQDfOTZe5HkETu3ZXnk8H6SsWBpGHNzNcELBHN7NRLTRbMsVhZWObhrDxO5ea4tnGO922T/3kmWb9xickbnsaenmZ3bw9WFRWRdQogEjBKqmcE0dd587Qf47hhNhygK0DSDkTNgeWmVwaDByuIt+p0+ruty9eplOs0WpqlDEKFE8IMfvEB9sozn2LRbDRzHJowi/DDAzGZQdZOx4+F5HgIVohhZShg7Dpoi43sOumlya3WVwHcxJYkw9lFUncFgQHWySpiERIFPFAVMTU0iZMjqGcajAcuLC9i+hz1MKR9BFGJZFrIs0+l0sDI6kpxG2KcJgzrEAaVcdiMVTGaiXMAdd5EksO0Bg2GHMHJZWVli29w8GcuAJMIydYIwRDXy1OrzFIuT6IZFdJs10KGXSt+QBCgy0gbLOpFSB3yymRJKmjgYS+A5Lr3eADsO8Ek37sP+kEZjRHN9hB9AfxQxsEN6jotNhFB0JFlDUVUMQyWJA2IfpCCm017HDwM6Afynn/0cF66sU5y+m9yEzlCe5Hf/6E3+8M8v8n994WV++R/9S15++VWSxKSYL3H42DEaQ5eJiTw/9TPvZbnXZNQe88wHPsK22Ul2bZtGGAYhgspEjWE3ZegT9NH19F4Ms0ASK3Taa/z+H/w7RmOXJ59+lMP3P8iZc5c4fOgOTE1j5dYCC9dP8uW/+A7nr7iITIYwhgceeQTHHTO/TWfPnl1IIs/LZ5fo212KRR3fG4Oi0R862EEqL9KEgqbIrKx10LSQVt8lUlUSYLEx5O67d0IE589fZ2VxwLVLy5y7skhjGPNHXzzF+asD/uvPfpRDuydQAlhY6dEfu+zZM8f3v3+WPUf28tA7H+bKQovtsxXypmA4HPOhD36AEAlJz9HrdsjlTVqtDjdvtjCtLMNBwOzsHEpsYDukm9BojB+4HD16gOHQpljKEYURmVzhto1bScvgjMZ0u32cwKE6NYFQdVTFIooS4iDCyOZBM7i+cJPI8zELaaCaSAR2v0en02K106GYLxGHAWdffpmxH1ObnmVqR5n6pEWlbjExM4GiK0zWqnzgve/hfQ/ex5P3P4gkqxw68kDadRVJ2lH9EcrG5gYc3h7mASClMujUICAlSEJOu86bpzdRTIhEiEQQB0iKRBB42M6QRFXI6BZKPkdYzBBpMpmMROQOUGUJ3VBRFBVFGPQ6XYa9FlEwZjjoEHkuWhwQeTYxCYkkb72+JEkQsrKl05aRU4pRziJXLBAnCapQiGKJIIzQhEKopMV+JAShAEVWIUjr8yiKIYw2etrpJt2JIkIkoo3C2/N9/DhKNdlJhJTESETEG3ITL/YJkgBFQOgHeKGHG7goSAgpJg6CNKY8TJATmSjaiGmJovT+knjDZEgqXYn+FhbQhpnB2DhCHY/HSHFMFAYEjsOZk8dJSKkNQjdSUXkUoRk6c7Pb6PXSSE3H9mh1BliWxdpaaqiyxwGTk3WiRGLx1g2KxQKFfBZZBt1UIE4wNJUwDPm7n/pZnnnmQfLlCktr6+SyBteuXMR1E8plGUlOaDTbuF6IIoPvRmRzFt0hrK430FWFdrvNzt372Ll7P7l8nlptkna7ze///u9z/wMPYZomkCKxXC9gqj5DGEaYVoFdew4QBSFJFDBZqzMeDHEch1wuh6qq9Addrl27BolMxsohIXB8j06vS7Fc4tixY3zzr77OxcuXMAyDI0eOUC5XqU9Os3//QXojh/7IYXpmjtm5eWamJpmcrGMYVhrBrch0eh1kJQ1DWF9fR0IwHIwxLBNZBte2mahVCAIPUzPpD0YMbRiNBuQLWUwjQxzH2K5DFEXYTrClRVUNk9pEnTCOUTQNVQh6vS6B6+HYI1zX5tq1ayRxnOrIkhhnNMbSDQqFAoNBn2ijS9hoNLbwZfni7ZvIAb75zYusNAJUc54Xvj/m6F13MFiu860Xz2EPVHbv3M/SsoevnsEZlZFFm8EgpLHeIpOvMfA87MGQOAwRaobOusAJfIZjiavXb7HaXGF5vcGtpXPk8gV6oxHz20v43irbt9Xwx4KMWU1DHLwI0KjXJihkDFRZR1XKuC5Ut3UoFMokkka/GzI3vYPZ6TmEonH++hoXr1+lXNrF3jsPcO7CTb71V5dYWVlmdnsWWRH4/TaJpIAsEcYBOctMg11k0iSrDeSbZWWBGEPXMQyL0WhEdiPienl5lbuO3MnqyjK+79HpdJCJsQxta8HZRD8hpScRg8GAMIwZDYe0203cjTlC1TUMw6Dr+qyNHfrOeEsLl8nnQJbIZ7IEvp+eWMUhzniEaRgEQYDED09jEHIafrDRHd10y2uaRhzHDIfDLTauqgoUJXWgu66bdlGiGD/wUi6xlxb9uq5u3ctmrLdQU4NsuVzBcdzUcHMbr83OzY8GFCRJqodOv09juaMoIY5SMoeEIJYSVEPfCL4K6Q/HDPo2ju0RBBGeHxIQE8np5yqEknJokZCkJD1mjQOylsb8tmm++4M3IFvipdePc+jwbqRIZzxY59MfPcJEeZr7H36KizdGLHd9JrYfIV/bxclzi8h6np/7hV/in/73/4LeyOUnn/0AZ8+fIgx9ZCneimp/89VXSQIfu90g7DSIQod2u83k5CSVapV9+3fhujbICl97/nnwXWZnZ/G8gN6gz7VrV3n6qSfw/RArW2Lnzp0oCiyvrqEpEuNR6sWJ4hA/BlVLaQWKKm+dZnhuSiUIQg8hBNOTE8RJyHq7zwvfe5ViPkM2m2EwHjEYDJnfvgfbs3niXY/xhS+d5Yv//kV+87f+CRev3uTe97+PqxdXqBTADz00S8Metjh0sIYUw8s/eInG2io7d27jziOHaK6v8e1vv4jtjNIgH0XQbrc31k+wPRtF03njjXPUqhU0TadUKPNzn/wkxWKR06cvUK/XqNfr6CqomnY7hiwAQtXQLRPFUMkWighFxczmURQtfUwzMSzzh1x2zcB2nI3mT7quZDIZLCvLcDxAU1R0RScIImRVplgpoyoyNxZvYJom1YkKc9un2b1rnrvvPsKhI3dRn9uOqppbJzM/Snj4D6E9bEo13vo75LdEY8txylEOY4hlAVGMRIIXuHjOCE0Gw9BQVWnrtG08HmPqOooskJI0VCYK3VQDnaRGvrc+/1uf23VdhBDpiYkikET6OoIgwA9jIoktVO2m9jndgKdmxE3+NYCsKsSkiOJ4A4UnAcoGsWNT/xxFAXGS/r2oskh58wmEUWoETMKIOI6IQo84TE2RbuCnymZZ3grLgtRI/v/2Hv84r78RGuiTJ199TsgCSUo/HCn0MISEP+ySyxfRswXWuiOK1RlyGR1JClhbWabdaaKZFoPBmAQFzdAZj2zGjk8QyERJgm0PmZgobcgcbOI4Yji2cRwIwxhVj8lmNdZWb7KyeJMkDun2O0wVUgLA6ZtdxkOXcjVHpWrRGTnMGgnlrMLCukeukKVSqnBo5wzP/vTHue/x96IXiwxHNp1Og8gdcObU63iOz459hzEzORTNwsjkGPkJsqpxa2GB5eUleoMeV6/exHZ9VE1H2QhgKJVS85frugRBuHUEXa3W6PUHuI7LaDxk6dYNiEO2zc5w9fI17j58jIcfeZR8uYKkyKiajpAFhm7g2X3WV9eolPM01hv85Ic/wumzpygUc+hmAdcP8YKQVsfD9wNsG+amamyvlymWypw7fwlZ0UjUHIHvUC7VWGt0GNs2Y9tmZI+JEwh8H9cLyebK2J6HmbeQRUIpm2E87OO5KUbr29/4U6oT0+SyeXw/RFYUkGS8ICCXK1KrTWAY+kY30EwLpUwGTTM4cPi+26Yj/dLv/vpzTjTLS28sc/Th/Vx4s0Fr3eHWUGJP/T4KczfR1bvwaKGWVzl7Wmfn9IOMR2PcWIck5NpCm1uLLd7/zG6+8Rc2xdkEz8/Q64/Yf3A/5y+dYqrsYXt5SuYsvSbkZJU9O9vcONNm/qjNpK5w4vxJSqVZGquC86dOMLNzGsfx8JI3qOf20VoBOSzyxMPvxzIjlldvcuFSmxttnaefqHH53CucOdfj7PVVek2dPQc9VGuZbtNkYvth1MIc8ajHeNAlb5lIQkGSVTw/JIo8kjgmn83QbbWQhYxuFRmOxgyGIxRFpVQuoyoxly9dxHd9TMPYSPETKGqatCgUBUkWaLpBEPh4rkMmm98wxKSawE2doWmarLeWWV9fw9NNzGwezcggC0EUB6iGRhiHZK087UaDKIgwFI3IdXBHY8JE0B300klckrEyGZrtFqqqYjvjLZnHYNCjVMxhKTAadMlkNjYPEnhRRCI0EKlUZHVtDT8MUBWNTCaDJEtIkkBKZKanZ9OApEwWRVHwwoAPf/RTt23s/ua/+h+eC6IISZYJwpA4YiNYJU0ENYz0M0CS08Iw8IkCGVXVEQrEQcR45BLFMrppkClYBElIEISpLA0J3wswdRNdN0i3WgJi0uhexcXU0o15a2VIplQjX4757vf+ivMX+hzaLfHEHQqLV9Y4ceEaK80EozTJ73zh29zqRxw/tcwLL5/ge6+fYPuOvfzUs8/w/Re+TrvXor++ytzcLIGc4fSJE/yvv/nP/m/u3jzGsvQ87/t9Z1/uvtRevVZ3T/d0T09z9o1DDYekxUWmqJWRFIFRIoeGk0gJo1i2bI8jJIaVODGy2IBkyBIjW6IskpJJiRwOySFn33tmel+qq6trv3Xr7mff8se5VTO04RgBBDShAxRQF7Xi4jvfeb/3fZ7fw6FD08gioXXrHRzPZWtzi8NHj/HOu+fo9rcJg4AHH3iYlVurvPPWqxw/cZTnX3mTWnOK+tQc3/r2d7n73jN8+Wtn2dy4yeT0DM9+5xLH75zFkqFq+rzx7hUSSef4wQlu3Fhl32SDt69ucG3NA6GgKDBRLZHGEffefYJmUWF9q0Xf19nu5wfA0B/huBl20cDxdpicbrBw6A4uXb/B4uJrlOtzPPv8VT7y0CmKFYtiyWZpdZU7py3m5qb4zvfPsrB/loKlMTU7x9zUFEXbRMiCbnuLRn2C6bl5ep0Wnh/RcyMkMkqFAralIksupUqRJBZcu7oEisV2u0ecJAyHPe666xSdnQG/8oVfuy1rd+3Kpaesoo5um9h2Gc20UXULpBRJJCgiIk4TksChUrIJw4gsSylaBoaS4QURxWIZPwgwJEHohNy4fAujXObUvfey1esRRvm6jeMYNB1FU9jp9Wkcug8vMwhTDaNUwzALSHK+1t9/7RVq/8E6+t/Fx72vcN5lGY/lFiJNSKIYz3PGTOSYIAnp3rrGzrVLHDgwgZBiNFtBMVWC0CMTCWGcoJsWfhjh+wGSLIijgCQJ86RQw0KW1T02cx7qIr9PthajqGreSU8zXMcnDALSOKZcKSFUgRzn+mLVMFBsA+IU3TJxfZ+878yecTBOMxJFQVYksiRBSTOyNCUOo7GsJCNLEiRZwo9ikihGEQI5y0iymChLkaP8tZIERGmWv0myTCYJwiyPQ5fjNNc8J8neASFHCuYF/umPfuKvlgY6iTxURSDI0CRB4Dp0O23Mgk0mqew7fAdCMhgMenQ6XdZWljl0cAHDKhAGEfV6ncFgRL8/JElSiqUajp/kHR/TxB26BFGEXSoSxTFRnGDZBs2JIq1WxsRklX6vQ+D5dNs9pqdm+eZ332R5o4OqF5AVGI1GrKz0qFdlFg4X0c2YQ0dnWdsaYesKC4cPcuHyFbw4xvUCNM1genKGqek5ZiYmmGw2KRQK9Pt9Rq5DkGQ0m5NsbW1x6MgRWu0uvb7D9k6PrY1N4jBCk5U9LbRhGExOTu4Vz1EUsb6+TpLlXdlBr48sQbWSd3zvvPNOCqUidqnItRuLlKtNHD9GNUvUJ2aQJIlavUS322F9dY3nn3+RD/3Ix0DSWbq5SZwIgjBlarqSExRS2NhYo1gqMBoNxtHKLp2dAZVKDUnViJMMIWRmpqeREWi6jR8kREnC0so6mmmhGyqRM2LQ20EmY9DrkqYxR48dp9mYJBMSxWIZVdHIUjiw/yDVSh3bKqJpGqVSiWazyfT0dD4O1c3bunbvvvskfecGpqXReWeH9RsymnGamdn9uJlD1/H59ve+z+bavSxeuJva/gbPPvcXTE/oNGfqrLYkTp46xchNKOprSOEOjz96imF/QLVSYWNzE92y+JEHP4xlN1FUQZgOue+hA5ilizz4sMbE/CKt9RXqtQpuUKBaLNCcnuHNC5coWX0+/VOPcfHqS0zPWNx99918+4VvcXPjTbqji7Q7HXQtpd+9zFSjyE/+9J385t/7aT755H2Mog1aXZW3zr6GLOchKJmUx7uapo0kKWRJiioJDF2BNMEPnDyBSs+1+c16A0mS2B4n9d26dRNDl0mTBMs0aTQa486uim3bKIoyxtp52LZNEAR0u12EEPi+Py64827xaDRi6CdEmsHACxmNcjmGqmtEaUSUhKi6QpzGOKFLuWaRyBGZEmFXTRyvj6xKmKZOMk7T0jRt73C2m8amKBKNRo0oCvKukAyOO8TzHUxjLDdxvb0kTVnONcSO46GpFppqEQQB/X4/Z7Em+UGgaNm3de1atjEeM7PHqt3tPmdjmKog7w4JJMIg3mO65rHkLiMnJk5SSuUypYpNoWhiGNrYK5Jzc8M4JYgSkBSEkPdKhzgOEcJHlVPMQsjf/of/I9997Ra1A/fxxGcfg+phDt/5Y5w+UOJQMWG+qvPS8++iqxIba5u03QFOZvL21T7rLQe3t84z3/surc0t0jRmcXGRd955l1//1V9m8dIbUKyQ+CMkEaNrCo3mFO+eP0eUJsRxQrlc5N13z2MVyjSbTZaXl6k3J5BlmYcffQBdL6JoGZ/8sYex7CY3V24xP18i8IYockxKxv0PPsDOzjaCAFVV2XfwICkCIfKwDIDA96hXi6yt3CLwAhrT+zjzwCNAiqpIWIaGSuaEVgAAIABJREFUUTJ59+IatfI8T3/jDXa2rvDA/UfZ3HT4hf/kZ3nuxTdZ3Vgn8B0uXbnG2mrIq2/f5MqFs9x98iTOqEezWaffH/Lc976NpqY4zpAnPvQhFCllc3OL6elpRsM+k40mhmEQpxlxAoePLrB/fhZZCBaXbrGysoJt28RxjO+HLC3fxPOd27JmAaxykepknXqzhpKG2IrMdmsTIWQSNKIMwjQlSyJWV1exSiWKBZOddovVtTXMQoFuf4iMoLe9Q2+7y77Dh5men6FYLWBpGfGoS+T16G6uMOi0KBUKTM0do9g8TCyXqU/sQ7dsouS9UJL3X3t63v8IieP9WuDd17uXLKS9AJHQH9PGNJU49HNaRuhSs2X6gzYASZbkXg1TQ9dVwtBHVXOflawqyJIgjnySJMplI++L836/WRHyIBhZzSeOSAJZVZEMDcnQqE800SwdIUs5o9/UkVQFSVFQixbC1PK/J8u5Rnos10jJ9vYPKc1y0yXkBA8h9nwSQgiSMMrf1zRDGge4CEAmQ5aAON77njAeYwOTXK4RhuHeHgvsMaijKPqBg8pfxvVDUUD3WxssXTrH8pVzdFurjIZ92r0hqx2X3sjjjbfOkSUptpRy+co1PvtTn+HytatsbfUpVapstrbRDJkwBsMq0GrvoJg6VtHALpikiYppW7ium6ctFQyqFYtuZ8hETWLl5hqVYoPpyWkO7m+iyypvrMI3Xl5kZ2eHMJbxPEEUgRbJvHplyPZIprW+RrWo0FpfJRYSRcPi5q0lvDBge2OLlVsbWFYVd+jTqNVJkoQ4jpmZmcEwdL70R3+AKlKiOOX4yTNImoFQdOZnZgmDgHZrm243x3ApirJnChiN8jFckqU0JmY4ceIEtqkzM9GgUSlRrhSpNOt88COP0x9t4zgDPDdG0y3sUhU/zhGAb7z5KhcuniNNU6rVKr/7xS+ztjpg/uABOgOPkR8RJxm2bVKpqtgFg25vi+Gog+MMgISbyz1u3lrntdffwA0jgigkjQNm5mfIUoVMyIxcjzSR6bS7rFy7wdKlC1x+5yyGCv1uh5deeJF7HniC+vQMkmGQSQJJUTm0cATNMDGNAuVydS+YYRddaJompertNWJdePsSn3rCoJT0obiNVL+ONH2OtasbHDlh8uqrParNab7+na+wtHmNp7+3yk99boaHHz3JOxfO0fUK6LZKudrg+Re6/Phnf47f+4NXObx/gtmJCt5wyOz0UWy5Rrmq0R68xrETd/LNZzbpD+5mab3LTMlk/50Z0zMTXLh2FU2O6QwdupHC6s0OX/z9RSRO0nXX+O5rf8CFjStESpdUdLixep5f+28e4VN/7S4Su8sffeUlfuefvsD8jMnIn+OtcxHHTh5DN6tIso0kCfRdyYUYp0BmOfpI01VEFqHrOr1ej06nw8svv0zBtCiXy6ysrOD7LmGYT1Vc12Vra4t+v095jC/UdX1POrG1tUWapliWtfcw2g1M8TxvHIs9QSjpyIqGHwbImkq1XkdSZIIozGVTVoZV1dGrChgBakVCLkJixLmcSNf2TKq7Y0fPywtiSZJQtfz/ak7UqdbKuK5Ls9mkXC7jBiGKorG6vsatW8t0um0cx8ELImRVxwsSkkzeOxT4vo/neTiOc9ujvGVZkCbZe8Xy+CGWpbsP9twUlJv+BGQyiirnLGx8fD+k13PpdB30gkWxajMx0aBYstF0BZDIMkEQhcRpkusthYJQ1PywnRiIJMHUYGHhJPVSBUcU+d2vP8/yzTbfePUav/xPfp/Pf/H/4eRCDcuC4/MGaRwRRQGapJEkHhkRWezibl6i1/MxNBshQb3WpFYuU1IHbK9dAschcEb4jsv1y0usrGwzGkZIsk4Sy5w4cQLLVjl06BAZKisrWxzcf4gbi5fpdbZoVOf457/9Jlevn2O71aVUrDG/v0Z7o0fJEgyHfV595W1ElnH3qTuplAr4kWDfoSMkKKiSTJKm2LoGcYCcpWytb9AdePzxn3yLUtkk8DwMOSMOI2wb3F6PgzMwXw9Zevcqh/ed4ekvf4kJI+Sbz57l0MJhqvV9+CPYYgHFLlEoFDnzgQ/w4msXaW13mJmZ5tSJo5w8fRfVyZkxsjDEGQ64+9RJ5manOXToAO12Hz+MubZ4C8uyCKMRfpzh+SGGqZAkMWEE6+s9yvbtO/xVS1WElJFFPsLtsnn9Mloco9s2hWINVTPQDJ00iaiVy/k9GAVsrK1SqJaJJI16Y5Jep0vkxmyvb3F9+RqZmdEftihKMWUtI+5uEvQ3OP/y8/z5n/0pISUG/SHNxhSqZhEmAkl6L4EP/n3pxvuL492v7xrp9nBr8XtBJLuJqXtEjiTFdz3SOEGIvKfb7+2QBAHby0tIkk/ZtjB0G82wyVIZMoV2u4eiyrjuCE3TUFUZ33eRsxhVk5DlbCyZyH7QODj+UBSFQqGwtx+qukaxVqE6M0mmy2RSXsgmWUpxuolWLWIWbaxqGa1cQDF1hKqALKEbBshjk7Ii7Uk4wiTGS6KcpCHeQ9LFUYQ03ou8OCAWubFQA6LMJwg80kxClXMEXhBHiChCBZQ0JVVlgiwhGUvkdiVUu83Hv8zrh6KArhQMyiWb/fv35ZSGUo04yrWHnucR+R5pHLK2vITv9nn66WeQFY2pqSn6/X4e85vmMdNRnAec9DsOlXKN9c02VrFAp7VNoVBAMw2azSadzg4TEyWiKKXRmOLW6hZJEvHEEx/m0JE7iYGBnzLo5zrHMEyxTJXR0CPLoNePkRWDJ598kvm5KfwkQdd1Qj8g8j0KloEfhIg0jxg+e+4cvjtApDGh7zEaDHn80ccYDAaUSiUmJhp85MmP8dGPfgzdMjEMg0KhgJTlN5bneahqrtfevSHLxRLNepXV1VUKhQKu6+aSj3IeSRvGuTg/iQIQKdVqfS++96WXXmJhYYFjx44xOz/HhQsX0DSDemMKx3GZmZ4mikBRcpSY40Q5VkaVWVldwvOd8f8CCAXfj/F9H1XX6ez0cq1SAp7n/UBsqaEqBL6Lbecarf379zM7O4vrRwgp7z7uFkyabqIbFoVSce9Gbm+3UGQJRcm7hbp2ezvQxVKDibrEkYMl0iKsrsPm1hqjgYeQCmytRbx1bh29UGNzQ6JUmkU14dlnv8eRw0dp72zxwkuvMbdvP2++E/CNZ1/g6B33MOh28NwOB/bPc+3qIsurK3ijLnMHdD5w7zyN6Tr1qQaSfJBKuYxqthHC45HHHmLoBZjFAiPXZ372NEXlOJrpMT2v0RumTM83aO8MQHI4cKDE4vVXuHj+Ot7wLjY2fX7kr50mkK4hydP0RwGH9x+FRgWRqmTIvPb682SSIBW7I78EkeZdA9JcQ+x6IcNRn0azxtB1uHLlSp5yRUoUhXnkc5YhqzqtdpudnR1KpRK6rufaaDlPxdJUC0lib3OVZDHm6Brs7OygyNqeXlpTc8Z5HIZIcoaua4x8F7OoYxR1FB1kU5BJEahgFw00XULX1RxJl+Wx967r7mn7NC3vshuagqroeXc2iVEkwdbWVs5vVXI/BTBOLGztucNN00TX9bwLNEbj9Xo9DMPIiTq38ZKk99ztSfy+B7/I9oroLBPvewDJQN7Zkxg77pEI4/HeG0XYpoqhKzkb9n2c1t2/w/jnVFUlEypBFBOFCaXKFLVKk43tFkmW0W55TE5N0PEdzn/929z30KNoUkY08jFslaJl534KGYSA8+cukCVw8MA8q7duMjs9w3Z7izDw+MM//Fc8/vjjtLfWMC2VTqdDbzDC8QMGQ4eZ6XkOHDjAcDjkvvsfYGVtlWq1zkMPPUKpXOb++x/gT/7NV7i1usyv/9qH6fWGaEqugd9Yu8XURA2RJRSLRaJYQlN0ri/eJBMK2+0uW5s7e8lvmqoyMzOFrqkIMiamp6hUJ5iarbK+2WVmZiL3gBAzWS+jMmRqus59d50k8eE73zlLEMs8eOYwf+O//Dn+7V98h0KpypGjC7z25jnKtWmWF6/gjHocODjJ979/kU6nwyuvvsRbb71BGIYIkXHHHcdxPJ9Bv8vi0g3OnbvI5ESDMI4IY8Hrb73LcDhksmFTKCh0Oz0MXTAx0WBiosTmZvt2LNl8eYpcC5xGIUQJ7mCIxG7nMdeZJ2EKQma706FarbK+tsLMzAyuH2IWCmxubjI7OUXghcxOz3D02DGq1Sqe59FptfAGPUwrP/hPTM1xYP9hFEXB0PPubhQmY13/D+qG/2Ma23/Xc/D+n3m/6VAIgSJyOlccxyiaim7mEyNFEpAlkATIqkScRpQrBUzbQpHyw3qxXEUeJ7Nub7fyQ707IstSvMDdqyOEeN99n71ngkQS47AVco8IYJgmhVIRSc1JMlmcoBg6mQBFM5B1A1XXkJV8T86knG1Nlss8pLHfTBbSXqBLJmSCOCJK3qNwpGlKFMe5DGcso0vikDSKCeNonDSYF8SpgHRM4Njby7IcRbrb2ZZlOQ+tyhKyv2Rq1w+FBvqZf/2PnzI08EZdjh4+SK+3DfGQ/uZ1eu1NZhtFNCnmxPEFSnrE5maL3tBFlRIMTUMzTAyzjKGbrG9sMjMzizPsEPgJgZcRxj6njx+hoGe0Ntfw/BzzMjF1gENHj3D23Ys8dOYAa7fWubq8w58+8wamZdIfeCDA1FVqVZso9rBKKgUt47577uHZF1dwnTZH5icozhxhanYfplGFNGXxxkUak5M889Xf59Spu5g+ego59hh2t5nYd4hCqYrne9gFG1mReO6F5+n3Bzz//PNcvXx1L2wiSVOyNGVmahp3lOuKZVmmWq3m4+bQQ4w3D8MwMS0bWVIIXJ+5+YPUqiUKls3E1AzD4QhDFXRaa0jk447r1xc5f+EC3d4ANwhIs9z9Ohr0mZ+ZxHdcgtjDD+DggVmmyiYnjiwQJDG3Nru0+zFJmrDTgVMn51lZ3ySKMzzXQVZV4jjiA/feR5LExEnC0vVLBIHHQ489zmjk4YcRrfYOk9NzaJqO53gYmoGhm9SaE5RrdSzbzvWmvoNIYnxniKwq2HYR3SwwM3fotulIv/yl/+mpyYpLIFxeey1g//5jRLGGNwzYbse0tw20mQ7tbZONnXUMqc07bw9p7E/Y2ZKRVY8ozWi3B6SyjllqIEdDZvbNUCwlXLvcRdcMnGBAd3ORj398mq/88V9w9cqAysTbpOwwMX0nrY13WDi6j//9/3qWjBqBnOtu+90eh+bqrN28wOTEAokuEzojBt2AhaMqc81ZrryzxGMPHOW559/kV77wM7zy/XfodzPO3xzi+i7h8gZ3P/IkQj2GFPdYW3uRij1DnKo4QYCsSQRuhO97xJ6DE2cgLLzAA0kizQSablCpVkhih9ALKJVrKKpGudbA9TxKxTK6YdPa2cmnGElIjIeh1HH9PiurN0njkNDzUDQLWdGwCyVq1RJZJlOulAjDDN3QcT2H5VvXmTm4D6uqoRcF1YZFlAyQNYjiEXGWYeg6tmWhyiquF++NGC3LJAj8sXxDULAMRJoROEOSMMQ2FIa9PpnQ2ez2OX9tiTTO778oznGSYRQQJyGqopJlMBj08R0X33NzGQoSum7yk7/wS7dt7f6L3/5fn3KdmDhOychNfpqmE2chSQqaoRClPpHrIcsSGRmh4+F7IbKUvx72Y7JUoEhgGxrzzQIj38fzQ4ajMDc6SRmqqqBpyjhAIUPVdUBgaBpkBtutbYZhxHa7jyokYillu7XKYJTy8nMX2Vrq8Ntf+DtokcrJT32EZ773HEmWcmz/DN3ukI8+eAeX3n2NfXMNpCymtbFGtdZENao8/sQHeffdd7jz8Dw3ly9RNC3a3QHFcp1HPvQEpUKVrc0lTpy4k0St4IYZ/mCHp7/zLHfefReFQoVqsYlVVHnmm9/jzJl7OXRwnvXNLTY3fYpWxN0n7+ITP/phvvXyZXRMTFvQ70d8/ZuvYJSqDCKNRt1m1O1ybH+FZs0gS0IMzeDScofN7QF+lOJ7ISXL4uD+OlfOb/Pkg1WcIOXhY3UWTh/nq99bpD0KOTYH//abr/PmlZgobLHd3aFWULl5Y5W/+6uf4bFH7uXazS36SUin0+Po4UNcXbzBzaUlVMPk+y9fpDlV4uT+OV46u0iWQpjFFIsFHNdnq93nvtOncAZd6o1JrKJNwTLY6TmMRvkz52/fJg5099b1p0R/B78/xO35pFYRu1rDLBUwDY007KCl+f2sGTZJnFKuGMRRSLVWpd3uYAtB7A7pr23T7TkcPHWSke+TpCApGaksMdmYJfFjXn9nnSPHPsBg2MesNvGDAM2ycnlFBmTiBxTNu0Vomqa5jlmQ0yByxDNiHPYRBAHaGENLmkEGYRSSZXlTwnNzSZqsCDw/59VHnkPm9rh84Q204TaVag2lqKFZgqHnYuuCTrdDLClsbXewbRtDlwmjAMIRiixAVVBVC6FoCCnOzb1CzuXEkjrWCivjjNJcS6wqKoqsIWQZRIqQZeI4ojQ/g1GoYNhFZEVF0XTSNMMdOvmUMonRDZVM10CWiZIYTZFIkyhPIBwnN5KBlMb5hCtNGCUxmQAzTZGzBD9OSEWGhIwsyehpQixJJEBIRixlpGHe0BNj+rZIs70JmpLnPyJnGac//um/Whro1K6TKTq1Wo0/++ofEQ822FfXeeyeYzx+9yynjzY5fWwSkTpcv3YDVYCWxSSeR+Q7EDmoiYNKwKF9+9hYXWMQpAwDD9MSHJmfodNt0drcYmZiEm/kM/BSzp67yEuvvkIwBE1WOXHmPr75xgapotJoTtFo1AkjiLKM3sijXK5TNiy6Tsb3XjnHvlmFyUad4w98hDMPPoEfpRRrDSTN5Mzdd9G7dQFJpNiVCnaxRLnWZP7wMda2+yytreGHLtevnOPalUtMTUxw9s236He6KIrCYDAgCIKcYlAo0Ol00HWdIAgIw3CvS2sYxvsMdXm32HVdJJGycuMisR/geSHt7Q6lUonEGxKN+tSm93Fk4RgPPfxB5ubm+Os/9kk+97lfYqvVZ7s9wC7oOE4/13maJmSweH2ZF156m6WlDbY3tokjwac+/ii1ssnCQZv1m7d46MxRamUT27Y5eqjEww+c4dI7F9C0mI3WBiPHY3lljauXrzDsDyBJKRWKe9xn284DaFw3T4oql8u5VKNUIkkSqo06qmngegNGwx6j/s5tXbtTmsKLLwQsHJnHElMo2jySFvLzn32S5VsQNhUS5QCN4kGOzp/gxz9yhuYUvPX9CqY9RLUmqE9WKdVkVMtmdWWbfusy05MHWLo25Cd+/A4ee6RIu61RKc3ylX+5yMQk/Ld/t8XO2hSOG7B6zafXk2n7HbzgOHpFojQRsNNfIREW3eGI2dnDPPvds7z16nn8To2KWebNt6s8/dYGs8dGWNUeqpXyv/zW7/PYp00+8198gS/8rc9zYv8Rpu46DcZ9ZOzw/b/433j0wz9JKkwKegZxSBbB0PNpd3psbO3g+glJGuG4bbq9bVqtFoVCgcXFRSy7iF0qE6YQJgmO0x93HQTLy8t7GmRJyPmhKw5ZW78JxEhyShS7pGnMyNmh21sHEeP5DoO+j1UyyKSYVMRMTM+gmAGy5hDLQxI1RC4LRDFEKYQ88qGT2LYMaoxR1BBy/kBTVXWPPZ6N9XSyotLt9XB8j/XWNn4YMnRG9AcDgD05ieu6WJaFEIIwdOn1OjQaE5hmHuSS66JzAsBoNGJqauq2rt3+IGDgBMRJhqoKDCM3uYlUIAtBFHhEgYNlakjkDwvHjYhige+PY7slEEh0+yPa233Klooi55hBRQJdkdFlCdsQzM4YlKs5vSHNAjRNIU1UVMUiiqHfczBUFQlBt9vlc7/4t3jq1/8xZxdHfOPKkN/6k6/y/PY2//Nv/p9YgG1Y9Acudy7so9de48NP/ijXl3YQkk6pVuOt8xfZ6o342te/y/dfeBNFUWiWKwzdCNMqMDM3wT/5rX9Ia2cdb9jnxRdfxC7XOX7mforVOqZpUGrMIApFvvb1P6PX6aMrEv3OJqYlc+TQDD/zmUd55MG7aA96/O6XvkYaDDl8sEk4DPGdNhSqXFpq0Wpts7K2wb7pEvccrVHTQjq9EVeXWyShx2DoE8cpxaKJokpokmBhoYSTVohijVeubfP6xWtM7S/Q9QO00iG2BxE+ICklCppBu+fyyJN/na984zl+7w/+FQfmp1hcCVnclomNSTpd0HUDU1XYP2Nj20X6QURFhk984jEcN6Q3dJmeKeB6cPbiOh46qiSI04zNbj4x8fwUXZdv17JFCA/H90hlheLh/ew/eYL6vhlM2wZJoGgqQeiSJAmVahlVFwxHPhkS/Y0V9CzDsiyckYfQJBIp5q1L55FEhm2oZEFEUdXYaW8hlIyPffJJem6LiflZ2psriDQlDON/T7/8fk3x7rXbVX4vMOW98JRdMzwwTurMg5sQCa472pso76YRmqrCoNfF621TCUeoakwiBxQqNbZ7I8jytN4o9NFkialGnST0cAc9nPYGwh+iZBFZmpOBojAhTXKZlRAyyLm8AkUnk3Vk1SYTOpJiEacJyAmSmmFWC5RmJth/zxmqC0dp7j9Ac3aOcrOOZGgYpQJmwUQvGJi1CkqtTpIBY4qWYRhjvXWSGxrThCjykbTcsKggkNIMOQMReRB5xHFMECUkSZTrv2WBLAsUKYXQRwQxksjlYn4U5vxnMohzLnQikXOi/5Ir3h+KAnpxeYuX3zjPn37jWdZaA64urrO57XDxyirbnSFXri6yttHi7bPvkgmFwchH0XQ2t9skWYoQMnEc02m3WVtfyR9Spk0WhRgqyFlMvVqmXK3hxxkDH5JsbIrxYz7yxHEyq86ffet1SgWLOM3Y2NjA9T0URTAaxgwHMa4T4scpYSLR3gmRJRXDsFDsGks3bzF0HKr1BtMzsywtLdFpb1GvlBFpQrNWZ9Dr4zgO9XqThYOHuHbtGn4QMTGRj+36nS5REFKpVND1nDgB7InfPc+jWq3u6ZNybZOKYRiMRqPcGFirYRgGR48e5cUXnkUIsff7wjAkTjMyWcE0bZZv3mBrbZWZqSneeOM1/tk/+x0+97mfp1RU6fcdJEnh6NGjbG97lMtWnqyGRJQJzpw6SeC4XLp0AWmMz7EsiY21VTQZ3NGAjY0WjWoVQcT2VgvDNFENnSCIGA0GYwRWSDyOhS2Xy3s6191NYxcrtms08/wQ3TTIsoQ48Inj2xcpC9Dt+TSrRS5cXMEuKtxabdHa8llaWsYJupy69zCry+us31rm4Q/d5A/+8F3mpu7gnjP3UbWm8DyPMFKZnJ3B90Mee+RezGLGxnobu1Bja/sV5ve5EO/wUz/xAf673ziE78FgJ2Xk+RSKgo1bKUeOHKFcnqU5OY0sZ6xvnMcqSTSnDuC4Ej1vCzeEAwtl2r0uJUOhYNfoDDLaLbi5nHL8jM7mFkzNPQniKrI7xac/+TE+9snP5xsoHpZyi2DpBpKsE49P+HEck0kCw9Lp9To5JkvTkBWBpuUYr3K5vKfll6Ux4g2ZUrlIrVajWCwij0NGHMchjlNKpRK2bZOkEYoqjaNoI9IsodNp095p4QcOiiKAFMfJjU2+71Orl1A1sEoaGSGSkhKLCNmSQEu4dvMyQpORFYEk59ILYC9saFebKEkSrusDEqVyFV038cOAFAjiXO+9K9fYNR7uPjBlWWY45kzv4vemp6fxPI9ms0kQBLdr2QIwcv0c8Sd25Rjjrtk4qEkSKaoskabjUJlU5A/Z8VhXUfJOWZolkKZ4XsDIDUnjvLukKhKyItB1Dd2QMQwNRckLDEVRiJOIOII0lQijlCAYh98oClkqeOzRJ7jz+CmaU3X+67/zBcqn7mRkWsiAGE9iO50eN67folxp4PkpiJy2IAuwTYML586jaRp//zf+Hkq5xM3F6zz3wov0Rw66bvDRj3yYRqPBwYMHOXZkgTSOcAZ9FE1jdnaOxSs32LqxxtzcNJKssXD0KIHbRxIxrtNnZXkR1+lz6uQdbGx0aHdCzILF1NQs3W6f1o5DjDzWsEpkaURra51jx+8gFip+LLPZ7lCwFVIgDMN8hB34WKbNyXs/yNXFFi+8eQPZmMYZjBgOI5aXb4GikQE7Oz1KlTJBCO+cO8/aWoTvGFw4e400iajWa7zy5rs8+ZEPcvz4cYLAQ9cUlEzw7PNn+fu/8Te4fvFtZBmSOCKNoFLWWN9us77VxSrYrK9v4Ad5Qacq762X23FlsoKfpmhWEUkzc4Saknc3gyga498EppkfVHd2uqSJQFZNVLOIUSiRpjmS0fciPvVjn+ahxx7DtnOM4FRtgpUbt9gcjOhEGevtFg98/KOMnAH79+2jVMrRnsCeSfD9xXQ6TjMFfkByuStR2P3a+yULuxrd3b1k1ygN7+mrh8M+qiwY9brIWYrjjfLAEiSq9UauWTbMnB+dZiRpTBQFpGmMpWsoijKmB0lomjGWZOUHYEmSEMgosvZeAEoGQpJzYLWU+5mQJBTNQDVMNKuQ/x5ZQUgSiqYiZBlZVdAsDdU0kE0TWTcQY468PEbdwXsHiV0NOEAaxahyjq7L75lcZmZoOTs9TVPiJBwf3vP3ThZ5quHue5cmSR78/T5pTDJ+D+O/ZA30D4WE443vf/2pE8dPIFLBsTtPc8/DH6TSnGG1tYNeaJBKFppWJIgyFNNiZm4/vheQZDBwXZI4ZWp6hrJlkSFhFYsEA4eDczUqJRlZyhEw1xc3WN0akug2YZIxUdR59J4DhG7M73zzHL1YR419JEMjCqPxQpKAlEOH9uN7Pp4fIDQbQ4WTJ+7g/kcepzF3hJKpY1k2mWwiqwqB24NggNvfod3p4EUZ0406QRDTnDtEb3sbVTMpV5tsrK7zjT//c0rFIp2dDsvLyxiGQafToVgq7XWcm80m/rjYNAyDVquFGI+d88WYd8NkSWb55iK//J//AkmsUm9M0h8NmJ7D+LU5AAAgAElEQVScxvF9KrU6gTtg4+q7XLl8gZ/92c+iaSoXrlzn1dffRKQGnV7EL/zcZzh//hymUaK13eOJJx6kM+yjqTILsyUMQ6fnphi6Rhj4aKZFuVyiaFlUSkWS0GJ1bZHTZ45Sb86zttXCH42QhMShA/sYDUZEccz2dpvm1NR76KwwN0tahQLFUgnXcYjCAEXZ5dJCEgbjGwOOnrjnto3Bn37mq0+p6U2MGXj4wRP8+bffZmc7YOn8Gv/9P7qPL/3JDUpKyuc+Z1MUMi3jFEl7lcMnOlSLCiutBEmeZnVrhZ/8+E+Txut84mc2+fM/dZmbO8ihw2uETptPflLmUP0gv//1ReYPFymYIxY3fbJ4gmbFoVLs8NWvX2V1TSWLNpg/ErG66rG52uNz/9kvcvHiEk7cR5gpF2+1mDc9zr67yuF99zBnQ7FwANs4zel7DuP1T7Bx/RZyep3elkrz0BnStE20uYgd/Et6202yyhEGgy4SGd3eKI9nVWICf8C5y9cZDfv0R1sISUNgY9k265vrVCsF4iQhSgSKqnLz5g2EUFAkA7tgM3IcFFUhDGKGTode26M33MTzPHRNIk1iZMUiI0JIKZOTRTbW1zHNAr1RD8O2ctlVWaIyYeBHDqkSolsahZqFYgim5hp4gUvgyOiSSppIJJGE5wTjlE6NOI7GD7C8kE7TFIWUYqmAlAZIQuAEEXEqMIsVDF2jUCjS6/fHKQkpiiwz0Zyh3xuiKgLSnHBRqVYBgapqfPqzv3jb1u5v/uY/eCqKQTcM7IJOoWCTZSlRECNJMoYpISsZkRfk/FwvQMi5YbRYNqhUDAb9EVEEaZISJylB6hIEAUJWUFQLRUjYRQ3DVFHUXK8YhwrFkoEsZEQkCP0IN4xw/BDLMNBUlaE74vTJB/i1X3uKeNTnL772db7zwjtcW7zBr/zqf8q15Zt0ey4PP3g/k/Uike/x3LNvcGje4qEzx3BGA1RV49Ef+Rhet83cVIOd5fMYmsz03GFeeeUNoihlfmaawTDiwrk3abc2Of7oo8TdHdbWltB0k+eee5sXX3ye48dmWLjrQS5eukYSjDh5/A4uXL6G73pIcpivW7NCxxmgSBKN2iSZlvH8O21QNKIgRpElnnjoBPtmSrz+9mVevbjN1o5LoWQjywWSVKY/dKlaGnLmoesFvvvyc5y5+w48NL793AVUAbIKD31ggTvu+TBvnX8HTZKJIh/ZEOxst1k4dBhVibn/gZNsdYb0R0M8LyYOPLzRkM5OB8s2MCSVGys96mWNyYbN9ZtbFCwT34mQ5Ay7WmBrxydyOszOTLK5NSSMYaJZxXMc/offuD0Sjs76xlOWYaBaJppVQtZUkjTHp1mmjkgGpOGQOMp9SY2JCdxRTLlYpj0colslKpqG22sjZRrfe+5lGocXSIIBnjMkLZjU5+cpN47ihxr75g+wvbRI1SzgpyphFCE0K0fM7RaD4wL4/Zrm3c/fn8i3S7lRFOUHzYRjZrEkS8RxSBj6aIo2NvDmheSgs0OWBLitFSKvz8RUHbtYptt3MIo2WeiTaAZWsUoqdMLQwzRUur0dVEXOpWOqjtBNBCq6VURRVTRVQ5I0hKwiySqZBLKqoMgqsqzshbKkSYIkK5iKha4VkLQimsgZ07n+I0MZN7uQcwa8ZhcggcQN8kAYIaHKMookkcUSZBJRmKDIGoaukIYhcRQRp3msdxpHZJIEaYyUJcRZvh/rAjJFQVU1kjgiDBOyNI/3VpHQxkW4KnKccZQmZGlGJuDeT3zmr5aEY37/UXr9Ec3pKW4uXefa5cv0+33uuf9hyo0Z6pNzlOtNqvUKc3NTvPLqWbbaA6JUQtMKCMXkjbPnef3tq1jFEoN+B82U8fwQhE4UZ8TegHoZJstw9wGLOg4/8vA9LK17fPvtdZIIlCzKT5ahQFV1/DAlSlOsUpmbq6v0fI9OP2TQ6RNFEYcOHaVYrOI4HoY6YvPmBdJMwvETpqYn8H2f8uRBTt77GHMzs6ytLjPod5Flmal9+wgzCOOEqWYJd7CDoRlkUopZMDAMg1KpTBKlFKwind6Ata0WIz9As2y2djogCYYDh6JdQmQSiqyj67lZ6a6TJ0j9kLXNVcxyEd0wcPwBum4iZBVdy00+mpLg+QmlSpN771pAxBmh76Cr8Htf/DJn7nuUtfUtZBkuXbrEyHUQispgOKJZK1M0DcqlAoqIqGmwvb7JcqvLwAsZuF2iJGV6cobE2SLxuuhWhUxoDPs9vNGQLM6NZDutDaQkQFWgUKlSqFRzg2KaoZtGfvKV8o4emUIm1HxUc5s70KtL68wfKTFowb/+N68g9W10vcAvfeFR/u9//hzdwQ7bvTaXVgK+9IzH6995iVfe3eaLX9lkclKlYmg8cKqOpRR4+ltfo1GoMjl3FwcPHOWVq8/RKBi4cpWzVxxWt5dpj6p89c+2UMs684dmcYHA28QPZXQZlm9c5cZSxCtvBjQaDRp2ld/6R/+A68stBkOTgasjZfD4fUd59N4KZuESC3d/Bsm8h/W1IiX9PkaDP6Zp2Fil11DSF6A2hWId4I2zf0yQNrjReoP2rT8lC0f0Bx5xJHCjLUJ3RBwmzM1P0xl0QO0iKwU0s0K700VIMX7k4/geghTfG5Ept3Bdl1hEuIGP47mEQYxplTDVBm64hBe6eadF+Jh2AVXEKIAqyQR+RBgEDKOIQrlEkkQoik7PbRHFKUkWo8kgqSmKpVAsWfQGXRRNwVQMsjRCViHMQoQeI6kKfuSTCUGhVCKOYyolG8tQybLc2GyYNkNnRK1UQBYSmkgomBYFw6RUKDNRn6BSqDNRn0JXFBQpo1ppUKiUKNUqGKZFEIUUCtZtXbu5UzOPxZWQ8+JVURFCRlYlMmIUBGGc4rg+ZBKKyGPURSoQRBimjKwJskwaj4Ulkgw0SUOVBEITGKqGLhRIJESqIJFiImNpKsWSDVJKlkXYloKmCpIkQlI1vvHVP0YEPW51Ovzoz3yaQ9P70WWJ3ijmsccep2SU+ZW/+Xk2Ntfp97v85Gc+xF3H97O5doOd9haOH/BP/49/wf4jC5y9cI56bXpM3Ag5ffo0jcYEdnUSq1yhOTXJkWMLPPfVP6FQKrAwPYcppVy8uohh16jW9/PF3/syXihz+t77eOXl14gyj/Utl1rlIHapTr1e5f57P8C+uf1YBYutTTfHL3ohiipQpYzO1grDfgIUsEtVEgF+nDJwPcIkRtNkDFOm3GyyM9ymqqsYZp1C4wD/1d/8eR574gHcCC5fWeLylSsMhuCnCRMTDWqGgqEK3r24zM21bZ5++hskSYKplvBCj9ffWebRRz/I5z//S9x1/DAn7jzMwkKFc5eXmZo9xKP3LfATn3ocLwrxwwhvOMJWwQsTiobFsSPz3H/faZIoRJJuXwhQpkio5TqKbqKoKUomKCgCspQYGUmxscxKrvfNUlqbqxRtA8dzmT5wB7pR4frlN/F6DlEUUZ+dRjNl4iQjiGWQNNJMQdc1eoMd0iwmyjJcoSFrGpmQ8wBBkY2L2yw3qaVJbvBLE9I4QhlHTmdJmuulxwmDiiSP00yzvWlPlkQoEhBH+J5D5AfEZGSyhOe4CDJIIyK3x2hrjWa5TKFYJwkd5DQg9X28GBRSTN1gYmKKqcYsrh9QUC2C4ZAky3nIyBaSqoGQEEgIoZJJMmSCFIEsaciSTiqppJJKIhQyWUHRdFA0EklFqDmJKZHiPPFVSlBEPjWWFBldtbDNQo6ySyIyJUXWVBTbRNZlFC0Pp0tIMGyDhNyILqESySAUQUYCSt6hllGIhESWyhiqRiJATlLiICSIkjy0SIIkTQnJI82FEIQCUpHnKpIKkuT/f8DN/9f1Q9GB/u7TX33KsgwUTWHf/nm2W9tsbbUolSqMRg5kCRvr69RrFXr9PtVqg/XNFgtHj6BoGqZlMzk1TbNZI0mhVm8ydDyqtQqB77Gx3gbdJBI6ITLr2yPM2jTnFrd49p0NOqMYGSgXTIrFAqosqNXKGIZCEofEUUgcJ3heSpRApWqSpNCs1bjrzjvYbvcJ3XXW1zc5cdcDOIMe5996AUO3mDt8klAymJg/jKLq7Dt8B26SF4KaKlMvGDz/7DNMTExw+fIi6xtrBEGAadm4nkccp+z0uiAJgiDg1F33cPXq5dxNLWfMzszijEY53s5xcsyYprG2cotKscjRu8/w/3L3pkGS3vd93+e5r767557Z+17sgRsLEAdBgiBNkQJFihIlV1SxnChyrNhlquRYVmSIjhzFV1KupMqJLpYjhZZkibQoiqdJgCSwIG5gd7HnzOycPdP38dxnXjwzA0jxm6RUtSw9Vf1ia7pmerb//czv+H4/X6NQQVUUkjQmiRNC3+VrX/4DagULRU65ttgiRWTf3ASmIbK5tY0qy0RxyrUb10hTOHbiKN1Om+EgpN3scO+Zg6RpRq3ewHZsQs9ndrpKbaLBanOA6/kUy2W6/TGLyyt86AOPE/tDVlY20VSFUrmEgLDD1k0YjIfYgwHlWo1SpYFpmvn6Pkno97rIikh/NCb0fZIkJo0CAt9DNyyOn77/jk3xnv+Pv/msIIW0ei5O6wJOsMjn/sWTfP1Pv83qJZlKEX7ix87w8kWPnjdirljn+NEZNts2P//pY7zwygavvHKJza0Ww8Bnc3PMw0dVPv/FS9QrFZ5+osK3394gjqoo4gQrS5f4kadOcPGbY67f6tFZD/nAk2e4fTnj2GmLuRMJr7yqkGkZdx9d4O13mviyTuB5FAsTbG6sceKuBQ43erzvwzMcOPTjbG2ItLsZThgxf3iLuZk1pMIbXPqBxr4FH8O6n+e+9iiPnfollm5uc/aef8Rg9Dp/+Cefp1wvMPJ6DIYJMqBqOourtzhy+Cxjt0/BPMT65ib75mdw3R5z83OM+kNU2WQ0HHD8rgYkDdqtASkCcRIRBD5JnNJqNWl2NjAMiSwVUNWIOMp1xLmGLqA8UcYZ9wnCjFKlTKlYypPz5AG6qTFyehRrIka1xMy+4+h6lbGzTbFiIKHgDxMEQaE/GKOpOlGYocgy1WqV4XCIQEocBbiOTbFgoGoKopihaCphELHdGeytCiVBxiqVUDUdyyoyP79AGAXIioQkg6qYhEFCfWISTdWQRJmPffpv3rGz++v/7NeeTZJ8e6UbMgcPLRDHKUHgIkgZYRAQuRGFgkWaZWTshCaoubM+CnM5FSn4fo7Zmp2tIZBSsoqkogCSgKGqWIqCrIikcUYYJliKhC4JaKKICPh+QKNaxTJ0oiig1e3zpX/3f6BEPQ7NHOETT3+CA2cOcfXKFV64+BJnTp2iPl3Hdvpcv3mDu8/N88r3XkUTE3RZpjY5wTiS2RqlfPe7r7CxcZvPfOpHaG6uEYQBrh8RxSnFcpWV9TUa5QKNWo12b8iB02dYWlynNj2NXFjgjbffIfBsjh+ZZXl5me4wAkngyfc/jibnUrjri4uEscC+A8d47utfJyGm50TcbrlkGahiSqWgMl9LESWd9c4Yx4vRVQnX9xiOIoIoZm52hkG3xcGFGbY3tpiYKtMeeXzpa5d54L4zXHnrBrYTcObIAZ575R3m5ueQswhV1TBUAUNTKDWm6PdG3HPuBLdWV1jf7BFnCZWyQbu1jSDLaKrO2uoypmXxypsrbGwsc/VamzAc0eqOSZKMRqPB6dMn8Wwb2x7RbHbZ2NreCRlR+ex//z/cMROhKAukWYQohCAppCKIqpYXuImDQojvOHiOTalokSZQLBXIspRuq0UpHdJabaJYdR549HEwpDykRMylWL4fMhg67F/Yl7OF45SuHVGsTKIbJqJi5Fi590yZ3ztp3r1kWdmTg+1OoHclirtSjzRNEYV3MZLCDr1GUQyyNCONXIa9FpFv4/ZbyPYAq2IhaCrt9hqVUhEvSpBUk4wMz4+QNAnX9vC8Md5gCFmEaFooRgXFrICooOsFBFFBklVESUWUZQQkRFFBlFVAQhRl0nRHqiKQT6RVPadqiHIu3xJyp6S4wzuXJBlJ0dB1i0ySEEQRSVUolEqImpY3CoJA4If4gY/rOPnWzx6ShSGBEBOGKVmaIGUpmpSbj1NE4h3JiyRmuGlMKAhEoogEJAnEAJKApuQo1F1KR5qlOYtdkrjvo5/46zWBlmV5LwI3SwX2HzjIE088weLSTd54/dUdsH/G2sYWoijjBy66rrO4uEi/38fzPAaDAX7goqoa21tdKuUGllXi4IGj3HP3OQ7sO0ix0KBcmaVSm2fgRHRHLtVGjdnpGnMzdQxNIo0DCpZEqWgikKDIGfVqiUqpkGvrRNhqewiSwng85PLlt5lqlLBHDqdO301z9Rb9rTVkJBSzRnvkU52cRdBLJFqFvptQLJepVEpsbayxdPMdRoMeqqrSaDRyHZZVwvF9BiMbrVBgYmqaubkFHnvsCVrb7XydrIh7SCwA1/P2+Lie57F///58kluqIMsyVtFEkiR6nW26nS2S0KZUqdLtDxgNB1Srdar1ST7xY89QKpq5PjFJ0BQZIYXlpRVMq8qBfZNUaibdkc92p8/N628ThS7lcnmH3xtjaAr1Sp1er0e5VsWNU/7tb38BTZGYrBeQpZSh4zAYDul1uoyHPeyxQ6VSI8sEVFVBEHLMliTlHN7BYIDneUBKmsQMBoM8Gcnz7+jZbbc2eP3NIYZVwxNuIRvwu//r13nrHfjZ//YCH33mFF//5qscPjxASWr8xI//FGfvPcfJe/YTJh3uPb/Apz7zM0yXZYxCha6fEqymiEqBshTy2791g+tXS4zjjK1umaffX+PVV68RSwaf/cWf5vTxiK9+4zqNhoHTDwh8l/pMQq+vUDWKlCfqOGl+ww79gH0zJ2iutJndf5SltSvcup4zfkvlKaxKgZXlDitXVaRsmnsfVqne/SsQ3OSh8xdwPJvylMl6d5Fi4QGe+egvsHx7ieu3XgPRIQozXD9kamqKXn+LwE9ZWr5OuajiuSMalTKqnE8qRVFkPLYZDQJu3LhGEDp4bm78OXfuDIqaYTtdjhzL/0glaR6Pre8wqNPMR5QSNraaIHqUi0XG4zGypKBpWo4CkxImJmskUkJGhGnWmJ4+zuz+05Qn5yhNlYizlCAOSYV3zUCqqu4ZeDzPIwgj/CiXNaiKDqKCouqEccrc7DSSJGJZFpIk5aFGoxGTk5N7GE5NUwhCG1lWsczyXsS3bdt39OwCue41iXZwURGqBqoCkpgS+hGSpGBoOVITERQ1fyRJgutkKLJGqWygqiKimLOlZVlE1SQUKQ8PEdOEJI4oahol00RTxXzTZGpUijpFQ2VmokGaROiyRKVUwvcyTA1+4sc+zH/1Y+e4+uJv8Xu//wXIEoIQvvDvv8hHP/IUX/jCH7HR7HPxhasoCmRKzFa3SXcUsbHVx3F9ahMlipUqb1+5TppJTExMsbKyjG2PaLe2sHSNWn2KpaUVPNuhv7bC4UP7WVtdYmlpkd7Ipjey2TdX4vjhOTw3JE4y/vW/+BK1kowsRpw+eZqbN9fotnt85jM/zrUbt9AMnSDIPRyGKjBZLXL4wAyLt5e5fGMLMQvpdR0qxTz8Std1VtY2iSIY9Yc0KiaaXuDm8hqyAv/0X/4+xWKZlQ2Xs+fPQJbTTbI05+8fPnqMe86fY/n2TQyzSHfg8fRTD9OoG0xPT1MuVVnb6vGt53+AVZ0i8GNkIWF6fgpR0jhz7jCOl4fMCECr1eatS5fxgwjNNKhPViiVivgh2Pad2/xlsUcU+yCEROGYBI9UzJAVFc0wUWQ19/oIYq47T1KazS1s12fQb1O2dBzHoVSqcN9Dj3BraZHAj1BNg0K1DFmSc8QrRTx7gGcPMXWNhblZFEXZ80j8ZRzdrjwD3jUP+r5PsoO4lWV5D4+5i2fb1TvvSjp2v4eqqjnzXhCJQpsk8QidEYqYYVgKgqHSGQ05dOIuUilj7NgYhkGKQqFYYmurydgZ4LkjdFVDkhSyTCVTDCQl/7ckq0iSslNY5pQNSdVAypkVu3rlXB8tIst6XjQnGaIg/b8MlKlArkdXZBTDQjQMNKtIsd6gMj1FYaKBbuaaaElVyERhz9ukaRqylDfnu7xmSVTyNME0BVEgS9M9j0AQBISOTxLEyFlufgxzCyRZlhHE+fvwXpnMbujNX+X1QzGBfuMH33xWEkR03aBYLFOu1RAQUCSJWrXClSuXGNlj2q0OvufT7XUwzAL1ep3Nzc09TnK/7xAnoBtFNre2cFyX4WCAogik7pDRcEQSh9RqVfZNN6gZKr5rUzR1LMtAAFRVYbpexvMcClYRWZQwNJVapYQkJszNTlAuGPhBgCxCtV5lojGFUTDwvZjRcIRmaFjlCSam5ihW6tQnp7CHfZI0IxMkev0BK7cXsUyLNA6oVUp845v/iXa7j2Hp9PtDpuYXiNKMv/8PPksmCOzbd4BbN27R7jX58NMf4d5770OWVZaXl/LMekHcORwZpmGgGwYIItXJKYYjG8uy6A/6aKKALKW43VUOHTnOteuXqBdMgmDEwsFT9PpjktjJ9dVCiigmyDIYVYsgjBh0xxw8dAzX83CDiImJGmEqs7K2xnA0RJZU6vUJtraaTE/W6Xb7+IlAJkC3P2Zuaoa77z5Hu93EUDUyUgbjMYgKsigyOTODKCmUK0XiJML1HBxnjJDFON1NAt9DFAQGvQGe61GrVjlx7qE7NsW7/OJ/eNb2IipVn7evDHDcSc7vU7m1XWDcHXLx1QjUEyjpIosrCVtrG3zj+RfpuA4/80yNK6/bfOvN65xaiGh1NcpGyrHpGVytxLQ1ojOa4p0bHrcuDZmZWWGq8n7SqMw9jz7Jv/nfPs8zf6PE0RMKnXWfVt9leU3k6qKLhIm/3URXa0w1JvjYBx5hYe4Ac7NHOHbwbo4dXmC78zLe8AKELfwgZthtIoyq3HznNoFvUa5e49rSV5m+6yzdpYTqsWe48tKfcOLUU3zv4p8T+imGMUmxOEnPWcJQJml2O2QIyJpPv+8Sx6DJKa2tJooCqg6uazMausRxQOhnqKrGXednWFvrMxqPWFm9xdb2KgIZd503uXHNRTckZClCxCCJEzx/xPs/8AjLyxvs31/GdhREWcHQCyRJilFJkLQIURGQ1TwAxCyUKRerCHIFQy8ThwKDjUEe8CEphOMIUpksTfB9PzcCilCp1siyjIJlIopCbtw1DRw3hB3cUpZmqJq5k7Zp4Dh5k59TPWwEKUISdAqFUh5Tn4JlmXd0Av25z/2TZwtFnYyEJBaQldxjkIQhcRIjIVApFFBkkQwI0xBdlymWDOJIJMkkZmcaaKrKeOwgK2CaIqYuoWsSiOAHIRpgyBJly0CTRaI0wzJELDND0xIkScR3QkqWiWXoFCyTJ596EmfY5YnHHiMMV3n/44cw1QPcWFoCQeTI/mk6K9eQsojpiTIlDX7yow8ztNc4duIQVxaHrDZHSKKEALzvofupFzPCMCCOfDTDRLcKnD59iiNHD1EolllbXuH4iaNMHj3AjR9cpF7VOXRgH5IkcuWdW5w8NMUPXn2VFIVKpUSlVEHVHGb276O50SWURDZWl1F0lQuPPspLr7xGqx8jySJVI+PgfI2F+Rrfv7jOxEKVTmuMoot0RzGCJOKH+UR6piKiyylTE1VsP+PyzTHVqUnOnjvB4q1rSHKEZojUKjUuXblBpVbl5LGDrKyuUCjo3HPmNIuLiwy9hMjvEcUGG1s9ilYZP4rwvZi33n6Dza0+qhAy9JKdiWtApzfmfRceIPB9giRh7ASYus7ERI0o9Gi3R/gpFA2BX/rH/+SOnN2t5cvPSoJIEvgIWUgcesRxhFWeBkUlDUeQ+qhK3sD129tMTs1SKBZxXBtF0Rm310kjidWtDfwswijVSBMfURTY3tpGUxWSMKHXbjP2Y6YXjhCrRYqleh5tn0nspXW/xwj4XuNfTt6R/4KpENgrEMMw3DMvk+WFXd5w59NTkhjft+lsrmPpGoOtNWJ7QLUoIJkW9ekpBMD1fAbDEfV6nfr0LP3BkHK1QhqEDNtbiKqKVCghmBVktYBmFvOps6KRIZBmEpKqIUoqGTnSTpY1MrI9DbQgyAgiSLKCJGmIkois5BPqnIedT6jFXT20kKP9ZEVBVlR03UBWFLLctcVoNETMBMI4QpbyZFrfHhDFKaJVYDC20U0TOYuJsoRMkYgBP4yADE2RkCWNJMtjv+M0IZUlkjz8dIf9nBHvbM3iNNn52fDgxz7112sCvYt4ymkTIAgS/X4f13WRBZiZmcEwDOqTUziOx759C4zHYxzHoVKp7FEpCsUqYZTQG3SpVCoM+qM8BMT2CFOJIM5oD4dcvXmDdquF7YwomAakEVIuUgLybmVqcobhYIyAhCQJRJHH3NwUYpogiSlTE3UUXefty1fYarWR5LyTqlbz16CZZYRsZ5rlOIy6TWLfIY0jKqUipm7Q7nbY7g748le+yv333/9uwloxJ2ycOHWSWr2OKEnYtk0QBNRqZd5863XW1zep16e478EHqNfruIG/M6HNf2a/38ewCpgFiyzL6Pf7+Qc5CsiSlK3NDWRZpdPp4TltZMEniDIqtSmiOGRmZopqpUyhYJIBjmNju7mJ5HsvXuLVt29w9dZt4gSa7TYzC/MYhoXv+1y/do1qrURBVymZGpIgkGUCXqoQ+DHfff77WJqMQEyUxBSq1T3jhe+FO81QH3g3RShLEgJ7gESM77vYto2p6/j+nZ1AN5tNhCzkwQfuIktVEkGmUO3Tanc4ebyCJMJoaHN07mE+/pNHKRX3cWT+JHJq4Y16OP2IwbjDz/3dJ1mYnuLIfIVQL3LpzbeYOyAiiDVOnDjAIw/dzaOPHGLpdpNGPeP3fud3ed8FhWEvJXYHjP0O/bHH6kbIVKlG2dIQZYuH732IB8+eorW1Qa1k4Xke45FPf5jg2eCM2lRLGpae0Wu3GA+vEUSw/tgAACAASURBVCTrPPQjf5NKfYHzH/g73PjO7zDV2AfxDYJRwK13rlIsi2xtDhiPHaJAIvDB8WySJMGxfXq9HlEoIosW9XqdJIrzRxqjGxJh6KIoEq3mgChw8PwmgpjuTTVyI01Io1FDlqFYtFBVkSDMtxCHDh/gjTdeI/QT5udm8HbuIQK795GYOI6w7RFpBIkf0tleZzzu7lEldqdFqqrmDvedoKLdP3aFQoFisbhHjdgljog7tBCyvGmdnZ7Bdd09Uk4cx3uO912sZI7DE9B0hfF4nG8Ewjur309TkOU82TEME8ZjB98PiaKEOEoxTR1NlYnDiND38kAbKUWS8qmUpMh7BUO+xk6IogDIWc+SlNNRJElCkWRkISd3yKIIZMi6gKgmiGqKJIqYhoEkivQ7bb7yla/wM7/w9xgGEVOz99Lp6wjuKh//+Mf57d/8LURRxBBsHn3oKP/T5/4B9arAZz79URamDrJ4c5MgylfMkpDQag5JdhJgF/bv20vAPHv2LuoLczz3rW/g+yFHjx7P0y+7bTTL5Lnvf5/xaIsrb73EubPneeONKyiyxuGj82iygqiazC7MYnsuS0t5mNWxY0d55+Z1VtbX8X2fNMun9Yap0G1vcenyNUoF8B0XUYEkzfDjGM+LqVQqZFmGachIQsyRo4eIkpSKBe2tFhtbTY4cP0+rB1/607d44XuXOHz4MKpmoUgC680WjuexeXuRe+45xXa3z9GDx5AFmWKxTLPZpNGoYRgGpmmyPYBarYal5YE2s/P7SFKRy5ff5vZah0KhQH2iwWBk7yELDSPHEArcOQpHnJIH/8QpeZ0ZELtj4h0zvappSIrMeDwmDGJKhSKeFzC23RxlN3YQFZ2h7eG4NgcP7mdh337ELH9f5ubmKBaLhL7Hgw/cx4MPXqAxMYNq5pLCfLj0rmzjvTSN3fvX7j0D2CNL/WW5x3uT/3ZlHrv0HoAo9HCdEQXLwnV9ZAHSICATMmQBlpdX0FUV1wsp18rohszNxUWCKGLQHbC5to4mK6SSgJ9kaFre0OeUEiknI4t5IFmWCTshOzmJI0myPTKImH/wEUSZDBFByifWKX/595D2Hmmch2oJ2W7MeR66pRo6mmEhygpmsYC7U7NIgkAmSCSCTJCBrGs4gY8XhyCJhGkeCpdlWY6oy1JcEiJVJJLz/78khZS/GEv+3il5kqV/PSfQl19/7tk4TZmdX6AxWUeVJEyzgIBGt99jfW0dXTNIwhBNUzFVBVXVkSUZz3UxDYMkitEsCSGzckdr5jM3M4UgCdTqDYqGjGVZTNYbCIKEG4KqyszPlClUigRhgmYaxHFCoVbh6vVFMkEkFSWiKEZAQMryCe/hw/swNJEj+w9gyDrdfhurYDEaDGn1m2SkzMzMU6zWmJ2do1guM2jexvV9jEKRm8trOO4YEYGtjS1sP8YsVrl5fYknP/IMYZTw0//FzzA1Oc147HDixEmOHD3GfQ8+iCFpXL92E3s05oELDxKnMB4OCRyHkmUiKxp+EnLv2ZPc88CDuH7M2bvOUq+ViUIPIhtNTGndvkm1MUGnNcCyLKZqVRTLJFE1fHvEzVvL2LaLICSICFQqNebm5xEVhTDxmZmcxfVCFKtAbA/wvYDljk0Qp9SqZfrDIc1hjwPzk0wWiwSJBKGDYUoUiwpBFBEnKXGc4g5tJElh36EjVOs1BDKCyM9Tk8YBsqgzHna5/vaLvPXya0zWKmi6QqlUQTJ0Tp+7cMemeG++8rvPNuoFdFtgaS2k3JCx7ZTP/eoFgvGQ7373Fuakya3rq/Saq+w/dYq1teuowgE+9WSZreYi91ww+R//4Zt4oY+vwBe/8jpGIvDwE/D9NzV80eWDT/QJnUmO1xZor4+x44DHH59DX5jkZH2W7eEkL7+0jVGDu8+c4td+/hd54ZXvomRjHn7yPt56eQPHiRgnI7rrb1NTK0wfiVGCI6w1/5DLb97gYx+/H13Vuef9dSzjE1y//AJp/E32TSj88//5DUr6c9xeP4Bo3uCt14ZEcohh7CdmjCjEjLsjsgz6Yx9RtxHUCFM4wuryEkVLQMhUCtMig+6QoqGSxCl+7HHm3jns8Cb2WOHQwcOsrS9Tr04z6rc4d+Qwb13ZIEgDjp4p01z20HSNxz90jtdfW4UETp3OWGtqlDSNNIhRLYFICJieU3BHMYpq5E1wbGPqIpo6QyKktG5t0Wm1MTMV4oTOtksSRUiilE9lkxhRlomDgDRNsEyTwXjAXKnB3MJ+Rv0hiCFJlK/p2/0hhpHrEBVJZnuriev4OLaLQIpa1hEUSEPotHIm/Uc+9VN3cAL968+qqoKqyoRBkpsAo4w0iEnikLnJSYp6gc3uJl6ccmiuhCyDpGVEnowi52EwfhBQ1BSm6mXC0EcxRQpybvKMI7BUjbJlYKgeiqViBzFkEaYBhiQiSyqBC57n0hu6BHHCUx/9IDPVaSbqs0hKgiRmWKLDR556nC/8we/x8Q89xEfff5CVTY9XXvou+8s6f/KlL2KZOppqsdhyqU03OL6vwbHDs/z83/5ppCyh1WkjExJ4CeNYYGtxkbNnzyEKCYIo8+3vfAsBiWJRZmJykubKOidOnsQJZEa2w/5989RLOp2Oz6i/SRybbKwtUipO4IvgjsYsrjvMz+xjcWmFbTtPc33y0ZO0trocOXyE9z10ltffvsk4UnCCBD+GctHAdccUNYkHzhzi/PEp/vyrL9P1BbpOSCoI2MMxm80NVFUgCjMMCexhj5ubQ5qtNj/xI48T+i5VS+S+c4cwdJnL17bojLpcWRqQiBKh79PtD0mTiMMH58nEjNi1SbICJ+86wtgbETgO09N1uh0736ha0s7ENCLNNBRDJ0tj/uEv3xkN9K2bbz0bRQFxmiFkIcPuOmHoUZo5gqYWSNMYPxhC6JGlMbEkYioqnU4Tf9gCSSXrb1Oq1PFFmbnDJ+iOHMIso1iexI9lMlHF80MK9QarbYeVfkC9sYCgirn0QTEQRWGPgJUJKXESkaQJ+RAuv3+QxkShn8depymiKBBFIZkgoKgKubw3Jg5DgtBBlnOtbxZneL11In+MKKWkkU0waJLGLrICfdenWptkNOhRrU0gCj69vo+igj3qUFREwlEPOw4xpw5hWhMoRgkEGcWsIskGMSIIMqpWQEDYeU0agijkeM9UzPXQokyaxKRpspMwKsKO3jlNM0DIJ9lp8h7uNQiigKzIyIpCGAWIooCo5hu+OIoY94Y59z1LyRQIAhtJM+i1OpQaDTzbpl6rMnR9kgySLANRQBIFtDhBNErYcULqZ4QCKFmeXmuIAmKWvzZxhz+tpBCToKYCDzzz6b+yc/tDUUC/9N2vPFsuV9B1AxAYj8YMh0MKRZONjU2OHTtGq91hc3MTTVWRhJTtVm9PgL+rKZJkifHI2en4VdIkySdemoalKSRphiBIjB2PWq2GKMmEYYCSxhyYncS3bdxEoLXdzbsvcUfPJwnIUu60VWQRe2xzYP9BykUF05JRdR1FNjGKZQbjgK3WgPr0PIOxS3/s0R/Z9EdjRk6Aomisrq5SrjbYaubmPUQ5jxi1iqRJTFnXMXWN27duMRj2GQ561KsVJAFGgyHlSoUnnniCVqtFvVHn6ac/xOV3LiPKCoPhEJGMD37oQ5SqdYxCmcmpKVrN22Shz/e/9XV6rSZJFGPUFyhMzPK+pz7GybsfZOxHeH6EpcncXl7D83zSLKFULIEkoxk6P/rjn0CzDK5dW6Xbd0klCXc8plSpkSUJJBHlQo68MYuzuKMxuhgwM2FRL2sUdZGFmQa1WoWzdx3H0EASIvrjLhvrq4yHQ8adLlPVEquLl3GGLRJ/hDPaZun6m6xvNWm1h0SRTrFgMRiMeODRp+5YEfJHv/Mbz1alMl9dWuVYbZorl7qUChGKsMjU/Mc5e3qLt6/AkWMJ/83fugsh2ea5rw/58Z96Cr3ic/iEyte+vMYbQcZ8fZZYzQj8Ip98cooffD1gpbfC8SMVDp9e54//75gri7c5cabO9PRN/uMXO/zZ9zoImxv81vPbWAJcvQlHF0z++Pf+HQ8+NcGbr16nN75Kp2Oy3dli2LrOkXtBSLssr17nT/74NR56OiDyDB754GewTJvVa1WmDlzkWy8NeOnagJWrba41XTa2NEaCRbO3ytG7NGTxGB17hThzGEabbHcGRJFIozSDavaQrJB6fR8HDuxH1QwU2SdlgD+KCYMMMplEFJF0l1p9AqPk8+U/vUgUu3S2uohixpGDdW6sbWPocGChAXGdre0mZ84fZmW5x/S+CEkoMBwVyOKYwHXzyGRNII59wkBBVURG/TEZEUVTRzUabK8v0ltZZjyA0N3CdVJ0uQIphEGYJ+/t8lvTjNFotBMO41IpqIy8HkGQ4Lg2ogJBmJGREkcxURzR7nR2tPwihYJFp9tiPHZJohjXtglcB1NXeean71wS4a//s2efjaIYyPFTURjjBx5BklAqFJkqFwgCn340xLQknriwQLdnYxozlKs61XoJexxgjwJ0U8c0VOLIR5IENEVC0xIUNcFSTXRFpmQaiEJE0TKRUoEkhizWGXRjtppD/CAkxkfTZYb9Dgfm5jh+/Bie3SeKAqIgZmJ6itNnTnDurpMIqcgf/vsvce7UcU4fneDDH3wfb1+/zjgWeean/xbPf/vPed/5/VQtheXlG2haxvRkgz/64leYmD/CAw/eR71WZWNjhStXrqBrJoePHKRSre6E+cjEAWxudVnf3qbX2+bA/nnGox6nz9/N0OmxuHSVv/1f/wKLKze5ubRBpxNRaExz/fp1PD9BNQ2SOKBe0HIjrxZy+vTdvPzqFTbaMRkiKSJJFCFLELgpT5yv4wUxom5yfaVLFGckCZTLBYajgCTOmJ+rMjVj8tCFM7Q222wMIl5/6zaqqrDVC/jmt17l0QeOsbI5JBVS+qOUOIkZj0NUBc6euQtJViiXLAxd5cZik1tLy0RxSrsf4Ho+kpphmiqeHePYAYps0emPiMIAUZL4R//4zhTQqzcvPxtHMRkCbuxhFmsUJg5jlCZQNA1ZgiwNyaIAWdFIwgTfGZIkKapVJEFkumiy3uzTtx3UYpFMN6iUKsShz7GDB+h22+hWg0SxmDx0HqNQJXLHaFYVVdXz5D54jwY420kulYl8jyxNIEt35A95cEleb4S5QVCWSZOEKPIIw4DhoI8giJhmgTSB0B/Ra2+h6waaIuI6Y7z2ar79sSqIWokgTSjoBdr9IXa/gyzAcOBSLdXY3GyTqSWUygRWfQHVLKKYZTSrQhznvhdZ1ZFlld3cF0VWcyJHmitKkt1o8SwlY+fzECdIUr5hEhB31Br5xFeWFXajF7PsvbxlgSzN2cwpGbIgoOsagRAg6QpiGpNFIeVCBVnTGIUhXXuEKIuIO9KYXY24kGQookiSReilMuudFrGQF9eCAHGWoIki6U40eLKDr0t3NwWiyIW/wgL6h0LCAewdviTJu5g8aS/PM0+zjE6nw9TUFKPRiF53QJLkOkVd14F81e+ObRRJIPTtPYOOaZo4joNju/h+iOM4GFrOUHYchzDOgxfsQZ+pyXq+apTlvU4qCnxIE0gS4jCALGF2eoZBr0+5XGR+YZaTJ09imiZJEvPQgw9z7733MxqNsG17zyzghgkT0/Nst7uMxw4Fq8SBg4fxg4ja5BRbnS4nTp3EULXceDe2GQ+GdFothCxjNBiwf2GBwWDA0aNHybKMgwcPUigUaDQa/N2/998xO79AoZQHUxhmkTSB4cjG9b2d1bPA4SMHSdOUUrVBsdpgbv9h7CDh28+/iOP5DAYDFEWh0+nsifUlSWL//v1UKhWazSae4zK2Xdwg4cbNbeJMYXF5g0wQmZqaIQoTDMOi2+1iOx4pGfaojyRAlKSsbTa5vbLNN775Pa68s8R2uw+kFAsmqixhjwd0tjdpbizj2QM211dwR33STEDTTUaOzfPPf4coCtjaXL+Dpxa6y+sUzDF10eTDP3Kcg/srnDhxghOnyrx+5Vs8fOFxPvmJT/Plr/X44p+9Qpyt8/DDd/P53/4dVKOCM97gjRspmgvusEV7Y5OR3aZaKvPYww/xkQ+f4Eefvpt2G+IspT51hvvufYTHH2nwzjsyZ089SBCqNMqHsZQZ5mbLPPLgBX7pFz9BvTrPIw99lFPH7+Ge+0UuPHSEUq3DoCNRm1TYNz/N4XOgiPv51E98kPWVF3nt7a/QKJ/E8S6Tjupst7q8/iZoRYPtbki716U/9hiPI9bW18niiDT0SVKBkeMgqxpxZOMHY8IwxvVHaJaJWSijF3IDjaqqaKqBXihjmCUkSaI/SHC9EX/jI08ii3KOUpNgfm4aSYV6zSKJIlZXb+eehp313OR0kcXFNdIENM1ClRWyOEGRFGRRYzCwc3RaqpC6Kf1mn87GFtFoTBJ5CCiIcoAi638h8GB31aooCopmIAgCiqozNTWD7Y7RdW0vPQwyXNdDV3MJSOTnDXpujPbodttomkHo+TijcW64k3It+J29MtI0I01AkvM/8kmcIcgKmqYDIv3BEEESSZKEUkGjWjWJ4xRFlXJ51w4xwLHziG9FUVCQAZEsCRGJkER2VtNynnIoigiJRBxJdHsu/aGdI6ukFN3QiJOAoqEyOdlAUVUKhRKaavHmW1e4tbiIruTf+2f+y1/ggftOcO/dx6hUSiwuLqLoJXp2yK/86q8xOTnJzMwMF198jVdfvkS5OolpFbn/wiPcXl0j8gOsQgnSjLNnz/Lcc8+xsLBArVaj1e6xvtEkCAL2L8xx9NBB5vbtZ7vdplKrM7THVKtVPv7x9/PVb3yDpdvLyJLO/P5DrK5tUChWMa0C1XKZoqHSXG+i7MiA0kzm4UceI4E8Rj3LSJIsD3+RIQxc3r58neE4RFQUgigHHbh+iCxKe4FSimrmErI0wdQVYuDa4iZuomBYOq4XcuTIEZIoIPDy+/ihQ/OoqsrV6zcJgoDXX7tEHMc88MBZfB9c18fQVcIo5dixYyiyRKlQpFgq44chpaLGRL1Mkv7V4sD+P11pXqzldAURUTVRjCKiIJMJACKICoKsgagiKXnw1q4pTpIk1m6vIIkyM3NzbLc7TE3OYHsBQZhy+eoNgiilOjlLp2+TSRqIElaxQBjG+F6wZ/bby2BIMyQESPL4ayEDQ9MZjXIZqSRJezXOrj5XEjLSKEYkv8/kZI78szIadNBNgyiJiaKI3jBPPVUUBT8GSclTDLc2NtF1HUMvMB6PmZ2axrFdZN0iEjQ0s4SAiiAqyLKKKClIUh5QpuvmniFSEHJD3y5WT5ZlsiQhTQIEYpI4IIl9BNKczZykkAp7Mo9dacR/TqIC7JFHBEHYiQMXMItFZFNHVBVkw0ArFvGiiFQSUDQZSZHRdX1PCpNl2V70+a4ZUyQjTXPJXBxGe0PV3deUibnOOk7yTXqwI9v7q7p+KAroMAz3kGW7ehlBEGh3tkGQSBDw/JAUgSiKCYKIOE4wzTz5a/eNUVUdw5SpVErUajUUJUfIFAqFvYJ4N8ZSSsnDAaKEkFwbFDgjPN9BEvMC2jA0TEvHtDSsgkGpbGLpGtvNDbY2tgh8yBKVKMwoV4qYqsSVS5cYDYYEzhBTlfhf/uVv8Pnf+j9xHZ93rt7g28+/QBAJPP+9F7m5vIIbxiiqxcc+8Uk+8rGPc+HhB3Ejj43WJo+9/zEiz+a5b32da5ff4pd/6bO88MILrKyscO3aNV599VVmZmZQNBVJlrn/kQsUK2Usw6QxtcA3v/UcB48cRZAkghgcP6I2MU21MQF6kVQUKZVKbDWb+e/vhqiyRhjGpGlGsVhmfn4fhmHgunlAwtVLl9ne2KReKzE3W2d6ssTylsfWANa3R7z1zipXFvvcXOmQxXnYzer2iFEgstEacWtlwO2mTyIaGIUqhVqDYrnBdGOBkmnhjwcMh9tcuvwqGxsbvPbaG7zx6ms8/72LbHVDWl2P9c01zp6fJ04GWMadPcI/+7ML/OnXb/HMhXu4sXoJQ99CCAe4bYtSweFf/Zvv8fuf/7fc+9D9/OAHsL9RwnZtjt19gtWby2xvBjCCn/vAj/KvPvtJfvNzvwK+TxBfRTP7bN+6xvmjq7z4HegMO2xurrHcbGDoGjPH5rl3/hBv3RTZfGmRRx8J+JXP/iTb7ZfQ69/nz770EpujP2NtKeaJR7YpmF9ieh4++akestZhcmKeD31ynptvnAe1xeWLz+P1u5izX+R3//dLbG69TLkEP/fZjzCOwEtjhoMVrPQI198OabkXkbIRoXuT/qDFzNQRdK1IKHbQrZhRz0DTLbxYJBFNxt42XpCimip+BrEkYxkNZMXg4neXSLOIP/+z75ClKmKmMjEhcvPG65w4cRRdMyiYJqfPHOHc+dOIUt40z8xMMTk9gSZnEAuQxriDEbGTMlWdQZEyhp0hkZPhtERWL7fZvrGK3WrjBg5h6IM4JktMhsMhhmHsJQcqipLrl+MEWdNRNI0khSQTaHXabLeGGFaB/rBHtVrFtNScYxyH+L5LEOT6voyE8cjBHrgkcYyq5Ea71tadbf40XSRN8pBuWRZ3ijmBiUqBkq6xud1jvTciCkSiSCFMYX6qijtuE/nguVHeJIQefhAzdnzKxSIFs0gcQRwJSKlAyZQpFSyiUCD0FQJPIHBkBu2Ytc0unucxNV9geraMpGYsLMwxVSnwn775NWzbZuinjJyQs2fuRtct1m4tMmx3eeSxB1Azl1F7k1DUWV5tstpNuNUMuf/BRxiOHB688BiCYvDLv/o5Xn3zLUZeRrE2TRwliJLAWnOb27dvc/XqVc6fP0+z2aTb7TK/7xCDwZiJyRqd9gaaLiLLBVbXWuh6BUM3kaQygSPw5ptXKZYmMPUSV24uMnITmq0+ra7N9voWUhZQLtSJ4xBRKvLti6/y1e88z/REgUpVRxBTdF2loMG5k2UqjTq32/DmzW0yUaFUVKlUirlpVc6I0xirZLG11aG9bXPg0Ayf+bGnMYsyfgK26xAJKv/haz/g5uISRw4d5JEH78P1IrrdLmMn5xWsbWwgSBpjx6HT3cbQRfwgI5MFBFXi2rVb9HsOfmDjBh5eGDAzNYlnD3Nu8B26skwgISMGkljCjzKiDCRVRZAFRElGVC0UvYiqF9FUC0VRME0T0pTYczAkAc91WDh8GFW3WF/ZxChPIJam0SaP4sh1+l5KuTFPlEoomk6qaBQLJUB815uzq32OE4QMkihGUWX8wMP1nD061W4xuWcyjHNfge/lWylREvae53sDyGIKpdwbtLG2SrFQotnu4Ic+g96QzdUmQhIwU6+zvrrE0tI6tck5Xn/zEpEgodUazBw8gqQWUWUNSRCRRciiEFGQkSUVx3Gwxw6FQoEsywhDHz8YkaQeceQQh2Pwh3i9JkLYg2CMENjESe4x2R047A5FRDFvnEXx3QEkvEvCANBkBUVRkA2NcqlOqT5D48B+ipMzjMjQGxVOnT2DIssYukaKyLFjx/aKclGWkCQJU9WpFQrU9QKmpuPbDkQJSvoX9eRxkoAk5onVSUqQxv+ZE/X///qhKaDf29FFUUQchwwGg72vlcvlva5ir7vY6XJ2uzplhxdo6Opeql0ukM8oFEqQiXsHuVqtIkm5A9YPU8IkxbIsDEPLnws7BX1GFudgdDF713GraRqmUUJVChiGgW2P6Pc6kGY5CqnXod3aZv/8HE++/3HeeuM1Ll68yHjkICk6URTx8ssv88JLF+l2u9xeXuX2ygr9bo+nPvw03UGf57/3Xd58802mpqa4desWkiTx6KOP0m63SZKET3/608RxTLvdxrBMlpdWOHToEP1+j/X1TR599FGyLMun8aKIZloMbYdqfQKrXAEgjUI8e8z83AyuZxOGIRcvXmR6ehoAx8lh80EQ5AarKIY0I4lDBCHvnA8emGdyZhLDLGCWDOoNC1XXKBRMrJJFoVxnaIfEmUypNolRbBBELpImY1gqqqUgSwZpnKAoEuVyEdM0GY8cBEHi5uJtLLPE+Xvup1yqMzc3x+S0RRC8W6TcqevWaszU4QPE2ZiLL97gE888QxKNuPRKn4o5yczCSQYjF8/u8s9/42c5ND3D2E5pDddZW1rirUsuH3vfOS6+8CKy12HjxjWev/SHGJbI1KzEsUMibn9EuQiSCH68xZ/+wb8m6olY0wf42pf/L+5/7Dh//+88wuGpeykXXV5+8RakMeWKxdoaGAWB9uoGZ49PoigNkmDEn39lC0lNeOH5dcJQ4q23X+fhC7OcOngPN29/nwuPH6Q2WULRVJZur7N4w2Xf/ClMTUYIy7ieQCq5BF4PQ/MZjwfIaGSpgBOOCEOX0FNIkNB0A0U2cH0bSVbzuFdVQVRy/V0SZ2y3BiRJRLlSJM0i4jhiYqKKrGQ7ce8xjj3C910Gg96eMS/LJOb2z+IHdv7Z3jFtTdQaRFGEIGQYhoEiaqShhCxYKKlEGmek5JgpVZNotwaIoojv+xQKhb1J1a7BOfCjPdOf6/rMzswhSjJxnO657KMof46mKe/ey+Jg756lKAqB5zMaD5BlkegOhwDJ8q6LXtoxOeVNiaYICKT0x2PCRCAMUvwwxfESCgULTREZj1xGo/HOhi3+f7h7ryDL7vu+83NyvPnevp17picPwgBEZAABEkwSTYtSkdLKErVV612Xy6WStbZkb632QZZdq3XUestV2jVl2WvJkkVxzUyCBEgQRBxgZjABk1Pnvt1947n3nhz24XQ3wId98BZdw/J5uVPdU9Pdt/9zzi98v58v+YI2f5jKkoRt2vuGIrtgIkrkUd/jiE53QLc3ot8f7g44TEplE0XLi7LhaMCo3yMKfbwwQlY0NEPnwMICkqiwtdmiXC6TJgrTk7N0d3o8/8KLOG5AuzcmzCROnLif6el5zl66wrOfehZRSWlO1vjKN77FG6ff2o9gJUEghgAAIABJREFUP3ToEIcOHcK2bYrFIrIsU5+Y4MyZcwwGOaZU1SSWl5eZmpqhUq6yubmFaRdYurPOxQtX6Q4SBv0Rm2ubyJqMYWq4boCmaSQRFIsWpmFTqZS5fXedpbVNHDePHR+P/X2e8NHDixw6uMDK6hqLRxYRRJHh2NtlA+cFSJa9izCVBBFFNjlzfo2vf+WbFEyDZrPGcNBnOBwSiwaapuH7Pq+dPkO9XqE78NA0iTCMCYKA4TDYNZD5GIZBvVrCC4N9CYskyghCRpJEIMLq6mrO7I1+smas/5xLFEXSPd0BufntvfHYgpAX0akgkgq52XUPC6cpMqoosLG+QrVU5NLVa0xNT6MpKt3BiNrkHIJh05hZQLNsVM1AknL2vKKZDIfjHxva7U1c39X+CoycIZqikkT5e7xXw4iiuL+R3rtn5APDdN94LIoinj9GlmUKdgnIzcyWZbFwYBHDtsiyhIJt4Y2HrK0u448cLMtie6eNYZn0B0OiJKU/GJNlGUXLzkPIBg5BEGBZFqVSiVKxTKPRIAxDoihiPB4jyZARk6QhUprmhJNgRBr6EIekkUeavouDe++27r0JjO/9Xe3dX/Y+F6dJTjLSbEzTplCuU5+eplivUpmo79Zrdh6YkiT7dZwk5XHtfhRStgsYskqWpkgiqKKMmGYI7/m68G764977/d7Y8J/EJf9E/7X/n5dCiiJkZMBo4JCpKoJoUiyUWVu9gT43S6PRYG19CdXIu5KUJE94EkVUTcZUJaIkj8dVFIUkZfcmKREnCUkmIWsCvpeQpALDIL/BCVGEogr4UczY7/HU/Yucu3CLylQT1x0hKwKB56IqeRKZIGbouoqqymRiRpiEGJJF4g6xLAPXc0GIqRQr6KbOsx/9CFEY8+DRY1y9fgNRVVi++TaypCAGDvNVm/W7VwnDEG/Qod6c5PLtFR79wNM0a1U+85lPc+XKFVZWVlBVldmD0zz6gUd5/vnvc+PWTY4ePUqns0XUCzhx8hiSqLC902N2YZZisUjBUImjgKHnkmYqcZLhk6JbJjtba9wZDtnebHHlwlnK5TK+79Pd6dPa2KRaK+H7cr6Wdl0Ez6PbHZNKAqoqUS2oVAs6mSAxHmcEaZkgCFDFjFpFQzdUfC8kRspTjOIIw1KJopiKXSTLRFJfwg0CxEKMqmnUp6cQkohatYphWAyHA6ZmGzjOiIPHTnH0oUfZXr+L193g7p27dPvDe3p2Hz3V5M0r5/ninw+ozC6wvPp9tpcdOm7Mh39W5p1zLf7V7/33nPzos1w+8zovXT7LE6c+SnnhWYhe5ZdOfIEvfvksZn2R/+mffgsiKH71P/LBZ0/w1ReugZ5yc+cG82UYG/Cxj1S53dtkq63RDG5z6mc0Fg716SxbFIyMa2/3sMtw4WqPxx9+im+9+jLXVl9muBryyZ9L8f2Q5797gJMPuwzCLV4+Db/1CwNu3+3hb0Z87ZtvoZdnmZsdUJ0aI8cN/sPX3uHkyRO0d+4QiTP0ouvo5QbzC7+AIb3AravQbWkcnaoTRmMCfx3PMaiWJ1AzmxvXzlKr26AblBs1Ik8GOUGzS2xvdwh3Mj7z808gKNv4/jIPnTrM2bduYFR9hnKMO5aQVJUoKTHy2nTaI+4/NY+t6Jw9c5GJygKMMiLJJXRcDEul3evi6iG6mdFqtVEVA9u2iYUE1eqwtpIg6i5VawYhXaGk6URRgiwJuIGPpRWwdINeewe5GKFIAv54jGiqbHc6WC0LvWoQeWNku0QSBqiSiCIIyLrOoONQKRcYOGM63S6yqCGRksYxO+sR2pyFbRXu6dkVEZFFAU2VEYUUOZMgTShK+Xp07PmIqch4KBJHHoNBiF1VKRkGtzZGCK5EIkjEqYCiRoSoFGSDmXqRKEtZ64cIqk5nu0eaqPieguN69HoDNE1B1CSaFYOpkokqSHT8EVEqEYx8qrZBZ6dNv73DkSNHuL16jUQWOX/5MsvXLjM1M80jD59kaqrK6yt3kcmwLJtzV27z4U9+mn//J19icaHC5s46Dxw6zvdeeJGCplK0Srz4wx/yT/7hb9N1hsitFepTs6y++SqNWpXrV68wMzfLE09+lDdOv0CtUmc4iPnwhw7yxT99gQfuO8HMXI0ffPe7vHVunc9/7hm2XIvrd1apLy6SZbD61h2KRRVJEigUNTqdMR96pEqrFaA0p1leWsNUod91KZQtxqMYIYmoWhGLC5Mk2Sxf/9ffBgH0GMySjOONUWQBUZSQJYWipWJIBmsb6xxdtCnWJrl9d5v2dofqhEbsRhyfrfPq29eYn5qjZIHb62Fr4LsJlqWQphqlmsowyBBTAc+PiYggk1BkiTSL8cKYomZC6GFoKraVF4+F0L1n5zbLMogTJDHH1KV+SLpLY5JSiVQUUcQqseqRMCByY0LJhDSkWKox7HUpzywydEdMzR1hPHRZOPEoXibTHyYUinVc10WvTCCLu/H2YUYcg6xKZEJukM0LybwgC0kQsow0CVF0EdfrY5lVoijCMKy8kIvDd+UcgCDJECekmUiW5tQhRU7IwpgoSljf3ODu7SUUfxvfd5lpTrK0dAtv3OfK+fMcOXaU4dBFkAw0ycLzZKaO3kfRUOg7HkEaY8gW9ZLF0toqw96Yar1OMIhpt9uUDItyuYygCCS9bZyhR2PmIL47YqJaZOT22d5aplloMGr3KVbLjHyP4uQxwjRESAUyWcxTFhFBDCFLEIUMQc6HC6KgkmQRoqyQSTJxGKCbhXy4IEcYST51t+syZrWBPx5z4cxbeX0QRThehyQKkbMg15cnkKYRqzsjpu0SbhShCRKKmJJoIoKS348iSYBEyHXXaYqcAZmAKqk/0bP4U1FAQy6nSFKQFI0wzVAVGVGU6Xd79Ls9NtbWIdsDbAsIQoZuqLvdXN7lxLuJObquEyc/rmeM4xgyEUXTUbKE+D0GRFmWEIRcX5ORMNO02Rp4WKZBEHg5oDyJ0HWVJPZytmPio5varsNfwjI0YklH02JUzUCWJSzDJEpSfN9HVmUOHJhnbWOTil1EkCXc8YhqtUKpXGF6bp5SuYrvhySSgD8asr21yWDYpzk5ycDzEGQJ26ryxhtnOHXqFLZt4wyHLK2sYhgGdrHMxYvvcOqh99GYnEI3LcgChsMBUTAmklMuXnib4XBIsWhj23aOudmNFa5USgyHIouLi0zPTLG+vppDyYOIMIpBEpFkAVWSqJUsRHJNnqxotNtdTNvYjSsV8bwAhDRf5wCRF1IsFiGNMdUc4WXaBXRdJxNFxuMxtl0nihImylUkRFRJpWgVSRoiSZTwpT/798wtLjI/3WTgeGSiyPT07D09t//in97l2IehpBd589Im/+NvHEeND/LG+WukWPzCzz5CPNjgcz//y/zMp2Z5+uQhqvVnqD54mLPfXOfP/vg7fPJzD/L7/9eLfObnf41Tx14nKxcYDQv0Og4feOJpomCFI9UCH/xCA0Hscu78Ki8LMccOuzSaAX/6l8vcfW2Z3/7Nj6DaMffdZ/HDb/s0ZjdIXLCyGZZu3+G1M0NefSvAkGxGaszHXJ/yJHzz+e/zd37rBL/3j88TW5AUQlpDm9mjNc68tURBbqJh0trsMxj3seQEoyYS9X2mFh2MQp3JWY219mUsW0UUq7jjDNNMGI5bhGGXpdWLzE6+P9d9iiKdwYhJW2Jy0mJztcfS0l38pIdRTHn99RtISp4g5boBl9/Z5uH3zZMRI8kx5XqVVq/HAw+9j2vLz/PO6i1MZkmjmCj2OTJ/jI1uB7Nhst3aYqp2DM+NSEPQdI1E1NnaXqbaHKNEAW44yrnGcUoU5pPjIPEIe24+ERqPMU0dgZQoynLWqRCRpTqKotId9akbJbIkQ5BEXNdFSLP8VeDdaRW5dlORYG25i3LvtuAARFFGRpJPhaI8ltg2dbIsj58WxZz/HAcxSZIRhQLdgUuSyRBliEqWm6XIJ88kKYPBkIXJKlmaIKc6o45HqmsErkvgCSSxz2SjQKVWIkhjMsFBkWJkQSVLyfWXkoQbpizOTbB8+zqHDj1AfeIYnc1z1Ot1OrbN5cuXqVZKvP7qG2SZgF0q4qQafRee/853efaZ99PeusnCwiGQdFwvwlQMfvDSK3z+s38FZzBAkhVarRZhlNBoTnLu/AWOHz/O5uYmlcYihmnTnKpTLCVcvXoNRZSQMbl65SZeGPHEowdpb/W5cf0WnT703DWiOOWxxx7gwoVLKJZOlkVUSjJn3rpEkqYMRz6KqfPAAw9w7uINut0xppqbtmamGohCxH/4y+8RA6IAtbpJGEe75IOMKIoxFInRYEimq1QqFVRVoN1u4/s+T3zgJBffuYIuChiGhjOCi9dX+aXPP82Xv/wSJCDLEIYRqqLQaQ8YSLA438A0Q4auh5hBECSgytTrRYbOeP933BsMmJ6eIXPucQG9e+0Z9PamvHsfQ85AENF0C+IE01QZ93YYjbs06jVWdzaZn58n0jW2uiOiTIJMolSyCaMEEImjBN2SGYwGTM1ME0TxLkUjQpIgy96tIeIoxlA1/MgnigMEYU/mIRHHIVkmkKYxhUIhxxvuTkY1TSMMw126RUaakW/GlZj1zQ0ePHU/199+GQWNM2+fwTAMDi4cw7IrZKLK/OQB2q0WWqlErVwhMXQUU+FkucL3fvgCM488irO9xHZri3q5xPbdq+iawtzcHDvtdVaX38GulLAVhaphM9q6Q5YJ3Gldo1bSUCKPzbULaIAkuFimSRw4ZLKBJEvEqUkcRvlzXsnepZLs1l172m+EfGK9h7oVBBFF0RDFZP/vmKaJqWkUKmVGgY8qSUhI+XunqsiGit8dEWcpUhLidAYYuk4aB1iKRpKmpEmGpigESZbXlEKKlCemE6Qxwf6M+idz/VQU0KKkkCGS7GaxJ3FCKMQYhkWWpNy+dYuh46Cq8r4+Wddz2Liu5q+qquYaMSHEMHScYX9/raNpGn6Qa6jjOCGKUxKAJEXX9dxxn0aEYUQcRhhSgm1IJEgMHY9i0SZKYmRRwjZ0EEX8IKLTbrF4+AiKohApOlPzxxiOBvhjF9u2KBR0rMok/U6H8bBHsWAjiuAFMRsbG0SBx3Zrg9Eoj7IcOwMG/R5z8wu8/sMf0KjWaG1scl3NGdNJErN0fYkPPfUkcRyiqSKyAO2tFr1Bl4998tNMTtZRZZl/92//DWmWoSkZ1aJNFo/xPA9/NERRFMq7K8swDLFMg83NTchSyuUy3d5OnsAWRARhjKzrKGqaGxgPLhC4Iyq2gpBpBFFMHAXoiowiC8iSwngUI4oKCPnqRpUFSEQUAUzbQFdlUkFBUvK1TLlcZjAYMDs7j2UZlO18MmcWS0iCSLvXZTzssnPubZZvhNy5epl6vYptGfT7zr07uMCv/I3389xzz7F4fJXPfuqv8G//96/z1CMFLHWW3rrNYPR1Lr6yzpPvl5meM/nm92/w3/xMxm/9yl/jv/v8x1nvpcj9iE/eP8Of/cmX8Z+e4/hHJ3j7jYgTDz/O1Eyf8693cdwmFavFW69f5nd+81f5s29c5dNP97h6o8n7n26iBZd58fUdjp0M0MtjjAm4cy3l0597gNdfu0l17lEeft8z2LWzfPHLV+ld6/KNLagdU2nMCAiCx9/7u09y+u3LTNYfIRA2Wbq5SjCOSKQxZ66d5aH5E7TOXuXEQ/MsDVcxQxBTkw99+IPc/dpZnGCT9iChXpvCtiI6/Ru0nZQnn3iKc+fvcveOTy3KGbxTjVPoqspofBPPdVDVjGuXIybqoBngBjByQzQNZAmiKKFYstD0JndWPIpli5e+8xYPPXKEt9ZuYlt5et7HPv4kG611SEJa6y4PnHiYm9d2kCWdWBZx+j164YjRMKFUVFi7fYGDcxqD4TbTUzMs3W2h6RKWrlEolBEEAXc8QNd1gihCEhVk1Wbkden2bBynTXO6wGA8YqrZxOv0SMklEPJuMW1bFr4X527wOOG+owvcuHWT+oR1T89uGCSkKXhugCgLyBKUizZxKtLt9ZFkFciQ4ogkhjDIGAsyW60BkiCiAgFZzofOREQxxQ8Stlo9ZFUjGCb4QcpOu0cSRhw+cJCKXadcMYiygCCSyAQLWYqQSKgWSwipgyhkDByf28srPPTIiMFwjGpV0cwyWdZhc3OTciUkGo+RDQPXS+l4Hje2uyDBxz/+cb7/ve/wO3//b/L9F35Ib3vEk09+gLXWJkdPHOepDz6ObRl0Bj0UEi69c4WPPPNhao0mmqZRruWbtMcee4xBf5sbGzfZ2hnz0EMnWLq9xgc++CAPGiZvvv4aruuzcLBOdRQxiEyW17tcunQJSQJFFYm8lGKhQOIJWAWTk8cLnLmySqvVIoh2eeMqPPqh9zEcDmFyglutPJK4Ws4fz6Zp0x8NybIYU5cpl0ycbo/RwEfXBR548BijpQ2iJGVpbQNFgclak9HIQTNFhqOUlfVtHn54kYuX7+yv1JM0pVQpIkuwvrVDY7JJTELqpvmzMEnpOWPiMME2td1EOInV9U0k6d6VDoIgsJ9iAjlXXXPe/RzZrmSxQhq5iIZEEsSopk2WuKShh2SWyPQC47HHRL1Jv++imDp6qiLLMoZVzg14gkChVM7DlnZ137KcB4e8N0BFlvNN7V4RL0tm3jhLAlEUIMtqPtjb1U7vXZIk5QO2XW68aZoIkoIqZQSei+v7JKLKdmcDo1Rgu7VDlmkcWJjNY6szmWPHT5BICr2NZeR2iy1NIpqqMDXZQFMNhCRgsV4jjftEosvVty/RXatz6NgRPvzoMU6feZvV4ZBGtcahhYNcvnoVzx1QnZ1lvjjFWr+LpocIoUMshIiWgzd2SIMxsl5FUUu7mNB3w2TSVEBVFEBEkhTSNEaScm6+our7kgpN1/L3LEkQZZk0Cpk9cJDNLEWIImQxwqhW0HtluiOfoe9yePEQw5U1NtvbTM7M09tuQRqjCALT0zOsrW2gaypuGhGnCWQCEiKZlBsKf5LXT4UGOk4TRp67D+be09eIYt7FbW1tveew5pQM3ciLyj2N4p5oXFG0fW1RkiT77s84jvMiNMuIooQwiImjlDhKGe9GCAuCRBzn+mZRlhBliUKhQBrFKKpEmibosoKQ5Qd/bfkOd29eJwoTzGIFRIlKuYZhWwThmJHTx/MCKqUCSeARhz5RHKIZBkeOHOHo0aO7DtM8SVEgoWibhK5LEvgE/ghVyrBUmc2VJSJ3SL1qc+7MaZIo5PTrr7F8+xbNWoWjiwf42n/6EqE/4s7Na9RrBWYmKsxOTjAe9tBUmfm5GarVKo16lQMHF+l0e7iuR8kuUC2VqZbKRH6w3w3v6SLDMF89TU5O5gxH36NRLaBrCkkSUamUKZZsSna+9lZVFU3L9eVpmhKHEbVKGVtXMPV3dU35jUjYjWrPmxlNMwiSFFk3EBUDu1RGNUwURaFatYl8DxGBjVYb3bDeTXK6R9cf/avneOcMjAcSL73wHKYs4TllDCnh+pXLfOzjP8Mv/9pTLDTvZ3t7RLHSpDM8z69+4VO0ds5z9MQH+NFrV9lc7vAH//y/ZWtjQGsj5tbG9/mPf/5dtjcyCvoklZrGVneNxuwCzz33Jm+fPUupPkJS5pmcTJC1acyKSHdbYDyEX//tZ7l+/S5LKxvcXfG5u+3wu7//zzj9+hsM1rc5OFdHUKC9E6KaBl/58hLf+dolStUAMT2DFh7lwsUOmWAydDwqVY2NtWX+1t/862y3tzCqJeoTTS5fcvmX//xrDJ0RQ8dByCzG/REDp0cch8iSxrlzZwh8kUJZQ5VUDFMli1M2lldwA5dyqYqUJUw2LZpTM/ghHD1aBmTSBBQl1+buhSuJiJClLB44kK//rAJh5LK+scRLP/oezmCb8bBPEqXcub22r8XtdvscPnQcf5yiiyaxK2JqImMnplSR2dxaolqt7oeiRFHAeDxGlRXieHcyHUSEUUqcxbhBSJplDEZDvMAljGN0y9x1tCv7utW9exHkGlZJDEiijJ2de0vhSFN2SSIhYZhg6jqaIoMg4oyGZKKQBy4IArIMSSww6PmMXQ9JTBHe47QXERBFSMhwRgEDxyWM8/ur67qQJVi6RLVSQFNVFFFBU1WiICRPQEggSZEEEU2WIRMYOC5/9hdfotKwWWsto+vlPFKcPLGtVK3QHw8J0pSbGx0ESeYTH3+GF773PZIE/vzP/wKrWCBF4KWXf8ilS5eYrFcolIv84KVXkWWZ1dVVjh8/zquvvroft/yNr38Lx3Ho9/t4gzGGquCHEa3WBkeOHuSb3/wm2+0u9eYkUzMTHDl6P1EUsrKyiWHqCJJEqZT7aMIIAtcjjn1u3d5ga2uL3sBlZ7uNF8Romsxnf+5jvP3221y9fps/+D+e46GHD1IpSciigK7K+F64y9wFRco1yYoEjYbNxMRE/n36uWFtbbWPbdv72ts4y6PZ3nzrKjdv3kEQBIIgj5aOsxQvCJFlBUMv0t7p4jgBqizmHN9dr9HkRG1fehDHCUGY/sS1pP+513tpD67r4jjOj4dkiEJO4pA0REkGQUFQdGTNIJNU1EKZIBVpTDTxfZ9qrYxt6cRpTLFcJYpTBEHCDwMQ92oJZf+ZlReJ7xaM743xVhQFcRdzlyTJPkUiCAJ839+vRd4bQpQkCaqq7m6r88KzVqmwurrK5k6HBx96BMsu8sBDD9OcnmLgDFldWqZka2zvbBK4Q8Jhl7lmie21JdxBB6+7xfKtq9y8fJYbZ19n+cZVTFXivvtPUC0XGQ8GrNy6xcEDc5w8eZJGvcba8i3Ggz7los3Sndtcf+cco67DrdtLdDs9eoM+iR/SqJQxVQkhDUkznyAc/ZhpUBKVnCjCXhiLvG8u3JtM7/38+142JY8RN0yLQrmEqClIugGShCApiEKe5VEoV0iSCEFR0AyTJM2beMPQ8EZDDFkm2iWm7QVjyaqC/F/A+PpTUUDnUG6JKNpDzUgYhoEoimiKwmjgoEryrsknZDRy8y5610BoqBog5mxDWcb3fRq1Opqm5Vo+P2AUBKTknaIsy4iyhKwqjD2fyclp4jhGlXNEUIJGtz/CC3yCMNz/zxpFMVkqIiGhqwYT1RLBqEcYhozchCgWGQzzTrjb2SHwfII4IskyDFmgXq1wYPEgsqqwuryEkKVUyyV2dnbY3Fhlbekug16X06+8hCLA0Omz3lpD1MAqGziew93rF/F6XX7w7W8x12yycvcG/qiHpYocPbDA9voqRVNntl7h6FyThdkm9508QbPZYHJyguZEnUqlwsr6BkeO3cfC4lGa01NMTTcxTI00i1F309Kc4RDfD8kQiaKYmelJhr02zUYFKcuQhHwN5Y3HqLKMgoSITKFggZih63kx0WjUqJfLFEwFbzymWCxiGAbj4Qg/cEnCkJmpJmmaYlk2zZk57HIVo1hE0E1s26ZUKqBKIs1aFdMwePzxJ3NiQKNxT09utSLz+//rs8hZxP3vm+apT36KgT/F3GRMUa+wsbHBlSsDnvvaeUadEhevJdxZfY3tFYG3LuwgSDt0zDabqsfrz//f/LX/oYQblCgoMxw9lqAWIg7MPcyVd16ipNRYXRqxeN80DUvn0sWYF15c4sXvnMbhEqcvXkHVLN58C577Txl//JVHMNUPoqkN+vEG9QPHuHnN4Kv/4h9xbbvNZ//qcU4deprvfq9PrTTP3RtHOf2WzKlTD/L8D1+mNbboedPUjRMUwoB/+Nu/xref/xJpAXpjhWs3QqbmZQ7MP5E/hApN4rGKkAq4g4hm/RBb6xH9XpskUtnonsEfDSmYuaGuWDLRjQKqJjPfmGDkjJmaPEAc5WtMb5wiZCZ2SaffbxN6IU7PoWSWEeIUARfL0CAVSNKQRx85xuGjU9QnbU4cP0rkRpS0OoZqk4QCllHgxrU7dNb79FtjpNCgWBTptkOGw2WOnqyQZiH1eh3PC3Bdn3K5TBD6dHvbGLq1G6AAlq0jSbl3QpBEDh0/hBf4CLsudHeYG3IrpQKyLBDHIewioOLIRczg5In5e3p24yhPcouilMCPEHetgJ2eQ5TkWCvLMpDEDE1X6PXHXLuxhiRqSGKGCMgCiNIuB1aS8P2QrhOw0x/hjHKT4IHZKeanJygVVdLQZ+yMCL2YMIhIotz4E/gjkiimVCjQqFYwDIO1bpe17Q7/2z/5nylUZVSjjmkVqNZq1OtVzl+6yHrXYXmnS6gW6A/73Ll2lampJvV6mWqtweLBw8zMTHHs2BGi2OX44YNgF/jSV75Fr+egGUV2djpMzyxw+co1fv8f/zP+xt/9O9y+dZc3X3+NrbVtmvUGO50O9z9wgtOnX2L+wAKWVaTjJLz0xitcub6EHybIIqQkxHHKaDTENBTSGBqNGp7vUy7CzMwMSQpBknNrpRReefklnHFGnGo8/PgcN27epV62kdKYjQ0nL7qilCwD2zZRZZHmZD0fICUxhmEw2Zxm7PrIKqRxHuZRsPIUWcSMIIIDC4c4evQotq2TpjFJEjEc+qxvdBiOA1IEVEnIzYmSsGt4y+j3+6RpShiGpCloukR4D02EWZb8WHrfdqvFO++8w3jk/biBTdYQFQ0ARTMRtQKZZmOUJ5HNMoJRoN93iJKEKBzjBw6jcR/XD/Kt6K5JVpFVMkFEkmXSlP1Uwb3XMMwlGYqSEybIxH1knizLKIqCpikYtpWb4VRlP0l5T8axZ3Dr9bv0Ol0GoyF2scLU9AJPfvBZxr7A/MHj9Loj/Njj8NH7ObZ4gM7yLYb9LcLOBquXz+IJDnE4IFpfY7x6jXjnJu7KO1z80bd56vEHWV2+ha5qFG0LHQidISVTY+XOLYa9NpE3wh/2iDyXqZkq3c5NSmWLqfkTRJJGodok8MYISUQS+gjxGDHzkeUcx7dnnt6TtgD7Buosy43bsqqQCSApMilZTsiQRFzfQ1JkNE1jYmqacrOJXq8jWCaRWr9HAAAgAElEQVTxbjLiqYfex40bt0BIacxMceXWDSJSwjQhjHx8b0wcBfuGRhCR1LwOVBQFJfvJSjh+KoJUXvn+V3/Xsov7cHJRkpAVlchzuXPzxj6PNQ9CESCTqBR1SrtwejKBsevhhwGKLJLGMaam5mDtRCBBQhIzotgn3E3bAkjiFE3VGY+GzDSqCGnI2PfzKXUmEgQxMnkEpiypCIJEKGToqkwQhLR7Q0RZY6Jey2UllkkYBrjjIZHTJoxDSpUphqMxiSTSc1NExaCgqSRJxI0b17EtE1nMIInZaG2TiTKiCKquc/vOXQ4dOoY79jl48DCFYhlRVNANk2PHT3D58mXKlRrHTxwjTlJa65uEno+pG4hi3rWVa00q5SqqnEPcY89FEFJEQcDUDRRJZOi0SeIAyywQhTGbrRat1jZxnFAqFUmihHKpwKDfwVISqhWLMI4RFZkwERjtRqrrpoEfhgzHPpkgoqk2zckpxp5PJmpksoipy7mURVGZnJwgiRMmGg3cUZ9qowGiiKjIZGTYhQLD4QjD1AjCkDjJ0MwS1VoN0gTPdSkVajz1yZ+7Z2EU3/vuH/3uCy+cZ9CHR4+r/LsvnmdleR3T1pmcnOTOnTc59/YazWMPs7l2mVZ3jCCNMerbfOpjn+DbX7nN3/5bT/H4oxldR+D7zy9TmhUpGgpzk0f5vX/yCocPu4x8hdU7bZxuAb3coVHp8W/+yGep10G3TYSsjKabVArL+PoU184PuHtb4ey1V/mZX7E4+2KE47QpT07zj/7lX3L88AxbDrRayxxYfICy3uKdO3d5/WLM+bN3MKoT3F0ZYyo6ibPNTPl+Xnj+OTqKhxNUifvbfPCxT7LUu8nSUpsoy4uqfEKVoVNmu99DUhIWJw9xePF+rty6y9TMgL6zShyWUS2TztYySdbBNGwmJmssr9xBMzOuXHKwtIRKqUq9Nk2vs0OjWqPXcxgHYBdUVjfu0rCbzDaPc+xQlRt3LmBVC1y+vsT6XR/DEFheWqLdbaMpBdLUZ9D1SWmhyQay1SEKetTLx1lbarOxEnHwRMKdu+v03T5u0Ke1vYRuyHj+GHfsMR47aHqIpAR0ugGFQok0SegNO8RhQjhK6DtD7GIJzwvIRBFZkYi9kHrdRJIDQi8gjjO8kccXfv3ehFEA/IPf+we/mwEZIAgiVVtHkmVaPQfN1LFtKw9YiYNcehYleI6LKovYqoliqMQkRFEeUy4lKXIqMBq7RFFMQTewTAtZlUkzGT9I6A8DnHFIJIR0xyHu0EHMXKoN8MMIUdApGDn/9gMfeYaVjRWy2KNasCgWS4RpSrVWQNJ1Lly7hYvBG+evsdbaxOmHZDE8/cEP4AcBUpby7JMPksQxH3nmaR595BR2uc4L3/4Gsqxx9eotUCw+8pGnEMk4e/Ycqipz5MACw8GImbkJXnnjNL2BS4yAhMCBhTkuXLxBEGbcurOJ7+WTsJGbUW80cEZjkiRDk0UUIWWybjE5WcMbBZQshVfeWEfWYBSQJzkKKeVanY3umJ995nG++/xl5uYbGIbFemuApICkGThegKIIFEwN1/OpFjUmJpq8eWEFVQoR1RIb29u4AYhpzPyBWaqmxPq2x8iL0XSFTrvN2kYHyzZIgjGFYoFCwUCSoVIpkSYQRDEgIokykiAgCZAK+TMZUaBctEjjGE1W+Pu/87/ck7O7fvfy72ZJPv0dOl1eeeUNWttdPvjMp1A1GVlVEBHzsA9JQJLV/LkqGQiSRirIZMEAVY6JJZXa3BFks4gi6xSLFWSjQJxluxNnBQQBSZCRBClPJ85AEEWyNMmlCbKILEmIkoggSnnTIoCqqWRpHmGdpnmhmAn5Nk2Rxd2wpjzdOI5jLNskSSKUXfqEJikIYkan3WZyooG/eZet1Wvcf2iR11/5CoPWMjcuvMmDx48yYYrEacjFMxcoFGya0zVOPnSKLPVBUHnfQ0/wwg9e5NTR++hs3CUOHHTbQpZk2mtrJIGLLct44xxXK8sqo57L3OJhWt6Q6ZlJPMel3Wpz6NgpNu7eolI0GPS7SIqKNxjuep4kBEHcDWhJEUTIhAwEEHclHPvNRxqjyBIC+V1I2pv0KwqKplOuNRAlnWqjSZIlGLZOa6eLbRvYloTjS5BGyKrA9NQio1GXyA8IZZXGgQMM+w5CIiELImEQ7MIk4KO/9IX/+oJU9jqXvQkxsIt+2Uv5iZF2c86zJNrvNPfwJkmSIEsSWZzs6orc3VVBvi5QFSV37fIu3HtvFROnuXxAUWXSLKZYzLWPaRztfi8pmqbkKUDvkYPIsrzfScZJSBTknaiu63S7XWQxIwo9igUbWbWoTjQpFko4joOmaTQnGgyHzn535vR7pHFIoVCgUqkwMTFBoVTELNoUKiUQBYrFIrZtMxgMEEUR27bZ2dnBcRw2NjbY3t7G3ZWkJElCp9PJdZy7a+kw8tEUmSjw2NnawB0NKBYMHCdHBgqIbG9vo+s6oigwGo3wvDEFyyTyPeyCSZrF+UpEVXBdD9O0GI9dVtfX2NnZyddqozHVygSLi4d38YEipVKF5sQUU9OzVKtVwiCmXK5imjainHfzIgJFu4CIgDd2adTqpIKIYRbRDZuJySZREmMXCzSnJmm32/fqyAIwSlYxSiUyvUgQVfnlX/0os3MmpVIJy7JY2xkzeXiOzbUhptnkM5/5JHfWIJVrFMSU028t89X/55s4OxF311p89FM/Txyts9Pr8K2XX+YLn/9FanWF48ceI4hSbl5tY1tN9DLMzR1ieqHK7aURrR2HdmvI8RMVSkYF3+0hFW5x5tWEP/qDLR48Ncv2ZsTjT7yf2dkmg40xzeoxHnxygtZWn1ItQVYgReHgkXkk0aBcarK+sYqMwNSRh4m0Bv0R+KGAjkUYDEgFk6mZOeI4JfBTDN3G0AsMhy6O06dWq3Dp4g3SJA/R2Ol22dmE7fYqqhTjumPCOGB9c43QGyMJIrppIGoQJRDGCUs3r3P88CHGnsfk9DQpCWHiMzk7wWAw4ODBBXQlZG5ujqWVFrMzi/n2SlfQLZ1SucDA6UAWsbPdQpVFho6TB3oIAqsra/h+gDcOSDKHQ8cU3LBLKkVMNJsk2Yh2e4gkC/T7HSRZIAwiwsijN+jmmLtxQEqCqIioirKPqoqiCIGck6rKArIC4u6kai8E6qfhEnYpSLmc6l086J6ucy9USRRzeZdu5FpRVZJyqUqckiUxGSmyLKJrSh7OEvo4Axdn6NJ1xnQGYwbDEWEcE4UZWSoiICNkCaIAyS6BQFNU/vxP/pSSXSBLAl595Ye8/sYrfP+HL6IYJldv3qEyMcvFK9dAkJEyjSwTCcOYKzduEXoetpFvJ69du8rBgwtYlo1tlfn8536RMIyZmGyytLREFAWEcUChWOLg4jHSTML1RmxubqIqOqZpoqo6L798mscff3T3/p9PNhuNBmGQywf7/T6KKGEZOqEfUzAtej0Hy7LxfY9yucxjj08jSbmnaqrZwC6YCKKIrsNGa4tf+IVH6PV6eEHA9HSVYqVMSj6lF7Ic6binYW632xga1OoT+x8HCCLY2G7nEelBAOQZAF4I9aqF67pEEYRRgKxI+EFAmkJv4GCaJoZh/Bh6LQ8Jy2V372Jkk/+Pk/Rf/tp7bu/VAFvbO/QHA0ajEWkKvGfKKCCRiRKSaiBqFopqomgWhZJNkMTo5QZmtY5uWUiKjqDkJlqyPKxDIOekA/syrD3Tm6JoObsZEVGQctlGJiCJMrKkQCbsSzzyaXWyazyM9yfoe5NnVVV38b0pgpIjFrMkIosDDs1PcfvGFRQhJHZbDDY3ODhZ4u3TL3PqwfuJvDFXLl9A0ySm6w00W0cUZF598UViP2B9eZnz595kYWaa02+8hmVZ9Hp9Rn5IbxQQpbmk5+rVq5imSbUxwfTCIoVSjc3NTWzDxDRsIm9EQRNZ3Wxhlgosr92haBvIWUS5aEEWQZZLseBd5O/en/cK5733cU/Csa8Jz0QEpLwWUzQEQcIqFVEMg9rUDLOLi0wvzFCfbHLg+Ak6vS5WwWRh8RC3rt4kSjNCCaxGg0SQiVGIs3S/vgqSmEz6yZa8Px0mwl09kbELEu/1+xiWjSgIVMpFxqN3jWJCBlGcIAugKSqeGOwX3iICZCmqLFMsGEQxiJmAkEgYkowkK4wyN9c+x9FutyQQpxmCmFGrVci6fWqNCW6sbKJqMpKYIksScRRgmTpRElMwNTJEHNdDlmXanS3iLKZQrDL2PIq2QaVSYTxwKIz7qLKIIkr5z1Mp02lpmKbOyvISTneHdreHadhkaUxrY52BZXP8+HEyQcQw8hQ0x3EwDIPrV6/RaDRywwmwublJr7/DaDTCdUYoisKdWzchTSiVSiwsLKBIAgXLoNfrEAU+oSxhqAqu26MbDWlvg20WGDlDNjZaBF4IWYZl5jfMVFMRUp+iIVGrlshSge1OjyjNaExMs7W1hSAI6KaFblqIkkalUmNmbh5Z1Rl5Ho3mNGEcMQw9kEcUyhUkJURRdDRd5/CRE4RhiDtyuHX9BgArKyt5gxJ6FAyVzHcZjYO8eRFzRu/R43P35MzuXau34aEn6ly/dpt//SWXp56a4fjjz3LmRy9iFyxCxSBTdPrbdzl86CG+/Bff47O/2MAdGAyDDn/9b4vowQRv/shjmMEf/umPePr9cOjEHHEpY+nqeSbnY/7wD7/FodkFPv05mYvnAz7ycTjxZIeV3hyHj9/Hyy+dY1LVefjhhJfP9WnMhVQXfD766UUee+QZvvh//jG//vee5E/+8Hl+6zefRlPe4RvfGLC67TM5P6C15uB34dGHD/DWlW22l7rUpivMHyhTTOf4waWvs3hkio2310ENIdJw2y8QBXUGvSG662DVDrCytE1zskGShDz19Ac4ffo0ulHh5u0VmtUJxCTk5JSJX7bZ2jpLrzNgemaepd5SXrQJMqPxDgcWbEwxQAhkHjy5QJAkKLKBbdgIyZDReIBVsGmYNd4+/wOUtIPjyhTsScbjlPKEjVEQyLQKQeLhbHWZmtCYqhcBhyQQCb2UyAdn4DM51WB7w+HC6zLH75/gkSePsHyrzdrGFgtzeXLg6moLw4RMjGh3hux0EzRdxgokkiTAT0Tw8kIjSdnl68YoSkqahAwdl1q9SGvToWiYTE807+nZfe+6W5Vys/Vw7O4nLOZNd4yIgGVa6LqKqAtokkKaiPhxSCYIyEhoAtiaju96eagCCUKWIgoZWZyBKBOlCWmaIaQCmqQyDEa4wxDPG5NiMhgk+KGGMxIxTIlmfYbQjbDqE7iOz9LtO1y4cAF30OXm7XUCQYZMxdIt/HGfJE7oj13euX6F+UmDxx79BK+++QaKIvHt73wTdzDkE5/4BL/xG7/BwcXjRLHA4cWDpHHA7APvY+CEvPD8SyytfJWHHjxOuVpFyGRkRWGrF/HYow/x9rmLHDhwgKtXL+F4GQcePMlmZxmJPEnQHecoviwByzQoLsyzvrbJiRMnuH7tHYYRHD96mDMXbtFpbzE3NcndlU0kSeSNt25z8KDJeBwzcrfzh70g0x+F6LqCrStYlkW7vcPUqSPstNvMTpW5vbRJexCQSSKiCOMAbi8P+OyHH4bkOoYuMwohSWMajQb62MVUMu6s7qDIIUkMq5vbmJpOGieM/XelELquM3LdfY2vP/YwTYOYe8ffF0WRhJwlPBgM2O47aGrM7TvXmZqaIkkyEHfJMKRIok6W5WElWZYhKzrRqESxoSGY0yhGFc/zUDSLKJUwVC0vZEUJRc7DQfKJqUAqvMfXEOekj72Y6Vy2oCDI7BouRRRB3C8ipV3etywKu1Ne+cfoIaqmYJo6UpYy9LucfvNljh05xIuvvcFHnv0ofrfDiSOHSbtbTDYafP6v/iI7nQHmlEFre4MPnTjCRriKaRtUyzW0GJLuACkIcROX60tXePR9j5Gh0Jw+wChMqdRr4PYwDIN1eY2tnQ5WdYLVjR3am2scOTRP4Ca0Wm1MXaXX7TB3SMAPhxTrVfqdNrLSRVQLiFYVUdJJEBHjnOIjiRJxkiLI0r4nbU/zLUvvcrEFQSBBQJBkJFnPA56EFFlLSSWJ2sx8Xh8ECWXbwh2Pac5skIRDOkGCpKsgZ0RCHqyzdPsGoqSTCjnrP/t/uXvzWEuy+77vc+rUfvf1bf265/Uy092z7xxK5AwJiRTJRBZtOYotB0IsKYgd2XKcP/yHDURBnBh2FhtRnMAGLFOGrBiKlmhhRtaI+3BmyOGsPb1ML6/fvt1393trr1P5o+67M0MFAZwQaCIHaHT37b7v3Vd1quqc3+/7/Xy13Hga84OVHv1QVKBPIOJ5mqDJaDSaT6yTSm9uTMuTAQ1TIrQPBOsnFWXL0JEiN1q4Vh7fmSUpGjPAv67PdjfGPGDlpNJSLJUolUoIIajU6mRZhjOjXwDz/2fbH0T+KpXv0CuVCtVahTSOkIhZ9QlQAqnnbEihIurlAiJTFAp5UEi5UGR5cZF2szXfrSVJwmGnm8cHy/xz7u/usXk3R9H0+3329vbmASnj8ZjhcDg3NEiZGx/Pnz+PYRhMp1Nc12UwGGAaedRwt9shDkK6nQOm4xEFu4Bt2KAUveMjpNDywJQsxXGsWUxmyOnVFeIgxLJs0kziBzEb21sIXWLYFmEYImRegSu6Bbq9Yx5//FEWFpqUynkLtr20yMLCEqZpUyqViOOYfn/A7v4+0+mUvb09Njfu4nkejzzyCJ/97Gf54k/9JJ/8+HMsLy7QqNc5d/Yslmmi0nReCbpXwxA1bt28w6eff4wnnr3A9773JtevXsettBCahKzE2PN5+vFTLC4sMJ1muFqD/fV9/uirr1GtZSy0Vxl6A25dB6V7WHqDIIiouDWefmqNN947YmG5xM7+JoWSYHe3z8YtOO72sQ2Tb371ZabDgHZb4Y0jIuXx7nsBX30JptE633j5Jf76L/0Sv/o/vsbCiuRf/ovf4tW3r7F58Bajns/h7oAXnr+AncHh5gHbewOkYYBIKZR0yo0KURTxrW+8zQNrbaIgY7/b5Rf/4/uQcUCahqgRjEYjHnroIaIooNWucfv2DQQSKQVJGjAajJEKFupwc/06nd4BIPC9EM8PidKI4XDIYrNBtVzMu0lKI459trc36XQ66EJDSzOmoyFZmqCLhGZTp9laJksEC4urdDpdbFcHqeiPxliWiWVLTF1yfLSHbqZMpyOknqJLC9O0qNerFAoFssTke9+5hWkG9Hp9VBLiujauC0tLTVZWlvEjn1RlVBvaDFs3IgwiwjhASjGL8A5nQS45clPqYlZdcTAMZubnH6we7991fKAT/GDkhuH0IxgqU5O5SXBmGFRK4U1DptMYbxzkkb5ZThjRdR3LMLBtk1q9Qr1epVYtUik5WLpAZPl9JRhPsTSIEkiVzdRXTIKESejTH08YTHx8P8b3UrrHI4IgZv32BpoQvPyt10iSjNFogq5JVJpHC2dZhuPmBmZpJdQXq/QnE8rlMmtrZ/gP/9JfYv9gi89/4XNMp2Pefvc9zq2t0e93GW7vo+kGxXKBZ5/9GM1mm8PDfS5fvp9S2SFJA5aWVikWq9RqFT73+c8wHE7p9XpUq3Wq1SoLrTbnz68hhMBxcrRcmqYcHBygVJJzhA3B+vo6jqnlWQJZhuPkx0waIHWTUlGnXC2RZTkr2LL0vKVv6uzvd9A0jcFgQBCF7OwMqDdaSHmS+Jab2NDg4OgI2zYIgoRMKYQUFAoFtneOSNOUpaUWvh/iOBbaLCLc8zyCWUU9ipJZSImaF7ksy8T3fUzz3pm3T6q6J53VqR8RxBE7Ozt4XgBokGlAnmosySkxuqaBbqDpFoZdwXEaWHaZVAkqlRp2sUyhWCZJFLppohkmmqHPrwMhtI8Y/07MccBc8yuEmEWM5x2dD8daR0FIlioCzyeOY8bj8Xx9c/LsDjwfIo+CVDgyoF7UaBZt9DTkvrXzHHRGxMmU3Y0dvv3Ky6gs4vSFc3zihRewLZeVs6dolsvsbO3y2JNPMJgO6Y2G+GHKAw89Dm4RJW1u3d0mDiNq9SqdGQJx/7BDc2GRer2RJzeWS/RHY9Ioo3PUozcYoUmdycEO4aBPb7+HFIK9rXW88TFJFADZrEKfkGVpHsAzOz4nc+jkHJ7IOU6C8KRhkOXcTzIBmi6xTSs3zmp5DHml2sAulxn7ikazRq1WZ2v3GGlArDIuXLjIwc4uhiYxiy6BSvLKs/6B6fMHOX4oNNDf/faf/kq11sKwbOIkJQ0jBt0ubqnE5HiffrePZZiUSy6WYaKLXGPmWDpRlOZIGZVg6DqZ1NElLC8tMPGmSF0nThJ0nfyGJARRHMxAUylZpiM0KDmSUsEh8UKsUoXOUQdNKByZw9odxyGJY6TIkJqGrkvK1RphGKFpBo3mIpbjYJdKTCYeiIw0TZiOhkRJTMU26I99NGnQXFgk9AM2N27lrUtpEAR51VclMaVSkd3dHdbOrDEY9plOxkwmY0aTEa7jkCQxhqETRSFCpUzGQzQh0ITE1DXKpQK1Ro16q82p1VMcd7skSYomdUJ/AijWzq6xsX4bqels7R5y7fpN3nr7HYqVEv3jI/SZmSSNEzSlaNZK1CtllILecIBuOChh4Pv+HM9TKtZw7SLNVptWu8nSqWVG4wGtVhvf9whm2sid7S1G4xH9bpfxdIIhNVQSs7C4wJmz93H/xUu0FhepNuuESTzblCiiOGJxaZEgnFIsFNBNDSF0PvbCv3fPdKT/+7/6B78y7qXcvrGH1BNMe8D6nR6GsFlqOHz7yjqhGnF+VfDe9V1cY5G3r97Bm2Z8/OIlqhdC6oZN6lbZPALHVfQOLKpylYOtN5mO19mJ4Uwt5r/4u5/l13/9iAsXDN6/MuDuPjz5eIV3b8VU6gWefLDH/tDl2jt9nngUfv9FONyCyxcfpXPcYW9vE9eR3LwV0Gy2MQpw5bWYv/2fn+OtlxIsOeLmpoJSk6cfv8he5yrtVovuYEKcuHzs4jMstzyu3ZlgWgar7SmNUsTxyOW3fvUzfOm3N7m9c0D/qE91uUz3YJdybYks9Jj4EbE3oelO+MRTEa9e0Ti13MaQLtghCVP6ozBnsAY6q+0iWRzkAUrbY6I0ZXHxDP1uF8s1KJVNRKbI/JQw6RPFKZO0xNbGLmfPXsDLhnjKI44CkmRKuVrF1g2atRKRiAgicCsBOiV29wY4us409MhERKVpEngxDz98hrE3QCmTNBVoymRr4xDdERh2huUoAl/jY88+gZAjyEySWKNYsAm8AE1AHEWkSUKSBEgtw3YMVKKzcnqJg4N9/vJ/+nfv2dz9b/7b/+pXslRDA4qOQb1kkyYppm2gawJD5hUWU+i5yTuMGE99PC9gMp3gBwHj0RiRCSqOjesWqBQKCC3FskzKxQKGqaNpArtoE2cxtmEgUBQcB6FS4sDHMQ3iLCaKFL1+gB/EBEGEJgTj6RjPT5hOYgaDCVGYYNlljo5HdA67ZClEQUSQ5CQfqScUS5Knn72f/b0tzqye4u3vvc4TTz3Oxp2bXL54nl63Q7HU4uKFFQquRbNeZP/giGq5xtZ+ny/969/lC5/5JMPxIUfHU1qtNq+98hY3N7fY3N6nUioCAUpJxsMh1YUVOsddBsMxd9YPmAaKUsnguSfu59b6JroE25KgQqYJlAsFCpUiveMpR50p0hBzgsOP/fhn6HZ7hBEMxh7I3G9TdS0cU8dybXRDZ9o7Yu9oSqFsczyY5jxuwyCJFYYhcAyTgiE46g2xCgWmQYKWZVi6oODqjIMU09DpdseUSxUMXac3GCOlRrVWZDQJ0Yxc3mhIE5UpBDpploAQaJni7/y9//KezN2jjRu/gmaClnHlnbe4eu0WQtMoui6thWXaiyvohsrXzzPkndA0EDnKDKmhS4tMmmSaiTQtEAbSsMgygWWXEMic945Ak0aOvZV5MMc8fU8I0iwGTaAbDpkmSFVCmmRIqZHGHgXLJAw9hr0+fjoBBIbtoGkOjgFSFpHxEWq4T+hlMN6lUC9x9J0vc//993GwtUnYP2Q8HvCr//ifsNKs897eERXdZ3Nnk9P3rfBHf/INVs+u4jomRCHeaMqgP2Br0OWhJx+l1G6xcmYV4oyDu1skkwn721toholIFY7jsr+9w6UHLtMbDlBoJEqy3FogmfaIwxjTLlEuOEyGPbRul/7uHq1qiaJbw7Asjo6OSYVBVeaBMRmKVCl0K6dtpWmCIEPXBVmWommgUCiVYVpOXsmXOloeyznf3Bu6kXetUNiWTbFcRegGhVKZQqlIfWmJUbdHo2nz0INP8t7VG9TqVax6me5xn+l4hKHn77Utg34g+PzP/Oz/vzTQppVHjuaTMq/oVopFEi+Y857zHV6uaTZNHWOmA7MtF5GB0DJMU5/tanLX50kOfbngzhEySilMXc6rvXlkqZzvTqbemKODg7lWGJVQcFxMfYbKUym2ZWGZJq5t4/v+XNtTrVYBjaXlUzz8yGM0Wk3q9Tr1ep3RdEKtUiIMQ/b39+l2O7Rbi6ysrLKwsESr1ZrvygLPZzIa88abrzMcDtFNAzET4FcqFR555JH5onXq5btYQ9fRZ2fTNE3a7TYTz2N3d5fhcEipUsZycqJFEARsbm6TJSlLS0vcvn2bfr9LuVxk8+7GfJd2oqlrtuqcPn2aQrmEZugsLS1x6tQpnnzySV544QWeeOIJnnvuOU6fWmZlaQnP89jZ2eMb3/g6r776Kt/85jdZX1+n0+mwsbGBJiWL7SWazTb6rPJhmrnuSaWg0mymt8z1sLZtU6lVWVxaoVKp0Gw2Qcs3NY5zbyvQqcrZwAuLq6hkiUKpwcXHWpxdW8V2DKqtRYq1Gi99rY+0yux3N7nvgUtY7iq1xatcvwbK2OPKe7cJo2MMK8ItGPSCr/Kf/O2LPP3IE9heyMW1x/k3v3aD3nCDSsVgFKPLHXoAACAASURBVIIEJpMeiRqDTDl3YZkXXxzwi79wPxawslLnL/z0j/PNV97i61/5Frv7sL03oLpgM5r0GU4Dzp1z+B/+6XWurm9y6ZFlwiyh6Dq8884tarUK7767wWQacuPqba6++wanlkxEmjAYTPjyn075+b/2FGVhEkymxOMAuxpx/wOrHB9NaFRr9LsDxiOfcDoFmbBQFFi6QksbvHflEKVSgiDEdTWiCJIApAxZXWmSaim6leIWcilSGmWcOrXKaDpC0wyCaUBmpOimg9CLFKsVpAZ3797B9z0UMJnmJAg/8PLKki4puFVWVlbQpU1GwvkHzlKtlVhcLSNNA6kVONhR3LnV4dLDa4RJhFsoUSxVuPzgBaTmYFo5jUNkMcPhkEwJQi+kUimjG4AISVWA1DRsy6LVbqJpueM+iRImoyFC3tsklSzLkGSYukbByQOhTNPMqzdSB6WQM8xkEAQMRh5hEBPHMYaZa6Bd151XkpIknUWb53rRKIkJwxBFljvuVYaKc/rDcDImSVNqtXL+OTQHw7DQhQ4qI1UJSRLlMdKZYhrkCYbdbp+9gw6j8ZQ4TvPgqTSb0w7yTqbkjdevsrh0HweHx5y+7wxXr17D1HX+5b/4EquLi7QbFaIkprW0iBTQPepwsLvHNPApV2ps3N3BdUr8L//sRQ6OuqQqYHlljS/+hb/I2fNrLDSXKZdy1m/3uD+/R+u6Rrlk0R/EhH4eWJVXdicopVhut+n0xnS6fRaWF2lU85Aoy7KQhuTNN9/m/Zs5ttW2zfl90LVNut0hvu8TBT6lksOZM6sMxwGJSrEsnTCI8+CbJEVkcHdjnwcfushkOsWYpfYMh0P2D4Ycd8fs7XUwTej3+yilaDWqxLFiNBpTqRRyeWMGiJnuOUvmNIN7qd9XMw20YRjs7u+RZXlFc3tzg7fefj1v2WcZnLTrNQGaIBMghEQTBko3sAt17GIFt1BB6CaaMPJnkAJdN+f4SzTxZ7o1Jzrs+Wc6QfBmGSqLyNKIfu+YTu8Azx9hOgLXqVIq1jHRSKZd4ukRWuqzfettBge3KBiSkmXROdrHECmDwQjLcjh77gyuo/Nzv/ifMQ5C/vyn/xwP/egXeOLZT/Dy17/Ok8urNJTGdHOT3U6XSNfoBh6f+OSnOe70SVXGwcEBIlGcv3CObueIarmCP5ow7Q+xNZ1mvUEcBVRrZYLAx7Yt9vaPsF0XP/LB1AnDmHqlRhQrqo0Wg8GI27ffRmop9184zVK9Rn//JkF/EwjRRG4wTmeeNU3T5h6Lk/XXyWsnx9KcyXhPyB0n1X/d0PL5Z+hYlkOhVKRcr2MVipy/sEa5tchht0e7VUPJPKkymEwpOTaagpXmAvs7u0TJD1bC8UOhgXacApbjEsYJUiisWg2nVOb6q9/EdU1cx8a28yQwb+pTKhYBhRdEZMIgURmW7aJLnSgaU7CKpGmMa9t0jrqUKnUc5RAEAUEQYFkWtsofDJoUmJrBxsYGjzx4nh1TB5VScFxc28Qt2YwnU2zLRSNF03IzQBwnGInNfadX0Q2Dve0dKtU6UrdJ05ROpw/kLaZaewVTt0gyDSElse/THxyxuLRElqQcHr83N+sUi8W5dMULQjqHB4RhSKVSYTqe0EXj6OBw1q60cMzcFGLbNv7Uxy04ZCphNOhRbixgmzqtRo3BoIdl5aYH27aJ45hyuczW1hanltuzQBnJ+bOnCSI1NxCFcUSapty8e4dy0UJHY+JNOe5vYzjFueEwSRLKxVzekmk2UjM5d9/aLE49l+g0F9pYhsSfTnAKRRgImlqLSqWSs3MdJ+dujscz01Ve4dbIGZrT6RQtzw2dS3LUDxhL8+86atUG+16PztGQKDrESyPOnl/FLU8wzTrl5gK7R9dZu7RIFAwJModXXz7g9JLg6pZChEWS4AjXSnj43Cneuj7maHSHT1yGf/WPeuhL13n47AK6qPPMxy/y8msbbO+s4yyY/PJffJgv/d4BapKyfdAnTmN+4rnnePG3X+UTXzjFG3eXeOX1b+PLhM8+tcT73Yil2mmOD/Z5f3sPDMHzj0q+cbtGt2dht6HYbjKcHNKoPkQQblIpLrGze8zzn3qBO298lycfliy3VtCtW4yCM3C0z9/5mw3eejPmuSc9Xr1ZZm+kI+WE1GhQERN60qFWFOyPx3z62Rbl6oRao8rxepd+v4+VaOia4tzKErq2zDh4g/Wdm+iOwfsbd3DMZbb3dmlW1ijaZSxNR8YmKpWkwmVvbw+nPMZ1TJqtWm4yxENoglKhhNR0lpaX0aOM3sEBoSFZv73JA48W2Lw9wh/3KNo6uguaVp5ttj12NgWanbK4UubdN/ax1IRez+PM2grVootdSFhsQxZk6JSx9YBQjTGkjm4oMsAQJqP+gHptgSlg6IIkiXM81j2WH5WKFkQ6Ugdd1xh7IVEck84492GY89+jMJ4z8hUZYsZsPzF8+75Pkmb4QYQEojQmShSGDMhIcVwXvJhgGqClApWmpHFCIrU5+70/GBLFijBMUIAtJFbRolRwabRbTIYTjqc+lmlx3BuSoRElH7SFU/KkWVO3yZSgs+9zd31MvajxV774RQ73D7h9d4enn34WXVNcWG3xI1/8KbavXuHFP/wtPv7JL7C1uctw2KdQLnP54Yf43huv8eTTFwlTjb/6Cz/DV756mz/6gz+gVDNZbp+hUnXpD022d46RUuLaDlnaI01CXAcWFha4dnsfshRdd1hZWWFz/4CJB7VWiQcvn+YrXznAMgWG1FhcWmZnd4/FRZdpEBHHKYbMDW2ablKplojShNCPCCJFt3+UL7KTjAyNJEvyoquEsR8S+7CaKIhBiRgBM8ZwiKVDpeIwmfizwg85rg5mdIiPmr5OjHNpmuI4DnDvTIQIidRyOsy1m3fQLZN6vU5v0Odwd4dgOiEt1NBlnrFwsvjNsgyBjiZ0DLs+3xTEmUBaNpBX1w1hfEQayofeP/8IQgC55DRN05mBLiNTMZma0h9MKLoFkPlG05A5XtcfHTM5vEHq9RmNu5w5/zH0aB/TMAimx+iapH/rKqVSAyk1jkfH9Pc2aTXqDKYxn/7CT/P13/nfeOvqFX7h536WB37+bzAkZt3r4zYbaIMJ5XqLFSzCMGLcH1GuNim7LVrLizm/Pol46MGHufn+BsPjAcGwi1nMTZUtZwnN0BgMR9jVGtNkwH2Xn0Cr1xhtbRCNuoyzPAitVG1TMCO8yZTxeEq5EpL4RyR6TMm8TJAmoGJMYSGlNpetnWQ/6IZOmqg5E/pk432ygFZKIZiZNmepj8z+HscxxUoVaRqYxSLt++7j+uuvEqqQQrlA0vOxLJOCJtCF4GB7i9Orq1zb6/9Ap+IPRQXach0UGdrsQErLRpul1yRJgmVZZFluzjGNXGcUhDG+n0PJwygmm0Gy86qkk1eLs2ymgvowj9FC0zQKtoWYSTNAUSwW8cKIOM1oNBoIAdPpmELBwbJN4iDEdSwkIgf+I5iOJzM9FkwmI0aj0fzkh2HMZOwxHIxzSsZ4iqZLCoUSUuRatPzGz1z/faLr0gSILKXg2Ll0pVgiiWLq1dpHSCVZlgvkTzRhebv0A52WIXVEBqZuUCwWP/JeKXPWtmEYXLhwgQsXLnD69GlKpRL94YDN7S3ev3WTzc1N7txdRylFs94gTVMGgwGlUimvbJdK8yhS13Wp1WpzA9KdO3e4c+cOSZLgFAugCSqVCksry1TKNVZPnWFxYZnJ2EMTOsPxBN8P8WemlRMI/Ynr/MPu63nik35v94CHR10Wl5fQDYOMiFq1RhIZ3N3aJU41DvY7ZJlkc/+ACxfzHbXvCz72yYd48UU4s+YSjF0qNTg82qFSUFw4D88//Ayff+ZnubkFmwcjvvziW/zu7/8hX/xzP8HC0iJbOxGvvPImncOM+5YWIZIMjuH48H229uH1t3ZI1BTbMdDNiLUzRaQRcuPG2zz51Cep11sIZXDt2ghLeMSTPmGW4s00lLfW75JEkkptCbdY5N++9HWkFDhWhOf52NImSEyUHPLH/8c7fPmr7/LEo7C2aLK01CKKIrrdDo4eMpj6hKFPqQoFa0QQ+ZhmzMX7czJCGIYUXJM4iOj1D7FcjSRTjMYeuuGSqATXdRmPhkzGQ7IU4iDFNFwmowRLFkm1EaNxByEyCgUHz5sgMuj1RgR+gu+HGIbEmwZ0DnqcOrVEEisKboGiVaVWW0CoEnfv9hgMh5SrEk0m7O2MEFKnUivRaDdoNDWkZpIpg0wJmHXHTN3GFAZB7OMUHNI0y9m9qSKJM9I0ZmVlAU3L6QveZEIwvXdxyACmnht1jJlcK4hS4jTn/Z501nRdR+r5+UBo88CpOP5AJ523aPNrMsky0gzSNMMLQsIgZjAeMR6P50a0OdUjTlAI4lSRxOnM95KASElVnJOXZlISlcVoMg9QOak0Q64lT9M0z2FJM4IgYjoJ0E2Hg4MeI28KUiOOU1ZXz9DrHbO5s8v1968Rd/so8s9uGHJGRLL41As/Trd/xI3rN3nzzRu88sr3aDbb1OtFms0amWZz5ep1qtUq1WqVbrdLo9Hg9OnTtNsVTCsP//EmU0qlEp6X4vs+V69uEYYRrmOAErz55pu4RUmzWSfwfEajEWGYMJl4859LSokgr/B3umMCP0IKuP/CRTLyRNwkSWZdAEAjR6/BXGtfbzjMLEM4TgHbhFIhpz7UalWOjvtMJvmzzNTze2wURQAzba6GpgmkzKu+J9/vno1ZIEeWxhwddwmCgPF4xGJ7gdD38yp9lMxpDx8eupi9V0gUWl6RPgn40HQytA8kGh/6HT4Ibzl5TsMHCz7ShDQK0VBMp1Ns28I2dLRMgyQj8UOUmjAe7qInfQj6ZMGIYNzlaPsO773zOt50RJQo3nz1ZW7e3USmKbubGwz6I3a2tigRcPWtt7ixe5cfe+ZB3nrtZW6t7xAGKQW3zqlT5zFTjcFBFyNJ+c63v81kMuH9G7fY3z/k9u3bbG9skinQNB3TtDk4OESR4ccJ1UYTIXWK5Qq646CZFrpTQBZK+HFKtb3AOE4wiy7VZotitY5m1lhbu0SxUMEPQ3TDwHGLJEmKPgueOelknzy7T9YhJwtnTdPmx/HD4SonG7gP0zpO6EaQV/2F1Fg8tUKGhlVwqTYbAERpPn91Q6NQKGHbBuVK7Qc+b38oKtBSN0jSDCEkUmokSR4ZunhqgcHRPromCIKYSqnEdDjENHVG0zzhTnwIZ/ORiR0nOe7MsbFNgyiJqdfr7O7uUi4X0XUT2QdD09AtSaVa5ujwmGKpijcdI7Jc3uBP+whSDFOSKJAZWGaeImTpJns727jFEvdfvAQwB6MHUgIatu1iGjbFah2Fjh8GM3eqjdAke7vbJFmOu6pW8wjZMPBzhqJQ2JYzb3GkaYo9w/blPy84tvHBYljLW7ClcgFTlwiREYY+u7vbeYRlpvAnk/xGoDJ6vR6ZkBz0JxweHjIYDOj1epiGPa80GEaeGHZ6YZksDKlXq4RxTJQkBEGQt3xnrZbhYIpSUzIBhpEbMyzLQqUpJbdAJgS37tyhUHTwvYTpdMr999/PxXYby7IwTJNME8R+wHg85s7NW8QqxdQlcRyiqZQojNA0kUeeCkGhXLknc/ZkHB55uKUJY29KFDm0Sz4LjSZXthO6o4zh8RSnlOI4D3CwcZtLZ0u8vx+zt98ltuDV9Zt4O7ByucUjD3+WsLtBzTJY+/TzvPWHf8gXnv8EN9+7xpQmWhCwWDPZmLq0i/AHf5Jx/vJZrn/3ZT7+zEOcXa3j8g6Ny6t87aWId9+9huNIzCKUpY8pddaWXP7Pl17kRz+xSve1Dl2q/MRSAdu9y5vX9tjt2rgiwCgv0uvF3L1zGyFH+CH0R1Nq9RILK2W6Wxo3O+u8cavKX/35j/O3/vsBn/4RwY13j3nxvS4TT2KWEj738Uu89nt38VTM+XMN6gWP7+zC/vY6lqPTbCwwGCsqRY0b73VxK9CyK+zuDxl1IA49CnVJc7FEmmqgQkzTZDzwGaZj2qUyyjMQjgNan62NQ4Iww3BAszQevnyJ23d2EeTXrG27nG4skygFYoLUEsJwhJekRJFCChgPIE0jFhZrhNmQmze2uXzpAXbudBFamVq5AemUTE2YjlL6xz4l20WFgsjwSFXIA+efYndvk3AwpFLSCQOPaBrSajUY9EZUqzV+wKmy/y9GhshS0lSRZTrHowmWFBjyA/yWYRhkWsboeEImTPL06QQ/zFBKzBPV4jRFSEkYxARRHmSQJEnuXyDFMKIckzmjEAgUipQ4TeYJgFoSY9m5RtWUOromUCoijCZ5JUtqBEKhaQKVZgipk6l8ox1FASrNF/PSUERJjOnYmAWdaq3FjSvX6XUPOLu4wOPPPomKI377N3+DL/7ln+PCpcdYPrfK1772DXxP8Wu/9pv8r//TX2d19QyX/JSHH3ma967sUqmk+HGJG+setlsgCjMa9RaXH7yAjqDfO0aQYoocV/jAAw/w6lvvc+7cKVZXFrl65T0GcY7q9IYDghiCBCqFCF2C53l4ATx46T7euLKB69qoOMTQdXb3u5TLDiJTNMoOt+6sEyUp0yDD0kFYJhm5hCNNU6Seh/1cvXqXcxdWOTreBgHbu4e06g6nlpfY2t0nCAIW2405crFYLHLcPcI0baKphwQsyyCKonm1/8OLynsxNN0gSxKGwyFRClqWS1NazUVKrsl3v/MqH/+R51k51UJo32ccE/mi+mRpLclghk9V5BsF1AfriT/zvT+0CDypP8ZxTDAZ5Ys9qagUW2hkeNM+tkwIhz3iwCMp1NCzkKh7wKsv/wkXH36C/mGH7s4+C8sLBNMh5WqNlgmpXeSNl/4tfhhQXlzB1XXMJMUYHvFTX/grtBYK3P7un7LYtLjyyis88/zH2X/3HcaTEQ8/+ijbu1tcvrRGf3+Po/0NPvbx59jeuI43DinqDkc7B6S6xtlLDxBrEW6xwV53yOl6C2G5tKt14lShywqpXSQJEwJdsHz/RYbbG0y8MXatTW3lAtfXryJUwMr5S0RDB724AJmJ1Bx0s0gUxfPCYpqqeTcjjmPItHkB8funlGHkqc8nqZd5/DzzP8dhimZalGo1LD/g0qMP0+v06G9tsqtrFIIQ24RKocZ4cEj79Dm4cusHNQ2BH5IFtGHacxSMEAKZCVSaYNUWsYf7WHbOVQ08j0qtTu/oCM9X2IZBFIVkZPSGE1YrVULfpxcJyq5AyzQa9RpBGKHiAJE5FBwXQQ4Mf+rxJ9g9OKRomyy2W8RxzMqpNb716ne49MBFxv1jjEIRS0nCMMQRBpYJuqWRoTOeJFTLFVZWT2EZGpapYdsmUgp0U1JfaNA97pOgIXSHJArQDJ04U1iOzWQyplhwyaKIcaXMoNujVK4Qujl9Q9d1pJhFX+omSmgYVj7hLMtiMpkA2pz7vNfJpR0Fx0XTTYq1FrZTwS0VSdKAJAzoRlOOOz1QAZmRy1q2NjbnbaZ2s4UQ2Zx1GoYxtm0SJz4Lywu8/tY7mLbF7mGPVGnUKi7d44ggiohScF0b3ZIYusX9Fy+glJrTTXTTpngqT19rtwVZktI7PuTq29ssnzmL4ziEYYhp2ZRrVRbbLUzTJAp8oijKk7fCIN+tSp0kUwjz3rbBl5eX2d7aY21tjUF3QBT6HPXu8sxDS/T7AVHmcaFxho2jQ7ruI/zUszHf/NX3MC8ZvPCcQ7Hq8vUbffT9Iu3zr3HrKOHxc2v8o//u7/P45WWmg5C9/ojR2OS//lv/Pr/+5d/lxz/zGba3d+l0pxiyx7OfuMjCYsqVjbf5N78xolwdsnUML3zS4O23TIbhlJe+vcXE0dm6kdBYeYikd4iemXxhbZWCfsBDjzzG3/+ttyk3MpQHg/ExKQ5eNObcUptyK2VhscruMVx78w0CK+XM8hL/9Ev7fOkf3OaFjy/z2ptF/trPjNiNIwz3Kd59532spUMePFVi2lG8++0u3o/pbO+CrS+QRMccdfcw0wr7x7mOWKmMfj9kHBo4tkGpZcEEgm6MSmOmYwvdMDnuHLN8qp6bxhYKXL21T6MJe31YbOS0A5V4HO0e0ig5SCIiLYLCFLMQ4+qSMEw5fWqJpSWIVMbBnWM+9aNPc/3mLfY7A+4M+jzzyfvpjA5YX99B+TGNWhtbQn/QwS4ZxKnCrkqEr6HJmIKssLvfQdXqVBpNDsd9dKlh6BaVqosmBbVmed69upcjTVNKZTu/l0xjzDxSZYboEvhpRK1WwbFtOr0xcZzfn9NMEGeSLMnQvQAAzTKJkhQviRBaioYk9SM0TaFpJl4QzqtHUoCGIhMSXYsRwqdccrBtC5Xl17nlmPmmR2gMuhPiIEGluUEunhE34jQPV1IqQ2U6iryqXbJLlCsRy6erBHGXvV6XT33+c3z3my/hVEts3L1LrVjmoQfOsXntXdZ3jli5dZcza2vc3XsdS3gc7PQ5e+4UsYB2u41uQrsIYTqmULHZ3TzizKKPFvq4tka/22fqRfjBhFqzikzH/M7v/S6upeNN+pDUSMKAcrnN7Y0jpJZLKIoqptcfUy6axImJ4wqurW/w4EPnuHt3O49Sl1CrucRxShKF9MchriGJUw3TkqgsQxN5t1WXkjRJIYNqtUqSHHPt+jZuwaJSrbG3d8DEV2xsbDMcxZTLDtMgwBApIy+nWQghSKIASxeoJCTRcl2waZoAM17xPYzyFhFp5LN/sEkS5ICAONO4/v4Nuv0By6tr3N64RqP9Izi6hfy+CjKAPMmCyAwQJ/IOPmJgmw+VzivPKkvm1dE0jfOsCE1iFix0DFQ45WjvGlXbZDI+ojseU1u5H3/3Op3DLe5rLLFx9xYrpx8hDg2aC03OLC1Rq5X53qvfYO0TEsMGp3IGr3yFzANHZJSXGhzc3aJWbfDO1/6AWC/yxFMX6XQOaFQNxp09esc9FtdO8d67b1MrFDm4+T5pJlm9b5mNG++ToHCKVRqnWgwnIa3GAmNvTM2y0WVEo1khyWyEskiVjmU7RH6fNJhQri6jxR7CsrEvlkmFjkoiIu+I5dP3EwdDpNJxF8+jlIWwDDQjw/fGyNwUklPLZB5Mo+XYGDLyJMe8y2zM0x0Nw5h53xIykZHNqCq6rn2woNYFptRRmiRRKY7ZpmoWEKaF0W0x7k3I0JhEI1YfuMSdK2+xtFT7gU7FHwoJx/dP2A/A4xkKHYnAkBI/zKUCSZrzFuM0mSF78ps5aHlZVubaWCEN0kyhxAcXT95uTPGDPLjFAMrlMsPxhLHvs76xCSplOp3mOpz0A4SdbmhoZHmFRmSoLD+RU98j5QPJQZIkSGlAlrdJoiihVCrN0C4ZIoOCbZGGISqJ0E1BsWhTrriUygXa7TbNZpNCoYBhmUhDJ0GALolUxsjz6fQHbO0ccHd9i82NHXZ39hn0xzPGdYJlGbiuS6PRmEtXToT5jUbe5nBdl8lkwspym3qtgmlIigULy9QpFgqI7AN5STSLNF9cXMgnuBRYZo4X/DDLMgzDuenz5DXHcVhcXKRSqWBZFqVSCd/38TwP0zQ5tbo611HnmL0u29vbdLvdvMoQ+Ix6XQbHHfxgOm8Dn+i57+XwfZ9Go5Ff1JrGaBqghEYYepRKBgvtGuPJgDAccnC4Q71d5emnnqFccfBDgyvvdkkTncGkx52tA0rNEr7v4ZMQaxoqLVGrn+ZTzz3EP/zH/5yhP+bW+h22t6esnlrBD3v4x2Puv3SR4BhGIzi7CP/zP/xp3rkaozKTUtFh4kMYZDQXHI46B5AMuXj6Erc3dzno9GmWDAZd6HUU0oRC2SBJFEkCu7tHlIslHMthfz9j5KUU3TqODW5wH5E0uPr2Dn/y4gHK0HjkMuxsbDKZ+njTiEFnSELM6rLBZJqSKhgMRkShgtjAdXSOu2BYJWwHPC/A1gv4XojUBUXXJZuFEvh+OJuLGXEYEY0zIj/Cm0I0hXNnLVKgWHTIMoEQkkqxxu3rd1BIDrse33llwO0bXbxRTODn4QWaLrj84AWODrdotyucPbvE4mKDfr9PZ29KvVajWHKJ4gDTFbMFnk5GimHo9Icjao0WfugjpMLzpuzubpNmybxy9+EWpOM4uNa9nbvVYolapYohJFkc5bjPTBFECUEcESuFNCyk0DB1jSz9gIF7soiI43R+vcdRQprODEIqRaWCNNFIE0WaKDIFmcqlFmmazeaXmn2t/PictHYN2yIlRQmIolzfnClBlglydTmAlv9dfRQXNhqNqNYrGLagVHEIVczh8TFSd5hMQw4OOxi2lXf9GhX+/Bf/A3Z3d/nRn/xJnn/+eT73uc/gRyGj8ZTDww7f+ta3CcOYO3fuksYJX//6N4mVZDgcAvl9dGVlhdFowOJCjcloiGvn1123myB1wcbGBn/zl3+JnZ0jPvWpZ2g2beIoQNcEtmWQZSlSFxhmfgz29w8xjI+a3U9CuqRp4Pl5AEcU5cbNEx2zlBJFTj7Z3z9gPE6olA0m05Cd3QM0LUcVrqysYFuwsrKEEHnYRKFQII5jwjglShS2W8yT95TCNM25BvqeV6A1bRZDPp7jaPNgE0kY+rz19hsMe/35Mfuw5O//aZwEnXz/L6HlOREZObN4HjYkNXTTQmh52l2qIo6PtzANyXg8ZtzvsdBok4Ux9cYSzXKV61evcd99Z7FNm/eu3CQRLtIs8yd//BKaUHQOj3ArTVzH4PIjj1CuVGjXmzQLZba39rl27Rorp1coF3SCIGL51BqxbuCHEWfWTrO9u0ez2cYLfLrDEYZto2mQqJSlpRUm44Cj0RRhWJRLBZYX27n/SmlIw0QzbDLNJFECw3QQUkfoFpmQoEmQEt1wKJaqBH5EEOYhMJqm57IjBZlhkSZqHjB04u86OU8nHGhgbkoF5q9/f5fjpBv2f3cOTyQZhmEhpTGTaxRwCi5Owc4lrtLANIoo1lTcXQAAIABJREFUBd549Ge+xv+X8UNRgYaT1MF84SyFPnM06yRKzg9+kGqkXoi0XLyBhyVnN4w4xTRtgjBCN82cYyp0UiEI/IipH+BYFkEQ5K5m08Qtl9jZ3abdqBLGEce9PoVCASklTzz2KBvrd4mTkErBmaPapBSY0sz5nTPndBjlzuRGo0E2k5DEcYwuTRAxBbfMJIiZTsYkKs1JIGlKGIekSUSa5OzbROURlkJComA8HON5Hse9LpkQ+GGE0CQqySUicTxLSYyzmSHJQJc2UuYc1FTl/eEwDInSBNvJF7uVSgVD0/CnfY6Pj9F1nb2dLSqVMoZUZGlKpVQiDGIKtsPUDykVXVzbIgw8FhpVppMRhi4olopEUZTryKWON/bypMRaCdNwcYvlnIZSa2CYJiJJ6Pf7SClJwpwxalgWpmvMNhj5gzgI83bv7tZ2/nNlcW4qNE1s18mjQbUYy3WwDPOeztsPX/SKjFRBq73EeHvIlbffYe2Rh7j13k3Kxn1Uaj5XNgJ2dzdZbFbZ6wV84ccf5Ld//wBlJrx7d8Jye5OzZx6j2n6Irie4c+M2XT9mbPto9dMMtD63NvbQDYNKzcZ1dJ48l/G1r32NRx64j8eeC1mq7vFP/t5vE6gGdLvYCrIKDDdS9kOfBx9rs3oqZrSd0bEK3No9YLHiEkTghxljAegWUqQ022WW63Uct8R7V67znVPniTXJm9/rcfYUNJ1zfP4/2sACvviTF7iyfYsfvWjxO791QLV1msm4j55JCs0iC6URh11J5zjFtopI06Bi1xl5G9iORurn+/nQF2iJTamQdyl8LwKp0e8NoAwjNaZeLpGGCanK6PYGtJo6jWKLg1Gf6QRWl2P6vkEcxhxsd1hurTIZTjAcwZNPnafsakSTI46nGtt7G5y7fIbvfe8a6STl4uVL9Me7CE0xGk1wZAtLCjLLQgifo/4WpmlBauQ4piyiWmkw9KcoochI0LSY5cUWBXuBMMjpFYYBSRoThj6WYc7RZfdq1MtlGrUaqAwNxerSAqmKGYYJSawIIz/3nyifguMSBSFhkj/4lFIkQJQodDQIc12sJmMWWzXCMGHc88lZYlFOMyCvFkuRoUsNTegolf/bySJFajb1Rg3d1UB4+aYpiMmERhSnxCohSfKFdf4QFvOK1IcX0aVakU5/j7XzDXaO9xlPphz3fUwV8yPPPoa0C1TbLTqdDq3mEqNJwJf/9W9Say9SqZY47g156U//mF/+G7/MV77yHXx/imOXqdTbrK4ss7lzxEq5zrmHH+Hd71xDJHB2bZXb6xtcunABgwmT6YDLDzQZjUbc//Dj/NqXfoOnn3mY19++gmXqDHoBpaKB1DP8wMe08vqPbTmchHcYhpzpkWfyFBMW2kus39oiTTOEgELB4fDwEMiPSZzmFb5Gu0z/uI/vx9RrJXr9MVJKLNNgd3eXVqvO3bvrxEAwgUzXZ1XC3KBtmBbZ1Jubtk7yGE7IIPdqaJrGcNTl/Ru3ZsY0OZsnedruYDDgxtV3efzxp9GNNpZhz+fH9xfrPrIom4WkqNlrH154nyz4TqgQeeS0BpkgyxTBJMXQYsJBh0kwZKFRZTDpcXXzffw4L9zppouR6bz59rv429tomc3+xhbXX/su3iDgzGIZo7WMWbPYub3O7776Fc60mmzceI21tTVSBaViCekaPHXhMm9fvU2qmaysPUAUT+gHPtIsMJxEWE6BWnOFO5tbmCWbtUuXMUoNllvLlBbPk3oeidfDDwPOXLjAwXGXarWOVV3AD1M0aZJKE+nWccs1pOFCohOFXr5OMS0WVs6QJBFJKijV23Q7PVzdwTBdkNbsmtdAShR5wStV/xd7bx5tW3aV9/3mWmvvfZp77+vqVdVTlVQqFeotCRVCMiYhAmwFYiMPDEkAm0Cc2AkhCU1ikCCQYRIcrIQQMoxtEWEgwTYmODYyAdFDRAk1CGFKqhIqVanaV69ee7vT7L2amT/W2uec+6rUPHilV4b9jfHGve/c0+yz9tprffOb35yb1d0xN10HfdFgDoSqVe/xvpf+1T70fDt0uwqQcvcuGDUTpjsnqeuaf+svfAkfeM/7mTjHpb19ZvMlo/H15QvPCQV683aXmxdm0zQ0kymVzarufLlk2YWcDlTBJyXE3LDcuZzS31QqfGmphMmqRm4AX7Mz3WJrOubkyePs7R9y8eJFpuMRzgi3nL6J/d291UlSXZ9oay2ubrBVg7EVSr6Rgq0r4kak20epWEOIuXd02y6IMffetNYyW7RMt7cYjSY0TUMXA09dOM9DDz/Mgw89zCcefpSLl67kiz4JlctdKXIVa04fhdBR1RYlkltWJkLIarAmKU3w40rFUFVms1lW4BeLXDk+mXD8+HGsddR1vqmEtZYTJ49lO0ZlgFQ+M1I5Q+MsN504zs7W1uq25n1ro03j/87xYzTjUb6zqpGVary6QUNRNXwM+SYshYz2vXNjCBzs7xOS4mPiYDZn7/CgFIl0zOdzNNzAanDg4OAg+7xTQlOgW8Lh/oztYyfZ2d7i4Qc+wR233UlcRpyr+YP7n+SVr3oBIcCp02e498OPc/ttd9C1kdkCZu0hv/Zb9xC6CpEpl68seNUrX8bOLSchOYIH3ykvuvN2PvTBB7ly6SJnL3wMR81DZ/+Qk7cZfuM3Dnjpq15CbK/wPd/2F/jizz/BHWdO8Mo7TvKSFx/jRXfdxn0f2eNzXnIr+3sXaI7dTDXeJiY4dXIEC7j95juAhLFK2+YU22gyBcnFnH/ta95ISnDJX+TM7a/hJS+DvcVj/Ov74M67tvjLbz7BE2cf49z5vGnvzfY4PgWfGsRUTMcN80VLUsvWBOb7WQEK3tG14H1gZ7pN7XLBVdcGBEMIka7zGCNEnxhPJ5y7GLn59A4XL1+kboSbbxmzNXaoQkr5ZhSLRUsKkTue/wKizri09xRPXb7CuScvMJo0CBU7x2/icOZ54MHHSCkwGmd//+HeU1Qu8dijT3HsRM1suWDpO5Ts4w+hpfX5mnLGlN7EMx5+5OM8/PDD7O3vr25xDznj1StnNxKRwGIxY9ktEFGMTdS149jWlOM7W9x25mZ2tkYlo7bezDahJf0dYySGfPfF8aRhMq0IKRKD4oPiQy5QDEnpb5WsRJwzWLfRcoxCdJzgGsdke4Ia8k0pxOZCRrR8bsT7FufWN7fYhHOOg/0ZKSU+9vEH+KVf+VVe9Zq7OZjNCUkZjacc3znGbHbAG97wBcyXLR/4wAd47LFHWLSR//pbvpMPfehDNLVle9pw5vYXcu78U7z2c1/OLadPctttt61umnPp8nmuXLnE6dMnOXH8GK942Uv48je9iZ2dHW655WYW85aPP7TLAw88sCq6vuuuW3nVq17Jm97053nLW/4bLlw4YG9vifeRK1f2VkX0bdutCqzG43GuZzGCCFgrK1W4b1XXj+Fjj11ma2uL6bRhNptlg85Godbe3j7j8YQYwNrsNR2NmtX+tbe3x9bW1soLLyIcHh7e8LmbUuLg4IBHH330iMLcZ0shsb+7x+OPPkbw6dMWjuXXx9We3z/W753L5RxIGLOuszLGEDoPybNcHEK3wM/3caGF5YywOODg/BMwv8Lh+YeIYcHBxXO0s33Gk4Yr5x/nrrtu49jOmL1LF/i3v/CLOHf2MYwaxsdv5X2//os0zYiFD7z67tfyOS95MbecuZWI8LwX3MnSK3e//vM5dfMp9veu0IynjMZb3PHCF7O9c4K2BDxnbr+N2194Jx3gpls0J04h9YhmuoVX2D55mk4tx0/fhp2cQKsJtp5ST49jqjGmmpCoUKnwUbB2DNSEZLCmoRpvERR8FHZuuhlX1bk9py0thWPmHptZ7PWNaWQ1lv053Gxr1//t6pvXbJ63nmv0SraIsHNsC9vULEPE1hUnb72ZS7uXqCY102PHr+tcfE4o0Jt3Fuo9cr0P5tTNZ9g7e46o8PFzF9meNhzOF/hUZUuFMRjjqGyNhg5xFpIwXyyyahESk60ttidNbn9jK+pRQ20T+7MlHcLJ7W3GTVZB5/u7hOhBEpPpNsZWbG9v0TQV0608oVQU03WYJqdnbV1lwhzNyvqxaPMi7dsDkIpuOWe6fWxlB6kmO0zHFY8/+hiTrROYywcYaUgxAGnVLaQqbaJGtr+laGLcNOyMx8xmM5wTtks/UusqnDOMx1Ne8IIX0XYd586d41TxEl/azdXWToQzZ87w0EMPMRqNOHXyNDEEDDnISCGwv1gSo2IwJB9Yzhc4IrODyM2nT+H2lix94kUvehEPf+Ix9mfrzhl1XdPUI4xY5osFTT3C2WqVJjw8PESwue2P5B6xMWZ1PsZ45GJqmoZ5SNRGWSyWuPk823D0EvV4xN7W7g2du9PplNlsxmKx4OWf8xKeOHfI2I1wJnL5yfOcuu1W7r33Q7zstbdy9okGe3vi/IUPUre3UG0d4neex852zfyc4twJbrrZEJfbHO4+zrS+CeEmulmkroVXn9ziUXuBqo4s9uA/+qov412/+S7u78Zcevw8b/iL2zz2wcfAw9mLB3zx6xJf9uee5LWvuJPffn/NYw/ts39ceN/770UuQvt5C776zW/kH/7sezh3oeX5LxjxsacOefUdlgu7j7F/MOPW599MWCSuXLzEbH/Blf2HOXHsGB9/8D7GO7dwafEUr73zdt78Rs//9/B9vO834NyFxN13j3D/j3LuEnz+6+7mN//gHl78wpPMu455K2xtTfB2SheU218wYr5/kqU/y2xvi9HYsXdpTjxcsHXzFN/m/p/b0x2swqlTJ7h48RInjx3jySsdyzDmcPeAm19wjLNPXUQQxqMRigN1hBraxYyb3JSLZx9F65rLl1pGzYjZvOPYVsPZJ3c5mO1x8wtOYE1FF+ekNEeaxJ2f40BbNNa4Zs6yNRwu9pk2Y1QTrjIcLha84I7TqDnFxz/+AOdnlzl2LJPtW245zewgq6ltF4jRsJwvCDdYgb6yu8tT7VM4YxlNaioqUkyMXZZCq8pgU8epEycYj45x8cIhfoM3KTm97zX3C44Bpo1w8ubt3Jf34Qt0bRYh8sZX7uDqwIwcjRWakcFVlI5Cc0ZNvjvptJngfKIZN9QNeA2IEUQtTTPGOCFq5NixnLm6eOFgrWQJ7B8c0ExHuGbMfffdx7gacfr0af75z/083/Jf/Mcs5vuced5dfPiD7+WjH7sfp8Lznnc7bjLhkQfPcmV3wT/5Z+/kRc+fcPLUTaS05OGz+zz21FMgY6Y1q25PKSU+7+7P5SMfeYCzTx5Q6ZNcemKX6Jcs1PH82+/gyt4uN99cMYue0ahhNjtg79IuTzx2jltu3eKd7/xX3HTqJPvzJdh8J8fXvOY13H///bRt9o9PJmMuXbrMzs6U8dYx/OwQ78MRdS537gAflVEF+/sHnL71FvbmF6ic4H2gbQOve/WLeeLxp1gss7qdSuHcctmCdYTS1WP34JBpU606J+TnLKlvoAItIjz44APcf//9pLS2QfV9hReLBfPDAyZNTuFPJ25lE7ia+Iv2jyVCzH5+79sj5G4lkBSrUX6OhzbQpkOCn3H58fupXMfjH/9djk+P8/4P38NO17LYO6Ddv4LKNs+/7QStTxzbOc6xf+dL+P1Hz/KK6PnSL/93+dgH7uWmO47jcMyS4yu+6DVckC0un3+Kzijvft/vUDVjXv7KV3D+4h7V1hbjSji4fB4WS4gGt7XF4Szgl4HjJ05zcP4sW9vHmZy5HX9pn/0L+5x83h1QjWjnC6rJFowmeGmoJiepxxOaZkru4VDngsswxTVbqBGEBc5UJM23NG8Pd/HOsjWaABCrLSQFTAgkY3DWQPCk0vmkV4974azHqqtGmWP92G927IDME/tzXFUVKa69+M5Vq3ObCGwfyyLFy16d2Lt0kdNnxkxeeIan9pfXdy7eaBVkwIABAwYMGDBgwIB/k/CcsHAMGDBgwIABAwYMGPBvCgYCPWDAgAEDBgwYMGDANWAg0AMGDBgwYMCAAQMGXAMGAj1gwIABAwYMGDBgwDVgINADBgwYMGDAgAEDBlwDBgI9YMCAAQMGDBgwYMA1YCDQAwYMGDBgwIABAwZcAwYCPWDAgAEDBgwYMGDANWAg0AMGDBgwYMCAAQMGXAMGAj1gwIABAwYMGDBgwDVgINADBgwYMGDAgAEDBlwDBgI9YMCAAQMGDBgwYMA1YCDQAwYMGDBgwIABAwZcAwYCPWDAgAEDBgwYMGDANWAg0AMGDBgwYMCAAQMGXAMGAj1gwIABAwYMGDBgwDVgINADBgwYMGDAgAEDBlwDBgI9YMCAAQMGDBgwYMA1YCDQAwYMGDBgwIABAwZcAwYCPWDAgAEDBgwYMGDANWAg0AMGDBgwYMCAAQMGXAOeUwRaRN7zLL63FZEPicjPP1ufMeBPJ56teSsiD4vIvSLy+yLyu8/GZwz4041nce4eF5GfFZGPisj9IvIFz8bnDPjTi2dj7orIS8t62//bF5Fvvd6fM+BPBkRVb/QxfFYgIt8OvA7YUdW/dKOPZ8CATwcReRh4napevNHHMmDAtUBEfhJ4t6q+Q0RqYKKquzf6uAYM+EwhIhZ4AniDqj5yo49nwHMPzzUF+rD8fKOI/JaI/IyIfExEfkBE/qqIvL8ocneV590lIu8VkQ+IyPf1r3+G970d+IvAOz5732bAnxY8W/N2wIBnG8/G3BWRHeCLgB8DUNVuIM8Drjc+C+vulwIPDuR5wCfDc4pAX4XXAN8CvAr4euAlqvp6Mgn+r8pzfhj4YVX9fODsp3iv/w34DiA9e4c7YABwfeetAr8sIh8Ukb/5LB7zgAFw/ebui4ALwI8X29w7RGT67B76gD/luJ7rbo+vAf7ps3CsA/6E4LlMoD+gqk+qags8CPxyefxe4IXl9y8A/u/y+z95pjcRkb8EnFfVDz6LxzpgQI/rMm8LvlBV7wa+HPhmEfmiZ+F4Bwzocb3mrgPuBv6Bqr4WmAFveVaOeMCAjOu57lJsR2/eeP6AAU/Dc5lAtxu/p43/J/IC/ZniC4E3Fz/pTwNfIiI/dV2OcMCAp+N6zVtU9Wz5eR74F8Drr8cBDhjwSXC95u7jwOOq+r7y/58lE+oBA54tXLd1t+DLgd9T1af+uAc24E8unssE+jPBe4GvKr9/zTM9QVXfqqq3q+oLy3N+XVX/2mfp+AYMeCZ82nkrIlMR2e5/B94EfPizc3gDBnxSfCZr7jngMRF5aXnoS4H7PgvHNmDAp8Knnbsb+FoG+8aAT4PnRBeOx376ezWlxCv++tv46I+9hXs++gj/x//7O7zjO74WEeFr/vZP8N99w5fxmpc+n/fc+xA/+nO/zU98x9fw0NmLfOuP/EtU4YvvfjH/9Fd/j9/9se/EGENK2e4sIqvf33vfw7z9536bn/yebyCUx6y1SBkDVUVjQFXz4yKoQEqJGCMGASDGCKrUdY2qElPCmHUsklLCpPV7GmPye6sSfcAiYA3qDMZa1If8WaqoyT/7Yzda3qNyJFUwgsZ87M7lwDqEsPp8VSGhGOewIutjELc6hpQSaET6v0cQazB1RfKBdrnEOYetDISE+gBtGa/pCKwhoauxFQLERAox/18EYwwSUx4LY0iqGMnHnlIi+iUqBlvViELygeA9JkYEkKSoE2KMOM0/NYXVuCz2r3DhwjkuH1j+/Z96t1zvOfmZ4spj9+rzX/YGHrnvd3j3+z7Aj7z9J/nHP/6/A/CV/+Hf4Hu/61t59Z95Gb91z+/yo+/4Kd7+I3+XRx59nP/2O78PRfniN/45fvpn3snv3fMLqzmQUuLBRx/lP//mt6Caz++/92Vfyt/461+HquKjEEJYzWtgfV4LRARDwloLQOUM1lqMATSxbFta33F5dsCFK4+x7A5YtjNSCiQb8/mzLcYGqiYxrWuMMYxHDY011K5BkpKSgjrQJn8uFhFLQjD1FrC+fhbLfa5cuYhvW5YHc1KIhGWLwdKFJSEpsxg4bANBE23bgRoa12BE2akrRMEa6IwnklgmLXM/IibijCIKrjIcn9ZMm4rbbtpiPG6YTBtEIl1MdKHlYDGnbS1GBCuGSTMixIazjwfe92sXSCFSqeBMns8jl39aAyZ/U6SMvYiQVAmawAjj0ZTxpOH4sQmGREiGykacs4xuShywx2W5wPf9rXtu2Nz9/h/8If2+73oL//3/9Hd56KEH+O3f+E2+8T/7m9RG+fs//Pf4y1/1ldzxwjt4+MEH+NVf/jW+5du+iYvnL/Ojb/9HgPC5r30Nv/Hrv8Xbf/TvYStH5WrqekRT1Tz00EO87W3/M94Hztx6K9/+bd/OaDSCuJ4Pqayt/TpkjEEFEEGcrNYRaysgr7sp5Xnf/6vrOn+ZSnBi0GVHjJ5wuIfEwPT4adxoRBRDMIZkBeMTse3wh5dpF3O6w0O6xS6pbZErTyIxYKoau3WK+swdMJlQj3fwIviQODzYwy8X7F7eYz6bEdoONUI93WE62cE5x/Z0hHVC01RY06zWat/u4w/2SN0Sv1jiuyVxeUjyHe3hHl3XEfySyuQxaZzFWMq1azAKUYWEoKlDMSAWNYIVxSAYk69/2Vj/VS2ahKRh9Vg/vjFGYkpEhJiULuSxnUeDT5HgoYuJlJQu5vcUEX76F37phszdr/2el6iq8s/f9iBf990v58KjLR++5yJf8Z++ClXlX/6De3n9l93OsZtrnnz4gPt+5wJ//hs+h8OLnnf/7MMIcMfLT/GR957lr37PGwBBrFLXjqCJED3/53e/n6//H19LPaqIocxNFVTzV+7XUucMKQGS91NHBHWFO+S5qSmvwYn1Op1SXH0fIxHrRhhn0WrMdn0TLz39Bk7fdDsGYb68wkG3z1MXP0TbHbK1fSfHJzdx29YZbt3awZmK0M3Z7Q45uzvnIM54bPchqqCcGJ0ACSzDgkcuP0gbD7F6gGpEq3p1DOv54Nb7ughWq/zTWuqit8YYy5zK3zmEQLKCNSOsaajrE5yZbnPcVuxsnWFaT3HW0umcRViy30YkNWCUytac2jrJtjvOztZJnG2wYuj8gi51nJtd4fLhRQ67c0xczcnRLVQypaoCEiuiOubLc7R+l3N7DzPr9rhwcJZlO8eHxLg5hZMx1m6xPT7Bqclp/pOvfOt1m7fPCQL9iZ/6Lu3Jg8WSyoYVWV/kPZntT7SmwKL1NFVeWN55z4d55z0f5h+99etXE6AnwT2xKHMfESFuEFtXFhERQTStJk9KCbFmg2jmx2MheStiXN6zf++U0hFSvEnoSYqGmFlAZRFjVmQbQM3moqdIIQipHHtV14QQVu8LrEgqQIyKWIOtqlVgUN54NXYAMXTrBbQcmq0riIkYClG1oD5ikhKDkqxQjRqSgElrMq4xEGOkMnZ17CklHLJayGP0eTwKye7/b6oRQiL6ACFiYiSGgFFINl+sJubPQuP6/C1nXLp0no994grf+C9+74aRkN0n7tX+GoroOmAo57tfbDqfz1kIgfl8wWQyxhjDz7/r1/iFX/x1fuJHf3B1blJKhBhXv+efG+ONyz83zu/mhpnnQsIas5oX1pbrSwxioO06fAzsHuxz/vIFlsslV+ZXWC6XHLaH+bOYobQY69keQd3AeFRRi6OuXCaQYgCDNWNQi2AxxhUCPV2NQYyexXKfpy6cZ7FYcuXSLrGLzPcDGiNRFSJ0SVkETyr1vikktpuaygpbtaNyjmSgM0rQwCLm8VY6jBqsgJAQk9iZOnZGNbee3GI6GbG13WCt4GOiC4HdxSGH+z4TlEKg267m3NnAh9+3B0lxCSqbx7GxfFICDbniM2hCBcajKc2o4sTxKc6AiqVxinMG3Z5zJeyyJ5f4ge/5wA2bu//r3/+Hq7krRlfrrC0kq18/nVGsFawVok80TSaE99zzPt7znvfy1rf+LWzlsMatCLS1drWGhS4SY2Q+n2OxbF4v/bw1Za726x9lrI8SaJ8DSO9X10VVVfk5ozwf6QIxBMJ8Fw2eanKMajxGjcUbg1gDbSB6z3JxQLtY0M4O4XCX6BeY3QtYDXldmhzD3XQGO92h2d4h4uiCZ3a4T2iX7O8esJjPmR8cElGsq5lOjuEqQ107jIFmdJRAJz/HH+6Sug6/OCSGDl0uiKGjmx8Qgyd2LcaCKDS1O7IHWiACIWpeWwSi5nW3tgYx5Rov46qS14kUMwHs1yNYrxk9GYoIPkS6pKQEc6+ERL5efCKq4sN6r/uZd/3KDZm7f+WtL1TnHMYYalvhbI1IXnd6qCpdl/e4ZPLcTR0c29nBYfnD3z/H/R98kjd94yvwvsWOHFVls+BgFDWKSCQlCL6MlxpE7MZ8BWMKJzEACZMygQbANOVgyrlnvYb3AlT+Q8RWDrE1J0/cxeljt/Him+7m1NYpLJbD5S6H3S4fP/d+DpZPkaLF2Amnt2/l+GjMSCpCbDnsOs4fZJK6NWo4VR9juxkjInRpwScuf4JLhxc4mD+BmIDaTbKc54xzNZQ1VURWwYAxBtdTmFXQu97jgihGGqxpUNOw3UzZHk843kwY2YYUPfMw56BdELFM3ISRHdNUU05Nb2W72mI62qaqxjjnMChePZdmVziYX+bxvQeYt4ec3D7DVn2cHTsp4l1F1EOiP+TywRPM/B6XDs+ziAvm7RJntqnMmLrZ4VhzkpvGx/i6r/ju6zZv/yjeoOuOnuzCWoUQEcwGKUgpKzuw3rDufegs3/tjvwjAznTE277pzau/5wtBUPLEBRDkCIncJNf9pBDJKi8isPF8EUGNIMYgZGK7OhY5ej5EhJ7aqOpq0RIRZOPxzd/7161ev0GOsjKeVpvLetF75uBnRaY23jelq8iWzYS6/64rpTwpUkiXSP5uYoRUlcetyV83rcmsGoG4/h79xpdiVtzy+IIlBzH9+ZVyAUsh2gnW5+yqKS7lfFz9WD9vbhRE1/PK9t9FoZ9P43uhAAAgAElEQVQAqpn8bp7Tj9z/Mf6Hv/PDKLCzvcUPve17MUpW6FURhNTPhXIuDOv5mpCs8m6od89EoM1GANMviH2QSA02WqajMTuTbZxU+KTAIT4YIpEuxEyKY0sMAS8RZxLWCdEkQApRSqAeIwbKJoEIUhSKpBHRmBUyyWPgQ8LHxMFySeoSSQQJ+VqNWFJSrEBja/CKJpDKQIBoC4HA5ImlYMQheWIhqoTYkTrBG8G3SmcF34A6W8iHIbQQoxC6RG2FViOLZaBrgZTPp7nqGsvnUI78fxXUb2SyNv9WdHmMKcFkSvikRzb8G4GqthvHGgFFhNX1uNo4XV4XReCRhx/lx388l5BMpxO++b/8pqfPL3n6/tSrzliDlHEwwpHX9HNdjeCcWa0jIpSfjpg8EhUp8yyrs0JlspDS91nSqkEREANmg6CrwbiKGJVkLGoMYh3qKkwKVE0DanFVg6lHmLrG1RXWOQSHSs78SaqoqopQ5Z82BZIoSH8AERQ0WmLqKKsbGjySEpIiJM0ZRlGU/J1E8ndyRYxwZWxsGd/1Nd8vMGsRJwlYNVcvk+X8Kqo8476hqiQxea0iX8NJIwmTCXiSop7mz30uiG5r0SiPef5uR/cCY8yq7ZaIcOnsjF94+0cRhHrieON/8GISkUTEkudGJtwJ3dire+TrfP1+eYtNR/4WyYv/kXPE09cFZL3fK/kcWuMYVTuMqh2caTCAUaHC4ahxboQxjhg98+U+V+wIH+bUGBKeeefZaxfEoJzZOcmWHbFTTzOBVsf2aEoXWg6XT4E5yjn68VLVHCgUecDYqnAkc+S5mXBvngtBU+ZdgUgXlS5CFw3WCCqWZBoWekDySyzCyFVAEdTwRI1YPCFFnGRRsxJDbQzOGpIkDrrcDbO2BmcEkQTJgyoWoXENdT3Cd4HaRUQsKNSuQggYWSv/1wPPCQJtrc1KYzmBppCioykoxeg6YsYY3vDKO3nXD37T04joSo0tpNC4bF8wrBW99eKciWb/2WwozmKyhWJF4gViiivj+IqMb0ys/sLe/E79Y/3xOefyhXbVZpOj07Wy3F+EKaVMypISQ8iq9aaqzToIcc6ulXrWCqg11ZGNzmfegRHBVBVWhBSyomGqHN0TPB0hK85F6bladTfGlONx2YqREtKfv7y75QtEE1oUO2MtKoIRRxKLoERN2MqhwefjT7pS/PtFW4vq2m+4dV2vlJ0bBVcmg5bUqrVlrhUrjhhICEmyOlk5yxf+2c/jl/7V/1XGD5wYDAqpZDbKuG5C3Ia6Tz/Pq6ctgGtCna0MK2JjXXk8E/yRJroYqE22L/itwNZkShc8l3cPaX3HbLaFTy0hLknxkNYvkAhRII5yQGRtb9kJmfSIrlPIq2splRSnMqqV6CPTScXhLGa1x0H05DELYFSxaqlsvv5qazEqgMvXYFB8yhkqpUKNwVUGh0U0IRqBCvUQxdAeVqjP64dzSlRLSIm4rGlnxZplIIbEYmFYzhVRJcWEK5tbSolUNr1UgjlBnrb29L977xFTMgbGIFZxIlgD+/M5h3FO1O76TsZrRNNU6+A9rdcnq0eDLmuz2mat8Mo/8wr+lx/8OyVwNZlMbgRxcNSW0f8f1uKIdXZj3VjPc5FsbRObMwn9elO4ZCbLKUsiOasRy1xTXLE4MLZIdBhJEGrUNvlYnaMylhQNmMJzuzFuZElB0NChxlCpxxCwzQSpJ9STCWY8pW7GBCwmemIYE4zgJ4UYx8CyXYAKJnkkCkkFFcVHnwOlMk6hm2O6luQ7SB6JHmKHaMBKRMlkxNliFZCsKpsSwGDzWiOiJBWCKjEpSUC7PA6NFPIjmUCqFLuMKrEE9JsWR2NykBFVwFhSjIDJNhEtmV8xZc1Pn1K8+WwgEfNYlCxU1uWPquoAYtd7S0S59a5jfO1b/iy1rUiihORZLA9IkgmcM5aogUTCiCGqkij7fow0rgEt4phIyZLlYANNQCprLiRNGOnXhT5DVdR/k0lzXO1lBqwixjGtTjC221Q4UvBAwjmHCxWVnZBomNY7HJ+OUTNm4VvmvuXK/AkOF7sYO+XE9k1suzE71ZjtZoyVCi8TblqeAGk4v3iCLuyRt5SEGF2tZDnjVGGk7PUbHKyPzDb3mZXwZkBM5g2NcWw3N3FsvMPx5jijxiEpMveemJT9dGU1Lkk7QjxgsfSMRiO8ZupOMJkLiWNSTZjYikOBi/tnmVf7sJWYGEsljoq8Xjjn6FJFU09JRGIKhBDz+qGe2o5RwnWdi88JAi1JqOoRkC9yYwvpFAEjWGczuSubmjE5ypby/E0/F5otADFG6macU6zlb6sLf0N5hpy+VM2KAD6TnXwx5UukJyKWtUoSSjpRRHB2rQbGENDUp0AsGmJRJLMFQQE3GiEKPkU0RpKuiaGR9Uamqoiz+dr0PhNPVTR6wECyiImIL2q7GrRJiCgaDEZN8UfnxVxNJskigtoKq2BSRFNR/lLvay4RsnUoIasfRVntFssSIDg0JmLoMK5ajYvbsJWsPNcCTT1eERERWaXtheLBVtDkV9YQZy1BhBQjJqUcMLs6q1iAsyNGVYOrnu3Z+emxDtygV/FU1+dRRKhVaIwrmZRMbgGMsytv/ZFFiQ0vedkU1nN2g1xv/L2H3QhAn0kNBINJCWcsY1czqhtCCBzb2cZ7z+ntBV2I7B8c0AbPYrFg0R0AiZiWIIGUFvgU8MX6ZCw0CUQiIjF7MlNC0OzjJFIZZTpyNK6hksRyahg7QwzQtYm2DbTLiATJNpXoM1HAkMTiW4iaaL3ibQ5MjHO4ylFR1Do1IA6jBiK088TCQLdoSZ3FOYNX8LHDI/hFGZIRVMbiW4dfdkTN8z0SsUXZ8imVYKco7VayAFaCeiWr34IhhIRIJIT8GlsZKgMSIwe+46BrieHGEuit8Wh9jWpYK6L9fLZF/RSLtSaro6IbcxIqV5FQUslnq1gwFhWDREULWYuacHVFlwQ3GpfMhT+atbLkjJXmgKi3kNii6GUPdPYBq7vK/tET6P69dATakNRiSpAtABZiSqgVGlfhScRmhMpxCMu8niSPayaYZgs32qapJ9h6hBVDShUpBby1hJBD2ZQirrJ0swUuxaKGBqwB78n7Q/GWhuUC7eaY6Em+Q1JEQsTo2v6VNQODM7k2RYz2qS5MysFbYD3vuiSoRoIIJkaSVlhjqK3mIE4NihBIBIWYsjUDyPPVKiYWJVwVnxRNslqjQHNgagRFURXS1SnCzyIasZgivCARaBCxRGsxGKqijnqFqAFjFSVCVYOzBGeIMRBR2tiBK1lq8URAU15/QtC1eOcsPmrJqCaiROgJNL5YQJUcibd53movevh84CJ5jRBZ2WxQg0gEY3NWCoGUUNMR1CI4PIFOAmoqjm3fxs2jW6jtmK1mwszPWLT7xIsLfJrhk1I5R0XMa06zlX3J1nCyPUSqPR6Zn2KxP8OKz9xGHCKGylQYLIjF2iK42YbKlVqmzLiIvivfK4sJYgRD5gSVm+Dqk9y2cxsnmm1u3p7gjKXtZrRuwYTncVFGzPwBMbVUAou4yzJWtIeJkR2z3UzYHp+gqiwawTBiZ3yKg9By8fAyh+EyAM9rpoiMcPWEqErQzBGrakQbDjHWQexQTSStUGra7vrO2+cEgYajKu+Rx8oCmUxapcrh6VmqzeK1/rW9h1hXKuGG72gDV6tHlLSaaLmwkq7tBVfZLfrP3twINolQD6PZu2aMoQse7HroVxaRjVRw/1jUlIvq1rmjHM8qa7uDXSLWkIzguipvVI0QWw+jEulqOqKcG7Wr8b1aTTiaqultBUePVaSodl2++De/w+brsgorK0X+6ufAeuxUE32CRUsgRcqbe0oltbR6vcGK4Sqh9obiqPK2JsWZEOeIL88PXU1g2XAEbJ6HZ5qna7Vu/aX74PDq539y8rx+r/78VFXegCoVBEMaKTYGQow0MdK4irqzuTgrVkQN+CCoJry2q6+byGnrEpGB5HkXcpiE2HVRWDMKIImdrRExKEvnqZ1hZJXoDZ1P+Kz/5IAuJTx5QU19StkUwqxlAc/cIgcwIds+FGHZBqxRxCSsy0F3SMWDqwIYNEIonsdP1pzIlHO1Pk965LmZXqzRB4z9OiQGiEobAl0XitJ343BEVNAcFGRrWrYA5TnUp60TYo7aO+xVgd+nmnNSxBChKM9FHVwFhZItQQDWHbWQmA110RhDVVXPsFZmZTqjrzuBzRMi2quA5ftbMskxOVUtkjCpBjUYW4FzKxJfjHvlenOICYizVFVF6ywmuayeI6hEJEVSAFzOqqgp6m4qokP0pNBBDIV05z2mn01iFOnFlJSL3HJ6PVumNOXrr7dm5PxeJsdOy57lcqCcSe86e5V6Al5sfSZBknRkrDbHLD9Jjt6GTD/52vJsw5IVUlTzcVMCj94SlSXibBUkBxe9R1klEYsHORHLczKSBhSwplnti2u1XddCG30WoM+Olywbeb/OVrZsi+ozqFLIc/+8fH25cpzZrooIIXlC8sSgiFgwBl9qSPKxVVSuYeTGTJsRaiKqnrGbUNmaoNATeym1G5UbISZRNSNGLJnU2xw2Uwh72TaYcrBqjcWKA3VZ1dfN4smYT7/0HGqjgJ1NXmCp6zG1dVQCtVQ4W5FMh5oOV9Z/m4SkHUkFH5SglmUSjjXKtMpiqqjBiSHZ/P62nN+UEm27oKtGVCaUTEAiaa47SzGVedHjk/3+x8dzjkBvXpZ5cZXsGetPkGXVhWIT6y4UecL3RSwhBEquYkU04lUb1zMRl1XkaQ0xeEgJu2EX2CzgWysHWaHevPA2v4+okkLIqqGWi4Z8MeZivniEoKoqVnPHDJOULoR8cfcKfGFfNkyzKhZh7gIjr4yvLLOtY2tMFzxau3zRe1+OM+WiGBHshuINxWISI0aymqkban2/eeWoTnHNaPU9ri5QwfSb5lFFuifuIrmC1xmDqSqiz5YXVzaOGPKiIcbQt1+wJqvqsXyPG+3H28xk9JadHkeCjSM4esx61fhDru5+JlJ89eszKT3iIqJXwUWemYhv+rNVcxreGIOt8nkf1RVBE+NmREoJHwOLxZykgWWXPXY+LFCNtKErAU7IG5ImYirZmRRygBPLXFVLZSZYOqQxjKoxhj1ShBgrQkj4ZSQsEssl7O6T1WkfiUlZdpEUoQ2K2qyKJjGItVhTUznIhBuSemJIoIoEwTlL2/ncOccmVBPGKpVWxNSiKRFrQ4q9wpYywTB5vRGTPXgGWQXkOai7eu0Bg5Yi0Gw1CEFg5HKBNIl26ZkdLiFd38X8WjEajVbXZVKLxpzpiTGCmEKes5JmbD6HdmVd2QjcZL22HrF59de8lFDDOsauwjqhbtzRtbEXUFZWNLfReSIdeU5Pajfn9kpJT9kPm2TtOV+H5UDMBFo0rysiUmxgilGD4LN337mc3XAOU7liRzJYldL5I9HVNaqRapnTYHVdk/pi4c6X8+tALIgjBo9fLtEuE2gNMzRmVZgyTpF83aYUSSScumwxRMr4K3lmZaU4xkSIgk+ZcOeQMWENJPFUxpBECFEJEUIAn3INQS9EECPObnSRUnpHdvFWJ0RsqV3Je86nCs6fbVhr0T5IEkGMQ4yjLgGKN0Wt1xws565Tuir4Synm9SF51gUrmfz1/vwQI6EU2kNZK1MWAYCiwGei2tsTNUW6kDAmXzeVW5PQbOmjX5Tz3CtDbqixTkAM+2EXG2pm3RJnGjR0zOMus+Ulurhg3EwYV45JVVFjmLgarcZMmi3Gox0O9i7gw5y5Bo4boW6mNG6MIdFUNaO0zbHR85i3cxapzZ26VsXCNQaLlYqUQFgXAve2TfowYOWLzgGxtZl0V65hZCyVQi0lcEuCNQ3WdFi3pK6ENilxOaMNc6JAFwJ1fRobEsfcFBllG5NqQFJANFIbky0fYQHacbE1LN2YrdSiGvFJ8Smy6Gak3psulIyYopI+mTbyR8ZzgkD3Ked8ktb+qk0C3Xt++5NnzVp9gLXS128I+SLLj6cNgtL7k3vimz+7KLEbZv8+Zb4Wftef07eNu1qp7V+7qYanGNYEsi98USWFuCbdlE16RWw2lJkY83PF0LiKLkZEKpqqJoQOVeGwUkajhsVixokmoDPhYGlQ03BicgtPPvIwO9uG0bjGxoimCLVDQyQaVoV+fdDRb4AphlVk3GNlwejJnjWr77J6Xa+6bZDJENbeIykqev9ZRoXgS5rLZIVHQyRosTqU5/fjVVUVqYvZn7VRHHkjsKmEbf5/kxD0uFqd7rHqEqMbVqSN13wyIi0iK4/aMx0XHCV3q8/g6T7VfO7y9eacwSQwoyZH+yEXgnjf5kAvKJ3Pc8W55aqrSqehZBnaEvzF4vEGJG8smjzJGNQYQgrUrkJtLrR1VmlsRWcS1oL3ig+Gzs+BhA+F3FKVldFisZCUyjigQ8SWgC4W5Ro6BO9LCtKVwDUZUgo4tKjm5JS85hTtkfNrzJEiT1Wetu5Ado32xKN/bYwRdZmcWnFoUrouEEMuurmRcM6tOvoINpPmlNll/k7ZDtb7jLOF42h9ipR1c12Evfn4uiZENWdLnFt3kDEbReGbtqN+Xejfq19XXKlludqilFIiplDOo6IbhDslXa3rKaVsCRNL3Ajmc4bTIRrAVmgyOatW6hkgH7saQRLlO2RyHYPFVo5Vxya1SIg5gEoJE4RUakwoPvMYI9F7NHhSzCn3PAUdkNDoqY0lliBurWICmsjVPDlLEIsSrMlQNEKMyTZEGzPpzgFS/ntv4fAxK5x9BwbVuLFWZCVV1RA1gWZ/tJYWjatK8BsGsyLDYvL+vVKKJVuLkNyBJJNUKRmyrDrTq5QprYLELAJYpBSvxZhtH6kUxiVVDBUx5n0qt3vLZy2JKXP66JpvbH9NUJRuXa0fanI9hxFTbB3ZHrXo9hlVY2bdAU3lEAMHyyvM2it0sWVKLgo05PoQg+CMWRWdKp5EyNk0+hqGvEbW1uGMpZKGcTWlbWuMSfSdNqwtCnSy2F55LiLA1QR6E9baPKZaVG8lF4v3mZXNvSYGIGEFEgE00QVP0mxHjcnnbxFD4XCBhM8KeMrCBxIIsWOZxtgQIZW2ganCp0iSRIobjgQ1Zc1IT2tO8MfFc4JAQyZYzjlSjCuVMyshslIiVpXcrAmZtXZlD3gmNXI1gVirxZutxnqVOcV1ocuqpd1V5ERTYiPjfiQ6O6JCy1EbBr0qq31KKdsaNsnoioBvFByqKtYbrNTsXrnEieM7sOjYOr7FYr5AJGKSZatdki7vc8pV2DDmh/7xuxi//m4uPPkk4wemnD9/jtuaMd3eHi954fMYu5q7X3onO2ODOHtk0+thjCGUSkOBVbFQ30JKjObIzlZIWHfkMNZCGb9I9kDKVUUrV49RDLkgSGPMHSYKyZNQCreK8ozJHQxEBCqLtqx6Xd8oXD0HrladP51CfsTms2E/+tRY1ZbTV0NvvmT9nrLqAHLkWOlJhQDrIjDX92+u8rmJNl9To1TR+kBKY9q2JRLxfoT3ka4bZfU5BUKKeaHTkBdTyZ0WbJ8+pWM0mhJCx7I9IIQOY2yZBwlRxSbL4rCjGwecm9F2CcTjveGyerq2YxkTjVSoCsbk9mEifjV2PiQER+cDoqaobRGILEJiPKoxRKxNGKeAzaqjF4JPBH80QyUpq4P9ddwPbz+W/edmm5Tk7gWaC4L7Yje0FOuI4jtluQi4G9yFoy/AzQSLktxXcleAsgYacvsqyYS39+sb0xsrMvp1uA+koVcus9rmTO5gka3SBmuFjV5Fq82uqnLVf58VyVaRp1vvrp7T4iMxJmKKkPrsSu63G0vxVowxt+kUU7IMG/Y7I9kvPZpiUsiBXiE+SbOFSKwtpD8r5OIsxllslRXobtlCUmKWkAmdzz5OMSg5g6GaC0zjcknqcsDXE2cRBxoJPtGlgAjUxUpji+fbikElElPu2RwVgkLA4ouxOZEw0dD39oBsVwpR6KISS4cE1Ugoa1ZtWbVMzdZFShHdujsSanOWieudCL82aJIcPwio2Oy7tw5vcpDbF8F6W+wtxebhU8gFosWS0JMyEaWqN2t3IqpHRRBjDCEuM3EuymxKEZU8Rn32OJEfr6qKVYerQt6NULS6rF6LGKwTFItKRIPHd+fZTQsktVxpdwgpcungLMt4wPbkFk7FE1jNtSBBE0k0d3RRj5gAumR/eZlZXDILLZ0ucMEiMUAh22MD46pmX2rQ9b0VUoKqypkyIXOwTsLKxiGsxch8IvL+k1KuB1EVuhAJLhGSz/UFaYlqQPE504dHY5fV/VgsF+qBfA0Zk9idX0SqimUcEfWQ1rfMujmzsADpENPRtYd0Vy6ysBOqahtjK7abMxgjxBgIIeCDJyWKfz3gbcCZP4FFhH0kttmJYzPVv6nIqmpRmOQIKetJw6r/aHlcrFmRriPWig2ik1Is0c5R0tyrKD1MsQ88jZDounNG/7oVoY8pq6QxoSm/tmpqNEGMKQcIxuSKaQGMKd4sRWJiPu9QNyFNT3LucA5dgAr2ZgvUCPf+wb18/z/7JZqqRmLi9pfcxUOPXORNZ27nlS9+Gff94Yc5s3OSr/jqv0LbtpwYV7zvvffw0FO7fN5dNx8hcJvffW25YN1e6ioVM5+fowRxU4W2kpWMzX7ER4IF7cclFxlVVb1WrGICa3BafPFmrUzlqt9AVVVUN7iNXW8ZgKvG52kbfiZqV+Nqgr0m35+ZOtmn1FWyIpEkb4SbkfbVY666EbhtHkPpAkDxvTo9mmVRzSRRpcIbS3RKW+WiqhBCUWdymi0HibkXrjW9dtHSdktSlc9djIG6rnPvdQmYlPvAN7bDhw6vSuU7Wu/xPhAxLFqHLBJOcseZpnGMG1tarRm8z6pR23al02L2xgXNNzBqfYcVh5hEo9BpBEmICVhjiTH3Ul97FUGJxXt6NNtAUlQ2LEtHUKwEJWBXjZTMMiFElt7TuOucT7xGbPZqJqUSbPVq89GiwVXAJevOI1cH3KZU4a/W8HLdutJ1B7MWQ/JYHlWyjYGqsoTQe+WL/1jXdRJXr8+bXY7Wa1aCjfRz0rVwojGWdnO5VeLmHpL3GkimEFryLDDluxjpbXdm9T36wEFVsx86BAy54LR44DDOIs7hUsLb7M0OUfFdDhQ05K4XfS/tJEoIqXx6wlhImJWPX0vLuZAoN0dRYtlPVBSSw6J0QemdGYoQNBEVoubeziEpKWaHYyCLEX3gVMT8ldAc+4K6z1AYeLaRrpoPuWOE5ixK+b+U4soeeT5EVE32wpNIKZS5o0QiYhy2thCVWDIwOQim2GhsPge9Iio5YEoqG8Hh+sYpq32yqOOrY+lVaWOQ7BPLx5RaFosO71su7meVet7ugg2Mm+O0YU4IHZUZ4yWRNOF9i/dtFjK0Y9kmDpcLDusFy3aeawpioIsh76sSSxGjA03FIrXu7GXUlUNd1yGU6tvieMnXQJJcuN2PbQgRbzu6bknrFrSmYukXjKoGMYkQl5ncxg7fzTGqGLMWe4zmz+9ix+Fyj84vSBLwYck8tHSx9PVOAXRBCksCEbFNzrqQiLHvE18spWQFWsQQUiJc58Lt5wSBVvLi1HtvE3nRW3mWfZbzjTjEGUxUglgk+XwHPJN9Zv2mLYDafPc7NsitKxMkieQqcVu6U+i6fyOquam5CH0rslCitKvTlFAuVCipw6cXARLXpQOKwVV1XppNTgPlNldCsoJag8HijEEWyu7eIe/4xXczPf08qltO8fzn3cYHP/h7mPQIf/CRP+DJi4lLF8/xwjtfjGrk9W94Hb/yS++krkZMd0bc9/DjPPL4U/zA938vN588xmy24F9/5D6eOux490c/wste/tWM4t4q4IjFV5blKMWRNz01srrpQRLKnQjzgpuKF7lfHDZ7XmvwOdGoCdes/ZYRMH3mQD0qSm2bMl6xUMJE0Lb4W/vWeTF3RkmKFYsaSy3XN6K8ZqjP0yZJSa8eDSzWWYjiZX8GYr2eL8Uix7qxPfQEuPhrNwK1vuuMMXY1/4yCotjeb6e9janf9DKRX1md8gcAuePEka9WGF9vdVLNd9/s+1CrKlWsVgHT0wPUoizaAJKf03X5TnGdn5BSII6283ex2e+vqsxHh/hOsXbKvJ3TVJdICfYOPfP5nFmXyYe1lroRamup6wTe4NuiNvp8R7GoSiidXSRErDHMdIGxiVBbKhNRfOnmEolBCJ7cK1sV1IBJJFK2i6zOm5BpZR+MRFTzuGJzd5tolGXbUhkhpoZlF/BtZJkSXYQQl9dvHv4RYCQTLFWw2hD+f+7ePNq27Crv+8211t7n3OZ11b3qq1QlVakpdURIqCEIRCMjHFmAEcaOB2Ab4zjgJhCPYZKMkYw42GBixyFxLCVgHDcxHjQ2QvQYIWGhHiSoKlWVSlUqlarq9e++e+85Z++11swfc6299znvCSEoeBqsMW7dV+eee+5u1l5rzm9+8/tkSZaM9w2qaUR+VYemIpU08DhVTIdVnBD8fAgmTdJBcTOBLITQTNZNC0pWqxVN25Bzom0acDU5FtrW44qus5TEEBgofPV1SwTBeYfmUpHwKxRzfAUsMEkRzdFUT7IBJQlrkk1J6RWcWILDwLk2pDGXong7VJkqRcdUMqKIrVEi5iRX5n4s1bndrWPI3Jp0NSq4OT2BLjsWXcRlx1Yzt/MJLUmE1MOKFTkLnSouKa2zQHruCgJNIKsvzoHGb16pqVT5PKpvSBb7t7OErsvmZLrIzoL8mPDJET0En02Ws1BrouSiogKVoKTR9rKq4nF1hiMRyShbYg6pSSOteESsQbCvfRkDXUgLClrk6TSScoZckiYEQkMbZljmrfTY70Sx/VDEqDYpZ6DDuh2Md+6ceSjgxQJTKs1j7DGq62xV6HISAIe4ntjZX/PR1vdVt6RovOC9lQQW3UXONy3X9SfsM9wOi4mfyjEAACAASURBVOVFDlbnuJgusr/ax8mKlDPnD8+z2xzh3P4Rou/BCb1mur4DXVnMkrUkBKk06mYyycAGEZwPiHqaxtHSQOyBtjRAQ+/zkGjlPuJwrJbn2M89e22L0IJE5mkOumSxOM/5fsW5g7P08ZJxmpMld0kTKS7R0FhCsDokegt2l/0+e8vzLLoFXY6kXBJI7chRSWlG8JlDuYCII+XGUPFcJHElQJ7Ri7P9+lkcXxABNLCGIExNVaZornO1Sa9K3LlaYFpDMtYcCze+e++HiWwIhzViaGk02KQzXClonv68jhqabOJQFnQaj9JvlOg3kcFc3PyaPvDU+QW/9fBTPLlQTqpDz53n9Jlz3Pv8F/HFr34Nt7/vvfzYj/0CX/qS5/GB93+U++57Pg889CB/+3v+Jj/7jl/ktttuZdVnPn7/B7nllpt45IH7ue3221Hf8OmnztDuXsuH73+cV911BDezJGAoqFZUql5PxjLWZQnCxrlOkYnpv6e8cFUd1E3wzkpSk8bOuhhJ0YQ11Muk71CGbvo8mStXc1Skfvr/lyPIk+v5OdCb9epInd9/sOMaKi+s39cpOjf8v4w/2zzW9UpFbciBgrFgj4+9Z1MRx7kAkouTjicXiaScI6kE5t4rrpRBNQttYyXkpmkgG4Ks2tE0HnfQs/I9zjlCk2kaT+OtDL/sTFVA1dwzzR2yUqeKPq8aSh2jzUNFSdnUE5xemQp2pWurjKjS9NqCrS2ZYluflKTK/rKj72NJtjzxWV7M/yBjWH+qGo49XJOfVY7sla5JXc+m7myuqBWsJ5DT+VBf36Qv1Z/XvpSB0sRkHc95Yy7W9br8bSyIgtFueECfcwkIEZJSqoCRXJIkKVXNad1xWqUZ53e87PzAmiQFR8IR2pmtcY1HvCP4mVF4mgZcIDtf+MuCFSIF7yyRwHuSBFLurDdAbM/z6vANFtircW4T9t343ZCwZNllxzKmYu6k5dx0kLDr6/u1NNqNVxRf1wHqOXsqebFq9F/N+DlTJW1L8FZ43HUkjZOkvh6p8cZzGu23N/eq6mppOtOl+V11eCSsqreOfMvk3+UHazFE/Zz63vF3zTJKNaE5jki5DB9TnITHnblLBxz0Wxz0C4LzqCaW/R776SLLdECXFpgTrKOPSxbdAYvVPluzFrQt1AYDMHJcYnUN1pSgyIXuJsYZdh4CnlYNXskKjQ9ktcTS9pB6He16r/KCRTwkkHBdR5f2SWmffnWJw6j08QAlEjWU9dOeuKSJVe7woSVqR5OFqB19XpA00ZMRt0vTelN/6i+YSZFEBJPhFGcSxLEkKeP1LEwGHefJszG+YALoKcViaBiUdWm0+rOI8Wp9E4olNeasl3PJOMT4UfbBI4+tLJDOGTptvOuxObGOKZI2pY5Mj2E61rrwN2glWo6tNuZksSaPEdkxPrdLVh789JNP8Y5ffS83v/6rOHP8GG/9i9/MLTffyE+94xc5ffoSP/IjP8kzpz7Ni152H+eefox/8Sv/mmtueQHPWdzKRz/2EX7wh/4HfuAH/wl/4VvfwsmTJ3n1K17CRz/6URoSDz/0IK9+9Wv5ujd/E69/w9fy8z/6b3nPv/qfyA7UCU688bpStnLN5N5Mz7UikrVcVRs6Nje22qwJo0JFU/iCSDnv4JE4Bl71uxm8hCExcc6Z8UrX231OkF3Dka3ZH3jOPVtDy9yalgvHOZHXguvpuFISsvn6SGkaufHT5M679UbF8XhYy+jEogBbjnMyZRvW53W+woFOn8vh/3NpyBOZOE3m8Tiq8YWbqhzY77ahI+dMjFv2PS1KMNrTlvObtcfoY2TWHqHvVxzdPUqMPZd2D1h0K85cuMhyaeitNJgjVV6Rs9LFhDjHQYikw2QqHaWhRL0ZA0QiokJOkKOVpbXLiM/MB1czLWXX9etQK0b24vr1G76rmVxkMn2fSI1y6TDyTL8g58xyldEYSPJZJsZVGFrE2DWbbr2IFlRKS0VkeONYjvaNoWwlaK5frjRO2DrnCD4Mz0MsdtJN0xD7zkwiCt+5mqE4KbSPek2HP23HE2M/rC/1Pd41JREr5jDalWNNRjsqQYr1sVj9PHbG1c8JsneYa6EzxTaxbb3SPnw2jn41w6ilf5gESqHBNS2C0O448I52axfXznB+hkuJZnkU315AVj09wWgYSWialrbdsopP78iuJ4oQs2GcAYfPZkPfBOt7SJqo4X6fIxGhy0JOApIJyeagc9B4AEevStRMHyFm0ytHhLbwpQNCq0bfSa6uM6YOYg28Vkm9mgH0it547iLkFKxSnLNpPosju0hKEdOIHqX/XJGNq42zsE4Bma5TqFrDm6QqwX0ZuCYF2BE3Vl9xrlRmZKDXebFmvGrKJmpVWZGqq5/HBLbQakSE0UHTFtRVt0+fE59ixhEf2J0fYbG8wGHcY295lqwrEnYt+rTH3mqbM4tZMaOaE3XJqjvkoL/IKh7iy7GhTeFzW88DWuVhM43zBIUmW4U0KxZPuQJq5VzO36HagyT6tMfZg8Bqts3BsrMaTr9nikTZEHeckBAkCxRe/0E8YJUiHZlt6WnEs0yHrFIk5i125sc4unULwpKDw6c43e2xXO3Z/aYnxSX4GcHtQDBKU9KxkdF5R/csK4d+QQTQmwFa13VDsABjg0pM2cop3jqQawuPUuTVYjT3odK5NKCazuFDMTURQzSDq01xphhgD48MgcAa0joJkCtSkiZBi5S/lSdaywN6LmkICCvC3RekrX6WV29Zbh/5lHhOvOYVvO6Vr4Dlig/c/2Feft89vOqLn8/Xv+Ub+Rt/7Xt49Su/nL3lIXnW8ryXvYEbbjrCM2ef5nn3vIxfe8/7WHWOm07ezNlTF3ntn34d//4//CRnPv1Jrr/uOm69+Q4+8ZlP8//+b/8LZ+//EOdPfZrrbr/eeILRgrTUd6Ya55vhvOu1qEGzlgSkKqXU96WULkOFh6ainCdqHBnpx/emlEpXeyyGCYYoDouVc9bVW6S2sjP5oiM7W3/o+feHGWvBq4xJX852nnUOT22br4ygraPOV0K4NoO1qm6wOeq8r06OtSoz/ZtVxUYHlPvy+sk0oUlpRLPDgD4zQXjykEjV463JUtvWJikB5uUZa0lJifkIVZjLFWQvJaPqbM2sKSt2J0gpctAtiTFy/bUHHC4ukHNmpQknmdQviDHSzg/YP1jYmtEKyy6x2D+wrvDWnvmc7Pj6BH1aQuV6Z8E7Q66n16Ai85+rDDBIwqVEVilOY5nDgwX7yyWn9i8hLnDgIqgfP/cqDXvOKvWmGkOUxLlSWCSb1vYw8hA4ZEy1wIkv/E/7eW0v9KVBeUiaoegXl/P2I+XBiyuKAjWIZmJaNaLjuTQIAeTcFEk5AId3Dd5bx77DGgolg+aIQ+lij+REnzJZIfZWxeqj8Z6TONqmsVDSYRKizvaKvu/J4gqFLJJyNc+YoOsitLMZoWlQsXVyvnsE9WYDnlKiWUXcfBcfIzTbqBOiNIh4cmM0tp5IkoaeyGFfEs9slKgAtCnTOuPsKgEtqGOKEBMclDXSO3PbC16YFWSu10zM0CWrGsXsWWF86OgzjQrqC+rqx3sVdcydVA25vloj+4xkT9PMmM92yKKoi/Qx4nymw9DVuqaJBLxvy1yr1Lj1YLiKB4DRlMx/wfjBwyd505yn3G8p8z/nNATg1nhtH18dZYOMuXgFnpba0ceFBeg4cplLZHM7VjWAEA1IngHWkJ27Q073j/B0SoR2jrJgli3mmUtDH6DLidjvc44zbAVBVoc0IbBiyWK14ny6xLLvLGHF6IU5m6OibxyDHT0ZSUoWYSVK0h7zWPNIcExN/SwmUqDDJ2XRnafrzuHFqBSSQdKcWbMATWTXgKxwwYyXECHGFeJXtKnnwsF5omSWSWnCLnfecB/Hd45zFCXlQ/bn16Bdz97BE1y6dFDkjXtScqjvcSHQhC1yPBziOYDknt3U7wsigLZyipVYTc/YJrpipTmCBQpZVwRMs1MdOBx9VLJTgjjEByPuq+CyGG8PQOWyQCPmTBucIRN1ExEsOI8mHQc26d0kyFOMA1WDZguSjR9mRIg03KxpIN5ny+aAQefYY9loLBqbfV7xqWcu0c0cv/reX4c+8fqv/Gruev59/M9/7+/T7Xe85rVfzO13nOTi4T4vf/EL+eVf+QB/6dvfxNt+5N+yM3+a59761+jjIXfceS8hPMqFS/u8/svfwI//2Nu5cP4STTvntjtv5eknn2Lrphs5siNoOgRLBNHisOhcY2xZ54YGIyi1rI2ATEsw5guhpsp9JQXnGjJxWLjqV7KsB1RIksnOI6HBq1k9p1IdQBmCdFUrk5o7YUS1J87mz/p8/LyGK0GkZFy2spuVfe3eqliJLFKbc9ZRTZun2Ao72bBqAF6vly9yTNNkU7BnZ00GcihdmuQbBbVbV4iZFmzziDBm08oUdajkIvdl8mAiuZQn7fcGaTDG5s5NabyxQSdO7n3hyWISd67YBlt1ZuS6iyniWtNXjuAd286aeBWh9RaQdLkskO2cZd8Re2FndhRdnaHbjrQh41Nk1S0I3pwIF711pOekaGqsHJ6EIEqvpaJVqlh2ms4C3smzXUdVgZkuL5LNolYEUhSWLpE6R+yhnWVIBgCQr24TYcqlGlGeVclqTmQk613INq+ngb5HUS0uqySyBkS1OD8WNKrQKQYes58AEIz/9k1Dv1pZoufD2vpQKRmqxcbaOVIXbZ8o80mzkNRoE9bBUfnZoUh4pVItyYMkXCyWy8bnzuTaLJYhO0evDUmVmRRN8NLwFxpMdm5ACoUUC1o4mE4EC5Y9UPTJJfiBC6sA3lztfJiTfamqoYS2QdThnYfQEPGF42yBc4exO8QZ+xbvTWlD7BnWOme9ELuyL2XFJU9SU1tCHDEnQ7VF6AV6NWS9R0tjmaMTh69rfQGVjKeqljQBV1WHQwJtu8VWmNOEUKhSyjJ3xr8vaieCcerNlKTMLzwiRWIQkAEkEmKu8GSVbXMk9ah0qNgzKzLKzzpndBaVXBRm1oNzc0mONGKBqhNoSmNsjqURX4VEIuXOFFZKU6iIB7UAOud6LlgDdOoQIt3ikNA4sm9pfAu+hR4Ex0ITOR5yfrmHc0qTHVF64xr3kaYq7WCVx1ohzhma0Ja/7ww5F0oDoZka1Uq7qtlkG3BovQU5W1+ZDwkvRdRTaxzVoQnUmZyg0ZNaCp5hdvPxgOQzQYUuZrLsMmuPcNTPORIadpwzScZ+zpGwTe+PsU9X0G2LxXPucdk4/U02yk/tqpc/iQj0lBKRUnEHyqag4b0nYtSHYfPKtpnXLE382BQ1Revq546IXLrsb1U6wvT3JHiDpybjMiRQJ/xbsQYS15kS5zRw1vI+KwuNJXnvPX1vPE4XCoKwcvzGRx6mnW9z7c61HNnd5tab7+b/fvuP8k3f+FbOnD7Nc5/3HF7yqi/i/o98hDvvvBHlkJtvvIFv/qY38Z9+4zf5qZ/6N7z3fb/I+z/8bu65624+/dTT3HXH7bz+K7+Ga665hsc/+QRPPfk0L3jFl3D06HHO3/8fSRcuoQLemT23994km2opm/WOfWuUqvzWEpjlUcatXm9fuvL72OMm169ukKIm9eW9t+a0Ae3IQxDO5HqKyOA+ZyiI4uZXN4AWnUjpVYoFUC2uBAyNUEoFYoI6b3zW+vnq2uu1hDj92vy9KwXQ059VpKw2920OezRcKeYKhiZaOVjdFICdNDIyVhc2j2d6TOMx2OtTLV+oFYj5cPwplebUpqFpPaPSR8K3M7quK+87QtZI1x1yRB0z2WG5XJKPRxye5aKnCY6ua1n2Hc4JjRh9Q12VMgNVR9O25pC1yV9Xd/nN+lyjEAsrer/qiqVsEeUZQP+rOLp+WRqcCp2HZDxCtUZup0V+bzpXNulrNVmuBiUOfHBDpcp7b66D9XmeKF8YHSOuff60MnelkjmUeZQNEZM+lEdtQzFGMKfHlMjJXB9zNM5pLFKcMZWvXGgq3lG1c6WoEkiKBJfo+76YSo2Vpc3KnIgMDeh4o6bM53PEhVKtsz0tNDN809FsbVvg4r1J5tW5X0yqVoPknpJSxGFlb5ci2TU0xaHG6CbWz+PLM59KAKx9wnu7IKbUKmakorloQ1sdN2Byj5DNrEVkUM9BpSQeUC28VT/fB+LZG/N5yzzMmPs5jWssABUhyIqkCYhUhEe1ON+5ZqAUOm/VkRzTGsVw7Dep99VjLHOjV3rfmIW4yNr5T5XD7PdrUp0KeFc51bamglGUYkzEFFEyOSZSWpZAzxF8g7qmVIYEJKFqgJO9A3wIBD+6ZapC286L10PPKkb2Ds4QV3s0vsE39pvD86Q6LOqVEhVj4ROrVQ1dkcX3WgxjVIeK3QAIMfYFDGt8cRZNZaHzYr1gLmeSEQTIKnSpIyZBJxXaRVyyhVmnz3ZOsDPfZbvZYeYDO/OdcvxLdmcnWK0WPNWfsSbJlHHZpCPJjtC64kibQSMizdQA+lkZVxcCKWNzM98sZ28GDrYQl4DZuzXN0OlYDyYuDxpUTVVgbYGuk1/Wv3AyfK8b7DSQqWXyQUTdueFruthW1Hp6vLmgI6tVzxOnlzz6qTP8/C/+Mt//D/8h//FXf5VveMvX8+P/7v/j5S9/KVkjv/az72T/0iVe8UUvxZH5xm/8erx33HXXXXzt1/4pPvaxj3H06HEaH1jsH/Dggw/SK2wdOcq9997LiRMnOH/+LNvXXsfh/oUR5fRmTTulr2xSCTaDN8C0VZNltpvc9WlQWHW8B2qMjJSZ6XurC9nmBqVSSmDBZLFUHK65+jngtIy7eZ2G6yW5IGT5s3/VEvpGaX86f6bXafPnn+29m8/B5zqP3+t5tC8dSvZ+cELUy87/Sse/edzTf09/16xlG4Jvy+bX4N2MppnRNnOasMWs3WI2mzOf7eD9jLadM2vmiHrm8222Z3Nm84YQHG3bDg53TdMwmzc0jbdgzwvO5bUk4Nkam9rzNbGxfeXqLr9antvB2TUXjzvN5bVJg+kV7l+Nr+QK75k+D9O1cDpHcs4sl8vLnGHr7/9er6mqKTBlk+Za4+DbyaBaZBlzhByLWUYetLlT6snJfpZKgF0DqZR0qIxO72H9/c25sjZvyzyb8rvXno2qHx1anG8IzQznG6P9WPsJsSRZxqVX0vAzJWYhZVfb0C7b2yx+KRSNpPQxEwt1JWrhsQ5UmqKJrVpk7vJaRXhovBVXalU6fF2tsTmfhi8vxncf6EgjZaI+99N70jTN2v3anONVxcOCzqoK46lNs3VM9zrRInc3gE+XB9b1HIAhKJ3Or+neO/2MKz1f3puZlKgrCLG3LzH9dK+RlFek3Jm8KD3iUqmQ1UDaESSYE6cUE50S9+SSjFUta5uLNk+mQwvXWLMMzqNVvUsZAGArvklp9mvsvmTWe81E1Hpj6AnO25eU8ytfM7+NdzOCm+Gkpe908KgwL4JucJL0Ioj2BT3/E0jhgIkNtBjXqBoXGG1inFCb/NCKiFQOU32YckGpr5Qdeu+LZa9d0IqaiggEb+5PjdgCLRhPVBhMR0QYXMRyLREGKxfVsVnWds4ceqYL/dBolntSUh77xGM88DsPsT3LPPTQuzhz4eO8+U1v4od+6B/wLd/8Vm647hoOD/d54IEHmG9t8f73fQzvYLmMfP/3fz//+z95G7/9kY/zqc+c5ty58/x33/udnLz1ds5fvMTukTmPfOIxbr3hJLOdGR953y/x6SM3w5k9brp2h9A29nAUG996DpvXu56XulEhIicrleZC9Ziii8OCQF3YTGfXF9m6unUOWXux/2bClayLXJcT3jvECaoNTduS+qsrBVaVVWC85zav7LV6Xq5QX5iiycDIDWZMZ0uW/7kC3s2xmYzkPP7+VOVGdQPVv8LfmL4+TQRhikTboooWMacB9dG1z5kmmZtIdX3v1Abd3u9LYF7pQQ3mLpiZtS3oitlsxqqzxrxuZQHqbCtwzO/AxXMcdECYc9jDwcEBR4/v0vcdjRTt7lVHTkL2ma6Ltl6I0VeuNNYrKIbZTgNjdDwncWLl3cn1xkupNEEhQ/y+7+0fxYjdiuCKlCfFkIHacFf/n6GJaVqiFinoZyzr5hWCirHJeFTYmCLQImYnXisL6zQjXZsP0wQLynXOEY0Fj3PN5ai1ZGI6JPe9PXepI2clxc4Q4ZTIKRGzmKSpOjR5chZS2DJkNgMp0XUdRv0Y+zbyFSo8Q3N1SdiqI27fJ0RKOds71Duado4PuQR/vqDGZkfcpUiXExlv9BoEJ5k+lXUjZtQXwMF7MyFyzggWZe1IYqocosZsaAtNJ4sjIsScB9vuqCZbGjMkwdaOog6iGB1EdeQ+56vooll6PW3rlx7vLRkkrhDpETpMCnyHnDPzdnsAZex+9Hjxa86/wJAU9MmqDClbRdn5FtSa7L03G/eaCIvzJM24sh86yWXdmiiIhfIsuIpGF6nYEmCGrGhJZC3Ys0QgazS0Vz1SwDmbB1Yh9C4QfDMEztVJ1FMpI0ahaLzDe6UpYFNKZmAleXyugpQmXIEupWFeJhmf115r7FKOX8Z9zALokQrTemcykWIKRGFwMM2m8lLt1hHraxKroEh5nDV2qDaQe1onoIlQKiWoYx622fZzLrkt0Ia+X9J3Cc3WmIx2JASKOZDzEU2RqH8CdaCBtQ1a3YjoXSmAU1WTcRFjvlWr7yFwpi6wY3DiCpd3RLVdKamsL8oC4B0uq5XkK/1jslBaA8FUpWM006hWtTA2FQ2LOuPmOz2vWh4+snuUV90E3/Itf573/cIv8RVf81U8/NDvcN+LXsCFM2d57NFP8onHH+OFL3w+q77jgz/8L3Ay5+GHHuXoNdfw7l//TZ587EGkabn++hv51OOPc92NtwEQu8StN9/G9Tdcw7vf/S5OXzzgh/7JD/AVL3wu3/amlxu3tCQtzhvaMN3fNxHOukAMG4c4nBjVpjpD1mHvM76UJUmlUZOCEKg5HIoYRSPXxGYyP7qus0bQEqj4piE4N1irXq3hJ0eZZD14hDHo8uIue71uTkPgsYa6XR6M1vF7IbmfbYxBy+hOuIkUrwUfG5+9GRSvHyVX/JypOk09hs1j3VRpufJ5DZlFeY9je7sxFRcxrdGmmRNR1Gdc68hhmzBf0qtw4vgNOL9HFyPiWrJ2RcIrFAqHaRkkzTh1f2TA8PR6W3PiH83f+f2OGCMSLIASzUhOCIbqilY+vG2KNWFYC6ARK4M7QV0aAu3PWoXBlDkq2icCOzs7nD97jq2t9WbgSq2rn7c5huR+1dl6HS5P2gFS35seeKFyaM6IJkOd+64g0YIGK9F7b/0aLpjEY9SMRi3BUA8aSakklKz3HtT5WxHPGtBf9rw6o/z5tsGpjk67qRx76d90IRhNLRWKSk502fSqO5eLy6ezn5vQkwVQ3ht9hWLZ7XIxvEhFU98swOv8U1XLDZytDdkXPfkhwJxWGCpl6w866/7ww659MsUXUVQU55PB9sRi9lTpEuuIta25ZiVNuVZDIl8C5lQR0ZxLI/sUfR7nv7nzucooLcv3tGI+6vdb4FwD2ISrIJUwgHfDLJFq+tOjGnBiTfVCU6y/i6RvTdhycQoUV/bsNJ63+jKvPSPtxNbQ4bzLHDTQcVzTVZVYrLdjTEbtyqVfRmWgcaZkXGrb8yegZc5Dcg6FalQQda8F1ZbRY2DaG1SPEe3JqUNzb8mEG4+38Y7GeXwwHnltLo5pSfBK7NyQSKv2ZPwwJ56t8QURQOcp502tESXlbIYiIqauISbsDRhrq2Q24qRM0sQgVaOW6bgJKmQPnd3cWNx3Us6WiU05ock+n+HBGjUlm8ofckJyhYukxVTE+lKIDtOnjpNSTLbWiyTGr7YFVYYAP/oGvMlj/Zdf81I+8+iH+Oq3vIkPffCjPP/221nubvHJC6d54KMf5vqbb+PWO+7lI7/1Xr7lG97M06f3+Mvf8bf52Z/+CT78ofdz843XcXT3Wt7+9h/g7//9f8Dr3/iVHDt+grlPzGZbPPbI42hU7njOXWTX8BPv+13+zGtfxo1HHQsUF2bWOGBqmLjgi6pALA+vuR/5rLisaMr0hePlZg6jUZamn9xbU1ECk8ZxJt+DNQJVHecuJrTrCfMZjkDMSySNdJABCaWUhgSCD8bXvMpTOE7k5TRDrhBNnVPVTET8MI/MENkQSpksWE5HXlmWqtFcePTqDC1ySvK2efssOLc0nqSAT0XtIMdJo09ZvHR9I99EU6cBksiYgEJ9fiY8uTxJACYIctWvmyakUHmT62X2ESUfo9VLhwcDhWiKjgzlwY1A/OzZsxw9epw+eXC75H7B+YsX2NraInmPhLk1rPjIxf0lR48eRWKkzxZ0B13iafANZLfCxx3InsThaLA5qSrVMRzH5N4DBbm2DYJsTVnGJrYKlnfBmvOSwzEj52cXDfl8R0orGu8NZavOd5pwtYkqG0LkckSKFJ13jqwelVCqcFVftS9mPcHMQMoXInicfVblCfvKIXXkRulyRpwf0FBF6GNPU+l1OSPODZq8TrFmvtSRvSKpgWAB+Di/BMFswVO3IseEyxmXPVHmSPCkgwMLGPtksoY5Ib5BfEmqXKDPRmHoc0ful/hyz723Zr/pM1CfibVgTU3f3OWE10zWJYFE8sLOLBhQ4SyR01JhMem5onaUoOqJZ+fJemjXIXpaZ2hllETOYgZhLtE4Q2Rj+duitvcgDuqzq0UAT9TWdIsLDYHMdg4zxZD7Wj1jfG7T5Y/FH9tw6hDn6CXhZk2Ze30x+hByX+gbJv1A1hWIWJKBudeaI58rRkJWcV7FfcsWsrlJamt6xzi1xlCNuNTiXFMoCYWKle15d4CTUMASQcr6FXUFqjTFEc85R49DUoDU2DXOlo65ErTnHA25DWMVO9DjJFkjoQoOj5cW8c2wtooa/SiINfFGHy9WGAAAIABJREFUp0VG1xftaIVSuUhRLaDVoocv1lekzhsTvtAh7PlekbUE7tkUsUIThuc4Eoc4wKgfRvgIUmOurqDnEVAiZrmOCkFk6D3IOdOoIzVbSIY+diziIau4ok9CzBEnM7q4IKYF4rI5eIZQrnOii0JOmUaEpvEopsDSyfIy6skfdnxBBNAVOXau6GPp5UgCjGWyOkIIxLyOXF0x459svpslt83XasBRF8OoEw5uCY4sexztqgW54kK6dg7l59Vtsb5veD+QsmPn2HGec/QE589e4IlPP43vOpwoFy5cIKty8623MAsNX/LKV3Ld0Zt524/+S5rgeOSRR2jbhtOnz3Dm9Dl+870f4ODQSo9Hd49z9tRjzEop6/rrr+Xi4T4vuPdubrjpZt79sYf4mle8ALfloQRtm6V37/xl11HqtS2W5LaZjtd27X4VaoarD/Hkc7z3Zoc6qSRMF+zpsUxLvVnzoN15Ncfvl2YxBJ0b5c8pclXnDBvXMJYSmEOZJVDXmcxX3C3oUqZ3CRVHdKFUyCypLPvgUHYdXDeh+Db4gqAITH6W0tgwNRxjWi+tj9cAKr9sEznOeawSVM7mQCfJ433uUxyky2RCYalVi+nci9GUOboYTQ5PMweLjr1LhzTtFpodQkvbgLjIDTecZLlc4n0gqfFH22ab1EDUhHfgQ0PfVzWdK9/nKyHtn2sMCaCXgeZlYMHv69f/6EaxNbaSNEPgXJM2ly1ZZQNFlgq3lXOo83RKH9r8GtbHyTWrSO3u7u7w8+kaeuUxzpecDcGSgi3V1ze/cjb5TE3FazNUHqsjFzk6502X16qZY6ldU0QlkFKk6zsTjfMejxZr5/UK5pWqKFNEr57bQG8Rh4rHOTWlkEkQHkJA0+XXd1h3syO5XICFkRA0HNPkeRm+psd2hUu8XmmsrDNDB+tr9jlXd/IOVDBRqM1tpZdkXJ/8MHfrnJYqY+bEkP4yv5lco/r7WTJ+g1ZkvSo1OSr3HEPunTc9mIJR23+d0vWJ6mrMhPIGVsFUCqqeEppNiUz95bGJXXNX/r6hznbMeUCQU1Utou7bBX2fONsOhm4eKAlbqs/K5L7aZ4/Xrr5mAPRI46r3Y/M9UyR+oBM6tf2qKqXU67ux5o57/JKuX9DripQaUt+RJdP3B6Syr6gIofGkrhufFc2oM9lJmcz93+9e/fsdVz/6ANBcOqVLQNUE44QNDoTrdAEoG27X0czMyrOKozs/cqEHKkUJCkSNr2so8IQDOuEzh4lm6VTT2BashPOGYFMWOZNoGZsddbKhDEF4SpYJZSO6hxDW3+M8opknzx3wnx45Q+gP+Tv/7Du5cNjxF/70l/DVX/UV7C86XvyyF/Ocu+/hve/9CMePb/N//NO3c889z+XNX/dV/Fff9V/ztV/3p3jnO34OyLzg3vv4ge//vzhz6jSxy/zsO3+K17329dxyyx3ccPJuzl64yHf9je/g1KlT/Oo738kHPvpxXvVFd6JtRfDXmzhrcDQN8jSZpIDPAIqmiG/bAZWbJgtJMGfBurBPGg5xQjOfsYw90pcmQyfWWJMz6sdNyReEMuYS6Pv1DeuPe0wfyM/FCxyaj8rONZ1b0+82d8d/24JkaIq5gnmitiTnydoRcmfBTzIZpJhNyYY8co67Pq39nSmlA/ph054mfTHmgeseBPCOUOSc6hwemmEmcnSb57N5rVJKw/Ma+/G1Pid2066d97RypIaSjdfZ0JbZfJe9g0Nyhj5mTl84JIVtzh30LBZC1zlWK+GTjz3OTTedxAWj/ATvEVou7e+xs33CPtRnGglc3Nvn/N7is95rO4fPTnXZHPXZcao0TvB+5Ehf7ZFSokKJShy0b6FU3dSqIupm42aIybKpBAteSyDtnLdydlpviBIR8iSo0cs26LFnYq2cvjGGtboYMGQVUswFFVv/zEHfuhxD3/f0XUfslrh2C4KtUX62Ta+HaLcixQ6niku9BQcFVYwaUZfpuiWLxSEBHZrPQqPDcdvx+eE467Dnfb2Btz437SyAeKv3lTkMDA1vgEn1pUQsEqoZixm7lGiCwycZqula9BnGZJj146CswVyezGzeE/t3fbEmyF9YAXRMK3yMZFZY49gKkVLmB0QMYReXwK0M93QtfezM9VFcbfcx1a8icF+viuCh9mNhc9yC9IinNaS4j4NamFUbrdoirpqRQBNmqCarVjIGpJWzrniTuG2dqX95kxsc5OQqyIA1zzezGc4FnAHBVLdNVSVLJBdjFhFH25rGuGm1e2sKLOW17KxnqU+xVIW01MukqM442lL1jySW/RKPgQB+UPNIIBHnC61ZMLqHtzpr5YMjVZ0rQ6l6qZqykg8zPEKM0wQyIOJYLpZcOvgMF7dvIEhHWzjMi+40vUR61+Ma2NrdIi7tee9Sx8wbSCI5k6V+ybM+b78gAui0Wg6i47kQ/RGxJrGUxkCrDMtMxs21ysHVgHtYBMrEzj3lzpaSa/mcGki4suDUoKD+bPodwDVhQAkUe4hTTLjQjjd+YntbF60rWZNPz8dhyN7b/83P8Lv7Jst29613cqdXvvf7vo9/9S9/jFtuuZ3/7JWv5cO/dT/bu0e4/e67+cVf+wA/98u/weOf/BhPPvkkDz3wIPMAz33ebbz4vnu48+576PolW43ntltuZzabcWT3Gi6cP4dkeMFzX8QLXvhFHNud8zvveTeNYNSBbPxI34yNQVNO4tA4VU+g8et0i3J+OReZQHG4nJFU+U6g5T7nbBM7q2mhupiJKSJNCcLdKHDvGN0NVbNxH68yitd13RgI5wnK5EZkud7zgcIwabarfNDpGCoek3mkRJZJuNRfy9v++Y9w8WJitRAu7e3xohe/iDPnz/Cd3/FWDvfOs9Ms2Jq3gzqBqhILArBarVBG3p2boIrTYDjnzLIvyGEpLTvnaL2VPafqAvVcdKOjvNrrVu6diLmA5fLM2rObqIjybLbF/qokaoxul/Xza3C/Wq3w3rNarVgsFoBj7/CQc2cvsHP0GCmuWEZbaLuo3HTTHQB4n/B+C+8cBwcH3HjyJuZtQ0qJmXcE5yHB4ewSlzbuR/3+ewV4a+jpBP20JD3RNlIk+TIx9zh/dYNo7VfFWCBjBtTRnuls94YM4j04c/u0+dIgLpSmvWQyUU7QgVcpw72ta4YGCwadc9bYwzrIoKpcunSJY8eO2XFN0NbhWOu/pUFxRTPcdGenAEadu33fQxylD1erFcvDA1h1zNtdnGtxsx0acSz3L6G5J+YIoTXJrhAsKRVPVGGxOGDVmWtmm61BsC1GUPU5aJrZmjFUHZ5xT6oqECJiLmkIWcxiuqLOfd8zm82KZKMi2dOliOYEzp5r1cxBlwlOaIOniQnxoazJlytODb0GhQcnIkY9KGO4H5NrnXMp2TOd9+vo9tUYnSrBQ9YVfdcVNDPhpEen5+4Wtu97JWsLEowPTyZqNA1uLbrM0uOCMO28acSoGjXWsAp5SXIw+oGbzSxpw9a/4BuEprwGlvKYS/Iy9ogknJQKocIMR/ItXrNRnbx9Xmg86g0B9mI8ZmFme4c2OJmbgVTqSMqAIEteDoG8uECqCpxe0GJYoskS5F4zURPqjIY5iBvoisa1qAqBFpzS585Qe4rKhrO1PGnEVMoDvqxnQTxOc6GyRLImcrZqaA5a7ocBLuI9MUdzJByQfTNfEjw7W54+9Txx4QFW7Qn251tFjCGyyAs67WlbB8nReDPpWi6XJIU4YQaklMjOXZGS94cZXxAB9BQtHon+o1LA9H1MXs+TDWva3V9LNptoAFRUy5PFynoW0I0IyfR99fs0qF4r58DQZb05qqbidEwDo2kQHWNE+p6Ipztc4OfbbPnIfc+9jW/9S9/OP/5ff5Cbb7yV/f19fvfBB/i2b/t2DhYH3Hjr7Tz80EM888wz3HfffTz48Z/GucDh4SFdv0JE2draYnd3m7vvvpvf/u2PcfdzXsJNN97GI594EHxLWlpg9sVf8UbiYx8i596sR+sDuYH8T8+lZt2pNEo479aCyLWAIheuXblYriiaTO9bHSEElFSE+61EYxv6pOFguB9XH4EeNpcJz7huOtOg60qB16A+U8Ywx3W9JNbTMjt2HT/4Qz/JwSX40Ac+yJ2330xwyrve9TO85GUv5W3/+mf52jd+OYvuALe/x7H5WLbr+zGwmAbQtdQGrCVIKWcWXRrmakqWpM7aQMDkHzdVE3JOwzlNA2iR8Z51JbiqiUfXFYS861j1mbY1vporSJ8FG+vl+MPDwyEYXy47uhg5XHQsDg+Zzbbok1qjOPDJxx/nuXc+xxoOy+L5zDNPcf3117K1NbO/ExyNgOR1/eFnc6haN3wIRbopK+7qTt3hmjoUlbqBluaprBbcXbau1tK4VSJqDXe61tYEapCszDpJlke6Uh3ee/Yv7XPixInL/lY9zsuOfXL803P5bK/V47Jy7gSMwUCWlBlodjmZHBbZ+jWS2hpdnVfruuW87Vu1cbxpZpPnf7IOTnaIKUUjy0gDUF0/57q+ej+qOA3PGuPvqNoxWM/7Z0eGh+dnspZfaZZffv3GtewLZVgwK4YsixS0FSr9kIHQU8lqHWCayjFnKoEiY/d/cN5zVdXehnce792wZnnvYUK/FHF48UUj25OHj6nxzBWUYzQjru4XFG3vAg6k0h8j5sgZUYyX7gpyPerRj8+aza/6zAWpZ+aGdVcmvzMFD+uof9sq9yaV2EwuxBRc0Y2/XznSm5PJ5lo514ECUigmbty7TZ1rnTRXE0zvzMwlEln1Cw6So3FG23DS0qVInyMSBE+JRYqj8WZy+Ec1viACaKncZykWyLEswEUKKKuUzKEEJE5w6o0WIZRZZE07VqaxzzVNQrHGQkq1UqlNquMirs7+xoQOICJI3lAHYZTzEsFUOsA6gQvXlDIZIhkNjpCNX5RzxIWmBPAjEu2cQ5YLvAZue97tHLst0/gVX/vG17O1tcO9L7qDxx9+mBOzOQerJV/84hfxnve8h9e89sv4s295Iz/0Dx9iWw/4y3/xv0AFfvif/j+85u47ufbEjXz3d/0lXv78F/HMU6c4e+osr/vSr2LryBZ4z403nDTr7iDszneIsSeX7lWR1gJi8tD1G+tmlDJBHLGPxgIMAdE4dpIPJXcI6qyLN4iVqlIm9iVp8aHcco/LyZRXYjbXIAGPGeRITsS0MtSui6XZCdCExkSct1zNsV5NmHQc5ysnbznnQUIRIMuolevzyLdPzhpTRUxs/n/8xz/FyTtfxDvf+eMcXjjDjddew0O//X5e8kVfjMTIAx/6ELvHjvMfzn6K3etv4tWvfjUPP/IgN9540pos6K2UHYvEk+iA3g9qB0VzNsaemJVVZwveYrEgFvv5pmloG89sNrNjVkPDco7DxjA20Jo0Vy58ZpwznrMIy+WSEAKrlW1OMUZmzXwojzvnBo32IOP1U1X6bgk5sVwuuXRwQOoiEhwX9/bxjbK/d8DR7R2ePHeJF937fCQvudQtWS47zp8/z12330EIjpn3k4A546Vh5i8w8+14LklQGe/xNOhVNVpY1fd22Y0aqjrQAw1NlczW1hbzmXD8WjPJcHk9wf7jHr2uaLLxghsSmqIxMnNna6dvxjmsAlpMGxzmvkbAuXIOydbAlI07nbOyjLHMZZtfTQiFfyyF9mCvt+2ccCKw7Dvmfg6Ymk9fLI3JDGuFiDUcKp4UAFqyOPreuMymd5vxmulzBFcQ8uDIzQwkkLslyakZhTQeP5vTdys0C9Kv0NCgcYloS1Kj/eXlPtotixZuRlxD522zFubW1JZ7KEmYy/0IEAyIemJUcsi1GxJJtnfEtDTpMsnmvpsNsd4EYrJAFAMUtNyajOBzTTLT8De0VoEszMRl7O9aeWEEhSpHtbjh4SzRsHksw79zKf9fzdxvu5nRzraIrHDSkXVFSiv6aMeIFMlAZ26USZd47UjakJiBtJA8rfc4SUZR8WJue2IycJV77mnxjdDniGrGu8aooJJNRs4FWmlZ9JdsXqhVl+z618TDIdLgkpnx2CXMqJqMqwWbINkDPSHMafzW2HdUHT1LM5wSSNlUY2LqiBpJdDa/wCThnJDpkSTk0OBwpJrcKZCVrBEtDp4xHZhOdG4BD3mJ81tFmctk7sQ3aEpEIqRSbURJOSJeCTKD7OlE0dTjnFVPLIBOpq4Ve1YbdFBTXes5HiJbs4bgrCejy55FsJ6fLq24kBasFi0z37AlcxYkIsos7NC4SNfvl8817ec+Jet5Kd2xDqX/k6jCMc2wVUahdjf52bTcbdnderb+2ZDiKbVgs8w6fnbh0m38vjrQoq1oP1jPJgfpl0mJzk0RUXWkbA9KReNqpjhwO8vxPPjxh1kcdBzsneU7v+PbuOHmGzh69Cjv+fV3sb+/x3w+Z7FY8PKXvgy/s8173/c+vvoNb+Df/fhPcHh4yAu/6EtI//wncMCZp58irg7Iiz0OD5Y4Bx98z2/z3//df8RvfOz99HunWCwP2M6RxXLB4WLB7bfczN7DEWmd6TT+HvcKqpSQcZuq3u30ug7d8IUekwzqLImhLf5DAuNKOUxdyaZT4Z8H8A6J473uiyOXqiFE7irqkcIGYsMEdS9fVcmC0miSUnGjqyVVYdjAvFbpIVNFiECvjuganjl1kY8/9ssc7j9N22yxt7fHdtty4cIF7rnnHp58/FEkdXzqkYf5mhe/hPf/xq/zxKP38y1/7q148eztHyAFKfGdkoqta2ak5liJXem7SM5wcLCi73sWi0XROnWILJk1Ldvb2YIB19uGor11cqeMxjQ8HymVik/OJndWnq2uNHx0q5H2kfpoAXpJnClqBLk6fhZKyqLrWe7vmfRZvzSdUyccm3sWF85xw/U3kJPj5S97CQ8+8BA33XCceeM4vLDPrTdcg0lNmZkF0oGIWfqmjJeMkIgIZMy1EOuQ/71mWi1/X+l1u/u2CTbtjJ0dpYlKuMo8aI2JHIo+vVTEVQtKW499pFysfTkzNsgVtVVFo9GqcrmfznuiGxu77HcZ1s1BM9l7dna2OHPmDLPZbG3NrkjdZkWwyorV48tqms650E+m+0Etv1tly1vgoG1RcDLqnus6o1Qkj0rh5ydLJHJKpNiR1dRtNPaoh+xMRSbnaI6cKSNeTbqrNFablNf6OjFc/3KdK4Jcf+6co4+mqzu+70oIe+lXcG6C8sGoV/QszBG9+nznzdH4OV4CzpkiFNKTs6GVdtF6xGkRHYlAJBWLaWRrsJYeuM6lYo2IXbpMka+rvPZEgy9KMjLOGzH9ZVGMk5xi+RxbZ6nB2oTCtjkGIKVg5V5N39m7BudDWTfL8zdZYVTMHTKVWGmIi/xYqQDD4EORl80VgLQouwCJBn7kojZWWu3s99UVRNzWr4po56yoL70dzoxNslr/GTikKJIlVTzW1DhQQ6nJcFEwQWk9BCJHZ5HtJjPznkW29aQz+SK8d+Sc6IpsrXOOSK0qrVdonHNoTDiJxv3OoK5FCeifxAC6ljy03ISKUGRZR/EqemtZfZl8IogvJZ2Sddcg1buxiW2QHqI0B8rlJbPp92mTlWtKpj4xzFpTItBJA0wej1NKFiTiDSGYbgqMv+NE2D56Dcvlij//DW/k4d/5IF/+n/91snP8xW/5czzxxBP86i/9NKdPn+Y7nvscPvGpR7ju2DZ33nkv3/3Xvp0LZ0/xid/+EG9965t57398D9/6zW/m0vmzvPCuG+kPLvB93/tXufN5L+XLvvS5XHPiJN/3N7+Db/imr+efve3/5Eu/7PW0W9tcXKyYtbuILAZUdej6nlwTUYwHXhsnvKePIx+9KmM459C+K/a44GeGvueIbawxEUSK/Ey0zuBSSkulgSEmQ/bEmd7mbGtOv+rIKeFjtg07PMvm9p/nqBQH49FNFq4NakptkI0x0qWJnBujA9Y0oJBC4Tig5R/98NtYLDt8gi23xaVLlzhx7BiLrufxxx4lpcTBxYv0B+eZb23xn37h3/P06VNk9fzGr/w6j3ziId74Z/4MJ06coFdYpp79VUefOhoF3wSC83R6CDhW++YO18dK4ch0abRc7lY9hwszsOnVkI+UelucUh4k4EKwBpbGt0OQNeWgWSPhmHD1Pfi+Y5YskI45FcSzlP1LZer6m67joImcPXWKOYd0BytO3nYLOxlEdrl44WnO7vek1T43X7NF361woeHYtdcbLQRog9nVB7djnx0a3NyT2xnN7g43nDzJ2WdOkWIk94nd3V1ytPnsKP0WtaJVSq3rSSTDhlcDUT+bcfTaE9x9/TVEIOjVnbux64lSwYZsVI6cytw1uonZ9npqSdg0cQMq3qpKYtKUGrOhUTEOKH1XNv4cwmBX7bDmYFfQbedcCZrH0ngtw9YK3TR4ru9xzpmmdwFTclyWudqXikhvDaOhJTWZVo2nrQrZQUo93s8mz1vRhs5KVk9YWRNTV+Zctzq06qgTm9+acL4lNIHgFBEzoEmxQ7JxO2vYmSZrqQVVRjmYBtCpNJinlOi6SN+ZCkjsx4ZbMD5u/VItwEQs0mdDcPDZKReW6K3TInPOayX4GvBnBXNF1SJzZ6WVq03n2Gm3cW1LVkeXIim3JO2sIpxNH1p8xnlFc4fkBYSM5mAc6WzARtTIfFakCJ0OTsLOmbtfbWSzyjNogiChqKc0BDdDsu11rWuhycRugZmJyVqA7mgQ0gTEG70U+pQIWIPbrNnG+Rk+bOGbmfGMpVCKnCOnRNs25GQazSoMAJbtQaVKVpoCFaXPPYIgYUYqksAGbOnwvAGoZlQSTQiIA+8D3lv/QsoK6stx234WScbDrhWWotEcJJBcQEis+gPLaYIZAq16M5pxztEEW/u3NLIbeq5x59jJme3ZtZxbdUjYZRWDVaLoIWQWfWKlPQdpgUhA8ATXlCTWADrvHOI7TmyvODIHSYm9TjgoTcfP5viCCKDrqBPAD/zY9Z/BBhJRf+Y9KcZC42AySccFWVXXbKo1xxEtVR026SGwGbL9xCyYVuMUY5oG2DX7q7yoOipqbh3h43vWP1/x4jl+4lpOXLNL7A657tg2D3/sI7zsFa/iwUc+wXK55DVf+jrEBX7hV36Nx5/a4+YbT7J/fsGXvPhePvbBdyP+IXZuvYvl4UUunD/N9tFjHDuxy1/9hq/j697yar7xb/8gXHiUf/T2d/ClX/YGbrnlVh588EE+/JHf4W/9t3+LRz/1OC+f79CvRsOSVBb9KhVXEfaUk62ljM6PMUbatmVa3NMSRJi1p4DIoKIhlNKqM81fAfv/TKHSWMNCWcWHzwvBdGalXM9nN5/8/EeMceiYNx6clkB5XfVCVQb1iWUs7SU506d+2CArfcGujwfXc2p/j08/eZpz5y5A9CwWPTl2HBwcMGvmHNneQnPm+uuu4Vx3wOLwkCc+8QhHjh/j0rLjY7/1EZ5zx638/E/8W77kda9jfvQ4N918K3fe81IOlgvuuPN53H///Zw/f57DvYusloc0WQdVDEPi4hpVJRf0AyCXY++6FbXZUIrcY2hLlaHxQyIlk/mR1GSeYjJ+qSMyczO0MypPJiGxoMPAkdkWEhMXPvMEbrXPtTPh1GcusFqtePSBPVLqObp9nFNPPg7Bc/Lmo5w5e4b7H3yEL//KN3Bh6UgK1ktTjtE3zEJgex446A656YZjnNht+WTa55Yb7+WB3/04u2GX1MeCDEYEV56JKwfANWCeBhqqim9mzHZ2Obm7g5DZlavrojlUw8SUMmTgkI7UtlqKHp9rC6prtWVEiUvHe050qehbi6FHOivGCcHRSEOV4nIDymd/44YbblhbIwcVpsmcmaJM4mxDV0CyqW6gsazV1vFfwZimKYo+Cv2AgK0DBPVvOlVS01mzV7a53S8XNK2ZUeQULYhuMk6U4GvPThp41lPZRSdh/VpNKpZDAJ2mFuOjnGC9R/X903+rWmDjnRR924rGszb3Pu95YQwOEnbfcsUlr27BZBiNNx8BH0yNKemqMIk7GBLC4u/gqoa9rasDRu9MUWi6RtfmdC39E14L57h8916Ko2GDdy1BZogWECx5nI4NzymZzKarCadqaZSzIaVyW1Fjq8ACLoBryQSCBEKoqG83JlE5ozL2q0w/c/pMWfN5Ag1ojvT92H8wxkdq66FW5HxqXGfHDtYIK8k0Q1KMpJzJzvDvzT6mCqDUeZhRyJZsS0HyzcFR8K6hlY4W0+UXJ6S4oHWeVjukmFtlsX0ia0KTsopGuWtcs9H4mvEoWyFzfGvBiTbh8oyMyZdein8CA2jLmsweenht8vOK6FZZOeccSdNl2p9gXCYvfripm2oGUBZJxoC2+rErE1cgteYX21RSCQLHBqOauec8yiU558zgo/wtO+6Al1S6TvWy36/HtnfuLHFxnkv7h5w4sk1YXOCX3/kOHnryLBfOneWNX/dmbrz1Hr77b/0Vjlx3K8v9C1w8e5a/93f/Cq99+Qv5mXf8HG965Wt4xSteyFv+7NejePZj4s+95Ss4cnyBtHfx5Ht/ktaBzIXYw/f8N3+Hv/xX/jqf+cxTdEk5vLRga7slU7W1ZWicqYlA7PpBMaVuGqmPuIpITxrpMljQXAJsLw7f1MUkD9y+lEy43vgdo6yVRqUJgRx7az4qGbVzDoJpVj/bnKbPdyyXyzH79zpsgH1v3/Mw92zxijFa6Skm+r5nFZXl0lBc7xtcUbhINEDHz/3iuzh/9izzcIRTZ5/icHWGtErs7e1x13Pu4cyZUyy6FS9+wfOZ72wjwdO0LavFAdvzLfrVIZ986AGcZN71s+/glrufyzPXnCRLy40338Jjj5/l5M03cfzaOSdvfg5333knv/RzP8li7wJxUMjojXZCQpRip66GQqx60FzUNTo0AZXbm8D7hkvLS7Tbc1xomHnja9ZgxokSY4cZHth86/t+SExEBBcCzgUaFVaXLnLXtduOIA/rAAAgAElEQVQ88MDHeeKTj3LNTTfx+ONPcPL663j6zHnoIs+74yae+MQDLE89zqlTp3npC+/hMx/4eZ7z4leRZc5F3aZtGnaPH2XHH3Lh1JNcOHWBnDO7weEOLvHS593E2fPnOfn6VxJiw6OPPsqyM3rA+WfO4krDjsq4YVREugY306mpqmwfOcqJE9dy5MRR6A85/cDH/5hm6ZWHpkROpU9EkwUfWqUhJyXsYaWdJP9QwFSFXCRCYyLFnhx7uxbeIUmgBK8Ui+JkWDCucHzHCoQ1qvZ9ovWZZW+2vK1vhzWhBs8AIbSGfOdK+stQDJqqQ6n3gdxkXAilX0bRYd3JoJbUxq4vjYJm2hI6R5ZYzj/hjKdUtH4V//8z9+bBtmV3fd9nDXs459xz53ff3E89qDV0S60BISEiWQYJK5i5KMcpUyEYDOU45A//4yoMVSSxZZyQVBljDI4gic1oBZtSmC0wCI3W0Bp77jdP99535zPtvdeQP35rn3Pu6xYE3Oj16rp977v3jPvsvdZvfX/fQQVspinLgk5R4CNMqgZfJyrUXNKINoAKhHRtHKdjyJzgE9I8tXgM0sVo59/29i4KbSEgKLSJEurVhjKR1i4/Y+DzF2EsSxEdk8AtThstL4ehVYPNCurgUNoTYkOkwisJRoraEJUmaoeJGUrXqFiiEL2MUlK4aY7XBkGlxFgVIIooUDbawuswJkMjhXI3XyDTGXjRq7hR60EsRWXtIrkuxY5VZwL4kOhFyssamhyphJbeUqNylDEYY7EmT4W2w7kaFxu0luwLlTo6PkVqt11wbZW4+6go1CMiRCcbRz8WgMYlcE/P6h/n5wrvZC+XmZDmB0m0FM52G5QiBa0KkYibS9qVzXZEE5I1prxnsdJDZ/jQ4J2jNF1AYzVkyqZurJ1qZqKrhU6GxvkJPjgIqeMVNbVrcAQ6mbxuXztIIXm59vT0EUW06JjTM4amyDl0L229cI914DKigmDU1CfYhTBt9d7NYW7V3dKySlQIpYQPCyKMMFbajikyNZBax+k2Kib0M8qk6KMTJBQDSrhUJk0cSou5U4TpIqETutTSNHRMkc5e4jdV9NOWoIqNXFRKJmaltVw4gFUaGxWj8RFh94ALq6d45uIt/vhzTzM52mVzf8xv/e4nOXP+1fzJJ/4jX/uub6Fc6HBzc4uIoZuv8b6ffD8bp06yvb3Fb37w3/PAfWf54G//JiE2ZG7C2Qc3cBOPaSYEf4jK4dSJc+gIJ0+e5u3veDu/8asf5NHH3oKuK7lQg5DzA4LuRyWRvW2uvASiaInmTnG/ysuxDMERkPcbFVOqh40mpcup1BKWVk4IDu3dNEYYrabHSAd5zhiTLySCImijaFTEWYnyvJfDOYdrIt5BbBy+luK5biJ1DVWjGTeKsQsMa8fER8YTx6hyDMY1h5Oag/GYg3HFUVVxVDUcVQ2D8YjBuOajH/k4i90FqmacghWU2C5qKUSysse50+fYuXOA0WLxVftAVnRoqgkhwMrqBksLS2RZzvnz97N08hRNGPP0048z3LvF5vVL7Ny6QVON+PTjn+ab/vp3YjtLKDJU8OQaCA06pAhcFDGIV3VQEUfEK40LDhdqgvIE1eBDjQ8Vxnq8r0AZgmswUZKyUJ7QyEYpTwJel1AgSH7RdU09HqBUZG97C1sdcbRzi6efep6jkefm9U0KUzDcH7FYdqmqMddvb2FMxrWb+yyUywz2Kw72h1z+3EfI96+ypIb0zJilvOHouS9gD28yuH6FrJowuHmNo+uX2Xvq8yw3R3TrLZrDS7zqFYs8+MAZugs9bNahCVIEerwsEkGlNK+A0h6DQ2xlg7xPAwsLi+TK0O8EwuAWm89duWfnbTtCCMkWLVmAqpluBCxES4s6w6y933aA7kZGW/9k5aPQeYJwH2M04FvrudY9AJz3NCkMJ6IZjmq80jR1zeBwj6qpaIJ46E47VjYDY6cb9vkvFTUmammZK4MnpFZ1EJstrbFao0me19HTNBW+CTSNx4UG52ua0BB1RGdp/rI51ubktsAahTWRIispbU5hLDZKoeNDTeVqQuOI3kGoBBUPAT2NRk9UXY4jZ9HPfcU411qf3UYF6diR/H9bxDAocEiB7eI8iqhoI6XbHd0UnZ7b/MyPqbMCGrDHkOcYhBv7l5Z3//9jaAw+TEAnhxclnWdLCkRCNh+k88UHIEj3QCuDVgVZLDCUM2Q6HRMpyUR8ihHkMyjpItgo9B2jNVZZdOqN6Llj4TU0YYI2TUqfNanDGkBZSY01Aj45FYlGY5UR+okxohNBSzw5HqUdTH2ePSHWiQrlhWaSxKjBSEiMjVqKzCDexy75ssfgZG32FcQJRjdTHrhGYZTFKAsxoKIWuogKqQAWSzjhpSkaampdEZ0i+fwBCEUmZFIAa0UwisaDjxodMwgKHWVDnCdanw8RT4ZDEUNOiOJ7PZ1XvDCUAnJth0SxClGnpMRI5R2Nc5La6TwqOjQGEzSNb2hwWF1jca1R50s2XhYIdDukdY2IzULApPjY+Qm6HVmWHZu8gVkrMcrfW+eIlmagUyiEtlYQAZVipYW4jNbiMkCIxNbma54njZrZ02k1bbdrM0O877bja3l809c3N0IQ10mx09Ni1t80hGbInzxxh3/34S/zL//Zj3H61Aq17tOYs1x6/MP8m09s4UdjFs2I/arD7u4uX/Pm13HrIPKKC6cpl5forSxz7doRz94Y8baHXs/3fNMHMc3zDCZw/uxZ7mxfo1dYvv3b3stP/9T7+fEf/3He9/b7iTGbcrPmxYDOyy6z/V1ImxwhY8hwTjYi2phjm555LmOL1LfHpKUvKGa88ul3a6a8Wa01USkxmleQFQVWGyns7+E4Go2omtRRUOC8ogmeauJovKNx0NzlT15FCE48mSfjemaPpf3UfaJdPK3N2NzcBiP+sXgIXjYN1fiIfqdka2eLouhw38YKSyvLKKU4ODigLEuqiWPn4JDFDIbDIV98/NOcOLHGyqnz9JdWceOGkFd4FznQW/gYeOpzn+fC6bO89pvew7/9wK8wHhyR2eTbHQWlnH5uSgQeMYIyPVBR0DoCZVYCGh2UcMALg1OgVE6upHBZXlxkbBp8mLBx+gR7B4eMJ+KgYLBUVQU6I4+ajW7O1pXLPHHlCvv7B6yurFNNarmN85RlTqg9q/0Vbh7sk2nDcDjkVjWi3+/RyzRPfflJlvqXsKUhnljl0rUbFJ0uWb7I5x7/NN1c0++U9LyjOWg4qiqamLPSBRfHnF/RNIOcza1DRrogiyrxIwMqijONVxkxpSMWnQ7D0YTuYo/FXkM3G/Hx3/w9cDW3tzbv3YlLokhoIaJo5RMiljbJ0yJphjqHEOR6SxQVmNFAjtEPvEsocwIvvCMohc1zQaycJGY2IXA3zzn4Bl8F9nY2mQxHaCzFameKTsNsfsiyDOdsChq5682lxZ6gMSmQKc8NjRfaV3AO6gpXV9TjAeNKeP86L+h0u/QXFymKDnleJF5ynUSxIlTUWtPt9el2u2TGAhV+2OBTp6nVQ1grSNxMf+NoPXGPv9wZFXDaEo+zQqI9tu1cIXeav+8suGa+I/tSjGOPdw8L53aE4Ii6pnZDQhTrtanQHxH0oXQSpQcIGUEJN9foLgqh5iikgA0q4Nv4b62lM4HDWAkakfNtDmGdOwYBEcuJcC1ilCV6T+MjRSYOYBoj9FKdLAhVxOpc+NVBNl7tZ9xef8YYlE1CRA3a+FQEKwiWoAx53gOX0YQ6Ce4jTtyP8dHjoxMahW+vV50CyCAERW6TVkOp1P2U61CrHFKXsE4hW8FPhLrlIypqcWwKnsZVaOMBhdMNVomoMjOG4Fud16zjGH3AprqOtO+t6kCRaZzR2OCAgFeKiVe4CHVTU7sa5QKNd5LAicFXAWKDUjVKGTraEkNER080ycs+NrI2xRqoiLF4Sc/Fl0UB3RabrZihVXlHPfPKRBtiPZtE7+bKtUWZb5zcLy0G89HPqcclLYumkhNVib1Ly+kTlFjhXIpQdm5mfJ9eG8og29oX8q2P84tmi4/WWtBrPbv4ZIcVUNqy0u8So2Iwqogq55/96odB5+jxAaVZYWn9ND/yo3+fD/wMDN1v8953/hX+4E++yO//p2tUtsM3vPsd/PZ//DTDwS6n7juPjh4dFvi7P/pzfO2FB/m7f/u/57v/q3/EeG+Tj33sd/it3/sQ3/kdf4P+whLvfNtbqXsGzx0IATPn29sOk2VT2omKOu30xJpu/v1En5wTgp9GaMrCPLNra287PX6SZCOt4xjxaTVUpt1lkjoEmhB0cjQUy7x7zYK+fmefsqhpxSYeQTyqiVARjsb1FD1oJ2GtZ/y1CDTtpOZFhFf7kFB3GNcNOsupxxOW+4vE4ABFnnWwWZ9x7VnqFBidcXNrk2oy4dFXvoohCqUtlYFJNaGbFN2Z9uxu3+bUhQcxRcnC8ipXr1ykzAsW+l2uXLxIOH+eTqfDU089xdu/7h2cu+88v/u7v8uVK1fo93rUoyMRfiWfT4A8l+JexZDcIOP0nGkqB0Fh3ITlDoQ4plCalUXDiY0STQdlFI0PrPdOsbl7KAlwsSBbPU3Z7bJUGj71G79CPRqzvTOiahSjyrF7cIiras6dOcvBwQFH+0dcvHoTTc5yr+Rwb59RjAy3D8iygroZsnlri7KwnDg44tRKH5UbgoaTS11cU1ENB7i8jxs6DocVy1nN5sXnCEbhvOKhjbNsLK1x686YpgoYpRgNarQxoDwGT3exw7gasn7+FJOx5+yZDca3r/JHH3+WK089DyrjcPDiiYdfrREbn9yOFN4odGypWZZIhlKWGAwxaDCGGGTDqhTiSAASmhQjOvjplw8OFaPQ7KIheCfrd3AEH/FOFjaVnDFkDlWCtNUjDo+OGN65BllPkLokfKqqirKUoKm2yGiF2CHxVqWzCMrkQMCkRdQYTeO9oJZGY5TFTappcey8R2vLmTOvYGFpkd7CotjrJevRo6ND4eknylEIjoWFZTqlJYYG7aIEtzRJbKuiFHHZgoilE6jgJmMsER8DLnFWhapkKIpmSpdD3NVoYLqO3a3PMbnB6jb9cObq1H6JHuf4PC5FheyBXozSLGtWPH57NQf+vISF+V901P4OjZvglJdzkokgswFxgggFKI0KtZzbAaKyKG2wAazRZEqoS05F0BZtI0WE2tcEHSUwSAmo1jQ12lpCEE5ySPTDSWgkLZcUjuYjOmoK20m2n5l0XLVCWMRIl0RlBK3JVYZVRhwiYqTyFToF7VhrUxc34FVFMBVQo6JNXdocdE6eZ2gf5fpUHh9HQKCJEFJgSYxCCQpB0HmPwyhLFts0WYVWhaQ4u5mdoVKKcTUgRo814sahVYNW4nLiTMAFj/cCRAYTiKYR84YYE4gvBWvTyGbZKotB/LOb0GBCZBgUTa0wVY+OBVspxlgG0bA3HkpHXEXxC2jSSRDBNUKxscaCivgoPGujNbUyTFwBWYOOUGNoQrJofAnHy6KAnuc2u+AxiV87v5ued71od+nz6PC0SA5ROo5JwNY+9pTMPnf85p032gI6BknQmS8gWzR23q5tZpYulJB5ZHV+omufwxgzbXWAFE827XatteRFxtraGs/u7LE7Dqh8AVMfESpPN+vhXcXhILA7bHjTw4s8fG6ZDwwcTmt0VrCylnPf/eeJRvOq1zzC5YvPoMMCC2t9/uhzT/Gp/+EpxsDtq1/iox/9OCdOnGTjxCnW1zc4fPU+t5shxcGEkEmU7fw0OW8R047pJO1DckERK5t5y6O2a/DC8JPjKMl8eMX888wL1yLMuNcqomKy+LnHypbhaILz0uLDWJwXGkJdC6dzUrU74QiIu4BO4iaNOALMSLTt5nCqm8R7z2Q8pFd2pADOMuq6oq4DRblIVuTgG+pxxcKCFKzb29vCI55UHIzHnFhfR9GwvroGQNnp8fxzz/DAgw+ztLJMt/caqtGQweCIxx57PTdv3sS5hqXMsNfUmMzy1977zQD82q/+Mp1O51inpR0i+1RkrS2ele8Liz02t+6Q2ZyuDjRNhdWWbpkzOtqjW5aUWZdesUhQmrIsmVQNWXeV0SSysrLCZP8WhwcHEC1NHeh2F5DEqoLoInXtKDolo3EJWpIG3dGI3EjbVLIcFYura+zf2qIs+lRjONIDadfaMYvdBZwzVLZifzAArTl1co3ti9foLHQA2ewO9zbJsg4bizk7A6jHEzqdnGAzRoe7lIWh11vAWIVVNZbI2oLh4jPbPP/URYq8z+HhJPHc792QeRQEtUAcNYJQHmQuFMrDfFE2RTlbkHTaHWypNy1VQOyulEr3ab3Cw4wiomA6b0aZgKmrCrwjCxHdKaVDHMIc+juzxHuxeQlmQEaIMfG32+6lXIPt37XJhF9vMkweyfOSsrdAp9Oju9Ans/lUANa4wGh4RNb63Qc3LYrlYp0rbgnoEMBmx16roG4BbZgGmmitkMtFTyO8Y3TTDtSxDuhd79UYg9HmmIjqpUSe23Ecgb73BbTzQ1xsCEkwF5K4bLaOJDu1NJ9qlRNVkRIApZAzQbjpJhpxJVEah8WqgMejtJ0e73nLWTl3Z+AcxqbzXOZzo/S0llEt+HfMjWfqkydixKjmuo0Wbe3s/kksCSKqlmhyD8pLiEyyII2YZLkbEwVOAmbmE29jFL2SHI8kHI6CVrfdJkWG1mEuRTMme0vRFIjY0KOY2fVJPSY0y/lzT6PmqEFqOp+Y3ExdYHSyD/ZkTKLmoDIMm0CmDV4rxngJMYpiwkBgOicpLEo1U5EjUaOsfOZRaeqgaaIh1xYVC1zIaPxLX+6+LApo8ZO1EoepAiGd0CamDyck/wsrllYxeHSEmHi6MfGBpMqSCVyhwHuxGA5Owj9Sgdzyq5vgyY1Nk2xSbgcJQVFp8Vfa4Frek1XHCveQJnRrBLUOMSaHCjVtUdAi1EajgpX2U3DC5bEWMoP1ObtuxBdv7PHcnYYbuw1/9bVnWLELPP3sRb741EXu/5o30lta5If/wY/wg9//Xdz42GU+8fmLvPlNj/EP/6f/hX/4w9/FytIqT196loPDLRbX13n8M4/zG7/6Kzz6hrdwuHObxjk+8Mv/J+fO38/ayjL9bp87m1u8/s2v54n/5wNUywobI8G1F2Zq14ZAUGa6iGmt0UkdPN3omCRk0Vm6iCXYJij5jLRNbijJzaAtpOUxVbK2c1gtO12iPLcKEW0NvhZ2mtWG6D06ky6BucdxyNevbaLzAmszTNaZOpeEoIhB0XgHIWJsK2gNqDwXv3DVtv6PL3xKqWmcb9ldZG19ke2bN1ldXaV+bkRI79n5Ebnp4EKNayqGmwOWlpaIhWYwmfCq17wGd/ka165f54Hzp9EoqsGYxaUVHnrDG7h07RYnxgM6WUav16MJGbsHI7qLfYzWdDLLzu4utydjBoeH3H///XzHt30bRVFy8eJFPvGJT4iIJ4gfty1ELKMTKq0MKGuo65qlxQ6j25eoEGHM/nCA7/fpdnv48ZAYLEdhiO4ts7pxjrW8oFg6SQiRP/r1X6A6uEWWZYxGnqoa8+ijb+bq1avghiwuLHIwHLLQLZhMJtxpBCFa7PZwwVE0AZ0XPH3lOgtFSaEjtdunVxoOdyrKfoe62SOzlpX1NQaHQxY6XTr9gp29PXyE7a07KKVYX19ncnhAp+fJ8wVWbE25XrLcX2RrPGHx7H1U9Yjt7W26RU4eG/orXX7/N3+bZtLgGsWwqlBZhzy/t/QjQkNwrehZo0jzVqJwSNC0CKmjE5GUCpLeCMhG2yVWoY8ihIqRkOZtpYQKR6ghgHcNFkGJPZDFAEZBFO9xkykGdza5+KUv0+1YXnHiHDbrgBeXCqs0h4f7LC+vptcsj4URP94YQ/qexMZK0yhB18Uhw+OjwkcRdnUWLbbXo1KGcjimt7DE+omT5GXBYn/lWEHW8ojrqgJlMVo8pQXZjFib0ytKCJKyiZE5tFMKFWQKENU1rjkkM1BToxAAxJjAQrdLZgwH7iB1XsVTHR/IjUVn0u5uH6ubz1ylQiCJsrV0BVJq3hzkIcdFy+esoqYNmwYRDLbo9HR9S5+zQtOKY9sglbs3LV/NoZgg9pglngylarQPlLpHJMNHiw+B3FqxR/VdrC0YVRV55sGD1jkGhRV3AMk+mIryOkKJSHHxKoV+hVTIBu8ZO00dIraRwKhIJBqLDtDNcpwL+KDQ00RAS4wHxLYQJrlvhAwdmymNwlqL1aCNkyCV4NE0aCU2B0qDD47GZxS5iA9Lk1HHQB2E/x4IAujEMF1zIhCUo46BImhibCisFxcRH3AqCv3IkzjXDVU9FDeR4NMeW8KHQmjwQayAgxHNmnM1ZIWEEylxhFFKgXfisqgNxiihgRIgzNGWUDjv2K4VKhp6RUlUEa+DpBBWYzJV0kSNykp0QrGbpFVXRjYHQZnkCqJpomVzXLKSHHAGtaXC0qZQvlTjZVJAi31dW4yl3woRPbXvQ+osBWTihjme8Rz3a1qc0bb92ws/AX1KHdvde2ISHbSc3xfGb3+l3f2Uk8dM8DGPps6PKY0jtAhJ2t1aS1ZA0IqbWzts7VfEqDh/okcvBD7ykY9w9v4HsddPMn7+CqdPXaD2i/ziL/8Bv/OrP8vrXvc6/sGP/c9cv7XLjetP0V9ZYKnf5/nnr/Ho617Pl7/0Jc6eOMmv/fqv87FPfJy/+d3fwWg04c1vfguTyYRJUzNqxly9cglW7xdRRmamr3mKOKnZMWqPL8xQxik1Q814VZLspP5U+6MX8MJ9yw2fJeVJ0EO7mz9+PPU9LqBHownGR7RyYMPU8q/ddZMW8zjHm7ubo3g3pxEgz3Mym3NwcERR9jHG0DQN3V7JqHboGNneusWGMvimJjOahYUFep0uyigWF/tcvPQ8YDhx4gQ6y5lMxpzZOMl4POHy1Wv0+qs88cQTnFxbY319VVTbvmFr+xYPP/wwO7u7rK+vo7Um6xRcufQ8/aUVjK04d/4CP/jYG/lX/+qn0Yi7SvCeMs9kggShQyGTLK5hPB4yPKolrttHRsOKSAeVK6qB49x957CLy9jOCnl3gcYD9YCd65eIzQiUBLAsLS/y5FNPcP78eXbubNPpLXPp+hX80hL33XcfF597nnPnzrG/s4/NNNp76tFYRJZR0jODhSZ6zp0+SxM81jcUJmNSO4bjEQvdPqPRhHpSUZY53W6J1pqqqoghcHh0xKg+oMhybFxg82gfuh1qlzGpKlbWVhkOxjSN5+hwh4PDAWc2ThL1mPpoiMksk8HwL/Xc/LNG64yjlBSx00bJ9Fyd/y7otEl+F5DE2zBVyrcobGsh1p7hMbVzRbQWZtdFnOtkKYFDfOM42tuF2BcHnlQUgNiIKTW7Xua7XbPXmSwi07UUjlEbklWfaNDRWU5hNcsra9CT7lBZluRlMRfmM0cXnH9PihmqHITrahN6aIwhJs1AUQi9yiSqhVbJUi/RnVAzn/OikChwoRjOvJ/n0fY8tzTNDHyYvb62s/cXPx++0vjLQLX/c4ZSEt2stBUvcGdQpsSrihhzAsmxqaW6RDMt2CCdzXH2WGIKoDHaz7lz6LRxEC4/Sih2HqkP6qYBY2l8I24Wc69NkaGVFIZybSUqjQrTzmLrKqYwmLnOghgOKAIWExTTmPH2qnuRWsS3SDHiThFD8mS+a8QYj/kghyCe7aF9vyrVTL6lWSb6RxRKlrhGtp3iCMn+oxWqoiS0Bsy0VlAxSLGtDdYYvpL1Z3tFWyRd2qvEL/eeGBUhbY5JlKJ2E9key/Y1CZXSgIdxo7CVRStFEzMCOjkMvXTjZVFA06K9kalTRVuwzbf/YdbGCjGm8A0walbEtWKC+XbXvKCtHV+JWtCirPPP1/79xYa0kPyf+lzAlP/T8tUUwq/WWhPrmtXFPs1gj3e/6dXY+gDlBmweDfgvv+HtdJdX+dlf/ACVh4uXrvJPf+In+ZEfG3BmteZf/8L7+cKXn+O5Lz3J1739Vbz13GmqwQQXS37w7/wAX/91b2Ew3ONTn/oU586cxVrLe77x3Yxry4mzGzz3qY/xU//iJ9nYOIkjUGTCsbobjQCmrzcdEEBOZB+joFaANXbatm28Ryud4o5nm5v58ZX+3W565HNVKGuwJic0ThKVUgst+ns7uY9GI6jFMxYrxaHWmizLpwuftHpnxcK8IHb+XJkvCEQIeIRWhqapqCcDOhurRF0QY5OOpWdv+xadTNOogK4KTGwImWU8HnPj9iajusHYjEceeYSFsuTylWsMq5r3vP4NLK2eplhYZPPGDaLzNPUeIUTuP3+G5555gsXVFQY3hvR6Pbgjr3syGtNfXGb/zhZbN6/z7ve8lxACB3v7fPmLnyNgyPWMmgNgjWfUjBkf7uHLVXb3hiycvI+DicMtneTVr309xcoZtMnI+32Uztk72uPSp/+E5z77J7jDXUZ1w97eAYv9ZfYPD1heXmZ39w4PvvIB7ty5w8OvfiXVuGZ4NGCp12Wt3yWPCuoJbjIB16Cj+JBOVIPWBYPDI3rFPnVd0+mW3Ni8zcb5k/SXlrh5+xYrK31iPWboPFVVSeEfI40Tisjq8iJVVXE0GDFpGgwV2B6q20OVJdbm3Hn+Flu3t1lbP8HV23dQOqO7uMRgMJizGrs3o2lEsW6VRmcKY4JoC6ygGUJ6mM1/3nvwzfT+x4OuZvOfVhFU6tahiF50KQQrHb4KcqUImCnyGWOkmVRcu3SZwWBAQ5NirCdopRiNRnQXemTWUo9HU8QuZfAdo84JGJOWZDUL1mq5qz4EQh3oFV2yrKDXXwcX0NZQliVlWU6j6r0X68bMGjQRhZeuUVqDQlQoZTGFIi879JXClyUVjrzoiPOKsce83oklTbK7cz6QWZ2Kb1mTDg8PMUmYFfFoA528IPcWUxeMx2OUUlOPYPl82s/iL4/CIdzYewtYAIALpw4AACAASURBVGS2Q2YFfW5CRmEWEE5RiQ8GYgbKYXWDVZrMdvHRkRsQMpe4YugY596OxG0XFlyQ4lwsg8XBRUdQeIhiR1g3DozQf7yy5NMAuBylLdYqlEvUTuUFPQ5p06mkI0JK6fTRC0UByOSWhFDjTUpm1qm+UF666EBMLjEhJNFu9Ljo8UmgOqW9qpDME2ZCdtGuaCrXoAhYlUuio9ZolaekUJ/W8IHYXSqP1iUQsEY6LyG49PhibdpytrX2gEel9xeCQ+GkE21mm+ep3XyMGKWoQ0hUmpg+JXA+EhWMq4ZcG6yZpUzn+WyNbUX4oiuKaKsYuoImZGROg+2DLshe4or3ZVFAt8WstKBi4ufIgRPKxqzgaDlwtApua6YTnTHS8pjybOeeo3UPaMfdxXRI7Y6Zib0MnRwg5lHrWWjKTDnd8uHmOb53f5/+HGT31j7GYDCg2j/iDa95gLOLFa++/wKPXxqQ99bQYciDZx7k+/7b7+UTn/oM165f5X/7l/87b3zrW/lSM+TirYpXPfQKPvWRT3J7Z0RnIWdtY4V/9NM/wbve8RYefvjVLCz0+aEf+iHe97738V3f/s0cHR1x7oFHefzxz3L9+nUODg546KFX4qMmRkdIQsB2MyHH2d51XGZiwHlKxlc6RneP9vdtPHt7/3ZhUnKj6b9l0lC4JqCSUEAphXf1f9a595872uCEmM7bmbhpxs9sT7X2uMyfL/Nj/jhVVcW//bV/J0lq3pMZy2gwpMU6QghMJhOqOGQUA1lmOQqRg4N8ekycV+R5QeU8N25ucebkBtZY1pa63Lh0iclowoUHH2F/Z4tHX/UQu3tHNE1gMjjgzMkNFtfWGY/HNE1DZgz95WWMMYxHAwAOD/YoRgv0yg7Ly0t8y1//Nm7euMETX/wC/cUOwU9ovMNWI5r9LWwzYn+8Qqd/EtM/zSOPPczafa+kqiOqs0p/sU9VD9m68hzPf+oPmNy5zt6t6/jQkGUZp0+dZ3Nzk/39fY6OhqyuLnPlyjXQhuqwIrc5ZdbBlHDpxhYHRyPwnsde8xCHB3vE4ZDhcMTyygLRB3q9PuOJeJgXRUGZ5Vy6fA3nas6duw+fRCfBw2J/mZs3b9LpdCh6SywoxXA4BpvhMeTlAmES8DYnsx06/RV2tnc5HFQ4r7ly/RYn1tbYOxhCtU9oHHmn/CqcoV95NLXDaktIVAvvIpgWIdZThHj6MyREaubVPvVsj7NNk5nyjgW1VV7EpjpEgm+wWhO9lwjquQ1lM5qwv78/RVtHk4FQRGxGlhmaakKMGdbmqNbDN7XDp/OPUlhEHNbSo8RVKRB8KoBcg1Kz+xR5F3LpqAvybKfXp3i5p9AtLShcbGT+jrRBUxkhiAXq9Pq3JXlRSvKlNtN1xVqLIk9ONQKs5Kp17DCzOZExLW9bNuSWLLMQG1TIpx76L1jHkrPTVJ8zt/bMj3iseJyNuznXfxbgcS+G1hkxWSxKYqBQx3xQIvTDEpHiJjMGE6XjFYNsRtqk8+jDMf64ISMgHGejrBSiBJSG6B1Kx2mSn/h8p1RI1WBVB9t2HxCrVqtCEshLKJlu6YlE6hCSm4hEy0M63lolDrZYMIIUpcqk891H0BbVcvyDUE+lgHYpiXMW4KZIfudzQ84HoTNJ8NysC2StniYux+hxfpyizxMlRbdo9Zw9YkLWg4oJ+ZbjpjWzTklsKYyOGMVSMtJqyWZzQFCROgj1Vthk0nkNQTYaynuMDmgdj62hOtE45JwVhXPMCoIpcNFiTIE1XWKoXtJz8eVRQLfFRojT1oPsntT0y1pL1TSzthUI6KHb9mOLSM7FUKc2m3MOY414c7ZtnbmDL22W9FruKhLvLn6nfqdq5ihx90TTcljnn8cYQ0w7UlKB2D5Gt1OS155+Bk9tVuz5Wzz60CP8/u/9B+5757ext3mFlbVH+eEf+l6u3d7kDz/8UZ74wrOc7GaMR7fI60O+89vfxSe/dJmDyQIf/eQTfO5zz3BubQHXjKiqnNWlVf6Pn/05lhYKtrbu8IFf+nne+ta/wl9713t48+tex3PPX6HX8bjRDdkxKoXNzQvQ9Bct+maHLwl9Uhcgt+LS4QN+7v3OH9+7vU61FveV2G6UmBNsJiQ6yWZe9PV8tYeeE7y2LV1pL8HxpLXjgqeZeGqedjSzDSzLkhgFZWsaaRO6esTr3/gWnv7yZ9jZ3adxDXlZiPoahfOBZlSTWQUotM3oLK2xYHMWuwtpUodCB3RzxP71Cf2yw9nVHpef/BzBFFy/fo2Tp07Q6fUJIbCyssLheEQTHOOx5uDggKWlFYqiwGoocezcvobtFHTKRxhPKt7+jneytrbGRz76UTp5xvNf/jzb+xM2zr2Kh9/yjShTcPbB12KLLrrIKFRO4wbs3r7Gzq3nuP2ZP2R/+ybjvX0K7dk6GOGcY2nRMBgMWVpcl+sKy3hS0V0oBd1QGc9f30QZy/bRAQcTz0Kvw7XPP8srTp3kFWUXPzzETwa46Mn6fe4cDen2Oix0HWvrywy2PQuLa9zcG3Fzc5e1bkHe7ZEVC6ysnaKua2ISVg7rQM8WDIYjYmYpKDBlD50X3Hz+KllW4IKn6HUJtWE4cXgs/W5OYSKHo3udRAhN7Yk6Jj4jQApNUIHGx8SnnHPa8S7dV9xHpnOhms2FBilsVXLE0CEFnLgGExUoK2iaSvzldH37qiY3loH3rJxYT8EiQ1w1E3NZX5Bns25hmyjZDrm+AoUSXcXRaJT0MtK29z45hLiKSTXEWIkst/kCWkOeUOB23g4h4KqAdzVNNUEnm8YYIrVzySO6gzYiIhY0ztLr9ym7PbKiwMTAZOwI3pNlmfBZ56zLWr1D60jS6XQYjUaEICh8a20p65GginHip+4P8+DSPL3uxUZMYMSfF0me0Wbu/TC6AFOiVAZ4cWfySXIUrayvWqFVjkJhVE7U4i1jjLhIqUYsHGNwsvExBpOXQgcNCmVyYiNe9ppINAodEi89RLQ2ybI1Jo2LIrMZWll8TLzxRC+smzFKBXJtxTYyOiJuWhQGLddUjBGDFO5iFefwJORYx+TyE/BBlF+NryWlL4hlXRPqqWPNrB4J4gJyl/uErKdi9eKiQ6lZAJxKQkQfKnm8KJ2cTEciFh9mYJfWOiUFOoy1gDyWSpxtYzSZghhMu2+RodIGm1TrhYi3BlCMmiptfsTHuXaO4BU2n9nfyro5u0YBTG5Sx0gTDVjnUbEhmEhGh1zZKYf/pRovjwI6FWF3jxmCNys65nlhPvip0vYFjzl3/3mE1FpL0zRiQ2dfPA6zfU3zRfPdf38xlLX9XVtE3X2/+XN4ns6QZwW9FYNvJjy7NebqzgFLnRu84bFH6RUFiyvLbLzpLRyMx/ybf/1/MRw0DCvFD/w338W///X/m29427u4vbPNE09f5Jc+8Dt8+I8/xmNveZRuUXL71jZfevqTvP5r/gs++clP8taveSPraxt8y7d8K84Jqnhn5zYnTm7gdq/hxjVZOUPTX4yO8qd/ltJ6VEpBSJyrGDF3Idjzx3J2X9lNTxETrdLFOz1qKCXBLlHJhT1/jO/NCKg4S0mbLb5Mfzc/XhQxUq1wcvb7L37hS2ibEYJiUlV0UsHS7XY5uX6C3b0jUG4a4RsRFXdoHFpber0+o7phod/HWstit8d4PCTqQKgqeksFRd4hhppbN7Z58MEHUbbDQw88RIgV/V6Xi5evALCxscHFS5cYDoc0Vc1Ct8e127e4cOEC49GAkxvr3Nnb5fKVi5w6scG1a9e4eu0aj73568jznPe8+71cfPoLjPd32HjgUZTROFVQu0DVTLAmsHPzCsO9fT79x7+HvfO8FJd1DWiyoqTxIwajIadOn+b21i4Fmk6vg9ITapd8t0cTRs7hGhg1CtvtUkdFUzsub+2wslryigcfYP/WVXq9Pt5L4WKSAGj3YFcKpmRttrG8ytHBHmYs9BGbZRAjp+87xZeffg7b6TMej8myjEmIjKqawnuWOl2uDYfs7t3kxKnz7B8NODw8ZKHTJQTFYHREzDVW39vN33xrPrbhBVOq0ezvLY2hHRogOKKeu6bVi1+HwodPDkQhzlnohmPPT/A09YSQEDRX1SJuco6oFGVZyuZ8UpGZfErx0/qFz60AnVBn11QvEA6pxK+M0U8RO5NZcVBQYboZkGI0PbZ3dMuSqpqgVEQrkii9fdCEWKPJtBYP6awUr3rfupSk7qoyqEQ7bEMypmm8sRVGhwQWVdN5pRV4TsGfY9PpjOv9oovp/GfOn3qTrzh8Ij/c66GwRIl3pBU3Co6mpQtIohdFjY6Jj8uM0R9jxMWIwVC7RjZF2kp0N0jRjUqOae09Q0Ja5fgaZVHJb1oK8eMgk0q3CbGB1DfUKpfsiZgEuVN7aXl9fg6ci9HhtFx301OM46FyM/RcQDnCzA2sHTp92FFJpLmJUqyGu66KKZockhA1dWh8VGiEwtIi160mAi0hNi4FzmlrxCwBpsnLaBFSyrMpVFTT19N+doKRtho04XbEFOISvBxbrSWZsQWpYtv1jaTXimycVEzXWsvBntUPWr30gNvLooA27RxsDTFRM5QB7+bahTFKYk/ivJoyQ8e2fZicACLSh2sPUkieoDGhHDpAFAFCDA5X1ejE+dXMPJ+lqJHizAch72tj0Kml17YvWpYgyqQwiYgJzdSuTgxbJMUvKCXK6KBwtSO2TgrO0eAZDPZZ7+Z01A6bO57PPHkD5SdcuO8M55qMP/yF9/MHH/4Y3/NDf4eff/8vcP7cBX77Qx9ic7si5oqf/Il/zC/+1nv5yCef4GsefTW//3sfpN6/xOe+dJHv/4H/jv7p0wxGQxb6J4g2w3tPWWiuX36OL3zxce5/8LXs3tlkORNfWK0EBZ7fMCgjF0kIAd+Ix2bwnhiz6W3QsvsPwYs/ZUJdXJghrfP839a60EoPRkQHMfWQvPi5heStqqLsjJXSyWYIjL23FA5rFKSCuTAWq83cBDZDnlvvZ2hb4e3/TJo0RGBEmiAf//yTaJtjlcXXFcoYhoNDnn/is3hXc3J1nd2jHTKTY62ldg2nV9bJsoyyWGBpaYmgGqqqolt2iM6zsLrIcHDA2XOv4MT6EoO9bcaDA06cOc+Tzz7Dgw++krrxrK0us7+7w2sefTU6bThXlpfp9Xp0Oh2eee5pzp49y9HggOWlVfYPjmRBweGaEcaIE8FzT3yBzuICl6ImLzssn3sNR8MRw+EQW3apJg2D8SG71y9zeOnzDLY24XCPzZ0DXO0ZjWucj2ycP8/WzS1W+4bbW7soo9kfDDkaj3CqwI2HWNMhqIwRA5RSLC2tEYwVFxQ0TinuOMXwuassZYFBdUik4cKJNRZ6Bf3FVZyD3pJl7+iIVywtkmc9msoxGe5LGMpCB4vi6WcvoVGs97tENLd39xg5zeLKMoqMzz7+RRyWWmdMXOTwaMSJEyfRMbC6tkx1uMfyYoeOubc2dmJPJRStDI3JPLiI0UHifHVN1BnoStxxogiPIh5jFNoUgqjqOY/3qMAg7gN4CJo2ZltFRwjynr2PoDyhrgla4UYDnn/ySwz3dhgPR5zcWMVVhygy8k4XDYyGI6w1VBqMznB5Q94+v7ZoJFo4uIpqPME3Hu0rqiBzbxNlcQ4abJljbYnRQocIfoyxHbyy+CgonAS1pLWjGcDEoZVleSGnrj1DV1M3FXneJdOp2xkCFkO3J8mfPgSIDu9qaa2bnCbFQRulyBTU9QSVWQqb0RbOJgmu8k7qRGViqVcoI+VY3eCqioh4So/rBu8Swavd7agIQSdkVn6l1VzRGePUxz2269kcYCVB3vKfU1L4tCI0o18cuPpqDKMsQVmCseANITSAxypNUBbnAxZFYTPhr6uAsZkkxSpJAA4GnNZYk00FeC09zmiPxgriqxNNyGtKq6iCTTqPLpJc3KAJWCXLVbARhU4I+IhuKMnNOuM7h7ByhC0y4uQU3WxfkGZvCJkk7ipj8CiqekzE0+l0RNQfxcErQxOtT85kTjpDSWBX15O0IZSCWiH1h1Ea7SMNgVwFsqhS7WFRpIJTe/k5bUAiARe9XJcpZA7A1xFllYh5kTAVhabMDbrI6Ha6kmboIThFXVf4KGugLH+STQCJTqVEy6PwaC2bIG0ttPH1ylM7eU+5snId6CLV7wGXONgQxHvei8NJRPja2uZi2hDidF19qSlIL48Cei4Bax7JNW07KsrJpTP7gh2WcEpFQS18oNTyj6LIbLnRU59mxFEiatnV6FScw6wdH2KcpsHNezqHxC3y3oPK0NM48GaalKV1Ls/VJNN+PbfriV7EcKEDrkm7SfDWUC70eODsGm9THZ65dIsL962wtmT56Gc+i/aef/KjP8L3ffe3c2v7Dt/+7nfxpre9nfsfeYTd7QO2tm9zMJywu/U0P/qPf4af+6l/gVpYpRrc4vmLz/A7/+FDfM/f+/tceOBVlN0lxsND9nZvsrW5TVmWvPY1r6PbX+ZOPcZ27FQs6KMT0QsiftBK42rZl2ulCF4m+zDXViFGQhteE6UYd3UDWjx767qBGNE2nyKwxhi8k0CGoMKUphFDOIbyt04UMXG/tDH4l1hV++cdLe9yXhEf3IzbDTOkuf3ZpU3Y/Hnf/g3kepiMG/LSUrsRvYWS7a198hDw1Ujs6MaOld4Sy70+WmvG4zGr62eIMZLlhqPhIWvLC4wOJ3ij6XQ6bG9vScx0VvDkc5dpRofozX3e/c3fwQMPPETZ6fHwa+/n+pUrLCwucXBwwNqJExzsH3D27GmuXbvGZCK83bqWBMC6lrbhk08+yde+7a3s797h8PCQyWjMI699LTdu3ODMhYeYTCYEN2Lr9hZlWXL18iXOnj3Lhz7wS7z6wim2vvgRqknDqIls3jlkeXWNo8kQ0Fy8eJlery+2ZTGigyY3JXmeU7uKpaU17uzfYf9ojG0aOh2LjgNGh0NigEGlWD9xgme3tnlgY5XXnetz6+Y1lC25vX/AYuyx8/hnyXuLdFbW2dufcPbcAzzzzFPkec7AazrdJXrdEh9EhObqmqFzuIli73DCm9/x9dTDhucvXcXokkkdMLZkZ2+XslsynkyoqyE7+zucXV/k6q0buOoed0+0oXZtx8dgs4CyM/pZjBO0chglHPiELYEKOBdFLBSLdP7OOdAoQZUiAkTIQg86GJQxshEOTiyuXCRqxdbVq1A1jAdjOlmPPDMoAocHd1gz6+Rll8PRkP7KCvVwxCQGyoUeyi5B1NJFCDAZjjEx4JqI1RnUgSo2eJ+hlUFlOX1lJWZZ5xRFD4XHVxXKezrlwpT255yjKDo0jU9gSoWjpG6Ek7/UXxZBH82UG2uyDr2lZelsGENIvtZ4R6cscfNtyBDIDIwmNdbNvJ+F85xJwIqR585ysc5Dz8TnbUe2rmvqukGFmfuUlMOzguHP6ii+mF7lWIeAF9ey3IvREIjO0TYfxU0mgpE1qpdnAoClebZxnswoTFS4GBkRsXmO1gZvDCokD27EvcLFQIgNhSkALXHzMRKik881L1CxQDU15/qB5dIx9iOuTxQ7oxF5tgDB8vn/d8jFTz2F8ZaTSwXVQuDMa5a58PY7jCcabTy+PqRwCygcWI9XgcYHmqamU1ia2pP5HBMsqvDEoMjEaw7lHQQIoUndmgYdkgdz7TG5IVMeYxL1KlFeW+pEUJEYHbQCQiNocWgfwysyleOjwyqFVQaDwepOonBJgJHONVkGHaXQMdAYReOQbnECvCDpI6JswJWqE3UkadxalxQl3u1aiXtHG01vDfgYqOsamwuJs27GqS6rEx3GYUxGp9MBWlqlwqiMGCIh1LKBfAnHva0+XmQcF1e11iw+fRAv5JDezaud5ycf4+no42EdOrl9zBft7e/bYqi9vTEmpUUdv83d3OB5lLZ1spiKOdoQlagF8c4sTfAEBU3T0PhAv5vRDCvOnT3JYLhHp2s50dWcPbnMjeuX2bp+hf3tG6wtLfHwAxf47Kc/zfd/3/cyGAx4/8//AtFY3vdP/wmDakhdjQm6w7v+6jfyN//rv8VDD72Kbrcri0JpKfOCU2fPsLZxkqIoqCY1mZb32RZ2s7ZKMlcPgWnXCZjf0U05zHH2dWzCTS1VgkSt3/2Z3D3unuhbrt/85z8ftHIvx4tRUdrN13zEcRvF2x63r0Q/iTFSll1GwwlFkdE0FVpZaheYVJHB2EkCVggMxiNOnztL0e3Q1DXe1dSTsRTVwxGubuS7a+h2S9bW1rh48SLrG6fQeQespVxY4L4HHiLGyI2bt7mztzsV9e7v75PnOdvb21JMDgZsbGwQQhBf6rqm2+3yzne+k9u3bqBVZGV5EVTg4OCAa9eucfPaVa5eusj+zg6bm5uEEDi1sc6nP/Fx3vo1b+BTH/8Y+3uHNI20B7udHgcHR3T7i6ANZdFJbiQy4RoVCa5mPDyi2+ngqpo7d+5w8+YNHn7lg7z+jW9iceUE/VKz2tUUKjI4OiDLC8Y+cunqTeGVWsPJM+fRRY+y02E0GbK7v0MIgc9+9nN0Oh0uX76MtZozZ87w7HNX0UWHw8EYh2b/cMjtnT1OnDrFs888w1NPPcNgMJJJvCxY6JRo5cmN5tzZ02ysr9LNM07fd4ZHHns9axsnvwpn51ceQZqz8uVnNnbzhVNbpLUFZftv+ZsTRDrOzu9ZEdZaM77wHFdIp0mSyjT4wODggDzLMEpaveNRg689KnhUDBzt7zEeHlFPRgIINg5f1bPwESRwwacFF5sRrZbQouAFXImzFrfVBq2EI6mVBFZ4VyeP/jC9Tp1zEtVtNLYoUdYQ0ByNhiig2+lI8mb0hCDOG3leYlJcsU6IGGqW2glp/oNpt7K1T71bY9Om0mmNFDh6xgOdX8++2sXtvSym22duKXzza1DbjYYZLcFHCSM5RulMlBljMpSVtd0kak6Lar5gTAVzEauhYwMrecNKVrFkRyxkNTHOKJzXLz3LD/7tv8GHfv8Xef/738fw5gH/6beeprneJw4yunGRQveJtcGqnAxDUzlKU6J9ooD6iFUFNIkCoRTGHq95VBCDhJY2qVpucZQiVyHfpbMs+Qzz1m9tnSWbYz93rIxcX9qmrIKWSpFhTYZGTesFE+P0+M38xWfn5byerD2+mjgVKMqnKp2qNuApzribx9b+6fwTnXxN56E4pWTNz13zdcx8mN1LMV4WCPT8GzXGzDgrzOyHYozo3GJtJsR2Zv6cSmlpCZC40d6LSjXMsuVBdqrRSxEYE/8wKpJdknwAOrOCXMdEvvdMi6Hprj/dLyI+yNG7KfriMi0iNy+oS0y2T03TYItcXqMxEjqSgmFMtGQKrGo4dbbk1vaIo6HlqYsj3vOWh3n4zAnubF6lHnbp9Pr8zgd/nde87lW861u/BT9p+Pqvfxtf+/avJ+Qr7D3/OH/vb30r4c5Fup0O46MDfuZ//Un+x3/+85i8T6fTYWf7Ok8/8RRvfcc3MKkrLl28wt7hgNO+wZoOtXdJTYzQOABXN1PHE0jEfz1TfbcBKy1Frq5r6X4pJSJPFaibyfTzaC8mrfXUVxaYHlsVI1YdTxzz3k8pNqFxxBDxL7Eo4M87JN43tdWok6Xf8Y2VfJ+9F2P/9MuutdCSx28Yj46o65qy7GHzHr3ekqB34y2qcc3Tzz7DxsYG3Szj6OgAj6PX6+Fqx0K3Q+0ce3t7XLhwnsZVbNx/P73FVRpX8drH3sIzl26yuj/k3MlV+ovLKML/x92bR1uW3fV9n733Ge/45qpXU1dVd/UotVozAiQHGSwxGguEzTzFYUjilRX8hwlJjE3ihY0TZ8XLToJDBpCIY3s5BtsEAxbCYFoCDajVrerq6u6a3/zuu+MZ95A/9rn3vSq1lp2FoLXYa73VVdWv6r57zrn7/M7v9/1+vuxsbRG0U1QYEndDtre3WFpaIo59EZ2mKXVd0+l0GI1G3Lx5kygOSNOUq1evsrS0xEMXL/O5q9fIZhPOnzvL7Zs3SNp9nHN86pOfYKXX5u6t2xjjGBdgbYUKBbquaXd6WBkQp8IXMFhv3HEOITSdrg9NGezvczTJ2dhY5yu+8klevTUiWVnhDVfeTvnqxzncu0d5c4ejLMfJkOF0Sv/hs4TVgFhZJqUjd5L+0jIbyrF9MOTcQxd4+fottIP106dII8H2vVuYIORgprGkVEVNK+3QO52yfmqday9cJSsNQsVk+YwwgFAKemlIPh2gTItW6KhDy96NO7TbLbpx+4/suvz3WfP9zHdXTbOvOp/eaIwff/roCD+BQjSFnL/xSkQTbOQN2wiLw1DUOaH0ocGAj6kSFsH900Osx3dNpxN0kSN0TV0bur2E6WhGurSKrgymLHC1pZsm6KomaUW0kpjpdELQ6tDtrRC2ElQtsdpHZVdWkM0mtHyCC1pDrUJf5EovMwlMQT0t6Cd9ZBBibEk+nVFbRxB7aZRwYIqcvLZESRtmBcb4/bwsS3q9Ds456toXXL2lPq12p3mfDqf9A2wSxUgERVF4ZZrzmlTrNDiJLivKsFwU7/PJXBQHWONNxUIotKnuL0agmXYVHNe0f3RNhQcbJq/H8inDjf9FzM3oXsYRBpE3/VmN1f76M8Zg1dys7gvDNIiJgthTdJxGSY9SUzhqGubx/BmwUXEI6euTUCpSGdCNLGvRiA6akIqJENwJes31UPPTP/1fowYT/ref/zmmg4Kf+it/kbo2/Mzf+0VkDBsX+tSBZv3JZdZP96hkSRIm6NziSkWRG4SWBNoRyi5VOSCIBarRG0sJTvvJjzKe+uGZ5JJISuJIImy5MEEK4SVWznk/lrCqefCsvUZZNPpnjhtooQxxkYSqwYBa0eBABUHoteZBFBJL0XTEvURk3jw62WTzXWuLczVC+gdKIQzOSKz1P5ffh+bFsZ/sG2uJQj9VsdbitKfrVFXBnB/vwGP5hESWJWmYYE2NkjFGRubT5QAAIABJREFUeAKLwD9YfzHXl0QH2jhPWLB4hMnxs5/vdwqh/BNJQ9mQcF9RBdKnX0m1QJ4JIby2utH5zQs+hG0+bH4TCALfXVgYZnSFnwYFTRieOy7i8QWeMcajkJwFa0D51C6DI3DOdzzmYHvZfDkH83+PhnE8p4/IAOKEqvQXRr+dUBcj8tmEl25N+Cf/78cZlpJBGfD4136A7/z+72c4zrBHA556w+NMRiM6rZRifwshSlphwtXfe5aday/hwhY/83f/Z2TQxloI221++V/+GjYMfbqVrdnavs3B/h4v7o6ZljW1q6mwKKc857SJNcW6xsAn7nsf0hqU8E+gornRCtcA3p1H+CgrUVY2MPRj+gaANTXC+SffxYhFSWzgv1By8eExoilQG9OT/AIm0j+uVTuojUEbQe0sla6pqopaG2rtPBlDe16sb8D7jWL+df8KEI3BaDjYRQpBKCRCGAhT4nSJJEqp8jHOFOAkoZI4o6mKHKMLklCSTWfUdd04+S2bp04h8dzMNI0ps5JZMaUoDbuDI85fuoQ2hsNpxt7giL3dA86ePUsaBqRxzL2tHbKsJAhC4jjh1Po6USipy5L9g10Qljc+/dRC9rS6ukoQBFy7/iLvfNc7uHTlUaxULK/0mR3t829+41cJXMX+vXsMdu8QSkOnv9TcEC0qVIyzIUU+ZXQ0YDiaoLU3Yi33OzirEdbQiiP2JxnXDsZcOR9h0ewe7PLss7/D4Y0tWhunCfsJ5zcj1ldCVNAiirtMK0vmIiaTGcJVHO5ukU0LDg6G9Hs97t7ZQcuA4SzHyoijaUXhFE8/+TjVaMBgNKaqDZPRgNrBHzz3OZSK6XU6RFFAmCiSQFCUGcJCICP29w/Z2x8jZQcRddg+GHN7a+t1uWbnywBCKqRUaOGPr3QOM29caAO6RpuKSmuqWmNsjak10njtba0rnKkwumwKZkMSKM8tD0OE8d1XJ/xYal5YCiyBhbI05OMMZQ2q1j69ssqJ0oTZZMrq0gqBFCRxSJIkqDBAqJAobhHLCFmV6DonEiGhilBhgg2SuVUGbSVSBghXe/SbNv5ziIAaVD7D1TkybBGmKxiTE6cRUoKuC6SrqPMJsYw5vbqJCmIefvRhWp0+ZeWlfKqZBgWBDz8KggjXmPp0XVCb0huiZYDVXvJUWQMyQJtmLzUGa2r8TafpvONjjaNAela3swgMoXCEAiIpSKKQXhLTCUO0FYvXfVCKsZgczFm9bl7AvHaX7+SyDRbuwa/XbTmz6KoqZzw1gxBc4DvQzmEsGAoqOQNpfBGFxAhJLWucSBCqeRiUjlh6+F2AI3ICZXQzFfDCJSkFVnm6uBV+GqAECGkXTRwpNNJZcDmBqrg1vM7n9q6zvNHikafPsX75Ipmp2VyKmQ0nTA9qDl+dsvXJHQY3K8xMkec55axClQkcCVTRQdg+QdgCoNIaIzVOSHQNhtRrsq1D2gCpYgIREBIgnSTGewSU8LkBUjmEtATSEQh/PfnutAZX+e6xxIegWYdQMdKFRCIgkAGh8kFZUjgMAULFxDIhFG0vlzGFJ8w0TUdrPe0HYz3O0uHzAK1/HaEaMID0D98YP0U1pkbbpivujD+uYp7CGaB1Q0vRksAGCCcwtkQ0oS9+KqZ9yI3LkaLEUqHNFze86kuiA31S/2xhoVnWdb348/kHe1EMv8bf90X1CbMaLDqcla59tLR0nudvLUEYUlXVQo7hn+ptgxUKGimD+bwwl3nnZoFXO6l1nT91NT/n/L2EYdigtkSDd5o/8QqM8RzqN73pzWx96jnaieCdb3oSbQWf/uyLtFsd/uz3/hA/8l1/nnPnzhALx869u/yzf/r/oLXl277zuyHtEgnD//GPPsL/+g9/lW/+4Ndz9+4Wa6fPcOvTn+Gd7/1aLIJf/D9/jm/79g/SaS3zid//GGkacvPePmmrQ5IkbA8yLp7ukkuLrQWNmuVYojKXUJhjDNu8Cy0cHtLeSDTEyfMGBIE32xkcYjFmE4vxqhACZcHWPmLCNo5e18R6Swu68qPOuJ1i3HyTe/1WVdf+Ayxq/1TedJfnoSgnZUaLY/WAxGi+vCnF8eEPf9h3oYXvWJVlyZkzlxFGs333FgGw1Guh65pWkqCUYjKZkI3HtJKENE2ZTqd0Wh2Qirz0GrG9vT3W19dxEtqtLtPhlKOtXdq9dVbXlomiiLqq2Tx7hr29HaqqYpwVLK2uce7cOe7eucPGqpdt1JWh0+nQaegAu7u7rKyssLOzw8rKCi+99BKnN896jbTVjMdjdJFhdcHpjRWuX/0chzu7iHLEvVs3We+1We53ycoCJSSJgMpaOr0u/ahNMZsSh4piOCEKW43EpGLl3OOsXihYX4db22PCoMUL11+hvXSR9YfewuUnvpxXZh/Fiox7n7tDe2kdGSZEYYitx7zyyk0effIx9rbusrbUZTIckkYtCBXCwmQyptdfwlnLcDSh2+7QW06Y5QUXzl+kRlOOp8xmJa1WC2yJ1DUqikjjmKV+Hx2XyChiWpQMh0OfYoZCnwgleT2WpxfcnzCKcx45h/JaYntMIfCGoGYE7LwRywmHRhDUlgpHEIXgNKGUjIYDpqMhK6dOoWKFFb7jKlyIVIrcCg4ODkhCwejgAFfWRGnEhbPnQIWYugTruPbSq1x5/HGisMU0m6CMQdQ1aRKBLpkcHfowFOGIW33y2ZRAVjjpzXeJlYzGGcQBeVWASlFxShB3oILxYJv11dOIMMFUJTLW0PhnxqNDKMZYq9g/OuLcuXPcvHWL8xcfYndrG+cgCINGsxzTbrUIlCDPZ56ZPpsxm45JVlJ0XTOZjKgJCKVEN/pzXdY45cjzHPDTO2sNQoMIIYwiwtA3HoqiQEoIw5But0sQhyTOo/PGd/ca+9iXhlb5j2o5Y7HSHnckncK5psg14PCGOk2JtYZYJvTCFq1WQVEdkKSKJOhTuohBFRGJgDAUuGLm5y2m9gQIIgKhCIKQwBpqBEHoH2ZoGl+lAynH5CIns22MLRZeqgO9Q2+1w+/9y4+hc8twMCIk4H/4n/4uP/ZjP854PGUt7SEyxcsf26VztsO5x3sEOqIdLzHZmyHCLoezgv5KQrh6nigymHqCFo6kYzCmIBWSTivCiorDPCcOI1pRSOmsf6gQEieM9yU4scgosNbHhVtjcNZgqFFhC4EjUAJLk2wpQqQzpCIkkAGN+AgVpwglvDFRRoSxT3I1tW4QlIa6dgTCIZWPlRfSEYW+kVTTNCcboocxfiIlrTeuYmtfRymoXYFwEIkQ67xOPQpTH21uPLghEL5WyGcZNhIoFVDLGoWltp4p/cX+ZHxJFNBYR1WUvlBV8vPwcHM95oNIufk6qSedF9IeNC+83nih98EnHZ7QmIHAGYsKAi9FcHohkzlZNM/1fSf10SeLx7m0YPEzMS/s/fswWhNEoZd+SIGwjdSEedyn3xTDQNLrtDm8fgunIh6/cpnrt+7yfT/wn6CiJWzQIggc7SBg9fx53vT2L+PffuzjGCt55e4O//eH/iGXL1/mv/0bf4vlVsT3fO/301paIsunlJXm8SceJQxDxuMpvaUltnfu8JM/+bd4/9d/HR94/5exPx5welZgI4FGeff9Ca3d4pQ1DwXOOUytF8fl5DqpObMN0sbgzZ1znZYQTVBKc06sMajF+fMaSelAlzWBihDOGzxFHCIM2PL1LUJqa5ABeFPHiUTKkxq15rqdP4idvFbvG4U2etGq8ii6OWZLCEU2GzEeHNJKQuIoIo4jstmEoig8ccNalpb6tKKYo8kYFYUIJVlaWSbLMr7yPe8mr0pevHYNLMxMhStLHr38GLXWrKysMB5PaXU7jA8PWTu96TWYYUir0+bocICxlvEsQ+aOOI6ZTqeoMKTVapHnOXnuTR2Hh4dsbGxwuH9AqAJanS7T8QDpLLoseOXll8lnY27eeIV+YHjbW97Mteefo05Cjg4OIQjpJjFaSLYHA1qnIpxwZFrT7XZpp20qXXNn54CH3v4enn/2H9P9sqdoHWbEcZsnn3gjcRhx66XrPPPoJm9/85v5td/5XeJWSlVZRrOM9nKLJO2SdnI+9rFrfPlbLpPPhug6p9/pIAm5t72FQDGb5SjlsXgiSrj6uRu84Y2PcjAck48PECKg3etS5jPa7RaTcemTC+OY/f192nFCNp5QWE1RlbTTmDRNGY/Hf1yX6WsurTVRMCfoON/9ZM4kbzTR1iymJiCR82CIhtjgAGckxlV45qwjVFBbzy5fXVsGN9c8u4ak43BCkmtHMRsxHB/6BMC0zWD3HsZa6qIgTiP297Z57MknKUpDqQsvsagcKgrpt1sILLbMmkaIN0AaY5CmQpiaOEqZZRMCHNr4zphwHs/lVICLQmQ2awghFiWFj29vtzHgza/ZBBt1yIoMd+AoioIzZ84xPBwsxvVh6IkkURD6hwqtKcrcoyOb79HakGdTjEwQcbAw4BpjcHiDtrWWuqy8hE1KrKl9THhD8ZHCGwVD5VMTwyQidI4+AsTuMW7jT/CyrkY65VP6bBPf7CyC2BvKqLC2xiAWqNrVbsGF7ogk2CcKwGrFYb1GdtBGixChBFZ4xrOx1ifziRpFRBworE2wekYopdfOo6mdY2IiqloxrDSTKqA20yYIB7SYcVRnJN2Ej3zkt7l1d4/v/o7v5oUbr/AD3//9/MSP/5cEKqTXT1HhEuE05fCqYTzcR5oB5zcvMMwLeqt9qp2K0K1QiYqolWIDi3IZkpw0LOkFmjTM6XahrHKfwOgiZg6cLe9LDT02sEfUttEMWwt4P4MUXh6CE17aIiXOKAIZ3HefF9Y3A412gEIpsFagTeUpPrpGusDP5i2N1MIcwxmEP+a2aZxafCPRuUbCiaCyugkq0lhboU0JwjcmPfGqaWhqECb0zTZowlc8h1ramnmmwp/IKO+Fe1h7SsXJFKU5ReNk4TrHzM0LuAXJ4YFQDtFA+l0j0ajLchEVHp4oynHHcHmPYjoWqh+/3rEQ/aSmx2NY/Am7D/m26Dr6TnQYx9imkHT4wtA1aCjXoGKM1hyNaqoq48oj5yiKgj/z/m/g1z/6O/x3v/BryDDgL//Uf8/XvuedvOvtb6cfKQ5uvcJK2uFHfvRH+Tt//+/zv/+9n6Gd9BiP9jjYH9FfX2Xz/AXa3Q4iy3jL295FmWUU5RG//+lP0+su0+l0uH79GoM/9Taeeue76W0/j4sspZkbMY7Zk7rprM9DUE4mkfkbIw0NSVBX1UIm412yoIJjjft95+qEpm+uE7Z4h74xFqt88Y2SOOnRPYDXmr+OyziLtqYB1tnFNRjIY9Mp3P/+Xsuk5b+nMcxawWQyJUkSiiKnv7TE/u4d0iBhudtjNpuQ6ZJW4nXAw+GQTsdrMcM4pm3bWClIuz229w/odtvcvHObKE548qmn2Tk85GDnHno25fmXXuTLvvr9PPvsszzzpreS5yXdpWVPGej3UYGgtjVCSc6fP8/RYMDq6ipHR0cAxFJSliWnT58miiKuXbtGVVWcP3+eNE5IkphPf+LjKKVY7nf42LO/w8ULF7j36gHvftc7OLh1nc988pNsrm+QRop2K6F2UM6m2E6bjfUzJN2EZKXH6qlNH+t6NGL7xoyl9SfZ2NjgzLkzPpo5Fawsr1IKSIKQZx6/wGo64rmP/w5Pv+HNzJKSV69+FqdCDkcTOrYkCls8+cQGY12x1F9H5yOGkykiTIiSFm94+q28fP0aWZGTDWccHBzwxJNXWF5ZY2dnjzjpeJ+AM3R6Mc460rV1BpMSGcYop9AyREVwqrtMv9vl8GhAVVWsra3+8V+wJ5a13tUuhSCQDuEMzngUrBTO6xKNW6AApQjQwougrcDjsUqLE9LXKda75+s5m7lxxoeply4U1tCLYrLKey0mkyH1aIgsK4q8wAmPAix1ze0b+/wH730Xt29c5e7Nm5y5cIHD4Zjt27d58uk3MpnMCJa7ZKMhzjhGe9uEcYCufdJYOTkCXZO7hKqcoKQhdCVS1FT5GCEEUa+Hk4KWCpgM90lXU7COUHodchRFyFaHo2xCkRcIZTCB4k1vejN/8OnnWOq1qKtjjGZd14jEUuYZ2tRMp2O01qRRTJlPmM1y8tmUylXUoZ8u5VmGsQqHpC58cEUQKlTsKU9pK/W626CZWGFRAqJQkXS7qFARS0FdlwTSYoRc5A38u8yFD+69J01aD37fya/Xw7R4cqmgakgwgFRo7bvzVlYYo9G2xpiKOlBIrUiUYb29z4XOFheWNTIEUxbsFBn72RoHOdQm8NeurdFOUxuNCkOszQldgpABtQiR1vgJMobKSe6MA5zrMS0CMgdCViB9nWFchg4t7/m6d/N7v/Vpnvv05/ipGz/ND//If8yffteX87M/97N85we/ncKEqCjn5p0bdLvrbJ49w3Q8Y8/eRShFlh2xu7fHpYefZHl5iQzp5aqpIi8sZkmQrocsrXUIOCRKYkonKMMO5bREK9nEhXuvlpIesIvzxGucXJgJrau9h8tJhFPEoZdvCpUSiOAYKADU2mCNJZBexllqS621l3xVlW9Y+ldCOO2bENJLlLwNQeKEhDDAOQgThak0RlusqdF1vXjARzkqChIZocIUIRVJ1EMIhzYVog6o6hnGeoO5lYComOUzhBDe+Cg9IeuLub4kNNAPygNeS8N18nvnnbuTOtqTNI6Txdy8WLOvUbwsNoJGjoC8/+d4rZ/zC/36weJorps+ljD4rs3JIv/k+5y/n63dAVlRk6Qh/aUOr7z4PCYb8I1f9zV857d+gJWlJfYGI976gQ/yuec+w9ryEv/4w7/AO978DGfXV7j88DlOnzvL5oXLfOWfeT9Xnnia/uoGv/xLv0JZ1Oxt7RGomCQK2Tx7ge/6nh9kqd/la/70e1leXePcw48xGU3Jx9P73svJ8/Tgez55ju7780ZHJZ1nfQt/IsDYzzuni39bCn/OmtRBlEQqRRCGC1i7ULIJZmjY36/z+jy6y4n381rX04O/PzbRevnRbDaj3W5jraHdbpPNCqwpWep3KfLKmymlnw6EYbg4P3Er5fDwkFa3Q5qmVHXNI1eusLLmNcmPPfYEYZJy7sJFLl68yDve8Q4ef+aNjCZjnnnj0wyHQ5QMaHU7RGnCJMvZ2tkjUJ6VezQaej27UvR6PaIo4uLFi1y4cIHxeMzNmze5dOkSTz31FKPRiKoq2d/fo50mXLxwnpdevEY2nZJlUx595DKtdsr+7g7vefdXcPfuXQaDAVEUEQchK2vL5HlJVdUUoxGTwyPaUUJgQOsKayRnzz3MdHLEYDxmMprg0Jy/cI7z5zY5c3GNMG0RJh2eeOxhOt0Wj77xnZy/8giBilAyxBoWKL7nnr/L7a19JlmJtqAtXLp8hd/6t8+SZRndTp/+0jKXLj/M0vIqWltObaxhUUynU7A1ioooVGRZRm0l+0dDxllJVpQk7RbDw0OmwyNvKA4CJpPJH88F+gXWSYP2onHZOPqN9Zph05ixdFV7na49NnZbp3Had5Tm2l2n68YZb7HOLPbXIPDdq7u37/hpRVmQjY4oppOFLEtKSbvdJowj0jRFSkmn1aLOp9R5TlUXpGlKFIToRkscKEEcBpT5BFPl6OaryKYIo8nLAmwNtkIJTawE6ApdZjjTpMHh0FXpu2ZlhbWaovCvdXA0RIYdcJK6zD1zvapI07afMkSNMVxKcJI8nzUkgGMDlRSCsigoi4yyLCmrvOlI3082mf+ZTyuc0xPme8pxqM28gSGl94cEQQD2GDl6ct958F76/2f9Yf7uH+Vy1FhX+/9ag3P+mvPR28faWx/74ptvgStJMF7f7CCmIrEzQlmDqBuKg4XGlGaw2LrCaU+fwjoC2aQcNmQwKySlCMhERCV7GOV9PIsvI3DUHEz2efd730On1WKlv0JdG27euYkIBF/11V9FXikmsxzTcOIHowFWlCyvrXDr9k3Gkxnnzz1MmWXcuXkbW1iO7h1gRpbbL+xQTvpQn6MuNohFD2l96vHoaIxsJkf+HiEf+PKKrde6XoJAMqeYCOc/v0JJHykufLe4cl5bbnBYa/y+7I5rMt/4DJtrFW96bCgpzhxLGefYxiAIiKIIFzR1m/AYulAFvvgOJHYe+NLUAkEUo4JgQaUSdt70rKh1gbWVn3AL3+wyGL6Y60uiA62Uwip/8gJ5wmDWHOBFpzjwgHLCAEqNrmpC5dNt7FxDq6LjjQbRFFrGa26Fx8sZgb/Gw6AptA1SqqbA8yfbv7xoRkTzTUz5DxnMg3iazU8SiACBwAg/xpdxI29oinNjvDHEM8AdDtXA1328rTLw0U9+DK1Sfv0TN/hAK+ZNzzzB7Vef58KFdX7oB3+UX/4H/wvf/mP/IbtVyg9/8Fv54Dd/K/t37/GjP/hdzIqCbH/b48xESdRbJas1VgiOBockLUdVZyyvXoZAMakLfvCH/hI/8p/9Jfa2t7l+/So/+qPfhxJwtxCccTVxaj3NBMc8cks5H2NLqPz4hmOShggVykKpK69JCwOcFGjr/591PjLYOYeQxwxkeyJkBY47+VbGnvUsLSISuCxDKImVAnTZuHpfZw60DH2IgwyIgrC5jhQymE8h5puTZ+MC921W3nzki4s0iVhdOkXuNKlRpGnLJ+JtbNLvr1CMR0TCkqT+tYTzRJd5uubO3Ts8/PDDKCkoao0MI4yU1Dbg4iOPM9Yhmxcf5vYr1zh19gLtdptxXtMN4Pa9LS6cfwhrLWnS8ZMFCXGSMBpnGOM4dWqTosgYTqasrq4ynmWMRiNPC4gihoMB/W6XLMsYHR0xnRXkec6Tj17h1q1bXLz0CNkk4/HHn+Tlz32WajLk7W99By+88BnOn7vAuc01Boe7viBwFVHsUGkMSpDnGdeef45Op8XRtOKZt38F1nTZmQwI2w9RmAPCcJ2lhy4irWElsSSnV8gGY169s8PN0RF/9j/9YdaXBS9+5F9gnKXfWqKzusFsOuLRxy5AXRK3IpSz5Lri8PCQy5cuktc1QRRT5BnLvS6727cW0cvldEy/1fLxzLrkUEXsFpp8NmWl16YfW9JYUYwmhK0WR6VnKiMVcdp6Xa9d4xTgjWuuMWAZLEr7vQ3jC2VtvHu/rh1CBCgV+C6nE1jp9ZNaOEIRYoUmtEEjl2tMg8JLkWSSsLK6zGEpyPeGDHa2WF5aZjA8IpaCKIk4mhWEywlR3OLOzgFpe5lWuc907x5WxOg6Y7C3Sy9NqbKZN0wpwdHwkFj0mI4GSBlAZVHtkEDBbFJgak2qAhACg6Wyte8yWol1mshKTJ5zsHuPlfVNVKvlX6fdo6oynBR02kuU0xF7CDbPPQRIJlmOGR0ijMFJQWkhLwqcgThMyYOU2hrKImOaTTga+RG/rULyrKaqBUEAwmqMdSjlMWF1PvVFuTUIJ3AEaOGDNgJlsUHgyRwSVByjpSSJYpzJ/R4rBNb5RDc40eCYjwilTzA9+f8Wa27MbjTxnoo0/z6xKLper1VbA6LCWEltndfUOwk2QxJgnMIIgxQtpAgQrkApT6OQvuHaNGMOkKbEuQRbaEToaV7W5QhrqHRNEAlm2pu1lfK1RCADhDFU2mJFiBUSFQbEOBwjrHJoSqRLEMZye/wy5x+5Qqfb5fBoyrWXXmBwuM3waMoTb3iK/aziE7/3ST7wgQ/wsd/7JMI5VlbXqeuadqsDznDn7g2eePyNjMdjhuMh9+69yic/ucWFCxd44VPXGe0/QpQY3vL2h8myXeJOjVM5kWszHE8IWzFFpRFh4EEHwlKKECclATW18ix1YQ2WCtcUtoGSSKmQRP5yEBaja4w1vrZxAUYptHMYamphwVkftiIcVmpP60H6qXsdYoSnpxC0msI5whqNDC1WQc9F1FFNUVU4U4KoCZXnQyO9ETZsrmvvMYsJVIBzMcZ6xKAlR+sKIUMCJFYo/2D0ecb9P9z6kiigdV0j8MWslffHdZ80X4W1H5d70br/kM+dsvMi7CQv+KTsYr78n3lDW2WNTxgMjr9Hcr8Mw7njrnbYBLl4s6NZdD+dFccBKyclrY1GUAhxn9xECIFpjHYgEWXBZJwxyBx1ILk7qfk7//T3efgTu3ztW04jQsWH/ub/iBCOf/RP/hnf8N0/RKvV4Wd//hd4/1e9m7e88Qrd/pJn+1YVSbfleYoi52h0hDWSr/nqb0XGLYp8RF6N+c9/7Cfp9zq88tJL/MR/8WOc3tikk3a4+cpVfvMTz/O9X/M2n4C3YFofb8QnNb3GGA+sb7RFTuAxbc7Hd0spKYvivk6sl314MYszBpxtNFjcR2CaF5ZzqUzdJEbiHEVZEiiFfp01f2FkiWKPDvIascB3PcL7EXxfaOypfBMJnKG/tEq71+er3veN/P6//tc452i1/CYzm82I45g0EIxGR2hR0e92SaLIJ/sFAZunLjMaTzl16hR7+4dcfOQRxsMRQRBw46Xn6faWeOX683Q6He5u7ZAkCbbKeetb3kDYDhkMBpw/f56dnR3W1taotWc8h0HA2nKXsiyx1j+gTqdT4jhmOByyublJXXst+mzmNZ9pmjI4GvPYY49x++5d8qrm5Rs3ede7v4LnnvsDzxxPWtzZvs1DFy9z9+Yt7m3dot/tcnBwQDuOqEcZpqjobGwgoohBVjKuakJnMNkBcWJZ6XVoP/VOPvLx3+ShUx02oi1CM+Dm4FXM5lcSpqd4+hv+Ku9eW2azZSi7La5JzzG9dzAgdAOiKGBp/TTVdIiQghu3bvH0m54iKwwvvvwKy2trbG6cwnY7jI8G1JUhz8a+y68NFDntNCbqLiMNvPENj3HtuedIQiizHGVTRKCos4IkSb1hx5rFMXu9VlVpImk9dgq72Ousd2LhnNeC+j34mM543Ln2siWcxTTFssOn2wnpGha8RJgaqTxJycqIo+GQ2XTK7PCA1sYqm+cuUQ/26Ha7DLd3WV7YKkNnAAAgAElEQVTfYDy6iakrrAmxUYvb93Y4d+khzmw+yt7uob/xyg7GWQIZ0ev4xFKsRUpLp9NhMpsRpjHOQBSGOOPTU+tCo1QCVUHpLFIXlMkAdaQpxnuYfpfuUp/hZMr5i49w584dllc2cM5wNDigbx03X77OqVObdDp9itEhlTXUZU2nu4SUAdPpCCEUadpmf2+L2XDMaDz2voETksQwUoSh3yejuE0YhkzGU0YTz3IXcZtQSNKg9ubMMMTp0nfne12cs4QB5HlOp9Px+4ypCaII6xTZaHSfPONPwqqtRqiaylgEEVoXBEKhRYCQnhzlhGoMsqBUyL1pwGoLlkxAGPgUv7yKKIBRnqGCCFnOMCbHugqtLaXRmDzEWJ80GcWWJIhxRmBF7f1SGAIZkcgOUZQwCQLGdUltDCqYNA+XNcmy4PzGOknc59ZLN7gXvsqVs+cxVcWl08u84S98C1nmJxzvfe97+fmf/3meeuIRRuMhlx6+jHWCzzz3Saqqot/vs7a2QlVlDAYHDIYDppOaXq/D3nbEpcvnCDt7tNbb5FJgoxhTWCLZgjxAW89bD4MDrNLUCJTzk17vCsMTMvAyWBUESDzS0dY1VgqckJSNUbYdtTG2pK4KnDQg8LQcIRZpiAHCYytdQBOP55N2gxAZJSxSFJ0kUJqgrmm1WlhdYm0BMsdohxWeFiJUiKPAOou1rtFGa4/HExBJuZBRWleBUwQyWngJvljrS0LC4ZxpeMn2vgL4ZCENNBukH92f1CE/qN+aGw/n/9ZJqcecnFGfIHy8VqjHXOg+/7MHaQr3yTaakYZQry0teS2JihDCB64ASnj9XO4Uk8kUVMLBFJ6/tcthJuivbDKa5dy8u0NtHb/x6/+KlV6bSw9f5tXbdxiOR+zu7voRha19RzCQvPLSNQKp2Ng4jQzalFnG/sEuv/27z/Lb/+ZZHnvsMb7pm76J82fPkYQR0/GELMu4fusen3zuc558IU9wn08c35MymMX5sdbztaVANjzvk+fz5OjRB+M45iE5xvgx2rw4P6k7P3msF+Of+XXxOt8YfFPLLRA7cL8G/uQ1dcxv9e8ZfIom+O70cDhge3ubU2c2F6mLZVmyvb2NMYYsy8jznDiOObW+TjtteclDHDevIyiKkm63x8bGKe7du0ev3WkY0A8hFVy9+gKz2Yynn37ab8bdNof7Bwjr6Pf7ZFnmu8nDIbbWTIYjZuMJk4k3LM51761WC+d8Ctru7i77+/tcvnyZTqdDHMckScLGxgbOObIs4+zZsyil2NnbR8qA3/qt3+KFz71IWdWoMOLu3dsYo7lz9xZZPsU5QaQkZ0+tcXRwyGwyxjhL0vJFxs1br/DC859AVxNaUcBXvPv91EGbrUPDuF7jpaMVzjz8Vp55x1dyZm2VfuzH2056GoJQAZV25PmM6XTMYOA7l3fubfGmN7+Fl19+hel0ysWLl5BS8qlPfWpR/HS7fXq9JWYzv6mPx1OcFbhyytl+GzPe5cLZ0/S7vqAJgoA895HqQeB13utrKz5w5nVcc9bzg1Isa3UzEm/Qks34VZyYzJ38/vk6xn2e5L9arPVGubIsMSiSpEU7SSiKgkBFjCZTZlmG0Y44TVhbP0Wv32Jvbw8pA6yThGmKqfWCmnT37l1msxm6qtHas5HjOPb7jbH+ZougLv3D+1wqYWof8y3AP7g3Mo6izHB1QdSkdtZVSZIkBEFAr9cHmuRaGdDtdun2OmxsrFEUBVGUkGXF4mfzJjJDns9I4hSj/eekrs19so15IT2PQ2+1EgyGSTbFWEetDUVR3HcfnO8xWmvCJCYIfbDQ/D6mGiqO50bff0/8d8kxHtzbH/x68Htfr6W1pq4M8xAf3+0EY3Rzb/EFHljfcXaOUR6xN4VBbhiXMC6hsD2yrEAbR228bMmduOdZ59AWjPUNL6MFwkrfCUU2aE2BFCFxkBA4iXAhzs05yF5aEiYKI0us1dy6cd17J6KIUDk2T53i4rkztFsJh4eH3L5zkzBSOAxRFGGt5tlnn+XgcA+wPPLIZZ544jHyfMbh4IAkjUnikNl0TFWWrK6uks0q2u2HuHU1Z++lMUt2g2WziTrokb8i+dSvvMzRy5KN5AnMKMJRERAijGxSmh3G+ZwKJ8UC3UdzbxdqLnd1IDTWlTi0/z0co3ulWOwdSgmk8n/msXWquR/OG28KGUSIICSMo8XnKJDh4ppXgUBJ4ZF7wnpit9NeOtLsPTRJqQJfV9Gkofp97Ys/OfmS6EDjDFYbZKBQYXRfATr/oCql8JQvf3Jx3jk6J2nMSQ7+opsfTBZ/dx7CcVz4yc97jQd/7Yu44+KvOmEYWYy3nI8FPRnDCsfdc38jOsGixl+MDod2npMcBpLbt28z0pJuq0ulx5TSkc1yfvV3X+AzV1/h4TPLfO/3fBcf+tCHqOwNpM6Ie6fZ2drmVz/627zvq9/HtZt36S31ufuZ53jkjW/l9Po51jfPYwygNGU15c994NvR2vHQw2f5b/76f0W3u0w7aSMl/Mo//yU+8Xu/i+4sY+OOx8tpg8URxsF9x+a+tMK5zAN/U9bWoBBIFUCjS5ofk/lx1XW5eNAReFqJLyTF4oY3f71FEa4kaN8V8/g/bzp9PVcQGoQw4FQzpQiRIkAF9z+UnbwJ+UvPgXAESjYjdKhmI6zSvO3Nz/ArH/7FRdGxtraGtZZYgM6ntJKYuq6JGglAXVYsLy9jnEMGAXsHBwD0uz2MMZw+fZogSRF5ztd+wzeyv3vArdt3SVsdCAT7R0NI2gTtVYwxnrerFKauFgmcRZHTbrdRKiLLMu7evduYCg9ot9u0220moxF1XZOmKWEYkqQdP652gq3tXR66eJm8zJhmOe/+ivewsbHGL/78P8Bqx5VHLzHY3ebSpYeQUrK9NaDdDjHVjNHhFv3VFc6eOs2N23eIwpRA1LTTFnde/hi93grDqWG/sPy5H/orFEbwaCC5cGYZVc041YpwzjCajJgcbHHl4jlmsxkHlaYTxGysLy1kSGm3x43b9xhPZvTXNjk8GhFGimeeeYbR8AhbV+hKNw8tfqTYX1pBRT4udnDnHmESsXnhHLu7+yz3l5BSsbyyhrEet9RqJbz00ov0eq9vAV1VNUHk908jDHMuubEeI6kat7sRDmxTRD/g/fDGtoZwJPxneF44gwAhkcrjLQMVMTPCa/W37nDu0hWqckba6dDaOOXHrUnK9t4uW/du01te5fBgyMbGOqVVKOXodDoMjybUdc3kcJ/ls6cJdEnuApIoJJAeSZqbmlo7lC489kxrtPTkGVsJrLYU0xFx2uLg4IClqI2KNCvrGxCEWF1DKLh99w4Xzl9idPMGKlKsrm1QljnD4ZDrZcWZhx7G6pq01WY6GS4K3qrKqWo/HQ2CiMHhEKGC+2hSvV7HE4UWe15FnudMsxlC+/2tFlOCOKGVAs7fw3Tpw5ba3Q7CxBzt3aXVSphMp6ysrBD4oARm2cEf8xX1x7OMiQhjRa0rlBTN/UNjtKKoK4yTmNqiAn8dCqEo7AZbI4tih34iSFWbQbaJrhVWC6S0JK0OZTHGuoBAOZzWaOOJMlYoAqcwWoFSGCzOBsggpLYRcZBga0PgWkhbAhrjDNJCYQqS9ZiLjz7EO9/5Lg4nmjNrbU6fWiWsErI05e72PYK0QxxHvPzydZaXl7h+/Rrr6xtUtaGqSlrtmK3tOwShIEljLl68gHOOPG+TZTOqOuHG9eug4FOfyuilCb1OyC/99r/izLmLfOe3f5B9t8e3fPf38BN/7a/x8V9TPPa2U6y91SAaapNQtrlB+QRH0WiHwUt5rBToRvccRr6+Kaph08ziRPtaNBhhkHKeUGhRYYhwEaFUPk5dBFgUQswlRQIRBkQmQjk/zdY1FNUM6zSVM0gZYV3hTYy2pigdVakBg1SWIBA4AyqQDfLOwImMii/m+pLoQD9YaJxcJzudUkqEUg18+9g5fLK7+WBXFO7XnM6f0L9QF+W11rxj/VpGuQeNgCcDXuYotpOmwgffsy9OMuq6ZjzJ2NnZoSpKqnLKo48/QtTpMZyV3Nsf8Nf/xt+k1+uxub7K6ZVlTp1a5+zZTY6GU6698iq//hu/yc7ebvMg4jXburLUtWE6PuKzL3wG52A8rviBH/xezp07x/r6OnlWMp1OefHFz/Hy9Wtem6mC+/TFizTIkwaWE8d2cTxPnA/TMLJPnpuTkb8nz8P8xrIw3pz4OyeNS3NT0vy4vt6jSalAKemfsOUX/jg9aJqcr/k14c1GbgGpj6KIJElYW1tbdJO09i5qIQStJCUOQowxXL58mTiOWV5eRcqANG3TanWYTqfMJlN2d3e5c3eLyTRj3Eg85p3kJGlx+fLDtNpdzpw5s8DTCSE8oUHKpssWLaLg67pmbW2Nra0txuMx29vbCCGYTCYIIRiNRvR6PW/COjhgbW2Ny5cvY4xheXmZ973vfezu7nL16lXSVotv+qZvIgxDzpw5vei2t9ptJrMxw9EBjzxyiSQIuHnjFVpxRNWc//F0RISmnOwi833OM+SjH/rb/P6/+FnOrWoiV9FL24xmOUd5xf7OHT76z/8vXFVRzLwW9czZ83S7XTppQJlntNI2pzbPLI5plmULKdEckTaZTDg6OiLPc8IwJM9zZrOcwVTTX9kEEXHnzm2KbMZgMPBx5ltbhCqgLEvyPOfKlStcuHDhj+iq/Pdb84dUH3ZwYqp3ovs8byCcNMrO1xcyyTpnHvi9XeyHYZyQZRlLSz0fia412XTKZDbl4ODAs5cnU4oiI0kSHzpiDLKhwoxGIwBWV1cJA4HOc9+AaZopSZL4B/R557SuFnuLqcrjn8347uT882fKCqGhrDQWia6qBk8XApI0baN1Q9wRgk67jam9wTKIQjqdDvMUwfnXfDuYXyPzvUxKSRRFdDqdRZc7DMPFteGcx+xp68+Rcc297oQfZ35NhmFIVRWLXydJsjgGX4oGwC/G8sFqHq3oGzjH91/AY+gaw761urHvJNR6iXEJ0wJyE1OUKUpGnutsm2TNIMITZxSWAKRCKM9Odo2UyTmwRmK0wFrQi5/JeopNQ6owOJz1+LS9g33SdsL+/i6lrjl79izOGvI85/mrV9HWcPPmbTodbwAfDAYcHR1R1yUbGxsn9pkZn/3sZ8my6UJqB7CyskRRTDnaO+Jof8xkPMBWGZevXOZr3v8+fvzHf4KVlQ5f/3Vfg1AlP/O3f5LbL25x89oeadhGCj9hmUtc58fzteqc+b3ZT1D8sZHy/j1gUc9xv0F+PpGbZ2/Mv1cI5T1qQi78bEKIRabEPIBJOu+t8LWETyqs62qhKAiCY/KZUmqRmvqF9qo/7PqS6EDLMPLx2s7hjPaosxO1iNRevG+kWjhBhWmMEtZg5TxmVi42xJN4NThm7ppaEyAW3UwBnvTQ6KdPmhZNkwx1XOw28awOr91tCr55ZKiSElt5XaPE4/Bqp30kNZYgSJoPte8+SuvQtSZxkl475qWtPTbSFg+vtNgajbj60nVaxCRk/Eff9RfZ2XmVN7/5rbzy4sd507veRm4Dfu3mVf78t3wzKxunKLRhaX2Z7tI6pYUoCrCuZDSd8F3f80M8//zz/IVv/yDf8Z3fxpve8DZmkyO2jm5y+/ZNjgZTPvmp6yTtdb7ve7+DTWcQxTUfjNK8I6Dp5Kv7Plg4r2pSTuCsQwn/4bC68Og6Ffh0ovnuAxCECOsw2jSgm8akiaXUBqlCFBqlfdpUjW3SiLy+EicI8K/3ei6VGn8dGeM1WaaDUMcTEt08LDh7LAUy82PRRCVP84LTp0/TjiNu7R6wJpfoL68yOjxgPB7TXVpjf3eXjdU+w70dJILB8IgkilhdXydstwllgLaGC5cuEvlEG5586glqa8lvb3HlyhVu377N6fU1Xrp6nTe/8+0cjoZ005SsromigNFoglIhq6vrTKdj2r02KlTIyrK9vb1gPadpihAQRQmrK0t0Op0G4yhJ0xbj8YTt7R0ODo944oknuLe9gwwUWZFzZvMUH/nIR4k6HfLJkK/6U++lvbJGnU3pLC8ThDn9pXVm+pA0VLRbKaOjMVEcIJyPYV4+1eNgf0gYRsxKTZHNCJUg6XQJJjuo7JAP/9W/jBCOXm+Jqq4xWtMNJefXVjHlmBCNCFKGkzF5JlBJQFXMkP02tYPu2hm2tna4dfeIpx6/xOBwj7IsUTJg7dQp4jjmYHjEbFwRximDyYTN9XUGE9+NOTo4QFtJq79KFCa0AoEIIlrdPrqquX1nh+5S53W9drURVJUmjiQQ4qxp9iU/tnVKYvFBR1L4+F5pdSObam5GynebUBanvIfEiGbEqzwnts4KKlPTufQky/1VRoNtXn71BuubZxgdzjjc2uF0r4dKY2wmObq9z/bOIWfOXqazFHE0mGHqKWMsWZ1RW0G/36elasy8aYJlNJmStroYDZPxmE4nJa8twhYYU1EWOQKFFZKinNCNumArrIGoLjm8e4P+5kWKLKOuS1b7S9QyYn9vhzhW5JVDItnd3efxxx/n6OiQcjwg6q8hXeU/81gqazBVRhiklLWjLr18o4UkbnfY2FihlaQkUYhzNdKFZIXmYDDGGK/pzm2BthqhQ6zWoGumlfHj8CChm6YgLQGGIs+RQYu1jTZra2u8/OJVjNH+YRyfHDtfXjon/X4k728ILfwtzcgbwSLP4MH1ehbnUdjF1AOfeEuNlCEKBTLFuAARFGhtCKioDGjVo9QxebzCrOiRG02v3MCJLlkQQaCphaQWBiNDCDxeLSorEBBaLzUIiPn/uHvzIMuu+77vc86527tv7dd79/TsmAUDgCApkgAXgKQhUpIlandiW1JZiZSqxI6rHMdRpCylJKWUopKtKFVJHNuiFVuiLMUqcZNIyqJEgjs2YhkMBrPP9HRPb+/167ff5ZyTP8593T2QK1Gl6AKUWzUFzHRP9/S7953zO9/f9/f5QoZOM6zMyG1Cpj18qxmKBG08EjS5US5cSGsyxvhC0ZfbnD/9MM88f5En3/UYJ07M8+xXnsYPauR5jookN1Zvsr62wWPvfg+Pv+cxhoM9tnZaXLr8GqM0ZapcYWdnh+pUmTwd0xsNuH3jJo+/40Ge+fpXOHXmAt945tucfOA0P/zR7+NIc4ozDz3Iqxe/zef+8He5uXqH23dusrKyzEc/+lE+/vFf4p//5j8jS0LCagbSYI3vbJiiYDRLl4vhSRBKYHEBcEiQyuBjQQ/JLGjPJ9cKicIIixFODEJIrAhcgWtBqBRPhkhhQElGGLA+xjiWPMIRGqxxgxfCeCgvIhcW4SVgDVKPyMiwWUA/DdEoyn6AlEW3STimvZASh67PsMLnOyxAvzUK6PsuYwCFtA79BmAnPmfprBhCyf1hvcOq8GQheOPQ4BuVY2sdqkl6BTt6UuRYxx2eeJmtcKErILEI5CEIt7QHXusJGxncpjP5XgBKu4VKWPdS+74P2tkiJv/OQZKzur5DOfT5e//p3+IPPvcnvLoxpJ8KtJKkosyvf/x3+IHv/QDPPfcMzXrO5tZdZuaPcWRxjum5GYLQZ2p+lv5oyMWLFznz8Dvpjcbs9Ad8+rN/yLe+9jWeeOIJ/uP/6Kep16tYPeJTn/kcd+6s8sef+zztVodHH32UNO3y0MOP4Hd26bx2GVEM/N1/iwzCHoqMfQO3e//AYXH3SYDOC1V5ojgXRbfjbjtWtJvYB9+X2KJgz/O8YHRPqCgGJeX+ifPNVqA9Txb3U6FNhpDuqdUFpudAYXY/a5ZnsH/vLRKN73m0drYYhpJSHFOuBPs4q/HumF6vV/honf859ENKoc9o4LjE0i8xThMq5RLLy8tcu/IawljiepV2p0Oj0eDZZ5/lxIkTDIZj5hYWuH79Oucffoh+p7OvKmdZQrVaBdwQljYp9+7dY6pepVqtOuU7jveDW+I45u7qzX3kVxiGtNtt5ufnee2119AG7ty5Q2u3w/LysqN+dLuuizJVo+RLrr/8Auu3bzDVbHL8+HHau3tsb2+D8VhYWMRagyoJjh07waXXr6Bzzc72OtVKg0ajwTjNqFYi4sDhxbrpiCMLM2xt7uAFAf29LbI8odmYwpcQlzy6nR5BFDvbybAPoaC9sUq1XEEOh2z3B9wzBj+MmJtr0OuPC4XEQyiPVqvFaDSiOtUg8CTJaESz0aDX61Eul93HKnWE57PZ3iOMYmrNOlEUsLa2RhTEVMvl/dTKN+ty1iiJ0RP/8gQ1dTBvACDFgU3qcJfNeXKLjpRHEQ+du9AUR3lFIinXp8hESOZ5aOtiwEMvxPMCVu9tEHiS6dkZSvUazzz/Ev1Oj5WVYzSbTbZ299jc6nL+/Arj3DGe/WKw+M7d27z94bczGuyREhKUPKfmBh5g2dttgR6Sj8dEvs+gP3Ke1dIUWmvSHLJRlwiDEh5rG+tUj55iu9Xi+ImjSOWhc2fbMyjKUQmBJYoilyg5HHD76nXe/uRTiOSgKyeRDEYZjakqSrnOURCFxLU6R+pTlKOQwFdomyGkYJgMybRjcnvehN7kFHvlGcbjIYOhZJwZqtUq1joLkcKis5QsN+wNRhxdPuowhMU6/P+2Nr5xxujgz97aA4dChSjtbFlGZPgELvCkVCJNLENj8KQhz1OnUocuyjrVkrauOIJTELjMCSsJw8jxw60HuAPGvhIrBJnOCJQkNxIPF7aWmYTEZtgkQfowykfkmaSfD5CeRgkwIgEMngzJxjAaZjzx/iexWcYLzz7HXm/A9tYaG1trLKx47LRbnDlzhmazybVr1+jsbvPA2XMgFFeuX+fSK69w4fyDvO+9j/Hqy6/QbLjnOElTPvaxj5Fow/ue+G42Ntb57qee4Jmvf531e7e5vX6XL33py0hP0GhM0e33+NLTX+aDTz7FhQtnSf17KOsivi2yiDtx5ysn/Li5CFmELFEIWCjp6hobYEncJidyrFGAcKo2Ek9KlKNL40mfI40+pbBPKCHNA+6lc2wNhoxzh5mTUqKMJXB8gSKcKQDP4QW1tujcojNLlhls7iGQeJGHEK4rK6QgCAOMzUFrbGqw8juPZXxLFNCHPc8AOiuGAdRB5PXkvzrXxRBZESepFOZQ6/ywb/bw0MWk2JtwPK02BAVn+HCUdGY0vu9ughQeUhcT07JQW3Abi/IOQlWkPBguVMVE9eRnUspD6xwrDdreP2A4KcCHMmS9l3Jyscnv/fbvo8Kcn/j+C1y6ssZ6O2NvMOLyWo+X/8kn+d4PvpOPPfUI8ewyiVGcffACSTamMTON9D02b20ihMcv/uIvstPpEEYVfvRHf5Rf/59/hXq9zpGlZXZ3W3zqk3/AP/xHv8bc3ALnHzxJnuf8+F/7EeZn5mnOzJNlmnKtwWDQdx2BAse333axLs778MFFF5YVnedI3y/4mSB9RW4sRT/FvUEKionF7HvZrXURnlK6dk6e58hiVz88xClwjGgLDmv4Jl6eMmgyhBsydou6tQhP3KfeKARo7dLYhMWTAk+BNBJTJDl2OxlBTdLvutYeWru43qLlNRwOqASeS0fLUxbm5ugOxwxGQ6xUKM9jPBrRbrcxxtCYbhKGIbXGFO8++yBhFLPVbuP7CaePnEEUE8knT55kOBxSrsR09nYZDJ29YWqqzvLyMvVqmV6vR7fbxVrLzs4OKysrbG9vc/To0QPLDYJGo0G/33eWDQNbW1tsbW2htd5Hv8VxzJ2rl6lEPqP+Ls9/46tMVUvcuH2Hmbl5rl+/yVStTmWqwWDQo9koc+vWNSqVGGMMDywc59btG4yGhpMnznH3zm2OLM9z68Y1lB0z2ywj7Zh+v8+RB46yeusayzNlkiRF2hHK5vR2d0jTnCy3dJI+MzMzKK9Ep72LNmCjEF9FLK8c5d69dRYWFvB9n+Gwjx+GRHEMxpCbhOZUnV6vh5SCKIqc7SUZ0qxP0ep0ybMROnebu9EZAk0pCljf2HoTn1x3qLVGoLUt2s6uuzYRJyaWITwKKxaoAuruhQ7F55UmnFeBsI7eIbBOfVYCKRUpAQkRM805uu1Nhp0+SabJM82TH/4r3L19i+E44fbmFUqVKuVSFd/LsEC5ViXu54S+x8svX+TUqRPUKh57uy2a9Qajbhvf89C+o9FEUcFlFpa4FNLZahN4HuNxgu+XSLMcK1xQTLfTRmYjpptTfPvFV9g1itLqXeJAME4yEjOmWmtgdILn+ySZoT/sU6lU3GF4NCTPBuSZwUpFGIZuQNDCsRNn6PS6ZPmIsBRQn52lVJ8ijkpgNXkyJtUpOjf0RuN9a8rk0BLHsRuy9F1bejDokSOpyzpauz1K2Yw0TUBFKF+Tpin31tb3n8U3Wg3dZffX2Ylv/Y2ik+Xg7xwuqN3n/rt8Iv9il5AeSpXJ8wxtRki/ji9C5ipNxn7GKBmwNxohZI7RgjzVeEGEQNLRTUzWx6oYaSVShfgKAumSiwVg7dDZNGyOtZLE5BijULkl8yAzKYkZoyUIa8iTFI3C2OLZs6AAISRRVEKPIPYjzpy7QLvVJYzg4t11hsMhrfYmjUaTr33jW/SHY6Io4uLFi3QLYksQBHzyU5/hgXPneOx9j7HbavGpT32GUZrwrne8nSiQnD59hltXLvLe9z/OyHo8+vaH+Fef+JcsrRzhmeef48tf/To77Q6nT5xkp7VHGAbUavCrv/or/OzP/iw3zAaRDBAiI7OGXBTiofDIcAjL3OR4xUE6w2ClIbfgSwFWoa3nBg9xWGCvSBtWCDwc3laiODq1x4Xpq5SCXRqeopcFZFvHGXhTtBMPbQ0S8AwII/BU4J5l6bt7YlIEjohmUxinHkr4juqkXOiXVCHKL+EFHjbP8GyCFhlpbvD8/x8mEcKhU7Cx+9aISZvQWrNvAJeAybVrLUtnjThgCB8oJBOKwxs9PJOi1djicz1139eQ9v5pZ0Vh/xAHPqfDXprJQOIEY57MAfIAACAASURBVDcpkPc/x7pNhEODdJ7nkeaOd2yB/jDh2q1Vlk4uM1OfZ+VYk7WdHaYrHi9d3WJjR+Mfv8CP/ns/yB9+9gvc3cmIKpa91j3m5+qE5ZS1tTWM53yae/0+73//+/nqN77OP/jP/wuWjizjqYg0TfnEb/8us7Oz/B//5DdYXJjlzJlT/J2//bM8/eWv8K53vYvZxWPoNKfd6RBKSVCKXDBAfj+VZOIZcxaMg9f3sNfZaoPFBaOoAvJvcdabSULRxCc9WcSttIXaf/9w4ETNNVrj5Gjc57zZCrQELYqoYtyQq7C2ANiDMZNQn4NhWFUcxDwlCALnbQNDFEUsHTlKqVQCXLci0/m+qh+GIVk6JvBC8jwlyTKU8qk2ppibn2ew12Y4HHLu3Dl2Wi2klCzNz3P1ynWac/O8fuVZ3v3e93N39xZ5npMUgS3tdpu9vT0a0839AcJ6vU6SjDDGEAXOu7uxsUG5XGZlZWUfnWetQ9r5vs/G+j2H2iu5QJdafYpms0lrt8OZM2e4cuUKlVLE0tISgcnYWl9FCZBC0+120blhff0my8srRB5cu3aNmZkZ+v0eeZ7T77WZm5vh7uoqzUa9eH9lhIEL0jh69Cg3blzjypXLnD55ik67xfrababnZrh85XWa9RrNeo1KOaa91yYIIrLcWVE6/RGDcZ+ZWpnBaMT87AKXrt1kbm6Ohbl5OtstopJPpRyx1+ljjOHI0hK6UmJ7q4UQCt93oSrGGAajMUm6Qa1WJU1TBgU7WyKQ1jAaDZifnXszHtn9y9ECLFZO3r/7s9HAAVVDclBoKc95bZVSCN9HFZ58Tzn6gUBjjMYqhfWsS1tVHtILXOCM1thcU2k0SNOU7XaLo0eP8uXP/RHvet/72Nju0Ov0AEGqc9JMg3T/lvmF5f212fM8smTEYM+lcI61h9ZuViUIAmq1Gr3WFsNRn1woQl+RpBlJpinHCrRhuNelGjqFeOnoMRi6nzf0PEBSqzYQwoVEuKC2g0FxIQS7LYdAtNaipAuC2NxpMT07R5JpgrBEkjjVvNaYolyrEwU+g14XIyDLLYIAiwuCCAJFHJcZDsf7Q/F+6FrfeZKgJ6LCPs3HrZn94YiZqVl22+19jORfVEX+y+iTVr6PyD237xiHSfOlIlI+1hcuRTPP3RChcgW0MM5+iQlJsx6J1XjWDa4J4e5pnmXYIk7aeazdPUh1ghVQDuvF/uVCgnwZYLVTtzNtyHVBoii2LqMl6TilFgUEyqe13WJ2Zpk/+/ynuXdvk8EoYbpWwQvc0PX58w9y6tQpNjc3efzxx/nin3yebrfL/Pw8ly5d4ty5B2h3OuQ6J7eWTqvNeNTj5NGjPPbYu9ndbfH157/K2fNnWFqc5w//6AvcvH2LUyfP0pha4LVXLhaHYsnG+haValjYn2SBr3Mpl1o426kVqojgdqfq/c4Uuog6t2RaIwxoZOE1146QYYXLt5CySJqWKCWJgz2moy7l0FCWGl9mlL0+HjHCSJfqKi06NRjPx1qH19x/Tq1y99F6WOMIPYFwydKeZzHaR/khvoyIPJ/cJliD49PLA9/1d+p6yxTQ+4QKo/fDVETx4udF2IQxZl8dzrKUoChaJ0rafUOFnkJyoBJPCueJCj3hME8QLWLilS6KsklWO7KYQrUg1GRozbXIbOEV0zo/IHxkGp07RJGVzvphrUuBd5xU1/1w6VHujeqHEXc22lx450N44QhPwAff+S78MOSDT+yxevceDz78ATqDHid+5qf533/j43zl668w6m3z0IUTfODdb+fsg2cYpIaZuVmm5jyi6jQf+ciHae1scPt6n//zE59kMBrxmU99kZOnH6C7t8cv/9J/w1NPPUVQanDu/Dsx2qKNOyxcuf4675wNGKVj8tzgeQpdKKXAPsNWCIHQxlkzhPMkT0IYpJSICa5G+fsPb567Nu/Em2c5NKRYeCqFcIqtK7YdwlAeXuyLeyTe5Da4UsKFaCiLzkzh45Jg3YFBFW0jXyq84rUwwnkTvcKfFYehy/iRlvbuGjSX0AYk2i3OaUoURex1hoRWYHPX3nVtaM3m5iZZbjA2Jen1OHr0CLPzc2yur5Fby+zsLF/60tNMz7mF+IFTJ1hYWOD61WssLLiBwq2tLa5cuczJkydRSmBMTqvVolQqsbvr1ONTp04dep8aBoMBfZMyHA6J45iFhQW2t7ep1+usr69z48YNzp07xwc/+EFu3rzJ/Pw8whq+8PnP8/bzZ6g1mgxWodfaJq7VqFcqpHOznDp9mtWblxBCcPPWHc6ePcHKygp31zbBasqlCp5UpNmY9tYm25vr3L094rHH30tjukmzXkdIwV5vj7NnzuD5EWcvlCEZ4ivBOE05dXwRLQMuXryIX6vgl2KCikCJnEh5vPDiS6hS1amKwwFx5JOMRyjp2ui7u7v0u05h9H2fLDOkecawP6BarVIqlchzR1cJwwiJYGu7QxBWGA57hGGJOH5zg1Tc0Jtx0b6mCI2yB4atSefD832U8tHaEpZDoqKTYJRHEAVYKfCEKKpvgSkQXEI50SNVAVaGXHrpFc4fX2aYjGklOdlel3c89l185ctPc/L0KbZbO/hhzNTMNJdffY5BOqBSm0KgaLc7LC4fZ6+zgdaWQbeLFpbYZiS+T2ZDvCAk05Y0HdPe3iQd9giBzt4ecRij/DJCjxkOh1jTx7eaualZRBgRRjHjbodeZ0D/3haN+WPMx2UGe23SZETgO4zeJFBEKYUUUG82XUdNBigvoFots7W1SZrnlCplSFK0NVRrDaQfUq7WGAwGpGkOBCB8phozxHFMMh4ShTFKKdLMdVCDIEDg7B1RpcZwOESoomgnp9PpMju/SJ5o1lbvkhtNIP9iUdt/GYtncBYOIwauMLI+kxArrMVD4AnHJ8+yHKklRgEIpDaAh5AeY51RUhCGJRSaPEvJCyx7nhly4+axshxGmSUWiiyYoNGcXclmOaFS+J5HkrvXM1QKjasplAyQQmBNjrFDBuOMBc9n9e4aw+GQ933gQ3z9y/+G+cUyyytHkEHMT/7kT/LLv/zLtFotfvo//A/odLqs3l3nr77jHbz94fP81id+h2/fvMr8zDS+J1k4scIoHZEbzWc/+1nOvu0dPPOtp5mZbbC2vkVGiavXb9EoVxn1NTpNKVdKtLf6fPR7fowXX36JxScjApHh7CsaLS1ZgYqlmDPD5vukrdy6hFJNhrJuXzbioNhF5G4pmCwkUoGw+NIn1l1qIqVkA3xjnLKdD/BtitEBHhKbp0jpxLVMCjzrBFHpK8hDsBpQ5JkCnOATBRJPgh+4ELBAhm7AFklmNcIPyVHI73Dw2luigD6sXu4jzISAJNufphRCOGN4lrlFzBgX8KENmuR+VVgowCPX6f5i5/sKaw88urJQDrC43HpTxEK7vrs7CRUDFeSFMiG9YsI6Q+CKeQv44sAPPGE7T4JF3M0uivbMFT3CghcEpLnBVz7DzphqY5lf+fiX+Xt/6yl6I7hyZ5UcxXve9xRnH4pod/o8dOIYUezTbP5N2q0uT330Y/QGXV779jf4+je+xfLScYZxDz8s88ILl3n50hUuX73Fy5eu8JEPf4TPfPqT/Nr/8g954kNPkGeGIyvzBKVGYYGxrgjME7burfLf/dIv8Fv/9X9CZrMizASkJ8jTxNleCiXo8LT3BBc4mZp16T84JqTJ71uwba73VRbludc1kI4Pqa1AWIlnMhLjDicyy53VIXCR3vtRLG/yJlAKJaEtoVPFwBhCmQPK2Y6Me5ZlodAJNIHvoTy1z4CVOB+q1posF0T1Re7d26TZmKbX3cYaTank0+t3CMISU2HAsNfFCkVUrTHqDqhWajSmmywsLLB64xY5kpWlZaYaNe6sbfHQ2XPUF48g/JC1225QZTQaIoTg9u3bzM3Nsby8jO87n2er1SL0fGqV2JE1bIlyuczVq1c5evQow+FwP2q5VpvGaOjsdvE8j/nFBUrlmGq9hpAe/X6fO3fXmJ2dLVrMd513OTckiSZVFZoLFb71wsucnp9m+dQphr0242HCbLPK8uIcfhDT3tpmulZ2yrnJ2drY5IFTp3n22ec5dfoonjfH01/+U37iJ36Kl158memZGp7QvPDMN3jooYeI45jVrU3e8573sH7nNpvbmyyfOEW9XnfRzEEFmw4ZaENYiplZWMDg0el0KFUU4yShVm8UqY85oe8zSoaMBgmNSkzmB6TJiBOnTpGMRnTb20zPLtDp7jEeDfFVwHA8xvdCZNzkbmubdKvzpj67jvFqCoHAtVyxBknmLEF+CT8MKVea+/QXr+RQcWEYYn1F4AeO+y40wliMjlCehwp8N/hjNHpsicsN3vXORe5ee51Wf8irV1d5+Mxxdu61ePhtb2O8u0UvyZEio1apsHT8JJubm5w5e5T+eEin20Fv3GGqFHLzzk2atRo6zbl85SYLK8tMn57j5q1bnD9/gY17O9SiED0asLZ6DxWUCD3oDruUQx+716MaxywuzDmXdlTn9RdfRZWnWd0ZcHKmwua9dbwoplZtcG/1LqcvzJJlCXudPaamHe5xkCX0tjosPpChpUdUismyhGbdMhrnYAQiiOj1HN5xZf4oSvkMxhkCxbDXITeGqeYcnb0hUo7RNkepkLLvU4oCht0uSZLghzFxVKabJNTLZWolxb31TUZjAyrkxo2rpEUFaJhwiAuBw7hQa7c/FoOFUiCtwk4804cSwCbdMuv8OHDfEvvmF92hrLFnWiB8QhGA9RllhlworC8YjQeYXJPmFmMhjxTjNMELFZFfRaYaYZV79qWrMRoiZJDlpHlGLMsuhl5qQKNKAVZILC4yXYocLcZYQryJJVPmSBNgjEstNMZziq71XQKfzdnqbtF6fo3+eEQpLnHj2mVOnT7LpVdfpW982t07/NOP/2Nq9ZhS5PHqpStsbGwwOzfN6ZPH+PVf/3UeOHuOd77tIUb9AUk25uTxh5iZnyEsVfjbf/fvo8p12r/7r1g6scxya8xuu0trc4vbt1cJohKlWozyBHPT05x76AGefu4mJXUEqUYgc2Ds8iS0u/eZSTHWBc+gQ3Kbk5oRecHMzowm9JWzb0gPIRRKazAZWInJfbTwyD1BZqGTZmz0oV5OIY3oJjlrA597XUWeaZRnkfhEQuHhUgczDJ7vkxmDsaI45Cvy1EdaQVQS+JGDGAgDgTIolaGUiwgXOkALQQDk5N/RZ/EtU0BP/iuEcOlXbyjOJurkhNpgrS0m//8teCVcUVx03A7ZLv780Nnk63vCpWi9cXmQhxQZDvnGyA3aZmAtxgoXz33oEDD52ofxb5N/5+Tjk7jxIFRkgz1SUeLpF67x6AXBykKd3//kH/Dq9Q1KcczGxhZLSwt87Me+H08qlpeWuHX7Gl7gc+3aNbQ2XLtxi5s373D+oXfwlW+9SH+ccHu1S6+nubd2g5/56b/Bj/7wD+EFirDcAHLHUTYHr3EY+vTaHc6sHH3Da+980E6Zd4zYw4XzGwc1i9/gKYXBMTwmeJrD6LYDX3PRCXA3zCUOaRd9Lox1Vo83vH5ycsB5Ey8pnY9bSIGnXCyvxA1NGGOwBueNDbwCsxXsPyNKKbdIZRqB5PQD52iLmCuvrXLn1g1KkaJWraKtpVx2gScxllTnTE1NMRwM9l/v27dv0x8M2d3eZmF+mv5wgIdiMBojlCPLLC0dYePuHQeoL+K/hRBcvnyZY8eOMRql3Lhxg8XFRTY3N5mdm2Z6eroIgchYWlra919O/m4QBC4FcXERqdwz3e/36Xa7NOquqG/tukHFXq9HHMecOXMGZQ2pH/DM+iYPn15h4cgKi4vz1Go1Xn3xG+g0YW52ASQkSYLneQyHQ9I0ZbfXZ6bp1LgzZ04DUK81+K7vejcXL16k1d6h1+/wwAMP8MpLL7Oxfo/jx4/z9rc9yje//g0efPBBBklKp9XmxMljvPTiK4Rx2R1oLASlCNEfkiYpU/UqnW6bpYUFR2dIUjrdLo1GgzzPiCPJ+vo6y+ceobfaYW9vj26nw4kji4xzS3OqztrdXfQ4JUkzvLJCCc38/CyDXu9NfXa9/cCTyXvSvVetdGz3IAoJohJeYetRSiFDDykkKowQvnLtdOE4ukZrpDbIoIT0fZQfYfOcbLiHUJKdnS1eeeUVrt68zePveZLWxh38KGRt7Q6BHqNKFfzAqXalqIynAhdAU45JxyPX9SqF1BsNrIAsyxkkKXh+8Zx7ZOMEozP6/YQ0SfCCkNRo+sMhwlckox5lWyLJBS/d3CRHoIMhtcYsuwPNeJwSxQsIq2nWa3iex8LCXBHM4dasPM/xjSEIArTw98WTybrkqQBrM5JxQqlUcoPmeU4QOESaUq7gUEKjhWCca+qzC6SDLRy0wEWOZ3nCKBmT5zmVOMZYiwp8t4YITW4sUVzh3tYuOzs7+4i8/XX7kI3jYN28/8/ebAHi/8vlSR9hHPpMCOHIKgi0gcxqjAZPeG7g7z6Pt/t7kRejpRN0JAZpLNIYR3USPtIlqBN6IUbnjswhpBukkxJrC2qXkM5SINUhtKpAWjen44sIpSSeDOi3B8zXq/R3dgkDxRNPPMGlS5e4efsO09PTPP2FrxBVYo4eWeK9jz3OxZdf4aWLlwnDgO/7qx9heXmeTrfHc889x6mTD5AlCeOxx/Xr13nxlRdZmpmjMTXFI+95gh//63+Tn/+vfg4rJLWyY81HUYQfhnhSEMch/X6XuQVXRKNGSOGhhecUZCtdQWzd/mWNwaCxnsbYvBg+FhirkTicn8PYiYIVrxBCY41AFMmD2kqGaUrPV2z1YZCBNIZO6tEaR4xSgTUu2EkpVxhL2N/fJ2jACckr1xajJaqYJfLEgfVMSunm5DyD0Qn5frdbcB/e7TtwvSU40JPrsE95fzBJyvsWqElq0+FQlINhB/btA9Y4W4HzSRnnb7IHCYL7XEBTmP6MdZ7d3Hn0JiEieT5JP7Qk42ExBGScCq6LVDxrMHnqWjWHmMWOVsH+506KxcPFv9aaUjjke957jIVZj69d2uLjn32e3/zsc4j6KS6+vs7M8lkuXV3lM3/8Vb73+3+S1169w/a9HW6+dpGtW7co12Z54Px7GOmIF15b53/8tX/Gi5evc/HiRfZ2Njh1dIFf+C//Lv/DL/48jUaNMC7jewpVrBRK5AidsbF+m+e/9jV+/h/8fR5ZPo5UkKUpeeYCIKwxeMJ5vozW6DzHFg82cJ//2xinbFnh7BcTZqrVxn2tQ8V5PnahKtq4rHpjcmw+Bm0ci9rY/QVqP0r9DbjCN+sKPIWvDL7SlCJDqSQolSylyBCXBJU4pBqXqFVj6rUycSmgFLlfcckl9pWiClJ6vHzxFWr1OibPqJYDht09kjSlUm9graXRaLjnRkmmp6fZbbVpNpvMzMy4ob/ZGd77xBPMLx/Bi0pcvHyV6fkFvvatbzJOM65ev8nC0jJpmhKGIfV6HS8IOXPuPNOzLjVwZmYG3/c5evQonYLQMT09DcB4PC4S+yS1Ws1FrRaM9EkKW5IkXLlyhZWVFfI858aNG1hrWV1d3T9Ezs3N8frrr5NlGSfPnMEqj6gU8OqNq9RqNY4sLVKpVOh2+0RhzGjkeMHr6+tI6X72IAjY3d2l0+lQqzXZ2trBaEur1eLkyZNcuvQ6c7MLnDlzjnqjSugrbly7QhR49AZ9yuUyg34XISxTzTq93h7jLEcoj3sbm+y0O0jls9PuME40G1s7KAlGJ5TLZYaDMe1WD+UHLB5Z4fLlK2SZplKuEUUlBoMBo9GIu2tr+EHE3OISpXIZi0SlPZqxpOab/6dH69/55RdWImtdoJO2znrmlSqUqg3KM4uUZhYIp2b2fwWVMmG9StSoEdWniWpN/EoDVaqi4hpBuY5XrhOUp5BxFVGq4fkRIElHY4Io5JFH3oUejZmZW+Du2j3iSo367AJhXCaOS+zutqjWypw8dZyoVuH1q9cxBkIvYjDWLB87TY6ktTugVJ3i7maLvd6QUlRmPBoRxzHKQiWI8cIYIyUp4KuATARs6jrfbll+72qX33pxm9997jpf+vYVXr1yg7EJuLK6TbVcIx306O11sFniVN08p1qdRNobSqUSKysrbl0XHp4XYAx4XoDv+5TLZax1CZ+TQtrzPMrlMuCG1LIsozEzy/TsDElmSDNDlht6gyG7e13GaUapXEFIj1GSOk5w5GK6o3KDcZLz+qXX79vTDKCtxRTe3kkHdzJ/M7HmHP4Y/Pn9d/Jnk+utUmwrC37R4VXCx+JhhEdmBONEI1FEQUy5VKFWrmBVSmJGIHI8CdWoTuCVkEKgzRhLSpqNMXmORIM2GA3KepSDCrEfE6qQSXquO0z6+DqlIhI8PUZZsLlE4OOrkJIXo/IAmYd012AhOEdMhfZaB7RgOBzy/g98iONnznPr9ir1xhRprvnhH/5B/vW//j22tjeQyrK0vMDVq6/T6XTojg1BXOYHv/97mZtvsLJyhNdee43RaMR4PKIUR3R6baIooladZX5+GSmdn39vr4+1llIpRCrD/MI0V9ZeRwcG6fkYGWAIyKzCWI80M6S5xuSZ6x4bTZYP0UVX3wWmOUVYWwXGRwkPURTg1iisUfts9LHOGKYJN9olXtg8ylfv1PnT6wFfvVVltVdhoG1RQwE2QBQozEki9ETEMSYH65GMIDeuyPYFIA7ms7TWmDwlT4ck6YDcaLwgQHkxBv87+iy+JRTow6l2cHBanpyoDwdUOIXa3ke6OKws7xfb2vy5aeJ/20AhOIXTTD6mXba6WxQluc6LgbliUZooysW/x1oLwqkvVgoE3n2pg9j7LSqTAUdZLGQYqFbrPHr2JAvP32W3qxkP++zsaExaYeHsEv/Tr/4jVpaPUJuqUelb/q/PPE255PH+9z3MzFTKy69eY3vn23zhz54mCDymp8u87eFTPPTgBcrlKjpLeOjBs9xZW+X8whHnKtEJwlqS8QipBL4KuPzqy9y8fJULZ88wW4/QWU6gvPtCTCYYOmGK9MBi852o/Ic9shqLX9wzaw4GBf/cdHhh45gwZa02aJvjCf8N9/l+3JI1xvE/38TL2oIHjsEPQgJPIoXEZO7g5PsKKRVyEocsJqmLFPQWD2ugVmvgR5osTfizL36B/m4bW0Sbb21tMR7ucWRpmVGWkmvL2toa1biMlJJut4vv+3T7A5LRiKWFBe6ur/L9H/sh/uzLX2J+cQErJLPzC4RC4wmnho/HY6zyQSpGiQtNabfbVCoV7t69y+LSPN1ul1arta9YO6XaAf2HwyFZMmZ6epqdnR2SdMTJkyfp9/tUq1WkcBaI+lSTbrdLFEVgNLdu3XIkHGvpdDo0FurUKxW+5yMf4mtf/BIy63H23EPUG01ee/0K3W6XOI73Ew43dlocP7rE3m6H6Zkm169fZ25ujhdeeJHz58/y3HPP8OSTT/Dccy9w8sQxQgWj0YhKpUK5XObWrTvMzc1x7twZvvqt52m1dqk1mmR5TqVaZf3qDRrNaUZJQhh4lKIAT8BgMKAcheyNUnrdAXkOu70u0uScPH6CYW+Xft9tVBk5flBmenaJYb/LvY1NhB+QpDnNqSavvHKNer36pj67AlsM/Ejn2VQKL/CJa1OEUYmoOoX0A7wiyEcqhZASz/Md1cAL8Xy/eF9LpHGCwiQYRAvhNlwkw7EL+5ieniYoz3HphZd4+F2PovBpTMWkgz2C0EcKye5uC6GcarbX6xDHMY1GA/IMKxTbW20CP2Zre4fzJ46ydOo467t9gjhiMBiA0ZR8nzxzKm2W5/jKYzgcM87gmzfX2NOC3TQjEAElaWj1x6wszHLt1i2ik0v4vk+/u0dYrVMKfYajxA1gRSU3OCUEg8GAWlMfWt/ddjpR69PcDTRK5e8/w0mSEYYho9GI4Thnama2KMxcAFKWZXgEeEZTLpeLaPEQi0em3SCUSTNyP6I/GtMfjkmSBKkOBZLZIjVOmz8nQE06qJNuizkkgPxluaTQKDfViZJ+MYwvnc5VIFYlylkppAVyEDnG5CjhCj1PSDIsmckAgzUZmgwsbnYBp2Lj+VgjsaLIbyhmmZRM8f2UatDHyhKtYcYw1QgR4RUzWZm2KM+nWpph/VaXul2nXouZblZ5+umnOXO2xeWrN2hMTdO5ukqOw35ubm7ywSef5N/86ReJ44DFxWU+/enP4gXOEtjtdTh6bIWpaoXdnRnm5mfZ2dpC+ZKB1XS7HaRQTNWmiOYWGe4NsDmUKzH1eoXp6TIPP/ww7d09qKb42sOTAi1cUapxA8GT0CD3TBX4OHt/n14XuDprZGEQd/1mKSUUVCprLXkxDJzaMpsjD20kOk3QwidXbm4C60KdEG5WTHMALnCDnU6sxBiytBBCJzUcCmP1vgVYCUuWuVk5i18wro2z4XwHr7dGAS3kfuqZVRJZTEs6H+kB9SJPE6yUmCRBRCWEkgVMXThVUwpH6FAKbdL9Qm3SdpMyRaAQqsCqgaMlWOM80FIyiaC11iHopMTBvAGRuuLHWte1sblGWevCBnBFpe9BJixCH6QQOr6xxOjMFVsChPDITObicoXPdL3Bz/74B/mDL77K85euE/iu0P7M5/+E+tQ0L16+69LQrODK1mUkljubXYSFizdukg41T71rib/y4ffznscfY2nxCNXmPC88/y0effg8zzzzAk9++EOM2xtYBFtjw+z8MmEpZNTe5uK1l7lz6yYvvPB1Hnnk3bzngUX04DYiDhHGQEHbQAgoNsnJw7ofpjDx0gnhXrNisdapU9ulLVRqJRG5cbxtT4JNsamBuIyUbvH3ZICRbtAuzzKk7x5VK4vXb+Ix12+uiucpgRd6hL4EA3GgkPiMlTuJk8liFtWxZgMvRHgCkGht0FlOFJXY6/SwqoROBbVqjCn5jPopJhuRjEeE5To5kn4y4tiRFTpbW4zyMRtrd5k5eSmv7AAAIABJREFUcoJua4czFx7m+vXrzC8uI72Q6zfv8r4PfpirV69QiWJGe7ucfvgCd9dWkUFEZ7vNVL3K/Nwiu+0dji4do5sM8MKAqampfdazo5/A7Mw8WEcDmdA2Nre3ybRhfnGJ9s42u+09lpdW2NneYTQaMTMzQ2vXhYsEfsQkNe7d7343Dxw/wcad1zh3/BivXHwJT4YMevcol2e5ud7m9lefZeX4MWYWFlEIgjChFFeYm7EMekNcTLLH7OISd25f5/RJF4JRjWsMO22aS8sQleh3d2m32wSeT2tji/LMNIkZc+XGbRq1KSqVGkjJKEkxWc7y0hzbewOs8BglgjKSRKdMVWKEHzHe7aKEIZ6q0aiH3Li2hlHbdLpDwtBF4t7dbON7faxxSXaDQcJUM3AIzLBEqV4jqry5BbT0DmhDItNUKvOElZjKzCxhFBPUZ1BBSOQf2I6kcOtreEhRBYfzmhRjnucR+C7F0WQpnorwpMdme4fuYIwdblOqxVx65TXOnH+AIPDI0rFLGmy3mVtYRFhDtVxhs9VibtpF2XtRgCyVyIdjZpsLnLnwKNNTCq0sWTpmbDVSCVrtbaYiQToak1pJc3qe3nhMf1znmVurrI5Sksxw9thR1u+sslCu00tGlCsN6qMxO61drlx6leMnVhiu32Vh6Qiel5BpDXlKXKkwHPSYn18gN8XQOgahFFHsCDpCefiRO9zOLcwj2KVUqWLEgNCPyK2l1JjCSt/tGemQ0dgNXw2SEb4nXbphFJLmGmsMtVoNm6UYr0S3P2ZzbYtr126473dIXMiNwxMKYxxmjDdYNSz4UoHy0GnqCkN7wK23HFA+3opMaGd9VHhK4fsaJXxCr4JWghxB5EdYbRibEZgxVlikH2DIsX5xkACEzcgQ5LlA5c62C2CkUzk96WGkIrM5SZaipHJR0mScnUtYCFrUgz0EDdr9Clfaho2uRvqhE450xngwYiZsEjU8vEGHW3fXqEzNkm0M+MTvf4Zf+Ln/jH/5zz9OrVHl2LEVhsmYylSdVy+/xskTx8mSlOdeeJFvf/sl8hxOXTjKnVvX6Q1GHJlfRCifG9dvc/zoMmmm+fSn/oiP/dAP8zf++l/jW88+g++HbK7fI1CSmWad7t4e733/O6hPN7ibXqWiqhhhGViDsZBaj8wKtDXkxs0/hVIhhGKYDAseh3Gx3PhIobBGkFmDMsWQnvCKGG+BFQHaJu4wiYe1FTpWkmuBzl3qZhArSr4b1tS5QIQhqR0ibIq1bl7AitBFc2uB1oZxLvFwOFigSH320HnGeNRCehKZ54y0BiKqjToqrBKI4Dv6LL4lCujDDMqJNcMYlyizb7UQAiGLAqxAquFJhKOpIJRTUewbvu5h+gbaYCdhHhM7Ra73P8d9H7WvuO57bjj4ugc+s8KmUaTmwYHn2fGND/1+34ribrYvlUs5LD4nDyAsx5xIU47V4dEf+RDPvPQaBsFgWKVUjugPEqxyKqBVHjrXPP/SFcI4JBnuoYD/9hd+jnLsc+T4SYK4yjg1PPnkh2i3tnn/Ex8gSRLu3rjKA6cfZGZmDlFQQoJynQsPvZ0LjzzChz7wBP/in/5v3At7zE2F94XMTBbYwwglIQSqoKFYa93XnCgyheEfcG2x4n9trh2tQ7qWotHOXuMphbH5/mZgBM4+og0y8Pc7D3CwYbzZ6om2KXEUu5ZVBu4AVvyk+3uPuu81Qx+m7zklK9cptfpsQTvQjMdj4jhmNBoQhAGB5yK2g8hnb28PIQSVSoVW2ynEi/PzADz44IP7w5wb21uE9Zhbt25xZOkIi4vLbG7v0Ov1SIyLsf6df/FxMuFhs5RNJTl2+gTXr1/n+MpR1tfX2dnZ4fHHH+fSq5dZWFhAKcXtO7c4efIkvV7PqW2+jyi+5+bmJgsLCzSKYJGtrS3iSpWtrS2aUzNcevUyjXqNEydOcPvWbZq1BtPT0wy6PT772U8jUvDqkl5vj0q5xPzsNO1Ol3Q0ZjBwhIsoCNnZ2cH3fTY3N5F+zLETJxh292gX0eHTU3V++zNf43u/5708eO48O61d8jynFMbE1QqjdESpUsaURJEquEd/OKLX38X3A4eTau3R3euTZAnz000Gex2qtSnmZhfYbW3Q3+uCdoVOXI7Q1tlDhDVUKzXSNC/UR8dzdZatjM3Ne2TJmP5bYCBrckkpEX6ICkoEcZkgionjSlFAF0WyEPstbD8ICwxjsSEZfYC9E66wDsNwX5To9/tgFcMkZW+3y+LSDM3aPEI4DGKpVGZ7e5vI94vuhUZIy/zMFH4Qk2QptUYD6ysyobi9tkqv3+PsqVPsDBweT4ahi1zONUqWGI87pGlKnmbEtSZ/+tItxmGMlQnLczN0dlvMzk4zSJzto98bcOL4cUw6Ii7XEbmh2WySo4g8Dyske3t7TJfKbi+xljR1nlCl3H5yeD5gcjgJvJD61PT+2tXtdlk+eozXr19jfnHZPX87a6yvbTAYDOj1+szOTBFHARJBfzhgenqaOI4JophxmjEajbhy5UoxP6Fc25xi38oPsGOHrY6Te7iPwSvu/eGPTz7nrXyZwgPrBiJzJIrAC4vhdovvB1QqZXYGW4z1CCMyZ32VAqMtqc5I8pRMaodk02AS47rWwllrBAItLCALJTPDSI80zykHPg3PZ843NKMe0KUifUZ6hr3xjBN5cIe55nQNNXBM/qVjSxw9ssLeQPKHn/8yVkg+90ef5+z589z406/wgz/0Azz/7At4XsA3nnmWf//Hf4yZmTn++H/9xyQZTNXdkGpvMEZKxTe/+U2syZmdneeFl17k5MlTPHzhES69+hq1xrTrZngBU80m62urjK9e5aNPfYiHHn6QNNNs7oFQkGSpAwkIhcV3ISU5gMALA9QkSEkol9Mg3MySEj6KCfRB7SMvjcxRFGx4I4rNzuzXENZkiKKD4HkOiYlxh0dhBcqCFB5YVw9YI8Gb+Kk9ZwU1jjEdR2WQLodBW0luDeMkw44tModMSoRSKK9KOW4SRY3v6LP4limgJ0qGyfNCQTb4qrBDCFcZW4o3t3DeF60NpljIlO87AkZhkbCFUoq1KOXhBw5yj3RqtyomR33fB3u/peCwZeS+4r5YENM0Rckiltnmrjjcp3YcKuis81XnJsPzxH7QiCzYk94EszfWjLViNBrxI9/3GFMzS/zMT/0Qv/Gbv813f/h9DEYJr11f58q1Wzzx1A/wid/7PcpxlZuru5jRkP/+7/wUb3vnWR668CjJuOteM98jJOfevXuAZHqphlKKSmOGoFRnfX2VuDblkq3CCB9BNuyzcuJB5vychsqRsvTnhjknvu2Jjy7LMjAH6oUniyj04ueceM+VPBjCATDC+S3zNMNDkGEcQ7ngSwspCaVCZ6nzkOdOud4/wBRv6jdXfwblGbRw6DptPHzlMIWyYNdO4hg9LyoOGwIUCJx9I8vA9z2CwCe1mmrg46uDg5fOUzqtFksr08RxhV4yoL3Xpez7VMMStSmPmblpBoMBV167zNTUFEEQ8MCpU7zy6msEyqPZnMaLyiQaIhmwuLRCYgRe4FOKnEXn9AOnsVnKeDzm9OnT3Lx5kzOnTzoFudXiHe/4LobDIVtbW8zPLaJzy1RjGn80JIoi7ty5Q6NS3i+otre36XQ6LC4u0u/3CcOQcrnMsWMnuHr1dXx5nWw05OiJk1SaM1jl0Zwp0R2kzC42Gd/ZoKzKXH31IuXpBaaa02xs7yA8n1IQ8H8z96Yxsmbnfd/vnPNutVf1fm/fZe4y+8YZDjdxtynFkS1ZjuwosmN5QeIPFgw4ARI4TuIkQGDkUxLEC2LEyiLHimI6oi3FomSK4iJqyCGH5HA4650703fvvfZ617Pkw6mq7jtWbDggMnOAQmO6q6vvvO95z3nO//kvSc2nMoZBi2le+BhyIXjsiad47bXX2Npa54PPPsSbb7xBvfRJcIXTzPKMc2fO8tprt0iSGRceephr165jZcjW1hZ37+2BChiPRlRFiRVQWMnuQZ+6MBwP+tRrTZwMaLdC8rJARYpQBTTrikazyRuvvcXGxhppmtNoKNqdOoGKQHjx52w2o1ZrvOf8feGsd94ARNKg0esRtVrUmz2SJCGp1RCBIoniZeEl5+teEAQoySkEWp5Yhs4fygUIsX90SKvVIS8t/eMhk3HOo489xHA05tLV81RFgi5TNjc3yGYTmvUOkfSfVemCKKkR19c5HGXYrGQ2S1FhzPmLHUaznChMCMOQoiiI8QfMrXabybgizwukSohsg8MgJp+O2eitkk081cbKirKqCNKC1BiiRo0rly7xta9+iZ//2X8TJxQqaVIaGIxGrHS9KGuhY2l0VubrYbIMANOLPcx4Gsbx8THr6/6AK4SgLEvefuctHnr4YZIk4cbODTY3N/lW/wWKoqDR8KmfVWmYTCYkSUKj3qIqDUJpqsoyGU8ptUXIwPNQjU/e8z7W4ZLfvACPFuuudhZt7ZJaWBl9n5tRGIYYd/++934bFZrUFoRuYZs153oToUVAo96hnnRYiQMOJxan+qi5/1xRVMzMmFSXBIHXXiw0OQINwqJNiZACb4QbEAY1ZmmKdiWNxrxjYyxC59SNhiqCKqVdGoLQzNd8gXAVwhg6jRZvvfQGaadNHNV4/bV3+OM/85OkWcmjjzzNtWsvM5nMuLFznS/+5pfY2Nig21nj+Rdf5rXXrtFu1/l3/vTP8muf/xWEEHzwwx/jB99/iWmW8cD58xwe7PHcc89xeHjE8fExzXaL2zd2WF9b4cM/9jGs1fz2F8cIV9Dqtqi0JStK6o0GpTVUaUGgah4I1Am6LMGFKCWpBbG3A8bhVIg1hiiM/Nwq/aE5VAG59a5a1eL/XYTIIIbK4oRPGFRCIlWI0P7gEyeBD6uTMZIaYaARQiJFRRBKbFXDynh+1xVOSIytURhv3lBPIuIw9PZ6UqCko9QSa0LKwlJNNWGnTRDVqak2bdWhFf1oC+j3jYhwQRZffD39vaVA8F1FmBBi6cuptReqLRaLBcVg8f7TPF5/4vGep6a639bk3Tzd+8QZiw3iVLG9EDUuuM2n/87iPVrr5ecsOGlWm6U4UaSayoZ8/YdvkDQ6IAWjyYx/79//i3zyI09z5fwmH3/mYX7yU8/yC3/ix/kTP/4R/qNf/AV+/qc+zbOPnuGnf/KztCJBFAV019awlWY6nTIcT+h0evRWVqiKklu3bhFFAaPjY5qNOt1Oa+5FbTC2pKoKiqJAzR8Qq819KPxinDbyX8bXLr53SoQprMNW3pR9eb9O8dydc547rs3ci9u/lvZ4wqPQ7pQS9+TfIlHKt8ffy6Gd9lHY8+tU6GruTc5SdLKwnlxsaMByHgjh5jwx4+OfhaCWxNTrdQaDwdL1Yjoa+8OMkyS1Gr1ej/5oTBRFTIYjRmNPk1hfX2d1ddVvxK0mh/sHFFm+/PudTocf/uAVtjbXwWoaNf+3RqMRo8mE3d1dhsMhW1tbzGYzjDEcHh5yNOiTVyVhEpNXJSJQHPaPl5HDi3Q25xyj0YhGo8HGxgZ5nrO5uUmSJAwGA3orK/RWV1hdXUVrzd3dA27eO+KRJ57h4SefJqs0/cGE9Y0NkHJZgEeRF2Zdu3YNKyCvfAiHcZZzZ7c4HvRptDrcuXeXs+e2+cY3v0W33eHRhx5mc3PTB7FMp5zb3iZNpygVsr6+ylvXr7GxscbR0RH37u4tC5zh0KOXRVUiwoQgitnY2iSJ6xwPB9RrTQSW3uoaSZIwGY6YTaYc7h+wvrnGcOjvjX/+S6bTKdk8JXJBf3mvo7xPDxnFyCgmTGqESQ0VxSfOG/P17d3/fTrSG+5HN621S/eU8XhMEEbs7R3MfcZDdnf3qTXqOHzqnpgX5p1Ox2sFpC+epWRZ/Pi1VlEWFbV6g7WNVUQYLZMUsyzj8PAQKSW1VgcZeDS7cIqX3txBo1BBRFUZkAFOKI/WqgBCRVZWdHqrVJWm3W77e9VoYxEUebUsmsvSx3tXVUW9Xr9P43Ja6wJ+/Z8MR9SbjWW3s1arsbKygrOW6WTiXQ6MQWJpJDWieadxmqWIQHlXmEDNw1csszRj//DI5xAI0MZ6u0DnLexODjsnh5rlPVJzcda8g7q8/+8SGy7+7e9Gr98PI7CLQ5zEYbzo3HmHhSAI/FoR1UlqbYSqkcR1Fo4d4NNDM12Sz0XtVnvQyzlHqALfTXMCi/RcTSCJav5ZnudSVEhSLUkryK0gN1BaiyZAyRqxTDCVpcpL3r72FuPhBCcTkmaXS5evUumC46NDHn7sMV5+5Yc8/PAVyjIniiJu396l0+n4eQo88sgjDIcDGnUfyvTLv/zLfOl3vsbnPvc56vU6b7xxnf39fd9tMBX7u3u8/vrrHB8csr+/y+7uLnme8yd/7t/mm9/8faJawtd+7+ukaQqACEKsdVgDgohAxDjtCEQ054sHOCdQMiYJE+IgJhLxXDQIOEMg/UHNzyu97LA6YUF6Ozo7N1kQwi0BSCmDeZhQtPw87/7hr78UIYgAZDj3k44ptEKiqCWJ1xjIACkVBp8AHAYN78sua4RBnThpEBARqtjz2n+Uc/FH+mn/H8fpItVpg5iHzTAvqHw6oSf3S6V8IaENZo7iBlKhrcEuPsOdJOEJoCo8H1qFAdY5gjBYCrS01tj5ZVi0u04sh/xYFtDzBTAIgiWXUyJw2hfcgTxJKmS+6ETzQt4a63lmUmLmrhblXKT34ps7/PIXvw5hzE8biIVib2+XzbUNVttttj/+UaaFYTCacOHiNn/jv/hPaTTb/NzP/SneeOU7xJGlEdcZz3bZ+e4Olx9+lKTVpL3WJnCCPJ0QByHbG1uMBwfkaUl77QxVnhE2mtx4/Xu+uK6HSCf5wpe/w8Ynn+GZx7fBLKyCvHhzsYEuglTA28md0BPcnF8GQtu5X/eJvzfMD0LKt1aCyiGcIYhDj/g5TRhFOAGlcIhQIQOFESCNW3KfZeCjq4P3uA1eaSiLwp/YLSgUGnAuxzlBRLIsCNRcZLH8KgOCIF5e01JJiipnMh3c52pRGE2jIen3h7RaHUyVc3B4TGu1hzaOWBlqtRrj0Yjf/8Y3uHz5MuubawiluLmzQ6fT5vDuLcb9Y8p0QjMK2Ln2GrVQ8hM//oeI202Ekqz0Ntj77i5OG96+8zbnzm7hnKPV6dFotsiyjI3NLZIk5t69e2yd2aZeqzEYDOh2Vxgc3psvaL7LI4RgZcWnG/b7fZQM6a2t0mp2uLu7T2UcMyKuPvlR3n7zZe7sDdi8eJbemQc4PtpjffsCO29do7e6xfW3dwjCmKsPnmcymXF4eEyr1eKVV17j3NYGFy5eYjyZoo2jMo7tC5c43N8FbZge99G2YjaZMnIHXH70KrV2k8FsQJIkXL9+nV53jTSf0ev2KLTBBQnDSU4pBZO0oru1Rlak8wAbx6woUVXJeJJhbUqr1iMvCwpdgpMkcZM4inFUWGtJkjpBCJ1Oh+FwTBzHy0LsvRpy7iZUr9eJ6g3iZpu40SBIGgSRp2CcLpr9V5aFlhSnCrNT9mkCz0kcj8c+VVMKbty6g5CKwWDE5ctX2djsYZzksH/M9uYGjUYNiaBZT7C6Ipsc0es2UUFAYaAsc4Tx60+t2eD85QcoZwMKbTGVpzxFUcR4NCCKImbGkaJoBoq9KudmVSEqMHNnpcxpYpVgsQinKKyhEo7ReEqn1aAWWHprLaooQaoax30fY18UBTIu0VlKVXlBoHYnrkCL66St34NqUYzqdLHK722LdXMRa59lmfddj+Ol3iBLZ54G4Bzb5y7QarUYzWlAw8Mhx8fHTCYZdp71VVVzxfJ8WAFyvgcu1twFpcSd2h+tW4RXKU+FXOxzfwBo8n4aTe1IQ+/4IIVdHlZiGfliUEhUWCeiTqer0XpGHDUxpaXUE4RLmWYFYWBpRTUiGYISWBegZECcJGgCYtkEGVPN65OymGKRzPKSW+kKeSS4N7xNICuEXOdu2WWSNwjDJqGzdBsrpNOCdnOFQbXP3/+Hn2d1dZ3za5s89czjPPzgQ7x96y1W1ta58tCjfPi5x/hn//fv8JnPfpS9vT1mowk/9Ud/gscfvsrXv/oVts6cYzjcIwkF57bX+KX/+X9lfW2FZ5/9AM88+xhf+tLvEIQ1zl+8SH844t69O6gXDAGO9ZVV3njjGn/tr/81bty5w87ODj/2s3+M43yKCDUoz2UWSEIRQaQJAk1I5ItjZekEoIRAGg/8zWSFxXoHEyNxARhpca5CiYBaVEcpga5yEGbuIicIA+l5zTJCihhjG/NnK0Vi0Aoi0USqOgJFIHwGiHOOqhQYB7UEWkmCEJZARRjp/es9vaxGoGqEtToiqRHVEtrtNiqQyB9xvfC+KKCxDhEEqCCkylL0PFrWP/AWHwgtENqBcRAoxFxPKQQQBAgzL8Sl92pGV8j56XFRvLmqxAkwrloK4oRzCBEsC2RpBaEIQHt3CFfp+0zocW6JmCoHxhosDjUXaggZ4HBLbu5ykxHCL3hz8aErUqSDbFbwn//9X0P21rjS0vzdX/lNnn3mCf74Zz7E7luvME1nHA1HPP3JP4J1CTqbkOcGWUGz2+axx58hO7pHEsW88OXf5fDwkHPbmxgEzWbO8WiECELefus1uu0OZx94hM2tswzTMdOp4O4rPyCqKVY3/O847QiTBlnSRAQKXdll23axMTopMIXf/MMwXHYOFjHoi1HNr00YBthiHl0uBXb+Hj33ea7iiDiKKYrCnz6dIww9/9ra+VwQAhlGmNNotBBY+d6iIrO0ggqMKRGuiRQ5AQUhklBFBGHixcmmmFtQhnN3EQgDh3WSMJgHBTnfBdh7+yaRAhkr8om3nCtmfey4T+vyYzTqbXqtOuNJRruVIKRko9cj0xDV6nS7bSazKY889jhfvnmDjz/1NN/81otcvLjG4GiX9V6bfLBPpfzi1AybPPHMB0nHIx559DHe+MFLrKytkjQ6KKW8/3KRI3AcHR0t0QVrLcf9/hJpvfDAJd5+6xpJHLK2ukJcq7O3t8doNOEzn/o0w9GEnRt3vd1bu0VzY4W952/zhX/yj2k2m/zYJz/JqyLnB99+ng9//DO8/MI3WFvfJM8z0tmIsjJ02x1v09Rus7m56f/upatEoWLv5g7dbpfD3XuEcUSj0WA0GrF7cMBKt0clYnqbW1y/cZMkjAhlQL0e8chDD3Lz7q633rMOM5tRr0fkRUFuA8Zpwb3DY57c6pCWvgAq8woj6jQclLkjl1OsCAnDGlpr2s2IvCqwTpFVIHRGTcakwz6TWUpSX6eo8vdq2gJevB2ogDiMECqAoEagEuJAEc1pAL7wEvNQgoAwOOX/for6Jub8SOccQkGJIwpDxqMR7WaLu3f2OHf+EsdHuwjhiJOEIs8JgxBnoNSOjbUVbDEinRz79VlrBkeHBFFIUmuCdMzyimeefgytNQeTgDCMsdrRbjU8hSysY61hOJrQaHUxxYxpamg1V5mWA5rNFvvjgj/1Z/8iX/g//wHtRo3pdEpdSqyQnO1FiPEdHnr0IUzYweoalTUYnSOiGCN9XHllK5Jaa45iz50GTAlSLVHgIPB7QdxqEAmFFhZTFlgMpS68i01VUavVODg4IEqa7O7tkZUlVx+4QL2eoI3g4GjkC3cpufb2OwTKp5pWVbHU1QjlASApmXvQO0pn0HMNi5QStMbpRWfV63gEEKkAJ0+8/J0p7hPvw/2Ho/d6iErSAMrAoU2F09AMfUdBBus4hoAkFg02EsvB7BYKhRQhE9unyMaYqvKhaPUuUSxQQBo4CucIREyoYpKohZMxsaxjdc54NEBnIELH0Qh2izqzyQOEUlHSJRdtGvUYl1eIKMFUObHo8d0X3+To3oRGe43dgwFPPfUcT3zwo/xf//hXicMAYUYMBzXa7Qb/1h//CbIs4+xmm9u3j/nExz7AcDik3uhRjUY898yz/Po//eeUDi5sb1OrB7gq5faNa3zwmae4t9+nKmY88+Qj7OzsMEsnfPi5x7l58yYffu5JvvHC7/Hit1/nc5/9SY5vjJFt6bVkkbdWDfOIKq4YVannJdsMISV1ERCoJgZHaUoMjkBZtCsojKXQIzoiQZspRilUuIYTCi0tkoCgUEgVIGwNGcZYV+CF9CGWmMSFTKo9yiqlFvcojSUQgiBIfHias5iyYlbMwMX0WjH1dgOwiHKEE5bcloQS4iaEtkUkupShAyWRRAihmJTjH+lcfF9QOBan9jAMl5yt03SId7cKF+N0a+rd7abT71kgJqcpIaepFqdfCwnY4rVoR76bBywX9nTW+xqbORXBWe19oucvpytsVS79o40ucRi0M2THxwynFSQNOs2EuN5mOBzyT3/9n/H1F15hb1hhVcj62Qu+vROEDAaD+WIKzmjyPKXUlY8uDxSPPPEUjfYKrXoNbMXmxir/+Ff/IXv3DjjuT+h0VihKb//W6a7zgec+yvnzD3L50sOsdVZZ6a3yyOOPsT8YoSqv1Bcy8H7Zc8cLYd19/M0l6n4qkGWByJymrfxBqMYSjQ7UMuFwQRuxxmCN8ahzeEJ9OE2pea9FhIWuvGLZuGXLv6qq+bw4sfY7/RXpXwtqyul5LYWj1WiS5/nyugohiEPfEgyVYjA8Jgxj1tdX2b+3C3NkrMjT5XzP85x2u83G2qr3Rr50ETnvsIxnU0ajEVcvXUJKya2dd7h96wZ5VbJxZpNvffsFXvj2t5fdll6vRxBI6vU6rZbnZ+Z5TpZlTCYTJpMJxph5pHfT00pmU7TWXL58mTNnznB4eMj+/j71esKVK1cYDodMs5zVjQ22trcJk4R33nmHKIpI84Lvv/Rdms06x/1DtNZ0Oh2ccz4+fDql2+2SpimbW1vs3LrJwdEh6+vrTCaTpVevTw3VnD17FiegXos5PNyn3WiSJAkyUERRjXRWsLm5yXBwzL07t0kOP3YUAAAgAElEQVSLHDenIAghKI0miELSolxSDmbphKIoyEufjon0KY4YS5UXGOPjrK21dDodms0mg8GARqNBt90B61hfXXtvJu2psRTluhMf1fuE28LbVCkpUe+ibpwES8GiZeic5+Jq7fUXgfIUi263SxiGNJstnMNzk6WkKArSdEokJfl0sqTkNVoNkiQgy2cEgSRQcHRwuETDrWVpveico16vU1WGRquJrgxFUXoKFIJmo4ZSgmmaYix88tOfIqk1+Jmf/Xn2j/reISeIiMKEdqtDpLwQMKolaGGWGp08z2m2fBpmEES0up3l87bgPr+borb42bLDOl8bwzBkMpksKR2TyYRaLabZbNLtdubof0ipLdN0Rqkrjgf95edbazHWUzFkoIjDiFBJT0F41z75blrG4nunf7bYI++nyf2Ln3H6996rYSuLLg2h9JQet7gmWmFtgD2NMzofaoXRCGGo0JRmfp+cj6cXwvs6GyspjM8ikPNUO4VCBTEySLDG00qdPRHTR1GEDOug6jjhzQSkiFGyjiCmUWtitSUJG/zcn/pZfuHf/TMcD0d8+Xd+i1qjTqELrj70IMPRIZPUU+ZWVlZ8gp701nuTyYTZbMb29jY/9dN/jJ/5mZ/mL/+lX6AeBWysr7Ox6VNej48PEcIRhIofvvIyWZ7SrDcIw5DNzXWKokLYgPWVNW8xV0VIHeJyDwa60qCk9OBCGPquhrV431v/nCvAzWmJUgZIBLgCIQogJVQZdWEIpUG4CotnFPiE5nnXOYyRKsK5EGMVgZME1nfDjLOUupp7Prt5bVX5jr8uccYg0SjliENFEEpvgXtqf1VK+UAQxZLaY5zGmJLSzH6kc/F9UUAvzLaNMcjIZ9p7b0GP+ArAGu8TyKKwOvU7uixhrgBdFsLW4kyFMxW6zBHOc46l85SDpbME+JPW/H0O43lVTqNNiRJyGYQSKEUg5tZ51oE2UBmkdd6WTVt0lmHyHGl87LgyFmEM1XSGnc0w6Qx0iakyslHF//JPv0y926ZTc9wbTjn3wBXWts7zO9+8xm8//wZf+farfOX57/H5f/SPeOFbz2OqgiIdk89GZOmYnetvEkQRo8mETq9Hb2ObRrfHC89/g503X+Vv/o2/TjY+4hOf/BAPPXaFg+N98qrPYDBCxTVQEbWkgzOSleYaD1x5mP1+n+a5i4wHuRemGONRjXly4uLAs6C8YHzAipgfJJaLbBQgwwBTVsv7srTNetcmXVXVSeE8L75d6QWaKInGf3/xdxe/E8fxHzin/v8ak2lOrh2lhbz0dj1lVXkOuGNuUyiJk3nCldUY55F55gtuNUdDsAarNSvd9n3t8yRJyIuKM9vb9O/dodtqs380IJuMWe11We12ONjfpR4FFOmM27dv84EPfICXX/o+Dz14ha2NVeqNGIfl/IUHGAynGGP42ld/FyEEjz94kcO7N9G6YjwZ8mf+zM/zyU99nDz3HrMqENRqMaPRACnF0hc6TVOazSatVoujoyPSvKQymqTWoNddZWdnhzzPGY1GZJlPkptNJxwdHjAYjklqDTbOnOfS1Uf42Cc+w0OPPU6t1eLP/oW/yGc//SmMLnn66acZDAZsbGzQarV8cT5P8FNKMU0zzl94gOMjf7BcBFa02+1lITDLMhqtFkkUsNpt0uv1CMMQbQyj4YxWq0OapkRSEIReKFfMZqx02hRZ6ikBWcEo9cLFKApYX18lCCVBUiMtDRpFOp0tg38Wh5gFpzqbzui1O1jt15oim1FkP9rF/F93KAGBFEgcSswPuOokZGPxCqUgEBApSSgVcRASzr3NvbrezPmN2usoygytSwIVUZaadJbR7w957bXXmM0yhFCMRhOybMZoPGA8HjObjCjLnL2DQ+rNLqXRDMcD1jZW2Vzr0AwdK5062+e2lvQQIQMmswzrBP3jEYP+mFt390m1ZTKZ4aylPy5QStFrNVnZOIN2lu3tbV7/4Q84Gk+oNVpgPd3P5DOy0TGtWkxvfZVGb8WneBYlSgjqcUSReftEYyGpd3CmIgi8V32WZcs1bAEELbolC2601p4H2mj4QvzmzZucOXNm7loScu78Wc5ubaCNYzhK2T/sMx5PuXPnHv3+cAnmgKeB1JMavWaTdj2mHoVEc3G3ED50LEmSJTB1eu09vYYvDiGLA+e7C+iFYwLY+4ro92pYqaEMsKlAuDoaQUVOoQ1FbslSTWUseVEyHE9QRAQIQjmvDWREr7FOJ+nhbISziiRu0GyfIayvkFWGsgCMIpAJoYpQMsJV3gHMmcoLRoXAWYEhxsoGQoZzSqFEG9jYPEuj1WRv/y4vfv87SFNwaXuTX/hzf46///c+z35f8bf/x39EZhM+9vFn2blxm06nw1e+8hXa7TZXrl4kCD11z9iKj3/iQ9y5c4eLD2zzgx+8wAc/8CgfeuZpKlOSpRWtRpMHL5+nmYR85IMfYLXTZGtjlZe//xKf+dSneeoDH+Jgb8LlCw9xtD+k6EuKA0E0raPGgqyf00nqdOIEUVWEAr82WKiF3g8/jDwrwAWgkPSaXZqhI2BCZW5TU8dsxYb1WJIIHw0ezOOznVUIFYNogGhQViFpIQmsIzIltSTGScU0r6i0XVI6dZmjnCWwllBWhKokigzCFGArXCCx0vq1KYxQocSFhtJpjPCkhaycMprtsn9480c6F983BfTiIb6vAJs/rAvk+PRr8XPnvGuDxAsKT0dpW22WCXiS+0/g4E+TPrXGLEV90vnDy0IEJ+b0ATXnZ2NPhG/M3+OM9e4RQhAFAViLLkvEvNjXRemdOsoCYQ2uKIid5IXX3uaNW/fYWu0QhwGzXIMI2FhdYzwdcfP2LUojGAz9ZuOcYdgfcPOdd/jN3/gNrl97k06rSbNep91sstrr0WzEvPzdFwmVR45arRZ/6NN/iFqjjlKKw8N9+oMjLly4iLQls2mf6eTYt5Kkw85mVMZynBbc6Q+JkB5Bn6P9C275uwWWC/T5tHBlcSp8N9J/egF2zi2vd/iu6RjG0XIjCjixrXs3uv1eDuMEWV5SFL5wds4fweAkJAZrcc76w5lbcLmMt9jS+mQDKz1fdm/v3nIj86hdk976OpVxWFOyv79LEIUESmBsxfXr14iigE67SZGny5S+c+fOURQFb127xg9f+r53KajVl9SGUAVzysMdzm5t0m7WKWcZ9VqMqfzmvhCBjUYjgkCiAs9rXl9fJ03TJQItpVdY15tt0jkCu729zfHxsS90p1Om0ylFOmM6GnpB4FtvU2rD6voGsywnjBIKXfH7zz/PzVs7BIHk1Vd/SBRFS76wUort7W3u3r3LtWvXmEwmvPrq62hnuX37NlmWLV0irLU+ilwbbt25zdHRIUdHhwzn4sx2r0schxTFifjs0sUHcNrQabZoNWqoYD7nhSSK6xwcH2FMNXfSiCm1Zpbm5EXFYDTECT9vy7JcztUwDEmimLIoMJUmjiN6PR8F/l6O04WRZOGPq971nhNR2gKNFpyAEMB9xZeft2Z5IM6ygnq9Sa1Wo9frMBgMljz5PKsoC+udEbKCyawgLzRSRQgkZakJgoAynXH7xttsbK37Dsp4PEcOBdpYas0GzvkD9XAyJU7qGOsLTBn4kIjdu3eoKoOpCj7/q7/C66+8xDe/8XWcLgDv/rTaanJw9xZxJGl02kuRWZ5lBFIRRxFq6fIEyACjy7mrkrqvG7ZY56y19x3yF98vy5IoiggCHzZUr9cJw5AoCkiShDTNmKY548mU6Sxd6M2XSYJSSqIwoB5HxAHEgSBUJxzPRUf3X1inud+27vTXf5lg8P1QOC+GUI5SAy5GiJDKWfKqwMmKvPKR7jgxd4OSVJVFWUngBDVZoxG2qQV16kGCcJKqtD5ZULYIVZPKGipzMqeFdVAZXFnhqgJh9P1Aj3BexKlLvEdphRE5e4e36I/32TjX5ROf+RC4io31FSyC8UxD0Gb13IP8t//dL7GxtYUpJa1Wi8985jPcu3ePIq+YTTMuXjzPbDZidW2Fq1ev8vu//3uEYUi91eQHP/g+58+fZ33jDOfPX0IKx4NXL7O3e5dLD1ygqiquXLrKLJ16jr02VHnhnXW0RFQhed9SjS2J8oeEKsuXei/hDFI4T/eag0EL8CoQIVFQIw7rfn8WFYlyRKIiEoZmENCUgkgKrPbJxNaAtQJnFcaB0Q5XlShhl/qKMK4DEmvNspu1qNGkNUhRgdBo5j7Rdk4fPX3uk8Z3hueU0KJMyYsJRT79kc7F9wcHmhN7NBmopYuDnSfhOOuRYjW3MROcPNB+cThVbLtFJr1DKVDB3O7M6Xkx44s1bzW2cJNYxEJLbJ4v0QLlHJq5nZjxjgp2Higi51HfOO937JzDaIMKBW6OlldaEziLdD65UDiLLTR5OqMcpfzvz/+Q3pltNhpwOLHMsoxbtw9oxAVXLm6xtn6Gu3u7XDp/lh/78JN019a5cfM2D169zBOPP0peFlx743VkWbGzs8Njjz1GQzjWWjHti4/yla9+lQ999GOsnznLP/jffo1/9sWvsXs05O/8vf+eWztf4mtf+R2eePIhWp0eDz/yFLfuHHPu7EWa3R4zJ7hTSR5NS+pxQOkWhZ6/X4uDzGnhpbAWJSXVwsVkLiBUCITyvPXFvV58hplznYzxC5UIJXbObdASkAppHFEYoBXo+WFLqZPEw/dyFFWFMBLpAiIRztu4yosoTyHyXlQnKQuNDTQ4hRQVkRQUhY8yT62iqtepJQlZmmKdo9P10dqpcZzdPsfw3k0yDUmtQZUNfCu51WIynjA6PuLK5SuUQrKzc5OL589S5FP6R4ecObtJq9Xi5u1bXHzgMnd23iQfD7z10d5NZFJnbW2L4cEBdaVIAkWr1WI8HtNb6XD79g7nti9wcHBAt7PC/v7+0k2gXvde091ulyJPMVXA2zs3WF1dRSnFeDjizJkzIA442N+nUU/4yEc+wiuvvEKr3eX1N65x6dIlvvy1r/LExTPceucdqjxn68yGRx9Cw2g0olbzEdlJLaLb7fpkQyTtboej/T0unLvA4eE+cRyT1GvL9LesKHj8sSeYDo/oHx9SVRWj0YjN5CxpPqBGg4sXLzKeTrl79zbKOFDGe6RHEUFlKYxlkuecXVuhVqt5xDqKKCpNvdFEBiHNbgeNI0hibFl4gZnxdJdYemeFzdV1hPDzNgp+tLGy/7pDybknvnOwVL7f7wcshEAqgQokQahOPGEBh6OYH1iEb/8hpKMsSvIipSw1k/EEK70Dx/pKj63Ns0uqw2xakVUlyuUMzAzn+iT1GJFMaMiKZtKkUe+we+0lmo2QAk02GTLJIM9LwnqbtbU1sjTl9u27XLx4ES1C7u7vs9XtkE2njLVCNZp02y3u7E+JqpREhiQu57h/QK9VJy8F3VrMEw+e53LD8MD2OtHaKtp6xwd/rwNq9QSdT5FhQq1Wwzjfqai3O/cDB5zYoYZhSK1W8+1z4RFo788bcHh4SBRFHB0d+UO1zgnC2FseuoDptE+ee578Yq8KAkUYeN56K5YoIYhdRWkMlQFnDHnu9Sa97toy8fM0iHFCi/TEm4WwcYGev9trf4E8A4j3AeZmo4KDwYSWSQhtRakKSq3A7DPLE1babUpjMVYiZYTNBSqOqUsBqkfZCghMgNaOg0kOViM6ETW5ipQZt8pbZNrgUNSFpCNryCJHljmVHZMETVwQYKxBiQBrUgQt6oEkDCCICoQsGRaHxAo++MkH2b+dcXPnOiudNlefu8r5q+e5MznmE3/0J8j6/wZh0OTZJz7Cl7/6Bc6cOcOtW7f4+Cc+ymg0ApHx2T/8Eb74xd/g8HDA5uYmUkqarS4PPv4gxwfH6ErRafa4euU8b731Jo889CCDwYAk9umcw+mM73znWzz33HP09w44PDxGK0k+yYjrsXe4MBUDdwSuwMkSYwvCyCGUQ2CRc8coIRwWgxI1lFPUZAedtEnLPnUlCFWGMhmtWpO48gYAfev8NXUWrX1exGg2w2jFijXYyNO0kjCi2digKDKEM2hTeMGh0aA1AYYgFAhyMuPZAK70yZTaWWQoQYI2FdZW5MYQKYm2M7LsAFL9r55g/xrjvX8aAOEMrsox+dR7Mmrj29+VRWqLNO4+1NM5H9W9cH9wVqNtRWFLRGWWL6xAOHny8lwMjD5B/gCkk8gKbKZBer/BylgsAqcrnK7AaILCoKqKwBgc0vPjAkAYnK2wuqDSBcZWHs01BaUu0LbCmILKhmhKoqLiBzt7DEtNS6XEokIZOBqVqLDi8Ye3UVYj7TG9OGF/b8jbd+7w4ksvEiQNHnjqGdYuP4isN/j4pz/LV3/vy5y9cJZhmmKU4sUXX+TV77xALUkYTofsDwb83V/+NW4ejdja2uJv/ld/k7/1d3+J3/itr/DC994kqzT7gz5nH7zC+asPcri7xzvXbnC8skoxzSnQWCFxKkCbAoxvqSglMNKnFMq5l6ZPZ/QovtT+/lklsEoskdnFfdNaY6XAKB8jKgOFFZIgCn1LWOB/J1QUznhO+pxO41sz9j1HRZyWHmG2GqNKpLBzCy5JriEvKoqqIssrslxTaSjKiryoSPOCSZYzyVNmZepTw6oZVkVUpWF1/Yw/teucctLn1rWXKcscMxtTVhlBw4stojAEZ5hkKaudJlWWzgMgJP1JwUNPPotUDb7z7e9hKs/Rv3r1QVrdVW5ff53Hnv0Qw/GEb37rq8zSIXu71xnt3eD8hW2MkoyOhuy8+RZVOqMWNZhMJmxubtJsNinKjPHomJVei0G/T6fTIU8zQiWXSKOMauzcvkd3dY2z2+cJgoidd67TW91Axd4Wb39/lycffpTMGNZ7bT7y6c9x7dodVNjA6pzQVeiqIIgU+8MhGM2ZjU0a9Zijg31W19aYZFMeuXIJaQoqZ1lpBvQSOLfZpZiNmExSHnjgEaazGZXWrK+sEkSJN9/PxmysrdFMYhrNGkXpKGYpMs8JSgXGbwB5Zjk46CPCOsM0R+gUZ0okkrK0NOstTFH6wkU70rykyOeUA+E46A8YzWYMp1PK99hq16mAMHA4SozN0FWGMHpOe7RIawg4EaGd7vgIIVAi8O1tERDIEInCGV+Yh0qS1BqkWUmSRNTqdY6OhlS6YDCb+FhtlzMuKu6NJry9l7KzO2YyMdzY2aU/HFEThv7dd+itdEnqPfTYczj1NGMyGlJag8FRVAWrZ7cZ5QX94QAZKLQSiFaDIs9p1hpMp1POb69jo5jQhZgs5cr5ixiV0G12ePTiFnowZOv8OqoTAhHTPKc/OyROBGWRUaQDTycTMVFYR5qZzyZAYXWFNA6Tax8eMY9Dbrd7CCfn1B4DzhAGgb9W2qNnuvBUuTQryLKMLJ/R7NZZWW2DkjgpvIfu6e6dsWgL1vqOV+UklXNUDk9UVbDS7aArQ6UN2ngpPpxCoOfFvnGWylUg3X1dicVLCV82L0AgIbwt2Xs1cipSaxhMS0zaQTqHrhyBaBAHGcakOCeoqQ6RbSGIiGxIXfQIbUIdQYLfS1ITUMiYYeaQKqBBgLIBk3TidR75FHQFhYbcoccGlzqUjbBGoE2OsIZObcBm64AP9HZ5sDFmjTFnoxBRWLTJCA3sH/Z5/vlvMxge44oCNzzkn3/+V9i9+z1mpeVous+Fi5d4550b9LrrNNs9ts5uE9dqbG6tc/mhh1nrrvLhDz1Lq9Emr6ZUZUBpQzbPrZOVEwZHx2ysrLB37x5Ho4KNjS2MTrl4fps7t25w7+4tsnHqKZdz0LLKK9L9guxIcnBvxqg/8d31ygtjtTB4+z/v6lK6isppH2ZiQ+ouRIgWCCiN76aG1hJZS0KDSAQYW5JmGUXpOc7alhgtcFXKTBoKSoypSKIaYRJQi+sAlDpDuwJTeE50HEIgLYXNMGaGMwaB16EpZ5FGe7ceK7BmgCu8aYM1KWWeY+2PtoB+XyDQi5aAlHJeiIF11otTnFsWSqdbZN6ixyKVmi9i/iFftlVOCQXhRCwjpZyjyJ5vuogulXOKhpt7STrnLeoMi88zVDhUIKnyDFM6UD7+0lrtOdJCYgqPUDstcFVFqBRGa4zVKO3Rljv9jK++dcTaapcza10qFZBWJZkWvHptn0evnGdtrcbh8QFRa43bd/f43b/3JpcuXeK1tz/PJ37reX7xF3+R7bNXeOn73+VDn/gcjzz5BM//7he59urLXLp8lePRkFa7S241Gxub/Pqv/QO+/Z3v8sabN/nhqy9z5fIl/tyf/9NMJhOO+zP6g9dYuXPAb937Aof9fYSKeOrqw/yt/+nv8Fc+92nCjRynJdIppIp9G8s475ThTugbRhucABV44aFxBpxFJhFhOE/FEgJdVISnUrKUUighcfLUAl/5boOzC358fIKQzHuaCw/P92pUxhJLPwettTg596R1GoVDlRVRJNC5D1txDirn12Sc97NUgW9d1dsVJnYUBs5sn0OEEe1aHeEqotJi5h60IlCUmS8+dJVRVQVnz55DxQnWCQLlxWv9fp+rV68ihODChQtEUcT29hle+u63+dAzT/HkY49x7fVXmKYZ/cGIJFA8cPYcb7z1Jk8//TTZbEogQ7a2z5JEH8YBrU6bNJ1x584d2u22d2rBb+TpbOZ5oM6yff7C0oav2WzSaDQwxiPJ4A8c0polQrZoZ2sLiJAv/No/YXP7LLfeuU6r2eDN11/l8tVHvFXZ4THnz2yQFR45k1KSpilbZzfJjSOtHEymNMOAWrNJ0qizu7tLu9PleHAPhOXS5YuMJ0MG/fGSbz4YDEizGUVp0DKh02mxLiXl/pTcarQDG4XUIkWt2SI99KK2RpyQFwVSCI76x+AMEkmhK7rtFqPJjHanQxj5AtRUBbr0YuL3cvg2v/QiXedFcv5++HXQc5vF8hovhIMnL+7j1S79251AyYAXv/cmjz72CG9f3yEJQjKRs380ZFoWjAZj9gcDavUmha4oihJTlkyyjCgIOX/+cfaOBrQbAQUBujBE3YRsPGMyGlBrNFBas79/5BMhgSzL6Ha7ZFlGEIWEIsIxZDAeIoVjcnjIRqvL3qjPehzx2KWrTLKcvZtv+zZyKDl36QJJPeaN20fUmx2UcMgg8Nx168WLtWZMFAQMh31a7R7OeQFxpQvcnAVbGrsMDypyP08Xe9zCvq4oCra2trh37x522QVVGOOBiF6vxxXnGA7GzLISRIyz1ZweUzLNJUoKaqGcF7X+PsVxSLfbpdFooAKJMyf74tLO7l0UjsUQQizpjn8QbUMgQHgQ5L0aaTklbidk04KZLrC5IYxiQqkxUjCcFLQagnqkkEmNQHdIy4IkBo0jImGSZVQqZLWW4DDM8gmNZEpiLY04YTQeMBj3qSlFhMHkBaqAtd46tTD0tYF1FLqgVpM8uAoN2+dytyBQjxJHdW6XlsQYShvgVkq2phvsvH2DG2/8kJ/9kz/Nr37h1+k2Ooz3j9ha2cBkA4o44oEL55mlJRvrZ7mx8yrXr13j//jVLyHamwStLl/+3gH93Vv8h//BX+DmW69z1B+CDHlzeMwDF89RzKasdVpEesZv//ZvEyrB6sY222fOcmZti1e+/xrHwwHrG/55HQwGxPUaTWdRiUB36qi6IKhVFGWOVIZus4lwEm2d18aYEluTZBIKGSBEh8pIUu2TSJ2UqEqihEK5GJ0bTAGpG1OrNcjLjKayREGN0GpyLXDS+3cH1HAyRSpLXqVAgK0MkQsgibFSU+kULFRA4BRCOKQSVLqi1CUW0JVABY4gMJRVihTljxqAfn8g0KfHaVNzKSUsUGZxwnlevvddwSbCvZvacXLi/hf40/OQD6fN/Qpj56jKEiUlzp54aDrnsM5gygJXlQhjEFWFq0ooS2xZeAcOo7G69BWSrpDWYnWFNRpXpjht+ParO7x5r0+nETGdDumPJ7i5QjUrBWkhGUzHtLtrHB3fo3+8j4givvWDl+lP4fef/w6/+Jf/Kq+9cZ3VzbPUOyvkecHO2+/QrtVoNBp87JOfYn1rk7W1Lb7zwrdpJgEf+/AzIB1nzp1hdbXHzRu3eeWVVxAy4J23b3DzxjscHtzjySefYDrL2JuNeHN/wsu7x9g0Q+c5Tjt8TWyX3LBFAMqCE45dYB3+Oi/ulTHmPgTrD+LcLbnseAqIwFsnKSn9AUlrrNZLRMRU7y2PlIXhPuCrfy8syXVFURky7Z05yrI8cYaofJGx4G1GUUwQhHQ6LVZ67SU3fzQaLf2CF1HQQgiKdEaZpfPiRVIUFUmthgoDplnKJJ0RhjFpmtJutzk8POTw8JBGowFIHnr4Ufr9Pm9ev86bb12n3mxxfDxAKUW326OqKm7cuMF0POTxRx6lLPOl+0Se5yRJwmg0mreoI6T0ARVRFNMfjAjDkCAIMNotzf+11uR5ziSdsbGxwdE8hKXf79Nut5c0qel0xurmGT77hz/H6voa5y6cp9SGrbPncM5wdHTA8PiIe/fusb+/T6/bZvvsFpcvXSQtSt66/g7PPvdBzm+fIYhCsrxcUrQuXDjH/v4uZ86cYTwec3BwQLvdptFo+OS9JGJ11afwLQqcoigQ0vMAtbHI+X0Yj8dIxzJwQ4gTn/Nut+sDgKwXXK502xwfH3t3FudQ0ls/drud92TKnh6LgmohPFtE7rJAGIX7V/7+ux0aoighCAIefPAKaTrzPtNBOKc9eA/tYZpSWYUIY4QMqbSlMI6D4xGlk1RWECYN0sIhVUSctJlOUgbDY2q1mlfslxXZdLYsSK21y3CIBdjSqCcIa0BXrDSbNOo1tNWs97oc3LnDrH/ESjPhzq23uXT5PHHN8/AFXmC3COeqJ9HcGUHO5/cpxT9+j1nw7hf7jacYnRSvi6+LAnZ9fd0LhOc0jW63e+LsICW6KOi1GpzZWKUWJ8vEPGcsBh/qUVaarLKUlVvywhuNBisrK0uKXaDknKJj/l/v2R90XyHMolUAACAASURBVP9l9/u9HMZoglgS1ELf3SvyuavRwi0LrBNz732JIKK0gklZ4oTEOekFh1WJ1TnCaLS1vrtXFoQChLAYW+BshbQGU5TLhN1AneQ8OAwqsDRUQWwH1NgnCXMUBXXqbDZTWqEA0+Wrv/d1zl+8wPmtDX7qp/8Im6s9tjdWuHn9LW5cf4vV3goXzm3TqPnQqeHxgLLI+K3f/BJJ3OLP/6W/yl/9T/5L/sp//F/zn/03/wMPP/wUAsW9e7v89pd+l2vv3OErX3+el19/izevv0OSJJw7d45nnnmGu3fvkkTee7w0mjiO73M5M6VGaEFgQkz2/3D37rGWXud532+t9V339exzP2fuw9twJFEURYmWZFs325Hs2k7j1jESJDXg2k1Qt3VauAhgGGjjOGkCB7ERx6jjJg5aN5YdO25jp2kCX2SLEimKFMmRyCGHQ87MmTlz7vu+v+u69I+1z5mhYjRNoZhCPmDAGXDOno39fXutd73v8/wehcsVVBJrK6yr/BRdzw+KdQW1meMWBEYosDFWNNAuAJEyLix5bRFW4azE1fNnxlmsqRDO0ohC2ok3v1rnw2tw0lM5BEjlqK1hVmkyCxX3zM3Omfm+6qf8lfaIYv/dcxjt5t9PgZQObTKsK9DuP8AO9HGxLKVE1AZjLUL6eFIRKJS8b/x/HxIoUtFJgc2x6D0M7tM23zNy3L9gOOdwWFRwrFszYO/FiJ8U2taCMT76FBBodFkgqwqM50ljvQjeBZKyEicBK2b+HoqqmBeJFmUChkbyq1/aIpOOb77wMPmsj64FVTVFCEHa6PDFF17l1OkOo9E+RmecOvcALskYZiOcXOC7/tSHeOqbnuSLzz2DkJInH38vo8GAU2fPkUYhQRRycHAIKuBzTz/DZz7zGd73gSdZXFrjr/74f8vV66/xT37ln/Li736OqqpImwu8/wMf5PEn34dykr/203+bSkMWSh79lo/xdz77e/x87+N0uy1caLHUaGE9fUMqj+ubbyCl1gRh6Lv8yju9K218eI1zmDlHV80LZTsvsH38bYC+r6MczsNsrPUBNO743xOCKpudOM3fycvYgDA8LvO98UkJMFajMV6Db8CoAIFPz7JO4qz/vKJU0e12mE7HxMIgheahC2fZvbvHSneRg/6AULiTaUmoAtI0phmGOOkIwpjKam7f3qbR69HplURxyuapUzz48AMcHR3R7XZPAjN2dnZYWurRaSYc7hseefdj7B8M+DPf92cZDvZ48StfJUwbTIqMzizn9//V/83pi+fpLXSJoojCKvr9PgsLPhJ1o9ehrDREDQaBpNlsMjjYYzLLMcZ3K7rdLlprkiThkUuXqMqc8+fP01pcpS5KrNGsrKxw6+ZbrG2egixnPBigpWR/cMRjjz3GnTt3+MLTn+XDH/4wq6vrDI72iJxge/s2ly9f5o033uD0xYts9Lq8/vpV0kigwpSqKCkyTZq0efPNGzzwwAMURUaaJr5zf2qNq1evsra2xlF/n8WFLlEU8MRTTzI8PGD38JBOq8FgMsGJgBs7B5xbSHFO0Iy9Jrvb7TKZ5qytrXJ0uI+xFu0UgYTeQgdTFqRpSlEUZFnGcneJTqtLXb2zHGhvSPOBREnSpNNtzU07FUpaTCgRxuJccnL4tc53QMMwfFtK6XFRlSTJvFCURFGAMTNefekK66sbFEXBNDccTjIyA8ubpzFViTYFFud5/3HC4XDMbn9MczmmnbYptMPqkq3tPaIoYFpmqDQlkpJGp01RVCd7SLvdJlARN25e58EL58FqQhXQaTeYGc1wlLPWbPLBJx7j5a9co5iMOX+2xw9893+CkQGFDtjbPyQMm0ynGUoIdF1T6IxuZwkTBoQqoC5y0jSd4/NqiqJAKUmWzWh3OzTaHTqdDkVRnCD7jv0Qde1NqIuLi1y5coXl5WUm2Yyq8gftRhLSSOMTck0ziblwZp3pNGNn95Aab5DCemNWWdVUEhoqJgwiNjc3EUJw584dhHCEoeJ4qzfWF/1aaz8ZlMe+InEy2VP399Ucvjh1/+8HqT/JqypzOt0WcZIy6mcU2qc2NtMWtVAIlN+r6ykEkiBsMJsNOZjs00kdkWowLnOyakYzSQmilEFWgAiY1I6aiiiAspyiywbjOmJcZBRCk6spadLwa4sRuMj68BDrSRxaKpBtatXiT3/Tpxju/wLj6QPc2HgfV5/e4ksvvUqn0yJIY/7rH/4BunHIb/7OH7HUSWhEjheeeYGrV9/gyQ99jEBKIhfRjHvMSsMXn3uaK7/wM/zpH/xLmFnFd//wf0qZH/DRj32EX/u1f8rrN26RT2dIKblxS2GcIkkVdZmztnkOJQQvv/wyVV2zuLQ01+X79No0Tvzzl1WkMqHYr8Aq3JLHApbVlMpaplWFqyuaSoGxlFZQ2RgrKxzLFLakKmKmtSKvMtZiqLCUNkBTkQSWMLCAohXEpCIAEaJVRT45QKgAZ2ZINUOYgnw6Q4gAGSe4uEHLaawzWFcxywqErQmkIlQCp+YHVud9bUqFBIkjkoYgqKiqCXmefF2fxW+IAjoKQuqihFBQlvk8ktL5kAxrCVWIcp4x6swcVycDH9KRJuDcSeFlMSfmQ2F84axwWF3j5nKMKIpwQvlRWK1BCmIpEc5Q1xbrDJEUGFNji8oj8ICqyFBOk00mBCLA4INAqA123qkRc6OjC/1HK4wDKdHWMO4rfu2VG+zPFI+/a4O7B3dpxC3u9nMmtS/gjbDsjaZsntlk9+gOr+1XuDfeIFUKKSPa8Yjv/N6PkTRSvu27PoFyIb/+6/8E62oObu2ytbXFf/6D38/plQ0+//nP00i7/PWf/hmG44r9vdeZjp+hxnK4u8vFhy5z+84uX3rxq3z+2Rf56fNn6HWXWF/d4OnPv0hsFB//zk/yXZ/+Dn7ub/8P/MWPfQsPnVJkRtNoNNDWEBqBxhMSPB81OMHeOSHI8py4kSI06FoTztMaCfyYJ0hirBQEMkDXDmHvpRVWZYkK/H1WUmG037jrujoJcKmL/E/uQf1jLisleWEQAhIMwilvhtQapO9YWa0wmHkHSBIGMUEc0mw2aDcDkliy0F5ksZ3gQviO7/hW/tln/jlpu40KI6qspKzGqEBQZwXOGLJ8inSatNllub1KMcu4cPEh9vf3OTjskwSKRy4/QhoGHB0dIqVfSI+hJa9cfY3FxQUeuvxuisqyu39At9cjaWec3lhH2Jq9W7e5cOlRxkXBUrtJkc+4uz/x3Qun+cIzT/NN771Mo9VlfzjDopimGYPBiHe9+1H2trcJAsl0OqXX6xFFES+//PJJvLKdzDh9aoPJcMT+UZ/xdEJvcZVXb1/jfY88QJpYXnvtNfZ2bhNLx9lTZ7G15yz7A7Skvb7OjRu32Ng4xd6tG2yub3idd9Km1jV5VdKNmqRRSl1Y9raPOHX2FLrO2VxboSxzFhY6NJspps7pdbvMxrsc3LlOVWuazSZZZWhEEbPakFWa2vrn1BCinCEQkoVOh6NBH6tCgkaLRumJKnHS4GBvn+XFBY6Ojmj3FtHGB+YcdwTfqctYi1QxMkxARRhT02w2KcoMZ0Pi0M95dFUjmetwhSMUUBdTjLsX/Xw/K7/KC5Jmg6TZoDS7nH/gIgf7A7S1bO/3iRohd4fbVEXN+vo6QggWOm2stRweHpIkCdvbR3RklypVxNZPAsrZFFMJihqPxgoSxpMJuq4Jmk2qvOBwr4/F8NC5C8yORiAlw9mEvBL0q5qsKPjEE+9jb+8IV4157+WzXNiM6XUFmZH0pyVho8ckn5EkCaY2hMohCLBBQNJoI13NZDph+cxZHyNeZxSTEe1uF2N8wmhvYQkhBIPBwKeEDofUxmCE5PDoiKoquLW3Q6vV4mg4whhDsxHRTBsoJTk4OKLValEUFVOdEQQBiwtNtK0ZjCZkpSGrMj/1wpvUTy+v0Ot2cMIyy6ec31zz0xclKSt/8JkUlqIo6Pf7GDvPMQDvEZqrpOXXhFO5+/84nza+kxIOV2mCRLG8sEKsZmztawITMB4PfQKeAlkfIuQK/VnGQrOLLsdsb7/FpNOilTpm2Rhdjokjw81bNxnJBuJ0B1cKimxG4WY0WhE5OVuzAZVzBAsJcnnMAROW08s4W2KVwcmU/XodxyrZyLGYPcSkjvjy7T6L6adYP/cpzr33g/zqr/4yB3cNz375eb73k5/mlS89i9AVzz/zHBfOpETVAZcevMzGyik6C12uf/VzfO6Lr/PUUx/n//y932W6c4MYzd1XvoSrHEX1CZYW27h8wnd96ttYefEr7O7dIU4Tbt854HefeYHNjRW+9YPv43B3h0E0wRjLxvoycZxSRL7ZF0URcagYjqae8GIETbFEPWzSWFpH1BmVqTjMRkyyPitxQkoARlJbRxqldKKQQR5Rl4aBhtxlmKrCKUuYNtBWkaYp7U4DgW+MxXEbaSWlMcjQMc4n5NUMqWpcNKWsDA+2JKGsCeIjxlZhkIRWkJmSUlsC64jDFGkt48kIYwOCuEdd5gRhwkKsiOOQSi6gKIh7X9+G2zeEhMPW+iSI5GQhNvc0W/effv2Sfh/M3bkTmQD8m4ie+ykNx//vuHPijCUOwnkn1GJNjcR5LXNd+Y1YOJzR3gUKmLpEYah1Cfe9V1f7pENqj7djbtKQCKR1SGu5eeeIF9+8SxhG7PeH7I8qbt7ts98fkuUVTggmeeE1stoSKj+qENLgqHEmp5wOGA7H/L2/94v85m/9K/qDCU899SHOnDvLzs4OX/7yFXpLy7z2+hvs7h3x2c/+Ef/jT/00f/b7v58f/pEfQknHrVu3OH16mZ27N8nLIXe3D7h5Y5df+sX/hcPDQ9I4ZKHdYTAd46whbaXs55o39g6pSk0gFLYqwTq0rtHz4BB7jAWcfy5i3mUVjhNW9Mm9VPNRjHi72/t4WmCtRTpOPsM/Dl3n0Wlvx279SV9B2PFsS3nsZPbPUiAkwfEkRHowfyAC/ysIUEoSRb6LFyrpGeNzRNXCwgJVVbE/32BnWUar3aXRbJ/oHIuynIc7ZAyHQ4bDIXVd0+l0WF7qIYUjn82IopBOp8X+/j43b94kDkOuX79OHMfcvr1Nu9Vlf38fbQ2zWca5cxcAODgakuc5N268xcULD/CVKy8RhxHNZoOyLFldXWVtbcUHmuSej3zmzBl6vR6XLl0im/kgl2aSEkqP+Krrml6v56Ui3UV6vSV0bZlMfFH+wAMPMBt7g+LLLz5Pq9nhox//OO1GA12XtFoNtre3sRYeeeQRsizj6MhLQQ4P+0RBfE+6JRXj8dgTTrRhd3eXPM9ot5u89eabSBlQVdWJtGVnZ4f1dR9dHoaKWEnOnDrN8vLS/P74w7xSITKMkCo8YfoeP69hGJI2W1x99fUTVvlgMKDVaaO1Jp13FY+xf0HwzvYvnJTeKP01aMljvv79pu0T87a99/tjFj/cS3tVSuGsnqMHSx58+AGanTbdpR7VHM3Y7/ep53r+ryVDgG9wFEVFXtXo2pIXFaPxlNlshq4N01lOmZdks8InlimfGjnOchCKJG6gVMB0koMKME4RN5pUpZd+nT69zq0bN3nwwllWljosL3SRIiCKEpRwmHqeiGq0P7DrkmajTdpoolDkeT4P7/BdZTMPTwLmPGf/HJbz76i1ljIvTtY+pdQJB7qu6xP0opSSXq/HbDY78YXYuf+jrmuysiBJQxpJ5LOYpJzHsRvWV1bYWFtlebFDFEqWFzr0en4t6DQbJ+8tSZK37YFfGxD2b5NnKN55CUcYJmAgForACXqtBYSx6DLDVDOwGdiCZhhCXRMFCiV9smatLZX16MQ0bqCEJAwVxmgaKvEdaaGwtSOMImQQUGHIdUGSpliaBPECKkgIVEqgvASp1CHTImA3S+nnMZM64bmv5Dz9smW/Nrx+5xoy1Hz0k9/M7bvbXPnqizzxvsd46eXnGfQPeeTSQyhnCWXIE48/Tp1PyWcZYdLkxlvXSZOQWAW0Gg3Gh4d88ps/RF0V5JMxL7zwIm+99RZP/9Fn+ZZv/TAf/MDjDPo7GAzD6Yzrb22xdXcPiw+MSdMmdV0znU7J85xut+sLaRX43r2z6LKGQiGzCJsL6qImL7M5etMiFBhbEwWSMJDEMiJWAQGG0uo5C75GI6i0QcqANG36qPSoSRQm3iAvBdpqal0hZHAiX0RYdF2SUrLStGx0LZ2wwuFpas759+Hw8iyja5ypqHVOnudobTHOh+dICcgIGcSk0de3XviG6EAfb0LGGOI4vmcWtA6ppIeWH3OirSU6DvA4Nv697cWOFwPuyTuYF173OU/FnBThGdHeoOUX8doXrUaDrUEbbFVinUY4qKsaV1ukAWPq+eaj5nor/74kwrt2AXvsfLYVv3dnwtWRZDEtyYxgvBuRNgXry13GM42UOYNpRRJa3tjaZm/3iOV2h7MbKyT6kEcefoCPf/QjfPnpz/HYw+/hF372H/O3/ubP8PKXP0+31+ELi39Id2GBUVaxceYcv/27n6O7tMi3fOJbuXDWFzuX3vM4H/xoyK2tN/nwrR1u3t7i53/+MwQy5q03tzk4OPBRopub5FMf9PDVV1/lQ5/6j/jsH/wBn/rAYwRVTZWPcUpipENq0HPMncWPeoUTGKsJlPKa8nlxaOeBKNzH/hbWoqsaZd+ujfZ4LK+DN86iwoDaaKSSlPNnQrzDBfSlhz7JeLyLrmZU4x3Kcua779YfDvyBDMIgPlm80jQmDEPa7QZCOFqtJkKCk57tXBc5OzvbOBWwtLrB8toqZe41u0pCmES4qmY8HPii3TpWV9fZ3bl70uX98Ec+wrA/4OzZM0Sh4sIFycHBAVVVkTRSlno9AK5du8Z4PGZlde1kA13dPEPcbPHizi7FaMpge5ter8eVK1dYWD1DmibkWcn29g4r3S5RkrJ55ix7B33W19fZ3d2l1WqRzzLqyneBZ4c5KysrLC8v+wINRVHVVNmMhU6XTrPFlZeeY3hwxFNPvodTnffwO7/zO3TbKfWgTzONCZSk3UqZTAe88MI2jYbvco5HU4LAHza/+uorPPjgg4Sh4uyZ00hnabe7vHVjB+sU73/8MvFtxc7ONhtnztLpdNja2mJ1dRVr4ebNmywtrjCpCvJsRoChlUY+PCEJmGQ52wcj1pcWMHpCEErCJCWfZDjgYP+Idrt1UhAuLCxQliVJohAyIA4ipInJixnpXKL0Tl3ahn4M7SSRtVRVSRAo0qB5wsAFeWJ+8wErfjx6fMAVQmDrCqUUaRRSVX5q9NWXX0LLgHazyZs3b5DELW7evouMm1QTjZQh3aVl78wvSwT6xMxZFAVOQJFrDoocqTNm4wmNRsJ4UiJUSJVpjChQaUqtDYdHI++XCBRhEpPVlqOZL0xLCzu376KSBouNBl967jnWVhc4v7lKXoypKklRS5JGzJ233gIlidstTFFTak2cNJhVBe1wfkCWktX1dS91wTHJc5zPk6LT9SE9x9xz30UuGAwG9FaWUQjiKOLu7V0mkwkqCFlaWsI5RxIF3Nm6iTGGdrtFMtddZ1l2IktsxyGt1QWWul2c8q2kNE1pt1MWOi2kcKyo0GMCs5rBKGM4GlPWhrTZYnh4yGAwmDci1D2uvnMEcq7pdl8zGbmvyeGsODH3v1NXu7lK6FI6SpHFMc00pZxM2O3vEAYBSdsRxQmrjYTRWBI4Q5o2WVlcospKdG5YXz1FIjWTbESUNlgNFefbPZpxm0Ga8uYepGlEqmL2ZiO0qFhf2aSO1+i0UxbCJoqQqREoUmrdRNeGUS5R7QZOxmz1r5BPJrw1O6AC7KLj1vhNHnjkYVbPrvPq6y/zH3/Pt/GxTyRU0ykL3TZWWF556SU6rZBf+t/+GbmJ+Yn/7kd44iPfRH8wRkUx01mOqEt+41d+mRtv3mSWlZw5f5Y/833fzfve/TDjSZ/LD51lOB4znJSMihITxPSHA1aXV3j9jWt0Wm32DwYsLfmkWoEliCMvL8rKk0Pg9KYgbDVAV9TWH4DrtqUQmtLOkJlltb2EtZpu2OQgO6AoDYNZRqIazOIOprS0WsskaUgr6RCoJrXOmWRDJDMKrdFV7jF5BkJC8mFOYGvOL+acXQ1RYkxDzjg6WEXLgNqWpGGLwEXYokZYy6weUTs/MZE2pmSEC2IIJI04Qbsugfn6yua+IQroqqpOug/G2BPEXCAlznqMDs6d0B4s/kMScBL/eMKpPOlA3yvQ7u9eHl/GGCKhqHUNwp7gUIQTyOM42qpEaI1A46zFaYMUnHjnj1/XOEOoFNZ5pJCS6qQrfsIBtpIrO0Oq2vHgmYS9yRQdJwhbEaomsQIlBCYIqE2FCmM2z5ymLmc8cn6Nv/IjP4o1JWfOnmdaTLh1e4eHHzzD9VtjJuMx3W6PJ598gudfeImllTX6/T63b2/TTJs89MBZFtsx3d4iQkZEcUoYtvnQUw/wxOMlv/Zrv814XNFb6rCyssKLL76IcT5e9vbt22zf3KKy0Fpdg6TJbLTnExmlj8gUVqKcRCJxwniahrHo2iDCEKF8F97fQz8yqoXviNTOeHmN1TjuBefAvYh36xxi3ik7lm4IFVJrTW+h8+/34fy3XKvL52jFKUU5YYTFZHu4SvuYUykIlfIn9CgiDHxyWBQfd5vlvButENInJrm6JolD4jRBRSFpHLE93EMKWF3bQNcl/aMDlrs9Rv0BVV0QqMR3S6Qkz3MWFxcp8pzXX3+dzc0NHJZzFy4wHI/JyxKQjCZTllfW2N/f58x5H+ndaDRotVoc7u3Sare49N73snVji/FoxNkzp086jCoQ7OzssLF+ilNnzlJpy8HBAcbA7u7uCf826nYZj8cnBsrpdHqikf3KK6/yyKOXOez3WV7skc8yNjdOkw367N/dxumcy5ceJgoUO9qHCIWhottqsryySl3X3Llzh+XlZZwV3Llzl7W1Nc5dvMBgPESXFefPnSGOQ65cucLGxilkLLl67XVsWbO8ukJ/OOL82TM458iyjNo4Gq0Ouwe7rJ067Z9DZwgETMYDVNQkVpJcW6yKKOuKZtqmfzTEwMn0IMD5oJq5mVJKSV1XPrRmMKKZNmhIRyP5+urx/l2v0kms8GEk1up50I9fP+t5Q8GYewbsY4MOHHes75noZrOZJ06UJVJBq9VCRjGzyZTR4Ijd4hCDIwp8lG8iJEvLyxzs3MVYP/k7Dss5RlzWRhMoSZFXWARCBJS1pq5qinzKUtSkEmpuHJRkec7K4hLGGAZZRthsUlqB1pYoUKysLNKKFZOjI85urlPV/r2mjRadhWVvRDQ1vYVF6rlOOIoinBMY41BCUdmKdrvtpRPCnBiW4qRx0uE97q4fX8dmw+NOcpnl5HOOeBD6Q9RoNGKKII5jhBAkiTdihmFIGIY+EVQpjPUd91YzQIWSUEVEUUTaCMFp9HzdtdayfzTl7n6fIq9YXF6hrPRJ999PP+7tUeq+ALKv7TC7r2GDwztXPAN+wlD77nOoFBaJwZ18zmBJ0pBQGgJ5XE8EJFFCZCWolFhJFA6kwmhHIB2NQJFKmMmERtpFKQhUiMATVVwoiJOQOAyxTpNEIUWVYOoAKwOSRpNyPEYpBxJOr1wiWJWcemiJg+FdhneGfNu3f5Qv/+uXqSrJ03/wLN//3X+KViPh6GjAmUfOU4uEwHZ46cXned8Tj/OV129SFn0Od29gTMjzz32FS4++iwhI48TvpdrRHx5hRU1Z5gyP+jx66UF29w/oDyv6gymtTsBoNGE6nqHLiv29Q5aXVwFff22sr3J0dOQj5qeeTGS0Q9YhFI4gbxCpFCUlgYhIwohZ4bC68p4f578fxkq0AwjQzlK6GodiIU5IVEwcNHE2QLoIh6EwBZWukEJjrSEKAkICCBqUxYRmBAkzomBKIiS4Htp5vGKzkRC6xJscTUU989N7GWqsCwkRWKvRukYpRa0CxNe53/YNUUAfbzJSSnRdEkXRyWgQ7kkvlI+q8QVzEHp9sbE4cQ/+7owv1IzRMDeufe3rSOm1fFr7DqnXR3uphil9MpUpc5wxOFNga492wvjC0FpLbR1GOkIVUGlHoWvS2G+qCuuz5Z13SgdBQH88Ye9oSGRCNjc3WbeG69uHbO/mZAttAiwrnZjb/dzraowlbQRc2lzlVAfeeP0a737sPbRW11g/+yAuiGi3R1TVMv/9j/9V/pu/8mOMJ32+9SNPMR0P+eLTf8gP/bnvY2Ghw7XXryJWu8SJoiJCGMH5h96FLbxz/S//pR/i+vW7fOGFZ9ne3qbb7bJ/mLGy5Dsmi8tL7O/v8uQ3f4i3RjkLQtIgIhUKIQK09ac6P3oBpKWua4QKscYQqghdVF7KEfqOlgn8f1UcUpvS80eN9Rzo+0bbVVUh5By1paT/8gh8ulsjxah3dpx48dRFqmKVuioY9DbYC99kOhlQDfuEStCIYyIlabTmHehEkTR83HQYSNQxys96hqutZyx02jTaDaq8ICszVtZX2d/ZI0piqnzKwtIiB3sH6CKn1WqysLzi9Y3DwQmj+e7tOzz48CMcHR6yvrnG3sE+nYUu3W6Xg6MR3XbKwd4+w+GQDa3Z39+n2/GR3KdOnSJOYlZPNYjTNotLHaqq4syZM4wLRxDC2toazkGYtNjZ2sJozeLKOpubm8xmnozw5ptv0uu2TygDx9SNzc1NTp8+7fWuUcxkNGIGjCYTNs6eRmczqDVXr17l8GCXyxc2KfIaiaYqZygJxniKQVHkHBzucfHiee7cuYtzhqXlBbrNFovdBXRdcvHCOZrdBV65dp211WV67Rbj8ZDlhdaJ5jbLMoqy5pFHL/Hss1+g0UopspI0CYmkIAnPMi40w9GI6ajkjVvb9BoBSVn4+xnE805hQJlPaTWbAEwmE8/LLjSiExAGKWVZkmVTyvKdNRFOCk27oYil955UVUUQFCSuAXM0W5rec+t7Qq0BDAAAIABJREFUTOO8Awm+4TCfsDXSmKrMmYyHxK2URjNh+84Or7xylccvv5tnv/gStnLMZMby2jrNVocgSchv3fBrhbsXymStpaxrqtoijcAQ0O622NvdY2oCtNbESYg2jlevXmUyzum0m6yurlLpEpxkWJTYMGY4GNDrNFhd7NJqNug2G2QLHdpphHaW9Y1ThM0m/fGQbDKksdijEBEyCFFB7KVptWX9/GmfOOt8wUwowBqKoqLRavsushBMZvc8GVHkk1TzPKfVann4n7GMBkOqqqLZbDKdZUyynIceesgfJowhywtUIBiO+jjnO8xaa6qqwlqJECWhKIlsgFEV2gSUZYgTEotk5+CIIq847B9x5sw5VKDZPewzHA4JpSKaTz6kfLt+3eCnqN/oVyONiYMUDVRVgRJeyjYtaqJGmyCNkVHEqLhLZTMGeYTLcwIZ0kxisDFKSrQKMJmXU9WmpBIaXU3BSZrJKoUZkoYNloKQsc4oHDzYfhzpQkqxi3MD0lAwwzCbTrHFiIVOjAg1tc4Zj/bpLjW5ce02VVWQFRX9bIeHH3+U9595nNe+cpWvXttje/sLXHzoIc6tr/LAAxtc29lmVkk++Ng5lnsJ9XiXN16cIoKU7GgfUZ3jM7/xW9QmIEwjBtNdLp+7xN27d/nsH3ye6XTKu977HrJSc7C/w9nNUzQaDQ72jzz0wFoajQYbGxtMp1MeffRRZrOJH9sLAcohpaCRxnQW2oBDD2K60qKjirQtiV1Inh+gdeGTGIMc46CyCbU15JWh0wop3YQ0aNFSEU0ZIWQTqWLiQDMu3mKWbaOrikCGWG2J4i6dqEluNFlREaQRMpwBA7SESo9ApdSmRFpNFDhUHDDJSurcUKORtkAGKcLALPcKAxEJCAQz9R8ghSMMw7d1oYE/Vh/onEPhtXsIv5BbY0Hd61qK+4rkr+08nyTnmblu2WqsASEFZVEQKDBzjU9dFXMphwGrPbrN+I5DUXkcmZp3QyurcE5jnMfhJEpRa+31lyqAMsdKxcPnl7h6Y8Krt4+gmKHaTayKqWpLO0lppwIhMjqNJkEoGQ6HPHVpjQ88+W6eeP+3oqKQrVvbfOyT30NZjPmlv/9zvPvh95AstHnui8+w1ErIxiOef/55vve7Ps3u9l2iJOSTH/soX335edIgIokkYaMJoeC1a9d47ZVX+Qe/+MuUlWBrZ5+iqLj44IMYuc10OuNob58oijg63OUHvue7GVy/xiCf+Lhc4RD1hCRJ/BhWCBxuPj1QoBTHu+1xyIoIvKFSzJ3dVVGipEA7B9LLbI4vay12PmlQyicaVnODaJTGICVZVf77eSj/P17ddhMTR2hdEYcRoXZMhgPGYYAzmkYcEClPJJBOoAK/cQWB8s+vtdRzc+usykgD0HMjZRxFZOMJi602UkCzmeJ0m8OjfZaWljB5jqFmNOiTJA2WlldZXl7m9OnTZOVbPglPa27e2GLj3FkO9w9I05S15RWs07TbbZQ4xcHBAb3FJbrdLlGcMJlMEMKjClc31hlPDuk1vU5OBYLpeIx1iiAI2d7dJQxDLl64QF4ZhsMhR0dHNJtN//phTBQnLC8vgXNcvXqVIAg83m1xkVNrq/QPDwmVAik53L/Fay+9SCtwnDu9SSRq+sMBD158gKv7d7lw7iI3bm9RawEyIHSGRqNxohmN0xihJGWdUeuco8NDVldXeea5Z7nw8GWSJOLwaMBsOuRdlx+kt7jOtTdeQwnHzRtvsra+wrlzZxiPBjz++BPcunmbsqyRkymj6SHdTgutGkzyChtImq2E2SzDzsfe0/GEOA4ZzyZ0W21kGDCbzWi3GuwdHpE2WhyNxoQqoNFovmPPLcCsNsxKT8uJzTzQQwXUdUUzbcxlHAob3udLkfe3cNyJBEDPDb5pmlBpTTNKiYKY97/vCb7why+ShgG6riixLC77ruosy+ayIX+APL6HAM4JxtOCqa1pRpLReMasrBjVGpwmSGMMguF4ShQlJEnDvw9r0bZGG0dWFrRbLZRwKClYaLfoHx0QJy2CQHL63FmMqTEojKtZWFziaDjDzjX0zWbTY1XnqFNda4J5o8eYGubTtKWlVWrji6ggCHD4TnMUBxSlj7tP45h6/lkNR17qdPv2bcqq4tzFB7hza4sw8EmF7VaL6XTKeDwmiVuejz43aGvrCJWgNpYyq1BCYA1e0299J3B794jaGjZWN7FOMJ3lbG9vE0YJMvBrznG8+Ns17u/AQ/j/57I1iBat1iLZ4R6T2ZRqNsMFCUYo4qQFSnLraAstu4xHGYqSpV6Poj8AXRFHDeKoQRCGRCahKkuOqgydayI65KXGBBKnIHGSQjgyo7h8+hPEos0fvvHPiaIE4aaMzA4iMFibs9sfsbywRhJ1IWpR6ibSLfPoQ4/w+JMzrr32PJFa4ad+6if5sf/qR/mNX/9NVtfXePdjTzLMpoyGA0SgePWNG3ziww9w4aNPkg/2aS0s89nPf4lZXvMr/+v/zsOXL/M7//L3efKDT/DUU08hpCcePfvcyz7Mqv4Kk9kMrS2dVputrS3GkxkffPID7O7seHLQZEKn0+H1118nirx2P01T0nbMdJjRSFtUpgRjaUYdZsMZKglQWYAwISFTROjXZ9GovXfLxRhTEoqYQPj6SEmLFBblJE4ooshP3iRe/+y7z54/HiJJAkUpQorSMsoDmmFAI26SaV9nEPu9SduarM7Q0xJdOaKgAWiIQnACowVlYYlkTagCHJpafX0DgL4hCmhT1fOusTfgGbze1c4XLmCuubLUWiPn8dzGubk8wOLmyDSt3Rz2LpDSLxbazFMHnfD8wrLA6mpu0KjncbYVVWFwpp6HdNQoBFbXeLNITZEbtANjJcY6QuswAvKsIAgVkYwo8gxr9Jwf6zBWEFl4ZXvKze1dJjpiPBzRaDQoZ5rTp1fBaEbTnGnmx3SjbMoj6Vm2D/chlozykr/2Mz/DS1/+Ij/2X/4g13/rNzh/4WH+ix/9cabjIS+9/CWuvPwKnYunaXQ8W3ZnZ5e729v8i3/9NLM8432PPcpwovnuxz8A1QTqlEuPPMmlxz/Cux//AP/wH/0yv/0vPsdLV17kaDDh5u03KaspCx2/MX3nt3+aymhmIqBz5iIylGTZmNaopjQ1woKVGiEDKuu8FAawzlEZjag0Va1xukbGIUr6jrOgxhAQhLGX3NT6BJMlJce+cJyROPwBqK5rf9rNC5/C9w5eKmyQJF5KlKYxiRDkCytMFrpU2Qw9vIvEpyQJIZDWx7xb7Z9ZhCErDcZCqQ1TY8ltxfd83/fza//4HyGt5Kt377K6ecrLgVTC+sY5br91DacLlFIsdheoqoyj4RGRVDzxgQ+yOBxR1ppBf8jq+gbD/ojNzU0QjiRWHB0N6fV6IMUJTD8MQzrtFqEUKGfJyxlxr83G6gaDA8+JXlldJpKCzsIiO7v75NMp3W6XWZahnaXbXWBZrKKUYnvnLhbBhYce5s6dOxzu3iVtNJEqYHGhQz6b0B8GTPMZpqqp6ozNtdM03q/58gsvMh4e8t7LDzPNZvQPD+h1F9k/OEIITzUR+KCPxd4y1sKZU2vMZlOKomS544NboiTm9p0tzp5ep9OMWF5os10VBKrL819+mbXlu+zu3OX9TzzG0mKP7dtbTKdTVtd6XLnyEvt7fVbXNxBSIoWXG4XW0ZCOvcGE0Ga0oga2qrHGEUgo64peu0tW+mla1EyZFDmtJMZR00hSqqpiMHxnCTKVC+lXksKUJIHCFBlWSWzVxAQKpxLq2kDqO6feNO1H5QKFEnN0qAAZ+OmhcIatm9dZbPcY9kc4GdIfDZGBQjVCEpFQVhWtKCCYH7qN8wZNPTcZCiEYjibMZhAqwdpCEwmMS9AGkjRGKsUr164TxynWQhgK6rqkP5lQ1wYrBdZp1ruL87VE0u8PiZKYleUODz54kUYSMBhMcO0GoUoYTT2nv9ft4JImBkesBIWtyEc+Fr52BlPOSNMGjc6SD/EpM+q6Jk0b1OWM2WRCEIY4XTMej5mNpoSrq5TOUeuSRhizt7NDFKdsbJ5mMhrPZSs1Skk2Nta5eesOC+0OpYGiKqlqw3A0JYkjwiDyI3ZnqGvNbFpSGW9oDaKYtdUlksQbMW/d2mJW5B6fVxV+fC4lwui5qft+ObMfvyu+Zqp3HwvcIOZb8Ts3+Ts82EMEltXuBZSwHGYjemkbWw8xpmKp06Eqc65PBqy0m5xuNNDELKYNnhm9wago6IwXWV1uk8QRRmuKymKlIheW7fGARhSjZyUHswqhawprGU4HtOOU861zdL7pzyNdwZWtr1Dvv8zR8EvUNqcpGzR1RhgKbNNQIygZ8uzrLzPa36IdNrhTvcX3fN/383d/9mf4C3/hP6MqKq7fOGJleYHff9avOXfv3uXaW02q1+7QH0+4/K73cPGRy9za3iXorPHqm7cQQci1629w5coVFle6pGkKSnDQP/TfEQTf8tGPs7W1hZWKs2fPnkitlpaWaDab9Pt9qqriwQvnWVtbo9PpoOuSN2Y30M76BMdmy2MXe+sYpykPpsyUZWF5kVoVGFkgtWZaGso6IKskC2mLSCmyasjEZWStIRZBUk9oN5pIA61ok163phhuY2xIaTXaWSbVlHE1YlaOuTPbQCMJgoI7syZGORQWWcf0dYYxE5quSRp36LkQG1gKERAECxzOhlR1TZHXqMAiRUahZ1/XZ/EbooDWukIoiWOuGVZvh4N8LYkD8AZDIXD27Xzo478vxL1R48nPCoedd5TlfCEQ+ORTY+dyEOO50FYb//etPWFD+/fmtWNSBCjpnfgOiyBE1wY3ZxsL4Q0e1lpq4xhmFWlvGZtnGATSOI7GU2qrSCNBGEY4UXq+pwCEQuua7uIpdg8qRtmE/+N3fpPPP/1HPLy0Tpo2CcOYjYuXQVn2DvpsnDpNmWs++9nP8u6HH2Zrb59nnvsST37gCT73zLOMJ1NWzl4gSlo89MhjtFc2cLMZ7U7M6toKWZbRSDs4Eoy+hjZQVJZICi5dukQUKlxd47RBSyjKGVVZs5DEfrwpDRKvk9TaoqTxBIr5/THWR37bssYFgU8ZNNa7Od383tzXEVFKUtWaKI5wPrAT4STWCb8hO29KfCcvM3cvCwUqjEiarTmYfkqoAvJyjK5LrC2R0h8SAwTaOh9uIAW19omGs7z07ngp/Gu12mSjMc0oYHVtnZ39XZYX1phlEzZOn2Pv7m3azRTwUxyEIIhCBoPBXDM5Y2HhFLMsY/PcGRqNhNdeu8rm+ibLy8sn5AjnHGtrax41FwY0k5jr169z/sJZAI6OjlhdXWMwGLC3t8fy4iJKKZIkOUkbNMZQG81gMCAKGyil6PV6J7rP9fV1GlHAjRs3qeuaU6dOUZYl1669ztLiIk7XrG+e5sVnPs8j55Z5/3vfy+TgNje3bvGuRy/z6le/Qj2Z0FlYJEpi8jpDSUlZlnTaKUIo7mzfpNdboBX4w/fgyPOq+/UhaRgxGQ052rvL+YsPkhczzl84w2Qw5PSpTd/dG09Z6nURVjA4OuKDH/pmrr+1xXg8Jc9mxFFAu9Xl8I1b5KUmDkLGRUUz7aCocUKBdsRhgBCSJEnn60dAp9UllHNiR1DSanQo8q9zLNa/41VUmiTxiaG1ESf3SusKY0KkTDzK02rcvImgVHDSJQZP7PCGNP/zxTwuVynBxYsX+fwXn0NKb6q1eG18s9E4IesYU88N2m8nQpRaY61ENSMfFJIX6HqOJVUBWs9lYmGEUj4hsCxLisJrlJ2SGFtjnKWhBNPphGbaAOvYXF+hLku2bh6QZRlJt4vMa+qqZuPMWbSDWVYQxhFSCag937qqapxw9Hod0qTpUZtVdWIYtU4zHA7JZjOWlpdxzjGbzciKnN59Uol+v09zoU2nu4gxhuvXr7OxsUGn253/THaPwjHXU0dRxGQypT+akkQRTetOTIaNpiB1BiEUUZjQaneodMl4PH3boeT+IDFvyL8XWgb3cHX/Zm18L1fBMt805TtXQM8qizQZVT0jCh1hENBudhiNR4TSeIO7CLAG0iAgUQpXWrpJSrvZYjjN6WdDklTQi3yTR0pLK2ngdMFAVjjpYQBZXqIiRSkCrCzZLQ5Y7Z7hbLyAMBVHa5eYFY7x9FVKk+Gs9thDV6ECwSyfUlmHNQppllhfeZSD3YIXrnyZj377t/PGzTusrS7z9//B/8x3ferTLPRaHEwKnAqIm8tsbV/j1u0dZmXAQw+fZXFlmad/+7dRUZsnn/ogiJxOq4V1JYeHh5yNlnAYFrs9TAVvvvkmW1tbdLvdkzU7m3nm+HEgVKvV8rK9ebhKkiQnvPLjKak3EEuUDAlFm6oq0dMaGQSEUYwh94dtF2GpkSKYJxdaXG2Y6RlChgS6gaszlAgJRUwatDBhgiwDlBI+LhzHtMrRzjI0MbJUBHXKpE6QsqapAnQcU1UObQrCICWUITayBNIgRIwQKSrIKOqKWIRYEyDCGuzXt2nxDVFA12VB3EjBeo0Z1iPm7pd0+K6H508e//5+O8PXLg4Abt4tOTYTYo2XbegaV2us1XOETY2tSqQDXZU4Z5H2XkiAMWZu+sIzYIXAzs0pxjiiJKEsfcKcUIKqNhgzL06MRaqIG/tDFpsp+6rmofMX2d/eASR37uywurJIIJgXm4JaBty8u48l4f/63ZfJZwd84MNP8pN/4x/y/JdeptVapqymXLjwLuLkOmWmOf/Aw3z5pefZevMGH/34J7lzd5dXrt/gr//Nv0ESSZ557ousrZ/mL/7QX+b06dMk7YSf+Imf5Ny5c/ydn/tZ/tyf/0H+p7/1izz3xRdwImR/r0+z1eP21k1WFxdI48QbXNbWvGEsDhlOYkSjS36wR0NCJ5K4RkgqFVoajJwfRJzF3hd6IuZ69lprokBhHOjSbxIWiOPYf3mDwIepSAFiTuSQgihKqLXG3DeKfKeu8TjDNRsI6YiCiLTRIYpTVCC9PEU4yrwgn+yCrrGVRWfaG19sTQ3khcYCRVFS1Y5GIyROW3zbt3+af/kbn4FiRlHkLC6t/j/MvVmwbNd53/dba89799xnvOfOM2YQAAmQFCM5pDjGskRbc0VJSaqIViqVvOQhfrDhKlf84lIllVTksiW7LImSHNGWLCUUZcmiRIoUSGIGLoCLO5956Ll7z3uvnYfVp3FJy35IsXS5q7oAHNzTt0/3Omt/6/v+/9+fw/19ms0mG2cuUZaKYe8QS2icjyNM8Dzu3b5Dp9NhGsfs9/qapW0ZnNhY48KFC2zd28JxnAU6bjQaMZvNdNx2kbO/v8/Vq1cXBUEQaOZ3u9shDjU2z7Bims3WwjA1Ho/x6zUANjc3cRwH1/cQQjAY9AiCgHeuXcM0LV5++WU++9nPMhqNSJOE3sE+08mA1dV1rj50icnOLQa9PivLSwx6Gdvbm1w6d5aN1RXeePsd+sMxs/GEdrtNp9Pm7t17LC+tsnHyJDdvvMv68gpBq0mchAyHY4JanTRNtUnI80iziOvX36FerzMbjFleWSHNC5aX2iRhiCFKPvzcs7z62mvUukvk8Yxzp06wu3tIr3dEt+GzYnvs9qdMMtg+POTEUgfLtjDnHf3pLMKy9AFbSJOkyGnVfCp0MRZHKXxnp++v+drYOMnB4SGRrGiGOfUsx5QpRZ6TpSmy0dBhUGmEaQgKgZ4KLRBrx3trSVlWCxNd4NXYOeiRJj3azTab9lRz8g2DJAoZ9o4wHJskiRZmxeOS/PjwnBYlpVFSzApm0zGB4+DZDlJUpHlJmuea0yw02DROdEGwcfI0WZYxGg9Y7na0QXXSpxUESCFwPJuDvX3C2YQTG6forq5hWg6W6SKsnJ0jbaRq1gKqoqAQLJI3290utqtN2ApBniTzOHQLlRds3b2z0DtnpdKvY27WLSpIopTJNGTj9BnCJKTX67G/v79IJPT8Gr7v8/rrr7OyssIiIjzPsSydIpcUFWmpUHEyj+12qNcdBHODdVnR7/dJspTZNFzg9Y7vg8f4ujzPF0i6qqpQQssjFe8Ztu8PHyuVmner38PEPqgrQVJlu9w+zHnr+jUuPfYhlmtrHIYpjigIpxHYHaRp4PkmeZZxNx+icmi5LnG9zb2dXfYGikFpIk2FdKFIFK5hUeQzYjKapouwDfaiGYblYJLzO1/7NQbv2+Pjp55g1TnBw2tPcL79GElxg7d3/oQ4z7CkYDQdIvx14jDi0tWnKHPF7firHA236UdbPPH4p3jthVc4c/o8yjZJspjPf+F3sNwAg4of/sT3841X/pLLVx7iZz73C+QFnDq9ziwc8sqbL7C9PeKwt8sjj51lNp2CSmk2PNrtNkVRsLnZw7bqgD7khmFI3Q946623uHD+PFmmTc2rq6sA7O3tkSQJp0+fpnR0E6bd7jCZTBZSD8/zddOkgmk2xcldhA2lmDDOc1RaoVKJUTqkcQamRVgo8ixGsEOzPmCZlMDNKfAxKxuRO3iOS1mZTMnJVEUqTGIVIjzo5yYzZWMIhTIcTCPExKIyDdaaK/QOd0kThYkkUQWeE9AwW1Slx8iakRQ7GGWKbdcw1Rjb/O4W0Mbzzz//XX3C/z/X6KUvPl8pRVHmWNKan3qqb7u/6BNRhk6Mrha/+McbhOK9RMMF71mVCwqGlBI153uSZxiqIokiHfOqCoo4pioKKEtQpS6g0bqw402syJWGz8+7zMebzGAcY5oSaWp9dpbnIPWmU+QV4+mEuHaKfpITFibCNTh5co16PeDK5Qvcur1Hp9VmGsXM8opMSkSaUWIwiYecOXWSP//Kq9zeHTGIC+4cDhlECe9ce4M//IM/JYpm/PGf/hnve/IxXMvhlTde46nHn+QnfvyHuXfjbW7eusEv/MLP86Uv/RHrl56iP4447Ge88MLr/Oq//Dzvf/pZfu3Xf4uj3phHHrtEu7vEs889x9vv3uL0yWX+91/6x3Tbbd31LvVi7bR9glqdtTNnkCsN2mfO0j51DrPRIJuNSeKZDpXJdFJQ5VqUoiIvtXbcMk2tY68UhmlRFgVUYNkW8ZwrXKIoqwppWkjTpFQKy9HjW9N1yIocaRg0zj37Dx/IwgW+/upbz5dFSZJmmhpgGgjDwrZcXUhbDk7QICtLSkyGs4jhcMYszhjPYsazlFEYM5kmJFmJsPTYvMhiHNvlxW98E9OUJHmm114SIipF/+iQRqNJOIsp8hTHdRn2hxiWxd7WHp12m1a3w8rps0RRTM2yGPX7nDl1ijDSmML9/X0s22Z5eVm7r6dTTMOg227rcbClkWJCaHTXeDolms4IajVUBUK8F5KSpilREtPtdvG92pyeoubGOsH6+jrrqyukaUqr1eKll17i9OnTXHvtdYo8IUtD8jBid+sma+unuXfzbZZXVplMp6y3a4ThlLfefoukyGi5dXqTCcvra/SODmi12sRxRJEkuI5LISpqzTqNdodJFHHq5Cn6RwdsrK+RZDmOG5BniuWlDfx6k827d3nfI1exvBrCNmjUXUaHh/j1JtM4pNuoY0jwHZcsiel0utoEmGd0agGNeouD4YSizPB9zZbN8xLLdrBshzCKyYXCtE2iLKPEZBzGBI0uP/13/4cHtnb/1a9//vkoLSgLRZzMaAcWoJCGQaUUlmkihSDLMyo156ny3jRQIsmymDSNmEymRFHEeDxmPM7A8rh395CDrSM2D3scjiaM4pw8mtEbDqjVa4TRjOl0pIOvFItIccdx6LYbmKLAtU3azRoGing2IUoS0rTQTYoiJ81z0jQjjGLiNCUvSypDcmZjA4qCcRpBZVAJg7JUTJOMw14Py3ZxGgGmbbPc7iJrAU5Qw1ACUxoUSUiZplSmwDRMWs0Orudh2DaG4ehk1EoRxzH7+/vsbm9RpKk2JbouszBmPJnSWV7G9WvsHxyhyoqDo0PSMCJTBeEcc+c4Dqurq0jL5PDoCNf3oKqYzWYIw5ofxEo8z0MVmr1rCEiTgjiOSJKIaRwTxQWjyZRpGGEYJkoJ4iRe3C+/M433eNp37F0RhqZelaWayzrE3Gv0XvdazWlYhmHwuZ/7mQeydn//q//keWVs0wtvk5ZtYgyWal1S6WJbM4aTm1Suy15/i1a9wb1eykqjyd5wm0mRQ6TldpM4hNQgMBw6Dcn0yCFVKdO4TzwJ2Vg6hSkdxrOIbnuJFW+FYXGDt+59mTf7N5HC4vLKJTquoD+JeePWV6iMAk80mc5y8kpSa3u8/c67PPPUB7i9+S0MdwqWx4WVR6h7LrNwwGg6Zqne4OjoiCJLeOjyJT73uf+WF7/xdfygxuHhhDOnzjGIhpRVQbtbY+PMEucuniNKZ1y8dInDvW3SOCGKHG7ePcTyulSGQ54kHBwcUFUV08mESlVcunSJTkdPP3Z3d/VUR4pFVkCvdzQndGi2uw4vy6nXm9iuzSQZM8umGMolD3OEoSgLRVoOmAxiZGFQ5BNKoyKLDcpUEad9cjWjMvukZU5YFJSlT1imWKJHZVUMJxNcy8UWHVJ5RJJPqIsarmUxzRIUIW7QYWYIfKNNw24hpGQwHTIaDwmrnEQIXK+NbTgcTneIkrvklYHr1BEyo2LMp5/4e9+1dfs90YEuFViGodMG53orY87+rSoWhA4MQ3chWXjTEAIKoRahFVQKOR87mHOsHKrUhXGhdBc6LykqnZNuSKVjkssCWSl0E1tQVoYuhA1JJTR/OFO602JYEsOQCFGhFJiGjVIlpiFRhe6IVHNSRJbmNJfPcOPLr3A4zTm5fgohKzrdVaj2uHRxjdfefIP2Sov9cUSnHjAOE9zA1uDyXFDiIuyAJEkRhoFVCVSieOHFG2R5xN5gysH+Do1am26zBkqxenqdL/3hv+e1V1/l537u5/iDL32VP/vGu/zxC9do1gPOb2zw7s0tSiX50h9/HSklqyc22D0Y8YEPnWR1pcOtW3dCg2iYAAAgAElEQVT4pX/0f9KtB9iOj6wqUtPCrwW4noXnNxiPhyyvncMxJGQprqgz29ujUFMkJWKuV5dlRZHluI6DKhXS0d0oz/MWMcFSSoRpICxTaxjzCiENhGHi2C5RmszlIQVSGtiu98Ch/kkWY6USozCQwiKqFLZl4poGSIFluwgpsdwmqjTIqymjLEYIPT4tlIb7A/pnqkpmUQTCwAkaOM0a8ahPIAWD/hFnz11guL9LNI3w6k3WTm4QDfrsH+zSaLQAid9pkYoKx/GZTAY0WnXSJMUNfKKsYOPUacbTGfVmC8/ztHTH9xmPR5SVwXg2RSlFp9PCtG0My0FUsNTpIjuQlyXZdEoShwS+S1kUmHMDisoLbl5/l4cfe5S9g31839cRxHsHVOikO2mZPHTlKlv3NnnfM0/jWiaTcZ87774FuR4dpkVJv9+n0WihREavf0R3aRnHCSiylLWlJQ53e9zd3ObqQ5cYTyLGoymr3RrPPfccX/nLb9AIbFbXN7izfYjhtxhPZ5xcX+Xm7TucP3MSx2mSqoLDww53t7dotLs4pon0HPqzmLowqbkevm0ipMm7N67RbHd59913OXH6LJZbpwBmUYZRKQzhcHR0RLfbxbW1znQ2m2HYDv3hWKdTIpF1g3q7TV5m/8l19ddx2U6TBjNmsxG5sggzME1tkjYskyQvEFIR+JoPWyiFeYz2oyI3SsI4plQ5WVlgVAVJVpAUJeF0RlD39WQicAkzRWWYFGI+Jcx08JSFqRsWGFSVwLINhBQEnkUhPAaDkZaWJDlpWmEa4DqW1iKXFfWgRlmWxGmCbdnUHD3ODaOEXm9IUPcxDYNSSKJpQqoyuq2ARs3n1MYJGrU6hm2RZ+k8pEhrgpVhYns2jusjF4ZoA1lJVJFRzE3iYThl3NunLEs63RWkaet47TQlLXKWfI+qhDTLaTcaTEdjHFNiRgWWHqjRbi2DtMnzGEvq4IlZnFMJi0oJikJ3jTWlRCyMm6UwqQrdkQf92eV5jl+rz0NDpvO8BP15SykXeFUhBErM0yilRApj0RSq5thQU0gQespbSbkonhFigXJ9EFdSlNhejiksoqLk1msv8/CjV6knAWFsEeYhdpIhlCQqCuJM4kqJZZqEaYrheBiqol54TJVko76M2eiyOYhplAFZkoNlkAuBawp8y8OoTFZ9j7xaYmbWmPW32Fm+y9Z4Qkd4ZDIklhEdLKJiRGkIWqbHbDTliUce4uvf+ApO3SCLSj79/T/KjZc2CfwGO1s7lNWUvIoQlKyvr/PB73s/r731Gs996FmWlza49PCTfO2Fr/HwY+ep1Zt8/l//CbUa/O2f+nGiKGFwNGB57QwSh9dfvcnlS4/yymuv0e12MaWi0+lQpDnd+QTx+NCmSUCpThWu5hxoVTKZTTl56hyzWajThqVNlmYUKidNBUmYUGYVMzVFGtDKfKqiosUGB/IWqSpJhI1RClACITwKZVEUCVkWMktsKukhZYkUDoZZIIqUUpYkcy+cZZkIMycWETWrhV/6pJVCFRWedMirhHExoCgjSgWFYWAkBqUISeqSQpQk+QhVVBiuo9cM1SIF8bt1fU8U0McJbPfzRoUQOuZ5wR9Vi06y1juz0J4JIbTxb74hAAvJxrFDQjGPys4zKArd2ZSSJImo8hyhSiqhkMe65vn3FUVBkVdzrJ6BMCoKpbBNSVkWZFmFNEzKskKIiizX9I6Vmmbgnr/yBK/f2+MH/9aP8PT3fT+ZqphNJjzy+CMstTts3rvLUx/4CK+//jrj8ZALV57k97/0p2S5QZ5VoAQH/Ql5XmC7DmES4VUZy2sreH6NooLhZMiPfPZHuX3rOn+xt83P/Nhn2Nm6w3g44Qc+9v0Y9Rr/3f/0j4jzikcvn+P7PvgkS51lXvjma7zzzju8++67XLl6lZs3bnGuOkO32+HGjRsYouTSxQsEQR2EA0JRqzcpPW/ORy1p245OZKKkzGLyPMZdWtW68mEPQwgylWMWCs92yCqFMHWXPggCHZBiGBSZZmwncYZhWOSlwnQ9bNvVhibLQpQ5lRTYnovpeYgK4snswSza+dXv9/U41DDIEpuGr0NSStfVIRuOB4ak2eoSWS71KGMcJosUtuPu0PE1Ho+1xlSV5GnCD/zgx/nSH/we/b193FoDS0iSLMX2XH1YNCzyCs6cu8BkOGI8HrN26gyNVovhsI80DWS9TuDXqaoK3/dJkoQzZ85weHi4YEdvb29z+fIlzQK1LYSsFnSc49+zPM+JooijoyPW19cxTZPhcMzqqq8L8ekUy7K5evUqxn1j4FMbJ+kNjjixcZo/+eIXkZZJzfFYX19na3sTz7Y42D+g3V7i5tvvEMd9Tp4+rY1Opsnm1j0UglqzRZErJqM+3VaNwPGohMIybVqtBufOn8cRObduXWdjYwPbUNTrdY4GI1zXpt1pMplNMUwHw7TZvXeLaSGI4oTv+9AzvPnmDVa6S+zv73P+4gWiyRjDNtg9OGB9bYPAc7FlxeXLFxkMp+xsHdLqdJmOxjR9nbynioxh/wjL0HKGzvr6XCdcYZsWYRiSpQbRcPDA5UdIgeNYeN4y+4cD9g5HZC0fy3UQlYnnRKhc4VpaAuPaNijdrMiSECH00N+UYNd8TCqUcCiES1BrsrV5gO24tBsWo2nGykqbg2QCsU4vzdOEssz1+hcVVVXSaS1RVSWugOZSk5pjcNAb63sDUhu+Ko3/O2Yrt+o1LbmoKgxTgFDs7moknOPZ9KYThBKsrZ1gteFx5eIZmo0aZZkzGk9oGhqd6bguWZVRVRKJiWGalKUCYS401seyCl1olkghMKSFYRjU25158axlTZ1OhzzNGB0N9ejbMvFNkzt3blGv+eSiotVs4jVqTMMYW0r8eoN80Ad0kwbFQq96/PeDlrnprnpJHMcLacYxCnA6nRKGoS7+7+sxfLss8r6AlGPZ430SjfsJHX/V/3tQl8GYMstxKhvLsPnYRz7KL/+z3+AXf/xzmEaD7YOMYjjC89tM4pK8sHDsOiI9oCZ91pdPcXe4y1jGfPChK5yxbF48eJNpWFKJhFrQZhyHHI4PWfeX8UyfptOi4ea0c0m9aFChuLfzMtd2/xcanQ16RzcQKsYMGpQWTMYT1lctxv2EW7dfob28QpXVMQyTezffoeF3me6miNwiLxMwXIbjiCevPMzbr77M+tkVLl+5yCRP+Mpf/jn1ep0//NJX+NpfvED3xAq/+iu/xe/83q8ziw5436PP8eor15FCkeV6DZw+eZIgCLh+/W3azQ6uZWOaJrap9/Qkidjb2yMMQ+19mQdwSSlp1HwODg6wLHtOZBK0Wi1qtQDLsrhz546+/5cKaShM1QLDhJmNa1hEWURlCgzDJvAtsiJlNKvI0rkstsyI0xG+M8Q1TIq0xKgSsjJjOh3QcpeJ8ohKpuTlgLKqYVUeWHVNskn1Yf2wd0DdWca2bWbhiJpVI1cxk2iPs+01akGLWVIghYVhmaRJhS/q39W1+D0R5X2szTrmjGJoMPr9EbPHBfR3/gIvNFrHiUqlfghVUeYZqsgpspQiS7X2uSyAColGoaDKhXb6+Pqrok2PRfTHr6MoFFV1rCvL53/WQEqwDZNGEOB7Hl9/6WWaqxt49QZBvcaFS+f58IefQxoGXlDn9OmLfOxjH+dDH36O8+fXKcspcTQiiTNsy0PaNgeHfQzDYDabISvFY49e4Od/9sd58vGHuHBqg+WlNrdu3eSNN64xGEV8/YVX6PV6lGXJOJrwT3/1XxKWkgKB78CnP/4R/uE/+HucPbvGs88+ARS0O01c18X3fc6fu0Sn3SUKJziWDdLUhZhhYdj2vKtqIQ0Hy/bAtMmFAYYNpoNdb6AMi6pQqKLUITTzz8a0LYSljUjHxdnxmEgpBVIgDIk0TUzXQ9oWduBRSshVSWXKueO8wHEsnRj5AK8wDInChDhKiaKIOMtJ05Q4TUjSXHe1DAvTcXFcl3qzQVDTOumK42mKWIQA2PNAFBOBROF4Lqbv6+j0POVwb5elpRUUFdF0Qv/okChJKCuF69msrSzh2hZprNPLqjTHqgQ33n2XRlBjOp5wcHBAlmVsbm7S7/dxHAfbttnc3OT06dM4jkOj0SCdUySk1EhF27aZTCacPXuWoiiIoojl5WUABoMBnU6HwUAXhu+88w7b29v4vs8rr7zCbDZja2uLJ554gvZcIjIcDvWalpJmswkFfPC55zTJIo7xfX8RKqEURFFEGIakie7WJPFM0z52dlhaWqLTruPXPNrdDrWaz4svvsxoNOLSpQu4rksxP3DU2x0cx2VpuUO93uD9738/t27dYmVZUxWWVlbnB6OU7bu3WFs9wWAw4Nz5s7RbTSajAarM+cCzz9Coe5w+uUE98KkFLitLXfI8J68U+70h93a2GIfTxXTFqwVkmSY2PGhsmMbU6ambEIJJlDANc+IoI44y8iQljyNms+m8WZAueMR5rkMbbNvEdkw828EwJN78cJ1lmY7eLgpmkylVkRNNhpimqTXCWbYo+haNESFwXZtmvQ5Fju9ImoFOoGzUfXzXxHFt/MDDce15FHZKlmVYpkSgiOOQ6VQfQvX0Q0vJ7MCj1W0R1AMwLQzbYWl5lWazqXXeSUKSJPOfK11ECh8Xjcc/d5akcyLJ/OtliTRNavUWVJI4ThmPx3Q6HXzHJRpPGfUHBEFAliX0e4dkRc7drW3WTp3U+vsip6LEC3wqJQiCutY738dPP0bZ3W+Wh/f06I7jaB215xHHMdECEahN8rKqkHNiyvEDvr2A/qv0zf+pIvpBFtC2mSBLMCsDx3SwhcX7HruAYTIPnSlRlcAJGiRZRYXJ5s4hh4eH+E4DV9j4dgOkQd2xUTJFmTlVpdeTYdq4TkCSJ8RZgmFYZFlBrGIdYS2hsk0sv2Jv8DIv3fgjZuk+nXqTKEs4HPQRhuLW1nWidILlVqTJAM/0eOjCY6TxGM+y2by7iWcHRJOc7tIahoSXv/Eiq60WSZiw3+uz3ztidX2dU2fOsbnZw3HaPPTwJf7Vr/0LDvf2UaXJzRubfPC5j9A7GtJut7l27RrHoWONRoMwDFFKUavVWF5e5uDggOk0RAjB8vIycRxz7do1Op0OjUYD0zTxfZ94vgdXVTVvmOm1VqvVsCxrrv93dC1UGDhmDdd0FoW6Y3s4jrMIAyrLikpJTGlR5RlSxKhirENQ8hRZKSoUST4jKyOEVJhGhmmkWIaJqAxKBHlekGcJWZ4gMDV6z7UoRQaGIC8HrDQ9pLSQRn3RoJXCwTFa39W1+D3RgT7WWEkpdTypEIj73cLHjOe5+1t3qsv7koe0HlOVCmPOEa6qeTBKWS46FYaoyKsSy5KotMQQgDQwbEmZJjBnfR6/luPnOS6cjxelZo3qr+dzbaC+CZhQlShZEcUZvd6UyOvw+S/9CT/983+X7uoapZC4tQZBexklbPxOg0ooPvrJv8nNd68xiWJM+9P8zhf+jDRNKRAgBb6lOx2Xzq/y8Y8+zZf/+Pf4gR/4JMNxk7s7txCy5G//2E/wm5//Am9c3yZXJkf9Hp3Tp/iVf/EF0sxAUvKpT36UpZUlMOBTn/pBGu0alx6+zLnzl/nqX7xIGE75/d//Ijvb+zQCief5SMOkMkykNDGFoDLtOf1CYUhLawxLkwKFKEwy12fpoUfZ7R0hygLb8SiLbJ7sZkLFnF5S4dg60KBQCtt1qIRFkmdYjo1pW5SqQiLBlLQ62iBh12yiyYTeaEzNfrBpbr3+DkWR4jgeRR6AqrBsg7QocUwLFWhShekGWLYLhomqJJPJhF6vR57F3zbxuJ8kk6URnt/gv/gbn+DFP/xdyjjCFRWW6eB6HuNBn1Z7mdOPXubGO2+gohkbGxsM+z0C3yWOY9Y6S7z44rc4deY821tbCFPfbO/du8eVK1f41re+wVNPPcXq6iqe5/Hmm9dYWVnR8dhGheM4JEmC7/tcv36dxx9/nOFwyHg8ZmNjA2AeVe1y7949zp+/QBxpPNlzzz1HkiQ63vtwj43aCW7dusUsjnj0ykMcHh5y4sQJoukE13XZvXWbweE9Aq9GVebcuHGDpW6HZDKlKAUHhz2efvp9vLi3ze07d6jXWyyvdJBSsru3xWxa10bH6YyV9ZM8++z7uXHrFke9PrZj4VstDEMQJRk7Bz0cs8Tzarz44otcPLtEv3fIqTMXyLOMWVpiCx3WsrKywtHhIclsymwyxncsXNegyhNsFJWEmmNQczwO+yNWV7qMZylBIFEChoOxdomL2TzO3aM0bGrN2gNbt/qqoJJkqQLDpMRnfxDiOA6d0sD1puSFiZA6Zns6qSiDOqYhsA2JY5vkWazR0EqzlkWliMKELCtYXl4hy0rqNUVRwua9Tcqy5NzZixwd9SnVnGAkJIYpkWjMY92r4TkVZBlmpegGDmGaYFuSqgTP0QW6Xa9RDxxMaRA4FqUpiYuM6WTGLEwxTZOlpSUM26DVqGHZEnNutguaLTw/wHV9pNCTDs/zODw8JAgCTEvvK0opykrpyUGWkScxs9kM27ZxAx/TtGl2VjBti1kao1ItK6lKxWDUZ29nB9OwMWXF1vY99g/3WF4/wenzFzAMlyRXTIYjikrRajWI04xwGnL37l1OnTrFzu6eTvW0bW0+jd9LazQNsByLmu+CNImiaPEQQmCaJmIuidTyDO3rWewxvHc//bZVcTy1vW/Cu2hwPehTHxD4MJmAYVucXV+hLgyeuHSRWTmiUCUoB9t0cGwfz3FRtsPWrQPckxmW46IQJIXCMRyi2SH7YsBOuI9rrZIkMV7dwHcD0mTEKDzCsTtsD3oMzRCfC0xDSVhENKKcqhzTzut4pkO31WWYD8gbFuFoxHi6j215LLvLWjcvOoTjKcvNNls3tum2lqk324wmIZ21ljbqjSd87U/+goQSd6XJpUuXuHFji9deexPHaWJ5LisrS9i1lK3X7/LpT/8k//YLv83B3pSqEpw+fWpBxtENEJdLFy4iqoo//7OvcmJtnYsXLjCZTFhdO0GzVSfPU+7evkev19MHykpPQstSYRg2jUaDKIoWhzPf9xkOhzTrDXzfR5WKrCioOV1Wa6fJ7U0yw8a0A82Yjw0q1WCaphjKomEtUQqTvNqlEjmTdIxBjImPymKGs22UM8NywPRTKjnFstfIlNCNJOUSRhNUGZFUQ5bqbSTLRNEeCBfskK39u1imR01YNBompimwRBe//O5GEX5PFNCgO7xirq26P/r0+PSjlKK6z9DwbXQNeM8Mcd8vv6gqRDXvNgOqKLFNS2OZqoqy0jHeZaH+o9dynIS44EcDShXkuTbBLYp+YaLEPCoyz0lTbSS7u39IIU0++IOf4Uc+d4GVlRWcRhfTD/SGpQRYaI2Z4SGFwc/+3H/P5vZ1PlWYfPFLL2AYJsNZSoUkSWLKouLw8AClSj796U/y2R/9aTyvxs9+7nN84d/8Hr/1m1/gmaee5uU3XuHO9iG7Rzvs/WlBNK3YvPkitmnQ6SyB5TCdTPnsT/zXHB7co6gUX/7yXxIEAaD1cPt7PZ5+4lG92c51yCB1kEJVIWQJGKgqxxQGqtJgdFUVpFLimDai5lPGMUWRYdgWSZbiFLrLbLjW4hBUVfrzEVKSZfl78daVoMgzDMPGr3tkkdbmDiZ96paNQmBYD3YJz0LNT86LFFEJLEPglDYIg9KqMAyBbVm4rgMSXC+g1WotOu5JrAMT1Jyxu+jwGPrgYEqLteV1KlmByOkPjnjk/CXeuXWdrudiSJhEEY89/iSv/uVXdcAPgu3NLc5duUJ3fZX1cMrly5dxfY8KyPOcRqOhC/i5/AQgSTLOnDmHEILZbIKUgul0Okdo6US969evc/LkSdrt9nzDbWPbLr7r0ggCDg4OaLeWdbpVknD79m1OrG3gTjQaaWdnh0tXr7C1tcXS0hIvv/ISly+cZ39vh0sXz/PNF/4DBhYXzp1mudvBkIKt6YDRcMzJU+vcu3eP1fVTPPzYo9y5vcX1m+/SqHd59tn3c+3VN7l7d5czJzeYjMekacoTTzyBNA22tu6xf3RIp9PB8xz6/RHPvP8J9ra3eOyxx6iyGcvtJe5ubfLh5z7E3hvXqQUudafioHfE+fPnicdDhkf7rK0sc+vOFoUyEVXBdBbR7ixjCAiCOoPxjOEwnJNmNOM+zAqUKUnCCKLkPqPWg7t0V0jNNbYgDAtDWvTGIZlS1GoSpUxMFCrX6ypE4joWlueSJAm2Y2AoAyqNqZyGKVIahGFMONMdVJUXOLZFzXWIsnwxecoyjbzTmDQb05BkSUJkSBxXMg1jKiSW0NNE0zSwTJc0ihfdsCLLMRydLGs4JnGRUG/UsJ1gURiWeU44nWFUJe1WiySM2Nra4vzFyzT9Glk0RClteD2WSxQlC+mgQke9x3GIyjWr2ZwfRG3PR5oWRQWW5SCl5lH3+z2Yd/1WT51lb+ceN956k/MXLuD4AWWhtf4qLzClgVHBaDSZF+oFly9fnpMQ2tRqNfr9vu6AZ1p/bRgG1TzfoBSCUkniNNHs83nSoL5H6fvYcROqEv95+cV/TrJx/39/Z9H913kZltbNjkdT8v5tTj16AmXk7IUDWo0GlALPdCiylGbNJUxGBI2AkHuM0hmzMqU/G/Lo+QsYyQ7bowPaboBMPQajAbW2wrIFZRyTiEwHqlgZk3HIf/NT/zMHm4pZWlJ4O/zeV/4+m/cK/s4nniQwElyn5Fa/R8GMSTYiEC1UuUya5szkhE7Dx45dHMdjms+YHG7DHPeWZhErQZ2ilMi8ZNld5qWvvkz9xBqTSUGtPuGHf/IzpHHBnf4+nVaXV179Blme0Go3GA7GfOUrf8aFC5d44403qKqKleVVoihiNhlRr9c1f344ZDga8fj7nmQ6GyMMydmzZzl79iyz2YzZZMRgMMC29Xo+zghwXZfZTOumi6Kg5gcLfX5ZpJSVIGg08X1fHxptnwqJKwVp5lLIOo7hUnPb5CpnUvSpqphpPkJQYRp1bKlIoh6OoQi8OpATFxGWysmVgSjnJJ6swvIEuehjOysYsklZ7GLhYLqKg0mEcOs4hoVlmRRFgmc0cI3v7qb7vVFAVyVZpm/klaGd38fR3UII1LyQloYBSmFVUAiBlMa8qymBuVa60Ml0x1zRY8wSlJQqQwpJHocYlUQpzXoWppYaCIU2A5qaSSiEIIyzuUyjwLQElq25uXmlyEqFMAW+4TGdJSigXtNdlEECst7i4Scfx6k1aLTXSUqBUCWW56GwtE4UhSpSzVNsrbGcZkTjPufOt7HcBt986Q6iVORFimda/I+/8FNcvXqGT3z8M+S5hemYXDy/wS/+4s/y2rV32L5+i8lkxCsvv85H/8vn+KEf+jF+6X/7J8xmoR69BAFJluPV2lRJTqe2iltvcuryBWbThHajyfV37lCkkp/88c9i27bOuZdQCUEl7fkBQBddpulRqliLzIVif+ce3/z6V4hmITXb4lG/gWUrVF7i2B7Sc/XBxrQgq7RhA4Xj+SAsHEdgeT4FYh7bbWAJyKZTSpWRxynBfAqQqRJGEzoPaNkCjGc7WDLAsxVG6WBJg8JVlBLSQkt7LKtCqVLrIB2foK409L4qiZMaeVGS5Sl5mr93oxICUVUk4ZAgCHDbawyiEq/MONzb5pFHH6e3e4ejQZ9132cqK1rrp5CWSdQb0Bv2qDUbXDz/CK3mKtLzmBUFt158kUfe/wzb25usrZ1g48Q6WaGohMSkIEk0Hsu2LWzXRAiDvZ0tzl24RFVV1Ot10qygKAX9wQQhDJQazeOVfXzf5+Bwm6BRJ4xKHn74UY76hzz2+JPs7u7y4Y98P3fu3OHq1YeYTCZcvnKVJI6YjIe8+/or1GyLldUTdFZOEE0G3Lh5g8OtTZ555in2d7boH/VotjvcfvU1wKTTWsIKOty6/ha1msXOYMDNuzH1mkfdt3j51Zc4df5hcmXx8IXzbN69w8OPP0FQ89jcvIsnJKN4SkWJi8vVS6e4fv01ivGQk5ffz/7uLpevXuD23Tv0Bn3OX7zKaDLWRVaa4NcbzJKUMJlpjR8FZZ5Sr/kkWYyJ0jz5qqIUkiBwCdMCyzJJywdbQTuWo8ewro2rAibTMVJCqVyKHMajiNj1KLMKz1N6AqUqyhQsEsBElXqUmzFFOjUGiSAuK4JmA1WUOEZANJviWvDw2dPc2NoinI6IkgitpjO0x7vQXoi0LMgnU7q1DoYrmUxDKgSNekCSaq4zgOU6BIHHcDwjxySvItr1GrYqSIuctaVV3aW2XBqt+rxrNiGcRrqgNw1UljIucmzHxsn1fcM3DcoiJ6eY6z8lpuNiWY6W7PlqEdFt2j5SSD3pLArC6XhudFYkcYFT8zl1+RJpmLJ5+w6dThfDDQgjzbQ2JJi2hd9q0G632dvdpVbz6cc9ev0Y13WR0iCKYspS0zGE0BrXsqhIylyzeQ0DKSvqgbeYmII+KCeJnsAWc89QpsRCEi3QRCtVarP3cSiOUt8+DVOqRM2xrvI4UuEBFtCJsYrhvkU59mitrTKJhwhl8f/+1r/nHz//v3LTeo1O+wTbk3t0ujX8zOUgnmDUDnBNTd0YZyUrrYxruwe4fodVz+TGuCIqTLJ4TNv3KP2K3nCMTYIpDSzXoFs0eexDGzAKcRtPEm4dcPZvfoAXrv0xsrpHIodUqkZlDjAsW9/n7Iq8rLFzOMFWLqZ/Gccq8BxFxw/YSe7wyouvoZRi5cQyrlWjN5riWwY1v85kHPOZT36Mq++7wpmLZ3jla3/B3/rhv8O/+80vYGQxn/jEJ/jdf/vv6B1qrf3u9g7/1ac/wxe/+EWW2g1c2+YoTllbWyPPc6ZRyPrGCTqdjo6gryreeetttra2iOOYLI2RwiIIAmzPocgUluuwf3RIWZZa5qEUvh9gGAZRFFFKiW26OCKhY3YZmBHNwEF+WM4AACAASURBVEGUgtITpKWLmzo40qVQJlQGYWyCmVEKyDILYQzx6j7RLCBQMW3ZRJUOSbyNsCPySFJmDkoYRGVO0zHJmZESYTkBzcCkUQ/ZPvAxKpdKpeA2mUQhlpNRmZJhdvRdXYvfExroxUn/PhPh8deA90ZH8jirXS6g//Be0Mqxnvb4eRan7vmmctw1vv9rx1+/X1d2/HzHm9N3BrQcv75jrrF+ffNuqpAoYdJaXuOpZz/I0XDAu3duUaoUIcs5M9TUzyW5L7pW/33NzjL1dpszp04yHvaxDIk0BB965gmWuz4rSy2uXLlCGE2pderYjgFlQVFk7O/v0+0uUa83+chHPsLh3i4mJeQJs3CHMNrixvVvUVVjbNdGuPa8sPOZTkLt2jVtwjBma/sejz32yKLT853vz7f9swKp9EFgZXWVj33yU5y/fJlrb7/N1u4eVQVZWVAJFjq+Y13ScUrYIkBkHlojhFjcqL7T6JLm+eL77XmQyIO6kiQizSKyLKEoMvK5Q//4kef5tz30aNXGtl0Cv66LY9d9j5H9He/z8ftx5coVvMDXATKiJApDSgW2bZOm6YIJq8e8MedOn2MyHrK7v8dgNMIydWCGEILewSG+6+G6LsvLyxwdHWEYBmEYLnTYx2NApRRLS0tMp1Pu3LnD4eEho5EumNfW1hbs342NjcVoL0kSLKmRZMPhkJ2tbe7dvU2lCnq9HsPhkKOjI27cuMHRkY4X7/f7tNttLYMC7t69y2//9m9z8eJ5Gu3Wghd8+fJlOp0O7XaXTqdDvV7H9WxOnjzN3v4hjzzyCE899RS+X8MybZ55+n1UKmMw7FGv1zl37hxhpOPnG40GtZqPISoc02E0GrO3t0cQBHRaba6//TaWZfH2tWssdbo0Gg1u3blNGIasr6/juBaTyURPlxxtstUOcoskiVCF1tE6lo1t24vP89gw/aAvhaDWaCMNk3q9TeA3sC2Peq1FUGtTCR0UkleCWZwwmkZIaVAUimkYLfbgPM8phcloEpLmms0upSQIAoQQOI4u1F3Ppttsks811Pd3QqWUSCSOZWMIQaUKhKowpbF4rwzJYu/I4mSBvcuLDDXX5NfrulhO0xTP83BcbYgtyoxnnnmGp55+Gtt1KCvF0dERea6L0DRXTGONkixKvcfo+PKCcp5aa1nGYj86RqgmScJ4PGY00gbeOEnIi4Jmu0W32yWJYnr7e1RC4HrB4j2rqmoRnWwYBuPxeD5phVartZiCJok2HIM2Dh5Hny/es/vuYffvAdZ8SmoYx4Xxf3yP+6v+/f7r/s/nO7//QV41J6Dhn2U4ymk0V0nyCZma8L73n+ebr7xElCcIW5KnBWmijedhoigrQSUVKRmtmsfWziaq0vkEpUoxlKTtNymKnKJMCBwHy9SoztlshiwrxuE2FBLHrvG7X/o3PPfMR/nQQ4/xQx/5CWrNZ0iykjiZUGUFrm1hmcfrOabpW8SzEQY63TiOQ6QhqNVqiAquXr5Ka2mVDGg0Gpw4dZJWq0VVlZw6dYp6o8Ybr79KnET88//rnxKGIZs72/yHL3+ZzvISJ05usLa2hmVZ/MZv/AZCCFZWVpBS4vs+k8mEOI45deoUJ0+e5ObNm9y5c4eDgwPG4zGrq6sLKsfxfceyLJpN3VU+3oPjOF7cK46f23UcTCSiAKO0EFWGMBWOY2HbFp6vtdGAPgRLPTXJiwopKkxDk32cudkRKalEgULTdooipSjTuZSoBBSmKTEMQVqkujasarh2G9sKsCxDG5PLnDyPqYocUYGovrtr+HuCA93/1v/z/HFBpAV185ER82IWsGyboiyxTJMi1/zfRREsDExLb2yCeSpUWSJhvhDmZpBSR/GWRY5AF7BQUc43az3H/HZZiJpzoJVSSMNciOkrDB1NXQkdYSsMkFBiECUl37x9xKC0+MIffYWvf+MVRlHCwdEuAsnKxuo8pVB3Gi3L0ka7qkJZDo5t89hDV3Edi2+++CpZEvHxjzzMkw+f5OnHLvH4k89QbzZ59eUX+e3/+/O8+ubr3Lt3j6OjMTfeuk6ORbOmaNVtHr18kcmox/raRVyny9KJR7CUz/7hJnduXieKp9Tby7Q6XX75//hnzMKMRiug5lj82I/8DVrtNdKywnJ1obrYRO8z/5CGlHnM/s5tslKwun6S8xeuUGQZr73yMo+c2sCwDCzfRRkC1/Moec8UWqEQpolp22RFQa4UbhCQJPGi2MjnwQmO65IVBbYwqGwTTJP62Q88MJbur/zrX37eNEx9wxfGvFACjiU+HEuOND9cCInj2UgpkKbEMueFlZQL09XifYWFeajTWaJSisGgz/at2xi2w/LGGfI0Ic1ziqJgeW2NbrfLaNCnUa/T6/WwgoBmo0YQ+MRxhGNUDHp9ustLpKkeNY8nM86cPYtr24tktEajTrvTIpzNePuta5SqotvtkmUZaarH3Lu7u6iyIAg0AUFIY2EuAZDSZNDv0W41qIBr166xurLMpUuXUErx9NNPs7u9yemNE5iUWLbN6ROrOI7Nt775TZ58/BFu3XyXwHc4POqx1O1i2Q53722SpDFSWppJjWTQ7yMMnW55dHiA7fiEk5CT6ydQZcnF8xd495232d/bI89zJqMhpilp1l1mk5BOZxUpSlrNFoPBmGQ2pd1pMzg4IAh8HMui2WpwZ/MuS0tdZrMZVQGB73Kwv0ulCtrNNkUWY5smRVEhJQR+QJZmSNNBCUmSpmSFHrNHScrf/wfPP7C1+wd/+q3nB5OQ7so6925v8fAjj+G6PpbVIskUnXYTw7AIcwmmQ670BC4rCsIwIstTpGFQVhWJckkLgxJLJz+Xinu3bhNHEU4QUK/XQBXUHIf+aEiYxhTqOHUVmvUGnmWx1qpjoqg7iiQOEQjiOCNNUmzL0uY+pbBdm+FoxPLSMsvtNlS6cRInEZ7rk/1/zL13sKRnfef7eXPq3CfHmTNnkjQzGgmhgCJISBiMANl4HbjrhMO112EdLt51saa8xruOcBf7YmyvzWKuEQaMWIwMGCwBCiiMsiafM3PyOX06hzeH+8fb3TPCvnVrb6lqeKq6Znqqp/vtt9/3eX7P9/cNQUCzmcbVW5acdtBIcMOAY8ePMrtnBkNPEbR8Poum51A0CyQVVbfYrVboddp023WCKExjzJNUOC4IIqqqoRupTV+1Wk3pH0FINpdDz2Yo9cW1p198mer2Fn4Y0HJsXMdBlhU0TUcSBSRZAlFMu4P9BM2tzS0g3Xisra3jOM4QLMpmM8P0T7g0H6ddI3U4Xw42GnAZAEXq5Dp4/dCyTkh1NpeDQ//CM7r/WeJlz3/+p3/iily7z5z63Ac6Xo22X2f/gbews/sE3bDFkUO3UDBGuXjxZRb3LVKp1EmEhBCZVsck0VYx9BG6jk9Rk3CSKr5oIosq9dpZDs3cxnRxEk9oEsRN8qZBLGrUWl1832ZhfBoncHjksRd4qXKGG45cxXHNwzTzTEklpif28I3Tn6RR30USQmRFQcRCkyUymk6j4iMIEDoJRlJCFkV6roMsKaxe2OBt976Nf/jq1zm/ssZVVx1gdXub7VoV1dKYmZuh2anw/NMnaDUbzI7PUCgUGZ+aJnQDrj1+PY1Wi0ajQRyloMfY2BiTE6PYdg9ImJ/bO+TSFwqFob4litJ5r9Vq9TeVPpqWCgCbrVQ83mq1kGWZ7e3tIbCVMU3CMECWJULbpdfrprWVoGLLa4imgK6aRKKPKDoQOkiKRJhESJJKopo4fhdZ6CJJCUKggi8QJxKC7CLICUEEfugj6RKBlyaker4HYgcrk6DrOj3bRTVMTNlkcrJMpdoCMUyTkUUZlza6IpKRTJQk4k3Hf/I1u26/Kwro5rNf/sBAqDAQCgLpTT2YZAQBFIlEGAj2pL5IQkBQFfzIByn1Xo3jOJ2X+6h0EPgkSYycAH1UQZDkdEIUYgQSkjBCQECU+rukAcItXDL3D/qIUhSm/s+uFxHFCZqaFvCe76OKErlimWVb4m+/8GV0NcO73/UuPv/Ff+DbT5zgH770IOMjeRYXF0kkmVgQ++ro/mQlAKJCuTzG7bfdzsf+9E8oFzJEYcj+/QcojI7yyDe/yYXl8xw8eDV33vlWXn/z7Vx99XGOHzuMJMMX//GbFLMqhiJy65veCFqGMxdXOHvxLMWigarFqKLJpz/3WX7rt3+bG26+jp3qNv/8T1+n0+kQRTG7G+v84s/+INniJJqRQRgIMQcIcf8nSvlPDp4XkiuNYugGSRTi2Db7D1zN/qNXIW9tESup6EMyNLqOTSyBKEuEcURCjKSqeHEMCYiKQsdxyOeyr3LoiOMExTToeakftmqaWKqONnP8ihUh/9cnf/8DghCQxBGCoPTTwOLhRkyV5LQTIkhE8dD/BUFKNwyyoiLKMpphEPbV/71e71UuAKIoIiAyOTPD8uoaYhhgdzvMLBygkM+ysbnF1NQUgqySKeaJ/JSvmi8VOH/yJKOlQsprbjTZs2caLREpjY2ytraGrCgcOXYNld1dZFFgZGQEx3HodNp0u21URWF+Lg1fGSDR+XyBxcVFRkZGaLdbtFotDMPgwsUVpqenOXXqVCq8296hXCzwyisvkbUMDh1YxA9CTpw4QbPZ5NSpU1iqzBOPfot2s4YgKhiKSOzZnDt7HkOTmJ+Z4eKFC1jZLK1mg1a7TXFklGqtxi233s7FlVUyloFh5lnf2GKskLpbZLMZehFUak0mRwpokoBhmiAITI6WkASBUiFHxrSQiVg6v0SmkGH5wia6ZWKYCrqp03NtIjFhc22NoGvj+S6lkRKWqSOECUQRggjZrMXm2jqaKhAHIY7rkjEMPDdEQkTUDHpuWnAK/WtCVjX+w3/8zSt27X78gc99YHn5IrVanUSQWF1bodlq0+w2ccOQdsdBFGRmZmfRdSMV57kOoqygGyZxohCjgqjTarnUai1EAQIvoNNs4fR6dFttciNlJAli30FXZDRFIQl9xEQiqxvoqsLoSI6RosFEUSGnC2TkBMexkRQVzw1RZSU9d0LSF4sLuFFM6HTJWjq6JpOxrNQRQBAZGSmjaRqtVotcxkRA4ODiVRTy2ZQ7TIzWL6AFISHwfVwvdStoNiq067voVoaJ+QXyxTFGJqYZm5ymPDpCvlhCM9L3VBSFQqFAsVgkXyyhmiZxnLB85iwrS8vY3TZ+7BP4IVIkEBOj6wa6ZlDI5xBEcaipabdabG9t4TkhPbtHo9FA11NXE1VV0TSNbq+FJAmYZpoLEIbh0KUjiqIhR/rqq69mbm6O5eVl4BKHOU4NXfsodiqOl6TUs37Qvf2XzhyvtosdFND/7meuTAH98FNf+sBWvcn2ZoXJ6Wlip4WsGHS6cPqlFSamDDzPZ3lrA8swmSovohgTdFrPY+ll3n7zfZzffhFHqVGw9hEArd5JxnLH0FWZHlVsv0MvUrEKM8RRAlLEweJeDh+5h3tvu4GP/Ol7eeBrf0Y0dZB2t01N6HFx5RRLOw/Rc3SCoItqlXAJUOQSRrLIiHE79937UxyZvIHqzha9rosfZvj+9/wcupxjz+J+br3lbh784hc4v3qeg8evpdVp8OM/+W+RDZUT334aKRIwzBwZ0+DQkaO8/O2XuH7vUaYL+/DaDs1ODT8IiKIUtZalhGp1F1mWsG1v2Knf2Nggk8mklA3f58zp09i2TafTwfc91D69Kwh8arXa0MzBNM1h8S30NWR+4BKFIYqqoRo5wnaC53pIakysh3hhF99pYSgSPdcGTcRQLYgNgiSm61SIBYkkyBFHCYLo4CYesRSjyiaGmaEXbiKLMr7vQSJRypvEsociZGjbHm7ssTg/xeMnvsquV6Nl90COGR+boWyM4EY9XL/Lbq/K/Tf+8mt23X7XUDgGhcLlQoXLLXsup3V8p7jhcruhwb/Bq+O9oR/9nSTDwluW5Ve1wC7/nEF7YkAxuJxbdvmuf/D6brdLFEVkrQzL55c4t7zEzTffzMxkia9+5Qt8/K/+GzMz0+yZ388jDz/BY4899q+eC4FULCnJGjEit91+Sxpxrmh87eHHKY1OUygUuPHGG5mcmMZ1ApJEIo5FpqamuOfeN2GaJnfecReF0gh/+8Bn+KX/4zd478+8j//wvj9ibbVNFJmoqs67f+AH+Z7veRvPPvcMYeRx95vvpFQqpNynvn3ZoOU8oB9cbi04eB4lMYphoCgWmqbxyCOP8O0nH6fd6iBrKoqStkyjJMaPwiFSMjjfA5TVNE1UVR0KFsIwHPqayrKcWoCFIWbGQlJkYhKa9cZrdh3+/xlJEuH7Ln5gEwTev6BsBP3J7HJahx+F+GGQJnqJ6XfVNINMJkMmk3mV68vg/8ZxjO16BGEIkkzgu7h2D1mWKRaLFItFfN+n3e6SLxWHATYL83voNJpEQRrnOoga3t3dZWJiAkFIxUxhGFIsFlldXQVIqRG6Tq1Wo9vtMjExQafTYWRkhJWVleFku729jSzLdLtdZmdn2dra4pprrknvhWyWOI7Zt28fo6OjrKyssL29zeHDh4miiJmZGcrlMqVygVOnTpHNZnEch9OnT3Ps2DF836fba3PNNddw6NAhdCsznPQBvvzlL7O+vs7m5ibtdpeFfkRtr9ejsrPBxMw0imVx4sTTPPvss1iWxejoKC+99BKQenivrW5w5tRpJqfGWN9Y5ZZbbklDMnyfZqdNNptlfu8exibG2d3ZYWZ8EssyuHDhQupG0m5gaArdbpux0TKmbhBHEUbfw14WJaIwGXYWBhujwfxyJUfge4yOlAg8B0kR2bd/kcnpCbq9JrVmHc8PsXsO9WqNJIqZnZ7ux02nj1JxFEPP9QtcjfGxEcrFAo5tD7tGSRSnrDtJQtdVBCEhYxoUrSyFfJZ8LkM5nyOXMbAyBpoikjHVYbE2KBCjKEJMGHY4BnPCYO7tdjrEUYBpmkP0tVgsMjExgSimXP5Go4EsShTyeaIgHFL80s8I+hRAf7h+SJJENlciPzKCYWVJhEvd0cH3G9ybSZLgBj7NZpPtrS1a1TqRnyYlOqFL6Pv4bjAEYwZdzYGDjayIdLttBCFt6Q+0CNJlnda0UBb7PtTxkCYzNjY2tAX1fZ+jR4+iaRpf+9rX/sVa+q9RMb4Tab58/H/Z2l2JsXdxH7fe8HMY8iQCDrpi4nQj2p5Loit4Ykwv9jAtCwBTM8lnc0RBRBLFrJ67CIpAq9dCFlSivhYhTALcyCcm/X17fgKiNqQFxX7M4sI1fPTPP8Ls3LXsbtn8z698lEee/QseeOpjfPXMg4S+gywZ+ElEFIv4SYAfJOyZP8p9d/0IOWmGkjhDr2uTJBIj5WnqTYdiaZyxqWl2d6o89/xLvP1d97GwuMgP/dCPsLm5zqOPPkocC+SyRVw3IFcs8cILaeLw3PgceyfmOLLvMEmUcvQnJiYolUpUKpXhPN3r9dB1nfHxcQ4dOkS32yUMU1pdoVDAcZxhNP2gNsrlcliWNbyvLqet1ut1dnd3qdVqtLod/DDA9UIkQUKOcoiBiOc7JElKbYv7xgx+FBDGEUKcEMYiXghhJCAqesobFyISIY2VT+sNiUSKECVQ1IQ4DhkdHUeWVeKAVPfj+kiigqobdDyHjtfGj/q+6VHqYOb4DpXGa8uB/q4QEYpS3wO4Hx06mDQGPLMB70wUUtuKmJi4z4NNTfgjJEEkCaK+p6mEmARpehSgqjJB4OOHEUgqgigihAGCkKTc3QQSISIRI0QSBFI6hyiBLEX44aVdOclgIlOQohBVUYkiH1lVUWWJSAzJl7L4Zxx6lQa/+lu/RHE8T9Tr8LGP/BGdnst//M3f4plHH+N1N7wOVc0goKQXiyBAIqbSQgGQFD7wn/8TYeRx5+3fg2OHvOfHfoVPf/z3ePaZE2RzBSTRoNPyifyAVreD5+1waN8Ejz7xLW563VU8+NCjqGYBVc+xsrHFW952P9mcxte/+o8889zjTE6OI0oQdFrc9cbbefLRZ9it19MWNAqxJBGSQJwGnAikSYtRH8kgCRBFmUQQCZwWkdNgfmqEIAj4wuc+SWlqjJsME9HvEkUBgZNObH4YoygSQhSS6FlkScZxUmqAKieIJPieM+TjyrKMG0ZIkkzgeWiaQs+xkXKvrTH6/+oQE5c4UPHCGFc0sRWDSM0gCBKRHyDRd5EhQY2jlMMsScRxSIyAKqUoligkZApFkBU63S61ahVF6SOVokREWkTceeedrK5c4IXHn6KydoFucZS9Cws0qjV0y8RSZEJFBcehV6thkpBEPo1mBdePcF0fpVgg64NlmOSLYwhJRHV3k9Dt4XkexWKRVqNJNmcyNTWBKAs0KqkS+4Vnn2NicoyVi8tEMezZM0e1WqfXczCtNHCj1WqxubnJ+Pg4fhji+B5BvcbCnr2cPXcB3/Gp79apbFU4engPx48eIyeLbK0vU6nWmMxkOXrsMP+8scTZV05xwy03c+LECSxNZs/+I5w8v4KeyXLq1Cnefs9b2Nxp0G7sIOWySKrF1HSZZtfjpW8/yvTsDNdc/wbq1V12qjvUdytki2W8MESTZaZnJjFMjcD1mByd5uVXXkCSRPxOl4npvbi2Q6vhIgoqi4cO4scJO6tbzE/NcObMGRb3HqJSrZLVM1Tq9TSUQAuw6y1Gx8bpugJR1CQmQhFEVCNH0GlDEiOrV7aAPr90kiNHbkDXdXbrHeq1XRRF4vXHXs9zz50gX7BwPIetus3ZC2scmCszMVJGigSSUEDJ6Gxvb5MkCb7XoFwe5bkXXmFyZpaCpRFYFp1Gh6yVodWspxvpICRnqSRjWQpeTJik3F5FdjElAV0EEIlk+pxyH1Hqc6BlAVWVCL30fkr8HlGU0Om5TI2N0Gy0KZVKqLoBsYCmqBiaCnGIZeokXofnTlzk9rvuoVwepd2os76xkYoNjZQ3rJkGoiQhq2lCqiKJGGrK6e50Onh9HqbjODSqtSFwksYir+N5Xl+ErhFEUcrNDFSyo6n/rO96JJJMYbyIG0bkRkZSnUss47VsxDih2qhgGGnKasfuoekKnhukhbUtISAQ+C4LC3sQRZGtrS3arS7FkTL1ZgPNMPB9n9HRUdrNFpDSVxAG/a+BvihCFFIOKomQaiSAWHh1cRzHl/RCqfFggngF+dAXLjzN0ytf4OYb72axaPFSd5lWzcEzbbyoxytPLnPs6CJHJscpZPZT7dQp5mcxDGgFMl+7+CgjTofYquMGNn6vhhfBbnMHVRTwowaZXJH6rk/LtRnPKchmjlLxPj76sZ9lY2ebH7zlT7nr4HvZe/0In//676AlWyD71KIa5eJ+mp2LyEIdPVb4N/f/AYvJHvaWDWRqrJzbQZZVGtVl3v1Tv4wY7TBp/Dkf/x9VfurnP8+HPvzbtL0dDF+mvRPz5LefpVQcSX2srSy1zRrfvPgtfubf/zytqoNxaJyL59dZOLKHwycXeeH8SeYX96ApAl7oM7d3D5VKpe+/7yKlnguUSiUypkW5UOT0mTNMTEzQ7XbZ2dlBNzQiP0DNpqCY53nYnkvUbNDudQmCgNF8kV6vzezsLJqSBqvErkMix+TjHLEr0Wiu4cgd3KRF4guYnkadOo04IkbDdjp0/RyyaDGKhqRLtMxdZNsicl06moYnTKIqr0OIJILkOXpiQJh00QWdhIjIbaOqOo36ORam7qDiPUa91sH1K6xvvYiiGMhJhlp7h07Hfk2vxe8KBPpy9DcNKQmHzwdjsAO/nKf1neEqrxriJZT4ckHh4O+X87q+U7g4QK0HCMfgdUM/akEgjALCMCBJLr1WEASqzRqyoWDmNPIFE6fXJvY9ZGKi0CeTNfnTv/xLfu4Xf4nK1jaBn/pP/+toVMLUzDTzc3txHBfbj5ieXeT0mSWmp6epN6r0ej22drf5609+gv/zTz7Kbt2hUChwzZFDvPPtb+VH3/Nufu2XfpZf+9Uf5bprZwnDhI3NNt/3/T9MNjvKtx57kuWlVRw74tlnn+fee+/FdXoYppr6ofa/V3p8/WMUUg9okgiicMh5BYZJRc16nSefeoZPfOJvaNo2CAK6aWCYJn4Uous6IA7T2AaBGYPNk2VZqQgrCAlJXU80Q8cPA2RV6XOiTUztyvpAg9hHiX183yWKA6I47KPRl4InBkjyYLEdPPejkEQWESUJTVbQFRlD1xCEAcKfGpxEcRq2oKgS07PThHFIs15le3UV09DwI59atYIsy1R2tshkMszOzg6trTqdDqMjJXZ2d1EUhUwuRYczho5t24h9b25ZTnn+YxPj6LqOa9vICCndQ5bJZrPk83m2t7dT31LDYHx8nFtuuYXHH38c3/cxDIPjx4+ztLSEIAh9cWuZEydOMDM9iapI3HnHbbzpjXcgyzK1Wo1Tp06xfmGJqw4u4ro2f//Zz9HqtNEtc4ieDIJc4jBkZnKKN91xJxsbG2xtbQ07Gvl8niAIsCyDuT17yWbzrK5eZHxiDE01OHToCGYmDbPJ5PMsLS2loSlx2p4cHxlFlWRm5/emtK0goNlIuxxrmxtsbGxQr9cBKBaLbGxsDOleuq4PhTampdNsNtnd3SGKA/S+iFAU04JxgGBeyZHPZLl4cRnD0IgCn2Iuz1h5hEplm4WFBWzbpdPpoasyjXaLIIlpttts7+zg+yFbW1tDS0bX9S91KpqpG8DW9gb5ch7XdXEcp48GxQSuQ9Y0KBZM4thFlvpITuSjShGKGGIYWh84kYZo/cDecsDXhYEVXyrcHCTyCYIwDIAol8ssLCwMw1sW9s4PRX9jY2McOnSITCaTUvVkFc/2kBDQZIUkirG7bbxeF8/t0us26fV6VKtVqtUq9Xp9yButVCqoqko+nyefz6MZxhDJS4VgaRFaLBaH3TVLN5BFiSSOaTbrKX2k2aTTbKVc4zgVZBq6lSZ92jaGkfJWs9k8cCmlcHH/Atvbmxw9evXQbjKTyaRo6mUPgB/W4QAAIABJREFUeLU93eV5B/BqQeHl6+pALHwpd+HKFdCK6pHEXZrtJWLGMWWdyZEighyg6AqJCBEBuazBvoVZmvU2xAZRFOB7ItlslkisouoJ7ZZHrxvQbcH+xVtZPPx6JNWgt2tjCRKR30FV8hjSOMeO5wgb+5nOXsv+vUdAatNea3Ng7E2UrVEMTQd5CtHwkaQyjirgSyZZzWJutois1Imbn6Kg/0/cXhMjX0Ynwq2dR6s/yHu+r8JLzzzBhz/0h6xcXOfcuSXOnV0iDGK2trbotHu0mx3kROS262+nW2syPVui3auiZzXMnMWNb7iDw4ev5tyZV3DsAEXTuHBxHUnW8cIOIQGeH+L6HtVqlc3tLTzfH877g/l9cL0OQlUymQyKKCGLKRdZk5VhANeggxwEwRChjoIIwZUgUAjsmDiKiOMUnfbjmLbr4foJUVxirHQ7R0bvTp23pIgCYJo6YVZntHA/dxz/Dd504H/n3cd/namxe8jKxzjfaKCIAYqQIEQxceDQ6rjk8iUkUSdvTqDIMn7k0rAb2H5Az0034K/l+K5AoIM4QpTSQle+rJj8ThcMSbzE2ZL6r0uLjDTpTgAEKY17FcR0AkqL4bjvKz34M+q/V0jcd4VgkDLIpcnhUhqU2F8YQyRJQJZFYhIMU0OUJERRIYjA9T0EMcOLJy/Sa4tcf+QwipRQq+zyzHMv873v/mHwgaRFJAjMzuwhIcaxbRRNHfK/L6dJyKoJUcwTT32D9/70z7GzscPjT7+AoMiwvM7rrruJ+37oxxFQqNd6/MVf/z1HD+3lfb/+YQwrz8HXvzGNa27s8u53vpO//ORn+OJDX+XEky9z//f/GIapYbdbHDiwyJnTS7zxztsRxJh7774RwzRTDrIYI4oqgpBuXdPzFxN6PmHgph7RQvpbtZsuexf2o8gy33v//URByDdfeo67ji3guwGRKiFrOklMimYn6W/d6/UomakjRdjnAUtI6LqJpIhESTz0Sx4dHR2KGkLvtd1R/q8OIQFJSJDElAvu2A3iMEBQZKJY6buFqMhyam+lqiqaog9/4yAKkYQ0gEcSE2RBIKMk5AwVz/dJoiS9P4S0GGg0GhiGxjvf/S7+7pMPUCgaVNbXU0S+02Jne5NOs0XOspBVlcJIGVGI0DSDOPIQJIFWs07TjymNjbO+dhHVMtjdrXLPPdexvLw8FAXKkoCuacR+OOS+a5pGtVpldnaWZrPJxHiZMHSpVCocOXKEbDZLrVbDcRxuvPFGPvOZz/C2++7DcZzUe7qyje/7PPnEY2lIyWgqXrnqqqt4/OsP8eQ3v8HEWJGFvfNMT09RrVbpdVqUy6MIgsTW1g6dVpfZmQm2trYI4ojDR65mc22JdrdDsVwiV8jjBj5RksUPE6Ymx1haOoOhZSgXyoiyQqvTA9Jwm1qjjprNki9kubh8gUKhQJiILMzN0ut0yRbTYiWX3c/zzz/L9cevYWlpqY9cRzieTb5YwJJTBD4MfIh8/CSgkLdwvYiu4yD0xV8DEU6z17mi1+7U5ARnzq9w6uRL7F04yIH9+3jwwQc5dOgQ9UZaICqyhhCGTE5OslOpE+UzkIRkcxa+7UKcAhD1Wpqe2u12Uy/xKBwGgKyurGCoCrGmIhDTbtWZm5/BsFSiqIOVkVHQSZweBj6JEKPmRtGVGq5jo8gispSKn8I4tX/z+xaRqZ90Sp0Y8PdlWabT6TA+Ptqn4MH4+BjEIZXtHdwINHWKdq8LwJ59C7Rsr2+RKnDu3Bk8z0FSFVYvrpBKcAQq1V1ESR66PbXbKeUi/Z7y0JFAFEVUM5vSKqIQIZLSln4U4fRsNENH0VQyhkHgOWysrdLtdmn0N2qZTIbATcOIREkCBDzPSdcfWWVufpooSjh37tywJd9uN3nHO99O1+5x+vRpFhYWuHDhQhp9/CqHq0tgVdx3khroSy4NYdiuN02TTqeDoqgYhplGm3PJzepKjO3dVUR3mpLps101ccQG6BO4zSaWZaFoGRp2BVU5zj8+9FlWmjq7Wy+TmcixWXEoFyZp2l1kSyOXyfKGq+7iqRPf5MnnvkCiS1Q2N7l13xs556zhRg6GtkDRLPGpj32SP37/X6CKRTyxxb7F92AYLk+e2iVaq3No8nZ++u47+OAXfhhRLYJUw7L2oWzp1HstEv1TaJu/zurSPEHwTpbX6rzy9KM8+IXf4De/18Qc9XjlxW/wN//3HzMzNc/G5jau6yKJIpqq4Xse9dou1+49zPHXX4U6p/Bf//RX+fmf/yAze65BLWW57c0HOHbjdXz67/6C08ub2G6OX3/fb/H7//UPKJXnqFU3OXo01b9EJGnnRZSGnZSBs4xpGOQLBUqlEnEcY1kWWd0cAiRBELC1tYXZrxEypoVt232qJ6iChuIZZOW+ADbTJJEdTNkiCnJ4nsW77vgVRuQJ9mjT4MW8f+vteKJNTicFkty9/MDxH+X1x69BiRI0RI5ecx2SF/L+z/0yiF8kjB3ExKHTdVCnj+L4CnlrL6KsEkkecZjgtTuMF0dQLJnlnZde02vxuwKBRhBSWkW/IB4gDQMO6HfaPw0elye4DeMaJQmpj5p+J/9rwGcevPfABmlQVKeHIryKL3a5pZeuayiKRMIlcdfgvVw3LZA0WUVTTa49fgQp9iiWSuhmhnvuuoczr7zCE48/ws72RZLEI44BMRWeDY518H3Tg4khkUBU2LdvD//ld95PuaDx7Ivn+JtP/wMP/P1X+Z53vYfKdo+d7SYkMqKYoZA10UwNH4EQkUiQ0JQSsmDy3h//QT76kQ9y/fVXY3e7+E6IgMrZMytEEdQaFYQkZnH/JJKkXIrYvmziBQgCP20JSq+OOTdzRfbuv4qR8Vnm9+9namqG43fcjhQm4EUookwUpAVdyg9Oz2OhUBiatAdBgGEYxLKMrOlISAiJiKloZEwLt9MbxjxfaWul1EEjPS9B2MP1OjhuO7W38y6JfAZ8yfQ7x0RRQuBHhH5At9PB7fSIghBiHyEO0PFQhD4iR4REQrNWRREFpCghFMHIGtSqO7zy7LNkDZNsNotrd8nnc2hqiuyOjo+RyeZZWbmA02uniFWctpY1RSIIPYhiDh88xPb2dp9H3aa6W8FzXXZ3d/GCkHq9jmmazMzMkMvlcByH3d3dNAJ7bIxWq8Xc3Bz1ep3l5WVc1+XMmTPs37+f9fX1Sxw7RaHT63HVkSPMzM2xs7PDzs4OZ8+e5Q133MW117+emakxXnrhWZYvXKRrd9AUlVJxhF7XYWc75W6fOXOGTqeDaVmsrq9RKpexcln8KExDe+we55ZWUDSdRr3N5OQsxWKel15+ga2NdTKmjiwJ9GyXQmkESdFoNBqpt3CjhuNHPPvssziOw/rqCgBr6+tcffgg6+vriKLIzs4OlmVQKhVwnB5jIyV0VU43VJKAosgokghJhKrI6bmXGKKxl3dursRYWlpCEhJcr4ttt9nc3Oz/XqtpiEehDMArZ0/3gzsSXMfHc3021rdo1pq4PRdVUuk5LltbO5SLeaYmxnjkn/+ZbNZidfUimqwgCgJSX3RnmBqGoaBKAhMjJQxFxDA0ZFkkZxlocoJlaaiygq7ofY2ARprWJA25kcAQxR+c08HiPgiNkBWRkdFyWkSPjjA7OUEhl8e2bdrdDrbr4AU+UhIThwGaqXH42FV4cYhq6JRHR7CsDK7vp6msfWSYJBnaew26ppdrHlzXpd3r0ul16XQ6w+LCNE00TcM0TVqNGtXKDk6vQ7fdJEmSvvd02o1LrVI16rXmsDtUKhWIoohmMw3GmJqaQtM09uzZg+d51OtpbPhAQDkyMpIm5vY7I4Pu12BNHWxCBkJEWZYhEdNIcTNLqTiCphppamEiDh+icOWwt1ZjD5Yhc+38vbztqrtZWumx6+4wW349plTC1A2iyCFhhNfdeDOOH1PZXUNKyhw4NI2VbQITRN3rcByHb377r2gk/0g32KHX22EkM8W5C6vYbogs5hkR5nnrDe/gI7/5WSLxwzSD9yE6eRRrh1/90K1868WHUdwx3nzND3Hm2ZewXRFRD8nGEbrgEHoVekIDPbmH1fUf4YXVDPnyCFPjJe5565v5hV/4Kx5ev5qvPfYDbNbXmJgdR5BEFFmkXCogiQlhYGNZOkHkECshJzdf4W+/9Ckiy+e/f+ZPePTFLyGWWjzzyiNYOZX6us1b3/J2HvrHz7OweBUf/L3fp9Fw+eAHP8TF1U3W1ldSN6J2mzNnzjA2Nsb4+DhxHDM9PZ3eO32bWUEQaDabBEGAqmvs7FZSPUEfeXYch1arRa1Wo9Fo4Ds+2WyefKbEiDbFuD6LGFoIiU4cQTYZ5w0H3sJN+bu4oXAjB5QCJUXA7rRpt7p4tkKEixId5O5jx7G6IUYQQBQyJgmMyDL/+b3/DTcp4QkCqjGBqmfoNlV8W2Zx5CC5TAFTKxGGGoQKWqCS0zMo8mtre/tdgUAPCOuCIPQR5HTXHCWXEONUtX5J8He5v6WiKMRhhCiK+H7Yt74TiZIERRQJ+ilWvu8NLcUkQQASYiCJExRNRRQh7O/8L6eVZCwLUYRO10aS0uI+CgJkRSHsT0ayLKc1ZuJimglzC0UsDTTNYO/BPXzu7x9iu1lnt16l57aY3J3n4LE7kQQ9PZZ+HXj594J+3RonJKHGrTe9kdtuvo0///jf4S9tUCyVcVyVJOhw4OACvV4Hz9H497/4M6DqSH5AZ3sVy8ig6gZuEPD8089Tr7X4xMc/wv33/QTnlpbp+jKyJJGxVFZXV0kCn3vvvm24MTCNHHGSHkySRCRJTBz6kEQkUYisGCRRahkjCgLVapVyoUyhNIJRHOPCxVPgxUiqRBJEZHMZosBHU1QUVSaUhZTzDX2LqrR1Hslg+x6+52BqJmHoE3ukPuCShCwJhH2P1Cs1kjBG0BJIYpI4IAwchETEsdskcYynpemOg1ar74f9yUkiiWKSOMT1bITYh8AhClzwbbTYQxQSXDEhlkS0TI5ez04T0EQVPa/zY+/9cR78/OfpNh2efOxR3nrfO9ipVGn3bFRVpVQqsVXZYmF+D4Ig0Ot1iGybudlplleWabebaFaacqZqBoaVwcxYBEGA3emycWGJhcX9XLi4Sq/Xo9fr8ZWvfIXrXnecRqvDjTe9gW6nQaNaI/RSH/JsNpt6lmazFItFzp49S7lcTvmlmsbF1RX2Li7Qbrdp1HbZv38/tVyeZ7Y3+MrXv8n+ffO84doFWo02mzs7XHvdMc6fPsXs7Dzlcpk4Cjh79ixJErFvcS8dO01uW1lZwTJNtjc32DO/FyubZXx8nHNLS0wUizRbXYTEZW5+kgvLq0ShT8/pYFkWTuhTLoyT15RhDHLXcZiamOD86bOMjKV+vplMho31LWamJ/pJXSqyprK2toaqa2xsbKSbakGkmC/QtR12GzZB4NO1HTQzQ9f1USRtyCm9ksPSDWrNVFi3W9nB7jrcddebKZeLnDx5mrm5OYIgIoy69BotlEjACwNEQrZ3qyxOz7C+vk6lUqE0Nk69XcNQ5lhbvsjVV1/NyspqCiyEEc1Ol3IhT6PaZGJijDhwiVAwdSMVzCkp1SGjx1ixhpjN9FvKKh3PwbIMeo6HLKYt4jBO52Y/iCjks6meQhDwfR/TMFKnCl1FV1Q8x2VkZAS702R0tIQWSyi6gSKn5z8MQzy7Swzs1FKh1dzCXmqNOsgSplpAzxbwnB6e5+C4Nr6XInW6rr9qEz/0ZDZSD2xZVRBDiVBIwaDA8/ECn26lS317G+IQz3FYW1lFlPqFdauFYaQCuE6nkwp0p0aRZZFmq04cpetEp9tFlieYn5+n1+uytbWZ0q/Gxnj5xReZm5vj/PIyiqbiBf6rHDYG6Pblzwe+3V6rRRwLrxJsDkCAVMB4ZUWEjbDCwfI7uPPq38A40+Jg8d1Uha9y763v5XMP/hGLsws0/AZxPAKCTSAmwC7F7EHqdgXFGGH/vrfytaf+nslYQVZAFhWM/Ahxr8j82DQXti5gKSYTxn5+9m0/mUKN8ir6+r/DUA2eXv8DHnr0W3jZaX7qh/4T+aTMqWef5VMnf5d65BJHHUhEbHGXB5//Ixwx5H973S9worqAZ+XJSAqJ3+X7vv/7yBgZ/unll/nhtx8FS0ntN2emiCM3/V0yKrVGFQEZK6eysruKLwR848RT3Hr3EVpxhW+c+Gu+cerDmPY4d6x8Pz/xk7/Ip7/0ad73/g/yiz99LwdumeQTn/p96rUW589uEgYelummKbN2D2Jotdqp84bvMj+3h1wmw/j4JHESsVutMjk5ied5ZPK59Droe7FvbW0hi9IwD8DSdNrdFlPFKaQkh67rtPwdGuE6kQiGUGY2e5jDukbHa7NhX+B87QUi28UXwVYz9Pwu99/4b/nW8ln2Ly6QjxtIwjZKsg8/DhmlyPj4/ayuP8yeiet44dRjOK0snqoyOmERZ0JWKhJxlE2dv0SPhlelaJVf02vxuwKBjokI4wBBgogIhBhRSBAEEVGUhg/E1OYtjKNXcZnjOE5T/ZIESVIIgghJ1hFVjSCJERJIghhJVlB1DVGWQIKQNB1MUFQSSSYkTUJMJLlfKEaICMhEhL5LMkgO6xfMUQxBkBp9p8b3MZKoI0sZtCRmfGya7Y0LPPfkEwRhxBNPv0yCydLyKmdOncZubyPHNqIsIYogEvff/pJgUUjSdChR1Yllhf/+t3/F1OQoxaxJp1Ej9DoIkkQSBkgy7NtTZsSSiAQRX9R47NFvsLl2PuVhJwInz7xMs1dBEVVuuuk4x48dRJAF/Cik5/aw3ZCZ0iih6xAJIpos4YcesQARSR99iRBjETmOCX0PiBGSGBGJemWTMyefw3WaZBSLruuyb3IvdixBJIIi0es6RL6DlCR0nBaSahDEaTvJi2OCOAFJRpIFenYLIU4pI3HkEwsxkiYjkdCo1bFU88pctP2RxAJxfzFHSMNkktBGjEKEKESMI5K4H7mbCESCQBAFxKFL3OdIx55NYLfpNqs4zV1ir4sSR2hxhCYEqIlD4nlISYQmKyiqSEYW0FWDN93zZnxRpFrbobq9xW69gaxKdHtNKpVU4LVZ2WF2YT9Gpkjo+2xVdkFM6Doder0OG+sXESOX2sYm3UYHSRSo7GwQJyHtZoN9C3uIwpDZmRkc26bb7nDTDdfTbOwSug69bhtdU1hfW0MAxkZH6XW7eJ7PwYOH6LZarF28yMHDV1Euj1IujLC1vo2pmXS6LvVmk1whj6Vr1Ha22Nxp8MrLp5mbn+X0yVOousnF9RU2N1bYOztNNldIEXTdZHFxkayVoVgcJQoTFmZm6LRbeIHPkcU9zM9MkBkpsttuk7FyKRo9PctOpY4gKhTKZRq1Bkoisnz6NDvVHbwgJHZsAs/nuhuuw7TyhIGHrmn0vJDzZ84R+x6CotN1A7JmFjNrQhDQazZRJZFO18X1fUxDQxIEsvkMSRyiyCKmpZLE/hUvoAVJRRFlCCMSIabW3OXP//Kj1KsN7K7Diy+/QhBGKIpBr9Wm5Tsp9SCTQVNy1OtNBEFibGxiSI9zuzbVRp2VtVV0VUPwE1y7mxay/aRNwcggD/i4UYCpq4SenfrDKjKarODFPqIs4cQeju+TiH30WtXSlFgxQYgFItI1QZYkREEgb5m06jWS0EZKAjRBIHQdkiAcImZZS0czDWQJFFlIOz9yimxLiYzddshqBvghJBGxKBDGEZKmoxgmkaQgmAaKkUGQNOJYJEkERElAkkVkRUKTJVRVBjEhElN3D89z8GyfRqVKvbKTHlcUU6s1KBRKqFqKZ+m6RRBHIKU0iqxlIckqsqqQz+QxVItitsTVRw6yuH8B3/eot+vk83kW9+7jySefRO9vhDOmSRKlfvRJFKe0xThEFEFIYpIohjjtusqahqKZfQAqXYeD0COMfFzPptNtESVx32r1ynX+4qTAzfsPIKkOSbcNzYDIPsIzZ58mQiOxRRRBQVNk8mQxTRXfq7Gz3iEjThEGHk+cfBjVqCIKGmEYowgm2YxDwRghTOrImkFhZIzYzeF5PezEIezmOV+vsum+xGf/6c/wlTHuuebnqG9+mue/9DGeWX0IlB5m4JA4ApHgYIQhXtLDUjQe+NYn+NrSI6AXWK+u0Op56KZO3a8yW4qpbGwRuSGhHxAEHrISExMhygK6pSBLYGoKqiazu7nGndffStDOUfZv4Z4b3ouQTBNnVnhh9SEutNb4ww/9Ab/9/t/E2/gvVF75FYQooTBiMVKcYGFuBEWSWV6+QK9nI8k6a+sVGs0avuOi6yayrpHNFzAzBl7o0rU72I6Tbv6TVODa7nWJhUuOZ81mk3qzllKrHJ8oSrDkHFpiEUcSoiDRFh3W/G02nE22nPNsNU5yrvEMspaD2EJGQw9H2F+a5LrZBbKujNL7Emrtp5DClxCFPCQeea7l2OKvcOvBn+D6Pe8h6s0wPX4djp8gJRDHKoKfUJSydKQmLXsDWXxtN37fFQi0KMpDeoYsS8RJiCCkB3c5GgtcomKQRh0PCugwjAg9f2iBJggCmqETeCKyHBEFPskgUEUAIRlYtKmQ+noQhQGyqqbR4YJMHIRpfHXfDcQwTSRZod5ooWoyMhKSIeF5AbbjkAgi2ZLB/sUc1SRdlPxE5My5VT75mYe4/Y43ct11x7n7zXegFYo4vRjXF1B1AfotMeH/ZWcfx+kC8LnPfp6fee8vcOjQASanxmi2qtQ2d8kYIu+4/3sZL5scu+1NqJRJ9IDb73gTDzzwALfdJnP0mmPcfNNt/OEf/jETE3P82E++h5MnT/LSr/8emUyOjY0V/EDnXT9wO/PTU4iSPjzffXi9fw4jksgjjj10VSPwfJLYZ/XCeTarDT70F39Lp/lnXHf4ALfe+gauP3oVQRgjqmkbOFWBJ/hJiJXJksgisReTUXV8P0RMIHA9IgIKuTxuL7VMU1UFqR/fLooCpqanC80VHEGcoIRJvysCCRFhHBKENlIAQZjrt3h9JFHA81x0UUCURIIkJIkC7NoOsdfDbWwThS5y6KCQgJDSlmREPLeJJggYkt63GlIxzAxjo3mMH/43fPQjH+aVl19ANTMcOHAznVYrTYCTE6R+C1eTJLp2miBXr9cxdZ1MlKJc58+fZ2e9wvU33ciJ1WXm5mcojY2zurZBptTk2DXX8M8PP8wtt95K4LupkE4U08JFFHjllVeY37fImTNnmJ+fJ5vN0u50aTabOI7DhQsXeMMb8hw/fpynnnqKxcVF5ufnqVe2UcSEg3umUGWFyOlw8qWXyefzqKpKoVDA73RYOnWG+T2zeLLA1NQUo2GRpaUl9kZzZAwTN/G59ui1fPsbX2PP3AztTof2bgNBkFBUnasPHSRyu0xOjbO6sk55dJQwDtnd3WVxcZFTp04xWsyi6wYnT57m+HWvZ31lhXZjB0E2CZwujuOgygqjY0XEJCEbSTTbXbK6ipnN0PKaaZBNs4mmaWSyJmeXVhkbmeDk+jauB7l8gTBOqQbCFQ4jdO3uUJzWbjWYnJhFSODg1QdZuniBo9cew/MCVlYusndhP/VGBafrYQcBYhzR8J1h679YyDI3N8fObpVctkS92sT1PHLF0pDWsLOzQ8bSiMOAdtcln00wdB3HsdNUsX4nKohjEkFC0TWCjo3rRcSJRCaXwfECwiTG7wuWRD+4zOoNNFVmvFxAiBM818Z3PXLFDL1eh7175vBsG8ezMeWYsL/8ZQ2DRtdL/Z2ShCgKaLd9stksO5tbWNkio6OjKUAjpuLRKIqohg0EUUBVFSAmdB0cu4eiKHhhknbK/IDQT+jaKUXLsx063VZKBYyhUqmgKArdbhdZUvtrjU9Eivq6no8kiYgSGIaFKCqETpujR/eTy2V47rkXkCWVQrlAIV/i+eefZ25uDllVaFZTLYLfp5EN1tKhdkhIO36CJEIcp+sml+iMjUaj7wvsD0X0Ca+2cr0S48DoQW685na++NBnmNMzaKMtnvvyOdb+6WV+4B1vJnYE/N5Z/HAHrDmcts1oeYIot4ndBsk5Stv7KvkclMwENxBJpAKBK3Hf3e/kfzzwu8zsOUK9nuMttxzmxEtfIvBlSuUtfvePfo1Ydrn7nt/hi//0UT74s3+Je/I4nz73E3xz9QST+3VCBDw/REoMerGIJtoYCFS9XWQlxnU2aGx12d1ucmZpmY7XYu+igecF1OoVstksYegiygKEEb7vYWg69XZrKNIrjuzji59/GEH2OHe6zR//4W9w1fR9rKx/jo2NLUZHfb7yD18kVHUWzIfxqw2U0u8ja/PUOi12ahtUtpqEYcTb3vp2XLuD7RrsVlrU4pByd4soznPxIvw/3L15lGRXfef5ufdt8WKPjNy32ktVUklVEkKiJIRoQGI1i0EYG4/djdfGeHCP3d3eMDZ4pfHSw+Bj4/aGF+jGNgYbg0AYISSVVJJKKpVq3zIr98zYl7e/++aPFxkSHnr69BxOizP3nDg6KqkyqjLve3Hf9/f9fr6lUpHxsUkSNLzAhTjGsAx27tw53CtBP20nLJfL9Lvt4ZlJJBpuX5GTo4zYHpWJEqESnLn0EH8VX2VzfZmt2ipaAtdX53EF9PUEP1PjiaUnuP3ATci4S8/5Y2hdQfQ/TGX6E0TxDO971ctJzCJJJJjIGFz31gOoAH7jj/8P3JxPxqgQGj5KKAJPYehFlPbtzUx9RxygFSL1tqkEGSnkoBENNVA8BwQO7V9YG7bbCKMkIZO1iUxjwB0dlLLoJprU8Lrd1Bcd62kAMIlgwO9EiBQfp3SUSFLIvmaiaxqRiIjDACkEdi5H7EfEviJrmSgUSZIWrXieRzabJU6g57g0em3a9ihfP36SJ85tcPLCIrMzk7z1LW8gX8jSbnborayx+9AtkEiiJCCJEnTNGloZ/uWSWoJSMXfc8QqmZmY5duwkL7npELoecNP1M7wIaJbpAAAgAElEQVT89pt5+d13MDd3EC+QnD3zD0zMXcdoeYxX3/N6XveGd/C977qPX/nln+MNr/8uHvz6Y/zwj/xv3Pu6V2N/8Hdp1NvMzMywslrjx3703UxM7EHkS0RI9CQBlapHSRwBCrfXpLmxxsTMPKdOP4bv+9x4442UcyYf+bmfot93UZrNxz/+MZLYYywMsD0QrRDDMulLQWliEkVE7HhoCBrtFsVygSBwU5auaRH0nBQrphQiVri+izB1KuU8kaYPeccv1gojgUtqFZK6JFAhGjFm0CIQLlFQRKCIfRuShBCBE4f4JCShi/Id+rVVIr8LvTSJTxxi6Apd17EGCrsk5WEKT0NYGYRIiJIQEslktcCv/soHeOTYY3z5/q9wPp9HMy2mZuYIozTE0W23cHWdm2+5DU0TBL5Lv9tNSQmFIpsb6xw4tJ8Hvvg5yuUKbqdOtlhh74GD1NbXUiZ0rUa71SKfsSiXy5RKJaSEjY0tbrzxRi5eXUBKSbWajsmazSajo6P4vsfRo0fxfZ/19XWuu+468vk86+vrfO2BB7jj9ls5c+YU1bFR8GxUv0WYK7C5ucnm+ho7psY5dOgQnlJ0+iFr11ZBRNx1112cO3saz0sYmRrl2WefZe8NR7h09hSGIbhx/36WF68RuB36IsKyLM5dvML4yAhxAhm7gtepsbCwwOjoKEYmg2WYHDp0iHajwezMFJ36GsVCjobbgSQmX8jRancpjVTJZwJqmy5W1sZze8QqpNfvYJgaW5ubKKEo5Wyi0CdJUpxmimnUabRaSOPFJchMVgs0ux7FYpG56ghXry5iGBaf+/u/5d577+XRx5/k0KFD3H7H7Xzmb/+G/Tt3E4RwcM9BLp4+TqlSZGtri7ydpd/rUa838Xp9YmnRc2P63S65vM345AzLy8u4riBf3IPfc3C9ENOUeEFEuVxm4fJlpqcmaDmKSqlKICWFfImKsED2WNtssHv3bjJZHdf3CFVMLmND30mV/FjR3KqRVQH79+9neXmZyV1zPHviBIdvPYLndAj6TYrlCvmcRdDtEyRm2lTm+VimhWkadL0Q13dp1pvkCnnGx8fTh1iZPu1IjCGPeXx8nCRWhF5qDXSlxLSzQ3tDFEUkYYRIFDoxsQoIQod+v4+KAU2n70ckXkg+XySXSau6J6d0FKm1UTN0DEOjVKpg27khMWpjY4VWK61Hnp2ZpdmocXnjIoVyCakZVKtVlhcWcV03BY4O7Bvb1qE0s5GiNHXNxA98ut3uN3mbfd/H9/1veVh+MS0cjTjgr5/8Q06vP4oRX8Y2J9mqXabrG4yMjPL5zzzEHa/eQyu8SNQCx/GYnhjhyoVLzE8VGZt4nNcf+GEeeeK/IL0+fj9heu521s8+ga6yNHsdRgOTd7/99fz5n/4m6+uX+NF3/QK/9cf/gTvvfB9vevV7KegzvPXu9/Ge972ch5+5QsNc4z3veg/t5Gv04yUiqej1Ruj2fMYqAQKF4woKhSmKxUnK12fZWvkGR248SLvfZbXxGBnZJ59PeeWaluAph9n5Hawvb2JIjbCQVmv3+x5uoqH5CaeeewW5/CU+9tH3c+7q93Ho+o/y5FPH+cUPvodmo0M+O8HoToN3vuNnecfIGI3OBs+deQRNmEyNVpiammR2boKFyx5RYDM1USVIulxaWGdqWtFzXFqtPLqew8hYTJWqXL18nnhQ6b2dkTKlRrFYxPfTa6Fer5PP58kVC6gIRkuzZEWWrhUwY+mYWsSZy89hGZLq6A5CYWLrIIXAjASBGXFu6c/50U88wb/9wV+nfvZ3uOWGKnPFfVy+0qZi9jBHiuTiVTaufoT2hQ5q6qN87tg/UA+fg55BtlpirX+a9VqTHePXEfgaWvH/hxi7REg0w0QzzDTAkAg000JoMn06lmnV6LYXGlI7QRBHRAOM3Pavb/+/Q9SR1FJ/s24idY1hFbqQICT64D2Fpg89X9vhim21evv36LpMX4aGoeupvSPtAycYeHE73T5e3+Pa8jqb9Q6NTsyhw7fx0ltu5sbbj7Br9zxR4KDCPudPnaBTWydwehg6qDj6H36vBJLVtavcdfetrG9c4+zpp6lUCkxOTjIxMUOYgBb0eeihh7l84SKe20dFAV6gePbUGcLIZ8/eXXzyLz/F0soaz5x6lomJMTRNo91uI2VAPlMAsvhxhD6omk6SZNjsqKKUj9rrd5AIzp45SbNRo1QoM1pJGdA7d+7k8A038jsf/W1Wri1hZXOYZgZdSKIgRNN0hKYTRTHKSxFaGdsGlaSWm1jh9Z2hemVZFkmSUCoUMXUD3/Not9t4gf9t24f/X9YLy32iRIFI2y1VEhDHEXEcDcam31yMEkVhGpj0PQLPIR6g7uI4RiEIY4UfRjhekFpEBqn3KAqJAo8oCAn8Pk6/iyYg8Bx27ZjnbW9+I16/x7lz54bvZZrm8M/Q7XbRdX1IMclmbba2NimVi8RJTKx84jji0qVL5Cydc8+d5OypZ8mZGZavLdGpN1M/dLfHgw8+yKOPPorjOFy7do1du3ahlOLs2bOcPXuWfD7P5z//eWZmZoZlPLZts7KywtWrV1lbW+O+++5jfX095Ud3O1y5coVms0mvl4avjh49SpQoHM8l8EICL2RkZITZ2Vnuv/9+rEyGzc1NYj+kvr5MbXODSnWM9fV1Tp8+TblcQghBo9FgeXmZXDaPZVnMzc0RI+j3+8MDhZ3N026306pkt0tjc42xifFhQCZrZZgan8CyLDqdDr7nkcmYqCQa4BgV+XwWz3PIZDIYg3uJCiMsXaNYKtFzHFDJMOT2Yq6MZQ6/z2qgQEZRgN/v8eV/+gIH9+3lwpnTfPGLX2D3vt1cuHSeqbmdrG5sUKiUSVRIxjCQQpHL2WnlfHWM1c0NYiEYGx3BkJJmszkMCgNoEmIliWKB58f0/QA7k6fX9QiiBNPKY5oWUupks3l00yQRqY1CDgLL6RRKDkfH24dDQ0DkuThOD6VSXKaUEtvKsLK0SK/TxvNDEqGjS4kuQUMQeC5JlB6MLcsaBu+2D5zbYaoXFkDFYZSy3oUc5DlMEIIgDNP6bS9lRju+hxcG+FGIF0RIPYMSklqtNtx7jUZj+Op0WkN8qGnqWBmDKIpot9t02mnwsFQo0+l02L17dxr09X0MwyAIAizL4rHHHqPdbv93leJ4QOd44QqCYFgR/p28ktBiq73EpfWLaIUAy5jCjyK8vovjOMzO7WZ1ZZNQ9Al0l0hBrbnJS/bfitID+lGPntvi0HVHyWYKZDMVnHZM1rTI5/MIqTM2Os3Hf++jrCxdwxgb5amLzxLEOvt27kcGE1SrPnmzxLvv+y0+9CsfZP/cjeyaO0i1uI8EE4A4EWRig4KWQ9dTRJxmgdIERs7GME363S7JoHrdzGRJFGxt1lhfr+GHHkqkbbaWZQ1fuq4TiHP0Gg1+/T8eJ+vptPq/y769JZ598imeeOQRmg0HzcoSxoq5/XfywNef423v+H7uufcVjI9ME0U9isUipVKJIAgIg4TRsSJapsbM+CSjkxV++KfeMJgcbaUB1urY8HykkgjHcWg0GvT7/WEhULvdptPpDDC1EMchIlFkDRtNafS6LpHjETlgkqVgFsnJAnpsI4wiWbNERstRSObJqzGy/Rp/8bGf4zNf/R0+/Eef5eSzl9BkzMOPPoIRGogkx4nn1tCsOR6+9Cj/9YFPkzcj4qSHkFCuFJC6QEMja5cwxOi3dS9+RyjQRsYgJiZKIoSZqsqGlEMGqO8HKQ2DBMO0iKIIS9PSEQEgEjHwR4sBlk5g6CaxilJFWpooFYMOgR9gaFrK1jUFkeMgdJHWeSMw7SxxGBIMLBnCMJEqxPV9TMNAKlB+hGnrBGFCQkSxYNN1YnwnSr1+RsCTj50jKYzQDQqcfvgbfOTLn+SLf/f3nDx5kn6/S+C5HLzhJg4ePMjeg4dQ/SyGlseqVgmT7boSRZwMHgQSDZAIHT71F5/g8uULLJ4/zbXFRS6dPc2/uu02EAJDD9lcW+fUuWX6waMc2LOfjGVw+9Hb+PqDx1herbNrzw5eevPtXLiwxuGbd7G0eJm+pzExqvHWe4+iZQpEhoYlM+mBVpKq9kKQENLYXOGRf/4nXnvvvWytX2N6eo4jN7+Ezc0aGTvP/htvJwkDIhVi2Fl+6Mfey1/+2gd580tuY319jdJohUTXESZE/YislaXX6SI1ATHEbp+saeAKSZQovG6PjG6AnoY3DTMNfGYsA6IXl6Ur0AgjRRgFZKSOYekgIUhCRKwThy6xAs/sYEQ+iZVFhAItiYgcB+W0Cftdksj9Jj65ITVQEMQBrh+AFGhaiPB80E0M2cPQU+uP54f4UYRGzNRYhdnxMhvL17AtA0NkUHHI9OQMsQqp1zcIAocdO3fj9PrUGlsImUASEicJBw8fptWskzF0Hj32DfbvO8jG0hKPRhGZBPbs2El5ZJRjzzzGoetvoFQdxdR0qtUxXNdl946dmLpBrpDHj0K+913fg1IJWwP+tGnqNBo1duzaQy5OOHP+HI12h9LoOMvnz1KqjEDBpNtq43XaPHX8KWZnJtLDga+4eOEK1dEiQZzDsGw2ay2mZqfo9VtkDYPqSIlKqUQxb2LoOovXVtixcwbd7LN7fp7N2gZCCFaWF1BCZ2JykktXF3C9gEarw+hIgeXlZQ7sv47Tzz3H6soSUugUKqMUx8ZYuHoJz/MxLZtmp0YhM0KoFAQeY2OjNGsNDGFg2glRqLHV6hNEEUkMKg4p5S2a/R6lQgFpvLj6hdR0Roo5eo7H8rUVcqUy07PzrK+sE4Yhx489jKFbxCQcPnCAzsYmx0+eZMf8LNlclYOzU1x59jiGiOm2eniBz6LnkynmmRypEPXbXL60zNjEJIVimdWNGrvsEr5vgDBp9RRCixFBTLFYpl6vY9tZrEKVyO2iiKmUKqyv1fHDkEarjWXoBJFCt2xAEioIYwGWYlrXkIZk+doKAhOZ6PQDRc/1GJscwwsd/MDFDQt0ej6FQoEwTCk0oRIEgYsX+ARBgKaDEAyaUzNEkSKXK6BUNPAz+ylizDTodR2CICBjm0hDJyMEnucRqADNymAKHdeLkJqVXsMoTM0gl7HIZCwajT6mrlOulnEcB6ROFARo6WCUrucQhR0Mw0YzFLo0Bi2ENufPn2V6agd+4JAvV+h2e+TMLIcOHOTkyZMgdYR6PluTCEGcQBjFRCpG1wVhkqqGvV73/xGg317P53LiF51+ZOcmeezx/8LsTAU/3uTq5cvkx8q0wi5Xr65wx533cP9XL+H2QSYhhik4fPN+qsZOVhf/G/WWjRd8g+5WwMGde9g7doB/PrnAB7/ve8nIDmZ2PxfPrWDZAXP5KqFfZMfIKG/6/icYKdqYWg1bn0PXFHccPcjWxgy5n4Q/+8u/4L533cNGv82C9ziV/Bh2NMFovBPDn6K6r0EbH9eJyAqYnJ7n2MMPsrXVZcf+eaJ+gqv5yIzCdRQWMWsrVzFUhijwMTMGxWJqAdPFCGevnODTXzzPr/7Yv+Z1r76bubs8PvLr7+Ntb/mP+ImFX2uwc38OAp36yhbnzq+RxAEZw8A2bXZMzzA3u5uLF55l3W0xfsMCr953A3/2m09y4NZpvnH1l+l4h7lu/wFuv+0urlxbpNnoUyoVaTXr5AsFer0e9UaDjpD0XQfHcTC0tC9AbGwxMjZgSjs6yrVoLLUR8zFu10Jrl4h7Gl5Gp5QpE9cFIlZ4Xgdbn0WPY+LmFq3OOmZJp13/Mp3Fl3P9nXsZecOrePaZ4/zSb/40s6/s0WpdpZP8BaHRJZIHsIwE0zaZy+xBlzmiqETG01it9b6te/E7QoEGhli4BIji+JvUmRc+/SeAYZqowVNbkiRIBGjPM6Nf6PPaRrFsKwepkimQuoaVyWDamSEMXNd1wjgiThLMjJVWrAp96NHefj9Dl8OgxfZ76EIShjFh6JPN2mRzJaand6clEpUyZ86c4cknnmVjY4tCLsuB62/gVa++h+WVNUzNhFjhOX3iKPiWNyc54CUrUuTYww9+jUolx60vOcLP/sxPUy4WEDKmUathGBb33nsvCwsLrK+vpzXNI0Ve8pKb+acvfIVms0m9scGDX3uIer3OO77nnew7sJcD++b52Z/5d2QLeaT+/NZ4YUW6lGnV7vzcDM1mnc3NDaampnBdl+rEBHaugDQz6IZFELpEgYehmyAFrh9SLBaJwnioxmYyGaSpoWV0IhXS6ffSJLgfDiwMabW3LmT689B1vDBFrXW73TQE8yKub/pZqefRiUIkKe4wjkiIUbGPSiJiFRH5HqHnEvoOcRQ9781/wSuM1fAVqPSffdfD8TysTBbH7dHv92l1e2kRiOcRDrB5r7r7bm48dIBOq4nv+2xtbeE4DkmSUCykVdi9Xied8OgaY2NjQ9xe30uLeCanJqhWqyytLLG1uc6ZZ08S+x7tRp2vf/UB9u/dx8TYJPXNOlGkuHj+AtlCnvvvv58v3v8lzp8/TxAEOI5DFEUpci6bZWV5iYmJccIwxA8DFhavMT8/T4wgl0sPRWtr6wRxNKyQXVvboNNs0diqMTY2RqvVwvO8QRW5lo6plSKIFc1mk6effhrXcUiQ7NqzlyCIGBkZYXFxMeXwZgxUGLB75w6y2TzV0XHKpQK9TofNeg237+D6AflCgXK5SDaXwQ8Cri2vkBBTrVaZnZliYmKCjG3SaDQo5Mu02g0C10U3JLpI7xVRFGHbNtXqGJ7jUsplMYxUUTS+zVD//9kVxwmZTIZCzgah6HVarK6uMj41OQwGRXGARPC5z/49R44c4b53fDdHjhxhamYHjz/zHAka45PTGFZ6AMzkczQbbZx+l0KpyOj4BBnbTotYooit2gZuEKKExA1CpG4SBjGGlaHT64Nm0umnExapC3zPQQjIZrP4YYDj+SRioDwLiAekoMDpM1Yp43oButQoVceRUpKxTaIkIYhCqmMTabOtkb6nZlroVgYlxRCLGng+br+PTBh+ZmwH1rdReZaVfjaYZoomNDMWmayN47p4vT69bhd3gK1zfA/fC3EdH98L6fectHrccQbikD8cg6+urg5rmFHxsGTKtnPk83lMU2d0dJzp2RlqjTpbW3UsyyaOI/L5PCOjVaZnZrhy5QrHjx8fYl7/ey94foL2rda3qv7+f6v9/l+1QnrkSzpSduh0EqKkR2U0N6CwKBYXlzh3ZpGx8gTNeou8nWV95QqO1yUOYvJFDZX4jIzHTM/O89SJU0RRxINfeRAhQnK5KtWRMQqFArvmbuKWPXewq3IPk9Uq06P7KFamQWpE0gcxgmlmabU6ZCwLy7Lx3SBlh7c1pqw7GTVu48j+VxBvjlEK59GCAKKIsWqVMIowsgaeHxJEDoY0UKEiURpOENLqOAjNIAjTPeg4AwtQ4vOR3/0wN9x2iCd6DW59289w5qlnqDUW+dWP/DqGkYpduu4hE43VlSZ2VidR4Hk9NKkjNRM3WsfIzjF98yJGKeaPfv8J2n4LDIGXpPdvIRNa3RatdoMwDOn1esP7ehRFZLPZtPhMqeFejqII308nMD2nT6fTod9x0XwL3wnREog7GcKORa+lCNoufiukvtKhsdJh9eoaawvrbK60cXoeYaePFcHS0gIPPP5ZTKFx6UrEJz7xac48t0DgbZCzFfmcwFUQJxGmFMQR5LJZ4iSlxzhh/9u6F78jFGgh9eGHigZDlqfctg4MWJXiBf8ep40nIFLsncbAnqGlpSheGAx8o4I4jlJXh2khVIIUEk0TuL6DOXhfIQRoCZZhEcUBcd8hCiN0KYnDBE3oqEQiNA1TpmGxQi6P54cIqaHpEaYl0+Bg5LK22eWpxaeIY8HO3Qf5Tx/7E+68/Q5OPnmCD3/2v5GfnCASGd60+wChF+N7HqatETs+elYjNnQUEi1O61UFcfq0kyikzPCBX/wQX/vq3+N0WywtXeRlLz2K3++yvnCNUmWct7z+Hl5y+CYuX77Mweuv577vfj0Pff0Yjzx8jBsO7Wfnzh089sRT7NozzkZti4wZ8d73vIuJiQk0K5uSSaQcHgSFigFF2O/w2LFHsPUU+P9LH/gQ//njH0e38iRmFlM38cIAYWq4zS0Wri6z78ANmKbJxsYGxbwiVyoiNZPOVgsdgSxYFKwiQkqKlkWodFTsY0WgopggVkg7Hav6foCpacSDMooXmwMtEYjtw1KoSAxAA8MAXU+QwockQUUWkUrHvmESocWK2O2RRF4acI3jdAayvceHxQbf3B5mSp2FhWtD9rRu5sjnTTzPJ4jToGlvaYHbbnspx46fgNwIxcooqHhQ/ADZbI6tzQ2q1So3HjjEiaeewNKzOE5qPUhUTOCnbX5SSozxcQx06ptrrK0uk4Q+uZzNc8ef5V0/8D08+8xJiuUSl86f43VvfB26abC1tcXq6iq7du2i2WozNzeXBhftDOfPn2dufhfPnHia2196MyrwmJ2d5WK7zoknn2L/1Cib9U1mZ2c5c+YMu2Z3ks1mWF2/SqlsUq7sHlBvIkZHR6jVarhuWqG8vLrC/OwcjUaNTrfPyMgIpWKe5eVlGpubTE2lh6h+v8/Zs2cRms7U5DTCa9KSimp5jG6jxdXLVyiXCqyvbVAp5ZiZHmdjq4aWmEN0k+v1UGHE1NQ4G+t1ZuamWOov4jgOpXyB2PFSlTOOcfu99CHID+g5/ZRQ8SKSDCB9yEtLRsbo+wEdx0NFAY1GjWw2m2KXpSRWEiFNHn7kcczjx9N9p+vEpkV5tMrCeo96q4bv+wRKcPttL+eZJ46lDYRexLhuEkWK2bkdg4f3FlJKNus19u/fTaPWQtNtem7A4vIaszv2guanh1VdJ2tbOI7B1cVlKtWRAXvWw3NchEzwnT433bSTha02sVIUqzaJrhB6ghCpH7NSrZDN57AMDRUq7FyWq9euMjo+RqgUUgqk0FKMahwjNWPYxPZCvnSvlwYvM5kMQegjDZ1e30czDXIix9bKGmEQsHhtGcMwaHS6MHjI0zQN27LpdDppq2fuefHGMAzcIOXpOo5DzrZwfQ/fD9P8zYD9vHP3LjY3N8nlcuzauQ+EYmpqjNBXbG1s0ev12NzcTMuzXBeF/OYDs3pB265gOPXaFmgG2vNgf4jhr23vVPUCgerFWp7apNZcZXze5sQjGeZn+0jNwdTA0m1anTpvefs7idxNOo0VRnOT7Kj4rDe/AkyytnmBrDSozDosX10lU7AxnB766D4WNjZpN1t0tzq8+q5DzOb2cfueH6SUK7F+dRV7MsLO9DCDEZI4IsxtMTY6ztqVNu+8742cuniaREAuGeW+Ax/l7rteyWp9iXx5hFtfcpSv3X8/f/OlTzK/0yfwNHbu25UiMW2PrtdEuRlEYmFZBo1EYhsZGl0vPatIQVBvEEcJ3V6PSqlCpjzGirPIK7/rNlQiedn33cLff+ohCkGJxDY5fWqRI4dfwsrKCrqeJYp9pidmkcKgn3hcubjK7pef5fRTZTYu2hRii117ZxkdO8jSmTpHX/YKNKHzjW98nbHxaTqdVOCybZtut4umaTiOQ0BahgYQ+QEF30NokrJfSklV3T5BEOBtafgRFMYcaotW2lCoRWyyRc2T9HsBeihITIGmQ+C2MXMJnttm58wYi1vn+a5X7CMIP8vb/80beNPb3kx1Nk9GmWTGerhRyFrzAlZmhMkgZMPrIiIfSYgwIhLR/rbuxe8IBVpKnThOhpaNbXVZJQm6YSCkTA/LvKD2e4CzS8TgJp+kv0c3DZCpwoyUJIMLXgnSKlNNIgwdNcAi6dkMmm5iWTZSM4iShDiRSM1A0wfeac1EM200aaCbBjEJqCQ1zA9qktN0bNr0lLUyJNKi3nUG1daLLK23uHLpIu9///txI+h2XIJER2by5EqjjExMY5dKREGAVHHqA36BSkASI+KIREVEYYhtZen7IVLq5C2LcjGfjj8cl2w+x5f+6YtMT0yye88eHj72KCPlHC+99TC5vI2UOjffchghBGurNa5euUS7scaRm24kjgVIHfUvBAYVRxAH1NeXqJZKzMzMcPnyZaampogihWXbCMMgliAME6HpZPIFyqNlFi5epNFoDIke/X4/Tdv7PtWxUap2BafRx9JyBHFEmGj4gSIY+IRNwyCRabmAqT8fFP1OWNsfJEIItMGDHkoMWOMSREiiQqQKUXFAHLpE3sD3HAapx1uptBwCUIOGsBjxTS8lJInUcPwAkUAQxmhGFi9QdDo9Op1eqnR5qWpQr2+xe8cMVy6kXmTf98nn8yRJqjrmcjaO06NW3xgeCAByuRymaWLaGaSEfM6iVC4zPT3J5uY6pXKewzcd4uqFs7z2VXfzZ3/wR7S36hx/5BjVcoWzp55DRTETExNpo9+wAGKEcrnM6tIyhWyO06dP894f+3GWl5dZWFjgC1/4Arv37ue73vxWdu3ZR75Q4sTTJ5mYnB7sGTctp2jWWF5e5sknn+TKlSusra8QhqnCVyyXGBmtcvnqFcrlMjMzMyRJwtNPP8Xk5CRSpsGvTqdDtVrFHSCZcrkU+WVZJq1mh4nxcaYmJlleXqZSrdJs1IicHtXKCLppsbGxwejoKNVqlampCWq1Gjt2zlGvb6VjfJl6q3VdHxYShKGPaVl4XsDs7Cyu7yFePBEPAE2TGIaOZZmMVkuYmoYKfLztaUW5wvTsHPO7drP3ugNkC8VvEjR8L+TkxYssNzocPHATR2+7i7jjcv7USaql/KCYJsfqxjoqSdhq1DGM9OGq3W4ThCGeH9PpuviRJBYmG/UOfiRBG1SfJ8kge6IjNYPNRhvXS20WjucPJ4Kdvsf5tQ2K5VFclXDhyhJIjTjyWFlew/cCojghiNLwU0piUjRqdTTTGnis08C6Oahk3/Y/b3uus9ksxWJxWIpkWdYwULhNScrlchiDQ3Gv16NarqTXk5kSNj6PNFcAACAASURBVJCCSnUERUIQBGmldy6XTtusNJybz+eHmQndNGk2m5imSaVSIUkS5ufnmZ+fp1KppNfU6irNZptjDz/GhfOX6Ha7RFGap9n2ig8zPd9COZZSImRaiiVk8k1/723P6/aEdptyVSgU/ldv1+GqFsdRoYmR7CHy8yAiMtkYQ1domsHkdAmn7+K5EZEfUV/d5NCBW1Fyg2Yzwe9YmGoOCcxP72d+7yTj1SyTB64jtnNkLIujR29nzJ7jVUffQMGOqVRh78yTtNc+hxEUaPe+BzeZJOdWiKOYd77pfVw6u0GzuULP88Gd5d7X3o2vBUzO76AyZqKZFi+781b+4Pf/hsf++TinT51hfWmDycIOfvPff4zutTaNZpOO2wErZsQuobyIvtOkUk2LdUzTJJfLkSnYNFpNer2AGauC3wNUzJPnTzN1nUl1ZBI/0NlczWBmLJZW06Ke6dlJRkaKZHMG55cfxRq/yAOf63DtWEDWUxy57gh33/Jm/s13/yT3Hf1FNla6fP4fvsze/dcNSFMGUmpogwK47T3iOM6gtTk9rxSLRQCE0Mjni5SKFQQaSZBQXw7p1nxct46WKNx2m1pL421v/CFe+4Yf4Jc/8Hu8/Z3/ltfc+250MUKvp1CmiafFPLfyIb7w1V+ksfok737N9/C3n/w0lYksRilGGV2EkRDIDnrWIvIjRKKjYolm+PhqE8P4H+fM/mfWd4QCjXyBshxHw0PJdsvUtk1iu0Fp+7UdLEMmSE0SK4U2+IGmaqWHJmTKWUYQioQkGZSVECOSlAOtGSYgkEKiIh1dRqg4QTPSpLJVKBDHMUGvSxKlpv44UVi6gZdEGIZFGHrohmBr08XKJlj5DELPYNvWgKOc4af+9x/mjjvvIsyPpkofkkhBrEtAgJbDKsD62jXGZ3aB1GEwXgt9N/3+qACZeEiD1I+U0Wlu1XAcj0uXl/j85/+RO9+YcMedr+R3f/t3+JkP/DyXry2wcm2JOII7X/4yxicqVCov48O/9p95/LGneft9b+Atr38tI9VJEqURK4E0Uha2ShKUitJxZb/P8Ycf5NDhm2g0GnzpS1/i6NGjVEYniIVERT6aNBGJhkwk9tgUM1aGS+1nhgqO6yoqY6MI22bH5CReFLLV6rG0vo7jLvL1Z5b407/+HL/x8z/JD7z5ZkLPRybQDzxarRa+E2JZFoZlD9WhF3PpUg5/RprQkaRjeZHoyEQg0dA0gYoDEIog8hFhjAx9CH2SJCQe1BJrg4dBBPxLOt/2qFUpiSAmXygzPb+LcxcuE8YKDRBCokLASFKWcRRjy4hTzzzFgYM3EEY+tm3TbnYwTIkgotFYpTJSwXV9VJgGdYMgwHFdChkTTcHeG3bz+LFHmJidpO32ee7KZTauXeO//uWfoJTgxOY6txy9neWLl5CJYnVhgTCOGBmfwnEc/CBkc3OTSqVCPp9Px3xonDhxIrVB6FOUi1nOPneGSEFrY5EwCLntZbezurxCs7NF1s6jSYtSLgeGGtQXdxgdLdNotJiamiEOUxTZrbfeysrCMrt2jRBFAVNTU1y+fJnp6WlWV1fJZTOYWhpqm5+eYnNznciPyeezqCDG73eIg5DpiUka9RYHDxzg6pVF9KzCsDIDW8ka0zMT9Fq9VF1vbqDrEj+JyWYz9Np99G3qhmlSyNl0ewovDKivrOCrmMKL/BColErpQXHM6EgBpx/Q6fXxByPYSIGfSGw08rkCu3ft5drSleHBryB1gmKRXpLwlVOXqWQtvvsdb2d9+Qr9bgtdReQyBlp1jK7jYguJ4/mMjKZ++T17r+PK1asUi0XafZfVjQZBEHBtdZ25mXx6CG21CQMHXRN0Oj080gZNKSURgjgMMLMmTy7WiGzJZr2Bo0Fjq4XjxnhexOrqOhcuXCB36HqEBpHn0XFdbCnZ3KoxOjaDWcxQq9WGjGPbTgteKgO/6LYdxzBS2kC/3yeKY4rFAvVmk2zGpN9zyVdKYOpMs5PQD7h48TLW4OG0XC7jhSHV8TGyhTxby0tDdTuXy5GVKXHHyhiEA0yfinUqlSrlchGEolAsp/c/Iy39Mc0MnqtYWTzH9ddfz+XLVxFJOglNp7ZyaBN5oX1D054P1G/fe3K5XFrQ0u0P7XrbavPY2BjdbpeR8clhcOzFWpdOnaWaL/Mj9/0Jj339nSwvddm7b4xSsUWzsYWfLGJZOZbXa3T7OqsbS1y+7NENYnxf47V3v41CpsLZpfOcP32JLblO0NZxTMGpkydZXrzG4esP8a9ueRsFOYs9JVCJQob3kfRegcmbWF5uUYwieoWfobr3lyhZkxSsKtlQUnfPUAgmCKWOlZVkkkdwG1/Ayv4E2ZEpVNJnsrqH5cYqnc0+P/0Hv4HRDdi7cz8f+60/4wd/5C2snt9Ejyze8No3cnrpBE7cRok0RD5SKaFFPpbQ8EWR8pRJz7P51991F7/2qd/n9W+9jTU1T/uJGj/+/p/CDRfZdd0epqtlikUztaiFLj02OP8lGJFTHD44y9T4dUSmwate81bWm8tMjtzE+9/7Gp5+7ik+949/yfT0FMVCmV4nIpYRhmHQbDZRSuEMJiymZaUtwgLavS6zCei6ga4b5HJ5xidD+ssRjVqLfTdOs3KxTRAoknyen/7ut3KmscF102Pc9tJdOD2f1x7Yx+NPf4MHTn2KoJfw9DmgAvazd/ALv/N9fOXkZ+j5HQqWoOuaaHIP41NdjLiAI3UqSYWuFEitRphpUTC/vffc7wwFWujpgSGRJCLF50QqheoPKRgDssa2Qo0QQ2Va6hrb7YQqeV7J21akNSNVjv+lP1rqKQlCIUFoSM0YEjvMjI2mGxgZi0SkCWUpJZqhE5Mq30LX0rAX6Z855fNa6JrBxtYmyIQw8nFcn1zG5u57Xo0b+KgkZXAmxKTnr3igOIBmmVy+ukAc+mhiUL0a+iQqJAxckjhCiNRb++UHvsqZs+eZnJwGFN2ezyvveT1feeBB2t0uP/7en+D06bPs2LEjZezGMV/6py/SajW4cOECN910iN37d3L9/n3kc9m0FIbBeC7Z3hoKmYDb7dDvtrEzJjKBpYVFcrkcb3n724lCRRhEJFEIsSKOQxQJXuATxopCIa2ErTcbVKtj6KZBvlCi13dZWF+j5bk03YTf/sSf86VvPM3hl97F0xeucW2rxmarRRgEiDAiieI0TKoUnU6HVqv1PH3lRVrbk8xthUdKiTYceqb/UaIhEgVKoZOkwcI4JhxQN7Y/1F44Gn3hg+ILv7YU6deVUnLp0iWMF4xSR0ZGhlzs7evhwIH99Lspl9jO5IiCcKgg2nYOwzBYXr4GKMrlMoVCAcf1MU0TITXK1RH8MEIMAlq+77O0vEq5UkFq6d+w1Wzw7IkTVAp5vvbVf2ZtZYWMaWFIjeXlZcZGq0xPT9Nut7nzzjsZHx/nZXccZWtznampKa5eW2J8Yoo9+66jPFJhq9kAJBnTptXqpI2Ka2vY2TzZXAnbsigMHmqnpqa45ZYjNBoNmo02O+d3MDk5zpWrl4ZtgUopqtXqUE0Lw3DgJexy7doC62srrK6tDekfQgjcfjqqzxZSMke+kEUI6LZbFEsVhNTJF0rYuSJBHOG6qfe13W7TbDax7QxRHDA2Xh2y3btdh4xlI4Tg0KEbvgP27oAg5LuErodlaBgvpBEZOpEfYVgWCrBsm8rIKNlcAU03QUXDiujEsGg5Ll999DFs26ZSqXDoxhswDTFsr1NKUW+22KrXUnuBIG0EzNh4fkiz2yNWsLFZIwg90HR0yZBOs/01ttnTmkgPm7adI0gElpGh7fQJlEbf9el7PpZlpQ9xnke32yaIFK1OO6UFtNqYmo7v++RyuQGWMb22RsZGsW0b33GH9/7tNj5Ii1s8zxsSguI4JlEpR1oaOkqA0CSFQg7XcRgbGxvgyVLfc6FQIEkESSIGFiSXbCZDLpfDNq0BVWmC+Z1z7N27l9HRUQqF1OfrOA5bW1sD6kETx3EpVaqcPXuehYUFtIFavC0yjY+PD/M732ptK4uWZWPbKTFCagZC6iA0rEyW6fmdzO/eg+eHTE3P4g7UxhdjjVRGmZqZ4j3veQ9zM2PUt6BcrJLJp9d2r9+kNFKg5/kcOnyQ6akyViZPzh6nkLfpuw7rKxuECazXN1hYuMbrX/saHnr0OH4cMTM1y9jYBP/80N/w8PG/o1MP0ZGsX7qRdmuObrvFeOXH8MMAzz1LkiRkc/CaV91Du95nZFxn/74p4tgn9A16nb/A1j5GEn2BrN1HKJ87j97J3h376Pd9du7ZgV7McenyOWam5sgEkoncPO959/u49543sbUUEHvaYAKg4Xp9Qj9CkyaG0CkYqV1nfHaaOBQUMiX+6E/+jM/93ed54xvfSD/0mZ8/Qrk6z1ajjx/2EJrHtdN5hF8gjjpY1hhmoY1hljCKJqXRCoWKTt8NuW7PXuI4xU0WijkSYnq9Hu12G9M0abfbuK6XNlX6Po7Tww8CSFJBZpvSoevpZKZSqZC1ymRKFiNjJexsgZxtotyI2ZEswt+kkgkZsXXG8zksJM3NFpoS7Lz+Zh59apEz7Qf4jU/9AL/9p/+eQkFDjwu02wq3pyFlWnfvhgrL0Jmfm0IaMrVJfptvud8RCrQSCt1Ki1QEBmbWHAYbtkf1cZIeWJUQqbViexwlJNLU0tBJAhgaQkpkEBFpGommIYiJUUiZ1ifHYQgaoOuIhPRQrBRoGiJKCEWCnc2CSstV/G6ArpvEmk4UR2SsHCKOUv+O0tLGKEun0XZIdHCCGF9pSCuL53vo2TJxr0WntkUmn4fYIe70SQDNyiNUWoMdhhEqW+DOl9/FpYvnmJmaxtCztJobZAxFFKY2lfPnn+Xmmw/zR3/4+/z27/5f7Nw5z+bKVX7q53+NjpeiqH7uAx/gV3791/i+d72bWq3G9MwstVadq1fXeOzYEyxeucLuvRMUq0VuOXwDJduCJEIYOYSmo8l0LKn8AFRAY/0aTz1xjCjwcL0+xx8/xute+ybqzRaF8jimYYCWIREaSdQjCgL0yMeyTJKRUVS/hVHM4Rcr5KbHMKsl7CjkoTNPcXW5xx9/+ss0Oxo+bZY2nmPxqsmJpx/nwI5J3n7vK/g/P/aH/PXHP4QbdJGmQalYSVWgF7lIRZoJukqZKaZmo+up4kwyqKZHgYqIEQgg9GPiOCBSKm26TBSoBClAiRcUHQyU7GEoUVMDaxMgJb7Xx0AShB6aYaGEoNmtY2cNEpWqS7FIr5/DNx0CqZGgkc1kQMpUQUoMRBwwUi4hiWk361hZi927d3Px4nmSfAndLrCytsHk2CS9Xo+R6gTNWhsn9Mm4qa2iVMxSsUw+89efJF+usHjxItft24+uS3bMzhDHMdcWU9bys2fOkC8VWVha4ObbbuHvPvN3HDlyhLYTMLdrL6fOn2d0bIaxfIZbjtzM5voavX5IqTLKSLXERr2O126yY9cuoiji8uXL3HDDQcbGxrh48RJXLpxn4WLCzr17iBCYmka5kh6ek8hnYmSazbVN9EwWt1NnfG6WZrPJ/PQ0Xceh3aihJRE7ds6ysb6RHt631lIecBBQKeaoNRvYhRIdxyMxNXJ6KW1/rNcxKpk00Og5GIbE73cI/RCn45LPWwRRjFJw6unTzE6MvGj7FqDedsnZGeIwJHQdDMsmly9hGiaJIg1DZa3h4XVbyczlcvT7fQJSNnsSKywSkkSw3o/40mNP8/KX3U5tvUYmkyWbFWSBbrdDrpB67auVCqdPn2J+fjcbGxvsO3gAL/DJZG3OnTvHgbksZjZH3G2iggCUwLRNAtdHlxo6EjOrY1sZEBpZU8dSkmYQEYcdlBZzbauGlYTkCnmam1t40yN0en2ESKjX6xD4lKpV2NiiUq0yMjpOp+dQyRUolIpMTc9Sq9UGWMLU++55Hq7TTznqrk/U7ZPNZsmYJnEY0R2EoEv5tKCmUilRyORp9bvs3r2btc0N8vkcYRggdYO1jQ127d6JEpKN9S2mpidInR76YMIW4oc+Uggs3SJMGHzdCqur69S2GpRKZU6eOsvK2jqGYeK4vWEAcnJ8lCRJqNVqxAnEUTi0YYSRIpNJQ4iWZWHYOcqVKtLI4rouI5OTGIZF1s6RWAb5fIX8yAzVaoXR2dkXbd86SqLcPPtu9jn/7CnufuXL0KM+Y3OC3kYbwSrL6zq5co+LK3/D0jLIxKOgbmd0cpWm2+W2HfupXx5l7+EDrB/z2Fi7SKdrMT9rcPORA6wun8d3vs7nH/or2v2LvOHV78Dc9Z946NjXOGg/xV03v5Ozz57gpa95OZHKgx6wfHYLI1Mgq5cpiQxhnMGIl2l1H6Te95it/gIUb8U2b2N9eZmX3X4X/+FnP8xPvOv7+avPfoDf+9UP8dPvfQ//+PiT9NQGXifCJeKh+/+R+77/FZyttykUisRdDycxuenALn7gh+7hk5/+KDljFydPnCdHkeumX01WA+V38ev/jq994TjHjkWcv7zKTYfm/m/m3jvKsrM88/3tvM8+sepUjt1dndWtbgmUBSIIMAaLYIzBwmAbbGMPnsHGjMEJjD1j3zuXcRiMmRnbDObaXJIBSSgghBCKLbVaUudcOZycd977mz/2qZKYmbvmrruYab619upaXV2nTq/z7XPe732f5/cwN1ekWu6AB7nsAHt27sCQUuTS4+QG5xiwUqyuvJ3U4BKjEydZXxO8/c1v5viZE2iaRqlaQYiYSAi67RbNToPAUxnMDFF1TjGa2oGiaUixSqPdxI9D0HRUw0TEKqODWab1IWrmGUb35An9UWr1Lp/98j9y+2tvxPPPoaVidHM7X3z0y3zru/czPlBgvbbM5K0zjO3fTzddYt0pg+pDnMH1e9ikiDpNiiMHUTUHXQKPOtWLy6j5AUx5mp6y+iPdiz8WBTRy0jmW1WR0pfaT1oSItgwPQggMLbXFqTTNhDsq4hgviNBVM+muKQmpIwbMVCopAoVAhAL63WxJUgj7hitJkohlgdI3IodEqHoS7+n7AZoWU8hkcXpd0qZCr93B9UNiRcI0UohUiNVyiFUVRIgqktHGsKUTe4Jm00cKevz+R99Hr7qB27bQzQalSplCcQRrcARrYARJUlDlhJWrq5DNZnngO/fxUz/xZgZzWY4e/QFDQ0MoikJ5vUZjtsbl8yc4cfQYldsPk06n+fd/9im++/gTHL7uJn7yJ+7kV371Tma3TXDxok2p0sBKm0yPTiL5Cq9//e2Yus7u3TuQQhfhgaRniX0PoapEcYSk6IjIo1Mv88QPHubAgavw7CZuz+Pn3/M+tm3bSaCYRIqKFMvIskDELnTb+E4bP/AwNZ047vLmD/wKUkrFC9roccTJ54/QaNt8+q+/w2rDp2ZLyBKosiBUFNY6Ab0wTbU6T8fVObIqoccSmqTi9g8SqVQKN7qyGDtdUVF1GRkFQ5HImFYy+ZAVFEkhihNJBn4ERMiK2u8iS3hBSCSCvrFVIo5l5AhUVcJQNw08mwxuDVX5YbxUEATImoqRMnH98L/ThW9qF0UQsbG2ipnJY2omw8PDLC1eJvQdFEVDkzWC0MOQQ/y2TTdwGRsu0O46PPfCMWZ3zGHJeZodJyleTJ2MqiWaZLuHis3hqw4iBz1E6LJnepov/d3f8s5feD/LpXWsdJbx8XF8x01MoT2HqdFxdF3nlltuAWD79u14oUcuP8Ch/XvotRo88uSTDI+PcvbUSUZGhlFVmeJQHi9lUVpfRZaS8bdl5chmu4xPjpNNW5w9fZoDhw9x5MgRRoaLpHSN2dnZLb10K9ZRhcrE1BRLS0vMzc1RWl2l2mgwOzlO4HRxXRdN07hw4QIDgzkM06LTtZmdnaXaOIOIEpf3WrXO2MgwYyOzPDk/TyE/SLebMFbbXZsg8LFth2xGxQk1HF/0O0liSzN4pVbHDVFMFUnTcH2ZIJSQTBNdT8JAQtvFdroIKQn1cRyHVnV9ayISR+GLRm9iEAIpjvGUNN979iS6nEjv9s9Mk7I0NEsn8lyUdAYfCd00WFxawnVd5ufnyWazyaHY8YjCAEXPECspNN1go1bFVCVyxRy+66KrMSgSWj+EKm3o1FttMIzE/S9kLiyssGf7dqqNLuOjIzieS7dbJYgEkqwQqQZC0ZFUmYWFBQqFRB6xycRWFIXp6Wn8IKRWq20dIKq1auJJ6fN52+12EpudySaUINcFpD4mLyA2JQJC7HaLgWwOu9sjm82yY24aTZdZXlrBsjLccMN1CGJsu4tbadBoNNixczu+72KZKSIpotWzsSyLTqfH2toa589dRJYTScvs5Eh/miXhOA4zMzOcOHUqkYLIEIQx2Uwu+XwaHkZRdAw9RavVAjWm0WyytLaOH/RDszSNdDrLpYuXmZnbzvj4OK1uB62tcP/d98CnfueK7NtGYxVDzrG8/Dhjw0MI0WB4cIaafYFupUQ2XURVIvT0KkNjBRrTUzx34n5efvPP4Kz6OJHP/Y9/juGJN/DsM+cYm5miKytMFfJIjkust1heeo5uuIaWu4YPf+aTfH/9LvyyzPJSmX3Xw1JnhgOv/ShNqYghPNQYbr75Zr5w8v10z2RZHKlz06+M83O37ufXXnU3uYJKo3eGwd5hHr37C0ztHONdH3w3T9z9IP/pMy4bR66m3XsTf/qPd2FTw1I6ZIo7adtQO7+IFersGd7OyfNnSY0M8dPv/Fne+7Z384lP/BKT49fxL3/9j0n5AVVf5e8+8xDTQ+PMzR7GOXsrX/izBeZPPcCff/pufNejudElp+cxijJCi7jxNS/DUXqsbKxy9dgwXzr2CDcV1uitOowOvYC07Rau067n+JkT+L7P8NA4k5PT/OD739nSPscG5KyQt//Byzn7tWE6LZ+QAGQN07IoDBVwXJeRwTEcuYyaXqWxUKUzUiKbn0Jqpbjzl97Ft+6/ize94y188EO3I7QiVx2c48O/fSeP3P8lGoU8a41LyLpDSAtLD2g6IY5nEDo+uApDs7vYO32QIPQ4d+7b+M5aUtt5MXt2XsvySulHuhd/LCQcMRKyqhHGAs0wt4IkgjgCJWEBRwhiSCgYpkkkRBKzLUkvGgwVua/ZTUxZcb9YjqIIRUk6xaqmISmJFCMxGkrJHL6vwyaWUGUNVdawUilUySCMQNUsND1DLAwMq4jimlihhRWmadgyi2t1QkUnlFQiRcNQQIkCzFQG3w956rGHsTQDS5Xwem1E6KHpCindIJR1AklHNjNbWrtCoYCmaZSrJdzApVqtIkkSlUqFHXMztFot5i9dpljIoBgmJ89c4NKFE9x4wy5y2QhVUSht1Llw4RL5fJ6FhSWEEBw6vI9zZ09y1113oSKoldeRRNwv6l4E7CdBAS6EAXEUMDBQQFdlAj/i9MkzSFIyLlMUBeIIQYCIfYRvIzwHr9dD11VURcJKG8SmQc/zEZ7HwtlzbKw0eezJsyxWPdquRyQlndvR8cl+7DWo/cPR6dOnmR4fJgj6MeIvQeBtdlqu5FJfYrSRkZJLkpCETBhFhFG8FWoiXjJDeilvVfTNg5vX5p7fvGKJ/+4SsoQAvDD4ofHsprFj8/FTKWNLixsjsbaxnlAsgoRlG4Zh8u8VFd1MYbse7XYXXdfJZC3CfgdS1TWMlMm+A1chi4SQkrUSGcji2gqtVgeIcVoNXnb1fr75tS9z/OhRJsbGqZTKrCwtk8/nSaVSnDlzhuXlZXK5HFdffTUjIyNbUbCdro0fxLTaHS4vLLBv314Mw2B1bZkgCLi8uIjvOViWhaqqfO+h79NqNygWi2yUS0xMTSFJCgcPHmTHjh1cd911xHHM6uoqmqZx/fXX02q3iSOZTqdDp9NhaWmJbDa7lb5Wr9fpdJKuYSxBKGJyAwViCdKpVCLN6sc2l0ol5ufn2bVr11agQK/XI51O47oJH3oz5EJRk4COzQLtSi65T1uIhETIi0ZrISJkYoh9ROBjt1u06zUiz+1LyTzCIMGMbu3dlzQ6EElXOoxj/DDk3OIilxfXcAPwQvDjJDjE8zxarST213EcVFXFNBONeRxGuF6A44b4fgixYCCfR1NkBgsFDF3BMg00RWFyfDy5/zQNPwoB0Z/I2PixRBSDrGqJDMUw8IMQ2/UwUlbigVEUfN+n2+0SRdFWXDIkh9TN5xXHMb7v4zjOFjpx8757KSVK7k94bNtO3hPUJBBF1ZLf1W63t37OsiwKA0miZ7VcQldkhosDDAzkmZqaoF6vI8sq3a5NGMREoaBcqlKt1Ll06RLbtm3rvwcKer0urpuEiQRBQL1eZ8+ePeimsWUmRFGIAM1MCCCO28P1bNbX12m1WsRxzOTkJDPbZtm7dy+z0zPcdNNNbNu2jUKhQKlU4vFHH0smWVdo5TMFXvOqmxgfn0STU3iOjSZbSJJEGLmYRprQ98hlC5SWHUbGJ8gWsjx19G4UYYHWAsUgEBK33nwbu3buRJLTjOVTvOzgIRZXFrlw4RyxP0gkYkaGLTzf56prD5Idivje94/S6UjoehHNDJDkBMH6zPGn8WSHGw9fh2KqaKmAb5z4Pi+UHiKdVhmauQPXb1BZsXnq2edRNZnb73g9rXqNykqet779n+l2usiOQq3yu6yt/QVS1OW9H3wr5Sa0qy55q4jjebzula/FrXoU5Eluu/YGDENhdb3OvXfdx6233ECpcYJv3nM3FxdvpXz5eg5d83o+99m/4S/+4jMMjeaQFBvNihmaHuHI+bOMDE5y++E3s3vnjbztVT/DpXMhum7TCyGTUil1q7TbbVKpBDUqoWyh6oQQqIpMwynTbde4uHoK3cxRKOQoFotEoUCSZRRVJgLssIJPi3qpR71UJ9YDPvjr/wLVkjl87UE8N+TWm9+IRgGvts4TD93LyOQIQRzhuknB3nXbmCqkrCRePEZiKFskkxuEyKdeXaVRKdPp1AhiwfiERa1Wtp8nNQAAIABJREFUpdH80TYtlE9+8pM/0gf8/7O85WOf3Cpy6Zv8hEDVXizSTNMkCJLu7qZ2cPNruZ9op6kakqIAEpqiIisqQhKo/a9BEIdJcZm0o0HWNKI+NkyWZMKujYJEo1Sh0exSmNiPnxoCs4hkDjG6/TDm7sOM3PIGvnjfwyz24NHjFRxrCGtkNw8/c4b5Wpv5JjS7EX4ooeg6P3XrToqZNLlMliNHHueJp49yy6tvJ5I1ZF1HU2QkIaHqGiIKKG2sMzYxwte/8XWsjMVVe+ZYX1uhXquyvr5MrVbna1/+Ovv3bmOwUERSDeywRc4cZWN9jUPX7udb33qIaw4fBElg93wuXjxLPmtx9YFd3PqK2xgr5LHbNTJWGl1SMFMWkiIjKzJ+ECDHPqFv02w18Z0ecRTy7bvvIpXKcODgAcIgxsoXkRQQQUDo95CCDn6rjZlKIauJvrLXLOHWzqJ0W/zj3/8z9zz4JH9911M89PQKjtRJtOyyihYJOo6LogFhwPT4JJWei6IKDu+e4XXX7KSQtwgkBdFncQdRSH779X90pfbuF/6fv/6kphposkra1NEUHRkFVVJgM7QgjpAimU08lCqSIjsOEzRgFCSTlDhp4gESop+wuSXhQCGJ10lwW7KsgJCw0hZBGCGrKrJE3yCkISsyiqpu6X5L9QZIKttmtiEkCd+1yZgGRiq9xfPUUwbIMpEQDA+P0Om0EYCQFPK5ATrdLmgqmWyWxuIKYRySSacRCC4vL5JNWXR6HURoMzY8gGGY3HrLLZy9PM/wyCjpdBpZlrlw/nxCVoljJqamsG2b06dPs7S8wsTEOHOz06yXyoyPj+A6Hdr1OkNDg9hOj3a7yYEDh5EIWV1aRNZVRKwyPFykXKmgaQaO7ZLN5VAUmWazQaVUwnVddu7YnnQSfRcpCvEcl9BL0rTy2SySoqDKErmMhaLKhGHClR4aHqLZbKHrBqdOnmL/nj0Mj4yyvLCAmU5c++XSBqaqks3kqNfrGLqGphv4QYTreqRzOepOSKdtI2k6QRAykM/w67/50Su2d//j337+k/QnHEEY4TotAi+gZ/dw7R5et03k2vheB9/p4PZayHIiSxJxCEIkDPM46h8MBULEKFIIIkgO1nGIL+nUOw49OyKSJTqdLpos0eq10XQTVddoNpsoqkK9XkeEEYd2T9B2BcvLyyi6lnSGRYwqQ0pXUUgOkCnDIAoDut0eLccBRcELfGI0QGJ0ZBQRQ+DbDBYMul0HNZUjQMULfTRdJ5vJ9BnC/haVxUyZLzmESlvGyeSzR9DptEFWMAxjC6lo2zZGv9AWceKbSYzvCRfc0HQc2yWdsiitbyAkmVwuSxDaeE4XJY6pV0uUy+tkCmkEIZlsDiHANExajSalSpW1tTVOnDhBcWgQEUM6nSFtpRgeLhKFATOzs1SrNdrtNo1mkzAKiSUJw0joIpvGxW67xdLyZbq9Np4fMLd7N0PDI+w5sB8hwcrSCseePYbjukzNTHPx4kUmJibZs2snke9x58/ccUX27t/f9Y+fvOf+zzFcGGdtocbEXIpCaoyVjXOIuMjE1CyVyjyZjMPyJYn1jQo33fQWjl+6i7HBWXruY8xZ11MqVTDiFOkBg2998xHe+ZpbefCeBzGHsjg9h7x1kMHxChMjRc6eOE6n3mbvoV1UazXqQcjyhUvsGL8aRVFpumW+88w9zHfnUcsl6ixx27V38N2j5xHjFf7q7z7HRuU4z3zvFA+dfIaPfuyzjOTTtG2Hu7/6POnM+9AO7iCnS6T0HhdfeD+njzSI3Ndw+Ob3cNtP/TRvfOv72Da6k86lNW7YfTtFCrzlttsIw2dpyhFBT+b02aO4YZ3vH/9P/NJ7/y9O1x7gFdMf4i8/9Q22XzfGR377IyxtXKLr2Wy/dj9vfevP8tOvvpPpKYjkgLse/ht+45O/zvv+xTd59uQ5Xvn6PySthrhZieriOhMTE+haCsMwefrpx3FdB8tKkVHyZAZmaG4ssu1lE+Tjw5h6gBsIUukUkiIw0ybrtfMERg8pZaE1d7G2WmJsZifHHr/IHT/7BgYGUpgpiVfe8CoOX3UbX/zWn+KZDmpWZ3Jogq4fkMmMUF1vIoIWqZxJEEiYqsLc7CHU/ACV5TOsrBxjz/adBOECqjpOxFkK2UkuLq/wwTs++SPbtz8WHehQkBQMcYSkCFzXQRIhUixhKkYSNBIIgiDsG/lkRBSgqyrIEloUIMkBqhah4KHgI2KXCJA1HS+MEIqMUFQCkZQxcRxjpgzi0MOMPMJaG7npYjdlHvr+8xQGd3DufImqYjHzslcye8vrmb7tp2B2H0F6BDUzxBt/7v10zDyLQciRCxUuNT1ufevb2H7NtYShTxR6qJZO4DiMDQ8T+R1azTLlSp0P/MpvEMpyIhnxbUTgEMoQkuiiZUWn3XI5e/oM999/P81uB9kwWF5YRAltWpU1hodGKWQLGOkEaZMxBzCyacx0jqv27efffOpj/NEfforVhTIri0sMZotEgcOFc+cRgUupvEYmnUOTICYiIIndFLGEIgkMVUmCBTpd6tUygefiuC5nzp3G8wL8QBAryYekCG0k18PvNhGSS722huTW8eprOKU1zrxwgieefIpnzy+wWLGptH2EJiFhJnztOCKQBWEcEAcxsqJxYbWEE0kMDQwwNjxAr9tlfbWM06wROQ6xCDCuII8UEvKGJEkIWRDLCmo/IjiSZJAViCWUODHHxjFIsZSwWZMQwf6DyIT9zt9m0lkUJlzpEGnLdLoZbS8kCKIQWVVw3RBJ7kuRhEKEkkxfEAhZQVI1JFXD1A2cTpfFpUtIQmCYaeRUnjAW/WlDjN11iIIYRZKQZSk5vEoSCgFdzyE7UAARIiToibjfuXOxNINCeoCqbROpKnany6kTp8noOvfd9Q1WL1+kXlmnWq8QBAGjI+NMjk9w6NAhKqUNyhvrmLrGzp07sW2by0vLmKbOs88+y/p6iT379tLu9pjbNsfU+BQLC5fQdIvi6ASSpDE0NEgcgSRgIJ9DUSTW1tZe8iKBkAVnzp3H8XxKK2sgIvK5NLEEg8NDGLkMe/fuoVze4LnjLyBJgmazSafTI5ZUdu3axfrKIvv27WNhY42njx4hm81iaCqaIjM9NUW722J5dQk/DPDjiFanyWAxz+jIIL12h5Smkc6l0FUFRQbXv7IhQFEUEbg9AqdL6HWIfB/f6+HbHXy7k3y/H/KzZdLud10TA2K8dQkhEQkJ1UwRxYJYQNRHLxJFqAp0vTZOJBHEMR3HZqI4hNxHPA7mshAGSAp4RGy0bOQ4IAolECqGkcJUNArZAq7dQ5VjsqaMIkV4ngNsNlTiJFgrFEiYLFQ6+Ei4QUQ2n8GwUiiqgWGaDBYK1GrV5F7SE8qTrCr4cbjVxImiiDDwkaVEPyziCN00SOfy+H5AHAs0Tcc0U9iuDQg0TUUQoagSURwk748iQlJA0SVQYqyshZlKzJMpK8fE1DbMTJri6Bhj45MEjkschDQqVRqVMufOnKLba+P0HGI/5PCBqxkoFOl1u3SbdSBG1TWmZqY5d/YUmirxiltuRpIUhJDQVRVdlSEO0BWFRq1Mq1lHxBJDE1NMTE0yPDbOjp276LV7zF+8xNLlCxh6TLW0hoh8OpUy86dfYPHiWdZXF6/YvlVMhaymMFCwSKeHiIWGrufQIhNNccnnZpA1lWo5SXUst2tkhxTkCCTXQ1VS/PYvfIJM1sYOJBTbYmhqnKMnj9MVi2imgq5ZDGcMUsKg01vlpuuuw+mssXvXPkJqZNQMJy48zVe/8RkuLjzCd4/+Z+qBTUGeoqOGRHHAWucUv/ebH8Bvp4i1CC9IcXF9mUx+B0pG4vnHTrN+4tO8/Iad3HfkW6hOTChs/LhCTh7kVT/zWXa+fDc3vHIb09tNtk9Pc9tPXs0rXv1eMtUsTtFgZekrdFc3yPRczBGDVkclDCrkRjPUnIs8deLz/PkXvsCuqTSH98zx6tuvgShGEiErS8usr4YEnTNk7D9Aap+iXK9Q9HIMDmznvmcsYtrEQYbv/uDvmJgcppCzQFdJqSYZ3cSTBYNaFjOlISshc/tuYuzahFQT+S1Cz0WVZEI/oNtq04sD9AwYqsFSZYHZq4bZM34dH//4x3FFE0NOg2TRKPVIpTwCxWW+tkSpusxgfpC54TlumruWqeF9CFnDNEJUWcNHwtaSQ2vPXYXIQdNzDGUHsZ1VVi7KmFaG8EcM7fqxKKBlWUZW1aT7FUtk83lkNRk7h3HifI4RZPIFbM8jjAWeotCLE1anJLJAjihK45HCFQahlkEVAbqIsBQN2YtRPB9dCAwhI7Vjzj+3iBwO8eefe4B/+Rdf5c/ufY73/Ycv8/GvP8aH/+k+/t19j/O9p49R92MWK20CzULLjzI6txctP8K23Qf4V//6D7n+tpvZf/gAz77wPJKusmvfPt74E7ewe1sRRIAuCx5+/AgD+Rx2p0k6ncZxuxB6yG6Pnt3dSoqD5CNpcmYHu/fs3dKI1pstbNcjlUmzsLDG8yfOkR0YJJ0voJsZ8gPDbJ/bTX6gwN79+1lcXGJx4SI/93Pv5uLFi5w8eYLrr78eXZE4sHcvzco6+ZxFp1UjDENczyb51PMh8pDjiG6zBpLPWmmFXq/HeqmKUC2KkzNkMzmmtk1B7BPYbYTbpltZwa40kPyQrKbRqZa5fOYE1fVV1jZsTl+s8tTpVZ4+u5oUhSJKaB994sdL97YQAi1qY8QOuXQGEUJ1o07QD3+QJei2OwS+9793s/43KyZ53gI5obm8ZEVh3KdoKFtFyGYhsmkW3HT3b0pnNq/NvwvDkKBPadnsFEcIhCwlPPJ+2IOiqci6hqyqSciQLPfHZipBGDI7O0sQJNIE27bJFQbwwwhF0fD9EMvKbDnvNcPA8TxyuRwyELoOzWqZgYECkqzSbXcIFRUhK0ncvST18XQp2m2Xcteh2ukxf+ECRhTQXFvELpdYXbjECy88j2Gq2K7NhflLdHsdBDEzs9MMDRbYu3cvI6Pj1Jot3vimN/Pq176eRrNFpVojEoKNcjXxAVSrTM9uJ5ct4Loutm0zNzdHuVxGVRNDcjqdZu/evfR6DqlUiunpafbt20cub2FoKsvLqxTzBeRYYHe7nD35AldffTWz23aiEhH4Cd3Adz0uXbiAaZo4vS6VSoU9e/awsrqErqookozTTVjwmxxfWZJQZJluu0W71QQgm02jSALiEJUoMT1fweV5XpKK12nj9noJk9z3EXFILML/YRLd5kTjf7RyuRwTExNMzGxneHwKSVaT+yIOgRikmGazRhAJMtlByrU22WyekaEhQt+hYKXYNz3DRC5HuVzF0nVy2TRSLAjjiHqntZWUqRo6uYxFIZen3Wzi+/6Lz1WWOHTT9Vx966288V13Uq40aPdCUDKkMgm/WFPlhNM8MIiVSZL+NjnMYf/+k2WZdrtNuVxOyFBhSK+XIN6y+SSiuNvtJgEpqRQg0W53cN3kPSkMk4aPZztbRkyzz5g2TR0JkklMBK7rks3nEimhlEhNZElifHwcy7KYmJig1+sxPTXC6OgQpdIartelWMwzOTXK9OQ4aUPH0jVe/YqbuebQPp559hiptEUqlSJjpdmE+3t+IvOIhcTM9m0oUszYyCjHjz+/JTG78cabMdMZXD9gZGSI+759Dxtrq3hOj9XlJCzoSi3VsJnaodOxFxgd24GZkjmzcAHTyOP5HVyvQyorsbwg0M0UfgS1ZoldexRuvOUgWmon59bW8HSVmv8YkVKhmJ+l3WpQr3RQNJVscYCys0ws65jaGLUVh/HJA/zrj32G1TUPKW4wMN2gk36c/3LvbyOnZVzzCNlcnYFikeJwhJRxefzxB8hbRVTNIKePITsKB152mFPzdcyhhzh/9NN88Z6vYVh7GFCyuE0DvzfNA4/9BLJ2LUJvEYk6YyMmqcEmI5M7+MUP38YFvsXnPv9uzp39KlX3KVy/zL/79J9wy6tm6DXyXL3/HfzTI7+OMaFzOXcPa4WL/M6dv0+6mcYcAt+Ked/tv8iokqe7/BXUJR8l8yX2zL2SsOvy9X/4L/zx7/2fNDoZlksuR554knK5zYVzy4yOzPCzb7sTT1dJawaO6uPGEZfOX2LhTJNGsMpDj97HiVPnGRkaJ53OkknnyWWLTE7MIqIMzbrG337mK/zaT32CD935HqZ29mie+0uc6gBB+DY0K0s6KyN1MuRSKo7bRs9qTM3tYXhiGy+//iayo2m6YUC+MICiaKAvYxkxbs/E7hjkdYXI7DI2aTE1cZiu7ZBNZ36ke/HHooAWQiRvtrKMnjITOoWmEiNhpCxU3UBWE32brpvIkkJeUdEdH5odhFfFwEa4TbKhTcptonZKeE5IFEpUS00q5SbnFmscPbnIvQ8/z7GFBl+49xk+9G/+jroxzJmyyxPn10mnxji090ZKy00++Gsfxg0iOj2bfD5PHIFupUFS6bXboOpomQxve9tbeetbf4IPfOA9zExOYJoae3aNc+N1u8mboEhw5y/9Kksrq6ytLPPqV72CtA5ut02vUUNIMqm0hfzSZAUhUI0011zzMsrlMqWNpHtXbzRYr9u0eyHz8/OMjo4xPDJGpVbj8sI8X/n61/ACn4nJSRRVIl9IM7ttmj/45Cc4cPVBclYa3+6wd+ccntMlCP1Ec6wohL5Lo1YlDgNq5Q1OnXyeTitBoJ09P8+ps5d4/OnnOHHyPKlMisCzCe0eotfG6zQJei1WludZXrhAr1Pl+aPPYigqzXaPCytdHn3uEpWuhC30rdf9f7YnYklnrdTECQRToyPoKTNhufaDDK60Bjr5P/S55VG41ZMTMX2uuegjrpJC+qXFNPBDrNVNLelLNaWbhXUkJMIYwphkQiBrSCiJXEPVkjcQJOJYQD8dEcBxHHK5HJ1Om+npSYrFYaIoIp1OJ2g3VUXVDfwwMWPqevLa2Lb9YkEiIkTocHn+IgMDg2SzWW6+7TZkK40fBLR7NooikTJSmFaalWqDjWaLpaUFus0WY9kUj9x/NxlZIWulcLotut0ujUaDgVye2alpnnj0MZ5/7hirq6s8/vjj3PKKV9PqOqyVqszt2sOBAwcIgojh4WEGiwVsp8u9992DqqrMzc31A4vmmZmZwTAMMpkMTz75JA8++CCZTIbz5y9SKBTodjuoctLtHxocYuHSZWQBowNFBnNZzpw+zeraBo7jsWfvLrLZLDvnZjFNg+HhYWrVMru2z+E6Nrlcjo2NdVzPplFLkHlBEGBZCc/XdV3y+XwSpBJHON0eowNFRByhKjKaemXffjeLuk1J3KaeefNg92JBqiCryT6TZXWrq/nStZlOmM/nGRsbY3Z2NjmA9R8LQBYg8HFdl1K5iSNUJM1kYWlpi7tM4DNkWQR+EhEcxzGSqhH4STpgHMOl+QXy+Tyddo9ut8vQ4ADZbDZpuIQhIoq5fP4Ce+Z2ctc3vwWqQqNtM79YwzSyaFqin9b7wSehn5ApLMvakjdsSjY2sXGb4SSbISpRFJHP5wmCYMtHkBTRyeseR8l9KuLESNloNOj1DymWZfUft7vF2Pc8b8tUmk5nCSORoD67bQxDY3CwwPbts1iWyey2SXbt3s72bTNMz4wzNDRIykhkgJ5jU9pYQxKgmil6dvKYjpPg+DZXPp9nfGoKSZKplTY49szRBL8ZhTzx6A+4fPESN950Czfd/Ep27NhJPj9ANl+g2e7SczyMVPp/+f78f1vZTIFAuBimxPj4JOtry2TyOrJpks6lOX/+eTQdeg6EQcT+fdP0eh2yhQG++q3/m/XlJp/4kw8TCQ+kDk8ceZ6x0YAd267iza/7aVqdNoMTo5SaHVY2GkxOTpJKw8NPHGVul8o77nwfR47ez3PHH2HFfoHh7UVOLTyB4wW0nBKhK1HMZqk0mklnVqhctf9adkztZqQwwuGX7eN1r9pGO3g58u5/yzve/Zccu/gNXjh1L8sL9/HU9x5i2673IrCRYo2ckiYdO8hBDqF08Nwxtl33FqbzN9OSTlGyq/zg2AIfeN9HeOPrb6PdLXHv3d+m4a9TWS3i6ss8ufolPvSxD/NLH/plmgtVNBn++cHv0xDw8InjXO52WVzJ87UvfJvJyQkm8in+4T98lv/4lXfR7FXotWTedNsdXHjmIhefPA0Nn17gETkeczfvwY2SyPmZ0X3UVuo0u+sUi5NYloWumxhGmigSpPUsTtfA7WUwQji0+xqWuw0qjQJe8xJ6K8CKHkRoAaY8xL1fv5exfJ6X3XgtjV4Fm5iNVhcndLCjHj0vkXIZRopu9xyhV0KSBtk1+zIyasRG20eIiFyuQCwkivncj3QvXnkHFgnGTkgqsmEgZJkoDtF0A0WNthK9ZFnGkGSIJWI/olJq8PzJM8wvlfj+5RLrrSatRptMpGIYGooa8wvvfgth5DM9NYoqyRw5s8JPvvEOVo+f5u4jT3NsvkJ+aBRDM7hq/26uv/YwLcnh8qUljGKRjV6F/XPbaVY3KGTS6AqEnosfJsYSScT4jsPM7A7ylsbO2SnK5Q0aDZ28roDd4/HMSTxb4zc//sf87p2vxtIVquUKQ8TIg0MMjgyj5gcI48TJriIhEAhJRkSCHdt381u/9Vs8eO+9lEsCz49Y3WjQqtXIpmBjZYFQKJSqTa6d3cZrb7+dSr3GNYdfjpVKcfzkcSRJRygSTuCTMQ1OHHsK/C5WxqDRbnH1gYPMX15gb75A17Nx2nVMOcLr2jz33HOUa110q0i11mB9ZY33vPVN4HWxW12IBYHvUqps8NRTx7m0vMHwUIaR4QGMKERFxxMG337kBcptHxcZRUnSgP5basSmCWdzeeiEkkGjvILWzCN6FXyjQNrQMQyDsG+4vJIrjBLmi6IoyKIfXqDIxFHC9w6DpEjWNIUojJNmu0ioG5qWpFpudqTjONwykYZxEhqkmH2ko6RtFdqRSCJ5NU1LsDJ9io3flzhJskoYCYLAQdZU3CBkbHwEx/W5fHmDsfEhlpeXEx5nJuEpR6GfcI57Nooq0IwUse8mPGiRmGSCwKVTq6LqBrGsMLN7L6eOHsGI4z7Fw0RSNEaGx5K45dhno93C93pMFQconTtDamyUlAjJTUxQXy8xmM2wtrrMxPgoiqoiKQp3vP0dnDt3jlK9w6HrbuKrn/8c+/buZGFxgZ07dxJHDqo6RTab5vjx44yNjVEsFtm7dy+nTp0iCAKy+QJXXXUVigxLS0tce+3LWVy8hOc7jBWH8X0PzRAMjo9SbzVxu10mJiYYGBxC0ERoacxUhnanzNNPPoZAppBJMz0+gut5tJu1fix4ROR7bJudxvFcHMeh3e5iqgqGqqEpCrl0hkovQhYytY0yuiwS33Po/0921//aJUniJaZWZatoZvNQJyWd5ljum7UhQYRKfchiHG4ZtKMoOfQZhkEQxiBgYnIa13VZXlpAiQUyCq6IkrRSEnPfRqXGgatfxvrKCm7kIbsegQF+LaQTxHQ8jyBMOrj1ao3BwSK5wiCO66PoOpZh4skSbcfeCtpSJRnRtfn65/+W/Pg4XuhBEHBhfh632+PqAzPJ/RYaREFArVKl2Oc+dzodiqMjeK6HLMtbndbkMBxtFekySZfYsiwajQaFQoG0lWV+fp44jlHVJJzLtl1C10HXdTqdDrppvZgwGwV0Wk4SN59NUyolqaD5fB5Z1Qlj6HQ6CUkqThILNzbKWySqMPQRsoKsGBCHuD2XbreN6/p0F0rYfoggwvPirQNOFMRkMhnGx8dByFQbdVA1CoUst9x8Cw9990GUwGXx/EnOnzqObqTI5Ar0er3kMNSnCL20GP/fvbqtBHG2Wlpk6qBA2ZBxOiWqrQ6SFBF4PaJQoKsFdCOLlcljZVPMTryHI8/8BROZHYwenKUmSlw86dMKA6a2n+HxE+s89+SzaDskXvOGN/KL7/1lzp85Rqn8NGMFi4FZmYyZ5zvPPISh2chBjo6vMCRH3HvfU9x2xy24tTxZAe0NhcGBWYrkaSw1cHoyp7wXyExIPPCNb/Lc0Qd4+fVv4Xf/5j4mMn9PaSnk53/17bzjjl/ga5//Nj/7gX/PjW/ykOw0pd5rSalnMNQ/x1TeiFQoMWUOMT23j117v4hpaVB4HR/9tffz0++cpt3uEnXyzN6R5uT5BeLaTlZKPT5Qexcffe+/wmtA0JU4W32a+S+6/NFHPkYvH3Ls2X/ixqsmyQwP0a2togN/9Sf3sPbLTzM2/AbSqQyf/fRfcfL4KZxyg/H0IPPNGlIuQJUN9h6a5ZlnnuXwyA5uuGEHA+kxZmbHUFSd6W3bsR2P+bV5VKnFRz7yKRrVCwTWNvRMDqWnsv3Q7/H0D75EoVekuLfOiDaK7Ye4YZfYiKlVVpka3UEUw1p1HjlQ8G0TaVRH8mK8pk2p8xSZ9HW4YcTl6jx+Cxp+TKl7huzQAFa/QfSjWj8WHWjDMIgQaJqBouqoqk4sJCRVQU+ZoMgIOeHoGorKyeeO8w93P8x3nr3Io/MNZDmHFGUZyE/TShVRpuZQp3fy+a8+wEozZKHcIUjl2LN/H6cunOPUhXNcc83V7N87R9TrUF2t4PoOxfEC++cmedtP3s5YocDowACdVgNZEtSqJULPRUagqxqqLBFHASIMk7jKlIVnO2RSCRnA1E0szWCgkMHUVfxQ0Gq1MA2NOI6pVxuk0lls3yeKI0BOyAb9IioSSRjM5hjf9xNdXtLJcFBkmVtuuA7T0Lj7nvsZGhnFSqep1+uMjIzwgx/8gPX1NYrFAYpDg9TrdRzHSWKHpye5fPE8fuAxkM8RxzFDQ0NEUUS31UJTJExdQ1V1FheXME2L5aV1Ls4vcMsNN+B3m7SbZerVVaTQo12v0mw2WVwp8+TT57h4qcZ3v/cMlWqT3MAATz93Ei+W6QUJrUMS/9+csDIhqvC5bd8Mv/2Lb8MlRWVsAAAgAElEQVTtVDEUlZRuJN+/wvpnYKsTF29iEOMX5RibRcXm9cM/96Kk46VdOuCHJB0v/XMrTAKxFTAUI7akHS+Nft/8nb7vU6/XWVlZYWVlBcuy6Ha7tNvtLQf1ZtcxDBMCgdEP+9gcTedyOXRNQVUEdreNYRj0bJu5XTsTuURfv60qEjJJWIxlmrRsj1BSECTkidDpsX55nnv++Ws89MD9xEGI7/tJApwQhIFHZWOd1dVVhkfHGR4bp95osW1uB6VShaHhETRVT4qpep18Ps8b3vAGcrncFuUim81i9FFmm/v9qv0H6bR7W3HJ3a6NpqggRaSzGXQrxWCxSKPZotu1sUyDSGgsr28wMjTESHGQqYlJAOxul3TKYHpiErvTptVqJQmZ/aj0kZERpqamGBgYwHVdOp0OnudtURrSloWmysRh4h24kkuSxEsu6Ye6zj8cOqVsXWzKdpSkqaHrOpqmbaWCRlFEBHRsmwjQUykGBwcTlFo/GQ8gFCGe7+AFEc++cBIhq6imhSfJ1LodyvUm9UYH3UrTtR2iKGZiZAzHcRgfHyeIBFYqg6HpuK77QwQMISfYONWQWN9I6ENCFgRRQK+XkDF810noM1IigdosSj3P27rXNuO8N++DTYMhsFVMbxI8Op3OD3WlN6/NkBVZljFNc0uqt0n7CMMQ13XJZDLYtk0YhpRKJaIownXdrZjkjY0NlpaWsKwMMzPbsKwMgRfSbXVZXVlnbbVEs93B8ULMdIF0fjAJfYmT94LkkJNMcPL5PKurq9RrFUaKQxw8dC1XHTzEufNn8ZwemgSaJJFNpcjnMoRhEpEdx7yY/nsFl+P02NhoE0sRttdGjw0O7t1FJMk4nsvg4CAiVnF9CSEpnDl5ip7dYeFSCLKKpAskS8aObfbvP0B+ME0uNc1Vh+bYvnOKKBI4jseRJ7/LqZMvkEkPoKsD6CmVw1e/guxAgXqjgSxJ6KkYAnjlq69mY90jCDQMPUQRJsOFCWobNVqVBrlUDkkXeGqX795zH2eXlvjPf/lXzAqobLSwchp6Bhabl1hzK9zx8+8hiCJUSUWWn6C1WieIvooWGmiayje+9n8ws+cAUWYPf/U393JpeZGP//6vsriwThBXMGUZrzGEGwc0Kg5SkOf5F47yjve+BT1rIVAxEPzbj/0Or73hdZyfX+bC4iqZTIbBQo60pbOwtEhe3sW2sWtQZJfYUjmzeI6dV+2k6bXJoDK7dxc9u01KN/iFX7yTxbVFJqyd5NMWPafH2toqPbtNr9dho7RGr+MCMo8//iRmdoBOV2VYf4Sg+WWU1B5K6z9Jx0uTMQc49sh3OXbiHGNTE0QSyHKMb/eIiAlln4yWRVcKCWTCStFtCYRoU2ssoJkyHd/l0K6byGbHsXLKFu3nR7l+LDrQvlBR1CRVMHDsFztyvkQsVPS0ievZPPXAk6y2As6tVnj6zCojIyMYuTTrtQozOyZYWFhitGgSOg3SRpb89A5Wai1yxRzlRodiscALJ44wPT7MSD7Fh97/DpqtDuuVGvPnzjGcyTEyMcTg4CB2o8bIcJ7ZybFkHCYrhIGDpip4Toc4SpjFsgx+t4UuyZiaQrtbZXqowGK7zv6De5k9dgw3iim1sthhgBP4PPrIw7zzne/CcRwM3QK3B5JCKATICpEkI8cCTVbQTJPJ8R2cu3CexaUNclaR6toaairP9x56lJ+/8624dhNDEjz3wikU02Th4gVGx6d44pEneM1tN/LU06dJD69gpVXGJyY4fuxJJqa20W7YjI/nqdVK5HKDaGqi+UtXygl3W5dQtQwnTpyjVCoxkrewgKHhJHgjZ6qcO3OShx97loW1BudWO6w2OgxU20Sex9DUPr7y7af5yj3PURMKIRIqMarQCVEBiQgdFYdEIwmaEHT9EMNII8sqhrPOn37gN0j7PRpqGjn0aXYhm0nh9FzMXPaK7l0hBIKEpqFFCqGIUSQQsZxwcYXUv0ASAhEl/NpYyBCDQEWV5AQhpkhEUYwiBJ4EsiRQQoGIQchJd1lE9E2JUj8CXIYoeR6RpCL6KYgCiGKIQx8ReXTbHfbu3c+5pTq+6zKQTdFtlIizg/iBg6qBICBlpeg0koTHQjYHQiTdJxR01UBVBesbi0zO7GK1VKYbxAg/QJFjDFnFkBJUpJBkcqkMHcdBkSHs+TjNJaZ2TjO4bZLU8CgvHD3C1PZpVFUlZWXIFvKglllfW2XfwYPk83ki36PSdLhq3yGalWUarSbNUpmRkRFa3Q6PP3GEwkCeC5cusnvnXqLYI5fP0OnatFs9TEPl4qWzZPM5/DCg0+myfXqGdrtJPpsh9HwyqQzrlTKR66CrJrGsY3sug7ksi8tL1CtNrrv+WmamJnjh+ZMouk2310D4MmHQY25ujlarxfrqGiPFITrtNo4XopsWcZRMFjTNQIpCQtdGlzWyhdQV3bcAuqwglH5HRpKTEKS+ph0glvtTD03f2rvyFmkDYsUknclsmQtt28b3IiRdpby+gdvukjUtRrZPYWgm6yv/lbk3D7LrrO+8P8/Zz923XtWt1tLaJcuWvBs7GAwYswQSIMlkAZIwMzUhAbJAMpn3HZhMqGTmTSUzyUwYEsKbwJsBwhZjYjav2OBNtiTL2tVqtXq93X33c8/+nPePc7ttz0zVW1NFveJUdUlVveiq73Pu/T2/5/v7fBZQkhASiRAJUteIiVARXK0vphEPP6RarhArCQsrq+SyBS7PrTA1MYalaQyXh1hZXGF0dJgwSoj8gFKhSsttYSomvqKSyARVCKSikFUNZBSgaCptJ2TfjiqGXcALA+J+A5noCAz8foiSVZFBSK++TqZSpNPrpnlvoYBQ8KKIaq2Mt9ogCsMU65hY2NkM3W6XTNHAzhUphwm9RiuNfGgCK1ek2WymxXTYxQnDtGAOAjTVoNPu02n3GR0Zp9ftUl9eRWgWQeiho1AsDKENBqQ8t4Pv9QjChEwmg51V0K2QKJGEYUQS6Hihl9IRLJNIbsR0QrLZLK3GOnEcb24YFhYWEEraVdZVqNomvSDCMGx8TJLERsFHJgGaruI6vXS5JNduADb0YpTEQFMt3GAdXdN44eSz5Kxp1twTdLsrlJQKOHVuOnCYmw7cS1GVnHzhHzH1hCvnXsDYdz39jsPM6ZCjNx7k9PlVXn9PjVJVobLlHmrFEn/xO1/m7e++Ds2c4PzcHK1LAQfe/XZKos3fnH+BPDkCxWO+c5UdE0fJree5culFtBGFc88sMB2vYckMZxZOs+/Q3az31litn+D5K8+ycznhmR+sMTVcobESUNkSkC8V+eETx/j5f343j37hz/nAh38GqbicfiTPaC2mTY0d+0P+9o//hs9952/5s+Zfk68c4aEHH0UE8M53HeXilef5+Cc+xKf/6/cYUffSOnKGU88YhNlZes0k5Z7rEpPUKvs7v/EeZAx3vXOc4z9sICZnKXbaPN0+wfYd+9g6FdI4N8WTD32PpXd+l+nbbmfuzDLdoRZvffPr+MQ//i0jL2ZoL68hssf4+z/7NR78/pOc1R5ionkvW26ZoFKp4vdDRsqjTAztYLTR5+6bb8OoKZj9b/Lgp9/KzT+p0Vm/nlve/jfMtP4JLfExhkqsuI9g62UyiSQ28kTeOkgT3QsYqwxh6jXU+DIjIzcjvZ349nm8TkTSytHOX4VWhS2165lxH0aXZY6Wf7Ql749FAW0Y5svM2lyefr+PoesIEWCoKkqrTfP0DP/w/TOsOQGdIMYolAgUjVypQiH0EUIwNTWF6/osLy+SH8ujKQlTW8fZMlZDUwWB73Pj0aPpRP3iHONjI+RzGQp5my1VG7e/zsqCx+mTJ5iamqLdbnPudJM7734jhm6luxehY2WyrK9dxQ99RodHMC2b9eV1sqZJp+vSnJtn9sI5dFUho+gU1YTl7joXZ2wO33AH73rnO9AUE5ktECHw1Ay6bpJEIbHvYlkGoR8QAFLPoJoaP/9z/4wnn/wBX/7yA6ys+rS6M/zWL76WSlZnddUhDuHc+UvMzDZ4x30/QcIiu3buptFocMMNN3Ds1DGef+4FDowNMbF1G25f8viTz/H6u19Lu/Uit998I2cvXaFoWcgkwrBzfOuRJzj20gwXZpYYqY3T6C6zMHuVr373GX67vkoua/LkM2f46uOXmNo6gaEa5Atljp2dxfUinvjEZ9LOrJJDJC4qEGMSKQpqoiCIsGOXUFFRiTCjACtS2FWS/OrPvp6fuu0AXr+NWbZpuj66UkS1s+SLZQKRkMmZRPxo3fb/u9dGd1gIQUiIqmppBGezC/wy6zmO45TOkbrm0zf5RCI0FSEFqhwcmUcSEad4MKkkKBrEYcq2TVQ1ZWYLEEmKtdu8lHSYMW1PJ8jQxev1KBRyeN0mMxfPUR7ejh9aaELihiHN1jrVapVer4dlZej3XSwzQxAESBTiOIRkgM4TAk1RGK5YdDtNNN3iuptv5MyJF+k1VkAKKtl8upF0epSLOTJhhnq7yXqnxUjOotZz6a+12VkbZ8vIEEQhruMSxTFDoyMUi0XK5TJnTp3CMk1UBLphcersObIGHDqwj+dW11ILXBTxhjfew6lTJ9myZQzf7+P7IVEImUyOKIrI5/LMLzQplauEYcTWrVO43QZR3yE/VCHJZpm/Msfa2hq33XYbVy6dJpsYCJnQ7TpMToyTscu8dPoch/Zt46ab9jNzeZ5EQqGYgV7Miy++yNDQELt372b20gxRGBIFIUkcUh0bpb62ii10Wo5PuVbF6XQx1FfGJ67NZWTyCEUHRUHVjZQOg9g8LdEsO83WKwJkWqyGgZc+bpEgZJqZz+fz2LaN4zg0m02qo8MMDw8z5/Rp+328izMUqmUy1RJuu00yuF8EAhKZ5vYHm0gzk2VscpKXzpxhod5gbMxkele6QUkAYWhM7tjNemsdU9VQrDItLyLIaZiZhIJI2f6mmbL8kySm3+sgo5iCrZPoWWYW1hkZqqIoHlIYRK5HlAT03RDUiHpzha3FAqaRvubHCKIEur0+xVBgGBZCCHq93mZnWQjB1ctzDG+dxCoXuHJxJu3Wxunp0oZSPJvJ0+l0uDq3QLGUJ0nSk8lisYgbhJhWhlarxfz8PPl8nn4Y0ev1Ma20gyx1HRFJqoUsfgiO5wz01S4dx8H3wk1UnaqqRDKdd/B9n7W1NWq1GiMjI5w5cwZFJOQsnZylpxZFLyLQc5QnRug7LqrngN8mjBOi0EMqCul8sgLi2hXQ2XzE6JbdVEoFnj/1NGM5DRnm+eaXvs8dd08SWB2W2hG7t02RFTYnL51h1+QomDnirkrO3s96p4GiBtxx12vouQusLlzi2SeytPs6zTM/JGfs48a7Kyw2G0wX8pTHh6idqrDYfY6nX1wBbBZ7S3jnugwV83z7xa+QrU4xnKlx9sxlpnccwJZd1iwdVSoYvqRzzmT+asK9v1qiaEYsz82zuFbn3/7rD/HVb3yVG27Ruf/hRR4/9RTf+P4j3LhH8sBT3+Anf/pBikeO8CtvOEDHu46L60vsvDnDH3zkP/CXf/ZZhmqC6w/vZ6hm022VODtzire9/Q4e+v5nGL5d0haXEU4OGfpICWEsiROJjkniBUgt4YVnFjEiaF7VOTxyhHe86w18/Pf/LT/9wbfxgX+5m3/3O7P86Wc/ytoDXY5cP8rZSzGPPlzmlz9yH3/1ia8xOZrnwWOn+em3vZFLn1UJxiPe8fPvJ44WyRcsBAaK0OiGPSa2jxGIkLJu8uAPvsLo+DQf+vWLfOjjc+zfuZ/Tx57nSPUNDI8UOH61zcmlNWqRiWHncOtnSMIM122pUOlvRYu6BInJhYvPICNQEpVD23+CvJane9ljzVphdWWZvbtvolbJsXr5sR/pWvyxKKARKtFgkIU4QqCgqTp+7JPEAU6jx/0PPMSlRQfMLFa+gO+7tNvtwZGzSa/Xw3V9xke3EPoBqytrVKtZ1urLbN9SRiqSHdt3E8cx83NXyFgGTqfL4vw8QolJ4hhFhdGhYa4/dB0AzWaT9fVVVldXydg5tpZKrK+vM57NoxkZysNjSBLWFuexLRPDNCiUKjz66KPs2DLM6dOnyWQsKuU8v/G2d3PvXYepVEosr7VQEhjeUcK0s6hKBpAIVSDjgMB3URNJGEVoZjqQtGfXTi5dOEe5WGJmZh0Ug7GxETTD5LpDB7h04QyTExM8/ex54kjQajQpl0ZRVYV2u43juIwOKbiuy9LyCnFkYGbKXJlbYmKowmq9zuylGXbs2EZimFyYPcuZkydZml3BaXRY9CSq3seNFHqxyhPHZ1ASyfxqH103mb+6SNFScaOYSNGQStp1VUhI4pBINUkSOYDdhwhNJQk9ZNynHEsmqhZ7dkywt1jj/R/4BXQlIg4bhGqEgk6+UCBSFBQj1dkqStr1Ul8hPbgW10bxnEoKBvGJRCLgVQX0RlGSiibY/LyiKMg0i/FyjEMZiCzYMBHGCKmkPzcBoQqIYwRJqqffiIPwclYzSRJkFJHEEYmMiAfiC1NXMSybVmMdO1PA6bXw3ABDtyCRmIZNp9HEMAziJH18RsYmDgPUAXdPJEAcoduCUqXM5M6dLDhtEhQc16VqFdB1DTURGJkMHd/HiWP8RLLabBEGMVcvz7C4tkasG5QqVaamd20endu2TX11mekdu+h2u5SrQ+QyBp31JZrtLpXhMdqNJSbGJ/n0pz/NkSPXU6mWUIWG1klxZEtLS4yMDJEvZNlubMfzfaqVIWzbRgRp1jWMI7qdHqVSiXy5xOLiMju2T3P+9EsUSmWmtkzS662RLWTpORpBEHDxwjlUvUClUsNzuiiKwuTkJK7rcv78eQrZHLGWaph7vR6N1jqWZVFfWqVWG+fk6TmGigb5bAGn3/v/caX+z5eiaqDoKJqKZliDLrSyOVSo6OmbnqIyIPRIYqkiZTK4l9mkw2wUiWlmNzX56YaB67r4vk8QBKnpT03pF0EQpCczaGmsa9BAiWTM6bNnKZfLLK2uURseZebKFSwrQ7ZQIEJhab1JGMaohTyhVIl1A0PLQhxBIpBCYplWms9WDMw4IYlCEmL6UUzi+Fi5ED/SIFBQFUBRkIMhXMO0kYNoR+IHJHFMNIhhvDKJtSF/2Yg0tNcbVMbHkIpAM400P62rm8POmqbh99O4iW2nJt04Sgvd3sbJq2VhmiZeFNHt9lAGrxGOI9F0BU8KRBzh9Rwc30NKmebAPQ/P6RPHCdErZDCZTIZsNkun00mlLaUSly9fTilHhsZIrUrgpgQmRROodo5ONxWxKFGYFspCf1XE7FpHOBrNdUrVDI11h163yUog6DZa5EydrVumWXCOs9bo8cyZFX7qF0osfd/lja97LYvLF5HdgHxOoSt9srkKDz/6DHe9dj+Nep/3/fIN/PCZJ5l7zuHimUt0/T533HErUoDr9llbbtPurdH3E3odiWVHWMRkLRuvG2CXI2rVKp3OGvv3XseT336SYGyMol2lUh5l6ECR8R2T/PDqXxDZHpHM8oef/DB/8LFPEGsad77+MHHHJxAhP/Hm2/jMA1/nyZOPMlzYxemTX+HZkzPs37+T8kSOSPPJV6ucfv45igUTP+jT6+r0eh1OHFvirW/eQxQNYlqmwFtLiCOJomiDTaskDiJAoJvgdhNw4Gc/+MtsG9/K2NYpfu/jH2f3DSMIdRYl/DD96I9p8BiefxsvXn6AjP0ujMSkaGdR9CyTO7fz6PEH2LZtmpMnGlw58BKKcBFCRREma6sN6u0u2YKDUHOY1hClwi08+r2/5Wc+sJ9icSsRcP/3HuCfvvUQr7n99ey6fYq8nUfxXPzIQcmbrK541KYrLM3UiZKYYqHGbP04fmM7uaJNebvN/NoqZrHE8ioMZYe4+cbXUV85yfCOn/iRrsUfiwI6JkHR0xcYp91B1w0imaDoBrLl8NE//G+cWmwRWwXwelQEeG6UZjkbPawMTE5MEYYx7XaXdrtLGLrUSkVUYVAqVpm5dIEbr08L4NOnTmGaKvl8nlKxiJ6oFIpFhoaGEFJw6uQJ7rzzTi6eP0cul0NTVGrVKjKMGBkeJuj3yWWz6QCZqlKqVCF0CeOIam2ESIJlGOzcuZP3vu61dJyI//Dnn+G667ZSGqvRW2+iaQb9ThstjLByoBomkVSIowAtComTkCjyUXUbKSW6knD7LUf41H/7W8xMjk6zzlrH4xt/8feMjQ4Tiz5v+6WfIVsYwu00GRmt0Gp12L5tN3/6n/6K8alJVASO57C0sswzPzzH1YbHrUcPMz93FRG5zF65RDZfIGq4PPDt7/LQ8/MgTAr5cebnZ5gar9LuKfhawlOnVwmDHrZVZqhaYe7qHOtSA6GSKDLthIoYkoRYAUMoGLHPRNZn/54p/s37foYkDijkbWIry+hYDc/t4UkPMoIg0ohaFsIwUy62ohCJPJplI1QbKXxU1UA1r+1R+CtzxzAYhJQJcRwNiBrK5mCgPhAu6KaexjuEIB5EV4SqoCZpdEk1DJIoVfImSVpEh/EA05UkCKmkXTyS9PMbA14yQiYv4/CSwCdn6fSaTTKmgmGamJqCMCy6uoGdLyCIMPQMoOC5bVzXxXH6ZHN5wjhGRgFuEpK1rVR4IxN6rSZmPk+jvkhhZIqpndM0Fq4QNDsQ+HS6LfK5IkksCKOQ0WKOIGfRcl2uNFvYlo47cw7FytFprFOr1QjigIWFBcrlMlEUcWD3XtzAp1gsktFNTr10nPFqjWeffwYZxezdPs5aIx3k832XOM5QKOa5OrdMkqTKYkWVLCxcJZ8rE8cJuaxF4EeEaChmjp6fHqW31htprnGlSSuvMzo+xlp9lbnZAEX42JUiQ6M16surqSREVxAUcT2HSnWYTCbDmTNn2LVzGmJJfWUFt+dQKRdp910ikbBlfJirqw4TE2WiIGZ5bZ184dqRDAB0O4du2oiBECQebJCkHNy/qgZCQVUSZBgBCkEcDQZeQzQhNnP0kCLuTNNMYzG5HMNbxmg2m/RaLRpr6+SzOcqVGsMjY8RxzMLVBdy+g6YrhIOiPU4kmq6jmxY51SRSDezKGHEi6EgbTU3QDRvF0ujrNpFIkElqUVSTBG3Q1dc0gaalm2xDVUA1cfsdLl5doZDP0uwGqEIln9XRtIChWEAUUsqX0GwT3TBIkgTP91ENk47TR9GtNKIixWZkZWPjECUS27RorTco1CpUh2rUF5YIoggff/CYNNp9b3B/QhQHqIpOLpdjZW2VbC5Pt+egq6kAKQxjZOBj2zZxHNPtdpmYHCcROidOnWN0uDwQ2QQQR2iKiqoqRAMqiKZphGGI46Tq8Ha7zaVLlzZJIwVTsO/gAR5+5Am04jCxEuP6YbpJlzEoKkJoJHGEMjjo2piZuJZFdCE3hGK/yJFD7+PMyWfZf+sRTj67wCf/+H08e/xRPLeJrZcpFz3+4N/8gFvfLfDV62l5DSZH93D9jgM8cGyFnq+jFFXUXJXR0T08+ew/8v1nFqkEKkP5Md74loO8eOIiZsek22vy+x//13z16UdZvlynE7VRyj0moyxONmR9AayKTdCFjD2CoZbZtu0GHpm5QKnX5pHnv8Pt2+5kuDLMvtZ9nNO+Rqi3+d2PfAIttIjNiOUFm607dZZWfWaaV1hcW8QayfHNcy9ww8gBfN1m3l3hwC0mDz7W5T/+H7+LmrMRiUDiEAYlqkWdR+4/y8zMefKTMdXsATITL9FfyaELHVQFJw5AKAhVEBNRGoHGZVAT+On3vpu9u8ZYX6szfeseZk/M8fkvPsDXf/jvmRy5Azt7O7Mnrmf18nk+8/E/QuTbFN65hc985Qs04n+it3yQ3Xs1bovfxHMXvsdbbn8PUQgvnjzByMgYEyMTVEa2cGDvdoglQ7XXcvjWP+TqylXe+LptPHTpO4SmhzWpcc55nlGnzORImbAV04kditki+YkiqtvhbP8lhoaGOP7YJXYf1egGKr/4M7/E3NljVA8e4pFjGbZXDlMaLvD4Iw+zZUKyuv6jbVpc+yksQNOMAe4r3Y1ns9m0O6drZAyblg9dI0cUpmzX9foKvudRLpXIZbOoqsri4iJhGHL1yhyu0ycOJa1Wh5lLs1y8OEMpX+Kxxx7j0qVLHDx4kBuuv55qJUVyjY+PMzE2gW1laLdaVMplLs/MkBlMZXc6HXq93iaySFHA7awhIhc1ebl7kiQJvh9y4403Ua1W2T41SSIkqq7w3LPH8UKNMJJoxsCkqGqoioLX6+I5PZJEoIkUIXblymU6rSadVoN+r4NtmywvLlAuF/GjAFXTaLR6LCy3kWGft913D43GMtmsxdGjN7Br5zT3f+3rqf1NTX/muXPnGBoa4t5776NQKCIRNFotFpaWmZ27QhhHzC8u8Z1vf5dvfuM7/PLdB/nUB9/Cu/fo3Hl4J/WVOqpqEBLQ6/YxFJVus8HC0jJmrkCk54hIuc6CVAISKQqhoiH8DjUbvvhf/pDP/NHvUN45wfh1+8nsnKRYreDG4AkDKzdCPlOlaOXJqzZ5M0sgfHz6ZHJpLlqoCspAYPI/Duddi2vj+d/o3MGr32heOTC48fUboob/1TDhy39/+bh0Y0jqlZi7jT9feW0MP8VhiEwims0mwSDi5Hl9llcWMQwDwzBod1MVteu6hGFIEASbKK9sNlV0bzB/XznMaJomIMlkMkR+wNDQMKMTW1K1axSmBUIcY5sWhqaQhB6mpiIUFS+WOF5KVZgc37JZgExPT+P7/ibqy3EcxsfH0XWdfD7P6Og4SysrTE/v5vDhG7hw4SLdbpfp6Wmq1Sq+73P+/Hm2bt26WciFYUipVNpUK/v+wGqay1MolcgXqwRBwNDQEJ1OB1VRkFJyafZSWuy02zSbTQwrLSzTgiSmUqngOE6a0Y5T1Xy5XObChQvMzs6Sy+UolYpIKZnYOkmpVML3PeI4xDAMVM3AzuZod65tB1rTNOuBIHoAACAASURBVFRNT59n3cC2bSw7i53NkMlk0E1jcw1sfLxy4HXj/gvDcHNoc2PoWQhBPp+nWCwiBqzywPXSzqeuUy6n6LmN9bVxD6SPJe32WxmbKJJYhTJWrkiiG6hmDtWwkZqOHwsCKQgGnOgwDAk8H9/t47rpkCCDeySOgkFkSrC61mBufon6usNyo4MXxbiuj+cGWFYGXTNfhfdTVRXPSx97GIavYrL3+6laOI5jMpkM9YUl3J6DaZrYuezme8ZG7njj/tygB238Dg3D2DQa5nK5gcSnC0m6diHtJq8sLXLu3DmiJP19maaJ4zgYhrH5vGw8Zxsxk1arxfr6OsAmKWVjqPXxx59AGBl6gYJmF9A0Aw3QFEDRiJP/OSL3skjn2lxuP0I13NRKuvt6Xjh+klhoFMo5VldXIYGsZbJt5zS1yghOr4wbzxPEPpXiDmw9h5QKUpFcd+Ne3NChVCoRhjG9Ltx05E4qpTKzV2fIF7L4Xg8/cHn8yUdx2wmWrRLjEcUwXNyOoRl02qCKPLMz83R7Ee1Gl37oI0SCbUnm12fw+susrF+iH0qk6vOv/vgtSEdBSBNFUVm82sNRW4zs2MLK8iqaDYtXe1x84Rhqp4UnXaavm2RxzqdowzOnZ+m3XHRLR9NjEnyymQx/9am/pNWI6Dgwd7nDza8ZAxEOTiUHw+gChArocPNrDkGiYxk5rKxGv9eiWDbRbYXth3McPHw3vZZF0B3m9qM/xZZahQ++/9cZKetErYjdY3v5rY+9B0O38fo+jWCNRx89zd1vf+MAV9rixhtvZtvUDg7u38PQUJ4rV85iaio794xy553v5f2/9OcYhk9mKI9pZlhrBqytLyL0gIiAbr+FFzjEQZd8zsTSfMJsRCdYZ8vYdnzP4Y6fGOG/f+GTbB0pMZIrkM2U+NivfxhFDbEyCaoqEOaPlgP946HyXp/9eLlSw/VDTNum3XPQTAu361CSGv/+iw8ymi0hUVlfXSOKwM5k6LsucjC9PzY6TBz5TEyMY2cMhkdqjI0UOXLkOubnLuH6Htt3TbNv3z4UQvbu3UupVELXTL785S+xc+skCJ3Tp89y/uwsuiXoB3Dh9Aylapkduw9jWgaKpqeWKd8jDvrEQpAEAXEYoiQJYdBHUw1Ghiwqk+PUV1tcubLA5XqTB7/1A5588jnmr1xleX6eg9ftR0YBmkioL85j6QkijgiDLk899jinjp+g4zb571/4e5567gSNtsPDDz9HvZHm8pbX17h4eZH3v/u1dL0GuewIpy8ssm10mEKtxP1ffYBMOQeaQa1Y5etf/xpveP0bsDMZHn3sSQw7R7fZ4NzFy7x06hIf/fAHObJ/Hzdct5Pf/NB7ufWum9m5fw+vued1/MK9d/CTrz3K5/7hfohDSrn8gHObR9cNOp0GlaxNp99Dy0AUOmiBixZ5/MkH3sl/+d2f5Vd+9o3YwxUiO4tVGybSdCQCdB3NMkhEqvo1bAsvjgkiH2FoKetY0VEzWRItPaJFUwj9gERXKGy98drpkP/uP398szhWdVSZ5o8TJAjBIFeBogh0TcMyTRI5oAWQKr0FGkJoCJGkFjUhQREIRaDIdJebJBKRpLr5RFUQJGiKgkjS5CoyRkYhMgoHsY2YWqWC5/TI5/JsnZrEcXqU8yV8v48bxOSyeUw7j+O2MAyTMPTJ5XOUa9VU1hLGaLpOFIUoIkEk4PUdFFXFD2KsTA6n38Nx+oyPThFpCWudNkacEHgelm1hmhq6oiHiGJIYZMyRI7fScWLiwGFqYpK+6zGxbTuqSNA1nXazyZ7d0ywtLmEZBo7vUywUMETMyReOsXXbVnTFoFgusGXLOJ4fEIVQLORpdFqopgmqIJfLM3P5CnEcc+jAQVQlodNus7K0QCabIZaSSjGPTBLcfsjU9ASV2hiWZqKrAs/tU87mqBQq9NodKtUSjuchkJSKRS7PLqERMjE+hiogitPuaavTSec4siUa7S55yyI0cmhaBlPTEdJBJyRv5/n5D3702mnov3T/x4WqomoGqm5i2haaqaPoFmLQvZQyhigeDMturEOJIhOEYkAyIMYMClXXdUEmxFFMIZ/HtC363S5RGEASkbVNUFQuXLyEqgpqQzX6nodQAKGiKDqmmcWq1rByZRQzA5qNbmXQdBOhGURJyloPQ5/Q7yN9l8jvE/kubt9JNyueh9vrEXoehj6wCsoYkohYxsRJjB96tLttuo4kxqDvJ4zUKiiAoho0O138WKIagvr8GolhEcoIISQyiug7Du31NlLRkInAdTs06k28rkt+aAih66wtroBMB3pDmRblrU4HoSoEkUz9BgMGexzH5HI5lpaXESLNPOczFrZl4UYxa60ezX5EnEDG0hFIFEVF0UyiOAIh8EKfIIqIpSSby+K6fhoGU3VEpGAZAjURSDXBiXUmD93BgSN3UxgaYnlpgTgKiEIPVdOIojA1BCcv02LSejrd5P/aB953Tdbuf/3Gf/54MV9nfuEp9h+4j6effZbLZ5ZRDIeO06fl1pEiYef0XnQjIAoTrizOYOgFpGyjZQMuL86hCAPdz3Di6Se44e7tnH1uGc9xOb+4TKTq7Dl4CFXqOK0lhqemmJm5SmHc4Iab3syJ0y+QzwZksjqGUeH5J5e57uhB9u+8nsbCDIrV5YWzp2g2Fslg8otv/nd87v6/ZO/uvRgYPNt9HFuucebhPqiSUrZIK1zAW0/odlyKWyy6Cz6OD9sqo1xeWef973sb8yvHiZo1EqVFnjE+8qH38fjMU2wdrRE5Br5rcPfba9x89xQnTpzi7A87bH1Nj/kLPlHPSKNICJIojSXJCNygTndNYucE+3aPcmj/a+m4byWj3INmjPHgV/6E8vAuxvK7yenLFEf2kteLLNW/yNiEycHrX0NRy/Lw6S+SKDnmnTZ206DJcW7a83omJ3eTzWvMLy4QJiEKCnEYYhcLnHv6m2zbfwu6VDjnrfDdr3+RZ85+h+pYmeNP1XnTG44yOlqhvi54+z3vpVBQ6fdXOLD1PuYbyxSGRskGLlHG5dzZ82hjkxyc3s9DT3+JXGaKYqbM9574DjcdnWBxrsvb730H47mbf2Tr9sciwmFZ1mZuTjF0hvPpBHTBMJg5+RL11R7djIpGjFDTbkan09nsMOVMHd/pY6o69Xo9zTnPz7N31zaef/44Nxzej6ooZC2bk88fo5CzKNg2uq4zP3sFRWhcnLmCaeV44eQZrlyco1LR6bsxvutRyNi0V+uYW0YQg+Ik7Ds011cZ37mLdquDIMLUddxGC1MGXJlfIlss8Fd/9QVml5vMrXssLzXpej7PnXyJbdURtk/vQhUBW7ZM0ev1uDpzll2792GYGtlijdWGS32lhalmuP/+xwnCiKXVNlLxIVFZWeqR0VU6bRdDFFl86mmef3GV++48RE7PcvHiHA8++CC/97v/hpPHX2Rudo3tO7bw4APf5Lf/xXspKSajE6NYtoqMfTK2ghsJIl9DNVNbnFAVEBDqJtWd05x+7PMkUcz3nn6Od73rXdx///1k9Dzlcplms0nY7bFt2wSakCxevcDWrVspZ3SaiaRSKtOTkMtmUHUNNU4xSwoCGUUEfZdEqASuh2YaqLo24NG+zGDd6Lgqcfp9iR9e07W70QneoHEkSkrBkJEEYhTFIEXrDmyLrxBVKIqSFr6D/5Oq6kghURWQYQhI0BOETJBxNPgdvCJDHQ0EGOIV+WogSZ3hrNQX0TWFoeEy3dYahprgdjs4iYMwMiS6QSQElm4QBClCq9vtbqK3EikxdB1V0VGUmCAMsTI2QRBtdr5ymQxh7GNaOsVSiRtuuYnzzzxL0bZpthpomkI2m8ewTPKahuO4zM/NY5s5lhZnKQ8tkS2VWVpaSjtv7TWq1SrLSylmq1iqcPalF3njG17PE498hz2HjnLp0mVKGZvlpWWWFxaxbZtsNsvl2TmCMKQyNISpChprq2yd2EK5XOXkqReplfI0mk1Gh4cYGhpidnaGfTumWFtbo1gssrK0TCzr1Ep5us2QbL7M5GSNlZUVstksq6urKaNXUWi2W0xsGSOfUTe7jJVKZVNcU19aRkpJq9WiUsgxMVLhdOcqiZIwMT6GjCM6vWuNsRO88hAyUVJ7okDd7AhvrO2NjqWiKIgBA18mCjJRUGAT1aYoCt1ul26vl8aSDJ1cvpAipJwejVaHsWyKzuz2HBRVo1Su0GispxhERUUzdFTNwjAtUDQUMeCrJxCH0cvzBEhkFBLLlzGO6UlJRDzYpG6IUHRdH3DX5cuKbgmKpuGFARevLDJcLTJXb1LIZTD7fVzfQ7dMPDfAjyJMRSGJYpwgRE3Sf8/zPPQowvNDNE1Pec99B8dxBt10HcdxyOTSuM5Gd95xHCzLxnU9LMsiimLCMGJlZRXf9xkaHcIwDHrtHl7boTUQGymKQjL4/+o5ezOHTRLjecHmiUA+n6fb7aab6wQ0EZHNmgRSRZUKpfIIWw/eSCu2eOHsZUp5k0K+yGp7FSFj3Ch6lXFys+ucpAzz2jWkH5VKGeqLgltuPoih5DGsiHvedCOhF+H1VxEJ6Sm0Bxo2QSghNHDiBFlsImWeWLbpdyQ33XYPd91yF6vhKab37KXjHee+e9/D2toKKCpu4OP2O9AwqDevEuhLnD11ifve8DbOnX8CKxti6ALDhHK5jJWLGd9eJIojgqhLuVhBabpkjIj3/dIvIzoaq+vrTA3dyvrSD6ju0enNWzj9gG3DJYSTMLdex7RDfv4X7+JrXz3N1XqPyFkhX7uLTithpb5EUklQFTh6+xG6fxqy984aj8y0+YM/+ef85m9+jD/5639JuThBS2liGC7/7F/dxP/9sZeIw5SAoykxgRBgJSzOgSIy9Pt9vv7tT+J4x3jrkbfRLD7L6M4taOo8Nxw6ytpVlTiEM6dfpGzleedbltg6tMzc3Dyr0UmGho6ysBjgRyscveN6OvYsuUwG32vxgx8+xNTUYUZqk+TzOXpOh9PPHeP3/uBDvPf3Fd5697v58v/zxxSK6zT7HofHchy+bg8y8MjYkttv3Y7fm8fvr3Pb/j0snz1FxwmxCmVmLl6mulPS02ycs02aNwiWFy+z/4a9XFw5RqGcIekneM06f/33n+XGj/zaj2wt/lgU0K/UWAd+gGWlL5yqomCWCxQVjaVOh3LWTLmbvsfUxOSmatXULbJ2bmBXk0xOTnLixAlqQyPMz8/z4ksXcXsuxUwOyzRYXW6gRBHFYpHTp86wut7j777wAIZuUqpW8CKDVtunXl/j/Pl5ipUit2pFksghn8uhJwFht8vyhfNMjoyi+A6lXI56fZnVq3OYwuXvvvUDttSKPPb0eVa7IU0/II4l65cXSYRkvjnD2ic/j+f0ueGG7RSLRaZ3TSFEluXVVZ4+dpr1tTbVWp65+QW6HUksDLwQJJIEnRgTy0yYmV3jcw98jY/8yjt59qkfsrhwF5/5u29x5+vu43Wv28totUxncpThSgE/dPny1/6JT/zGbzFVzqHaClKVCF3B1RKEpmAbNk7QT4/6Myau66KaIiVF5MpIKXnTG25nfXWW1999M14iBke8U4jIJyRGyIThHRWCOMIRGkXNQLFsbJEKFFzXQYkiZOATxjEKoKupyt3KZtMX7GzuZVGKiIjidAOVJAmEEk1Vkeq1TSG9KvucxISkHSLUtMhVkghFUREiRlG0wdHqy6gwMYgNJEmCVDRQ0+6zJlIddRIHJHGK+kq/D2QSkcgE5KtVy8pGzCOKyBdyuG6qjG6u1tFU0BWFRrtFcWwSVbc4/eLz7Lv+RjKZHEkSY+j6Jos2k8kQyNRepus6CWBlDELfQzVNvCAgn8niBgGqquN6bWrDVRaWl5jct4+Lp16ipCnp8GHgokYRiaIwWq3S6fTZfWAflmXgOG2GRiqcOnWKgwf2cebMOQ4dOkQhn2VxcZFqtcpNNx7he9/+FhPbdlIolrEtnZeOP0e5mEckKd4rowjKw6P0e6lEoeP2qJZLrKysomoWuXyR8ckJpFCQsY/rOgxVilyZm0NRFM5duMDhA7uRio6mJjheSLVc4PzsHKOVEkEQsHXrVpaWlpia2s7c3BzNRp2FeYdCoZAOhcmYIAoxLJOR8THWmw679uzG63VIwpBqOcN6q02n3UAkCX3/2g7AJggUVSdO0q5kGMRIXaCINFuvCBVdUxBa8qpCWm5sBmX6NUmcykV830/JEwN9/Pz8PFY2QylfwDAtfN+n03Ow2x2mtu+k3+9Tr9cByJfS37GMSWkgkpQ7DWnB6KUsbWVAlwCIo5Ak8hFJjDLYiIo4RknSofAolCiJgRSC0HfJZDKb0YYoitCV9O1P1238JGFxrU1y4jKFosVQ2SabtSlIlabn0Xd9lG6foO9gWzqKKgnDGN8P0VyfvutSK+VJBpbL5eVlKpUKpUqZMI5wXTc9bRIKqqoRBCGu6w9Y2hZRJAmDmEq5RrFS5tzF0yiKguvI1JWkqCSDU6xEikFMJTUpep6HIgS5XA4vDBGoON3e5kbDsiwA+jJhYv8h9uzcx3e//wPWX3iBXfuvp5pNOH/2JIHTxBIRgiQ9EUjizVmNjde5nKWTty1Mrl3jIp9JKGbuAj+DFznoSsT80knuve1X6XRWyFvbafc8RmtDyEIes2DSWgk5dOQAX3noT1lYqVMqQGPV5IFvfIn9e2po+Rph7HHLbQex7T7ZTJBSUyo5fM9GN7Ls2DPG7OwMQnU4e/Zx7rvnrTz8+KfYe/gW3vbOCrZt8vSxH+CHdXw/ZnTLMG5f4q/UaQanefjBy1T0IrGUjO0fRi4O8/b3TvONz56is5AwuW2SxVN1sgYUK1n+8rOP856fvpmHHlujNjmEr/iYSoHqcB6vOM/sS3W+9M3PsWPUIDeZUF9pc2HuPGurBp/69KcYHq9y+ZiFLTzWgqfTuaJQoigJhqlDpHLnvRWe+s4qUu0jFIP6usEjL36LraPT3Fy7lwc+92VmVufYbdyNdGPuuuPnkEaVfbv34K7VIV/G4wR///jvERb2cWbuMvsP3MRQJofT1bmwdI6r51fZMbmH6enr0HWXy5cv4jhdqDpMHdiOXF/hL//m/+TqhR8ytaOEZY6iqTH3vGUnqBCEBp4zy8GJ17F2LsuVuR7fe+Rz1PbeSG/Vp913GE9q/NFH/5C/+PCf8cyjx4jjCKff48raZSrVaSInpJizkaH6/73A/jeuH4sM9MbNmQpIVJBRqon2I8yMQUFNyKnJJsR9g7pRr9cHPE0fmQieO/4CSSw5f/YcMoqZm1/ADyPCQNLru3z3oUeZX1hhfmGZqwsrPP7EU6zUG7R7Pl1P0ulHCMXgzMWr9EPBwetvoeMEkChcvjRDe32Ntfk5vFaL+sI8bqvF4uwsaix56onHuPDSS1ydm8XpNPmHbzzM1aU2oVTx4w02r4JQFISqkyg6i2sdImzW2wGXLq9w+swVnnj6OE8dO8mVuSWuLKzQarvkiimbOvQdEmK0UGJEAYbsUM2ozMwucN30JF1PcvTG6+g7EZ//ytd58DsPsW3rFG63Q6O5TLfTodFosrLcYsv4MEbeINEgUhOkoiITQRikR9QqgiQKcfs9Ehkh/ZAklvSjkD6AqqGZFlGSDoGiKoQyBilQEkHoh+CrKJ7AkCpCS6UBIooQMny586oKhKaQCIluGmimkcYHFJHu/gOfOO3tgqqAkjKQ0+GhJO2QX8PrVYWFlMRJRJRIYmIkcRrlSCRC2eg8q6nF8hUWxo0iWCIGHTdtcJz9cqd6I4MqhEBV0g9BMhgiitN/gwRFQK1awXf7aKrAMnW0AWOdQQd/fbVOY2WFwHNYrS8ReCFRJDflDhuEAMuyyOVy+L6fYhaTBMOyEYqW6o7DdIBMETGO08O2bfL5PGEsQdVp9z38KKHf7+N6DqHngYzIZQxGRqtM79rD9PYdzF2ZZWRkhJWVFUrFPN1OCyFj5q9eodlsslJfQ2g6SZLQbDbJZHKMjIxgmRn6bkCxVGHu6jxDI2NMbJ1K87ZRQiAFrhcgZYJlWVy8MIOqqgyPTTC/uMzw8ChBFOK4fX7yne/g7NmzmyKLkdEahXKJfKmK53n4vs/y8jL5fJ6l+kqqY5YJtdoQk5NbyecLr7KzLa0sU65V05mOQp6lpSVq1Srjw0NsGRvB6fauqc0NIBHp5k0mqXI+xW0om2t5ky4jFFLSnJqSOVQdoer/Q15/IEgZEDlS+2b6NapuUiqVUjKHrtNoNFAUhXw+v6n7hlTSsVE0R55Hr9PG63WRfgiRRIYhMgyIA5/I94iDcECoSRBJ/KqPJI42400bZJqNLLJhGFiWhWboaIaOoqpkLBvLsmi2uyytNFlr9mm0HJqtHm7fJ4rSocHVlTpBEBAEQbrhkJIolARBhBxsjH3fJ/B9Op0OupVmoWUUb6q6XdfFtm00TdvsFPf7ffbv38/Q0BAXLlwgjgSBH70iMpF2u4QQm2beIAjwfX/zZE7XU0Or53mb8hRVN1L5jW5R3bqDo7e+hlBR6QchYRLS7TQQ0qVWzoD0SdVMadxKIFFE+t6czWaxLItEpgR/9RpyoNuNdJ6h2+7QdxoEfjqQOTJcYcfUNlprfVQB1VIRgSSOHaysSUj6PHV7IbmcTewmWJZBedgjm1e4fOk058+eIQj7xElEu9mg222SqCrF8hBB6BMnYGdyLNfnaTXajNRqBG7AyGSOhBhdzSG0HKNjW2g1e5gWGHmTcwvHcToh6yvrdP02fS+goA2zvtDhzjceRTcEGTPDi8fnOHL0eiI8eutQrKoM76zhxR5eEPPm+95EY71DvlwmTmIuXD3PHXfejWP0wIcXTpxA0QShD4ePTuE7Eao7QuBCrEbEQpKoSRqDlB5jExnifohQIFES1tYCwjjPlx/7Ix5/6a8Z3i/wcw1avVVWl7rkzDHymQJJH+yxYdBddk4dJj9cxMhkue01t5HLF+iE6yhmwguzT3Bx6QLlUo2EiHp9kePHn+eJJ57gkR98mdfd/U7yMkvR1BiZKLF99yGQkmp5K+cvXsJPEmZmFug6bf6v//gnXLj0HYYnpulGXWqlMtM7doEOjVabZN3nXe/5OY4eOkTHidE0jUbD5cKli0zvHqU6kuXOI7f+SNfij0UHOggCqtUqrVYLO2egAFIXuE6HXDHLJz/6L/hPn/8cJxcjfBmjR5LQCzE0nbXVOrGUqKbKQn2ZsYUypUpq3hN6an5q6R1ymSwLy+scuk7j2RdOEft94jjktfe8iZkXLhIpGeYvX8XIZEl0my9/4/uMj56j5UZURiZ56KFHaSxMYQpJMWPw0pkztFdWWPv8l/jox36b08dP8v8y995Rdh33neen6qaXO+dGdwNoRIIEJZKiKIpUpEQqWMGmZXkd5KCxPbI9Dmd3PLt7dtczXs+M1/bY8hxbtqSR0ypZtpVlBYuiKIkUJZAgQYDIQCd07n75xqraP+q97qbk2bO7ozV1z+nzHtDvPdx3UbfqV9/fNzzzzDOUevOcnB2lf/QQn/j0FwllD63MYESGEC4YQ3+ph8ZWk1LBUOzRnH/mEsVijkAKarWQdtgkiTVpqjl36RpaSJQAPImH4PjYMONDRQ5MFSFMuLgpGBoq8lcf+QwP/tBr+MJXvkUWlPGEZGNjg9b2tg3wAL74hUeorTdJtuZh/zBkinzeJ0liVBwReDmiOEIGAVK6GGWR3jBReJ5LzouBjNT4eH6AyjKCOIQ0IYtjG+rhSnzHp+ErgoJH4Cl0piyypQ2OdMhSg9IpQcG6jCRxSKwyZKe4NFIgXI9CkAcp8APRWewz0BoNGEejn18b6J0C2lrHWZQZFNLY6GJXKDTgOBLpsFN0dAVD9neW74h0ER0rPMeR1sFDaoTjQBbhIm2BYqzdVpalCCSOdBCiEycuIUsifFfiBi7FDhWmFcakUcK+/Qd55plnUMpgsphmfYXt7Tqzhw7t2F1lqQ1l0KQgbGBDnMQYrVE6JVcskEVtpOOQ93KkYRvX1yzOzTFzYD8lv0BPqYdTj36DLFMUVIaIwJMerWadgb5+GvVN8gNDnD19jb7+XnorPTRbddbX1zFG4WCYnZ1le2sDP1/A8fI0GzXy+TwbWw2iJGZ63zTS8+gpldiuVtjerrG+vk6pkKN3YIQwSThx2+1srW9QyOdQ9SqXr1xjZXWdkeE+1ja36O+36PeTTz7J/v376ekpUyoGXDx/hqmpGYJ8meHhAcIwpJj3WFiYw/HztMMmxUKeQqlIvdmgkC+Ry+UYHhlhfX2TickplBEEuRytRpUMl2Yt5Nq164wODTI5NcH8jfrzO3ihoySym+AostxXp2Nb5nlBR+yqbMHYSeYTjoNW0gqRjIORBmfPfUDHG7lUKduiOcjbwnbEJgnWm22uX5/HzwWUSiV6PJ9mvWY3w9LSSuJmjVazihCOpUJID8cVGJsbZEEXpW2xbKwGAK0t/x+NFJZWErZbltstHZIoRKW2w1koFMgQHau7AMcVlqqEQ5TEXJ/fIBdAf18Fz4WBngqbm9uErZBGq4njCJJ2iDKC2tY2ju9RqzWQrofr2a5dGIYE4+OUSiXmr13HES5Ro2nF8jIgylpsrG9RKpWYmp3h1Kkn0R26V5pohCPxXc/6RmqF73tEqSJOY3zfp9DpDvb09JAkKY1GnYHBPvoqRcJ2hHF88r19TExN4+T78PsH+eoXvsH2+hpHjxxh6sABGu2Ea5fPsrl0Dc9RaCEQ2hbN0nQFz5KbjhxheXmZ1nqbnAPl/PPnICNVD5ne5sr8ZXRrmJMnXsCVuWcYnyzh5A5y4coVErFBEoZsry9TlAVwfc4++xRRM2OpFXLipgFefvedNLMLfPKjz3DvA0co5vOcP1fnttsV5d4BmiuLXF26wcS+Xlwvh5SSvoExKr1D+O4mN65vMDVyC81mm4QYVI59o0f48qkFYpVy6PAMayuLLizY4AAAIABJREFUtKTE9CX81Nt/muFen0dvfIO/fvhTvHxsP8XiAS5sPcLs0QmSzOCU4YlnTjN+S4mTby1ydu4My1suowNlBkanqC+skaWCnr5eFBv0DA1w1yvu5YtzV0myBl/8wreZPtRLHLnMza0Txynv/Z9u8Cu/eyuJPs3o1AD1ZgMpPe5+QPDR912mrzxIPdkgl9MszK/x87/+Wv7m/d/mk/VvogY+TS0/T75dY7TvGOXSAJWJCn/1h3/Kj//ag1x4ukraPM03TzXoG0k4cduEjbJ3lpExrDqnWG/1kmQN6s0llldvUN/K6C2P8pmH/4wHX/kHxK2EQq2HxeZHefbGNSQ1BnIzZKUcGYIvf/2rvOV1J3jhi/ZzYOYAn/7Su/jZH/wQTy18CM81yEpAUOnlicee5sLKAidnDtI3OMD83AJDvbMsrT7Dx7/4XiqVXg5UXvA9HYvfFwV0LmuwOb+Bn8/RWFfIdhspNCqsEbkeJ6cS3v2Lr+WvPvkoF1Y2WWwWWdoOqbdbxFkLR+ZoNWLK/hBn59bJb4e0my2ksm0sITXGrGO0zx+996P0Fj1qrU36SxW+eepZZiam+dpjp3CEZuXSRXJxlb953/uZObSfxc0m4+PjvP5NL6N3eIxkZRmjEt6UkzSqVXzXxyOjNFrgNQ/eTwXF8oXTjPzDWfYfPcCXn10Hx8MVmkxZNGSruo3woLnRIlptku+3qN25C9eojPWB8Qi3Y6RwcZwYRxrmr1+gAPyP7/oxXnrrUXrKPr4bI7XH1cUVhBvw7v/02/z0j/0yjz9zhn3FCj/wmhfzwXe/mx944+s4cfwQf//n/5HDs4f49bc/QMtkxJ12bJppHOkhCh5JpvAKZYwUSD+Hk+t4wZY0xiirA0MhpEEJYZ/7LsIYXBGAFEjHQTgO/cU+kiQiSxO0SHaKR4PAuAajXLK0k+RnpOULS4cuh9j1A7pmSZkxtrg2DkJrXHadT57PQxlDlFiLOc9xgLhjNyet2MgXeFKQlwItBZnQeB3kzwjIDLgIixR1P1NIjElBgMTDSIX0C2A0nsxwDCiV2pALYf9fLDKldx79wMf1c3h+bscVxRjDpUuXcLUmjiKEgdbaFq14hWtJg0RppvbPoI3d6ChXEng+wiiQgiRJqJQKhGGINq6tWUxmRWfa4Hua1ZUb9PUPkctPct/wm8h5ksVrcywv3UC1GvTkPO6656XMb2yxvnydH/25f0kYhiQqYzNuMzE5TBiGbNW2mZgYpdFo8PTpJzh69Cg9hSEuXLhAGDWZHB1iaWWVhcXrHDl0mEYr5sbaZcbHxwnjmN5SL2lmWFvdYmVlhcOzs/T29lIplVlYvEapME67sU2pp8LE1DTGGNa3t2glEYVcjtnZWaQQLFyfg7SXdruJSlocPXoU1/dIopjG5iabmxsMj46ysVmjWtug1opoNtrs31eiWa2iWpYbWe4fZWl1A+W6GLdAgmRobOT5GrYAZNomf2ohOwJVx27ahERpu+lT2ub+SCmRAqJMIRAI6eLoDOVYS0ZpBC6WVpFlKWmakMSR5R77tntRr9fRRuF7AcUgR6YyapsbABiVoeLdyPuuOw1CkGYOKdZdYm/MuOvsuf9Nh3qA5e7veKFrTbvZ2EXKjUu1WqXS10tvXx+O4xErjVHsIOeBGxBHbbZrIbVGSBAE1GoxjtHk8jmWN+o21jvw2W5GqCwhn8+zvLLJ5OQkrXgLndlNR+BuIV2nk0ZYo93uUFGiCD/wbaJmtcryjRt4Oesc4/oeFb+zNEtLN0lTSZxmqA7Cr7MEKXL4fsBWtUF/pUyj3WZhaZlCsRdZCigOjjM4NsPG1hYFEpyVVbRIEW6G5zk0Vre5Mb9A2tymv9JDEoX2musMiWB4qJ+wI+jfWFqllPMpj03hCmj6z5996Nh0QDmAteVBxvdL7r37Xl4rX0Mt22Jhc55ir0Ngihw+eIjeSoV9B0d49ImvsW9qmoW5g8zPr2F4AUePvpKLT/i87a3TfP7bX2Z6uJ/9hyVxHOLkYXl9k7HJcdrhWYriDqKm4szTy9x8iyBp3eCWF9zMDIfZ6LnGhaYAV3Pt2a/Q2FzAL0vqG9u8fPYdPBR9iEc+fYY3/eoGn/3yZzDHD9CfaNZDj4rXYNq9iUvtv6WxMsDb37GPT35qgbgRsrSmyB3u5YHX9HH+KcX8tVWWFs7QrjaJw4yJkzkePXWGUsnQV+zhLx77F/y7X/t9Ll1YprcBqYoIlWLfaJH1hQu84kdGOP8o9BUHCSqGpx5bptJbwhmoUWhIfIr8zm++i//y1+/h6mqdyYkiy2cjDp4c41d+6d9SHu7nbz7yMQ7N9PPD7/xRHv7oZ8hNt/j7p3+b809uMjjzOK+8/XZOLz9CReeopTHXr85z9al5cu9s8IHP/wI9/hsZKRxm/8xh1OlRegf7yI3AeFbmofkSl+pfQroe5888xq0vvw8/DblwZYkLl4boL2/yV395hp/6mR/jW1/9ENlsi4trj3HrzEEWm8v8+z99H30DghOjv0Z9PWNktpcrVy9z/OYDTPTfgS8vce7sRV7/qu/dWPy+KKDTVh2BQYUpgZAQbhG3q1QXb+D7LnGrhusIXnfbNLM3ivzRJy8gZRk/l8doh1aaInMOGlCNBkJlOKS04479T+DRjlOOjQ0x1DvEB/7Ln/Ltcxf5hZ//RS6dP4/OEkYG+hkfGebPfv+3yEzE+L4C+R6XsfIwmYohp1DNDZSbkaRt4u2WbXEZTahTKkNWGCPDiGJvL2li2EwShHBIswwtuuhkR1BmNBqBES5hmiE63L76doucE+DjkMUR9cYSxZzgHz/8Hgb6SpSLPo7MUDqlUAxQGQxMTmAQNKuL/MVf/q5tERZ9dJIQhz9FrpAnTeuEaYYbSIySpCnkcnmSNEV6EqM1BvC8AEUHjfF9EJKkY+aPkB1KgkSYDCkEWrqYJLQUAXZtmYQQJCoDx8URznOs3mzkR0fwJu2yhxQ4QnaiqHeR3e5n7v07YwzS6fIwn38bu53zEraoBAOms9B1qR06RSkHLT2UlJbHbvO9caSlaxizWzgYupsNjcBBCm05z45NhQNlW+qdcxBCWKQaEI6DkNK22qUNetAdtE2l2XOuYxYnOAbSKMbxHFYW5+ntG6RvaJh2koIUbG1VyXUK/Di2BYDrujuCqG6L3NJ3oFarorVhdGyCtdVlSoNDjAdF2psr9OR96klKKgyxMaxWq6RpimM0+SBAJSmFIMe5K+cRHbpWoZAjiiIGB8qMjIxQb/g0m22yLOHokWP09/dTr9bZNzVNGIaMj02wtlUjSlJMlnD06HGEMHjkWdpY4Pjx42xvrjMy0Mfc3BwDAwPk83kW564zOnKQsNVCZbBZrdLX18fS0iIDA33kSyU2NjYI04TA81i4dpW+3h6ajTbNVoOpg/sp5IqsL6+zubFBOwzp6esljmOatRtI7XBo+iDPXrxGO0kZHhl9PobrzmHHwG4LR2sbvLAzBrv3oNjdpFqfc73zfK81494/g6VzaK1J0l2xpJSyo2tIEI7cmS+eI8b9jntfStM5P7HTvekoDJ57Xns208LYQtpuDATGaMuLBoJOUZqlKa7rkwsCMHu0CFpbVxFjUFmG0ZLI8ynmPMJYWWcSFGgIU41OFIiMMEqQjkcQ5Km2Nnds5PxcYDs7HZ647/tsbW1xePYgzWaTvj6rK9mqN/B9326sO7aSXuCTpuku+t/9/p35xfMkrTCmsb1NJDR4eZzSACN9vch8hSjO6O0ZoJjPEbVb5HIuse8R1auESZWwvklOKsDg5QOk65NEkRWauT5GtpHCwy+VUSZBGIl0fJxy//dmEP5/OLxA8+hjX8XL9dEKNco0SVJNkqUYHNZXlvFzhm+c/iYToxNcvPgEzfYmbPhEUYg2ipnZO5GyxNbyFibXJCddBnrHCGQFgLAdMzYxTj4HuC4KhXB8jhwq0djexk0ktx66hcazC3jlBJ0ptJ+QOm2cBPoqfWwvN6j6Gtco/uNv/S5nHvsG/eNH2cpt8cbXvooPf+TzjAxOc2hgP8dPjHChVWVgYpSgAI5j2Dc9wOLiJqPDkjjRPPHY07zs1bP8ozxNM8w4dGKSw/tuxVE11tYu89TZx1jZbFDqd2lvZ4QNxQNvneWpx1d4/PGQV/zQKOefbLA0v0ZJG97xjrfy/vf8HToFI32OnTjK4o1LXH56m5qAXNHnYHCC5vIz5MoeSWp41StezXs+/Faaubdw8PYSX/72Ba7PtRnpL6J9xZ+/+wO86RfeTLv1BH7LZ2kR7rjzRXz4M3/G2M39tOcFMzP76CuOsm/mCI4s4clt8uUaJw8+wMK355Cqai1chcA1HqWCy3a9yeDQAA/+xC089NC3eNurf4lHG5e5eOkvmX94md47YHh0kFtOHqM8kGPfvhm2mk3e/ANv42N//wFW++cZ6a/ywonbv6dj8fuigG5HEW4nOUm0N9m4dBZfKFQUImQBhGarWmdlNSKsNTgyNsypuTXCpM3kyCi6FnHv7Tdx5OABfvYdb8MvFVi+Mc/M4YO02g20tqKoLJ+3fpsm4w2Tt/PApUdpttq4+QCt2mQdn1alS7R1ARUGtMMaxhhynst6ax6dKVyMFbkYiJIQAglpikkT2lGTXG8P1TBhPfLRxoADmI4gpjPJezhEMiaUkA8lKk6YmRxB1SPuuvMoP/+zb+Hgwf1ImZELHNpxSJxlCN9FOQ7CkbSFIM3ADTK0VgQlTSLB8XwynaFzCq8QoB0HnVbISZcMB53LUeoo2y2qY4M+fNcK13wvAMcl07ZFKmFnEbXiEhDCwyiNcFzwfNAGVwqU1FaVrzUmsep36fl4nvX2Fh21vNGZLdaTFM9zyUSKUDZURGvbvtzrw/qdbgCms3jq5xmBBnYK5b3np1SHxmHjoIizGKOFRY317mIvpcBxrc2dVmK3kBASAzjSRSJQRuO4EkxquZ2mk1DYQZaFEEgnsFZ4HbGi9Hxb1BtNqhXNZtOi/ewmIyqlUAZqtRqOtJu46laV2vYW+w4eQqDp6x3Y8b11fR/HUZ0F3cVxbLs+SRIcaQVfaZygNERRm2PHjrFZbRLHMZu+5Mjhg2xVa9x24hZaYZs4jahXa+R9izaur693PISLeJ5DtbrF4GA/6+urHY/4PFu1LRsZPTDApavXmJUOyytr9A8a5ubmGBtrU+kfYGRsgmZ1k1qjTl9fH47xGBuf5OrVyxzcP83lyxfIl8psb29z5swZ7rz9Nq5eucTB/fvZWL5MoVCiFYVIKYmiiDCzDhuTk+PcuLHC7JHjtNtN4jDCEaAyQ5ppglLRUh6yiHaikFkMaUbYTmhmdUrFHqQfo+XzKyIUwgpajRHWUFE4CKR1khFihx6llMKo1CZhCoGQEqOtrqNbMLuuS6YVRko8R3TSCg0YRZcu2+k92c9WKTrbc+8abTfxXQR6x2mDznwj7JzbiZMWiJ3i2L7E2OJfdB47/F2l1c7GFEBpQxKF+EFA3A7JUk25pxcvsD7MSWI7ZV4uIM5S2u02Wgq2G3VqTUPOy4EDjjBkCpqhRmeGTCiUkYRxRrlvgKWlJYQQ1JstvMCnXm+SZcp+d2MYGx9nZW2dUqFIoVhmc3OTybFRVldXCQp5mnG0s9nY6xXf9aLOey7aQJJp4jQDz8ftGaJvdAzPLVIP27S3VsiSDLKMoqcpeS5KR/T5DrpeR+mY3rIk8B20CjDCxzgeXj5DCCj09FDqGyCMDG6+hPAUUahJjINht2P2z31cu36eI8cmqYchhph/eOhvue34PcxdWwTVR//gBPXGJnWR4LQ3mbv0VaZnDnPx8lMkeoXxg8OMj40QbyxRknmSNOHYyGFOHriDWqvJSvMG6xtb5Ap9XDlzjqnjLqlWOIFLtpkwOtDLscprmHKneWrjs+TaBW49dBsXN+ZYWFinsQXV1YCDg6Mc2Lefb1wM+cjH/oTSgEu+MsGZUwu0z15lcGSAlY1rTPQXuXR1lWDG4WvPnGUrheYlzf6bNhkagn7nlQy98Czv+83T/NCP3s5v/NZP8PCZzzMwFvPnf/xJ7n/DC7hydgl3YJ577n8RjcYlso0BLl05zX0PvJDPfeGjlNUoWW6eiVsq3P/2H2N8fJhyUOPf/B8/yf/+P/8NcdTmptsm+cM/+BhurgfRX2N5s8HNB48yqe9AelB234UMLhMtDBDIcUYPvYKnPv4pGtv9RGaDPAFRJrn4xHkePX2au15+J4EISAuPY/x7OHPpPLeMpiyqU0z1HORFt93KU088yuVzH+Rlr7yHm6f288ID/5kH/9U7GPaGGC0VYS3k5/+7d/GpL34c3+3lfO08lZ4F5rYfp1AXvOXl/wN/fPVXkfIAMwf6OXf1Cm6yztjUDNtL11maW+NXf/l/5Y9+752M9U/z+LXTvPN7OBa/Lwpome/By+fo7e+jvrmKu1VFmBRR0WRuQOD4jE8HFPdpejdXOfHKMc4vrnH3S+/h0JEp2us14kYN1wG8ECU1oxODXLt+Add1GRjsJYobxAaSzE5GOUeQmZRSXwWlUoznE4gcUSqQgYNONFonSDKkcEjiFjnXR5mYpN1CSkEcJzhSQmRQ7SYqjsjCGjpu0a6ukvnjOwULPBclURL81CJkd508xsjwMPe/6l7uuuvF5AMH108RIgIBYRqTOdLy6/yAJEs7CxFIqaw5p2OFeigHtEtqDFpppCcgyciMnfR1FiO0QKB33Ru6fsQGHEdYnnFqi1iJRgoHrTKENAgjO/GuQcegWKJdB3QHsekWhkIgTIZRAo31VQU6SKuxBbDsoknd1D1hP1NaRJw9C8feayilbTnbYvX5FxF2DyuA6ghGTbYTPCKEINMK17GJg90i275njwjL7Nr0WX4pO/67QjgYYXCE20kJsxzp7muENAjhISQIJHTa7AaJMhlJnNLb10PUbO4ZkTsn3gmbSCmWKiRpSrPeYnN1BccLKFV68IIc9qsKslQhkGht29SDg4OsrKwQdDisrrAFlU5TLl26yPDwCNVmleMnb2Z7bcPaQ4W2vZ/GCVG7QSlfQSnF6MgI8/PzHDp0iK2tLRr1KkPDw1QqJS5cuMDw8DCjo+PUq9uMjU2gO99mcmof167N4ecKHJg9zNz8AnHYRie2vV6r1ZAqopTPMzk5SbVa3RFzJknCyZMnqdVqHDlyhGfPnqW3YANBDhw8xIWnnybLMk6eOMH169et9aXjEbdiMqOIsxQpDdeuXqUdxhw/cTNzS8sMDY0QK4OjIQ0TtrY2KFUGyZIQz3EJnucUTUw3EMV5zn1mBAgp2Ls11cJuVu1rbBFtQ0p2Iuo6n2WL7+ciwrrz3KCNAuNCpwvVfY3We+zpOq/d+Z0xCGwICqbbpfpuBHpvINF3ItI736MTgtK9L9GaRqNBSdjwnW4ISffRbtw1qbGdM5MmeMLBOII4zTC2D2kL2SSmHYVIYXbu/SRJaIVttBKkaQoY+vv7WV9ft+PPkaxurBO4HpsbKwQ5D9Px1gaIOwX9d27S3bxPkmkrGDSCWEumpg7g5YpcP3ceKSHwXUyS4WAoSPClwhEGR2hSxwcZIB3ryiClg/QKJNpSY6yFZoDjOqAUjhfg+NCOQ1QMcXPzv2Hg/bcdBkUYheQKglpNIfIR27UVtjaXCKRP30APm/UbhHFCpUfh5ItEyTa5vEOzmVEcCkhbdZYWz9EiI0MzMXGA/so4cbJAkmR4nkfWUqhWRpJpvFyA9GBmaprWdo24VuPKuW9xy+E72FYZS/4ogVPn4P5DLMUNwjYs3Nhga/8ST58NcSrnEWGJF90zTvZkyuyBl/D10w8xMt7HdrhKb79DJCVLc4o7bq0Q1weoJdcYGRjj+vWLzJQlj537GJ966EP4IubyxRXcAhyaGsNIwf2veR2L6TpGKtzA5+DNU6hgjf/zL/6BEy+8iWe+dZZ2G07eNYZDjJMPWGvEBNKlFDjECcwcGMEoePH9NzF6rMX5L4XkeuCBO+/DdwPqGx+jp7fJz/zEu2kUHP7k936Xfbl9LPvX8HoyPFmgHUQIk1AqTKG15ud//RV87m//gZXVBeKiy3XzLJVymbtmXsfT1z7PPW/7QSojJ7jjpS/mx3/uJzFRiFcscvfJO/jhB/8N/+E3fpozl8+RxBlTUzfxI29+Jx/+xL/g/R97L3edeCVHJk8ShfDi8UnGR0Y56h2nfv0i7XYLREqtusZHP/o+jky/CJUtsLQx/z0di98XBfTg9KzleUmJLAwycctLENJgvAJRmBAEOYQQ9AvBlMrwHMELjcYXDmFjCbeniM4H+K5E5TxaaUQxl6d/dJQkjYgNCCEpOZq4vQ35IomwIR5ZHOFLB8fJk2qFkC46S/BNmySM8F0fITQmy8jStm2fqxShFTqN8IIAWavSmLtM2q7iacjSOm958VE+8vB52vlBNII4U+RkjkxFlEWbmVKJP/nd32FycADHVziehwwcZDnDkYIsA9f1iNPQxmMbg+u4pGlii1NhEFrjSIGRAb4wtgfrpGQmw/EFEt8KsjwHD43OFMIkCCXQjsAoYbnMmUIrhcS1Ch0sXUC6dhHKjHXpkK5daLWyYQqgOw4RXse+ySC12On4KqOtsMdkaGWLPRsgghULSeumYbQAL8C4BkelOI5Ea9DSIIQVxoEEneHoTvqeSTvGEs+vilAYg2MsSm5NQuw1k1jxlcqSjhLcRYkWRkny+T5MJw7Y3+O0YXS3yBB2wyIEwnFR2O+ptEK6DrLDfZYd6zyVdZBBdlPdMgNGuQSOJMs0SZLQbLcxOkN1kUST0Y0ety4gDs1mC9d1CaMWa8tLOI6DjgcZ3HcA6bmIDEBaQagQuLki29vbBL5LFFnrQykEaRwRii0yZZi/XCdVGfXeXnqHBqjV6yA1K8srVEo5HKnZ2lhjcHCY1ZVl+ipl6tVNAs9hanKMrWqVQj5HuZRjZLifKG4zNTnBysoNrly5xsGDh8gyhfB8Aunw1JOnuPm221m+doVmo8Hm1hr7JsdZnJtjYnwUYxQ3lhbYNzWOyQy1rSparjA82M/qyjqjw8MEbkocRszPzTE1NUPcbvHIVx7h+PGjzF+f48DsIaJMs760SU+lQhDk8PIFjo9OUq/XmRobYWR0jKXVDetQ43k2oEZpRvqKNMKItaWF53HkYvnzwtrWSdexAlaxm4bZPVzXx1HWfjIzGQK7mTNCd7pTAi2EdfFQGcZYSoDoFJKoDjHLmE6HKQY6mz+tMcL61fxTFAyQCO10GGIKHAXCItF2ry3RwuAgUdJ6FOtOB0dh0NrsIOl23pBWhJzuFtEqM2xvruN5HoVCASkl+cBDlItIV5AliiSNOsmGCq3sPKgcF+kEpMY6EBnhsbndoKenTL0d4QpBlqZ09Ns4jnUmWVtb23HgSFPr8BEZhZ/zOt7h25ZXLl1KpdIO9cOKNFOkn0cZB9VukGqNLPQxeeAEG+s1omgVKSSOyfB1Cvky/aUcvWqbvAsgSXFRokAq8ohAkCvkSLVCOh5OkpKGie1gBRWMlLg562STNDNazQjXdXd8rZ+PY2NxG2ewSEV4GFMlrML84jUKXgmHmLPPniNzE7KsTqsNxf5J6tGzCCkplUoMjB3m7OmHWF1eYXz2doq5gILnsR5usdFo4FKg6Ba54+SL2D58mEuLp6gQ4ANSFAm8Nme+9VUa1xf5ubf9K7Zq5xk+OMtabYPZAzczOv51zp/T/NI7f4nzD38bWQCnIDn4wtfSTjY5PLCPRpRj/+EXQWmeRq3OT7/zN/jIB9+Lm4s4ND7I69/8M/zmh/8Xblxe5w1vfwlf+cwn+Pjo+5g98Ao+95U/5diJUZRcIVeUrDUWefBNL2RWzfLQw6dZnEsY6rlO29S5PN9kbOYyP/bfv5T6+uOI4av0Fm6hvrLOWn2d2cmb6csJXv/gy/jGY18iNOCMbCBdiTcccEM/zaGbforF8/OM9Hk0mnDTix/gC49coB02GC6MoiqXmJ0+wOVHE8TIJv0Tt9N8+n0kOZ+L155h6hgsXerFLayy3ryI8UbIvCqzd/TwF1/6FTbPaP70Q3/Aj7zsZxkbneLBf/erfPbjX+CzH/lLnnziSxyaHGOtfZUovsHXvvpFDh34GeSr7mZ1/TFWNxa4755f5tQz76atZjg8/UYK5VGqepGefB/FQshTZ7/J/S/6cVqtiFr16vd0LH5fFNCtVpt8Pr9DKXBljjhr2yJOStvi77SQpZRkGlv8GoPnF0iytGNGn+E4Lp7SWJTE2ld1XQ7STOMEOTKd7Ykkhjiyk5PruniBJM5SwLbb23Fk7fMciUoNCIkM8qRRhPDzpFqS4BIWSyRo0jihki/wk297MS+8Yw2Z6+HvPv4JNupNrq9v86K7buXf/OrPMTrYhysbNgzEKSBdB+M5GOESpzYePFWZLZakDRjItMbtnPPeCFyDa/l+IkUpg5BuZxE0aNVdxDKLtHcEb3iWd6uV2THJt3zEDKPswphEnUQ8YVu8Rmm00h10tMNhFnrHSs66R3g7z112+cnC7LZmBdgF2HS41V06htbIHVTMLiA7Fm8dRNoKlqx47/kWEAJ2Q+VYFP//5kUgXWs/hQalkDvI+S7qtpcHuhdFs4/28zOjO3Z23ZAZB4TBXp7O/0nntNIoIspSsiQlCALCRmPnjHYRR9sG1902eRdJ1Aa0dTRYX77BxIFDuEISZjE4EulKklaKC6SpQitbFGkNruvguh2EHXA9ieMErNy4QSsMqdXrVMoFjFE2QKVQoFrdwvd9PN9FOgbfd639XWidDtI02RkHteoWlXI/Wmump/fT29vL1tYW/X0DTE/t49S3vsn58+fZPzbC4EAv7bCOKyS+Z6kDA0P9CKlotlpIbahUKjhCUMgFNgAp51GNqgwPDBDHmuXlJYRRuNLh6uUrVHpKpGlMo95m3759rK6sMHPsCKnKOP/sOVzXp7dY5sqVy/TdfAZPAAAgAElEQVQPDdFoNMjlAkaHx6luN2m3EnAUwvmuXsA/69G9e0xnI6qRnc35c8fyXlTZzgV0/mwtJXcoRNgOVPf9XUR5h3ZlDEp3hYJql1ptuvPBngJ655nGmD1hL3tpXMbO89IAws4L9rt8x7nz3HmiGzduEWEwjgQtSLWiFlsLOCldkILA9/E9g2kpkjBCG71jz6eFpZkJ124GtLZWd90ivEtD8Tr0xG6ct+tailW9Xsf3HGbGx/F9nxs3FnE8l9HRUbTWNNsRtcZz494dx0M6NkkuzMAJCvQMjLOxXUdlCVJrHFfjC0HgaobHhil6DqKe4LoORnpkmcCQo1AsUyxZ+l0WRyDtJsrzbFem2WzhOBaZr21XcRB4viQXBBRLhf9HY+z/jyOLE3oLMwTCIIZiNtebNMMIdJHqxhJJmOGWBNJIonpGsShIXYew2aB/eJq+3mEacwu4jg1TQ9oU3NWt6+B63Hf3W8iXyqA0ExNHOXjgZaChNaupbq1Q05rcZICOfZZaV/jWhW9y875pSkEv1dpFqq1lvKCXwYE+bqxe4xWvvoNy3xb5ootqK2YOjIOXZ3Ty5VzefITmksepp7/IzHSZ3MgxhE64vjaH4/ahXcXC8iq3njzCFz//DzTuTCkUJmm3zqGloNJTYHu7gY6bfP4LX6DaNERpEyFL3HbrbVy98DC/83u/xpvf+u/50Z8pErUMA0MVtjcvIrVrO8cpzE4P854/fhgZC/TmAs2eCfyRHAdnBviN334XH/jPX2L51F9ydfEcX/rIv2Xm1ltw/X2o/GmKA1ZgvLm5yeQhcIItggy2rzeYOX6A7fYyvcNVVmpQ9BVuUmZu5SHOP7vMwKDDva96Ezc2L/OJr3yMdjOgXE64997X8Jv/4Sd45UveSrm/zPSBQaKkzrNXPsKZ03O87Q3/mqcub3BTcQLGtrlFPEAtfIZTjz/NpfNf5+RLZnFdC1jmSmU++NG/4mUvOcjo1PeWu/99UUAH+RxpB3FzgzKO55A1FEKAX8hjHEmSKESS4gWBTZYKfJQBV0hEzkG4NvUq05p80fJttVL4nVQ11/d3igyTZQhHkiXWl9PttNWzNEToCJWmuLkSrueT7wR3SOlCrgdpsDzpJLYOFEaiR/fRf+BmhDCk7RomEni+YeIlJxBC8Io33ULWigmMbx2NBbhFjeMXSeIM6efJjAHPseyIDlKhwXKMAccL8Dr0B5tlvyvWQzgYDFmicYzBdWzB4WhN1hGfJGlkFz/P2VkMu2Iw6Ba/HRs0naJ0J9CjayunrJWS0RrPdVF7VqmuRR5gF1Ss8T8q2RWrqRjYtXGzhX93Yesk6qlOLPDO99otIpVSOELhGMt3RJudtvHzeRgjdgt9HLuCd1rQ7Cz8lsuYSQFBgLKqDXQH+RW66yoQIF0X273dU7B0CmjRce9AupYLKizdRnWRPbNbjHeekEQxWZLQqG+j96S47f3snYb4njYx0NmQWnrOow99BREEvPjee4njhCRNKfX3kyYR0nVxXUkc7aal2Va53mmDIy161t24rq+vU93epK+/QqvdpH9okChq0263d5IQgyBga2uLodERoihkbGyEU6e+xcSEpUYlacTQ8PjOZrLZqHPh2bP4rkMxH9iEyzRjfGSUtbUVXnr33ayuLrO4cJUDB2ZZX3MQJiEKQ6Yn9nHu7NM0622Gjx4iyiKWF2+QxBmJynAl7Bsfw3MhDiP6eyoU8gG1VkRPby9OUODKxfMMjoySzxWIY8VgrkBfJQ9ZhJEB62vbrK9t4/cM4pf7GCw8v/QjIRxbNAnZebRzSTeJcFfIZ/7JAlp3Nnpaa1SadISkGSpLdjdzWluLOWHFh0Ja+pj9YJ67YdtzP+/VNlhEW1gRIWaX6iG/+/rtpXHseFnr7v0AdNML05gkjjq8bBetxA7nWJuMuB3upCv6fo5iLofMW65/HEV2XKcaISWu8HEkFEtlkiQhjGK8XMnqRzLPimQ7Pu6OsvqBLMvwfZ9KxYrPkyShr9JHvV6nGbfYbtRxXfc5gkroOpEopHTIDc7guD4tZZNZ7QUwlH1BwdEUCwFDRYkUDrVcL23h0YoVuA4Do/vwPUG55JKEinhd0Wi27DwkXXzfJwzbFItF66ueJDgIgrJHIe+QD763gRT/b47RkRFmD8yim22uScXEzDiriysk2tCOI0qVCikt3vzAD6MSn9OnPsJWYmjGKUePnmCgZ5gsaOI7ApWkxJnCKyikJ6gEQ4QbbaJGDb83wLQFQU+OYiVPebufynQPjVKOR5/6FO42fOwfP8rkzcc4delrDPYNMzW1n40z/aRpyic//XHe9zdP8Sv/+gVstNcpR01GyzfR2rpCwc1zcb7JY898muHKAO14nZun3sp/+usPEpThgXsS7n39SQJviNPf+DaxW+Pw6J2sLD/OZtTHm97wGk6d+RxD/bP8ye99jvk3btA/3cOB/sMsLm1RW7jOlz7zMG/7xSk+9vHP80e//2tcXP4mq9Wv88wTn+bj77vB/T9xB+dOf5ob23XqGxu88b57+bOrX0WkMUm7hyPjfXjVw6T5eX7p/T/IsNlk+aqif+Y+lqJVbiRnuDr3NA8/0uD+e/cT1318XG7M/yO//I4fJl9y+OwjD3PpbMiB25rsG7yNbHmLramAry+kvOHVP87Zq5/k/OZ5wKUxlcMXAdk/Friy9A2OHbmNS1ee5P7jD/LwpeugHVS4zP7eCW46XuQr53pZrj3Fmac/yS1H3kouF+L2TzI+dS+XrlxlfAbmbyxTqIwwfTiimUS04+r3dCx+XwSpqMzguYEtQKSL9HwKJRv/2o1gzefzeIGPxhDkLaVDujadSUiJQpApZeOQNYCN/N5p0yll29Fa4zsujgC0QhiNUmmHg2fFE4HnobKELIl30EDoICqO7IR7CLRx0ELiKIdMC4x2kSYAL08zcGh5kDg58Et4Pf3I3jyyr4TT34eTK6FkgOOXO+3T3cJyL7osOpZwAJlWO+337mE3CrE9d5QVcaXpDsqyg9pKez2cTrxsd0LvHkJ0lOmmm3wld4uf7rloi/KgNOgMdGYtzrDxoFbBr1A67Sjg7YJqVIpR6XPe0/3d3tdYT1f7I4RB0hUxajynExxiNLqj7v++QKDZjfO2SYH2xx5d5xHL8VaZQSuLVjvSIvpGaYzO7Cv17mLZvf572+m6k86mjM2iRO7ynLURO4/a2EKoyxU3xuwUz/8Un3xvEMZ3uirYBdwmvbkmY2nuKr7r4jgeqTKozFI5hHAI/DxaQRzZNLRuAaBUusPrzLKMJEnY2tqiXq/TDiNSBY1Gi3q9TpqmO04fjYZ1JWi329iI4mQHvXMcge/7O+O2+1itVsnlcqysrPDwQw+xsb5OGLbI5wKiqE3UbtKqN7h84SLtRpP+/n6GhgZo1KvcdPwoOc9ne3ubfKFEvlgk5weUe/twc3ncXJ5GGFEsVbh05TLNZpN2u0kuV+DylasdRwcbK76ytkzf4MCOIFRrTaoMg8Nj9A4M4HkBV69f+2cZn/+1Q3c3adLtbHz3jtvdn51ieI+Q959yzJDiudH2e+/Rvc4eex0+vtNxY+/46x473OznFNXPfe/e9+/9jB07vD3vN8aKpm2Y0+78pNLYzlHK6gGyNCGOQpq1KmGriSPAlQJhNFkSo7MUOvOX1hrpenhBjlRpPC9AOB50fKy799h3nl8XlZZS0m5HpNrQDq0VZqa/u8u2q6HxkUERLX2MEWQ6tYmlJqPoQuBIfCnxMThCIvwysfDRfo58uRcvJymWcuTzwc5mtwsGBEGwE3rTPdduiFNXxNjlaD8fR6sW02jWKRcDVEthtCRfKlKq9HDs+E0YA3GcEoYhoDvJrQ4Yy+VPI0W5NESxNEDOLyKMpNms4zgeSqdMTJbYql3msW99ns9+7s/5wkN/yFe++R5azQVM0iZutclyCXEW4xXH0G4v+R6Htl4nnyty4sSLmJ4+BI7kR37yIOsrCwz0D5PFLcYHZxCBx9rWChevXqJSzlMu9VOqjFNvNjgw6TE6MsZGbYkkW6aWzjE7O47j+UwMHWNjo8HkviJhHFIpl7ixfoWoCrU0ZXlzHY1DnAlU5jKz7yCisMnGlqLQt0yxEmCXjSGQ8MY3PUixUuZ1b70HRwY8e+lxhmcFMzffyUBulDfe9XKkH9EzmEPrfow5iC9vYm35OrXNOQamQ4yvOHboZg5OzdBMavQUepBS8vi3vk4a3yDS28RKs7SYQJbn/W//EgdcSextcPHSeT7ziTPcdPvNPPHskwTlMm7FJ58vcuHSPH1Dg2xubpLP2TCv/Qf2MTl1kP2zPVw508YrNri+9Cg/9IO/yOrWRRavr7Ewf4VGc5trVxepNap849ELvOSltzG9b4x8LsdIafJ7Oha/LxBoIzuFqG8FUmEzQkhDUCyB49Bot20xLG1aVdqhOGhjyOfzCGNt15RO0Wq3Yae0TfqSUiIdiTIdEYbRdOiiZCq1MclYL9Io9WxBk1krH+1adbZOEzwJQqckKkUIf2dCzNIMzxNoE+N4LvgOZSePKyx1RAaWq5oZjeM6yFw/jgATbln/UeFilLLFjuwsHNK2U3VmkVtN2gE3zS5doFMc6ywGo1BpsmOVh7FpQ8IVaAySjhBFChRmh0u8t73a3WA4nrtjpg+d9q4AXLlTdDvKWlMpZdF8zO7iaS364k6LlY4Y0CrnMdoCUnspB53/FyltOIN0hBXDmd0WsH2S7VA5xN5r8DweKjMY11IgcLrFs8Gi6sra2glFklg3FaW6qWkgMWQqRWuD4yhr1iLAFQ6ZznavienYjZmOOLADcmtt+eNpqugKGLvvkVJg0qjjfKJRaQYYNN+9KHeP79yYQVfwaRBKkTVaXD93jvmrc7zgzrvxvYAEjSsdjE6J4sTyZTshMRZ5Ex1eOLiupNFodNxFLL2q1cxIkpjhfhvRHScRrVZIsagIwxDP8yiVCrb4TjMOHjyA68lOqpsdv7VaDSklM1OTrK+ucP3aFU684HbaBRsJ31Op8Im/+zt+6M33E4cRlUovlUoJhObSxfOcOHac64sLqLDM5MQY6xsbhEnIHS+4hblLl3ArI6ytr6C9Ivkel2qrTc/AGK4jkO2IVhRSrAyyubZAT28fz164yMTQIFG7QZIpRJBnc22DoDxAcWCYZ589j+f79FeePx4pdJolyA5HWIJjrUC/E1s03XmmO190ucsY+2gMWmWdTbICpXbmpq5HRveQe7oj9t/tFM/P/Rd37CztL7uIte3EdJHhLihif/XddnrdDaJR2goAu8JFnZElMUkUWZAmsEVot+jPssRSkrIMlaRoDSoOLZWuM74xkERtROaQFwWE71n6Socu6OVyiMxFug6O0aRpaov5vci4lBQKBSqFAsYYNpt1a8UmrFuIweyg5ns3uQaJOzBNKwGjJVJkKJFR8Q05IRjKBxYw8a1IV7kOrSwAHHK9AX7OpdLjUSkWUGmE0tbOTybZznwjhNihniRJYumOSqNSQ6I1kdi1JvznPi4+s82hI1vErXnKqsDA4BBBIGhuCC5evYYxAlc6fODP38sdt7+Apeoa7WaKNJIsjjFSMTYyQ6YgSTKUl1KLauQq23i6yrMLazzy5NMMDI5S9j2uzz/FtY2Muw4NQBqRbkb07p/AMVvofA+Ly1UOD+aptWKGJiOeXb7EynaNpasrvP2n38TCk19jeatJ0H+RuWvjbIRLLK1HTEyf5NrlU3j9DtPT9zGSi3GSu/jqs4tcOb1N2F5h6CaX7asXCYIy5f0XuaP/xQzvH2HxRgutB/D6DP/yf3sZg71jvHpogosbNfYdmuTxpx/n7jteQ0NvMHNzmce/OUd+JEU6Lvf9wGu58/YfpJkIXvrq+7h8+WP07Xs1vQtP8CNvfD3FsqSwlfHRD76fmh+ydHmF4ck6hVv6GRy/i+s3roO4Rltto5yYe+6eYm1znVe+UXJg9BauXnuYO4+e5LHTj9DK/V/svXmQJNd95/d57+VRR1ff3XPfuIkhSAAEAfAAL1ESJVGUtBJX8sqSwtrVaiO8sjZiYyO84bVjVxFeR8j2ymuH/9DaWlthM3apkCyJK0o8xAskQQAEAQyOwQCYe3pmevruujLzHf7jZVZX9/QAGAjgDMX3iaioKyszK+tl5ff93vf3eznRpEAWNRr1BX7/X/xLJt5/kPF9TU5f+Aa/+ztf5gvP/Fvu/cDdHBi7F1k3nP3OHPtvv5t+Mk9zpM5IYwd7dt7Jdx7/Kt2O4afe/w/595/5p3RHdrD7UJff/4M/IGnE7J+Y4ZWXX2DP4VFmJw9gTJu73nkLa2sv05ARc0sL7D3ywFvaFm8OAV30KQp/0U4TX0ooiiIfSYsiImsgN0RIil6GkA6V1LyvudBomaKtjz6rmrcmKKUQtgHC+T9EZyAzQEFm+shsIzpiysQZJSWuv14mZ1VRFYcp/JCkiHzppFgLhMhLr5xEJj7Rywq8iDIWo/v+Ne19dtZapEpx0qJ781T+XyEEhmIoSu7/tIrMb7OaSrWKyqINxVB5t6ojIYQoI34bFxJV+hqdc1gVoaHsbEhc5AW6BJwth1yFQBqBNW4QRfUXT6D8Hqb0oroh7640DIZ2nfAXQ+vMYD8qU6JjI3Ik7WYRN7gA+nogOMtgG4N24twgAVFs+dyNwtiywkYU4ZzGmKpcYRWhEeAURVGwbh1xWkdph3S+Dm1iNNoZnFKIVCJFlVAI4LDFhp2lOnZCexFt8W0ijmO0KxOknI8IW7wH02Qdut11HBZjLdqyqY6vk9bbhpzfXlX9QEqJ0dUQvfQjNc6RGcu7bzvCs49/k9roKPc98AjdvIftF6g0RSrla4tHEU4b77Sx3gIVxylFv+c7ey6m29PMzCgKbVjvtxltTmALzeTMJJ2sj7YFygq6620fHSptHZ12j14vZ2JiCqUEuII8L4ibdZJazC233srSlTl2zMxy/sxZzp29wN13H+X5p59FpJqJ5iid1R5jk4p90zuYP3+eoihojY1y7sxZDu3fw5lTJ3nyse9wcO8eTpx4jtnZWYqsh9aa3Xv3cPHiRe91Ters37uPl19+mdnpnawurzDWGqE+OsnK8jKLc+dpNRqMjs0gxmY5N3+Fwjpsv0+t6H//G+wQsuqYIhFWgt0crd3o4Aqf1EtZZtEaXwnG+Zn/rLVgc6zVlKl7OGcH56gdriNdClVZ9gIHelpu/N+Iqoe4BeccpcHEezeNT35WSvlYeWUrEaKc0FBgBOiqBGdZXg8cwnkRLfETOVVJvcPb2hgN8uez0w6rC/Lq/JEJQjjyXFMYi4ySwWfTNCVNU7ROvGWlTALUWhPDIIlxfn6Bxeqcdz5aXEV3BbY6pUmEosCCaqBGZunlGkGCoEBaSzOps3/EkSiLdhHaaBqNFrGcpItA1iJqUeynrh4foZFG1ATkso61bZzIfeWRyOcCGGPI+g6LIWt3B8el18swOD9B0w3iIx/+GJM7pulnBdMNS79/kX1T93HswufYd3CcF09coDE6wsHb7yIzhpNnLrFj1wg1kZDnBbWJBBmPIESGFAblGqh+h7MXzxK5iAunjzPSmkDU17jvvR+n/0TG4spF7nvHu7hw4RhH7hjhT//P09x1S4oYK9Amo90pcLLF3JVT7N3xXm7dO0JtxzS6PkbraINs+QSXT36Xb1/6E0Ybu5kZ3c3ymT6iZbicn+dQ+lGW9Ap3P/JpXl78X/jgex9gNTrLpcUVmlN3MVEb59zSMQ7f9n6Wlq7QaL2TRK0z3jjMRz60n//1f/u3HBz7GAdH6iw2euy47RCf+dM/5mf+ye2s9Z6jVzSY6U2y78Ae/vxLv0csbufo0Z/hyN6dnD7b4/TiIvuOfoyvf+UvmWgqPv3zP8ErJzvc/8Cn6BZ/xpEdd7M0d4Enjn+W93/8E6wvnOHlc8scfuc9PH7qEmOt8zgzwt3vegSzpnnq4hk6UQdRGMyS5fSq49yJZ/kz/SwHz0zynrHdHNp5K9/46v/Doye+zN23PsJ//OJnGZsd5d4HP4RLuiycOs4lmjzz4ne5cOI0t93a4NvfXOCFuT9lMbL80kc/wp/81Z/z7vseoSjOYOJJUM/w/sMP8nLUZrl+nqnZffzl5/4T//VP/DP+6OT/TdYdf0vb4k1h4cBpnDHIsjbxcC+4Gp6t/nyUUiRxDacinFAIFSNVhIr8PUKBUBjrI3zCOpRwxMpPOWu1wRUbPtuqlJCtonPSV6hQSYxIok2zX1XD6koprPDT32rnI3xWG4TZPHxZzYYFDCwUMlIg5WBYTwiBNcbbIsxQTd9hr3AZda6uQ1JKkBJfB2NL1EVJHxGOZDm0Lgbl4ipLwFZ7wNahzwpVCuzKBjD83TAWp8v9ZvMFB64WtmLrbctQ5naPt+LLbZW38lKKu7FNuIrKbTdcXT32wl9QGEtWFGhtMMZitB348gUbbX5rJNh/3mzchpYTlVUD72WVUnn/ORslu6415A6bf6et7w2/ZvFienp6miefeIKs16cZx6yvLRErgYyTTW2q8ngqFQ+sHN5P6m0X1lqSJKHIDQJFr5uR64IoTVhf6yCEIi8jYnmu6WZ9Ml2wtLpCvV4flBrTWjMyMsLk5CTdbpfJyUl27949SCoeHx8HYSnyjJmpaW4/citZv03W76BzQ7fbZnFxkV27dg0E+qlTpxgfH2dycpKVlRX27NnDysoKQggmJiZYXl5EKcHo6Ah79+7lueeeY3p6Gim9FQUkuXVo45jeMUut2aRf+GH9ZrNJrCRF0SdOb2z8Yrt2sbU9b31tO4vGdu3qWmz9v9na3l/r/Ietwv7q/bjW9rZbjylzLoZvW8/l18JhStFtwTpMkQ3sINX/bRTFSOVvKkr8ucBGZ7iKpjebzcE1Yfh/2pX5EdUogUxqRLWG7yCXlpmatLQSSGNfGjHTjtwCcZ08iilkjFASFcHo6OigRB+IQUm/6vxUStHr9ciybHCcKsuGv6YVaJ2johsXuDh06AgTowfYs/sgUWIoioxdu6cxokcvW6GWQLe3yvhUk8KtMDU7jrF9iCx51qaX99C2IC8MBk1WdClMm52T+2iNTFJr1RENQ7uzwre+/WWsWMG5Dt3+Gka2We3NoySMtCYo8j6u6CNQKBUx2hqn1swwLDN39hgXzx2n21ml0RhFpDVcXGDFAs2kwcRIna4rKJxkwXZZafd49cwz/Oqv/wJxvcvU5G5uv+0d3Hn0fu576BHOXbjCS6+8zFNPPcX6apv5+Wd56fhzrC51WOv0UVM1VvQ69bTOlbkO40ckVtcoujk7dtRZuGQ4feoCa+sZ2i1ghKJLj5qoMTrZJJdtPvDgUdbWF1luX0GlkBYpaxe77Ng9iUq6xHHKyvIavW6ffUf2cP5MG10s072oac72aS+uotKE5eVVOu2cZgvm5x2/+Q9/jbvftZusD9p1WeutsdReI6obJloNVtfPce/9d9BZ7zI2Mc3xs9/jhePz1FuS5fYCi4t+cqtY1WmOZow1buGLf/6n/Kv/5g+YXzyBcC1cUWeytp/583NELLO+3uHClTP0jOO+997HP/un/4KP/ujPvaVt8aaIQEvnk0uccxS69AFLBc6gpPQ+NWuRpcjNrUGRktbKYu5yw8/rI7s+4mdcVYTe+ZJN+FrGEQJbzUzlHLb84xBCIOtlFAEv9LQ2RIkvL+SwFEaXETw38Fhb46c6dpLBDHm4akY5X3JJqY3kvSSOwZqBuJHGCyQJfoKBMnjpbSWmHD4dGjIrSzhtTvQp/X5RKaytLYf6nf/zlMmm5VxZiQTwHuQyAi2cr2yKd2IgwM/GNXRBqSJBlFFzW0aKqyHG4e0MovRuKGEIrtrv6vPVVqpOVLUMlPUqhoaAh9+7UVjrrRTWusGQshA+QjY8S6KxYHEUxqEL639DGQFeSMdKDrXhjYu7sz4i5eRGp2o4EdBZ30ECEGUyo5QSW5aoqy6Ow0Jo+Ij547f5t622Mbw9oSQoycrSKo04RQlYvDTH6uoyO/buZXr/kcFEFMYYH53F0ev1aNQTer2MXq+HiLw3up40WFxahnqNOE6Jooh+nqHzjFa9TlpvkucFq+sdnHNMTHmB3GyOIKVkbGyMOI5ZXV2l3+8zOTlZTo1uKXpdZnbMsry4RHO0xfHnn2NspEGcK8YnmiwvXqLRGEU6yfyVywghuHz5IuPj4wghmJ6ept/t0Byp08syGqNjzM5M8eorJ9i7dy+66HP48GGOHz/OeGt0ILSdkMzu3AFC0ckKiBSzew6yutZjImmBgn6vQ60e41w0sJjdKPx/TeFHoaKkrOQjNuwGg06g9darMiiA8zOwUto0hs/T7SY2Gq5QM/zu6/mch/8bhhmMYlVJtVwtrIeDHqKymQwJYx8111jtYy6+rJ4rR0tkaWdzuNIqMhzMGM4NEEiM1SiJT0qs/uOTpKwgFftzN/bXkKzrE8KxDlEmWVeCtfqPt2WypbWWer0++L+GmGhkmtzYMpCgkeRMN2LGUkGtViMzDpso0nqNHi10XMMISV0JmqkiSSCOFJEQ9LWj3cnwcz1JnPP5Ca7IS0921x+vMndBCEGWZYhI0WjcuCoch269g14Rs7T2MmvdBbpa8+T3vkO/D416Si0VCJuwni+Q53M0WintxSuoZsTClZfZP3sra+uLZAUktYLVlQUwi7RXBVZ1WOn0GUsaHNxxGJsLnn/uOS7NGZ7Y8RyN0XUaI3XuvnMXqjaGXe2xa+c4yBhcxOkLV8jFcdYX2+TtKdLaCMnkPFNTM6y1O4y3jtKUOdncMg/ffw+nTsQ0XRORpuyMZ9m/9x5ePfUMX/3uN3jfBz5JO1+iHsOZK4s0x6bpdGISNcqhgwm97sPc95H38u/+59+lKRJqU4pvfOlbvCf5IP/5j/wyf/rtP6bTiRmbuIOLK89wYOY3ITlMZv6KOGoz2x7he8f+jCTr0hszZJeuJF8AACAASURBVPk6k0XKi8/2mP7HR3h06a853P0uH3r/LZxe/B4rnZPs2nsfKpXIXp3zczmSFlNTmsl+i+PzMzy29DV2HZlCOoXLJllZWmLXPnj+zBM89dwcuw5I6q1R/uizZ/n137wDm2Qo3aTQNU4ef4WVSz3edf8BXllyfPjWD/Lsy8d48eWnWO05Fhe6jIxp9hyMiOwe7qjfxdf/+g85fLsgW97N0sJf8/A9P8L5Vz/P+flLuD13oFWX97zvHj7+qZ/nH/3Wr/HoU6f4hXd9+i1rizdFBNoKiXb+vkpyk1GElFWBfX8zZQZzUQpO63zGtMBgjcYaf/Ibnfs6teWfpTF+KlSMxieUD0U8nSMWCmkpazxbpC8agEJ4T7KSiDJhkTKi6yPJPuKLEIPEO0qhISKFiBRxUkNFySBBx7AhZKAaRt+4CedrLDuzkeRSlToTDly5faTfZiWehqNAwm2kAw1KVAk/BGucv8eawW1zJGfjeSXitiLK71ttf7sozxuJ4LwZrhUtv1F4/+fmkl1bOxt+mdL3XCXLV99B+LZkhjoYlVAZvjlXJjy5zb9JJRJkWae7ukVRtKlD80a+RxWF2vrbVW10YtKXjtPWMD45TtbtoDDMnz+P0PmmRN0qahVFUZn8uDHLYiXsB57OobZnrcVJ7xXXhUXFMUmtRrvdQUof0asSCdfX1wclKrXWHDx4ECEEFy9epNvvMzk9RafXZXrHDEI6elmfF46/xOyu3UxOT5PWGxw4cIDJyXEmJsZYWFggL8s8jo6ODiLSeT9DONi/dx+HDhwkjWJ0ljM5Ns7s7OzGsnFMq9VienqWqalJhBBcWlzFNSawylcUAVhf9aXJjLvRnT/r/1dtMYhEbrS3zW14a/R5WKxeL2/k/L3W+9udW290f65ap/OBEO8XK2f1HCSTX+d/jNg4d4c7FFUntEqGT9N0U4lKpbwYjcpZYK8exRKDESChIowDgwGjoegRCeOTG1WMlRG5Uag4Iqk1IKr78ydJSOPEl3QVPhdB4q9r2jqUjDZ1nKt9qAI8m0YdBjW+3/iheatRMsbQo9tbJOsbtInpFzlZnpBEo1gtyDLN6so8V+aX0Jmj3/OWmyR2YLr02ktY3afbXveVt2zGemeexeVTjI1NIE1MqzaJI6W75pgZ20+9MYKRNUw0zt5dBxFilInROmcvnGat06XAImRMLWkhhaBWG/OdcrnCwsJZ9uzex2hziivzPsBhlUHoGJxhNJlg5/QUhcmZmDrIoSN3UW+2aPdX0dkaUvaJozrCST7+kQ8SqT6KKbJ8jeMv93H9gn57jZnZvUgpuXXXbmpLBQ3g8tk23TXDT/3kz1D0xhltTaDzgk/c/WF+/OGHGBttopzkyP5beOybJ5iMx9EGPv7jD9IpznHo9gmaIxFRmrC0sszC0kWWlpZJ41GO3HIIQ0FjxhLLOo2ZKzQmG1gj6bVhZGySD//oQ7h4HS1haleLtdUORRtOnDpBc7xBnjni2hjt1S6JrPP0k1+jm2e8fOoMtVixvHCFo/fcQS1psXCl4PLiORqTp9ixf4RD+8c4+cIiK+0XEWKNlfY8e26/lZ6zzM7uYGpkjLWVBaJEsdpZYufMyFvaFm+OCHRUH1xMjS02Mn4Lh8mLQQRTxQoRpziVIop8EO1wor8RFRgWfFE13ajFOoPSGiu8uFXGT/NqjcHlvji8E2ATOYjEIASijGZXwkBAOSS9IWRM5KtlOLURaxkkt9iNcnOu9O4aZ5Fuw6ph1IYAk3rzcKSqIoBbhRdDERqxEbWMyq8vpfTTakext3K4zUJbDIt4p4ciSUMXqPL7Oef8JAlD26+izk7IgSgc5qqLm2VTtKrSDm/kgjdYRm6kN7kyyebGphB6W4nfn8p7X/rCq/er6hZOEeMnIikKg7CCOIpwzhINeSer22Bo1frPSyEHVgjKTlgcx0iRIKTytZnjZNCmnNVkpYWjiihW+Mcbx9ZfIIdmiRy6iFdt98itt/LCyy/5aJ4SLK4tkTZSpHHEAl559nvcevTewfbB+zyts+TlkDZC+SlxlfClKOOYKIrxQS7rJ/xJa6ytthkd91OR11QNh/f9G2vp9vtIoCi8SE+ShLQsbZlrn8Q7MjbqrRvW0mg02HlgJ1cunoW8Ta+fo23M4vwC0zOTFL2Or5Hd6zE5OUm/22NlZYVmvUYU++ORJBH9vp9I49lnn2akkXL+/FmUUiwuLrK6ukqj0cBaw/lzc7g4Zf/uGcZGEhbsCCYeY3VxidmJKV65dIEkrhMrweLq/NvbOF8HnfWxIvL/ETYirtc2lX8bjPyUibuDjr+zG6LTucH71zqXqwmUAPRQZLuycvkn/n7g/32N6PNG4vPG/+ZgZkE2j24NR6KrDuJw1Lr6XpVQHezz0GeujS0THH3qpXAbx6Eoy4cqpRBSDRLy4jjGaUMeRei+QArB5PgE/X5/cE1xzvlJqMrv5WyBlYI4qfuSoUITOcFYU4GGsVaL0dEZrqys0c9hescotUaLXNYhVUgnUCQYa4liP7tslhW0c00vy+n3facxTVPydh9nDP1+v0zUBWGNT9Yvj+/wMbwRZEXOqXOPsbZ2miQZZ2S0Sad3hcOH7+DypTn62QpZlhMBU/X9REmDxmxKWi9oL85z6fxLrC3Pcfs77qfoG0aTOsvasjC3yvROiTUZ2eoycWpxImPXzCGO3vJJbOMEuVYYN83UaAMddanJRdbyhEurK+yf2EOapCTqIBOHp3nu1XPIvEAXXWQ+SnOixmL/W9x3799n4eILvGIWKGSNtahNJCe4sPYSZy99lvtv/yU+8P5/wPGzX6Nez1lbfIWVRUOjYTl/9gxX5peR9ds5e+FZpic+yoH74R0H70UmCR//9K/w9PknuLL8Er9834c5r77NB+79FS7l3+Hc5W/ysz/96/ybP/wMRVGneLnPmbNPM33bIY4cOMp3Hvsyn/jkT7GzVeeP/vzP2TcW0W0YTjz6FaL4MDpPOHBgH3I8o23GePcHb+fMqwqtIG/cxflX/5L3/PgOFi8tkiY1funH/hFfful3WGgv0REd3vUjDY7uepgvff3zNOIIWV/kTz7/B8TRJLr9Mt9+9Cx79+zk5LEXyVqSxB3i8it/zU//yCfpjRc8+XibX/qV93Di5BOcvXie0/1nSd1zHDn6UV5deIoR+SCibvnjR5/lHfccodc/S3t+lbjV45d/+TeYW/8GbXvnW9oWxdsVKQwEAoFAIBAIBP42clNYOAKBQCAQCAQCgR8UgoAOBAKBQCAQCASugyCgA4FAIBAIBAKB6yAI6EAgEAgEAoFA4DoIAjoQCAQCgUAgELgOgoAOBAKBQCAQCASugyCgA4FAIBAIBAKB6yAI6EAgEAgEAoFA4DoIAjoQCAQCgUAgELgOgoAOBAKBQCAQCASugyCgA4FAIBAIBAKB6yAI6EAgEAgEAoFA4DoIAjoQCAQCgUAgELgOgoAOBAKBQCAQCASugyCgA4FAIBAIBAKB6yAI6EAgEAgEAoFA4DoIAjoQCAQCgUAgELgOgoAOBAKBQCAQCASugyCgA4FAIBAIBAKB6yAI6EAgEAgEAoFA4DoIAjoQCAQCgUAgELgObioBLYT41tu03t8WQjwvhHhOCPEZIUTt7dhO4IeTt7Hd/lbZZp8XQvxXb8c2AoFAIBAIXD83lYB2zj38Vq9TCLEH+MfA/c65uwEF/N23ejuBH17epnZ7N/D3gQeAe4CfFELc+lZvJxAIBAKBwPVzUwloIUS7vP+QEOJrQoj/KIQ4IYT410KI/0wI8bgQ4pgQ4ki53BEhxGNCiCeEEP+y+vw2REBdCBEBDWDu+/ONAj8MvE3t9k7gMedc1zmnga8BP/P9+1aBQCAQCASuxU0loLdwD/BbwFHgl4HbnHMPAP8O+C/LZX4P+D3n3Hu4hih2zl0Afhc4C1wEVp1zX3ib9z3ww8tb0m6B54APCiGmhBAN4BPAvrd1zwOBQCAQCLwhbmYB/YRz7qJzLgNeBSrReww4WD5+CPhs+fj/3W4lQogJ4KeBQ8BuoCmE+Htv104Hfuh5S9qtc+5F4H8Avgj8JfAMoN+mfQ4EAoFAIHAd3MwCOht6bIeeW7wl443yMeCUc+6Kc64A/hh4yz2rgUDJW9Vucc79H865e51zHwSWgJffml0MBAKBQCDwN+FmFtBvhMeAnysfXysx8CzwoBCiIYQQwEeBF78fOxcIXIM30m4RQsyW9/uBnwU+8/bvWiAQCAQCgddDOOdu9D7w9x456gD+w6Mv8PMP38HllQ7HLyzyobv2APClY2d518EZpkZqLHULjp2+zEOHZ1jp9Xny9CLOwd6ZBicvdfjUu3cC4JzDiRghI06vGU7OLREnEQd2z/Kbv/KLNFKopaMkURPrNO32GlEUUW82cEKRKkkSOeJanTgRCCHIe12SOOLES8cQxPz+Zz/PwnrG3OUVJienybKCRrOJak3w0Q8+wP7xhHv2GmwxAvYSkAJgrUVah7Uah8Fa6/fXObDDv4cFYfxDpxDC74eQ5XvVUhacMxhTIGyBtRZjDEJrLDFOJDhGMEKSNKYxzu+DIQcUBoEREV3rMPkq3W4H4yy9bk6nV2CcpZvlGGPolfHUzCmMMfQLTb+XUVhHoS2FNRiXo62myDpYqxECpMgB0FpjrUVo/5211uA0QjiENOB8kFb4D/n76nsKiRAOKSWJUAjpiAU88/TyxkLfZ/YfnnbnTy9x2117sbljcXGN97z7LmIleezJ53no/nvYvWOGK8urPH3sOH/npz7O0vIKn/vi1wHH4X17eebFE/wXn/5pOnkfay3tboe11XW+89QL9HN/3KZnxxlpNYiiiDiKGB1p0Wo0kQpG0jpSbvSFoyhCSkktSRkZGUFKSaR8+4miCKUUtVqNKIqoxQlRVAbGnW9TVVs0ZbvMsoxenmGtJcsyCm1YWl+ln2csLi+z3ukyf2WRovCNwxjjP2/8erKiem58uxQCa/22hn9fId3Qa1e/PzhHhnBu6H2xsZywcrCNrQyvY3j9w6+p8vXt3rfl6865QQTCWrvtstW2hrc5/FpnLbthbTcQCAQCb57rGlJ+u/n0++/CWsuO8SY7xpvgvHj86N0+d8pay46xBrPvPMh6r897H3yIsbEXaTQkL55eZLJZYMtLmpCCOFJEScIn7rmH3XsPkNmMWpKQKAVCIlUEUoATOAHa+u1FUQRK0dcZsdCAxBhLp71ONDrO5/7qMZ4/eZ6VvmFpbZ2J8SlWV1fZt+8AC4tLyP4FLi52OPbSWR44cCfK9enKcZQxg+8hrcMY6QVmKRaMMSDN0BGRgPSCQG5c0KWQ+Gp85VIKEF4YYSOstUTO4JxAyBpO1ZByBITESd9ByAuDNF1wEodEOEdDt8lNgUoEzkbUWlCrSYwxNDNJYRz9zGEcGGIKY1jrdomlQxtHVmi0VfQKSew0Lu+QGwvSgijFkfO3TZ0G5wAHTnA9akI4cNzYDqCzgkO37MIaSOsx77jzUNmOHA8+cJTx1gjaGnbtmGbfng9hjCFNE37hkx8H4MQrp5mdmhh0LKrjUljD0Xccpt3tkBUFhXWD4zXoSAkBbH59GCklSqlN91EUDW7Va9Wy1aE0xnfqtNaD50XhO2ZFUVBoM9hXrTXGGLTWFEUxWN7vk9+fav9uhs76G8Fa688l2Pa4BgKBQCBwUwno10MIQZ7nKKVotcb4yje/wwsXln300gred9sslQqI45huv8P02CRra22ShSVm9u3GaoOUksKAUDEGh8BfNOM4BiWxOJSKgA0xm2UZrdExnnn+OI9/73kWMklSq6FkTGd9nTtuv4sXX3yJHXv20F1fYm5+icN3vpNOr89YlFOYlLgUKz46Dk4KHKLcgzKaZra4aoT130hUHQOJE8OROvBC2yJkhJASShGGUAjVQKga1qUIFWGdQqqIiBhnc1y5B0pYtM2IhEUIfxSdkoDAKoVwEBuHdBaLpHCC2CqMjcEaCmtAQGITALQVFCrCRQZj7DWFrnMOgcQLQR+tfkNtoXpgb7CAHhKH1lpMee/KCGX5621a7tL8Al/71pM450iThA89fD9mSAgP38xriM/XE9BCCKSUAwFdvbYhvtn0vtEbEdtqfcPrrcS91vqq7z38vPrccKT1B0U8BwKBQCDwRrgpBPR2Q7rW2k3RSFdFKQFjNHlvjdnRhJ/42M9w/uIl3nnfQ3zmD/89rWbdL+NA25il5TX2HLwN4wp27D7A6bNz1MZm6ayvIaLUR32tRsYRKokxFmLlELU6ijq97hJpbZSV1UU+/6Wv8yd/9nni0RnqQhLHikTGpPWEU6dO0Wg0cNaQ1EcxheaZ7z7Ju5u38K5bElLRQNj+IJosJAgncS4aCBAhDVYWg+/rv3PiI7TlcXFCQCmANksSBVLjUAgFSkpk1MRFI8i4DjL1x1h7oW6VwxiBtRmRKRBOU4/6WOkjzBaL1JYoljgnSJVAO9B1sEicSCisYaQrWUsVWZHTzxXWShpa0s9ylG3SzwRFIciK8jvi1bkZFn3W/7JSqKuEoHNuECX1wq9sM9YBFnmDg4PGOIrCYK0fCejnWSkgLcb5CG2hFIlLvPAUlp0zU/zdT/2Yj+LiBam2ZmC9cc6BFGhryHWBdRYQGGOo1WqD42GtRUViIGKHxXElYgGUUoOIc3U/fIuiyH+GDaErhMCVUeeK6jyVUm4Sz1up2jOvMZ5wPVHdrZaL1xLjryfU34iQH97G1v10Q+fi1nVWbfVaHYatr4fIdiAQCPzgclMIaMnmi5ZzznsQBxebDfHsHYiWCImKJM899Ti5kMzMTCHHZjjfMxyYatJfnmNsZh/3P/R+Tj7/GHc9/KMsLS6QqIhuMkY63cJ0LpPXJomsphY1yLRG1VNy63C9HDUygWCV/+s/fI6//tq3WevmjO44yPjUOIvnL1CrJawuryMiRy0SxHFEUWRYlbJn1wwvvPQiz1201Orr3LGrgZIJBotUGTiJNQ6ERAkfvZVInFKbLrJ2KMJXUV14r7q4I5AiQjmLiOq4ZJSkPglRilD+wm61xVqDzfvovkCZAmHX/PGPvR+6ahQ16wWiMYZcWwwO65S3fKgYTcJILWG0mVEYQz8vKIyj3cvp5wnNOCPPFL2+pFPEpQXAkBU5uRAURtPPNEo4jLMYJ4iFAgcCgROm9Hz77x4BQlRRfEOqJNENjmwWhUEIhXOWSEu6vQJtHImSRFFCPe2hrUUJb5/IS597JUYtbiCac11QFAV5npObAu0MhbalOFbEcYwxDiXtwPJB4dBOoIQcCGettRdyiSNSCiUlifK+aIlAWIfTBucgShWR9FYOJ33b08Kvu9AGKQVCSKT3CaFURF7kRCJCllX1nHMopUorksA4VfqD9SYbx7C4v5ZnuGKTN3pLJNx37xQWSWQNVlhcBE4blAMn1CCiv7Uz8VoMb0MPdeir6D34ESAhLNV/krFlh78Ux9V/mR3uiFTbLju9g05HiMoHAoHADyw3hYD+m2FxOuff/O7/yD/55/8dB+64h3/+27/B4Z37EM0xzl+aZ3x8nLNnzzLZbDE6MUsvz6iPTVJ0FgbRvHq9Tm99Fa29lSOOY3pZwWOPfpO/+Kuv0O7n1BujZFnGuZOnadQS8jz3tg9nUVIxNtbCyhiShEZrhOZIi552LK/3aBypU2Q9Lwy3XFw3C4Qtw/Cw6QI+zFWiwKnB54WMkFGCimpelItSfCrjRXvsI4lCRAORoaREWLBVMhZeqEqpQCbem+vK6KdQeDkQ45wjsRYhIS13KVICV6TEUiBcgpMOo6tIcgrWoIzAOA3aYq3DSoGzrtyvjUj7oMPARsdh8NoN1iCVGPTR2KiMIjusYBBR3uopllJirNlkibDWYmzlHd6aKOe8rWZIEFa+4zjyx8qJqyO1wxaO4Yjx5oi+GBzv14qaVp/dKnyH91e4oQQ7acG8sYjvm8JJb/yR3oKEsUjn2D29g04vY6XTx4g3719+M5+7VhJhsK8EAoHA3z5+oAV0dcFqRgm7xiL+9//pv6e2+zZuf/Dj7J9oQPsyX3jsWe69Yx87E40aGWV1vUsazxOJiNrUrdR7l9FCsbi+Tr3eJLfQ7+bk2vLKhdP8py9+k7V+QZo00CZHWUtdKZyxGOuoJQngSGp1lpeWqNVb9FfX+e63vsPs3r3IyXGWsw5Z0fdWESmRxN57PPAjiEGQXaAQbAiP+DWGhLcOn1dD/zgBSQOSFJnUsFL5JEQnQVlE6dGN602ss0jTHiQnqkQORJAQvtIGQGIMxlkSp8pqBwkGR6EhjbyXPMkTcIZUgtExjdgnn/V6KZ28T5EbullGpg29nheB9b5Ca02/yNHWb8OYwtsLvIYesmlUHY/XH8r/fjEsKIcT7ainaGvo9iMsPjJZJe9Vvm3vcbYDT3FeCulBdLlk4K8uf4u8KHw022gQkshGKDY6FXEcXxU5rcSvlHKQJDcsoIcZFstVkuDw56vVVq8NbkIikChhkc7Ho1/PyvFmcEIinEY6sMoRW/iRB97H3v37uHTuIsbBl558gm7527yZdlIdy+v57HaR9a3n7s3QZgOBQCDwN+emqAP9elGaa2XCV58rbEEcwczYKP/6d/4V3/zW4zRm9rDSyTl0yy1cXu3ijCZJajRHx2jW6kyMjRM1x9EyRsV1VFpHA91ul9bYGO1Oj2PPP8epC5dJ4pqP+hWaSClMWW2glnhf68jIyGAfm80mUkoOHz7M/Pw8Rkrm5tdwIsKWiYNWbI4AVlSiVQiFlBFSRiC8ZUKqeHDzyYIRKkoGz6vlfORWImSCUClSxagoBZWUkegIp5SPlIsYZOyTDcv1ISOiKEGpGCkj4jhFSi/8kij2nlnpvbNp5CP1cSSJpSCJFUkkqUWCJBbUU0WjltCsp7SaKWPNGqPNJq16ykgtpVGLqdcS6rUaI/UGaZxQq9VI03RQIaKKjg5HSocjpjdakAwLtErgAphSAGvnhW9WFHT7fXpZ5q0aRpMVOVlRkGtNrjWF0aWVZbPw2xoBds4NRG0luu1QhLoSuttV5Rje72Ev9aaqKEMMb6v6nBqyGVVR9XIL5W/lcHajE7C1o7edfWPreTC8/eHjXH3HSIKzGvKC3bMzHN67l97qOp21ddaWlgbt51pe5uH1b5eEudUmtd0+bbeu7c/p7W0kN7rtBgKBQODN8wMdga4w0jLRSlhYWeS//e1/wI89/AgLHcPIvqM8/aU/48Of+BRrcy8R5Tnju/ayur5Ed32RM2cvcujIrcyfe5nFpWUO7N3F5fk5/vJr3+LYdx9nbmmN8YkZmomit75GKgSmyHHOEpee0npao7PeZnxyEq3bLKwsM7NrN6fOneH22+7gwJGDnFlaYKVTMNEUOCy4qPRRlkg58EM6u/lC76QXxAwNu8st0bGBuLG2jF9LRFpDJHVcXMdKWUa5va8Y55A2wso6RuaYshJIHMVE5bC3F6/RYP2iLKMWDywcEU5AZCU29lHNzGqwAqUEuSmII1/arJnUKGyMNdDPC/KiYL1Xp1/kdPs98szSzzN6WezLCWqNM5bcmYFwdM7hrPeaCmcRpedXXkMYfb/YWtWiEptK+WNojCE3ekNECZCIjagtbpMohm0iu0OC04tliyyj0JEUZEWOsgqh4kGpOmCwfSEESRJtEnYbthN7lcDdahPRemP/pZQ4NmpNDycwOqHAGRppgmzWWVldx9qNnLvXE4zbidztRK0DEqUwRvNrP/dp+v0ul+fnyLQliiRCppvE8xv9Ha/FdgL7jfI3+WwgEAgEbl5+gAW0T1iqWFxeJoojhMvRa5fZc/RhRNLk07/0q8ytrDFz+B2wfoWnn3mGnfv30s81IzE8/tyr3H1ghme//RiT07PMXZnnlZOnuHj5CpmRiFHIux2aaUye+WQ/GymyLEMlKUmthtUFnV6GEIpGWff3lltu98lhxnDb3e9ivf0qE606wmgsGxEpf2FVIEz5fLPf2UGZyLVddYWyRrRwOCuQ0UayoVAxUsTIKEaoCGN9vWXhjc04ZX3SGApnlfcbywQlfDUJWdWVZmNIH7z4Ay+ghRAUTuIKiXEaaXzNbCcsNWfoCEMSxWUENh+UCiyMJa7VfBJhv05WODr9Hu1uH1MUA0tDZvJB4qG3MFiyMvoPpeixN4cwqX6XSkwW1hBZi6l80GKj3rKxGx0fJ4bEbBlFrkR1lZjmf9OhKPRQ56v6/LBdY7jaxnC7qYR1VS1i2L9dfYet99VjpdRQpY/No0LDAjxSgve95z1IKfncV7/q636LNxZtfT2RKas61QJmJyd477vfTd7uYnWOjBSxihFO0uv3r9u68VrL/00EcBDQgUAg8LeTm0RA242LcinwYKPuxrYXtzIT3jlH5JQvQ6ditM149snHELO3suvo+7GtSZ7/xqM89MiHaeXL3L5/BytxjSwepUaH1bUFvvzVF1ha7vKdx57i2Pe+w9yFS0zM7mHHzA4WL15AGIO2BocjUhFj9TpKKfr9PsZZZK1BOjnLRDNlcXGRWq3GuTNnEXHCyMtnuP+B97An6pL3lqlJhUlaRMUyKHBWYRwkQviKDFsSnySbE7yEEIhqEhXnuxA+ya88TqW4ElFClDSQtcSvxeJrXhtfuk9YiRURhRDkFmpSYJz09mmhQEqiuOYtJzhEJdoHO+b3I0VSuJpPJNQaazVJ6rdRT2uDSTh6eQddWPr9Pg5DzXiRXDTqGAt9o+n0CqzVdPs9sjwnL/oY7ej3c7S25HmfSCq0NejCUliI3Y0VJlUFiopKzCpKm4OFPCuQzovnoigGnZBKLFe/rcQ3fWddOVlJKaqlwlqBcwJtIZLSV0exkEQRUkTgZGm9UdRqDdLUl7uLpUIJ6at0OJCRwkmBimNEpLa1UgwnH0ZRRBzHZIUBJ1EyJi/6g2XjOEXlBUI4Gqngtv37+eBdd2IKw188+k2cdoynKgAAIABJREFUtSDystb31UJ6Y/ZB2Djjtx5jM+hYWgHSan7x4z9Kd2WFK+02nU6HNE19ecRehyLTGJshpJ9MaGhN/n9mm07Xa9krho+RMQapNltLBmUot/FNb9fJgM0dlUAgEAj84HFTeKDfFE4ObsIZTJFh8ow4jtm3bw/f+OpXiHCcPj/H7oO3YHLHleVFIjJGJ2ZZXF3DOLh07gIY6LRXmZs7z/zlBbrdLkZrFuYvkyQJURKT58UgCmeMYXFx0VfgAC/e04Sdu3axtLREluVo6zg/d5Fma4Tjx48PxI0uLDIeKSNzCisjhIqoJgXezkO51Vs5HFW85k1KZDXTnPQzGg6v07+uwMlSUIjSQ61wQvpELaG8PxqFkvGmmxTRwKddRTy92EqJ45QkqZGmdWq1EX9rtKg1m9SaTdL6CEkUk0QxtSSllsaMpDXGagkjjRqjI00mxkcZHWkx2mrRrDdo1OqkaZ04LvchqsrbbT9d8/ebawlR2JwE+Fq317JVDHt1txNoW33iW2+DCVPKcnrDsxBeK/K61Z4CbNrPqvNQRbobjTq7ZmcYbzRIpCSS3g99rXW+UQGpUEjnrVpOWCZbNdAFK511HJI4qREntcEU5dda79shWF/PY/12bjsQCAQCN46bJAI9XBt16IK+pXTXxnCztzpIWWa9I5BCkSQpfW3pLMzzd378F/n2V77EniP7yS1849HHeOjdB1hfuczJKydYWl9Er63QXc2Iagm2u8aZCwt0u312796LMJas3aaIJFiNiiOK0neqtabZbOKco9vtkl1epJHByWef5d0PPsiLr5xk7+1H6SN59fQZfuM3foPlV7/EZAJJM6FXn6DfmSOymihJidMaRXcFoe3AL7opCr2l7Ji4KoK18dyWkToVxaCUL2UnJEY6JHE5eYpFW4dDoh04FIiovFcIfDUFI/yU5tsmRqlSkDtF5eeWkY/4xaUI1Lo28PampoUxvkKF1gU662Ctpt/PyW2BLnLqSYoVPlJu8VODG+PodHrkmWa13WZheYUs16x3V7GAKfK3tiFeJ8MiVIirf7dhn3rlK0YMlZXbMnlJtWx13DY84Jt/g+FydFsTBodFtZTSdzqGJk6RSqGkQgp5VVnFat3V8+EERucceZ4PvNrDvm2lFO+87RbuOrSfSBS4oksSSYq+Q4oI67aP0m62jVw9YYq36VickggJylp+9VOfYuH8PCvdNq3WjJ/8KKmhYk1W9Ihjte0EL1uPz/B+bLVZbI0wV/vjj7kdLOPc1d9lu05OSBgMBAKBv13cNAL6tRi+GG4IFkkUxWRZRjQyhS4sIq2TGsHMdMJj3/g8t37oZ3nl2NPML6/zyCc+zv/3pW9yy3SEiDJOPPscSSqYmN3JyVdeZPniBVbbfdI0ZXV1HdFrMzIyArpgcnqKleU1jPBR6CqpSkqJ1hrVamCUwCSKEy+9zG133smXHn+Cn/7Up/jIj32SM2fPUzt7jonbR7Emp95ssN7bSdQ/i3WaKKmTt9fK8mBbBwWuFkdSbF1mWDAJXGnzEDJCKB9ljmLlp5UWAmEtUvnkMoQY+KSViv1Qu5BIFSFVAkqViYxi0/EXqox0EhPJDUGF8zMXVuKwen1rzeOiyLBWk+eaTGhs3qffXvfJg7rAOkefDOcE4+MWXVimsoLG/ALtbg+xUKPf79PrLb81jewtZquo3ZzwOXRchkRj1c6r5L1i4AcHa90gUu1HLzZEWRzHV5Wi2yg550VzkiSDKLSUkkhFg2oaWyPCw8mB4JM68zwfJBQWRg986tX6arUaD9x5Bwemxsn6HQplSOOYnuiDlEjkpmTIjYRAw+shRYQVjvE04ZMf+Rjt+UXmuzlJNIaTglqzQa419TSmo3OMLV53nW+GDVG//ftBJAcCgcAPDzeFgHZuI6KjsDTGJllZXgOTIaOIwlkilSCx6LxACYGLLIXJEXFM1pln6sD9rK6vkes2Sqc0GpO88twxrBFMjLd4+rFvo9cXOZdL7jm6E2Eylq+s+SiflSwsrbDvwC2sXjqHVII0iVhfXmJidAyhUrq54dDB/WitOXv6JDKq0euuMbN7FxcvXsQVOROT00xMzfLksRd48MEHiBPF2voKZ86c4ZFdO5EmQ8qIRIJoTRPn5+mJGFUbQ9bWIeuxVUALypn5qqu2Ayu2T/pClE5TC0L4ZD6sQIp4KOXSP3JCglIoFSGlQsgYia+gISPliy8r71F1A3uHgGriFUm5rwoh4kEun3TDEUY39NginEAo46cJjxIsBhUbEmfJVY6kTqEzRJFhTAFGYC0oNJEwGGNppgnogkacQmFpqxtfxm47hiOa/t7P6Adio2PBRuKgX9A/1oCxYITEWrClxtRak6Zp6evdaCfD0eit0c9hET1IAnR+pk8lfALrVrtJJCJyq72dxxlADqLhg6nGq/Vjy2o0EWPNEURSx/aWUeTUI8UCDpzPHxDy6qm/t4ucb30usAhnOXLgAHtaI5y/YrxtREFcb6CzgnptBEGOLTQYS5LU6GrrTeVmaL1D+/5GBO+23mZbPb+6vN7Wz2yN5pdrfd3tBgKBQODm5qYQ0EA5RC0hrrGy3kMkDab3voOZmWlGxxp02x2ccywtLXH69Hny1UtMtBoo16cXNTHrCyzPL3Lnve9FW0jro2RELCwucnHuHFMzs3TXlnFpzJOPP87o6Chnz55FyZhLi1e466FH2DE1xVNX5jHCkjZGUbUWjXqT1ZV1Dh4+xFqnx8zkFGljgUgYkrhJnmlU2qDRHOV9j3yIk8dPcNvBwzz87gd47MknuO8BSavVwokV6nETbVfJjSEZ34VZeBbwyXwyjiDbJqlru4SjLcL5KiFdVfkoE/2Gh8e9WGLosfdLDyo3xBIZRwglSyEdIZwvzeGXj8tIt482CyFBRoMpjKtkLykl0VDimBU+Ah3DJiFm6xuR6WKkwNiMQue+CkfWQ2tNp9MhyzK061Cv+/dGRjRCRKysrLyl7fCt4lo+5vLR4Lljs5BzzqGNo7BmSKxu2Ai01sgousoXXx3D4WM7XEdbaz3wKkshBr+3HJqJsoo8F0WBk75qh7V24G+v7BvVrIdVNFYJye6ZWcbGxkjrdbJOgi1WadUaJGqdnI1SfG/GC6xTgUTyo+/7ACtzF8mco9ZsoLWmXm+Q06fb7pDEjumpCbpzl9/MT3bdXKtUXvA7BwKBwN9+bhIBvSEAe1mOlDVuv/MOzl5ZY+7YMXrtFZJIsr6+ztjEDPsPHaHo72R94RJFO0cnNUxnlalWi3ZPI9IUKROWl5YYGRkhTVMuX5xjz549XDh3hlsOH+b83AV6WZ/5hctkOidpjvOFv/oiu8daCOGoNccZGW2xsrCIEIK1dpfcWi4tLNHXjlhajM6wUcHk1Azp2CQnT5/j4pVF9h06zF984Qu84553cvz4cR5838P0T32dLIsQCeAEhVU4K4mSGBXVUCgM20ThEJsiWuWBGhyv7e5tJZ63ESzDArp67sqJVKSKkVKUyYEKKSL/Hl5kb3y+jGALgRCRT0YEhJSDCiFCysEUgr5SyOZpy5URWOs9zk4apLWoQmOpERUZOEeU1LHGIKM6Sb+PtjEqXUMVCVEUo1SBkunfrOm9TWyNBFevwUZZt2sJ6OH6z5WAHraADEc8N0VHh9rBtRL1hsWyUmpQHWNYQCuliJ3zCYdSDUR4lXio7eYotBKOybFRanHk23Oc+go0tZRYKnJz7ajzG4kCZ7qgLhW6m9PONCryVXCM7ZdJjQapBHEsMX1DFEXflxjvdhPCBAKBQOCHg5tEQEO91gSgmdZYXlnhlRMvkWfr3H7kFjrrgrHWKMdePIHM1jhz/GlGD7+HW993P/OnX6TZbHLh1Wcpeprz584yc+AAi5evoBB0ekusLi9RFAUL1tJtt3nu+WdptMZRccLYxDSTzQadlTX2797NnYcPkmUF8/MrFCTcfe8DXLw4x0p7jVtvu42lpRXe9+M/yWOPfpU077K8vAgITp48yfjULP8/e28eJdl9V3l+fr+3xpoRuVcutVepVKWtJMuSbXlFsjEGbGO7sd0MNIwZuplm2Bq6z5w+04eZOT59ZqdZG2holjbgBZBXwBIyFpJlbZalUi1ZW1buS2Tsy9t/88eLiIyMyirJtmyXIG6ddyLjbfHivZeV931/93vvA+/7IU6fPs2Hf+Z/5NLFecazWer1OrPZHGgtwgg816OqPNJGmoSdQ0skcd0WhtjWGnehrl3R2s1fNoKYuAqxY1hfyJ3Jdjs0upqOklr8KkBqBmgSoVkIGRNo1VUM6DFxbjt7CKGjOvrbdsiG1Dq+0lqXmEV9Wu4ooluRDjoe2JEiUAF6ECEV2CgIQW/V8Voevtyk5jkomcKqxdZ2mmZ+M7fbK4ZrEdRORVjKRJfwXktm0UE/ee5NNuzdrj81sCsj6KON/Q2NvRrnbqqjkDvIeIdEx1IOSYTA0LY9wTWtE+Xeuf8kEsHEULbrkIJmgDTZMzLCymaJes8owbVkGr3nqP/cWAiOTE9BGNHwIqQWrxu0mxp9z8O0IGGayEwKXwjU+Us9muVvf2pl//farbFwgAEGGGCAfzy4QWzs4gajRCKF32qSMHRMDZTvsjB/idGJfbx4fpH7f+D9JPOjWMkEVtTg4oWzaHaSmuOiTxwktBKMZRKszF+gtLHG2toalXKN+fl59kyOs7a2CiIin8+TTmfJZIYQhs2ho7eSFT77xydYW1pkfWUZ27ZJJtMsr6yhzAQTswew7DQzh44SZXLM3vIaVrcqJBIpypsFJkdHmBod5dyLc+yf2Y8IYGpqlmq1ShRFFItFIiUIw1jPHQQB0sxS88EPBVGfg0N/FfGVmnbDjuUyrl53kgil0NA0A03T25PWjfnubUrr2qd1bPmERGhGzxTPl3oc7mJYOoalo5vatg2ZZWNaKexEGis5RDKVJZHJkEoPkRoaYig3TDI5TCIxgqHHcd/f7Qr0blXmzrwgCLpJgL3L+qcOOqS589pZ1iHSQmwnGL7UNe1Hhxx3Ks9XXbeeqXfZDveOnvU7xxsBlmWRScS+05ppoFs2pm0xnM+TTaV2HMPLuR/7jzsrDO678048obBSQximidQ0RDtpsXM+dF2STCZBA8/79rmz9GueBxhggAEG+KeHG6ICHSFB+TSqm7Twkb6BJiT5sQk8X3Fl4SKeW+Lhz/811WaL2+9+DStrBfLDCRYXF9DTeTzPw8hNsbB4iUiBkQyp1RuMjY2xd+8+ypU6Bw/fxOLiImg2liY4cHAvmshQWi2wVS2S1k28hktqfBgVqdhmzjIol4uUN9eoblicv3iB93/kp5mcmWXvz/wyUavG4599EFM3QWpUVpdp1mqMT0xxaf4yb3rgrRS2KozlZrHlKook6z6IhI6VzBN4EHhNjCBESY1r/UmOuNotYXtZRyohQBgoIiJMNGWCiGOlQ9WxPBMo1W3/i/fVJs6RFOgidj2I48PbSS0ayPatojQThEBDoKSMmwtVDwnTiPenSZQWV6sjIZDtFLz+7yCE2I4H79cMd6qj0sTwPPxIMjQaoLQqyUyRhqOQ2uq3fgN+i9hu4pMoFev5wzBudGt5IZalowvVbWDrdd6Iw1Pi934UEnakG5FGFMahKkKAUApB/LpNvCVSSYjaNo9yO4xIRvFxdLy6daGjCQ1TM9E00Y3i7ji6CCHQ2hXyULVTKzuEWoEmBBE7HVWiKMISgoylk7baDzKBj20PYSQdTBWxb2KMc+ur+L6PEJ3qcu917g1S2R4lCSRYYUQUBPzgOx9gLJOi1BIYCRtUyPr6OolEgiAKULpkKKkzkR0iNCzERrXtlBNXxyPZscjsiTJs4xslwbvJT3or3b3z+9fbbbsBBhhggAFenbghKtBKgBtCIE2EAtM0abVaFKsNJsan8CON4dEpTpy4mWQyie/7GKaN6wfYiTRBEJDJZNA0jbHxcUbHx2i6DhMTEzSbTdLpNJVKhfX1daSULCzM88ILL/DVJ58knU5TL2+RHxqi5TiMTk3iux7DuTxhGFKpVJiammLf7F6klNxzzz0sLS2SH81jNwJaTZc3v+s9DE3t5bZ73sT+A7PU6hXWCltUmy3OnTtHPpdj8crltsOCwPFjKzcvDNBMg9AP0OTuvfm7keZvpNL8cqt8u23/sj9Xi/XOXWs7IXZUKntfeyue/RXsXr9i0zR3TJZlkUgkSKfTJDNpDDuNbidR8rsr4ejXL/f+3GnoC4Jgx7zdppiU7qxC9+6v9xz2Sj3693Mtgtd5vd417UdvBbr/mvfuu3ONOlVzwzCw7SSaJshm0y9r9KMfmpKEAkzbYGxklCiKK92d/xs656kb4mLFASq2beO2/dq/0/h2y0QGGGCAAQa4cXBDVKATKqTlh5iJIcKWj5lKMzE8zOWVIoVSk8zwFFvFIivra9x250nml9eZPnSMSrXO5UuXqVar7N+/n5WVFZKGZG19k9kDBzl79mxbipFE13V83yWTTtNo1BmfnKSloLC6iHKqXFwpMLvvEAuFTcaSeVYWFmKbNc1gY22VtbU17JSJbkiahSIvPP00d779ndy8dz+BYXL3297Gpz/1lyyfe4YHfvB9uJrOAz/wbp596jGuLCxwPJ8k0HRayqZYc5kY0nH8kGQ2i1fbIG3oOGEc+dyLjgtH50VKiRLaznV6iWrP1E+GY+zuGrA9td93CHBnXz3VatF+jxCxBZ7YJlhKEPtQy9hPukOU2/VuZI9LxzYB374Ntd5jar+LQtCkQYAg64Vohk21XgfTZnVt45u76V4h9OrKoddDOSazvu/HFWph9Wigt5vPIuIRgTCMYslHoPD9cIf+OT4X2z/3yz66kg65k4z2O19sP6zsfMi5Font/Zz+dTvkXdM0UqkUyWQSz3fQTINkOgMiRyadxPE9LBlbLwZKEScTXv+zAPRQEuiKbCYJUcTInhk2yw1K1QKVSpkg8KnVPCAknU6TzaQwhEmt1aJab+AGPqLv96Qfr3QFeFBZHmCAAQb4p4MbgkB79gi5kTRSSjyZQRvO84b73sDKx/6QSnGV6X0zvO6tb+W3/svvs+UvkjAMFhbmQWrsmZogm8tRazSwk0mWV9ZJZ4dpNF0OHTpEuVym1WrFMb+midtqsbqyxPzcHPe+4/spXrqM1CRDhka9tI4fmJx819v4u898Cuk52NlhmvUa6aSFNI04xnvhHGNje9E0QeCF5NImv/N7v4ZXqnHk6AmKWzXe+aa306rVOHzoKFNTU0yWTrFYd6iGGtrQEGGoyIxM0JQGkVvF8BpgGIh+n9w+At2dq/U0W6me5jV2EuCX+mPer2vd7bW7zw6hhh0/hx0ViBTECZFx+IomeyzSNKO73Tapjj8/ZOcxdI6pE29uCIkMQ5KGQQ6JlUzj+B62bbGxvviN3GrfFvSS2o7mWUraaYyxtVyzRVdHLAi2m9vYbtrzvKi9TbRj3wCyTx7Qjf/uqQ73R3NvNzJKhG5eRfCiKAKxu566d173uMV2eFBHbmMYBiMjI9i2HSfGizgkRzMMUmmbRl1w69GjzF25QrFWI1QCsUuRtv8+dVWDH3vHD3J0ZgZMA6WZXF44QxiGeJ6DpmkkkykmxkbI5XJoKMxEErdSY62wFTeuRq9cI1//g0v/cfdLOPpHD67VNDrAAAMMMMCrEzeEhOPIyTcSWFnMoXGO3XwrVirL7/3BH3HL8ZvQtJAzZ17gs5/9NP/+Vz7Ka+59HQC2qdNo1CiXiwghGBsbI5lMMjoxiRfGmtTV1VUsy6LVauF5Hrl8lmqtHGs3TRM38Mlms9jJNE6rQbmwTtK0ePTJJ3A8t1tB7AwHSylxHAcpIfBctk5d5OnHn+SRR7/Ce9//Ie5701vj0JVmk4vn5hBhTF5c12U4P0TNDSlU6pQqNUI/QGiSSEgId5KYa0kpeklGb/LcNaUVfaTk5QyjX49MvRTi9fpix69T6dztM3drbuttZNO1WC6QTNikUgly2fRLHte3E9drIuxILTqSjA7x3GlRd7WuOAqvbjCEneepX8JxrWPbzY96t+Pu3X/v+/7v1fkuveskEgkSiUT782K/acuyGB0dJZNKkM8PMTw8fN37tP9zDUvn8NQ0jVIFO50hmcp074VO5VvTNAxNjwOAdEluOE+xWKTlONwg/7VdFwMCPcAAAwzw6sUNUYFeefpzHH3ze9l77CRff+JRVq9cRhOCzPjNDN+U4ebD+3FLRf7h85/l3IUF3v7hH+eRz38BI2EykcuzVSpQrtbZ3Cpx880nuHLlMoW1VWrNBitra+yfmUXXdRYXltkzNcPW8jz7jx5H03RSY6PMXzzH0MQ0brNFfjjJyvwcdz7wLiq1KkkZsnbmEg1Nx3TqbBYKnLj5dgobK+TTgrMXzjC+fz8L8yYt4I43vIHJyUnK5TJffeoJDt10nNmxEU4vlVjY9FF2hiER0HKbVIIJQl1Hj3ykpiF9geobdVYi6qn6akRSJ9ISaJaFcJoQum1Jh2hPEULs1AULIbrKjW3S2kmA3Nmc2EkUjBsDNeJGrNiWTol2X6GInToAJD3kF0AFKDREJEDuJGW9pJgen2opds6XetsyrUOq2hV1pQySZoAhoJnOEIYho+OTr9h9+M2gQ2L7SWAUhe15cQKg264qiyBuytuuuG/7OwdBOzyFCNGRhOxGMBUQKVQYEa8dpz7Kdox6hIjTDNv6604gSvfYQtrx7DJOCOxUTtvHEaltQ7x+4uyHAaFqyzcQCBGSTCYxUmM0S1fwlQO5Cexslr0HT6AZsNm8BJMB5xeuxKE8bD88dB4GACJNYoQSyww5efQ45dIGgetxfGofmmGyZ2YWx3FoVKskLYuEaZFK29iyRS5/mHRuD/MXPoGLjxJR/LtD3EzZix1v+6rU10Lvw87Oa9G+Tj3rCSDqvyeEIGx/zwFtHmCAAQZ49eOGKNM4Bjz74Kd47NMfY+rE3aTHZvihD3wIx3FigmUleOzpr7GytESpuMHv/tr/x8jIGOVqnYWNTcq1Or4f/yF/4onHCT2fZDLJgQMHGB0d7VagkQK35XDo0GGef/EcCTvFUCrLytIqy8vLVOoV5s5fRNdNnnviccZGhnnu0acwc0McmJii2XAZz4/z/NnTTIyNoaQgQrJ/ehav6ZJJZZmbm+O3f/u3OXLkCB/5yEe44447aDgtfDReOHuBphdSb7UwdQt0rWsZFyKI5NWXQ4pYxCFEWxYhJJqeQjcy3YrvtarN34gW81pV75fa5nrorY7uZpe22/zdjmc3WzVd1zF1g3Qi+bK/47cD17Kkix8+NJQSbVcOFcdy90zxMrUtx+irTF/vGvSv25nXS/T6q+H9x7ibpGO3xsTrWe9JKbsjNGEY+zLrut62skuRzeYwNR3LstA1iRDqqvtg+zvGBHMsP8zhfQdwGk2ErlFr1BFCxDprz8OwbaRmYBgGSdvsNhKGKBzf6z4E3gjY7Zz1LhtggAEGGODViRuCQBvlCsbkME7g88wXP8XSeoln5hbxDZNEdpi5+TVmbr6doF2dzFsm80uLnLznXhK5UW65/U78IMA0bfbvncEwNaRmUCqVMIxYt9yJI67VamyuF5jas498Jsv5sy9yy/ETpNNpTNMknx+J/9i3Kjz1t5/jze/7IVZXN9lSIXYyz+TEPt77gfeztLbBV596koOH9uKrgP03H8bIJDl683H+2Yc+zMZWkTNz53n2ya/SbDb5+sVFZo+e4PSlK+TyI1SbLiXXZ2FlBcOwabmSSOysygkRa2SFNFF6EqHZhNJGJicIIiu2K5M7NZjXGoLv1WfKPqLeT2J3k4f0k7qXS86vTTAF/X7E/b7DO6Qb7evXmUxdxzZ18unUdT7924/OublaukGXNIehIgwUgR/he2FcJY4gCGJZR2fquFhcyz2j/3M9z9vh8AHbntG9VePOfnuX9UpJeo+hIzPpbWLsXb/3GIWI7fBi/bNsk2+BaVrYVhrLSmDrJjIKkEFAPpPecfwd7PCWFhEnjx4jGUgKhSIbxRJraxvousn6+iZCaDhuSNpOMD6cRwYBSSNBdniYWrnC8voalUb9qnN1rXt2R6DQNXC9B4j+67UbWe53SOmczwEGGGCAAV69uCEItEcOshnW1lbYuHSK93/gh1neKCJTORLDE/gKivUqb/mBDzBx8Cjp7Ai1Wo2vPfsUX3/6K5y7eBHPCxgbGyMKQmLLXdW114qiCN/3qdRrLC8vE7oOXrPElYVLrK+vMnf2RRJ2Ej9QtFoNgsglPzREEHi465u86fvfRUZP8cAPvpcXrixw7sXTRIaNBM6eep5PffyP2VhdIZdLc/Smm/GDiGbLZf7KIiMjeZLJJJcXlzl1eo5kMsn8/DyhblB3AxYuXabuKAwrj4bXJc8dEhuhEQiLwEgT6mmkPQSWTSDigXp1DXLwzVafd9Ml7/b+G8X1iEX/MV+vGt2ZdCHRBCSN736Qym7kaoem+RqV4v7l1yLPu6Hf7q5/6k807CXGvSS4l0B35vcfe+/7fnT0zvGDjdkm0vGyZr3KyuoSjVodt9EgbSWuUXlu70uAEIqZsXE0BIGKKJer5LJD3YfhZrNJ5LVIJ3XSlkYmYTOSH6XlOIyM5NmqVfAC/1u+rt8MBhXlAQYYYIB/OrghCHSYaJCuR9xz75v44Z/6ZS7OnePAxBDCTDK97yCtts/z3NIW6dG9ZEb2EIU+CUMykUsyOztLKpVmc3OTKAxwXYeG42LbSXTd7DYe5fN5NF1g6xK/WYbIJ1Qhmh7SdFocPnIzhilxPIeVwib1ep0nv/JlisUyZiLNw48/xnt+5IOUSw3e+n3v5uBNRxgZHeLOQ4d5+JMf59N/+MecnzvLnj0TzM7O4roud999F6HncfHcZWxTUtpco1IpQTLB3NwFpsYmaAU6lYaLCH1U1JYsaBqR1IisLJGZRZgZlJnFlwkCfFyvRiR0UBIyRojgAAAgAElEQVSkFk896DTz7Y42SWvnpLys5i65e4X6WuiYtHWG5V+OHOCljiP+7M75AUNAyrrxCLRSiijsmyKFamep7JwfXUWidzsX/eg8FLque9Vn98pBOuTZDfyrqsyd5b7v4/v+VU2O3eZHFb/32o4iRDuvnWUZmJZFKpXCNhO4LQe31eDsC89wce4cy6trbBaLjGQziNjdML6fJCAUEhXPF/E8FYSkMmkMM4EhdVaWVtlYL9BqugR+BEHAaDrB6FCS6ckJPMclQvC157+GFyk8P7zqfH0n0B+9PsAAAwwwwD9e3BAEGkeROX6S1MQ0n/z9X6N67nEuP/Z5HvvMg+A0GZ6YYHWzyOG9+9l38BBjx45xeN8RauUaXujz/HNfIQqhuFXGTiRJptPkclmiUCM3NIphGbheE9dtYUqFLsA0LIQXIITXHmqPmJ+/hJ0cg1Anaac4fPgWDh86gBF6bNTK3LJ3ms/+1z/gIz//SwyNTnDo5L3o+Qk2ag4nT57krtvuwJQR8xfO4bsB9WqDjY0CTbeJkdCoFlYI6hWW19bxfUVxZYFQhbghNOolQmGAjJvOfEBJPa4+20NoaERKEpoZVL2JCA1cLUcokwRSJxQyDjJpx2jvsJ5ju8VQEIEKUSoEEaGxUyPbi23yvPM26ZWLCBHbkgnVpspKxo2GUYSmQiQKpUJi/98o/lyibiOcRCAihYhU1wO7t/q6w2JPxrZriBBdCXRNQ+O7TFqUQCBBCeKezPYrfT7KithtJYpPVtz6d3VYSkcG0DmnnYloe16vDCcIFV4QARIVbp9XIoUQGn6o8EOFGwZ4KiRkd6LdT+A7QT9B27M6iGJdN0i0KE4/VCHousAQglBFWLaNKRUEHl6zRr20igqhHEQEwiRlJrF1hcIHoUjaOmlTxyDEJEKGISKMNcxKazexagalzTWcRp1ms4Wh6TheiBQ6UoEXOBiWSbXS5Oz50wTCIFR6tzlwx6X6JnTIuy0XSm1PPfrxjgd477b9Iw/xvSCQSiAGKo4BBhhggFctbggXjtWGSfj0Q5SzeW558/fj+yGvvefdiGaFp556gtkTdzBzCC6uLJJIJLhyeZ7Zm45gl6ukk1kaXoWhtEWjFlJpOAzlcoROjZbToFQpYZsWUmrUywUmpvbgLK8wNjyEEBqZ4TFalRrTM7MYps3CWpHZg4dYmJ+nUdxiKEhRX1pgeXGVkZTJ3iM38Wd//jEm9h/mvnvvwa1UOHzbneiG4vQLp7glm+VjH/tTNrdq/PMf/THWly7z9488wtTEOM1qDU/4zI5N4LsO+/fvjxP4NMnU1CRBcwMhFVKYRCSQeoLQzGAYSRqtBgEamp7CUzrCzGB4JXw/wogaoMK293McKf2NSC36vaDhaunA9eQbnW2/GSobexH3+ufu4nQgdrG3k3Eoh2VcPyzju42Olh22iW/nO+627jey344cw3EchFLopkGoYqcMEcouSQ6CIK4ya1ocqa3p7ajrnTKRXjLdW732PG/H9QhU+7NVhJ3MoCcsQs9lKJslNDVcoFGtsra+ha4bmEAqlWTP9AHuecs7mJqaQtQqXHj+OcqNGm7LQTN0hIqYnplCuS6FrS3qzSae5zF39gyR0pAi1ltbloXreygpqG5VUEqyWPf46uNP0Wq14mAeFcEugS3fCewmxRlggAEGGOAfF24IAp2yLZKj+7jvXe/hkc/+OYZTYs/Rwzy15PG97/o+yq5i3fPZKhWRBcWRAwcZGhnhDT//8/zqb/w6OZWmXN1kZGyM5eV1mq0WmaFh7rzrJKdPn467+RUUK1uMjI5TKFfJZDI89dRTHDgyg2bavPjii9imRWp4lOHRUVbX18nlcqwXVilsFdnYLLIxOYmUkhMH9tNq1XjysS9z+mvP8ZM/9S958fI808N7aDRdjh46yrm5F/nV3/h/+dEPfpCDBw/yR7/9W0yMj1BtOowfPMaVS3MEnk9idi91L6AYeWStYQJpIhGgp0DatEQG5QiCwEDpCTRfMuKV0IIWdlBERD6hEO3UvnYoR9uarJcUq57qbn9DWRwq2FmfXSUa/YS2n/7F+9lddrBbE9U1CWRfFa93/R3bRSFCRWjyxiEovc2f/d+/8xpria+u9O/WjNbbvNmPzjX0fR/HcSCKkKi4wdL3kboeO1a0Ux5NU8f3/R26504jZ/916RDu3ibEHZ8twAnihEXHiwgAp14jqdkITRL6IcWtLY7deheNVsDNcggvivjl//BRsBJ8/nMP8tQ//AONSpW6W2M4l8dO2NRrFS5dnqfsNvGbAcWtcvzAEQVsri2x9+gdECk03aRQKqNrirRtcWXhEh///JeYnJzCdlq0giB+JlPb5+qVQuc+3+267Uaaex+gts8xV603wAADDDDAqws3BIG+7c7bedP3vof/9Kv/F1ZjFd20eO6s4l0f/Nc89PDfsLRaYP+Bo+y96QSNep2zL55maXOdffv28c633U9hcYUvfekzZIfypBM2umVSr9d44smvcvzYzawsLuM0W/i+TyYzhDWzD8OU6FcKRIFHMpmiJCXJVALbEDz/wtdZXlohaRuMDo9w512vZX5pmX1HT/DJv/grsiMpZL3Bba+5l9LkKA9+8mPsv/1exiYmSaQzZLNZXv89b+GFc2e4cuUKp06dYt/eWdZWFhnZM4NhWNRqNSqlMnun9yIsk3J5i3QyTyMwSNsWzVCh65KWrwgCHxEJhK5j6TqaF6CJCBUFhFGEpmkge8hl39/l/mHkrsNH54+/2P2PuRAi9n/+dl78vuO8Frm+Sl5CLGfojz5/NeJa3/nloqtz9j2UAD8MMHoaAzVN21FV1tjZqNp7DNdqbNxRme6pQFerVVqtFhlD0mg00AwIIhPf92k1PUqVJpadIgxD7EyK5555lk//+cewAoeR4XGiWkClUiGKItLZFG6tRbXiIENFKpUCKVCuSxTEkd3xsRD7QTctkgmLxcVFJkZGOXnHrTz/t1+M+wLa3tivJK75O9KDl3rwGWCAAQYY4B8HbggCXW45/MWf/A7jsk7TTvCGD/4Ct971OnzP4Uc+coxyo8zp02f44kNfYM/MNJvlDW6/4wRHDx3l0S8/RqAiEsk8hmHjhQHKFzQbFUYnJzh96jmU0MiPjKJcn0ZpiwtnzpDJpnjNbUfx7SxKCay1DVQUxxSXC2ucuPVWjhy5iWe/+hgPPfR33HHyLs59/TTf8/o3ksunuHhujlA3eP0D7+T//j8+yrH73sz0+AzJVIbxPbNoQielJ/jEn/43Mkmdzc1VMrkRJqf3oVTI1tYWk+MTzMxMceGFZ5kcGubceh0jOYKDpFCtYyY1qm6dtbUV8tkxJvcmyCZ9nFoBWwshCmObO2GgolhVG4YRpq0jo6hNpuLh9zDwiVD4vqLjS+z7PgERptSIkGhCoeg06xHre2U7nIW2jAOFEBDSLvGJEKFkHICCaGuUY+ItlU5csFPE8R4ClEII2dZFC6JIITSA2NNahYCmEFIQxcks2yS/o5sOY/mGEIpItb5bty2wk9j3Vp77q5G7VdU7y/srmEopNE1ed3mH1HbIM+0HqSjyME0fpQSGpmH4BpEEM7TAC0j4sY0emo4BOxw5OvvsNBSGoSIIIsKoTdKjED/cbkT0Ap/51TJPP/8895+4g0bNxbANskMjCKlRqbnU63Wams3P/Zt/h+f7/P1ffwbVqBEKSbm4BRrYhs3q6jqz+j4qNYeUmaDlOgC4rovXqmNnErTqtVjzHXoUSw6O02Q4n6fhhNxz5y2EUYjW1mMjBGEY7j6a0luZ7pXXsAtJbo/MdIhxJyCl/9p0fu6su1tluruu3JbMDDDAAAMM8OrEDdFEGDYrbF46RTKTx7Ny3HL7nfzsT/8Un//cX/ALv/gzLK4Uuby8xb/4yE9y4PAR3vzmt/LYlx9lYWmJxFCaXC6HZSdZXl1Hs5KEEaRSKXy3hVCQTqcJwriRLQo8dE0j8DwuXZjDTmaYHJvENE1arRZjY2McPngIkJTKVdL5EX7wh97H0toGqeFhqq0Gy+ubYNoAPPrlx3j727+XbCqNiELmLl7g3T/0XjY2NtA1QTppUy+XGRsfwTQtqvUamqYxNDREPp9nbW2Nar3JuYsLbBZrlKp1Ki2XcqVOqepQKGywsrKCG8Yeu5HvxMErQkMRR4ErFbaT6Vx0EcswotDHbzqIAPAVKoogEkR+QBh4qChAqAiiuCIpiYi+2dvhFeyGulZFuUNItA7BVxKpJFH43bEsu5HQ2/jXa0vn+z5esO2w0SXd16kuX9NVpG+dzj4brRYbhULXk1opQbPZotls0qo38DyP+7/3nRiWTdpOsLa2wtTMNGbCxvM8HMehXKsihODrz7+AHwbxtq0WjUYjrpRrsQSlUinRbDbjEZxqC88LcL2A4yduxfFcUqnUNklV37xE4loWji+1bLd99M+73vsBBhhggAFePbghKtDVpdOY6SzTt9zLHjT+9//5Z/lP/9sv8Ref/Sv2jqaIoojJib28cH4ew0hy6utnuP/+t1Mpl2lUK9RLdW665Raee/45JoYytFyXSnGTYnEdU7dwikX2zMySTCY5ffo0CaHjBy7W6BS5fJ4zzzyN47bQNQPbSlOtFzh+7CALy2scv+telqser3nz20mn0zz8xb/lAx94H9XiFnfdfowvfvYv8XITzM3N0Wy2OHDiFubOn2JidIRKoYBT3CJrW8xfmCc/OYsUiuLmBseOHSNp2ViGyam589iEVItbTB0+Qi47RKPpEAQrLM9fxA18Dt18kkAFePUmni+IVERGKlTo0wpjbWsnBa5eCHFlC6kn0YwkTqCouzGRklosDcmkLCynQSL0wfeJpE2oEjfGDdFGh0xHkSIKQ1RPxdX3FH7LI6x/dyvQ3yxeKfLUjcGOIhzHiTXQZhzlXkOhhMAMAgzDIIoiDMPo+jYrTaGL7YqpaNvT+b7fJdphFOFHIa7v4foejXaqp+O5uEFso+c2mpRKJSxDJ5FIUCxsUdjcpFAoEOiCW07eimbpnD9zGkNI5pcWGB8dI51OcmVhiVQqRWF1ldHxMcrVCgCNRqNdiddIp5JsbBTQreH270VI4Ec0Gj5CN8jncjzz3Nc4YCZQIh7l2M0V4xtBf5gQbDeB7jaq0N/42r9t//q7vR9ggAEGGODVgxuCL3nC4shbPszr7ruHj/7Sv+LOt3wf/8PP/Vv+9U/+DEF0nueeegQ38Dl+5xtBxTKLK1eu4Ps+hiYxNNhYXWViYoLp6WkSyQx/85lPMDMzQ6vh0PT8bix4FEUoqciPjVPy4cK5s6ytLbBndBwnCEllMzQWl1iYn0cJweLCAh/68X+F4/lcmDvHG970Rp585mnmL5zn9PNPMT4+zv6ZfZw6/SLHDh/k3jfcy6Nf+hKf/sTHufXEzZgo1laWaNRq3HTrKJptYxo6jUYDSzcol8uk0mmcShmkyfr6OoXNIoiI8lYBp1Qm0gSO61KplMinBE6ziakpam6dIAhYr9RRgaJQKhBFEZcXC2zWfaRpU2n6OEGAG8Wpf0KGJBIWRyb38NpDsyTNkKGhLGYUJ8kJ7epb4lpkr98T+nouHr2IycbO97siautJwwiindrcMPAIXRe3Wn6Ju+vbj93I07UIFVybVPU3D/bqlK/SgPdo2Hsb1TqNhR0ZTtNpxW4Zro1SimQyiRa0NdFCdENPoiiCcKf/c9cHOggI217QnebCEIUfBKgwJJfOUNoqsn//XgA2NjZImBZ2wsSJIKlLXnj2Sebn5ihurjOcyxNEIW6riRf4CKeF0CQbGxtd2UUqlaLVaqFpGoXNIpouYGkepMQ00qgIWm5As+UgQ5dqs8WpM2dj+UZ7lCLqVtB3nmvB1SE1sTxpZyrnjmW7XMvea9xLqndroN3tGr4cP/UBBhhggAFuTNwQBDo5eysv/s2fcP7xz2MNzxBpFgeP38pnn/gK+aEMQbWKFIpnH/kiC2urJOwhjp84wZNffYybDh3EC2qcOXWZqZm9ZG+7k3K9xYHDx1g8+zWEkjRcj0q9QS6Xo17cxDCTtKTJ4WM38ejDX2BybJTllSvYqTxSGFiJNGeeP0U6bdJsPc9vrG/xPe/4Pu5/xwN87bln2Dd7N+97/7sZzgzxK//Lr/D3Tz+B6XlsWYJf+z//Ix/64Q8SbG2wub4KIqDZrCMNjY21VWYPHyGKIs6dPsMb33AfSwsL7Bkf4cvPP4OmJLKkCJVOJmVSXFkmodtIy6SwtQF4aDWdhO/RqpcolUqUaw5fP3OGer1Oq9Wi3mySSg4ThC4ojUxmCF3XabZcdMskmUjRcgKe27pCbavE4cMzHDTTJFTEnpQijHzA/G7fEjvQ7w7hui6NZhm3tkVtY/G7fXjfEl6q4eyldLIdgkvHSjAM8Tyvfb687ntTN1BhiJeKNfH1VhNDamj69kOQCLZDbwIV4fjx9q7v4bouTcfpSkIUcQqhoelk7CSWZZFKJmm2WqQTSdY2N2g0GozvmeHPfvd32FxdYmHpCocP7md+fp5ao0nTaTE6Osba2hqlUplUJoNsV9AbjQZSyrbWOkBGEs9txsTfCkglkmimwLZtvFqTluPjux6maeK6L1/W00uA9V7P8ZfxMNhPmvvJ8rWaYq9FqAcYYIABBnj14IYg0LqAyVSAY9scufU+QsPiR370x3j40Uc4efudfOGTD1IrldFsxR233ML5C5c5c/oUd991F08+8RVuveMElp4gkUpRKRVZ2Szh+rEDgWUYqNAnlxumvLqAQCNUESqCU6dOkU4n28PFAsMw2s1LkkiFBL6DpetkEjaf//RfcurCGd73zz7A0199grPn5xjLjfKmN70JM6lx9skn+PKXv8zU3gM0ajXW11ao1WoUiuuMjgyzVdiMo8UNg3q9ysh4plthe+zRL7FncoLFS1fQdImSEZEPRAGmpWNm0vh+nDi3WSqh+01CN2JhvU6t5bGyWW1XDCV2ZoR8fpJWs4xQkoydBiJCzYcgwEJH6jqtIKRQbzHacPEiiRGKHSEgrzwU36gvr2wnJcq2ocIOPa7n4nst3Ebt23Gw3zG8ElKO3YiaUooQ8KMQIonre2iahh8GSF9i6kZbIqOhtBCBhgZEAqIg7Facu7rqnuq/EALP8/D9mKiqKMAwNHRdx2m12NzcxPd9RsfHY41/pYipw2gui1ARN910E0tr65w7f5bzly6Qzw2zZ3oWpUJqtRqGYWDbNioM8cOQ6WyWVquFinx0XRIEfve7bm1toUUelWYdaZu4rss309rRqTL3Ngz2Lns51+B66/VaHPZuM8AAAwwwwKsTNwSBVluLhJP3kc3ozBzcyyf+9E95/isPYSZH+MLFJX76536OBz/1SVYL65yfu4AuNRaWLrNvZoLhkTwXzs1z8u7X8uRTz1B1fJphxN69M2xeMnF9D4lga2WFgwcOsiElxdIGmWSSyakx5s7UyaYz1Bsur733XkrVJpXSJom0heO2GB+borCxweTkJBsri3z6sw/yw+/5AP/1j/6QaLaB5ni8eOkiti54/wc/xJnzl3j6ua+TG80zNjFKdN5lefEy+eww6XQSQ4O0kWB2Zk+sRbUT7MnnuXT+POgglEF2KMuFM6fIpm1qnk/S9ygsLuOUKiSSFiJUrC4vMjM1zdLmefZM7mVsbIxqtUo2myVhWTRaLTQh4ocDCXY2S8tzUUKCFutEy3WHlfUit9wEpmkipY6mXT0s3ds4JdrD45qIWW1s1qEBESISKCGRbQeJSGzbzcWNhnEWolJxilsXUey6EUs2iLW4QhG1zXwjEYd3KKUIfB/f82hVatQ3V6jfABXob5QUdbS0QDeNMf5RtZ1K6D5r7OrmEaltY++2S0kQRdAmaF4QoITAQENJBRLCUOF5Aa2mizJBiyS+FpPeOKAmRNPia+O6bpxE2G4MDDyfsK2LVkrFDi5uQNNxGB62SRga6bROtdFkOD/KpcVlUukklxdWKVXKpByd4WyasdEcMjHE0PAYazWPW++4h/kLc+i6TqFYoliu0Gq1kLrRbXrUNC32uRaKRqNBKpUiYWoEvkcYCM7PnUFIndDSMTJZqLVoB0N2XewkAtS2HlqT277kUsZBPB0/7M55lvQS6N19npUCpQQKhZTtCnQn2ZP46W+HhWRHWtIeVRj0EA4wwAADvHpxQxBoOXkrQ+mA19z3AH/4B/8Zw29x8Pi9uIkhnnzySf6f3/7P6LpOeniKBCZG6HJw/wHOn5tjenoat7zI5YvnQY8wUxlGRsbYqtZIj01x5cJZxkcnuO3uo/zd5z6FWy0zOp5nq9xgrVCjWq7ERCEU1BoNpPIJvRpHbnkNy4srTE3vY6uwTGHjEi0/4OTb7uNjv/vrjI5Ns7W+hvRcvvbVf+Adb3+A0Kmzf2aadUNSKa7TrDUIo4jZ/YfxXEXTDVle2+LoiduYmJjk0oVzpFMpNtbWGR4dYXNznWQ2ja7r3eH4fDqD4/u41TLCc6hXTIbHxjh07ATrK6scOnocp1VDKcXU/v0EQUQynWpXAz2q1bhC67oOzVadRqUYW5e1PCzloXkNkmGVJAJbSKRmvWQqYcf+q0M4VGed6zgfxERC7Uoadg5ptyupvcSjxx0iCAIcx8GplqmVitQKhW/p3nslsJv+9brnoSdtcTcrtN2s8HZrWOuckzAMr/rcMAyJTBOp64h246Wh6TSbza62Wdc0TNPskmj87SZNpRRNp9VNIvT9bTePKFJdj+nC2jpLy6vcfcdreP3b3oFqtnjk8Uep1BQXLl0kCAKO7Zskm7IRUucnfvbfoAyL1yxtIKKQrz78Rc7PnSWTXiZtJ6i1HBzPjZ1m2vIT2zbjz1XguB7SNKlXq2iaRtODjUKB2f0HKNdraApUqAhl730VIkSEpsm2g4vWPX+6Hp8vTRM7rkfH/Tye134g7ERx9+jS4xGRjsja6K7XL+Xo3W6gfR5ggAEGePXjhvif3Fk/w+s/+BN8/q8fwXV9Jg/fRkMfYs/effzYR36Se974Bo7cfjvTs3sxbYtKrU6lUmF9fZ1Lly7heB4bG2skTAtDE6wurzAxMUkyP8HYnmmuXLnMc88+g53OEkoDLxJMTE7x+jfeh2ma+GGAG/jMzMxQLFfwgoBGuc7Y6ASlUgnXdVEqJG1bvPDssxTW1vCasaa6XK0xOj5JMpVmdHyCm286wrkzZ/jwP//vCBW4rkckBA3HJULih4qV9XUWFhcRwOb6GpqQZLJZLMPEcRxc18WyrG7KXNKyiRC4YYTUNXJDWRK2ybGjhxkbHyGXG2ZiYg9S6kjNQKBhW0ksy461q80miXQa3bTRhCT0A7xWk8BvoakQy9SuisR+KSL43UKHjISKbpX01YJrNaO9FK5V1b6W5VxX5oKKK7FSXLWs+0AShoRRRBCGsbOG73X9nrsNg22v6I4Ewfd9DMPANE3sRIrDR08we/AYdirH+ctX0HUd13UxzDhQZWNjg7W1DSJp0HQ8Ll++zFAmx5kXXwQExWKRpJ1gYmwcQ2o0m02UUt3Y7lAJhGZg2kmq9SblSo2m49JsOqxtFChWaxi6SSKR2JGs2CvL6B1F6bzvPKjutnxHbHzbc1xKkJLu+3i6Onlzx4jNSywfYIABBhjg1YkbogJt3fE2fu8XfxZh28ze8jqO3HY3f/OZT6DQGLo5xaMPfYnv/f738pkHP46GoFyrM5ZKoIKQRrXG3kP7qJTrrC0sYFgJbj5+G5MH9mImU+hSsXzhNLoIOPm6+3j+6aeIAgcrlWFpaYVcLkelUYuHvC2TVH6EGQTLVy6RyeXR7QSB56Hr0HIaLF6eJ1SCjctz1OrjXFxYYWrfIVY3i3zhiw/xhntey9ve9hbsVIrhkRFWFy9x8uRJNrfqJDI5ktkhjGSaUqlE6DQ5e+oFJoZynDt3jpRh0PQdjEQK0zTRLA2n2cK2bRL5YdKZDFJE+K0qytMYnpjE1G0SqRTNZpNms4kMFcVCEd/1SWdSjI4MUywWcRoOpjAhCJFBCCpkJJdmfCTTJhIKpelE7b/pXYcN8Z1LInwp9BJAz1c4bogT3ChH99LoEFCp9VSdX0IX3psa2YFgZ5UzCIIdJNDzYr2z0GQ3srvXH1roGl4QV5NlT2R3x8+7Q5j9MIidN9rhKZ19KKWo1+uYtsWJ217Du9//YY4cuxXXa5HIZLlw8SINp0Gp5qJrkB8eZatc48ff9R62tooU1jfYWiuzdHGe8+dfZHp6motnzmAbJrqmoZtm17IwHtmIiaphGGSzWVq+iwpD3MhHIRgeH0fXTbKGTiaVpt5sEUVh917WJDuIsi7iSnHHlaaf6MYSo/a5vk6TZ2ckIAw7YT/ajmvWWaffKWWgfR5ggAEGePXjhiDQd958guqlC0zNTDO5by+f+Njvo9kmjaDJn/zZn/Hv/v1/4GvnzqLrOqFTYzidJjM+TKpaZjyEzcIqtpHB0HSWFxcJopD1Zp2o7kEYMXv8JLMHj7C5vMrUgaM4pRWOHT/G41/6El4QkkykafmKK8tr+I6i0oxQVopGvUVGmOhSRyjI7pthbGqWjeUNjh0/TrPZZHbfPmqVCuPj42yur/HihQtolk2pXKbltcC0qbc8riwtkshWmQwmqF05T3FjjWMn7+V7HngHj3zmQQLHx1NxlcupVag3W2QyGaTQcMMI0zRiWUOoaIZNokAxPbMXzU4S1OqEIYhI0AwcTNuk1qiBBEvXGMlnWF2MtcJNz8WPQvSEwf6JIfaOZzA1hRQKpUI0qbWJlIaKQjRNB6VQnWFnEROymCwIVCRAtq3DpAIChNJRItaRdv4R6bF8Q3WIRESsBGmTdxUihIx9fEWEUArZvj2lir2gdzTLRSEyCvGjG7OKd5UMQ3Y0r9u2au0Vr9qms12/NGTX+G0BmpRxCqWKtgm52k67650AgqhNmNvrdpoBaSfkhVH7Vgvax6pkO2RHEkXgubR1stQAACAASURBVD7NwAcl+Z63vJXcnnHCyGd9o8Cl+ctsblUxTROBThRGGLqkXC6gW0laXsTS0grjuRzNyhYy8vn6s8+QTiVYKxbRdBPbNCkUCtjJZKwXb58bTdMQKk7SlJpFy61hJzQIwdIMtKRFpOtEUkC0rWPWkPF9TfzA0qlSSykRSm/ft9taZ4HYoUGXYudAnRI7r4GU8e+BaGueex+QVPufEJKoreN/qYemAQYYYIABbnzcEAT6r3/ro9iHb2f62O0YVoL/9aP/kWrLI5/L8Yd/9Mf8lz/4PcrFEglTQxkmIpKsX1lhdGiESxuXMRs+x++9g/MXLjJz8BjFwjoJFbFcqzI7MczZ089z5dIVlDSYnBgnncnxNw99kdF0Es8NyAxlMdNJgiCi4DS5521v45ZjN3Ph3DnsVIatjTXOnj1Nqe4ybtn8wi/+W+YuzvGJP/tv3P3a12JZFrVaDc0wec+73slv/vpv8eSTT3DyztuY9Q9QqTW4//77mb+8QOiHbK6tMzIxzfj4OFcuX8bzm6jQo9Fsoes6nuNi2zaO42DZCaLAI3BaFDcLJBJJThw+QCqVwjRtggjSqQwSiYgUQ8N5SlubGMLEazZwo9iCrLS1QavZJJlMkjRsxvN5bj9xkEzSwNR0NE27Spv5rQRR9EOqLqf7lrAtPfBw241tNyJe7nnr1S/vtu1utmi9QwKd6mbn515pQIc0d3TNutTwoxAZQKiFKLb9poUQiHbzZ6ci3bttRxLiBbHcyTYNbAn33HYruohTO2uFTeZOv0il3kDTHPbsmSKdTOK2aqgo4LOf+Bjp4SmWl5f5zYf+Ft93uenwTSwvLxOoiCOHb8ZOmFQbVXK5HH7b05p2Vb0TAtPwfUICkIJKpcLoyBibWwVMJ9GtzOtCxk2sQqBLrXt/SynR9dimUUq5o1kwzpHflrfA7hXoHQQ6ih/4lFRxuP0OPX/PdWPnw9EAAwwwwACvbtwQBNpIpAhadf7q439EYmgPuvK5dHmB3MgEx+86SVZFJELFmcvnufOuO7h89iJrm4U4yS+RJCkVDz38MPe/4x3MXVxkdnqSRx9+iPvf92Fa1RJ7xsYZH3I4cttJHv7iF5k6doQ77hjmuSce7w5L+2GcsDYzOcG5U6dYvXiZQqlIdmwS3/UY3TPLvgN7OXbiFn7zN3+Td73n+/n5X/ol5i7Mcerp57g0d5rxqVn27z/I7/zO7/Fz/9O/5Pz5i8xOz5LJZHj88ce56fBNbG1tcfvJu5ncdxANn6dOfZ3x8VE2NjaoVBo0mxFIyd7RMRzHIQh8XFdQLm2RHcojTQvbtslms+i6jh8qLMuOnSlaLRIJm0wqTaX9wOG40GzUUUpQr9exhGJ0cpzjB/cxlMkhidPpOnrQXnTCKG40u4CY9AWEkU94g3KRfseGa+FaAR39P+94VVdXq6FHItLjCd0hcH4YInwPy/MwpUUYhnFZvOcY2gXoHYE1HUIeoboNhUooMpbBrccOc/rZZ5ie2kO96vK1x/+e5559llQ2Qz6fJ5/OggoZSg3juj4XTz/H3KUvoJsJhArI5Yeo1WqEKKr1Gs+feoHx8VEMU8Nvhd2mxWQ2i2nb1Ot1gk6wS5vYd1IXk+kUXhS2bezajXpiu3KtaRqGYbTf6911NCG71f3YwlHskMf0EujdZDdKCISUV0lteh/s4kbb3YNWBhhggAEGeHXihiDQtcw0UaXGZD6HF7k4bpOpPaO8/0f/e86cOc3jX/4ShY1NPvQvfpyHH34YvVXj3T/xYzz68CNkmk3ImlxZW+fMmTM0nIAz1S1+/hd/gY//5Wc4ePAwK4UtlNtk8XN/hW1otDyXdDoFxPpRwzCYntlPGIZszF9hanofjVoNK1LsGxunWne4/4EHmF9fwW34fOBDH2ZhcZ6zp15kYmqCqdm9FDeXCMKIBx/8DJvrm+zff5DJyXGKhRKGbmEaNuubmxy/5QS+kpRLWxhBnYnxMdK2QalUIpMZYmNtldxwnsBzadZrpFIpgsDHqcQWX69541toNptks1mcWo1QCcJIYZommUyGylYBQUTgOizOXaTeapJKZvCiiNRQjhPH9rF/Zg8H9u1DemU0FaJp2lXXZEcT4cvUQX8j5GA3t4nd9rGbo4FSsVwhjCJCdfWxf6dxvWpl//yriK/anTCHYQhc7dgQRRGyp3IcsXsKIvD/s/eusZKc+Xnf76179f1+rnPmPkNyyOFtyb1Ru5JW8kqxE0m2LEEXxwiSwLERW4GBALGiOIgTxZAQJAGCwPCHOBEMwzZiw5btWJt1nNWulivucrlLcjgk58I5c2bO/fS9u7rr/uZDdffp03OGHGpXu2eUfojC9Kmurq5+q5r9vP96/s+TBKgYBkIIwjiCEIaeixRgCBU5qsyOz/9Y3zwe8zGRHvoerp/cyRj7Q3/25U/wYy+/wPYHt/lf/vu/hed5vPXWW/iRwosvfxJNUUkbKrtb24TSwM6VuP72NVqDAapuEMWCnb19TM1G0TXS+QK5TJ77W/epVEoEQUC/30dRFIIoIe66aYyaC8d+zxq2YZHKpDGyaRi6GEayjSJBURU0TcPU9CMEWlG0yblQxVTSo1SJ43DibDJLnCfnc1o2JJRRuqkgFsdXl6WUxPLoHZ15FXqOOeaY4/HGiXDhuPzEeWLV5k/9zC/SGQ65f9Dihc/+KF/+6ld47bXXqJYrPPP8M7Qdh5/5sz9Hr13n3Llz/Lm/8Ms0nR6dXp8vfOELHOzu8YmXnqNYzPP3/vffwe20iQKfH/3CT5Cv1ajvbULos7e9w+3bt1ldXSWfz9NoNCauF4unVzlz8Txdd0CunGfgDcjk0vzj//MfcXbtLM8++yxSEdT3D/jzf+7nWVxcZOXUaRRF4cknn+Snf/qnuXv3LplMjna7nfjaKgqlcgEp4PqN9xGKws79DQ72dmg26/R7LkKoOH0Py9DxXY8o8CbkRlMEYZCky6XTWVRVp9frkclkKBQKFAoFAHK5HIVCgd3tHTShUKuW6TRb7B/sksqkyZeKnDpzioXlGpliHlUVKGr8gG3d44BQRhNv6JOMaTnAo247S6iPm0B82D6nye+0FGO66XAs03jAuWNqmV4XhiFhHI0mLyFL1Qqx79GpH7B99w4333wdXU+07ZlUmuWlJXa3trl44RzV2iLFUg1XClTD5t52i62dJr2eTxjG+EFEt+fwwQcfUK0md16myabjOBNnj36/TxQdTvoMwxh5mCtH5CyJVEND07TJ90hRlMljdeSBPf339LqjLhxHl+nn4Hi3j9nXjx9P/zu3s5tjjjnmeHxxIirQqpXDKub5w299E001+Y/+8l/l9//NV+g0d2hvbXPp6as0e338fh8Vlf/m7/wOv/03/nNe+vRn+It/42/x5X/yD+h5MT0vJJAWl648z3vvvE2pukB9b5v7t5ukDI3Vs5e5e/cu1TBGU+De9j4L1UWkadGotzHtFF2vg1Tu8cH9+/zUz/67vP7aG/jbmzx15Snubd9la+8+n3ruRa4bFr/9P/+PXHziMpdOneOpZ17k6Ree47d+8zc5d+4sZ8+epr5/gOcM6LQaNBoNVpaXGAyH3LnxDqHUOGg1OXf2IvfWbyZaWCUhBpqhEcQ+xUqeTrOHZSX2c5Vcge7BPmndxEql2d7bRtMUqpUlUhmLXl9ipS3K5SL37n6ApmnkqlVcz+eJ86eplks8eekcuZSdkBPVgDAGkkVRE62yrqhIIOawgUpF8GC/XoxQFCSJ125CCBQEMSJWkOpheMp0qIpgZAUGQDTaQkGgHq10i8QZQhIhiRAygjhCRiEilIjo5OmfJ9VmMfVJEiOJB/yDFUVBikNJs/iQ2/xHCPPIli5+gExPW6ONxj2WRFFMFESEKISxREQRfhRO9hWNGjvHxz4mz0EcEcQhw1GkNyO/YwWN0O3z/Ms/wz/4R/+Una0tdFVBNVV+62//t1TyRd55512u/NwvUKot8m9e/UMquRqZ7Ju4wy4/+cpLqEJja38Xy04x9FzqzSann7hIbXGBra0tmvUD/DBAiSW6rjPoO0lCoWESiUROAqCoBjKMCN0BsaZMyLWuHpJny0pNpBxw1JVDmRp9KVXiOJFw6KPK8mwlWkqJUA59oUMhkCPbck2qo2ghCMU4rCVpJIxF/EDK4Umf/M0xxxxzzPFwnAgCffWpp9i8e5fY9wmcAX/7N/4L7JRObWGJ1VMrXHzqKm+9d5N6p0+567B9b5f/+K//Ovu72+xv3OHqZz+PqRp88Wd/kZu3b1Gr1Wj0XOp3b1Mq5ml1uoSey6DbQJcBigyRwNq5U7jOkOV8BS2bRzFMRKTj+pKf/aVf5d5+g/U7H/Cf/bX/lP/17/xdfvk/uMzXv/YHvPWN1zh1/jzPPX2Ft99+G1Mz+WD9Nj4xtVIRJQ64+e51nH4PbzigVQ/odru4jkOxXMLWNDRF4HSa3Lzhk8/alMtlhBDUd/YoFnLUaovU63VymcyoIhezcfcGUpMsVlfpNhtk0jb5fJZBv4+u6xRyeQYDndhKY5VqRIHPcibNpTOrvPzSi5imia0nP/yR5zHiu49VNWy2OnrSSMiHpczNBnF8L+8xTZwP3zMhaNOSnLEUJNT0STiJgsR1XSJFJY7jI97J0+Pqh8HED9r3/YnuOAgCTp05ze/8b3+PX/nV/5BMNs+7760TKQYdP8dyeY3aRY1MLo+imnz+z/xZDvb3+Ckh+fv/x9+l2e9T39ulUqvSG7rESPLlCv2Bw/tf+xrFYpGh56KbFtlsljiMEFLiBQH5fJ5uv3Mk2KXf97FyaZwwmpBmXVGxLAtN0zAm2md1JNtgch7UGTI7mTx4/sT1ZDyGEwI9sqsTQiDkocf29AxTH5HlySLEzGRnTqDnmGOOOR5nnAgC/bv/7J8n6XKDIb7vslgps7O7SUMzWFpY5cZ77/Kpl19mv9kibaeI/AAyaaRQ2fjgOuVTZ8hVlwmjmKefeYZbt27x0qc+zb/d22K/fkDP6TMcDpOKlpb8iGqaSjaXw+kP6HQ6pFWT0yurfOpHfpJvv/EGz7/4AoqQtO7f45uvvY7re+xsb2IZGr1Gizj0+fa33iSTTtHttjENjaydottuEQUeS4sLDPo9hk4vcRQwdbLZNKVCHqmodDodNEVQLpfJpAy2t7dpNBqcvXiJRr0OKKiqzv2Ne6ysrJDO2DRbdbyhi6ZpE0cCYjmKgwbP80hlsqTSGUw7jZ3Lcun0EsvVIrVKObE6C13USDCiBJMGqnG09uxt6fHjSZ3uQ6Qek4qblI9s1HVIIsZeukeT9saYrpDC0SatHyaOa+abfTzeblx1Pm4fD3N+eJiu+sNkHOPxmx6jaSmGpugj/bSYuIDMju2YSI/lHhPteZAQ6AsXLtC8v0sUx7TbXQYDl2anyfr6BkH0p3jxxecJFQU/BhFKlg0LS5N8+cv/mq3Nezx14RJ7B7v0nYAIycLSIkMvubbDMARFwwsilKHHYrVGu92mWMozHA4nUouxZltRkmqy7w+PWNRNSzZmCfT4M88S6PHj8bbjx0elLofbKqPMwnGz7eRcxqPvgEwWMdpufGdn9tqZY4455pjj8cKJINC6gFavS9vzCJSAwPVYqC1zb3ebrfvrOEOPcFDHxeL8pUsE4ZA7G3dImRY337nOOafPWq1KOlNAVUJeful56s0Wn/zxn8TQVb71ja/xh19/FQsFLZWhNxyynFmi5/iY6RyqSEIj7ty+zYWrz1Eq57jx3e+wsrJCMHSJMhH//l/4i3ztD77KK6+8whvf+BbptE3ougwDn4XnXiBq1/nGv/1/sQ2VS08/x3dffw3btiH08Zwetq7RONij02mBIkibBinLpL63y5Y/ZGtri7W1NRbPniFdLOK5LqppkMlkCMOQXrtHMVvGaXYZng5QDJ2B77G3t8OZCzZ7O7ugGaSzLinb4urTT7C2VGW5lMU2VTIpAz8K8YWO1CSB6ySDL+IjZPkkY5oQfhxt8eOI7+V8TGuBx/8GQTBqwLOIoghd1YhGNnHjcVSmpAnjRrppDfV4WwXBl770JT779AvsDQZEXsi7b3yDyuoC/daQf/g7f5+N9bs88yOfZWtnl+euPotmm5DOU167RKlyirQmeP/2XbxYYqVsNnf3EDLCtu1JVbxcrXF67Qx7u7tk8nmCIEA1DAgS+ca4Km4aJqZpIpzBxE1G15KkxETOcUimATRlStMsZ/y6x02d2uEYTk8gpq+5SUPn6HzFU9NGdSzHSdhzMqbwSM24c8wxxxxznHyciPv2t27dotvt0uv16Dk9KpUaQQgvvvgS7XabzsEOB5sbZFM22/fv43lDFqpFJBH5XIb1995h/fYNet0mTrfDwEka7E6du4AbxTz5zLN88U//aS5feZrTZ8+zdvo8ruujaQapdA4/DElZNuViiS996ffodjuUMllee/UbXLt2jTt37vDqq69SKZW59tbbDIYOrVYL0zCQUcwb3/omjb09VASGYbB1/x75fJ5Wo46iKAyHQwaDhLDKKCL0A1rNBqqqMhwOEUJw9uxZ1tbWkKqKlckQxZKFpWXSls2w72DoVtIwpRrUmw2ErhIjyeZzSCk5ODjA8zx6vR6WZZDLZSjnM9iWgaZpIJLqMIpAirG7xvjW/+NBoKfx/wcC/f06J9PjNO20MX5uuvI82zw468oxrm4PBgO+8fVXabfbdLst3vnu6wz6DWTkkrI0XvvG18nmczz99FNIGeF5Q9BM/vJf+av8zM/9eXb399F0E8/z6HQ6SJnISuI4xjAM+v0BZ8+epVarUalUKJVKKIqCaZoT4jyu9k5X0WebAqdjuacr0rPrH9bk92ENhLN3aWa3O64B8XH8rs0xxxxzzPEgTkQFupCx2d7eRtd1gn6f9b0Gtm3j9T0WT53FzBdZXV7hS//in7G2tkbUb7O4epqUZZPNZkkHAW9+9cu8+epXeeXHf4p1eYvzl58knytz+fwFvMBlYWGJ1uUrRIGPhuS1177BlYuXefWrX8XKFZBCIQhd9KHLH37tK7yqCJ5/9gV++Vd/kWuvv43wAjY371GrVMhn0ty/+R66ZbJXb7JgCbZ2ttEUaLQ6eIMhpWKWbDpNz3HI5XLU63UymQzEEA4HpO0U6+t3WVxeJVWs8PyLL9HodHGDEGFYPP/8i7x37Rp9p4uu63iex/LyMo1Gg3DQx9BUmp02Wc0kcHrIwGUsyagWC1xaq5I2NWzbRlEUYpmQDEMk0cwyilEigYintZ0i0UVzGOsMY0mGQJUQj+S1yiS1LZwkBgrGFTYJIkIZdcgJRU8aC6f+i6LEP1dVBNHkXneEkAIh4+RPoSYxzhJkFCf/EqBGPkrkocRB0lj4Q8RDSbyclnaQdGdOvWYssTgSVqNMNRHO7HZW5nHce083qM36EkdRknIZRRIvCBGqRqQKTCSMx3v0/rGMkUj8OCKWkhiJF/gEYUCMJBZwZmGZzW+/waYAZ+AzCBUGHYeDRp1i5RQXL13Bb3apex7ZSgVd14njAU4AtbPnyS0ucX9vB9M0k6CW0CeTSU2kGSsLJSpLK5y5dIVOEDPo99DbLXx3gGZYiMhHtS16rpsECqFhGCm0MHG9MXQNXVOSEBVtHKAykm/Jo82WhzplEh1zLBBx0rqKchjPPd5OZTxcCpLparYc7xIZH72LoIy8ogG0UdLhn+QJ4BxzzDHHn3ScCAI9HA4IAh+Qkx+aOI5p7G1hZbKYpsHd99/lRz77Cr1eD9d12bl3B11JGqMEEVEU4bs9bl67xjAKiIOIytIq6Co6CppQIJbYlsW99TucvXCR9Y17GKkUmWyVldoid29fx1J1RBDxzNVnUKOQV7/6NSwrhW2bXDp9gWtvvc2Lzz9Lq6FQ77YpFYoYhsFgMKBaTh5XiiV2tu+RsiyWlpbY3NwklUoBSQVQaCpBEFCtVpEycRl44zuvo2oWCyvLpDMZ3n77bdyBg6omjV79fp9Op5PISjSN+sEBpqaTyWSo1+tolkUcuugomJokk8lgqkxuacdRfEzl62ToiD8OZq3cThIJOe5Y/jiqyI+y7ez4PGBJN6pEq0dcIZLXz1ahp90oEk+UmJvr9xk6Qzo3blBYWMLMpNjc3Mb1h1SX12h26nz7O29QrNZQ0imEm7h9oIFUFf7Sr/0a/9fv/nNuvPVd3nvvXcrlPI7jMBgMUBQFPZNloXYKKeGZp5+l067j91qoMsf6xgah5xGGIYPBABlGXMo+ixdDf9hG0xLPZ13XUYUyIdATDfRDCDRAPJrqxerhuGkymTSMY7ljZVom85CK8jHr5pXnOeaYY44/OTgRBFrXdbLZbCJp8AZAUkXK5dN0Oi3a2zGxgHDkD5tKpfB6XYxUCgn0nT6WbqArEbt371CsLXDj7beo7+9QXlik0+wR+xF62kQKMLNp+v0B5YVFTp+/QBjD7Zvv8vQnXuLutXcYOBaN3W1838c0LLpOl0w+zc7WJltb9wk8h6cuPUE6ZdHaPeDuxgcIGbO3t0eltojT7bG6usrO1haapmFZFr7vE4Yh2WyWMJKk0xlM28ZOZxKC3OmytJTi7u0bLCyvcOnSJVqNOnrsEgQBXSe51Z1Opxn6AWq7w9kL52nWDyhXSuipHL7TolAwWS1nUOIAVH2iJx3rWw/rtYl1nVDkAy4c46bBR//BH5NzCXx4sMlhc9yD6qHkOXmkknocYZ4mdj9sUjJd5X0YyT3SjCmPWtQ9KjGefd2jvs/0Mq1tHhNidapZcRzlPb1dGIZ4njfZn65qxIS0HI+/9mt/nd/4r38dTJvnX7zK+aUlbm+uky0XyZdLBIFPPp/FG7rkCnn8gYPjuYkWORhy/sozfOdb32RpdYXdzfUkYGV0bPv7dcrlMpGq0wvauH7A1s4uWdtOnDZMc/J5oyigWFtFTxVodw4wVOUwOEWCOZpEjmUV4/TBcUPgZLziJNhGEQqROlV5jhKiPNYwjyVQh+4nD55XjjnH0+cBvnc3ljnmmGOOOX54OBEEutfv0Gw1kFKSyWYxDINer0dtaZFseEj5PHdAJpMh8F2klJOkMiklvhciCYhjLamRRTH17W0cx0HVLVr1FrVahWK1RjZfJJPNk04l/rBIhTffeRt0i2aniaortNtNhKpQyObx44B+t02pWOX0mVO4zoDB0KHeqDPo90fv75FJWYRhSLfbxdDzCCHY3d2lUCgkFfVGg2w2y9AdsLu7y8Unn6TT6XDpyhmy2Sz3Nu5gpjP0O202goi9rU1Cp0U+n59U0FzXpVQs4wY+TreL6wwolYssLCzQP/AoZmwylj6J557+sR5XHZMf9HH1+ftdwY35KBL9cTFLUE9SBfp7PYZHIcbfy75nMS3tmJ6QKIqCnGo8nNVBj6+f4XDI5SefIJMpsLt/gBQaznBAq92j39hHT1m4foiiaeiWTrvdIu46NA/qpPJZUBV0U8EPBD2nz+lzZ2k3D+h39ml3uoRhjGVZxGHEzZvvs7CWhBT1nCFnzpxDRdLrdSZ6Z13XQUgq5Rp2OsudOwYaElWMtMoj/+0j+uYjEeZyalwO0wKP0zhP1k+dt4ed+ukJ4Oy6H/akb4455phjju8dJ6IE0ul0WFpaolwuY5omxWKRarXKvfv3MW0bzw8R6CgSZBjhOgN832cwcAEF33fJ5XIAGIZGfX+fTMrGjCIG9QNqtRq1xUV6rRY33n8Xp9vD8wKiOAZFcmpliZc++Wn6XsRe4wDdMimVCvR6HcI4RkVgaQb1/QM69SZPPfUUvW6fK1eusLS4zEsvvYRhGFSr1QnJqNfrFMtl2u12UkHudjl9+jS9Xo9up8fpc2fpdHoYlsX6vQ2iMMAyTIq5PC+99BLrG/dYWl7jySeu0HOckU2XTyaTQVMF+XSK7a2tyY/85r27PP/sVU4tLWDrOoyCTTQtmSOpqnrETWD2J1w5lgg8qsQjnlo+7Pnj8VEX4TTZE/F0FToiOiEE+uOS6B/EBGDWtWS8bnoZJwyOK7/Ty1jqMe23nU1nuP7WNX79v/ybfOetd+l7yYRRVyJ6Th9nOKCQL9Npddnf2UXXNGqlIrmUjdtzcDptuq02jXqdhYVFFldWEapGKpWiVChi2zZ+FJLK2Gxu3SEIXUzbYnV1lUwmk0xAh8NJw6Gp6VQqFYxUhrWz58lkcpPJ49juUVPUI8txKYSTJkOhTMj3pGKtKChT/x7XFDjdNAg89LnZRsQ55phjjjkeT5yICnSxVMEZuGSzWdrtNkKEuK6Lpans7e1i2ykUQhrtFtkoj66bqCRNUf1+F1VV6TldhKLh+h6maXKws4vj9EllMtx47x2eefZ5DFOl1+vz/jvXOHfpMka1TCaXJVIF5XwGTYacPnWGjfW7KITUilWkKtBMk3Qmz/7+B5SKBV79+h9w4eITdDp9pKry5ptvUiwWuXPnDrXqIpZtIInwwwBVN+j0uniey/b27sSWrrl3gGZnyRcr2LbNjetvk0kXMKw0O/sHLC4so9spFDxUIZAqGKZGq9+nVMzT7bYxFIkmQFFiKlkdA5dUtkisKJiawmE6YGL5pWkaQeBNCKggsdsSJMl5YqoaKkSSDThpCxSScS/cWOJxHBTGDYaSeBI4Ma54y9EWKsqoqVABZCRAFcRSIpRx+uD4reXk9VJGyDhGypgocCH0iMT3t9r9cfFRBHjyfCyQI42/RB4hW5Nt5HjsFcbjPq6SShmPqp0CKeMpcnxUKjBNygI/wtBBUQRSkRNZBgiCIEiORdNQwwhFkYhREMj4TkUQJU2EYkryUG82KBfLrJ0/zX/3P/xPfOXTVzk4OIBSCSNlg6bTqu9QKJRYv/U+Tr/LQbfP4uIii2tnUDSVYrGIZZlsbW2CpnLh8iVa9R00Q8fO2Ow3m1ipHKVikU7zAMtO03P67O7tYegquqoSi+TYnnr2CqfOXCKVyYJpUqut0m3sIUSAPiKr8I7R7AAAIABJREFUuqYfrUBPjZccN8PKGIRCBMg4TppZx+dIqCBG4y7jyfgn5+1wvI9IOcZ9oaOK9nQK5XHV6TnmmGOOOR4vnIgKtGEYZLNZgiDANM2phh8VwzAYDgd4/oDTp04RuB6B600qaEklesBwOMQbpetFUYSiCNLZLIZlkU1nuHH9Hbq9PtXaIkJV2bh7m7v3NkDTuXv3Lo7jcHBwgDv0SGXSmIaNVARWKoOu67TbbZaXlzl//jy5TJYo8IkCn7RtYVkW+XyeQqEwSS3TNG3yOJPJYNs2pUqZbr9HyrImfrdSSm689y7lUpUw9FGFJBx6LK8sUijmaDQaZDIZvGHyGTudDtu7OywsLGCbFpoqKOQymIaCCAdE3hBVebCyNb5NfxxmrbVOcmVsWnZwEiQcj4qP0kmP8f0e+4e5dszqyac9n6efn0Ycx3zxi19kOBziOH3COOTCufOsrq6SzWaxdANL1zA0hSgKePKJS5TLRc6snWZ5eZlYhuh64s98cHBAPp/HDVzSuSwvvfwp7HSaRquFbZpYtoHv+/i+T7vZYuD0UFTodNqTxlpd11lZO0exWsUcaaNN00TX9Qfs6R5WCT7OWu6jzsHHveYeZl13kr9nc8wxxxxzfDhOBIGWUjIYDEilUpimhZRgGEmTkKZppNIG7U6dfrdLGHgs1Cq4QcjQDzDsFKlUCsuyME0T13UxDI0oDrByOSIhuL9+BzWKsEyD7e1Nzp05Q+j56FLy5rdfx3Vd7t+/TyqVQthZystrqOkchYVldg7q6LrOwB2wt7fH/fv3E+utKKDRrOMM+riDIfW9fQLPB0icMoIAz/OoVCoMh0OIIZBQXlrC0ExSqcSya7xNq+ewsLpMs9lg8+46jcYBsYjZ3NxkMBhAHNPrtlhdXaVUrDAYuJQKORp7O3QaB+xvb2HqKqoMkVGAoupHNZdRiAwT2zeFByOwj9Pizuo3H/aD/2Hazlm97UdhtsHuuNdOk7yThFld8TRp/jhkafY2//TYP0p8+fQxjInxcRKO45w2Zhvjxq8Lw5BCocDrr7/OX/pP/gqaAmEw5MWrz3H53AUKxSK6KrF0jXIhR+tgj7vrtxk6XYauw+1bN+g0m2iaRqfToVqtEscxhUKBXn9AYXGF1TMXyOaK5HJ5ur1e8h1yBjT392jv7SUe6pE/aWq0bZvlcxcp1lYQhoai6hiGha6bR8Zw1ud5Op1wVh/9sOv8o67hj3N9f9h3aY455phjjscDJ4JAC5FECtfrdXTNJJ8rEgYxnucxHA7Z29tDUZKo6sXFRQzDIF8osLC4iD9KR9M0DUVRiOKAXq+X/ECqKrZtk0mlMTSFTqtByjD44NZNquUaWxt3id0BnudNftD1VIal1TU+8ZlXcCN4/hMvYaWT6laxWCSKIlRVpdNqoykq7mBIrVwh8H2yqTRhGNJoNJLmJhhV0IcAVBdqXLlyBcMwCMOQVCpFEARohs7CqRXOPXFposPc2drG8zxeeeUV1s6cQVUVsqk0e3t7dDodNjc36bbbZDMpup0WlmVgWOlJ7PAY0z7DYhyXHUdHGqU+7rn6YeFhBPVxwHFuIrPHP6urnV0/fvxx3nOWME+P3Wy1+cOOz7ZtLl++zOc+9zl+42/+V6hC4aCxT7lcxrbtxKFDUVCFRCHGtpJG4F6vx8b6nWRyCuzv7ydOMsMhjuNgWRahjIli0HSLpZXT9PsDVlfXcHp9DMOg3Whi2zaO40zIs6YlumkzlUbRdATqoTTpIeT5YeM6q1s+bkzG62af+zjnd4455phjjj85OBEaaEVRSWXyOMM+fbeHoZsYKR3dSOG6SYOg0x8SRj77+3v0+33MdAYRxZiqhm7buM6AKAixzBS+7+M6feqtLk8+/SQyDri7fR9N0fCyHfww4E5rn1Kpwu79Abpl0+/3QaisXbiA67pEusX5K1e5fv06eUMHI0V/2EfGEsO2EUriiGEbOvutFqlcGm84pN/rUC6XsYwcnucRhgGFXB6ppeh6Ef27m+Tyee5s3OHU2UU0Q0dRNKxMjl53gCIkt269z3Of+Qyddo9r179LFLh0+w6ZTIbVMxk0K8XTTz/Nt7/x+ximzcufuMra2hqNQUA+bVAUMcIfIHQDEUniOCSxwU4kJVIoSdOgkEhFPRJznLjdRiiK+gBZE+NFHFq3CUCOCQggCRkpoRMd6SRoIlkrZZzkJaMy1o9KRQEZocqRE0ScaKXFKGxCjvTayAiiaBSqEqOqOvEJ87I+TjJxZLyEADlybxCJ25lATewEhTZD8EZR0EAsw8ReTQYIoSTj+JD3n97HuFFQVdXEmlBJzk0cH05cp/W5R8lf8t6KolCrLHD92nUqlQqn11a5v7lDOZun3tjn3s4W7d6A5ZUVgsBjv9ul77ucvXCWdDZDIAUpy6TRaXJ+aZF684BsJkO1XOW969+hVq7QaB5QXV5h4LicXosRqoIfBtxd/wDdsKDvTz6PZiqkrTTLZ8+jWzaKquMHLsPhEN/3kYJRk2By3amzE5OJ1hyiOErCfkah3LEEBYGQCsQxxOLBuwmT63TUIyBlcs3K6XrEaPtpLftYDj8P9J5jjjnmeOxxIirQzWYD29TJpBILu063nTQxBRGaZmDoKRYWlgAoFAoJMfV8Op0WURQR+H5yW9YyUEdVZ0VRKBcLvHf9XXZ2dtB1nb39XTa37lM/2Mfrd6nvbmGZKnv3Ngg9F0NPSGS/3yeTzdJoNDh95hyGZaMZJrWlRVK5PHHMpDouhCCVSnye+4MBuVyOwWCQNEOqiXbattNIoYCi8vkf/XHkSKPc6XRot9vEcUyz3mJ/vw4oVKtllmpL6KYBwEK1RjqdTT7D3g6GZfLezRucP3+ehYUFEJLdvR0cxyGealBLkvviEXGNjpIAZEJI5Tip7mii3+zfHx9HCd4kWU9IHojZewQcqQIm8Ykjov144YHKpBy5McgP/ypOzunHtAic9nSeraY+TO88+7cQcHCwx5UrV3jvvff4wo/9OF/9yleIXIe7H9ymmM9xdrnGYqmALsBxHAqFEoN+nzt37hBHAbt72xOplhCCbrdLo9FgYWGJdrtLt9tFaDqlhSqO57G0sko6m2V5eZlCoYCUMqliC4GmCJbPnGf17LlJYIqmaVi6Rr6Ux7btybF/WKT2h52fWdL8sMry7Jg+yjLHHHPMMcfjjxNRgY7iIe5gQBzGRKogZacJggDDMBBC0Gw2SafTuK5L39mlVKwQBAG+H2LbJiIWREIgNYVBNwlhGQ6HiK6DVAS6rrO7tU0mk5lYVskgoNnuoesmxWqFfsuFMKS0fIqXXnqJg4MDnn/+ebzAZ+++QTp9kdvX3yaVyWIZBkLGFAt5tu5tkMmmUG0bTVHwhgNUXaNYrrJ8ao1UocTa6grV5TOsPPkEW/fu0+z2kqbCUgkv8FFUjacuPUm716blu5TKVXb39+kMh1gpmyAKiZG0220My2RrZ4+f+LHPceutN9iv17EsiWXoXLl8AUtTUVQVqWooQhKFYTLI8VSlLJbIMJhMAEzbnDQejm9/jyOMf+AQY7eOQz/pQ/IxysF7jBoIx8f5QDX/YzZtHpVwPLqMYyxpGEuPpmUdyfHNVMc5SgrH6xRV4ebNm2SzWX73d3+Xp9aW2Lp3k/X1DU4tL5LTJa3NdfQIOo7Pxgd3GPoR5cUaxZpPoVhi9fQajXodWaywWFvAHQzodj1Or52nWl3A8Vy0VIqnX36J0AspqQbecEgURXS7XaIoSki0pnH15U+QLZcnd0801UQTD4bIJEmls8T5eBeM6cnGrOzl6PIwsvzw83Dkej2myXeOOeaYY47HCyeiAo1mkk6nsW2bfL5IGMYYhoWqakgJpmkRhhFCiAkhSOfyKJpBoVQmEqDoGmEYUq4tMPB8zFSaiIhBr0uv3UJXBE63Q+i5yDAgjiIKxTxR4NPrdJOgCBlPorGjKML3fdLpNOcvXQRFo1StkskVACZNgrZtE4cRg75DFIQoWuIQ0HMGxEIgVZUgitnd38MLQlrdDq1OF9d1aTabBEHAYODSHw6wUulEzpJKkSsUqS0soY1iwsvlMrlcjlQqxSc/+WmCMKI/GFCpVHC9gFKphKkpqCJGxtEhkZBRsgiBGJGDKAgJAw9L10lb1hEf3OPwMP3tRxG/RyGGDyOYyXMRUkbM+kjLsRTlBBDo43Syj1JtnCWos+sf9prjzsVHVVanK82PYqE23s+40S6XyxFFIZ7nUijkOX16jX/1e/8K1VAplEvUajVM00zkE1Ki6QrFfAHXG7K5cY/d7U0UVXB3/QNK2RyN3W1id4Db7yEE1Ot1IE4mleUymqETyhgUQW8U753NZiepmqVKDc2y0VTjCFGWUk4q0uPKs5TyAY/m48Z1PDbTFejpicb0mB13bh82nrMV7Xk1eo455pjjTwZORAV6cfUJiCN8v4MWRORySXJfxxlgWRa5rEEQBARxgImCoht0ew52Oo0zHJCulAiHHq7nEyHJFQvkcjn2dzYR0kQVCoNen+riQuJZqwjyxSJ+6HHh8mUGngTbZOX0WVRVxTRNAIqlPGEUsXF/l0qlgtPrcPvddyikTWq1Gk6/RxiGaKqYWNnd37qHlcpgF0qk8iXMvkPfdSEQ/ME3vsVircLCygqdnftAIhc5d3GN/f0D7LSNaafptRqkZeKNvLKyQugVuXV7HVVVqdfrZHJZnE4TLwiwhcrSyjJnTp+FaEg8lKCGKLaNEOpE5RD6fkIG4qQByzAMcBPP5pPlChCPJBoTt97JEstwQqpnyc0PC7PjNq0n/qjXKYrCx5HDTqrBQjlC5j7qNeOJ5zgcRdcOv/bj9dM67THGJK/dbqMoknKlmBDNWNIeONw5aPLy5z5L3HN4/Zs3caWK0+2RzmYQSsTayip2Js2te/fZ3tpg/6BBt9Fib++AzfeuA3D66hVUVSVXqOL6Eel0hj1/F91WCb2IUjWPCKHTaVEqldB0heXTZ8jmShhaIt1QVJUgDPF9n+GoYv1HwXRz5XGTotlxeUACMy2RmpmoHJXt/JEOb4455phjjhOEE0GgddNk2O+QLZfptZqoQsE0dYrVGr7nYagKYeCh2yU6nQ7NZp1MNo8QiRdsfXuHVCpFGPjsbGyQy+XYvHMHXYAag66riTa53yWbzRLFkM9V6PV6DJ0Bhp3CzmQgihO95sEeqVSKRn2fM2fOkE3rtJv7ZNI5qguLyNBHNU267Q6WYeN0m4mO2fNZrq5w0O+xUC6xt7HByvIq29vblBeyqNk0ayvLVL747/Dlf/oP6e/vkspmiUMf0zLptrtcPn+a7dBn58512o02tWqVOPDZvb/O5SeeQphZ3nrru5xbO0UxW2BzY50nz5Vobt/iwsIVVBlBrKNEAVLEuMNBUl2Ok6aoUEaEoU8ch0gZI1CQUQgKyCggRk8qfUjQRvIPIUgulTHRligiqU7KyfMJxgRSCIEU44bCQzmIGEuY1YikUVBDkclWAoikhowFs3xeSokSR8gwQIklUgZJ4MoPmfdPu5yMROcJ4gcJ1KFlmjYitupEjPFRk5hpQvYwh47xex3eSRgNthAoqgoiJpYhYRijKONKvjbZTzy6czG9f0UIFFVDKDLR2McxkR/Qbrf5x//kX/Jbv/2bfHDjOstPPsFr33yLtTOn2G/ssre7z87OHouLizQ8h1KlSDZXIg4Dlkp5wn6DgQzJpF/AdV3ef/c9TCuFbpkomiD0kwmSauhgQCm9gBJJbMMkv7yYVJmnEwRHLhxD18H3B0wkQFJO7lhMpC/yUMpCLBES4jCaNFxGUTTqD0gWIUGOtpMP0d2PCfSHTWwm66Lj7z7MMcccc8zx+OBESDgUM01/6LN/0EAYKUJUhq6P5wWk0mk8z0MzdPr9fkKAo4hyqUQYBDQbDRarNSzdYG1llTgKcPpdCvns5Mc1DEM6nQ6Koky0x1JAEIUMPZeeMyCIY5qdNuvr6yiKwmAwIAxDer0eUiaes08/9zSlSgXfd1GFwDRNCoVE0hFFEbqu4/tJwIrjOOi6Tt8Z4vkhe3t7FAoFzpw5w72N+2iGxXA4JAgCet0OzYN9VpZqvPHGG2SzWbzhkC9+8YukR5/ftFLU63WCIEDXdW7dusmdO3fI5XIErsfSwiLZjIWuapPY7sQT25jcjp+WaoylMNOWX4dOHH80ecQfFyF42C3zk3Ab/GHygI9qWnvU5z4OPmxf03jU5rZZN4/x5/U8j6WlJZaXl7l16xaLi8vYGZN2b5+3r38HPwwZeENMU8cNXMqlGj3HI5PLka+UsDNZem7Azv4BcRwRBD57e7vs7e4ioph+u5vEZk+l+CmKgmVZ6JaJpmmTzzWWmWiahm2nMXQLVdU/8vN+3LEYb/th6x+1ifBR7x7MMcccc8xxcnEiCPQLL3+a0+cvkS9WiLUU6DZLp89RqlTxo5hStYYfxpMf70qlwvrtWzjdDpqA3Z0ttjbvsb+3Q61SQhUSp9dJ7OhGRDKOY7rdLkEQ0B8O6HQ6rK6uUiiU0AyLTrNFNmXjDxwizyXyXHrtFhsbGyiKQr6Y47tvvsnAdXB6PXa2NklZJv1um2w2O9GAhqGPoQjiKGR7e5OFWgWn3yWXyxGGIUEQcP7SRS4+eQVr5BZiKJJyPs/O/g6/8Cu/RC6XY29nl3euXePCxYugKtjpDMVyjTgIuXBmjb3tLZZWFsll00gpiGIFJQyJZVI1HicPqqqKrutHfrRnyfMYYyIyTaYfpn8e7+s4/FEb5I7DcfrosaPEo+7/jxOKKibLeIIyJnUPI8nT+tzp8Z00vc1MasbrZrcb//0wzL5m9j1mZRuz20wvuqKiItCEMpnU3b59m3J1ierCMpeeuMSZC4sYKUEQD1hZW8SLPXqug26n0HSdmAgvDOj4Di//xOf5Mz//8+xub9JpNSAOEVGIPxwgohBvMJx4qcswIvIDFFOfOO2MyfP4s4xlKIVCCdM0j3y2WR1yLCOiOCSWiaRlXHUeR5jPYva7c9xzs+sehTzPCfQcc8wxx+OLE0Gg/5/f+5dUy3nOnz1NPpvi6tWr9AcuUoCuGRzU62SzeTzPw3VdXNclDENM0ySOY1zXpVqtIqUkDEMsy5pUauM4RtM0FhYWKBaL6LpOJpOhtriAoqlsb28TuB6R7zPodjFUjXajycHuHsPBAE3T0DQNXdcpFfMQRpSLBfpOD98b4jg9Op0OQgjCMCSTyRAHIXEcc/78OXbu3yNlacS+x4ULFxgMBrRaLexUhn7fSSYFQUTHcThz9jzXrl1je3ubQqHA9vY2b19/h2K5hKKp2OkU+Xye7fubZLNZKpUyg14fqej0/VGEuEgmGWMy/IPED4LMnrQq3ixBPu7vD9tuepvpfT7svT7qGD6q8v2wfT7qpGdMrmu1GouLi+zv1VE1C8tKU6vViKKAVNpEUSSVhQrFcgHN0FF1BamEBHGAlTXpDXrsNesQS7yhiyoSItztdrEsC03TJk48uVwumaRaFrphHDt5kFISReP0xePvVhw+jqaW74/d3A/7OpxjjjnmmOMHixNBoHNxh9d//8tcf/s7BN0DgiCg0+2TzebxwwApBd1eD2vkGKHrOtlcmjDyk8ayMGDQ6xIHPmEY0Om0sSxzUn1WFAXHcWg2mxP/WSHEqLoMB9sbuN0GG+9fw+n3SKds8rksxVyOcrlMJpNh0HdoHzTw+w69RoNqucK9e/fodjp4nodhGERRhDPoYZk6+WyGTDbFxu13SWuCbmufa9eucefOHS5cukyj2cayLDqdDlY6yzPPfwIllWV7Zwfbthn2HYrFIp/61KeSQVI0Bq6P7w15841vU8hlKJfLaKrAlwb9QHDQaOOFwcQX92GuGvDH84P/gyTQ4+a3HzZxURRQVTH6Vz1ShX5YJfph3sTT649L0DtuG/hoAj37+mk88usQqEJBQWAYSVPvxsYGmVwWTU2zsnyZV37kC7zyyo/SH3bpDpoomgBFYtgaVsZkr7GJ57Zxhx1u373B5r07NFt1NF0hk00ldoqWzjD00C2TbDY7ibzPZDJYKRuUozZ1Y4zvuPh+SBTGTP+vbfqaGVecx3eDxpXnaZ/sRyXRs5Xt4yrMJ0VqNMccc8wxx/cXJ6OJ0C5Q0ZIYbKFm+eD9m7j9HpFYIpYqxUyegdNn4dQZdne2CNwhtpWm3WlimgZ+4MIgxrIs4jBCUzTazTbpdBrT0PDcQdLpn8kThCG5nMWg0+DJZ57j7u1b2GmbdrOFphloRpd6GJBfXOGg63D5apnNzU3S6TSxDGk0D8joGq1WAxm42JaBHwSE7oC0rtHv91BVjXs3b+J2liiWKvT7fVIpi+ZBk4tPPcu1d96ZxHgrmkK2UiEIJdVShi0jhWal0TM5suUyX/va1+i1muAF2IqG50ecvXCRzfv3sRXBsD9EtbPsN4fs5yVWJkumZCTpg+okOxBIftRVGaMSoRJAHCFGDVWHjXAxiiJAxAihMO6KEyTSECH1yXYJiYFo0jl3VJKgCEAmxCZJDDxsQhRSRVEgFlGSijg6ziQn79DpWAJCymRdLFGkTPYpPFBiiL/XwJfvDUJIFCVJFpSRRI7i0uVobBQxSh2Uh/rykTMxAoEUIEa+wJOGSMGR5kJgoluf7GP8t8IkjVE51h/6qERDSomiKkgx6tyccjlJjitJ7psc5/h8jpP1RBKfqBkWxUqFhWoNSwPV0FlbvsiZ1Yt84rlP86//73/B1771FaqVJQ72dlEUhcgP6AcjSYiugxJjqDaaaiFUBaGq+GFIpVYFLdkmIe8SxdCIwuDIJEUIgVC0pHkv9BkO+ki3j67GEMVJ05+MAPUI2Z1224hjOZF1QJLWKZFIkSwxMVLEo3UxKBIZjUNWkmt6dnynz+VxUiM5t+GYY4455njscSIIdF/P88InX0BKyfbGB9y9t8Gl556l0+mzeuEi92+/T3FpgYHnYpgmw6GDP3SxLAspY7LZ7KQhTxXKRKbR6XQm/rGu62JZKcrlMnvNOrGic9D9LilFYpdKFAoFTNNG6jpSCM6cv0CxWARiSqPnv/v6t5BCZXt3G10F0zTxPBdv4KAKlYWlZYJuj6eeeoqNjU2a/QFB6FMul0ml0+TzGVr7O5xdO8XNdpNyuYxqGhSLRZrNJp12i6tXr/Lmt78JwOb6Oq43wNAS0trvd9lvNFE1Qa1cIYpjls+eplguUSnk0cw+wai6ppnTZGqqaYrDatk0SfuwavVH4QelQ/5+3Gr/fkPTtMNjUOTIQk0gJgElI3I9JZ09Iq8QD8o8SPbwwHtNHD8EE83vkddLHtzPMZXraRxX1T7uGCbrFAUpYlKWxam1VSqVSkJoVRXLsoiigMXFRX7pF34FzdB44803ME2BbpiYdgpEcmdoOAzIpAuYhpl8JikxdJ1coYDre2jopFKp5I6TmjQCWyNt87iyPx6PsWd7p9Nme+c+qgjRlIRACyGSuG4eTGWM45g4mtFHz1jTza5/GIQQH2pPd5yWf4455phjjscXJ0LC8crnfmQUhe1QKJdZWFmhurTEc594kVJtgYWVVVBU6gcNgiDCNO1JXLfjOPi+j+/7BEEwkWz4vo+u6ziOQxRFKIqCpmk0Go1Ev7m0jAI0Gwfs7++j6zqRjFlaWuLJK0/T6/VotduYpkm73SaKIoqFcpKEpiq0WkmMeL/fJ4x8crlcYokFvPvu+xiWlTQWhgGO4zD0XCLfpdPYJw5CDF0dWfK1uXXrFqZp0mg02Fi/w4Vz5yEKaTQalApFLMui2apz7949lpeXURE4jsNTT1+hP3BYqlbY395C0zRM0zz8sRZTASQi8Vcea0Cn8f34Yf9ByTdOGhQhEy9t4iPE+GF651k8TAc9/fyj7Gf6+UfRXc++/8OOa3bfCqAqCp43xOn1k7saqoqMY1RVJwiikfZe4ZXPfI7PfvrTQEy/1yL0A+IwREXF0i1CLzjiChNFEW7gH2leDIJgQprHlevjjjkMQ4Qi0XX1IxsBZ//9fuigP+r6P4nX7hxzzDHHHH90nIgK9Prt67Qabc6cO00Qa6yeOosbxCh+RCQ0rFQGGQsKpTK6qrC/u8PAcVC1JKbbtm0ymUxCoj0f13UnP/imaTIYDDAMg263iwSGzgCUIflsHuk65Ow03X6PQqnCjVsfUO30eeGVzzP0XBzH4bOf/SxvvvkmtdoiSqVMxtK5+fZ3cdoNstksje177K6/j6YolKpLuK7L3YMtEAIznaXj+3jekHqjQWVhAX/osrd5j1whj2FnWVpaYmNjg8uXLpLL2mzcvIlpaFQrJaLAwzQMisUCg8GQdNrGMBMrvoWFBe6up3n1K7/HuaUlgqFNnDWmqmWJB/D4frKUY0KdPP8wsjVexj/5x1ZGpwjDES/kmb+Pra6OZAAJ0Vcm+xyvH2/3QFAFh04IJ0H/DIwi0JPjjWI5eZwMcfKclDJJpRwd7rQ2Woqj5Gsy/lMfbXrc4jg+fIs4nsg3pvEwAj17jsaSg9nq6LRs5PA8jp+TSaJlmOjxxxXaMTTNoN8fYJk25UKZz3/m89y8eZPBYEC755LJ5IjjGG8IoCbOFwKslE2EJIyiSSR3GIYjBxmBadqj9zo6FuEo/dA0TQI/hWVlCJDE0RBGkdsifjBhcNxwPFuBHi+zmugxjrvmJudlqmJ/XJPr7GvnFek55phjjscXJ4JA/8hP/Hvs7WzTaDSwpMrQG3Bq+RQtd0glm+Fgb4dQJD7QMvBI57IoIqmiClWf+C4rmobjDLFTJkNvOIn/TmfSo2qxQzqXxQ8DosAnkFBbXaXX7ZNPp4lDn9Wz51lcXCSMAyoLFaQX8PVX/zDxjSamVd9n88a7eE6fbDaDG4asnVqmZpgMoyGD/ha2NBgOHLw4ZLfTQQrBUiHL5ec+yfb2NpvrG+SKGbRUFi+WHGzvc2rlFBtbm9TyNlHo0W40EcSks2mGwwGaYVOZloPWAAAgAElEQVTK5Gi1u2QLgjPlIu+8e4NqoUQtC6eW8tQKFsgAVRXEAkQUg5QIlEkDVRD5CamKfFQhEcqDVmrTeGCdGIWroJIEoajER8jyVJPXhFCMQi04Su4AFMn/x96bxUqW5edev7XWnmIezpyZpzKzMiszu7q6q3qqHuz2ta8x4nJ1fW1j6TIIkOAJCR54gBcQSAgJIa5ACAmQXxESLyAbkC7XWNiXHuweqmvoGnOeM898Yo49rcXD2nvHjsiTWd2+5a7MS3zSVsSJ2BGxpzjxrW99/++PEWlG8iXCaITJPb0Gnf0tTOZ3NlkzlURbz+/nTKKVMtiJHOsZz/qnkDtichuHPRXW4S3noun0ArGyfmRTENb8eNnnhACd1cgZJUodG3MHebHyE/F3OSQSYazNRJJ5no3JjjOF/URIU6aE2ftZZdjzPNbW1vBdBQqESZEYHCnw3YDpdGo/SXj8gz/813i8+4gf/NX3efTQFvImsWFlZQ2yhjxKKGr1BkGzjnEVLg5BUM2KM12kkqQ6JtEpnlNDCzsgtE1PJFJZn3w4HqCTiW2Cku+vkScWn6ZpiklKdg4Mic6eK9s3hB20aK0x0nZitI4NbQdGGOuNNrqwSJF54ctOnPJZLg9Ql1hiiSWWePHwXFg43n/vXQ72dhAmxaQx9cCnd7xPf3BIGE747t/6LS5/8TXW1taoVnwUgjAMAavmOY7DcDgEoFKpFI/lBUdgf/xee+012u02QRDQaLWtdzKOaXXarKxtMJhMqdZr7O3tMRz26fdtUkZQreB5Hl5QASOZjIc28zmzbgSB/cxKUMX3rL3EqwS2+YOZYqIxvf6QRw/uIHRKu16l5vuEYczq6irNZpNWq8Wliy9z/+499vf3CXyf1dVVhLD7miQ6axKhGI1GXLt2DaUUH3zwASudBr5jaNQCKtXAEhLm1UebXqJI44Q4CRFFAdkLCJEXiH3+22+PsSndf7aNY7a+tmruSerzpyxGikzg1icS5Kdtw+J2P3ufnv0elYpPtVKfFTPq2TEop5Ao5VKr1Wg3W6ytrdHtrrKxfgop7WA3z2hP05TxeGwbGEUxQig8z8N1faScbZPvVbADN1Fc5zCbrUjScI48f1oyRkZ5i+VpVo8yTGlZYoklllji/594LhRoPTniqDegXq8zGU0QWjOcDKlWq/zoJz/mS1/5Fjfu3uXU+gZpGnO8v0ulUmE8HtNoNBhNhgSeTzgaoxyPJEyIoggQRTMGx3G4e/cuWsCFVy6ipIvo9ZBS4boOze4ab5y5gHHgzNmX6A8H9A+PGB8PqTbq3L59m4sXL3L36icox6PabBHHE4zy0F6dihox0ZJa8yy9yR4PByGTSHC5phnrhAfThJs3PiYIAiqNNurYx3V8XMfhqLdPgqHquZw9fYrrH3+E66os0UNZ7ygSoxPiRON4iteuXKbRaLB5+gxKR6w0myg9BR2g05gkiUpT8AJjUoQxOK5EJQ6jJCk12H5xUJ6C/0WKu/6mMU9cS0kMpUgNY4xN49BWZVdSzZHSTyOzME/oFAJjNEILELlKbJDksXaz7ZEyV6Nnt1KI4rmczNv3niV9lNXr8r7lSxzH7OzsFIQ5f13hlc46gKZpitCCIAg4vbVFOHFJU0O91qXX6/N49yFJolHKwc0Wz/MIAo80jTHG2EJN0iwf2itU/iRJSKMQ6XpIqWwX0DQFo+eO26ItI7+G0jTFlBM5KFs5Zrd/EzpDHru3xBJLLLHEi4nn4j/40d4uaZwwGgyJ45hHD+8zPO7x+MEdLmxvE1Q8Lp49y/7BEYk2GUG0XcP6/T5CCKrVKkky68KX+58Lr2S2vuu69Pt9+v0+zUaraA0exUnxg1apVKhXa/iux3Q6ZTgcsrGxwcHePo7jMBhPiNKESRjRaHZY39rCEBFFY/6df/ffQ3o+xvUxVNkdJDgSlIoRwhBFU3q9IwLPZTTsc//uHaQSTMdD3n37LR7cu0sUTRFKFPnSURThKsHeziP7XkLyySefcPPWHfr9Pu12nelkhKMEThb/JYVAm7RoPCPRGJOisFPfeXrE037En1WANqeGmvlM3rKf9iT18mmq8dOU0vy5Mha9vJ8nnnZ8yjnOi139EGbWwbCUgPFERFtpKT9ebnFtY/TIVFqTWUesz90q3KZEku01YEhtQSnpwrqi+L486zzl/uHJZPKEF73sJwaKAl5SqAY1Tp06hed5RcFr3pbb933iaUgURTgZIdda26hHlV9Xs2OQE+BUx9kAxSHwK8X1MD/Qsk1T8uOgdVL8rUltTJ3QxXq5reZpyRmFWn3C5fr0WYdn53EvscQSSyzxYuG5UKD7h0dU26sMRmPcwGXj9DbT0YjDR48YHvUYDD9gEkXU6nWb+YwmiiKCILB+ysjG1FXrNdLEFD/IaarnppSr1SpRaguTWs0VnCBgNJni+wF7D+/SOz7C1KpI16GiXKLxBK9Wo9Vq8fHHH4IxVKtVtk6dZndvh8tf+BKnzl7gO99+nfvf26PePst/80f/OWMDgdfCq7q8un6Bo4c3cI6OCHVC4FdJo5iDnR3a7RU6K128OCViysbmKsd7u5akD49ptpsoKdFpShrH1GpVoijENZpaJaDT6TAk5dGjHc6fWSc1GqGtX1hhM3tttJgBbQu/0iQBk6K1xlW2iMv9vC+AXwJz0+/PIHq/KjyN+M9ygLNbBEhb0GmvyUwpNk/6lJ9WqFao0JkfmczbW/aTi5ItXKqcWItClZbKboYlzCDEyfF2+Xac9LiUEt/3+eIXv1h0u7TnI51TsItW5AgatSaD8YBJOCIIMkW54tJutwFpB3nKRWh7rSI0UWz9+mkao7Um8Js4jkeahCUl2arccRyzu7t74jHUJp27XgxZ1jPa+puBlIxgi1xJt0favtfCAC7P7UbYWYDZWZo7Rp/3tbnEEkssscTfHJ4LGcSrt/jN3/7nqNQbbL/0Mt3VTaZRyubpM0yjmMl0hCRlZWWN8xdeQSOoVCocHh7aH9Q4oVar0ep0kFJSqVQIshi5/Ac9jq1qnat5x8eH9A4O8TyPWqPF6uoqgSN49ZXLxNMJ4WjIdGxbbd++fZtLFy+zsbbOcDikN+izubnOg4ePODw85sLL2/zGd7/NuQub/P6/8vforG8xHQ6oMqVZcXCCGp7ngZHFtPG5c+dAp9y+cRNXgKcEo9GA8XhMHMccHR0xnUwYDAYARaTXzs5OkWu9d3hEo9Om0mhilIPnV4rObUbOd6rLp4xd17U50VKhtZ5LhPgs8NR3EZ+N1aLcftn+/XwQ6LKy+CzV8aRugyd1HVxUsBffP1ef55eTP2fx8bntlqZYng49d5vbKs6ePftEmkc5fUWns23K/dCpjoiTKY6DrS8IqvbW83FdF611EUmZD4TzGaTF1vTGpJkybz3+QRCcsM2waPn5ZdI1nu4fz/dtpvCfNOPyLBX6s/rOLbHEEkss8avHc6FAv/Hr32ZiDF/62lc4OjgmNQmnz5+nf7DLS5cuc+7SJfYOD9h98IjR8QG15hoVB4JKjcFghBIpOzs7tOMYx5UcHx+zvr5OGA6tnUFK26UwjXEdj0cP7rO6uk44GiB8F6/eJpYOkzTkk5/9DMdxGE36JBrk44esbZ3h2tWrJOEUkUQ0gwppOKXWbtIbHPOf/Uf/Pv/9f/hvMk6vcfvOgB++8y5NP+HUmS2M49LsruLtP2aSTU0rJbh9/YZtUVyp8OHP36fZabPx0hnCwYDxZMTm5ibnzp7lJz/6KbVaDSkljUoFRypOnzqHMtBaXWc43Kfb2aTbriGEJNE2DSGeTnGcrJObgBSbRqC1RgmHOInxlLIeTzGbxodPzya2T2owmYUib+ABaDHL3pi3c2QkA1W8Rggb12YE2PiHFCGc2Wu0TakQJkWYOFtHY0xCamz8mT5pHv1XCKc0FZ+W9lcvDCXMnD/ZeqKlVBgzi7c7yepiu0GW0jzSFKGtkoxQpKb8GuZiAIWQiJxwi7I6OlOgMSpL8sjItMCSaaExtr+JtYjkJFxoHOnQ6HTpdlfs+UtT2w2w5C/O7VRxlCCVQAiJ4/qE0YhqNSCcaqaThEanQzwNScIII6FaC/ACF0cqarUaxhiOeyPq9TpCGNI0RmiDIQadoI0GE+G5TeqNmvX+m9gmYzxlcKVFpj/byBF7TJSwzW5y5ViVlexMlZb2PdVcIaKw17IGo/PUG2xSB3l05MnndoklllhiiRcXz4UC3e2u8tZbbzGdTglDq/7u7z7m1Vdf5eWXX+bx48dZm2/wfY9q4LO3vw9AHE2J4xjf9xmNRoxGI1tYOBohhJhTrVZX12nUW9TrTYbDMUaoLLd2QBwn+F5AvdFEG/C8gFarhdCaZqVCxXNRQjLoHTGdjlG+x9bWFr1hjzTWTCcjXCNYbzZhMuHXvv06dTdlPBqwtraGVO6cKpj/AE8mE4KqT6fbYn/3MVEU0Wq1CMOQGzdu0G63CcNwrtvi/ft3GQ77HB4eEkchjkjwPYUT+HiehxCiaDQzX2SXK4hp4Ql/Eb2YJymInxeepvL+4uoyz1yeVJnz6MHc+/z0zzrpcz8tMeSpgyYpikUbw/rmBo1GA+CJc1HOUBbC2lbyZBzXsddokiSFxcMNfKRrB07hZIpJZ0WAWuuseNApCgHzxwtVOc1nJtJi/wzM2nEvLIXnOW/NXfxtyHvJC0XxnFBybv/Li8i8OELKrB35L74glwr0EkssscSLiudCgR4NQ37jO7/G7u4ungOHewcMDw/46VtvsbaxySCKOLO9jcx+HKv1BsJxSZOEJJwSJ3Ex9Vur1XAcB8dxmE6nKKVI05RqtcrhUQ838Gm120SpZnXzFBrJ6e0zHBz1rcdaG1xhcBKXNIoROuXDt39Co9Wi2WzjK2i26ni1OoNBn9deeYXJfp1GzaNWOUuYPmKzI1HjB7x29gwffXjIrVvXGScxCKewTYAmjq2X06tWuHHtGlES0+p0adUb7D9+RL3TZb9/SK1mo/VqtRq1Wo1Ktcbly5dwmy2G+30aNR/XkZDl4gphiwXLBVWGNFM/reKslELrqCi4zFFWn83CY4v3T8JJ09cnPb9YbPVpWJyCz8nX5w5Vvlva91IeNlA4CpSSaJHnNc/WLSP3z85ZDPTMDiG0RCLQRiDTGVGVzB9vS7BF8Vz++VLMChiVmPmxhcl90fZWZgM9BBg5uzVC8PqXv8bW1mZm1UhBz5IrwJLo/NqSUqJTg5QOtVoDkASBx3gcUa817MA5jnBSazHyXBfHcQjDEK01fjCLy8ubq+QDwzQ1SCEZjfvs7z3KrnOBJi3UAZPZh2zB4Ow4lo+vECILJTdFdroxVsU3s4fnFrJGOfnMjtH5c5m6XzrJJw/2lgR6iSWWWOJFxXNBoG/eusPR44fUKj6TaEjvzn3CeMqXv/41Hu/u881vfYtHO495fOcxaxvryJZHo74HaUS14jEcJ7RaLYwxTKdTxuMxnU4H3/cZDAZFGsf65hZepnY1lU+l1SWZhhwc7BFONd21dfwgYDjoER4dM5pOUCal5gge37rKuN1hNJ5w5sxL7N6/jzCGG/vHnNp+hUEUI6YOHF7lf/gPfpf3f36NkXGYDHqEiWYUJShnpj6mOrbpH1GEV6sQxVOUkCRRxMcffsT62gpr3RUePHiE67oEQYAxhvF4zKUrV7h77za96W3WKoqd3SEksOW4aM/HDxpZUkI6I1fSRo/ZaDCr4uXtzRcjyz4vSCnzOOGnomhu8RwUEAI4XukrpGeE2TBP0HICK6UkFRIpnaLxSdk3nN8uEmiZNTcxQqCQmMTSdUeLpxJoR8zOq8pIu1IKgbURCWHbctvPtPfnBzYghcRIg3REcR3VGk1+/bu/QadeR1gvDjobvJWXfLvCrGW3LVhUaA21Ws3uZ6yJRxNqXsBoOMQkKQrr2R+NRjadI46L2RqgUKONMTjKw3ErPN67z+6juwht0BIwFAWC+a2trMUOBHIPfX7BWVvzbKCCKMKeLZmenY/5WR27rXnzmZxYL16bz8O1usQSSyyxxGeH52L+vuN7VFsrJCbh0Sfv4LgC1/W5de8+v/Xbf5u3fvpjdBzxxW98nctvfIl2u02iDcfDEcJ1SeMEYSCJrK838Dyi6ZRBr0ejVqNab9JodZhMBxweHhIlgiQVtlOhNoyPj/EkHO7tMDw8hCTGSOvbPHXuHJ3NLYQfcHBwgO8pPvroAx49eIBxNF7NpdGuMBmk3L3zEVrWaLVWiOMUmUxJlUNsFIE/a+zSbLapNVpEaYTjO0TTGJNaH3I1COi026RRyvXrN2k12wgNiU7RJqHeqtA/2CGNExq+wBERUTLF8RRhqklTQxJZwhG4LiZJ0HFsf9ilA8YSFGFMpuhr0DGYNCNguecz84YWFg/NrFgqI3zSgEhsQw9p21XnWFSYJQaFQQm7lOPTJAIlJKkxOBIkGokuCtuKhiM6BQzaJJgUjP78if+c/aE01V+2AyCZs1O4ykEVLgA9u0UUixIOEoUwEonC2NANjAQhdJawYcktClAgHVEsliDPrB5Ig1BklgRQyirPRhqkC8IRoFJSmWCyBQWptNYpKQ3GJAjlUqm1qfs+nlCZgi0xAoyQaASJNsSpLdgtx9xJFI1Kk3a9Q8WrsdbdQkiI4whHycJ+FEURyXSCktaaodMYKQxRGqGFRkpIk8y6IRVSOjSqHaTjgIv1R5dsGlKCwiCNRhr7mJYaowxIU9w3AMqx3nKRFsfMxnfb85sX5+bKurV7CLtIWVg6UNl9ZTtPCikRjrL3lbDnUX3+g9YlllhiiSX+enguFOj6S5vIh7fYu/uA5sYrnLt4mTBK+Po33rDV90LSqjcYTWJu3LhBMhiyvrGFIwWD46RQml3XZTwZI4Sg3W7TaNZQUlHxXatCSw8cj9bKGnE0IdYpjpRUmy2iSUQURvjhhMFohElt44abN29SCTy6K2vsTO9hUpsGcOGLV9g/2mdn9xH1Vpf/+L/63/m3f+/XObXe5MHt+3zhta/x8fV7HIxv8XD/CBQ4ymbfhqG1bkhhD7+UmslkxMrKBtPp1BbjxQkm1YziAcKTVFLwhIMJFePhCO04rKyssH16g1qtYvNyHTXney5Pd8dxjNYGR0gmSUJOYGUpPQDsLPZngV+G2IpMFTwZ8+kd853kBPpz7ge3aCMpvLtPpITY6X4hBDjl16hsHUVeMJj7htEisxEIVLEe1qagnUyJT4rXlLtP2veYedznvNDYHGqBJeNCSsii3WzZpt1eI5JsHVts57iSer3OV7/6dQLPRwpJWur6l6bWW6+zXuNparObk2RKqiGJIqaTEdokKGUbBR0cHLCxscHewT7T8ZRawzYOcn0P13VJs/SYfNZBSkkURcXsiRYSR3mcPnWWNOrxo7+8iZK5DWOmBGth4+dyhTgbA5JmjxlAq1krdFmaTVB5bJ0xNipQzs6LJM/NBtTsu5ef9dnswEyr0MbYetjnYNZniSWWWGKJvx6eCwX6r77/A659+DMeP7rH+ZevUG93OHV2m8lkwocffsibb76J67oM+8e0G3W8wKU/GlKpVPB9H6BQu4LAttAeDAYMh0MMKbu7u4wGPfxqhaBaAQybp7aot5oMo4hhFFGv11FScry/x1qnTc33qDgel1+5RDie4LsetVoNgE6nQ6/Xo9/vMx6POTo+YCrrHAwTlPKQjs8klvQjwePDAyZJhDa2oLFer7O6ukqlUrP+7MRw3Duk2WziuZWi8USr1QIpcB2JryTNzBd6dus0XuCjU/A8j7WVLq1WC9/3i+SDRW/xiX7PEl60SK15Ev05x9hlquPi8rRiwqc1Vyk3RRHlRitKIGSW35wvn/L+cxnMJ9xHZWp4YX4WuV8jU8/Jiu+s4q2FQSiFdBzOnb3AFy5fse+zcM2Uu/3B7DpTShXnKgh8pBQk6ZQkieh2u1nXUAr12SQ213k6tQXCjiOJphNM1mEzv85n9iRL7LvddRBWQRaivC/zS/5ZTy5PRgIuFn3m71uebSiKArNjKkvRkE8r7ixHCi6xxBJLLPHi4blQoJNPbuC12vzOH/4d3vn+D3mt/VW61QZ37t61KpPWeJ7HareDMpof/+iHXDn7MoPDPR7duYXjOEVVv+faPFnrn3QIwwmOULgGqr7H/UePEQaGvQNeffNbdBorDEfHHO/s0mg06DQb9Ho9PDfA8zwGvR5pGNGPYvb392lUfcbHQ1r1Kmkc0240uXfnNq+cu8j/+YMPUM4bKOXz3s17XLvzgFFkEI6HSW33tnv37vH661+h015lNBpgTIiQJsuu9hgc9Di1tUU4njAKp3SbDVRq8FSduO5xfDDgXm+f1dUNJpMRSRzS6XTwhEa5ijCKaDe6mEyBhBnREGKWB52mKdKZeTsX6bPISNUiGZp7npOLDZ9WlFgWi08i7IuvW+TGzxNxzmHkyd3litbWzHuchRBouTDAKZRSa52xiqsuYtMgnxmwtqK8OM+YGTmFWaTeon1mboZBSsuXTfnvnFWaYnuyvbDk3TFIx8X1Ak6deonLFy6ibHtAewzMrFU2UPI/K6QUeF6AMSm+F6ARaKBea2K0AiaYLPc5NdrajhyJoxRagHIceseHxHFMLYuyk2511pkxs0UBrK1t43oN4qiPELrwjGsbamdVZisd2+0GS4ARGD2zJlnjsyxd/9n3J1t3btZDZ0q3tpad/NjJk7SJ7GVGZ97y5+QaXmKJJZZY4pfHc0Gg+8MdXv313+Px7hGJ0nTWNoily/r6OtVqFWMMw+GQ8XDIxx+8zze/+U0GB8dFNJwxtkPgZDIpmjC4rlv8oDsGDvb2ORqOWd1Yp7f/mHZnlWsffsyly19i/9YB7XqdwWRMLaiwff5l7t+/by0Ue3sIIVhdWUGScvPax5y//Cr7jx/aWC4lSWMN8ZSjUPJf/tH/yhdfvcKDwwHa2KolacCTikqlQqfTIUkSpmZKpVKziluqCMMYY/q0Wi12dnaQBk5vrCNcDxlUcFSVv/sv/wF/8T/9z3iVKtMoond0TO/wkMePH7PeadLwG9RqFabTKX69duKxLqdYsGB/+KVsF7+kYm3X/6dXuZ83El1uRDNX9OfMWztsxFq2nniS2M4K0LLnsARZ65xAq+I5KcFGDpu5QY4jZqRNCDFH7ssEWposHcPMUjqyvZnbZomNzFPKxtAZDZcvfYFWo/nEccgJdJ6+YQdlCiUVAoUhS+XABSNx3Qqtlke/PyQMQ4QQ1NstgmqFoF7LrCOCVGs7oFUObsfFUfP/ssrqOm6V9Y1TPLg3mLs+ywRaqBJxNZB3GczSm4t9EfYkFYQ4t8RkKxTrqbkoutnxP+nKLD5XmieulyWWWGKJJV4sPBcE+rf+1X+D+/ce4dfr/Ev/4N9if3ePaX8AQuPUGzzc22FlZYUf/+mfocdjdq7f5Hg4JlCGWlBhMhkxmYwJfJ/JZDIjKqkkjBJkxSWoBAwnIwbHPRqdVcZG0fQdDvYe0Gi0aLbaaH8IMiWRgnAwYDIe0+y0aW2ucXR4iJSSrdMvsXPvNq1GjXs7j0Brmo02xnWpd9eZjiPeu/rAkn/fY/vMNu12m+vXr6Nch87KKpVqlYOjPiiF61Wo11XmUbYFXjqOCWpVRtGUr7zxOu72q6xPrvLFN7/JvZ++z6lAcrCzw5uX1lirQCATJuMBzUbVFkw5VZRIMXn2gzEobRteKGObOwhSjJAYoTLlzWAbqpSmlsXsB16IRUXNrmtbUStL+Ch7bimUPrCqm8gi0qyiN7v0crVbLpC9IrcabRdjINWYVKONIrF5Ep/dhfjXQJ5OAVhVdgEzkmT31xLgGRkWZdIlnnxdOW3EDnywfmThoHWC1gadeplPmeJ9gbnjOSvIBGXcmUItnzEYEgYhJcYx4CpWV0/z1a9+jUa1Vs5ym8NMHc+vJ2s7MUaSJAlJmJDGEOuQ0XTM4dFjjgcTzpy7iPKreL5vSbEjGI+HjMYDmu11G7uIIDUgTYSO7fH0hUTIFKTCceDixa8STyJ2Dz7MFONZ0obR2aArT+EQoJh15My7XIrseZMpz9KUvOmAUxr0FIdKzJ639Q1P2lvywVDZz77EEkssscSLieeCQB8cHKC15vLly/R6vcLj6AQ+t2/f5sKFC1y9epUonLDSWeELb3yFu3fv8sl77+JXqqy760zGA6bTaWH3yFXonID0+32SVPNw9BD3qM93f+df4P7eHtsbp9jr9zke93GrAZ5bpxL4yGqLwA0w0vDRBx9zanOdSWTfczyeIkxKrVZjMhoRhiFRFDGaTNAYXrl8yRYDCnjppZcYDodZhza7v3lziCSKCNWU0WiSpXPUkUqgqnUc5bG21uD99z/gjKhxWh3x3g++z9Yr53E7LW589AnVhuDcqTae57GysmJtA2mK79vs67lpZDH/g/034Xl+1ns+7bkXyXt9EsrWjWd5Wss2DlNev8Say9aA3GZTVrcLW4uQNk9aO3aWxeT+6SePZeG9lbNUFVlKLykSTk5AkSEtBY7j0el0CILgxPzt8oxAfkzyv/MYOq01ZArwaDRiPJ0wHo8LlbdarSIzNVk5gt3dIUmS4Pn+wswDmKzjYfmztTa0mm1anRX2jxzyuMay2vvk/dk+LD5Xfvyk/S0/vnjuF+1Mc5neT7FFLbHEEkss8eLguSDQWmvOnTtHHMckBlzfEuD+dExrtcvP33qbnQcP0VoziEL6KfhehY2NLSa9I3qPDqjVaihpVa7xeEy1WqXqB0gD09GYKIpodNoMBkNWuk0e3rlBrdml3+/xpS9+iZtXr5FMQsKJxtV1LnzhFZRS3L9zk/XuChJFrdngcG+f7uoajVrA8eGhjatTiqtXr9Ltdrn/8AFOYH3YUkhu3b5Ls9nkzPZZSyqwRYj0hvSOjgCoZpm4G5ub3Ll9m2mY0KhVefm1i+wdDhAPb3D+SoPWmU0OfYkrVzh36c32cUEAACAASURBVFUq+x/iJvusrKwUTWRM+Qf7id9nm7zBQpHUZ4VPI9Cf5nv+9A+wDWFMKfnh84bjzFqPz/uJ51s45yRPShvSNyPGJaK2QLJc1ylsSMXjgBAK17NtwOPYkAgJQp9I4GfnuRS9pkszBaW0iSdIoMwIvCPptDb5tTe/S9Xz7Hbok9NRYL5LoDG2ABFjkMbgeC5+JcB3XAbxAN/16HbadJotDIZKxSdNU+I0odFoZdthj7EhJ+IpstTyPSfnSkCrucb29ivcuPUOqRnYQYWxVoxCWdbW0iGkTToROdkXpaQUU8roXph9ser0wrVbZuIln7UojmmatabPsqaXTVSWWGKJJV5oPBcEulKpsL6+DtiGD81GA601burgKltE6Lou/+If/iE3b91htLfLwxsfW48mKWtra9y/N6JWqzEajahUKiRJQqinuMohIabiB0TjEYHv0Ts6YDzssbF5nkgb4vRtBo/3EUrSXt9EJ5Ib124ynU45e/YcUXsF5QgePXpEGKdMxmPOvHSajz++iu/7eL5HNalwvHdAp9EknkzpHRxy5swZosRaJZrtDqPRiHqrzc07txkNp4STCUkco41HGE6JYs35S5cYT0O+fXmLL7xymrd+/Jf8wdffwF/t8NL5S/wv/+N/x+//wb9OOJ5wurPB+c4KnhNbP7brkmb2AKVU0dwByEinJc/GpJl6V7ISnLCUiwOLLF9Zns7OPKILJPhpBYflYsaTJrAXSfaTJF+jdYIhLd7v854KV6UiNpgdH6lm6ugijCgruDOlNm9qUrZsiNJj+XmQCioVD0OMlziMSTFmgcBnmCmhM6+2cEoNX8q+kQUCLZ282Y7iu9/+23zly9/AEQBijiDn26YzVTh/b9u4JyXR2hbrCcEkDBmFU6bTKQ6CdqNJs7vCSqeLCjy01nbGRjgEfpUkSUizDodJmmQxeQmBbwm0m6XT5KQ2qDbYPP0yq+vn2d1/P7vuZfE8Istrzo9zVhiYl3POruXsPAqBZNHP/qSavfj44vFHGIQms4vMn+clllhiiSVePDwXOUqdTgeA4+NjlOsQxzGHvWMCz+eH3/8+xhi2z77EzuERjuNw8OgRJBHKGA73dzk8POT06dO4rluQGcex6l0YhlSrVXzfJwgC+6OrHALPJ4lCTp05jXAdOhtrTE0K1QbaqfHyxS+wtnGGvd0Dtl8+R7O7wtmzZzlz5gxnz55jd2efbneVy5e/UETneZ6HIxV7O7u4yrYSn0ysPePlly8ihOL69euMx2MODw+pVCp4nsf58+dRSrG7u8udBw/pdruE4x5f+dKrvPGlKzgmRDlVzDihWq0SpzHKGJIoxWjxBIkrE9bcDjOD5nnFX0cN/7xJyC8aKZcXu5Xj5PLounLDk8VlPlptFtvmuJbY2vej9H4nR+TNfaYqLeLJmDa7mNJrFOfPX6Beb9r/GJ9ynsrvY5uN2ILGWKdESVwMiMESyiSKESJroJKl6eTfZdd18TwPL1e+c7W5VLw5b3ERSMelUqnY4kEB+b+5sq1icXD2tOeEEEVc3S+7lI9zZpJ+MjpwiSWWWGKJFxLPhQK9trXJrQ+v89Wvf52fX7vKSrvDd775Lf74f/sTzl+4zGBwhKxX0ElKomNcI4jShL29x3S2ThEOj61fU0qkgYpn2/+OI1tQ6OPi+S7j0RRhEpJwyDCOEK7L9Xd/Qqu9hhNUOLW+wYNbnxAEAeEwYvvcWYQj6K5t4lWGHEmXMBGAw5rvM+r3eHDvBtNphJCCRrfNzv5jzl48j8xiuKp+lapf5dq1a6RGs7l1hkajwWtfrPHhhx9SaXjs7O9Rb3fobm2hopRoGlNrGdLeI7571ifQE8b7u1zZ9olkg1qliuMGdJMBvjS2WFBaPV4INyuGchE6xaQJxkhE5htFC9C2G6AsugLOIBWZ/UAA8gmCcdL9VGSpDsIwR1ZOeG0ZMwJTXtcUvCLNLSc6RWqN0AayJRGp7TT3eY8Blc1VBlAiRuZe42J/nty+VIg55bYId8hfgyDNUzkytbpQTAEcQcWBWChSDThuZtcpqgjtNlAihEaXOFtpm+bEVVM6JwqlQClJt7XFqy9foBk4aCGQZFYaZgq01poEkRV2ZmTR9XCEwMOQ6phpqBGpJg0jvEqVZG+fWlDBkbC//xA/qBLU68TCkMYxjmM7EybaXglOGpBocIxGC4nGITUOMjUYHRELEMQoJdlcOcv9B++SEqPRCPKYPYORauZhNszsFEZCMauRzQJg8LJzUCjMpcYqtqlKtm5ho8mPI2idFtYdjEEbg3SyKMKljWOJJZZY4oXFc6FA3/jkKq9/5Su888HP2T59BmMMf/RHf8T29ja1Wo3t7W0atTpHBwc0anXiOGI8GtAfDIpOhTuPdginU4QQhGFIHMc0Gg2CIGA6nRJFEY5jxwvT8YQwHNksMCS1WoVmrY4rBee3tzmzucnWmS1836UaBOzt7JCmKYe9A4xIUb7DdDxhc3MTx/doNpuEYYjjOLTqTe7dvc9gMOSTDz6i0+nw6NEjHCE53N9j2O9x/eon3Lt3j8HAxm0ppVhZWbFqebNBvV7nysXzSKOpypQ4HPHqN77LzZ0+kyhmNBqVVLpn+46VUk/4aD9rfNZe6mehbNt4HiwcT1V5F5ay6rio+i7eL98uqrnzS65Un6Qgn/weJ73X4vqz5+zjtWq9aLNtQ1ROjhIs4uuya0EpVdgrdAqjqS22dX07Y5MagesFSOkQRymDwYDxeIyrHOqNataOfLZd+eflSn4+66K1tgkfSVJ8frPVxZh8dKDnzhecPKg76diXfeGL1/lcc5WF9ywPkMpFpuXP/1V9Z5ZYYokllvjs8Vwo0H/1F98jClPOX7qI6zh8/PHH/PY//zukiaF/dIyrFG+//TbdepOdO3dxpOa4N+DKq19mOI1I44RqtYkbh8RqjNaayWTCZDJBSkmlUiEMQ1zHdi20s8opezs7fGFjm4d37+JXqlTrNQ4Pj5GOolJvs356C4zg4f199vZ3qWKo+AGqFjBNUh7fu40TOKw2GxweHjIej1HCobu6xmgwZGvzNEYKVtbXuHP/HkrA8eEBnudz9epVWq0WrVaLwWDA2toaMbC1tYUrNNubK6SDI2pth4Nxyl2xwifvXkcbwaB3RKVSRfgpaZKgsoHBSR7j/Ec7T3SAeaKTP/aLdkUrv3+ZOJSJ0yKRWCQNuTp9kqr9xGPl9YRBmwRj0r/xQcEvCpuRnBFGoYp9TTMV0vJNUyommynDxsxH1+XNTbQ22YxKtk7J/wz2+nUcSaITlCNRjn2fvD30ieQwb/CRved8Ysf8+kX6hgO+F9iIOClRoqzQzpAr0HnyRt7SWwhBHMf0ej1ruZAOQbWGkA7H/WPa3RV0ElOp1NjZ3aPaqGES+1ojIElj0sQglCQKQ6LpGGEMUkmCIMB1/MLaEUUR0hEYLfA8RXvtFK36GseDhxiZxdNl2dxCl78rT6ZnlK/ZvOgyf658Ozt6gjTVCDkjy4spHcxEbUvnl+R5iSWWWOKFxnOhQP+93/v7fOM732JlZYX33n6Hc+fO0ev3cX0Pv1rhvffeY7W7wnQwIgmn3Ll7kytfeRMRNPBdhXBd2iurdFbXAPB9Hz/Lk43juPBV5tF2UjqE0ylROKHfOyAKJzhSMBz0abebnN1+CZkkPLpzh16vRxAEeI6LMDA47nH6/HncWo3zL51ntb3K0dERtVqNIAhoNBokSUIQBNSCCq+//jpHR0ckSUSlYpucDIcDVlZWqFQqDAYDarUaruuyt7fHeDymVm3w8NE+O/vH9OmQdC/xw09ucjCOqQYV+qM+w16P3Bf7afhnp2WwZlGB/rwhpG02krfYfpriO6/+ijkbrOVS817oRW90+W/lSEA/qXov+KVtpxSDUGBKCwqMNM9cUNjIOSnodrtPVUsXi+hyFbjs+a43m/iZ379WbyKURDnWA11vNnA8WwjY6/WIwhAdJ0RT21xFOYJBr894NCAOo8yKIorPKX9+3sglTVNSAfVaBymCJ1p559t20j6dpCjnx01LUyxm8Zg61uedL/mxM1JY11S2GPnEiV9iiSWWWOIFxHOhQP/opz/hwmiETA2rq6tsb2/T6/cxJqVer7O5ucnu4x1EOOHe7Zt019fxOysMdvdIJhFOtUo4GKCUC0qihEtgDJOxzV+O49gq0dWKVaqkxPdqDCZTRoNDwqlGGmh22vT6x4zGQ6pOFWU0nXaLJJpy6tQmnZUu/d6Ij2/fZvOlM7z9j/4xwhEgDVGSMJ1OSaKUBEOzVmdn/4Af/OUPCwI/nY6J45B6vWnXTRImkwlpmrLzs5/R6nYYHh3B2ho/fPtjXjmzRrTxZW7txRw7AwJ3QuDYxg9xEmZT2FnDCvOURieUFTO9cGt/1F8cSNAp4gT7wOe2RWX7RSlbRJQ7/C2kM+Rnyhhb5FYozHNK8JP7ODdwkAZXSpJUIOWsWG5OwS+1DBeYOdX1WfaBfJ8cxxbGtuolAr1wyBeTOBzHFgEXVqo0RUplVW/lkKZTjDFMJhM6K6uMxyOajTr1VkQQTvEqFcZhiBYglERrrFXJEVnjGEuQTRITySkVU5/Nshh7XcdxjBHQqHfxDh8TJkMgndvm2fl4tgWqfFt+fPExq76nxYA2V+RnBy1vILSMsFtiiSWW+GcBz4U0udldpdlsEusUN3C5desW9WoD33N462c/Yu/giFOnt7n+yXscHe1z+sqXWd1YoVZ3SLWk1V0nqNaJwwmx1jRbbYQwuI5PrdogSSKGwz6TyYicPGoMG1vruK7LubPbSGHYffAIF8XoeIDnOyTRlMmgz/HuLoOdx7z99ruMRhOiu7cZPnyM9BTCxCRaM55OkI5Dt9umWa0wDse4FY/D42OCwCNOIkDSaLSYTCZonVCvV1lfXyVONCurHaqBQpuQcTjmwNR4dxdGZy/yT25cI9zfJR7bpi0ELpV6hcRocLKIOqEzQq1tNJlILLHOFpOGtvjLxEhhEEYjs8xbgUaYtAhYkBkpFyKlTLbn7RVZCoI0SDSOlEgzX3SYe7DLfxfPy/wzBEbYYkGJwWRRe1KJLKbQQLZ/RoPQApkKpE7tw5+ziidUVucnDShh69AkKGF7DAqTlznOSFQ5qcHuoV3KKuWiam0yQpkrqKnMM4rz2DhpG0MKAxKEWogAFBIhFXmmcZmYn+SPVkphHE2iE+p+FRyXVEgWSbrRgkRDKiRGCIwQCKXQQJhaK0ZqUpCQJjFCGpI4xHNdUqORjoMRgna3hfR8tBEEvo+UDiKzxAghUNLF9ys4jgdGo02CMHFGqu2Cto8nJkEah1ibom323DmTedGtPV5GGHu8ZHZ4xMxnnV+fRuhC0dekc38jDUZohL0QsiQQBVLMkkDK97PvZN7cZoklllhiiRcPz4UCfdQ7Jtjdp9PpWLV5d580Tfn5h5+wvnYKMerxo+/9OZunTiHdCo3OOrt3bnD84IDVi+e48uobvP+DP8OEPltnXmY86pEYmy+ttSZJ3UKJjuO4KCbsHR2jOWJvZ592e4VGo4EEuu020/GYyWiEMClG+niBx8tbDdY3TnH9vR+TPH6E4zhoE2MmEYF0GB4cMZDHBEGAX60ghKBet8S+2+0y7PXp9/usrKzgVyscHO7T6zs0Gx0O9w+oVD16x8dIp8LFV17nz/7vP+XHH/23CNdFN5okUUg4jdCpxGiHVAgSHFyhn0IkFzq1Gf3cKLd/HShSMCnaxGhlMA6kcjGm71eLcvbySbezY32yR1yW1xGz5/Iue+X1yp+Xq8pSglRZmoRQC+8/r2jb52apE0/430XJry6zjGuhCILAvkOepcwseSNf0jSd2+a89iCvR9BaE4Yhe3t7RbdQIQS+bxNzfN9nZW2VR7s7OLh4gV/4qJM4Ik1TxuOh9VfHU6LUUK/XqdZ0Se3NtgmI4j5Kgev6EDN/XMxsG8soFz8KZoMJI+ctQ+ViwLKaLZgVIGpmXRCFEHPH5vMe9C2xxBJLLPFPj+eCQJ96aRuF4Nq1a7z7/s/53d/9Pe7fe8gbX3qNOzdv8fb779GsVDjzymWq3VU61YB37t7lja++SfvMKUQquXrtE7zA581v/yZ3b35CMp3Q29tnNBqhs8YhaZpa0qs1rnKQRtNst0nChGQ6ZpDExOGUWq2G7/tsb67w+OZVprGkVg3YuRfTf/yIS5cuMTja59HdA4bDIQ6CRqNBvVYjyeKygiBgNBoB0KjXufbxR1y8cJE0TZlOp6RJhIPBV5L93Qf4foV2s87GxjoHezv47Q0ufu2bpL39LM1AMtjbxwkCAuFixlMUMWqhYK8MG2eXUERylRpelF/zaYkAOTmYU0Sfsp5Z+Lt4/aK3tHRflj67TBDL5ERKiZYK47pMMbgmwEWjPuexQJlMkSVEwIw8zxGsk4i2kLPzUTg+nnxN2ephj5G2QYMy80mXiuFOPJ+llt06+6C8EDTJfMW5b9pxnKx405LJWq1mX5dFr9lukPMkenGfkyThuN8rMpuTJGFvb496vW6bo6Qpw+EQ37ddO3ObRrO1wu7BPmG/j+M4xWvjOCSKpiRpjEk1rtZEUTQ3IJZ52omBaTjk6HiHybRvt088ea3Pz6iIuW6C+fEUQqCFXrBkzJ+LvHlM/h0po2xvKc/I5P+PllhiiSWWeDHxXFg4mu0W9+/f58tf/jLb29vcunWLg4MDdDTh3q3rRFGCX6ki/SrKD3j7xz/i1EvbfOmbb3LupfPEkxGHx0dc+sJrXLt+g9FkWhQMtlothBBUKhWCIChi3UySIgwkUVQ832jUGQz73Lx1g9F4yM3r1zg62KVdddi7d5tOrcJH777FX37/e+w+fkir1WB9fR3HdTk6PsZg/ZrtdpuDg4PixzQMQy5ducJ0OrUWDMDzPNrtNgCNZg2lrGe01+vjSei26/QOD4nSlBTD8f4Bo0Gf8WCIJyWNqocnjVVlPwXlFIeTpu6fd+Tb7HgVgkaTSqON02zjtTv4ne7nvHUzLBKyk/5eXE567tMeW/zM3EqzuH7ZwlO0cT9hKQoPZWnJyJ4Qgmq1+kR04GK77sXufDmpdBwnI8BWZfY8LyvklXMkcjweo5RVu6u1mp0NylI9LC8W1taTkdi80UqufOefVZ4RiOO46Fz5i866nFQI+rRz+7TvztMGT4sxgUssscQSS7y4eC4UaCklly++jOdKTm+eZnWjS8Wp8pPv/QV3b93ma1/7Grdv3+b0mS18R/FB75jv/s5vk6Rw//bH3Hj/LU6fOcs0immtrPLg1oBK0CCeTEiTBFcqG32W2B9S13GI0og0TknTGCOs59NzA7qNDsQpN2/epFar0axVuX/nOlEU8cH779BsreDIlMOjRyRhRBQbglqbRrtlp46jkNRo1ldXidPUkvhGg4O9XeI4JggC4mjKcKDx/IgomqI1rG9skWhDrWVTPB7duUcURhzu3MPzHLprp0lSTTWokWKoKAhcjdURVaGAkZEhbWYlacYYUrIpdmNQxpCKGXnKiVTWBbxQkq0n2oDRWXoAxSIxYLKCKGlTIayqLJ8gGyee8zxyDUh1puaVFLyZrUHiVBooI1D1Dl9ePc2Vr0WMfmdAmqYMBr3P8Er85SGypjN5l8B8dzWpPVa5B1dCPhOgJShyNTiPrbMRcUIaTJJaI7XIlGkjEejiMes1tlGMSguMUGhkoWALkav2qkR852cHyoOqghAqY33AKtsv4VJxKlzavoSLBJNFIEpJagxpqol1SqJT4jS13uc0xQhBojWu51sF1wBCUqnW0BqCSo07d+5Qqzcza5FgEif0D/Zpdro0Gg0mkwlJbEm6FgLlQNW17btza4fjODhSgE5RKAwKI0DrGB3FJMkYQ1y4+PPLVxXfjPLsTbn5jUCV7BixmKWLwGzWoTyQsNeyRGTHafE7oIRTNNlJTVL63i2xxBJLLPEi4rkg0Fsb64jY8I///P9hc+s0K90G//Af/hdsra3S7XY5Oj7m3IWXaTXq/PT732NldY1Wq4NOU27fvMbtG1e5dOUK/d6Q4Tik3WwgfcOwt4/jOAS1KpPhiErFI0mSYlq5UMpcj1qjbdUyY6g0GnQ21hkMBiTCcNg/QmtNUGthpGE0GjGMQqROqVRbGGOKNuH94QDXdTl9+jTvvPeeVdSCAMfxmOghURQhsK3GR6NRRrxUln0rEY6DTlMuXLjAD999zypsCYymI1pN2/K82WziuQJ5Mjd9JqTRv4Bm/TeHpyl3T3vMKIHCAWxLacc1uF6CH9RI05RGZ+VXsNWfhrxz4y/ximJ0U9p3UXofUSJXQtv1pMme1yWCrWzhXjHk+Ww8tkIIHOnSqLVpVRtzlppF5blQW0vqc/k7Nj8omhHg3AttpKAqa0wmcWHb8LwAz4uyGEprYlbSxt25bkoYhoV1JFdztda2EFNrkigijkPbL9GOK5/MZn7GvmfuGnvLvKVoti+/3LEuD1iMyQadSyyxxBJLvJB4Lgj09//Rn/DJ7ce8/o036axU+a//k/+U17/5Jn/n7/4uvX6fv/h//wnd1RX+5I//mE6jgdYO4/GUwcEe73z/z5iOpty96WEEbG6sIqsBOw8OcTzfJlXEsU02cFyiMMrUH0kUJdQadYJalxjJ1ksXGI5HONrQqTfxKiMO9u/j+7YBy3jaZ/p4RDWo4eoAZSCOUta31jg8PMR1XWq1Gvv7+9RqNS6cP8+jnR2UUuwd7JOGE1zXpdNu4iiPwyNNGE5wHIcoivCCCtJRHO8OuH3nHt3uCkMBcTQm8KuEcUK7W6FZUbQDUBikdHgiW+w5xkkEujztXl5POi5KKIxykMIBKZDC5gfnBGax2O5XDVNS5c3i46Xnn0WzCgWYeZIG8+RwZicoFf0pbMRbCuVCwWyF0ocsHiczW1HkG5hHrdmHGn6Hb331O1SrlaIZDzBHkudIdLadOTGOYkt888Yq9qMU0+kUpRRRFFGtVgmTOKs7gNF0UtQq5JaMMJ4CFMkYjuOjU5BCkWgNUpJi23/rzOs8HfcJ45BYJ8Vuzoj+M05Gdj5y+4qdGXkyNzr3RP8yNqh8QIEWIGcxk0ssscQSS7x4eC7+g9++epVmPWDc7/Pn/9f/we/+/d/n7PkL7O3v86d/+qd885vf5Nd+47usdjporfnO3/ouR3uPufnhz9m9f5t2q8H26VOMR0Mmk5BKo0m11cXxXOIoIYxshNw0DPF8H8f1rTIdBISTiOO9Ay6+coVmZ4Urr3+DMxcukToVhFvh3PZFuo0VpJH4vm/TBOIYN01ot+qgJ4xGIzqdDtVqlX6/T61WYzweMx6P+fJrr3H3/n3WNzcLMrS3t8fR0ZHtpua6CCEsgfY8BsMxtUad/miMdDzWt15i88wFUgPKDwiqFVw9xhMRTul3+ySP56LnOZ92Xlz3pMKnZ/l5Pw1P8/8+Dfk2zXV/w5ItISWO8pCOwnHcjES5ReFZ3onu88Ti9i/6gp/lO1+0rJQ9smUv7aI3N1/Xnisz53c2lk7ONlDMfM5l33P5vs0wLkfZweVzVzi3dQHHfbKTZJlAp6m1RlnPsZ6zN+RttvP9yDti5oQ0HxikaVoUBU6n0+J+kiR4nofneXMkNifXOanWWoOSs2SQ1Ca1oGakfvFcwJNJHPk+KWWPgVJPtj1fPPeL5/Ik3/QTj5ulD3qJJZZY4kXGc6FAh2GMk8S48ZRqmDCpVvCUw8OHD2l12nx09RMe7e0ynUxwPY879x/Te3iL3u5Dzp+/wOH+Ptf5iDSMeeM7v0kiHfxqh7sfv4sX+BweHVD1A5yMcIThFM9VSOmw2qnjCpdqEGCEwPFqJExYO3+BMI54/523qK9tEocRHimt+gpuvcvRaERtcwu5ssHuzZuZHUOwsbVZKNZHR0e88847VCoVDg8P2dzcpNfrUa34BH6Vw6N9ptMJtZr1Pbuuy3A8pVap0Gq2GemUxPn/2HuvH8my/M7vc865Lmz6rCyT1VVd7ZszbTjkOHLI4a4WsyR3KQEC9AdIr9KjnvQmQG98EARBEvSwWOhFWAHCUqDo1tBoh7PkmDYz0666vE2fGe66Y/Rw7r0RmZXVZtgzUwXEtxEdkRFx741rouJ7fuf7+357DNOcXmcBLeH8pQssthSJqHydf8nn7ovALDFzM8/JIAAVIJVCSuW1wJVV21SP+sttgmwcLPAzAvV/Tb23LvKekDLMkquGaJ9yNk8ffMySNl8xlvL0QdSxpT518DQbtKN49fnXOLuyiVICZ4/LF+p9qKvSszMBs3rhmrzWTb1lqRsi3O12q4pyRJbn5HnJcDgkLwq0niBlRWg52ZCnaLU61TXidc9u5nOVZcl4NPBpip8yQVF/vmnD4jTVEfxxlU4+Il+pH88ex9NcOGZJdxP4Yut1zAn0HHPMMcfTiieCQI/HY/qrlo+vfoQeDVhYW+HP//UfcencBa48/xx7R96KqtVu88abr3H94ZCdrYf85O3vs766SG+hT6QCzl+5SNJfxIUhrSBCBQG9Xo+jwwOkUsRxzGQyIYgj0klG0m4T9Xp0kjZFUaJLRzvPWVpdwQWSl5//EldeuMLh3etsXbjAD/72u3SiFi9+6Q2ihUVMIHjp0iZ/8a/+T5aWVvjbv/0PHA3HiNGEUHmy3q9ijHsLfWSR0+932d/bo8iPa7GVhCzLcDGobpesyBgXJa3OEgpBq9dFxD5MIg4DwsCHoVDLYk+Bm3leMkM6HThnvTb0Cz2TtqIEn48YnEYSa6KEqJLzELPahAafVdf6i8AneWxb4flc/b7PSqBPhwQM0oHFIrHYR8hbpbFtLgIvz3DuOKP0cpBm2FLd+YbQ5f4SiQoRgcLmM2TRTu0QZ/e3dsQoyxKEwNq6oisaYgu++nxS/uC1zdNZkvF4TLudVNX04+4fQVBdG7MzKsLijEMbTZFNSPMxZZnD5xhiOusbKI8fHz84OnmNGJ8nOgAAIABJREFUnjYQOU0rXb+G41TiPcccc8wxx9OJJ4JA91sKaQT9OOaHH97mr//fP0IfPiRdXGAwmrC8ts7W3bs89+Uvs19ohkf7bD24RjsRWCRB3MNFioO0YPPKZT8N3M5I2n3aSUyrFaNtSUtK2r0eTgrSJCfVBYODfQZH19h6eIex1lzcOWBzc5Pt3R1GN26xvfcAZQza5CSdNgsrqyinUXrC7t09vvvhB6w/9zxpWvL6b/w2z2yeZ211mf/jf/9fieOQwWhCR0ievfI82fCQrXt3qqnplG5vgeFwSBC3yfIxUgkCZ1lMOoSdhEmZM9h9wPLqKslSj3a3x5nlVdquIJCmqthapPS6YIRFohCumpx3Fof1RNtan4pnLcZ5+zshxNQNY2Z6ua4EC1TVvCaamqogPEbap6TCIoXEOk/ohKjS82reO1Nl9svUWluD/0vhhEQiwAmcDBAyQAqFrD6HJ5intUCqU577xcDivHuDgNKaqXzhpAwGmuPhrN/H5pg3khX/Xk+wbPV3rUue7qMQAiscQkikdEjhCIRCP9IoZ+vgQaydsZl7RA9dnUdhq/hvTSAjlnsLxFHgT7d0lZ+yQ2CxVlPoAuMs2lqyIkcbT55l5XU8mmQYYzBO4ERIrg2BAOck3W4bgCCIKIymqOQf9UxMu50gpCNQIcZpnANrax2xgCBAydBf81JSlgVozSRNKSYjHu7fRpu0seSbhXO2GjjU8du1lEQ1CYUG7+ltcMgqKVIIn5VpeDSQSErpz7HzFfNZeUpzfKtzW8eqK/FE/PM7xxxzzDHHz4An4l9wFbUZ7j/kaDjg9dd+DZsXrC8ss3D2LGfOrvO9v/mPfOvbv8Pq+Qvs7e2x9dEfMznaY7m7iIx6nFlaQff7fPXb3yYMJBfObjI8GHPuysvYyRhx7UOElgxdQZplBFHIYn+RjaUlNp99Ht1ZRA/G7D14wJ3rH1Cmu6SDCfrgATujA1Qr5vzmZV67/DyhgMHhPun2XZZX1rm9N+bcuQ3kMCMIFN/9679iaWmJ3/pH/4SDgz3e/+l7TVXq9v0tysKS5SW4EisDnn3lNa68+gpXP/yAdpFxcHTEres3+PXfeZ69gyOfZFiWLC6t0e8vkpQjNvoxkQKLjwueJU2Pc7PwDg71D395rKp28jaLmhCKz6jXPOZOcAoxP00nWr/35Gf2oRNPRnX5caiJEkAg1VRry/Fq46ymGabk6nHny9lgOpipCPXx1MOKnM3Y0DGjvfbP1Wt0M02ErtFHO+fATe3aRFO1TlhZOEen1SWMQ4STaFM2y9TXhDHG36p9Loqi8Xeu9cvgq9BhGJJmY+pAk06nQ1EUXs7hOyCnlWkp6Xa7jMYDsizzUyaAqmz5jDHI+l7R6KVtUWCMBizGFr650p4SnvKYArAQFutMRXDjY6/VOmtjzDHt8ixJbj7bjM9zI98Qx3XkJ4NZ5phjjjnmeLrwRBDo3sISd299TBhIJumIxYVlhpOUN778Bj/58Tu8+MrLXHzmMvcf3Obt732P7ft3iMIEJyRJkqCt4ZnnX6Dd7dHttn1YibCIuEW/1UaokNHwiI2LF9jodomTFgu9Za5fv85P/p8/IgwEJs/od9qEcRdhSmIF+3vbXHz+CgUgg5Bf+8a3+PE777LcWaDdC/jgxz/lyosvMBmlbN29zTjPiZRCYPjw/fca3+ckSbDW8vqXX+P7f/ddX6E0jslkxPBglzs3b3Hx0mWWI8nVq1e5dPEKxlkmWUrHWrrdLp12QqcdEcWeWFkECumryyfnnR8Ly6NuDF8sPm/D4cllZ++fFpz0VJ59Hk5pFOTTj9MnNaB9kgRg9vWT1ejqU1EPpB4PSTv2+mQrLAr1yD7U0Fqjq8oxTJvwZh06ZpsOS2uaNL7Z1EbvvOEbBcvGsaNqoqxI6mwTrNYagSOszMvLsgRT4pzBOo1z/vEnDcBO7osfULhm4HHa9SiEwD4igzldWnTa67PJhXPMMcccczy9eCIIdKktSaywQhKFEISS/+QP/oDb125x9afv81/9N/819/Z3+B//h/+OC+0IIxX9ziLdzgIrG+vkZUlvcZ0rz71AFEhGRwNkmHDp1S9hRwNWz51j8/Imtz+6hhllHA6PUMIQIukJCMMOWRgytiWL6YAshVGR0er1ibptbGop84LDnQfcuX2TP/jP/ws++OhDTK5JhKL1ykt8dPVHdFf77N68w87BNq1OxwdLVAR4e2uLYLlPO5KE0lE6idI5h1t3ybTjYDjiheevYJSAKKAUjk63S6i8fZt1JXEScO7cBiJIQZQ4MyFw5ef0df75kujPS6BPkpOmcv2UVOdmdcD11H0NN1MdrokT1LKW0/WyNYSQJ14/njR4WmKelOIYgRXi8frw2e3WhM5agZCGOGqzvnbOB6oowJx0kDi+bJ7njCZjhJz6Ptd66DzPG5vGUpcoHEVRNI22ZVnicKRpShh6LXSpNVrrppKbl0WTOghU7hg+DqWc+GRPrTVojQoDrJSUOscJixABMCXfdQX6ZAXYHwMQtbRpptpfy1+aCnlFoMtyWpV/3PGtz42S6ti5mmOOOeaY4+nGE8FSIqUxViJFwP7BNgdDzdnnXiI/ekAYSj56/wMurS6w0orYOThkobtAHMeoKAQVE4QtNi+fZ3d3mzzPcVKxt7dHnmbkuSHbfciHP/4p1pUcHRwgHZhSYwWErZhJUWKdpMgdemmV53/9a7z65a+wsnyGd3/wQ/a27jPY3+Hf/skfs9jvcPvuHeKow6tvfo2JdZxdP4NwCbYAFyRMtGF3e5t0dMTamXX2joZk2YTdwyPOX3yGMI6wpqTQJcZZhJ7QDwOCoM+v/9Z3ePmNr/j4Y2toLfRYWF5ibWkdVTpiASpoIWQE0qERCOenrRECI8BJV6k264ZBg7CmiTQWze+9O0amj091H5cDTN9kENKeSuIArxd17hHzAylEkwQnTyzjpAPlGm1u8xnAB2AA7sm4VB+BszOVYeE10Rb3CEFtbOJO0WtPJRgSnJzxdJ7xZca7kDgrkC4AvH2fxKGExtkSYZ1P0HON6oH6HAslvdxH+KXqm8WAdFgMymmwilAEdKIF4jBBVYEfs8TdCVBCEAqJ1cZr66sUTIOltJrM+Gu7BLKixDgQMkAjcFJRWoOxmqLIKrlOSFmWGO2mn89Jb1cnAgRTCYW2Fqs1OI3AkKcpOA3CV66DICAK2wRBfEw6M63+1hKLqbWdcw7t/PJem1wNeI4ldvrPJXFI/PdIOFBCNt+p5jvjJFhR9STI498lJ1AyqCQzc8wxxxxzPI14IirQo9EIFUQkSYs0D/jqP/4d/uj/+ldkW/d55tIz/Iv/+Q95+dJl8jTl8rPPewsrFbKwuIxzjtEk5c6dO1hjCF56EWvhxz/+MS++9DJbt+/hdAnWkmU5PnlCYmyAUxHL6+u8unGO0WjEzZs3GR0e8Pbbb9FSiigO6CYxvW6bIs8YH+6yazIun1nj7tY+xpTs7m6TDg5JopDRaMTFy5fY295Bp0OGg0Pu3bvHG29+hasffUShNd1en4vPXOajD99vNKRqOOBg5yEv/cqvcvf6TcrhiEDFBCJECke32+a5ixdRlCwmnkw5EWG9iAPQpx/YWRuOmpzOFMs+Sfs8+/rnQV1Bnq3Jnab1PFbRrKvOYsbJoHlj/ejJTG3zPPm4zdppMMaglJxZ7tMt5z4J1oKRVXx7g3r9M82WnzLbcKwZTjggIApCOlG7ef3kHp28ZmpJRVn6QUJudPWct/ZDysoj2sd/F7IkDBWhqp6v9MF11Vkp7/FcFJZQhiCm5DnLMlqdkMlkgpSSMFIgLFobIhUgpERFEWEYU+hGi3HivMw0VM4cZmstIoioGzZ9BRzA4ovO1lf5P8FtZXZd9bFpjuMJrXRdUZ9jjjnmmOPpwxNRAhkOh4Shr6hd3HyRh3tb3L36PpEK+PY3f4MXzq2z9+AWq6urTCYTANrdLioKSdOUpNuh22qztrZGv99nY2OjCjMZ0e21GY0G9Be6jf9sURS02h1ee/0Ndnb3+OH3v8+9O3cwZUlY5pjJiDQ7Yjg8wGE4PDygKEvipMOZtQ3+w7/7d3z4/b/l6rvfpxs69OCQUqcsLfc42N1jPBmyuLiIsTAZHPHO2z/i7LlzXLr0LLdu3WE0mnD+wkXqRrl0PKIcj3n7775LpAtWV1dRMqYVt1lcXKTb7RIoWFvs0pJm6izgIr6IJrvHkb6fdbr5sy5zsrnr0e1V5O/nrNv+h6AmoJ9GqJIkOXW5x6Mmd+KUG3gHCQGuGgM/cow+e9NnYxGHp5axDGgnrcfu20k9dt1gV+a+ma/IckypfZT2jLVdU0HWmqIoSNMUpXyMfS2P8DHe03Cc2pVjtolvko6wTpMXKUU6QecZwvqGQil9tfp4w+Vnux6de7TRtfGFlqfr2T/L8T1tO855m7855phjjjmeTjwRFWgpA5wVOCEIu30WwxY9C9loyL/4X/4n0knK88+9wu7gkIWFJcIgpttfZHt7l263y5VXX8YUJRsXNjk4OGA4vMvS0hIIyc7+LkoJDg/3iaKI1ZU1tIP9/X3e+tEP0VrTabUoihxjNFb7eORskhOEkmyS0xGKM2cu0Vs7hy01m1cuE1lN2OsxGk3QWjMcp2w93MFZzdLSEruHhyTdLvnBATbL2N49IBA+Va+/uMTa2XPs7OxQFhlKCNAF5f4WL77yB5RKoKQFnbG+vsa5s2dJoghTFsSJnv7QSwnmdP3l7A/3yRAI5yrrNaYkqG5sa56bfa2uEjNDdDkeflKTjbp0fBohflzF+9hzbrp9nKn4ordYwz0R471j8NKAaWLgSbI2G9IxbVI70VR44lz41+pjVK/bh8aIysXCaLBSIXCVRlf475Bz/v6k1doncMhGA10Ztp10kPA+y+LY+2fJbppnPgRoNAIp0GWBc4409wmgUsWUZYkQgjAMsNaT6EAKDIa81IRRgnOCYpwilCIIApzzso56H4qiwBhDWqTNgCQvvetFq9XyMzPOHzulFK6omzunbin+e1M/b7Fm+hhAlxbhDHF8smLtmy9nExhnq8z1uZqVjMyGtMwmL1amI5TFvAI9xxxzzPG04okg0ABx7PWKK+c2GG7vsdhd4MH2PbJswtrGeZAxyytrVQKZxFj/w7W42GdlfY12q4cxhna7zQ9/+Bbr6xuEVSWrjvtdXl7GWsvDrW3iwE/TdpIYU2pfDRYSE4ReQJrnhFHIqJywtrzC1sOHJO02k8mErChwuaGVlpTG4tC88PIrREje+dF/pCgyut0+k8mETquFU4K9vQOy4RH9Tpt2K+S1117ju3/5bwiUQBLSbsWYokAGilv37jMejOh12/T7XbrdNkIpBNrHJiMRQnptq/xslbBfBk6rMNePH3c/K0moPXOfJogTRBOmEoeaxZ6czj8NJwdAU3JdN7ZZHKJqlJsS+M8b0nFMq41DVoMrdYJxnzY4qD/HaQ15dby3lK5JJvQhKNPEP+fslFRW5DYIAgrtv4+1JVxeFjPrkwh73GMZ6uMujx3X2QFJ/R5/TrwO2jnva+0lRBYlpymX0wCY6sg4b/9Xa7FPW/9px7Z+fTbevA6WmUs45phjjjmeXjwRBLrVamNNQX/lDAbJtTtXIR/QX12mLxZYWVjGGEe73WWSlZy/+Aw7Dx9w5vwZlp45RzpIMcZS6pyt7W32Dw944YWX2Lm3y/a195FhQkLA1v17SCmJnANtabVaFFmKCMLK+cFhRYnRhrjbxgnByuoG165dQ8qAl599lu9973t87dvf4eaNqxinuXrtKmfWz9HudxkeTYh7yyRhwP07NwjDkE6nQ9LtEfU3WFxZ5Padm7R6C7z7wVWEUJRZRiAVe/sD/vs//EM+vLvD2Y1L3M+v0u/0WOz2iJBIhbe+yzOSSOBcQIBAWJCqbhnkWKVQVqHSUji08UEq06aoR5sAfWW6IiECT9CFwGt8a5ISAicryJ6Q1FW4k5glV4/440qJrf52UoARFYGrdLzOp+m5qnnLCd9sJ6pqtPsZJCZfJBwaVzX/OeEAXZElNdMQp7waxblGB13vv3WzphYznsXV+6fphLIK+XBYVVVLAz+8CKxEG4dB4ZxuzoN1DmuqY26tnzVw+Oa2mtyJwoe+4F04ZCDBaHC+OdCrSKak1FqLsBJdWkrjmOgCWzVPhrF325A4irLAloYwjjGiwNgSZwWGCKkijJU4awmiqtpsNcIJQiU4Gk4w+QSCkiBY9MEtpsRZTRhIrFXY0g8mW+0QqUIQMYbK8k5rpJv6Zzt/KJvqM9SVYIkT1esiQAiQtBA+hsi7kpjQD1RqmYurGx3BWl01DLYRygISWXW+1sS5GURZqmp3xdn9i1/w1TjHHHPMMccvCk8EgdZa02q1GE0y7t/4mK/+6pv8yb/+v1nqL/mEPhGysLhK6QTrZ85y/+49XnrlZf70T/+U54zmK2+sstBKeO8n73Lvxi3WNi/xV3/1Vzx75izvv/sj8myCMZ4EFEXhq1ymJBsUJEmCyVPAV6qDIGgeK6V8UmAQcOXKFb7/9t+jkgBjU67f+Jjf/OY3PdFzhpsffEivt0AYB2jnWD13ngvnzvGTt9+is7TM4WgfyFlZ6LPcX+T8xgZR0sLgeOMrv8Y/+73fZ21zkw/v7yKE41vf+m3GkyPOnz+PKTX9OIKigMJ4twrhXQes0MgvSMr+WYIdPmv4w2yYxOxyDUEUU1cHH5envNOEUrhGzmE909A5Alk1b/kI67IaCDhriVobP8PefjGw1ktLhCwxRlKWprqGHEJSOS140la7QJw8hjXJkvLRwcCsjZ21tqrI197KEAi8H7KS5IXGVemTzhmQs+uW9Wrq//ltG79dX2gVuKoomqfZsbCX2Sq3sZasLEhznzRYyzO0deSlBiHR1tvVRVGE0ZpQBRgckQpIkgSJw2oIhESGkddKS0lWeK10URQ4U+Bc6Y+nkxRKU5YlZVk2388obFfphCUmtxA4XF7M2As6pJxWjd3MoMRa6x1gqJxqhARRAAFFoVHKIaVGBWKmejytHNdVceEMUk3PXa37bgZJlU92fe6lC3DONTZ4c8wxxxxzPH14IkSlkmqKU0hi4bh5/QaTLMdozeLiIrqKSC5Kw+rqKp1OB1TAG1/5NV5+6VUODg740d9/n3d++AOE0axUjXc3r1/l2kcfElcNisZMY3sLXWJxZEXePA94G7wZzaWUkhdffJFr16+SFZogafHXf/WXvP7a67z//k/pdVooJRkPj8jzFFMWXP/4Kr3eAocHA5xzHB4eopRidWmZyxef4Vdff4MkDllbW2NxaYXv/N7vcuPmtalmVEpUGLBxdhMhBK1Wi/F4TBj66m8dE205YbTxmKap2en9xwU8TKe3p3+fJr84+fpJTfMs2Zrd/kmcnGr31XBZzQTIalodsA7hLMJpb9enC0w5weQFepLhJuNPubp+vnBumupX73dNrKaBJa55/rjOecamTnBsPdPXT7v3coX6OYmvrDpnm+3Ovv+kI8TJJrkaoqrsW2M87Z/Z7iwBNTgKXXo7uRm5hjUOKVQ17pnKKQIhCaUiqtw1giAgDkOUmG67bhSstxmGvkFYaw3OfyeiKDp1UDZNfzS+pC+mwS6zhHf2+q8Jrt8bf7NOz5yHmapztY+zxLg+T/WtlqHU752dYZkl0rOfw84r0HPMMcccTy2eiAq0J4wxQavLtffeZf3COc6snyV0jlackDsIWjEXzl1h/9A7Y9x/8JB0POG9n7zHSy+9RJmOCEyBCSznNs/R1ZYPtu+zstSnnBwd0xvmukTOhD6IqkGoKArAE4s6RVCKgPfeew+ExYmI85uXeenFhBu3bqKEo5zkjDhiubuANSXSCJ67uEk5KdjYPE8Y+B/Q3soa7779NpcuXeLHb73Da6+/QhAErG9sMByMuPXxdX56+1/y2ld/i4O9HaJXXmGcp6xKSRiGXo+djoi1pOsihFMokYAwwBdTyTpWbXzMa5+03MlzOvv4JMGeJRgOhRB12p3yFWk3tWJzlaSgLEv05JAyL8iLFJOnuGLMuZUrX8j+/ywozSG4tUrCMm0cU8ohhEJKRx2XDTSOE00ktLBNaEwdcDdb7QWOVU2dlZXPtEEZQDiEcAQSL09oCHTd1Ei1DqjlNZ6wT908GrgAnMJpQ57nx6rl9WfxFWdDaQxpmjKZTHDO+cGdkjjjyb2Tgm63SxiGJFIRhCHWggoTkijGFvk0zltIWkmLQvvzHQQBUiZMirAhmlIGhGGMc4LRxM8KBUGAtWBtSV6k3pM5AEzRDCbqBsxZzDZ0TpVPFufAOo3EV82dEwhZEqv42LLGPJqyyCdo0etjXWvBw2omok5inGOOOeaY4+nDE1GB9t38Cf3+IhJHHMe88sorgG8uVGFIFEW0Om1Go4m3wnKW9fV1vvzlL7Ozt4uzhkBIRpMJ7773Lq1Wi+2HD+gkMRLQxXTaFzzFkNWPcKP/rX7Y6mniLMvo9Xq0222iMOGrX/sGne4i7777ricM1rG0sEgoFZ1WG4ngmfMX6Le7xGHI1v0HrK6usrOzxa0b1zlzZo27d+/y6quvcvv2bYqiYDwec+fWLc6sr5NlPlRiY2MD57w9WLvd9oTeWCyCUVpgnde4CpSv2n5B+DSS/LMs90nvO60JzFVhHz6fpNo368BYtC5IJyOGg332tm+y9eAqD+9d/Sy79nNDlg+x1nOxR6vH1TS+mKnezlRDa5w8LnXD2ez7HqkG2ylZ87reT46H/qTtNdt1ogrema2iH1/eWktpvA2dttNBqbens2jtya4Qoqkqh9X3N47jJoEQPFGu3SnqdddVcef8vwNN+t/MZw5DT6y11tU2NXmekufpscruyUHIacdi9pi4SiLk7x/fIHiaC8dp5+m0iv8sya7lYnPMMcccczx9eCL+Be+vLBGGMXE3QcQhB3uHvPTCy3yIQEpFHLToL63T6S1wuHWPZ37lTR7cvsr5lT7XPvyQ/HCHdHhInh7ym7/zHX7443dY6C0z3n1Av9fhcMdilUBUU8R2ptu+NIYwTLClJkkSgtBXOn3iGTy4f5dub4HF9TN8fONjTJGyttxlaWWJj3YeMk5HpFnJeDxmcXGR6zc+RBcla+c2aSURH3/0AefOXUBrS56nfOnll3j3rR9wtLfF4vIyQoVcvXGd8WjIm1/7Nr1Oi/MXN9k72GVldRmwJK2IfDQh0zmdJKIcHRH3e1hlUb7H7zhERWys8/64VA2EzlRyiCphTdjKGm1KwuqVicrw4aTUAk6TiEBN6J2QqLr6PPv+2RszZCLwiWxO+AqqT9yrCoNSNwTRaI0pC4Y71zl4cJvb7/2I4cEBsjjkzX/+335BV+Lnh3MOoVIg8k1nVXy28cHeKOv8/jGtWJpGPuCPw3TKX+Gcd1aJgxJjYgoxwdkIKX3SZEXPsE5TaocLHEJbjBNYl1frUGhdQFCC88EgNWnzGlxVacotsqryCyEorUYEirJIKfIR1mqs9QTXGYs2hrKwGKNxxiAcmKrSW5aa4fAIay2dTqc65xKpArqdfkM4lQAlBYWUVUU6oMwysiInzcvmfdqWKNnG2hIpO8BUSxwFMVk+qryldVP1D6IAognleExajDFNhVk3+whgTdhEnVtqRw3ABdUgOiVyqzidQVhQmhIhHA6JsRLjaskZOKcoCk2cCIwpq8/iZSSzAwJpFdIFSOsblrM0IwqPe4PPMcccc8zx9OCJqEDXIQutVos4jhHCcePGDT9NrRRSBSyvriCjgPu72/SXF9m8cJb33/spo8MDtra2GA6HlKXh3tY2589e4M61a8ikjZUhuiIoUsom7ayeeq0rYkmSNNWyuvK1ee68jxqOE2QQMNjfZzyc8OqX3uCtt95q9JxJlDT7kKYpg8GAIs+5e+ManTBguL+LLVJWFpd4772f0Om0GuIURRGdOOFLv/Jl7m7vcO3aNeI4pt/vs7CwQBiGZFnmp+2toDQOIQ2T8QFOpzhb/JLP3hSP00M/7uZkXUWfNhYeh5rqooXA2QydDhkdbpFu3+Xg5seMPv7oF7+jM2gnZ9BmiKN4pMp5skophGhmQE7q0ms9NIDWBVb4KHcP+8h765kSY3y12FZx7tZqjCkJwqrxzQRYo07Z1hTHzot1WG3IxpNmO9Za7j24i3Ga3Obkec5oNGIymVRVYE2WZY1Pcz0AnbWnm60yn5QvCCHI8/zYsj65UVE325Vl2eiaZ5/P0pSyKHDWYo3BFiVGlxg7XY/WFmNcJfeYHvv6M86eJ2PKatv+XIkqMt05g7G+qbGGX39JWebVNszMftfbEk01u66sG2OYTCZzCcccc8wxx1OMJ4JA7+/vMxgMfAKfAKzm7q2bWFcSJ21k0kZ1Oty6d5dLz17m/DMX2d3e4WB3hzMbazz3wosEcUJ/YYmDgz3Ora9RphOWz5yn3V0AFeDcbKXP/7C1Wh3yfKbr3zmSJCGKItbX19nb3aa/vMbq+jkCBNJkREryJ3/6Zyz3e4QCOnFEWWR0Oy2ODvfBOs6eP0cxOWK506LbaXFmZZELG+scHeySjQaEwpHEMWsrqzjttbB3tvb46te/xpUrVzDGsLKyQhzHjdZzMB4wSlNG4wJtcgKh0ekR2OONabM4jdDNTiufdIOYlQ6cJrc4jSCfnF6vt3Vao9Wx5VWAUIGPVpe+cu1OXI5OSBAKhMJJhUIgTIHUBTYoQORYO/kHXHn/cFgdcXi0i3XZCZmFwTs71M2E/m8pofbvtk4fq+xbp7HO27MVbgKyakxzJWAxxt/79Xnip0tb2amZhuRd2DxLErdQdgHnDhHiyOt5hQLkseY1JQSBlNN7KRsNtJ7xY7568yqZyUnzSUOci6Igz3PSNKUovPNF/bf3qfY36zTaeCs7a73cQusCaz3xrslyEARNcIoxpiHkRZGR5ylpOqYosmY7ZVmCsd67jHBvAAAgAElEQVTSrvAJiGWWUuZjypo0GzDaDz5F5fQyq+eeHeBYVzTkN1DQShLioEegQqyV/hhjG6lXTbyF0uiSYwTaaB//7apO39nvSlEUjZPIHHPMMcccTyeeCAlH3awUxzHOeE9hnKPUuZ8KF4qk3aKdtAD4wd9/n2cuXebjjz/mcDCiTEccDUZ0Y8HZfgtbpFgDnd4ih+kQH3vssMe64z2p9r+fhiiKG4KptWYwGKCCiMEk43Bvl6ODbcaDIctrHZa6XUIlCCNFOh6zsrJEkiSUZU6r1fI/qkZz8fJl+qvr4CSHwxFxoEjikLIoMEVJHMeEYcwzV55DJV3OrK2TlV6DGYYhrVaLTqdDWf3gTtIUm+bkeUkkI1qBxBSGIJGc5r/8y8BpGudT76vqs6WynJZTZ4ka3p8X760rBU6qmfXLU0n3LxrOOYrcYUxZOWFUz1ORaFE3Q854blc+xPUAZjZkw6/ToF3u5TZ4OY1PyptWqWuJAM553bjzQR/OWW7fvolSIa1olVEmqV21Zwc04M9DIKbHtPYAl1J6A5SKqMpQMswGZFmKLmxTddba28pJKZsBaB3VPStNmSWqxpbNLJB1qiGScRyj0xwhRNNsVxR5JXnxLhnG1tVf2aT7WaOb7QqhoJypYlcDlvpYN4NnZgZ4M+exkbkIQaAEUZiQFSlBkqC19XIPe6KSLxxSVumC9Tk5cX1IKQmkQsoAo6f2dY/TWM8xxxxzzPHk44moQEcqQGtNHITEiY/vjeMQg6PbW6DT73N+8yKXNy+Qj1PWl5fIDYgg4rmXXmE4OCJut9g4e4FrH/yY7/3Nv0eqiHOXL9FfXENISdyKKhINrVaHKIqaH9T6x7+eFp+103rpV77E4HAH5Szf+M1vkY1HKKcpsxxdlIRBwHOXn2UyHNFvd1haWqLVavH888/zu9/5p9y6c4/COrq9HquLC4wOD7A6w5iS3Z1tVpYWkUHA9u4+k8GYtbW1Zqrfau8p3Ov10NpPYz/Y2mFwcOSn2EtNqKLH/xCL4z/m09DC0+2zps17nx0n9dCPlWzIGd1zRZ6RAiFklbKoGk3wlORJfxPCV6FV4CvSUhHqEFlKhPvlVvFUoDl/9gUODg5wzlRT9xaHJ5LG2UonbCp5QMlkMsDOSG+mFnGmCec4HB1gyJrK8nFiNnV/mEoGNDjtrdywWJeRFjv0288i7IpvOqxu9fGto7i73W4jW1JVFmRRTDDG4Yzmz//mTxnmKZM8Iz0ak2UZk8mEPM+bz1EnBtYypjzPGB4dMhkNGQyOGI2GDIcDBoMBBwcHDIdDH/2Nl1E1riRMJV1HRwekacpoeMRoNKAsc695xjWNiYFUKCG9RltrbOmr2n4w4dDaVhpwgTFUt2ml2NnjITG2qhh3ujHLSwuk45xea4Uk7CJsiDVBc66MKVlY7KECMR1UmPKYjKNed90MCTCZTJpGyDnmmGOOOZ5OPBEV6EhJxkcjHty5S5FrgkBxcLBPf3mZrd09+mfbTAYD/vIv/ozJZMJkcsjlS8+j4oRWt8e9Ozd45Utvcv3WTTbWVllaXsAlHVbPXsDkOWE7weiMXrhCEAQMh0Nk5XCRFwWtVgftAGNBGTY2NvyPsICDnS26iScX9+49YGNjgzybUBQZzliSKOL6tav0O94tY2l5lXv372BVwo9++iGdVsxKv0WRTeif3+D8mVXageDyxhIqidk8vwGdDgsoekt9kk6Lbrfb6KvLbEwSRQyHE7a2t2g5y8H+PoEds5isYKxA2hDjHIFUCCkR1iGr+WOLBetQ1WOJwUmHovphl34aH443CtZo/ha1Vrm2RnvUmk4K6emXEDjhG0B9s5xAVTzYKYmUQaVrVohAYfFSDYk6lixYGbbhpMJJg6Ii30JgpKvSF3+5ccg6NZBMWFs9T14cIOWSl0s4TSfpIKTClBZTNURKJGk2IIz6KLmIMSVSzTo3eJlAaQ2WEU4nGARS+qhph0EiZ0i3Jrca5SyhEFhn0VIAFuSAUW4RIiGgVYWmZFgrCcOgOm9lReQEggCUodSacbpLmuckYYt/+Wf/G7//j/5LSj1mPE4xyg9yLRAnMVmRk5clUgpUGJGPJ0RhiDCayWCMLaZaY1Vp+sM4Im4lkMJg6G0mgyhm73CHLDeU5QghHYdHu+SVveTi0hoiTNAzgwltDaUuKXSJtILCSbQu/IwAOc5KPxCQEltUVWc5rYwLobDOEAYxhS6QIkGJkHY7Jk1TLp65iHGGUMaVpMRhnQNhGI0P0GaMkgnaaYQOQXrfamVDgsD7Xyt8U6kyfsagqKrm8hHN/xxzzDHHHE8LnggCPZlMkGEfqunR0Wjkp3GxpOmYPjAZDRiPx95Dtyhpt9s8c/kK7Xab0gh0WbC0tOS79MMEEwRsP7xPt9slitsUrkTJqLGOmrXTUko1Fb5eu8PBwQFhHHHp0iV2d/bJla8gHe4fsdjropUiSRIfyescoQoYj8ecP3+eXq/HSy++wv7+PlZ4y62VpQWO9ksebm+xWIW8JBiKqOuNa6OEbtjCCsnq6irD4ZB+vw9Mq5O+UavAFQUDO6YVWHTZJVQhMoor+zD5iCHHzwufJtVwJ/4WQlbk11eapfDyDekkQtbJgyc24uoUv9M12E8CArmAYw+tBWk2Io4WcA7aYcJCr4ezkmE5pqwcJIIgoNvtep/xaEoEZ2UBokokNMagnDuluXKKurnUSYfAIZwfeFjwemtXIIRFug5Gy2oANBvuAVobplHk/rPUAUNGC4LIB5RYa9DWu9PUSZO1ZKMsfWKg1aZ5LlACbW3TMNc00pmpz3Ttia2UTzJ0xjcGWlc0leLa+k+FLQIVUdi0OT7HNOR1kImtExlPWv/5JkTJ9JBap8GCLh1KRoRBi0j5fyP29/e5sHGZ/fFeU+X3Ceve+mZ2VsBagxSBl9RYS1jJcj7JRm8epDLHHHPM8fTiiSDQSka4KGAwOCSOYyaTCUmS0Gu3cNpwuL/H7vYWWzvbfO311ygmKXmec27zGSaTCd2VdR7cvcPS0hJCRSwtrfDR3dsUBl547kWSzgJlMSaKomMuHLXXbKvVIk1TPw2dZTigs7LMzVu3CGVImuesrKwQhhPiOCbPJpSlptfpgrX0Ol3G6YThcMjk8BAnLO0gIBGO3vIC9+/dZvPsBg92Bzz7ypc5HByx2GoTLK+h+svYqEOR54zSSaMHbbfbzVR2nuekk5LhcMiDnTvoJGMwGbO8ELG8IFhstwmC4BGN6yf504qKANWkhvqYMCO1qM7P6Q4Zp9nZuSaOeqo1l03KpE8YrKaypfIV6cpS0JNlUd3XG3CVnZ5s3Dqg9gv2NmhfpA/2z4JOp8swP0Ko+pilOEJarT5hGHrnCFlijUVIMFbT6SRcu3aN7rNnABp3Cag8mLUnoGma0glalWZ3mjA42who8cTXIgiwBMrX7YV1oCCIvTeyyWOCsIcUia9iV+TXWYGSASAxFMhKxpPnOdqkGLcE8ZDxeEyaTxhNMkrjSNottLWkWUpRFo2LhqhmQooiY+foiPX1DbLRmKIoiOOYIvOyj7Qs/IzN0jJHR/uUZUrS6nG0t8dokpLrlCiKwAqEsX7wZTQGPyg1+VQ2UV/3UkqM1b7R0OlKwiQqwsuMNluiFDgsCIMQIWHYQThIgg5JIrl15zb37u6ysbrJYDDAygLtCkpjKq27o9CWoNC02yBkiTUhQngdfC1rqWVh3jpSNL7VrSgmz/Nf2HU6xxxzzDHHF4sngkBba+l1u2zvbPnqV5b5CrFzlEXGGy++yL1793j2ueeI45jBwQFZlrG+tsFHV98janWJC0ee53S7CVJKDg4OaHeXWVlbZXFllclgBzjeSHWS5BljIPCVspWVFaIoYjwYs7q6yu7uLm6m8WtlZYXxcIQuCuJOwPLyMgtLS94fN1CMB0OMSXnppWeJw4jr129ihKS7tMKoABNFxJ0euZC0gpCy9O4LR0dHTSXdB1F4MtVfWESqkDTP2E0zBCHD0YQk7tAzBll97p9HbXaWTM8+d7zyfOLvE6+7qkmweSw41kTo8XnIsDxx/8vBeHKIEyHIkl53sXLM8FQ3zXPG4zGlKXAzWu2yNCwu9R9Z12yVsrZcdGqaljdrYTd9r6j8jmufae87LfCVUlmRPRWX5OkRwiwilGnW5SqrNT8tcLwSrm1JVmpyPWqqzH7gaZvGvdnPpLUmqL5HRZE3aZ7FOGt0wVEQ+muncJRaMxwOGQwGDEf7ROGAre1djPAJjVEQUuYlAkGZ5hztbSPDiNbCQrP9epBZa4xtqb0evBlsWFwzKKtSA51ECOsHaPU1SoAQpT/U1nD12sc8c+F5hpMxg/GIILRop7HOINBY54OYmnhvCVaf3pToBzsOJQN0VaF/kmZR5phjjjnm+Px4Igh0d7FPpCRRoCgCS9xK2NjYYHQ0ILfwg7d+QCACtre3yfYP6C/EvP/Td/j1b36L7e1d3njz13nw4Y+qcAmDEQKt4cXnnucv/vxPeOnlV7h74xZCaUIU3su1RRhGSJlxOBwQqpD+wiKTwSFOCm5cv96Q5Y7ssrxyBikEzmhWVlc9uRGS889cAixBEJAVOWdWVrlz6xYqkZw5c5ayFOyOR7TOPkOyO2R/mJMsrjAaD+hEbYwTdDodWq0WrVabNE3p9XoMxyNWV5eZFCW6tHS6iZeU3LnJrfv3GWUtVvuCsihYXlgmbElUKHCm9Dpja3A1YbAWS2WrBigLqNouYkpAhRCV44OrrC9mI7lrQhJyjPJK3+gnqjjuuslPAEq6pkIsZeAbBWUVnCKDSsrhcARez3wycrlKVBH+jY3bBIC2Fo343E2PXzREINCZIxQSLQKG4236vVVWOh0Gacm4mKBcUlWQJUJqQNLrLpGmKUnSwZocIaYJhdY4lJNYW6BtQICXJsRJUNnjQZWliXQSW0pEIL33mnFEMibXOc5AIENkICjKkqDlaAdtBvspom3JtKMlYtAO5yzKKxCY2JJAG/J8SNDq8PDeHurljP3RgNJYQhOhdYi2FlNqbKERxpIXKdoqiiJF25LV1TMsLS0xHhWEznD2wgUO9w84PDwky4fkxYQPP37AJB1xeLiP1pZup8/R0QgjS1pRm0AlLHQWsTiKSYoIA+LJkKQdV70IeTVwiHBKUqRj0myMkc67nTgQOKx1CFFFf2uNFAKRlJTWEQgF2qCCCFTBpMh58blXKbKSw8EuTlsKnVE6gwEiqbFGQxHhQomzEhUYdJnhdHDM79laiRCBD1kRPmwlUTG9Th9tsl/adTvHHHPMMcc/DE+EC4cxhlarxerSMkVR0O12cc4xHnvZxeXLl+l1F/jd7/wexhjGw0OMLlhc6CGc5Btf/zrjccru9h4yUKR51vgnd7tt9g+P2Lx4mTCKPL+TEqUkUgoWFhZYXV2lv7jAG7/6JlGnhbY+4MRLEmBvb6+pwDnnsAICpeh0Ouzt7SFkQLvTQ6qQo/GEM+c3+b1//p/x9W//NrmKSLWkcAGlsYzTDOM8Gc3TjDCMGqeNwWDAmdW1ytHBsb+/z3gyIU29By7OsHHmLNoIjsY5N+7scvPeDqPxgCwfIYR3JGggTtNYHn/usU2Dj8FpGuRTdcmzUg4lPVGXvlL9s8IJfwMqB4rykxf4BaAoCoJAVk4PJekYxuMxSdwmDFoYU/pUQGakMVbibESnG2KtZtaOu3bHAElRZtQSBGtt1QRIpWOehqOYOtpdKKTwUh7fuhaACwFfnY2igP3DB80Mh9NVE52tq9+y2p5r4rp9KJBgODrgzv17dHptLF7iMR6OyCbeF7osS5QMKfOCcTYgNf4YOGeIW95bfTweYIxG65K9vR0ePrzP/sE2w+FRY0s3Ho9xziCdd+OoPZOdsVjnsKVmfHTIeDCknHgCOg2nEZSlr3wLK3BWYWytRfbOKEJU1XJXVsQbUL5irksvl7p9+zbOWLIsIy1GYG0VWGOx2geyHB4esrS0TBy10NVl6C3zQM1c49bWWm1RPXZVWJRotN1zzDHHHHM8fXgiKtB1Q1GWZT70wBmvLR2NCFodzm940vj6V36Vf/9v/wyKI8YF3L5+jUAKfvh332V94zw7W5581FVcFYVcvnyZ82ur/Js//wsGhyFG58StNhaDcZVdXGlRYchPfvITfv+f/ae8/fbbnjiUFqcCer0uSgjiSNGK2wwGh/TabfJil7X1c6i4xdLaWaLxhFa/xTe//g0G4xFX72+jW4sUI0sxKiiAxeUVZOAt9IyDIAhIU98UFYahb5oqSuJWwmAwYOI0prTk4wkPHjzAOEtvaYWdnS2uaUOaG569fJ91s0yrt0iUtNGfUcrxODL8SU1rzTLuxHO1hEPM3nurOimDSrahKhLtCWK19Oe5VGbcJx5N1PtlIIwgUDHGagJluHT+Ve7ev0rhDEnSJpBUso5w5nhLkrjLx9d/xOb5FyoPad9YWVf846hDlo4b4ofzRDAIIoypJAJW+GvYSYwNMdY3zhkMKBC21XgTSpXjXErcabN3tO2Jnoy8jKbyV1bVObHWIQJFmuUs9UpaySIPth6CFLz19+/wT771T8knE/Ks9A2BRYFxlr3dA+IoYJBvsXNwn+X2GfS9lLv3H3Dv7k3SdMyZtQ2GwyFHRwdI5T+bEgHGGpSqPMFFgAwEUgQEQeQJcjX7kOsSkVkoDc5agl6bMKyOLYrClRgBrgxBGV99rgJrQKMCBbpKR7QOEYIQFm0m3oIvM4Rhi6PhIdZKrLYIKSqpiMRhGByNwYWMJwMmkwn93mIVAw6lKZFRjNFVI6iuJDSBd0gxpW1cduaYY4455nh68UQQ6DAMGwKttaXdbnlJgJJkWcbW1hYXNjdRSrG6uspkL2djY4P7d++x/fA+6yt9Or0u+/sR/X6fNE0Jw5DheES30wEpaXXaCBWysLSE3tHkZV059M1IMgjo9vvcuHWHcxcuMvjgA3oLSwRJTBBEjI8GRElIZhxRq0NmHMsbFwCIWm0y4whabTY2N8mMQ7V6DLP7jLOSMEooioLewiIqDFEqQMoOsqqc+RCWkoWFBYqqsUgXvup2cHTkp8mNwWmvkVZhQBgnDLMjDkeKw2FKr11432FjIAhOdcI4rp09Eawxqwuvlq1/5E8j1ScJQNNAOLMOH5bim9pkJdnwMo7ZZkHx6Rz6xLafJPcCR4kQCUL44A3hfCDQID1C6C7O0PgBl2VJnEjAUpZV9DUGK7zcoBHLVE2Sxngtbx0CVJZ+wCVEUEXcTf2hhXEYaf0xl4CQKBmC8+t2rsRhCQKJTCTZxFVaYD+gcc6nAWrtiauvkDqKckSvs0ya52RFweuvvcm1Gx+zvnoW6wym0vQORsOmuns43CMrRnx8/SpSeO/1evbmwYN7/jtnSjCg1LSh1zrRVOONtsiwOh44ZCXXEUJ4wgwgBFHcairQyoKtPLOFU9iq4qxN2VzrSlVV52ogg6urxh55nhPFEQ7jcxQ1jWbZlhanLHle0mq1qP25tTaoUGCdRgjlvac57k9utCNQgJsmgBZFwRxzzDHHHE8nnggC3W63mUwm9Ho9+v2+1xQqxdFoyCQrG9uvv/7//oZuv8/wwU2E1ly6eIEXn3uZt37wPa7decBiv83m5iYffXyVb37r2/zdO+/wtTff5I//+I/5xm98k8HuFmWRsa4U27v7vukJxWK3R9BuMRyP6OSaw9Eu3cUVFvqLxEvL9BeWSUdHDA92sUh+7evf4Oat61y+/AxCKPLBgGs3b7C6tEx7ZYWRNly/ewcjE1RgabcSgjwnaiVVgIK37ut2u7SSmH6/z2g0ot1uE0jFZDz28eJpxsdXrxMGkvXlJVaWlvngJz9GFGNaccSkjNg7Srl6Y5/ABJw9nxOoAqTk0+JFTrOE+yzSjNOWOdZEWK+3ct5wUiFk4J00pMBSeUU3rNlbgn1WzFafn4wKtGV4NPQJlEWL0u7T7/a4euuntOQ6cRCjrWtIcRAEGJuSFftsnnuFg8E2ve5CRXKn1meBSpCV77O1Po3Tu9PEhEGAs5a80uFrY6sBk/QuHMp6ouaEb1pzBtUuEEA2KcmznEitQUXunfNnoMhLjC2JVUQQhYzTklwP+dKvfIW77z8kbntZ0/lnLpKPM+8eUl3LR0dHOKEpCsvB0T7EOXmeVjH3i17bPDiodL+OKIq8y0b12bMswziwCMrCIAKoZyocgBDIQBElMVhHkWbI+P9v716f5LjOOo5/+5zununuue1qJa0udnTxLTZOEWwgqZRNcFWSKqCCgRe8ouAFL+CfgYI/AniVCpCqvEqKFzjmkjKWY0t2ZMe67660uzOzc+nL6XMOL3pmtFIc4wUTy1XPp2pK0s7M7s7sjPbp08/5PRFZljUtJ2axGl7nWO+oyqD53007jFn0SauaQMUEUYx3Hu1aELQoy4KWg9pWTauFhQqD9wG1tRBYorBNECjqqsI7TbvV4WA4xphFr7PV99tD6hp1qJXKLwJUBusb1NWc0WzUvL+lgBZCiM+tR6KAJozIJyVhWHL2zBf48ObPMM4QBgpvK9788X/ywldf5ub1a/zeN77F3/74Nc5nGW++9TZrvYxWt8tLv3WR1/71X7h75w4nNzaoq5I//sPf57XXXuOVV17hrTffJE076G6XD699QJwmdNoJf/4Xf4n38M/f+S7BcMjOcI+LTz3HE+fOs729zWPPPcv5Jy/ywXtXmdzb5tjGGj5N+NKLXyFsxaSdjHI2IVpbJ0sSTF4yLSqy/iYHkxEXnnqsmdhW1kCz2u1sTaih1x/QzlKchePHj5NEmtzWDEcjBrZmf7hLO/D4umY2PSDLMp770vO89cYbOGea4lRn3Njepx3Bk9OCIK7otGJq7wiWp/8DR4BDedB4HHY1zMSqxbbAhwvpgFW03LI4+/nkDe5fpzROaQLNKjkiVHHT/6yi5rpAE3i12ETYfC3v1S+un32TxtCslCq0g8DWeF9jbYCyGvcZnwpXYUCn32Y8ykF7Ig1bu3fIspAgnhNGCd7nPHb2eW7dvs3+wQ5R2EEFCaFSjEcTut0Ej8K48FBrhqMdJwSLbPTAK2wdYH2N1h6iEPISnMJjmkFAhARERB7Qiso0r7XAWVyp8D4gL0fUzlEWmjTpUvsWprIQGCIdYGrL3FpCVZHvFrw1e5evP/U1fnD3Rzy28ThZEXMwnPPD137A73z7VeZ354RxTO0Me3tDLCW10Wi6dAYddk1BoDzWlMShJiRGKUWSJM3wFKWx3mO9IvSWqqqpnKGqPdYfEKoOAYo4jtFBDEBdNhMPg6om8E0+tK1LZpMDpsUErzzGNGkZAZ7CVDgcWSte9Ik70IrChJTzPSIdY4OYmRnTj9dQaEo7JFDg6zboMaZU1KXHU9NOE4rCgG0TtucYV2NmFSooCVzaDDeKFgd7NiDwAYFyqDDn+vWrtJN+M3lRR5/lS1cIIcT/wSPRiKfCEB1F5FVJK80Wo7xbFEVBt9tlOBxy9vQmB6MRdWXY2NjAWcuNGzeYz+e89PLXVqvUzXhg2N3d5datW2gCrly5wpNPP02n32Myn9FKEga9Hn/6J3/GP37nu/zNX/015y6c53df/Tabm6dot9v89P2roALCMCRtJ81Gw16T7btxrJloOBqN2Nvbo99fI0ky5rOCtNPl5KlNev0OWdqlLCriqEWSpKwf3yBNU7TWJGmHVpoQxe0H8mwBsixrhlIsTs8v47rquqbX66HDEOsdYRQTqJCiDpjPa6wzq2ixw/6nFdtPEqn1iwaYPDyNsPm7Xk0h/KSf/5N61FagjTEQmKZ/NwiIdMzG+nG63Q57o3vY2mOM5yu/+StYO6GleyhdL1aWHRvHjjUTGC04Vy/GfTeP7fC452XvtHUG583q/t671fO7bNFR+n4knrW+2UxX68WY8br5fiNFUcybVVNvcH7R/uM8VVFSlxXzfMS9e1t00v5iBX3R1+sDnn32Wba2blPZCq3VAz+T5UbIPJ9RlDmTcTMECcBbR6h0k9sSqFX8nNYarSOWiS7Lx9Osci+i+xbjusuyXH2dZXuFtZbK1lS2WmzOc6u2peZ5WI5ZX14cta2YTueAup+5borF0BUN/v649PsRfk1RbOvgga9fFBV1fT/eT6mmRcNZhbMKHSnubG9hPBhnMM5g/19CJ4UQQvwyPBIFdNxukXYybty6yfrmJnGU0B9s0O0P6PU69Dspb/zH63STmCtXLjUrZjimByMeP3uG9y5fZuPEJq/+wR8xmYwZDve4ff0aP/z+9+n3Opw4ucGdrVucPLVJO004c+YM589d5O//7h/QQchvf/0bDGcF79/e4vlffZGLFy/y5RdeoLe+xubmJq62bKyt886Vy7zzzjscXz9Gt9vlwoULnDhxgqq2dHt9Ov0+Ko6pgSfOn2d90KOdZtze2ub4yVM471FRiKktURTT7Q1IOt3VL+H9/f1mo6C1hGFIlmW0202CwfhgynSWc2zjBN214/SOnSRKOqh2h9FcsTO2DCdT8tkMa0wTXXeoV/jhgSoPF74flY398Mcevu+yl3N52yZPO7y/GU5pUCHLMeCH7/u/tZw2d3gz4WepKaBLOr2IwHm0D+kkXabzGecufAEVRmidceWn/07YmhP4BOuK5nvHkrU6+DpAE63ylQ9P9tNaL/qeNc558mKfWblPXs2obJN53ByAOeZFzSwvMa5uimxvqWuHc1CWNc5CoBxeVRRmBrom60T0Bi06nZTalGg83VbMfDJie/dD3n73v4h1E6/ovWfQX6PbW8NUjg/ev8poOmRr5w5FUREETXKOtU3BuzvcpqynHEyGTCcHWFOx1u+zPhiQJQlJq7V6jTYTQhWhjgnDiCRJiONms20xz5lNp1R5QZkX5Hne5GsbQ57nGGMoioLhbI/K5szyKbPZZJHIUS6ymD1FbilyS1nUFHlz33xe0e+t41xNK0zITcHBdIy2CaawFOhc19EAAAWzSURBVGXJPM8xtsZ6x7zIoYzBBqgwIAzAVobAKUKVoVULYwxJqnnp5a8CzaZMgoB7wxFWNcX6Rx3oCiGE+Px4JAroNE0ZDAa0222yfh9rPWm316xKKcVsMma4v4cG5pMD8J7h3j6nT5/izq0b3Lu7zaVLl7h06Se0s/aih1TxG7/+Iu9dvkyaJgwGfcbjMadPn0aFmmlesHHiOCrU7Ozu0Rus8fQXn+XajZu8/vrrXL95jeMnTzQrvYtCZn19nTRNORiNSZKEyWRCFEX01wZE7RZplpGkKUpr0jTl/Plzq5XxMG4SNkxd01vcPgiCVdyec448zxmPx6v4ruXKFzSrZvujA1AhUSshamW02hlRq41FM60Mk2netIjUlmAZ8/wxv6SPWsx+XL/0z39c4Re90Z9WVvPDGyAfhQIkjlKgKaSbwTcRpvLkRcl4PCZsNbnAb19+j9pZbNAkzdh6OV1QoXVEbZpeZ3jwYGcVfbeMrHMFzpdYW+P9gzFogVZUtcF5T1WXEDSbEJcHG5UpVhF5HovzhtqWRJFexTZ6LK42ZK02++N9bm/fwFq/muKXZglxO6IsDU8/8RQHswOm+XyxMpxTlDmmWo73LinLYrUiHIVq9biWBwnLiX3Ly/L65b+XEzZZtLKoxY98uTK8/LMsS27evI5Sy15mv3jvHBo+4wKcDVaPB5oNzAfjebNqHgRYbxfXabxrogJr78irEuMslmVLDSgV0IpjIh2haTZ3NpuSKwaDAd/73j/RH2SEUYDHUszmuMoREeLrJv1cCCHE59MjUUCXpuLY8Q3aSULYyjCVZTQ+IOs2cU/9XsbO1i2u/+wDohBUEDIeD/niM88QxzG3b94iyzLmRcXW1hYnTx4H67h5/QZnz5zh3Xff5Uf/9jpRHHP28cfYvrvD5uNnufDMM5y9cJHnfu3LvPLNb/LY2ccZrK2TZu2mzSLLmlPXzrO3t0fSybCmZjAYsLu7C8DVq1fZ3x/RTNnTzMuKdtbh9p2b5FWJDmOObZwgiiKmeROVlSQJa4NjFKZmOpmv2kGMacZ1W2vZ2dmhLEuqqmI0GjGbzdjf36csS9KsQ9rt0z92grQ7wCjYPSi4dn2Hu1v3mg1Zh6bEfVShuSzMDq80f5zl7R6+/+GLUk1/8/3Pucx+/nReZocnu7mHVtg/M761yEAOKeYF3axHK0pQQcpoPOPmzQ8htEzmmuk8ZOZ2MJXCu5BmsE3E5GCKUiG1oelzduUq0nB5gIVvnldT5xRmQmVzAq0W/e0a7wJq0xR/RTnH2pJAVXhKKjOhtjOcq9BhTLu9jvOe2lds79wiLw6YzacYU+JqSzXPaak2eVkwHI0Y7Q1XUZNJlrF+rItWba59cJv9yZDxeMju3XuLFJ2aPC+YzGfMiynT/ABnKmIdkiQJvU6XpNWmm3XodbqkafrA09lqtWi3mzan5UZDrZszGH7ZonKo732ZE50kCc88+xS1b4r15mDDPHDWxFowlcdUFmOa90eWdZlOmxzrurIY32yk1LSJdNScMTKGsixRqklYcXWFxqNi12RWK0Wa9giIMKY5qHn7nZ+wtt7jiadO4ZjgS4MzjtAFPH3uGdY7PZTNf2kvUyGEEJ+u4FFYxRNCCCGEEOLz4pFYgRZCCCGEEOLzQgpoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjkAKaCGEEEIIIY5ACmghhBBCCCGOQApoIYQQQgghjuC/AbQOJbZYxjmaAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images(imgs);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "How to get the image name?" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 62 images belonging to 1 classes.\n" - ] - }, - { - "data": { - "text/plain": [ - "(0, 0, 'simages\\\\cat-1151519__480.jpg')" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def get_current_index(flow):\n", - " # The iterator is one step ahead.\n", - " return (flow.batch_index + flow.n - 1) % flow.n\n", - "\n", - "def get_file_index(flow):\n", - " n = get_current_index(flow)\n", - " return flow.index_array[n]\n", - "\n", - "flow = augmenting_datagen.flow_from_directory('.', batch_size=1, target_size=(224, 224), \n", - " classes=['simages'], shuffle=False)\n", - "imgs = list((img[0][0], get_current_index(flow), flow.index_array[get_current_index(flow)], \n", - " flow.filenames[get_file_index(flow)]) for i, img in zip(range(0,31), flow))\n", - "imgs[0][1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(30, 30, 'simages\\\\wolf-2865653__480.jpg')" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "imgs[-1][1:]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAIQCAYAAAA2IAmhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXeYHMWd//+q7p4cNkettKtFGa0CCCShgMjZJJMM2NjncNgcyTjf+bB/zgknbA7bOIAxPjhsMkIEAUJICOWcV9LmPLOTu6fr90f1rkarVbSN8Nfzfp55trq6urq66t3Vn1S1QkpJHnnkkUceeeSRRx555PGvAe1ENyCPPPLII4888sgjjzzyeO+QVwDyyCOPPPLII4888sjjXwh5BSCPPPLII4888sgjjzz+hZBXAPLII4888sgjjzzyyONfCHkFII888sgjjzzyyCOPPP6FkFcA8sgjjzzyyCOPPPLI418IeQUgjzzyyCOPPPLII488/oXwvlYAhBC/FkJMOtHtABBCzBVC/PJvuH6BEOKMv2ebjvH+q4QQruO8tlAI8enDnJ/v1G8JIT445NyLQog+IcSzQ/J/J4TYLYRY4/ymOfkThBBvCyHSQoh7hlzTKIRY75R/Nyf/GiHERiGELYSYkZPvFkL81rlmrRBiwfE8v1PX00KIDTnH04QQywbaIoQ43ckXQoifCiEiQoitQohTDlHf80KIwuNtzzG2Pc/dQ58/Hu6e7VyzQQjxeyGE4eTfKIRY5/yWCiGm5lxzocOHHUKIL+bk/9HJ3yCEeCj3OZ1+X+Nw+/XjfH5dCLE69xmEEOc47V8jhFgihBjj5HuEELuEEHuEEMuFEHWHqHPp8bTlONqe5+2hzx+Ot9mcefXpnPzRzrhuF0L8WQjhdvJHCSFec3iyTghxcc41U5z5eKMzj3qd/G8KIfYJIWJD7v3vOXP0EnGc32+nTbHcb4AQ4i6nHRuEEH/KacvAc0WEEC8MPNeQ+mYIIX56PG05zvbnuXvo84fj7vecMd4s1HdUOPk3OLxa58zLpU5+sRBikcPpRUKIIie/QAjxjFDf/Y1CiI8e6R7H8ZzHKhPscNp/wmWCQUgp87+j+AE6sOZvuP5e4J5/cBsFoB3i3M+BBcdZbx2w4QjnpwB/AD445Nw5wGXAs0Pyfze0rJNfDpwGfHNofwGNQOkw10wExgOLgRk5+Z8BfptT78pD9c8Rnv8q4NHcPgBeAi5y0hcDi3PSLzhjMQtYfqI4m9PWPHcPf/6ouYsymuwDxjnHXwf+zUmfARQ56YsGxt7p/51APeAG1gKTcvginN+fgFud/EJgEzBqgL/H+fx3O9zNfYZtwEQn/WngdznpB5z09cCf87z9p+Rt7BDX/C9wvZN+IIdrD+akJwGNTtoA1gFTneMSQHfSs4CqofcCwjnpDwAvHufz/x/w+MD4ASOA3YAv51luOdxznchfnrvHzl3U/PmW03c68DawwOFhB863H/gecG9O+otO+ovAd530l3PSZUAPau4d9h7H8Yz/1DLBwO994wEQQgSEEM85GtsGIcR1QojFwrHoOtaA7wohVgohXhZCnO6c3yWE+IBTpk4I8aajXa4a0KCFEJoQ4heO1veso2l90Dl3qhDidafehUKIKif/diHEJkdje0xKmQW2CyEm5LT5w875tUKIh528yxxrxGqnnRVCWdL+HbjL0Q7nCSHKhBD/J4RY4fzmONeXOZrsKiHE/whljRvQdu92+maDEOLOnGfeLIT4BbAK+C8hxH05bfyEEOJHKAJemJM/xmnfWudeJwkhgkKIV5zj9UKIy53i3wFOctr+/aFjJ6VslFKuA+xhzr0C9B8tD6SUHVLKFYB5DNdsllJuHebUJOCVgXqBPmDGMOUOCSFEECVEfWPobYGwky4Hxgoh1gKPoASs1wALKBRCxIfhbkooj8bHhRBbhBBPOOV6He6cIYS42DnXKoToFkK057l7wrlbAqSllNuc40XA1U75pVLKXid/GVDjpE8Hdkgpd0kpM8BjwOXONc9LB8A7Odd8CHhSSrnXKdcxtH1HghCiBrgE+PXQRwPCQogAcDtwkVCWrE8Bpws15z4BXDsMbxcL5Wn7gFBWyuVCiC4hRFII0ZnDhY8L5T2JCyH2OlzP8/Y94O0huCCAs51xBfg9cEUuH5x0AdDipM8H1kkp1zr37HbGBCnlMill6zDtiuYcBpy6jwlCiCuAXcDGIacMwCeUxy0E3CrUnHuV84iLgeXAFeJgeeHfhZpDdwnlPXhYKC9d0hnvVUKIOWK/nNAohOgXypKbn3PfG+5KwIsS1D2AC2hnv4Ek4PA4zH6OXo7iMhzM6ZBTPohSAKzD3OOoIY5OJsh9jy4H/uBM88tQMkHVMPU2CiFKnTHaIpR3eZ1QsoHfKTMgEywRyqvw7NB6jgknWgPJ0Z6uBn6Vc1xAjkXX6dwB7eovKG3LBUzF0bQBP+B10mOBd530B4HnUda7SqDXyXMBS4Eyp9x1wENOugXwOOlC5++/AXc56ZOBrezXSoudv0WAcNIfB37opO8lR6NHaY9znfQoYLOT/jnwJSd9ofPcpcCpwHrUpBpETY7TUdq0DcxyrgmgrI0u53gp0OD0zfKc+y8HrnTSXue8gWPBce65A/Xi1XEYjT6nzt8xvFV/AcN7ALaiLEz3DfR1zvkD+svJ242atFYCnxzmPoN8cY4/ibIiGcBolAJw9THy8j7gyqF9gPI67EVZg7uBPzn5zwIXDLQFpYAMx91G4EyUlVeiPs5e4CHUBLrSqfvTKO7+CSVs5rl7Arnr1LmH/fPST4D1w1x3D/DrnPnn1znnbgZ+PqS8C8Xtec7xj4H7UTxaCXz4OObUJ5y+H/oM81Cc7Xb4NNBvm1AWsdw597ph5twEsMapNwVMQFnTljjjV42y2C1CfWiXOeXyvH0PeIsSdN51+v2K3LpzyowcqB9lyV8PNDl8ONXJvxN4GFiI4ubnh7n/Qd4GlOd1J2r+GnuMnA2gOBgcZvzuAGJAJ/AG8KucPhuQFy4BNnDwnLsCeA4lL7ShvHDFKM/CPmCO0+bngWuAl52++Dj5ORfeO+7+APWdjgDfzMn/IBAFWp2xH/BE9Q25vtf5G0IZ4VpRnLnkSPc4Bo4ejUzQDNQ6+c8OjJ1z/Ao5ckpOfqPTj3XOOM5x8h9CfU+8Tt2jnfw/MUSuOtafwfsH64EfCCG+i3qoN8WBoVkZ4MWcsmkppSmEWI/qMFAv6M+FiifPAuOc/LnA41JKG2gTQrzm5I8HJgOLnHvpKMKAEkz/KIT4K/BXJ+9F4DcoApwNPCGl7AKQUvY4ZWqAPzsanhsltA6Hc4FJOc8YFkKEnLZe6dT5ohBiwKI4F/iLlDIOIIR4EvUhfxrYI5VmiZQyLoR4FbhUCLEZ9WKvd67pE0JUo6yaI6SUf3GuSTnnXcC3hBDzUZPECKDiEO3/W/El1ETsRrmgv4AKpzgc5kgpW4QQ5agx2yKlfOMw5R9CvZTvooS2paiP41HB4dEYKeVd4uB46FtRk/v/CSHuAL7jcLcYiA8pazKEuyhubkLxZR9KyPsV6kNUguqXd5xyj6OEtU+iJjXIc/eEcFdKKYUQ1wP3CSE8KKH4AE4JIc5CffznDmQNV9WQ418Ab0gp33SODdRH/BzAB7wthFgm93seDgshxKVAh5RypTh47ctdKLd0L0pIfFMIcdswbQIlCMGBc67N/jl3JfAVYBpKCKtCeTy6gEellBkhxKMoNzzkefte8HaUM0/WA68638joMOUGxvsGVBjYD4UQs4GHhRCTURyciwrJTACvCCFWSuUZOySklPcD9wshPgT8J/CRY2j714D7pJSx3O+/ULHdl7PfkPO8c5xEGf0iOeUlB8sL3Sjj33pUeN2DKBnhOygB+REUj76BmoP/iOqzPvJz7nvCXaHWIk1kvxd0kVP326jv7XSUZ+hnKPlhqAU+FxegjBRnAyc5db2J8tYfdI8jyBG5bTxameBa1Nify9HN/0OxT0r5lpN+BOWpfRnYJaUc4MifUDLBceN9EwLkfNgGtNZvCyG+OqSIKR21B0W2tHOdDYOKzF0od85UlPV1YDHQoRZ5CGCjlHKa82uQUp7vnLsEZYE7FVgphDCklM1AseOOEQw/iD9DWfcaUC517yHurQGzc+49QkrZf4S2HgpDBc5fA7cAHwV+m5O/EGUlOFRdN6I+1KdKKaeh+vKg9gu1AGyNEGLNYdp0WEgpW6VC2mnj6UdxTYvztwNl1TnsNVJKS0p5l9O/l6Mm/u3H0MzZwKlCiEaUdXOcUG5mUB+1J530T1FC/nrUB+qOnDpqOAR3UfzRnb8D3P0E6oMzsAArz12F9xN335ZSzpNSno6yRg1ySggxxXmGy6WU3U52E8riOoAa9ruHEUL8t9P2u3PKNKHip+OO0PAGal47WswBPuBw9zHgbCHEI0KIMlRM93Jnzj0TZXX6Nvvd4ghnYTPKdQ4H8hb2z7kj2D/nfh3F58ONd563B+LvztuceXIXyio+HaWQFeaMay4H/w0VR4+U8m3n/qUoDr4upeySUiZQQvewCxgPgcfYH5JxtJgJfM/h7Z3Alx3l9Fxgt5SyU0ppojwTz6CMJBVCiHud68ud5xo655rO89koHuTOuc+g3j3dKZ+fcxXea+5eCSyTUsaklDFUGNIslHEBKeVOZ0z/FxXLD9Au9odhVaE8jzjP8qQjY+xAKVYTDnOPo8XRygSPs18+Oez8fwgM5Yrk8GN6XHjfKACOppmQUj6CctEcy0QzgAKg1XnJb2b/C70EuFqotQAVKNc1KJdcmWP1QAjhEkKcLITQgJFSyteAz6MEx6BzzWvO9a+gYmRLnGuLc9rQ7KRzLR/9KLfUAF4Cbst5/mk5bb3WyTsf5SIEJQBcIYTwCxW7eyXwJsNASrkcRbgPobTEAbwAXChVnGaTULGWCLX7h99pe4dUVr6zgNrh2i6l/MrARDTc/Y8GOS+tQH0kNhyhfMCxeOA8//lHcc1AXyGEOA+wpJSbjraNUspfSimrpZR1KIvKNinlAud0C0p4AuUy3uFw99fAfCd/MsrNeCRtfxRqcmpFLb5Mobhbj+Lo1Sh3s5s8d98P3C0fuDfKc/WAczwK9QG4WR5oqV+BWiMyWqgdSq5HWeIQQnwcZa26wZm3BvAUME8IYTjPNxPYfLRtlFJ+SUpZ43D3euBVKeVNKKt/gRBinDPnnoHyAvwAZeWtdKr4IOp9ORJ3a9ivGNyB+ki9gxIgr3eshNejFAXI8/YfylshRJHDS4SKBZ8DbHLG8TXUuILqp6ec9F6UpwkhxESUENeJEgCnOM9vsD9k8XD3H5tzeAnHZnDBUazrHN7+GPiWlPLnThtnOW0RwKWo8ItHUHy7xKni0pznOhwuR3lrIyhu1aG4ezVqkegNTn4B+Tn3vZpz9wJnOnOeC8W3zaj+meQYLwDOY/9c+DT7++1QnK5AeW92HeYeR4VjkAnOZj/3nwY+LBRmARE5zPqZIRg1wDMUF5cAW4B6sd/zcN3RtvtQEEee3//xaO+JycWvvsLX/vsraJqGy+Xiez/8Cff+15f46te+SUPDdMaOrmLjjn0A/PiH3yUQCPCpT9+OEIIJo6vZsaeFXTt38vGP3YzP52P2GfP43W8eZMvuFmzb5itfuJt3li1ldP0YMpkMn7r10yw46xw2bdzAV754D9FolGw2yyc+9Wmuu+FGrr78YqLRKEjJB6+9ntvvugdN03jz9cU8+8xTfOf7P+KxRx/h/p/9GF3XaZgylZ//8lc8/9wz/NeXPk9VdTWnzjid1atX8vRzL7Fjx3Y+9uEPoWka3/n+jxg3fgKfu/sOtm/bimVZnDFnLj/88c/p7OzgEx/7MJG+Ps6YM4+/PPk4q9ZtAcPFgz//ET/90Q/IpNL4dI3ZUyfT1NrMzvZezprWgGEYhMNB3LrB6q3b6Y70ceaEeizNoC0R5yP/fgff+v6PePWNpexpbOSzd95Gd3cXLpeL3z38R0KhMDdcezWmadIwZSrL317K4395ilG1dXz8ox9m44YNnHv+BXzjW985YPxWvruCm2+4jr6+XjxeL+XlFby9Qin7F59/Ftu3bSMej1FUXMJPf/4AZ597HpdfegHdXV1IKZncMIUf3PczgsEg7e1tnLtgDv39/WhCIxAI8Prbq+jp6eZjN18PgGVZXPnBa7nzs19ACEFlke8qlCWlDOWyXSOlvMB5URaiLEDNqN1a9hwPR526npVSTnaO5wI/kVb6lIULX+JzX/zSIHd/+fOfcc/nv8gPvvddZsyYQbCgkFikD4B7v/Z1gsEg93xWGXsHzm3fvp2rr70Wv8/PWQsW8LP77ycW6cO2bT79mdt4Y8kSxo0dSzqd5u677+S8885jzZo13H7HnUQiUSzL4s47bueWD3+Ys845l0g0gpRw0w3X8cXPfw4pJa8tXsyTf32an/34h/zhkUf5/o/uQ9d1pk+bxm9/+xBPPfU0d3/2HkaMqGbW6TNZ8e67LH71FbZt28YHr7sOTWj87Cc/YuKECXzm9jvZvHkLVtZi/ty5PPCLn9PR0cENN32Y3t4+zpw/jz8//gS7t2/B4/Hwo/t+wkO/V2u1Pv6xj3LnHbfT2NjIpZdfyYa1qw/o6+989/usWbuWxx595ID8aaeexsp3lrFr1y4+dettdDncffyxRwmHw1x2+VWYlsm0qVN5a+lSXnj2aerq6vnQTTezbv16LrrgAr7/ve8eUOeKFSu48oPX0Nvbi9frpbKyko3r1gIw78wFbNm6lVgsRklJCb958EEuuOB8Pvf5L/Ds889j2za3fuqT3HmHcvh8/JOf5P+e/Au1taMAMAyDd5cvB+D551/gzs9+lmw2y8duuYWvfPlLileGK4sKTxtYbPyklPLrDsc+h7Jk2ag1BD8+Tu4uQMUTX+ocXwl8/cx5syavXb8JITQ0IZh12nTeXb2OubNPp7q6nF/+6mE+86mPEIvFWLFqPalkktNPO4VQKMSvfvMIV3zgAlpaWlm/cStut5twyE9Tcwdf+vx/kEgkWLjodZpbWikqLEBKSXVVOaUlhbS1ddDc1k1nVxcgmDt7JjNPn8ZDv3+MTMZESsmpp06luLCQtrY2tmzeQTqTIdbfT7ggiI2GYRhUV1dy4XlnsnrNepa/u4aCcJhotA8zkyUY8qFpOp1dveiaxsUXnceePbvZtHkHpmnh9rixs1nKS4tIJBJ4fSGSqRTILGkzS8OkMYwfP563li6ncU8TQggKQn6uuuIDWFaWvzzzAtdceSnxeBxfwE9XVxer1qwnGolx8oSxbNmyhbFjx7Jh00aSGZuQ301lRTUt7R3ourJLnXrKFELBIEuXvYtlZamqrKBxz17OP+csSooLeX7hy0SiUQoLwlx+6cUsWrSIs846i9def5Wp06bz3POLyJgmINAEzD/jNLyBIK+/+TaGrmPbNifV1zJ2zGg2b95MOp2hoztCMpmioryM0089BY/XzbLly4j2p0inlR43fcpkigpDJBIJOrt72bZjNxKorxvF9Cknk8lkWLFqLbsa9zWj1nu0OPy8VwjxE5S13kQpm7dJKYcu5j1a3t6LWmPwA+f4a8B1//mN+8bv2bWdl57/K0JT3L3kqut45YWnufgD1zB2/EQ+d/u/8eNf/gEhBM899QQ+v5+LLr0SKSW3fuw6/uO2j9O4ezuvvPI2hmFQM6qOjRs38t3v/xiPz8+f//QIO7Zuoay8gmzWYt7cs3j7nXe4/vob+fWDPyWdTiElXHzpFcybfw7f+PoXSSYSZLNZ5p+5gMsuvZzm3ZvZunUz765czZQJ9Wzbtp2dzV24PV4mTpjAbf9xNy+9tJD/ffxPFBYUUFdbR+OeRm795KdYtWotC19eSCAQ4Kz587HTMVasXU93bx921qayvJRrr7gCDPjtw4+RSqcZP24sq9eu578+dzdSGKxcs44lS9/CljZz58xh7hmn0dHWxv/85nd85mM3EiosQUhIJeIsXbWRltZmrr/yGmwBWRuiPZ08+Ltfc/l588BdwIuvvEImk8Hj9fGRG65n994dPPF/z1FdM5KaUbXs3r2L2/7jLsIhPz/+wbfp6u6mprKCc+bOJJmI4fEGCBaUs3nnDp578SU0XccwDNwuF7fcdANdPZ289dZyIv1xDJebUSOrOfP002nr2E3MLuStN19D1w0CwQAf/+R/kDATpGImTz7+CJFID35fgLPOvQhDaOzbtYMNWzcRiXSBFEw+eSrjJk7i7SWL2dW4+0GUkU6ivKx3H5qFh+VnHcPIBCjvaAr4tFQhmAK1VuNClJHlo1LKd51r1gwoRo5X4VSU8vQ8Sok7A6VI3CylTAghLgO+j/LovQNUSClvPJ72w/tIARAHxvsBIGUWKQVZS2LbYEnrgPNCCIQQ6EIO5tlouYsqBhGPxwgGQ/R0d/OBi87mqWcXUlFZiaZpQ+554LUD5wfSmUyGC86Zz6tvvH3AdceC3HsNzUun0+jOi7Fi+TLuuft2Fi9ZTiKTRqQTnDtrBqdNn8buHTuRdgaPy42mGRQVFVFWVoauCzpa21i2dTszx51EUMsSz1hohSWMnTqdxvZerr/+BmbNnpPzbPZB7RjavuHaP3w57YDjo+HX0DIDx1kpjni9EIKKQu/f3TV21MhmDtPAv4+DLdYfIxgK0t3dzemzz+CtJW9QWVk5fGF7SHNs9c5IKTHNDLPmnsnK5UsRmgYIGOCiOLCt4qCnsuEIY5HL3bffXsatt93OmpXvHFzwCO/MpR+4grvuuJ1zzjn7gPx///RnuPnGG5kz51i2x37fODmHh26cMO7ecvO10uv1YhgGUkp0oeF2u4lGo2g6uN1ugsEgfr+frA0rV64kEAhQW1tLJBIhk8kQjUZJJmIYhsGUKVOIxaIUFBQoLhgGZjLF7sY9vPDyEi656GwMXWPfvn1IKZk6ZTpLliwhmUxyz+fuZs+ePWSzWbZu3YrH6yWbVfP+sqXLaO3s4VP/9hHS6TSnzJiO1+tl3759dHW2Y1kWpmmiaRqrV6+mtbUV04KevgjhoI/58+djWRb79u2jqakJy1LvRGVlNel0mnQ6zTVXX0UkEmH5Oyvo7uvnjFmn4vf72bZtGzt37iQUCDNqVA2nnHIKW7duRdM0RowYQSQSoayinHQ6zUsvv07I72Pa1Ck0NTXR2NhId28PGUvi87oZXVuHLbOUlxczcuRIdN1DY2Mju3btYuqUacTjcWpra4lGo/T19tDQ0MC2bdtobW3FsiylhBQUMLK2hlQqhaZptDa3YFkWEydOxOfz8fKrrzBr1ixCoRC7du3C7/cTj8cxTZO2tjZqamooKyujtzeCbduk02nq6+t49eXXqKiooL6+nnXr1lFcXEgoFKK4uJhMJkNPTw+BQABd1+nv78ftdvPX5xadEO5+9Vs/kS6XCyEEtg5mPInH58Xj9iKlxOfzoWkauq4r+UDXB9NSSpKJODs2vkmktwPLyiJ0D8FQBWWVVYSCYQKhMFkJ4UCInp5uvnHvl7n33m9j2hnqascRT8bIZDOEQgXYpuKe4dLIZrNoGni9fmwry/YN7+B2aXzvhz/jlhuvZv07bxIqKKJu3DRmzJpLPGWRzdpY2TSanSWbzZLJpDB0L9t27iKVzjB96jTamhsxUxEMTbXfzNrs3buLSZOmoBk66UyGTDpJPJ3liSef5ov33EXGzFJQVIadFejuLC6Xi2QiRjIeo7tjD/3d3RQWVWEjKQiX8Js//pnZM05lZHUFlmVhuIIIIfn9H3/NuLoaakePo7e3k8KCAkIlI6msLKWtvZmFz77IdTd/lHBRGYGCQpKJCLaVYcvqZUS72/F7A5RX1ZCK9xHtTxAIFREqKeGtpW8z98wLMK0k2zauo6y8EqFZNO/ZS/1JEykuLSMSacVK2USjHUyeeQndna3ogRCJvh5CBWESiQSacBMKhUilE6T643T0RLBSSfojXQTDJexqXEHQV4jPV0x5ZSUvPP8Ue/fuPXHywiEghNBR4UuVKG/poGIxpFxQqvUxAhVytl1Ked/QckeL98Ui4AFBfjjsF8gPVhCOBR+96TqikQimmeGOz36BiiEC1EAbbNs+KD+3LS6Xa1D4Px4Mp+jkorlpHx/7yI3Yto3L5eZHP7kf27YR2Lzx2qvMnzkTKbP09XYzbmw9OoK0aVNYWEgmk6G3r5dFK1ZTVlRAVdCLoUuMtElGN1jy2mIefelVXNJNblTKofpzYMI8lmfKHScp5VHVMbRM7vFAeqjSdDwc+GfFpZdfTl+kj0zG5D+/8uVDC/+ghOuh/e3kuVwuVi4//P9wGuzX4zAM7N27j2tvUNx1e9z86n9+uV/YH6jvMOPW19fH6bPnMHXKlIOEf4AHfnH/Mbcpj0OjuKgAIQQ+nw9d18lmTFwuF6GADyEkBQUFpFIpstkshtvNZZdezLJly+jt6SIajRIKhSgqDFNSEKS4uBhN2rh0jc72NgoKCnjsz0+RSKbIZm0uOv8szp4/l40bNzJx3Fj6+/spLS1n3hc+x5o1a9izZzc+n4/6+nqmT59KLBajra2DRS+9gsvlory4gNNOO5Vf/OIXmFaSc889l4bJk1i1IkYwGCSZTLJp0yaqK8pp2tNIZWUNUmZpmDyJfXsbufDCC2lva6GivJSRI0dSXl7O9m072bNnD8lUmt898hjJZArD0LnwnDOJxfuZO2c2y5ctpay0mEhfnNH1tWTMFGXlJRQUFFBWVkZFZRkrVrzL6vVbKQiHuPFD17Fhwwa6ujro6+shHA6TyWRwu91UVFTQ1t5KdXU1Y8aMwTQlU6dOJZvN0tzczMKFCxk5qgahgcfjYsmSN3C5XJSWFlNZWUkikUAIQSadxDIzVFVV4TI00uk0EyaOw7IsakfVUFFeSiaTAZmlqDBMWWkx/f39zDh1Ort378bndRMRWcorSrFMm66ObkaOHEl/fz/t7e2Ew2GKioro6upCCMG4cePQNG1QYRg5ciQdHce8K+3fDQPfaiEEmiYOEPQPPr/fwDfwDAMKgaZpCN1ANzzY6FiWRTqdJlSgcd/3vkUykcDKWlxyxdUYXi92xkLDAjPFksWvcvGll/OoAG4iAAAgAElEQVTb3/2KG264AUMGsG0Ty7IoCJcRTfYSLixFNyTf/vZ3MNNpzFSSfY2NbNuwikWvv8VNN92EpnvImAmKgoUINISeRWqSquoSrIzO2nVrqKuroaSinFhPB1krw+a1q0mmYkiZJdJv89uH/0DWtvC4Pdx66+34wiVkIt2gCQL+IMl0HLcngBAu3K4wiXiE3q5OErEIFoKf/fphRtfVM+nkSezctp5MJkUoWIrL5eKs2aejSRM7myYQCJBIp9CTEaL9LjxuP7ZtY7g0gsEAhuHDNOLY2BSXV2FmklQUl9IXS+LyhqmvGsn2LetpbNrLlClTCBUU0NUZR2RNvG4PKdNE13UymQxdnS1EY+1UFNciKcCyLHyBEEa4AK/bRV9PJ6lEBtuO4fMaeFxush4IhCS96X6EDrH+HspLR1JSNIrOvi7au3uIR3oOR60TiY0oL5p5BNnmE0KIj6DCgVcD//O33PR94QHo7Esc1IgBwT+bVZqxbdvYaPtfbJmjOAj7AEv9wDMN3WRWz5kYBsoNXDfwd+DaXKFz6IAMN0CHs+ofC3LrsdGQ2TRZJDvWr+JPD/+e5x7/X6pLS5FSUlFRQVlZGcmURVdXFzUjRhAoCeNFJ9LRQTbWQyDoIZO22byvjes+fAuX33Yn7qwHzSWH9QD87dAO6MOhGFCwDu9FUMgO48nJxUAd5QW+Y+poIcRynMWOORiJ2o0nFzdLZ0eEQ+IgD8B7YHHWDvO4Qz0AattuxWdyFKic9wUhjs4DcCgMN0Z/bwVNyuOs8/8dD4ATPzx0B5aBdU7ZIfnnyP2LkIfFVz53qwwGg7hcLrxeL7FYjEwmQyQSIegLUl5ePjj/9vX3UV5ejsfjoaunl5aWFvx+Pxs2bGBEZRWnnHIK+/bto6SkhO7ubsaOG4PX66W0vIrHH38cgIvPP5tsVtLa2syoUXWkzQzPPvssF154IX5fgJUrVzJq1ChKS0vxeDz85qFfUzuqjiee+Cvl5eV0d3fy7LNPs2rVKkzTpD8WZXRtHa2tzSxbtoxwuBArm6KvN8abS97C5fXwve//kI6ODl579VXq6+t4+OGHmT9/Pu3t7fR1dTF58mQymQypdIYLL7yYBx54gHA4yNnnnIXX4+OVV15j1apVeHwBZpw2jZqaGgyhMXPmTBKJBLFYjGQyzYgRI2htbUXTJZs3beHFl1+jq6sXn8+LbducPGkcfb1RzjrrLABmzpzJM888w/z582lsbMTr9RPt6+GZ55/hg1deRVNTCz6fj3g8zmWXXcKTTz7J5s2bmTRpEjU1NQgh2LJlC2VlZfj9fmbMmEE8HmfZsqUkEgmKiooYOXKkEqa6ugiFVEhPX18f9fX16LqOlILGxkZ03cXJJ09k3bp1uFwefD7PoPKXSMRob++ksLAQj8dDZ2cnlZWVhMNhfvCzXx0Vd4UQFwDfHZJdiwp9y8VuKeWVR6rva9+/f9ADoLl0En1RDLeLwqLiAyz/hrZfITAMA01TVvpMMsrOrSuJ9raTyQp03Y3LU0RpWQl+X4Di0jJcHh+BQACytuM9zWJmYnS07mX8SfX0xeIYhkFWc+NyeRDo6BpkEnEkBh6PB6FZjuwiyWYy7Ny1maryKl59+S9UlI1i1MiTMAIBpMwi7AwBfwjD5cOSNraVIp3KYrh9BP0+NLeXjvYWurpbePi3vyGTSvCRm26g9qTJhAor6OxuwsrEGTfpdJLJJNlMCo/Hg+72EI1G0XWdQCCIQGfnzvXE+tqRlok3UMzocQ3EYz1kLYtkyiIej5PobaW7sw0BuNAoraqlp78PmU2j6y4CwWKaWlp56YUnufW2z1JWXUdx5Qh0BFnLonHnOjatW47bsiipqKNy9ARMM8bWLavQ7AwFRZUES06is3UHHS0tVI+oI9HfQdPePYwZOxnLjJFOp6kaNQ50DSsr8QSC1I45hWQmSaK7jUxWo7+nlawhSCdSVFbXAbDklacQVoqe3hhjx0ykpLiafkvS1dXEmjcWsqO1/SDe/l1lgn8ivK+/jsOF8rzfIYYoGX87lNLT2bSPxh3bcXnc6LrO6NGjEUJN4HY2i8/rJRAMkkyk6erpxu/1qY91VxemaZLJpFny+hvKmncCR/3v2zfHBynlTLl/N4WBX8kwef/PvOh5/PNDqn/ENJSjDc5vaP5hhX9QaxRcLheapg0aA1wuF263m56eHqLRKEII/H4/FRUVmKZJd3c3sViMk046iWAwSFlZGR6Ph0QiQUlJCdOmTeP0macNWlz/9Kc/Mm/eHC677BJSqRRLlqjd9lavXsm7777LNddcA8CiRYvo7u5m8uTJvPPOOySTSaZObWDx669RXV2NZVm4XC76+voIh8OUlpYyY8YptLe30tvby7Rp0zAMjZKSEjweD0VFRRQ6aw/cbjf+QICCggJOPvlkCgsLGTduHB6Pi9bWZjo729m1eydr1qxB0zRmnHbqoABsWRZFRUXE43Gqqqqora2lsbGRV199le3bt+P1etm5U137zDPP4DZcbN26Fbfby4QJ43G73Xi9XmZMP4Xi4mI2b96MlJK33nqL6667jjVr1jB58mQmjZ9AIpHgxutvQNOUNyyRSOD3+3nggQcoLCzkpptuwufzsWnTJsrLy7nsssuYPXs2xcXFPPfcc+zbt4958+ahaRrd3d0kk0lSqRSRSISRI0cybtw4ysvLicfjbN++k507dzqhSALTNKmvryccDpLJZNi0aQNSZhkzZgwNDQ34/X4sy2L06NFEo1Eikcix8HbhMPwsGibviMI/KGNdrnV/gL+5397hjHaDIcO6jsvlRnd50DTDMYAcXM4Q2qC3wDAMIpEIJSUl3HTTh+loa+fhhx9W75DhIRAIYJomiUQCy0yQTEQxNB2Px4vb5cXlchEIBAiEiigtr6K9rYWmfXuwbQshs6TicUwrTTabhaxNf3+cju4udJcBCKxUAh2BS3NhuJXCrmkami6RQsPnDQAaVsbE6/UOyk62lR3sq4FnF7paR6e53BhuPy6PHyk0JBq6O0BJaQXBoB/N0JUCowvSZobyimosy0ag43b7ef3NN5XFPp1ASIkQEiH0wXnF7XaRNdNYplpbEgwVMG78FPr6+nBpAjOdRJcSt9uDruskk3HMTJpMOoGdzZJOm5imia650IVGvD+CkBq6ruasLFncLi9erw+324uwweP2kkrGSUR7cbl0hKEjNYnb8KBpGuPGT2A4/KvKBO+LEKBD4f2mAAy4EA+Ho4mhP+r7YWMC0srS1NSEz+cjFu0nZrhoamrCNE1OPvlk+rqj+Hw+UlmTVH+UsXV17N25k2wyRiaTIhgME/b7KA6FyFomac3EpZ+YoR/OU5KbP9y5PPLI4+8Pj8dDMpkkGAzS09PDyJEjSaeVq7/P3UdjYyMlJSVks1kqqiswDAOfz0coGGb69OmsXr2aUMMUYv1RMukUu3btYsrkBuL9MbJmhimnzaAgFKaiooLe3l66EhnmzV3Atm3bOP202QTCAbxeLz09PcxzwoMWvvQiZy6Yj8zaNO3bw9wzZhOJpnnmmWd49NFHEELgcqu5a+/evVRWVtLQ0EBjYyPjx4/n1ddeZuPGjYRCITx+LwKb1pYm0qkEs047nSf+/L+MHzOWxj2NVFVVMX36dDZt2sS8MxfwwvMvMmfObEKhEMFgkI0bNg0KumNPGk20r5fxY8egIamurmbVqlX4Az5GjKhixIgRTJw4npbmJioqKli3aTstLa0UFRXidrvZu3cvPp+Pm2++mUAgwBe+8AV6e3sZM2YMTU1NzJk1h3POOYcNG9axc+dOCgsLaWpqYvbs2Xg8Lk49dTqGYTB6dC1SKoF9+fLlTJo0iaqqKmzbJplMsmLFCmbMmDG4IUFRURHV1dU8//zzzJs3j5kzZ2KaJtu372T58uXMmjWLSZMm8dprr1FeXo6u61RWVjJ79kx6e3tJJBIUFxeTzWaJRCKD6yc6OztPGG8HBHIhBOjKuu/xeAYt/wMKgcZ+D/5AnpQSNAOXN4jHl8LWskpQtm1s2x70/A98jwzDcNZfSAoLC4n2dvHl//wqTU1NXHn5FaRTSXRhIDwe/H4/qUSEjpad+P0BJBW4DA9evwqViUQiFBWmGDemgXTsbfoinZRESwkEArhcLlKpFEJzk0ml6e5qo2rUaPxBL5l4lHi0G016KQkX4vPr1I+fiMfjIZ3JQiKBmbVVuE8qhlf6Scb7kVkTDKV4uN1ebFtiWRYBfxF2SK1bKKmowfD68AfDCKGju0MIO0vb3q0Eg2Est0l/JIouBOFwIZnKEcT6+4nF+qivG8XUyeeRjvUQ6dhLcXk5NhpZM42wTXy6Tkd/L4XF5ZhWEr9exHMvLOb8eWewd89uNE+arGVRUVFBOtVPfyyK4dbpiXTg0d1IKUin00ihY6UtXH4vMm2iaWkVrhXpwevx4y8ooSgk6e7sxkil8PndtHVFGTFiBJ5wAabLDbYAQ6ewqvZw1PqXw/vCAzBUax8Q/AfyhioCwy3YzU0PF1OeW/9wx0PrHq5sbljQ0PKHyxtO2D3UL/caIe3B0Izuzi4ad+1m6uQGhBCUl5fT0NDA1q1bqaysRAhBf1+E0bV1NO3bh8w6i5OcibK+vp7O1jaypoXX6x62XX9v/K3W/uH6Z+gE/S+HIz23NuSVPgxfhxv/Q/ZtblkpD/y9F/hXHe9/IAas0z6fb1AI8Xg8hEIhhFALToPBILqu4qNjsRjxeJy+nl6WvPEmFWXlauGwoSx0J42u5+mn/srqle+SSaXZvGkDmVSSjrZWIr09jtXdw6xZs0gkEnR0dJBMJpk4cSIVFRVcc801VFdXo+s6q1eu4rJLLmbRwpdoamrikksuYcaMGSxduhSPx4PH46GxcRc1I6tpat6L4dIwrTRSSqZPV4uE0+k027dspbyklNGjamlvbSOVSLJl02bWr11HfX09NTU1NDQ0MHLkCCLRPgzDYNy4MbS1tZHJZPD7/VRXV+PzuIn3x7AyJoFAgM7OTlwuF5MnT2bMmDG0t7fz0EMP8fbbb6s48IICdF1jzpw5RCIRvF4v9fX1vPTSSzzxxBPce++9nHfeedTW1lJeXs6DDz7IihUrWLx4MTU1NWph8jXX0NPTw/bt2+nv76e3t5e1a9fS0dHB5s2bMU2TzZs3Ozv8pKmpqeGqq65i/Pjxg96LJUuWEIlECIfDGIbBokWLEEJQWFhIdXU1mUyG5cuXDy6qXr9+PW1tbSxevJienh7Kysp45513eOeddxgzZgx9fX2k02nKysqOTLB/EHKt/ZqmFq4PhPPmerNykVte13V0w4vh9qPpHoTmRi2TkgeEBQ/Mg9lsFoSNYRgYLg9er5c1a9bQ0tqEx3Dhc3uQlkkymQRhI7MmOpBJpTFNZcV2uVxs3rwZ27bVWo3aWjweF9HeXtKJBB6/D11zoSEwDI1sxiSTySClwO02cLkEElXP6LqTGDNmDOl0GsvKoGmSrJkhnUmRiMWJx1V4kmEY2FZWhSpls4NhUGq9KWTSamF5JpNBCKVUCiEQhgvLziKdRcdevw+3S8dwewkGC5FouD0GZ86fi8ftI5NK0NXeQiKRwJYWlpUhHkugaQZCk5ipJC6XB4/Xz12f/TymnVXeqXgfhhDYptr5KxgMYri8g+3N9fAYhhuZtciaSaSp1iWZ6TTStvC6PLh0g1Sin2Sin2QirUKwhPL+BQI+0ukkAZ+HUHH5e0PSfxK8LxSAoTiccHwkr8CJ8BocShg9nnCgA9pv29hI/D4vLy9aRCwSJZFIDMaGJpNJGhoa0LxubClxZWH3li2knFhesIlEe0mlEpjJBGUFBbS3NiP0wzbhfY2jUcDyyCOPIyMUCjGwC1BtbS3xeByPR8UMa5qGaZoqHjiRYM+ePfT09LBv3z5s26a7u5sXX3yRlaveJRLppaurg4KCEKecMo3aupEUFoVJp5NsWLeK5n27efedpYQLPQRCbtDSFBYHsG2bESPUvweoqqqguLiQm276EMGgn0svvZjmliYuvuRCsmaGpUuX0tHRgc+nFih3dXXgD3jp7GynsrKclpYmli5dgt/v57bbbqO4uBjLsjj3nLPZu6eRZ595mvXr11NQUMCYMWqLz2XLlvHYY48RiUTweFxIKbn4kotYuXIFgUCAWCyGaZp0dHQ4i54DJJNxZs+eiW0rQ8pTT/2Fxj27mThpAp/7/D0Eg0EsS8VRu91u3njjDUpKSjBNk1Qqhc/n45ZbbqGrq4sRI0Zg2zZvvvkmY8aMYcmSJVRUVLB69Wqi0ShvvPEGpmly2mmn0t3TRda2aGpWQvqIESNwu91UVlbi8XhYsGABpmny17/+lUQiwerVqxkxYgQNDQ00Nzdz7bXXqq2VNW0wVMuyLFavXj24o9CCBQvw+/1Mnz6dSZMmsXTpUjZv3sysWbOYMGECzc3NeL1eJk6cqLbIPkHItegfSlYYem7gWIXsePEGw7iDBeieAJrbO+gdsG0b0zQP8PSrMDkQQsfvDxAuKmbq1Knc/9Of0NS0l0i0F0kWA4kZT6K7A2RsDWwLO2tiZTL09/dTXV1NT08PRUVF+P1BQqEC4tFempsasW1JIBRECEFXRxtF4TCa7sVw+0DzksWDrUN/MsW0KXOYMH4qtp0l1t1BpGMvZjxCT0szyVQ/sf4I2JLe7i5sKzO4C9TATlJgo+mgG2Cl48R6Okj0dGCQxSVsUjGlsAaCYbz+AMl0hraWvaRSGcKFpfiCATJWhvt+8AN8BRW4/T4yZpKejk4S/TEy6SSG209RaTlujw9PIIjb5aO6aiT7Wlvo7u3AH9BJRjuI9rWja6BJwYjKWoTuo7ioBCnl4O5eLpcLy4yTivfR1babaG8H6XSaaHcbra27iUZ66I90E+1rpat9L7ruxusrJmumIBnDjkcpKShgyeLF1Iwcf8J4+37E+1IBgMMLeu83BeBQ+FsVABvAluzYuoXm5mb14e3qoqSkhFAoRDQapauri+a2Vurr63HrBjU1NcodnIqTSqVAqg95TU0NGTONlVFWiX9W5BWAI0DYg/GsCu/bVzyPE4xEIjG4s0symcTlctHd3U1hYSGGS6fQ2YcfIGvZdLR3OltU9tLa0kJBOIyVsejo6FDhCOk0u3fvZteuXWzcuJGXF75ES3MzGzdsoK6uDkGW+tGj0HUNKbNMnz6V7u7OwTj8PXv2kEgkCIVChMNhJk+eTE1NNS6XTlVVBeeddx4LFiwAYOLEiRQUFFBUVKS2FJ06laqKSro7u6ipqeHKK68cnBtmz57Neeedh53NMnHCeLq7ujj/vHM5++yzmTJlCuPGjWPq1KmcfPJEPB7XoOW8v7+f3bt309DQwEdv+QhnLziLgM9PLBZj9OjRjBkzxvl/BNXcf//99PT0cOkHLiMS6ccwVJhSUUEh3Z0d1NbWMnbsWE477TSSySSlpaU8/fTTlFeUsnnLRl548Tmqqqq44oorGD36JIqLi0kmkxQXF7N7926a9jWjCZ0zZs+hqqpqsA3l5eWMHTuW9evX43K5mDFjBhs3buTmm29m27ZtbNq0iWnTppHJZJg5cyYNDQ3s2rWLp556ik984hOD3mS/38/JJ5/MpEmTaG9vZ9u2bdx000309fXxyiuvEAwGaWpqYufOnfT19Z0Qvg7ggHh+Dvy+Dk3nKgDAoAfA5fJg6G5cLpeyjDtGsQEPs5GzKYJhGOi6a3AXQNM0qas/iS9+5T8ZP24M4ZCf/kiUdDqFobvx+sPoLg++QAifXymEhmFQU1WNx9CJ9vficnnQNRWe43X7SCcSWGaaeDxOJpOhsKSErKVi6j3eAKGCElweL2WVZdTU1KK7fOgIbDNBMt5LJh1HkkV3dvezne2fE4mY2vwhqxQbKSVWNoOZVUpOpLuDSE8nBmoBc6yvh1QsSlFhMbrLw4iRtYwYOZJwOEQyGQcp1GJlw+Ciiy9AEzoF4WK8Pj8ul4HAJp6IIqUgkbKQuousEBQXF/PTn/4Urz+A0CTxWBTLNNGwB3dvMi2J3xcia+l43L7BdRVSCmLRXoSWpb+3m1SsH9NMY1ppMpkUlmkT7e8jayZJxPopLSnHzGRJJmJ0tTQR62ojFummcec2on3v212ATgj0e++990S3gWTKulfgbCA5zAs8GNqDRBPqL0in6NBdT5z9zZ1/jqIp357KGSa8J/decOhwneFwZOHTdtonEULLqWt//sG//ffLZEDYKRY+9xfWvruSaVOmIGwbf8BHf6yfosIiSkvLsaSkva0NQ5fYukY6ncRtCOLxKN09EUpKyxCaQSgcwhUuorJuNF63N6c9w4dLCTnQkwf/1Bbyw/WNGhcxUGhoncOEYh2qXwVq/DQhDhjl/SOsfn6P8bUjDMQ/DlLeO6RncjB0nHOU2CEdejgmySHVH453UthIJLadBSGwslkQGgI5eI/c/h0YLDGkEQdvk5CbHhzggzFwbritSOG92THowMr/gXX/HaBpJ4y777z16r0uw8DQNbKWRThUgCYEHrebTCblLALW6OvrI9qfpLCwkL6+PnRNp6OjAwkEgkGampvp6uykt7ub0qJC4tF+dKHR2tJKWUUVW7bvZPW6jSxe/BYLF75CIpWmoqKKgqJSvvrf/81ll1+Gz6VTEAqC0PH4AvTH+rAsi5MnTWLn7m30dHezetMWvvnN/4+TG07GbbgoDBfw4osvMGOGWmsQ6emlsrySJ594gnPPO49Iby/l5aVs376NSZMm0tnVwbz583hp0UK6e7o59+xzCBcGkGiEg2Gam5oYN3Yczz/3PKWlFQSDYdraOrAsk2uuu4JYIkZrWwvJVJq9e/cyffp0Vq5ciWlm0HWD9rYOlr61lC3bdpNKJ0CXmMkY8+bNZtSoUWhCkE4lGV1Xy2uvvsJ5557FY48+StDvp7AoxPx5c8lkTJ555jk8Hhc+nxeQ1NbW09LShqYZmGaWurqRgERKm0ikD00T1NePJhwO0dvXw9p1a9F1jZUr32XO3DlkzAxL3lqCYbjo7+9n+vTphMMh9u3bi9vt4u23l3LWmWdiZtIIJKPraqmtq6etrZ1NmzZjGBqtrS0UFRVSWzuKVDpBOFTAJR+46oRwd+mKNfcOeAB0oTnfIonX7UMTmprLJIicf3XidrnQnX8apgmNRDxB1rLIWAl0IcBW4SKGoVMQCqNpGn5/wFkErHYcsswUmXQKt9ugvLwGM2vz1S9/lpqqStasXkVlZTmBcJhUPIKZSVFeUweGC83OYNsW6VgEHZP+viiWlQZsXB4/tg1tLXvRBCTicSpHVFNSXasWxiZiaEJgWxmyWbDJUlhUgOYS9HY0ITWBz+UGl4dQcQmRaB9enwe/rwDD0Egm+8maILMWmsuFx+cl1t9HNpOgqKSGYCiMjqSttUVtVZpJkU4n0dw+CguL6eroJJVO///svXeYZPV55/s5+VSOnbun04Tu6ZlhGJhBQ0aDAAlEkIyEZZR2ZUmW9xrZ95G8u9b6SrbXtuy9qytb6fHKErKCWSUsCwUQwwBimAST80x3T+dU1ZWrTj73j+pumiEIMNbAiu/z1FPVXXVCnTpV531/v2/Adzw818D3RTxfRFc10ukEoueQncsR0ANUi3lE0adUzKOICp5lUsnPoukqf/YXf8UffPwPMGo2dqVMeX4eu1pDFlUkUcVHIFOcI5lI4Vp2/T37LuFYklSqhbm5CQQEBM/H9erCZ02R0bQYufk5FFUmEIgSjiWYnRmnVs4hyTJmrYhjVtix8zGuveoKBAluffvNF65eeI3hdTE8+EJTfc+HxRH05bdXggvNM18cibCNGsODZ8lkMhw8eHBpBCIUCmG7dYpQMpkkFArhOA6ZmVly2SyZ2RlEUSQSiRAIBEin0xjVCvls3Zv6hfByZi1eyQzHG/h3hi8h+CK+4+LbJrZZBs/mdfJVfwO/RsiyTCqVWsoBkKS664fjOEiSRDgcxvM8XLfuJFKplLBsk7GxMXp6ejAMg5GRERKJepoueMzOTZMvzFMqF2hvb2dsdILZ2Sym4bDlquv5kz/9cwqFEj/4wf38f3/7Ob5333eZnckwMTFBzTR4+ul9HD64H0EQCIVCZDIZLt54EZ0r2kkGg/zWO+6go7WNRCLB448/yrve9S5M0ySTyQAQDodpaWmiUqkgSRJjY2NMTk5y5MgRRkdHlzjZqVSKgYF6qm0qleLgwYNLjjltbW10dXWxZ8+upSAsx3GWriVPPPHEEl1k3bp1rFixgvb2dtatW8fGjRuBOm0EYP369QiCz6rVK7n00ktxXZennnqKm266iU996lM0Nzfzmc98hltvvYVCMc93/vmbJBIRLMsikUiQz+cplQq85S3b2Lr1MlpamqhWq8iyTH9/P9VqlY6ODkZGRti1axeRSISbb76Z4eFh3va2tyGKIuFwmHA4TFtbG7lcjh07dhCPxwkGg+zZs4e77rqLvU/t48c/eYDW9ja++/3vYRgGp06dYsOGDVx++eW0t7czOzuLoijMzswxNDR0Qc7ZRbzU69NyLNcILDUQolK/LQiI4dkW4MBz8gVkWcbz6+LV9RddxMM7tjMxMYYosRSqp2karm2RjMeIxWIENI1SuUCxkCUU1JFFCQGPRCJBOp1G13VmZyYoF3JokoaHAviYtVq9cfAd8Cx828Fx6jdFCxAMRZFkBUQR36+7/Ij4yNIzPF/PtesNqVfXN6iyRkAPEwyGkdQgohrAdn1c12F2epJ8bg7Bh1Awhu8LxONpJFklPz9HJT+LItZTpsvFIngea9euxfddyrlZsjNTVAp5arUKtVoVzzYxy0X+5i//gnI+iyb5WLUa8Visbr9rVLHsKoZZRlRkHMdG8AxkWSYWSyDLMoZZQ9cDRKNRVFVGUkRkUUbWA+iKRqUyhyR6hOJpIvHGBZqggONYBAIBapbB1NQksiqTf2MG4Fl4TVYFz8fdO0wztvkAACAASURBVP/+fJwvCD7/f8v/f/7jF3rtclHxS2lAXkox/FKf9zwPXxTY88QOjh8+xIoVK+jq6qJUKuFYDiAQTaaYy+XRZAXf9ZBEEUWqi2V8z6JcLi9xGUvFPKlYFNH3qJXLL7j95Y3Ti+3r4szM8mP0crB8+RebBVj+9xv0nxdHnTcJOBauUaUyP4nk1PDNCoL48tKZXxIWR/uX317ouZeyzBv4tWKR/hCJREilUhSLxSXfeFVVMQxjwQu+iuvadHV3cuONb+HOd/0W0zNTbN5yKd09XcRiEa6+5kp6e7spFPLE4zFs2yKVTtCxoo2mxhYqlRpf+8oX+Mj77+bEoUNMz+WZnJ7iv/7xJ2iMBqnUDNZv2EAkGKC1qR5CVKlUaG5upreznaZUjN/5nd/ib//6zzl06ABjo+fY+qbLsE2L7du3Mzg4yMDAALt3P0lHRxu+7/L2t9+M4zhs3LiRK6+8kq1btyIIAgMDA/T09HDkyBGuvPJKRkZG+MpXvkIkEqGjo4Njx46RSMZJphLUahVuu+3t2LbN4OAgmqZxxx13UK1WGRoaIplM8vOf/5zOzk5UVeVb3/rWs0SM265/M3fe+U5WrerFcSx6ehZzC57k3nvvJZlM8vGPf5wDBw5w//0/IBoNo6gypmkyNDS05M500UUX0dDQQLVaZWZmhuHhYXbs2EF/f/9SWNuGDRs4fvw4Bw4cQFVVTp06xcTEBOVymcsuu4xKpUJHRwfJZJLdu3czPDyMpml885vf5Jo3b2NyZpb/8Lu/x4c+8lHuvfdetm7dimEYnD59mn379rF27Vr27t2LIEj09T2/neKvA0tuPrwwJXT5/XK9wOL9othXUbSF5ld+1nLLHf/qIlQZz/PQdR1BUvFFsByXj/7+PfzZn/8lGzZs4MiRI3R0dOD7PqZp4rk2kgCFXJbs3CzBYJCqaVEqVShVypTLZUZGRpb4+ZOTEyiSh1krEw1FUSURz65gVYsUivMI1IX7oWiCYDBIW9dqVvQOEGtoIhSKENDDyLJat/gUQdd1gsEgkuDiexaSCILvoyk6IhKhaBRJD5NqbCIQVvA9i0g0SDQUQlE0bNsmnaoX1I4AVq1MPjOGXc0h4lPOzOFaZb781X9AVhXMagG7WkAWfHAMQnpdB2EZJueGTuIaRVyjRKWYo5ibJxpLEE1EcT2LoCYiGCa10jyK7DM/n8EwDHRdZXTsNJsuuohkPI4j+FiuUw+bDET5/N9/EcGuMDc1jqioOF792NcFzyBrOlowyjtuvx1FD6Gp6q/jFH3d4DVtA7qI8wt/z/MQhGdSe5cLdgSeKSzF5xG7Lo7cvB6KR8uyeOCBHzJ0+ixtbR31lMaAjuiLgIhh2vT29TM/PoGuaUxOjtPS3MG0UUX2DSoVg8aGukhM1zVqxRLO1BTzuQzBYOTfff9fiFa1iOXha4uPf5XNat3ejRdd728yRMFl7NwZZN+kXMjQ2rICW5ZRMVH1JM/kRr2B33QsCn7rHOf6qJ6qqvUgIdclGAzS2NhIe3s7R48fw7ZNgkGdWqXCtm3XEQ6HiURCRKIhjh89QmtzE4q8htbW1gWHEofm1kbmslky83PM11RMTeeq3/l9lK6LKU2f5eBjj/CtXzxNW6DGieMn+fY3/4k//dSfcPzMGS7ZtJEHf/ZzNm9cwwff9x4+8Z//lI997KMUF5yF+tes5FvfuY9Va1aTyWT4wQ9+QCweZXJqgpX9/TQ0NLB9+3ZqtRpdXV3EYjEeeOABrr76as6ePUssFuPHP/4xlu3ztre9jZtvvhnTNNF1nba2FqLRMKViGdMyUBSF1tZW1q9fT1d3LyMjIwiCwKlTp/jYxz7G6dNn+eIXv4hhGNiuTTAcRA2oHD9+lIbGGKdPnySdbqZ3ZQ9nB88QDocpFotceeWV9PX1Yds2K3v7kWWVb33zO9hOna+9fv16urpWsHfvbkqlErVabYlTHo1GGR4eZmpqitWrV2OaJtdeey27du1iZGSErVu3YlkWBw8epLu7mxPHT5JK1QWWmzZtYnJyktbWVj74wQ/y1//jc/T09LCicwX3/e/v8Ud/9Ed89atfpb29HV3X6e3t5Rvf+Aadnd3cfPMV7Nr1ywt23i6m+NZH8CVcr16sL+ouliw9efZA4mLjYJrm0syWJCng+fiyiyiy5ITjed7SMq7rLv1fCwTwfAlFBdO0MG2NtmQb9379O8xl5+jpXUM0GiWfz2MYVbKZWXK5LKWaQe+aTaSKJTTZr3PzBR/R88jMZpAkidWr+hkfGcIyLARZIpVsBN/FV7V60yEFELUI4ViUglVDjyRIpdoIBDTm5+fRAjH0kE65mCObnUNVVTRdo1ibr7/vag3PF7HNCqZVRRQFUskko4PHaE2HGZueR0BCC4aQFJAVD0X1KedLNISj5OdkZF1javo0mUKNhOwiuI289wO/xy8f/jntzQmiyQaq5SKGWcZ3TaJNK/jGt3/IX/z5tSAq+LKI5HsIeGiaRigUx3FtKvkybqWIKEsI4VaiMdC1IMVikf0H9hFR4PDRY1x59duJNAUxC6DEwvyn/3IPudPDKIgMHt5DurEZUQTH84iGErR39jE1M4OMQDTeSkALXrDz9rWI11wDsDyB1H+BGl2SJGzXRZRVXNfH8d0Fz18P0fexPRdJURE9B1+s8wPrxajwrGJzOV6omFz8MfhVo/vnjzzU17d8O97C/3+FoNlzERBBVBG8DEbNIl8oocvTKKKE7XgMzU9y+dYrMapVTh06QkDRcTyXSLqRZGOc6akAdrlMKKAQiqUQZYmq6RENJlEDArJ/Hjd/+YE+//gva7qe9T5f4Bg8+/0sLrNsnUvPi8+73PmPF5eRlj1+/ZT9LzzB9tyk3RfG+a9dPAL1Y+Ui+DL4Iq5gIFo2um8hSwLBxmYUSSM7P09a1SnXZgjH2/F9CcE365ahyxJ2X9I+LXv9v5nPv3xdrypekxObrzkYhrH0XZNlGV+AQqFAS2sLmdkZmpoayOWy6JLC6lUrsW2TarmG7wskEilUVWVqaopIKEwoGEOUNWQ9yMHDRxARWLVqFePjk/WQIV9CsgVcW8BN9OCZEkLVZvPmLRilClOFIf7fL9+Louk8vW8PUiiKUS7y5m3XUcnneejnD7B6ZRe9vb0ogQinT5/kFw8+zDtuu51AOMSDP/spV151BV/9X19HVVWuuOY6pqamsGyDtd195AvzBIIaPb1dSLJAa1sznuDS2dmNruvs378fHxfPB1kRkUQoF0tkM3OMj44Rest19Pb2ksvl8P2zqIqEZdboWtHJ0aPHWbduHX/x3z/DBz/0+5g1g5ZIE4lkjFtvuY2zZ08TiETJzBXIZDJs27aNkZERnty1k3Q6zYEDBzhx/CSmaSIIAtPTs2zatIkrr7ySdDrNI488wjve8Q5M01xq0Kanp/F9n/lclltve/sSPWf03AiFXJ51awc4evgIwWCQ3u4eAoEA73jnHZw6dQrXdSkWi2iaxuzsLD/+8Y9ZvaqXq6++mo3rBvA8j127dtHS0sKhQ4e49tqr0TSNj3/84+i6TqlUprm59YKdt6IAsrQweCSAJIj1nxL8JaqWIAjI4sKovu8heD6yJOK4Dngunu0gISHi4fh1vZtv1hBkCbx6GNcz1x8XAe+ZukHwAAVJUtBVhbnZHI888Tj79j6JJIJpmkTjSRzDRI1EqdRcrGqNc6MjJNNNBCNhZqYm6ejuIRCM4qKRzU5gWjXCsTRzuTwN+QzJdBO+J2EYDnowWA+2EgTMag3B9/Fcs66TUyL4Up1CE9YasEwPo5JHDyhULQtFC4LrUq7M0xwJkivnMY08gisi+gY/uO/rbN60kc7uPubzFTQphG2BbddojEcQfYehuVOsaOsgn8ugqxKVXI7GtjSOKOG6Ni3tHUTCOpKsYjg2jpFH10Iginz4d38PMRjDMj1kQ0DSdGJqI7VyhaCuMVuoUTENXMckFonXGzMlhKDKrFy5mtUDGylMnWXbtdfUZyJKKq6Vxcg55DITtLV1Ypo1Jk7vJxKOoWoRfEkmFI2i6GF27vspN1x3ZT112TEvwBn72sXr7kq5WJA7jkO5mKc4P8fU+Bkmx04zPz1KPjtJKT+DY5SWRvsdJFxfell+/C+X2/5q6A7qWBwJd6gU5pmZmcN1XQKqRm9vL83NzehakFwux9jIKI5l09HSwqruTuxqlfFz5wgrKpLrYxtVFFmjYrh4nsfk9DT5/Dym+fK/BK8W1/+Fju0rEVu/oT+owwcQHNxKmYmRk/iei2FYDJ4dJTM3QyQUrEfUm1Xw3YUL2Bv4TcfiyGapVELXdVzXJZ1OY9s2F110EYZhsGHDhoVcAJ+tW7cuhYG1tLRQqVRIpxvJ5ubRAjqm5RAKxnjTZVfQv3aASqVCQ1Mrc7MZqka9aGnuGWCq5KPkRkmFRIKiT1M6xqaLL+WyrVdy052/y/d3HKG9rZWTJ0/z0MM7sAWZD3zoI/zxH3+Co8dPMD+fIZ1Os2XLFgyzxumTJ1i9ag0/++nP2bRpUz0ASNMWivW6Q5BpmsRiMYaGhohGoxw9epTBwUF27NhBT08PjY2NnDhxgr179/KhD32IUCjEbbfdxvvf/36GhwfJZDJMTU1h2zYHDhxg5cqVpNNpXM9eGnX/3Oc+j6ZpxGNRula0cvWVWxkdHWX16j5isRg33HADvb29VCoVduzYwXXXXUc+n6e3t5fW1lbuuusuIpEIH/7wh3jnO9+JoihUq1U+8IEP8NhjjzE4OIhlWUSjUdauXVvXTdRqHDp0iKNHj3Lu3Dmy2SzFYpFEIsHtt9++4DdfL/Tn5uaWvOBVVSWTyXD33Xfz3ve+l7e/7WYefvAhHn30UXbu3MnY2BgTExNcf/315HI5otEowWCQ8fFxcrkcJ06cuNCn79JI/6JGZdHlZrFQX/x7cVDJsiyq1WrdFtuue+jjOog+2LZJMT9PtZjDNKo4to3n1m/1JNu6W83ybYiiiOPW8HyLYydOs+GiSyjnSljVCgFNwTEqnD1+hPu+8y08z6O3t5t4PIogiUxNTS1YuOo0tzUTCATQNI1vfec7TExNMzIyQjGXZ2J0DFVWiEQSyLKIJEGlUmI+m8dxbCRZRdN08F0UySURS9CQbEDwXcxKGcn3kRDwXQ/XMSnk5rGtKsVCDcGr8b5330Y6EaN/42ZQJPSgRrVaRtFUkBWqDrS0dtG7Zh2uL1AzDbKZPE899RRGrYYoQSggsXpND7ouUMrNkwxHCehhND3CP9/3bVpbGsGXCYR0RkdO0N7ZS/fqPlxsFF2jvbOHlo4OEqk0hUIBw6zrd8rFPA888ADBQADbF+s2GqqMrHhMTw0yO3KaSDDC3379a/Rceim+6GPZBog+jlvlFw8/TFdXN3PTM9iORzgcRtOVC3rOvtbwmpsBeCnwfR/fdRHxyc5MISo2ruOQmy3XBSCijOdYJBNNyKqOB3j4L9jtvJpF5CvlxD9rHYhIgsvM9DTFXB7LsvA8j4e372DdQD/XX389eB6JSBTHshk6exLbNpFEAVFQEUQRQRBRRAlV1ZE1mVwux+rOXoiFqVQqL3uffhWd59+Kf+/1/x8NwQPPp1Kcx/csZFVHFBQCeohqtUowFMKxXCLhEODURcKC8Fr3x3kD/85wXXfJBtSyLNra2hgdHSWVSnH69GlSqRSmadLX18fQ0BDnzp0jHo8zPDzCiRMnuPTSS2lpaSGRSNDUVBen1moVsplZJEmhobEJLRhCD4YQBRlV1wilm1BCMfzMWdIdjTiB+oi2KstoyTiukmTN5jdz/a3vYvcjP+WyKy4nk8lx4vQZHvzJv7J5y5solUo0NjaSmZ6kpa2d8fFxKuUqqqpy4sQJ9u/fz5uuumKJjz0yMkI8HqdcLjM5OUlLSwuRSIQTJ07UE0XNurB527ZtTE1N0drays6dO/E9gba2NlpbW3n66adZtWoV7e3tzM3NUSgU+OUvf0l/fz8PPfQQ6XSaI4ePImlBPNcnEAigqjLnzp2jq6uLeDzO008/TTKZJBAIcM899zA9M8VVV13Fnj17+NSnPkWtVuOyyy4jFotx+PBhGhvTPPHEE2Qys6RSKdavX18Xfyr1JPhQKIQkiySTSVavXg3A9OQUwWCQfD7Pv/zLv9Dd3U0gEKChoYGTJ08uWVkeOngY27bJZDJks1l6elbiui6KonDJJZewb98+uru7aWpqYn5+Ht8X+MY3vsl1112Hokh0dXVd8HMXFlzilnn4C4KwJOj1PGfJ9nOxEVj0ll/k3buejeeBY5mYRhWEunjXVWwsy1gK1Fq+/sXiX5ZlHLuK7Rg0N7cyNDhCLBbjH77y91y0aROdbS2IgkB35wpaW1upVavogRCSorDvqT2cG5/gt3/nbmqVMrISQHI8vv/9/83dd9+Nrqt096xh9+4n6V5Z/ww9ZBzPxTSMehqy6CEqMl7Nw7ctjHIZN1y3/3RtB89yEIW6dsFxLVzfw5Cr5IsFHNvnL//7f+P3PvIhTp44gRaOUzMdBMFAlDwURSGgh4kFdXygWDIQZYmunh6OHTtBIBhGFCSqxTyyJFJzHcBHdC2sqoPnidRMl/e9726mJkfpjMXA9ylX5mlVu0kkIwRCQRzXpVau4vpgWy66rlOrlJHUCK7vcN3VVzExNkq+WCIgCUTCGpnsFKZZw6qWaOzq5Cuf/zLHjx8j0ZCmVKtiWhUkAW644QaKxSJ3vftOIpEIsqyyZ/9TF+6kfQ3iddcA+L6P67rMTE1TK+cIKrD3yZ1IgsjBgwfZuGE9+WKBVFMzq1auRQuF6VkzgOt7+KK8NBrwQlaUL1SA/ipR7Mt9D89PGao3KvgC2cwUjz78CxKxOA0NDczOztLR3ko4HGZqYoLpyam6XZkP8UQCEY+5iUlsx8KxDVQtgKdoVGsOnU2NCDGLWq1KdrxEU1PrixbaS/v0PGSblyJifqlF/PL3/nyN0xvNwPNDWBTP+j4CEp7vIEgixclRAkGF2UyWUDBCuVQgpCnMTE/R2NzE8OBZegMx5EAEEQ3wlll2vkQ6zvmC3uXwlyUDv9i6Xupr3pjd+XeFZVmEQiHC4fBSobR27Vpc12Vt3xrK5TJTU1OIosiaNWvIZrOcO3eOubk5BgYGyOVyBAIBZEVl+NwIjlMPqsrPZ4lFoqTSCWxfZHxyGlFRMDyBeOsKytUaPY1hcplJoO5IpioB5KDI8eECyeY+vvC97ew7dpy1hoHjiTS2tvPWt72NXLFEuiHF/gNP093Ryvz8LNnsHCPnxtm//yBbtmyhpaWFUCjE7t27mZ+f58EHH8T3fWRZ5tprr13g+Lct5R9s376d0dFRWlpaCAaDJBIJbNvm7JkhVq/uo1QqceDAAbZu3cr09PRCyqjA7bffzo9+9CPaOzoZGxvjzW++nkcefRxNUbjppjeTyczyyU9+kr/5m7/hd97/PpobmvjRj37Ehz/8YU6dOsXhw4frzm2ZDH/3d39Ha2trfaZ2chLHtXnPe95DZ9cKEvEkPT09ZDIZxsfHl7z+y+UykWiYyy+/nEOHDjE1NYWmqDQ2NjI0NERbWxuGYfDTn/6UP/zDP6Rq1BgaGkLXdTZv3rw0E5zNZjEMgyuvvJLx8fFnNX2maTIyMsLIyAi33HIL4+PjBAKBCy4Ctm0bVa37+Dueh+PUZwFkWV4I7hKxLG9B6KsgICzNeDmuVU+sda16se+6FAtZivNzhMIBKqUCiqLhWDUswyMYDOPxjAPQYoMhSRKm4eM4VRRZJRyLQrA+a9Pe0sJsZo7M7Ay33XE7nudhVUvg2/iBCJ7n8u677qRWLWIZVeKJNLKicebMKT7/+c/xn//4k9SqNp0r2rDMAoZZJJlswbBqVK0ylmli2xaeVcUyq8zNzRENhfH9Sebn58nn6mF+8/N1179cLktTSzOC51MolIiEwtx2yw0cP34KXQsiyjoNTW1UAmEqpQKFYoZGrZU73/XbfOc736atayWTgotRq9HV08+Ox59ElmXKxTzZuRlM2+WhBx/isrWrcTzQEimq1QrJuIoiaQTUABPTo/iejRaKUvVEIpEYhVyefQePsrZ/DYoeIKZHODd8lmAojh4MUCkXmJ3NkkqEMSolCmMjNDWksVLNRJoVRNfBD2kkV7ShaBaFosno2cOUcvOIzR6f/7v/yR//4T3M5avoWoCVK1desPP2tYjXTA7A8z6xRDV+diHoeR6uY2GUi0yOnuHsiSH27tqDY1g8tW8Pnu1w8sRJJs6dRZVFJFVF1wIgSs8qvJfbiy5t8iVQgl4Kdei5hfJz6UfPB8fz8V04e/oQ3/7a19i7Zy8333wzU2NjSxdrwzBZ0VH3lZYEEU3XME0Hz3XqCnx8PN9DiaRoaGjHsUsUi3migSjx9mbWXPQmggupg8sO83P37RVQoX4Vnin0Xxn77PmOb+CC5gB4n/61b3OxAQBAxPVsRMGhNnmOYCBCJNGALMtoioCmyli2RbFUwLdMYukksqqBoNZXsbSeX+XI8zKbsZfbTLzSdTz/gq9wuQuAC5gDsPuJ7Z+Ox+OoqkowGMRY4JgLgoBpGAwNDdHe3o4oioyMjBAMBonFYszP51izZg3JZJI9+/bi+j5Nzc34wMreHpKJJIGgjqapaMEwR46ewjAMTDVEx6q1ZKsOXaqB5/sE9AY8X0HVBDwMHttxjObmRjoboGoLZB0dw6jiuRbhgEJLSyu27TA1NYEkCBw8eJBIJExAD/Ge97wXx7G5+OKLOXzsKIqicOzYsfosWDCIruvcdddd/PCHP1wKv3rzm99MNBrF8zy2bNnCbbfdxoc//GEKhQKDg0NMTk4RDofoWNFOY2Mja9euJZfLMTk5yf79+9E0jVqtyunTp6mUaxi1uiNPR1sDxeI8hUKVVatWgSjQ293Dvn37SCaTBINBfvnLxxkfH6dWq9Hf18+b3vQmtm3bRiQSoVarIkkSjuPwlrfcwAMPPEAul6Ojo4NyuUxbWxsbN26ktbWFbDa7NAOz6eJN/OQnP+Hiiy9mbGyMFStWsHnzZnbv3k21VuPqq6+mo6ODkydPYZomTU1NrFu3joGBdTz55JPceuutVKtVOjs7yWQyzMzMMDCwnrGxcWKxOLlcnjNnTlOr1bjzt997Qc7dnXv3f1rTtAUXKwXPcRBFAVGsj/Srqrowu1Wf0fB9f0nnVqfw2Pi+hyDU6TRWzaBQyCC6JpIsEosn0BQNWdXwPA9JEnE9lqxyJVleqh98FzzPxvMcfM8nX8pz/bar+Po/3Yuq6jQ1NdHQtgJlQWQv+CBICl0drYiyAq6z0Jh4eL5AJBQgX8igKD5DQ2OYpkEkFkDSVNLpDnQ9RCE/jyqIWI7BI9u38y/3/5DRsQkqtSqTExPkc3lOnT3BkWNH0VSJeCSMoqp1dynL4cCBgxw8tJPu9m58NCzbYuOlW1G0EIokAz7z2RlCoRBvfevN/PN93+S6t9xIpVhBROPJJ58kFo2gYBMLJ2hq7yaZStPV04NVyFIoFZDDOvFokrmZSVKJZkQtSK1SxapUiTU0Y7lgFHPMTYxSKBYJBxSCgRiSKJDLzoCgUijOo+kBjKrJ3MQoiujjCxKJWBORdJpSuYhvGCixNKFQcMH6VCM3M06tPE9LywqeeHIvB5/axSWXXQGSzuTYWe64444LVy+8xvC6mQFY3gRIkoRvl7FKWb79j/cRjYURcLEdlw0D63BdF6tcZWxolGK2wNCpM3T2dNO36VIa23sQAwmCmozguciigI/4LEcaeHHe+aK49cUhnFe/PPPHorOAsKyIqwe71MOiTM/iyYcfJqgHGRhYx1P79lEoFOhZvYpKrUZXywpmpqbRdZ1IJIIiuPiShx4J4RChPDdBOBxFi/XimFVE2SIeDOB6Jo6oUarM0ug3gifiiuKzLCJFnhnBF4VldmsvsajyeIZzuYjnG8n3ffcF1vBscfCLreP81/ymwF8YaRcEAcv1UO0S46fOoIWS1Cxw7BKCKBIIR8lMjFMpzJOdmaBv7XpMxyXouRiigeZLCEjUE3M8nl04n9+gPVfQ/hy81M/i1WgO3sCrgkKhQCwWq1NhLBtJkohEImQz0ySSMYaGz9b94+dnGTl3lg0bNhAOB3n00Udob2+ntbmJZDyBbbt4vkRzczPVcglNiVMqF8jPZ7EsG0VR0BHJVVyiqSA1u4xAFU3XQPLRAi6W7XD0wP1svrQVrHZCqoCjBhk1YwydG2Vbh46eijAzm+Htt95ONpOhZlisXr2ap57az86dj3F2eIg9T+1hYGCAnz7wY+5+3/s5d+4cg4OD5HI5nnrqKTZu3MjevXvZtGkTR44cIZvN0t62gvb2Tn7rne9idGScn/zkJ6ztX8cPvv8vhEIhrth6N2bVYnJ8gvHRMarVKlddcSWWZbHriV2EtAA7HnkcFZH1Gy/irW+7nf3799M/0Ed7ezv5fJ6JyXNsuuSiJTefy7a8CYAtW7YQb0jxP/7mb1m1ahXd7Su4+OKL6knMsxkOHNxPU3MjsViMzs4VtDSmePDBBynmcnT2dtO3di2WZTE4PMz27dtZvXo1pVIJUZZINzawa9cuCqUiPd29nDxxinQ6TTrdSF9fH9VqlenpaUKhGO98553k80Usy8F2fW5++22Mjo6Sy+XQg0FqpklXTw/Nzc0kk8kLds76CHXv+wU9IKIAvrBkv7qoC9DUIBJ1eo+rCYg+SCLIkk44JKOpNqIoUqtVEWSQfAdZklAVDZ+6kYKPiCAriICkSCwGYGqaVh9A9EVkR8WqlqiaJdLRFKnmOGvXb8K3DCKpJorFMtFgAL+uXkYQJN503Q1MTM7hmEVU1yWUgPx8FrdWJJloYmDjZk6cOEWhkOXhn+3C8h7kT/80hWNJjJ4bRQ/LfPf736V/TR9jY8NMzszS29tLtWbW+fOlAoIgUK0ZnBkcIhoOsfWyy9n+0L9y8php1QAAIABJREFU7NQhPvOZT7Njx+OIgkrfhg3UbBdNdPF8GUUJINgV8tlJko09/OiHP+Y//MffQ9dVBM/n8Z2P8Gef/gzZqQmK2XEESUdWkwQjIlOiQqVSRSnDof1PcvH6HrL5KRxfJRQOIK7ox3cq2LaCrGqE4iFixRCyCKJdomI4aJEoniwjOCGGBg/TkF6BpKv4To3u/s2EY2lCqounBOlJBZnOTGIF4xQyRRoScYbjaUTPRpJjvO/Wt6JEInz5y1/Ct0xuuPktF+y8fS3iddMAnA/btpc4lWPjI3R31W0yJycn8T2PeDRGJpdnYGCA0dFR5ufnaexYge0K9A7UQygERa67B71M4e6/teh8ITpR3cfdxfMcnnhiJ55T/zGzbZv2zhVkMhlaW1o4deoUoiguBeU0JyMUC3Wff0GS6vZfaqj+g2jX7dEs00FVwLVsPMfFFZfkxs8u1s/bn5eL5RSrV5PC84ZG4PmhKhIz4zPE4zHK8yUsy8L1fQzLJBKJ1Gkd/euYjoYwTZvCfJaArONFJRDesAT9TYZhGITDYWzbJp/PE0+mqFarxONxQqEQnueRTCbJZDJcc801DA0NsXfvXoKhGL29veTzeTZu3MjZwXNIlSq6FmR4eJjGxkZqlSqhcICU4y0VZo7tIysKejCC4c0hGCZCqUAgHMfHQkQgm80C4DgW8WgMU9Dwggnu//kPefvA2xgdPUdDcyPT09M4CzSQs2fP0tHRQaVcRdd1Lr74Ytrb23nwwQe5/PLL6ezs5OzZs2zdupXx8XEaGxvp6OhgdHQU0zQplUq0t60gMzfHqVOnqFarZDKZJc2DJEnkcjmKxTyVav071tHRQT6fJ5fLYds2sizT09XNlks20tLWxunTJ+nrW00kEmJ6epIHH3yQdevWsWbNGnbu3EU4HKZWrfDOd97Bfffdhy8p/Pa73s1cZpZSKU9//wCzs7MEVB3Pd2lvbyeVStWPf0Dh8iuu4uSJM3z1f/0jV193DZVKha1btzKwpo8vf/nLlEol2jra2blzJ4qi0N3dTWtrK3v37qVcLlMslnnkkUfI5/N89rOfZf/+gzz66KPk83kikQjxZJJIJMJjjz1Ga2srt99+O9///vfp7e3l4PAw8/MXLlBpkYJz/kzwolf/oki3fv2r6+cknrnuLoqgRVHEJ1Ln+UsSomcvpAt7SxaEi5ajLNB/RFFamr2urwvAw/NcfN9D1RTOnhlifHySd9x6M3ooXG/GEOpMBF0nHI6Ry2QJBwPUfHchsdckEokxO18XaguCSEfnCk4cP4Nl2MRTUX70o/tpbelkbf86HnrkQWamZ4lFovT19TE9l2F2dpZoLFH/7FtbOX78OLZR492/dQeHDh3g61//OolEgv6Bfk6cOo3jugQDGnowgOA6CL5Sdzxa0EqYNYN4PE5Pz0p0VSXnOPiiQGNjI4pSHygwyxqC6OLjoGkapmmSTDWgBFQuvvgizPI8vuASjTnMz2eJptooFvP46IiiiKZplMtlwrpGSNdxHAfLdJAli2AwTFBMoOtBZFmllJtieHiYzW9qRfANurq6OP503a2qZtT4fz7zp/zTV79GOBzGxScej+FKZcZmZmlsaCA7O0OpVPr1n7CvYbxuKEDnjyjPz02xb9eTPLXnaTRNxajUI7PxPdra2khGY8zNzXLm1CkkSSSdTHDs0GFOHTtMe0sDwWAYWdXxRRmRZyy/zr9/zi4JAqL4yt2DFl2Mnm1F+ozVplErg2sxdPIEJ06colIpo2kqTY2N3Hjjjex/+mlURUXVVBLJJHpAp1TMYVsW5WKBqlHErBgEIi3ogQC2mQfXIRKJIqsBhHCIhuZm0h3dyCJIgv0sebRw3nt/uc2OID5z/F5Zsf7ijj/P5+QUUKXfMArQwp0g4PsehZkxQgGFStmiVq3Un/Z82ltbOHzoAL7rMT46ztT0LInmJiqFIqmmZgRh4WK2jPL1nI08L17rTdjraPbgAlKATh078OlFv/+enh6CodBSqq8k1oWWp0+fJhwO49gWiqKQy+WIRxMosszA2rXMzc4yPj7O5ksvZU1/H8VSkfHxcWRZQVVlqtUaJ04NUS6XKXkSfjCJGG8hHQ7SElLwZQFfBNGpoEgSmXyJK67dRiQsguUhuwqxeDsDfQPsevwXrFrVgaIotLS2sn//AZobG6hUKjQ1NeO5HqdOn6atrQ3HcWhsbOToseMMDAywZcsWdu/eTSwW49vf/jbhcJhYLEY0Gl0q7L773e9SLpfp6+ujWCzhui7lSol4PM7c7Ax/9H9/nFKpgFWrcejAAYqFPKosMzMzQ1trC7v3PMlv33UbxWIOyzYZGOijra2dJ554gttuuw1Z1Nj+8C8IhVQss8KmDRchiyIBTaMh1cj27Q8zPTXB8OAQX/rS3/PkzseolubJZrPIkszc7Czr1w0wnZlnZGwcXxDpaO/AsRxOHDuB4At4rkNnZyeVSoWW1lba29sB2LhxIwcO1PMAisUi/f1r2bhxIyMjI5w6dYrLL99KV1cniUScLVs20792gGKxSGNjI/39/aRSKZLJJLVaDc91KZfLvPs9F4YC9NSh45+Wl9Fw3AUBajAQWhLq1j9TAcc2cR0LQZJxnfoIvyCKS647ihYiGIoQDkXQVIVgIICuB3B9j1A4hqLqSLKCotbdduoibHWZ8LguFs5mpgGPgK7ieiLjE1NEY1F2/OJBmuJhytUqwUAQH8jMTKNoEo5tE4umCAbrAlXDtKgV8himRbKhCbNmsGXzZo4cOczMTAZB9Dl9+gS7dj9BIKSTmaswOzvJ/HyOnpUrGR4ewbZNLrlkE3v27KOnpxvLNDh3bhjbsnEci2KhgI9PMplkYO16YskmZFUioCoUShWkxZC1BYtRPZzgY//XPcxMTmA5NqIo8/Of3E9HcwPhQIC57DTRZAOu62BUymCbCILE0ZPHcVwLwRMIheJk5qeRZIFQIMzI2FkEwUcTJcxKjqmZWYxqlVAwCAi4goisK+x8fCf9/SuZzxRo61iNaxtccvnVVCpV9h88QE9vD5IawqyUaGxIc8U11/EHH/sob7npRrJTYzR1rOT4oZ3okQBXX3cTD/3iF6xft54733XnGxSgBbymGwCfZ6f7Lh8FrpXzTI+Pks8WSMfiOLZFJBxGlWUqhRJmzaAhHiMSCZPPZqlUytTKJQq5PIee3k8xO0m6sYlwLAG+95zi8sUpQK+8AFreIDwzUv6MuLlSyHPiyAH27d6N5/lMTU6g6xof+f2P8sPvfo+QHqBYKtHX349pWYTCddGOoqtk5uawbBs9ECLVshJZ8DCNLLIgkEw0EYrGaO7upDGdpq2tDUHWEQURQXxmREM4b19/1fFY/lxdnPrCy7+UBunlFm+/yQ0AgODa1PIzSIJALl8C18KqVlEEAceoYhfnmB4bJRUOkUo3Ywk+xUyGREMDqh56RovxLF3BeRt5Dl7k/H8lTd+rTvd5owF4KTi8f/enXdelubmZaDRKuVKhUqkQDAYplwqEw2HS6TQAnutgWRbJZJJYJESpmKdcKqCpKoZhEovH+eWjj9G/fgNNzU04tkM2myUUCnHm7Ai5XA7T9dAjcRKdfeihKDHJIBlRkCQZxa8hSQJjkxlaOrpJJcLIchSjBqLtoWpBTN/jK3//Od5y0/V4HsSiMQTPoampiaNHj6HrAW646UYCgQCmaXLRRRfR3dPLF7/4RQ4fPsx73vMeDMPgAx/4ADMzMyQSCW677TYmJydRZJV4PM7IyAiGYXDs6ElisQjJVJyGhgS//7GP4XkOs3MzzM/NsGXLpUxNTnDjDTeyorODSDjEdVe9CVkUKBTKXHrJFjraOjk7dJpkMs5nP/tX9PZ0kUzE0LUg2x9+hC986R84dOQwuUKBR3/5KIPnxlm19hIefeIgw2MzKHKYd77jXawb6Ofee7+GKMCePbuJxwIkolGa0mmGzw2SyUxx0403gO9y9uwgR44cIZlMYpgGnufxxBNPMDs7S1trG5ZlUSwWKRZLXHXVVUuJxeFwkKNHj7Br15Pk8zlOnxmkWq1y5swZAJ5++mlWrlzJFVdcwc9/9jM6Ojq4+dYLw6U+cPTUpxdH5uuzS3UNQDAQXBpgq3P/XRzbRBR8LMdFFiXEhet8NBpF13XUUJBQuO7YpGsBZFXFc31Msz5oFgyFULUAkqShqjqKoiHLzwSR4QsIgkRA0xFEgdx8FsOuMTDQx+T4GF/60lfYfOlGbKOGHgjiOwJz0+PYloEqq6iBAODjuPWgMTwPUZJINjeQz2URBYGbbryRvU/vZGaqbmubSMQ5dvwofX0DNDSkGBwcIhSOMDeXIRWPMjE2RigcJpvN0t3ZyVwmi2HV7X4/+KH3ctnll5OZz5NMN5KKhMnlMkSTLQQCIRBsZFlEDaVQAyGy06MUinl6u7swbQ/DNJB9A+wqlufT2NCM7UtUqxUEp4Jn1hBVjdX9GxAFgVhYo1gq0NzcSWNDKxI1fNHFNmvIvo/g2xTLFaLhMJIiULNtAuEEqXQTa3r78excPXPD92lrb2Hf/uOsXt3Nxi1XEA+H+MbXv8H1111LvlDC9Fwu3bge2/ZQRIGBy6/i5w/9lMbWldSqVa7dtg1dCfHWm298owFYwOsuB2ARoijiOA6qqnL06FFUVSWg6yiihK7rKIpCrVYjEgyhqipmtYZlWWSzOTo7O3nwx/dz7MhhPMd6Fbz7XznOn9moOz2Msnv3LoaHhymXy5wdHOaee+4hEAgwMzMDosi+p5/G9X2GR0ZwfI9sNotlWUD9uNiuhW3bSNIz4WeLln/FYhFdlsAXl6Y6f9Usxr/lGP0m8vR/fRCIx2KIEihK3eNYkiQkQSQ7O4MmSwQUEcF1iEUinD55it6ubiTBX+DP/np/Al6drIw38GrAdV1CoRD5fJ5isUhLSwutra1IkoSmadi2TTAYRNM0IpEIhw4dwrIsRkdHCQQCjIyMsGfPLlRZ5r777uPN267j+PHj9VFSXaNYLiHLMg0NDfWivFbBqJaYmhinXLVwEBgaGqRUzKPrOpIgLlEuTMMlmyshaTqlYh48h2A0yYc/+p8ol6pMTs3Q0FAPVapWq6RSKQqFAolEgunpaRobG5mamlqyK7344osRRZH29nYkSSIajWIYBlNTU3R0dCDLMuPj48RiMVpbWymVSriuT1NTE9u2beO73/0uP/3ZT1izZg39/f309PRQq9UYOlcvlLu7OxkdGUZRFAzDIBqN88ADP8VxHAqFAp/4xCcIRwKk02k+9z8/z7GjJ/irv/4sb7/1Dv7xa99geHSEbdffwOO/3El3bx+9PZtAjHPv13/AJz/5X7jnnnvo6ekhlUoxPTbGnp2/5F/v/x4j587iOTYPPfgTzpw+TjQapaGhAV3XsW2bwcFBLr30UsrlMmNjYwwODrJx40buvPNOvvCFL9DR0UEul0MURW655RZuueUWGhoa6O/vZ2BggGuuuQbbttm8eTM9PT3s2LGDyy677BVZSb9aOP86tWjmsViUL58tXmwSNE1DkuqUx+Wvl+T6axVVWnDCUrAcZ+n7sRiAKYrLaT/LtycjSQqKoiKJCpoWQBQ9yuU8HR0dfOTD/5GGhiZCoQDFXB7P8wiHQwwODlIs5qnVqpimgePYOI69tM5yqcrMzAy+73P//fdz993vqVtk1mqYZj2LYO/e3aRSKQKBAI7jsGHDOhobG5EkiVQqRV9fH8PDw6TTaWq1Gp09K5Blmccee4ypqSna2too5udZ2dON5wtLzaAgCNieCJJab/yrJe77znfQtSC+KHD11VejKcqCi5SAINSPsW0YFIpZMpk5ZFnBdX0Ms567oCga4VCEQjGHJEkkEomlumCROmSaZv26INR1EsFgENexkEQfRREYGRnmpptuwnEc/uuf/AmhUIj/9qn/Wh9cMGz0YICOjg6q1SqlUolSrUq+WKG9cyWKJGHZBvfdd9+v/4R9DeM1MQNQMexPszB6vJyCslgiPJ9tZkAO8NSex5gan6OpIY3v1hMA041p9GAAyzDJFfPkC3l0RcUyDDo7O3Fti31P7SGRaGL7w7+gf/VKHM8nGo/VEysREQWQfBcfb0Eg+QwWZwBeWlErsvCOnvcmCCKe5+P7Lr4PxXKVkVOHGR8dolqscHZkEN920DSVeDAEQLVSwaqZOJZNIhZDV1WMSoWWljZc26FWKyEIYZobm3DtIoJrEIs0EGtcgepXqUg6ub0/YuW1NxDUQojiwr7Ac+g/vwrP+1r/Oe+y/kGe11S88HZevvPQb5YLkIeAjycoiIJPKTOJ6NoISBRKNeyageB5OLUqZrWCL0AwFEWQJQ4+tYsbbrqZh3bswPNdGppSuKKOJP7/7L13mGR3ee/5OfmcyqG7q3Pu6cmaHBFCJsomiWQyvthr79qA49273sfPPtr7XON12OXu7rXXNtjYxgIDEgYJMBqhLM2MZjSjCZo80zlWznXy2T+qp5FA2Mg2V+JB7/OcZ3qqu0Kf+vWp9/d+k8L6X9v6eQ/+meOlVFvYji8Q0KYsiXIbjhdlGavVan/oiDKB77Vn9//mDePzX+srfPP5MiIAp585elcylaZ/YJBCsYimqNSqFRyriSyJWKbJ2TNnyKw1FZlMhnw+z9DIKJbjYNo2SysriKrOzj17OX3mHPt27QU/YHlxmXS6A0mSaLQaTE/N0igXUVFQYzpiagPpUEBaD5AUHQkHNRTFsgXCRgg9GmEwPUA61kE4GqUlQL1q4cgaX/rLP+bNt+1HMjpp1Mt0dGX4z3fdRaa7k+fOn+Phhx6mZVu87vbXMzo6zL333kM2u8rFi5dIp9NEo1GuXLmCrquEQgapVJL5uUWOHz/OxMQEhw8fpl4rUatV6OzoQFVUvvgPX+ID730fy0uLxOMpHnn0MYaHRzl48DBB4HP9xhTJjg4CQWTX7t1cvXqJs2dPse2WbXzjG/fxf3/mL3jwkeN886EnufNXfpNdt7+Vp85dJZQZZssb383EobdTnVnkll23M7h9NyvlBht2H2D7/gNM3HKQp54+weNHj3PssUc4e/Eaoqyh6yE2jI3jOi6lYomB/gEuXDzH3r17qFWqdHd1MTTYR7lcZv+BA+RyeRKJBIZhcPXqNXp6eohEIuTzeUBgdnaOzs4uVlezNBt1pqducP3aVX72jrfw8EPfRVMVSsUCmUwXoijw+jf/3Muyds+cv3KXKAiIgojUVvFBECCvNfm+57Z5/D74foCq6oSMMIoi4wUuiqyui3jFYM34wgPHNSHwCXwP17ORJR9ND6EZUSQRAiFAVCRkSVoPVBMVBVWVqDdr7Q1zPIYk6xihCLLskkyE6OoZQ9N0mo0ygufz7OnTZAsLaJpMf98IjXqJciVHq1GFwMOyWlitJps3beLS5ats3ryZ8+cvsLg0RzQaZvPGLYwMj9JomjSaZd74hjeQz+a4cP45Jic3IAgCl69cp9WocPjQIWZnZujKJBkZ6OM7334ITdOIGCF0WWZm6gqbd+5HEGWQJGQxhCgqgNW+fNotauUsl6cW2LVzJz2ZHoRApNasUFpZRJIUVCWEHjJQJYNQzOCee7/GyPA4vusye/UihiYwOroVx2rQqJbp7h5EFFU0RaKaW6VcqaKpMggORjhONNXLn/7ZZ9m3extS4OO6PmMbdpLq7OJb936N9374Y+zZsY+61cAQVP7iS5/lve+9k1bVpllv8X/9yf/O9u2bOPnUCRZuzGBV8vR0d1Iv5xkYm+A9737XqwjAWv1EIgA3m8N4PI5lWSwuLBCNRonFYjSbTRqNBpFIhEwmQzKV4iZf0LKsdrhJZxeLi/P09/dz8blzTF+/ghCA6/przXiA9+8woPz+dOAXOwRBIBAUbNfHajWolIsYhoGiKHiet85RvSnKU1WVnp4eNmzYQKlUYmVlBUXXWF5eplgp43sSfX39uK6F4Dl4jo8eCiPrIoquk1ACBK9Kq9y+6PvP45O/1OPfWj+Ox/ypqsBfF725rtuedMkKtmkhCQGiEKBFYziKjJbOMDSxgc//7d/w+je9icnJSfD89Y3zj+0lBiJBsEav8wNwPXAcHLNBo7hC4LTaH7ruD3OFerV+XCUIAtVqlXw+z/DwMO7a5LNer7O4uEitVqOjo2P9mnpT/Lq6usqFCxcoFou8733vo16tce3aNbZu3Uw0GqVer6/z633fZ2JiAl3XCYWjNMt5QkKDWqtJtHsCKQgwRB9Z09EMg/7BAXr6uokm0zgBuIGL6YHlBgiSSsiIoqSGMQUV12yQ7uiiUCjxkV/4GK95zWup1WoYhkGtVlsPxAqFQoTD4TXE4mkKhQKlUol8Ps/4+DhLS0vrjf9jjz1GoVDgwIEDbNy4EdM0cV2XO+64g6tXrxIKhejo6GD//v1s2rSJGzdu4LouU1NTqKrKnj17uHHjBq1Wi507d3LyySeR9BByPM1tb3wTd7z/l7hRkZmzDPbf9j6EzoOoqa1o4QxdA10k+1Ks5sscvu0gi6tLIGtsuGUfHcObeddHf5mBoWGGhkZwbJfFxWVOnDiBZbXYufMWQiGdwcFBLMsiHA4zMzvF6mrbzvGJJ55AFEWWlpY4deoUZ86cobu7m3g8zoYNGxgaGsIwjPX3zjRNent7ue2227j77rt53etex+LiIvF4nFOnTpHNZl/Wdfv8Sf9Nu9QgCF4gEIY2GnozzOumh//NzIsfRBJkRFFGVVVkWcVbm/4LYvCC6fiLHZIktT+3ZZVwKLImXJWpVCr8/AfeD4KAqoeQVZUTp44xPDyGrBgUlufAtXFtB2gPIDVNw3NMivk2N/7KlSv4rsfHPvJRZFHiuefOARCOhNi/7+AacyBHEMCp089Qq1cxDJm3v/3tDA4OomkK8/NLXL16lV/8xf/A2NgIsViM48ePr7l6Rdq9hSyjGypBEKBpxjotORQK8fv/5Q+oN6p0ZdJksyuEw2FarQb1ehVd1xEFmWRHhlOnTvHxX/gwhq4iCAHems2pKkoEroeIhNmwMRs2rYZJwzSRZZFarYbviwiCRLPW4IPvfxetVoN4MkEsEcPzPPK5IkLgM7swix4yaFZrFOtVPvdf/xuzl67iESCqBr/+G7/D08+c4tGHHmTTls38/Ic/SNMyESSVffsOvlzL9hVZrwgEoGk6d61P+HlxBOBm3fye74mIksexx57AUBRkAVzHobunl1AojKJpSIpMPJmkmC+iGyFWc6uUSiV81yOVSuK4Hvd+5R66kmFiyQ6i4TCGriFKAn4Agii94Dm/16D+y2m/7Qb/B11rnm8zerN5s1yX/PICueU5Lp05RaYzzZEHH6Ir3UEileSXf+WXefaZZ9YCSyqEjBC1Wm3NB1kmFo8wMjpKb08PI+OTrK7miIRl/EaFUDhGsnuQSFcMwfMw6jM45Rt0bz5IqnccTxKRvm9K+s815j9Ko/6iFKLnnbN/7jGenw/wo2wMgiAg9FOFAAgEa+fDa9WQRQGF9kagVm9hV0v4ZgOzUUdwHarVOs2Wj5HopqOzi12HX8vlq9cRAp9CPkumK4PH2jqXZVhbkwK8dHrQzfCumxSfIEAQFAQxQBB9Lp45QaM0iyY2ccwsMjaaquJ7PpKiIUjiv8P0//vrFb6pfBkRgMce/s5dpmmi6zqmaZKIJ9A0lXDIQFUVkskkmqZRrVZZXFxEFEU6OztxHBfTNInH4xw7dgxZamdNlIpFdD2MYegMDw8zNXWDjnQS07bJ50tUKyZ+s0FnQqEqp6i4Id6+e4J0PIQWDqMbBsmObsKxCKKaoFmuoes61+ZWWKpUSMXTGHoEbXiSv/7bz/GaTUOghzE0nXq9xpEjD/LWn7uDhYVFDh4+TG9vHxcuPMemTZvIZrN84hOfZHFxkcHBQWKxGI5jc/78eXp6esjniwwPDxOJRKjX64yOjlAsFnnta1/L3XffzdFjR+lIJkmnU6iqtr7RiMfjJJMJ9u7dS6lUxHV9HMflxo0pduzYyeNXilSMATa+5q0M9k2SK8NoZwLDrCOIKqdnFKKxMBnNQXeu4jgVZEkh0RFn05ZtuK6Ir4fxU31cX8yxcPEk1UIFwwgRi0aIhjWikTCXLl6kVCoiCLQ54KEQRjhET08Py8srRKJRMl0ZYrEYGzZsYHR0jOvXr3Pu3PcSgXft2sX09DRXrlzBcRwOHDjAuXPn2Lq1nRGQyWQ4cuQItm2jqirv/vkPvSxr9+jJZ+9SNRVJEpFECdux8X0PIxRuB4BZFqoiI0ntwZ+u64iihCxLQICiqOthYa5nEwQ+siwR+AKKLK1bLEuiQDQaRRBEggAkWUJRVaTnUYAQRHyvncHjuS5aKEIoHGnrCxSR++67Hz/QeODIEd74+tcTiiT4m7/7PB/72C8TiaZplFawmg0ikSSaqiPLErZtcv3SRSKRCJMbN/Gtb30bs1mnUi6306A9lyPffZKdu7bz1a98g1tu2c6JE8dxPTh4aG87p8H0aTVrnDt7DiOkksl0Ui1VKZfL7N69HU1RSCVSLM/PMTgygWk1ESUQRQVBANux20Fiq0uIok/TAk1Xuev3/hNbNk5SKRUoZhdwfJfewXFiiU4cSebM0YeQfRdJUalVy9SKi7ieRzgsUK1mKWTnUAwN1zMpZBcwbQuBgFw2T7Krl1bLJBFP0T+QAVHAQyCZShGgcvrZ07zu0B6ars/uffvxTZtis8mB7TvYuXsnb3zzzyEoKjduXKFRK9IolIh3dVJuNAlHo/QOjCOLEQ4f3vMqArBWP5EIAICgyIRiSbq6uojFYu3dtyQTrFlnRtemT57nMTw8TDQeY2RkpM1pXdMEhFSFfXt388QTT3DfV7/M4w9+B8uycKy2laL7o9j9f1+9GMfZcRwsy3qBR/HNr13XpbS6TCW/QrOwREjXKJeLjIyMEglFWM6u8od/+IdkMhkymcx6WmUikVifZC0tLTE1M83p06fggavkAAAgAElEQVQ5deZZMpkM+AJyKETfyBgubjueXleQawvYTRfHdl/a+f43TOh/WCP/Uh7zx4lE/GSWj2u3ENemNDchaZkA12oSOBau2SKwHDZvmKC7I0VH3wBNy2VsYiOZri4yXV0Iko8feNi2jbu2RtfXr/+v+gMAnrc5dhssXj/PlWefojMukOlKIMvtgDJ5LZhPbOPwr9Z/5/I8j3g8jrpmT9jV1UU0GqVSqeB5HsvLyxQKBTZt2sT27dsZHx/n9OnTVKtVent7sW2b4eFhenoz7YAjQeDGjRuEw2Gy2SyZ7i5UVaVUKhKJhDDdJn0DI6wsLaNWZpifv8ZcRcFyVALXJ7AhcD2cVpOg5dLd2U293iSiGYQUDUEI8AOBfLHB+K5biWji+oQ+ne4kmUxSKrU1Xq1Wiz/90z+lUqlQq9Xo7u5menqavr4+arUao6OjXLlyhZMnT5JOp/nsZz9LrVZjZGSEVCpFd3c3vb29fO5zn2NwcJCPf/zj7NmzB0mS6OjooL+/n8HBQTzP4/r160xNTSHLMtVqlSAImJyc5GMf+xhu50bEgVvoHpxkKVcjHE0wYPiMqA3C/iJjnSH0oIpZvEZUElECn7jURHaalFbnyS7OYBXnydZayMke1FgaBBdVFVlaWmy/b+kOdt2yg5CmEwkZbJzcQOC71CtVLly4wOjoKDt37uTYsbaubHZ2liAI2Lt3Lzt27GD//v2srq7y5S9/mYWFBd7//vcTi8U4ceIEQRCsD5uuXr3KO9/5Tu688842gvgylWW1qNerNJv1F7jpPT8HoB3g9b0p/03Xnpu33Zzme56H67r4vr/mDGSsawb0UFtMLgT++v09r32tvDm8u4nKS5KErGrrz6doBrKmc+XqdT79f/wx/+l/+T30cIRAkPA9aF/wfFLdfaDqNOtVfNdpJ1Bfv8HmbTtotSyqxSKv2beH/v5+Wq0WTz31FNu3b+fA/luYmZmhszPJwsICf/RHf0QmE+PMmTOYZvsaHA6HyeXLdHSkiMUi3HLLTjZv3sjZM6f5p29+i9xqlssXr1DMF3Adm0a1gmWZAISiEcLhMLquU61WadbLRMIxHnzwYQxNw2q28FybwLPbv6seItWZ5q1veTO4Hs1GHcuqguATj0Sp1Mo4joWsKFTrFQRZoFQtYjrtNHJEAUEW6OhI4Zg1HMtEkjXSnYMkO/rI5XIcPngIz6mzcP06qqpy5ux5Job6eOzsWb57/CRi4KBJErgOnfEwHek4b/qZ2zl04CBXr83S2T3w/Yzun/r6iT0dXgBDYxtYXl6k0WjQqNVRFAVF1ujp7gNEREmh2bJIdXQSisaQJInBgQEymQwbJyeZGBvHbNQZ6B+isLLAP3zh8/z5//sZFuamX9AIvRTR4vN/3nVdXNelVilTr1awWiau7awJXlq0Wi1s2yS7PIdVK2GVCxRyOTS1zVHMF3IcOHSQ/YcOUqlWmZ6eBmBpYZF8NteOkS8WmJmd4+zZczh+QL1ZYWpmGtu2kUNharZDvljErLuUK1lihkQ01oPoCwRtd+Qf6ff6YUjAj9KQv9QNwH9vKtJPYgn4NMplfM8B2uvOsWxss45rWygCtFot+jaMcm1pjidPHmVqYQ4XiVRHJ9F4iukbU9SWFmjUqgT4tJpNXMdZ/3DzvOfRcv659R+IBMJNt6423cezbUq5ZU6feBhdtogaATI+jqVimyq1ssRqtkrLtPEQQfhXbDZerX9ThcPhtWTUgFAotO5pn0gk6O7uZnx8nLGxMXK5HHNzc9Trdfbs2cPk5OS66UB/fz/51Tzd3V00alWmp2/w+OOPE4vFqFbagVfJZJL9B/aSjIeoOhaOI6FXZkkJZb71zHWenS4jBQpOy0F0XDRBoZkrMHdjjnyughIIaL7Dt+77Og88+B0Ex0VP9bO0sozVMrFdn0x3N8+cfhbXdUkkEly+fJnbbrsN3/c5fvw4S0tLjI+Pc/78+XXaw6233srQ0BCyrPLJT36SrVu30t3dzaZNm5ibm+Oee+7h7NmzJJNJHMumUqkQCoU4f/48mqbRbDaJRqPs3r2ber1Ob28vuWye8+ee49HHn+LD/+FXcMMJPEFi+fplRMkj3N1LDomSqCA5LS4cfxQ88IMWdUdBVOLE4nEky2Gos5MNg51kDI94qgMpkqRraBRVlSlXChw8tJcDB/ZTa9ZYWFjg+vXrxONxvv3tb9NoNNB1nZmZGZ588kkW5uZptVpcunSJpaUlzp07x/T0NPfffz9PP91OJx4YGCCVSjE1NYVlWRiGQSKRQJZl9u7dSyqV4mtf+xpf+tKXXlYRcBAEa3q3Fo1mvU1T0fR1Eakoiu2AQ1gXBrfFwOr6bTepQCJtDZ7vu2s5Ai6qohOLJtqZKp6Hc/Oa6Pl4jrN+282NQK1WQ5YUQqEQjhdgOR5BIBAJx1jNFtAMnbGJDXzwQx/B8zx+9ZO/STTRQSwRBTVKKjOAKmtUCnmqxTz5fA4lEmX/gcM88sgjaKpEJBKhWq3QbDY58uADFIt5XnvrYVZzJR565FHuvfdeDhw4gCAEjI318jOvO0yxWGTL5nHOn79Iq9WiVCrx6KOPtt/rwR6K5RIAqibSalTwHRPHNgkCn3ql2qYlSSKWbTI/c4U77vhZ0rEkq6urSJKCoUl4jo0eMojFk4yNDJBfWUFVVQLPwmzWCIfDmLbL0PAOUl2bGBzZxcjELvRIN/sOvQVJjbazGtyARLITXVNIJ8NEY52kO3toeQKf/sP/B1WTadTL2LbJaHc3R596nF/6tV/lDbfdSrlapVSpoqkC5VKOqKFSqxZRDIX+7m5c02J8YhvhaApRedmW7SuyXhEbACH43gE/SJt5MfGoIPp4gkAkHcXxvTZvzvPavGddIbeaIxaJ09fTz7XpGUKhELbpUCyUqZsWuXyRKxcvoGsyy0sLnDv3HMVCidLKFNcvnsWzTByrtTYJ9RAC/3mvTXzRIwhuWoQGuIGP6/vYVpNGtUCtmMdq1DDrVRqVEqVigVq1RLNRB6dBvVJEkjVUPYTnCizOzdDR2cnFixfb7gGCSF//ILFQjL5MN2IATuAjKDK6rnHo8CFKpQp102HP/n3Imo9TzRHIAZFIjLpnYzsB6B10ZjrRalV8UUHEXT+vL0kALK7po4Uf3hg+/zFvvr8iwvfea7/NC3/h8/o/wvHia+OnqXx8YiEFSVo7v35Aq1rCw0OSBHwCZElgcWGVw699PXv2vIaRkTGOPv4Ef/XZv2R+bhpV0wmsBjFVwrFrRHUDLBdZ19oiXVHG80U89+ba9/ACD58AHwEfoe0i5Yv4goOHj+25mGYLs1mglptisNtAkUTiiTSBFMUym5SKeTRVRhU9RFlFlEPg/7iuzD987fy0l7Lm5LGwsECtVkPTjTZ3WVKp1+vU63WKxSK5XA5d17Ftm3w+z9T0LMVShVg8yfzCEtt27lpzP5FJp5MUi3n+43/8bbZt20YgiOD7KBKkknECt8Ho4BiNUom4WeRSqcKZ+RK2A7oRwfccnKZDNlvAE0DTFALfRvc9du3Zzeve8EYMRWVhucz04jxhQ0MSApqWze6dO5ianaNYrrC8uIIsSnR399LfP8j09Cy6FuLY0adZXFjm2NGnSSaTWFb7M+HIdx/i+ImTfP2++zny3YdoWSZbt2/j1tteS6ojzTvf9lYikQiLC0v09PdhOjaiIqOHQ9iey44d25mbmubIdx/lypUrWKKGHenGRQLXJpxMEyhhYoqALkFEDQhchVjSx2k59KU6kaQA3Dan2gilcG0Jv1mhXKvi6h0ooRTF/Cq2JXDw4EH2799PqVyhq7uH7bt28Y53v5fscg4xENi6aTP1epP/6X/8NRRJ5lv338e73vUubrnlFhRFobe3m1OnTpFOd3Lj+jQzM1N4nkMkEuLEieNEIhFEUaRcLuN5HidOnCAajaKqbTrJD09y//GX5IvIgoyCDJ6L27JoNcy2EFiUEIN2Qq8vtDnlQiDiBi6BIOKv0Uo8Anxh7ZPbD5BlCddpIYogazKiIiIEPoIsgKwii9AOAm5vFsBHEAKEoI04BIKIqhvIsti+XQjwfBHFiBDSDcKGwe//wX9BlwV279+LpCh4vowsCfiuhyMEWL5LaXWWkBKgKAqFcomeoSGml5YJRw06utJ0dXcgCAGvOXyIZ589xbZdkzg+fOhDH+HqxesokorvBviWQ0ciztT163zgA+/j0qXrBNhs2boRx/XZunMbU3PTlJsNHBxEBJxGA7tewmw1MFQN17HRNA38NqqsqCJaLIIeMtad5gTPBUnE9ly+9Y37Ma0mmqHiOXU00QPJIBSJIig6cjRKJNOJGkmQTHVRadRZWiqiau0NmUwYz5EJJJlaS2RwZAN/+4W/53d+9/fo6+1EU8H1ZBazS4TweOb4aT7zp3/NcKaD0so8LdpDK0EEz4c73/2Btq7JNfnIRz5KZ2eGgFd3AM+vV8QG4F9TN+29tu7YRaVewzEtJASWV5c4e+4cY5PjhJNx5JDO0NgoshGid3iY/pEROlOddGS6yfT2oSkaY8MjjAwNMzw4wPSNBX7/rv/MQ9+4l/mrF/ACAScQsX3hRVGBm8dN2DHwBGzTpZIvU8plya0s47k2jWaFufnrLC3PsLI0Q355hsrqIoWVWRbm5gBomiaNRoNsNsvevXtpNpsokszczCyCIDAyMkK92cBTRDp6MuzasYPB3j66BvqYmpunb3gEQ9U4f/YZpm7coGH6NOtNqqUVNKeMKyikt72WkV2vQXAcBHz8H3Hy+qp14yuj1lxbkVwBWxFwEXDWGnS7ksVp1rFrZSor81QWZ1GbJZ785j8SiWpcvfwcb7r9Vga6u/jrv/ocC4vT2IFLELTIzl7lzPFHOfHUQ9Szc/hWDd9q4DXLiIKPR9DeCHgCgh8g+B6C7xFg4ysVcCNIvohTXuL00QeoZOfIpCP4nkij0aJUrGDbNrZtr4sMXSQ0vZ1W/JIRgFfX4r+5Wq3WOqUlHo8jiiKtVgtFUVBVdb0JvCme7O3tRdM00uk0siwzNDSEZVkUi0UuXryI7/vrdBjP87h48SIXLlygp6eHXbt2EQ6HicfCLC/NsLK0zMVnjhIValwr1/nCkaf54j89zOzMdU4+expDg6bTYj6/StV3MZMZvnL6Ok9fm2YpO8fK7AL3/uODEHjoenv6e+utt7K8vIyiKOzbt49jx46Rz+cZGxuj1Wpx991388d//McMDAzQ3d3NAw88wPbt2ymVSrzzne/koYce4s477+RrX/sajz32GKIo8swzz/D444+zurrK3Nwctm2TSCTIZrOYpkmlUuHv/u7vmJ6eJVcocebceU6fu4TRt4mq1k1g+4QCn8nONJ3xOIHjkkh20tHVz+BQD6GoStuKRkDVDbozPZRKbY5/2NAQZYlYLIMtOFTNInNnzuF5HrVajWazyeDgIK2mSaFQ4qmnjiGrOu9813u4ePkqs/Pz3H///aRSKXbv3s3jjz+O53kkEgkWFxexbZtr167hui7JZJJsNovruoyMjKw1+hl832d+fp7JyUk0TeNDH/oQ4+PjL+u6NSJhPAJMx8Z0XJpWhWo9R6VSoFYr0TJrNFtVmvUillnHtZvIgojn2HhWi8Br4bs2nmNhmW0HNVXWkZAQfIGQFkJXdGRZRxEVNEUHWUHWQwiigoiEbTpYLXu9J4D2MEqRJFRZRqQtQB4fH0czdARJ4ud+9h386id+jUOHDhGPJYnF4mtDFZtQSCccDZMZHCMUjvF7//NvMTEywFBfN5G1XIubtLRbb72VVqvFbbfdRke0AymAv/irz/NLv/arlMs1lpaWmdw4wczMDPF4lIsXL/LAA98kn8/jeR5PPfUU+XyR3bt3I8sys7NzKJqO6VrImoLvNhEED9c1CVyXWDxF4AtsGB3BbDYJgoCmaSKIKpFEGgkBQ5H4yj/ej+UG2LZNqdSgYbaHDK5t0TJrpFIpUuk+IpEIiqbh+yDJIEkCt77mdorlZVp2jb/9wj8wsWGEWCTE7/7u7zI8PEIgylRqNRRVR1MlPv7xjyP4FgPD/Zx89jRHT5xk//gOEuE4EhZRPM6fPoMRjWL7MD1zmeWVGQjsl3XtvtLqFSECblk/LAjshXVzotyeyoPn+CADpolTqyMA9VqZTFcHgSRhxNvqcce06EylqVZrSIKEKMkMjo8hIpCOJ1AlFSOkYjaqnDv9HB2pFGfOneLZU8+wa+++dqKuba1nD0iStE6TANbTB33fb4eNFQsUVubBs6iV2/w6y2whi+2gj1JhFbvZQFVE6pUy2aUVisUCpWqZaqVOoVBoQ7DxGIWVLJs2biSdaAvy0l2d7Q0HsLyyQkdnJxs3b+LKtetki0UCUccya4RCMSrVKslojMCqovseuh4i3DsB4Q5imkxidCuCFCAiv+Ac/2j1/Hfnxe/zwwTQP1AveYj/wjvoP0VBYG2MKUBwHZTidXBdWraP59iY2XlatSa5uWkqqys0C3nq+VWW52ZIjE7i2i3u+/Lf8/CRbzOycZK3vfVnmV+cR5R8nEqOzs5Olhdn+PqXv4gc+Exfv0R+ZYknHv4uWzZvBN/DbLaQZInA9yEI8D0Q3Cg0VjjyzT8jk9CJ6zL1Wg1VMyBQMIw4kqwiywqS0ObStlot0plBlGgSBJkXTOdfCqrzkhGgVxhi9DKKgM+fOXGX67qkUikSiQSSJCNJIs1GHdNsAu1rWygUwrIsLly4QDKZxCcg3ZFC01Smpm8giQqDg4MUi0U6u7rW9QGVSoXpmWm6u7spFArs3LaDxcVZpqZvIAoKnckYU5fOkBkYpNq9hyW7jUgKgUeh1KTcMKm3LIq1Gou1JkQ6qa/Ms3L1DJdOPIHqNdmzcwvxZArdMGjVa5w9ewZJlJiY2MDExATdPT0MDAzgOA5ve9vb+epXv8rS0hKzs7M88vBjlIpVYtEEkVgE0zQplUp89KMfJZ/PEgQBv/Vbv8X+/fs5evwooUiYt/zsHSwvLa97rS+vLNHT0YXvw6f/8P+kYbtMbNyE07WNLAk2jfTTJYukFZF0Zyd2q0G92QABJL9FVY4wMLaLnrgJTp3OTIZANHAdBddpYgY2uSDB9WyO1tI18k8dIZFO8ZrX7KPVbOD4PtVGA1nVyfT00ts/hOV4bN66nfPnL/CdB46wafMW+gcGGRgc5Pz58wiCwHPPPQcITE5upNVq0z5s20GWFS5fvsKNGzewbZuenh4URaHZbNJsNllcXGR8fIJr165z53s/8PLYgF64chcC6IZOOBLG8x1EQUCUFXzPw7FtfM+j2awhEmC1mniBh1mrkF+aotWqgweebZNbnadWraBpGpVSgWajgmObNOp1qqUszXqZwHPw8VEVFc/1cFsNquUSigTheOIFuQC2aaHIMqqi4Acely9fYs+evUiyhO+LfOgDP4+LgCBqqJqGILf7mVK5jON49A6O09M/xOYNG7jnnq+g6xrRaIRkKokoioTDYZ577jl03eDr991HZ6qDleUlPvmJT/DYo49iWU06OtLcuH6V/fv3cOHCFX7jNz/Fn/3Zn7Frxw7S6RSDQ/1cuXwDSRJxLQdfVNi4dS+6JiMrKgFQKuZpVPKIiHi+gIDIP9z9RXbt2Mn4xDCSICEILoEvoEYS9A8McMvWzcxfPUuzUSXRPcbQ6CZ8q4aETVf/GIoeJRzvRFDA8xxUTefU8afpSChIUhghpPLE40/wljvewVNPPM6p08+wYWKShYVlujIdaHLA2MQmCqsL/Mwd7wCrSbFcJhxKMDQ8ytvveDNveNPPcPLoERyzzsDAMH/y3z7Hf/pf/zeWFueoVasEnsXhQwdfFQGv1U8sAiDQRgF6+wfQ1mzfRFEklUgSD0W4eP4cnu0wMzVNJt1JbmmFWrHC8sISkViMuYWFdRFus94gu7JMvValf6CHSDREV6aHar2GVS9RzmdxbQvTNNd5gTctPJ/v5tNubOpYZhPRt3HsFq1mA99zMQwD23YBEdO0cX1YyeaxXX/94rG0tIRtt2E33/eZ3LQRQ9eZmppaC6bxiEaj2KbJ5o0b6e3vo7e/jyvPXWZxJcub33wHXb2DlJomW3fs4eCth2g1aly9fIXHH3+c08ePsTg/gy0quLKKgLRGW/r3q1dRgh9/CX6AI7i889CtSHYDWWqvH13XEUQF3/teiM3q8gKaJBKLxHn2mVNUizkqhTy33XYb93/9fr778CPoqsbY5CTFYh5Blhga6OPYE49y/MnHaVRKiLh8576vUc5n8QMbs1nHsVpUy0UkwLeqXDjzCJOjE6iyTBAI5HJ5PF9B1yIEATQbrXUOrmmaqKqKphv4/iusIf8pqnq9TiqVwnXddjigrgOsiyVvcpxzuRwAIyMjzM/Po2kKogjhsEGxWESSJAqFAvF4nPPnzzM/P79OGRocHARgYGCAmZkZPvThD/KWO95EJpOh1mygOw2mjj2E4lUIhw2ayVGu1hVsNCwnIHA9FucXiCsKSckhZaisTs2Qm7nItWvX0DQDx3HWm7B4PM62bduYmppieHiY48eP88wzz7Bv3z7K5TKxWIylpSU2b97M4cOHkWWZa9eusby8zJYtW3j9619PtVpdT0T+8z//c3K5HIIgMDExwfT0NI7j0N/f39ZPuB5dXV0sLi5SLJaRlTZ9TtNDzMzMEbgOgWOSKxbIZrN0JBIoqk69aZHP52k0Gjx59ARnzp6nv78f23ZRZI16vUm5UiSZTBLt6UNxXMR6FY+2icTk5CRDQ0Nt7UFPP6Oj4+1zIImcOXeW3/+DT1OpVXnvz7+PJ48+xcLSIl/4wheIRqPkcjl6enpIJpMUi0UURWF+fpFSqcKxY0/jeQG9vb0sLCzwyCOP4DgOY2NjiKLIzMwMJ0+eYnU197KtW1VV1x3wEAMi4QSRWBLDCKOqOrKkAiKGqiMEApqmIwQBsiRSr1Wp1Su4Xts5yLRqNFtlarUyvmtSrxaxWjVcu4ltm9hWk1J+hWa1RKWYo1WrUqkUKJfz1OolWq3Wuo7m5iDQcZx1S93BwcF1oXIk2kbZgjV9oqTI6FoYPRQjFIoRMiJs2ryND3/s4xjROMVqA1U3WFpZxjAMnnrqKXK5HBMTEzzyyCN0dnaS7kqCBKvLC2ycGGVlZYUNGzZQr1c5eOgAjgP33PM1FhcXuXz5Mo7joGkaqqpy6NAB6vUa5XKZcCSGqofx/aBth+572HZbYK9oRjuoT4TRkRFMs50wreg6qm4giiJ//3d/g1ktgWvhOBaxeLqtWxGEtZTmCJKqoGhte/MArz08EmRs28ayWxh6hIMHDzM8PMi2bdtIp5M4jsM377sPUVGRZZkbN6ZJJGL81d98noX5GcxGlXg4QjIW5y3veCuK0mZqNAPIZlf57d/+bX7h47+Eoeuoqo4qay/bun0l1isDATBfiAB8vw3oi4lHAwKCwEeRNR5+6NtUV3PUqlUK+VVmZ+fYd/g27GYN1zIpr+YoFPNEUh2MTkwQi8eQZIlKqcjEjh14koym6yQTSTRNZ25hHgSfZqvO4swchw7vZ2VlkXqljtVsIuBitVrYrgeiDF5ArZynXMiSzy7QalQI8DEbLcqlEh2pNGEjhCwK2GYT3TCwbAdNEZm6cZ1CfgU/8DAMA1VUIQgo1xsIQbtZsh2Hnq40oZC+pnEIEQg+r7v9dVy9eoVYupPb3/RGVM1gqL+XVq1K4FisLs7Rk4rTzBUxfYHRoX46RsZIDIzhVRukNm25aQD5ouf5xWq9wQ+eHx/2ozX+zxfuBs9PC/u+7/1Lj/HKQgDcu354YNa/T3MbtJUT6648AjKWXyU+c47I0DCxrl6QAxorCziOSL1cJz+9jGmbVFsNhoZGmF1YZefBg9x6+CBzC/O87g1v5hvfvp9f+OCHicTCqLrO+RPPYqgi0Xg3gq6zoS/K3tvewGf/v79g4dp1zHIBQRCpLi8j6RKqqnL0gS9x+rFv0NebZHhiA5cvXCXV2U+6awBV03EckabVQtN1gpYJgYsqS4TjHaiRNIggEPzgJP9fWouC8K+0DP3nAs5ehs3Iy4gAHH3syF22ZZNOdxKJxQiHQoiCSCqZwoiEcByXaqWGbVsUc0Xy2TzJRJJGrYEgSkiiSLVSYdvW7SzMz9Fq1diyZQvLS8toqobnB2zaspUtW7cxv7BAsZRneXmZsBGiWq1RrtZQBYipMPXsSVrZWegcJe+EMASJwvQUrUqdjlgCOfCZn7nB3OXzPP3AfaSSCvGIzHvedSeu7xKJJKhXKzz00IMIokCz0SIeS3Ly1ElEUWTTpk2cePok/f39FItFPv/5zyOrCgEBLdOk1WpRqVTI5XJ8/vOf54Pv/wDPnDzFG9/wJu6/75t0dWTYtWc3CCLj4xMUS2UCHwrFAmeePcPyaoHFpTyu71DK5unZ8VoyA5MYkk9Mldm6YQLPE4ioKpZrIyoBma4wQ5t2MT7Sz4Y+nemrl7Etj2ItQNQdBgYSFNww034cd+4cR+/7Iopd4+ChXYTW/Nr37j2IZhjE40kmJjZw4fIVBoaG2Lf/AJnuDOVqhT1793Lm3FkOHz7Ihg0TZDJdxBNxJLmN9iyvrBCJRPA8j8HBwbYnuyfQbLSzAC5evMTJk8/Qapn4a5qt8fFx7njrO16WtXvu0rW7biZUa6qGrukYRphwKEwkEiUWTxCPxTHCEXQjjCDJmK0G9UaDUCRCOJIine5EVQ0EAWTFwAjHkBURWdUIBAFRllFUlZARwXN9mvUKzXoJAn8t3NLBdVyMkIHt2OB62C2bZq2C2SiD4KL5Eo1Gk0Qy0XZrCzx8zyaiR6nUSuhaGEWR0FSNUDhKIpbg0cce49d/+3doWBYDPV1s3rSBpaUFjj39NO9+z3s4c/YsU9MzvPGNb2Jyom2CsrS4wNLiItu2befk6ZNUqmV+6eO/yD/eew+xZIpDh/YSC4UY7O9jcSjDNrEAACAASURBVHGeZLIDTVMxTZNQOITr2YyP30IiFsE0rXb+l+8jCiKC7+DbHtnsImfOnObgwf1ohkogBHh2k3iyi7GNt/DAt+4jrTvks6sIokw0niad6KBQnEFXNBLdYwiyhCIbRCNxapUqridQWF3ADxwUVcNDotk0icfSCKKAasj09Q2yeesuYrFOHMukll0mHk/xuje/jb7+HuqNFrIooUgSclTltz71G0yMdnF9apHiag7PSNM/Nsa2yS0IgYjpeBzcv/tVBGCtfmIRAGgjAIqisH3HLfT29xGNRhFFkVgsxiOPPMSNK5eZuX6N5ewyXd0ZoskEludSadbRNI2+gUHyhQKDo8MUSxWKxTIt22LHjh34tkV3VwZBEJieukGrWcdzTRynTrmYpVopUCjk2hw+z6JcytFsVPBdh1arhY+w7hIhCALlcplSqUi9UW27FzQaLC0t0Ww20bUQjXqL6anZ9rQtCLA9jy9+8YuYpkmhUGBpaYlqtUqxWCQSDTE/P883v/ltQMRxXfRwCMH3qFYKhHSDRDSCiISsiCiKRq1RIxxPsJLNIgpe239dBPHfGQF4tX6MJUn4votv1sivzHPl2hS+KDBz4wquYyEj0CgW0NaCbCRZJR6NYbdMrj93hoGeDM9dvMDE5Ab+4i//kl//1G9y6dIlLl+6SLNRJRzSWFmY5vFHHkWPJVheXmQ1m+PgwXZ4yqlTp2jUqxRWFsG3EQWfsAoPHvkn4okOWrZFIhHDdGx82pMYPwBVD+H7PlariaG2/bcFWXnFsXF+2ioSChMOh9E0jXA4TLPZboRrtRqlUtsKNJPJUKlUSCQSpFIpVldXSSWSuJaJZ7fdUY4ee5Kx8RG2bdvG5cuX24imJDA1NcW9997Ll770JdLpTg4dOsCBAwdIpVKMjQzRmUpiey6ea5OUXerzV6hNnyViFylWC/T29xCKRZnOZTn+3CVuXJ9hYWaeeNRgYWEB2zZpNpt4nkej0UBVVbZs2UI2m6VYLHL//ffT0dFBEAScPHmS4eFhJiYmSKVSVCoVurq62L59O4cOHVj39F9ZWeFTn/oUU1NTCILA7Owst99+O57fvq739fWRy+cplUo8++yz1OtN8qUyDz30CPVGi+xyFk3TSHSmGRoZpqNnEFmL0Gq16O3OkIxF2TQxzvBAP8lUBLNZIiI3EAILQ9PxfYhEIiSSUeqtJtVAJV8s8ezRR1ADG8Mw2LFzK13dGRKpJE8dO0q91mBubo677757HSkeGhqiWCyyurrK7Ows6XR6/f8Ak5OTTE5OMjc3R29vN6Ojo4TDYUqlEslksi1CLRQ4dvRpALZs2YKu62SzWSzLWkeLXo56gSlI8IPDI1mWkVSlPenWNIxQCCMcJRSJEEmkiSXSyKqOomuEIwmi0QThcJRwPIURTaBH4ihGBCPc/jee7kDVQri+h6YZSIpCIApIqoIogSK2aTySLCCIAYEAjmOhChKRUJjAdTCbLUzTxDRNWo0mgee+wK40CAIuX73Clm23tNEEx2ZkZIR0Os3c3BwdHR185jOfIQgCdu7YxfLyMpcvX+a73z3OgQP7mJlZIl8sYlkuc3M5Go22VWp/fz+FXI5Gq8ny8jJ9fX0A6yF5C0uLLC0tUcznqBRLiNKao5wdtPnzroMg+oQNDUVRCIV0zGaDRqOBa7WzAv7hK1/h47/4C5jNMpKiIsgasihQKubaeiLNIByOoKoq93z1yzTrTUJaiGq1SiIZwfMDAkGkXq/S2dnJ6soSnuMR1g1cx2RyYpSvf/0+NE1DEQTq9TrVcpmLl65QKhSwWnVqpRyJRILXv/5NOK5H4Ars3buX226/Hc/zMCJRUp0daKrxcizZV2zJ//KPvLJLFEUGBse5FjmDJCr09fdw49pVxEaJwoKDGjIQ9RCzy8vcvmU7s7OzROIxOgeGEC2bSqNOs96gp7+PLRsnmZqawXNtlubnKGZzqGoIs9EkE49TrWQJRwzcZnvf5AsqK1aTQAywrGabK+h6uLaDntBorSUQt0UxJXS97RNcbzQQBZAE8BybAIH5+Xny+Ty1Rpt7+7Y7302rWiOXy9HR0YEgQdNssbS0xPvf9x6+cX+DWDrD/gOH+JP/+kcsryySSaYRVYWuri7OnH6GsaFhbFMg0tlLnyGSHB5j575DyOU8viLjCz5CIPD8PcAPc2B6ldrzcpcPgY9j1jj5wFeJ9XTgqWE6Mx1Uii102+LKtXlqM1cpoLNcqaBKDlFF4Oqlq0R7+li4cJq5qet856HH+PD/8AnqNYvp2Xn6hzM89ciDVHM1isUlhnuSKLLGk6ee49pihasXrlEx2xzg22plyguLdOd6uXTmLOeOPcxdn/40ngt+3cfzBIxQBFHRMZtNZFUFxySkKeTzDZCiWKZFIhInEAUEUXxV0PsyVSgUYmFpmWqtTqa3h2Q8juc6VEpFEMAwDCRBZHh4GEPVOHLkCCMjI1RrZarVKpFIDF0PoalhVpbbAtLR4RFGRkZ44IEHOHxoPwuLS5w59QxXL13kU7/+SdKpDnbu3MmZM2fYuX0TtmXy/7P35lFynPXd76fW7q7eu6dn32c0I42kkWRZki3JkiyveAcCmBhI4DWEAIGbm5N7D2SDBG7uDRDCS8Iawr4E8A7Gm2xZsrVY1j6a0ez7TO/73l1V94+WBuHXdgzJG5mE7zl9Rl1dUzrz9NNdz+/3fJf5xQVkHQKKQuX0E8wXSuQsNiZsftL5InlFI55MYyuWqESXUc0MDQ2BC9QfqK+vp1DSiUQihEMRqhWdTZs28/Wvf51de3azevXqmoCyqRW3283CwgKf+cxn+Ozn/p7bb7+dhoYG/umfvsTb3/527r//frLZLBMTE7S1tbG0tIRhGPT19WEaAqVShampKVb395NOppienubgc0fIF2rFSHdvP6JpksznmTo/wqYrt1OSKuTzefzeeoRyilwyjcUKqmnQ6YLZyeMsp6LU+ZtwOPzkCmWMookuBjiflfAaceJTQ0jlDLe+8U1IooLNWuOC+wP1LCwssH37dvr6+njggQeYm84wMXqeQqGAiMmmDYPMz88TCtWCMDVNo729nWPHjvGnf/qnPPnkPjKZFKIImzZt4Pnnn6exoRXTNFm3bh3TM5OcPn2arq4uGhsbSadrgVKXC69kJ70SznUBsiz/4r5ls2Oz2bBaVWTVspKbIgkGoqygWm0IpriSCyCKIrpZo/HolSreukZyuTQ2mwNFklBSKoIgUS5VURRLLZRMkvAEmigUCgiCiWa30tXdQaGsIwg10TIVHatTYW45SrlcxGKxoSgKk+NjzM3Nsap/gHIxRya2iMvWwf/7d1/GuJB70NvdxcL8HFuu3EogEGDugnmIzxvAMKG3u509u3cyNTXF1MQkoVAUixZkYTGPx+nC63GTTmUR5Zo17/z8PPWBFqLxGPue+Sk37b0eUVFwu920tLRhmjr5dPLCjoBAXaCWjxGOLFPM5vBYLFTKeZLxOKVCkXwqhq++C81Th2nkcbhs5PNOBF3E5anDVBSuvX4ngllFrxYZOX+WZp8HvZwBU6R/dS/VcoUfPPp9/ugP/4RSOcvXv/wPvOnNd7P1ilVEQrNUzSrJyDJ1qpXpySk6u3vI5uKUKyVEu4fbbr+Lb//L36ELMrIgMjiwlkCggTvvuJMHf/YISL9NnL8Ur8sdgEsdZy79YL+SD3xzWyd2h5up2RkMROxOB9VigXw+RyKR4OrtO/D4AgSXlxEFgWgozOLMHHNzC9jsGqZpMjAwQDQaJRCoJxZN1Cp9JCYmJzl98hSJSJh0Mko0FEQVRUTDwCznSUaDFDIpjGqZXC5DLByhXChSLdXU5n6/fyVY56JPMRjolVrokl2zEgyGqVzwDu7t7a0VLaLI7OwsCwsLBINB0qks83OL1Pnr+dZ3f0ixVCGXy3H/fT9m57ar2Ll1G36/j/7+fsLhMI2NjbS1tVDI5rB43QSa20mXdSLxBLlMirKsIOnmyuJ/xa7zFWgVrzX997Xaif53te/8tSBcsLAUBGLhIAG7RKmQJCNIKE4XwZkpoguzTA0Ps7iwwKmJKToG1hPP5hgZn2EhFGFs/DzDZ07T2t7FF7/6dT77D59DEkU6urrJprKMj08SS6S45Y47CS3Nsaavm6Mnz7NudT9LoSAd3d3kikWqlTJlU6eQSeOz22mur2NqeoJCoUCpWEaUZSRZxUBAVawYpkkxm2ZhZpJAnYeKXsXqcGDIKpfwv17y9/5SRfrKBcKrvfZb/JsoFot0dHTQ1NRUcx+LhCiXy1itVlwuF9VqteaxrmkkUwk2bBxkanqSpaVFpqeneeqpp7BaNKLR6AUe+TyVSoVDhw7R1NREa0sDXreHwXXrsSgqkijz/e9/n/HxcW66+UbWrllNnc/FFRs3IGgaZcPELGSQKzkaKJCam6QcW8aRXKSdND41id+vo6gmpVKJvr7eFccip9NZCz6KxKirq6euzscVV2xk69at2Gw2vF4vLpeLb3zjGxw6dAhRFLnzzjuZmJjgueeew+1288QTT+D3+zl48CBzc3PcfffdrFu3jltuvRmPx0WlUkHTHKxatQpd12sc/mwBVbGQTGfwBepIpVJEo1HS8Qh2i8Jjzx7CXt9MKpsjlohjoON2uMlkckSWIoyfOYlQyuO0O0B0gKQhSgJV00q6rFCIhRk98BhqJYtFMLjxxhsRZYn6xgZ2X7uHzVdcST6f5+c//znHjx/nDTfdTDFfAMMkEY+x+5pdxKMxVFmp7V5EIiwvL/Pggw8SiUQYGhpiy5YtyLKMpmkcPXr0gjPMLP39/UiShNvtJpvNEgqFcDqduN3ulUya1wMubVJdfFw8JklSLfVXklAsKoIkopsmiGLNGFi48HuCUKMcX/JTlFUMHSRJwaK5cHp9SKqDqg42zYHFqiFJNSvdfD6LKYLNbsfl8eFw+ZAkiY6ONlwuD6rVimkIiKKM2+1GEIRa+q4oEovF6Ovr4yMf+QimqSMKOs/t34cgK3R1r6LO463ZmyKw+5pdzM7OEo/Hueuuu/C4HPh8Hj70oXfzla9+mUgwRDIWJ5fLceutNzN0bhSfz8f6jRtYDgW5553v4Pjx41itVnbu3EkiEcPr9ZPLpVgMLlMtlSgXChQKGXTdxO1vQFQtmEjIskwmk6GtvYuOzl5smp1MNsV7fv/3UKQal7+tZy3tnf2UqhXKehWr5sQEFNWKZnfh9dWBqZPPplmYnwVBR9McZDIZ5ucWmJme5Y1vfCPVagW73c66gQGyqSix4BzZdJxkKkO5lMUopdm4fpDJ8QmsFguCCTYRrBaFwY0bMas6bp+XsydPYZUV7v/ZT/nHL36JcrF0eSbp6xSvywLgteLiYtMfaERULVy5dSuSIuPx1eP2NWK113iCocUIfoeXRDCCxRAIOD2YmQyKDPVN9eiVas0+zmrhzPAIqUyGallHFkQaGhqYnpriB9/+PoIuUMwWiSdTFMsXqD56iVQ0TjqZIZstEgmFERHIpjMrEevVanVlF8AwamEixWKRbCZFIpGo3QwiMRwOF5lclsbmJu677z5kWcblqgWYdfWuomrCG267nR3X34q/pZNKIUdTnYeJoTPk0wk0r8bc3BwbNmzA6XRi0VQ0zYqnpZ75WIXzIxPkylmsgRbsLV3YKiKVX7Ei/u8ewHV5YNT2ug2dbDJBPBjE5bDyob/8C2RvPU6nA1XSsVtNPL2r+OBf/z+8/Q/ej8vnJ4PCdDTNNTfdTKpY5rljZ0iWq/zoJ//Ki8cP09HTzdCZSbp7BulYtZHRyWXuuutNHPj5QyiuAJ/9zOfoXrWarVu3cuTIC8yNjHLVNbtZDsW4//4H2bNnD5HFWfLFFLLLRiyRoKzX/P1VmwaKhKZKOG0qkgz5UhFFs1IVBQRR/jV5/L/FfwQuuvsUi0UqlcoF20+IRGudYputlopaLBVIJGJompWmpgZUVaavr4+uri4mJqaYmpohHI5iGJBNZanzeehoa6FaKhIMLVMo5mlsauATn/gUhgHLy8uMnR9Bs8jceMNe1q3p5a47b+Dtb7+TRCJOPJ0im83idCrUOQTEShBZj6CUEhjZNC63HafTweDgRk6fPk2xWGRpaYmHHnqIQF0DH/zgB3G6HLzjnfeQy+WIRqP81V/9FQ899BCJRILrrruOTCbDnj17GBkZ4dChQ6xdu5bNmzfT2dlJJBJh+/btPPDAA9jtdk6fPk00GsXpdPPisePkcjlM0yQYDBKJRBgZHcPt9rIUXKyJ7hUTM5skH16gd1U3B4+/iM3uYm4xiupwcPrsMEtLcQpZhUrBoCI6KJYFyqaTYKJIrlRicinHcChG9sgDnHv8J/S0tXDj9TcQj0cZ3HgFoqwyO7/I2bNnWbNmDevWrWNgYICx8VGGzp0lX8jh83kIBpfYv/9pnnvuAFNTU+zatYvdu3ezZ88eNm3aRCKRYHh4mMbGerq6Oti4cZC+vj527NhBMpkklUqhKAptbW1omoaqqtTX19PY2HjZ5u2lTcFLHXhe2iS8dDfAancgymotiZda48sULqh/LnwF6eiYoolskamaVVQZFBlk0UCWJCRBwqpaUDU7ompBtlpRlJq7WaVaIpOKkU3FEQ0diyTz3ve+m//jjz+ExWLDbnfi8njx1QXw+hqxKC6qxSr5XAZMHbfLwbEXjqBIIsFgkOPHT7IcDFPWjVqBUciysDjH5NQ43d3dWCwWzp8/j0GWQjGNoii84eZb0Kw2Ng5uYMOGDbjdbpwOKy63l6MvvIgsKZw+O0RXVxcvvPACNpsNf52HudkFLBbbSpp1qZjHooJVk/D4mnD5WqhvbqsJgkWFfMVEc/uJpgrIssxycJFcLkOhouOr76BahY7WDqxWN7phUNULmKKJqlgRJAtHjj5HsVggGYti6BWmp+Zobm6hqbGD9rZewqEYE/NTLIbCdHasYvT8FJJeIZdKYrW5wCySDC1QLOTYtmUTpVwJ0ZDIRJaILy3y4qHD7N6+jWQyiYhAPpNFL+vc+87fJxOPXp5J+zrFb3QBcBEWm5Xe/j5kWcZmr3WCPB4vpmmiqlZGh0eYnZpmZmKSUjbP6eMnUKRaut65M2fJ5XK0tLQQDkdpbW6hq6uLvXuuxTAFFhYWQBBxeT0IgoTd7iSdTlMoFSkW85SLFQr5PLl0BoyaE0A+n6dQKAA1r+1isYjT6USW5ZXwnXQygSjUtijD4TBdXV14vV4KhQKaw8X8/Dz5fL4mdLJYiESjlMtlfnLffaTTaUaGzpLJZAgE/CuplNl0hubGJurq6ujpWUW1WMDbECCeTrNm7Qbi8Tg2mw3RasXm8tY6y+Z/iSnwXxrCxfdIEPB4XGTzBcr5At76RhKRBD0DA8zOzJPNZsjmCpQNnaossXPvXgRVRlWtbLrqKoplk7vf8U6WFoMElxd58dhhpicmCYdCXLF5Cze99W4k2YrmdDN6vuayshDM8PG//gSlQpHPffbvWTe4gdn5uRUnif0HDtDZ2sri4jySJNHZ2UkunaZczFMplhAqFUDE7fRgsdhwu7yoFjuyqPDbYK7LC1EUaws8ScZh04DaYsNut5NMxleCv1RRwe32Uq0a2Gx2+vv7yWazmKaJy+Xg6quvxmq14nS7aGxpZmRslMmZaZZCQa7edhVbr9xCc2MTt9xyM3Nzc4xPjOHz+fAHAvg8bnK5DIJeYuTsadatXQOmSTSZolQpUqzkkTUN0WpFVayoci0lvVQqMz46RnNzM7FYDIsisXnzZjRN4/Of/zwPPPAA4XCY4eFhNE3jmmuuYWlpiZaWlpWdjYcffpjbb7+du+++m4MHD/LYY48Rj8fRNI22tjZefPFFFhcXOXfuHHa7nWg0TF3Aj8/rZWpqCkVRMAxobGwmfMHRp7m1lUQyyfkTL2Kko0hCrYMsyAplQyeSyCBJEo31DcgWJ4rqQseCq64ZXZCRZA0DlYoJxXyGkwcew+O0omkax48fJ5OIIysiy8vLeDwetm/fTjKZZHJyktHRUY4ePoJVtVDI5SkVijjtDpobm3jjnXexfft2EokEwWCQpaUlBgcHWb16NYuLiwiCwOLi4soY7N+/H0EQ8PrcADQ0NJBOp1FVlVgsxvnz5y/bvH1tRhGvfvwX+ZUXdg8EavdDwajx4NFrNN0L/PxqtVyjDdVcM7DZNGw2O1arFaumociWmqtetUKpkCOXy/A7b7ubf/3hv2KaOlVDp1wuI4simUwGq2rDYtVWiqvsheRmUTCJxyJIilzLYqgLoKoyba0dvO1tbyMQCHDqxGkOHTzI8wf2c93eXfT2dBKPx5mcnCYUCaObBk/ue4pQJEquUCSZiBEJB7n22mspFoucPjvE0RdGeOyxx2hqamLTFRvwev2EQmFUVV1x8DIMLqwPBGRVpVwuYRgGHo8P1epAc7jo7u5GqNY6+t5AI5qm4XTayeQKiKKE1WrFFIyVsdfLOpNjY6RTMcKxKOFIgjWr+1EkmeVwmJMnT7Fm/XpsNgvFcoFCqcLmLVuQxJolsSyL2DUnkqBz+PBhTL0WAmu1alhlCYEyhVyelpYWjh49SiGbo1ysUC2XSWfiJCLBX3/i/RfE6271t1KZv8xn+OXoP6IoUjUMEoUkmVyGqmHgqQvQ0t5GoK6V+kAbglGmks+gChZymTzZVJrm9jaOHDlCQ12AtVdsQFJVAvUN+FxO3HY7U7Pj+OrctLW0cWroHMPjk0QiEaanJ5menGBibJSFuXlGzp3l1JmTpDNJ8vkssiQQT0SpGGVM0SSZSWIIBhWjSjqTZHjoLOeHR4hEYhRKZfKFCqv6e1lcXiCVSaLZnGRTOXp6ukEU6O7upqe7G1ER+MCHP8DffubTfO1/fhaP3VK7OQ2PEUumKJQrKKaEWalwbuw8Vs2B2+ak6nBQKpqUCwlUWUaWrGRzSVwePxVJQHoZG8ZX6vJf+vxX0QS87LVekgp8aRL0v7278JuS7vra0oz/zXNNEcM0QReIRxYQbDaEXBZTtVJIFjAcAQa37KGKiN9ipTHgJivonJ6Z58jZKTwujca2Lu58690MbN5MOpXg03/7KTpaO3DZrLS1NfHss8/w2b/5c86OnGdsPsjVN1zHzq1b+fQ/fp77fvIDDjzzFJVKiRMjEzz55D4cikJHeyNnz89z9twQfX19uB1+FNWJTVUoJWKUsgkKoSUAVJtGrqhTNRRkqxvBWIn9fvmhu5Te83LzwTT/HU5Ar4Rf5f36zYdBjXLY0toMgkkyWeN2FwoFKsUCo0NDzE5OkE6l8Hn92KwaGwY30tLagWmaxONRbrvlRrZs3YQoS+zas5tSpUhnVw9z84sMj4xjCgbjk2P4Az6OvnAI3SiTTmX4wQ/v48ixk1hsGrt37aS7q4uBtavp6Gjh+j076Wxrxm6VkEWBbCxFOVMgWyigaBbcnkZ83npuueUWZEGkXMhTzKWx2SzsuXYXmzZt4tZbbqNcrokUNU3D4XDwhltuIptLU6mW6Oru4NzQGc6ePsNzzx7i7re+hY62VrxuF163i2eeeZbp6VnGxiYI1DUgygrdPZ1YVBHRlGisDxAJJxg9P0E8mUbXTRoCjVx33XVYbA467CZqZITE3DitnZ2kihUsNpVIqpYjk0ulEWU7orUOU9AwTTdGRSSTKzM0Fiabj/Dotz+H1+Nk45ZNfPDDf8hn//7v0PUciihw7uxZfG4vqiLzzNP7MA2dH//oXylXK/jq/CTTKbZs2wqiQHtnB/Fkgnw2g1VVMPUq2UyOmelZ6urqsNttaJrG+vUbuPfe9+F0unn/H96LxSrh8bho6+hgYWkJUxCIxGJoTg2P33NZ5+7L3SNeShU2RQEksaY1EswLuwQXE4RricKCICEIEpIJsiAjCzKiKaKICrpRyxZAVkAUkBQVURZQVAmo7TgoNg2Hy42vvhmHpw5DEKmaOlW9xLYd2zl88BDrBnpwaSqioVMo5Bk5dwbVakHT7EiyzO+85S2YkoKvoYl0JsMzz+yjqa0dTbGxNDfLYnSZaDLJF7/0Fe5/4GkOPfMcu7f0o5OmEJnkup1bKGQLmKJA2dCpmOB22Th35jhf/PwnKOaSWGSTyfEpntn3NH/5l3/J9dfvpKGhgfn5RcBgYmKMtQPrSedyFCpVMBUkQaVYyCJS+64QDKgYFb70T19meSFIfX0j+/c/Qyq8QCK8gObwcubUCwiijmqxEosHKeSKVKsG6UyS5eVZZsaHefGF58gkI1hElbm5CMnYQo0JUSrw058/RmNXL63NTejlEghVJMGkWC2hWC1oLhslNErVCqtWrYJqhe6+bjS7QjKZJp0OIUky//BPX+P2O+5gcuws2WSM0NIU0cg8M9Mj/9lT9XWN158N6Cvcz1+Joy4INTPKtrZ2JsfHETNpZBEcgRY8dV1YNDtCpRYMIqsqqkXB5/dw+vQp9t50Iy6vn5GRISqFEnq5zOTEBNFImKXFeQBsdgedq7qRZJGl+UWqVYNYLIbP70dVVDKpDIvzC9Q3NgAmSwuL+Px+DNPAplrIZTLIoshyKIQsiYgCOJ0uLBYLyWQSi8VCLBajra0Nu91OKBzBQMA0dEQT7E4HJ06epGtVH7feejsf+IM/4KotW3E4HCSTSVpbW0kmE5QrFeoCAaKxOL5AHY11ASSHi0wqQyS4SLZSobO7C6fHRWdHO82dfSvbpi83rr8KXunL+KUL/1c675cP/OL4pTqQV7u2VZUvn62X8ZIQu9c8ji8979UKqtp8EEyR+fEXKCYjZFIJXHWNqDY7VdMgl0yxMDbCqaFzVFxeLHY7ToeVDdsGmJmaRlUkTLuV5fkZDj//HG+4+RYeuP+HrNswSDpfYt3gBgTZxhtuvZ01g+vIlYoUUlk+8Cd/wiM/+THved8f0NjYgMdl5+TJ4+SyWaanZvjAH38Yn9eP0+0lmcyi2jRsmoZpVDCNEnanG6vNZEmXQAAAIABJREFUjolINlekrq0DFNuvvm7/VW1CXw4Xi4ZfC/+bqEqX0Qb09IkXPt7Y2IQgijgdTlSLiigIRMIhBAFamprxuN01weDCAh0dHVSr1QudfxcOh4P5+XmeO3CAK7dcSSIWJxwJ09nZya5du7DZbBw7doyenh4ikQjDI+e49to9ZDIZOjs7efrpZ1jd14/L6aGh0Ud9fT19/T34/B401UJzQwDBrDDQvwqrKtHU2oSsWvD56gmHQ+zasYXe7g7S2UxNjHvwIFdfvZ1MJoOm2RgaOovX6+fAgQN4vV5Onz5NY2MjR48epaWlBa/HT7lcZsvWK1e4706nk02bNpHJZLntttvYtGnTBYGnSDKZpKmpiWhwifGJCQ4fOcHo+BTFUolAIECxWOSmN9xAfX0jY2dP09/ZikCZdDpPCQsNAS+i5iCWK1KUrKQsHmK6gm73M50zmIhlKVo0SrLAj//p4yjZJXbs2M3G9WtpaWmivaOdWCJJLJYgmUyiqAof++hHueGGG3jkkUdYvXo1weASV121jVgsusLfn56epqenh1KpRCKRqDm46DpT01N4vB7a2lqxWm04nS5EUSQYDLFp00ZmZ2eRJIn2jk72799fK/Ldbs6dG6axsYm7f/edl2Xunhud+viKiFeUkCSp9m9JQhCEleei+MtUoYvnSJfc80yzluGjKMrK9QVBWAn8VJSab70gCCvC4Ys/VVVduaaqqkiSVOtE2zQQRCrlIt/4xjcINLXy5x/7CFu2bsUQRL7/nW9yw/U3YBo6Vb3K2rVraWhqRlathKJx8hWd2+54My6Hi/37n8RhV0kk02zbuoWrr9pIoVzkhSPH2Lu1FQmTf/zCv3DL7W8kFosSi8ZZ1dPJ+oG17Nm1my9+4as0NNczNTXH7779HoqlApl4CJfbweNPPI0qqzhdboLhCOHIIjabHbfbg2yxY7NZSUSWiceWiYSXOXTkea688gr6+1cTTUQ4feoUqzqaCM+MkE1FsDt99K7ZiClCuZijWKq5vqWTWQoVA81mwSyVsFpUGptbWZibQKgWuWLTOuyeZnbfejPJSIbte29mamKI+3/yI1a1tqJXdNq7VyOIKorqpGpWeeThB9m7+1q+9u1voqkKX/nql+juXYUoKazqaWd1bxsef4BIZJFgcArBNJAVjda2Pq7ZteO3NqAX8LrbAXg1vNoi1enxYrFrlMpVTEGgXDawO1043S5Uix2rzYnVbkWQBSamJymXiux7ej+z83OosrIiHPL7/VSrVZqbm5EkCVkSmJubI5vNrgSAeTweXC4X586dI5PJ4Pf7yWWyxCI1flmhUECSJEKhEMFgEFEU8brc2O12ACwWy4qwyuVy0dDQwOTk5ErCsCzLeDweotEoxWKRQGMDM/NzvPs970GVa2K7ixzdDRs2gCTSt2Y1DrerFgYlicSTCZAlDF3HMKBcrTI8ep5SqSaC0fUa9//17O7zW63BRdQ60NVSCUk0MPQS1VKZsdER7JoVl8uBxaLQ1d3BNbt3EQ6FWLVqFVuv2sbVV+/A6/fx0EMPsry4xMzUBKZpcsXmzWzdsoXvfe97OF1udNPgqu07OH12iBeeP4zT4eDP/vyjHH7i5wiyzJVXb699HsQadcTtdqM5HTjdfo69eAqnw00+n2f4zFmi4UhNCOf0YrE7qVR1YrFaIjaSDAj8Nv/r8kPXTWRZRVWtF+iSKm63m7a2Nurr66lWqyt0me7ubkZGRigWi6TTaSqVCl1dXUiSxK5rruH4C8dIpuIMDAzwwgsvsH//fnp7e9m2bRuBQIBgMMgPfvA9CoUCa9asYd++fTQ1NfDcc89x4sQJRFHB56sjk8nR09PD+nVrqFaKdLS10t3VjiQKoBvU1flWvjePHDmyEgC5d+9e7rjjDnRdZ3FxkaGhIUqlEtPT03zyk59k586dKIrCxMQEq1evxuPxYLPZa6Jnm0pvby/T09PE43E+/OEPI4oiJ06c4PHHHycajWKz2XC5XJw/f55kIoFmsRKNx9i6dSuqqq6EhX3ta1/nxltuZWKq5pwzc+YoSmaRdCZBMFsgXtIRXV4qqpW4IREuGUwnsiRM0BWJXCHDzx7+MUIpj9vtRJUkmpoaiIYjzMzM0NzaxvzcAn19ffzsZ4+wY8cOxsbG2LVrF5lMhje9+S7Gxs+jqBKjo6MrAW+nTp1C13UqlZp5hNNpZ8uWzTiddorFPMlkklKpxOLiInv37uWRRx7hjjvu4J3vfCf79u2jrq6O0dFRzp07h9VqZWJi4nJP35fFq+1aX3o/eanRyEtff6XrXdxhAFYKg4uPSwsQq9WKw+nk4POHwBT4n1/4IpVCnlKxyDNPP0UwGKShoeECXflCmrBpIssyGwY34W9oYH5hAafLzcCadYyOjq7Y8F69Yy/xNLgVJ5kCJLMgSBI2m4X29lZCoRAlvcL0whKT8yHC4TDlMhw5coTh4WHC4ShzczPYrJYVDYjP58NisVAoFFa0ioVSEVOvUMrnwTRYu3Y9uq6TTMU4f36YO9/0JiTFiq4XAINyuVQLQDNFSqUKds1BOBLEMKpoVhVZEknEo7R19hBoasNqtWLXHCiKgkVWsShWdu/ejSiBZrNx1ZWbMYzaeq6qm6hWG5rDidXu4K2/+w7ymRRXbt1CqZCjvi5AIpkmm8mTSMSo6iXCkRjlchkBnVK+SDFfwu+9vDtXrzf8xhYAv0QDQqBcMbj5tttpbO7A4XKjaRoW2YLL5aK1tx9vfSuSJFEqleju7kaSBJaXlylWqvh8PibHxzl37hxQs7+z2WyoskI+kyWfz/GOd7yD1pY2FhYWyGbz7H/mAKVShZMnT9c+FMkkmqatuP5MTk5y/vx56nx+Mqk0pmkyOzu7kup78uRJurq6GBoaIpPJoKoq1WqVQCBAT08Py8vLK2mPf/jBD2CYAh/96Efx+tw0NjaiqipXXXUVs7O1bdxQKMTk5CTBSBhFUWhqasLl1nA5PbS2ddLY2kxnV1dNk5Cvhd5cTDB+veK/ZQHwss42BoIpIiJgGkUkuWZx19XdSiy0SC4TxxXwMDF2jkg8xi233EIqVRNSzk5MsXnzZjo62/j+d7+NZFaZnBrl2aPHuOeet9PV1cXn//ELON0+vvGd7+IPNPDVf/46j/zkIZrrurjl9nuYWlzkwHMHsWka0cgyXreLM2eG+NjH/pxyxeTd7/8QoxOTuNwObJKERZLJZkrosoOsLpLKZkA3aK33YYribxf/rxOsXjtAoVyiUC5RrJRr2qR0mnQ6vdLpr1arpFIpTp8+jaZppFKpFR74zMwMyWSS8fExGhoCLM0vEI1GcTgchEIh8vk84xe+V9va2jhw4AAej4u77rqD33/379He0URTcz2iaHL0yHHOj0ygV01y2QI+j4ONgwP8zpvuwGW3sHP7Vt7whpvI5XLEYjHsdjudnZ0rDmvhcJjFxUUsFgv9/f3s3buXgYEBdu7cyVve8hY+9KEPsXnzZtxuN9FolCeffJIffP+HdHf38v73v58jR47Q39/P4cOH+du//VuOHj3KunXrCAaDmKZZE0z6/bVFn2EwPj6OKMrEksmV7rDT6aSQr/Inf/rntPauYmJxjuGD+xj+6b8Qj8/w9Nlh5ssCh8cnePj551hKBlmIL1AycsSDUxz88df44Sc/gmP8AE1uJ41tPaxb143baSWdTmOz2Rg6N4Ioytx3333s3bsHv9/P7Ows4+PjNDY2curUKa6++mo2btyIw+HAarUSCoVob2+nWKwFe23evJl8Ps/c3NyK7eXQ0BDWC6nzNQeZW9m3bx/79+8nkUjUPNgVBU3TLrjGFC7bvL20o/9K7oCv9pokSSuL9Usdg156v7no03+x038x3ffiPfOlP1VVBVGmXDWo6CamKTAxMYGqOckVBBq8frx2OzMzMwyuX8edt92KxWJZSW03TR2Pw876tauRBYENG9fTt2aAL37xmwwODrK0tER3dzeFQoKPf+pv+JtvPM/jh6fA6qcK1DcGiITC2DUbkpHnm1/9Jh+893d5773vZvv2jYyOjjI6OoOvvmZV+r53v4O1A2sYHBysjYUhsby8zNGjR1AUqaZdqBRxO2zE4iFa2tpq5+kGb3rjHWTSOWxOL6qqoqoqJiVK5QImKqrsRq9KpNMJ4okIlVKRRCyCx+Wgd2Aj6SLIigV/QzPjoxOElpc5cewE1+++jvnpcR7/6aN4HHYcDg1vfR2a04avzstnP/cZPL56Tpw8i2RW6ezpxjArXHXVVSTSab793e+CqWO3STzyyM+wqnYssh1RsWO12ImFpv4TZ+rrH6+LAuBS3v9FLriI8EvVNvCylBBBEECQsNls1DW3cn5qiNnpOcgVoBxHLOeQMLG7nNg0F6qqEVqeJxYKcs2eHbQ1BBg6eZaGQCMNvkYkRcZis1EoFFCtFiqGzqrOHr7xz18nnc8Qi8dZDgaJxWKk0mn89QEWgiGcLg+xaIJisUgynqBSKmNR1Bq3LZclm85gVWy4nD4yqTR2m0bAX4epG3i8flpa20GQaGpqxOfzsLQwRzgaYWRijIceeYRkNMa5oSFisRg9PT1Y7RqGKKDYbYyOTdDS2k5jUws2TWN8dAzZbiMTT7K0MEepVGJheYlSpUJfdxdGuYJern2Bi69KPbkELyHr/zINR7zk8avjpeKsS/UAv8rvvm7wmuwpX4Fj/nK8dkHGFAwyuTBuiwaGgKT5aPAFaqFy2TxGWSeWSHPtzt24vD6SyThGuUA0uMTC0hw7b7iZ5XCISCxFnTvAtsF1nDp9jnf93ru55557+MI/fJ7x4VEOP/c8Dz/4NPWNDXzhS3+HCUQiEcZOn2HD1m0Mj4xTKpXwBzwcP32CKrAUjNHfu4piPk9rdzs2u0ahmCUZiyIUyxj5FJoG2UoRwVQQdAPRMF95nC5SdV6LBaj5Ktd5Kf5dc+XV9AG/mRqBaqlIQ52fgM+LKtUySwwEHG4fum7icDioq/NjtSq0NDdhmiZtnV1IqsLqtQNoTgf1TY1Y7E5CkQTICpFYnIamZtYPbuL02SF27tqB0+0hnkiTTucZG5vi3nvfR3dXD7Ozi1hsGifOnEGQYDm0RCabwqLKmKLEho2DRMIhvF4vFlVmaX6eTZs2E2hoxeWuIxhcwuvzkEklKZfLuL0+vvWtb3Dq1Am++tWvYrPWGjKf+tSn+PSnP00ul2FwcB1TkzNsGNxENBGlqaWZP/2/PsbatWsplUq8613v4nvf+x5brtzKY489xk033bBCz1ycn0ORBQTFgq+uGVOQyOZy2DQ7m67YTLFURsAgGVkivLSEXtYxJZH5xQWiJ54mUIkxOXSS8eFhvE4nrlIcXzmBJzWDNHWMwvxpXGIBUZbweB3s3LaJ5tYmZNXO6jUDVHSDbVs3c9utN7Nty5U89MDDDA4OYpomV199NZFIhIE163jowUeIRuIk0xnGJ6cY3LiJuYXFWvdUs/Ojn9yHy+WiUChw4sQpPG4/e2+4kXgqySc++TecPHOSQ0deYO36DXj9Ae646410dHXT1dNLKpNldnZ2ZTf7csM0zf9lsX8pJEXFFH5B+RGEC2Fd6BhmdaUQuHgtqC38BUHAuJC8XuvOGyDKlComhg65bIFctkC5alCq6BRKFXTzgmZAlDAFUCwabq8Lq2ZHF+HNb/tdkpksnU2NuD127vvpAwyPDKEbFcyygSSo2OwOTFNEFBWymQKpeIrrr7uGHVs20dLcSCyWYXxyjEOHn+E73/4cH3jv79HT0Ug8uMTC3DRul51sOkUwlEWUwO6y8d3v3IfX24Rokbhm9zZSsTDtjfWUClkUi0x7eyvZTIqW1gbC4TA+nw+9UqJSKjM8OkUwHKHe04BLs5O/ELj39W99j3ymiKibVEURyaahWi3ML8yAqWPIOslUuKbDkWXymTixWAhTtiJarUxOjNLZ2Y1glJhdmCccn2NuZJSZ2TEWJ8dZ1dGBzWqnKlgwDQFZ9SApGl29A/zo/gdZ1T9AoVpCKldI56oYYp5169bha/Cg6zKSKCKjE4xEEUwTtyZDMUYisvyfNzl/A/C60ADkS7/gUf/Sx/c18MdrBYCJKEJV11maHiOXySNWdUqVLJVKvia4sVqRJQWbzY6hF5FFlfZVPYyOjJLNZNAFMCUBs1pheXGR5aUFGhoaKFaqeHx+FhcWufGmGzk3PEw2k+WKK67g/PnzmEBdXR3FYrHmQx0O0dbWBiZkkimWlpcZHhmmpaWVo0ePUl9fTyi4jNvt5sSJE7S1tWFQ6x6MjY2xfuMG3vTmN/Pg/fexalUfre1t+OvqSCUS9PeuolQssW79evL5PPFEgpnZGQr5PJFILQnPNE22b9/O/Pw84ViY/jVrmFtaxOFwokgSq1b3I6kyqqrh8vqRRBHhJYXWy+J/efnSA+Ylj3/jMr9KV/81nmZVpMuoAdA//kvPL/3b/qOKEwMMU0cvZ1keO4VkGtR39IJqY2xyioWFBRrqA7TV+Tk7MkL3pvWMDZ3m4X/9Lk889ST/32c+TXtvP3fe+SYaGhqZnp7Aqsr09ffysT/7M97z+79PJpnGEEV2797D8RefZXBtL9fuvp6B9f2cHjrL5oG1jE9N4NDs9Pf3EVpe4NnnnmXv9TeRS8dpbm5CstjwtXegiBKKrGAaOunIMk0NPnTDwOIOIKlOhIvOGxeH6RX+7JWC/7WO02UtBn/N//syagCeeuyRjyeTSWKxGG63G5vNisPhqHWzXR7KlSq6ALphks9nUFUriViM5WAQQRBwOBwYhkFF15memQVETp85QywaxzRNxscn6O7p5sknn6Kjo5OzZ86yML9AXV2ApaUlopEokiQTi8Uv7IIqBOr8ZDNpfD5/jSNdqVBf30A6kSQST3L85BkQrZimTn9vC1du3ogsKXzr298lFkvw4Q9/iH379nHttddSKBSIxeNEIhGq1Sr5fI6HHnqE9977Pu655x4++KE/4tChQ2SzWV48dozNmzcTi8XYsmULY6Pj+Ov8rF7dX0trt1kQDQNREDh89Dg/f+wJDEEhHo9TKpUYHx+nUCggyxKiINDU2Ei1UsHj8yApFjLxKMsjx8kuTeGuJiktjPDCz3/I4Ud/wvypwyzOjCJXywhmFZfLyf/5Jx9m7cAaotE4MzPzfPe73+Hhhx+kq7OTZ57eRywWo1gs8uyzB6ivr+fpp59mcHCQ06dPcdttt2G326kLBHA4HAD09PRw+PDhFeqJosi0tta4/9WqTnNrK4cOHSISibBp0ybcbg+PPvoohw8f5obrr6c+EGB6ahK9WsUwTCqVCn/0kT++LHN3eHz64xcX/PIFvv/LdfoFAQy95ubzS7sDlzzXdb0m5lWUX9ohqFQqK4WAoigYgkwulWRhZpLxkWG+9Y2v8+z+fTz+6E85ceIYRqnIwsIsAb+HaHAZWQKrxYbP56Jv9SCqJHH7rW9g6NxpnnjsUd7+zv/B3htuppgrXdBkVBEwsNlsmAYIiMzPTvPE44+il9N4XDYCAR+hcBiPt45CrkAmnWBNfx/nhoZZs2YVqXgM9BJepxNRdWG1WYmn4rS197C4OE84FMLusKNXdTatX09LeyNjk9NYrXaqlSrJdAKLWkttn5gYo1QqsfmKK7CoKplMnFBoCUESyOcr9A0M0NXaRCY8T7GQwR9oxeMO4KtvoVTMU8ilCC7OUudQqeplTEElVyxR39iOIKn889e+zN1v+R3mZsfxexzYnQ5++tOf09nTjtfjwuVy4ws0YYgqmtuDxeJi+NxZrtlzHbt27SW4uMDs5Hm8Hj8/+NEDXLNrB6Ko0dLSQLVQxqgWcfvc2J11GJUyimxSzWWIxILc+dbLo115PeI3ugC49DVBqNEizp8bwjRMFN0gnY5SKBewyBJ6uYSq1mzkKkYFq2phYWmRDRs3kEym6FvXTzKdJB2NEImEUWWVUDiIbLGQSNV4lAeefZZ733svI8PD5PN5DMMgnU6zZs0akskkDocDu2bDMAyWlpaQRYmunm6KpRIWixWLxUKlUsFqUSkWizQ2NqIoCo4LoTutra3EEnFME2LRMOlsjqnpKfw+H6JxIfEyn2d+bo6qriNJEhPjNS6m1+vF5/ORSCRIp9Ps27ePnjX9yIjUNzfT39XDldu20tTZhreuDrvTVfNGliREUfp3FgD/m/DbAqAGU8AwdHLpOLnwNJlMhuaeAZ45eBi7prG6r5dyMcf+fU8jaBKBpgABj5Po4jzveM+9fOKTn+KBhx9iaW6JUHCJYjHDxisGUS1WDjy7n8WlBZLxGO9+9718+Stf4a8/8ZdYhMpKB/MNd96JWi6SK2TYsf0anjvwDE6HjTtuvwOn10/Xmj6eeexRQvEkiiAxMz2Dx+3FarVgFFPY7BqCYkF21iFKFrhQArxSufjSXb+XnZuv9dh/Gn7zCoDhsyc+3tTURCAQwGarCbMrlUptMaQoGKaJ3W7H4XDgdDmJx2Kkkkm8fj+RSIRUKsXs7CwtrW04nS5KpTJbtm5l9Pwo8XicdDqNpmnYbDZ0Q6e5qZmxsTEURaG3t5f+/n5aW1vJZDJ0dXchSTI/+P4PmJyYYO3atbhdTkRBpJQvUiqVOHz4GJlsAYfbRyGfIRacxeNxUiqVsdhs7L3uehRZZGZmhnK5zKpVq5ibW+K2227nxPGTLC8vs3v3buyaCxD4+8/9Pe9617vo6enhxhtu4PHHH+e6667j4MGDCIJEMplgzZrV2O12LFYVCcjlskxMTDM9M4sh1MKzgsEwGzZspL6+Aa/HXeNPFwor45bP5REECatexEqFTHAWMZ9EL2eod9eSZQVBYO2afrZddSVXbFiPy+MgFArz1JPPUKmU2HPtbnK5HKlUiqNHDq8kx7e3d2C32xkYGEBVVUqlIqqqUigUCIZCK4Jtl8tFMpkkHo9jt9spFgv4/QGCyyHa2jo4fOQITU1N3HXXXTzxxBPU1QW47rrrVrRo586dw2KpJehOTU3T3t7Oe+593+UpAMZ+UQBIr0L1qa0JRFRZwjD5pQLgovnFxQJAlmWAlQLgIjVKli/sjJnw6MMP8J1/+SrPP3+QcGiZuZlpXA47J188RqVc5PkDz7K0sIBeLTMxPsbgug001PvQnD4wTDSbhQMHnmJkZIQP//H/jSEoCDqIokA6E6VaLSLLViSplkh85tQJMqkIV225gro6B1OTY1hUlXA4xeLiMh63l1BwmWy2wNTUKB6PG8o5fB4HLw7P0tLWTlNLM43NjUxMTeB2u9ArVTAFfD43+VKWZCrP1NQszc0tJFIJbFYHgiBgt1lwulz09a8ml0mTyybJZrO43S6+8KV/4W1vfSv/8Hd/Q2uDB6fNgWJxojq8mGZtzPPpJFTyCNUCeqWCN9COKWuUKlXcvjoeefhBtl+9jUhoGQWd7u4+ktki115/HbphYIgKmt1NqVpF0+wMDAzy1a98kW1X70SSVKbHRzl8cD9Xbr6Cm2+/g5HhMSyKne9975uYFYHWlkYSyQjzSxGSiRRP/fwJenpqIvq3vet//LYAuIDXTQHwi27fL3h5Kx3Cl/lwX3ocDExTwDBMFKtGOLiAUciSz2WpAuVsFqFawABESUCyyNgsDgrpLKeGTrN6zTpQYOLcELMTY9QHAtQ1NNDX18/UzAyqtZYkmc/nefH4cbZs3Uq1Ul3xUi6VShdi6UU0zbYiIi4XS5QrFRqbmpifW8Dv92O325EkkWw2iyjW/JzT2Sxut5t4PI5uGszOztHX20MineYv/uIv+PGPf0xHazMYkM5mcbicuF0uME26u7qIRCJs3boVr9fLyZMnWb9+PTfddBPPHzlKR1s7TrcDj9eF1+tFtloRJAVVFhEUBVNSUGVlZTxfEa9WAAhm7anwsie+Jrzce/xy7//L4bIWAPpLXIBezWnm112gmgKGqZNJRqikQrgCzajOmljdqojkskmGhs/yprvfTqaSxaYqFLNJKpUSnX3r2Ll7L4JZxdSrnBs6w44d2zl18hSKqtZ818sl4pEQb733XjYNrsflcHDm9DE2rl/H1OQYo2PjPPXIg0hUcHob2PfkT3lm31Ncu/c6DMFCU1c3Tzx4H7feeRez80s4HS6KhRyCrpOIB/EHAiBK5CsiomRZubnqprHCw31pgif8Yiv+5cfkFQqDVxrzV7MU/Q/Bb14BMDk69HFZlikWixecUOSVhZAIKKKAaVYp5nOYmMiigGBUyBZKqGqN3njllVcyPTNDMvn/s/fe0XHd173v55TpFTODKehEJ8EKFpGiqEqRtmRLcpVlJ3L8nDj33SS+cXJj35tyrazUt97yei/VN7l2luO4RXKVnFiWZYuixE6BBAiA6H0ADKb3ctr7Y0CIlmTFvvFbsle015o1AOac3wA//Oac3977W7JUqzV6+/rwuD00NzdjMlmoViqUyiUCAR9PPfltHn30UURRZHR0lIGBAeLxOJ2dnfzjP36e5aVl2tra+MUP/ALlcgmTLDI5MYFaVZibnSOeTNPgC7K6vkZ8fZWT995BOBREFGXGxifweH2sRpfYu3cvNpuNp59+mltvvZ0///P/C7vdwVef+CozM7N8/9nn2LdvkN6+XiqVCo8//njdFbu9nc997nNENq/XO3ftJJNJs7S0xI6B7WysrwMGpXKNkWujhJtamZycpKenn0KhiChKqGqVarW6hesuFUtYbTZEDBTdwNANREFAMwxKlSrFYplQY4h3Pvg2Bvft4tbDBxFlg2KxgizLnDhxnPm5Sa6PX6fB6+PMi2fQdY1cLsf+/ftxuz3UajVSqdQm16KFubl6V9DhdG45zfp8Ppqamjh06BB79+5lcnKKaqWGxWJDUTSOnzjO1atXSSQSXL16la7ObpaWlnC5XIjo1KoVEvENerq7SCTTFAoFfv2jv/mGrN3r0wtbKkCi8DL59kYiYDKZNruHBoZS5YVTz7Ktu6++rkUrgOdsAAAgAElEQVQRAeOHrjvAlnLQzXAgRVEQBIHLly/yz1/4PEOXLjI5cZ1YfJ1EMkm5XGRpeZmqUmNmeoZSqcTY6ChTkxNMz0wxcX2SD3zgvZSrCoZRQ9UNCtk0ly69xGOffAxZqO93alWFTDZBqVTA7fRSq1YQRJnhqxeplAvEVqNYTBJqrczE+CRevw8QmV9aRraaqNXKlIs5TCYLdlnAZrVx70OPcvCWI7Rv62YjFsNskjlycB87+ro5d/Ei0egismSlwddINpenXK4gSiKqYhCNRokEA+RyWbbv3oMgCmQyKTo6evD5gjzwrndhl2Wagw4KhTxWm4eaLnBlbIL2lggmqT7H5WIeEyqCAJLDj8sbpKoqfPzjn6Cnqwu/308hlyHssdHQGOLuk2/H7fXxxBNfY9e+A+Q3TdJ0TeGRRz7IH/7hH2CxORAkkRdf+D4P3XeSC2fPUTNqTIzP4fa6GL1ynoceeIjnz5zG2+Bjfn6BE289ybnzL9HT00XFEHnfBx59MwHYjJ8JDsC/N4SbWnqdvb00NoVpb29FNAQMXSAeixNbW0dTiuhabfNmV7853X3XXTjdLoYuXaRWKOC021DVGhZLnSEfiUTQNI21tTX279+PJEksLi6iKAonTpygUCiQy+VoaWkhEolQKBSw2+3Mzs5SKpWQJIlsNktPTw+ZTIbx8XEsFstWpSEej+NwOIhEIiSTSQBSqRQ+n48dO3fy1a9/nXvvOY6uaqytR5lbXMDj8bC6vsbKygo2swWHw7FF5IpEIiiKwpkzZxAFgWw2WzcesdtQ0X+o2mFodXOSN+OnHD8uJv3Hjc2bmyzLpLM5ZJsLQZJpDPhYWlikVCoQCgcpVBQ6u3sJBHxMTU0g2yx857vf5evf+AZf/uKXSCRj7Bvcy9WrVwmFQoyPj5KMb7C0ME88ts7S+HXQdObm53nu1GlGR0cJ+nx0tEa4/ehRdmzvob+/n//x2CcJBxvZvr0PwxD4f/74zwiGIly8cA6n04nH48Xr9SJJAoZQr8iqWo18PrvlPFssFlGUTTftTbLdDVL6DfLpzST1m2/Wb8ZPJ1wuF6IoYrHUryG6rm+p6ogYFAsZsokE5UqpTgxWquiagizLzM/PY7fbGRkZwWQy0dfXR1NTE0NDQxw4cAC/30+1Wt0iBa+urvKpT32KkZERDMOgo6OD0dHRLTWZ97znPfzKr/wKuq4zPDzM9773vS2ltKGhITRNIxgM0tDQgMvhpLGxEb/fz/nz53nqqadYW4tRKBQYHh5mZGSERCLB4OAgn/jEJ7jrrrsIBAL09vbysY99jIcffhhJkqhUKrS3t/PJT36SwcFB5ufnOXz4MBaLhba2NkwmE7t27eKuu+6iUCjQ399PIpFgY2Nj654A9e7rjfUZi8Wo1Wo4HA7S6TSVSpVysYRSrVEqltENDVEWKZaLyKLAOx+4n7ZIkGIhi8/rYW5+hkDAx/7BAwwODvLxj/9XEokNIpEIw8NXaGttJ5lMsn37dsbGxrh48SITExNcunSJX/7lX8Zms3Hs2DF27dpFoVDgoYceYvv27ayvr1MoFFhaWmJsbIyuzm727NlDOBwmGAySyWTo6OhAkiSCwSD5fJ7e3l7Onz9PJBTmyktDWM0WlpaW2Ldv35bR5RsRr+IAviKq1SrlcnlLqvPbT33rNa8dN0tgv5bAyI2CxNLCIvMzk0xMTJArllBUHYS6k7kgmdANAdWAmqajqirpdJqFhQUuX77E7/7uf+Psi2dYXV1BECT6+3fwSx/8IHccO4LbZeHU83WFJZPJgiTVzRElSaJUKjE3N0cul2NtLcbs7BwWi43ERpLF+RlEQWfHjh2EQhG6erqp1er7Gl3XyRdKmK02TGY7gcYIdpuL/YO31McWDZweG2azmXyximZAc3MzgUBgc71W8Pl8bGys09BQJ8yLoojD5cHmdKIZIpGmForFIqlkjDPnLyBZrPV9UCGPrqkUi0Uq1RqKpoMgYgh1qVQQsdls/MZv/Brd3d11krrdhlkWMUky2/t3omkGqlonRMuyjKFrVEoFPv3pT2/9fTVNIZvPUlWr+P1+MKrcefsx7DYzhw7u4/JLFxjYPYDN7MLv9/Plx/+ZtpYgVrsD2Wr7aS/Hn+v4megAFCvK1i9hAAj151d/KI3NAp6BINxM+rkZMgD+QCNLM9eRDAkMGUkyo2IQaAxiNZnRNIVapUARiZqk0btjO+nlNcbHx/EGm/E0+DFZJDLpFMVSgcmZKTaSG1y4WNe0rig1dg3uJb6xQSGfp7Gxcavt2hgMsLC4iN1Rx9LliwVUVUWUZawWK6FgEEHXWY1GKVbK9PX3IUsiyUQcpVYlr9WYmppiKRplcXYORJFzZ85w9tJFOru66evuobW1FYvFQvu2DuKpJAM7BxAlCUEU8Hg9OF1Oenp7afA2kEynkEwSkdZmfP7ApjW3jmAISLKMWTQwWewvVz9urubf/HhlCCCIwqsLqq917ms8BF7d0Xn1W9QXws2NhVd1gQywmN9ICNArOgA/yanCy8yJV5GeBeGmJELHMGREQyG1PI23sZlSRWHq+jBtra34/QGam1qRJNCqZXKFFG3t2zBb3cTWNwiHghw9egyL1UaxVKSjvYOe3h5C4Sampya4//63cPLEScqlEi6HnfVYgpN33875M+dxuR309ffxW7//uyzML3H02G30DO7FqqpcvnQRm9vF1770RYKNfh563y9Qq9YIt7TU17vLjVMSuXLhLKGWTixmMy88f4pMKsHY5CiVQpb1tVVUVWF2foFCobC1MStXShj1mcFARK9pGJuTpKNvsQiEG3P1k8ZPvRPw89cBOPPCs495vB4UpYYg6NSqJTRNwWG3ohsagiiCKKLpBg6bjWwqSyadwSRZ8XkaKBdKxDfiJFI5bDY7a2trRMJBotEomUyaUrnEHXffgyjJlCsKp194kbn5BW45fIQGv59HHn6EbC7N7OwUc/PzZDJpnj99mqaWFt7x4EM8+bWvIQkCZrOJYrmMKFtZWVtjbmmBhYUZdvT1oqgGt99x1+a9QefcufN4PF7e894PEEukOHToMI2NQYauXCGZSrP/wEEafA187etf447b72BxcQGHw0YqniTYGMZhd3Hp4mXiyQRXrlxlYXGJzm2dOMwyIyMjpFNpXjh7Dp8/wMzsMg0NASwOH9lCkfZIgM6OFpojIaYmxtm9c4BCqYzD5UQ3dDZiMXbu7KdWK3HPPXdy+MBedu0eoKe/G7vLQWt7G6urazzxxNfQVY3r4+Pomk4ymcJmt1Ao5llbX0FRDX7zYx9jYXERWRLYv3+QXbt28q1vfROr1crY2Bhra2s0BvxUyiWUWg23y8nS8gKJRIJCociRI7duSlp7GB8fRSlXaGttw2K1snPXHnZs38EXvvAF7r33XhaXowTDIVLZNGaLie39O/j+95/lv//+J9+QtTsxs/jYluTmTfCfLVjQpi6/INQNrO48/hZsFhOaISGgbfkAAFud+xs+ADdzA2pVFbVS4+tf+TzRlRWSiTiaoW0lDoZhIAqgaSomWSIQ8GOxWkhvSqpmc2mWl5ZYmr3O95/9HhcuvEh6PcZHPvpb/NKjj3L+3FnsdoEnv/MUu/bswu3yYAh27HYHtXKFHzzzL4iijsvvZVtzO9PTsxy57QiD+/dyxz334PG6uX7lCplUEgSZSHMnG7E0JosTVbbS3dNDpVrFEwjgdDvRijmqVRWPw8vKaozDtx6hVC4zPj7Gnj27KBfL+Bq8mGSZUrnKysoy0aVFlKpCc3svqlLhNz/229xx+ChaMYHZ4eDYfe8h0tJFoZinq70Rs9mDLAroeoVCPouMgm7oVAwLDreH9bVl3O4AU9NzbGsJ47E5yBVTOFwuVJubSqnKzt7dKIaAx+2imI2TTKwS9DZiEaS667JZpq3Fx8bSKpJVwGpoVKtFPvU3f8+Bwe34ZRlRLYDFRXf/Dpbn4tT0PH17BikXy7z74fe92QHYjJ+JBKB0UwJwc7w6AfihV7e++iH3P8PA7LCzuhwls7GKWTZj9wSxe73MzkyRyqTp7OunoTFMS0c7TZEIxWQCWZJQ0SgpCrLFRN/2PkLNTVweukLPtm48bi/NLS1UKhX8jQFy2Rw2q5VgKEilXMFut2+ZjxiGsZmZGswvLNDe3o7d4aRYKHLt2jWs5k07e1UB2KrILy8v855HHqGYy3Pv8eMsr6zwoUc/yM7tO9h/6CAet4f9+wZ57rnnyOfzNDc3E4vF6OrqIhaLIcsy0WiUhYUFUqkU6XSa2267rY5fFQU0VcNisSFLm0YmViuapuFwem9KAP5tyM1r/X9+8vgJz31NyHd9B/1zkwC8Yr5eL7965bGGIVIpZhDKKVQkdKNuqOLx2HE7HNisJrweF6VUjGw2g9lmx2pzEfSHKOQLuJ1uVHQuXL5MIBjme6dOc/8D7yRfqrC4GCVXKlHWNLr7+vFFQqwvL/L5//U/+dCHP4TF5WLnrr3cf//9XB26TEsoRCmd5PQLp2lq28bggYO848EHSGZyVCpVKqUSAHaHg7Juoqe3F4vTy9//9aeolgpk0wlaIkGi0UUWF6ZJJdaYmxpncXaS69eusDw/xcXzL1Iq5ihm01QKefLFAuVqhXy+gNlsQRbNvKw8pb+mKtDrQ9reTAAmxq485vP5yOVymM0myuUShmHUE7BSFQERSZIxmcwggMVkxuttQDKJrESXkU0SM7PTmATwOO2Ihsa2rh5WVqK0tLQgIKAoNarlMts62jHJEsVCnuErV8hlcnzrm/9CS0srqmKgaSo2m52HHnyIWw7dwvnz57FbrbS2tJBKpUGUuXJtlN7+nXz/uecwdA2LSUJCILq8gs/nxmG3MnjgAENDQ8zPL/LimReZuD5BOBwmFothtVp5+umnyeVyLC4ucuDAAQxDZ2VlmbHRkS2J0/b2dlxuN7VajXK5zPeeeQZJgLm5eZqbW3hp6BrTMwvIJitNTREEUcbQdVDKeL12Grwetvf30dvbTVs4yOL8FPt27yDS2MAvvO/dHDtyiKDPQ4M/QGdnJ8899xzFUokXX3wRSZJQVZXlpRXGxsYYHh6mt6efULCZ4aujKDWdUDiIKIqk02kG9+2ri1EYxhaBe/fu3Xi9XkZHR1FVdRO77cHb4EUUJWw2O+Kmgdba2hrJZJK777qb8xcu0NXdzfJKlOvj17n//vu5dOkS8XiChgYv1WoFVVVQVZ1wOMzDb5AR2OTc0mNbhN3XMAJ7OREQtyQ///xPH+PYsYOIohtB0LbGuuGHcwPrf3MCMD8zyRf/6fM8/fS/kslmUbS6DOiN97q5Q2kymbakYldXV5Ekqd5dN3SK+Tyr6+uMXR+nUijyl3/1l/zDZ/8XTz75JJcvvEQk3IrN5KCYyxMJB7DYbCiGjlbJk4ivYehQKFdx2WVawgHaO7qxWFzIhoTZ6eLsuTMEPG5Ghq5iMUSSySwnHnoPdrsdWZZxO10YtSqFxArTE9eo1Ao0eLwk4gWcTiearjE6OkqxUCSbzXHw4CHy+Ty6ruH3+0ilU9z3wNt5//s+wPF77qSrzUsysUaupLJz8DClcgURiMY22Na1HRFYX5xAqxao6pCr6kjA6uoauqLgdnt56slv0N3ehFpOYxHrn33dEuSPPvkYe3b1IEoCtXKZWHQeQdeQ0KlUczR1dJPLqaSSK2yszFKpKDgsMoYocvHiNXq7tuG0OTGbBGwOHy9deYm15Sh9XdsIB8M4LHbe+uCDbyYAm/EzmwC8VpvvhrPf5k9/6PWbccSKDtnkOhNXXqJcKmF1enC6nTRFglTKVWaXFlF1g0qlyNDlyyzOznDq9Cmqiso73/MevF4PQ0OXiUajOJ0eZqZmsNnsWGwWarUamqKyc8cAV6+N0NzSQmx1bUsHOpfPEovFqFQqmGQTiWSCPXv2sLwSJZVMUa1U6OrchtPpZHZ+jkqlQmdnJ5VKhUqlQnNHO1/6whco5gssr6ywPL9IMBhkcXmJ5qYmTJKMz+ejs7OTaDRKZ2cnqqpSq9U4f/48Bw8eJBwOo6oqJpOZarVKMNRIuVjEYrXR4PNjt9sRRBFDELBYLFjtrs35FbcSgJvn9rW+//fLb75iM/wjxnwlH+DVowhY3kAOgKG9/tr9qb2PIVLKp8huLCCYzJhEEbvDikkQMNAAg3g8hl4towsa4XAzimIwPz+PIAjMz8+za9dO7r//fnbv3U1TS9vmBiDG+z70K1RKeYLhCLqh420M4HPZUQuZugSjy01P7w4S8Tjx9TUaQyFCDV6iy0tINhs1RcfjcjK3tML+22/HZbdzfXycgN+PYLagq3UDsLGXLlCt1RCAYCiEv9GPLIvk81lqpTJmWcJikshlUihKlUg4RDaVwuNysbi8hKoqYGi43V5MJvPLlTj0rXb9zfygH9rk3+Bm3Hj81DkBP38JwLWrFx+z2+1omoamqeTzOdbW1kilUtRqSt3szW6vX5vKVUSpfg0ulUpbMC1JkmgMNLJz507C4TDjk1OUyxVUVWViYhKX00Xntm2cP3cOWZI4eeIkv/qRX+Xp7zxNU0sz7e3txDeSpDMJVFXl7NmzPPvss9gsNvr7uhkdGyUSDrMSXWViep6RkVEsNhsCBrpS5eDBQRLJOHfeWa/m15T6Ji0QCJLL53A5XWSzWY4fP87c3BwPPfQQZ8+e5fjx41y+fBmny8n27f34vF6O3HqY8+cvYrPZcLndW+65hw/fQkdbO06ni5WVKIvLq2i6QaVWq5OfawoejxsTKnfceYzR0VFsNhsnTpwgl0vS4PVwy6GD3H77MUKhRtweF+PjYxw/8RauX79e1zDPpHnHO95BOBymubmZzm1dZDIZ7rzzTkZHr2/5F+zZsweLzczQ0BBtbW2sra7S0dFBPB7nXe96F5lMhu985zuMj4/z4Q9/mMbGRkSxDsPzNnhRFJXW1jaWl5aZmJhAVVUEQeDMi2fYuWsXuUKeZCrNanSVz3zmM9x33300N7dw/vw5LFYzPT3dDO47gNPp5Ngdd78xHYDZegfgBgfglTKgL39dP16SJPbs3sna6gqNwRYMQ90aq1ar/dD5UL92qKrK97/7Xa4ODxHfSKBpKlaLFU3V0F/BXQLw+/1UKhU8Hg/xeJxQKES5XEZRavgavGzEU4iSyODuPczOz6KqKtVqlT17tlMqZHjqX59kZHioniibrJitFr7zra/R1dFOKpOnr6+LSGMDC0uLuD0OcoU8JouJ9VgCu9VGx7ZtlMoV9KqO2ebknrc/iCiKxGIx3G43arXMuRefxWo1Y3O6cDrd7N1/hKWVRTLZuoeR0+EkEGhEEEQq5Rq1WgWPx0WpVOLYnXdx+21HWVpcRCknUBWVv/z0F3jwXe9ClmRWlxcpFDJs6+pHqZUpZ2IUcxn2H7qFmfklbGYr2XyBjo4ucoUC01OTtDcFqVXymCQINoZo7Rnk4vkz9PW2Y7XZUasVyvksFrMJQTfQ0TA7GnA4G0gmlsjG15iZXaQ10oinwcfE9VmamoOYRRMYZZCdFJUKPZ19OOwWzGYTomR+MwG4KX6uEoBXdgBea9No6HUt68XxS6g1hYWpSdqbGpFkg3gigyTJePwBCvksklFBLZfxNLjwOr3k8wVsZgtryys0uJysLC4RjW1w7K57cLgcTE5O4HQ66e7sQlM1BnbvolQp072tk2QySS6XY3l5ic7OTqrVKr4GHxarheHhYQrFEjsHdmLoOqsrKwCMjI1y9OhR1tbWNklzJuKpFDazhXA4zIn778NkCKRTaQYPHiCVTBLf2CCbzWKxWFBVlcXFRfbv38/4+DhHjhzB7XYDde32rq4uJiau43I5MUsyNpsdp8NFuVLBarUim80YhoHV5tqqorwyAXi9/8u/L36ycX50AsAbmgC8igT8OvFDc/cqyM+rDv7ht9GgWsqS21hAMlvZWF3A4rBhMctIooEoCmSzSTKFCjaLBHqNWqWIP+AnFApgMct4bCZUpUoyEaezq4tQdzfNHi8vPPN9vB4fZ86co6+vH5fTQaVcYHX2OmaLmd7d+8iVyszNLdLT0YyvMcjXv/JlZmem+J3//nv07NjF2PBVurp6cVgsbMRiOJ1ODMMgm9rAbrVgttr58mf/lm3d29kxMEBPXx+1qoJSLmMSJbxOO+lsjlisjuVuCgcwiwY2i4iuKOSyMQq5NMVslkIhh8PtpFTKIwg6iqJtcQgEQdh6vnkGDcP4sTot//vx85cAjA5feuyGjno+nyMSDtW7lXY7kmQmm80hSTJutwdPg4dcvu4A7HB6EESZBl8At9uPqhk4XR5eGh6hVquh6wbLy8tomo7DaScaXcFut+FyOXnme8+wuLiAx+Oiq2cbq9EVdu/ehShKNDU1MzMzi8fj5cDBA0xOThLw+1ldXWcttkEilaO9q5tKtYquq9z/lhPccdutdLS3Mzo6zB23H2NpJUpjYyNuTwOxjRjnzp7D5/PR3NzM9PQ0DQ0NHD16lObm5s1k4AynTj3Hvcfv4nvfewaL2Uog4Gc5usrp06c5efIkqWSS06dOsWvXLq5cucLp0xdZW4+xfWAAUaxDFRLxGC67jM0iMrhvD7ceuYVatUykuZXYRpx7T5wkncnT1NyCoqpkc3nm5ubRNI0nnniCHQMDPPvss5w5c4bJyUlEoS4UMTk5yXvf+278AR/NzRGCwQCJZIJoNEooFCKTTtPQ0MDIyAhWqxVFUQiFQgwMDKAoCmfPnqWtrY18Ps/i0gK5XB6vt4FQKFyHrDY2sm/fPrb39zMzO8uBgweZn19gx/YdRCKRTRLsS1SrFVwuJ8vLSwiCxNDQ0BtGppycW9qCAInCqyv/Lz+/nBA4rB7cdh+KmEEWrVt7B13Xtyr6NycRuq7z1//vp5icHKtj0gWDaq22BU2u8whNW8cqioLf76epqYmFhQXy+TyCINDW1kohl6OmKBgCbGttQ9dqrK+tUanV2FhfQTQUFF3HarVz7sUXqZRyfP5z/4DNBIVcHqfLxfrSHGOT17ntjruwOZ1UNQmXx0dqfRWXx8mXHv8mH/mN3+Lr3/wu0USadzz8HlRVpVKpYHXZyGRTWGUTzz57mp6B3XR09vLJP/4zGoP+uliKqpLJZFEUlWq1Rj5XwGI14Q94kGWJnu3bkUUTkVATeimDw+3nd37vD/C43fzyB3+B3Tt7Met1EzCLxUw+G0cQYXklimQyE93IIFqt7B7YTyGXIpWIs72vlXQ6CYZMuarwV3//D/zmR3+VfDZFuVSkUsqhlUu88MIptJpOvpDh9NlxPv/Fz3Hn7QfRyzVa2zvQqgV0RNBg374BoqsrmOUanvB2ikqZ1tYucsU0VpsFm9PNifvufzMB2Az5jf4Ffppxc9bf17WNqeFRAgEfVlEjm88jmmRqtTJarUZLJMLpHzzFzoF9FJUqw0NXOHj4CIam47Q7SCTX8TU0YG/wMzx6jeFrV9m3axctLS1bJMqJ2WksNiueAUfdJKe1FUkW6sZbKyu4HC+rMDQ1t6JpGq2trYxn0qTTaQ4ePIjJZKKzs5NMJoMoimiAx+OhWq3S3t5OYT0BmxecUqmE11NX2IhGo8iyzMDAAF/5yle47bbbWF1dJZ/PEwwG2bt3L7Js4p577kGUoFYqIQgClUoFi6UO/RG1TaLNm+TKn+0QBBRFYWNjA6hXtAI+3+bGLY/DbqFYzONwOAiF2xgZeoENQyMSacXjdhPfiONwWijkUuRKVdo6uyiX8kw/930++/efpVJUuDI6SkVV+PTf/U++872n8bqc5PN52i0WCqUifl+QPXv2UIpHCba3097ejkUSqFRKlHUzjY2Ndb11YHJyknvvvbfehRKtdfdp1WDfvn20tLbicHkwELGYLGiaQa1SYWVliWypSqlUwmazkUrGsZoErCYZtVbCZpZAMKHWysxMXUcRBBwOB8FgEEOvwxpuxvFKkvSa6/q1zAT/I4eqqmiahtVqxTAM4vE44+PjmGQb/f39CIJAoVBAy+tbJLy11TgdHR31iqfbj9XuYGklSkdHJ9HoMiMjl+qusTYHXds6GR8fZzW6SqVS4c7b78BsNnP38Xt44muPc+rUKVpb62o6yWSSBx98kGw2y5kz5ygXMlRKYXp7e0lncxRKRWZnZ1laXuYtJ4+zY8cOFhcX6enpYWBggIsXLyKZLDz55JMcuuUoDz30EH29/fT19TExMcGzzz5LqVRClmX27dvH4mK9u7q+vkqpVCKdTtPe1rUl0XzgwAGeeeYZPG4XO3bsIJFI0NTUVO/oRqN0dXWxsrJCsVhE13W2tbXT0tLC4uIiXV1ddWy5xcyhw7dwbWyUlpY2rk9OsbAwx+TUdRbml4jFYrz3ve9FURRGR0c5cOAA1Wr9c9Df308+n+f69TGujQ6zsrLCbbfdRqlU4u1vfzsXL15EpP4/ueuuu0gmk+TzeQKBAIZhUKvVcDqdZDIZmpub6d/RRywWx2QybUmxRqNRnnjiCe44djuLi4v84Ac/QDZZAJieniYQCBAKhZAkgba2NgYH9xJbT9LQ0PCGrdkfRQJ+VQeQl2GAmqbhdDiY25ijJeTZOudGF/HmsW5s6i2bbriybEJXta3jb1T+rVbrFtnY4/EQDAa3IEUADoeDcDhMKZ9D1w0MDFZXVzE0BYfDQa5UxWxykIhlqGgCNlsD/oCPmekpdLWK2dxAMODH7nQxm1ymvaMTs93BykqcA4ePUcgXia2vcOTY7aTzJRzuBn7ttz9OwNdAIp1CQsDj8bC2EcMswuDBWygUa4Ram6lUavz6b/4Xsok1JsbLKIpCb28vV6+OACL5fBGPN7y5noKcOfMC+3YdqEOHZTOibGZ6ehq3201XRzvlfB5JLeCwmdA0BavNSa1SAq1MPp/HZHbj8zdS1erz29QU5uL5s+zdu5dUPEMivUgiscGf/vEf8eH/45fqTsQSaER/luAAACAASURBVCaR43ffgyhY0FF58JF3YpgU5qeH8Hp9GKJASctTKJXo6e6gXCmiaSqSLOB0e3B4vNg9LjLjedpaWxDM5p/6evx5jp+JDkCxXNv6JV678r8JAeIGZlqoS3nd9MCoP+toGAiYRPjb//ZhcvlV2pp7yYkSAZsFSjm8zW1Mjo2i5VP42rsIRdooFPP0DexmaXUJk8WM1eYgFIowNjaGzWHjbffdx9TiPO9+//tocDpIp1P4AkFMJiu6ANVSmR29PVTLFQRRJBwJYzaZsFqstLe1U62pZDNZKsUira0tBEJBctkcuqbjstmxWK0IokA6m8XhdNLZ1cnc1DTlWpWaqjB06QL79u5BNzQcjrq5y/r6OqOjo+wY6MdiMmGVZCwOK9VqBd3QuHTx0iYWV6SolFiNruCwWesSoJKMWZZBEHG7vQiiCSQNgdc2BXtdsu6PuCC/fvyEG7DX4Sa/oRAg9ZXdq5dN0X6STebrHauqGtSqxKOzaNUk5VIVl8tBPp2gmk9jQqOQSZFNxgk3hhm9do5Svsiz332Bbzz5LKeeO8cX/ukJ5qcXCYUDfOrP/ghbuUAxq/AXf/dFPvD+B7jzlgHaIxEiPh9/8NifkMyo/Op//SgObyc2u4QkCIhajemJcZZmpjG0uoJEQ7gVi81FdGaUvh2DeBr8mM0yjaEQqlJDUyCfXmHk8osMvXSFnv4+WjraUAwNQdCJb6zib/AyMTFJvlykmMzWJfaUGpVKgaXFRVZTOTRNR1IKWE06Ib8Hs1FGLRcoFbIYRoViIU61WEDQLVSrFUTRhGYYGLqGpmkYhoEkiQiC+PLKuzHnP5Vk4OewA3D17GMCOrquoiq1umxxtUa5VCKTTTG/MEuxmMfb4KZWLVOr1Qg0NhJoDFEpl8gXMuRyKcxWmXKlhKqoiLKAbDIhiBLNzS109XQxfG2E5tYWctk8Hq8XTdMZH7+O19fAox98lMefeJy3nDyJYegMD1/l+vVxQo0e9u8fZDm6wtLyGkvLUdKZHLphUMkXOXnvnaQSa7i9TkRZYGpqFm+DD9li5vCRIxQLZRLxBIcO3cKlS5fqcp1d3disVgL+AEcOH+HZZ57GabfT2tzC86ef513vejffefpfWYku4/d5ia2tszC/QGtLC3OzMzQ2+vne86eYnltCEAUqlTJrq6u47XZ2D/SzurLEtrYmpqYnueOO24nHN7gycpWTJ95CKpUhmYrxJ3/yJ+zYvotctsjo2Dj/45OPUa5UGb12HbfHzcZGnIcffjdf+vJXaGltJZvLcuvR28gXSuiGQLWmEgwGaW5uxuv10t7Rgd3hZGx8nB0DAzx/+gWsNhtXh0eIr8dYW1vBZBJB0MgXKmSzWRwOe91QyuvB5XLS4GtgYWmBRDLOwQODjAwPsXNgBwLg9bixOxwkk0lk2YTFYuPcuXNUq9U3rAMwPbf8mPSa8B9js+pf/0ibRAkBEAUBwySh6yq/9pEP8Y73vg8My6YYhbHlJsyNMRFYXVrh4sVL2G1O1taiaLqG2WzehExJgEC1WsMqmUEHl8dBoVRAqVZJJlMcu+1WvA0u0qkUTruLdCrDtrY2EskNGkNhVlZWcDsduF1OIs3NVMol4uurbO/fDqJBKpumuaWdZCpNf18vmVwJh8NNLlMg1NZOLl8g1NRC67YeHN4gnd07aGvrQKlVqdQqOOz1gojZbEZUK1hEibXYBlaHA8kTwEBm9voQly8M4fG6UGoq0eUVmpqbmJyZxGY1bcL9KhgGnDn9Ivfc+Q7KhVUy+QyBlk6uXpuku3cH29qaePzLX6QpEsQdCKJoRt1zIp0kU8hTQ2Ln7gNYZCtPPvnPRELNHL31dlxWmJ6awO8LIMt27jt5Jw88+F5cDQ60KhQKRf7p8/9Ig9+Hr7ERs9VGpVRCM4ko5RrOxjZMFieFbAzZZMaEhmwLk4/N0tDQiDeyj2whQU/7QS4OXWBw3wEcVje33n7szQ7AZvxsJAA3QYBeNwH4Me6xdUUVHREYe/obqJUy+QoEWlooJmPkUgnKikqDr5H2jg4Esw1NU/GHGonGYxzcvx+32821a9coV6tEWpsxSTIjV4f53d/7Pf7mb/+WlaVFOrZ1UK0p9PR043K7KRcKXH7pEtVKBZfbTaFY4MyLZ6hUKgB4vA34fX5ESWRtfY21tTXcbne9muv3Y3c4OHvuHG9/4EFKxSLNTU1EgiHsNhsmWcZsMdHe3o6maRTLJTwNHqx2K3sH9yIhEAwGuXDhAr6Af0sSbPeuPczOziKKIh2d7TicTgINPkxmM4YgYXc4ECQJs8WOKMlIsvAjE4AfN27mCLw+V+BHJxOvdd7rjfVGJgC6+nLyWo+bq87/dsL0Y70mCAi6Tj6zgazmKRYKlPIZrOa64UoiUSf+VspFoiuzpKMJoms5zo3NM70Uo7G5g1/5zx9FEnQOHb2FX/vE79O6rZ+Wjm5kq86dRw8QCnr40G/9Bd/49jdZnrjIF554mo/+l9/AZLVjyDLVYp7pyeu0tbaytraGUqtyy5GjVDVo9PlocDlxeiPUBJlwczOCIVIpF9FUjcTGOhPj42QzGbq6upBlE7LJgqbWsFmtOO0OFhbmKVcL3HbkVmaXF1B1nampGTY2kmwkUkxNTmAS6zfsgV37yBdLOJx1IqUsSsTXY6STcWanrqPpFfK5LIJopqbUNlv1dRk6Q3+5Qidszu1/1ARgfOTiY2azGZPJhKIolIpFcrncplJMhXK5yvTULLJkplDIEQgEMJvNm3ylEhICVrOZqZlppqamcdidNDe1cm1kFLfTjSxJSKJIKBikkC/g9Xi5fv06x44dIxqN0t3bzerqKsFgkG9+81sUi0V6enrqkoSpOD09PYRCIebmF4lEWiiVy9SUGl99/ItcOH+OPbt3Mjs7zdTUFMduu510Oo3JaqFUKhEONSEIAvlsHlmScLvcRCIRisUi+/bt4+LFiwgY9Pb24na7CQYbSSaT2O12BgYG6O7uRhQlisUSKysrzM1O8fzzL2Bzukgk63K21WqVQCCA3WYjm82QjMcwdIWevl6KpRJutxu7y0Uul+fChYvMz88D8NypUyQSce6++x6+/vWvc/LkSfbvH8Tna2BtbY2vfvWr3HPPcQRB4JZbbuEv/+JvEEWZ9vZt3HXXPVitZr785S8Ti8UQRZGNjQ3sdjvZbJZt27bx8MMP85nPfIZjR49y8i0nUJQaBgbhSDODg4Mkk0mmp2cYHh6ms7OTSCRCtVpl9+7dzM/PI8syszOzSFKd1zY6No7LVYeJFotFisUijzzyCDt27X1jEoD5lcdeCfe50f2/+f4hixKwCdkR6wnBfW+5j2//y5Ps6N+FgIBsEusqfaKIcCMBEEQq5TJ//Vd/wcLiPIZRl/28Ud2/UYh0OhyoNRXF0Ojt7SYcClOr1UgmEywuLqOoNTraOwg2BpiZneNd73wnCwt12FexWCQUClGrVZEkieXlZU6ePMnGxjqLSyuUShXa29pQajUCfh8ej4dwOMy1a9dwOlwc2H8QDTOixYbFYmf//v2srKzgdDiw2+2YrVZEUURRlHoBSRRp8AWQZCsOh5vUxgZXX7qESZZpb29BEAWsFgsWqxWHy4ksSpTLZQKBAE6nk+npGY4cOkQmuY4/HMbuCbBr90EEs4kL506TTG7QFPbj8PhRVJXY8iyZVIr1eF2VaHpmDo/HSyDg4+rQMCdO3Et8fYnZuUkikTYuX7nCrn370QyJVCrK1aERfH4vR48cplQqYneGkExW/MEAmiCTSyeQRBld06mVUigGyIKBJpgwKhmsLjcV1crC6gyNDSGO3nknf/qnf8Idd53gliOH3kwANuNnIgG4YQT2ynbcK1t6r4ZJv/oY1RCQDRVVNDP7wjM0efwkDRGXq4HE0jzjVy9jkgwcThfReBKrCdweNyVFQ5BF4htxrg4PI4gi6xsx7nvb2xgaGiIYDJJOpsim0ywsR/nIR/4Ts1NTzM3M8L1TzxEJhcjncxw9fIThayPYHQ5amlvQNI3m5mZ27N7N3OwszU1NXL58aUvTemVlBZvFiqbr9PT2sLa6xtzMLEq1RjqZYn1tjVKxSFNLE+3t7czPz5NMJ7A7bFitFkwmmQvnLhCNRikUC3R2dbG2tlZvMWbz2O12vF4vFrsNt9ONIIgUiiUcTheSJIMoYrbYMVusiBLcmOWfNAn4cTsEN/30f2vM1xrrDU0AlH87Afhx/obXeu2HNPBVlWopw+rCKOVSiXKpQGI9yuLCAn5fgFKxQCGfJ9IU5qlvnWZxPcOj/+n/5Bff/QBvf+vdaNUctx09itPjYHZhiabe3ZjtTr70j5/l1iOHcAcjvDS/xod//bcZ3NXDyNQCd99xB1arhCpYMFGjVirx+S98hUO33ML42DiJTJ49h2/DsEooAkh2J5pqYLXY0DQdQweTWSK6vEIykcQig91mo1qpIJtNGOg47DaKxTySAIZWwWazka1WuHTpKiVFYG0jQyKRRCnnCfp93HbHHfgjLTQ3t+LyuLFZbFjNFtx2B067mZmJK0yMX+GbX/sas7PzpDJpXG4n5VIJTdXRdBWLxfJy1e/mBODfRQz++UsAZiaubmGp8/k8lXK5rgBULiMYEgICfp8fTVXr+v+SxPjYOHNzs0gYpNMp8rksC4tLYAikk2lURcfQdcKhELVamWsjw0iiWO8q5LLYHXYEUagLLVy5QigUYmZmBqvNSjqdoq2tlWKpyAcf/SDf/NaTpNIZunv6OHf+AosLK8TWEzRFGrBbTXjdHt7y1pOoqsrp0y+SSqV49Jc+SKVSoTEQoqWlhae/8x062tux2axMTk3S3d3F0JUhgsFG5ufmyOfzHDp0iNm5GfL5PO9///u5dOkSiUSCleUovb19aJpGV2dHnaMwt8DSch3OVCgUaG1tZX5+Bl1T6Whv5m33vZVYfGOrQp9MpykWStx77wlsNjv/8A+f5fjxe7jvvrfy1a9+ncOHD1OpVLj80iVOnTqFruscOXIr6VSGaHSVq1eu8vGPf4J8vkgikWRk5Bo2m5nBwUFyuRzZbJa7776bUqlEtVolGo0Si8W45557mJiY3JSmbmT37t14PA1Eo1GGh4c5cOAgnZ2dKIrC6dOncTqd2O124vE4Xq+Xnu4eMpksbW1t7BjYydDQECaTacuPZGRkhHe+542RU5yeW37sZtz/KzH/W2TgmwtRIoCOyezC47bg9XgQBHFTanhT0lOSEAUBVVEYvXaNc2dfpFgoYKAjyfIWrNAk1x2gW9uaiaczBAIBenrqhPFcLoemaYRCQcKRMFaLhe6uLkZGRqjVKtjsViqVKvl8HlmWaWwMYLFYOHDgAKurK8zOzhKONCGbzDRFIghAOBTE729gbGyUcDhER2sbz7/wIv5ABLvLhWwyU91U8LJYrVg24XxQVzcy2WwYgoRmgNlqpZhJMHLlMkMXL/OLv/h+nvvBKaKrS7icLkrlMjaHnXQqhSAI+P1+3G436+tx+joDGKqKu7EZi9WNbLIgopNNbRDwNeC0WHB7GqiUisxev0qlXMRkddDe2orZ5qS9rQOzReb0c6e47cghqpUCHrcLu8tPLpdjW1cXc7OLVApJREFCqZURDR1Zkmhu30Uo3ES2nEG02KjmUyilCpKlLuterdVQlRpWpwtJrVDDxGoiyci1YWxmkUhLB8fuuBNDN3Po8L43E4DN+JlIAG5AgP5N9ZlXnPdaGykdAclQqOom5i4/j1aq0rJnH+VylfErl9FrKppaptHnJ9LaQT6zQa2m4vT5cbodXL50GW9DA4JYx/L/4NRztLa3kc3lcDkc+H1+1jY2WI1GURUFUYK33P82Rq9dY3DvHiavTzCwayfBUIj1tTX8fj8mk4lwSyser4d/eeopBgf3MTY2RjAYBGAjFsNqs5HOZBi5Nko6naa1tZXWlpateVDUGmfOnGHPnj3kshkqxRJWk5lkPMGth2/FwKC1vY2hoSHETVdLSZQ5ePAgqqpitpqxWC047Q4sFgt2hxOLxYogSlisDhAkZLOI+EP+Cv9/xk9v/J+tDsBPFj/OPBuAVlOolXMoxQRWqx2LWeby5Yv09w+g6zo7BnYSaWpmanoRkyuIYDKzvbeD+clx+no6aQx4sDvdaHoVXddxNoQwEPjcp/+Ww0ePYnF5+J1P/Dnve9fbMEkCnkiY//sP/4j77zuOzd5AIbtBMZ/G6vCgVMts29bO0so6uw8eQbaYsVpsWGx2RE2nVimTLxSx2uygVxF1AaVWJRGLIug6ugCt27ZRqVTI5bJYTCZKpTzx9XWuXB3hpbFJYhtJdEOipuoICJhFjQ998Bfp7e3H7vFhNt+4Id9Q8pAwdJ1kYhW1VmH42hjL0VXS6SSaUkMUQBZlrHYbVqv19ef/P0gCMDZy8bEbhmu6rlOt1A2UarUaEmzBgpxOG9lMGofdjsVspsHnY31tFbvNyvT0JLJkIp/Lk0lnCDQG6eraht1hIZ1J4XQ68HjcmM0mOru62L9/kHPnzmKxmHF7PJw7dw6Xy4XZLBMOh+jp6WZgYAfTU7N0d/fw/e//gKvXrtHYGCGfyfNbv/WfCQd9+Hw+BMHg9PPPUygW6dx0ro0l4qiqSjaTR9d1CvksilIjk0kjiALNzU0oSo0HHng7XZ1dtLe38+1vf5tIJEylUuH555+nWq3S39/P+fMXmJycYteuAWrVEtdGrrMai3PX3cdZXFzcmse+3i56e7opFfMYmkI2l+ORRx7h7/7u71iLxXA6XZw9e47vfve7HDt2G5IsUCwVOHLkNgRBYPv27WzrbOfBBx/i8OHDTE5MIQgSbreH/v7tPP7445vkW1hcXEDVlC2DJqvVSqlUolAoEAwG+f/Ye+8gOe7zzvvTabp7enLYnc15scAig5kgSJAQoyiJCrZkWbZfK1iW5dMf57r33vfOb/Gq/JbvyvW+ZZ1dV3bV6XWsMyXboihSFCmKOQEEkbG7wOa8szs5h07vH7NYghTls112kfbpqZra7e4JwGxPz/P9Pd8wOjrKwsICkiQxPDTE+PheDMNgaXmJSCTKxMQEAI7jtha1cjlWV1exLItdu3aRz+dJJBLYls3U1BXa29sRJZlsNsvY2BjlcplsNouqqnzskU9/IOfu7HsmAO8EevFuEfD1C4Qi29synZ3tmJYJCAjiO24+1wCAABTzBZ595odUKmXYhgmGYWDbNoriZXhkF/H2BI4A0UiUnu7OnQRoy7IIBAKomkq1Utk27ijiuBaapqEoHkqlEtFoFE1VCQQCTE9PEwwGKJfL1Op1vEYARZaIhMNk0pu8/sZrZLIZbNvi3PkL9PX3s5lM0jfQQ6NaJZ9vGYMoHs+OZgyuZRUICDjIkohruxSymyQ31vjKl7/E66+3rGdr9QqprRSuC5VaFb/ho16vU61WW5lD3YMEvSauLdLeOYhpOThWk/zWOqVSAd2rEwkEW7khVpP15VlMx6K7u5eAVyOZLZLaSmP4dGauznD4wD4q5SLVapGu7iHS6Qzdne1USnXqVhnXcdE8KgIuquLBF2xH1300zAooKs1yAcdyUDQNSXJwHZdms4qLjGzVsASZ1Y0NMtkiiugwMLybfCFL2B/l0A37fgYAtutDIQL+pxShSoKLIEgIsoy/d5DuaIyMN0h+YQ3HccgVC4hikyvnTnIkECDgkfCHwgi6l5WlBUKhEJFIhNdee42jR49ySzjE25fOk8ykkIWW6PJjDz/M8soKD913H5cvXeDCpYtkMhnK1QqhaGTnItDX10e5UESSJFZXV0mn0yQ6O7Asi6GhIdra2nAch65EB6pXZ3V9DVmUcG2HV199lZ//9Gd4+/RpRkdH8QUjHDx4sHVxt11mZqYBGBsb45VXXuH8+fM8+LGPkkgk6O3tpdlssra2tjPeH949Qrlcxef1Y9p2K6VYVjCrVRTVj9cXRBQ+FKfDv6j6yXP3n+5cfof6JmA5Nrbrsra2QjjaTiabpbt/gMWVDW666SauzCzx3ad+wOJyEU8kwL133srLzzzBZ3/xl7l48SKlcoHOrh727RliaXOJobF95MsOf/TH3yKdT2NXy+Sv/JhaNU26BrGOCBOXLvPjJ7/LI5//Oqqqsra6QTgSYbCvi3q5yB3H70bVvIh2k//0f/0nOg0Pf/rY32CaDf7myR+gajqaLKEbPvbtO0S9uMXpUyc5cvPNLM/P4QLRtnbS6TSa6mXf+EEapsiFxQ0OHz7Ma2+dR5JUgpqMLAn0Dw/hiBKy4sFybLAdRAkkj4RrgaJqBH1BMhsb3Hh4H6cuTnHh/FtMX51gdGSMr3zx17BtC9d1UNXWSpkE7wQD/S8mDG40GsiyjGVZWFbLGlGW5ZarSb1FTTAMHZ/PS0dHO41Gg0AgQG9PN35DY25mFklSqNebRCIRbr31dtY316nVS3hUBd0rM9QxxHe+8x0ikQj7fQZ//TffZnZ2lnvvvRfLcTEMg2AwyFNPfZ/bbruNSCRCJpPj6sw0CwsLpNIZkBWWllbw+QxkoFjKUa/WGejtY3pmll/65S8wOXGVEydOsJluJauHQ1EWFlp0C4/HQy6Xo1qvce7cOdra2nj77be5MjmFrutkMhkEYQRZlunq6qK7u5upqSnGx8dZW9tgZWUFnCbxRJz1dIann34a0zR38gV0VWFjbZWIXycUOkIoGuHnf/5z3HfffSArPP/88zz40Yc5d/Y8gUCI2bkrrKyskExm0TSN6elpbr3tJg4ePMxzzz2Hx6Px+usv4vF4GB8fR/GIBIJBNE3j+N1HqVbrrK+vs2/fPl555RUMw6DZbJLNZpmfnycej7N7924c28UfDCAILrVGnbW1Nbxe73byfBeLi4t88pOfZHFxkQMHWnRRx3EIBAKcefsst99++875MTw8TC6XIx6Ps7q6Sm9v7wd23v70ieo7Av/33kd0RVzJARzqNRBpne8O8o6wd+e+okggHKKtLcbm5hqSLCArKk3T5i/+6jvoXj9+vx9BEFBVmUq5zKsvvUgiUeTSpQsMDg2xtLyAY9n4/X4unb+AruvY21PHWr1OT08PiqJQKpWoVquMjo4iitDZ2Um9aWJZFolEgpmrV7jlpsMYPi/nz59H0zT6hqMcPLSX3/vPv4cqu3gDQRBUOru70A1vC9A4wo7Bh221bHlN4NLlC60G2SzxX373d/jcL3wWxxV59bUaiTaRtfUN2trbSCU3WxbhmkYul+P555/m679yN6FQH8VsHguHSiVNLVsgkysQa+9EN3xUqkUatRKiqpDLZhnTRXS5QSjgJxZro7u3C1mWyWczFCtFms0mb51+G1EUaVRLKDK4ip/MxgYXL17kow8+hISAa1UopE0cycSRm5RyBYLBIKpXxxPQaDYtiqtlvF6RkO7HtEWajSqJRIJavUxmcx3V8HLq9Vf41a/+wj/Xqfkvrj4UE4BqtfmoKAjX4n+vG+O5OxN6QWAH0cNPvwi4iDiChCS4dPX2cvmt12nvGWZ+aZ5msUAoHGUlU2ArV0Fo1hnZdxDdH2A1uY4tSJRKBcrlEo1GndmFOfKFInvH9jA2MkqpWiHR0UmlVOatk2+i6zqSJFOp1VhaWebObYeGeqPB0tIS8UgY1wVZUXElmaHdo/T29hDw+VhYXEARRCzTJBSN8KMf/Yjenl76+vpZX19nz/g4tm0y0N/PpUsXGR0dJZ1KsbK8iCu4xNrihKMRJEXmjqPHGBkZYX11jXKlRrFYYnFxia6uLlRVbfF2qyXa43G8mhdJkLZXPhwEATy6gUc3ULcDf/45JgA/8Zzvp+gVrh34ycf+Xc/1gU4A6rVHrw+fcngnj+Idn+j33wa2LSvhHeHwtWcWdlxXJEmkVi1TSK+zePltEm0x6rUGZ89P8ObEIk+98AavnrrIxdktltbWGU74ODS+i11juykXS1QqNdKpLGAxNTHF0089TSWd5NDeEUQjwBOP/y3BUBRX1ig0bV47d4Z/82/+d3QlwGvPPcsXv/ZrWKZFPBJBUgQKpQIju8dQ9DBaMMzVs6f51K9+nYAR5Atf+zJffPBBpKDI0vwMnR2dONg4WMxNT9Lb34/ZtIlH4/h9PjxGgFAohs/Qae/uwtBVXnrxVZLZIplCEVXxoHtEjuzt5+Zbb8dr+FFUHYnWF5zZtHBME0dwsawa05fOU2+YvP7WORZW0yiOQ1DzgFWjWU2TTq0iSRL5XAbd50dSlNapd23C+I/WBPzLmwC8/eZLj0piSxTt1b1IuHg1Dce2tgWfKoqiUK1WqVbLNBp14vEYW5k07YkEI7t2kejspKuzi0SiDUmGnq5u2uJxapUqA30DFHI5Du7fTy6bwbRMFubn2bdvD4MD/Yzt3sXiwiIfOfERpiYnWVpc4uqVaRbmFolGQ+RyJSqVKgg6wVCYRNxPX08Hc0sL/NW3v834+Di6V+PcuXP09fYzPj5OMBCgXCiSXF+nWi6Rz6XZs3s3Q4NDnDx5kgP7D7C1uUVyY4MH7rsPxza5fOk8jVoNv8/gB08+iSQINJomXqNFT3Mcm472Dq7MzJDL5sgVykArRfaWW26hXqty9/E76WqPI8gihWKZdDaPzx/i/gce4Mnv/4CtTI50OsOZM2d4+GMf545jdzE4OMTy8jJHjx5laXGZSCRKLpsjm80ALvF4jH379vLRhz/K+fMt2k46neGNN97ghhtuYH5+noDPj23ZrK2ucfDAgZbTCS5ms0GlVmVra4tSqcyDDz6EYbQyH/bv349jw5EjNzAzPcO5c+dxHJeR4RFCoTAdiQ6azSapVJq+vj7Wk+tsbaZIpTJ0dnaheTWWlpf4+IdgAnB9j/BuPYCwnXUDCAKSBIqkUCmXcGWRK5cvE4lEcYV3Un2l7WmCC4QjYV568UUqlRqS4mHv4UN859t/SyAQxWvoRCIR/H4/oiji9RocPnIrh2++lfseeIDzF85x/0cfT+pk0wAAIABJREFUploqYxheSqUCX/varzMzPU04HMayLSrVCrpXJxwJ02g2cGmFhho+X4uCh4vXq3HixN2cO3OGrq5WsN7M9Ay33nIHUxNT9Pe3c2VqAbPe4LVXniOzuUatVkXzqoiSTKPRpNZsUKnkaTbrXL0yxdNPfg+PLLamXLsGeenFVzh16hSzC8uMjuxidnaOUCBEKrVFLBYjGAxiGAa7e+MMjB4h1JYgn0uysbaIWW+SK5dp2g00I8D09Dzf//5jzM3P094eR/cE0XUZB5XpuRXWN9bJZkvEgjqd0QDJzVVKpQo//OHz3HvibkQBdF8QFw/zM3Pcefd99IzsJ9rRx9rSVQSnBmaDSiGNpqq09YxhRKJYjoIW9LMxM08s5EcLhBFkg0o5S90S0DUfPd0dNE2T198+x5e+9Cs/mwBs14cCAFRqzUd3Grp3AYBru4T3pQC9X11z+xYEAUnXKG9s4QsYOJKAaIMkKKxspak2TboT7fjDQYxwDMsVqNTqVOpVGmaTru5uHMfhyJEbeO655xAEgTuO3YFpmuzatQvDMPjSl77ExMQEfn+AkdERzKaFoeuEw+GWHWcsSjK5CaJItK2dwzceIZfJYDebeL1e+rp7EASB1bU17rvvPjo7O3n79Nv09/dTrlQIh4JUyuXWxXhri8GBPmzLYnZuDgGX5OoGpu1SKRaYnZlGlGRCkQjxeJyVlRVCoRDRaJSuri5sx8TjUQEBj8dDw2yiaVpLMKT7MPxBZEl8l5Dqg6l/uPbAo3xwTZTTrD96/bb7T/i2XQMMjUadSjHPxso8zcImpumiGwavvXGS2Y0iM7MLuI6DrgiM9sb4D//HbzEzPU29WWP3rl20tydaLh6Kwu49u+nq6MBq1vjWH/8hsc5ePvHFr/DSc8+DpIDQSlx947WT+FyLw3vHuOPOO0F00SSZYqlALp+DeoNo9yCNYh7NNfnKr32dRz7xSRzRZvbsOfr27mLy/DlCoRChUIgrkxOoosva+jquAx1dXVQqNSLxTjRNx6tpVGtVFMFlaXWD0xcnkVUDEIkYGm0RnTuP34Pu9eHRvAjbQVStNE4H07Yplwqszs+SzRao1G0yhSq6olIsFkhnsrgSDA304A+EEAWRQCCM4fMhitI7+qP/hQDAxTNvPBoMBrdXMlUUScK2bcrlMqIoIcut1VFVVfH5DHp7e8nlcuTyeQqFAoVCgVgshuyRUTQFx7URXJFKpUKpVGJ9fZ3Nzc0diolhhPj6b36dzs5OvIbO1JWr3HH0GJcvT6AorYDDT3ziEVzH5fTpU9xyy+1YlkM03s5rr7zK6HAPzUaVSq3B2NhuGrUqPd3dVCsVmnWTgD9ALp+jXq9z4MABBEGg0aiztLSMKEqEwmHS6TTxeJxgMEgum8W2LWZnZ2hra0MQBO6//378fj/Lq6s0Gg3i8TiyLOORFfYdOIgoylyevIrH48FxHIrFIl5dY3Zmmo31VQqlEoqiEoxE8Qf8/P7v/z7FQpFcoYDgOoyNjfHE957g7NkzPPKJR/jGN75BtVrllVdeY3V1DdeF7u4eXnrpRSRJolqtsrm5RSwao15vEAqF2TO+h5MnT7Jv3z5cx8br1RkcHKBcLrG6uoqmaaytrdHR2Ymu61y5coVKpcLu3XuYnJxCEERefeVVHnvsMWS5RROdn5/n+eef5+67796xG45GY2xtbVFr1Dlz5ixDQ8OsrKzQ3dNFpVLhgQc/9iEAAO/T+L+PNlDapvosLi5i2zZjY7v4D7/9Hzl+/B6A9w0STGdz+ANBPvGpT/Klr34VQzVwLQcHB4/H06LO1KpYloUse3AFkAX4wi99gUKlQjAYxiPLrCwusLG+2qIMCwLFUkubZ5om1W177mQySalUoqOjY2dq5fMZSGJLaK/rOj5fy/2vr3+YleUlNjeXqVSabG4miUSCrZRm2yLg86PpLbpS0zJRFYnnn3uO+dmrfObTn+TF51+kUatSKKQYGhyhXm8yNDLC1MQk99xzT8ta2vC27Du3sw72jQ5jRLtJdPdSyKWwHVA8OqIkkM/lcG2XZ559jl/65c+RXF8l0RYBV8KjeLAtkXy1TldPL8urayhunZBPw7QtFN3ANB327RlD9niQPRqTV+d49cUX+ejDjxCMdSHJCtnUOo1qGVl0aDRLVGsW7T0jSKqCZdtIssjq9BS6qqJ6fTgoFPJJipUGmuahrT2K4wqceOBhDh4Y/xkA2K4PBQB4VxDYNocPeJeoB3g3p++nlfCOi03Tdegf3c/U2VcY2XuAzXQBW5SxZJk9Bw+g6QH6BgaRfQFcSaRuNkh0dDE3v4AsK0SjMURZplavEwqHKFUrFIpFHNtmcXGRq1evks1micfCzMwv0NXRydTEZebm5ti3bx89XV3MLy1x+9E7CETjBKJhYpEIXo9COp3G0HRKpRKRWJSpqSlc1yUSDDJ1ZYq+vl7Onz3HgQMHKJVKqLLC4sI8V6Yuk9pIMnXuLFura6hqkGopy/p6kpOnz2HZFvPz8xw/fhzHcUin0ziOg6Z7aDZNdM2LIIiomkq5XEZVVQRZxesLoMjyzgX1n6v+5+DipwuJf9rU54MGANci4R3Hwd7mU18fE//u1f/3p7y93zHXdTFNExeBUmYds5IlHjJoNOvML8xzeXISrCa9iRg37N/Fr37mfvaMjlAolwiFw/R2JkC0SGWS3HzrDaQ2UyQ3thgYHmFkdA/ZTIqjd53g6pV5jt1xnOE943SOjnLn7Xfyb7/8v1GefpOH7r8f2a4TS4SYvHSSXcMjhII+FEXBwkNpa5lYxMuhG/ZRrlfAbWBVXTrGxxnu62V+dpbNzU1mrl4htb6CYfjo7OkhHIvh1TUcUcbn81Orl2laTaYun2NiYoJCzaRUrYNj49MUOuI+brntKIYvgCh7cLcdOSRJQpJEqvU6ttVka20FSZJ4/dQZ1lNpKk2HStNE8GiM7N7Dod0jdHd1o0gS2WyGcCQCiCDIiNtNwjtDmH9IU/8vDwDMXbnwqCzLCEIr+bRWqbT80n2+Ft1Glnbw0LVmRZZlEh0d9Pb20mg0GBwcxEFAlARESca1HLa2tna45OFwGFEUaW9vJ53J4fcHePKpJ1vc9z3jfO/xJxgf38v8/ByxWAzbdlheWubgwYP85V8+xvLSKo5l0dkZx29oCBLMziwwPDQCrkW9UmV+bo5wKIIsSQwMtVbVm80mhUKBSqW8bZssYDsO3d3dyLLM+fPnUT0eBAECgRad48iRI1QqFRYXFxFlmc7OTi5cuECxWGRqYhJEiYsXL7OVzlGtVgFQFIWB/h4i0TD9A4OUKxV+9YtfZjOV4pVXXmVocJB6rc7Ynj08cP99jI2NceDAIT7/+S9w8uSbXL58mb6+Ptra2nn99dfZs2cPjuOQSLSzvr5OuVxGECTOnTvPxYuXWF5eIZNN71CnauUyY2Mj9Pb2MD83S6NpMjw8TCQSIRgKU61W+fjHP84Pf/hDioUSQ4ND/MF//QOq1Sr9/f08/PDDzMzM7Kz0jo2N8c1vfhPXdVldXSORSDA9e5W77rqLSqUCuMzOzNDT3cOxu+75wADANRGwJL0TBPaTmoDrwADvJPYaXi9PPPUkTz7xBF/5ta/upFpfrx8A2D2+j2N33cmevePoqoEsSpQrZXDBsR1EQaBQzNNsNlpsAFFAFiCZyRAMhWmPd9DR0c3pt06zvLbC0MgoskdF11RkWWb37t0tvUqhQK1Wa2UruAKWZdNoNDlwcD+u69CRaOett96i0WhQKBR46eXXUD0CS0sLCK6ApnqYmLhEqZTn6sRllhbmSaU2KBbTZFIZlhcW6GiLU8ht8fyzP6KtLYZrOwz0dbG4tMqRIzcyeeUKkiiytLSEYRiUyyXC4TCaptHf34/kOIzdeILu3l4E18JyBBxXwrSbVDNpTNMkHO/EruUYHeghaPioNywMv4Zli/iDBoMDAzTqDRTRQhJsAuE2tvJVehJxdFVG04Po/iB6MMJXvvrrKIYfJAXHMdnaWACn3gL1tTKL6yn6e/q4ePECnR1dnDl3Ejffyo6xkDAdEdssE4p2EotG0HUvskfFETzcctORnwGA7fpwAIDauwHAOyj82q7tbX6yAfyJZvJ61I+IKXvYmDyH6g1QrlbI5nJUzRr5QgGvHiCWaEPzBTh/4QIe1UOxWCaR6ECWFRKJBBcmLtPR2cnSyjLHjx8nEo1h+HwcPnhwhwMaCYfwGj5OvnGK3btGyGaz9PX1kc/nCEUiRGNx4p1dqJpOIt7G2VOnUTUPZ06/TTAYpL0jgaIo+Hw+NE3B7zN47Y3XGBwYagGMeJyXX3qFZ597EVwTTTGRrCrJtSKIJh5FwRUE2ju66B/oxzRNurq6doRbwWAQXVcJBIJ4PCqqqlKr11AUBU3TUL1+NK8PWRJ3QNcHV//w1/4gAYBVrz56PZ3HeU8Df+3n9QDg2j5BEN61773boii2AttEkWxyhXRymbmpS7iuiddnkM7k2LtrFw89/DD79u3Db2hcuTrHZrZILBxFEl1+9OMXyWQLHDx0AxvLS/QPDCHLKh09gxihMIY/SkdnH8V8DtnjQbAtRFFC8PlYOfsKW/kyBw/tJ1dcJ+LXmL4yhT8QQtN0KnWLZimD6vHgIhCJteFVFURLRunoRLAsfJoGgsjW5ibVQp5AMIhp20TjbVRKRbzBEILgUirlUVWVaj7HhUuX0I0gS2traKqK4EIiqnPi3vvRdQPZo7X8va990ePSMJtYZoNiJkWhkOf0+fO4sodGvUHQ5yUaMrhx/178fj9d3X24rkO+WCAcaUeUPSjbgrPr/xb/2gHApbNvPtpsNmk2my3RoOOgKAqGYaB4ZGzHxnFsdK+Opmr4/X56e3uRPS1aUDQapVQqUauZhCMRNE3l6tSVndVK27YxTZOBgYGWG1kkzJNPfp+94/sZGRnhwsWLDA0O4zgumqbyzDPPsLy8wsjwCH/x53+B1/AjCCKa7qFWKfL//cm3+Nu//i5raxsEAn4S7TEkUWR0dJTdu/dQr9fJFwsIgkBnZyexWIxqtcKuXWMkk5vs2g7WCoVCrK+vY5kmsViUfD5HNBrFtm2mp6eZmJhgYmqKjY0N2tra6O7uZn52jrfefpsvfOGXOXX6LLLcssh0XZt4rNVoHz58iFw2w2YqxR/+4R8xPDwErsv4+F5m5ubw+7wsL6+Qy+X5t7/1HzlxzzEWFhbo7e3lySefYt++A2QyWV588SXm52fp6OjgxIkTTE62FocCgQCHDx/GMHRSqRSVSoViPs/a+upOKvwnP/kp3nzzTbLZLAgCP/rRjzBNk1tvvZUnvvcEqVSKb37zm3R3dxMOh3nuued2HLFUVaW7u5t6vc7evXuZm5tHkiRs1+LcubPYjs19994PjsPS4iIf/fgnP/AJgCgK79vwv3dbvG6yLQkiBw4d5o6jt2A7oGnaOxaf1wEA13YRBBdFkhBdCVdwqTfqCLCz4NMwq1hWCzQLggiOQ7XebLnqISBKEkePHWP6ylXC0QihYJRyMU+pVGJsbIxkMkk0GsU0zZZ20LSQZZm+vj6CoQDz83Mc3L8fWZbJZDKYpok/EMSy6nh1H8FgiPmFOY4evY31jVXCgQC6quFRBIqFLJFImF2je9jcWAXXoi0W5+rMBD09XdSrdSzbwXUF0rkcN994E9lslnA4jGk22draIhgMks/n6U600TV6mEQixMbaBv5AkFK5RKlSpFEoIMkyXT39dLb5cBsVFFmmWKggqS6VaoOAz4tLS+OgKTKqJrGVq4JHJer34VFkdG+Qpm0TbGunf3CESs0EwcZuVqkWtrCaDQLBECIiyXSOzrYIydQWL7/8Crl8mpBgYagysqpSKjdpNMp4vCF01YvmNfB4vDTqTY7ecdvPAMB2fegAgHC9rRfXqOHCDk93537v8/s1mtB7KeWqP8ilK9Poko1haGyspKkW83h9BoqqEAz4GBzqJxIKUinX8Pn8vPraK4QiIdqiYVaWFjl+/C7ibXEMQycaijA5OUnQH+CWm27m1Fsn2dxKMTk1wd13HmfPnnFEQSLR3o7jwPzyEoeOHCESCqEoCrG2KMFQGMesk9zaRFW9eL0Gc3PznDt/kUg0itm06GxPYBgaltnk6WefwhJhq+CgRCR62toYG43hKWZIVaGWqxLuHWDm6hR333MnC4uz1JsWmlenVq9TrlTw+YM0mk1EWUKUJTyqB9OyUHU/vkAIjyL/owCAeF1I19+XAvPei/U7B37K7e9osD5IAGDWKo86jgNsN/qOA46Lazuwvb1zE64DAwi4LjiOgOsKSLgILghu6z10EbEth3q9Qb1epbS5Qr2UQRBc0uksK+ubqLqOEo5y/KOf5tuPP0F+fYn1ZAFbEFhLpnn55BkmJ2cAiT/91p+xb2yMZqNMuVrmtdffZHhoD1OXJ6gVc+SyG/h8gZb4E4FCcoPvPv4YbYlO/vY7jzHeHyCzNE1H7wBus8zG+iqGIvPs409wYP84V+bX+bM/+u/8zu/+P3zjd34X17JQxBbtzKxXKORyrK8to+oqo6PDZDMp6vUWxaJWr26P1AVW5q9Qr1o889Kr3Hn8PqYmrxLyaRy7+RA333YHtXoDry+AJEsgCtiug2vb2BbYlk0ln6Zp14lG4yzPLbJroINDe4e5+cgBon4f+WqN3p4ePIqM32tQSG8hiyKurOFgI8kSjusgbnuI//2tQf/lAYBzZ958tN5oOSj5A0HCsSi67qXerNNoNqnW6q3/twOG14ttmVQqRWq1GpqqUizkadZbHvPhUIhmo4Hfr5NItBGNRVhYWKBaqaLIMi+9+CLx9gSWZXHbba2grhdfepmbbroJw/CyMLdIPBZnZXmVhfk5unq6aNRsMpkt2tuDPPjQA6ytbVAolKnVquwZ38Xm5gauZdNoNEhupdB0nWajydTkJAP9LZeUUqmIpnqolCvks3nS6TTLKyvEYjHm5ucxmw3yuSybW1tsbm4yOTmJqqq0t7XT19OLpsiEggH8oRDFQgWAqZkr2A4UCkX8fj/dXZ1UKlVUTeXHz7/Agw8+xKc+9QiPPfYYDzz4IJIsc8ftt/Pnf/aXHDx4iKtXp3j44fu5/eht9Pb1cu7cRXKFEnPz84iKzG233c7Nt9yGjctmKk0qlaVcqbK0vMIv/fKv8Nyzz6AoHm679TZEUWTv3v1ompcbb7oFRJFCsYRLK/W9UqnsgLFLF84Ri0a4evUq5WqZ9kQ75XKJV197lXK5RCgYolKpoetewrEY8fY2Lly8yEfuvofkxiYP3v8A33v8uxw6cgNLy8s89LFHPpBzd25xbWcCAO51jAHxXQ38ux2BrtcJgtls4vP7+YtvfYsjN92A5WyHiV7HQLAda/s7SsR1HFqXeQHTrFMpZqlVy+heP5qmIwjXaIQumuah0WygyK0FNsty+MqXvkjHwCj+QJDV5UVERSKTyeMKEu2JTnTdoFQo0tPdjaIo2NQQTJFMOo0vFGRhbg6Px4NhGBi6B1yHarXC/v0HaTSqtLeHcRyLYiGHKAr4fDoeWWD38DDraytIiovVrKN4ZLoSbUTDERRNQ/VoIAjUmw28ukYqtUUyuYFt2zuGKPV6ncHRURIdXfz2v/sGt935AI2mRS6bxKrkyeXz1OpN/ubx73Jw9xgeWcRxZYrFAnWrSdMRUEUBmnU6B3ez6+AN+Dw+bFekWKqiiibBYARftI22tk4EzYesGui6RqOcx7Vq/OjZZ0l0dVHKZ7g8McvwyC5mZieIhEL09/Xwvb/+K/YPtOM1bJKZMo5oge0QbR8ikuhBlDwgKmBWuP3YsZ8BgO36EAKAn6T87Bz7BzSm11ZTRcAfiuDxaOA2SKdTZNM5Gs0aW8kkw0PDWJbVCizKZrhweZJypURndxeiKOIzWv7Ux+8+zlun38a2bebn5hkbGyPg93P1yhWWlhep1xo8+NBDrC2vEI/H2djYQJElZI+HG26+mXA0htfbUuhLioxlmkycu0goHGJxcZnV1VX27t2Lpmk4jks83sbK6hq2WeUv/vxPyFkadUHEM3Yr/qAf0eenOxxi9+hezlyaYHh8Hx6vj8GBHmZnZ1BVGVnRUBSFer1OLBbH4/Hg8Xio1Wp41BaHUdd1PJqBbvhbFKB/BAC4/t7/lBz4n/4q764PywTgvTSf996uFwi3wqvdVsgMLsL1j+PaCpNFrVKmWMwxe/k09Uoejyyh6Tp9/QO8+eZbPPPcK/zg2depNxx8up9Cw2R9c5Ounl56ursIBLx87uc/w5d+5QuoiswzzzzN4UNHCIViFEtZdu8eRhAsOns68Sg+NjY2cUUXzDqFfIannvgun//cz1NNL2A3KoTb21E9EoqqsrywwL7xA0T7h4kPj3P09rv58m/9e9xGlUa5iFvLUqs7JNdXmJubRlMVfF4vZrNJvVolHA5i2RZmo4ZH8VCvVygX0ly+PEsg1s6ZCxOIokIsEqC/PcyeveOoeutcvTZBcRxnWw9gI2CzNDNDtVbh3NlzHD9+HF1pOdnEY3EO3XgDxUKR1994k/X1dYqlMnazQalYINbZ28rFaEXh7TiD7EwC/hUCgIvnTj7q9/vxB/wYPgPBFWhaTeqNOs725Ml1XQy/D83jwetVcVwLj6y2jgsisiKjahpzc7NUq1WKhTy6rpNOpwEBw2sQDodJJpOEIlE+8pGP4PF4yOYyZLJpqrUKFy9d4MzbZ6hUyoyO7mJ0dJgXXniZ3t4+AgEfN9x4mGQyid8fYGrqCmDj8UhYjSYDfQM0mw2KpTK64SW1tcXP/dzPsba2hqZppNMplpaWiETC2JbLjTfciKQoXLp0ifvuu4/2tjjzc7P4/X42NjaIx+MsLi7S2dlFW1sboUCIpeUV9oyPo+sG0WiUK1emsJAI+lsBYgG/wdZ2sq7rukxMTJBMJrnrrrt49dVX2bt3L6IosmfPPkyzyQsvPM/M7DTpdJq3T5/hxhtvYiuVZmWtpTvo6OzkzNmzSJLMgw8+xPG772ZldZXbbr+dt06/haFrxGIxotEor7/6OsPDI3QkOnjqqR/w1NNPUSgUiEQiO3ad+/bta7kDxaIsLy9TqZR58+QpUqkUPT09NBoNNE3j2B3HsCx7+++TY3Z2lsOHDzNzdYZUKkVnZycTExMonhaF5Z6P3P/BTAAW135CAwB/vwnAtbrW2Af9OuvJTWLxdtiehFx7vmsLO628EBAFaWd/vVbEFVxCkTZEUUJRFBqNBooi4fV6ESQJ13GRZbmVoB0JkSmVCYci9HZ3EwhH6OrsxcVmfO9+PLKH7t4eFFlFkCXqtQq7BkfRDR1XgEwqhaIoLbcgQeDKlSlsx6RSrbO6soyqyuTzWfp7+/H7/JTKrQwH23FwcVBkuRVM59VJrq0RCoWxXZdSsUylWqMtkWBi4hIHDhzk5ptvJpfLoes6jUaDyclJjt99gt6+IV56/jluuO0YttUgtbVOs5zHtG1ExcNd99yHIkkYXoN6vUGlVqJabYCk0dvZiYtLtu6y98itVPIViqUCjz/+OLfccADDGyMQj/DG66cYGB9HVbw4tkm9WqBSrRIJ+Ym1RaFZJtHRSTDQCk9dWlzECPiZvHSRQ3sPIkoOxbqCIKsIroseiGJZDpphYFku/+e//y1++9FHfwYAtutDDQAk8R8PAN67EhAMBinXG1Qtk4nLZyk3TfxeH5FQBEcSkDwKTdumaVrcc+IEyysr3H7sGC+++AJH7zjGxkaS7q4ukhsbDA+N0Gg0SKdSrK+vEwwFEUSJialJuhIdzM3NkU6nufHGGzAtG8Pvpy3RQSgUwnEcLNtsUYxiMU6dPk1fbz+xWIyNjQ0sy9qh5uhGgGee+BM8qkI1PMInv/I1qp52UsvLzOVWePjoIbr7E/TEQxidbYwPjtM/3Et3dzd79uzBpXUx6+jo2BGtybJMtVolm8kSi8ZQPSrKNgDwKMp2r/MzAPD3rWsA4Cea/W0NwLtu25MAHBcct0UXuv7GNm3IdWmaZsvaL5PBrpWo5zcQBYt8Lke8PUE01kasrR2/LDA7v8DmZorXLk4wv5miXqkwNjIAdpF7jx8jHDLIZbfQNYVwJILsMfiD//bfKVRy3HjzTThAoylQr5vb/7Q68UiEZ556nG/85td47tkfEdVEaoU0RlCkXCozMDyMKzj8we//VwqmyP7bT2CaNktzs0xdeJt6IcXbr7+IHoixtbnOyvIS7fEo8/Oz5HJZOjs7qFVLZNJJPIpMLp+lUauztrJMcitDtVFHkrxspjL4fTpdEZ077jqOoqmIsgdofRFbloXr2hQLWfKZTRqNGq4FKxtJFldX8Mgie8Z2055oQ1FUfB6FU2+9xZlz51hYWWF0cIBKpUa1XkMRVVRFa70HOO+sBv4rBQBz0xOPhkJhJEnGsmxq1Qqu23KdUmQZj8ezQ41xLAtJEpFlCVEQcRybZrNBtVJGEITWKrnPQDMMCsUSgWCoZaRgt3Qxo6OjSKJAs15neWkRjyyze/ceQsEQoiDQP9BDLBahXq/hURXW1rbQdS+OY9LR0U4yucXGepJsNs9v/PqXuDI1QTwWZXR4BEEQ+MHTz3D87uMYXoOTJ08yNDTElStXCAT9eL1elpaW8Hi0luBya4tcLsfGxgbJjXWGBgcolko7gt/Wddrl8uVJFlfWkbapZAcO7GdjY53llRXmF9fRVIXN9Q1WVpawLIsHH3yAtrY2hoeHt2mXLY3XmTNn8Pv99PX18P3vP0E0GmV0ZJStrVYDns1m6O3vw6trxKIRTp06SSwaob29jUw6RalYoK+3B7/PILmxzq233sSJj5ygWm15zLu4+AN+dK9ONNb6ew0MDODaFl5d5/y5s/h9Br/4i7/I2bNnaTQa3HHsGOFwuBU8lUigqip+n5+XX36Frq4udK+XwcFB3nrrLby63nKmEQQMwwBBZGNj44NzAfonAADlMXI1AAAgAElEQVTXHt/V043juoRDQUzT+qkAQBCu0QMFHMelUa8gCCKhSIxms4mqqpw8eZKBgT5M08J1W+5atm0jyzKGrlNvNvAoKv5QhK7ufmLtHRzYv59EWwJwuffeB4h19KAZfkbG9hLwaSzMz2H4/bTHoziOQyqV4sYbb8BxbBzX5tLlCe65+zjJjSThUJhsOoumq8SiIQRclpeWcR2YX1zYzksR6evpwef3s7q2jihIFEslcoUCqkchmdwkl8vx6U9/mhdeeIHx8XGuXLnCoYM3MTAwyu5duylWCpj1CnajBlgYwSD/7Y//kpuP3sXorjFE2cPczBSBgEGjYRGPdYFgI3t0bjt6N/5EP7VylZmrk4iqwO7RIXz+NgLhAIcO3EjJNAkHgrTH4/zw6af40z/7Uz720P00q3WKW/NYAli2QKVaw+/3MXl1GkPXWFlZpW7WWVnNoBst2+pIKEJvVydl06ZQypPdXOOrv/H1nwGA7frQAIDrrbt2RnnX3ef9mtLrP+A/LUtg55gg4A+GqNerpNaWWV3bJBIMs2t0FzYuXr+faDTGiy+/yIVLlzhw6AjPPvsjhkaG6eruoVAs0dwefcuKh0qlgr3t9f/2mdMMDg1TKBYJ+HxIkkRPTw+yJJLc3GJweJjO7m5EUUTX9Rbvzna5OjFJR0cnCwsLLCwsMDExsePJHQgESKfTbK1coFhpsplr8MSzT/Pov3sUq5bFERvctK+ThGGjWQ0m5lfYv+9mBNmlVCqzuLiEJCuEQiG8Xi+VSmXH1s80TYI+fyv2HAHVCCApLXHSBwEArjVaf3cexDsX9ffWB00Bei/H/3oBMFw3GXBaIEAAHLdFEboWPHPty+Za2a6D3WylQV+dusDls29SLmTo7u7GcQUk2YNp2YhOnWKliKxAtdFAVTW+/tVfpysR48D4CLrqoaOjnVKxiCQING2LeLyNT33mF4i3deIzgsxMzyN6FMrlOrG2KNlsitnpaQ7tH2Nq4jJTl6dQBQfJNdl7aJxG00X3BqhUq9x6861oRhA8OmuL8/T2D9DZFiEa8tHf10sg2s7i/Aya5mFjbYXN9XUEIBQMsrW1TizWRiq1RVs8jiiIaLJCtlRianqBC5en6e8fwGmW2berh/0HD6OoGl4jgGmaO59tFwGzXkFTFSqVGs1GnTPnL1GoNMimszRNE2Gb41xMp1lcW6VYKlGtW7iORblcpj2RQFY86D4dBKEFnoWWyPhfKwBYnJvamV5ZloVjW1i22ZpKuS2Bq2W13h9dVXEcC1FqNUDXHJgEQaBaq1AqFVEUGV33EQ617I8vXbzE4Hbgm6IolMpFVtdWsWyLYrGAZVv09/eRSm3x5sk36OzsYHp6lrdPn+XQ4RtYWFikUMjx+c9/nlwux4+f+zF9ff0U8mkWlxbo7eqkvS3B2toat9x6G5Is0ag3GBoaYnFxkXw+j+7V8Pl8+P1+tjbTjI6OsrSyvCNibtRrlEtFQqEQU1NTxONxdF2nVqsTikRJpbPki0Xa4jE2Nze5fPkyqqaTzxeo1xvEYmEikfC2Z/8e5ufnKRaLnDp1Cl3X6e/v57Of/SyTk5N856+/zS0338KhQ4eoVqt0dXVx//33c+7cOZ76/vexLRsRAbPRRBQEkusbZNMZ/D4f6a0Uf/U//gdt8TiW1aRcLjMwMEA+lyOVSu0kAHf3dJNMJpmdnaVRrdHT3cNdd96JZZpcunyJdDqNbdvk8gVM02RlZYXBwUH27GmBsb6+ftrb29lKpwgEAgwODlLI57njjjs4deoUMzMzlCtVBgYGuPvEfR84ALjeKOR6IHDt5/UA4Pp9OwBCFIhEIuRzWSRJedfjr13HJUngySe/z9jYWGu/7VKrFpEkBd1oOfOYpsnevXtRFAnXFXFcAVxn5/m8mkqlXqfRaKJuJ6V7vQa6qiLKEmsrS/QPDBKOxfne957g4x9/hMsX3qZp1vF6DUqFPIODg9u6myKbm0kymTQjo2O89upr9Pf1s7a6QcBvUKlWsO0Guq4hCBKZTA5ZUSgWW5lEW8nktq5xhYA/iOHzMzw6SrlUQte9iKLIyy+/TCwWQ1EUlpaWOHr0TgyfH7/PT3JznUqljN2o06g3CMfiHDpyGFUL8lePPcb47t0szk8Tj0UAAUnWaTTreA0/kWiCcFcfVq3G7/3u/82vfuXLeEQXrxFlPb3ByNAYqUqVz3z8ERYW5/j6b/4Gu0ZHEBHIF3JUsus0bJibX0XazqjoHxrCo8gkOiJoWktEjVDF7wvzvSd+wMc//jFSuQLZzAZOrcLnvvAzG9Br9aECAPDOBOAan/9a/c/dY97nw/3ex4giXsPPuZdeJlcsE2tvo294CMd1sWyH1Y0NEh1xFheWcUWFEx85QaIjweLiEqFQEM3jQRAETp16i7a2Nt46dYpQMIiqqSQ3t/D5/YT8ATKZDD/4wQ+4996PsLy6yvDoKPH2BJqmtdJLEfEZBstz88Tb4/i8BqZpMjY2Rq1W4+DBg2xubmJWSyTnL9BURcpSG//vf/ldqNXwBBW8eYW19hKP7A1z11gfly7PcvTBz2LbDYLBIH5fCJdW2E8wGGR6enqnKVVVlcxWqiXedFyMUATDH8SjfHAUoL8LxP3kq7y7PlgA8O4JQGtF+icFv9DiqDuOg23buK6F69jYlonj2Nt6gNYxx3GwzAaW2SSfy2JWclw6/RqObeHz+whF4tQadVTdoD2RIJ/eoi0QoMPvZ6QnQjFVYGV5mUxmnTNvnuT8mXMkOrpZWl4kEvVh2k1k1QOKTLFSpHegF1UPAiKNZp3ORJDe7n58ukBnextbqRzRYIxyoYJHU5AlnUR3D5IgsDCzgKaG6RreQzgQZCO5QdCvk82k8PjbEAXw6h7yuSxDfb28/upL9Pf3kUxusJlMsrqyRqPWpFE3UTUFj6SRKRR44eRZbrz1GEtz8xw7sptw0MvuvfuwHAdV8yJJ8s4XdMNsUkxtkM+kSGWz5CplXnj9DPPrRTaLNVY2kqytrBH1qyC55PMl1tc2EEQFy2zQ05VA0xTyxU1qjRqhYAivEUYS+Vc9AZievPioZdk0G01kWcJsNqg3akiSuCOy9mxbEFbLlZaPvGNh2xaKp6UXsiwT14F4LIZH8aAafvyBIMFQiHhbO5Ikouk6K6urJOIxxnbtQhRgfM8e1tbWmL56ha7ODmzbJZ8vIEteXEdiZXWNer1Oo1nl/2fvzaPjuq87z89bq17tC2pBYSUALiAJcBUXkZKs1bRlW5Jlx1EsKx2n4zi2M+74JJP0xJPRjCeTTE6SafdJpxO3E3cSO47iNYlNr5JMilpIcBM3AASIfUft66t62/xRAETRTuzuLJRzcs/BqcKrelUF1O/3e79773fp6+vjlZdP8+ij76S1tQ1ZNOjqbEcW4MTJU8RiMS5dvoI/EGBleYVIJEKlUiESiVAsFjZgkJMT01QqFcLRKNVqlaGhIYqFPLt3DfLKK68QDofZtGkTwWAQ27QxLIeJmQUyuSzTExP4Ax5u3BjHMi1WV7O4XSqDO3cwNz+H4zicOXOawcFBjh07hiRJJJNJurq6yGabhl+2Y5JKpVhaWqa7u5tMJsfZs0Pcd/89JFoSbNm8mZZolIDfR2dHOwG/n1cvXmR+bhbN7calKrhdKjOzU6RSrWiam9GRYebn54hGIxw6dJCp6Rn6+/txHIc7Dx0iX8iytLRIOr3KkSNHKRaLuFwudg4M4HK5aGtrw+v1UqvV8Pv8zMzM0t3dTTga4Zlnnmk618oyS0tLxONx4vE4/dt3EA6H2X/g8G1PANYLVj9KAnBrdwDABMyGya//6q9y/4MPIQgCpZtkOpvPhbb2JC3RGI4tUqvWqdcquNxuEKUNArEkSTz26Nt59NF3I4jihqiAjYhtmXzxS88wMLAXwbGQJRG3S0UQJVTVze/8v5/g4be+nWhLC/v27sbjCXH18lkSsTD1usXm3m4+85nP0NfXR3p1FUWRCQT8vPzKGep6Hct08Hj9+AIaHpcbRWryHNpSKeoNi3qjgeM4+Hw+JEFA0zxMzcxQLJawbIfVTIZqpYJH81AsFonFYtTrdbq6upiYmGD7wADlYoFsIcvy4hzlQg4ME80XpK1zM75AhFrdplYpMDC4kxeeP0E4GEVziRRLRWxJRpRVFhdX2bJzJ7ZhcM8dR3n12jDhkJcTJ19i9/7deDwRZL+XR9/6Vu679x7m5xbwBfyIioasqExPXqZeBwcZzSsRjcYZGRsnl0nT0HVEx0Q0Heq1PPGWJI+8+ynGJ2dZWZpmcW4cI5/liff//L8lAGvxhkgAKtXGax0AnOZk5bVJenNb7odXim+R/7ppwtuOANgsLM2wY3AXAwP9lEt56nqd1UoZVdPAhG3btiLZdRyrgWk77Nu1m3q1hmE2WFxcpK+nh8X5eQ4fPsTk5ATXr09Q1+uU8gVisRba29t57LHHcLk1duzaRSjaQiQaRV1LIBRZarpshoKIqsrE+Ahbtm3B6/ciul2Y2KRaInzzb79F3KcTGkhxbbSIbGvY5SVM20KyXOzY7+Jgu5sOQ6CYn8FoP4gvEKBUruDYFqqsEg6GSK+sEmtpoWfTJm6MjbO0uEgkGkUQBcKRMG7Ni8ftQdXUHynRujUc4bWff0zc+r6v+yw3EYIFXv/d3s4EwKrrGyTgm+U/LcvCMhuYRgPbtsBpYtUFHBzbwlxzi35tw29hmWYTMmGaTVhKucbc+DBjo2ebnJX0KumlFRwbevsHiERCSKqHTZt6ECWJYiGNS/Owb1c/Xk3DslTe+9RPM7B7L4bpEE914A2EMW0Ho17D6/YR8PuYnpwkEvQTiURpaQnxB7/zO/j9Kl2JCLXsCo3CAkPnrzK1mGFhIcNsvoEsWCxmylTyJVJ9vRiOjNcfoZBZIZ5IMDk1jSQY+MNxjn/xc3jdCsvLy+iVKvNzSzQaFvliGY/fR2tbio6OdiRJxbBMVpYW6ezu4fkXXmZ+aZWWUIBY1MP+O+9FVN1IAgiijOgIGEYV0XYo5le4/OpF8ukcl4dHKVZ0coUyXreKYziIDng1AcXrxiVCvCWEIzQoVRpkCxVs26RRLtASjrG6uorm8WCYFqrLDTT9MV6fBLwmUfA/vfmH22sE9soLT4ti0xSoWCyheTx4fQFAomE2UFwuDNNCUiUi0TCSqjZlDL1+ZNWN5vURikQJBkPYDs0xbZssLS0yPT3JzMw0K8tpItEQqbYUkmAzP7eApnl59rnvMTYxwcrqKulMlpXVHMsradKZDOVKlUMH93DwwD4GB3YyMz1LwO9nenqa6dkZ3JrK9m1b+PY3v0E4lkBSFPbv30cwGEBU3TiCwD13HeXCxXPs37MHSXaRamunbhkkU0nm5maRZBEsC7/XR71WwTIM3KqLaCxOsVhiemKcUrnM2I0JMtksiVgSj+Zh545BAqEA6ZVVBNmN4vIQDgXJ5wscPnyY9vY2Tp48yaFDh7j33nv51V/7ZTo7Oxk6M0RXRyea242qKOh6jXypTC5fwOX2UtMrXLpyifnFeTLZDJNTkyytLPH7/+n32bN3J9FoFNNsMD+/yPTUJKZhcu7sWVKtCURRIBDwszA/x7E3v5VEPE5nRyeyy4WkqCBK2I6A3xtgeXmZQiHP5r7N2KZDW6qNa1eu0dHZydjYGPfe+yY+//m/RPN6OXzoCB6Pl0i0BX8gSHtHJ8VSmdXVDNlsjgff/JY3RAJwc8EPvr8QKIriRgfgZmgwsCH7+9BDx6hWiyiyxLXLF/FqLiTFhSiKSJKMy+PBpcjoeglTMBFFBYcmUdgyweWSkSSRRx99DNOs49gWkqjSdCZycCsCqt+PJEprUNu1LgMgOCIf//iv8Qu/8AG2b+vnI7/4URAcSqUs8wtzzE9NMjIyzJ49e2g0GhRLRQKBENPTC3T19NKWauHy8CSi4ubSxcuMXJ8lGAkgSk0p81w5jyhJFApVZNlDLJmktT3FhYvn2dTTh+NAyB/E4/MwNzdPb28vpmMhyhLJWIJIuIWGXuHK1RGisSD5zCp1vYqul3GrCqKk4AmEwBZIxMP85m9+gt6+LbT3dLGyNINHU1jJV2hpSbD30GEqdR2fx0+gPcHPfeCDuByd9HKGHTv7sG0v5y+dJ+b3IikuTKtOMZ/BrUh87Wt/S2d3P16Pm76Bu9H8QQyrztT4JK2JBCsrM+i2ypZtAyDIhKMx6qaCKLu4fulFytk0wUCQx5/8mX9LANbin0/w/R8R/zOb0B81DMOgu7ub7u5uZFmmXq+j6zqJRAJZlhkdH6NcLrN3/z6SqVY0TeOlUy+iaRqKojA+Ps7Kygrd3d1cvHiR8+fP4/FoJJMJQqEgqqoyNze3gbUURXEDP3nz37VeJbYsi+6ePlyaF8NqZugeT9OxcWl5jnhAIBpRwNRx7KZ9ObUaZqNGWzRKraLjjQSYWykSDoY2sP6VSgWPx0Oj0aCtrY1UKsXs7CzBYJBkMtl0B9Z1yuXya2THH8O43Z9bvBmydsu4XVeqWMeqm+aa/bxt4zgWjmNhWQaWZWA7Jg4WtmNiWg0su4HtGKym5/H6/QxfHyObK+Dy+iiUKjTqNXKZVQxTJ9wSprtnE31btuP3eRAsg6DXxfzcFM8883kuXbpEa2sb8XgSWXXT0dkNiKiiwIsvnKKtrYuL507j12Dy+hWSsQCqorG8mkcLt5Do6GViuczlBZ1FXaS19xDeSA8rpQY9O7eQak/gD2iIoohhC5RKFUKRKG09vSzMTKF5XDiWxfLiPIqikM/nyWaz6LpOR6oN0XlNVm8dJjczdQNJEnjk0XeQyxc2/seK3Lwom6ZJrVYln8twY/QaL730EqfPnmNuMc2OnbuxLAdVlXG73ciKiEuVOHrnEXo39RGLxolGYujVGoosEvBrtCcTdLR1srK0SCmXZmF2kuxqGr1WA8TX8TT+NYUkSXi9TXJrJpNhfHwcXdcRRRFZlvF4POCI4AgU8kUadQNRkJAlBVGQsC0HARGP5kWWFBoNg3A4QkdHJ7t27Wbbtm1N3DgwOztLLpdjYmKCer3Opk29tLTEmZtbYGBggG3btrFjxw727dtDMplkdHSUWq1GQ68iSU1ypdvtZnL8BkOnT/Pwww/T29uLR/Nxdug8+VwRx3GYnp6mWCzS3d3NlStXOHPmDNevX0fTNFpamuZWbneTDyDLMqurq9i2zfz8PJ/97Ge5ePEigXAIXde5++6jRENBAIaGhjh//jzBYJh7772Xnp4e5uZmmZubo6uri0qlxJEjR7j77ruZmZnh0qVLfPzX/w9WVlb46H/4CMlkkuPHj2PbNsFgkJZwhEgwxOi1Ya5eGaFn02Yi4SijI+MYhoGmaXziE5/gC1/4As8++ywvv/wyW7dt4Yknnmh6FazptgeDwQ1Pl4nJ61x89SyZzCqO47CyssLCwgJnz57FcmwGdg1y+MhRvnfyBPFkAq/fx979+zBNk3vuuYcLFy4gCAKVSomWlhbGx8dJpVKsrKzw3HPPkclkEEWoVEq3c9j+SPE/cm2QJIk//W+fwjENvviVrxIIRV9XeHRsgUw6y+c//wyNRtNEUxRFLKMJI1zndSmKwq5dze4KwmuwzlqteR0eOvtK8/XWOV80131BVCkWqvzG//kJ6vU6siyjKC5cLo1AIEAymWRmZmZjb3H8G1/nO989xakXXmJyYhoEkytXRzj2lgcJ+GWqpTKGYSCKMqnWDlpb2+no6OLq1WHK5TIXzr/K7t27SafTlMtl5ubmgCY6QNM0xsYm8Hi8NIw6iWQLCA7Lyytk0gXWvUMWFxf5u6/9DbIsMzUxQa2uYyPy+LvfRWdnJ8mWOA3TweMN0Zps58SJFwj5fNjlGs+9cpLe1nYOH7yT7Tu2cd9999EwLSxJ4E8/9ccAmGZjo6g2NTnLwMBuWmKtxFOdtCTiROPtdPTtpO44qG4P733PTzB89TKnz14ASePG+CSqKjMxMYFj2Siqh7HJ2X+SsfWvJeTb/QHgtc3wra28W5+zfnvrxL5VS/3Wx9e7BusQjdbWVoqlKo7jUCgU8Go+pqen6enpYdfu3cRaopQqZZaXl1EVD12dnSwvLRFLtHDo0CFWlpa5ePEitVqNgwcP4vX7WFlZIZGMMTExQW9vL9AkAKXTafq29b9OVUSWZSzLIplMYlkWV5dX8Pl8BENhcoU8oVAIUZHJ6SXu2R7H2JXkr79+nepSDQEXmuKmQQNndQVfvI2GW2HVSjbNNwwd27YJBAKMjY0Ri8UwDAOfz4eqqhSLRZLJJLZtE4lEcLlcWJaFruu4/R5gDfd8m+LvW7TXv+PbveG/NdbH6/rmdf0YvNYRWE8CBIQN7LRtWxvdAtM2XjdGy+UyguggCwJet8BCrkwimcKxbMamp2kJVTli1unq6sCwDRRFIxyNcezhLTz//NcJ+F3giHzwA+/j0pVh5ucX0c3ThMJR2jtSFMoGgWiMajlNX1+KeMJP7NgxTAQ6uzbxny5d4x2PPckzX/prfuFj/4Feb4TjL3+CZFcHLXWNM2fOMHfV5tLYFAd/+2lypTItbW1kyhVS3d0oqkx5YZ5LQ+fxe5tdpVwuR6WQpbOzh9HRMUKhEEePHmZufoaF+Vn6+nqQXB7q9TrxeBzFqpNqTfD88yfYmgojCCIejw/F5cVs6NT1EuVCntWlWeanZhgaGqKiGwxdegX7+VewBEBwKFRqeBQIRwNobpV4PAUWxESRPXv2YTiArBINBhAdke+9cBLN7yNfyCApIaLhR5BkFUVeMxxahwT9K4hKpbKhDKZpGm1tbRvjUFGaTsC1Wo35+UUEB2KxGC63j6peIxgMYllWc2ybFqZlo2oe9HKJet1AVQXS6SzYDprSQr1ep1arIUkSiiI0CysvvtKUSTRsrl6+suGfEg6H2dTVRizaVNWZm5pmfn6enYO7mZtfQJMirCwt09/fz/DIOH19fQzu3gNAR2sr9XqdixcvorpkWlpa2DGwm0KpSLmqc/nSVQL+EJbpoGkal1+9RDQcQJIkDMMgEols8Ae8/iAz01O0JpKUy1X27t3LwMAA5y6cp1qtUiiX8Qe0NUPHAtGWAKdOnWomsDMzHD16lLGxMe655x78fi/PPPMMH/nIRzh79iwLCwu0JlO4VYVSIY8oyrhcGrlcCZdLQ1VV7r77bo4fP46IwMDADnbt2sXp06fxeHbwyCOPEIlE6O7uplAocOXKFfL5PMPDwySTSaq1MtfHbzA4OMjy8jK7d++mVKmyfft2bty4wf0PHmNxZRWfz0c4HKZWq/Htb3+bZDLJ1q1bsQWHL335C+Tzeb73PWEDAiQIAl6fhuZx3bZx+6NcA77fHbh5/PvQA2sPGIbBxz72MZ5633v57d/7JBXDwSW9dr5lg88XIJfOIOOgeXyYtoXZaGA0qliqjKBpCKLM5OQMPp+XcrmMbQvgNOeR7XaItoQ3ih2S1Jxjhl4nGokTDEYYuz6OIquASEf7JmanJgGber3OnXfeydzcHD6/RirVzt/+zd+xd+8BXDK4PeM88uggo5df5fChvciySCwWY35hkUrdJBAIcf7cBQIBP88++zzJZJI9eweIRqPoeoNAKsjo+CgezUs2m6Ut1UGxUKWrTUWWRZLJOD/x7j0IskQ+M0ejrq/BzA7yzW98nSee/BnmlrN4vF4ahk4qHKFcymPYMqW6Q1dnGx2PdLK8uEx8Uwef+dgnOfF33+a+o0cRrEVEEWTVRb5appYrYtkN0uk0Hk9Tu9/vD2LaFm0dHdSqRQqFDJFEB4rmI18z6d26lXJ+lY9++CNcmljilTOv8OCRO7k2fIXWti5cTjv+SIJYKv1POxh/zOMN0wH4l9rYqWpTQURRFCRJIhQKbbjdzczMsG3bNs6dO8fo6Ci7d+9GEkSmpqZ44YUXmJ6eZmlpiXA4TDAYJBaLoes6AL29vYTDYbq6ulhcXNzAtFcqlX8QsqRpGtu2baO7u5tGo8Hu3bvxeDxks1kalk1Ph4+EavPUh49tpGvVcgXTNumIhmmLRxHdfgKJrdRrOouLi4iiyLVr1/D5fFy/fp1IJIIgCBiGgWk2nYLL5TKVSqVpiLNWnb6ViPpGiR/I53gDxa3t51s5AOtxc6IriyKyCJLgIAkOzprSimNZKJJEMZfHNOpcvXKJ2elpouEIqbYk/f39/PKv/q8sLcyTzqyg6zq5fB7N66FYKdK3ZTNXr13DsBpMjI8xODjIm+67l4WFJa5eHQZRpW7YFKsGiuahblno9Sqyy4eq+fGEovzRZ/8aVZV5+yPvRK/UkT0hEhGYnZ5FVjSsWo4nH38HP/WudxGLd+ALxQAIRyM4jkNmZZmu9g68bhc+n4e5+WXqpkO9bjA8PEw4HCaRSPDc89/l6tXLa+ovOrOzsxiGweTkJG95y1uYnJjGFqCtNcauXbswjGbSVC5VqVZK2Gad5bk5Lr16oYkXrxtoHh+2A9VqDVlScLs8qGrTeGZq4gZVvcaW7f2kOtoxbYuevj56ezdT1WsMXx9m69attCVbCQX8BDxuMtllrLVKlPDP6JB9O6JUKlGtVtF1fa1a+JrxnGU52Daoqpvu7h56evpQFBeXLl1hdnZ2Y61oNBrYOFiOTcNsvkaj0dgQHfD5fGQyGS5duEg+nycYDLK0tMTi4iK1Wo1kMklraytvuutNxFtaOHRgP7sHdzJ2fZRvfuM4Z06/QiDgIxwMsLq0zPXREcx6HcsyePHUy6huN4rLxcVLl8jkcrS2trJlyxay2exGsWVhYYFr164hSQptbR2EQhFMs1kkOXbsGIFAgGAwyObNm5sboz178PgCtLa20tXRTjqziiiKG/wATdPYunUrXq+H1tYEkiThcilks1nOnj2Loig89thjlEolXn31VU6cOMG1ayMMnT/PqVOnuOuuu3j729/O0NkzlMpF8oUcR4/eiaJIgE04HEQURUhsFqIAACAASURBVM6ePYuqqiwtLTE2Nsbx48c5dPgAitI0Yuvo6ODkyVOMjd3AMCwEoSk+oWka+XyeBx98kGw220y+KxV2796FrutN46d0mng8jizLnDx5EkmSSCSaf0skElmTcl1hx44dXL58GY/HQzQaJR6P/1AI7o9rmA7cdddd+LwejDVn4Nc9bpr84i/+Ih//+P8GNAtljmOvdXHXOrxOM4Hubm9fc4u2ARtZaULttm3bhiRJqKq6BgG1MQwDWW4Wkbq6urDt5nXE7w8iCM3nbjhUiyLT05MMDZ2mf/s2RkaucPqll9mzZx9L8wtkVldQFIXBwUEEQUBSXTiOwPLyMncc2I/LrRKPJfD7/WTSOTKZDIuLiwwNDRGPx8nn82QyGQTRoVItEY1GYU1N0OVWUFSJer2OqqoMDQ2xurrKoUMHmJmZQVVVZFklEm5hbHwCvVEHbPKZDIVcGq9XY2pmmt/4jf+dznicV84O8eST793gzel6A01ROHr3EQAs21jrntvIsojf7+Vzn3+GWrWOpoq43R4EG6anm9we27ZBlDlw4BCFXIFsvsjw8DBer4YnEEbzB/nG17/+Lzqm3ujxhuAAFEu1DUv6m5391uPmbP4fUvu5leCzft4GCdO2adR1yvlVBFGiXCwwceNGkwkfClGv15lbmKe9vQ1JFlhaXqaUL5OKJ4i0RGkYdSqVCunVppLC8ePHuX79Oqm2VkZHR9D1Gi3ROMlkks2bN5PL5XB7PXR2d+P3+3nNvKQZjuM0K/C2Q6VaIxqLMT42isvlwqhWefHiq/z0oSo98Q6GUyIDg7s5850R8ITwdcT5yXvbuKMjysd/87+iJB4ilQwSa00yMzXddC8UJKrVajOLrtc3Eh5FUXC5XLjdTYUMjz+IIMj4Q4G/twNzO+PW7/VWzLUq3z4ctWPUn/6+Yxta//ZGF0AURRz7pk4V6x4AG2fhOM3OADZYpk2jVkMvpbEaOn6Pi0Q8yuFDhznx0mnKuRX27t2DIzT1pw2jgaKpeANh+nq78Af9zM0tsLySxrBsfurJp9i6dTumLVDVDSLxNlCibN0ySLVQwWgYWMUMf/nf/5TzL5/hpZdOEAy3EIm3UrMUfuXXn6YrHub/+9Rnmb02zXvf9hDfOPkC9/7k4yhyGLveQPIHUGUB0TJIryzy4nPfxZJE0oUyBw4e4rlvfYsHHriffL5AOp0hn01z4I79SKKI5vHg8QUoFAr4/X6ee/4EU+kqeq1Op18kFA4zsPcAoqSgShIrq3OMj17m9MkXmJiapazXKZQr5IpVdNPAtgUaDaGplESdVDLE2x58gGiiDTXkx+3xEPQFKFQM3P4gLrcb1aUwu7hI//ZBIpEYwYCLbC6D6tGAZrVuw5tE+CeaI7eRA3Dy+W8/XavVNpKAUrlEpVIhn286la5vBprSxCqGYZJIJvF4PczOzpFIJFldTTM9OY3P50eRVSRRRtM8uF0ajg22bVFIpymXSsiqRLFYamrNu1y8eukKDz30ELOzs+zetZujR+9idnaa9o5Wpqcm2LdvL4bRYHVpmZZYnMXlJfKFIm9/ywNkM2mO3PMmBFFhaWmJWCyGZVnEYjHOnTuHXq3S3tHG9NQUDiJen5ea3tgQYpidnaVWLaMqCtFIiPn5eRoNA83rZXR0lN6+rSwvL/Hyiy/i9/uQZRe9vZtIpVJMTk0RiURYWl3EMi1qlQodHR3cmLiBy+Xe2LDpus7BQ/sRRYn2tm6mJ28wMjJCb28vtVqN7z33PJFwmLpeR5BsZFmgUiny3iefIBaLUygU6O3t5c0PvplMNsv27f0kkzGuXRth69atzMzMoDcaHDp8CASB9o52BnbsZuz6BIl4ir3795LP5xkYGCCbzSKpCprmoyWWYM+evQwPj9DVvYmWlhjhoJ+hoSHm5uYYGxtjfOIGbW1tlMslFNlFJpPh3LlzPPzww8zMTBKLtbDvjiO3Zeze+BE4ALd2AMS/p3a0LsUsALrlcPiOPVwfGSYejyHLr6kCOUjYpkGlXOTYsfsRRDeSolKvVqjpJURRRvP4EUWFcqXEBz/8Adyaa40YJyIKdUxEGjULl6puQIODoRip1jgnTjzLgw88SG/fliapWBAw6yaSKHLq5LfZs3sPw8PDqKqK260QjycQBBFFgVq5RrlcxbBMPC439VqNaqVMqVwmlmzCt0TJIRT2UauVaYkmSacz1BtNda5yuYIiK+wY2AEOeDweZFWiUi0ydWOWe+6+b6MYUChnKeRyGI0G9937JjwuF3/wh5/izjuPsGlLP27NTblS4TN/9me85e1vZfzaeUSnjku2WVpZ5ivffI4Ol5/7HnsLnfEuLNsml57BssAfiRL3xXjbE49QSK9SNyy83gACkC9mSGdWOXjkCOmFedyyhT+Qwi2IfPIPfo/OVJxkPIbmb0GS3fi9Gjcmp/B4PGzv30Yo3obHF2Zu7Bo/+6F/kwFdjzdGAlCuPK2qyusmM/xgOM/fd+zW+z+oWmwbdRp6GWMNm18q5PH7vDiCjCM4KLJMZmWVSCAIJiwvrNDZmmQ1u4Iqg2mJLE5McnromwxfHSVXrrCar3Dp0iWO3X0P8ZYEhqMTiYYxLYinWjFMk87uTtxr8lq3VooBRFFmdXWFSrGAy+NBRKJULHDp6iofvVunZftmnKKBpGZZcXnILa3wc++4k6MdNtvvOMp/+fMxkpt3cmT/frK5LKIgMjJ6nWw6w7Fjx5rGX6pKMBhkeXkZRVHw+Xwb3ARZkdD8fjR/GFkU11xQhX8Ut/GfNV7HvRRuawJgmY2nHZrukjYOjrXmA+CYCIKEbTV16m2rAYDj2M2NvuNg2Q4I4satbTWVgRoNHbOu49gN0vkM1XKeyZlxTMticPBOvL4wLrcKlkh7dzemaSHLCn4tiOYN4jgSji3R2dnN9avDtLc2iWDhliiiqOJ2a5RLqwQ9EhI2Pr+IN+JDVN30D+6ht387+w7cTV//IKKk4nZ50KsVwpEIX/7il/jgk4/RuW2QY4+9B1e0FUSJRqOG7IgUC0X0WhXHNrCMOqdfOYsLh6nxUTxuF4pHIRAIUCzkEWSZxaU8q+kcb7rvKB6Xi2KpiM8fwBNO8uzzLxGPJYhEvKhSgz0HDmOYJrZtUU6vUC3mKeoVerbt5NnnX0IQXQiChIWNJMkoskLdtDAMh3ymCkKdcj7Llt4tKJKM7PIQiURwLAvN7SMQ8CHhUCkXcLskVEWkWMxTr9ooioogu7AlBVWyeW1+OP+4H1G6bWN35Or5p8ORMP6An2hLFL/XRzAQwOvxomkiqirh9bgAi5peRRBEstkc2VyGbDbLtWvXiMVi+Hwabs1FLpdlfOwGra2tOI5Do9EgV8pii9De3Y5bdGFZBtNTk9T0KpYj0tXRRjwaBdHi2vBlDh08QGZ5FZ/HRSwaoVQo4DgC18evUyoV2LNrJy5MytUawUgbdcOhvaOLzPIKAV+AC6++Cgi4VYWF+UV27dnFq5cuI6tuxsauAw6FQlPuUJBslhYXWFxcYdPmTSRiMZYWlihXGiysrCBIMpu39ZPJ5XG7Fa5eu4Yky4TDYZ599lkqxTJve+tbERAYvjZK/9adXLp8kVKpRH9/P9PT08xMz9K3uY9IxIfm8dLT20OqrY0/+dM/bVbaPRo1vUZXZxdf+7u/o1wqY1kGFy5coFytsaW/n3A4yN333E2xVMIwHfq6OtCrFVLJJC2xBNfHxlCU5rwavT6K6lLZu38vJ144RVtnJ15fELfHj9EwGL52jXKpiGXalIpF5ufmEAWRbD5HMBTmzNmzDI+MEg2FmRi/gdvlIhoJkUzE6OvdxJXLr5LP5VheWuKtb3/n7SEBT879gwnAeqHtdUnBmmPwzRy85vG1EEAUJUwbfu4D/56fePwduNxBZEvAFpsW7ZIgU9WLCJKboaHTdLSnqBR1DLMKkoLXG0SSm+8viQqDO/v5qfc+iUcLIjgGelWnVq1y9twpouFWNI8bvVahkCvx7W98ja99/W940333IYhQKuZQVBVRElicGSefK5LNpvH5NF568WUK+SLplSzLy0vsP7SPWimHIkKporN123Y62tupNxpMz0zRt2U7pVKJWq2GS1HQvG6KpTz+gI9qTcfBZsvWzUzNzFKt1ene1INbctOeasW0DOKxOPWGQ12vUimUMWng19ycGbpMJB5j3/476Ozq5MroMC41gIDAYz/5U/zFn/8lSb9K0BegUskT0CTe+hM/z6H7j+DW/Lzr8UdZWJphZWkR1a0SiSVxKSqO10epkMM0QZQETKdO0BfCH4phVuv4oilCXi+CAILPzd98+cs8/uYH8QYiaMEY//XTn+LUyecIu33c/7aHKJcbfPErx3nqqacYOv8S733q30jA6/GGSABK5drT6wo5t9p5/33xwxKDH3R+o17HaOjo1XKztdRomnlpmpf8mlxcS7QFt8tFLpsjHo9jNhqsrCyRy2W5fuUs18++hOn1k6lI5OoCdrwdQ6/z6vkhhi+c422P/ASNhkUsHiOdzRIMBom0RNE0D4qivO6zvmYa5SCKArVqBcu2qVVqFDJZhofOMF+q01N+ke5InMFUB6mgj+2tBe7aU+fIjvuplaa5kd/EkcMHqOGQz6WZm5ujs7OTHf3bSafTTE5O4vF4yOfz1Ot1LMtidnZ2zXXYJhqLoXn8BIJhBJzXOABvwATg+7/X25sAOGbjaXjNjGZN+Q0Hu1kBtcw1XfXm74IgrMmAvmYYBs0LkiiAYTThEwvz00xNjfOtbx7Ho7nx+TR6e3t5+aWX8LkhEouwqW8L2XSGjo5ufP4opZqFqCooqoojSuSKBY7edZDz56+geTvo7U4yMz2BXisSDIYoFnVi0VZWV1dJzyyRXU7z0qmX+dJffQlfOEpNr6OoLizLxh8J41cVvvXN4wxducS7/t2/o217P2W9gVMpIYoOjbrJ/Ow0N8avU6vplGt1TNtmfn6WwV27KZZL6HoVRZLxejzo9TqSqNDe3kY6s4Req2M7kM3m+NxffRZ/MIJt2Qz0tHPk6CF8oRiSImM1dFbnpxEQ+OpXvs7s9ASCbeLzesBpEqBT8Si51QU0t4Rg1mkJejl0xw72HTxMvWFQrzeo6XV8Pj/r2aQoSjiCjCS7CAQjCI6E5ZjEEnHKxTJunx+fx7uWdwobtz/6YLmpe7l+3m1MAM4Pvfi0z+fbEDgQb9o0SZKMLKsoigtFduE4NqqsEAlHiLW04Pf51yQr/Swszm/o0BcLTQnFXC7H6dOniUQT+Hxe9FqDseFh8rkCmXSWQqnMjYkp4rEWJFEkm8sSCoWoViosLy5RKVfJZvPUavVmqmTbdKwZMcbiMc6dv4Ts8bOykqFareD1eXEpCtt37iAUCiGLAtFolKnpSby+IJZts3PnIIFAiNmZeXp7+7hxY5y2VDvp1QzZXI6x0RHa29vQDQOv10+lXMbv8yHLEp2dnbz//e9HEAR27tzJxYsXuXJlAjCwTItgMIBhWCRbE2iahiRJxONxfv6D/54vfvFL9PVu5eq1q6iqyh/+4R9y+PBhtvdvZ3Z2FlEU14Qluujo6ECv17j//gfYs3sP+/bt58VTL/DqhYucHTpLqrWVzVv7CUWiyKqLl0+/QjKZBCAUCtHZ2YkgNDH7rakUeq2pPS+LMrFIiEI+x9CZ0ywtLrJjez/f/MZxTr/yMhfOnefggQPUKlViLS0YRhODvbi4yPT0NIlEglKpxL59+5iammJubo4nbpOayg9TAfpBMuACzvdt/r8vBBFJFHjqfe/j8cce54knnwTbbircASICer2C6nKzd+9ePv3pT7Ojfzv1egPN66deN1Fd8sba/vMf/CCH9u/nZ3/uAwiOiS8YIhAI8Zef/ywPPfQWFEWh0WiAI/CfP/n77N6ziwMHD68ZdgmIgodqpUSlkGZ4ZJjW1la+9OXj3PfgA0zPziGrbu5/4F7OnztPT28PralWRkavcfjwQb78pS/Rv72fQCBCsVQBHHbu2M7iwgKLS8u0t7evmYodQBCEZjEQgVQySaVUIZ1ZJhAM8N3vPosgKrR3dTA1cZ229lZswcUn/u/f5e2PvIXerf14w3EapsCmzVuxLaupfIeBKNokWtvp3jqAW9MIxtuYWSpz56E7EASBoVdO4/V5Kawu4VIUPP4wSigMVQt7TV2pVq0hIGIaDbz+IGbDwBYMHMeiUqswPXaNU89/m7aWEM+ePIWkuHn88cfY1tdDMBBi28Agquxn+8AOFhfm+eY3vs4vfvSX/i0BWIs3FNbj9aSd/7EE4EcJWW6C6F2uJoFpHfs+Nze3AZMpFJqJQK1W4/roKCMjI0RCYbZv28GNqxfpTAbIlWsYosKuY2/DneggtmM3WlwmFJL59te+ilE3Nxbj9vb2H8oDkOWmWsl66ziVSiLLCp2tcT75nSKl6FEi0R5K80X2b23lwEN3sa/nEazCPP/P714m2tqKz6eiaAqzs7OEw2EkSeLatWvMzMywa9euDUfCcDhMNBrdMAjz+XxYpkmhUABuLwH4xzH+oY7TrbFOQl9//jofYD0JWD/WaDQQcXC5mson2XyearXa3KThsDA/g6a6GL0xzuzsLOlskXK1RjSRRJIVVJcXjzdIT99WPvdn/51YxEspO83Fc2dQBAuXopDJZOja1MOlK8O09m5DC4bYPLiLu+57gP/ll3+Zzu5N9G3eQiQaY3xighef/S6ZTAav5kKUZLp7+jDqBi5R3uDVZDIZqpUSL790iv/26U+DJBMMBtnWvwNRVnjksXcSa2nijHVdJ5lMous6ly9fRtM04vH4Bjb2jn17iYRDVAp5TKOBYdm4XC5USaaQyzI3P8O3vvUNUqkUkVCYhx64n97uNu46fAdHD+9na18nO7Z143eLxEI+ErEw/Vu2I0oqiUSSeDyOprmoN2qIIti2iSSrhCMthMJN3KvfF0SRZKrlPHolR61SwDIbiMIPlyL+cYh18rptN0mGguA0zb7EZldSllUcR9jA6Nq2TT6fZXl5GY/Hs6G339bWRj6fJ5VK0dHRwdjYGFevXiUQCLC8tAKOSDyWJFcssJrNYDoOitrkXdm2TSKR4OGHH6Zer2+4oLe3ddDV2U1rMkVnZye7du3C5XIRi8VYmF/iiZ96L8uraTZvbXqsFItFKpUK586dY2lpiWw221S0obmeHThwiEwmy9LSEu3tnZw7dwF/MMRKOktrWwqAzs5O0uk0muZCr9colgoUivmmkpQoMHz1Cm5VIb2yTGsizgP3HcStKuTyWdLpNKury3i93g2zRa/Xy+c+9zkmJiaYnZ3nxvgEU1NTvOMd7+B973sfra2t7Nq1i2QyiWma9Pb2sm/fPnp6esimM9i2zYULFzAbBr29m3j88cfo6GhjbPwGM7Nz9PZt5kMf+hDRaJRLly5RKpV4/vnnqVardHZ2Nj0y6jqzs9NcG77C8Mg1iqUCu3YPEomEOH36ZXbvHuTOOw/xznc+yunTL1MuF+nq6iCdTqPr+gbP7aWXXiIUCvHd736XfL5IsVi+nUP3R4r1sf2DXNl/UKwfbzQaPPnkU83O7S3LuiAIZDIZZmdnGRkZQdd1JElCFGSq1err3sM0LeaWlrFoimxYlkWtXuejH/0ldL26ocBn28217a/++q/ZsmULx48fR6JZDA2HogiSQjAYZHR0lI72OCdOnqJ/+05sBE587yTtnV3YFmQyOe48cpjzF86xd+9ectk8LrePQr5IuVxlcmKaTCbHpu5eBCS29+9kcXGZXK5AZ2c3stTsIi0uzhMI+nG73dRq9TUuA8iupvfKpk09vOeJd5PJFRBVN9GWJJ2b+mhtbUNRmsqKsiDS19OLFoig+FoIxtsIxDr44z/+Yw7ceQSPu6k81mg0mvwjCTTVRSqVwiMpTfiT4OBxuZFFsdnZtSws22hKkNbrVColbF3HMutYRoNDdx5G13UmbtxAUSQC4RBf+MJXEJBwqQqlUgFvIPjPOuZ+3OINoQJ0Mzb+B03QW3Hz67c/ahJwqzTj+oZL0zRSqRTtkou55cWmGobL3TSLCYep6zq9Azu49MppRi5cYkdPjKBLJOyKsDiyzF/+xZ/jD6p0htt5ywcepn16iMUrZ7l0RmHLQNM1MJ/PE4yEKZfLG9JzN2/+mtW2JtHH4/GQTCaRRYlGwyQWUvnQb3+FrwuzyFf+I0bVZFdfF4msQ9U9x+9+t5Nap8HufYOIisTs1Dh79zZxn9PT04iiSGdnJwsLC5RKJRzHIR6PU6lUADYu7NnVNPF2P0a9gSSoP1IH5nbGD63k/AvHzQpPzU6AhGkJyLKEZYo4joBl26xzrG/e8K/fN00T1mRea7UaNyZG8HhkVhYXcLvdDN57kJWVFbweNwBLixlSvT0EW0OIssTYjet0bTJwLAvH7QYBLBsGd+7C0guU0hO41R5279/F1NwCLtlPtdGgJZGkXtK5OjbDxOIqdaPB1u39qDqk8yVUtU5bRycnv3eC1rYebNPiVz7ySzSqNbyqG1F0EESxmZyIIi6Pl3e9+z3IUnPBvnxxEVE0WVyao1TIoqoay4uLaJrG5PTUhvJKOBxu4s2dpjqNNxTj2vhpZEXhwIG9dHZv2pD/VCSJarlCpVSkUmvQ3t7OkaMHURU3Nk05vvEb19nc3UogEiEYiuPV/HR2tqF4AphWA1NvIMsyLpdCLpfFtsDlqmFZDqIIjYZJIZcll88QDkdxKTIjly8gyyqtyXaQpX+cGtD6YLiN+bamaRvu4ILgYK7B1Bq6jmnYzeoka1K3goNp12g0apiGw/LSwsY8dGtNA61yuYyAhKZpRCKRJmEUiUqlwujwCPligUq5Sn//AM9+93scvPMAgwM76Gzv4OrVq9RqNdLpNMVcnqXFBWZnZ9mzZw+C4JDNZqlVywjYIMk8e+Ike/bdxfnz54mGgwiijOk4eL1e6vU6iUSCVCrF9PQsPr+PsbFxypU66XQaxxZRVA3NE6CQr+L3K3g8Pq5evcyWLZtJ5/Nk0zmS8RjhYKDJ58qssjg/i+A0lY/uOnKYXC7H175xnFg8ydzcAncdvbtJJh8e3hir5UqJ7du34/G66N++jU9+8pM88sgjpNNpnn/2OQYHBzEMg/b2dp599lmi0Sizc9PEInF6N2/hoTcfY2lmmoDfy7WrlwkGg7g1L7qu8x9/7VfYvHUbXV1dRKNRPB5PE15XLPKVr3yFRCJGKpWiWi4hIKJXK8xMTWIYBsvLq3R2dnJjfIyf/dmf5Y/+6I/QdZ1AIMC5s0Ns2bKFBx54gN/6rd8iFovh9Xr5zne+QygUIpvN09nZedvG7bphYvP6KW7cX1+DzTUC7+sKiYKzocgGzaLb96kHrrVvZcnFux5/D41GHVFREJ3X1N1s28bn83HhwgU+9rGP0ZYMMz+/SE0vEW2JYprmRjdYEl0szK+waXMnF8+eI9bWRb1QBEfB5ZYpl9Ylhpuf/TOf+QxnzpzhZ576aXb0b+HEi0NNWdvZGVoScVbSWdyeAL5ymfNnzxGOBBkZm0WQFbb0dHPmzCscuGMPkXCUkZER7jp6LxXdRNM0CksFapqHA3ccolSpYhglFheXibbEiLXEKeSLmA2DseujhENBkm1xCsUCmbxOOBonFm+jXqsgSh4+9OEP83uf/AO+/OWvkskWSbX3oXkD5HMl5hemyaZz1M0q58+d5v3v/zANS8RuCVGq1WlPxPizv/gMv/M7v8sT73mcRr2OJEKtUmZxboYrw1fZum2ASiGLbVsYZh3LhGAkiagYFAoZlpeW6B+4g2qhQkssScDvIhzygKxA3aAtEWNk5DyhUB9f/epX6Gnvwx1yo+s6+/bd+S83UH8M4g2VAHwfjGejP3HzRP3+829OBl63KXRenzhYDthW06FPchxER6JWNfCGNMLBEIFAgJGRkWZLNr1Kx6YOFpZXyaxkOPXCCR69P053R5hnvrWKjIsdHW0ga1AqstIi8zODB0gdXuFTf/IdNPnncWQXqqpSLleJxZsbwSbc4PWNF9s2UVQ3uVKZWDiCXqsQbWnBHw5hnPoTCoEk/9d4H5pLRnn5OmOZCtu2buWhN3eRiB9BNxtIipvZyQncHj9XLr1KQ6+xubuP5cWlpjNwKEgmk+HG1CSiKNLft6XJnDctFJdMo6a/tsFagyq90aP5XTvczl2UIIiAszYu13gdloMoq1iWjSgpzbFn6oiOiGk1cJxmN8Y0zI3XEYFypYxlWfT2bgKnxOzUJAM7t3P9+igL6QKd7UnyhWl27z9IqKWNjrYUxUqBYiVDPB5hdXWV9pYI5WIBRQBDNOkZ2MXc1CQpbwzRqzI1U0DzJmmL+bl+fRpN8zC7NE+qtRVZUrBtkAwJTzCEXqnid2nMLC7hNhxOHv8mhw7dSaS1FRQVWxLQzQaKCBPj03hUlUSqg7peo14pc+rkc3SnwpTyORqNCq5QkHKhQq5QoH2wH9O2WFpYRpZFXr14mc3btuIL+Lk6fI2zI3PUdQtHALem4vU1q82qInH+9AuMXLlEMhGmvXczXZv76dkyiCrJXLx4hpXFJTZv3oyAgSuUQHX5mlrppTxiqYQqCpRLJdKry4QCXgqFEqLbg+ZSeO5736NcrWBZDsl4Ao9Po6fHpiPVQ9yrc/HUd6jsfxMtiTihUBBREMAWQbh53XE2KofirTnq+vokCDi2fVtRdooMAiYN3cR2TCyj2RFd75Su+478/+y9d5Rkd3nn/bm56laO3V2d0+SRRjMaSaMsJBRBAolkkLEMBgPvsrz2vrbXsF6zOKzDsrCveeFY2GCzBMtGRiZYgSAJjTSjrJnpydPTaTp3deWqm+/7x+2uaQnh43PstWSb55w63XVvd3V13d99fr/f83yDYa6rcVjtLpTRNLFtG8MOIJKapiHik8mlAxnKZpP5+XlCqsby8jKaprF5dDOKqvPgwz9AjcZ59Mmnju72cAAAIABJREFUSGWyGI7L6sICkXCU6elpLrrgAs5NTdLbXUAPBXrqtmlRLK3SrLfo7Oohm+/k1OQESjjC7EKRrmwSTwDTcpidmcZx+pEkieVSGdP1ScVTTM8t0Gg0aNbqFAoFDjz1DJlUGiUkoEgym7duZ3riDNu2b8cwHIb7B1hdXWVmYpLR0WFWV1fZvnUbluMyMTHB1q3bGR4eZn5+nj/9sy9y6vRJJEmit7sHSZCZOzePrAh05PIcfOpJhoZG+Pn3vBtBEFhZWuSee+7h3Llz1Kp1brntRs6dm0bXda64/Bo68zlWVlb41jf/GtezqdUrpNPpNXfk4LrE4/G26o9pmjzxxBOIBAW0QmcHqqywPB8oGGmahmOb9PV2YxgG/X09gd/NRTt58O+/TUdHDsuyuPXWW3n++eexDJv7vv51rrn6Kh7b/wRdqkK9ZVBrzpOIp3jp8NhrNm7XF/IBnFJAkgJTvvXjvu+vGXhJ7WMuAr4XCC1Igv8Tne727wKO74II73zrnTzwnQeoW6BIIh4OICKJGpdeuo/FxUU++z8/w+LyEr/yq/8FSZARxJdr/AsiqKKEUV4iEt/F3EID2Ze49957ede73oVrKqghl6mZCbbvuIj9+58gl8vx4/1P8uk//AO++KdfoJDvYHFlHtezefaZF/n4b/4Kj/7oxwjYsKmXffv2sf+Jg4SjOfr7NvH0U09x2WWXs1IsUzfWikJ4zC3MMz4+Tme+g/n5eQAGhgY5cniMjo5uzk5OMTjQS74zR6tWRZHDJHMdHHz+Bd5859tZWFplZDDJ//7afeiRBCdPjfP//NqvISoqogjJZJx6rYlptlhccHjTm+7iYx/9j/zBH/0RUkhgZGCAL37xT8kV+jhw8Bne8a634zg2qUQs2PwXZ7n/r+7n13/79xGRiMejHDr8PP19IywsniNSj2C06uzYsRfDabGpfxg/mqYj300kHCJd6EWO6Dzy+AHM+gxX79vDF77wOUJakqWlQL1x09afbQA2xusCAvQvWW1uY65dL6gAhkPYdjDBnThxoq0Ske3Ic+ToURr1Flt27GT3JXu4cMcw0RiYVh3f98jkMlCvgCgSjcfQw1Giuse7b99CuVjGNG0qlUpbhnO9FfnKWK8g9/T04TgORivAX7qiSiqV4oLtI9xw8y1ce+OtXHfLW3nb29/KLbfdRP/AEIgetu1w5KVDSIrGxMQE6XSaro4cZ86cAQLpU3+tOrZz5076+/vbVZP1zoBt25i21Z78/zXE60Ea9KdxUV5NlWo9XNcN5BPXxqLrupitQE5WUSQWFubIZHKEwxF81+HSvXt44w03ooUjhMJhntj/OM88fZDvfec7zExO4duBskRMj+F6dqDtrkjYzSaSD5ZhEk1EiSWSDIyMUCwWWVlapiOfJxGPAcEYbJlGoPGeyvD9R37A9NQE46dPcWzsMNlUki0jw3Rkc8QTKTRNQ/YFVFnB9WDLrt0YdrBAzOby5DryNOotFhaXGT9zBts222Z0g4ODzMzMMDszRzisYds2yWRyzaW0Qn//ANFoHAER02gSCeuE9RCaqtJqNnAsi8uvuIQbb7yRy6+6mt7+vrZxVT6f5/Irr6ZcrWBYNoKoEA6HsYwW9UoZfJ9jx46xuLDA+KnTnD17lrGxMZ599nnOzS2xXFxlpVii2mxwaOwoPiIHDx7kzNlxEDyMeoVqrUK1WgnwwT9FOlf0X2Xx/zqLdQiQj9suoqwXYzYaFQZtehMI8qdlWef9LGynnT8CiFCZyclJarUa3d3dxONx+vv7GRgYYH5+nunpaRYWFmi0WshKmG/e/7f84EePUq0H5nF79uxhZWWFWCzGxRdfTGdnJ6urq1xyySVctGsPiqrRapoYlk0ynqC4tIwkiCzNzlMrVzAadbKZTDufZzIZtJBOpVFHFkSi4UDOcnZ2llqzQbFSpbiyyvLyIs1mE1XRkEQRxzI5cuQQrVYDx7HaqkiHDh1ienqS8fHTnDx5nOXlZVZXV3jPe97DZZddRigUYmZmBtM0icVibNmyhZdeeonOzgJjY2McPXqUM+OnsB2TycmzLC8vc8cdd/DII49wySWXUK/XmZuba1+H0dFREqkku3ZfRDKdQguHWC6uIsoKb77jLYyPj1OpVMhms4TDYQYHB0mlUlQqFRzHIxwOU6vVOHbsGGNjY23jy3XZxLm5ORRFIZ/P43ke3/3ud9m3bx8A+Xwe27QYGRlhYE3JzrKsNhzxtRy3Gx+vjFfrsq8fh/NrgFfGK2FCQ8MDeI6FFgqtnXcRNiyZMpkM99zzPl547kV0PYosqa/6Xqenp3nrW9+G7Zhr3TaBu9/zXh5++EFULWgGfu5P/xzDNoONmuvi4vPBX3ofP/fOd3FuZq4NsXv3e97B/NI8H/jAB7AsB02ROfLSi8iqQliPcODgc1x08cWYho2iBc7qzVaj7fWhRyO0Wg2y2TRvetOtfO8730XTNE6cOMHMzAzReAxVVRFFmWJxlZ6ePiampvF9n1gsxsOPPEh//yCGYZBKpXDWcpxlWWzfvp1wOIxhGMiyTCyW4DP/67Pcf/83cV2XHzz8EJVqHcHz6e3tQ9MC7lHLtNHCEUzL5eo3XA8uSFoIUZaJhHXwPaKRMHpYAwRc16NSLVKrlGm1WtRqNfL5POlUDs9zWVpawnZAlH2qtQqe4LFnz17mFuZJpjP/lKH3by5eFyRgy/E++aodgH/k2u6V5N/2g5c777qui2vbNJsVPMelZbQCzOkaaWtd3/bs2bOUy2WGhoaR1SiyHqJvdJAe8QQdHWHGXI3ZqUXspVXwDARZY9etO9mn17l0qIB57hm+ebTA4MAgCD6yIhOJxgNXTV6Os1/HAAqCECRl38VxHF46dIiRzdvQk0nqrsmmvZcT7yigZ/IM9HXTaLZwPR9RkllYWCSdTOG5DkbLRFWUAKu8Jl1YrVYDnKGq4tg2ruMgQBuDF4lGCYWjdA8MIkvSeQjQ6xcFBJy/1or02pGABc/95MYJZyNEDQiyu+/hOg54YNkmruu8DJcqCEF1yrItWq0mrm1RXJ4nFdMJhwV6unqJRKLUKk0uumQfF+6+lOdfeJ7ZmXEa1RaDfQP4jsXc7FnKpRWS6SS+7xEOyxw5fJRkJkdn3zCiH+Ls2RcxjAqKEEMLSbieQywWRVU0VE0jHNYxTIs9e/ZQrpbJZnMMjWyiaVlE4nF2XbEP2/fRdR1FlahXq3iOhWu26OrpRYslqKwWOXb8OHe++z2MHXoBs9UiHNEJ6TojQ0PU63WaDQNVlllZWQagu6dAPBEjmUoxPj7NiZMzZHJZbKvBXXfcAIJMPBHHtUxalWVyuSyZzl4y3YNookB1ZYmxwy/S0dmBBYxu3kYymUf0RWQBquUyf3v/tzg3v0hPbzeqonLoyBHmi6sgSnzv+4/x+FMvMDO/SKXZxBMFSrUmKytFRBeq9SqJZAJJlBAckEIysWgKz/ORJPEfvFV8z2s7CZ+HJAjBc0l5zcbuyWMvfPJlOdcPKqPr0EDXddsu1q7rBBtV08S0LAzTxPN9QuEwsqyuCRlIOGs/U6vVKBQKZFJZCoVuUqk0/f391FsNbNtFlmREQaRSqZFKpZmamuaxxx4nFglhGA16ewqslopEInpQyPAFJqamKJfL/PDxJ0kkU9gNi5FCF13JOEkfooKAbLjEtTCaJGM1W3iOy2q1iuP5LK0UaRoGtUYdQRKpGQ2UkEpc16lVyhimST6XwXFcent6WS0WuWjXLirlMrsu3ElnR57uQhe+D329vWwaHUUUBLp7etGjESRJolqtsLi0RDaToVarMjDQz913383TTz9Ns9nk4ov3MDDQT71eJ5FI8sgjD6OqKrlcltOnT/OGN7yBxcUlVosrmKZJJBIhn+/g9OkzuI6HYZhs276DcrlMLBbDcRwuuugibNumo6ODeq2Goij09/fj2BbNZoPFxUDEIhQKOtKKEmDKLcuiXC6j6zqNWoN4LEY0EsFzPRYXF3Bdh87ODpqtBrVqlYW5ecIhjXwug4DHL37gI6/J2D39MhWgjcT188c2wn02fhUEAUl8Odz4p/ECbrnlZq5/wxt4z3t/Ad8D33WwHQtJltccySWmJ09z1113kcpkMB2zXcxbD9/3CYVDPPH4DxkeGUaPxNqdgnQqw7Fjh2g2XAaHhwmFNbo6u3AcBy0Uptls8vPvfS+/8isf44or9rGwsEBfXw+CCM898zyFQicCgaJcX18fU5OTjJ0Yx/UFYjGdcDgCsorZqqGqKs1mM5DLdVqEQiqOa5FMZmgZFpdcspdyuUou24HRsjEtE9P02LXnMp7a/wQX7NqJ4Nk8eWA/2Vw3/QODRGMxsrkssiwjSTJPPPEEsWiUcqnErl27yeXyRKNRHnzwQW658UY+9h/+L95y51388f/4Yz712/8NXxQQRGg1qhRXq1hKgmvfeAsuEI7HkDSF2cnTqLKHpoaJxOJYvowqSzQtk+eefR7LrHHs8HOE9Qgju67GbSzjWS4HXjrE1s2jOAikM928dGyMbRddhIPMzq2DPyMBr8XrpgPwyp36P3dld71aoKpqoMIiCiCJCHKwSG42mwwMDAAwMDBAOp0OMPldeSKJJJt3XsD2LcMUOnNk8yHwbQQUkFSUkIZZnCOqSJiNKq5tU1qtYRhG20Bl3efg1aBK69XLSCQSQHBCGhdeeCG9Q0OYvk8ylwG3RTqpE9VlHMelu7sHQRAplcps2rSJqakpHMehv6+PRDRGcXmFeDxOJBIJoD2WzeL8AiICiVg8wJmPj+P7PqqqomkarVarbWz2esHX/2uIV6s2bVSzWr++GyendQK667rYtg2wpudvUywGMoumbaGukcMPPLkfUfDJdRUQ1RC33v5m3v++D/Crv/ofmZs7y8z0aarFWRbnZ5mfn8fFx7Rt+ocGsRyHaq2BKIpE9DCZdIKuQgdGo45jm7QaTSzLQhAEotHoWmeowvDoCLF0Ei0SJZZM0NnbTTgWpb+/HwRvbaFoY5qBnOzC7Dy1lWDhMj09w64dO2laHi3TIBZN0KjVWVpa4uzZs4RCIbq7u0kkEiSTSXL5DJIk0WqZTEzMUCwWOTc9iWUEjtwRPYTZbBCPRZifnUIL6ah6lFbTRJZUTKtFT28BRVOJJeK0DJNGy8Q0moyNjbG4uIhhWMzPz3PgwAFK1QqHj44RT6QYO34CQZawXSfolnkeq6sr1Ot1FCmQzw2Fgi5aPB5HEX3Kq8vYto3vEsB/NuartcV++8HGU2sLjteJ6d76gmW9KBGYG51Xp1rHW7e7hKaJYVgoioYoysFDkMEXUZUQoigSDofp6emhp6eHWCJONp8jHNGp1GtEo1EGBvpIxKN4js3QQD9nz07S0VXg1tvehKKqRCIRLMuiUqlgWRZXXXVVoGq2fTuXXnopnucRi0bp78ixubeb3kyKkUIXA7kORnp7odEiFdYZLnQTV0N0ZzK4rRbRaIRUOgmKSKleAc+nVqtx8uRJfE+gu7ubpZVVdF3Htk0GBvpwXZtQSOWZZ57m7Nlxjhw5TKVaYmp6guWVRSYnJ5mamuLMmTPMzs2wa9cuPvKRj7CwsEC5XObhhx/mbW97W7v6/sILL/DQQw8Fc5EmEw6HOX78OJIkBYt2xyEajVJvNthxwU7Ozc1SKpW47PJ9DAwNsmXbVur1OrFYLHArjkQCtaV0mlOnTrG0tNR2eFcUpd31zefzOI7D8vIy9XpwHzabTTo7O9E0jVg8Qlehg0QyxpnxU2iaxroreaGzi2q5Qi6bIRGLYxqtNl7+tYh20WRNVGF9vL6SH/jTyL/r3290X994/jy8yOeeX3gfrPE+1nO6JJ3P8dVaA0UWKa6uICqvvpyq15t84IMfwV3L+YIY3EupVJrx8Smef+EpXM/GsQPzPUUJuqKRaJyJqWlcD4yWRXd3F6GQRjqd5oILLiAWi9HdVSAW0ZmaOMN/+OiHyGUzHD48RiKRQtPD7U6/ZVmUSoHxVyaXJ9/ZhYeArKhYlsUPf/h9crkctuXy0IOPEI2n0KMxRoaG8VyXRqNBo2XwS+//IIcOHaJUKjEyMoIkSViWhe/7fOpTn0KWgzGdyWQRZRVBUrjs8ivZd8klvO3OO1FDYZ4+cIDOzk48BFQtgqwEi/vnnnsRSdZwPBc5rKGqIULhCGpIx3VdKpVKUEiNhAhpOhft3k1xeZ5EIsHSShnDtDEsm1Onx+kq9OD5KolEF8lULyfOTKCHo7Sar3/y+r9kvC46ALbjfxJeRVHln7wHePkL+L6Pa9t4roFhGoR1HdOyUNdUUTzPIxQKYZomqVQKD596aZVdF11Iy3Tpdk4haxFKLDI0MsjzLy7gI+Fi8N4P72SvD2nqjI03+Mqjq4wO9hJLJkmk4sQTibaxyMbEszFEUcR2bGr1Or7nkcpk6e7vRdcjxCIh6rUaqizjeC6zc3PML8wTi8d58O8fpFIqk0zEOXXqNJVSCcc0SGdy6LpOpVIhl8uhqiqmaeJ5XtvaXdOCyi+CTDKXR5bEtqrL65gH/LJ4LTsAeM4nNz595TX1XRff97AtC8EXcL2gmro+eVmWheu6OLaDIECtViUWj9HX14fjQySepW5YYDWo1ops2rKV5eIqXYU8kWiS0+MnAAdJEujr7WV4aAuhSJJW08K2HDq6+xjasoXF2VkUxcf3IByOMjl5HEkKpANdL7C2FyUJ1/VQtRC+4BDSo/iihAN0dnQSjsYQFRk1FMZsNfF9F9G3iUdiKJqGIKlUykX+7M/+jA/+8of5waOP0VHowaiXyGWz6KEQ0zOTjIyMsri4RDadRhQDWdR4IoppWeiRGAeeeh5Bkrj22n2Ewgoj/YMM9vXQqNWpV8uk4zqF4S1o0RSaFiKux6k2qwiKQirVhSwqmM06rUYF0zY5+PTTyJqGIKtU6zWefuYgR8fG2LFjB9VaBU1TsREYHSywa9smLtl9AXt27GD7ps1cc+U+XNsI8O3pFIqmcW52ClUPEY/mEEQFOSQiIZ6/Yfz2YAi+/wfuo9eyA3DkpYOftG0b27YDWI/tYNt2uxDQbDbbGwDbDsapJEnIqooe0VFUFVmRkUW53d0UZZFsNktHRweapqFH4yiqhiBKhHWdUEhDlkQ0RWKgv5ee/l4uvWwvX/n63zA7N09IgU2jw+A5RKMRLMskHNY5dOgwPgK6HuHMqZPMT53ll+54C8biAprrEFFktJCCJsn09/WQiceQHIeh7m4igsRgpoOcHmEwmyElq7SKSywvFkGSadRrbNo0wsLiEhfv3s1jjz9Os15laHCQgf5+OvJ5JifGabWa7NixnWwmi+c41KpV9GiEzVu20zJMZs5NsufiPWSzWer1OmE9wOZv3bqVdDpNMplkfPwMt952Cy+++CKKItHb10s8Huev7vs6Q0PDdHV1EYvFCekhhkeGKa4W6R8YolKr47geK8VVTMOgv7+/rRiWTqeZnZ1l27Zt1KoVIpEIc3Nz+L5DuVKi3qhhrcFL1tXmJiYmgAB+GA6H8R2bZqNOpVyiXq3iCwRmWIrE7PzsGp7eJxLRURSJ7u4Cd9z1c6/J2D15ZuqTG5+fr7qfX8i7rgv8pGCE7/trJoz+ywqPr45AkLhw505kVcT1RGRRwDCNts6/KMp4jsFLLz7P2akJBkdHEflJhTAPGBwc4ZO/9Ru88eY7kCUJ3xPxPYGPf/zX+PznP0e50kSSNPDWEoZAAOsJR8jn8vz48R8R1lUi0UBIRBZVnj54gHQ6wdLiAv0Dfcyem2ZmZp5EPM7pM6fp6Owikc5QXJinuFoMIDuOg4/I7LkFTMumXKpy8uRJrr7mSnbvvhDLMrl4726mZ2a54aab6e0d5G/+6mv8+sf/G7//u7/Htddex7ce+Dbv/YV7WFhcJJFKrhldSrz1rXdhtJqsLK+wedsORCmAJSUSSY49+yJf+P/+hKVGnc995jPcdNNNqJEoshLCtizS2Q7+8t57ecsdd1BvNYlHogjIZDu6kWSFeDIVrF9aTcxWi+HN2xElicH+bmyzyRX7Liee6qLSbLB1x26+8+1v8ud//nV8WcbxJS7YsQ3X9gipCls3/6wDsB7/egDf/wwRTF4KhmUTjyUorq4gi1K7AraOXUsmk0EiqFfxdIWIHub5w8e5blsPoQjsNeYJ2SU01cBzVGzPohDxKKh5lk+NcaKoc9mundRKQTXJdYNq2noFYWPFYSOGMbCU10gkEhx6/gWynR2IsoLn+LQsC89XKJWbgIMia8RjSWLRBJdevJdKpYLnWuzYuhXf99n/+I/QI0v09fXR19dHo14P6MeCgGPbbcWI9apeOKGg6zqa8u9qSPyzxcbN6zq2+uUO1gKO774Mf7p+3rIsLMNEC6mk02mmJk4T0fvIZTuIxlPImwUaxX6Ojb3E1NlxJEnFd03KTYNIJEYmlcKxbFYWS4RDNqV6lXAkxtiJk4TjKTzPIxHTcVwDVYkwPzePadfwPBGfJbRwHEnU8NfUfBB8JDmQc5MUFVVV20k+0IoPeCUCDooSxfd9GvUaxUqNjmyOq6++mi1bNvEbH/8EtVqNnt5BJqdm6OpIsmXLFvRwFF2PsLK0yPLyMqqqcvDAM4SjEUZGZUqlEi4iRw6/iKqqxKMxZFmmXiuTy6bJpobRkzkUNYxjmRRXV+npG8J2HFotC6PZYGlhjpmpcV54aQyUMM/9/UMszs2iKgojIyNBZUwSaZQbzM3NccW11+MaVe6643ZEJFZXV/E8gUazyRVXXM7Y4SOBHJ4oE4/r1EormK0WshrCc0Ovnkk3EH5fj9EyrHZ133VdBB8kScEwXQRBxHEFPB9CoQhaSG9LKsqq1pZS9n0fESEoLCAgigGPRdMUHMcJIEOmiev7KJJIJp0jHUtQXllGEEUEVeHk8ROMjIzgWCa6rtPV1cXk+ClCoSBH1Wo1duzYgePD0tIy73nXO5k9O0GrtIwmCAi+j+PayJqOALRaTTRFIZtMsry8SEcmT3m1TLTZwm26dMkyHRfsQkTm+Ow8pu1ydnKCkKpx4OAzzC0scuP17yQSibC4uEh3dzfDw8NMTk4zOztPpXGaWrnC9ddfz9S5c9RqNfbu3UvDqHLvvfdyyd7LKBQKuK7LsWPHmJiYIBQK0dnZyd69exg/fYaBvn7CWghfENk0uoVUOkFHvoujR4/S2VlgYmKCiYkJtm/fzrlz52g0GmSzWUqlEqVSiY6ODkzTJJfL0Wq1yGQymKbZ9ijwPHDsFpIkkUqlcF33fPd7jQ9mWRaSJHHq1Clso0U4HCYU0sl1dtFsNjlz5gzhcJjurgKWGXTHarUaokRbIeq1iI2w2fX5c91P55UL/lfvunuISPiigPgP6Uf4Io7tEw4Ff8N1fRzTQFJEIpqIIPgsLs1TKBT4w898mjvf+U5atfXPxWMjwMIwDJ588gBaSAGXNlb+U7/zX/j4x/8rv/mJ38VyatittXkDCVEEPJfNW7fwwP12UDSyPTwFwvEwQ4PDLK+s4COTSiYDo8+FMqdPTaDpWiDVKipomkaz2SSdThOLximVSmzevJkTp89QWikRi8WIRnUeffRRctlOLMvhsn1X0lXoIZFKIXkQi6X4/OfvRdd1/uIvvoQoijz77LPc2nlbW8VIEKCzs5PjR48iCH4g2bnGhVleXmZucQE9HCUcCoMf8A8X5ubJp4KO1Uc/+H7CIZVkKs7K8iKaGqGrq4AoS4iei9eo4TRXAtO6fIFKpUJIEygUekikO4nqIXbvvRJZCbO4uMgVV13Kpz/3aSJ6BsOQA7nRn2YJ/e80Xn+rPcH/58OeC+tJIHjqOg6iIoMYwrYDc5SWZRBOxBkYGGBxcZFavUF3oYvi4hxnz5ziimuupVSrMTjUyz3/6Xf4kz+8jb6+y6hT4nf+YDtnphxy/WHeIC7iNU2OLkvsb17NtSMeRROahkUknsJfu0k8z0MWJQQExLW2uyecb2EmYkni0QQjm7Ygy2qAyVUlPBPC0RCmUafRqBEKhUBTqNcqLM3NUSgElt9PHHyMG2+8ka3bd5BMJjk3O006nQZfpNFoUCqVsKyA2KUoShsOtS6fpkjiBlnWn2zztiEuG065L1NpEn6iAvJvOjbgp4On66pAIhJusOGTFJBkRF/A8cBxPFhTgPFcD8EHWRQorSxTXF3mheeeJZ0MM3BhD3MLK9Sqq2wa7ufSS67AaDY4ceIEDzz5Q7ZedDGarIAfdBR2XXAZpmOSkyQarRaSqFCvrNKollAUhUbDJBL2iCbCFCdMto4WWFmdISRLmIIDsopPCDUcx3NEFFlClhRs0wJZRpFVPLNBvV4OjGokOLcwj6ZpjE+cYWBoB3bT4vP3fgFF17j9ljuYOnuc/Y/9kI985GM88tDfIIhyQEQzjQDeFAoDcOutt3Pk6FHCYZ2h4V6USILeQo5H9z+D4NnMLS2BWaJecYiN7kFTdXzfR1E03LCL5/poioYoCIRDEi89fZbJiWmOHTlGpnuYctlgtKcbLRzmjde/gd7+fjK5PCdOnubBBx9maXaRoYECLdMjpGukOruRZRERjdMnXiKXy1Po6cb1fYqlVfqjOvt//F0SmU6uufHNqBFpQ/VwXQLoJxPZa01a3xj9Q5uJxWL4vo8sywH/R5BpNBo4bqDPvU7uNdfc02VZJrxWPBAEAU3T8Fy7/ZqqEsMxLTzHZfzMSXLZevDaioS7ds1i0RBXXnUVrutz5OhJEokEiUiITRftIJ+K4LounZ0FarUapmUxMzNLIpFgYHCYucUFIoqG7/qcnpwhlUgTT0Rp1kqolopnmYQjOo7voGs6eixKtV7BtQ2UiILVsPDcAIpxzfZtbB0c4Es/eIS+/gEOHzlEpVhi7yWXkEyliUajPPHEE9iOSyqV4qqrhxkfH6fQ3YPY20e12cR2HJ557jm+cd999PX1se+SyykWS/T3p1icX2xvIpo0Ek5PAAAgAElEQVQNk2QixVP7D7Bz+1bOLpzl1ltv5v7776d8QREkEU1REQWf5587iO8FcsBhLYTnuAwNBPCgUnGF7u7u9sZqZnaOaFinVq1gGS1s16Fer7Nnz14mTp9AFGBxLvj8fFHAMAIjyHw+G/CnFI3VYhlB0ihXm5jLJcYnpojEogE01BcCJa6IFowDxyChpzBM+6cPrH+B2LgBaCv9uE772HqBbX38bizGWK4HpokeiyK9iuiFogSbV0QRUVH5+Xf/PF/88pfRQgmWFg/SqW4PKDw49PcVwFf51G/9Nldfupe//c6PCGsSbOgySIKPEg6zZcswXR1ZFhdWsR0TSRa4Yt8NfOITH+c//fpv4XqBahBCUCQK5n+N7r5Brrn2enoKCZ4/dIiIpvHkj/dz6NBR7vq5dzO3uMqxIyexLINbbnsTsWiYUrVFJBLBtS1qDRMtFGdhsUSrNUehO8+hsSPMzcxx4YUXIitC4Fs0MMhll17Dl770JUxHYMv2bWixOKlkEsezqVfKlOpNiqUFqg2H//XZz3LrLW9Cj0UxDANNkxClELlcHt8xARFXkhEECdNzaFououLze7/9e2iyxvzyPI3aKp3bd9BsNnnPPXczV3HJReIsLy7RagVyvuFQFFEU8EWVxx95kAt376HVKDEwMIQWiXHtpVcyVzMRfBHX93DxeenUPLLT4rrrruO2W2/n1je9hVarhbpG6P5ZBPH62wD8H4x1vJokSW2CrKZp1Ot1bNum2WySzWaZmJjAMRpcfeVVNE2TaFwn7HvsuPQu5moWPTGZHd1RWstLiKEaYnMG0b0cW7P5u6eL7LnlPeztOsyxWRHTNMHz2+z/jZKl7a+c9yfw/GAjEI1G25OuZVltZYx6vU4mE7R8m80mhmHQVwgqRl1dXezatYujR49SqVSIxWL09PTgOA7FlRKaprFt2zYMw2jDT9Y5AK7rtt/jz+KfFu128gYOgCiKuL7zMuff9U2f4zg4tk29XkeSJPZdcTnF1TInTp6kr68PSTA5cXyMnkKeRr1KMhHjrne8nVAqj9EwkdYwpZIWRRJF5s7Nku/oJJ/LEY1GabVaNBoNXFfAtqHZqNPd1cXMuTOEdRnLbuCZNSLxHL4jgePiieDiIq45GQfDwqPVaoAk0KxX8LHRQxKr5SLl8ir3fuFePM/jb/72Aa6/7ho+/Mvv5yt/+SVkXB588EE0Ndx+P+uTrBYOc+7cOb78l3/Jnj17KBQKdHd3k+3spqe7i69847s0Wy5W3aBZW6ZlN9gSSSJraptHoaoqtm0jyzLFYhHfd9m7dy8nT43T01Pg2cOHiCdSXHDBxQiSQldXFxDAH1KpFDfddBNP/PjJNv5alCVkJahwh1SdSCxGaXkFy7LQwmESiQQri/MsLc6xvFpk35XXQSTyjxoXr6cQgFq1SrVaZXFxHts02m7VouQHHSBJWTNKA13Xg9ypiG0XU3NNZlDXg8V9MtVBYm1T0dvXRVgKTAaXVyvIkTgRPUTZbtKs1SmulInHo0T1CB25LIosMTjQT7FYJBbR6Sx0EFI1OjsLqFqYQm8vPQNDHD96DM/2WDg7wbceeoi+vl5uuf46FCSENQinEtLauda2bWRNpVwu461v1EURDYFsMkEqGeXAgadp1mtcvu8Snn/had52+22MjY1x++23c//993PNNdfw/e9/n507dxKLxThw4ADveMc76O8fZHxiiu3btweyo8vL5HIyX/3qVxkZGaG/v59kIsX8/CKu69PV2cEDD/wdH/7wh4jH41x33XWcPn2ahtGiUChQrVa54447mJicZnl5mZmZGUZGRqjVakQiEZLJJKKsrCm1iMS1EMWlZdLpNIvzcyRTcSzb4OlnniQRixMJhUmns2scH5F6vblGADYCrk+1zJYt2zCMJuPj40SjwWLOcoIFvud5rKys0NnZiSRJJBIJyqXAHO21jldW9zdyA16J93+55r/P7Pw03XIvipb6iddtNBosLi7S1dOF7CvceOONKKqH0XJ49rmneHPPhRgtP4AAuSKypHD69AQjI5tIJ+MYRpNAEvr8+7TdQEJ0oxcQQKFQYNu2nfgBmQhBoF2MW/9fJEli27YdPPbDb3PizCl+/Vf/b+LxONFolC//xVf5ube/mfLKAi2zSa4jjy8EAh+ZTCbg0TgupUoV3/dZWFggGo+BL6NrKtOTEwyODLKyskKlUuH3//t/Z9euXVxz9ZV4lkEymSbX1UN/bw9GZZW55RL9PQVaMwsA5HI5GkZrbZ4LcmpIDwd+CJLS/v81TQv4RcC1115LbU3dTeooIMsyqiazUC7hKmkk2yWTybG0tESQpXxc30OUJSRZJZ7tRAlFSKSyIGuEw2G8SgtxTfSlXq/jeC7VpTm+9a0HuOP2u7j99ttJJqI0mw4/i/PxuuAAWHagAgQE8Lf/gxOloihYpoFjGYFKQqOBpMjU6/UAimHbQTstFqVYLKJqIaKRGHokwsMHn6TZ7GEgPMHW/h1E4iI7dgxwSd8m8hGHZ//+af7uZJ7+7gSbBgZouBIPfPvbZLJZBgYGAgiSLON755OTKIp4aze5KIr4nockSUSjUeKJRDuphUNae4G4OD9LIh4jHApRXFlG8HyWl5fp7+8npJ1fDGUymaDNtrCAbTkcOHCAaDRKuVxuK0GIokginSIaSxJPZ5DW9JM3XotXxUdu/FA3nH8tqv+vLQfA/SQQfAZrh9qf0wYSmuM44IPRauLYFs4a8XedAxBcNwvf99i//wnuvOstHD5ymM7OHPFsB71DW1AiSaqmQz6T48z4KVq2TzwRp1xbRlQExidOUW+VuPii7Tz/4rPs3LkD23HbbfJ8No3vuizOz+HaJkarREhVqFSWMJtlbNvEatYRRIFGs44m+bhmHd9tUK2WEHEpLkyhKdCorXLs6CEc28SybFLpFONnppmem2NiaoKPfOgj1MsrfO9736W7p4toPEY0miSTSbC0vIztOIH83PETnDkzTjabQ1UVwrqOLCscP36Sr3/jPhqugi64XLZ7B8msTjQWJ50bCiaDNbOx9Ulz/XvTNHju4AFOnjpNuVziujdcy9vuvJ18NkU218GmzZtRVBXPh3BYp7Ozix3bd5JJJ/j2t7+N63noekA+kyWFSrWE0WqiaRq24xDWdZLxJLVaCVWGZtOld2DoJzlMG8bDT+S04E2DKL9mY/c7f3vfJ6vlMkaziSyJKJKIqgTmaKoqk0wmiEaiJJMxNFVDFEAPhwEPo9VEEgVsy0JCplap0WjUmTx3luLqEiuri3i+S6npMLu8ytzyKs8c3M+JY8dRZRnLMBkcHGZmegpZEnjrW26ju6uD4soSjXqVM+Nn+LsHvoWihTl9dppQJMbZqXPokTjxZJpYJk00nWR6eRE9l2XH9p1UVotgB/3IdXM6y7YJaxorxSJL9Tq5nm6WVktoa/K3kqYwNn2WfLaT4aEBPvzL72Pbti30FLoRBIEtWwJDx87OTvL5Dqanp1kuLjM8PMzc3ByZfJ4XXjpMNBbjhRdfIplK8+KLL2FZDiBQrpSZmj6Hj4Bl2xitJt3d3UzPnOPAwYMoqkYylaazs4OxsTG2b99OrVajWq2xsrLChRde+DLHWM/zcNe4aqIoIitK4FbdaGBbFj4ekUiEVCqFiIwkK6QzWQzTwnIcHMfFcVwUTV07l8eybEJhjUg0Qr4jTzaXJZ/Pk0wmyefzpFJJXNcNugi+TySq43oON91652vDARifbqsAwUb45XkI5vrxjVCg9cW0IMAzBx9naHgILRRwVzYShw3DIJPJMDV5llg0woW7dnPzjVdz990f5EeP3s/WHdvRwwkQXOrVOpKkcWb8DO9//wdIJaK0bA9vDcggCAKiIoEg8uk/+F0y+SwjI1sDHxjHYe/FF/PAt75Lw6gjCiHkNYKx67rnhSNEEUmSue+v/oLde3ZTLRc5deoEu3btRBAgl89zbnaeW267DUEU6e7podE0MIygS2S7HvMLi5QrVfr6+2k1Ay+M7aMjZDty9Pb1oWkhxo4f5x1vv5uVlRLf+7tv8cvv+0X6Rrfxl1/+Iv/5N3+ND3zww4iSiCJJyKrGN772FW6+5Ra0UBjf91mamyUcjWAZLcyWiaKqSLKKIEo8+dijvPWuO2laNtuGRqk269SqVbSwhqyEiMWj5HMpqoaPKvg0Wy1ESSab7UAQRBpGC8O02bJtG4X+EXIdBZAUJDVEVJUo100sz8XxXATPx2i2qNcbVKp1bnvT7fyPP/p9HvjWt7j22hvYuuVnHID1+HfVAVhPDPF4HNdoYElSUMmQRHRdp9Vqoes6KyvLOEYjSAITE7gujI6O8sEPfJSl1Vk+/bUj2P/7S/ziHVsZ7OjgT77593Rc8CaOre7k45/+EOJSi1IICkMZPvbRj9Ld29t+D+sQoJ/mB7D+M6FQCNt1iKxVFhv1KrlcjrGxMTRZIqqHmZ6exjYNCpu3YlkWY2NjxGMBtjOTyWAYBpFI4Bp54KmnCYVCAdPftllZWSGRSBBek0Bta4L7/zRhqH93EKBXxHr7WRRF2GBEI8sygg+hUIh6tYxrW+0OTCAfWGV4eBgtpNDdmeepR3+Ioulksz3UqiXqtk8ymWTT6HYcfHr6ullanCWqRHCVGLVyhU39w1hWlaWFEn3922iYGr4fkNaSySSL89MIvkN/XxdGq4bTKiO4oKsSqihRXJlDj8RYXJgmke6kOn8aXQvh+RbnFkvk83nOHDtCZ76LdEc3WzftQFR1XNPg9PhJOjoS3P62t/DZz/0pl+3dx9TkGRYXilx97VU89thjjIzupLo6RSIV4JXrpQqKGsK0HMIRve1Me/DgQYSQzqYLLuAHP36W7pzKcnGSXZfehB6LI2huu6WvqiqCEGyw7LUuiigGlbb1joIiCywtzZPN51kp1ti/fz+IIo/9+AlkReOii/Zw2aWXk81m2bVrF/VmAySRUqWKmo2QSmdpVMrYtk02lcJ2HXQ9x64LL0RTQyyvuExNTZHL5dagMcFYeNVCxjrn53Vwj4RDGqqqIEkSIT2MLwUuvuFwmHgsSzweR5YUVE1BFIJzAIIstiuUpmnimHZQNbZNbL+Oa9loqkpltUSjVKG5ukytVCKmp8kkU1RLdU6fPs2DD/2Q6666HFmRePGZg0EekoNrOtTdzfYdF7Nz9yWUyqtk0xlK1SqyrJJPptEjUaLxBL/wy124gsDvfuK3kGoVfuW97wsKOo0G0WgUz/OYX1xCi+j88ee/SDaXRhRkHNcilY1TnJ3nY7/5nzly+DmGBwbxXejrHuKrX/0qb37zm7nvvvu4+eabefbZZzl7dpJ0Os3wyCA33HADX/nKV9i/fz+O6/M/P/PZgEyLQDKd4bEfP8no6Ci+6LNcDGQRT58+SSIRIxQOOikrq0UWlpY5c3YCTZHRIyGq1SpTU1OMjG5mdHSUyclJqtUqyWQSXdeJRCL4a+63c3Nz1BpNHNPCsS1CqgJC4IWh6Totv4QkytiugxYOISgSoiyh63p7U2oaDiE9AoJNKpNGFAOoaCwco1gsAgEUyfM8JicnyWazWJaBqr4+lg6vXPBvhADBeZPRjfw7SdQCP4OGSTT2cjUuz/OIxWIIgkBXRxehiIrZtHniRy+xapS4620fQpIF8APCriCLCLJPrjPP8vIi7/65u3jgwUcRBAXPDTiFx44do6OzwPcf+j53vP2t3HDD7e2/9/iPH6PV9FA1Cdwwkmi03+/6BsD3fdL5PLbtcs1VV3P6xGnm51YYH3+AlikTjaTYtHUXf/blr5PLxLEsi7vvfi+1WoNTp06xODtDNq7T35VDlmUKnQUMwyKXLzA5PcHJkyeZPbfATW+6GVlT2bbjAt7xrnfx9DMvsOXiK8mndBbmZogkOrnqqqv4rx//OKNbt9PRlV/jjQTeSX/9ja/wsV/9DSqlMp4T+IaYponk+nR2dlIoFJg+dJhTZ05TbK6pJKo+vuBRNSyqk2eIdW8CUUKUFYZGRqnVAm5KV1c3kqYj2E08ZCzTRJVEVo0amh3CQ8LDQRAF3nv3z/O1r32NWE8frVYLy3T5xG//Ac01/sbP4ny8Pu5iNpB2gn1zcFD4x0+S/5iuQbstKEqIahjHLSEqIrVaA0VRkGUZ0zKIxmNUbQdFC5HN5KnWqywuL6JHEwz0FCiMbmV2Ksynv/oinbk84dAIpckit97xFkKijJcIs7R0jlUXenr6qNQCtQhJ+EnjEm8NCy4itCXCPNdFFCVkQW63zs7NBDKfuqZiew71hkEsnuKCCy7i+w89REdHB729vW1CX2c+h237HD9+HNu26ezI0d/Ty3PPPs3wwCB9/T2EwoF8oiRJKIpyvkOxAaa0voCV/gFixkY+gPcPXIaNr/tvJjZyAIRA2/38OFvbBPg+vijiSSKOF6hT2LaNIIIkBpuveCLHsy88T19fD8fGDtOZSROJRHj4oe8xOjrK4PAQlm2g4GK6HqbdwjYaHDl1lqeffYY33nwTju+hKBFC0QyJziRN08Gxgr+3vLxMIpnGMlsBhMe0SKZiIPg0GwY126e+sojqOTRthYTjYjdWaNkaoWic3t4ekukMTcPANF20WIJkNsvk5CTRsMrg4CDhaIaDBw5w9VX7ePjBBzl2aoaB/ghPP/USN7/tbkoLp2lUVWSxRalaxrJNHNdClHQqrRbe8jkGRoYwTZtkSObgseeJRSMYVpOwEsZTFCxBIOwJCIqCa9v4/lp73bFpVEv4RhNBgmazRXdXgXQmQ6Uc6L+fPFfEM5o0m02ius7Fuy/ikR/s5+jYcZLpHJ3pDK7rk05maFXr6NEYZrOGpoRIpHK4ro1tu8RiUQTPAIJ7o9Cdo9Ks0WrF0ONxZN9H2nifbxzzr4OF/3pEkkFnMhqNEo1GUTS9nQdEAl7AekW01axy7txZisUitcpqWzXNMAwcy25LTo5uHiIWi2HYVtAdWoNobdu2jWPHxiiWiziOz9mZRe686w4mxk/R093F6PBg23QMIJfL0DQ9Tp44yuz8Aj29fXT39ZNIpCnX6qihMHa5QjQcZ35xgQ98+EP8v7/z+2hhlYbRCCCVrkB5pUgym+HYmXFyhTwePqZjUyh00N3bza5du+np6eHpJ/fzxjfeRHFlia39AyQ+9EFUVaWzu4tEIkE0GuXWW29G0zRmF+b5xjfuY2W1iut7VOoump5ieXWJr//1/eSzHeQ7u3n2+SMMjw5w7Ruup1otMzAwQKVUZGVlhXvuuYeu8dOMj4+zb98+xk+dJptL06g2uGzvxfzoR48xuzDPtddey6bR4TZss1opoWphRFGkM5+jE5FarQZAOp1GFAJolmU5xGIJlpaWWFhYwjRNotEohUIBEQnLChZovhdUmm1XCCQoZZV4POD9WJaD69bR9RDRmI6qhHAdH9eCV+OH/UvFK6v6rwarXY+NnYL13xPxGRjaRL1VJU9Xu/LvC8Est/uiC5idneVM06TacHjyhw9x5ZVXI4g2oWiEVr1KKuXiOTayKoEgMDwywve++wDvf//7kWWZlmkj/v/svXmYXGd55v07+6l96aV6b/XeLbUWy5It23i3McY2DGDgcwgfSQiETCaESZhkQpgvOCRhYJIMfMmVQAIkEAccAhiDjTHIKxLyItlaLGtpSb2p19r3qrPOH6eq1DImYSbD2GR4r6uvlrqqT50+5z3v+zz3cz/37VjYtkB7Wye5fJrXXXMtI8PDXkO8A7ooICkqCA5HnnuBqcltSA3q4cakRlVVqkYVW1Q59NxRspl1ltfWueqyy/j23sfQz2lkMjlkQea5w6e4fPcOZGx0XSUajxMNBymVSiQSiRa9q2bUWVlZwq8HUBSF+dk5BBe6uoYRRBnRF0CLxQgqEpuGetm5cydf+frD3P0H/5Wvfflv+fu3vJnRTcNEI3HA4YYbbuTIoR+wlq94lVnTRVC0RlnGYddll6FKMnUBDKeKLUDvQD+1ise8iIVCHDj+Ild0DWNKOrKqIasaqm4hqxKiKxJRNQqCi2uYyIpCuVJBEQVS+SKWLeCKXpzypXu/jOM4VKseNUnTZa8JXhZx7FeH/PKrZbxqEoCN48ID/pM5vuM4SLKM6vOTT5dbXfK2bWO7TgsxtS2XWCyGoMq88MILDI+OEg6HufmWWzxjLUXBqNWxjBqy31NDqRXLXsaa6KFSqREOhxFFEUWSWwoMTVRiY0+AZXnctI0KMpbpye4Vi0XibR3omoJZq6IH/JTLZSiVeeSRRxBFkVAoxOLiIiMjI+RzGebmz2FbEouLi567r22Ry+UYGhhs+Q2srq5exJ82TRNJoOXy+K+9/hsX4/+bqgIXS8ldQJ9EUUQUvOssCJ6kXFNmcX19nY6ODg/JdmxeOHmC22+7le7BbibGJtH9fop5T7JybWGRWCzE/Pw8W6Y2c/kVe6iZFrYoE43FOT+/CLKGUa3iD+hUq1Xa29uxalVPSs2o0tndw8r8WSJBDaNcoivRw8KLhzHqdba+5lZCoTCpJRfHsciXa0xNb8WyXcYmtxMOBjwzr1KR++/7OoV8lttuv52VZAoRm4Gebt5+59t593vex+//7q8yvXmAr3zmvzO+ZStYBrgutVoN13ZZWV0nlSuS6I9h23Do0CEuu+wy1tMVXn/bm/jaV+5j65YJOhLtBMMBJFnHNfGeOVlFQMJ2PDMcURSZmz3D0WPPYRgW09NbSKVSPProo1RNi737nqMj7KOzq4u+vj4yGc9DY3l5hW8/+B1C4QCJjjjhcJhRQWBlZY1gMEhnZye1Wo1gMEixWETTvOQjGAxjOy6qKtMRDOI4LqZpo6g/Bsr0KkiEx8fHCYcvGBSeO3OCfCZPMpkEPIqW44Bp1tE1r0+oya+t1Wot518BkXw+jySLHD56pIWibt26FU2R2blrF7lMhtHRYQzb4Yknf0A0HuOrX/s6qeQ6/b19nJ9fYOvWraRSKS6//HIMu47rugwND7J1+w40VafSkCuVVQXXhU2bhllZXGRgYIDDh1Ns27ULWfch1GuUc3nWl9YZHB0kubqCJkj0RNtYy6YxXZcP/qffIRwN8clPfpLJqc189I8+hihCKBRibm6ezkQHN9/8et7znl/g9ttvxzAMyuUyJ06cIByL0tXVxVoyTalU5emnn8O2XMZGxrFtk9HRcU6dOk17e4x0MsWR5w9z3fWv4e++8BUiET+WZfFP932TW2++gX/6+jcQFY1UKoNvaYVILMyps+fQNR97rroGRQ9QKNUxTctzctVlNL+vVWWUZRmhsV6brku5sIrf70dUPPQ13h5BEKJeL5ntULVqjYTOolqp4/P5iMViSIpXAV9LrXnN74KAhUgmm6e6vMzKygo+X4BQKEAkGKG9vf0Vm7cb19Qf9frGhGBjszB4e9HY+ARHjx5hoH+klSQ4roEkCuzf9xQf+fDdvOOXf5FQIMZrX/s6VFXlsst38tB3H+X+73yX//cXN6FIEprqQ5JkwuEQ11x7I5du30a+XCES1inlLSqVEtFwgPaOGCdmTpNJ57Asi0h7O/VakbWs5+Vw/ze+xY7f39k6X5/P14oXBEEg6AvSneiimM0wN7+IIAgMD49y5Z46sViEp556isFN/bS3RZmdPcv+/QcYGhunWC4TCIc4Nz9H3+AAPf19ZNPrqJqEKHg9kS+cPM0NN91GsWLhAsFQhFhHJ0VJ4td/7X2cml3kj/7oY8wtrSGrCm/9+Xfyqb/6K770+c9y/Q3XcOzFY8iKwOTYOE8eehFfwE+tViEUCmHbXrX2o3/0h+zZtYtitUjPyCVcNTrBoSNH8Pl8VGpVjFqNP/n//5x7XnMzsl+nvd1rUg8Gg4iiyJ/+1z/h/e9/P4FIGBuPIqWoKoIgkCmW8Pv9yLLaAkA3zo+XNoz/bFwYr8oE4Cc9FEXBUrTWZGgiT4IgoKmeW2IxkyMYDHLy5El27L6U6elpYrEYxWKRYCjEesqTLwzFopTKBSRZAccl3tZBsVgkm80SicRanwcX0IiNyMVL0Qxsx/sSHGRZbig2dKIoCqlUClmWSaVSmKZJrVxhbGyMfU880VLlePbZZ5neMsXy0nzL0ViWZWQBNE3Dtm0WFhYYHhulr6+PQqEAQKVSIfoStET4Z1D/H2f8LAH44R6K5mtNpLM5B/x+P+VyicXFefLFHIZR5fTp0yyvn2f/vn10dSZajV19/YM4rkHAH2Lv3r28+c67WF5ZIdE3TCqZoqunm0qpjK5JF3NJbQvbNvDpAYqlLKLkI5NMge2QWltmYGCAjq5uFEXBdKFkWAR8Opt6OlEVnWBIJ53Nk81mW8ovfb3dJHbu8EyMBBM5W+fs2TPs23+AtVSeM2eW+ZvP/iXv/Ll3cG4xSyyiUyjkEQSBc7NnWVhaRtX9BINBxoc3Ua3WaWuLsXff80zv2kHIp9LV1UUgFMSoV/GJGpKkYtsmsuzg4iKInh56s5n/qqtfg2nYHH3hGIoko6oqc+dXGBsewKiUGN60iUgsxmWX7UH3R1ldXSNfLLOeTWI0rOR1RcZFbBljtbe3s7q6jM+nIUoC5bJBON6G6zTUvQwTSfchuj89G4yqyqTTSV58cY18LofeACZ8mowLGEaVSqVGNpvGsizK5TKu6+ILBFsyoL29vciqR91yXJdy3qOydXR0UCoV6Ovvxa+qyLLMenqVxblFJAFyhTzbt29nbm6OkydPcur4UR56+HvccsstfPbzX+Rdv/BzgEU4HObsuVkP2MhkCMfiqJLW0nkPhiMIkuc9MDw6ghoIIBRy+Hw+0mlP8UxwXJKLy4Q0DSMUZKSvl7//h3t44xvfyJve9BZApG6YpDMpzi/M41gGjz3+CKdPH+eZZ57h7NmzRKOe3rnX0JzGdqBQKLJz125ePDXH+PgE587NMDk1jmWapFJJXNdpyC0HOX36ND09HeAKDA8PY5om33vkMa6+9noOHjzItvrneiEAACAASURBVG07MIwaoqzTnuhieutmFEUhm81iuS6uoFCqGEiSTa5a92Q/TQu3Wkbz+3BMC8PwktJqtYosq0QibZ6krm0jyyI1y8E0TXyan2q1jObzs7i05FHddB1FUVAUje7eLoYHN3H99dej6zr+UAizVsMwDJaXl0mtJ3nmmWdesXkLtPbufy4J2Dg2mt3hgM8XoKur+yV7lAOCiGU5/Of//CFm5k5RkxX8uo9MPs2b33Qnkixwww03IAkeOCLLSmONgMHBTayvp1hNLtM/uIlarcb8/DxTm8cRHM9XIJvN4mKzmlynqzNODIF0Os1NN93EysoKvb0DrVig+bfZto0iyYyNDJNcWWBwcJBUMkm1WmZ+fp6lZdi1ewddnR2cX1wh0XUpR48epbu33/P0EQT6+vs5v7REMpXCcS0CviCq5uPUmbN0dCToTPRx5TVXo+gxbAeK+QKypLHzsiv56rfu5vobbuZv/vbzILr4QmFWVlf53Q//LgcPHmJiYoL77ruPT/7xx1AkAV/Qx+Ji+SIzTFmW+cM//ii/9QcfYWRkDNM12L/vWRCF1hq7mswSCASo2g5CQxmxKRZx6PDzjI6OsrKy0qrYNEHTzs5ODMPAaQgYbGQxXKgQ/Yz683LjVZEAbCzh/WtpIhsD6h81ZFnG7w/g2CCKkod8N/ivhZLXfDXQ3YtpmvT19bG+vk4oFOL8+fOYpkkynWZ9fZ2xiXHWMyn6errJZQrYtk2xVMHv9zMwMEC1WkfXdcLh8EXBfrOZq5mRNisCTTS4mcE6DiB4C4DtQCgcRZFFLNfxynnlCmdmZvD7/aytrbF582ampqbI5zJYlsXk5KTnD+A4BIMBkskk1157LWtra2A7pNeTLYfIjedlWZb34L5M+fTHuTcv/Z3mz17alPVy9+2ndvwImsdGPmdzbrcC8oZqgWEYFItFDKNGJBKhUi2xZXqKM6dPgghXXLqbdDJFpZCnIxankEmj+gV03UfdhDNziyR6unEdA1yLxfk5ECW6Ej3kC1kikQjFojevOzs7qNVqSJJCoquDE88c56qrruKFF0/S3TvoOSiqAUp1m00jkxw/8jx23WDu7DydnQly+SKhcIADBw4wNjbG1PgY+WKVdDpLpWyxvLjAidOzzJxbZGJ6B72jW9n/1CFWVpN86r9/ltMzx3BdgZ6eXqrFElowTGatyvnz5xFsh76+PoqlPLl6jXu/+BUune6hIzGAHPIs5+u1CsGgH0GwL1LKcByv+XHLlmlWUit86d57OXdujqsu3004EgdBoD0SYHzndrZfupu2jgTxjk5EQUUUJVbXU6yur/D4Y3vRFIVKpcLk1BaSyaTXM2QZhEIBJFlEFKGtow3bEdE1P4ZtkV5L4kpl/KEgliS1zPR+COl/FSD/zfHkE4+2KIaSJKFqOoZhIEoCrqCgihKSouIL+HFsr2pjmiZ1yyaRSBCLxZiamkJvKCMVCgVwXdbX1zEMg5HxCVzLpGbUUHSZ3t5eL9EbGSadziLLKusrS1yx53L6uhIUi0WS6QxveMMbOHb0RU7NnOaK1xSYGJ8Cx6ZYyDeqMQbhcJh8Pk+0vYPl5fNkcnk6+vvIWxa+WJRceo6TZ2bo7u8H22HHti0sPn+YbLXI1NQW/t2b70QURYaHh8lkMrx44ijT09MMD41w8NCzXLZ7D4efP8ry0iqTk5M88dgjKIrCbbfdxno6xbEXXuSWW2/jmYOH6GiLcfDpp4nGgkyOj3D8hRd5y5vu4MCBA/j9QXp6uhAEl0gwwtLSEhI2/YN9XHvt1Zw8eZLZszMIos309DShUAjHge9///uUy2Vuuukmtm7byeTkJK7rUq1WcQWxVbVVFLnFWRcEAVX0/DtkyUNHS6VKy4G4YpgcO3aMbLrM6toC5XIJXdfR/X5ky6BULeM4DkatwoHvP8n93/g6i4uL4IpUq1Wq1aq3L7g2Q0ND/MYHP/SKzd2N+v8XGnwvqK69nNFXKwHAwXUlhofGsW2rtf8eOPAUD3/7If74Dz9GPp/llhuux3Ftjp04SyQc57c/9GGqpSxbt+2gXq54TrqSDoLjxRISnF1Z5JHvPsCtr3st80tpFEXBdUQcASRZYe93H0GUZVaWk1x6yTbuf+AharUa8Xgb2WyOhYUl4vE4e/bsIZVKoSgKHR0d5AollpZTaEqA48dPIYoiydQ6Q5u6uO666zhx4hiJRBvFdJKhsUm+/+jj3HPPPfzaB36bg888S99AP9FoFFVV6e3pJ58vkkh0c/Pr3kj/wCY6O3qpW6bXPC8JCIJnGNcei/OZz30Bn8/HnW97C294w+3cddc7qFYq3P/Ag6RzWfbvP0AhX2RkchqfpmO5VkvGt3ntr73xBnLJNX77138dUVJ597t+jQ/+zm96/VZ4Mc7zL86QSmbQ/D7kpnJew3zwq9+4j+7+Pp747l6UoL+1ZjURf+/eXhBXeelcsW3n3yYF+V85XhUJwP+O8eMGkBsXBFXVMWUZy/ImUjMBiEajFzVoCpLA3Nwcru1QKpXYvn070eERbMvGqNV54fAR4u0JVFWlu6fbkwvUNAKBEHoDWXmpNBnQWpA2OheKCJ6clQuiJOLgnUN7ezvpdBo5GCSRSJDJZLANj0oyOTnpobam6Zlj6Dpra2v49BpdXV1eQjMw4DWNFYvE43EqFa9EZ5omwWAQn893gQvZDNIdNiya/3vG/8oD+NPaWLxxrjWTgGYiAFyEkAD09/dTrZaxjCoaEpdsmaZu1xEdh0gkzMTEBLOzsxjVCuFEkEwmwzt+8T2cP3/ek2h0HbLlPP6Aj2g8Qc3wEjnTNEkmkwR8QSqVKtFoBFyNb9z7t2webEcJBBiY2Iai6aAHWD2/SFf/EK4r0dfVzUP3/yN7rrqSF4/M0j84RK3qomkqiUQnqVSaxcVFwpE4586ucOvrXsfR43+GLIs88NB3uPdr9/PLb78dy9K595++RHs8Sns0THJ9md7eXsoVg2yuQHhLZ8u06PDh5zl16hQxLcLmyRHUYAyfP47ouiA52K6FLIvYloMgeJu9pmmIgsu5tVV6+vq59trrmT13D2dnzjC3vMKvvO8/kIgHGdw0QirnqWnl80XCoSggeBKL/iCXX7qLZDKJZdbJ5XKMjY2RTqfx6Z7EaHdPF47jNKRzFZAk6pUikUiIXNEgl8sSjcZ+KiR1Az4fagOdFwSBSq3q9UcEgyBIVOs1rzoVCBEIhJicnKSrq6tl8CXLMsnkGstnZ3jggQfYtGkTA5sGPX56VxembSBLCusrSRy7Ti6TRVFliqUCiuDSFgmwZWKc02dmsG0TUfR6pE+cOE4+61USHn/8cbo6ujzDON2jReTzecB7vhYWFujt72Pbth189KN3M97XwxXT04RiUUYmxwkEAoiuwepaElt26RsZYi2dIhyN4NP9pNIZenp6MKw65UoNs1ZlavMWnt33BCMjI1QqFc/7wOdjcHDQS1KSScbGxjh+/Djp5Dp9Pb1MjW+mXMnzwtFjjI6Osm3rJbTH2zh37hyKovCWt7yJY8eOcerUKa6//npqtZq3nosCf/KJj/P84edIpXM88dgj4MoYZglFUTg/P0c8EuX0yRMtecrFpWXW1tbYuXMnw0MjaJpGrVZrNCEbnp+LomCadsvleXV1FcvywCZFduhOtCNJCQqFAp3tcQQcstms17ydS+FTFQTHZnxkmNnZeSxJwBRBEGyvj9195eQUN1JnX0r1eVnFLS7ed5rrrmFYiJLQul5XXXk126e3s3v3peSzWU8WNeDj2WMncQ0HxxH40//2CT744bvxiYK3UwsyCFarJWJmZob3/vKv8KZ/dzvjW7fyG+//T0iCSqVUIl8pMNDejiC6ZPI5Pvrxj1Op1JBlEVwZWRYRBIlyucy+fftazARV13FEkXf98vt49sAzPPX0Aaa3TLBz5w5ePHGU9rYI6WQGx4FDB5/B79P4iz//FB/8nQ+xsrLGDTfe2pIT9/uCpDNFotEYl1xyOYFwyEvYbQdkzwTScR0k0UFVJAzbJRgOIAgC/3DPl2mLx0mvLWFWFA49f4y/+9sv0NPTx2/+5gd5+8+/i87Odu66+ed4/PHHefLJJ4nFPBbE3XffzYd/94NUKiX27zvAu9/9Hu666+18/u++0FJzy+bLSKqGLIi4rt2qgti2RzlcWV+jsLhKul5uBf8bKT0bgcdm7GZZ1kX7bTPO+tnwhvBqCKwKZcP9UU08F/1sQ1Ow+CNOu9mE+nLH2RiA24bF8uI85dI6Rs1sNbXput6gY5RZWVnBNswWXWMt5S38uXyBnp4eTNNsTXDTsRFlia3T21ldT6JoPjpiUaLRqPeZAp5qgAsutiffJlzMS3QcB9u0WouYI23UkvdytVQqRS6bJJfL0fQLSK55G0I+nSEWilAuFLGtGpIgkMvlKJVK1ByBro5OioUCnW3tmKZJd18vCAL9o0MoeohIvBvJp6IoKprmQxS5gFY3rner5CpcaL76Uffixx3OReD5jzYf+1Gv+1XplYu0bOOHT6hJ72okU47jld4dwyGTTrK8MEe1WKBWr2AYdWq1CoZtUatVME2TzvYYimSzfft2/H4/hVIRWZRYXV1GVVUisQi15CJauItwSEUPtyFKMqLjcPDxz7Plql9FCztYRQNbi0I5z/LScSTVh1CvEw3qpNOL6KqMgM3y/AztPWP0DW3mueeeo68zjhT0oYgajiOSXF0jubqA3xckHIuzsp5h954rMWyHSFs7Z0+f4ejRI0xNTLK8nmLv3r3s2n05X31wL/uffpbdl+2hVszymY9/GCHcSSW1yNHDB0l0dHD/t/fiCOAYVUCkmE3xutffygf+4PNMDDj8x/f+AlfsuY6Onk0g2hi2RSDQhiCqCIKEaVYpZ1fA8YKdvY8+RijczqbBXr759a8RDOgMj4zR2zeIIGmEw2Ge3LePumnS0dmD7A8SjraxfWIaw6ywsDBPNpNBFj1Z0Xq97vUBiS5mLY2mq7R3jxCJRFAVL4GuGxUq5TqqL4re2U1A1Qk0lFa8Jrh/JomW5Fds7t77hc+4fr/n8CtrKpYtEIlEGB8fB7xnPZ1Os76+SrVY4NmDTxGNBtFlHcvyPC1SmTSipBKNRgkGg+iaSnt7O8FgEFmWCYfD+DSv0bFSK7f6XwQXZmdmKJfLHmjh12hr6+D4sRcwqnVi7W10Jrppa2ujq7eLcrnM6Og0uUIZcHAECEdiOJbbqqJ94AMfIJ1OMtrewXWbp/BpGj5NoVYuMbewwtePHeHOt72Va256Lf5giI62OMlkEr/fz/r6Kl1dXWTWVwgEAgiSxj/e8wV6O7zr8Zef/mvuuusulpeXCQR9PPnEPgKBCGfOnGHPa67ixptv4r5vPcimnh58AR8vnjzO7t27G94SYZbOrzIxMcXAwAD79u3zqFOKy4MPPui5p754koGBAaampnjsscfIZNP09fU10OEojgO65iMYDGPaLs3m0CaAEA6HqVQqzMzMcPz4ccbGxhgdHW0pwZXLZUoNapRpmuRyGWTFq3pns1n8fr21F2mahmnUqFQqniqUHiCVSuG6LgsLC6iqSqlU4qHHDr4ic/eb39vnNlF7SbhgXClJL58MNAGY5nevAtBsCL7AEW9p1TfW79Tqef7jb/4GB545wPxSAadep5BN8ref+wt+/bd+C0UJYlkXU3jrVW8Nj8YiLJ4/TzTSgWUKmHaJarXa8hpqyo6jqtimRVj3YxgGluM5/jZ781RV9Rp3DQNEkY5IiA/8+3eTyyS58423cOj5F1hbX6e7r5tSqcCmTQP09fWRzWQQZB9jW68AW0AUZAKBgLd/tMdbSmlNAZAmYNEMxpvXQdwgC96k5IRjYbZNbWHvt79DXbBRFB1FUpFkGRe7BSooikJ7ezszMzNosp9//55f4oUXjrL/2WdBlpgcG+FDH/p93v7/vNVbK13xonPYWN0FD4x83/vex9Pf+y7PLc9jF008x+Vm/MTFAKYgtNYp1/XeYxgGt91y1asbmfk/OP6vJUZJkoju91E16heh8x4ymG+Zn3R1dSHLMn19fcRiMc6dO0ci4SEnsVjMa4asVOjs7CQQCHD48GG6u7tbGvvQQBwQLvoMGhNbcL3yVzNTbQaLG2k5zSE2tK1VVfXMLxyH1dVVr8kz3kYgECAciRGMhMlkMpxfXqVSMyiUKiiKwsLSeY+mVClTqVSo1jyJSE3TGoiR0fps2zaxbfuiBwouTqJ+Nv758XIbkWekJCOpyg81JimKgt/vZ+vWrbiuS6FQ8Og6skqlWqerq8fbPIpFFFlm5tRxksl1XMvEdWyMap7FuUWMWhXRFXEFMOpVJMFm9fwsEjaSa3Lq5AuUygX84RiW7aLrusfRTqXZsfNSwuEItm17DZ6CQCqbwR+OcGLmDENj42zdvp1sIY9t23z2s5/lgQceYHp6mqeffpr19XWmpqYYHh4GYGhkmDNnT1Mq5/jMp/8CwzA4cuRIix9722238ZqrrubFEzMsnl/BlWRM22b71DgiLn5/AF8wDNDaWDb2z7jYSJJCqVSiXC6TWl/j+/se44t/93kSiU5uvPkm4vE4iqKg6zrFYhFZ9pr6v/WtbyEigG3xwvHDFAqFltlRU1a0mei7lk21ViGfzza08C/c36ajdrVcQRLElrHeq32Yjk25VsWwLWKxGNu2TTM1NYFn+Fbkqaf2ceDAfs6dnWF5+TyJRKLlClypVCiVSvgaVYRAIIDrumSz2daaaBgGlVqVtbU1VlZWKBdLqIJEpVSmXCjS09PD0NAQo6OjdHZ0E/AH2bp1K4lEJ/VKhXwuQ6lQ5Nlnn8U07Qaf3QuQOjo6WlWI5vX/xCc+gQi8eOYMputgGQaFTIG5+UUWlpa59tprOX78OOPj44iiSC6Xo7Ozk3A4zNDQEGsrq6ysrGCaJovzs7zjHe9genobMzMzvO1tb+PRRx9lasrTcO/o6OCSS7YSj4dZXT6PKksM9vVimgb5fJ6tW7d70oWNqpZtm3R0tCGKMDY2gt3ooXn961/P0NAQ73znO9F1TwY0n89TLBbJZDKNvSRGKBTyKHANc0hFUTw6UAOEyWQyVCoVRkZGeOtb38rk5CSPPPIIZ8+e5fz58+i67qkzNdb8pqSr5zngrTPN6+g4zkUKUI7jEA6HPTfmTZtQVfUCxe0VHj8K8d/42su956XJwUv3NUVRiLV38LX77mdw0zDlShZJFujq6mJh4TwHDx686DjN32smW9lMDk3TvZ8LzkVIdLOCqOs6uqyiSDK1eh2rYcYpSRKVSgXHcchkMi00WxRFCoUClu2SSCQIBAJMTo4xOjaCLHs0LZ/P59EWQx7waNs2qq4jayqa30coGmmwEwJomoYsy61gv16vXwRINq/ZRiqOaZpkMhlOnjzJHXfcgSIprWMIoneetZrXaJ5Kpbjlllv4wAc+gCY7zM+ebVGMXdflYx/7Ex566KFWItK8D0335o3CKM3rtra2hh4J40PCFrkodtuY5DWD/+bf8tI45mfDG/9mKED/s8MVBULBKLKkgXtB09rv93sobGcn9XqdQj6PoigsLy9z2WWXMTMzQ1ub11xlml6QHI/HqdfrRCIRRobHWFlZYfP0NhyjjiAIrYfHsbygQBZlTw7S8RYawXKQG5xw07JxbBtBkhAQEP0aiBeaWQKBAJlMimAogmW7xOLt5JJrOKZFPNKGL+CnUMzRO7iJerXqUXzCIVzJ2yijoTChhtsjeEGA5gsgyRqFcgG7AqFQBMeykVXlAp9SvBjFdPkZn+5fGhsXUFEUcSSQFO+RK5fL1KpVbNtbpGzbZnR0lBdeeIGDBw/i173FvqenB0fSCYRiuK6NVS8TlGTWVlNceukWjLqLgANWlZWFU0xOXUoutUAgMIToWFRKeTTFRCxnyCydozMWZGKkG38oQrB9E75ACJ/s4oslaOvaRD6fJ1uoEI6F6e5qw3VEdly6m5pZZ9PkNMvpDCNDoxw6dIj29k5uvfkmymWvJPuOd76TmXMLpJJrpFIp3va2t/Hnn/0bisUcfjnAlZftJJNJMTE5ieyaHDx4iD/91J9TKNepVi0sTUKsOWzbcQnFv/p7PvQ7v0r/wCh6NE61XEXVgy2amoSLi4XrmIRCYVYW5+nq7kRTYee2zXR3dRGJhDyJ03KZ7v4hUuksh597nm89+CB7rrySTLbIqRdP8MSTjzExPkxP/xBTExMMDW7Cseuea7gsoPtUcukUqfV1L0B27FZ52Tsfi1q1gqzJFHN5NFkh0FDWeTWPnZfu9qhTosjZM6f5/uPfA9dbB108WoQErWpkvVLHtj2pW0lS0DQfut+HonqCCoZhoGo61VqdVHquxU3v6e6iv7+X3Ooyp188QaVSYXhsFNtx6e3rx3Ec0tkKmqYiCnXAwapWOHX6HG3RKAO9A/T3DZIvlgiFI4TDUXK5HKJ0cVK3f/9+bnv9Hdz/8AM8dexFaqtJzFIJW5NxFI0/fvd7OXXqFE8++SSjo6NEG06p6XSarkQbuk9l965LcRyH5No6g4MDnDtzimi8nVKlyuj4BLPzC2QyKSKxME8f3M/41DA+LcDn/+avGBgcIpsv8tzhI1xz7XX4dD8+n+fjsnXbNN/b+21kWWZ4eBjLslhe8YQment78el+JiYmKJfLXHXVVUSiYR5++GEWFxeJtbURCoVRVA1F1lqU0aa4hGmaLZppM7iybZudO3e2DKfq9TqC4HLq1AnPIb6/FwSXcDiM4zgUGh4LgUCIbDYLjo0oyKyvJZFEhc7OzhY4NDAw8Iqu/S8HrPw479uIDLcYBw2UWxA8x+iNtExVDlEq1pk5PUss6uPosRksS+LPPvmXfO6Ln+fKK29AaJTGc7mcF2yrKoqmo2g6bt3CtLygWtM0LMtquT1Xq1W+/OUv89Uv/yMnZ05z5MRxgqEgRsXrs2hWapqVHU3TyBUKdLfFqNfr4MrUDItCMcP2HVMIooxp2rhuwzcgGqFPCzA0OYllemo64IGPiqa2nLz9fn8L5a/XG9KwrtsCWkzTbP2/XvfAUp8aYD2VZmU9yabBQe5/8AFMy0LCA7j8fn8rOf/0pz+NruvcdMUl6Jofy+f1RBarFW699VZe+9rXtvoebctt0TmbPS6wYf90HO677z70iJ9gHYqygOBcoP00Y5XmM9BUNvSSAqH19/9sXBivigTgn3uI/zXjpQ2nG7mDLmC6oOlhrGq+lTkuLCzQ09PTKk2LLi3EfXFxsdUMlclkWhJ6tm3T09lJruBtJp2dnV6Jze+V9bzGKRBsBwQBo1ZvVAHAtGrgWlgNxFDARZEFBMFFshwcUQBJBOuCkkF3b5/3b0VlbW2NcIcnyVYyDXqHRxgeH+exvQ9juCL+cAzZZzK/MIumaZRrVSRVwTQMEpGQx5HVNTRVI4CL5UIhm6FABi0Qoq2tDVVVceULiLXXILzxGv/kNoOXQ2423ttX5WjOZ9dtXRlRFJFVCUXXCMUiYJmsm3Xqda/UXrdMnnvuORKJBKn1FbZetbu1AKuygiorCIDhSFiawPY91+KIEj7bwRU9qklbvIdwWzdWLY1QSvLgA/dw1U1v4PTJYwR02ZOQ9UVIpVcZ7ejFsW0ULYwc6yPc1k2+VEcNRlnPHaO/fwhEhUrdxB9qI6JIZAtFetv7qFkOY2MTLC7O0xGLUsxWyeRLLC4nGR0dpVTMEwiqfO4v/oawKqMoGq6rkSlUiNbqLCzO41Zy+PQAoVA7p+dOEInFOTkzyzvedCP3/cMXCCkG46Nj9PSNYVkeOlkqlVB0reGq7D0LxVyKilPj1Mmj5HM9XLpjD7FIgO//4ADf2/sYo5NbOHb0OJunp7j8yitQVZWFhQXqpsnI2DjZ9BKbuhP4fD5mZ2cpFXIszJ+lv7ePQCBAMrlGLBajXquwODeLItp0DXgUmWbfTalUolouIdZdOgeHEYWX6JO77quq+bc5vvqlz3tom+kgazKKIrXoNJbpmdZpmobu94EooCgqwUAEVZVbTXimabaAEEmSKNXqhGJxpoZH6O3tZW5ujlqtyvzieQSnjoXLUmqdzv5eZmfnWV5bp1arMbhpmPnFWdriUWTFz+TEVi694npEVaFeNRAEr1JZKnvNi3XLxEVsfb5hGFx99dXIqsJV11zNB9//fvp7elmbLeEP+Qm1dVIyHHZcvgfHqjeAlAyBQIBEIoEsWDz39NO0xT3Kz7mzZ3jo2w/ynve8hy9+8YsMDQ1xbm4BQRDYv99r0L3hhps4dfo855eWKeQzFIplrrz6NUxMTVIs1SmXvebbYqnADTdcx/LSGk899Qzbt2+nq6uL4ZFB4vE4zzzzDMtLK+zcuZPu7m5mZmboTHRw/fXXMzs7i2k7mBZYtoEc8nlCEA2hhiZa3+z1aQY/TXpqJpOhWq2SzWZRZIf+gT4URWFpaQld1xvKM72kkmlMwyJT9VSDctkMoijS09PH3Nw5gFZFrFAosLCw8IrN25cG/i9t+H0pEvzj9AY039sMIG3bRlJAUGSWl5IcOnicbZun+c7jTxDwBXnr23+OlZU1dF1HEASi0SjLy8uo/gAiAuVqHUUSsEzLC3xtg2Aw2FJlSyQS/N7v/R6/8f5fY+bMSQrra9z5hjfwrQe/3aLlNKuITYS8v7+fzOoyn/ncZ/mFd/wigVCQkZERisUaX773nxgaGuHkyZNepadSZmRiM3d//EZkVUNqUHxc18WnadTrdU8SuvF9Y9Wn6YlkGEbrOYcNpmqu52nz3PHjfOd7j/Frv/or/H+//yFibR0ew6DR/KtpnuGarusEYu3s2rULxbZJpVLUbQu/5m/N2+a9aKr+vPe97+Wv//qvW9WH5v20bZtKtkLRMmj3+0i5Vuv+N5OV5rGalQQAx/HoPz8Nldn/k+NVkQC8UkPTfC3FHZ/PR6lUoqurqzXRuru7wXaoVCrUajXyuRyqqrJ3d0+TRwAAIABJREFU715GR0fp6OggGAySzWZZW1sjFAmTSCQoVaqehq8gtY4lApZloUoygiw2OOJe2c2nSAhOo0wlgChJOLaNWbeQ8HsTnAtBRVMe1DRNEokE51eXUGQZPRAkl8vR1dHO9TfejISArnvKHggOKysr/OBJr7lID/ip1WoMDAx4m4bSoFc0NL5N06RcN9F1jxsq+cSLFsl/rUTojxobkZp/K6O1ATUQkmbJtLnQgycLGgx6RkxvfvObeeapJ5mengagWMgRDUeQJIFKpUS5WkUulQmH2xFVG0QRyzDxBcLEY2HWF7OIbp2gX0JVBGRJwBQE2to7Ac/Zs1yp4ROqmIAjqSDJiIoX1G7ffgnpZJpoRwJZ0UASKRcrBH2ecpaqKZRNE6tutHjIvb1d/P29X+Wpp55iaNMAxVKFubk5AppMb28fjmFwemYWMZKgMxomU0xjmCbnzp3DwaVWN9A0lXAoSG84TCgU8mgPmoogutCQePPUswRcx8VxPWTz/NxJTpw4QXt7F5ZZBbvO3OwCl++5ks1bt7GyvMbjjz/J1dddy2OPPcYHP/hBHnr4YdbWVhjo6aKvq5eFlVXC4TCWZbG0tIRPUzGMKJVKhXg8jqZprcC3pZQl2C3UsFIqEYz4WxSKHyVP+GoaVq3qURFti1q5Rl3cAJKgYtRq1Bu8ZVmXCYViaCqtqma9Xr+IJpjL5Zjauo2dO3dSKpXYv38/fr+ftniUoM9PtWoxMjnO9l07+dSnPoUq+Xjta1/L+NgkC0vzRKIhenv6qZRKnJmbp6evn0RXN0uLK4RCIQzLoLe/h0cffZTrb7qRTDbvSbY2KGyu63Jm5izt0Six9g5m11exLRO/pnD1zTd5aliFMp3tUUzTaFEfVFXlew8+xE0338jy+UXWV1eZGBth9+7d7N37CAODm/j0pz/d6EMYZceOHZw6dYYv/cM/MrBpkPbuBEOdbdx8y63YjgfuPP/8Ee699ysMDfWiqDLT05O0tXUwNDTCl750L1NTUzhunTvvvJNkMkk0GmX//v1s27aNXC7HyZMnGR4e9jxqCmV8sqcsZbsuQiP4bwZpzaCmCRA1BSxM0yQSiaAoCmfOnEGRvWAoGo22/GWaTd2xWIylpaVWb0HTQX59fR1BEFr89XA43Hrvq2G8NPjfODYCfy/dV1qvveR4G59bT2pYJpnJIbsSTz13mHrDwd12bHRdb8UPKysrxNvbyeY9TXpJl5BcCwHdWyOkCwFsE92fnZ0lGg0RjkTQJeWiYKxW8xyBm5+hKArlcplAIEClUiYYDLO6vka9UsYwXa688hqOHDnC0NAQAD1dW7j2xtdSq9WI+gPQuK+txuLGvzei7M3rYpqes7e35qmtn11ING0s12kYntX45je/yTVX7eGL996L69gEAgECAc8rpilecuSF4/zRH3+UuKp6iVC5RL1eb/RdeOu60EgGHMdhYGDAcwpu9lJxAfSz6wam7PLFz36ON7zrXa0ezY30pQv30G78/GKq18+GN6SPfOQjr/Q5YJjOR162AiC40OijQ/Aafzf4BLeGI3hNtu6GFzYe7+WO7dguhlHDMi0Ms45tmgRUjUwm4wVbokipWPRcdbu6MAyDTDpNKp1mz67d5LNZNJ8Pny9AJBImXywQb4sTCsfo6upCEoVW0O4FLi6OZSEKLrZlIHgdK0i44EpIjgtVg6oMVWziBpw48CTtk9PoaDiC00oAREkkk/EQmmw2S71UppzNYtWqKLLD7JnTFDMZ5ubOcerEi3zvoW+TSa7x+CN7kUS8c3DgxptuwrQtQsEIiqoiSjKO7VIs5HEcG6tSpFwqYpsmqt+P3TBQc1z7ggwb3g3xvgut+/A/8/VDt/1fKO2+dCiSePeP9cafxHDdj1yYlQI/5JC5cRPCu3+m5WA7NpVKCcEFx3IQBZFMOklyfYWVVS8A7enr9RrGJQ2/T6daqmCZJrIqAyrRmCdj6YguuhZgfeUMgWgMRQjguAajI6Pooje36vUiHd29lAolIpE4guan5oBgW1TyRcKxKJLkGQCVyhbRaIy6ZeBgo2oaiDI2LoZpkVlf58TRQyC6bJrcSjAQxx8O4g/6GBkaZmhoiMsu340sWPzcO96O7TrYlsWpMzMUc3mymTxhDdbX0xw5eRLBdRnsaccol3nX21/PqRPHuGrPTvrHtqMF2hBEkAUaTWYSggSOXaNezJJeOUc6neGaq6/H7w+w9+Fvo8k22y69nP/y0T8lny3w9FNPsbZa5+jhg0xs28b87Fm2TU8xPTbE+MRmhkeH2bX7chzXZrCri82j42h+nVIhR0eiF8Eocm7mNIJg0j/QS2fvMIKoIIoullXHMkyyuRSW49LeO0QoGLoIfYTGwoX7w1+i9IrN3S998fMfsV0BxxWwbBdJlLzN3bQRaKBusoKkqJ47uQCWWcc0TAr5PKZpkMtmiXd2cMcdb2Z0bIIjR49y/vwSZ8+eo6enl3i8jZGRMToSXUhaFNOUiMbbmBifRG8gjysrKyiqD1GQ0X1+aobB0NAoK6k0DjAw0E+5WsbvDyCJqtdfJUiYpoXu9yM0KmChcAhcF8MycXDBdTl28iS/+h/ez/jYOMGQD11XEJqUSttBlmRwIdHR4SV2to1h2ayur1Es5Dmwfx/nF+eZXVgglU4jyRLZfAFEgTveeAelcoVqqUopV+T4scOspfI89/xRZs95CHl7W4J8vkAgEEZXNY6/cIzuri5wHd73vvfzS7/0bp566lk0zUcyuUY2m2U9uUZHWzuVUhVJ0+nt7ae3p4dQIMj5xQUMxyYYCeMKTUdxAcd1KBSL1CslXMemXqtSq1aoVsqoiowsecFPPl/ANEwSPd3oPh/J1RUyqXVCoSCqIiMKYFsmpuWwnkyCIKAoPnL5IolEDysrqziui+7z87rb3vSKzN3Ts4sfaT5fTSd171kTEQQRUZTwdN8v9Ny1BCtEsdEQivd+UcJxQRAlj+YqiDguGKbl7dlOwxG7oUsvCp5Phq7qwAV6is/nw3UcAj4NERcRF9cFSRa9dXWDNGnzfAKBALYrIAoStbrJoecP88Y3v9m75qqK3+drSJZ7SLnrOFiOSyAU5Pbb70AWBb778MOMj44RDPiY3rqZTYPdhMI+dl52OYoaoGfTGJrPhyQIiI1qZDMRaQp8wIXm2WbS0fzboAFcNoAe8ERMJBFkSUBWZUqVEotLy3z84x/nD+6+m+3btvGH/+W/sPc738F0wBEETpyY4dChw3ziT/8ba6k8ru1eoLLJKs24vJlkXHfdda3kpHkPW4mA4CK6MLljB3/2kY+w65qrQJZAgO/v+z79fb04jt24x80YQmgZq02MDb5y8cKrbLyqYaqfFDUIvImmqiqKriHJ3uQ2bYtoNNpCwDVNQ9d1z/jIcejoSjA1PoEoisTjcUzTpFgscvLkSbp6ulsP6suVmSzLQhEFHNv0Gg8dF8F1wfESAlwH2zERHBfZEcBwGR4ebXTEmxcd03Ec4vE4kiQRj8dbJcVYLIZjQyLRjaLpREJhzs7M0Nvdw8zMDNdcc03LkyAej3Py9KlWUxlcaDJulhxt26ZerVEqFSiXitRrVVzbAeeCdOnPMuofY2xIAprInaZpSIqGg3fdNU3zNhHXRZZFovEY66triCitZjxFUZBVBV1XPdTEtTylJkFEEh003Y8oaejBMP5wjGyxQrniKUgUMkmyqXWP1y0rhENRRFcERHx+BdOstxB2XddwBFA1H7KqX+BX2g6yKBAIh9hyyU56h8bI5sogwdzcHJ3xNkJ+Dzn8yle+wtDQEJlkhunNWzHqdcKhKMePH2fvo4+QyuSomlXaO7sIRuNk8jVShRp6IMzE+CRbd1yCJCnISkMmVZDA9TT4m/OuWq2SzxfY1L+JYrFIPp+lbtk8uf8gZ86c4V0//1Z+8IMDdCfaGd4UQpEcjh56mmjQR2dbnMv3XEnv4CCRWAzNp7J9+3Yq1SpI3jM8MDBAWzzsSdRlsxiGRcAf8tS6cCkXSxTzBQr5LKFQqNXs/9OCNNVqtYsQ/GYJXRRFZMG77rZp4lgmqqqjaT7qdZNSuUImm6NcqfKLv/QebrjhJu655x6+/vVv4AuE2LZjJ9dcdwPjk5sZ2DRMKpPj1MxZ4uEgvT0J1leXKGQyxNvCnF9aoFAoMDg4SLVaRdM0jhw5wvz8PBMTE0SjUdbW1ojH2ohG28lkciiKRrVaBceiXq1Qr1YoFwsszs8hCS5mvcrTB/Zz+e5LURSFxcVF1tfX0Xx+/MEQiBJig9K4urpKLpcjmUxSKJTYt28fsViMdDrL4uIS1113DVdeuYfLdl7CNVdegVEvs762zOW7dnHy+HEWF2axLINwxJNnzmVTBP0+yrUqQ6Oj+HSVrs4OIqEgP/jBDwAYHR3lda97HcdeeJ5du3YyPz/LLbfcyA033MChQ4dIdPYQi3fQ0dPDZZdfwdTUFmo1g6WlFY+n7w95tBLTQVV1qtU6tZqB3x9ED/ixcb2qXa2MrMkYtoHpmJiOjaypOAKUSmVUVW1RNIrFYqunRZIkj26nKC1KyNraGmtray3aURN1fSXGv/RsbWwM3Yj8N/e5ZvW1Wclqfpmm2Wpeb16H5vGae6OiKK1rsLH60ExCms9T8/c39go1ufaWZbWO3Qx4RVFkdHQURZLw6zpy41ybhntN8Q/DMPizP/skuUKBxx7fT75k8sQPDnLizALn5ld5fN8hfIEO3nTnO7n08tfg0/zYDWpYEyFvxlQvVfpp9gOB18zcfL0ZC3hmW07Lu6hpvphOp7nrrrt44xvfyO7du7njjju47Y7bWU95la1IJEI0GuXWW29lZXWNhYWFlpSvqqoX0yXhomSteQ2bQilN6luzEts7PsxQdy8YHruit6u7dQ+avkob78fPKEAXj1clBehC0P+/volunFAvPfbGCRcORSjlCxRLFYK6Tr1exzRNAoEAlmWRTCaJRCLULa/RqlIs8dzBQwyPjtDd3o5hGExv30EwEEKUlJY6giB4NIVWSV0Ct2oSkGRKlYp3bk4D0bddbBxkXHwlAUsoQnEFLdjhlZS5UML0fAm8ACWRSLQa4ILBILIkIilRcpkslu2CILLrsj0cee55Et29ZHIFtmzd7sm+BUNE2uIEN5jIgHCRfrkgCJhGjXy6im1aRONtqJKMpKjQkElsBq0X37ef3Ni46Db//6odzeuxYS42F3JL96NoKqquks/VqBp1bNdF0XVk1c/zzz/P2MgoY8NjLCyeQ5Q9IyVBligV8gyN9FIoe54Pgu1i2TW6EkOUbQFV1nEEkXjvMJnz8xi2gSo5VPKr9PbtJpktUK0biIgoiohpCVQqNWJagOT6OtB0WFUQBQVV0/8He+8dJdd1nfn+bqxbubqqqyMaje4GGomIJECQBAhRBEVRlCxbmcrBQX6a0Zo3nnkzb+Rny8sezzg+B8oSrRGXx2NZGlu2ApNEUowQSBAkCCI0GqHRjc6punK4+f1x61ZftEjJfvYSqbV01qpV3XXrnrrh3HO+vfe3vw2OS0iRuTA6gmBVaMu00xaNo0UUFgsrLMzNcuLYcbbv3EEsEWfD+j6eefZp+tcPsWHTdq7buoOlmatsGuonHo+T7kgTMQ2G6wo13eHFEy/TPTSIbjt0dPYiaQki0Th6vUE4FgVsbMdLNBNsC8swWVhaZHDjMKZeZ3R0lHzeA+K7993C3/7tX7N54wC/+zv/mWw2SyaT8Rateg01HEWLxGiYYNoWpUqZREIgJCts27HNM3zna9QqVQTbYGJqgomrV/jghz9ILN1GrVrGqFSQHZi5OkkiGkMOyVTKeRrVOlbCQQuvmVrfgHkAriBSrtZatDTB9RZ2VVVRJBFsF1ULE45GCUeiLCwscPfdd5Pu6KVQKFCtVhm9PMbczCydnd7C29PXR1dPD47jUC6XaW/3JIczmQyXRs8Qi0SRBWhLRkGNEgpHiEVTuAhsGBjEtGz233gAUzdoNBpomsa6desplUoYeh3LdBAkCVUWCckS5UoF3dIp5z0Z54UZj3bwiY99lKNHj5JMJolGo4TDYVZWVjxKUiaDKIpUmlXSG40GHV3d1Go13vXu93D8+HGGNm5lenKcXXt38fADDxKPRnjLkdu5cOECp8+corsjRTZ9PV0dacauTtPb20M6lWBnKsbE1Bxt6TjZzgz5+VlkTSERjzM8vBHTNNm0aYhTp07x6c98mjfffpjR0VFGzp9hbm6B3bt309fXz4c/+UtEIhE+9+u/ieQ6pFIpDwyGBVwXurt7eNe7bsJs6Fy8eJGJiQlGRkaIxjSqtQbVapVMe5L5xQUURSEej1NvGCzn8l49i64OkskkoVAYRRLRTY82pGkaoiiiamFyuRyhUIiZmSl6e7upVsuIolcQc+fOna/r2K3X6x6IVlbXW1gF/5bl1Qrxee1BKUk/0VQURRqNRos+5oPNIJj3HTa+ooxlWYg4LRpn0Nj3+exB0G/bdisp1geg1/TfTFTNZrP88qd+kZDi5RuWSqVWhMcHu76i1Oc+91vg2vzeH9/L9Pwcpu7x4FUthKaGGL86Qb4iIEXSOKbRwiS+oWHb9jVefv88fHUiQRBaCcFAK4l5LQVZURREWUaNRnFth49//OPc86EPevkEzQq/M7OLCLJESFZItWW4cPlqi5bmO3J87r9/j/x7tpb/7x+vb7QAvOP9H+DWG2/myF138p73f4DcwiLr16/HEUBwVo0/nxb3k8AoP03tDWkA/KSaLw+VTKYohMOUqyXqlSqZTKblCdA0T/O6I9NOvuQlC3d2d5HNZlsl1wVRRpBkXEFqhdXcQAKoIAgoIZXyvFfMxjUtBFFEdJuFtyzbo9VIIMUaFL/5HZZFh/a73+cNdMsAYVWRxwoktwiCwNjYGCuJOCFVIZ5MePJiiorlWjiWxfUH9lMorHh5DrUq8WQCQfKMBi3ihRkFsRm4dD3FAEVR0KsVatUyoVCIerkEjoMoKSTb0oiyFDCkXr97+NPW/MnOMwQ0qgiEwyFcSaRUKZJbWeHIHXdwdfwSt99+O4XlRcJhT/NeEAQkWSEWTbG4kCOWTFHXdWKiQj4/TTKxCSkMoqiA6+DaEvFUgmpRIhpP0NbRRaFSZcOGQRYXltBiSSRJIhbLIEkKtmGSaUshiiJV3SQc1nDx6CGNaoVqKU+mLc746BVK+QLRRJJsNkOxVGXL5k1EtBiyLJJIxPnHb32TD7z/fXzxz7/E0ObtLC3MUCnn2brtBtrb23n00UeRBXjmxGnkUARVVigtzxNSFBLxCJ09A0hNeobNatVkEajrNRzLobMzS7VWwaxXWVycZ3p6ltvvuJOHv/8kGzZs4FO/+Cs4okQmnaVUKnm8V8vAtABJRJVsREvBsWwunDvHnj17KdgWlUqZUmEFWVaZn1nm+Esv8va3vx0lpCGqqpczY7s4CDiOjaxIzM3PUm+YTE9Pk27vIBwJ/Wjj9A1guEbC0dZCqigKpmUQiXqqNYbrkm7LYFkO4XiSrcObufPOu1hZWeHRR79LqVQikUiQSCRQJJlUKs3AwCA969e1+MLVYp7nLl7gxIkT2I6J1aixZcsWrtu2FVWNUDdqdHWuo1AooKhhwmGt6X31AEkLNBm6p1sva0RjYcrlMiFFYr6Y48knn+bmm2+mkM/T19fH+PhVFEXh6aefZt++ffzhn36JnTt3kk6niagqmixiNRroep22tjYymQzz8/PkcjmSySSvvHKGzZs302gY9PYeYPLqFG8+8lamrl7l4MGDPH3sKPv2H2D7th0eaHIFbrvjLTz2vUdxXZfOrh6iyRTxZILx8XHa2jwJ23XrenFw6Ovr42tf+xrZbJZnnnmGvXv3IooibW0ZhjdtZWDDIO3tHXzxC39OvlhGDYXQKzU+8pGP0NXVxR//8R+zUigwOzvLvffei4hLuVwGYGhoiOHhjWzbtg1Zlrn//vuZnppnJZcjEk4Qi8Xo6emhWCw2KwSbdKRTWIbdcioBzM7O0t6RxTQ9RaZYPIph6oQ0FRcPiL6eOQC+wowPVP08HF8JyS+4CE7L2x6k4PiRTp/a4oPNIDAPCl74oF0UPYlfwV0Frv67f+2CxoQPVD0FJuEadR2/5pDZ7DsajdLT00OlXuPLX/4yv/Irv0KtUW8dq59U6+MRx7VZKZWRJQ1Rc1rnnkim2LM7w0qxhCqCo7gIwqqOvx+58N9942LtXOV75v0E3WCibjBPwr8PoiRhu05rP0Hw9u3t7W1hldWKvbSSjoHWPQoaUv4x+X/7Lx/A+8nuggjf/t53ufXQLbz7Pe/j+HPPs33XTpBEXOtaadeflsjsT7K94QyAn6SF1uKaSwqG7XH+kskk5XK5NfhUVaVYLBKJRAjJCnIq6amuAJFIhEjEk9eSZdlL3m1OJsFEWUEQsB2bUFijUa0gIeEIrjeZWi6OY3rJeK4Dv/NntNkrRP7P30BMtCNKAk5g0DuOg+XYrYdpZmaG6667jiuXLrJ3505KegPHtHBsG932lCAGhzXGL12kVqkiKTKy6D2ssqq0gKXYNABs27sGS0tLRONJatUyoutimzqlgkm53qDXsnAFEVXRcMIOovSGZpK9YZogigiu69GsolGi8Rjlkkq5Vm2FVyORGCsrBRYWljh27Ci14iINw+LmWw6D4JKMJzh5/gT7bjqIbukomkJ1YZ6FuUkikU2Em6FOAQnbcJsJaCqKFsZwIBlJYFo2cU3FESwQFWxbRpVkKpUylmWghUK4agSn+QzUqzqubTE5eQUVgS3bb0BNZdANg5mJS9RKZU69dA5ZVljX0025DLfeeitf/epXuePIbYRDIm86fJBTLz3Hc889x/DwMJKq0NfVxe+/64MUyiXOvXyC7z/xPTb0r8M2LFxZxbRdJAlsB2RJQq8VQZExdZOQojA5O0tnV5aFmasoksy+62/g5Zdf4qMfei/ZrgHCsQyyLFMqV4mnu7ykVVeiWisTUj3JQ8uwEW2XwuIiV8fH6dnQj6oqTF++zPTsBJXSPL/2a79GNV9ACEdQtQRmo05hbhZLEDj+wnMcPHSYarXMUr4AkTkGN1aIxsKvngjsXrsovZ62sysAopccqCgK2WRHC1StG9zMm970JmzbplQo8MSjj/DKmXMoikI4EsLUPGNq985drF+/oaWi9NW/vp9IJIJlWRRyK9RrZaamprAsi4ZlsZQvEtKiZDIZksk2Jq5OE4t79VhsvLlHQKJeLrRAU76wQiQaolgssLJisFKosPO6LViGwR2338by8jLLi/NUiiVSiSRdnVnSbUlGzp3hlpv3MzY2hq7rREMic4sFFEUhpIWbCfie8ltvdycTk5Ncf/31nD0/Qn9fD4V8kXgiyekzIwwODvKNb36H973vw8RjUXRdZ2FhgVy+zE09PbztbW/jueeeo1RpkGpLcP3uFPGIQsMwGRryqkn7Fds/+tGPkslkMEyHRLyN5587wej5Mf7dv/sstdooFy6cpz2VZNfO63j51GnCbUkeeughZFnmpptuQZAlXnzxRT7+8U+yMDfN/ff/D/r6+lhaWmBsfJxnjh4jFosxt7BEKBwlEktwx513sWPHDubm5njooYe474tf8OpjiBKpRBzbMgmHw4QUT5++UqmQzWYxDANdX61LUygUWupCr2fzFWo0NdQC+MEmCAKyvErXCar9+M2n16zmBqzmDPhjzxdpEEVxlcojXKswFOzTB9c+sIZVkBykz/j0FB/Yp9NpwuEw9fEJPvGJT6DrekthyOfrG4bhyYm6FkpIBkFEkl00RW3RstqzaXK5HJJrYZmmxyxwZUQpANab5+onwAfrEPkRAd8776vy+FET8IB8KBRqipYICK6LbVlIiozbvD4uNookIrlyq76AIEve951VqU8fxwSj+kFjwL93/vXyozGSJFGv14lHE1xdnucr/+t/8sF77mFdXx+lUolQLIIqKK3zDL5+1lbbG84A+Kc251+wcnqcYi9BR1G9hyIWTWBKIpauk0jGMOt1HFwKxRK6rpPL5VrWd1fWU1NJtbczPT1LOJlsZasrkowoiNcMOEEQkASVRlhBrLtIpRqW4uLGIoRciZpt4lg2gipDLIEwtAnaOrFEEeoeMHSxVicxBETJC0G2pzOsrCyzc+dORkfOk+7tJZ1MoIVkFhaWcAyT+ZU8DiKbt1/H6OgolmMTS8QRJBVExZMZBQQ8hZVGwyAcjrKyUsDCxXJsJMtt5jHY5JamvBoK0RCmoSOFwt6xucI11ZpfjabTSjp6jedQCNC+ghWGg/f7p0VlpdWEZiZ7c4IVRdFL9ApFUJUYou3imiZd7VmWckVeeP4EqUScb/7DP/BvP/1JXjp3nnq9TqPR4MryBdqSCaqlMkpMwTRd7MYcjXwBU7GJSioNy0YGREFCEBUERSObzlCserkEumGg4KLhosRjVGomIUXCFV1Mx0TVQdXakBG8hEnHoFxeIhkLoQohytUyCS1COtNOIraP8tI83Ru28JV7/1++++C32L57N22pDO9913uYHJ9haGiIK1cnqNd13nT4ENft2MXF0XNMTk3x3//oD9i9cxdbe9rYPtyPFot5CkVhDcOyMHHRFAmrYeCadXTTQZQiWJZONuPx7qOJOHrN5umnfsDtb38LuiEjiBq6DnqjSCQcxjBNT7lCtNEUGQGXRk0HUUWORNi0ZZBcfplsrRu9olOu11CiEXZuPoTrSB5NSAnjWA4IEqIClVIZwzQpV2uYplcxeHFpjlqj3krzFVyHgGZuywB4IwTN9LpHf5BFCVdWEbU4PT297N27F0FWKBaLHH3mKSKqQiSk4Apetc1yQ+fwkbcSjyVZ19uLbTb4ype/QKNeI55oo5BbaSmnLSzMUSpXEEWRHTv2cPfddzM/P088Hufl0y8R0zQEUoQjAmZDp72tHUO3sEUIKxKFwgpS0zGRW1mgLdWJIHp85HKLdkLfAAAgAElEQVS9RsOwqdYNtmzbQbFYJJHMcN9f3o+u69x0003srZnouk61VmT0fJG5mSl27dpFZ2cnU9PjNOoOO3fv4uzJF9g4OMjczDQ37NrFyydfolQp09XTSf9gPw899BC/+qu/yqlTp3j2WU8G9NZbb+Xjn/gkTz39JIlEgvd94B7OnHmFfKFEb28vveuHmJqcwFfRmZmZYcOG9aiqTCIRQ4slyOfzDGwc4Jc/9cv8h1/7z+zdez379x3g7//hr7lw+RKptgyaprC4NIcoyhQKBXTL88Y+9tj3EASJ//iffp10Os2DDz6IbZvMzs5SKBSpVQqYlhdF+fu/+1988UsN+vv72bNnDxeuTFKr1fjsv/0/KJcrxGWJTFt7s+qsRSwRJx5PUCwWadRNDN3EsV1kSUFvrNJKXo9m6Gar8Jzl2CB69FXBXQXzHmD06b4gSat0F48eJP+QZzgoq+o4DpLg4lgGkgCObaLKPjAVrskBAK7x7AejAD54hWvXQ9+A8I2CaDyEElJx5WbUoens8/vw9ext2/ZkOA0XRBNZVrEsuxmlkLnvvvu45557MCyz+WyLrchD8Dj84/ONGv+Yfa6/D/79Y/ANIf96+cfTOhdJbOVOBI0jyzE840PxaEOe7oGI7Zi4eKwHQfSKpQlIraiDbxytjQz4x9hSX2tUUV0RSYuihaP8/h/+ESulIqoNrnRtMbOfUYB+uP3UGgD/Gq0VknMg29nF8vyc91CaJpbjUi4XmV+YJxqNMr8wTba9m2KxSDQabVVtTSaTACwtLbF+/frWAA3+huu6yKJESIvgtNlEIjlG/q/foOvQLShH3gFFHdlycA2bwmAfsZ1bMRIxZAccu1lBMDCQ/cnXD3U2jDqNepVIW6Klzd2oV1o8u0wmQzab9XSKmzJc6fYMluOiqqFrrG8BockDlEilUmTSCU6efBHB8CYUwZBZWVxEEi/T0d2LFu9vAXLHcRCl19Zavuazf0F+x4/r+43efJ51NBqlLZ1mTPTu0/j4uFe5uVxg/bpOao0Gqqpy4w37KBYLJBMJXNek2ihi2yZ62UbEZHlphfXrN2BV8hDR0EIyrmmhWw1CGAx0tbFcjeJac8wvTJLNZknGk1iCQLVSwdUtLMUmFk8hKxqu7k3AtguCK1Nt6JTKNVxRI929DkGRERHILcyTX84xMzPD1//uG7zjrbdz44EDlKsVEm1pkskEb71rO8+dfBFLb/BLn/okr5w5y9jYOD3dvQiyTN+VeZ79wTEiB3azd9tuNDGGksigqmGggSDKSKKIZZs06lVs2ybelqBWWfEK0wgRtFAURVPo7VvHhsGNqHKKRq0GUh3XMsktTJPJZDl+7DgdmTSaFmFiYoLu7h76BgYRXIHu3j6WV0rMzMyQSqUY3LQRWQnRt66HYmGFhKYyfvk8sWQ71UqJ+eUc1Wod03GZm1tAkRymro6z/YY7yOfz9PR4FcQVWfpXG+v/2q1iWAz09nHrwUN0dHSxuJBjaWmJP/ujP0UO4WnyCyKztRqIKu96z7uJxOJoskw8EebChQs8/M2vAeAIIq6ksLy8zOXLl1vKKDfffDM7duzgxRdf5MSJlzh58kVisRiLi/Ns3LiR5fn5JhXDUzvxkwNj8RSNegNViaA0hRBikQyqEmbP7huploukkllyuSVESeLhRx5BFEXe9vZ30rPOq8BbqVXJ5/N87GMf4+FHvsPb77wTWRA5d/Y8Q8NbuTxyjj17rmf26iV27NjB/Pw8ExMTngTnwEBTFU3gheMvcc899/Dkk09y5MgRHnzwQT796U+jqiqXL19meXmZr3/963zmM59B0zT6+vqoVCr09PRQWMmzrnc9puGSbvcqyafTaUZHR5memefw4cPsum4Ho6Mj9PS2o6igmxVuvvU2/vpv/pbbbr8d25WQJA9cOq6J5Hqe0GJuCcMy+av778N1hRZIO3DgAENDQ/zNX/9PajVPjrenp4dMQmRpdpK/P3+O//Hl+9BNg+1bt9K7sYNIMsPn/svnqDfqjI6cp1IoEovFmrUX8ui63iqaVirmuHLlyus2bv0iVgAhbVWdZi2FB66tBRT06vv7rM0N8PeRJKmVoycFIvs+8PT38dd6f3twLfX79v8Oet/9tdmnwTzyyONks9mWR97n4gelt30Pvr+Pb3D4/TiOw913302lUmlVTQ/SbnyQH7wWQYqRv4YH8wCDCblBqlDLkRU4P03Tfij5OpiEHQqFrpGsDRphfs5k8F75xxVMyPajD0Fjw6dZPf7Uk0xNTZHJZLBcB1VerWzt+d9+ZgCsbW8IA+BfclP+JbyulpSYJpPMtBPSIkxcGsHGJKRFkBQZVQtRKBRIJBIcPXqUN73pTVy8eJGOjg6UcJi2tjYSmUyr0l+omZQU5Nt5PEIPQFvRGHUnxuC9XyJ9/DiFS5eRHRXDsjze2s79WBv6US0XV1j1MijNCSEYzmw0Gp5agytQrjW8ao02hMNhLFPAcbhGr9tP/Mlms1TrNWKJpJfDILiriTWugCwLuK6AqCoUV/Ks79/ExXMvIzvew9So1ZEFEdfWicaTiMl4q3iIfyt+3D2VXgMU2QSUn17lvgYn2DdUa534j/hOMxIgiiKyIhEJx3DbXKKpNHq1RKNRp1BcIZ/Pc3XyMj//trdy7sIoe3ftZXxxgfZUknAsSntXN/NLy7S3p7D1KlIsw0KlQrtSZvzCLJmudZ7WtF7Htmx03UASFETLoSOTQVNDOK6OLJioWpR6cYVGzSaWXocaasM2vYJNoyNn2NDfRzoiEuvpRVbClPU6Qq2O1ahz9OhRDuy/kRMnX2Jp+jJtbe9GVUPY8yazU5PMzs4yMzODgUNvdw+NUonhTVtYXsmza8c2nrz3T5hbWiEUSVKqm1yZGefY8acY3raDcskzkOLJFHqtTrm4TKNcwrVtRCWB2dQ/j0ajPPPUU1y8fIGOrh5MSyAaVVAVOH3qRdRYCsU2uPcPf49Dd97N8WfPMT4xxqFDh/jew9+kp6ebPXv2MjmfY+P6fio1k7m5OcJxle5sO4uzM1y6cB5TN/iHBx+lUG7Q3dVOuWEyvHETakimphtMjI/R2dXD4vwcajjB1q2bvcVX9KpQBhfEN0p7/wfv4eGHH+YfH/g2lWIBQTBb1T5rVRNx81Y+9alfYsPgIIu5HMlYjPvvv5/c3DTpdMoTRahX0RsG6wcG6ejoYKB/HS4WFy9eJDe9xPT0NNVqnZGREe688w4GBgY4e/Ys+Xye+aV5ejs76e3tZnpmqqnTX2FwcKOnXNWshL28kMMwdFKpFKoSY2FhgYimNhNWZbZdt4VYIsnIyAhj4+Popsnpl16iv7+fjRs3cvToUXK5HPOLSzzw3YfBgd37b6Qz086lC+doa8/wZ3/2j3zmM5/h8ccf55ZbbsGydCrVMtcNDnHbbbfx0EMP4TgO9913HzfdvJ+HH3mAnp4e/uIv/oKLF6/wV391Pw8//DCO7dLT08NXv/pV6vU663p7efbZY7iuw57rd1MoFPjKV77SSo4eu3yBxcVFtm7fRiIZZ25uhnK5zI49e/nyl7/M9598kqsTU/yH//jvuXz5Mvff/xW2DW+mVCp50a+IRq1aJt3WRqFQQJZFnn3mcU6+9BylwgqKorB50xBtbW288MILDA0NsawtkxvJkYhGGT39Cj1dndhWnY+861kymQzxZAJLhKmpKWq1Gu94+3v42Mc+xksvvcTjjz/OyMhZ0un06zZug0mjvjdYEAQi2mpdH49OGWkBe98x54POtXQQ//8gsF1du+2WYeED0WtEOZp/++DWp8/4fQWTVoP9B4H8hg0bAFoA3P/cb74MZ1C1ywfAfkJyMFlZ07RWArE/5/jn7x9nkL7kr6vBugD+NQnmCwTvQfA8X82gCPYb3C/4HrzGr/b9IIsiaLwEjQlBEAiHwywUcqjxCI5lo7qreQvBfvzr87PmtTdGHQDLaR3ENQvkmrUy+K+vH/8vWVBXByMIiLjA4uIsAiIhTcVoeEoUkiQTCmkk4kmefPJJduzYweLiIp3d3V54senNjUajiM0BGuS2ua6LZdu4jg0IhAlhSgKNUo2ibqEYFo5uYrsOTnsGN5WEZlEeQfSVDFa9EZZlXVMBs7i4zOjFUTZt3IgriLi23fQ6rj5s/sPjFRKp0dHZgWFaeJrJgQdPEFv6x6ZtYzRlQl3XxDQMXMdBVRREyasGHIuliMS8xEFZlpt1G368jv9rekWFVa9CgE30qvUC/KZIwutYB6A5dn2aT/C8Vq2hNft4CeKO46nQLC3PUy+usJxbpt6oc8P+fRQLeZaXFohqChNjYxy543by+RW6unuo1gzS6XZss0Yhv0Syo4N4Ko1Rb2DUc4RjKbRQBMF1sCUBx5URqissTE4iKBqCKKDIIrVSAUcIUWs0CGkyciiNKIewHQfLdrh49hWKi3Pkl6YRRQXHlaibOvPTE/T2dBOPJ3juxIuUSiWyqRjdvT2oisp3H/kuHR2djJwbQdZk7rjzDq+eRF0nFE1x6dIYVyfGKJaLnB+bxrBd9EqZaDzByPmLTIxPoKkhYvE4hWIRWVGplPJYRol6tU5nZz/VaglVERk5P8rM7BwTVy4xMDhER/c6bNvk+PPPUcoXWT+0mXxukXg8wosvn6V/3TqujI+xffs2Nm4aZGryKrZpU23YdGTaqTd0BoeGmFuaA8dlemqS/Moy5y9dZWI+T82Emm5AM+HftR2GBgdIxJNcvjxBKBZHViNs2bLFW5wlT5N87cLXGi+i/LqN3fu//Befr5RL0EzeMwybxcUcsViSfftu4oMf/RjJVIZvfecB+tb1MDF2mbOnX0ZWJCzbpa7rdHZ1s3PXXoaHhqhVy3zt619jZmaGatXT7Y9GE5w7N8JNN91MV1cHc3NzFAoFL8LkOFy/Zw9PPPF9hjZuQhRFNvRv4NSpV6g1anR3d1GplslmOjwqiwyW5eAKNvlcjs7OdiRFJZcvUiyVCUeiCJLI1cmr3Hr4VrIdWVQlRG9vL/39fUxenSIaCdPX10d7tpO2ZBJBhlg8Sf/6Dbzwwgt0dXXxrW99i5GRU2wc3sixY8+jKDKbNm7k8ccfJxQKMb8wx8GDB3nggQf48Ic/zNGjR7lw4QK9vb18+MMf4Td/8zc5cOAA2WwW23Lp6MgyOXkV0zLQdZ2dO3cyPDxMV1cXruuyefNmlnMrJOJJBEEiEolhmDpPPPEE6XSGNx+5jUuXLjE7M88v/uIvUygVeeXMGZJtbdi6gaWbuLaL0TCIaCEMXUeRZG8dEFwatTqj50f41C//Kq+cPoMgSkxNTWObOpIAyUQMx7FbCmUIAuGoR2kNaxr1WoMv3PvnPPfcMe5+2138m3/zWQYHhxgYHH5dxu7o5cnPt5x38qp8pSRK18hY+9QZz+N/rRRz0JMdpJr4++TzeaKR8DUAPhg18IHu2u1B0B7MP/DX7qBx4X8n2NZShhzHaSXV+9z3IGd+rSfe/w3TNFsJucG+g0bB2mTb4PEEoyF+v2s/8/v0aUT+/muvb9CT77egFOoqjUr5ob7XYolXwxatfAH/2B1vfQ2eX9D5smV4w8/qADTbG8YAeFXAuBb0NQu+sGZAXPOVQLGwH/UKGhCC4BVSkRUZy7SwHZPCSg5BcKiV6+SXV1ieW2Rmbpodu7YjKCpt2XZERcZ2YcPAQEsmS5GV1kPoeyO8h1/wChm5LqLq4ro2ohZHchXsfMFTAQqHkdevw9ZUlJCK1aT/eDrFFpZl4jg2hqFjWSaiKCBJIiuFErIkkUwmCIki7dkslYaO5JqIgosouODaSLgIkkgopGI6Looio6ryNdfBRWheYhe3SbwXRBHD0IknE+gNvVngzPGArGMgh+MIoooaErAtAUluTqq4CK/xeq3mBh9s/z6JP9rIe10NAMH9fAvMNa9f8G9XWD3r4Fl4i4IDuFRrDWr1GktzE1QqZV46eY5yYYmtmwfY2N2HJAlMzUyjRWJIWpR0Zw/ICvVKjmgsQzTVQyiSQJOhLR4lEotSrVUQZQnJlYiGNR75zlfZct1OOns6mJufJJNN0KgWsA2ZRDpOONaBEJKoVGvgNKjXdSKhEMeeeYZqbp4N/d2cP/cSMdmlVqxw4vkTfON//z1nXznL6Vee4xc/9SkGNgxw9MTLPPbY95mZnubU2VOk451sGtrEyNnTnD33Ct964BHGrk5wYeQCgwODnB6dwK7aXLw8hWFBQ3dwLJG52SVOnTrH2OUJXNulVivj6gId7d0UK2UE0Zv4//iP/jv9/f0cf+453vFz7ySeTPPEYw+zb8+NSIrE//Nbv00ymaC7s4Nibg5NsTly+Cb6ejqJxBOossxKvohhmpw+O8L27Tsp12qkUilswWF2YYHjJ17m7MVZqg2vEFpIixJVQoRCGoZjU2/orORyRJNpcuU6qhpn794bUFWvXoNvyAuCAM38j1Z7HQ2AWiX/+f033Mie3Tewdct2Ort66O5bzwc++GEymXZcoKenl2Ixzz/876/RaDTYv38fg4NDZLMZJElgcmKM2elpnnn6SSbGx6mUS5i6haJqbBzezs+/8+1UqxXa2lJIsku1VqNWrVEqVbjrzrs4fvwEe/dejxbSiMcTrKwUiMfjKLJMLBLFtS2KlQK2a2E0K6omYykWFuaJRGNYDjQMk2SqjVg8ga4bDAwMMjZ2hfb2LFNXZ/n61/+OaDTG+oF+tu+4jnX9fTQMg0ceepDh4S1MT83Qs24daijE3Pwcm4aHGd6ymUqlyg379vH49x9naXGJ9vZ29u7dy8bNw3R19aIoIa5cucJbjtxOJt3G5NUJLl66TE9PDxcvXiSVSvHRT3yCYrGA5VjUq1WSyTibhzdRKORJpzPs3r2b0dFRhoY2IYc0JElFklVKxRKSLFOv1Tl7+hS5pUWK+Twnjj9PoVTis5/9LAMDA9x48y189/HvMzU3R3ffekTH447Xag3a2uLML8yQSCTJZNo5P3IGWdFoNAx++7d/hyefeoaQqlGrG4QiKqFwGMuxKJYqhGQNy7CRRRlZFojHokginH7lZX5w7FlOvnSCX3j3Pa/L2D07eqVlAIiS2KKsSLKEIHqCGy7eWrzKtV+V31zrlQ9iDx/ARiIRXARsr0oYfrFL23FQAjKVluMgSlJzvgfWeKx9wO6D3eBvBzHM2uigH+EIHrN/nqtGzWoewdpz8AVDRNHj5vuRAr8vnyrs//Za4B7sK2gcBQ2P4L5B+dSgYQRcozQUpE8JgoCAhICIKKzSrIIUriCtyqdcXVttXQQ8aVzHcfybhHcrVqM8riBiWt4csn3L4M8MgGZ7Q1CAflz7SYTNZVmmVqu1oKnvKfclNQuWxeDGIURZRotEqNVq7D9wgFg8iSh6hVN6e3vBcX9Iz9YLo62GKnXTxhZBi2u4RozSjIzsmOiWSVtYo+pY2LqBIInXTCau69JoNBCb4T5Z9jLsr9u5g0sXLhKLx2lUqiwtLaEqCoZRa1nBkgCOLIEo4gpexVeg6V1QWtc5WL04GPLTQhHy+Tyqqnq0I1GiUatTr1ap1WrIWhjDkJBEEdcVfyL37I3egmHO19quqp7usxaNe8nWkkQ8niST6WDdunWsX9fH3OIMlaYkoq4b3r0XJGqiSDKewDQtFCXkxXyUCI5NU3u6TjikIZh1br71MAga5XKdnt5+bBsS6SyNqoIrSihqFN0xUUMKkuOQiqtoYjvv+8B7+au/vJcvfOGL7N17Pd978HuooShXp2YZHBzkxv03sJKfwbZtTp09x5WpGe582ztxHYsjb3sb7ekOvvSXf0lfXx/nL0xhKho0DIy6wfHnT5AvFGiPtvO2tx9BEkQmxq8QTaZYWFqhu7ubF146ybYd12GYJjXbYXxiiuHtW4gnQtTKZbZt2kwsEkXTNBqNBrVahXgkTLVaJRoOk0mnOXLkCEa1iEKDSKqNeCSMBVRrRivBTXQEVlZWqOneM+PaMo7eoL9nPVPrBrhwZZlEwpN0tCyrFYIWBIlKvUZKi1LXTSxXoVSs/NAYeCO2p556ilq14Y0d12X/gRs5dOgQ33nwO8TDMT7zmc9w5swZpq5e5fDhw9i2zQ+OPU85X0AQLWzbRNNUDL3RKlJkmw47d+4knkwxPbvIH/zBH/COd7yDtrY2DKNGtVpFFEXe+ta38thjj3HgwAHGxsYYHh5mcnLaK2boOCSTSarVapPm4wEiHzTMzMywZcs2arUay8sr9KzrpVKpYBhGS6xhbm6OTCbDhg0b2Lp1K3rD5OTJU+zatYOtWzfjuAKZbIZCqcgthw5y6fIY09PTHDp0CEEQyOVyhMNh0m0ZBjYMMtA/SDgc5vjx49x2+5tZXl5m/foNzMzMMDM3z4EDB2gYJvFY4pocsT/5kz/hD//w93nl1MuUy0Xq9TqxeJJQvkihUMIwLLZs2UY4EsVGYGZ6zhNhiK7SV0Q0bNMiFPKqnerVKr/3X/8rd911F9t27uSzn/0skiTxhS98AcE0yOfztLe3E43GUWRPucWTy9RpVKpkO3v50Ic+hKqqbN++3YvYVGq0t7dTq1WoVEqUwlE2bdrEysoKlu3x3rVmnRxJcDFs88eMrp9c8wHjWq9+sPm0mmASsA9Mg0Dclwf1Qe1qIq/VovX6Hnl/36CjT2z+RvA4gqDZP1b/N4N5Av4+PrXJ3+737ec9BI2AIBj3t7muSzgcbmEPn/obzF/w+w1KpAYpNcF3H7i/WgTg1cQ41h7L2pyMa7z8zfdg32tpWmspQMEohevSuv5S06trBn6zdc+sVVWjn7XV9oaKAPxQa370ag906ytrPv+nLrdrKSWtQSmI4DjUa1V0vYFeb6BFItgCOIpCPJliXU83Nx04wLM/+AGuA8lUinQ67Q1QVvlxvhXuPeSrVr/YrNRouDYoErYsIJdqIKnIvR2UqxU00Ut0EgXBk/NqTjbBAiTgDf5arUokEiYRj1I1GqiqgtMwcLGJxWIejUlWkCQFUVFbkqVrPRPetQw+vKsPrWGYhCMatWoVQRAxDAvbtpBVEdMysQyLWDwF0FJW+jGO+9e4L9fyBf8pAOp1jQDgfv61tvxQ6NI3L9d4WQzDAAcujY9QrZepGw1y+SILc3NMXL7E7uv3oGgaudwKpmWTSbdxcfQsjVKeWCrO8koORZIxdAtX1QhFQjiWjdS8l0tLi0iSgqUbiJJGQwdHTNKW7qJYnUONdCKKXjVgHJfFmQms8jLnL1zi29/8FslEgrOvjFKtNti+Yw8nTp4kpCkMbuzj4KEbuWHPHlw5wsujV/jHh57k5dOjTM3mqCHx1b/7G/oHtzM5u8zsYom2bJaBoWHGJ6eIhzXC6U5yC8sUqyVcF3p7ejBNi2S2nUQmzS2Hb+WhR7/LlfGrDA5tolCpc2b0EuMTU3S2Z0lEw5w+N8r2LVvIZtqZnJ6lb916ro5fAdvkzXfciSgK9HZ149gG3f3DlItFbMclrMUwLIdMpoN8ucbAxiFKlRKXLl+ku6ODam6F7z/xNCMXJlgp13FFAd0w6OzqolSpUK3XSGfacVwbw3Iolxsk050MbBxmz+5dSJKILInX3GuC74IAovS6jd0HHvi7zzf0Orre4F3vfi+j5y8hyRK/8M5foDub4cv3fYkXnn+OC+dHOH/+HOfOnUXXG0iCQLlcxHXBdW0M3aJSqVAqlXj/ez/Id7/3CCv5HEu5Bfbu3svw8DCCIDAxOUmpXKZ/wyDzCwteDoWqMj8/TywWQxRFqlWvQm06nUIUm0WbmsWpfA9mR7ajlddk2RZLi4ssLS4SjUSYn5sD10GWRATg5RdfRJZETr18kq6udUQjURRZRZYUers6AYGJ8QmSKU/M4dvf/ja7du0iFksxPT1LoVCiq6sHw9RB8DzAgizR0dnJ9594gv0HDlAuFJuRkhK79uwl1dbGwUOHGN68hYsXL5LJpOnq7GTsygQ3HTzM/OIy4Wiczo4OJEkmk2mnYRqcOPEi27ZuR9PCGKbRokkYeqMFCuv1OpIsEomEmZ2d4ftPPM74+BjPPPMUb7njCD/3zndx8NbDzMzNUynX0UIahmlQa5SRQhKVah3TMpibnSObzbK4uEAopPIbv/55HnroYdJtGXBBN2o4jkU8HqVSqbZU7vL5PKIooGka7/j5978uY3fk4vjnV2ksawHhKkgUhSCIp1VXIjgv++t+EPz6gDe4fnvRWlprvM8lF9aAfAJUnxa7IEADCoLStfSUYFJvEHQHaUpBwN8S3gj81lqAHQToQXAdjISs9e4HX76B8mrRgeD1C362dt1bawgFX6672o9//n4LRjb8z4Pbvc9Xk7T969mqERDYD2E1OrH1ZxSgVntDRAB+FMgLWvb/nG3/nOYPPlmWSSQSiK7DyuKcp5AT8yzvaCKOGolw44038vJLL3ph24FBEsnUNaEpUVFbk4P/cHpFOuzWg225DpLrpcHaIrixKFI2AxWdcrWCZZoYkoHpOjg0H86mBJlt24isWr2+HrJtm+RyORxs6vUGsus9tLVajXg8TrVaJxRWsV0vHCYFJoa1D68/aSiKhKZpLWmzWs0AUUbTRGzTwnGhWqnjCisIjove03fNpOK+yr19rcnjx93HH+dNf73ajzqeHzVuETz9ZFH01FISiSRKKIYtyOi6SSSaQIlqDG7qZ35xkVqjQXd3LyFZ4urEOOgVJiYnURJpT+9aFpC0KJJskl8pkopHsF0JQRSRFBVFimHoZUy3QaanF0mKU9dNonGv5HulUsZ0TFLJDJfPv8J/+uyfsH64HcOwsOplNm9dR9/6dnbs2sjufbsol8uk0ylkRWRmKcev//bvU2zA8koeTQpRKBV5+dRZTCvBCy+9iCy6bN3Sz1B/H3v37uHtt9/M1atT/Naf3k9ECiPZFjPzc5TLRT54zwd45cWXmS5MkF9YQBNk+jcNs5jLIwgiIxcv49oOJ0+e5JMVAykAACAASURBVLZbbqRUt7nrroPce++9vO+ej5FId3D16lV0XUdvNCiXStTLJYorBQxrjMLiLI2GiavGOXX+Cg4Ci0t58vkcAxuHeOWVV3jgkcdQVZnx6QXkSJRQJEKxWCKTyVBt1KkZBulUEsMy6e3s5sKlCWp1k9033kY0Gm9WymxyXF/FS/ZGaI7j8r73foBEIsXp02f5yEc+xMLCAg898C0WZ2do1CqIOISa5+GKXrVkyzJa851tS1iGzR133MHZs2f51rf/0VNGE2H37l0M9g/hui75fJ5CsewBSVFkJZ+nWirTaDRIpTzHgW3bZLNZTp06RbVWIhFvIxKJIataE1yJ1Gs1zIbnfXZdF9c2ScQiCK5NqbBCezrF6dOn6ejoYH5uhrCmcuHCBdb39SILIitLy2TTaUbPjTA4tI7169dTLpeJxWIUCgUOHjzI5cuXsSyvsNY3vvENrr/+enTT9FROBInlXJ4LFy8TjsQ4/sKLfOIjH+bZZ5/llkO3curMaQ4fPsyjjz7KwMAA+/btwzAMZmdnyWSymIbNwvwSlUqF24/cxpkzZ7xcAdtkz549tLe3s7y8QqVZGyQcDgNco9eO7q0r8XgcRRQoF/J0tmd49qkn+fa3HkBVVfbv38/Pf/KTfPGLX8ByHexKmXAoihLyDIu2tjZKpQKO41CpWPzu7/43NmwY5H3vfw9/8zd/RblSwnE8oQlYpXH4SaJBpbvXowXnVh8o+sWwglQU/5gFwW1tD4LyoNyk35fvqQ8W8/KFMhRFQQwcg8MqP34t8PXfg30Ht/l/B0G7rw7ktyD33m/BNbZ1HE3w61OHghGGoJMvuC0IuP0+gxQe3+G4lkP/WknBa9fztee29rebe16zXzBpO2jYBfsMtlf7Xf8arB0ja8fNz9obJAJgWq/hRRX++SH0/z8RgGs8AnhcfQEHSRQorKyQ7swSiUYQXZvJK2O4lgOCgBbScAE1pK2W215j4a4WAVnN3neEJq+/1qBRrWE0TOy4gp6vIiSjnsKOIqOFQp52vCBgNTmMfvJc8GFwsVFkCcc2kR0H3WggqnJLFUEQBFxBJBSOYNpeNV9RIOBJCHhFhFWPpe2shv8s20UQJSQRypWqF0pzXCrNqpyaIiEoGmpIQ9PUlsd7rRc/+PerRXbcH3O/X208vCGSgP8JrRUB8A0AUURSFGKRCNlMO5aosrxc4MrlcZaKBUbOnWdjfw9jY2M0GjrHjh1j48Yhent6EIwS+66/np4NG5ALc4TsCqqko8gu8ViccqmKJKkoqoyDSzzWAY5JV/d66oaLGolTqyxj1RrUakXCkSiNuoEqKWhihWjM5tChW5AEnbuOHOTNtx/BRaBmmQiCyNDQRo4ff5FUqhNbCdOW6eTgLbey67pN7Ny2icMHb0QJQSoWJqq6DPWv473vfAdWo8GxZ5/FxGY5X+KVS1cRUbCwsG1PSm5k9DyT01PEUknylRLv+IWf58QLz3PDrl0kEnFGxy4yNbeEKcrM5itcuDJNpVLlrXf/HJt37qWjZwPhaIhYNElupUBntp1QSKFULOMIEqdHLnPs5Dm+8dgxzoxO8PK5S1y6OstSscHE9CKlusNKSadYFRBUjZAaolKtIUoS8UTCS0wOhag36szMzFEoFZG1OF09/ezadQN969bR3dWBoshIkvDDSeDB9jrmAEiS/PmjP3ie63bsJplq44Xjz/LYYw9jmzVEVwDXmwNVWSakqsiShGkYWI6Fpml0dnYiihL5lRUuXbpErVZDECwi0QjdPT0Mb95GPBZjcnKS6elp1m/YyL59NzI+Pkbf+l4a1TqiKHqKaopCuVxmeXmZ4eFhLl0epVgok0ym0A0LSZKxLE9EQZZEisUilmVhmyau43iFDxsNqpUKYS1MIh4nt5yjoyPD5s2bSCbjlIpl2toSFAo5BBxyxQIhLUylViMZj7eiqwCRiMbFi6O0tSXRLZOR0YsMb95CIplk9+49XL48xtDQRm699TCPP/4EQxuHGTl/gWxHB88ff4FEMsV9f/llNqxfz6VLF4nFooxdvkxuaRFTrzN26SKf+ey/56WTp2g0DKLRCCdPnmRmepbl5RyLS4uIokgoFCIWjVAulxFFkWw2S6Na9YpRISCLXkS5sJLzEoCNOpGwytTkOGfOnqGhG1iWy+f+y28SSaSYvDrD8sIS1VoZcHFc20tObjSIxyMcP34M27Z5821voVKpU600UNVVymm9Xse2LeLxOHe9/d2vy9g9d+HK5/11xVfYWv1/dU3xIwDe/9dqwvvf9yMEQTqM//K3e/+vAnk5mIgbSJ71ot4/DFRfS+Fm7TGvBd/B4/W/H3z3twWB8loPf7AFr00QNL+a4RL0uAdlvn084P/OWvrRj3LmBaMaLYAfYBkE+1nbxzUYLWDweFHIa6/32miCIAg4zf4sy/pZDkCg/cwAYJX754eUBAFsy0Q3dLLpNs6dO4cgwtz0JCKQbEuhqRqCJKGFI95L07wFRFyV5QoOZNM0WvxC17W9XAHdJBIOezKNssToD07Qu3kIRBFHEHCb4UDHcXDFVW+Ff7yyLGOaJpbtLYK2YSA4FqoiE0+mcCzX+10BRNmLTEiyjCCILXB+zYQpil4SK6sUIP87tVq9yUHXEQVwbBvXaRY5sh0UVSYUjaKoEWLxqDd5CqsKQ8Fr/Wp/r96Xfz5v6KfOAACPBiQI4E/2okBvXx+yrHBlbIzF5SV6ujpZWfTG3MaBQW677RAbhwaYm5lmeX6W06fPsDI9zoljT5JfmmNxYZJyuUpbOkM0GscRXEqlEpFIlFqlglGrMD01hyuoGKaLKrrUajUkCRAkOjq60BsGi3NXUVSJ7p4u9l6/h0x7O6WKRXtHF6GQyuLyItNT0zz44MNcuDjBr/3fX2BwIEulXMQ0GwwPDTAwsJ6Dtxxkz65N3HJgH1s2bWJwYDOVao3r9+9nuVhidm6JcxevElI0LKuB6HpeaVyb9QODCLLAxcuXuDo5wY7t2zn9yim0iIYDTM3MIaoqtiARj0apVyucHx0h29FNMtWGYxvMzy9imCYjI+e5cOkSR48d4+SZ85y7OMlCoUaupIMoIckhEGRkWUGLxInGEiwu5dDrOqIgkYhFsGyLfD5PJpPBtW3SHZ1Uy2UQQFM1FC3Grl3X097Rxc7rtpFKJpqg4Y1rADzwnW9//siRt1Cv1zl9+jSjI6eJxSKEZLmZS2cjALbroDTljS3LQouo7Ny5i/n5eRYXFxGF1QRCSRHpXz9IMtlGZ3c3eqPGlSvjNEyDWw/dxsLCPKoqs5LPUStXSSaTJBIJbNumWCxSrZaRJJFcbol6TfeUhGJxCoVCC+AosoQkCRiGjih4/OxIJIwsS5TLJRzH5sqVMfbv34eh60xOTjI4OMj0zCx9fX0UiytIkoiqaS1+tCJ7uSCZTAbXdVFDCo7tMDQ0RL1a59Y3vZlIJIIoijz59NP0rVvHww8/TGdnJ9gmx547RqNRZ3JyHKNh8ObbbuPos0e5bvs2lpYWKRYLtGcy1KpV+tb1ocgyJ06eYnBwkN27d3Pm7GkOHTzM5PQUhm4yODSIbZv/H3vvHWbZfdZ5fn4nn5tv5aqu6q7qqG61WpJbkm3JxgFkCxtsYQZmgJnB2AYzsDsPQ2aYBYPxml2TZmaXzJBsDDbgcWKNjbMty0GxJbVanVN1xZvvyWH/OPecOnW7WmoZvN1a632e89yqe0/8nV94w/f9vti2hee6Se7XIDnV0BUgxrYtCkUT27aAGE3X8D0X27IwDR3DNJBkmdCP+NCHPoRuGLzxjW/k1KnTHD16lFKhRLfTQ5YU/CBgbLSGbdtJ9GRxmdffey+PPHyEQkFHkgSe5+E4FpDkGN3z2jdck76bTwIW0mZIzKZPIeWU562V3WHleiulNvk/V4hqkCMQxzHSIKcgS27NGQ7p2p+HHW21/g1DcLby+Kf75e8vVXKHDYa8DDMKbQURutKaPMw29HTPkF5rWBkfVtwvM2Liy8+VXi//Pq/UJkJs5DTklf70OVPjKxh8Oo7DoRv3PG8ADOT6MADC6G1bUvUMZNi6G/4uL7G4um1Y8h4FSZLQjAKaadJcW6Goyviui4hifM9HiSUuXrxApV5nZW018ThVq8iqjq4mHv8UBpR2Qt9zgUEVPc8nDqLEq+UFdLotJDug1HaIdA079JMKfhEgBBGJUkQcEUchQiTsPUHgocgCz/UwNJWCruC7Noos4/R7+GFIsVwHkZTgRqRRCSlRPCUp80Qnm0DkJ005mfgQMbIkE0Uhrufh+x5uvz+gSJXxPAdJktFUGT8MKVeqxCSRheS6SfXiq5E8U1AsYgZcQEjxxvdZ7v/gO0WWrhsDQDwNC9Wm/0TCXpDYBEkbKZLMzoWdvP7e76ZgFFjYsYOpyTpCyJTKZY489ihf+fKXOXvqJI7Vp6DH7NlzA9tvvJny5DZ2LCwwOl5F10qEYYBQIuJYxulbEPcJI5dee5WZ6Ul8ZErVUVbWVum1HFzHot1cp9NaozI6wb4DL2DbtjlWW33Gt+9lducuZrbvhChgamaGM8ceZ/eO7QRI/Nrbf46HHvgaK5cu8KqXvZSbD93I29/xa7zrt/6ID33k47TWl2g3Vhkp6jx65AgnTp1mcfES93/tUWzboVTUMGMXU4mRJQ29YNDpdGmsrKHEggO79uF5Ae1uj/MXL7KytkYQC7qdHpcuXsJ3XVw/ZGZ2jlKpwPv++q+xLIcdOxaYmpll/6Gb6PRdHj5ylLOLaziigB9LlHQTPxJYlo0QAtexsKwejfV1JFlBNRTqo3Wa7S6zc3Pomsrk+DimLnP+7HkKZgHTLCEUnZe85G7ufOFLmZudZnZqHE2TkAfjaeCm2noEyNfOAFhfXXrbfV/8HI88/CCd1hqGmlQFjiKQVZkojpO5RwhM3WR2djZJCvUDLl64iO95RGEERHieTxzBzLYd7Nm7j3p9hF6ny/kLZ1lcXmF+fid2t8Pk+Bjt5jquk+RU7NixC00v4HsO58+fRZIFvu+wvLzKjh07CIKA06dOoakKkgDT0Iml5J4kRcZ1HNQBdaXr+dQGVdkvXLiAqqq4tpdUui1VKFfKGIY+qJwa4ToOvusNWF3ShMKIJ588RqlUwTQL2FZAFIJl9bCtPqVigaJpEkcRpWIR27I4+dQxOq0W7WaD+e1z9DptPvB37+fggRsGDpXk3hrNBlMzszzw4BGmZ+aIiei021xaXOT8hUVU1eA//sef4OGHH2FldQnbtrnzzjt57JFHqdcqtDoN+v0u1UqNdruFJAtcx0MICdMs0Gq2KBYLxHFSTVUSglZznUqpQME0OH/2BPfffz/HT5/iLW95Kz/1Mz/LtrntfPLTn6FQLqDpOoqqousKMSEnjj9F3+lx2+HDnDp5CiEkSuUydr9PGIR853ddmxyAI0dPvG3DU7/Z+w85RTLnzEr3S2Urr7oQifMvjqOBzb7xf6pcRgMWoEwZJlH60/GdKub5xFdy3w8rwcMK9bCSn/fip8+cwpOGvf/5c6SfaWQjhQLli2/lITzp+YejDuk1hg2HPKxno40vp0LN62vZ+ePU83/lGgHDHP554yiWBGGcoDCiOF1CRVZ9PYrjwQZRDH6QKP+2nUQcD+7f9bwBMJDrxwB4GsmHpbYKgz0beUYDYlOHTQaO6yeLm297VCs1jp87RaPTplKt8cLb78APPGq1GnEc4w2S01LPfcqRKwSbEnyIEqU6DiMiz6fdaKJoMrGQiIIQt2/hBh6IGM/3EPmEICKiIEBTJTzXoaQKeu0mruejqwq9Xi8ZjCoEUUQUgTqoDJgOorS+AAxZ+iKXaDQY0LIsI4mEb7nb7SIkGc/3ieOEZ1oaDFgRx3iuhaLqgDSoZgiyLF21AbDpXeSNwC1+T+9ZvoYGgIiit21hs34dEmfQIEkIDuy/mRv238TF1TVOXFjkE5/+HE88eRwvFHz5scfpNpf4oX//A7z3b/8n3/btr0NSNMaqVTArxJhouokUhcSxh6GqnD11HNVUWF++iKlLPPXEYxhGASmG6ekJFL3C2MREEr2JXY499hDHHvwibmORkZJMoVQkin1ivUy5XGX7/A5Gx0Z55GtfRFME9XqVHfML/Pf/9n+zut7kB77/3/Lae17Gwq453v+3n2St46NXDaIg5K6XvJTx0RHKJY2bdo/zklt2sXf7KHt2zdHtrDE5Ps2B/XuxXYv6+DhuJLBdm4tLy4SxoNOzUHUNSVKRFQ0vAE03efKpUzzw4MNcWFphbb3FgYOHmNs2R6vVpVapYsgSLdtltdHH9WO6fZt6vUa5XMZ1XYoFc8CsIWE7Lp7vYts24+PjNNfWMM0CXctmZb1DrVKl0/eIUZnffZAffOObmJoaY9f8HLqeFMXLL95XnLeuoQHwx7/3228LfAdNBUNX8f1wY+6KNzDFiTczotNpY5pGxoCU8XjLMqZZYH5hFwcOHMhyj86cOcPyWpM33PsGCqZJFLp0u11arTa+H1Ku1BkfH+fS0gWePPoYxWKBcrlMu91B13WazRatVhvHcdm5cyf9fh/TNHFcj4JZRJJkDF1D0zSiKMI0TcIoot3pMjU9zejYOGfOnKHZatJstbjhhhvo9/v0ej1M02Rh506EEDzxxBPYtk0URZw9exbbtvF9n4ceeoidO3dTr9dZb6xTqVSIoojl5WUURWF5eZm5uTnqo2NECHTTxCwVqI2MJMXT1tZQNIPl1VXqo2PM7djJyto6tx6+hYiIS4uLmKaJZVnUamXC0OPzn/8Mtt1jfbWJqqjccfsdHD9zlttuv42jTxxDCkNiBOVyiSiOkISUKTau66JqCZTK8zxGR0fxPI9et0e9PkIYedhOUjX+C5+/j7/72/fzDx/9CGEQ8B9+7H/hpS9/BW/8oR/h45/6DOvdDrIsCHyP9XYTIak0Wh0Wdu0hIqbT63PvG/7NNem7jx879bZ0LUvJNVLZ5OEnr1xu/J7Hl6ff5fcZ/n74OzmndA8r81vdx1bnSD/TvARFUbLqtvlj85SXw5GCNA9wq6hGikLIVzFOjZhhj3xe2d/KcNnqvvP3s9V+T6dfCTYMjeGk3vz7SaMW6b2l++fhPHkIUKpbbRhAl+t7QojnIUA5uT6z064gW1nMX+85nun3dBAZpTKaaWAUi2xfmGdy2wzb5ub4Tz/1k9xxxx3JwqNrOI6DiKMsITgNSeXpwvKdMI43aL18101+K+g4cUixUkYx9E3YxOEQYUxEv9/H8xz6vS5TkxOM1KpEUcT8/PzgWunr3ZgA0kkjlbwnZLhdhsOBsiwzOjqKpmlohj4YcMkATRPU4iDAsW08z9syaed5uTpJ8L8mU1Pb2LdvP4qiopoFghgCx+HbXvmtrLZs/v0bf5DW2gorixc49dQxBBGaridRH1kZvBePue2TGJoMcUi/12F0tE6rsYqum4lnSNPodrucP3eRD3zggyyePc+Jo0d55MGH+Or9X6bfbmG3WygEKFKEbhbQTIOZmRma6w1uufFG1pYXee2/+m6+9vARPvupTzNqCF52x628+u5vIQpc3v/3H6VQLPKe9/wlpqmzY3aKkbLOWLVAp9NibWWFkaqB3V7m1JOPUi0blE2dKAqQVQWzUMJxfZqtDpeWV1lrtkCWiEREq9PGLCbt44cRrV6PD/8/H2Ol3abZaVOt11B0jcnROp7nEMUBQRBw4cIFwjCk1WoxPj6OaZrYtk2lUkFRFGq1Gr1eb2DIyywvr6KoOi4S660OkZCYnphkcqzO5MQI2oB7/LkgnhegyCpCyBlXeDrn5CtmJnNOiKJIyHKitOh6bn6SFGZntzMxMYFhGLTbbXq9Hn3HJoqShbrRaAwcIkmFX1lWqVbr9PqdARWuTqGQVC9VFS2jZfY8j3PnznH27FkqlQoPPPAAsJnGMJ1nIZmHxsbG0HWdKIo4cOAAo6OjHDp0iDiOGR8fz2hGU9KH8fFx6vU6tm0DZEWXSqVSUq335MkBPKnPyZMns7muUqmwvLzMuXPnGB8fZ2FhgZMnT9LtdnniiSeYnp4mjmNmZ2e59dZb8TyPiYkJVlZWiKKIWq2GaZqUy2W63S5B4KGqMqVSgSgK8H2XP/iD3+M//NiPcN999xEL0ArlhG41DDMCCLjcY2vbdrImDZQoVVWRVR1N0wk8H11X8X2fOE5oIv/HH/8Rjzz0MJeWLnLbbbfxm+/6LXqWR9/1cV0P3/epVqucOnWK2267g+tVdch7v6+ERc974/PH5H///0qCIMDzPD772c8OHGabIUBp7sUwrn34vvOKbqoIpw7HVBdJ/8574/NshXkDI8+os1XCd6qk56E6ecl/P7zlZavvtjIKtpL898P3mD5vOk7SZ3xeNstzKgLwL2kADHfO4aSYVCRZQUJg6gaxBEaxSKlWpVqv0usk3NOFgkk0wMl6nj8oACRnyn8URfiem1HXhWFIFIQEfoDdt4hcD1XTMKpFPEkQChCagiJLA55yBZEL+cVRSBSGQIAiy+D2cRwbLwiZnJyg1WoNqD/1xIsvx8SxvLmAyFDy0kZIM+dREHl6sc0FPVRNBxHRXF1CEolxEIcREjGylhRRKZZKKIqMLG/4/5/Nu3umCEAq1zICQDTUd7/urrl5EYrlGCmGkmGwbXKSL933eXqWxY4dU/zre+7m8E37mdpzG3M7dxOisWPvAax2F9tuUKqOJBWhZQkljpHigHNnH8Pp9tk+NcOFC4vs2nuQxtoqu/ceYGV1CbNWQZaSZPXYj7jYcNh1wyGqkwucWezyiQ/9PY8/+FUOHz6I1WkhG0W0QpGxkTqTM3P8w4c/xPRoGSH53HLTLXzg7z/Cw0dO8Pn7Hub1r30Rd9y6m5Ks86nPfYE773wxL7j1Vi6eO8F3fNvLKJZKvPxVr+OVr3wN3dZF5sZKTE9N0Go1Wbx0iVbXot3r4Xohna6FkBRGx+oUiyXWVhuYRR3L6hOEAbIksbB7LxMTk6ysrvLBj36YUrWEY1ucPXuaatGg0bUxdA3D0FFVDcMwCMMQx7EplUoIIdFottANjVKpBIDnOPR6fW5+wW14fkhfUvjzv3g3b/6RH+H1r7mHsbKGroCkqMiSCmKIWi+FCVxHEYCP/s8PvE0a1ARRFQ1J3vASygNMfOrQCPzEWZFUXU3mNlVVGRkbZXJ6mrntOyiVqjQb6ywuLtLtdpmcmuHgzbdg9boQRfT6bdbX1un1+tx08BZGx8c4c+YUp0+fpl4r0um0URSNOBIsLV/isccep9frMze3HcdxaDQaCCGYX9hFPIDOKbKMlMuPMgolEBKyotK3bISARrOJrCg89OBD7N27l5MnT3Lu3DluGSjlqaJTLBazSILneYyPj6MoGpcuXcIPfGzbptPpoKoq/X6fcrmM7/u4foBlO6ysrqEbBsVSmUqlSqFY4tLyKpNT06yurdO3XF7xyldy5PFHCcIQRUgUi0XCMESTk2JbkgDiiH6/QxC4BL7D8SefQMgqSytr/Nx//mWcXot+v4dtW+i6kcElPM+jMKjgu7y8zMjICKZp4ns+plnAsgJc28Gxk7VIU5Ukqdv30KWI+++/nwe+9gDr6w3u/9L9/MRP/hwPH3mKb3/1PYxNjLO4dBE/9Flfa+IHIa97/bVJAn7sySQJGCCt8AuXR9nSmjbDUKFhAyA9Jh8leFoj/gqe76133XyN/Gccx5w7d47p6Wne+c53cvfdd2e1goYhSvlk5fT+8xCe9DrDMJx8ld6tohTDOQXDutCwcj8MOcp78vP7bZVknP0+hPvPRxTSZ92q3dLz5lfKNAcgTVJO7yWOE2zQcPQkjuPnIwA5uT7N+JwMD7AMIxez5ZYXmXhoE9l+Ioo3bfKgJl1+HxmBqigYpSpqoYykG9THxjlwww2sLq0iJNCNpNy2oalY/Q6qmlByJrSfPkHgEQTJ4kkYIcWgDDD9vm0R+C4oMrEs4fgBumlQqVVRVRVV05B0FWSJWJKJsoSXgNB3iVyX2HXRFIUwcDAUhXOnz9Dr9ZiamSabw2IlmzBStiIRx9kmCQViKXn6K1jrea8AQLe9zsjICG4QY7kJVZzjWtiuRRQ4eK5FGEMQRsSRRBBDiCASUvYcw+/5Mi/CFd7r9SXh5i0Ogejr2AYiBjCgKEKSQUgKsaTxnfd+Oy+98zZefdetjNWLCKVAUZJxGuucOvoIy6efYvbGA4yMzhD4SQVoQXJ8EAnCSOHsySfwvABNL2OYBRYWdoAqYQUgIhnLcaiM1jl0+818+2vuZnJuG9sWdlCfGOHo2SVabszxJ88iCYWVc2fRhWByfjt9p8Ol1TW+9bWvZWpyjj17dvJf/+tv8tSp8zx05Ane9/ef4NEnzrJjfieaYfKZz32RSkGjqAlmts+jl2r0bYtWe5mbbrqJw7cfRpFjTCnAxKexvAihhCIk9uxaoFou0lxbp7W+RqVkUDZK1Ct1JkYnEELmwoVzaLrC2toqIyMjLF1aodvtI8s6yy0r8boFPqppUDB1Go016mOjuMBys0kkCcpFk9B1mBwbp9PtEysG/RBWmj1e+93/hj/8P9/Fzbt3MV2toBASCxkh6wPDObp83oou/+6aixQPKm3LSb6PBLIioagyiiQn+SxhnLDNyDoChTAAJIGqaxTLJWq1GvVKHVWSiQKPTr9DLAm8IKJUqqBJieMhiAN6lo0bhJQqI5RrNexen/WVZQxN4Noeumrg2ha9bgvDMDhw4AC1Wo2PfOQjNBoNOp0Oc3NzGdwFIIwFfhgTC5kgkogi0HWTOBZMTk6zsrLG2NgEI/UJFhYW0DSNXbt24bouTzzxJK1mj8AHQy+h6yYFs0IQRBhGAccOWF5eTiIMQqHdaFMtVfGCkCCKOXv+AoVSmZGREUqlEqOjo0xMTBGGMWEYE0UwOTpOu9HC1AyKpsbH/uGj9NodrG4PVU7aTJUTzH6aTCpE4pX3PA/LG/jJ5QAAIABJREFUsnB9H0mEzE6P8mu/8vM0Om3cMCKSJCzXwfFdgjhE1hQCP0RVNAzdzCIZhaKJ69ooioQXBEQknPhpUStIomamruPbFna3jaFI/Oav/yo7pkbodDo8+MDDfMtLX8mbfuhHGB2fQtGMa9ZtN+XzRcmWKpWbxpgkELKU5LEgkdS12bz25BVQBtllcSyyfYWQB9vGmhghESERi6SwZigS8opYlkAm+33TPcebC1ul1165eIn/7Rf/C6OVGn/6J39GGAjCYDM0J1178595I2YYYZD35KfFwtLz5XMHhNhgKcyaLJfEPGwEbeW9j0IglpCEsqmNBPIA6y9l+8SRII62duJu1T753/Kw6vz7ySf/5tslb6gMH/O8bMh1UQfgGyFCCLhCCPCqj4dMaQ4CjapUpdPt4to9DMPYNKiCIEAdKvedhpQlSUKON6zUwHezYhWyLCOpUsbqIxsabuAjayoyA1YcSaCIwUBwPUKvh4hiJBEiRRGxnHjqbNsmJGZqapJmu0W5VKFr2Zuex3XdwaBPvftbQ4CEEAh5I/RIvBFKDEIPPwhYXV2lWCzi2Bau62IaGq7r4jgWkYBWYx1RrydRB3F50tE3tTxd38wmwqTokGmUeOSRI7gdi6mJcdZX1xidGefc4km67RalUoJhXzp7DlmKqdWLhAOCpkiAkCXMksGu3Xt57OgJdLNGq9OjWDL56hc+w623Hqbd71KvJmwrQRChqSrbt2/Htm0KBYPbbz9Me63B//jDP+HM+TO89S1v5r3vfi9v/Yn/lRv23sLP/MyN3P+lL3Pr4ReDCJBVld/67Xfy7r96L5/61P24fsQnP/MlXnTnizl4YD8nTpxg3759NFo9VM0gDCOWls5D4DM5WuXFtx5kdmqcD3/sM+zauYdTF1fo9/usr68zPj5OpVKhWq3iOA6rq0nV1kajAZDBM3zfZ3l5maKhYxoGuiShF6r4YYSmGvQdj8b6GgW9wNzMHKvnl5iYnmJ5eRlZVbCDmHOXVgkljVsO3cYv/eJ/Ycf8HOVSFeFbCde//Nyteq2qauYQsG2bmA04nyLJGYxGkiSQIohB0VQURUs46FWVcrlMHMcJ5Kffp9vtsrCwE6vvUC6XgRjHtXAch06nh6EXOHjwIP1+n3ZzDVVTqNUqdNsdHMeh2+3S7XZZWlml1WwTBBF79uxhfHycJ554gtHRUcYmppBlOYOwgECWVSBE1/VE6S0UaLfb7Nqzj7NnzyIUmbGJSbp9i337DzAyNs7qehPNNDBLReI4plytIeQe5VoVWZbp9/uD+VmhXC6ztLSEFwZU67XE8+8mOSKrq6sIkVT1dl0X0zTRtAQWqigyplnBtvoEvovr9HDsPrPbprNCfeVymcXFRSrV8iCfIaHZTNqsgyrL2P0ecRxTrxQ5feoUs7OzyJLEm970Jt71rncRhuC6AaqaFAsrlEuZotdut8EEIXQKhQKrq6sb+RSOk0S94hghEhiF77qEkY+qSBx94lGOHTtKrVbj1ImnWNixI2GCuw5hblspkMMwn+Qz3qQsD+PZr/ZayScQxQNjZKC4Dy4fDqi/U8mYg3KK/QteeDuHX3RHYtDG0iYO+62gMcOe8TwUJ91nWPKR+2HJFymDjfpCwzULUuMj/Xtjn635+fPtNBxx2er5rqb9h3WU9Jg8u1Ee7hQEYYbASAzyKHMcPC+JXH+j+F9I/rmLct6a1XUd0zQpFApZRcS8xVkoFIABXk+W8dyUis0giegmHS9/nCRJg8VUQVJkJEUeJDZuWOnkqohGcUgUBkSBheT3ibwuhB5RmGCZHdsDEaEoKhcvLCIp6gBXuhnLm2Jl88+Yb69hT0IqiqKgaRqFQoFKuUa9PopZKCGpGv1+P/Fg+RGSlISVPduh02pi2X3C8Mp4zOdlSJLMpcGfCTTBsWxmZ+Z4/PEnKVfGueGmF+K4Mjt37WN8cgazXCIgZnS0TlKwJoIoQEIQRYOFQsiglClUx+n5IX3bY32tyfjoGPd/9lMcf+Jh1leWMXWDsbEJ4jhOEmOLRVRVZWxshL37D/DCu17Cy175Kv7s3e9l+8JO5EgCEaEbgne+85289jXfw/GTZ/G8gFtvOcAv/8LP8eM//kPc/qIXg1rAcRymJyfwfZ921+bs+QusrTWo1RKlSpYFrWYTKY6QooiCYfDUieOsr68jhMCyrEzZPH36NLZtUy6XMxy3ruuUy2UeeughDh8+zPzCAmvNFo89fhRZL3Dk6DFa7S7Ly8usrKwRhDGdnsWXv/o1FF1nZXUNL4roeD6l+jgTM9v4ygMP8qd//KfcdGA/9WIRNbAziN9W3qzniuThf5Kk4DoeVt/G6tv0un1syyHwQ4IwQggZVdWpVuuUy1WKxTKmWRwo/W2azXVareQ9BkGiwHqex5kzp+i0kyrBhl5g+/btVCoJF/+ZM6fQVJ043nivlmVl81axWCQIAkZHR4GkH/f7fZaWlhI2ohyuNw8jSBWAWq2GYSR5KqurSTQoCAJOnDjBxYsXOX/+PKqqZpCfU6dOUSgUMqWhUqmg63r2TPPz89TrdeI48dgXCgU0LTGGUo78NHfBtm1UVcVxHPr9fuLwIVFI6vU6x44d43u/93s5d+4cnU6HWq2WFHIcOIJ0XaderwNson9OlKmQKAq4cOEc73/f31GrjvCjb/0xXMdHCBnbdnEcD2KBaRTQVB1BUjSyXC6j60mkKsV/bxBVCGzbzvIHMoy3HGEWVNYby3zgA+9n+dIir7777mvWb59Oho2ArT6H4SlPly/wTJJWaw6CAEUaJMUD8gB+4rpuFm3JK6rp9Wzfwwl8ZF1DK+oJra4Mm6LCA0k98/n/s6jE4PxbzUUpPj49Nn8PaX7hRsXkjWhB3sjLGxrDCvzTzX/DsKL8vQ8bK880l25lAIRhiO/72fPn2xk204NGUUSv17vi+b8Z5bqOAPxzFtY4vgLt3rO4bhpFiOMYTdPo9NoAl5X67veTUum6ruM6DoQBiiRhdTtUKhXa7fZg0QgyDJskywlLgQyRJJBJPokTbmFJkkDECXQghsj3cG0L3C5y5ICQiaKBgRCDphWAAFUrI6IQTTdxgx5KWqVw8GypR0+S0tDfZhaAoYbI2iEceDcURRl49sA0u/iuh91tE3o+uq6DJPAdBxFFeHaPflunPjKOLElXnKDS95Ve6zllLKTPk7/nK93/0zzX8POnIc9ut0vsOZQLJm99y1vYtWcfth0jKyDCgG2zE8kCE3j4VgsRWLj9CNMoEkUqvhdhWSGaOYMddbnljsNEQkq8faHH+97zHnbMTHLs4cdwHC/BctfqFApJ8SFgYPTKqLrCq7/jHiQEr3zV3fz5X76Hv/vgx6nWivz+H/x3/uRPf5cHH3mC3/nt/0av1+Ov3vMn6MUKr/mO7+TRI48zt30HCzt3c+7saXQVti/Mc2l5lR07Fuj1HHbvO0jkOyxdOEsYxFTHtzG1fQc7OoJLq4lyWCgUGB8fp9ttY5ompmnSbide406nk1VMNTSdfr/P8vIytu3S7vT54D98nDCWUVUD3+0jIfBCCOKY+d17aK03CGybV7/mtfzSL/0ScqRQKZuoioQUhRC6MKBszS+AV9tfn62X8Rst6cKfspUFQYTvD6qYC3D9AENWKJbLyLKMaSYJ46amE4YBtt2n1+vgeg62neRPpMqqbdv0ej0c1yIKk2jDjTceQtc1Tp8+SbvTpFRKHCcnT5yi024MIq1J0uHo6CiLFy9lCrjv+0xPTyNJEv1+P/NUjoyM0Gq1mJyczJiXUi9qktyuYhRMxibGCTyfU2fOsW/fPjqdDrv23YBpmvR6PcYmxpmcnkqM3nIJTUscG0bBpNvtJp/9XjLH93oUCoVMWQao1WpcunSJIAjo9XqoqophGNh2n/Pnz7Nnzx4KusaKnUDQVEnwR3/0B0xOTrK4uML27bNcuJgYJJOT42gD1rZKpYKIk6JWCLD7FqVKGYmY2ZlpLi6e5eDBQ/zu7/1fTE1P0Gg22btvH/fffz+KolEslvG8YHCvFrVaLbs33/ezxFPYYIFJoxq7d++m2WximjpWr0+tVkORBdVqka997Su87ru+95r02zS5NcX2Q6rUbvaKD3PCb8jW43WrMZ332A/vC0m0xO73ueeee3js0SN0XRcl9vjD3/8DfvCHf5her0elUtnUL/N4d8Mwsvk+CkImJscG0N3LKUPzspXjbvi3VLZiPNrq2HwUYPi4fPukhsJw9CCKchWMczrFcLumf+cpSZPjnz5JN/Pwc3midLpeDkcB8v93u93MqH5eEvn/bQTgX1LycKBhBh1d19F1PUsmi+KQQtGkUDSRFQnXcwijgIRRO9kikSywsSQu2/JJN+lwEFHiCZYlIPQ3LHgEIRtWPSLp7GkoOr3XarV6xefKb1t9l3/2PCtRSGLIeIFPv9/PQmuSJBMFIaGf5Ck4g5L2zyml/hpK3juTejfm57fzPf/qXt7w3feCCGm2lxgbK9DpXqTfbdJtr6PIMb1ui9C1iDyHVnONdmsNwygwPjZNrTrJnoMvwBybQpJVTp89w9Enn+LW227nyZNnWFpaZmp8gsD3UDU5o0r0fR/PC1haWmFlZQWkkJmd87hhwNJ6i3MX1zh/tsFHP/KPRKHg4KEbUbQEd9pYa2B7PoZhMDpaZ8/e3Rw7doybbrqJarVGGETcdtsdPPTQQ8zNzWE7AY4bUK2PE8oaTijYf+PN2AMIyd69exkbG2NtbY1ms5klolYqFVZXV9F1nV6vh23b9Pt9hBDceuthdu7cyfjkNCECLwjo961BoCWmXKxQrtTo9Hu84hWv4C//9M/49V/9NcZKVeqVMnIYokYRsogSSJ4E0RD13nNV8oqUMSiKZZompVIJs1TEKBaSzTBQNQOEjKxoBIGHbfcJQx/LsvB9f5AcnJzHcRwsK3lnjmOhqiq12kimbCeLcuI5bbfbNJvNbN5KvZLp4p1SI6aLeK/XIwxDTp48mbE4AaytrSXGck5JSfHPadVgRdU4dPMtaLrB9My27PyKomCaJq7rout6grvPQQVSSsVSqZR5y1O8fqrQra+vZ4w+KTyp2WwiK4JypUjf6hKHEaEfEIcRcZjg7x3HYvv27RmE07KsTdSPqVGURgbCMEwMgoSuARnByZPHmZmZwrb7yLLKBz/4Yd7+9ndw/NTJjCJ02PmSp6ROFb5UWUqVKV3XAXD6DopQkGKJOIgxdJXA87lWkvfwPpPHPy9XMsC/nrUpix6EEYam8/GP/SP33HMPURTR7XZprK2ztrZGoVDY5F1Pj80+B2T1Ehtw4uG195+7dg7PVc80dz0TvCvtJ/lz5aMIGT3wM0QG0s/073zUIf9e8x784XsYfvdXev+9Xm9A8PDcnrP/peW6jgDkvaJPJ9HQz8/2JeePT3GZWadMIINJooukABGxlvymKArBwENQLJWwbBuzWMTqW8ShRxwLXNtCV2V8PyAIBxn3WeeUQSSJwUIIRAxhqnBHYaKkBC5R6BHZXWQRAxHhIOEmiEBRpCRyIAkEJoJByCuMkYWOIkt0u31EblAmkJAIJJGx1mwFByL1qAAhYcJsIsW4no3r9XG9PpKIGR8ZI/A8ur02pXIVSZLwAh/H7kEc0mu20dVRFFklHkBSQrFxHSneGNghcXZP13fy75Bs1eeGJ+50Qh/iYh7snMM0Doy8IKJiaCwunUT31+n4FrWRKrumi/zdX/wu3/otd9Fsh/S7PUryFHZjnfXWMqVilfk9+2nYAW5nCVWRaVw4j3DHCUJotZpMj2ioM7P0HIc3/LsfIHIsfvsd7+CWWw/xqtffA5FEs9lmfGKK0UKR+kiZOEqgIhdPneOm/Qf49bf/Epbj8sX7vsbHP/kldsxtZ37fAd785jezuLjIJz/zJfbcsMD+g4eZ37mXYmWSt/7oW5iammL/wiRjM3NMTG6jWhsj1nTMkWnq9TrNZpPxWR2ERLPXYeqjn0eSbBYvXEoUe1nCcnt4YYQsC6xuj7HRUaLQpVwyGJ8YoVgscuDADZw/dQa720NCJRAqlXoC69izZw//9vu/nxv335BBLhSSmhaJER4hREwSahEIsRHef7aSvuF0LKV/X2txvAAkL1M0Fa2AopEZVqkXWtMURJxQ/gaOnSn+qZKoqmpWJbdneYShn0ULJie2MzIygq7rLC2eZX19PXGcaDp9p8+xo08CMLVtKilOKCuYxRLtVgfbTpwYpVIBx7GYn59lfX2dkyePDzD5i8iyzOLiBWZmZgnDCKOQ4O9lVUHIEookMAwjiXTEIZquEgQBmp54wVVVxbIshBAUi0V838+SZ1OvbRwn9RC63S5CCLSBkZPknook6V6S6PV69DpdDE3nwoULrK+vY9kdSqUChiKx7PVx/MQgCvGJiSiWCqw3lggDiUM33cqjjz7MzMwMkiTh+z5FXUdRJCRFQtUVkOIEkiXJSHJMoZjUEVi1HaRYYtvMOE8e1fj1d76D0bEJpmbnmJ2d5W/+5m/QNAVFk7FdC9ezE8VfRCAiwjjJABEiMZLDIE4iN4qOa/czT3Wr1WJ8cpo4dq5Zv83PnVEcbSiNEQhJEEdJMSghcgpjCn8RifF0tcp1qmjmlWIlN3ZLlcTgU32Nv3rf31A0C/zqT/8nZnfM4osQy3KZ0QsIWSaIIoQkEQ6i/HEcJ06F5KGAVPlOEsEhSSbXVIMw8rP7ebZzx9UaEMNe+q1gO0CS4JueO7du5b9P64gM63DZvuLyxOb8vV6m2A/gVXmu/8xRmkKSkIjjaCMxfHCs67qUKgkkUbpC9OebVa5rA+B6kDweLrXOY6JNWLw0ApAuHLKccA5FUS4E5jsog87r5yxeAEnRE1iQJCUFfwkJBwYEcUjoecgkk51QtESBlCSEohKxdRgnHRyqquJ4LoLLQ25Xko3JbiMHIR5gGmVZTsLHXohhFCgWyvT1TuIZY4NqVAhB4HpYUUyzscrI+MhlE+k3q6SUkHnJe1WCKMbzfELfo9NexaDHyeNHqVQLvOfP/4w773ghXjfksQefZGntIrPb51iKQxYvLbF6aYWx0QrbduxExDGuKwh8wUc/+lG+7/u+i8eOHMN1feYXthGGi5iFMopRZHx6Gz/1Cz+XVCY9vUR1fBLTNAeQix7FYpHFpSWq1Tp+6FHW60xObUdWC+zed4i7XvRSjh9/hD0HdV7+yrt54MGH+Y3f+B1Wmw0OHHwRRIIgiPDUKn/xoc8xNzvJ619fpzjuseuWV/C9b/lp7jj8IiYmJnjZy17GSs/i3IUz2K7HC+7+Dk6eOctDDz0Emsbi4iLzk9NJbomIqYzo3HbniyiVSlh9h2IxSao89IK7uOf1P8SO7fMYpoqS8Njg+0lUIg4jDDXxOgtJImQzZd6zeqdCbG0EkjMa8r9fBxEx27azhTTBtJcyxV9V1SzHwXVdJDZjmDXNyLx+cSQTDBzCURQxMTGRGFSKQhTBuXNnEy+6CLMF/9y5c9hegpmfmJjA8ZwsghAECWSlWq1y6NAh5ufnOXnyJMePn0ySh7t9Go0Gr3vd67CdBGLjOA4gcUi6mV6vx8GDBzP4hmEYWJaVQTBSKmTTNJOE54FnPYVDpR7+FFtsGAZra2tJXRjDoNPrZew5/X6fSilpt+XlZZ584ig7d+7MogmttodtC5SRERqt9cyYSMd6r9dDCIHjdvmnf/oKlUqNojmCE/QQOBTLFfzQy4qd5aMPiqIQEw3eUbJePPDAAzQaDe69916OnzhFq9XioYceolAo0Gx0+LZ/9+1cvLDCyZOnsSyHbs9KEroHmoAkSVkidhqZ8X2fM2fOsH///gzadS0juuk7S+G0eehK+s6FEIjo8qh9KsN8+FtJHhp1JUkpYdPcutXVVb7n+36AI48+wlc+9yVecfc9aKZ2WXvl4TPpfUBewU/uS9dlPNdHkr/xEMKrPXf+WbYyFIYTiPN/5+FPw7JVwvQwjCvfXikJwDP1RcMw8IIwg7g9Lxty3RsAX9dC/M+Qraze4Y6pqHrG4pPx6g+s2iAIMHUDxxpM2oFPGKbh0og4jjZcgnHCyqMbKQ+vhOe6qIpEmAtBSyImCgfY3EFN3TAe5A0goUhSYgjkkuAkIYijxPoV0gauPA0HXymBcXjQbhVSE0JQr9fxBgwSdrlMFAfA5kIlURACAs+1czjBwcQrX3sP6DdcrtQX43gjv4LLsaee5xGFIWHgUCsZmCJmvVRkdX2NO+64DUXV2bGwk6Iqs7h0mqeeeorbXzgKkszjjx3Fdbv4MRy49QX0IgXHtrj55pt58MEHUZUCExMTHH/qBHMz41iWRbFUZ2xiCj+KqI+Pc3L1ScZUFdf38TwPQy/g2B7T09soV6qcOnMCy3ExDR2BTLvT4HNfuI+Z6TquHyCpMWaxxNve/r/z/ve9m1AkBLu79uzjV37lnbhhRLfdZG5uG51+wrf+O7/z+wiSybpWq6EoCoduOjxY5BViaYMGbmlpCd91UVWVlZUVquVSloczMjJCoVDANBMaRCFpSCJGjiNUfITQ0XUliW7JCsRhoqBHEZKy9UK/1cI7/P9VLc7XgdKfl1Rhyhwbg7/T/z3PQ1VVYGP8q6qasB8N5j1FURAkRoNt28haokS322263W5GfiBEjJDIMPyNRoNIJA4Bz/MoDph4hBAZbGV0dJSFhQXW15tIksKRI48n73xtjVKphOd5HDlyhFKpwOnTp6lWqxw9epQdO3YAZIw8eQUrb+Clz5tCJlNGpBTSmLZFqmhEUYTjOHheMrenNQFWV1eT+XAAV0rrIFiWxdz2aVqtDXaqdA7Ony+BHyXGUKPRSPr0aJkgjpIohlAy4wTYBIdIFXTXdalUaui6TrVa5WMf+xi7du8d1LdwMqPu/e9/P7Ztc+jQLbz3ve9lZGSEOBbZmpAk4stYlpW1oa7rrK+vZzCKIAgwjGtHA5q+mzTXJ13z8tCTYShJXvKKdyp5r/ewtzp1XA3j94HM8Qcb72Jyaoaf/Mmf5Bd/+VcH1aODTWtt/rrDBsimNTcSfOXLX+bWF9yMiOUt55f0+YIgyBxvw79vheXf6jxbtdFWkm+f/Lr+dMde6f+8gp9v/3Su3yBb2dzuwxCh9Fz5fdKaCvl7ft4BuVmuewPgepC086SFvcIw6Vgb/4cDa13PrMwkdJx2OJlAkiBSiAmR4sQKjfwATVYIfDebIOQoJHACgoFH7DI8nZAhFkhCJiL9fbNynUpS0EcdcCFvfpatnu/pJC3OkS4Ummbg9B2CKMb1A+JI0Gq1keUNpgBFSKgIAi/BA6e43KRNvgkMgKsRsVGwPjUgPcdm5dxpnG6DyF2C0Ec2SkzOVvjCpz/BnS+6g5XFC0xMzXDnzD3opsbi4hLVapXDd9xOraBh+yFKrLJtfgePHXmU06dPo+gaNx7YxdLSEqvra2ybGsXQi6yvNojCYyjlIrKmc/iul/K5z3yaWw/fhuv5hGFIuVbn9KkzaKsNEBql8iiyrBIjMTk5yb3f/T184YufJowkSuU6CztvoG15vOH7f5j5vbckbFSxxHe+dhdhHCGJABDIPqiGjqSr+E6SUBnHG0xIUiSTJd7KEkKRqcxtI4oFspDYt7CAphk5Zoo4M7iTxTpEJPn0yJKymVtDbObauFKPvJrxMbxPHlZ4vULZUiUvzaNIlftUqUmTgyUJJDYW1yCIMmYvXdeJY5t2J+knnZ6V5WLIsowkw8jISJLP4rg4jsP6+jpLS0vImszU6DhhGLK8vJxBjnq9HrVajZtvvpnl5WXOn7vE8vIyL3rhnfz1X/819bF65r0fHa0njFLtNtVqlXq9Tr/fp9NJopIplemwopT3FqfVWFPvYBRFmfHjOE4W1U1hT5bjsLS0xMjICJZlsXjhAr7vMzMzw1NPHuPBBx9k+/btdDod5hdms/OlEZMU0+/7fgY5arcsZFklihxa7TUCEXLo0EG+9tUvZ44my7IyJpN8gadU+e31ehnjTGrYtNvtLHKxurpKpVokCF2efOopts8v8PKXv5wPfOADeLqa0eqmDE4pw1arkUQ/Lly4wA033IDt+tdUkUpZjNKk75TpLn2faXKzbmib2ihzkA3O43leludwtWM8GQOX75sk8Sb9qNnq8o7/4zc4dNsLiCWBEseEzzAHDBsBsqTyu7/7+7zpTW9EVa8cuU+PKxQKA9rZy1W6q4nWXMmh8XTHbnXMM8nV7DPscA3DkHDYufgMCcPAZuM93vqev9nleXPoKiRvRea9C6lHIPXq5BPDUslb+LEkBtSeAhHntihCimNENMAdRwFEIXE4+Mxwc3JScEgMMP9CZB37Svc9TA+2ldf/aiSLLEgbhUJSL2F6DUXXsvbJQ6Q8z6E3CJtfy9Dxc0HiOCYKArqdBr12g4KeJAfObd/J7PwuvuXlL8PybcojFYyiyeTMNh5+5HGiQeSg1+vQ6XQYHx2j37e47777ePTRR5mdnWV8bIpafZJSpcr+gzfiBRHnzp0nCEMiP0hwzQJWGk12795Nt9vNEhs912d2djuVSo3x8SmKxfLAwEz6mG3b3HjTzaytrQFQKJWZnJ7l8Itfgh8JQlSEoiDJyRAwJIFEnDHs9DvtpFaEJJLUFFkgZEEsR8RySCRikAVBHKIoMoYiI4sYTRKEgQ2xgyz5xJG76TzIErEsE8kqvqRl/T8bB1Juu4Jc1Xh5Di4sKb49juPM++t5Hr7vZ9SVeU9zHMeZQpx6uDudDu12k/X1VVZXlzOFNiVHKJVKWaJwSvXZaDSI4ziDmKXnTL3N5XI5U64B2u02jUaDT3/601muwfj4+AD2A81mI2G2MTX+6Z/+iS984QvZOdNILWwkGaaGdqqYp7DF1KusKEpmiKR0mJ7n0Wg0NtE6AmiaRr1e5+jRo6ysrDA/P8/Y2FhGt3np0qWEyUdsRGHTol/p30kysDdYOwKarTVUVeXhhx8eEDimlxYxAAAgAElEQVRIWQQgbcdUmU2dT5Ik0el0ModUWhPDdV08zxtAYZK5WFGkrL0//OEPc9ddd/Hud787U6pT48K27WyuTxVr2AxXvBaSvs+0TdKclfT95o3X9J6BTYZCnjXmaq+ZnmurZx/2RM9s24btOgRxtIkd52okhd29+c1vxjTNZ2zv1GNumuazus7wOfKSeuCv5rjL5tRncZ2tZNjTPxy1uxrYT/7e0vM8HQvhN6tc1xGAr1dR3Tj26uybYQ/dcHgw63iCpGJmrJBW+1TkZLJRFS3BjMYxQlKQZB3fcxKYARCrAQQ+QsTEYZIMGEcB0aCISICCFLpJQUMhks84JkKAkAkG9yGLmHgAA2JQzCtMFXIpoYvL7le5vLLvVgN183cSIlepN9svN+BkWUYR0qBapYPj9IgCF0MSOH4yuRrFAp7nIyKZwHFoNVYxiyWKxSJydspBeDLX/lfjLd2qkvA1kzhzLVz9MUJshoMIASQwCUmSCYMYv7OOEfkYlW3snZqn1VhMFpaZnVy4/yxjo2XCWOLS8lOMTEzxC//5l/mB73k9JSPBpC43Vri41uBFL7yd3bt2cuTBI5y9eB5JUTl06BDnzp5AUwXdsw6T0zX23Lifz336s5QVnahoMjI6jR/GVGojrDXWkYRGpVbH8lvIqo7teLhegF4o4/ohU7NzKFqREJlQ11FTQzmIUPO1J4gRclJtU5UZJJiDMfDEJeiojRwJcVk+yiC0LwmEJCeJi6Th/s2YXiFEknAfkVHrDb8nMVSWPjnP04evr0Y29eN8H7mODGAhZAyjMIBzSJmy67puFkXRdR3dUBEDR0QK/9A0Cdu28byE+SyMkkiLrCpExOimkRgVtkW73R4olIlnvtfrUK1WKZgFHM/PFFRVMYhCgaoYBEHEpUuXeOqpp1hZWcvmCt1QMXWVyfFRHKuHZzsEnsfC9p20G210VWHXrgU+/smPc8stt2DqSa6C73pEQWKc+K6TzPGSvAneEYYh7XabyclJGq02fpgYCCtr60SBi2X1OHp0kWq1ShBEfP7xx9m3bx+ygNF6jeb6Gr1Oi8nxOq7dZdfCHN1eC8fqYxs6jpNEVvp9e5BAHaBpGpZl4XnOIJcsoNPuI4io12o0m03u/rZX8aUvfYlux6LXs2h3ewhFxupayAgCP4H5rKws4fthUj1dCALPp1IqE4cJcFRTdOy+Q79noUkChQgv8Hjoq1/mX3/f96NpGpOTk9x444185EMfZHR0NGO6S3HuvV6PICKDS10rSZV4RZI3GQR5OK4gMQg810dWwqzuQRpREZKcGV4JA1W4CToEbHLo5XNEPD85TgrS+xFIQkFGsG3bNACapCAFAX4soYjLHYnAgPN/QwQyxUKZn//Vn+ftv/bLWeQoH3HJq+Xpt2l7ZO2Teu+FuCztVYq3ojVNrp7/IgpBTgsd5hOq4/xuWxO15JX1dL+tdKp8lCEYJA4nNMuCWEjEg9zHvJKQd0oQC+IhOyV/zazdBkbY8zkAm+U60qQ25Ov1Uufl2ViKw8dd6drDVF75Cnt5TxMMvA2SIBZJOfJ8Ce481Vf+unlJB31+gOUjEMOK/LN9zqu12If3z9+vJEmMjk0wMjFNuT5KOOhOvu9nHoTU6+/ZFp5jb5nU82zl6z3uGyIpXCUHW/m6JPduZU3FiwROENFprPPUow9w/tRxVleWWL60xKULl5DRiYMYTTJYWVrmR3/8x3j3336UBx85wdTsdu544V08fuwYa10Xy40o1cc4cOhmxien+cdPfIL6yBiKanLnXd9CfXSck6dOMz45Td/1UBUdRVdRCxodq4+kmsiqRrPZplqpg5BRVBO9WCESGopZpVAdRzbKGIUSsqwiyypCbC47/3SG5zd6u7pX+c/oV8P9YKs+cb302YEEQTCg6nQGTDgJPWe/36XRaNDv9+n1enS73Qxn7rou/X4/gwmlnv7U82oaGr7n4DoWjfVV1tbWMi97erxpmtRqNUqD5NkUt14ul5mamsqgO0eOHGF5eRkgg3vIsszMzAzlcjmLVDh2ck+WlXDsnz55ivn5ec6ePUun08mu2+l08H2fTqeTRS6BzAvv+z7FYpGLFy9imga2bTE7uw3XtmisrROFIdVKidOnTtDrtikYOkuLlxK2n0G0Ik1+FkJknnpZljMq5NS7mzFPKQrdbhfP8wCyaIPv+0l9grExPv/5z2f0to7tZhTP6XtL32OaPJ2+i7ToURrpSH9PMfQpvWlCcVpAUSQcx+L+++/LCp8tLi4SS4IgjrA9F8t1aLfb1xQCNLx2bIUHhw1MfipplEfTtE2UlakSmvaBNHK0ud7AxpaeK9UB8mt7sVikXC5nxUFTVEAqaaTt6eanVqvBz/7sT19WxHOrdvhGSD7S/41ca4efKW3D4feZeu83YJ6bq/9e6f1vtdZcN3rDdSLXjQGQHwzP9GKH97/Sgv9sFdz859PdH7BJiU/vOZ0Usv2EDJJELGQkWUUoidchP5Gk++aNi1RikRwrsqJdl9/fcAW/DbjQ1kkv+fZ8Nu013P4p/V+1WqVQqYOiYxRK2cLned6mrPvA7WP3e3iehxeEV3yvVyPD/eS6kFTZi6KN7emUQiE2b9FGZWlN01hd7yAZBWyrw+c+/Y+UCmUunVtibLwOksZ9X36Y5fUmcaRQMFQOHdjPxOxuTp5bZO/+Qxw/cZpSbZTq2AxfeeARDt52O0JSKJervOIV38pqo0GIjmZWWW22OH7yNLO7dyE0E88OaDSXEqVQ0giFilGsUSyP4oYCJ5SR9SKaWUPSiyAXiISGpBnIsoIsK0iSjCTJV+xbzzQun834/peaA57d6376+em5IOnYdF2XIPDoW11a7QbtTjNje0mV/9SQD8MQ13U3KUtxHGdKkCIk1ldWaayu0Wk28DwH17Wx7aQug2n+v+ydd5wmRZ3/39/ufvIzz+yEnc2ZnJEMEgRFxYAoKnKcmM+s53k/PRXlDHeH6dRDD8wJBQVRQZJkkJxZgrDLLpt38jwzzzypu+v3R3X10/Ps88wGENbb/uxrXttPh+qq6m9VfXNlKBQKU9wV8vk8mUyGXC7HypUrUUqxefNmSqVSOKcapjaRSDBnzpzw/WNj45RKZYrFIqXSGKPDw4yPjfHzn/yUof4BRkZGWL16NUNDQ/T39zMyMsLTTz9NIpEI3XDMfgLVapWJiQksy2LdmtWkkw7XXXMVxeIoCVtwBJTn4rt1nlj+KMXRUWqVSVasWMHKlSspFnXKz46OHJlMCtet0d2t9z8wjDkQZlIzbTKCiXGVmpiYCBke13WxA5cdz/MYHBymWJxgeHiUWs0N/d2NIGDcWgyTVCqVGlrrWi38dr7vhwKY4+hg+Fw2je/VsUSxYMEC7r//flKpFKe98XQ8H+quz+jYeLhfw4uF6HhuxQgaRN2jonvYRBUSRhCCxn4PzS6sBq3Guelr84yxjJhyTYYpIwAODg4GcTNbZs5xHIf169dzww03kM/nt2jb1hQbxpo1XaYdU+doP7ZinE2bzD3NOfeb39ssjLV7b7OANt316LnoX9R1y7w7GjTcrr2t3rmrY6cRAKJ4PjR627vob+uEZt4fDbYxQUmtymgwIjoTitmBN6oZbfcOJTaIjd/E/EcnsOb3bG3wR8vfHrRiunK5nGYeqhVSCQdbVJiezWixzKKE51GrlkOtyi6B6QSAaSwHlmUxa+48+geHsUVYsmx3hASbN/UzPDzMsj334PI/Xk3XzD5GxyfJ5VM88uj9FMdH6Z7VzeOPP07NdTG562fPmsvw8DCWZVGY0cl4aZJUOsvm/iGeWb2GmbNms3jpMiYqVXpmzWbu7Lng1knaDuVSmWwmD8qi7vtYdoJEKoeVSIOdQCSBpQTH1jmpng9MN86fy5wQY0tEN9waHx8PA0mN5jKqGY0u9CZwtlqtUi6XqdfrwQZs44yPjzE5qTfscr26DsK2GlZT42duAnJ93w83K0wkEiQSCUZHR0Mm1ig4TIpS7TOvdx/2fT23ZrNZRkZGSCQSDA0NURqfoLOzk3K5zNjYGMViMQyiHRwcDDXmo6OjoTY9nU4zPj4e7lWwYcMGJiYmyKYzzJw5k+K43rSsXC6Ty+WYnJygVquEZXqeh2UL2VwGX3nYjhUyJb7vh/7chjGsVCpThCujdW4WYE26zxkzZvDFL36ZRCJBPp8PtdtG0WLWoEqlMsXaYKwdxspggqBbxREYBtj09ejoKJdccgmf+MQnmD9/fijsmbJeDGyNuTV/UeVXOwZ1unkkqn3emgKyHcw6bwQDk+Y2SheGKa2Ua1x22WWceuqp+MrdpnW8Vbv/1milld/WerRjwFtZdQxT3/yu6D3m/2ZhppWnwd+rouZviZ0iBqB5ALUbUFPOb8vg2I6PHSWi5nKiRBNm9YmY9oxJr5mxtSwLT9k6cY8KfJ/FQiytcQn9DfUOLHoyUXoTEBHBsm2zcqK3ubARBMsKCLuFll8phWPbU7ObNAkKz0UAMIuGZamQKRBVx61NUq/qTBrJZBK3WiOfyYZby6dTCUrjRYoTJTo78iTVlinL/q9heyYb0xNmEZ45dz7r1zzLXbf/hb33349Zcxdx5NEZKtVJ9jvoQF5/+ltIZbKMVSqsWLWCaqVOR0eWobEh7LReoE942ct55MGHWLXiaV5y+MF0dXYy2N/Phg0bmDNnFmPjJZbteRDZrN7sqjCjm6H+QYY39PPXJ+7j4CNOIJnrJd8xA3CwXB/HSSCWg48gtuArwXGMbyyBn3s0hmTqZN2y7dOM/1YLb7vn4sl9+zA6OkqhUAgY8hqV6gQqiInIZvLk83nNUJarOGKFbjiGmTQLqmF0Pc+jVq7h1nQqSQvBSjSSI9iWQzKZxLKsIEuQdsno7OxkaGgodFEZHBxk48aNIVMe3Zhr/vz5jI+X6OpyGBgYYHx8nL6+PlavfoZ0Os3YyCi+73PAgfuxft0aLIT+/n7mztVCcLlcDoWEyYrW+M+aNQvHcbjkkktYtGgRHR0dPLt6Bb29vcyeNRPHgspkifGxIuXSJF7dDVL16jnfuOesWLGChQtm0d3dzdCQzvk/PDwcZCvqCeMrCoVCuOOwCTRGCbWanlNNqk3QDJPJRrRp42Y++5lzKJYmeHb1WkZGRujq7sTz6qEbEECxWAyFDaOVNns+GIHKCGC2bWthqOZjo0ilMqScBIgwPDxMLpcD4IILLiCX62DjxvUc9LoDWbt27YtDtDQCOi3LQjX5hjcrwNppuQ2M8GPWeSOkAlPcg5r5g5AZjZTRrq7RemSz2SnJMOxgvN14/Q385jeX8qMf/5RKpYJYeiPQ6dZIEZmybph6tbqvuS6GDrYV7eZd0z9GcDU0Z97R/O52rmO6L6Na/qnJB4yiwgSoh8y/36CHZsEkKmjVavUpQnAMjZ1CAGiGIRy7OXylKXjFEJdNi2AUBci2MQRKTdW4TL3mBefBkiAdl0Xo3qB8H1GNiSdqMgMf2wKltBbAtRyU2PgOoBzwXCzfRXxB2QmU+Dg++L6FbYHYiTBoUdnJxo6Blh74tjH3seWGJpblBO5HojcNMy5GlqX/lNlIvlmT0WbC8bWmOggTRiyFZUMy5ZDO5PTumvlx7HSCkcEhfNfDzbthhphsNgvlEqXxIomErfNz20AQxvl3i61M0FPQYgEKJ7LI5hCZTIbd9zmARbvvzm9/MMFYXfHoiuUsWbSY4ZEh1q1dwzvedTZ33X49hx12DOOTiv6BIe599GryhQJjXo7Ojiw9fQu474GHcH2PyqQC8VHYHH7E0Xzm059m9pz5HP2qN6FKY3jKwi37TBTL3HPHfaxY/Sx7H9VFb99SSHRQrSskIfhW8xgED3+qLVG2zLawtYVsa9eaF5LtLeeFRCsTu/m9hUDzwlZtCur1OuPj41to2XO5XMioK6WCPRUS6I/c2DDLZLGhphqaZi/Ix24JPjqjlcmuY1va793kprdt/f/w8DCJhC5zaGgo1Ox3dHSGFohaTe8XMTo6St/suQyPTlCp+WSz2SADTJJicZJSeZLOzg6qkyXm9M3EFoWFy333/oVXnnwKd999N3PnzuWWm27ATqTI5XJ49RoXXXQRe+21F6mEwx2338aiBfNYv2YthUKB4sgwiaRDcWKc0mQJz1fU6j6W5ZBKZfBdl3QyydLFWkOeTCYZHx/HdV0cO0Ei6WDbQqVcxXN9umboTRGHyyO6bdV64JJUJZNJ0d09g3K5pNPbKmFsbIKJ8TKlUplqTW+QNmPGDA477DCuu/5aZs6ciS9gOxbZbDZ899jYGPV6nZ6eHtavX693lU0mKJd1ut1yuRzsQVDFctJU6wqfOjkniQSWCtd1qUxotx/cKqmkw+13/IU999zzRaPbKVntbE1nKIX4hC5R0Q3A9Jibms8fGtp5gmVPJxPQK5x+RrUdu6YOLmYXXMIyPb+xEZapp2dSdSsfKxFJimDD6PAIxxx5FHvvsSe1uo4l0WMo2K9EBPBRkXqbOoSIMvdNc4wR6sMECuIjluD6Lp6nwr0+os9Fkxjotk/DuEesLWbOiGrgTRkGU4N9g6oHiR+U8vH9qdaaZu2/5zZiAZq/SfRPiYWnfDxfhfEgJi4mhsZOKQDs7IgSs23bKG9qoG6r+4hcE1sz/yINH3Bl6VlIggHvB2k+lTW1PP3XyIiij63gWFDi68VApkb/N2v+nyuzZMzEmUxGm/FVkOO6rvNn130trRtXKZ3xyMf16kybu3RXQJRGgv+btVaO4+BZGd541rsplQZIOYr+jRu49/rbeNlJJ+J5SVas3oRvPcmmjf2k0lneeta7GBuf5La7lrNk/lxmz9+b3Xbfm5UrniKRSlGp1UjnO3l27UaqNUWx4uOrBE4qx+zObsZGJ9g0UGTd0AQzZu+Gk+7CTqZx6w23s6iQ25qGdg4mfGfAzm6RCH3MAwY9mWxo6KMWTRPvQ7AbsAlUNb7NZlO/QqHA0ODw1HaLmqKciG6qVSoVw42nXFencXRdn3rdI5Fo5O83qUVNfYyQMDY2Rk+XdvMxLj0iwsDAAPl8llKpREdHNby+atUqvbFdOs369evpmTmLXC7H6OhoqKh48sknmTt3LrVaBdetUa1qi4HZTdikzzSWOhNgnEw65PN5qpUatlWhUq5qZsXyyeWzuK7LxMRE6P9tNhsz7TcMlN5jJRnsVq0DSU0/m/YbJvYnP/kJ73z3u3jiicfCPq9UKmG/GcbOuGvZdmKL1JhGmDPfKMpcRsswQqL5Di92ELD5v3mMNbs1hS5VEV65WTvdrA1v51oSfT56vZ33QKs6N8P3fAqFAtXSJHXfC7JD6YxofhPz3LyGt6rT9iLqyrw9HhZbQ9Ry0igyON5KVacqMhtxM2EQMFM3EDP939xP0TaYeBvTtzE0dkoBYFuJuZV0+Xy/LyplhqZCvCm/rUh6MFMvy7IQqzERKcvGCnKm4+udesVL4LmgwjyFRhWhsNABxIh+jyXRoGPbVA7E0jv9ApZt6XzmEmj+p/mbru3TuWBE2238WlPpLF1dPpXyOIgKd/80G6KVy2XcWgpJVKiVK9Sr1WDgBhqArXyD/zMIrVNb12L7vo8tQmrGHJK5HhzLptC1Fx/Z53gcO0mtXOFDn/g6xUqRhK/zmr8hk8fCpuqOM1Ecw/I9uvpm0zd3N4YnLVBZerpnkMxXed/Hz6GzZxbKzpHKz6TuVulZuJAj+5Zy0uvPouJbpJwEvu+Glifz/458qlbft9mXczoaaOUK9HwsgM8ntsbw72wCgdH4m/GcTCZCwR4I04Ian3HXreF59Sl+5QBWkOo4m83S7w2EOdbT6XQoHBitnHEJrFargXXVp1KpUqs5oS8+NMz6tm3T0dERMiq2bbN5s95vwDCtJnjWWApEhO7ubixLpypdv349qXSKZ55ZQTqdpr9/EwMDm7GcJPl8nnXr1iEirF27lomJCebNm0fXjKxm1vFJZ1KMjIyE2c2AgJH2KBaLdHTk6O3tJpVOsmrVs/T09JDJ5ILNmSZJJBLhplP5fD5MqTk+Pk46nSaTyYRJE4zvvQkKNfNouVwO9yio1+sMDQ2RzWa58cabKZdLnHrqafz8Jz+eMueasiqVCp7nUSjMCIUOM36MK1elUqGnp2eKgJBOp0M3TxPEbGj4xXSlMLRkmEPjLpWwnbbrXFRb3pz9BwLLgaPp3nxj25Yp7zFoxfCbOkTfazbPbLfe6nVduzHZqSSz58+bssOysSvoMqauDdCI/WhVbvRYqal1jT4fTfk91drRcMFpF1i8pbfElvNb1Apj+jv6LaKPNM/nhscwAq8R0pQ05n9zT1QQmC5g2cxtMTR2SgFgZ8O2uDO0NvdHfBIj0qkm6IDILRsL8EW76qCMFsMKXHiMr1/UghDJIBRkGQJQYmFZvhYALJni3hPe/xwtAFGznIjW+uc7ZwDoTBHBhiR1x8Gvu6G2yPM8HNfFc2v4vskCBP9nNMbbwdy1mpimnhMEFey+6mM7DvgK5TiIJHCVh52wqOOTTGfIOUkQh6pySbiKTKGHVCZLQiyUV2H+wmV42Lh1H8GnXq+yz8x5VFxFJpPCshy8epVEKoud7sDzFUkbzBb2f2vs6DtaacJibB8aMT3WlLENDS1wrVYjESy+Rstu/jcMqvEzj2bosG0bBzu0KkSz7kQXcL1oG2bDAbRlIpvNhhpzs0mY8eM1zxl/dtMG8x6TXtRYDzKZjN493fcZGBgImYrR0VFKpRLQUNwMDg7SN3MZtm2HGkNjuTA0Z6wVvu/T1dVJPp9nbEwHCZvNz3Qaz+5IX1rhhk0mgNr0jQmszefz4bcxmmwjyBjBSoLvYBjMQqHAL3/xKwYHh+ns7JzSr47jMDY2FtmBvfFstC2WpTf6Mn1svl+1Wg3rYvrdCA0vNqLr0LZq4FsFBjefhy2VYIZem119mxFllKdTbDTqHIyVRDDHt7Wwts6pvzUFnvkdZZBbWW+i1+v1eugCFO3j5wOtLDbRQF8zn0T7OTq2fd8PlaKGTqPt2xpdvpiWq50RO50AEPU985qIrl3IytQBuf2ZSJRqH8Rjyp963HpTC3PcuM8Qm6c377K0WcqyPCwUyknoDb9I4IjgeY4O7PU9PKWw7Eb6TyUNNwzbdqaavaxG0JIRGCwh3DVYWyO2zMXebhLZ2iAyZZqB6Th6Aevq7MbxoTg6jO3DeGmSfD6PiIXrK2zXozQ2zLDjMHPWbCxL+xX7kTpZzbt6BPBl6oSws0D5W6e3dlaUqb+bN6Cx0RtbBeUHpKRjBQSxE1gCCWUCvl0Sot1GPdcjnQg26rFzmNB0J7B+2imdgjEXsYbaTjb0XbVCLX/AFJo6tmnDdN+j3bjaUevdtix4f0u0q/d0fbCzLjrVeo2MZEkkk1ozpup4fp1KVWFbqUBwD3av9esgPuJY+BU/dCfxfQ9VU+SyBTZv3hgKB6CZZstuaP3cuhcu7mYcN9xJ9OLd1dVBuVwNLAhJRKBWa2ziU6/XEeWRTCRJp1NYFnhePZjzHKrVIul0ko5CnkJHJwMDQ3QU8oG1QQfTrlu3Dsty6O2ewbp165iYmMCxLCYmiiilsJMWpVKJTCYTujFGmYxEIhXsGZAin88yc7belfipv65ivFiis7uLVDYV7K0gzOqbzeb+TXQUCpRKZUZHiwwNjaCUUCwWyeYyOAmbzlSB3t4eKtUy6WwW163he3VGh4ZDenPdGqlELrQse16ddCpDRy5Dcu4cNg/0B0KSi2U5lMtVLMvB96uhZdYIRSYVajKZxHddapUKXr1OoVCgFrRbCytuIAxoq0ulVqEyWX6RqFb7tPs+WJbWbtvBOqkCA7q2gk9d6yyjJPO1370RQqOCkI9q+PKLoCddhYg1hUdoNZ6NhaoVX+B5jbiZLZ8P3qF0EKynxMgEWFZ0rommDTf9QHheqeh63rAMELRM3zOVSdb1c2mG5inMOqtjCly3HmYy2mKuC9cBwuta6bml24+yBPwt+Y5mZt/UPyzLUzy2fDlLly7FTiRCC2D0eUMLnldDe0lEdgEXHRNZr+0iGQi3ETvnyvR3iGYthP7dbifeIPjInpqX2LK0GVxsB8dJBL/1n203fkfLivpuRs9ZTQx/c92eK5RqpK0LzfZCaG42m/mYoL9aXfuxlstlyqWJ8Nk2/P7fDbZF67DjaMHshmcFUbLFHb5IeI+wHd9amgPXIvTSsia7JtppG1uP8507PWlUgxbNaAaNbFTGjUQzm+6UTb2Ma0i5XGZ0dBTPm5pur8G0NjT/UW2e0WArpQONM5lMoFjQew0MDw8zNjYW1gO0ENDR0UEqlQpiF+pTM5BYCbLZdBgIWq1WqdfcsK0mtWAqlWJ8fDzcKMz49ycS+l1G459MJhkYGAiyFmkmzgQSdnV10dPTQ7FYZNOmTQwNjoRuTmbTKRHRsQrdveEuykNDIwwO6t2Nw0xqIsEOy8kpMQ+u6zI5ORnux2By1TcyndSYnJxEKQ+FdskslUocffTR4fcxWtVisYhl6R3cjRuMFmgSoSuYycSUTqdDBrlSqQS7Q3uhJWFkZOQFpdUoohrjVjA0ZaxRzRr55vm61RwepeNtmd/bjfuossyUG3VRma7s6PVom5vr1lxGu35prmvz8daeafX8tjw3nRJoa31g6LxerzN//nxWrlwZ7g9irpsxLSJhqt9mq4WxnsWYip3OAvD3imZtqB70DVYsOgb0BA62pXSOfz8ISrJtbSFQCrEEn8bkIU7Dn9D3Rfv76xchQUYisSytPAgy/VhMx5Q8N8bELOSGITBuAJ1dM6i7VZTyUUHAXCqVol6tkUqltZkzWNhMPuzpTKo7O7Z38tyee7fluW2x1myPgLItWv1dGe365++RfkUk3NFXRPA9cOwkjp0MGRe9mEKt6qLQwn6tXA/dZgwTOTExEZTTiIdKpVKkM6lgzvLDsW4EAKNhNowuNIJYje+vZgAP0pUAACAASURBVEwVjmPheS7pdDLcO0D7sxP42Jep17WmtVAo6FTErku5XNKCR11BSjO3RpO5YcOGcIfcarWGCCSTSXK5HJlMhmw2y+joKMYFyTAbyWSSWbNmkc/nGR4e5tl1axkfHwcamZWM64/pZ6MYsW2LsbExJiYmyGR6wvlYKRWm3DT9bnz/R0dH9QaKtZpOuhC0zfSjqaNh4ru6urj33ns58eUns2rVKkqlEul0ms2bN+N5HrlcjlKp8T2SySR+4AJk3l+v18lkMti2TXF0dErwb1Sb/WJga244Ua2zYTCnZKWJaMtbubeYZywr6jozfZ3aWdPNt22eN1r1n/nuU7MXMaX+0ykgDFql32x1b7Mr0XTf1IrQR/T5aBBxK0xXj3YCWfN7lVIk02l8YMmyZVu4oBlBtVyuhjEvIoIX0S7u7MqYFwt/VxaAvxVTsjXCaCXVt/s/TC3GlsxcONkLmnG3LSxxENvBTiTBsrXpKrACiJ3QPh2Wg8KCYFdgy0kE1/WfJbYOEsZCpyfVAcXttJDb4pLSjC3doAgXj2QyGWqmEmmtmfODxdRkGFG+j/J8HLGmbLW+Ld+0lRYnhsbWNNJRV7HpNNTRQK/t0XxF37W9gk5z6trtad+Ljem0/NP13Y70798S0Yw/xtKolIRae8MYaC2cR73e2G3W3JNKpaZo9Y1fe9QtIur+YNodDZI02rlmrS00AhGNtdQIDNFATrNDsW3b4S6qzekDTcYeU0Y0INZoxI21wbQp+q2MoNTZ2Uk2m2VycpKxsTFKpRKeq/D9qd/X0LgJAhaRMMDXMHXmHaZthpE3ZZjsRqbvTBCwaVsqlaJSqYTzb9Q6MDExwdKlS3X9TMrWoI9NWVELQHPee9Of5htGmX+TSvTFgBEiDV2ZtQRa70rbTEutrFRROo+i3diOlhvts2bGtPm6QTs//Oj/0Wejc2VUqIm+N8ySE2lLq3pF692uX1q1r5VwE9WqN6/rzfNbtLxWgkHze02bfN+n7rlYjnZxNtr/6NrWHCwcFfCi79xZ3TFfLPyfsQA0COn5yQy0vWj1vij9TxEG9M4FYCkEHyfwtRYslB1MQL6HbdlbDD4RCfIVNyblwKVOBxFLhDlREfO+NdV/Udi2wdCOSTHvqFarekfLSlXvuDk2Qj1w//HrjR0my5UKtUoVv8MPtXcmvV6MFx/RiTJGe7RaPLd2784Kw8QbZtoJXBCNxbJWq5HL5YJFWVsHbDtBXdVD1xITKGt+q2DOMa4ihpE0Vseoyd4s9iYDjmFQowyxZjB8RBRKaQEkqmjxPI/JyQqlUgnla+13Z2enFk5cH8S4I2rXGPN+w1ibwFdtjbR0VrNUKlReGBcc4xaUzWbJZQsopXjqqacYGxvDU2aOtnEcO9zt1bIsCoUC6XSaSqUS7LQ8SW9v7xQmx2ywZhgqIwCA3qzNaDTD9JDBWDU57/VfglrVD6wbup39/f0MDQ2F7Z2cnKSzszNcU0yQtFJKZ2wK+tT8lctlisUifb29U4K/K5UKHR0dLzC1NhBl8qPjsJG9x6Q2bTDe0dSlvj91v54oA2nQjumFLRn0bUFU8I2W3Y5Jjt5nzk9Xl+djrmnFDzQLMa3ORTNymbpsixKk2VLRLMy0Ou84Dr7rTWl3O8HLQAsRKnRBjNHA35UA4EsYb9IULNocVKOZ72gO/S2faYctU341H285GBsMuVLRneoCpgp7iseNpT198P0g048pEws72FNAWU6479kWvtxmoIqgRIKAJSMcRAQAIulCjdlTtfZTbIfotea+sCy9YCaTJcrlMp0zuvFdj1JxHEsUdkQLXa9oht/zayjfoVgsgpMglUmTlIimsCkYNqx/G1jxeG6JVhPdtkx+zfe00tS0undbaKn53nbn22mbdiY814VkZ2iPCQINTfvpQHPo+uH1clUzn9l0NvSP9zNpGHOo1lx8XGqDA5qJrVukHDvU/JvUkbZt46upedeNFt/zdLIE37eo1z1EEkFQp9Z6O44TMqcmD73ydBn1ap2a61EsavebRNJh9pxu8vk8lXI1aJdFMpkMmQTLssLNzyqVSshsmLiBfD4fBEQLvqeoVRsbdfX26GDfjf2bGRsbY/PAUFCmEzAnFjMKnXQVOrFtIZfOoLUwipHRYXxPWwk2bNiE67rMnTs7nPcTTjKMh1I+YMHg4DCVci20WjiOo12WfEJXnmppktGhYfxCnu6eLsbLZcSxAYtqtRy4Z9ZRyiGTSQE+1WoNz1NBILd28XJ9n5rr4vo+ycDdxzDNI2Nj9PX16VSrgeVkcnLyBaLSLWEsIkbT22BcbaIZ9pqZTBOMi683DxMBkdYMuEhjgzHbsvFVkBwBCV1r9f1bKk6izH07pj2qvY4iuh/BFKVhi3m43drcSrBoVdbWrrcqv5X2vpXHg3Z/bljFonE60X6ZwuCL3vvAV74+9n2U+Re1ckQsaD6NZ7EE5etj1dQOpfyW/bKr4+9KANhebI+27vlEu4HT/Lt50OmBES2odZlECLvdYJaA6Y8+G2X8d7RPms2GQLjt/OYNG8Pc0baFTnFqJmfbwo4sLEbzZEtskttVMZ116f86wnngRayDyQBj/NoNgxTNwAF6IzB9b8NNpZGFxtPKDE8z6wlLpiz2MNUnOcr8m0Vca731UtRII9pwL4y6e9i2Td33cIO/aPyRcbcx9TNzjHZLaLgomHrAVFqLZicyde7o6KBYLIZxB8bHf2JiMtTW+37Dnaejo4NsNsvERBERCXfTdV0XwcJ1G31bLBaDNKdeaGkxDG0tCLT2PD8UXEzfmCQS5pzZ/8DMrfp+Cd9r7jPf1vSHiYXQv90p3yoaWNnMyJrEDi8WomtYO0Ya2jPi0e9rqSiTqLZY35q18MHNkXW89bu2xmhuq/KtFSO/IxaIaP23JgBM93xz5p2tKXOifE/U5a1ZIAC9S3KzRr/d79DFSdoHcbeq04sZu7IzYqcQAKYjJHhhGYKtDV7LsvBbWBJMHZsj/qMTVfg7WPbDjS2maASC8vSV1nWM+GW2qkMzw9983E4ImQ7Nk6AJCjPma516rkY5CDhzbMGt1sKAHSfQNnq1Oq5Vxa3VUJ6H3Wbi3hZoIWfXluh3RKvfClujg+drDLbTau0KTP/OhikBwIEvtfHrV6ph2je5+M11k2e/Wq3jeYEG2fW1Vll0Oj6judcBvM4UhtIw0poZNXn9tTbXuJokk07omgNCrVYPr5Wr9bA8k23McRwKhQKpVCrcpMy0wcQvmDnKXDcWBeP/Ht0gyjA6IyMjZLNZ0uksmzcPBJmDJpgYn8RxkiST2o0mn8+zdOlSCvls6PKUz+fDzdRSqRSVIL1pw3Kq4wFyuQKFQoHx8fGwLmPDQ0xMlLAtHdhr3JGA0C2pq6uLieIoxjXCtM11XVJZ7fJk2zbZbJaxsTEymQzlcplUKkWpNEE6nY5Ygap0dHSErk7NzOzo6CipVIpMJkM6nX5RNwIziNJTVHADk8XK2sIH3DChzYG20V2WowylEZ6iNGGsWc1zVnRd3ZpAsK3z3bZq65vR3L7osalTlBluF1ht+jYqwLfiM8y1ZphxaOJ9mu+PfjPX39K1p7kcz/NQXsMFbGrsQmsrSbRdcQzAVMS90YRW0mQU2yNBttLyT3efiA4QNn+tnnsuE0fzu54LzGIEWpOUzWbJ5XJ0dHSEzIJZTB3HQYnRNEV2AfS2LQi4HWJzXowYOw6zoBpm2mjjo9plM1dYlhWOXyMERJ9vxfA0a2nNYm+ej2YQM4xrK6uocVMyfvTmXqPVNgGwJnWlKSf6LrNTsNnYCho7wkZTKUetAPV6Pbxu3F5MNp+GIONSKBTo6urCsvROxkYgsG2biYmJkFluFRwZDcyNzpnmXVEmN9rXUQEn2lfRdlSDHddN240bFUwN2DRlmm8fnaNNW2s1nW7U9Hl0/n+h0UorHP2/1T2trkf/b6a7KMNvzm3PevNCKTRatbMdWgk+Bs1B8833bE3Dvq3v35b7okJHlNbbvTPaB9G/VokAYkXTVOwUFoCdCVsjFH1t28pqK51L+ziDKOx20mqb81EpXr+7MYm1k9p3FNFyoxOl4zg6FVe5FJrGQ6EDAc/Hrddxaw2ztW3vWF10v8UDOkaMHYFJM2m0n8YaYNL7RgUDzSDqNJqNfQCgWq2F2n4dXGnjuj6JhB1orhub+rSyRho3nVqtNoUZF5HQvaVcrk6JVfCkMfekbH1/oVCgs7MzDPTNZrNUKhXNsLs+lUotFDgMgxvNthO1hCQjaTZNH9VqPqOjRc0Ilyo4TpKurs4gXWgGx3Ho7+9n6eKFgM7AU6lUqLvaAmoyDhmLh8kMZNJtmrYZC4YO3lWkkjooeWxsLLSc+Oh4gHK5zOTkZFhfw/BHhZZ0Oh3WxXw7o40tlUqhYOe6OrVrNpsNv0n0r1arhcHeLzaiTGpU+IwymM2CjGEmzflw/VNT19/oRnVTtP5TrA0NJtqytrRgRn9H3V5aaZ+jFotWaLbaN6PV+ea1fTprQPNz0X5rJ1hMx4yD6aup27ZGy2yF6LuNEA9EBN5GMLeoiMASiQ8w+5BElRlGyPW9hsIjRgMSa1FjxIgRI0aMGDFixNh1ELsAxYgRI0aMGDFixIixCyEWAGLEiBEjRowYMWLE2IUQCwAxYsSIESNGjBgxYuxCiAWAGDFixIgRI0aMGDF2IcQCQIwYMWLEiBEjRowYuxBiASBGjBgxYsSIESNGjF0IsQAQI0aMGDFixIgRI8YuhFgAiBEjRowYMWLEiBFjF0IsAMSIESNGjBgxYsSIsQshFgBixIgRI0aMGDFixNiFEAsAMWLEiBEjRowYMWLsQogFgBgxYsSIESNGjBgxdiHEAkCMGDFixIgRI0aMGLsQYgEgRowYMWLEiBEjRoxdCLEAECNGjBgxYsSIESPGLoRYAIgRI0aMGDFixIgRYxdCLADEiBEjRowYMWLEiLELIRYAYsSIESNGjBgxYsTYhRALADFixIgRI0aMGDFi7EKIBYAYMWLEiBEjRowYMXYhxAJAjBgxYsSIESNGjBi7EGIBIEaMGDFixIgRI0aMXQg7tQAgIj8UkX1e7HoAiMhLReR/n8PzJ4jI0c9nnbbz/Q+ISGIHn50hIh+c5vonRORxEXlERG4QkUWRa2eLyNPB39mR828TkUeDZ64Rkd7g/JeCcw+JyHUiMrfpXYeJiCcip0fOnSciy4O/t0bOXyQifw3O//g5tL/VO78qIo+JyBMi8h0RkeD8IUG7xkTkl+Z8U3mvF5FP70hddrD+Me22vz4d7S4MaPCJ4J7FwfklInJ3QNOXiEgyOP/+4Ns/JCK3m7lLRA4Pzj0kIg+LyGmRd7wqoNEVUZpo944daP/pIqJE5NDgd0JEfhbU8wkR+bemuoyKyLPt6DNo49t3pC47UPeYbttfn45u281N7ebcr4nIk8H5y0VkRnC+R0RuEpEJETk/Un5HhJ4fEpFBEflWcC0V0OuKgH4X72D7Fwbv/WTk3D8H7VouIr8WkXRw3oyVMRG5utVYEZFDReQ7O1KXHax/TLvtr09Hu+3W8g8HNKUM3Qbn/zVCh8tFr9PdwbXVkfn4vsgzB4rIncG1K0SkEJx/hYjcH5y/X0RO3JH2B2X9UUSWR34fJCJ3mbqIyOHBeQnG6IqgP17SpryrzLh8XqGUiv+24Q+wgYeew/PnAp/8G9dRAKvNtfOBE3aw3MXA8mmuvwzIBscfAC4JjruBZ4L/u4LjLsAB+oHe4L6vAucGx4VIuR8FLmj6BjcCVwGnB+deA/w5KDMH3GfKAE4J+kSAXwMf2MHv3vzOo4G/BNds4E7Tt8A9wFHBO68GXh3T7t8f7Qa/bwZeERznI/f9BjgjOL7A0FUT7b4euCY4zgJOcDwnoH0n+C4rgaVAEngY2Ge6d2xn2zuAW4G7gEODc2cCF0fqtTroo7Z1ien274du281NTD/nnhyhz/OA84LjHPBS4P3A+dPU5X7guOD4gwRzNnBGdDxtZ/svA35rvh8wD1gFZILfvwHeETl+TmMlpt2dgnanW8sPDspdbWi4RbmvA26M/G55L3AvcHxw/C7gS5F3zA2O9wPW72D73wj8KtoHwHUEvACaL7k5cnx18C2OBO5+Iel0p7EAiEhORP4kWkO2XETeKiI3S0NzNRFIh/eLyPWitWo3i8gzIvL64J7FInJbIL0+YCRoEbFE5HuB9uDKQJo6Pbh2iIjcEpR7rYjMCc5/NCKlXqyU8oCnRWSvSJ3fHlx/WER+EZx7XaCNeDCo56xAC/J+4J8DCfBYEZkpIpeJyL3B3zHB8zNF5M9B/S8UrY0zmppPRKTjj0fa/ISIfA94ADhHRP47Usf3isg30UT2qsj53YL6PRy8a5mI5AOJ/IFACj41uP2/gGVB3b/W/O2UUjcppSaDn3cB84PjVwJ/VkoNK6VG0IP7VTSY8pyICFAANgRlFSNF5wAV+f0R9MLQHzm3D3CLUspVSpXQjMurgrKuUgHQjPl8th+t3qmANJpRSgV//y4ijwEHAguBm4DbgDe0oN1/F5H1Ae3eICIXiMg9IjIZaAIeEJGXichvAvp6Orh2W0y7LwztitbeO0qpPwf3TSilJgN6PRG4NHjmZ8Abgnta0q5SalIp5Qbn0zRo+nBghVLqGaVUDbgYOHW6d2wnvoRm9CrRJqPHnQP0AL3AlcBTwATwY+CAoC4PypZz7moRGRJtxbpZtGWtKCJl0VrkoyN0MCAiwwHt/jmm2xdkzm2emxLAZqafc6+L0GdYllKqpJS6vYl+pkBEdgf60HMdwKloegVNvycF79tmiMgb0Mqix5ouOUAmoN0O4AMi8jCa4RIRuRm4m9Zz7vsDun1GtPXgFyJyR0C3zwb9f4w0+ITVIjIuWlsbz7kvDO1Ot5Y/qJRavRXSeRta0bc17IlWjIDmSd4UeceG4PxjQFpEUttQXggRyQOfAL7cdEmhxxxAJ8HYQ4+Xnwdsyl3ADENTTeWuFpHe4Ps9KdqK+4iIXCoi2eCeU4Jrt4u2Kly51Qq/kNLGVqSmNwE/iPzuRGvgjOZK0ZCgLkdLVAk0w/VQcD4LpIPj3YH7guPT0RpcC5gNjATnEsAdwMzgvrcCPw6ONwCp4HhG8P+7gX8OjvcF/kpDo9Id/N8FSHD8HuAbwfG5RCR6tIT40uB4IfBEcHw+8G/B8auCdvcChwCPohmLPJpAjVTsA0cGz+TQmrxE8PsOYP+gb+6OvP9u4LTgOB1cd2hI3L3ACvSisZhpJPqm73g+8Lng+JPmOPh9Dg2NzulAEdiIHox25L6vAGuB5ZFvMw+4Ba1Z+SkNbfzJaI1XNqjzM8C/NNUpgZ7sjt1Ommz5zuDa14FRYAy90P0AOBS4ngbtvgfNXDXT7nLge2jaHQauCb7bvsC64P+1wIVBP90KuGiBKqbdF4Z23xB8u98BDwJfC+igF820m2cWMFXT86GgDWuB3SPnjwjaPRGp++nADyP3/GNQh2nfsY1tORi4LDi+mcY8mkAz9wNoxu62SF1+Zu4N6tJqzv0i8A3goeDeHwff4Di0EHFf0IaL0HPuq4NyRonp9m9Oty3mpq9EzredcyP3XAGc1XTuHbSxAACfB74e+b0cmB/5vZI2Gts25eXQVot8i+/3MfT4GQjq/4NIn5k59zVBHZpp917gT+g5dxOauexGz/FrgWOCul4FvBk9j48E9BTPuS/MnLsta/lqWmv1s+i1tDtybhV63b8feF/k/B3AqcHxJ4DxFuWdDly/PXNu8Nx/A6c19wGwN7AmoLX1wKLg/JXmuwa/byCYq1u1OyhXAccE53+M5rPSQdlLgvO/Bq7cWn0ddh48CnxdRM5DV/y2JsVBDc0omXurSqm6iDyK7hTQA/R8ETkI8IA9gvMvBX6rlPKBTSJyU3B+T7Sp58/Bu2z05AjwCHCRiPwe+H1w7hrgR+iPfCJwqVJqEEApNRzcMx+4JJDikmgibIWXA/tE2lgQkY6grqcFZV4jIiORNlyutGSMiPwOOBb4I/Cs0tIjSqmSiNwIvFZEnkAP7EeDZ0ZF+9SPA/OUUpcHz1SC6wngP0TkOPQkMQ+Y1ab+W0BEzkIzD8ebUy1uU8F7PoCekJ4B/gf4NwKpWSn1WeCzov2TPwx8AfgW8CmllBelC6XUdSJyGHpQD6AXD5ep+B5wq1LqNrYPLd8pIruhB7TRXNyG7qckevIfi9yv2JJ2PXT/PoqenH+Dnkw/jV4Qfod2FbkYrSH4SXDfENqyADHt/q1p1wnqeDB64r4EzQj9scXjKjxQ6rvAd0XkTOBzwNnB+buBfUVkb+BnImLMvq3Kand+W9tiob/zO1pcPhxNf3PRTMKtInIBelGqN93r0zTnoufYTeg59yE0c/UD4KDgnIvuuwfQc+7VAR3cEZQT0y1/O7ptMTf9OSj7TqaZc4NnP4v+fhdt6/vRbj7/GK1Si3u2mXaBfwf+Wyk10TTndqHnwiVo4eaq4HcZrfTb2pw7hFb+PQrMAL6PHgf/hZ5bf4nusy+jhYGL0MLSKPGc+4LQ7jau5e3wOuAvkX4FzSRvEJE+9Dd7Uil1K9rt5zsi8vmgP2pN9doX7Qp38ra2JXjuIGA3pdQ/y5axLx9AC4OXichb0HTxcnZsvKxVSv0lOP4l2lX6euAZpZShn18D79tanXcaAUAp9ZSIHIL2ifpPEbmu6Za6CkQbNLFVg+d80SZBgH9GmzsPRGv7jemynQlSgMeUUke1uPYatFbr9Wgz2b5KqfUi0h2YXITWH+p/gG8qpf4oIiegJflWsICjlFLlKRWStubS6cyopabfPwQ+AzyJZh4NrkVrCS6lNf4BmAkcEghXq9GS5dSKiHwF3T8opQ4Kzr0c+Czat64a3LoO7X9qMB+tpTkoeHZl8Oxv0MxvM36F1tp8AT1RXBx0Ty9wioi4SqnfK6W+grYaICK/Ap6O1PULQZv+qU2bp0PLd6KtS3cppSaCd1yO/j5DwJuDiQW0aXwDW9KuG7TfD763okG79wMfR2tSIaZdgxeDdh9USj0T3PN7tI/mj9FmWkdpt4n5NMy5UVwMbBEEqJR6QkRKaEZiHVq7b2DKGtzGd7RDR1D+zcEnmQ38UbSr5Jno2IQ6cFcw9upojVcWLQiYurgt5twEmnbMnPsmGnPuarRgYdxNWiGm26l4vun2NKbOTVej6bYcPNtyzhWdoOG1wEmRbz4tRORAtJvc/ZHThqbXBetyJ1ozu604AjhdRL6KZtR9EamgaWyVUmogePcv0IL5PWhXoHOD582cu6SJdutB+/1AQI7OuVegBdnLTNPaNZmYdqN4vmmX6dbyreAMmtx/VODOo5TqD9bow9GKwCcJmHsR2cPULfg9H00LbzdjZTtwFHBI0A8O0CciNyulTkArgj4W3PdbdJ9D+zVgOjTTUTul0VYh2zjW/6boXSTKnYTkDOjIJBAvy2B/mcqkx0uP35c9lvr84MLHWPxShz2XdeMNL2Ddpsd5ydF7kRP4/rce5OjX5Vj5aIWli+ahvM0Mj+R44uEh3vqWPvrdJKseG+P1ZyxifKLGr777NAeelODQfWbyyx/2c/gJBfbfXxivpxkeyDJrQZqJUo35SzqZmbD43Mfv4RVnZRmfmGDFg0K22yeRgWfuFl777vkctPcCKp6PSnj87zmP8oozFrBsjyxX/nw1k0X4ly/sx+8vXkO56nHKm3Yj5/TwswseYPe9FvLGM46izjgrn9rEwiVd/OS7t9LZbfHq03pZ/sAY3/7yY/zg0lcxvNHl/G/cw79/9ViQGp//lzv54Ef3IpNL8PWvPMy/n3cQY5UKnlfHdhRf//xTlCY8zv5IgY6UjW8Jo0OKv9xc4ewPLuT8/1jNya+bywEHd1EcmaRWd7nl+vUM9lc56BCLzesV111d4w1vSZBIwJ/+UOf0sxJ09fRSKBToyhewbZtMNsGGdZN879uP829fPJyFCwoknQTgMzQ0wb9+7Hb+9Qu7ofA57wtP86kvLMF1Pc47dzUf+7ceSNS44U8lajWPk1+fZ2xEmDuvAL7wwB0Vnn66xDs+0Ifv+zhJBwuHn1+4nv33n8ERR/aSsh3eefZ9vUqpIRE5AC00HKSUckXkPWhp/6TmiXN7ISI/RVumLhWdneC9wKv6egp1EJLJBLZtM1muMDFZQSmYNauXnt4eHnpwOYcffQwKm7Vr1iC2w7z5i0jYwp233cAxx76cVSufxHYSLJi/gM39m3n6r4/zmlPPYMPGtax7dhXHnPgqarUqf77itxxy1DEs3m0v/nTprznq+FfSO6Mbr15nYNMaCtkMtXqFXC6H53n86ZqrOeHY4/B9l6dWPM2MzgLZVIKHH3+KYw49gM4ZXYiTxsl3ct3VV3HCSa+gu28Wt/z5WsbHJ3jjW/+RB+69E4Xipa94HU4qzx9+9UPmzFvMUce9nMnSBP3rV9Gdy3HDNb8nk3TYf8/dWNO/mRtvv4vXv/pkqpUKd93/ECceczji+1x/x90cffABpMTl5vuWc8pxh1DomomdSJPMZvnVpX9gslzm7f/wFhwngQ+Mjha5+577eM1rXsvFF1/MSw49iKVLl+C6Lp7n8fhjTzA2VuSYlx7DhnUbueKKKzjzjLfhOA6/+/3l/MPbzkQJKNtBRabK/s2bufG66zjx5JPpzHVAYBr1PI+rr/4TJ5xwIslkkrvvvZeevlkcfNgR3Hr9tey574Hse/AhXPuHy5g5dx4HHX0cI4P9zOiZSb1eZ+UTy7n7pj/z5vd+lOLwKLlCJyCMDA1w5S8v5A3v+DCJVIqfffPcVcBJaMb7XuBMpdRjIvJbtAvPxYGG/hGl1Pd2kHZvRrsT3CcinwL2At512hF7+qmEjW1ZrBkY5ZnNY9Rdj4MXz6SnI81v7nyKNx+5OwCPbxhFlM+ynhyu73HlI+t52e59rC6WyCZs9pmd55mBEvesGuUtYTY1EAAAIABJREFUhy9i3UiFjRMu73nTq0hlknzh/F/x3jPfyBEH7sYnvvy/fOqf3s1eyxYxOjZC/9AIuy9bzObhMRbN7sOizmkf+DS//9HXKHTk+cYFP+fwA/emVhrm6z+5gj0Xz6FY8Vi3cZje3j5WPLOChQsWk++bR318gGqpyA+/eBYXX/Egk+VB3nHqCQB86ft/ZPf5fbzl5Qej8Hh6TT9L5/Vw/iW3MnNGnre8/CDuf3Itn7vgKi7+ypkMjEzwjYtu51ufeAMCfPSbl/Opt59APpvinAuu5cJ/Ox2lPDyvjvh1PvLNaxgrVfnOh04gm8mhJMna/jq/vvF+Pv3uM/nX//4JbzjxSA7Zbwl1V1H34Ya7H2X94DBvPuVIHnl8BRdedA0fe+frcH34+WXXc+abTsLzPMoBi1RVNp7nsXlwmAfue5h9D9gPJ5mi7nt4qsZQ/yDDmwaYs3QmIrBh5Sa6+nI4SWHdihHmLypg2cJQfwnf9+nudaiU64wMKmbNS+I4FlhClK8sjnnUqh4z52ZIio1YioTAIw+Pnoe2xH8hQmsfAvZXSr1fRM4A3qiUessO0u25wIRS6usicgRa+D7s/118RGnjs6Pg+Ph1l6fv6OfZR0t4VTj6VQl2PzDLd/7fGP/ynT48z+OWP4zRkUpzxPEFlF/n658d5NxvL+ZPlw7j5Hz2PS7Fk3dXuem347z/3G7WPFLmiUdqvO09nVQ9i+/9xxCnv6PA7vtZfPNzI5z8liSZHlA1j8khn5mzHRyvQM+sBNgWX/vsJj587hySaZ/rLx9jyeIk3Z0Wv/rpKO9+d5pCzme8LqRywvfPr3Dymx16ljpc+8sqxSGf0z/k8NDNQrkGR70uTQqPK39aY94im+NOyeAg9K9RLJyf4je/HKOrx+blJ2f56+MuF357mHP+s5OBgSqX/7rKuz+SxbcUP/pWmTefnSOTFX55wSSfPKeHJBYZhLRlc85XNlGcUJzzufmkcklq+GzeWOOqK4f4x3/q4X/+azMnvCbHvodkQKUAxV03lRjaUOatb+/hr49V+M55mznnqwtJpWy+8cV1fPEbe1JTnnZh8Wv4qorv13h2jcfFF47xzo/20jsnh2NnEBFsCtTKiu4ZGdavGuUH33uSz567N7bUKZXLWLbwxc+t5KOfmkM+nyaTypHyErjlFJ/8zN18/zunkcsUsJwOyuUaNdcnnU4zWS7zlfP+wOlvPJQD9pvLGW///qxAKLDQrr03K6V+LDrLzi3AF5VSl7Wjy22k3cVofmG/4PcT6OD0m0XkJOCrSqlDROQ1aC+HU9DC73eUUoe3KG81WiGZR1uJjlZK3SkiP0ALbt9Du2Aeq5RaLSIXAZ1KqddOV8+dwgLwvg+exPV/fIiH7xumaPtYTonehUJyqIMnn3yMRfP3BeCklx7PmjVPUKtVcWs26USW0thmLMuiL99Nx6Ee9988TLlcp7PXxbKgXqnSNVOxyqrx0/95kp5ZGeYtzrFgdoFNI+v5hw8u4/e/WMed11cBmwOOmkXXLIfrf7OWWmU1CdviiJfNpK9PAI95S31WPVlh8cGw9CU21/x8Izcm+pmzOM3r372U409dwJ9+9iwdMxIsWJKiNOYxPlFh7wNmcNEPnuGJh+/nze/Yn9PfuS+//8UqPvFPP8V16+y53yze87Fjecvbj+DbX7mOe2/fwG575ZnRnSKdtlm0JMvxJy3k85+8FVCc8PJ5LFyco79frwy+74Pno1wPhWK/g7NsWFulI5fA8sFH0TsrwcCmItVqjX943wJ++7MNXHnpekTgjLPnsPcBGS67qMxVv3fp7rHo7BREQTKhmNkHf7i4zm57j3PKGwp6wNo2vu/z24tXUal4fPu8BwHo68vymS8cRioFr33DfM4796/6+716BomkRzZnc/JrO7jgv4cQUXTMgFe/KYFSihuuLDM8WEJE6O1N8uaz+wALy7JwnAS2b2FbNk7CIZFI4FgpAOMuVkT7rxqz4QXAs8CdwfXfKaW++DyQ7KVok+6jlmVRq7kMj03olAqWxczeLoZHx0kmkmQzeQDy+Tyup0gmHFLpDN29M0kkEogI+RldLFy2B4/efw+jI0PM6OrGtm2UpeiZ2cfA5o1cf+Wl5DoKdPfMJOkkUXWPI44+kfvvvIlapYJSPgvnzyMxayb3PPQIddcFBfNnz6I8Nky5WiGfyTAwMMSeSxawcPZM7rjvEcSymFEocODBB7DbssVcfcUfSKfTdHXNoFaZZMPKx0nbHg8++BB/Xf4wxx13Ai894lBuuflGLrjnJry6S+/MmRywz14sntXNPcsfY8Wzq+jt6iSVTGDVJsjZwsJZ3dxwq7ZaLp03m0LKYrLqoUTwsSiWJrCdKinPY9HCBQyPjACKmuuSSCTp7ullZGQU3/d5xcmv5KYbb+DuO+/FsixOfuWr2X33fbj6qiu57NLL6emZSeeMLupikc7m6Zs1m0su/S3z5i/gJYcdOcUH8u6/3EG9XufWG28EhGw2x3EnnIQPHHDQodx0040ooKurm3kLFrB50wbmL1rKbTdey43XXEFhRhez5s3nybtuZvkjDzPQ348lgpNMst/+B/Dsw3ey9tlneWbFCsTSTNUee+7BwDMPG9/OD6M1bTban9gEPn4KbX36MjoG4UfPA90CfBet5Vs+Wqrw4KpNCIIIHLpsDg+t2rzFA77vo5TCtiw82+bgQw7jykcuY/a8blQiyX0rN7FuqExfIYVjCYmEzW7zuqhtrnP+Jdcws6eTJQvmkk2lSCQyfOZD7+bCX/2O0uQk9Xqd15z4UpYtWcTXLvgJk5Oalt926sl05NN4Xo2D91rK7fc+Ssotk7KEvzz0FL7nk8lkGRsbY/GiJTyzaiWJ9WtYvPteDBXLpOw0Jx2ylE+dfx93PPwzPn7WK/n4Wa/i27+4lvd95SI8z2f/3eby8TNP4h9POYL//Om13PbQSvbfbS7dhSy5dJYZC/KcfMSefOyblwNwytH7sMfCOWwaKiIIjp0AcbBtG3yH41+ylJXrh+jq7UWsNMpOs2dXnv7f3YKTSvP/3nMm3/nlZVxy7W04ts1H3/Fmjj30QL72g1/y1e9ezPzZ3czu7aSQT5LNpVmyYCa/u+JWliycxVGH7o+nwCNB3fP4y1/uwfd8nnriSZRSpFIplu27F7PmzGJidJQ1f92gI347kuQ7UnieR1dvlg1rxkHAtoWuXhulFMMDPkrB5g3aEyKVsZk5W8c+rl05ie8rlILJcZeFizvIZCyUVkK+Bc24RPEj4BcisgKt+T/j+SBapdTdInIp8IBle4wPuNx28XpAIcBRr5vJfdcMY6ctJBEoNcVFLB9BcH0P16/hWLamaTxecmwHv75wI08+VGbOMgcnCdiw54FJNq5XfP9bRXpn2SxYliDZIdg5m9e/y+GGy+qUS+B7cMCRNrMWJLnsF6NUqwoR4dDjs1g2+LU6u+2R4OlHqux7Wo4TT3T42U/L2LbFnPk2b3xbjmNf6XPFL6rku3zmLLUZHwU7m2bPw2x+d0GRVcsneOUZCV75tiTX/brK+Z8fQ/mwZM8E89+V4ZWn5/nld8d4+N4yS3dL0FEQnJTLnMU+Bx4h/OA7kyDwkmMc5i22GRvytK7YdvE9qPg2vi285JAMa9bWcTIudc/Hs+v0zoGBzTXqXpm3vreTy34+xnWXj2PbcNZHOjnoKIcffaPKf3x+PXMXJOibbVP3yuQzCRYtS/Dlz/yVPfbP8Oo3d1PzyvjKxfNqXH3pJLWqz0UXDiIyRFdPirM/uoC6O8m3vvQkIpBJ27z9PYtRqkrNr3PrLYPcfH2R8aLHN7+ygT33yXLGWfNA4P4HR9l3ny6UlCnXhISy2DQ0yje+dQMgeJ7PMUcuZZ+9+qjVywBvCwRV0O62xurxYWA3tAXnnODcyUqpaAKQHcV7gW8HVrEKDfecq9BjaAUwCbzTPCAiDxmLiRkGwf9PAGeLyIVoC8n/KqXKolOvXiMig2jL2FaxU1gAFh8o6uhDe/jql77N69/6aQZGNiGOy0H7HMa9d97LySceSKpaJbV4PiV3HL/mIsqns3MG1Ylh5s9bxp233UKxPMoprz6VTWv7eejJdZSKm1k6K0e2L0exVsbK++STnfz+h2t56z/NZtPgGk48/iWsWTvE1Zc+S09fL70LcuQ7HQrdOfL5DDM7hEqtzuDgIAODRWp1n6t/McaBJ1t0FJLkCwX2WNCHSpewnQK2ZKnX61TLZbJpYVZvB35NmCiWqUoOx7Lp6u7Erfss7NkPx0lS94fwPO1+W68p6v4Y9eoQTzy2mUt//iz/df7xiK9T8ooInj8JvkK5FXwluK6L67qMTpRw3RqJpPDD7zzLEcfmWLDExlZCzfdwHIdr/zDBwUd2sPf+PSTtFJ6rqFVcqtUqIyMjVCoVxkcqiLLAFzzlauHCUliW0Denj3w+T1dnJ47jkEjYdHTkNIOeSuBYFhaCUh6lUolyucxQcRBfeSjlYYsimXTwVZVqtc5EpYzr6nc4TgrLsjRj7Fvks1mshIVSemJNpRJYytH3SppUIkkuleZNp924Q+av5wOL5s9SoBl/y7IQESzLIplOYzkO2VwHluVgJ1JYlmb+HSeJsh2cRArBZ3JyEgvRmsRgPNq2oJSiXq/heR7ZXJp6zePO227h+Je9nI6OGVSrVVy3hlseB79GvVICX2GL7jPf9/F9H9d1qdVqWE6S5StWcsjeu+G7erG3nCTJVB4ssJMJw5SG7bAsC7/ukrT5/+y9ebBt2V3f9/n91tp7n3PuvW/qfj1ParXUrQkECBBYDki2GUwVU+E4xnYgVQECpOwCnBRVVMpUoOKkEuOQECicwU5S2BXiFMTFYIJACCEkYSGEhkZCUo/q4XW/9+674zl777XWL3/81j7nvNciIKLkNWXWq/vuveeeYQ9r+P2+3+/vu9AYmO/soqpgSs6Zo1Nnk8d+iQw9pESMxsHJit//5FO89Qsfru8XUPXr5OcXIDZIUEoBk0BsWtrZnF971+/weW94Dffedx+qSjefY0X49V//DR55zWu54447/TWfoajJ019Zn/+EZE5BLOj6udNj0znnnNc/b3/3r3Tde+acKQJqQimZyOZzRISMoQaZTBQlWcLSjceaecevvv2m9d2/9RVvWE/+pZT142IZ4CXXIoSAtnP2rzmj0TYjl5/rObcHOTsQ0bYtp6sTbr3tHrrFrdx1973ML5zjR3/8v+c/+3vfzd6ZPc6dvQAoYpmDg32apmHnzB6ikaadUXLP3lxpGmW5XKIm/Nvf+5+wyD2Xex9bwzAQRHjk4dfyB3/wcW6/+25Oj65y7+f/BR58zRv41levOBt7rtGxUD+3nDMUI5dEKWl9zsvVQDAjBOXRx5/nJ372N/jJH/yWOu94wOhjezM2vClQMCsIhR/6736Jb3rr6/mCR+5DwgIJM4p1/Df/7Bd525vfxOsffohxFMb+EDNjAJTC6nSfknoyGSvCIIVhHCnFWPaZlI1VXygoowmpGEfLFSenK8aS6YcRKw2nw0AqmeOjywxj72uKpPX9LcURczMjpYRgfk6S0KqiFZGXMABF/NxVlU4CIkawwoc+fHBT+u4P/ovPszQGhr6Q00A5zpBHRI687+wqMQoUJWdj6BNNiagpTWiRNtIGZTR4cbVkLJlSoBlASmYuhagtZ27p6MfCT/7Ii3zn3z9HO/d5tKyU/eMCqRDEUAQ16NqWOOvAIgqoJUJR/ocfv8r3/71zaO6xlGnbOUOA0QonDEgMsNPR50TG56RWI30eEct0FEJQGgEN0Ejj/VIDeZVBjCDw+McGfv5nlnzPDzaY5PV8V+o83mrweV0imNEUoRSlDQ0//RP7vO2tc17xmhmGknQFKP/Hzxzxxi/tePA1c1DDVAiSmVQnBbDkSRhFsCKYAfUYR0uUAiMDKQ/kPBAIiAltaAna0TQzhIDKDmLQhAipR4oAA1YGxpTWzGw2UGlpQscszOlkjkigi3sEnRGas5gJQouZxyJmmVIKuQx8+3f885s25/5pmvgk9AIu5bybLWbhhuftmtfOCA70fMLM/tGNz9tuLwsG4PUPP8D+lZZv+rof4KC/xOtf+zpK6nn00Q8xm8Gzz+8z76/RyYqn9q9x95238pYvfQsf+chvEXTGbK9FJXPhwgV+/pd+gdtvu4dbblkQ2wsMcsSFvMuv/qtjVmPGyjF/6Wsf4K47zvDU/lNcfeEJ2nnHmfNwcnLE2WGXg4MjZrsNQ4oMRHa6SHv7ObomcnI68JZvPuH4KBFoWY09h0cJGVecOb9gTCs0qAdzcpaUWnIu9MsVe+cvALBcnjCbLRAtWBmgGGI++V69fMw//NFfJY0jIcK3fddrKGMhBBjHkbb1PU6mYCQXX9hKKVguLE8SP/YjT3H7XQ0Pvqoj1YETo9/qr/2Ws6h68GZq68UAWD8nxkBJBQSk4MmG+eKOFIwRj+MKTdMSQiCEQIwRMcOK1eB1ZBgGVqsVxTKqELvGj4k6IGvQZeaISk5eH9uE1hchU2IIqCohBCQpIUTapqONDTH+qfZH+py1vb09D2Zry3kTPJW8uTcAmZ5heUoIDdJERNT/ZomcjZRWBBHyWBBTUhrI45JPPv4EpWTM4I7bbuHSU5/geQ2UDEGMYBmhEKwgwRPFacHfDt6iKl/8mocQK4S6wOc0kmwFMUCla33+KCQzD/oUYmxpg9KkE0yEbFAKxDAyjiNK4Xi14vc//hgYqMIXPXwvbSjMZgsKNUmKznoISg4NGlsKhqD048jP/eLbueWW89x9zz1orOiqKSbCW9/2lymiFLPad6EUA6mLDoKaUdZJDJiV64JuKBRL/p4kzGQT/FoBy4Cuv1uZnpOQYn6vSvJFv95zRUl1zxybEg4RihlFnCVLJlVexPor2c1dh0Q2576dKG0flV+zKUFKDMtDghbe8NrX8OnnnufL/p0v45//r/+Ue26d+3MMUmm4un/I+z/4FKvhfTTdjK9+29u4495XcnJ0iMSuBuMJbSKhbcgFmmDIbE5gzvL0Kt3sDNcOrvDLb/9NyskB/ZmLzEVpmkCrDd285fHHH2exWGAl087PkMfE7//u+/mCnYd440MtnSyQsvJ+rYIoiClWgQRHwI/4kZ/+lz5PBuXv/s2/BNr6TarXxURAPDC+HjILHK9O+A//wc/y4D238sWf/yo07mBxF23moB0/8N3/LiS8HwUjZ6GUnphHxBLzuKKo+ZiioKkQG8VM6IKQDNIcCopJy1gyu6fKYRfox4HVEChFWSRl1Q+EssOqF8ZR6Ec/R0HAINdxICJQ/M6qhK1xv7nvU7IuItNl8DFAQW9i1x3GI7CO2LQURrQJIELAAQXJA1GFIQeGfuTwoGfe9M6+dh1ZjVXu6StjXihQBCRTyOi85X/7qWuMg5Cz8ZXftGDvgjIMIGoUzXSLFi2GDBlKIYgSBBoiwXw9tFEQEt/3AxfoJBAbIzaZsUCjXibThgYLwmgFDeKHgWCSCcHHYsjF5+BQAZRgFMkYwpWDxD/78WPMIAT4xm8L0Kat+a4mrlL8vUWw4IBFToVVr/znP7zP3fdEXvHahkzCVEAzBeMb/vYOJs6YIAVEyGzWNJNCMfNgvcYJIoFV6h08CkKRwphXGD5vFxuRelzFChRFRBEDNUgZtGSUgEoPjCTLmAnZMljDmEasKDkJAxlVB3ai+usAoix8rUVIOa0TgT+D7aO4W9z4R5d8APAdtZanxVnjn/7j3vhlwQDc+aCYAt0CdISdc+e5dGmf3V1lZ36Oy1ev8uBtc177yrt4Yjxm5+Lt3LM34/zCuHI6cs99F3n+6Sv85m9+gLd+1b/Fnbc/yDvf/k7m5wOz3RX9M4c07Yw7XvsK2mbBwelV9nbnPHHpUV59d+HiHXfzgd+5xqWne4RIc0aY7xW6hfKKBy5yYe8Ce13Lcrlkuez54KOf4pnnDwgSiYuWe++9n9mZSElLbj9/llSM1ZC4drXnvotnOV0ecfHcfZycvEjXLpjNzzKfz1ns3YqihDKABFQjRo+x4vT4EhRom8Umk8eQEMCWWC7kfkXBODlxFP309NiDsqaQx5GcM6s8gjmqA5AxAsKFc+eJsXWEZCyM48jx8TEnJyesDlaUAlICw1CRT03MZjNuvbjHzu6Cs2fO0c1auvmC2ayjaRoW3Q6qkPrEalhy6cVLLJdLjk+uknN2nXwraAAjkfoVyzGRc6mIVOMMQCt0zYzze7egTaRtZ47A5WGNsu/OzxElMpvN+Oq//HN/4uVIRP49NsU4U3sVLy02ereZfS9/TPuiL3yjlVJRtjExDImSMhIUU3GUX4S2bclW1si6SUDNEUSk4OBiQadAbCyUNJLLCFvINOKLQQh+rcSAshnD5YagckrOmqahDUZUWSMp0yQeY8SazhdPEZqmWS8g/nuoyZYSalBQagKaUkHFSGkkD4mSE2rTORVPChUEpW1b2lkH9XNCnGEhOmNUw07ViMaANDNQJTQNQRtMWKOx2QzSuA7gRMQXqIruUzY6ftgky56Uba7lGhWtXyL+OkfuDSlGMkdNi/j7pZTWCYRoTa62QmYRuY5VeAlDcQPL8I7ffN9n03d/CLco3G7/+2d6rBbT/T+2b/vKz7Mbj9V/SNcdu7dSv3Q9Hw2i/I1v/w/4if/xf6GkzP237LDaf5b5Lffypi97C4999L289su/mllsWK0KZ+97Ja0UupNLDLMLxPEYhkRfErO9swhG084Ju+eRo2f5hV95B7/+zvdweDowW8w5d8s5rnz6GWazGQf715gt5hQTmqYjhUAJHV/05X+RRz/+B3zZ530Rb3pw5JE7b6dVyFYw+jVzBY72QmWHKGyvhWWrz2xd/+u+T83IqERPwJs51p6hmV+A6GPKzCipUEpmGFasDl5EhkNSOlwnFHmrD1mBnL2vDKknYxQLGIqEGQlhGDPLvmfMmdUwMmbjeDmwGkaOj64w9Inl6oST0ZmOccz048Cw6hlzYtX3BIxsBVRo6tgSESzm9TwFIIT1OcdS6IISzfjXH/mTMQAi8tW4q8p2ux+XZ263x83sm/hj2nf/TxcsyIK2XZDGTBgEGw0ZBsek8zFB1BHoVeb4aMn8rCBtpJnPiCqUPNKvEgcnDtIoQtfCLEZ2FhGJPu9JABqIGDkln+N7o19lmtDSmFIydNZ6wCtK0EgbWhgHghqNZToxAiNtDCSUZTBGg1UZGBvjSAdKEBoVTA1RvL/mwlwiTfAkTAOgDQaMOa3ZXtuax9SgJKNgYJlWff10zqkgRIIqmg2xSJSISMAk0ufkDKaN3m+nPqEQYgU5yuhAYMokHM2QYmQTqLDIKJ4MJJwVKOasW8TDETGIGlALBFk4S86Oz+VDj+WEBqPR0Y+5OOuaRkNtBtaSszMBITiQ0YSWttmhC7sIDW2zB+b1iGugQ43v+K7/87NKX0XkffieGtvtXtx2c7v9basOSn9W2suCAXjFQxf5gw+8yMOP3MZf+4Zv5Wd/7hc57U+JAuNQWCV49uqKV9+VeOD2s9z+wINkjjlZvsi5W27hypUrqCp333UP165e5sF7X8fOYsGYjghNx/HxKXfceZ5l3zP0hb29M+zvvwAIp8ue05OrLHYDGgba4LpTKxmhoR+cfioVPbDkUhoRz+KDKKvhlDDsMWtnSC50sWVQ4+zZszU4LwxJsOLylib6dwKkNBDQdXBjVurg88+fFtupyRrtrAGRJUJwpMNM1uj7dYldDf7NzLNwJkmEeOCW7YaFzvD6GG8uAYIJCfT3KS8JJP1zNxKLiQGwcsOCWZFQDyi47nN8oQlrSho8eJR6jUS0IlKbr8+mmdk/4Xqng/9Xzc9lkpxUxD9nBCPQeHAu9RqaQfDjDYRKrwjiS3FFLuq1VIdDrAAqjnQDUTfnr4izNFtwnErgxua07yR72dznKXhWVfLWY1Nf0PVnhRoMKLls90FHcaQUgm3lmaLV8kKw2s9EnO3xALgmBuJnLuLIsX+WIVawnPyeZxzd8yzCzwdDgwfp2YxSMgqYpfq5Vj99Qj+pP2d06rvFpS7B8TYEfx8riYw6WlRlKsUyOY2UPGJTf6/osNQ7plvDrZSylgAV2VzT7YDyTwO82JZDxg3tjw32P/etYGngv/6v/iHf/0M/zP2PfD4/9H3fxYN33IvsnOXTz7/AuXPneOqpp7iws8eZ87exHHrmZy8wnlxeB5fz+Zzl0QEpFZ8bm4ZlP/Le33o3v/Qr7+B4NTBfnKHve55+7AkWs5ZhGHz+tELQwNmzexRtoG1Z7O2ys7vHMhn7R0sWr5y7PK3KwmCTpG1/v9FEQ+A6Zm+7veTeWVi/XjSisa3JbaiJq0LIIEpoSh1XcT2OgypSQWjwWdYsoxpAW59LrSbeEvCUwdeGthREoauHFINgY0ejgliLqZHThOR3UDIhu7STVCjFKOrrxjTeuWFulencth/7LLqvmf0KXufyOWk5Z2Jr5Nyj0qDYmpUThFIcdW41UEQ90FRFQ4BGMfPxG2NAxNecUCCY+fy6PrcqfRIoOUN2ZlZFaILQhuhTOAUGnxNj49LZsYx0LmwhUBDLiG6SLKlzpEhA1iVrpd7f+pxSCE2ANJkWra8Ajqrkzdpj5nMNdc4RwAoiOCssgqizyNNkXwQizjqo+rwoYpjUORJz4wRAZXNdnKWAIgVhI9HFWIMoYuJizOKs1sTKWp0PPW8wn2clA7Ei9PU9tm94ZR5EBA2GZMEqGFFKAvHxkk3JpWcoikoL1hCjrwW55HpNP3vqysy+9LN+0Z+R9rJIAJZj5IvffJav/7pv4h/92E8wP3uOYYB2rnz6qWvcevce2ijvfP9TfMnrdnnLq17J//zBX0P3AnvxLLecPcdCzvPq1z/Epeee5n2/8x5e/co7+egnr9GfBK4dJebtVWZ3nmewwu6YidmQoFw+yuye36fd2eHcrZkhCA8dAAAgAElEQVTlQaqTbz225ZJ+LzFQOLNwZxWVwqwLhAKxMbqgnFw7pN3bhUaq9MBou0jDOc4uFlgyZt0ZmriglIG+32eZTolhznxxa51YXQYyjqdYKah60KDqUpEJoWVrksaUNGZy9oBbiOS0JY8wQYOu0YFcB17fj1CfOwVmU3O5TUPaCuy7tnWkeAvFTCnRdK4FFFGSlUrhZYZxpO97xnFkLObUqZSaR/iEPdHMpdh1i3PQjq7bAQJWlBhbZ0cytRg4EpoWFYVwc7vwdhKUx9ER4pTRovX8IDujCuJaUV9o89ZCU6oe16/f1BeKQFAhZ4har00IaA2atU6TMWySgnxDcDJpl1UBK2ioOlATtNYZIIaQkFLRa/EAvalynRBAxVCZgtdSFylcLVN8AYgC2oRNsFts3XenhLBpGlQCUgwbl5RYE18EUaUQKAV0PEU0ehAVW+pBTCsIPRvEa0oq1DYB3Tayfx0DMD0/F1Lx79PzwBc1sn+35H029QmjMjL1Xt8YzOtW4gts1QBMDIVheTOe/K7ffPb1T9OmIHAnttx5NvJTP/YPmN31ah5+81dx3/kFHF/i/3rvh/jCR+7ljjYRds9wcHRK17zgrN0tr2K+vESSwJWjI+bzHYYCq1N37vjkM0/wi7/6bg5XI127IOWBUArzEJz5LMasbQGjnc3Zv3qV2XyP1cERv/vb7+O2e+5BL5xjvz+hH1cuNVJFaTwoWetZanRjFeVmc28avf5+brftegmm10x9s11A26HtjKLBk3NTCAUpBROhme9QrKD5uCbnSmh1jbaKhPV83OZMtkJrobpXtWSMMUEXGzJGO7RgmU4hp4ZFkxnHkeWy42RYMQ6Z076nT5nl0pHU+SqQUmI1et1AtuIOciEQ6hKzwRU2kropabqZbVgtCRJpYouIkktyOUkenXUsEMVBlRACbReY7XQQlRIDAcUUrBRCLARVuiJ0TaSbACYNHlznKp8ZR/KYHHQTITZK20QkG6UElwOZ0FpDSUIIQqeFQCZqBSRCwET9OmafH2JoyFbQOvdK66ywqvo8WQEakYKq69lhqJDFSJrUi9NcIh5cqyQIEOJZrHRuMWAR04KVUxQHjqbPYEqimlrfVBENxRnOxlz+VaRCVAKoSy6lJgQTSOj/CgH12kEDjYKYoFqxE0Cs1HkzUUwqyFfjJymeiIhfCyQTosuqLBTyaGQNkBO+EmYyA2MxCoUoI2PJhNw5WFTHU9N85qT+39T2skgAXnzxKg9cvI2f/Ml/zH/xX/44//53/h1KhEXnutI0njIX4drQ8MQLpzz97NO84VWv5sOf/DjLM9fYP+kJs462NO62smrY2e0Y+xWshAE4PFlxR/LiyhhbVqdLrIVTK4w5cObMGeT2XT519QAJPjk2CcxaUs7uorJYoKosZi1d1zAuB4IWxmGFSmC1WiFndokSUBVijOy155AcWa2OOXvmLCn1qGbGlNGgiHbrQV7KCDaS0rBejDRsZdi13UhLTwi+FerA86aqLvmQzetKrlrQbOTkiPCNKP6NyPoUqIew0YqmlG5AyJSUMxGn2yc0fxxHUsk0wY+jlERsAjKhFmULiavnIwSCRl84UZeFSKSEiKgiIXowHRqEmzugcx7JeSoQ9eRR1BFq2CoKzblSxEIo5u4U9RqreLKmHolgGGEKHEoiRNcDK1YX5YrQIYQb0DoN1/cPDTVQl0JTaymm670dnGulkZ1/ATXz7+KfMSWcU0IKU+BbF4SSibH2VQoERyilGEPKZIym9h9KRZuCejGyaQ2Uq77fhFYFRLGgSBhIlf8W8+K5oSaQACXV2oVJwWIecE9SoO1EQVXXdTHrxG2qoblBrrP9WmrR6GQ7emMQlIpcl0hc10d4qSRo+vlmtj8qwN3++2cK+KbfR0s0MXJxfoYf+tEf4du+9z/mkW//mzx76Wle8dBDXDrY5/YzHW07I7YN3WzG+bPnGBfnSP1VQiOErpCA09NTbrntDq5evsyHP/oRHn/mEmd23G0sjYmubRiXPaFrmbUt4zhy7txZ+tElCzs7OwxHxzz44IM89ulPc8cjr+XZ5w8xiZiMiHrBo1jezG1rJnUjXVhPeyKeVAZ9yXkHvVHaVTbjUlskdD43hYa8ZoAUC5mSG5AGtAEJiCohRkdjJ9Spznk5+7EGM4aKXJoEYo24hIKWgjXBi5ujMArMS6AJglLQxsiNJ/SroSdYYcwuq0gpEmNkOfQUZT0ulOvXAJEJzNBa41W4mV3X+6VRLFPKikYCRl1XsuvRJ3YUzKU8ImgbPSBFKUWQGNAqi4khun5fIIgwluIpoVGTNWMYRrQRRCJNWwEoq/VAiksZc0IkOqhSgZcYlJw38/QUrKsIJSUkKKFQ5b2sM6/p+TFGlORMZ5DKEFUAQqb5ZiPV83hiejisGWQNyrYHsps5sF6fAGdBRTAcoFI8QY3mrKiiZHWJnGE1eaYer63fQyrrHUKsyXUCAhoKVir74SS3s9xkShlQoic3E9ikApIR9fEowe+HCWTLmCkpeU1ilEghOedSFyavURBKHffjn3RbsX9D2ssiAdh/ruc9l59m9+wO3/M9fwdLcDpCv/LOEVrjda9/I7/5a7/H4y8WfuH3/pD7HzjD8hJYyLQNnOQrvHjlCDs1Ll64m3e++7c5HU6Q4ZRVhL5bcIaG1HQcHZ7QdQuaNnL1dJ+clDvuvUCUFeOHnyHllm7PB222Ql8SIcPpaoWlRNMEHKs0bOxpVRgLHC17TodMbpw+HseeZrFg1jWcO7vDi5efZhxHdnYbmlbph0PGkjjbXfCc2Zb0y0ME11H7olWQWqQVahW/U2g1QKlaURFHTkspaPDnMkkbqpOPBzA+HHMyRkmkVJyiK14HsI3ETwtACIGu62ga7y5jrS/IObtGHcVKoASXWPRprA41ab34+eQwaW19MpG6yJpNkzr186IHvBpxkjL6pEqDhuhfGh03/+wZvc9p8+C/Sk0Un6CzrVFyP0CnHgXzOMMUK3kTbYghlS2YEiBVoSiMRJfEmOs5p4ldpAbqKjXw/aMDTA01aJjkRetA2dbHbjmvEzrB0fuSq6tDUcqwLZfYfE5KiVCLZ2PU9WIQRdCKbkZ11oJcXINfnNId+n6dVK762vcqIrXE5TwyyRKmjMqUwTKjgeVSF5CyluBsB603BvXJPjMbsH7eH+EsZOZa6Ylut6lQuNLQUDXmW0nDdhORNfX9cgn+Pxcta+H8Xsvla1f4+9/3nXzNl38Fl08yu/e+gQ++/V/y1r/6jRw++3HiMHDuzns4OLrK6dEVnnzqOV7xylfxwtOf4MrVfe6/504uvfAs/+qdv82Hf/d3ePbqIefOX2SnDSyPDulEyOOAWaEJEVVl3s04OTrm3IULpHTM5Wv7XLzzLh5/+kkefvUj3P/KB3jy6mWunYyc36mSAYuIbN2bCY6El8oUawI6DTip/Rm2GJxJVzwFiyjSzZB2jjVzig9oMC/qxAwtkaJzsg7kKj5rYkOUjRzP570KHtQktllLgHwfi1iU0ngC35cExVHnIY80Mfk6084YS+N2j8PIMI4cLeesxoHT1ZKhL6yGnmXvNTYpJSyXtXf79rgo5tK8SYI5XYub0cQMy+4pb9LRSCBEIUtGMaIFr62rrCdRaWctRY0S8Pm3shkhCqEEFhKZhda7RICUB1LOBDWEEU0jKo7Ae/2Vs7OTHFJzNTbAUX9RxRqrE7UQm4CWUPuZSw8tlcoCFoK6qYAkc7Rc1RMM8HmzSpVKyawFOgWSuXugyym9D2Ae/Kp0ZIme9FJQgucXbUNJmVgBoGIu8S2WKLh8MVRqoZVAA3RFfR0QZzqSCEEDibRmAGSDwPj5hWkcedJlUrCoSLEq13KgaRwSQkTVAbQ8ChAxdyChiNUj9yJ+qxamWbywP9T6CAsjSgLJFAmYJErxBA+qjOkm9tuXY3tZJAC3nt9l/8Vjsg7sLmYsVyuaRjg+8o18j48KR8y47cKckk8YZMHTl4+Zn9vj7GzOvffcxcc/+iGCnKcs4dFHH2U5nCBtISTv8LfffQ+tBdq2Y3b+VpTbOTh4jhcOH+do1ZPthHYulAKjjIyj0s1db7pcLolhzunpKVGVrm2YzxpOktE00LYBy8LhaskqZUJWQhdom5lP0P2S2MxRVXbP7DEOKw+yOu/gp/0hTRuwtAQpTD4TG40qG/R9jUgahUwyc7TI8kYqJAGomje840+af3f5EMYx1ck8UJJn1Tcim9OCNDn8eIBYM+nBafWSN4HNFIT5+8hasoKYg9k10J2eLzcsqFPL2QAFjRtdam3TApms1MK1mzugp/NRXFq5lmjVth2QOjpeF1IErCZutmEDJmTf1hKTKk0pHhBPqOD0PK1oySZYzRudJZCzI97jOBKDEOskOKHSOWekuMtN29XAI3mxteVmjfwNaYO8bd8TmWwV84iqMpvNfFKv5z6Vebi0CCSF6167yoMH58WD6mJey6KS19djWqxzDcBdsiDrgrcmRjRv99vrrT6nz58kN2V9rbxmQqrcg+n79PytQH4otk42xV4qA1E2n7/dn21r7K6vw5/pJMDrVqZ2ZX+f2ETEBtLhJe5+w5cj7Q5//Vu/nWevHXLxwdfB0Yt88Pd/nzvuu4fVkNht4Hc+8ilef/9FPvSe93Lh1tt49sUX+ORjj/PcpRfpsyJnYDg9YadrGHr3Li8x0Pc9oe1oZzNKGjlZ9ogEFnu7pJJ56KGHq8Qr8+rXv5Gj409xfm+O5ERBtubUynXJ5Hx1PZNo1OR6i2FbMwBrVtawImjcyMEkNK5Ljw0SIrk4WCMO22KhYBowAlZC1Wa3hJrj6rSvANf3wSm1LrV2YDTFRiVbQicZhBRmljmRTBsbcvbC31K8vmLMhWY28yLg1Zx+NE5WS45PV2v5opnR52FdOOxJcqEfx/W1EZFNwcJNaFGd8ShiYCOmvk6lamvkjnouZcoFNFZmtFp2BhGSGYYQo9YNsSIzbRE1UjAsKMPg7lE2VrBLi0vPJhmPWB3bOCMjBVHDcMmXBqm1XJDHQpCIqVTEu2rp61rexICEzVxOlYJBRepF12BNKQ7trWsUzI0Ritk6aTATNLQe3FteD9mAM+clZWd348YNK6iCuSFFqNe4MSFurTNKZQ1woEtrTZus/9tIBFWUoj4fi5qPP3W5XEnZZ0yZ1r5a15ANdELyHcEXHGxw9y5PcCRUaapKZbk90SgCUQxIaAi1JtIZAy9m3zB6f95eJgnAgw8bj7XwV/7Kwzz+sRN+67cf597bdjk66YndAIct73/3u3nwtj3u3LmNgyZw930PsrdzhhgOeOoTj3LnnXfT7ezxu7/5McSU0MwwO+UkgQRYdDOuHR1yftGhVjherli0DTvzyP5hIjTQzBrf674VigROlz06g50SSKkQ5y2pH5jNd9mZH9CvCrksmXUBWyVaxTX4Y2G2EzlZHjNvzjBbnKdf9ix2zpBMXYYkPqGWlEnzJU2YMRwfefGxVv23Faw6zKRSB7YqlqumuoyMGbJ4BzcVJIoXw+Te9daWWGXX4acElgpjEYbgiHVKPSKTbtq11NOkNtGPXdfRtpMeXFFpMA0UAuNqQHeB7A42pQaUoNVeLiM6Mo7mBXLqqJeEWAuXXAKgGgna1NdFchFyGWnDwhEDLeSqSHS5TGAomXCTx3Maxoou14C6SkTAJz6XzDjKpAqShBwglILVyUhVKWyQbsXQkl1SVAqwSbC8+FcJ0dHJIsM68Jcbg8wia8/+okZRGNiwwNsWkGK4hrbeczNjtZ2gVamWBmiDBylTojpR2akUjvueEDZ2sloXSffFDtjgNnNFpe6PUBcQCwgBq5qluBVkZqpcaQqYg6IWrgvOtpNEuQHpn86hYKQtlH+SZ20s7TaJw3RNSymUlGkmmdJUr7K2k5uQf7n+tVLluDfESS+v4N+LBG0rQIWNmOAz6r1l0x+jBbfxDA2p9Hzo/e9FbnsVd77hLZS9C3z0Xb/Fl33FW9kb9nn4vtu51szomzPMOOHg8DK/9huPcnX/lPe99wN8+Pfex7PPPM/52+7m9ou3c+W5Z5CcvU4DI4bI2fmcEFxqma2gswXdhds4v9Nx5coVZrMZTz/5FNK07H7iSd70JV/M3fGUYbnPTAO53SOO+xDASiAbtOJysSzXyywVve78J2ZuukACtUh3SlLrWIotsV2gs9bfpdQ6kNzVZFspEhlFGArM1OdrE0dbUSU2Mx8j2GZfkPWB+XF0KKPNMDPalGoC758x72bkXOsAhhPSWFitVhiZWZUrjos5ucAqJ06WI6UkTldL+mFgGFfkZKxWgxtYDCuiBt9MayxuY3kTqdeZKl0X0eDrsljyulYTJALmxb0EpQtNtbAcEKlSG/H1I5OYN5EdbTgjM9oKiPWqKCMWE+O4QlJmLEbb+t9Do54cBiALOXldoBCIbYRx9ASyCag4wm5RSOJSy5xgKIkcDTVfHxr1/RWyGUWVogVwv37W6H+dB72CFoqh9T40umF5zczRdyDQIzIja6GI1rm10IZItFBBqAmzcgcjckIp3hdNUQ0+P9tkr+nBPSKoZahri2K1RlKrHbJUJYKbTKh6dmYUpAmVkYWmBbNMKlpRevOaOQpWMhmX4hl1btK6pnRWbWn9+LXx6+GGEG7Bmg3GkokhVseiP08AttvLIgF4y5v/Gh947z/lX/zMR/i73//N/Po7HgdrEF1VeimS08Dp6RG5G5B8hvvuu48r+4fkPOeWs3cRupHL157hoUdewaMf+hTzpqUUpY3GahwxMl3XcW3/RdJiJM4bxtNTulnkMCdOTpaEJDQN9H2hHcumYFECKsFpLVWyKLGdEWRJaFt3BxKlWY4M44omuMdusUyqLj3EyGo89Z1NNYI5qhC1YehXSM6ERinjRssHU5BWfMONGrSUrQDHK+HdzQFx73HPnL3jGxv3lVImC8jNBlGTptusOtJsIWQibhG5cYPZ+EFfv4nS9Y5B2xKLUorbmtXXqcYaeDnaoKZQNvaYgLvhFEMr2jUFasYmqJueO+SbK+rLw3jdOW+zKKqerKDiE1VFKiy7K4FV25ztBECmwq801MCsBprmBYReHGZON1ipM7fLC6y4/t5ZHwH1CVKkOGrkf1jfS/fY3yCMauZoWqVWRaqFmxgm7tDjhdfTsVaLQwkQIVqtO6l/90QiE4WK3hghBi8kUy+007pvQQQIsSI5im4h90GoNnasj7tsWRNuB2r+fHlJ8a8nUB5QTXIdnViZemyO7FvVfytmSiJjQdBS2R714N9Mq/1qTYNsezz4iFXUR66pB852PcPAthzlz0qzKpsxQ8jk0d1RmnnHvffewbt+4x186xv+Ak98+lnueuAh8mC8uH+Fs+cvcub8K7ly7Rq3zgPPP/0M5zrl5PiAZ4cjXrh0mdPTU7puh8svXKJrW4yR5ckp7axby7WuXbvGuXPnADz56FruuPNOPvGJTzBf7JE0cOnZ5/jCv7jLxz72Md70xj0IgTSM6GIXGfYRDWT1FNMT7A2rth3wb+bBTT/bbtc9Pv1c3WamMU3VN0/PU9UKR2uVgwg2JRuitUg0+Hgz33zxussvVGR4EnTUx83XqRDclrcUCGHEojOA1F3bbXVSx4iSrRBzJJowEolRSWXGctmQsxFkyTj6tUllhY2KxcET8c9Q6/L/V+uayLxrkaD0unITiSKUVItKxUhSao1UQSZZTJ0bESGqz4kalKhK1Fjd+HzeGksmBCWlzXypKlWm6XJNVdYATVHfzSSKB/siU1JZXBYUmsrsCMZAHtxnX0OtrVK3TQ4GAWUE1u43ZaMCcAviafyxDmiVKrPEGWUrCTSjMsMs4vBFQcVtcNWsshabKrrJTc5U17IdQdZJqCqoaUXjxZlsFS8mBlK+XkIM1Dm7ynfEn1tsvV2jv//WWFNxVcFkOyw1kYAJuKnHKlZrKG39e1ABzOsXslBEMK31W1LjlD9PAK5rL4sE4HD1Ab7mm/e4dnDERz/+Xr7u6x/gDz/+BIdX4BUPnePqC9fY6TranZEz542//i3fyBP7V3i+9Dz4itfy2ONHHB08hYbMI2+4n66NfOgDj9XBBW0MNLOWS/uXuHjuHDs7c1bjihcOXiDOlE4iLzx/RBuEMBMajJKMYdXTtuccOaBBk7ETO/Z1oNs7S9zfrxuACE2IxFA4PT5m0ezQaYQu0EQB8QAxakOwRJ8GkmVmbUtJhdk8eyEoZa3xzsV8I6gEIpmCrgNhDRvkcioAnn6f6GOt7ipp3BQ6pgTTZh0A4zgtTP6YEDCbtI5Ve9q0LBYLYjs5xjiCFKqbTClQMmgbKLnUzbw8QN/4bRtNE2tRldTgskoyciAUrcGiSyWaEAj4xlXTBh9mxphGRHSNascYyTe5B69Ol9dR9WvK3qvCvAhJoGjG2KDGHqiHtbyFyaqu2p9206JTN5LyPujo/7T4aJVImUXA0S8R8QAdJcYZi509L5rGrUfDVGdgjmxbLVwegGzJC7Om5+S8Rp9ygWmjMK3OPybVVciUIJ07iESh6zqCNl4MLRFKWr9fxhAX0GLUQsgpucBf73KHsll4KTW4cWapABa2ZFUidU00LzCrwft2ArBO0sjr192YrLo82OVFGUBgqC4suXpb1DTUg0ed/PT83nodT71e5kxYJjsDQ/bdtWtzluDmJwBrKZNtsRITKyCbwm//m0tlVDdSQhWXVa5S4eTyC3zL1/4N3vOOt3P3K+9jKPCu33ovX/YF93N07RKPvfiHXD26Qjq8xulBT5y1lNNDnnzmMqenK+666x4kF/rjY8ZYC+Cb6PK1GEkpsbOzg5lxenpKf+kKix4e+9CH+II3v5k/+ORj3PPwG1ihfOqJJ/mu7/ou9j/1di600O60LOfnWZ08SyyJ2HY03Yzx9BqSyhqguFFuOD02Se6uf87m91LlGiE2EIJbgYqS1VCauvlXIRWXiCQDI4DE+j0w2R1niRA2DNfURASZKM8J5QY0OpjQ2LQ3x2wNRnR5j5y9viulkdSfUEpitRoYykgaB+ZtRxFqiGj0o29MeHKyZOgTB8fHXN6/Rj8kjk4PKEAeh89tR/ws2k6nzLvGEXjNHJ0Wxuzq+2KQi9Bo48bK2Zg1HdhQa5ESpTRMWqFF09IidFHptKlAk5A1MOaK8jfqLj/RkMbHfewazApSMhILY04IhSKJqAGJwhATJlIBiUyR0eeEtmr+TZGq4fd+4s6EhnqgLBtHNXQLYMguwfHXV+Y4U1121D8jZXKtRWibGejIyEAExnFwkCcUIlt9zKN1vP5OahEwrgpQNgAKLm+Kxe1Jpx46ORyVUja205MsSyYR2+QEVJ3pSo0hBHz/EZc0m2wkmp7UjMDGvMJzlILkKUkwRIZ6GgGLtUbLcEekybb8JkuGX27tZZEAPPP0NS7e8oX88s+9k252gJQTTo/gLV/5AJ94/EliaDHref4EHjl7G7/127/IbHErZ86cZX//cU6HA24//ybuun+H93/wNzi/dwvHpyMhwGIOu3u7dPOWJ5865P77HuS+868iBaOZBS5d/SQlvcCzz5yQS6HpIljd3EdGUl4SYqFt5szjDLXMhd2WkzJy4a57CP0pi9mcJifmi4arlw7YaeC0FeYXzhNb34ii6zqWJz1dM3O5QJosCDNkGEuPqm/4AZCL27KlDFZGhoraux5f1gF2zj4oxjEhMax3C5403kNOa/cTM0eKSzGGYYBK6aU0LWRaZTiu7zc1uq5zXXdbpQ11AMXoLhXEri42Rte1gA/Uod+Swhi+my9OzU21kyWreymrEhoj151zo0aiNsQa4E4MRirJaXdAo5IRuptt62Xmxa5TAW1lTBxdr5Pr2u9zCgBLtfUMyOTMU4sbhera4AA+okYrunaZEBG3QK1JkIjbpIbgNScWFZo5zXyXbucC8wt3QpyRiV44Vqnjkk+RlLA8ekHYuKS1AUkF+gPEEtIfkVOPWEbzcJ38xZmOXPcAGGjblmZnh/nOLs1shxBn0LidYR4HR+bSim5iIGJgLkauGmXLCcteUFxK8YLiKfAy32ipqUkq1aITNgHstvxmu87kxgRgkmV95iQgr6/RWKl1zeZBm5kH+vX83RFlk0x4bl29s4sR6+MTSruN/L+8ZEB/dNuuc9g4PykxNvR9T9y9hTQWpJvTZeHirS3vfdcv86qv/GY++eEP8sL+EV/xV7+Kn3/7u3no1ojEnj/80EdoO+H8bXfw2Cf/gP3nnuHgeEXXdRwcHCHLY3Z3dyGNXLj1Fq7tH5LF7SlTSmsUPaVE2FuQg5DbwB9+/BO8+jWv4e2/86/5hm/8Rt72NV/Pk099mtlTT3P+4TOUPDDfWXC0vIO4eopiidjOGY4P8aF7IzKoLwm+10WZm0c3f1Nx1J6AaKyOLkpsggMd4r7uGvKaMZjqBHy3Utd5u8mB2956AaVcd/0nK2ihIepmozuqPnqSuk2PT317YnvHsacU37Cwl0QZVqyOj7z4N40UM1b0mAnnzhXSWLilH1m8cJnj0yVyecZqtWK53P/cdLI/RZu1QhPdEGGZIJXMaT8SJbl9ZxPINqChYcwjZRiZq5HTEt9VdoaGhk5g0UY6Ao1sNvSTUhxmkIIG3wNAxJAIGutGXdFReLOCkUghI1Kqa05x851WfSMsC2jjSQBlkqsEKIUm+94vYwUmaOv+EF7WAbKRouXse5KsSWGDUDasVbFNncA4BIoJ83lmyCMSR7Qt5DQSFAJGo+oSpNrH8kRKmps4TEyyaiBYWEtKJzjEa8oipl6XFcV5BhUll3EN3sEE27gRRpayZp5LDd69z7rdcqj7Z5hBSZs5chpnU82AViBtAi+mMp4izr6ZuWIDhVJGX2//TG4E/P9de3kkAJ9e8dvveid/69vfyv6lyK//xvso4YhHP/YE4wjDsTE7B4tW2T8+YdyNnBkOuPLUi1y4cJEXns0OHqUAACAASURBVDvk4kX14LQRrvQnvO719/Pkk086S2+ZkjLL8ZiTfoBVz85e4769ukdfDrAyAEYTlJHCTuzIjZKysdvNMRK5axmXxxRN7LSC2h6xa5h3M0IZsDSSS89qTPQIM0l0UyFrEYpEp11NGS0yplNyGigpMJu1jFZIMtkwQpFc5TowjoWUBrrOfW0x12krvsteJoFFJmdOqQVuGoBS/Yw1k0Yw8SJQauGkVPvGANVRxQt9VKNvuENxHaCI72slsn6OJxETUuE1BEgm26lv2pGMYIGSDQ2xWkBO6IJAtTYL0vjeJqakMtCGDqQhpbRZ/KwSg6XuzGjlZjLRAIRGr9N5B/HgX8JL6UazTVAxaTRVFYmxbozl8q11oZLpWn6lwe+pVlZk7egmii4Wbj24ew6JO5TYod0OuZtzbA2WDAtGrAVfUBhzrEFGJNuISMRKIjSJEAPkwZOaYYmMPTON5NSTh95d6tbOEgVVXzXm8z2a+Xm0WUDbkrJRJGGxJZmjx8Wc5ZrFtsZPEUuDb0hDIo4rWoycIxJq0CVGEEfQ1avOodbQ3BhEW/1XJMO0dTxgYm4NZ8mp4fovaaWdzQg6uWv46pMNmlgTppQxrRucVYCgsB0gT0FX3am4UvT+sG4sSc3WSPLNDv/NtmRWFBZnL3Bt/xByj8bIaIUYWpRCGkaCCBYLYx6QpqE/eYFb7n8TB0eHDOmYkDoWiwt88iMfpmTh/Lk9Pvje95COrvD0oHz+G+5Acs/+i4eeQBbl8tVr3Hv/Qxw8/zQahK6NHO1f5fyZs0joOB0yr3jgPlJKPPXEY2icsTw95OJdd/Lcc89h48D5C7dy/pbbeP+HH+XNb/4SmjZweHSNJ598kq+48w40O7jSKsjerTTDp1lKQ5idRWdH0C+5MQEQQkUuN+hokevlDeu/iUsgPLjzYlyKoNJslUz7TyYKIRBC9DlVGy9MDeKsrfoC4MWkG3kQ08ZhSj3WgEizrsWdtOATU7P5uco1QnaGObYUMqHJtFYYwoAyZ0w9MvbkPEJ2VDaQiHUN2ulaSCOLpoOxcBxuYu+V4AxmdvAh5MJchTG7zLKokk2I1iMYwQpOZvouuFaM1GQsRIQBIxKlpdhYNxw0ShkxGymSGUOGUjBaRN29bcyDy1mleA2eTq5uUgu/lUac640asKqpd5bfbT0JBQsFLUYw8dlEXQkg5qi4221m38gqu5Sm5Gne8XjCyghpjgZf00+OBrSZuYNhhjPnIvP57eyfPE5jStMFn7OtwzT73idmUJMQFUFKXZuIlRUoiHrROcXlzRIDplVyI+LgkbizkaEU82TIGbI6Ngp1jwWfC6M42+p91VcU1QQ5OFg5jbki6z1sLGeobGu0iDH66lEquFOltlLwXelxlYOLNf88A9huL4sE4If/0/+In/qp/5b5Ai68qvBP/vH7ufO2hxmXDVlGmjMjZ8/vcToc0XQzrp1kvvwLPo9Vyjz6+KeJeo7FfI9Pffwx7rr9bo5PT3jglZ/HY5/6NCYelB4cXkHU6MeBcRzhdODalSsUGQhxRtu67m/R7pDyiiZGxuyLftdGYrUf7GtB7awN7OzdguaendCwOl6xmM9oQs/h4SE75/foVxmZuQWdmRCaiKVEMS/QGtIpTYSclGFItIs5VryYMtTFJaWBUpS+7/333CPJB7DLepwez+bFRY6euiQEZI16+o6H7uID1WLOqpZ/nLzdnSoTrQ4zIdA0gbaLaJw0157QDNW9xT/Lg0rfLNELynx77skpyC0mvUBoWjx9O3KCay7bdrbxoa7IwTj2vqNj2/oxk8nD4ChY3ljl3cwWutlLHnPaV0HLDTtmbhetWi2QFZpm2nEyrtkAYuuOPWZVtjMlB75rJUHRZoHMdglnbkOaBp2fJdVEa5RIyZnV0eG6yFrFawJKcSQopeQFX+q7W867lkY74mLuW7HPzxJx5LtJAyEP0J96EpBPoWSCJdQS0s0JexeR2R4DSp8KwzDyf7P35sGSZXed3+ds9+b29nr1qqu7qqurelEvqFutfUFCgMQAYodgwFvMBDbYxBjCDoPDSzjmn/nXY884jA0z4wGbscEMMwxiBgnBhASiQY2kXlVd3V1dXdW1V701t3vvWfzH79x8+apaSAIx3WF0IjIy33v5Mm/ePPec3/Jdgq+RbmzCN15cWRN0XIU1hoVBF+NKghVlLF07UlNhiJgU0SGSaIS8RwvJMGjVQjPaynRbBWur/1lRQx8k57adsZR05suo2fMJPv9d+BAhKZRJ6JDVW1KWAA2C6U+zOehzwi5GbCqqA1VYolQN9+FKb54OgKh1aXAdtvcmqKLHobseZn39EItLPcZDwYxvbm5y7txr1DtXWFnoYdKUie0T9m6wde0mDz7+bnyEsrtIheXGzZtcvnSBtfXDjHe3SKXjyT/9UxYXFzl//jxGO67cvM5D7/0QG2trfP76NYKKlL1FTGeBXrfPzvYeJ07ew+5owvrqGmXvBlYFCtenrjym7NHrL/L+D30LZ0+f4f4TJ3nf297FE09+jre/S7OwsEBS23RdHx93qEOgWL6DcONpQMi42lmo9vkk7bgd7sM+zv/L3LfXd8pE3Raa0D5nHmYkwfycwprTaGdRRudEwKKSQAPl+S5XQNOs84e2szVhXjHGsn9NRCXz1uWfW45S7O53BpqBFK6azDuqqgnee0ajkcg5pxHdrvxtMBCd++3t7a/rPPzaRiWFLBpU8NhU4EMkJY+KgSZfY41OYv2WNKEJmATeJ0IWokjJE10gKPA0UhCIGp8CdQw0qcanBpUSPoP86rYgpRUh1YAn6Yiyray1YM+lIBDF/EtHCDkx1LlTqAOohPIZXJjXIAPSiUxqlgDEIAmAnvmayFmI0UunIEGqwDcGow2xipQsEusR03rCQ8c+whdP/x7lSkUsRqipOGd3+5rKN5J8kvL6mgPk/BmloGcksUotv026Bo3K1fcMi7x1zK9vCemkJJDOSrvuCu4oP2s/CZ+H/oIkRU2Uoo5tXztESUgynEuMTiPRR9ABlQR2LPB/RfstfmPsjzdFAvDf/jf/PWdfmrKw5Dj70lk+97l38bd/8m/wK//sUzTeUhSem9f3sD1YHCzgup6+K+iXjuXFQywub3Bo5TALXdgavYBTmk6vJHipkoYQmEyHMqetYlpXbI2GAAyHu6hCJlRpSqrpVGAB+dgMCjS4bFU9aWpIgk11xlI6jU37ZFnIkmtNQxMFe6lsgUkiXxZVQ4piIBVjZDqtiQui1SzYOSOGSk09B1FoSbeRqvJoXc7+Bvvynm11tcVPC4bOghFc/vxmNmsVtyQzJRUVBTO8q8nwFGvtAfKokKSaWTt+RqAj5IQjzQL52YYTI9pmAuHcMWilZnwCNfc4EUUFRx8MmDweE21OLpCA7A0chlsCBzUX5KNQcwvjfhCQhBibNfKNMTP5v5YwbooFnNECxUltbUQWTosiGYvuLKO6A5qiR5M01ViSxBCnoqZjHI2yoDRNE7Jefw5kfYNvGkKW79Rkky1jCEGOw5u+SBOiwCVSXZPULsp5iBKwGzwlEW8cFQWxUTSI0Z0PIcuwyfyt64ZqIpAiH0usNljn8hwzQsQrLUo7nJ9gCUJeixnzqpNUUDOndr8dvD+tRHmnxa3DrP7aksezCpA49WpUFD3p9tvUGSeakmyIcWZaltWCAoQWw0brzKlnCh3CLJTEbeb0e0tw+eYZ+wHspKrRusMDD76F89d3ufTMM0yG2xRWs7e3x9LKOsfvOUUzPcLejSs0wxpfdAijHdYWFhhOPKos0bpga3OTwWBAWZZcvXyJO++8k4sXXuXekyd57dJFJtWUazeuUvmaor/MJ373kxxdWkCpRKe/zGBxge0bN1FKsTscU8fIlRubTH3C6UjwFdE2rK6tUy6tcvbcBS5fv8mxe07yO5/4BA8/+lZOnz7Ne97/PqavfJqqsqgCSIomZnfxwmFsB4PZl+89cGYO+l7kEzU7X693H9vg/xbsfvucgy+lSErgQtq4TDCVroBWVv6GJAn7/587CEqhVNa2BPHKYP/xzEgKuUbmE08TpDATQiLpgI4R03giHWxTQUrYoksMAW27FNMpPjpMuYtpCqx1GNNgdPmXm3p/iaGSB59IyhMCNHXCN4lsn4DJcpCyx+VOaZavFJjfPiE/s4JmlXZSxKdITI1AXaJ48uiESB4Hud51EvljpaN4POgEilzhTpmcuu9HcmCbUO1XJ2phSeUAGeEhCYSRfMsxQMb4pwzTkTU8oVMhnCccBIPVhiYEbBowHFc412Wpc5yNlRPs8CwpFKysHWI4vEFMXXyYSswwd3wp40+VOB3Jkc18KJBgOu9jbRCf8meZne95ThE5oc5SysLFIr82szfPXOEDRbP5a6x9uVbmWitENVEpSJqY5NiDSsKfRr4TLS8wW/e/MfbHmyIB+JEf/S6uXRnz3vc9zq/8379KpygoVxI//1//FH/3f/if8dqSgufUNx1hd+c6W9Mdfu3Xz3JodZm3vu87uDkcsrV5DVMkpmNFtdcw9Tvce9/dnH7hLJHA1s4NCpfAwaUb13BWsbCwzLC6ytbeiKLosLiwwLXRkGlT4bSiMOI4OfFTFrsDgq+pmoRWkcFil16/S5ESxnt63Q69TsHy4gJVVeODYmd3ylI5hWjQqiBGUSiZ1lOMht1JRbdbYlyPwlmcMwRf07LV24Vb3Ec9MXkMiqYRGIhzDqUSjW+hMBnLnAIqg920FnKZmGUIzk64BMy8A2QxykthzJKiKaAMFB2HtpqiLGdBfRPDjLwqhMAM/Ukhv86+I+q8a6wkOPutaqWkw2Cy+suBikGSCkz0CuOkZdgksT73M0fXSHiDWcAO+cztEDuW1iJdFHXaIY6hmdhspMqnrcW5vmzwhUMZg3MltlwQWBD753GfAFXgOn2i61Ml2B1XhJAYTsZA1jw2TgLpogfGzqr+WWKBFBoxdGskAYgxUo+lyui6PYwrKDs9ktIY44hR1HJU7JCSxymL1dAvHaPgCTEyGtf4MESrhNVgjWxmk7oi+kBTTfFNg1HS3Wl0QRgOxdgod4IGztF3ffrWQawxsaKbdCattdWghLX7VduU9ontedmfJY63SnyKlb3A3WIQlRUzqzTJedJkAKoy2QsqoTLRN4SA8TnxVGJq1+JYJaBQ+zKk5M3uli5Ee8xvhtHt9AHolx22trd56cwL1NUeD5y6l9GeYmlhkWe+dAZd7fLq6S+yePKd3Pf+d3Dt3Jfo9/tcfPlpmonntQvnWb/7bm5evY5BMZpssrO1SdM03IgijvDsc0/TW1jGuIKllUOs9nuMtnc5fvQoD548QVU1XLu2TUPBI4+/i8uXL7E93OW+++9nc3Ob93/nx3jiD/8tZT1ma+smoDh79izLa4f5yA/9IM8//zw//nd+mrMvn+Pw4iLD4ZBji8tgJoQIdVWzm2oGbkC3s4zp9qiqCU7tY+1nYx7+c8u4LTEgrwAZsz+/5qlbChgHfE2MzYm6mHtp44TAb0qUlnVkH0UoUAxJCLRA9lrFiKyQpU3rK2BmxZmZvHB7nDl4dIBvPRBiwieP9RLodkgQwE6G1JOaRl9nr56SdJ9yT6RBjSn+ItPt6zJcludVMVJNIdSKUEuAaAuRjFYpiQeAgiYEiqy41gagxEiKUMeIMxqvmuxBAl4lGjwNlXBFfMImBP6jBeeemkYC/0zETlogKUaLglggopWTKj9iZtXOG6UTQQWBJmffn1ZaIPiGqKDxUoiISfh1MbaBcYbzJkuoDMv9o1il0WXBjh9z7I6TbN7c4djGowAsL61zZOMRjqzfzz///Z/h8B2PM7y2RzJdruy+TKffEWimFnlQ1eL0k0EcfVPGqraiH5Go8zlUqs2ucvW9TWjUAYEzKaa063SraihJF7o1zpQ12WiNSZlPo/Zfu1WwI7u8i8qdli5Okk5my5OM7eVsIjYKxMgq8jn+RgdgfrwpEoDt7SEvvnSGf/pLv8sXP/0Sb33HI/yeOcPf/sk+IYBrPElDExs2Di/y6sUt7ugPePHsNm//Zs/Va69x/eUrvOXRh9k4eg/PfuHPsCWcOHGEs69eofJjUIGyNNTBM/QTFlSP0nQZj6ckNEVRzLSSU4ImeLGidzVVNaHpemxKdF2HoLWQNIkURYmOCasNzjmKQgL9Jgb8ROBGNlUU1mbzLfnMTdPkqo0mBoUqTGa/x9ymal0htQTrmQCkFLOgV7Ch+W+zCy7Lm6nWjMvkyhKQ9s1c2kqGBEkZqhODEE2NLAO2EOiPmXU3JBANpJkxmLotENt3WFVq32K8fc+W9Aq5WGpsVr7ZJ2bKQuOzyRTE6HJiEwlRFpO2szD/+m/EKG5jFXlaabNbOQAK0fmw2hCNI2AJGCZBZOKSV9CA9QHdDNHWolwnJ2niflyUfYruIrrbowqR8XjM3ngPfEPyDdYVGNMRGJHSNNUUrQpQUboORlqi0zoSvSd6L7brwdP4qVRSokC2om8yJEnnYFjgQNEH6lwZ2qkaCqOp61qcfbXgca1JRJUlUpNIRaZYY1SQpCiBUYG68cSU8MZAVUGnKxrdJlEqR9dAEaTF60igwSg1UzOC/er+/JjNxVvnppZWeyRJYJ83j5ShOz5KR03aZxkHHjJ0KEYkIwhoRM6UKDyDpNSsk9BW7lRKeZNSB66NN8+QxK/fX2A82qPrLNpA1VScP3eWBx56nC8+9TTf/j0/zJ/88WeoqzFlHPHyS6dZHvTYm1bYjZNML19gvdvl0rmXiGYRHyWZO3fuHO94+9s4/cKLlIVlZWUF11lgYWEJ5Tqcuv+b2LlwnkOHN7jy2gXqJtAdrNHrDbh46Qqq7LJxbI2yM+CuU4eJC8sce+QdPPXJf8VKv8/29RscOXyY1bVDvPDcGU4cO4HycPToMTYvXWDt8Dqbm5vcdbRHiMJn8N6ji0X2GuiEFpusZnXB11P4mY25x/NVfun2kSvz8x2A+cTi9oTvwHO1JK1GZydgsRUX2VlyYUGZWXVfKz1LAGQfEEGBlBLauBnEqF2L2mM1c6aBSrnZY50S1iVmJPuUSMbgipo6BnZ2d4mxg7PXMGb6hnYAQoasqqSpp4p64g8oakkxKlejcyXdozBReD1WKULWRQ4polOkiQ0p1sQAXiuiqkXFTAvvqKOMKPM1iWASIUkC0CrvCEeO7NsjHi+RzB1QAp1N+WDaQlzCE5MUIFpzQx0z9CdAUJIAzAQM2gp4AJKldGsMysM0TaCZNJR2QKnv4e0P3UeKcOeddzPoHkGXjitXLvJd7/85fusTv8LHPvaDXNt+iadfvETta5SGjjWSLCYh2rdqZkpJ5hEyJyBmufCYWhnS/Ur+rOv9+vn07O/zV8JtRZGYQUH64LXWfpcoMDknCbGRQk7KMrBR5NCjkoSMKF3cA4qEb9pu7Bsz3hQJgFEw3B3x6DuX+U/+y3fyTe9tePvj38ze7oQiApQ0qSH4Xb748k2OHLW46YDmwpTLp5/lwuZZCtdheLPk0NoioSz53d/7JB967/dw4vgK566OScYQrWJvfJXxnqbqL3L3+t1U3qCMx2tFv9sj7O5QdgLRG0JSLMY+TW4ddoo+MVRouvRdl9JkTLVzuKZHrxzQKytM0ox8oomRYWrAK5yCkE1YJtMRMdQUJmQllpoQHDp2UM4SmhrvPDoHYlrHHKAbonW4HJhYpfG+QPkRuqnxyqC1IQaPUiYH4fsqOQKvMWirhKAZPUKOyRdGFHlPowvQFtMpcAVYp9FFMbeJKEqdIULGitqLzmoqRoLyOtTSWo3Sbg0hCLZVta06WQiVTqJtjCzK7WYVVcI3U5zpzLL6kMz+sbb+B28wBAj860IClFL7spoYhLasCMbS6AJPQUgQqoCqI8b4mWNsDJCMI6mI7ZaQLK63jHElh7or6JigqpiOxlSTEdZ7qdCrfH7wqJCEhIVFa1FmUNGTQhCFqaYi+gZIoqxke/hWyhQgJXRTzQLoVtlIKYWd4TMVKQaqZkqsJ6h6SkwNtUp4FfChAd/sL7oxUDqDthZjC9kIvZDKmrpCKcXQNzRNRc/06DqLdxZbdimJdIqIJmFo0HE/+Ld6vz3cjpggRkU0dj/4RnwVhIifCWdJgoKUELx0i1IT61DE1RO0V6Tk0EEwsRLIS/KU0LJZx0jKbtcy73MUojInIMSZUgVvgnZ0RENqGO1eZ0KDbhxGaVbWN6ibxKvnX6autvjU7/wbdscTHn3nO7h05QYrq10uXDiPHaxQ1zVu+SjnL5wlJnC9wN5wxPr6OseP3832zpCT9z7AhQsXwHQojeKek8cxaoGtyze4ubvJwBbUo4r+4VVRUIoeWzq2tzfZvn6F3WslL778Ej/8E/8ZR+46xvG/83PEyR6f/e1/SWEL0IadyxcZ7+1xeOMoZ8+9wgc/8mFu3NxhffkYHX2ZRI+rDaiupeyt4Gvw9RjnA0nfCuSbP0f7cqi3V/1bqI0C5aTzSYFJknAbIyZf0EJxZvTdHLRLVTpqlc2V2sBfoAsY0HmLTqYApWZeNIl9CUilslylUiKva6RbEJVC2/1i0a1Ji2thHbckpW23TOkCV9c0UbN0yJPMLr2FTUbThDaX//IT8C84YgVJeZoawkgTkhSTXKudkE0ihSCa1fBMhAjRgPWgnXT2PBWawDiJ6ZXXiYny1KFGpUgZEXnwFLC+3bsCUyXVbhtyQD9LQISzJIRZQ0waq92MKJuSGHjaDOeJSaDCodEkJLEQooAhhjExdojypvgmMigKbLlE8IYjC4+LqenWDquLJ/Fjx0Mn30+vs8b5S1fo9u7C4kgNHFk/zqWrQ37i3/t7bF7fhOl17jx0Dze2L+FjQ6wT3iisLmZJESobnClRKqqDygTeIHFGEkSDVlLFV8YRQ0NKPgtUzPtqBPFSSkJcLtFMdEQFEYaIUaRGBVKpZvKeISfoUsnPfjYkAnXW+NcknZOzLIzRcpqbAMFIF94luaz0bWpff73HmyIBKF2Xrc1t1taO8fTTZ+n3Sn79+c9w6v6TFH1H9BUCrzUYA4uLSyhVUnYtTRVY1H2mSYvxiZrQKRdxqqToNDz81nu5+G8vSwBqLI2vCL5ka3uXu0KgrmvKXsZPKkWv1yPUDaoQQpZzbia7pbVg/Y3WuTUmzbs2ODIqK7mYRKiEUBjqhlRYQvACuZiZcsVsZ22kvYcmeo92EesMBHOgwtNKY81XdGRBaWUMlVQcW2xcC7nJVaD59nOK+9VIlYmS85tDVBGjZWFreQDtDTKBWNt9Apsxs0UwRUks2qpFe/zzeO32vVpZvQMur2T1gxhnzxcTKDFDaTsELSTmje4AfLngXymFQRwjxQjKiMsjojIVs4JR+z3M36eosmFVEqy/VpR5joXkqevEeOyppxUhir73zCzN59ZsJrOiFI2I+GNUmuOeTAFmvIOkNEVu89o2aEjMwPUpm4m1c26/4i7KyjHzXWKo8CmQYk3ja1HtyUOTUN3ytnPWjlbmsa5rTIY/WaVJHYsXEC4qebQuZnO8hUhFFcSkhiQKPS2glBbLn9vOEXHEZL/KJqpBWXUlu1OipMvX4mCDAR0VAU9IhtS+R0xEjDgtz8mLpvZxaDsJosQ0X+1Kb3A3ICmoAhhToILIBw8nE8a+5tTd93L1xnVWDx3l+LFTPPXcaZqmwRUdqsbT6Q6Yes/CwgJN07B++DAhJS7f3GVjY4PhUOQ8r1+/zt5ogtaa8+fPEaqKK5s3+Oi3fR83zp1lZWmJ3ZtbbBw9wu5oyOH1derJlOFwj6NHjxJj5ObWdd797nfz2msXeORd7yLcnHBzWvGh7/5+nn/mWd5y/4NcvvACp185z5UbN9kdT3jhhRe49963cOG55/imh0q8UkwbTyojdfCYoktoPEa3+jwHx2xuqtf53f4v9n9/S9nzq6k0HuALqVvWklu7Eu3zZl2FOX5Aux/lqn96nTXpNk+DuQ6lMWa2Vrdrwf7+oOh2uwwGA2ofcZ0BttMj6TcOAhS8VIm9ZxYUZmpE/lyipBcJGV8v7rohxJzoJ2yKFLka3czUsIRE2uCJBIpWb15FYfwk0DHhiXgfQJo0kiS2MFBpytPC6mfQ1gRNS6JVQdagJMp5xNwpTyoXzQI6WqLSpCBJBxgK62iaAlLJYm+Z4V7FiTvuZ+ACqSkouj1KN6DfW+ToUc1otIcuFrCFw9qCTrnE8tIqzixz5vwTXLp4HTo1qIA3ChdNZjdlUFKK2cNQ5lbS+bPOVe3FlXiGBJJToPa7rq832nksnKnb9wI5R3OPQVSxfOaASYWGlv8330UQeeyITQJFiknEUazOX843xoHxpkgATLR8/w+9j3/xLz7Nb/3rj/OBR74Xa+HzW2fpLBb0IygHw70GlXl2w/EOtmt49ewWH/zAO/nEy6d54aU/4fJW5N4T7yeFm+yNh2wcX+Poxipnz96gajw+1tikGO013Ny8ztraOsPRJs4YSmtZ6HaoRkNSsngfpB0bEj63pwqnMMqQgodoUJk4ZEj0yo7oAwchYaqkaOop0Tl8AB/H1LUI/CqlcLbEOUNSliYorPe4QhRF2kCsXaxLW4icmQKVpSZBk6KYgXnvaZLGOZNxcvJ7udjE4jtm11lnNI2vcsCVpKMA2FZyUuuZWZNgUg1lKS3fppEA0paFmHdl/Wvy9xIQEhU5gZDKRzas4iAO1ppCWnTKZoWBbOgUs/GUiOVL9X+mZnQQD/9GD33LZtt+NoOS+ZHx/tEV8vkUxMyWMkbOdXtOQyvLqhQ6WqwRomJRdugNFlHaMJ6O8NUk41h91tkXdQOjHcYVxCAqITGJUkXwrUX7/sIcM4/C5FsSTA6QCFEMVdoEUmuNDbJYt4naLLhAiMXt75RS2RBuf3GuqkownoqchAS893Q6xYEErl3Em6ahCRMmXjEJJbbs03WOEoVVgQ6RpKWblnJfXEi9qF5ksQAAIABJREFUct8m1bHFpyIcgZAxpz7r7UVytyV3MyQ5zsejsiZGEik5eb0klalQQ4jQOl/GKBKlc5V/le91xiK3yfks6G8hQm/g6KbApAkU3SXCpKHoD9hYXeWVS5vc2BqzsHqUm5ubXLp6hbc+/jbOXbzKnafews7ukFfOvsLu7i4nTpzg0qVL9JzmytXrHLvnJKdPn6bT6YiBoLU0TcXCYMBoNOTwkSNMEty4fIE03eXlSzc4dvcpzt+4znpvhUvnz4tMpXFcu3KZK1eu0OkXWKcZ39jkmSef5PGPficPHj+BdwXv/NZv5bd+4ze5+MKf8ZHv/SEqY/nI93wfn//cH/Hq+fM8tNLDG8skddjcq9hYskybQG9xkXrvGgNnmYYmy7Xuj1YFqL3TWpPmuqlwe8De3m6ttMv48yFAbfCqWo5A+1pz3YL5BEAgJ/viCTPstda02vGyPmZO0pxK0H7XYH/7N/PHlH+KAYx2eBSLdcC4DrvDIRQdLl+59hebdF+HEVOB942YZJqIsQZtokD6ckVaayNGWAmilkpwzA05YsJaSNpT56JaSBpnDT5GGu/FkDAmrAEXNc5nnlHIJGItxYO28BXz1xu84M1NFNlykIKbCpFKBTyJQhrestcFiD4SKoBEk/d+nzwkMdRSRFTQrC6cwKkljiw8xMryIXr6OCtLd4NXrK8eJTQNvV6PqqrouYZpXRGdx5geRhfcd/Kd+CYS6iu8++0fZXd0hp1wniqMqHOcoLK7fLtMBSWwY20VIWW8PmJaprWmJe1qzGyOtoW9W6GZLSxOYWZCK2buWmmHrMfSCWjXd+H9KXzwwsMIioiVxykRdMRESf6cMsQgvgSTLLcdUzowt78xZLwpEoDzZ5/h5SsX+Mh3fIBf/MWf471/o6Qwh9m9uk3frfD8K1ewumE88Tzw0DqdjuXFa5fxI8ON6Yjek8+yGS6ztn4cHacsDApefmmb1Y0hPgwZbu+wuthnMh0xKkYsKE/DlJdeepGTj5xkMtwTY67oWR0MGI92uL41pnCi1NAxlt3RlCO9JQn8yW26AMbJWl04g3eOlZW7GE2HBDdhuFcLvtCPqDFMp0Op7lJIRu6kYxDxNHEK44ppNaYsu/RcjzpXfZ1TNNOEVRqjWzUJIcG2txh0VinwoCK1yuTOIGoFUpOQi9bHNAvslNontLUbg8/aYl29T9Rpq8Lee2xZ4IoeRVHgwxQfxck40DCtp/hYYYzoKVubuxl5YWkJpyYb5RjrMMZmsyV5/3Fdo6zC5IqIjwEfpdLc+hG0443G9IlNu5pVe4xqz6sBVxC0JWpDMAalDTZqVB3wJmRTnkgI+zAiqX5kp2DtKIsOZTkAJd9bHRo62mGcYTIeQ4wU1qJ1QVmWhKRofKTxNTF5IsJn0doy8yFIiRQbga74KNwQZUj1PD74IH+jY6UTVBRiQlYWZVbvKQhJEUtHYzV1paStG7J+f4ozCdjpeMRoNKIoCuq6pmkczrlZF6JNhsS0qJZAXY0ZN1A4x52rXXrGsjLQdM2tHSWBmpk5BRSTOS60kIa8sehcQYpJEvu26xKTnxl46bn7EAI2tDAiMMqANSTfGvREbEizTS213RvI1w+CTU0SOLR8lvQ6QeG/y1F31lheG6C1ptYLmNUV3v+B93PpV/8pO5uXufPuu3jvhz/M//qP/jE3mwt0neP8+XOgDXcc3WBxeZm90YhOr8fFS1cZLK4yGlecOnWK7e1tJpMJxhg6RUE1mXD50mucO3OG93zHx9g8+wraaJacYbh1lcYXvO27v5Xf/1e/ga6ndBZXGQ/3GPRKdOEIIXDz/Ausrx/HGIWvA8uDgv/9l/4B9dYe993/MJs39/jOD36Uyd4e9566n6NHj3Jk61kuDKfsBoNZWiKExMLaBmPtiNUurh6Bc5KwzY1bE4DZb82+uVFLFFa5Wj8fwH+ldWl//b29Wt/ez15zrrsw/zi0KCLdcr1M5hHsF460cbP/m+8ECJfr4DG0x5QyTMIpjQ6BnnMsoyl7A6ZNTadTcu3qha9lqn1dR2glMhWoEqzRuSgcSUF8DyyKQkvXvigMSQeSgdiAwmKMVOJ1JpTqFInJo42mm9cQqxIFGovCuoLYRFSdKFJk6KGJ4EwujGQOm5ADNdrIWqaMhaRJyLGlGAiNFj5fknUBr/F1pCi7xDrgXIFLPUpj0WEZZxKDwSqnjryXehQ5uv4Ihe3gVJeudiinGW1fx0fPcE+xvLyKTYGO1jRNRaqGdNSA4XBISoler4dvjnLnyluorlSo6iqxX9OEiHOFdCCyL0GjBGJliCTTdkVTZi8Kk0GnhE0K5f2M9H674EFbHAFlRFEx5TVwdq2k/Q6/cAIhZPNFIayL4IIPAkvStsQrCKomaiiDQidwXr5Tj0b5hFeJWufr4zYzv7/e401xNi5eOse7H/su7jj0GJ/+1HM8+OgdHL3HsX7Y8C3vfYxxXREamRBbOzdYWlrk0OFDjMaBYqnDl168jDXQ1OBUj6vXLtHtLLM7vMwzz34RkuLK5RExaWkXWsFnjkYjQgh0u316vR4A3bLEoLBWE6IEvMCMSCKbt9/HFbfyglkuc2V5HZJgua21tMohADF6fNi3UG8XZFmUE/V0nKEzfnYhHLiltsWliCHhm4Pwl/ljmofJyHuZ2zaZW9vCt76OUiJrl/RBuc+Z0y0ZItG2A+O8q2qcvcY8jKgdAhvKetYoKSJnTbT51wCy4df+ef5yEJI3YuhM7L311m7g4m0otyZLlmlMdoGOsyr7/FAJken0+92iVoXBmgLnCpSS+aiiEgnZAE0dpBvUNAJ1y3CzFH2eU1ESlijVci1MKpIPs7kNt8+L+eQkxphVqcIBpad2Tsz/bztH2r85JwF/K5nbNKJEVNc1dV0feN0UvOg8h0jVNNQhUIfENCWaTJTDaJQ1cq9tvm8f55t1gls10o3R2ZhvBttrb1bhtMHpud8ZSSisEeM1p6QpVWhBZjslzA6jhePT3ixpdm/JSVCKuBgx3mNDwIaACv6venr+ueO+t30zvlykWDrMWx78Jsr+Ir/0T36ZRx56AGMCX/rSM/z2b/8W/93f/Xu84z3vBaBTWEajPba3N1FKsb6+Tq/X49DGEeogc/ny5cvifD6ZUNc1yyuL7O5tE2OkLAoq37C4uEinN2A6GbF94yq9ouQzf/oE08wFaZpmVnTQWjOdilyhrytuPvsyT372T/mDz/wxP/DDP8YHPvhhMQ0bj3n5hTOo7G1RVRWrK0vsVYEbO0O2dvYIjUcZLRCMEG9fY9WtieXBtXH+Wv1y/3vruvTl1qmv9F5fTSKx/7zbr9kD1f7XKZrc+tz5pKS9ftubNQVFUdDrduj3uywvDr7icf1VDT2Tum4T6DQrZFlrSV7MAp3SWKVwRpx+Cy08gQLpXIaQ4TpK1mzIHA2VVcdyF1sq3Tmwt0Y8XhKkpIiNIjSQgnAyUkjg4z4EMCV8ivjMRSBmGGJoFZlanLymsCUqapzqsr5yjLXB3Wws3csdSw9ydPVh1genuOvQw6yv3sFSf43SlYSQcE7gWEWpqZsJMQrc2M4lq3U9BRVQOhKColuu0nGHWF3cwKaC6AMdV+yv6Uo6TAJbTcIby1Dj1uQrJkVEkaL4H7RjPvh/vbhinnNy63Pn95r52wFHdyXE6qjIMLY8h+fu29dzSUlyYsSLOL05Qt43zXhTdABevlJz/PrzfOml5/nP/4uf5b/6+b/PsRN9Dq8t8g9/+TdZWV3k+u5IMs4azj73IkfuOMzVVw2LXcPqOx4m+C0W3WtM4z3sXX6FYvEu+mbEsbvv4uSj7+bZL36Jly48j3ea/kZJt2Po1D1KJuhS09Xixmu1YnlxhZ3Rjshsmg7VpKYoOjTBUyqp7obQgNWEqLG2CxiKnqKoH+JHv/0/5eOf/mdsTc5Rm01SjFSTiTzXWYExFOBMgTFKAgWj2Y5Q1zXJagoC0bcwFw/GC8ELTYwtsdLig8IHh48eosLHCqWjYKijyv8DZF19tCF5LwtcAq0cBiMkUSUESRcdVjkcljZHDBm3rqzGJDFQEpa9LLbRJ1IQKVAJzoQgHFVEKcQyPCWiFbiE1SUWI1AfpdE4tK4IJJFRrCPKWqIB7Ruir1G6m70ONMn6HBS/sVM4ZDlMrROGzL8AkjKEHLiDSE5GpYgqEGOgamp8rElZ3UEpqV7EHLQHXdLp9TGDJXTZxZqCSANNxSQHy1WGApnWLbEWXG+Y2xDl3GtCTGgVshSeIZnsnE1Ax9yByOcyxYQ1Zv/YYyTqXLXJbo9+MsYqTV1X2NYx2lhM2SO6Dt4LByBFiMqjDXR6GpNqElHIuFExmVSzYMNamzsCjqiyr0UKxNgQg6KuHSaVpK4VDwGtaEnYplVcSjrjcoOYxKg4IwK2lSv52UuVPokfQPB+tknfuuHMEql2A8q3tjplQiB6TxNFjStkOJdOOekL2T1z7n8iBzfCN2JcevLj3P+hH+D4W97GU098hsuvvoJRioXDD7L6wAIP3nuCamuTP/yd3+aFl87z0R//W/zB7/xrXLdgY3mFm1s32N4dcv3mFg8++DCvvvoKN65cZm884tKVK5y46xjWWi6cv8gdR+/i5sVznLj/IYyx9NcPce7lF1jauJNqPGFltcelc2d4/CPfzc7eLj0duPKls4yMpZgOuX7jBg8/+Cg3rl1iZaA4/dKXOHziBOfPFUyAx97/fo4cOcL29jZ/8rknOPXAQxxbX+P517Y4f70hdRZYUp5JNWbHbxCsxcYGbQy6UWJoPjeSark0UjyJ2hJNF1OWqOkYQpUhQSrfIkodxMVLt23uMfKSIoV4sMDTOvoKsVeKIy2sIilmsNDUqgDNccE0QPLCfhF5ugPB1HxQP+/notXB32srJ6E1oSR3NFJy9AqPUzAeLBBC4NDhI1+3efi1jlhqtCpITtzgST4nKQK1cwWQAs5aLIlOzBAgC0oJ/JGYcGY/0PRKEgGBUSmR4IyQjMFGEVMIVmCW3pYwHmJ1IvpIClBajSLivEAMlQ8iCeo9CiGI+6BIFKKkFiMGjWoSve4ida0pdUkZDId6x1h3D9DvbnDnHfeTKsVgsEi/s4ExhqoKovhmNKEeU3S7Up1vGkxoqIab1OMRUxKH7rgbbQtCEF6iJ5BSwKSCd73rB3n+6QGHizUu7J5jvLvJ2pJhMhkRSgVqgqEi+IiKBbbU+CTVd6MMlUoSpxDwSbpmKkpC0K5sSUE0Bo2X/QNPgxNoT8q2Y3m+yWuDFATFOM1nflaMhmwIA6kAHFoXJCIki1KRaCJFAJNhl1ZpvBbumUmRqMVr5htjf7wp0iFXDEDDZHuEc3t88wfvZf3wIstLq/z+H/yfTMa7pAwzUdoyqSNFYekPLPfcc4rHHnuM9dUVVEzs3twmqQ7OGU6fOUu/32dz6xpXr7yGK/Liaw3dfofDG2v0CkPREdUGrTUpRKyTan5VVfimRishtnrvZxr5sZX7miegJI3zhjuWVvnJv/nzHFt9hGoyxBhF0hFjLHXdZFKifPb5yrgo8LhZJVTcLGI2FZEhFQXwKat4AK3cp6iyGDHymHt+O5RSB453/ve3Vuhnre256v7teL6DZN1bM/t245mvDmutMey3om89nlvf59YAbL7yfGs14Y0YRqWsTJMw89jbbOwjnQA9U0Ty3mf4S0XI3/Ossp6QCn5IWNeh2+tTliWu6MyCzrquZtVyYDYv5XWn+KYihQbJyxQKB2jpFNQKokVFqcZjRRWjMV4IrXmuqdbeXSdEplxhtcCbjJLugUkJkmD9m6bBZ0OxNoh3TiBCpigxRvwNjLVZcUVwyvNzYFb5n2sbz8+b9jnS9ZAF3RIoFRQxYFIj6jGpzo8DZQy4JlD4iGsCrmlwdUD7IFjeGJlUNZPGM2m8BOq+Bt/cdq+Cn91SqElNTfSVGPY1FSnm/4+1PCfWs9+lzAdIKc0UYAQ3+8Z2sKYOPv8vf4M/+q1f5ejD72Swfhc/+CM/xnQ6lXlcdvmjJ7/ApddeY2vzGr/4D/4+a2vrbO8OOX/tOtt7Q5om0Ov1eOKJzxJqwSDfc889HDp0aNYBQCuqyZRTp+7l6edeoNvps9Rf5NJrl7l48SI7wx3OvPgy1hZ88YnPsr62yhc/8zmK5SXu2TjKeFRxeOUwT59+no31dZIWBacTdx6jHlcs9Bc5c+YMv/ALv8B9993HT/zET/DYY48xmk5oMDxz+iXGdWA4mVDYUuBbuasZUMTX4RJp1cL6MqxGaYztY93CrOL+5ar9X0tn8st1Hb7S//x541ZS5Ot1J/687sDrdQVmnQBrKaxj0O191Z/x6z7yOqOtmGYKl6rdS5HOnQFjxGldCMKG1p1Z9jXB4Buk8CL3Wm7azpIgpRTKGGammaoV1Ji7jqOQg3VAqs1BuEVqplSWK/0+ERrZz5JHCmgKok9YvYBOK6wtnGJt4W42Dj3I2tJ9rCzezcryEcpiQEqKbrdPVdf4THIVOJRGW4kbitJBDCwO+uA9Knp2N29C8MTgcVo4f0JMNqyvP0inPE6zW7LRuxO/5+maLh1lSY0Xfl6E4CMxKXyKIrGpk0iWR2i7+MCBTnLb/YgxSkySdIZDZelO9vH5B0RA5goxzGTRY1ZDEu5Wa542m69kYQbE5VlrnVV/VC7QyS2pg7HPX/fxpkiHxnXDla1LfODdb+dn/+N/xOJdXUbDCd/1sSX+wf/yD9Fes9CJeRpYTpw8RF17jh87xJVLO6wsbXPXoaPsdaYcGazgjeELL3yeex86hYmO97z37aTplDPPPYXpOaZhiusMOH73BqGouDEaEWrB5Dmj6ZUlvW5N0oq6ntJ1fZp6Qq0GlCRUls8UOaxcNQWUcnzpiReYvPTrPP6eD/AffvSn+Z8+/iLb2+dIMeFMn+nEkwpDt9vPbVWHNgHjLL3eAFQD2S24XZZnUB6Vg6UoQBNxOzQ428uV34agK0KcimGR2VcggP2gah7OpNT+htLKULbwJQnQpHMQctchEVFa8NLzCYVS+cIF0Y3POH+lFM62JiKKEOXiLExBUlqIr1l7PiWF9xFbGFonV0mE0kxhxpp2kQkUCKTkjRzKZrSwVvvVDGNQRYeUnJi0kbK+PDRNja8rGl+TKWn4GCBpqWJEQBWsHbqDxfUNur1FlDVUo6FIrDVTUXHKUp4kcdvNh4CKnhg0yTkh/vkGZxSLg4LlpT7WWq5ev8HEQ78zwKcOuyOD1Z7CkI1nQiZ4C6RGWuQeCxQuJzWx9aD3kuygUEmUj3wO0nudPipFYuEkealGIjWqDdoIf6Kdc95L21pOYZ63RmPdvt54+7y6rkkFmKSxse1m5XMJhDqIe2dQ9DtddnZ25HWMZrw3xA4WwRU88dQzuG6X8d6Qxx59K7baxfh9AnR7b6LY0CeZkNgoM90gsp9RR5oYs6aIkBFJ2dpHC0FQukKJdttTs8dv3HDbO6QjdzP1DX/2yd/g0tYYdeYCdxxapru4yplzV7jrwUfZu3YBbQ0r2nLutQu87d3v4aVXX+OBjQd49ukvUBQdThy/K0O6HFtbW+KGPplircVay97eHuObNzh6x92sLCzy4hef5JGHHua1i6+SUqDbX6Uwlmayw+c+8XE+9EM/xGf/zSdZvnOdTm+FI+sbvOcj38YffuKTnL5whccefwdN8px48F62dkfcf/ghHnn0Ma7d3GQ0rbh04TWObKzxyssXOHb/wzx/9lW+49vvFdO8fsPW1k0ech0me3v0SukMKaXyumlISCAYTYlSiYDD9DbwvpKOnVbZgOh2MYJbA+p2jbz1ebcG4a9XgIkpSSW+DdS/yuTiVhz2fIKxX+w52AGYd2Sff26KUdaDlCispVNYVgb9r3W6fd1GkwJRK/EpsAqqOIMbGm2wmZRvjaLQcqujFU3+IFwymzlELptQxhgz7yMbbaGIUbg8tVZoo6hJNEpU1bQxaJ2lVGPCeun46SrRyXKUsRZN+iYF4RvVGqMLjC6oxmOKoiSFhuko8f7HP8a5Vy7y4L3vxleRe4+9l6aOWBy9hVV2dnaY1hMWBmuAptcf0MRAOSgo+ksMh7uU/QFWQww1uzdu0O844mQHQoOjx3C4RX+hy3jc0O0vU1eak/e/j+1rWxzr3yBOhqwVXcb1DlXaoeMs16eJE0vHuTHapI41TmsSUvRRXSdCIwm00tLRbjH8SlbDVtq7hQipvOcrlXkb86ahueMUEGRBJAs5qDZhkTkb57poBoVxhcz1DOmKOgAJm0R4IrXXlmFf5OEbA3iTdAB+5qd/iktXJuztXWHjKHQWJtxzPywOFjh65zGqoTjBdY3BatgabrK73bC+vs71a3tsbt7gyc89y9PPvcax5R47N64SqgY/jhxeu5OnnvoCpSvoRoeegqFEKcvudIgpHGW3xLa26kpROEencBTGypLgIyl6qhTEEOj1quhEOmWfQfcQhw4d4tnP/yF/9od/wlp5H/3eIlpLJbYoOiwvraJwFK6Dc46y7MwIlVqVaFXm94hzLWMZKSW0ElmvGLK+vipQyuJsB2t6WNOlqT1V1dwmyXkr3m5+Q7i1OiQdjpDx42H2OGT1k7b63C6gIcuotZm5MYaiEL13wWu2qjJ2f/OTrZcUEUJzI7bnWtnZse1Xv+tZR6ANGG9V7/h3PRKWoAwNGq8cjSkJukOdLE1S1DEx9YGq8VRNLQGG0hRGZ/UluQSttTkwdthOh6K/hC26aFdIUpACKkbRrhHpCDmnsfWQTLNqle0UWaVJY1TN4w+f5L7jy6wNPGHvNY6uwMc++DYev/dOms3LlPWUIsOPSEKgiiFIh8J7Yt1Qj0bU0wm+muKrKbFqCNWUZjKmGo2YjIaExhN8TQripqswGOPo9Bbo9RYoyz5aOWIyNPV+R8R7f6DC31YcQwgzBaF5+E1rfJeygL8NER3kXOjoRYWDhENTjSd0ewPqGPBFiV07TFhY49XdCRPbxS6scuep+zCdjszZNuHJFeDZ49e5VmbVRPSsUqyUgZk6S35eK2Gq0oEbvLHdq5plWFzgypVLXDv7LD/8Iz/KxWub6P4y3dUNmgSbw12+5Xt+hI2T9zNYXGNvb48vfP5zPPXkH/PCyy9T15719XWiD9lULVEURTZEFGnYneEeFy9eJFRT6vEWr54/y9Wrlzlz+jm6nR6NT0wmI3ysWFlawvua6up1Pvix72bB9vnI9/4Az7x6nheee57oOmjg9LNP8xu/9itcu3yJ5eUB9z/wII2PjCcV5169wNraCr1ej1cuXOTZ58/Q6/U4d+4cwTqGlef82VcYThOuXMFQz9awmdQxBq9KvBsQ7ADdWYKyg1cRhZ85lb5eB+CrHa9Xmf9KP3+t4/X2qlt/9+W6D7cen1JKhCgU9NwbZwTWpEgy4p+AgaKwM0W1tgtprcagMclCsjNrBZ0Oqpvdth+2kK0knzVpRaMStUqiJqRBZUEEYzL/SCnhVgVJHgyCO9dBQTQEL3tbbDT97jKj3TEFy3TUGqeOP87awj0cXnqEU3e+i8OLp7jvxGMs9BbolgWdwtE0gcFgEWs1o9GIXq9Hd7DAwuIKne4SCYs2DjdYwnQGKNulv7hERIkiUOFopns01RBf7VFNdtnbuYHRluFohzuP38lSd8D1izsULMNul4V0mG5cYaM4zsJ4ldXuMn3XI/mEoxAjxDonOop9p97stpxSmsHaxGxPOAW3cgjm/2+GJBDmJCkpjFmgdKs4s4izPaIIDM46qVFpYhZhTUqI8e1rhlb9ySRQ6S91Hf3/dbwpOgD/5H/7vxhOFrl2fZe3v/1eeqvvRDeWOLnC//HLv86RuyzXJtJKX+6X3Nza5pFTj3D6uVe559h97Ozt8Na3vQucYrL9PNVwkziBftnj8oUrTPYa7FSzZAZMadjbmVJVDVfKDp2VDkknisLi65AhQJbSGeqOQWXN/NIaqqpiqgu6Mz3fgwvrcK/GNx1efuUc9xw/xoVXzvK3fvZn+B//8U/hdYNOlrIweJ8oCpNbdh1IYK3BJ49WHdCKGMYzlYkYI2iLVppQe1AFCiua5AGMLohRs7S0RF2PGY5vgh9iNITQ0CLy2mpUC9tRShQk9KxFtg9FagPvtiJW19N8Aef2XpxkclTMqi3+QAAXjbgjC2lZFknv/T7nIIsoB8LsfW4n/SjwgaDkdesqYE0p5mtRlBXquuaNHNF1BYMveAFM0SGZkhA1de1FetZ7qmYq5yJLwqUUZoGsMk6wrMrRW1hiYWWVzmCBhKauxxgMKkrgIZV2IWVpFMpq4V8kUUsyWuFsgbYyQ/6j/+BH+J3f/H9QseHE3ffjR9cI4xG//9v/nGk9YXVpiW/+tm/nD554ns3dKUob0J257k+U+7omAnWS5K/MnZcUxRp+Mm3QKHHDdiIRq0wOlhOoFLB2GavAN1PxL6grQKpG89XHspQEOFSJqq4Z7u1QFB16VpNspE4dfEQCADTG6P1kGemk6OzQWXsxPtvVGtPp86lPfxbvOlzf3OKO4yc5d32LgQo89vBb2Btuo2P2A9BRCNIZGqWV+AG0sLyEQPRUSigViDoxc6FBgpOUkjxdCWfGKOkSSdJqvtpi7l/ZCN0RS8PIA+/5IMfue4jnX3iBezaWUEWPOw8f4bWLF1hYWODMazcZHDqOUTe4fv5FBq7LxnKPY8eOcaGuuX79OjF4qrpmNK1YXl5kOp3OujsrKysMt7foKM32eBtiQ0gBYwPj6YR773uQS5dfZVpPuTQeMx6P+dM//jSPfut3UnQHfOqzf8T3//t/k89+/ON8+Lu+jxeeeZLJ3jZHlhf51P/7a/SWD/HdP/bj3HH0KMvLqzz11FO8851v50vPPMPLL7zC/Y88zNb1Kyz2O9DrcubMSxxb32Di96AZ0+00pLYo0cKC3CLoDqrok4AGg6ahqvfE7yXFGUeGuQJNS8Z9/ZGDzdly8eUgCiQ+AAAgAElEQVRJxC1MZR6zr5T6iimjAsFFZx2seThGfrD/8wzqr0B9efiRJL45wDZCdO+Xb1wCUAcvstQKjPHCZUgIdDJz1FRy6CgiEy2LLbtTYZWSYoGWtTRloq/BEFVE5/0qJuGZhahQKtFkqWt0mnkERR9AB8HJJ4EfKR1AaZJPRCvBf4iJFOHm5Ztoa3j8oQ+jvGJhYYElkzi6dh8by4nl/hKj0YjxeDor5IUQcJ3E4lKfGALVpBGFLdeBmGimFWW/T6fsUY2GFB2Lr6eUxjLa2yVG4UgYNOPdKaBYWVmjQtR7plVgde0eHnl8Bb95mdXFDoE9XFrk+MqAvWs7mMVINZ1QBkvfDGj8FIejCSOCCsh0EjETAE9AZy8VI7AAtNYZuroP9WyvA5AuQoiRQKKwwj3RLAAFnQ7EVKEaxF+GhE5GErIMsYpoSQL4/9h70yDJrvM88znn3C332qu6u3pBL+gGuhsrQYAECFLiJlGSKUqUtVqSFdpthZYZaSb8YyI849E47HB4ZFuUZ2LCkjziogElmSJNUdxEEiAJYiGARm/ofat9yT3zbuec+XFuVlWDkmzPhNT4oRPIKFR1VWVl5s17v/N97/u8OZ6UhVzJYWA9qVyopbqzTZc32npDbABOvbzOnn0hp8+u83/9/idYXd1E5Sn/4rf+NbJUItAxdQVNo8i1ZnKsQm3KY27mLlqLbTrpgHA84/yrK8SDi1ijiEo+nc4yfmmMbkdzcHoP3W7M5so1tJGgLIO8MF2KjIpfQmcxRvpgBZEn6cXGpbnKCTApVkhyYdEolM5xggPXYQ+jEjPjd8PkkPW1NaSNiaoKYavUvXmSYINsaFHCY3ZmD+1mi1IokdYghO82HlaB8Fxn1JHNXVqshXKlTqvVKiQizmRojWPgWuM7k2jugw0J/Aoq6WJtAtZHF1SM14+ihdhBP1DbXXuB2irmPSMweYIInAnHyU8E+LL4+wxoJ4fS1oWKueglxYh17EJUBJ7wbjOvoZ0N1Rqn6cuLVFijM6SnMCg8y5aeHYszA1tckqyxW7KRO7WEF4LQCOE6P9ZYlGfIbSHzGF1wtQuPscXmMc8d47mImQKrCGoVorEGQa0OGJTU+CZGIsjyGJulZFmG1Q5fh1JI6ZOYxFEn3KgAYwy+8Cn5ltWFq2RaUxmf4uzlS4yNjWGMoawkWbvNqTPnuevwvRyaC1lfvEqtMU2sQ2xmsdIiPY1UoKW7CBpAehItC4kMOQp/KxvDSoG2BmE9PBkAnuvwWA8JVCo18swjy2O0pxgOBRaNydwkyVPCbViFy0nAaudrMDlxuYQWko62zBnX4bHCkkrtOntOi+UkZzYnjod4YZnzNxeZOnQ3H/v0Z6nXJygFIXcdOMTeg8e4df0GM1WFNDnlQDEcpkWOQJFIad1kwSvIX8YacuMMxcV/jvwkDCMHuLUGx/8yLo1VFAQKLdx7CFFwoe7wDiC21N78IJXZGT7+H/4t81MNrl69ysVzV/jAj/4DJmZnuXTuDG9+7ADrjQYb01NIAZevXiLVGade/jqN8gytZovZqToqCMALMFox1phi2O+QpAPHPpe2kJCFiDRHiLRIIzdcu3aF+vgcg/YG5chn9+6DVMshvk653m1xYt8ePvV7v8tv/Oa/ZGF5hUMPPsb5V19i9co1HnzwQaq1SQJpuHbpNY6ffIRep8/q6jqDZIBfUnTWF5HKZ2F5hSyzbC7eYHf9bhINptdEl3ykVBiTYgqKVC5CiBpE1pJZiwlriF4foX0SNYZvYqzUCGuKBFrpChBuL6RHr7DA4ELm3MZRsV2Iu3PE7Z13YIS72VrW2iL8Szi5SlHDu5rUFbrCFBI0MUpsdUWZUxI5Ug2Fht0WGnQp2UpcHd3/qPHk7tMUG1+NZwWeUijunJTCgQUK75lwmRHWWjztdPxYJ53y5Ah3XDxLxeYd6xW4XiftEYV8VYyKQ2uwVm7R2oQQGGWwRjqfl9So4jVXNnOwAgXggqq0wmFFpYcW7v+F9UlsisksgR8SmClmxw+QDXvs23cAqyW+UgyS2CGxhaZc8bEJxFoXtKEB2Bwda4ww6DQj9D2EFAx7RRaJ9JBSIf0SnrJUdMqg10f4kCc9qpU6iTEkwxRRqhKUyzTmprn22hXSHCYqFXSeEQ/b+H6DdCDJM5gu7acZt1EqYlI06Mp1Mm+MpC/o+7GDkAiNIMIZ4ofuNSngDFoZNKYIM/URwjWWsG5KjfsMIR3vxAqLIsRTIS5E00eKEE+mWKldBoPykCaHIoPFSYQMWjjcqmvYuHxuKQS+kmh7h8+5b7D1htgA+AHcd/Jedk92eOt97yecg6AMtQpMT83QuZwQ1UJMFtPtx8xHU1y5doZ+u0JmKtxauMnlWsiDDzxKawPQOU1fMjYWsdG9yvye46yt38BoxTAVdAYpoYaJWUurPySoe8RZjFAjE+q2/nF0YpciQBlJEmd4IqcWBFg8rHBBWXkO1y8uMD12kOGgz/kzZxikKSQZ7/+OX+D/+NivOSOlUizcXGRsbMx1BiVbHXSpQKhhkagVYonJcmf6PHp0PysrKxgjHV3HZFjjZEOejLY6qEoJpPYoRRXSDFITF2QDhdZ5gR8r0mbF9uN8/Qh8q2OfWYTwdshviqlEmiClhx96aG1wVD3t3sBKoaQr/CUOO+YLhQq9oustti48owugLlKZjTFI33NItUL/uiX7sDAY9FFCkhuN1j6lUulOHrqUPFfgqUKCg/QwQpEWdBr32m7Lr0bTDaWU6worhQpCgiCiPjlHVKnihSEqCAg8SRonZMmQXqfrTqhF52mUwLxTFuWIQNsbvU6nw8LCApVKBaUU9fEJjp88SbfVpNPpUK/XUUpx48YN5qammKlXuHrtPO/7vu/n3PlLbDQToEyWicJspwpDndPHuqRoH0844+9I8jF63CrLQEmCMHKyJ8/DD134XZD7aJOhlJuE9fIeeZYQx07ehae29aRsH48AmbYMUET4zgBncgQGZYsJgFYkXsiSp0gJOLPeY77cYWZ6P/v372d5eYHdu3eTDIb4nke7tUGnOYZI+viBLB6bk1s7ShAu/de66YARbkOnJaBdkY/GmeOgwL66TU+OO961dNQhVzYVPGt7Z7tRS/0A/cLnadXHOfH27ybLNG9+9P2IQZvnn3+WvccfYP4QXF68SalU4vrVa+w9eoSo1aFartNP2zSqIf2upt2PaYyNoeMuw7hPs90kCkKkVPRa68zu3kW8sMj0RAMhFLWJaYbtLnvm9+IHETeWN9l78BA3rl2jv7lBI6/Qu3WDhZtLTFYC9h05ysf+8CPMHjjME489StJuc/i+h/B8y9lXT3OiXucjH/koaxtdfvTHf4KVW1f58l/8BbtnZxh0uqQiY+/0LFkSc+DAAaR0gYi7d8+RD1ad4V0EGEpIr4QOavh+mf6wT45CeRVS6yGCGn7aJMsMvuk7aZ4c4Yy3ZZT/Nev10kv4VgnRXydbGP3s/5dS3JhtypE7X3Db+21039+CBy3QmKF/5wKVXFPMIEUxrR4VmcJ8y2bKWkfiyo0LqHSmVVOEXm75egGL0a6ZJIXPtjzP/T5R6NVHjQnnHYBUSJQnibSHKzW12wQAmRDkgFUeVihKfoNhvM49+x+h5s9TD+/Cr2YIUSJNMqKyR+AFYBWeX3LcfjS1UonhIKG70aZaLWHtkDy3oBNiXaFcrYCxxMMETwqENUi/jvQk0bhHL06Qvk827DAY9tzEORkQhHUG3R7xIGP37j0Im9JfuEJzc5npub0A9DstfK9M1pEcqBxjvbnJhLcP37SIqjPk4QIXNk+R2QTC0XPvpE/gpp/u5szEUiqkDBjJi61NnPrAumamewEcKEQVgadK+gwzi7EC35tACE2mU6xJi9C34uUypiARukR3Ywr/lbAo5bwF2v6dB2DnekN4AEQAr774Km959L186N//PNOT8OTjT1AuT3Ll4ip/+Ccfo7viyBTCL7Gy3KJUCun2V+n3hiSJpVFrcGv5PL20zNkLN6lFZfZN3M3u6hH8pEY5nOH+t7yVI8cfJEt8kg7kOkCLMsr4pCqnn8YkcUaWaoRQlMIyvgroJ6lzkxemR6EgR6Cth7bOiY8O+NKnXuDyxfNkSZ/A93n3t307/+SXfpnpyf2UxRRjtTFCGTAzOU1no4UULrFUKZ80dbthYSOkcHpkk7sxaxzHvHjqZfAVic5fx2GXTldnFUIWCEltkTJwkh3jg/UxWmGNVxhrTRGLvn3C3zkqtuQYmxEn/S29fZz0GAx7DIc94njIYNBjOHTBToNhn8GghzROdx1IhSclnnThsiU/IApDfM9zCYvSonXmZCB5TK4T1xHWCcakW/rKkWQJRgVgShwPiJMBw+HASbLi+I4cs6NVMjGRTQmFJhAGXwiUsNhcbyX8jgr+0c33fcpRiUqtzvjULLv2H2Fu32HGJqcplcqUSiUCZel12ywt3GRtdQWdZyirt8zZxhgGgwHD4dBNBawlDMOtYj/LMpIkIcsy4jhmbm6Oaq1BrT7G1NweltfWGZ+e5c2PPsbcnn0ElXEWlpbxfcWl0y/x/Fe+xHvf/jBmuMl4RblOm7etsQ2DiDAoE4UVgiDYelylUolSqYTneaRpTDLoM+y2GfZ7pGnKIM0Y5ilxnqMNqKDkIuxLZUq1OkL59JOUOI5JU3cshGG4tcEwxpCnMSofQtojIIc8I5eQKp9BVOaZizdYpMKnXjjPn714gYW+4cpqi0NHjuMFZY4evZd6fRzP81hdvMk7HnsUZTJyKxmiSKQiUT6xVKTSI/V8Mj8g80NSLyBTHpkfoj0fHZTczY8wXolcRVgvxPgljB9CECHCEjKoIIIyMihj/RLWLyG8O7t5rUQh5an9PPGBH2f50st0XvsKjc1XeO3SBd7xtseYrISYNGOjucnizVscuesgs5Nz/Nyv/iq9Wo3GxB5a3RaT09P0+32WlpYIgoDHn3yCuT27iSrj1OrTCCGYnJohrFSp1Wo8//zzAKgg4syZM5w/cxphUyampvBLJWamJml1mly7epHVpRustnoMrOSuuw4g4i7PffUrvPzCCzx06DBK++yZ2EV/kHD3obt57cIZfuu3/zVBKeLgwYM8+8xXWVle4Mrly7TbTa5fucDK+hqZFfTSnM1+ShpM0JfuNvSm6MtJeqLBZqxo5j4dqnQySZA2iQbLVOIlKtkGyiR4Tqeztene2VB5fTE9anTA7V6snbS016+/bnPw+t/z+vt8vdb/9cbg0Xp9g+KvurlvdlOPUeDenVhp5jCPVpjbHvNWNk3xtRwXApUbTaI1qTEYKTHCTaM8KLxYAk9QXK8cUEBYg7IWXwikceB+aTTKOh9WiMDPNaHwkVqgfQ8beuhAkHsBifJIlCKTIdKvA1Ua0Szjlb0kax6z49NImxFGcxjqqLCKUCWyrHiu88QRxLKUhYWbWDKiKCIISoTVBn5QJk9dAyWKnJewVKkS5znDPCfRFiMDUlFhatch/OoUY+OzROU65Ak67pG0l8j6TQIvpD5WRdiUjdaAUmWMbi8nTyzTtXEEEcN1qKX72e3dTUPMMFO+m3pcoZbtpTQMKGcBIgvwbYhnA5QOUTpEaueFEDkILUFEDhNqACSeCLd8JaPn3xMjqARbH8Mio8UKh4lWwuCT4pNv3bw8Q2QZZBa0UydkuEZNZpwU1Nxh8MIbbb0hNgB5Djdv5ly6sMD//qF/zyc//mHWFm+wsdKitQ5vfeLvU/Z9hqlDJI6NTZAkGoFHa6MNFq7fuMWLr77A3oN3s/euw6T9HjPjMxw7eISp8TKNepXzly5SG2uQxRkmd7vOYT8mzzVeoCiXy1vFsRASb4QpLHb9Ok9ckV2YFw2iKL4FWMW3v/09HDlyhFZrE50bnn/uJWZ3zXPqhZd5+xPfXRRoNZrNJkeP3lMYaBVRWHaZA8LRbyQlyt69zE4fIU1z9u7du0MXb28LTdp5QRnJSwpRAlIq7FbYiDMojkKjRmb4nVzzEf1HiG0axug+Rred3Wats63bToLLqFMkC820lHLLDzC6n50bjteHh20/nts7wFKBNplDaOoMa7njEqAtBCi28DLZbZnT6y62O01qvlJEQUilUiUqVQmjEqYwk0oLg8GAZDAstO2CMPQJw5AR339koH3948/zbbnXzMyMS2vOc9rtNidOnODKlSsMBgOOHrsXpRRLq2tsbGzQ7HU4+fAjPPDwY2AD3vb4W2g11/n5n/0xut0VfN8vXuudXo3t6cwowXc08djqHgqLznOyJCVJkiKYzOHaRkFgee4KEKV8Zx7V3IY63blJNcaQ5BnDHGLjMTABPVWhJWs0vSp/+o1XuDXMOX9rmbsOHuOuvQdolKuA4cbCNbIsY/fu3ezatYtatUqtUiUMQ/q9LtbzsCpwMkDlgfIxyscqHytkQR7xsMqlO1vlYZRwpl/puU6w8lz6p3Q5CrIwBCsr3buyQAwqnCnuTq77HrqfH/zhH+Fjv/shWtdO09xc5+XzF/mu7/4e/uKLn+eTH/9DdL/N/OwuGvU658+c5Y/+6ON87MMf5ju//V0cufs4rV4XPyhTLUU06lUGvS7PPvcN5ufnKZcrCOEC32q1Bnvm9zM+MYXnSUyeUi6XkVJSrpSIfMGpV1/hxo0bpHGfqYlJ3ve+9/HOd34bb3rszVy5dYubSzfZvHWd2clJds1N8YmPf4Q8N0zPzlGq1qjX67z/A99LY7zO9evXOX36NPv37aW1ucH4+Di+H9LtdlleXnbemzCg1Y0xKqSfB1ivSl9DgmSYWXpxSpIJMhzJSJGjhANC5MZBmIX8y4tq4Lavjc6xo43A6+k8O9fftlnxryv4vxV24TwMdxK+kBvrsMriW5+/0TVjtBnYvr7Zkf2hmFw6tHHxNi0kPKOu/86P2+Z9CuO+EE6aqCx42vkPNM4sjCed+VSOQiChFFUZq80Q9/rMjR/g0Yfei6dCquXy1nujVKoQBNFW+GOWJwzjPlmWueT0PCMqlYhKJVRQw4iAyanZ2861SikmJqaolKuEniJLBiRJRm484sQgVUCS5kgseTqgGoWESlCJQhA5zY0VgihkbGzMXVuSlOs3rjlamxAoL6TdHYANKUeTSO1TiurUoiqhCAhliNQSnwBGYITRddy464U1hWh/67l1zx/CWXkdUchuHV8js68jvVksCaMwL1XIq+SIvgYFJGP7GM6NCzAz1oku7/TU9Y223hASoP/tQz/NK585z2//9id47Ml7+dC/+y0+9uHf5f4H303ggV+WDEyGTKDf77K2OGB6/yzxZotmO4MQusMOSkKv26I3HHB4vMQgz9k9WeNjv/8fGJub5J3v+hFq9ZB+a8Crr7xI3NfYyYA4HoKfYWMXhEUGQimwllLoU/IleZoShWByjfYDJwMwjhKihGbvrv1UGyf5xEc/Skkpuq01rAwZO7CL8bEZZuYPcubMsxAklMerRJ4iTzWeUvQ7PaIgKjTWEWPhcd7x4PcSTozzoT/8IIvLKw6P6QXcffchXjt/kUHcd/q4NMd6mtCXpDon1xkm12Q6xxiFxaCKgtB1pCVZkmN1Ti4keJAZgSc9lHKBX+TbiE9XlHuQOULP6ISrGaUuJnieJAx9PKlQ0qWnWizGaKe980Kk8LBGo4QLlJJCkOcabE6aJWRpTKpdSmeaZ4RKFgenwFcO8zXQMTp3Ym+BQfs5aXqHPQDIrU2AsI4UIaRACs9pZVVcFM3uxKSkpBTViMoNStUa5UrNXTC0JtMJqTWkWmMyd6KqVWp4ShIEHsJY1xkvNlzWUKBrA/d6aUOOKTZbgkqpxOLyEgCRiLhy6TIHDh3m6NF7+MxnP8fM7B6CqIowltXNJseP38Ply1cJylW63S5f+cozXL95g727p5nfd4DFhXXaHU2qDRmKXr8PvnQyqEI7rXWONUP8Qqok/JA8d8dNVKqB56E8D52mWDWg22wijEZJD51rwrCEyVOy1JBlOV65jAX3dSylahUdhHQqU/SM5lKzz7XrV1heXebxt72NnlB0Nprc2uhQr4/hK48D+/dy8OBBhHBY31a7TRAEXHztPG95031sri7hB6FjahcdJ8fudsY9YwxWZc5nIQxidDOj94PT+GqrEarQ/lOkNAsDQqK9HHJc4YJCC8MdlFED0BrG/PEf/J/MyB6DqMTjP/RrnHz4LWRpzI/99DFa/RZnz57jc5//M3bN72Gttcr9Dxzn7kN38/RXvkpuDaXyOL4fkeocmwkG/TZTc7OcPf0yVijGJ6ewSUa/ucGlc+eo1Su86b67yaI61grC5VWscebA1voyx0+e5MiRo3zzG1/l85//Ig88+DCvvXKWd771bYyNV7j82gW05/PWd38n/+pf/CbHnng7e2bmKVdqzOzaixIeFa/EUx/9MLWyx9raErWxSeb27MdazcbGBnMzs8zP7+bSq99krjHBays9/PIkMZL1To+grOgkPZaXFxmvTzO3r0S9nBF314mU6544s7mPNUVSqjYEkYc0TuecaUcW0nnmUsAzVwBp7c7DOYZAKgwuW8OOCh0JWIGQxXFFsSHAydJ0YfNFaKfnLxC8jILLhEBar5Cxjsjozozl0It6W8KnABytympAWYc3dclijIzCru61SL1NsDJ2eKcOW3zloAIFPw0lBdIKMitc087zQQisSUCCwZBZVzAKIBKKwPNRUrrCvvAtWVE8T0aAEVtTDiUkOda9thZsBiZx71+hM5R0zQyUk+dqmRWcew8lPVrDLgcmDzJXHifMaoyrfYRhBWRE6AfIsIQ2OXHcI09TypHHmVdfodaos2d+H3v27Wc4HKJxMlnfCymPVYkHQ6J6CS8q48ucICyhtaZUrdHvdfBRhBZ6zTYSRZxJgso4SaeJLwyrK7cYn5wixoAqceDYCRYvXiZNNe2+4ZXlNSbNKnMTbcYmd7O+fItqpUGc+JSUhyUi6/TQQ5/x2m5k2mL37L3c2rhKENXoxJvkeU4kAzLpHJN4ujhvSpTIcNd3gbASd/WyWCHIpUXYFCncpsAKhRQ5nsixaKxIkTJwW7VMF0jmAg3qFTJm7ULtrLUYtLMc/N0E4Lb1htgAPP3lz/FLP/E/8sdPPcPc7DSf/OSX6fT+Z9LU0BgPqE8LOksJwrodu8DQaDTo1JtcTofOMe4gX1ggqlTw0NxcWkTHkoP793FjbZk8j9nYHLJ79xwrS1NkWU6aaSINyleo0Cft9rE4go0ApHLa+V4S46mA3Do5hyl2q677mTLox1w5dYqDhw+xfO0aURCiwgr3Hj9GmmWEfkQa+zR7K+yemWd1pcWRI/ewsHAd6SnCwKc/6OGJGvff8yhry0vM12eI4xiNJUmGTExM8bWvPosxhkqlhnDxJYWspuiQFs/pqPORZRlWjDj8r+u+G7GjwzOSExWXGGsL/Kfa+j07PQJWuunAaDqykyk9IlhI6dIRb6NbIIEig2Brg7H9d43u+3ZDmnR4xpEnYwejPUvvbBVlBFsMcVUw3o0ddfvFjhAr9zXlBfh+iAp8PN9H+hJhLXGaMBwMHELNCKT0CbwisKtgHm91NUZddralUrA9yk+Gjji0vr7KXXsmyIKYUEm6/R7WWp555hn6/T7PP3edSilAmYxGrc5nPvNZKpUKkxNjHDt+L9VqmWeeeYb5vXsYHx/n4IF5rKxw/cYiotyg2e6A5zPodVy6sPTJkyGeEhij8SoVlB8yOzlFGEVMTk4jlO+6+0azvnQLGdWd/2PQA20YDjroyCOJNwlLIZmGqckZAI4fP06lUqHVbjLs9el0WqyuLJHnOT/wgz/IxUuvEXqKuZkZBsOU69ev8uST72B1dZXPf/6LfPCD30ev54S/m602yyuLRPcfJenH1PwQW5jQERIpnH5Uiu3OoSxe3503a92ky5K7Ysm44t+DIk3WFB0uHD3EgJEWkd/5HAA9aLN25Qy79h2i1c84cf9D/PIv/hzf/u6388UvfZl/+PO/ytWFDX7yp3+GC5cucvTwUf74jz9OFJYpNaooJEmnzcLSCioso/OMSqVClgwRFiq1qsuEEBaTp3hKkacpVy5d4Mibv41GucpCcIHhcMie/XsYqzfIkTRbHarjk7zt297F177+HJNze+kM+/TTAQQRAE9/5au85z3fQb1SRRjNhcuXeP/3fYBP/ec/xVOCajmi11pnemaSLFN0el1mlKLWqDM+Ps7y8jKd3oD2+ir1sk8pDzFUaLV7+LlHs7vB4uIi5cqkm3QVFC8tQCIxRTGNEVib4IkQIcDoDD2I8aIy7vhw51WTuY2ANbkjCBmNwkc6i2KRIfHfuITBnX3+/6+/qqNvnTkAhXCG9iIsa6SXvxPr9V1/12ABYRyK10pnAhZi+1l1BmmQwqCUj9x5fSke2+hzSZEILHB4T1mkLYvRtF9i8hyhXUEpiiaBkO7fEK4BpqzCZDmSgM3NdQ5NHWJ+7hAmywnGI4ZDgycdTW04HOIpF+zYbPc5evgInWEX6XsM+kM6/R5ROaJUrWG1a6qlylCpOWJbEIw8KKagogn8wEcnCcO4Sxh4jI9P0mxuYIQkTnMqtTF6nTa12XG6aULWH1Cu1FH1kF/8x/89nVzxjz74KHPjZTqtNl45YjgcUqbFZnuNUs3HZDmzk/tJ1JCgNEYoKw5lLi1KFKoG61CdIzyohyqM67hNZ2Fml7inzxjX0Uc48IKU1tneiyaX63wVlY7TFhXwhWISsONYHhGutiVsfzcB2LneEBuAo7vexO/8zu+gAvj4x77MT/7Ut/OpT3/RHdRBTmnC0N0AEovNJeVqQHfQZHbPBP6LK+gsYGmpT1iD1WaX9WYL0WtTISLtT3Hg8H5mZqd45sXPcuL4O5ibmGX/wbtY6qyRSg02JPQ1VgsSffsY0GpDmmf0Bi1kNEY5qGC1dRhLZFG8gjGCud27uH7uNQK/TLu1gU26nD31MuT4B+gAACAASURBVLIxTnPtJn//+3+N1y69iNAeBw/OMUg6TDY2OXP6VUrlCvWpjAPTD9NZSUm6SzQ7TYSEIAgIQ821a1dojNXIUrfpsFaTZ5LAK2NVBSFd8a5tSq5T0tQ58fNsm5/uflbjSeE6mnbkoJEuM8DmqMJEZXRR8IucLHNFexC4uPs8SUmNQfkBUeByFDwhCz2f80Uo5eErQeAHRYeJLdPnTgnLSEIy2lBsY0q3R+E79bEjLW2SJIg7HO2tRFHYC4ehVAiskvieRQunX9c6Yzh0KdJS+XhBiSCItsbUWZY5hn7m5DtKSqLA20GjMfT7A0yBFEU5062SXiHZcr8nzwW5zckTF+iV9NKtDeHGxgZ+6PHSN55hMBhgrOCu/fs5fPAQpVKJl8+eZ3pmjvk9e9A64+vPPsdjjz7Cd79/iq997Wt8/Kk/YXKqzgc++AHq9ZjFtRaVUp04V0zN7WF8ZjfTu+ZBCHSeM+z36HfbZNpJ1oyWXF1ap9vrUa0683F5bA/Vqf0or8gtEB7CKzj6+QCZ5wTKsHDtNYbdLufPX6IcBiiluXnzOp1Oh3375jl27AE+94UvEEURzWabRn2c+tg433H8fpTyKZXrvPXxPSwsrnJraZFqtUqWJUw06kyNjbHZ34Q8puJ7pNoijCErLjK5BU8YpLUFYs4WJt/tNEoX1pSTS4MBfKvJpXVGYeHSkqXVSGOcdMQKxE4d3h1anVtnCap19px4jF0o/tk/+WX+zf/y6/zxp/4T+6YqGGOYm93Hqxev4ftlTr9yjne96z20Wy36nTa9Zo+jJ07w8qmXmW3UGCYJ7c01NjdXCLyQeHOTXfN7KZfLnD17lpLwyPKEcGo3Y+PjnHvxBeJkiKd8orBKp7fOvccOcmNhmXsffoyFTsqb3v4eqtUqX/jcZ/mBH/h+OpsbPHz/MT73qT8hHZvlwoULDAZD7jp+ggsXTzM7NUl7fZ14c4N6FHLt0jXG5/YihWVzbZVjx45RDl3n9fSFi0RoOpsb7D58hLF6g/4gJs8XWbh2mSTPOHTPg+Q2J+0NSDOBsYaatFidMSzyUNI0xfM8euuaRA6RXhnll4lzSy9x0zqpHKKyVgkJ4z4lnUGWYWSEtqU3xoW4WHKrVrIYrV3o4Ch7JbVkwxTdu3MTAOUJ15wyvsNv4hpOhu00diGEmzQaS64hsG5yUpI+ozR6gXD0MilQxrigKGvdBKagKknp2myBkBhhyEyGzgwid0GDQjgogOc7ya1RAoznSHVCUSvXIY2oSMF07QTS1CD0aXd6TEzsRnsByvOJhctw6fYG1Ot1klxTqU8yGKYEJSiVI8q1GlJ4yHIAKKKqQnqOGiiUh7Gg/JBcp3i+j5AK4eVU6hXyNKa92SYZZiQDn3gw4NL1i9RrFfZWZih7IS9evMC/+l//GbduNTFAR0sWVoY8ct8DrK1eohaF1OplhhuXSLUkT6tEtUmqwV5Ca6hN72azfZmTBx5nYf01Uh0Tiw7ZDvKOtdZNAqxFehZrCoQyzuQrhCRnZFA3xFkHJQOkH6GtxtghRicOFyQcUlQIW6StZ67x4mDLoNwUzArBCL9wp8Frb7T1hjjv9DtNvvDZUwQhlBslWp0l3vnOu/nEpy6A77O8aLj3+C6efmEJmxnAY7PZJFlKUApCr0B5GWi3uxw5cgjZW8ALNPXGBLeunicZ9PH8iI3VTQ7u2o8Kaow1DIOsh5IRedZCCo9M5yjhueRWDFI6pJTnefhB5HbW0t/StSGL67iVWGGZmZ3j5asLJElOKVR84+mn+aGf+UfcvHyBajTJybsfobnSJRAlovIu5mcq1PzDPPf818l0h6Ozk1y+dpmHHpjnS19/iempOV67cJZM5/i+oteNt3TYWRJjjSTNuqBzvKAMxoVxmSK5VGvtvjb6mSwrPAEGKbe7R8ZqN4o2FmN36LzRGCO3+P7Alh/AWuvCVqSHUv5tnRlPKkqhjxAWWaT+7YzhHv2OnZuB15vglFJI4TB2akeM+86NwV+mvf3bXC7wahR85QpDN253/75lUPM9BAovKOGXyniR6/47xpTBV4JKKdx6PCZLsbnYceFNya0hCNwEQQixhR9/va7Y8wKMsYRRhfvuf5iFa5dorzfxlaIShHgWMq3JhgOu3bjJ0uIK1vd597vf67CMV65y770n+MZz3+S7vvM7mBif4j9/+pPsmh3jM5/+JCdPnqS5tkGcGFqdHKV8pvfMczmqEZYqTExMcOPaFWZnZyhVqwxajmAURCEVqbCDJsvr64zVx5HKEaZQHlGpQhCVSbIMT+Ukwx69bpO8t86g06IeWrLIw6Qpp179Jj/7Mz/P6dOn+cxnPkMUlZmanOO++x9mfW2T9fV1ut0+YRgyHMasrLzEd37Xd9GYnEQnQ5J4wJRv6K0tUlXFa2YcjQsNWudF3oSF3OEEHc52NBkTt33MbV6YBQsMqIEcg7QuM0Bap0UVBUp3ZDS8kysVIUfe8SO85YlH+c1f/wUeesf7+Nlf+R/4xz/zS+TmIi8//xckeca9D70NrJPpXL9+nSzLnMRLwerSErOzs+zZs4dSucaff/Ip5ufnGfZjBqkzoG9NH6VlfHqGZgaXXjvP8vINdk3NEOeaSr1G/+Ytbly7hhWCmzdu8MP/8BeI04xLF17j8SffxnMvvsC1Sxc5e+p5ZmZmODC/n9Nnz3Ds8EEee/wxnv7Sl/jTp/4fTh6/hwDL8uIt+t0uR09OoaKIwPfo9/uEnk+r1aJSrRK3WyADVlZWWF/bBGFobawTN1sYJYiThHa7yXhFEA8GBMrSTXrkec5Ku4fNLevNdYwxXL25zlovQwYR7UFGnOckRhXyOE2pFHJkbhdvPrSXcqBpNOoERm4VcK9ff5UP4PWG4f+SUXi07I7z0ujzv3QZu91tNdsBfNZadJ6ik4Sk0/ovHF1/c0sU3H6XLivJchdg6Nr9RQ5AcY3wVEAmUkfHK/xTcmS8tiCLBpKVEmOLMLvR/RQTVmlxcisEwmqUcNKS0bRACoHGEesEym3yjWJmepa1pS4PHHwIG6dMju2lXKoxHDZRQYlh5szU2cBl6gwGA7JM0+32qdfHSNKY8alJypUqg0EfgcIIie8Fzrfoh1ix3TTzPB8ESHxK1ZqbqKYJQkm8IKLX3mRzY4ObVy/T3lin2UnACMIXbvDqSy9w+col8jTGFxCMRfR6GccfOIb1nQ9BWuisrxJGFaYmdhFbSTbsEehJQq9EyARVr41IfarBFMF0QHetSWxyBDnWgjbOO+nJ4vwpXK6DlMV81RY4Z+toTdoM0DZBZolrdImMQkzkJgQ4pK0u1AkG42hAuMZcJtyGYEtKd4frhTfaekNsAMZ3D5lslCnVLAsbMS8/t8iJg3OkfajszsgSj0HaRinHkB0fm6GpN+iTECdQIWN8PKCTprz1kYe4cPF5Tp86y93zDSbesoe7jj3M6VeeY1dUpxQ2OXPpOZabG9x98BCtdINh3GOmViG2CVpIMKCsQQUKcCebhl8mCiJKXoTWA4Kw6qKnJYxS7p566ine/573U6nWuX7pLLsmxyl7gleefZ5ev8P0rjnWly/zyosX2XNgjn7XkVzOXTqPUD7vf//3sLC8xu6986w1Bxw6dD/pZIeLFy+ilCaOY5IkBVwBb8kQwqc/XEVEE+RJEdyUa9JsUBiFnfN9lLaaphnWaKSSjievZPEYtqVAI2rNtjk3xys6DWnqOOmedAV54PmEXkjoBU5TaV0XRioXCqUEGKu2IsFHF6/bzMVmBxljy6j1rVSLES1j1DnfaYK+U0sIi1c8fy52fGQIdlH0wrrHEvgRKI9SrU6p1iDwwdicNI2LTZrb0Jl8NPZ07Pg8NwjpUSqVMMIZiIHi9WRLEmStLfTA4AUR1ngoqYnTnE6vT6Vcox8nCANRVMG3OeX6OPP7DzN/+ASlKGJ1dRljDEsrK8zOznLwrsNcu77A7Nw08/Pz1CtVTr1wlrJa5IE33U+tVuGr33iOYS8m0AN6zT79lkdvw/kOhp0mnlIsLS8wMz1Hv9+n0RgnTZ0BVOcD0jQj7g8oVWoM0w7NldilSQ57DHttMJpaNUIowcrSCjpL+c73vZdd87s4e+YU2mgOHDjIffc/yNTUDC+89E2yNCcsVZmYmmVycpJarUEQBFy6dIVr165QDiwiTXjHA0fpL10hkBqRxuTKRxZ0LJU7o7vUxUbY5BQ1gEv2tU5fjbUuzyHflg2MZF8ekky40CA3/rEII0E6PfjfptHzL1vlvSc58+d/wMWvfZpwYh6jQg7ee5JPPft1xhs18k4HKSzf/IvPcWN5iVLU4N7jx3nuG1/l6KGDpHmXc6evsnt+H/X7HqLVG3LX4WPcPP8Swkr6SUq712dsbIze5hp+UGYoAw4fO8rTX/gz5qanWFi8TlQZRwqfsFTl3KnTVKsBg+Epfntlg3e+9328673v5qWXX2T/3kf4/g++n4lag3/6P/1TvvzCswRpykYo+Lf/8p/zwz/4Q+Qbq6ytLIHIHZnMV6wuL7H38BGMMbx29hxve/wJbt24wa6ZSb5y6kVn0G5atPWoVQI2FxcoeREyDFjfWAVSVNejlKUMe02azSatbswr587R6/UYDof0BgMq5QlynYBV1GoNPM9jMEzwwoByqcIwznl54zrdjSaHD89zMKhSsoZdFYs2GRDc0ePh9Wun5HBEFesPWiTdDbqrN+/Y36WU3Crc0Q4K4HC9FmPAt/6WedQiCPwyxqaOYKRc9x/jMhVGMWFKOIQwCud3UB5KKNAG33f+IJfE7to8KrUgJVHhw9A+SM9zvWfhXMXddo9aVOeuxoPEQB73WO0OaIzVCKMSmbYgPEw6oNVt4vs+U7NzhEFEENawJEjlrpXlaoXcKHKN0/aXyk7CqxP8wFHfRJF34Ps+OhNomaH8ACHLGJ2SJgPazWU2lpZ49umvk2Rl7jq8l2c//0XyYZcs7SAyyyMPzXHuegcFzO+epd26iZQucKzSqLHZ6TKI15jaNUs86CLr02ihyJIEP6uTJEPC6hxpR1NSFYJA0Ik3MeRkWmOEhxUGLRIKuwVSOl+AwaIL2Y+SYG3qMnVMjBQBlsR5DK1wfjPpJLdg0F4hgy0+F0KifFmQfxxy/e8EQLevNwQF6Mtf+jqt9oDJyXFQgksX2jz7tQsYLajWIrIsd29eAcNuhgXG6mNUyxUQkCbQqJTJLbTXVlleu8FGM2P/3oOsrS6hvIgDh+6h3+9x4/I5bt66BL4lz1OsMXS7bdIsccmhJiPOXDDFqBDzlZNjBFIhgciL0FoXO0pw9B3B2uoycRxza3WdPDc02x3mZmZ45ZvPMT0zw/Ktm2ysrTM5XmdtdZHlpeu0mmsYYzhx4gTN1gZ79+5nbGKco/ecRKB45itfZGxsAq1toZ93o05X8DnKTpomZPmwkCMZtM0QwqJH4UU7SD/GmIIMdDsCdKSfc58btHZFv93RTYFR98nbQlruRNgJIYoY9oBSUMJXHp58nd5ypKPEFfCedOEq2+i87ePC6eq3/0Zfbidbjr4m7iSOAmcCpxgXG7a9EFB044q0WpSjxIz4/dZaTLYtgUqShGG/z3A4JE8zwJEXhJJuvOx7W1Sm0esIt2MAlVIEYYkgCAgCD+X5XL12k92759ncWMXkMZ7nkWvN9Owe7jl2nJMnTzIxPk6/32d8fJz5+Xn277uLRqPB448/jsCwvLxIqVTi1KnTVBsTpBo+8pGP8tQffZxj9xzmzW95M1ZrKlGIJwW9XofBoEe326XdbuN5Hv1BlzTNUV7AME4ZJDH9OGGYaAaZC9HKdIolx2YJ7dVVvFwzUa1y69pVlhYWmZ3ZxdGjx3npm6+wvLDIhQsXqFScVCW3hhdffpE8zxkbb6CUYmyiwTCJiUoljDHs2bOHQ4cOkcVDrMkp+YqSBGVzPCWKwB7X9cQaZ7zEFMXCtj5YFeSKrfeFdbpj16Eq5HNiFExGMR1kq9gYJY1yB1GKAJ6AuUpOOYo4+diTeNUxfuzHf4I9+2Z5/MknGMQZS4vrtDeWeeDECSQ5586e5pGHH+b8+fPs2rWLffN7qVUqtJubLC4ukmT5FkHM6oyxWpV2u4tAoa1BGzh9+jTVapl+v+8mqr7PMIkB14XNs5jQU9RKEZ/+0z/h3/32v2Fuz27OnTvHl770JZ5++qs8+eST/OhP/CQn77+PixcuMTs9R7/bZWV5kXarxeXLl6mUHUs9CAIC33lVfN93KapK8dWnv8KuuVmS4YA0ScjzFJOlYHKC0KNSc1Ixay1rzSaLzR7rPcPVlR43NgYsrnVo9XMGmSSqTTI+tYtqbYxarUEtqlLyAkIlUXlOiEfk+Qjpsd4b0uonpEaS6+L4MX9Tx8J/+/lR2ttvo+uDMQaTJmTpkKTf/Rv4W/8r/z7FbdcRU5Du9I6pNcIUjTmB9HwnK/ScLGbLR3abHtxup5YXXjUpPBdaVRC7pNyWW3qBv53hoNi6hkkLofKJvAiPkGwo6LVTJmq78X2f2blJLJKgVGZ2bhc210hf0mg0iKKI8bEJvCCk0+vSGJvA8yOU7xUhkpZarYa2BqU8955Rzo+CkvhRCaRHmhdNMSu3rtN5mrO6tog1GS+9+Dz9/oBarcZme5P1tVsMe20m6mXuPjzJ+uoya2sDPAO+B4fvOrgly02GMVmWMdao0VpbwubaBYf1O+RJiklzhDbkGVSrDSpB3YVCegEU8iwpbDE1HakVIDcFvdOOqhDXNFFq1PBzDU+L3q5bCi+hHskxBSAFRuHOx2qnL9E9JXe45/KGW2+ICcDpb0h+5ue+m0//+RdJhwa/DquxRYSwcCnmvuO72burzpnz5+m3YenWAtQN/VZGrn2GWYaxKQf2jPGfPvkUD7/9IX70/neyd1zxjbMvcOQd93D1UsDZ02dZvrTBA4/PMEhiNtstSvUy+/bvYZitYAYpXgg2dSQH31dIofE9Hz/wiaxA5DmBr1wXAoPUCmSOzuHcy6ep/oMyv/Ab/x3//Nd/g7X2BisbZzjgKVabx7l89jTVapVer8uNGzepNyb5nr/39/iphx/hwx/+A5584q1cuXytMK5k3HPfYb56UdPuGmrlWXTa4Z4T9/HKqecAEFaghEH5kl68Qbk4oWWpdlQOLNpostwZGfPcyUmEdWY2H+VQaFvcfQ1orJQIKZ02spDveJ7A80JcgSu3Qs2kr4hKgWPDR07XXvIDIt/DK4zJnjAYEZOjybXAWEGaZehUb0l7jHIUFSMMAlUU1Q61ZKwh1xaMxORmS9rkePfpnTtwwWHFhELiJD4WRV7YQrU1KOkjAh8vCFB+4DrfJiVNYnSh6U+SZAuR6V4HSZ47IlUQhSCdgVdbg6dcMTOSVQrPydUwBmsUISXHzEegleL6Sp8n3/o4zeuX8AKfZrdDd5hg/JCx6Q6LX/sa9508gTR1rt24zvV2m0vXLvLWRx/jk5/6I9Jhj2q5wtp6m5/8iZ/i9/7v/8jy+gpHT5xEeYIXv/kypbDMiRMn+cIXv0KWaeqNcSYnJ9H9Fpu9TYwVNCYnabfXWdd9Or0Bk5OTLKxucujQISTj3LpxlSj0qVcjrl65Ri2Q9Hub9PtrjI0FVCoVpqYcnShOeuQ6YHJijn4v4/HHH+fU6Zcol0IOHdiL75WI+z2yLCUMA557/ms0KlWG/QHlakSnuc7cWAORZ5TLZZKhITeOqiJFcTFRLhAMM5JNFEmrCISxSBS5ddM1LQ0yd7SR0fWlGBIUHUG3cTCwZUwUpviGO7jsxk303BPUax7zB/fx1Ec/yqmvf56gPMmfXb7FL/7Kr/CJP/o4S+srXLxwCU8qbty6yv75WSYmx7n02jUefOTNPPf8i3TijIE27Ns3z9qVgCRz2Skbi4scvOsgq1Ky2VylVi4zt3uaC+d61Ks1ev2ENz/2GM3OgHZzjVI1JE6GzEzvZn11lbm5OVYXb/Knn/oEP/i9P8Dv/cffx+zto+KUM1cuE3mCD/7QD3Pu4hVeePkVxqbGmZ6dwlxMWLh5lfH6BNVqGV9B1S+xd34XYRjiRSV2jY9z5eJF8EBYn3qjzqVzp6lXI7ppRjlLWb+5QNxsUyqHCG1ZWrjJ/O493Fq7yK65fUxPT2+F6pXCkP5wiBLCbW4kRPU6wzTBiiIUxVpavZjFlU1OHHX+LtdQuR18MPq4DU8odO2i6GbiyChgEEZghUSqokEktnGdziwpcFNje7sEojC4jo5xYSxW2MIQ6zCbeQFoyLOMLE0Ztrv01hbp3cEJwGjCBqC1ROeO4pPnKTa0lALhimIbgvBAFdcxnWOERguw2nmrZBGIZrEgfRAjmozbqKMk2io8XEFpPUEuHBpp9H1I5/uSArTvIynx/7L33lGaXvWd5+c+8c1v5dxdXR3UUaGVkEBZIJARlnHAAYMZmLPHezbMsb2eHcYzA9jjgHfXnrFnsMEYsAiLwVgITBAgJFBAaqnVLanVsTpWV656c3jSvXf/uM9b3cJnzuzseKa15/jX5z19qvqpt95+wr2/8A1SavoyW9my/Xr69TDdsEvfyDSea4GdwfEKhFFCu1PDwjQZXccz8BjXZaAvg5SCXKHPfFY7RtvGSNP3ckRxRC6Xx7YsgjDAsjziVDbZcxxUFOC7Np1IYokQz3NZWzxP3Ik4cuwM2eIQi6dfJUgUWQd8BdsmBin0lxkfH2ete4ZWtQNqlaXlhLHxcZYXV/C0i23bdOKAOKiTL4/RXF/GclyS8iBWVKMbdink+3HsMlnZj2XlkTqhHUkcoYiNVB6RyoIdmf1cS5QyZHPbEihlii2t0uuMwpRuRsrcyIXYCCSx1oZ7rUAKjbaNhLvUAi0MzMhWdsppvLLSy6+3eF0UAFEVPvu5b1Ee8Rgbd1g4k+C6LptnholZpdgHx49fpFUFtx+yToYmHbbs3MKrz54jkVBVFqOVOjP7r+Wefe/kL77yx7zjljcxe/QUB6ae48arb+Ar1TZXXXctZ44cZfu2aRbml7h26DoGskWeO32Esal+8n6GVhARaYkVQT5nky+4uLbGsY0+bc/BFyGRiTK4M+EzNDnMZz75H/nn//KD/NT73sfWiU089ImPMzy+iW989WsUisbgS0rN2OQU8/NzzM+f5ey5U9x7722cPzdLudTH9m07IW/TbVa5evc9LK7N89Lx55Aq4NixI+nvThehVNpKCIHUDbMYSgeNMQQzMCDrEtE2sQ320TPEJce9BMvpMetd192A2diWwPM8I/FpuxtNEzclU1mWRSE1IimkxNZiNoedSlsKIcwD69lIKZCyuzFS3sBippODnJcjTELDt0iNn0jNO3o8gcvx7j3fgisZieUhBMRYWMIisRxiIBYWUgjcXAaBIQNbjkvY7Ro3aVtsqCv1zMw8zxQItm0TKYmOJd0wRgvLaKYLG8dzUZaLbblGilanjsuWOWeel0HICIEmkhBg8dCX/pYH77mZubk5Sl6e7vIy7WaV48deYevW7Xz6M59hfKRE32A/SwsXqazM8+cf/xOmN0/i2IIw7pDJ2qyuLfJbv/VBzp27wA+f+gFCCKrVKo3aCt3u8yASbrnlJp565mlcT7O+XsUWxpX6+CuHGJ+cYGUuxWo2Bsm4HkeffZxOp8O9997JoYMHWQ1DhkcGWV5cQsqY/oEiwyMDnDt3DqVjOu2A1bU6w2PT3HP37Xz/se9y+NDzeJYirLfp5HN0I8nxo68wWMqzc+dOBnZtw/ZcfN9ldXmBen+endumqdTWcdEIL4t0fazEQWptJPyUeX6UIxEJKBEasq/WuD1SpIrTzqhGWz4ihQNJDIFYp6ojUgC2NB0rBNo2xGAtr/D0auxqyoWEG297C3/16Y/jxl227rmFMFvmwIED/NGffxzHcSgMTJDFw5UhW7fMcOrESSYnJwlrc5w9fQochZcvMjg4zHqjSWF4gvOzxxkZGuWam67i+9/4CmGjxtBIP+u1NktrTRq1ulGDkoJmu42lY2TUZMe+G5mfW2Bicpr1tXnWVs7QjRP233MbX/iL/8DQ8CTry0tYUcih557irfe9BRm02DI1ybJrUa8s02m2kUqxact2olDTCSXzS+tctfcaRkfHODN7gkI+z8rSMgNDg6yuLpMrFV7jgdJfKBLEMWGjhogCWnWPgeFhtu3ay/LCItuu2kPQNdyWiS1bSBJFrpDHcRyCbkSjYTrkYRjQ6bZo1yuGN9WN8HWEHbXJyQY5BBlhYdn+f9YV2MhyXqa01jtG/6ex/yZRfi32/7X/dumYnuJPLy5XjUuShCAICBo1mtUKzbW1/6p7778mmnFE1nUNVEcnJAgSCVJBGCe02hrPtdGO2W8dN0MSh8QqIU6E2b+1wtYWfphgOWJDTMlMldOpBwpLGWOqOIXK4jlG+cmOwcMUX1pvDPNcEeOKPmqNNqXcFNlklHK+n8X2Mu0oIZA2hYEiK+trONqhvlIhm/EJVGQEyEYncHM5fM+5pLinNa7ro23TGLMts34IJErFuA6m+EkkNhLbtrAdTdiuYcch3W6XqB2SBCHHj51hvhbjdFbwdYQv4MH7byJsrGH7Hnv37ebc6YvcfsNufvqdb6HP71AY9bk4d54gCbDcDIMljzisAQlJt4Vb6CfRDh4BkdLYCnSlQ+I4XD11G9gJL516honCJGvdi8yrdSIFStiE0jWQSGmZfEpofGERC0WcCrL0zoOFg964UAKpQhIFKj35EuMCLCwLHC/1VDI/0fPTudKwy9dbvC4KAEsqwtii043odhJE2nmo15oU+k1XOgpsyiWbtiUJQomds/Ed31xcC6prbUg01/seS8tz9JfzLK82aKzFJEnExYV5Hnjb2zh06HkiLIr9AxSyOTzHJuPmyGdLNBsdLMvB831saeO6zkay7zhOmvz3ujM9sLpJBorFMiur69x1w2189KP/B3/yyc/xZ//+T3n2hRdZfPS7fOh3MmWhdwAAIABJREFUfptWp82e3fuo1lbJZIwSxUuHX+ahL3yZP/joR9m5a4aDB55n+/ZdhO0uL7/8MvWgw8LCRSxLYTsay06wcQ3syAAW0xu9p5YD2jKj9h7zvdcxN7CRtBMkeuo/Ih1tXrahpGESc6MpbxJtvVFB9zZL3/cvOdym8BbL9PAR6chPCYgug/P0CMS99+rBVxL0axyAe3vRBsYdXvMQ9467kqEskJiJiRJmDB2D6T6AwZlaNpZjv8ZETV9mimZk3Dw8zyObzSJsiyQ0C7rlGHMs1/E2CiXbTRWEhJ3K0prNwnF9hLbQJCn5VJPYAlu5zC8toy3B2voq7VYTIQRDg/08/9zTvPm+t2ETc+ilwxvndGpiEjDXec+ePVQqNebmznPopVfYvXsv6+tVbrvtNqanp/nBE99nfn6Rn3vXu3jiiSdwHIf5+Xm0FiSRRPTZlMvljUmT53nYDmQzDvX1kOnJMWQYMjQwwMlTxxGWpFjMYzuCdrvJ5MQmjh87yepKhW63Sz7fTylf4NirR9m6ZZpmfZ3EhrDbZXHxIM22gf0EXeNCXCiXyGY9nnvuR1Qqa7Qrq4wPD5HvK6C06cxKrdHCyPv2jIOUo1CRgRMoHNAxltLEItUC6t2nmGReCb1B6NRaGXKgMARFhfGI0EqhLdPZktaV5a8Ey8e4/5/+Pl/95OcJw5hN26+h7ZTZtHmaX7nmWtYqVRqdAEsKznSa1JbWibptlpeXCcMQS2qClSVypTKuLVicX2Dz9h2sR12Gx5ucnz1FvdEkUyjRabWJlGB0bILNM1t47O++QiwTogSmpqY4fPgwUZLQrrUYHhqlWq2a32FLChmfV158kbWlFTL5PvoH+rgwO8vQyBi5fIGhkVHKfYP88Inv8+u//s/45F/8BWEY4WYytIOAASxiqVlYXqY4N4cAVpeXsIVFsVSiUasSBAFOJsT3feI4IAgCcoU8CqMMl/Ft+solfN9l11XbkVLSrJtnU0qJZWsExtRRK4swXENKSaFcIpIJtrCI4pCo28GyImxdxPdsfPe1HcnXrG3//W+J/2RsdNw1G1ywKxV2OrUw8hAGySNTRI+SGukoEkUKsbONEpDQIGyUpTc6zSiILYWtbYRFqrgGtjZwTjPHNdweJcBJJwVG6SctGrSAlFjcK5aa7Tqjo5PMbN6DCIvUGw0Gh4cYGByl1mzR7UhEorGRVJdXaTmC6U3j5j2TBJEkZEpG7rYnvS2wEMIBYSRIbSwjUSqg2w3MfSgSdJIQxgmWioi7HcKgRdiuQyJodwKeOfAiKhUD6S8IBrIu3XadYrlM39Ag84urCNuh3VzC9zX5wgC1+hJKCzZvmiIMErrdNr7nEqss+UIfdjZHN4FOo4YtBJ7jobSN0BmQHvVqg+mRq/DzFrUTF3FsC217hmeJTD0T0lOJlRq8XXbB06+VMKgHo7NhYHNaWCipfswU7pIzt9biisOEX8/xuigA/q8//gD/67/+S+IGZGwHgSJOJOuVJkEXVlaXCaqwZWeGxUCzst7CU7DcXCbvWLQCj2g9Yq1fIM+e40e1OUr5Tbxy4VW2zUwzOzuL42coSUW+PEDibedspcl9N0wTZ8cJWg0mxjejnZBmo0pNxnhuBhVHRHFIsxWz3u4yNTGBZ7vo1N1WawkIisUiWgsiBd9+/CnuuuceirkM/f19XHPj9TywZTvdbperdu4nm8/jZASvvHSQz33uCyyvrHN2scUXvvB5Kq2AZqPBo9/8Jvf+5P3s2rmbT3/ps0i/jdA5hLZxbBetItNhxEKqzkYXyBIOwtUksovW7gaBtzcB6D0Q6FRhJ4XxOI5JIJWWr9mAHMchkzE6wznPNySdNGfpJe9Z38N3HTzPJeN6xprcNcZdbmrIIS1DqnTSqnxDUUhdIvZqAUoIXNslji8VAD/unrkh8ZbyD650ARArKzXtMWY0oVR0NSSCDdKuMeDRpuOrNBnfJ0nMBuo4huArhMFCW5ZFIiWJMioPhUIBx3I2yM5ZP4fjWIgUomKlpmhKSYJWiIVF1K6CikmUIIgVWUfRXyqSz2VZODdL0KoyPTXOyoVZOo02n/vUJygViuA65HNFdu/cx/1v/wm+//3vcfW+PcRhhyg+ShiGDA4OcvLkLAP9wxx84TD1eo0brr+V559/ni98/m/wMy5RHG/wHIbHJpmenmFtbY0oihgeNBrsKyurbNk8zc6dV9HtdpmdneXixYuEcUKt3qZRa1OtrnPddddw4MBBBgaGGRud4Ac/eBIZe7jWMluu38eBA89w3f5refWVI9i2w9jYGDv3jLO6uIiVxBx7+RA4NlgmCeiEAdgu7TABv2hKZMtCi9RLRMlUHhdDKowSo/mtTYKgpEInRudeKzO+RsZG/73nlo0gkdLokSuxcd9uFApapd28K9uN8q+7h0/+xj9DZDJs2ncrO665iUe//mU0NuXdeZ783hO87YF38vVHvoSNoNZsMZzPohNJu9Fk87Zp6rUWSxcu4PpZdu+5hrGZzXi5PI6lmZ89iiMS9t96Gy+/8DwqCfDzRS5eXKCvr496u4kWAtf3yPcPMoVg/vwZin39OJksSRThONAN2sydPYfUgpWzJ2m2Rjh9YYGJ6W0srlb41ne/x5vecDP33HMXmXyegcFBFufOsH//flbXW2SLfaZIyRWoVqvIoMPxI68wWu7jxIkT5F2XThzgZvOmOPVtY7KUyZDtH6BQLGIJRdxtoCObgdExPCdDNp+n0+nQ6XSwpKayViEOYwrFPEODA1QqFYJ2gCc8SCRWIkFLBvsKjAwW07VBG0fpDYxybxr7+ikALucARLEmCCVBcuU+nU40tmWm8bHVg4NYxpXZMkRgrQSJstBK4TgCpS1ibQDmsUzwhGmPmZRep1Ly6cSjByXRFi6O8bmxbbDNdUELpAyNsZiTTtQTI6ktI0U2Y9Npt5FJnrCt2b5plGYn4MzZZVrdLjq20UmTw88+Q3u9RqO2Tn9fDqkS7n3H2ykMDOBlc+SKfUilDDTIEB0As6cbB11huIt22uxTEq0SZBSiVBcVB3QaNZYuzFJdqvDNb3+X84t10OAKzfhQgTwJpVKB0sgEjpdHJE1Gh/q4/uY3UCi6BIlN/9gUynE4dfgAg+U+ikPbCDoN2rHEUxZubKSTg7ANlo1v21iigHByxIlNPlPAYphuY5VCpkQ+cnCyGfL5IuvBcZpBE60tQm2un+ECXcb1U8okqtpIr5vvSaS2jTu9ZSByFtJAh4VAJjptbxpjt9dDs/D1GK+LAkC2FxEC3FRyS6HAJXXvcMkkMYkEMi5ZFWFlfGwREiuJ42v8JKARQq7rsFBvo1oxpX07CIIug9v2UmucJm606eRchoaGiCpthvqKPPfcc+zcE5EZGkCrLH2ZPjr1BNduEcs6iawRdru0FrvMbB7hwvpFpibHcXUeqT2ySUzsekRRRBxlSCKNyjn88MlnOH12lqnpzezZczXfe+IH7Np3FWF7hST0+MGTP8TxPL766Pf43Y98iAfefCOPfOcHfPPrX+Pue+/imWdfoF7rMNg/wbapG5irS9brJ5EyTl3vTEmstU0ijOmJZQM2qUa5Taq2m5KWEkMyMy4bIFIwgtXDnaZ24sLoHvemBK7r4goL13GxbSdNvhVKXqq2Lcc1ygqOSGEoBtNKWkwYIlVslHG41MXv/W1c+wxj3xHC4DOtBCWU6chqzOeRGmELw+i3DKnHdi5XL7oyYROZ/6PQaUFm+lJCpx0bbCzLJgyNM6jtOmkxZtyBDdzJxhiha+KU7GVrG9f3kLFMr6tIDeg0gVJoqZEpibhXJCF7HJDIOD0nCbaAXLFM39A4Q4MFfD9LqdTHxblls6lj4bsekQy5+aYbyOVyFIolDjzzJO/++Xfxuc/+FcMjYzRbCVEiOPDcAfr7+3nggZ/kYx/7GIlSbN12FV42i9VpmkmIgnw2y9jYOIMD/fSXiwyWCiwuLVGvVsl4PiqXZ2pqkvn5ecr9fRTLZca1ptZo4HkZHJFw3333UKnU2DW8lyNHjlCpt7nvrQ9w3XXX8Cd//Hu85c1vZGbrFs6cmeV97/8VXn75ZXbs2Mn58+fx80XmlutcnJujWC4wPj6Kn/PxvQK7du1jdHiEVrtBLpNH4GK7LokKwL6k029UOs29aOkYpJ3em6Zg0zK1upcORAKtE8A2UCCd/puWmJaVaUgqEoNj1ZeehysV1+/eS+PMLBNTk4xNb+bLX/gUdsajnXT43Be/yL/4Vx/i0InjOI6DDJoMFAoURwbIN2qMSFhdWyTjFnFth/m5ORIlWe60UK0IpGLTnv1s2rqD1flFJmauIqgusGvPLp554gmiRJLLFujGmvPzS8SBpt5RaD9Pu9WlKDwcy+ipl6anGJ7YxMr8Crv27KHT6bBpeppmvc7IyAiry0u8OjuL7Weo1mp0oy54GVrdiPMX58iWGowlozTPn6KyssSu/bdw71veyuNff4QkiIm0mfIGzTqtTpdisYglbEKp8Dw3JXNoOrKDSjSTU5uxMzmSZgspDQykkwR4GY9muwkW+I7NYH+RxTmDle9E6X6VddkyWmbzSBHP1qnRnMS2bHrGXlpJbNsBrdE9uU+RpNwwG0hJw5ZJcUyHM0FoJyWbi40/KMd0U/Ul12qDJErXLC1Ng8KQAMy9m6YFljZeAJdDLlESS0ni/2ak5f98WJbxmzGGkgYYojD/R4dUVEKkMpM4SGWRxAotLKSKTIEuEizhguUj0fi2RagMdFJiYWuR+n5YCMfHsj0SN0HJAI1CWgkoB0t7pqAnMYo92sNWguHBcXKqQCYTs7i8glIe9z/4S4wND/HmN91OsZDBtx3aQZfRyQkunD3FwECZ86++xNZde/Gu9YnjLtgOsTLNNleolJQOGc9GESGTkIzrYQlBI4ooZB2SqE3UrdGoVBGxpLYwx/raGsdOLNPowkhfnrwbMzU5zGi5xOTW7Qxv2kV1YY5vPfII67WAv/nqQ2SzmvWleaIwwhMuQ0NTZLN5lhfn6BscoFwuEyZ1ctkylqtpt5dJYpvMQB9SJwgV4pOl1lB4dhOBZDA3xrpoMjSxl1iWGCvtoHP+IRIStOUZMY2UdwJgW4ZdJ3BSDpZCplO5GGPa6CcK17JwbAMbTpTJbWLLQquUH+IILGXj6ddFyvu6idfF2Yhbigce3E0taPLy0wtoYHKqxNJCg3otZtOgIDMIQdQkm7FBaUpeP/NnqwjbAxGBhridsLySMDZSoFpbplCaZGhiiuMnf8SePRbnL55iessudNJmZbXBjsl9nDn1NOW1TXz/6CGGhsvcefddhCsVls+v4WqftUpMHFjMxVXcjCZpS8YGR8kNhyw0Q3K+w+bxaZ567Cks4bC6XiHjuXzve0/wpltvIeyE3Hz9fg4dfJFcNsPhl14mmy+wf/9+Dh58nj/91Kd44bG/AxXwnve+j09+/A+54843cOb48wze/kZuvuVBhs4NcWH5eNpVjWGjW2RjWZ753oYyglE/sISNcAQytnAcQRJrtE5QluRyuf3LF/cel0CnEwLP83BsB8cy1um9xN24HnpmIU6hK45j4zgWlpU6A2ux8Tl6bP2eek2vGjfdLkCYsW6cjheEZfSCNcqYiklJohKiKLr0c45tejdXWEkloxSWrbCwkAhsjTGPkwna1liOu8GF6H32HrfB811y2bzhNiCMYVaqPe37/obaUxzH5IslHMchShLCwCT3KpGpVv0l0zqpYlQSGyyzSrAcl/6BAVbXqrTbdZrtLggX4WRIooj1SoUwjti9bzcXF+a4+eZbGBkZIY5jHn/8MU7NzjK/sES7G7O0tML2bTvZsmULTz91gPe+5wOEUcKhlw6z9+prOX70JWrVKps3TVIq9rEwP88vvetdPP74YxSLRdCa6elpDh06zNVXX83a6iqnz5xi51W7mZmZYXR0lCNHjtAJIm56w/WcP3+Ber3JSy+/Si5XYM/e7Rw8eIjZ2VlKpQGeeeYAmYzH0uI6rx45ztve+nZ83ydKEmbPnCWbKdM/PEQQBHSChNPnzlIuFzljQbNeo1jIptA1gWXZRqkCM14WWiETjWMrYkeipfFoUDJByjidCHhGMUhKED7CkQgZgwwRIkbIBC3T5wqJpRKc1GOD1LjmSsa3/+z3yGy/lsld1+L6WX779/6ARjeiv6+Pv3ros/zlpz9JrVIl69lo10Moi+XzCwyVBzmzchavHbPnlus4NXuaqa27qKwtk9WK+WaDTaMDHD/6MufPnEdbLmOjIxSKfTz6ve8yVMgRhQnFcgmvkCNJFGtBhzfccw/7du1m9sQJMvki6ytLHD9+lGorZMTP8Ou/8b9z8vRJvvzFz3PTzTfj+z7NZhPb9fipt9/Px/7Dn3HgwLPsv/4aNsUz1Jtt3vzmN3Pu7AVkLFldWmZwdJKRkRHOnz1LFHfQMqLd6ZpnKwjJZDIEQYCfyaKSiCToUlldI5vNsXf7DPl8Hs/LkCgo5ItYKRSjPNBPdX0VV3hEnTahigjDkOr6Ct1Oh1wuR87NMNLfz7V7t1LMuXiputyP+5/8Q042Lf0PM2ja4ALIiDBtOlypCGNFwTXKWq4ALQSeBQrbyFHbBkoipTSwH52kRlEaLU2DMVFp0WODa5lriBQojZkGpCJdlg1SWEilkcoIUiidpO/t4liCRBl/BK01AwNj+MEEthqDWNFsVOkfmkSLIo22RIfLfPWRv8F3PUaGhhgs51nIF4ijgPNzc8yfPYnnWozv3svg6ASOSC+gUEgNKIln+zSqdXK5HCKOUSjCRhXPtmiu1lBJSNCu02rUUN0IlSR4lsXEWB/dizU0McWcT7vdZmDHVeT6RugbnsAvlvnAb36QZr1Kvq+AgyST8QmVoh3F9A0MkiiLcl9inItdH9vKEEYNkqiLa9uUS4M0Gg0Gxoq0WlWiuEN/qZ8gaeLaDiLOMlryaDfaRCJDYmfJepME8QohYCDNBrNvp4ZtWiosxzNKTtjGiNVysJXGlpIyPr6wyNoO0tJEQhHKiEYcEFsOad2aQjav2G37uozXhQzowtIJnn7sGM89e5E77tyDtqDZaCDNjI61dc3weImJ4QI538LDYeV8m27DAuESp921Qsah2YBE+lSWLrD36pt59NFvYHt5mq0ah185wuLSBeq1NVZWLuAU+pGywM7JTUwOlMjmPObn5mjUK7QqAXOnV8lZZRztMDkwQ8kvU1vpcPveG1idO0MkNIkUrK5EHH7uFVodk3iNT05w5uw5Dh56kecPPcehgy9Sr9X47Be+wOyZ05w+fZrvPvptTh1/lT/+gz9EWC4PfeqTjE9OcOrUHC8efIXjh1/mlad+SNYa5Nabfookhna7+/c2Biv1IBAiVSlIpbAsy8ESHvl8Ed8r4tgePYnKy3H+PbLv5RAbuITLdxwnTfCdDaiQlcpZuq678f0eD6A3wr78dXnhcDnx7HKVi8uP7x3b22SSJNl49X43/MNulP9fw0oUIpYQx5Bqx/ck/XrX5XLjtF4B4Pv+a7wVwtCQteL4UlLYg/30YFhaa1SSIOMIGUfYwnQQlYyRSUQQdlBJjFQJcRIRx3GquV9gcXWNcxfm6B8eptHpUKlV0UCxXOLe++7l9jvv4L777sOyLJ588kkuXrzIww8/bBQfOh3q9Tq/+qu/yuHDL3P48BF++d3vZfbUWQ6+cJhyscyxI8doNzvccMMNVCoVZk+dYv/+/Rw/fpQoigiCAK01+RQ20dfXByg+9K//DQODfczMzDA+OkoQBPSVChw6+CL5fB6tNYODw8xfXMR1fd7+9rdz9uxZ3njrnTTqHUrFId70pttZWFjiL//y0xw8eJBut8u73/1u7r7nTVx73V6CsMWJE8doNuvMzp6i0axRqawRBAHNZoN2p069bjDnPb6JEGKDl5HJZPD8LK6XMUZufgHcLMLLod082suiMyXIFLH8PLZXwHE9LMfHctJnE0AbQzBLKywRYfcMba5QuNk8SbfFV7/0EH/3ta/xp3/0f/Khf/6/8W8++Fv4uSylUoHxch+LS0ts2jJDGCUsra6xuryGnzG8qe899hg7du1kbm6OgYEBnnzse2zdtYvEdhkfHmHb1Dj3v+0tVNZWKJUHuO6661hbW9sg9Xe7XaIoYmpslBNHjvDdb3yT559/npdePcrZi0sMjW/i9jvu5I7b7uRjH/sYfjbDr/3mbzIyOU613uL5556lUOpjy5atfOITnyQIAk6dOk2pVGZ8fIJnnnmGYj6PjGOu3X8TN956O1nf5fiRlxgZGSKTdYiigEajQavVoFgskslkkInRva9V1ynks7gZn0wmQ6lU2uA/ZVLxg263i1CaYr6AUoqsZ2MJ6LRbaC1otVrIbpuBYpY9W6cpF/tw7OzG+vnjxMTXK1xhA1KqYq4kf91OpUlRGlcLHMCxjHiFedYc0HaaSGozOZeGKGAnChUpklAQRxqtLBJlEYWSJNIkkSSO5cZkVSFIbNCOWX8TNGEcE8YRiZQEMkZq041OhKZSqzHSfzXbpt9IHEuy2Sxoh3yhTNZxKeR8tALPEaytLuHYgqXlhXQ9tFheqfDdb32bPs8hqtdIWk1a1VVqK4u0qqsk3QZhp4qrQ0hignqNqFGnVZunW1nEiTvIdg2hNLValWzOw7UdGo0G+3ZvZ2ygBElE0G5hWRbZYom+kXGCKCJXHOLmm+/AsXMIbKqNOo7nEsQxxXKJbrcLQuD6WfL5PAKFwAcRUqms0e3EuK5pXoXtFnG3hYNCyYh8Jo/r+uT8AWhGjOTyZO0IXwgK+WkS6RrVH53e+xuIhR5H0UJYDlrYKe1CYGubrHDoczL0O3n6LJ8hJ8uoV2AqW2bI8TYaZEoB2igQ/mNcitfFBGDkql38DwN7eejLj/PY947wc7+8h0e/dhIlEzIZnyQKWVxvs290mEQJVqsBq4sxAodWt43lCEKp0Y2EfBaOnl3n3v19RO0qUtZYr3ocfvUlyqUi2UyJofIwy2sd5htnacUDPH1wlp+4+Q4iR3Lq4jyLZ5t0GgljE1MMjZYY6J8BJcgKhwsX1nnm6efw3D4uzi6iRybYtGuGbusp3IwAYXFi9hRKaE6eOsbI0Ci5XI7VtSqtIGStVufWm25kfX2Np598ig9/5N8SK8nI6Dif+cyfk/WKHH7xBeYXK/z+hz/AL7/zF/i1f/Ov6LQjlBIoJVNybS+JdnEdkDImTqU/hWXj+yVcJ0MYgPazaJkhilsEQYOe0m5vo+mNeRHGR8BOXSm11gYTa9mmehcCiURZFnZaDBgZu56+ferIrJPUKMwMo3uJbK9YSJIkJVWnCb/A4Be1TOE9ZjStlCLSkjAJSXSSmpOZ5Mz2HJRKrnwFq2OEMYBFWopAKdoKhOdvJM9Jkmzg+3sJpZDGATmIA5IkAcs237fd15C2XccUUGEYbqhx6DjC6nWRMV0wqRQkEQqVnm9DC8/3lcgVinSDFgsLKyTdFt1Q4mXyzC0t8gu/9AskOmFy8yaeeuopzp45T7VaZWJiEi+bod5qorWgVM7zt3/7Jd750z/JfW95K7/9kT/gF37hF0kSxaPf+Q433/gG/uYrX2B9dY12s8HNN95I2GnzzLGj3H333QwPD3P81CzlcpmZmRlWVla4/trrOHv6FI4lePmlQyytLPPOBx/kqWeepttKmJ2dpa88yAPv+Fke/ttH+Pa3v8O73vUu3vOe9zDUV+avv/xF7r33bk7NnmBkZICTJ09y4PnnmD1zht17djIxMcZ9972NiYlRVlfX+PrXv4Fte3TaMXkX2u0OYaeL63o4vkemlSOfz2PbLn42g21xmUSuAiy0colkgpCpy7ajQLloEWJbDsqy0Y5vDAUdjbI8tB1iKYGlQOqe1rxAxle2AGgWJ1H1JmP9fUQqJAg7TIwP8bPv/QDHjh3lmR8+wdrKKr/4vn/CY489htNt8uD7f4UnH3ucYqcDJY/zS8scO3aMdpBwrLHOr/3Gr/Olh7/O1q3bWVhbR4cd5r7xVTKuTTcKKRTyABvPxOTUFqSUrJw7z8TkNO1mE19ppodHaLQC3vyWt3BueYGwHfNzv/hLXJg7x/EjrzI6McrEps1UVi+SSMUjj3yd1eVVtmzZytjYCJW1Kq7j47kZlldX2bNvL7G2qFXXcZMWoyPDFDIu1WrVCDgsLdI30E8ShXRaTfL5PEkSE9TrdLtdbrz9LjqdDqVSiaDZRGqBVGZ9LBaL1NfXECiSMGDu5Gla3Q75XJFIKfLlPvbummbL1Dgz09NYUQ1by43my+XxGinQ/5c8gMsbN/8lx/49T5XL3uPHmzW9l0wdraW+cnKK/Z5PSdjEOjb6+LgkNijhpvAfxzhyIxFoEhngK0jCCBnEaBUjpYsWElvF+I6NRCKUaeBZrkDY2vCCHIdIg6M1SkkiZZJ/LTDQEmJUkhAngdnLIkG1GjJY8tFK0T/YT5DY2J5PImO6IWwdtum0QiaHClw8dxrLcjh58iSJksggIpFVDj77NNuu2k2r06FQKNJoNXBc07Dr7xumWCzR6TQJ2w26cYJWZjKz2KgxMNDHSq3B6OgonkjIZrMUszmW505z1ZYxTp+LcUTEW996P0Gny+LyKmdOPMP+vdfyJ7/ze7SbFd7xwG14fpZOrY7nZghbHfxsljiRSAUZ38dCYed8GrWI/v5B6rUW9XqdRqNFsVza4BE2Gg3T+AkbOLkSe6fHaIcROU9R6daoBx0cxyEkAW2ZKUySTrZtk0NgOeaesyxsYcjPnrAoWIKSnaHg+PQ5GbQjEL6LQpN3ssStZVpJTFObcgXrdZHyvm7iiudPAH/32OP88s+/l//p/e+GxCVKutx06ySu66AtjRaCTuQyPjRJp9pBR+AoJ8XoQqIMxhbH4MKLgyVmhkdp1VcpFyCWUG+0uPuut9LtxOjEplwY5sXDL7Dzmp1s2nEtqxfXsQPFwoV5MvanZiF7AAAgAElEQVQAg8NjuJkCZ+cWOHL8FM2gRiBDhieGef7kLGtNydJcjbDTIJP3qDSWiWNNEASUy2UajRpBN0JgMb+wwDMHnqPVMV3QTqeNUoparcYn/vzj/OjZA0xu3syOmS0sLl0gW/CotiqcbXb52hce4luf+yLFYmnjfL0Gk9kjxohLHXPXdfFcH8/LkM3k8b0sjuNudOh77/Hj04AeTOfHO/O9n+t9/eNE3N6kQFiGi2Bwz39fUah37OXvcekzqEsvYcasGonSicG4itfKeP2XbHr/LcMYkUjjtowmUpJQGmm6MDX56p3TXrevR4Q2Eq2XlGBc1wUunavexOVy+JRlpf4IykwDtJRoqTZeBk5kroFlWYyNjWG7HsvLqySJpFZv0uq0Wauss3XbNtbW1tgyM8OFCxe4cOEC6+vrVCoVlpeXmZqa4rrrrmN+fo6dO7eDSKhW1/nt3/kIK6tLfPOb3+Chhz7D+973PoaGhti+dRuO45DPZrn77rt58dALaK2ZnZ3lxIkTpsARgv7+fvr7+6nX60xPTzMxNsaLL77AuTNnef6F5yjmC+k4vQ/Py3D01ePceuub+OC/+JfMzs7yyCMP8/DDD3PHbXcQhB3OnTvD2voyjitYWLjA8Mgg6+vr1GoVHn74K5TKBZ599lmiMEFJgwuN44QkVsRxQrvdpVE3m5fZwBp0Op2NiYzWOtWgBktoXFvgXkag702/bNuoPSEssH0jQ+hkcfw8tp/D8jLYjo9wXKzesVcwdu7ahrKz3Pfgz1PvdplbrXL9m+7iOz94nGeffZbhwSGu3n81tXabB3/6nTRra2zdupWfec8vUWk3qTdb3HvvvawuLXPjTdfR31/mU5/+K4J6DRlH3HXvmymPjLC2fBGSiOWFRWZnZ5mamqJcLrO+vp6q7sSMTU+xZcc2GkGH0mCZTtihUMrz11/+IjObZ7j22muNitXKKj/3Mz/L2NgYk5umsSyL3bt3c//993Pu3DkKhRK1Wo1ut4tlWQwM9qEFvHriOMKyWJw7z+ryIpXKGq1mgBA27VZIxnOJghAZhxvX0rEESRylk6situ3SbDYpFAr09fWlXVsolUr09fWxtLCIIyxGhgepV6qsrC6RK+QpD/SzacsmRidGKPSXsW1hYIM/Jvv5/4dItNzwBrhSkXM8XMvGx8bB7DlWypEyU9d0T9TWxvpqlOmMh4ergBiEtCCWJJFExpI4iEnCZKP4UZi0QqaeLkoZaCdwGeFfk2i5YUQlUQwMGufx3n7lOj5B1MVxLGamB5kaH2LH1mEsFdNspEp9ArrdLp0wotoIQSqWFuapra2yvrpEp1EnbLdoVNYJOl2SKKLTrtFpVBAkBM02vuuhpWJtzfir+L5Pu92T3A3YsXWGytoSnVaXdtOYTzabdcbGxvjA+95Do77M0vI8+2/cj9SKQqFELlcgm88B4GczeFkzBTMiHpJOt04cgW155HIFLFvQ3z9IuW8AhGH+eX7qD5TJYVs+KvZwpYvuJmSlRMr2a3KG18CSN+4zo6anU5UgrY1ioC0cXMsoEPpujpybw7d8fDtDwStQsD3c1Ouod57/MS7F66IcOnEkYDWYxXIXUTLm0c9fJBmOkRJc6YOnaTUC/Oww45MTnD+/TNyNURZMbxmgslajGVl4IgEPsiWX5aZkvnaA3ECRoUCzb3oHh370HLfedivZ3CSrq4sEtkbHVbqqjOjafOuzjxJbGW5/6zW8fO44OT/P0aM1br1+B1l3iEr9FJYNnQhePLzM5p3jRELww6e+TKGUB1bRtsNKpcbWzeNk8hmOnz5Jux5QyPczNj5ILu8jUZQG+wkbAQee+RHPPPksQaNFuVzmzrtu4eCLS/zMT93Pvt1b+ZPf+/d89M8+wYO/vglZapLEHq1miGMZyUK0gYRoSxPrBFsJcpkBPMeM8ZTl4HuS2IuwrTLtTgNhJwi7ZyejEJZZ6pTsqQD1igMb2/KwbQfbSVc4LCxLIBwfYdlYjoPje9iOC5aNQKCthERoLCmxLSOP57o+iYas66GimIydQWA6/tpyzIhWgNRG00FjjDwEqje9RUvjBg0amShsx0L3qsArFEJLEuUSC5dQ+0TS6EbbKjKLjmUhPJtcLoNtOQRBQBTGKJVuNMIyo2vLoRvGZgJiuUhL4DkututhC3BdC4QmiWKkYxNrRRBEJCnhV6lUW16A9jL4hTzTM9vYd931NFtmlJt0FJ1mg6DbpjyQR4qISn2FE8ePcuLoCXK5Aq5tMzk+TrfbZW1lmaNHXuHafVfz/e8+xr5rrmdtvcoNN76BtfUq1994M7lsmQ/92z9gZHiATrVGPuPyrp/9eVaWK4wOb2ZsfJhzc+fxCzl2X3s1i/NLlApFTh45yp5rZjh27BW0FvQV+4iihK2bptEqoZzPceCFV3A9wfT2AgdfeYnT88c5ePh5tmzazL13v5G//uu/phu1KfcP4rhFavV1du26mTvvuptTp09RLObxMzanzpzljXfcyosvHKLdbIPnENoOojCADENUFCDbAbVGHbsicBxjPJb1MxQKBUr5EsL1cNJpl7YEwjHkQ61T+BqaRElDCHYUiZMBrRGuD0mCFB7YGfBjRByi4hgVda/ovWtnSmT6y/zowHM4ts8//R//F5747uPUK4vU5he4at81VJotolYLG5uP/Nlf8Ycf/E1uuvWN/MoHf5vv/M3naYaKZpgQ6wxX7d3PsSMvMzA8ytryAnOzFXKew9TMTs6dO8dwonAsuLCwwujwGNrPsL5Ww8/maIR1tHWB03NzvO2n3sHzzx4kWrjInr17uLBwjvnlOW657gZe9TL84b/7I3bs2slVm7ay5+ob2Hf9dXz0d3+XrVtnmJmZZm1llbDdoV5dZ319ncmJcTrdLmdOHCHRDqvVCltndnDh7EnDz7FMN97xHGIV0T9Upl5pkslksIXFUKmPxuoKedcnk8uzsLyA41gMD42TK2RotjSZfIbBwX4unDuN4ziUhocJwohd26YZHhxg91VbKeWyJqGxPWN9mjY8LCNSZZzOMUIOljAJi43g7/NtlTFq5FKhT2o1J5SFti+Zf11uCiYwognm7WR6hJUaGF4WIvWxMKkvQqcKMzJBJBohr+yaW7TyWIQoS6FwkTolh25ovYNwBCoRCBnjWwohHTxhg7ZJIoXdNQ7rWddCCtNo6j27tm+D4wCCOJZYdgIiQCcJOlEkEkQCCV1cDUpHWHKAvDOIk8kgwiLV5SalXJ52aOFmJDKOSGLFwvw6+3dcQ6e+xOjwMEPFNp24zdzcOr7v0QklYQwf+p1/x8+9425cAuK4zbaduxBehpzjMTY5w4WLc2QdTTcMmTtzChubU0GXPbt3cuHsGX5w7jx79u2luV5haHSMQCWoU0fZv28zkyNLbN4yzaYd2whjh20z+/i7rz7Ms88dYtPUAA/85L3IyPDJolgbs0u/hI1PMSNorK3QbXeI/RyeJegfHcDzBU69ThhHeBmf+nqDcl8JVIDCY+niWdziAAMTU2RFBreQEFbP0NQtssol0X0Qt8C1SXSIpRVOovEsc4eahMVMdBSCAEFBO2SEJud45J0seb9kPIwsM8Gy7TyDYROtFOsywhI28h9JwK8J+8Mf/vCV/gy4svLhL37yY9x5/S18/pGDfPT3P8TXH36C66+eoNVsG/OvvODA06c4e7ZBpSpxbYHveqxXOwShwvEVuYyFsDWtZoibc7l65xZCP6QZBfSVHEYmB3nm2R/xxtvuptg/wKkzp4mjBpVmi6t2bKNvtJ/Kekixo5jeuZOh0Ql0/iSuE2NbMQPlaSxLc/zVCgpFvr/FyNg4Q4MzvHqgTr1WI44ljiMol3LESUShkGNq0xRJEhK2mtho3vvuX+Zzn/kcUzObmJye4syp87i2xf33387c+Vn27trO+soiF0+e5IG3Pcgbb7uLn3nP/8zpM2cZ6C9zceEsjmshVZDCZhQ6VcPxnAy+UyTrF41Up3Yxqj6Ahk7QRKoI13XwfRvPs7HSDaPXjTJdTZdsJk8+xaqbDr+DEMax0M3k8bwsuVyBfK6A76YESkjhO6mFtyYlHRsyZJKEGwQtyzIjbqmNIZYUvZ/XJDJ1aNSmqw2Gb9kbvcZRjFTG9OQn7vngR/773rGX4rMf+48fTmyHCJtIC5TtoYSFlAopEzKZrJFYVYogtVFXylwM13WxHddg5MPIwIOyGXzPx/NcfNcl43s4tkXQ7RJ0O3SaTaK4TRh2CIM2YRQSJRFSS2wvg5MvM7Z5hh1X7Wb79h206qtYMmRt/hxx1CFJAnzf5eY33EQ+V2Jtrcbk+AyZrM+JU8cZHR0nTiT5QhHb8bn55jdx5ux5rtl/I3EiGRkepdPp8P73v59vfePr3PamO2g2A1ZWV8hl4JZbrqdYynL9DdcQRm1sz6PdCVmvNFCWR6PRZfPmaSzbxXKybNm6i6efOcDC4gK7d17F/uv3cuON1/Dyy4eZm1/gwtw8yysrVCorvPnNd3LN3qvJ+jn6+8fYvHk758/PMzE5yeDgMGMTYziO5uzpoxx75SDNWoW5s2c5+vIRLp6bQ2hBJpen2eoQJwrfz2E7LoODg2TzORzHJ4wSolhSrzdZX69SqVVpNJu02k3arTZBt0sSxyiZGH1qDU6PyCkMmdjAN8y0SyMQbgZt+wjHBy+DdrJYbhbt+PzkT//MFbt3F5bWP3zuzBkcy2J9aZmHv/x/s756Ac9zGR4eYc/1t7De7NKNY/LFMpZ2eMMdd2O5Hs3KOiMz29g8cxU/8Y6fphtLJqe30mgHVOYvUsj41FdX6NbrNOtrRJ02uawPlmJoeIgkiRjpHyRb7sPL5cDOguVwy913U2u1OHLwIB/4wD/hy195mBtuuolnn36aQ88/T6m/j82TYxw/cgQvn+fkiSN0goBWZR1HaOqVNdZWlui2mtRrVaqVddqttsHbuy62EFSX56nVG+RzGQYHB0mShHajTX+5n/GxCZrVBrlcjjiK8DMeK/8Pe28eZNd133d+zjl3fWt3v94bvaCxk1gIgKsoiRRtSpYoWR7LkuV4jeNZUs64yjPjxOOaxHIlcSqexJU/7MnMxM5MxXHkWNZGxyZN0RL3DQRJANywNdD73v32d9dz5o/7ugHIGmdSFReYGh9Ws1EA+qH7vnvP8vt9v5/v+jIIgyUtaptbyFTj2zZGSFzXI5croIVis94g0gYjFb3lAvedvJOHPvwAU5PjlApZvodJU0xQR5gE17ORlkJZFgKJZdkgJELe6NQixI3U7+59lf36BkMq+7uiW/kWXRml2KUG3dJpvenzztdKqTBC7HqrbkhD9a7ssN1sEQQBW0tzNDdXaa2v8Mm/9Qu35d594/3f+pIgQQhDKgVaZNIQbch4MUpl5mwhUBKMTjIqntJoUkwCQqc4SmVdV6ORQkMc4SmB6zsIJRAOCGlQKZCACBPCKAQEkU6QSJI0JiUmTZpoHXDXvh+hJMeIwxajw3swBoIwQijD7/yrP2CkP0dBReyf3svePdMUy4LDR6bJeYZij0cjbJIITZC6PPXMWS7PzbGxPE8pnyPnKAYHKniFIuiY2to8aaLZWFliaWmB/r4+NtZWCNstaltbrK2t4Do2rXqDMAjYu/8guWKRDz38cYr9I+T6xxkZn+Ddd84zPlRgcWmJYiHPI49+gv7BHnSa4tgKZdnYKiXvKcKgzeLSaobb7evB912EZTF3fQZbZJLkKIrI511q9SqNRjsrnFgOKJeh4XE6nRpp0EQnIRV/lNhq0mo32aZKlMQ4OiGXKkrCpSAd8sLBdRRKOUQmM3XHOiVvJEWpGPIKFFyfHq8f38nhyRyW9BC2TWAyUtRKFJKmkEjDJ0/dvv3CB218ICRAfQMVqtttrl26wlC/w/S+Mb76R7/L7MzSrla0UPYJAwgjiJJu6EcSY0y3It0N6ZJAmmjacUR/bwXf8sCCt967jnItXN8hDGM6zQ5Bu8NGdZultQXmFhdoNpsYqTj35ttE9Q6lfAFH9kE4RNDMU6sGdDqdzDxZgqHKEGkaE4YJpVLPLcl9q6urrK6uMj8/z7vvvkutVuu2j3N87WvfYGxskksXZ7l6+Tpf/9of8aOf/xFWl5fY3ljh6aeeZGVhnqFKH8LA/n2TbG8YDk7dydmzb+LnXIxJsW2LnfRe2cXpWMq5ibCTTehK2V0jjcJSWWsSc0Pak/09iVI2Stm3mHJ3ZT/S2g3rkJaNZTkIZSOwsC2XDDfa5Vfr7GuylmiG2BMyQ3PZtsJxM/SlZVm7Egu4wfzfkbrc2gJk99rezKW+nTQKyNIMM2OS7HKlVfcAk96yiHY6HcIw4xzsJP56nneLwXrHJ6CUwncz428SR3Q6HYJWk6gTECchSRyRJDGJzgKmDBJtBMJSSNuiMjjA4MgwUkriMKJR26bTabG5vkF/fz933HEHUZhw7do1wjDkhRdeYmVlhTjONLDT09OkqcFSDtevzxHHKa+8/Bob61tUqzWq1SozM1e4667j/O6//j+57777OHDgANPTezl/4S1KpSIz1y7z8Y9/nP379++2kvcfPMKxk6cpV/rpGahw6I4TCOXy6c98lnJvCRQcPHSAnt4SpVKeibFRbEvRqG1z99138+2nn8b3HD720CMsL68wOztLtVpldXWdt956i9fPvMHrr7/O9vYmq2uLbGysce3aNe6++27CIMa2XbTW9Pf3k8vlqDdb+IUiWC5uvoSfL1Io9ZIv9mDbDrbrksSaZrtFs96gUa9SrW3RbrZoNhtEnYAoaGfkpR15VveZuVkeJ5WFVBZ0F0Fhewg7h7Fzt/Xe/ebXv0GjVmdrY5MoChjur9Cu19nc3KSQy3PxvXe5/95TTE1NkfdzpFEMKjPizV69RLvZxHU8klRz9NgxavU699z/AI7vs7axTqPVZKvRIEziXTO0ZVkUSyVSY6jVagTtDgMDA3z+859nZGSEk6dPce+993Lo0AFefeUMQRSyvLSA51i0m3V0EvH6a2dwlKJer+I6FkU/R726zdrKEkkc0W42aNar+K6N79oUi3n6esp4tk3QrGNJQaVSoaenh7W1NTY3N9l74CBRmvk8lLKZn53DsWzyBZ84Cgg7QQZE8D1c182qEd0wqjAMyRWK5PIFXD9PpVLh5IljHNg/zWB/hWIxj7DUTZr/GzCAmwMOdz7f4gPojr9MKnRrou//t/G9ZBbf63V2vp+b5+jbPXbWhuz5yuZMowVKCJTIQr4seev3Lq1MOpJKkJZASI1SN2R82euKruyS7ke326cNJgGZCiyRUQgNcneO31nvwqhFu1Wjv3eEkeE9hGFIPp8nDEMcx+GTn3qYXM7j7rs/Sl9/L2vb89TbLZrtNn2VEqWix77RIXoci1Z9GyNhqxaQz/dy+co8tfo2YRIj0FT6epBSUMj71Le3qPT10GzUCNotysUCnVaDoNNCCsH25gaVvl7yxRK9AwMU+voZGB5lz9R+ekemePixz7Fcjzlx3728e2mGRBsajQZxHBOnhqT7rG5XN0lTw76DByj39eLZFr7jsrWxlpEC7e610pp2u0m73d6FiBgNeT/HxvoqJg2pVqsUCyVSGdMO6oS6gSUFwhisVOAKC9tIfGPhGoWDwNKZAXznPd0Ba+gu+CTt3qOW7WIpBykcbOljKZ800d9zP/H/9/GB6IecvfwmC2sxz7/8GrW1iM//+M8Rx/Dvfu9/5W//7V+i4CeMTk8x++5ldKzBltiOQSaZMcfOOaBDUm0o9eYoAIurWyzOzjI03M9aISJuBqw26xw6diezl97F8Vzyns/8ygKxjJD6CKePnuCdK09T2DvIM3/2DJ0nnuHzP/sF9o6MIh3F/NK7nDkzz/G79iFUm6mJvaRpyNZqC8/KzKuOo9Am7U4ugrGxMd48d5lKoUSt3WRueZ7FhW1yfpHTJ44ytWeMP/ry/8UTTzzB7/7r/50L57aZHpvg1ZdfI241eebp1/jVf/T3efSxzzK7+C0e/tiDVBtLXJ+doRNk2jkpMt1xlhjodK9q9pD4fqHrFZWk6c5io27xACiZha9lf5ZNfFLcIP5ImU2euqutNEIilI20LGzbR+AghSHSUSbj0QaUyYyqJtv471wPx1IIxybyHIIoyYgBSbw7oSc7i2J3E6XTGxurNI1JU32DE2z+0xa9v4qRWg6REURakkqLhOznl1Ji22p3korjOEOiGkMul8O2FWEYEkUxUkq8m4hK2YSZEnQ6tNtNSDWdoAXa7FJqjBFI5SBsieP5SJGFtinbob+3l/7eXpIkodluUd3cwgiLicn9NBtVtreaNJrbOI6TbX727mdxeZbP/OAP8vTT30bZNqdO38MLz7/C2NgeTtw1wtr6JsePH6fdamBZisWFWT796U9TKhT58h/9HuPjo9Sq6zzwwP1ICfl8D9/61p8zPrmPO4/exWuvv8n0vjuYX1jg5L13s92sUxka5eUXn+XIoUMUikUOHTrE8tIK169c5TOPfZJv/vGTvHdxhlRrzr35OsePHWZ5cYnf/7f/nocfeYhHvv8hmp1tRkZGcF2XmZkZKpUeesp58uVers9c44e/8EWeeOIJBkfHUHZ2T5d7+kgMhIkh1opE2BQKBVy/iJ9ro9OUYrGIjhM6QYuw0yGOQ+I4RHVsWo0mysrM3NJSFApFXD+P7WYZGFJK1E2bDyEytrsxElAYkwkwZOr8x26vv9JhC9hu1KmGIbGMiYOQocFR5laWWJy/RqsTkrQ3CPDYd/AgcdJhZnaGnOtx6e13mG41mRgcyNJAZcK995xkY2ub+x55FMdWvPbSc7z8wot4SKxcgUanw2hhhEYrws2XUMIQpwkzV66w//hd9FVKXHzzDcbGxog7AWkh5ad+8qd57vln+fCHP8zZl14jn/dJgoBOHDF01ynS6gYv/fm38R3FwaN38eaZVzLyShIRthr4tsXm+iq12jZIQd51yHkuG6srLEYdFhcXmZiYYHjvFPneXsIgQLkOhUKBJEloVBv0Fiu0tup0JmOkY9OOQlZXl5na77O6vAKWQ74YkPM9jh89zMTIAKN9RXxXUcg5RGlCJGyMZYiDVnbxv8vT9EEeN2/6PwibKKWy/JuskNXdtFuCKInoEiWADGOdgSSTrBilU4TnoUmwJLiOj+fmiUQCkUGmCuWCdCRIGy1tpFQ4xiGzoRl85aBkSiQFxDHSKDy/RHNTII2Fa/fw/vvvM1Qp4ft56o0WlrJpNUPuf+AUV95+hdRRbNQanLz7Ad6/+Da1epNSschU/wCHp4t44hwHJl1efX+RrXqb92c2ceUyH/rI3WzUWlx78QUOHz5MdWub1cU1LKGZm5tlbHSUoNlgY2kOVznE7SbvnL+ApQTVqsvgnikG+3op9/UilcP0wSNsbrfx+4Y5+bHH6Onpodg3Rr2TMGo7aJXS6IR4+RI95V6a2xrb9rE8Czvv01pfY2NjA2lZeK5Fu93EsSrkXIV0Uvz8AJ2OodmsI4IQ4XlEnTaRiPFyLtvNJolVByJKeZ+wUUPGKR4WnrDxpU1ReSip6GiDECmxNgRSI1QW9pVIMFIQ6ZTIRGAkQiSgLISxQBUQKsLxSl3s7+1FL3/QxgeiA/CVb36TX/rlv0OUxPzAw0dQEjxf8rv/5rf5+Z//NLm86laKNYZMD22M2cmEI0pidJLxu13XIed7DFQKLC8uYRsbS3mM7xkjlYpSbw9xGLAwN8fw8DDtToRfdNna3GRrc5PtehVV8BgYyDE4kGNlYZEkmaPWXODNN19nfnYTP9fL4FA/nc4mllRMjU/gOqpLuEl3K7lxHLO2vs6jj36CKEr59X/yJSamJpneN8WDH/kQv/iL/y3vvX2Gp5/6E/7RP/41vvzlLzM6PMarr54h6kQszK+wsVGjXt0gCjoMDfbz+msvcf78+V1cpEF/z0pRtrG3b6niW5aFMTsGXmvXoHpzFeq7Dbo3XlPe8vpSqoy20O0s7MRv71bxTaYg1d1G9c4mfqficjM+dOfPd8bNSNKbK2XfbRACbsFm3o6hLDvTJwqFlNZfWCBv7lLsUIB28J87aNOd+2XnPXIcJ5NEpSlpFBMEQab93zG0dTeZlmVj2y6OncPzcpR7+xgdHmLP2Ag95TJCCPL5Il4uz56JSfr7BxkaGiGfL+L7PgMDA5w+fZrJyXH27dvH5uYm09PT5HNFLl68yCc/+UmGh4dZW9+kp9LPE088wWuvvca5c+c4fPgwL7/4PN955tv09paYm5+hUqlQKBR49dUzFAsl9k0fYHBgiPcuXuLI4TtptyKm9k1TyJc4fOQOLl+5QhCHlHtLDA0PMDg4SLvdprenwsLCHPv37+fOw0eoVCq0222OHTvGZz/7WX757/0S4xOjPP/CMwwNDZLP57h69SpCCI4ePc5dp04zOjbJz//CL/LlP/wK/UPDFHpKhHHE8ePHAahV67iun1Emuh0x1/Hw/Tx+rkChUMIv5CkWi+SLBXK5Aq5tI0R2mIvigFYr6wzUajWazazitYMS3XnPsy5b1gVTux2CG8/a7RyXL1+mXq/TaDRotBr09w8SJ3D69D1Uq1Vq68usL8xSzPkszc8Thh2GBnoxpJRLBa699zbXrlykUd+iVa/RbmUG2fHp/QSp5sixE3ziscc4dOdRJvfuY2JyH0EQYVkOuXyJKEnIeT6V3j6efPIJ6vUafYUir7z4EhcuXGBmZoYXX3yR/r4KF86dp91psb29jetkZsezr73K5uoqigzZujg/R7lcZntzAyllZqpsZxtuk6YkUcz21iZKqQzdKQR79+5lYmICoxReoUCqDUMjo+Q9n06zhWNnXTpHOWxsbSLsLIyvWC5hjGF9fb1rpmzgeQ6lUoFKuYDvZc85XWIJUuziC3e6tv+lHABuHh+EA8COJPTmZ+jGOrfTvWYXs5p5sSyU44Jlo1wHx3fwcu6uBMvxPSzXQjkWwqtmU1YAACAASURBVFLdXB2ZkWc0oAXCZN1yS95AZzcaDTY2tjl88BT7pk4zPnKEA/vGaXcapGmK42SH/JGRcVzXwfNsBkbyfOgjj7C02uDBhx7Bz5colPo4cPAOmlGE5duknRoijXAcCyFtCj29bG5uMTAyyuEjRwjCmD0T4yzOz7K4uMj8wixXr16lWMyjdcLw4BAri0tcvHiRYrGIQuAXiuRyOaSUlApFVhaXsHRCq7bF0NAIq9s14lSy/+BBkiRbbzw3R5oY4jjF8zxA0mi3WFlbJeoEDAwMYNtZdy9oN8nlckRRxMrKCs1mE9d1KZfLRGGH6vYmniVxlWR7c4sgikg7MSqEtB5TdH2cTLyVFdCUykLtuiqFLAXgxntvur6PWKfERhOZgCjpEKcpsU5JRdYZT02238m6RB+ILe8HZnwgOgA57fLO1bcZHxrgX/zmv2DwI5+gFWnOvnydlfnr5Csl3j87QxILBAY7NUgHbAvyqUVHJ8SAlQqUleLnDVFsM7vRpDi7QF9/BTyDbRlsF6TjETXWGDsyTqcJe70CFEPOXnuZh0/cz0JjgfnNOaYO9rK2Ps/FM1UOHbufD5++i5HcLCfvGKHabNGOmwTtBnFxheXNdYSJ8V2bsBPjFR2SOGVjbZsnrz1Joaj4lf/pSwwN9mGE5G/91Bf5V//bP6fck+P+B07z93/lfyTnF+lEDQ4dvIPf+mf/B//1z/40P/HT/x2zq8s4Oc2F8zW+7+HP8cKZr9Job5LoFKVsTKa1QSiIkwDbySEthWfnCVsJlpEESZc2IxKMSTKHvsm6ArtJsnQXJTLJkNESLSQJBhVnenuNwCBRMo+tHGxp7yJEwUKnId3oWrTQ2FJluQQYbCWRQmFZCsf2MDpEux4ANZ0iEoFCIqXOFkxj0FIhlY3RGtElHaVpSpKmKFwkt/cA0LFyxFlXOAs/SwOUjrrIPDczagOe62NZFoVCAaUEzXZIGEcIZZEag+VIbDfbNMRptEudSEzWAXFcH7poVFtmiFGjFEgLIzRCwfjUJAODI/T2jrBZrbJVbaFTyVD/CK36Js16jaWFBZStGB0bY3t7k7n5JUrlAq1Gm6mPHGB7q8mZ117jIx99mJdeeZGhgWEe/f6P8eabb3L89Ekm9+2nt9zDy6+8TF+pxEhfH3um9vJb//K3GOnLMT4xSU9vH9VqHW0iatU17r/vOJZlMzySZ3JqCiUFh6f3oYxianwE381xz90PMDAwxML8ZRrbG1y/3mTPngmiqMrefcPce+8PooTgmWf/nFdefIn9d9zJIw99lG8//SS1oMaHTh9nanov61ubGRWjVeerf/hlPvOpTxC02ly7do1Dhw9x+fJFbL9EX3+FerPF2NAwPYVC1+RodlnijuPs6p/jOEZHLeIkJI4jOq02aZoSdFoYYwiDNtVq1lFxczkc18UvFLNDmnIy3K25ka2RNbjSWwhQt2P0FHyWlpawbZu42eTa6ia+7xM2Q4bH9+KWe9kzOsaTj3+diYkJ0maV4T2T5Dw/OxjFMW89+xRvvfgsH37kB7hmLrPv0BHKpQqH9u0njAOGhkbYPnQnaRxhYXjllZe488AhXnz2WbxSD0bIbM7qBLz83Hd4UQpOnjjF3/iJH+XCmfOIMGZhYY7B/n7KhTzzl97D9lxWN7YY8gSLy0tYEja3a4TtDn29RYr5PI1Wi1KpxMbGBoVCATQknTZ5P8e1a9cZHt1Drrefk6fvYbNWJ4gThONx8uRp3rtwgWarjm3bhGHI6Ogom5ubJO0mjqXYqlUpWi5xq4GJA3YkPQO9PRycGCDvWvh+1/vTTUR3hM4wzalGpgKhby10ZPtYvXs4gC7prBsu2A2DRXa9XoJkN7E3gyaQ/V+kSJOZqYS0u6z2G/+lqUBIiZJZ6voO50Z0w+8wdA2XBtENNRQGDDEqjZBpiNRxZgy+TaNpQlwlMDgYBdJk8g8jLJQ0KGGwlIfdfdYSy8nC+iwwwqCEjWd1kYGWhdRghIOyJVKBUN2fTbuoFJxYIXSKFgrLTUiFwo4TNAqTszAi4v3L5zlx+CPouEQYh/T1jSPsBNfL0W4Yrs6v8s6756gHITPzAa+feZGtjesYAcPD00yMjvL4499gdu4SpWKRdjVgcqiAth1s3+LSe0ugfMq9fdTrVQYrPSRRwNLcFZJYMtBTZrCvyMbSErVqlfPNt5G2ZGx0GM8vsNWsM+3mKOd7ML5HtRWQlw0SW1FdXKBdr9FqtJkeKSCTkFBrTBqRdrYJ2yG1lXlypV7iJMC1NEVHEoSaBIFj+UR0mLjjLuYuXqHgpPT3jNGMIowIMO0W0gLPF5liwXXpHy4T2DaFwjCqI5mQTS4uvgmWxCQhlsiyf12jUVp0iY+SujE4OiHWgkgKOsZQjUJiYdDSxjUxiRBI6ZEoSWAcUlXElorEirHS/7IO3H/V4wNxAPiHv/5r/N1f+GXEOvzIq3+CL21EPoHA4PoOhXIR6dSxbTeLIY8SKhWPYi4mWodUKRApqU7I5X1cz+AqQbsGi3Or7MkVuXrtKgdPTNBo19CxIJaG5vY2ngdJmBAlMcqWXJp/l9VGnYmJQ4RJi3s/eifPP/4CjUaDiYnDnH/xEkcnBwg7TTZbDeixqW3NMXlgL8tzixgNtiNIkoQo0giRAQXarRTPh0SnPP61f8OXfvVXSKI29XqTt8+fYWKsn313nMYvVXjz3Dv8wCceJU1jjt51gplvLWPCgM//0Kf4zd/+BxTcQ6S8TasdonXYbXsJbEeBztz72aJksB1FGmu0zkxTlmURJ3SlKTuHgPQvID3hRrVfa91dVASmu9TcjD4E/kJlXpuUWGuU7YC0dzsVypKI1GDZEq3tXcSaFQYkshtFL2V2AKBrHRYCfVM3IKueQ5pG2LdXRdGt5ossS0EbhGWjTJaYaYzJcI9SZlWY7rXNpD9RJg1hJ4wt6xjFcZox/bvXwXVdhDZd/4DAdV0c5WGEINJghMRyPRzfp9TXR6lUIBUxqQ4RMsHxLXxHMT+3SRJ0qAz0Mzw8zNLSIseP34XWCYuL8xSKIZosqXegv5+gE/GjP/I5nnvuOf7kT75GrbnK1naDCxf60FrzN7/4k6yvrmEP9LO2MMeP/fAPsbQ4R6tW48K5c0wfOEC+UOLa7DwjeyapVZtZJVwJXMdmYKCCsh2uz1xldWUJz/PYs2eCd99+g4nxSba21kAahA557KGP0Gg12XvgIN954Tnemb9CNefy+DPfxjKaA5MTzC09w+jVt5naO45rZ3resbEx3n//EmEU4ft5Ll2+hp8r4BUUlu1hBQnlchnXttBJjOTGfSxlJtey7azToj2FE2fYVtdtksQay7FJ45RWq0mSRLSizCPkOA5hq4VSFl4+h5I2lp11G2Q3w+PmQLvbNTqdNnEcAWbXqK61ZnN1Ea9QxHUdrr//Lh958MM0Gg2CIGB5bgZ7p7NIdoiJggaXLlygk8boOKV/ZA/YChuJJSRog+95zF2bYe/+A1ybncPJ5SgUBxgbHOb6lXfwlI2IU44dP4ZKE1589jk8L4fvuxyc3M+Fc+c5ffIE25uSjXqVvp5eHMeh3W4zUMl+3d/bx/LSHDnPY2RkhIWFBXK5zGeRJAnCyjrJAwMD3ffW5uwbZ1CWx9DYKPlCgfPnzxO0W93MEU2zmeFhx8bGiC2LjfV1XCuTjG1sbGB5HjoJsJG4lsmkZIobyN9Uf48q/+3X0f+nju/2DNzOLoDu6r+lkgihuonpILAxIkF1Qy+RAqUFnrToQMaQRyONQVgWQjkIIZHKQkuNpbueOJWtM8IILKNwtAStMHZMpDKztdIKowRCCwwp/QNFao01evbmqNfq+H6Bta1N2isblCuTxEmHtbUVEi157pmnUMbDcxRf+dp/YG62zmcevZNiMc/nf/xvYJKEd18+i+0XeO2tt/mvvvgzVB/a4vjpUxR7eygW88xdn2WgUqZvYBDPyqGl5rnnXmCwp4fjx49z6eoM5XKZhYUlJib3Mj09je06bFerDOTHSCyLoN3FHKcRkPLiS88w0tPLgQN78fwiOmoTRnUqlQp512K7XsNWDmncJAoTLCfLAkjTmFLZp9NoMDoyyPrqZdo1B69QRAG1Wo2enl7aYZBRt4xDp9lClfswiY2vyySRYNTbgysdtoMllDGoDNyKQGaPjNHIne5p915IEHS6AaFKRoQmJUoEvmeRJDEtAx0hMk8bNn/dALh1fCAOAL/667/GYz/0GE999Tt86/k3ELUEWXDQIqQRRHRWVrE8sO0AqSFJoR0EuA6ItJvo54NlKdbXNujr9ylISSlvs9GIOShdDk8dIhUrLK2FdFZaRJ0IudTiwMFx1lbnGRyosFWtMnHgUTbeOsPE/iJPf/siH33kCD/0U59j9dosv/2bT2ECOPvuVbbDOgubbXrKLg9/5G426h7axMSZTy6r3khwHInrKlrNBOU6FHtK/C//8//A0EABQ4XhoQE2VzZIjGKgsofXz71BuZjn+Mk76K30EFqah77vIaqbK1y9+jwYh/Nnr/DZH/4xXjv/7+jELTQxtqMQ2kOgkSIGkdAJGojURhhJqiM6QetWc+2ugfiG8ffmjf2ONCJJNFJZGG0wXXDcrTKhHVNbgu5i6ZI0xlKCxCRoodBCo0VmvDImO4gYLYjSLBTMUgKVZpO7JWS2REqBIEULk1Wn0CRxitaQxAbV3VDdziGUlaFPTYoRBikUynYzzwIC23J229BKZZ6AKIpI00waYNkuuVweZWcVZ52ablIsOJZNuVwkDkLCMESK7kYt1sQGLMshlTZWzqdU7mV8ai/lYgHHtRFSEqcxzfoWjfoGWmiMspiY3sfx40d5/BtfZ2l5laDTYmVlibHxUa5cfB+TpHz4wQe5ePEiv/FP/yEJhk4Cn/jiz6BNzMraNRwl+car3yKNQtaXFhnMDXD30aMMD1WYufw+tiUJWm2WV9boHxzNzPWkDA4OUiz6SGFIo5SBwT4KOZfJiVFeeuFZzpw5Q29vBSUdJkYniJOQRz/1/TzxxjOMTe3lz158HK9c5GO/8GPcdfQQy7PLHNt7J9NDk/y9/+YXqDUkVlpk/upVVteWSbQkjTXlUpnKwAgoi/p2FSkU21s1KoND5PwCIk2QVtfoaHYCj7JNRYb6AY0HtkHZGt/NobXGK5TRGvx2jU5tO0O8RiHtZot2s7XbSbAcB9vN4/oetuWC2uGU396NoG3buwfTTtgGMnZ+qZynVtumuqTRApIgCznK5XKEjTpOLocBmq0mnu1gy5SV6zP0Dg5x8fw5NtaWqQwNU9tqoKMUO+9iBLjFPM1mm8rQMJP79pNouHLpXY7efQ/XL7xNu+WxubJEFEW4jke9VadQzrO8uMDi4jxx2OKOg4fJ5zy2V9a5PnsVYTSrq6v0Dw7TqjfYs2cPy4uLWFbmiYmiiCRJKBaLJKkhny/g+j5+N7W3WaszMpLj+pWLDI2OcfDgQbY3N7B1Ruyqt0JqtRr5fJ5OFKOqNfbu38fWxjqV/j7sXImotU1Pj8ueSgGpY1B2F0OodiUqN+rl2TwmpNmV/e2MTNbwlxt+bx16d/6FvzxT4obM8y/Ol6aLiPvukLDv/tg5IN7cMb4dIzUJypYkOkWqHEInaB2DMhkOO42wrUx6JwzYxiHEoLXAlhJNDE6O1Ei0MJmURBosmRUO0hSEESijkVoi0sxJkKoIZTk4tsKxPDAaXwyR6Jh61ZBYIavLK3g6ZHl5k6GxMZqtEMu2mV+YyWABRnJw/xH++JvP86lPPkI+38+JOyOO3TnF1Pgwg302ly69z7F7P0Sp0suBU6d54KGH8H2fre0NIm1oV+vs33+QC+fOguOwMH+dUm8fIyMjfP+DH2ZmZgaTajqtNpZUnDv7Og/3V+i0WvT1VQiaDaRlU8gXqdU3qdZqVCoVfu7nfoZ3z77F/PwiU/v2kALKcojSiHaUoiyHZrNJo7pNFIS4tkPY2iLQUPQ9onaDWDiEUUTvQA+O51KvVymUBgiCJgjwfR/lSKIgQIYJSItgW1Mq9NFrQmzHodXZwuiQWEDYRYvHaUokElKlQYJtDHGqiYxFRxjiKCYU2cHdEikeCqFs6mlMB0MQB1meUHp7s1c+aOMDcR46cfIuhkaHGJ4eYvLgUX7qi59CB2HWvkPSaWqIu5lXNhy5Y5x2G1p1kEbiWNlaGkUprZZGYBOFHWID2BZrS8sU3DzNeptOM8TzHYzJ2pg9PSXKPRlxxfeKlEoFBgcqzM/NYAGDPX0gA/Yf2cveQwNEBhY3migvRyogDGOatTaWEoxPjHQNf3Qrh+D7Lq4ncF2bkcEh2o0mnU6HF158g8uXr3LnkaPkcpn+UCcdekseA/091JvbGCkoVcrU2w2CsMUffOV3uHTtHH0VSbu1wuX31xCmQJqC0QKjkyyqPY6yDakxaJMQxQFJEpGm8V/Q0iNuTPA71fybKUDQDQjr0qONvBUrt1PFzF4jS/PVOtnV/2cfuusuvrHA7FAWbglRuoncsPMhd0nVO85/Q5JojL7Vp3C7RmpEtwLVvZ5SYHZ0qELd4nO4mQokhYWlnK5ONWtjCLLr4ThOVul3HJTKotV3qEFpmhKlCcak+PkclUqFgaERJqb3MT65l8HBYXp7+unpq2QoT2XTanZwXJ9cocTV2et8/ZuP4+cLjI6OYts2B/btp7q5xeTYHg7v38+FN95keW6eQrnAZn2LT/7wZ5g8dJB8pcS+I4e4+8EHqEcdDp26i8r4BANTo8wszjIyNkyxa+ZttZqkacrVq1ep1Wrcf//9FIv57lXLjOEAnucxOjpKsVhkfn6WJNG8+uqrSGmRKsXlxTkmThzi6tYS03ccYXRqL2N7JnHzJaYOThPQYru9Qbm/xFZ1C9f28JSg5Nsok1Dd3uDMKy/z/HPP8M75C8zNzbGwsLQb5rRj0pXSAtlFKCq5+7Gj3U6FxCAxWGgUtuNj+3lcP0eu0EO+3Eeu1IufK+K4OYSQGANBENJstGk0arQaTZqtOkGrTRQFaH2bk4CbNba2N1hbX8GYLNW20Wjg+B7FfIGdJysM2igJcZQFGe74HYwxREFMEodonTHjdRqzsbTE3MxVmq06i8uZvMBzXMrlXoZHRpjaN83A8BAjIyM0owRsj63aFsqWVKtbdMI2vutiS0mzXqWQ85icGkcIQbvTYmN1lUaznsmvwnA3Xbxer++SrFZWVujp6aG/v3/3oON5HisrK1iOTa1WY2hoiImJCZaXFhAYmrUqs/PzXL58me3t7Vu6okEQ0FfuwbUsWvU61do2xhiGhoboLeboLfgUPHtXd76z4d7prNyomu8c+v5zV9D/8x8mvxcd6IPQAch8FVkXWSl797dTk617KVnHW3W/xbS7y1E764mUaClJJRhp0LK7TkmxGzKV+eOSGz+7zNYvZPb+2q7TlQtmxaxSsRclXUw3wdZ3PTY2NlBKsbm1zsbGClESIaTDk08+j6Xg7Guv8p1n/5B7HpimNJjy8lt/ztm3LjC7sM43n36eycMnuOOueyCF6zMzOK6LJST5XJGFhQWSWDM1OU0Yhtx16gRBEPBnTz7JE088uUs6S9OU9eVVtpaXMTohDiPiMCLqtOm02kgEw4ODpKnh8uXLbG1t8eyz3wGy4h9SUK1Ws2uWxlS3N7l65RrtTsj2do16vY1lZ/unTrPO+toKvldGC4t2J0QqlyDWOI5DmqZUq1U21ldoNrYIgzbtRpVSvoDWkp7eIfK5HoRWRNqQaE2kDaHJNP4xmlSkGCGyTACR6ftjownTlGYc0koiGklIIwlpJiFxkhClAUJoJFkOxl+PG+MD0QH46MMP86t/95/wpV/7RZYvL3Hszhw934DIt5HSp5Sv0KguEIcJ2jNM7OtlcW6RVl2QsyXFnEOzHWKUxnIstjYbFHXKdgB+v0e71mBtfpnE76WZxpQ9h3yunyhqcfTAXsaGPOYWN7Bsh8vXXqHTCqjVm/QVfOJ6G6+cp9FY5L77hzkw2sfM+jJ+aCFDWIk0y/Ut9o0c4MDh/Vx+bx0tJTvgBGNSHM9gS4+o2ebuU3fzta9+i+PHCpQKFZ76s6dxcgmDwyO8f+llirle7ji8F5UrcOzUMYp9A9wzNsKfPv4HfP7HH+OrT/4H3ntnnsWVHirlvdx9/GH8QsjcwiVW19/NuMcmzgK/tI0OstkvTjpEcRut00yuslvR2fk+s825bdu7G3JbKXYmAmMy9NkNtnTW4UjTGEtl6K+dQ4DWBiE0xki0TkkxGH3j8CFEdtjQKtt0pEZjWRIrVgiTkhqJ6OYGIMGyJYlOdg8waDIta6yx1e3VAGkNWpvu527VT0i0EFgmqwDvGNSiKNqV//h+HqlsbGXdqKhJsC0nkza0mrSCECEMrpVVFI3O0hu1Ebi5PLbrY3su+/YdYGh4lOGRcWyhSZMEqVxq1QaJFoyNT7G1voKUklqjTr1aY252hqX568zPXqevp8RgXy+X3zlPp9XgC1/4AtJy+N0//H0++4Uf5J4PH2WlvcDAkKBWTbk2d5l8oZ/19YCf+tn/nk5ji5f+/Eme+s7TPPboJ7CFZmN9lZE9ezlx8jALy6scvuMoWIpUx6RaIzQU8h5JkhAEAc1mk9HRUcJ2lVOnTiEKJV5/4x38qT1EOYvhA1PcMb6Xi+cvcv7595n++b+D77fwnQ5Ls5e470OHeOrxP8O2Q/YfmaZcOsrSWo3NRotWkLK6tomwc2gjmF1Ypd5qszeXw7GsTJctLUjFLZsdrTPilNYZ4HVXM20EkTZYMuOFu9LGsj28YkQYdAjbHdqtBnEckoQBQdimWQtoNBqZ9MdxcV33Jizk7Rm1Wo2RkZFMXiYEnpcjSRLm5ucZHxmjXmtjuz7SgElSgjjLHYnjlEKhQBS1KJX6qNU3cRyLjbU19kxNkTRbtDfW2XfiNLbl0thcZ21zgyPeKYTt4Hkay5aMD49wz30P0NjeYHVznZGBIfpyLnML8wz0DaEQeJbDxto6tY0tTp4+xcrCEnfeeScL1+fp7e/l9ddeZWBggEark4XXbcT0VSpcv36dfD5Pq9VicnKS1dVV2u02k9N7qdUa5ItFrs3N0t/Tg+e49JTKHD91ij/906fYNzFFQY1y8cpFpMy45oVCAUsJyk6OpcVFKr19CCFYmLvOx+6/i4JK8G0bTIqUzm7xZKfrt6v3/673QH7P/UiGI/2Pj53AL/jeHYCdsLHvfZ9J/vJjyM2bfXHLmpHuIhdvx1BK4RdySOXSThxMGmQyzDQCNMJIYmEQJp953SQIrUjTDJpsWRYagRSGhCyvRcuEyBhIDXYqSNMke524g2MUlkwwlkS4PsgEG4fEjrGTkNRAp92gaBW4dvU6Jw7uJVWadrPO1tYWSyubXLv6Po1Gg04nxC320Z+XELUZHzvCs8+d5Xf+7f/N4uIsruvi+0V+LBBEnSoba8v095XY2tqip6cPmSTEusOesQnWV5ZZ39zg8OGDvHPhbSbGRslZDtVag3KxhwTNid5+rl+5zFuvvcbBE/fSrm7RTjT5fJE4CqjXmgyOjZHLF9BxQv+dd3LHnYdYXl4mn7Mp5XzyhRJJp4nUCUO9PcjpfZRKJRr1GrbuY7PRREtBGIYomUMKn0QLCrkC61ubSKGRSYSOE4yK8HKCeqNJry2wlKHeqmO7Du16m0YQ0l8eZ7l1nU6SkOgEEKQyIUwTQluTpCky1ShpobWhFWbyZpECwiDtHLaWoARBmhIRIVVKVqr7aw/AzeMDcQC49M7r/NPf+Md85Sv/nue/eZ6f+MFhXn/+9zj84Z9kOYkZe/AAB/OKJTlHM45oh1uMjys6jZj1ec1AL5QdRRBpbFdh+xZTxRYFXaJWq9OyJPk4ZGzyMNeuvsc7CwtIBQM9Dg8Kl8TNU+kLqVe30E6Bk/ceZaN2HR0p3nz7HMcffITi0Ah+YZn3rl/kcz/zY2ysr6CJGQ4SPIq8e+5tFBVCk+Aq0EqhRGYCk9pBy4g9Y8OsrMzw8e87yuLyElv1NrbSTE6PoqSNa1v0DORZWp7lyMl7WVqrseeQImhtcvaNJ1l95gKR26ZYGqXR2aIyaHH2nd/HJDaO5WC5NnGUoByJjlpoLdGhQygSwiTEEJGkAcBuexSyRchSCkdZOMrCtnfY9CqT4xhAZyl8ynKQCEzaAZUitAsSUh2SpB2SNCJNE1IDhVyOJEkJk5A4CsCkKGFnxl4JtgOpSHGMhbIdZBRnLXCTIgUkRqOMwRKgu90BV0miROPILJjHErf3ALCj4hDdqpSUoIRC6G6+glTo7sY97k6CjmMRRQHGdGgh8H0foeyu8TQlTiLiTjuTmXgeYZjJENI0xcvnKBbKOJ6PsBzSVDM6NMzw6CjKJAih8TwL2+0hike4cF4RpylaStZX1ojDBNey+fTnfpirl99jenyIe0+dYHtrHUGbgf4+8r5LuWcA38oxd3mWU/edZmhshFfOnqOd2pSHx/DbbcjnmY2XcP2YvukhRBTy9ccf5wce+X6OHTlAtd3inXfPMTR6mKe/9SwPPvwRvJxBaInQLq3tbfByOH6JXKnEW2df52MPHCNfKPGl3/gHfPLzn+Hg8Wmuri5ycOwgV67MQMnm+IeOs3j1ZSbHRkiigD6nj9/75r9EpobTJ0+wtHidWidG+XnSWpvRPeNcvHqNAwdHEUKRKjer0qcJze3VTMZl+buoWtENFjKJREuNkQqZpoiuLMiIrFsTp90EbW1A2Ahb4kkHP1ckVyhDqml3mpkWtdWg0awRRQHNZpXt7fi2d696+/pptQOKxSLVahUhssOYZylWV1fw/RyShM3qNsW0jG27qG6uR7NZRylFo1VHSIsgCnFdl/XlFVqtJrlCgYvvvc2xEydxXEWj0eT9ty8wffAQzkCFQqlIqgSVcgHLJEyOTzF77TqShMHeAYwSWK5LvlBmbe0qfb09vPjC4sk93gAAIABJREFU8+w/cJharYlRirfeeove3l5mZmYYHBjOOrukXT+XQ61RJwwDlpZWdrGeW6vrWH6Rcm8/vu9z8Z3zFPI9OF6e5bV1hodGsf0ckhAlBEaB41psN5v09Zap16vZ3CNASk1/0cYhIFfsRUuJa0lupPNCFEXdvJPwBiUNuurmrAMrbpLe7HQ9d229InNd7ZjI/9+23ZIdg7DJgrHYqXbq7mtlCFrZNQVLwKQCVEZsE3In/Xfnnza7X29M2i3waNI4gCQkFbfv8Oq7Prg+QnpIUkTHQBIi4hA7VcTCkMqEdhTjKAstMp9ZikaYGK1dRNpGA2GakKQxSglQ2ZqYGoNrW8RhgGNJUhViLIWxJYIYUBBJbJPDdUdIUklv7xBDxUOM5A6T6Jgo1VhWgWLO46lv/TEbm0uEcUyaBIyNDbG1tMCpw3uxRcqnP/MoYawZGN7LWrVG2NGErU0WZy8xMtTP6voaPeUyUbNNu90kbtdZW5onDJoMD/Rx8cI8l6/O4bouecejb6Cfl185wz0PP4iroZVGHDm2n41WgA4iRNKm7PlU69tIoZi9epFDRw4jhUDYNmGQEDYa5PNDxHGCsPK0O5tsrq1h2zZD/X24rk91Ywsr52JbglRI9uw9QtCuY1JNu75AnBTo9RSNxjadJM4oQmGDeiAp9YzS2NxG5SxSk5mvHSeH7xQJrCZpE7RjU0/bWdefmETE6NjgCIWQmoJ00FgIbZEQkaQdtEyJ4yS7z3XQRZ8npCm4lgfy9nZdP2jjAyEB+sTHH+U3/9k/52d/5m8yPOrTanZ49cxzfPbjH8I2IJWHpQqEcUQcweZGE+m4aAnKFcRJFgrWW84TBCFRknQLIwJfWQRas7i0RhTF9JcrxAk0IxDCxpaGju7g51wcV4JIsB3I5V0KhRJBaJBC02o1WV5fRFowc+UKYZowND7GYKXAxlqLPXsmiOOUXM5Fa2i3U0CTJCmdTkixWGTPaD99vXlajTqFXJ52u41t2wSdbNP8qcc+gWVJjDREUUT5/2HvTYMsve7zvt857/7efel9mRWYGQCECAIECBIUF8miRNtabC2h5VgqWwlTsexKVEoqpVKpUracxEmUlORFVlku7ZKllOVSIou0QBHcKYgEsQ9m7+mZnt777ve++zn5cO7tGYCUKnbKGnzQqeqanu7p6bu871n+/+f5PfUWnc42hwd7fP/HvpfDzhGOY7O2tkSSDjk4OGAy9HBcjRK9qa7coLMKlSM0ZCqbtjLN45lt5IWedjT1vQg1+SZZzr1+gRnWUGiOzZJGLz1dIFCgC/Q9aNGiKFAYksoMOapmKDzr7u96U+DYN9gUHcuBZrIja+Y7uLel/vYYx491+lxmr92M338vum4m95kFgs1woDM5luM4hnh0z8/OpEG+7+OFoTG1+j6uJXE9G9uxcFwbMc1KsKQxpN++uYnSBZUwYGG+TZIknD17lmq9xue+8EV6vQ6N1jyVapO9g0N6wwFSSm5cvg6J5vb1q3gSfEeRTI5YWW0ixAjFkGpVcvrMCkkuyKXPtZu3sR2J1hFC5zSaNVZWVszrkN2VQ8ykEnmeU61W+eAHP4gtJHt7ezz19DNcv3aTw71DVubmGR8dYpFQchXlkubs2jw6nuBrm8NbBxRZjue4SFdz7pGHOOwNybOC29t3+PSnP83p06cBSJMI37UJfI/eUYfxcMRkNCQaj4xsME3JssQQeqQx/Om3pKnee43OnkuhFaqATBXkhZGC4Vg4XoDrlwhKVcJy3WBGg9Lxe3s/h+u6VCoVsizD87zj+1EIc11G0YQknXBibY0sTsji5FgDnqYpk8nkOOBOSo7TvUuVCq5vZESXX3+NwXDE3PwiwrLYvHmNm7c2wXa4efMm4/GYg4MD4ighLJfw3AAtBX5YxnEcer0ey8vLnDlzhmq5QpGlFFlKKfDxfZ9arUa9Xj9+LW3bPv68XC4TBMGU+DQk9H2CIDieny6/cZFWc448T7GEJo8SllcWqTeqJgytXCaJzHPs9/ts7+6wsLBA4PnYlqBeLeO5EpFPKJIIS3793DULiPtG463X0v0+EP5Z49514H5LgGZzZEFh8jWUoSsdZytohVYzRKTpkkgMHUhTmINMkaNUQVZk5CqbUtfgGGctNMoqUI4idyG3NYU0cIuiyFCFBG3jeArbUkyiLhs3LzOexMzPz9NotXF8j/3DQ+5s3ybPc1MhtwR3tvfY6eRc3tjmOz76V1lZWePa5Su8+spL2ChKvkU67FIrB/iOTaNeptGo0axXCTwXW0jyLCFLYpIkYW9vjzzP+drXrpHmGZ1ul2vXbvF//c7vMBhNyDPY2T5ga/uA+eU18ixDWjAaTYgnEaHrcGfLHCCMzNF4lPr9PkIYo7Vtu7Ta84RhSL/fZTQa0G7PkwN+qUSa5cTjEdFkyKDfpVQJGI46dA4OKZUMES2OjQnYcj1cy8VGofKMUlihWqlQaAvpunQO9wiCEsKSpCgyaTo6BZoZxEcLadDbwgHLRgobpc1+o8DkQ+UqIcsisjye3mvWsfT0L4YZb4sOwK/80i/zHR/5Nhxb8MBDc1y6tM3nv/Q6f/P7P8KP/9h/xbf99b/FQR/80GKSKXqdhBNnVun0b1JdKoi6GeUAijwmyk3gZpo5JJlLHPeJMAc/LymQdkgl9HFDh7AuOepusNPf49TCSWzbot6wmMT7aJliez658imSEZFKyYWksVDlzs0NSsstqrWAouyRDQWjWJNnkMQZs3U9Kyws9HRRs0jylHKtTKVU5uCww+r6Mp2jPYrcRMpfvHiRerVBY26eE6fPcfqBB/ncc7/Pg+ce5vmX/xiky8FODIuX6XUS5pc9BkPJQ+eeBqV5/iufJvBs7FCj0xyBS65cZreFkApBimuDmNF6psQZgeGUO7ZtNlJSmg6GKowUp9Coqa9AF8akagGaAoSmKBLQqdEZao0QJtTLBrJsKksRxpNgpmONJTAVV6nfdBDQRWZazAKTbisFliWhUNPqmEBaGsuWhnx0H0ee5xTCLIwzvb9EHMt6ZpkISinyIkcozWSSoYXJQSiHpakMapp3IKAotEm1nPLK0zQ9fn3SNEeJCBlWqdfaNFtzLK4sUytX8GwLC4usyPA9l3azgcpTbt64TuB7oArzPngWR0dHpNGEeqOMQvLVl77G6okz3NkZ4QdVzpw9y9//uz/CL/6rX+N//Ymf5sd/6u/x+DseAd9ia2cbPKi/4yTxeIJUghcu32Jvt8fZBx/lT778Rc49eIq1pWUGOXieQ6lUwpIuqkiRrk2W5iirwAoCkjil1Wjyic9/jofX23z581/g1tDh8aef5v/5jef4ju98H3PzNdZOhFiuw2g4IRhFRPs9fv23/y39gyP+m4//16ysrHD71iaW5/D6lRtEUUKt1sD1M+qNFr7vs7Ozw4XzDxOWa9hpzt71V8gmMZFSTGwHLzSLleWHOI6HtmyDReTNVKy35mRopSmmkrpMqbsyO2kqr1YgqDouealMnmYkacyo37tfly1gNnVRFFGr1UiSlCwb4boeeZ6ZDqAD3e4hgeeTZwmrKyvsHBxSFAVBEGJxt3I9Ho+p1+vkKiOot0jTlNsbN1haWMT3XLa3tzh98iTXrl3B0ZqXvvoV2u02d25vUa1UEEGFVrVO92Cf+sICOweHLDZr9Ps9Bv0ew+EQz/PIi4yjziG+75sk9ywjS1KswGFlZYWtrU20hna7TRRNQEGmobW0hBqMcF2LIjabsXa7Tac7YG19mU7nCLV/QLXdZmHZEIRKvg1KMRx0ecfZc1SDgMkkplmvsnPnDv2jecY6510Pmu6bLjKkVTl+fYUQUOTGr6QLJOrrNs73Gm+/0df+rEPBn/VvZsUHjs2/f/a18I0Otd8o02T2/fs6lDBrEDkqz0ijCVpnpiMsHVQBWlnkaAql8ZSNjcYSijGAzsmnBalEzwIoBR42BYU5HIgC19WkokBJI0MRKkcmlukMaYnWLmQeDmXm6qeYWz1F/yjisNPFdUok0YSD3Vt4dsEoSglCD8eN2N2LUMCdQca//+xn+fgj76DkSj7/6c8wePghXE+yUHNNZ7hQRPGENEvYudXHFjDXaGIVmngw4MbGZR544AG0cBkMvsTS2jpf+tKX+MD738tEx/zhs5/CLZcRKFakRTqOCMstomjMUrNOb++AcTRCeA4WNvNLKxS2pNedUCkFWJZDkeWUKjX2hl0qYZnxcEQcpxR5jC0FkzRhf2+XuUaVJItJkgIxHlOqVknGGeN+jzD0Td7IcEir0mI4jim5kOUpUks6B4cUroXtlTkxf4G98SZCHJJqk3ifSVPAFEzx4k6AFC5a2uSFQEiPIlZkKkfZFoqUXOfY0+KMbYWY3chfdADuHW+LDoDrBKytrzIcdTh//jxH3Zw/+dqLvHbxq/zrf/Xz/It/9BOICDzpUq8GuL5GeoKMjFrbJSzZ6AKSqEAIiCY5ti1JiwQR+thTyUne6zKJI1YW17C0TZylvPDaq0SjMZ4XkOYFqBTbUYTlEM+XBKWQNI4I/DJaSPYOBtTCMigT4oTj02z5dPa6JEmK4xgEWa3eZGX1BK4b4tgeeVagsej2RiyvLvHwIxcolV3e+76nOHniLHu7B7TbbSqVGkIYbKC04cTqGZKo4NlP/x7thSof+9jHKAXztFtr5JkAa8DVq5f4whe+ZPB0YQXPdqBQxHFkCDrTqnOe54jppltKU80vshwKw+t3LRtbSOxpkqmZ6Iyx91guxJsrV1rfrfiL6b8tisLErmtFPuX2v3VRuXfBuVt5vFthnXUh7jXT3dshuBdBej/HLPTp3uf1p30+ez73EjWKoiDLTNhXHJuKTpIkx5XxWSAYcFx5NU1948VwPB/P80w1Pc/RKscSpuofxRM8z6PdbNKsN1hZXKJer2NZFuPRiBOnTrK5eZud3T0q5Tq/+iu/xbPPfp5We5FXXnuVOBryvd/9XZw+cYZf/Plf5Yuf+jL9/QHjgyHRwYi9G3cY7PS4/rUNPvfJP6ZVm+PKlausnzhFtzNCKUmv18N1bebm2sRxDEiKXB9X8dI0RUtBu93mPe95D0EQ0Gg0yJKUG1eusTq3xHO//yyf+8RnuXlxi70bh/R3RvzqL/w6v/Mrv8H2xgbvvHCB/lGHG1eu4rkhf/ip5xhOInIFUZKytLx67Hd58PwFLNd09+bbbVw0ZBNkNqaIJyTjHsl4QDoekk5G5EmMKO6aAf+0AC8hBFoItDCp2QWCfBZSQw5CIB0Xxw1x3BDfKxEGtT+/C/UbDCEERVFweHiIY3vUqg3yTJEkCVEUsbe3h5SQJAmLi4u4rkutXmdhcZE0y467OFJKCpUxHA7NfWxZBEFgDre2pN89InRdrl+9wlxrnjubN1GxCU2bm5sz2RZhmaXVdZ547zPEBTz2xLvxSyY7o9FoHKOK+90etrSIJxHzrTZZmlIJS+R5ztHREY5jTKGmgxEBMLcwz8MPP4zruuR5ThiGZFmG7TosrK1w+vyDxwWPnTvbJEnCM888w/rJk1iWpBKW2Nvbo9/vs7W1xaDXo1IOGfS7+L6L65feNFfB3So1YPxMWpusiWMf1H9Ytf9+dgfeSgK63wcAkYNUehqOmJEXmVmjMDhltIXAXAeFVgghkVN0pJB3wxlNoJgAbZmK/tTvptAUwlT8cwm5BblQZFodz8laFyTpkGp5nkq4hE7rpFHIyZMnKbRAK0Gvc8DO7Q2kNgfOUinA8xye/KazfOe3PM0H3/M4H/jWD3Pm1Al++Zf+Jdt3NrFEQTIekaYxrutzdHSE7ViUg5By4FOtVDg66iKEdRzONRgMeOmll1hYWEBrzXA84eLFi4am5QXcvrOH4/q4QjPu7oPlsb29zStf+RNee/klovHQ7GeSMQf7OxRZwuLi8rFnSQhBb9AnCAL6/T6W5RgghcqZDAccbG/TqtdIUkWuwLJ9LCvEkgF5lhF4PqPRiGq1Srlc5mj/CICcabZQrmm1WtP9h0fJbuNmIflIYymQs3VUYIqSzOZhG22DciAXhVkXtaEbFlKZoqQojqv+WrwNDq9vs/G26ACce/Ad/NN//rOcObHO5deumxtvImmtrXH+0Sf43//BP+Zvfesa3/M3f5gf+KF/iL1SYufOLVaWakZbrUFkkOUQODbC13gOTOIBuZIsVitoIdnY2+fRd5yjN+gx32rTWHAYd7aYK1WxnJBWfYHu4ADFiCxyEFZMybd55Y3neeypd7G5u8fiSo0iU0zGQ04+uICnLPq9fbb3u+wfxiRJhmN7HO33WVla54knzzAc9Tix0qZRLfHggw9yZ/MmqycWaA4agMLx4en3vRc3CFk+eYa8gNWTp0nGExZXTvPa5ecpNVOibMyzf/S7SOWSZyk/9ZM/w3//Ux9nWOxQroEQBueXZgVKCbSGaNgB2zEIMpUjHbOQ2BiqgeM4eF5AEJRwXR/HsYweEqMhNRO/QFsmeQ8UjqWxhKn8S+mSZRGFSsmnXPqCAp0LlAStTaUGraco0RSUUcFqBFposMQsTBdbWMhkusGS8jhIS2uNKwWpJcFSONIEwd3vNFUZlEjyxDxGMcU7TqF/hVaoTKGLwhjPtEAobQ6naYrQOXE8AdtDCMObB3BdgSUgSyJKoY8WkGSGVOE4JarNNu2FFZpLS6ydWKNUKhG4DpaURu4lQOcKx7KplEKickA5qGFpRRLZROMJ48kQz/E5feoseZLj2KBFl1qzxj/7Fz9PqRTwgx/7Prr9Ht/7fd+DlLB1+yb/x//w02YBtEy7WNoeOjcGsCScUKm1OOh1GCQ5cSJYPfFNnHvoMZS0CVyJyjK0bRGGAYUMKJQmTjNazSWshyw++4nrVIMSpxYFnaPbPHB+hcrEo7uxyR997Q2a7Ralaplvf+e7cEtl9ntdao05Xnz1Ivs7u8y356iWq1y9fp2jwYQn3/M01XqDSqVCFEVEacTKiVMsLa+RJxpvfpVkP0OMe6giIhqMjdndGaKR2H4JywuwneCYynTcrZqaygoK1JQfztQkr3WBxfTAlxtZ0PHiY9kIIfHr99e/IqVFWK4xjkaM4iGu4+GGDo4bEscx1WqV8cj4evb390yyZ6mMKBSeZeMEAfF4QpHl+J5JAI3HIw67Ay48cgGtMm5u38aWNkmlT5pn3Oju02y22b09wfEDRqMRCIv1s2eNRMDxOfPwo7z++uvUXAfckFE0QiuNGwQIaYg8geuw3+0SVkskUcRoaFCGvludpjFn1Ks1tB0ySApGN7eo1mrc2LzB2qlFbNeEHfrlKsPBBCk0V69e4p3vfS/93pBXX3+RIosZjMaUy2VWT5ax/ZBHHnmEr37pM7hewJNPPMr6+jpHk4xayaUhFCKdIBwXUWiTvTKVjYCZH6QxORlfybTwYYaRp8gpZe3eIWYfQtxzqMDQUGafkzN1AphQr2NU80yyqUzFhynYAdBSGl+WlmilpmmGJqdCawN2ML73AopiGgqmsCzneF6+HyPLEmTsoHTBcNhF5jnSsRFKTA+KPkpLVK7wbAtBbB6vJXGUJkugUBlJmiG9ktlQ2holUoo8NTJcIQ0eVOVoJpgV0yJKUtOFzhSeVWW78zKuqLHqnkZaNfb393HUiL4+4sYbz7OzdZV+FJEXGeWgxMpig2fe+S5+8zd+h2gEj56bYzB8ir/zX/wIRZGxvbtNKazRH/RAH+A4Fr29Q0LfZzKKGDMiH6f0Bn1Cx8PzKwxEn7JfxpYW/+4PPs25849yuLvNSy++ztNPP432Al67dIVHn3iGvcmQxoLD4c5trr72Gu9973u5fes2S6wx6PU5c+YBROLQmcQsL86xu7tNtVYyQZbCQ2tFdLRPMuhj2RUmScHZB06zfWsToW2yVOL4IWHJpbO/S6XWQAuHkIz+0SFJnrJ48gJIQZoryuUao8mI7kixuHoG11EkiaTlV3GtFSyt6KQ9oqnMWCmJtiSFTMhd2xwCipg8B51bKJUhpMaWAks6kElc255mR2T3XXb5dhtviwPAL/3KL/PNH3qaYpTyE7/yi/xn3/kjXN8Y8y9/8df5n3/mH7EVx5TdiJ/9uZ+mu/dVnvrwh+jogty2qNXbXH91i9UFm/4gp162mJCgtdFKF5li9cQSUZpw8SsbPHYmYalU4fWLL3A08Tlzdp1bm9doLz/E7v4RC8sNLl++xMLKCaS2yHRBfzBi/3CLSs3DzQXb17eor5URWtJqtLCFTxRt0+0ckCYFuIr5+XnK5TJfeeGrNBtVDndv88iFs8bIaQtsYcKhjOG1oMg1jheAZVGpNsxiOolotebQdkoWR0hpIylAJjhewT/86Z/EtQKUTtEK9JS1b1JzLaS0kFZBprJp0uRUBydMuqQUJnnXthxsy3lTVf2tfOq3tpuNr8BMwsd8aIzcpdAmL1gVIDCPyZ7KYiyhYYr0VLy5Qj77v+/F6CHkcet59phmfoA/zTPw5zks38dOATUNMOOuX+Kt41gSpBQCRZ5rIMXVGtdxCcLycaUwmozJ04JCmNTmTCkQNmEQElSqhJUyrVaLer0OhekMuMJg6dB3g6ba7Ta9o32kBZ7jc3SwjxCCUrnMaDJmZ2+XU2fO0D06oNFo8PrFV1lfX6fX6/Krv/6v2dra4tSpUzz97id47JseoxYEFEVBoWBnf59Tp07hIWjVaxz0I557/gXe8/iHuHnlVeqVKte3dnlcSHzfR6kcLwjIkpRer4cXBDiBj2PZFFrRWlim0l7llVffYHlhmQdOr7C+GHLimXfSP+xRKMnK+hq9UZ9ypcmzn/kCaw9c4FOf+QxHR13c6f9z9foGc0srrJ6psLa2xiMPPczuzm1Wlk9SWDatuSbNZhNhBYzOP0Sv6pGPuiTxmN3dPZIkYRxP0FqQZwlW5CL8MqnrYbsOnmta4+b6MwH11gz3iNle2cKYD20BuQC42ym6l6d+P0enc8T8/AJCVNDk9Ps9kwqcFdi2kQGWF+qkSUS9Xmc4HGHZLuNkiGU5ZFNpGpZEqMJIFoSg1ajyxusXsRwbPwjY3dmhPzAoQdd1OUwTFk+cYO/WJl6pRFipAjAajZifn2dzc5MTJ08z6RySFxmtepnhYMxkNCJJEgSa0HMJQ98QpCYTqtUqk8mEeKIIy1V6h4c02/OMcwHS4gMf+CAvfPrfA4Z+ZDk29XqTzmF3GrInmZtrsTS/xP5gAMDC3DyFPsRxbPb2djh7YZ43rlzmzJkzpJkpgOzu7WC5DpVSeLeDqc1cLIF8KpuEWbKvIaUZpvXUN3FPIJz5+/+fd/XN1B8xuyCFvgsM+g8Yb0KBmvji6UHh/o08T1HabOakBk8aqo8SAjTT+UmjyQ2019JYtk2Sp8drRlbkOI6HkAIlFIUyXjbLNp3mKM2Q07lc2ymWtKaheSbMM3AcfNdBiDZ5BOVGHa0ku3v7lO2U4aDD9tZ1Op19OqMEKWyeeOwCm1e2yLKMWsnnox9+lCcfe5hed5/syCL0PVwgCF0sSuRFRhYnjPb3CJYWiCcDRqMJOxs3OXvhHHmS055bYNLr88RTJ/naV77KJFL88fMv4ziCWrPCxasbDAddlhbbXL16lQsXLvDZT32C1XbAyZMnuXjxIo1WkyuXLvPwY48yGY0Jwiqua7G9vcVSu4pj2WS2Qx5HpGnGpUuX8C2NU1uhXG3yymsv0a5WKMkML7AZTzr0Dm1q1RDHDykslygeEIZlHJ3jTu9bISS9foRfrpCMxxwcXKNeryO1JHRPUGsvM4rG7Ozsg2sM8XJqYZdCkgtlxMQiJ9MZWoBCYgvBzBv45n2MRtr3XzXwdhpviwPAf/nx7+O1izdo1Ov8dz/+Y9TnSuxtR7zy8oB/8nP/Cz/0ox/nKy9+AZEK/saPfIS/+p538JM/80/44R/+24ilCjde38Z2FOUquEIRRyBdl3LJ4mhvyH7vCEmOV3f57Jdf5t3PPMp6vUoSBtza2oNIc9Tpk6aSV168TG+Q0J5XRh871yCs1tG55MJDZ7n66i1sCYthA5UJJsmIsyuP8W+7NxkNE0phBcfxqFUrXLr4Ou96/J3E8YTzZ09TrTtGnqMzhtEElUTU61VK5Sa+7+M4Po3WEuVKHT8oUS41+aPnfp/1MxXOnD7P1p1N4B7ijDOiUVnk8OgOyAJVaISU08Q8iRAFUhqEm5BgW0w5xQW+6+G4ZhJzHQfHtnEsG8eykLb15hb2PbKHe42tM6NvURTkRW40lwhTMLIMxWdG9JlNzkiBlBaF0kafh0bd83vuNdAqZapWs0qUlAYhKq2pD0Def+Oc53mAMtWxqX/hTzP+3ZVipaRZYaqAwiItCnRWYOcKz7FwPM8YKx0XqRXCtnCUyRxI8pykgMnEVGjbtRrlUmAqedPXJcsyCmUWwjA0belGPWTY6xGErpE/SMNKP//QBQaDHuM7Y3KVcfrMGbNZ15r9/X3e+75vpig0L722wW//7u9zanUR25a8/73v5uHWgwy7h3hhic72JtdvHzAajPn9P3gWy7JovnSFj/3wj5AkCa7tYFmCAk21WiWKIoQlsabsbSEdRnHME+//Nn7h136XB07Oc/3llwndjP/2R/82lZV5Dvb2iQl44dWv8rVXL9NaWOLZX/st2nMLrKye5PIblwjKJdpLaygBjzx0AVVk7G1v0qrXSCPDhn748UUc38N1S6yceoBhf8De4QAn1UgBnuPSqAdIKdne3iYbdsgch9j2kbaNF9axLAfHNzkLYsp+l9PDgBKSQpgOGFrgOHevBSM7eHuMQkXEkwkqVxSWIAxKZFmG67oIIeh0OpRKJbPJHu/SbLTJsow0zQkCz1RchUDbksnAhIhFUYQYjNHSIIV375jMhWOoQJbR6Q1xHI/GXJtRN4Y8p7m8xrvf/W4ODg547LHHSLKUvdsupdIDXHv9FcJyBd91EVrRqNe4c2uTciXECgJsKUmiCZZj02hEW7rkAAAgAElEQVTNsby2Tlhvsr66wtzySVYunOfOrdt0BkNjCm42SbIUadk89OAFesMe3TSm2Zpjd3+ffhThhwFZkaPQRsbme9zZ2eNbP/TNXH35BfYPD/F9je86PHzuLL5tIS0Lbdkm6G72Pit9d9OsNDrPzGskBF7gHRuHj+dYeZ82KGJGC7p7gLgr/TEesreDARggTRXSKkjT+BiWkKkCLSxD+9GQaSMv0aRIC7RlJF5JbtYY1wkRuFiujRAFWWEO5K5jtkRS2CRxCsIgnqVXIKR5TaSUxMmEeJxwauUc+70RJa+NpWvMPbTA/q03uHPrMsOoR6Jy0JIgDHjxpRdYnVvn1OoiP/DdH+bW9TcYdA9YXV3HLrn0uodYtkurGtJVGTpJGQ373Ll5jSLqM+iPaDZbjPv7PPfJG3z4o99FMhnSHw555eIVrrx+ibX1dTq9IZt3ugyzAf1JjqNiBsOIo6Mjbm3c5OyJJV766he58OA5Hn7Ho2xsbOBIi62bm8StmG5vxPpD55FuQOCVGI+H1BsNegcxflBicXkFx5JIr4btVanVGuRpyiCLUCo3gAOtGfSGyMzB8st4XglRpAxHBVo42K6ZC0rlBp4v0NKACGrlkMP9XYb5AQedW2zYN4k9k9EgsLC1DcrQCLXIUUITFWPSIjdFTi2mckxDuxKyMAFxCrI8N7SrvxjH423hAWi1a7z//e/nk5/8I2zbotsfI1xYnoP3P/UU/+xnfp6/93d+lIMo4dLOEdd23uDn/qef4oe//7voDo4o10LS1DQlx3GO6zjU601828Gz4LDbpVCKyNKIAHrjIaVSibpXJj0cYuOwtLBMuzlHPMqQGva3jxgPJwgxNfdliqPOAdLRxKlid2uHNMlJkjFXL10lTWNKpQoz3vtwOKRcLnNwcIAQgo2NTcqVOhubWzRbC5TLVWzHN6FWGrSwkbaLbXlIYWLk3VKZxeU5nn32E1y/ehPHliZEFDXdoBf0+kZPp6a0A1Vo0PdUxoVCWmDbEinNn77nmM+FxLYsHMvGEtK0Nu/ZjM+0+7MN+UynP9PjHxNQjg8BmnzaYtNak6sCLQ26TglMsBL3ECV4M2Fo9n/OfpeUEqG0QeCpNy88s+eX6/vb0rPvqd59I1PeXc2oftNrZ1kWCGlkCF6IF4QmXMYLjp+/bds4vjetNtuABCGI4pgsV1TCEp7rYlkC33lzmvOs2hoEAXEc83u/93s899xz2NJieXGBRq3G6ZMncSxJu9liPB5z7tw5yuUyk8mEPFem2rSzx1G3z4MPPcK3fttfYZIJjnoRV29uc/P2LnZYR5dabHbG7PRjIu0xyh0+8JG/xgOPPkWjNY/rmkPHLNTMmmrES6UAzzaHUK0LJALXC/ie7/s++olGuTXKCye5M1Acpg6v3Dzg333uq1zb7RI05qk0F3jyqWdw3YAkzXng3IMsLq3wzsceZ3FxkW7nEKYI1v5wRHcwJAjLeF6AmOrWCwTSKyH9Gsr28SsNwkqdJE6ZjCPajTq2pRFpBNGAYjIkGhwRDzvE4x6jYZdkPCRPE4opJ1/ec5C9d7z1+rjfGylsz8jHgsAs4rnCdX0sy0Zr8DyfPC/udq2EoFStIW2XerNFIUA6JoSrNb/AJEnxwhIFBZPhgGGviyMF40GfPInReYYqCuqNGkWWMuwb0lSuFeVymcPDw+Ok7FKpxJkHHwBp05ybo1ytA5BlGUmSGJpPXjAZjSmyHGlbKKUYjicoIdCWRVYodvf3SLKc7qBPtz8gjmM6nQ5ZljGZxIyiCX5YMnKoMKRabzC/sITtukwmE1qtFtVqlTAMeeqpp8nygtFkQrvdJk4yms0mni2xhMnpmBVIhC7MhxCI2RyZ5eRZgu84lHz/+D79syhB9/751q//aeP/S1HkG3mx7n7PeLnu5gjc/frsZ+/3eNNjnz4eo/c369ZsDp0hreGu50rpHEu6CGxc6Rmvm8rfFHxp6GsFRQ4zMtC9HWfX8UHbdLt7nFhbpVaep9lYIEsL+v0jhqMuhVakmaG47e/vY9sWvu8yGnZBZzTnmpRKhgaYTsb4jm0Sq/OcOE5J0ohSGHLq5DrxeIRr2XQPjygHhvrW7x3SPerQ6/XYPzji1JkT9IYjBqMxnifJUlhbO4G0XYpC0+90GY/HvPzKi8zPLZLmistXrrKzu0cY+Fx69XU2N25SrVY5ONhjPB5TFAWe4zDsdlB5yqDXx3IcvCCk0+kwGg1YX19lYWGBcq0Jbhm33CaOFUI6VEshusgMUSuJqFbq9DtdJsORyRfRpugS+C5ShySTBNtOUXKHpNhB6Qyda5ypfM7gcCUokFqhdIrQGUIU5CpDI1F6dk2b61frgrTIKDAo2L8Yd8fbogPw4it/RLmyzv/4D36MrZ0ev/izv4ofupyrNfns7/whf/dvfITrF1/FcjPywmVrOODo1ef5xJVX6MVHlKoWli1YPr3M5tVtMq04sbzOzsGIUEKUws5hn6AcINMMKX2CSolLd25ycq7N0bDPjUuXCCyH+fYptm7vcOH8O0nTGBjgBJKj/T7d3j6V8hxf2x+xOudhhYJafY3ergvSolqtEscTVJGRpxbROKFS8shznwvnH+ELX36R9z/zDH6pSpamNBcqBL5LmhWUa02EkNTqbZO2aztg+dzcukoQ2oz6EyrlstkkSwWFg5QuhR6Q5QUgkcJMdAhDzdG6AKGwLNtIQwQ40w2iKy1cx8US8nizaTb4dyfWmbFtJieZbeDunQhneM8sy0hQ5KogSxVYGbYSFLnRvFvCmnr4BUILCmUivWeSobdu7me/VxcCpaet7OkNLQRIy2hV73eyn0k49MmS9O5BKM/NojM1SQpLmgh0W5InKUkCWDY2AicIKVXKuI5J+hVCkCYRhTZG32La1QlKIWXLo7W8QthaZGFunmq5ioONKnIKIZFWDtqeykvMAu9PNxqrS8uoJOILn/40AI8+8pBJSC2HHB0d8eTjT3Bnd4dStUJ/NAZpqqlzCyv0ej0+9+Uv8NR73oeoLHDi7CL9LCUszXNlZ8DWwWW++6N/mRNRzP/9yedYdVpk2ua7v+uvg1RE8RhdmE1elsREUTQNSLOJojGWBFtl2LZkFE/4yLd8C8+8+xmOOnusrc9z7qFzDAcTLt3YY65W5tUbN7Ftm/VKi/2dXQpcsjhibm6OD33Lh7l1cwOKhJvXbtJotGi154gbgtPnH2F59TSu6yHk1KwrLDLLJ5ElpD+HEj4ShedVIM8okgHVSotaOiRLYsbJkCQeEmmYDPfRwsILq1hBHcf1sB0Pxw8Q0kYLiW1LUBqlzL1kWdZ9l/7MxuLqeVAFadrHzgqq1TpKKfrjCb7vU62Yg1umMjwk0nEZDMcEpRLjaEKp3SSPEuIkNZ2dRp1qtcr+zhZCe1hCMhmOmFtc4ODgAKSg1miQ5glnz51jkmgIPFZOnDqeWwAazRp5UbB5e5d2u8142Ofaxdeolzzm5+cZj4bmHrPEMQr09p1b+GGZoN4krDXxRmNGcQyZ4PNf+hMW59ssrKzQ37kNGLnR6QfW2d8/ICgFeEGJYfeIknEasrKyQp40uHptA8uyODw8pFytMO53SLKMQFgsrSxz8sQpKCJUpMHKkUGAENaxSiZPU/N+KzMXuK4LsWH2/8eYgf/TDTWV+MwOI/r4Q+mcuynv91+6ppUkLzKUzvCdkslUkJJYK0OYk8LMr1ZgOowqIs4jsGxmIj2loBTU8a0aaXFAbkXYtoUUTHXikjwza6hZ88C2LdK0AAFxBJVgjrna45Rsg1Wulx20Ctm49TKd7gb93oRiSoAKgoDJZMQkGtA+UaZ1eoGDboegVGMwmmDbNqVSCeG6hEGFJNrBVTlpNGY47DMYT1iYW6ViuwS+xfrqCV5+5QWC5pJBQ3shca6xbIdRlJHnmvEEbt++TTnw0Vgc7htc8kf+8gcZdYc05xfwHJfnv/xFPveZz7K0skye54zHY6rVBskkoXfUo9FwIB/RP7hNo1Qli31yJKXAR8uEvYMdHKXYvblJY/kUVqlK06/j2YpRf59yuczVN17DswvsSUZzZZ0wDBkMBjhOgI4tRF4Qqz0moxypMoLgJKv1EpPx6wSW4ijbNT4r6RhQqbZJ08hoDooYB0kqzPtvChYpQkiUzkFbzLa69zt9/e023hYHgNH2HpWHV/ncFz9FVgj8pkd/NOblyxP+yuNnSAYj/s//7Z/izYHrtnjgtEtz4UmicYfnN8acfnCJ7pVNJv0O3/nXvpVLL7zGH3zqj3nXE+/mqD9kL4nIhc3BboQdOBz2+nztq9u4SyGZzCkHDSphxMbOFU6cfQ/thXm0GKLyEZZ22N3fZ33+LK3qSeIEPvDtDdxRyrnWWfYOxly91mOx3cAPq5TDEt2u0ZX6jkd/mFBkPa7LN+gOx1x+/QoL3/wMvcmID334oxwdHdDvDqhU68e8d8d2p1KhEdevvcSXv/IHnLtwlsF4G89zkCiDJrMw5rvEnNSFbXSQCoEopimRlouY8pFtYeFMtcue4+K6NkEQ4Iculi2QttmgW8Kemsgk2JjKrG049a4zrVpNdaVFkZAWKalS5AXkOcYamWcUGrAE4ButtBIIcVffn2tzYDCGM4EqTOvVyIYkRZEhLFBFZgxaKpu2ok3egWXf/wXUdnzcXJFlBVmakGYZAqM1dLzABJEoE4ym0pxi+tjRGscJCL0ynuODEIzHY3OQikeoNKHQCtcP8byA9twiwranAW02YeBTDmxqZRfHMRNdUQggQwsFosCxNLVGneUTpzjqdEhGXZbX1knimOubt2jWG/SHY27dvEGRpywvLJClMQ+sLROnCSvr70M4Lq+9eoknHrhArzsiKJUpN9t88MMfwpYWD184B8rQfIqi4Nu/87umpAiLvcM7uLaD47kURcYwGuE7LkrlFFPykeM4aAP0I85SvNBHJTGtVp1TZ1smbGqKy/z4x3+IKIo4c3ady9c3eOyxx+j3+0wGA3ZvX6dIE0bdAyqBpHH+LMWF8zh+BWl5VJttzj/8CIEX4kx54BKYX2hhuQ7Ccdnd3iIbSQqlgSGWUyAdB9/xcfIKOokoZwnjyYCiKKakIU00HlCwDW6ADEJsv4IflJHCxnX948wLKSWO4xh07Cyb6T4Ox/OIRn0qrRbDbgdLSDzPoTE3T5okuJbhjTtBk36/T6dzSLlSQwiF4zgcbu8QhiF5lrKzuUm1WmXrxg0cAZYCxzFFkcloQKVSoVBQq7ZNIup4ghuEBOUyFApVZOwe7BGGIUeH+5w8eZJKyaHX2adcqjK3sIjOUyzPY9Dr47sB40EHpRSdJGV5boWD0ZCFVpO9zU1WllfZ3t6mtVDBqpRYX1mm/ZGP8of/5rcY7e8SViqoPMXzPQa9AefOnGA7T9m58Tq9ox7zc3OoLGX39gbnzj+E8Cq8/PKLnF5fo1Gps7W5wYXTTTrbVzm78DCWLkA5yMLcf3E0Me+5kqAUuS6Mdl3l6NlGtcgNtKbIUJi0bwsN9nSTIgRmiZ7Nc9rIzMQ0EOwtJDXzJYEWM0Pwm70AQoG2zOZWCNtUVDHWgELbBlf6lulUa41UBTrPkEqjdQbC4Irv13A8l0yNUIUks23cLAEFvu2TSHOGkRjqVqqmHbnMwc5c8iwn0gnKLpHbAbkQ5MrGEQ7H6pBC4wJaelMks41necZTIHyyXJEmGV5tif3Dm9jzjjH0i4TDw33y2KzH0rfJ+0MCr8w4zThzaoW2V2ISd3F6igfPnkPonKASIn2bQTKiWXLZ2ryCW0w47Byg8oLu/h5bt3dxpWbj2hbt+RalUolHHnknr7z2IgWKy9du06hXGCaa3kDje1Cpu9zZGnH2dIm0kBx1hpx+4ATjbsziwiqd4Q5ffn2D5fYp5uYHVKtlNq9fw/NKfPTRH6DbO8KveBTSQWdDFlZPY/kBh4MBUb+P1GWSfh8rgThJqMwt06iWEHqC15wnTlKEX6U5v2QO7FIz7CVkRU6SpTRa64ziPqNhD1WkpBk02y36wyHLzdOk2QLl6hq99CYXexNGOiEXITY2uc7QRULKCAMqFziyMqUFWYCFJRPiPCdXxfTArXDl/QUvvN3G20ICZCGIJxOe/uZniNM+5YpDte4gHLh07Trvec+TYENqQ+ewS1ipEumY3FJmE1s1P1+MY6LhgCSKyIqcfm+IFC4gyDOF1KaFvHZinUrNY2V+iYNOh6DaZBJlzM/PkxQ9sGIqgc9cu04QeFSDKo7lMN9YZvfWAatLp2nWlzjYH9CsLnF78w6D/oQbN24cG+EWFhbJspxer8doNODqteucPn0Sx7EYDsece/A8wnKZW1rlxKnTLC6v0J5fIKyUCUohSif89m/+AqvrTRaWqmzduX282X1rgBbcrZp/XViLUF9nsp19Pgue+rpNtBQIS04lOsY47Mx0zveQK+4aGkFPOfZv1YnOpANgZECKqfRH3Pvz6rjiD1MlqjZhSrlWFDOvAHL6+cyUJu7rQgR3X0utmAaxiSlZyUh3mD7WWRjavSSP2aZwJrUqioI4mRyjP2cV41m4kZEtTI7lNGCSRtM0nSJev/7F8H2farV6HDxlWRae7xOUQrzAp1Ir05qf48SJE8ehTDduXCOJYqLJiNdefZk0i7l+/TpxlvKDP/iDfOADH2BtZZW1tRXTvk5TfN/Htm2GwyHz8/NUKhXK5TJhGJrNh5ZIbLI4ReUFKn+znGCm5X1rx2nW0o/jGM/zqFarfOhDH+LJJ5+k2+1y/fp1Njc3efzxx3nyySc5efoMc0vLtOeX8fwSYVim1myytLSE4zhvQrHee68IIQw5wjJhMUpaFNIjtz0Kt4JyqiivjvAq+H6VwC8Tuj6h7eDpHJlnqHhENhoSDzuMh0PGowFJPCGLE3Q+Q+kKrKnXRtzHNFUA6ZUYRSn7B0cINyTHIopTkiQjLJVIkgTbdRiNRmYDXxS0mk3yLKNzdMTi3Dy+47K+sooqMsajAfVa5fi6zvOcfr+PlPJYe68FZEVOlMQMxxMypej0e2xsbCClnMrPcobDIVprgiDgkXc+QrPdNppvYcLw6nUjCSqKAsdxzAE0SxmPxziOw2gckaQ5e3t71Ot1Tp48ya3N29iuTxRFZFnGcNCnc7DPytI8L7zwApVKhSSK+MhHPkJp+vw9P+Tw8JAsy3Ach6tXr3Djxg2q1SpZnLC0sEilbIzslmUdX6szH8W91Cg5NYrf63V6MwnoP05e85+qCPKN9P7fKB/gz3sIy6TJa8cyPQohUdMAKy0skALLmWKvsSiyApmDLIQpQmnJLMBSTTNygOn9OJO3FsfzkIm6n0lVJY7tMbcwz3DUYX39AuNRQqXmkKZ9tm69QTLtePq+T6lSoz8YoXTO0f4B/V4P15Ksri6xu711d96besiuXr4yne8ziiRhMhgwHmU4jsfuzj6jcY9Gvc3e7iHdoy6VcoDOYmzP5erNPtpyqTc9lIAsLfAC2B/kDHMLLQ1Dv10r8/yffJJq3eKD3/KX8AIPVcQsLy8ShD5a5Gzd3sRzbCSCPMsohI3KMobdDr7rUWQ5NzeucnC4Q5pn7B8cMUpSNvd2GSQJV157ke3N6+TRkGsXX0ZnKYPegKWVVRzXJo4m7O3cJI/HWFLjeUYK2uscYUvod3bI4hHpIEZFisAJcS0XR8jp/TPdgyiDXKUw+0gLgdRgYcF0T4LSUw+8hWW9LWreb5vxtng1VA7PfeoFTq6fY23lAb742WdpzTcYiC7BwjyTUY+//6P/OT/zb34TpS229jq8tneZVqlCpe2xsXmD/dsK5cEf7D1P2bd5+t2PsLN9xPzcMneu9mnNVVDJBKVyJtmY0+dOUq8uUV+BncMh5VRyen2BV2++xPr8GUhCGi0fZXlcWHuK+cYCgz3FelMT6AUOJ4orLx9Rq1o0Ky16+ZBarYYtJCuLS8zNzZPFCRsbN1g6d4Yb1za4ubHB/Pw8L77wNUqlCpVWl4WlJeYW59BaU6lLtA2u63P1xldYXne4dOMaabE/TbNrTo2UBvFpTGMKIeWbAA9CiJlmBqa5fiY8t8CxXGzbIpymz4ZheLzZmv1sMdOHWoYk5NiG+3svr9+yrGnSoibNCsM9n+rdlVK49t3Nry0kyppSgKbt40KZKXv27+9tK2s5xSkiUYWYymHMBK8w35O2hXgbOPqL3JRy7+p4Taib6/pYjjHzHmvzhfEE5HmOZbkIYZHnCkcphNTkRUqep2gKPNc1xBnfB0zQkpaSucUl5ubmWFlZoV6v4wj4f9l70xhLs/O+73fOede71721dlfvy8x0zz7D2bhJpCiCohYrgBwojiUkzgc5UOT4Q5AgMKLAgOUAQT7ICRxAkpU4sqI4MWIlCkiREi2R1JAiZ+npWXvvruraq+6+ves5+XDuvVU9pGQnMNUjQA9Q6OpbVbfqvve85zzLf5GWJPHANZz+TsdxqFQqPPuxjzHqNLlz67rVeR8NSLKM3WaHxeVVFIZSqcTxkycRuU12grDIS88/x/lHLoNXYxBFnDx9mjAs4ky6bErasbPWOZ7nUCoViCLb/fQcxXgwJooS/LDIeJQRuophr019rkb7oInjeyytLJPnmizN6ff71OcbaM1MjtZxHFzXnZGr0zTl7NmzrK6u8uhjl2ke7JGN+iRZQppkZISExTJL5QX8QoFypUapUn2goDDC6kIPh1bvvt1uE49HZInla6TTrVEWER7kTm6JgHmKE/YwaULdb2N0Rqnfpj0cEmUZcTpiNOoz6vbAdRgFJVwnxAtCgkJxAg1SIOVEEevhxbMvvMz7vke3uUecCyBhZXWBUa9Hf9CjvrBIu91ESjkzzrp76+bMiXpne5Px2CoELc7X6fV6DPtdkjhDKWU9K7Sm1+vheAGJNuhRxOrqKuVqjWGq6bbarJ4+Rb/dIi9Yl97xxBNjdXWVSq3ClbfeYhQNGfb79KMRc+Uy/XaLcrnMcDgkSRIQAk8KdJ6xtbXBS698int3b7N6+sxsXzp38QIiHdPbWLPrUxoq5Rrbe9v89b/xs9z54AN2t3d49513uHT5MgcHe4TFEnONRfI04/zpk3ztq1/h2PFlQs/BGEGuJTLL0JOtaLpGp0l/mhzKGH84+Z+GEAJHTZor0ia1f57J17T58eE4+r1iKrrw58SfVzh8P37AtCnxr/vZH3Qo5SI9jyhLcRDkmYN0FdINUGjiLCHROW6mUQrSkaGQKRxH4OUSTY7wDJmxcF2TRnhCIaRLnqXkemIeNUn+TZ6SJTmZysnxcHEZRSnKcWj1ujTm5+m3faJBwt7udXzXI3VLGN21f6/vWbdinVEoBJw7f4rRoIvnSvbbLcZpCtKhPxzhSOtkfO/ObaTR7G1tc+Pt25w8dYxf/2ff4Nhp0AWH+UaDN9//Uz7xsVdQWvDIYwZZPODGrW2W5spok+IXCxRDxfZuh/b+FpeW4ORChd/9ky/xxPMXCVYe5eXnvkgh+DLp+B57ewdUa3Pk5CTjCLJ8YtYpiTLFN7/5x+zvbPHk5cepVOc4nuUImbO9tY9wChSUS5pHKJ3RKLuUyhWiKCJNckQcUSqUQcGo3aReKVEoF+mnI/rdgVWBq6/g5w7d0YBo3EOQ4ZeLNCpVtgYerkgBSY5E5xKhBBJncis4E4K3tI7O0uBIaY3hDLjSFnee9B/Wsv1IxkeiAGg2h3zipfPs722TJh7DAVRqUCgFvPb2Hj/d6RLUyohcExQKROMU6cE4GeBGOUlscB1FZiRJnKJ9hRGaTq+N53kcmy+RosmiDLcKe50dKkGBe7du8/gnV9hq3iHKfDq9EeViiVKlSCCLPPboI/zel/+Il57/HPfvbJKPQi6ffQZPFTjx1Ble/c5r7Kwf4LsBnhPhus7E7lsxHg1p1OdYXn6Zg84en//8F3j1m3/EqdVT/OJ//At89Wt/yLHTJ/F8By0Voe+TG4Pr+yBd4nhIpRqysXkHyHBca8plu81mynuaJTJG2ITsUKYzRwjLfhdCoCRIabv4nuPOOvpHO1FH4/tNG6bTgmkny0wUfHIOCb1/bteIB2XlsonB0ocJaQ8+x/Q12STEYlQfPvRnGlYPftLNNZOOn7Sd7GlxIzk0BZt269EKRI50LK5WTAhqoFHKypxNjb9A4iJhgh+fTmKmUCwhLO/jqHLT0WvoutaJ10HTWFgmiiI6LYXneYyGAwajGGE0YeDjux6l0CHPNYPhGLfosrt/QCpH1BvzdDo9hsMxtUoJRwp0nuD6wWyalGYJcRKRZRme5+OFBi1dwkKRNINWp8vezjaZyfHDgHa7S6fb5/jx4ySJJb8p5U6kYPUDE6TDta3xJ1KxMk4pFAokaMtt8ax8pXRsB7ZUrlGYuC1P8fdC2OmSmazZaULb19kEM2oJ8ZqpgYy0ij7Cys/mFBAqQJAj8wwnyyggEEmKTDKEzBlllgsyGmZ4ckyuiyAMjutZw4sjDsMPK/7wy7/HU088xnwlZHP3gFMnHuXu3bsIAa7jsX9wwFytxu7utr0Ok0lWuVxGa02UpCwsLNg1nWf2Gvb7uK4348HMzc2R5YmFDxaKBMUy0lFsbW1RKM+Bkox6PTzl0Gm27P7puYSl8qzwq89V6e3t0JircffWLkXPYTjsk8TxRLY0pd5oMNrbQ2vNuXNn2b6/TiFw0EnM+fPnGY1GtNttwkKJwWBIoVQiTnPi4ZDzj17mnXfeobu3R61WY2triwzDXKPOzt42YbGAkj5b9zcol8vMzzfY39zEyBUGie0eO8LuT4Fvk/m/yJhBgn6A8eG9/WFOAFyNbXoZ0GLigCAcpPItmDBPEMZghCQaJ4jMkGdWdlpPiNpCgiElz8HoGOk69jmkJkkj26w6cnvO/HCwqkCFsEIyMhQbfdbXb+LsH6cU1KhUG+hoQJZLssl0qhRopAqo10ukUcwbb13hUy9/EuV4xLmm2+2xtLRCEBRwHGCRz3gAACAASURBVEno+5w7d46vfelLxAM7QSyXC/zYX/sCrXiLO7v3eeODdzh/Ypn/8dd+i5/43GdpHuzQ3G9SCFz6/T5xCv2DPisLBQqOBYP94i/8PL/5v/xTfu4/+2+o1Es8/cSPkmZDbt2+ye5+F8/zOX/+IsZzKJQLdPsdFhZrOK4iHXR55umP4btw5coVcgTCERTDMpnZZXV1lflCyHDcYW97g4XlJYaDMdKVJHmGTjNW5pcZjLooo9nZ3iYe5YzTAUsrJzG5ZGdv3zYkXY9KZR6tR2zu3ceMOoy9COMacmGV5IR0rekYwhqvWdAXmMlUHksYdh3PTtKFwmg1MYv7q5jGR6IAaA/ghfk5Wt0Dnnr6R3n5ldtcfecW8dBBOHDlzXd46tnH+fyzL/Mv/uDbVMtnEFmH5cUl3r66w2JjAVXYZ9TPmTvuMopi7ty/xTgeIdMaFRe2mwMaNR/PjzFuTFAuMtoxeFqxuJhSq50g1hn1YoOtzV0uPvcMN9/fwneWSNoeaadEQc2Txhk37qyjY02vo3FFyAe3PuDkybMUi0Xu3LljO7OeIe0NaSxU2NiJ2N3bp15bYWnxOH/wh1+iVq3SbTW5e+smz734caQbWMMWYdUJTp0+yde/+S1u37lBoeBRrfkWVyglEgnGjrrgEIai5KEbpZgknQiNNyGfSaOt7KfnUQg8lB/MRtTTJF/rCb5zIk+nHAd34jR7tBDI8wyjNXluyDI7SE3TlDRNZ8mu1gY5kU6bkn0xtiOW6XyW9E4Ti+lHbg672TmGNDckaWL5DVM1UdexSdxDV6SYjPGli+v66DyxrzeHKB2TZZnlbGg9U6QRxkqU6RzSNCdJMkyaYAnOAmM0SZoglMT1QxzHww8CxIQoZqUYLebedSbGQVP1EXEo03oU3hL4BRw8Tp32yTNDp90kjseYPLdEZgFx1LeY4DwmTRKqYYUwLKK8IqVKncXlFYxQVKtlPEcijSHPsZrME0dkIQRRZA/Q4WCEHxbojIZcee99mq0hgSsYDzvst/bpt3vU63WGoxFXr15lFEc8//zzdDodqpUijnNYcE6VaLLMJprxBEIkpcRxfXSQUyiU8BxFroVNHn0PKQWuZzf9PM9Rwm55tiC1RniVSoVisUfPD0mTyILNhMG2kg6nKloJcD2M51n3Ws+3Si9egWI8xE9j4vGIKB7jJ2OSPGMYR+R5Qr/VpddvIh0f5YYoz7fFwEOMiu7y2h9/lbBcoRiGpOkK3d6AE8sLEwiOoNfvEwTB7L4uV4pkeWLXWZYy6lslH22sE3ChUCCOMqIoolAoMBwOGY76FEoZYhyxWqqwtrZGvV5nf2uNcrXCWmePQn2J+fl5At/D9TwajYZVpBoM6ew3SQZD+s0mC4151u/dRSd2slYsFhmPxwxHfQLfpVouUSoXuPqd77K4uEivvcc777xDtVrl/MVH+Prv/z5BENDtdlk6fYELTzxFLBy21u4yXyoxHgxZWT3BSy+9xJU3XgPpMIoSfKV5643XOX/hLI1Gg/bOFonxGKSC/WaHeqNMIZwUrkL+mfvSD2K/Ogor/EHFUcjc0UnAw4ggBZFmCAyJYyhIRaINnuOhtVWiS+IIEQR4wsVzQmQubGdfY7X+PUmqM9I8w0ljtO+ipEJnwspFqmnDQUyELiAzGRkKpUDrgEKxRL9bJctG+EUXQ8qJ408zP7fM3Tvv0ujt0+m0MNmQcSJ46omXOVad59p7N7l57z7Veh3Pc/ELoV3DwyFRNGJ7E1q722yvrxO6HuVSwPradX7l117n+sFNNu5/i417d/nOn/wx7cEO3/jDP6Edx9RCD4xgf8BEIAMOWiMef2yVY5UCP/HXf5GXf+LvsHDyJJ2DPbY3v8vO5h7N3g5uaYndrU0WFmN6cZvnfnieVuuAYs2q96RxRKvdpdfcZXX1LCmaPDaMejFzcw2Egq4YI2SCH0KrPyYoVZGuS2O5zPrGfdZ3tqjWQ9741qsUq3PkOqBWdei2+pSrNdwgJEpzKpUq2qvhKI+wsUUqU6TRIA0CB6UkeTaBAuEijEFJBy0nU+KJ+IIgnTQqJb5ykJ6Pke5DW7cfxfhIFAB+VREPBywslNnZ2eKr/88tFpYFtUaR9qhLde4szz71Ev/nr/4XDPcN3nyZ+XgeyYiVU1VOrKxw5b19GgtQu3SSqH2A62p8QrTM2NweMM5hsRTTFJDHEQfDFol0uH1th5WLTxGlTYyTIE2V5bk6Qisq4TleeXyB3e0e3e2U7dEdFheX6XfGnD6zytZ2k4iMEydOcOnyed6+8jadbpdmq8XJEyfY32tTrcxx4cwpXFcyDg2bG3eIxg2i6A6PPB4z6PZ47oWPgQgx+FgXWc0f/6svYZTG8yTK0ZhUE4QBoFGuQusck1ndZiENEolRBpNr270UFsscus4swXeEwvMdXFchPR/XkUhpu5pKSjt6VtJq7xuDnEwKhJIIKZFT3PKEaCaldf3V5BPokC0EZG7x7AiNEA4aB5nbwkUYq9GbCYMwGvQEx3cUk50DSHKR29dpbAcnz233hQmHAEA8ZFkvQwrK4PgCN1VkEx34xOrH2eT1CB9CTjpXQoxJ84Q8LaBiKwOak2ENo2KcSU9jOkkYp32EdHALfUoLGb7vIiY259oYjJ4UfNrMMPZa6wn+3mLshZcjVWFiNlQjy0oWroPAdX2iKJgVYcFE0125LiosEBSKE7J2yng4pNBo2Pc8kYxGw1kR6jgOvhcQxzHNgya//hv/A//Bz/8cb7z6LdbvXiNPIy6ef4Qr39ilt7+H59sp1PlHH2M0GnF8oUG9Up2MtBTOBPoTJ8lsfcTpwKobGYPMUwIlKJTKk2JhyjsxOMpOBcREHtCu8Awh7GhfSIXrOEgZ47oKoRyE9BBohMS6n2Kx+2ZCl9L5FAKhSJzJNQl9hBiTyTFCjvC9IXLcJ9DJBKJgGKZD4mGP1BgSx0O6AU5Q/ItfsEfCDWvMO0WLlVZlbl+7QTTok4sVtFHMlaqMhgOWTpxmZ3uTNBoTBkU63Ra+75GkEYws1llnOY506LQ6FItFfM8hjkYopaiUqqRZRqUSMOo2eeyJp7l36yZhMaTTauM4Ho7X4yBLqS4fZ7835JEnG2xsbFAsFi1+urVPyXVot5uYNJqop6Vk0Yii6zAY9FHKYf3GDaLuCnP1eQaDAYVCQGu/xYVLT/HOu+9SKBRI0xTpSMrz86SZYaFeYtMr4ARF3FKFcqPBN77xDfrtFsQpoXSIk5wz5y+wcf8+oRSMB2NUWGavNWavaghKZUp1S3AXEz+OqfOWMQZlNIocRQo6R5hDLgpg5ZqlmOyZ1lAQQGD3EWHc2ffZe802R2wcTk+FELZ3Y+xeY8WxD0nEwih7j4h80kCaeKpwSAhm8tuFsaveSjGbib9MDNI2Mx5WmMynEvk4jmYUGkZyqlYHIpcI44Gx5F3pCFLXR+gRUgtSbc8xjIWM5UaQCJ9E56QiJRWRhZ6oAE1qJ85aohmTZxIjM9Koj1cKwakRGoM39yjdoebyo2dwXM2rf/Cn9Htdch3b/TCsEbgOb1x5m293uzz5xMcoFANKjqG+sILjOFy5coXjJ04R6Yy33ngN3e2zfPIkS0tL9OMxtWKBr/72r3DsYz/C8RPPUpy/zOd/4u/y7X/+O9y7+jrPZvdx51yaW02+8cYa9/etWEaaai6GPZ583vIoGa+TNBO6W2vE7Ra91hpf+OxP8y9+57fYvn+XlZMrnH30UXxVplI0HGzsEg176HGH+XKJtD+i07wLRuI4AU6oOHnsHOt379Da2kRiGA16lCoe280OJ04eY2dnn1qlytz8MtnI5WOf/jRKKWqls8RqwLjdx7gK5XqUCw6dYUae9ykEcxSKp8hkA7/XIRMjUjdFG4dc5vg49mzVEi0EudBYK40cR+YIFFLYaaSRHkJ5OOavCoCj8ZEoAOpz87z9/nVOnFqlPxrw9//hz/Abv/5/47opxTr85j/7Cov1MXv7hoVFxeb6LknisXWQceKSz8nTAe8U4Mz5BonM7YHvQrm6wu76DmG5yLg/Yjw01E9WmBcFuvstttOMzTda/NxjrxA0zhITkcYp9co8+/cCLp87zVuvvUPgVxFCYoxgc2ObJEm4evUqWrt0ex3Onj3NtWvXrJFFtWrlQMdj5ubm6PV6NJttlHIJPMnw/gbXb95iZWWFcZZw/NgJ3rv6Nk8990mbfE9k2FrtJv3xLXzfx3GUJbIILNZR2g5zrjOUY0mneWYmdvD2UFGuxRh7noPnuoSei6MEnjdR8/E8XMf+rpmuP5aki1AIIXEcDyVdlHTt50dcgrWRpBPZy2nn97AzdOh4K6VB62yiY89kwqDJ0wyTpjMW+rS7m2UZaWb9A3KTYbTVY86y3CoFaX0Ia1IKJR4ujz03BkcpPC9AFzTDQTazGzdG2/dP2u5zGkfEcUyWZKQ6J8fgCX04edH5BIc+xslTxOSaCeVQqFRxlIurzAwCZK/ZoelYmtrkYkqklVJOIESTQuQIz6NUKqG1Jgz9iYSpmfEVXNdlPB5z5swZ5ufn8QKfvf0Ww+GQy5cvz8yspt35Wq1GmqZsb29TLpdnxOWF+Rr/4Jf/c/7h3/97rN29zZPnVjm3fILW/h1W6g5Zo4QMC/hhkTwQyOUGZy6sMr9SIzcPauUfJfAelak9hEkx+ZumX/83KwzzI2t4CiECuz4ttMIWVWaiBT6dqjxAulYO+EVbrOQBJisgwiLkGSocYtIRvufQ7zatw3cyIBl2SR7y2h24VZ598VmMMWyt3ebe+hoXn36KbnfA6vkL3L91jbmVJUZxhOf7jMdDknFEEAQYoymXyzNCrRJW4ahUKtHtdg9hQlFEEBRoNBrstg7Q0mW/d4WCNIT1OrVaDd8PMa6LEYLT584zNzcHaOqTr1957bsYodja2cJV1nwvjiPi0RAlFEsrx0h7fS5dusTa2gatwYg0S2g0GhSKRarVEu29bc6cPMGNTotGo4HyPebm5mi1WnQ7bZ588kneev07AGzcvUsUj2Y8psGgx16zhXIEi415cq05duYUc40687Uqjj8gnexdjn8UmmiOfHYojjD9ju/nFfH/Jf6iYJBH4T8fBRJwOkrQqQHtoANFnlpYpAZrTIfASImDfTz3fEbjLqNcEwmDpySBVBgpkEojMtAmJYsyMDGu42C0wvMtfCQVY6LMYITAaNv0yvM21cJlztc+z/5Bh9v3b9NttfnsZ3+E06eepV4/xThNwD1ADvcYjSPKxQpPPPMMl86ewxhB6rjk5KyvrXPm/BmyVBMGVV54/of4R//tP+AnfvwLtNtdktGQ04tL3L7/AbvtLo+/8BmOHT9BeRDx/Muf5Ic/+SmuXn2Vcecuu9e/zHzochBa8YyTpSI3r/cYmrf53GffI896bG3fpt9tMxp2GfTbfPUrX6LdtgZ8ynU4fvw4vX4HqQyuq1ClENwUk2esHC9z+/Yea3dv4RnD4vwc4ygjKJaoF06wv7tDZXmZzZ0Wx06eJiwGjIcO5XKVra0NGrU54k6PcdQnPO7SSWKUcEgzSLoHdBXU5k8Q+FWk8KgEdTIZUIxCkjxCmAShcxzlooSdxhgBubQqhxgBIkdJg5QOuZ64mgtrOik/Gsjhj0x8JFSAHMdnMNRcvPgon/rES3zlD/4vnn7yMZJoxMJiiczAcDxg0MfifaMURxVZXDiHkob2/hZJDsO4w9J8nVFvwMJKiTgf01hcsgeWkCQx3F/v8Xd+4Zf43Cc+Cy7ML5c52Noj7qcsVFc4tXKBueIxnr70Av12wonV80TjnPF4TKlUwhhDozbH8sIiK0tLLDbm6Xe75ElKIfApFoKZasTCwgKlUoWd7X0KoXXUlFIyNzfHc889x4ljxzl5apXv/ul3IIntxZg0jsoVB83QPmamLpGHMA8pD6Xf8jyzGm+TsEY0toupJA9AfKbY/yn+/6h6EDBL3GGSNAr1oY9JYjb794ipjJnIr5nDv+PDMX3k+2lJf686i/jeg0dPntdMSMIPW5PaiENSp3JxHQ+pnJmb8tGPoxj2LNcIoXA8C6/SOiPNYnKdgslnxZAxZpZYlUqlmZrPeDyeJa6Hf8shPncKAZpyOKZJ+Yf/nqkKUZIkHD9+nAsXLnDx4kUWFha4ffs2b775Jh988MGkEHVmvzdJEgaDwawo1FrPlHamMAE/DEAafvbf+/f5mX/3Z3n/2jVee+07FH2fcb+DyhIqQcjBzi53bq8x6Ecsr6wyGmezJDuO45m3wng8ZjQaWRLzeDwjmU4L0KPqQdP1/q+LDyf0R3/2KGFz+vn3I2fmWqOlIlMuWvkYrwh+AYIy0i/ihhX8oGAxvlIRSIkvBSKJ/q2tw/8/8YlPfdK+j6MhtUaDpePHWVhZ4ennn6O+uMTS8VWQioP9Jmma4/shYWgdkqfk2yRJSCeSrtOC03XdmYnQ9D1pNpssLi6yvHIMCbSa++zt7U1cQ+3aeezy4/T7fdqdDr7v0+l0yPOcuVrDqkkpSbvdJs9zBoMBWZ5QqVRscwR4//1reEGA7/skWcpwOGQcR+RJRLe5h04zPFdNJE073Lx5E9/3aTabrN29w/mz5yDPaDab1GtzBEFAq33A+vo6x44dQ2Glei89fpnBaMjKwjx7W5u2y+v7h8WpOAIdE3qmxGY+ZFr4byOB/4soAh4+zPLBsJLHFn6qc7sHT8+C6V5gco2rJEpKlBJkGBKlSYSewFsNYnrOKasPL8gm00IFExlsu4dokjzDCIUjpj1TzbA/wKNBNVjgc5/9DE8/8zg3b16jVCliBNTm5ilVqswvNnBdhyhNuHbjOgf7O2hjENIafy0sWBGQJI1IszFZHvPCiy/y3/+j3+Xq1av0211e+853CUKHmg+D/ft0N24xam5SKUjW7t0kDHx67QH9/pjlhXnSJGNhvobJE1ZOLXHtxj3+t//1f6bb3mVj7QaKmNb+Bp6Edmefp55+nP6oz/LyMtJxcBxlm0TGytZ6nodyDK3OLmGxQL0+T8HzuPbOO+ztbrOzs0OUZGgEd+6tMxoP2Nq8z3A4xPd9hFT4YZHd/U2MzqhWinTaO+TjIUHgEfqK5cU6lWKJTBt6vQFJYrlyEh+dCaQWKKPBpJb4O3EHnk7EFAYlwFUCTzkoYVAIXHn4PdqkD2XNflTjIzEBuHTxcYyM+fo3/pTPfPbzrJ5apbPfIhMwTBISDf/0t9/kb/2nP8m3rtzjg5tvEy6WuPzocYwjePON14kSwNjD+/ylR1l9XDIa9Yi7HsP9NibWhD74ywGO0Dz1yKO8tHGXQnUJM4AsEag0JBkIxlFK6kTsbuxSrTTY39oj0xolXXw/pNNp8dilC9y4vsby8jLbO5uUCkW2trbYO2iyfGyV/f0m1WqV119/nec/9hzDwYhjqydJkoTV1VW+8gdf4/zZ09y9fYdf/q//K26+/xYXnvvE5IqkvHf9m/SG6xSKIVmaI6QdbyGNhScYK6jpOHImn5hlubXAlhB4FuoT+golJb7n4Dpqlsh53gTqMOUPKEWW26GyclwEljSjXA9HeWDcSXVt5dOs5brdQGfPIaStuJWyyj9TTsLkENR6MpDWGplbUvDRRH+GbZcSbayTMNONXlvYhZ0mWEa/LQYewoI9Elk+eT+ExPECghmfIUFIxdQ8J03TicNjRBrHJBpcBWoCsSLTpHEEuYXv+GGJICwgvZA412TGQWtIhzHVCfnRkn71bOIgpZxMig4nMNPDO89zzIR0rZQiLBYYj8dkWXJEZSej3W4SxzGlUolKpUQcx2itWVhYYH19ffZaplj/ra0tCoHPzs4OnucxHA6Zn5+nVqsRpwkaSW31BM8sH2M4Svnj3/89bnQ0J489yjtvv8knzj3Pa3/0Nv/lr/x3VOoN+kOBkBPzJGFmCi7TBOuovOI04fpwcu66LqPRYDY1mF6babGbZRkGSZ5lDAYJe3t7dDqd2RTATCBTdipmJwDoQ2WU6fTlaPFlkUEOCGGdKEXFkvbdEJPFCOkSCBc3KJGOR0SjMS6Dv8il+j1x99Z7tJsdTp89RaodVk+cIUo1MsnJhUNQKGG0oFZv4CrJ3s42o+FwNnUMw5BSqWSLgDghiqLZ++D7PqPRCM/z6PV6GGA8HIEcUy1XMdGQSlikN+hTq89z/eZtFroDnv3EpxnHEcPhkI9//OO89dZbLC4uI+cblAKXG29fYdhpUi6XaW6ts3P3Go6U1BdWiKKIe/ubIAR+sUw3SYjjMQfNJvNLSyTjiN2NdSq1Kl5YZmVlhbW1NR65eIFKOWTtxg18z2Fhvk6exviex9xcjdFoTLEY4vlWynRpaYl7d4u8+kdf5uzKCuk4RJe9I+vBkvKZTbGmBcGD++XRz49+zOQPjn7fdG5wJOE/Svr/8P8//Pyzx2ZcITl7zunjRxsU9u8239NUeNj4f4BcxuTCWPNDxyXNxqAzvFROPCgiQgerpuZCYkZEOiLTkAlJlKUEWUpODlgoZZ6niDzHc2wjx/fKKFeSZhHKkQQiRGQeoQhwvAJSBShPst55jWG7y7f+ZIMzpy/wwksfZ/3uLZxQYYwiTaDdbhIUfOqLC4y7fV5/6y2++IUV3nn3yuxavvnmm1y4cI5bt29QLlXZ3tvn4mMVgkKRxcVFxvGIi2fO8PWvf50nAsPdO6/zsRdfwmu5+DLmq1/+37n0xLN0Ism42+HEUoVxv0u14HN9Y4/dgaF1sM1777xFY6XB6vEL7O9s8N7NDxB5Tq5jzp07R1AooFyHY8eO0WpbUvx40KO336RWKbK4sESeCRZrNa6+9gbVxhKVSoW5uSrRoM8oSphfXGJ/cxOR54w6HTwJm8MDjp08zWjYJh2PMbnEkBF4VRApeZ6ycXcdGczTGg+58Ohl0mhMRoIfuqzWz7GfbZAl+0gdkUgLmVMTP6AUjZK2EERkSCzpWyg5EdWwucP0rPyrsPGRKAC2N+6DsR36YXeHpdXTRIObNBpltjf6hHNwbQt+5JOX+d1/8nvMHSuhnZzvvv01/KzE6MAlKKbo3OeNm28yHuXsh3XSJCUoeuTSoVFOOb/gcVfH/NLf/Xs8dnGFf+cnf5yRqfLuzU1efPKLtFotEDm9uMeV195lPB5z9a33CMOQPLOGIq4jGcUR33z12/zUj/8U3/j61zh1YtV2pLTh81/4Ijs7OzT3mlx//wafeOUl7tzboFor8OTjl2i3u1QqJZYXP8n6+jpKKV79+r/ihz/3o9x87zXOX34ZkTmcWD3D/e0WeZ7Ty7pI18FIg5IaLWyh4zoarYXFiQpr/KKkxFE5hUKA40oCzyEIbOfOVYpSoThL1l3PBSzpN9cWvz/FzSnlIoWPFAGOCoAUY6z77lHHW9AIrGJLmlsohnLCiarCpNtsQKcJeZ6RYzGlWZ5ishyJle2yEpgZWaZRE9KmyTVCT6TZMkviQrgIqdAa8jQjf8jOfjqPSbSVPXTlhDNhNGmSk6Qp0WiIyVOS0cBKHMaJxZq7Pn5QtARtFzwlkSZgRI52HMKwBNLBDQsUCkWCQoiSLqVagyAokGUWMiXVJDHFjrQFFjsvhESJHN+12uSjJLKcAgxG53S73Um3TIFUuI4inhQWFy5cYHNzEykl9Xqd8XjM1v3bFAsFvvun32ZlZYXTZ89RrcxhjKFQCKzZCoJarUYURfQ6XbSxyUJYKKJclwtPPsupsxfJkxG/9o//MWtb2/z0336aX3zyJQ6GPTpxRKVWplAooAeHsoN6cn1toWK7ZkZnM2la21k1SGnX87Bvk3+0wVV20hXH8WyipaSDzg3KdUEndNo9er0BeTIk8OzUQHlTzfaJf4K2h4sxlt8iOZwekKeIyeM5Bm2sGZ9BkWsQqkgeOhjtk6s+WgyRcoxUw4e4cuGTP/KT7G5v0Ww2CYxiHI84cewE7WjMfLnE/u42mbA+ACaNKVbKSDHRTFfuTHdfOg7D4Ziw4DOOx2SZ5QQVS8VJt35IsVImyVLyNCE1sLi6Sr83oFosorOE1TPnWF5eJtMp80vzmDjlT179tvUNQNM+2GPj+vvEwwHlcokoyzh54hiLns84HzMabBIaj/FoSKwzdrpdjBCs1Mo88vSLbG1tsXF3jcpcCadQJtaG/a09Thw/wdrmBovVkDyL6TRbCDTFcpHxeITjhdRLFdqdHuWa4HRjjnffv85Crc5iGU6sVFmsBWBSlLIiBSK3nQnBFKaXkU6I0yJPUMIgpPm+Sfo0vucxMd3nbPPDug0fTfYPp8OzYgHN1Azsw5MracCIfDZJFUZbThbY5Gnyf8vTysFMzMAyyzF7mJ2XKIhIHINyA+JkYIUmspQCZdI0o6gc0jwjjcZIXyGzCERMnOUoWSAXOQJNrlMyrFN9Ns4JpfUIcH2PXOe4uLhOgBERyhF4qoivFRJJ7hdIvZzb7a9D4uFX6+y3u+zt9qmUlpivrWBSh4WF47R7u4yiCKFzXnj5JeQI4lxTrJaIdEae5ly6/CSnT5/GUyWuf/Aejuvy4osf5/oH75O7Dr5b4t133qG+sMj7N65z/vx53nr7LZZXVzl/6hSbBz3e/dI3OEig0xoy5/uMhzluSTDUEh3Aja0W4+EVSvN1/uXv/iHImLlKmYXlFcJyhVFrQKnqYYjpdO9RChyicZc8s/yrKEnRiWR35x6OI3nk0ceJ45S7m/cZ9tuoLKZcKLJ2d41nnv04a+t3qdSqjEd95nyP7s49GGv2e1b8YX5pns5ul6TVxvF9MuNQ9oucmK/juxpyzbjXp+gtkI0DlC7hOgfEIkXkGoOLUR5aufa+yrSdxDuKTCcImYNMySZKfJZA+FcFwNH4SECAQKNNhud5OBjSTPPiKx+n1+1TqfgYB4QDaRLx8nPPUamVcT1FMSyweW+X0SglLDoMh0NOnz1Ffb5CfW6BJ549z9JKkWGcWIKQa5Mlz4Fr723z9W+8SiAVGN6rRwAAIABJREFUw96YtXsbVMtWKzzNElqtFjs7O9b8ptGwh1OW4boujdocJjPcv3+fj3/84wyHQ1ZXV3nllVf44L132Ly/ZslvlQqtVou5Wp1yucz777+P69pEpl6vc+HCBer1Opub26ytrdkbDQPKJsRT/e2jm/eHIS/iCNzmAciCNDPIzwwC4nkzky/pHD0Y9AMQIjHpXs3MNmZdoEMc62ykPfk5Y1v7R56TSTHhzHgNNpk7JPYK8yBsBQ47tdPnMUemFEelQWeybA8XAfTguB9Q4tBIxpp3xaRxMoOyaK3JtKXdzaAlJkcpgeOoGT9DuT6e5+H7voVJpBYO0+93ieOYNE0xRsxkzabduSzVMzjLVCIxji0ZzfCh95gHE41Tp07h+z43b94kSRLq9Tqj0YgnnrhMs9lke3ubZ597hnK5zP3799na2iKKIu7eXaPf77O9vc3+/j77+/usra0RRwmdXpetnV02N7bJdE5QCBkMx1x89FH+2k//DDvbe/T7fTzHJQg8oiixo+SJ3KlSimKxSKlUsiNcbfcK33dJksiO7oWVVx2NBiRJQrFYnL2u4XA4G0MbYxDKIdM5ynVmUxm0tpOONMHk+nCKMrGWUdKdwd++f7Kmvudafr/QSIz00I5Lqlzyh6xI8e7bV2nu7yJMjslTSoFPt3NAr98ijsd88tM/zCOXH2dhYYFC6KOwhRQwK8gGAzvFCMNw9th0vwH7fj3++OPUajWCIKBcrVkIWZpSnavRWFiiP44olIrs7+8zGPTo9ToEQUBQCPE8Dy8IwUjrXZEkM+hPENjfGQYFfM82ObzQFoWBiTDJiG5vwPbmGkLn1EoFir5PHKfMz89TqVSoVqtcPH+WjfX7HBwcEPg+8/Pzs6IxyzSea9XShsMhN2/eRCnFe++9R2OujO8YysWAsBDYxgoPrhFr9KTIUwvxs7SPjxak5t84hH5gz35ooUB4DkZM1LrElORvJ4M6N2RGI+S0qDEPnCGOgDy3UJApdy0/Ys09Lc5me6Q8An01OUKA6xkGwy7Vus+pc8dZOnaaxcVTKEczHHVxA0WSSZLMSnLn2u7fxuRcv/MuV95+n6XlUzhKYPKM5cUl1tc3kI7L6vGTnDl7ikceeww/tMZ177z7Phs726zducvly4+xtLTE21ev4irJ/s4ud9Z2ePeDu+y3ezh+QLMz5PKTF/ELRRwEWZTT7HZxvAJbW1usrW2xunqM+fk6zz33DDubO3TGMX6pgBEQBAXIwWQGz7NmkkmSTM4mh93dXchSwjBkbm6OanWOm9euMx6N7F7gKcrVKvfur9MZDDA6YThsoRDMVeq4bsDu7gFh2d7HC/UG8wsrVKpVQt/FEVaEIiwUOThoUS5WmJ9bRBhLXjcmn03XrcGmtCiJyRknjQKhZ2dunk9U6vRf0nvvBxQfiQlAGse0WgeEBY9r790iXD2N8hQvv/w8g/6YG+9/wH5Hs77W4m/+zZ/nl37tl5mbW6LXSok6sHBaoB1DPNas37vPseOnGTUHbEZ3UZlLYwHMyNByND0D52shaTHlK19/n/stxU998T8i9KpIA/fv32c8Glns6dwca2tr3Lt3j0rZqmXMz88zGo341Kc+xTe/+U2Wv/A5yuUy6+vrLK0cI45jOp0O841lDg4OOHb8MfabbQqFAnt7BxMoi6DRaDA3V+XTn/40t29d5+233+XHzl9A5ALkCK0TgmKJveYBrusglWTGccFuakdHynmWW0y5IwlDbwbz8TyPMAxnieQUOqKkQklLmtQfGotZbftD/f0pxtIYjdEZ2uRonWHIMXluoTiTwmTST2KqCDODoxiB1gadJ5Zgqe0YOstym8jn2k5YlINwHDuWFDlGHYEoZRnGqJnLKFKh44/eDW2MJdQm0ZjRoEeeZmSJLQCQijAoExYLVslGKcbj8aQYsM690nUxMgAEUnkgPYrVOlIpu6FLwWAwIIpTm6DC7HB2fY80tQltlFsJ0ukhd9QFN89zHMehWq2ys7NDEPisra3NjLaMMZTLZWq1Grdu3WFurkFv0Oe9995jNBrhuB4nT54kSSyR2BbWLq1Wa+ZU3Ol0rCSm71MIi/T7HXZabaLhiNXTJ1Ge4qC5R5wm5BhKuoJ0FGk3x5u4YRYKBYQI0DqnWCzOXDvjOMb3/RknYSqPetRZ2fMsic9xbLKPFGR5jnAUKZpE57R7TVrNHbY3bhIA1WoVVzl4hSKO49nDH4FwDgvVBwnv3wvj+HBMi/RMQaIgcx208NHOw2Wk6XGbdrdPqVRiPBwjtGYwHlAoFPjOa9/liWde4vb6OscWl8jzlM7BHmEYMhqNrAnXeEDg+cTDEcrxyOJsQsi2xSdYE7f19XW0gHMXzttiqtu1BoOuQ6W+wNOr5zAOrJ46SW/Qp9dqM+oMKJRL3Lt3j/Pnz7N+4zrK8ShUqqTp2Hb+vBKhGjLWkmLlFN3xPlv9mHEieKSoGemMzSjjzu1rBEFAWK6hOj6u4+M6Du3uARmGgudy6vgxbl37ANdVE0UhRZaktmjTGWmmcTzF448+QrlcZvn4KkonNCoVlI5AB+g8JcuSI1CciXeLMTiuRGUOwyz7S6lE/mGX94fJvcody/lwpKKUaEZZjhQSoW0DJiUnJsMVDolIkUqDURiRo5TBlQ4mzVCOwnMVwywizTQ4AjmZ+OVZbF1wswzpGdTEgTYzOVpEZFFKaio0Wzvs7mzRvVHj1MrHqIQeYcFl72CfE8cXaLUiXAeyOCINAm7dvcWLL3+ef/l//BqFcsajJ55m+dgJTl+4zLXbX+XSpUcoz9V5/+YHbGzd5+SZ07T39zh17ixnTx3n7p01kiThzp07fOYzn+G3fuM3GPcjmu0RRroM4oxeL2KhKNneP+D06gpxlJLFbUajhGZ/zOmTx3n5xedxPcPcQo23373KjVv3+OTnf4zuIAYzplZdYNhqUikVGQwGNPu7hK7DKI1xvQrnz1dIW20OWge0dve4eOECj156iru3b9CYr5IlHYbtXRqVOtXqHN1uk7m5OUa9CJ07KOOSJ5JxlNLe3uNgb5+gtkil7tIbDTAkOI6L6xdxfI80atEb9cHJbC6UJBjHkKLxXKtY5YoMg0JrBykhSlOiJEYqC1sWaBz5l/Hu+8HFR2ICsHl/i0HfgJQkScb5MyfJRcZrr79Or99Eo4ly6PUjjh9fIo1iPMdn0BkS+C6FUmHWU2kdpHTaPaqFCrlOaPeHFKo+iQFR9NASkjzDK3hcuPQIj1x8mUq5QWv/gNdee42bN2+yublJFFkcaq1WI8sytra2WFpawnEclhbnGQ563Ll9k29/+9uEYQjA7vYWP/ojn0VnVn+2UqmwsbHBcDhkZ2eHxYVl9vea3LxxGyklnU6HL3/5yxSLZRYXFyn4wQRPbhgMRlSrVUqV8kyTfzoBONrphwe7/8Cs8z8l4B3V8LfKb3YKoI01REIe4pqn8eHNfirVaSvqbFJdpw98z9SPWAiBI4528qcGHBKTa9slgwcSKPTEymPSRfM9D085CDGRdxPfq0CRpik6fbgjgKMTi6M42TRN0VlmFXbSZEaclY6L43r4fjhLkqYkSuCQo6Gcydf1RCIQlJS4UpDEEdFwBEoi5KGZm+2KJzNNfjhUVzp87+z/6/U6ruuyt7dnfQAmX5NScvbsWc6dOwcwey1xHNNoWAfiJ598kosXL7Kzs8PBwR7nzp2bJcTTYlNrTavVYjQasbO5xfq9uxzsbqF1ztx8nbBYpNFocPr0aWo1213qdNtsbW3R7bVJ05hyuUwYhgSBPyGSmQccga3MY8F6DgyHs9c2Ho9xHMde7wnhefozubavZRwlIB22NzcgjzDjAd2DHQadAwadFiZN0Els8f+T+DAhePrY0X+nnz9wj4op2dAB5SCDAOmFyInL88OK9v4eeZox7A+sitPWBoNOl53NNc6dOEEQepw/dYqDZptMm0mCa9dSr9dDCEGhUJipQk33Jt/3Z3vVUSJ7r9ej1+tRKVcpl8uTSUA228fCMKRUKOK7HlEUMRgMWFpaorl/gOM49EfWW2EcJ5QrcyyurGBISJIRf/sX/xOr8+36GArs9TMcCUqlkwlRRLfbJvBchoMeG+trSCWIRgOuXnmDzfvrJEmEULbz73meJTQrwf7utn0uIbl+/Tp37q7R6/Wo1UpE4yGOEjMulhQCbXKiiZuxxCYfCjtBdaYGdn8GQf37kc2/H1/gw3v+UXWs71eM/lld+z9vavXhxz/MN3hYkQuQrkQqkMLgGIEvA5SWFimlLaQVR5JjkEZOIJMTeV9p3e7BTtqBCTbceYBHkec5wrFyq8ZYH5tRFjHKY0bRCHRCtXSK+dpJllc96g1NfW6RSnURRIDjGu7eu8l4NACT0243aXaafOe1b/HopSfo9SNMUKa6cJz1vRaPP/8C127eoNVr43guWmhanSb1xgJbW9u89fbbPP/8C1QqFXZ2dvjVX/1VGo05FhcX7YRU64khGpRCh6Iv2dxYY2mhgU7h0qWLdEYRRgo2djbQAtt8EZJP/NCnqNUqKDLqZZ9mawchM+J4iO8rNLC9ucX6+jpbWzv0e2P2W/uUy0WOLS7y+re/Q5qmrKwssbTYYHPtLidXV2jtHzAcDpmba1gFtChCOZosjzh56hiZtvfC5uYm0mh63RahK9GZVRZLY6syZhIIvCJCK5S20x6jc3SWkqcZUoPUdgLgKmd2DmMODTWTiZT0X8VhfCQmAL4rKPtlut0xYTXm3TdepVSf56WXL2G0y3tXd6jNe/zm//TPiQ/GFEzIW6+/R2trwIUnTmH8Jq70GRyMWDlVpt3u8aOvvMAfXf2AcQLjNMMUQcgIL1Co6gK9UZ+FoMoPfeqLrN25wf2Ne9y8foOD1gGXHnuMYa9PFEUzCE0cx2xsbFjViIMdXnjhBX7qJ3+c+xsbM3jPM08/hZKCV15+id4g5c6du/yHf+tv8Fu//TtIaR1KC4UCURTRarVot5tIBGEQcObsWToHB9RXeyBCTpy8yObem7OupnAkmclQUsygOHluMfPTpNhxBI4SKCWOYKbdBz6k482w0FYk/vB9+F6ojYV6am0w0qpEm8mBZkwGwkIH/l/23jxIzvS+7/s87/O8R9/dc88Ag3MBLLDYXSx2uctjRYoiKVoHdUu2aDmObMvlpCpOxVVRUmVVUuVyfMSuOFVR7IrllB07tizFkqiDWXpJkZSWWnPvxR64gcFg7qun7+73eJ4nfzzdjQFIylbkCjZl/6qmgOl5u6fnfZ9+n9/xPWwGUozY9hI1TLj8McRBjCEVUlgSnSCtwFp5H+HMJbwenq8cllYIpBLuRj8s3EckVISHZyVGP9wa1vO8ez4GWOwI8xsPSPs9dJq4qYkx96A9Q2dagGRIVBRCEEXDTrqU5ELlCEzhUHWlseduZIUSfq5Ip1ii042JoohQSaQ1ZEnvfn1x6yRKR5vayDRsMBjQbDbJsowwdNboySDh3LlzrK6usr6+7vgK/T6nTp3i6tWrTExMEeYirl275hLzfB7fV2ituXz5MrlcjjROHNfE94mC0CXcaUI5n6PXbhHmfCq1KtpKCqVF8rnQFXhKEqcaK6BYqhDmc0RDkyxjHFbXIXPEGNqUJBn5fJ52uz3+G0aFTz7KjZ97sEBVSuEL6TTCpaLb7ZG2W5w/vsilr71As1Un7e8iPZ846eD7EcXaNPliFU/6IyQb8G3IlXz7KYC1zil75NQdqACrFdKXqIcMAWrV98lXp2h3e/iRz+yhRQbdLvWNDTr7Tdqd9+knCYVi0Wn+4zbSKIpotVpkiZP5zBcL6MyOk3+t76kySSmdcpt28MlKeRIVRXT7A8IwYmf9Ls3GPraQx/MVOemT9PoEhQKVSoWrVy+DteTzeeYXDrG9s8WZs4+zcPQkH/3Ik6y+tEOxepS/9w//Oj0LUVAhyPucmznJ/vot1P4+scmIwjw6Sdnb2qJanaQ2OUGQahIGzM5N0djZdkVGp0G5WkZ6HkZrdJpSKORJkhjfGgq5iFqtRgfNxsYWxw/PoK1z8hbWuERfCKIocrASY9FZgs4yGEIW/OE08/9PiuTfqtD2EDkAJqPoKRCuYZJ0M2zXoGyEp1OkVQgbYgkwhAgMUoUoa9E2oR1nSJshfEVYKGKFcQpdMgDc9NaTOeK4Q6o1KkrxVYRSeboYpBFOHlMKIgIGLZ/uTpt3br1C8Zkpnnz6u9BmmxvX/g1SxkTKQxQithv7NDv7FELF4cpz/OgP/iX+13/0d3nhxRf4yR/+YfJhROhbDi1McqtSptdtUZuZYH5ykagQEfogw4AXXvhtzp9/gs9+9rN85cV/zY/8wPez14iZrQS8e3ePo2fOMJm3VCsTPP7M82wtLzF56Bil2RnCMOTofI4bN9/jwnMf48bSMj3b4vrqMk/OHGJh4QSHjsyzv79F36SUIgfnS/sDVm4tMTs3R7/RIMkVmD18jCD0aW6sceHx01xbWsLGA3qeQSaa6+++y9LGBo3mLsdOPIonMxAZKQptPN569zqlUo2pyWkmajV6zR18upiexHg5ZF6jpSSjDxpUPkdOOHJ2ksQOHu35CJu5Lr8Bzxck9MjMgCxLyDJDnGgyq8lHAf04+beur/+Q4gNRAGytdpk7Pc/qnTaTZWjuOOx9VJqhWJggn4fVlYSVDiRpm069x9Z6j4IPp86d5I33l2l3oKRgbnqGKb/I3bt3SAYe9ZahvqNZmPRRvtNaxw/QUvHYo0+xu3uH/f19VlbuMrcwj6fkWFd8BM8IgoBqtTrG9VfKeW7fvs3NmzdRvs/s7CyPnDpJo9FgenqaRx99lPev3OTzn/9pfumXfolHz53H8wLWV+7SanUIgoBXX3mdD3/kWbrdNq+/8QZ/4ed+jpW7d5k/cYxccZGLFz/OrS+8TpjLDbGD98s93pN6zIYJucAaM0xS/PHm6/vBuFtjuDfycUmhk8YaxX3dJXfUfb8Pl+KOlYDAYEeqRLgxqRx27e2BaYARdmh+JcbdLzssXNx784bwFCe9FijfkUqFRSDGXVxwxQjWOomvD8D8SiDv2fEMz5NLftQYumTEsIhRPsVyhShQYw6EsE61xpfusXa7jZISW9SowCeHAD8g7cdjRZycETSb+0MJRo2nNQqD1drh25XjEShPkCXOlTcMQ1rNxjhZHhWHo/Naq5RZW1sbrjU75g/cvn3b+VuUq1x69x1qEzU6nQ7tToeLFy86CM8gRWszLpiVUoQVx2FI0ph+u4WqVZHCIP2IWqlCo92hPxhQLOURQlAqlciMHk/cRkm07/tY9HCK5R4LwxCMpd/vk8/nhxhQ53ExGAycm/TINXsIF1NKOegSAhFEZGmMNBBYy6tf/xpl3+O//IWf52/8zb+NCkJ2Ng2eiqglCWkckyvV8ORQVch7MNE3ztdh+IUxpCZ1/+p7OFV7AGqnhOQ7NF7/P4ugWOG7P/VpvvZ7f8D8wgKe0dzev87cocOOJD7kIU1OTjM5UePtzWVyuZzDykd50n6HQqFArlCgsdcgCHMIAVnmOuBSyjHPQnhiCAur4/sR+WqVKJ8fd9qPnzrDXmMPj5i4P6BcKnHnzh1OP3KGZqPO3VtLNNst5uZmWFvfICpNcvLEIif4CPWe4UePfI7f/O3XubP0LtVqnnJO0Y4KBEGXNB2ef+Fx7NgxGvUGd27d5vz58+AJdtttekPs8v7+PoHvMzBuIjeCxO3v77OwsMBgMGCnvs/MRJVcqYCViiDM4Yd5190fGisaPYSKGT2eyHa7A5QnManBH6pZ/WGckT9KfMdXEfeIwH+csENC/4OcrYcRWWboDWJyvo+HRGYGGXvYvsUTPp6VKKkxxkNIhR6kWCGJohyYmFRren2LsileGCOG+3poQoxIsDYmzRLXzDEZcZwQCUkgNFZ6DOIEIy3Ks2S6T6CKbG92SPoDmp0dWu19et0Wg36bna11fM8nMSnVyhS9Qczedh4bv8PZs/OcO7VAfWebl3/3/yaKImoLJ2n3uhSKOba3Vzk0d4ivvvR7HDuywPKdWwS+P85FJiYnefbDH+LK9StUCz5L6ysoDZlOefziR/ne7/thvvHG+yxt7hN4lrlCgTiOiVPNxWc/TCpCnnjmk6Thqzz73FNIVaNarVKrhOR9SeQrep0G9b0GUkrOnX6cvcYuvU7X+Wd0LItzsyjf48tffpGzFx4nXymzfOs2FRUxPTWDDAOMJ/GDkEvvvMvs7DyPn36UdrfP/OJR6tvrCCHp9dt0GvvE/SZKekiVo606zJ84jtUZSuUQShKaIs3uvoN7eR5aJwSyQABIGZBZyPQAa5KhjLQmMY7/Gw8y1AchafgAxQeiACgGkxQCwaAPb77b5ic/fhgdRlRm5jn1yFlauz3+7NEZ/v5f/W1efetdWnspka/wwowkadLvgNAhu/WY1s4mcuYo716/TVQqEycNlAdxltInxDOa61fv4AtQzxR4+RtvkMYZQga0Oj22t3fJRy7pzufzLCwssLy8zKNnTnL79m3iuE8hH6GU4ty5c+w3WiSpO3Z9Y5svfOELfP+f+F5ee/WbZGnMqZOPMj8zz0svvcT3fd8PsLa25jrYwPPPP8/169f5c//pz/Lrv/FrnDhxDF8IkCmT5XPk/DlanR1sJjEyRXgjXOmBToyX4UmBwt2QwiAYJ3dB4CQ8PU+A5yzqx/r0NsNTHlmWgDFY4xJqYYdaypihbJbnFE+cJSRWOIUIR4Zy8CHraYQB5QmsSdHaQwh/qDSBcwq2CQKNpwLSpI+1Lnk2xhUSCN/JekmJpwQBioLOEZsEncQYAVIopABrJDrRCE9js4ebRXkydOeF0QaJO88yQIZ56A+G3f8I3/cpFAooJd3o0mo3YTISaw2h8skNO+edTgc8gZr0HSkrUBjlIcMA5VmKUYjRKTpJyXyLMZbADwkCb0weH/lGjDwFfN+/j8SZZRnVapW7d+/S6bhEWRsHVVJDoqzneZw5c4br169TmyjjeVAuOz+CS2+/SbVapdN1HAYVuK6cFRYrLEE+JLQR+UIR4J5mfGZQfkCuUkapUaHq+qHWZG4djhxQcVreTpHEJTJZko6hOIPBYDxVG080hOtUC+G8M1Tgih7fl/go9np92v0BN9+/gm02yFnN6aMLvPDrX6AYRPzMz/wMv/i//SP8MKDfbdKob1CuzJAvVIjyeVQUIf2ATLvuvsGOZXHToZpVkgwwVqMz52xt3SiNsTuz8BD+w8WjXnj+I/St5fGnn2J/r4G2GYeOH6e1t82R02c4dvo0O/U9ttc26Db2KJSnySmIcgXa7S5SaLa2tqimKcp3kMaZmRniuDMuLqPIYeN9FbCxtsrU1Axxt40IfYJildRT9HXMtTffRClFt98iM+BtrjM9f5gb16+TxQPE0DNCxwMK1TLNdoO/9lf/K/7+z/9ZevoGd5bbvPz2JcphxsLheazyKU9MEexu0h9OJKUU3Ll5C6UUxVyOy+++R7lWZfbIYeJ2m16/y9zcHMeOHuW1V16nUCjgeR6lXA7lSQ4tHENaqEzN0OnsMlGbY6JacFwmo/GwpIMBSvmuCSCc5og3hCE4w6OUQLrP+0hAQIhvle78jiEM2CEEZ2QiDBhxT/vnfjjQ0C0eOX6OEx4YCgAJC0IjhLr3HOOEIYTVCJsOjzFYmzlzRuGmcQ8rvFTS73kYpZEqT7LVhb5Hvt8himpICzk/JSiG+JkzDJP4+MIQGI990yNOJbHRqHJKXinyfg4V5+gOYqzNENJiPMlgkJBZD5NohHRGmZ4EFUmydMB2c4PQbHLmmSrFaAal5xDGJ+mn6KRLseCTTs6xd/c2aQbnz51nZ6/O0xcu8OUv/y6f/+mf5f333qZcDHn30tvka3lUGJKaNkdOLpDL5fnJn/lx/CBi6v0j3L57lblDCyxvbvKZT38/lclJ+p0mr/7u7/PUM09QW26gqlXevPQ+v/HC7zEdwTffXcEC/+ATH+LVN17nwxc+y5EzJyAXMDmzQCoNqTa0sxZVJDtbq4j6JlvdLoM4pVarsdvvEskJpmYcf1EIwd3lq1SLeTbSHs89+wytbh/reWxu7xPVJri7vo7NNHMnj9LptKlNz3D45Fm2d9aYm53mxo030QONys8wNT3D5GSVdrPJfn2bamkaqw2Xvvk15hemKU4dASx+FJLzy9jUeTcYGtSsJDQeGZae1yeh7aSqdYZOwaYQ+BKpIft3NIj8DyU+EOVQp+2cSEslDw0UyhWyLKNWq3H7zi1W12+wtvkuGnj33V0eO/MIkZIOn7m7jlIg8EFBo90l7u0T+CU8z0cK0BpnBmI0aQYnHznB3NwiU5NzBEHE1tYW6+vrXL58GSEEW1tbNBoN2u32WN98a2sLKSWVSoWFhYVxMvXMM88QBAGnT59mcnKSxcVFlpeXyefzLC0tcfv2bZaWljDGsLa25qASacrx48fxsMxMTRInPT72sY/w/PMfd0Y3WYzRIXNzR8nSb+38H/weuK9DDveMv0ZKHHjSSX3ae8om4DgAdihX7W7qTnvfTRXu13+2Q+Iv3D/+9RBO1o57xz9IEhOWbzs2Pvg7Hnz/o+65e31vSMIaYezT4fTDVfUPM0ZQh4M686PHneqMRClHxlbD5N6pStjh35FhTMZg0KPdbmKtJgx9h6MeKm6MpCwBTKZJ4wTpQbO+T7/fRaf39LlH0J3Re0jTdIx/f5DjMTExwc7ODsViEc/zmJmZ4ciRI0xMTJDP5wnDkIWFBTfpGnJJRteq1WpRKpVIkmRsUHbQkOvgmhxNo3K5HPl8nnw+T6FQcC7Vw4L14BoYXf8HDbi+VX3HneNmszmWpW232y7ZGsJrRn+yEBKsJEkNjWaXVrvH7MI8165fx0pBTycI4MSRRb74m1/gJ370c9TKBXTSpbG3SWN/k2Zji25nj363RafdIM3ioQrRCO4ixp85Ie7pwB9q1cAXAAAgAElEQVRcHwehMUo93P7LxMQUb7zxBoPBgDjuE3c77G5vcu7cOU6cOMHm5qbr3ksIw4B8FLKzuws4RbaRP8NIaalUKtHtdhkJAIxiamqGUrFCsVim0+k5QyUV0Om0SdOMMIgolsoYC0EQUalUEMZQzuXIBT5SeLSb+wwGPWQYMD8/T7PTRKeGQb+LbwUz5TL0+3zsI09S9DW9bpvp6Wk86d937kf3p36/T5QPqU1U2N3eJEkSKpUKcRxz69Yt52MRx/e5Ha+u3qXTaTmiexKjREYYSFQUjv0pRkZp95NkRzBHPeZEPEwM/f/beJCD9bBCxgLdM2Q9iY0VvW7MYJCSxjFpkkDmIRKBTRN0PBSdwOAhGSQGo30yLdAWpB8ghlLVCotnHDzQE86cURjQqSbTzpPG6gxwXi1SgtY9tInpNDJ6HTh54hhXr12mUC7S63XYb9TZ2t5AKUWme7z9ziuUKzlee/2bBLmAre0Wx48/yiBu85nv+wTVWoGV1dusb27w1juvU2/u8OLXvsLNpZv005S9TszdjS2OnznH9n6XU489SZgv8cyzTxMnXbY3Vhm0Grz4e2/x3o0V9ra3+NjTj/D06Sle/sZXqZYjFo+eIJcr0E+67O2scnd5ibfefJMKPns3V+mu7rK918RYidAZSa9DPDB0em08X7G5vc365iZHjx7l17/wG6SDGJP0uXPrFu+9/RZHFuYxWKZnZyiXy2RZRqQE506fQqcx5XKRza0VdNrH8xRBoEiSAXeWb5PPR+RUQL3RpFAqozyP29ev4wcF9htt4qSLyVKE8JBW4aMIpYcvPAJhUcZB7YTn9qK8lBSUwhce0vwhk7L/QOMDMQG4s9Immu7Taxry5ZDrSyucffwcO1vb7LebPPX0k7z44tf40z/3ad7/5jf4/I/9MH/w1/4WqYVBp0GtWOHachM/g9mJIjt7GxAW0c0+pWJEFg8oVQoEYYbRGWk/x2c++TnWlzfZ221y6NChYcdQUN/dRacJpWqF/f39obxgj0dOHh2rm4y6qblcjqtXrzI9M8Hzzz/P+vo6ucC5Ql64cIHr169z8uQinpQcP36cUjFCKUm1UmBzc52Xfv/36PV6CJnw0Y9+dGjMlCGPSaanTxN3iwR+AWstiY0RB5LM0dfIqdDzPJS8J8E3gmI4xRKLJ71hZ8q5HAJotDPmUhKTZKRGA246AGpYYQush9OFHnoAWMxwCmARxqI8ic5S0iEpOEOg5PC9Amgz1KCHRFuk9NEmw3IPt62UP8Zpj5IHa123JUsShLVEQcCg0x8SDMUQXvFwN9LRNTDWOIDUaIP0BFY4UxkhFcVyxTkES0VvkGCzASZLSdN4DG+J4z6Nhuse54Ic6IxBv4c1GuHJsdoN2YC7t24grEeaDDi8ME+gPLLUxxuaNGmtSeMBQ9o3aZqipIMzjORF19fXx4TNyclJWq3WODERQjAxMUGn0xk7CI9iRPIdQW583x933w8m7sYYPHkPHy+lJIyC8URCKW98rQ+S70ZKPgcT5oPF1ciHwnEBkvE6H6kcJXE2/Bz4SOkK9TBQCClJNfQyzcZOna+88Nv8yHd9jH/1L/4J1VqeiUKeWqXAxNQk1y+/z2SpyKHpSS5fvkxz/SYNKQmiAkGxSpQrUaxN46mA6sQkxbCAMYpMOf7DIInHyik6dUmfGUKTrDbfYuL0MKLbifn4Rz/miOAK6jt7dOp7vP7GG0zPztFOEg4vLjqpRSBfLCGUj84yp2oyFDsYSa+OPrsj+I/Wmnw+T32/iR+FVKpVEm2YmlvA4HFo8TB7+y3HMTAWX1hU5qOTFGE0l996jVKlQrlcJZRQrhQJCkXa7RbnT52iv1ukVAgo5I4S6w3mah6yt8b5o4e5crnO0tJNelkKQo1N3sCQpg7mFuRz3LpxgyRLqdQmqBRL7G5uUKxNsNuqUyg4adJCoeCgTvkCZ86cxi9X6Oy2KBVCfOWBHUkROrLvPbiimwy6utV1/KWUGJOMi+VRHOz+2wcee/D/3y6+HQn92/382xHY/7B4EPc/Kl4fZviJYNBNGYiUYilhYrGASaHZ7dFJMoyvMUqjEkh0ihUKqVNIUrJkQKuvSWInJ+lL3+n6o+knXQwaXxWwwsNmAzJfEA96ZJnjcwjj/B5yuQKBDRj0usiozEzhDCItsLW1zMKhORr7ddqdOv1BE+FlaJNgbEoYhdxdus4nnv8E1cosv/OlXyEKK5w7dZZLlzZ57OzjfPjp4zQ62+y1Nnj5la+zstxje3eDDz3zaf7cX/5vKYQ+j5w4xQu//UUqU3N85OOf4fZ7r9EbdNldb5H023z0XJWnL36Cpde/SSdp8Jf/sz/H+9evIqxmbfsqh/NnWZh/DETGYxdneO3l3+PKzcscm6/h5/OUvTJp0iPuNOjsbVKce4Kp6RKDVovZhQxpDa29NarVKgKfZrNFwfPxSwVMnJIZyxuX3mGqUKZoNIuLBep72xgRISUokWASTSJSlO5x7fIKk1NllpaW6NX3Kec163GLw49+iG6aEg9gqrbAWro1nC7nSG2KLyJ8YQmwaFKkzfA9h1IIPEHOz2OVpDfou/uxeLj33A9afCAKAGsFTzz+NJP7dfo2w0Z93rh2hY8++xGaXY8oqNLeU/zWC19jVlY5e+4EmQUbwaCdsN/q4/VB9xW6KVjIVdiSeSr5eeq9TYJwQGr7BCZgrjrB5z7x45jY0uhvcurREww6Pa5du0az2WSiWqVUyLOxtkq/3x/j/o0xFAoFNjY2UHKBer3OqVOnmJs/xNuX3mB7e5vnn3+eq++/SxiGfOLic7z22mt0Oj0mp6bI5/OkSZ8wKFLIhxw6dIillXVUrsS1K3eYmpyDM4bjh07T3lmnNH2Un/0z/w3/4y++wfbuCtZzBNNRwjRmuR+4mUspiaJoLP85TqTxwJN44+RfgMVJmhlNksRobciMM7CRaITUpFmMChxXwAl9OGMN4d2TkjQ2czdGB4QYGsjcv0EIwGiNFB5Z6kyUhPCw9t5mOXqvB7uHQgjSBHypSExM6Pt4oo+xhizzhuZLD9fa+6AqkxgmrkmSDBUInCEUxpJmmkCFSD8kp0JCUSAXOijZSPmn0Wiwu7vL9nadUN5TBDJpQph3MrTNRoKvAsJCgUZ9G+l7lIsFSoUcQeCPCyrP85DCmQKNNvDMmrGufqvVwh/iSZvN5ljVJcuyMfSh2+06JZOhmpTWmlwuN359OyRnppkhl8uNoQejxDYIAiehmKaAGEMjXBF6b1pwjzdxLyn2ff/eef0Oicoo+R/h/Y0xRFFEmjpOjNZ2KHIl6fV6LN1ZZX1vjzfff4/l1RVuvXeFb3zxS1idEhUiZqZyPHPhMQr5PHOVSUwSo3s9/vyf/Gm++MLv0O3HdDod9vd2MZ4kLFVQgU9neoHyxCJBlCOIhrb3oSMiJ1lGFAzH1cPCR6fZeJ08zLi9tMz+5jqFXEg/6dBcXiVOBzzxzNNsbu/y3Ic/zMbWJpvLm0zPzuBVAkrFHdAJ+VxAp5dRqVSw1jIYDOj1etRqNcIwHJOzhRDMzM0TRCGeryjLkFxlgmwQs7e3QzwwTEzPEEYRnXaTeL9Bd9BHWk1BCTaXrtOr1uj2+hw+fITt1VWEtdzabbCweIp2kiIGCurX+Qf/9Q/x3rs36FpFv90kzgzdJHNCAsMpjDbp+NwHhRxJOnD3pSTh6uUrzExPMj0xydrahiOzRxHWWnq9HqcffZS7K3doDu4wnZNsbXcgg3nlY4KQMCoNIXf6wJp2UzinmHbPsXtUVP/74gD8ccI1MP7wY0YFwMMmAANY32OgBgQFSe3wcQqRINYZ7U6dTr0JWKwCaXw8k0GUp9/tUPIlESkqFEjrI1SG6GV4YUjqG7a6DQJfMJ+fIyCgL3r4XhflW9rGKQ5FQUSuUMBTJUSsKU2FRKWQmvSQScTXf+MLXLz4PNWpWXr9BknSB5EihEbJEKsDDCkWxSDWfPyTf4JmY8DJk4dRvuZX/s+/x6PnHuP7f/Av8MUXf5lP/4nvY/nGDSZKNaanaiytrPM93/Uprt+4w8WLZ7l7/QaHDx0j84vYsMjs4Rnq25ucnq2xt/UuM6cPkR8kvPbO+5TnFlhcmOHQ/GkyC++8/xLKdKk3Byz9my9w9NHzePMTSCPo9dwUOfXylGfnaN69yXvXl/C1z8LiYXJBiFEJszMT3Lq5QjEq0Njvs7W9RalWoFgIePyJC6xev0WaaFY2tomKBUqVKpdef4Xjx4/T6EiigkX5gkOH5mjstYlyNeaeOIqWAhMbbHOThVKetd0uFTPP/OQp1jPNgC6Z6RH4EYOsR6DyJJ6HlT45z01ywCCMB5mkIAMyIUj5jyTgg/GBmENqJTBxj4lSnsgI8rWI3bUmt2+8zerKTZppi0PHpynXyqys73H8kUWkDyIHy3c1MxNFQqWIChl37iTs9wz9uI6SKbViRBBK/EjgF3wKuZAbV95n7e4y0zNz7O/Vef3VV9FpypHDh8dJjVKK6ekZZmdnmZ2bpFio0u32CYMC2/Ut/FDS7/fI50KmJ6fZ2dqhUizw7LPP8aUXv0Kv1+Hs2bMUi0WCUJFlGddv3GRza5fluyssL684KUdtyEUR0g5VTkKfOEnJTMZ7l1/h0KGjzB+eR9gUfyjZeRDjmWnrzE6sU5fwPUmofHwUHhLrSSeFhuBg8euIuR7CukRcI8isQQtXFAhh8SwInYHJsHbYxTTAUL3H4d61K05QCOuB9RwBElwxYTwSY7HCRxsPNdr0POHkSJ3GJ0I6A5YRnl4q4bTtpXDv3lPOoMWhl9xkw1qyh5v/A98qzzcqjhB6vMkHfh7fD1HK+TKoIET6ysm9eZDZDC0M+BYrDKnOSLKUXr9Df9DFI3NwCCxJGtNuNtjeWmV7fZVWu0GuWEAoOe4wm2xIPmWIUxegjaVUrtDudImThFK5TG/QxVMCgcITPtZ4xHFKs9lkEHcwNiHN+mNi7kFYz6jD7cjaZojdd/yR0WMYMV5nGIGHxMMp4EjhYXV2n+OoFCCHijkj+NdBGNjo8fHa1dz32lo74xohJMo61+MsM3Rjw2a9Q5x6fO8nP8vu2hYm7uL5hjTr8ZM//kPsNrt0dEDPFtD5ScKpI9RmZ7n8zls8/cQ5Jgo+QRYTJZp8Zug16rTqe2zvrNPeW6Pf2GLQ3iPtthA6QegED4NBY4XBCIdDd5K2GsvDha/VwoB8ZZLMZmxcexvlC3w/ZGlllU9+6nt44/VXMWnCYx96hjMXHncEbWNpdLqIoTmdsI6TEUhJFAQkgwHtZpNSoUC+WKZUqdEftKnX6ySZINPCOQUbS6/RIPCgvrNFp16HLHVu1sJj4dgxanPziDBib2+PMJBcufI+G2trWGUICj6lao5+W3N3+QrGK1CpTDpSfDZAS0VqJVF4bypaLlcplCokOkGFimSQOuM3DPkoolatohPNzZu3qZSrCIODRNqMYiVHa28LnWaUQoESCUk2QAWSWBu0tmSJm4BGvo/NMkyaYi3gKbDayR9bO5yoGDApWD30TRn5utybgrkw45+NuQKeBeGkmIVnMd+h+y+EwMMiGYomjH+He63R50pbi/LAw8koOq6Z4w8IIZwTMBZjM8dnMQ+3cElUQK5s8AODX1SgBFEUkPMDokqONDB4OQ/te2QqYiAttbxHMbQYD0qRQhUtXmAZpAkpGYMsQ3oGJdy5scrDeIqgWAFVJVSuuJNhiPByKKucalXok1dFOkmDxN9HFjSHF2cxcZMsS/GUwhona22NJu13iHVGZg37+xsourzy8tdIdIulu1eQ+YjL12/wyqtvcfHpj3Ll6m1yEyWW9tb58Z/4izz1+HlWV25gBISlGmeffAqUR5ZaFudnqTc3OHbyMOVDZ9BBmZYWnDp2gqS/xXNPP8fs/AKNXod8uYDVsLfZR6QDfuRP/RXm5x+jGkn2N25y9OgUmBa1yHLlrVfZ2LjF4eOPcfXKdS699R7f+MZrrO31KReK5JRiY+02eCmzi/MExSJeMEHWF1Sny8RZzxmL4bG0cosjJ06CjJhfOEKlUoBBTKEYUquVkaGPJwNMv0sgPbwwx25vQG2yyu7eBlILBBFZqsmERx/HIcxsn8y5QxAhyVtX5HnWIRwQEk9F+A+ZM/hBiw/EBCCLDa3tJp20z7srO8wkcPFD52nV73Ds2FFyBfjQR0/zq//7y4SR4oXf/lUOzU5Tlz16pS5RKUefDgtzIas3YzppzOKjAXfW7lAqR677mVqq+RNMnzpJPjnJxtYWOzs7bGxskM/nhyoNXZrNJrvbWw6bH8cY48yZWu06pVKBer1OrpBnc6uOMD79/oAnnniCl156iSzLWFhY4POf/9MMBu7x1dV1rl27xk/91E+xvLzM2+9cYmJiguPHj3Pr5hLnz5/nrTdfp9nt8Porr3P69DmiXA7lRTRaW2xurpIycCo/VmAyC3bUhXEbihDSaef7Ab5URKHDmnu4JNvzBJ4YkcCcnKchQxsH5Un0Pcc8l5ybobZ3jBYWKUdy6IZ7KLoDtaO9BxsZSZZ6HmRZgpQ+zu9IAPY+nDh2pL8MRhiUuL+4ASdD6qYbPr4KUaqPGW5SJrVDiMnDjXExpM04+U/T4ebugScUuVyOXK6AH4V0u03iQZ+477qS0dBIy+iUXBjhSwWZU08ZyXW2222CIKBUKoHy8TxFfXebYrHI+voKvV6XxcVFQl9SzBfuc2IdTYeEcCpDUkqmp6ep1+v4gZO49ayDb1SrVbq9ztiDQIv0vg79CNpxEOP9YAf/IA/C4WQt1prhtOYeX8Elw963TAIOwn4OQpIOehu4NTLWXxr+KxB2SGAUltRC0uuzurlDlCuyvbvD7t4ev/mbv0Lcb9Dp7uN7mjhp889++Z/yc3/pv+DuyjphqUrmF4kFaK8EJc21pVWefe6TvPyNr1IcNBDSY7vdJ9UJzbW79Op7RPkihfIkpeok+eoM0lOoKCIdwZmsJc0ystQ5jxr9cNdu8cgc3voSO3fXKM+e4tgjZ4iTjGc+dMFBtIRHpVii20+5desWWbvDzOw8yhO0G9m40+/7Pr1+DyEE1WqVUrmA9CS5EZfFC0AFVCanSZM+qdEozyNfrpD0E5I4IYz7tLtdrNZEUcTt27fJRQETk9NsDVaGSiCKk489yu7+LlvbGxQrE/zC3/kt/vyPPM/CTJm1O6ucPf80V2+usNdbYn13HyQo6aZsI4UrT4xgZ4Z+v8vk5CyDwcBNKtMMqw3dtI0IPHIaAqGwsaTX6WKUclyvQ7MUCo7PNRJWGK3PEUR0JFlsjHXOptlQpH6UaB9I1r1/T031P0piLtwW8h3ifrLkQdiptW7e+7BCRwOSukcQgqGL9RTWanKBpZtqhHKO80IWiPwI42vKcoBJMyrFGghLL9NgU1KT4sUx0sthpUVIgY4HGM9gjMASEQaTmEELJe1wKuv2N6kExkvJ0jbFwhTra9c4fvICt25v0mmuY2wyXGuKdqtFFITsNHeJvJCX/83vo/s9nviLj6NyW3zlxT/gkRMXOXrsE3zP93w3771zi07fZ323xw/9yf+c1bX3+J9/6b/j6ce+m9OnHyUf+NS3l5FSsLG2Tm0yYrMrmF08hJ/Ls7u5wYefepzf+Z0vkVTz3LnxPqFs0eztc+j4YySZ5tTJi0x/8jj/5H/5H3j1S3+dz/34z7Jw5Cj5coX9Vp1cVGZ3fY2jR4/z1htvccov8tSzH6MQebRaHVISri/fYv7IYbxIsLOyx8LiEYKcojfYJQo0N251CMMKSTXhzu0VnnjqAkZr9vb2SFNLEGq6+03yxQJT1TLFqIjCQ8sAbcAPcuQKBdJ+zPz8NJ3mHrIInayByUkGpHRsTKY9PJVDKB/SDOWFZDomEQkCi/aGUGPv4ecLH6T4QEwAIiW4fvUuR+cOYyzOmTLp4/s+jd0dfverv8vps8dotVJa3YxWt0MxClmcO4T0BDvbdWoToHxLdULSbsFUocrUdJXBIKbXsygE0hbpdTX9OCNNDevr62M8tOd5bGxskGUZpVKJQqHA6dOnGQwG7O3uc/z4UZTyeOSRE6SJptPuYa2k0+lQrVZ58sknuXHjBm+++SbtoaxcvV5HCMGRxWOsra2xsbHB8ePH0VrTbjuS2ksvvcTHv/sTNFsdji0eYSRnCMJtgvmANIvvk5i8n2TrCExCeONO14OwCSFGj0mMwHWDDxBzR8n/fVrPNhsSVM0DN/8DrsHWSXgejAcx4AeTugeP+84YV3vg636i7cjQzD3/4RrSjOJB4vPBhBsznAhkiVNc0s4Svt/v0+l0aDT3abVaDAa9IYkwpFi8R5SdmJigVqsNuRyaJMvo9+MxZ6VarbK7vcndO7dJBr1x538sPXkgGS8UCuPz3mw27+H0D5B0+8P3AUOoggzwVTheV6PrOboOo9c+mLgfhDYcvD4Pwgge1Ol/kPD7nQjA/zYIwug6dNpd9pstkiRhbXOD27dvsru7TuALjh4+xA9+7vvpdjuUajUmp6b50pe+RD5fRHo+xkpiIzBhkTY5qvOPsLbT4vCJR6hNVohykkqkqOUCSlKSDjo093fY391kb3uLVn2HTqNBr9XCZNnQMVu4kfRwUiYeshL8N7/xB9y4/CabGyscP/EoxWqNhaOL9Pt9Ll++zLPPPovv+3RaDaqlIkHk0+p2xmZvwHhdRlGE53m02206nQ4Wzfb2Nt120/k65HOAZW5hnmKlTCdJ6AwJ5NLzaOzuMF2rUggDcirgzKnTxL0+oR843gtQq9XGcLVer8d+Y4+BV2SvkyFlgKdC+qlHKxFs1vfoZwnGOkhhsVhkamqKXM4VxzqzNJp1yuUygZ8bw8gqlQp4Al95hNKjPORSHZ0/RBCFGO2gbdOTE1QqFcIwHBuhPYitPwiHO/j4we8/CBCgf9e4fx94eAWA8jWDviZJhgIKcYck7iHInBKdtWhjkV6IwKcYREg00oBnJZlxruWRHwxhatJBWaXACIPWDqY3gnJq7RpRWguMdmIZ2mrwLL4vsDLh+o13KebKnDrxCba2Nmh2t4aTcVf8K89jd2sXz8LkZI29vV0WDs3xymsvk88VmZ2d58knnqK+v8+//NVfppfs0ulp/sbf+se89fYllJrj7JmPc+6JsywvL6N1xubdO3z9pd8nSRKWlu9gheSTn/4Uu/t1Bu19Vq5fwSYdbt54n2K+wNLSu5iswZ3l2zQau9xaeodGa41f+IVfZGpyjt3N69y5dZWtjVVa+23mZw4zN7fAIE04vHicdrfH3OHDtFot9up1hICN7R029vaYmptneXWbb772Co1Wg16/w8buNo12j1a3gyclR48eJYljTJZyZPEws9NTFItlSpUqMzNzSM/gac3yrZusrG9grCBNNfv7+2TaGUVGYcFNriKJEZqUjMQzDIQZSoAKsAqj3X3JkGJEipYpQllU+IHoeX9g4gNxNtyNvc6ta7eIIsH67Q7lXIUnHznN7dt3qE1EfPWrX0Eo8IuSr7z4EvW1TdrbEuHluHGtx5lFMANDdSpAtDV5E7Gxu01xokzWbZGPSjS2e+j2CqFNyeWKKKUcpn9oXb+4uMj29jadToeFuVlu3boxTJQkV65cIwgCNje3iaI8Fy5cpLXfQPkeX/nKVzhy5AjFYtF19m/d4qmLFxkMnI729vYuYSTZ3N7ms089hVpeRngea6urzM7O8i/++b/kk9/9PBtbO7z26hscOfMIZy8c4cITH+VfffEFMtHFaLCeUxZx+Y3nOqtaoDxFEESEyif0fTdqPrixWAEMdf/liEOQkuiMJB2MlWJGyWAQBBijMSIbAkg0QyQ/1mr00BkYq8AEWGsQ4l7HSCmF8EAP8TlKKZTwSO1BbOwBSTohXDvK4iRLMePOP9bD90O0FnieUw9JdYLnDXHoD9nZe0Qu9DwPTwkIHMlVeZI4MQwGPUDRqO+RK8R4oobJEgb9Hv1+H2s1g16XMPRdMhIESCXo9/tjzP1IR/xeceXww1EYcOPq+wxiRzj1hWH+0CKnTz86PN6ifJfcF4tF2u22M2UaYucdGdcVElJBf9ABDqrwqPsS+4NEwIPF6MHiFB5weLYO9mKtU0ExBjxvRJ6W4+MfVMk5mBw9+NqjAnXksiuEM4pzh1iMjkkz2NzdY31zi/XNbVqtFrVyjq9+5RtsrN11jsD9Lk89/Qyzs/MU8iUmJ2c4c/oxNra36MfuvPStxQuqdK0htnniTGPKhylKsHKTLEmRMsBPY7r9lF5rn16nSbu5h/RDqpMzhLkixeokvgrIjHalrR3C2R5iZNduEVSqfOYnvo+3v/Ey56sXmciXWL5713FPhkTvqYka0hpefeVlHj16gnZ9h43lpfEa8jyPwA/HU9QwVMRxHyUkvoV8GLC6sYmw0Gnuce7ZD1MrTdLpNmhsbVMqlaiVSzSbTQLfcZjazSY6TmglKbu7u5TyIb1Gh0oxj05TqqUyK8t3OHXsEX7nD95HqgtIGfLO7RVuLK/RTSxCBVjtZHBXVlZ48smnqFWn6HbbWBsjPDt0mg5o7zVZmJ8n7vXpxgMmyiWktgSySFoMaOy1WWnuMjU1S7/fJUtjarUagTBIXxInCdXSBFYIly1yb90eLLS11njq3qTswfTf3QvvVxP7lp/z7cnC366h4j6D3/r8b/ea49d9ILf/oCT+oxBYAiBpQ6fdBDQqde6yqTYomcMagZYBRoZEYYbu+2TSsB8bYumRC0IQHirwh2aflriXIZRikPQxyYDYeJhBhvTLxAOLTaEQKDIycnkfJBiREQ92UTLP9tYVJhcv0ct2uLt8jWreGUJmaYavoFbN0273WLq6ifHhzp3byKjA2bOfQYmEeucSyu8xNV1lfmECbX2+/rUvM1OZYbrq8df++5/n9JmTzE+eYWb2x3j+uz/F0xlsra3T3t8jEAmX33mVuflp1ifzWkoAACAASURBVJtLJGmXz//pn2Bl9SYvvPhN/vWX/zlPf+hZjj9W49qNd/i/fu3/oKKmOTJfIpp7gmqthO3tkxMeiQ358otfIooCHjt/gXf3LpH0unzx61/nU9/1EVY39thbWuUTH/8krU7MzdvXeOqjHyOJ93niyfOsLO9SrJTJxCU8k7K9vU2Yz9HtdlmYmcQkfXxPc3d1m4X5ecIgz/LKGvncgFwYEASCUjGPHyoq+Qo3bt1meu4wycCiU2j6++h8iJWGrjVYz0NIN5fSaYZONBaLVhkajZfzEdbDDP6jDOjB+EAUADv1OqcfKdBstynUfGanpom8PCt3txl0Ug6dOEqr3uXXf+0f85/89F9gf7/P3FQFEsPqxoBK5OEnBj3wqIs+qYCb1+9y8ROneWv9Dr7v8+T5Cww2JiEniNQs21u7tJtNFhcXuXt7iVwux97eHkop5mamHVRCiSFhsg1WUy6X0VpTqebp9Tp0Oi2qfpGjR49ijOHw4cNj0mS9Xuexxx7jypVreDLg7NmznH/iAtZafuAHfoArV65w9PBRLl26xN/863+Tty+9yvGTJ3js/BPowHVNz5/9CP/0V2MSOniewvOUI/Ta4UYiFAKnqqOUQkmJFB7Kuz+zGCVsWms87Q81ncW4QzxSVTkoy8k48R9tADAyArPfRtbzoOydHZJzjQWbWYSwSE8OJdRcjAhyDgoy7Oo/QCJ1ieBwgsE9wzApJbEZ4HkSbR5uB+2eZKmHVB7eEOIileuEW52SGU232wU814W3buQvsW4T8iCNY+q7u4Ajek9MTDnH3aGz7kEzN2TAkcVFdnd3SZJkTPyt7+4RxylBEDE5OUm5XCSM8nieR6/Xw/f9sUSoHl4La+1YMSpJknGSci95kfemGdy7zvevlftjtN6cx4R1mGJrMdolv57n/fHk2MRoWuAKxtEE417So0BCvlwh343x601nQ9/r8NnPfIbf+a3fJMyFLB45xOd++Md459J7lEoVorDAxtY2c/NzrK6uAg66lAKZ0EghyU0dZVIdZ3dzjeJsDrIB7G2QtvuEypAPE1q9PoNuHY1lELcJ82UqcY9iuYof5h2LQTnY3sOMVmeLc8//CJvb+2TSUJueJfV8ZmZmyOfzWGvpdDr0Oh2uvv8ezz33HO29xlhac8SX6vf7Y4+HkQIVgLKwt7PLfqfH1OwMzd1NqrUpbly+yukzj7O7tEe1WKTd71GIciweP8Hq6qqD4OzsIIRganISD83tG1c5fuYcu5vrzudEeujUQDpgP/b42//w13js3KOs1dsYKwHHYQo8N9mq1WpkWcbADsjlCiRJgtWSOE6xtkWlUmFrawvPwqHZGYQf4EU5lMzzA3/qx/j6P/vnBLk8gyShud+gWa+zubnJTK1MKSxRKOQYDAaExcK3PdcHi+f7MnL+iLCdP+LEwB3/x19nH6QiQFpFqMAmMOj28HyJjhNCYUEoPBEifZ9uorGRIMlSMhnSj2OaNsUjQA4LLXCQsEx3kFi0yehkCb4NCYIi/TSl1d4hTSReFNEfaMKCJPBzeF5Cu9tE6y6+l2NicoFOO8YKn4sXP8yNy79PlFN0Bn2U7+FrQbHk89yzz3Lp2nt0202effaTmMxy/fJNDh9e4MzxD7lCer9Pv7nLzctXafW/QTqAi8+eZmbyeX7+r/wZ3nj1DW6ulRCmS6kQUd/pcuPGFa5duUS/3uT7f/xH0EJSrU1y4vwhpo8eozG4RbPZ4puvfo0km+RT3/Vn+bt/63/iuacf48jhKZ75+A/y+su/zkwlwqYDECmHDh3HCo9ISb75+1/nmQtPsbvT5NEzj9Ps1NnZ2qTdSZicmKfRaFCpVbhz5/9h782DLdvu+r7PWmuPZx7u2H1vz8MbpCe9pxEJSWgCysQJCIgNMZTjKpzE5SQ4wTiDkxSVxIn9B5WCKpKijI3LRRJInABlpwDJEkho1ptab+h5vN13PvPZ81orf+xzTt9+ehIJJdPPiX9Vp/r2Oeeeffc+a+/9G77DbVqdJZIsZX3jNBVXcvfuHVr1BkIIXKkY9A5YW1tjdXmNe1sPuDaagHBRdsja5jFa9QZb926z1GmRpqX05+HBHmcvPE1q6mS6bEoKm5PbnMwIhE5KWKXOMbnBCIl0QUsohEUUmjz/VwXA0XhLFAAnn2sjC8NKc4VXb+zyAz/yvWzfuQ2OpXOsw0p3CR094LVbn+Uv/dWP83/+3T/g81/6DT72Y/82pshpVD1GGg5HGY1VqLmKvO1ih2Pa2mXQKNi//oAsTqh4q+zfu1F29qXPgwc7NBoN6vX6rCOj2dvfZWlpCYxHUBVM4gO63S61WgUpoVatcvn1q2gtuPDERcaTBMcpO6TLy8uLpOzmzeucOHGMw8NdvvzFr5GmKZ/4xMcQuuCjH/4gV65c4bnnfoKVY20+ufGDpQ51PMb1l4CUL3/p83zyoz/J/YNX+Obrn6WwBlGUnUNhRPlwPKQoibSuF+B6HsgS6gNgrURYgdESgfMQfmFLHX2jSwJqVmRIUZLRcmNxpcJqg3DKjjwIhCwJYEZbCuTM9XS2HVkapwCYwmKlRWuDI4HCopVF27LRLykJvEYYrFOWFY5UCAqEnXd+5Yy7kGOlBVciZ4WCIwVCeaA17mPEogI4aoY3tQohBX4YYoWg1uwQBhWscB4WWuQMR71yWuA6BKp0wZ2rpcylFH3fp9nuUK9XWVpaQqkSFqaUwvUU1Uqpv7++1ilNp2bTgnLkqYhHBxwUU5KoSZF1CSo1Op0OSVR2+Muia37qC6RwSNIcpRws5YjbWhAIdFE6TTszh9M53GEB/7FmQUw/ihu29qEE5sPEXGGNeOgSPcNB23LcM3uPKA2zhJoViGBM6aJrbanFrfMUxy0LRyV9XOWU+zPjE1gpUI5gpdvEnxU3XhDywgsvcOX6HY4dP0m1ErDaXeLyN1/n3Olz7Pf6SEpzuf3d+whT8hyEcshzjS4KcmtI8oSJ79E9fYbxto8wGrfwaTl7pMmEMIXQk4yjtDTXGU8Y9XtE/T3qS+sElQaBX6fiVQn9yr/4Bfod4qM/+dNs3dvGr9X40b/wVzjY2ycZjUEYnFqdB/u7dLtdvvYHn8FEEbvXbzKYRATKUg1C4nhKHEcEvk8cx4tut9WSNCuQoUsQBkziKePBkHp7icgqGr7D4f596vUmjWYL409AagopSMdj4iii0W7RXFum3yvPl/XjJ9i9d5tmvcq93W0whka9hXVdap0Vkijj0tX7ZfHie2xubNJqtbh+/TrKdWh3lwgrFQ77I1AK1wup1dRi+ikUmDwnqFaYZgnPvvMduJtPsRJf5en3vo9733iFY4HkcHeX915YZjmEQBbE0ZhGvTLDhFdQYi65wEwEAazWKFueE4LSkdiKeVFdCh+U17sZXO6IWoMQb4Q4zvzcrZw1RgSWh74CZb5/BC5nmDVRym0J8fCWP582yG+B2c2KfEz5sHamgW8wVlGq6j++8ZWHR92rUJWWXPuIYoQvfQpHYkcxjhuDoymyGE1C37oot0MS5Oioh+dIcuOhswRVTHHIkLogCAIcqSmw+EGVXGX4nkUYnwQHT4fUVYug2kR4OUmccri/j9UGNbqJrfQ5sdzGcwe8dOkrqKLA+oYoLhCOwXUkNd/lhW98kc1zF3hpd8jv/G+/zmg05eOf+DC/8b/8Ej/1k/8pYVBlGMGZuuL6jSssdVc4PGwyzQU/+uPP8fM/90lkxecnPvXL/M5v/QKbZ9/P1S9/ga9/4y5/4VM/yNMf+yhJHFFkhjZNIh3w3g9+lH/4j7/B2uY5PvdPv8b93Zif/pn/gnsj+PFuzFLdZdx/jfd++BN8/tOfQUb7bGyc4MSZU7z0zUtM04QTm+/g5p37PPPkE7hhhbpbYTDus7ZSoVJpI70lsmiPce8BgQ1wwhp+GDAY9ejv7zHY6XHi5DpxXBBNp1wfjak0K7zjmfeQU3DzxjfZOPYMV1+7jk1TnDBknBf0hgkbq10GkwhrBaG7wppzkYPiGlopphYykxGKCKMtOi/XbYjFaosUiiLTGDwOH7Py2lstHj+AGjh34SyZ1WgBKysuf/RHf0QQVHAcxdbWnTLpNJrLly/T6x/guJI8M4wHGa7nkOYZXhWkV17wtBE4vsdBf8KJpVV0EpAXVU6dOouSPoP+EKnKZPjg4AApJbu7u1QqlYUWer/fR8wSnnl3y3Ec8jxnPB5z7tw5lpeXEcIynZnO+L5PrVbj4sWLOI7DZDIhCAKOHz9OrVbjXe96F1evXiWKIkajEWtra2X30il12NM0pdtdnskmGk6fOcVv/84/4XOf+3TpbPcmEIujpl9vNgp+s47NfCQ9f9hHHEofvRkc/f8jUIwj+H74VrOjOab7zUbZ305H+ujnHd3e/HPflN/wmDkASs29FeYTCpcwrNJsNml1unQ7S3Q7SzQbLQI/BCtw1Hzs7JaEOgOu61Ovl2ZJQVCacFUqNer1Os1mm263S6vV4tj6xoIb0Gkv0e12aS916Xa7NJstuu0mlUqAIwVFnpImMY60jyT/RzH33gyyhNVYUywec1UfeaTzfxSq83D/1aPfx5E1Ou8Ef6dpwXfqJlo7U5nSGUWRkmcxWR5T6GhhqDTf5ht5CHNOQ71ep96oLUzIhBC4niIMfQqdY3VBWPHLAmqmXmWtxfO8R3gnSro4ykMplyQriNMM47oYx0F4IW6lgV9p4ARVQt+n4jtUPYe6Kwk9RR5HDA73GPYOGQwOGEz6xNn0T7nqvjtxeHiIMYaLFy8uyOYATuBz+/ZtNteOsXXrDlka02x3efKdz3L8xCYHh328sMLKygq+75MkyQIKN79OzdfLaDQiS1IePHjAzZs3ObF5nMlwRK1WQyvLIBrhVjyq9WXCWgdZaRI0O1gpeP3Vy0gLWVZOFqIoYTQaLWRq07TkwgyHQwyW8xcv4IcBQklOnDhxRKmq3N+5TOy8mJ5OY7S2VCo1HKVm/wYcO7bGK6+8yv7WHdxBn0tf/GPWz5/m4jPPsLpxgkq9wqkTx0p41NLSgm8zJ8g/EuJP3+3/fxrf6TO/3Wv/MnEPviXSgloQltNRqwmMwjOKIHcJ8HFzg68t0mh0nmF0uSYFEk+6+I6P5/oEbpUis5jCoqyLYm6eaTAmBzSOW8pQV1SI71SQVuGLEHJJMs6Ip4ZxP8GxLvFkzK17f4iRN6k2EjwvIIpi6vVKOQWVgvE4wvFga+su73jm4qy5YPn0H3yOH/j+H+Izn/k94mTMyY2Q0bDHk08+wc5Whb/8b/2HTCbX+M//5i9w9vwJ4vg4//DX/hZGO/zMX/uPeXBwl3/9R97NhSeepLt8vHRA9z1ub9/htatf5fqdF/nd373OZ37/K3S6q5w7f5HPfPr3EcDK8jGGgwNuX3udF770eT78/R/n7PkLBGGNV755iWNLXRxX8vGPfx+nT5/lK1/5ysL47omnnmZnd5/BsMdSu4Hj+Wih2DvYQTilR8je7gHLK+u0l7oMh332DvaJxhPWl1fQaUb/sEeepJw+fZrJeMjbn3kSfIdJltBsNzl78Qx5YahVGyRxgRQ+Fb+JMZLclD4bhYVMF6UYuZipdwkwM33bwkq0hUJ/p4X1/794S0wArt29xqXLE9xnLJN+zv2dHW5f2+GDH3oCI2JWVjc5HOwTRRFPXDjH5/QrROOEpYpiOimor0hWTnmsn2zzwvO7hIGhtdzkztV7vOPsafZMBa+yzsHOhEnfIlVIq1Xn+vWbtBpN1tfXefXVV9nf36der5PnOc1mc+EDYIwhTjLu3N2i2arTabUZjIYc3zzO+voaq6ursxtoxsHhIRsbGzz11FMMBgNgZsLkBLOkr9Rh35rh/5eWOtTrdXzfRYgKB/0Rje46vd4trt34BoPxXX7wz3+Ab7zwBaR8FHqjlMJxXdDmEZjI0Yv7PMmfx7yjlOeaLC8w1pYSWSisFeVFcC7BiMARzBJBMcNvl51/McO6lhfWUs1FqbLrL4RFUMr9sdhevoD7vHnMOmHCLDDuRZEvEjopJSiJFQIrRCkJKi2e+3iJlI7nYmYGYAaLch18p5T3lAjqzebCnVcIsUiWrNYkSZnIzgmUVkr8SoVGo8GTTz5Np9MqJUMdB2emNGLRuM5M5UnMzOBmU5CiKFDCkmcphdYkSUKex0gd09/bw/eDUpKQUmcfx0F5HiaPcV1/gT0+CsGCWZIuWEiBHiV3v9Ek7GgCVMKJHpW6PEqUPpoavbEQMEWMNaUp2jQaltKg0qCkxPd9PO+h8dRifcwmAEKV0raB60IoWVtZJU0ydtdWWW7UqXiCSy+9TC0IwBhefvEluksrTKfThVN3s9FeGFpJKVFegDZ2JkNqGYwjjJbo3BK0usikilNJCKMBeTTAFfuYIqciMtLCYxinTKIhvf4BMqjghiGDVvu7swj/lGGM4dSpU+R5TmHB9T3yPGeURDSXOnzz+RfZvf8AYwzjLGWkwfdCVlfXiYd9htuHVKtVlJQURUEURaXTsx8gbQnPyLKMervFeDyh22nw4M4Nqo0Oo9GQtz/9dm5evUYRp6SxwTU1zj55HqUUW3dustLpIlFUG3V6+wd0lpapVwMGvV4p96kUV69epdPpsPXgPk5Q8hCkkNy6fZdGo8HG5snZeVNyzRhOGPb7AFRmpPjVtTXu3L5NkhbUqxXOvO0c+70x4sENTj9Rp7mxRs+XuLLLqQtPER68hluUU+G5CZo92pz5lty6VP5B2EcK1e9W/EkFwJ+E+/+TN/BQ8vmtEDVjiJWk4rjUbYHRVbzCoyVDrCiI9LjkqPmyxFrqlCyPcFF0vADHdfEqdWKhsHqMzSxxmhK2HVxHktmcwsSosPR0kHmVig2RKsR3XVyRkKcxg70DJpMYXwkq0tKuLVOpnUN0mqx1cj7/2W8Qhi5GFNQaNaJhhOuFWCfDAltb14nHGsdRXL+i+fTvfZbhOGYa7bGx4nDt9k1qzVM0Vwv+7t/7O5zeOMmodovf+/2E6zc1n3jniInu8Ev/3d/j7NNtltY8gmbBpasvsrV1m+ObG0hHcevmNaxycEOo1Ne4cm2HZmedOze+ShV457s+QKcuift7VOt1dl57nsNBxPZ+j+Wai54csrLU5OatS4yGU06dOsXrr7yE11jHHVt6UcbJUw2moz2CIOBt7/ogN179CoeDA05deBtrqxtc/uZlRuMHPHH2FHtbD0j6I4Z7Q6Tr8fo3X+KpdzxNnmU4TsGo/4Ait5w9eYqbV14nCAKW10/hejUgxLMhQdHBkzWEyoiyHGnAQYJSGLdASwmOiyhSkrwgxcEimP6rAcAj8ZYoAHq9IZ22w3Pv/hiXX/4MDb/JaDIkLzS370y5cuN5KpWQw4Md0mzEJMv4Z//0d/kbP/NT/Pv/w69Ta9YYxRHRNKbRcrEmp9ENOahKfutzl/iBDz7N63dfZbXxdoRVqMDhxVde4szmWaLJlOeff54kSTh27BgAcRzT7/dZXl7m4OCAIAjICs1kOiY3msk4wfMcDvt73H9wm+/7vu+j2arR7rYAcD2P4XCI7/vs7++zurrK669f45lnnuH06ZOMRqNFJ8t1FZVKQJon3L13l3NPPEtj6Rg37vwRJ8+7HDvh8NKlLyOVQZt0Ju85M9GaJdfVavWR7rgQYuHSaaULFHjuXI1m1o01glyXutNWS5TwCNSsO+K4SEqXRCXFTLtfopRAKnCsIM1iHCGxwiDF3MCpTP6NKcgLymJAOY9gyudk1izP0PZhYSIV6KLAdZ1F91/K2efPE7yZDwJS4DgStEF4jxfTJx0fB7VIjIuZHr0XeFhbGscYY3CCGsYYwrotjYGyDL/SWMDFCq3xKy1W1o9x4sQJ1o6VHcYw9Gc364dyno7jIWVJrlbzpIKSa2Eoj781xaw4gDRNaaoSelVkCdZaHKsxqSGKy+NbWL3oenteWfQKk1MilmfY2lmiN9/XeYi56/MbOv1v7NDPY+7yO4d0zd87V6OaTqek0T5Gl0TcWrWKFA6VICiPgVtOUFzXxfHKrryUzqzYtHM+OUhwPUXgOYSBT61aocCSRmNOndhkPOoxnY6Qjo8usgUHYs6Z0FrPSK4OVmqEEkgcZK6pCIdcMeM6FKQ2wDoeqlHFCTvkqobIY7C7eHlESwhCWVB3fOI8Zzros9fb/xe/QL9DhGHIysoKAEpIGvV6SSbXDu5sQuq6Ln/ux36Mm7fuMN3f48GNy0hKqOTy8jJb96ZUq9VF8VQUBalJcJVDQSlrm0VTAt9j2D8kmgxZXTtNZiy5fpHxzgFCSVora5hCcuPaTZIk4eTJU2StLsoRbG9vk+aaOIrYOHGcy5evlkWg71EpQgb7h7TrDfI4YXjYY2Njg6wooTaNVpvpdEqt2eLmndtMJwlpHFPkOcZ6pGlClhtOX7hAlKR8z8V1njx/nOe/9mU+9e534i+1OXH6Av/r//TL/Minfoo0ijneXuV0u4vnlFNh13XRM/ijUgphj54LpU45M++H8rwp3/vGydVi0jr7ft7Ih5o/V4Lz5hj2h/HtCMNHychvNm/7lqnqm0CCjCnewAl7jCpAvoRUI7KcqhHowqfq+nhKozyF51QxEjQxuc2J8hiRl9O9phvi+BVUmODIFBl4KKmZ9iY0agIhNYMsR+IjjEHoHFHEFMWYoGrpxxNSpYl1jusmnDjeRQhLJRdYMor8GqNhTlFI7j/Yp90OcWWKkA7WZgSeS+i5jIYJ9ZoLWtPpeFSrmvtbW6QZuMpy6VqPX/7FT/NTf/mT5CM4c7LLzoMevV6Lf/CP/hl/5S99ACVOcfX6fXbvvcbp1So9cYevfP5LHDt5hvEkIikGRFmVyy+P+Pxnv4LfbHHvwT4P7vXZ3xlyvGr4iz/xDoKKT5JNMVRwmbL34CpJ7NOsNrh77wY1J8WvtPHra/huRqvaot1q4iydgURTry3x/Fe/wIozYmnzFCRTTl94N6P+AQd7PRrtVapLq4yTMf/X732RqG/Z3KhiqoZWq4t1d9jfuUcY1Ag8wXDYw3FrfPXLXyfHpd0JWT8RIl1Ju1vBcQ3TokFU3SBOehwWGUo5eMohLfJyrcpyEpA5kANpUZBlBcp/bMv2LRlvCQhQ4AVE04IstVy8eBGlFMNBzNmz54kmkKRjVleXqVQCLl95DaTk5MlNzp3aRDmQTBPG04JiRuoSCsJaiBaGkYaTa+vluEnnM1WeHc6ePVsmUEphraXVahHHMcPhkKWlpVIPfTpFSvmIy6kxhs7yEucuXqDRbnL27Fm01qRpSpQmdFeWMQKOHz9OkiRsbm4ihKDRaHDs2LHyfVHZ+d3f38faUpvdWsv9+/dxPB+E4sWXvsGv/YNfwZicaq10FT16IX+YDD7sgL4RrjPv/j8K+XlI6l0o//Dw8xaQh9njjeosCziOeFTu8Y1Th6NQoKOvH+0WPyI7amZdsjfoT78RcvLw9+1Mj/nxLuGjk5f5fhztgh/dx0e07VVJBBWOKs2PHEWmC5I8W0AxyunTfOpz5OYuS3Lu0WMvhSpvMkKBdBCuh+P6WCHKruzM66JUPQkeWc9xHJMmcdkJPiJpeHR69Ih605F9O/r6mxUAj0DNvs3r80S7KAqSJGEwGDAcDSjyFM8t4TeudFDSwxEenvIXa/HoMX2zZEoufCQUnnIodMZwNKBanZ3TlHXDZDJaTPuMMQuI0SLRmU2npDUoWzoM+1LiqrJrCJTcGCsxToAKa6hKG6/axKvUUdLBc3xcJIFyCR0P9zHLALXb5QRiMBig3BLe2BsOCDyfL/3xH2OtZfPkCXZ7fRzH4XB7G4oMZS29gz16vR7Hjx9fTDaBhTNzmqZUKiWULZgVbq5yCDyfIks5tnEc4Tq0V5dJrIZKHeNUOXPuSZZXN9jfO2TzzCkanS4nT55kY2ODkydPsbd7QKezxMWLTy4mZ57n4UjF/u4ernJIkmQxvT1z5hxCKK5fv76QZg7DEM/zOH36NEop9vb2uHP/AZ1OhzQa8uzbn+Kdb38Cx6Yop4KNitLxWucoaymyUtJ1fo2cx9GEe34ePYy3LvnwTzONeKxEYGeuFGcpkgJTzIpwE6PJEUqClAirSyM0AcKkkCZINFIANsVzDNrmWFHgBoosjzAmx3d9BA6udEsFM5NT6BirDNpmxHGK43i4XoiSPoHfQDg1LIpC54ShTxCWMMMkzilyS5bl5QTf5kRpgh8IkjhnadmjVveR0rK0HNJq+Rzs99jf6/Cf/cLfYn/bpdWs0js8ZH8v4W1v/yQf/tgHIIXt3Xv84i/+Iq5rGe6n3L56n+VOl7t3t+h0W7z66hW+/rUXuPz6PlK59A5S7t7plwIUwvLs20/zkQ8+y7ve/SydpWX8ap1pEhNNRmzdu8Pa6gof+shH0IWdSeS2sJT3CMdxEEKxu73HoD/hez/yMbYf3OPm1asc7u5QrXc4eeIcuS5IspRTp05x7Nhx3vPeD1CtC4KgwfqJM7TX1jh37iyu6zLslblXJahQaTc597YnOX7uIuHyKsaUinrD6SH9wR5FljMaDDFZTsX18R0XR5bXeAFYPbtvilL2fEabwQ0es/TaWyzeEhMAoeDiE8ts3brCn/vet3Hp9j6VesAffv5LfN8PvI9rl15jY3mTV1+9ThILGuslRre73iRYqaKChKoI6JmCWqgwvmbn9i1krYKcwo2t+zyxeZ4vfH3Andu3aLfbJOOYNM7wHEWBJTc5WRyzurJCHMelaorjoaRTukJKQ5olhEGNg4M9kukE3/OQK5bLr12mWq0SViooQ6mR3RRcuPg0o+mEVqfNk0+e587tK2xsbBCGITeuX+Odzz3L8uoKYb1FrVnj1OmzCEezdesbvOvZUxxGm7z82quYcSk1CGBnGHIkCByUkrje7EakQDilzrGxlkJrrDU4JsBaucBUa20wpkxSlZBA2cV3PBfXLxMsADWHWCBwZkQz1D5c7gAAIABJREFUIwVCuPiOJtMFhbUoKQBNYXOsydE5pcmXNQgEpsgXxYQxGilLuJG2isJmZXJsyo5wZjXhLHlzXZfMFDiiwFfgCmaJhEsqUqQCz328J3RYq1OYAp0muKIkvSa6QM0LM1XqU4q55v3suLpCYIQgV5J4NkExxpTmXL5Hs9NBC/AdF6nAdz2sFbiuXBRsZq6pKShhSMbgSoVQs+QXC64HVuM47sO/wZReBHJ+E81ycl2Ujr+5JU3KteAor9SCKjSBG5YwMGuRQqCOGIEZMysmjhQ+xpaOwFYa0ixFibJYFUaU43lhsapcP9pCmsZYbRgebkEWEdTq+F6VwK/hzRJI6yqMEBhHoqSHUB5CuAipSvKyKCFu0gCilL21llLxxVqsFHhusMBr+76LcuemeBbPOhRphnQURpRrVigHjMFaNUt6coScy6JarBJoI5GewRRgC01uLdqpI1yB8muIZIx2DygGOygFfpHhGgc/e7xJ4fL6Grdeu85z734337x2lW6rzQfe935++//4HU6fvch43EfWQkyhKUyOawWZLtjf36G9fox0MkDK0s1bWgg9nzzPibIS7ubj4vku0TRB2IIinTDJM4Trcv3lr9NsLeMEIcdWVrl/6wpBEJBOMjZPnUQ4gs7yGl44oS9d0kIADsu+z3Q05P69GyRJhpCCeqfF7sEOJ8+dRqpSAKHiV6j4Fa5du4a2hrX1Der1Om97usprr71GWPfYPdin1mrTWV9HZZosyak2LXq4zYdO+gQmJjrY44lNn0zWqYYVHDegU4zxpZ05lJfzECHc2fXVRRiN1cVMgKHkS5WA5NKNVy5ceR+GVMzIwGW28maNlTf+rGdqWCVP58iE4E1+92g87O4ffa9dDBT0vBFjNNIYhCn9TDCWQpSu1vYx9g6Nk6EzjUkFOIKJlzPMJyxRJfV8bDDAJJLUMeUUOnBYporNDNMCFJJ6KkBI0iIHFH7FJ8sKCgMFPk5QhSLHk5KpSlCuIgtSdDQlL6Z0GheodD2iaBfSKVJ3QdQhzxFZjcFgRJJkxFNLc6NDrkcIBHGSU6/7xKMUzxOkaUYcFYxGBkGOY13SDPqHPf72r/2P/Ec/+zNUohEaKMQxdvu7PLUOzQb87N/8Ff7rn/13cQB3tYTx9XsRk8OMr+5dw/N9dJqxP7CMs23GI2jWIKg7eHHBp378k6yvdnj5y18kSg5pNFoIt4bSmifeforXX/k6OhkzGY9IhUeqL1Or1Nm6fgthM9Ktfc5cOM/tByMGeyPOPPUhbr36dYpmmyiZYHyfelBjtLfLZHBIt93BFYIf+tFPkGUZnmcY33wdb6nL3Rs9GpUKr71yBc+XNJttTOGyutIhzqb0Du7SanbwZYNCDcmKIaEriGyB53go6SGtg2aPPLa4EoRjqDgeobUMrUV4GmXfuoX444i3RAFgCs3W7j7Ns4pmWKES+jRsjddeO+B7PlDlzu0xt27e5/TpY3Q6G7RlyNVXbvLgzgsIo8kLgykSBmNoS8CBml/l9tY2RlToDaY0mhFpmhKGpVybtZp6tUE8nTAejwn8DisrKwt8fhzHCOTM+c8hisecOHECXRgcVxB6PmFQ4gkLrTHWcnDQY2lphcFgxNqx4zRbddzAJ0+nWG2IppMF6TPLSsjBaDSakeUmVGptlAPLa03+g//kb5PSx69keF64OFZlUgkCBTzs2h/thD7SVZ/BhBZd+SMmTEqV0pxSCBxZSojOO/vAw+nCDPc8//zysxRKCbTQs20+7PJaC0brmYaEWGyrHEHbBdxDm4c/GyNLRYsjlphHO7tl8lXi/uf3OClL+c3HGRJL4PnEeSl5iXw4WZlPmOYxh7jMJU9RziyZL7kOOstJgGF/MHP+dXGExFi7+F6OduWFmMumlp+/aMpZOUPDiLI+sBIhioXEp8HBcWZuvJTfjWctUZLMurc5RaLxvRkB5MjfftRZuNzmo938+aTgKKRH5xorZ+vHytIxWSikLUn22uRE4xF5njIcDujUPTzPm01XZtA2jpKNH514vTEWSZD91r8vzeIF7OrheaPQ5iFPxWBxnfJYCWa8iKMDGCk52gF9ZOIwmyLks+9ICon0qqhKjsqSkmtDhC1ypPN4FaxuXLnKs8++i5de/SanTp9lOpnwq7/6q7zr2XfPpqI1pJTcvnmTbrtFL98imo4ZjccE7SUcIdnd3iHLU+b8Fq019Xp9Mc2x1pYSs3lBEsUIN6duWpSSuCF+UMOVgtObmyiliJIc33cxMmB/dxcvCOgNDxHConyHqDdgbW2N3b37NLyg9Aio12nWGty7u0VnqcvWvXtcOHOB7e1tVldX6R3sY1otdrcf0O2WEs/NZhOlFO1mmzRNWWq2qdUqPHGujbSGitTk6ZSnvvdT3NwdEWc50+mUdqcym3jk3/a4zs+Pb50CfHfju80l+E7xxgnf45wA6KIUqfYch8RkTJVHnhfIQuMVAqHLJkshNUaCqzx8GjiOS5IcgvSwBSjHwzMVJJJM5eg0I9MZxpboAd8JkVbg+hHKcfA8ST61gIMUHlIYZGEwSY4SGldKpFW4QcBy16HdGrK5USGNI3RhyLWl7CcYlFfeX7Fznlt5/bZuQViv0qpX+bmf+2mUSel22gTtCj/4I3+Vyf5d/vmDr9JtBfz9v/8rNOoKYcr5UmEkg17MNIbBVBNFmlozoFZLGE1g81iHOJ4is5TzZ6usrq6iFEynD0gTcFVCtSIxpqC/d0in0eZgeMjZ4+ssnTjPg73DUvZ3t8dyu4E1Lr29XWyR0+iuQVbj/MULJDlUq3Ue3L9HxXXxfIdao8Z0PCRwJaPxgDAMGfT7KMdld2+foFanP+pz5swpHAHaWBrNOp7ng8iZpg6FLYtnP2xQDBWJ1Fjlo6TFcTyKvGzUeK7AERZPuCgccgxSxLiO/K45bv9/Jd4SBUCr1aAdttB2yPatu2zfvMXIWpaXPD796c8SjWE61rxw6QF+5QH5vuKpUPLh5z6I1QlpLji9cQxvGjHdG5MYy+3Xt/E8iHTMS1fvMRwqhFhdwDNqtQqTyYQkKpU4siwrR+FS0mq1aDabCORiXFyrr1EUBcPRgPPnz2LygvPnzzMYHVIYzfs/8D082Nrl+vUbXLx4kX6/j1KKpZUVlpeXufTSyziOS7e7xM7ODqPRmN5hn+FoxOnzF6g3W5w5f4Eo6/PPP/871Jcdun6LSZQ/Cr1RZeINzCTgDK5bJuqu4ywS8fnNZ/6zkmXnfZ7ASVkm+0iFq1w85RAG4QICNL9xQwlFmRNOmSU5yrgUc91vk87G3mUCmGfl35AZjUbgK3fhtqytXiSGeV7iSrXW5JlEuop5gX4UP74oGHSOtRohy2mEknJxLB5XDA92WFpaQtgKUZIhLTjzY34EohWG4cJZ0trSF8HIEq+ulMKiKQqNEpI8jUtNcinwl12UIxbHLMvE4jh73ux79x4WgcZYpBToooS3lAm0ReKgbY5wHBRzeJHB6JwkSXCVKF1QAa0thdGMhhPipIRSFDP8r+u6iwRgUZjJhz4T8BACMcfR+66LRJJME5hJes6hZ1makKYxg/42STSl2argBtXZiHlmXoeiNCWbFVNzHwwpkdIgOGpeJpFWYCgJyoUu8LyjBUWJy97b38FVEjVTb5pPVI6ut/n6t9aSH5lizYuHo7C2RbGKnRXW5XeU5hlGelDp4Ps1ZDQii0YwHZFOhn+GK/Vb4yt/+AWyVHP6wjlcx+Hy5ct8/Ps/iS4so/4AVylefPFFOrUGu3fu4kjDYDjmiaeeYZJk6LygUmng5im5ihZwsjiOF2s+TVNcx58dJ5BCs7+7y5Ormzy4exc/rFCpVen1BkhHEdZarBxfByt4sHXA/sEeFSyhH6CqAUmh2bl3GydwWGrU6fV6RFGEEg6dpWWm4wnra8exUtBdWebO1j2UgEHvEM/zuXr1Ks1mk2azuXBjz4H19XVcYdhc66LHfaoth8NIc1d0ufLydYwVjId9wrCC8EtZWHVkfbwRYz8/H+d8F+CRAvnNIJHfKY5+/tHpwBuV0+Yxhxwe/d15YfxmU4Vvee7o+0RpvGdn1+7HHdNJjvIcHC8g14qhJ7FulaqqIsNlYjKsNAjfQRqB61RYap8mGWukiCishzCK0GlS9wsyIpTrMEnGFJlGuxorCwwBvl/HDQ4QrkaplLAaUKQ+1jgkSUE8ivAKjecXuI5HKGoIx6HA0um0yHSEX5P4tkpepCXcURu8wEcpgdCaKNU0mwFplrA/bHL7/oCzxxRuXkABe72YO1f6/PW/cZL/9pf/K86fa3Cwq4idl1n1QVuIUpCOJROCaW7J8hBtLXfvJriupFW1DPd7VKqK91xo84EPnqfqu5jC0mh4HMYQyIAHd29Qa9SoNEskRGd9lSuvvcCNrT2WNs/RaLioepsXX32dk2snGY7GbPUOabx7md/833+L5VrARz/xQxhjMRrCmo8UDbYf3CaLppza2CATkqg/4Orrr5MUhvd8z/vpdDpIW0L3uu0lrt24TppM8EKvzE2Wj5UCBYfbLNXOcnz9LHf3XsWomKQAF0vuxkgBod8FPSZQIWG1DlJgpjsUNqMQj1c05K0WbwkOwCAeUWsoXn3+gMPekPHQ0qzV+djHPsbONkRTKArYeQAf+chzDCea5RPrPPXcu1hahTS3RNGUO7cHIAR5YUojphyWOgFLmxsMk6y0pp/h+udSnAcHB6yvr5NlGePxmCRJyLJswQeYm9wM+kOCIKBSCdja2qLX63Hp0iW2traYTqfcu3eP9fVV1tdXOTzc5/7WNtvb20ymI8IwZHV1lcPDQ1544QUuX77MyZMnqVQqDAbDGYGuyjgaorwY4U+xsrzYZqmmJOA+TN6PdsaPOsTCQzLlG3Hn86RsrhcvZl1/Vyl8x8dxvBm51PkWrPc8jGDRIYVH5TzL7YnSndg+mpQfNWp6I+5/jv0uYUkPOQpH42jnaXHDkrZMKB4zpK9/sIuxBa7vI5TEzKBSeZ4vZArnCWO5fiqlXKAV2JnJlueV8C5hS61tqwum0ylRFDFXTjo6TThq4AbfDmsvFu/V2qJ1qfa0SCTmBaXjEYbhYtLlumWxFoYhnU5n4Y9x1Owpy7LFvs3X0/wxl82N47jsCGeaPM9LfkGWk0QRURTR7/fY291i5/4Nejt3yeMRoSfwHAeEojBiwX8wZjaB0KVvxdH1Mz8WR/f96PqZnzdJkhBFE4qiLCKNeTgBcBwPZ2ZudVT68+j/58XA/NyZb1vrcv/mWPS5xORcoch1XaC0qc9RyLBJUO8Stlbwa50/u4X6JvHnf/jf4D0feD/dbpdLL77EqVOnGI5GuL6HXwm5dOkSS50uyXhKkSbcuXuTJ559LyKo47sK4bq0uku0l5aBEvo4L/TnfJL5z2Xx5ZAmCVkaMxoekqUxjhRMxiNarQYnN08gi4LtO3cYDsvrree4CAvjwZDjp0/jVqucPnGapdYS/X6farVKEASLqUMQBFSDkHe84x30+32KIltMfSeTMd1ulzAMGY/HMxEGl/39UmGuWqnzYPuA3YMBI9oUnQt86cpNDqOcShAymo6YDIezyduf3Ep83Pyk7148el49Vvw/UOQCx3dwwwCXCqKAwPeohQ4Vp0KeekSpJM/La4ejQnLPQE2CH5LrjLgYEckY44MTWny3PMeVhHwaE0iwIqGwEZXmMkHoItMCjMHzZ5w5EVBpdvHrTZTr4rgBnvLIipzBZMBhb4fJuI/RRalY55XXWq3tTMRBYo1Ca3A8TaMlyUh46snTrLTHVFyF77j0Jgnvftd5/puf/3fYWK3ghHV+7R/9Jq06jDOYGgV4xKllnFoSDcK1TJKUJIdpZCgyy0od2o7mxz71Sd773vcSjfoMhntMxilve+YcTzx5nk6njSMF0bSPUIY72/e58NSTVKtN6tWQbDIupdOFgxc2MDan26pzsLePV2kQRym3795BoKhUqvQHPfb2dlBKsb29zZe/+CUwlt3tHTaPb9DpdNBpQjods33rLr2dPV599VVWV1dxlCGKJlSrVa7fvEl7qU2tKtDJhNHhmOXuCkk6JiekcJZJRR1ZCXFcF+HUcT0fz63hOlWqXgUfFyneEj3vt0y8Ja5QV67lDCYPeN97niE1kk9++H3cvTHm2vXLfOpHPo4RcPf2Ln/t3/thXrl0jY/8wHEmuspedImnLx7Dr4IpEjY2Avr9ApAUwiHwXWwak2QxTsUjS3NarRZa6wXMxwt87t27V3ZBXZe9vT3G4zGtVossyzDGsL+/z2QScenSJdbX10sn2jTF933SImc0mvC1r32Nz3/hc6ytL3PxiXMURcFkMmF/f59qtcrm5iaeH3Lm9DnSrOD97/sAd+9uMZ3GXLtaKl9U6g7/+Df+e65vfZFKq8SWNuodpHQWHc8yOS9VcKQqLyKe5+C6CiEtlrJDPr9gOzN8+Tx5FKKU0HSkwnNKEmMQePiuhzcj0swTnofQGxbGYoYZHnSGr148P4e2HPkdYLHteUJl0Rg96yaZfJEc5nleJniPEJUfhW+Un1+qaUgJSgl8//FW9Nu3rrG/fR+JoV5r4Lr+IoGe64LP4V5Zli0S7LkFvXQdlCMIPB8J6DwljacMDg/Z29tjNJ2QpQ/Nt4QotftLPfPgkeS3nBIcuUHbI2RhOfNRkA5ClpMDNeuKu16AUOVxLL8vsVDZabfbLLW7aK0Zj8dMp1P0TGI0jmPSNCVJEtI0JU1T4jhmOp0Sx/GiWIinCdNxxGjQ4/69e9y9dYPbN65z/+41hofbTKeHuJKZGZzEaHdWtJQa2QuSsM4ewoqOFBwLWJQuH3OIVJmUO1SCkMD1yJKE6WREJfBK8zXlIGYu2r7v44cBajZNO1pQHZ2aHU1u58d5fq4cLXAXUzYJoSuhSImzlLSwJEaCX6O1cuLPfL0eja9+4+tcunSJV1+6xNLSEpubmzSbTazV1Go11tbWSnnjNOberZt0Vlbw211iC2mc4VQqZMaUa0dJlOcSBMHimM1NtsKKv2hG+F4VrTXTcY/B4QHDwwNcAcPRgK37d5BGo7Sm3WriSsuxY2tceO6dbD79Ni7fvs3aiQ3u3brN4e5eORErCsbjMbu7+0yiBCEddg8O+eKXv0SSlappSRKR5ymu6y7W7VyJ7YUXXqDIUiYzadAvvXiZa9tT7smn+Pp+l+3+mH7/kMCZQbuKdAY7nBt4vTGOSi6LNzz38LXHbGD+/zIkGI040rx5nJEVGi/0cAOFWwjC3FDJUvx8StXmqEIQTzLySYrVhiK3DPIeh/EWmfIQMmNYHHAQ3SdRQ3IxJY8jwppPs1Wh3fCRWU4WHxDH+/jhEi4uNstwpMQwJUpHpGmK8QOsVyORCq9WIxeKKE9wah7NpTpSOCgjymYO5bUi0wZtoTeIiKMC33fxA0EUG37zNz5Dtwl1v0q9ltHdLKi1PN773DoXThQEbUl7+b38nV/6L1HaJUEwziSZdphMYTwW7OxCbgpyY5nElFwVA5/84Hl+4ef/TZ54+gwnTl6kVg1Y6TTQuceV157nm6+8yDSOEFaze+06bpzxzotPY5ICZgT+f/I//zprDZDpiOe//AUyneBhSKYjvv/7f5j3fehDnLlwnu17dxeFzpmzp9AI1jdPcPrMeZJ4SqfRZOvuPUyasnPvFvduXadIYgb7hzSbTUaHfXa27rF19za3b93i5KlNJtGYm7eucbhzm9XOGoc7BwROC80ysTlFWP8gmW1h/SH4EdL1UI6PkAGO9Etyt/5XBcDReEsUAN/zbJf93gTZLOgfjnj7ueO8+6kNAjfAcSZMxmXV/9nP/TZZNOXi6acZpz2++bVbkEZUfDA6JY0SZgIAOI5fQhcSKPKYyWSClYo8T4mnE5Y6XSbRkMGoT6fVpt3qElYbeH5AkmbsHxwyN5sJgoBqLeDChQsMBqVR2NkL56k06nQbS6RRgasC9nb3GQ5G7O8d8La3P1F2Bo3Dg509xnFCq9NkFI1I84T9/j5Ly6u0mkt02isU5Hz1K18hiaZkJia3CbV6CMLgiHKf5io5SliEMbhSIMzDrrg2YKwoCVozYyfMnDBayjc6CpS0eMriSYk305eXjsAKiXRcrHBBOqVTr2CBfxai9AaAklEPJdlYW1GSjI0AW0I3FtKfKBxZuvcqYcobPJbCFBQmpzCawmhyXSYLhbYliXmmlf8tI+oZgc6Zdf8L83hH0r6JiXr7JNMBQhazjm8Jx5pPZ4BF0jrv+Ptemfg7olRUciR4TsnD0FlCkfQZD/YYjIYcDockhSHLNQpV2p0jH8IJOGKQpij9EiQINVPLEDPcujhSWMnZupi9JphDbCTa5BidoqRBGovvelQqPtZqiiJbeBnMO/IYgymKmbdBQpJk5LkuvSa0YTyZMBz26R0cMDzYZdrfw8ZjKPJym8LBCJdECwojHyoLAYZym8YU6DxDFwlFHiOMxRazYqAoFrlVURSYuYGY1YuCqdVq0ahVaYQuFAXCSqz00Tilw7ajS+K2chBSYShlcovclJwKYxcPR8jyPNAGW2iEsUhMSapGY2yBdAXSFbOpUFmAuaqUGbRKUEiJDcNvWU9/lrHWWaLRaJAbjRu43Lp1i1qlju85PP/CV9k/7HPs+CbXr1yi3z/g+BPPsLTapVpz0EbS7KwQVGrkaUxuDI1mCyEsruNTrdQpiozJZEQcT5l/QQbL6voKruty6uQmUlj27m/jopgOxni+Q5ElxOMRg709xrs7vPjiy0ynMdnd20we7CA9hbA5hTFESYx0HDqdFo1KSJRGuKFHbzAgCDzyIgMk9Xrp62JMQa1WYWVlibwwdJfaVAKFsSlRGnFoq7y8B9OT5/ijG9dID/bIoylpmkLgEtZCCmvAmUl8CrMwj7JWgCgWilEIg9Vzsn2OFBZhH6quCcxMqWbGaZoVFUJo3ryQYFHQC1muOUdKpH2UNHyUo/MI/IdycsqMPGxFeT+RWOxMqlSqGd8LW0qpCFO6CRuB1AJpdPn0nxH34M3CiIwsi7BEhC2wyQDyAbnRTKc3EekQlU2ZpppcF1hriJIhhYwwTMlsTua4ZDpDaA2pRGhJiItjLI7yMNYhiXLMICfPLcqpILzSJViblMxM8dwczwHjSGJyxiIlD0KkryhMCkrT7qyUa6dQUFiKNKFaDyhygec6WGsJXIMWDv/aj/5F/vrPfIpQ7JI4Exo+OBWPi6shB7deZaQ1N3cmXLn5h4xHt8FAI/Ag0eyPE4wXApIgdDg4KHCVAwasMjgWnn7yDMeObZCnBcokbG3dZzoeo6oek+GYlXYdPJdXLl/hPR/+OGmh6fW3UaHLhQtn6PWHPPfccwymQ7SEZneZ4P9m781jJcvu+77POefutdfbl96X6Zke9sxwyBmKFKWRRAsWHElObCBREiMJAiSAncRA/jMQRQGMQI7gOLESI6Yl2YJjO46VOGJkQTRNSNyGFJfRLJyt9+X126te7VV3PSd/nKp6r5tDSTZs9hjxAaob/ZZ+99U9997f7/v7LjLn7o13iUIHLQL7fitJMmihtKQ7OKJ3uE+eZYS1Gl65zO2tLQohOPf005Q8jzTJcaRLuLFGuNjkzp07JOMJVTci8HzK1RLZxOCoiNr6OcZZQh4ryo6Dj0IUE1zjk2UujioRBgFC5kjlogqDIwq0UGSFQmUfipL3Q7M+FO1QlmUUOdy8fRf3/Aq/+4Uvs7SwyB/c3eOFF57jU6/cZXA05NOfeoUv/d7X+Vuf/QI//ZmPMeke0dsbUgocegc5uVH4vkBLyV5nwHIN/IqiXmtQxC6TgaTdboM29Ho9kIZms/mIKLZUKh0XOFpTKpUol8sMhn0mE9tINJt1vv3tb9NsNqmWI8Kyx0eee4ZbN27S7XZpNBoMBgOq1SqTyYTGYoONjQ2++Y1XcRyHq1evopRibW2NUTxhcWWF3b37/MF3v0i4UOAkOalXQmfgeR4mz9BGH9vOGTl1b3iUZ/r9UHMprWDWdR1cT+EIlzybzFH5mZXlDGEuhJgW/Sfj6Y8t7oqisI8IwZSXnlpu9wlqhpIuhSlwHXdK/zFzKlM+RYZnNBkApWyqn0KQZQVKCDSaQh9TmmZLCDGnWHz/YLEfzHLSnO7OFnme01w/RXVlkzTTJIlNmZ1Rn7TW8/TEk9xyoyR+4JKnCY4jydOMNIF8PGSQZ1z/7ptU6w10URCGIXphgcCZPqzljF5lReFSWLn2/KFvDdGmL7DnU0zPhTPXdQitUULZc2oM2sxExlN+PJJKpcJ4POHw8BClLNJrx8ABRsj5FMdSg6Y0utGYIonptA9I05R41EfolDxJQBuEtEiz41ldgXJtkJMXJCg3QD0i1D3OhpglzjqOAyrHGEWWp5h8ltyd4PsBpVoTVzpEgcfK8iJXrlxhqxKxc3CAzMfUZQaiRKJ9YhEShQ5BYI8lSawg2OhjbcDjxdRsX+Z5jlTMtTOzj4kT14znefOPG2OzIMbj8Q92sz62Or0uwUGLRqPB6uoqBwctiqLgu+9eZ3lpHTHq8c2v/h6r6+tIN6TSWObg/m26220WL57lyjPP8/arX8QkPmub5xmPeuTG5gvYZt6dTwLm5wsrctd0ONxvUa8vUKlUkECzXicej5mMRghTYKSPF3icX6uwvLLOrbe+Rb63i+M4aJNhJimBdBi2OwxklyAI8KMQIQTlsm1Mms0mw55F+xcWFvCjkPZRi17foVppcNRqE0YevW4X6YRcvPQcX/xnX+Bb7/11hOuiK1XyNCGJU3QhMdqhEIIcB3daSH/vetQaV5vvpab967QUBZgCbTK0MhgHCvmvVuD8hy0ZKjJZcDTuUQt/iLUNQWv3ARMxRDgengKPlPZOjk9AO4spD/cxDqRulbofkcSx3ZNhGa1hlGToQmFwKXsRWrqko5A8TSHRyNBHRQo9HkOmCSKD6wJFSm5gWCSEziLGyI/fAAAgAElEQVSFG3HQHRHVyjQXHHYfdlB+hGMKhLDTbY0mCkvkaYIqKVCGf+/f/U/57K/+faqVAm0Sqo5P0Uj4i3/h7/Lr/8t/xEGnhzAlktGYVHYYC8UkKcgM+GXYuw+5mXDUhjSFPINMFnhKUUOwuWBYP90kExA5DltbW0SlCnFaUK/VaHgX6HXHPPfsxxCp4Obb38EYQ7kc8c1vfYeLlycsrp1jVKuSxgMmWc7zzz/H3/u1X+bHP/NTTNIUqfo0GyU6ew8RAbx9/S1UfoCqLZLH1nGxOxwSTxL29w7pjcaEKmRprYHG0NpqUS2VcdwJ7dRSRp9+5ll2Dy1N26Q5IYrG0ia9dpeV5fN0km2SbEga38XzI3x/QqEj/DBCyBJxOiE3GUkcow0o799oAE6uD0UDsNiIyFLD4GiA0+2yefYCv/fOW3glyV/7q/8nFy5FYBJe/eYf8MpnPkN3/x46Vnz33bv8yq99lje33uXnf+mXMVqSFxmOIygBl1ab7E6G6ELhyBKt1hZLzQVGg+G0cC0YjSasLQsWFhrs7+/jSsc+kKRk/cwqh4f7aJMxGk0YDAakaUrghxgtOdhvs7d3QBj6fP7znycKQk6dOsU3vvENrn7kWZ5++ioH+y0c32FjY4ONjQ3efvttSqUS6+vr1u7O9YhKLmMxopW9jT7soUdHNE+do16rcuOdt3AEOEIip8ijEBIpnRkMP0dMtbE35RklwfO86UO3wFEWEQinQVuykODYkCn1OJFeSrTQSCnQKIR0QdqCJkttgFcK00LRFon2WCwqnWfaagmmdCKjhH1oFNkj1I04jueewpkx5FqTA25mGwEtCwyPuRpxrD04yc1+UqsY98izCZ1kSDoZ0mgsUK82OUx6FNgQrlmTNftdpZQEUYhQ0vrv5zmO6yBViHQdXE+SjOzvmvRb7HcPKCYjgiBgcXWNSqVCtVolisp2muD7SGlpYHbqYBsua1RoKVjSsWFucl7E2lRbiwYaEAV6KiAXsyhTM3NiEgRBQLlc5sGDByRJnyiKLFLW6UyRtxHtw32G/R6T0YjxeES7dYAoUjA5xoCkIEvSKTpvyPMUzwuQjqJWqxGWKiwtLbG0skpzcYVGs4nrulQqFduYnpgIeVIgdAGFpcEp5SGUwPNCSlX79RIztWPMKHkuzzzzDBvnLzEaDtl9cIuHN95kZWWdMGoitEs6TsiUnAIBZQDy7NEk7ZNuR3AsxJyd55lD0ElNzuz8z1xxZo1CHMc/oF36wWv99CkUgps3b/Lm29/lZ37mT/Nwa4fnP/Is9+/c5fW336IahmxeeoqouUgjCnjjwQOe/+hL1DfXEYXkxs3reIHPSz/0Cg/uXCePJ/QOW4xGI7Q5pms5zjRYTDlIo6nW6+RJTh6PGeQZWRJTKpXwfZ9Tqwvs3blBnElKUcD+VkZ/b5fLly8z6LTYfdBmOBziIKhUKpRLJYvMFgVBEDAaWWOHSrnMzfff4+KFi3PaWpGnOBh8JWkdbOP7IfVqmZWVZdqH+/j1FS6++DJFrzXVckgGhy2cICAQLmYco8hQjwluTy67v3NmjfdsUvf4PvqjXHxmTfzJxvP7BXmZx/49//6T6L941CJUnvjZJ121Tu5ta/2sMK5LjME1AS4a9QR7GWUgG8Roo+gH91lv/ju44rv0J99kpGMMhkYUUDI5rsrp6A7pkUs/SZENiQnbhE4JIRRSKFzPJ8sLJgkUhcDkmmokWFy8SDrewpEHKCoMdILjgDAeRvSRwsNJhmSpJheCeLyNdGLSQjLairlzY596tYF0MpTRuB7kRUql0aTXPsB1Q4TS9Ds9fvl//Xv8h3/uP+bv/+3/iYVKiWHm8Iu//Bb/+X/2EUpaggoQjFhbAiUgzwv8kk8+zim0xnV94kxy1B1TpBB49pyGjmbNU1w7X8b1IhxfoZMMzwvYOzgk8EPcfGQnVVrQ2m5Tqy6SqIJ6vcnXv/H7XHvxU7z5+u9bECvwGfVSNtdX+a3/9//mwqVnGKWwsNrkzt33WapHTEZjepOCpfoKkVPhdz//FZaWSlSbDfxmlUtPXeHNb71OuVzlwW4bv1qhO+ixvlqm151Q5AnnNy/heC672/enqeIdOuMMrSWOH7G8cQY/a1DSY3pbtyHoovEwlZzQb6JcKKRHno1J06E1nMglxnnyIvYP0/pQzEMENozD8aFTxFz9yNM88/Q1atUFlAPjyZg8L4jjMd/69qtcufqMHZ2pkKPdDml3QBSUaLUyokhZX3IfMlFQq1VIJjmjfkK5XJ7z/ZOkIElhMklQSvHuu++ST/mkswfWaDR6RKjqeR7j8Zh2u22zBOKYIpeEYYkz5y7Q6/WoVCqcOnWK8+fP884773Dp0iX6/T6O47C4uMi1a9doNBo0m03CMGRjY42llQWOensMxi2yIkc7HnEco7CFF8xw2FkAlzMtMB61htQ6x46iiznSLKVECmNpOHPHnGO+/kk3k5MC3fm5kRIjBUYK6wk/fWmtKYz1WTZaMPNcn4mBjT4eVyM+OATqpLWktrbTc873Sa73yeIfjm32PgwiO2tMU5CnMcm4z6DTQhmolMo2D4JHdRAzWtBsOnPSTlNMGxrH9THT3AclDb6nKNIRyWhAe3+P/YNdDlv7jEYz0Xo+5aVrkiSxE7XCPMpdF2raOM4e9DNbzUeD1h4vGE4WtUJYhH3O7Z9MODo6onvU4nD3IQ/v3WFv+wGt/W16rV10MkQX6ZQeU1Bk6bRJUUjJI+/FaDSi0+mws7NDq9ViMBgwHo/nIuqTBdNJse/3vKZuRQKFEsJSLAwIXVAJAyI/4NzZC5w99xTCi+j3e+h0RMAYzz3OY5i7NU3P28lr5XHR/UmR++OBZ3MNzQn71Mf/jye1qvUaDx8+5Nq1a5w6dYq7d+/SbrfR6YStu7dI0xw/jJB+hPIDXv/WN1k/fYqPvPwSZ0+fI5uMOOp2uPz0s9y8dZvRJJ4Lfmu1GkKIefDcTA9j8gJhIE/T+ecrFTthvXP3NqPxkDu3btJpH1CPHA637tEohbz35mt842tf5WBvh1qtwvLyMo7r0ul2Mdi9VK/Xabfb8/2bJAmXr1yZa1SAOR0MoFItoZQgSRJ6vT6ehGa9TO/oiLQoKDB0W21Ggz7jwRBPSiqRhyeNRcX/iHXSKevxCeaTpND8cddc4+KFBJUqYaWOU63j1Rv4jScnYM9HOSoRZMOMTvs+xm2TihzhBhTKPqeko6jKElWnTCksIxG4AGlKoRWuV8FxA3IE0nHx3YA8MZhMWN6+41OK1onKC0gKTNGjyHIkPp7j4noSXaQoU+AKQyVwEfkEkw6pOSskXY/IqZIMU/K0mO5/Pa8rwAJ1SVzw/Ec/juv5/MZv/AbVEnTaMduHQz796avoYco4TfBDB+VYKlZaQKEFeZExjguEiUBaK2OjJa6jUMrey1zX4DkFSmVEXh1pXRQQWrC6skalUpvefyfsH+zyxht/QK1Wwyk1yIXLS5/4YYaDMc9cfY5333qT+3fvsb+9Q691xO7WNkmcsbCyyv5hi/XVVQohMVLhiJwwgDfe/BYbZ9fZPHWOWm2BUq3J/uEhjVqdclSiVAkYjlMuXb7KaJyxv3eEJ0O2rt/gjW99k1opxLVhGqytriIdhzDyCAOXQAWIXKATQe+gz2jcm7I3cjApGemc/mpBGJ/ij3Hd/v9pfSgmAKNBl0sXzvLOq7e5vhfz1JXn+If/9FVu3N3hYy+e5puvP+D0RpVaOeHWgx7X373BvYc7HHXG/MIv/c/80JXz/M1f+u/4D/7iX8I4muUAsgCGTspKpYmZLLDVapNPEhypGPYHOA5IR1AqhWRZzsFBC98PuHb1Wd5//30Gg8G84CmKFvV6nV5/gNaaWr1KksYsLS/iSkUpCnlw7x4XL1/i5u1btNttms0mZ05tEidjlhYW6A8HNJcWMFLw2muvUwqrHPW6vLSwwtF4n0nSgSClHC4iZAMpYo7a+5jMoKQPIkdYHz2EcqfI+HQMK/SUJ23RUDBWzKgUrhI4jkvgeXiei6skBk2mNApL/dFGooUhy6dUB6mRxvr/AyAN0lifYmGyaYFkOa86z9G5DVoSRmIKrCZASjylkK5nSSjGBlXlJqegQOoCnecUhY0qkEKT5lbonOW51T0IZTn+YsqtFrYRQoqpCFjZ1McnuAojQWscUvJui53b75PmcPqpZ/HDgMwKM5DSsaJpBK4X2XCqosBzQ3QxszW14u48z62VXJJgdI5SgkxnZDpj3Jlguofs7/i0FlpUK3Vq1SZGCsphGdeRNBYaOL6DdBTNegOjnGk4mJlm/9jwICHsGRbGagdkPjtPNtDKooUaqRS+H2Fkj+FkxNHREdkkJp4k9DstinyMKXKyiaW0OELiKvC8KQ95ar6cS3daRNsx7CO2iNIhz1Lah/sUWcZgNKbb67G+vj4VppppQ+vgeFajgvQAidaW+y+KKfdZC1AF2nFtyrLUGBQIWKx4XHvuWc5fOEu70+LNr3+JyeAG9cAlqi8SNE8hpE+WO2gjCEIH10nJUmd+vI5rA/lATXUdLkoe6zwA8sw2LWmSTO1rj61rhRFoDJ7zZOlrUkqeungez5VsrG6wuNIkdCK+/dUv8eDuPV588UXu3bvHxuYavqN4p9fl03/iJ8gLeHjvfW6//Robm2eI04zawiLbdweEQYVsMqHIc1yprNg/t82U6zikRUqRTS19p5RAzw1oVhqQFdy5c4dSqUS1FPHw/i3SNOWdt9+gWlvAkZaTnCcpaWYISnUq9RoaSNOEwmiWFxfJisI2IZUK7cMDsiwjCAKyNGY40Hh+SprGaA3LK2vk2lCqWReh3ftbpEnK0f4WnufQXNogLzRRUKLAECoIXI1F92cZFTbYTgiriZqV9sYYCiyQgTEoYyimvHvrIjTl4E+3wQzJt5oAW/QYKayh1/QlbbiF/ZnShjjyfRr5DzznZjZZsF7rdlJ23JDMGxUhccIKyghUucG1xQ2uvJgy+hODqSHAk7OwrQhFMQbfcUhcw4Ptz+NHNTqjMeNRSsVXBJGiltWRUhP7E9KKfTYtNxvkaoTwaojctfdBJyRQgtAoEnJkBVTFw4uWMX6KyrpIJRCjHCfSuG4Z1+1RLpcoXImZZCRpiO9XkWyy08roHRSkw5iiyNCVAlG4CDejHNTBgJQOUeBz+vwZXnvjW/z7P/df8o8/9+sM29CZFDzckVy+ZCiGPp/45FXeeuNNJiMoQmsdLUsR3eGELBbsH05odTTSCQgjyOMCAbgORBJWIkPZVSgxIZ8oDBmuLOGKEL/kkcYTTC5ZXTtLvrPNu+/coDtu8clPvMzBQQu31mD7zruUIkk1UARLq+y1Dzl1/hKnn/0ImfDxylWkK7n+5puUSouUyhXiLObCU1cAic4LkIbW/n08BWevXqLfH6N8xdb2Plu3C9bW1nj95h554rC20mR4OOSB/4Ao8PE8j612ByfwUXj2vuoY6s1VkjdjjroQbmSkw4yR3iMoReSOQ1mCkRpXllCOy7jffWL79sO4njyECjTqyxy1DqmUIxxjOaIvv/xxrj5znlu3HlAqC7Is4/AwYWcb7t7aZjzWDMfw1s1dXn/zDS4tLvPKs8+gnJyoJNncbDKcTKiWytbPfGrrKaWV6jmOFeBEkc0DaDTqlMtldnd38X3LRe73h7iuz3gcW85cFM1t5w4PD62ozKQMR316vR57ewcIodjcPM3p06fp9Xr0ux3KZUvVWFxcpNvtUi6XWV5apVqrsbi4SLvzkOGgQ+ArlGOQrsOw32XQ7z+C0B+PdKeFlWGKvNvHxkkHkhnCbgXRziNIphDChok9NiKe5j8C00KQk64+cs6JnlE4Hkc7sywjm+UPiBmHHPsQO7EeEaNy/DvkeY4umLsZzdKKZ2isNKAQKCFwhLSF5hNOAi5O8Hu1LojHI7pHBxRZQuC7BJ5/zPkXdsKRG+tdP0OBZ24+eaExwobPeW6AdF0c10c69m/7ktYxSAj63Q6tw30OD/Y5OjigdbjHwd4e+/u7dLtHjMfDudjXPHauP2jp2eeMfMQOVk0LBN/3bVDYZESnvc+ge4iOx5gsQZkcz1F4jsJV1n2nFIaEkT93FJrZjc48+V3Xne/NGZ0r8KyN5LDXp906sC40Uz69lLapmVlKAo+g9cf7qZimop1woxIAmqLIiHyfarXKxQuXCSt1BpOUg16fXqdNOupSxGNcYSzSK+TcrnWG2NuJRDGlT6kPtB+dWe7Orp/ZccZT7rEQYioYf3JrbWWZzc1Nvva1V3nw4B4my/irf+UXuXHjJs1mk063y9kL56lVyrz92ndYWFyiVmsgioJ7d25y7/YNLl++TBGn9Hsd6tUKC0uLx+eyFMGJLBXgRCK4BulQqjRsmrYxhJUKZ86eww9CcmE46nfojwf2fiENo9GIwSghSXOCsGynwEFAGIZTtNNlY2ODbtcG6VndgXesU4I5AjubKs2nS46DFoILFy6QZpaqqPOcUTyiVLJi7Wq1iucK5Pe/hL7vkk84gfT7Xfvf92NKohwPx/Xx/BJhVKFUrtFcXqW5vMr66fM/iMP+wKWUoFat4voORtlrbZz0KbIco60xRKYLtCPJjST0fHtfDX28wKXke7jGJswr5aCUi+cGuA74gUI4hpQcSU7ghfZ5awSeN017FhD40yRx30d6LuVqk3JzAeG4DOMDojq4riQMA4osOZEL42K0plKuMRyP6PaOCMOAX/vbv0Kt6pHmsLAMf+NvfJY8tVP9119/E2Os/UZW2GnXcBjTH2iGI0OpXGeSwGiUoHNN5LvkqaUKucBSM6BUsgV5agxh6M91SWmR43g+1WqNJC1YXV3l4sXzuMrhvXfeAaBcLqOURxiWGPYmGASlSo0kt4DW0tKSrXGCgOFwSBBVKZUq1iDCOKANRZGBKWiUIhbqNXYP99g73KMoChYWFvB8l5s3b3L+0mkGoz67B4esbWxSKVdJ5tNywbDfpdNpowtI44LWYY9KKWJ5xcGR4EhBoVMmcYzOLDCppqAhH4Kp64dtfSgmAGcuPMfu3gMGB9t4C9CoKtAdTq03GAyWeOPGIRdORxxuTfjzf+Ez/IP/7YuEyme5vMQnfmSRrbvv8RM/8uf4O7/2l/nqL7yBWXFZW6+jwoydTgujSzB1DInjmEkCvra86+FwSBYrGo2Gte5MM/r9PouLi0RRgFKCCxfOce/evXmw0f3796lUKvR6PRrVM3S7XcKgguuEfPet9zh79izf+c53+OQnP0mpVKLdblNtNqiUQy5fvsxSc4mvfvlr/PSf+Wk8z2MU32Zv9ybnV9fZ6u4T+oJ6tcZwMEAwCxhyUVLhKOuTLgVkQk+RT5uQOys6ThZUs8J/pguQykJJBmVtEIUgTacoFcepr7MCRQiF0YZiyuO2dow23VVrjTb5nK6TFwJjlBXbCIV0nCn6L9CPvfJ5AJZdRZZbIao4picJIcAcZxnMRnlgb8ZK2WLzSS4joADMlKKVjIbk+ztsXX+H+vIKy+tnSNOM7mCI0YJJmlB2BEpZzr7WmiAIMCZkPB5bnUAQEJUrlteZDDHGEAZTRyFtULi4SjEcDhh0Dum2d0ALJsmYgoKoUuXKM9d4+pmrJwrXGYXmeALwh4kSzYkCusAglKISlbj61GXKnuLVW+/iCih7DjkKJSXaPRY/nhQ7n6TLnLTVBOYFWKHtcc3SeMeTEfHuhEajMaVL2eJfKBeh3Ef2yAx1n1GV7L7VjxTgYnoMUmhcR+E4Ic9/7CUK4Po73+Xeresc9jr07t3DdxWnNkf4fohUK1Bu4ocOQhckSWJ9tfMco+0kKsvsw+3k73iysJoJ9WfHebJxfpLra7/zOa7f2+O5j79EYyHir/23v8BzL7/ET/2pn6HX7/Olr3yZ5uICn/vN36RRqaC1w3gcM2gf8sbXvkg8inlwx8MIWF1ZREYB+9tHOJ5vnXKyzE5gHJc0SaeotyRNc0qVMkGpSYZk7fQFhuMRjjY0ylW8cES79XBOoRvHfeK9EVFQwtWB5YCnBctrSxwdHeG6LqVSiVarRalU4sK5c+zu76OU4rDdokgm1tK2XsVRHkcdTZJMrCVjmuIFIdJRdA8G3Lu/RbO5wFBAlo4J/Igky6k3Q6qhoh6Awkwb0Cd/Dv+464MagJPg0smvk45r78XKsb7pUiDFsU0wHOvOnsTyQpdKpcywPyE0GpRiOByRjzIaYYQUEA8LeiVwVUCEQ61qqC8YvMgn8kN6W9eZGIHfvAqFxnUcUF1wHBJdMBj2ORv08IoxrYnAlxo3GhMnVXQ+oOEIlKspFAhPUuQJSdrHr7gsnckZdwqSjsOwNwHhgYYorFhXQSlAg/JKtPf3cJA0Kq4NLZOS4VDzP/4P/zW1EqSFRhaCJElxFbgKxuOMSQrjkeTwSIMakKfWDcqXmjzJqJYDiizm/KpLIgQf/9EfR4U1lPLJihjXD3A8lyy1zlyLy4vcvnWPLOvxcOs2S4sbjPptWg/uU6nVadRXuLN9n257zPrFiEsXLvP0s2scdQ+5df09hFIEfkRzYZmlhQbj3jY6TXGkptNt02zU59RU47iMxgmbm5vcfriH53kMR+M5KFtr1BmNRnR7A4aZnYrfuLlNpRqysr6AdAMODneobyyy3DjL2N1hWPQ5MtsgDcp1KYoUkhg8yEyCKRSF0MTpvz7X7A9ifSjaoUajhusqqvUKgwG09/fpHe1z5+51/uRP/hhLjYAiy/nRH/4Ev/PbX+SpqxGdQcJB+5BRp0XiQfhUkz/7X/08f/2//3lUO6XX7zAYDcFxp7aRmlwXJJnGcSAqh/MHte/7dDod2u02SZJQKpUYjUbzZNTRaMTy8vKcj38y/GcwGNDtdhmNRuzs7HDu3DmyLGNhYYGbN29y48aNOQI2yx547733cByHtbU1xpMhW/vXicWYSX9Iu9vm4a51lXGnIl0pJY5wjl9SIoylWsxQ9pmH/hy1fawJOJ4izEbP9s/iMW7+STTzEdGanhV2alqwZRQ6g+I4PZWpfWIxdQgqjEYLKLT92wh7s9EW/v6eIu7kNGF2/LPjVsoWmUrY7AIbYubgPuEkMCMUQqm5p7zAINMx3d0HHGzdQxQpvisRKHIDrusTeL4V0U6djGbFoevapiZNU5T0UI6Hkj5SeMRpQZZqEI71P5UOYRhSLddwpMIR4CqJNGYaeJWjlD89j1NrQr5XeHiS2/74ez634zRW+REEAZsbZ7h86co8F8BQEDgOgXuM6p8MxHJddz45m10HNsPAm//+s8As17XuQq7rYh1MDVmcHDvJFDZtWhvxyPE+ur/FBxbY8/1caITRYArKpZArT1/llc/8JP/Wn/05PvOn/gzrZy4SVBvs7W/zcO8+vdYeMh1jimSexeE6dkIz+1mFzh7Zx3NR/olmZ6b1OHbmkk88VfXejRtUywHjfp/f+/xv8TM/+29z5twFDlstvvCFL/Dyyy/zqR/5NIvTJuyTP/ppOod73Hn3uxw8vEe9VuHUxjrj0ZDJJCGsVIlqzWlhkZOk1oIzThI8fzrBchyCICCZpHQP21y8dIVqY4Erz32czQuXKZwQ4YacPXWRZmXBFjW+j9aaJMtwi5x6rQza5k00Gg2iKKLf71MqlRhPg+auPfssDx4+ZHl1dd6AHh4e0ul05nvMgh8pnucxGI4pVcr0R2Ok47G8dprVzQsUBpQfEEQhrh7jiRTnRM38QY3c49OgWWP6+Nc+XnzPGueTn//n0Qp80LX9h33/7Jhm789xcrCyeiTlIR2LWlsgyX3kGn9Sy3FDlOcSlgKqrkNJugSJBRxqFas5STJNTxUMTEaRaZZWFilVy0jXQaqcMHIII+v4lU7GluIqbEDgOEuYZCmDuEWW25RpdImkMBjlMUkz8txB4KALhRIODoLJKMbzrZ7AcwOEgkajQb1as81mYoEDChgOx5xaP4XODONBRuArDnfbFIWmXltioWZIYwgjS11KEjvxlxIcz9Jm00QxTkDj4xmByHNEplmt+dR8iZ9Dzc249NRFzjx1hbDUoN5cpFSpIqSk1mwQTe/Le4d7BIG9p0WBS1EUVEtlJlO9wv7BFs9eu8THPv4cw+GQdrvH+zeu43vWLOHSpUtEUZnG0jK+76KzlCwZcdBqcf3WLfJCU6svMBon4PisrG3g+z7Pf/RF0jQhKvk0Gg2Wlpbo9HqEpQpGKZZX19k4dYYz586ysLSII10LvNbKpJOENE5wIwcVGqQzAy1t06pNRiEycpMzESnDbEhaPNlJ3IdtfSgmADvb7+IRs762xBtfe0g+zLlw7gJv7d7nV3/1H3Hx8ibfffMhp1f2uHBujWa1hCk6bL3eRvQTcgcuXV7nwcER33z1G/ydv/KX+fOf/UXSzCdzDFJoiiwn0xCVffI8pzecQIEVGXoWQZrRZoqiYHl5mf39vamrxJA0tTzSyWRCEk8Yj8e88sorZMmIq89e5u7du6yvr1Muh0wm8N5773H16lWiKOK9997j2kdfwBjD4uISe3t7XL54Cdd1GQx6JEXGdusBFzYXOLNynqTI0Kkh9BwSY3nVHsdovplabEopMMKQTVHUkzfzk0LDk9QfxNSdYsr7P4nKSmWdavIsO/E9MwtPg9G2AaDQFNlUcyCcEwWkS15YjmqaZShlcfFMKwIjKGavwko1Hcchy7NpkTT1otbHRersNUtzdYTEd13r3OBOffadP/4D8l/F0tJycYVSgMIVQJ6S9lrEccydmw2aS+tUG8vEk5z+4IheNsbzS4Ceh4NJaQWKUtlOqTCC3Bgc1zaBeZZg0BRGoHyHTBuUH+B4UMIiok6QI10FyiXw6igZoKSHIAMKjFEnmiw93yt2emOpW2JaPNuiZbqHDDgC0sJQri9RKjd55Sd/hps33mXn7nXKnmFtaYlUT1FudSwchuNCfWaDOiuQhbACzBndDKZ0r4OwOz4AACAASURBVELjOZZ60+116PaOAIkblpHKIL0MR3k2iEdrfN9/RCR8Unipp1MAMd2jGjnlUBsiR3BmfRnWV9HGMElyHn7s4xwcHPC7/+yfMBz02Nq6RdrdxV85hxvVUdLHdXwcdUw/Ermlv9n31Rz/HnNxsp7v4ZOUpSe9kiTDyTPcLCZKciZRiKccdnZ2qDXqvHfjOruHB8STCa7ncf/hHr2du/QOdjh37gJHrRa3eI8iyXj+k6+QSwc/avDg/TfxAp+jTpvID3DEzCkpxnMVUjosNsq4wiUKAowQOF6JnAlL5y6QZClvv/Ea5aVVsiTFo6BWXsAtN+mMRpRW15ALKxzcucNoNEIIwcra6nxi0Ol0eOONNwjDkKOjo3mgWRT6BH7EUadFHE8olSzv33VdhuOYUhhSq9YZ6YLcqTCYJFRKNXIJG2c3qYeKQEx9/Z/wufuXsR65Xk58TDoOKKshk9LaTs9op7N9K/9FeFD/klanP8EPquQossAgcoFyAuLxEENMY3mNieqTmAzjaBzPoVyr4WmX/daY3J3A0mkYJPQ7fcbdI5y6z2hgeNA+RCy5BKHkzsF9lho+4WiCU95k0B7gVhXjkaLTKvA0kElE4VIPanhMuPX+ayw6V9DKp1LyaO+3OeoeUCqXiaIqmZ5QFIJy5DM4OiRwKniRix9oWvuGWrPM0eGIhcoEN1CkukAYQbWskGjS2DBJIc9hMMzIUvDdgpJbUK74uDqh5CSkGayvwpWzC7z4iRfxfEXkedQqIf2jMaNRnzid4EcRO9v3qVRK3DnYJnIcNGB0gud7VJdXOeiNeOH5l3nntd/j4b0WT330Gt3eiKevvcTh4YDhJOFr33iNc6dOc3B4hI5T9h5u8alP/zDv3bxFY2UD4ZXYOewivRrjpGDcH3Jrd4fMUZxaWqBerfD+23c5bO1x5SNXOTo8sro05bJzsEcUhESez+52m8byIpNxH1kuESdHjEWPQhQgPbRxMTlokZPJnF4ypChSBsSAx37ryTqvfdjWh6IBEDqjXC7xlW+/jokhCMuU/ZR2q0e5Bt3ODuMh1Cpl0qHhxo1b/Oyf/Dl+/d3/h1F/gL8oybMER8H93W1++3d/C7/wEWaE6/p0u20mkwnOtFgcjwt8T87Fie6Ukzwej62ot1TiwYMHNJuNOUXDdW3xsrS0BCafx8tnSUwURTz11CXu3LnDlSuX6XQ69B3Fzs4Om5ub1JsLHB0dUa9Vefvtt3nmmWeo1+vEccxRr8tRu0u1XgHjUi9V2W5t4zkuwoj5A2ouAJ7erBWCXHwwAgV8TxH9vWjQo7QMIQT5tPkxUmPMyUbiUbRq5gJkjECceBAI6QD5PB+gMBrNSfs7aT+mT0wNsMgGQh7/+wOK/5MNjRRy7nAknuCD6OSxgpxbakoDghxRpLT39ii04PzyKYxWBLGHzmPyfFb4yyldxqLl2kh0YciSHIwkCDxs4FqOMMqm1Sq7LxAODpLcyVBFjhBWlOr7IUZI8kfADnmi+DdzDcLJ9xyO0cp54SwEKIEoDFJaHn6qcy5deRqU5L2330THKctLi5SiiCRN5ymn0lHk6bGX/+O5DUIIlONgtA05m42AhbaFs+dK+t0Og14fKRzcsIzjekRRdELjYvfpo7x6iTYGY05cH+Y4nfek+FgJyxk20xyQxeVVytU6Wzsv8PDeXW7tbtPPR0R+hcAIfK+M7/rkxbQZVgXCkZhs5sT0qP+/pTQV8+bnZMP9pNdoNKK6qLl18wb5sE9taYF/+puf4+z6JhcuXaTd60+TfCNe+Ohz3NkbcLi/x9tvfJvlxTqVWhVPOWxcOE1QrWNcl9DxUI61Uu51O1MBuc94PMbxPSbjmCCK8CoVSkFEmmbkmSFKEhqLCxhH8vSlj3Dh8gW6D++wv7nJd77+KiUv5KmPvIBXq1M4gitnT/GFf/QPaTQW+PrXv0ZvMEIMx7jKvsfVahU/DKnUqsg0oVotc9Rukyb5PPPFGIOSWHtWH1S5TJzGjNKMsNRAIQgrZYTv4vshvuvgOmY6QQK+z63HnPi45ETRbGzjbcT3/dZ/waWnd/N/voH+B00I5hozYe2mrcD5e4/28WnFD3IVuXXvS8hInIJKLSLPJCq2WhEnUHhRSJ5mSBxUDmkak5vUuswZjetXidMB6WhMbjRJocHxyQpwCkOhNZPJhFpNUpU+oElyhaMlYanMUb9DOQhRRkGWkTs5WZoSRQG+LFEKF/n6F99k0JlQrnhW2F4to41Ho9KgfbBPPBmRpwXra5u8/sZ3OH36LPcf3iONBVlg0EAUheRFwWSS4gBhJBhODFliae1FAUoUhL4iTxIW61APJZ2u5vRGnWsfvYbyXDutdQI7ESkM9XrdUoOFAp3T640JQx+dTFCOx/3tB5zd3GAymXDqzDlu3rjFm6+/z0J9HSklSyurbG1tE5UblKtNzl1cQ8cxjcUlXCmoLa7wnddeZ+PUGarNBSqeR+towK3btzl97jST4YTltVV2dvfJ0oKtB7vkGsJKg7v3d5FGEydjXN+lKHJ8lTPOC06dOkN70COdxJRqVZIiA2VIksn0ohIUucE4AbmeoKRDZgoK45CZjOzfmAA9sj4UDcD505f4yjdfZfPiCkd39rm1s40Jc6qVBuFCg3ffvkM8gffevcWP/cRnaC5n3Lj9JfxyRC+PyfuG5z7xU9zdO+R+J+XWa2/wX/zsf8Lf/c4/ptvp4QVT15HMkJvUhqWi8EOXyWTMvQd7XDx/muFgTLlcZjiOWVhaIY3HeJ5LuVwGBIPBgCAIGPZanH3qEketPcJShZ2dHZSAfr/PV7/6VZuW1+1Tq9UYjie4YUSt2sR1JONRbKcMxmCkorHQ4Knz5/jWd+/TQ3C25qKMZjhqk4qAShQgtEA4UxqM8lF5To5GOAoPy8/M8xzpBvhegJIujrIUDKMctJAYOXWkSO0VkBkJJrd2kVMRrqAAnVOYbHpmBAUFyohpMW9I8xyNTeu1PkGOfUhMC/uZFWOWJ6i0wHdCyG22ZKE1uRbkzB4gcp4qaYzAcZ2pyHda4APCSLSEdCq4dF0xpWF4SGWeuAhYGIPUBklhOxk9FT/nBpGljFuCUbdDUFlkeW0T3/dJtHWGcRxJqRTOqSDz9GQhCCLfir6yDNf1iKbpymmSEroOykgEOUYJfN/FcWxzlWfglyKUpzAiJzcFUhuUAC1tASKEQBiNLqyjhJ2+SASaAisGFlJi9Iyy4tjRsylIU1tkLa+s4rgeX1lYJx+0uHvnHqfOnKZcLlu617T49fzjtNsst1MmMRUYawyRbwXQKrEUG6Qg8lzKkc9wOEYJwevfeY2gVObylWep1RpEYYArhKVeCUle2EkJQCEUQli3IKRjnwkG0FbTkJ0MORPCurbMaHaupIKiGpT50U/9OA/O7LCztUN7+10Oem9SrS9Qa65ils7gegFOFCKMZBxPAOZFvg0jS6eNnd3j8WRsJytCoI1GYObC1Ce1qqFCFoKq7/Pa9Qd8+bc/R97dY1Kv0R+OaS4ts//wIRevXeMozRn0jtjfvU0U2EmK41cwnqIzSTl1wVIf4ygmiKpEgU8Y+uQ6I5SSqFLBSMEkSJjkKf3OEf3ebfb3thjlOacPO5w6dYqD1iHDu/c5aO+iioK8SAhKEbWFRZTJUfmY1sM2r15/n+WLl5hMMp7/4Vc4c2qDpcUm//uv/E1836U/HFMSkvMXLhEPuuxvb00btAnlSo3BYIDjR8TJCKkEjtHUgxJuKWCcJfRbuzQXFwkaFaJyhZXmIpFJceRUV4JGyqmIW2gkanb52+AvplQzraf3CE1hrH3obKp2sgA/icQLlM3gkPbnANbE8kTTcVx8a6SQaGOTqIWw9Esxq9u/BwAy088V05hAZRPgsZNHIx2EdJBCIafHYTDwgfaJT+beGwchrX7MfjGiKhXeokAuhITjMiKSGB+a9QbOcJ+gcMkOcrb1bZaaPtKpMeilLC+XCf2CB0d3MMqj7Cm8agV/uEcYNcjNkHrWZ7VYYPeoR1j0kIFHPslIdc716zEmabMQVhFFSq7a1JdWqAbP8/D6IQfbb6FCgZ8qXC+k25lQW0zQccz1u/dZWd9g7dRZ1ozDqfVNer0eyytLdNstzm9s8uDB+2R5gUOCh6LkK5RwiQcxJrHntj8EV4CvPCI5ZH1NcuVygwtnzhLVVokCjzDyqDSXaa6ss7ezjedaI4aFhQXu379P3Bvj+3C418cLPcqLy/Q6h+xub9E52OXjL30CD4MbwrVr19jbPcKNaqxtnEaoMt1hmwX3Ar1eB6lheXUFnRuiistiFKGLhKBa5/pbv8/Vyxd45ukz/B//1+9ALnjxxausb/hUq3Vu377N2tlVnnrmBfb2DvjGl79Mnmg6ooujDON2l8WlJqYZs3nqHFKC1gJyn+6kT65yyAuMSJFug0J6jCb3KIREueA6PvlkQrlZfiJ79sO6PhQNwGvf/haNekQQVfF+UtKf9DnTXGdrv0N3t4PJoLYItUqTb7z6uxwMxrRbUHF9RnnAuBvz3/ylX0YLqNe6rGzAP/jcb6BVinIk2wc9nKCEUjlZZtGbLMvJi4yigPPnN+c0haWlJfr9Pt1u1/qXS8HW1hb1uuWaHh0dcf70afJMc7DfIqrESBZskE1UY2d7n173q/zQJ15iZ2eHra0tVtfXWVlZ4WBnixdeeIH333+fdrtNmsYsry0SXz/AFYo4n4ALl05d4f3td/CdkMAEFEk89fZVKCnItE3OtbiSsqiSMTheOOVd+3OfdbA3+6JI7MMht9+VaStEtULGY2QSoCgMQmjyIgGsfaURBVmRkZtkLjRGH2cNGGMYp/H0+wuSOMORiizVFJ4hnuQUusAYiyJrfeyhDoJi6vgzQ3GllLhKobWdTFgEWaKUOy3YwHHUfOz/pJac2pRiI3vsnhICR1rLPlEUoDzuvfFV9u8scPXlHyb1yph0bIVO3S4LCwsIIYjjGMex3P5er4fveYRhSJqmc6qMEJI4Lwh8H8eR+I5LEHoUWW737DTI6ujoiE6nw8b6Gr7r4ihjbSGmS00nLtYIVKNc65aCLhBaIwyk8QhjwMXgl6qWxjNFuUdJTqnW5NpzL3D04BYPbr3HnVu3qdVqLK0ss7i4SKYLiqlF5wx5T9N0fq3NbCCFEHheME+MzfMcnVvKXZoXTMYjhsMhvu9SqzWolAP8C0+jjAThTMOSFBqDyTVGH/8/M6691taDW5/QQZwUyWutMbnGmV4D9UaFSu0qn/mpP83Xf7ugu3+f1u4eh60dau07hFGVUu0UnluiUl8hNja3YLYfsyyb8/1njfFJbcKHYQqgvIjB0R69QZ/nn/s4OklZrjWpra2xsrbMN77y+/zIj/04ixubtNtt9m/8E8a9Ns1yHelVWGkskFervPxjP4brSDbXTjHojFi/8DR6PELcvo7IJQNjXTkcz6VerbPaaHDq/CXyUp28P6K9u8vWnffJJi0m/TF5Z5fDYQcV+mycOsdz5y7hCuh3j5gcPKS5sMyD9oj19VXkIMZxFK9++Us0Gg1+9Cd+kk6nzXvvvDufuDzY2SdLNXGSgcnQ0uH8M89x4eoz3Lz+PlEa0+n1uH/nLi/9+CXanZ5NEs4y6o0lqtU6QTZkterjKdAomN4zTxbwjy9LPbOaK0sFy+aTtz98Ons8iZuJ1/+o9cgk7wMai8eP85gS+r0TADule7KT1T9s+WcbZP0aNZUxGe0wHPTBDYlW6ozSEem9Q0xu7ysm1aQDn/d3O8hnPDJAOUCeErdixMQlCEOyOKGysERjfMRCY5ntvR51bwWRQztZoZlI3LxDd9hHG0U+hHGWcP5MBE6D9qRNv3+fBV3w/7H3ZrGWZed932/t8ex95nPPnaeah65mNXsgmxQHUaJIU6YsGkgcJXDy4MBx8uAEgYAECZA8BUmAAAJiBEGA+MFPAQQPkhUJpEhLIWWSTbKn6q7q7hrvrTuPZx72vNbKwz7nVnWrGUm2lerEXsCpe+tM996zp2/4f7//7t5tSk6VxXNz1MtrtPZCrly5xv37b1HxfZpza9Srs2w8fMDV57+I719i/cKA19/8E1555WXaR2M80SSKO8QIKiVBlmmSMCJLIE0h0R4WIfMlmPVG3Fg3ObdW48qLv0qGi1PIaM7UMRNJqzeiMiOxDAMVp3THpyRhn167w0ylRncUYhU8gmAM2SmjQYcrl65iOSZKx7RPN3jvndu8cPM6u50Wx+2QxhzcufUas40yQg9wXY+j413ccpGF+TkOdg7Ybh1ybn2F3cePONg/ZW+jw7nVJb725c8SJxm16izx8BjXzGg8v0ovSnh473U8x+PKhXWOjo5YWFmmddIiDEMeP2hxuttj+VyLc69+lll3jtjxaVtztNUpcTQicwwMT5ImY7JEcP7idRBDBmGfNgHDYPSsd99P1PpEJABeoUCShqRpSCJDltbnSYKIv/HXv87v/c732H4EzZlcM245LnOVgL/xG1/mt//3N3i0GfLqV9Z5dLiN7UOYgOUUMCsuF4prvLF9hxdf/hQfvLU1kZLk57y8GgeOk2tGV5dXsCyLfr9/NuBrCsF4PD4bGBuPxwRBwHgcTgLYfOhvNBpx8fw5TtsdlpYXKJfL7O7ucv36dUzbOqsIKqWYmZnh8uXLbGxs8PjxYzAz+u0WtiEJUk0YJJSLNuE4wK7mw5PJBGFomiKvyGiN1hJhWB8rm5nKdqb3Pz2A9kR+M30fmJ7sn7zXk6HKHHcoyJRCkpvjKDH1C/j4i9PTgc2UTPRhTONTeManaDMfVxH7uNsUCfa0kdazWrkMRYDKUZu52drEI0ErFAkohYwGhFrRPT2m2FzEsXwMPMbj8VlwOMUZmqZJpVJhNByeDQVPaTnThCtJU7SeUHZiA6WzibQgJ+n4hcJHpFPiTJoghEBMzeAmlUg9HSYn72pIJZ9KID8coOROuUUcx+HcuXM0CwZB54SDo0NGo1E+zOu4lBs1slSdvU8URWeDZkrl8rCfG5gAwsyH65jMI+zv7nB6dMyVy9fOguuz/ZqpNtn4WPM4yINyw3oy6KyU+lPDjKmSgEJYFgjJTLNGc7aBClpk2QipE/rdLqNRgGGUwEtJHA/MJ3I127Zzn4dJF8SYkLyeHhB++m9+VqtcrbO3/SjvTIYjatUGwyDkxZsv8t6dd7n63HXW1s9zcLjDOz/5CScHuzh2AS0MCoUCmZKsX76CXypTKvm52ZZQCNej4vkI02Y07LOwtsJCqYRb8KiWG2xubvLe//l72JZAxhGVoo/tlhAyxTWh0z5h7fJFEsCwbD7zC1/mzru3aRSr+GWLe3fe5+LVKwSjkOO9HcZxjGOaCCT3735wxv0vTI6BT998gTd+9uOJtC0fkh92W+xubbN27jwNx+Dhw4ecW7uI1IogCikqRalUougXKPoOjjvtWglMjLy6L/685x41KRL85a2PSyL+Iq99+usnfRUKLo6qEcsRVlYkYYzMEqQyiEKJGkZ4Vg4ayDKNzAyO9uDKhVw2m2Up/X6f3mmXklXBEQ4yTkniMVEcYFoGtgOnbZvUTlhcep442GHY6pOZJmEoKfouXlHg+CbKEuzdC4iDmPVzOVq82xlQLZ2jVp6BGYXrlXnuxkvcv/NTlhYW8LwyF9YvkEmbjc0dRuOEK1c+zfvvv0+5MJMb2tkaS7iMxzGmCaawUCpDKbAdm6oXcu1igbKjuPniVfq9DrZf5vz6JdonGxRdBwxB1S2QZgnlcpHxoEep7BOFKbbloLKELJXMz8+z8egBVtFCa0WpVOS01WH78SbVqsfVq1fx/DKlcpO1tRWKJZ+XXnieYDji5LiLYxm4jkmlXKLdOqFcqeD7DqetNrdvv8cXv/BL/P4/+QMcx+VcfQ3Ts9nb36YoMpSZx1Z3d05ZW1lg6/CINFQIu8D9zUfYhku/NSCK4PrlFQbjEf3OKVE3ZX59EZEIojBGAllmoKIIgaLklShWZskSg5IWRFmEZ/+bGYCn1yciAbAsi8e7J6ysznFy0mOsxhQMwT/++99n+YrHzkbChat13nxth1/5Kyt0BxmkmigIcRw46nYpVQWDsaZQgEa9yQcne/zwuwdc/0aRza0twjhGyTx4UTrXASKhWMwrrPv7+0RBeBZUWpaF61g4jn12UZ8iBgGCIEAIQbvdxrVNjo+PmZmdwTAMisUivc6At99+m69+7Vdot9u88PJnaVSKnJyc8J3vfIfDw0P+zt/9O1SrZfyChxMl2JTpdUOGvWOKfgXDdDGtHBepFRgi17xLS5DD6Ca4czgjrkwrqpb1ZGgrkynmpF0r0zwoVCKXR+SDnvl7TAMUYUyrQBNqgWGQpvHk8exMey30kwBs+nOfVDoFauIGrPU0EZi4Bk9vTwdp4uMTgKl+PH9/jWnmf5thcjYI/CyXmnw+mGDoyTCdEEgxcZScCmuiITKNeXDnDW5+/qtUqtWcmTwhSz2dIHW7XQDCIDjb957+XBKZ4ZgWtuNgCEEQR1jCwBDWZBhVnHUSDGNiLKbzDsATpOpE3jMRAkwHsw0Aw8QSAiEm3RYEmRbITCJlHtQqLbBsl2vP3SCZq3G6+5hUZvT7fY6PjxmNRly4dBGvWMay7A+hZadBdxTLJ467hoFXsPPKvZkh7fw1WZZhTFy4bVMQp5L7D+5SXVjH9308z0OYBqbmTJomJh2qaQdgOicgpUSQTX6+IM3SM4KPYRgIq5jPbmhIswDL8VhfmeX7ox62JamUPQZDUGFMEsZsh/cwTZPG7B6lxqUzQso0UcvnikakSYpGfYhWNP08nuVKM0XBNVHCwLHBsg2+9q1vsbOxzcP37/K3/7P/lP3OKX/vf/hvWPEdpGFSKdYoFavMLMwRpynl2hwXL13BsXLvBsMucO7Gp1CjAc2lJVbPr7LzYAM5iugN+5hCYmNQFmDbRSLbZqxSauGAKIRREuGVKzglHxUq0jihd3rI7s4W3/q3f4N7D+4j44yCMPGeu8aDh29TalZobe1y2j3BKxYRk0SsVCpxcnyM1ajgOwa2oUm1gZnF9I73iDJNdzjiyuWLSFOAY5EKTbFUwjafkETcgsXS0gLCCkGkaBlg6fQv6Cn6l5sE/EUTgKef+3Q34M/bcXiWyzNtYmky7napOTbbSYCDwbgd0W0PKTsWTtkkUi1UlEJW5cH78OmbCmUo3JJk2O/SPxlQSCuYnqLXGSNJcE1NIscIDHbbR/zoVsavfLFAaxBR0zabj/scHGouXKxysD/Ecw/ojiL+r38M7X14+ctdPvPKOQb9Ls16mV7rFFM4nLTbNEoV1lefw7QzHLvI5tE9/r2/9XfZ2HifTsvBKxRxRMrrP36DQgEMp0CWpVQ8mzhOkYnEULm/QBAFfO56idUlDwvBCy99lXFiceGF5zjZ2+Xc/BLvv/s2sTSYO3+R+swyJ1v3QWT02jGzzUWikebkeJ/K7DJKwN72DtlcmTvvvsuV6zex3ALLSxcxSQiiiCRxWF59jjgccPvNx9RKRUqVWRzbYGf7EeWSQxKVSeMxg1HG+QtrfO/bv8/S6nlee/NnXHrhOo4rkGnKKOzTmKlQnKmy92CbRNtY2mB/94DYthj0NAtLdTzHQSuTGTPGdsscB0dcv3SBwc427oKmmiyQRYJ6ucZJIpCmiaEkto4pzyxiOU0SpZmZmSXTiuP48bPefT9R6xNxtB+GGVVPEMoxjWqdvcM9Hu0+4r/6T77Fw7dDrIpkMMgQCo5OYlqHQw6OTlFAwbdo7Q3wXYeXXiywurpKkmpIISvD6NgjjYYksYntTKraQlEuuwiRU4BcO8cWekWfTCYUSx6a3LRHK4UhNMWij+flVaXRuJejFYE4E9RqFRr1OseHx/iex+HBAecurFMsl6hVG6ydWydJEo7apywuL3HhwgWazTnQJn6hTLFcQGBjiYREhzhuhZlShZLvEWUBhbKPaeVurhiTtrNQIDIM48NV/3xQM2dvm46LRCNVXvkSCpTOcjfOibOuErlzr8I4+79Jbt4h9AQLKsREm6/RmcTQGlSeDGhD5LenOhFSSrTKUJlEKc4SgnwZk+8NhJpIkqSeVEmZUIrysTaljTNcqIkAM7cZNwwL07DzANt8tgkAQoGhz7wNMkRuhy5MMvL7tNaQJZg6gThg1DrEMk0cp8BwMCCOwol7apy7fyqJ67pkUj6VUEwM1UwjD/JNgzTNEIbJeBwyCmJSlc+VWJaNkuD7JaZa+0zlw3NSaaQSpFLnRCYFSaqRWZbLmZRGSI3KchqPniR86HybGkJjWwa2lSeQtlciKVQp1uvM+ib1Ql4dHaeS1mBEu9vBcSxc134yIGsIhGlgWwZqYhAjswS0xHUsBArTsM+2MdogS1U+CGyY7Dze5PRomzgOSTJJJjlDg0qZS6WyLO8wJJkkTjMwbLQwUKkGKdAZ6AyyWJJGGWmUIeMxOSnUQCuDNEop2C7YHrZhU7Qcip6f4xGFg0olWZwybHdJhqfYZGiZm9lpJRDawJpQkHJVuM47EJaJaecB5rNcjpkhVZ44drondIcZi5euEfcPsW2DB3fvca5ZZcZzOO32qJaquK6L6dhguli2x+r5ZVqtk1yiZpg5SjmMiGNJ1Dri/p33UTql3+1i6NzvQwmwPZcgSVHaIIk1Wb3J5c9+jhs3X2GmMc/tN9+ifXzAoHPKH337D6hViuzs7eI6RW689DkCpVmcm0foAioBbRUIMknr5IRw1Gd2fo52f0gUBbR6fZbX1rFdByVTkixFaoXIAiq2hWVV+OwvfoPrL75ClmWkSuJVy1QbdWbrc5ipxhVgWh7CcMDQZAiEzpg68ebHZ06XEkwHfiVC5QhdrfPzab70h5KBDxc+9Fkx4EMBvZAI4wnm+aPSHoNJQeUj29gQ4sxI2PjIa7ShwdRo8YTKxeS5Qud9Wf3JCBE+tOI4RA0OMNMhrmkgYG+cAgAAIABJREFUtE+qBX7sY0sLxyug0IR2mV6pyNv3diCB1JSUjQZls4aFgWOAzgIGw5DjzQ6pVKS+JhMDsIsUqiX6PXj0oMfxYZut0wFZaiIjCAcp4yOLjXuwf99jexOiEMYnM3xwZ4eT0wGG47O3d4DtGNSrTRYXZtjZf0Sl0ODug3e5ePll9na3GXU61KsrzC+u8sbr79DrxphmEZXl84KOVUVlkKYC27ep1+YxpUZaGiy4ePUKeBVq8w2iQZeKZ7K9vY1brLB2/gq+WeBgc5tSaYYktrG8Ku1uj1pzhjCDSsmj7Bp0u22G44Dnrj+PP7OEU2oSKMHpKOCd27eIk4Abz1+h2ahRqjUpFBtoI+a0dUizUUNJE8tQhIGk3qhwfHhEsz5PHIbceO4aly6tcH5hhnLJY7E2Q2dzi9Odbe7cucetdx7SnG9Qrxb58i/cpDMa8d7dXdLQYNjvM79wjlFvzNXz5xkcDWnU6vSDEYPBHvVKFUfYxApkNoPUFhQECJMk20EQYOgarmVjJp+ImvcnZn0iPo3aTIPFOZfDbgvTtVg5dxE7zfiH//AfceXGPB2VEYQdDAPq1RqRmfLo8RGhBBlnaGAUxGRAGp3w/gcxX//Vczz/75Z57wf3iSMD31WMEo1WEstmQuawiOOMatk5o+1UKyWyLKNYLGJIjVQZtm0yGg+QmaZcLtOo+riORxjGaNvFMARbj3dwCh4PHzxibm6ONE25ceMGj3ces3ZxHYWmUm7wcGOH/f1jbr19m9/8L/8LikULDAfHcUlaXTI/H4K14xBdGhKnI0ahSdVq4jjORCICYCAnhqdnF4FJpXzaCTDNfPB2yniTUpJNtcdCIsgDdNPIK7LpxAHTcSZUm7OwJUcXSiXPtMta5wO6U2kK+onbqZSSLEnRTs7vltnUcVN++DmpIkkmcitlojwFk66CEJPEAs4SE8PMh10NgzO34GeNU8y0BZnCMDSmldNnJhsFDCNPxsiJU1pKdBSwff8DMmyee+EFhMhRmABSQbHkk2aS4WCA73komRNqatUqWmtGoxHTQdOyX0QIwUyjSRjm3SvbsUjSDN/3J6QT0Erlw7+mgaUshFAg8mFAPdkeKs1wnPx0kFenJ0GIzudBpITsKazQdLsbpoNbmcVyS5SLFfxCkUJxzGG3x/HuNq7rUrBMyrUqC/OzxElOhwKBW/AxTPtM4pSkKYWCjV8sE8dJ7oTsujiTTkAURTi2jQbeeftNLo1DLlx5nlK5gjnxQBAGpFk+7yLUEy5/HI2wLRfTNM9kfdOE5AzRKWROIBImGhMpM3Qi8RvzdLpHWF6FRtGkUE45bbfotMfYhkE0HrDz6A5HXoXa3ALFygyeVyRTTKzrFUaSHytP40KftSvlaDTCtBwKBY8wtnj1V36Z3/tH/5Do+ID1c+v8g//1t7h+7jxxGHL+wmU8r4gwbaq1Rr4vBiG7u7soKbGuXUUpuHPnDlevXed4Zx+dpaAUURTn3hWmgVQW2nRozM1xY2GJ0WjE1tYWo16Xd965hWeaOK5FqeBSLvkkccS416IlI87Pz7J33EHKlFbrhHDQo+DYjEYj1s6fo31yShYOGQ567O/v8+JLr/DwwQOSLKNUrrC2fp4H9++enX/M4YDu6RHXnn+Zvc0t0uEIy3SxhI0hNKWSz6W1NUxSaoV8OFcLB5WLgIDs4z/YpzFA0+D6qdPU/5P2/+nH/yJrWsF/+mz4cfvXh+Q+06q/EJM5mqdef/YLP3ta1UdX3E6xkj62BVFHE4sU07epz7pEhQLFio1MMyLhUSyVKC8V+OZqkVoxY2l+ERUecxx2qM6V8dUKXqVJ9/vfo3vUZuymjA5jUu3j+fMI0ePhgzaWCf0eOIaBlZbYvDVCCeifQqrAkXmB5c7rLa7HHq3TkHP1I5ZWlplvXqZUneeD9/8E27Io15f55a/9O9Rrs7xz6w5Fz6HeKHHa2mfUHeN5JovLaxwdPuakFWLLFuWKg2U6uL7Hw61DVpYaWHS5/vyXKBcrVOtN0ixCJgGubbOyuo4k9w+I+m2qZZ+jgyNmZuc4bbfpHu5RKRWZnV+k22mRJQHN+QWkklx7/nmOhzn84XBvm7n5Bt/8a7+Oa1cIw5CNzQPWL1zmvTu38N2cJiaTlGazyenpPuXyDAXTJExiGrUKjUaDdruNTiOKQrB/cgTaJEoc5u0KReDmjRW045Jqzb23b3FlbZ7Pf+kL/M7vf492Z8xocJ9yxeW1nz7k/IUaW9s7fPorX0OpAgOZEcXbYEhwJIZvY9gSYYectB7hustUPB+0jev+f0Pm9v/W+kQkAJv3PmD2wip6JHEtk53dA776pS8zduHKxXX+8Ht3WL9U4iQYsjY/z3Z3j/feC1le8jh4FFIsunzta1/kd//gjxEyxjZhb/eE1BiRWQlR1yQVMV6hQBBEOHaBKIxwCzaeZzMYDPLgfyLL8H2fJElIg4g4iajVKlSLNSKVnLlOdto9oijJAz7I28VK4TgW9Xqd/f191tfXef/uffb391m7cJlBf0yWKo6OW3z+85+n3KgRjXsMg4iCV6RaSVFukUGvjZNFGJmJcmIqXplarZJ3JHK/LcBEZxlT/f7T5l/AmUZe6Sf6fv0UhxwhMSZknY9q8582AjtjmRt5bSvTKu8qpDl2UhgyL4LpfNhNqTzQhydBYi7zyYd/dZZLiZIkQUs96RYIhHgyFPnzgvqpNMsUxtmF9VknAMItk2UBAp2bpYmcaCQ1eZggxKSkZuSXUpWi0xEP3r+FZRmcu3SZbm+ANgSWMHBcSalUQU5kL71eL/dLmGAuXTcPYqMoIgxDhBAUPZ9SqUS32yWKQzw/N7Ibj8dnA7UoiTCNJ2ZxYuKwrHKZVxJGGIb/BAOqJhjQaTJGHsBOX5+mefCjtca2XAbDMHeMlopmrYpt2xydHjEc9Njd2cY78Xn+xRcol8vEacJ4FJKl0dnxFIYhhULhiZP1REozDZqnkppcfqTpt7vcvXMby7K5cOkaSrqYIk8MhWnkDbKprExn+QVICWozMzh2gWzy+U6HdKWUkAmEqVAYaEyyFIbjiMT0ORwp2id7dNttpIrz403nEqOi72IZEAxbxMmYSm1IsTGD7/sUvDJa5Z3G6c96kkQ/2313OBzieTkVY231KkftY/Ye3mWpPsMvfeGLPL7zNu3DbZrNJkEQ4HlF/FIJ07EZjUMKpSIlz8f1ClQqFQoFn2JxgyAYUSr7jEYDKtUyo9EApXPTLb9Y4ubNm9y+fZuD3X1KpRIyTbHTGJlGhDbEiYFlFej1urkUs1BkfnaBH/3xHxOEIdqC1fU1skGPNAupN8p0W23GwZD5eo1er0cw6PPuO29z8dIV6pUyW5uPCEYByytr7O5sYRgG4XiE741552c/5sb1azSbTYb7bTzXp1arUSqVsExolkt4Rj+Xx2gB2gHif+nP/+cF+dME4C+6fwghnmhC/4znTYN98VQC8GRNXOFFXpD5pC0zthBWjF+YwdJ15OkBjm2QFiyUMGl1R2iZYvoucdSnNudzuR7i1FYYpR3s8ZgwHlGu1nC0oDJXZmW9yqbsE0QG7R1FRIBrtUkCqBRtjFRgJBmdboYrAxIFtu+iA5M0CSkUp7QkA5FWWZlb58H9x3RmBtQKN1haaaKV4tK561Qbi9Sqc3R7R7z04qucHB9zdHiKVjG//uu/xp07d3j0aJNGpUy1klGpl3n11U/xz/7gR3z+i19Cmu9ScTXL1XnqjWXOX7xIu92lUnJJ0gzbtDBMm5OjI7QWzJd9+r0ObqHE3t4eghTbgsPDfUahQqcDwjiiUZ9leaXJwdExocpdsoWR++8cH52yuN5ARxEvvPg5+uMeSysLBP0O5XKZa1cu8+67t1hZX2N7Z4fyYDKDI1NOjg+RMqVcrNFvd9jb2mV++Rz3tnZ5870dbl5t0GjOs7W7g234eIbLve1jXlPfpdseMw7guRsrJOkYQzQoVw3mZqsMTo5xSw3W5q7TPTrGtSJSK8Et+ljGEGEnJGGC6yqieEQcZWD//8HB41/d+kQkADoz0cphrlKnPw4YRSFvvXcLqhXqsxX+6//2N/mf/sf/npsvLTFqt/n6L32e/vEP+dwXXuG37/2QsBPzkzf/hBc+dZG33tiABD54L6Cx5DK2QSWSLIFEJAgBo3GEAKIopVh0sCa65OPjY2abjScXaymp1+u5xHvCjR6NRmT10hnmT2QZp6ctbKuIqXKayY9//BNW19d44403+Ct/9RsYZv7+1YaBe+zwH/5Hf4vbb79FNh4yHI2xqxXiqE8Jh85pB61CYgkr1jKtdAevWsYwFZYNWSYxDJVX7k0TrcSZRnxKNDnTzBsaS+SkFJU9GcQVIscf5hppMI0nSUB+UZqw+g2XqXOw1Cp/jZLESYxMZY5a1Eku3wGSNCKTCVKm6Kl8SOcnRbSB0rmD8pRqI5OMNJFnFCKtxdlg9dPUlultako2acBP9p5nW6Fau/Y8Dz+4jaFirGlVXRgoYeX2yXLSrlc5R1/oGBFIPDfjwa3XSIMBy5eeYzgKkDJjNOiQ2Q4mgs5pC8dxCEdjkLnhVbVSIUqTPCmIJ4OmcXLmVyGVYjweYyYZOzs7LC8tgEox0CiZPRmAnSRpTKqh020lpZwQh/LHDZOzBEBNiD55FTt/nyiOOD0+gnSMJsM0DaTKqBQdbKNOPypxfNIhDkIe3L3H5Ws3EaaJPRkG7na7aJ1zqZVS2JOZiCxKUFrhFnzcwpPulGVnhGFI0cuH63/y2o959913+frXv45tu/msgOuBIbDIme1SZcgoo1D0ScII28pJPdOERilFp9Oh4HuUq/ng8iCIMAyLH73+PvudMVFliSQ2kapA0j8FmeEXfFKlOGh3KTkOBdfGSEeMej0KrRJuwWf1/BUcr4LrupPumnNWgX7WTsCGkVPAtBDYpQo126OsIBoN+Qf/2/9CGIRcvvQcrUGParWObbmUKjVOTlqUSiUu3riOTFIWVlbpdrsMh3vU63UQBqedFqYp6PU6OI5Dc2aWTEOn0+HW22/lXVbPI0lipMxQmcYwIQpiLNsgCmKKwmR+/hzl2SVUmrF68TyOyrDLZUajgCzLGI5Djo9O0SqjXq/T6vUolErE3S4qijhpdbFE7mpbqdWZXVzi9PSUNIkwhYAsIe0cc/W5b5GaAtNQkEXMzc2ytLhIwXGQaYJbyJga4wnDAPlnOwB/tKAyxcDCEzjDlAp0dt/Tj02r9Hw4UP9oAG8YxlmX9+M6Cz+v4/Ch+/STn5+zmSEfzPrkJQHSyOgPE+qGorxchf0EHcfoUgnPKqMjSX+UcqUkkeN+Ds4woWBUeP/hLS40m8zUy7glm+T0Efcf7+PNQyWzOdhTHB0LvLrN5lsDZAjjscYmJehCkgBCYTuCYBhjCvALoIWFYWXYrs2DR0dYtHj1M5f49//m36bXlvRGQ1ZXX0FmY5qz84yGQ2SaEoxSjk9Dbt64xptvfJdhf5D7F6iMaBzxlS9+FVGwOH/xPCp9jd29A8gE/kyRhXPnqc3Nc9IZE4UjkA71ep2Dw2OiUJLJlHMr83SGQ446Qy6uzWKZQ3o7O1TqdZRZZO3CPKdbH7BzcMxCc5kk1WwfnjA7O8Pp0Q47j7dYbNRIkozT9ohCISMM9jg63EILhWOYOI7D3t4Og8GAQX/M+fPncWTM5uYmS6srDIZDgnHCuz97k9XzayRRysn+Ib/+a99gEEXcfucNbr3/kIZnoR2DMAbPh/bpmF//5i8wHOZdQq9gM7dQQesurX6f1JR4aoA80tT9BQIy+saAgrdAHJ/iFqrE40OyeEBnfA9bW8Q/p2n3r+v6RBzZvlfm7r0HqDShUa7jegXu3HuP2blFjo6O+d4f/R7BAISVsjg7RzDocrCfsrv3mExCvVHBNGFrZ5tz522as7C0BKa0qS6UyACTQo4CZ1KQfYp8Mw2e4jg5qzZOA/7p4KIQgpOTXOs6lWDkVcscnzgYj3JjsFSyvLxMp9Oh3++fkU+CIODx4w3qzSpSpszONyemTS4/fv013n/0AdrMKJiCeDzCL9ZoVmeYn2sQRQNgEkBOqpxPV+mf1oSerTNd559uBX/chemjF64paQih0E+Nu02DxExNg5gUjSTLkg8FNR/SpxrGn/p5Z7jHD1VD/3TV66P4xLM/71+gTf6XsRy/iOsVkYo8TdE6n3tgsn3IB86fbK8MVIqKx1g65WhvG9c2qJSLZGlMFAyJwhFhGJ5JU4AzktSUejQdNp1+ttPB2unjaZrSauVuxFI+SbzgCaUpSZIPDecCZ9tvWhXPsuyM5DT9PbJs4hosBFEwzrtYgw5ZlqB0gp50gtyCTdn38VwHQ2i63S4nJycopSj6ZQqeR7VWo1qrYVoWBc9D6dzZeprMWlZOXykWi2dJruu6aKnIkhhDK46PDrl9+zZbm48Z9kcMBiOiMCVNNFGU0Wt3UZnMHY0t60MytDiO6XQ6DIdDDMPKOyfBkDAMOTlu0RsMUKaL4dXxGov49UWMQgmj4BEkGVGmML0yYQJBmKJSiWubhMMhg06b9ukhJydHKKU+hAb9pCzXzZOmmaUFhidtaqUqg26HTqtNudIAw6UxM0upXKXg+/l+rjW1WoWZuVkqpTJSSnzf58GDBwRBQJrm1fHpNmw0GiilODo6QqhcK1EsuHkXUedIWiw75zNKsEXe6ZltzHB8dEQ67jHsndBqHbF/eMzxSYfeMGAYBly5/hyf/eznKDgWSRLheUVM06boeZimoN3usrm5OfHTsHnhhRfIsgzLFDiWje+5qCzBsEy29w/oD3qUSz6VSolSyZ94TUzmmpggf4U6M5H8JK6PgylMv/95X58+l04lnZ/U1eqfYLtlSuU60s3yWTihMUkpuwZVv0DZNfBkTNOGmmPSHyjiKMVQEtdzsWwDgcTSKVE8RrkWRROczMRIbcJ2go4c7MwgGmjiALI0h3BkCJQ2844jeZFEGxnKhDDNeWRamDx3/WVGo4z+qEOmJF5pjjjV7O/toLIxcRixt79BY7ZEb3BIpTrpeiYJL738aU5OhqysrOC4ZYJQYQmHwWBAFGVcu/4p7OI8mZIkWlIqFzjY32djY4Nut0+lVmX93HmOjo4YJ5L63ArRVG6rM+IgplKdJ8nkWdJ+cHDE1u4ejeYswWjE1SuX+Oov/SInJyeMgoggSnAKPuiU+WaNUa9/1h10XZdSqcKjh1ucnLTY291hYX6Ou3c/YByMOLe6ytxsk/EoYHZ2liyN8W2T+YbBp66us7a6QBwFPLj/mGpjhrnFJvNzs7RODuh2dim7BXyzQLkgKRY8oiTBNG0KdpFgfEyns0s8VLiGjaELWGaBJDJJYoVOQ2TUA6kw7GeLDf+krU9EByCKhxzuZCzOmrhizLlaER24PL63jecUCeMOkYbPf/kFuscjZi9d4q9/eo/vvrOHX4JkpDDKGZcvXeDe3cfEMbS6EMcnvPDZRTZMheUEmJmJVHnwL4xJtVZrBIJhf4BjWSRhSLNeJ4oicBz6vQGlUgmvqCZt7gJJFOP7PqOwg2FbjMZjLMuiMVtlOBygtebSxStsbD7kYPeQubl5CpbJwtwiP/yTH/DLX3mFQWeLKEqwfPjVz36TjfEGjjnGLh/T6yZUZ0octk9ZurhA6hgInWGZEpUZpDpDCk06QYMKazIAic71xkIisinu0MIQaW7vbRi5VTYaoQwwpsF5LvmQ2TSglGfVeD1xVZU65/inmSKTkCWSjBTtSCxpgNKkamI8hYkieYKpNPKLjMogiSVZqsnSnDyTSpFz500bJTQSTSb0WQCtJSiZDyrniYiN1BLbzAcDDPFsL1SRNJldPs/JniYcdykIiWVkGFLmfRE1HbgzUCrfTqnOjcOmA4Jv/fPvMbu4wsraZYZBCMJAaoGwctqPlBmddhvTFPi+R5JpwjDEtm3GYYjv+4zjBFMISn4Ra0L+yaKYzY0t5hcXSNMY3/NwwgzbMshUhgGkWUqaRCjDJEHlBkX5PxMaVG71liQJ0sxoj1porSm7dYSEwweP2Lr7OmYyRqUgjAxBwtSdtKQ0FxplojRjp91ja+s+3UGH1XMXWV5bp+BXiOMYY5I8WZZDliVkGRMXXZEP9KoU3y9hWRZSSmx3fJbc1CtlDrc22Lz7HqftDqM4od5s8vyNm8zPL1KpVHCcArZw8mHoYJi/bxoilObo6Iii73NysMvBwRHdTp9BGBKFMWGasTTTxLbK2IUiXn0OvAoyjhkfPUAnY+Sog0IRhwlBIii4Nr7rILOUo+1NpM6IF9eoN9Zwi2UymXtfCOvZdq88z0fJhMrMPBKDjd2HEA+oNBtURJWZagMpNb5fIohSltfWOT06ZH55nvr6EuEgREpFmsUcn5zQ6XW5cuUap/stTjbuYtgFClgcH+znHhJaQ5bjbpMoRFj2hDyjUSJFZhK35KOFYKa5wMbGBoZhcf3CBX7yk5/wuV/6BluPHyJ1xsONh8zPLeFXSgz7AW65QcG2ONh9fCYrK5TKOJUFajM1dna38MpVbt97iBAmaRRhGSbtzoD/7rd+i/t7pywunOMgfkilWKZWKuNgYJjk6NA4ouAItM7RtEKBYU5Hfjmr1EPu/6HJ4RGZzI3A8oLMxw/x5p2Bp+WCahKQ66dmvGzgoxV8hZi+7mO4/U8nmtPvny7KqMn/tSFACgwhJmw5yUTPSG73qNFCgM7Jb5BLHZ/VWln+DJ2Dd0Ga3PrgBxhlELJDlhpUDJtq2WC+Ocs4SrlsLdDvHtCnQRJ1eLVep3dwQOVCk1HQJrFNGklAGvp0NzJG2wb9x0DBwkoSVAICg9HIRJgC187I4onjsDZQdm7ImSlJpsFGYCqBacYII+Hd268zP7+IVBUMoZhtLhEOtghHZVzXQxJRrfjsbrxLvVTk+SuXqBZKNKvzmJnBudUV5jOPNBgi5ZhKpZIXfwyPfv+Q45bPczc/TdFsgJghkzG2YVLxiyTxGMN2aNRn2d3dojpX4e7dR8wWXGaWzuGXLYbdAcNej+vn1wgizePtTYLhgIXFBoVCgzfu/ACdGlTm5/nUy1d57933WZ+d4aQzYGZulo3tD4hCTZwYVGaKmI6g3+7g2JL+eIxvF0h6Y17fe51KdZas1SOTKbVqk0ebD1FpxMryBVwPgiDC7O6yvz8mDDMwTMKTHsWKR7E5z6DTgmAIwuG5m5f54PV7rFwssHzxUyjuo50BnYGBXxkx7GrGTsTxSULkBdRUSnO2yWKx8cz220/i+kQkADMzs4h0xPzqJW797IfUls4jnSKNpkkwjPgPfuM3WW38lLd+9mO+8vKXmJ1b5O+/dcrSXI0dHTK7atMewa23N3Gc3B77y9+q8N6PBswvG3zx6yV+8IcBWk2oKhO2gcWEG55KgiDBtkUe2I9GBEGAbVkUPBfbsQjDEMdxqFQq+L6PxqBarVIqlQiCgNXVVYbDPuvr65RKJcrlMucvrFOpVKjVZzBtlx9+7/ssL6/xu7/zbd5646f8x4015laabOzu4rgpwhzRD8bMzi9hphCKEf1QUrSrE428PMMaGobGsibSmokJ1fR0/3S1PMd1mjgTPwLTzJgaSmGYE12yzDnyyDw5EHnllQnKUylFlimyCQZSa0E0YX5LKbENM6/IZtmEjqTONNvTC9y04p+mkiCI8veIEpQUE9mSicwUMlMoSS4NQqK0JpEZqcyrzlKbCAESgWkYz5xSMR6PqVaqLJ+7wPHeFnHvlExNK5sf72NgmiaugDSNiOOYzDQZdDpUG3PMLqzzeHsXKVM8350M/eYV/iSJ2N/boViq5h0qmWKgUFmCa+d+AScnR2itc95+LHj/3XfY3a6yem6dgWNhraxgSJBZghAalaX0eh2Kjg9SYU4N14RBp9PB9wv59nEcZGJRdBfod9r89LXvMeyfcvLwHbwsxUpCTPKumTSmR1geBGk0jmNxbmWJvVaX7vEh/Xab3cdbfObzn6NczI3PhBBoYeJ6ZQrCnOyv+dc4jhkOh4gkH9wtlSoYhnVWVW808o7azMwsQZDThzbff4f33vgpwRSn6hRwi2UMy8SxbIIgwEDhFwqMRiPGwZByuZjPxZgWXsFnbmGRoHuCZxap+j7HrTaH7R1s08A1JJGUhFGMzPLOIVIzGocMRyMs06RU8kFJDvd3OD5pUSxVqDVmqc80yPSzTQCyLMPzPEZBxMHjR7z68kt8+5/+DvVKPXfIFTbVWpNUC+bmFznY2+fac9f5zne+wyWZ8cqLTapegQ/eu83+421mV8/xgx/8gAvzi9y9/TZxFCBlHigmSS5bS2RKNEhyuVqcOyhPOz3T703TzJ16LYuLFy/yxjuvYxYspArZfPyIL33hC3mgqiVb9+5TLlexXYtMa5pLy6wsLfHeO7co1hv0Rh0gZqZaoVGpsbywgFPwkGhefOUz/LVv/hqzq6vcP2ghhObLX/4K46DP8vIyMs2ouE6u+0hkTssRecVZiQzjX9G558/TEfrzdo2ext4+/bqzKr94gldGGJDz3cA00WdyIJXnE1mMmBSAtM47aOkkkdFK4XgL/wJ/7b/82hu8hkWJxyePMM0GfjpkxrUphpps1KY4XwVR4BSXn5xIKiSI0piySLgw+znajRb3A83opEs6HnOawbvfPaZYEOxvSqJ+TghLR/mnk6UqJ+gBjm0gbBORpBQMg8DKTTJtC1xhkiYSJTXFksv/8dv/hC//4pdIkfyzP/pDvvm1f4u9rW2WF1xW15YRGKyuXaPoV7l8/gaOkHSPj6iUJWtraywszuH7Pr4luHv0mFc/f4PZ5TlanQGbj27j+wVmA0UwTsjEEZVqEccqkyUx/e4ujm3imAajfp/ZmRn2d7exDJNarcjjR3doDod4lTrjRCGsAqN0RLlcZnVxnr3jbTa7Dzi/skipNIf2V9h/uIedObS6AfXmMlplzM/P02u3iOOrf5qGAAAgAElEQVQh4UhSLBRZnl/g7Z+9gblgUa/N8sYbb3DzxhV6w4jUycj6IYqEQqKxTZcf/vhHBEnKp175FF88v0KvE/LHP3yfLExpVGsUnAIjNWRz54B6o0TFSxj2x5y/fomTdovmUDG/dp12/MckYsjpyX7eTMxqCMAxTFQacNJ9jOf/mwTg6fWJ6EVbNhRrPrW5Oa5dvsKoPaRRmeP4eEzB0/zPf++3+MmPfsxoGLK8Ms8fffe7NBcLqDQjzmI2Nru0TuH69fMEAdx84QJRFNPpwGgYI6yUSnVi087EUV3kg7JTKgdAmuocvzihg0zlLq7rnmnSp0ZNWZZRLpcJwzCvYBoGrVYLwzCoVCrEcUjrtMPO9l4uvTAEN27c4Ec/+hG/+zu/RzCOefRok9Zph/EowDYsSqUSM81ZvEIZQQbIybCiNal+Txj+ExlBfstRmKZpn903/d2nEibTtCZBtnX2OHx8K3iq2Vcq55ZPkwCZabI014Mq+USTPQ3ApJR5V8XISSzwYUOwp3+nqezEENYZIjRvsz8xIgMDraaGUU/kTpIn76HgmWNAhRCEUYznV6hUZwjidFL7fuL2OtXYP+0Im06SOS1TdBpjG4oPbt9GypTFxcWzRGFKCJoaSwHEcUS9XsN1HSzLZDQaEgRjfN+jVq9iWsaEhpOA0BwfHfLggw/Y3d5BZZJglA8Ijwe51GX78RadTod4MlicRHEedAchezs7xHE8kRBlCJUjQt9+43X2tx+TpRFJEiBMg0Rmeadm0vVQAlKtJi3zfPvX6/Vc8qEyut0OmxsbtFsnVKtVKvUatm0TpxmFQuFsLgBy6c404YZ8gHUq6/A8jyAIJhK8lHK5zNLCIrVajbW1FS5ePM/MTB3LhjQZ0Dre4XDvIYd7Dxn2jwjDDiYR9bJPuVii5Hu4lonnOkTBmFqlhAyHZKM+6wsziGTM0e5juqfHDAc9HMf5kANwmimCKGY0Domi3GiHSceh1z1lNGzTbR3iO8+2/mLAmSOzKzRbm48JohiZZdRqNbLJPpqkkmazSbFYBNPixVc+w/VrN+h2u7z9+hu8+9abCJkxMxmc3dp8yMaD+7h2LkubHu9KKZIsRaGJkvhDXghTp2t4MjB99epVNjYfEiUZVsHjT37wfT79wqe5e/d9ykUP0zQYD/vEcYhMEzYfPaRcrtLr5l3YXq+HaZo06w3Or63z8qdfpODazM7OUqvP8I1v/lUeb20Qxgkw8RuxLRYWVxFC4HneGTEK8rkpIUR+DXlabfmR8+h0/TyJ5Ud1+B89T/48ac7T931U0/9xg8MfN0Q8ff702pBfD4xJJ8aYTM4zwUArhM5y3GmWINMAGSdkQYQOxn/G3vWXtxKV0GjU0EaCwMXBpFIoUnBciuUSsdKM04Qw0ESGRSQUia0ZhgGZNLGMjF5vSBZqSnnzg6NTOD3WZEl+XGgBSgHaRCsTgUEmIYkn114JoDAsE21MPG+MHJxaKJgMBjE3X3yJH/74p9y5c4e93UPeffcW16/doFypMeiPKVUajIYRTDxCxuOQ9bWLXLxwmUzmck3f9xFasLSwytzcGtFY0j49RKcJM80Fnv/UZdqdYxyrysxME8OAYb/L0uI8tm3iex62Y2KQSzCbjRpxHLOzvUU4HjA/P08QBOwd7DMzM8PK2hrf/va3yTJFuVhiOBjz1pu3KDiC9957k5PTPeozTQA6rVOUFKRZjGUZ1CtVysUSWipm6g16nS4PNx5x+eoV7n1wj9d++JDzVy6hhWB2boHzFy4ilMB2HK5cuUSpmCssTlvHXLu+TqnqkqQjgnCIaTs0Z+bQ5JLrBw8e0R8NMQwY9IYkkcb1PerNKonMCz6mYVD0oFIpYrsWqYpBpR+/U/1ruj4RHYBxtI90PN66+zYvzDVYqJ+jODvL9n14LANeftlHVisg+mze3+DXPvNZji6/xA//+evsvzPCLnjEacjh4QH/+W/+Tb7/g+/xhc9+AXNwh7tvSXa3uty8epVh5xFplg+dSpWb9WRZCgZYVq6rPj09pVKp5DhNy0BrmXOHyRnP0xPnyckJS6trLC0tnZ18X331VWq1Gqenp5imYH5umcbsHGGcsrd/wDjo8aUv/QK33vgJQpjcv/eI51+6hsDl/s4+K5ddlmorJE5IMDjE9mwKtodO1P/N3pvFSJal932/c+5+b+wRGblV1l5dS1fvszbNmWma5AxpgaRE06SWIWzYhh5EWIABy4Cf7FcbMGDIL36RIMmyJJMWxXWGw+EMZ2F3T+9rdVXXkpVVuS+xR9z9Hj+ciKisnh6KEumphqEPuIisyojIiBs3zvmW/4IyEhQZRTFV+pmbmkmMafdMioe7PfPNAWPuDyDljAUjpkZiD/D+M3MolJwn5MIQuit/XEEIyFVBmmQYaPWaIsvJVT5VhykwTXuuKDPD+sdxrLspGOSZmr7GaQcKqTuv0521KDTxOFN6shCnmuhqmZLCmHbSpwvvowwlBOFUEcepNgjqbcLuPo7U1uuzOO5cq5QiLaRWm5GKSa+D7YbYwubPvvmHPPOZ/4hyuUyv36FSqQAKa2oINxwOicIxt27eYHl5GSkUjq3dG3e2N7EcG8vQuvtl32N/dw/TNLnx3nuEcYIlJKtLiyhyTQxWOTW/xHAwYNDtAVAq+VqRyLaJw4jeYRfD8HB8h2s33uHu+m0atRKea2OXSyThgM7+LrbhQFEgZrAsYYDpaDiRECjDxpMWfrlBtzfgaNDjzs2b3L9/nxNrp6jWm0jTwrQcOt0+tm1ruEaWIYS+zk0hENLEmBbcea7wPA/X1UW767oIKen0ulS8MmkW45cCvMAnzTWPwjI0Xlw7w6Ya9iQEwnBQQiIwEGmK7QbkQhIlBY1Wk+FwSDjo8cXPPQvAn/zJH7O/u0cs1BSupB7gp4VJARx1x5gFNOoS0xYICcOjAwadHskk+XFeqj8UOuF1ML0St6+9Q/vECovtZSyl8ByXWIHpOZxYOUen10WRs72zSziecO29a1y6dIk0HGHmCblZsLK2QikruL6/TbNeIZ30HyI6x1mKlA+4VVOR3zk3RQgxd/GVwuTatWuagyRsVtfOcOmiy/rGXQyhSCcxI/o0SlX9GeaC8yfXSCcJS2urWKa+5srNBd556y1Onz7Nu2++zVNPX8E0TdpLSwwHIzZu3eH9e/+Epz77RbpHB9hXrjCOQ1pSamM322IUjnAySUnZCGVgCBdEDvzVJBMPwYF+xO/+vMd99DM9/vNHC4TjECCFwQPXd0NPBNQUAgSoPIOpcEM26ZHGCXESkschKhmz0jz3V/L+/51DgW8nhEFK2h2yUqnSCppM8gLfKXFzd5dJqKhbTYIFm+FYcpgUTHopO0s90rwDzgKqdpXdnffZjQVG5HB/r0+YgmWBtHURkGQZMtc+OG5JMkkKhEiolS2SqTy2IaX2gikKDRkr4NKVU3z7O6+xutpmFBZII6dcLvP6W9+m7Fd4+unTjCcJtu+hSLGkYmWpRWfviMXFZbJkwGAw0M2iScRCrcV9v4ptxrQaC2zf36T0RIujox5Bqcxo3CFKTTwLDKkY9oYY2ORFSLdzwEJrEduw6XW6uCKlXC/j1Kqs37pO4BisnXmcP/6jb/KZTz3NF37qBe7uHrC4UOOlV/6Ux5/+Sf7bv/+/8jNfXuPk6Qt0B12yJCRNQ/JcIaXCsR26g0Nub+5QLpdZv7VBe3kJpE2p0qBcXeLE0hGbd3YYxxYHN7fpTFIalklQq7C9vU0YKpAhRgG1wOCnv/h57ty5y2DU59qNdS6cPkcU9VhdW+TocJfFkyv0Dg+oVkoawVHymeQhqVKoXGFnIa4NSdEjJiPw6+Rp79Fcs5/Q+ERMABxXksuQ/cMdpFRcPHMOV5l8+jPPMB6B59scHRwileRv/+2v8t7rr/Gt736D5z7/FCqz8AJot6uUKwGvvvoyzz33NIPJDV555YCb741xLcHG+j5xlqMEpIVCSqaSgw8vmDNi5cxl1DRNfF/LI1qW7rIfJwonScLi4iKmqWFCR0dHNJtNsiwljmOazaZOpKaQmZd/8CJf/vKXee6553juuecoioKf+7n/BGHZ7Bx1MA2PSrmBKQSeZeKYDkp9/CKvN1GJIU2kMH7kYv9xXaPjnaCHFYAexMMdLCiK2e0DUuuMIDrryiuVz4mos/vNSHSz40Gn6ofJZ3oELVDqAQE4nxYBaZoSJ8l8+nCcnPqoQl9DFlmhcByPZrP5UKL/caRmAGXYZFPcriEUeZpgSxh2O2zfv4tt2/MJQBAE8/cbxzGWpbXzwzCcn6MZUVZKSRRF9Ho9+v2+Js8CaydOsLy4xI33rvHyiy8x7PYZ9gekk4jA9XAsm6OjIw4PDxl0e1pmdDKh1+vR7fQ5Oujwwfvv8Mor36V7tE2SJ4STGCUdvEoDM6iSCoGyTG1CZ5kYtoU0TITlIm0P03KRpotpedSaLVqtFoNhj3Q6edjd3Z0WPLq4ncHG4jhmNNIk+5n61oxcOpNItWbOwXlOHCcoBZbjYFoOhmljWg6eG1CvtalU2tSqi5SCJqWghV9qIYwAJSSm5eB4ni6kHN1tsl1HrxtpShRFHB4eMhkNefaZp3n2uWfmU5p5R3WWeAndXVXAcDgmTfQ0IMsysiThaP/gx3adflwYUzO6SqWGRE8/r1y5AmhysDFVR/MCn9Foos+vKmi32zz55JMcHB1qXxUhGU0mvHPtHTzPY393h8B1kECWpHNYD0wFJk1zTu6erbczkvTsHJfLZXzfx7ZcPvu55wlKNd555x3djS8U9WoNSxoEno9EcGr1BBW/hGNZ7G3vTDXJ99hYv8Pi4gKbm5s8/vjj3Lt3jyRJGI/H3N/YYLHdJooihBAsLS3NJ7y+7+uCJNeGcqMwmUoqC10gir+6rfPfluT/+zzuz7vfD/8stcyzmFGWZiNcBXlBliWEkxHDQYej/bvs7dxkd+vmX+St/X8TOYxGHXzXIhqNcG2bIlfYpoMpLRzTQaZ6/yxZYNsWhbTIMOlkfXZGXWSpjLlwilfvxBxOBPlwSJpCmkGcgunNpuXMz0uYFHiBOxd3CKe4fyUFhiHnfI1qLeCDDzaQEnq9HnmeEo8D7t69x+rKWS6cv8i9e5t0uz0cx2E4HFCvVRgO+/rt5Xrd831fT1+TkCSZsHZyGdsxKNIM3/XwgiqmqFOtNBiOd3BcAzVtkhnSZDJJqNUaLC0tcuODDwiCEoYh2N87JCug3Gjgug6NepWDvX0+89ynGAwGevIVZ9y9t8WVq0/TaLapenDq5FkKYeL6DlmWkGYRlUppCo92CQKP7e1Nbly7wYcfjsjznGq1yu7+HnfvbbLcXuVg94Dbd7uM45xuf8L779+coxz2dvZROVRKZe7d3ODF77zEoD8mjnIODiNefvn96fWY8dRTT7G+ofdJlWVMJiNG/ZgkSpCmCZZBXsQYBkySMYWtG3VC/YcJwPH4REwAHl9Y5Bs37iMmCa++d4ennupw8vxTOH/8Tb70k6e5fv2Qu7cyVpds7t++yQ6SL145x+KipFRJyZXHvfU+hgmb9zvcvnYHy5+KShQxQbWOZYfIfRBKk6sAsrTAdiRZkespgCNxbYe8iPWXsl7H8xyyrMBzfHzfJ8syBpMxwhSkaYhhlOn3B5im5OTli1PimsRxPJ797KdpLq2QZQlRr0M4CllsLRKPBzzxxBU+/8ILjKJd/vFv/QFri8scjUPu9/ap2B5OEIBQOBIgIs8EhbLIyMmxMUxBkcu57b3uHmkykobFyDmURv8MQqipgc1s7DxVJFEKpab650IbbOW53vxkUWj3zizXXX7UFLssUcpAUOhxsdBdEoSJlDYFGuPvOAVZxpRDAHmRaglKUVBMXTSROnFShUAVxhQ7D0WRkedKE47TgjQJkShS04S8IDcKjOLRXsKuqR1/c2UySAtqyycQBmzefh8lwACdLEg577YVwpoXb0Jp7oYoBL2jHcr1FndvvEVzcYGS57O732Fn74hmvYxlGmTJBClLc2Upx3Hm3edyuYyZZri+pT0AELglF2FoTe9S1YMiJ47H/NE3/pAsjkiThCSM8H2Xo6MjTMPA8SwqpTKTKGQ0GhCFISXfw3VdbXKX57jlMpM4Rlg2tjJZeewK6zevaUKh1HhiUxjYpjMvdAqpXXBTpVBI6ssnSJRBlsYUeYrKEj788Dpnzl8mjlOU0H4KpXKNPNNmYSovdHEi0DrtUxfvKIoISto3QakCAQz7fXzfh0IQeCUsy2I4HmCYBUJaBOWAXq+P53kE5RpJPCHNM6RpUfN84jSn3myR5QW9oyMcx2E8HuOXagA0qi38covG4ip/8Pu/rQuALJ66wCoUJoWCQiiyLCEepLi2Q1qoKazk0Y6vKs06luXglFyEY9E96nHpscvcQCClgWN6VOptgnKV3t4Wp64+y869m6w2K9y+cYO4d0A47BGHPX7yp77C6+++TbXcYHy4Q6Uc0Dso9LRuqqhWaAMTPQHLcyxLwzhd18W08geFfQE725uUylVq7UVurd8iT0IWGiXqzTofHuwyDkeEUcp4PKZWq3Fn/QZZkrKwsobn2tz68DorKyfIsoI4Dnni8iXeefM1+kd71BoNhGFxc/0O49GQZz/3AuXAY/XkGkfdQ5qtBlDgejbxaEKUxQSuTTrq41TKFEaB8WAbeRBi2owoFKLIkUwJwCqfwmmKuYqQVnRTU9hIMX8yofsiPwTVgY9r0MCsIFFC6k60vuOD+x8/OAYVMk0EEjVVlRMYWgoUQE55YlI7hOdpwvDgDt2de9y79gbDbheZ9Hj2F/7BX9GV+O8WpoRenNBqt3GSCWVpY8c+6WTAsNzAbwXsHUXUhcnm4S1OLJ1ChLvI5YDBbo+9aERQW8eveWQ1kzNLq7zBEaIYY8qEcSgoVTLs7YBYjMmEhVDwf/8//wu/+tW/j1HAMC2IMrAsiSUkqcrBlEhDcRSn5LaATFEkOevXt8gm8Mu//ALX3n8V57kvUuQj/GCNlfYponGHbmcDpTJsz2dre4Owu8nVq59DmgbdbhdXCTyh1QqFEFx98gn2DnZpNctkkUmeCyxD8v6bb9ColanX63S6O9rRxPT4zOeeZ+P9tzH8OguXl/jDr/0uJ85uUQ/K9A/3WFw8zZtvvMXpS1dA5NTNglu33uLsuYuoIubUGZ/KwgqqEMTDETsbG1x9+jleefXPWFtpsnH7OpMw5Yknn0cIyXjyXRqLq1TrJW5c+4CdjuLyky6rjTUWlqsYyuPanfs0Fk/g2TZhCu22oFGtcXBwRG5CtxORSIEi4eKZGsqw2dnrUgpc1uNbrD52hjgOMYuCkm3Ti0aUKwFxYWF5kk53TKvig0zpTyySwYBe5dErB36S4hMxAWieP0FD+Nz9MKFebiJLHvfHO1x56irvvH2XnXsjMgkv/OQXyIuMN9+/zrffeJff+e4rDAewvz/gc8+fwzDBFD7RqMSlK2tIAaWSx9Z+l/OXbTxPTs06QCewOjE1DAPPdebyhrbtzjuKesFU865us9nE8zxWV1enOvqSJEm4cOEie3t7c8dSw9KJ2UKrSbvdxrIsvvGtb1FvLRLn4JWaTMYa9yqUC4XDqD9ie+dIOwsaZWzLe4Cbn1m95w/LYn60q38cZ/5x2FKt8DKV9iwUKi/mHXzQG9BxmcRZl59i+nezh6U+pTS18ZIQmNPO3ozQNzuHM/z6cSw8PNjcjmNXZ5tcMTWoOj45iKKEOE6J43TeLSw+ugn/mCNJEooiw7IN0jgkTjM8v4RpByAs7So7hTodj6J4oL1f5JAWOWkcM+n3kUXOW6+/CllCo1YhCAKGw4HWvw/KVKeuwJPJhDiOqVarczOtGQ/E87y5jKiUWgfdEBKJJsAuNOosthvUqz6OozDUhLJX4FkJgW0w7ByQhSN80+bcydPYtk0QBPi+r828pl1v0zSJkpid7X3WzjyG41dIComSDoXtMlaQmgaZZZEbkswwSTHY3j/ilTff4qXXX+f67TsMhmMGwzHxKKKzvYMpYWYsF8UTkjRnOByTFdoJz3E8JpOIarWObbvYtktRgOd5Gi50bIIwGo20OdRkQlFAkmhy8Wg0RgqTKEzo9XpESUKS5XO51RmRXUpJEAR6nfA8hNCyqTNycalU4Rd/6ZexbYdcGRr6NPWskAKEKTCmnhaTKGQwHBLHMUn+aEWpZ/wdz/NwHO35sb6+Pp/iScOk0WoibZPtw30qjRprJ5b54Nr7jHpd9vb2plyMnK29fVaXT3D/9m2k6+uO64zrM1WlmntQFMWcM+G67ty9fGZyt7aySpJECMdFmiaDTofxcMLjTzzDm2++qa9n08S13fl7CMOQwWBAEsdsrt8msEyGnUOKJKRZq3Pt2nsEgTefRtq2TeC4PHH1STb3D7h9+zaO41CpVKhWtZFdFEWaf1QI0lwhZM5k3EVlIap4tPCt4/EXnfjO11o5m2I8IAY/HNMJx+z+RUQWDhn19gj3N+nevcXo1oc//jc6e3URLLgnURPBpUXJqr1GuajTmKzgJVXiqE+5IoijfUqeJB5ETCbQCxV7owF7QwijGJVnlIMCQxUYlS7KhNAGUVF40iPNxly4tKK5K6OEFz/8PmZmEEcghQ2ZIA0hibSincoLbNMgGackocIVNoQ5MoRPPX6Bd956g16vQ/dgl3rjBH6pjW0UOFIr8O3vHWLbJtVqnSwtkIai0zliZXGROE4ZhhGNRoNyucz169f198n06HQHNCsVbty4wdLSEpNJxBtvvKXV01TGeNRl8+5tjnpdbNfh1Xff4+rTz1Av1zncP8AyFN3eHq3lRfYPDygQrK6u8rnPfY5Krc7KygmeefYJltqLmIaBabksrZzEzBIef/wyAAcHByy2mviBTX98yDOffobOsIuS0Fxo8sKXnmAwGJBnIKTPeDzm3MklgorC8Qo8X3J40OfVV64xGaeMRyElLyAMUwzDod/v02zWibKMw8NDhOGwe9Bj53CfMIwxc4th1mevv607/0WBlWbaYyo3mYxDxqOcOPlE9Lw/MfGJKAA2o3UWF1weuwhfePazbN/c4I2XvsPps6f4jd/4r4kTeOaZ8xze3+Yb3/8O/8Wv/SKH2yHNaptyuYphwCsv3sa2XEoVi05/yNf/zT1cCaNJyP/wP/08S2tlKlV/utaJY46oJlGUT7HoulseRymqEIxH8RRqoSUH9/f3GY1GWJaD6/rU6825CtDe3h7CsPCCMvXmAsLQBUOve8AH199nPA75G7/6K7SXlrn61KfIhcF4NKR7OOEnPvtLPH7hBfLJIoaShOGYVMYUQvvN5HM5TkGSF8RJRpxlZIUiy7Sbr5TmfJx+vAD4YUJZgVIaqkOhj3l3Ks+0NOUMpz4dx+d5TpxEZGlCkWcUafYwZtUwMSx7njTNNuhZ8TBL1pMkmZuAHYcHSSnnxcHxQmb22CRJiKKIOE7nRUCUZiRpTvqIKwBpasO1JArxHFd/Hk6ZpZOP4VQbFMJESUuTYKfXF3mGKrRiUlooklyrLKFy8nhA3NujGBzy1ivf5+zZU1y8dI7GwsJ0WiOZTCa4rovneXPIzyzBGo1GAPMkNYoiAE2SDRNKpQrVap1arUGt1mBxcZHz589z+vRJnnzySS5fvsza2iqXLj3GlctXOXXqFFJKGq0FhGGSFQppWhiWjWk79IcjkkJh+iWi3GDxxAVqi6eYKJPDccLeIOTN67d5+e0P+JM/e5Vvfvdlvv39l3n72i02dw+w/YBEmbx97Sb3drRvQWd/h+sfvEde6DG4FwRIy6S+0EIZJsKy6Q9GZLliEsYUShCUKrrwshyqtQZZUVCp1VBCIE2TXCn6wyHD8YSsUIxDXaSXqhXqrQXayyuUm23cUhXbLxPGKXGa0el0CCdafm9W+JqmyXA4nF+j0SREYvDCl36GL7zwswhLQwdNQ+DYUicYEgLXoVYt06iUcS0TlT3acXSn02EwGNBqtXRHu8jY3LhLoVIc10e6PkYQsLG1yemzZ1g9dZLD/QO6hwcsLi1w/rGLmI5LpVqn2z1ipb1AGk5oLK7il6pgmMyM/R50tAWeFxDHOnGfNQdc18W2bdrtNkeH+1QaC7TaK5gIZB5hG5I//NrXaVTKWAICxyZNIkqBR7/XgUKxvLpCMunTCDxKgcdis8aJpTb97iHRaIAlFK7jsNBsoTJNcL6/d8RnP/85zp07N1WRauI4zryRMRgPGIUho3FClseYIiML+3rdFA+Tbmfx8Z4qDxocH1X0ma3Zs99/FKLzcQn+x3m/zNbT442VH3q8YSIMU4vXSz05+KiSmhJyXsQqaWAgEHmCzBIKMwERUxSTv8SV95eLWsnBFZAmh1TsFuPOBENmtP0lGl6b4aBLHh0SDWNuf9jFSGt8+tNfpLGwRlE2WT2zSKISnEBybrnCey/e4dRFMOsp//GvnkKFYFgh4xh+8dd+jjzNwIJ/8s9+kzQ0MU0o0oIsVMSjgijKIBcYGYjUIh8orNgkHycYhWCxWeLD6zdZ/3CdtDDpDvosLZ+kUg6wiag5grJb5tLFp8jzFNs2qbXaZLkinEwoBdovxSvVGY3HnD17liAItOJgrY4X1Hnjjbeo1RoYps3SyionTp5isb2kp6HZBJUOaLfbNNptzl04y8bGBpaQ5MmYNAnZ3t6mtbSIFDnj8Zho1CeJJtq75eAIz3PI45DJoEvgmZxaW+Zwf4s009y80WjCrRvXiCZ9zl84RXOxxtbOBu1mmYvnT5KmY37ic59ld3eXD967QaNaY297B9+rcrA3YDRMsdwKjXaL4SSlWi7T644hz4gnExzHYnvzHsJ0GCcFcaZRCM3aAkmU0N8fIXODJAoxhcBMM0SUMQkzwkTvWUkCg95f3sH7/0/xiSgAsiTncNLBKcEPXn8V3/Y4uL/NK6++TLnq8eynL7G9ucGv/52vcndnl6WNaAIAACAASURBVEqpTJFBFiq2d/pIYHm5TpYl7B/0uXixge1Z9Dv6+aNsGyVMwnDE8fX6gTnTTLFFwzVmspcAR0dHFCqbj6d150oSBGVAJ7qtVgvP87AdD8f1KZWrfOq5z7C4uIhUegRt2zaeYxMnGraRp9k0sU3Z2RqysxlycuUZnjj/HHGkwDIwLYtcTV14i0JDlYBMFeQFZPkDvf5/20f5UUWKh5Rp8kwXBFP31wfn5UESXqTZvJt/fNIAH7+pzZ5ntsnPjuOTheN/5/jk4qOvcWY+NXstWZaRZhlxlj5yl8o4mxpsiYIkjUiTDMcN8MoVVlbXSIuCHI0jPf5+RXHsvc82bJVDlqCyCFmkTAZdjjoH+L5WI0mSRMNVggDHcXAc56GO/wxLrZSaGzzN/l0qlWi0Ftg7POCge8Q4jJCGRbnaQggHaZVptFdpLZ3GDeqkWBiOi+0H2H5AUKpQrTVIs4LhaEKWK0zLoVypEZS0663nlxmHGa3FZeJM8e4H13n3g+v0+iOiOMHzy9iuj+PpW892MKSFEJKkKLQFfRKT5Am2bXL79m0QWs1FmgaTMMa0LFIFhm1RazYIk5gcxVGvi3ZVEKRFTqlSIYxjmOqdKyGIp9/hmarRbOPqdDrzAtOwbGzX08f0/BmGweHhIaZpYts2WZaxtLREHMeEYThXsnL9AM8L+OIXXiBO9HQvzxIcy6Ya+NSCMq5pYAmJLArEI+avzKZDM2M1Ck1gTlN9TpUwcH0P3/UAeO2VVzl1+gxpoegNRvQGffoDzc2oVzyKJKTIISjVUIaJnrKqhwoA3aiYKovl+bxRMGsWDAYDDNNmPInpHR2ytbnBeDDEkJJ6qYRlSHzXJppMaDbrU5lardhTFAUizzi5tsqJk2s0W23CJMUxDVzHIk0S8iTVnf5ymVPnznPl8assLrQplUoopeaqUjPjuTRNmYQhYRhr9/Jccx7y5MHU9JMQH4fx/9jbafd/poiH/OG9QzHlAgj9eyWNY88vP7Zo+LGG6WK6EmHBZn9EKjIKR5KZMYWTYxkmnuUwGk1wfRCyII0z6rUFgorD4vISyJxCxCzVHB47I7l4scz5J1bJEwVSYnuwcgFu3/0AvwT/4z/8zzm4C2kaY5iQpQmGnCoGKSiyAssGSUbgGjim5svluWIwCbE9j8kY/FIVhSTOUjxbYZsQjnq4rs+gPyEMQ3q9Dqow6HYH+J7mdU0mE5SQbG1tMR6P2dnZYXd3l+2t+3S7fS4/8QzlSg3DstnY2EApgWFYdDodTAm2YdBut+j3+9RKPrZUbG9u4LnaV+XDm/fJ85wTS21GvQ71ag0oCOOI4WisuW6mwpA5yWTA9s4m3/ved9jd3WZvb484jrl85XE6nQ4lz2dz4y5f+fLP8NKL36d/eMjlxy7wwfVrdHpH/OxPv0DnqEunF7K7c4jrar7N7v4BkyiitbhEs17hwoUVRkOwbInj2ppTMRjTH8eMwxjbtNi8u8HKyglsy6duNzCVjWPamNIiTyHLFcrS03fDAPmoIQOfsPhEFAANr83YBhzo+jFeucLps2e4++EH/Jvf/y1++suf5df+s6/w9a9/nZ3DEf/4X/0+F548w7/4l69z9elFohT2D7vUGg5FBPfudlg+k6IMsM0WYbpLGhso3fRAL3FTzPkU9ziDaGhSp0kcx1MMu4eU2h/g6tWrRFE0J7DNXEQty5pCCkZ88Ytf5OlnniTwXQ7393j/vffo9XocHBwy7B2xv7mJZ5mMBgPGgyH31rc4d/JZPvPkz/C3fvkfUOIsT1/5aSZFQG8UkqXF1GwnRwoDaVjIOZb2YUKu+JjiBvTCn6mCTGXMFH+SJCFPE4osnRYBOgmX4kFCPhutx3FMHIekUag7XzyADeWK6Ybyw27Dc8nL9AFk5zhheAZRyab47uN/tygUafrAwTaOY+IoIZxExFFCkmhPgSR7tEmUhi+YJEmMKAqUkBx1exh2QJKb2F6ZMMpI4wRVZJBnZKqY/qwhLmoGd5pyLVSe09/fo1by+c43v87v/uvfZKHRYGV1lSh54M5rmiZBEBDHMXt7exiGQb1eJ89zJpMJlUqFLMsIgoBOv8f93U2aSxrT7VXr5NKlkB5BfZnKwknGqUMiXPz6Ela5QWY6FLaHU67gOC6u61EqlSmVylQqVSzLxnJcCiHJhSBKBVGmOOwOOXH2PJeuPonjlXC8MtJ0yVLtZmlJC98J8N0SluHopFAY2K7H6+++S6JyPbnIUt596+052TfJM5Q0KHJFpVxjOBhjSAvH9hAYJHGG6/jEcTqditkIYWHbPuVynVKpgmk7WI6L7XpESYyQkihOMUybbPo9S7OcQumpySwRrDXq8wLYcmx2dnaoNxtUKhU8z9PTsjCm2Vqgtdjmb/2dX+fLX/l5KoFPNfC1qVSWYeYgswKZKcy/QiLpv0/YhvYGcUwLx9Xuu45jkaMolasElQqrayc5s3aCeBzSbtSJcxCmzflLVxgO+ji+x9LyCW5ff5eXvvstpGGzcuY0ldoCQkocz57D3DwvmCo7PfAGOL5GzNzXAS5dfYJB7wBDFTz/k18gGo8wVEYaxWRJimWanD9zlslwRMUPpnwtjwsXLvDzX/k5Nu5vkRSKUrlMq1Zl1OtSZBF5nnJ4sE+zXkOaJvuHHSaDMQsLC8zI5UWmC5NyuUyW6XVrZ++AQbdPNJ6g0gzLsH90ASAe5nY8MA3+eM7HA/LtXzw+ygf4kZAfeQz3P03+kQIhNH9sZv318JRhOqkUQk8BDFNPBKSBlVnIVHvLPKporz7J/uCI/W5KsWRyZA7oIbidfsBWdA8lU4hTxsWIpbM1Ng/eY9ztc7B9jygbk6cK11XsHq5jqj0unRGY7pDOcJNv/dY9TLdg8cQSf/e/+xt84xsv4lbgC7/wKax+CcsEr2ziBgLPN6jVHGwHLBNcR1BvSNZOmiy2cywbCgNiw6CXxCTAt779No9ducp42EFFHTZuXSMajRCFot1eIssyDg8OOHHyDIFfxrIcOp1DXM/Gdn1OnzrFyy++pGVDRyNKnk+t3mAcA9LAsBwWl1aoBBWGwzFCSAYHu4TjPnfu3EEJyd3bN2hWyyASwvGAfm/ElctPk0URJjGnVpe4ees69UoVE0F/NOb1N95hd2eTPBlysHMHsohTZ8/gmLpgPnfuAmGcM+iPeOPlV7h44QzX33sXmeS8/L3v82ff+S7tVp3WQpUPr79DuVymKGx29vcRMmFxqcKzTz+FIQQ3b9/Esg0Oj3ZZXrFYXlqgXq+z0GpSb5aZpNAfTLAELNQbdDodbNullC+wVjsDuUWeCCqVMikZ0nZI8wzDh8D9DxyA4/GJKABGh7d58uoy5x5f4umfeIytzQ/58MZNsqzLW29t83v/x2/xuRWfr7/xp5y4+hS3b/YY2rv8+t99krff2dOKMRmU3DauDa7lcrgegAtJcYhjePzmP7/D48+cYGUNpMmUnAfZlIc6Go11dy/PwZAIqZN613VxHJcsi9jcvMdwOGRjY4Nbtz7kzJk14jim1WoxGo1oN6u8/cZLfO33fps/+oPf5fp771IrVzi9dhqVZWxvbNHv9rhx6yamY/Kn3/seW1vbHGztkEVjujsHRGOfo72I8ShllKUIaWuyrxAUQj4Y7yqJ1Pa+qAwtFZrlMIP+TA1eciHJCojymLjISLOCOCk0fCaLHzpkUWhzNFVo5YI4ZDwZMI6GDCdj3W3Nc4o8hSJH5RkGSneuC41nnnWkj8OR0jwnyTKyoqBIE4o0g+lD8iwjS1PdVS4KkiwjzRVprsiVpMgVWaqVXeI0I0pSxmFEOEkIo5gofrQVfRJGkCsC18e2HSaTEaYpEYaksrBCe/UcV554Vic6WaLPXV6Q5dPO6JQwqF2BJSkmcaEdSI821ynlExpmyntvv8qg38cIfDrdAWmmDduyLCMaT7CkwaDXYX9/nyRJGA6HvP322ywvLzMcDrENk7Lrs7e5zag/wLV0ItbpdZnEEd1+DyUKnRQbkuWVVVyvhOuVsJ0yOTamU6Zca1NrLhMm0B1EBKUGtVobpE2mMs16NjTh+dLFK/zyX/8FTp5YJMsjcjklhTo2yjLILJ8JksJwqNYbuH6JLIff/cM/4V//9u/Q7/cpspxXf/ADrr/7Pq4wII4hyyhQZEVOgZq+dhCGJEpiqrUG0nA4eeoMnl8iLwBhECfaZM71S1r+0nYxHRthCnJ0QVoplTGEJA4jHNulyBVpkrG7uwtSYFgme3t7NBdaWoVJgO06TOKYhXaLo84heZ7T6U+ICpOf/+t/k5/9a79ALmAucSsUhYRcPNri1TYk4/6InfubJHGGaRp0ux1KQZW9wyOkgMlgwLe/8XUmkwmTSY+Vk6cwHBevVGbr/jrLK6vc2dqhVmpw4uQaQT2gtXyC5VNnsHwXwzYoV5vUWwsUBUjDwA8CEBoKlClIcu2L0WwvUGs2KDdqdA/2KLkO5XKZra0dlpaWqNfrVMqBnqiUKty5fZNK4GObBvVGS0MLDZc33r9B4Dk0Kx6BmXNydYnVxRa+KTizVKcROKytLuEEAdVamXK9ght4tNsLmIae6qbRGNc2GA4n7OzvkamCbueAfnefvIjIi3A+nSyKAqEkolBIVSBVMRdHMKY/S7RPijGVkjakNgqEh4m+s3iQkM+kOtX0+GGsv5QSOVVUU0IgpIGQBgrBzO9LmRJpWtPkX5Px1RTiI9E8pdkhp39LSa1xbzAtHoQgl2rqfvzort3O4CZHWZcv/dQvkdclR62Q/couP8hu0C0PGQUhqhRgrhiMUhu7VGN372XcYcRjp57ixPIJ3FwikiGGWefJU8/TqlQ4EQisDLxzYJq7KM/jcAv+6e/9Q/7a53+D9okIvy5w6wWf+plnCI0cNxAErk1Q9sgyxZ0NE0zwSuBVdQEwUQmpggRYWW1w6+Z1fCtm0tvFFtMJf54w7O3hWBa1aoP+KOTe/Tu4gUml0iCahGSJhn5WyzXiUPJ//rPfxK0uU19eJfAsfMckUQZ+pUGaxsRpyt72HqNxRGci2b63QTQeIqdE9NFoxMLSAiJocepcnXqtxOadWzQbFdqLDbbv3eGxUyucPL2GHZQxTZ/xJGE0GlOr+IgkYv36de7cvIspDQ72dqjWPNqLLd548VWKTNAbxQSVGs8//zwHBwfkec6t24cMhl3OnzvBc89cxfJdbLeC5RQsLS1w6eI5klhx5txpGu1FDg/6CCRSWIzGQxaWlzkcZhz2EuJCcHS0T9n3EFGDpmxhpQmmLCh5BY608VWNsl/nfgjNtdYju24/ifGJKACUcDGnplC3b9zAci0qtTqGYxMlMDocc371BP0wR0nBmbNrtFunePvtdzlzxseauv/ubO1oxRmVEU/GrLYBA2pVC1XA7t4mQc0kKIEhHihSCAGm+YCMerxTrZQijtK50sqs22+aJgcHB/R6HYbDPufOnaFWK2u5UNuYyxlubW0x7A8wDWOqUKLY398njmMajQaNRoOtrS3ubWxwcHDAQqtNEmbz+zzQF3/QnVFKPegyTQm9SuVTszCYajnMzWqUYG6qNYPVzKA4x+E3sw0GUSCUTvCZGj89ZGg1/TM/CnP650GDHmilT2FEhSDPFHk+6/znD001ZnCBLCvIUjW978Pv4VGGJk+KOcRpBs/pDvrkAgxPq+AowyLH1FKC0/NTiAdHPvVhzlG6MEWBIRkMevSOOkyGQzbWb9KsVXFdl+FwOIdElUolgiCg3+9jWpLReIAfuJw5e4rbd24yGPYYjQda990wHvrsTdOcd7D39w8ZDsdznkW1WsdxPGzXwbQdhGEyDiPiNKNab9BeWmZrd4ebd9YZDEZEkTZUStMczwvw/RKtVovnn3+er3zlK0gpCVNNZsswcP2Aq48/yaUrV0nSnE6vT7c/BGlguh7XPrxJbzxEKcV4MmT9zi3293YIHHsOd5rhtXWh7uD7mmBm2zb9fl8njZUKUkqtkjTlaYAkSTJtbiYMJpPoIXL77HlGoxG+78+lWJMkwbIs9vf3tRpRGLK3t8fa2hr7+/t4ngdSS7K6rsvu/h43rt/k7PkLxKkmjmrxloJCfHxH+McVk8lES+ZN4Wij0UgrLVEQhtroaTIaMB6P9XWTpPi+z6kz5/B9nzQXZGlCvV7XUn6Wi2ma7O9uUyqVsB1/KjWqlZqAOfkXmEuDApT9gG63S1bkrK2tUS6XCcolgrKWGZzJLruui+/r57UMUztxV6uUy2UuXbzCaDRi92Afy7Jo1qv4jsXu/h61Wo1arU67Uadcq2uJONulVKtTCEmr1ZpOQPTrm61BWtQhYRInDIb6esjSGJVmDzU6flzxF4b6wLyAUNOkX3f6Nfxn5vXy0cKD6e9mqcHHcRAedYwPuywsBvzgB68RRwlOxWGQ9bHLNpnIiKOUheoKjgv9wYBq6wyjqE5kdBkm+2wdrNNPFYVpUogaoQywVMJjT1fwalCqQMn3+P3f+V3cMoyHAmM45WpY2hBud7+DkDAIE0aTjCzNiSKIR2MKYdEPIRFg2oIim0l2a5TAi9/9HkY6QsVDbFtL7ZqmqblcSYw0QBUFSJs4LUjinEq1jmEY7O7uIgyTbn+ElA5BELC7tY0hCl57+SWyNOWo06O52KbdbiMRHPTGnLvyBP3hgLWVZTq7u5imydHREaPRANOpcO/+Op2DQ2zbptfvMgljkIIii5GG4vLly1TKZcrVml4r+n0C20RKLfbhegEHHd18unH9NllWcLi3z2OXL5EquHHrBpcev0h3MOT02RZrp07QG3Rp1CsoAfd3dgnqZcIipFzxGIchpVIFx/HwSlWKAo46PYTlcNgf0RvFqMIiTnPubW5yeHiIhUM0yGlWa7iW5mo5tgkqJ/CrFBYcDoeP+vL9RMUnogB458M+q+WzVN06ykiwKw6vvP4O3aOUT39+lf/rn/5vxL6BUy1x489+QK1V8M//0XXeelmxfmfC+XOrBJ5JmiZ6dB9mSAlbdwLOnq2xunCG578Et2+BdDI8X6fIBUprzBfaBVgrumjYS5ZloARhGDMYjOamHDMX4H6/z2uvvcbdu3fo9Tqsr9/m5ocfEocx0Tjh4OBIy1mlBZPRiK179xkMBqyvr8+TxVu3bnHv3j2qpTKbG/dIoph+f0gRp9SqTRyvhLTsedcGJckz7TaoE/5iqhmckGXJg+S5EORKaQ1rBQmKJNNKA3GWasWZIn9AyM1ShCqQQlDkKSJPMSlQeYLKUlSekuczrgSkaY5S2rRrtvnNksvjm8ScqCYVhcrI8oQ8V9Pn0htskhSkCRS5mBc8cRzPP4s8V9PkvyBNtDlZnomHXsujjCRJ5sTnMAw1nnoKa+j3h1RrTaygzGNPPEOlvUphWijD1O64QpIjtMKTNB46Mqm1udM4ZNA/QiZjhodb7N69SaVSoV6vM5lM5uerKLRE3Hg8ZGGhieva7O5uzzuHMwfdNE0RQswfO/s/PyhTb7So1hogNN4+irWrbbXe4MTp00jbxnRdKo0GfqVCnOe0Fhep1uq0FtoIaaBFekwc1yNKUkbDmDSBem2BX/mVv0nJ82k16zi2ZDLu89orL/H6Ky8RjUe4hkGzWsIS+ru4f3DAN7/5TYQAz3FQKmPQ73Dtg3e4f3+D0WhAEHiMRgMODvbY398lDMcYtkWn38P2XI56XSzXwS+XUFIQlMpYtjYnq1RrpFmO7bikmYYdzQqr8XhMvV4nCAL29vZQeaGN06bfFVMKPMfGEGCbBjsbd9nd3OC9t17n+9/6Jq++/D3eff0V3nvrLW7eusG7776LNAytKjPVFkc8OhgFgCFthG0yGPTmfBLXdSn7HirL6XWOONzfY+9gn/Pnz5NMNBxwZe0Uk8mEUrPNzuZ9PcESJvV6k05nn93tLQzbww2qCGnOuRTHXcodx5nzVkzTJI4iijQjKJW4u7GhXanjWHsyTBWChBBkWTYv9habLRq1GsPhkEmvx7jfwTdNXKFoN6psb92jUauQKsnZK09i15rUlk+zcuEyRqWBsANSDEbhBMMw5gWkZVlz48JwkjIcDrm7eZ/1nQE3tw456HYYTcYopeYchuMJ8nH45fHb46IHs8Lh48y6ZvGjku6P/t/HSYXOJ7FCIqQm9Eqpyb/C0GsMyGmyL/Tt7JiZ4c1vHyizaY7cVNr4EcUTZ57kaHtMKzAIDyI6Bz3yQjHpJLjKoKQ8akaTMyfO4lku5dYCtBy6puLWpsHeuMvGOOfa5hGRt8qLB7dIrIjyyT5f/W8WeOIZ+Op/+t/z2h8N8asu/+VXfwPHhP3DBMs26Q4U771+lzw2OXHhNAiD3iAhUxa/8vcucebqSf73f/Q/kykoBwEiBsdR5DEUqcmw10emQyymksbRmOGoz3jUw7INqtUq4/4hy6srSMulN+iDYSBMg6BUJlUKaQdIx2Jj/Qa+Z7Gzc58kjHj1ldcpl6t0+z0MS+K7DmcvXWa/0+VTzz3Nm2++zMJiG6dUYW11hTxJ2d7ZJw9DNu7eont0gFAwmcDFxx6nUvWZjIaILOFo5z5pGOLbJnk8odfZZ/3mXRr1Jv/iX36XKM0Z9Ue0Wi2soEKt2eDNN99kGKbsHHR48Qev84UXvkQYp/zg1dd5/KnHee/9a1SbDc4//hivv/0uCyuL7Oxt49crXL9xk2Zjifs7h/QmE5ZPnuDyZe2SfOLECbrdPobp0Vo+yfr6OuPDgmLYwIxqWPj4fok8LVCZot5sEMdwFD/afOGTFp+IAiDFpOL7GCojkwXlRpUwzLh5I6F3tM+TV05z0DnAqdQQlsHCYsDpMxVQ4Lhw5/aWxpWn4Dgm5WoZzeGNuXO9x9/7r/6I5z/z84gC2ssLWDYoNVNxePi1zLp8D6Qno/kCOMNWz6YErutSrVbZ2dlhNOhBAdEkZjyM5nKge3t77O/v02g09KZZKpHnOZubm7iuS1EU7O7uEkUR21tbzLT6F1uL+F6FOI5/aDMRUj202Rwn5Or/m9rVz3D4s0nAjyAC6+fU50TfcaoSdAzHD8zJv/Ox80eS/o/brH54AiBQ0+Q9yzLd1c8f/hyOS38eJwnrpH/2evRG9KiJeLMEYDYVmqkm1coVikwTTlGCpChoLLSZJClRkVEYEiV/9IEUFDMJb6lQRYZjGLzzxmuUSrorOhwOcRxnPg0pl8s0Gg2klKyvr1OpVI51l/R1O1MPSpKEvb29eeESRRFRFDGZTEiSZM4dcF0X1/GZjCMMaVHkMB6FxFFKrdpgPA4JgmAuiamNbYa6ez4c0+sNKQpwnQCpJK5lcbS3x97WFvF4jGMamFLQO9yjc7THqN8BlWMaBlmaUvYDvva1r7G+cZconjAcD0iyhGqtTJJGxEmo8bGOSRRPsG09HXB9jzCOMCyTrMjJihwv8OcTvBmZfWaeNlN9SZKEfr8/7+zPfjcY9BgNehRZgmMZ5GnMaNAjHA+5d/cO67eu0z86QOQpjmEw6h3R7xySpSHj8RBpgWGKOf5aCZOPSsP+uENLmJbYP9hDKUUURdPpnCJNIi5fvMjW1hZnz5/HcZz5ddJeWOLOnVvYXgnHcYjjeL4edLtdijyjudCi1mxNPUkelvz9aJI6m7wopWWW6/U6QgharZYWYZgWDwDNZpM0TQnDEFEoGo0GFy5cwP5/2XvTMEnyu77zE2dG5H3VfXRX9T09Vx9zS5qRkISOEZIRD0LGhuUyhsXLg2WW1QPPrhcs8ANee9eAwSzGfvw8nGZ5hCUQGl0zGo1GM9Mz090zfVd13ZVZVXkfcf8j9kVkZtc0IwF+sHte8HueeLIzKrMiu/IfEb/jeygRhq7g2V363RYz0xMcWlhkc3sXIcmkCyVUI4fQUyipDK4ko6oxn0oIMTLNC4JgtEaEEGRzeWRFw3Ydak2HRtuj27OwHOcNn/u/R3yz5P/2guFbPR+SfIccgEhihPu/FX+TNEC+7fF/fGzudSnNaCSSBdptQXWvhR1IhAJWVzZj5TVFZ25skXwqRxi5tJo1ktoE/baD7Ccw9CSNnRDbraOnDYqlJOvrUJ5KceSIyfkLz5DKwtyizImjWToRqIaBqQskOcb8J3WVBx4+BVKIEKDoKpmCzNximk/803+OrAFRn6QuI8KQSEj0ui5m2sSye/S6ffr9biwgosfylL7vIUTAWLkAxPfCcrlAp9PG9UJqjQ6eG+D6Hvfcc4Ldyhaeb+OLED9UmZubx7ZtcrnC6DxRFZlsOoWuqwjPpzQ5hawnKBayuHZIsZzh8sVL6FrMe5HCCFk16fYder0eUigR+hZz02MYuszO1iY3rl8lROb48cNomsYDDxxkYmqO6elZJCnCTKeJgFK+QOAGTE7NMjE5w598+mnS6TTj4yX6/S6FsUkqO1U2N9c5evgYq0vLWH2HRrNNqVRid6fG4UPHSGYKKKpKQpV4+yMPEPoOYxPx9WViegozmSCpJdFJIZw0BAlCWUFVdASC5ZvXUGSI3L8zAtsfb4kCoNvx+carL+L5DrMHclzeucrJdx0mJWk0NzRWbr7CF595lW47whYuntOmstVhrFgmCiSymZigN3+ghBRBp9ElSsChkzLH7tbJj8H/9UtfAh18XGRNRU2AjIYAJC1GZViWg+9JIGmEshKfVIHAdjwCN6LdaNNpNvBsB6tro2EiKWosF9jqsVdv07NsvAFxLAxDarUGmxvbNJvN2CRL0bF7No16i2KhTCGb47nnvsSLL5/DD/t0+zV6VpeEorG5tU0gCYIwHCXniiqhoqErOqoECeWWzKCKhDSE8gzgM1GkjNzz9ifUQgjCAQxHUZTYSTgSyKE/UgOJ85XBcZGHHjaIIERGImmkYok4aaCtLWmoskKEj6LKyDLIcoiqyiiKNOpGh1GsXiQCBSEGaiRIhL5EJOJphS9CvMDHcvp4vk/gS/heFG++T+AKokDCucMn9LBb7Pv+SO9c13Xaq5ZbSQAAIABJREFUzRb4Nr1eD0VTSZdmyE8dYGbxOGYyhSpHqHKEJssoiows3zLsEZKMkHVCRSNQ1Jgb4PbptfdQI5/P/ckfUMoajE9Psba1Ta9nkc/maFR2qWxVaTRaKIrG3l4dVdXp9Sxs22V3rzqaxJTHiqQzSVrtBsaAqNnr9ZAkKcbehyG7u7sYhsHy8jJJM4GuKbEilufQ63fYWF9FVzVqtdqoo+u6Lvl8nmazycTEBLlSkQDodrtUqptMT4zz5Hvfzd7GGp3GDlavSbNWodttI0KPSIrXuhSKUaIO8NqFi5x/9WLsZ4DE8qXLtHZ32drYZG11g3x5jPnFI6xsbeEF/qijHQQB9XqdKIoGsBUfR3j4CIIB5yGRSLC7u4uq6gRBOCD+xxCjWn0PVVOQREiv2WZzZY0bVy6zunSDysYaW2srbK0u0aht0WpU2a2u02rt4HsOrten22kR+C7CE8h6YuALEZP5VSXxrRfXf+dI57PoioyuKkhqSMI0mJyeot+16Ha7nHv1HFtrm6wsL3PjxjKh3+fKpQuk0jq7uzVOnX6QQqFAOpPEFwIhSQQBHDt8hKc+/+ccP3EXIUkkBTRNIYp8QELT4iKt1e0QRpDN5XE9D08ErNy8SaNex/UdJFmnWJpgbGqaSFEplcvIikYkycwcOEiqXMDMpHG8eM116k1QBBMTY/i+xFarhzl1ACM7TqPrYuRL9MIISU8iIoVUKkWxWMQ0k6Opb73ZQEQBludhuQGptMHBgwdR5CRr1QYrlQ5X1/bYrmzhW/HUAlkQCZ9QCpFDEZstDkaU4QCeKQFKCCOlhn3qZZIk3TKPG+T8txonQ72eW7CcWz8fdugH3hNyXFQqcoQi31JdkiU1/hnxYyTHOH8GHiW3ly8Rtz5HrAJ0C9YZhOFgevm3tQr/5tEXDt2exubGNY4sTJLOjdOoVTlx+DBBELC3WaPRdrh4cZl+v8vSuSucnHiEMDHBRmcFN7B42yPjnL0nx8y0R3kyiZwuEe0YvP7aKs0NGyW/gZeBn/r5H8W3evzDn0py1zsMfvM3PsUv//z/guSB5zvUWtfJ5Q0IwXdcfv93L1PddbjyusUn/80JPva/PYRwQnwVRBiQmxKsr9kk03lSuTJJ08RzHCo726TTSdKJJJvrG2xtbVCpbOE5NpXKKsLvY3VrlMpZLl5bYrfZorazyeEjdxMEPWaOLFJanGdqepYoEljtHXRJMDk5Sb3WolPbQ0Ug/B7jY2PkcjkQLpYjU125zNGji/jCY6dSYXt7m0a3RsPt03J82jtLzM9N8cpzT9Pb20QEEnefPIMkmSwcXSRfNDl58hBTpRJeKNjY2uG+U0cpjuUQmsHZt72DfDFNvpBBlcBI57mxXGf1ZgUjZ/Dow+9kr9bC7gasrXQ5dOgQU/NTzB+aQ0uqhHIMjm3Ud7CafWrb27R7XSJ8EkYIls/UzBy+06a900BqZbF3U6x1qhAG9AOLQJEoahJ71Tu3bt+K8ZYoALRQZvVmD00eYy5/gJ3dVSYOqDzx/rNUNi2+ce4ZGm6XSxe3uPueg1y+vI0bQNepoWgye7UmTgDrG3UsOyCMFH7sn3yA5Rse1y57fOpXH+cX/tVHiUKw3Q79boTwFKIwQgECX8EPZYSv74OhCDzhIWsK7V4fx/NoWx1sz8YNbILIxRO9kSFSo9Wk1e3QarVGlXe1WkWWwXE8tra26HR6BEGIpmlMjo+TziRBEszNT6KpKfKlNLLaI1PUqG6vYyaSyIqCJN/iI+zvvquqOiJ/xTEw2OIWtn8/zn9YBOz3CNjfZVKkN46ko31Er/14flWWSagaCtII/jK8QQyVPIbdsf1j7v3TgtHrZXX0PH5fjPMP/DBWARJebGgSyrFtwWgKcOsYdzqG04rh/3VrawtVVzEMnX6/h+8LWp0uri8oj0/g+hGBYuLJSVw5gS9rBFKCQFYJJJ1QkpH33ZYjWcITAUEIURiQ1GS+9vSXyWeTFItFJFVhbWOd6bl5JiYmRoZG6XSaSqXC2NgYURRRr9fpdDp0u91BwhtjqLsDY6ph5zWbzaJp2gjrPjMzM5p8qQMFqqRhMjc3hyRJjI+PoyhKjCmXZbrd7givatl9dvd2Rl3mhKHx9NNP86lf+iV836fX68dF6FAOMpQIiQgHEINhoiGrCrV2k8/++Z+RzKTxfJcoCtnaWGNudprzr7zK0vUbFPKxS+/wPOz3+5imGRcglQphGI/dy4US3VYH4d/iURAFSAh0GRy7h2/3uXLpIi9+/VlWlq9Rr+1iWz2qlU1uLl9nc2OF3Z0twgEBfni+7ecQKYoyUvuRJAlZjQmYw7VyJ0MIgWmalAtFPM8bSWEOORQLCwtk0jk+8L4PIoSg320hAo98LoMUyTz6yCP0+za13TqyqmC7zmiSkk4nabTazM0voOl6nJ/uK3ZzuRzlcplsPsepM6fRUyZBGBt0xfCYWIJ5yHMZTjJVJU7c6/U6kqySTGWQFY1232JiZo4Pfsff45F3PoGr6NiBjBep+CKkbzuIKL4+uraDpukjpZ9Op8NEeYxms0kURTQaDfpWLMlo232IBJMTUwRCot13Wdmosbq1R6/fwXF7cdK9HxLzptyON+57M9Lvt4o3gwO9KURI3tf9VwaQHnmo6fnfFiPIGsM1fmebLp7RYb64wO6mQ22nxe5elYOz04RugoWFw5SLCvMHE1TXN6mvNtDSJqGiEzZ8xg4coTCV5xtfucSR+UlWXtuh21jh0rUNjt9zgFQhidcBSVj82r/9EV549ot84hPfy8PHfpor51r0+CMW77uCCMARcNe9bR575wyKUsYKQk7cp/O2M0dIhPDT33cFo3CdZggf/fiDqCroWuy4XNmuIoRPFIjRNUqSJGzbZrxUxjRTTE5OAjL1WhdFMpBCje2tHWYmZtjd8alsV8hm8hiaSjKfZW5xjn6/idVpsXTjGq12g3Q2x8TUOAsH5tmq7FHIj7G9U0NTdFbXtsgVy+i6zsT0FN1un9JYmYShMDM7wc5Om69+9Vk8x2N8vIgUBTQbeyQSBs8//zzdbp+Lr57n+vWr1GpVPKfHwcUDzMzNsrW1xdzcHB/5zg/z4GMPoJsGFy68yqlTx2N/Ax+MZIZGo8GlS9d4/B3vYmwiwdvefh8bG3WsXp+trQqrm+t4kSCTznHoyCF2d3dptRscPnyYzc11mt0+e9YObuY6ppkibWTRgwJl8zA5rYjQNLaaTYQTohJh3tmey1su3hK2aPcemef69R6ba3tofpfId/HsHuqkwWMPqKxWdvGFjORBo9ZBlfNEYQvLhdnZHNvbDcJAIpJ0JARE8Fu/8jSzx+BnfuYf0VmvItxdZopQVBe43lxlvDSOZzk0rB4JQ2VibJytjbW4QSMgENC1IiJJJggV9toOqiJhuwqNzi6maeCKEHVALgzDkHqzgdOP8aRDMujK6jrpXB7H98jlCzQaNQB836HdrjBWynPvybv4yZ/8fn79P/9TchO7vPLqcxw9eYxCqYgIOsiyiOXbkJAkFUWJcZuxhnyArMjENvRyTAoedvmjCCUICPH/kp7+UDFiaDs/TPAlSUIREbKiEkUCBw9d1XAH+rkxPlYMuvugygoyEmKQkIt9iauu6wOt73hEqmkKrjQkCEdIUjz+j+FHb5QMHU4V/CDC94OBHCqIAGT5lrnQsAC7UzEsxIIgGOn0FwqFGG6TTFFSdTzPoViMSYbtvkNhfJpmKzapkKKQKCT+HiKQpAApgigIEJJKKCeIkPB9QRgGbFc3OXbsGKEQfOPpZzj94IPsBB5926YTuEhRSNZMo6oqvV6PYjGWSctms0RR7B5crVaZmppibGyMgwcPxtrTzc7AcbiLLMvkcrnRexzH4cb1q4yNjaGqKslkEtd1R7b0mqbSbrdHRd4QHidJEjvV3YFsLrTaTUI/ZH7+IOfPX+Rd73o3f/EXf46hJwYwtjCGgkUSEmKU/Ati9ZhQgkgJ+f3/8vt86H3vo9GskUpmuHHlMq7rkwCanoueMNFNg34QTxGsXkxoFUKgyRppzeTm9SVKhQKJhM7G6hqdTofG3haBcDGNFK4XO8t2Oi0Mw0DY8qgIMk2TdCqB71mjpF+VVAiHYrgSCcMY+TMMIXr7k/43I8j/j44hd8RxHEQQ84pSqTTdXg/VTDEzGSe99589w5e/+Bfgtel7sH5zGVWWePmF5xifnGFvJ/7ebdsmk8mg6BoLCwvMjJX5wuefotPSEIFLwkwSIhDRQG7TD1E0jddff50nP/QRzp8/H7v5+iGRopLJpFEkiYSuYCaSdDotMskkrldjbHwaJWFSGJtC71uYWZPHHnmUTr/Hje1dAjOP14sdXD0gXywhq7HylYhi6J5t28Atx3Lh+SRMg06ngxUFCD/E7VtUKhVEFJIplNjb22E5ENiuYHFhm3FRxMzk0Y0kQRT9tdLsb5bM8y2KgNF7otv2DRtA0v7HWOpTHnT7GTyPJbqGa+5vVhC8UZjhDiuvyRoTToHeqiCUQu595G5k4bO2dZPMzDz9vuC5r/8ZdykpVHWO9ajOV//1F3AEdHNptuYt/sF3fJjuxkXumj7G0s1dTi8+TDvYZmfL4vveexpXUqi1L+G5l/mDz73G7g584icWWaq9yoHoFD/8ybt46iuX+e1fX+dHf/xubLXGh77nOKossVb7PA+/L8Wzf9DnUz/S4J/9v3fxq7/4InoI69cEP/Dxt9HrtOl2WhhjEwgvQFHBc1ySyWR8TnZtdNVkZWWZcr6A77h0W21816Wcz/FdH3mMZMGksrnK+vol3v6Rb6e1u47TrBL023i+RCgZWEFAOmVw4bULTE/Oks4WuX5zmUwhQT+A8XSau+69j3RCQY02QFFIZpL02y7vfueTZJIu28stCsU12r02i4eOcP7VSzz22NvZ3d1DkmVWqlskDRMPh6znUB4vUK83aTVXqOzsAWCkUzz+bW/H6wncCAIZolDm6LF78X2f5eU1TDP2F9ms7jItjSOFMqceeJg/f+oLPHj/w9QabY4eP4xl9ajVapxYPETCgKa2TKnUo1ctokQ6alAgr07idmt8desFZg8XuWtqgc2t1dgD4u9iFG+JAqBe22XxyHHCaA9FdkhoKYqFOVqtLt/70e/ka994nqXlOoVUlvp2l56lkkxoBJGPIatMFtNUqj30RMiP//g/olwocO3adR58zzyHFov0agdpapv84N9fxA5s3vPA3yeTyYGQ+cM//lO+82Pvx+q0sKwe589d45lnnsXHw9RMfDcgnc5S95oIAZ2+TSqh0BcepDTQAnq9HqZpDqp4GaJb+NpQipUvNE0bEdjK5TKlUpFOs0qlUuH06XsJQ4+77j2IIyzmDk7Q7rZIZ1Nk0goiCIiIIBLISvyVhWI4DQBFkRjq+yMpSNIQcxtDIEQUE0XFIPkfYvqjKEJIb0xGhv8edV6JEzBJYgAXiveoA0iPJitISCDHXc1AxN1QRVFQVBlJZpSsS5KErMSfN0449qsF3SpCbt1fBoZBQTTaF3f/pdGNaPh/uVMhSbEJ0VApZUhy7PV6KLKE7cQFim3bSHJELp8nnTRpN2uxFwAhURjGpm/iVvnkoxJEKtEQs05AFPnIZop6K8ZHurZFc2+PQ0cOs765jS8CAsuBMBzBcvIDkuTe3t4o2R8fH6fT6cR4T0kawZdUVR1ND3zfH3VEdV3n6NGjhGFIt9sddHjTrK+vD5L7mLSbyWTwvFgVxnGcgbKKoFjMEwaCbreLkdQhil/vuQE/+ZM/xW/95r/H9+OCIgx8ZFkllEKkfVOlIZ9ClhSy6SRf/+ozPPTIYwghCPwQiQjXsZibm2OzUiWdThIEAd1urH6kaRoIQa/TplgsMjM1yauvnKPTbKCo0oDroLK+vonvb2OaJo5roakygW8jAmkAY5PxvNhdebh+ZVklFCG6rmMYxhvUbW4niO5P+u90IjUku8ZO0iHJZOynICnyiL80OzeHoiiUy2Wsusvk5CTbm1vsVrcZL2VJZdI0GjrZbBbbttE0jW6/RzqVAlnGTCWRFI1coUCwF2OXVVUeEXplVSWdzbKytsH07Dydq1fJ5AqoRgJV1em3O+iGhiMidDOFIyKKk7MA6GYSR0SoZpLJuTkcEaGYGbrONn3HR9ONeF3m8iiahqKoyHIKefD9GIaB7/vkcjm8QSMh8HwiEdJst2NfDiGIgpgjoGgqWsKg67Rp9RRaXZtM0htNVhn4wwx19eEWb+qNHK19a2I/bn/w3v3X4tuLgjdTVRvCB0evlyUkZEKiuAhggPuXpX3QI+mvrgFuO/advtYOo7HpkTqQ4Mlvf5A/e/1FVpZrZAyFTt8m4VmMj5l0mipTyQx5fY6aqDFlm6yrDpsv9jCAlr2N76vMpw/ymT98me/9ySnmFid4/eo6lmtjFqdptS6RSArOXYCFRXjq6Zucej8kozaf/4tl3vOhOf74tzc4enIcEvDiMzfJpSTSH3QpHs1z34kFVtoVQiUklYNgC3QDFg6OY/o29foexdIYiUSCYKAqpap6fP3wI6JAkEwaeG7M9QqCHpcvnefA4ikKExP0nCauLxifnESRQxK6TMfziIQgYWQplifZ2d6K79u6BrJO3/WYP7jA8rXLFMtjZPJpOvUmfS9icmKcnd0NzEyaXG4M00ywurxKaGcpFcoYZprV1Q1mZqfIZtP0+32uXLnKBz/6EZ599lkmJ8bZ3NxkYmZ+JCjw0ANn+OrTX2HuwDzNxi7dZp90cZxGu8HM9AEuvPYa09PTOJ6H05eZmztCpOpEboTV7SNFIRMTY6CoaKpBFChIdh9Vk1lf22ThQAnF6NGsOmhOi3y2RHV3DSNzFMt2cF2YKc/QaTfxvNgY8u/iVrwlCoDKhk9qymWqPMvW2jkefewxdus9cqrKP/jQe3l57Sb/8xMf44WXn8cwMzz88N3gz6Amenzja89imim2d1qk00kOFlxyWYvJxya4cu4SJ6Y+Qm35dW7e3ObEyQNMzZ8hbZRYXr7GIw8/RL1RpVvb4IMfeDeeY/Gex0/zEz/2nViWx+LCEZqdFhsbazz7ta+Qy5Y4e/ZBnn/uGaan5vnFT/0a6YI+6vh2ej3SRlwI9B2X7MBu3rJtOt0u+XyeIPDp93tkM2me/tJXeOKJx9FVk1ZnG4ddzr3yEmPTaUQvBDwUKTZJiqIw7ozKsYQmkiAMBYoK8tBpRkQwxNmHIMLYKCsI3dgF0/ewbXsE04lvE9IbcKeyLI80qt0wQpFkJCQiDUCJyXGhhDZ4j65p8Y1H0/AH5lRBKFBkZXSuqZqCISWQZPAcjSgMcB2P6DYc7EhGdMB+HZmg+QLfizsG0UDlaAgzutMTAMdx3kBS7HQ6FAoFNE3DsmMCeSKRoFnfi7ujhoEXKUzMzLG1sYnl+YSSDiigxHKbsqIi6yahrBFp8Wg4n1DwLYvW7iZt4SL3u2RUjauXLpIvFggcm41qlcXZeWyrBzBK5KempkZOwoZhoA2+s6ERUzqdZmJ8ip2dnREBuNVqMTExMVKsIhIjeIsykLQdHsNxLCRJGklmdrtdDMOI1XMiia2tCp4z4AbUa2QzeWzbxjRDNje2OXnyJP1+n8uvXSCdyQARrucSE+JBeB66qpJPptF1ncmJMcIwoLKyjKwnKI9PEEYRtiu4fuMKimbQ7bRigmngEUQRG+ursYmfDBd6XRRJplLdwPccJCnC0HRk1Rh16h3HAYkBKTSG8YRhSODHIgGJhEk2WbxV9IUxV2E/HG4YkXQrIbzTSf/+SCaTWJZFJpOJpz1hTOpv97pYTgyL8n2fZ579Kulslm5lFSkIODg/y7HDJ3j13PMsb1TIZ5PMzc1xfekGj73jnbxw4QIPnz7NZz/7WR5922N0ajEnYlxR2K01YhM7FPLpDGrSpNvvkXIDWr0a6XyJXDZPolAkmyti99p0mzVCZB545FFW126ysHAASVJwOx2WV1coF4okSyV6geDm5gZCNlDUkKRpoLouuhmv+Whg7pZOpzGNuNAdrllVVrD6MRzNsx2WbtxEU2XGiwVKhSJXX38NyetjJnQsX6fetrmx0kAVKlMzLqrigSzzV9G630xS868D7fnmCkG3FRID5Z9IVpBkNVb0kWMnAon9UCAJ/hL6/5vH7QISdzIUFJbtXXbaWyweLbN2M8Nzr93g9GmoVntMJyJmpma5eu4Cs4pJM2hy1YUPfd9p3lcs8JULL3G9eZm75x7H8iGrwcxYSHOvwxNnH+LizQvMKTmc7V0OZsb4oe/X8Xshz720x299MuD513+UjcovcPXCHv/sZx9it7vK+5+c4nN/VOHkR3I0m4IPffgsP/2vnuZtHx2j32jwsY/fw3/+P15j4jA4vV3Wljd49KEHSZgGCc3AGQiHNJtNspk8fatLp1YlnTGxug7b27tsbe1waPEoD3/gQ3Q6HZ7+4meYmg3JZnNY7T3cdoNcpoifyHPg8HEsx0Ig0em4lIqTyEpArd6kXt0ibag4nuDihXNMZDUazSamoZFMJvHckEptGdvymZ++i1p1h0uvXyVTGOfVl67ywANj+IHNzk6FgzNzVLa3uf/++7l06RpW1+Xg4RwTMwK7Z/Nr//ev8+DZUxjCp7mzh6znUBA8cOp+6rU2J04eZ2XtOgcWD/LVp16i1uwxc2iarJki8gPWt7fIpzSWV1dIp2UKmWnCQKJQyOPae+z1BGfePsPOixnSqsbOxgblA4dYXl7GmIHvet+T+I1tVru7NJ0+YmX7jq7dt1q8JQqAHdvH2NhDUW0urPvcNVnBT+ucvmeB//TUH/Jf//wcLz19mW7XYny8xFOf/SK9XkAyBU583cX3IZGAXhdUFUpjBnLo8id//Bd88md/iDBqIkX3kjU0ep0KVrvJtSsXeOKRk1T3dnn6S19mYnKMMIg4deY+6usreN1VXnn+VY7ffZJ3vv0dXLt8DkPucvr+E+i6zm/+xj/n//vjz3D52nU2trsUCgqGNoau5/BCmyD0kUSMib777rsRQYimapx64C5mp2c4+okf5mvPfh2rfZBLLzzPXYfex8Mf/kF++7d/jY/8wAO8svp7uJqNLGsEfoyLjUI/VukhQtZjsq8aDvDSctxJlyXwogghAlzh4zvOaNwvE8YQkzAEOTGYFsRjcTEkGisQRSGKBAlDxvNBkYwRqVJRVBQ11pJIGBpEcXIkJAiDAF3ViAZLS9d0wtAZ4aF1dSCTKUmIIETVFKJIoEigaOpArk4mCAU+IV4Q4gXgBRGRJBEGEqEcEvigqBG+Z92xdQu3phtBEIygYJZljTgBQ0x1Op3GsixKpRKOUydTnGZczXBzo4IywDEjQtQB78INIIo8VBESApaIvSzM4gS9+habO3vkdIW5qUme/dKXQVJ5+B1P0HNsdvbqTI+XqO9WKZXHuLG8TLZQBDm2fR8bG6NarRIEAa7rUq/XyeUyg6KlEydISY29WswfCILYAK7X65FKpag19kZTgE6vje/Gqlm5XI5OpzOCktm2jSJLdNptMpkMvX6XTD43wnZLqkoQhRw4uIjr2Rw9epjK1iatZp1SKoG0r8gbukZHUYTnWoQiJioGtsNutUI6m0PRNKJAJhAhlU6LpaVLpM3YM4Ew7vI7Vg/N0Akj0HQJ348VUWxXYEQ+UhQXHUgSUSSPVJOE8N+gWnMrAYt9RAjVN02OoigifJOE6U4nUQCoGnbXRVVdZmcOsLJxEz/0USWZSHicP/cSZx55Bxtrqzz5nm/n3557joVUivMXX6eQTZHIZHj744d47mtPs7u9zUS5TOC5fOw7P8xzzz3Hu971Li6eP08ymUbJZFhZXUZPmqQNkx/+xz9GFMFn/uTTSM0mO806h46e5PDBBarVKnMn72LhyCGWr92gu1elVC4QJU3uPfswakInmU7h9rtohSIp08S3XXqORyo3SafbYvFobNIouQEQn5+hCFCVmHRspJKEAsbGxjA1BVsENFst8iKg0axhSBFRENDvxdC4k/few8VXXiEM/Ti5VlKsVxsYGhzpOUi6RzqhE0RhDOtDxH4qhMgRKLFocyzFKUkIGTTeRNdfYiTNGU8T3qjXv/8xIpb4DGUFSYFIiW3tVVmP8f9yLGYhSUpsVIY8GgBEkfzN8/8ohpLGXgEySgiSCIiiACEkZKEQ3sFO6qtfr2GfgeJYmmTWYnNnm/EyTC1kWd+0SShJVqvLzBw+znp9BzU3zwMHbdRpeP6LX+KhhXH+w+d3OfS968h2kfd/xwzX164xK01Q1Np00wa7TZXT04vMTh3n2Qsv8r77F5graNzz+Dr/7nd+hvvvOUNOb7C0fBU5nWLxuMpP/HyWcsHkxiWPpApzTwT8wD95iKe+8UU2L1/FVuHMtx3hidMfwDkusd26gBwqqJKOb+6gWWNIdNFliYRpYvYt/GYbz48njkdOPsK9j72DzbUK6USWbHGGowszyEkf4a8iqYJMMo+rCZZWrjIzNY0uJxByQCGbw+nW2Vm/ycHFBTZuLnH+9RvMT40zfeJRzq89RShSCKGTUNLY3SZhwWd9c42Fw4eo713n0PQpjtwXsrS0RddTKU/O0m3ssryyzNhYgVw5y8LhGZbXt1EVj6OLxzh8l83Ll6+zVKkxMzFBbnYKv+1w/tzLjB8sEe5F5NMmL3/jHPefPkLD6jIzOcXm5irL169z/+lHef7Tn+Ps2bM0Wk1SeY1GoNNotzlwvEBfrPH8vzeYO6shhR6u3aZX75BOpnjh5tPMpz1mDmXwtnwOZBdY2/q7AmB/vCXmIZIsEbgRtiUwdeg4DSTbIp3L4CcUJksarZY1cFqNSaGBJ9FuxKNNolhxRoi4GIgiaLccgiDuhL/y6mtomkkoXDbW1vjFT/0yv/t7f8j15SUmZ6Zp1Nr4LuTSRdLpJJIkcfyuE7iuywMPnCFfyHLq1H08+tjDrK6u8L73vI/T991GDaBrAAAgAElEQVRPytR57G2PcOzYMRYWygghqFarbG9vks2lcRwLTVMwDB3Ps6jvVanvVWk16kzPjON5DseOH0EzZN7z/ndSb+zh+gH/4l/8Ml/7wmX0YI7IVwhDddRplOX44izJEYo6IAQr+ztL8d9UZgDx8QPC8Na2X+9Zkt6oUb0/hoRPWYpQZTmePOw77pDspyjyrc+xb4NbPgDyQGI0imLuwIhvIP/lRGj/uHyoxHK7DCrII5LlnSYCDyEfw0Q/CIJRF3k/GTcMQ7LZLEtLS/R6PYTvYagS9919F6Hw8Vwb1/dwvZBASMiKOtKrF2E0YuElk2nSmRy+L+h0OqyurkDokVAjosDFUBXKxTyVSgVkiW63S6lQoNvusFPZolAojDr9+ycClUqFZrM5wqD6vk+pVEJV1ZFh2JAcPDU1haZpsU76QD0lkUhgWRbZbHZkLKYoCpqmUSgUsG17JLFpmiapVIpQRJipNEKW0Q2DTq/PXXffg+sFOLaH47gEgUBVNYJADMziovjvAXFiI0lYVgxXGUqZhsJHBA4pI4HrOSiyhJ5Q44RQVfD8kL7j4gchkiIPJFx1LCsuJoc8h1wuN/JPGJLd4Y3E9iHka/92S7b2r97uZMiqiqJp2J5LIpkaGWE5jkMmk6HZbDI7PUmn1SLwfMrlMqEQrK+vY1kWb3/HY6MpQa8XT51qtRqbm5soSFy5coUjx46RzmXpWn0Spkk+m+X7/+H/xJ/+yaf5f/71v+Hg4gIf/Mh3MDk5hWEYXF+6AXJ8fUkaZkwUHqy78mA9tlqtQdFawDRTWH2HZDrDxNQk2VyaVDKD63joWgLTTFIcK4/Mw8xkmkTSRNONER9qeF1JpVKj9Q6MJl5BEJDNZlFUFRGFqJqOJKs4gYRlBYjwFul7f/xVHfO/ivg7fM03kwO9/eeSpCDL31qW+b813koTgIcfmcDp26hayM6ejW/1ubkMBSOJailsb3bpt3rYgc3GpkUnbGFogrSaQ/J0HCF496MniWSJUNa59/77KZJnfn6Bnb0bOJ5gMaWC0sIXFpFisGP3WL62zmwywZl7DhB1aswfn2WqnMf1G6SmM9Q3OjSaOyR1D1OOePKjZ3nxwhfIlDN87LvfTdST8DtNVteWYt7h+CQSCr5tkTWK6FrsK+H4DpEIcNweYeRj2X1kGUpjZWRJxY+gUJ7l2InjTJZyeFaPVr1BJASu69Bs1UkaJsL32alsUqs1cByHL37h80hyxObGGmYyycOPPMj45AQ3b97ACwSRJJPJZdnY3uDm0jJ232Jmfo6EYWDoadzIZ3p+AU+KyBbyGOkc4+Nl5mZmyefGKJdLKIrC3Nwcd596iJcvXub+M2c5cuw42dw4RjKJ22mTSCQoFosszBxAVVUmJ6bj81DWOXBglmZ/L762Kwq+L3js4Ueo1+ucPHmSpaUlLMdFU3R2dqqUDpfRowRmkKZW7yAsiVarxXZ9A3k8TyqZ49LVK1hComn1OHH3iTu6dt9q8ZYoAAxD59rFPRwrYrw4yVJtj+ryBtduXOBydQkR+FgWtFsBa2td8uUUuhkTnBxHwvUiCsVcDGuUQZJlej145NHHkBSVp595ia9//RVeu/gSv/Pbv8Mnf+7/5ODhIxQKBYQE9957mA9/+Ns4eXKBkJCVpWVKBxZZOHSUfCHNCy+8wMrqEsePH2VqeoIoDKjt7RAEPbYra5w+cy9jY2WOHTnEqfuOo2sRu9UNFFlgJCKOHp7koQeOMzuR5JEzJxkrZ/jSlz+L77s8/fQXSeY0zl96iSeeeAfHzxzimee+yMtfXaIQPYImp9A0E1XTUNS4eyQpt7Yobi8hqTFGWVEkkEKUSCCFPpHvEgkfwgDCW/j/uHAIkaS4M/8GhZ5B90rVZHRFRlMZkX5lOSbzqqqMnlAHJj06qnYrIYp/VzT6PLoqk9AUzISGpg2KBkUikRi6MTNKpIbJ55BUu/+GE8bWBAR+SOCGeFZwx43AwkDgOW4snRpGmAkjJvNGEIWCbqeNCHw816Fa2SbwPVJJk73KFpHr4HYbaMJBw0eNIiRVQVJidSdFlsilTMr5LFFgY3carFw4R2BblPM57H6ffreHKgtkXL7y1J9y+fWXyWaSaLpKKpnGdX1ajSZuv4euauxWdzATBoaeoLa7h9236LY7FHJ5hB/QajQJA0F9r4bdt6jt7uHaDp7jYvX6eI7L6xdfI2mYmAkDXdXiSUCnQxRF2LZ9y1F28HxokDYkBg/15lOpFL1urDjj+4LxsUmiSOLJJ58kXyrj+QLXC+j2LAIRxbK10YDUqOvIegLNMEll0qRTWTzbo9fuEPke7XoNyx6YNWk6YSRhmBl0M4ePQiQl6LsBipaI3SZNk1KpFE8/THN0PuxP0vcn90KIkULNcBtiwYc/G277fS327wuC4A6uXNCNBMl0ivXNDYqTk+iaSS5fJpPLk82myaWTvPLi82RMnStXLuB7AgjpdVrMz85w7fJlyuOTfOTvfZRut02zWWdrbZUvf+5z5LJpxifKbFc2mZiaxEiazMzMsHDwEL//e3+AIqm884n30Ow7LG1VuOf+sxw6dIhTZ86QLRaYnJwkDATlQpFLVy5z6dIlxoolMpkMi4uLjI+P4wWCTDZHOpdD1nUC4PDCAsV8FiOZYqtSZWxiijCKkDUVPxBomk4mm8dMZ0aTnEajERN9hUBV1ZH/ha7rtDs9en2bUnmcTGGMbGkCzUwjG2lalsxOW9Ds9rD7fYTvx9Kft62Z/Y9vptl/O0fk9n23v/cvN1jkgdxnPD1FjiVBkf72ioH9ReudLgJOnZri8be9i07bo1Sa48kPHOADH55nd8niH3/3d3P3fYcxRIH6XsyBCJKCjJ7Gq1dQvDTp/AxSdYN6PeDu2aO4/T7v+bbvYFMsU1w4gJZd4EAY4YoeN26uock5at0m7zl7mLPlRfZurDIljzP+jTrzhUOMGTnqWzXCok4mXeD04UOEuxazhxKs7/WZOzzL1c2rHDweEQYh4wfg1dc+jWJYNLsVfK+NIofohofjuvTdWuykrcmEoUetVkVEPjML86iazIlTx7BxyWRSbC5foF2rYnVaIBQ8t08kHMIgoFnb5eihWYRvc+XyRXIZk7mZSS68/DK27fD1rz1Lvd2i022xXWvQ7tkk02kMU6OQNkkZKtlskr1aBSNRZqVWYW7xKMfuvZeO3edmpYobxSIVr722wvz8LLIsUSqVyBSmKEwdpO8F3Hv6NKffuciV5fOoLgRRSGVnjysXrzA3P0UUxUIqthdgWTZyNiRhZrj/7Bl29vaYn5pnvJjj5vUr+G6fZrPO/NQMlt+keHKSklbkxgurOK5CvxPRD302epvc2Olz6YVrJM0UwoBGWKNSu3nH1u1bMd4SBUAyZaCrsL2xTRBEdB2VZscjdH3SaYPZhQksDxwvRFKg0+sSRD6JZKxHLCKJZqdLJCt4gljzWAE/9AmJ8P2Ier2B5zhcvbpBNpvlB3/kh0klDGzbZmZ2jEDYbFfW8H2XUqlAbaeK7XpMTIyTSGjU9hpcvnyVwA9pNvdAEkxNTVEs5ikUciNJOTOZYGZmirFyEVUGq9dlYrxEGFo8/rYH2KtusHjwIGHgsbVV4b3v/QCe5zM9O8/HP/5x/vdPfoJWs8qHPvwBPvI9PwRAJItYxWFo5CLLMdaTmKcV74uQRwDUmDAshYJQ+G8w8trfyY/hC292YwgH04EQaXA/2Z/cx93Q4b5bN6f9m6IooxvVflJkfNMdwCakcHCsNx59f8I0lCsVYv+0IiYDR5F05wuAQTI4/KyO44x4FrGaUfx39DyHfD5LIqEhy2CaKTTDJBQBU5PjBI6FREAU+GRMk6wpIwc2S5fOs3LtNfxOHV04pDMGVrvO3tYmiADbsbl85Vp8TEmiVt0in82QyWRYWVvF9310VSOfzbC7uwvA3t4enU6H+fl5fN9nfHycfr8/4itEUcTCwgLNZhPP87AsC8uyMAeurPl8Htd1R/wL27bR9VhCV9M0TNOk3W4zNB4bmm0N/QUg5k74notpJOh1uhiqgq4p1HcqvPTiN0YFoe/7I87C0HhOVVUkRR2dE7eIjfFjrd5ERCGSohKEEX4Y4QXQtV0a7S5eECEkCSOZJookwn3667fH7Z3P2zv9f919+zv+b5VOajKZJJ/Px99RLocQEclMNm4IyDL9bptmo44CWN0ORBHNeoPp6Sm2N9fZ261y4cIFLlx4DSMV8ydURebBB85y7fJlkkmTfD5Hu91menoaWVXo2Q7l8TFkVWGnViebL3DsxF2srm/w/PPPs7axytjEeNxpV+PJZ7FYJJlM0mm1R5KumqaRK+Rjl+dUCjMZSyYnk0kWFg6OJhOqrg3UxAKyg9dL0q0J5tD5vd1u4/v+yARy6JIdhtBodUBW0RImWiJFwkihJQwECj3Pp9uLp2BhIG7J/H+L7/Zvmox/K77AX94vx+puf4ta/bcTmO/0um31+vzRH32GtDoZw18TfVr2JjNzJ/iNX/2P7LTWUCWVx5+4n5nyNLXdPhNj06QSOp5okEsXSMrguQr1nW02ttZ59eYFvvrSTZr9LkL4tBu7tJse6WyRYj6DFAlSZoKdSoesmeLGi8vkWxpm2iZvNLjvSIFUSUZXkxxfXOTgzALNZoP775nh4kuX8H2F7/3+7+Hnfu4XqDc3WDhcZqe+zV5jk2ptk93GCtu7q2SyKUJsJE3D9Xy2t7fRdYNQkohUmSDyAUEodxkvFUilk4yPxZh827bRdAUhfHzXI5tOYvXbFApZJsZLCBFw6bXXec+3vYvNzW1O3n2CYnkc3xMoapJMpsD169cplIqcPHmCl19+ifreDq5jcfjoMfLlMUIpZHHxMA+efYDxqVmuLK0yd+AgejLD6uo6165do2/1aDUbpI0ERjrDbqPJbnsNM58gRCabzXLfmTPImsmVK1eo1+uj+6YUJujjxcINhkKlukWjVsdMaBRyWe67+yRJU8d1+qAKrr52jVq1QhAFWF2HzEQeI58iMzaBs+XT3+ritHza7ViiuNFo39G1+1aLt0QBUGu2uf/u2VjmcLPN8rrMZhuqyxusv/46hekU99xXIIpkRADNPWkE9wnDAM+LXWJdV6DryqCTo3Bj6Sp6AoIQ3CDg6qUb+B78y1/5RRQVzr94jmwyRegptGp9mns9stksiJBmp0ut0WJnd4vJyUkWF4/w8rnzTExMs11ZI5HQyGWLLCzO8rXnvsqxY8eYmhinmM8zMV5gZmaC8lieTNaA0CGVlPij3/0PTI3lUZSA6alxMukixcIE9595hAsXrvHwow/zzke/Hc/ymJ7N8S9/9n+NE3ml/8ZR8DCBl0JkNe62D/Wfw2jQefRcAt8lDLxYWYUImQhVi0DykeQATY8hGm8Ww+RekUCTpUHCHw0MfcRAJ14ddP7jhH54U5XlGBYUIWLIkAS6qqApMpqujNxplX2Fxf4kaZhMD+E9tzph0i0vgCAi8AKi4A4rU4QxzGq4hYFAU1REEBuqRSJE+AFJw6TTaqPKCs16Az2ZxvEFsqJgagoPnb6XenUTu13Dae+yevkVtq6+SikRMGYK/Poq3co1+tUlwm4dLXJRFQVJVvCF4PXLV0ll0shKxNPPfBFJijhw4AAAnmOxW61SzOTod3v4rsfhxUO0my0cy6bf7ZHQdBKajmPZtJstrF6fUqGI8IOYPhjBxto6dt9CkWS67Q6B59PrdEedU4iTSiEE8/OxJ4FlxaZSphl3gIevC4IAt99h7cZldtaWuXLxFb7+zJd49dzXqVe2WFq6jh8KdNOIpWUVOTYkkmP8dEhc+PtimExLo0dZTaAaKZANFCODj0ag6HiyTqgmQE0QKSquJ+LkP5LeNKm53UPj9u3NOvrfrNt/e1G734X7ToXre5TGyhimiZpI4XuCVrsTryNZJpdNsVPZZO3mcjwFlFTa7SYnjh9H13W2NjZjF2jHo1KpxGodImRjbZ3ZmRmuXr3K17/xPJquMzs/R3V3h8n5WRaPH2d28RAnT5/iXe99L3Oz8+QLRZKpGE5nplJx4R/G3hVmOoXwA/L5PLVaLKN848YNGo0WscutguV6GKk0W9sb2J6LouqUyuNomkbPjuVaTdOkkC/h+AG9rjWCE/m+T7cbr+OdnR1c18XzPFqtFv1+n0ajgeu6JFNpkpkcudI4yUweX4Zax2F1bYfdyt7IBfxbFXgjNTT5jdj+bxb7fVn2v3//Jssxvv/W7xxq///t3N6/WSF7p0I3Zyllk/zmr1zkM//xMjd2axgZhTY+9566B4wiWqLHzvoSur/DVLLA4WMHuPr6Ju/90D2cufcsq9c7vP9t38W/+6+fRpkrslG7RMmAvGlh9q4hBVXC0GR57TWMdI2dTpM6AbuWivn/s/fecZZU1aL/d+1dVSf26dw9PRlmBoYgGRQRBdQrooheMcHFgPnqM0d4puvVq1706TPcKybMmDArgoggOUmYGcIwgcnT0z0dTq6w9/tjV5/pGQdErsj8ftR3PufTdapq79pVtXp6rbXXWrtviBNHjmBN2fDnVXfSk0RQm2KJKlMONLfccgU333QNzfoUNBIO6OvnjKc9nd7u+7ns9+fz1a9fzq233sL3vvsrrrvrUn5zxU+5d+OVjFW3EkeGUndArtxLpWeAwb5BeroGmDNnERu2rmOyOsr20dUExVHqE2OsXfMA9963hsn6hFsEbds28rkAsW69i3Xr7qVeG2WqOkpvdz8LFyxh++ZNHHjQQaxefR+FUoUgKDAwtJjxyTr5fJEbb7yeSBlOPOVp9BRLDJS66BsZZOmBhzI5vo3JndOEzRYHLT+U0190Lmu3bmL/gw9ByDN33hzmLxikN6c5ZNn+lLoqBKUurvjjrRx45FEsPWwxURTxwI5RDjjqCA4//DDarYhDDz2Uuf097NjUZEerRr0xQSwhvX1Fxsa2MD05gadg1cq7UEmLWnWU/Z+wgCXdyxkZ7GdTdTvNeotpf5rhAxfw/Z/ezYvmHclc28+WleMMF+YRVctoO/yYyu6+hjzW1nxGRkZGRkZGRkZGxj+OfWIGICMjIyMjIyMjIyPjH0NmAGRkZGRkZGRkZGQ8jsgMgIyMjIyMjIyMjIzHEZkBkJGRkZGRkZGRkfE4IjMAMjIyMjIyMjIyMh5HZAZARkZGRkZGRkZGxuOIzADIyMjIyMjIyMjIeByRGQAZGRkZGRkZGRkZjyMyAyAjIyMjIyMjIyPjcURmAGRkZGRkZGRkZGQ8jsgMgIyMjIyMjIyMjIzHEZkBkJGRkZGRkZGRkfE4IjMAMjIyMjIyMjIyMh5HZAZARkZGRkZGRkZGxuOIzADIyMjIyMjIyMjIeByRGQAZGRkZGRkZGRkZjyMyAyAjIyMjIyMjIyPjcURmAGRkZGRkZGRkZGQ8jsgMgIyMjIyMjIyMjIzHEZkBkJGRkZGRkZGRkfE4IjMAMjIyMjIyMjIyMh5H7NMGgIh8VUQOfqzHASAiTxGR//oftD9JRJ789xzT33j920TEf4Rte0TkXx/i+DtEZJWI3CkiV4jIolnHPikiK9LPS2btf7OI3C8iVkQGZu3vFZGfpn3dJCKHzjp2qojcm7Z736z9XxORO9I2PxaR8qxjL07HtlJEvvcI778iIptF5Auz9r1MRO5Kr3npzD2ISJ+IXC4iUyJynYj07qW/uSLy40cylkc4/kx2H/z4I5Hd76ZyuEJEvj4zNhE5O+3nzvTdHz6rzdtTGVwhIt8XkXy6f6+y+1Dj+hvv/5HI7ur052MuuxkZGRkZjw77tAFgrX2NtXbVYz2OlOuB4/8H7U8CHlUlShwP9k6vA054hF33AA+qRAF/Bo6x1h4G/Bj4VDqe5wBHAUcATwTeLSKVtM21wDOAB/bo6zzg9rSvlwOfS/vSwBeBZwMHAy+bZRy+3Vp7eNpmA/DmtM0y4P3ACdbaQ4C3PbLb56PAVTNfRMRLx3Vyes07Z64JvA+4wlrbDfwi/b4b1tot1tozH+FYHgmZ7D44j0R2vwssB54AFIDXpPvXAU9L+/oocGHa1zzgLel1DgU08NK0zV5l98HG9Qh4JLK7DLiCfUN2MzIyMjIeBfYZA0BESiLy69QbtkJEXiIifxSRY9LjtdQjd6uI/F5EjkuPrxWR56XnLBaRP6Uew9tmvJYiokTkS6kH7lci8hsROTM9drSIXJX2+zsRGUn3v2WWB+5ia20CrBaR5bPG/PL0+B0i8u103+kicqOI/Dkd57CILAbeALxdRG4XkRNFZFBEfiIiN6efE9L2g6n37TYR+bKIPDDLQ/eOWR7Jt82657tF5EvAbcAHROT/zBrja0XkM8BvgVNn7V+aju+O9FpLRKScehtvSz2EZ6SnfwJYko79P/d8d9baK621jfTrDcD8dPtg4CprbWytrQN3zIzBWvtna+36vYjCwTjlA2vtPcBiERkGjgPut9autdaGwMXAGel50+k9CU4hs2lfrwW+aK2dSM8b3cv1HhIRORoYBi6bvTv9lNJr9gH/LCJ3AG8FJkTkjzgl7vl7kd0zRKSeyu5nReTnqQw2RGTLjOyKyAdE5B4R2ShuRmFVJrv7hOz+xqYAN820sdZeNyNre/QF4AEFcQp4EdiSttmr7D7EuB42D1N2KzNjwf0+fTPd/ibw/L30uVhEVqTbr0xl91JxMyIfmnXejOxeLm7G411/6/gzMjIyMh5FrLX7xAd4IfCVWd+7gT/ivGDg/jA+O93+Ke6Pmg8cjvMYg/vDmk+3lwG3pNtnAr/BGTxzgIl0n4/zLg6m570E+Hq6vQXIpds96c9X4zx2AIcA9wID6fe+9GcvIOn2a4BPp9sfBt416/6+Bzwl3V4I3J1ufwF4f7p9anrfA8DRwF1ACSgDK4EjgcWAAZ6UtikBawA//X4dzlNZBG6cdf0bgRek2/n0uAdU0n0DwP04ZWExsOJhvscvAP873f4nnKe/mPa3FnjnHuevn3mG6fePA59Jt48D4vTezwS+Ouu8c4AvzPr+DWA7cCVQTPf9DOc5vRanRJ36N8qkwsngAuCVe1zvTGAa2AqsmhkbMMks2cXJ2p6yezWwAie7G9I+5uO81SuAF6R93g6cBfwOWA18hEx2Yd+RXR9nuJy4l77exe7y+lagBuwAvrvHuX8huw82rkdBdq8G9Izs7tHHxF767TzPtN+tQD/OeFmBk/ljcLJbALpwsvuuv2X82Sf7ZJ/sk30e3Y/HvsNdwAUi8kngV9baPzkHVYcQuHTWuW1rbSQid+H+KIH7g/wFETkCSIAD0v1PAX5krTXANhG5Mt1/IHAocHl6LY37gwZuavy7IvIznCJJev2vAf8HOAX4sbV2DMBauzM9Zz7wg9QbG+DCAvbGM4CDZ91jRUS60rG+IO3zUhGZ8Sg+Bfipdd5IROQS4ERcmMkD1tob0jZ1EfkD8FwRuRunTN2VtpkUkblAFZhnrf1p2qaVHveBj4vIU3GK2TycB/FhISL/gvvj/7S038tE5FicIrcDF4oS/5VuPgF8TkRux73nP6dtZC/n2s6Gta8SFyb0eZwy/A2cUrgMF8IyH/iTiBxqrZ18mLf0r8BvrLUbZ8ti+pzeiFNi1wLfxs0AjOOUqam/IrsFXCjTXTjl8se4d/IFYHDWz//AGUEX4xThKk5JhEx29wXZ/RJwtbX2T3v0dTLO4HpK+r0X513fD2cg/khE/sVa+530WnuT3b2O62/g4cru53Fhcv/+N/Y/w+XW2vG070tI7xn4ubW2me7/5SPsOyMjIyPjUWKfMQCstfelU9anAf8hIpftcUpkrZ1R+AzQTtuZdFod4O04T9rhOA9YK92/N+VxZv9Ka+3e4qOfAzwVeB4uNOEQa+1mcYlyxbSt3Uu7z+M82L8QkZNw3tO9oYDjZ/5Idga0h+a4x1gfjPoe37+Ki6W/h1nKBM6TfCpO4dwbZ+MUz6NT42o9zsO6+0BEPoZ7Plhrj0j3PQM4HxcD3Z4511r7MeBj6Tnfw3kDHxTrQiJelZ4vOCV0Hc4Tu2DWqfPZFbow0zYRkR8A707vexNwg7U2AtaJyL04g+DmhxrDLI4HThSXRFoGAhGpAT9Jr7cmHeeFOGXzLkCLyEy8dj8wilNYZ8tumLY34uLeLbtk98s4L/8F6fmZ7Dr2KdlNw10Ggdfv0f9h6T08e0YxxhlM66y1O9JzLsHlVHxn1rX2lN0HHdfD5OHK7g/ZFeu/XURGrLVbUyPw4YTM7SlHln0otDQjIyMjY+/sM/9Rp969RuoVuwCXgPe30g1sTT395+C8ogDXAC8UlwswjPMIgwuDGBSR49Mx+CJySKqULbDWXgm8BxeaMVNZ5sq0/RXAi0WkP23bN2sMm9PtV8waWxU3HT7DZexKviOdtZgZ64vTff+EC8sAN1X/fBEpikgJ52ndzfM4g7X2RpyyfBbw/VmHfosLg5kGNonI89Pr5FLFsBsYTRWok4GZyiO7jd1ae7619ohZCtSROMX1eXZWnL2I6FnP5zDgMHaPR/4LxFVtCdKvr8F5WKdxSvsyEdkvPf5S4BfiWJq2FeB0nPIIzvt9cnpsADcjtPahrj8ba+3Z1tqF1trFuJCOb1lr34d7vweLyGB66gtwyvh3cIrqc9L9zwV+/jAu9UxgCOdpfj5O3lR6Lzfi5OE5OBk8KW2TyS6PjeyKyGuAZwEvS/+vmWmzELgEOMdae9+ssW8AnpTevwBPB+5+KNl9sHE9XP4G2X0mcHe6/Qt2vfdX8DBlNzUsCzjZvRYnB6eLSF5cVaPnPGQPGRkZGRn/cGbifR9TfnPJl+2f77ibr170Y/zAx/M83vvON/D5L13EW970Sp5wyHJOOOVMrrr0Yqy1fPWbP6RQKPDys1+IoHnKM57P9Vf+kvUbN/Hu9/8b+VyOo488hB/85Ndc/4ef4eWK/NvHP8Mtt93OfgsXEEYR5778LPX6hh4AACAASURBVE58yvGsWHk3H/3Ep6lO14iTmLNe8kJOf86zeP2b3km1VgPguc9+Oq9++UuIreGmW27niiuv4b3v/Fd+8cvf852Lf4JWimVL9+ND572Da2+8mU9/9ssMDPRxwNLF/Pm2O3nDOaexbMlS3vPvXwJrOf+tr2LJ/vvzb//nK6xdt5EkiTny8IM5/91vZHKqxvs/fAHTUzWOPvJQfvv7q7jowo+xcHA+3/7xL/n5b36PKM1Lznw+5778ZWzYtI3XvPGt/O7nP0CsR5JEiLL819cuYtXd9/Lh899BtbaTarVKvV7nPR+4gBf987M45tCD+eLXfsT4xBSBr/jiZz9FpauLc9/wNqI45uCDlnPrbbdz0Ve+yPx5c3nLO97LPfeu5oQnHcPb3/xaJnduIAxDPM/jbe+7gPvXb6RcLpELfAb6e/nI/34rvhVe9/YPAtDdVeZD734jBy/fj1y+yA9+dhlfuPDbbN8xTn9fD099ypP59w+fxx13ruQ9538YpTRLlyzm3z98Ht3dJZRYrr3+Rj768c+RJAnPfNqTeMVLTyeODSc//9XX4ZIZBZes+UZr7XSqVH0a5zlOgI9Zay9+JDIqIq/E5aPMVBh6A/DWA49+9fLpqa2MbboJxKKUZmTps9h+/2X0LToFrzTIhlv/i2VPeheB+Eytv5inDdZ5+tFLCJTm3G9czX994G2M7tjBF7//MwKxHDJY4Xert/KNc09memyKi+9czx1bpskX8ii/wPKhuSyqh2wJm9y6YyuJMRgLB3X3sKzSw++2bCAyTi89uNjDkX19eMawvtXm7sYkx/UPsb5aZcXUThDLoJ/nxKH5rG9MceP4KBXt0Z/PM9pu8Zw5i5mKQ67YvgkNHNrbzYBX5pbJHUxFIRbLnFyBk4bmMRrWuX5slDAxjOSLrG1UefncRfQ9/ancsWMbd9yxAoCnHn8Mpxy7jFoDPn3ht/j3896MUkLSbkG9za+uv4Ut28d57avOIlQKzy9jdm7no5/7Mh9735tYs/Ievn/lbTRqNcTzOe/8C1i6oMwb3vR6Wq0phkZ6WLNmC6c941RO+qezueTHX+eGG67ltNNO57gnP5unPuMUdozu5JyXnkZfbxfbt22hXOpiy5ZNCIaeSpFmOyBOGohAkiRoz6dQ0oRNaDRqKOVyaQXo7u3CWMP0ZANjEme6GcWSpQfwua/8iKHuAb783//BZZf+mnI5z/oNW/nARy7gvHedC5YHk93f48K+ZsK6Nlhrn/f3lF0gwlXheqW1djw1eH6Iy+vYALzIWrtTXCGGN1hrXyMuKfyX1tonpP2ehsvdWAp8z1r7kfQaHwZelva/A/ijtfYrj2T8GRkZGRl/f/YJA+B3P/+6zeVyiAhKeyRJgrWWfD6PMQatNQpBxH207yJ+RASldm2DS2oWESZ27qCQL1MqlRAVMF2rEuRLTE3s5Jxz38T3v3Uhc4aH0Fp32s8kRrgdljiOqVdrNBo1d8yEhGHIG9/2Qb7yhY8T6IAkSag1a4hWFItFrBWCIEBEmJ6eZmxsDKVgsLeXOUPDWAFrFDaBnC+0Wk1sbFBK4XkecRyjlCaJmty6YiUf++xX+fJn3sf42HasjSgVc4wsOITQCBDgE2JFoZTCiMGYGFGWd7z3Al76wufypOOORBRorYnjmA/922d40hMP5+znn0yhax6NyBB4PgkKay1KKaza9aw9u+u5WAzEEcbEbN68hi1bttDf349KhO07p/HzOeYODZLP5/F9H2stcRzRaNToKXdhbUIu7wy8QrGM8vLUWiGJNVg8TGLTd6o615x5LwBiYowk7j0nhjAMaUxVeeIz//mhQkweVQ485lU2tgGxKYLXIAgCPCkQ17aS+P1Y5YaW8yr4+HRHK3jdwTtRg/MgCvF0QGH+UhJbY3LNSvwoIjAxtBu0o5AkMtTbigcin1Gd5ydX38SzDj+Knu07aYsFY8kjKISIGK012oCX7gsSiFSCtoYWmh9tXsNz5y0iZxUaS5uEHJq2FVAWH0XZClWJMSisFUjvoWSF0biGR4A/6/dGp7+jE2GTvGgCpRltN7lmfDtnzVtE9ykn0r18CfMXHgja0qztZGzjGsBQLOVJojiVXw8bGb72nR9w8lOfzPJDl9PV3U/cjEnaVS76/o944jFHsGT+CPMOPpFCUKK7b5gND2xmYmwNvvZYs/oPtKZr5PrzbFg/zinPfj233HIbSZJw1tmvYNvqlUTa45RTTmPRgh5+fuktNOptznzecSyYP5etWx6gf3CIa266h3w+oKuS46yzzuFbX/8aw0N5xHoEPgRBAWsTtFb09nUzNlajOt0EMSTGsm0s4tLfXcVppz2Nm26+h2OPW861f7qVc856Id/63sUsW7aUww4cwdroMZPdR4K4MM3PWGuftqdhscd5ZWttLZ2duRp4nbX2tn/wcDMyMjIyHoR9IgcgF+TxPd8p8UozE5k0o/g5I8DDGLNbOxFBAt1RGGfObTQaVKtV+noHnVKdJLz57edRrdaIoog3veFcRuYMd5T/3RT/mb5RKNEUCgWMccpms10njmM+f8EHqdVqaIQkSUiwBPkAsBTyZXzfx/d9ioUyfr6M2ITucokwUakCXMSahLyy2MTQCidptyOM77Nxy3be9W+fIYpitFacdcbTuf++NWzcuoXh/l7mDHazfetGdky1iBKPQiCgPbT2yec01WqV933wAvZbOJ+FcwfYunkT1kChUMDzPN76hldQq9WoV6sYVaNWb1Du6UeU3zGiZsJ6rbXEicFa6+4zionDBnEc025FdJW76enuI241GVQenqfRCL7S2NgZcTZO8FLjBhS+76PTcu9xHLt3Krvep1JqN2MOILEaLRaLxuKMArTCz2sGcsW/lxg+YjqyY9Vf7BPRWJtgBWJRtHVAq6sPm68QmTqB9qg1axQKecJcN23bQOIY7UNIDnKaz157G1PNkBg4ZPkBFHI57Cy1USwPGWVvcLFwPsIZ8xaT7DX8/6FRDxnG74hEuHz7RrAWLYqT+0d2Oy6Cu7ZohobnENsEz/OQ9Pev1Qr50H9+moXz53Lk0UegghwART+AfIXXnPsvGGNQShAbs3nrNu5dvZbuSj+iPJYdcDC33vpr5vf1s250O8YW6Cl5DPZ1cdDyQzjyiKVMDHVx1/0b6R0Ufn35VYxN1BkfnaBQKHDJT3/OySedyPveez7T1Qalche+D295y7v409XXEUcWT1tnFO2JaJTOY+ImqBx33Hkfhx12GFdfcTWV/hHuXb2NdqtBq9Fk5V13MXfOHIKg/Jf97MOkMwHfYy/rA+yFC8Wt05EHvpkp/xkZGRn7FvuEAVAoVmZ5foVcoFLl0+XwziigzWaTMAwZ6OslDJ033ihFkiQYYxDrpus9z6O3txelnEJmkohvf/X/YhA87aOU85gnSUKSJJ1rWGtnGQXSmZEod1UwxtDd29M5L4oionYLYwxxHBOGIYFfwved0pLLFZx3NFfozGiEzRY2tBR1grExY9UarVaLDQ+s57rrrqOnp8Lw0BCvPvvZVKsRrTBmx1SDyWZCo+WxbWySB7ZF7L80R7VaxYjPRLVJhMLiUfZ92u0mz3z6KTSrk1z0nUtQvoeNE2JrIDEYMYRxxGHLFnHssUdjwjZz5y9E64B6vY7WGs/PkcvlCAr5zkxAkiREYUISNlBKUan0dp5jUPToL/uIaWMS6RhqTllz57RaLUQsiYko5QK0LtNqxcRxjBXQntd5DyKC53lYa53xpwRrwVqDFY2xTuPVSkjM36bMisgTcFV7ZrMA2LjHvra19ol/vcd0lsIIWHfvVjk5srixWisk1pLkDFMtQ+GIY2kmQt5YVGJpK0s78QkWHYJGMErjeYqSlyNUwvmnvoi7br6FB9asp1LoJxzf6QwMa1EWPHFGU5xYRCzKutAUYw1WFFbAWGcjzCjyAu73LYmxuOcpInT+iWCN228Tg1IaMRatFJhdM2YzxpgAfV7AmXP3czNJIvgolHKzA77vI6IQC54xBLVxGo0GzQSU1hhj8GnzgfPeQcHzULHB9xPiKKY2XUdUTGwUytNEOY+dG9cwtP+xzJubY926tVS6KpRLJXyvwKbtUxx1zHM5+shjufJ3P6Lkl4jadW6+/jY2r/szQe98PnXB1znzhc/ngbXX8tTjj+VDH/oItVCRy+U5/thj2bj6Hi756S+ZM7yAd737f/H+d7wdgCSJMdrvGCLGGATN7as2ce11N3P2C5/NbbfczVFHPZmf//qn3HXzlVS6BznwqFN42ZkvZNumNey3fAkbN99PGCaPsez+bVhrb2FXZTWstRcBFz3IuWf9va+fkZGRkfH3Y58IAbrjxj9YjHWhIAJhGLqQGBRRFDnvsQdhKyLwLR4G7QeESYxKZwZmlE1jdnmsYUbJMShPU6s1CFtNSqWSU3RzeXw/Rz5fJPBzszzgYEyqjHq645WOk12zDCIWUSYNgXCzFk5RjkiSiOrUKH7gkcQgWhEnlihs0Wq1GN28mampKaxyitGKe9cwPj5BLpdjyZIl1Go1GlGMRbNhwxbCdox4GhGhUs7TU/JZPH8ehx56AJ4VqvUmk9NVpqarIDZV5BTr1q2jUqmQIM7zrjVaC4VCgf6eXkQiKl1FDjhgKbbV4uabb6ZQKNDbP+xCp8Ti+zmMMXieh8Gi05ArrMvTTZIET7vn4mshMS0seRCDTizKU0xOj9NsNqnWm6xYtRIxLc4+6xwa7RajE02stcyZM4ck3mWAifY62+7d4mYgTNIx7Gbez4EHH//YhQA96dU2ijwSU0Z0A+0F5PNF2tPbiFUFpQsA+Dog8PIsqIxzzunz8KxGNXZgjCHpX4zneTSaU5h2xJzhYRJdILIWS0wcGtavvZf7161FbJ7Glm34928kJsGLQHuKAGgRkYiikAieKGJryIsQikUBiZWO999ai68t7ThBiUdbDHk0GkvZCpOySzk1xqB8j7LRbI1qaFHkVABiUEYhotEKTGqQiEmN6SCHpU3lWScxdOCBDM1bim8TWtvWYVddhmk2MYki9nIEw4tohVN4+x1Bb28v4Y5JTMnHy3uY8SZGR3jFMo1WiPU9zjjtdVx/5+2sX7maxcsOYcuW+zj+2CO5/oZreObTX8b3L/ke9626inkjHme+4nwW7X8gF130BVZe911WrKxy2533MlFt8oIzTuPXv72MO+/ZRhDkufn6S7Bhjd7SMM898yX899d+xoL5PRz1hKNZfmgfUTvGUwWKhaQzq/WOd32I3//pRj7xyU/zwD2T1KIqi5cO0tdb4qhD9ue226/lzpsnGFkwn2c980m86z3v5pOf/CQ6D3Gz+v+pEKCMjIyMjP9/sE/MAFhrESWQuLCQjlGiBOVpSD3AnvaJ4watVoNKTy9aeWjPGQBRFHU8xzOefa11GlucejRtQnVqkiQKCYKAnIlRIsThrhyDjnKJ8+4pOzseXXW8niIg8pdFlJwRIoRRm8S0iCNB+wFxYkliZ8x09/VT6e0jn8+TJAml3l52jk+ybdt2tBby+YB6OwQRcp6mWa/RU+mnu1Jkyf6LUCYkUIIW6K50US4XKRV8hodcMZdWq0WUxHieobvSSxDkUUo5o8fz8H2fXC6H5ynyhQBjFX5QRHl5whjGxsZoNpsUCgWKOaf8W1yMOJIq6AAYlLhwDGstCYIlwfeEKDKEUUy7EbJ563ZqjSa1Wo1aK6TkB0QmoV5vsm6dKzXf1dXlvMBp7kCQK6CUMzIUCrGp/zp97rtyNh5b/Wm20eiCbRRu4d3dsWn4i/Y1cXMKHcY0RtdgsOQLfahyN1E7JG41idstpJRzM1rNOnGzhTURrXoNxa54H7GgxV1XW/dsOuNKr+me2t4GbgDZPXxIDGqP5zkzA6T29BOIceKA68eiXJ8WjFgQhU2/WxQGhVEgcWpQGItSuJkTFMoPUIlPPsilIX9C2KiiKNBuNvCKCq0FQ0IUwobxOkPzFrFp7Ra2b9/OfvstYcPWreQLFbZt38TAYIWzP/IRPvu5DzA5UePqb/2YsDZKvRnz4he9gDNf3Md3Lv4BV19zM6vuW48XdLFu81bOedW5PP/0M7nq8iv4/ZIDuO/+e3nyCedw1llnp/83gdaCEKSzMIoznvdifvyzKzj+2IM5773ncfgxp3DTjdeixPDxCz7LO8//MH5ziFe97lxUkOe057yAT37y0xTyme6fkZGRkfHYsE8YAEop4jh2SrvyyOec19RTuhN/b3HKYb3uwm2azSZWFITSMRpmFNsZhX1GmZ9RFkulEu1SycUdiyBRRLs6zVRrlFKp3DEYLKB8l8gb5ErkcrlUgfZcuIS42O44mVEATfoRmo2qC8+JYrqKXXhdBZTnEyeWwHNjSwZtJwRJKcVCZTCGtBKRM2RqtRpJklCfrmOwhM063V0lSkWfxLpn1m42aZLGzScJvd0VgiCg1Wo5r3pfL719/SjldYybyLqEYDdL4IwBi/OwH3fC0zDGUJucIgxDarVpqo16OuMheBLh6QCt/fSZgFIeU80acRwzPV2j3m4ReD6FnMbLlwBFz+A8hnMFlPY4Ll/A1wbJF+kZ7OJA64ygODLU6tN4nueME6WJjAvt0kHBvUslKPF25XxYi43/2rpijy4iClGAiZlRtWdmn2ZjgFAbtIrRExsJ6pNIY5q2Udidm9DSJu/5RJ6PstCsNSj4HtHEDnJxSLJ9C43to3TN2b/Tp0v0/cvwf5Uq9WLpyOveUNads7fDejfjVtBW8Axo444pUS4cSAyQoETAaEQ5JV0sqDgkUBpf1C4jRAlKApq2iMJgPUXQVWG6NYkftYmqU0xP1SFpULZtwolxvOFhfIGw3cSEbQqlboxErLx3HQNLljP+wN2s27QZ5fn09gyxZWwD/cM9fOmbX2Plhjb/FBfRCNsfuIeLf3gzL3jRU3n1uZ/kjvVr+einLqR/eDHXXPN7uocWc9uKkNe9+QI+9qkK80fyvOLVi1l55728/Z3v56x/+Q35fEAuZwjoosFOqrWIf3rOcbzy3Lfii+GlL3kJF154IaeeeipXX3c9f7rmet7xnvew6YEapd5evv2TX9HG56prruekEw/96wKWkZGRkZHxKLBPGACiFRgXthL4QSf+2ymtgiQKmyQgdOLCoygijBOCfK7Tz8yxGcUf6CiLrrqO8xxrrQmCgEA0+XweTxS5NEQmSVy8vIlCVzknbINJ49KDmTAaDRi0CNYaF/qQXseYmEatSi4Q4jAiVyhjAd/3nTe0M4PgwnLcuGM8penv6+2EM5XTCkitri4SE5G0y2Ai2q0ajXZCqeRKmzfDNqVSCZN6xovFEiCdew7bbbTnKioppdCpuqe1RnD3KyIkgqsm5Gn6+vpIkoRyuUyzMeXi/6MIjWbb1lGsFUpdxTSuW5iqVWk1Q1avXsOW0VGGB3tYvGCEOfP2Y2BgiK6eQTydJq6qAFEx2vdIxDI0NNQx8oKc1zHcRCxRq0mr1ULlWng6oFjK42kPcGUvTZI85gtZWCtoLSSJYBJQeper3BiDqPR+rMVEEabZxm80idshxisiXoEYxfTkBNIzSBRFNJt1dL5Cu1knqtdRSYuk1URb42YRtE6975KWozS4tynE6UyVRohF0re9a0yzY/c7eTez7kcpBcnuFZhEnKExE9s/M0MXmoScr9GJRYzz4odhiPE0HkIei8F2wvKU8hAbkWhFfmAOtCZohQm2UKIVtUAUHpbYJExNT5KYENMKGVw4Hy3C+I6dxBb8kmHL+jspeSXKOWE0bjJ33jL+8MerOPzApYRRneGROXR1DfP+817FxJibeduxdYwrf3cNr33dmymWujniyCexetVq1q3dyDFHH0etUaeQU7S7fY46eDk33HQLd9y7hqhd55677qNS6SFqhzQaVbySR0siPve1D/HfX/wW7z/v/bzxNe/hc5/9AK8695/5+U8vZcXtd3Lhl75EZagLzSZGt9UZGOnldW98PZvuv5tS4bFPYM/IyMjIeHyyTxgAKIUXuCn1wMt3FA+ThjD4ovCNR9Ry3vGuri78XJ6i0p1qKGEYdn66iiIt6vU6Siny+TyNRoNi0f3BbTQaWGsZmLsYpaDU3Y0xdAwAay1iXchMbFzZS5MYatON3WYVwjhCKUWh2NXx6O8c38627ZspBgHNZhO/UKBY7qK7p49KV8kp0qLwvVwnxh2dpG5YhecplPI6xkGh3MKYGM9qdk7sYGJinO7+IborPUgQEMcxQRAwMHceiDNOAgkwcYI2higJabVjmlENUFicMjRTqtT3cnhegA1NOh5LZCMSkxCZqJOXUW82iNotLvvDVYyNjZMvlPByAYH2qEcRgker6RT53r4epqp1ShOTtGpVhkbq5HJdFMol8oUulPiETZfnocTNuhQKPrm83zGAJIlAWQJfEbUbNNoTjG9vgrgyq57y8QKfYqXnHyame8MajSVKw1/2bo50EswlYKyaUI0FdBHVM4jOl/F8HxFNEw8jENZ2EuiAZr1Bs9HCJm4R2CRJSJQzPEUkVbwNKqeRyCKAFknDstL5iIeIMpk5x+ylilBnZiC1DiJl8QRiLJ7nY3wf5WsSpUiA0PMI+gaI2yH40NPbw9Tqdaikhe8prEsSIAZMsUg4spCkWqHedLMlUjKEoskXigxXBhgcHqC6c5Sw3WTrjml8bSn3DKB9HxNbVq64muOOPZ1Swc1eTddqjAz1cvVl30eVDPNHDuVf3/EBbrr1Hu5ddQ/zR4Z463mfYbrR5mnHvZhLL7uKvjnLWbb/AsZ3TLB10zjVyR3MWVCi1FXm91fdxOp717JsySKuuOy33HjT1ezcOU5vdz/WKnRvixf9y0ncteNWXvnWF/Pba78LrQL/+Zn/oMrdFFQfr3/9Ofzshxdz7fU3c9DRJ3D6aS/kxluu5b8//2l++L1v8Y2v/t9HKnYZGRkZGRn/I/YJA2CvXklrsdhOaA9pWU7t92DbDXKFAqI9YuMUiJlzkiTCGIgi9zOOI6rVKq1WK63QIuTzebq6ugj8PJYorf7jpSFA6boCMVhlCZRTxI0x5HIuRyGKIqIoZHxinCiKqHT1dNpNT09TKpVcki2QCCjPzRxEUdt59VsRYmodo0UHGs8L6CqW0H6uE+5CWo9fa58wTBifqhKjWbh4CQaLxSOKol0hMaKIDShP46WVSope2d13mlzdblcxxjA9PU2zWcfzPMqlHrR1YT5RFFFruupEY2NjzJkzh0ajwZaNm6i16liE3sEh5sxZSBSHjO0YJ1/qcs9aDErVWbZsGYcdfCCB9ag3a2zfsZWdO++lUCgwZ2Qe2s/j5/IUikVKhTKe0iRYjGljraXdbqOiiHbbJQjbpE27VWfN6tVs3LyJrq4uRobn4AU+Xb19HHzk0//RItvBYMEmsJsfHUCl9TmVmyVKz500gowswjSrJH6REE3eWAjyePkS1hjC5jQT42PkgoDeeQsIWzVuvmsVO2s1RnDlNJU4b70oUImddVXpzPJImpOwV+zM+P6STjFY2XVX1lrwPJT18fIBERblKwbnziXXV6E4NMJYbPBEYUwIYlg0p5+p9evxfB9fFGLTmYDUANUDQ5Sti/nHtvDyLrzM14KxHr3Dw8QolHjYuIkX5FFKEyfC/JzHqjv/jGhLMdBs276JRm2KrZvXctRTl7N1yyouv/zXLD3gaAZ6BxgaHGHl6gd4xqkn8s2LLmP+fj1s3bSZOKzS3zeH++9fh6dL9CWKvATcdvvdVPxJNm6IWTR3f76/fjVve9tbOeXkZ/PSFz+XsZ0x4nvkC0UqfYNs3bmeJJzgo599CdovM9xzEEY3uOW2P/GsZ76MM172Ui67/Dd0lzWvfdU5bHxg7cMorJqRkZGRkfHosE8YAJ5oVJr8qfVMWIMgSQJpmE0soHyNJwXazZqrRqM8VwDTC9BpHfuZT1/vQCcZOIrbRFGbMGzTajYpF/IUckWUily8tnWKmjG78gZUTrnd6HRcCpNE5AKPXOBhbJ5CueS8/mPb6a4UyAVFevu6OmMAUOKUdK01iFOyS3mFJSFqNlBKUMrNStSmxrCSxuXbGOVpyqV+RGumpieYnJxkwYIFiAoIm02MaRHHcacMqbW7FlDTablTYxPn4vUUyvfoyvV0ynrW61Xa7TY7J8cJmw1uuOEG2u02Sw9Yxvz5C3nCYUdRLlfQWnPAgU/AErFzfJI4CUniXXkWE1OTTE5OEilFWXsMD5TIeRpfAnKFASo93ezo2kEQBKxbt4Z2q8X4dBUvV2T/RYvTikNCuz5NKwqpTk4xNraTRqNBu91mqjZFvdbEWkWuXGBocC7DfT20Wi3W3L3qsRJbALQfYJo1DAmemkk2FwQNNgKrQdx6B56JyQUFuhcsx4CrrJTmr9h09iYplBAZoUu7NROiKKIgQ8w/ZAy6+6i2YmyrRR4hws2IKSMkShCjQBmwbhZAWxceZMTiWUFEE1on787IVNg4Qcnu62vomTKgpHkEosBCWPDwSwM0VMyhTzySYneZXE8JY2DHRAMrGut5NCfr9JTzHHT0MlqHH8Tq9dvwYusM2sSSj5o0Vt2MDYRESvie4CdTJK2QtldiIlckUEWCchHbPUht61qiTesodFVIjEEFBRrWI5cr0J7aytjUOEe99D3cOLaeo550ApvWrWa/pcv48/VXs/+y5YRRix1jWxjdsZ0ffPsHzJ23jBUr1lIu9bL/koXkS3nmLx7kgCUHcOuNV3P/inUsWHwQa+6d4PAl8/jX97yEbVvuY2TeW1i03xPwgy6MmaDoBUSTLWrTYyShJm4mmMl5fPvb3+DDn/oKXYPzWHzUfO6Z/i7739/HnLn7s2ntWrZsv9slU5i9SVRGRkZGRsajzz5hAMyupDITx7/nPiStEJQ4pd33fdAeSRh3zp1dxQfo1KCfWWXX8zy0aDxNJxF414JNu66357VnFHqTsKu6UFpxdCQzJQAAIABJREFUqKPoKwXsnn8w034mb8DMLDiWVj1ypTkVWhLIB7QaCUp7+J5HvdHEJgmm5Ly9+VyR+fMW0tPdS2JNujprWiXJuIWmmq3QzTCEEXEcdgwgT/koT+Pncmmy6syMiek87zCBQw8/it7eXoIgYO7cuXg6h9LuGeWLBaDA3EJXZw2EmWcX5Dx6urvAEySy9HQFrg69MSRJTK6Qp7vST7FYxPMCjDFMVKfZOTXNypUrO++mUW92ErzD0I1Ta431igSlPFYgikPGaw1a7Tae73P0kUf/j2Tv781u9fFn1gdL5deQUMoFqLCNl8+jFMR+Ki9WAc4A1toZnZ4SIuMWmvN9n0KhwGR9Gr3HNY0A1sXbPxgKeLCq867KjwshmnFLWwFtARGMgravkVKekf2XYcs+xZF+ipU8k5OTtGohoCkoaIQh/b1dzB3shbhJV1eFfMHlzIBLPLYmIq8TPFFEEuNZC40JVLtN4kUUCyWI07U9FMTjYwTT24lrY6A8yBUo9M5DRxrbqjNULjO+YQ0HL17Aqrsn8cXHhJZ2e4o1999FpdLD6Lb7WbBoAa1WnXpjCiWWI486nNX33UWUxGzaspmcH7L6vnXkc11EYYvFi/en3WyxacNmuso9PPMZp7Jm/TqmpiY446wnMzU1xbzBRYyN7WSkdw5v+1+f5YPvfSOnnHQyxx3xDNas387hB72IcqlAvX09tlam2WyTxJnmn5GRkZHx2LJPGACzV+KN4/gvlHEXk69pN+vUqjvRqRJuZnIFjEFpOsmGsPs2aRiB5yXoQoWwPdVJCJ4Jn5lJhhWRtAyh3m18QEcx2xV2I3jpwkjTkxNEUUS5p484jl1irjEoz3f1wsUQR84T3G5FiLKYdjutIJNQzOdBaRrNGl7k0ajVCfI58vk8kU2o9PRS6elNvcUK7Qf4qXFTnGU0zSTUxml1nHq9hljLbbfdxI033ECcWCqVCv39/ezcOUZ3dzcnnHACc+cvZGBgIL1vV5pRKx9jQxfKlCQkiUUpjfZ15/mICJXSgHsPcZN6cyceEcpCnLSJYoPn5yh1uUXUunuGsCRU+voZbrUo5vLU63Wq1SobNo911n3wCgX3jo2hFORYuHAhIyPDIAk5DV2epburTG9v/6Mpmn+VJElI4hg8djco0+NKKRLj9hhRtJt1iNrgadpRhFfIEeRyLm4//cRxjLKQJBFiE3K5gFzgE7ZbWJN0kuSttSQKlHHhX5ExnfAfIK3M4xZSc9E+No3tnymhuus+xM6cb0nSGCOTWIyvqCyYw8HHHInJ59nRrLsKUL5PEiZEjRZBoYiIkMvlqYXQqtWZnp5m3tAQA8WY5XPLEFiq1c00jU/OGvxCmXaYUOgfIglbJNOj+D7kyn0UBheT2JhpnRDphDAJ8WON8gM87SPioaI2tVqdQOewjSarbriRJ558MmHQx/JleY496Vncf/dtXP6LS3jysc9isKeIbSVsXNPGqhojcwc55aSjed7pz+YZz3wW+y+aR9RoU+rqIU7aDA1bJqdi+rpzvPLVL+aow45nwaJF/PK3l9HXP8zCgwdYt2MNO0Z9xCtw8Ze+Q14V+cQn/gtJYMWKmCefeBJ9I70sHjmEVRvvJIpuIWymhmFSBlX7xwhpRkZGRkbGHuwTBkAcx53SlDOVZWCX990p80Lga7orZbRxitXUdJXExvi+dBIwZ5SoXdVkXOiDta5kobWKyclp6tUapVKFQqFALpej1Y52MwiiKPqLUqJKbCdROIoifC8HxjIyNMw9966kUimSRCG+59Gsu9KYUZqQXK1WmZiYIggCRubOJwg8SGKUFgqlCi1rwctT6C07Bb7dZufEOINDrh5/K/X7ak+7MqUyK1xJCUq70qQiQqGoMEkahiTjVKfHWLhgHoc/4ZXMSVdqjSK3YJlSitHRUcJmleqkyxPIlbspFIrkcxoRr7NOg+/tMqps4nWeS6IipsbHuPXma6i1GiyaP8L84XmM9PfTjmLiWIht2HnHSufRSUxQCTjwwAM7ib9HHtnolINVnk+UOGNwwZyFFHJ5xEuw7QgLxEZIrMF4+4Y3dUZOZcb7/xcoVJLHeC387m4SLShrSMK2C3MLPOI46chuohWJNSQebuE7sSRRm7wfdAzgBFexKsatkmy0/MXsgEZI7K6E35l6/ns+NRe7b0BpjOBKfvZ2MVUUek88lDFjadbqDHX3MFWfYjpxYWv5oEzUTBibmqYRTxDWGgz2DlKvNphqbMJaw37zh2g2RrF+Qq40yPapBt3BEN1lS8NLi5kqUH4BcjkmquMkCpJWTNdgH+3hhViEZpwgno/kCxS1QWwMS09k/kFPp7htKzf88afUamPUu7uYtzNiaN5S6tVfcemvvkYrrnLNzauJCdm4aZpiscTiRb/mn894JscfdyybN24B06LU14OXCKtu28J01OL+cCfvf/cHufHmO/jDldcxZ3gey5cfx7bpe/G0odUcJ9SKkaGDeODuWwnyihCPOLmfn//4draNWn7125/xmS/+gTtvGafVanLM03p44jHH8qUL/vR3l8OMjIyMjIyHw2NdRdEhFoshMTGRiYnCJjaOERODNYhoSNrkgxxauTKhYbtB3GrQbraoTk1Sq04wNbmTVrNKvTZN2K4TR21M0iY2iSsbaZ0C2m63aYVNmvVpPGXxlHUJkzbGJBHWRLt+psqpS0pWWBRK+yQGLAmJiYitod4MCfJlAi8gnytQ7O7HK/VSqgzQOzCP+YsOYNmyQ1iy5CDmDM9joH+E3v659PbMpVzqpVDoplDqoVCs0FXpo39gAX0D80hMCy12t1kSJRY/rZBkkzQH1QieFrSCJA5JTEictNm8eSMrVt5NseDRX+mjq1ShEJQIvBw5v0jgFaiUewl0jla9TX26QW1ygqnxHTSqO0niEGyCtgaFwlMeCoVPgBjBA+J2nfHxceYu2I+DDjicKNRM1Rs0wpZ7zq1JJLaoBExsEGNBe6B8l9itPJRoCrkClXKFnkoPvb399Hb30dfTTz4foBR4VqGCALRGNIhY9rLm1j8UZV3CtrYGPD/da4i1h6igsyiYNQI2JkYwGCILYhViwWjcLEECNraEYYxYixbwo4TYJLTbTdrtNrH2QGs0CRohSBSgUNal/z7Yyt5WnNxYZTHa4imwiSHGYkXQShH6Gl0sotsRNu9TXLaYpzzvecShppDL4fuWMG6T8z0mJ8aZmpoijAw7RncSRxqTCIVyr1u12heqoaBLPazdOsVoDUZ3wgMbx5muh2xqwN3jIRNNoW7zTHXNpVlZyEQSMB0mTNVrtJRH7CtyA8PYeYtp9wxh++dQHFlI0jNC2DMMgUe1WmfH5A42TWzn6S88C0M38+b0s271Wgp+Hj/vYRJYuv8QWil+cskXqFQE4phjjzqEqDFKLjD09w+zcf1qiBK2jd5PpQTr19/F179+EavuuIWir1m4cCHf/O4PSNoVIiuEKsDD0t2fp9gFJtH4SnPM/2PvzaMky+76zs+9922xR2REbrVnLV29b+pudatb6lartRjJshADQoD2QYwBM2LQYMsWRharOTBnBtkG2YAFHgawJSRsgZAEaGmhrTf1Xt21V2Vl5RoZ+1vvvfPHi4yqli0fjG11n6P4npOntjyZ7724kfVbvsvNL+LMqfN89xtfx5u//3vYvbCHJEoBw0P3d1haOoRypzLgKaaYYoopnh+Ib1UwfDvx7BNftZPJL5ZhOBoHS/UwSMI4BixJkrC5ucnBxRa1Wo3BYEAYZ0RRxN69e/GC3FFkNBoRDkeUxqFf9XoVx3GI4xihJFGUEAQBWRLjurlYdvXCClrryUZgJ1AMcWmiWyqUJnafOzQgKSVZajh3/gytVhNtYlyvSGN2L3FqUUJjpcobB6Mn0/cdOtHlWwcAx8nTb4WwnD13gkBpmvV5unFCrjFwiKIBWWaIohHa5KnGQRBQ8PJsgNEoIjGaJEn42Mc/TqXc4Htefw8LzQWCysxEOGxMhlTAuBDNU4wNYZKLb+M4nmwZstTg+g6eF+B5DiYxxEnIxYsXWJjfg+t7lCv1/GvrmExHiDhGa00cp0h5aTsTBEWU66CExNhLQXBmHKCVU7ryIDDXdfELRWwGjoRisTjRNmidIoCl61/2vFVSR25/j7XJNsg6qbAoKce5AClaC5SsYkmwFHEkBIWYf/zOw7hSI3SehuwUCyhrcX0Pk6U4jkfm+IBhsLWFUAWefuCvubiyAoUWXmYpPXmMzFiMBqMEbmYZKYsio2IdFAKDRRlDosZ8fiQRuSOUa/N039E4gyJBIq3BGsPcrkW8A02qV11Bd5QLvlGaJMlYX9ukNtNgZeUixUKZWq2G5wiUcKnWXJIopVF2KfgeeAHr6+tEsaXWmOHixhZxJrEoavUW/V4H39E0KgUOHtwFriDT+fvFEQrfKaOUQ2YSyGLCMLyk8xlv4xLhksWS2sJRVs+cw/F3Y9N1usNNHrj/sxw61OSJY4+wvLxMoeTx1W+cY/+Sz8tffg+3XvN9HHviIba3N7j9rr/DxnqH3XtruE6Zzc02e/bs4fTJpyiW5lhbWebu+17DVn9Av93hydVP8tTqH+OqMmE/47orDtFyj/J//9L/S6nocnD/Art3Xc0ffuw/ggXpgkkcpMx1QpnNQIJNnuco6ymmmGKKKb4j8YKgACVJNC4O80AhKxT9cMCxEyex1nL+/HlGSTaxr1x4zX1U6w6V2gxNN0+SnZ+fz20Lrc0bgMKIIAjyb2BisiRFotHGoVKt4roFYiecBINV6g2iKEIbg3BcMgtSKrRJGA7yPAGbZJPCXUqJGHvpC5WHKfUGfRzXYMkLaiXyONYsSxDSQVgmWgNgQlF6ThNmJULmdI80iag3amRGMxr18n+2lna7ndtlJiFSCnzfJ0kSEienMYVhSC8aobXm6quuoFio5V7/RpBE4YRmo018SQshvMkl7OQEBEEwcQoajUZkvRRjLL7vkYZ5zkIYDjmw/zDFcoU0y8Y8bYG0Dq7j582Oo9FjxyLLWBwcxfmzd9wJfQYu6SystWRxgivHWgMlMVaSWTPJJjAiL1qfX0iscJFiLLMdu+0IsZMOvaMNuPT5SawxIhkn9SrixGDiISL1kAg8ZcikRdsMQ+7YlBhLrDMCRyEuC0ATMH4Gdif692+MPA06P4sZEFhwfJesUeSml97Ko6eXGcYGHRu6vTZBUMAYy3AQceTwUdrtNkk0IhEpnnQ4vH8P1VKdxWaNtYvLuAVBqzjL6taAQtGlObPE48+cpTcI2W73cFzFMEoYDDbYfWAfZBk4Dp50ILOYaISUYHWMlgFC5aF/ylPYNMZkGmEySl6Rx594hmuOXEW5tofHHjlNoVjh+huv4/Nf+Dj7Dy5SaxQ5f/EcP/Get/Pr/89H+NqDX+LN3/vjvO8f/S71epWbbr2HudkZfv/3/w3/6Kf/Ge94x1sBePqpp/mXv/lv2b97Fw8+/Ah79u1ncbHJ7/7xY9SOaKBPUKix0T/BYBTwXa95LV++/zOcOn2Wrz94AlR+LHK3YoMxLsbGSKX4p7/49r/1qZtiiimmmGKK/x68IBqAvFASaJ1x/sIGTz1zjGPPPkO1WuXaq69m7uYmjhswPz9PEAQ0a7WJVkBxqWDMnXGg6gZUyvVJYR1FHbq9DmHYJ9WGxYU9FPwy2sun/flU0fnPBMhpmmIT8Px84t8bjUjTdCKwFeQFq+cXWN/aBGHZNd9CkDLqd3JrUm88XRcWo+1kyv7Nk/+daxDSIoRmMNrGdx2CccjYTKMxKY5brVbuaKRcdHaJf25NCuSNRarza+SaXBvgANL1yZIhaZqysbGBMQZvHMDm+AFBMA5hGz8CpRSe4yIRFIMCmJTt7W2i0ZC11XM0Gg1mGjVMljAadilXaggpsdJDG4mxCqxD4CsQpfHGw4KxDIdDTJqRaTPZpnjj8DPf9zFG45ZzIXU6zitw/QppZtC5qhZrBbmK+vmDFSBVgFRFrBnkWpRxE7Aj7N1JijZSIE2Eb1LcSgODwc8inHBIJjIir4lRLkKAJw2O8PBcl0RJlo7sxzqwMRQEscnFvDaPdjPComTeCFzuPnQpV0PktCue60wkpMQaixk3EKosESWPu9/yBta6XfpRhMClM+gwPzeP53lcvLjCsN+hurSLoldjtlmlVA5wraUcpAgTM2qfZqHm4/kWg6BRrDAYxQjP4ZYr9/DVh54gwyEcGTqdbZrNJlubPfYvzLLd36aARYdDNlfPY+IQt1yEucNI3x1fd8BwbZO5ZovB1ia9tMsVV7+aYdRlZeXzlIpF9h/YxUq8TL1R4sorr+Sv7/8SvfUOH/nNj1HyYN/CEn/6Zx/G9zKytM8H3v9TeH6NG160hze96XVUyx5pFnJxfZvv/b7v5/Of/yKJSanXa7zt+1+HdUNeeqRAnA0plCRaWK6/7Rr+jx/8EALD3PwscdxDiJi3vOte/vDffY5kfG4RoESRD/yT3+Zn3/tbz8OpnWKKKaaY4jsdL4gGYEdwu7Kywmc/dz8Lc/NcfeVVNBoNWjMNip7HzMwMjUaDIAiIzFiIOi5isBadZegd9x4hsAYYF9nFYougUGMUdhgOumxtbjAaDGk0d4HO6SYGEGPXmR2Kj7UWiUux4GIDi7HZ5N/jMGLY7ZBlGe3tLmEYUqtXKZfreJ7HKOziux6B30BJSZpluOOsgp2pO4zpLhO7UgFowqjHcLCNH3ikaQo2F4Qandt3Oq43mSobm2D0jm1qPi3PtMVTwSVLUmHRWa5l0CZjMOxz5uxprjhyVW6/ORqRhkO0TvE8D79QJE3TiYBaKTG+TodmczbfHiQD9u/fz2iY0elu5Z71OkNJlyAIkNLJrSTdsYhYuEiZW6cClJSH1hoTjfJU5XEo2s4mIHdiyrdCOhmhtYuWDlbl6cc7z1Dr51cEYG1O4rdKsuP9s9OQGmNwHIk1+XPUwuAKgxptY5TAdzT9CydwL54kthbn4O3E0qObRlRbTZI4I+yPMDpk++RJLpw4jW3spSLykDdpxWTgL20eEPa3ged5lEol1DzsOrzEsyefYbOdsqu5wJlzZ/FdyfLyeTzP4+ChfbRmGlRLDtWSR71a4MLKRUbDEXE/QjmW2WoJIXLK3igK85A9E9Mslhn2u9x9x3V84cHHEK7PwuIMcZzw2BNPUHSvwSlIwm4XqzM8R4L2cYoNvMADR6GFBaFZOHgAYSzxxjJxuM5irYBbcRmtnSIVEh2GpKNtWvUajzz0DcJexM3X3smZ5T/Ho85DXz7BFXuvIOrHvOJ1d3LPna/kZ37u1wgKAkRCsVjil3/xl/jCX3+VhYUF9i8dZBTGHD/xDEpmCKuJBwrr+sRJhyRV9NJVUAarXV50xx185k//go9/9Lf4lQ+9nzTZedppPu9wQ0pB9b/v8E0xxRRTTDHF3xIviAbg61/5MsLxOX7yNK+4+27qtQaeF+AHuT/8zrQ/MQZXCEyaT7qNMXmgDjm1ZuxxOPnzjo3kjojX86r4rSrVLCOOYy6ungAgCAICv4hSHq6qUvBLRE6ItQZl8wm167pgU3q9Hr1OhyRJqFby0K96q8mu/XvxvQKlUunS9QDd7gaeW6BUamLGBS1jt54df/g82lVihcBYSRKl+Eh0qgnJKTs7qbhaa6TKqTXFYhHHUxQKBYrFIlY4ExtJ60gya0mSGDn2+7eZ5dlnnmZzc4sXv/gOmjPzeRFuDCljDYbMaTVCSpIkIU0iMBbfdZDSQUuJ7/kcOnIVzdYCiQjQiZ7w8jM9ZBjmDkie604yEFy3lDdn43QpKVyk74P0sRiEFxFHMTbTOKRYmTc4Suw4QWUk8Ygw6hLHMaV6hSRJeOrJxzl6493f1vN6OYQFIRKsyfLpv8wdk2ySASla1tCigDUuoMlwkK7GDrZQnsJLNQqLz5BECkgtMrXUK00yL4NKC6RDebtDGD6FU5dkClwhSaxFjx17jMjfCokSaGzu9mMNRggcBBm5Q5GU+bRao5HCgskpbLV9ZV7xttdzfmOLh5/Y5sChBTbWNgm8Qm7xqVxas3WOHtmH4zicPv4M2UyVleUus7OzFGfK2NTDjl+f7XZIu92mlzp5ynWlQixGlIqKJNni3usP8ez5VR49u8lMaw9K+jz57CluvnYJt1Cm31lDOgLlByRK4aYRcWJBSoJiiWKlShbG6GGEUyrRP/nXZNpnfXWFpYN7GHbPsBk1WZw9xIUHvsAPve0D/M6//lmiyKNc8vngz/8GC/v28LpXvoM3v+VN2GCJ+uI+VlbWCOqGN76jwcn2b/Lw/dfx9h9+F616mQe/8Ri/93u/h7UpYRrjh3txvR4XB+u0yhmOMXz4//tVfvwt72X//FHWLn6CN731Ho4cfDFf/qtPY4iwY8paGhvSOH3ezu0UU0wxxRTf2XhBuABVqmWyNGb34jz79u2h1WpRr1cpFot4njcpIuW4KNVaj0WsZlJ47kxcdwpaYCJ23ZnI7nyO7/tUKhWqlTqO8ghHMZsbF2lvX0TrLqnugY5wlcWi8fzcx384HNLtdhkOh+OGIufJ71zjhJY0TuEVQpFlGYPBgEzHefHPJY/4nfvim/6sVF7UN5tNZmdnmZmZod6YpdFs4fmliW/+zsfGxga9Xo9hv0M06mN1Np4G28mUfOeZXbiwwr59+2jUmyAkynFRjosUDr5XwFEeSrn4fmF8T/54+g/aZDjKQwhFudTAUW7eYCiL6yqCgku5XKZUKlEoFCZ+9WmiiZOIOInQJsk3K0qMrW/IqVHCwViBEZBZS6YNINHaorXFWpE3MiZFCkMyGrK1uc7TTz/97Tuo/wXkLj8256pfZgH6XwqWyylrAmFT4l6PYW9Iohz0TBPr+XkR77mUSiU8xyEoFanNNCiWS3hBkOc/jK1UvxWem3/xX7vwnKqkXIcwCxkmfTa2+2y0hxy+4hClcpFjx47R7W5TKBQIAo/RaMipU6fY3t6m1cqzH/bv30+l5JNEIeVikTBOkMoBqbhwcZWZmTpKaOZmajTrFRwl2LN7kUqpyI3XHcVEPRwbEUcDksyQZBrhKBxcHOFCppBWYqTCLRSRrk9QLhNrg/AcgmoFRxWwyZD+1ina60/xta98kTCJcX2Pp08ep7mryee+9FkOLt1Emgo+/vFPcHjpMKurq1QaLf7R+36GT/6nP+M973kPg1GPd//I68n0gM6W5m1vfwu/9Msf5K1v+wFcT/L4Y4+S6ZQscfnLTz+II0oUfEGqHYTr0O1t8C9+4xd51avv5vf+3YdJoiGBV0Obb35NDIjwv/W4TTHFFFNMMcX/ELwgNgCzMw0a1Rqe5yEwFAseIMmMnvDtdyb5aZqipDMptp4T/IWZTLEFl4K+drj21lq0udQQ1Gvz1Kr5VLTfXiUMhyyfPYYxhuEwJE1TavUZpJsLZH2vyOzsLIuLixOHnCRJcF0HZzzVNzqXVTrKR2tN4JcwJmOrvcLs3O68OcBiBQgMjhKIsfPPzj15fhFjcwqONxYaB0EVIQQz9XlSk04aHa1T4jjOp/VRd0L78fwCwKQp6XQ6HD9+nNtvu4O52QWshminGJcSYcCOGydLXhz6XhnpWjY21nBxaM3NYZwKAonOoN2N6MddXKnG1xjguSUC36NYGFtcGkMcx4RJnzTNtyI6zYPbPMfF8QNQEqUc/EJx0rxZnYGwmBTiNMESIeMBZIYojDizfIE4yfiu73rdt+WMfisYmyBsLqjO9RtqvNRRz8mmkCKn6wgJnU6Heq2JW6vjGcv6qiRI8/NltWJ15RzV1hzC9VCFINd7FEpIv5BnNzjBt7weR0gcJHK8FfhWsAIsDq4v2X/jfl70yhfxhUfPI7wyZbHB4198mFfcezfbm20uXrxIqVqhVquyubnO+vo6czN1GrUSpcBHZBGxym1ojQp4+vgZbr75Zu6dX2R+fpaN1Q0C36dWK9OLHEqlMoNhiCLk3W9+LWeWN3nkqbOsbKzTHSyiaoLtNAWdh+3NeAHdNEUKiev6bPZDvDjFaoMt1yCN2NhaI477kG2jRIGjV1/P6lce403vej///Offww//6D388Fv+AR/96GcoFhq0tzb40Xe+g//w7/+Y46dX+cEf/CHKpVmWVwc88tgz3Hnvlfzsez/Pn879JO3eRRwk7/0/f4xyrYjIIsqVAKOL/OWfPMUd3zNH7HT54gN/wRtf/uMMt4b8h4/9Lnt27ePpp5/mlhtfTv6jNiFfgeU/n6TN/scdxCmmmGKKKab4b8ALwgb0ga9+2va32znNRFlKpQqBX0B5pQnfewd5MXUphXbHVSfLMpSzE4x1qQG4PFRsx9Zz4jiDupSgqxM0GSZLGQz7jLpd/MBFSIdSqYIxhszYSTNhTO5Ek2XZRJCrpAsiw9qcsqKUixm79SRJwub6BkopDh08SrFYnoh6Y70zOc5TcwE2zx3H9z2qMy0AYnNZSqzjIKXEVQ7Cmok1qTHZ+H4UTzzyNXzfJ45jDIInnniCxcVF5mdnCIIipWIZx/dwPIeCXwCpJteT6Z3MAUO/0+XP/urTfN+rXkO91SRxyxgNSowFy0aT6RSBJIxGRNHgksh53BQUghJCOeOvr0mTiKe+8RD97Ta1Vp3A9SiW63jFMo7nEhQqIB10mqIEGJ2CiXn2qQfYs/8KhsOQSqWJcHK9wVU3v/x5s1I8/OKftDoeIZ0ZtJN780thsSYjTSNU4RBWZFgtQSRU/YCferMaW2/mzzGwGVYBfhWtNdGgSxAUSbUlyzSZ1myurXDs2WcRQYVirCl//RukFrQANRb/RiZDC0nFCnwUVhgya5COIjMajCAWFqsEwhocJdl96AB3vf01bAxjzqxF9MOIhbkZuu1NNtdX6HbaXH/DDTz9zEmyLGPfvn1sd7Y4srSf1kyVfnsVkUUMw5DVzS1mGzXuvusOwmGferEAxKxthwyiFK/SZHWtTWd7gFRauKsiAAAgAElEQVQGJ/AZdtp5A+mVyRB849FnufX2FxMUfEqNZv7eSoZoBJ7jY3SekzCKe7iui+eWSE0CwsMYePqpRyg70Nh/JzPVGt94+iFOP/wk9/7d19KoH2B5Y43De1ucOX0B4VmE9tnavsDeuRle+uo30I8yWs2AePgsL7nndcRRGxKHLE3zzARr8bRES4NrDQiP2O/xmrdeyXa0QqAbXHnVS6gNd/HB9/0abkEQhpa8ATAIcnqddQy33H2Ar3/m9NQGdIoppphiim87XhAbAM8vUqnm/zkaHRFFEdZAyS1OKDLPoVFI9ZzNgBC5uPRyQ5idgn9nS3DJc//S1zFGo03eQIyiLlEU0W632W63IdUsLCywZ+8CWms2N9ZIx5+78/0yc4laI4TCUR7GxpO/U0phx01KZ7vH+sUVBsM+reYC7rjQzzcXlxJ982vPnWOGwyHFan38DC7dx+QjdxmdbEcMinEkMOFwRKNWp16vI5RDEAT5M7AJkDEKhzhpmCcq602k6+F5HlJK/EJ5sjnp97sMBgNKhTJS5oFKSRoReIXc7QYHJcWYmqLwPDnJEEgv02o4Tv5aJklCv79FsRRQLszjuGMv+yRmZDSOH5BmBqECjNH4riIeDQmHPdpbG1xz420UilUSnTdBURT9zz6e/1VI4ZLZHZtPCVwKbPvm5lpa0EKQCh83M5SKRXAVfgDCKozw0GmC59aRwqGEwhgLSuIoGIwiVrY6l22+/ma14yQd+5v/XmrOnTtDJxzw+OPnqC/uweqY1ZU1ZlsVNtYsc3NzSCHYu2832+0u1lpc1+WBBx7gtltuROos14wol0qtyYEDe6jXqxQUCJOgs5RUa4JCiSgTSLfMzbdez4mTzxALg7FtNtpbDIerBCWXw0tLLJ87T+B7XFmqgbb0NzaIBDTrTbTWDPojHBesycisA1aRmZjExiRZn27scsvhozz+4AMglpGiy8aFZa684k5OXTiDUoJrrrkG62i21vosLS2wtXKKRsPHjopcuLDKxTNnQbj4gUOcOFiToVxnvGFUaF0AtUG1UufN73wTT60/yig+S3VG0wtXufXKWzlyxSzHjm8gBBPuvyMLpDZk6egsjb1TCtAUU0wxxRTPD14QDYA0Bs/LC1QjHEbhgDDq4ghJoVxBOD7W6jGtQqBNPu3PA6PyYkg5cjIJt9aipJ3YS2LyabQAdKqxOiOORiTxKPfPTxLa7c2JJWYp8ClWfXQa02u3CZOYjc11nnj8SW578YuYn1/EmjzMxwpJt9djc3MTpRS+dzmdx0w2FIUg4JrrrsfzPDxXEUcDpCjkBbefC4eNAW3ykLDlrU0GvQ4Li7swJkNndjz1l+hxwa8BdrYfSiHHnP8sSzm3tolWDve8+HpwKtTrMznl/rLo3FRnaJ1y7txZttdO8+yxpyiVSriBy9GjV1EslHnwwQe57/Y7SMgY9DqUSk1yY1CF1ilW5Nz81BisdHBFEdcpUghyEbbWmigeMhhuM4oTTjz9KCePP83/9sM/RqwFo2g42arEwz5ZltHdXGUYheMGpM+xJx7n5LkVGjNlXn6vIpEuvnRRStAZxN/283o5hDQImSFUiNGFXAuAALvj9mSRsog1fYTO+fl64yzL62tcdfMdxInBcYtIKVHKZTAYkfQ7DOOIoFjF8wsYm5H1O/gyI4lCApknI0uTIbXASIFrBbHIf93J1JDGko6zMYSFTBmsW8Bp1agq6K9vU7tqL6udlMLMLOvrq5w9e5ZatcKuhSMsHdhNOSiwdOggjz7xNOtxSNBsoo3HLbfeTmt2hq31Z5lfWGD54oiDTYc9s03ifg8hYBQnaO0gXYdRZgmziMykPPzkY8zMzVKSUPELnPj8F7nu2mvZWl1H2D5752Zpb22x3dumUCiRdLYQRtPLNFZ5CBw8VcBgiUYxySjEOlBwFbfd807m5sqsnOrxpc99lHDUZRQmzK6e4667ruMld97MP3/2GEmW0+aaM/OcPXeSK4/8ffbf9FLaZ85Tmm/yCz/346TpkFKzjOMkxEmZMIwQxiJ8gUl7WO2zudVmfuE6bn7RG/jUX32Ui9nniaMOz64d56d/+ed5xxt/AmQM1keR5TS7APZeXyVLh8/r2Z1iiimmmOI7Fy+IBuDy6b6UMnfcwdAPB2TC5v7ygNG5FWU+brU5k1aOg7kQYHKP+ZyDneUuJzbFWNDZJaFwPBqSJjGDQW/CkZ+p1vACP0+nxeIqh3A4whpDEATs2rWLQlBk9+5FZmZmiMIUnNyHvlAoUKtWx1QgNRG/7qT+AiRJMhEMy/E0P47zMKxAOSjpIUTOxVdC0uv10GlKkiR4hQBBihQCo1OUyoW5GIMdN0UCiZBMiunuMMQsr8DtL3rO9kOQF4RKKaTK02b37NlPyXUpFwOUzCf2c40m3f6Aw4cP02g0aLfbpDojHia4hSJlKbFWY4XGOPn0X8OEepWmGY4jxg2Oj+d5uFHC/Pwi9WqRQqFAFqYIMZ5ysyOednLrUS+/x3Y7n3hXSmXuuOW2nPYhFUZLpIRKpfJ8HNkJ8rN7KdgNLjVYl4uCpZTYy0LglPTIMo3juGT9AVGgqfkLSKWQjofI8lTqJNWILGJjdY0oTS5R2b4F7CWr//8MDpK4XsXu2YWWAlmrMLt/Dxe7bcqlWWzHsjA/RxqH9Dpdmo0GhVKR06dPU6nUaDZnGfRHbHXbLM7OkSURW+3O+Cz6HDywn5ovMTZjOIzoDgZsbmzTS8EtlDm7ss6+/YcIPJfAc8jiECsFb/ieN3L6xGmMEkTRgAP1AygJAksahejMIkSaN1ukJHFCMfBJk5QkyR26tEm4cOYkr7jjtXzla19mad8NvOOHf4RPfepTLO27nlOnl/nQr3+If/qBn6bXa1OuFCkEimG4hecFrF8c8fDDx/jkH/8rvvet72J+TvL4M1vUW7sxQYmg4KEQjLRBOBKb5Ge2UCgRRyknnjmLokDccViL1pktX2Cve4Tf+v3fZnZuyN97zY8gRQFtQ/73f/JWvvjQpygWn3/65RRTTDHFFN+ZeEE0AJdbdQoh8fwCruehs5her0u/t42SHjMzLaRM8dwAMaZaSCmRY+56kkaEYb5Wtzqh2+2Oi/Awt8m0eXPgCCh4Clks5SJex8Foi9I2520rRaZylx/lOCjHwfd96qUqcTIiHvZQTkCSZGgso8GQYrE48fR3nMvsOMcFW7lcxnGcie9+sVhkc3MT3/fp9to06i3K5RlSLMIakiRBCej3+4hwRBjmqcXFYpFiSeE6DkLk9+7tbB3In+Pa2hqd3oB9uxaw0p9sOZTjkZuRCDA5fQUMnltkdX2DVqtFs+yxZ3EPSrmsr29iHXcSXmZ1zOraBZIsxS0UcXyPWrlCsdbE9QvIsWVrmqYoldOC0jSl1+8xN7uIcmDPriW2Ns4irKXoB0SpmTwjR+UbGNcYCuQiZyFdasUyjuNyeP9inu5sHAb9CMj99Z9XiBhrBFK4mDE9zXFc0iQi2wkAs3kDkJFirMZzA0qOor98Kr/3aIBjXey1HoVyhUJ5nmAwwHMc0rjLcGOD3Yu76Kaa02uXEqEvR56JITA2/70hp5SZcdMhpURqAXNNxBX76fUGFBYr3P6yu/jsww9SKhVYy1J2L84z36yz/8ACg8GILIWV1XV6wy1WV9ep1xscXjrMoLeNo2Lq1QZL+/axUK9TdiKUSdnc6pAaME4ZvJClPbsJ04yL65tsra2yf+kQ3fYqW5vbtFpzeI7gxbffwvbWNl/8wic5efJJ4pHm4DWVvFGtt4hXTqLdHp4XIEYx/VGbzFiSVNMJhwx7XcLNC/zhhz7IZpgSvKzA8Se/TIrLdbfewz2vmeeXf/Un+cfv/2f83Ad/Bs+VpNkIK0e84Xvv5dd/+x/yypf8APV9Lq+87xXcetcid9x8Aw89+RjWb0CSUSz4FMrB2AVsx8ZX8w/f91P83C/9AjfeeAsvq34XK+0neOAbnwTzEOH2DG9ceicf/KVf5WN/+ovcc9+r+dpjf4lf8nDc5zvFeooppphiiu9UvGAaANcdp3wi0SYD8k2AUg7DQZ/+oJcLSgslrJvzcLF5OFeWmrE1ZpetrS1838cPPDqdfHrcrJWpVaskScKg2wNpSGONFP54S6BxxkW06/sTMWweYiXy75NmOE6AIwXdTptmc5Y0TojTbBJutWMNusPRdhxnHGiVW4QmSTJJ7TXGTJqSou+hhCFNhxgh6fUGCCHodjuMRiOsFAxGeR6APxyRXFhBKUW9XqdQzG03c5vUnBd/8uRJmrUqVx48ONEj7Fyfc5njEOTOSYNBj2888RR+scorbr8O5bn0+0NSrfOtxPh+tNbMzjZBKqxQDIdDVlcuUktiBJKZ2Tnw/bwA1ZrYXspjcByHRCdokzIaDbDaIKXAG9uMQu6Qs/N9rM4FzTONFsViEaFTHCcPD9NmJ0U5twp9PpFmMdaqyXUYY0iSbJISnedTqHHabo6NjS3qUuL4Hq7jsz3qYLoD2svL+M0GxncYtDuUggJrFy/gZppaa5a03cHYGCG8b0qQzjdHOynARuQfkkv8fwDrgN7epn/2HL4rWNzb4syFM9x87c0cO3mcZquGziIa9RKuI3nwwQcZhinDUYxbKGIFlCsV2u021129H2tSZnfvYnGuRtrtoAJFFElqrV20e32EcKg3WvhBkeOnj3H06FGaM7OcO7dMe32VudlZ+p11zmUjzqPY3Nxk91yTlbMXmJtdIIsHRFFEFgmUUyYTPtpK0sySZEOk4+EEPoEDg8EA6RcZpRl+UKU5twvl3s3hq6+k2xlx5vyz/NHv/xFvfcd7+OAv/gr/6zvfyutf+2paC2VKDZcHH/06hw7cwMv+zrv5nX/zGR59doMbjtZ5yS238eTTZ8mkQluLsXb8vlBIZWhv9/iVD72ffrbJ8bOrVNVBer0RNx69j288/WXuvuc6zp9b5QPvfx//14ffxXV33sCNd93IH3/sEwzCtW/zaZ1iiimmmGKKHC+IBkBKiRS5a0mqDTnBx47DcjQXV9ZZ31rBcV26/R67FnYTx3E+9U+SSdHoOA6HDx/OCx7lML+4hzRN0aMRSWwJggpZkHFx5RwYS6PRzCf2QpKNqS/+uICVUqFN7qW4w+NPdIhUliSKOXv2LPXWLJ7ngPQnhVaSRGhtybIEyAWxzWaT5eVljDG0WjOUymWGw5z73ul0MHHIcHiaxcXdtLsjGo0G6xdXKZULNOfmscLQEP5kUt7ZWiNNUzqdDtvdNsVicWyPWsD3fR555BFedd8r2b97keFggDYgHDURDgPjtOR8QxFGQ7T0aMzOs3f/IYbhiPb2Nn6hiCO8yTZDG4njulhp8aVDod5g19w8UdJnMBixsXwWofIth+d5eIVcwFwultBZDFiieEjRD8ZFfsxgEE4+X7m5DkQ6FqvzvAflerjFgGTUZ21jFb9cITNJHpym7d9UB/s/DVprhHTBOlgJRmc4rsTqccozuQBUaz2+VMMgNczu30cfSalcpVqfJxpdJEwFSb+P2zEgLWury/iewq1UOH1xjbWtzVy7Yv2xcFznppKOQmiLAjTPnSrvnEttDdoanLV17KjL0ZffxmK9SDsdYMKQ1dVVZoouM40q7Y2LnDhxAi8o4xckew/M0On1efaZryKFYr7VwNiMaqXCoQNLZGGXZqvOeqcNboNiqULJunz9/i+hJBw4fIS5uRa9bpuwP0QIePiBBzlwYA8HDx5k+exJ9u7dT3vzAm6jzvZGl4Vd+ygXApygwspqF3/fXvxymTRNCVpQ98v5+1w6CGIKuxKSsMcPvP5tJCOFcWtkp84SRz4bq8sIq/nK/c+wkQz5obe/nfe+7wP82q//K44fe5Lb73wZzfkZvvKlh5iZvYEbrj3E/KGX8Lkv3M/6+XMszC6xa99evvCl+wlKZYQCmwiUY7jjJVez3V9DFj3KLc2g/RS9YZ+TXxjyH//kMyzs9igGD/LuH/0e3vPu3+TvvvsahqM+M/Um3c40CGyKKaaYYornBy+IBkBbiUBgjMCRlq2tNlmWsbx8ju6gz7PHT7N/zxyu75NlGanOiJI4L9i9Aq7r4rruZNqeT5TFpYm3PxbNConyPSySOI5Y67SplcpIpVAIrDWYLP9PWWdjJ5fMTjjzsc2QWiKVTzzokmUJricJw5AwDFFKsd3dynn7njd2z6lQLpZIopBRNAI0jtMhiqI84KtWoVRa4CMf+Qjf/d1LHLlikc3NTV71qtfg+B7F2gxJGpGleVvkOC5idg5szrXesUjt9/uMun0GccShpQM0G3UyJJnWGOkirUBaS5akY3GqQAJSSIQ1BI5kd6tEOfC5cPYMSaYplSpImRf/ZiweVpNMhZ0cAoHJBMWgRKWkSMbPTwgQ8QDpuOC5eUGcZkTRAJ3Eub5CGNZXLyKEoNFo4Jcbeeqs709ciIwxJFmG5wVsRFmed6AzhkmERVKrzn17D+s3wdoCFoG2HlamgCY1GUoFefFtLVZF2EyhEbhElPccxZur4hiTi3UFeN4unMyilUNBS4RIUbVZtDUYk1AUEdGFCygUWRSSoZACjMhbASMFnhYk5MnArshfA08ojBCkxuAgKGvwIkBBYhXxyBLMulRLdeZnBBvrFzhw442cWw2ZaTbZ7nWJ0wyrLXe95KVsd9Z5+thj7F2os7R3CSscguoeOu0TlGsLRKLAaNRnc+1i/joKS9jvIYSl6MKJk8dQboEbb7qF62+4gXa3w60HDtNut7n+plt46usPMwhDzq2sc0WtRa1Zwi/k+RZl5WEch1hYhHQwSYzvSCRQKfpQa/GRD/9bbr71Hm668WoGq8skKuPC2TO0WnM88vDXmT94iPu/8DD33fv3GEaCm6+7gTPPnuL46XVqzSV++zc/yMNPPcWf/cKvIaOY1rzDp790jI21FV5+59186atfJ0tjfM8nG2ruvO0u/FoRmQrIBB3VpZNF/KePfYr77ruP3bv3s7J+kY99+qMAnDl/isXdVYq1lPDslAI0xRRTTDHF84MXRgOQjojDDK01F84v88ADD+D7PrfceiMHDx7kzjtfmgccjf3vBeYS517kf7eTF6B1XqgabSbTT9fPaS9CCHxV4+DV19He2mRzbYXVjXVMmuG6edFZr9dJ0xSTpblgV1gqlQqDQY9BmGsMkiTBcTzqrXmEELQ7bcIwpFgos3ff0oTq02q16HbaVCoVjIDZ2XnSNEYpl1ZrjgsXLlCv1zlx4gTvfNffp9VqIYXLwsIBeqOQQqFAFCUUihadgee76MzgRYNxOq7G2CQvjip1wvKAIAioN1pYqYnSiP6gh6NcnDE/XwXBJJXUES7Kybn6xYLP1VccJYljNIJCUMoFqGiSJMEY8xx6085zdl0XzwsmGg7PDSbPOs9pMPQ6bbJwSGIt0aDLTK2KdPOvtXfvfgaDAZ1Ol9HaOcIwJAgCgqBOqVTBcRwKhRLCWsrVGufOnCFKEi5cXMEvFrjiiiufhxN7CUo6ZOQNopUajMLzHaxxL5MDAxjAoJTPvkaFYhwTlGtEUUScZOioRwZ41RI6SXGVxZcSx3MxlGgFRbLFeYbdLibKJu8DMW7I8rXZJV2AGTcAvu+TYrBZAigyBZqMPQf2k1kw/QHrq2usLF+gWZrnxhtu4pnjp3nm2dPMzLYoVcr0Bn222z0effRxfugtb+L6G67luquOIo1G+mWcUhmSBaxTpeR7bMQa65XxiyWyaIglYzgcceb0WW580V0oxyPVhlMnl0niGDKH06cucOS6KzhzcYt+f0Azy38ejAZDGrU6m2ttzq6tUiqVEAWPWuCThRG9NEU4Dv1uggoUr3j5XRw+eJDHH3+UY089zU03HOahR/6aq64+wu7di/Tbq1x3062cOLHMcJRw3b1380d/+AnOrKxx5ZGAW295CX/wh7/B57/8VW6978186qO/wlJDcOr8ClrA1dcc4dzpIp0koRgovvbYQ9ywcCO7ZvdispSKNOyed6k3HV71ytfyzGOf48qj+3jTd38v//q3/wBLjNYpp06ew2jv23lUp5hiiimmmGKCF0QDkCYR9Xodx3GYbzU5uLSfOI4p+A7CUZSDgNTkRafWGqy+5IayUwDBJB1XCIFQlweBXUoFtlbhKIeNzS1ajRaHDh0ZC2zVhLefZRnd7jYA4Sgk7HQI/CJeUKRYro61CAWCcpVhGLFn7176/SGt5jzdwZCgWEJKSbU+T7HSyu9rd4FRlNCqFBHkvv77DtURQnDL7F7SNKVUKpFl+fU3S/k9FcuXnH0g58hX9QxqLP5N02gyKd/5KNRmGQ22aW9tUJuZR2cJmdEk2mCGwwknvFISRFHKI994kKNL+5gpluj1esw0Z9EGhlGE0JooiibC5h1hrzHZuPj3GA3jST4D8lI6c2YNSgpsNCSNOhw7cZpyvUDB9ynVGgzDGE9Cs1mh1drFDo9eKUWio0mqc5bmr2ulPk+5PoPnuFxx9No8tOx5TlNVsoSREdYyTnEuoJQgM3KiJTHGoKREWYsVDltPPMTAT5hdugKtfNxynaJTZRiFWAxhr00yGuTZCo7CugUuPPUkTz5zjKgxR1EESHfsNKU12hiUkLlTliB/DSDXehuDUPnZN5mh2GoQiQRZdemthczu2sWffuITXHvttfR6A/78s59neaVDc3YBxw1YubjOrr27aDRbvOTOl5Jpw+kzyxy98lrm5vZQqdbp9LrMXXk7o15MIXDpG58CRcJT5xlttum2LxKGMfXyAqsrywz7fSrVEjraYKZWpbt6kYCMi6ee4crrbuLTn/okDz30ENudHocOX0Gl0SBwFJ3eBtWSh+fUcR0ft1pFKBdrRhTibTY7yzzw+T/h/s/8e4LiInPNOc6deobv//438PiTj7HdiwhKMZ1ehDWK5cce5tU3HeHDP/8+hpR478/8Ai++7S5qtd0cWNzLmSe+zBMPPsmoXOfIwd0kwxEXT53jZbfdy/0PPMjtL7mZ1mKLvbsOY2xuk+skPk6aEcYRK5uPcf9ffpWjV+zjX/zqH/DqH7yFxoLh9OnTmNQlTZ7XozvFFFNMMcV3MF4QDUBzZjb/jRVYm+K6CmMUVme5gLVkyLJ0MnmW4hLx+3ILUXiu9eKkaBY5VdwYg7S5XWiaxFhbRWuLRqDTcbAYAiEFtVpOR8mK6USwG4bhmF4kSVONo3O3m0K5RKoFblBgaW5x4gTkOA5Id9J8KDcYC4YvbSp26Diep9D6UpFvTH49O0Ww43g5FccY4jh3BIrjXKTsujtOPQKlPJrNWYqBT7VcI0si4mREkkRI6RCNhhML0jAMiaKIJEk4cmgJaey4acrZ5LnXf16l7DgN9Xq5dWqpVGL37t2cP38eax3SNMsdesZUqp3XxBozyR6Ikoz9rVlQilGUoI3AipzHL5UE8iZDSImDjyC/98AVZGYsZlZj6pIROc3IPt80CoFAPSegTWuDMXkjtHNWJQLGouW0t02haOkun6PQnAPHIxMOKJnbqaYZGEucxQitUMrBmoRGvcqq6yBRWJ575i0WrMXKnWvKtQfGGMzO50nBIAq5+pZr2e50OHNundYiLCwskCYJg36XmVYLLaoMRkNGUchNN92E43v8xWf/iuPHT/La172Sxbl59h84hJQOW+0ejuPmVKByLnrH86nOzBMEAbJcZrvbIwg8RqMRhaJD0YeSZyiWamxvdTBxRm99i6Wrm6TWoVyrcebZZ3jZS+9hfX2d+d270VlKa65Br99mrjzLYHuDYqlKUKgQS4vrSBydkQwGJDpC2IBUJ7Q3t/jqI5+iN+hy6+2v5oYXvZ7hyOXQwYP8zsd+g3qtxsKew+y96jbieMTXv/513vmOd/OK+17Dj/7uv2R+fhdnh0OOHz/J7tkWhaLH2toFXnH33Rw79TDX33ItaJMniacZX/jzr7BncR9RCGubT3P9DVdz/OwpbrvjAGE8opKWsMZDZ4bLfoxNMcUUU0wxxbcVL4gGwJoMKRyEMFjrEARFfK+Up/MOBvS7HQbxMKeqFIsoVZjQgTKrkEBmDEpYnMuSfneaAXfsxqO1JpMWIaAxM8PaxiqZSSmXy2iYuNHozJDX4poszlBKEKcJWZYwGo3YtbDA1tYWgyhibnEPs609zM+7uK6PtWnuZU/uZ59lCdYaMpnrE+I4nqQb5w2KxJrcJSccRfiBmwuaRU5rcpzcDUgphVKK4bCPUC69QT+fLAuJEJIgCChXasTRiHKhiJABju9SrrcwxjDsb2JNRlAsoZOcHmSSiFKlyr1338N8c571lQs4jqTTGyFszsEfxH3INFZ4ZLGiPlNi3+49vO1/eScGze7DS+w/sI9XvOLlJMbFmmwSwOZYCdaQZQlKutQqBRbm9zHTmMUIF2GyvDtD5G5LpFibJyFn1iCUwgCZyRsBz/PyiXimMSK3PVXC/baf18thbIggAxyEdrEmwQqD1QZMhhAaKTxS2UW5AwqmhY7B8TOizRUGG6vMLV2NKNSwQQEny0XpwnFwpEucpYRhyOKRQ4hajc2zF/DcMtqkeADG4IydqvQ4CE6Q238ixo5KwsEKhYekW5LIhQJxZBFSUXAdkIog8FFihna7R7XaolTL8xXOnTtHs9nkscce48f+wU/Q7XZ50UvuRZZmACirAsWCi5WKOE0ZhglZahgN+kjHozlTY2a2wWg0YuXceWqNOUgkg601/n/23jvI0uws8/yd8/nrb/rM8lmmq7qqq71RdwvRSGhEqzELgRAwO2ZnMbMM7MLMsmIYYNmdAbHMCuGGQQxeAiFAIIxGEhJCjlZLbctXlsly6W9e//nvO2f/+G5lSzPE/qnqCN1fREVU3qyoe/PekxHve97nfZ4kj+m2fLa2V6lM7Ka7ts655RX8IGB6YS/L129QLZc4e/Yss5MVwn6bWnOGOEtp37iGLSDPU2q1KkkQYds2KgsRtkOoQui1MUFkg1QAACAASURBVMmolzR+kPLuX/pZvuHpt/HiF17h/LmX+Xf/97/nF97509zzyOtRdoOZXQe4+uxneOzRh/nNX/05FhcXueeBe/j45z/G2cvLLK/cHL2vJobts3/XIVrDFb7w15+it+WjdM6p0+d4yzeXece//16Uuckw6mBqB6tm0dpqc/r0Oe4+MU+GIld32MJ2zJgxY8Z81fLaaAB0Tq5zhBbYtkuWSYQhsLVDSSmSOCELY6RtE6uAzALP88AwMEahW+ZoGfb2Uiyo/24SIITAMiyyPEEaNr7vUy4Xch3LKe3cpN+2sczzHNuysG2TkbM6SINhFDO3ew+TM7sIo5RKuYYwTDKlicOQLIsAc2TNCXGcIihsH4vHitd4+3a/GEpkCHn7Bl6MLD0hy6KdxsSyLLIswR/4JFlKEEajn6+4tW+ERUBSyS1sTcUoDdmyLFy3RJbG5JkAS+FKE+mUsB2BzjOiLEMZJqlWbLW3MUXhZJOJHNeyUQIMS+AqzU/98I+wZ343YRrRbrd56eXn+dZv/Sb6fobQGqlBZzm5LiY3t52RHNvGMkwsyyHK1OjzAij2GW43bLdvtLXORu/Hq1afOst3pE4AhnGnr1ELbb8gR2N9yWNy9HjR5AmhsYWJlhkdQ1Kv1EHl6Dwn0kASkDsWnrAJyXFGZ9EUAgUYrk2cZahUgZEjNDvWorffAS3++3wAGE0fkGhTcvD4URYO7GY7tYmiVYbDIXGcMj09yalTZ1hdXePoXZMgYGNjg927d2MYBidPnuSFF17gxMl7ubmyyn0PPYoQgn7WpTf0qdfrRcOmFCpPUVlEo1Zh+8ZVlCh2UA4f3Ee31yca+Ch/gMpTGs0JvIpBrhwsy6ZecajVamQZVMpVGo0qpeYEEFIrV2i3NqnNH6Y0s4CjFYNhh27go5XBMFNYlRqGaZAqkzRVZEkCWpLFGf1Oj/e99yN83/d8EwP/GX7zPb/K6XNLNOf2cP/rnuT0qfO02tsMulNkaZGdcePCKo8/+jinLlzCLVVpNpvsnZ3BdiOuXLhM6EzyqU9+ngfuOUmS+PzQj/0TnKrBtVtLvO07v4Vf/41foO52GUQthLSYmKijdHrH3avGjBkzZsxXN6+JBqDb3toJzcIwSZIIpUbpuZZNs97ArdSI45igNwA7xh90AShVqliWg+NYKGEijJHkRhuvBlhptaPFFklOEqdcWr5JHsX4UUyYpDh2jOO86klfq9XQRnHrbFkWSudU6xNMTE7TD1Mak1NUSx4NKYmCYkG4VK4igErZYzBsEwQJ2+0+Cwu7EBQ5ANVqFaHETqEvVGHHqZTCFAJyhSmK4hEUSZziOh5xEpFlGYPBgFwbXFleRhs2Slq4rochLfr+Bp5rMwzqTE3WXs0nEDmG6VBxqlQqaiTxUWBIlE5RWKgspmbYaJWxr94gixM2N9aRSURuOEzWp7HiIS9+8CM8vPsI5/s+qpczDEKeesPXsnTpArt2HUShChtMrcmihCDs02pt0vcD6vUmBgZKp1y/sYzWgmqthhBi1IjZaIrwLBMx2vcoLEyBLyv8b/P/l4r7FUEU7kyM7Dc1KVrpIrFa2oWUyzAwRAVT1xmqPuWj91Cdq0OWIi2TBBdT+hhWGWEItOeS5ALDMMnMQvLWH/TQho223B2nK4kmUwpztOMCr8qBpJQgNGYORg5u2aO+uJfm3gUsx+TG5XWmp6cxDIOJiQlu3VrFNItCvVJxCdOYSqXClStXePrppzl35hTf8NZvRGjFgQMHiKKIcrmEadpYdokoyei2t2itrtLZuEkw2CLqraNURhAnxT5EJFi7tcmw7/N9/+zttIKYPXO7WL/+MqeffZbVlW3CXsahI/dy9tRZPv/8S+yan6XaqDI7WafhGdi2g2lI9h8+Rp6lVFO/WFKPIjrdNmUERpLTG/jEYfyq1M4yuffhe/n1X/4A73vfRzl4eDdf/+Zn+KEf/EFOn7vI2mabfXt3EwWb/OEH/oije3fzF5/6PO/8mZ/lc5/9CFONGfp+iV991wf4xXf/EHNH97CxfIpX/naZr//Ge1ldX2Nyt8fBe+dJkxKXrp/lnT//Dr7zO19PmMQ8+Pqv5a//+gXa2zme5xBHMYixDeiYMWPGjLkzvCYagOFwSJYVt72dfo8wDAsfedvFKAmq1SpBt0ueZri2Qyo0hlEU9/12C9O0EUJjeBW8UgXHshGWXaR18mrRWIRw5XS7Xc6dO8c9Rw5gW4W1aBRFBEFQFOKmuSOfqNfr5CpDKzhw+B5KpQoTpkWWawxysjhgc2OdmYUFEJCGEXkaMej2sG2biYmJohjTomgqRumwt/XiSimULhqALMvQKsRxHICdBsY0bVzXZWVlBSklSaaYmp3j7NIySpqYRoDnlal5JhgGfpgi2x0qlUrh35/nNOsTSFuOnl8XTY3QSCwazWnyPEVhEA4HOCUXx82Zs0ykhjiH1oULXP/7z7LZjbnaabPn2FEOHDrA5154lnZrk9/97d/hHT/2UyiVk6ZFYRNHQ+K4SGb2o5iF3fVCpjEKflMKut3uzjmwrOJxoJDQ8OVSrtu7FLf5hxqCrzRSStTtZXOhYFR8i9FuAHL0OSMJhYGV5JRCgSMEuaWRZLhlE6E8slxCkjNZbyAMG8u2kaZBqnIGq5CEEbbbJQoi3NHzF+/P6Gx/iQRIq9FrUSANQUfFaEvRIMP3ffYfOkISBrzwwks4jsf0rjkuXbrMI488QhwVn5/jOHiex3A45JFHHuHF55/nf/8/vp44jgFIRyF4Wa5RWcTVy+e5dWmJNBrQa63SqNok2sB0SkRhyMvPv0ilNotlOHzu2Rc4dPIh1jox2FWOHL2Lzitn8GKPT/3dZ9i/f5FzF8/huGUmGnWCRFG1JVrFRIM2w16LOAjJpUIL8FSC0xvgC4cAQZ4ERcZFnBGqhCRLGQx7bKxvcfjQSV54/jmq1Sr9QcDm1hp5rhFJThz3eP8f/B5/9ecf5r4nn6C7tc3KrU3+w0//DHsPPE5vEHHhwhILd82y6+g0XPIhV8zuKnPfg0+ytRFya+0sBw7V2X3wLi7dOIPKDdLsFo5rUC472LaH5xpE4eCOnNkxY8aMGTPmNdEAzM0s7IRtTUzP7BSFBgLPcVFphl1y8eMQISW5P0RLSZqmaHIME7I0w5SSYTgkMm1w7WLx1jCwrQqWVUwGEmLOXHiFg/v2cPDwEaSURFFEGkc7xb80BOQZeZJw8eJ5pGFx3333Y5ebaK2JOi38QR/bMYnjGMeWZEnIwA+plcrYls3s1C46nR6WW8Jz61imTZKPFnuzmDgO0bqQ6ERxQJZlxHGMbZWKYCzXGbnH2IVEShW5AXHsYynB5nafza0WR47dTRQWoVmJdokHAWGUsGuyQau1hm0XzUMcbeA6JpZVvC+u6+I5hRVnt92hXKkyM73AwO7Q7vcoV6ogC125mWRkyxe5977j/C/v/g2iTFPdNccjjz3CF195jiyNadarRIEPQu0sFvt+jzzPCcOQOFc0J6cwTQtDukxP7UIgUbzaCCVpSJoqBoOILEl3nI68UrVwxPmSVNs7XfjfRuscXWyQADkIVaQna8lo9Rwhi8dyQmxdQrkJVski7RfL2TMT0+SmiRUbmFKQxJCFMXEwxC15SDRmnlKyJJsbK1S1y6RhILUqJFSqePZ/aBZiSoNcwsEnH8I3BK5rM+j1uT7QVD0T13U5c+YsW2tr7Nmzh6WlJcrlEqVqnTzPqVQqnDt3hjgMeNObvo7t7S2md+8jTVOyLMM2TKRSPPfZT3Hx7BdAaFZuXIcsB2bwyg3+8r9+nPvuvZeWr/j86S9w4vAh6pZFKM5yq51w78k9LJ++zK79B7i4dY2yZ3Pp0iXiTCNtj9b6Bodm7qVclrQ6LeJkyLbv0yjVIMmxDIUO+3iuQ5Y7mLZJHvsEeUqSplSbDTp+D2kKfvTH/zk/+3/+EY1mFddu8MEPfpBazeXxRx6mZEO/d5Mjd++jXC7TH/hUSnXe+OZ/xN9+7DPsv6tPc3oKpMmLH3uOfW9Y4Mhkg8vP91h4aBq3VGNz6zT9/jUSTAxTI41JVJaR5RGb6y0WFg7R6WyyteHz3d/99q/cQR0zZsyYMWO+hNdEA6DVyElFaSzbo16DIAgQeY6UhRRIWrKw/BxZUQJkWUatWgZA2jamKXFNmzAM2d5q49geSIFrFXIGwzDwsxDLsjh8+NCooI4xTRPlehiWBCWQEvI0wbZTMCS5Ehimi9IaPZJe5EmAtEq4tsGt1Q1qzQk8z2NjYw2lYHJqnkq1iVVySdOUJE4xHatIL44C0izG9/2dPIM4jonChCRWSCnx8lJx4y2KPYFS2RkV0zHrrTadTof9+/fTa3cQwkBRNDJTU1NondPpD7AsizSKSZXGEDlhxGjZ0wA0khzbtAgGQxCSLE2xHI/JaRdURhx2if2AyWqd6V0LNO46SHs45ODiXQTBkHf94rv5nu/7n/lPv/oL3HPPCeIkHEmmDLIMFIrtzjb+IGTX4uFCYiUgyxIGgx6GkJSqTUyzKO5dz0HrHClNYhGgspw8zUjiaMdVSZrGyC2qaBq+dCJwJ9ixo91h1JiMpEFaUDQEQhQ2oIZJbGYkgHRLo/2GYo1Yo8lRCNPCsBWGLn43pCkoVysEUUjJtckGI8mYFEjDQCUZElE8pfhyeXkuQXoOiWVw49YK+/c1mJ6ZZSVMiOOYLMs4ceJuDuzZx+UrS+zfv592u42UklarRbVaZc+eXSxfucqNGzd49NHX0W5tc9ex48RxiuNatDdb5GlIo1al1drENE36wxA/iLG8EidOPsDSlascved+nv7mb6NZrnDq05/gwuXrLG/0eN3rH6Qxv8jq5jpnz5ynsrAH2y3jRzGdToe5vXPcvHmT1bjNw48+wvraJhP1MplpYjkWMo8JhwI/T8nMMlaekWWF7M9xHKrVKlbLIY0T+n6bIOxiWiaOB88880187tOfQAjByvpN5ufn+a3f/jXOvnCVj33so7z+iSdpTno8+PCjVBuT9P0hJ+49xtLzXySXc/hpjyCIeNNTb+Wls5e4fv0cSpVBGphujHQidF5CpwrXtXnD65/k7rtPEIeSq8tLX6FTOmbMmDFjxnw5r40GgBwEo0IwRVgS4dlcvHKdmYkaaZozNzWJJQpNfj8qinbXBSkKmUQYRyAUm5vr5Jkml2BqA0OarLdvIbckSZJQqTZ53SNPFMVxmmJaEoSFdNm5ZQawpEAozUSWcPju+zDdMkpSJJvmIa3tFVobOdIwaM7uYXOthTAkpu0wHA6pNJoYslhQlqZBFIf0Ol3yPMfQCsdxMNAMe12COGHQ90lzhemYoCV+EGJaRhHeZRjkVHAch3K1zqFak8EwYLLeJIpSnv3Cy1SbTean5mi32wiZ49sWrluk0eqhwnNchNKYhk+l5BJEIY1aDVTGVmeDsopJ0xQhBNMTk5TcMjqHIxNNUAl//slPEv3ds0w3ZtACLly5yMraFpvtDrsX5qlWLEzLIo5Dhv0uaRyz2W2ztrrBW9/6zTRm5lBKEWUpRpZBHtEb+AyCDo5tY1oW5dIESI3nuHiuiVYCpSBPM9Ikxh/0Mc1iudqw3Z0AuDuJZVmkWbEwLiwDkEgDDCFRUqN18XlqFAiJkjm2KEMa4RgG0pAIv4dhumgpkdpEGA6RqXAclyzLismR7ZBIiaUM0tuTJAGGY5MnxdeGEGQoJAKJQUbO0FIYDYfVzW205eI5Fq3tPpVSk9Zmh5LrkCYJG5urRcp2mhL4EfWJJjdvrHH0WJnNrTWO3n2cenOSSqNJrTlFqgWWbbOxepONlZu8+PznCAc9guEQrQRzc3OcPnOWxcVFVm6usrR0ma996s188IMf4tLSEk889jpwbHYv7kU6VX7/Q5+lbGX0+32OPTLLyuo27U6L6alZLl67yaHDBzC9SVZbRQO/sb6CGWaUEh9UiqUyXKtEyczI0owwSimXqgSDgGjokwYJEk2cSOoNlzNnLlByHaTycGyPy5cvYlolfv+P3ss/t/8FXmWWb/zWb0Iqgyjq8sPv+BGmmw3e/wd/ST96K5VKmSBYxS1PYc2e5z//+u+SGymG9EijkH5fMzUnqTVK+HHAdGOaN7/pOJut6xyKj2NgMzOx6w6e3DFjxowZ89XMa6IBWF1fpdFoFMX9MOSjn36OS1euUa1WefNTj7J7rvDWv20vaRgGnuehlMKpVlFKcf78OWydo6TFhaUrXL6+wsnjR7j/3pMsHjwGsHMjeNuJp/Dft3EchyxLdoLGlFJoo7AZxaxRqk4SxwkqGtAfdFHxENuw2R5s0R8OmN13hOnmruLW0YRdTok8V4RJjM5CpJSEQcCw1y1kPaMwrTAMSdOU3jCkPwzoD4e4XhmlwBlJdW6/3kEQ47ou5XKZMOqPpE0G29sdDENQLpdQIiNKYtCCOIjJsi7VahnLdeh1h1RKZYRUDIYRnmsyGAbkec7W+gZ1PyaOi0mJbZi0tjawheDlT32U2N9ipZ/xyo2r2J7N27/j23j6maf4wnPP85M//U72zta5+/5HmTl4nK1bS8gsoVqrUJvdzYHFlNn53WTCJPJ9hFBIDErlSbzSBHkyLHIJwpjt/g3iOC4mPqZBqVLFdUu4XhW3VMZyXKQoPp9M52ilENzZCUCeF+5FSissiowJlaWYdowhFZoUISxQt3MmYH2jRa02iWXYiDTF74fEKsIPYwzLplwuU63Vi8Yvz3fcpfwwYuAHuOZoj0JIEj/ElgaWNPCzBIUudgFGr29QcTj88H30hl1IgmLSlGRUZytcX/ZJopjHHn2UbrfDqVOnqdVqVKtVBoMBhw8fZt++vTz7+U+ze9cBtrY7fE0UEayvM7Owi1Z7k/MvfoatlRUcGePWXKKgj1tyuXlrmVq9zMraFt1BwDPf+C286xd+mafe9EaeeONbePOb38zq+gp5FnJ26Rynz5/jwPwc5VqV9Y0ujVqdxf0HWL65gqFztno97r/3JNe+8CKzk5Ps31MhtgWxU0cIg7DXYxhmRPhIMioTDVrrLZQQxEFEGCdILak1yvzrf/cdbK4P+K1f+SiNise5M88isz6nlj7Nj/2b/4vPPvsR6rWIhd3z/NWH/xyJ5vfe9xdIu8VK5yoistg7c5Lf+IP/SqYT7n/8IMfv+RouXjpDGAxo+yEqdCDx6LYS8tDh+uYmyxf7pPh0uxlvfuMzeHbtjp3bMWPGjBnz1c1rogF4+cwZ5mZm0QJ6w5SXz13G8irMzc9SKpV2AsDMkZ+/4zg7X8dxTG/Q59r16xzYtQvTMnFLHvPz88zOLeCVK7iOR5IkINhJtbUsa0dGApCm6U4DkCQJlVIVYUjm5neRqxzDlJjKpBMOsSzYv3+R/FpRnG1tblOuzmM5NhgQJyEGApWkSKOwuFQqI06iQobUL6Q/58+fZ2pqin4Qk2uB7/sYdoksU9iWJElzlE6KFF4DLK1QI6V3s9mk1e2xf/9+Xjp9ljAM0eTko4XZ7dY2MzMzeOUqSRoRJTGe5yG0Js1SxGg5VZOT5hm5UgRhSKVaHbmUDDGdMtOOy8WNiERpJianOXzsAL/5X96DYSU88cQTNBoNhGlSKlXo9XpcXr7GtSuXed1jj7Fn7z6iKCKKUxKVjByZdGFvmowsUJUELTFMgeu6uG5Ku90mSRP63Q6RFeBVYqQwqdYKlxwhJIYsrE/veA7YlyGK23eh0Hkh6pGo0Z6AKsK5kLS2OxxanCYVEs+tgpniGjbaSYmimFS8mmpd7IkUrkJaGOjboXKGgdbF/ym0LgLV/gEaC/NcXL2FXalQq9dwbYdWu8u1zgXq9To91eXChQs0mw0efPBBVldXaTYmi1TqVPLcc89x5MgR0gQO7d7L5OQk0nKJggB/OOC5z36W2ZkZTNtmc22TPNdEUUK5VMUPI/r9Lmtraxw5eowgjnjjU29gbWODpcsXqVQqBOGQIwcXUbnC90PuOrHISrvH+s0V/FRx4sRxbl1bxrQcOp0BtuOhcs3k9ATacagv7CVPoTSZUklTWsM+joqJgriQiBkmapS3QQ7CUDTrDfJQMxh26He3WLqyhKkiqhPwyovnefGFv+ee42V+6dd+GfSAr3vDk7z7XT9PL1ym1+vxnd/27exaOIxOTUzTYqIxg+dWcGybiltm9eo1TFlHYiK0QW/o8y9/4Pv5iR//WR545Dgowc1ryxxefOgreDbHjBkzZsyYV3lNNABvfMs37uiR0yCmOT0HwmRusopna8I4xZQG5XJ5Z3H2dpLtxes3cF2XR1/3Ohzbo9FocOLkPUVCbqmGwMCwbTzbKSYImdgJESuKKD0K2SpsJ4MgKLT3psH01AzN6SnCJCQJA8w4pFxyCIZd1js+x+6+jxyNNCoobNAGg24RuKXiFAFk5Pi+T57n9Lu9wpVHFS48+/fvLwLFggjLcWhOTNHq9otdgFpW7AJ4HiLN0KREUYSUkkqlhO149IcBYejzwAMPkIsiXXhjfYs0zWg2J/H9ENctYRgSx/FI0xxFXtxSjyQ/xe21YG1tg36/T5rmiCzCNODeu+/jY+/+GZatEsqC7q118luSX3n3u1C2Jk4j5nftpl4yWViY4+Mf/zCGW+Pk/Y/jlOpkaY5WsL3dQVtF2JkQAjnKP0hTRZZHOzr+LLEQwsRyK2RBm3q9Bkj6nW2khsS3sMpV8jyn2pjEtm+nFt85CmcptSO8LxorRa5SJBlq1ACg8yLBV0v2HTjMdLkEWpGLBByFSQnPlBgNGy0gz4vAOMuysLWE1KI6GFAqVTB18Zymvm0/WrhFiVFmgNYUQWlCYzcaVCcbiHafI/fswzIytBZMzkyycePWTsBau92mVCoTRRHnzp0jFzmdts/UdAPP87hx/Sr7Fw+xtrbG4qG7WF9d4eUXP0u16iANg3K1RjUF2n0unD3P/Q89yOraErdW16jWG3zxiy9gCM0rLz/HY48/wcr6ClnUpOJZtLdaOKaJND2uLF8lknUcERGEIVeuDmlUa9xcbZMD5DmTRw+ytnqDfXaN3d5uVCnG73RJCEYuX0OisJAJZrpoLOfn57FdhySLUJni3rsX+cAf/Rd+6If/LU9NvJEbl68wCHrMzk3x+se+k0985n383M/9PO9933/k8vWXcSzBMNzArTX5q0+8n+vXughfYxgOD518jMbMFGdPaf7kfS9w/xMVPMeiWpmk0qjzrW97gve//7cJuwNunV6jO7HFbH2acHdyp47tmDFjxoz5KufO6idGNGoNJpuTzEzNMLswz4GFOQ7tnqfi2oWLiVbkOsN2LdK8SFrt9nu0uj1m5hfYf+Aw01Oz1OtNKpUarldFGg4y10ihUWlCnsSoNNmxlYzjmDSNyfMiqCpNFEpBv98lTWOGAx9lCKS0MLXANASOrQh9nzCF7nBInGZ0e0O0FKRpBDpBZgpDQU5KomLEqIjL43gk58iZmZ8jF5LLN1cYZgqvUmO7G3Dx8k3SXGM6NjdWV9judYnimFQrokSRZAp/GGMYDloL5ufncR2L43cdprexioGm320TByFBMCRJIqIoII2LYj/JUlSWF9ISrcm1JM80ikJ3XiqV8AdDttrbtDdaWFGfy+0W/f6Qhx96jGHsc+jwItIx+JMP/Ck3r61Sq9WQpiDPM4Zxyr69C9QbVZCCdq9Lq9MmSiPSKCQOfLI0JE5CFDnSFCMrz+IcKDRpnpGqhNXNLVSe4rkm9WaDxtQUdqlMmkWEUUAU9IijIWkS3tnDqwRCq50QN4RAGmBKXbj/yAwhFbkqinIloG7G6HhA2tlAb2+hkpgwGJAFfYKwQzrskAZd0nhImsTF93s9gk6H7HaDigKd70yX0DmWIbC0IBEaJUBoQWVujjTPseomKs8wHBu3XELkILFIkozBMKDdGdJqt0iyhGq9wYEDB/FKFocOHeL0qQvkaLr9DtowyIRE6gwjTUnTmLNnXsEfBMxMTjAzM8XMwiTXrl8iCkLuvedeyrVJVte2iYYRZQNMXej49+7di7QEpVKJarnCwq499FUJqRPe9vZv57u/420kw4BapcnCzBSuWyzUl2wTz6oRDEMyS6MNSUpCmsckoY/OEsIwRiqNSDNKpsFstcb+6Xn2TDWwzaLRfOINbyQahLz0wsvs2n+I5sQB7j56jFpZYuIQhSle1WV2oUG9OoEnK5ho3GaN/YdncSoltMxpenN87z/+cW5cWOU9v/8zJLmJsBS9/oC3fMM3MejH7Dqwj//pW7+Dk8cXqU16RCSUXe/Ont0xY8aMGfNVy2tiApDnOVlW3HgLQzIxMYEQAn/Ywx+GqDRB5xm1Wo04zVnb2MQPIw4cPES11tiRBuV5ThwXN6clr7yz0IvQSGkgDbEj+SmagIQgCHBdF8tySJKk0F9Xq6S5ZHZmF0LlJGmAKTWdwZDKxBRWopie34XjWnjlUlGkxwn9biH9yfIcPxoSxBFhGCKU5vz581imy7Wbt3jwoUcI0wTT9tjqtNGESMtmcnaO/qBLtVpldn6eJEnIBEWaqTBxhEWYxPR6PaBwSpqYbnDx8hXanS4HjhzFNE3yPCOKY2q1Gptb68xNz7C2tsbs7Cw6v+3BrxCeJM0Sym6JVnsLU5p4rkkYJRgCTn/641zsxZgqxZuY4dE3PMWf/eWHeeDxJwGTv/3kZ3nx5VMszBXynxN3HcRxHGzbJooiULrIYtBqZ8E6DhOQAsctnOwtyymCv0wTgUGSJOR5ytrGOkcO7Gai3qDVH+UzYGDiUCkXy79pnJDmwZ04sl+GYRY5wFAkOktAqQwpbucX6FE4nUKT4TkeKgvRWUyaRDSmm8SEZIkmz0zyMCFTKW5J4FouWmVkkY+hEiyhEOJV5yGJANNAS4nyLAgUepRNlhuCdhBw89oNvu51dzPodWjWZugO+kzt2kcUXefMmTN4nsfc3BzSsPB9H9NQhKsBQRDseP4vLi4yNwSJCAAAIABJREFUOTONRhKnCadfep7O9hZxEFKuOHQ625w5c4o00dz/wD3cunULx6qxurnOpz79Ber1OrsXprh+fYlDh/eShdDaWsexJctXl/DKFU6dO0e1XiON+igMkiimUa1xffkGYRyA5TE12UQJGPR9pOURJkMk4NUqmLaB2ljFtA2WLl0h9gMkRcic5TgEUYJjGTTKM/zgv/oxBoHFmZdfYffCQdZW1jm0eBCkpDoxwz/7Fz9KpeJhZZo8l6hIM1OZJtER081p7CmTKTOETPO+33gvP/a//gBpnvDyS6f5sXf8JNV6A38YceP6LXKtKFUneM87f4uJ/SWOPXaM7qBPf7h1Zw7smDFjxoz5quc10QDcDnRSqgj1EYBUmlwroiRm0G4jjQlkYNAb9HErNfYevAvTdjFkod+/reHv9/s4jkO9PgqUGu0P3C56v9Q+8rbEQghBnqfkebFk3GhMMDG9gG155Cph2O9QLtmkysBxK2gZE0cB/XaLWqNJmOTkuaZU9uhsbTMMfMI4IskyttsbNJuTzO/aSxhlnJyepVSrM9jcwo99shSCaIDjVajWGhhB4X2/trbG3NwcGxsb2LbN3MwMUpjEccpgtENgGAaGhkwppOmyubHBXYePALB04Rxl12Oi3tiRNdm2jc5VsWzd79PPB1QrJXKlWLm1RqXs4DkOtapLe+jzN889z/VhQm/jCiu/+Vu8+5d/iStbLf7oA3/K9Mwc9z34AB/+xGc4cOAeLMfh0MQ03bhwU6pWqwhdNHeGYSBFIbvK8xwlwTAKhyTH9nYWsoUQhGHI2toajmVTctydx3cSXaU5sngUSGlQ9uw7dWxHKISA28sIKi8+D8cyEOp2doHx6r/VmiBQNGyNNAVhEFNTCkjIU0UuBFIZSKkRWpNE4WipN0egUDolCIIvsx6VUoIUYJuoKEGmRTKBLln0Bh32LsxTci2CgU8WxXi2Q7dbOFI988wzbG9vs7x8Bc9rsH/fAW7dWmUwKML5LMvaaQKSJMGyLGqVKr3uNr3uNteu3eDk/Sd3FuwrXo1qxaN211E+/NefRAiIE4XrSR559H6OHZpj+coStcl9eJbJlcsXyfOcge8jpInvDzl4YC+/+3t/MFr2hsZEHXoSw/HY3NqmXLmPYf8WTVOgswBheWggR5AojTAt2r0uHgY6V0RKoDIY9AYEpOw5MsMfv+93OXD4ETbWt3nuCxc5tG+WxYUZ/IHF9Owu1ltt6K5hJDk6BiOBiumRIrEHII2M2XIVlCZJLepek2sr13j4ax9kemKaMM2KnATbZhj4DIcB87MLvP4tj7M2WCEOE4Kw85U8qGPGjBkzZswOr4kGIIqineVbbUi2NjbwB0MGvS5Xr15m9/wctYk6npDUmhNojB0ZT6yynQIly7Kdoj5N4x23HaVe1WprrXeKfqUyyuXy6PEcx3GYnp6lWp/A8WpkWoHKaNYbCBS1hsV2ewvPsVm9cY16tcKg10VJk8FgwKBvILVBueyR5WpkCVrBMDwGUUC11qDTHxBudQnClCDJsW2Xil3Ccmw6vTYzs/MopWg0J2l3etTqTZRSrG9uUCmVqZbKxS0/gmq1TKpM6tUadx89iu/7BMM+Fy6cI/B9srR4X5oTE1iWwfb2FiW3yE2oVCqsbWziui49f8DCnj0kkU+n3eHWjevs2b0bVZvDbW5zde0ch48c5X/4rn/K93//9/O5z32O4fVVPvLxv8Mue5RLVf63H/0Jfvzf/iR79u3FNE2SJKHkVXaKd62KIr9s2yihdvzzTfmq9arWOeVymeXlZR55+CFMoyjgmrU6G62tnSXt26FxcZLjpNadObQjpEGx66ANhCgaFEGGYVgIcjKKpeVCj16kRy9vDJhulMAwsesTxLki1zaJTtHSwCm7xCol1TkmkCGQlkOkFKbl0moXLlCM3gchBGiwtEAAphbgWDz41jfxwXNnaS408JMhtqGolB0MQ9AZDul0Onz4wx/m7W9/O2trN1laukq5XGZh1zQVv8rly5dpNpt813d9F2ubG6ytrVGpVBBZSr+3RRAMmVvYy/lzl7h69Sr1ep19e/Zw6tSLLC4usrm5SZQovuHNX8ORI0eI+pucPfUKtmVwojnFjatLqDzh2c//PUmW42eaqg1+mJMpwZ49+7lxc4Wly8vcdewot9a2cMslTp05z/xsBSEsli5e4Njx+4iihG6vTz+M8QddojjBsVxMJMK0iKKk2J/AZ2tlCVtGfPxDr/CvfvSXOH9hkj/8zf+H3XvmOHysxNbaCjr1+eMPv5ftjU1mqg3CXkRsQE7OnFPHMAS2bSFMgbIdrly5QuZCc7pOkiuEMEnTIhU7SRJAcfiu/Wz2tqjUakWK+TgJeMyYMWPG3CFeEzsA29vb3Lp1i5s3b7K8vMxzzz3HSy+9xGarxf79ixy9+xjVWh2lIYxihFZolSF0/urkYHQDCYz0/enO90yz6HOklDve8VmWEQQBYRji+z5aa7IswTJtLMspHGZ0Id9IkgzTsLEtgyyJyaKA2ekpKpXKyJdeMDU1QbVapttrc+bMGQaDAWEYMzU1Q7cfkCtB3w/YWN+iWm9gO2Vm5+eRpollu5TKVabnZul2+ygFvd4A07QBSRjG1Gp1TNuGkcQoThKELCYCtm0zNdEcSZks7j5+jImJJlevXsGyTFbXVnA9h26vs3MLD2DbNtIsbnjTPKNcqtIfDkjimE5/wOKxEyNP/5Du0EdYNr/2nt/g5Mn7qNUa5Jlmc7PF0uVLSNPh5//fX8H3/Z2GLtfFRMewTIRRyLuKYKxiD0OMQt1uL2XfLmZNs5gO3Pb8j6KIICjSkpM0JlcZucp2Grc7idYaITWIYgJwu5kRvPrzFMu5AmUaKCHpR4oklwzChEgpojgjTjRprtHCoB/6RFlCPNrbSLKcYRTT7nTJ/hvXIy2KX2IJiCRHapBCkKgM7VpUKpViP6BU2N0qpfB9n1arhWEYPP3001y6dInJyUlsy+Xypausr68zHA65//77WVtb4yMf+QhbW1ucPHmSSqUykl9FtFubXLhwkXa7x9Gjx9m3b5HryzeYn5vj+rVr6FwR+CFnTp3lz/70z3nh+Zd48sknkYYmSwPiKOBjH/sYeZrRG/RRFE399Vu3yHJNGIYEQUC16rG+vg6AZTr0BkOCMKO11aFkeyRRjB+FDAIfNQpdKz4bgRKSXCvCKCp2iXILlSrWbtzCSGPixOdDH/ozThw7wtzufWxvrbN05kX+8Hd/BcPOEUIxNzNLqTTKZEgSXMPBwcIYLWJ7ls0gGPDAww9glRySOAWKJruYPjrESUh/sE2mE6IoIMsUcZR+Rc7omDFjxowZ89/ympgA/OJvvZ/I7+M6Fo8/eIKvf8MjlB0bYZbxPK+47RQWeZ5TLmnSbEins81gMEBoA9s2qdWrRGGMwMCUBg42WaIR2kDlGqUygjggixOEHjUDQmNYBpgS17IJgyGNqXlM20FpgVY5cZZQrzVob94kRpIjKNebbG1tkYYhA3+IW6oWmndp0B0E3H3iHjbbbT71qU9x4r77iVNFc2qSC5euMzW3m6UrN/A8j+3eoJAiWZreYIhpmtiuSxBFOI5DGIbEIy0/WjIYDDCbDaI0wcwyBv0+pYqHZYBtC9AJnuewst5lYc8iU3MLvPzyi3zNk09w9vQpbMtA5QlxkiEMSb1eRamMqdk54izm5vI1jt99kpde/CLH77mHiy+/xJWbK0QINvtdMmXw1Buf4tkXX+SFM6fZ2Nhg7645di3s5wN/8kkOnjjOP/3+H+A/v+udOIaNpmi4XKeMZRXNmdbF5OX2BCBOUoQs0oHTyGdtbY0bN9ewLcndB74ZbZhcX7lMFAU0m02ktLEsa9QwgHGHk4Ahxxh570uVg05A5WTCRoxu5IW2wIwAB03ElStrPHS8RHN+LxYSoRSpzJE1F0eaJPRJVU4uYUhR3A+ReNO7mG6HaC1Ihm1qWoyWuYtmSocxppYYBniOR+zVqDkVzl+8wN13vQ7TSjBNGyEsSq5gfnI/f/e3n6Beb5JmiigO2H9gN6Zh8YaveYL3/uEfs7re4muf+jo+9/ef5ug99yEMjyiN8KOQx1//OJ/97PP4fszLr5wGnXNw8TDNmsfWeptYJwzSBENIapUaDz30KH/x4Y/x9De8ma31DfK8z63ra1hOmV275tnuxsxPNFlZW8eymiwvLzM1NUl7e8Bmv8vczCxhbxvheqxudLnr2AnCMMUrV8C08WyPoNsmypNC7qZkYTmrEqSV4ZAidEYqBJlWGHlMkvp8zz95Ox/70O9gSsWH/vR3KJvQlA5qOGCqVCY1BXnJIw17+GHIZ156hSSLcO0KBoL6pMuP/OJPEiQxeSJQaHq9NmEYksV9uv0OptJU9k9g2ha5lhgYtLdW7+zRHTNmzJgxX7W8JhqAZ564lwOL+/A8j5pn4JVqKAFgI4QoEmolCEMihcCyJymXp8jznMgfoMnZ2tpgGITMzMwgDeiHfaySi0bT3dgmiUOGwz5aSLbbbdI0JQsCTMcmjCOyLON7v+9f4np1tJDkWQS5wtOa7dYGUaJoTtXwfc2tG9dZWFjgk5/8JAePHKbVauGHEeVKjZdPv4xp22xs9/DKdV548RT7DhxibXOZWmMCaRp0en0cr4Q0LWzbJk3TnelFdLv4j2O01lQqFYZBQK1SIU4ygjBCCIkyTMIoRmmN53nEUUqtVmcwDCiXqigFWgniOOXa8nVarTZ3HTnEysoKW9stHnvdkwwGg52JSBAEXF2+TrvTY/HECa6vrPPxv/kkWZgjtKTs1ljYvUinN0SbNrv27mHf4gE6WxtMzc1Trrpcu3aN2ek5fuKnfoZ//SM/QDUc4Hll3KYkk9nOrb/WBllaWIEKNEkScXHpPFprri3fwLQ9oLBAlVbxHlUqlcK2NYoQKsUrlRBCkETDO3l0kWQ7Hvy5BFMJhFFIgwxkoUkXAkOAoXykDpmoOlRFhm6tgGlhOWUMKZGOJg9CSplPFqUYQmEamlyUmJ2ZpONZnPniF0mSZHTLrTGlxJRylOkAQoOW4KcxL507Q5jk7DuwH9Mukfgx2+0uWmu2tnvcvHYLYZiUKmW22126/R5p7uF4Nn/8V3/DG//RW/B7fdZXbtBsNsnzHNd1uXl1mbnpKXrbW3j4WF5K7dACWxsDphoOjgVHDi3glSosrWyThAlSSvrDHnlusnT5Oq3NbTa3umxu9Th2cg+DjVWE0EiD0dRCkqQp0jCp1ZtoxyYMQxhJ+MI4YqvV5vTp0xw4cABb5PjdNkYeE/k95hYmix2UYcjQj/GcKvGg2GkI8gRhCHSeY1SarF1f45v/xx/hPb/3+/yHd/wnblx+hd95788SCwelU26ePYtlu1jVEqbU9PtDlLKI04Q9e+f5ln/8NGka47gWcRqN9omK6WSSJAipiYIEw7HI0VQqHhfOL3H29Gn+47+5k6d3zJgxY8Z8tXKnr08BWNy3QNVzKDsWrmWTaxDSAikKyYghC39zIdCicFxJVQ6GpFytYTsek9NTzM3NIIQmigKiOODG8lWWl69w8eoNXjm3xIuvnOOjH/0oN29cQ6C4796TPPrwQ7zpjV/Ht7/t7ViWB9IoHIVGIV6oDIRicnqKfr9Lt91he3ublZs3mJ+fJ0kzLixdxHFdrl6/xv33309/OCAMYuYX9mBbDpsbLZI4I01ybq2sMTe7AFpS8ipoVQQ73S7qLMui3+/vLPlKKalWq3S7XZrNSYIgQOUgReF8lGU5WoOUBpbpsGfPHrKRTsQwDI4fP87Cwm7m5uYZDgJeeuklFhcXsW2bOC7ShYvFaY+5uQXmFnbTbncZBgFLl65Qa9TZs38fpm1Rb0zQGQ65eu0665sb7N27lyAIuLmySq4FJc/D90O6fZ9h4OP7xZ8gCHZ0+7eXsev1etHYaYVlmHTb25w/e47BsIfQimazWWQm5MWehOuWkLLYLUiShJWVFdbW1nakIXcMnX+ZfKlw/Bm5/0iFlMW0SWuNIMM0BJY0iDvr5J1VVHcNNdxGxSGpPySPA4a9NnnYY7i9SX99ncHWOqQRWqWYlvyyJGuhi6JfMvq7KKYCqcoZJCGu6xIGMRvrWwjpYLkj1yVMJqamaDQnUeQcPHiQp595hr4/5MbKLe69/356vQHb29v87f/H3psF2X3dd36fc/773Ze+t/cFGwEQIAmS4KKFomwtlmS7JmN7bMmuVDK249jlsZOZpFJTmbiKk0z8knJSsT1VmbickT32TCa25V2WJVKUzE1cBJAgARD70kDvd7//+9/PycO/0bInqbxFYJX684SH7sb/3nsaOOf8vsvXv86pU6dYX1+n3+8zPzO7txYrBYfHHn6QpYUF+oMuN2/eJIgjHn3sNMGojykFlmVQq9XodQccOfogly9dZ25+iQyTYrXB5SvXdpPA8lz8YtFDoWlMtWi2puj0ejSbTdI0zRO/0FTrdS68f4mTDz3CpfevkEWTvFVapaRKYVgSUBRqFfw0ZpTFbA57+GFAb9BnMB6BNPiN3/hfmZmZYTgO+Ue/8LNsrV7jd3/7XyFURCYh04pyuUh9qkqzWaU91cQyzfxwoVP8ZML8kWUs1yFLUpIk2ZMUZllGmsUYhsAUJlrqvb6TIAhI4vsrX9tnn3322ed7lw/EBKBWrVMoV9DSIEOQCQmZQMpcy5vdEzoDCNA6L17SQpMphWHZOCJvDN7c3KDX63FoeYXYNlldu0uSpCzNtzn8odN4nkutXMljGS2JYZn4YUCrvUK5OkWWRSAUhhHh+2NkAv5kSK/XwTRNVu/cxlCKrk7oDQNOPf4kKyu5Xt91Cpx9+20K5QoHDjzI9Wu3WVo5zHAUUK42uHbrBpkWuIUKYRhSKJcYjEeUix6DQV4SZjlOrtVGowVsd3byKUGckmlBqiFOMyBPZCHJiKIk15kL2N7uMD09QxzHBMGE69evI3Ve9tTZ3qFUKnH37l0azTZSyj0fRJJkTLXbPHb6cTZur9Htb/OTP/ufcf39y4wnPo+cfpyXXn6FH/7hH6J68T02t1b5wk/9JGkc8Orrb1FvNEmUJvRDNjoR//Ov/Uv+3b/93bzMzC3T6fYo1St5u7NXRinFgcMP8PabL5OmKa1Wi/lmLY9VjRXTs22CIEBFIeORT6/bp9frMQl8RqMRZIp6vYpt3l8TsCl1HrtpSJQWu3GmGtOUGAriKEPrfPqRaIVAMQlTSBQOIYZKCWWBJAyRtoclQCYJaRZiGBbaMDENkzgKIM12M+yTvSSre4eNe6lABgJlCLxyCVEucv3qTaanZ0hSzebOiCQJCaKI9fVtesMeh4+s0Go0kabJzdu3ePz0aT716U+wdneLV1/9Fp//yZ+iO5jw/vvvs3L4CJZlMQ4nNOeXmEzG3HjvHXSWsd7p88nPfoLXXn2Tb776NpudCSUdMV2fYeiHjIY+zdYsm50BjfYcL7z4Cpk0sdwCGBa2ZVAsmZTLJS5fuYqSDo5jsbq2ju25e9Oq3OCf+14a1Qbfev3bPHj0AR45NEMSBPRHAb1JTBgLFmsNTNulVK0QBjGi3UYA7rCfG3PTjC/86GeYaRj8zr/9Ep/5ge/noycOMV3XdEOPfuZTLbt5+7iRYCpNu1GhMJ/hZyG3Bpv8k3/6y1Rnqoz6PirJk8TCMCBJcn2/1pr+oIehJGGaYLselmXsmsfvb4ndPvvss88+37t8IA4AlushLZdU5fGFCg1KIUS+689vT8Xe12ud7Rn94jhGKUW3u8Vw0MP3c0lIs1Kj6BV2b5JjPMukXihge2WSLO8M0OQmVEsa1JvTSGERkWIITaYT4sTHoUSlUkElKbfurDLTarO9ucGw1yfWkiiK8P0Rkzih0+syOztLqvNo05E/plitEMcx5XKZQqGAFgaDwYBCobBnVnbd3MB7T45TKpXwgwmmaeJ5HuPxmFKpRKfTodGs5J0JiLxAS7K3+VP3GmJNkyiKKBQKPPTQQ2xvbrKxvkW71SQMA6rVKrZt0+v1SNOU1dVVBBYnTj3Mt954i4ZbxDRtgjTm4ccf5ezZszTbLY4/eBKFZnZuAcvWrK2t8dGPfpTbt28zPT3L+tZmviHVxt5kplqtUi7VmGrN5IeUTNPr9faiQu89+9gf0SraFDyHubkmQZJ3NIRpnqKSJEn+s6oV6o0mrusCmmKh8F1bp/9vGBIytZvEw+6Nv8hv6CUSrTPk7nRAConQBkmWogwPZYBl2tilKUw9wHSKkGYksU1Ggu14xJmJ3M39v1eaprXOoz93060kAqV1PgnY/b2wbJuJ1jz66KNsbm4RxykHVw5w/epZpHTo7PRwihbNZpOLFy8SRhmbm+t8/vM/zte+9jWKXoGzZ88yM79Eud4gGHc4fPgwjuMwDsZUa00m7WkWFxfxCiV645gLFy5QqdaRnRGvv3GWf/Sf/ANWtwc4kaa+1OKvvvpNIOWxUw/huB6DwGc4HGJbLt1giFcs0O/3gTzRq9Go0e128NzKXryvZVlUq1XqzQaWkcvnbt++w+1bTbRIGE98OuMxySSjoiEcB0zNTNMouGTZBOEVac63c58Nkr95/iu84I9Y73f4y78M+He/dYGy5xGmEgoKy5BM4glJJsgk9CYTpiotXGkxMkLePvMWH118Nk8iyxR+FOA4zndSzbRGkyG02Gu8vvc7KkR6n1btPvvss88+3+sYzz333P1+Bra21p4Tu/85alJMQ2KYEr3brCqkQGBiCAFZhlSQRhGTcZ/nn/9rNjfu0KpXaVWrrMzNM9dskYQj0nCCoTIKro1l5o3CURyBzjPVUYrJpE+9tYxba+dlTmmCIQwG/QEGBpbncPPKJdrtNv54yJ07d5manmGSpIRhyGA4RGFTLFRI4pTRKCSOYavXp1JvcunaNTKlmV9aYDCasL29TbPVwvVcpGFgWhY7OzskaUq1VkMLiWU7xGmG6xUwLRvHzW+GHdtCZYosybXMlm3kJWemRJoSdJbHQZo2UmrCYIw/HnD91k0s02Q4HBFnPm+8/CpHjh1DSos4TkiSlBvX8iSfztYWzUYNz/VoTLUplAq0Z+eZas1z+cplVu+scuXqNb7w+R/lN3/zN5Ai4eChZaIooLPdYW5+hmFvSK/f40f+/t9jc2fMYJiwtnmXazduMhz1WLtzk0rZ5frli/T7W0x8n9WbqygJKwsL1FuzDIKYTFpIq4BbKOEVyxSKFQrFCpVqA88r4bhFTMtmceXoP79fa/d//+KfPCekgaEyhNPENEcobCxTYhOQJDbScMiEh1SgtcGgfwuZ7FBvt8nsMlpCLJ08nUop/DgGpwxWmUSbJCgmQUKnO+Tc+1cAi6Yf4SjIhMQwTISUaKUZuFDJJH3HxGq1eP3V10iiiIMPrBAmAe1ajRtXtrAqHuHE5/jRowwHAxYXl3nn3Ltcv36TMEzodHvMz8/xN9/8OpYjadSa9DpdnvjQR7ClJBaCUrnC3dvXKDZL1Kse8wuLlIrlvHDLK/DepcvcuHqdj33sSVzPpDXVYunAMn/9wtdwi1WkabO+docTDx5hMurTrJWp1Jvc3enz9OnHuHn7LhgOKhwxHIZMtxuYBrSaFeIw4fKly7RabdqtJteuX6LRmmZ1u8udrR4i1YgwRauE0WAIkcKSYLhFisUWrlOi2m7gCKgUTEwd4poRnnQolGuMHQhFjK3BTyNiBFkMaSRI44RJGCFNh976Fqc/9gSD0ZA4yTf0YjeJSOmUfr9LlgjubtzCkWA4AJJqpcHG+l1++Wf+m/u2dvfZZ5999vne5QMxARA6v/GXQiCxkFoiEOjdmE/DMFA6Q2cphoSd7hZnz55hPB7zyIMP0WjWUXFEFI6pFF18f7TXLnwvVjLdLebRWqDS3Mwo7Dwj3LDyMikhBJr8hq5QcClXygyHPaanpzEMY68Zdbuzw8LCEhcvXuTgwcPcWd9hYXGRIAwpVmsMRz5bvRFCCAqFAs2pKVbv3MF1Xebn51FAt9ul2WzmaUDbW0xNTWHbNls7nVzaA3sZ4o7jkEQBhmHQ7/eZnZ4BvhM7ea9s617saZyEeAWX27dvEoYTVlaWaDWa3Lh+nZ0dQaPZ4tbNmxw4eBhQVColbAOeeuYZbly9RKVSwfd9bNtmNB6xtLjCeBzy8COPsL2zThCF/Omf/QUnTz7ElcuXeerpU2QqoVItEoa5ofr0E4/xz37lV/nZX/hlgmjIqLdNGPisLE/zxGMn+OIXv8jK4hIzs02CICDLMuZmZymUitiGiW1ZCGmi9Xde3734UmAv2jWOw+/iSv1/IkyZH1JVhmkpZGqCctBCoZQBBmip88haMoTSICVGtYrRaKJNk0ApBAZZqnNjarmOLJSJMk0cJWhcNjfXuX3nDpbrQJpPFAxAmfnkQWiwpMBGAhrbsqhUSnua87fPvsvy0jzNQ4tsdQfc2txkqjZFt9vj1s1Vjh4/zm/9q/+NTqfDzs4Ob337DcqlOh966iM8/8KLjEYjPv7xjzMcDim7BnEYoDONwIVJyPb6BlMHjlBrlOkPOky1Z7lycZ0f+oFPcuXKeSzT5urlVQax5ud+7ud48RuvcGt1lZmZGS5fvUazXuPRRx/lD//4zzlw5CiZzht8J1FMpVZHG34+9VEZ2zsdao0Wtm0jBFy9fo35mTqV5jSNgU91u0ccBjSm2oSTMQW7hI4znEIJYZpMgj6WY7Ox3mG4vkPmT3Bdm+FgTMHySMSEKBuREhMKA20IBAIlIUxS4iRDZIpCoUCrUCEdTNgZbOLZHkKbOK6L0nlMbYYmFQnBZIJZLWIZFoZhke3+27TPPvvss88+94MPxATg1rV3n7NtEyE0Oss3/lrl3Z5ohSEF42GPtbXb3Lxxndu3rrG8vMzhQwdpVOtIIQh9n4JnEQU+nuvgei5xHOE4NlpljEZDVJYilCZLE5I4ItMJSI/loycRhpNLjbS3Bo+zAAAgAElEQVQiS2Im/gDLtunubCNRKAS9QZ/RyMcrlonjlCCIOXr8BOVKnSiKmZ2d4+LlKziux053SHtmjiCM8g1Lcwp/PKHb7SKkpF6vM5lMMAwDx7b2TJ2GaWFZFr1ul3KpxMT3cWwbnUWkaa4vNgyJ7VhYtgmaXTlBftCRholGkqYJtm3R63W5duMaMzPTjIZDoiRhqt3i8oX3KFUqaJXxV3/1Ze7eukW53uTBo0cYjYZcuXKZMAxoTDWIoph6Y4qbt25jWiZPPvU0SZLieEW0zhgP+ywuLJMkMZcuXWQ8Cjh+/DjXbqxy4OgJgtjEMl1mptv8xZ/+IcPeDk+cfozF+QUq5Qr1Wp2l5UVq1TKObeMWymQIwjACxN57kyTJngH2Xowo6Ps6Afit3/vmc4ZpIzLAqYGOyJREuRY6EuhM4DouYz8ABSqBIjEnD1Zo1qoU7QKWtMA0SLUgVlCvNykWHBzLxLbAc8s0a1O0qg221tcJ45jGKKQkDLQEc/cwYGiIDIkJiKk6raOH2NrcZjQas7CwQLlUYjgO0RRJyehs97j0/iV+5Ef+PrYluHzpAlevXKJYcDnx4HHW19b5zV//lzz11NMEYe4VefDhRzENiMIJcRRSLzewhMa0bYqNGt3tLVrTc5iWxXg4YuP2LeZmpjh++CDVUpFhEOB6ZTq9Pq2ZWc6fv4jjejTqTd577z2WFxaZazdYv3ObwcgnjiLKnkMShQRhgEaSYTAYjgj9MZPxGNfzsByXenOKYNRnbWOTTGRM0oBIZahYU63UMEt5AWCnv0EYTEiSBD3y0cEEp+iRqBTPtVFS003GTKIAaRkIyyCJE5I0b/wulsoYEuqWixoHvPHOBeaOzhAmIY7lkKYJcRKRJDF+MCZUEWonAkdj2i5SCDrdDoN+l1/66X+6PwHYZ5999tnnu84HIgVoc3OdTmebXq9DmkUImZGpmCxL0DqP+Lxz5xajYR+DjMMHDlIrV3AtlyRNCeOIIArZ2Nqm1mhSqdUoFgtorYjjiDAMUCpDa7WX0pIrjhSLKysImU8A7mmr8wi/lDCaUCx6e7f/lmnjFQs4jkejNcXK8gEuX75KmMSUqhX8MKBer1MqlajUa7ksIE6YnZ3Htlymp6d54IEH8H2f8Xi812p7rwwLwLLyvoNhf0CpUERnClMaezfglmVRKBSYTHY3MLsb4Xta+nt/FkLsaZBbrRZaaxqNBhcvvE9/OKBarlAul7l8+XJucnQc1u/cxTRNhsMhTz/9NI8//jjFYpFOp0OapriuS7lc5fz585x79wKHDh9lemaBt958m9/+7X/Nt799lscff5z5+XnCMMYf9Xjha18liiJ2dnZ49dWX+dT3fYzp6em913lvCTqOQxrlKTBSg+u6f+c1AXvFYf/h67yfCJVhojB0iklGyQ2olyfYUlHybGwjplTIKHsagxjPFniOwBIGWRQThSFJHBNPJohMYQqJUgqSBKkVkgytYhzTwnVtlFIInaFRgELupgAZiD2vgZICr1Sk0+uxs7OD6xRI4ozBwOfK9Zs4xQrXb1zD90ccOLjMZOLz3nvvsbCwwMzMTG4OD3y0znj24x/lrW+/TqVS2YsBVZncK2qTrkckPS5cvkZ7qkUY5Ob0L3/5K6wsH0ZJg+mZGTI0ne4W75x5lxe++lWmpqbodDo8++yzLCwsMJlMKBSrRJMR3dvX8KSgWa9Scl0ee/gks3NtUPlnvr29g+/7WJaVR+AGeUmcaRiE4xEqTTEsE0yBWbAxbZNUJcQiY+gPcRyTMPKxDJkvNtPAVwnKEigLUkOhDb2XqGTbNimaZLcILAtjoiwvo0uzjM3NDiWrhEpj0jT3JAVBgNYawzAoOiX87hhDmCiVYloCKTWud38N7Pvss88++3zv8oGYAIz7688lUYzSinDi4/tDBoMuvh9w/fp1vvSlL3FgZZGCY+O5Nu3pBRzbw3UKCNfEsm1K1Sr1RhOvWCROEoRSjEajPOVmEnwn8SaOSHcbar2SR7EyQ7HeRghJphIk4PsD4nDM9tY2YTBBo2hPz3JrdRWvUObW6l2mptrMLy6htAAMQFAuV1jb2OStt85gOEW2NjtI0yRRGY1Gk7W1NQaDAa12m/F4zHg8Rmio12vA7kZX5EZelaldg7C7m3+esrG5zuLiAuxuvgqFAvbfki9JmevBpTTJVIrWinPn3mG7s8PJE8dBg+t6xGnKrcvvUy6XWV5coN/p0ZpqUG+2WFlZJs1irt+4RpoltKenmWq1UFphGCZvvvUGQRjx5NMf4eWXX+L27dscPniQKIgpl0tcuPQepUKNMAxpNircubtGud6iYht8+MlHKLgpxUL+mvLW4byJeX39Dl//+ouUKmWa9SmEYeJPxkjDIIpClMowDIlSu2k3u5MA07SYWzx0325R/6f/5TefS9MOk+E66JiauIGM1hhsDwhHa8TJFr/48z/B53/8syRBh/PvvMJ0OeLE0VmKZQ8hNEorZBKRxDFSQKVSR0sLJUxSDVpkYAiCJOLOxgaj3oB6CiYSJQVIiTAMEIK+yJAlj+kHj7AV+vjDMXfvrNFsTBEnCUGScf78JR44sszp06f40IeeYjDsEwcpf/B/fYmbN27u9keExEnIU088SjDxef/yVb7/+z5Bc2qaSrWBP+6SJCGd4YBCcxaTmDOvv86tG6sYtsdo4DPxJ5x65GHmFmZAa9JUkamU5ZWDvPyt12m22oyGIy5cuIDlumztdPnU06f4xOkHuHH9aj4NqZYZ9XcYBzFaGGxs7SBEXjDn2S62AYsLsywtzCOyiO72FqM4QpnQmG9jl13yRNAUbSiSMKbRLGNZkmatzebaXbTQ+GZKrDPcgkfsKCYyQ4UZSiqsgk2SZlgYlOwCXmagXYmpFG6xROpWMeIIs+jgFC2kvHdIzciUIphEbLxzh/J0CafiYhqgdYog4T/90f9yfwKwzz777LPPd50PxAFg0Nl5znGLlEo1SpUKd+6scunSBdqtFo5t8eijj1Ap15idW6A9M4/jevnmMY2xbBdpmGQKLKtAmmUorUkShTQktu1ium4urTEtyuUK0nQQ0sSPNceffAalDdApZAmJP0RlCZbIKNg2huORKc3G5ibFcp1iqcyDDz7EaDSmVC5jGCa9bo+C5xEGAaVKfgBJsFjf6lKt1TANiyAIMCybeqOxm+lfJ/YDSsUi/nhEEsdkaYptW8RRSK1Wx3Ec4mRCHIdIITmwcpCdzjZRGFKv1/MbRg2WYWDsFkIhIN2NiLQsG88r0mw0SVPN1vYOQRDjOg5RnNLb2WRzY53bt24Ags/+0OdIsoRqpYzrevjjAMctkqZZXs4k4NiRo1y5fIUgivCKJerNKcaTMXaxxNLyEsKyeeDYce6urRGmCbVSgU8++zEePXmQNPWZX1zAclyqtRpeoYw0QSEIoojDR45Rb04hsrwE6913z7G9s8W1q1fZ2tokCCasr91CSo3Oo5YwDJO5pcP3bRP1f/zaP3tOTG4jok2y0Q36g2363W2C/ipB7zrxuE+tXCCOe1TLGf/iV/5r/uj3f53FhVmkNLFsB6VBKEGaRkziGKNQxDYtTNMgzTJMYYIWRGGENASpELyzcYe3t9c4E+zw7fEWb3TXOevvcG37LrXjh4kdh42tTYaDPqnWjIMILQw++clPs7W1xuzsHJmCf/N7/yd37m7xxptvUp9qMDu/wMVLl3j73PucO3eey5dukMQJmzs7GLbL4soRigUPf9QnTSN0mpCqmGp5Cn+wyVyrjW2GhOMIwxY88uAJBmGEa8A3X36N9Y1tjh4/zrfOXODDTz7Ku++cR0hJEPk8+tgjlJWP8NcpqIBRKNBJwGg0YnphmiiJOfXwcQ7MNzC0wLUMDhw8QBJltL2MkytTnDi2xEDGjAomRsEkiVP6/pgoSzCVIApi1robaMOgUqqSaIiFxPQkGQnVYpOsqFnf7BMEEa5pkkmFViBSTblYYn5+DmyJbWmwLOLY4NjcCovLB4mDMV7JIc1iTNvEn0wwXUn3aoeN7dtMzy9SKrkgNVqbfOEHf27/ALDPPvvss893nQ+ECdg0XYRIkBKUTrh27RoTP8AzTSzPw7IsDKeI6+blWEHgY5rmngwkv/k2UOjdDHYLlCZTeaRokipMaWJ7FpblopK8mbTRnMK2XOJEodKYLI0Zj/o0ppqMehN2dnaYmlsgCAKKxTIKSZIkjEYjrl27RqlcplKpcejQISaTCQDvv/cO5XKZbjBicXGRnW6HxcVF+v0+aRpSqVTyFuI0pVarIYSg6BZRSlEsFvNWYMtCp7k8iCwvJdsZ9XAdC9u0MAyD4XBIq9VCZervSICAPVnMPe287bmsrt2l0WiQKrBNycrBA5x541tkWV5k9eKLL/JL//ifsN3tcvv2OuVyBc/z6PV6FItFgiBg4odcvnQJ07Q5efIkL730Eg899BCDUZ+oN2Z1s8unPv1Znv/qC8zMzfOLv/gL/N7vfJFo1KE/cGg2m6hMI5CUilUADFlDKWjUp8hUgms76DRvU11eXibKNJVKPiEZjUYYhoFhSLIkQFlgGaXv8mr9u3z2kx9BEyM0xElGLHOjssoMyFIGoeSpp06zutnDdCX//g//PYcPLpOkKf3BiCTND2tJ7NPb6dEZDJgJM9qNJp7nkGUJpmXg+z6dTofFxWVqjRaz7WniMEKrvEDLEAKUJkyTPFfftpmfnUMqzWB0Y2/NnT9/njhO+cpXvkqrNY3WgjhK+e9+5b/lypUrADz/wjewTMEv/vzPc+ni+1RrRRrTTVbv3OLSlavMtNukaZofNnWGW3AxZBXDFBSEpuQWuXL1EidPPUUYR5x97zyH56colip4FcUk0vzYP/gRXvjrr9DtT3Bciy/81E9w5ttvUmq1ePyR47z50kscqc1hWCY379wljBM+/PRTXLj4Hgdn2jgLDqt31rh69QpBpJiuHmbo+1SrNm3X5tKkQzYRROOQ0A8olKt0RkPQJsKxWO/1KHhVEqnxs5iCW8C1NKZjo2WINAW262KaEoXGFBJh5Vn+fhSihUKbkkzn8jVpCkY7Hb7x6jf5oS98FlNIpDRwLAM/SSnXawSjMS+/+BKf/sHvyyV/Uv9/La199tlnn332+f+ND8QEoL+z/pxhghCKF7/xNeq1Gg8ee5BKpUKhWMJxPQzLI4riPGpPKCzbQkiBUrkcJssyEpUiyGUiUZpg2A7SMBmOx5iWje04aEHe2qkVs4tHsQsVpJSoeEiahJCErN/NE3uEBMMuEMcJhUIRwzTp9XrU600ajQaD4ZBmc4rz5y9QKBS4fPkyhx84QqMxxR//+VdoTrUZBwFeoUCcpBi75tXxeIzrutQqVba2tkBkVKsV8ih5hWlIhoMBBc/FNAW2bTEzO00YBmRZwp3V28zNzeYmZ8vZOwyZpglCoIXc08e7rksQx1iWTZykKA39fp/Ozg7VWo21tXXmp6dYWlzk22fO8MipU0wmAbblUiiUKJdrOLZLmmSUazUs08JxXKI44uDBgzjFMk9/+BmkafHEE09zd2ODT3z6B1haOcDJo0c4eOQIL/zVn/KDP/yZ/PMsFCmUSyg0cZpgGrlkIv98bDKVksQ+UitqtSkM06JQKFGt1KhWa7TaU1TLFUquhW3ZeK7D1NzB+3aLevX6hedK9RZTs3NoMyNTY4pFl2PHTrC4vMTKoUMMA584lWxsrpNlioXZBqVKEdOzkKak1qyhXcWg72OYFsdPHEeTkWQxcRYRpSlvnTlLkmUcPHiIVqnK7OwsKwcOsPLgURYPLbN4YJG5lVmOHjhCHMSEo4BgNGbl8EE63R4aycOnTrG5tcWP/8QX+JuXXmMwHNJqT/MzP/vTLC8t8dJLL/OXf/ll2u0Wv/gLP8XDDx+hWnXxCgaPnTrBqYcf5JsvvoLreBiGIgx9hFJsbW2ztHKSqbrDsHOX4eodrqz1WL21w4EHDvCtt85x7PARur0uC4ce4p3zl3jrzTeRWvP0Ux/iyrWbnD17jg+fPsWxI4tcO3eGqXqTs1fuMhiOwDRZ3fR57fUzqNRARRFz8238yZijxw7zwLFTvP72RW6sd1lefoCicPDTjCtnLwMay85bs7EMKAgasw0yNKPBmGKjQmJltBbreEUou3XWBhukWYw0TOIoJEVDBtIwwDCYxDGpkSIMgyDVzE0d5PCJOeplj0vnr7O+fR3HLVOrNslUSm+9z2gQMhj1qbda3N1YpT3VQGWKH/vMz+xPAPbZZ5999vmu84EwAUuZ62V3OhvcuHGDlZUVarUGpusSK8U4DBlPRgxGfSahjxaQZCmpyvbKgQzD2IvEjKOUTAFCoqVBqVTKvydJSHWKJsN2TCq1KdjV6yZJRJrkSTu2Ze4ZdF3XZWZmhldeeYVz584xPT1Ns9lEa838/Dxnz55lcXERpRRPPvkkly9fJo5j0jTdi8RUSlEqlXLDYhRRq9UYj/PCsizLsG2TLMtbRJVOUTrF87y8TdYwsCyTwPdxbQfTEBxYWiaaBHsXiGLX/Pm3JwH3pgBaCKrVKkEQkKYp6+vrgMxNtkpQr9dZXl7mwnvn96YYEz+k1+vh+wHdbpft7W1M0ySOY6anp5lqt/D9fApz/fpNzpw5g2mauK7LwcPHaDRbzM7PIw2Yas9w8epVLMshSRLCyCeOI+I0RpoSLfMG41TnrWb3zMtCaDzbgUzl+fhpmk80ZP7ZuLaH51gY5v1dwqNgQpimRJlip99j6E+YRBEKAz9WZDJfWxJFMgmI4xQlLbZ622zurHN7fZW7W2tsdu9i2CamY7O1vcFOd4tOb4eNrXVu3LjB/OIii8vLJFnKJI3xw4BYZwRxwjiOGYURfhwzDgOEaTCzMM/VG9d58803cV2XEydOsLm1zubmNv/wp/8h1WoVz/PQOmP1zg3+6I/+mAsX3kcpxac+9Qk8z+N3f/d3iaKIpblFaiWH6UaJDz/+EJfev4DWmjiOMQyTNIgJ0glT0yuYxRJJkk/d5mcXdhuLbVIlWD5wgM3NTba3t2nVazz00AnCMGSqWePn//P8mRaXDxDGGYkWCNsjMx1qrVmQGrdYoFgukQkwXZdHTz9OrVymv3WDmblZmjNLvPXeLf7gz7/B0eUHEIYECYZtMPKH2KYEMyUVGXEa0ev1KNVK1Ns1sBIS7ZOoCKVTLGu3l0Tkv0tKKVKVoQE/DolUTKxSeoM+tWqVq7eu8M65t8gUtNtt4iDGc4p4VoGt1W2K1RqYBpgGluXwxhtvMdeavq9rd5999tlnn+9dPhATgO2Na8/96Z99iW63w2d+4O9h2x6GtAijkDCMUCojinMjqJCQJorJJMAybcIw3JWF5Dr4LMtQWlEqVUAYKK1xCyVs20GpOD8ghGNst8Ds0gMIYSLIsIjxx0NSnVEol1GYGKaDVyiSxCkPPHCU2fl5bNvj5ZdfZmFhgfcvXUIIyWDQx3Jctnc6JMDV6zdYPnAIiaRYKuOPJ7Ta09QqVYIgpFGvU3QdhqMBs3MzNOsNtja3mZ2ZxTIMBv0+paJHlsaUXC9PChKaMJhQrVSxbZPhcEC1WsE0JZZl7bXPohSGNACNAISAKAhJU42UJgXPw7ZNpClZXlqiXClz48ZNrl+7SqVS45lnP8HWTgeExLJNKvU6pm0RxhGe7aB1nhjU7/bZuLvOysoige8zHo2wHYN2q8lUs07BdSm5JsI0qFVrHD16FMO0CCY+WZJRKpUxkfkzatBK5Z8vgiz0kVJT9FyEYTH0Q6TIuxyksBAIqtUSGo1OU5pz988D8NfP/9FzSRYxGvYIwgkaietV8YOYySQk02DbNo5bxbYdluYWWL19lUMrC8RhTLlQRIoYLXusLD1Aezqf7FiWwrYNhMgoVmpYto3n2ViOxSQOSEVEGMQQBaT+mGQyIRqPSaSm0x0QBinn3j3PVHOKVrtNfzBgc2uHZnMqT8wxDXQWcfzYUWqVCn/yx3/Bxz72DIWCx9MfOk1nu0+WJlQrdXqdId3uOlIoiGMefuQEoyBjZ2OHt175Jn6Q8fQzz2A7RQrFGoGyOfPeJYaTiKEfcf79y3zj9Qt86skTfPnLX6VYdPjIMx/m+IMneeHFr4PUCGlyfXWbDz12jJLj8tIb77HWHTGehKyub+LVyvijPuiUgyuLFKpFtFYkaczhQ3MUXU1nZ5NeN8AqVynUmoiyAMeiUilTqniUSg6FUoEsS5G2SWxk2EJgIYiyPpIUrVMCMaLTmWDYBseOHiExc2mhkJJUZYz9ANc1COIEpRyOHzlGoWZjSJs3zr6FXTYhK5LFElPIXC732mu4noGWBlEU4Tgux44+wPc99R/tTwD22Wefffb5rvOB8AC88q3XKXoF5mZmCcMJpinRWuC6BWzbRakUI4v3yr2kkW+q4Du3c/du/79zE55HeUopQctcswwIaeJ6NTKR66SjNMOUea2W53kYTgWVgVYJtVqZJEsxTZMoSpiabvP8889z8OBB2P36dnuGtc0N7qzdRSOwXA/b8ShVmpSKCYmWXLl6DcjLv7rdLtVdrT/kU4leL6RWy5NzHNvEMAzSKMJxHHzfz1+X1ExNTXH79m3K5SLlcpkoihBC4HnFv/uGKoUwdrPyM7XXEwDsTiIcNjYVjmPRbDZ5L01wHIdb12/w2muvcfzESa5cuUK9XkdKSa/Xo1KpoFT+swzDYHo616BHQcjDJx+i2+1SrhRyH0eaYQBag9KKpaUlhBA0pqZwLXPXoGyhtd57HyzLQumMLImJooSxP6ZcrOJYxd2/U6J0fisrpUkY5wfDdPf77xe1ygxjf4TtuthRRr1aZLo9h2V5GIYmk4ogTMmyjELBY3a6wbmzYwajLRQBShtIFSGlpN8f4NiaUrG+O/WIKZfLSNNG6wwhFUHgY5uS0WCIaXhEQpMlEXEcozKwVD5BuXv7Fg+fPMlwnKfsVGsNFheXGY1GuK5LpVLiB3/iR7l8+TJ/8Ad/xPz8PFLCr/7qv+DXf+PXWFlY5qPPfJj1u2tMJhPmF+u4rku/s8Ogu04qqvmUTEO1WoUMLM+lWG1ybXOb9uwC167e4OrlaxhCY5keV65c4tiDR1haOUiSxfSGA2ZnZ2m323zkmY+ysLDES3/5+wQbWwjDZH6mRX88ZrDVw0Nz8ughwvEIqQJatRrb29sYlsl2f8Ts/BxTM/OYVo0kTVnrbyNUiGsrDCvNS8NQpDKmUHBwsgxplckSlU8gAX+SYdgGqTaolOs06lVMwAESRzM9O000iqhVmgh7gj/MWJk/DGlEGIaoSPLx73+CrVEftEGWKG5eX+Vd/zyZVnimgRAay3KQUvH811/in//SfV2+++yzzz77fI/ygTgAvPXOeZ548DBpMObm9YtMT08jhKDcmMEwbaR0sbKIJEmQItlrhM2ybC8//97h4F6m/j1zqxCCNEmQpgHCxTAslpYfoDk1j85SpBCkSUgU+ERJyqDTp1pvYpgW/iTIN6WpIk0Vd+/e5fTp01y7do3hcEgYhkgpuXtnHaSkVm9SKtcZ+xG9QZ8wiOkMxpRLJUqeSxpOWFleQgqNqXPdfpZl9LsdDh06RBzHe/nm6m9Jh+I4RkjNaDTCcRwMw8B1XXzfz9N5/gOEELkXYPfn38v2LxRLOI69l6efm619Dhw4wKX33se1Jau3b+J4BQ4dOsQ777zDo48/kT/P7iErTXN5Ur1RIxyPae9GmhaKHmE4oVqtYpom5m4sKSnMzc1z9epNpqdHtBpVsiwlCWJs20bp/HMyTEkW5xnq9alpxmODKIlxTYepWplufwiAEookTlGpxjDEfe8BGA0jdjpdLMvA9TzaM/N5g7EQCGEiZUaWRSgRE0UBSRpQKDoEUYRpuwiVN0+rpII2XQzp4BZKpJkEFGkWo7MMTUIUT0jSgGE/IAjH1CrTSJERxTGFQgXPLaG0oO+MMU3JoYPLvPnW25RKJUzTxPd9Ll68iOu6tFrTfPnLX6Hf7+N5RZI0P3C+8sorGIbDS6++RH9wjK2NTR479QiGIfnKX7/AxB9x+tQjzC0dxRAhOwOfQqeHFCaW5VCqt/jRz//HLB58gzNnzvDm157nsdMf4Y03z/G5H/kxBmFClmnCOKPXH/I//I//PWGQG/4bRZP40BLfuHaDkmexeGSB7iRCOBZBFHDq5AmKBYu11etMNYvU6iWCVOC6HqPRCKE1586/Shj7pCrBLTrYtkkwjMhMC8stE6R9VJYRRRGu6WK7Hv3xGOEoksxk7KdYro2wNUmcca2zSkKGV7UoVB2yOGG6MUNXbeDZHkvzS/TXN5k53CZNFJZnMIzyhm/LMkAboBxc10PjMxp2sWwXP4xJYnVf1+4+++yzzz7fu3wgDgCnTp5gqlHG0BlFU5DFEVmWUa6maCkxpInEQikIw7xo6F4rrFJqb+N/r3jHNE2C0N+bDqDym+YsS2lOT6ENB4VBGk/AtNAqQRgSFSmq9Sau6xLHCaZpodIE2zJQCsbBhCtXrrCyskKv12NmNm8yPXXqFGGS8NbZt3F7Pm6xQJqmRElMrVJCGBY7OzvYVv52a61RSjEcDmk0GpTLZZRSe8/vui56V/Pe6XTwPG9Xl2zteRPiON7zPiilMEzxd6Yh/K0koCxTzMzM4HoFRsMBtm1TrVbxhwM21tdptxrUGw2WF2aYjH2mp6fZ3t5mdnaWMAwplUpku5smz/NIkgTf93n33XeZn51j4cAyxUINoa29z0EDSZyBzCctg8GAnZ0NnvnwE9zT+gdBkN/M7j53HMfI3SmKm5WJoxTHTjEtB8MUaL2br27utgED0ry/B4DxpIPrWXheblbOsiTfXLouKHtXmmWitMayLKIoIUsVlXIbQ7qkUYogIyNGYpNlGqETNBqEQhoZCIPJJCaOEhACKU1sy8N1i0CGFpJMqdzRk+Umb9/3SdOUbrfLJIr41Kc/Q3844eWXX6bZbHL58ozdRP4AACAASURBVGUW52dZXl7m+eefZ2qqwWg0IIoi2u021UqBtdU7rN25y4GDi5x79ybjQcDnPvcZio5JsWiiRJHTp5+kXCyjtSDLcu2/YVo8+/Hvo9vvsX3gEK+/eQbbtEgNmzCOmJmZJU4yDh87ThAEqCzj22+f5c6lt5mVIXEyodxqs7V5F7tYY2FmCiUNXNdhff0ux08cI9UxTqFEEuXZ/Y7jEYcBQuW/r45hQCaYdCOcYpmFuSO4lTp+1uXSxfdRqUlIhl0RWKZHnGm0jgCFKSVaR4wnAdo0KXsFDEuTTGJc18UtuhQp0esGhGGMIcF1Smytr7K9vUml+SCmKXa7K4w9j06/38dybBzHIQgSTNO+r2t3n3322Wef710+EAeAjzxxmjTMpS5R6O9t4lO/jzIdzHKddFfeI6XcM6De25DGcby3UR6Px0RRRKbiPYMwmUIDUZZRdCq02wtkUUiWJBhS4496ZCrBsh0wHDQGhikwLYuxP8G2BUmSG4Knp6e5ceMGo9GIXr9PpVJja2eHzU6XWr2J0g624yGNMW7R5eK5Cxw4dBjL8djaWKNYLCKl3DNhmqaJZeTtr4VCgWAyzlN94DubYikJowmlUol6vU4U5dno1Wo1P+Dsfi3kG36lFEixF5FqilwCNRgM6HZ2GI0GHDp8AK1zWdG5c2+jpdx9rhLD4ZAkSfA8DyEEw+GQWq2WR5LuGqOlKZibm6FSLNBuNtBkFFx77++XlrX7XCANk85Ol+Gox5kzb/Hkk0/vthTnMi2tBUmiMIREmgZKmBiOh0qGTIIxzUoJrcv0/YRsN91IinyCosT9vUVdXFjCMBwMaQNyd6NPPplKM/Jut3wDKLCRwkZrgzDKKBVtvGIJUwoyFaAySaYionjMZBLmBztDoKWB1hLXzVuobUMipCKJJWkaI10TITRxMiZJMmZm2ly7dIMXv/4yzz77LEoIvvX6Gzzy6BNEUUSlUqFYLPLyS6/SbDaplGtUKnkz9J/8yZ/wsY99nFOPPcLvfPH3+a/+8X9Bv7fBeKxwvRYvvvgacTzkCz/2Q9RLRc5f3mTYHzKZTPBcG9v0MDyTXq/D5z7zOc78zVvUZ+d47NgDHHnsIzxiuERxQBgMUWSkYcSg1+fYA4d54vAs7339z/jwx0/T92MOHjzM62++gRmOCanS648oNlpEdokwixhPegCk/Qnjbsx4OKbseERSMBn2sClRwmLSCyktSPRgxKH2IoeeWEJLgeO6YEjCeMLdjZuMkhHhZsxo3OXY9EHGE59xFjLdbJBo0JZBkiSUKh6mKNM4tMil81f48MnjTMaQqQ79HYdHnjjKlavnsZ18olUqe8ieSbM+h5AZg9GA/5u9Nw2u7D7PO3/nf/Zzzz13xY5uNIBu9kJxFTeJoihTlBdRkiV55MT7GnsqM+N44m/5MFZSdiZVTlUmlUk8iWxnxuvIcmRZkk2RlkhxFZvNnex9Q3djx93vPfs2Hw5wRdfks5pVxFOFahRQaBwAb6Pf5Vl0VR9fMvexj33sYx/7+EHjPTEA6KaFbloAZHFAt7dN3xuhKypynpIGAxAqUZqRkpIkGaapF5vyPMcwFCqVGpmU4fs+VpaRxiHD4RAhMnRZxRv1yYXG5PwCSRwSxyGaUWLQXUNTU4ajFMvUUTWHNMtQ1RxFEYVjj9vF9UZUnDqbm+vMHZgnjGNGb77J6XNnqU800YwSdrlGtd7k8uXLVCsVVlZWOLS0jGEYZFnKxMQESZJgWYWuwbYtNE3BVPXCtjOHcrkMQBgGpGnKwtIia2trIBSSDBRFJk0kDN3GLlWBoiGWFYk8y0CSSKUcOc8pGlKAFNM0CcKIhJw4Tbh27Rr1yRlqE9O0+iPeeulFvvXEWe677z7uf7iOoigEQUCUFJSrKIkpaQZRVGgxNMOiOTfNt/7blylXy5QrDpVKmXT3IiN0nShLyfOYTAhefPk5CGOUcI2lpSWa0/MoWdH0x0GI29mm19pmenqWduBRb8whmQ5BOGLU2kYzbKplg1Z7iPYu16coubkaAFWzEJJOFPsIOUGgowgY9LrIskTkSlgle/f64mGaOprQqVg1VEUmJ8IPfLI0RJZyfN9HyR1koeO6PSRZRggNxymhKjpJkhLEEQCuO0RkKVHsA5AkEZksUXVKHF6a49zZq5w+8za2beH2e2xvb3L4liO0Om0OLS7zsY8/wqVLl6jX65x95zQ7O23iOKZer/P6q2e45egxttsDvvzlv+Fzn/kx6jUH3x2hpD4ZErLIuOv4PB0/Y3Njh3LJRtFUFN2gOTFDHEX81v/2L4iiqEiuVsokqUeahET+gDBKMGSNtN/l+W/9OXceX2Y7kHGEz8z0NP6oQ0mTULQG25fWkXWDuN0jtyNqk7PEeYAmytT0CcpmzGX3MpOzR8hKBjNTkyhIJHHK5QsXuHjuHSqGSm/tPJFsFcYAiiARCuWShd/uoSQRS5NzSPIsYehi2hYzVQU5U/CimDAbYeg6QddDkjMsy6A5UUHoJeJ0hGXOcssJjXPnzlCp2kBKJgUkSNTrNl7YwZI1ROYgKwYx0U2s3H3sYx/72Mf7Ge8JG9A9FFQWDafWYGb2ABWnjqJoxZY4jdAVmUrJxrKKQLAkScaWm57nEbgeWZwgU2xcK5UKtm2j6hqyrFIuV1BVFSnPsAydKCpEtP1OFyGrGIZFTrG99X2/4GZn4DhVwrDYiN96663EcUy/32d6dpZGs4miaPQHIzr9Ab3BgDhNSfMcp1qlXq+P6Rh7lB1ZLqgsez79WZYRhiFJkox5+3vbwdFoRK/XQ1EUdL3YGsqyPNYGWFYxOO1t+9M0HduBvvsljmPiOGZ+fh4oLgKrq6uUSiXm5+cpV6vMHZhnMBiQpilvvfUWtm2TJMlYb+B5HqqqFlSkKKZkWpQdB8e2sAydXBRC7D2B714+QZZlPHj/ffRb6+SjHmkUIuWgCBmSCF0RXLpwFj2NSN0uf/fVv+bN119l9doKipCRVZU4DlHUIuwtzQtLxiRLydPkJlVrgTiOC57+XigdCVmWYBgasrbL/RYymQSSIkhJGXoucRwTRQmKrKFpOrqioxsVTKuGYtq44YgkCQm8Ia5b0LaKFxXDMNB0CVXPiPOAXBSXkDBJ6fV6WJZFEHg0m01OnjzJlStXOHjwIM8//zyLi4soisJzzz3H6dOn2draAuALX/gCm5ublMtlBoMB29stPC9CkmRs28EwNAa9PkcPH2JxcRFV1kjjjJmpBpP1CoHvI8kySZ4hcpAAshzbtpmdneXIkSMkaUQYBIxGIyQUqk4Fdzjiwvl3mJ2p89yLpzh9/gJmucrJk6fo9/tEUUQURRyYnSAmIJYCREkjFSmjsLgWxnlGpqlMHlpg4tAB5g8ewLBKGLZNuVZn5sAcR289weTcFGbZ4cDiEnMLC9Qnp3DsMgKJMAzRdAuhGUiKjl1toBpOMeApEkJWUIUOWY5EglOqY8gmSq6QJhHlSo033jqNrpscO3asEGXv0vEkSSYKE8gk4iTD0mwqloOFcVNrdx/72Mc+9vH+xXviAqDu0kUAkixHU7TCucbIsLKI/qCF7w0QcYxllrEsa9w0F86XhSe5kCTC0C9oL5o65swHfkSaw+LyMWQEaRoTRSGySIhCF8s00St1vCDGKpeJ45h2u00YWpR0g/Zumu8zzzzDB+64nW63C0KwtdNicnKazZ0eQjXodQckiaBWbeC5HqqiMxqNmJmZYXNzEyEEmqaNG+k9GhO7abDvbtglSSKOY7a2tnAch2q1xurqKvPz82RazM7ODtVqdeyio+v62KXHiwr6kyQVfHxptzGP45j2epeKU0VVJGbnHEYjj+XlIyhC5s1XTuIPh7z5+qvYts325jqG5RB4RYZA7AVjPn/JsiiVSvyjn/4pht0ekGPIyvfdh/J8PNBkWc5svczvffGfsXXxDWrlUiHAlmVGnU3Onj3L8aO38Jd/9hVyIVg4cjt/8edfZn6mQRIH/OQXPseFi5cxHIdDyyfGQ0+SRrS31rjzgU/cjLItkKdkaYCh62SZVKRP5zmppOKHKWWnQqlkI1SFRn0SIWtUJ6bRzCqmVQyECTKWViHOczRTRtZ0powqaRyQRT6KDppmFZqUfEQWp7Q7W8TJCBAoio5llSk7CkKAEDkf/si9fOk//zEVp0aWCoLQZW5+BlmWWVhY4K0330FVVXRdx7IsXnv9FQ4enEdVZW7cuMbOdp8Txz9AEAQsLi5w4sQJ4sAji30sp8rKtR08f8AD91dxTJWV1k6hYclzRv0euqrSa7WZOjCH77tsbazjun3yyCfzXRQp5+UXnyUOIw7OTPL2yVdZOHqCe+cO8fL3nuHEBz6Apcs4joOXyoT+iPpElUTkxGlEq9siiTzU8jx6LiGpClrVIQEEEkJRcb0YISckco5S0qhOzDHyPTLdIhUqcZIgqQpJFDA1M41RqlJvNkhJQJJxJJVh0KI72mBqeo40Tbm2egXklCwVrJy7wuTkNJqhMfQCJKExCkasnblB2SkRpxmaZkAs4ccxtqKgKjpzs7NkUYxZm755dbuPfexjH/t4X+M9cQEYc6SlQjhXbLElkixHKCq241CtTZDmAs/z2NjY4MqVK1y/fp0LFy6wsrLCuXPnOHfuDGtra6ysrHDp0iXOnDnDmTNnOHXqFJ4XcOXyCiDGzTZklGwL33cLK81ckOfF1s62bWRZxrJspqdnkRAcPXqUfr/P3Nwc3W6Xfm9Ird4gSlI01SDNMzJyuv0eQ3cEQkJRFDRNo1arjW1KhRBjN584jsfbe03Txs3znouREGJ3oxswOTk53qzPzs4WwwPFxWLP5nRPSPzuULA4jtE0DcMwSNOC918qlbm2ch1N1TF0k2pzgiQtxLvNeoMkitne3KJRrZEnKcpuurBhGFSrVSzLotNqF9vkZ77LpYvnieN4N/hJjF+H4rIzNT3JsNfhqWef23VpionjkGeffZaZmRlOnnqFuSNHWdvpcfbCFT728MMIJH740R+h3Rlw9OitVJ0aTz7xOP/1j/4AkpiyYXBgbv4HX7Dvgq6oZEmENxwxGgYkmUSnHzAIciTVRNFMEAqyUEmTnCTPsZw6QrXoDWNWV3fo9T0kVSeTRCFGzzLIJJI0Z+iOGLiDQpOyKxpN0xRV0anXJrFLlaLJzItwt0JoHGJZGlPTtd1QNUGep1iWxdGjRzFNk8cee2ws7F5cXGRhYYHHHnuM3/iN/5lev8vly5eRlWKg/vijjzAajdCNEtXJWaxKk1NvnsYP4KWTp1i5fhVTNxj0O8zNTCNLOYNBj1LJJIkKq1Yh5WRpjD8YICchzz7xTb751f+Xr33lK3zza9/klqN3UK3WefI7j/OBW29nMBiNh+e1tTVKThlVE9glE+GnaLmMKgmyKETOE4hCksDHsUxkCfK0cKuyDB1D1VAUGRSKS5ymo2sm5UoDoatFOJdpoJgaW50Nrm1e48rqRdbbG0iKjDAFqRwRE5FLEr1Bl82dG+zs7BQXPClBkqBUttAtHbtij/UtexcA23awdAtTMzEtFcvUMU3zptbuPvaxj33s4/2L98QFYK9RBZBJkCQVJZfIdAUhFGTVQNUzDLtKMOqz3uoQhiF5nmOXLQ4ePMhwOMTUdfTdfABkedyIvvD8SdY3tvjU536uGCzCiOGwS8lWCdwReRrjegG5JEBIpElKvV4nCDySJKHb28EyS9RqNRTPZTQaoapFONbq6iqGXiLNcxRFxfdDNE3Dth3W1zdoNBpsbm5SqVTGtB5VVceJt3meMxwNmZubKwaCJN1t4gqL0XK5XGz13bD4ODLiNBpbgL77YiCEIElT0jTfFeMWn+/dOQmO43D69FmOHzsy3gB3Oh38MKRSq9LyXTY21zh06BCnT59m/sAijUaDy5cvoygKGxsbhdWnJJieniYj5JnvfBtJklk+cTuyWmgHNFlGVYqhwfM9Lr79Nvlgheb8LcRJjhAp5XKZn/qZn6Pb7fHCS6f4ztPP8W/+9e9w6oUX2Nzc4FOPPUbJMHjh5CnOnVvBqTkcnJimv7nDztoGZ86dxTA07nzosz/wmt2D67oMhm00tYSqVcnkKsvHT3Bw6QiWJjPZnEBWBP1ujzCIMCyTSm0WKBKwa7UaWZayfu0SV199kalmHYmQIPbZbK3RHmzgmGVqlXnIVcLQR5ZUqpUZJClHN6BIsYAsj8mijJE7YKJR5s67buPCxS3y3WwAFIW///u/58SJE0w0J7jjjjuYmZkB4OzZs/j+kGazzsWLF5mbm+Ghhz7Es889Q8UxOHz4FpoTMxw9cRt+4DI5e5gsChgMrqObGqfPb+GUFNpb6ywuHOLC6bPce889Y7euOA7wfZcsGPHiU49Tzj1+4TOP8KdffRpFGDz/0hkcR/CRBx8gcoPvW+T2ekxOTmJPTuD5PQyhYHrQHUbkRGy7NwgaEZZdQdV0XK+DSCXsapM03bWVrToECgyHLUzTZGZmHlkx8DyPQTwgz1UkVaYf9PHTDmEa0B+4MNqh5lYQdkR3sEPoZ0iKjlwpdB5BGmI7DqkyIslCkCFKR6SERW5FClmakkYwM30AedBm5A9I0pA4DbBKlZtUtfvYxz72sY/3O94zA8De5hpJRRKi2KrlEnFY0GVEnqMqOlplgqN3lPG7HVLfxyqp2IZOo1Ij8gNkTUVWZUSW88JLr3Pp8gprm6t84mMfL5p/fII4wqlUSeIISU3Z2mnTOGTuBmflyJKMhISmqgglxSrV8PwRqlC5cOE8ru9x7MQduEFKJil0/F5hx5nnmEZBqUiShGaziaqq9Pt9Go0GQRAAIEsCKS8ScH3Pp1QqjQcCWSn4+ZJQC5tLWQNJRqgRii6zvr6GthvG1ZicgCwhTXIUWRBJGYqqQuKT5ipCSGR5ToLEwAsYjEI6rYI6dPbcRYSUceP6dSrVOlKeo8sq7mjEG6deQVdVatUGp156AUmSaDablCtV0sQmiUOCvNBfVKtVfvt3/3f+9e/8Lg//6KfxghBFFcgKpJFAEjFBmGKoNj4GL596gUMnTvGhB38IU1X4+tf+hn6/T7nk8HM/8zN84xt/y1S9yYceeIDrV6/iOA6tnS1Mu8TCoVtZv34d09J45dWTvP322xy55fjNrV0h0ZhapORMoug1LKfQnWiKiqkpTNYNNFlQ0yeJspzNVhvHKTHsD4njhMuXLxHnEmEQMTF3iAsXXsMyExQ1Ik47xFJOjkKWJcRxgK6YRRZCEhJFAapqYhol0ixGAKqhEKoK/shlYWoeTVdQbJ2rN65x4sQHWDoyz+yBGSr1OUr1EmdPn6FWrzA9PUnJsnj6qaewDIsgiOh2hzz44Y9Sn2hy/I77WVpcIoojKpUKpY+Uxna8re1tXnvrv7B6NefA8gKdjavMNSyCQZ+hJNDkQgci4pw4zzh84jZefuZJzq2uszhX5tixGYSs47kuchRTsg1aa22QJuiGKeUDy8RhSlWqQ5ij2DqaF2GKOkKPMfQyUxMfQNM0VtfPkQUxOztnMU0TTbdoNpu4eU4Y5+RpwrC3VYSaDYYkbgff9+hlCSVdIYkjkASKomBaGgKdwHNBAknN8IZtbKtEnAc0JmfJRAKKipopZKmKlAsQeZFvoUjkeYJdN1m5cp2lWQcpTHCjEXEKcbt1U2t3H/vYxz728f7Fe2IA2KOsFLaHxet7IVt7b9+jxyRJUmwBa2UyR2c09HH9kFLVxK5UaXc7ZH7OlZUNvnfqVUq2zV1338HDP/QIKTkiF+O0YEURlEplKtXmP6Ah5XnOyBtRq1q02lsYWuUfPGu5XGZlZYWRF5IJlSDYdTmxbBSl0DN4nsdwOKRerzM9PU2e55RKJXzfH4d0QUHfeXeugSQVVp7D4XC81Q/DcCw8jqKIJIpYWFig1+uhKQLTKO0KqOWxmFgWaZEtsCv43XPvURSF0WjI6XfeZGHhAF7goxg6oe+j7ApM2+02F86eA6Fy9PgJVldXOXL0GKurq99/TsscB65tt7YYjLqkUgppPqY0SULC92MyCVQlojZd4fDSDHfcfjutVhvv2hpJlheCTcPguWee5YEHHsBUNdY3tlg8fJg/+ZM/4ad++mf55rce53svnmSyWefoseOoqopplUjT/L9bUz8o1GtTJMScevU5fuqnf4WpqWmajUlsW0NQcOwyQNMFugDbniSnEMlmu3/+4R/9P2ysr/LqyZfIs4h//I8+xdbGRcr2BA0jp1RuIOVpYZspMkQmMI0ymmqRAbKqoAqNPIc4GeLGIY5WQ5U1Hn34Xt545zyNcoXWxg7NZpMXnnmWz33uZ8g1i8nJaRqNCZY/fZSZ6UkuXbqEc+4cDz34ERYXF7h+/Tqf+vSPU6s3gaJehfT9LIuKU6PiNCjbNUJvyNkzp2mYGqYEehKSmTX6aUSaZ7iJj2FYlOoNZm85ihklvHPyBVYvrqCXbLzhNka/QarYhM4SS3fex0FdY+h3SNvr36fFqQq3HX4Ap9pg5cZlkDIMwyKOfWRFQjYkDk0vUrIcMlHkZFTVCQy7jEAmijz80CWMe9QqJSq2gSpkBnGHbJSTywqlUgNTV5ExCXAIIh/NNFCkLpZhkKOyfOedWIbOoSOLxMGQy29cIiLDTyI0SUYgARLu0COIQsIooe5Mketg2BKtnc7NKdp97GMf+9jH+x7viQHg3c41e+4+76a1vJsiBEBWWIHGccLWTotG2QLXxTSKxnp1dZ2nv/sCTqXCa6+/wh13HEeSVSAjiWKkPCVPwQuHxImPYRXWm3vC26K5Sej1esRRSq1iIomcfqdfhGS1Wwxdn35/QJwLFMUqNoamSavVIc9zlpaWCMOQMAyRZRnP86hWqwRBMA4ukyRpLAbe+3rzPCPLsnGmgbZLaep0OpTLZSqVCnMzM9y4cYOZmRkMQ0eSCheTkq6NA8Vgl1olMbb07PeH+O6IYb+LlCaUTJ23T59lZmaGLMvodruMXJdWq4VdLvOB2+/i6tWrPPLII5w6dYrZ2Vk0TSOOYyTJGv9sGhMT6KaBZhokQYYia5AXg0fx/ZR45rtP8VOffZhDi0dYPnYbf/f4d+i221xfXWdiYoKD07PcdtsdPP/8i/zII48yPTPHH//Zn/PYpz9DpVLhwqWLfOlLX+KbX/trTNOk3W4zPz/Py6+89oMs1f8fhBCkcUyv3+aJJ7/BVHOKiYkp7r7rHmy7jDvqEgQRFaeOrgpWrl1hdfU6YRgji0Ik7g5bVGyNOApQZdjebOENAmplA1Xk5HFCksQIIYEM5BlIMqqq4gU+YRQXQvpML/j/ZRshqyRJRrmsossZE40mW9sd2jstphpNJuo1/NBkbW0DWSjU63VUzeDBj3yUhz76MXrdNpVanYkwoFQqE8XR2HVqT8uy52ZFDpMTM6zduIAiqdxYW+feW4/j9rv4owClZOHHEZGUYlsWoWaglmt4m6vMzE8WoXBxTG1mnlgpcevt9yE5NTZ2WuAOiNMOmiohq0VoXJIG6JZKlAaouoIswPPbDEddUilAVVWSPCHOYvzQR9U1ojjG9X3KtoaspXijPqYu0FQTORekcUTupwihkGYSlqmjCZUkTBGqjGUYCAGWqWFpMklm0aw3sEyd6cYM7XbG0sIS29l2YT4QxmSShEAmzyU0VSclR9dN/NwjiALiPLyptbuPfexjH/t4/+I9MQDsNfyyLI+3fHt2mXsb8ELMKI2Tb69vtfnrr32TD997F4KcpqoxM3uAF0++wsuvvI4QgqO3HObki8/x0IP3MzE7RzDykPKUwO+BLiOLnDBRkVWj2FjvJtLGcYymC6IgIo4TNE3D9YaYpsnQ67G9vU29McfmdpdcllGUojEZDt0iARbGlorXr19ncXGR0WhUpIgaRpFYOr5CKOOvVZIKys6eb3q5XCZN07G7z54VpOd51Gq1MX9/ZnoOIb5/RQHGYty9Zs1xHHp9l5WVFaQsInQHnH7tVfq9PqdffYWp2QPUajU21jU0WSmckVQVVTN47fU3ObS4zMb6KrVajZ2dHXS1sCWt1Wq8+fqr3HXPg1hWnUT4SJJMluV0OttkqcAuW0xNT9N1c861Jf7lv/0DpqeamKrFsVtvxXEcvvPd73L7B27j05//POfeOY0zKPPJT3+OU6+8wuZ2i9/8zX/Ov/pXv8Pdd95BhkDRDC5dWWHp8PLNLF3OX3gHs2wQhi45Ef3hNp4/YHt7E0XIbLe26I9c6tUZVE0QugOiYIRmGsxPL6GrGooIifwImRxZFqR5SrXWJM8T4tyj39+kqgiyQCKKR/huQJ7JRGFKnqZUHB0hBKY+BSpcubrC4iEVXTFYWDjAzuYOV250GI66bK6FTCVTfPvxr5LLCvMLhynZFoNBj0qlTKfTYmpqitpEnbmFg8wfWqTvBtQqJUqlUpFALQtKpdJ42IyTlJ/9+V/mcz/+cRASll5m+egtnLl4mjgXHDy8hGGXMSsO7W6X0A+IMg1rbpFUk5GyFF2zkKwS1WqNUyuX0KUYmZyyVULXM/w0Y352GdcbIhI4c+4kUZphWhaKLBO3o/GAlGoG1y+vUK/X0SyDqF94AymKSur7RH7GcOhTd6Y4duu9NBoNqtUquSgG5yDyae+0kJHpbO/wvTdO0ulvkyYBmi6TWzkIgwPTc5iWgjdyURWNPIEsC8mlwqa2GMqKIbHkVJBUSOSIgd+l53ULa9B97GMf+9jHPm4C3hMDgKIIsiRFFhlxLKHrOgBxHqFkCqqikWWCMPFoD1r84Z9+HU1VsUpVHvnoQwgp5/Tpt7HbA/7wD/6Iiekp/sP/8Xv8yi/+Og/e/yHCICfwI5I0JohGiDwg9CKErCKEQSZr6IZV2IqSI+UZly9d5MDcDJqskMY+aRQiK7DT2uKeD97PG2+dYXp6Fs0ss9XuEqcZuVSkB0dRRJ5lyKpKs9mk2+0yPz9Pu72D4zi0222azWaR2oEEsAAAIABJREFUqCsEaZ6hKhq6rtPutlC1glbkB/44eTfP82LwqNepOCU8f0Rzok6lXmPgusWlIFOJdy8jppyT5ZBmRXqvXXI4smxy9eplrl9eY+fGVYIgIo5j3G6PuUNthAyKpGIYJmur6/S6fZzmJAfm51nf2uLE7XdStcuEYUi5UkWSBUmW88DHPkEvSOl2+zQqJWRZZjQccOXqBrkkaJgp1cl5fv8rz3P23BblepVarcb8/Cx3HjtIvR7y6c/9DySBz/nz5zl4yzFq9TK9dgfdtDl0+Ba++rWvs7R4mPmlwzzz7ae57fhRZm+b5d/+p//Cb/yLf3PTanduZgrZyJEljTyNyTDJUtA0gzQJCJOYLJfwogBHK+P6HkmUIjSJTCqG38hPyJKcNAmZnFtgIA3wMglNU4gyDT8foaXbRIFPTa/jRiETtVnsqVJxZYl8wsglTttomEzXZ8ljhcnpA2Rhmw8+cA9u+BK6dpADc4V7VBb3GfUTtoWEbmpsbqwxGOxgWRY7rTUOLN6ye5VLKJdLSLKCBCiiGMLdkYvv+zQnmigiI8k0Go05Lq1c5NTFd/jWE0/xv/6zX2Vpbh677CBJBRVmbX2df/fv/j2/9k//J/7gD/6Uxz75I0RRwPL0LFnSQzJcjh+roUs6ozhhs9WmH6TIQmMQR+i2TXdriO1MYpfKhW2wYRAGA1RVwnW7KFJCraRDNMKLh8iGxdBzMVSIw4Cf/Il/XlypkhK1Sqm4wngpeZIjyypZZmLrk6iqStWZZfHoBymXK7juECnN6LQ3qU40eOv111jb6LK8dBQpzzAdi9ENH3MChFCKjIhMorfjU6lO4AchCT16wx2yDFTpppXtPvaxj33s432O94QNaJ5LICSQ5DHlZY9Hnuc5aZaQSTH94YA33r4AskLNqXBgdppnn32W115/k25vxPkLF1k6cpgffvTj/PzP/hwHDxwiz6FSaxKPPekzAs+n1+4w6PfHG/8i9Cvbtf60cBxn7K3fau9QrVV4/vlnsW2bU6dO4TgOWZbR6/Xo9tpomjK+WBiGga7ruK5bZBLscuV93x9v9vc+3x4NCCAMC6efIAjGugDDMMZe/7Ozs4XzTgqmUcJzg/H79i4I784Q2EOSFtqJ7Vab2ZkpJhsN+t1e4QxD4ac/6Hdp1OpkSYpumsRxQSuxrRLf/va3efTRR3nqmWeJkgxJkgnCGCEpZLlEkkocXFgeP0eWZZTLZZaXj3D06FH+/oknWN3q8LO/8k+5++67mZ2dpd6s8c47Z/jDP/pjvvyXX+V3f/d3+c+//3+xs7XN17/+TZ74uyfIMtjc6XDu/EU+8+OfZeh5bLd2ePDhj6HoBi+//Apnzl/5gdXpfx/F1ti2bWzbRuTFxjeJM7LdNOa9q1bg+RTM/+LapGkKqiaTZZBlxfeu0+viRSMGwYCdwQ6eH5JHEnEYkAQ+oRtRdaawjBqmUcEuN6hUpnCcaVTTIhcZlm0hKRKtboc4y0EWlEyDWq1CqVSId1tbW2yvrwEZp995i2tXr0MuWN/Yojk1TZ5mtFqt4jpVxHqRU/yb3LvYKYqCOxiQJymyKjE5M1vURJygqTL/8f/8T5x8+RRZViR0Q8ZXvvLfuOe+Bzh37jyHDx/GMDRqtQpx5EGeIiugaCpCFQz8AaqlUJuo0Jiog5wgaxKWbaOoKpIsSKWMlJgwCwhTD0mJGflDgjhg4I6QM4EmNHRh4Cg2liwjJxKJ7xG7A8LARyInDob4fpdhb4NudwPfGzIcdBm5Q4SUIwsYDoo05XKpROwndHttqtXq7hAWoGgqnXafPCt+pkJSSckxTAWJDFXRyaQETVfQdZVyxb5JNbuPfexjH/t4v+M9cQFI8xxJVgs6za5oVQiByCFMA/zQY3Vzi69/7e9RFZtHHryDO2+9jfb2Ni+9/gZXr2+x095m8fAR3n77NE/+7eP88i/9PHGcIcuCkm0jVJ04cUHKaDRrnN5YYTiK+cDdU1SrE2PP/SSOdm08bTTNIAi3sctNut02k5OT3xfBikInECfJWKCsadqYvz8YDDAMA8e2abfb9Pt9ms3mWIyr6zpxXKQL7w06nudRKtv4fmFxupd47HkeSZpz/sIllpeXkUVOpVKh0+2iKAqTk1PkCOI0QygqXhAipxIJEWkGURTRG/kMh0Oe+Ju/YvHAfJGxQDqmVuWtbUxdJfRdAs9lolFnZ2uTxtQ0VafMyuUrTNWbOI5ThJqpgv5oxPHjx/GDhCAIitC1OKZkGHz3mae5/4EPo2oyquXw3KkLdJIa51cucscdtzE/N82PPPIRnn7iCXJSDsxNM2htEwQB7Xabg3PznD1/hQ899BBvvvUGV1ZXufeuO5loVnjh5CvMTc9w/0cfJlVurpf6Wuc8hlXB80OuXd/m8OHDOE6dsl0hij0cP0JRNKySiW2WCXyJwIsxTX2XniXY6XZY3WgxtbhMmIV4yYgk3htMB1Rlg4oo4dQd1q7uMHmwSqIkuMkAL4qwDYNcy4ijmFwJyEWKZdaQBKilGpZhcdutx9lstYsUaafM2toGZcfk2splLl1dx67W6Q9GDEZDJqdn0WUFy9CYnZ3FDXzUVEVX5SLA7V35FHEYMBwOSYOMX/qlX+L82XcoWSamaVIuqTz99NN873vf41Of+hR/8Zdf4a677qfaaPK3f/ctDF3m0Pw0eRZjzlaRdPB8n0yX2QoGdKIBQlHwY5eS6SAy2GlvIOUwVZXojFqUnArdwCVIXYgTLEMnVDISXQJNJdQSyCKqTg1bVtBkweN/9TfkZPzIY4/R3VnnueeeQ1ElbE0jDn1yUWiP4ihFM0wUzUBRVIIoYLI5QXcjIlUdyuUyb775Jh958GNEcUqzOcloOESkDXIKOpIQGZYNuqoQhRl+HCDMDN/zUPX9E8A+9rGPfezj5uA9MQCQJci77jmSVPynKIRgOPLIhcTq+ibPPPMaiqJx+PAstXKJC+fPIJCQJJVrN66yvLzM1tYWP/ZjP0bFskjSGHKJJI3H5/ji787wfZcoitB1A8sycF0f1UgKqozjEPkupmkWtAXX5cCBA0RR4Sl+5eoKc3OLrG1u4lQbtPsD8l1noTTLMAyDJEmwbRvP85ClgtJ048YNjh8/iuu6dDqdIulYkv6Bu1Hh1Z8X9JG0eN7RaLQ7TFjougkIDENjNHIRQqbb7TEzPU8cp2i6TkIGuSDOMsRuCq8XRLt+/AFZlrG5uUm11qDXbY91F2EY4Hku8a7N494FJvR9Pv7xj/PyyZe44+572d7eZmlpqUgDLpXIUvC9kG6nz9LiYcIoQZJCjh2/lVxIDAYDKvVJ7qofYOCHfP4nv0CjVkOTYpYPHUB99GP0ul1uXLvCL//yLxMEAUdvvZ3lQ0v8xV9+mRdfeIEHHrifa9eucvb0O1wSOeXGJGfPX+Txx/+WX/u1X7xpZQuQiAA3UgmTwu706994HCEUFhYWsEoaO1stPM9jcmKaJM6RRYAidEajAefPX2R7e5tDC1PMLCyycXWdY7cfI8vWGXgDdF1H1UpEWUIn8EkVBamiE+Z9RlFMlgYM/YBUOKRpSj9yiyuDFFOKYqaaNeyygybltDfWMU1zXH+mqZPnEn6UUzJ1ZCQ21ld54IEH+N5zz3LPB++i227R6XRwHAcARVbww6KGZFEIz33XxTQsNNMs3K7SjGazThR4xGHCwsICUOQlRFHEqVOnOLi4xPT0NPd88A5qVQO7rGNZEKc+QeoS+zm9YIDQJYSQSLOUWIS47ogsT9Akme5IkOcSljAYBh2QMqIoQLc1MgWStLjmDbMA9BKKmrLe7+F7fbTQRNdlvvnk4yR+RHOiwWc/+xnmZ+fZvHadbrfL5uYmSRowdH1008KybarVKvV6nVwSvHXmCp1OZzeLQ0JVNSQpJfIi8jRDMTTiOETRJYjz3d8JFQb9FEmKSLMQ13VvZunuYx/72Mc+3sd4TwwAo/YmlcYUsqbDriA2TVM8z2NldZ2XXn2L2eYUtz78IDNTdTa2Wpy+cIbBYMTM1DTLi4dQhMTlc5eYmZlCkQTnzp3h2LFjLB8+SC4rkIE/GqKoEKcpzWaDWn2W4ahHrblMkiQoikIWx7iuiztycfMhBw/Os7m5TqlUYmtrayx+nJiYYOSFVKsO7b7PaDTCLJWJogjDMMbN/R69Z3l5mX6/T7VaJcuysZvKnuvQuwefouEvhMVBEPDGG29w5Ohxtra2uP322ynZDnme0263STMI4wRV0Rm4o7FzUJakJGnOTrtLEMVs77SI05yPfOJTvPXqy2TZ5jg9WJIkFFmj02pTqVTYaW0VzeJowGjQ5+03X8cwLbbW1mk0GoRxRK0+yc7ODtXaBFEUI0kCyyohiYROp8XBuTlWd7b5w9//D9x374d57bXCrefll17gg/fdx6mnn+TY8jy/+T/+ApNlnftvPcyXvvQlPvnJT3L+4hWe+u7TLM4ewO336K+uMms7HL37Nq5euMK1bo8nn/wOJ44epbW2eVNqdg/dsAtZwNItS3zwro/wjb95nFdffZWdnRaSnKPKCsPBgM21dVTNJo56NGqTaJrCAx/+EMvLy5iWYBjt4HcyRtEQ2VbwgwjH1hBSTAQIRceLfXIjZUifTCTEyRAPH1Pk5BJstNZIU4087bPWbnHs+AOUKnWyMGVy4Ras+g7d1g6ZBFsbm/S7XeqNGcJhH28wQDct3jz5IguLhzj79pt4fkiv71JvTFCtlHE9F2X3WhXHEcPhkOnJCbI0pzMcsr12nYmJSS6efxuJnFwqhtvhcEiWZfz6r/8TvvfSKwRRwgO330OzUiKWRki2jKfF5MT4uUeaxERqgqGoaIogFTKuP8ByDCRJx/NcBmkXS7fojLZJMhdFUYjTiJHnkgvI1RzFUAiiiFHUJ5Vi+nkXSc2ZaE6i6SqplCHKCYqu8tff+CZkGU7JIUnj71MRkXDzkGGccX2rg2lv4QcxLz33ArfdcQtCCLygEAe/eupV4jDhofsf5bV33kERCQkuQki4wxjf7WLqVYI4xBIWWaze1Nrdxz72sY99vH/xnhgA5Dxj1Otilh1ESSGKCk7+M88/x2gUcc/d91B3BIcXD7F6bZOXX3uTilMjTCXWbtxACMHGxgYH5+bZaW1x9epVHn7oQS5cOMfnf+LHi0ZXaLu2iSNaO9s4lsnFS+e587770HWdFJUg9BC5jKIUG30hCXxvhOsWgsfDhw+TIrG2tkOc5SRJRpikKIqMohrEUYRTrRZWjJaFruv4vj/WBUhSsVVfWloiSRJ0XR834UIIDKuEkBTCoODvZ1nC5uYmMzMzCKHsbhr1ImlX04iiiHK5PHZHCsOwoOEEIUgyUpJQLpcx0owDBxcIggDDsskyOH3yBcgzFGVPZxEzGHrIijR2FzJNk42NDaIkpVypIXIFx3G4fPkyEipHjx4FYDgcYhhGYWdKhmGW6A2HPPHEExw5coQ4y7DLFnMzs9SqVYSkcP+HPkzDsbh4/hKLBxeoliw+8sD9fOfbT/K//OZv8a0nv82Fd97hV37up4kGLn/xZ3+Myf0sLR3nxa/9NT/xEz+BlEr89m//Hv/kt754kyoXPC9AU1S6QRfdUPnUpz/NRz/6Uba2tvC8IZ7rMlGvMej12Wx1WTw4yaA7olypMDM3jyRJzM1N8ebZG2xtt5mdnaYTu8hKQpL62CUDHQU9zwk8l1K1hla2IMuJIg/DKuFFxfCKVNSuYpSIAo+rV6/QOD6HrmgIvYQtJexsbVMul2k0GlTKJdqtPhPNBuQS7U4LoShcv3Se6YMLLOVFim6WF3auggxVN4oBXUCz2WRnZwfbqaBpKpVqlY3VVWRFIEsQBwlXrq2gyQqPP/44lXoNu1zjwMIiP/zDn+CNUy9g2SpRHjAM+uiqTCzHxLnH5OQ8/VanuGyMBkRBgCQ5xEmIaZSIwxA3cDEUC1XXyXYvaIoQRGTjFHATmSxNEVlEyVSRAgkpzlEUCdMu6HemqRMGBT0wSmNyJSWXEhTZJEHCKtfJ8wyrYiAJhUrDIuV5AOySg2laVGtlWu02SRBy/fIOn/vUL7LdbvHW2ZOEXp8kjPB9n0ZlkjiPMUyZKJBvWt3uYx/72Mc+3t+Qv/jFL97sZ+DKmVe+mGUpcRThhT6tXofnX3iRxcUl7vng3VRtg82tFidffpUbqxuQply7epWdzQ2mpxosLy/TarWZP7jA9MwsrVYbp1JnolHh4IF5mpNzSAIUWSIOfRyrQsk0WVyc4+WTrzO3cBjXC5EVQRr7JGlEr93GHfV4/uknWVhYxDBtbLvExuYW7XYPs1RiMPSR5IJz73kupmEiywqaqhIGAYaujzeJha5BJgwj7HKJMAowLQPd0HG9kDCKCkcgoGTbJGnGcOTx6muvcfT4USrlMr7nMj01iRA5WZZy7txZ7JJFo1YHoNPr4fsBcQ7d/hBVNzBMA13X0FQF09AhhwMHDnHq5ZcYdna449bjDL2AJM2pN5oMhiNUWSVLc3w/IElCqtUamlrCtnTiMEbXNZZvuYVXX3uFuQMHuX7xIr1ulwNLhyBPybMi4TYKAoIwLkLdcom33nqbSqXCxYtnUTSD1c0WK9t9Lq9vE4YeP/TggwwHQ9pDH6dco1Iuc2PlMk7Z4N6772AQhPzOv/+PfORD9/P6O6epT08ze/Agn/385//lzardp5772hcVTWfYT/nMj32B0A+RyPG8IaZaXJTKlsH6+mXyHA5MNBi6I8rVCoqsULIcGrVpDL3E2vXrTE9Msp2fRVV0vCBG0UzIcpATJE1iYnKaXII8L4TbJU3HjUd4oUfN0jHUlDwW2JaOYzeZqBzC0nXSPCeXBBIyshBYpsGg10eSIyzTQJYymk2Hes0GOcWLBEkYMXBH3HL8GAoysiLo9buMBn3yNGFzYwNVVXGDAFWRibOcv/yT/xvSiJLtUKlOIlSZmdk5ojhBFhppKmhOTjHyuhglQSx5CD0hlkbEWYyERBhGqLmF5w2J8OgM20T4VGo1DMMkCmJyJKIkoWzXiMIUWdVIs5QgjRh4Pk7FQZUFCiqabTLwXJqlaeRMhaiEpkmoWhFqFvkBqsixNBVV0XHMEtFoQBDFGCUd255CERKCHFPXII2R7Ao7G+u0Oh2u3Vhlc3uLE7cd5fzrb/KFf/yzrK7ukOcyo35AxWwwOz3NoQOHGAz7hOkmQlaIsoRPfvSnb1rt7mMf+9jHPt6/eE+4AKVZTCZlSFJOr9PmjVdO0dreRJZSnnvmGd4+fY719U2CIMDzRniex+HDhzl+/Di15gTfO3mK+YOHeOqpp3Bdl0qlwvb2Foqi8Nbbb4z59VmWYZVKKLpGlGQ8/sSTu6nDEbIiIUnFs9RqtbET0MGDB3dDtPpsb2/T6XTG7iiSJGHbNrquj0ORhBBkWYau6wwGg2JzKsRYGLznNOS6PklSOMK8++P2qEC6rmMYBrOzswwGg0K8aduoqkq5XMEwLLIMLNNGkoqwoXK5TJwkdDrF5nTPkSfPJfK80BekcULg+fzCr/4qTqXGhUtXEEIZ5wYIIahUKpimiaqqCCFobW8DKWkaQxbT63ZI05jbb7+dOElpb64SuT0iP8QPY5Ik5vVTL7OyssL6+jqdToetrS0WFhbY2triR3/0R9E0jTvvvJMTd9/FF37hF3j8hZf4r3/+V9zz4Md48dQbfP3vnuD8hYuMRiNu3LjGTrfLTm9IqVTi0R/+BCeOHuPyhfMM+t2bVLUFZD3B9UeAQJY1hKSgKEUjqSgKWUYhcBdFcFe2G8wmIaPqBmXHQSgyCwvLGLrJjRs36Ha7gEQSZwXPPhgRRi45MWkakiYRgTfi/2PvTYMkPcg7z997n3ln3V1dVX0fklpqCQSSQBJCGiFsBAx2YGZtj9cOR/jD2mbGDu941rOMYz0XGzuEZ2wcazN2gI0HI2NguYwAHQhJLTWSWur7rqPrzDvzva/98Fal7Njdj0srQvmPqO6u6MrqzKqnOp7jfxiajiCJpHFG5Ed4oUcYxhi6ha5ZBEGEIoEopCSxTxpnCJKEbpVYWd1A0xTKpSrT05NYtoJt64iKSKlsUR+bJAg9eq1NXvjh00hy7iy1o1/ZCe8bDAbIokQU5NkV//Pv/isyEjqtJpubm0RBzNkz52k1OwiSzMzuWd7/8MNomkJCSkRIJqd4gUMSB6iyjGXYdLotwsgjy/KfF1KRLM626zhBkATiNAYxw49c4jRCNyziVMjpQFGEHwYMQo8ojvPk5Tgc5mTEcTzMMSgU8iDAJHBI3C4XTr+C22tz7PZb2bdvD2NTE0Rpnqex87i733EfrXaPMIoo10tcunCeF370PD/10Q9z4dJ5PKdLEjjs3T2FqSo0NzZorN7g8JFb6Dk+A88liMKbVrcjjDDCCCO8vfGWGABMy6JcqVAsl5idnuHQoUM8/ND78Ryfsfo45y9cYXxskmqlTqVaYnx8nE6nw4ULF1heWeW22+9gcWmZe+65hzAMKRaLxHHIzMwUMzNTw2CtKIoIw5ggigmikPl9B5mcnkGSJLIkQRJBlWU8x8UwDHzfZ3l5GSC3xLRtZmdnqVarDAYDTNPMxYLbdB7HcYaJxqIoUt6mA+0IfkulEr7v4/shpmkPBwBVVYd0oJ3grp2QrYWFBa5cucJg0OPy5YskScRg4CLLKmNjE8iqQpLmXOWB47K4cgNRUpicnEbXTWRZRRQkfC8gjhLSOMM0VDLZwI3BKlYol8tEUUSv18M0TTY2NobUpSyBwPOQpYx+u0VzcxX8Pi8++12czjrd7hZ//9Uv01tZ5tSLP4Q05O++/N9ZW77OoNMm8lyyKKRSKrK5voapa7xx6nWCIEAQBH7x47/AqZOvoyglVvsp333+FCfPXMaqT6GVaqy1uwiGxYOPf5QL1xZ58P57ef6ll3nyu9+hWrC4sXjtptZuL+xglQskgkgUZlhWiVKxRr02Qbk6zvTMbhAUZEWjVK1hmDamVaBcGaNaH0czTXTTRFUsLKtEkuQNqaIpFCsWYewRZj5+4uJGPZY3rtHtrZNlMZIMru9QLdaYGZ8hTBOiJCETBYqVMgt791MpFfH6HcKBS+RHKLKBrJjMzu1jatcClYk5EkmjWByjUJ1HNcap2xMcnJ3gi3/yH/m5D9xD1FjEdx2yJKZarpCmKYPBIBfWZ9suU51OHkpWKvG973ybP/nD/wNJVRBJEUUZwyzQ7g64/4EHiJMA09bByAjECCf0UTQdSzeJgwgJmVK1gB/lDkOaKFOxqjQ3mmytbSCkGVEU4PoOju/Q67XY2toiCAJIQFWUXF+TpbiRgzMYoCARRd5Q67PjvJVtB++ZpsnG6hm89htUCz1Upc/rz32TU08/waXXfwjpTkJ4mg/2Ici6RqYKtJ0tbly/zKVzZxFtk81uA9NQqNg6E2WT+d1THFyYo6BI1MoTiIJOs9Vlq9W4qbU7wggjjDDC2xdvCQ3Art37CRMBy7L49ne/RyZKrK1fQ5Ik6rUK42Wbc+cuIkkws2uKp37wDHEcMzk5iWEVuHTlCrPzC2RRyI0bN3j44Yd5/oVnOXr0KJcunwPyjZ8kSUSRQIZIECcYxSpONxfO2rbJxuoaBVNC1U1c12XPnj1cuzhJFEXIGiRJwuXLl6nXJ+m7HoVika12h0KxSL8/wDCM4YZxJxNgx0moUCigqioTExO4jk+agG6bJHE2bER2/NI1TRsKhFdW8vRd2zaZm5slSSI8N6Ld6lIuVVE0g1QQQADNtJib34OqGUiiTBKn285CyfbnS0jElP5mg9dPneM9D7yPy+feYHHxOgsLCxQKBa5fv55zlWs1ms0mxja3f2Nthd0zu7ly/jQTE2PomsiqKTGx5xCqqvLyM08hixHg0drcYGJignK5ytraGl6/R3VmBr+QC6jHx8d55JFH+Ksv/CW/+69/G1KBvYdu4aUXX2YQJBimxY31TdZFgT3zs9T2H2Op6/I//sovMVGv8Gu//ls89ugHOH7brSzMTt/EyoWe79Lq3UDNdqMoEpMTM3ieg2FYRImP5/gsLl1hrD5JlInIisrs3ALFyiT18TEURcGwdTTBwjILXLtymdKcTs/Jm0NFVyCRGQQuNbtGGCS4fgNdsVBlnSDwINGxbZtGq0nRNAm7TQZeh6K5h9L+GmVVY0toM3Da/P0zT6GqKuMzU7iSRH2swnr3VTJLwE0yFFPnNz7x04wduo8vfPnz2IUyTmJgGiqiCFGQYZgqbG/Ei3YBw7RotDs4/QFkIl/4889h6Cpf+MJfcv3ya/z7//0zOK5PfXKG3fOzLC5dRzEU/E4XTVWRFBkls8jihMDvkuEh+BKlch1NlfHcGE2N0aU8E6NS1Oi5HiXDwBBlpqtTuZYmzigWiqiqSrvbBinDkCVs1SSJMlwxxFZLSLGEJAnDBG5JkvA8D0nUkbIARVTQC3Vcp4cmyczu2U+74wMMLXyr4zap4FOo2Lixi6FCGkI79FGLRaxKCSSRKAqJSRClBFWFsOejpCpVq8zA69zM0h1hhBFGGOFtjLfEBSCIAnRd53s/eApJMThz+hy6qhF4Pv2egx9GmKaGKIp4bsDC3j1UalXufMdd9LttHnnfg5x54zXOnTvN+x54L5/9o//C+x98H9/73veYndlFr71FmqYoikVtYgZZzh12Vhev0Ou1aTZWiZIM3dKRRQmSjDiT8cKU+uQUKRlJEuEGIe1GEy8M6Dku3UEXVdUhzRt4wzKHFJ8dypEkSUMnlJ3gLc00UA2dOEvxo5A4hSBKCKIEL/BxwxAEEQSRtY11TKtAJijMzO1BUgxSKSMTM0RNIk4zUlKiJEKUFGy7SBgE2zQjhyAIiKKANI0JQ59Bt8fGVoNy0eDue+/DCRP+yQd/mpnZeSRVwXEckiwDUUSUZXTDQJQFPHdASoKkKKyvr2MYFr7jcvX0aUqlMpXaOIEbsHx9iaXVNaZ3L+BrKeRSAAAgAElEQVQMuixeu4pp2JimydTMLPXJKebn9/Cnf/o5Vtc3UDWL+sQUly9fZnxyjNX1G8zPz5MEEZkksbzZ5C//+it8/vN/w1/97ZO8emGVQ7fexcSuef7oz/4cJ4hvau2KqUqaQBRFedCbJmIWTBRNxtBMVDW3BFV0C4EUQUzR9AKFQglN0ZEEGUXUMQydQqGMbih4YYYXRQRRSpSmpHKCLJvIWpFESsgEgYiQKPPxk4Bu3GBjsIKmyfhCSsE2ycIUr+chShKBICMYOnq5xMGD+1leXkSWTSyzShqBKqmYRgnfcZFliTU3wF+/wC//4i9w9OitdNtbON08OC7wHJxumzDVIRFxvR6tVos4yZATjxtv/Iif/eDDfPSxh7HiNdY2t6hUKniex623HKHXbWHqGvXSFLcs3IeGShoNcNwWgd9DEFKC1EOSU9RMQwxU4jgg8GSEREHONNS0QFmrUrVqZEkMooBdtJAVqNdMTDklE1IkSSFLBdzIIyBEQII4QcwERDG/yomyQJSGyEKISIKqGYCMZRSJg4gog8TvI2UpspQhyyITc/OIsUSxZCEIApak5P+HFSwkSUBU88E8SSLSNENOBUQkBCT6rke716XjtwmTm1u7I4wwwggjvH3xlhABi5n3qe//4Fl0w2R5ZZVKpUKv16NSqbCxscHAcdm/fz8//OEPWV9f5wOPPYZhGNRqNVQ5P/cfOngA33UZGxtj165dnDlzml27pnjpxAkOHT7M9Ow8QRgSei6RN2BjdYlaZYyB61Ifm8EulJHkDN/p4gxcBFlFVkU2Vpc4d/4ChUIRWdZZWrzO3L79iIpOp9NDURSCMEaUJFzPR1Vz4e9gkF8Edlx+NE1D03IHH8/PaUE7gWc7icFRFKEbOq12B1lSgIwbN25gWSaiJFMslgijiDQB1/PRNYMEkGQZUZJBUIbhYkmSc/o7nQ6VSgXDMPA8j/5gwDe/8Q1cZ0Cv0+Th97+fF198Htu2uHjxPKQZ4+O5xaeu66RJAkJGr9fF6bbZu7AbKUtZWbqeOyQN+ly+cJEkS1lttUnI2DU/T6fV4ccnXqBgF5AVjSD0ieKEa9eXGBsbY3Nzk7GxMQRR4tixY5w+fXrbwcinXC6ztbHJL/3qr3D06FH+7M/+lJ7jsrK6zo9PneHq9SUajS4RAuXqOB947AM3TUj5nRf+7lO9voMmlXjfe9+Padhomoosy6iajiQrGKaFadrIksxYpcrMrgOUq1U0TR1qPchSdu/exebWCl3xBkkcIwh5GBVJShSmBH5A3+mTJwlLtDtdVM0kEzPCNCQhwDBMtKSILhZ57H3/DFMzSTNIyUCUcZweZCnXFhfJkoxWq0On28TzHQaBQ5yl7NlzkObmBq+8fhZVNXnggfvZu28vuqJQK5Up2gYFbwMtahInAaI/oG5KvPrMt9HkhHaryfXrizRaLf7Xf/ef2bNvP/feey+3HbudIMjF8KqiUy3WUBQL3SjguW0KBZMo9kmyFENRsWUbKYMsS1E1C9NQsUyLcnmMzqBHSobvucRiih/7eKGDF3g4rk83ckiJkCWJTrfLwBkgChIFuYAljyPJkIpp7lyVxUhZiCz4iFmKJKsIsoqQxcgSDJwU1SgjCflcrtlFECyuXD2FpRW48Mar9Not6rvm2Xvb3VSrM5QMlSz0EUURspQwCAgCHz9OWe8vkQgBtlXm8Yd+YSQCHmGEEUYY4SeOt8QF4Itf/CLdfo/f+q3folAocPbsWSRJYm1tjX6/z/79+xkMBlQqFQB+9KMfcdttt/Gtb32Lzc1N3njjDc6fP0+73WZtbY0zZ85wxx13sHfvXmZnZ6lXK/ieB0AceUShi2XqlEs15uYWKBbKhGG4HRgWIEq5PWYu4k1QVZUrV64M6T2dTmfY2JumyWAwQFGUoaf/DuUmDEMMw0DTNNI0HV4ETNMcUnPSNEVWFRAFMgGazSZBEOC6LmEYMz4+TpqCJMpkKQR+mCcDb3OZBUHKxb1J/u/mDU021BGMjY2xvr5Or9djeXmZ119/nY9//OM89NBDrK2t8cwzz+D0u2xtbRGGIfv372d1dRVFUYbaANd189cVhxiqiq4pJFFIq9FkfX0NQcjoOwNqE5M8+NBDECcEnjNMO94RFR85coSjR49y8uTJYcBZr9fjO9/5DoqiUCwW2bNnD+fPn2d8coIoiigWi5QqNf6n3/gN4jSh03ewSlXOXryEqOpcW1m9OUW7DafvEwcRsiwShM6wRlRVxTJtbKuAaRSYmpphYc9+okRA0fRhRsTOYLhjGzsxMYEkiJCAJmtYuoWmGvkAFQX4jovXd1EEGdOwthOgY+IkIckSVEHCkMq84/b3Uq9MksQxaZKQxDFBEIEgsWtunm6nwcsnX+Kll17Mr1BiSIiLWVZZ3dwgVXQMy8bzHULXoddoEDgOoiLQ3GqgDJYIt66ytnQFXRZ49nvfZmH3DEGSMjW7m1Klynqjw5Fbb+Hd99zDwYOHKdglBCQKlo2h6XieR7UwzXhpgZI9hirpaLqCoRrYaglz2zpXiCUC30dVFSQ5v4oFaUyUJKRkOL6LHwd4cYgXxXhJQipmRKm/naac5rkaYpZrILY1OZKoQJY7IymKhkB+uZNkgSDwKJgGkiSha8qQzpfFESQxrU4bXdHJ4oQ0DBBkiYOHjyIIBqVSidDz3yySTATyq8NOAJum6RhW6eYU7QgjjDDCCG97vCUGALtYot3t8Tu/+69ZXc1Dt8bGxti7dy+lUonBYJDzbqtVfu/3fo9DBw6yvrqGIsns378f0zS5++67OXr0KFEUMTc3hyAInDt3jsnJSa5cOEu/08htNkOHdmMNkRhNy5sBRZUoFovIko7rOiRJSLlcJo7jYWNvGAa2baPrOkmSMD4+ThylJEmCrus4jkO9Xh829ZVKJbe/FMWhHmAnEAnyBnHHtz+MY7wg4NKVKzQaDa5evUqz3WV1fZNmu5PbN8oKcQYJAn0nQDMKxKlInAjEiYAfJEN+8o57j+u6yLLMnj17WFtbY9++fVQqFRqNBi+//DJHDh5kbXWFQT+/ZKiqSrfbpVQqUSgUho/fGVyCMGZzc5OB4yFrJl6UsLS8yvj8Avc88giZqBIj0FhfY+PG8lBcefHiRRqNBi+++CLtdptqtUqtVkPXdXRdx3VdisUig8GAfr/P1NQUK6s3UHSNxtYW737n3Xz2v36WLIHxyV04bsDk7CyOF/Ha6XM3tXYHrS7jY2N42wOm7/s4joOqqqiGjGmb6KaOXSgzPjHD/PwhCuUCuq5imiaWZeWXIiHDdV0qpTKba5t4fR9LsyEWiPyMNI7QNZmiXUBXFDrtFpIiIYlpHvoWRVRL4wihzf/wkV/nnjseIQliNFlCFsBQFTRVZGb3XqxyDd9xWbp6iXa7yeZWE72gcuDWWarjGi/9+EXCLMELPTbX11hYmKM4XsMumGxcu0TB1LjyxrNcvbFCs93nlUvLBILExiDCrE1y4cpV2v0+enWG9z30MLXxCaxCCbtYxLINnH6P6xfPoisCoRszXZ3jgTs/xN7dd5GFKbXiGLsn9+GFHj2nx8GFW6kUbBpbW6yvr+N6285DSUwii0RZguuFICoouoWk6cSpQBRmJAiYBRvN1PAjhySSiZMQVZWRJAVF0TAMkzCMSZIURVHyAVrMCAMHWVRwBx0yEgBkSeTaxbN87YkvIgOqJBKHLjPz+zDKNTSjSMUqkMQhllVgYc8+wiSl2xtgFYqISDhdH1UustXcvImVO8III4wwwtsZbwkRcKvZQddN+v0+juMwMzOD67p87nOf49d+7df47ne/i2EYzM3NcfbsWdI45itPPMEv//Iv89Qzz/Dggw/ymc98ht27dvHAAw9w+fJl+v0+L7zwAh987FFCd8Dd9z+M46e4gz6hPyAGFhev4Sc+ZrFEllVJ09y9JyPfGhYKRXq6PhTpGobBbbfdxqkLl0kFHcMwcgFxwcJxg5wDLqvDbaFpmtsc/Cj3S3cckiRB1bNhk+77PqIiEwQBS0tLBJ7H/J69eIGPoijEaYJpW0RxjOt5+H7umKIZJikCnu8TJ7nY1zTyzXKulXCpVCqIokir1WJ+fp433niDNE2p1+t88/Jl1tU3nVCOHDnC2uoynU4HXTe23Yr8YcCSJMn4bsSpM+coFiwc10eQJeoT0xw+djdJmlGrBFy6cpn11TVEUaBWr2EYBtWxKVRNxgsidF0nCALW19dzUXacYBgGm5ubTE1N4boug8EAN/CZnp7m9/7V7yLG+WATIRB4Dq47II0UWq0GxWLxptbu1Pg4oqHTijzCOP1HQ6Miimi6jKzkg06SRviShGqqKJI6bDYlSUJSZHRdZ+3GKgXLpmxbyJJMJEromo2iZFiWwSD1EbIEZJUw8lEFCVPXEAQdTTKpVvYxXp0jjlzSZIue6+N5Hp1OB1mTWd/sIknKNgc+16YILZnGC1sIuo9tm5SUSWRCNFPDqtbRVZUkiMkygfHxSYLAIxAMrvUlUjwyr4EtAqKAVigwGLQoFAtstcCyLMrl8nZImcxWY5WttVUWZmdobDSY3bOLTnOV3Qu3sHuywIUrzxF6EUkM1bE6yClpKhCGPqVSgSRJIFOwDItOlrDVa+K4LkW7hJDJhH5uV6vrJgQZZClxGiOrKrIqIct5SneSxiiqBYAgSPmwiwikqKqKl4QUTI0wFLh+/RrHpo4AKZubm3zz75/k7nseZOCus7y8jKTLHDp6HESZLHYQhQQhzYjDiGeffY56vYpdKiJlKaZqUy6N4ftdBm7/ZpbuCCOMMMIIb2O8JS4Axeo4V65cod/vI4oi3W6Xs2fPMjO7G7tY4s53vBNRVrCLJSRFZW3zBmfOv8HK2hKNzXWef+5Z7jp+Ow889F6uL18lyyJeOfljhAy8gUO70WJlcRGSFEUQWV+/get79L0WhUKBteUl0tjDcwaoWhFdLxP5XYQkoGAXh2m76xurnD5/AUlWGRurohsqlmXheR66rgEpURQAKZDnGgiCgKqqZFmGGwa0+z2iJKTb72HZBSRZY319i8gPUUWJKIy5fuUqge9y7doVioUqlllBNy28IKQ2No4oQpJERHFMz/XYaneIstzpKI5jsiyjWquQZglxEqGoMo474MDB/UxPT3PixAk+8YlPsG/vXkBkenqe9c0GrWabYqXM0soKuq5j6gZJklAul/OttiYTpQnNbo8sSwjihOP3P8Keg0epj09w8LZDPP+D76NoCpqhE8chrpsnrHY6HRqb63j9zjBIqlouoWsqmqpQLhXZWF2h22pAEqGKIqvXrlPYHqKCIEDWVJxBl2qlDKKAqhvbVqo3D67UQykm6IaEoWrIokAShXjOgEEvIPATBCR0Q8U0dcoTVUzbQrMMdNPCtm0kSUHyY85fOMfKjSUm65VcWxJHBMKAJOwShj6uP6Djb+FnIbKhECY+TtiiF7Xw0ibBIOW9d/8UYeYTp1FO3/IDvCBE0TR6rSap32Ht+hV6AxfXDen1ely5tMLixetcO73FhVfWeOpb30e3bBRJIc58epFIr9PHcTwyUUAvhry4mTJIoVwuYCsJtckZFNNGQaM8vYdMMHCiPqqqk6W5446qaUxPz7PZ6LC0eIOuM6DXD0FUGTgtDNkiSS2KBZMo6aCkMhOlXXT661imgm1VsO1xBMFgEHVR7HxjXy7ZxEJGGCUkQYgb9MnCFElNCMUAyyhiSAUSKSBJs1x3IReRpQyVFCmL2HfoECkgqgZRKiHKFomQISoyM7O7MS2FKM0wzAKDToOrSxd46YVnaa0vkSUaqSySShlp4iORISkaKQm7JiroEihC/vPpBX0q1WkGjkfBrtzU2h1hhBFGGOHti7fEADAYDDh69ChLS0tcunQJSZI4fvw4H/jAB0iShOnpaSzLYmZmhk9/+tM0m20+9rGf5etf/wbT09MUCgUOHDjA6TPn0HUTzwvY2NigUChQLBb54fM/QlZyu79SuYxlFSgUChw6lFtYTk3lNoK+7yNJ0jDoSJKkIf0oSZLck1zTsG2bra0t2u02URQN/ft3/MV33H52Qr2yLEOWZVzXpd/vE0UJrusCIkmSoCjKtl7AJE4ilpYXuXTpAisrK1SrVfr9PlevXh3qDgrFMo7r0+v1Cf2AKAhzC0bY5jvrQJ5dsPOYYrGIJEn0ej0ef/xxLl26xPkLF6nX6xQrZV544QU+/OEPA/Ce97yHYrFIkiTUavkWv1DY3r5uw4tSFub3YmkKZdvijVdf5ctf+msKhcIw1GwnNKnRaFCtVikWi6ysrLC2toZlWaytrWEYBoIgDAOmJicnCYKAubk5Pv2f/hNxFCHL8tB3vtfrcePGDXzfZ3x8nELp5l4ALLMAmYQkyQiZOLRzTdOcHhZHEXEUQZohZKBIMvJ2KJgkkVtr+rk//Y5TVBzHBHGEKElkooCqa1iWladMqyqWZRDFwXbGg0ywfX1SVZW5XfN0u91cUK5r2/kXIZ7nkab5BrvRaOB5wbBud2hrO7qU3/mdT1KxVOrlIrZlUDAMNCX/2REtG3+tiYKKrlhEUYJmFghTyCSVRNJoNrZQiRiT/WEdZFmGKAjDetLMbfqdotDtdgnDgDgOydIUy7IIIye/lGkRiC6iZOL5Cd2+ixsFeGGfIHAoFnSKhQIkMaqaIWQBouhBFhAFMboKBVtG00FTFERB3bYDjobPK8sEzp8/jyCJyCIYioQqg5AlyCQYmowq5Zc1XdeJk5Arl84iZSmKLNPq9NmzsMDczC4Kho2h61iWNQwa24EgCCiyTOA4GLrKoN+9iZU7wggjjDDC2xlviQHAMAza7XZu/5gkHD58mL/927/llVdeoVar5amevk+tVuPee+/lox/9KCsrKxw7dox9Bw4hqzqLyzfwvYxnnn6eky+/Rr1eZ3FxkTRNcV0HVcotGJNMYs++/czPz3P16lUUReG5555D2G5ONE3L01e3g7D6/T6lUoliscjy8jKCIOC6Lq7rkm43K/V6nWazSa/XA/KG33Xd3AEEhg3h/PweZmfn8kFC1Wk2m6QpOK7P+laDV0+9yu23HKa1uQbAxz72MZIkYWxsjFuOHGV+9xyaorLZaKNoJq1OD91Qmdk1RZyE1Ot1DMMYioAdx8Ew8kbLsiwsy+L48eOcPHmSxx9/nEq9RqlWI4wTHnjgAU6dOoUgCHiex7Vr15ienqbT6QzF2Fkq5ILGTKQ8NsWjj/00X/7CX/Cf/8OnuHD6x1RscxhktiNS3hmeLl68iCznNBdZlmk0GsPBx7Zzm1BZlmm32wiCwPXr15mdnWVzc5MgCpneNYMgiQRBMBxqdsScNxOWUaLb7BP7EEV5E73zlqbx0B50R/C8U1ciAmmc0uvlORS+76IqGlkq5Hz0LCITE3SjgKBoCKIKooRhWAhyXmOaZFAwi9hmDV0pQprSbPSJ/IhmY5Pr187T2FxDyDK6rQ5nz5wnDGKCIGBlZQXHC9A0DVWRsCwLXdcpl8u89NJLSKHDrok6R/fvZ311BTGNib0BnZUl1tbW6GytIsUuSeDSba5S0mQS38EWAm5dmGK6ahG5XTy3Rxy6uE6XwaCLpuauXQPHw/M8Fq9d4etf/QqdVpvBwGWiuBddnEFVdrF6I2RlxSVJDSLBwQk3iIUGPX8ZSZIhEijpOhXdYKJmUCurVCo6Jd1ksjTPgan7+IXH/oB/+St/xW/+0hf5N7/2XTQ1Hxg1XUGSBJJth6R9+w8TIZOlAroiY0gZwjZNy9I14ighS7cHNzlF8LuYioIiqbzvfT/Frsnd/P1XvsGxhQOM18eYmZnBMIxhQjjkA4AmieyaHMNWRcqWcrPKdoQRRhhhhLc53hIagJWVFVRV5dq1aywuLvLFL36R3//932dtY5PPfe5z/MzP/Axzc3M0Gg3K5TLfe/Jp3v/QowRBwI9fOYWu69y4cYMsE9i3by/1aplBr0sYDFheXuaxRx/hyrlT3PbuSSJBRDFsvv3dv6c2PkO1FnHkyBGCIKBQ0BkMBkhShmmatNttTNOk7+RXAMMwcFwX2Shsi4JL+XM3TCRJolAoEEX/2Iln53cAXTPQVJ3uwMMJQoIg4erVMyiqiu95PPLoBzl34Sy//XufQtdMAA4ePEiWCRiaOtwq756aIAxD9sztIooCbF1l4uD+4VCSZRm6rlMqlYYbyI2NDZIkIUNgbm6Oq1ev8tCjH+S5Hz7D/e9/P9/42ydYW12lWCqgKhrFYpFz586hKDJJml8psgTSFCqVCqai8o2vf43p6Rncfh9ZVQnTXCchiiKKkjc3pmkyUamxvLyMLMv5kOX66Lq+HdjUGyYop1k+KBmGga7ouN0+JTOnd/hBgCCK7NmzB1mWWVlZodlskv2/l9RPDJvra5i2hWCbaNuveSdlVkgTyFLSLCOK8lyI2A/w+gMEWUCTFdI4IY0CkjRifmGOZ74foqg6XryFkEhEqLnNqyoSeTGlUpWN1ia6omKoIpEnoGIiSjr9bo+tjUuETkoUeLx04jmOH78T1wk5ceIkzWYDTdNotdqEQcL49C72zO3G8zx2zUyzttVkc3OTQqFAT6rzxqUbWLbKxNQh0rRHFm1hp32uLl1n4PfpXTzN3n0HMBWBpcUr2HadjuPR8iD2Ehx7N8mgS6Oxim0VMVQNN015/EMf4fTp05x86XlkSeLa1cu89spJipVJmhsdrFqFJJCRpd2YioTbc6mYZW7fO0u73aYjtAiTHrIikvkJvjegUpwhjBJ++tGfp1yfwzYnEASRNHZodHpESYYhGBw9/E4aK+fJkiinXm1rdlpdl9l976Jma9saCwVBFZHChDCTGPgBkhwTBCGeG6MA+ngFP4FHP/wzlMwiv/3J38FNEvrOgNBxkGWZEIZDgCiKxLFIsTyB0jYpGMn/d2GNMMIII4wwwv+PeEsMALfddhuf/exn+YM/+ANOvPgy+/bt49vf/jYnX3mVY8eO8ZWvfIXHHnuMVquFIAjcddddbwZrSSKNdivnJiv5dvmJJ/6GO47dzkc+8hGeeer73HHbYdqdJsvLi4yNjeGnKceOHSMV1O2tZ42+F6DruWVlv98eWjTuNNN2oUQQJ7Q7PYLUoVDK3XSKxSJjk1OcOXuefr+PYVhDa9AdC8IdakWW5eLgarVKHMd0uw779u2j0ekgiiJ79x3g+DvembsDReF24yAiijKkKXEY5mJfXaVctPHDENMeH9IsVFXFdV30beGy4zjEcczY2BiNRt78rW9sYugaoe/xv/3bT/GHn/0jPv3v/x2Z77F//35+/MpJmMkHlpx+9OZVQxBEisUiiqKQxCFJJBEkOb0pzSATxKEN6s71w3EcnCBiejpP7N3ZgO+4KUmShKqq+Va416fdbjM5OQnkDVOz2SQiZUbXGRsbQ5YkLl26xJEjRzhx4gT33nffT75g/wGyJNoeuhLc/gC9bg2F1dI2FWrnIrLztVFVFSHKiBHIkjdpInlYnZpfW/QML/DQTYs0BUUWCaIYBu620DwX8WqaRqsdIMsCWRjheQOcvk+/3WH/3r00Gg0aWx0WFxdpNHKr18XFJfbuO0ChXEJVVY4fP87lSxexbZtSqcTxY0fwM4WZmQkcp4ko5fa4Xq9DEjaJU4nDh+9A003CFIoljSSRkJQSomqgmgJGlrDuXaYdxyDFDAYDamNjxHFMGMRoRi7GvXLlEp1Oi63GGl23x2RlEkkT0Q2LfrdNuThBFkcEzibP/eActbExQOTS5WWmZ6cpVopMT8yx2rlBpVDF1vegSjW67QBBClElmVTIqVBuLyDLcmpcKuRKnSzL8H0fyyrQc30kQcTUdXw/d3iaqY0hSApZljt6bW1t5XamSUqUChy57VaSlG0Km4piaCRJOqRX5UGAb9IBBUFCllSSOGMQeTevcEcYYYQRRnhb4y0xADSbm/zqr/4qX/rSl+j0PWbm5jl15iw//4v/nK997Wt8+KP/lNdee3XI9Q9TuHx9iVOnTpHFEbZt86477+LFl08wNXWIO+64g3fceReOP0CRBWxDZ/nCJRb2HkNSptCNIqam89qpkxiaxPL1dTSjRBY7yLKKJMikSYTr9JneNcvGxhpJHCDLIpOT4/jJNu0kSfEcl82NBpOTU2xuNQGHQqFAGMZ02gNkTX0zGTiJco0BuavOzEQdQRDYNz875Ne7/R5xHGOoGkIGsiwSxyFJlqFpynCbmDvzCGRZgiyJyJKCIirocs7Vj9M0dxfyfE6fOc/8/Cznz59neWmRw4cP881vf4e/+/r/xb/5X36XhekJrl69jmEY3H777awtrRCGOW9cEBOyLG9SLV3GLBT59X/xL/jjP/wviLKMmAQgiQhZhqlppGl+Pel2uzjOgBQJzZKRRIUgCFBkjXazhR9G269BGl4MDMtmamYXg8GANMstNe9/+P289uor7J6d5cSJExQsE0USuXThPOP1Gppp3KSqzaGZKlmWIEg+TuBQTtOhBiLn30dDjn26/XfRtq4BRBAFRFWEWEQUNM6cP8feR3RUwSDLHDK3SyLppImOqhUIggjLtOh5HTpBk4WJ/WjNPjPlWY4cvYfzr17m8uXLPPnkk7lwWpZZW28wPTtDrVxi/4GDHLv9Dubm5lhdXUUQBIIgQLctjBSSOGZmdpqyoeT2r6LGoHsNp+cgiSKdlRNk+jxhlNJx2tRn96EVq4ikkCbbw2eCbtnookySZKiCQqFYYeAkaIaC43nccsutfPNrX0dRbQ4emqBcGsewbIIkYbCySq1SplKpsbW1xcTEBM22yMRsrr2p1WrccuwISZJgGSZnTp2iPjnHnffeT6fv0HYGyJKKKst0kxBJ1BDSDEWJCDwvv2bJIu2+j22plApFVC1F8UMUOSVJAnTFRi6N4cYpaTyAOCOSZNY6DqGoISYR97znfaSihBAHCJJBkmZkbkhCipBlqLKGIHrEWUImQDppINoAACAASURBVIxAp7tJKit0Gh6xcbPvVyOMMMIII7xd8ZYYAL70pb+hVKrwyd/8l1xZXOKJJ57g8ccf5+WXX+ZDH/oQly9fJo4TJiYm6XS6rK9fYnFxEdu2qVdLiKLIl7/8N9TGx/j85z/Pww89yOrqKq+99iIf/eBjiFHAPXffRaloYGgaW2seaeBg2zbXrl1jbm6Oc+fOcOvtd2EaBSRBJAhcoihv2LvdLpDhOC6KouFFIZ7jcPbsWRTN4F333c/lq1c5cvRWNjbW6HQ6eF6ArpmkQk6DieMYUZK3+esi7Xaber0+pItEUYSqqsON8c4W2XXdoaVoFEVDi9GdBjMT3wwUi4N4mDuQZdm2aFlncnyMHz77LJIkUCkVOfHC8xw+eIA/+a9/xEP3v5fP/Mf/wML+fWRZxoULF9BEefjakzQeOhmpVpn9Bw9x6dIlwu1rBGyLGxVl+7nnDW65XGZ8fAxRVri2vIrbHzAxMTHUNJSrFRzHwXVdut0uvV6PAwcOcP369dxKU81pSCdPnsR1Bnz/+9/nnnvuYXVlmWazycTEBIIgcOTIkZtau5IkDW1YJVFBEATCML/e7IjBgX8kBv2HtLCd72WW5e/n1qsaRqGMFyYUzQJhBI1ON7+UEDLwuoiphC2WGKzARx/5BVqNDk4nYWp6hlK5wvE776LZbLK2tsbuhT202l3S0GNsbIwkSXj99deRZRnbtrEsi4HnIKRQLBQYGxsbPjdBEAjjCCnqkngeolHECyJU3cYuG0RJguM42KaOoWn4vous5CF+iipt015iPM+jVBkjjOOhQHb//v05x97K7Ti3trZQVZVarUbgeziOw/Ly8jBnYzAYMDU1NbTTjeOY9fV1Dh48SJCKeJ5D1w0x7SKSFBMqYj6MCbnYyXV7iKJPjEKaSRgFEVHWGHgRhiQhI5LGCYqqQJIiaQpZmn/fZFkmFXMR/dzcHOPVCgkZpmEQhiGyrGxfvTKiOODM669xYN8cCRkSMmKmIGYJ1eoYyxtrlKtVlnorP4EKHWGEEUYYYYT/J94SA8DHP/4Jet0BiqIxPj6OrutcuXIFXdd54YUXWFhY4NChI8zMzPCtb32L9fV19uzZw+LiIu961zv55je/yc/87D/l+089w/HjxwnDkHZri4fuu5czb7zKdNHE0jJ27ZtDSvpUK2OEnkm1Zg9pRXfedQdbm5sYegldM8iCvAEOggDTtGk0NvEGDoWyShzHWKbBu999N1GaEcfx9hBxjnq9iiTB/v37WV66ga7rRFGU+9jHb7qtlEql4XbYNHPx7M7HpWmKqRvD/ADI6SE7dqI7zfdOc7PTUAqSRBCGBIMBsqqxtrGJ67q8+PwLHDiwj+mpGc68fgbPcYiCgO7WBv/t2R/wTx59lGanzZUrV978vDsOJkK+nX/nO99JZlS47+47+Yv/9jlUVcUwDIIgIMvetOLc0Sn4vk+SxKh6TiWqlsr/KP14JzVZFEU0TaNQKLC4uIiu6xSLRS5eujxMMr7caXPPPfcgCALLy8vYtk2WZSzfWOGNN964WWULwObWKpZVw5Rqw+TkfLsPoiQNRdHSP/izLMu5978kDQXNYpb/UiyW0TIDEpWiWsFIBdywS+TH6IqBqdpEvkxVn+HuAw9SMWtcPXV92/0JHD+m2+0xOTmJprnsO3QUwzAol8ssX7+GIAjous7CwsLQFcr3faamprixtILrukNnoB0aVxBEpK3rpG4XdeIwUgappKGYNpqiokoSSRTm1y4xQyCmUraJwgGeG6LoEv3BBmGSUq+NoygKly9eJAxDgiCg1WrlrlNRSJSlOP1cFxJFuZXp8vIyipbT2i5dujQMkstrLwNRottscv7c67z7PQ8iqwWiNGbgOkSBj6aZDLo9RCEm9FuoUhE/DRBUkXa7R9/zeceBd+M3NoiiPkkUoSgqxDGSmNt3qmI+oBmGwcTYfpIkodnqsNVoI8gGll3G9/P0X8NUmNo1yVarSRZ6iIBVKBAMQiRRYeDG3Hn8Hjaev/wTr9cRRhhhhBFGgLeIC9C5c+f43vd+wJkzZ3jyySf55Cc/ydTUFKZpct9999Hr9SgWi3z1q1/l9OnTKIpCq9XiwQfzTf/HPvYxBEHgIx/5CFNTU7zyyivoukrJ1DAUkX/+q7/Cex54iKsXzvH6i0+iKSqKbrK+tsmF85dQFZ1Tr71BtVyk3VrHDZ3hJtIwjCG3vlIu02m2MHWDjY0NbNvm6tWrNJqbube4rnPt2jWq1SqtVgtJknAcZ9hk7TSBkiQNN/g7rj07nPgdKtAOf38nORggDMNh87+zAd3ZLO881vd9oijCcRwgH0R+/ud/fshfvnFjmdtvv40w9DFMnQ9+8ANcW1rk/PnzNJtNCoUCvu+/eY1Aolqp8/qp0xiqyOf+9P9EkUQsyxo2PDuhZrquD0OwdgYBURQpFArouk6lUqFerzMYDNja2qLT6dDtdun3+5imyfj4OJubm2xtbXHbbbcNvwZHjhwhyzIOHTrEu9/9bu6//36CIOBDH/oQd95550+4Wv8xdtyLcpvNbEj32nn7h+/v0J2AoW5jOBTFGZBStAsIsUTox0RRQpZltN1GTvXKdGrKbh6+62e5Y8/9KFmVzUYb07bIBEizgLHJCQRZIkoTpnbNUCra9Lptus0GaZry2muv0ev16Ha7+L6Pbdt0Oh1WVlaYmMjF5Tv1CHnDK5IRRi4RKVEmoSo6VrGIICs5xz6OUGSJNIsRsgQxS4kDH9s0kKSc+iUIAuvrq7xy8iSXL17k2aefxvd9ZFmmXq/n17x6nVqtNhyoPc+jWCwyMTGBZVnMzc2xe/fuXCSu61y/fp1KpUK/nwdqffWJL/P5P/8T/uQPP41CRK1SxjRNTNOkXC6zsblGp9FFEDqkUQPRD6iWNWxN4Mt//d/50UuvMjm7gFmuE6YZqprrMRRFGQ6uO2nVa5tbFEtl7nvPe+j3++zbv4fdc7uoj1W3B1SRSrmOF0I/8FlaW+fOd93LxetXaW65TNcOMmPf3OvVCCOMMMIIb19In/rUp272c+CbX//apz7xiX/GH//xH/Mbn/xNnn76aZ5++mnGx8dptVoYhsFf/MWfs3fvHjY21rn77nfx7LPPUqlUeOnEc0xPT3H18mXsQoHdc7tI4pgPPHw/LzzzA37u5z6OWS7x/PPPI0Y+Vy68yuE77gFF48LZU9SqZZIkZWZ6N+1mk7WNVRAEbMsmjiN6vT6iIDM+Mc71xUVM0yKOM0rlCmEcgQBeEJFlApZdoFgscOLES1SrNdI0I92m8nQ6HSRZRpZlfD8YOgXtCEN938/pFlEE5H7xOxeCJElyYfD2BnmHYiIIQu6Os00ZWl1fp1avk6QZ3V4fUZJ46qmnOfnyy+zdN8+dt9+BIGRsrG3geg7NxgZ+FBAnGU6/zx133IGh66zduDH8nNH280nTlHZjgySKkWWRMMrpRqIoUi6XhyFucZwM7T8lVSZNUkRZIYlyS8y+66AZBp7nDYeIcrlMGIY5XWX3bizL4tq164yPj+eUDFnG91y+/4On0DWNl156iYcefoRqrY6qSLz3Xe/4tzetdn/0hU+5boAhVXjP3R8cCscFQUCAYcO/c1nZeX9naNr5+mZJhhv4nDtzhlI9p515oUsiJwhGhk6J2/e9k4XaYSRXJvJiFEPaToquUK6M4Xu50FaSJELPp9Fssnd+jmqpyNqNZaamd7Fr124cZ8Dk5CSiKDI5+X+z995Rdp71ve/n7bvX6X0kjSRLtmTLli03sI0NtrFDLzE2JwESajhcDpATcpLjALkhuXBSuMnNIRASQi64gcEYNzB2XGQVq45GbUbTy56ZPbu/vZw/3plt56677n/X9lrZn7VmSWskSzPv+1jreZ7ft3SFkbWSiGXYqIrM1pFhJFlCCEQMQyfwddYKs1i+SDrXh+uDJShEonEcs4GAgCxJRCMa9XqlOQFZXSnw5T/8CvOFZSYnp3js8SeYnJhAlhWGhwdZXFxq9iZMT0/j2hYL83O4jk1nVzcAkUiEmZkZdMPk7NmzNBqNZleCpmlomobr+jz7b7+mr68HPJuoDH/x9a9z8MAhtm0fIZ1M0J7Pc+XePeTiae7/4d9i6FViWoaIHBCRBbo7unjsl89yYmyM81MzqFoc2zbDTgbLwnE8KtU6tXqd7q52JE1Db+gsL68yPTPL2XPnKRQKROIxErEU8USCdLaN4U3bUdQ0p8bGefLpA0xMjROPdnDpzsuQTYErrrjidVu7LVq0aNHiPy5viAPA1IWJe5959pd86tOf4B+/+z1q1TK33fo2hoY3Mz8/z+joKNdfew1nTo8Rj8UQJQVZlkmlUly9bx9PPPY4nR3tVCtrEPgUCkssT13gHe+6k83btvDyC8+hyQLnzo7S09nFhZlZtmweobeni/GxU0iiSLVaZ9PwCLVGeCvZ3dWHZdhYjtFMLCmWS0iygiSpSIpCcXWNiKrR3tENiORzbczMzrBlywiO46IoKt56tGU8HkeSJWAjCUYBAkIpuNCU/kiCiOs46LqOqqpNHfnGxvHVxWGO4xBRNRzbxtB10pl2GnWdwA+YmJrmwsR4eEOtqiQSSaampjGqZebnZpicmGBwYJCJ8QskEglGtm5lauoCU1NTSATN8rKOjg48zws3toKIrCgIwivG3Q2fQjQaw3XD1ttYNI4oSMSSKfwANFVBVVQ83yeRThGLJ0gmk8zNz2NZNu3tHdRqdTLZLI2GTnTdM9HV2YFjGUiBx9zcLAMDgyiKRC6d5bNf/CLnpicZPfAiH3z/+163TdQDz/zLvY5pIflRrtpzK6JA06chvsrL8f+m+994r67rYqsC1B1OnRsjiDUorCxRNWrIbREidoa3XvxOqClENQWrYWLYJrKqsLq8gmU2AIfl1RWqa2usra4wNXmBzZs2Mb9U4PTZc6RzbUQiCdZKZRLJNAgSgh+wXFghm8mSyXdQKlVYKxbZd9VlpFIpjIYdGpwDn/LyAoKoEM30rkuXAkTBR5MAIZz+VKo14pEICDKBIIFlMHrmPJFUG4KgMbJphCuu2EskEqVUqhCPJ0il0mQzWa65+hoGBodoa28nwCWVyjQnSbt374bAJxGPs2XzZirlMgODm4hGY6hqeCDs6uzCthxOjZ5mZmqaarnMwvQFfvLADxk7cZR8OoXkC0QTOd71gY+x7/o7WamUOHHkZRoNHRGX3Xsu4dlnn6dRrVOv61RrDeKpDMVyDdO0SaZTWGaDRCJGo95AkAQs08RxfRoNC9tzqDWqIEr82/MvcPrsOc6Nn2f/gZdIRkHSMhhWgBrT2LVrJz/8/rd5//s/2DoAtGjRokWL15w3hAdgY0N77Ngx3v3u30AUVRzb52c/+1nTtDg+Ps6HPvQhfv7znzM0NMDKSoFduy4mIocb48MHD/DFP/hvPPB//xP5dIqBzjy+a7O2vEx7Rw7Z9xGHtvHIz3/BtbfdydEjB+nq6eSSS3cyMT7JarlKIhkhFtfw/fDmXZSlMIKT0ARoNGr09Q4wu7hCPtdOJpNCFGWOHTtK39BmVteKYbGSqgIihm6hRcIirGq1iu06zbKuer3e1PQLQigVekVzbTX1zxuGXlVVm8/JDdYLp0QR3bRDzT4i1WqVIAhYXl5m27ZtnD19ive/7708/PDDDPb38cB9P6RaLKw3r9pMXZigsLiA59gcOXQQTZW5Zt9VHHzxxWZizepqKB3J5/NN3booiqiqiuM4TYOwIAgkEglsy22WoAmq3GxPXl5ZIRqNcuLUKD19/ezZs4furi4M0+Luu+/mm9/8ZvP7q9frNBoNJicnqVXK7Ng6ws6dOxm/MEUQeKQSCU6PneLACy8wdfzw67VsAQhciXymE8XOEgQeqhpvbu5fXVG2IfV59eRnI9FJVVWwXGxsFA3W9EUCWeeqzVeyNbOb+dUlaismmhZlYmKCwJdJp9NYhkUqlWJtba0Z9zo7t8Tll1/B9dksx44dI5VKoWkamUyGwBcwTZNoNEo6nUY3LTr6NgzoMqlEklqliO+72Ha4rgJEDMPGVWKYrovleUjrsjNRFHFti3g6TJ6amZlh2+YhHNshtm4u3rfvKgxUcrk2HNMAIfzeU+lQFhYmTcH4xHkERFzPodEwsG2b5eVlLr74Yqanp6nVajQaDc6cOcPQ0BCFQoGxsTFOnTrF3r17KRQKCILAwsIClt54ZXIliBw+fJiDBw+TSKSIROPraxvuuusubrj53SSTSTo7O4nIEu961z1EYhEEEXwPNnq8ROCfv/89NE1jfHycjo4OqrUGjmuD4KIbFWw/RmFpFUWMUl4Lo31LYgmjXmdaL6HGOkknY0DA+fNnufLKfa/RKm3RokWLFi3+PW+IA8Di4iKf+cxnOHnyJK7rc/DACxw7NkpHdxvpdJq3vOUtPPTA/YyNjZFMJsmkkri2xQvP/Rvl1QIffO+7+NhHP8LkuTEapRW+9OmPMTU9Tmc2w0vP/opYROPpZ55FU1P86rnjPLp/jOGRTXz1z/+EidkLrK2tsu/amzh79iyZtk5OnDiG5yls3rwZ07JIRyJhPn1HB7ZlkM9mqZTXsB2PRsNgsL+XxaUFevoGKNdqGIZBLJYgFk3wzP4X2L59Oy4ByWSSlZUV2ts6mg25odk23DAGQYDrg+MF6KbN3MJSU0O/kZcviiKRWNjuG2b+x5qGyXKpQi6XC3XKlRLveuc7+K9f+iLXXbOPP/nD32d4aIihgX727w/13lFNo6erg3K5zI03vIkjhw9x7MjLyLKMZVlNL0A8Hm9u/Ddut3Vdb0owVFVlYWFhPcoziaiE3gbTNMP3lckgSAqNRoO2bA5Tb3D05cPYts3A0CBf++q9XHzxxawWy6TTYbnarl27OHrkZQzDoKuri4nJC7S1taHrOhfmphk9fohd2zaT9aqv69oVfImYmsR3wTCKRLVI84Zfaib8BE0fwKvNtRuSLgARCVfwiEYi/Mbl78MqSdTqOo4YQ/ZTVHULdIOLdu6hWC7hOS6eFzA42E+lUkGSJMrlMvl8nsXFRRYXF0kkEji2iWEYeJ5HLpfB8y0i0SSVaonevgGWlhZwXZPDh15GRmBhdpY3X7MLz/eBMN1pvlLGFCLU9SqpSoVcOkUiGsF1bMTAw7PCArrtW4YRJRAktSntGRzs5+xMAd93UbWwfXcjetS2zdDbIGtAGHkbBOHa0XWdq666inPnzrFp0yZeeOEFhoeH6e/vxzAMHn/yKbZv305bWxszk2Gjt2maxDSVwA0N5pqm4Tihp8ZyDTyrTrFe5pKLd9NoNPjpjx/iwft/gCJKYVqPqOEFrBv2XRDC/y9938c0TT71qd8lEY/R1pZBFkBTZWRZDGNrbQvL8REFkfEzYzimxUU7tlEp1xBMG19WkXwbFYFEMkEyEcNYTz9q0aJFixYtXmveECbglZWVpiH28KGjnD59moGBPvbu3Yuu69x3332k0+mm6e/B++9joK+XLZuGue6661hdXeUrX/kKRq3MB977Hs6fP8vKygquY/GrJ5/i7OmznDk7wYOPPMb2XbtxfJHHf/Uy//qD+3jowZ9gmx4f+9jvkk7l6ezsZnFxBUOvU6s1miVVgiAQXY8j9Byr+bUvLy9TLVdIJeJUSkUikQjVahXLsnBdl87OTi5cuNCMZIxGo03N/8YmPkzMCXX+1XqDM+fOU6pUSWdzzC8uMTp2msXCMuVqjYWlAhcmpymVqwiiTLlSZXGpQCKZIp1OA5BIJPj5Iz/jz/70a1yz70p+9csnueSSS9i0aYinnniMqKYg4pNJJeloyzPQ18uLLz6/Xj72isdAXvcsvDrCUlGUZpKMZVkkEgkMwyCRSJDNZhFlCUmRUTSVoaEhEokE9XodywnNpTt37KCzPU+jViEe1VhbLaJIMocOHMQ0TSzLIpPJcOTIEXbu3ElbWxvnz59ny5YtzMzMUK1W+fznP88HPvB+NEXkLTde+5qv13+H72GYOpqm4Dlm07j9as3/hpciLIML/t2BYOPZBuuTLEWIUlqp45ouiUSCwtICiAFaXCOajLM4t4hHECYr5XJMTU2RTqebh0nTqGFbDSrFVVZXCs0uAAiN5blcrllcdvbUCc6fO83oyWMYhr7eZO00k4zi8Xj45zounh1+XpECJCEAP0CSBCRJbBrX/5+G9A1/iCAI1Ot1KpUStVoFz3MIa7h8FEVC0xQURXpl2qVouK7L5OQk0WiUZ555hv7+fiYmJlhdXeWJJ54gk8mwvLyMaZrceeed5LIZ2vI5OjvaaW9vb5bhqWr4YywWww88VFXm2LFjFAoF2to6kGQVL5AQRHn963awbR0/sAEXWQZB8Ghvz4f/BkS1MPI2cInHowS+T0TVUBQNRZUAF0UKiMVVolEFARdZktDUKKIIorBenLd+qGjRokWLFi1eD94QHoDFwuy9L7x4CNsWmZmbZXBomMHhIbKpFN/6m7/hkx//BCdOHGf37t2cPn2a2akpOrv7WJid4clHfsqmwV46c3H+5fvf5T3vugNJFMilE/zZn32DvVddw78dOokaT6Am8zx/6Ahl3UVTJDb1d/L5//xJBnu7uf6qa/jQh+7i4ksv58p9+2jvaKNQWKCnqw/TsIlEwtjL6toa8ViKZDJFvdFAUWRmpqcYGBxgbm4BUzcxTR3b8VC0CB3tHczOzBIg0qjVqFZrCIKE63roukEikUSWZRqNBpKikUikSaXSzC8usri0RCaZYGV5me6+bnSjgWEaSIJMrVqjuFokElFRFBkIqNdrLMzPMzM1ge97zM1MMT11gf7+foaG+rkwMcGmoWFSqTTRaIwLkxMU14rMzc6iShKKJGOZVlOXDhCJxYjF4yiq2oyvVBSFwPMgCDBdGwGheRCIx1PoDQPTMNEtG18Q0E2HPZfvxfUDPMdmrVhiZW2N/oFBvAB03WTrtm2Y65GQlUqFRDyGLEqYpkVXZxeHD79MV18/b3/ne7jlxjfz2Y/9Nr1t7dxy3U4Gt172+nkAfv2de/EkRClCW76HbKIDzw03fb4HtmMhCAGe5wJCM/rU9/3mhtd1XQg8fMdi/PwZUsk0utmgpjeQRJWhLSPIcjiB6ersIpfNsLK8zMzMDIoo4jo2pbU1At/Hd330RoNoNEKtWkFTNCzTRJUVJi9MYJo62UwagYClxcWw88Iw8AIYGdnMwUMHeOc73oHvCwgi1Bo1GoaBY9bwPBtV1Yinkqiygu86uK6LpCp4vkskGkFRY1iWgSwGWHYD3/Gp2y6+55HP57BMA8sK15hlWUiSRCIeJ5VM0mgYqGqEer3WjCY9fvw4vb29zM8tUCyusbiwiOu4IIDj2Nxyy83otRqJaIxsJkMilSTwfSxTxzENdMMgGo0gCuC6PqKSxPVsolGV5eUlKpUGS4VlIpEYsZhGLp8jGo8hSQqyKCEgoMgqpdIqb735RvRGA0WRUCSVWrUKvk9bezvxeGg0zqRSaEqUSrmM57kkkjGymSS+7xCPRfBdk3xbOx2dnUhBwO7du1segBYtWrRo8ZrzhpAAxRMpVlbLnBw9h+eatLe309PTw//4P/6CT33qUzz11FPcdNNNTE9Pc/fddyN6AYeOHuWS7VtYmZ5gz6W7+MH3v8uXvvhfWF5e5tTx48zPz5Nr6+JHD/6EVL6b48eOUzPACyAaj4Br8fff+iuMeoHiyjJ/+81vcMubr+fEkaNs3bqVp59+mq6uLvr6+lAVDUkGSV7XtEcTONYrufz5fJ5yuUxbWxumaVOp1hkYHqFWrxONRmlra2Niapqu9jYAIvEwmlAQBDzfRxIVfMRmc6ymafT09KDrOmfHRsOf1xu0t7dz/vx5ilaJmZkZKpUKmWyaYrHI1q1bsQwTU69jGTqJVJKtI5vJZzK0d3Vy6vgxZmenGe4fYHJycv1m2mN1dZW+nl6qa2vNSYQois1+go3o0g3ZCtC8xY7FYngiqIpGXdeJJxLouk46nSaZTDI1N8umrk4s28OwHMrlEnguumWye/duDMOgtFamu7ub8+fG8QnYtWsXqqrS193Nc889x0UXXcS502fo6R+gWqtjWQYP/uiHxFSFx3/xBNfubnu9li0A9XqdbGcna8trxOPx5o2/67oIhALy8Obf51WJrs3n2ZSqWOb6lMABBAgEAl+if3gI13WJRaIEno8WUXj54CEymQydbe3Isohlm5imSVdXF7VqvTllymaz+L5HPB6lXq9hOxbJZDdnzpxhdXWVro5OlpaWSCQS9A9v5v7772d2dhbbctCiCSwrbM2NJZKUVz0cw6TS0OmXVSQR/PXvwXXdpgSnVjOIRNTmZMC2TerVGl5AmPZkGcRiMRYWFuju7iYIAorFIktLS3T3DDAzM4PneWzfvp1jx46RTqeZnZ3l4p2X8MQTTxCNRsN43WqNe+65J4xJXSsir/dV2LbN5ZdfzkBfD2OjJ9HiKRqNBsVikUsuu4iDBw6zaaCfcnmNhmUgCBLxmEq5tILekJmcmgonfxENTQkP/QBt+fT6ZCcgCML3J8tyc5Lz6pSuLVtG8H2XTDaFLEsosogaUXE9yGXTRGMRfN+nXC6/lku1RYsWLVq0aPKGOAD8+unnqdUq9Pa1c/utb+ehhx5iamqKO++8k7GxMVRVRZIkDhw4wJYtWzh5YpS4Cif3z/Lpz3ycw4cPc9ONN7P/+Re4847bqdVqnJ6Y5tSp81y+90oKy1WS6W5KxgqxeJTKWhWjNMZTjzzMzTddzeM//Qn3vPdOrr/xZi669AbGXj7Gze+6k8MHD5NMxenq7CcqxJFVmaWlJeYWFnnTjW/FDXxKJYG52Wki8TRDm0eYWphjenae/uHNnD51Cmfrdi65+GJc128aE2em5xgeHg5vTyUJzwujMC3LYn5hAVEUiSdi4U1t4HH29CkSiRiT58ONW0dHD1s3D5HJZBgbG6X/4ovwfZ+XTxwhkUrLuQAAIABJREFUm86QSydoVMqIArwweoK77/4wtmnQ3d7BmbFTZLNZhoaGOHbiON2dXViGAbwSVSnLcjPhZ0MWsmFa3TgcqKqG63tYjovnQthuXCGVziLJMuVKhfb2dmZmZujo7GFuZpLoRtdBAKbt4CPQ3d2Nruv09vayUlzFNE2Wl5eZm56mt7eXubk5enp6aJgNPnzPB5mdOsvuHdt44PtzmKbJ8EDn67dwgWwyT71ao1a16ekeRAmUZrTrxo/gr09UpGYRmCzLzQ3jRp+D7/tomoasaKjpBK7rgy+wurZCT3cntmVw6KX9tLd3rsdfulSrVRRVpq+vD8uyyOVyTfO4YRgMDg6yf/9+stksW7ZsoVAokMvlKJVKVKtV4vE4q6ur/PKZZ9Akid/68IdRlTDbXwh82tvyJBNRps8fB8C1w88D2I6D40EsEcrkkskksZiEbZvrjdQKiUR8XS6TZHFxkUqpjEA4HalU6+FDFCQkWWB+fr6ZPHXy5Ek2bdpEsVhEURR+/vOfN/8dqFarvPmGN7G8Ugh9JpEY+Xye2dlZLMsiapt0dbSTumovqqpybmKKm295Kz/60Y/YvbmTtVqDdCKKpmkIgLG+/pOpFMvFVeRsaJA2jLCNWBAE/tOH76LRaBCJqIDffI+qqhJRZAb6e/B9n+XlZUprBXp7OpvdHn7gokViOK6H5zrIosTi/Cxnz4y95uu1RYsWLVq0gDfIAYAgTDVpa8vz61//mnw+z8jICEY9NNTeeeed/PlffJ0bb7wxvMnbtYOBfJJE9Foee+wXXHfddZw5NYqiaLz/A3fzm7/5Qaq6h6QlmJpfZWJiGs8PyKTjyILH2MSL4JvEogpjoyf4T3ffw6d/5+Mo0QSyAD1teYyqjmEYTFyYYmhwE65nUyuZ9Pf3E4lH+NWvnmDvVdcBMNjXj257zExNN9NwHnroIa7cdzWVUpHDh0uk0hkOHz3LwsICb77hJs5PjJPL5ULdvigxt7BIW1tbc5M9Pz/P0aNHkQKXeCyCUavT3t6O2tFJXW9wfrlANptFU2XWiiv09fWxc8d2qqUS3Z0dyKrC0tISXR3tPPTA/dSrZfp7e5AEKK8VmRMFfNdD13WMWh0I1jdtUjMBaOMmeSP9Z6OFOBKJYJnhJrO9vZNKuUYQBHR29bBQWKIjoqFGI8iyTHt7O/l8npnpKebn59l39dXNTVwsFsO27LBjoFSiUqmECTGpFOJ6d8KGwTmiyDz26COMHn+JtRuu46ordjM+Pk5b9vU1UhaLJWzdISK0IRFpeiZUVcW2XDxfIAhYf66vmII3piobfoAN2VU8HicajZKM51haWmJ+boaunk4mxs+xtrZGLp0iFtUQBIFGXUfVXinaajQaGHp4mFRVlUqlwuLSArZjkUjGWVxcpFgsUigUQjNtQ6dWq3H8+HEikSiNeoW3ve2W0AMgiYiCQKNWp1hcwXdc8AMCz0PAX49+jSN7NCNha7Ua0Wi02fQsICErIo1Gg4ZuomkaHR1dnD9/nt27d7O0XCCdTlMqlUilUpRKJXzfZ3R0lHw+v25cznHhwgVS6ST1eh3bsbj1trehKTL1ep3Ozk6W5peoVCrk83lqtVrTbN2oVhETMfZdcx2m6zOyaZDLdwwzNVugb3CQ0+PT1CvVsJ+iVmPTyBZqRxvNjg1LdJoFfs24Vjs0K/uC3/x9iqLgC6wfXsKJlCiutz37Ar4Plu3gBwGSCLlMCssJ2LZt5HVduy1atGjR4j8ubwgPwJNPPX5vNpvh4MFD3H777TzyyCNs3bqVaqXM/v37uf7669l75d5m4+o3/vReYkrA079+lvd/4N0sFZY4fWqMR37xOOm2Lo6fOsfE9ByVhkO1puMQoEoCf/eXf8Rb37wXp1rkycce57pr38RPHnqIf/yHf+LyfTfwR//9G9xw87XU9SqVhsW3v3cftVqdHTs3EU/EsO2Aof5uHvn5z6jWa1x88aVh66fnsbq2RiqVZrmwzNDQIIObNlMul7n/vvuo1+ts2bqNSy/fS6lcobhWZmhomJXVIr29fSwsLtHe3sHx4yfo6+3j9OnTEARkMylmpy8Qi8UwahVsy6S4ssxFO3agqQoCPps3bcJoNMhns/iOw9z0FOfOjDE7O8vk+FmWFxfp6uhAEUEWBNZKa1iWFbbsOi6u46DICslkAssKzc0bKTa5XA7WDb8bG9UNE7CsRWkYBkgSfhAgyhLVWg1FU6nVa0SiUQzdIJFM0tPbx/kzp9m6bTsLSyuoqkIimQRBQJEVduzYwblz58jmsvT19YVtwIUChmHQ3d1NrVZhaXGegf5OLrl4B3FF5K73/AaPPnQfn//E3ajt2183HfW3f/jX9+ZSaXxL4pYb34umKE0TsCCIIASI4kb+v/jvugA2YkDDxuUA2zJYWpwP349eZ/PmQSbPn2GlsEw6mSCdSuLYFnqthmPbSIKAFolgric2KYpCNhtOAAzDIJ1JYdsmiUScQmEJx3GbkaCZTIbnn3uexcXFsJDMc/jN97+Xnq5OsqkEoiTh+x4byq+5yXEUQSCTb8OzTDK5NgzDRInECYLwkBiLxTAtg0hEI6JFaKxLtlwxfCbRaIzi6hpDQ8MkEklmZ+fQLYvOri4uTE5SWFpE0zT6+vqwbZvR0VGc9U4M17W555676e3tIR6PYel1urs6mZmewvPC6Ylt21i2QTwaIZWMk8tm2bx1Gz997Jdks1m2d6cwRZVkKs3khWmuuvJKujva6GjLc/NNN5LNZVleWSGiaayuruL5NA8zH/3Ib5FvyyFJIhAgr5uGfT/s+TD0Or7nYho6ge8iCiAEIBDg+S4BAel0GlkUUNQI9VodBdhzxZUtD0CLFi1atHjNeUOkAO3YsZ1HH32UG2+8kX/913/hnns+xOjoCX72s5/xzW9+k2g0ypEjR8jlcgwN9PPznz3EzNQ0n/vc5/jOd77D8ePHefzxJ8nm8szMzDGydTvtXd0k4mm8QECVBYYHuolp8Kbrrw5ba5HId3eTa+vgD/7wj/n773yPa998Jc+99CKpbIZjx46xaaiPAy8d5kc/up/FxXlcNyzfKpUqXHTRRRSLRURRZG21iEh4i1upVZmamiKVStHb183evXtJJBKcGj3J2lqoExeEUPri+z4TExP09vYyPj4OwKFDh8IEI9fm+ImjXHHFFSQSoRxkdHSUxbl5jh09wuzMNGOnTvLrp3/J4UMH+MWjj/Di889RLq+RTiZIxGKk02lGRkaoV6phfOaFC+ubNQHXtZumXsdxmk3EG7fXXV1dzSKmjV/baCEOgqCZ1hPetgZIkkLberwp0JRrTE1Nsbq6iuM4DA4OomlaUy8timGB1Pnz59m7d2/YHixJ9Pb20tPX25SquK4b+gWKRU6OnkAIALfB3/3N17mw/txeL8pra8iSiG3bzWe0oQ1XFKV5e6woanPC8upJy6s/ILxNVzWZTZuGePLJx6lUysRiEUzTpFQqkcvlyGazr7wjz0UQwiK5dDpNpVJpTnBsy2FhYYnl5VVSqQzRaLSZlf/ggw9imiblcpm5uTnuuusuhoeHw7Sc9U3vhhFcVkRSqQxaREGRZFZXV5EkKdzQrq+hUP9fI6JFsW17XS4TIZ1MMD8/z9raGgcPvkQqlWRubpZTp0aZnLpAb3cXa2tFxAA6OjoIgoC1tTWWl5cQhDAvX9MUHMfh6NGjFAoFqtUqWizKkWMnMJ2wF6Ozs4uGaVCt1AkEWC2WEGSZp55+lvb2dgb7+vF8AV8UWKuUuWLflZRKJQzLRovG0KIx4rEkA/2DRCMxBEFCwEcUAnZevIu1cmn9gCySz7eTSKdQVbU5JXt1spfneZi6ju0Y6/K58P1MTk4iyyqmYSBJAnVDfx1XbosWLVq0+I/MG2IC8J1v/+O9+XyWU6Mn2DIyzLZtIzzw4P3su/oalgoFzp4/x+LCPN/+P/+KwDWRfJdsLs+3vvUt/uTer/K1r/7v7LniSg4ePoFhBlQbVeaWi9TrOnFV5BcPf5+hniQzk+PcdMdv0N/RgWsa3PXB38Qwfb75N3/Lps2biMXjXH/DzczMLVKum6iKSiQa5ejLo1gNgze9+Sr8ABYXCxRX1xgbO01/Xz/d3V2MT00SS6ZoGA4Li4sUlsISI92wkQWBhx+4n7NnztDT38vll1/Bi/tfYsu2bViOw8ljx9lz2R5+8C8/4NZbb6Wrs4Mf3fevZJIJpqemcEwL1/PwA1AUGce2iKoSq0sLOLZNKpEgGY/jezaVcon2jg4sw8A0DIrFIpbeCJNgVBUIEAglKdFEkmwuh26a+BubPVkmGo9j2TayojT16pIkEYggyhK26yDJIrqho8oqiizhOQ6KJGFaFtFIBNdx8EyPbCbN4SNH2Lp9B7OzcxD4TalLtVpFN0z8IMC0bBzHYm5ulmJxlUw2h7yesKRXS9x229s4euQw1155GbmEwva+DPl0hAcf+BE3vPNjr9st6i+e/dd7RRG2bb6USy++AU1T8YOAABBEiQABUVIIEFHkMDZTECAIfOT1Zmjf9wgCGdezWFiYo16vMjs5RSqRJJ9va8Zs9vT04Pk+uqHjuC6rxSKSJCNLMol4gsJSgfb2dpaXl9mxYweHDh0ik8nS3t6B7wdomspPf/pTlpeXAfA9n0suuYQ77riDRCLJrotGEAIXxwuIx2PrHhUZSzeQYlGM6hplAwTfo6e7l4reIEAk8MPUo0Q8TuBBsJ5w5PouRqPG/EIR0zAZGtmE7wekU0m0qEY0maRUKjE3N8fg4EDTSH/mzBk0IYLvCETVOOlElp0jnSQ0BdFzqRZX8G0dRfDo6cgTlUEWfKrFJbZtGcS167TnMhw6cICaXuHmm65D8G1S+Ty+q7J92y5EIUJHdx+JTIbB4c2Uaw3kiE8yG+fEyRMsF8vYgYbgmHz2s59ieOQiPEEAUWZ6cgrXDxBEGUGQCXw4evQYbfkObMvl1MmzDG3qZbkwR1tHDl/yUOMNEvEEviutx7WGiUdXXLG3NQFo0aJFixavOcKrM95fL+684/agv7+fyclJOjracF2X22+/nSNHjvDQA/eTTsXYs2OEl/a/wF//9V/zx3/4x1x55ZUcOnSI9s5eZufmWCmVSKUyOK7AwvIKXe0ZPviOW3jpxad509WXMTS4mYgcYXV5mbvuvpvHn3yCRKaNP/nK1/jwb32Ep554jFgsxvT8UliSFYvTaDRYWlpGURNUqmU+9pEPcdudb+N3P/V7TE7Oc/vbf4OzZ8+yZdt2Pv2Zz/CNv/wrhoe3UdcbPPfCfm57+x0k0znqNZPv/fM/4Ri1UCtt+rz9He9gdqnI1de+iaW5WTZv3kwqleLAwZewDJ2JC+fJZDKk4glSiSTTMxeYmrpAMhqhu70DRRI5cvgQ3d3dLC0tNcvCfN9nenqaZDKJoihUq1VEIVjf/IdIkoTrugxuGmFhYYFoNEqxUEBVVRKJBPJ65GcQBCiKgqqqWJaFT2gA7urqomHUqVbrJBNpJEmiVquFrbSVMrFYLCwTq1tIioCWSOB6Poqi0NnZydTUFJFIhEgkguv6rK6usmXLFgTCxmdVVYlHI7Tnsxw5cpiIrHDRtm1ct28393//u7zt5ov54sc/hu+JPPfrX/D+P/hn4f9jef3/yof/25WB6MWwq3H+++9/B02JoSgKhmEgijTbf33fR/CD5m3/q42/G1ISXV/jxeefQVVEHN0iEomQzWYpl8tUq1Wi0eh64o6G7/tYlkVbW454PN6cRsXi0eZtvOd5zM7OMjw8zKOPPornebiuSz6f593vfjcLc/PNddPV0caW/q5Q8iNHkAQb3wcBhUa9Ti6X4sCzj2FLGnLg0zewmUxHL7ploQQWlmWRzWbB82jUq0QiKo5rISJwemqRSlVnca1OLBajWi7jOAbjZ8fYc/EOSsU1FEmgq6uTyy+/nC1bthCJitTqFQqFQnirLqQRhLCbYsMAvZGkZDt6U6bmuhuTGInAf2VitbH+VTXsrgiCgFq1wdz0MoVCgZmZGbZs3slTv3yWs+cnOH3uPNFowCc//SmGL70GOaKiaeFEp1opIQkiirjeiq2EhmvfcQlEAcEPcNw13CDsh7CFgEAqInnDBJaE7/g4jket2uB/+9xnX7e126JFixYt/uPyhjABX3bZbg4ePMxv/9ZH8XxrvRHY5ddPPcHDD97HV+/9Yz72sY/wgQ+8D0EQuOSSSzh9+jSSJPHC8we5aNd2qqbDWqmGodsoItTKK1x++Q4++8kPc/LoYfKdPfzj//wuK4UlJqZnOHHiBF/80u9z6e5L+NnDPybX3ka9bpDJZpFkhUqlTKVcxnVMIlqC9lyeP/3a3/CRj36YT3ziE4hijAce/Ak9PT08+uijXLbnCgZ6+2joNXq7++jo6ODA/pfYtecKsrkObrvt7Tz68x8T+D6JmMyB5/+NG259O48+8jCf/9znmZyc5Pnnn2dgsJ8L4+fp6+6iXC4zvjCPUW+w7+q95FJJyqUV0uk0E+fPNcuQXNdlaWkJSRJIJpNomoJl6tRroVE3IMCyjGYyy4ZUZW5uDlVVKZVKTSPqhoFyQ/OvaVrTCBkEoTeg0WigmzqxWAygeVAwTZO2tjZqtVrzkLHvmmu4MDuL7biYpkm9XieZTBKJRKhUKvT09BGLxSiXy5RLq1x66aUsLCwwOTHOmbFRdl60nXfceQf/8O2/58KZA6iewW++7z0cP3qQmZl5rti983Vdu9ViiVwyHhp+g3BTv5EqY1kW0Wj0VcVfNJ+9qqrNwrWNQ/hGcdiGnr2jo4P5+XmCICASiaCqKr7v09kTJicpioJnW9i2jed5rK2tIZVF8vk86XQYW1mv13n44YeJr7fOVqvVZjHXwMAAuq4jyzKlUhGrI002m6Vh+9RrZVLJDJalU6+XGT11hMA0UTNR4lqaoU1bKNV0VFnBsww0TaPRaIDrosgijXodQfBwHI9kPMLps2eQI3lmp8ZpS6dxLJ2Y5NPdnuctb7qOPXv2UKmGUrXV1VUi8RyxWBdbt20JD82e3ywIUxQl3Hivb+odP/ycJAvN5+t74LoeUgCuZSGKoUwJ38d2zDDKliUGBiIMDQ1x7bXXEo2pbN8xwK9+9TTjf3EM2QHHrOMFPtHAQZUUarUqgqiiRlTw143zsoQouUhy+E4jcRUVHz+I4LouKS2K7crIUhoncLGxiaoRyhspSC1atGjRosVrzBtiAvDlP/hCUCnrXH311Rw4uJ99+/YxPj7O22+6hocfvI9UVKFsuzzyyCN85KO/w4u/eobOzk5+/OOHiSVzqNEIxXoD2/NRPR9FdPj+P3yd7u48f/9/fZdPfPR3GD07wZ7LdlFcKdDXO8joiVPMzU5x4OVD9HT3cmZqLjRPOh6GYaAIArlcisA1kOQ0viDi2RbXvflKst39fPEL91KqWtx+241cctml/PjHD/O+970HxxN56eAB9ly+l9W1Mvm2bi7MzLNlZDsPPfhDPMukWlzE8Xz0QOWa628AKcbOnTvZv38/Db3K3iv24Jt1zp89Q71aQ6/XqVUbDG8a5NTxY2RyOVRZQm/UMK1wA7iRxLJhLvVcF3f9IxoNjZ/VahXX9ZtlXobtcfPNN/PII4+QSSSaGnw1EmkmnGxo2gEEScMwDIaHh1kszOG6Pqlkhkaj0YwNVaPhf1sul/FMDx+XbEcHqhZBEATa2tpYWloim82yvLxMR0cXruuSTCYxGzXOnDkDwGphiXhC47prr2H83Bg333g9bQl4x617GT95BsldpaMjh+goXPGhr71ut6hf+PL7g3R+gLGzS/zRl/8H2vpt/0bbrrJuChZFEd/xmzGqGx8bfgrwqVaXOXn8ZVzHRPIFYus+jkqlgq7rtLWF07FiuQLAtm3bmJueYnl5meXlUHKGEMZxLi0t8fzzzyMIApVKBdu2WVhY4gtf+AK9vb3MzMwQeH6z9TcdV9m9fVP49SpxRM/DMGpUqiWSqRSGlKWyNEsDm6ikEdg2He1tTE6cZ+vIcLPYy6pVScY1TEtH01Rsy2PNNFherXDy9Bx3veMt9Ha3UywsIMfTxHK9qJEEcjxDIpHA9/31g47dbCUG0GSFIAh9Fa7jg/CKb0IQ1Ve6F9YPsgCSqCIpEr7gE7he0+OiqBKCEKDICh4iElBtmChyBNfU8WwdVQxYKi5TmTtLPhvH9CRWqyZVR0QXYjT0Mqqqosoyqiw1vS+O4+B7FrZbwzAaxLQYuDa+GyMIHJBEAl/CNG0KhRW+8Lnfa00AWrRo0aLFa84bYgJgGCZdPZ1U6xVm5ufInTnFP3z777gwdoAL5y8QjcQxLZ3f/ejv8k/f/wFzUzP4Plx88UVMTU9jeAq6buJYPk7g8P1/+FP2XHYJ9/7RV7j1rbdz308eZnp2nkq5zC9/+SS33HJLaLYtLHDzzTdTqzWQRFBjESTLw7dtJFFG1016u/JEtBiLiwVULcnjv/g1q5US2UySUt3i3PgUJ0+fYbW0hqZpVFZr1Gs6jh3wwAMPcdvtd6DrOqOnjnPDLW/n8KEDCI6LFlWJJtPUl5e57b3v5rkXXmLbjhFmxs+xtDDLYG8PXuDTqFQprRbJt2VZWZynvb0NyzLQLS9sD5YEFDncVEqCiK7rqEqk2TQbTyZQFI2RzVuYnp1hYW4eBAG9bvDO936AsRPHyabiiJKComnr5lGXWEzF93yi0QiapmHbNqZtEomoFIsr1Os6qVSKTDaFbdt0dXWxsLDQNMN2dnbiOy6TUxPE43E8P9yYTUxM0tPTg6Jo9PYPsloskEgkscwGo2MnGRkZYW21SG9XN4l0jOf27+eioU088egv+PJ/vovFiXFco8zgwAC1Sgn5dbaxX7LlzZyeOE9CSRK4Np4fAAKSIOMhYFsekizieQHiegJQGK0qEwRg2xae5+BLAgEimhYlEY1QLoZpTSsrK/T29jI1NUWhUCCWTBGJpYhGVCbHz6NpGvm2HKIUNveurq6wvLzE2toajmNh26HfYmhoiE9++rNUS2VWl1cQEUimEkhqFDlw2LVzC45tUtd1FCfAd22q1TK1apWYplEpnqEtl0EzHCJxlSBI4gsKPYPD2I6H44TZ/5lcFs8Nfx44Ji4+EQn27trOnp0XE4/Hqeg2qZ5toESJxVMgyYgImHo4SbAME993ESXQVHXdAyEiIGIa4dREkhUCwgOW50sIgk8g+BCIKHLYZWGaNmKwnsYjbiQwiTh2eBiwLQtBDg/NkUgEARDUKIoS/p25jiiJZJ7As7DLK2hmkaGkimPUmAosVDWCbbkIYoyyaaEEHnFFCt+97CNFPEyvjug7aJpK4Cv4jo+qaViWg/IqWV6LFi1atGjxWvKGmAD8+de/FgRBwOHDh9m6ZTMXbRlgaWGRm2+5gS998cskExkiqsTs7CwrKyvNcb7rutScgHrDIh2TSMgC99z1dr70xf/CN/7sz/jPX/yvfO8f/5lyo8bvf/FLHD38MiNbN/Pyy4c5efwE2XScWq3BwsISSiQ0pRqGQ13XsW2XTZuGODV2ElVVyWbylMs1Go0GdUOnrptYaDTqBmvVBrGYhqqqKJEod9xxB0eOjYZ6Yd0gmUxxxb6rcQWFuqEzNTbG2dOnUEUQ8InnOsi1dXLy9Gmuu+YqRFFkcmKcfC7D2mIBUzdYWl7C8zyi0SiGXm9KRzzHRlVVent7cSyDeDzMe7ddn1gsRhAERBUZ23VomAabt+1CNy1m5xfJZ7LojRoxRcBDbDbZ2pbblFcoioLrukQiEWRNxTDCJtdAoCkfiUbiYQSjZdHW2dFsd+1sz7NYWCEST5BMZkgmk0SjUU6fPk06nUZRFDZtGmR0dJTBvn6OHj+C7/tcuvMSlgsFVkqrZFJxFAI+9/EPc82OHH/9F1/l47/zOzz7zNPsvmQnlmFy3Ue/8brdon73f/5dsFpZQxA1brrlDqLJDIEPQSAgCTTTdGRZBolXJFaej+NYKIpCsbhCrV5GEXxeePYZFFnAdzwikUhTuhMEAdu2bWNqaoqR7RdRr5Q5euRlunt7SKfTTWnV1NQFnn/++WZCzdjYGb70pS9hmiaO7VIpl8hms6STcUqVOj29vcQw2T4yhCRr6A2TmmEhqFL4zkWZwuIcXdkUkiKzvLJCeyaO6ysYlofuGKRSidDQrev4vk8+E8duVBFdC1/WGNxyEbYboETSyEqaaDSOICt4gYukviKB2rjR3yAIgqYsTUBq+iZkWSYQwLbDDglVlJD8OqZRJ53IUCMChJIqQXzljiOU6wjNCY0kvpLfHwQBeK+8H1mWm3+3ZVkEkoRtW9iWgRS4eHWDqZnTxKIqjlenZoCgJqh7Mr6sIuIh+g0Ubw1HjJOI57EMgUgsxrn1JuaYKvF7n/xUawLQokWLFi1ec94QKUAP/+She029gSZLfP1P/4RHH/kpV15xGT975FHe85738uIL+2kYDWKJBGfOjuM4LqIkU6vrKNE4vmfxT9/+S770uY/Q1pbnsV88wUDvECfPnuXWO+9kubBCZ0c7eqPGE088Tj6bY2RkhJPHjpLL5nBsm2K5RDQSw/M80qkksiqhqDKuJyArGn4A9VoNURTJ59vYs2cPxdUisqqiGwYRLUYArBXXODl6knK5SqFQIBqLMjM9g6YqmJZBd08vjhewtrpKtbSCiEtnWw+KJNPd1cn5s2eYnJjAcUzikSi2aaIbOoahN3PjIWgWdLW35Wlvb2d1dRUCn0qlsr5hCnBsC9exaVQryNEIqXSWnZdeyaWX7eHSPZcxevwYjmkRj4dfuyAIGIZBPJ5oyiiUVyUBWbbdjOb0fJ90Oo1lWTi2SyKRCFtt1+MQk8kklWqN4eFhVopraFqEmZmZplSlWFyhVqlw5sxpent6eGn/S8TiUTKpNNVKheXCIoIArqmTissEVgWvNs9Nb3oTiXicl18+TC6fQxICBvfc+rolqRw5+iGUAAAgAElEQVQ5fPjeRCLO4tICJ06eYmB4ExC2y5qmQRD4BIGLZRlYtomuNzBNg2qlRK1e4szZMcYnzrMwO8Hf/+232L59BEmCTUOb8X2f4eFhpqamCIKgGaHqWiaWaRLVFAwrlH9lMhkeeOABzp49Q2dnJ/V6HV3X+e3f/gie51EsFrFth1QqNP26jk1Xdw+Neh3fqDIyOAQC2LaLosXwRRHfh7n5JURRJBVV6eruQjcMVoplJmcLWJaLqskQeLiuQ29PD5brI7g2iijQ2d1DrmOAqgmxZJ6uoa0YboAoCYgCKKqEu96G7Pt+cyO+UZC24Z1wHAfP9Ztr3jRNPN9r/pphuEQ1iVg8iut61K1XIlW9deM1hAcK17MIBzEBnueEAqAg4H+x995hct31vf/r9HOmz/a+WlWrWpZsuci4Y3ABbKoLECCUS3kSbi49DhYJIaHYhISEEAgtQABjY2MMNq5gY9mSrWJJqy5t353dnd5OP/ePszOy7/3j99fP9vPceT/PPiOtRrNnZ7+z8ynvIiLgeX7z6zfgOM6S5kBC0lQEUcUXNHRNo6O9nWg8iSooKEGAiM+xwwcQJR+8KPl8jUCWqFV9JsYzFIs1ZhdyiJKI69ik4wabz97ccgFqoYUWWmjhZcerggJ09PAojz/8CI8+8gC333Ybzz67k3rd4r/+66f89Cd3Yds25247L6S3aCrp9m5s2yaakKgUCvz+3h8yPnaC73z3YT74gY/xy1/+lsPeJIlUklTbQaZn5zh67AT33XcXUV2ju6uDQ/v30dfbjed56KpGZ3s7pVIZXVNQVQVJDujp6mRycjIUTiJx9sb1VKt1du/ZjyQpxAwZRZZw2pJIqsHU3DzxaBQjGqFuhfQEq1rhkosuZNeevWxcexa/P/AC687eyoZN65k8rZPNzHHs+JElYaiCoihgm7iuyPT4OIVCIZyyLznABEGAYRjNab0iiczPz4fe+k44TAzddWyCINwC+HqETVsu5Mmdz7B8+XJ+8pP/QldEAsclHoshCCKKIja9+yVJavr012q1pvi0bp3JAxBFkUgkQq1WQ9ciOI5DLBajZpmk02mKxSJDy0bIZDJISli4NgKeTNvFNi2SUQNFCKgVi2zevImpqSnWr1/PE488iqFJ+AFsPXsjG1YkuXDLOtpUEy1QKOUL5PN5YrEYyis8P02n0xwa3cfQwAD33/9byuU8nW2dgMjpUycY7B8gEHwsy0GPRanXQ5rL1MQYGzasIzM7x4GD+7nhjW/i/e99H7lcDlUKC2HTNBkbG2NkZATf9xkeHmb37t3sOjxKMpXmrPUbGE4l+ed/+UbTGUfXQ7ra5s2bWb16Nfv3vcCKFSuQRDlsCq06ne19jJ86TtJQ2b//IBtXj/Dlr9/BLTe/g+7uXoQgQNZ0fF8gJvagKAqHR/dx4vRp4qkkkbZuhpNDRKNRbLuEEjhoso5ZtehMtZHQAgLfxVFSOHKCjq40PgGW66BqAb7rIYoCdTt0w2mIzRtuSC92+HGcJSG7LzRdjGRZJhaP47phsFmAgu3WsDwPUYoQiwnNrYIsKUC4rdJ1HZCQpDBXwLZ8RMFsBrepmtbUawDNRsS2w/RjSRDRBIjoCo5s4NoRBBcMbQC9LY/km8RkDUHy+ePO3ZRtmFbiOLUyxWKRSCRCIhHn5MwUz+/exXnnbIZ3vRKntoUWWmihhf/X8arYAFRKhR3nbt6A7zls2LSJiYkpBFniyOhRRkZGGBoaYt/+fZw8OUkiEWV8ZoFoLEqtXufBX32PyVPHyC3mmJzN4ToSe/bu4bbbb+fQ6CgXXbQdL/DQdRXbrnP1665kbnISIfCJRg0gfKOvWw66ruM4YVBWR2c7Bw8eYOXyFXR3dZJOJfBcB8MwaGvvZPfu51BVHateR1UV6o6DZTs4tkvg+4iySrlUolatcvTYMarlGq5Zw6rXmF2YxzTrFMslIpEYsihi21Yo2nUs6vUanuNhWxaqpjVpCIlEgp6eHkyzzurVqzl69CilYhHLshBFEVkKi/ggCBAF0DWNet2iVKkzky9hROMcHT1AtVQkvzhPe1s7QeAjSQqarjWFv0FAUzDZEAB7nocRjTQLNN3QKZVKYZCY7TYDkBZzWeLxeCiGDAIs20bTI/T29DSbGct2SCYi5BYz5HNZBgb6GT1ymOXDI5w+dQpD1TDNKsuGRpifm+TGay5k364nGerrRkMmEomw89mdDA8PoakSfRuvesWmqJ/93Gd2KLLAiuUj9Hb3cmj0AHfd9d90tLfTnoxj12uY9QoRXaOtLYVIwL49z3Py+HFkUWBosJ/zztuCKqnoqkF/bz+xWJxcLsvg4CDt7e1MTk6ybds29uzZw8TEBO0dHahGhErdJJdbpFgoNKkriXiSq69+HSuWr6BcKjM4OIiiKLS1hSm2yUQc17ZIJ+JYtRJbzj2fADCiKhFNoVTME9Ml8D1kJDRZxLJskm1pEqk0oiSTTqaolEpoqoQqQzKexjCiGHoUzzVRBDcMvFJi6PHw/0QiBvV6DcFXIBBxHZ8AmgW353nNYr8RFNf4MAwDXTPQNI1oNIokSVRrtaXi3CawHVzPwg8CHMfHdeylAK4Azw+3ZY0tQ6VSRxIVRFFGlhVcx246L5lLr6OGPWtDRwPgISKKMiISfuAhBiKyIiOrIoIYIAoiQSBjxNqQFY2BnhjJhIoQaHR0dNHf20t2cZaTRw5h1atoqkJAwBvf8KbWBqCFFlpooYWXHa8KDcBnPvLeoLO/l1KpxJ1f/1cuuOA8Dh06RCqRxvd90uk0pWIFJxA4PT2O5KtsWdvDxz/6IS64cAt33PlN4vEeFDngwKEX+MevfI1///a/sZAvsPW8c3nqsUdpT8d507VXM3ZqjMBziUcjiH643i8Wi8wVKhiaxuzMHOlUElkWqdTqaIbBiRMnwilh4FGzIJbu5tDRI4h+QCoRJ5lMcuTkBPO5ErUgLMDxA4JAIAic5tTccuwlSo3KwMAAk5OTdHZ2UsiX0PWwoLYck0AUiElL3vuayjlbtrKQzbNs2TJmZmY4vHcP0ZiBIAS4Zh1BEEilUgSB10zuFQUBz7ZZffb5jM/O87o3vZGudDvf/+Y/IYoiyWQSx3OJRCJhkRNILynGgJckBYuiiKjIKIpCf38/i9k8lUol9LEPRNra00xPj5NKddDf34/neSwsZpvT3Lrjs379WvY9t5u+ZcuYOn2S9WtWIooic3NzuK6LFwTc8tY388P//BHbLryIZ3Y+zPe++bdMj+7kgnPPYTEzRVJPkssv4hJeY0SLsOmtf/2K7QF+8l8/DgzDQFVVDh8+TIBDOp1esvQMeeSOEzaXES208lxYWMB1LGQ5TNWVZZnOri7K5TKxWIxkMkm1UmFubo5169YxM7vA/OIihmHgBy5S4FOv15mamiKbz1IoFFi1ahXj4+PccMMN4c9fFJmZmWFkeARZlsjmMhQLVUZGRkgkEliWRXs62Zyod/QNMX3qJLIU8PEP/zlrhju44dqrUWSJRDTG9kuv5NChQ2zYsIF9Bw+xeu0mAmR8UaRcrWDV6ux/7o+YpRne8PYP42pJ9GQaRU0siW/DJtInaDaXjc+/+M+NzZMqh1af9Xo9pAepSnN7ElKBlObjsNT8NCb3giA0U4wFWWB8fJKx8Rl0I80F523iqaeeYvny5QwO9mNbZRRJxjCieEs0JNd1m6m/jcdrbMUa269APLMJk2UZWVIQRajVQm1SpVTEqWVQ62PMTBWZddOkkwKLCwWe2fk83b39PLP7T9xz969bGoAWWmihhRZedrwqGoD//t63gq9//eucd/42HnroYSzLorOzE9+DyclJ4vE4JcvErTsogsgX//rDDA71Mnr4OG9760187ra/5m03vYMDBw7wjpveycWXXM7DD/+e5/c+RzabpZJfJBbRMMs5RoaXYdaqxCIGoh9aDIqiyNzCPIIg4XkSg8NDTM5ME49GsM06d911F5/61Kf4jx/8kI2bzuPuex6gb6AbUZRZu2Y1jz7+BB1dfcwvLJIpllEllbrlhg2AFE4UHcdBkBo+++FUsjGtbwgcfd9HVkSiqs6yVStItKWRdYPB4WF+8b3vE08mcG2Has3ED1xs26S7vY1qtUpXVxfZ7AK2bWMYBqooEu3o56YP/AWFXJb77/kZpVwWVZab1p6GYTS95wWklwRTNewrAVRVRRAEqmad9evXUygUyOYKzUTfdEcn9XqVXC7H0FDYpIiiiKYb9Pf34/s+5brJ8GA/xVwOWVV4+qknWTEyzMzcHJ/5zGf413/9V849fysXnbeNn/7oh5Sy87z5+svRKHHVhRtQJJlqIUd7oo0XDuyjq68b06ohaDG2v+P2V6yI+uH3fxA07DwTiQSSpKHreqj/0CR0XW0WkNFolMXFRRRFIZ/Ph/SVZm5A6N9frVbp6OigWi2H4tMgoFwuk0wmkWWZUqnEY48+TLlcpr29HUmWueKKK1AUhWg0yszMTEjFqtUwTbPpyuT74WTc8zxGRkaIRCKkUikmJibQdZ1apdQMj4vH4/iyQuDYBJ6DY5kIBLS3tzM2NkZ3ZzunTo4RSybxA4FUWxJFUjm291He+obXE0R6yNsy7X3DBI7Hi3/HBMKZ7VLDurNRXDem/5IkIRKe0ca1266zROFZgnCmYX3xlqoxzVdVNdQO+E4o9kXiNw88TDqdZP369fT0dPLlL3+ND7z/PUR0Bd+zUNSQ0tagwYmiTDQapVwuN6+1cU1u4DebFlmWERCbf9dkDS8QsCwfq5rBr81TmD/BUy/MkyvMYigRapbN7x95kD888XSrAWihhRZaaOFlxytsohji3//jO2w9bxsPPPA7Otq7GBwY5sTxU5yemMDxfeazWTxLRgo8DM3mg++5lWQyTrqtg5tvvpVPfOJTJFIJHn3sCT792b/mou3b+fo/fYN8vsjsbAZRFMlkMnS0dzWLsUZRoijK0hu+ghGJUKpU+eod3wBB4uDoYTo6uviLv/g49977a9769pv42c9+wTnnnIMiyciiwOjoKJKoEIlEOHfrFtauHOG1V1yKJAQEgdcs9Bto8I0bnv3AS24VKRTc7tu/n97+PlasWMHuZ3chiiKu7bykWNKW6EGSJJHL5UJudCxGsVgiV6qw+dxtFEol6tUylUIewfOwLZdYNIGAhFm3URUdgjPe9I1wqkaqMIQ8bNM0kWWZqakpMplMs4jzvJBeValUaGvrIB6Pk0gklvjOCY4fPx46BNXr/OnJpxgeHuapxx9n2dAA6fZ2rrnuWjaevYnXvu5q3v7Wt/LTn/+M0UMHsMwyD/3mbs5ev5og8BEJSMZC3ne5XAZAVXQENfFyHtX/C4qikEwmQ0/4pQTlhgi6vb2der2Obdu4rsvMzAyZTIZKpUIsdkZobdt2M9wqEomEXv/ZbOgqpSh0dnaSSCQQRZF7770XTdPo6uoiFotx7NgJPC8ARBYXc7S1dRCJxPD9UNDb2dlJvW4hijLFYhFN0ygUCjiOw+xcZklMX21uoCo1Ew+JUqFAtVrFcRwmp2eQjTinp+bo6h9GiaToGRohnmqnp3eQ8fFpDh09wfZLtuN5YVCcIAa4zhmv/kax3jhbjcK+cfYbDbBhGM3nopFX0XiOX0zPaVBzdF0nEAUkVUFSFZwXiYODIMBYyp+QZRkjopBZzLJ7z17uvf93rF67jmrdxPZ83EaoV7P4F9F1HdM0UZtWpCHOBLsJzetpNDQAdadCQICqi/iKjmQkkYQI+ewYvV2dRCIRTp061dxStNBCCy200MLLjVeFCDhXrPDQg4+QTnVgWaG1XzKZolAp4zgOkUiEDkPiH/7+7xjq7+Iv/+cnueraa/nC332FO7/2j0zPztLZ3cXmLds49/wL+fnP72Jk1ToOHjiEH3gEVoRVK1bi23Xq9TrpZALPsdFluSkmfXr3HmLxFEdOTrJQqjI9Pc1dv3yUVLoTJJGBkTX86t7f8JpLLmd2eo5sbpG2tjSm7TA9t4CmadTKJVJRg6lTx0gnk7iuR65mNgtC1/eWCpMzxU84PXzxNFPC9F0++9nP8tOf/pRMZgFECUOLIKkKne0d1OoWplWjv7+XhdmZMLxrKdE3FosQi0W56sZ38frrr+ff7vwqe/fsp689jW/IiLKOG0Ai3YZVqyOKMp7nEAR+6KnuhfaTjTTbhujYdV0q9VAQrOuho1BjMnro0AFGRlYgIDM6OkpXVxelUgkEkc7OTgRBIDM7Qywa4b577ubCc7dSs+uMjo5y6eWX8ba3vY0vfelLfObjf0G+XCGqilz+mi285bXn861//gq33nIzw/19+HWXWq1GNBollUqxmJ1nzabzXtGz23CJkSSJSqWC69mkkm0EgcfCQoZ4NBZO4k0LVVUZGhqiWq1iu+EZHx8fJ5Vup70thm3bJGIRSsUyyXQ7hVKZSqWCpki8sH8vlmXR1dmO7/tYlsWll17KZZdfycTEBOl0GkVRqNVq1Ov15qYBSWRkxSpSqTZGlg2RzS42rzebC7cQhmFQqdUwjBie55KZm0WWw2I7W66RautifjGLKIqMT06hR6KUCnmiRoS56SNk5mc574LtSF6dct4k2pdE1SQE/8zkv1FU2+4ZW9RGQd+g1gDNojjwzjQPkiThEzRfI6oeTtgjehi+pWnh990owoMX3deynLABtctccP657B89wcTEBH19fRw5cgRFFJicnORjH/0ghVwORZGbuQANa9tKpdJsQqrVavjYS/eDsLkJCF8rkiRhezZSUMFFwIjHCOwYXWsiXFWbZ3Rsnsx8nmIxTxB4tNBCCy200MIrgVfFBiAQhSYVolwuUyqVQnFfIKDrEUrlGje97QouOn8zP/jeD3jLO27hox/7BP/rrz7BqlUr+OQnP8nBA0f41b338eijj7Js+XKyuTzzi1l8L6CnpwdBEDAMo/km3hAcGoaBbduUq1XWbdyE7Qs8+PtHKBQK3HTrGzhy4jS/eeAhfn73PYyMrKBYLKIoCt3d3Zx99tkAXHPNa3EcB01XqNfKLC5kSCZitLe3N6eFpmlSr9ebU8LGBPPFYkNlqSiKJRPs2b+PfD7P8OAQK4aXoag6vgczsxmq1Sqe5zE1NdW0TrQsi5UrlxONRtm2bRsbztnKg7/7PaeOHqK7qy3k9gdCc/La4Ik3bhtOPw2nlRe7oTQShRubjEbSr23byLKMpmk888wzHD9+HEmSmJubw7Zt+vr6mtPYrq4u0uk06XSaPc/tZu/evei6ztTMNMuWj/Dzu35BdmGRdWvO4qorLuPhhx5EluAzn/4UmzZtYGJigvKSDevy5cuxLItkMkkgvLJFVLkcFumO4yxRdeLMzk1SKucQgtAOtFgsNtN8c7kcAKZpcuzYMXp6eujs7ARcbLtGpVIiX8jheR59fX20tbUxOz3T3CLkcjl0Xef6668nlUqRz+ebNrC6rqMoStigJRKsXLmySQNaWFhAlmUSiQSKojA7O0t3Xz+251OpmxixeHNq7lh1nECgWLUQdIO64yEEPnMz00SNMJvAtR2mpqaYnZkilUrx/J7nyC7O0Z5OogjgOnUk4UwD0DhboihiGEYzBblRNDcagmbq9FJzrKpqk9bT2Jq9WNTb+LcGlU3RwjPaSCZuOAs5jsPCwgJnn302nudx8uRJtm3bRk9/D8PDw3z3uz8EeIkDUWPLlkqlcByn2Qg3Nm9NDcLS9TaujUDBsX3kQAztRQWB+WKRmBolFtE4dOhAkzLWQgsttNBCC68EXhUuQP/4hR07GhPoYqVMvlSi7gS4tk9UdfjEB27kfe++mePHx7ju+ht4x63v4s47v4plVtiz7wWuft11GOkOqnUHQZTp7OphYuIEXR3trFt3Fq5loioSRlQnuzhPKp1AliTiiQSBIGA5DqoIWjTJ9Ve/lpUDHdQqeexaCReT6696HVeeu4HfPvoH2trbKJQqRKJxVvR1MX56jPHZeTo7wgmsEY2RyeQYGRrArGYZ7O8nphvkC1VESUQSFaRAAD9AkCUkSUCVdMQl6sGatWvIlyp4no+qKRRLNap1k/buAYrlPNXiAomYTlsqiWOFG42649ORiGFaVRQ1yiU33MLkiSPsfeZpbNdHVlWQJWRFRpKU5uRVkkUkWUIQBQIBcvl8mBysqkiyTLFcIp5MoGoaru9hOx4BAgECqqoSj8cpFAq4jsvw0BCaqiBIEh0dHUxPT+P7DhFD5+DBFyDwmTh9mkJ+gY0bNrF600Y+f/vtVEtl3vOe9xB4DtNjY0yMjbG82+DjH7yJ4uI8J44eIRqJ8oPv/YCtW7awemQ5C/lZCjWHO//5W1x97ZuIdSx/xZxUjo4e2iGJAq5j05ZOUS5WGegbxHcDcqUC7Z3dVOt1YokUrhcQiUaZmJpg2bJhRFEgGomRTKaZm1ukq3uA8fFpotEEjlXHtkye270Lx3UoFEtEojEkSebmm29hcTFLpVJlbm6eVCpNf/8AnucjqTKO6yJIItlcjrZkGlkSiRgauWIRPRojEk+wmC/gOg69vb3EYjGsWnWp2E0TT6SQ/YAfff97RDSVB+67j83nbCEeT1Ct1licnwcglUoxPDTMwX0HibUnWDE8AEEdVXKJaAq2Z4AoIsoiiCKCKCAKAfiEZ+5Fxb+mac1tBIAoSQiiiCTLS7cqrucjyQqapiNLEqIghJsCx8fQDPDBdzwCEVRNC5sBUUKUFSRFDjcj4ydACOjv7Wb/wVE0RWf04Ciu67GQzfHg7x9i9VlrOXDoEHuffx7XdTl16hQ/v+sebMcllU4jyQpiEGYpSCIIQYCAiCgI4TXhEwjgCwG+XcfAw5ISUDpJR0LiDzufp1R30BSRm29+d8sFqIUWWmihhZcdr4oG4M47vrYjEo1SN03KlRoCBpJg0xmD9//ZO7hg22Zm5mYYH59jMVcmlkrzvj9/PwcOHmL/oSP09g+AKPHc83sxdB3bDukW/T29lEoV+ro7GOjvIxo10A2NSqkMgY9tOSwuZvH9gEQqgeW6bDpnLSePH2JkeIR4PIkTqHz1H77Nl27/FJakMjU9zbKREe6/92G0oMYll17CQjZHJJJkMVfk4IGDXHbphZw+fQLLqnPWWeso5rKIsoTpLPGXl7jGoSBSRJBkNFXFdV1MAr50x9f5z+98l57O3iX+tkQ8FsXQFQq5RXzPXeLoB0iSSDyiYWgyQiTBTX/+AVRX4le/+iVm3UTTNEBEVTVsy3nJ9FKWwy1EQ/DbSA52HKfpLOQ4TnPjoGrhZNk0TWKxGEBzElsoFEJfeMfFNM2lnIKQXpFOpzEMAyGAjvY0Y6fH+MrX72D//v1sv+B8vvHP/0RXW5onHn0UCYf3vf31PPHY73n91Vdx7MgofX29DA8NkYwnKJTyiL7Jf97zMPuOnObG619P28CGV6yImpuZ3nH8+HEikQj5fB7fD5oiaNdzSSZToSBa0+nq6mJ8fAxBpKnXqFXr1Osmtm3hOA6WFZ7d+399H6ZpNvMAstksvb293HjjjZw+fZqzzjqLmZkZdN1o0lU0TWNiaoLh4WFc1yWVSuG7HpVKhY6ODhw/1I5MTEwQj8fRdb2pNZidnsY0TQzDIJfLYVomW7ZuxYhG2HzOOQiCQD6fp16vNx+7UqnwwsEDaJqGado88chjbNu8GkMFWQiQZQPLsUGQ8QMfX1QBAUGgyfNvhMy9WCvQCONqfEQiETRdD5OJZaXpvtOg4Iiqiu/aeG4dRfJxgxcHi9Hk9afTafoH++ju7KFQKOI5HvlCnnwuS6lYwLMttm7ezMT4GJs3beTsszfT1dXFypUrWX3WagRB4J577iWXy6MbBtFYPGyIBUK6UxAQLF2/z9J2Q1bwfHCCAK80hmRWGD02Ts0NUDSRt7/tna0GoIUWWmihhZcdr4oG4J//6Rs7isUS5UoV07LRBQdN8PjibR/jySceJRqLY3sishrlnl/9ho989CNc+8Yb6ezpYy5XZvXa9dz3mwdo7+wiGokwNXGars5OcgsLGIZGbnEeVZGoVEosLiyg6xptbe2USiVUTSOeSPLQ75/m7l89gCIbGPF2/vU7P2IuX+P0qdO8+9Y3Mj83yY/vvg9VVvFdl6/9499y992/YPvFr2FhPsNCyeTQoaPsff5x7vrFL2lLp9m6dROFXAHbMrHqJrF4DMe10TQFP/BBUFBVDU3XSaaS6NEIt3/xi9z1y1/RnmpnITOPpmnousqxQy9QLGRRVRFZkpqUkIihIwsCoqbz3o99HDWR4If/8m0EWUCUJRAENDWCKEqoqobrhs5HoXWhiOu6VKvVJvUCQNO00EFlibIRjUZDxyKEpkjY931Onz5NOp0GIBqNhuLWeIKuri4kSaJYLCCKIm1tbSGty7QIAo+VZ63hiaf+yNzsHPt37+a+e++hXi2SMmTect2V3HDVebSnU1QrJTasPYtqpUpvby/5bJaJ0yeJJtLc8cMHWLX+bAa6oqw558pXrIj63e8e3LHmrLVUqjU8P0DTI9iOS3tHJ4ZhMDExged5zM8vcOTIKHWzyvDwIJnMPJFIhOnpGRzHxXUd6vU6K1eu5PHHH6ezox3Hcejo6GD/wQPc+JY3MzQ8jGlbVMplCoUCbW1t6LpGsVigUimTSiWJRKOYpklnZydBEFCtmgwMDpGZX6Baq9HT04vvB/T09JLNLmJZ1pIuJh2m3UoyiUSSfCGHsDS1L5VLiIJAJBJpNiInT56kVqsRjydQtbAYfuihP/D97/+EG294HY5VRZcFBMFHEgXEwEORw01Sg/rToL81NgH/p9C2QQHyPA/PD4CG646IvyTa9TwPx/MRxABFEsP9lKy+KLBOeokQPxAFFFVhaGCQtWtWEYkamPUq+ewCv7rrlxw6dJDTp04QjRlAaJdr2zaqrtDX38uFF1yI5/kcOXaY3c89z4mTpxgZXo6mKeiaQbVeQ1KVlwicHR8ku6vp070AACAASURBVIKdP4FTWqTqCYxNzWH5Nrfc9J5WA9BCCy200MLLjldFA/C1r3xlh2ma4Ru1LLJl3QDvueUGHvzdb+ns7CSVbuOPT+1m5zO7KVdrvPWtb2PZilVcevkVuKLMwYOHcVyPummTXcjQlk7S09VOR0c7iZhBe1uaiKGRycwSi0dZs2Y15XIJz/OJJxKk0mnWrNnAre98J1/6hy/z8COPcfTkAhPjx7n8wm3ks3MQeMQ7+qlWqjz95E7e//73MJ2Z5a5f3kN7ezuZQhWBgBf270IUVZYvX8Ezzz4DgYgsK6iKiqrrOKaF6YQe47KqI0kyAmB7Lldfdw2/vu9e3vSGN/HIgw+hKAq2bZJMxaiVSwS+j6GGgseGi4zneEiqxvCaDfT0DfAvd/4TiWiEQABZUfABSZSbBVZj6i+KIqJwxtHEtm10XW9ytSORSLOIaQgsJVlp2kQGQUBXV1ezgGvcVzciTE5OUq/XaW9vo16vI4oiK1euZCEzj66rXHrFlfzlJ/6Ko4eP8NTjj3DNNVezds0aPvWxD/Gdb93JquEuarU6fT2dWFYNQQg1CqqsYFZLWEKER545jCpCZ1rhwivf9ooVUc88u2uHadmMjU9gRCLkckW6unsQBJHxsVPYtk2xWCSdbqOzs4PF7AKLi/P09vazuLhILBoPz4AA1WqV+++/n3g8jm2ZTVeh173+9ciKQqVaDRNll6bhnueRz2eJRAzS6RS2bVGqVEin00SjUWq1Gj19A9RNi1K5wsqVq5idnaNeNykU8pRKxdBFJwhIJdJomk65XEEQREQp1C9YlsWqVaswdINyuUwqlWJ6epogCMKEbEEAQcayTP6082k83+GN172eSERFk8FHxHUcNFnC8z1ESUaUJBrOoA0tTMNes+EQ1JjyN3j/gnDGk18UBXz/jIWoH4QTeEkUw6ZFUl7kYiX8H/z88Hzbro0XeHR397Bx4wZWjIywdesWhocG6Bvop7OzA1EMqUmSJCFIEo5jE4lEiMfjGIbG1OQk01PTZLNZBoeGQRRBkLAtC0HgRZs2mUhQwy1PkVuYYbZgcWx8BtNxeNetf95qAFpooYUWWnjZ8arIAVA1MVAFDVGEqy/ewo3XnM3JI6e54rq38fjjj/OG69/EH596nsuvupxjJ47y6CN/YNX6TcxnCzz5zPOkkklEESYmJrj+mqsY6uvlsUd/y99+/m94+umnGTt1mnq1xMXbzwdgcSEDvkvUMJqT7pEVyxifmqRScdm//wDtUY3OthSqKLBQyqLKCiemCkR0HQWRYydPcNm11zI7McPU5Dh/2r2PP3vnTex9YS+lYgXDMBhZPkyt6jIyNMwTjz2OZuhcsP0i5oslTo/PcPjYBLKkcPPNNzN66iSVepliJkNmboFINEG5VqZWKVIo5li/YjVjY6dIpJLUajUEISAaiSAIAldc+2bWb7uI//jG17CKFcSkgexJCJKI5XhEtEjT29/znKZwWJFFyuUyxtLzoGkakUiEer1OIpFgcXGxmSugaRoBIoODgxw/fpxYLIbjONRqtZBqsiTS1CKhb3pIZZFD55quLsbHx1mxbISIobBqzWrKrsOGtevY/fhD7Nz1LDFNQa/N88XbP43iV/jZXb/g43/xMSKawtTUBLoRRxFEaqUi173vH1CTCdJRuOkdF3LbHQ++Yl7qW7ZsCSqVCv29fWiGzsJClnKpSltbGx0dcQzDoL9vkGQySblSZNWqFSwszOP7AX19A3R39WKaNs89t4tSqRSKYSVwHAtZkFmzZg2CIhOPx0mlUpRKJerlUHQci8VIJGIsLCwQBAHxeBxRUZtWn7Iso2rhRqCjo4OjR482g99isRj1Wolly5YxPz9PvVIlmUxTr9eJxWIs5DLouk5PTw+lUom5qSl6e3vZv2cvY5MTXHLJJaFw33QYm5jj5//9fWqOhVkTSKgWV1+2mU9//H3oqkbESCL4MolkB6YSRYmkcJUIoij/X0JewzCaTWWDXiZJEoEk4yw5KcnyixoIEep1C0XVcF0PHwGE8Kw33IacpSwCSZIIljYtSOD6HiKhW5EoisRiCebn51BUiXK5jCRq4a0koesGoiiEmh0tTKOulE0Cz+f4idP8+qGHGFmxnGQyzcplg/T3daNKMqIIBA7+wglmTuymXJ3nvj8c4cCpRWpmmT89ua+VA9BCCy200MLLjldFAzDcsywY6rLYdt5adAH6Blaw+Zxzefd7P8wFF1zAx//Xp9ixYwfbX3Mx3//RD1m3bguDy1fT3dfP7377ML29vaH/uuVQr+e46rJLmJk6hiorbN64iVMnj9Pb1UVmboaRkWEss0Y8apDLzhOPxznrrLMA+MUvfsEVV1xBf08vu//0JKbjMrNQZHZqmuFlA3iyzu8feoi1K9cxMTnJsnUbyOZLLMwt8JZrLuexxx7DlyMMDQ0xNn6C17zmNezZswfbckkm09i2CYKPFwSk27o5emqS2//2dsbmy/zov+/m5MHnufjiS/njU09h1qroqsbs3CQjIyMsTE9TrdWIRiLYrkVbWxuiInHjTe/i8JFTHD90EES1yat2lwr+BqdflmU8z3tJqFS9Xm+GKzWqkCZVYin4SFiiALmuiyaJLOQLGEYUTdOaLkK259LR0bGUEzABhP7s+cVss6EIfJdVq1Zx6WUX8+1//w9uetctvO3Nb+H9f3YLq9acxac//G56DJubbr6Z//nhd3Putm3UKhVcxyKTmSWiKkQS7bz+1h3Ee9qxbQ9ck+989cNc/4E7X7Ei6nVXXhY0At0s1wFBQhAk5ucX6ekNqU+1Wg2zbpNOp5vPr+eH2QoXXbAdRVQoFvNn/ORFga7ubjo6OiiXy0Sj0SYdK5lMUi0WyGazdHd3IwgCg4OD1Go1ZFkms5gln88zODi4lO3g4Lo+bW1tS7oMEUkSME0bs26j6QqGoZGdD61sQ/etsFg2TRPf95vWostHlvGnJ/9Aur2dYrlCxIhy328eQFd0ZmensW2Teq1GLB5nZPkyZk4f4bzN5/FXf/luNDmgq01DURKIkko0kiJQYjiigmbE8GQVRxAQkBENA1VQkAWx6bQjig6yKC1Zbsr4ooQYQOC7+IHQTOZt0IgauRWNzQKcyeBwnNAa9MVoaBAaOQyu6yIhhCL7er05KGiEjEkiKIqGIMqIooQvK1j1Os8//zyz01OYpkky3UZvW5I+oU5MXmBxcZSZks7Pf7+LguVzxWVX8vm/+ftWA9BCCy200MLLjleFDahQLXLN1efTHld415+9j57eAVauPosdO3ZQrdV54xtvJJlMc9ddd/Of3/0+k5OT9PZ0c/jgIaKGhu+GiaWSJNHb28+RI8cxLYc3v/nNDI0M0d3dzfbt25uFbG9vLydPn6a3t5euri727NnDb+//DRvWriOdSHL8+HGiiST5UpXMYgFfgMX5BURZ4YrXXo2RSKAYBosLOQ6PHmV2eorn9+ylvaMT27YZHx/nrrvuQpbl0BnIMDh58iSmadLd3c1ll1yCJklcvP18/nbHbRw7dgxNV/jmt/6d3z30EF7gIQoBC/NzRHSDQj4LQGKJeiPLMqbjEogysmrw6MMPNwueRhGkaVqT2//iQCVN05oWjA3LyAaXuiECbkxfG+4sjXTURqhVwx6xUUQlk0l836e7u5tEIkF3dze1Wo2hoaGmGPO6665DVWXuv/9+li0f4d5f3s3Dv/stF164nYMv7Ofun/2I3u427vvVTzh321YEgWaoViSeYNnAAAcOHqatv4OK6SIGIcWiWCy9kkcXSdUQFZWqaWGaNslkEtd1w7A2UQFoPs+NnIV0Oo2maXR3d1Ov15mbmwNCC0rbtsM8gEQKy3Lo7u5tJuSOj48jCAKqEcF0XGzPJxAlHD8gmkhycmwcWZabWQONtOcg8KjXqywsZKhUSsRiMTRNYdmyZSQSCSzLap6NxnagVCyQyy4yOzPNwuI8qqoyl5lnxeq1pNPtGHqkSbPJZrMhnz/w0HWNyy67jM7uHgQ1wbN7DzM+k6NiBZiOj+PWEVwTs5TBKWWICCZ2eRHBLKLYFRRsAtPEty0EfGw7TC/23ADbCfAFGdcLEHwQBJCW7EPFAHzHRRbE5vcNZ0TFjY+QBie/xG4UzuQUmKbZpB81moJ4PI4e1RFkgUAMqNUrlCs1itUapVqNSt3BrtWJ6SpbN65i2/oVDHbGqWTnmJqdY990gcM5mHXaODJTx1d1alaNtlTXy31cW2ihhRZaaAF4lWgALt6U2nH5JReTiHVwcnKOX9//CEYkwbp163nyTzt5z/veR1dXLz4CP/vFL/jkpz7JH//wRzzbpbe/h4GBPsrlIlE9ynwmw8DAAIViHtuymV9YZPXKVUxOTbJyxUoisSgTExPYloXnWMzNzaFpGm+98QYMXeOhBx8kFo0wncmSr5hMTI7zsY9+jLnMImPjM8zMznHi9AReEOD7Aqbl0pZKYDkeNdOkVCoTiUTYu/d5JiYmGBwcZG42gyCIxBMhZefk0ePMLcwyPjvLZ277Al/4wpfo7+vlO9/9LhEjSszQmRwfR1MkNFXGc2xkSaZSqYR87XQbRizJez/8l2RmF6iXCkRiCTzPJ51OY1lWM132xV7ljaRTCPnmgiA0fc9fQrcIArwlSoZt26hqKKpUZRlRVggCmoWZZVnEluxAC4UCxWKBubk5RFGkXCyRSqVIJpNMjp1kYnyM/t4evvlv32L9yuXc98uf8cK+51k51MPffeajjB9/gZ1PPY1l1Uin27AtC1EUEBEolYo8uX+SfcfnCOWgLl4QcO2lW9l40XWvGI/677/0DzsEQcQPYDGbQ5YlyuUKfX39eJ5HsZRf8uvPIisytm3R398HhD7wAiBLUtOD37ZtvMDn2Wef4fDhUXbufJpMJsOxY8eYnZ3l4MGD7H5uD4cPH0GUZDRNJxaLk8nMMzS8DF0L04OLxeKSTsBlYGCA2dnZJqc+m81SrVaxTAeEgNnZGdKpFA899BB9fX1LzkAaz+7axaazz2b/vv0MDw/jCyKqHiVi6Dz99DMcO3acSrWO61j4vsvmczbzyU99kuz8HAM9fZwYn6V3qI277/4N993/KI/9cT8XXHQB1Xodx6kTeHVsq4xrlvHreTS7iuZ5iJaJb5bxrCqBUyUajwAiPhI+EpIgoYjB0tZKQBIFCMItliAIEASICChLFqKNhrZhf9vckrnuGSehpc81mmBRFJGEMA1YVVVkRUbERxFFRM/DCgTMagWzXqZazBD3iwTVeaT6HHF7jvt++h2e3/ko69cMIaomWnKAk2MWkbZ+0l1djB46TE9XP1de+coJ2FtooYUWWvh/F6+KBuDH3/7HHd/97o+57o03su3C7Tz1p2dxfZEPffDjnLftHC68aDu/+vWvsRybD/6PD3H4yGEEX8TQIhTLRer1Go5jk0wl6ehoZ3JynFSyjcWFebKLi4yfHmN2bo4Tx46RSCfRNJX169exa+efGBoa4tixY8SiOlNTk8RiUTzP54UjJ5mZzbBhzQr+68c/ZXxikkg0RqVSQzMMbNshFktgWg6xiI7reWiqxpo1a5bSctWmALRSqaKqCkPDgwDs2rWL8y/YxoatF3Lo6BiHD45y60238Mcn/0TMiDAzNYks+EuT/JCq49gu3d3dRKNRFENjy9bzWL1+M7+++x6EwKNUd+jp6mRqaqpp9RlagIbTzYZgsrEB0DStuaFQVRWPAEESkRQZz/dBFEAQEAgn2JZl4bsuiqaRSCSbglCAbD5HLBZjxYoV5PM5BgcHURSFRDxOJpMJrRwNjVtvvYVEIs63/uNbHNm3lxMnjhPVBL7+tS9TXBzj7267jZHh5Ww9b0sYzlYqUy6X6EynKFs2n//qDxEUDUUSgABJkbnmki2sv+CaV6yIOnTo0I5yuYwgCHR2dmJZJq7rMTQ0jO97EIAR0SmViriuy8jICLZtsbgY6gBkSUIIAjwvpNr09vZyenwMQQzo6u6kVCoiy0pTnB3y/s9sXI4ePcquXbvYtWsXhw8fZnT0EJlMhvb2dsbHxwGBaCRBqViho6ML07Tp7OxEFEJ6WDa7SDQaoVIqMzQ0REOML2s6w8tG2P/CAVavOQvbMuno7kWSVcZPnWJhYQHH8cLsiIiGZZtce+3rWVhYpK+rk6f++AdGlq/i5Mkj+EhhHoUSYfTwEc5av45ACPB9D9d1EAIfx7ZwPBvXtZGFAAmXwLMRA59yPodv1oloCpLnIKsS+B6B6yEg4CMubZrCXA0QmkW8IJ0RATeoTeKLmoIgCFBVtflacRznjD2pKDXpQo5tIQKSKKIioisBilfFEGzSqktENBHcIk5lAV3xKZdL1Kw6a9euwRA8nnjyWUZGVhFLJtD0CG+67gYWFqa57LIrWg1ACy200EILLzteFRqA6y/eENz++c+xYvlybr71Pdz2+R185CMf4Vvf/Xd+efd9HDk6RldXG4v5At1dvdhVC9t1aGtrI5FO0NPXy8mx01iVGkEgkkykcaw6mzauY2LsNL5TwzRNVq5cybFjR9iwbg1WvUx/bwfj4+NcdNFF7N75NOs2buCFvfuo1MIi7pxzzuGJRx8D2UDVdUzLZTGXp5AvhV75skKpWCYgtDPs6OhAkiRWrFjB9PQkoigjEbqlrFq1ij3P7eTC87cysmEru/e8wAuHJ5iZXWSwt4fZ2RkK5RKWZeG6Nooo4XsOsiyiajK+KGBVq8Q0g7/6my8QiSX56h13koiHRbjjB+iK3BTvQjjtrVarTVoKQLUapunWajWSyXQzARjCQj8UAMfwfZ96vY4khlahQRBgWhZDI8ubAtNqNRS7aprC6RMn6ersZGZ2ls7OTrLZLIKs0NfXR61WoVosUKmU2LrtHA7t30O1VOZzn/oE27du4qMfejf/dsfnGO7uZnExR7leQfQDiuVS6BnvmOidI1z7vtua1KTG9PaRn93Bhte+/xXjUb/3vX8eTE5OUqvV2Lp1K5lMhsnJSfr6+tA0hfn5uSbfv1KpsHz5cnRdZ3JygtWrV+PaDrZpIoky0WiUsbExAlEgmU5hmiaO7TE/v8hFF13Enj17WL58GePj4/T09JFIpDh24ijxeLxJ41m5fGSp6axw5MgRhpYN47sBZq1OpVJh5cqVGBGNwcFBRkZGcJbCwCqVCqIoMj09HeZCeCITExNs3LiRUqnA8GAvp0+f5uiJk8zPzpHNZjEMg6mpKXwBbr/tr6mUC/T2DlCvVMjMzVCt18gu5tm1axc1q0atZpLPFxAEH7NWId0W484vf4GoLhHVXCTRIxFNYshxfMcjokfDEC9RQTVULCQsJyCaSKGI4Dg+CNJSqJ6Cqhpo8RSiboT8IM8BVQn9+ZfOv2md2Xg10oeRJALXxXcDajUTnwDPsVFEC9+ycGpFAs/G9ywEz8FzTQDsWgV8FzwTz3fxfB/LdymVSpyYXmRqLk/RlhmbWESJtDEzN40geCzOZ7n66tezavUIH/zAR1oagBZaaKGFFl52yP/fd/n/HxMzc9x86zv53QMPYroBeiRK/+AQpUqVWs0kW8jS09+DrkXIZvOkYwliyShB4JEvLDA+cZqB4RVE1SiuZYduIbrAzp1PQuAz3N/DihVrWVhYQJBETp06xejBfbzr1rezfft24vE46zeezejoKBNTMwRBwJbNm9n1zE4cP2B2YoJly5dj2mGRFTqLhA44HZ3tlMtlcrkcAwMDZDIZTp48ybJlyygUCpQL+aaI8+ILL+K8C87nM1/8Kl/7+jd5/H9+FvyAbDZLEARoskSlYqFpGh2pcMruujaiKKKqMnGjgyAIKJQrfPPfvk0q1RamvgoCIqGAN5PJLE321eYmwDTNJvUnlUpRr9eJRCIvslgM6RGOE2YEVKvV8Ho0DddxiEajlEoloolkk4bkOKHmYm5uDkEIQtpVPk93dzeVSoVEIoHthqFY0aiGYUQ5++yN7N33HFs2n8NAfz93/feP+d3dNn/zuU/w4+/9Jx/+0P8glUpQd0zMWo14NIrtmLiBzqdv2wH4CILc/NqO4zA5OcmGV+zkhmLnxs8/Go0yOzvbtEk9cOAAy5cvI5PJUK1VqNVqzMzMLDUHGvl8nlQiiaqqxKJxJicnicViDC4bZjYT0qg6OtJMTMywd+9eDMOgWq3S1dXV/Ll2dnYCYBgG8/Pz5PN5JEkKHzMWC0W9nk8kqrNx03pSqRQPP/wwsViM0dFR8vk87e3tzMzM0N3dzeLiIr7vE48lWblyJdnsAoIYEI1GOXz4cChoNkOLUtd1sSyL/qFBxsbGiMcMZqemcV2XUrmKadWYmp5gcKgfRVHI5XKcHp9calY0qnWPD374NirlGm9+06X/u707f47jPvM7/p7p6Z7uuWcwGNwXDwAEL1AUSdM6LGmltQ7rsqX4kCsuH6kouznslHdTW5usHeXaqqRyuLxlx5V1aS1vHHsdJ7Zjy9RhyxRliZJIiQRJEcRBDDAAgcHcV890z3Tnhwba9j8gqQrfV5V+E4tQzUD1fb7f5/k8fODoUYaH24RDeYJKCM3QsekgyxJaLYhpwyuvvMo9992P4gOnyPWDZWObPppNiZZexJJkzJaO7PXSsS1suwNsDRQ7te7vfd+BrdcBZz7A43VSsoyOjm20aZsGTb1Kx2hhdQwkr0nbdnYTOJ+DQa1h0O7YWF4f9YbCGxdXyNzIM7d8g97BQUIdlUatSjCk8oGTxwiFVTQ1+K5/XwVBEAQB3icvAPuGovZTT/1bfvzjH3PfAw9y+fJlxsbGOPfWeebm5jhxywdZzWRZWVml1TK478N3E4sEWVi8xgMf+TC2JfOf/9t/pzveA542E5N7OHf+NU6eOI7ik4lFNfbt28err77KamYdT8fk6JGDbNxYIZVK0dvby2/OnCEejzM9Pc0bZ88SDAap1+s0WzarN9YJRSJcmZ2jp6ePVtN0et6rTtxns9kkl8uRSqXc1Jt43IlUDPgVRnfv4erVKzRKJcbGDzA8cYDvfPcZqnUTTQ1gNHU8Hpt6o0q73XaSYiybUqVEIh7B55PQaw3i3UluufNOZq8tUywWiUbjmG3LTYgxDMPd0quqzmZar9dLLBZzWmqqVer1KqFQaKvX+be36dvpJ05ikNP7bJom3d09lEol5+Dv9bjxis1mk2g06tygYlEplghoGg1dx+fzbbUIJcjlsuybmsBjw0p6kcmJ3Zx74zxdIS/DPXFuPtjPox/5MD7DwJYkisUiSkCjY3TA1Olgc71g8bVvfZdsvkarw+/FRn71Hz/KF/7V/3jPblFPnrzF3rVrF4cOHeLSpUssLi5y7NgxSqUSm5sbXLlyiVarRTgSZGJiglwuR09PD5VKmcHBQdqGCZZFo64jSRKFQoFStUI07sxO5DYL9PcP4/N5GR0d5fnnT3H8+HHW17MUCiV279nDxsYGe/fupVgsktu8gSzLNJtNd0NwuVSitzuFaXVoNBoMDg7SaDRoNBoYhkGxWKS7u5vh4WFmZ2epVqvIskytVmNgYIB0Os2RQweZm5ujv7+fbDbnHqA/97nPYXnAMg1sy6Srq5uNjSyFQt59dQLodDpcu3aNxcVFAFqtFp022B4vpVqVdsemWWsRCkEs5mVssJ+JPbvpH0gxONSD3yPRm0yA3UHy2Mg+Px7bi+xXnALBH6Bj20hep7XJg4Xk8SB5bKdA2Pr/nM/TodPpuDMvHo8Hr8eHZbfxeiynDcm0sD0e2oYBPpWKbhIIht3CuGXo2HYb0yPT7ngoNwwuXpqlUm1x6fJV5q9n8PmdnRpDw8NIkoRPCtAyy/h8Pm699VaikTgDA0M88cQT4gVAEARBeNe9L14APvOZz/D2xcus3sjyN995hi996UvMzs5y7tw57r33XurNJsFgkEgkwoMPPsT58+co5DZ4+MGHwNPm8tWrJONxOlaL7u4kFy5c4MCBA9TrdWbmF/jsZ55Akf28+pvXuP/+j5BemKNYLDI5OUmpVOKtt94ilUqhKAqnTp0ilXRu2sulCtlciYGhYd44d46JySmuXLnK0OAIpVIJXddJJpP09vYSiUTw+ZxBXU3TnKVYqsrQ4AArmVUGh0bwDo3x4unXUGau0WqZWze8SYr5LMVSHsNoIknOAQa749yAGy2CwTijQyPkyyXUQIhCoYAkyahqAHvroFepVLBt2x0Crlar7gtAvV6n0+kQi8Xc2QQn9SeErutuvOH2oQi86LqOpmmsbaxjmqabHw+4LyDbSSq5XI6gqtHpdNA0zS1+Ws0GoWCQG6sZJib2cdttt7GSnmN4eBCzuMKfffmLRIJNPGYLy7K4sbFBMpmk1WljWh0ky6Kmm/z5V/4THjXCdmjVdqSpZdmoAe09+tY6du/eTTKZZGFhgQsXLtDV1eXOfhiGwfj4ODMzM8TjcSKRCKVSiUKhwP79U2QyGRKxONbWK06tVsOyLMbHx4kl4miaxutn3ySV6mdwcJhf/vKXqKrK6uoqkuQM+pZKJer1urvPYWRkhCtXrqCqKl1dXRSLRVqq6nwebdMdBPb7/aTTacbGxiiVSkiSh0qlRLlcxOPxEAiEicUiDA8PMTDQx+ryCpFIhEajwciIswtC0zReeOE5evoH6E7E6e9L0WjqbGxuEAqFoOmkRGUyGSYnJ4lmN0kkEjS3fp9bLZ1as4VfldDLVZDa+JQoN9bKFDaus3g9y8BgL35VIt4d4PDUJLLXQzIWJShrzpxJJILHB4pUB0CSnKQlLzaKT0LCRsKZh7EsC9ljuelV2zMB29uwQ6EQlgWS7KdptPBJUClWKdabUKjhUxTUQJBCpUO5XGNpdQOzY5Ov1jhz5jfoDRPL9uJV/HToIPm8lCtFkl29W0Vrh0KhQrIrhaYFURT1PfveCoIgCDvb++IF4NT//mv7b575CT5F5u4P/wEvvvgi6+vrPPSRO7g2u8hmoU61WufAgYPMXVsgJ6YaFQAAE6JJREFUEApz9NAklcImk/t2k8sV2CyWsGzQdZOHH3qU0y+/RKVURJEldu0a47nnnnMOJVabw/snsNpNwgGNlZUVDh06RF9vN6dPn+bIkSOoio+VdIZXzp6lJzVAqVIlkUyytLKKaXZo1JvEYjEWltJOm0y7zfHjx3n11VcZHBykUqkQCAQIBoNsbNygaUJm7QZyOEaqr5/07DyVah1/IIhptGnpNfBYFAp5IqGQ058se2ltbRRVFB82Ev5AEJ8SQpJVIpEYPkmh0ay7EZ3bA47OYQM3PjISibivAY1GjWAwuDUQrLnFgN/vdzf6mmbLXSbVPzzqRDxaFh5sd65guy0InJ+vWirT29NDLp9HlmW8Xi/1Wg3TbHHXH3yItdUbrK8u09cVZ2hkmPtOjHL2zC/ZOzHO5O5RDkzuYWMjSz6fB5+E4vNRzhfp23uYOx97Er/fT6vVBmx3iFNW/Dz5+HH+7L/+5D27Rf3jP/4ndi6XY3l5GUmS6OnpQVVVrl69yr33/iFPP/1t9u7di9luMTQ0xMDAAG+99RaxrRav7q4kZqtFpVyl2Wyi6zqy6icSizI/P8/HPvo4p069SDKZoLu7m2ef/RlHjhwhm81xxx13MXttHkVRaDabDA0Ngd1yP8d8Pk80EiG3kcVsGYyMjZLoTjI/P08ymXQLP9u26e1N8corZzh69Chnz57Fsts0Gg36+/uJRCKE1DDgFF/ZzQ3S6TSaphGJRBgcHiO9uIDs8xAMhyiXy87gcaUGWNRqNWKxGPfccw/zc9ewLIt0Ok0kEqJltqnVaqxm1tDbBj3dKWplZ8bG6Pw2t980m04ilc/H4GA/8bhGs9mg1dLxSh4CfoVwKITik0GSiYbDKF4P2B03slZVVRRVdjdfA/j9fprNphMTannQDROfIjs7EiQfWjCE16Ng4WEhvUK5VOfCpVks21ky5kFyIm8HB5FlCb9fplnVQfLRMFqkenvweCQ0NUjLLHHixAeIRRNYFvT09PHFL/5T8QIgCIIgvOveFwXAA394l33r7bexsDDHvn37+P4zz/CFz36aS1vRh/d/+H7qjRqzVzOUGw0SsSh+VebKlcuMDPUheeAzn/4kp55/HhuJjteLKvmZmZlh//79FPIbZLNZpqen6Y4lyCy/QyDoIxJOcmT6EGd/8wrBkOa0HZ191VmgJTnJN/sPHuFvv/s9br/9Dn7+ixdptmokEklKxTorq6sMDAzg8eKmsui1OpqmsVksEAoH2NgskF5aIdIzSs/Qbk6/coZPPvowZ156iXw+7xzejTq6rmNZFtFw0Dm0KBqhcIBiZpm/+PIfcf7yFQrVJmUDilUTjySh+gMUK1XA6QG3tnrzk8kkut5yE0yi0TDFYtFNkdnu4W/phjMA2tJp1hvu4jBVVZEkCcMwqDedwkLTNHd4UpZlKuW6Gw9qtVtuvnq5WiMQ1PD5vGRXVhgY7OMv//I/8OSTT+KxbGJhH75OnXpugR//6G9p5LLuDMIbb77F9PQ01XKNleVF1O5+/urpH3Npbg1JcjLat9t/VFXF65O489gQf/3Ds+/ZIWpkZMzevXs3sViMrq4u6lsLuXRdpyeVol6vk06n6erqIpfL0t3dhRbwY9uWM+TbMrDabXKbebcd66abbqJQLhGOJJibX+L48ZvJ5bP8/Oc/Z2pqilqlzNFjx+nu6ePZZ09xdPowwWCQMy//Gr/fz/j4OMVikfHxcdbX10mlUqytrWEYTdLpNLIsc/PNN7O2tsbCwgInT55EkZ1M/6tXr2LbNgcPHqTRaPCrX/2K3t5eErEorZZTXOQ2i9TrVTpWm9tuu4WzZ98gGo0C0N/bg96sU6vVnChaxSmEm80mly9fZt/EJIZhgsdDB5t228SyLDcty+fzMTg4SL1eo91uu7MVhmHQaOiUy2UsC2zLeY1y8v072Gy1+PhA8rGVxLW15G5r4FeStpaHbe0EaDabWB3JTQTqdDruXIBT9PLbTcVbf5ebECR73UStaDRKVyxKp9NxWvPi3ZRKJfd76vEqaAGZO+64HVn2E4vFSMSjBPwKf/9z/0AUAIIgCMK77n2xCKy7O8W3vvkN/LLCT3/6U44dO0YklmAlvczI4AiSrJDbLGK2W7SaNUqFHPNX5xnoGUTXdfbt28fZN86xuJgmkUjy6plXyec3mJqaZH09s7VYKYJt2xQKBbw+ibGx3ezfv5+nn36aTCbDgQMHuHDhApqmucOTj33s7zEzM8OBAwd4/fXXKZby3H333c72W8Ogp6fHTXfp7e2lUCg4B2KPc7MYDEe5dHmWP//KV3jk8Y9z7IMf5KmnnuLF519wDxPbrUQ+n4+BgQHq9Tr+QARb8rF0fZn/+O/+BNUv0dvdTV9PF8lYhFDQT0BVqTbqeG3wKxqm0XGTXNLptJvcs71Ma3uz6/YsgGEY7t/fbrfx+/0oiuIOOeu6jsfjQdM0VFWlUCiwsbHhvjQ4cwYqtm2jaRqaphEIBND8CnTamC2d8fFxNjc3+bu/+z6qXyao+rE7Ok98/DGe/dn/xWwZZLNZMhnnMwqGNLKb65hWk57+AW6++WY3wWj7590+kG0v28ptFt/T7+72cq/tvvpCocDMzAyDg4NcunSJfD5Po+EUV86NuPPfsLa2xvHjx7fmMpwXFdu2KZVKnD9/nuvXr3P+/Hn27t3Lc889x4ULF5iamqKvr49EIsHGxga1Wo3p6WnS6TSbm5sEg0H8ihe9USEWCpLPZdF1ncXFRWq1Gvl8nkgk4hYIKysrnDhxAo/Hw8zMDI1Gg0qlQi6XY2lpiXfeeYdYLLbVciaRTCbdFjfTdJKN8vk8yWSSZDIJOBt4VX+AaqVOLJrA63UOyrIs86EPfYh2u00oHMYr++jp6fntIdnjQZIkJEni+vXr7rZqSZLcVrPfXWj3u9Ge2xsBZFlCUVS8BMHSqFctSsUqtWqDWrVBIV8iny9SKlXI5QrU6zrVah1db9FqmW4E6Pbv5naBu33o317qt/07EQqFCIfDxONxt0iORqPIsvx7m4NtOm7cqBrQ2L17N5ZlbaV1CYIgCMK7732xB+Cb3/irr37i8Y/yqxeeY2J8nKbe4q23zvP4xx5lfX2DlZUNlpfXCWgyiXiAPXv7iUaDmIaO4teoN5qUylV6ege5dm2BaDhKX38M09QJhTSGh0achVzrN7i+NI/k9ZPd2OTy5RkeffQRpg8dIpGIY9s21XIJr9dLZnWD119/HbPdYWF+kWazxeDwEDMzl/nkJ54gl9vEaLfxeGDPnj1UKhWmpqbIrK1imCZvX7xMdzLF0lqezXKTm267k0q5wq9ffJ5rly5imgamaSBJXlTNWTY0OjzIZr6I0TbRpDY+o8WnHrqdxeUM585f5NbbbqVSrTMyOoSmKszMvONkzzebziHIY9PX17c18OhxozpLpSKyLDstUDibTf1+P37FucE0rQ5svQRtH1yKRefPSFuHsHA4jNfrddJ9DAPJ6yUYDKAoMprqd1p3gKZep9XS2cyuU62UmZgY5/SvXsRolPmjf/h5Pnhkkhvpq+wdSfL1r/0XxoZH8Hg8nDp1irFdY87PLnvQLQU1EGF2Ic3l2aXfy3Hfji7tWB3azQZP/rN/8Z5lqf/oR//nq8lkEk3TKBaLHD58mGg0yrPPPstjjz3G6dOnueuuu3jzzTfZtWsXlUoZ0zTZ2FjHMFrMz80zNjpKeavtpd1uMzExQTyR4OTJW3juuRd45JGHOXfuPHt278WyO/Skurk2N096eYWbbjrK//re/6Svrw9J8hJQZMrFIrZtcfa11+jpG8A0Ta5fv46iyJw4cYLNzU3eeecdxsbGiEajFAoFfJKXpaUlrl+/zj333MPs7CyhUIiJiQkAfJLTktZoNLAtnJx7vcH09GFGRkZRFIVAIMDiwiLBYAivV8LnkymVS5im6Q6Sh8JhIvE4eD0k4gm3mHDmEhRM0yCZ7ELXdSqVCsPDw2xubtJqtQAIBAKUyxUkr1N4ASiyurUfIeYUBl7L2QfgsZBlBUVR0bQgkUiMrmQKxa8STyTpWKD5NXcnhqr68XohENDQNBW/4iMU1JB9XmTVz9iuUfr7+xjbNcquXbvo6+tz53+6El2oqkaz2cLjdYa52+02mqbhk53h9ptvPkZ3dw/hsDML0pVMcnj6iNgDIAiCILzr3hcvAJFIhItvX+Chhx/k9ttv5Xp6iX37p8Bqc+jQQRq6c3M6PNzP/qlxFEVm7/gYt9x2nFAgSCFfomN7qDebqKqfSDREOBAk4FfpTnRRKhWo1Spsbm4wPT2N369xfXGFgwcPuje2P/zhDwFoNBp0Ok5SSLttufGFzu18DYD5+XmqtTKqquDzeVlbWyOVSjE3N8fAQB+GYfDVrz5F/8AINx0/gS1r5HJ5fvGznxBSFaKxMNVaGctug8fpc06lUjQaDVRFYc/oCH5L53tPf41svsLC9RU+/olPsv/AIWKxGD6vTW+qiztu+wBdiSia5kfyOQO88/NOT7htO/sH2u02iUTCHdz1ep0B33a77Q4/aprm3rIqiuLGbILT870dOdlsNikUCgAEghqraxk2c1k2Njbcf6dSqZBIJBgdHaW7N8Xm5iZd0Rgeu83zv/gZ9dIm71w6h2no/Pt/8xR9fX1omsajjz5KIhZ3UpRabeRgDHnrBlaSJPcmFqDdbjsFgNnGtt7br/D2y0c6nSaXy1Gv1zEMg1tuuYU333yTO++8k2vXrhEMBjl44DDxeBd+v0Z/fz8bGxucOHGC9fV1arWa+7lEIhEymQxPP/0009PTXLx4iQcffJhisczePRO88sorRKNRQqEQq6urnDx5kkwmQ6vV4trcHIrfz9qNGxQKha0CsERfXx8nTpxgYWGBGzduEI/H3RejmZkZ9uzZQ61W45FHHuHq1aucPHmSeDyOYRgcPXr0dxKifDQaDcC5ke90Ou5WaXAO6D6fD7/fT61WIxAI0N/fj6qqxGIxcrkcHo+HUCjEG284rUOSJBGPxwEnHUjXdffGHJzv4PY/27fxv8s0W8iyRCCg4ldlIlENLeAjGFKwrDYDA04MaTAYBI8HVdMIRyJYlkVvb5JoNIyq+ggGNZLJJAMDA8TjcYLBAJqmMj6+10kk6u9ldHSY6elD9PX1EQ6H3bmOeLyL7m6n37/VarlD9c525yajo6PYtodwOEoul6NQKPxeDKkgCIIgvJveFzMAByYn7H/0hU/zgRM38y//4itMTd2ErHhQrDKJ7n4MWyafqxGPK0i2xeuvX2XP3hEMs0lXshe9aZJZ36S3N4lEh5X0EuGATCaTIRQK8eU//VO+/vWvMzo6SkOvsZ7Js39qgkjQ2VBbyucolQtMTU3RqldZWlqmg3NjvryaYXzvJLOzc/iDfu679yG++Y1vIfk8NA3ncL2d6KPrOtfmZ7nvgQd54YUz5HJ57vvUZ5k6fIzvP/MMi5fOohs6zXrTbRnyer0kttonGrUKer2Jppj86Gv/mtfOvc07a1WioSCbhTJeRca0PVgdg5deeokH7n+I9UKJjlchV6pSLDpJKF6vF1UNuC0GoVDAzW4PBoMoiuIcztQghUIBLRIi4FfdRKByuUwoFHJmArzOwXu7KNo+lG3HgcqyTMcwWV9fp7e3F9ljsb6xRldXgkK5hN02ifhkjh6doF4qcdfxPTxw962src3TNjoEQzFarRbRaBS9WaWhmzStACMHjlPLr/L/fnGab3znR3Q6bTditdPpIElO7/aRyd38/My596yP+o477rJ1XWdychLbtjn98st8/vOf5wc/+AHYNvv27ePixYs88MADmEaHzOoymcwyt9x6goWFeQKqRmZ5mbbZoVqtIkkSXV1dfOiuO6lUdc6dv8hHP/pRvv3tb3PkyBFyuSwD/Snals3FS1d4++2L/Mk//xJXrlxhYnwPq2vrKIriHphln9cZyg0GefnlX6OqKiMjI+zfv592u006nSaZTHJp5gKtVotdu3aRTCadVwGfj7fffptgMMjQQD+VSoVSqYTR6pDNrtMymoyODnP77XewurpKNptlz649FItFstksw8PDLC0vubMl4+PjZNbWCEejzMzMcNstt1KplJFlmdXVVQpFZweBYRjUazoDAwNUKhWy2SyJRAJdd4akS6UKpuHMsTgtQB16e5OEwyFqtRqS1/kuK4qC3qySSnW7CVmS7CR1ue1HPs9WopZCOr1KIBAgEokQDAZJL8xz8uRJBgYGGBgeY30zSyqVYmlpCfC6vw+KolApViiXy5w/f55cocDa2hqdTodINARem8cf+yS7xsbp7klRbdSplooku+J86lOfEjMAgiAIwrvufVEACIIgCIIgCILw7nhftAAJgiAIgiAIgvDuEAWAIAiCIAiCIOwgogAQBEEQBEEQhB1EFACCIAiCIAiCsIOIAkAQBEEQBEEQdhBRAAiCIAiCIAjCDiIKAEEQBEEQBEHYQUQBIAiCIAiCIAg7iCgABEEQBEEQBGEHEQWAIAiCIAiCIOwgogAQBEEQBEEQhB1EFACCIAiCIAiCsIOIAkAQBEEQBEEQdhBRAAiCIAiCIAjCDiIKAEEQBEEQBEHYQUQBIAiCIAiCIAg7iCgABEEQBEEQBGEHEQWAIAiCIAiCIOwgogAQBEEQBEEQhB1EFACCIAiCIAiCsIOIAkAQBEEQBEEQdhBRAAiCIAiCIAjCDiIKAEEQBEEQBEHYQf4/R2UFDDVjcKEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "imgs = list((img[0][0], flow.filenames[get_current_index(flow)]) \\\n", - " for i, img in zip(range(0,10), flow))\n", - "plot_gallery_images([_[0] for _ in imgs], [_[1] for _ in imgs]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To keep the original order." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 62 images belonging to 1 classes.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAFrCAYAAAAXcNWJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4HcXV/z+zu7d3XXVZlty7ZWODC7YxxRiwKQECKRQDIUBCCAkJIRBKenlDGoQ0XnpCDRCqKQYDBty7De6y1btu7zu/P3Yly0IG7JjAm9/9Ps8+d3banplzdvbMmTNzhZSSPPLII4888sgjjzzyyOPjQ/m0CcgjjzzyyCOPPPLII4//a8gr0XnkkUceeeSRRx555HGIyCvReeSRRx555JFHHnnkcYjIK9F55JFHHnnkkUceeeRxiMgr0XnkkUceeeSRRx555HGIyCvReeSRRx555JFHHnnkcYjIK9F55JFHHnnkkUceeeRxiPhMK9FCiLuFEGM/bToAhBCzhBB/+jfKzxVCzPyQ9J8KIeqEENF+8XOEEGuFEFkhxLn90nJCiPXm9Uyf+KuFEDuFEFIIUdiPhlCfMrf0SbtHCNEqhNjc7xk1Qoh3hRCbhBDPCiG8h9n+wUKIqBDiO33iviWE2CKE2CyEeFgIYTfjhwghVgghdgghHhVCWAeob6oQ4g+HQ8t/AnnZ/UjZ/aXJ981CiPP7xP9dCLHNjL9HCGEx44UQ4g+mXG8UQhxlxk8y5XOLGd+3LmHStl0I8Z4Q4prDbP/R5rt2bp+4X5nPfM+kS5jxU8x3ZWff+H71nSGEuOFwaPmkkZdbEEIsEkK09Rknv9In7WJzXNohhLi4T/wXTb5vFEIs7jfufsOU6S1CiF+ZcUEhxOvmmHhnv+cvFkJsMPP/WQihHmb7v9P3GyCE8JljeE/dl3xUu/rV9yMhxEmHQ8t/AnnZ7f3Ovi6EWGfK4mlmvEUIcb8po+8JIb7fp8wppnzu7DsuCSFONMfv9UKIZUKI4R/2jMNo43+HTiClzF8f4wJUYP2/Uf424Dsfkj4dKAOi/eKrgYnAA8C5/dKiB6lrslmuFijsEz8XeO4gZeYARwGb+8WvAo4zw5cCPz7M9v8TeLynD4AKYA/gMO8fAxb1CX/BDP8ZuOrT5v//5euzJrvAAuAVQANcwGrAa6adBgjzeriH92b8i2b8dGCFGT8SGGGGy4EmwG/eX2I+WzHviw+z714DXuhpAzATeNtMU4F3gblm2kpghknni8Cpnzb//69en6LcLgLuHCB/AbDb/A2Y4YApx609Yy3wK+A2M3w88Cpg6yuDptzPAq7s/6w+74Iwx80vHEbbK4GXgL196LoR+KUZLgI6AevB2vVp8///8vUpyu5f+4yZY4FaM/wl4BEz7MTQDapNOncBQ01Z2ACMNfNtB8aY4a8B933YMw6jjf8VOsFnxhIthHAJIZ43Z8mbhRDnCyGWCiGmmulRYViv1gghXhVCHGOm7xZCnGHmqRZCvGXOntb2zOSEEIoQ4i5zhvOcEOIFYVqVhGE5esOs9yUhRJkZf40QYqs503pESpkDdgghRveh+SIzfYMQ4kEz7nRzxrTOpLNECFGNMVh+y5zVze7ffinlcill0wDxtVLKjYD+cftSSrlOSln7cfObZd7EGFT7YxTwphl+BTjnUOoFEEKchTEwb+mXpAEOIYSG8WI3CiEEcALwhJnnfuCsAeqcK4R4zgzfJoR4UAjxmjlTvdyMPyjfjyTysnvIsjsWeENKmZVSxjAG7lPMMi9IExgK6SCzzJnAA2bScsAvhCiTUm6XUu4wyzZiKDNFZpmrgB9JKXUzvfVjsrQvvoEx2PctKwE7xkfHBliAFrP/vVLKd036H2Bg2V0kTOujEOI+YVgb3xKGxXyhGe8UQjxm8uhRky9TD4P+gyIvtwPL7YdgPvCKlLJTStmFMR6ewv5Jn8scv7xAo1nmKuAXUsqU+cxW8zcmpVwGJAegK2wGNQwZO5y/Ff4tcH2/shLwmDS6Mcb77Ie06wCYstrDw1pTNlaaV4+VcpgQYrkQYpUwLNfR/vUcCeRl96CyKzHkD8DHfjmUGPKpAQ4gDYSBY4CdUsrdUso08AjGWPtRdQ0U/7Eh/pt0gk9bi+8zKzkH+Fufex+wFJhq3ktMqw7wFPAyxserBnPGZ3a63QyPAFab4XMxLEkKUAp0mXEW4B2gyMx3PnCPGW5kv/Wgx7J1GfAtMzwO2Mb+WX6B+RsAhBn+CnC7/Bgzyz7tPph1+T4+aInOYljxlgNnDVCmlg9aojswlJYXgXH98lfzQUv0O8CZZvjbQOQQ+erCsNS5+/cB8E0gCrQBfzfjCjFe6p48lf1p6tOW5/r07QaMwaEQqMOwSg7I97zsfrqyC5yMYcl1mvzaDVzXr4wFWAvMNu+fA2b1SV/S07994o4B3mO/5bkDuAnjHXkR02J9CHytAN7AsNb0b8OvgW4gBPzUjJsKvNonz2wGWPmhj6XTrHexyd8RQD2Ggv4d4C9mnvEY7/rUQ6E/L7eHJ7cmf5qAjRgf7koz/jvAD/rku5n9VrRzMZSSJgyjg2rGrwd+CKwwZenog8lCv/iXzD77R09dh8DXM4Dfm+HaPv3lAV43aYwCCz6qXQd7j816bzLDF7F/LH4O+KIZvrJ/3+Zl9xOX3TJgE8Y40gVMMeMtGApyGxADvtqnrXf3KX8h+8em2RhjaD2wlf0rJAM+4xB491+lE3xmLNEYTDnJnD3OllKG+qWnMT42PXnfkFJmzHC1GW8B/iaE2ISxTNDjHzULeFxKqUspmzEGEjCsrOOBV4QQ64EfsN/ytRH4uxDiAowPGObz55vhE4AnpJTtAFLKHivuIOAlk4bvYrw8nxQGSymnYizV/E4IMewj8q8FqqSUNcAdwNMf4xmXAl8XQqzBGITTh0jjD4HfSin7+24FMGa8QzCE22X29Qd8SPl4lph/SSkTJj9ex1CoDsb3I4287B4CpJQvYwxk72C4bLzbh84e3AW8KaV8y7z/ULkwLUIPApdI0/KMYSVOmu/I34B7DpHU3wHfk4ZVqRem1W0MRn9VACcIIeZ8FI0fgsdM/u7AmFCMxuD7IwBSys0YPD3SyMvtwHgWqJZSTsRwxbjfjB+Qv8Lw278Kw42u3GxHj8+phqEoTTdpe8y0rH0opJTzMZQVG0a7PxaEEE6MieMtAyTPx1Dqy4FJwJ3C2ONyuHL7cJ/fGWZ4BoYcgDEB+KSQl92B8UUMt4tBGC5wDwohFIzvYQ6D90OA64QQQ/lw3n8LOM2s617gNx/xjI+L/yqd4DOjREsptwNTMIT856LPpjcTGWlOMTCWh3uWx3SMgQoMprdgzDanYiyFwcBM6InfIqWcZF4TpJQnm2kLgD+aNK0RQmhSygagwByoBAMz8g6MmdwE4AoMq9KBDxVCFfs3rfzoYH3yUZDG8jVSyt0Ys/DJH5E/3CO4UsoXAIvoswHmIGXel1KeLKWcgjFY7jpEMqcBvxJC1ALXAjcKIa4GTgL2SCnbzMHtSQxf03aMpfoeng7i4y0X9eeF5OB8P6LIy+6hQ0r5U5PueSY9O/o841YMl4xv9ylSj2GB6EGvXJiKwPMY1rTl/cr80ww/heGffSiYCjxiyu65wF3mMuTngOVSyqj5Pr2IoSTVs/+jegCNH4FPRXbzcjswpJQd0nS/wJh8TTHDB5PBSWa5XWZ/PYYxlvWUeVIaWInRjx865vahIwk8w/7l9Y+DYRhKyAZTbgcBa4UQpRh7BHpo2Ynhfzr6Q9r1kSQeJPyJIy+7B8VlGPKHlPJds75CDEPbYillRhouRW+bbR6Q90KIIqBGSrnCjH+U/TJ9sGd8XPxX6QRiv5x9emjuiMjWlhb8gQB2u50XX3iOR/7xEOFQiFt++BMmTJjMiCFlbNlZB8Dvbv8lLpeLy6+8GiEEY4cNYkdtA7fdfCNl5eVcftU1PPqPB/nOtV9nX0uI5555iicefZh7HnyEjvZ2Tph9NP9z+++Zf+oCjjv2GO780984Ztp0MpkMu3buYPiIkdTX1zF4cBXZbJZJ40fy7qr1+Hx+fnTrD5h57CwqB1dx8QVf4MVXXicYLKSrs5NAQQHHz5rOb++4i0mTj+IbX/sqe/fW8szzL/PHO35HJBLhhhtvBqDHGNG3/4UQDC4Lsq+p44D+kVJy9VWXc/y8U1iw8HSeffgeVr2zjL07amlta8bjdLB2115mTRiH22HHatUoDBRw/wsvs3DqZBxWQUNrB/Es/P6BhygbPp4t61ZxycVfYuPWnSiKAujs21vL+eeezfLV63qf3dbaSmFREbqu87UrvsKs2XO44KJFvfT3p3M/lAPupZT88mc/xuV2c/U132L1qpVc8/UreHXp29jtdq6+6nImTT6Ky6/4Gpde9CUWnnEWnzvn83znW99g9NgJLLrsqwc8a9mbS/nLXX/gwUee5Ne/+AmLX3iWLZs3OTCWitZhKDXHAhdjLG8WYSz1f1VK+QRHCrm0bGxspKCgALvdztP/+hf33f8g3d0hfv2rXzJ16lTcPj/RUDcAt/3wR7jdbr5znaEf9qR969vXMWjQIK779re49777uPQrlyOzGR5/4gnuf+BBnnnqKdra2xgzfgJ//cufOeOM0xk7bgIPPnAfM2bMIJPJsH37dsaMGs2+ffuorq4mk8kwqKqabZs34PP5+N6NP+C42cdSVTWYsz//Rd5dtpRgYRGdnZ0UFBQweeox/O2vf2HKlClceull7NlTy9LXlnD7b35LOBzmh7fdDB8yXrj9QaLdHR+IX3TpV1i44DTOPedso8tyObpDIYLBIBs3buJLF17E+jWr0DSNu//3Hu65936WvLIYh8PRW8fzz7/AnXf9iReee4YVK1ZyzbXfZuXyt0mn05y64HROX7iAa7954OEbN3z/JkaOHMGllyxi6dK3+O4N32PV8uUcDhZdeikLFyzg3HPO4dHHHuNvd/8vi194Hiklp5y2gGuvuYbTT1/I0dOnc8fvfse0adM4beHpfOPrX+e00049oK777r+f1WvWcOcf/sCiSy+ltbWNFxcvVjGUnzeA4Ri+2EOllFcJ48SBDcAMKeXqw2rAAJg9a5q02WxYLBaaW1ppamohl80xqWY8Xo+TZ55/lc+fvQBFUVizbjO5XJYRI4bh8/l47PGnOHne8Wze/B4et5OJE8bS2NTCm8tWsOjCc1m/YTMNja2cOPtopISnXniN2dOPwuv389Irb1BWGqS6ajAjRozmf++5lxNPmMuginKSiQT19fUsX7ORIUPK8bh91NbWoWd0FAFtXV2ccdp8ho0aQXNzM4WFhTz00CPMnDGVrs4Otu+sJZFIYhjdVEpLS7FYFJLJJNXV1ezcuZNYLEYsFqO4uJhwOEIoHGfY0MGMGzOalpYW6uvrGTZsGFldJ5FM8d5723E7LKSSaeKpLLNnHEMoFGLb7loWzp9He3s7b69cw4zpU+jo6KCrM4TVasNuUYklkrS1t2O3acTjCdJZUKRk3PgROJ122jsiZHM6gweVIXVoaWmjvKKCstJSspkUi199jaJgEJtFxev1kkwm8Xg85ISkrq6OYcOMxcdIVzcVFRXs2bMHt9tNFklxcTGvLnmDqsEVSKnT2tbJoEEVVA0exI4dO6jd28iJJxxPS0sz72/bztChg7AKC1u27WT2zGPwuN10dXWQyWTQNI3de+spKgzi97p5Z+U6KivKmDh+DE8++9KFwPlSytOFEM9j7F14VAjxVeA3Ukr3kZJZgJt+/BuZiMdwutxoDiu7tm5m5TtvkcqkWXDGuYwYOYbvXXs5t995LwAvPvskdrud084wtvN87bIv8INbb+ORB+/GZtEYNXIIe/a1sWLlGm7/3R/ZunULK1e8y7XfuoHm5iZ++qObuOrKa3js8SdIpSJcdvk3eWnx03z1qitJJHSGDBlGS3M9druNdDTKt7/7TX7yo5+hZ9I8+vjfKXDZ0LMZ3l67iasvvYSxx55GLtHNG0sW8+qbyzj/vC9RVhbgsceeoLOzk69dfgUvL3mV9rYWTj3xRIqKS+mOhImGu8gBVqsVq1DIZBP86o6/8pMbbyCZTGGz2Xjg0ccYM3oUE8eMIJEW/Pl/7+aXP/0fFr/yAg2NDXzh858nHuvmjj/dzSUXXkxxRTE/+fFP+fxpcwHJM0veZdGFlzB85ESuufarXHDe2WjZKNtrm9jb2Mr5Z53Bvf/4O6OGVzNx7Gj27qvnqRdfY+TgKq753i1YHU6yuRwel5f33ltJ0471xEJhPB4f5HTs3kLc3gBSg0gkwkMPP8a8efMZOXIsmzev5fXXljBj+lEEfX5Wrd/K4KoRDC738taylYwcOZyaabN45blnCJYM5eT5p6CpdlpCjeTSgob63Sx/+3XmzpnJilVrqdu7lylHTaTAU8bzLz/NiEHlOIIV7N69k0K3jfdr95VyBHQC7aOzfPIQQvDe1i388NabUBQFi8XCr27/PbfdfOOHljOUv/24+JKvcPmlF/LsM08zY+ZsnE4XAKctPJO333qDk46bztChw5l81FQ8Xi9Wq5W7732QH3z/u4TDYXK5HF+98usMGTqMq6/8CuFwGCklV151NT6fH0VROHHefJ575ml+8T+/4VvXXc+ZC+ajqioTJtZw55/+xne/fxOXXfxlysrLmTL1GPburQVg/qkLuPSiL7H4hef4+a9uZ+axB+4VuO3mG/nnE48Rj8cZP3oYF160iO/deDNr16zmoi+fR6i7m8UvvsDtv/gxJ04/hm07drJq/WZUVQUkY6urcNltqKrK3tZ2nn93NfFUimdXraHc72Xm+NGs2b6HM886E1+gAIfDwd33PtirDF+26ELefustOjraGTtiKDf84GYuuvgSnnj8Ue7+658BWHjGWXz5wouPAMdh6tHHcMaZn+P42dPRNI0JE2u4aNFlANzyw59y+aUX8rOf/JAJE2v40oWLAHjpxefYsG4t1994C4qiHKDIT55yNFs2b3oeGIxxgkijEOKfwInAZoydxiswfFiPKDZt2sx3b/h+r+z+6c47+M71h3aC2deuupJzzjuPx594guPnzsXlMmT3nLPPZsmS1xg/aRIjR4xg2jHH4PMZsvvE449yzTevJRQKk81mufab1zBy+AguuOhiQuEQUsK3vvkN/H6/oeydPI8nn/4Xd/zudm664XqOO/FkVFVl8qRJ3HfP3dx6yy2cd/4XqagoZ9q0aezZUwvA6QsXcO755/OvZ5/hjt/9htmzZh1A+/U33Mg/HnmUeDzOoOphfOXSRdx2y82sWrWaz33+fLq6unj2+Re49Uc/ZsuGdWQyGWbPNVaovR4vD91/H5pmDEVXfu1qqqoGM2PWHADOPussbrn5Jk477VReWLyY4aPG4HQ6uffuvwHw2ONP8OZby+jo7OS+Bx4E4L7/vZtJk2q44Xvf5csXXsxvf/8H3C43d//lL4fH4H4495xzeO3115kwaTJCCE45+WROP30hAH+6804WXfYVEokEp54yn1NPNfZn/dl89pVXXAFwgOyOGjmSFxcvfgMoAa6UUiaFEHcB9wshNmJMCjdyhGVXVRTWrN2AEAqKEMycNoWVa9ZjURUqyksBSXFRkGg0itWqkUxkCPg8eL1uhFBwOWwMGzqYNWs30tDYTEHAi6aq2KxWTjrhOJ58+gVeXrqcYMDPoPJSrFYrUs+y8NQTeenVN4hEd/DuinVUlJdRXBjk+cWvkkgmUYTCUZPGs+C0U9i4cTN79+wllUmjyCwCWPLGMt58Zzl+v5cvf/HzHDd7Oq+/8Q5OpwNVEWSzWYIBL4lUmn376tB1neKiAGNGjSAWCbF3bxyLKkins4QjcQD27KnD6/EyesRQduzczaat20klk3i8HiaMG8munTtwOZ0IJcnajZuRUjJpwlh8PjeaJpgyeQKr12xAz+WwWiyMGFbE+++9x+jRo2lsbiaZyiAEVA+uoKiwEJ/fzbJ3VpPL6eRyOZpbWjnxuDl4vT7efOddrBYLsViMIdVVDBk8iGQyia7rdHS0U1RUSO2+Pcw78Xi6u7sRQhDwuKmrq2PcuDG0tbWhWjRkLoMiFIYNqcJut1FSUspD/3iMXbv2YLFojBhWRTDgIdLdSc2EcaxdtwGbzc64MaOw22zYbDZq6xopLS6k0O9H31NHOpWiuno8K9duxma389qb74Dhx/pFU6yuBR4SQlyHsTp0xMdbRVFob23m5ReeRigKqqpy2lmf55UX/oUilF69QFVVhBAoitJ79bx3QgjGjBnGkiXvUtfQSmlZGRaLBSEEk46ayo4d27n5xusoKi6heugw4okEfr+fy6+4nrv++HtaWpr40a03c8bnzqewsIjf/PpnJBJx9FyOhaefSWllJaGWZmomTmTVqpXMPXYajc1N3HXf/TifeJLBlVXcevPNOPxB7rv/brweN8OHDaO9vR1FU6mZeBR/u+ev3HXfA1x95dXInE5XZzuFhYVYhGTxktfZun0b2UyGn/3290yaOI55x8/hzDMW8vg/n+bdFSuRwGWLLsXj8XD6aQu58y9/5H9+ezt6Lsf4McOxqwlkMsrZp5/KE8+9iJSSmdOmUV4coK1pN+eceQb/fOZ5pJ7DoirMnTWTULiLmVNreHfdVrZu30tOz+FQBEKRSHKoqorFphCJdmC1aghVw+Fw4HA6SacSyFwCdDeq1Eglk0ydegyxaJRkIozH6WDUqNGsWL0BVVEpKS5h7nFzaGp4j7mzZvLia2+wct1GioNB5h19NN2hNlqam3h/+xaOP34BVk1FU1Vc7iA2q4PS0nI2bX6PVHIDpaUFuPw+ysvL6exqZ1ftboC/cAR0gs+EJbqlMyr7flT6hnVdJ5eV6DpkZfaA9J5fTTmwXE4K+rcrFovicrnp6uzk9FOO55nnX6aktBQhRO/V95l9aelJUxSFTCbDySfM5rU33x2Q3o+Lg1miB0JPnng6hUjFOWn6VDQBfrcHh8NGLp1CUTQCgQBFRUWoqqC1qRmLplEW8BKNdNMZidHc3s1x55zLVdf/AKtq7dd2/aB0DCQjh2OJ/ij0z9NzPxA/n3vmaV5e/Dx/uOtv/PoXP8HldvPDm78/0Jm8billVAgRxDjt4VjTF+rIIJf+kIYdGW+paCSK2+2mo7ODY2bM5O1lb1JaWjpwZr0fOTIH5gaITCbD9FlzWLPiHYN/QkAfVzbZz61NfKBl+odaog8Jh/HO/Hv4zHiu9bHs37rfwn3e+Qd0iDDOBraYCvUwjI2UI6Wxg/6IYNGF50m73Y6maUgp0bM5XC4XiUSCnJ7BarXidrtxOp3kdFizZg0Oh4MhQ4bg9/vZsWMH3d3dpJJxXC4Xo0aNIhaL4fN5SCaNQyf0TJb16zfwzurNXHnZl2lqaUFRFLq6ugiFQgT8Qfbt28fZZ59NOpOkra2NtrY2Jk6cyFNPP82oUWNYuXI19Y1tjBs1nGOPnYmiwJhxY+nq6iKbzdLe1kJhYSF1dXV0d3ezd+9eECr79tVzwglzefnll5kzZw7ZbJa6ujrq6+vJZo1vSWlpOT6fj/r6es479xy6urrYsmULxx9/PNt37sDpdLJ9+3Z27dqFx+VF0zQWLjyNuro6kskkFRUVhEIhikqKSaVSSCl5f+s2qqurqa2tpb6+nlgiTjqdxul0UlpShq7rzJ4zk3g8SlNTG9lslqlTp7Lt/e2MHDmSzs5O2tvb8bhdtLS0YLFYDMWxvb3Xou72GnyKx+N4PB5qd+9BVVUqKyspKipi3Yb1jBgxAq/Xy65du3A6ndTW1uL3+3E6naTTaRwOB5lMjmHDhrF582aGDq3mtVdfp6SkhKFDh7Jx40YKCvx4PB7a29uprW+morSYwZUVvPjqG8yYOgm328XTz7/SK7um60JCSimFEF/A2GR4KO4oH4lbfvZ72aPw6ipYFZVsNovV6YCMjsPhQDGVayHEB35j0Qhd7XXsfn8luVQarE6EsBEorGDQoEHYHE6EqmG32IhGI/zktu9z222/YPbcOcTjcZqb2nF57dQ3NuJxF5BKGK69QpEoiqEnWK12Eh1t7Kndxh///FeuvORitm9dQ1dbM1VDR+MNljF1+ixC0SRCKITDrbgdbtLpOLmcJJdV2VtfRzKVZnLNJJobaskkQ2iK8S3M5HSEyOFy+bDabSSTSRKJGCVllXg8RcRinaQzOXyBIvScwGbXEKqOQKejrZWO1r1EOjrwB8rQkfi8QbwFxXS0tqAqklAohNPpJJMVtLXUEuluwe4qAEUg9SyeQDml5SUkUwkefegfxOMJvnnDrTjdXlSLQiwaorlxH50NtSRD7ZRXDifc3UEymcLvKySRTRMoKiYrrVisdlqb9tDW2kp55QiymS6i3SGCheUUFBZRV7cNp9WNw1VA0eBhtNbtwBosIxHqwu31EI/HUYSV2j072bxpHafOP53FLy9GFVBRVYnPVcDu2lW4HX4cjgICwQJefeVF6urqCjkCOsFnxhJ9MKWs5+rryiLEB5WqvmnID+a55ILzCYdCZDJprr3ue5QMoIT0lOmv0PdVeDVNO0CBPhwcbMLQP64v/bpuvABvvv4ac6ZN49nnF0MmTSppo3rQIFIZHb/fTzqdJhaLYLFYqCgvJ9nehIbE53agKBrLXl/K16//PkgFxP62Hs5E4MPa1cOvf2eS1peHfXnz0gvP8Yuf3sZv//Dn/crgwfGcEMKP4e/24yOqQP+HsPDMM+nu7iadyfCDm248uAINRl8cZNJjsVhYs+Kdj3xeLx//XYW5P1966vuPK9CfHfz5L3/hvgfu58nHH/+orE7gdWFsWhMY56IeMQUaoCDgQwiBw+FAVVUy5pKw22lHUcDn85FMJsnlcmhWK6cvPI333nuPrs52mhrrsdlsOOxWigJeQqEQitQZOWwou3bvxGKx8ODDT5PTjfH71JOPp6S4iHQqSXFxMR6Ph8bGRt56622+/73v8vbbb1NSXsKcObOwWCwsXbqU4+bMorS0nFwmi5AbqK+v4+ijp/D+tq2sWP4Os2bNIhgMsnZVlEQ0QkVpCX6Pm0wyQTKTJZ1M0dbazKSaCdTtq+WUU06hpbmRkuJCKisrKS4uZsemEDtTAAAgAElEQVT2XezatRMpJftqd7Nx40a8Xi/h7k7isQizjp3BiuXvUFRYQKg7RjQaJp1JUlhUgNVqpaioiJLSItavX8/8+fPZtWsXZWUlSJlj4sTxbN68ERQVq9VKNpulpKSEtrY2qqurSaeTKIqVSZMmsX37doaPGMbOXTuMlSN0SkuL6e7upKysjK1bt3LMMVNpamqis7MTq02hMBigNhIiWOCntOQYGhsbGTqsGq/XS07P4PV6yWQyIHME/F7iRUEKCgrQNI1EItGrPL+9bCljx4ynvbWDyspKIpEILS0teL1eAoEA7e3tNLV2omkaI4YPNYRHSioqygmHw/3FagrGhkWBcXrNpUdSZmH/N9mwMvcNKyia0i9d6S3TY4lWVdU4VUFREJqG1GwIYUfRLKRSKTSrjbt+92vi8Ri5XI7PnfclNLud9vZWzj7rTB64/+9877pvMnnyFE6Ydxo5PYXFYiOX00mnUwQLStE0Kwm1i0CwhFtvvQWrxW5MHjua2PHeFrSmJl55420uueQScrqxgolUsDl8JBIxVEVSVh4km1bZsHE91dWDCJYUE+1sJZdN896GdRQWBXA63aiaG5vdSk5KpACn14euCtKhDlAELqebWDyM1+kDKfH5NeKxEF3tbcSjITS7nazFgmJ1YLHbaGrYR3dXC1bNhttTgMvnIxXtQM+mSOs6OakjIx04I3aQAl3Xqa6uwu12oVk1sjmBpml43AEoTlHbUk8omqC0eiSqnua9rcb/udU3NnDs8QtBUdi3O47IZSgsKaGprpNsNks6naa9rRHQsdsdJOPdZLNZAoWlSI8PqyIJh0Mk42l27ljH8neXce7nv4zF5sJqs5FNJ0jGu1F1KC6sJBgYTFt3O8888zTdne0Ab3EEdILPjBJ9MOxXpPmAgnsoeOyp5w9qeT1S6Etbf+XxUOgeSInuua/bu4fWliaKi4spKnBhsViIRqOMmzCp17qjaQpDhw0jlUzicrmIhbvMGTKUlpaSSMTwmO4Ch4Mlr77CbTffdEBcXd0+KisHHxBXVVXNgw9/pLJwyJh/2kJOPnVB7/13b/jBQfNKKececQL+w1i6ZIkRECD//9U/jwjuve8+fn/HHQfE7dixkxEjhh8Qd+zMmfyxX74jgSuvuKLXpQPgvnsGPjBEShnB2PjzicGmWYzlV0XFYXega1biccO9weFygC6xahbSusTn8bJq+QoqKiooDBQQi8Xo7u6mMFCAzaJh1SyEu0PInI7P46W0tJSvfeUCEskUHo+HgoICdF1naPUQYrEY27ZtI9TVzexjZ/GbX9/O9ddfj78owK5du3C73aRSKfweL61NzcSjUYYNG0p9fT1vvPEG37z2G2zesJFkMkl3RyephGERbmtrw+VwEgmFsTidZLIpoqEwp556KqtXryYZi1NaVExDuoFRw0cYvuCuRs46YyFLly41LPEOJ8FAAbFIlOrKweTSGSpKy9i3bx8+n4dMxs7RR09h/fqN+Hw+HA6H4W87/xQikQhlxSVks1m6urp45dWXCBYG6Og0XAVLS0vZsmUL48aNo6uri0wmxejRo1myZAlnnXUWv/jFz5g8eTKaptDe3orLaaWktAivz01tXQNbtu/GZrWhSx2p63R1h/C4XaxYtYlM1vBb3lfXhN/nYtrUo1m3bh2RSIRJkyb1TpK2bX2P6upqqqqqePWll6mpmUB5SSn19Y0MHzaSsWPH8sYbb1BZWYnb7aapqYFRo0Yxbtw4uru70XWdsrIyLrnwC6xYsYKxYw/8g0BpnKZT80nKbY8yrCgKujhwZVpVlQPS+37z+xrEetJln0ug9ua54eYfY7Xbeu8z8TQnzD2Om266iWVvvUFzQz37Cvw4LBpd0Qhut5d0Oo0idCLhMH5fEE3TDLc8RZDLSRyeAJ2dXSiqlWzK8G3PZDJYbHbS6TQ2hwuLZkfaJclUGF3PIHOSQMCHy+PE5S4glYihplXq6+tRVElF+WA0iwOL1U4qmyCTy6FpFjxuP+l08oA+k1KALrBabDgcQez2FnSpo2kaqmYlK7PYHHYKS0vRZRJVaFgsGuFYCE21kgM8bjc5JIl0gmw6haJYUBBUVA7mlptvRCgKSJDotLe14fN5ScYiaNaNOJxuPC4Hc2dMJpVMUFVVZdCmWckkUzhsVlSLpddYabVaSaci2DQLikUjHe0mlYrhtNtRHU5yMkcmk0ZkLQwdPpxx4yditzvRNI0T5y+gft8O9u7YhMip+AsCaKoDb0GQKdOOZfPyl2lojx6Rf7f8TCjRA6FHedZ1HYmOLnV6lmSllChyv226r3ItpUTp2ZQpDlSV1V6j5cGV8Y+j7B6pPAfDARZoFKSeQRc6q199gTeXvMT2HdsYOXwEPoeD2tpaXC4XjY3NJBIJBldVkchlaGhtxa4oiFiYaCyGRbPhFFYSiSQrl69g/olnkDugHw5udezflpPmncxJ804+SO6eNhw4ofiwCUbf5ww0+RBIs479dO6v7vAnVp8MPgG3gT7NEx+1v7h/337AGty3UjGgdbjX+j8gLQd5+MexWv+7fJLy367jkkWLuGTRon+Pjv8SWG0qHo8HRVGw2+3GWKsYp/nV19VTXl6+351DZhg7bhTxeJx4Mk5hSSEOt4Pu7m4SiSQTaiYSjRpuR0IILDYLdqeNnbW1TKsaTEl5GTt27OC9rZsIBoNMrBnH+++/jy9QwM233UQ8HufJx5/giiuu4JFHHmHGMdMoCPrYsmULyg6IdYc48/RTefrppzlu9gyCwSCqBtXVg5F6CqvViqpBXf1e5sydwdKly7FpKhVVg5kweRKDhw7hrbfe4tg5x/L666+TlVkyqQyxaBcnz1vEnt3b2LNvFzNnzWblypVMnDyeyspKQt1hLBYLVquVtrY2xo0fQ2dnJw6rhZbGBrLBIEOGDGH16rV4vV5WrlzJzBnHsGHPbjKZDIGCYto6I9itVoTUqa4aRFdnG8OGDGXlypV43TGCAT+bN27g5ht+wM9//nPOPGsBl1x4AS+++BIdrR1MPmMyJ86ZRXt7K9OnT+fdd98llUoRCAQYN24chYWFva4edrudcDjM++9vRQjJueeeza5du0ilEowePZJBgwbx0EMPEQwGOPHE49m2bQeZTIZRo0bS0tKMz+9i1kxj42R3ZyvRcCdFQR+KolNVWUFHRwcdbS34/X6GDanCqv3n3aQUTTUuRUFRBeSMr7yiKFg0635faLHfCt3XN9qiSux2O1a7izQxhKqCYul1AenJZ1M0Q1HXdRSbjQceepRQVytOh4Wrv/Y1LDYbS5ctYc6ck7FZXSTjCVLRDFm9m3Q8jKZpeH1BdEVDZnOg59CFzpBR43l/60ram9rIRQ0XoGwqTns4RLC40lxNt6IJG9F0lMrBQ3BYrOipDKriIJSI0NjeSVFREeFQF4GiUpzecoQmiITbyeVyqBYNp92FzWZDUVW8vgKSyQRWqxWnw0umNYPF6cRiseB0FzN4yGjS2RThbBp3oBhvsIJIZyt7dm5AU1SE3UGhr5DiyqFs27qO0qIgdluA8ooKuiMd+L0Wbv7BbQRKq0BJoWEnmYjQ0riLta8/SemgcUyeeTzhaIjuUDtb12+gqXk3xaXDSUQioCpIYae1oY54uItoZxcuhxNkhlROxeUV2Jw2UtFu3L5S/I4C4hJETkez57BHNKRNIRFNEHQH8PjtrF72AprUSCfDuBwVuFwqFr2QpCdCzfgpHyZihyaPR6ym/w9wMLeTTxIKOjqgImhpacHlcnHC3OPJZrM0NjZSXFxsDBASgsEgQlUoCARwOZwUBgpIp9NEo2FjWUvo+D1uNm3YQC6X+8hnfxoYyEc9jzzyOPJQVZVkMkkymSQcNpRFt9uN3+8nGAzS0tJCe3s7nZ2dJBIJY39KLkd5SSmpeAJFwuCKQQR8fl56cTEnzD2esaPHkEml8bo9DBsylNKiYkYMHYbb4aRm/ATKyyqZd9IpSF3B5wvg8XjYsGEDqVSK6667jj179jBv3jzKyspobW4hk05is2jE43F27tzJ7j1NNDQ0sGXLFuOUAtOlwuv1smPHDnK5HIFAgO7ubjKZDNlMhmgkQkd7O+vWrqW6cjAOq40hg6tIxRO0tbUhpTQ28Q0ZQldXB9OmTcNut/dO6nssY3PnzCIaCjN21GgsFgujRo0yXCfMZyqKwjnnnEN7ezuzZ89mwoQJ1NbW9lokdd3w1w0EAmzbto358+dTVFREZWUlwWCQe++9l5///Of4/X6Ki4sBGDlyJKtWrUIIgctlrDyWlpYya9Ysampq8Hq97N69m2g0isfjYdeuXYRCIaSU+P1+UqlUr1/3qFGjaGxsNDY7NjbyzjvvMGnSJBwOBzabjcLCQjo6Omhra8PtdrN7925qamqoq6sjEAj0+mdXV1fT3d3d67/9n8ZAGwU1TfuAG8dAVmghBDogFMP6qmg2VNX0r+6356qnXkO5NtxAcrkcbW0d2J1OPB4P9ftqwdxP4PF40KwWUok4iXiYZCpOKpXq9ZPuqc/l8jByxFiSyTidXa3kMiksFgsWi8WQ2WwWi6KSSMQIBHw4nQ50PUM6FQGZw2Gzo2ngdNoN1xSE4Y8vjHda13Om5TlHKpUinU6Ty+Ww2+1YLBZyuRw2mwuH3YOm2rHaHQhFQ9GsOF0e/AVFCNWCxWbIWzqdNmgy6XO4POSyEilzxOIRxo8fj6aopOJhEqEOVFSDjmza2JOj51DIkohFDPn3F1FWNgS3K0A8FiGdiqNIgdvtxqpBIhkno2cIR0PkcjkymQyZTAZVsZBOZ8mksigIes6VyCWTaJoVu82Nx+0jmUiTy2TQNBW7xY7VakdoFjJCoGiqoSOVlh85eTxiNf0bGEhx2u8LfWC4J39PfF/05DuYRXOg531cn+BDdccYqD0HyzMQPT1lhNSRQiGbzdLc2MTunbvYu3sPdbV7KSwsJBKJkDB3DicSCVpbW7EJQSoWpb5uH4lkjEwmg6KCpil0NLVAOo1m0z7Qr58U+vfdoSrKA/VRD5/zynY/KMoHrbUDyP5HYcA8fWXF8K/af/0nkOf1EYXT6cRms1FQUIDNZiORSOD1evH7/aiq4cdrs9mIRCLkcjmSySRer5fuzi4sqsaoESNx2h24XU5OPWU+Ly1+kdWrVrJh/TpamhoZVFHG9KOnEI+E6O5ow25RGTt2LLt27aKwsJDKQYOZNWsWs2bNYvTo0cTiUewOGzk9i9PloKy0mGOmTiGTTlNUVERrayvNTXuoqalh2vRj8HhcvPrqy1RVV9LS2sTc4+dw5pln0tjYiMPhoLy8nEwyQXNDPX6PmwWnzEdI2Ll9B6+89DKvL3mNs846i0cffZQzzjiDM85YyIaN67HbrYwbN4ZIJMKePXvIZrMUFxfT2d5GVeUgUskE3aEurDYL0ViEGTOnM3HieHw+D4899ghHHXUUW7duJRKJkMlksNvtdHZ2kkqlGDp0KFVVVZxyyinE43HC4TBl5skQhYWFdHZ28tRTT/Hkk0/2boSsra1FURQcDhuapmAxj7sbPXo0u3fvJhQK0dLSQl1dHbNmzWLkyJHMmDGDBQsWUFdXZ2xoLC0llUqxe/duAoEAbrebKVOm9FpeXS4X8Xi8d0K1cuVKhg4dyp49exg1ahShUIhIJMKWLVuMI/SyWTZt2kRBQcF/XG5VVe2lW9O03o2XPfE9luj+V48ia7HY0Gw27K4CbO4ChOYEIYwVX1039h8J0XvAgN1uR5dZFAUKCoL4/AUUFZXw8MMPc8GXvohVVZC5DNFoFIvdQjTWRbijkUwqSTjURTRs+NFns1mWLVtm+MdnJFOnHkU6E6O1sR6LomBzOozvGjp7drxPpKsTabrwqVqOXDaMkCl8bg8jR46koqKCXC5HPB5HyiypRBIhBF2d7XR1dJBNp1GFJJ1KkE4mD5h4WDQHVosDTbVRECgkh8RmcyAVFaFqFBSXoVrsWM1NlharnUioA/QcpWWDkaqFTDZBNpNgUs1U/IFC6ndtJdxeTy6XI5WMk4hHiEeiWC0qiUgIKTMIxcqW93cRLK5icPVIWur20Fa/HavVisNqReop7HY7NqcbRI5YLNbLC10XCF3Q0dJIOhoikzAmKYlwJ8gMfk+AAn+QaKid9rZmstksMgcuhxO334/L5yWRjuF02nEFK46YPH4mlOiBcDDl8uMofv/pE0c+TDE5HMvqAW3UdXQkToedV195hWgoTDweR1UUYjFj48OECRNQ7FZ0KbHkYM/775OMRhlUXgbo6HqWZDKOlJIin4+gx4NQj0DDP0UMpJjnkUceHx8ej4ee0zmqqqp6LZJ2u733JKJYLEY8Hmfv3r10dnbS3NyMruskk0kWL15sWj676OrqwOfzADojRgzDH/Cye/dONm9cy7I3X2P1yncoLPDi8ljx+h0Ei7z4C1xEo1EqKipIp9MUFPjZunUzbrfT+NC5HDQ01nPSSSeSy6SJRqO0trbS0NCAEBKv143TZaetrYXRo0fS2FhPd3cnTnOZuqCggIJggJNOPIF9e2t57tln2LRpEz6fj+HDhzNq1CiWL19OKBQiFAphsxn+mKctOJU1a1bhchn0ZTIZWltbCYfDnHjSCSQSMcrLS9H1LHa7lX/96ylq9+5hzNjRfPf67+B02slms+zcuROr1UomkyEYDOJ0Okkmk5SVlfHKK6/Q3t7OxIkT0XWd9evXM3z4cB5//HFKSkrYvXs3AOFwmKFDh5LJZIhEw+T0LG6Pi02bNrF371685lGts2fPxmazsXz5cjKZDDU1NcTjcdrb26moqGDChAmsXbuW8847j9NPP91wV7DZmDRpEh6Ph3Xr1pE0Fa25c+fidDqZPHkyY8eO5Z133qG0tJTp06czevRoGhoasNvtjBkzZqCNhZ84+rpmCCGw2WwDKswD3RsuH3ZsVhdWtw+L049iNSy0UuZ6lei+J3QZmxBBCImmWnE6XXR0dVJTU8Mff/87QuEupMyhIcnEYvjcflSrC01RQM8ipCRrWoPLy8t7Vy6cTjeRUJhYuMv0N5c4PYY7VCYVJ+D1oqh2NKsDFDs5bOgqRBJJJk08lkAgiK7niHa0EmrdRyYWorOxgUQyQjQSAl3S1dGOnk2TiEd7Lbo9e8IUFVQNsqkY0c5WQm0NaOTQc2mS0RDpWAiX24vXX0AilUZTIRYJ4fUXUlk1jHQ2TUdbIw5fCVXDx5LOJEhGI0RCYeKRKMlkFM3qxOX1YXO5CRaUUV5WyZcvvAi7x0ZHVyuhziYS4VZUJYeqgCJVKkqrKC6voiAQNFxdslkymQypRJhsJkY80k578x4ioS5SqRThjmaamvYQDnUSCXUQ7m6ivWUfqmolnYmQyyQhEUWPhQn6fCxbupRBlaOOmDx+5pXovvc9+Kwp0R+Gf1eJ1gF0yc5t79PQ0GCcFdrejtNcTrJarbS3t9PQ3MTQoUOxqhqDBg1C13V27txJMpnsXYYBSTqTonHfPvP+/y7ySvRBIHQO3Amg8Bl+zfP4FBGPx9F13bDmJBL4fD46OjpoampCs6j4/X6am42N67msTmtLG83NzXR3dbF50yZ8Xi97a2tpbW3FYjFONmhoaCAZj7NlyxZ2bd9BY0MD4VCI6upqYrEEQ4cMZvy40dTV1SJljsGDB9HR0YbdamHv3r3Mnj3bHNfsOBwOxo83LLwWi0o6nWbevHlMmTKll36fz0cgEMBqtVJTU0PA56ejrR2LqvC5z32OXMZYop8xYwbz5s1Dz+UYM3oUHe3tnDzvJE444QSKi4sZOXIkNTU1jBs3BpvN0ms17LFGT5gwgUsWXYzTbsPlcOL3+xkyZAjDhw9H0zTKy8v54x//SGdnJ/fd9wChUMQ4AQlw2R10tLUy57hZjBgxglAoxFFHHUVhYSFr162muKSQWCzGi4ufp7SsmLPOOotLLrmk90+QUqkUBQUFtLd1oAiVsWPGUVZWRiKRYOfOnQwZMoR4PM6IESOoqanBYrGwZMkStmzZAsD27dvZunUrs2bNIp1O8/LLLzNhwgTq6ur417/+1Xs+cnFxMU6nk3HjxjF27FhaWlrYvn07F1xwAWvXrmXJkiW43W7q6+vZtWsX3d3dn4LUHvhNVdn/be0b7p+v74qzqqpoVhuaakVVLGiaZrqDGN9dVVXR+h79KSWqauld/bRYLNisDqqHDuP8L30Rr8dJIh4llUqiZzPoOtidXpxuNw6XB1U1juBzOBwMKisnHgkTjnRhsdgoLi7F5XJRX19PKm4cbxeLxSgfVIY/GCSXlQihYrO78PiCWGx2ikqLGDSoClW1oCLQM3ESsS7SqZhxVrO58UXXDdmPx6Nk00lkTieRSBiKaS5NJmdY3kMdrYQ624hFukjHY+RScZLRMEKRqBYbxaVlVFRWkkxlCIW6zd3txirAsmXLUITK7+/4E3aHk6amRjrbWxHopJJJpBRYbG5yQqAoGn/4wx/YvXs3qmqcLZ1Kx8maJ8ioqoqeU8hkJdkU5LIqNqsDTdMMdw6rhWi4i0w6SaSrg1QiQSaTIpNNkU4nyWZ0wpFucpkE8WiEwmAxmkUhEY/S3lhPtL2ZaKiD2l3bCXcfOTekz8TXVcg+V7+XoGfZRgiBKiSqkCjoSHIgjN++R+FJKY3BSypIXaAKgQKIT0jxHkh5O/B85BxS5gC93wutH/Tq+9KnMwKRTfL2W0twOp0cddRRlJSUUFU5mFAkhNPloKSkDIfDwbYd28mQJpSMgyZwuh2kc1maWttQNCtFpSUEgn7aG+oIx6L9yT6gTQdckgGvvnk/WIfsvQass8+gdvA6jDgFUIXBy75Q+lwfxd9PDkq/qy/683Y/epbpeq4PwyHlRUcXkpzMIgVkclkyuexBMh+8zwZ8H/r2v/iQowV70g7m8tE//jM06f3/CQoSi6qgKYJELEq4O4TH5aawIIjDYSOdMU7W6O7uprMzjNvtRREq4UiERNL4J77ikhIamppZtWYta1evZu+eXXS2t5FNpGioa8Th9LJjZy0PP/40d/3lHr7xje9y770P8/rSt0mmclz6la/yk5/9AqkpFP4/9t47zK67vPf9rL57n5k9vahXy5IsWW4YbAcbg2nG5hxCjFNuCDyES5Jz89yT5wSfkJyc3PSQcyEnMSEhwXRCibCNjbssWVYvVhuNRlP37N5XX/ePNbMtCxkbcGxz8VfPfmZGe+1Vf2uv931/3/f7TcZIJvzKV6a7G08QkRUV026yYtUQqipzfn6eMxPjSKpCNBpl1YrV7Ny5k1QiSW9Plsd+8AhXbN6CKMC6tWsoFBbI53OcOXOKHTu2I6sib3v7LczMTfHkrifYsG4973zXrXgC1Cp1hgYGcSybs2cmSCZS9PcPEo3GmZqaYs36lbTNFhPnz5LJZDh16hTLli2jXC4zM+O7B+57dj8f+/hvMjE5g2k7ILlEg0Guf9MO9j+7B8+x2LRxPUFNYe+ep9l82Ua+/MV/5aortzI03MuWrRupVCrs3LmTubkZarUKIyNDVCol3vrWW5mZybF//2FGR4dpt5tceeU2RBH6+rIYRhvXtRkaGmB0bITxs2cIhYMcOLifyzZt5OixIzzw4P1cdtllVCoVli1bxtatm1FVmdHRYXbv3sWqFcuZnZ6iL9vDujWrueGGmygUSj6vVPA4fPggoVCAjRvXY1ptMpkfx+35lcGFzw4REc8FSRJwbBMR/3mF+8KHlYCHLImIgs9LVkQFVdbQlACq4lOXBEHCw8VzbDzXRlaWKCKK35gfiuC4FpZlksqkGRlZSSQa5+jBvfRkoujtOrbgy0EKnoUWDBFOpDAtHU0VMfUWiuDhtMvUSxUajRrBsEowEqc708XZ0yfIz01TLuZI9Q+R7BsimYpTLecxDB3PcRAFFdM2SGZipLq7kBURVxRQRRFRVkj19lMq53E9HUUNEQqFsC0dEY9WrYoqyYiKuEiFEUl1DZDq7iUS0LAaDUoLOar5PM1aCVGWyfYOIYgBTMslGMnQaBSolPK4lkM0kuLIsZOIToMP/ef3ocpBBGxEo0a1MI1nO8gIWKYDjk6jNsttt92MaNsY7TbRUJpYKIhgg2fatKp1BNEhV5pjeGAQ13ZQFA0toBAKhZDlELbnEpAj6O06nuviWCbJVIZ4rIfZqXEcxybVNUjf4CitdoOW3gZRoFSaJT8/wXe+cx+33fpWKqXJV2w8vi6C6JfCj5KqWcLFxh4v1Jj+8fF64NsuZb6W3mZi/AyFQoGDBw92yP7hcBjLdnDxSKVShMNh33wgt0C5WKRYWEAURSKRCMFg0J+GbTWRPJdYLPai2/1R5/mnWfYNvArwJD+BtB1wbDyrjWU0Fu+Dn4nb/Q28SpBlmXQ63dGJXmpAAp93GolEOs2EgiDQbNYZGxtjamqqY0Fdr9dJJpOsXLkSX881QLlSpN6oEgoHmDo/g6YGMXSbYrHM7/3+p1i5dj23vf2dfP3r3+S//tff46tf+gqeK9A2/CbHwwf3Y+otli9fTjgcJpPJcPmmy5iZniIVCnHu7BkG+/qZm53l8ccf5Y477mB2dpZCoYDrukQiEYaGBmg2m6xevZqpqSlmZ2c5cuQI5xdn4ZYoFuvWraNYLJJOpzl48CC6rlOtVunv72dkZIQ9e54mlUp1mquWGv5UVe2oR61fv56hoSEGBgZYv359h4qxRAnIF3IIgsdHPvJhtm71VQtLpRI333wzlmWRzWYJBALcdtvbOXbsCF+87wscO3aEoaEhTNPk6aefXqz6uuzYsR3HsWi1WoyMjNDV1cWaNWuoVCoMDg7SarV4+umnmZqa4tZbb/Xd/N72NkRRZHZ2lkgkwq5duyiXy6xatYpEIsGpU6fYs2cP73//+3nm2b1859+/S99AP1/52lfRdZ2TJ0+yfft2rrrqKgYGBjozDwu5fOdYX21c+Ky52Ln4UstcSAFZWn7pd7jr27YAACAASURBVElUkCQZUfTFyi7lFQH+/bLElxYEvxFRNy0eeuRhpqYmESXIZDJomobneRiGgWOZZDIZX3O91abeqNJq1wiHAsiihOf51A5JkggEAsydP0OjWiagxXBRAA+j3cZoVJE8G1wTz7IXdZRtFC1IKBxDkhVYlLGTJAkRD1l6nrOpKAq60cJ1bd8MRtYIBiK+zrQaQlSDaOEYjmPTqJWplPNYRptwKE463UUikSEWT5KIJ2lWFsCzcV2XTDINrkur1fQbGc0W1cIsxdwcuJ6veY2D0agxPXmWRqVIuZTHNFqY7TamaWKaJpZtYlotGs0qoiKjG3UEV0eWZRKJBLIso2lhAoEgwZCGqvqzB7IoIweCBBSNZjOPJLqEExmiiW6CwSCG0ca2fWOhtqkzNzeLrMpU/v9Wib4YL8ZlupjrdDEuFTy/mGvepYLrSzUzXip4f6nq6csJPF/O+77klMCeJx/h+OFDDA0NMTIyQr1eZ3p6GhCIJ1LkyxU0WcFzXCRRRJFUPMemXi3RaDQ67mG1Wo10PIagm7QbjRdNMF5uErLU4PfTJioXnusXOxcXf+ZHLfPzCp8/hp+h6y2MRgXFbSDZbRyzjSBeYvz/tFXgparzha8Xe+/lfOYNvGpQFH8qOxqNkk6n6enpwTRNFhYWUFW1o9zRarVwHIuR0WFC4SDvu+N2RkaHuWLbVnr7ssTjUUQRli0bpbe3h1gsimWZaJrK4FA/PT09NJttzpw+x6/f9Yv83V/+KX/9N59mPl/h3e94B//1d/8L02dOsGHjRp577hh9PRkKuVlOnTpFs9lky5YtLBse4JabrucDH7gd19E5dOgAkVCQHVduxzLMDsXAdV12797Fx37zo3iew9VXX41t22zatIlrrrmGHTt2IAgC69atY2xsjCNHjjA3N8fk5CSf/exniUajDA4OcuzYMZKpBKl0kna7yTvf+Q4sy2J4eBhN08jlcrRaLc6ePUsqleL+++9neHgYVVV58sknO6oOoijS29vD+973Xrq60ti2ycjIEJOTE+zevYtcLkcqleIb3/gGBw4cYGZmilgsQiCoMTY2hmEYtFotSqUSV1xxBV1dXbz5zW8ml8vRbrd5/PHHeeSRR5BlGV3XWVhYYOPGjQQCAQ4cOICiKJw8eZKZmRnuvvtutm/fzsDAAIODg0xNTbF7925GRkbQNI0vfOELvOktNzCbW+CXf+03+NVf/zCf//zn2bFjB/fddx+nTp1i7969rF27lmeeeQZBkFi9evWrPm595YkXmnAt4cIq9dLPC2OGpabDjtlKZ7ZbRhJ9hQ/btjvSdkvrkGUZx3FQFMXvGZAVPBHCkRR/8Kn/QSyZ4siRIzz11FOdBKtZr+E6Fs/sfppquYil+0oprbZBvd6k3mxQrdaZnJzsqHJMT55AkXxn2Fg4hiqJuFYTs1WjWish4Cdw4ViSQDBE/8hKhpatI97VQzgcJRiIIMvq4jH4TZGhUAjLsvBck2q5iOB5aEoAEYlwLIYUiJDu7kFQRDzXRG/XiYXDuI65mHA6BINBIvEUIFMpTDE9fgQRD1PXccwGrWYdWVUw9RZms47VqvpcZFunWi5h6gZ//ed/iqPXyM+fp1kt0ayVAYjFkxhGE8c1MZtlBN1gZuoMiuxRKhXwXIFAQMVut9l82WWEIhFswae9uK6LGozx15/+XwhWk/zcNKKiYrt+EiPi89llLYAWivGed70LJRBGU9VXbjy+Ymv6D8alaABLeKng+WcZsizTatZYmM/5Dj6FAvF4nGw2S6VSY3p6mkQyzfjpM9iWhYSAafrGZp7nYNt2R2IpHPa1LKVFubvXCy5F73i5n3kjgL4YLq5lYlstjFaVWqmE4Jq4tgFO+7XeuTfwOoIgCFSrVXRd78jZ+fJXGrVaDUmSOg/grq40uq6TSMRotRr09HTheQ6jo8Ns2LAB17MZGhpi9ZpVqKpKNpulWCzS05MmkYwRDof97TXqOILIW+/8EFtveifXvvUdTObLfOQ3f5vvP/gQV2zZSrvZYHZ2lkAgwIYNG5iZmaHZrFOtlBE9l77eXkaGhwlHQqxdtZojR44Qi8U6gU46nWZkZIREMkYw6CsezM7OMjAwQKFQYO/evWzcuJF4PA5AX18fyWSSsbExBgcH0TSNSqXCrl1PLr4Xp7uni3PnzvHAAw8gCAIDAwOsXr2akZERZmZm+MVf/EWee+45VFVl5cqVVCq+u1ogEOioKH3/+9+nUMxz35e+yOkzp8h0pRkYGODGG2/k93//9xkZGWPLlivIpHv4pQ/e5duXA3feeSfveMc72L17FydPPse3v/1vRKNRurq62LFjR2eWsVwus27dOs6fP8/4+DjZbJZsNovneTQaDR544AEOHz7M1NQUtm3jOA6XXXYZq1ev5tprr2Xz5s08+OCD3H333fzar/0y99xzD729vUxOTjI6Okoul+Nb3/oWx44dQxAE8vlix5zn1R63L0YNvHAZWZZ/SLEDwHGep4D6gbT0giLOhYH5UiLkeZ6vvyxJKIofgPnV4wj1hsknf/9THD9ynNHR0Y6coYhfCNu5cye2baNFQoRjaeLpHsKxGH0Dg4Qi0U5Dp23buK6I3m7TqpUx9TqOZeDaDkgetuti2S6SoqGqqt8kGQwSjXcRCEUIhSN4goSiKNi2iWEY6Lr+fPXcdbEsA1zPb6TEn2GKRGKEQwHWrlyBYdlowRCmYyMrKm29ieNYNJt1zHYDSRCpVEro7Qa60aSvP0u9WiMSjmPZEAmFQfbpF416FRwDWZYZWbGGX//wR6jVasTjcSLhAILndDTYI5EYIgKKJKM3a7i2iSQpBIIqlmWjaRqObfAP9/5vWi2d4RF/lkqRVKr1BlpYo6urF0UQadXKeHZ78frJCIJELJEhGI6hqSGikTSS+MoF0dI999zziq3sJ0Vbtzs7IVz0ujAUvjCbtF0XSVYxLRtXkLBdB0EQ8RwP23NxPQFRURA8f3rSn8F5oTTayw3ALpXpXgqXXu+FR+MuHtFL7IPrIiDgCjJ6s8D/+9d/weEDh4loKqIHtuOimyYrVq1lcGiE3OwsQTWE43o4eIwM9VPIzSA4LfAcbFsm29eDY3jEwikQTNZedT3haPx5YXpA6Px74V4jPl8xdJcML4RLn4tLV4ovLjp6i68X50Vf/HuHHy0IiIJwSSOQkCb/9xe9OP9R8Nx7XvzNHzqTL+Odl17L0mhcOiee5yB4EoIkIBht6uUcdrOILHnMzSyQiMYx9BaC5yCpGixOEwoXmpcIP3ztL3Gwiz8u+NxLcadfCi9moPJTG6v4I/rlneHXAUTxVR+7z+5+7J4l+kYoFCKRSlEsFanV64SCQbq6MlSqZUbHRlAVFdexsEwLVQ0gihIjI6NUKlXi0SiDA0OUqxVq9SZ9vb3Mzs6QTCYxLZNkJsPx46dp6TpiKEb/+u0kd7wfKTFItidB99BK1l+xnT17nuH3fu8PuGbrOlzLIhAOoQhQqTUY6htg6txpRAGuvf7NdGW6qZUrPPC973H5pstxHYfxM6eplCucPHmakdFR3z1N8Dh69Air16yi2WqQTqcolgr0ZLvR9Ta9/b202zrxeAzXdbjq6h2YpsHBQwe4++4P8eD9D3D27FkUWeGWt72V6elpVqxYwcYN6zl54jnK5RLxWIL53ALXXHMNkgRnzk3y7N6DJONxRoYHGejtIRqJ8O73vJeTJ06zbdt2RoZHEEUJ27GYmjpPvV7jS/d9mUcffRzLsnjqqacxTZPBwUH6+/1qvmHojI2NsWLFisW//Sp1NBql2WqwcuUKZmZnGB4ZRvBgemoKWZKYm51FQEBTVXq6e+jq6aLVbjGfm/f/X9N49NFHEQQBy3Ho7e1FcD1WrlhBIBAgn8/z3ve+l3a7xa5du1izZg3r1q1jYMCnzLzjXbe/qmN374Ej9yiK7Ft+SxKiIODYFpqkIIgiruvguS6i4OG5vrujhEhQC4DnYehtTENHb+kICNiOC66AZbeRPJtwMEhQC6NoQRRFwXUdHNvEsgxUTUMQRbRgyOdKqzKaGuUtN97C2LIBZOCRx37A6LIxJCWA1W7R1+835XX1ZCjXdYaXryXdlSWfy5HpH2HLtqsp5mfBsxgaW02lUiOkieTmztHVlaXRaGG5AlowSiAcRlKCBINBWo0ikqwQT/QgyhotvU0skSSR6MFxPBr1Iooq4wgCgVAIxzBwPYdwKER+9hz1+gI93csIBgX+4o//G7GgQjqdxfEEotEeorFuHNdCEgwiQZX5uUkOHTzMyNAAjfo8Z85MMNTfR1e2l1i6m5nZHOFwDEkLEY4mCIdEFubP0bZA0jIMjq1ECcfxkKkVC9i2RTgQBAQ8UcIRBBxLx2jUkRUFWQkiaRHUcJBs3wDP7HuGG950DdVyBcQAiqziOW3kQJjhsW4yoSyqrHHi2G5UScNyPWq1Er19Q2QHVvDd7z/MiuWjBJNZokGNX3jrja/IuP2ZqURfiKUMstVqoYgSjmUiiwKW0cZ1LCTBQ1EETFN/Pvt8iY6sl0vXeDXhui4BVWR8fMLPJl0/e+7t7SWTyVCr1ZiZmaE704VtmKiyQn9/P81mk3g0gior4LoEtBDNtgGSRlu3Oi5lPwle63PyBn4EXI92q0a9XETTNKqVOul0GsdxsE0TyzBhsWMb7/U1G/EGXn0YhtHpr5Bl39AkGAzS3d3N4OAg4XCYa6+9FkmSyGa7uemmmxAEP+hyHIejR4+SyWSwXQfDMpFklWAowuFjx+nt66evrw9ZDdJq6hiGgeu6xBIZEj3D2KZDCIeuRIRsJkNPtouh0eW8944P8Bsf/7/QLTCaNer1Oms2bkHSgtx5553c8b73Mj+XQ5Zl2nqLq6++mkgkQjgcZuvWrYuN1j2oqtrRRc5ms52/w+Ewl19+uc+9PnyYTCZDIpFg8+bNbNq0ifPnzzM7O8sVV1xBMplk/fr1pFIpyuViR1XDdV3q9Tp9fX309PSwYcMGAA4cOMBDD/2Ab37zm8TjcZ8+l4izY/uVbNy4ic985u9Yvnw5kUgEx3GIRCK+a2M8zoEDB9i4cSOf+MQnuP7663nzm9/Etm3b2Lp1K1/72teYmJhgbm6Or371q5RKJfbu3UuhUGBwcBDP88hkMhw5coSzZ88yMTFBf38/y5cvxzCMzr5KkkQymWRiYoLBwUFqtRqFQgFJkmi1WjQaDZq1OkcOHuLo0aPs3LmT3bt3Y5ome/bsIZvNEgwGSSQS5HI5KpUKPT09r9n47TgaX0DtgOd7qGzbfkEBbClhdBwLx7E6Df8S4iIVzsQ0mti27lPiHOeC9T9P7XAcp6NR7XneogeDzId++W6i0SjbtmwlnYjj2n7j7tJsxKFDh1i+fDmKpiJIIrVajdx8nvNTs0TiEV8LPKQxMzfLsWPHaDabNBot+vsHF6klvka4JIl+RdlzME1jUdNd82eOwgE0LYCmBcG18Rx/dnrp+D3H8htQHYt6vY7RbpJJRNmw1jfgQfJ7qEzdQPQgEAzyP/7nnzA0OIqkyGy7cjuGYRAIhDh3bgJVVvxeK6PF1q1bWb5yBXgOtWqVxqKBU1dPD4MDA7RaOtF4DEkSCIVCJNMZQtEIoiLS1dVDMpXx7blVDcs28DwXRVGJRsN84rd+iw2XbeL7D/+AYFDDE/0ikKnXaderpOMJ9h4/TiTbTb1aoVBcIBQOU6lUiCdSBMNhzk9MoAUCPh3nFZT4/ZkLogXBF962bRtsg7npCeanjjNz7hinjj7DqeN7mTh1mJmzx7EbZTzHxfE8XH7YgGVpfT8O5/lHYemmvlBj8ieDiIeIJDgcP3IU17IxDN/a9tzkFPm839AxMjSEa9u0my08u02jNM+5E8eozi+AaSN7EtgWiVgMJRDBE4PE4hHy+TyFQuEn2rNXIoj+Uef4wsaPl7vt10PC89pCxBNc8EyKuXPEIhqtpoUiBamUi8xMn6daLtFq1NAbVfAMfGWbn3Gx8DfwU0EQBBqNBtVqFdd1Wb58OeDzKJe+H8rlMps3b0aSJI4ePcrQ0BAzMzNEIhGWLVuGoijE40kMw2LZshVEo3Eu37SFdLqLVDrDihUr6Bvox0NEtyy6Vm5E6V+D3Mpjnn8Wya6hYZEISKxbu5obb3snH/mjf6QWHSIzuBxZC3DfP98LokS+XOGBh3/AVVfvYHz8NE888QTFYh7TMkilk5yfnOLokWPUajVCoRALCwudpsJQKNRx8Pv0pz/NZZddRjwe5/Of/zxr1qwhl8uxZ88eurq6aDab3HLLLezevZvR0VE+/OEPEwqF2L17N81mk97eXvbt24dlWfzgBz/g6d1PYZomkUiEL/7rffR0ZXEdm97eHi7fvJE9e/ag6zqrVq2iXC7TaDRYuXIlY2NjXHbZZQwNDbFu3To+/OEPc+2113Lbbbfxzne+k5tuuoHR0WH6+rIUCgtcffXV3HXXXaRSKW6++WZWrlzJiRMnqFarpFIpMpkMW7duZc2aNR33xieffJJoNIrjOAwMDFAqlRgZGeHZZ59lbGyMkydPdqgf7XabwcFBZmdnqVar3HjjjUSjUT+oMk1OnTqDLKv8/d/fi2U5yLLMuXPnXpOxuxTgXtg7tfR/kiR1HAyXgt2l4HeJ499q+UYdlmXhOL6zntFu0mrUaTZqmKaOY+tYZstXglicwV56vi9JxFqWQVuvEY0F+dpXvkMsEsc1LP76z/+cysIUhdw0488d5t+/9Q1WLlvuc4dxkSSRRx/7Abe87a1ksyk8TyAcSSBJHh/96G9w35e/yf79+ynm5/ibv/wzgppKd3eWQCCEIDrUazWKxSKqLCOqfiOj3W5QL+TQVIVYOIJrO9TLVZy2jlmtYlsGlmVQKRcplgtYhsRf/Nkn+c43vsjMzCzVRgtB0QhEwriCgWlWUEMR/vm+b2CKKl/55kOs27iFobFRBDlIs2UgSgJmu0arUaZcWaBYyiE6BpLVplVuIgpBAoEQ01NniARD2FabSnmGdssgnuolFIshqxKiquEIMuVqk4AWwjZMKuU8ht7E0Fv84T2f5NT4OTZt3U4snkYNRpjJjTM3P0lu4jiSGuL9//kuGk2HwZXLEBSZUmmOaFijVqsQ1ALc/aG7kCSNQCDEkSOHXrGx+DMXRLuuu3jDeLSbDWTJw2g3yM+ex2zXWJg7z+F9eyjkZmnUSuitOtgWrmv/UBB9MQ/3xZrWLhWgXczDfrHXi+FiisgLON6C/34oqDI7dd7/EnT9ADMcCmBZFiMjI5w/f56Bvn5s20aSBBKxOLZpIXkuru3ztxAVBMnXtVwySdA0DVl+aU7Qhft14fG8Es2TL7Wd18tswOsRL35eHAKySCwapVrzeaWKKNJsNgiGAhh6G2zDvye44BoJwo8nNXfhtn+Yq/Py1rW0zItd3x93n97Aj40l+dBEIgFAPp/vGBuk02lSqRRDQ0M0Gg16enoQRZFcLsfw8HBHsSMSiVCpVZmdnyNfLKAGNJLpFKZjk8vlqNYalEoVTMfGdUAKRHDkACEZusMSQUXBaLaQJYFIJEwgFKSrfxXJwRX835/6f9i77yC3v/2ttI0Wy1es4mMf+xjz8/Ocm5xgeHiQBx98kFxujpMnT1KpVIhEYpw6dYpUKtV5VixpPouiyOTkZMehr1KpsLCwQKPRIBQKcfLkScLhMPV6nZmZGUqlEpOTk+i6Tn9/P7Ozsx2L7XA4TCgUYvv27eTzeU6fPsnu3bv54Ac/iKFbuJaNJAg89P0HWLFiRcdUJhgMIooin/nMZ3j00UdJJBI8/LAvX3rvvffy4IMP8k//9E988Ytf5NChQ0xNTXH77bezfv16vvrVrzIzM0OtVmP//v1Uq1UWFhaIRCJUq1XC4TCzs7O4rsuWLVuIxWJcd911XHPNNRw+fJhms8n58+c5fPgw1WqVEydOsGnTJmzbJpPJdBwKG40GjuOwb98+rr76ah5//HG+9a1vMTY2RqVS4b3vfS/5fJ5EIvGafD8vXdNL/T/Q0X1eoiqqqtpR1rBtG9sxcT0bx7V8qVzPwbVMTL2Ntaj17LkOrm1h6m1wnRfwqC9+Xtm2SansW6Wfn5rBFeDuuz7Ezp3/jmVZbNmymbfdejOqquLaFu12G03TmJyc5PTpk9imgapqBEORRWOfeUaGskyMnyURi9Pfl8WxdBzHQtOC/noWZ6YbjQauayMIEAkGkQWRZq1Oo9GgVKxg2y7NRg1J9J37XNvCs307cFmUiEUDSKLfR5Xu6iGeSCErmq/Lbul4nsdCLs/hI8f4X5/938wXiuiWQzia6liBt5t1QprPw/YT8xpWu4nneQRDYU6ePEk6k8QwDBqNOpVqCU3TULUgLcMkHvd54UcOHUDTfBt213Ux2k0cy6RZq2JbJjfccAOZTIZWq0WxWCSRShFLJkgn4wQVFdey+dQf/RHxVBeqFsQwDIKqCp7LI4/8gGuvvgrPFV6gsvNKQH7F1vQqQRAEv9PUdiguzGHpdR65/yGmZ6Ywm20kSUILSOx/ardfBRkeRFQDXPOWW5Ajsc70jO8x716y6vlyvhheig5x4U3248J2XXBEdu96lHv/7u/Y/+w+3n/n+3jq4Yfp7e0lnU77FZGePmq1GoLrEUt1YbR1NC2AZRs4eDiCSCw7Sjo7hmu3kCwRUGg0GsRjqU5WLYrij2SNXvyl8dPi+WD8J1/HG8H1BfBEHNdg5vh+kprG/NQ8yWSSgCbRrlVIJWLUqxUMyySTjuNaAggpPFd4gWLHG/j5gq7rdHV1IUkSwWAQx3FYs2YNPT09lIsFJicnGRsbo6uri4mJCYaGhpienub06dOMjY11pDPrzRapTBeCJNPT04Ms+g2Ltm0TjSc4M34OTQvQlA2i6TSy5FDIzxFVPSoLDcKRXkQZWkYdwXEx6xpi0ubuX/sNDNNmTzmCV56kO+DSNtv0D/ahKAqnTxzjxpvewsGD+7Esj0g4SrVa5+677+bIkSNMTExgGAbj4+M+vWkx0Pz0pz/Nl770Ja666io8z6O/v58jR46wfft2hoaG+OAHP8hjjz2GYRg89P0fsG/fPl9TN52ku7ub3t5evvvd7zI2NuYnqopCOp3k9Olx5ufyCIJAOBJkoK+HdetHOtbf3dkelo0tZ3x8nA996ENIksRCPsdzzz2Hbdtks1lGR0e58847mZmZ4YEH76fRrBOJhskXFnj3u9/dMdBav349gUCAm2++GYBTp0+SSqWIRCLMzMwwMjTM7t27ufzyyzl06BDXXXcdzWYT27YZHh5m2bJlfPOb32RhYYHeXt9nIBwOc80113H//fdzxx13cPz4cZLJJFdeeSWO4zA3l+Pw4aNs2LABw7DYuXMnQ0NDr/q4tSxrsRAkIysqIgKuY/rP5Iuq0ktGY6qksuR+J0m+2oNh+AZB9WqZdrNJtVYirAq0W2GMdh1REXEcy9+OGgR8RZul5BNA04K0W1VMq0VAjRPpzhAL9mDpde78pbt4+onH2JruJh6K4hg6jmWAY1IuF/mt3/oEjWYFTfSty7VgBL2sY5o2H/v4/8GuXU/y6b/9KxKJBOfOZ7Blj9WrthMMxmlUJpBFCVyPr/7L5zhy5AiapjE42I+mBJBllfNTpykUCqxZMYYiiwwNjvjNhGKAo0dOMJ87w9tuvJX5+QrRWIp4PEUsmcW2TSRBppSfA6uNJ0js3vMkW664klA0hmcvIx53WL3mONFYDKNWo1GuMbR6CEWUyM1O4+oNCo0apuawfPlyXMOBgECr2SYghvGwsQWPrr5llGcnaJVmMOoVPD2OGkjgun5i06pV2bd/N9e9+SaOHTsCepNIOIwcTdO9YiPhRDfF+Snq+XkqfWPc+8V/plUtkCy1MZs1HNklHAjy5a99h8N7n+BXP/o7yGroFRWe+JmrRHuet+iwJKG3GrQaNRbmFqiWKoS0IJlUioCioggihw4eZH56isLcPBNnTlIs5HzKBb4Ry4vhteZHL2W8zx0/SqVSIaBpPPLII74ElWNz4403dqSoYpEoiqJQLpcplQrEYjFs18V1HARBQtViBANhcFwCmky73WR4dBm60fSP1XvpwPiNgPX1DQ8HwbM5cvgQkqRgWA6WZRGJRYHFh44isWJ4mGaz6RsL+LYCr/Gev4HXEkvT20s0tCXt56Wgc+3atYiiuKiy0UOr1SLTlSKRSHD06FFOnz5NLpfDMAwymQyjo6PMzy9QqVTo7u4mk8ngeQ7r1q0jsFiBrbfafhUNkANBFEVDUkMEFI1YLEG1UqJVyxNRRJLhAJKi8eypWf74b+8lle7CshxmZ+apVEoIgq+6EI2F2bFjB319fYyMjBCPx+np6aFYLNLd3Y0gCLTb7Q694/Tp0+zYsYN6vc7w8DDJZLIj9RaPx1m/fj2VSoWJiQlisRiCINBstjl+7AQHDhzorDcSifCBD3yAzZs3E9A0LMvizJmzlPMFRoaGEURYt24DlmOj6zqWZXHi5HMYps8RX3IH/OQnP8k111xDJB4jV8izZ88eXNflHe+4la1bt3YUMAzD4Prrr+fKK6+krbeIhEPgetRqNaLRKJqmEYlEyGaz7N+/n76+PlKpFNu3b+fMmTNkMhmuvPJKhoeHCYfDrF+/nquuuop6vY6qqjzxxBM8/fTTnX6jVCpFPp+n2Wzy8Y9/nHa7zcqVK1m/fj21Wo21a9cSiURe9XG7pDh1odTdkgLHhct0qsaLDfcXUj983WENRdFQAiqKJhOPx4nFEkiibwFu2QaC6HUKDUufX+rJWtoHSVJwbA/LNpEkiWKxyDvf/X6mpibZcdXVRGOxjtqNIPiFC03TeNutbycaSaIE/KpsKBL2i2CWRaNV5y033oAseViGzhOPPkG54Osrt1stjFYb3TQ4ffo0zUaFbdu2cvL0OP/+vQcYnzjLrqefZu+z+yiUiiwUipw+c5bJyUlfNcYyJnTEkgAAIABJREFUmJ6aRFVlWq029XqdVavXEo8lUTR1sdodAEBvN3Fsi5mpab+6ryqogQCGZTIwPEQ0GsV2LURRJBpJopvwpS9/Bd0ycWwLU7eoFEv+zIHnIHggKgqi6PO6A0oIVQ3QbFXp7kojCeDaJqIgICkytusgijJPPvEokZDvYqrJEtnefgLBMNFYkj/507+iq6uLiOcRVzWSiS4/yRFlZEklFouzduUKfuVXfoW+vj6eeORhNE15xcbjz0wl+kIqgc+F8jjwzC6mJyY5N3mWSCRMoZLHtJqYhuFrJksSzUqDB773IGdPneTqN11P7/LV9A4vIxCKokoykid0bDIvrLa+mPLE0s8lJ74fsceLy75gDS9Y1wuDVxHwFs0NPCynzXe+8nVSiRTSmES9VqVl6CiqyiOPP8bYyChnz0xQWMijaRrZVJS2bWAZLUKxOE4DTNsiEetFFDwkEQTFQhYDiFoUQ69hiy6a5+Agg+c+35jBC6vOgvv8nl9aF+MSR9+Z2X9xbW5vUTnl0ng+v3sxOs2F+HkK9H+okcZzyc2cY/OmyylW6ziOTblUQFJkisUK6VQS2baYGT+NE45SNxyGRmMYkkfQC/rXVBDxm2cuPI8X59gX/v0ivP+Xex1eznI/R9f0tYBlWR1TCMMwqNYbdHV1sWzZMqqVAobZXqz2ifR0p2g2KrRaLSzLYHCwn1qtwqFDRbK9A1RLZWrVFkMjwxw/tI+1q1fhhELIisbEuRlfJcFzQA4zX24TibjkPYOw5GI0S+CKeJ6IWWsSCWqU8mXimkk2nkSL9bH+v/0VhfoUPdEYuUKR/oFBuruzvlmD5TA9fZ6+vgGGhvp48uknufq6q3nzm67DtB3e8573MDMzw7333su2bds4duwY3d3dBAIBjh49SrVaxTRNFFnD0C0EJObnFnj88ccZGhxhZnoWSZK46cYbcF2XI4cOYxkmggeHDx6iXC5TmMuTSaRIxiPUiwvccvObGR4ZJJnKcN31N1AoFBBFkampKfr6Bmg0Ghw9dgTbNLj11ltZULVOhTUSDVPIz6OqAUaHRzhy+CjDQyNMz0whSgLNVgPLbFGtllmzZh2FwwUsx2FuMaFZu349eqvNzp07yeVyCJLfaHfg0EGSySStZptyuUxXVxcPPvgQrVaLnTvv50/+5E/Yv/8gtVqDf/3X+4hGoyRSKZavXM2Tu3ZTqlR4y1vewle/9jVuuOEGDu7fj6K8csHIy4WqBUAQ8RafRp4AjuciizKCJ3Sk6IKBKI5lYlkmguChIKKqMrYdQFIlREElGLAIBFRcuxu91USRQRIBXCRBRJE1JFVBXrRG9wQPVdM6FWlZlnFtB8e0MZttXNulp3uQL33lazzywHcZHRrGNAwkcVFuTRaQFY1gIMz4+TmCkTSCZxONg2FYmEYDvdHE9lQWig1Glg3w3PHTmLrId//tO5w6/hx9vcOsXbOeZ/YfYs/uZ1i5Yjm5hQXyhTnC4TBnzvmUnP6+fo4fP04hX8Q0dNqGTj5XIBGLE44pXHbZ5Zw6O04omMARIRiL+GZsksRSX1a1mEOSVUrFOmZbR0ZAlDwk2WLbtq1UCnmC4QAeJi3TIRxO8n9+4neZOHmIRDiBoIRJJgPM5s4jShq6aSCqAeLJDKVqAd01QBRQgirF6SkiQZlwUETVArQNC1EW2HLZJgyrQTrVQ6mYIz8/iZNczvotwzTrZb707e9xYt/TBPUK5XqJ3/6d3+Wf/+Fz5PoGcGp5FDXOzddu5czJ43zjuw9RXMgRULa8YuPxZ64SvQRVVYlGo5imSTab9QPmmt8AEI/HicfjpBNJcvOz1CtlCvkc3/rq15mbPEN5YQpJAMeycTywPPFl8ZhfKSwF0BcHfkvbd20Tz7WJRCJs2bqtw31zHIfp6WlSqRRqQOOa667l6muvYeu2K9BCQWp1X7i9UJynWq8hy6FF/pjVoW6EQiFCkTCtZhPTcXEEEXHROv3F8HpyfXyDJ30JiKBIQifBlGWZTCqNLEr09/cjShLNto5pu0xNnieZTGJbBgHp1X8AvoHXDyKRCKFQqOMKmE6nSSQSNBoNUqkUrVaLXC6HZVk888wz6LqOqqqMjY2hqiqaprFx40YEDzZs2MDYshEWFhboHxyg1qgvNm05naqg53kUCgU8z6PtyrQcxbfZdkwsXDzP9auugoBhG7iujd5qkgkFMasN/vJv/o5IPMO6tauZn89RqzdoNduk02l27dpFsVhk06ZN7Nmzh1AoRCAQwLZtJicnmZqaYvv27czMzFAoFJienkbXdSqVCuVyufMMmZ+fJxwOUywWCYfDZLNZWu0mwVCAPXv2cNVVVzI9Pc3IyBC53FxHN3tsbIRMKkUqHWfV6lH6shlGRoYoV/JMnD2Lpqo8s2cP69ZsxGibRMJBtmzeyMYN69i/by+f/cyn8UybybMTRMMhnyoyPcPhg4fo6+0mGgoQUDUmxs+iygrFUoW16zdw+sw4Ld0goGiEAyES0TjHDh8ln8+zevVqRkdHicfjjI2NEQqFOHv2LD09PQwPD3PVVVdx3XXX0dfXxyc/+UlyuRyRSIixsRFuv/09DA0NoKoqK1asYO/evezYsYOJiQluvfXWjiJKb2/vqz5uOxXdS8wSLz1bl6rSS8+9JZ1nn84hdSrRwWCQYDhOJJoknswQDAaRJbVD11iy/ZZl/yVJft1xyYzFsiwsW8d1Hdp6E1WT+OxnP4thWPz95/6ZRDqDrbew2k2fX+24iAi0mnVa7QaKoqAoKoFAmFAoTCgUwdAtv7rtwrXXvJnh4WEURabdMjh27BgPPfwA+cI8AJblcfToUebn54lEIti2Tblcpre3l6mpKRzHjzO6uroYHV1GqVSiXq/z0Y9+lIWFBXK5HI7n+TMuroO+2HQpLjooirgYeou7f/lXWb16NYlEAlEU0TSNcjGPY9m+46BjY+oNmq0Kuq7z4AMP47gi09PnGR8/TUALU6kuYDs6iiSgN1vorSai5yEiYBgGmqZ1VFUkSULRVExTZ2pqilAwiG26BLQomUyGN11ztV9NXhQiuOe//yH1ep2QFuBzn/sclUoJVVVRZT9wLxYXSGcSrF69klgsRiyaeOXG4+tNJ/piuBeYp1xYKW63dE4c3ku5UOTQgUNEwmGGBwbo7e2hWW9gtnWi4Qgz09NEIhEEYH5mmmd27+Lgs3tYu3YtjVqFRKobBJA6PVaXFm+/EP4yP/nxXswx9qelnj/GarmE3igzdXachx56mIWFHIGAxkIhz+jICLVS2eccOg75Qp5zk+coLMxj2RaC5yFJ4FoeghojkUigt2uEVAERCS0Sw3Adlq1ejRoJEwxGkQQbhOfF6C+e5b/wPPwo5YwLXxdrGV/4+8sLhH+8EywIAkFVep3pRP8H4aJTYzeqWHod0QOj3ca2TBRRRPQ8mrUiODaNUglNlOlftgxV0XBNG1f0UNXQYhMfL2wOvNSGXoAfkVi9VNJ14TaWln3FE6OfsUTrNdCJPn742Xs8z59abjab9GSzOI6vulApFztNh6dPnyYRj9Nut7Ftm9z8PN1dGfyZM4dVK1fz9a9/jdGREUbHRlE1lUgkQiwao9lsomkhHn3sCUzLIti3HEkLo8S6CQYj9ChNBFUiEokSUhen6kNp1q7bQDSooAgBIkoSTQ6gRWM8/tSTjPTH6OrpRxREorEY0XCQarVKqVSmXm8wNDxMNpvl6NGjDA4N0W63eeqppxgbG6Onp4dNmzbRaDT49re/ze23387hw4fJ5/OEFxu7ZmdnSSQSnDx5ilqtxvLly9A0lVQyQTwRpb+/l5XLl2HobU6dPAGey+DgIN3dGWanznH55eu5+pod5BdyRGMx1qxaTbNRpzebJTe/wGc/8xlGR0e4774vsPfpZ5iemuJtt9zC17/5bzz26GNIssIjjz5GXa/T29fN/MwkzUaZffsO0pVJIwoQDIeYmDiH53roeptysURvNks4FKK/r49avUYymaTRaLCQX6DZbJJOp8lms+htnTNnzrBy5UpKpbLfVJZO02g0mJycZHx8nEQi4UsUKr77naqqhEIhpqamSKfTPPTQQ2y74gr27t3LL971y6/q2N1/5MQ9S4H0UiXctk2UC4JcWZYRRAHL1MFz8EQRx7Q6ZkKqqhIIBBYD6SiRWAxVUVAWGxJ13UQLhIgnUoCIFgiiKCqSJCNJzzcu+kpcLpIArVYD29bZdPnlhCNRbrntNt5/xx1cu30zxXyOSDiCrMjkcnmKhRzBoEpADaKqYRRFw/MEHFsnGNBIZjJE4ylmps7TaPqKIZWa3ygoiiBKMDk1zZkzZ7n6qiuZmp6mb2CA6elpNm5YTyDgNy7+wi/cxOS5CUqlGmfOnGb58jHK5TwnTp1k5crV9GT7SCbSdHdnaDUbeKjYti//p2khbMvCc2Fo2XJufMt13PG+99NoNJmeOU8jP4ciiViuDZKIpAQRRZdyfoG1K1dgIrNh00aqxTyyEmShOE9vthdRlHAdl7ZRQfBEHEenXF7g3LlJ4tEIgijS1E0kNYQneoz09oFnEwyl6R8cYs9Tj7P6sivQbZvegSGCmspHPv47yJ6H69oslCrMTZ8jHI5RLRZJZPs4ffIAgXCEseXruPyKLUiixFtvfuvPr0400OminpycxDEtbNPEsW3yuQU820EWJYx2m5GBfvp7ujEaDeqNChISruHxB7/9Yf72f97D7PlxXLPdaUS4UHfy1cKSJN5S93Axv8CTj/2Af/u3b1Kr1bAsi1K5iiCJdGUyNBoNipUyz508SbFcxnIctFAQRIFao06truOKEqFoDMswkQSXeq2GLGrIkkrbMikX8hx+ZCeyoCKgvigP/OJg9yeR73utuOU/LygVFwgtdmxbpoGt67SrNcxGk1ZpFqM0T7uYp13K06q3ePB73+PYwX0IluGP9Vf5miwZIHg/tRTkG/hpsDRrYds2fX19iKJIMpnsVPI0TSMcDrNp06ZFvvO8r2WrKoyfOsns1HlEz+XAvr2sX7uGeCzKvmf2IIgypu3QbOsEg0HS6TTpdJpoNIpenseozFFrW1QdBRub+emzWI0Gjmn4zm7BAMVyldMTMxQbNvlyjXpxns1XvoXLtt/IP/7DP1EsVYin0iSSaRw8IpEIGzZs4LnnnuOuu+7i6NGjrFixgtHRURYWFhgbG6Ner7NixQpkWeb666/nzjvvZGpqinXr1vGud72LRCLRka6zLItioUI4HCXTleK9t7+TeCLKQw89yKrVK9nz9C42bdxAMb/A6OgwoiQwNjrEutVjDPX38e/f2Yll2Jw5MUFbbzEzO83eZ59BDXhs3LSKffv28uwzhzg/l2fjlu388Z/9FcVaiTs++J84MZGjYYY4d17g7z/3CH/4x1/kC//yGPlCDtPS+ZtP/xXH9u/h1JH9PLvrUQ7seYJsNsFTTz3MoUN7ePTR+7Ftm/HxcQ4dOkQwGPT1cuNxDh061KE7jI+Ps2nTJs6dO0e9XueJJ55gbGyEX/mVuxEEjzNnTnXGgWEYnDp1ilWrVrF69Wq2bdtGu91+TXSil2RQL7bz9vWS1Q7v2XEsBNFDUaTOzImmaZ2+qlAoRCQSIRIPEQqpRBIhQpE4wVAUUdKwLZ/epml+dVqR/eenqgQ6fGhVVVGVMAEtSiKeQRKDOI5BtZYjHlL4x8/9A/FMlmxfP6VijvmZWUQ8FMHj2d27aTXrNFsVDLOBZbfwBAVRDqCbDggS+VKR9es2kM1m+dDd/wnbcimVKhw/foLJyXECmtzpZWg2m6xfvx6j1eTMyROdexZAU0UQROrNJr909y8RSyR57tRpNm/dRioaRBU9QqEIkiQTCYZQFAklECKSGfBnp4ozfP3L/0Kz2UJQZf7gU3+EY7bI52ZIp7IoShTbtqkVy2iigW5U6RsawHUkAoEQpfIcsWiabPcwyUiMRr3ib0MR8Rzf8nzZsmV+n4bZJpFKEwhGGBpcgWma2GYD01zg3PnnuOXttyJLEoODg3zid/4L0XAYwfL10Ot1g3A8yooVK6hUKpycOk/38jGOnpsjPbieYj5HsVzgX75w3ys3Hl+xNf0UcPF8WbeLnuXeJarQsMSLhkBARZTcTlfy0kCKREKEwgFEEcq1KoLrsWx4hO2br+D/Y+/NwyQp7zvPT9yR91GVdd/dXVV9dwN90NCIQwgJhCRkXeBDtpG9Hu/MY+9a1lgez5iZZ9djzWhWvqWVvbZlSbZkHVgcQoAaA03T0DQNfVdXVdd9Z+WdGZlx7x9RVQKEZLAxlo1+/cTTVZmRUVkZb0X83u/7PZJhHdcyGB7aSbVUZeriGRYmR7/ftN1zEfwffJN/7Y22+H2b7wsbmyBIwZKL7+EhYrs+hdwiyWiYdDJFpV4mHNJJJmJEtRCFQoHW1la2DGyiu72DRCxGWNVYXV7FdTwEUUEUXBxfRRZV6laFmlFCVUIoWpSIBjVk5KUxls+dwJUEhCDY63vbP9Dsvhr15ZXWfi873iuO/WpWQa9Wr6fp/rcS8/5aan1cen6wZBlSZGzLQVPDCKKCLGnUKiU8y8SquYi+TE9HJ4vzc6xMjhJXVKbnZsguzmPZVSzHAXFNHvGyz9H7IdvrKRcI7Oo8z0OQRRzfwxcFHMejbtm4PviCGDTWb8i5/Ke837dG+YKIqofItLZRrgZcyGq5hO9ZaIrMpYsXMOsGqixhmibXXnstKysrZNra6ertI5Fu4vLUNLOLS8wsLPD86bO0dnRSK5VpaWohmUhhGA1MM4jgtW0f2TRQLAMXD0sIU6uWgxxXt44vKrS191KvlDEqBZoSzUS1KB1t7fT39AbhU1oMqakbr1KgVm2QK9bwfYH3f/BDPPPMM9xw43U89t1HEUWRldUs09OTxONRmppSQBCNvX6/mJiYYMeObezZs4tkMs7s7CyFQoGmpiYAbnnHTdQqZRzL5tTJF7h4aYT+/k089cSTROMJFhZXkGSNvt5NgYBRkmnv7sEXJa67/jA7dm3n5ndcxyNHjrBt+3ZaMq385F2/yF//9d/xt1+7l7lsHkP2uP+xh7njro+S2XkYvamXD77/bt7zgZ9n6xVX0zwwxC9/8rfR27q5NFPgP/7Wf2P/gasZm1pgZGyKHbuvpLWzi3q1zuCmQcJamL7uPs6fPcPK0iIf/uCHUASB1kwzqhzweC3LwrIsDh06RLFYZNu2bdRqNXp7e3nqqae5995vsXPnbiKRGB1tLfzxH/4+Swtz3H7bu1hZWuDcmRcZ2rIJ06xz+PA1b/7A9b53f8HzkRGDYDFAkMQgndh1gnAyT0CUNBRJDRretbjsl4kEkRB9GclXEAQf1/cD3323Bmu9iSSCKATBKkjfo5SIooiiBVxnX4BQOIyihpGlMKWKSTwR4j/86q9g+hKirCArAooAsigxNzuGJAQTtrpRpm4UsRtlXNemUTNQZJndu/Ziez69vb2cOzdCw6zS0dHGxZEJ0skMHR0dlEoFrj64j/e9+zYGNw1w7vwIfX19zM3NsGfXdhp1E8/2OHT1fqrlPMeePA4u+I7Lk48dYWpylFSmjVA0hShLOJ6ALIWQ8FBlmbrpUi2tkisWMM0GmqTT2txJrKkZyzWp1+t4jotnO9g4ZFq6MByflkwbjuMQVkIoooskBHbEjlsnpIOuhojGdDzBJRWJoasaTqOC65r4soqk6Rx57KnAgtAVEQWVTLoDQdO4fO4sIxcu8tuf/E/kyyXmJqb46M//JA2nhuILVCt1Tp04yqlTJ6nnckSUCOMvnsKx67hGhVwx+4YNx381wsL1eiklQJIk+jYN8OLTp6nXDJo62/FsC9NxiYWjGNUasqKg6BoT45dRQzpbtmyhYVscPXqUdKaFP//857jhppu4ThDp2zSIK0gInofg+/gEKUH/lHotzZ0oijiI+G6DUiFHfmWZQmGVjo4ORicvo+thTMuiKZnAtm2WlpbQVY2WliC3vlarkWlrpV6tUTcMDMOju6udSCSEXa1i1AwS7b2o4TiC6BEWBC4+cz+GLSDwPb/Nf4jG8kbVq3lxv7LeQj3xP658EUHwWSfOSKKI7VqIrk/DrKOKAqLnIoY1hFiM8ZUsAweuxSwXefbFp7nuHbeQTqfRJAnTdfBF5Z8NkPb9tcuMF0iBXMNEkSUso4ptGkiSgiDFwJV/RKb1b40ShICL2Gg06OvrQxAEivkcnmuzurpCU1MTMzMzJBIJJClopIeGhigWy6TTaUZHRwmFQth2oM5vaWlGVhQaRp2ZmRlisQi6riMpMpFIhETcJT8/TUs8RCU3zYKgk7pqEPwJRMknFIsxP5elp6ePRHMawZaRXQkEm5rrM7uaRfdg6Iqb+LN77+e//dpmLEdCjTZz5vRZdu7ZzckTz6KqKvOLK6Sa0uzfv5/NmzfzV3/1VyiKwne+8wgDAwO8/e1vR5Zljh49yt69ewG4+uqrURSF++67j0OHDtHWmkFWRGq1Gh0dHZi2RTqdpq+3C/zAf/h973sfxWIRVVN48MEH2blzO52dnYyPjwMik5OTbO3I8Ad/8jm+9Dff5Gd+9mP0De/gUs5Ba+4iY5dRu6/h6197gtvfcwsdag1sk5zRQIrJXHPTdUzPLHP1228lmv4I1FeYvnCS7OoZZFHiq1/9Op7nci7+Iv39/QTe3WFi8RBXDV1BOp3E8x1i0RgzMzPous7ycpD4+Hu/93sIgrThv+u6gR3ZysoKZ86cwXEcjh07thb5Xedzn/sct956K6Ojoxv6nJWVFe7+5Td33K6jwIIgIAliMPmrmei6jqIouLaFIPr4brCvqqoosoIoKhtpg8qaUHDD4UMScBwBcc1uTtfDFPMLtHkemihspB1Kioyw9rPXqSSBjikQhfqCuMHFr9dNfDfPpz/9P/m1j3+S//Hf70GSAseJP/ncH/DO225leWkJXVERVQXLdVDkEL7gIfkuqwszSJLA0vxSkL7sCfzSL/4C3/zmNxnobWPr1q2MT1xmYGAA3/f56le/wvz8MpGIykp2Gd8PUhd//uc/Silf4FsP3kcqEeJtb3sbE1OX8RyfuZlZbr3lRhRFo1AuE4lqKKqEbbng22uhOiq6quCYHulMnG3bh8HzSDU1szQ/RbGwSqIpQySWQNFkXNOmUCiwMD2OLyjMzU8hiBaJhIJrNrDMOrIvo4hRKvkqmhhidHSU5pYMeiSMi4Qsqzi2wJ7dW1FUn6Z0BstT0PUQplnj+RPP8POHr0fVwuRXssRjSZYWlnjskUex1TBuTODGm25GEeC/fOLXuPrg1dx0yw2cOvU8huHy6f/1e2/YePxXd8t66QwynmiibgQzoUajgVVvEIlEiMVia3GTLeh6mHKpSjQap62tjTNnznDx3Hk6OzpQRIHOjg5GR0aYm7pMqRBYsXieFyDjbwCA9VrCWARBwHYdysUC1XKJRq2GJPis5nPEwhEc16W1tZVarYYoiuzdu5dQKMTS0tLGZ5HP51lcWSadTqOHYjQsk3K5hIKLKoqEInFkPYQvSEQ8F7uaRXNtBDx8Xp2r/MMoHv8UasaPaR3/1BLxhTUXFSHwLjVNE9d1scw6nuNgmxbFQo721jYikQibtu2k2HCZW17lzp/+KFdedx3zs/P4roPgWnje94cXvFHlexKsWUr6tgV2nfu/+WVOPfv3SEKDqcsjzE9PIKg/TlB8M6tcLpPNZpmfn+ehhx7i7NmzG83yenS2pmmMjY3h+z5zc3OBHdbQENVqFU3TqFQqHDiwD0WSeeihh3jsyKNYlkU4HObs2bNrwsUQjmOjh1QEy6K0MENEdvCcBlqinT279tDb10c8HmfPFVeRaWvFdl08giV6DxcLcBHQQxGOnziNkOpjcX6Geq2I6bhsGRpEFCQ6O7vZunUrt956K4lEgpWVFUZGRrjxxhvxPI+DBw9y8eJFxsbG6OnpIZlM0tPTQyQS4ezZs3R3d3PllVcyPz+P67oMDAywd+9ejh8/vsGBnZ2dpVarYZomx44do1AoIIoiH/zgB2lpaWF5eZldu3YxPz/P1VdfTaPucGp0gTvu/hVS7ZswXQ0t2orgS/i+yOSyRNbuQpNDVCoVytUlTKtMe0eaVHMSX5IQZJ1M31aevThFwfDYvGmYy5cnqVXrJBJJBrdsoW4YbBoY4NhTT7Gpr59aucSRRx/l4MGDtLW1sW3bNorFIrfccgsHDhzgzjvvZNeuXTz++OM8+uijzM/PMz4+zszMDKZpMjs7Szqd5ty5c6ysrHD77bcTj8cJhUJceeWVbNmyhR07drzp49b1nGD1VPzBGqb1Bnndim79sXVR4brwcP3169SmdcGhqqpoIX2Nf/w9J62XotgvrZe+h1AoRCgUIhyOEonE+JuvfpUzZ87R3NyCpKh4AuTzq7S1duHYHqZRRhIFZEFGVrUgdVEEo1ymo6ODa6+9lm07djE4OMjJkyc3Iuzz+VVUVeXEiRO8+OKLtLa2omnShs6qXg+Sjh955BFEUaS5OUWlXOfP/uzPKBULPHfiGQY3b+bII4/imBayGNilunbgjW27zsZn43keiiTzkbvu4oVTJ9i9a3uAPnsejYaB4PnoehhFD2FYNhfPn6deLmLbJo164JhWK+coFVbI5xeolAvUjTK2ZWBUSxs2juFIAkULo8oKtmly7aEDCIqMAwiiT7FYZGzsEu9659uJJ2MoikRIVinWarS1d/GJ3/rNYJVAkjHqJtgOEhBNxsgWiiSbm/nCl75C3bDfsPH4IyEsNBr2PRuD8BXP+Xx/uh+A44OqSpw/8yIRWUcSRXRFIRqJIKkajudjOQ7hSIhKuUw0HieWjGM1TPB9bNNkcNMmlrJZysUCIxfPM3LuPG2tGZqaM3i+EKBzfD+V5Hvv7PtR1FdSHAQhmOlalrWR8vXSBnpd4ZtbXmR5+hLFpSlWFhcAj1yuREQLUzENioUCQ5s3o2kaiwsLeK7GOBWpAAAgAElEQVRLIpHEsiyq1SqKJtPe0U4xn0fSdbo7e8DzEIQAZYy1ZAilEsRDAs3OLNXVBdpaOxl6x0/iSyKvjFt5LU3ua/GXfqWY0H+V51/9oiT+wP1eecz170Oa/JYQFga0JwGcBmYlj+C5qLKI5/nUc6uBErxaRHAtsrMLlPMlQpEUnR1dSNEYkh5ldX6e9rYW5mYmybS34PgSvs9GlK7vfc/y8HVB1Otj4iVULNFrsDB9kcXZS/jWKr5bY3iwm+amCAo+LW0dxOJxBElFWAtMeOPrR3zS9i8gLDz25HfvaWpq2vB47u3tJZ1KosgShlHDMAxc1+XAgQP4vk93dzeSJDE5OYUsy5imiaqq1KoVsssrpJvS1CpVRFGiq6sL27ZoaWlCEH0KhQrTM7N0tHZTrZQJqQ5urURB6iARThPVRXzbwTJtHNdCQgJHIxaJkSuUKJfqVByLiB4imelASrUyfebv2bulB8OTaRgGkWgU02qQjMe5PDFFV3c3pmluNFThcJhNmzazZcsWWlpaGBoa4tFHH+HgwYOIosgf/dGfcODAATo6OpAkiSuv2Es2m+WBBx4gnU7T2tbG3j17cB2bgYFNxONxDhw4gKIo5PI5bNvGNBsMDg4zMnKJarXGxz72C7h9VxPb/xOs2DHiYpjFlQadyRjbhSUUrYojb0bUt9GnHqNZKSPaJSKqT0gRET0H23KpFAtYqooVa6cpk+Hvv/7nhEMhtm4d5PLlca67ej/RcJhzZ86QTqWo1qqkkkmshsX8/DxLy8tsGRxmeOtWTr94mrGxMcbGxti8eQsHDx5E13WGh4c5efIkhmFQLpd5z3vew7lz50ilUhuuLc899xwrKyvIskwqlSKfz3P9TW+MQOu11hPHnrnHdR08zyWsR9aEgEZA1ZAkLLOBLImoqgawloInI4rf84let6jzfZ+GaeB5LqqmoMiBQ4QARGNRRFFCFESkNbqIKAXXp/Xr4zoqbpkNfAQUTUcQRRQ1ECxKiscN17+dpZUiH/rQB/nJn/opdu+8ij/64z/mAx+8Cz0aQg+FyS4tI4vB60UBJi5fprOrh+mpKXAdZifGmZ2bpVqpUK1UuO3dt9HV282FixfJruTo6+vnQx/6ACeeO47n+6ysFPEBRRYZG5vk0sURtm7fwqaBLey76goMo0RxtUAiliC7tMTA4FZs18ZqGDiejaLoIPhEIjGMapXccoCK/9f/+39y8w3X8xPvezee1UBwLGpGCSUUpnvzbsLxFKrssWtzN/mVZQzTpFZZJKyF8bCRZRejWsITHOp2A1mBmbnLAejZ3Ew2X0WLhlHWxJq2a6FGMyRTbTx17Ls0pdsJaz6ybxFOtTC8fQdPP3WcK6/YyV13/wLv/8CHWZqeRNVCTI5f4NyLJ0knItx8yztJN7fy+JPP8H984rfwXTh06Kq3trBQFEWSqSbSzU1MTU2hSvJG6pauhclkWunu7SMWS7Br7xUbsbWxaJRYOMKWzUFyVKNmUCgUOPPCizz23YcZu3huY/b1WiO8X6027OrWZnG2bWNZ1sZx1x9fFzRWSkWw6siOSaVaQhQEEokElUqFT/6n36S9q5PZ2Vny+TyNRgPHcahUKiwuLm5EoM7OzpJMJkmkoszMzZLL5ZDDEZRQmLppguQi4pAMu6hKDD0Uwxde3xB4PUj1P/T6Vx7nBz3+asd8o1Dxf80leD6Nen0DedA0DVUW0VQZEQ88n4GhIfoHB0i2JHn25NNMzs4xMTPLF/7yi1imQ3Z5ifLyEvbacuX6ZG9dcPgyIelr/RtY/3sRgjhZBAdd8ejrbkEVPURBZWmxQLloUy41qBmNgBP9z4iG/7hevV7aVKxfRxzHIZlM0tfXR3NzMxMTExvCst7eXlZXgzTDWCy2Ec6ya/cOOtraKRTzHD58mIWFBbq6ujCtOlNTU7iezfDwMIbr0d67BcGsIVaXyddcTpybwLLWLEcbFoLr4TsOii9QKpQwLY/8ag5NkSkV8wHPORZltVoLLPNcD98XiMZifOfhh2lububKK69E13WuvPJKjh07hud57N+/n76+PnRdZ3BwEEVRWFpawvd9Wlpa+NCHPkRfXx99a6h4LpdjdHSUZDLJvn37WFpa4ty5c4TDYbLZ7MZ1PRqN0tPTs4Y+hjl69CjPHH+WxYUlrn/bDXhalErdJqTrpJMxWrvaMCUJI1hGYnlqnKmRy8hKcF+oVmxAJSQJ6JJAWBHo624hoYvEmppBDaPrahA3nc+ye/dOEDwUVSIaC7P3it3YdpAoOH55lJWVFZaWlvjDP/xDvvzlL5NMJvF9n2w2y9e+9jWOHz+O4zh84xvfYHZ2lq1btwKwsrLCnXfeSUdHBzt37mRsbIzrr78ewzDo7u4O0Er7jUP0Xmut+5tbloVhGBvuIetN8UvH9ku3l6LI618Da7HZgbPD+v15vTkGEMXvt8pzXTe4tsHLhLi+IGG7PrbrI6s6mhrCI6B4PH38WXp6+5lbXGLnzp1ooQi+4OHLIVJNGWRRQpV86kaVcCyGEopgmQ4hTUGThI3+xvd9jh49yiOPPIKmaViWzfj4ON95+NuEQiEURWLz5k7e9rZD3HDDDRy6eh/9/T3s3LmTp489w9NPP4Oqylx7+BDj4+PkcjlUVQUCCut6f7L+++l6EABTKeU5efI5MskUu3fu2uhx1nuYcDhKLJbil//3f8fS4iKivCbyxA/OGQqqmiQaayUSbUJWY2ihJINDu0ilUri2xbbtO4knE0iCR1iXEUUZUVLRQlE+8MGfoLm5mZCuIeJRKRQ5+cJJPvunn2dh+jLF1TyKpKNKgYWgqkhkWptJN6dIp5LgCfz2f/0dEqlmNO2NW/X8kUCi63X7HuFVYjwC5PLlN+51DpPseQghjVg0wgvPPEutViUWCWO7NluGBpmZmyOhRvAFAdfzMS0Tq1SlblqEEnFKxRKhUBhNl5AEn7oZWLlMTlwmnYqi6xp6OLrGuwJ8f4MLtY4wg7Dx//omCOD7Hr4Pju9hOy62aZCdn6ReqSL64JgNatUKlWqZer2GbZkUFifILczjuT4ruRKRcIynnnyCUDjME08dJRWL4yMQjURJhmOEVZ1qqYwnQNGoYtQq7Nq1i7NnL1CoVrnx+hvp6cpQXpwk2pREVmOolk+1UaQ1ESWsKbTuvJrk3mtRsRF86WUXltfSBAsboKHPD0P6Xtbo+iCs/Qu+Xnv5usXaRvmvugnCq/9MQRDQ30IWdz4Ovl1DsetBRIrnUcjlya/MUq2WkX0fAQ/bclksVjl9eY79Bw4ztG2YE8ef486P3EHDrHPu9Its6W4jHEmwmlsmFUsh6jqiLOFaFqIo4yPhuS6iGOQcegQNss9a4IEvAD6uZOP7QnATMRtY1VVWps/h1OZQFRUEAdvVcC0Xx3YJhyI4Vo1QMoOsJxBF7Z8RMH7pOPoRnHD9S1jcnX3+HsMwNpwbkukmdFXDdhwcO3DKsG2barWKbdskEoEmw3EhmUpTrdZYXsly4OA1nD9/kXw+TyQc0CIefvg7dHR0kEylaWvroCmdpL0tzYkTz5FbXWVhfpGIDNV4C+M1nzYjT09PJ55vI/kqbh0uT8wgiAHKnIhG8T2bcrWGqoXxHI/vPvYtBtpidPcMIEgKoixx4qknMB2XcCjKA/c/yEfuvItoNMbU1DT33vt3vPOWW/mN3/gkh66+hnPnznP9DdcxN7dAo27z9088iappfPfIY1RrNSLREEvLS1RrNaKxKB9473vp7Gjn/PkLGGaD9s6OIOFN19HDOol4lNnJKWq1Oi+ePs3zJ44zdMP7KUX7kVUV1beRPJ+hwUEsTyAh5lFUjcsLBU5fbOaO6xw0VUDw64RVCdtuoCltCK4FjTKlaAtlsYmV8ReZee4Ynuvw7nffzN69e3FcB0SJ7p4BXF+gUauxuLBItVyht38z73//B/jyl75ISNMolspEo1E+/OEPEwrpTE1NMze3gNlw0HWZSCRMa2sLJ08+x+zsHJ7nkc1myWQynDp1iv7+fr71rW+xvLxILBblHe96z5s6dk8+d/ae9WAVWRJwbAun4YDto0fCeLaLIqogS4iIqLKKh4mkhHHW6IuSIiGIIq7v4FvWBi1OwEcUBTRdx2oYIAnIWghFFFFkCUkIQsIChxMRz3Op1QxczycSjQU2s2v3qJAeGAlIsoooSPzO7/4OnmfxmU/9Lp/4z/+FcCQBiMiShCTLmLZFZXWJ1YUp2rp60SNRWttaOf7cc8wvL9LUlKRcKeHjYdRrfOxjd3Ph4nnCqRgXRyb5jx//dU4+exKjXkeRFRLhGKMjFzh/7iw33XyYv/nKN/jwh99HKKQQCkdJZxKcPnsBVdPYd+0+XEfAqZTwLAtZD6OH4jhmAxef3OIkvlnDReDEC6f5qZ++i+X5OTy7TrWYJRxJ0DW4h0g0wQ0Hd7A8M47lONhmEdNy0MNxQtEk7Zt3EMu0EU5naOnchCiq2L6P7NXxPAtPjyC5EXRdQtE1UNsY2jbIpz79GZyKweYtvfiui1GzSCab0CWJD3zkbpayBbYO93PuzPOYgodRMbCMPIuLWW646WbikSimUaGrfzuCpLGSzXLo4BVvbSQagtjaaCyGrgcRlYqiEIlEGB0bI51O4wg+8XQSQRJJJNPEm9NkWlswTZNkMk0mkyEeS9DZ2UV/fz+dnZ20trby6Hce5syp5/GsAPH1EALngJcg0j+I4xwgd4EQwW6YmPUalUoFx3Go1SosryxSLOUpFfOUi6vUK2UqpRxWo4Esyxsz7EajwfDwMJqmkclkmJubY2JiAgBZVfAEaGlvI5lMEo/GkEMaJ184xYGDh7j99ts5d/o0Tz31FNlcEctyEHFw3DqRRAo53kJTZ89a2+/yQxLQv6/eSi4YP8ol+CK2aWELgVONT7D0K7gujmniOya+ZbIyP4vsO7z7Xe+gOZMG3+Ouj3yAz/7JH3Hy+efo6elgbmEe1zOJhcPMTI5RXV2hUSkFyI7nIPjuBsojEHiaC56P4LkInouPgyf4+J6M4AioIjhmmfNnTpFKRvG8AN0s5EsB32/NiqpSqWC5HqKsvCVXEv6lq9FooCjKBvd5fYUrHA5vWN/JskwmkyGRSCCKIqZpBhG7a2EbV1xxBaOjo8Tj8Y246FAoxJ49ezh79uwG6OF5HslkEstqoOkKW4eGA6pFo0R7c4LLNZGZhUUE36PhuIxOTpFKJTGMKp4o4SsSy6bAibFpPMGjbtVZmM/y+JPPENZDG+Eqra2tCILAkSNHeO9738vq6iqmaXL48GGGh4cRBIG777478E9eWSEUCjE7O0u1Wt0IWenr6+MrX/kK2WyWVCrFhQsXaDQaTE5OMj09jWmaKIpCNpvFMAyy2SyTk5NMTEzR09dHNpvl2ZPPk27rQok1YxgNNEmkKRZjaPMWSqVC4OfuBlSC1o4WLLtBoVRkz549xGIxRFkhGo1TrVYJhTQQBcKhOJIq4bkBhS8cDrO8vMzZs2ep1+tMT83w4IMPct999/H40SdRdI2rDuznyJEjfPrTnyYajVIoBBkDFy5c4OjRo9x///3ouk44HGbfvn309PQQj8dZXFwkk8nQ29vL7Owss7OzfPOb30RRFKrVKoODgwAsLi6+6eN2PWTNNE08IQDWLNugYVaoVsuAh6yI+I6NbZu4nh2sLvsuttlAkgJutCh+jyetqTqSJG+gyrIsoyhakCPseQEcLYoIkowkyhvBLevje3018JWCxfXji7LEpz71KSYnp6lWq+zZs4dIJLKx0rceBS4oCr6ksDg/S0TXiMWiXLp4nngsyqOPPrqxQmIYBr/92/fgeR6b+jfzy//uF/ja17/BluHhjZCdkUsX6O7upre3k56eHnbsGGJkZARVVRkaGqKlpWUjZKhSqaDIGg27geNYwQRCcBEEH9tqIMsKpUqNcDhMZ3s7hULgL+4DeiSKJElEwzqu7RBLpHF9gVq1SqVqbCD3uirT3NxMJBIlHo+jaRrxRBRVVXFdG/CIxxKcPnOKmlFhOZtj27ZhXNflM5/5DM1t7VQq1Y3J/ezsdHCeZIHh4SHed8cdDGzaQkKJkslkkCWferXK17/6t0zOzPCpT3+a0bGL1OsVfPeHpSW/vvqRQKJfyol+Zb0SiV5HghECFDgWjfL4ow9Tr9XQRQnbsens7SKTybC0Fn2shXRWczmUsE5LppWOljYiiTiIIkatglkzsG2X3Go24PFl2vAdC9OoEG9uQ1Z1HN/fCGT5YeU54HsCpXyOQi5PpZzDMRs4DQNEn0ajhm03cBs1TKOK75g0ahUWZmexrQaFUomFxWWi0Sijo6NYrksiFmdlaZnOtnZ0XaejvZ1QJEy1UWfr1mH6unuwBJ9EMoXleRw7epR4LIwmSzi2T3NLOxFNYGF2DMuXEVPddHZ3E1Y1UsM7kQQPwX95I/MDz8dL7AZfvssb0AS97kO8/AVvHSTaQ/QE/HoN0y6DIFOvVqnnlygsLaAJLlPnz1LOLpHWNKxaia6hQaSQTnZuhq988Qs4ts0LL77AuXOn2DK8mZ7eXo4eeQjPtnjwW9/gwosneOHk8yzOTtHX2YbrWIiqSqNhIiOztqgABBaV+BqSI9MoTjE99gJxHTLJCC88/yzhcBLT8kgk0ziuhySKuK5LIpHARSTR2gOCFDiNvF7+9T+q+f4RbNj/BZDoZ479/T3hcBjf94NGOZnENk18Pwh00HU9SIKt1SiXyxiGESTEtndiGAYLCwtYlkUul0eW5Q3erKwo3HbbbQwMDJBKpygUChuCrXK5im2ZZHN5krEYllEgmU4wrvcxdmmEpaUZhEYZ23EpVMpokSg116fYMHjRCCGk20j4JcbGzuMU60ycfZ53vvMG9HAMWZY4fvRxvnXf/fT3DQBg1A2SySQPPfQQq6urHDnyGFdddRWyLDM8PMzHf/3j/MT7P8jg4DDdPT184xvf4JZbbuHFF19k+/attLS0MD8/TyqVomE2ePKpo9x400309/cHzZtlkcuvoogSPT09/M3f/C2PfvdxVvIlmroGyCWG8LU4m9IpOiMqIUkirKo4vkBMdQhHINwyCJH9dIZfYHFhii2b+kmmWqibEtFoBsupoigq5/MuOSNPZfQUK5fOMjDQSyoVpVQqc8WVV6LqGsNbd6CoGgGWIzE4OIyihdi8eQvlcoVNmzbT1NwcWPKtcXonJiaxbYfLlyeYmLyMoqgoisrY2DiGYdDc3Ew8HucjH/kILS0tG7REz/M5cOAgBw5d96aO3VNnL97jC6DqWrDi6zqUyiu4fh1BCig/jm1SKOVw7Aa+a2M5NoIHnlvHtupoiozvegEQ0WigyCqqGsJdi3MXEalVq0iSgGd7SKFwwHeWVGzLwTUtJEQUScHxA360oijIkoTrOGiqiucFGijX9ZAkGcMw2LV7D1//6pf5xV/691imh+vZ+NhUKiVEEWQ1Rk/fJi6cOY0sgCJ6qIrMzh3b2L5jBzMzMwwMDKBpGn39/czMzvH2627mi1/8ElcdOEiqqZlTJ08wMjLCnt07cRyblZVgkpcvFti7Zzfnzp7F9WyOHXuahYUl7IZFc3sbmzbtpGYUUVUZWdewHQvfsbDNGiIC0WicfL7IkSOPs237UDAhEX1s20FSQ7R3D/KlL/4FnT1dLE2NYlt1JC1OZ3snlUqeaDRMU0c/0UQrsUQKx7WRBFBVndmJM+D7uGKS1rYU5VKR+x98lJ/+mY8yPT2J40BnTx9GvYYm+iSSzfQNDOAIEkatxkoxz+G3HWY5t0pjvoikyVw6e5zxS2Pc+s538Rd//RV+8X/7ZeKJOJVqGdOscO2hg/92kOjXikK9cj/PBWSFzs5OMpkMqqIgCQKVXA6rWqWpKRUodBHobu+gOdVMfrXA6bPnCcXiCJJMf08/XV099HR3s3vXDirFAqeff57HjzzGl7/4RZZmJ3FNA9+2gqXMNfcO4HtOHhsINNi2Sb1WorC6glHKofgu1WIuEDDUDGRBRPShUMhRq5TwXZuGUaVWqVKslCnXqoiiyNjYWBDD25RmYvwyO3fs2ODrCYrM1NxsYJg/OcnMwjzDg0MsLi5z4eIIkhZntZCnZ8sghh2orJcXZonoCulICMe0aKhpCMfXFrdeWwP9yudeK1f8lbzyNyte/d9q+b6AJ4icOv4EcauM4q/ZNknBjaFUKOM06tQrZSbHLrI8Nc6v/tIvMj46RqWQpV7Os2vnDgaHh7j2uuuJxJKsZBf467/8c3q62rjp+mvILc4z2NNBVBV48O++zjf/+ov4jSoKDvVaGdd18FwH33PB8ZBMC89Y4snHv0Y6KlLJLbM4v8DOXVcSjSRJp1pwXf9lCGe9XieebAFEBEEKelvff+3c64A79WM/xH9khcNhDMMgk8kQDoep1+toWiDGqlQqmGbgfLRuHZbPB81ydnWZRDLG1m1DhCM6zc3N5PN55ufnAejo6ODzn/88zz33HJ/97GdZWlrCdV3a29vxnAYDfR3oqszCwgL56Us89+2/xcrOUAx3sKR2kG34OKKIpEeZXVwhn8+TzeZozzTRKBUpr65SWlzghmuvoqm1LbCYU4Nkvf7+fg4fPswdd9zBpk2buHz5MtFolI9+9KMMDg7y67/+6xw7doxLly5x5MgRBCRmZ+d56NvfIZfLsXXrVs6fP89v/dZvsbKywsWLF/n4xz/OzTffTK1ucOdP3kVXT8AHXv/sNE3DrDe4PD7BA99+hLmFJfZctY94uhlLTdLS2kpY8Aj5PpFwCMeq05RKI2pRXMtlYXmBb37rIbbu2I5hNvB8Adu2MRoSluUgiC51x0KNpTAWZ1gavUhLSwuhUAiAzZs3Mz4xSTaXp1iukG7OMLRtJ9ff9A4M06FcqfKFv/oiu/fsZc/eK+jq6mJxcRFBEJiZmUEQBNrb2wmHw/T29lKpVDbQ2PHxcfL5PNFolJMnT3Lx4kVKpRKWZbFvLbHwTS9RQJQDdDccjRCNx4hG4uihGAISqqrjecHlRJVkHCvwYm5US6wuLFDILrCyOEOlkCe/kmV5aZ5SMUe1nCefWyK3ukyxsEq9Xie3vEAlv0yjVsQ0KgiuA76LWS9TyK3QqFfXhIvSmtWdG3D0XQ9d178nqPddVD1KSI/iCQT3eUUllkwRiaXQ1BD1ho3ngaiG2LlnH54vcN/9D+L5PhMTU1SrVXp7e0kkEjQaDdrb26lWqxx96gkqpSLbBrcwNz2FIAj09vYyNzdHPB5lZSWHJGn09/czOjrK4cOHicfjqEqYnTuDIJfcagnbh2QyDaKCJMp4rksxt4RtVPF8EUHWsBt1hjZvwndcNC2EpISQRJlEPEUiHuapJx5FtC0c20KQRMKxNMl0EyElEPZ6HiiqhiAG4KYvStiev9FL5fJZbNfh4DWH+PCH7+T3P/NpNFXBd23EUJzOrl4cx6Orr59cIR84yZTz2LUKISVCNJTgV3/jV6kbFXKrK4RUgXqthOuJvPO29+J5DvVaFfGNsF5bqx8JJPqHxX6/FIl+qb0dAoiCiOf7fOHznyUWChPTdYqFVabHLjN68RIdA320Z1ppVGrMT03jVBrUjTpDW7dSdywymRZWFhYZHR0jEYlgWw2yq8scvOYaDLtBsV4jvzRHR0dnEMVtu9RqtQ0y/UuJ9aIo4jgO82sRra5VxbdruI5NuVxBFAXC4RiW5SIIEo1GHVlRyK7mMC2bSi5PqVJkZmYGSQyUw7Zt86733E5hZZUnn3ySfVdeRTqdRpAlmlsydLe1s5rLceXVB1hdWEbTNG67/b34aoxrD1/N9Ow8gtCgKZlkfuIyE2NjqJ5DrbTM0KG3I+oSqd4hJFf+x4nzfggS/cqAnNd6vNf3Pt6iSLTnY0s+2ZETPPj//F9c9Y7bsD0o5nJUihUaRp3S8iKyAPlSgfzKEhVP52f+439mdfICZ048ixqO8O733RGIC1fzbB3egoxLLJ7i61//BjffeAOXzp/Fqtdpa23h+RPHOXfqeaanJujo62I1m8X3PFzHpphb4dijX2Bu4ln27bkOXA/TchEklWi8FU3WWVhaQhQlfETsNTs+13VJt3XjSyF8QVzzLF+b17/usfN69v8xEg3w7NOP3+N5Hu3t7fi+TzKVIqRp6LqGLIuUy2VEUWR5eXmjSWhtbcW0TIrFAqVSEU1TKRWrG030/v37uXDxIrFYjNOnT6OoCps2bcKyLFZXVxnasoWmTIrZ2UVMy0HyXRIKVBfGaR7cyUjeJSekaQgRpHoDy7SpV0t0dfUycuZ54liMP3sCudHgC3/xOwz09XH7re8kFIkBPqdOHMf1fa695jAAE5MTPPDAA8zPz3PzzTczOzOHZVk89NBDuK7L/v376e/bxK/8yq9w6223MjExwb333sutt94KeBviw6effpobbrieyclJyuUyiqyQyWTwfZ/pyUkkUeL0mTNcGp/EFyTKlQp9W4bI693Iqk8TNtgWA5sHceo1SrU6DaOI7BmMLZnkajt53/Uivd0Zxi6OUKmZaKE2XMulVl8m09bBs4sO0089ytzpY8RCGvuuuoLh4U34PjQ1N7FpYAsPPPAgF85fpG5azMzOUa0ZNGea6OntIboWqfzkk0+ye/duIpEIBw8epFyuMDo6Rt1oUKlUmJ9foFAoIooSptlA1/U1y7Q6uVyOzZs3E4lEmJtbQBBEbr/jA2/q2D0/NnmPpuuomoakiEiiRDicIBptIhyOoKshdDVELBzBd30kQcIXfRzTxKgWEESPSDiCImv4rkeltoSsBBP5ejVPo15BFFw810b0TaqVIGSkWi6AC2bdwHNq5FaXkBUFxxc3RKZmrY5j2bi2gxbSUBQFy7IC2zVRRZZk/vRzf8DP3v1LOI6AqsmoctCI6lqEjkyK//MTv8muK64iEo0zPj7G1ddcw4MP3k9XVwf1ep1SqcTWrVuZmJziiiuv4sLoeXFninwAACAASURBVA5fdwgFgb27dvCNe7/F7t27iEZ0orEI4VCYQ4euwccjn1ulJZPhwoWzeI5ItVoinUxj+yIPfPsxbrnlZiRJxfcEfB9ss4pVK6PH0qiajlOv0NXdh2k1EMTgs5BlkXRTC5/45G/yyd/4BJWFKYrLMywXi3T2bUcWwaxkSTZ1EG3pxBckJqamScRiOI5FwzChUSK7soygh4nHmnj4oW/T0dXNnj17qNYMfER6hnahyR6z4yOUqg1CIR0pFKG4sgi+QFO6Fcf2uP3O9/D0E0dwzCpDfT2IkkKqvZ+v3/sAt7z9JizHQ/B8Dhzc928Hif5B9VIf5fXG6qXNmesHPobdm/so1ytMTk0RCoXwJZHW7m6KhTLnTp/i0sWzlEoFcnWD9v4+HB/wPMZHLrBYzPGOn7gDS1XRkimuuOoATzzxBNOXx2mUi0yOT6G4Nk2JMFa1Qq2Qp7iyjGWUMesG9Xod1xdwbY9aqYBnVjEqRWq1Gq4vUK0Y1MoVPNshoqlEdQXfrhOJhDEtm1gkxPLiPIVKjkqlQldXF/FIFF1RadgOzxw9FlyQ+/vJ55bJ55bxrDoNo0y1XgXR5/KlEVxJZvu+fVQbJlt62zn2xBPMT06gCgqu7KO6kG+4KKEwTc0t1H2oO3VCtoggvnoK4Q87L77vBz7ar4iafC2I88ZkSOBl2yv3+WH1o8OhfaNS/X5w+etpl54PnoOAjGZYyLJCa7oZKRJG1xXUiERY0ymWaxh5k4ovU/d8TASu2D7MN//Xp7g4Ps3H/v1/oKW9DQEwzTq7tm3F8zyuf9vNzE9Oc/70KUxLJKpaNCckLFQWl7JMjY7jV8rMj45TnZvDbpTBsxl57hHOP3+CzvYuommd6dkZQtEU0URLsAJjQSSeQNF0ZMcFx0KXAw9XRBV8G9G3gZcopl8PGv26x8IPO2dvnXTDeq0Knk+jbiLKCq7r49gujuOhR6KEozGq1cC/NbuUpVKsUMwVqRYq1MsG7a1tFHJ5dm7fxoH9V7B5Uy/3/d29FPI5zHoDRVK58e23oGg6iVSaUy+eZX5xAcNo0N6aYdNAN65HwOmvrDJz7CFanSyuL2FrKRZXCsxPzeGbAtMjY7g1g/zyIpVKlm9/629paW5ifmYS13UxDANJDEIylpaWOHv2LI899hiWZdHe3k4ikUBVVWZmZujo6ODAgQOcOXOG8xcv0NXbwW3vuY2nn36aSCTC3XffzT333ENzUwsXzo/Q3NTCajbPyWdfoKWljbb2TizXo1Zv0GhYaKEwY+OXMRoOnitRrFawjQZGvU5LupnJkTNooTAhRWR+dh7LshBqdULRELFwgnfe8jZufweIfgNNkQiHYtTrHq5RpyHk0WWNoqMhCR6rk6cR3QZ79w5z3eGDdHZ2E41GSSSbUTSd3/3U/+C/f+p3ueXWd3HNdYexPZe2zg5C0QixZILjJ55l+45ttHe04eOxuLRAc3Oarq42BNEnEomQyWTo7u7G8zxSyQxLi6ucP3eJM2fOMTIyyuOPP8nRo8eYm5vbQMPf1PJ9FFlGkWVUWUOVNXRdR9UUQqEQ0UScWCKOFokSS6XR43EiehjLdYmlmglFmlG0OKoeQQtHCEcyyHIMUQ6hReJEk03IeoRQLI4aShKNZXAaJoXcCrVKlnqtgCBI6LoenEtcBNcG2wXPpmEUMKo5KoUCVrGC57nUjRo0DFzPxKnahCQV26riewqKIpFqaiaeTpPL5fi5n/s5LM9FCoU4dOgQqUSMnTu28/Qzz9K/aTPzi0s88t0jZJpbiIUj9Hf38PBDD3PfA/eznF1FC8mMjF7kuuuuZ2L8MqVKnf/3T/8/BNdFEmBhfpYr9u5ny+AAV111FdFEBN8zSCdkVFnBtU1c38FyHHxBoe562LUavhXQuWrVAqoigOgjyCKJdAsoYbb097M0fZ5CfgHDssEVwa6jaDKKFkaLJPE8B1nyOXH8BIlYEllUECWNQrmOK2pokkqjYVAo1sik2yiXqgiiSzqdxKzVsRoKqirj16rYlk8smmDT1m0IiozZqBKPaMxMT/OXf/klGo0ysWiEI0eOIOthBrYOYjs+mqzhCsobNhz/1SUWvrQkScJxHIZ37KC8mkeRNBzXZt++fXz7oQfZ0qjQ3d3D9q3bcEQZXw6U1JFIhJHLYwxu20EsniSciNHRk0MRBAr5Vbq6ulAUhfGJMTp2dPD7v/97/NTPfRQ9HEKRVURfY7VewEfEFWTSTRkkSaCYX8JzbIxyGVmWEeTANiqVSmGaJsVikWKxgO2YuGtLdvlahdnpKfACQeHE5TPIssrYyCXUaIwLFy7Q19NLtVrlhRdeYP/+/czNzRGJRLjtXe/m2w89RLZQYsvWAO1Znp1HVWV2bNvOE999FDcaIRlLYUeTDKTSdA1vw1UjCEYRsZbFEzxEX3pZ6/CDGt8f9NyP680sgdLceSSzTn5xmSeOP8fNuWXqtQZuzaAwfpHVqUmqFYP2TR00OQaGD4uXx5menOTnfuPjfOWrX+aun/0lvv5392HbJiIe6pyA6oIsOLSkw3z0rp/lxpv20tbeTN//z957R0ly1vfen4pdXZ3T5Jmdmd3Zmc05SSutElokIYEkEwVIWDIGk2zsa7DPudfCvsbg9Brua4PBGMxrEySSQAZptatdabU5p9kwO7OTekLnHCu8f/TOeJElELYMuobfOXO6uqv66TP1PFXPr77P9/f9LjHYuH4DTz39I4a/8y3+YPlKTh05wnrtOibGZ/BLJe69/9foXbSQ5/bup7uzG1FWsQSZet2kUjOxaVjb57MpHI7GSouu6yD+csoTvhYiFAiSyeWp1+u0t7c3VsgKOQRLoJgvYNuNZVZBEKhUSrS3tzM+PsrI8DC33norl85fQJBEZmPTTE1NzZuXRKdm2Lx5MzuefoZvffMxbNvmgQce4E1334NhVrEtEJCJx5PEYjFmY3F0zYmjGGXm+RFEfztFXxBNFnBKCmPJWaYLBWxLxVGrMHrgOWTJwOcJkI7PksvlCDS1IkkSN2y9kYuXh3jiiSe46aabWLNuLR/72Me48847OX36NA888AAOrxfTNJmZmaGppZkTJ07wpjfdw8KFfTz22GPE43He9KY3cfLkSX74wx+SSCS477770BwKiqKQy+WwLItyqcSRQ4dRVZXBcxcYm5ikWKogyxqFYpVMqUK738uStVsQ3GEKyUkWNzXhVMComdTI4JZclMhhxA6QnA4wW63gUL0E/G7cmkiiaCJH+rlQgLAwiVxOozhVNm9Zj0NXGR+foVKrMjkRbRRH6m4qlQqTY+Pouk4yFkdbtZLhS0N4XW78Hi9zhiChUIjZ2Vk6uzq45557+NrXvjFvOpNOJ5mcnERz6Ph8PhKJBIramG/nCi7LV+U1f94xJz0HNKy/hX+z4Z4r5AMQDeYNV4x6nYiiYNs2Hp9/XidardVwe3RkVUOSVWpV91WXPhnbNrFNE8OoY9aqVGpFTNPG5fRSqeYQFRXFoaFKItVqHYdDRlbdVOq1eXtxr9PFeDaBjECpkseuy+i6Tr6QoVzMoWkaNjY+v5dMNs173vsB/ulfvk58ZgyrWqC5uRmAo4eP4A8GiM/GcOsuioUSwWCQkZERrgxPccvNN/PUU7sZHx9FAGZn4nzxi18iHs+yas0KdLeLoeHLrFuzlsFzpxgcHKS5uZmRkRFmZ+N0dHbh9zkZHrqIrjtxut3omorkaUPXdYrZDJlMFtO2Wbiwh1wmRa5YQHfI1I0qmiDwwDvfztTwGaKxKTyBCKEFTQjUKZarOHUvtqmiu3zYts17f+Nhspk06WSS4bFxiuUSCDItkSa++b1vkU1lKRYyODUv9XKRA8/v4JY7gwi2QLVWQBNcBLw6mUyCgy+cZ92GjaRTU2QzDSOdr3zln/nqlz7Nd7/7bW67/Y1sve9+6oJANpMnHA5TNV89OdXXLJ1j/uJ8kQ7wi1FpgFAwQqVQ4typU3R0djI9NYlDEpgdHSGRzlGq1CmZNrlcrlFFKwiIsoYiORgeG8ft8RAOBtB0jVw2gyTIYAvUyhVmZ2O0dXSQz2QJhzxk0nFk0UaTpIYMVKVAOZ+lXMxhWXUS0zHKpRL5bA6/10c8HqetrY18Pk+hULhawStTrVUxalVqlTKaQyGZyDA6OkatVicQClLD4o1vupcTR49x+fJlLMvC6/YwMxvD5XLT3z/A4SPHaOvspFAo49Y1dEkGy6Sjq4uzp06TTaXYsmkDas1C8HiItHSCx4Mj1EJIMpg5fZae170eBQmbl3djmjvv176++PNr379i7eb/tL7za4HOYT768jtfpeRwzt5bBEyDscNPMn7lNMeeP0ZVFLBVGSufo5ZKc27v8/ia29CbOwkv7uXcnucYn4zR1dvD5OQY7T2d+EMtfPpvP8+BQ4fZvHEDTpcbj+6gJRLi0KEjdLb5WNHfjdQ8wJNP7WR6eIhDR4+yYHEfF4eHWb16BeVSgeZIAJ/DyejFo2y4/gZGr4zT0bKAqmHg8oWxJRXBFhAUBaOYI5OcpbUpiNvnxxBkPOFWkB0vbbBy7ftr7gX/Ln7Svv/4CX8V23qF8Qugcxw98NyjgWAQEBAliWQygdftxjTr6C4X9XqNgN+P06mhOVQMo046kyYYCGAYBhcuDnHq9DmMuokgiIxeGUMSZc4PDiJLEgG/j6ZIE5s3bWTnMzs4d/Ys0akpotEowWCAgSV91MslHA4FVZGZmZ7BaVWRi3F0I0VucozY+Bip5DRCZgY7M04lO4oil8CuY1kmSwf6eP3tt+H2BZAkiX3P7Wbkyji33XYLTU0RZmZjbN26FYClS5fi0t38w+c/z5UrV7jtttsolUs89thjLFq0iP37DzQUm7xezp49y+WhIb7xjW8gSVJDe7lWRVYU+geWoygKbpdOOpVurHieu8CVsQlcXh+CLCPaNugazq7VlAQXnd2L0CQbDQu/T8ftUMnkkni8CmODJ2kNqSi2haK48AcXIEsyJaOMLPu5VHIwOj3LM5/9GJpZ5I13340v4KO1rZ3OrgVEIk0UCiXy+TyXL1+mVqsxOT5OMhFn6ZIBDh8+yPbbb8eyTLxeD/FEnHPnztHf3080GqVYLDIzPcOyZcsZGhpC13VyuRwejxvLbHDcFUXBtAzS6TRer5fm5mYsyyIWi/Gu9zzycx27Z85ffnRurhIF8cekWec/vypJN+dCqKgakiyiOZ2Isowky4hSQ+ZOFEBSFCRVRZYUVNWBJCuImoaAhOJw4vIGcHm9uH0hZIcbWZJwe7y4dD/lcgOh1T1uVJcLbyCM5vKgiAIep4NMuYzH4wcbKqbJ7h1P8aGPfoSJiXFss46AyMT4OG6Xi7c98K6G1ffIRXY9/X1Wrt/Mnj3P45JtCsUCE+NjdLS343S5WbhwITfccAPf+tb32LxlA5u3rGfXsztpbW6lUi6xeuVqNmxYxjO79tPR0cbWG67j4MED/NH/+iO+/e1vs379etra2ojNJnBobsbGx2lpbUV1OFBEEds0UJ0+dJeXSq1EpKmLaHQUSRSxTItguJlKqUipmGEmFqOzrZNsfArbMFi0ciu6x0uhlCIS7qBUyBKMtNO+cAAEkYmJUbxOjWw2yfN7n2dBawRNcwIC7V1dyLJIZ0c7kWATtlkjmZjFNArMTo5iGwWK+TqZZBRFMGlp6+HQocP09HRRLObwuT3Uahb5QgKnaNPc1oXmihAJRdB9Pj73939P74JONm9a99+fzvFKIxAK4/GF8AUCaC4dj8eH7vbR3NzK1q1bMU2bZCyJT3eTT2UYHRom5PFhVMo0NTVhmia5XI50Oo0/FKa7twefz4ciyVcR6WHGxsaQBJFivkAhl6dWq1GvV5EkiUIxRzGfpV5tiJPn83mgUXg4xys0r0qqzHFBM6lUg0st2KTTaQBUVaW1tZWaUad30UIGBwfp6upquPlEIviCAUxsipUyoxPjdC9aTDaXx+/1EPJ5qVXLdHZ3cunSJVpbW+nt7cXp1qlXymg+F263m5npBE5NJJEvMpsrI1kSlvArdPn/jmj0UzoeI5/NUMjn2bBtG75AiJaWZuIzk6xYvx4t0sTNd9zJpeERRqMzVC144fBRHvnABzhw8DDfeeJJ3v+BD7Ll+uto62inp7eX0StRRsan0Fw+Ohf00NHRwer1G3F4gtx66628/7c+wAc/+EEeffSP8Tg1Vq5ag20LHDhwiLa2NsqlAqFwgKHRYaanZ8hkMsiSiu5xN/Q+bZOg30vtqv6wLYCoOP6L3Al/Fa8k5tz8AoEAmqYRDoeYmZkinU5TLpfx+Xzz0l1+vx9N0+jt7aVSKWHbNn19fbS3t+N0ushkcnR39zI6Os72172OibErhIN+mpojHD5yiI/89odJJONkMhnuu+8+rt96Hc2RMHe8fjsPvuud1KtlLMGiZhoN7ftsDp9Lp7MlTKtXQzcLuKUyslVEki0kqSEjumjRYqLR6FUnxSvMzMywdetW/H4/oVCIYDDI+Pg4q1atmud1e71e3vCGNzRWMQcG6Orq4gc/+AH5fJ6hoSH6+vrYsGEDd911F+9///tpa2vjK1/5CrquU61WiUajlMtlVFVl9erVLF26lFKlitfrJZFI0NraQiGfZXjoPEG3zsUL5/jK17+OoChMTs1iixLVWo1yqcZkNNaQixRNbGRswUHFAFtSqZkChYpAuZbHXYlTyabxuNzIsszWrTfidLpIpTIUCiVWr17NsmXL2L59O/l8nvaONlxunSe+/z0GBhZz4sQxLl++RGdnO9u2bcPn8/H8889z11130dnZSW9vL5OTk+zf/wLDw0P4/V7WrFmD2+0mkUggSRLLli2jo6OhfFUsFlEUhW3btv3cx+1LAWov3r72dW5bFOSXBG1soUHimqMUzntB2BYIFgIWqqpi2wKqqqLrOqIiYwkNL4g5MK9SLFAu5pEEG1WSSaeyjI6OEImEMQwDzenC4/PjcGrobi+K7KRUKlAuFehb1MuD734nllFDlmUmp6cYHh7GoeksX7Ua0zRZv2EtTt1BLp+hra2NQ4cO8dRTT5HNFZiemeLAgQO89S1vwzAMlixZgsPhYMmSJQiAz+cjFkuw5fqtPP74tzEMA0mS+N73vkdPbzfnBy9iGBbpdBq320OtXqFaKaE4ZDSnC6fbh8PlRnGoiLbIVCyO7vKi6R50XWfHM09jWQ3JP83tw+H0kk0laWpqQnO6QLAxqaMqGqKsIGIzMzOFbVtkU0kymQxG3cIwa9TrJqNXxhgauky+XMIWRVatXEsmMU06Hru66iBTKeXIZ1K0NEdYt24NhmGgKCqVQg5FEIhFp1m+fDlOpxNZlKgUS9RrBi/sfo5kfPZVG4+vWSR6Pn4qmCmgqA4S8Vkol5BsAUmWkUWJVCpNPJlGkTUcikY+kaYpGKScK6AqElPRKOuu28D4xDjZdJrWtlZy+Ty5TJYrly9TLpWZicdoam1BcziRRImmSAuJeBLDspBVlVw2jVkzqJSqlEplLMMkk06jyAqWaeH2uMlkMo0nVV0nn8/j9rgol8ukEnGMmkGpXGTw3CWCwRCq6iCejOMJhHj6R09RyOXweDxUq1U0p042k8Xl9nB5eIRiqUog4KOzNcLJo0cRgWwpT3trJ10dHRzct48FrWEU0yAnSxh1k6HhEdy6zPqtN9M1sJy2BX2YMoj2T0aFX84t8D8V/+n86ZcDiW60YgE2Rq3CxUO7MahjWw7ue+hBehcvxq07GTl1nJHpFBfjaW6/515MWYBSialUhtHoNG9+9wN09S1ny63bmZiZ5obrNzF45hR1w+TC2fNU6vDwRz/OyLnTbFy/iQ98/BNcGh7mw+9/HyvXrmPXzp1MRadoDYbJ1arUazWGzl9ElSu0NEc4duoE67bc0NADNkCQZayahWHUUG0TTZHx+jxUqgbuUAsoGqIov3Qi/Uo/eyX7fub45UCiRy6eeXQ2FkdAIBQM4tSdaKqCrIjMxmZRFYVsJtsw8kmngIaq0NIlS6jV6uTyBTZvuY5MJovD4SCZTuFxe+jsaKdSr6I5FLzeIMeOHkMSRdauWcu5wQs8+eQPsLEpFvI0RcJks2m6utqplrIs6l7A2cGLmNjEM1kM26BSiIMuI9g2kmnjUpyougOPx4uMxcaN63B7PCiyhFmrMjIyzokTx7g0dJFQOMSVK6PU63VOnjzJvn3753WRM5kMZ86epVgs8uCDDzI4eJ5AIICu6+zatYsVy5czMTGBoihUaxXCoSAOzdkocurq5OTJExw5fJjTp84xNjHFbDxBJpfhgXc9wPFDB7jnjW9kIlagvW8ZgUgL3ZEQ1VyeTD6LbZqosky1ZmBWLGqihDfQTLZoYAlesoUCw+MxCnWJVHqYH33mUYJ+N7qmsXbtalq7Wjlw4BChcBjDNMmkMyQSCfbs2dNQ34hGOXXyJNtv387I8DAD/QOUikV8Xh91s6H7PqfuIIoi9brB0aPHuP7669A0jdOnT6NpTqaiM3g8noYKQq2hCDExMUFvby/lcpljx47xG+//4M917J69OPzoHE1DugZ5nnud25bEf0umLUFAEAUQRGyhYZwmSiK2ZWNbJoIoIYkytmCAaFM3a8iAIsvYZh3LttEcCka91iiQFgScTh1FcSIrEqqiUK1WEOyGModRq9DUFOHEsSOYokgk3IRlWlTMOsPnzvH6u+4hm8xTNyo4HBpP79jB7/7u7yIBAhZ/8ak/pVqtsHLNBqYmJsgmoqQzOZYtW0oikSA6GaOjJcjY2Bir1/Sxdu1KVFVn6NIws7OzBAIBZmNxqrUKFy9f4Y1vfAO7du1g0aJFtLe3cfjIEXbvPkJPTxtdXZ20tnWgOXUmJ6P09fWhOxwUChkCTa24dA+Vqoksa4yOnsejuRhYuQrJ4cHpcOB1K2xYv4FsOkM+k6SlaxFtXQNoco1CsUwo0Mz09AXcgSBNbX3YCJQKWZ7+1+/T0hLh2b17Ec0yPQt6UVQZAwfvese7CYTDpDIJxsajiIKMZFYbVvb1Gk7NSyE3hSYL7HzhOIt6uxuW7baEXc2RSiZ55ul/paergx899QzLV25GdehIssytt9zA1Mgltt95x39PJPqnFZu9VAJn2jaLlvcxOTmBVaphiRKyquB1KTgdbhyyTr1colysMHalsWwyFYvTv2QpB55/gXwmzYLFCxmPRtFUjejYGLZtcu/999C/ZClet59IawfjkxONQsJ6mVIxSy6dIJ1KMDMzw9jEKILYEM+XRFBUCRODXDGHYRsUygVERUKSBcZHrzA+OoaqaqQyWQxTQNMd1Iwq8WSMbKZAvWKwatVKsvkcoVCI1kgTlXqRRCbB/qPHuXX7HYhmlfj0NC/sO8TGLdeRyRdoCTbx/M6d7D9yiEQ2h1yrYzgd5As1ZN2LWa8zOTGLrEDB4cYSbaSXcFv5WS21fxo37iWtu22uanIK89tzf3Pf+cnxWi8I+1mK137CsbYMgo1Rb1h5u8MRvJ4gvSt7KZsiNUGirniQqhKlWJzfeNtbKAgmq1etI1Op8MGPfIh3vOVtPLXrOfbuO0hsNsHG9as5evgAHqdOxO8jm02Szszw//39ZxE1P/maRWeTn+ZAAMXn4+y5Y3zjX77K2bOnydsS+/Yd4OLp0+TSMVJ5g/MXBlm0aBHjI1F83giybaGLEpqi4hcFDMOgapiUyjXqlSqyw4sgXC3JeLmx89Pk6+Z0ol91NPuXo+hQECQ62ztwag5Mo06pVLrqxCYR8HoYHx6mUsgjAE2RZvy+AIv7lpAvlNGcOkuXDpBOzqKoAqZZJxgO4XS7GRkfo7Wtg+GxSdo727jxphsYmxhl93PPEgoF6O7uZuczuwmGWkik0igOFadT4vrrryeVTuNSHQRdHry6g2I2hWWL+J0+Usk02WIRwaHg9kQI+ALcfffdKKKEaBuk4jOcOH2K1rZm3vve93L/fb9GpVLj4x//ODt27MDj8fC2t7+FYMjP6TMnWbFyGYcPHeC6zdezavka7n3jPRw+eIB6tYKIzYEDh5icnOILX/gHFvcN0L9kKYqi0NnRwoF9Bwn6fbQ3dzIyPEbNsNA0nYAvSD6VJ5UrceTQMcTMJUrpAjXL4tiFS7g8OpIeQNZciEYV3XZTrGnIRIilDSqmA1nTERUPVVQsweDx//MXuFwSGzau45HfeA+rVi9nZOgS1XIRq25Srxg8/dSPKJeKlEtFLpwfRFJkNmzaSLVe473v+00SqSS2ANHpKRRJZGFPN27diVE3mYpOk0wm2bRpA5OTk/T19fPJT36KUqnC6jXLyeaS/I/f/x36+vup1GqEIhHOnT9PsZJnw+Z1v+hh/GNx7RxjCWCLArYoIIoN3rQkSSjIiKaAaArIggyISIKAiIWEhCzIKKLSUAySZASlYXZj2iApaqOgThAwDAtJFtB0V6PPVK0h1YmNbVvEY9O0dLTzmw//Ok9+/7sYkoAkiASCPkqFLKIsIahOLNvmzrvvoWrayIoDo1YlnZzFG/AS8Hj53rce5/qbttLU1kYylaFQKHBo7wHqqRHEcop7br8Z0TKxTAHd7aWloxNbkmnr6gRZ5q/+n0cxrSo3XLeB8eErLOzp5Q1vehOf/exfojsdRKPT1OtVMtkEC7oW8sLeg+RKZQRVRrBlatUqiiRTMep4nD5s0SaTTCIgYxoSO3buYHZ2mmqlSLaYBlEhm57FFMC0BOq1QkMC2JaoVPOUC2kS0SjxmSiVUhFZ0uhb3E0pHyNXKBGIhFFVJ8G2dtyqyujIMPsOPI8oK1TrjUJnWTVxaG7qRo3dz+1BRuDx73yb3Xt2kM3mKRcSOBwapYpJc0sLsdlprKpFsZCmVEwiU3jVxtxrLon+WWLughFFkVCkleb2dto62mhvbSYYbmLJupuINHdc1dBtHF+r1YhGG523c+cOBgYGaO/sol6p0tbSyvj4OPV6HUVROHb0epqqXwAAIABJREFUKJ2trVy5MszhwwcpFsp85zvfoVKpEZtNkEykiceS1Go1zpw6zdTUFLIsE4vFqFQqFAoFFEkil8mQTiZJpVINGZyry6gNwXqLZLKx7DE8PEwwGGy4LRoGIyMjNDU14ff7sUWBW1+3netv2MbAol6e3bmD2dlZnE4n4XCYEydO0Nvby/T0NMtXriQYDPLAAw8Q6urFVlx4HA5yyVkWDwwQaoqQz+ZYsmTJz62f/qva/eUoSmskb2bdoFbKUypk2X/gBZLJJC6ngqBolE2T8VicRCrJza97M+GODo4eP0ZVEdh55ADbt29naOgi2WqJlauWMnz+Irqqc8MNN1Aul3n9nXdx6223N6y8BYl4MkVrRyuf+9zf8Wef+AQTY1PcsG0bhw4dYnJ8hHQ6icvloaNrAavXbKCzcyHBYJhgMEixWqFi1KlWcsxELzMVHSMcDuN0eyhWLAxBaJir/FL03Ws3CqUiTpdOR1cnHp8XYF7/WBRFXC4XgiBw9OhRarUaTqcTn8+Hw+HA5XKRz+fJZDLceOONbN6yEUWS6ent5s477yQWi3H69Gk+//nPk0qleOihh3C73RhmnXKlxPT0NF/84hc5fuwUly4Os6h3CW6Pxl133872O25i242b0J0qC7ra8fvclIoZTKOOZRrzNI1SqcShQ4cIBoPzTnMbNmxA0zRM06RQKLBp0yZuvvlmvF4vfr+fvXv38sUvfhGv18vU1BQPP/ww9XqVb3/nW3zta1/jgx/8INFolNbWVo4cOUJbWxtvf/vbOXPmDNlstuG8mU6zpH8xsixz8MgRcoUimUwG02yYaxw6tJ+dO35EdOwKh595CnHiBdqbmzl6ZpharUYhk+LC6BiCHkByuwi3tZEpV6lUJSTJQzxVZHImg4HF0f07aPM5qVZsIpEQqVSKYDDIxESUBx98ENu28fk8jI2NkU6ncTqdOBwOzp8/T7XaoE49/vjjqKqKqqpMTU0xMzNDNBplamqKeCJGc3PzPNd51apVhMNhDh06NO/MuG3bNr7xjW8wNTWFoiisXLmShx56iFAowujo+M993L4Y4Lm2lufFn724zufaAsRrketr27425hwI5woWG06HIpqmNRRBrrp9ejweQqEIHp8fSVGxBRFZcdDXv5h//pev8+d//inqlTRGrcTWm25m9+7d6LqGqih84xvfwDRNPB4PmidALJ1nxfrruOPut1Ctm3R2L+DCpQvIssyuXbtQVRVZNnG3+mhb1snX/vEv+dLf/h0hvxdNFalVy/R29+BXbG7fspYv/OWnObN/N1euXOGFFw5z7tw5Cuk4O55+kt6+AZqbWqjX640HDBUMs9xwg3YFkSQBQbDJ59LEZyZw+7wNDfNinr/49KeQVIn1a9eQS84SmximlE1hGQaFQoFcPotl10mnE2CrVxH0cS5dOI9DEUklYmQzKZySTTGdplQo4nAHcXk9VC0Jhx7EHfRjVstsXL2Wzq7FBEPtSIob3RVC1V1U6hZrly/jzOAZ7r/3HkyjRs0wsASBUCjIvn0HGBgYIBEfZWz8JMnZht72//uFf3nVxuNrOol+KQOQl5x4r1ptq2432XKRcj6HpjuRnCF8kVZ84SACIk6XRlNLBFmVKOQylIp5LEGkuamV+GyMXCZLUzjckAzy+chms8xOR/F43CzuX4RhmLhcHlLJDKOj49TrJh6Pj+j4BIoooUgyhVwe225IBUEDZcWyCfj8JBIJisUioigSCASo1+uYpklzczO1Wo1ly5bhdrvnJ4DOzk50zYlpW1y8PMTg+Ut86EMfxrJMZFFk3bp1TE9P43K5iCcSnDl7Ft3lolKr4vP7URwqgsuL7g+SSSdJxabR9IYkkc/nwzCMlz+nrzB+mizez2Kk83KqIK/Wb/yXxBxa+l9q+mGDLeBQHYhCAxEdWNxHKjlLMhUjOjONLUB7dxemAL/x3l9j8OQJxsbGeOevv4e2hd2cOneKm2/Yyg3brmdk+AKVSo1QKExbWwvlWpnRySh/+mefwusPsWnLdWy+9Taee/ZZ9u3ZRSaRZGxsjHvuvZ/P//3n6F3QSaVcIpZMMDE5RXtPL+GWDipV46p9Kw1jDcvAqSv4IhGqRkMf3bZB9/hBln4ygvxKzuUr6fdfqcm8bDg0Jx6vj0q1hmXaOJ1OqtUq1WqVmZmZeWvvrVu3Mjs7i6qq8yYPLperMdG63fzzP32F82fPEAkFaWmKMD4+zo033shb3/pWgsEgoijywx/+kIcffpi+voX09PTQ07OAJUv6+fKXv0w4HEYUFdra2hBFWLN2BT6/m+VLFrFu1XK62ppZvXwJmiqybv2qebtyh8PBpk2b5u3IR0ZGCIVCrFy5kitXruB0Ojl9+jQPPfQQhUKBaDTK+Pg473jHO7h06RK2bTM7E+eWW26hv7+P/v5+JicnWbFiBa9//eu56667uO+++9iyZQvr168nGo2iqiput5tSIcfw8DDTMzFmZuMYhjFvfZ4rZPnm49+mUChy/12vx5w5R3r4FIt62lB8PpyhEFkDhhJ5js4UuVyS8S9eR9IVZkpxE7VEck6d73z9K5w58hyyUeHmm29hUXc3b37rW0imM3R393L+/EXOnjtDKp1k9erV+P1+BEEgl8tx3XWbCYeDOBzKVb57mEQiwebNm9m7dy/ZbIOCI4oipmUwsKQfGwuXy4WqqixYsIDu7m7uuOMOZmdnuffee1m7di0HDhzg/Pnz7Nu3j/ODF1EV7Rcydl+cHL84iX6pfXPJ8lwiPdfOnGHatZ9dO9/IcmPFbO5BbW7/XHvXti+rDjTdhdvrw7Bsstk8mqbxw6d3sPPpJ6nXigwsWcbBA/vwed18+tN/xrvf/W4qlQqWZSE7nYiqg2BzB/3LVuPx+LAsk7GxSfbv38/GjRtpa2uja+FCfIqM38jS2tyCIkFzJES9ViWbSlPIpejsWUS5JoDoJZWtcOnSCKIIMzMzhLxempuCPPG973Pq1CkkSaJcLnP23EnGJ0YQBBFRcGCaJpZRI5eepVps1HdZmIgIvO72bfT0LCCXzlEpZKnkk8hXz5fH48EfCOL1+EilE9TrFomZGSTbIOj1kM+nWb9xM6qi4XWr+H0eehctpL1rIQMrltHR3Y3u8ZMpFFmxdDGYNaqGgMsXxB9qAUmjZorseu4F7n/TG3hh/16mJ8cYHDxLzTBBUNiyaQPxdJpISwtGvcj42HkyiRi2Cf/zf/3vV20svvY40dfMiy/Fw33JfTZYSHjdGhcHz+Jze1GdLtyuFtweDUXVqNUsBMkiX8xRN+tEwmGq9TqaN8TxkydYOrCYYj5PKpUinUxSKhUbBQHVKprXi9vrYWJ0kmAgQCGfp26Y2DacPXuOtpbGk5wgCKTTacLhMJZtUyyVKBUbRTiFQoFIOIJh1hkbHcXt9iCKDRefixcvsnjx4nl72dnZOIFQGFWRERFwaA5y5SJ//Kd/xu/97u9y3aYNjI+O0tPdw9q1axkfH6dm1lmxciWCJFKt1zGsRnLu0FQkAYq5MkgKFdvEH/AxsHgxZUsiEom85Pn9j8R/9vs/ZtDyM+pGA2iq/PPnRFsv4kS/4nPw4uOu3rRfTm1CtDErdfLJSc6f2IPuUBifmKajZwHBYBifV+fMc3to6+zkzKXLLF67gbvfeA///IV/YOnSpRw/cIBnn3+Wbbe+jlw2xekLlwmGIzz2tX8ily9QNix+8/0fIJHOYVk2X/3yl/nob3+EybErnD43SLC1lXvv/zVaW5o5eeQgHZ2dVMs1Vq5ezabbXsfl8+cpFEsYho1o2QT8AcpVA6fLhylrFLIZisUCPqcTT3MblurEFn5G9vF/dHz938CX/gVwosfGhh/VXW4cmhNVUxtL1LUqusuJKIBRq6M5HFy+fJmWlhYmJiZIJpPU6/V5+TuXy0Uw4EcURUbHx8hm0kSnphsOcZUKN998M5ZlcebMGXRdZ/OWTdx4441Uq1WamiK0tTXx1FNP4VBVWtvakSQFWZZobW2htbkJXXfQ19eLz62zZOlSTp08icvjY3JyBtOoMjs9wS033dhwsbuKECqKyqpVK5mZmSEYCtHc3Mz+/fu58847UVWVWq2GoiiEQiFe2HuQQNBPd08XTz31NNFolEgkwp49ezh+/ATPPPMM+/btY9Omjei6k66uLiRJIjY9xcjwMMdPn6Nn4WKi0Uksq+FSl0mkydcMWts72bN7F7e/7nVMXTpF0KvxrX2naF+6mkSljqLrzJomM4UC09k8V2JRyvUyQwef4dnv/hOhcgy7WuAN99zFzTdeh0d3Ep2eJpFKE/SHKBQK7Nmzi8HBc8xMz2IYBsPDDU5sOpNgdOwKq1avxO32cOTIEbq6ujh+/DjhcJjJyUmKxSKJZIJVq1YSjU5imgaZTI5YLE5TUxNTU9Ok0ylCoRDVapUlS5fR3t6Oy+Vi9+7diKJMsVjifb/18+VEn7s08uhcIvyTONGi+NJItSSIPwbOWFcdX69FqecApjmpujlH4jk0ei6JVlUVuFqbpShYiFg2CKKErmu4XW4sBARR5I//1//k7rvuJBRs4td//UHe8+DDbL5uA//0la+yuH8A3eXCMgxMw2DBgk6CkQguTSWZSPD4Y4+hOhQG+hfj0p3cdOsdfPqTX6CYzfHCqRjlGtxx9xuo1IoookKlUsIfdLNv/wGGhq+QzhT5zfe/h+HLI3g8bny+ABMTo6xbsw6bq3VkikKpWCHgbxRCRiIhREWhXq0QHR2mUsrhDTdRzmcxqjUsSeQP/vAP2Lb1BsqlLNQq2LIDySEjqW5U3UcpV0KgynR0gpbWNnz+MCNDQwSbwiwcWMWlyyNkMwmaQn5EJFzBNnyBELVSFVsy2b9rBy6hjuJQcQfbUBwKdatOd/ciHv/2Y3R2ddHT2syyjZuwayUi4RbauxdSr9RJxEZxef3E4ym8Xh/1ahnF4UdRdFTJYOu2bf89OdE/KX6a9Fog1FDoECQR06rPX0CKouD2+PH5fLhcLrxeLzMzU4RCISKRCN0Le7Ftm5GRERKxOB6Ph66uLrLpDPF4nNnYNKdOnaKrq4tAIDC/9DInNm+ZZsP6tVqdt/oslUokk0kmxsYRbHA6GkuMsVjsqrJHnYsXL84/8U5NTREMBqnVajQ1NdHW1sbU1BSiKBIOh/md3/kdPvLbv80jjzzCxYsXEUWRTCbDyMgIXV1d+Hw+JiYmmJycJJlMzreluzQkQcTl8SBfXYKq1WpUq9X5yfC1Hr88tI2Xi8YNXLDBsk2CIT/ZbJZwOIzH60YUbMqlIrJoUSqVeN/73sfChQvZ98ILZBJJ6tUa2WyW/v5+FnR0kkkmMG2Lct3gvvvuI5VK8d3vfpfPfOYzXLg0xPLly7l06RKjl4f4q7/4Atl8jnQuy+DFC4yMjCDJAufPn2dkZKSxdD8+yexsYxIPhvzEp2eIz8YQBQVb0jAFCcO2wLRwuxwgNW47L655+FX8fKOpqYlarUapVKJUKs0DAYZhzCcjuVyOcDjMyMgIDocDVVUJBAKUSiUMwyAWi11VxxApF4qYpkkkEuHw4cN0dXWxc+dOLl26xNKlS9m3bx/79+/nb/7mb/B6vdRqNS4PX+L667cwPR1lenqWUqmCS/cgCALdnR3oDpVKsVEIPjExwUMPPcTk5CSiKOLxeNi4cSPj4w1N5FAoxOnTp1EUhT/5kz+hra2Ner1OMpkkGo3yh3/4hwSvGlrUajWOHTvG8PAwBw8e5P7778flcrFp0yYOHDjA7bffjq7rfPSjH6W7u5tYLIbH42FmZoZTp04xMzNDpVJBECSKxSIOh2OeBigIAulMgboNiq7xxS99lanzJ6hlpmjq7iFdMzAVlWcP7OPAgb2USjkSiRl0ycJhlDj5zPdxFeJUk9MEvV4Up87M9CSBoI/Ozk5EUeTChQs8+eSTVKtV7rhjO4FAgJGREW666SZWr16NqqrcfffdnD59mkOHDrFixQpGR0dZsWIF3d3dXH/99axatYrFixcjiiLd3d2IojgP6OzatYsNGzawfv164vE4X//61/nEJz7BM888w86dO2lqaqKzs5NsNvtzH7c/DXF+8THXfu/afS8l6Xrttm3bWJY1f9zc+7lXy7LmHYwty5pvU5IkLMvCNBveD5qmIcoaz+x8Fr/Lg8/rRlEkFi7qJRqN8tGPfnS+Pcuoo8oNcEu5mrt4/D5URae1tZV4PA7AieOH0JuDHLtSxhIFVD1ENp/D4XAwNjYGgGTXObzvOA898Fb+5NHf48SJEyiKwnPPHcSikaN0d7YiS+L8ta2qGuFwhLGxUfL53Px9oKUpgmnW5/tb13X6FvbykY98BFFRwBYRJBFJdZCMNRQ0LFNEljQMo0atXkEQbArFHKLUeBhRNZ1EMouiODh46AjxeByjVuX8uXMUsjmmo5NMTTaUd5xOJw5NwaEpuN1uPv4Hv889b7oXEKmWK5TLZXK5HG63m0OHDvGZ//NZLMti+/btHD9+ErNu4Xb5kBUHiuLAusqtfjXiNYFEl6rGowiAcLWwDBAQGpjPS9A4XpxQCYKEKNhobjejU5OkRidw2k6oZ6hXsgR8bkTJgSQqyJKKaZXx625GJkdJZtOItsWlwQsYdYOuBb1EoxNMT0XRNAeR5mZCoSbK5QrX33AdsUScTDZLLB5nfHy8MflYFuOTkwRDYYx6I0GtVqpIgogqySRTKQYvnCfgCzA7EyMYCJPNpNEcGrLU8Kj3+ht6ral0BkVz8Ia738Bn/+avCIXC3HbHdr73/e/z7re/kxde2IumKrS3tbFx82Z27toFskQk3ESpVKalpRXTsjh75gwbNmwgk0ygiDL5fIFcoYBDd6IqMj0LutAUEX9TG6osgSC+skT13zqo0UvzNyuJf9shMI+s/qSmfsLvXdvSKwH/BEFAU34B6hwvhUS/Iu1i+0V/13z/331PAkRymQlmRs5SSs6C5GTRyg1k0zkcLjepZIrUzCyZmTijsSShrnbSsQl8bieDZ0/Ss3wJM5kCusvFseOnkUyLA3t2E52d5rc+8CEeefgRCoUyv/+xPyEc9LD7mWe4447Xs/n6TeTLJp0LOqgmkvQuX04ukSQ+m+CGGzcxPDbCwIpV/O1n/oa25mY8Hg9XopP0DywllojhdmpYpTIe1USRbQS3G0kPI1oCYoOF9dLnaq5ocG77lcaL23nVH75e3G8v/vsP/t4vAIl+9ukfPNociRDw+3A6NMBGdTRMJyRRxsbCqTmp1as4HDJOpwtFcVAzG1r2hmmSLxaomhaziQRtHd04dTeIIiAxPDKG0+UgHAlTLteo1kwUWaWluZW/+7vPkU5nsG0RSVaYiE5x6fIFli3rpykcRHOoaE4ntmXi87rxeHw0hQJMT8eI56o4PUGqxQypxBR33bmdeCLJ6dOn6e5dyHN7dnPnnXfidDpJpdPs2bOHD3/4wzidTqLRCZxOjQff/ev8+Z//Be955GFGx8bx+gIM9C9my5YtXLx4kZ07d2IaNvl8jnA4SLlcxuvz0BxpIpdOUixWGB6dom5LXLhwga6uBciyQiweBwGseoViJo0sSDgki2ypwsTlS0iFFLmpK0xNjLOss4nqxCA9Wo3i5WMc+c6XmDy2m5BTJJua5bbX38Lb3v5mVixbjO5yMRVL4w8EcLl0Ll8cRBBsVq5YycjwCB6Pl6NHj6IoCqOjowQDQXTdxYnjJ3nHO9/Fzl3Porvc1A2DUrmC7nJjWjb1eo2pqSkCgRDFQpnmtnZESUJ3uSiWixw7fpLunl6KpTLb77iT7p4eFvX1MRuLMzY6hsPh4IMf/u1fGBItXp235t//GOpMw8xJlBGwr1HtAEHkKgItzCfKL0aiLctqmKZdcw8x6haFfJnx0StMTkwSi8eRZREQMO3G9W+aJuVyGUkUEEUVRAsE9WrxXg6f38NT3/0O//zYN3nw4d9kdGSYcqmIKmk4XBqa04nb5ceybcaGrzB45jSRgMrKJYsabqAGjE2M8o633Ms73noHd22/nfGREVqb/RRyGRKxGLrLQe/C1ex5bh8DyxeQy1XY8cxeVqxZRTafpKMpTMjronNBC9GZBJ1dXdSrVYrlPJVKiZUrVnP23En6Fg4wNRNHU2R83iDDly5QLhdRZYk//MSnmZlNsnHZYtLpabzBIJHmzgbI6A+jSCp1q8jopXNIjdp4SkYd3ROgY+EKJIfK4X27WbtmHQG3gmlbmEKVZ3+4k2UrBygkE7RHQoRaujBFnUhPLy4txCPvfZDWzn5SyQS2bRMMuNBljeb2hcwmRwhHOklkZlnev4z45EX6lyzh0NFTyIJNKOCmnp0lkZzmrnvf+suHRL845p8iBWv+SbG9s4NssYBh1anX69TrVfL5LJpDxul0oOtunJqb2ViCG2+4iUgogFGtsXrNGjwBP7OJWUSY50UDTE9P09vbyxNPPMHSpUvJ5LLk83nuvvvueTS3vb2dWq1GOBwmn8//2FPpzMwMitJwLxwfH58vTpFlmcHBQXRdxzRNXC4XmUyG5cuX09fXx8KFC2ltbeXkyZMsWrSIL/3jF+lobaNUrIAoMDw8jHCVD3jkyJF5dEQURd785jfzox/9iKnYLPlqmWQ+i9PjxjJNehctbHBSgWqt8ir1xitXMfgVsvwzxlW+tSRJ8zqlgUCAQqlCT99i4rMxhoeHaWpvpW1BB7pLITU1jmIadHV1cfDgQaampvijP/ojurq6ectb3sLBg/t54IG3ksvl+PCHPsD42BX6FvbwkQ+9h40bN2ILNpJoccu2bSxbtoyTJ0/i8/m4cPYM2XyRNevXcPzYMb7//e+RzWR45OGHufPuu2lu7+Tut74dp0unvbWNaqVCNjmLJIlXFXeUf+v7a63mX45b/gqt6H8VP3sYhsHExAQXLlygWCxiWRYOh6NROOjxojpcCKqKpjcKDBsa93Xi8Thnz57F5/PR19eH39+gc1y+fJm9e/dy7NgxisUiPp+PgYEBbrvtNmRZpqWliYMHDyKKIn/9139NZ2cn/f39iKKI2+2mv7+fr3z5q4yMjBCPx5mcnCQUChEKhQiHwyiiRKlUwufzIQsitVqNDRs24Ha72bFjBydPnmZoaIh3v/vdWJbFlStXeOKJJ1izZg0XLlxg0aJFdHZ2cuzYCYaGhhgcHCQej1OpVOju7ubw4cMMDQ2xevVqHnnkEZYsWUIgEOCmm25ixYoVNDU1UalUcLvdOBwOzp49SzKZxOFwMDExwdjYGNVqFafTOe8HAA2VCE3TEBHIjJ9n/OhuzMnzXHjuBwiZcf7xM5/ixAs7kQUT06hRLORZtKiXbTdtxe1xMT09Sz5fZPWKlXzsf/wep0+exLIsEokEZ86cYXJykm9+85usXbuWU6dOsXLlyvlzdsstt3DhwgWWLFlCZ2cnAwMDKIrC4ODg/Pzk9/tJpVKoqkp/fz8nTpzA6XQyMDDAli1bOHjwYGN1tKWZUMDPuTOnKRcLjVVY6+evWPOTaJ7/LiwbLPNl25mjEL6Y3zwXpmk2/kdRxqhbFHMpZqdGOX70EN99/DHi01H+/vOf4/KFQQ7t30t0bAS7XiGfTiAINooiYZgN7WfxqlV4W0cziWyates2IUkqPl8QyzYolnII2I1ks5hHRMI0TYaGhqhUKhhGjTVrV2JbNTo6unjyX5/m2Imz1Go1RElA0zTy2QyRoAeXrHDp0iU2blrN9Eyc8ckoK1YsIRWPsXjRIhKpDAt7+xo1WFZ9vtZBEASy2Sznz59HFEVOnTrBqlWrsLDJZFPEYjMg2ORLRT78kQ/y+7/3UaqFLLqqoDnciLJGR1cPoihSyKcpFwsIdh0Bq1HrlS9yZWwUXdcp5QvEYjEWLlxIJpNBEsHjDjAxMYZ4VeFMc3uwBAVRUchms5TLZS5cGORDH/oQq1avZ/mKNYyNjlOtVvnkJz9JU6QdnzfAthtvJJXKUCrlmJ6eYOnSpfh8PgTbQLBtysVXT53jNYFEl2vmo3MTpcCPXyA2r2T5pqGhK4oyra3tPLvzKVRRIJOMUTXKxJIxdAxs20JVnQiSgKo4iI5N4vK4KFfLNHW0I2oimdkok2Oj2JbJ/8/ee4fJcV5nvr+KnXs6Tk/OARhkIpEEATCTIqlIUdGm9q6CZYn22vKV12vv3aXt9bXkK8kKtmXLpmVLlERJlERaFAmKJgkCJJGIQZgZDCbnmZ7OOVa4f/RgCFKg0soKXp/nqQc93VXV6K++7jrfe973PflCCYtFZXE5TLlapbmxkZmZGY68+AIdHR2MDI9QqVTw+/0Ui8UaGmpRcTgcLC0tkc1msSgqocYGLFYrxWKJYDDI3NwcqiKTTqcJBoOoqopisXDhwgX27dvH+MQEp069RHdnB4VKhVKpxEunTtHf2U1XZycWm42m5hYOHTqE2+3G7/WRTqfx+/0899xzHDx4kKmpqZoqNZvh9EuDbLlqKxa3nZuvv57GtjZ8TY04HE5UWUG2O9ZX9JfG9TVDeI0/Lkeof1z4+NWnvsI1vvxtrvjaZfELQaL1V3mcm2YNibsckb4UP+3CwRRAFEhEl8jFV1hZWkSXrVy170byxQqmVmJlZR7DNOjd3kt9SwOxpWn8LgsOtx+b280HPvAbfO2rD3Jm8DQd7a34fE6qlSLz8wv8+Z/9CYnYKp/4i7/go7//UZLpBDccPMjnPvEx3v62txBNJLj1dbezOj3Olk29DI+M09PVgiqBaQrc9a57+crf/y2KLOFvaEGr6FitNsrFImOjw1hljTqvF4fHR9ZQsFjtaFqtLKqvlUEvF5YKa8IdAdbLpOtju/b8Tzyml5/j33QB96uDRJ88duT+9vZ2gsEgFosF03y5VI0so6g1Fw6H04HT5USRReLRCJlcnmw2S319PXa7nVg8TrlcxqLa2LJlCw6nk0K+gKKojI5eYHx8goXFBYrFAnv37CUcDnPhwgXUjTcPAAAgAElEQVQqlQq9vb00NjZSKpUYHR1F12ptlldWwvT29iAKMDkxgSIqnD97Dq83wMWJOSwWBY/TxtLCDHt376KvfyNulweXy83x4y+STCYZHx/nfe/7DRKJJC6Xm29/+zt0dXVxx+vuYnZ2ntHRi+zavYt3vetdAOzaeRXPPvss+/btY2ZmhuGhEbZt20q1WvP4LxTzBPx+Xnj+CE//6zO89W3v4PljJ0kkEhgGbNiwkVCogVQqicViwTAMnE4nsqTicNgJeH24VBEzn6YYX6aSWCWbDOOyWrBbLDisFjZ0d7J//17e/a63Y5oa5XKZvt4NtDS3EV6Z53W330F4ZYW5uVlSqZo3tM1m4x3veCc9PT3cdNNNjIyMYBg6Z86coVKpsGv3bkRRpK2tjWQyidVqZefOnWQyGfr6+qmvD7Ft63aKxTLJVApVVUmlUlx33XUMnR+mp6cHt9tNMZ9l7OIojQ0hAn4flWrNDvH9v/GbP9e5Ozoxu45EC7zsnHE5TUOSJHK5LBgaboeNclV7Ga0WXk6gLzVCu8R1vvweeInWBBBeWWZ6cpxPf/xjPPbItzn2wnNMjF3ghaOHGTp3jkOPf4/JsYt87cEvMXR2kGh4mdHxcbYMDGC32zA0kBULQyPnWV6c4gsPfIlHvvsY+VwZwRTJZJLkCykEU0DXNCSxxlN+4flnKRezbBnYiKGXCAa95DNZlhYjLC1FqVZ1KkaV2bk5FudncLtddIZ8qLLAwK4bGdiyHc0UsTnrKJXzSKJAZ2srI6MXKeQzXLh4kfaOXhTVwvLyMssrK2zZspXJyWmsNpVcKkNbVwdWi4VSKcfzLxxlz55rODN0kf379pFcXSQbWwDdRFRduL0BnC4vpl4ByaCUTSFXc6CVsTrcuALtuL1+TBMOP/sM1XIZQRQoZWLU+zw0dA6gWlS6enuw2x0YsgPFbsUwwVlXx4tHXsTrs4NgxR+oZ35ulqDHhddTx5YdW3ny8efw+fwcevxRdm7bSSYboWqYJNJZDj35LGNDZ6kPBknmC7zz3v/87weJ/lkgTZcmvymIdHZ3EWoOYndYKWsasqRSKmSplrOYZhVZlqmr89Lfu4HZ6RmWFxZJJBLYLVby6RSNoQYcDgdbtmwhmUwyMDCAJEksLy+zuLjIHXfdyebNm+no6ECSJAKBAN61VriXPsuWLVvo6+tDURTy+TyqqhKNRhEEgZ6enlonH6sVURTXbYeq1SoLCwtYrVZM01xvrXrffffh9XpxuWvJ+eLiIquxKAcPHlwTAASRZZlNmzbxwQ9+kGeeeYaGhgZeeuklwiuruFwuGupDHNi/D7fbjdPpRBIkTFHAMDWqhv4LQRR+VPzKItb/Fk4dl0QwhkHPwFauPXgjDzzwAPOzM5TLZVqamlHtVsKJBHanje7uTsrVEk1NTdx5552869d/DUkWkUSTv/+7v0WRZFbDEbq7OhgcHOSl48f59F9+kq5NG5mfn2dgYIB8Pr/GtdYYGxni1MnjfP/xx9izZw9f+ucv8rnPfY4D+/dz5vkXedNb72Fw8AwWi8LExARTk5PE41F6u3swMJFVhXK5DEaNJ6jr+nrJ1DTNdcRH13WMNQTPvBypfsVQXPn5/4ifLOrr66lWq6RSNe/ZXC6HIAiUy2Uk00QyDbRqmUIui24YVKtVuro7cLvdbNy4kYsXL1KtVqlUKrVOq5UKw8PDuFwuQqEQJ0+eRJFVhodG6Orq4MCB67DZbITDYSKRCMvLy3R3dxONRikUCiTitd/a/dcd5I1veDMulwtj7X3TyZqF3KlTp7DbrSTjUaYnp9i1axdzc3M88/Rhzpw5g67rNDU1sX37dq655hpGR0cJBkN8/evfpLe3n09+4i/5kz/5E/7xgS9yz1vfxsTEBJ/5zGf4/Oc/z/DwMNu2beOzn/0s0WgUq9VKuVxe72TY3d1NLpdj8+bN7Nixg89//vO0tbUhyzI9PX0Ui2UMA6655hpUtQamGIaxPs9j8SiRRJJcqYJhmpiiiGFKZLN5rFYbb7zzDq4/eB2333oLpUKedDpLPl/E7rCRySa5OHaBRx99FNM0GR4eJhKJMDAwgMvl4umnn+bEiRM8/vjjTE9PMzs7i6qqZDIZDh8+zMTEBIcOHVp36rBYLBQKBY4cOcJffurTPPbY46ysrLJx40YSiQSNjY187GMfIxgMri8GJKmGpE5PT2O324nH42QymV/I3P1hgMolTrLD4UCVJZ568vF1AeCPc45X86JLpRJf/dI/8fWvfplcLsdqNEI6l6VQrpAtFECsWeeGw7VOrefOnePw4cN84xvf4JP/3ydQJAFFlahWq2zfcVUNEOvrxaYqoJew263Y7U4AcrkcpmlSKBTWuyKrFoWp6WlU1crExTFGR0ao8zhoaWkhnkyxvLKKx+umWi1TKJQIRyIAyFYbocZmrjtwA929fQSD9Wzfuo2N/d1IksBqdJWAP4RpmoyMjFBXV0cgEGBsbIxqtUokEkG1yDz/3BEM08RisZHJ5Khz+zny4jEEwySyskgym8PqrKOq1Xjd6WyWcrmMaQrYbI41rYAFSZKwWO14PX6i0VUeeugh0uk0slKrfimSjCxbePOb7qaiGTzy6GPYHPY1Go5JLBbjn/7pn8jlaihyPp9lbn4Gv9/Pi8+/QCoVx2q1oukVUvEIkiSQThUxDZGZqUk+/FsfIFMCQVEQf4auMr8USHS+VF3/T1wJib70+LVCFC+hTBIGApKgsbw4h6Ib5AoVCoUy8aUF0vkUqmrFNA0MHRRJomxWOXjD9QiqwvEjh8kuh8lVyrVOUFqVpqYmTp85x8pqGIulNhHcdXXs3rmLkQsjvPXut3L8+HHcbjfBYJD6YIByuUypVKr5ra5xXG12G546LwClUglVkVlZWVn39axoGk6nk1KphMtTx+LCIuHVFf70f/0ZH/6t3+JDv/FBJsbGOHf+LC6Pl7m5OTo7O+jr7SUWi+FyuWhvb+exxx5j//79ayhDHzarlbbWNuLxVUKhEF6/l0pVx6Jaak0OLAqCZEGRFSRJ+pFj/dpIdK0a8DIv9H8/+V1HKH8MfjX8gpBo44d12/wZ8XNFAdMwscgmy9PjhNp7KJR16txuOtsaeeHoUVLpGANbtlLf0IAsCXjcDlZiUSYmZkmks8zMzNasGBWJD334N3E63GzespnVcJhrrt5LZ3sLf/6xjxEK1rN92w50TWNubpLGUAMum8KmLQOcPnGSq3ZsprV7Az3d7TitFnZs30GopZPz587h93r4h3/8B975rntRJJliqYQsiTQ1N3JhaAibw0muVGZxcYVoJMbS8hKGrlMuldAMY91eTVEUdF1ft4C8pIa/4hCLPyYO8IrKxn8g0QCjQ4P3q6qK3+8HwaxZtxUKKIqERRbJ5zOUcnkK+RyiLJGMRknFo0iqjZXFJTLZLCPnh7DYnMSicQ4evB5VVdENg0q5wr5919HR0YnDYSefz7O6Gua2W2/H4XCsJ2qiKOJ2u9m1eyddnV2Yhkk2m+bBBx+koaGepYVFluZrQilN01EsNhKZHFbVwj1vfRND58+QSiZBEHG7PVS1Kl1dHfzzP38Zvz/Apz/zV/T19a2j3xaLlZWVMMlkivvuu4+vfPUr7Nq1i5aWFkrFmthoYGAzLS2tjI5eJJ6Is3PnLqxWC6ahr5XlTY69eJzZuUXSuSKSpNDa3sXySpimUIiW1kZWl1fo39hHIZvHEASK+QKZdBqX242ma9isKrffcRtN9T4++ru/TcDtpLWloUb9s0jYbCp2Wx2lUpk//MP/yuDgKZoaQjzy7Uf4/pNPsnnLZkRRZGBgAE3TqFSq7Nq1a72aWa1WyGaz3HjjjeTWHKJsNhvVapVisUg8HkfTNPbs3sstt9xCMFiP1WrjyPNH6O/vJ5fLsW3bNqYmpymXy7S2tnL2zCC7d+8kk0qxuLTE+MQUDQ0NP38kenL2BzjRl3OhC4UCgiCgqgqGYeCrc3Hq5EnaO7vX9VOXUzgMw1hHouFl27tLi/pUIsnDX/0i58+eIZ5MU65U0c0a6GSaYJgCLreXVCaN1WZDECWSqTSSKLIaXiWfz/LE40+wGlvF5wvwsT/+Y44ePcb7338v1+3by5NPHaKvfxOYOtWKhtPpqp1bN/nylx/AblWIRaPIokCd20Uqkebue97M8mqMrq5OQg31uOsclAtFPF4f1UqFdDZHS99V1Hn9qBY7wVA9LoeT5oYQqcQKK9FVirkCPX2bSWUzWFQLsiwzOz9Ha2sbFtWGJAkYmoYpCrS2tuHzB3jgiw9y+PARnnv+GEvT4xRzcb5/9CgHbnodiUSc80ODjE9O0d/Tg64ZZHNZErHlmjjQ7cLibMDj9TN6YYR9115Dc0sr3V2dlLNRJEyuOXgbXT0bWZhfYtPANkRRoFzKUi0VMEWJ3/7N36ZSziGJNiLxVTb2dbG6PIfNagOhTCjQyNCFYW66aS+zExNk8hW8dUGmZmd53R13MnRukN1X7ydTKPO2d7zj3w8SfXkYmK/YLg9BMBEEEzBesYo0TQEQQTAQMWju6CbY0oZiUXDanFhECzZvgOa2bgJeHw67FZEymXyG/TfdxMT8LGZFoznQiD0QpLWjB6vDSSaT4ey5Qfr6etD0CgNbNnP2/DmcNjvf/Pa3KJRLnBs6TzKZRFGUmmNGJo3dWfNqLpSKVHSNaDyGgUmxXELTNKwWCxICgmGSSCVxul0EAz4aG+oRBZOVeJS5xXmyxRL3fejDdHZ28ulPf5p/OXSI1s4uGoJBmutrKHWosQFJVejt7yNXyLNj51UUyyX8wQCyWrNxKpQKWGz22o+LpGAKUNE1TF2joumYlTzVavWygTZfe3vFBTER1kQatal0afsR57jsXD8MUbiENl7e0fDlufAqas8vIyh5Ja7vZdsr5vmVOMGXHhs6gmCiaSYgUimWMDSdpqYGBgdPs337dnbtuhqXwwnVCqosUSxXaWnuoKd/A+HlRe583e286c1v4aabb+N7Txzi0X95hGwuwxve/BYefvhh0pkM6WQKp6IQamxgcnwSl9XByeMnCdQHUUSJY+fO8NVvPoIiw01vfjMb+zfw/NHDDA+dxiLqTE1O8rFP1lA8T32Q5vZ2/M0tVAslVuZmABGnVSW6OE0mGWZ+fpzVlTlmpsdJxFYZn5hgJRwmncmQTGXI5rOUKiUq1SomIlpJQytXaoj8GoXLNHQwf4wqypXG9f/wyBdyKKpMIhlH16tk0nEq5Ty6VkEzdGTVgmipddCTRRlRlJEUG0ZZpz4QIlDnp7mxhVgsQaFQ4siRI7S0tOCtc2PoGhcvjFDWqugIlKsGgmTlIx/9fZbCq7i9Pppa2zh27BjpTIrBwZc4d/4sskVmen6eHbt3E1mJMDc1Tb0vUEOsrA5EScbUK8zOz/D5z3+Orq4eEFVARNerDJ0/y6c+9Wna2ju57fa72L1nLza7g7fc/VY2bd5CncfLJz75KT7313/FJz71SX7t3b/Ovn372Lixn56ubhrqG7FZbDzxvScwMFlYXOJ7jz9BMBjC43JSKRYYGb7A+NQkHV2dJBIpFMVCvqihWO1YFIFEZJW+3k7K+RwBfx12hw23x01jYyNzM7PYbBY6ulspl3J46pzEkzFCLQ3kKiW6+3tJJNPE4mkGT79EMhHnff/5/QT9DRw+cpTOng7e9evv5MLFMXyBIAtLyywsLeN02llYmCMUCvLss0/jdDoRRZETJ05QzOdoaWoEQ8fv9dDcHGJlZWmdJ3r69GkkSWBiYpS2xkbq/QHa29tpaGzm7rvvJhwOc/ToUdo6ehgdmyKWTmNz2rjvvg8xOjryc5+3r8WJvvTYbrejqmrt3iGr2Dz1HHvue5hImLy8/5UqXIIgrFfHZIuMXtKYnRgjlysAIuVSHk2vvPJYUyefS9HS3IiiSIgia9+nJMsr85w5dZzZiWG+840H+dyn/xxRlNFEkb/9uwdYmJult7sFwWJisVtwuINopowg1TRUVrlWya6rD+D3hRgbn2Xz9m0sLS3R0d3JxoE+Zi+OsTA9S6FYQVKcJFMVFNXD0tICdrsVQTBJp7IEGxuRVQVFdbB90w6sdjdevweXy8XC4jyGqdMUasBps2OzKGglo9aEx64wfmGUSkXA4/FSLJc5NzhEOZukzu3gg7/zR5wemcFid7Ft2zauv+46qlUBo5LCogprep5LC5MK5WIWUyvhdnu4evfVpGJRKlWDChANLzI6NcZ/+dBvYxFVNF1Y8zOHLz/wOaLLc1TLFSQRBk8ew6SKXjERLQI2QcAiVzny4ovE43E8qsy1Vw8gqxJvees9fP5zX0RUoGhULxlE/UzilwKJLlyGRF8eP/hlecWr648uFwUAKHYbgWAjQ6dfwirJWOxOnP4g8XiE1dUIDY3NBJtbae/uwhsI4nQ4sK8hxhemxrE6nWiGxtartjM8OsrM1AybNm4mmUnT0NDA1NQUjc1NfOQjH2H0wgUy6Qxerxe73b7uOVmpVPD5fAgITExOYpgGgUCQfC7P0NAQ1rVOR2WtlrzKskw4HCYej3PPO99JPpPllptvZmFxkf/r3veweeMAO/fsps5dx84dVxHwBxgeGeHChQuoqkp3dzerq6vIsszS0hKzs7MEAgFmZmYRRZGu7k40rYosyWiagcPuQDd0VIsFwwRZrSHitXG8fMx/OKXif49u8VMce4VDBEEAEyzqLxkS/ep4ddnwsu1H7QsCxVya8OwEVrsNiypTrRRRFAWv24HTYccwqoiVHOlUAkm1YCCRyxTpaO/AaXchCiLLkVVeOnOG1935eh5+5Lu4PEGsDhdzc0ssroZp7+lFN006+3pILs/z2CPf4tbbb8Pp87F5y3buvPNOzg6+REsoRCEZ58jRIzS1dXLrzTezZcsW4qkMpVKZUqGG6tkdDoqGQm9fHxanhy/81ScJz81TLGbRqwXyuQxzsxMkYitMj19gbmqM0aEzLE6PcerECyQTUcr5LMuL81Q1jVQqSbFcxjBMJEGpuUiYa24wV1io/PCqyr8FIv2rg0RfHDlzv8/nI5PJoKoKxWINsUwmkxg6CIhIkoyiqCCARVHx+f0Ypk6xVKBSLZPKJClk01RKeYJ+D7HVFVZjcdra2unv38Di4gJLCwts3byZtpYW5mdn6erooKmxgaNHjtLbMwAIeD0BUqkkkiRz0003k8lk2bN7N5HVVdLpFAgiSytRxiYnmF9aZW5unhsO7GNubhYJga7OdkxD46Ybrqerp4fFxSWGh0ew2mwcO3aMhoYGVldXsVqtHDp0iEwmw9zcHLt27WJ2dob5+TlGhs+TTqfXm4241mz4isUiT33/+0gC9PT0kslkOXdumInJOWTFSlNTI4IoYxoGVIts3tyHJMLc7AwHDlzHQH8XF4fP0VIfpKu9iebGel536w20hoLYHC76+/tJJBJMz8zw0ksvoaoqiUSC4aFhYrEYy8vLvPDCC9gsbtKpHLJkRVakNd5vDlmWMXSNaDRKX18fhmGQSCTYu3cvZ8+eJZVKoWkaLS217r1en4disUSlUkXT9HVUOh6Pc+MNN3L8xAm6e3pYWFxi9MIod955J2NjY+RyebxeD+VyCU2romkGDQ0NvP1dv/5znbtj0/P3X7ovSaL0Km/olx9LkriOMN9y0xswyFAsFbCollecT9f1WtJ8mROHYRgIhsFn/vKTPPHEY0zPTKMbBvoa7dGk1s3QarVSrdYoona7nfr6ehRFIRqNrotLG0NBpqenWVhaYmx8nHIuz1e++hX+8YG/57uPPc7pE6fx+xooZktYxApebx0Otw/N1NBLWWLRFUwDcsUyLrtMS0OA9o4eujr7EHVQnS5ePPYCgTo35wfPYjFF4vE0t77pHux2+/rnsogCRrnA+Zeep1TJ1RrARXNr4kKdaDRKKpkim81x1VU7SaXSXLKlK5XKhBobWVlZZmBjH9dds4WZiWG+9rVv8MZ3/Cei8RQNQT/f+s7DDGzfQyDQSCWfJLaySDoVoyxaKebyRKJJlhfm6evtQ9c0ErEwiegKZiGJw6bw+ONP0LlhDx9876+xtDSDKAlUizmi4SVuuOEaCukMBhUaWjqxqA5K5SyRxSlKpSoOi4wpipw8OURfdydOmxNNy2OxeDh95jQrC0v0d3fSUN+Aw2LndW98489k3v7SJtGvXmEC6+bptefEH9j30uqwopmoqkJ0dhS9XKa3o53VRBxnnQtZVskXS1QNjbm5GWYnxlldWmJybISZ2VnKmoEkiDSE6slkUsQTKd73gQ/yD//4RWx2G7FYjL179zJ87jxnz55lYMtmZFnG6/GuNSCoMjc3t54Ur4ZXsTvsNDU3UcgX8a15rLrXkAJTFAgEApimSVdXF4qisBRe5V+fegrBhHA0Qn9HF6ZhsBqPEl4JE/D7KRWLpNIpZFlmYGCARx99lK6uLqanp2tfGIuFVCrFyZMnedOb3sjS8iJutwsREQGRQDCIIApUNQ273YGs2FAUpTae4g8KDK+04n/16z95/CAX7bWS9pepHa91JgHLL4DOYepXnrs/2zcxMUyTbCpOOrKIw22nUipSKKQJBH3YVZlkMo4sC4BONpdFq5TJJOO43Z41ezILPl8d7a3NlEt5PD4/d951F6IgEYvGyKZy/M5Hfg+L1UZTSxt2h51HHvoSt950gKaOTrz1IUDGbnPS297K3OIi+WSCxblZ2ru76O7r5+zgGepDTdSvtREulUrIkoQugMNR68T18Je+gIBEZ3cXGzduoL29E1+di/DyAk67DRGTSjFPNpOkzmnF47aRjkWwyAKTk6NEwktUK2VkUcBit9cQDlNbGybzFQ17rjiXXktY+DO7Zr86SfSFodP3m6aJqqoUiwVKpeJ60hiLJZFlBZfLDWvNGFRVRZJl4okkumEgyTKZbI791x3EZneAIOJwODEFkcnJKcIrYRYXF0inU2zaNMDXvvZV/H4fF0dHufHGG6iUyrS2tzI2Ns7c7AKCCIqi8t3vPsbCwiKTU5ME/F6WFhZIZXKUqhpVzWR0bJJcvkR4aY6uzk4KuQyNDSG2bdtMfShEe2cn0zOzDAxsIhaP09nZSXNzM1DrpNnZ2YnX62XTpk0sLS3R3dPN+PgY1117NfFEnNHRUex2GzNz86RSKfr7+9m4cQO5TIZcLs/zz7/A5OQ8CDIbBjYSjycwTIO6OhdtjQECXg+yJFAfDNDS3MTohWEOHthPJpvigx/8TXp7eujr7aWpqZF0Nsfi4iJDQ0MIokgkEuGZZ56ht7eXleUVRFHkzJkzdHV1kUmnecc73o7f72N0bJR0Or1OOagPBolEIszNza131evp6aFQKKDrOopS6wg5Pj7OxbGLaJqOz+fHYXewfft2IpEIW7ZsYXpqilQ6jdVuY3h4BFEQGB8fxzAMKpUqbW2txOMxxsYucv78MLt37+aOu342yciPG2PT8/df+oziZWLCy5Po2t+1/SVJolzS+e9/+Nu8+U3vwjRfWcnW9Rrwdakz4SU0OhdP8vGP/ynLy0tUdQ3dMGpUs8v0Q5dyjksaj0AgQKlUWnfoMk2Tnq5OEokEqUwOQRRoDoRoaAgyOT1NuVzk+gN7+PKXv8Dxk0c5dfwkX/vqg2zY0E82neSJx77N5o0bicRiBH1udu3aTiQWIxyZp6m1jeXwPNFwjGBDgJa2brZctZvFhQgodt749reTzWZrTWAMg+WVBbo72kgm49hcdfj8DYyOzWCYVRRVwePxIEsypgmpVJpMJktLaxPpTIpQqB7N1Nm+Yzs333QzqdUZCsUit7/+LdjcPlxOO6VsAn+dE6/Hi6YbCFQp5lIUCzk0UUWWLMRSaTq7+pAFEU2rkEquYmgFcqkYCDLDF0YINPVQyKxQLOYAk2h4CZfNSj6VJBlPE01GKJZVHE4rhUKaaj7L9Mwi7c312BwujIpJd3cr6WQaUbUiKW5au9qoVHRuvfVGRMGkosPtr3/9v086x08Sr51wSYBJb1cLZ88MMnT2FH6PHUW1IokymgHRaBS304pglMhnElSrVZx2Bxv7+/HXeagWS1wcGuED7/0ATz75fd79a/fWessrCk8//TRXX301d99993rXQa/XSypVE79kMhkqlQoWiwWn04nH4yGfzzM9Pb3OTVteXkbXdU6cOAFAOp1eF6kIgsDWzVtwOBy87R1vZ2JigtHRUfr6+ujqqhm0u93umghn/36mpqa477771tGH/fv3s2PHDg4cOMB73/tebDYbbre7Zg0ly3i9XrLZLIZhoKrqmhVg9QfG8T/ip4vLhW+vKYJ7DZvoK8Yl1EWSsNvtaJpGJpvCqso1QVYiQZ3HRblcZDmSpH9gAK/HCVoFQdQRRJ1CMc3S0jwXR85y8LprsVkVPG4n5WKWm68/SGdbO8Pnhjly+CjhcBhJgFtvvRVDq+Jw2lBVFX99kKmZWZLJWmIyMTFBsVjgzjvvXEvEiuTXxGnWtcY+uq6TT8cpFfI1pE438Pp9hEIhXG4PhUKBTCqNz+PHabWQLxRIJJMUikUEwaRcyGK3KTisKoqo47IpFNJJYitLJBJRMpkkmlZZ1yFcEiheKsm+pnXef8Q671zTNPL5PFarlba2NlpbWwkGgxQKBXK5HIqiYLPZSGXSxGIJfL4Afb0DBAL19PUOMDO3QEnTyRZLlCo1R4NisUg4HCYUCrFr1y6Gh4e55557SCaT7Nixg9HRUVLpJFu2bMLlslGuFOno6OD48eMAFAoFrr32WpbDEWxOB3V1dSwvrzA/v0g+V2RDfw9+v5+2tjbe//730tBYz6lTp/jq177Cv/zLvyAIAtlslr6+Ph588EEee+wxQqEQZ8+exWaz0dHRQV9fH+95z3sYGhpiYWGB+vp6TFOnvb2dQCBAfX09mqaxadMmRFFkfn6emZmZtcYqOgsLC2sNHuz4PG4SsQirkRVi8Qitrc3cdqQzVLQAACAASURBVNstdHS0cfsdd5HNF7E5XOSLZTw+H4sryxw/9RLFYhFRFMnn8/T39zM0NMRVV11FqVQiHA6zadMmbr75ZhRF4Y//5H9QqZZxOK309PTQ2dlJNBqlsbFxXfAYj8fp7+9n+/btTExMsHfvXvbs2UM+n2d2drbWvMPlolAoYLfbMU2TiYkJLi2m2trasNvt9PT0EAwG6evrw+l0rovdX3zxRWRZprOzk3vvvZeFhYVfyNx9Laeu13pOcSj8v3/6Nzz88JeueK4rPV5aWqJSLWGir9+XLwnwLyXIsiyv+0kHAgEEQcDj8WAYBn6/f93xoya0q523WMqTzaRB1xAlhUOHvk9Hcys2m4NCsYTb7ebTn/g4f/s3n8VuVZmdnsHv9ZGIrvLNb32bUHMr3X2bKVZN6hs7sFtVgv4AX3/42zR3djM6Pc/IxFRNe6WqRCKR9aYtM4vzHDr0LEhWGlvaGB4bRacm2guuLcRcLhemWXsumUzWxLF6TYCcSqVIJTOcGzyHKKhEoknqHHbK+QzRSBirRULLpamWShgIyKq1Jki1qOiaiepwoNpsSJJEtVIC08Bht5AvV9AM2LJjB49+55uUyzXr3VIhj6lpFLI5FEkhFomybesOnn3mCJOT47hcDmxWFzt37qRUKlEul3HYLfh8XqpGFVGxYnd5WFwJs2v31ZwdHiKaiCOrys9sLv5SINH5YmX9P/FaKCTUMv5a+VtYs7r6wQ3BxACqusBnf+9enD4LufAStoZ2yhWdbHSZukCQep+PpakLlEolTFHGYrXS3NxCRRdwOuwIokQkEmN4eJip2Rl+/d5fIxyPcteb3sjo0DCaVmFycor2zk6uuXY/R198noDXx8aeXpwuF8lEArvDgdfjoT4YxOVyISsWlpeWUQSRcrmEw+3C0A0aGxro7Oggk81it9tJptNYbVaqmkZ4eZmG+hBX7dxJNLpKf28P+UKOSHSVplATU5NTXHP1NRx5/jnsNitetxtvwMvs3AyKInPyxEk2bdrE4Wefw+l0Y7PLVMtlVFFAkEREQUJRLehGFZfLt4b2/+hrcaV49Y/R5YnjlY/7KVC7VznpXU6H+EUg0T9gcfeKjPjH/3w/bFxNauXF8NwkhfQquq5jd9hIJWMIpoFNgUQsSjadxOsJUSimeeHwk3gdDjLpAul4nPELYxSzeZ556mnGL17AWk5x5HuP8sijT/LgQ1/nkW99g5Ezx3nphef5wgNfYmYuzJ1vuolUvkJzSx+yIlLIF+jt6sQimpi6zvjoCJ1dndQFG/F466lzqfjrmykXS+TzaWRRwhfwY1dVSvk4p08cJRVPoZsmG7Zsxu3xUq2WiEUjGFqZEydOEk4k0PNl4pEokWSETCqBTZEoFYuoFgsiGh6LSC4TI5sMI5hVSvkU6XSCSjWLJEqUCzqSXGvBKysK1aqGdIkHqWuvFCP+zAWHvzpI9PnB5+/XtQqlYgmXyw6GSTKRYHFhgamZSQrFHJl0BqtNQZEUbHYriqri8QSoVMuYpkFrcwvBxiA2uxWLasVdV0cktkp7RwcXRkdpa21DsaggCJw9c5ZQfQM+r4/vP/l9mluaSaaTLC8v4fHUMTh4GotFxeOpw+v10NXRxvYdW6lze/jWI9/l2n0HuDh+EYvNzurKIm98/R2IkoHLaefixYvs3r2X5qYWktk083MLXH31NTz77GFuuOEGqtUqKysrjAwNs3fPHkrFEidPnKxVaawWbrv5Fubn51laWiYYDJBMJQgGA3R3djA6coEjzx2huamReDTCaiKBs86LboLVYsEwdBRFZml+mo7mZiTBwO12sjA/R1t7G+FYhFtuuZWZ2TnsTgsdHZ0cPnyU+voG/vrznycWT1Aslhk6P8ymTVt4xzvfyZkzg2RzefKFPHUeD7l8nrb2VlLpJL19fSwvr5DP52lpaWFiYgLDNFkJr7L/wEGePfwcLa1trEYiZLJZhofOs2vnDsqlGt/dHwgRCoXw+bxrLhZ2tq61/n7yqSfxB3ycOHac7Vs3EwwE+PpDX2PnVTuZnpnG6XTS1dXN6mqUfD7P3Nwc7/uND/1c5+7E1ML9kigh/gDyLCBJtfuXIIAs1JBqURDQRRNZFOju6cTqcGGy1v1DNDAN1kEKURTBMMnncjzw93/H0NB5ZElB01/2mn5ZhyVgs9jApGYd19WBRVXI53OkUkkQoKOzlXKxRDabp1yuImBisahIkkSlUsFmsWC12LHZXRRyRXbv3sWpUyfp39CD1a7idntpaW2lMRQkkUhy7b79PP/8MQJN3SiqHZfbRzGfo1gVGBye4K433M31N93CjbfchGJR0XUdt9td61BcSDM9OcPd97wd0Rkg1NTO/NxFoisRbrvtFubmZkgnM5RKeRLpNM1tzejVCrKsIAgivV0b+LO/+BR3v+E2jh19mk079uILNRGLJcEw+V//43/Q292GYVRwefxUdAHdNFhemqNqmlhcXnp6N1HIZhk6P0guV6SrvYVKIV3zV7fa8Ta2sqGzleGxcSKxCMFAEMPU+f5TT+L3O3C7fVhtKtfuOYjb72JifIqO/m3Uuf3kshHyhSKtDfWUdYVMZI5Qdw8eXz9VyvR37+Eb3/4at9x4K+l0jtvvuuvfD53jFe4cV1gVrifRP8b9yQR0EyRZZfSpbzA9PY6imzibu3HanViqJaqmyOzsLMVcGs2EQHML1UqViclJQs3t5PK1i9rV1UUqncbmsHN6cJB/ffYZwqurHNi/n462VsqVKolkkqGREdxuF6l4Ao/bTSadRhBF7A475lq5DRPCqxFEQUCVZVpbW3A4nesrW6uikkgl0XWddC6H1Wqls7MTVVYoVcosh1cYGTq/bjmkqirlSpXunh4e/tbDtLW1EvAHqBZLROKxmugwFGJ+foFqtabcrlarRGMRFFnG5/UiSlKtDaZqQZREnE5v7QfoCnSOnzR+aEn95b1+6vNfKX4hdA7t1XSOH7VwuHL8sH0vNW1YmR1HK6XANCiXSvh9HsrFPBbRRJEkFEmgsbGJSilLeGmRM4Pn+eLXHmF6bpkXjg1y+OgxMpkkt9x6C08+9gibN27muRNnGZ1Y5vc+8pt0NPtpbe1gdn6FsbELfPS//z4t7R3IshNEHberDq1cZOT8ORLJJC6HlXKpQktXH55gA4MvHMbjb0K22EilU7R3dVEqFqmUKqSTK4SXFxi/OMaGgY1s2LKVYrHG6Y7HInjq6lhYWEQzdArpLF6Ph4qho6giyUQSHSiWq2QTCSyqsJZQ1ziKuVwWi92GoVcpF0uUi1UEASRZoFQqr6ntdTRdQ5AkxDUV/trAX/nxTx2/Okn0yLkT98uyjCjVLLqKheL6zT2VTpHNZrHbbQSDQXK5LOl0es2DVwFMkskEC/MzGILJ8vIKmqZTqdTs28bHJ3n9XW+gpa2FYrFIKpUivBqmq7OLarXK5OQkmzZtZvee3Wzfvp3jx4/R1NRMKpUiGo2iqDLlUp50Ok2hVCSfL/LSS4Ok0hmyuRyVYoUbb7wOdB27w8qGDRu5cGEUjy+AburE4wkymSwOp5NrrrmGaDTK0tISwUBw3cP/lltu4dHvfJvrD17P4OAgJ0+e4A1veAPf+973iMVi+P0+ioUS4+M1RDcei1Ipl0kX8iwshjFNcLlcxGIx7BYre3bvIp2MY2oV4ok4LperVv2zWOjt6aO5uYV0JsnHPv7n2G125ucW8Xp9vOXNbyGdTuNwuJienmJ8fIz6+iChUE1/UywWqaur4/rrb+Chh75OJpNF13U6OjpQFIWenh76+vpobW1F0zS2bt1KIpFYrzamEwmGR4Zwu104nHZUi53V1VUAEokkzc3NLC4ukkwm15t7HDiwn+eeO0xHeztOp4upqWm2bN263iRsw4YNXLx4EZfLxTvefe/PN4meXrj/cvrGK/99GX2WLtNKGSJIiLWqh1alUq4irbXR0zV9PYm+dFxkJcz5c2dRFZV4PIa+1rBFkmoNUDweL6VSiYDfTyGbo6JXECSBSqlMPl+zJ+zoasPtdtfyAo+XeDxOZ3s7bW2tqKrK8vIysizjcjnXrQJ7u7ppbm2hXCkTiUZpamgishqmq7ODeCJBqVSmvj6EPxSkrbUdWbFgdzpp7eiiuaWD1tZWEvFY7bdVrTW2kmUZTdNQZZGW1lZWViPITjepZBqtmCG6GieXSzM1NYlginh9XuYW5mlpaaW89htts9nwe4JcnBjlhv3XoogGgeZOqoZEnceHqiqcP/0ifb09qKqC3VWHKClkU0lWluYwZAuj45N0tHbx3JFn2bJ5I05nHZJgglEmn80hywr7Dt5EIZtm+869bBzoQzAkivkcJ08cp62jiaamTkxMBEGlahoEAwEstpoVZiG9iqJaEPQqit1HenUWX0sLNmsDseQyjcEupmbH2Lihjzq3j2sP7P+PJPpKYQKiqWEgUo1HqMzN4XS4sIeaSCzNQSFNKh7G4Q0hKDbKhkBjUyOSRaFvyxYiiSjjY2O0tLbS0d1FOB7FMAxmp2fY0NNLwOfj6aPP8Z73/CdikSiRaIQ/+IM/pKOjnReef546p7Pmu1rIIysyszOzDA4O0tHRgWS11pJoVSUcCeNyubBarcRiMXweL/FUkrq6Ojo6uzh39hyFfB6X3UEykSDg9+Px1GG1Wjl69Git9HnqBB6vh207tqGIEvl8ntHRUVrb22hoaODQoUMUiyWuu+46gsEggiDQ1tlGfTCIzWZDUS1ouomsqCAK2B0eBAFE6ZVCzZ8mrlReu8JeP9bxl8elH8srWZ79IpJoQ3u5ilKLH41E/zAnkiu+dum9SlkUoUI+FUMr55HNMrHVZVYWF9EqJSLhFV548SmkUpV//vKTVBQv77vvd9m+62oWVyN84zuPsKG/j43bt/HOD/3fbNx7kA2bBrBaTe64ZT89O6/mzEyMz37mU1yzrZPrrn8LH/7Q72DzeKmYIlbRJLK8TEUz6enuIZPJEGxsxekLICFgCOBraMdUbChWO7KkYFUVdE2jUiqSiKcp5FJr3wELhqkjSQJtrS2IAmQzSbRqnva2Fg6/cJRMqcy5oVEmpxcYGZtm6OwgkfAyDY0N7Ni9F6e7jlCoiUAwgMNiRxEklucnWZq7yOFnHuPIs99HMGo3Pd00EUSxpoyvVl6+DpeP+f9hSfT4hcH7bTbbOv1CEiVisRjxeJxSQcfUBRYXlhkeGiGTTqJrGqIgUK1UqVSK5NIpctlsTfCZTBGLxNA1nTvveAPdXd28+MKLLC3NUyoWaGttJRpZpaWlhUhklXe/+124XE5OnDxBW1sb09PTVLUqmUyabdu2cuTIEf7b7/8BkUiUrz/0DWTFgiBacDpcXHftLnZs30RHWzN2u52WliaOHDlKoVDk5KmXmJuf5W33vB23u46V5WV0TaOlpZlHH3mE7p5uzpw9w1vveSvLy0vs2b2LJ554omb3tnc3hw8fxuFw4PF4aGxsJBFPsnv3HhYXFynkMwwM9PPYE/9KVatRAtPpNFarFbvNgsvpoD7gI5WMc/2N1+P3+wnW1/PId7+LzWbnM5/5LIeeOMTBA9fXvjv19czMzNLU1MTg4CA7d+1gYGAj/f39tLa2MXR+mGw2x8zMLLfcfAt/8fFP0de7gVMnT3Pm7Gmmp6cJBoOcP38eWa5Ru4B1weHWrVtpamriyJHnUBULnV3t6JpOqKHmo93U1MTAwCaKxeK6EE6San7GlxLkSrlCU1MzpVKZfKFAS0sLgiBw4cIFNm7ciKIo3PH6N/18k+iZxZc50a9o8/3KJFoWX7ZsNUUNCRnTlPjAB+7l7ffcg6mLCKaMrldekURjwuLCAt/+1jeZnp6qUQvWvtaXGrQYlRKyCK46J4YgUh+qp7enG1EUmZiYBCAQ9OPxeKgUS/T39zE3O8fNN9/I9MwU1apGsVjE5/MRCtWvCwDL5QLzC/Mkkmncbg+yJOF2OWlpbuLUqRMkkwmuumoHf/o/7+f1b3wbsupEdLjRDYEbr7+eTKoG+jldLtQ1S95KpYIoiljtLjy+eoplnXpfAKNS5sK5IXRDQ5YlFFUlm81gs9lw1dXhcrnRqxVUVSUQCJDJZvno7/4X5qbGmV6cZ/POA4Qa2rG5nOhoLC1MYZpVGkNNiIqF+elJIvPjJFI5YskCrW3tBPwhREmgIdTA1x/6Jjcc3Ico1PyxFYudv/mbv+aa/dcjSiKzUxcYGhrm+aNHeNs9b8Hi8NPaupmKqOFwu7BYbRQyaUrFIoqioml5ylWDSrmA3eNFquSwexuYm1vg4vgFXHYrV12zjxdPvERP3yb2XL3z3w8n+lJSdCUh26sT6Su9/spNQsLE0KrY/CH8Xj9VXcPQTCyyxMnjLzI1OoRNNvG6XWzo6aSYSVJfX1/rPKVVsdlsTExM8NBDD+FwORkbH6etrY3NGwfo7uzi//mjP+K//eEfkcpm8Lrr+MIX/pYPfvhDOJ1OKpUKnZ2deDweSqUSgiDQ29tLpVJh27ZtCIJAc3Mz8/PzLC8vAzXf6GKxSF9fHw6Hg3gkitNmp94fQETAbrWRTqbw+/309/eza9cuwuEwB6/fTyDoQ5IFzp07x9JSTQAhyzJnz57lhhtuYMeOHQwPD7O4uFgTBokKqUyOaDxBKpX6gfEX17rFXT7OP+m1/GHCwJ8mLj/2hyWbv4h4Lf7zT9oQ5Erj8+rjDcNgeXmZbDaNJIgkEglymUzNYF6riWW2b9tJJJFDstrxB0McP/wUdRaR//lff4eTR55i06aNyCKk01kMWcXt9RGLRBAkhWzJ4NiZ81jdPno37yCRqpLNZqmUi5imtM45e/yJJ1mNxrgwOsbcwiLeYAOGRcXf3ISgiujVCn6vD1GUKRSriIrM0kqUxcUlZFmmUixQzGeplmsc5kv+0F6vF6fDhtfrZWDTJqKRGBXNJF8yyOT+f/beO0qu677z/Lz36r1XOXdX55zQDaCRQRAiSIFBEoNEUuJ6ZctrayRrKMlL79ozs2csj017PLKPz+6xJc+MV7K88hxbliWRVKBIimAAmAEiNxqNRudQHaq6cg4v7B+v0QRhSRY9smRp5p5Tp6uqq6qr77vvvt/93m8oUa9XKRRz9A8OYne48PoCyKqCoijYbDZkyUZTJEJnezOmXqGY2eCJx77K17/6N2wk1onFVykUClSr1a0AjM2OvvGg/g/Bn74WSiEIVjrbteN7zSe3Xq/j9/tpaWnBbrfj8XjIZrOcOfsmp15/g0wmQy6XZXx8nFgsRiaTwePx8Jnf/m1Ov3mKdx2+mZXlKJ3tHUxNXuV973kv09PTWw5CiUSCXC7H/Pw8tVqN+fl5GhsbKRaL/P7v/z7nL17g5JuncHs97Nm3l/X1GDMzMxSKWZqaGhkYGMDr9tDb24vdbqdSqXDHHXfwJ3/yJxiGQTgcZjW6wrkzZ8llsvzaxz6Oruv8wi/8As8//zzJZJKvfOUreL1e7rzzTlZXV2loaOCRRx7hmmuJpmlomjWntrW1bTl9lEolC/0qlWhqatoSB67HVvF6vayvr7Njxw5kWWb//v0Ui0V6enr4zGf+A42NjfT09NDe3sqePXu4evWqJeqbm+P555/n6aef5sSJExw6dIjt27fzyCOPcOrUKfbv3781Zn/xF3+Ru+++m0gkQigU4sCBA4yMjDA0NEQ0GqVQKDA7O7uZJ9DL7r17GN6+g1tuPUI+n2d1dZUvfOELXLhwga9//esAjI+Po+s6u3fvprW1lebmZpqampibm2PPnj0cOHCAS5cukUwmiUQilpvD5jXkp9V+GFhz/XVCNCUQLK3Eo7/7e+haDVGw7FOvd+UAC6jJ5XKIomjRPTG3vOptNtum/Z2C6nCh6SaqqtLW1oamaQiCgKoqBAI+arUaxWKRarVKc3MzgUCAiYmJzWK5atE5HA4qlQrLy8sMDAxQqZRIJpN43F7K5QrBYBBd1ymVSnzwgx+kq6uL1dVV/ug/fZannnqK5MYGoml5vEejUap1K2Lcbrdv9YEsW4h0uVYlltjA5fWQ3Fjjjdde4syZM9x7790kk2kwrdpkeXkZn89nWfZmMpRKJSRJwhf0EQz4sIlw4virCKbF766W8pQKedrbOlCdLosSo1u2f/l8Fk3T2Du6AwxLD+Z0Ook0t6BrNWRRwmaz4XJ78AfDfPLhj2MaOplMhnKhiN/jwe1yIJgmfn8Q3QC/L0hNs3Rchqlh1mvopoZos4MoWs5Uho5id1DI5SiWMsRia8Tiy3hcbu68804wbT+2MfgvAokulKqPwg92g9h6/CN8lomAZNQRbQruQIgrx1+kbXCQpUSWC2dPUi0UQa9ilvJ0dneQjK8Q8bmoi3ZkxU6xmKFUtqIoBwYGeOmll7jrnvcxu7RAKpWipaGR8Uvj/PZ/+F3W1lY5/uKLvOfee/jffvVXSMTjBL1epqenSWXSBEMhFFlhdHSUyclJTMlGa1sb6WQSSRIJBoP4fD4kSWLb0BDxhJXctba6TiadYdfoKAsLC7jdbsLhMMVykQsXLgAwPz+PwyZTLhRxKKpl22NCe1cnkmQNTOvEh/b2dkqlkpWgJQq4nG4aQg14fR5MQUSSZQRJxG73YLNJb1vN//MWqz/7dA69bo3dt9o/jkS/0wLbuKYAL+eoFKxUJsVuZyUaRbHbcbustKhiqcIrr14ircl0DPSzb9cQu0e2USvnWVtZwONSSKaTlHIbaIKEbkJHSxcL09N0DQwjmRXKG2u86+BBMvkKX/qrv+bxv/1rPvLhDyKLHiqVNOVchp7BHYxdOMuhQ4fwNzTSvm0XqmDH6fVx6/YR/uLzn6OttYn+vn6wKQhmFbfLi9fjYWN9CbfTTjKdoa2jnUKphGEaYJokYnFq5RLZfJnvPXcc0eFAN0VS+Sq1ukFrg5eujjbu+8ADqA4vqsuNiAimQB0DRAFZVJAlgYWpCcbHLjJxdYKFhRlOvfk6p15/jUqxSP/gtrf4jzcerevdO/5JY/9nB4k+++bLj9Zqta2kVa2ubYkzBUNDtgkYeo1wKIDDbre2x02TcDBEIOBDq9cQMcjnixiaQSFfILq8TGt7M+VqDpfbDggEAn78AR/Pv/AcXp+PlZUoLpeTmZlp/tXHPsYXv/hFWltb+cxn/j2NjQ1MTl7h8uVxNhJJSuUytxy5lfnFRZYXYrS3tfLIIx8ntrqCy+lgbnoaWVEYGBhgfn6BO+68iz/+kz+mvb2Ds2fPMbxtkFAoyLlzZ1lcXCAUDjE9PcWhQzextrbK9pHt1Go1Lly4QKGYp6enh6mpKWq1GpIk4XK6mZmZ5ZVXXuKXP/JhpqamWFqJk8nm0TSNzs5OFhYWCPg9HL75JhLxGJnUBtt37uDixYu0tbezvrHBV/7271hejvLcsefZsWOUhYU5GiNBxsYm2NjY4MCBA9RqZaanp7h6dYquzm6eeeZZXC43+XwBEGhuaaC/vweP18Wzzz7LU08do7Oznd7eXrZt20Y8HufZZ58lm83icDgYGRnh0qVL7Ni5A4/Xx/DwMJlsFpvNcmvw+/0sLCzy8MMPk06nMU2TpaUlstnsVsF45sxZPB4vpgnZXI5KpbK12NqzZw+qqnLb0Tt/omN3Zj76A+kcgsB18d7XIdSmCjYNBAG77OSTn/wE7//AfWyJbDabKIqYhkG5VGJpcZ7p6anN1whbpgCDQ8N86Bc+wuEjtyGIMne+9050vY4kWLZ3+XyeO+64g2KpSGNjI8sLi8zNzVGrVckXcgwO9iPblK2/J8u2rQCiI7ccIl8oIUoKlVoNr8dFvVZFtgmsx9a47757+eY3n+D5Ey/y/HMnqJXTlPIZctkUlYoFAGq6jglbseVbvteiQbVcJBGPsR6dpZCz7BPn5mYYHt7B5OQk1WqR/v4BapqGrKikEgnC4TDxeByHy4Gez1PIpfnAB34Jm2KnXisyP36OxMoyNruDP/+v/x/3vecONMMgGV+mXCkiKCq9TX6qhsjcworFxUdk4tIlBvu6qNRr1LQaHm+IWimHoNVJZnLU9QqFbJad20cwdQNBAbvswhR0RFOgrGmUsha9UXW6URwKNkEik0ug6QIem8h6qkBsYxXdkMhl1+jrHSJfyLGte4j+4d6fIzrHprDwx1VEC6aBjojT4aQwP06qWCJf1Sln06TjcavTZYmmphY8HjflchlvMIJkt5NMbeDx+AADVbXT19NLrV6nXK3w6Yc/ybFjxwAoVyukUik+9tGP8hdf/CLzCwucOfUmogB2p7VF2trWhlavk89k0U2D5vZ2YvE4qytRggE/2WyWcDhMoVCgUi6TK+TJ5XKsr8XI5XJcujzO0dtu48zp0zgdDjw+K05X13Vuuukmzpw8SV3TEIH4RoJz584xvH2E1dVVmpub2djYIJ3OkM1mcTqdlpWeKOD3+anUqsg2CVMQMTQNTTcINTQjSeL/LKLfQTPqN9I5/vH2g9TgP+h1omCpwnOpGIV0jGqlSLFYZHVlGc3QqFRrtLV3Eo0leOq5U4Sa2wj4nRQyCSYvTzCyYweGoRGNrrA4P8uRw4ewO10EQ2EEQaGjpZViuYgqaLzv6K3kCwWK1Qpf/srjuFWZ3/qNTyLbvRhGiYnxyyBK7N27CwwNSXXhDzaApvEHv/MZjuzbxeT0DCdeOMbd996D4vQgSwaVUhmHaieTXCO+vkZjcxMtba2kkilcbg+pdBqn3YHfG2ApukKpWsfjD3Bh7BKy4sQmSaiU+eCDD9DR1Yvd7bEA4y27KWPzsU4qGWdteYFaXaN3cJh8qUg2WyCXzbBn5y4CwQa0eh1FVUF4K7lMvLF4/jkvoscvnHzUZrNt+dkam7sC5XKZUqGIYRioqorT6cTpdFrPl0oMDPQBsLi4QC5foFS20Ov9+w8QDAZxuFTa2ttobW1FtinMz89z6dIlfD4fqXSSD9z/flqaW+np6eHF4yfYuXMnHR0dpwDj8wAAIABJREFUXLx4gfn5eYaGhikWC6ysrFKtVpmfW+Di+GUUSaVSKXFl/BwDg/2cPXOWvXv28LXHvrH5PV0ICHg8bq5OTnHLkVt4/bXX0HWdjo4OTNOkUCzgcDgwTZPOzk5mNuO8x8bGGB21uMTXiuO1tTXqdY10OsPAQD/zczMMDQ0xPjFFtaZtIYnFYpFgIMBKdBlZMNmzexdOtwtBEFiOrnLqzGkURcXn82O3Ozh8+DBHbr2Fz33+c6RSWeLxOMeOHeP2O44iSRL33/8AToeTqalpSqUSra2tqKqKqkrMzs7Q3NxEQ0MjH//4R5mfn8fr9fLss89SLBYJBAJ4vV4CgQCJRIKuri6rr3t7mJ+fQ9cNent7mZycJBwO09raxgsvvMA999zDiRMn2Ldv39YCc3h4mELBKqo0TccfCOByuXA4HDQ3N/Pmm28SCoW49SddRC+sPPoWfeMfFtFbz3HddQwJwWZwTQw4umPYsqWFt53noihi6AblSoVTb7zO7OwUCCaqasftdrN7zz5+89/+Ow7edDOdXd2865bDdHV14fZ4EBAJhkNMX52mqaWJTCpFuVQmlUhaThkOO7IiEwwEicXiqKq6OX4K6LrlCpNJJyiVq9RqdRBFBvp7WV2J0t3Vga5rPP7443R0dNDT38fRI+9i7OIFtg0OYZNlSqUKql3BJkvohoZpvpWhYRgGumbR2GbnpqFWJptLk9xI8tBDHyIYCvH000+zY/t2isUikizjcDgpFfJbiY5urx+pVrB0ETYHmqFTrxXJJ+KWPaCkUCiWObhnB5VqmWI+Q6GYI+ALEfCqpHIVOrp6wQTZ4WBi7BLb+rso18rUqhrL0VU6WhowTBPBZkc3DMqFAl5fAJfHgyLbcKhudE3bpJ1KFDIZa0z6/DgcKsVCgWR8Ddkm45Al8uUKqXQKQVIR0GmMdGBTFN549Q3ue/DnSFhYKtUeFTe5SNcG9FsBKibCptpW/BGKOgHQBWslWjfhwkvPYNRNktUqHruMLCnMLq2TLdfJJDfwh8I0tLSDorAWWyO6GqdQyGGaJmcvnKMh0sRGfIOBnj4kSWB1fZ37P/RBxi+O0dLcxPz8PN3d3VSqVRaXl+jt6kK122lqbubKlSvsGBqiXK6QL5TxBoP0bhugo6Mdr9vN/MI8siCi1ev4Q0FCwRDlUonOTmvLZnhkBF2v093VxaVLYwwMDJDY2GB5aYHlpSVa2ppxOFRsiswt7zpCf38/q9EVCsUyuVwen9e/JVAEsNvt+LxuVFlFlmSqmoZss1mrd8AVaEBR7Zt9/s9TRL/t84Qfcvs+xcgPovRcaz+VIrpSfvTGFMJ/SOf4YY+vxaUDmNfN58LWa0RRQKvXSa4tMHP5PGGvE61eJ5srMjW9wJ//zZOcGpvkeydOM7u8QtDnZHSgg2IhT2O4AV3TWF1ZI5sp0NQQZOLyFd546UWWp69Qq1dp6e7m2998HF+oESQ7ZUnk5TdPcfz1Mdyqi9TqEjffegtaXaMhGESSBbL5LP3bhpAdAey+ACeOPcev/vpv4XX5+OVP/Rofu/tuJJ/I4tw0Lc0tGOgYaMxOTbBj1y5SyQyzU9P0dPeguLz4/WHcLgeRtlZcDhWtXuOVM2OoLhf1uoZoahza3cc9996HxxtAklVswluiGaNeR5KgVi+xODtNOpXi1dfeYGouykaqgFsWcUgCWiVJrZqlUrYCBAwdFJcTE7YcPP77ONI/O0X0mTdOPCqJIgLgdDixCWBXFVRZxjRBVVVkWaZUKlEqFahWK7S2tpBIp7DJMjtGR2mIRGhtaaWxMYyiSrg9Tpx2JyIiqUQKXauztrqCKsu0NjczOXmFUDBIfGONxoYwN910kOhylFq1zvlz51hfi7O8GGVlZYXmpibK5TqXr0xht3vp7+vA7bTxwQfez/iVKyiy5VvtcNqRNz2tC4Uiw9uGKORzFPM5Dt98kCsT4wxv20ZvTy8nT55kdOco8Vic9bU13vee9/BXX/oiWr1CtVzG43bx1JNPIgkC1Vodp8tBsZjHMHSaI82kcxkmr0yRzRTQNykvN910E5VyiaPvvpXWSAPpXAYEia6uXhaWVpi6OkOpVCGTK1DXNI499zy5XJ77H3iQ/fstisRdd91FPLaB1+vH4/ZQqVQ4fPhm0ukUoigwMjJMpKmJcLiBubl5Tp8+jSRJ7N27l7NnzyJsLigjjRHCoRDVSgmP24UoQKVWJR6PYxgm9933fpaXl1AUhZMnT7Jj+yhnz54jGAhy/vwFDMOkv68fvz9Ac1MztVqNjY0EoVCYTC5NPLbBxkaSlpZW7E47i0uLfOCBD/3UkGhBMLccpW4EfwRRxDLREJAkHdkmY5MkKnodr9droZs25W1zsyW0FfEHAuQzWS5PXEG2y2zfvYc/+b//lAcf/AV8vhB2h4rP58PlcqPaVTo7ezlw8xH2H7yZ2999G9Pzc2wbHrHGqGh9t4H+fnRNs+LXtTrFUpFQOITL7UZRFaq1KiffPEtjJIKmaxi6htNp5447jnL+7FlaW9us8LapaQ7ddAvPfe9pDr9rH5NX5qlXqrz68nMkYyuUyyXsThVRslGt1ijXqgiyRCGXIh6L88Q3vopiE6lWqwwN9nDi+MucOnWKbcPb8PmCyLJKuVRGlWUMw/LQDgQCzMzM09PkoaFzkHq9RHRpllwqRbZUpKbXEWQ7o7v2cv7MKZ586gnaWtrQ9DrpZB6PL0AiVWBucZHz58YYGBxE0it4VZNMNkW1YvDd7z7NrUcOUK3qmJIbUZSZm57l4G3vIxBpxzRFK0JcLyNodUr5LHbVTmP7EK5gCM2Qsfs8rE3PEfZ7sHsDbMSXkGWViibgsLtpb2umVq/z2pnzfPzjv/rzU0QXy7VHb7xwvcWFvo739CN+nrn5fh2T4toaigmOxgbsNpVauU5F10gXS/gDQQJ+L6JNwhUMY5gi7oCf2EYMt9dSfK6tx5BlmYsXL+J2u9i9ew+XJybYNjTE6dOn+Y3f+A3KpTK6YdA/0I9j04fT4/GQyWSwqwob8QTvf+AB8qUSe/bvJZ1MotdqOJ1OOtvaEQSB6MoKtVqNHTt2cOb0Gbq6uigUiwT8PoqFgjWZxeP0dHdaAh8RspkMommSyhQo5rLMTE8hSjb8wSANDQ1bfDXDsNCHarWKTZY2L5B2BMlKVvT7/QD4G1osFOL6Pv+pcY/fORdbkX/yhYhRqzx6/WPzHXztf6xvr9E9rm2xL06Pk46vYNQ0RJuN5eUVZmbnmYkVWFlZw+dUGegIIxlVIg0henq7sAkSnZ3txOMxFEVlYNsgkaYmXnz+GD1dHfT0dDK7sMT9H/sEidUY8WSaE6+8Riqd5fzJUziMGpGAhwMHD4JoYpds5PJZ0pk0VKqE2nqo5jJEAgF+7WO/xgP3P4gh6sycO0/n9kEmLpzH7/fj9/uZnLiMKpq8+sqrOBxO2jqsiTHY0ILd7sBpt1Mql5AFkxMvv8ypsavkyzqSZEPTKvS1hRgYGCLS3IpoU1BsMvV6fdP9xsAwdXK5LJJpMjV5lZtvPszJsxeRFAdO2UYqnSGdz7J7dJhgwI/NZkeRFbyBADZJQhI3hUX/gxTRY2dff9Tn823yOFVUxepPi+JheeOKorjpd++io6ODXC5HKpMmm81aCGwwiKzKSLIEoonP7yMRT1Cv1xkaGuLcuXPs3r2bxcVFJiYm+I9/+FnW12O0tDQSCoWYvDrFkSO38txzz9PX18v27TsIBUMEQ0HW19fZvWcvq2txenr6EE0dAQ2Py85abIO21hY24nHa29pIp9MU8kU6O7ooFPNIksTo6ChLS4tomsbi4hKiKOHfRGgbGhrw+XykUyn6+nqZmZmmsbERQRB473vfi8fjYSkapVqt0tDQgM1mQ7HJLCwu0N7ezfnzY6gOu7VDlMvhdNiZmZ5ibTXK9u07SGdypDIZVIeD++69j6eeepoHHvwgV65c5tZNXvK3vv0twuEGPvvZzzI6OsrXv/4Yq6treDxevF4f8XiMM2fO4Ha7yWazrERXkG0yl8cvc/c9d1OtVrf4ydHlRZqaIoRCQZLJxNZWvtfrRdlEPO12O/Pz8ywtLWMYJk1NzZw/d569e/cyNTXF/v37mZub44UXXuDo0aPE43EAQqEwp069idvr5uzZc/T29rG8vExbeyvFYpH33f3+n2IR/cP0UW/VEtdMCUzTJB6P4/N6+N3f+z0OHtiPLKtbv7teqOj1BUmkUuw9cIDf/L/+HW1tbdSLVSRBwhTZCmexkj6xBPqYhPx+fumXP4IgqfgCAVQR4rEYfp+HaqVMtVKhVC7jdDqJx+NomkYsFiObzW7NlT6fz8qucLuQRAG7ouBwOHC73QB0dvXh8zpYWJyhWKwRi60TDPqsJEldw+v2YHe40HWdmlbH0A2OP/c9KqUCd9x+G8dfOE61XCKb3aC3p59KpUa1VmNhYdESIdrtaJpGOp2iWCzidruJhEO0hBpoG9zJ4vwsNllBEKVNzjXkcwVkWcUwNQ4e2s/S3Cwejx0BBVlSia7Hae/uYWBwiNOn3kQRagS8KiYiitNLpVpleKgXQVIpVHUWFpd45fhx7v7A/4LT7adaL1EpFlEEDUOvky9kqNZ1Iu39SKplQyjZRKJTV3CoKqrTTTq1AqKNXLGK3a7QGAlhmAJ3vO8+do2O/PwU0W9LLPwHJ8Lbt7V/lMJO2EKxRdr7hqnVKzR3dhBL56hqJoHmFtp6uzFtdlxOD62dXaiBIIYAS8tLbCRSBAJB3B4v/mAQmywjShJ79u5mZn6ewaFtRJeW6ejo4Pjx4ywtzhMKBZiem2f/rj2cPv0mwWCQQCCArmuWLVOxRM/ANryhAOFgEKcik0gkcNkd5PN5guGQJeKq1Qj6fFyZvEJnZwcXzp1ndHSUfD6PapNZmJ9j8so4y8sLjJ06zdWxizgcYUr5FKur65w8fR5N15ibm7Ms8hRlS2xSrVYRRKuAliQJRbUCMlRVxWaTcfnDmyeE+c9aQP9on/39f//93nvt8U+riL7GOTM2Y2HfFvbBP+RA3/jzxues+28h0bphImCQXZvFrBZRZBEEeP2NN0gkk5h1jd72CL/4gTs5uGcn67E19uzby8H9B1ldm8XhVPD4XOzdN8p//N0/IBRq5KbDt7Jj525OnTrF3v0HuTo5x659N9HV28fBA4e47d138PG79lCLzaJVKgx1txFu8jNx6SSDff34fW5kWUZDIR9fol5Jc8utBylUimBW0UomzSMj9HV2MDczQywWY/rqJBury7gcTjp7ewkEAvh8PgzRhtvtoVwpUNNqXBk/D4bO9PI6BiJarYogmAy0hxndtYdIUyuCJG9u61lotCQK1LUatVqVciFPLpPm+PGXSGQKJDNZ0oUa5bqO2x/kPbfejM/nw+10o9UqiLKCTRSwySqGaV1w3yZefUfnwc9OET07efHRa6IqTdPQalZojaIouN0ubDZpaxewXq9TKlmx4C2trXR0dGxe5N043Z5NDYYNEwNTM1lfX2d2dpbu7m5isRiNjY3s3buXYrGKIEC5VGZtbZ3Ori6efuoZotEVRkaGWVlZpVKucPHCRbxeHy+8+BKyYqeQyXBg/x4SiRgtzU2cOnWWrs526vUalWIJrVYHExxOF9093bhcLlZWVjA2RUoulxsQ0A2Dtra2LfG1qiicOnWSkZFhBEHY/I5WMIlos9HS0sLFixfJ5XJcuTxBS1sLly5dAcHGRjIBWDzY7q52gqEAXd09HDiwnwM33cwX/vIvWVuPYWgaiUSSru5ubrrpIB/9V7/K+XPn+fSnH+HUqZPMz8+TTCbp7e3j+PHj7Nu3j3g8TiBgOYQoisLi4iINDRGee+55NE0nk01Tr9fZuWk7p9UqbN8+wsz0FFq9ZiWPtrSQTCZpam6htOms8dprr7FzxyjNTc18/WtfJ5vNMjk5yUc+8hGmp6c30VUXQ0NDfO5zn8M0TaLRFfL5AuVqkdtuu41isQiYzExP097WzpHbbv+JF9FbdnSbTlI3JhbCDcU11vlsmiZul4tSpcrn/+xPGejppKdvcGu+3nLoAOwuL0duO8KBgzfhdLgQTQHDNKnUKmBa1niVcolSuYggCDjsdkTToKW5menFRdzuAE1NzcRicVbXYkzNTNM/OITD5cauqlvBZy6XaysptLenj3wuTyqZol7XGN21E9M0aG6K8Oabb1KtVslms5x46VVSiTXi8TiCKWBXFS5fvkQ+n+Hq5XEW5+fY2Fgjl0uQ3EjiczuRTIPY6hLfe+opGhvDmLpBd2crC4tR9u7dz8rqCiAwOTlJS0sL7e3t1GrVrcChV156icOHbmPbvpv5zreeYHDbCKrqplKrUCwWKeWyeAM+RrZv5/KF0+wYsCx6bbKCbooUKkVGR0dpaopw7Nnn6elsIuB1Y3cH+OrXnuCWwwfx+1xIkpuGtg7sLg+fePiTqJ4guqFTyifIZ1OYegXThMsTlylU6nS1dzI2dpGW5lbOnj+JmdnALgtoSFQreRTViT/UQjgUxOFwYlNUDEHhpgM/R+4c/9T2w4oxQRCwYVJTHTT29qLVdHq3DWLYROqCSSyxgSgraKKNuighiDYmJibp7OxkZGQ70egKra1t3HT4ZnzBAM1trTz73HOMjIxQ1eo0NjfR2dnJ3r17ufWWI8iSjZ7OLs6fP09nZ+dWjGgsFqOrp5vdu3fTEGlEFGw0NbWwuGApYE+fPo0gCDQ0NGwhB/6Alx0j23j99VdpbW3d4q+dOnWav/27x1hYWGB9fRWnXKMhILM4d5lUIolpmgwNDdHd3Y3X62V1dZViscj4+DiRSARVVQmHw7hcrq2kQlVVty6i1wrB/9l+9HZt8r3Wd9cXzMZ1BfX3u32/91xfTF9/YUglEmQzqU3leAqbLNLa2kxLSzO/+uEP8fAnPoZgk1hb32D3rv2YhsT09AxTM0t8+8lnqWkiiHY62lvp6+sjkc7hb2hldO/NGMgM9g8Riy5RLZcQBRNMnXI+Q0dnK8lMnmDIz3r0Kq2NXi6cfoVauYgiS5TyGWqlPE67A5eq0NLUSMjnJdTQSMWU0QSFrs4e/P4giqKiaxa/Lp/P4wsGKBbz2GSRWr1EsVRAURR8Hi+YOj1tLRiVArJNxCaIm1vLG28LWLh20bvWT8BmolyVXD5NtVrB6bLjkCV8bgeDnW2Uqxo+XwhJEsjn0mRSSSqlMvCWU83mQfipjKmfVNM0jUKhQLFYpFy2Ir8VRcHlcm36CcvYZAm3x0oMDAaD9PX14fF4thBQURTJZvLYbAp+f4B8rsTq6iqRSARN06hWqxw6dIiWlhZM0+Sxx79OLpdj/NIkPT19/P3f/z3bt2/n05/+NM899xwOh2PrvZqm4fV6EQQBWRFJpTf408/9GdW6STqdpVwu4/F4UBSFffv2sW/fPrxeL7OzsxQKBQsll2UCgQDbt2+nWq0yMDBAvV7H57PsQjOZDM3NzdTrdYLBIBsbG1y5coWxsTFefvllnn/+ebxer0XZq1Robm7m/vvv54477sDtdhMIBAADw9DI5XJ0dnfx+De/yVPPPM3DDz+My+UiFApx8OBBLl++THRlmf/8nz/P4OAg99z7IbxeLwsLC6ysrPDCCy/Q1zdANLpKPJ7gySef5MUXX+Td7343d999N2NjYzQ1NdHe3k57ezs7d+7kO9/5DvPz8wiCwKuvvgrA+vo65XKZS5cu4XQ6iUajPPnkk1y9epU777yT6elpjh07xs0338ynPvUpHnroIR5//HEymcyWI4tpmuzfb3l4Xwt1UVWFZ599htW1KLfeeisj27YRXVr6qY7hf0qTBBGn082XvvRFfuu3/s+t+eNGobcsCgimiSSYSKaIYIpW0p1oaVQ0TduK+4a3gBC3S6VSriFLlp3t3gOH+N0//CyGIOILhlBUB7IsU6lY7htgnYvBYBDTNCkWi7hcLrq6ujAMg5mZGYLBIMPDw9RqFq+5ra2FcDhMQ7iZcDjMcnSJd7/7VhAMIg0hHLKNWjFLdH4a0axy8rUTlAo5lqNLjO7cwXJ0nkDQQyppeb+vra2xfft2Dh48yEMPPYTT6eTs2bOsrq7i8/mYn5/H7XVhd/vw+l2MjV+hqaUdUbZR061+kESBYjHPiRdfoKernVohi2wTURQb5WqBoNdDMZ8hvWEtqtvbO6mbEEtmedetR/D5fJvUGxsra6s0NEUINrViCiYIOoJew65ISDYZh8tNpLnVci7JxagUM/zd3/w1M1NXQa8hGnUkNEBE1y1Ou8PuxqY4UFUX5Xzuxzee/kUg0eXrfKJv8H0UTBPByij8gYKsG7dutqi1ggCYKE43p06fIeRzYeo14utJMomNzS0PB4jg87rp7ulidnaGgD9Mc0sTyXQSAR3ZJjI7NcX77/8AXq+H5kgTboeThbl5HHYHY2MXSaaSxOIbhANBWlpasUkyqmqno70dUbTR3tONLxAg6PcjyzLhxhA+fwCjXmE9HkNVnZTLFRKJJOcvjBEMhajXNFoiTbhcdrR6jaef/S6aCPGsgYFIX3cTqijgrufZKEE5XSLQ0c301Sscvf1W5uamkWSVUDhMtV5jLbZOpKmZ8cuXCTc2YGBimIbFyDUhGGm1in9JfMcotHhDkuCPQmv4YfZE74Qrfa39NJDoern46LWFh2maYJiW2M146/7WTbgOlcZCNQzTmrwl6wO2/k3dFDA0A62uUyzmySRjlJNRDK3O+nqM+EaKi5cu09rezmKhxvsf+iVeeO4Y2WQBbDLzy2ucOnMRb6CJ4y+9jqmbfP7P/gv3vfd2KuUisfU4Y+PjvOvwuzn1+huUc2lmZiatMB/dRDB0qlqNb333Sebm5rgycYmRLi/JxSmaO7oxawXWVqO4ZBvPfvPbKP4wqVSO//b/fok//KP/h9/4wz/C1DRksY6iqNQrRbLpNKsrSzhdToa2DVIqFcnnCjQ0NFCulCwLRklgeW6SUr7IE888j2aKlEp13C4Htx/ay/DwCC6PD9XhsoSBomAlOmoagihRLdfQqiXSmRg7d+wkl82RT2fYs7OX4b4Odg0PkatUMRCINIQJBoKYtQrZRAynL0i1riNIIIjWrCMIwtst7/6JOyj/aPspINHnz77xaKVaQxQlPF4fXm8Ap9uFqMgUCgVK5Yr1/xrgcjrRtTqFvBVEha5TqZSplSsYponH7cbQdeq1Or093ZvWmzYS8Q0ee+wx1tbWsKsqok2msbGRocFt6JpBONxAJBJhdXUFl8PN+XMXmJ+fI5/Lkc+XcKguHHYJVYXh4W2sr8e5fPkK1WqFcNhHKp3G1HRW1tfYSCQJBkPkslmqlQpOh5P5+Vl0XceuKhQLRTKpDIlEgqXlZcLhMLNzc+hanUq5RCweJxaLMTExgaqqRBojdLZ3YJdt+H1ePH4/L7/0GqYBMzNXWY0nyGZzeDwe2lpbKBZLqHaVULiBzq4uzpw9y8mTJ+nt78fhdJLJpHn1ldc59uxL3H//B+jtbWfHzmGGh4f55je/g8PlwRcMkCsUsCkKkeYm3vOeu0lnckzNzhDbSLKwsMStR48yduE8k5NXqVVrHD16O6JoY2homEKhxO133EUwHKZSrVGpVt+2UJJlmfnZWUTBpFIuYZgmQ9uGSCQ2eOXVVygU8vh9forFMg6Hk0A4TEOkEd3U2bVjJ+trMe5+7/v41jefYPfefSwuLXHP+x/4iY7d2YWVR99CjN9Owbh2H3jbY/E6weHmPh9ut4ePf+JhRNHyuDfrIIhv6bEQrgEb1lltYCAKNkwTtFqJQi4NkuWs4XJ5ADAMgYnL44TCQcD6+26PB8OAJ77xVR794z8jE4tRrlYRZYnW9nYy2QIOp4um5laKuSyNDY1IooluVhDqIslEArffx/zs7FuLXIfl6VyrVdm5cxfVaolIJGAt5rJpRFHA7Xag2AS29fWRT6dweexIgoHT5aC1qZFQIIhst5JGEQTmF+ZxOhwYpsb4pUvs33+AcrmE2+22qB3JBEfvvo8//N1/z3/94t+wkUhjGDUKG6uUM1myhSKabvB3f/c4B3Ztx+NUqGoidb1EpljF4/Eh1op4AwGeOHaCT/8fv0VNELFLds6ffY3WpgiBhggOT5C2ngFEmx2b6kISTOrlAsVsjpdffQXVbqNaLrE4v0p//yDTM5cJ+v10dbbzrW98lZ3dEZwunfVkAV3TESWZUKSXYFM7oqSAKEO9yOEjR34s4/bHZ5b3z9T+qZSCa++zmQaGJLNz937y8SgaJol0AsWuksmk8HhcKDaZeCyGx+vF4/YxPTNFMBTCNE1KhTwAimKjUqkwMzNDQ0MD2VSW7s4uAoEAHR0dnD57hmqlTktLK/Pz80SjUYaHh4nH1ti1dx8t7W0YprUyNU0Tp9dLrVYjm8lveXGqqsrAwABOpxNd1+nvH2RxcRGPU+Ib3/gaWc1OXTCwD99EViiTcku0NEvsDkb4+tMvsmP3TdgkiV27Rjlz5gzBYHDLM/Ia38owDJqamigUCgiSiKIo2O12bKLtX5T/8s9a+1H8oc1NAaG1OLzG3Tc2+ftvX1ToogmGTl2rk00nKWQyZDIpqqU84cYI9ZpG3+b4aOzZxS//8r/mztuOkMnNMXn+EgcO7MPl83J58hJ79+/G5Vb5m//2V3z7sb9n6fw57K4AR2+/i8ce+1tuv/0ohUKBeNJAkWwkEnHsTgfVSo3hnbv5Xx/8EKlUgo3oDJJZB62A4nAS8DlYmL7E0aO30XXHB6gV8ozuuYVHGyOYlSL1Qg5TS1PTFTY2NojF1wiEgtRrNWJr62xsbNA/OEAmbQUauT0+yuUydrtCpV7h4P4DTMwukMnWEUWJWqW6ST2ybfmZX99nRl1DkSU2cgW0msbFC2doa21mdOdOitkkiAJtne0kMjnefON1FufnCIcbCbrdIEqE2ntQXX50TQJTR7ZZi/jP5BPPAAAgAElEQVSf5+b3W+Jjh8OBJIiUygXq9TqmaW4i+nVcLheqTcblslOv1xEEy19aEqzdAEWxUSzmSSaT+Hw+lpYWrAASp51wOMyHP/xh3njjDS5fvswn//dH0HUd0zRZWFgg3BDk0vhFJiYmMDVwOh3s2rUTwzD45reeorU1RK1WYnhkkNHR3czOzjI2NkZDOMC2bds4fepNmrtaEGUbC/NLyKqVBLdjxw7S6TQHDhzgtdde49y5cxYFpWZw+NDNLK5EOXnyJPfccw9f+Iv/Ql9vNx6vl2g0urX7NzKyA5/Ph0O1s7C0yI5dozSEI5TLNSq1Cpem52l0eWhsCCMIAvl8nkLBci/42te+xujoKB/5yEc4d+4cR48eRdM0fuVXPkpzczMzM1N8+zvf4spkH6Igc++993JhbJxyucza2hqtra2cO3eOTCbHLbfcwl13vZeRkR2srq5SqVSshcjQEJFIhFwuRyadpSHcyED/IN998inW4mvY7Xba2tqo1Wp4vV4ikQiLi4uIIiwvL7Nnzx6eeOIJ1tfXCYfDdHd3IwgCe/bsIZlMW5qgtTWWlpZwOBxcuDBGoVAgnU6Tz+eZmZnZROJ/NpsgWGEsY2NjDG4fwTR1btyc39oZ3GJ2WfSxsmFgmjqiKCDLqkW3VFW8Hj9f/vJf8Qef/SPKZQs1vmY3u7i0gKwq3HnnnSQzB5iZn2F+dpaOrk5KhTLNkSaqrS3k82WWlqdBh9bmFpwuu+XgValgs9kYGBggk06RSiWoVEtMTF5hdXUVl0umWMwzMDCAoZtkcykGBgZIphKsra0QjoRpaWlBURSmr1zB5/UjGaZlWVjX2L9/Py+88AKtra08+OCDvPjiCfx+L6ZpMjExwUMPPojq8CAiEY/HEUXAMNHrNXSjit3l5JlnnuKOu25DVN3UqaGbVTAMTFNCVV0oNg2fL8BDH/4I/kg7UnQZm1KhUizi8/nwehuwOV2UihUcAT+mKVCvVdD1Om6Hk4MHD1LMxfHYZbLZDKFAELtdZnZ2lraeXuyyjMMTwaCEZtjA1CwOOzqFfA63z0e1Uuczv/M7/NvPfObHMo7+BSLRb0cnxeuKundS4N24IvX5fNhdXjaySQTqLK3FqNU1HLJljRRoDFMzNI6//DIf/NBDyKrK4PA2xscvYZgmO3aOYldVQsEgjQ0NeDxelpeWqVarrK6u4PX5EEQJfVOQs337diYmJnA6HbS1d9DT349NVrYKWU2vY7PJNIXDnDp9ms4OqyCPRqNomoYsy9bFzeXle9/+MooqUwr08+AnPkVJiVAyYC46ji2kcueBnbQ3+HG1NDLSM0JXXwdtbW3Y7SqBoMVzDofDmxztTTsrw/Lm9Xo8OB1ORFHCHWjYpHe882L6xle/E4HdO2v/spBorVJ69Mbi+QdSNa4h0roBJpY/Mmwhnde/VjcMK4SkVKaUSXBl/Bwe1cTQdQKhMB6fn7bOLtraO3jl2DOk0ilOnDzLTCzOeizB3p1DJGJRPvzQ+xke7KO7q4NiIYtdsdHV3U17+xBf+NKX6R3spre/HwMY2b6HRCLFaiyK3W6jkE7y5qnX2Dc6yrFjzxKyi5SzCVw+kUK+QHdfH6Zg8Od/9nnueuijSA439brO4uwMVy6eoZLd4Mxrx3F4w8RjqywvLRJpCKFpNaIry9jtKjYJkol1FNlGOpOiWq6wsrxEd1c/Y1eusLC0QqVmosgSvS0++ocGaGxuAVFCFK1izhrTGrqmEVtbQrFJ5DN5CoUia7EYiytR+rs7aW5qxhcIEnS7ScTWeeGllzlz4YKFiIYCJJIpstk0DeEmTM3EFKzjIF2bS64XHf7A9rODRM9OXX7U7w9sCjd1atUqml7HMAwU2YaiKIRCIWu+0DQk6a1oZdM0qNdrVKuVTY/pOj6vFwGTYqVCIBginc3i9/pR7XZ6eno4cOAAqUSCXDbDqTfeIBwMYpjQ2NBIT3c3drtMV3c7tXqNXDaPYVrH1+tz4PP5OHv2HMtLURKJBP/mNx/h2We+S3NzEwN9/bzw4otcujROe0cnDWFrzvN4PBw//iLhcBin08ni4iKKYkcQBNbjcdLpNGtra/T2dNPZ0U4un98SEVrztMn4+AQLy6tINoVqpcquXbtYWlrg4oXzTE4vYldlYqtrLC9bAsa7734f4+PjHDp0iB07dlAsFrl48SIzMzPcc889BAI+BMHk7NkzNDe3kEqn6ezopFar0trexrsO30wum0GSRJaXl2htaSYUDBCNLlMuFWmKNFKrVRkeHmTXrlHsDjuGoePxuFlZiVIqFWlubqJtMxtAkiQCPi9Oh4MrExP4fV7Onz+/FS528+HD2Gw25ubmaGpqQlVVPG4PL730Mq2trTicTnp6eigUCuialbInCAIulwsEiwbwE3fnWFj5gcLCG6/7N3Kir7XrfydJArHVdQJBP4LwFqcasETLgCRZqLdu6AiCSCGXAdPE4fYgCBYYdfr0afbs3c2//rWP8dGPfRxBsD7nGtf6K1/+Ap/41CN4XB5cgTCtbV3s3LWPbUNDPP3dJ7nlyBHuvPt+Gppa6O4fpK2rH6/bzvzcLC6Ph0hDCMMw2NjYYP/+faysRFFUmUvjl7n96LtZX1sn4A+QSqSwO1TCIT8CJkuLS+RyOdKb/uGaptHZ3o7b4yG6soooSOTyedZj69hsNjY2NijkC0QiTczPz20tvu679wEMU+SWw0fQDZ1CLkW9WkarlUAU+cu/foz33fteDr/7blra2oglEsTXV6mWCgRCbZimhsPp4oXjrzAwepjh0d0Yosns+ARtHSEiTS1EWvqRFQlJ8WEIJgGvj76eLr7z7W8zPNCD3WEnFVvFrGTo7BugpukUS2U8HjcTV6dwOewsL0ep1CssR5N4Al6i0XWC/iAdrS0U6jrZfIZUbIWHP/3rP0fCwnL90ettaa4/Ga4N++9X1P0gJe73O1lMwOXxICkq2Y04pXKVmdk5mppbcHm95EtF8qUSNlXhueeex+F20xhpJhQO4XC6cHu8FHM5VEXh9ddeZ3BoG0uLi0QiEebnZkkkE2RzeWrVKl6vF0mSiEQiVpa8aqe5vQ23x4uqqhbyqyjYbDKrS8tohkE6lUJRFNLp9FYilt/vJ51KEps7xUZRZ0OzceyZb/Offv3fYC5PIooKdTRuHzQ41N/OzOIKkfZtqA5LLev1+nG63CiKQiaTQZZl4vH4FjphajqyzUalXEa12/GGIpseoe98B+DHUURfO+4/PITk7e4t17efFp3jxgL6GtJ2o7hQr2vomo5pGOiG5cvLZnF9bWFz7X2arlEtldDrda5cOs364izx6DyrK8v4gg04nU56B4ZIJFMoYhmvW8XnsRPyuHDKMhfPnMXpVBBqJZxbcfMq9XqJhkgjXT3d3HLbbbS09ZLPl/B4AixE1xgc3k42E8dmM7HbJBrDAZ584gnGLk+gl+tU8nn6h3rx+xrQEbHZRIb7hyjURJx2BbFewRfw09XeREPQR2NrO23tXVy6eI5IpAGHbENE58K5czRFGrl6dQKn6mBlJYrf5wMTmsNNFCsVnn35JGsbKQRDJOhxMjLQQntnJy3tHdQ1E0mybfWtKNmo1cqsLS0Si8eZmp3l/KVxzozPsLKRZ2FljUtXrtLa1IBqg0QiwcTUFLW6hmkKTM9c5f9n783D5LrLO9/PWWvf9+6u3jftalm2JEvesB1kLNsYCBBCSFickJuQlZvcZC7EGZJMkknCfSYwkxUyGcCsJoaxAQPeZFmWrLVbarXU3ep9q+7at1N16pwzf1R3WzKYCRcm9nDv+zz1dD9VXUtX/eqc9/d9v4vb4UCvVZEUEdPUsbv8iKKELL0sVPpJaqKvXhl92LKgWm3GGlumSa2+HrZC0xKzVqtRKBTwuNwoSlOEWNXKmJaBKAmYpkG1UkWrVlhbXaVULOINhpocRIcTRVFwulxUqlX8gQASsLS4SCwapaZpSKJIpVTixeMvYFgG8/NLLMyvIIk2Lly4hCgKBEJuxsev0t3VQzAY5uSLJ3npxAsk22Ksraaw1gVfb7rnXiwECvkc9Xq9GdVdKdPb27vpVLR9+07Gx8dxe72U1l2Pspk0tZrG0vIy+XyeycnJ9eNwAn8wxLGXTlOpVDENg/HxK0iywJF77iG1lqFaLiEJApIs8tBDD3HixIscOXKET37yk5suILIs89a3vpVLly5hs8s89fR38Xq9zMzMkssVqVTK7Ny1g+Fz55mbmSESDlEplWhraUEWRUQBAj4fSwsLfO6znyEaCfPcc0/zrW99k0Ihz6VLo8iSxI4d2ymVimhalVA4jM/nIxwOEw4EEEWLoaHdDA+fx+Vyc+TIES5duoTL7cbn89HV1bXpM12v67zxjYeZnZ1FtdtwuVxYlsXuXbt49tln2bNnD263m9FLTfrX3Yfvfc2a6O+xtfs+vcBGE/09161fVFXF43Dg9fuo1/VNvvPLFqMix48fIxgMMD09SzAQoq5VMc0GsupAkiQkSaK7u5vV1WUG+/vo6Oq97hxlCRJ//4mP8573PoQoqig2B6IoYbPZcbncxCJhnjv6LLuH9tOabKGru4eOjh4+9fefpLUtilbTWZyfZffu3aysrHD27BkKhTwNQ6dc0WjoBmupNIpsJ722gs/vw9I1zEYDURDwuN1EEy0EAgEuX76M3+slk8mi2uxgCU0nsPXwN9M0EQURwzBJp9ew2WzMz8/T1z/YnKLbnRSKGdKrKzQ0Db8/jNcb5O577gEU/MEEH/7wb7N1ywBrq2v4vA5y2SKPf/NxWtu6WFhapWdgK/2Dg6h2O3/58H/gzsO3Mj09T2tnDxNXx2lp60d1OZgdH+erX32Ug7ccZHF5meePn6Q1HqZUXEWri8wvLGFzKCwuLNHW0cnqyjLBiAubauJ22FAkGZsqYQoO0ukMuqkzO30Jta7xM+/9wP/3hIX/2sbu+31RBEHAtAwCgRCt8SRLC0vs27efbbt20d3fTyyWIBZN4PF4NuNc6/U6/kAQUZJZWFzatH+KRCJ87WtfY2FhgSeffLLJiWtrIxgM4vF4UBSF0dFRPv3pTxMMBrlw4QIul+s6oZhlCTgcDgqFItu3b2dwcBBFafIFx8fHaWtrY3FxkWoxh2WAyyNiF2VaQlHKWo5KPY+tqrB6aYF4S4D2mItaJsXWHdtxu534/X7KpWpTwOXzbUb3SpLEwkIzflmwYHUlhWBBuVzejPr9/+uHr++HRl8rWPkepNpsYJkNjEYdo1G/rgFvNBqImAiYGGYzCath1MnlcuuOFgEEQaJcLjcDJiQ7fq+PZCBAd8xHb2uUO267HcuCeDTG8WMvYDYsSqUKsUSCqlZiYmoMSTaJJUI0zDomDTrauxgbHUUWRAK+5joe3NJPNBbm1tvuYHDbbty+OIW8RjaTx+vxoIgS2UyGWt3ENJpOInNzc9TrdZZTKyiOAJVKhV27dmEYBi6Xi9mZGfp6e6mUy2iVKhMTE5QLZVYWU1hmA73eQBRkUukMu3fdgMfjQtdKOBx2bDYb+XweSRY2o3gBKlpzrdtVmXg8TrQ1QXt3Dw1BRTMkVnMlltJ5Tp06RWpthbb2JIoo4XG5KZZKmKaJwyZhUwRmpsdYXJ5ZjwNujnx/UmlOG9SNjbVaq9U20TfDMLDb7USj0U1nDmgmwimKsinu3BBDJZNJOjo6SCY7SCRa8fuD+P1+gsEg2WyWtbU13G4noVCAUqnAtm1bmJgcZyW1zIGb92MaFmurGaqVOtBMdC0Wi2zZMsC9995LrdYUBO7du5cH3nwfmqaxc/sOxsfH2b9/P8eOHSORSFAsFnG73TgcDnbs2MHExAR2ezMs41/+5V82Y98jkQjT09Ns376d9vZ2qtUqDoeDe++9l/vvvx+Pyw2IRMIxipUyV65cwev1cvToUZ5//nkujoxQqVTYvXsnqqrymc98hvPnz/P444/zF3/xF9x7773NEb/Xu+mCdOrUKbZv34ooihw+fHj9vUqQzWbpbO9goK8fm6Jy6OaDdLZ30JpoYXlxiUc++zlGL1xkoK8fRZJxOBz09fURDoe5//77GR0d5ZFHHmk+TmcnExMT2Gw2pqencTqd6LpOJpMhFouxb98+hoeHufHGG4lGo1hW003F5/OhqiqdnZ2cO3eOm266ie7ubh577DFisRgXLlxg//795HI5UqkUe/fupaen57VbvD9kvZoRgSyruJ0uxOZXfdPW8dpJ4o6d2/jABz5AMtnaBMFkGctsCvI3mm5RFDfXnGV+7/O4XA6+8c3HyWazYDaQRZrHeUGgq7eHqalJHHY7Ab8PWZSQJZVdQ0MkEgl8vgC33XYbn/70p2lvb6ejowOn00l7ezuNRoOxsTEURUVvGHT19iCv/zONRoO2tjYEQWB+vjnFCYVCrKysEAgEmJqaYmlpaXONLC8v093djaZp6LpOPB7fpAMJsoBWKZIr5cjnsxTzOcrFIqVSBZfbj8cTIBiOY1NV7nnjG8lkMqRSaVTFjt2h8ra3vQVvIMBbf/ptaOU8llFncX6BP/3jP8Xu8LB163ZkWaSzqwtFUVDtNiKRCENDQ1imQKy1lTfd9yAICmWtRjaTp2mKoNHf38/i4iIOhwPRUlFEB0IDaNQIeL1s274Tty9IIbNKtZgDo/5jW1evCyS6XKk/fO2OUYCmEGB9HV5rW/NqSOW1173artQ0LSwsSqUs0UScXUO7sKsimlbm8e98G08oSDzeRkeyDbNRxzJqfPeZZ+jt6GRo1y4uXx7D4/EwMjLCDbt3o6oKN964l6npOaamZqhpNTo62jFNk76+Pu6//37KlSp7broRu9OFx+tFVVUEQUCRm7tXl9+HqKpcnRgjnU3T3duNaLfRwKQlHOSbX/sWUbeGf0cLo5cLyKYDs7SMXVaxBAd6I80772snqQsUcrPobftwe70US2WqWhWP001N08hlsuRzObYMDlIqFpmavIokS4iSRDQWQ1JlAr4IqiIjydIP3TRYwvWXH6Ve+dzXHfyuERluCL82bnstkGijpm0KC19J42joNRp6HdNs+hg3RbIWlmnQWEeeNxTehm5gNAxMw8Q0TGq1OoV8iXIhy+kT32YltUBqdYXU8iqKpFAqa7S0d+B2O0l29dPV1c3KyjwIIju29BIMBImG4uwc2sNtd9xNWathd7jxRePIqhNZEqnVqtgVBw67jZmpKbxeNwG/n2J2jc/+46d4w+0HsYsmil5Etcq8dOYi00tpFhfTzOXqyILBUrpEOVdky+5dFIplXJ4g+XSKaCzG1PQMkqDjCUR54sufxWVXWFlZYfjsOdbWspTLGrl8EafHTaK1hWSyDUlS0Y0GxVIBfzDMY49/i2yxwq5dO4gFbdgcbjr6tiBazcQqCQnTqEPDwDJ0Xnrxea6MXmRsYpoXXjhBWWsG2MiCCAZ4XBLBaIBcNk0k6EXXS9RrGg0TLElu8ux8HuySiigr1OtVLARkRQHEJhB93foUeYXy9f9dvRZhKy8efVgUxXW0uUilWiUUimCzO9FqGorNht4wkFSJYCiApKooNht2pwtJseF0e/D6A/h8fgLBIHVdp67rZPNZpqYmuXhxhHyuSK2m0dPbjaJKLMzOrTsOTHH5ygQNy2JqeppaXWdicobWtnbm5hao61XuuecNbNnSh8/jZ/zKOKfPnEbTquSKeTxeN2defIFCsUggEmNwcJCW1gTTM1MEIzGy2TT3HD7M3PQUA/39SLKNltY2aoZOvCXO/PwckiyCYVDIZ6mWShi6jl21EYpEKRSKzFydoFgqMT55lXQmQywSx+lyMTiwBafLxdzsLIJsR7E5Cfh95HL5dSeSZprf8ePH+Y3f+A323jjEqdOnuenGm8ispQkFw7hdboqFAk8ffQ6vz08gGKJh1Hnh+AukVlNkchmKpSLnh88TCof46B98lN1D28jlcszOznJ1chJJlFBkmeePPk9XZzuKIrNnzxDD589x4MBBOtrbUWSFQDiMpKh4/QFK5Sr5bFPn4/E68Xn8XJ2YYsvgFkYvjJJsb2d8fJw77ridRx75HA6XiwP7D5LNFIjF43i8PtqS7RSKJVZX02QyWe5+4z2vOZ3jWnHhK6kd4jqa/6oidqBWb3D25FmisSbdrJTPIK9Tf0RRxO5y8fa3/TSf+Ov/xL59e2gIMpKkYFl1DENEFBUUVaChw3/4jx/j0KFDyJJ9/WTYPO7/1//6t/zKb/0uiXAYS3iZdmIJAhgWf/iHf8BbH3yAfTfu5QO/9EFEEYrFDAuL8yxMTzE2domhoSHq9TqFYoGJiSkEQaWju4fWljAjl6YQFTvD50YYuzKHL+htiupCYRq6jo7F6loGLJVIPE6irYWz587Q1d2LZUFN0whHIuv2uN1UqxqqQ6VcLLFrx25cNpVysYakQimXoVTMs7a2jNfj5tgLR9m2+0YU1cHa6god7S1MzYxjs7mxe1Rskkm5XMfjD+MLRZg4P0xrTxd/+ZE/4W2/+PO89NxTnDpxgi0D26lpedRQO6dPHiPiceELRTBNnXwmg8Mmc/bsOaItPXgDcXq33YTD40M3akxPTJGIxUilZtFMlf7BHeRyGSKxFmoNBVG2cWX4GKXMGj6vj7e++70/uUj0qy30H0fpur6521ZVFUVRqNVq3HLLLcRiMYLBYNMeKRwi3pLgrjfcSbVa5YXnj3HzzTejKAqxWIxUKsXc3Bznzp1jbW0Vp9NBPB5jfn4eVVUplUqcOXMGTdM2d7av/BJv8l8Ng87uXrp7+9ENq+m9ui4uXF6ZJ+oVCAUVaGhYZtNORzcMGvUqKCLVsoYr6GU+VSDg86Oq6iaa7nQ6yeVytLa24nQ6mZubY21tjXg8vjnuK5VK64KhJrr3v2O9VkjhtXZrr1y3GwryjWb5WiskyzKwLAPD0DEMHdNqbF4MU0evVzAtHU0r4/J4qNZ1Mtk8U3Pz5ItlbA47WrVMNr2KYdYJhAPceddhPG4nS4sL+Fw2jFqZo0ef5QtfeIR8Pk8i0YplCciqHa8vBIgszMxy7OjztLZ2MDk2jMcBfZ0txCNe0pkCK6s5Wvu2EEv2cHWlxMiixpImkujZjyvYTapYp3t7P5nsGh5vM+5eNwWKxTL+YIjW7h4WZ6dxOG1YhsHK0gKiKJLL5TAMA03TSLa0IlpsbkBEUaSlpYXZ6Uk6WqM88Ob7mVtYRBRF9u/fjyLbENZTSavVCrVqhcnLo8xMjnPi1GmGL1xm2/bd/Nqv/zayIqGqMoqiICsiyWSSnq5e2hJJQsEIkWAEn8uFIosEfV7a4jFsskJqeYmRMydZnJvCqOto1SogXu/U8RNQkiRt2rD5fD4m1j29Nyw6nU4nWCJYAvlcAbvNgShIyJKCKEhNJxdEZElBlhSwBCwLksl29uy5gcHBQTyepnPBhihteXmZubm5dUTYJByOMjx8gcHBQbLZLDfcMITT6SSTyXD58mU+//nPU9cqHNi/D6fTyfj4OFMTk9x///3ce++99PT08PzRFzj10hlSqTUsy8LlclEoFBBFkQsXLnDy5EmuXLmCw+EgHA6TSqWw25tNkt/vZ3W1KW5dWFjgM5/5DOfOncMb8KNpGrfeeoiQ3wfAmTNnOHPmzHqjeQfd3d3Mz88xPz9PR0cH5XKRo0ePcuutt/KJT3yC4eFhNK1OKpXim9/6BvF4nK997Wvk83l8Ph/vfc/PE/T5mZue4eKFMQ7sv5lgIMSFkYucO3cOXdcZGRnhYx/7GM8//zzHjx8nlUrxMz/zM3R2djIyMoIoipRKJXw+X5MyYrNRqZQ4d/4UJ04eYyNgZHx8nFOnTnHfA/ezY9dO8oUSzzz3LAcO3ozL42bP3htoNBrcdtttnD17FkFoWpaFw2GuXLlCS0sLqVSKp556inQ6jShCuVx8LZfvD6wf5pxgt9vZv38/VqPZH3j9IeBlpw7LFDBN2Lt3L4888gUsQ8dut69rXRpgGWBayIrII498gV27doBgNi/rJYkKra2t6wLGa0SLNAiFIgiiSiAQ4KN/+DGgKUhUFBs2mwOv10s8Hmd2dpb5+XnOnDmDLMt8+zvP8/zRF5i6OgNCgwsXxzh8z914PTKVYvO8LooydpuTRKKNRLyVixcvUSqVOHvmPLt372ZtbY1SqYTN1gydkSQJh6Npw+d0uujp6SEWDyOKFqpNJr2WxzRf7tO+/t8fo7e3h+mrVykWmjaJJiLRSJz29nYUUcHp8oNs49lnj1LM5cnn85ilKv/xP/0/9CTa+Kd/+ie2bhvE6/VSbxjIeoNP/d3fAs2erTnZlZiemkOUVMKRBNF4nHAsSijaRrJ3OzXLQrU7+dl3vJ1LF0c4ceosimpjcmIKVW3y/i3DRFGdjE/N/Yir6+V6XbhzbDSTr0SOX/k3Gz+/320bY/Pvd19RFDfH641GY9MjWZElynnI5/PUEVlNZ/C6vHT2dFOplJifn0evW7S1tBLyB3j88cc5dOgQQ0NDjJwfRlEU0uk0Bw8doFgskkqlOHjwIEePHkWSJDo7O5mcnCQYi9K/ddt1jgKyLGMYBvF4HMMwuLiSIh6PU6vVyOZz+P1+REUmqxW5bWsUfVecLz5+hcpyFQFbk7doq4NQx92QqdsVVo04PpcbTdcwTZN6vc74+Dhbtmwhk8kgyzKyLOP1evF4PFSrVSqVCl1dXdhstqb6V1VQJdt1Ao3Xol7tuV/tM36tagOp2Gj+Nq4DMAxzc92ZponAy+M/03yZNy0IAobVHAduINOSYGHpGotzE1RKJWRBIhiOo+kNpmZn2b13D36vg1DAjU4DRbJTcXloa0/SGgmjVyvEooMkewY4f/48Wl3n2IkT7Ni5GwuTQMCPV1EopRfo7W0hGvPQvu0+6rkMV65O8eLwKGdGrrJl2yDv/Pl30xNq44njHyPekSRcc3Dy5EnmL5oMj0+z708fpqW/G8tQSZfKtHR2oqsqgYsAACAASURBVKgypcUFhl86g8fVnL5ks1nK+QyhUIjV1TT5fJ77j9zL/MIsiwtz9PZ2I9mc1Go1NE1DMWoc2reHL37jWVShKegZG7vCzXf0YOoN9FqNXGaZhlZhdvIyp06/SCZfIlfQ+Zu//wwbuk0EC91ooMgQCvpojbYgtcq4PF52795DpVJBdboIBCOIgkU6lebq5CTxtgZjIyuUilV27NyDJKvYVHlTu/E/50e/vqtcLqOqKup6GppFM5hpQ2wlyzLVapWFhSUECyKRCJlsEUG08Hq9L3ueW03qh+pwQr2O2dBpNExKpRJVWcPptFMtlHDJKpIk4fV6OXDgAAuLizz5nWdobW0l2dbB6IWLmKZJb3cXgYCLbVv66O1upyUeZnF+haXcAp093fz8u9/N7NTlJjrc0sqlsQlkWWZoaIhUKkV3dzfLi/OcO3cOVRYIh8Ns27GbfLFAqaIxMnwRr8eP0bBwOBw8//zzREMhJEna9Iuenp5uhrR4fMzOTJOIxSmVKhw4cIC21hYymQwXL42SL5XweB3roVl5QmEvLpeLfD7Pu971Lj7+8Y/z9FPPcdttt5HNpvmHv/vHTfBmdHSUkeEL7N27lytjl/AHI+zYMcS5cxd46KFf5q8+/md4PB7C4TCZTIaR4Ys8+OCDpNNpNE1DVVXe/OY34/F4aG1tpVKp8OyzzyJJElfGm1PTaDTKmTNn2LlzJzabjYGBAcbGr9Db20ss0UJ3b4paw6CYbVLFqtUqTz75JPF4nIGBAUzB4iuPfome7j6eeeYZlpeXN5MdXW4HDqft33zd/muO/d+DTHM9ePXKx9N1HaOu84sPvZ+vfOUrLGY1lGvQa9MESYBbb7mN//yJv25SapxuCoUchl6hrpXxeJKIosLU1XlUVUZYb6BNQwJERFGiVqsi1KqojibQJUkCgihTrhQIBaMIgsT4lQns9iaIlmzrYm56CmgKzW+++Wbm5+dxexzE4y0UCgX27LkJmwx25wQPvHknl0fOc2D/HmRZJBKJsLC4hNfrp1yokl7L4PW6+e53nyYejzO0ZwehUAhNq5PNZllNrxEIBMhk1jMJ8hVcMQeyLCLQIOQPYXP6MOpFKuUCpmly8/59lIt5bth3B8gKX//v3+TgoX38y6MX+MB7foELF16iWDMJBiI8+MAOFpdWCHUm8Ua8/MPf/mfm5hf5/X/3e6RXFjl69Fn6tvdhlUtUswUMs46MAywRywCPx8eOob0kEgnyuTXy+TTBWBLF4SZXbdAzMEApt8qv/8qvMnx1maefeIwHHniQ0UsXSLR2YLPa8ARjRFrWfmzr8XWDRL9SDPi/qjYs3TY4fYZh4Pf76e7uprOzE6/Xy+nTp/nWt77F7t27icViVCoVpqen6e/vZ2ZmhsXFxU1ru0gkshlQ0tPTw8jICB0dHXR0dCAIAnv37qVcLqMoyqu+JofDscmJrtfr7N69exOJqRsm3Uk3MdXkPb9y+LptT8Ns0NXfRms0hGj34I0NUKtqLC0tIYpNTqHb7d40dXe5XOi6ztLSElevXt000d+wTdpo4F6v9YPGca9lvfI1varF3TVCFVkUkUWQBAsRE8swMHQdyzAQLIu5mVkaeg1VkZibmWHP7t20tMY5fPin+PDv/g7j4+NkM2uspVPUajrZdb50b38fs/Nz6EadpaUFlhfm2blzJ0bDZHFxmXK5CqJKw5IpVHRE1UbNMNBqFbKpDKrDQ/+WXfzNZ77Ib//2b3PfA2/BZvciO/3EgjA3M4esODCqWd791vt519veRiSaJL20CkAg1AwMSKdW6GhL4rLbcLudzC+sUGtY1Go6Xq+XQCCAw+Hgqae/w8WLI4TDQTRNY25uDl3XqdVq3HPPPc3UOaF5Atu1axeDg4ObyH42m8Vs1FhenGX4/FlkSaVW07E5HZgW1PQ6pmE1UVNJRlVlirksFa3JfW1JttEwDdrb2+nu7cXhdlHRqszMzzAwMNAMPvJ6MHWNdGYFo9Hk0W0kov7vXsVikUqlssl/BDZFsYZhYZqgqnY6O7vp7u5FUWwUCqXNaRasTw+aOYXNeGGaG8NyuYwsy7jdbizLYvjsOb75xDfw+Xz4/X4KhQJLS0s8+OCDxONxIpEI0XCYaDjM7p3bGejt4VP/+A988xtPUC4V8XrdyIrI6vIKIyMjNGo1/H4/x54/jmq309ndzbnhYQa2bCGRSFCpVMhkMly9ehVZlllcXGR0dBRJUmhtTeL3B2k0TLxeL4cPH8br9eLz+ejr62s2F0NDON1eEokEHck21tLNkJ+xsTF8Ph+1Wo2BgQFcLieJRFOQbbMpZDIZvF4viqJw8OBBisUiQ0NNQV4wGOSlM2f45V/+ZQzD4L777uMtb32QYqlALB7l0KGbWVycB0w+97nPrIu8mxMBVVWRZZUnnniCYrGIoijs3LmT+fl5kskk09OzjI9Pomn1zSmNw+Hglltu4e677yaTyWyGb62urqJpGpWKxtraGtFoFFmWee655zYF8ZIkEQwGcTgcrK2lePSrX94MbwmFQptc6p+0uuWWW3jPz/0s+noa6nVlNSeOH/rQh2gYze+LJYBh6JTLxc1JoyLbmmCZaFGpVNbvbCKKwnpUe7aZGKyqmGYTbDl//iyy3ARROjo6NsEVj8eHIDT/djNJUxSZmZni5MmTbNk6yNjYBU68cJyhoRtYXlgkvZraXB+CICCpNtxePysrKyBY2Owq0UisGZq0liWdTrO0tITNZiMajQKQTqcpl8uUK8X1/kYkEAihKAqK2tSibGwGV1dXcTmczM7O4nI4aGlrRZZVbr/zLsYnriLKErl0mppWwOVycPLUS9hdTj760Y/Q1Z7kxVMvIcvyZuCMptWJxGMcuvUg8DISbbMpyLJITdf57CNfQCuXcagidrsTwYSZmZlNbReizE037SccjZPJFZoiWpcDpzeAw+PjG48//mNbM6+Ls4FhGN+Xx7xR147Mf1C92n2vrebuT2oKA6wmEpFOp6mtu2qIosjAlkHe8Y53cHb4PLWqxuLCAvFIFFVVN1Xf09PTPProo3z961/nK1/5EqnUMsePH9tMBuzu7mbbtm3YbDYkSbrmy9Ssa5F3v99PIBwhFI3R1du37uXZFCl4IjHscpadbjvRbfCrH3sbltUcbbiTCfbfchMtATe/99E/py4nyafXaGlpIZ/PUywWsSyLtbW1ZjRso4Esy7S1tRGJRNA0jWq1unlS0zTtB/ocv9b1emyiX8nB2zjxvdIm6ZUCw++9v9WkdZgNDEMnEoxRKVbIZfL43S5Gz5+hLR6ht7Odx7/1JIgiE+NjhAIB3C4/hmGQzacJJdrZe+AWOnq72XvgRi6NjnLu3DnuOXIvv/lbv8WWbbuwOzzkyzX84Xbaeg+yd9+9NDQVryxSWprjwsnjfOov/wq7s6nKzuWrFOsKozNL/M3H/4jHv/sCX3vsRap5nZOnTqMkIgR8bZh1C0mV8HoceF12VlcWeOHZp7k8MYni8TO072YWllbJZrOb6Vz5TJahnbtQRIlqpYLX620i1uUyTz39LPc/+NNgmDhtEnOzC+TzBSyrGV2PJXJp9Bxnz7zE+MRVpuYWyeZzLC8sUtE1akYDvS5QLjUoVsrNxLmWKOFoHNntxheNkuztRXF6yRY07B4/oXgrDSxSuQyDW3bR0zNAwK+yujxFJrvUbDjr9Z8IWoeu66RSKZaWllhYWGB2dpbl5WUWFhaYn59namqKyclJ1tbWqNV19IaBx+sj0dJGuaIhKzYahsWl0ctMTkwhIKEqdhx2Fx63D6fDvSnGNhoNtgwMMj8/z+XLl9djrCNcuXKFwcFBJEnife/9AL/+6x8iEPQiSgL33nsPb3zj3fh8Hgrr9ofZXJqb9u7h0MEDCILA7Xe+gY6ODrq6umhpaWFpaYl8Pk8gEKBWq3H77bczNzdHqVQiHA5vunT4/c2mIpPJUK/X6erqolgsksvlcDgcXLlyhdbWJCsrKzz1ne9gU5re5OF114u3v/3tTRGTBPV6jVqtSiKRYHFxkbvvvpvp6Wksy2J2dpaXTr1AX18fl0av8O1vfpNKpUIg0BTcSoKI2TBQZYWZ2Qkq1Tx2h8SNN+3mQx/6EHfddReCILB7927e9973c+jQIbq6O5idnWV0dJRoNMrIyAgOl5M9e2/g7e98B7v3DCFio1ysI1gqXV1dRCJN+1JRFOkb6Ee1OZibX+aeNx3h/PAFWlqTHLj5EJFIhPHxcc6ePcu3v/1tnn76aWKxGLquEw6HWVpa4rHHHltPcKwQjYZf41X8o9e1Kb0PPfQQd91+Kw7ZekXv0Py9VtPJ5/N85CMfaU4MFRt6o0apnAOak+ZKpUahUGLbQN/1SL1gIkkKTz91dPM5JVHB7QoyPX2VrdsGKBSK3HffA1TKWjPUyJLo79vKzOw0O3fu3FzLiUSChx56Pw6Hg0QihM1m4+LwRUqlCpFwnMxahtELF5vx8aEg2WIRSbao1cs4XTLJZJJioUQqlcIwDGq1GmtraySTSZaWlggEAng8HizqZHMZeroHcdi9yJJKoZgmk1mjVqtx7tw5ujs7ARPL0Pn85z5LZ2fnelicxaOPP46JgWUUcUt1Ll44xb1H7uHs6XOEDYX9R+7k5972DpaXF9cbcxkEiXPjo3zkT/4QWRaxLANVtdMwquRLWRqmzn0P3ocsmDSqOUTDwgnMzswwNjaKjorN6UNEQJIdzC4sNQFFp52O/u2Eom10tbX+2NbP60JYWCiVH1bVpi3bK7mlP1Bk9irXfb9ma6Nx0cp5DL2BaRrUahpzM9PE43E8Xj+1msbKWgqPzcHS/CLZtSzRaBS7LJDOZ1hbWkGxObly/iTnho8yM5NBM2rMz6U4NzzM4VtvYzm9itOpIMkyJgK+UBCtViMaj+J0uq6jSVxLQRFFmbXlRYr5PDanExGJYiHP8MVVfv1WjfDWPqyCjqRmSNmcLCxU+OW33ESvlOKn3nQ3n/znceJ92zm4dy+ZbAZREOnq6ubkiRO0t7ejqiojIyMMDAzgcDjQNI1cLrd5YPX6PDi9fpBEnA4Xoiht5ET+SHqp/6V1nZ5LQJVfA2Fho/6wRTM4xcTCMq/xh0bANBpYltEUvwGWtU7loBlq2Ewu3JCeCFiGjmWaaDUNQ69iCSap5VlEUSCTz2AJDvoHduJwu8iurmG3e/CEfIhI+HwBHC4/oVCcSlljYmKabVuGmJ6cQFIs0tk1kj191Gs6lUqRRr2MIjSQBBO3R6SiV3H4/LhCUfq3bcftCdPVv42pqRnaWtvRKk0bpEe//BU++O4HaR/cyeEH34EtlKDRqNGwTGRLpJAvoFUrWKaOodc48eIpbFhMT1zGabcRToQJBYPU6homAkvLOVbXstz+hkM4bTYKxQI2uwN3qIV/99E/Jp5IUikV6Ui4SLQm8QRCYBnUSgVyqUWuTk3Rv3OIuiEwPb1EtaaDJGIaJrIkodpU6gY0dMil13CrAm6Hk2AghKo6EWSFUCiILCrYVDvtrTFsioxNETD0KppWQq9VqVVMnN4AhgmSKiMJZjPiDOtHv4jSv/naHbt45uFAMIDH6yEUDuF1e/B6vLhdbux2AVWVcDltgEFVqyAIItVKldXVFdLpNBcvXkTXdSKRYDPhNbPGxMQ4NrUZ3gKwlk3h9XoIRII0BAOr3iCTbibBFktFVtM5WhMxujraGB45SzwWJbuaZnZqmqDfQyIWo5DLYiEwOnYRo1Fn60Af1UIGuysEgo2abnHs2DFcdgd+n5eTL51mNZXC5XQiyhJt7e2cHx5BVu2Mj18BLPL5Ig6HE0EyyaxmmZtfpKuvi1gkwvLiMqVyncVUCkGS6RvcQjqbw25X8Ho95AsFnvjGE5w/f55yocSRN70JAYFLo5fZMrCdp595huXlJXbt2sXCwgKrqzm2bduCJAsk29vp6Oygo7OTf/zUp9iyZQvLK8vkC3nak+0YDZOXTp7EblcYHhlhYmIcl89PsqODoaFdrKXT1OoNtvR2szg/x9bBAYJ+H6YgMjk5SWg9JEw3dFS7ysDgAM88d5TW9nb0hkBLazvTV6dYXFxEkUUwQVUUJicmEAWRTC6Lzx/g5KlTXBq7TMgf4OrEJNFwmJZEjHgsQm9PFxdGzpPLZllZXuZN973l31ZYODX/A4WFG1qUa3uAaxMLN+o6oGhdEK+bAlt37saol6hZMi7RhgiYYjM52WjUqOlVjtz3AMdfPEZnRyelQhaDBqFQG6IEomghyzK/+VsfZutgP7/0wV9DkhS+/N/+nje/5Z08/cx30I0KoUCCjs4kq6ll2lqSPP3d7zA6eokb9+1FEJrJg4qqIkoCS7MT5LIFMpk13G4HLxw7ztnT51lbzbCyssze/TdQLWZRRCiWNQYGt5Jsa6NWrzMzO40kyhimhaoq2BQFh8tOoZjD43VTqWpYmMTiMZZWUrjcbpLtnRimSFeyDZfLhsvpxe7wUtU0ipkcDRGcioRgSrgDQQqlMv2Dg2zfuhV3KEw2XURvaPzc+z/I2NlT+Bx2ypqOWzXwBiNMXJzmA7/za/zFR/6IP/mzP+bypdEmAh2Lodid/O7H/j33P/AWivksiuxAb9QoZtcIRxI4XQH0cpWO7gHEdbG34Lbz2KOP8tY33o3LG8Thi/Bf/uHv2NEZZHkxw51HfopSqc6Xv/oE73nPe3jpzAv87Ht+PMLC1wUnGriusfzXoI3XNqCvfIxXq2stazY4rC6Xi3K5jN3to1gssnPnTvKpNQy9sSk4QdfIF/JEIiFOHvsumflxLNlJQbJDow5uL9RyfPIfP8W//8hH8PhDJJKt62EEtU2Dc8MwNhMLX/laN8j89XqdhmVSqVWo1xq49Dx//m14KPUFdg8e5Ib2diJ3Bpjq8bKt/yr9iW0Uli8xdOAN3Lx3B0v5HPlsloWFBS5cuMAdd9zByMgIlmWRTCZZXFzEbrdTrVYJh8PMzc2RTCZxuR0IgNPpxDRNZPl1szS+b32/z/+1eh3XCjItS8A0mwfxV1JjNkZ08LKJ/7WR4Rv30XWdfDbDxMQFzp19CY9DoSOZwOmyMzszj89lo609ibd/gNauTrwON0FvhJopo+k1UOyo3gB924awKPDWd72N4yfG8JoO5idHKeTLWAh4vEFWUnmC/S2kVmewCQLL0xNcHLvCSydO8f5f+RD1hWV27tpNPl/EFw7RLjSFh1/89pPc99734enupKTVyCwtEY9HqVYqLM/PsrAwh9PhQDNFgtEYs1fHObDvJq6MXcTt9qKVK/T09HDp0iUaukAiEePEiRMEA2EsUcLukPj8I5/mxj1bWFzVCLqd7Nt/c9PSyagjYqLVithsDgRT5uh3v82O3bsIuFVcqgiyhKbV8Xh8LCws4BAkBGD7YB+79u7F7wuSyWSxhOb7YFkWjUYdUZRRHT58QYFqXcfrDSMpDqRKkXDUS7WYBY8fCS+maSCsW1T9UPzo607er+0O1WazbaZAYr58XFIVJ4psbfL5tVoFRZZw2OzEoqGmQ0ChgKIoLK8sMjc31xz/lsuUS1Xa29splUp4/QH0OpRLVTKZPKvzCxQKBRYXF5FtNkSxSbUQMDe5xLOzs5imhWEIXL48SanU5P9u6e/H7XZz8cIw3V0dpDM5amaOfL7MDTfc0EwLFGQOHDjAqZMvbqKqLpeLaDROwzQ5ePAWTNPi/LkRtm3bxqnTx6mWy1iGxcT4FPn0Kv39AxSrGkhNf31Mi1i0GU9+0003USqVqNVqFItFTp0a5ejRo9htDtrb26hWq8RikU2qYCQSIRjyceLECVoSrZw9e5Z6vc7TTz+9KeCDJrXmypUrOJ1OhoaG2LlrOy6nB61ew+0N0NPTwyf/+hOsrKzgcrl4//vfT1ffICdPnmRwcJCRl07S0tLC2bNn2b59O4cPH+b8+fNMTU3R0dFOqVBkoL+XTDqHTZZw2Zspe8889R1WV1epVCqbNI/3ve99dHd0Eo9EqVRKlEqlzeTCQ4cOYRgGN954I0ePHmVhYeG1XL7/6rp2AviDzhuSJGGZBu98x7v57Je+inWNMBBePm5blsWRI0dYWlpBFFTcLj/5fBGP13GdOP/MuRGafOYKNV0nGArz4Q//Dn/+F3/GXXfex8jISNM+ThAYGxtjamaOl069RKlUWrfRU2g0LFpa2zl+/DitbUm+/JWvc+T+e1BkGyMjI7zxnjdx/NjzbNs6iNfr5qmnnqK1LcaXv/BF7rr7TuxOD6FwnLErl/B7faRWFpiZmaGtrY35+Xn27b+ZhYUFVFWl0SgSjyXIrqUpFot4Pa3YHR6OnzjJ4TcdIb84gz/ooarD//37H+WPHv59QokElWqdUg1CLVHC8Ril/BV8Ph+F/BpdfYOEwhHOnjpBrKcNFA8FTaOjvQuX08mTTz6JZVnYZBnLbGA2TIRcjcpKHllUqVXrVCpllpaWsLv8qI4m8Dc7dxW7TaGhaayNj6CYFaYmLvH4t2a46eAd/MaHfpWvPfJfuOHGvbQnuyjmdN797ndx9sxpJianf2xr63WBRBdL1Yc3rN+utbL7QU3x/6yJejVholYpgWlSq2lgWWiVEsVikbmFJfyBAKVyGYeiIksyI8PD7Ny1i+WFebweD0888XWWr44RC7q5mqtSt8fZfvttRPp3YCkiCsuce+ZZqhWNbbtuxB/wYnc4mqM0ux2n04WiKNdtFF7+cgtUSk1eVSabpSUeZ3V5hfTCAv/8/DQ/d98NdLZ3s7aUI9HdSjQqsiVxG0lF4g/+aphI/2462xNITgeXRy9uelbPzsyQTCbp7OxE07RNusEGV7qjowNVVZt2T5INl9ON0+W+/j18vSLR19Vrg0Rbhv7wRgNsmiaCdS2v1FhHok2wTCyzedum4vv7bKYaeq25kdJ1SqU1spk1crkshmkQj0WYnpxGFAxMy8Tu85PO5RAt0A0R2W5HEEUM00CRFFweN0vTkzz5xOMcOfxTTI5fQhB07IqCIEmUyhW8vjDT03P079qBVirQ2t1De0cXQ3tvxOMPEk+0IEgKF0dHmRq7hMNm59tPPkmxXOY3P/w7WIKILEqIZg1FkVlbzZDPrvH0U9/hu089zbYdOxGBYCCAy+Xi4MGbGRsdRZGlzSlIKpVmfn6OgcEeWlva0BtGU6xmGpwZHqFS0jF1jVtuuZFgNIHL6cFsGFy+NMx3n/wmNrW5SVVEAZfLQTgYYHBLP71dHRRzaaLRAJVyCZ/bxRtuP0RLWxKb3U4wGMRmt1MoFlBUGWvdjkpR7djtDhxOF4Zhrk8SmtOrclVHliU8Pj/Surjwh26ir62N+70GSPS508cfVhQFSZKa61JoouKiKCCKMpIkY5oWjYaOYTYQ1lH3bDa7KRCsVCoEgk06kcfjIZlMUi5XmJmZYXl5GVm28czTz3DLoVvIZDNMT12lUtWwO9wgirQl2zGNBjt3bGctnSYcClFdD5rS6zrJZDtXLl+ht6+X6elp/H4/0WiEpYUlpmaX0BoGW7Zu48SJE9hsKvOzs6QzGRLxGPlclr6+fvL5AggCe2/cx8zMbJPu4Q9z8eIoHp+bG4aGqOt1SqUisUiYXC6PrKqUKlUy2QyKIjd9pp0OtGqVUDBAQ9dp6HXakzFkSSKbz1EulZtOR406Ho9nk2N655238eUvP0qjYVAulbnrrjsZGBjgyJEjdHV2oes6iUSChYUFLMvi0KGDWJZJW1uSqatXmZyapl6v47Ap7Nt3EwMD/Swtp5idneOWW24lkWhBXn+NiqJgGAajo6MIgkAoFMK0LKrVKpOTV1leWaIlESOVWuG5556lr6+Pe+99E42GTjweY2hoN+fPn6NcLtHZ2cHY2BilUmmTfrK8vMz27ds5e/YspVKFdDrDL7z/l15XFncbv19nRnBNYuEPEqcLgoDDbkcADh46SL2ub9q2Cgjoeg3TMnC5PKyurmKzqVRKJRAldN3C6bRvHt/r9abnusfroVrTeOxLj/COd/8C9Vqdffv3YZkWhtEErGyqwle+/EVuvGk/A4MD3HXHHbzz7e9Akh3YVZXpqcsU8jkmJyewqRKXx68yPTODw+liduoqHV2dqJJCuVKmp7eLickJujq60LQaHl+Y5ZUU2VyOcqlENpOhq6sX07Roa02SyebIZLKEQmFqWp1isUgmkyYYDBAIBsjnCuRyBbbv2MnkxBg+rw9BUgmFg3T29GJzubG73CRaO3E4XHzhS1+is6ODulbH5XSQzaXxR9ppGA0i8VZCsVb27T3APQ8cIeb1c+sdt1MtFSmX8vgCflwuH8lEJ4N9/RTLBSQRJEFidWWJYDiGaQmYRp1Go4ZlWVSrFerFIk8/8x229nTTt20H1VoDw2iQzywTS3Ty3Wefp69nC6IikM2mGZ8c54Mf/OWfHCR6Y/wC3+u0Adcv9h/k0vGDauNvJUlCv+YxvF4vsizjCdQplkvI6wT+kfPDOJ1OTp8+jSqYLM3McfnCJHffGCMvWAQSLazMNvjcf/tntg3uBK3EPb94L8bnH6OydIp6rUqlJlMvFjFME9nWtL3bsFXa+B+vRTIlScLpdBKPx5FFiXq9QcSv8n/86Vd5XJhDvvB76JUGu3o7aPPGyZvzHPm//pme/T/H7ht2IioSc9MT7Nmzh1wuRy6XQxRFTp8+zZYtWwiHw1y9enUzNVHTmiLEeDzejKI2raZK2TA2d9OCIGDx2iO+369eTW39b13Xuq4gsPneybKM0WgG6ximyQb1bkOAsoFWXXsdQLVaJbWyRKWS4/ix54iE43i9HlKpFIMDfZTLBVTFjoyCw+0mUyiT9EcQMSiXioRCIcqNOpKiYlO97Ny+i1PHv0ExnUZW+th11y4mZ9cQTAGn14co2agVNeqKkxdOncMbCjQ5y6LCWq6ISZnWZDvPPfMsidZuzIbB//mrv0m9UsWl2hFFC4/HgyiuBxU4Xbztp9+BH87eQwAAIABJREFUvN6cjZxbQhQbLC3PU8xnUGQn2ewK5XJ5U0gYDAYJBAKk02kaFsiKgMsfIRxLMr+Qxq2KtHd2oag2Go0G5UKeerVOuVhgbSVFS7KdXbt20N7RRb2hI4sSdrsdm2wQiYSJJ7tQFBv9/QPYXT50Xaei1TH0GuFwEFmWmZtthg7Y7XYaDXPzc8llV6nVqgQCIa5OTeD0BglHWxFVG6JN/dEWz8aieA2cJR0OBzabbX1j37TqsizQ6wZ63aBeb1KQmj67Fg2zSqPRoF6ro9c1Cvlss7lzxkgkEoyPj29yoNva2ojFYpiWSF9vD8eOHUNRJdKZLC0tbRgNkbGzZ9ENi8M/dReBQIDRS5eo1+ubSX8rqWXOnD1NW1sbWrWMgEm1UkKvayDJxNva6OzdwpkzZ9i6fQfFfI5YSwtg0Wg0iMVinDs3jNvtxu1xMz4+Qanc5H5apoiiOnA4vbzw4kvEYmGcTjcXL47Q39/HWi5HZu1/sPfmUZJd9Z3n5+3vxR4ZW0buS2VlZu2VpSrtG9oACbEKbMDYNAYM9tjd7nM84+n2HPW4e7rbY+yhxzYejMFgG5txAwIDkhBoX6ukqlKVSrVXZlbuW+zx4sVb54+XmVUqwPbxYEkezz0nTmVGRmXGcu+7v/v9fZcynfkc6WSCkZERymsr+K5NeW2FkeFBuosFyuUy33nwe+TynczOznPjDTfRalscPHiQq666ildffZV6o8K2bdu46667uHDhAvfc8y4OHJjg/PnzTOwJHUWKxSI9PT1MTk7y0EMPsXV0C088+iT1ep3/+ru/x9TUFO1GhVdPHEfTNFLpDHNzC/zN//01zp07g6ob3HTTTZw6dYpbb70Vy7Ko1WqcO3eOSESnq6uLttkkCALOnz3D/Pw8v/SJj/OFL3yRmYvTrK2t8bGPfYw//uM/xrKsUGD/4iG2bt3K7bffzmc/+1my2SzRaJRHHnmEVCpFqVShr6/vdZ+3G6FU4d4pvqYo3nA4urKjHfBa96TLv76ylmi12rzvvR/gnW9/K3/+N/89tHi87G9v2MceOXKEP/mTz/P7v/tfMC2XTDaJLMub3UVBEJFEmd/8zd/gj//k81RrdSKxBK2mCYKCpsv4vrG+34avQ4noHDx4kHwux003XM8TzxwiCAKmZy6SLeRZXi2hRxLEGg1K5VUIHE6dnUGQFbYODXDw4PMc2L+XjnSGU6dOceMNt9K0XOLxJFNTU8zPzfKOu99OvWniOHUWFpbIZHPksnnWVkt4jks0GkVVZPp6u1irVdAjSdIZiWy2B0U3EKUI6Y4UN9/+VjqLvZw6eZyJiauQtRiCIHH33Xdz4vgRch2dzM3P8MQTT/Gr//ZW8pkUFauNLEhkumM88K3v8tg3vk4ggKZISCJUSss06m1uuf16phcmaVZLVGur6HqETCaL3XZRowrV6hqaFkU1YpjVJtlcJ4m4RjoVAVmBtkN3IYff3oWidvDAA99kqGcLeiqse/btu+6nNh/fFMLCn8R//kmP/ccKyzaKnY2ksw1C/QZymM/nqVarTE5O0tXVRaFQWPdKjFBZK1FMiaTjEXxVJ5pK4DeqbB/sJ+K2wWoTJCN88iNXo/sNfM9GlmUymQyCIFzylPwJBd8GvcQ0TdrtEPlpWw5RzaCjOYeuJPit/zbDhUqOF559jjNzF/iVf/8DRnd/gttvuY1YXKXZtolqMmfOnEFRFEzTxPd9rr76ahzHYXJyklQqtd62cYlEIoyOjmJZFvVqDc92UGXlDS9K/zmNK/n7V1orXY46b9CINm6XCw43bPKq1SqO49DVWeTFg8/ygQ/cxy233EIymWT3zl2srKzQWeyjI9NJoVAkk0ixZ+8+yuU1SqVlEtEIldIahqbiOS5GJoWWTuMJCdpunHQ6zUtHj4Ako0diKKqEHo1w4uSrWI0W3YUuMtEUge0jKeomshUIEqNj27Bcl6EtI8RiMfREBNGQ8SR3E0Xr6OhAj8RQdYNEIsaTjz6C1ajit9vIQUA6neSaa64hGo3SbrfJ5XI4jsPOnTsRBAHLsohGo9i2zdGXX+HlEydx/YBMNoskKpvvVzIeJZlI0W6ZbB0dYe/eveTznSRSSaKJKIIgYLYa7Ny5gx07t9HX28327dvxAom249JYLyh836dSqdBut9cjj21WV5Zo1MtYrTovvfg8zz77NLbTxlANVEWiXq3QaDRwHZ/A9/9+geGPEyG+CYSJGzSOjS6K53m0Wq1QPOm2CfAQJZAVEd+DdrtN27ZCZN53N2/nz59namqK7u5uMpkM3d3dCILAyZMnaZoNGo0aw1sG6ezMc80111EqVTh8+CjFYpHrr7+eI0eOMDc3x/bt2zcT1GZmLqKqMnv37mZoaIB0MsXO7TsY6OtH0zSalkWt0eS7D36P1dU1zp07R6VWR1l3DJAkiXa7jaZpZLNZWq0Wk5OT6EYUWdGIJxM0mi0mL0xz+swZXnrpCI26SbvdZmpqimg0SjabZXJyctNto1wuUyqVOHPmDN/97nc5ePAgPT093HbbbRw4cIDt27dz7NgxJEnCdV2OHTuGKIocOngY13X56lf/gsnJSb7+9a9x3333ce+99yKKIpZlbba0P/zhD/OhD32IoaEhmvU6ExMTfPlLf8ahQ4c4evTopsPGhfNn8b02basBgceFCxfI5/O4rssLL7xAJBKhUCiQSCQwNJ12y0IIIJ/NkctnCPD4y6/+Odu3j9Nshu4nf/RHf8Du3bsZGBjAcRwGBwcxTZPf+73f46abbmJ6OkzxTKfTrK6uks3mkaSf7Dr1TzUuv4ZeTtGES17zVxbGG9eNjf/zdw8REOnuLoY6l+C1N0EQ0DSNHTt28O/+/W/y8MMP4ro2qiq/5ndv/K3PfOYzvPVtd5JMJjEMA0EKrWYff/zxzcc4jkMmk9k8BJw+eYqP/+Iv0tWZx/NtjJiBoslIiszTz75Is15FEnzOn51G1URmZ2d58qmnGRkZxfchFkuQ7yzQbJm4DiRSHWiaRrFYZHJykrNnz2IYBnv27OHChQtYlkUmk+GJJ54in88TjUaRFRFRkjCiEU6eOoUejRGNJag329i2FSbC+gGjI2P8wX/7LLIgIggBv/zLv8zi4iKKolIul/n4xz9GxDAo5PIkkmk+8YlPhLaiqsYPfvADXNel0WhgaApty6RWLzG/tkjbt7DbJuXSCsuLc4iCTKUSpiXKskwykSEWTyFJGulcF4IU7r1bt27l1IlXWV5cAEEhGk/xta99lUcf/SFDAwNEojru3zsH/uHjTUHnsNru/RsX8yuFd8KVgWAbWrfLbhCE94nCa77fEJzBhhWTj1kzcb02brMJno/jeLj+uj2T5+M5LrFEHESB0+dOE48b6FqaVCJBPKixfyJLpDPJtx89jhvEyWQT1BemAYnu9+7gk9vSXLMjwt2f+hzvvPM2jHiCZtMkmy2iqFroKoCAJMmbL2ZjLw0EEc2IIAsC7ZbN0uIC1XoVvbFKdyrCwN4bcVP7qGn7eXk6xY3v/BmuunqCiB6lWreYPj/JwuIibc+nVqti6BoLM/P4nk82k6FRb+CLgCAQiUVJxuI0G01apokYBKjRBEY8Tnwdnb9UIP4zKKoF3hA6B753fxCw3uoOkWg/vAPPD/A9HwGw2zZiIIa0AM/B91w81wmTDAlom2FoiKbJ6LpGs10jl8nTWcgzN30BRAlPEtmzcxsHn32cTDpNX98Ajz72Q4o9Bey2BYKKFDggSHhWE7fVIHBsctkcDbNBb18vqa4+xrYdoLy2iqFKCEiIgk8gCsiiSLVWR9Uj5LKd/PDhH+LbNvNTk0yfOYlsOdjlCpIsMzC2jXyxC2k9oDyeTCLHUlw4e5p8oZOOTMgLPfzii8QiMktzU0hiwMDwVl45fjT8vHSVuYtz5HMdLCyE3Mqm1UJSJAKpzRPPn8RsudiNJtfv38PNt92KKCnUKquszM/w/b/9Jj/7wfexZXyM/vFxcl29dKQLEAjEEimW19Zw2i0kWSTVOQSCQKNaQhQkZqemKa+tMnPxIpW1EhfPn+X7j3yf2bkFAiHgwYce5Nz0FGfOn2N5cZVILMahl17gwN6rSEVVTp06TdP3iSXiqIocfv7BFSLcf0iRvIGEScrrPndPHn/h/sB3cZ02jmPjOS6e6yEKAgQBvufhOi71Wh2r3Qwjwv0A33XwPY9mo0FzPTLd91wa9RptywIBkqkE3d1dRHUNCO2wTLPF+bMXWFhaodpoUbPaPP/SS0xPz9DV04cqqxRyeTRVxnHbRHWDLcPDmM0mS8sLjG3bxmqpzGc/+38yNrKdtigztm0HpbUKMdXAajSIJAzKpTKyolJrmLi+j2XbICpIssLs7AKWFfKZ19ZWuTg3x8iWURRNxrdb5Aud+I7DQF8vszOzRA0D33Vo1Kr09vQgAMXOTgaHBsP4eUmiI5WmVlkjX8jTPzDI2bNnqFVrtEwTTdUxzTqiICAKEi2zxQvPv4CqSDz33FMcOniIVCrN3j0TVGtlbKfFgw8+xKFDh4nH42zZsoVoxEASBYo9RfoH+snl8ywul+jq7iWdyXLTLbcSi8VwXXfTxrTVbLC6sgKBD374t48fP8bs7Ay2bZFOpfE9H11TSaeSeJ5LIZ9DlmXW1lbRNJV7730HpZU1OtJpDr/0EoNbt5DL55mZm6dcqdJuO8wvLPCpX/m1153OcckFSUIQxEvXX16bNwEb3VRhU8Tte2HX73Lu8msKZQJ8IeDtb38Xotek3mqhyDoCfji/AwFFiaAoCo5l8zv/5T9jNltce82tm+Eqm0CUECCKEvfefQ9f/8uv8HO/9DEa5Rau69Pb203brqNIKgdfPMjeAwco5gucO3+eHbt38673vJuF6fP8zn/8baKqTqm8QjQa5cD+vYyMDrJv935cp0kyEaUzX0CLpmi1fdoth65iF7FIDC8QWC6XaDWq1Bs1ZEWhUqshEdCo1+jp7uaZZ54hFo9z9OgxmqaJH/gMbxmk1TIplWrccONdfP5LX+JDP/dBSqUKTz3+fd757p/BbLbRdQ1Z19l34GoCAmRZ4eZbbsJsNPG80KVkbHwXf/6VL7FtYIAXD79IQU+w8/rrGOkfYuLAATygvjYfOkyVG9iuS0KNI6Oi6FHicYO22Sadz+F5bSQBatUqua4uLs6cppjowI+keer7f8vbbr2RWLqPwfFhvvf9J9BEiVymyHJpnlvvuIuBviFOnHqVt9xxH9vG+n8q8/ZNgUT/fdZ1f9/4u9w5Lr//NWIuUUAzdAIhtDvq7+8nlUoRjUbRNA3f9+nr66OzswuzbWEkE+wcHSQdl4lqHomsjua0qc/MIPoukijhWy6OFaJrggeWEyLL0WgURQ3RiZ/0WgVB2PSSNk0TSZEZ3TaOYsSIplMIqkj/9r2ke4dJ9Qwxsvdqtm4do15vUipVWFpaore3lwMHDtDX3UM8GkNTFIrFIiMjI7Tb7ZCnJytICNit0J3jckpJZj1wAN54isQ/p3HlfLsSid74d8PfGC7xpjcQEkVRUFV18/5ULM7YyBbaVpPe7h727t7DLTfewvbd++gb3Mr07By/9/ufYXRkkJPHTtJX7KdWLoVe04GDqmsEgUcsFuHs2dPE01kk1UBC5NXjh3CsNoqo0ZFKUq2W0ZTwc4/FYsTjcY4dO8bg4CCe7zO+fRs7du3BxifXXWTnVRMomoppmgRBgGW2aDQaLE1Ps3XnTjwvoNls0m63Mds284uLjGwdQ1V1lpeXMU2Ter3O3Nwc+Xx+01pRVdVNf/RGvcn87DySILNr1w6MiIbdsgg8N6QgyCKd+Q5S6QzJjhzxaAzXarG6sohrW8yvLDG8ZStbxraRyXfjOza1SpVWs8WRI0eIJuJUqmFy1vzyGpFEiqPHT/LUMy9w4tQknd2D5AtFOvIFSo0GTz/3fLjOVldo2zb1ahl7PSratu0Qkca/hDD/uPXzd/3sDRgbnbmNsUEru7ybcjmyB+F1wXN9rFYbu+0gChLC+g1EHMfbFB1uWGpuBDkJgoCqqiSTcfbs2UV/bzf1aoOBgSHOn7vAiRMnePLpp6hUS3R1ddHX14fneWiaRqFQYGZmBlVV2bNvgotz8xRyec6dOk0hncaqlElrKtFAwl6tUkxlqCytoCAxOx1ShlptG0VR8H2fVquFJEnE0ymW11ZZWloikUhhGAbNlkmj3mR8fJzOzk56enro6+ujWisTiepksmm6u7uJxWKMjo4CIfIXBAHj46Pcc8/buebaqzcR3VQqha6HbfpKpcLc3ByyLDM6Okoul0OSJCzLotFo0Nvbi+/73HbbbQA8++yznD59OuwCrIcQqarKzTffzMjICOl0Gsdx0DSNkZERhoeH2b17Nz09PXR0dBCJRNA0jXK5TK1Ww3Eckskk09PTAFiWtemPLYoiS0tLm+mqn/vc5zh37hytVigUXV1e5OSJV6iVS9x52+10Fwt0pBKv76Tl7zYfuFJr9GML6is6glei2RujVqvxxBNPkU13/Kg9qRBa5dq2y/79+3E9G893fuxzmpiYYPLCFKZpsrSwiLDO3bIsC8OI0miWyWV7ef99P0urZRGLxbnjjjsRBIloPMlVB/bzrW99C1GUmZ2dZWVlhYWFBb7zne+wa9cubr7xhtBI4PgpXj35Ki8cPs4rJ89gux4nT54kEolQq9VoNkPOfnd3N4oqUejMUW9U+ehHP0o+38kdd9xBPJ4ERKqVBopihB7MgoDverRaTSqVEocOvcDJkyeRJGmzg3V5N3UjMdm2bTo7u1AUlRMnXkUzIpx45Rif+NQvhTTTw4dQNQ1VM9CMGJoeQZBlOnuH0SJxfEHEiMdC61hZoNWsoSsKmUwOxw+vUXbb5fzkBTy7Ea7dtkuz7XLkxedxrRa1+gpHX34B27MxrRYd+Rzf/t6DVJuNn9p8fFMg0bbr3385Ag0/TVHbZQtOYB19trAsE9sJwwECwgXTarU2o4grlQq5XB7VMPAR0ZMpOr15do3HqdtrrMbinDm0jOgHyPiI0RijV6d5V2eETCTg979xElHMcPvtt9CyWsSTcTTN2OREb1BKLud/b1A62nYbUZJYWlhkdOduyk0TLRkl2ZGks6uAoslohkrg+2i6Qb3RZGhoiJePHqVUWiViRAlcj0ajDj4sLy9jWRaWZVEulZFEkUI+vxn1LQgCEV1Dj6eQNQ3dMDaR6J/OZ/BPOzZegyK9/ki04Hv3XyliufS5EoanEIRFlg+e5+K6zqZby0YrjyAIi496NYzFXl2hXl8j1RFHQqS/t59DL75EpW6GhfTQMNtGh0nGE6wuLzA3ex7frXLmzGnq9QbxVIpIRKNlWujRKKISQdZjOC0TQWwzPDSCKKnMzk+jaQqiKKNpOoIg4no+iUQSVVMZHBlmdm6evqEtSLJMRz5HYaCPTDYHgo8gQtuqI0siuq6xtryGruuYZpPHHn+CP/rj/4ubb30LF6fOUSgUEUWBbCbD5OQknZ1FUokk1WrozTsyOoQgCiSSHbRth8efPEIsHmNu5iz79+9i145tzM7OUMxneengcyiSz9COfchGgoiqUV1bxXFMXNels7+faCyOrsfxfBFv3c5yamqK46+e5OzZswwM9vPss09z6OVXMCJRjp86g+V5vHp6kgtTk5w5d5KLszNIskY8kqCQzaJHQ+FQtiOH6DrE02lEUUFWFARxoyOxPq7YlH/swXSDz/kGINGnTrx0/4ZffugEcInqZtv25gYZhh14m4Vcw2wRCEIYYKPrKLIGCKiqRhCAKIUH8p6eHorFborFLrq6e1A1Hc93kGWFvt5eFubnKZdKJOIJKrUG/f39zMzO0NOVZ+rCeeLxGPMLc2SzGVKpFB0dGUyzheP4PPb4U+weH6e7I8Oe4UEG0x30ptP0ZnNko3HsZpN8uoN2wyRuRJBliUq5QtO2ERWJcrNOqV4N0fRWC7tl4rsuyVQSy2pTKOQIfA9ZEkklE6wsL+G5Dgtzc6iyzOTUJPF4jHgsyurKGqqmYVot5hbmiMcS9PcPUK6UOXPmDLV6jSNHjhCJRCgWiziOw+joVlZWlkl3pHjm6WcYHR2lUMhj221GR8dotSy6uouslUpIskTTNBkZHSUeT2CaLWq1OpqmMTk5uVmwLCwssLCwwNLSEpIoEI/HQ7clz0XT1HXBqMDFi9NhaMb6zXXdzXCciKEzNDRIKpVE01SymSzeujh627ZtrK6sEY1GWFlaxrYtPNfhox//9Os6d8+cv3j/5ZTMjRHWEK/VTV0+NvYzcf0xG3P/SqrG5uMUmWeffJKRrSOIkoYogOvYCCLoho7vCaiazsTuMR794Q94y9veCj+GJfDRj36UeCLBk488xPjOHSRiWUQZIOCjH/1XBIHAQ9//NsMjIxhayP0NEXYB3w/o7evnq1/9Kvsm9pLLdzA8PEhPTzcPfONhrrlmArPRIBo1SCQM/s2v/xqHDx/nzLkLHNi/j96BARotm3a7haqEuqtarUahkMOIGJgtk9m5RWZn53j66afZtm07hUInDz34A3bt3EvTarNv/7X8+Ve+zF1vu4vVtRXuvP0Ourr78BFJppLYrrPuPKYhSTJbhocprZVIp9P09PajGVE03eATn/plrt63h/6tW1BkhU9/8pO8613vxhcEJBHabZt0rsg3/vYRxnfsRNYVIukUEgGl1VXSiTDkSNKiGLEktt1GlBSikShHDz/H8sIM1VqTnQduoyMuc+HcNL2D/XT1jJBMdzEwuIfPffHz/Nq/+XXMlsXErtGfyrx9UxTRjhvcDz8htfCnUERvDD/w8WwHx7EwzQZ+4GNEIjiug6Zqm9xIQRBIJpMEAui6ykBfL7293fzVH3yGO24YJZdJURNWeebgLE4gI/o6ttjiI5/ayQ6rSUpuczb38xx5/BFufcstmK0WmqHS0ZFBlkO0eQMFunyhbyxsx3WoNxoEvk86k6W7v5dIJEo8qtOo11FlGUUWmbp4EUmWcD2PB7/3INVyhVQywZkzZ6mWy0R0HWU9anejiM7lciSTSVqtFisrK5ucb0PTEFQD1TCIxUM6x+bB5k1eRG+MN6KIxnfvf+0dl0QuQRAQeB5B4OPYNkIg4Pmhy8MGAtJutwFwbBvP86jVwxZxubJMLJkmnSmyUqqwuLTAytJF0qkEgaSgaxo1s0FXTz/VxjK6piIQsGvHBLbjI0g6sUiClgeZfJ5MR4bV1RVkEURRYnHxIktLF3Fdh1w2g+cHBEFYCMmKiqKopDMpRFkhlkwTSCKdhU6MWBxRkVF1g3bLJAg8xMAJuXNGBEFSqVbW+MIXvsAnPvkpfvDY4xS6erAaZXLZLBFdx/UsctkC2WwO33URxdDaL5GM0bZtItE47bbNyVMXmJjYQTSm0dvTw66xrVTLFTynjeS77No3QSRdRNMMEpEEfgB24GHEU0SNOIHvszA7he/ZnDx9mtNnTjM0OsaFySnOnT3H4cMv0TSbqJqBIocboqQqjA91sXN8hHe/7a2MDAzw1tvvYOe2rXiOhSKJRCMGttNmaXkBF4WIEUeJGCAGSFwWB76xtIMg/PrvWEdvRBF9/Ojz9zuOsykGdOxLXzebzU1NRVhI25sFi6yqqJqGbuiIkoQiKZvggCiKRGIRenp6MAyDRLIDTTeQZAVNN1AUiUymg7npKTKZFNlchtHxUS5cOM/R46+SSiTYMb4FTVURhIBkMkE8HgMEZmZmaTZN5hbmMes1/vUvfowuw8BaWiQiQESR8QIfXZKIRwwKHWkysSi9+RxRQWIwUyAXiTKYzZCWVVpry6wsrRFJpaiWSmzduoXFpWWumpjg8SeewGzUGBocZKC/n0I+z9Tkea6/7loyHWleOf4KW4aHqddqRGJRRse207LazMxOUSwWGRwcpNEI0966u7s3+cmdnZ1MT09z9uwZHNfGMDT6+vuo1+r89de+yt13342wHhFtuzbJVJLFpSXyhQKIMoIoUanWsNttRFHcRK4LhQKqqlKv19m9ezftdeR/cXER8KhUy0SiBpbVIpFIoKqhIHZ2dnbzQG8YBoHrYDYbVCtlGrUagQD5fA5RElhZW1lHHwOi0QiKItHd3cU73/uzr+vcPX1u+v6f/NPgNcX1leLzDaeOjS7JxmOu1LAABKLE3p07+JkPvJ/3feCDCAQhbY4AVdMIAgHTtDj0wpMYqsL43gnEn9Dc94EPvPNufuv+/4W33/0+AsEj8EXe+c538Ju/+Rs8/P2HWV4uI4sKBAIC4d4rqwqGESWfy/PkE49iRFSisXCt4XosryzR0ZFkeWmR/oE+5mYvMjOzQDKR4Oy5sxQ6iyQ7MjTqdZYX58nn8zQaDQJE5mYXadsOlXKN06dPMzQ0wB13voUXnn+Oe+65m2eeeYZ33/d+unoG+csvf5H33vchtm/fQ6VUolSpsmPHLlzPDVlsgoAoiHieT6tlUa/VqFVrFHv6QJDI5wu88PIx/uT3P0MNG8EN+Oz/8fv83Ec+iqSpOLaHKMkkUln+7HN/xM9+5IM0zRaJaAzLCujuG8KyW6QzOcxmHd+1sW2PraPbECWJwf5unLbJ9ddeRyJdpGo2Gd8xwRf+9It84U//gkCWcQOJXTu24Tk+uqowPjr4/x13jtdriKKIrCqIkkQinsT1wsQuRZI37d9isdgmub/dbrG0ukQyGiMaybPUcEhne/BqC+zvyXPbDf089uQ0nhMFv05X1KcQz7Jy4SAjE7+NOnUS3/eJRCIkk6nN53B5Ab3RBgE2T8aappFMJnn5pcNkOwuIsoLvBrRsGz9QKFdMjOg6AhSIxGNJrr5qP9VqFd+z2TE+ThAEnHz1FQw9SjQapa+vj7W1NQRgeWkpFJysI86iKIIkIqkKhUIhFD/8I8Wb/1LHleLCja7CpfaigBt4rxGeCIKwGXdqma3NqHbLsujM50gkM2TzRTqyeZJRnR98728/2sEOAAAgAElEQVRYnJ8lFu+AqEZXZ55KvcpA/zCSIOA7Aa7j8OzTT3LXO97NxblZRrftZHl5EUWskYxHsCwTRYpitspY7TpbegdZXl5GMxJIcoguCoIfxqu22wiSj6Rom6pzUZQQhVB7oKoqAi6KEkY7Nxt11qp1CtkcN910E2NjW/kf/+d/R71ep6d3kKnpGYqFFLFYgkKhyMWLM3iey8rKCqqq8vxzBzFiUbaMyJw8fRrPd2g2yqGPrxseMH3PIRbV0Xt6SGSK6LHQY3VtrYQXBBS7+hBFibWVVZy2xezFC7RaLV58+RSirPDNB77N1OR5UqkUmWyesa0jPPP8CzSbTW647hrK9QbjA0VGR0fxHJ/OfB7HDbAsh+uvv46XDr2EaZrokRiJRISF2WmKnf24roskqT/+irrZAn5zramWZb/GjlEIxHW7OwfPF3G9kEOq61E0PbLZ9pYUFVlSkGQRz/WRJXHdztHH8XzM0iqjoyNEInqIXq87/siiSKYjR0cqjaEqvHL8OPGohhFR0HQVwzBIp9MUi0WOzM8RMTIh73Z+kWQyia7rZHMFTp06zYd+5gN886++yo1796IJ4SHMw0dSVUJaiYPXbiMFHtXVEoVMnkqpQsxs4ZkeRVmmsGsPIjKn1kq0HY8LU5PoqsZzzx9kfnGJO2/7ANFolKWlJbq7uxkeHiYSiTE1NcXg4CAnTpzgtttuY3p2lnq9zv79+2laNU6cOMHy0ip9fX3Mzy+ytLTEiy++iKIoVCoVZFlmfHyUdCrB8ePHufrqa1FElY985COhX/Tpc8zMzNA/OMD09DTJZJJsNsvK6iqe43D67FmUdUcrSZJwHAfLstB1nc7OznUP6yam2UAQBBrrB3NVVTfpWhsHpGg0imVZiKLImTNncKwWhhG28XOdYXz6uXPnyOfzdBe7QneE9WI9TGu0X/d5u0HHuFK4HRbOP2pj96MuTj6eGxD468Wz+JPpVa4T8OUvf3nze8dxEAIXQUiiaiJ+YIXUo+4u4rEIrbq97ubh/cjvyhW6eeaZ59ah8NAdx3Hb/K+//e+ZmV4j09GJ2ahe2juQEEXA9xgdH+OBrzsEQYDr+PhKSEPNZjtYWV0lQCadSpFMJllarHD2zCRaRKNWa4Co4Lqho4jVapPpyFIulxkdHeXU2XOUV8vE43F83+exxx7jlltuYWlpjW3btlHs6gmvbT50ZAskYnG2ju3CssywY1qpougqlmUhxxREUcA0TTo7O1ldWkAQQn1QPB7new8/xPypl5EMFU9yMfTQmtRstcNDOB0Eosj/8ImPoes6qXSC1ZUlZClKMpXBtU10PUKr1aJRrpDKFymV1qhWq+iaQFdXD8mOTmIRnYn9NyArBj949BGuv/FqPvMHnyEayWBZMo7jIIo/vWvxmwKJth3/flgvRIQAQRQuEwb+vxyXCRED3ycQwLI9rEYdx3bBdXFtB0EUyefznD9/nv7+fpx2i5OvvoJpmnQPDOH6AeO77+A//of/xHvuGULN7UIwUtxy1x7m1DYf/6W7eW++SrppcXCqih+9g6x/mkR+EDsIiMYTRKOxTd6zJIgICMhSWJQgXArn0FWdWDRO23ZCVFiS8QOPwHMxDC00wK/VUBSJudkZFEVmYfoihVyOZr3J8889w9jYKL29vWiaiqxINM0GjmPTalk0TZP5hQUymQy5XC58m0QwYilkRSUai/29wkJBEJDC8zIiwo884o0owt8QJDrw7n9tcXRZN2VTCS5gOy4gYLXbuI6zTvMQ8D0vLLJ8D8e2mZ46z9zsDA/897/iPe95NyvLiyzOz2K3W2wZHGR4YIiLkxd49PsP0pGOs7ZWYm7mIq1mk7VyhWJXH9vHR7Etk0QySbm0Smt9M23bDn39Q6ytLVOtlqjXTAw1SrOxRkRTEWQBz3fQI1EQBVTVQERC1TSctg2CgCir+HaLRmUFfAfwWJybYXLqLHOz02TSBWRkfuu3f4vVcon//B/+K0lD4dSrJ/nUpz/NxYtnicdTpNJpAgIcx1338RW59dbbaDRapDsy4YKVZETfZa1Sx2w5bN8+girYeI5JPNNJoiMUegV+AEJANBZDkRUIAjRdprK6wJOPP0G93uTp5w4hyVEW5ucZ7uti+7Zx7rvvPnbu3sP1199IV1c3jzzyQ3zHZ9vYCKoeRYnEiMSTZLIF0pkC05PnGN4yTLFYRBBDlKi8ssjk9Hk68t2omo6myMAVvOdLCujL7rpCtyHJr/vcrVRK9/cNDFEodtPbP8jQ0FZ6egcodveQzRcoFLvI5PKkOjIY0TipjizpTI6unl66e/vo7u2jb2CA7p5uBoeH6enrY3B4mO1j+5GFCKtLNdx2mbZZQwxcAtfBCUBRZdLpFMXOznUutYLtuAwO9FHIZShk02zfto25ufnQXSNX4OSp01x/w000Gg1qzQYSArNnLoSHOlUnUHxs30UMJBzbwg4cJEVC1TUQBKyWiWtZiKpE22njeaHPc39nJ2eXF6g2G+zYNs75qQvMzs6y/8B+tm4ZJplMcfjwEUQxTASdm5/HDwTiyTSFriKBIFCv1zk/Oc13vvOdEEn0wW67LC4ssTC/SKlcYmlpiav27adcKochP45HtVJBRODcmbPsm9jLzMwMS4uLKEroG5yIJ1lZXqG3p5dEPEHgeRTyOaJG6GEeiUQ2bUxbbRsREce2mLs4Q8tqU6mUicViCJ6HJIJlmkR0HUEUaLVMZFnCMHSy2QzRaIyV5TUQJBrNFmulcoj8t1oIgogsK0SiBqqmEAgB9UaNaDSO1ba5510feH2R6PMX77+U9HtJcxKCUv5mF1BY31MvL7qDIMD1fNy2jaqqyOsdvMuLbdsOnbUsx0SVdVRZIxA8ZE0BJ2B+7hSd3cMIQkC5tEwykUbT47zj7ju55fY7icYSCIQF/cbzEIWAarnKU8/8gHe878PIQoDnuxCIDA1swfN9HM8DXDZSTAWBkHKzbkhg1muMjw5y5vx57FaL6YszPP7EU0xccwPzcwtU10pcOHeeO++8gyBwUFSDbC6kJVmWRavVZmFxmdW1MolUnIszM8xMXWR0dCuFzizj42NEYnEOHjrC6loFRJ+9E/sQVJHvf/s7fOJXfo273nIj191yO0JgMTkzj6LqqJLKn//FV9mzZy+iKKJoKqKkMT99jmKxE1mREQQJQ9corayEFnSBwHj/CHLcoF6voysq+c4ucrkMV+3dTsPTiRsRFhfnGRkZDgXPooQeiTM3O8uJlw+TyqQRxIDevkEynb3csP9aSOTRjDh+IIAkcvP1N/P4E4/xvne/j3bLYmhoC2arhSjLjI38dISF/+KQ6I3FtHGC32hDNq0WtVqNjo4OJicniUcNbrrhRs5NT4b0CUVhpeay4+r3ks1qeC2Z0WzAyqrFL9wQQTSfR/Su4+CLD/Otl10SxSd499t2Q0eO2cUF2u32ZtDK5fY7m/9yieLhByHiE4vFaK+37Tb8U+PxOI1GIzxxLi2wZcsWXn75Zfq6upicnKRYLLJnzx5OnDiBKIrhhr8u6AEgCIVtY2Nj62h7e9OSacMf+v9Hof/x4yeJCkVRxAvc14hYLr85jkOz2QzV/h0dvP+DH+LU6dOMjY1B0Gb24nmMoT6mJ6dIJeP8/M//PLbvkcoXEVwB22mRTmVpNFuIvkrUl7g4PUv/8ACqqqLrOgsLCxw79goRXUaRdbqLMcxWBfCwnSaS6KIqMQLPQUAmUAN8PATHXt+cAHxarSZIAmajSoBDRJfIZzMce+U4n//c5/F9n7/5xgPcduvNfOqTH+MrX/4iMh4PPvjgZjDKRmLm6vIKmmEwOzvLl778Zfbt20dXVxeJVBI3UHjyiceYmVnG9xXshkWjtoyqQUe+f93PORRBhe4P5iaiUiqVNjdRwXXJpJO8cvxl9l81wehwf+jAQ+gDnUgkNoOHGnWTWq3GwNAWtEg07Awp2rrIJ0TwBEGgWCxSqVUJgimWl+dZWrxIIhaFaPQfNEfeDEOAsO1aq7G0tEDghvxnQQRRZP3aoCCKoZ11JBIBfBRdQ5ZUHLeN6/i4th36g2sakUiERDKHKsvEEzFiioTjOywsLBDRIiiJGIGvULFaOFY7RKxKFZaXFhkeHsbQNNbW1hBFGBgcRJIF2i2L/fv3s7CwyNbxcWwf2i2L2sIKi9UK33zoIf6n3/i3lFdWEH0RRdfpSMZpNpubNpKO4yBrYQKhv4FSiiIaAru3j1Nr1XnuuRcwG3Wuu/YALx1+gffdezevvPIK9957L1//+te5+eabWVlZYWBgKBSkLs7x/ve/n/7+Qc5PTrN9+3YkSaKvr49nn32exx57bJ3fKjKxdx+Tk9ObITWSqrB3715qtQq5XI6nnnoKN/BZW1tjdHQUQRDYtWsXuq6zurrKzMwMyWRy85o+v7iE7/tks1kAFD+gWW/guSEdUdclrLbMzl3bef7Z54jqBo7TRlUDbM+m0TBJp9N4nkejYdK2HMbGtmFZJufPn98M47JdBwi7Tqurq3R2diJJEslkkkq5gq7rb9Ds/Uko84+mE16ZLSEIAc1mFUURkHXlR7C6SCTC5OQkg1sHcZseiqIhSk0838eyLA69+Cxbxm4AAiQxgkiA79ts2bKV7s4iwjpq5/uXo+EgKWGXRBIFhODSc+/q6mJ65iKO7b/mNV1ugSpJEtu27eDxH36bU+fO8Bu//q/5y7/8Frffdi1f+rO/4GfveweV1UVabZNcIU8gQCaTIZPJUK1WQ+eLao21tTVs2w6vf4FMRFO5ODXJ4JZBDMNgYWmZsW3jVCsNrr3uAL5t4VoKuWIPsgh7JiZwHIezU5N09Q8zPz/P9ddcy6/+6q9immb4eteDsjauzaLiI8kCa2troeZCEOjr7yN2i8yphYtEjQiKEUGWZR794cNcfdVuRCWL4HihiNC+1GHwAp9oPIkkq8SSOfRojGQ6C7KGYRj41Rbiug6u0WjwzDPPcfLkKb75zQd4573v5d577yWVjGGaLj+t8aZBoq/kQP9TbTSyHHo0NqvlddWpE26+yQSVSgVN04jFYuRzWebnZunr68M0rRAJiFk8d+wYF4/N0dvR4sCe24nFXa4e6Wdv3zbyUZf3fOQRWrmd3HPvLWQznUwtl3nggQe47/33bQaqbIh4gEuq1nU+tCiKBL6/SS1JJJObi9/QNRqNBpIksba2RiIWwXMdlhYXEfyAlZUV+vv70TUVx3HIZrOoqropQJFlmccefXxTmZ5IJBBFEV3XESWBbGcPiVQKTTdeq2oWfrzjyWs+oR/z89d7vDGcaO9+IHz9l90tCMI6Hzq8iLuuCwFYLZPA93DW06w2wm00VQk9y32HarXK8soSVrtFV3cnkVSGRK6LZLaIr0TIdXQwt7hI0zSpm228oI3ZbvD8oWcJBBfPt5ieOkcqnUTTQ8/kSqWCoijkMumwIvJcqpUSldIihq5SrS6zujSLELiIgoBrt0LaQ0yn1SgjYlGrlRHxWFucRlOgWS/x6omXcZ02c4vzFDuLnD93kYvz80xOT/LpX/o0jcoq3/3ud+juKRJLxInFUnQV86ysrtK2bWRZ4dTJU5w7d55sNoeqKhiRCOVKhZdfPsHAQD9HTk7Ttm0+eM9bSMQ14qk4RiyDHk1tdnaCwN/0PzdNk7Zt0WrUOXrkKLV6A9dzueXmG7hq3266u7rZuWsnsXgcz/dBEDEMg127drNzxy4mz5/m6Weepau7B9u2icfT+AFUa2X89aJCEEVkRcE0G2iqSGlljUa9Se/A0I8ckC+fEz+yNjZQavH1R6L/9htfu79WqWCZJrIkoioSsiyiKgqaJpNKJYlFY6RScTQ1FFYZhooogO95CIGP57oIvohj29RrdZYWllhYmaVcXaXZrNJ0Rcp1k8mZBY6fvsCxI4eoVMroiky9WmdldQ2rZXLXbbcxPNSH61g06hWOHTuGrCh85ct/RhAIXJxfomFarKxV6B0YIp5I0TnQh5FKcHFlie8/+Qw33XwzhWh8PbAn7ALJ68I5Q9NYXVtjudEg19PNcqmMtn6QOrcyR7VRI5/tZHhogE998l+xbdsYPV2h3/XY2BgAnZ2dzMzMYFltqrUaY+OjzM/Pk8nnOXz0GLF4nMNHjvIHf/iHgMi27duZmZ1ncXmJldU1+geGWF5ZQVZkduzYwUuHD6NqGvVGk0bTZGxsFN/3GR8fZ3R0lDNnzobUrs5OisUiMzMzRKPR0PnE89adTpIhVUZR0RQV17XDz0QMnXbq9TqBJyDJCql0B34Aa+UykqwQBCApMroeId2RwbYddEMjGouSL+TJ5rLk83lSqRTpdJpUOvxbyfU9KRqL4Pkud739Pa87En25EcFrQalLbl+XC743xYKiiCgKTE2eDUOWFB1ReK0wvNFo0NHRwfLiApqqIEgyd915Ax/5yC/Qatk88+zDXHPdzRAINMwqkqCSyeS58cbree+738nP/fyH8QJxsxsliiKCLBK4Ar/7v/8nPvUrv4YA6/s9TOyd4M633oqqaSiSsgmmeZ53qSMsikiSzNf++s+Y2DdBrbLG+99/L7F4BEGAXD7P7NwCb7v7bgRRpLunh6ZpYVmhGLhUKrGyViKV7qAjk6VlNjHrDbaPbCFbyNHb14dhGBw9fpyB/iFaLY/z587xgXe9k7W1Mk89+xwf+9gvMDY+hqxo9HZ1ohlRZFmi2aiv0wAFEokEn/6lT3DHXXdy7NhRUskONMNAllWqtRqpWATLc7GaLUb6B5ktLYPt4vkgKypdvQV6u7soNx00UcBstYhEY6iqjuvZtB2PmZlZrrn+BobGdpHO5EBSkFSdmCpRabSxfQ/X9xD8gEqlSr3ZpFprcPc99/K7v/O/8cA3v8ktt9zO+NhPhxP9L6qI3lhUnudhNUILJttad+RohxGS9Xo9DJhwHc6dPRt6JisalWqVVEeEQJKZP79KSmoxMpAlpum0Wk3yWY3HH3qZwysD3HzPHezYtZW2K9FR6GT3rt1E4jF0Td9EeuXL3Dk2iuiN4a/TOiRJwmpbm2j00tLi5slycXERTQ0PBLVajZmpaXbv3k2pVMJqmaiqSrvdJpVKIcsypmli2zaVcpVsNouihEVbf3//ejiBSDJTIJ5IohuR13hobhTRP/J+XvZ18CYA197QIvrH/uySsf9GEW2aTex2qGrf4L6FPrseiqKwtLzAyMgIzz71GNdeey0nXz3FwNBWIvEkgSARjSbQVAXdMGjWqwQCpJMx8vkMHekU8YjOhXOn6Cr2Eokl0Y314BHTJBKJYDaqNGpVrFYDXVNwbYtUMonnWkR1Hd918QIf/JBm0ZFOYNXX8G2LdEeK8uoyMVXAsy0efexRerp7iESTnDxxklq9zlVXXcvPfPiDzM0v8vCDD9OorDA+to223aRQKOC4EI9r2I6D1W7juy4zs7N0Fos0mk18z8NstXj+hRe44aZbaTQb2IJGaWWJe27dTzwRx0imSXV0omjRy4KT3Mvedp/FpQVKK8tEjAiCKLFrxw5czyadTpHN5Kk36pw+c5ZqrU48HuoD2m0bXTewzBqJZIrVUolIJEI81YGmqDTqNUR8DMOgZVkYkQixaAxBClCkCJKoku/ufa0o97Lxmu+vpHi8AUX0iweful/V1JCaIst4foCmG4iSjKZGkGUNRdHw/TAG3A/A88C0bAIEFFUnk80zPDzC1q1j7Nu3n4l9+9h31a1M7LmW0S07yRWydHZ2ks3mKOSL6KpEZa2E67iUSiWMSJR8LsMrLx9FlEROvfoKhUKezs5OokaE62+8me279zExcRUjo+P0Dw7RqDcpl8pk8nnq9Tq7JiZoez5/+oUvcse1V+N7PqoRIqS2E66zerWKoms89uJR/vArf83J06c4eOQw8UyK544cZnT7dqK6wfLyIpXSKnOzc0zs3UsikeCpp55idHSUo0ePUigUiESi3HnXXbheGBLxyA9+yPXX3cQrx18hmUzxrne/C9Ns8eSTT1MqVWjbLRzHpd226chmuf222zl65DDVSoVCscjOXbs5cvRlCKCnpxvXdTl16hSqppPNZrEsi9nZ2c1rdSKRwIhENzU0oijSaJrrugqIx+IIogSE1pmyoiIrCqqm4nruppWroijomrFJOfPWbcw29gvTNNf5oyHHvG1bQJioCiFS6nneG1JEXwnqXB4DfjkVcWPP3+gGhgW2QK2yRiQSI5HMEPjeZhEtiuKm2Dv2/7D33uFx3eed7+f06RWDToAASbAXsYhNoiTbkoss2bIt2ZHlEtuKSzbNib1p15vy3GTXiePd+NpRErfETW5KLBeJKqQKSYkUJYokWEEQIDpmBtPrqfvHmRmClNve6JG19+77PHwAAZjRmXN+5f2977cEguTyGYKhEPFohI6uTiTRw8TECOs2bAbEhkCBQ6lSpqe7kx3bryUUCeMgtbrLkiRhOzaCJfHIQw/y1rveiSRKDbO3Gp/7+//O7PwUb3zTbdiW0+AlNEi8jaJfs3P+lS9+gQ9+6IMcPXKUqakJNE3jwMHnXAk5zccLx15k7dq17N+/j2AwjMfjbUnbhUNBJi5dIuD30dfdjuDYYNvEEzEWMlk6Ojo4ffYsS/r7GR4+x0c+9lE+8J5384EPfIi9jzzMo3sf4sLFcdZt2ESlWKSju8c9pNl2C15kWRbXbtmM6vUxen6E7t4e/IEgoigjSCIhrwdLFNi/9zGW9PQwmZwjNTOHKNgk2tvZuutanEKBsikg2ia5UhEQkFXXXt0RJHqXLKWnuwurQeKsVWqU9BpBWSZTrIDkYs7TyRSa6iEQCCJKAvWawdvf/nZuecOtFIol1q1Z9rKMW+HVoAdcrBiti3hJFUf45a/vFyXezc9qmibpuVl0vUJmfhZFkTBNV8N3YWEBGwdZlJBF0GQPh184ypL+PjZes5lqtY7qUXjgO9/huQP7ke0am4ZWkq8aSJEE7/n192PKGtVMnoVilni0HY/Hw5o1awDwqNoVZIjF193SErb0FrTCdgR0Xcc0TU6fOoksy8zPTOP1ebBMG3/ARzQc5dGHH245LDqOQzaTRpFE2trc6kk2myWfz9Pb1Ynf76dUKoEi0dPTg23bRCIRlq7cSCAcIZ5ob12PIAg42JcXol/ycdjClS22VyJ8qvTKp/KW3ixh0PzaTJybutBNCSnTNMmlkxiVGgvpuYYkmtCyvZ6fn8fnU6lWq5w4doRN69YzPTvLug3riSfaiEQiVKtVNH8ASRBRrCKZ1BQvvDDM2NgYH/ut3yafWcBGJtbRT61uUi67CizVqqvlrEomjmUjSQKZ9Dy55BQdnZ1UynkigTBjI2fYsvtGjp44S9TnQcKgbtkk2jtACRCJufJ09bpFX/8A7Z1djI+Pc/zYUXbtuo65VIHhs+dRfX7GR8d57JG9LO3386H3f5wbbn8z2bkRxk6fQ8Jkfn4OvaZz9OhRTpy4QFd/gqBPYtfOPbzw/HEW0gVOXzzLeLKC34H7/uvv0N6/nMTAajyagoTWwNSCbtYRRcil5rFtk0qpwMT4OEIDsaZ5FEzT4MnDL5Boa0eWVWxTJ5FIcOrsRYZPnWHPTTe5EmTFAppPQ5QkOjo6iMbbUCQVUYTxMdfpKx6Po6oyyblZPH4PicQA1ZpBvmYTa+8m3tGOLIhIi3Xhf976JGuv+Ni9/xtfdpYuXeraYgcCiLKGx+PBtm00RW6RSWu1GtVKgVQqRa1WY25mkkql0hrTtUoVx3HcamUkQmd3Ap/Ph2PbzM8kXedARSE1n2ZqbhpV9XDy9Fnq1RqxaICB/iX0dnYwuKyfdDpNKBSiq6uDcrWOZQuUahYTExNcd/0eDNvB5w1g1XVKlaKb8Jg2YzOXMCtVBlQP5dQ8Bia1ioEsqWQXUgSjEU5fGOXrTzyJ3VBn6O5op2dJD9u3u5rO3//2/Xz847/LQjrJYP9SJqZdXWpd1wmHwzy57wn8fj+dnZ2IisyR555ndj6F5djkSxbDp06zkEmya8dOhodPY1gmczMpwtEAe/bsoV6vUsjl0WvuvXvXu97F+OhIi4dTLZWp1WqsGFpGOBxkZn6OhWSK7u5u/KEgHR0drrKC4yDJamutVxSFYrEMuNVnVVWp19w5Xq/XQbBIJpNks273tae7F3/AB7h7YRNiJssyhuVaZmuqBwQHo64zPz/vYqsFB5/P19J1r5bd9v3ffP5fXtGx+4OHn3KaeuZwOVEFkKTLiXPzd4sTaQBFVLAdnZnZSyzp7UdVva01G0ekuyuBIMLo+LSb+PlUitkcn/nbv+J3P/HH1AwdryeAzxciMzeB7PEQCsb46le/QCGX442vfwMr1m3GsVylm4V0HsWj0BaJsnJ5P2NTFzFtDx5B4jOf+Wv+4I/+hFx+gXPnzrFu7TWtedfMAZqfIV/K88F73sEtr7mRbCbJmeFTDC4d4CeP7aevr59opI1kMsnYxCTbt23izjveTNWwmZiaoZjPcv70KUKhEB6PB6/XoVKpIUsqkqS0XD67lizhwtgMb73jffjCHsxqgX0P/YBDzx6hXK6yd98BRi8lWd7fxbp1a7kwcoHUQo6qbnD77W/i8JFnqZVL1B2F+z7zV9z2tjuJtbsQIEFS2DC4lJMj57lx13aeevoAU9ki7ZGIK80bCNK3dCmP3P9ldt/2breCnp5zO+WiSEeinWqpiunYqD4vRs0tLlYrFWxXfxDTEnBEl6/V7Ewu7lRYlt2Sln3TLbtelnH7qjBbeaXDXYRkLMcF7tdqOpIkMTc3RzKdAtzFqFSsMD8/z+7duxkZGSGfz7GwkGR+dpYdO3bw5jveyXvu/TjzZYF41wDrN26mUrdREKnodXwe93QWi8XciS6IrQWrxXRvVNIWR/ME3dQQlmWXUZpIJDBNk0g4RCLeRr5UpJAv8sMf/pDe3l48Hg9nz551Ey3N3RCnp6dJpVJks1mi0Sim6VaAkskkPsbTX4wAACAASURBVJ8P03QXzXw+j2mal22ef4bW5v+JXxw/q40vCAICUmsSNxdK27aZnZ1tKbl0dHSwcu06Zmdnuf0tbybWFicajeI4jruhej0EAj4y2SzDwyeQRHjnO99JoVgkEIqhejzohoEgOK3NxePxuJh8JLy+AIqmEm2LE29ro1Iu41VU0sl5PLILFdq+fad7YJufx+PxkFrI0tXTRzgaY3BoNd1LluIIIgsLC/j8XpYuXcq3v/0t1q5byfDx4+QW0u44y+RZunQpo+fO8uXP/A1z0zOEY3EMwyAadg8FsbY4guS23QcHB0kmk0QiERbSeV7/hjeh1+pEQr7WeFUUBccWW/NYEpUGI96dzzNTEzx35BlSqRShcADDrGMYBvPz8+zb/xS6bqKqrsbx17/+dbZt28bu3bspFAo8+8wRJM1DMrXAkt5e0qkUl8bGyeUy6LqOzxdAUTS3bW5ZBCNhACqVEqoq49U8mHUdy3r1z5t16zbQ0dFFLNaGzxdAkxX3nyIzMzXJk/v38e8PfJ8fPfgD9j/2KKdOHGf0/DlymQWMeg3L0LFNA0kSCARcybNarUK9qlOv6kxOTDMzN8vY2BgnT55kcmqK+fl5zl8YYXp6lnQuTzgao25YjE9Nc/rUWSRRIeAPIYoyp0+fxjAM+pf0cuc77sLr9ROLxZienUHRVLq7e7FtWpj4+fl5ssUSumVSLVeoFEuudGI0wnxyFkGQKGSypNNpli9fjihJ3HLz61lIZ3hk76MsHxqiXK7y/PPP8/gT+5menmZ+fp6Ojg6OHTvGnj17UBSFs2fPcvDgQS5cuMDg4CAHDhxibj6JbYPfH+Ts+XNEYlEGlg6yctVKREHixIkTWJbF8ePHuTg+QWohy9MHn+HxffsJR6LsfeRRCqUquWKRA4cO8di+J5iZnkP1+Mjmi8zPpbg0MYVlg+bx4Q+G8AWCeP0BbARi8TaCoTD5QpFKtYamSRiGa89cr1fp6IyzctUy+vp6Ub0qulknV8iSzeeo1urohslCJkupUqdYrpErlphLpqjVdXz+ANlcnnQmSzqTRdE8IEp4fH6XhPwriF8GOrj4d1dI1zkOkqiQzeRZyMxfaQMu2MzMzHDNhk3E41E0zYthmOzb9xivfe1r0Q334CArLselCc+UZAFfIMjQilW8//3vR24UxBRFoVIt0dXRgeWYVGs1Bvr6EUWRYrHIl770JdeQSPXypS99qXWdkiS1OFTNTqIgCHR39fKtb9zP5PQUhmHxo5/sp69vCYVCgePHj3FpYhKAM2fOMD4+TjqdplguY1sG3d3dKIoLF5FlFY/mwzAsgqEwZ86e48TJYfyBELt33YCkeAiEw5hI3PuRDyOrGvPJDIcPH0aWZTK5HL/xGx9m2+YtDA0NIcsi2WySYjGPoesNnXkTQRBbhxxN06hVqhj1OoosEQwG+f3f/31sHAIhF++fnJvjW9/5LoZltmB2kUiEYDDIJz75hy5EVZLJZDKtZ6moqps0a15kWUSwL5NKrx4jiw9cL1e8aomFl6u0L/97uwNUQ1U8FC0XzF+r1dx2hGO3SFiRYIi5/CypVIrXve51TF66xJo1a1hYWKC9vZ1wPIaIwPt+6yPYto0ka3g0H16vF6/X2xr4zURVXNReaibPiydw83vBdsCy3baw5ia1sVjMHRg25BeS+PwB93pNi40bN3LgySdZsWIFbW1tTE5Osm7taor5HCMjIySTSWRZ5uzZs6xbvYpz586xdOlSsB0sw3QrQm3xVtXJFwi2kvhmi+w/EosXsCsWrP+PxpX4O/El7cTmBMd2CYXN8WBZFgcPHiQSiXDw0BO87oY9PPXUE8ynktimxfr161m2bBmBYBhvKETA76Wzo5fBpQMEwlFKpkPNdtBtB9V27Wn9fn+r2tTW1kalkEOSBGTFhft4PSGqxRnyhSKS42LwSuUKgUqFlZu2geohGg4RDEfQVD+q6kEULMJBsC0XH/zI4/uwHYdf+7Vf4+jzT7Pnhh1k81Xa2mLcfMvreerJQ/hvVnnP3e/m4mSWjZvWMD8xjtejMjs9zUOPP4FheRkMdSIgUalUOHbsRcqOwv+4719ojwRYNdhBe3c7puRFFiVEQUMULHAsHISW3FY+nycajbJ0sJ/Tp0+TzWdJZ9LUKjVmZma4dusW9j22l5UrV9He2ckdb78TVVVZtmwZo+PjaKqXRw88SU9nB+fOnaNSqSBKCrVajb6+PlRVJpfLEQh04mBjWw7xti4sy22tezUFSdPAMhHkX2Kx/pWSDE2XFDk/Tz6XQ25UNW3bxnbcKlq1UiObXWh1UwA8Pr/LwldcfehgNIbH68WyLEzbZmJyjo0bN5Jol9mw6RokQaRWKZPLpDnwzCFmZmbYes16pqZnGBu/RDAYZGL8EkalgKp62LhxI9u2bcHjcclGjz76KBuv2Uxboh0jb7ByaDmWblEsFhkcHKSYL2ArIrIj8Ok//lP+6k/+iGRDrk5RVCxbJyBrjE2OsW31WhbKBfe6g0EUzcP1N9xIX18fgmOzkEkzsHwVtqlzavgEn/zkJzly5Aher4+jR4+2DpY3vOYm8oVHOXHiBPfeey9f/9YDbNq4nosXRygUc6xYNsixY8coFEro9RpBfwfhUIBwNEYw4OrwF0tV+pcNYSJhiwqWpDA2NcvatWvxeFVWr15NPB7H6/W6XYB6nbopUSvVEGoWIb+r92w2lldR05B8PixBpFwrYzsmsiYSDCbIZrOAS24zHIdKTUeUVYy6ztzcApVSya1iNw7bigLdPX0M9i/lpptuItbWBoKAUauh6zozMzOkkymOHDnyio/a5h66eF29+veLf9Zcj1vJk+3uQ8FgiNELE7QnlizqgNtYNjxz6Dm27NzIww89jqyq3Pja19HT2cFTBw+wYuUQsiAg2AaRWByrIQTw9rfdxbHnT7Bv/5OMXTxDINiGJEnk8xlq9SKS4uPS1DSf+fRf8Ht/+GfImoe5+RS5UoVkMsW73nl3iyx9tZuo1+tFEkSWD/QR9oA/HGHD6vXcuMfm4ceeJBzysf3aTXS2J5ianEWQJR56aC+vf+OtqKpKvlgkncuiqiqlWpWFgonfG0DV/Bw68hyJRAfnz42y6/pbUFQPFl4Mu05bvIvrbriFvr4BfvCjRzj83BHaunqYz8PvfOL3WbtuJbNzE/zX//aXfPjDH2bz5k1Mjk4SCHpYv30H+XKJpUGXe+AIEu+6+518+u8+yx1vfTubNm3mR4/sc7uqXi+O4xAOh3n+5Bn0RpXZ53OlNSVJ4nOf+xy3vOENTE9M8swzz1C3TAzDaLkAN8UTGvLfrRymOVbcpFp82QuDr4okenG5ffH3/yux+DU/7z0W38CmwHwmU0WSLp9QXM1XidnZWaKRCKZlcfbsWSKRSMsuNZ3JsGzFclKpFG3tccrlMlpD87ep+hGPx9E0V8LFNE3UhtEKXE4mF0+WxQ+9WRGWJAVHdJPtcqXmKnbUKi2x+LZEO45tc8stt/DlL3+ZoaEhYrFYa9Coqqu/Gg6H6e/vB8vkpptucttx1SqxWIxgMIisKlfcx8sJ9GV4jTsYX3q/f9EzWXzPfxrZ42c9n/+tYvFnuerzCoLQatE1Q5ZldKPeWgDyeVfLdcmSJYyNjWGYdQ48+QR/+l/+lFRqgcOHnkF0wDZMCvksAnbLXvmb99/PntfcTOeSfmzHbeHqtTper5dAKEixWKSrq4t0Ok29rqNpKl6vht8fJJNdQMIhHIkyn5xjYGCAoiU1TH+gp2+AfDpJuVhClvOUCgUs28HjVTh14hRr167l9lvfzIvDJ3nggQfQAh5qVYuHHnkCRfVzy61v4Xv3f5sd1w7wxNNPoMpdCIKFXqthWwbXbt3KhZkk58/NMj09TdDrZWBgkEq1RDCxgroOXk1kxfIlSN4AgiA1KtASpqHjOEKrGlQq6RSLRQI+tyo5OzPPpfFpNm7cyOOPPobH56NUtdi0YSPReIxb3vBGbAS8niAOrqqDqni4MDnK1NQUquPQ0dFBsLEJyLKMIssUi0W8voYyiO1gmQ4mNpIoUC6XUCwJfzh05Vj+aYTCX3EcOfyMa1neWAu8DZKmS2gSG1b0Mj09Pa1Cg67r1Ez3gK8oCpqmYTsSluUQicRob2+nq8OFjBmGwfjYOYrFIku6OwjHomzfvo18vsizB5/F61FYtWYTE5cm8QX89CztY926de741V1DhmKxzBveeAsvHjtBOBwm3pbgmWeeYdvmba12bb5YAODkqdNMp9PUG/rH6VQGjyChyBo+RaO3u4uLIyUcyyYcjvLCiy/y367bQyaTYSGbJ+BTOfr8C+zcsZ1YJMw1GzfxN5/+DGvWrKFSdvHAzz77LB0dHdi2zaZNm6jUdCampmmPt3H8hWP09fewdfMGHnnkMe655x6+970HKAoiAZ+PUr5AOBymUqkgWzKCCG1Letm793Hi8TCVSont27dTrdapVU0OPH0IRVFoa2vDcRxWrl7Dpk2b6OjoIBAKo+s64+PjlEolSuU8hmG4BCzTxOcNt6p1pXIOUXRx+pFIhLbOrpZleSIRJxwOI0kSqVSKTGaB0dFRJicnOXHiBM8ePMR9993nkp4th1qtht/vd0nvAf/LXtX7ZeNqs7LFboOL96zFuOjmtTqOq/YQjyewrMuvs22bcrlEwBeiVKrwnz72m4RDfrKZHKFgmGK5xic/+UkefPBB6o2im4OILMk4jrtX+3w+AuEQd951B3/72S9g2zbd3d2Yho0oOXi9Xh7+yV5+6w/+BBA5O3Ke6ekU/oCX7u4ekslky9Wy6SGwGJJi6CaHDz/Hez/wQc6fPsnuXTvZc90OisU8gaAXRRFYPTSILUgcePIpHnjgAbZfdyOFUhkLgXQ2x8qVK5FEF8Lx0EOPsGfPboLBCP/4xW8wN58CUUEEVFlFUkRefHEY3bAol6t8/99+wLadO5AFkUwmy9/+3We49bY38/DDD3PzzTdz+623Mjk+xXwuT6ytnWKh2IIKOYLEkwefJhwJcnz4JKn0AmXdopDPUiyXWqTw9q5eFEXBMAwU5fJhKJPJ8J73vpfjz79AJr1AIBZpwV1cfHm9RRy9OsdoVqWb+dXVB6//SLwqMNGFsu4sTqiu+P6X/KyLk7Or36MZzYlm2zZm3aBerzE/cZFqrUytVqVcLuPxeVlYWMCjajimRWo+SbS9DUSBTHoBwzBco4Z4HF/AT6VWQ1MkLl68SKytg6GVq6nX6+4EcxxAJBAIEIlEcKzLBhzNRaCZLMNlTLSt11tJsiPJ2DQWAMFttTuWy7idm5vBqNVJp1KYDQm95us8msKJF49Rr7vkj5mZGbq7uynmskiSxIoVK1rSau3t7XhDAVZuuJZAONKqNDVbH67kVQN/9ksm0fb/yxzh543Hq5/x1fErxUQ3w3E1gpvX2YRr1Go1LMsiM5+knM8xOzOBZbuHtXq9Tj6fd213fSrT09N4xCpd0ThHX3iOm1//BrwNLOaxY8foTHTgCXpIJqfAsNm8+zWkk/OEgz70epWz50bYcf1rqVbrFPKuDXcoFGJ0dBTJcSEjmibj9chcGj5EvbjAum3XUXO8blJlmRQKBWRfjHgsxuy5YR555Efs2L2LZDLFkv4BRNXL6TPn2LZtG+n0AgND6xi9MMbh50/wxjfcyKc/83dMzWY4MzbD/d//AR9655tZ0tnJ+977Lnf89fcwNzNNOODlU3/7eS5NZrlp93JioTBr1qyhUCjwl5/7V/q6l/OmPYPc+Y430DewGdO2UL0qqifkjkXHJb3V9DqGUceuV7lw/jTtnZ1MT8/yL//yNcbHJpAFnWK1zpYtW/jYhz9COlMgFGvDH4pSq1TxB0LUTRPHFjj+wnNIksBTT+5nxYoVrFm7vpVI53NJd2Ps6XA3zFACyxQwbAvLMsDRyBV1oh0dRCLRBpb0pTrRL/lvSX3Fx+6//PNnHVVVW0QsoDUOPT4/lUoFx3Hw+YP4/UFWrVpFIBDA4/G0umj1ep3RC2dbyVwikcBybIaGhggGg2iKq2+bycxQr9cwDYNauUKt2MD/rljBsePDnL84RjwaZn5+ntWrVzM2Nsa9H/wNnj3yDCvXrEaTNRIdXaQW0nR0dpHNFvH7XXJdOpNDVWX0Wo1PfOL32LpmDdf29yPYDj/+0WO89S23Ui1lmZtP8fT4ReRAADUY4ROf+M94PT6i0SiiKDIxOeYWHkR3XX7uwJNs2LCByclJ2tvbOXTgKQYGBjBNk8NHn2No5Wpm5pJMTExQq0MwEKZcyfP0gSe46667yGZy9Pb2EQpFOHXqJOvXr3Xx4ZoGgN/vrrPDw8OsX7+eiclLbNm6jT//878kk8nR1hZpqXMMDAywZt0mMpkM1WqVU2fOunNUllmxYgXLBpejqq7phUt8LbSeq+O4vItMJkOpVELXzRaxXBDc51itVmlvb0fAJpvNugpW5SKO6XanisUipVKFarXa6LA6iAIsWbKE7//4iVd07P7wkQPO1fKhgiA0EiqugEguTqqbDoXNPcw0G0UNwWzBJ/L5PLt3XotRNzhxfJjXvW4XqXyesQvTOIiITo2/+PP/i1S2wN9/9r+ji15kLBzHwrElBMEgly8Q9MgcP3ucb37jfv7yz/8OSRSZzy5gW3V+795f54GH9zJ8ahRZFl25fcFNlmu1GqqqUi6X8fv9WJaFruuoHg+2KKJYJs89c4RvfO0L3PW22+jt6eT0mRPs2nUd//5vDxKNx3j+mYPsuf56bnjNG/mD//zHvPGt7wJsQqEIpWKFSCRCoVQkEolw3e4b8IeCJJNJotEokuZpFO8EFElyjej0eguXXK1WiYSi3HT9Lh55ZC9bdmzhmk3buO+++yiVamiqF8OusXnTRrZt38ELL7zAyZMnAbCR+es/+yTFbIbT58bY+/A+qvUav/nbH+Wr//q1Voe2ptsItoWmaThchmT4fUEK5RK/+9Hf5Gv//GWyhktwfWlHv/n18s+a3dim7KBhGC8bJvpVUYl+ueLnVTivDvdvBOqG3rrZPp+PbDZLe3s7IgKFbM41LAn4Gn7zHS14xvDwMIODg24F11To7uwhGI2Sy+WYnJxk1apV5Ap5ViwbamE5r8ZlNZPmqyvnzfYFuBhPw3IHgNZoQaZTl5nTvb29yJLE+OhoSxYvlUphme5CbdTcxdGjuIzr/v5+9700raUP7RINvFSrZURFRVJURFFstUde7oPWT6tQ/7KvezUc+v5X4moG+eLDie1YVKvV1mGqXq9TKGTcCS9apFIpbrvtLRSrFaqZDKFQiHg0iqjI+Lwafo+XqmmgaDKa10M0GmV6fIpnDh1gw5btaD4/ekpHlBRymQVUWUISZCqlEuFQAtusEYqEqIoGer2CGoyhGxbVapGg34s35KNUyLCQzXDz627hyaf28Y4738nI6CjLhvpglcj8fBJBlJmYmMBxHDLpBebmktx55508f/w011zrkEolcUQv8+ksFy9e4KbX3EIiESWbSXJxfJzt124lFJ5EFl3i0v79+9m29Ro8Hg+6UWNp/xLy+SKK6sHW3YUT23XCEkUZRIFqueSSkG0Tn8/H6dPnCYVCjJwfxajXuf22W9A8frZt244oilSqJZy8wkImR6VSwxMIsmrVanLZAn29S5iammDL1q2k02mq1SqmaRIMBt0NrlhoaOZ2I0kKkihhG24SLws2waAfRVNb3IJfleTjL4qWMlADny/KGqFInHq9TqVaZ+26DSQSCUKhELYtQqP7MXzyOHNzc1y8eNElmVk6guC6khVyMsFwmEqpRLChmS3JIh0dHZi60eq+GJUaUxPj1OoV2mIRnjk8T7mYZf369bx47Hmi0Sgf+chH+OC9H6Ber2PWdbwlFxPtVr0jDWMHjYSkYFkG48kkkXgbTx0+zA1r1lJYyDI+ftHVEHccHFEgEImConD3Pe91JUH7lrqwlWq1pVihSSKiCE8+dQjdcCgW3DX9uuuu48EHH3QJerKbqO3cvh1JUvi3f/8h1123h8efOMztt9/O4OAgvXt6+dY372dgYBmrVg2xY8cOzpw5Qz6fx+v1spBOo5s6b3/H23jskUfp6Orkhw/+gLWr1zA5OYll68RjUQYGBkgkEpQKOSKhAKosc+Oe65FlmXg8DsDjj+9nbm4OVVUZGlrJ4IpeMpkMsiy7+rmOQ1siAoKJIsmt9abZNS2VKjiOjWPpdHW0UavWaYuFmZ913SIHB5ZSqVQ4e/Ysvd1d6EYdWXSNZn4V47b59aXFt8s5wC/aK2RZBETXuroxT8OhKMPDp0mlk3z8t3+fZDJJKOjn+IujOIKb8M7Pp3jz7bchSwKWKEFTzxk3WRsfn2DPzm188Ytf5H3v/XUMw6Kq11tYbEnRODV8hmisA8OoowRdRSBVVZEkFyvs8XhaBy5JkrBxtdtNXeCOt72NkXNHWb9hHadOnqCtrY3vfve7TFyaIrSQZv2mjWSyWZ588gl+67d+k3TJbjzjKu2dnXg8Hrbt3On6T1gmxfkUwWAIRfUgSFKD++F3CXOOjT8YRNd1iqU8AW+ATCbD+Pg4//RP/0iio53Pfvaz5Islgr4IXq+PiiFw9vw5Trx4nKDfx9EXX0TXdSxBRlFcxZ+bb76FL3/1K7zvA7/OqRMnoHHvRFFE9Wh4GmokcLlL0FxP125Yz1MHnuaa3TuwcHAMs5VIu2NCuqKI1exYNFVoXu541SXRV284jv3TlTpeohLhNEVlXJ/6n/XezZsrSa45gKjImKZbFak3Ze7yrvydpmmUyxWmZ2cwDIPOnm5GR0dpa2tjSV8/DgKq4qptlEolYorC9MycazgQiRKKJUgkEm5rclFbQXRAEB0cHETH1Q8wLRPXvM65vKmJIrZRw8E9XVumjs+ruVg+RcE0dXLFAuV6jXBbBFVWmJuZIRFPUCzkSMTj1MsVcCwW0klSqRRVvU40FHZlaVSNcCzq3jNbR5EELL1OuSFzJEgiluMynm3HPclbTdaz4Kp2NO/r1c/j56p4NA87V/3YFn5+gn017OdVGYvhL4sgMbIsY+s2qqpR1zxu21XXkRBcN0nbQlEkHEfjms0bOXxgH9fecAO6rtPbOIhVS0XWbNrMhdFzWEadF48cobt/GaJRwafK1KpVnvjJN/nDT/41FcGhVMgQDEWwZR9nDz6IgcnqNZswjTy5uRyzc5P0D66iVq9zbvgo/atUilXdNQ3Rq4ycO47X46d76TLOj5xlzTVb+f6DP+Fd776HYqmKJxQm0t7FAw/+EJ/mYdu2bXS0+RkZGcEwDG7YuZ1Pf+6feOzJ/Riig9+vkpm9xOnzI1w4W2HT2hWMjl5g9/ZtrFm1kvu+8HnGg3OEQ162bdrEYN8wc7NnSLRFiAR7XHdCx0IU3QRV1DQQVCyrjiJaVEoFqtUKplln/5P7WLt6Df/3X/wpp04Ns3XbZsqlKrKmUizXicUTfOkrX0WUFQKBODuv282RI0eIBEMkEgn6VYXk7AyJeDuSJBENRygUCvi8YNsVIqEE/kAYAQmhoVrj83jILORB8BLs6MLn97fmsTsofjWt758VgqRiIzUMQnpoS3S0Wvv5fJaTJ09y/PhJBGwc08C0DNcSvG64+ua6juw4CIqrre/1etHrBsVsjkogyHixRDQeQxJEqpUCtmESi0UQBBktGKKrt590Kklv/xLuefe7kGQFQ6+jNCpSkdcGKRXzjF0YxcJiycAg9ZrO8OnjrFu3DtnjpW6ZeDUfgiDQs6SfTRu3kpxN8u+P7Gfr6iHqpQLJqWlm5qaZmEmSWL+GZDrF1q1bmZmbRzfqzF6cYWhoyE3EL46RTs7Q39/PXfe8h4G+JaRnJjh16iSXJqfZeM0WV0M4NcexF44jixJnTr7ItVs28O67386yFUt54vHH6e/vZ2RkhHs/ci8XL55ncHCIQqnIps1bqFbL6LpreKJqEpValdvf9lYyC1naOzpJpVKYTxu0dyQ4deoUjgCCJCIrAqVSoQHVc5U5xsbGkCSJzZs3Ae66qOs6tbJBe7yLCxcucOrUITo7O1m+fDld7b3kMmnMuokmu93WhVQSVVXJZDJEIiEEwUEQbUQRunvayeVy1HXX3XD9+rUAFItF0uk0iqa+4uPWxkESRfe+LOKfuPvDZSjiZdm7KyEeV25ONorowphs224UjiT6+gf58cMPMZvKkM1mOXdxinAwhCl6+fJXvo4gVNn/9AE2b73RvRZHQJJBEjWwLUbHJ/nM33yeel1HkmQkr4yFe2j5nU/+Cd3dS1yDM8NNjmVJxbGFFjShqREtNZJar9dVEHH8CguZJKMXxknOzRPyeUmmM3i0AP0DS11To2AI27bx+j1cGLvA4JprURSNeMIVG4jFYmheH80uFDRlAcHQa/i9muuoK8s4iDiWhUdVwXalb30BLydGznLX3Xfz1jffxt9/4fMYlomqyRiGjtzgS5wbOc/h55+nr6+PW2+9lUMH9/Pcoec4cOAAkqaykC9QNUw+9Rd/hcfjaXVtBdNpVY5puCGLouza0zvw3ve9j3vuuYe9P3kQW5TJmxZioxPhxmU+V7NQeBmy8/ILJvz/Up2jGa3k3HGrrj6fz8WryTK6rpNKpRo4M9ewRFEUli1bRjab5fTp09i2zblz55iZmWF0dJQLFy6wefNm15FKkohEIgCL2moukY/GA7ZtG6txinIsG2z3q2C7BwLHtBBMuzHxL2OVQ6EQfr+fRCKBpmlutUHzIQsyQV+oNXiy+Tzt7e04jkMikWDVqlV0dbl4uCb0Y3Jqikq9htcfaOiOWtSqZeq1GqZuYBlmK6m/GoP2f+Lnx0/D5jUxXItlpRRFaeGba7Ua58+fZ9euXcTjcXp7e+nu7kWQNARZoa6bdLbFsXWTQMBHoi1KJp2mVq2iyg7xWCdgUi6UUWR3bBj1CtVCBrtSpJRPY+ll9EoRr9eLPxQjnugklpx8FAAAIABJREFUHI5iA8tWrMDn81EsV+ns6MbvD+Lx+dh93R6WDAzy3g9+EG8gSDafwzRNRkdH2b51G7t27SKbzdK3tJ9gOER/fz/f+973eNOb3kS5WsWyTOr1Gl6PxGtvuoFrr722gan18NDeR/jil7/Crj030r98NXXdJt7eQXvUh09xMcuxREfrMNqq7CPgWCYCtO5rrVYhX8giCjZtsTCBoJcbb9qDXjfxeLxUq1VGRkY4duwYr3nNa+jv70dVNe677x+ZmZlk9OJZkkmXsd/V3UG8LUq1Wm1tyrlslkqx1DJKgCs37Wq5gu24NrvNn79ao66brFy1hmu372Rw2QqCAR8XR0c4dPBpHnv0YaqVIqoiUK2WW+6mtVqtJXHWPBwEg8FWt800TSRFJpvPsZDNMDIywtilcRxbwBvwo9frOA1d9IDfz4oVQ5RKZRRFZWEhTy5fIpfPsHLVCuKxCIlYjMmJcTRZ49ix4yxk0gwNDdHZ2dkicIO7HpmmyR133OGSROemSWayBHwBKsUy4xOTzKbSHH3hGJFYnIceeohSqeQWPEIhDh8+zOz0DEsH+ojFYpQKRTZu3EitVuXpgwfZeM0WLl68yObNmzl58iRej59wJEilWsTB5PrrdzM7Pcnc9CQbN24kmUwSj8fx+/1ks3lmZ2eZm5ujsyuBYeocPvIsquZWHdva2vD5fKTTaQqFAitXrmTnzp0tPeZwOEypVGIumUTxaCgNMyzLstwWfCNRALdNrWlaCy8ei8W47rrr6O/vZ+/evS1yZCAQcMenSKPT4HYnk8lkyxSsUCi0KoBNrk9TrzgajTI0NNSqhL+S8fOwzz/r766uWF/dIWwSuxfr+qfTGeo1k5HzlwiHvOi66wapmzaf+i9/zuOP7b9CZs9xHGwElg+tRDctTNPB4/EBFoZRa+l6r1y50uUS2K7mfF93F5pPQ/WqrXnV7A4399wmT0vXdXbs2MHs7CwPP7SXRx5/jHwhy4XRsyxfvpybb76Znp4lLF06yODgIAMDywiHwyiKQn9/Px0dHcRiMQKBQItLslgRxOfztVRBFmOxm0l9c98PBsLMz6f49ne+x+/+9m9Tr9YwLQtB4grXY1mWGR0d5dDB/SiCxPJlS4lGIzz++ONYloXP5+Pee+9tja+mc3JzPF9dUW6axB09epRvfO2blBdyiPLlLm/zNVdj5ps5zBWHqZcpXhWV6J82Af6jsRgu8dMmlyOJOLaDogTQNAtMt7XeTGr8fleezqOonDt3Dk3TWkSNvr4+YvE20uk0guDqEW7atMltjTQY45rHcwUcwnEcsB1EwLFsbKPRYjBttzJtua0MEajbly24jXIVKRpwX7/o5O31ekmnk8iK5vrEI5At5AkFg1g42ILIkv6lTF6acCsV126nra0NG4dCLs/ZU6dBdvBKjdO6oqJ4NLciX61TKZawDRNFUVF97mYlSRI05GOauLPFhMOX8xle3Qb/ac+w+Xevumgdzi5/BlEUcWQBUZbQGla5uq5Tr9dwHJcAalkWhUIBB6vFyI/FYuSLZSRFJhyNu92CkkWlUuG2t7ydil7DF4giSQLZTJJtO1+HUUmhWl7S81N09fZgyTp+j47PG0AyKxSLKaLxBMt6loEnQFCRkUUHyR9lbj5N0O+jvXuJS+xQPdiijC1I+MJxkvkymtdB9QZpTyRYtW4dB/ftx/SoLO3rZ34hSygcRRLh9tv9DI9OIUqu1a7X62rTfvEf/gd3330PpXyJ6elporFOgtEs33ngx2jBMJ/4zQ8wfPwEoyef4ZpNq1g2tBrFH3bnmtJkYMvYpoOkCJiGgSIJZBaSjF28QDa7wLaN6zH0CvPzs5w9e5ZAoI1YLMbAiiFmpueYnJzk8HNHUT1ePFqIkM/D6ZPHEEWYuDRD/9IlDPb3unAbLCzbQJRgITlPoZBmjbMex75SQqlSKSGJArIAlVIRwx9AU9VXLaRj7Zohntj/KGbdxONR0VSpdbiv61WyegVFUfCqIggytqO41THvZdUZVVWRFfUKyca6YVKuZjFNs2XjXikUWFhI8cKhA+RyOW666SZqhk4wFCEcibkbuhYkHg3S0R7HNHUGB5fT3tGBqChE2zoJR2PEYjGKpYbmei7nrtMeP9lslmAwyKVLl1i2YiWnz59hPJNl5aZtPH7kCNlqCVPS+OQf/Qlnz55ly5YtraSgmWDYepWJsYtIooBH1SgXC5RKJV578y3Mzc1x3Z4byBdLJNML5Isl5uZmyQyf4P3vfz+zM0lefOEYS/p6yOWLRKNRYrEYYxcneO6551m5ssSOHTs4ePBpXnjhhcb66TqW3n///ezatQtBcO3kwcUad3S2s379erJZ916agGHa2DZIDfnKZpHHcVzSX5OQ1UyEJUlydb6rVXbt2tVQA7LI50vouk4mu9AivzW1giuVmgshsGEhncXv9zM9NUskEiEQCNDW1kYmkyGfzzes4F/ZuDoBhiuJhVdXoF+aSF/et5rRTNCausKqquL1BbAsA48nRDTkJxFNMDmXIZlM87H/9HG6ursZGZ3Ao7oEQL/fj+UImDaEo3FER8S2bBwMJNkBZPwNiFO1WnXJvJqHybGL+KNhLByMutZ6fpbl4oKbnUxZdmU5Dx06xJe++hUef+iHDCztwuMR2bFrOwiuXO+ZM2colUpYhklP3zJWX3M9AiKhRUW95rhxn7Pd+v+58nduWthMspv3pPk7l0tlgSBRrtU5dvQw11yziy9/7SsUSsXWuFxsevP3n/tH3nrrLYyOjvKee97Ft7//76RyBVLZHHNzcy1vDDepl1t5W3d3N1NTU1c8P9u2mZqaItHeyUfu/Q3+6nOfJRaOLcpHLj/T5nU317Vmcv5yqoS9KpLoX0U4uC2yYDhMXXdxqZqmEYlEWtic5s1fu3Yt2WyWcoN8mM/nGbkwyk033YTf728tVIFQsHXq8/v9L0kuFUmiXq6gSjJO80QEDZ1eCaMBJ3EEUOTG4DYbcniigGM5rYEhCAJdPb0ubsrrY2pumt5EG9VSmYjHy9p165BEt5rdrErous5CJkW+WMDCIRoOI2sqK1YOYaoqsuySIMV6jUqlxvT0JKIoE4xGCQaDrt41QmuSOdit71/uuFri53/LEFwr8NZirwgNJzXHJarZJgsLBrbtsJB0SavLlg3S1d3BzMwMAwMDTE9P09Xj4PF43NfaDqlcmrbubgw1iKZFqdtlVMmHqobwtnWSzZzDZwYwchPM1hbwt8WIBHyUawbReAyfT8QRVGqGg5UroGoSZcFHRFLxBn2Isohp21RrFRQtgImEqqjIupdY2IONSHggQi6d4ujBQwytWEa1pmNYFg89/AiO4zCwtI9iqcIXv/E9gppMINGJrevUDRnBKHJx/BLV3Dxt8XY+96X7WSjX8PpC5HIFRi+c44Y7bqa7I8ZvfOj9xNq6EEQFAYtarYrmc1ubogWmVaFQXGDkzFHqDdJLMVelv6eHSxNT/Ov3v8XWbdv54Y/3Eo/HiSSeY35qjjfe+ibOjVygL97GkiUdxMIqhiVSrdUoFHNcvFinWsrj93vp7OxmZOQcK1euZHZmCseu41GVVnXIMFzoV7GUJTU/SyBs0de15Fc9+n5h/OT797eqXLbjIC7m5TYSZsdxkFUV2SMTDEaRJYVAKATQkmds4vpzuRy2bfNrb3kvtVqN06dPMzuXJJlaoLezA68/wI1vvIVYLMZzzz3HE088wfKBlaxatYpYLIZuVanUFeJtXfj9fuqGa9+7asNWCtkc4XCYbDZLV083Bw4cYM2GjTiO06qe1mo1unt72LX7OqxqnWefO4JgW8yW8nT0dvLWO+5kcMVqevoGCYciGKZOpeK6uwYCAR798VO89nWvYWZqklymSCGXIRSJcfDgIWRF4VN/9hfs2bOHkZERenu7OXNmhOGTpzl7fpq2rg6Cfg+r129AUGT8gQgPfP/f+Po3v4umSQwPD5NOJ+nq7MMyZZ45dIS9Dz9BrV7k7rvv5sUXX8Sjefnud7/Lxz72MUzT5OkDT7FmzRrqdZfYpZs2mtfFOAuWeUUVsUkoB3e9qdVcNZHmaz0eD6Ojo5TLZSTR3d8SiURLprAFHxBlxscutYpDXo9GMpkmHk8wNzcDQDKZpLe3l8HBQYaHh1/BEfvSaCaAix0Lr06wF1dUF0fr94t+1vw70zQxBPeeFMolsqdyPPTwk5w+ew6Px4OmaIxPTiIhtEiJoixjGDaCJIMoIeJKgAq2F8OoI0q0zHu8Xm+j4utg2ypGtQq2g9/vp1wutxyHbdsmEAhgNRxty9WqK4NnWOzbf5AbbriGeqWMbjiUKwbHjx8nHHZJ0N2dHfT19aHIKqFQBFFVWveiWSxsFuvAvbbF3gVNwYPmQVPX9csKJ6aFYTs4tsOho6f4h3/+Iu++807uueceXvfmW1swtnDYJQvv2LGDQjrFqo3XcGDfPoJBH2NTM+6BvVZH87hKP4ZhIIguJEkURT760Y/yqU99qvVsmh1cgM07t7N59w4e/ca3uP1972t1KpuE0cVYaKPhXAqX5RFfrnj1J9GC0wLP/iyc7U9TgvhFxAIR0RUDlyQCwSC1UpZSKYcmy4iShCK7J/qqUXdlswIBauUK7fE2LBEikQhzs7Ms6etrTbqYpmE5NmqDuNG8/GbSaxkOsqpgGwYe0dOye5YEEUQJwdIRbAfZAhydmsfCTC8Q6kggW0LDlU1sVYHdSmbd3cTqBrZp4pUkCpkk6ZkJTN299mw2SzgY4tKlS66da6nE+9//fhRZ4+jxYxiWid/jbowOIAmyCy2xTdeeOe+AqRMJBLBlFcGxERBAsHGExqAWXJvZl7Pi9mqs3r00rkZEXXXCFQRonoYb8A1dkpA9GnZRQFFUqmUDn+bDVkwOP3MQw9B5111vo2dJL8n0PD6vq4hQK5cQsAlFomSyeSJt/QiiO54ESUHxBtH1CgFfJ7mZGSKxMOViDcWoo/oC2JKB5QiIgkqxUkH2+AkEVbK5BYr5AuFQHE0RwFHwhxKUilUX6uMLuJ9LlhEkBVkSMWtlsrMTOHqJmmmgeoLIosA97/s1/N4AmfQChVKRum1y6NAhBC1ILpdjJltgRd8Sduy8nu987Z+JhsIE/BqDK5ajaRpTlybpTQTJGxbX77qGUDCCLWlutV5wKyCaI7cWWsmuMj1+Hr1W58TwMNu27mbFqmU8f+BxLCR8wTgP/ngfk5NTtLdnqL1Y4/W33cbopUmu23ktRw8/iweH5UND9PUPMjU7R7VWY7Cvn2efO4SqtqObBprHh1kpAA7hoB/TsVFEEcc2sWwdi0b7UHSoGzVs+0p99J86Nn7FUazW3K4Skpt8IDegGhaSZGODK7EpuNKK9XIZU5FRZMFddEWHelUHVSGfL3LTTTexbHAF586fYWxsDEFwdcpj0SiCrLjETM1LsVJi87bd3PL625ibmmF2dpp8IYtlOkhhjWDYJQ1KHpFisYxhCcQ72ihVykTjMdKpBXbs2IHdmHuWzy2AFAoFSrks5VKRLdduY2JuhqmpKWo49PQNEAoEyWfmsXEwQl4qlRKRSIyZmRkEQWDPdTcwMzXDv/7r1/nQhz7AfHKW4dOnqZYqfOUrX2Hbzp089PBedu/ezQ9/8jBbtmyjUNFJZ7KuxbIo8pMf/YiNW7aimxKZXJE73/42Dh56ltWrNjA7k2bfo09RrVYZGhriHz7//7Bv/9N8+tOfZteuXRx78XnuuusdPPX0k1iWxfYtWxAEgXj/UhRV48zIRSzdwBYlVK/HhQYiYDo24CY8OI2EWnRhOCJQLhYJhUK0t7UxWa1imjY1o44RNgmGw6TmZwkHQ1QqrnJDeyJGLlfAo6nU6jq1uo4gSnh9QSpVnbZEJ3PzaTSvD18g+CsavW4059jlarPY+Cdc0SmFxdVqt0AlNwpV9qIWv+042LaDKLrQiUql5q7dEgQi4VYSaZsmqqQi+i93u23TRHYEZFF0eT8NTWLb0VEaXZ5mlbuJvzZNE1GWkQQJRVTIVkr4AgEXxytJaA1XykAggGEY+L3eRj7i58LFUd7wphuoF4vMTl5icPkQt996M9VamZ6eLkplN6necO1rsaSGd6ttI4giCK4UahN6IQhCy6StWQFvJpuW5cLTJEn6n+y9ebhsZ13n+1ljzdOuXXsezzyPOTlJyAAkRAOJKEECIii2V+12aO7VO9i39Unbjd223osKimKLIGokQIhAAiHJCRlIzpyceT57nnfN05pX/7Fq1V57k8ThxhC77/s89dSu2rXmd633+/u+39/3R7PZ9GbYBVBEEds0UCNhrzqj7fA7v/f/cMe73oUsy7zw3POcfeVlfv4XfwlHlHjnu+/j0a98iY6uXiwXCsVym2l3HYFmy2EsyGL/xm/8RpvU9Jly/zqGFRUbl29+9xluveMOOjaOUipVkEXJC0YqVUBsn2vTNLHtFTb6jWpveRD9zwWkfElCLBbDtAxC0Rgdrkt5OQ8q1Ov1dmazX+o0lkygWyaXL1xk3759dHRkqVSr7chtOBJGltVXZWdd1/UqHDkOtmujaw0E14NgouNgNi0Ey8QxLRoRFVeU6WzIVG1vPwXTXlWoQ5KkdoneWCxGSZKIhUNozYZnaRaP06jVScTi6PUGer1Bd7qDvt07OXr0KIcOPYUoh9m7fx+iKBKLRLz9FiRcV2hP3RhGg1pFo1qtElJVlIhXgVFwVQTJe4CLovg/ubr+72mBqShJklBVlVgiiWmanv+yqrQ0pQapVJKZ2SlcweL0K6cIKV6W9tTUFOuGBlnOL5JIquR6coiSg4vtlW5FwHZMlGgCkTS5QZVCfoFUJINraVSrFerlAl09g+i6RiyRIZHsxAXCagQpZYPgtCJ5k3rdpCPXhWlZuKLQZqYMw2O4TMsk2dNHyOxGimTQtTrF5SJhVWUhX8GwLY4dO8aG0RFGBofQUHj44YcpVeosLi9zz3vezc37d5KMh5HDEcamZhAcgamZeUY3bCaeyfGOu+4kne1sPThXbI5EEQxDw3VFKvk8IUWmr7uP/j7PxePMqdNcujbNhs1bSCUi3HXXrZw9dZrFxUUiaoRjL36XjRs2sO6mg/zsz/4sUsgDA9F4gr7hQb77zHPMz8+ya8cOEEV0rcm60VGq+QVmZqcQ+/vQNI1wHBpa3dMDmibVcpFEIkZTt9rXeVVi4VusLS95ji+yvGL75D0XFVRRQBDBdSxwJORQlFDES+ArFCsYhoUsi9xww41s27mDiYkJXvzeUcauTxFPp7jpbXfguh6zFg6HuXLlCgkpRDwaIySJTE2OMXXtGmPjV6hUajTqBlu3b8PB5alDT3PgwAGSqTS5nm7yhRJaU0eWQsSiaXTNodHQsCyj5b8OKDK2aRAJqWxYN8ILL7xAMb/E+Pg4mmbQNzCEqqpku7uJtArDxFIZarVae9Zxdn6OaDTK5q1bkNUQ4xMzWJbD4FAvv/a/f5znnnuBm2/ez9GjL7Bn53Y2rR/FfddtXBu7jmnqWJaKFA3x0N/8Jdu27eHo0cOs37gN17GYnpxA13X6+vo4ePAgMzMzPPbYY5SrFTpzac6dP8UjjzzMjp3bueP2twOwZ/deYrEEsWSWTLaDbPcAJ06cQBAktGbr2G0Xr4CEx8R7oERhYck7Fq80uwGSgyM4JDNxFhbqSKpCpV4jEomgqmHy+TwhdaUSXCikYBgalYonnTl//jy9vf1cvnwVTTNQVbktZ3yz29/HIq64dNF6F9r5J35ra5gDlYNt2245QrBKDmOaJoIsIbFSsEWUhPby/oyNIAi4rWeoD0D93/tM8tr9FDzqHNt2aTZrKLKEKsvgOIQinvbd108rikKz2cRxHH7/Dz9LOJ5iZqbIqVcuEA6HYWqJZFJnYmIM5AQf/7X/i4XFAqISxxVWzAqCLL3P/vo6bF/C4bO+wSBlxRZRWDkHQL1exXEc/uhPPsPo6Ci/8Au/wPz8PFu2bKGcX+bQk09x13veg6YZ3HTTLbz4wvMcO3GKWq3WxmFAG8/4z03/Ovj77J9H/12SJETgj//sv/GVL/01H9+/D73aRFFVzp85y+DgYPtaeBUUHURRalWp1v5Rfe71mvTggw++YSv7pzbDdB58rZsx+PVr3a7uazDRr/b3ykIrThguLoXFJQy9SaWVMBWJREgmk1iW1U4wVMIhLNNkqH+AhcVFLl6+zJatW7Fc2Lf/BpaXC3R1e/6xfsfwHAVaEZ1jI9g2otNKInQcD0i3XpauIbiQMiVUC1y3jCirCJ1ZBBtcYbXuS2wFAYZheDee62DbFplMGse2CUfCTI6Pk4jHMQ0TWZKYnp9n+46dqKEwqVQaJaySSKVQVBU1FGoZc3s2fpqmeXoo28Z2VyrsedO5AqIkrtqf1zzXb1JTJPE/vOkbdZ0H13zxqj8L9gPXdWnUqmi6TqNWxrYsTMfEdi0KpTyyorIwP81NB2+mUqlhmTrr140yvzBHKplElFyW8wUikVhLJy+hyBKXL52io3sASZaxDIN4IoaLhNasUS/OIdoGXb2DWK5LLJFFDkWwDAdRFLAdg1g8g90K1gCc1jSe5XisSkgNEU/GuXT+PIZRR5FkYolUuyhHtVQC0yYUDXPu7BmGh4dxXQdNt4knsly/NkZ/TyfLSwvs2rOXZDxGrVFjZMsuNBMWFpaRIxF++M6bGRocAssgksggK1EEUUQSWgOhCHaLCRq7eolSKU9XTw7btrhw4RKVSpW6bvGNbz5GqZCnWa9iWjr79u/h7W+/jeGBPtaPjiCIEsPr1qNGYtiug6LIiLLIunXrmJ+dw3Etkok4zUadgf5+5hfmqJbLDI8OMTA8gouMrCg0GjUmrl5DEkRSqTjFUoXOvnVEIpFV+kxe794QpTe97z70l5970LOQEhEEMEwLQZRwEXBMAxCRZJlwJEKo5RNrWRalmsbo6Hru/8ADqGqIL3/5YSLhGDfddLM3AIoimq6T6/KKLczOzrFt23ZEUaK8NIdpaoi4uLZOLBkjFo2zY/tuFEXl7Jmz7Nu3n0a9QTyRoN5okkpniEWiRCIxHBt0zfASrV0HVVZoNhs4tkUkHKLZqFMqlRFFkUceeYRIy+/6t3/7t7l69SrDo6OrdMRCS8ZnGAaKJBOPx7hh/35qtSpDw+vo6elCxMa2LbZv3cbE2DjRcISpiQlMvcnG9aO8//77efKpZ6hWytz7nnczPzNDpVpDVkOUqlUkHAYG+mg06qRSSd7+9juwLJN0OkUqk+CBD36AH7nvPr7wl5/nxIlj/PzP/QK/+ZsP8sTTz/D0M99FtxwuXrmKqevcdtttbNu2jb379pFKpZiZmfESAC2HcChMo9FEEiVkWWBmZoZsNossSxQKBRKJRCtxy2ViYpJ4PEGz2SARj9GoN4hGorh4/tWNRsMr7GUYOK6DJEvUqlVEUUBRvJlW0/KCrvt+9ANvat+9fH3qwTYYFFZA4VrtsygKbc2vDwp95wt/it+f5vf9mH1HDB90B0H1qrHNdb5v3Av6VQcT8dcmH/rguZ2zJYrIouQlyQreOOEFN2p7OR80+vUGMh1ZIqEQX//GNzlw8BZSmU7+8I/+hHfceTexZAc//sGfpFhpgqyiyAohVUGSpXbRL18KFASrwX0Hvi+h0AfX/m/bjHGLcAu3pCo33XQT8XicZ555hhtu2Me3n3yS/QcOEI8nSCSi3HrLLbgIDAwMttfvt2AOUfC7YG6bH9y0L4Xr0js0yC//7M/zwAc+iOXYnD1zhqHhYSzLA93+8iuyDtiyaeQN6bdviWIr1YbprgVf7c+vZ2vXaq9X2OPVQJ3ruuAK7WQM0zSZn56mlJ+jUl4mGfPAc61Wo1gseh6nlgWSN4jUyhXK5TIbt2yh0WzS0dlDNtdJPJmgq6urfSN6OxdwsxBdqhMzJMMRGlrTY3tdr4Ng2SB4VizRmEjha4/QFB063/MBhP4BBMPAFpVVx2O2yl66rsu3H/smmWSCkKqQSCWRRYmQrFDXvCm9wnIevam1T2I4HEZRQkSTCTo6s0iSQjga8yxtXKGVnbzsnYOlRZqNGrFwGEFS6ewZpKu/n2jcS5IIhUIosvR9D7F/zrY2Wct13R9QsRVrTa98lSl7d6UAi5/cUFxeplQqMXH1AlqzRqVWpl6vMj4+7jmvdKT4qZ/8EI985WEOHNhHoVBi89Ztnme4YRCORdENk2gsgSrHEKw6C4unyQ3sbdkseYUUmuUlXLvB3NVjaJUSI1tuoFTXiUZSmKZJ37oNVMtlXETP87j1gBRFkaYtEApFEEQF23HQ6jXqlSKSYDN28RSCqBJLpsjlsrhyFNO0mZyYQ5ZFkskEjzz6Ne659z185lN/wv0f/mm+9uij1IpL9A30snv3bqLRKN/8u0d57thp5FAUVVao1mv86e/9e3bs2oPkQjiWxLVclEgUSfYKPIhYWJaBa0OtkqdRr2JpdcbHxzl8+Ci7du7h2LnzuI7Dxz76057+MBwnHvc8TkOqjGFYCIqK60CjVWL27CsvIwiwfuMmNEPHqFeZnZpm544tHDt2lJdOHOcnP/ghJEUhk+vCMCxcy+uHp4+fZPPWLcwtzlHXTHrX38yuPftIprykYCHIRq8ajFvdRw696X33f/nJ+11/sFIUhabWIJVKtQftjmwnluWQ6cyyddNmhoaGCIfD/N1jj3tOEy2HjGjYK9Jz8OAt5HI5LDw2qVKpcOXCeeYXZr1iLNUGe3ZuYXBwkIHuXnRLRzN0YrEEc7Pz9A0Mtp1QisUikUiIVEcWxxVIRkNYlsdAd3V1Mb+4CKaGaWo888yzbNmyBUEQGBkZ4cTJU2SzWQ4dOkShWOULf/23fOPrj9DR0UEymfSSKEMRdL1JPJ5su+JUy0VSqRRjY9cYHh5E0wyi0TCzU1N0dXUyNTGB5Vo88cQT9Pf0cuMNBxBFkRMvn2R4/QaefOI7dHZI2OX0AAAgAElEQVR08PVHv8YvfvxXKBbKnD57hngsQq3a4P3v/wBXrl1FVVVyuRyHDh3itjtub5/XZrPJ2bNnWb9uA52dnZw6d5Farcbo+k2cOXeWDcOjfPSjH+XIkSN84/HHCIfDnvVls4ljmTSbTVKpFJ2dndx9911Eo1HOnTvHiRMnuHDhAoqikE6nKZeLmKbJxYsXCYdCdGU7UGQJHNuzNbVtYrEY8/PzdHblmJ2dJRKJoOtmm5H09bTpdJo//Ysvv6l99yuPHXJ9EOgXMAsWL1spHrQCEGG1i04w4Sz48pMLxZZNm//M9pv/O9c2Vy0XLJgWdISAFWZ8LdHUdr0SBGQEOjo6vBoPLSeKaDRKQ2uu2o5/bJ4kwUFVwxi61WaqXXfFQ71QriCK4FgariMh+pCktV0/WFhrwBCUjAaDDx9g+04uhmF4x9P6reJXxhNXtMtCS4InCnL7XPrnWJbltkTDP0/B7QbPa9CBxv+tX4XQdV1sETLhGLff9jb+9qGH+dznPsfP/MLPtaU7K8s47fW+9z13vCH99i03z/hmgTC/+V6JoUgYG5dCoYCu6543pq7T29vbjsLqlSpGUyORTnHDDTfwjW98g0qlQkdnFtd1PWeFv0e0bmhNz40DB1y7/ZJwvXjBsTn8m/8e4fnv0rF9F044RtNortJ2+c3vbIcPH2Z4eJjFxUUvsTEUpqu7h57+fuLpDHI4Qjyd8aoRhqMIgoRlOavsZIIPFL+DJpNJ4vF4uzSwYWoIrk25XETTDHTdxLZdHOct6pLxFmvBvi3LrYEIl6bewHG8KmKZTJZmUyeezPD7v//77NixlbHrV1le8jxtDcPANC1KxTLRaNyzJJJVapUypWIeEXBsjz2RPak9kiRRrTUoVWssFfMkUmkk18UxNSyt6dmx4T1hGw3P0WJ+fnblAesKKEqoDTa0RoNoJM3GbXvo7O2nUCpSLhQ5ceIE586fJ5FI8Pjjj+MnOP3oe+9l/PoVbjp4Ax/56Icpl8tMTk5y+NhRtmzZxv/xq7/GwnyR3lwHsmjTlevwHtKO6yXpsJIcZLWYJKHF+F+5cgVFDdNoeIxaX083oyND7N27jYMH92O7AtmuAaRQhIZhEU2maZguoWgCFwFEiXg0QaNWp6+nh5DkDc7haNibSlVUtEaTcqnAXXfd6QW58Ri1hncfW6bO9NQEuukF481m3UvIbE19vmYWeCCw+kHdO6IsISlesRrT9orUiKJIJBIhkcliCzJ7bjjAve+9n+07d/Pd517gU3/0mdbMyAiSCJIIpmmzbdsORkZGCIeiLC/O8+wzT/PsM09z6cIZFudmmbh+jXJxievjYzz7/HNcuX6d+YVlbEfAsh0GhgZZKuSxXAfTsRkcGW7vZzweJ5VKoWkNdL3OsWNHsG2bWq2KY1ns3L61bfdZKBS48847OXr0KLVaje6eHP/b//rLnvf38DBLCzNMjl/n3JmXadQq5PN5rl+/juu6dPf24wCDI8Nku7qJp+IsLi4iSjKVaoNoMsXA4Cj7b7iJH7v/Af76Sw9zZWyc/QcOMjY2xgMPPMDIyAg//6//DadOnSIUlvjpn/ow2WyGLVs3kUqlyOVy7Nixg3g8zoc+9CHSqQxPP3WIkBom29HFrp17yefzNLUG0UiId931Tpr1GkMDAywsLPBbv/VbPPTQQzzwwAP86q/+aquSYA1Na5DJpDAMjaWlBf7sz/6cz33u8xw7doLt23fy2T/7c+6++4dRlBDFYrnlu2u09K4G1UoN2/7+YmXlcplEItGWFfjjg2maRCIRisXim91t28SRD7p80Oczmj6A8wGffw8GbdAURWl/Dko3gDYD7LtS+ODafwWT8fz1+oHF2gqK/suf+fCBn/87n+X1Ewhd12Xjxo28+OKLVKvVtsQiyGZ7+yijRhUQRRRVQg3J7ff+/l5efvllbEP3ALQISCu2qn6w4W9fFMW2LaJPovhA3gfX/rX3i7AFlw1a4DqOg+26uIKAIEnIIRWlpa8WRRFRkRFaY1+Q1V7rBLIWJAcZ8+CMbvv5abpULZ0jJ47S29PTlmsEi60E2/9ciYWv0f4hZaVfWyIitObXwXUcRMm7iJFwjOHhUUQcbCuELItIshdxLy8ve1m5oRC2ZVOv17n33nvJdXUxPj5Ob38f69atQ5VbN5KfBUqANXUlIn1d1AtF5IqBobiI8ShRQ6ZhVTyJhyxyU8cgHOhG23wDbjiKioBuO7is9jt0bBsB2Lt7D4XCMrfddhtT167T0d/vnSMcXNNCcL2ByLIsNm/byuTkJI1GA0kSyHTkUEIRBD/BABckAUWR0HUTUZTZsm0XFy6ewrR0aDQw6lVcdDq7hsh1DeHIJshhrzCO6NntBWcQ1gYA7Uj8dfqxEJBFBGcggtf9raw3XdX8qfzWg0RqJRZGnASJeJZGpUK5uoggSiiSimXYxCIqM1MTzE5OUWzUuP2Od1ArV1i/cROXzpyhu7fP0+2rEkZ9Aac5xfrRPciyQtN0CIkSjm0RDUcoFhvkOnsY7ulivqxTDzcwDI14OEJ+aYJUrp9i2UKKKNjYRGNhRNMhrITBdgiFoFhYBqeO3sijCiEy3d1IoTC92QFyPaNMjV1n/41v488//Un+67NPsn3PHro6c4iuQL1mcO+97+bJQ0/z+OOPs3/vLrbt2M383Axnz57hK1/4C378/nvY2pfh+CmLjq4udFMjmUrR1BsgysiiV2HdaFSQaCKpMVw3wshQD9XqMpIqU12scfXKJAv5Eve974N0dfciyAl0W0UUmkRiCfLlCrFoiPn5OdKpDOFwFNNyyGR7kbNpLLPG+PVrrBvdiOsITC/OM7YwT8/QRnbt3E2tnMd1JBKpNKauc/HicRKpNPOlEh3FIrreRFHCHD9xhGx3D5lsGlEQELybw+sPLQAN/xz1s/7hrVGrt0rNR1HDEWKZHKOjowwNDZLr6UOrV3nhue8yNzWJVq/iijLDw8MYOCSzXdy6cy+JRIp4RObkyeP88ad+19NYK2Hm5uYQRZGxsWuYptn2lv439/4Ktm3zve99j1tuuYlr166A69DVmUWNJMh15DANm3qlRmd3lxc4mU0mJpaYm5/ExcYwHCanrtPV0UG5XiUcTXD27Dl27NjB0tISU1MziKKMbbtks1mmZ+d59tln6entJCTAXMvLORENM7O0wN59+9ENjbMnj7Ju3TrqdY2ILHNxYpJKrUpPXzeGYfHUk0+zc+dOurt6sB2Xnt4BhobX0dc/ROrqNRaX8+w/eBMPP/y37Ni5G0mSWFj0Sm1v376TpaUlNE1jcXGeXC5HJpMi2dHBPd1d1LUmG9cNsLxUYnmpyi03b6BSrvLf/vRP2L33APliAUFwCYVVevt6+Na3vgVAR0cHiUSC9es3MjQ0xOysx/ovLs57vt6Gyde//ghffeQhOjs7KZVKIIVJpHM89cwLhKMRvvzlL/HEt79FvVojYbn09fV7hS1EmUgkRjKZpFgs0qg3MXQTWW6BF2cFcL6ZzXVAFCRcx8UWHSRRgpZ0w7WdgGRBDSSirWiigyx0UO4BrAJrgmsjtb3gWzZvkoQqryS3+bM2/jLAKmZ3LZvrJxO2S5CLIkorvymTTcC4wLWx69x6+21t8KgoSnvc9x2BLMtBsAXAbDO6vl75Dz/1h3zoQx9ibm4OQZCRBLElvQy1JVn+cQcT9fygJMg8Bxlh/xz5n9vnShAQRNHDOoDdyq0QRc/lSZIkHAnAQXBd3Na6vT7UAvat8V5RJQRW2OPgfvjBWxDXtdlwQaBWbFBeLvCzH/0ZPvf5v6BQKJFIJFYtH3x/o9q/WBD9RjX/BMfjcVwry6WFGZRWlFiv12nqRYrFIvF4nHrdq2yYSqW8IifQ9irNZDI0Gg2i4ciqqZXVUZCLooQQYzGq58/y/F98kfs/+QmWZIVw3cS2LERVge4stWgEW5EISV5ZUr/jro3cgDZrXCwsE08m8IpOaOiG5xva39/PwsIC6XSaiYkJms0m27ZtY3Z2GqAVUa7uVH7ECTA+Ps7g4DBXLp0FVwZZxDZMauUCyUQWNZT4PmnFmziZAPxLcfJYab7vZyQSaWdEV8sV6k3vQfjk00+zc/t2pqamOHDrLRitQhfHDx9mx7ZNLC6XENQouCKCbTI5OcmwmkJNOsiCiCA42I6JDEQUiRICUiTFYDpOoVQlrCqAQ7VWR403EV0JTbOIpZIszc2STXtFHEzbwWgaxBJJmrU869ZvBgccUUI3LEr5Avl8gSe+9W3qzQYHDhxg3/79/PGf/Cm33v52Nm3Zwu49O7l69TKZTIoD+/dh2SabNm1B1zROnTpNJBrnhRdepDbag2HoOIYIooyiqBiGidhiPMyWl6hl6YQEFSXsaY4N3SGTTvHIS1/1ktkScWKxBNFoHMNxsS0No1W629ZNJpfmqVbrlIplcrluIpEYsWSKWrFAuqOTXE+UaqWB4zgkEgkK5Qo9LXajWa/jiDqReIJKIe/NyBheeeV6vY7jQKVYJtLR3S4XriiKZ6n5Gnr5H1SzXS/WrTc1cr0D7Nt/I319fei6zplXTnLh3BkiYRVLkxARmF9YINfdw4+9/8cIK2HC0SjxaJhP/+EfIIieo0FTM9FKVUqlEq7rUqvVME2T+++/n7179/L4499B0zQ2bNjAhQsXmJub4c53voPrV68wvK6DxcVFYtEEihzCMDxbzlAoRCyWoLu715MaDKXRTANb03AiDrpmcMOBA3zjG99gw4YNTM+8wgMPPMDhw4e5PjnRtnhTFIW5qSm2bNnCqVOnuHR1jKbWQNdstmzdRCwW48knn2TLli04jsPRo8f4qY/9FNfGrhMJR7n11luZnZ0ln8+TyWR473vfy9mzZzl//jymZbQlJB/5yEc4dOgQlUqFCxcucNttt3Hs6MuMjq6nWC7Q29uNKIpcvHiRpmmzZ88eOjo6OHv2LJVKhbt/6E6OHj3C4eMvsu+GA1y+MkZPXx+OZbQlV/4YIwhQzC/z0tw8TzcaaJrGbbfdhhaLs1Crs3nDRn7oXe8kFFqxMxsfm6Gha/y7X/8/uXzlGvv27+GXf/GX6Ors4IUXXuT555/HccBEpdF0cVwdWUkgyBZK2AOa4XAYxzR+IM9dHyQ7jqeJ91lLAEVa0TRD0LVjBUD5LKrPesIKIeNLJQRBQMRdNUvrt1cDycAqlhn4vvE/CLL99frLN5tNjh8/9X2/EQTPRcNnfYPL+Pvh67Z9Dfc999zDpUuX6OzsXAUg/X0MWiG2n0+B/wNtVtoHrv62V4HnwHluW9+1Zu393ziO07bG84MJ//tgMBME9K+mf/b3K9h8X3MfSPuM/ef/8gsgimSz2VVEm7du+/8H0W908y9aNBEH1ybV0YWr11sXBGzXwjSbfO97J7jp4O0UCgXm5uYYHR2lf2gIUZLo7h/AsizC4fAqzdXal+CCKwpImRThfZu4R/1x6o98lfTuWzCkMIJlY9QazA8Mk9m9BSsUwSGopVrRK/nRJ3iFVxqaV5BD7Ujjup7fc6NZJxwOs7S01J5SymQy1Ot1pqenCYdVUqkUluuVQW9Hmgirbth0Ok29XgZRIZVMUayUaVarGLU64UgCZIlIJASwYu23hmN7tU77RoKKf0kgWhRFFFVGtVRS6QzVagfgPQSrtcX2Q3XTli18+7Gvc9+P3ke93qRYWGbXrl1cvnaZkdGNlGs2ri2yMD9LtqsPSRKwtQaKGgbBwrZ0lHiY5asT5Lr6MOUoizMXyeb6Kc3PMzQ4ApoIroPVKBFOdqKqETpyA+iNOpX8MtnOHPVKE1Fqkuvqo6FrqKEwAhAWLVzH4dC3H2NqYoJsNsOXvvQQTV3j4x//Fa5dGyOdTLK0tIAgCWzdvJHiQhpXEDhz5gzPPfccQyPD1CfzWC6IqsqG3iz1WoVYIongtgp6SDKC42IaDUKyRKXWRFVi6EadRt2zkzt+4hSSEmLr9o3EO9JEIikajSa2bWDZBgtzs+jNBrOzc8wt5Ll27Ro333wzX//aV/jwT36UYn4WQZDAtbl44TSRaIJcVwfD60ZJFotk0ynqtQpXLl+kUm8yWq4yMz3N946epKurE8OwqNc1MokY4XiS/NIitVqlzR6pihwIpt8a/fXmO97Jrl27iEajzE5P8+Lzhzhy5Ig3gKoS60dGMUIKcijMnXe/h1x3F6FQiFwywZEjL3Hq9EkkSUB0BRrVBlI4Tr1aYezSWe6880727t3L9PQsTz31FI8//m2ee+4F9uzZQ1dXJ0NDAxQKBRYW5jh16hTbt25haWmBvr6BVrGhKIblBUeapoErYxqgqhFEIUQsGqFpCwiCQiTsMD+/SGdnF5KismffXv7qb/4aXdc5d+EC73znXVy8eBHbGWX//gNMT43T2z9I78AAE5cvcP7UMRrlJfoHhrnttttYXl6ms7PT87Yt19GaNnOzkyzMzdLf38/zzz+PGlJYWlriueee46677sIwDKanp/nOd76Doihs3LgRURRZXl7mq1/5Gu9+971Uq1UWFhaYnp5mYmKCjRs3Yjkus9NTbNq0ibNnTzM4OEj+pSVEUWTL9t3YyHziv/4en/3sZ8kvLiFJNoLoklDDWFrTK4KlKpTNJrG4iu1ovHT4OVKpDIoqcvLlY9x08EY+85nPcPXqVbLZLNlMgnq9zsz4OIoo8NR3vsOJI0dIJeLI4Wh7duJf/+IvsWfPHl566SU+/elPY1km0WgUw7BZLi2QjseQ1NCb3m+Dmlm/MImqqgGtsNf8MdL77eopfD+J0H/3v1NVdYUtllYnvPnbC4J2H+T57LIPaoPA29+uzygH9da+a4fPsPoyBz/5z8+v8jXosALig84gPo4RRZFyudz2/vbBuF+h2AeufmVLPyDz9//V8pqC368NTmBFa+47YAQrNPs4Yi0IDwLwIOkIYLsrFRp9SWBQK+03/3iC7iiSJCHFFQqFQtsLO1gIyv+NH3i8Ee0t4c5hWm57J75vcHkNdw7fkWNtYsCrdYLXav7vRFHEsV1cUcDQdRr1CogijuNVkMvluuju7uHC+UuMj48TjUa9LF/HIZFMksl2IrU6fDKRWAVA/ZcoigiALEvYroNkp9GGB0kZNlXbQTRcbF1HdF2krm7kngFkJQQ42K3oTQ2FV3U+8PRh1WoVR9dptPwjETx/yZYlxKrotl6vY5om3d3dKIqM40I4EsX3ePZefuTmfa7WauAKqHKYsbErmJpOs97wtFWqjKyoRKLR9nSQty1h1cPu1ZqEV8Hx1V4ugWsZwNprr3uwKZLwg3Pn8K/J63W7lqxDABzX8TxdTQfD1lmYGidfyFMqF4jFovQN9GM0auzatYOezk5OnTzJ5s2biCfjKJEYmm6SSXfQqJeIhGTqTZ3+oREmrl8kGgl5igHHoVZabhVRkLBNE8UxaGom1XqVWDxMJKISUqPUaxUEOUI80QlyiHA4gqHrjF27gqPXSCciaJqGLKlUGnX0eo16ucST33mCO26/nU9/+vcpLM7xbz/+cd5+x9spV0oYhsHs/Bynz5ziythV8kuL9Hf10NXbz8Jinl07d3Hl2mWuTS0BEgPdORxBJ92RZnxizNPvI3jOEIjUKnlq1QJmsw6iQigapV5Zptk0WJhf5trYNSKRMAduvJlo3HMieOHZpzD1JpFoHNF1WVpcpFlr8Pyzz3LzTQeolIrMzk2TX5xjdm4B3bIZ7OlFDYUxsTF0jaH+AYqFZS6eP8sLh09w9OQZDEfmpSNHkNQ4gigz0N9PLBZnbHwcUVJIZrqQQ1FGRkZazxjfBWNlSnRVk+Q3ve+OjV1+8OGHv8TRo0c4duQlSpUlBMlFlF2aDZ10tpOP/NTPcM+9P4KoyGRSKRRZ5j//p//QDsxN06RQKKHpOrt27+LGGw4wMjLAt5/4Nk8++R1eefkUCwsL9PZ6BVTe9a47kSSREyeOs7y8hCAIpFJJJicm6OrtAVZmxkzLIp9fJhqNUC5V6OzMeHZtyFRqVUKKjCQJLC4uEo3H6Mhm2bhxIxcuXUY3DF45dYr3ve995PMFBgYGGJ+4ztDQEF//+qNcvXKV/QduRAYmZ8YZGR3h0Ue/we23384TTzxBKpVCEl1m52bZsnUr4XCYixfOtwf148eP0d2d4+abb+Lzn/8LHnvs23zsYz9NPp/nbx/6Ep3ZTsqlMp/4T59gdnqBRqPOyZMn2bV7J4uLiwwNDXH27Fk6s1mKhTyVchkXl6mpKRoNDV3XSaUzdHflsF2X5aVFbrzxINt3bOexxx9neHgEw7Jo6gaGZWNbBlqr4q4kihh6A0NvEomEePaZQ0gi/OZv/N8sLsy1weLExAT1etMjdyyDVDyGrVWQHINkRGF+doIXDz/HSy89y0B/F/f80Lv5nf/yn9m2dQv55WUWFuaJRKP8+Ac+/Kb23YtXJx5su1+1iCVfyuDYThvIrnZxWAF/Qdu0oDOED9ra7KyzoskNglSfyBIEoW3H5rOlQeDsg8sgU+0DYh93BBO5fSAZ1FP7+xxMilyr8/X30QfdiuIVLolEIu19848vqNn2lw9+DhbwCW47uC0fgwQZ4uAxBGfM19rTBY/Jb8FET299K1rp4HkMykv84wmCa38fDddBCYc8iYm9OifFcdw2oN66efQN6bdvCRBtWCs2Yf8UEP3/pfnLi6IELjgI6I0aiiLT1DRwBE+jV296ZbMdh3q9jmEYZLJZFEUhGk9gmCbhcJhYNPZ9Hc6PHF1AcAVEQQDBQBZkdLkDQxdx6mUkF0zLwhzoxc52AGbL8sa/UVayUv0KhP50idvUWV5aJJfNEk+l0RoNb+BmpdMFb07vQSETjcbRTRNBoB3N+yDaz4lyRQFZkrBtl3Q6imNayJKCZtmAgdk0kMPRVUkHrrvyAHmta/S6TLQQuJFfBUS/WvuBgGjcB9vaFaEltG//yw18v3Yxz9/Vsh0QReYnr1Jv1EmkYzSadV46doywIlIo5mlUStx6yy28cuYVpmemyXYOosghcAwMo0YoEkVNpBEEiY6oSUNvoqpJVFHBNCsYSoKo4PL0V7/Ijq17SCQ7UOMxJBGMRplCqYEoK8RTaSxLRYnEsR2bkCITEh0uHX+OytI0kqSSTGVoGE0axQUe/dqj7N6zl/GZORrlIve9526iiQSTk1MsLixSrdZQFZlNWzejaRr1eo3i4jInT5/n6UPP0mw0mJ6e4trUAqVqA8uwuDa+xPWJOc6duci506c5d+4Mw8OjzC8somsVtHoFEZe5uSXSHX00aouEoyrHjr+CJEn0dHeybv1mjp04gqKKdGdz1Gt1ekc28ru/+1+YmppCcOD+9/0oA/397N27i9HRYWZnJllYKnHgwE0cfv4F1HCEdRvXU6mWmZ4YZ25ujuWlBR5//jTLVZPz1yZYKjdJp1PgQqVcoqurm3Qmy9TkLDXNQFaj7NixwxvcpDXuNf5LFFvvb77F3ec++6kHLUNHlSU2bdrM1u0HuPe+93PnXe/mJz/yUTTL5ctffZSDt9yKhMnvfOI/8vST3yLVkaZ/YJAdu/awcfN2EqkO6k2N7z17iFOvnODc+XPYts3s7CyGbvPBD36IeDzB8PAI5XKRubm5ttTj7rvv5tjRo2zcsJ5UJkMkEqZULLO8vEwkFsLFRhBcioUCjWYFwzRQ1RCT09cJqRITk9fpzHWTymRxXMgXiji41BsNbr/jdirlCkeOHKVarfK2W2+mv3+I/p4etm/fTjSRRhQkNm/byNjEJDu27eT06dPE415CYV9/Bss2+eojX6Orq5NUIkUymWRychJJEunoyHD9+nU6OjrYtm0bX//618lkMtxyy9sIh8N87GMf40tf+hKjIxvI5/PcfPNBnnr6KQRBIBwOMzg4yOaNm3Adl2tXr3LTLW/Dtlyi0TiuK1KvFmnUqly9fBXT0Dh28jjxWIoP/8RHiSZTbNuxi0qtwQsvHmbzyDqS8RSSIGNoJqGQiG1ZRCNhZFGg0ahw5vQrlEsFro7Pcsc77uSJJ59GwCUejSAJoMgigqwQikSxTJumppNOpomGo9SrdRbmZvnSQ3/DyeNHaTSbqJEooUiEH/uxH39T++6FKxMPgg+ixLZbhCzLKLI3xe+XI/dBpG93FwTFazWyPiALh8MtwmB1vo3PNAdBX1CeEGSKg7KOIGB+NRAZBIBB3bbPsAbBqr8eWJEzBJ8rftIg0GbEg9vx9zm4j2slK8H98T+vBcTBcxt0+Qgeg3+NXks+sZZQaJ9XYWWdPku99jiC61u7fsMfhl0XO5AcGgw8XNf9Hw9EvybYCn4lrgw+r8noQMv94vVfQTDmDWoALpIkUsgvet69egPXgZnJKURBoFReplwqkensYGBkmExnJ4IssW7DRmKxmGf3FIkA3+8r6Sc3iJIX2aktZwbB9YT4drGMaNu44RBqXy+uIqGqXhJjOyKzLWzLA7yWZWLbHhAWBJhbXKLRbJLOpBEsi1xXjnKthozlVUUUXe8QbRNJElFUBVsQcXGJRiNrIjr/vLbsYKyWr2arTK6um9iW6fm0KirYntWaICvEEjHABtdLZhBFEF0Xge9/vV5zg+fOv17iq/SPQPvBgWja/dJFWPW3K6wccXDv/U/edbSZmZuhVMozdu0KtbrO6PAosQjceuMNNKpVXn75ZTZu3Ub/8CiZ7l4vgBHA1OuYdohEKkejXkd2LBxHwHQswlGvgI5ou1TyM4xPXkWOxEhmEzSaBcJhiXQiQb1iEktFkcMp5IiEaTg4Zg1dtygVS1y7eIH80iIjowO8fPIlIoJNYbGIZdh88+++wbHDR/mJD72PTKaDoYEhzl4Z4+GHv0Ihn+ep7x5Cq9rcftvtTE6MMTF5HV2zmFlaZPz6dfbu3sP5q1PIlsTVa5N0ZDPgQiKRIhFPEY9nOHfuEhs3bCK/vASWSDbdyfjENH2DvTi2STqZ4tq1qyTjcdav34AgKYpxREAAACAASURBVFw4d5qJsQnWrduAbmio0TjNZp2h3g46UiF6OtN0ZVPYuKghFdu0KBUrLC8vsWHzdrp7+rAsG1UNoVkGlXqd4yfPUKjaiIiMjo5iWxapSBTbsXFEEcM0KRXyROJpGpZLNJph374bvMFObA2qQQAtCCuBlvjmM9GNWvnBfXsPsGPHHrq7elBVmVfOvOK5Uswv0t3TxQcf+CAnjh/mob/6IqOj69i5axdbt2wlk0hy9dpFTh5/kdnpKerVCgJ4dmu2g2XB7r0H+Vc/81OcPHmCXK6TRCJOU6tjWSa6ZqJpOtevj5FKZ4jEYnTlulhaKrTdAiRBIhaN0ajXCEVDRGMxbMfFFWCof5hGo0lf3yCIMhcuXSbT0YEoSTSbGteuXadUKnPu7AXWr9vI8WMnSCbTyKpEV083sUSMWr3OU098G13TiIZjDA4PIysyS8vLRGMxGppOqVzljjvezhNPPEG9WmdmZoZ9+/aR6ejgbW+7DdP0no3rR0fIdWaZn5slne5gbGyMM2fOIAgCv/WJ/0i5XMSyLfRmkx07tjI6OoKhazjA9h3bcVwXQZDoHRikXtdwAVkJoekmDU0HBGRRoFap8MrLx5lbmGs70dx9911Mzc9x9tJFlooFMl05RMfBdRwUWUFVJZbzi1imSyyawLZ08vkCmzdv49d//d/x13/zEOlUBsN0CEdkVFUB0UHTdUJqCE3TvLEtFiEUUr3j0BrEYxEcy+DH7v/Qm9p3z1263maiRWkFnIqi2E5wsx0bJSBDcAKsclBfDCvuGj5T6gNXQZSwHRdRkkHAmxEWvKqGcksGYZqmZ/EGSLKMKKxIStZKGnzpRBB0rpVE+O8+Gx501AiCcF/uENxOEEj74BhYFTwEgb0/k+QD67UgP5gU+Wo686CGeW1w4C/n/x0MOPxzHvxbQAKCBN5KcZhgC2qog1Z93vy1h11wfayzUhK+DZ4F0SMqLYvtW9b9jweiX7UJr29796oRzj9gm6/GaPoduFIqeSfaMBDxDN1FUSTR0cGGTZsJx+N05nLEk0l27NjB9MwciqIQi8VQZKWtxXJb2p6VzFpPh+O6LpIg4EoCrghyWEHTmzQm5yEahq4sSkjBNR1wXZxA1GyaZjvhQA5MC7lAMpVElkSiiSjFUhFZEEnEo9itxETHsVFUBVFWQJSQgn7WrHRQIcgCC2BaTpvxtk0LARfd0HERMQ3Nc52QBUzbIRJJ4th+9Ohp0cR/ggdBEES/3vUPth8YiH6NFmQIBEFYHTiseeiVKxXy+WWWlqap1aqYBkQiIj3ZHKauMTA0iG5anDpzDhCIxrxSq81qhe6uLiJhFa1aRYnFkeRIi8EDy3YIqyr1Wonde/bSN7CeRsMk17+BUqGBpteIRCM0HQUEGd3UcQyLqYmLXL90lonJMQ4e2MuLLx3hk5/8Iy5fvM73nj/C49/6Nl5OtcWWTSNs3roJw3Y5+sp56rbCi4dfptawiKayTMxe48jRU1y+OoPpxLkwMc1SpYEUTVJYWODc1Qk6k1kG1vUQi0QZGh4mlUmj26A5NhNzM5w4c5qDB25kabnCufOXKNeblKo1QoLA1MQ4jiuQzy8TUUNMzc4hCy433XgzWqOBrtUxHJEd27cy2NfF6NbdpDuzFCs1DAvmZqaZnp3DdUWKhTxbd+5ClARs28LUmpTnFpEcEa1hMz6fx8Uln8/T3d2N1qwTT6ZoGg36B/pZXsxj2iIOKtlcH/v37UVpyQ7aDLTXOVbef0BM9B/8we88eOHCBc6dP8fU9DTr122gq7ubxx57nI/8xE8wNzPDhfNnGb9+nVq1xJkzp7l+/TqzU9NcunSBudkpTFPHsRx03atqqmkaP/xD9xCJxjjx8nFmpqbJ5XKMjIxgWRYzczMYpsXe/fsplIrcdONB5ubmyGQ6sCyvvHA2m6Ver9PZ2dkqRRxGkhXC4QihkFf0pVKuEAqFsW2HmdlZcp1ZdE2jVq1y4fx5BgcGmJ2ZpiOV4dLFC4RDKrt37uKRrz1KPJZg/boNJOJJNm4cpbevj2xnJ7V6nXXr1rUrmjm2wM4duynki+zetYeu7m5S6TTxRIKJiUlGN2xg6/btfOeJJ3jnnXcyMzvHu+6+m6XlZTZu2sSBG29EEAUuX7vG5OQEt99+G7/8K/8WG4G5hUX27z9IqVymVC4zODTE1u3bKRSK2JYHHtRwBEFcqUwruC6uY2NbHply5vQrTE1OcPL4MXTTZOfOHTzwwAPs37+Pp546hCCpiHIIx7bIF4rohk65UiadSVIuF6nWG3zxL7+IruuIsoTtOIiCgCR6nvGGoePikuvKYbaCfUmSCIVCNBoNBBxEAd77vjcXRJ+/PPbgilzAu6/auTgBVlOWViQFfuJ80JVi5X/iKhDr/99nnr2xfLUsQAyASycwNgusjKNrwbK/3iCbHWTE/f3299Mf52G1PMT/f3C5oFTDb/KrjO9BIL1Ws+zPcq9NhvTPWRBEBwHxWimL39Yy5GvB9yoG2V05Tv/dZ+LXbjMYEKww/isBiFcJ2ieprPY19IjAFV/qbW8QE/2WSCx8PYD0T/3fP7YFO1R3Tx+lYh6tVkWQXJLpFJZl0TsyzPj4OK7lYJsmkVCYqYlJuvsGicVi7cgu2OH8m8bTO63omZqGV7feEsGJyAiDvUSXa4jRGDoOtXyeRDiO6TpISiuilqVVN4mfjGAYBrFYBNsyEFyHWrOG41jEozGq1Wqb2REEAdN2sV0vIvMfQH4nDEaRKxG851/plwfFdWk2PY0piFQrBQzLZHFhllCpSDyaJJHp8GQd0soNs3b6au25978PTiO9Wgs+VN4K7Z+6H4IoQisJIxqN0tc7SKGwzLlLL6NGXS6PXUcMr+Py5AwjvVkOHz3KwZvfhiw6hBSRTETl8PPP0Gw2mS3W6O3O0dPViyN601eRSMzTBYoqtgCpjn4amsHlsy+R7ujBKUZIdg5QWLqMpNjE1LRnk9Q0iYguc+OXaJZdvvDFv+bEtp0cfek5Nm8dZMvW7dx8621Iqte3OjrSyIrIxOQ8/++nPkNZg9mlImEphCuJmKZIU0tS1avIoktfRGNv7yDveMedFMslmprFc2eusVQuExVUBNuhoTUZGhwgEY4xNzFDT08XS0tLPPW9o+zasgUdhVK9zstPHaFemuHmg/u5fPkS777nh/jCn3+Wf/WzP0emM0ems4OlmWmqpTKpcJq5mXkiqotUryMLDvMTUyDKVNwIUwtVFpaLuK7A73zyD9i4cSPHjh3zMt4ti8VCGTkaQ5WiNHQP6JmOzVKxiBAKMTjYS62hM1eq05grcd+PfIDu7t7VM2Zv4PPqjWr33XcfyWSa06fPMjg4jGFo7N+9k0998vfaXvm1Wg2AiBpCEkQ0rYEoCdTrTUQRXLvGtm3bKBaLXL16lUOHDoEEPT053va2t5FMJllaWvJkHJLI9u1bPGmbuOIuIEkr1diOHTvGgQP7KZUKaJpBLteNKEottsrF0PV2KWRBEEjGoziWgd5sojUajA4PAtDX04XW0Onp7uTSpUscfukFtm3aRqVY5vqV60xNTbFu/QC9vb00mhrpdJrz58+3NcOWBZbl8PTTz7B//3500ySVSjG/uMy6TZt58aUjNBoNegaGGV23kemZeTIdOWwEbn/HO5menmbztu3U63VyHZ5709889DCCpNDdM8RTh55jeMQrMDMzt0hD08lksuQ6u3nyySfp7OpuV72MRCI067XWvR2hWit7RYP0JvFYhIXFearFZU6f9PqsGg7T0DR+5eMfJxmN8ZnP/BFz81M0m02kUATkJrLroqoysZhXeEaSJHDjdGb7+MAD7+ev/urzVGuVtgOVX8WwXq+3+89apvDNamvlBkHpgg8og3rdYM6P34JSjCCQBFaN4z5YX6sh9oGs3AKRoVAIISAd8OWN/j4E86P8FmRz/eNaW4TE31ZwPUEgvFau4DPYa8dKf7/XarfXSkXWnrvgvgT3+7VY9eB4/mrXLAio/XUHWfi1Upm1co/gufKvnzdJsKLfDp5r/xj/oWTcP7b9CzDZfXNaMEIC2vZjggu6ZSKHVDo7s5SLBYaHBsllO6mWyh4gbjZXXaggiA5OEfnbEAQBVwDDMpEQsAwTWQ2j5jqQQmFs0yKdSGK1AHcw+zSYBOAz3QCGqREOhwEH0YXOzk4Wl5fbv/ETCv3CKWvlMK8rjwlEz6blEI5GcEXvBgipEQzDRG/oWIZGo1lFa9S+rzP/fef+n6Nzv6Wb4JnR+0kguVyOrp4BFCWBZYtkcl1YNnzvxcM88+yzZLI5ms0mczOzNGtVmo0KomNj6E327dzKcE8OrZqnsDSLKjnUqnUs08ZyPI9zJJVYzPNFVtQQuu0QSWcwTZtSoYJlevZYjuPw38l77zDJzvrO9/OeXLmqq3P3TLdmpidoZpQ1iCQkBBiwLaIEmH12MTbre23fi+9djM31eq3L2hfWYR3ANnGdMJhwF2xjG4yQMChLo1GcrOnu6ZnO3ZXr5HP2j1On+nRNjxCyLMn4fZ56uqvq1Ilv+L7f9/v7/qrrq/QVc3zko7/Pj//YG5g+fYyx4T5e+5obufbQleQKafr7+9izJ8pi941vfpuz5xe54dWv49TJZcaHBylkdZx2nZXlcxiaji4LnHaD7eODjA2XufObf8fuHZPMnT+PHwY4nku90cL1AvR0hpOnTkfOGIUiS8urHLz8MhqNBkePHqWvr4hlWZyZnQEtzX1HjiKMPA8/fox3//ufZnB0O0PjkyhGhoGRYYxsntHhEXK5HKViGQlYW13n3MIKDz5ylLvuO8LRp2Y5NbvA6dlFzi9XueN792MHCrW2x1rLQ88WSeXyXXZK16Nl7kyhQLPdJpPJRTKnAIx0jqGR0e5g9mItBy67AiSNk6fP8IrrX0UqpfPYow+zuDCHCANUWUKVJVK6FiV30BQURUKSI9stgHq9yate9SpWVlaYnp4mk8kQhD6GYTA6OtpN1LG2toZpmuzdeynpdJaHH36YwaF+jhw5ghCia6nl+z779u3j3LlzLCzOY5omju1hWU53FS7ua2P/6dhdIJvNsrKyQjqdZmVlhUqlQrGY55JLJrj22qspl0vkC1kqlXVW15YJ8Tl79hxraxXOn1+Ikm7pOpOTk52+POTo0Sd417vewY4dk0xNTaEoStebefv27bzlLW9hYGCAL3zhi/T3DwISV1x+Fffeey+HDx9maGiI6elpzpw5E/XBtkUhl+HEsSd5w4+8lpXlNabPzDKx/RLW1io89thjzM3N0dfX17VIrNVq3T48LrGO1TSjzLeqIuF7DumUjufamK0G+azBh2/7z3zsY7/Pu971biYnduF7AiQNXUtFfUFCMuD7PtVqhbX1FX7rt/4b73nPe7FMF9cJyKTz3X5aVVU0TbsgZfPzWZJjSi+gTgKt5LiWBKVJO7qkq1ZcB+P6mGRzY3Y6CdZ7GeEkAZU8v/h8ksxvMsAxBspJYNm7bZLoS7K6Sdvb+Ln0XnOSkY6PEf8fByQmy1b67eRYnrzG3uvdajzfClD3Bl5uVba6n7376U0M06vd3uq+PZd440XBRL8YSgx+ZVkmVyyRzWaxzBaplMGYNs4Dhx/iwfvuInBMTj35ONsuuYRMrojvuASe31l23LD7iRtcDHKjJQV3IwBBBIgQrEYbQ9epNuu0RcDJI49y+Y/dhGPZBLKMLCRs04oqPuGmCuF3GO4uu222CRwXBZ/6+gqZvEFajVJzm46JFwbIqhZ5/loOgqSvZbJybTSOWItlGAb5fB6QaLcUHMvG9KJOXTPSOFYbx3RpVJYJQ598sYiiRjaBApmnK8+GXX4mrPWLtoiEFlZRUICh0RHKQ4OEAo499gRf/Jsv4JhtAqtOKaNybvYs+/bs4sCle8C3efCeuxjsK1CtrNGceYw7vv2PlMsFxqcuxamusmvflSAr1Oq1yN1CirSirq1Tq3gMX1Jm8dwy/eURKmvrWI11nFBl2/glrDguqqLwrTs+x7Fjx3nNqz9Eo16nUnWQlSxrq3WePHaaMBB87Wtfp1QeZXbpUXbv3sP/8bPvQFZg39QuhoeHKfQN0mis4jsurUabbeM7mD43zdXXvJSTZ2aoN1vIkoKuZ3CDaKK3tLyKIOChxx+n3qiytLRIfqififFhjh07RrGQZefOHRyfnmOxXkdRVBrOOifPnOWJJ49x6NB1vP5Hb8Z1bDzLxhM69913H41Gg1pznZOnZ/Bcn/m1BtWWHaUzlhWCUOD7IZbrMDgwzPmVNVzXpZgrYJo2A5pA1hRaZpuXvOQQd9xxB5VGg1wmw8OPPgKhRCrfz0uvux5J1jh06JpNfcKm8iKou44dUi4Pksnk+c53vsvi/CyBb6HKUfIEVVMiLbcskKXIDiwGl5dffnkEDJttbr/99i7giECWzJ7de+nrH8ay2qyvV1laXen2H6dOnWL3nl0sLi7ieR6Dg4MoisbZszMMDg5Sqaxx4sQJhASypBEGMoW+EkEQdHz6cygdtsx17U4yiRBZgCIJ1laWCX0P17aoVtbI5/PYVpvLDu7nocOPcuDAAZaX5qNscFqGaqOOakTZDnO5HLquMzIyAiJkeWmFdrvJ7OwcU/sOsLSyytTUFK1WizAU/M7v/C4333wz1dUVvnvXXWiaxsMPP8y+fftYWl7ge9+9m23bx1AEDA8NYrZbuI6J2Wpy+ze/wXKtxU033cSrX/NaPv3p0+QLJc7MTGPbLtlsGk3TsCyLanWdbNrAdhxarRbDg2UqlQpSGFBbX0OVJSRkGrUq+XweiZDq2jIpTSXE5c/+4n/QbjuAzPv/z/+LMAz54Ac+wHq1guM4iDAijtpuG1kOURSJz3/+c4yNjHPLO27lb/766xh6qrssLkkR0Ep1YoCez9LrKdwLmrrL/GKzvCEmlJJAOAZhvQC6V4IghOhOXJIkWXw+sbOGJDaPnclzSp5Hcv/x9rA5I19y+6SmOh6TkxKUZM6I5L2J9xtrqJOfJ4H9Vvc4eS972e8kE987fid/u9UYHd/PXsa5975tdc+S2ySvL+aDk4A6/l0vwQlR7MZzVV4UmmjXD267aAQgP7hsIxTf/7VV2dRg/IBQklBUhbnTJ8mmdFqNJoV8Hk3XEG7I+fl5dMNAT6eYnNiOLOsILrSJgU7FCqNgD1mKLPUC10cIGREKavUKubZP/cxZsuMjeEo0eLlOJ8d8GBD4bhRbGYYQBiiqhuu6ZNI65b4yttkmpSkEnotjWahCQlFSKLqOrCg0TRNV1XEcG1WRo9ScktR5iY0XPZG6RAGRnu8iS9Gya6NZJzDN6LeyQqNWQVZk8tkskoB0oYSm60iSAnGAnQiReIYzz3AjADEUcS6kcFOQYmyHF2+ryNLzr4kON5xlAMTTBLVueiek6BWtawNRh7Jj5y4uv+IK7nnwAZTApZBL8cpD15DSDVIplbbZ4OQjD/HEo0dIGTppXcVIyVx+zSH27r+UEBvHdSLHjrRGlPNVsL5ynmxGZri/iGNbDG7bSb1tESITSoKUmmPx/AylYoG22eL8UoWl8/P0DQxTHJtieHIfA2OT3H3//QwWUhw/eYy50yf48Te8kfLwNlYqVcLA59//xK0U+4f433/2Q5w6+RArs3OUc4MMDmYgcGjULdq1Neotk//5ta/yj3c8gFBSICRymkQuk8IxPfoHBlhfX6VU7GPXtgmqyyuMj29n567dPDV9hhOnTtK0HE6eOIUsSaiySqNRR0vpTM9M8/jDj3DtNVcjkNH0FKl8DtNxuefBRyj1DzO3WMH2BcKHlhNgWg6FQhFZljGbDSrrqxRL5SgdrqFgpAxqjRatdpN0ymBifITq+jKhiCbKumGgGwYjI5Ps2XWAcrmP3bsmSBlRbIAkJSaSyfofDzIvgMVdo1q7bXr6FCdPHOfxxx4icCxSuhFlgyMEIfACH62TpbXRaDA8PEy5r8zxY8doNppoqoro9GtRBtiQkbHtjI2Nk82ko0nQ8iKVWp1X3vhq1hYW2T4+xsryIqHvg6zQVx5AUQ00VebEyaN4nomiCGzbpVQs4nkukhCkUwaSAEPXQQ5otZsggaKoOK5LEIa4nsdAuYzS0e6eP7fA0OAwKyurEArSmTSyLOF5PkJEwGR5cQlZSGSzOVqtNoaR4ujRY/T3DxIEIZLQCQJwHItyX4lqpYKqKNzx7dvRVJVjR4+SS+uMjw6jKTKGprK0MM/s9DTvuOVtzM+fZ9u2bZimhWnb1OsNSn2DKGqKgcF+6rUqRx4+zHXXvZK3vv0W/uEb3+SKK69kcXke13M49JJrOf3UaXK6TrVRQVEUCvkCpmnhBy5CEoQByJJMGIJpRk44cRKnQj5Pq1lHERKKDN/61jd58IEH+J0/+EP6B4b5/Oe/SDqbR9VThFKAqsoIQgbKJSyzzfziIje+9nUcP3qs44bho+sKltlGlgRvvPnW57XuPn7s9G0bLOxmVjY5hicBrRBsyUQm/4+AWpQoLPoo7GipN9jXWOqQ3LcsSVE77pEtxmUrVjQJonslHhfbNnn+sPl6YmC9lQwiBrywEffVaxeXvL64JEHwxXTRSWCa/N1WTHRMUgohEMgIIRGGINicNbH3nHrvSVy8MLL/FZJEEHaekhAbmRM7Mo8gjPoyP9hI8KIoCvt2Tz4n9fbFA6KfpvRWwt7P/iVKNMsC02zjtKPsZc1KHbPZprJWYWh0BISEomnIisquqSkq1QqpTsbC+BXb0Lmu23HWEF1Gxfc8BGCbFr7r0l6rkEmlCFSFZqOJ8KPIYD+MQriE2GgEQghc38cwNFqtJs1qlVw2Q61aYWign3q9HrHXoYflWEiSTiqdJbaekzrgubdjiTqfzR6PsWdzNNsVndke+IFLvdFAFgJJbGjRgjBEUXVUTUPT9Ch5iyxFHdkWQYZbPd9k2eSkssWz2lgOexGA6Ge7n07gi+s4qKrKG3/kjeyY2Mmpp6a5+/57GRgf56677+P8uSWkTI6nZs/x7259M6Mj/VAYwygO03JgdGyc/vIYmpElcH087CgY1A8p5nM8+sTD+K6FJIWcnTnNYP8g7WaD9bUV9FSemdmzXPryQ2Qkn1QmQ7tRRVNAFh6yDDundlEaGuelL7uew4cPc/TJJ9ize4pDh65haXGBD/7SR7FWTvLVL/8Z1738VXznkVN85stf4Y5v3c3DDz2KEla5/c7vUW+0ueqqq0nnUowOFxnrS7F7oo+sIcjlckiSjNYJqFpaWsZyXVZXVjh1+hRLS0tomsHpmRn6ymWaTRNJVlheWqVWbSDLGjt37SAIBZqqU63XKOYLpFNp9u3ew1e//g+srNcxnZBQyPR32ku73cZ1XS6/7CCO49BsRb67bbPVXfYeGxmiWq1SqdRQtRSVlTWKpTJeoCKpBte/+vXceMONXLpvN6ok0HXtggFyyzryAoDoL3zuT247ceIoltkglTIwOjZh0VJviKZppFIpSqUS+Wwe3/dpt9usrCwDG+02CH0838dxPEZHR9l/4CD5fB7HcTh9+jSLy8v81E/9R6bPnEGVpa40wbJsSn1lhgaHMU2TR448SLEUSXXW1tZRVY3+cj+NRpP5+QV0XUfXo9TFiCgS3zBSkfuQvJFwo91q4QcB6XQay7Qpl8uEYcjS0hK5fJQGeHBwEMdx8HyPyclJlpaWSKfTFAoFGo0GhUKB1dXVKJNtKGi1Wnh+xESur68jhGB0dDRis2WZXC4LQnD44Ycp9RW54sorSWcyfOnLX2Zq7z5edcONNNttNN1geWWVTCbHmZkZ8vkcrhulbp5fWODOO+7AMtvMnZ3lI7/xUeq1Bvfecx9m20KSNVRJwrUtdD3Kwtg248RgEblhGAZhGKJp0QplnEm33W5jGGlSqRR+6OJ6Dp/57Gd4/LHHyOfzfOYzn+ad73wHy6trLC6toqdyIGQUQycIPZ58/AjpXJorr76a+YVlPD/qc23H4+a3vON5rbtPHH/qtnis2cp4oAsyN2GEC4Hq1oB68z66vw43HC8URekYMl2Yl2IrAJksvezsVue+FcZJ/q4X7MbvY9Z1KzC91fld7L5tdX824YMEI53cZ+/+NjPFm5nl2K85OUnY6hx6JaHxtmEYufRsgHhxwW+iNxvb+L7fTdzi+/5zFlj4rwpEJx/KswXRzwSExxURQJFkXN9BklWalRqGkaK/f4BjT53gR974RmbPzjE6Psrq6gp9fX0EQdjNahRXklg7JokN65Z4pqwqKhICz7ZxbRshC4SiIikynuviBn6XBZZ6DMwlIAg8CH3SqkR1fRWEhOfY2LYddahSPFMT6EaUVKUbKCDExjLUpobQ0ygSy2KCKNtRvdHAC3xc28I0m6R0fWNpDBCKhBASqVQmAuAdK75n59Sx8f/T/fqFANEiCG7rWTh5lmVjxi8AAplsrsDUnr2cnHmKe+9/kLmzc6QzBe556EEWF5fZs2OUsbExUDOUikWyuoYvy0iKgZAUhCRhO000Wca3TabPPMXkjnHOn52hv6/A+bk50uk8ge8zNDhAy/bZNbWT9YUZJELs9WXOnjqK21zDUEJSmRyyImH5UUe2f/8+9u7dyze+/jVufNWNrK2vcsONL+X2O77HucVlxkbH2DM5wvaxAe688wHUdIHJPbvYNrqNl738FaiKTLNRpWCE7JkcIq2ElEpFzp+fw261ufyKy1hZWSBf6kNRNXKFHIvLy2RyeZZXK2RzWWRJ7aSH9tGMNJ4XYJoWJ596ioePPMbBKy5HCIWUbpDO5GjUKsyeX0BRDUwnxHZdXMdmYGCg2w4WF+ZRVZVKtY5t2+TzOarVKv39/SwtLDLQP0il0aBtuZhtG1/IaHqO8YldvOPWd5JJ6/SXchjGho8rbO5zLuh/XgAQ/fWvffG2lKGhazIpQ8f3N/SFQmxkBGu1WrRbLcIwQNe1brKI7jVIkd/53r372bZ9gUHhhQAAIABJREFUgnI5khpUKhXOL62gaQalQpEw9CAMsW2barWGEBITE5EbxlNnTqLrkRzE83zS6Qy6rrO6uka1WtukfpFlGcf1KBX7CAO6fr5hGFKpVCj1lZmemSWbyyNJEnPnznHu/HmEJLF//34cx2FpaQlVVdk+McHi4iLLy8sRqPY8FhYWWFxcRJZlHnnkESYnd9DX10elVuGhhx7iqquuotVqoSgKy8vLXHrppSiqxvzCIrqRYubsLH3lfmZmz7J9chJJVnnwocO86c1vYWZmjkKxj0azydj4CEonGD3KJFtHkQUpQyOd0vnG33+TJx5/gt/+rd+i3NfHvYcfpN1skUkbBEEUYFirV6OkGn7QzZrbbDZRNZV2h/wpFApRLEwA6XSa9coahCGNepVW08R1HP7yc5/j83/5OX78x2/m1a+5iZ/8yZ/m23feyVqtgiIJCDwCITh79jyraxWmpnbjug7NVos3v/Wdz2vdffLEmdti6RDdKrgFI02yvW2WEfSC543PtsYIvdsq8oUSxYuB0KfbLian4vT2STlC3HckHUN62eukDVySUYcNUit2+kjuL94uGWsV38deIit5HUmAGmOkXnDfq5veUtKRWO3uBclb/U0+s3jbeK8xqRdvk3QYkSW5+x7oZocMw/A5s7gTLwZdacv2nvYkem/kc1G22k/34STuie94LCyfw7ct2uvrXUeMKw9dSaVSo9VsI8syqqaAJJPNlbrMQiqV6mpxPM/D95yuRtqyLKQQfNdDERK15UjHp6sKThABRyOdJiRA0/WIqex0HN2ZYJwHXvKRXQvXdVGNDM1GnTCMonT1dBpkCYQMskImneumvAw7+0oGLsZLLckSsKFBCvzo3CuVCkurayzOncFpN8HfmOCoqkp5cBAjU2LHnv0YhkY6k0KIEPn7yDm2KkFic+lpaoqmyv+yyxNbFa+n7j7rM0gsiYUhPiG+FWBaDe684++4845/5Dvf+TbbxocZzqhcfmAPe3dPsW3XPlQlkuA8ceQwVx46wMjoJIqWizoZt4nveqwtT2NZdYQHntXCDVS0dI5L9l3JsSOPougSQ9t3sLJ4jtr6Mv/9N/8bRcOgkM9w6uRpzpz1+YPf+yCGoTE8NYVje4yMT3Lm9Cm++fW/4cgjj3Pl5Vdw3XXXYckaH/hPH2LX9h287ebXsevS/SysLDM7d45v33EPmZTG3r27OXjwIJLkITkNWs0651cahMJgbfUsiqTywMNPYro+VTPE9ATZYhFZVlEUjUw6x/LKPEHQ6YSBTDYFrk8QwOBgP3Nzc8ycfoqJyXHe8x/ejefYDBazBL7LP939EPccOYrvh5TLZUqlErlcjjAMeezRI4yMjhKgcOrUKQaH+gnDKAlDSlPx/ZBKo0UqnaZmOQz0lXntTa/jJ259B9tHByItMSqIzYEzT9uPqcbzXnff/x//Q5jJpDqrUhAiusA5CP2us0AQBPiu01ntkQmCCGB7nhdN1rNZMpkME9t3YhgGaytLrK2t0Wq12LZzD7t37qK2vkKr1cCy2jSbTWzbZ3x8nPHtk6yuLTIzc4ZMSgMkJNFJLiFCHn3kMZaWVvC8gPe9730sLCwwNDTEzqk9pNPpjvVb1Ce7rott29SbbcbHx5mdnaWYz3L48GHy+TxhGHL86DHe+ta38oUvfIGxsTF2793D7OxsNEFaWiKXyzE8PMzp06eRJIlisYjnQrPZxAs9hoeHUVWVsbEx7r33Xnbs2MHq6iqNVpsnn3ySbdu2oaoy7Xa7ywTPzZ1ncHAwsofTDMbHt3P02OO0201UWcE0TcbHx2nWq5GUotMv1+t1ZmbOks/nsaw2uVIfH/71j/LBD/4SeUNhaGiIeqMSMc+q3mWiq9UquXwWs5PBMAZqrhMwPDzMmZmzaIrEI488gp7KsL6+jm3bkR5YVwhCmTCA3/7d/061XkPXdY4ePcoTjzxMqVTCde0O223gOA4f+6PPPq9196++9q2wm/VP3hyUFwfECSGQRdKt40L5Q9wGk4GDQjyzlW5lC/nFxcrFmOf481QqxdzcHJ/73Od4//vf3wW8veA4eU5byR+STHQMJnu3ja+3F+tsxZBvTKg3s89J+Ukv87xV37bl6nKw+VouhkO3YqLj84pjxKLjJjBKIlA28MOuEgDYFKN2y5tuek7q7b8qJnqrJYMftFxsiWKrJYUgCBCBhKTJhJ5PGPrIikyxr8TM3ByOG2mEowYNCIEsR8u+cTrQmIm2bZswDLq+hUIIIiFPiGPZ4HlIsoyeMbCDAEVTQY7YakmSkBUZYga6GzgQnZMQ4Jutjim8zLZt40iSxMDAAG3TBklCUgSIENv2ukt+9NzPJNucLLGcI6rM0Wf1ep1UOoNtNmnWa3idyYUsyxCEUeYoLUU6V0BRZHRd6zLRP+jzezEz0QQ9dfdZV83NnUggQvBDQt9DxufkyePMnp2hZTZ506uvJ63KXPfyV6FmyuhpnVyhn9HRUQjagEBL5UASSGHkLeu6NeqVFVRJoZDNM312nkt27ubJxx7jsiuuxjSbhIpMNp0il0kzMjjCoZffyPDYBDe//d1kCykO3/td5mamOXTdteD7hLJOJp9ndHCAL37xS4yPjeNaDeaXzvGy617B3Xffx9lzy3zv3oe5dM8oKTXEblrML68wPj7G5MQEp048ydUH9iIpKpdf8zIO7L+SmTNHGR/uJ53JsWv3Hs6emydfLOL4IZIkU600qFZrFIs5Uqk0ZttG0aIBsFqtEfgemXyB4aFh3vLWN7G6ts7hww+wc/dOMimdpfPnMG0PN4zakqbp1Ot15ufnWVlZoVDIo6gqT52ZAehk9kxHwNH1qFQqKLpBPl/kPf/bz/He976X19x4A8ODg6RVkPARkowkFGJrLej0KxHV9aJgov/+r792W+Q+IKHISkciEQ+qG4DE931cx4lOU5a7K1URkNIolcvk83my2Tye57G0uBD5CAvBJbt2QxDSrNcQYcjq2grtdpv+/kFGhsfwfJ/19VWCwMd1TNLpLL4Ptm1Rb9SZnp5hamo3O3fu6jJIExMTpBKZYVVFwfPcLnGQyeZYXFwknU5zbu4sg4ODTE9Po6oqS4uLjIyMsLi4yNraGldceSWZTIZarda1m6xUKmSzWSBibst9A9RqNSRF4siRI6iqyvLycpQXoBPYbTsOAwMDUSBqsdCVnaTTadLZHJquM7+wgOMFLK+sEBLghz6KkCiXy8zPz6NrMogQRVUICfF9D9s2sWwT27ExDJ0v/NVX2DW1l727LmF1dRVVjZhsXdO7gW+O43STkJimiWEY6LqObXXYzkBgWxYzM7MYqVTXXcrzPHRZUKnWGB4d4djx40yfOcMNr34df/oXX+Dtb3srhVKe8wvnsV0HQzdotVrc/Ka3Pc9yjjO3bTCnW4/lQJeJjsDxxfHD5t/S/c3TlVjO8YOW3uMHQcD09DRXX301n/zkJ3nta1/bDRTsBc+9mujkd7AZECe/T6bbTm4Xf9+rae5l63uPmUzekixPR3JeiLWe/r4kzyN5nVsx0dFxN1j6zRZ4F2YqjP/+UCVbeToQfbGH8nRZCZOgS04EoEkdMYGAKACs5yVFiwyb/g9lojSUqo7jueTyeWzHJpuOshNKstTtsHLZLO222UmuEDVc27bwfY8g8BFBlKGQICT0XQLHwTFNQs9DyDKKphEi0NMp9I7WTtFUhKpEbLKsRvC2E8gTOCahZyEcG9e2EJJPSs9gtto02y1c34vOTVEJQxkhtE0RtYJINxYBdTUaHNm8LBZrp7uVPIx8qdtmk1a9EtkvuT7FcjHSIDbb+IELUoiqKZFmXDPQdCOq9VIkD0FIm5OPJJ73BY0p8Xq68sKAaPc2uqEMnZeACz77vq9EEQIphDD0CcKAVtNGKB7f+vuv8rpXHGJ8KM+l+/djWh5ry4ucPX2cA7t3E4QBrhuQL/WjKHInYMMjQOBZbWRZobW2yL33HaHQP06+WGBm5gzlgRKSkolkOyKkZTUYGh9hdGycXLGA6zsMDA9yx90PcOzUDA/dd5jZ8+coptK4ZpuhS7azb+8V/O4ffIoPfOiXueaqlzG+bYzX/+jreejR4yyuLKPqeT716T/nHe96N9e99KUU+/qZPzfN5XsnsQPBth27WVmv0KguY6gKmXSKcn8B4dksnDuH2TKZW6jhOR66phL4LqosY5smvucQ+pBL56Cjk63WK6yuryLL8JqbbqLRqjM+Os5DDzzI2cV1qo02p2dmqDZNVCmk0Wx2knnomK6LquuYzQbFQp5GrY6up2m0bKpNi90HruATn/kz3vezP8/LL93DxNAguZSBKkfhrkJSO4B5i0HlYgPNCwCiv/WNv71NN4xuhjchgSxHOlNFklFkmbATsSOI6pMkKQSAkYpkbaVSH/3lATKpDK1mg/W1VeqtJuPjE6QzebaNjbGyvIxpt6i36qxXGsiKxpVXXUsmm+XM6eO0mjXyOYPAC0mnDM7OTrO4MM/q2jqNeoOZmVlqtTpTU1MYhhEloZBkstlsNKgiEJKCJKud3l7Qbpv09ZUJfZBlFct0yGbzHDhwKZ7nkcvlKBaLnDw5zYkTpxgeHsWyHHLZAppqkDIypDte+KZpUiwWUWSFfDaPIikoqoZmGDSaLTLZbJcdi/yrQ5ROchjTtJBCQbvZIqUbGIaK2W5gmW1mzkxTLhYZGR5EUyPwa1k2uXwOIaJ9+L7PzMxMZCdqGAz2l2jW11heXaPRavKffvGDfO/ueyj1FanWakiKjKpphH4U6NlsNCkWCxGwEJ3AOUmh2Wpx7vz5LlvZarU60j6QJSkKkFQVisUs93zvTqxmhVOnTnPr229laXEZ23QplQe5+U03Mzm583mtu4+fOHObJEdyRNEZGSQRyQclOZFqW47GrhgUREnExAWAejPrG20Tv0Rnv72/CcJoHAuJEqYF0SHwhY9AIUSGMLq3SUa3F2iGYUipUESRZV59443ceuu7ed1rX08qpW9igJPgMSntSO6nV4+dvL7eY26lje7dX/xd8vhb6azj4PUN/LCxvSSUCDCHojMeQRg8O3VBL9OMkDtgfHMq981s9Eailei7WI8dcmDfcwOif2h9op8Lxjr+G4PJ2M4n9pBMRroCXTP6mAGIK1zMPifF/77v43WyIAlZQlYVJEVGUmRkTcULg25ylW5j6ICtwPXwXRs8h8CzkPBIp9PIsoJlWdSaDYZGhgkIyWQyWJa16do2Zpkblb/3vvUy1MmMSIqidD1b44CelZUV5ufnu76aYRhpw9utFmarCYFPKLhg1vtvtkQirgtfye/Y0OdbbZuXvfR6XCdEM9Isr64TEJDOpak1WzzyxOMsLq+i6NESqx+KbqZLAEmVMJ02t9/5Xfr6h9i5azdICgcPXsbJY8cpZjR0VaDrKpJQ8dywW5+3b99OoZDjQx/6JX7t134NhMqdd9zF3NnzfPHzX8RqmFwyuYuv/s+vceTwUaq1Fp4XeQW/+11vZ/u2Ef78z7/Ert17+b2P/yGf+NRnuhpjhMTw8Chra2sokkytuo6mKBi6RjFlkE1pSES6Tk3TaDQatNttBgYGkCSJwcFBtm/fThAE2LbdlRpZlsUNN9zAE088wSc+8Qmy2Tz3338/b3rLW9mxc4rywCDbt00yMTGBH4BQZBRFY9eu3RS0DJIHqqzhuj5GNk8gZHwh8V9v+6/85m98hO3DAxQ7wV3JzGL/nD7n+S7JyXK85GnbUTxFzPp2B/9o/oyQozgHw0ijaQaGkUaIaGLdbDYxTbPLfqXT6UgG4Tmd/bpkMhlGR0fRNJVms0mj0SAMQ2zb7R633Y48y03T7MaTpFIpPM/j7rvvZnl5OZqwW5GELTlIQiQnKxQKUR8VBmgpAyOTRk+nqNTq+CHs2DXF0Mgo/UODXH3oWoxMmvLgAIW+Eqqhoxo6RiaSwunpFI12i1Q2QyafQ9aimBVZlrFtu3vtccIPwzA2BXa1Wk2y2QyGoePaFr7noGsKlx3cjxCRh3as53YcZxPTp2lad9yQhcC1bQxNI/B98rkc9917L8VCAVlWCUOBJCk0Gi0CAZbrEIgN3a0QoptExDAMNE3rvo/PPVl/4/vv+z6ZTAYI+MQn/ggIePe/+wmCwONLX/rSC1BzL162Yhx7/+9lYv85xwrDkNCP7Go7HwIghRuJXJLgLgny4vrhhwFLK8uYtsVXvvIVSqXCMzp+7xgdv77fOSdZ6eR1JEvSJzr5WW9QYcz8bjWuX8xxpPe4z1RSnDzmVgx8sr9Kgv5ecB2PFc9VeVH7RL9QA1KyYoZsZB7yNA0CmTDwINjIgKOqaldLmErpVKtV8rkctVqtW2klIbBtc+OBhiGSLKMYHX9Dwi7jGwKKqna1inRYBc9zCH2X0GpEfz0LSQi8QMH3QyRFQ8geupFibb1CtpDvBsAIIfB8vxsUFF1nDNKjWf1WGqxoAE3IPeTOIJUvdZYOPQQyptXE8iLZiizLuI6P0zZp1ysAlMtl1NDA0JWnbTTJhvJMG9cLWrqz8cS5/iDn3bttgm3wfR/P81heWECTZM6dW+Cdb/5RrnvlTRiGRqNZY7B/gEwuw8TERMQiNyr4rolnRzIjp2ORaDkCy1MZnLwcW+TQsoVolSTwKRaLfOlP/wfbdu/kssuvIpfJI8sqkhT5n87PzzM+Pk6j0SCTyvK+n/t5PM/j4x//OKdOTTM2sYM33/IWUikNx23xwV/+f5ienubXf+PDXHPVfj764f/Cbw38EX3lIe556JHOJNDi0SNHefWN1/Pgw4+iaTojY9sYGBhi/uw0juVRLhQYGRyiVCqxULGpVqvdOjo7O8vIyFB3ghqniM7n82QyGVYrq9x9993k83k8x+Wuu+9m7549/ObvfpxmyyIIoiRKsqQSyoJ602R5tcHSehVN0zAdG8XQKRRK/Oov/jLXv+KVZLNZsooSsYQECK9FIORuyuF/bSUZGR8E4LpOd/IfecO76B3HDj2dIZVKRYBWS3X10rZtU6msYVkW9Xqd/v5+8qVoVUoIiZnZ01HSEDeqS1dccRXpdJrFxXnmF86haZGE4vz8OVqNOp7nddOHR4HJKXQdJiYmOHXqFPl8nlQqxeOPP87BgwexLKvrKJLP58nlcjiOQzqdxnEcBoeHkCSJSVmiUqkwMDDB8ePHabYtMpkMO6d24ThON9bFdh0yuSzLy8sMDg5SHuiPHBm0KAC7r7+Mbdu0220Astlsd1LXbDY7k4aI6Xbd6P55js38/DmKxSJpQ2NtxcQKQ5bmF7Btk5/8yZ/i61//OoVCgZmZGfoHyhiGhiRFJEg8IdBVDUJwLBtZUQlch+nTp7DbLYYGR8jniiwtLfGrv/qr/ML//X7K5TKeH+K5Pn19BTw3mmx4vke5XO4C/rW1tY0A+A4Qi5NzpdfSlMtl2u026bSBwKOyvsz//5XP4/mC8jMEfM916SYxo1cTvGFAkNTvBmHSW3pDNxz/NhmgF+8rBohJmUeydFnZ0Oem17yGb33rW/heiJKFtKTSsNzuZDTpP71JWiEEfhgQyhJIAsexEFIUOxS3y00SFbE5e2Hyby973FuSv01uu5XUI+mdHV9rb3KU78dWw4akppeFj5/LViD6Yu83P+eQoDNRSQZjJo8fTwDjsTT6G3YDcJ+r8kPLRD+XJX54MQObXALqLu90Zvd220SVZKxWG1WSUYRELp3paKo3p6PcFFEsyxuezT1McGzlIsLIDcNzLEIv0ih2K1woEYYCCJCkCFTX681NnUE88G11bcn3F2Pxk8tD2WyWQqlMuTxAsa/cYSo2sx6e50bBlI6N40Yzv3/TTPTFmGcuzpj4vk8uZdCor/POW25hfHwcSYrq4sT2MQhsiqU89VqF6adO4FptfKeNHHo47QaKomBbDqpWJJcf5m23vpsbX/M61qt18sUSZ8+d5+677mdk2wSL5+c58vBhAs+l1apRr9dZWlpCkiQajQaqqlMqFxkZH2Zichs//wvv56rrruVrf/uP3HPPfQRBwKX79/KjP/YjDA4O8v/9xkexLIdAknnPe97L5OQkad0gWyoR+D4veclL8BD4IQwOj6LrKdK5Ijt278N0A1pOwNnzy5QGBhkcGaavr49yuQxEWlXTNGk0GpimSb1eR1EUWq0W9Xp908rR2NgYup5i9uw5HM9DyDp+KFDkKLtXvVpH1wym9u1l+9QUgSRjpDJ86EO/wj98/e/48de/kb58jowmIwkf0Q0CfXbd54tlcnjhUrbc6UOiviQK2hRoqTSGYXTZS11XkSQwzRbtdpNWu0nbbJEv5ECEXV1u/Dxs246CjcsDyLJMq9WKNMadQdSyLNbXKt1gxeTg53kefX19KIrC0tIS2WyWer1OOp1mbm6OdrvdzTQIkSwh2XfFfWyhUGBiYoJ0Oo3v+4yOjnYZdLVDWCiKgmEYuK7LyMgIqVSqSwrEACLO7qYoSvd3cfbKyA4vpFAosLa2htPRkauqysLCArOzs4ShHzkqERAEHpqmcc8993Do0CHy+SIQBTEms9al0+lNGfTCMPLtj63mdUPj+Imj7Nx1Cam0zic/9cd85CMfYWpqCgDDSGMY6e6z7ZUJxEFX8fskGGq329FEwPO6dq0xqaSqT59E61+qbNa8bs2kbuUycbF294N+Hpf4XrXbbR544AHKpT6ynfTormfjeV53JSEGpPGEO66X8hZYYuP/raUWz0fpBay9JcYwyZKUUSRZ4Xj73v3H32+l9d7qfLZirpPSlCRL3psQJ1nioN/nqryomegXS4kfcNSxKd1BVBYgOjNaPZVC1XUcy8JyHAxNQ1FlWi2L9coacjeOMG74nX3H9kwiUsYKQdd+zg9DREejHQYuVquOrijYnkMYuKDond+pKETm4iIMcT2XQl+JWr1OOpen2bYI8DE6k4Ctro0tZBzx92x6T3fwCMOIPZdlGUWKkhsIP6rkiqoReD4iCLDbdeqVKr4HfeUXhrl4MZStGvVWnUzUCUSDlmNahDhMbh9h/94pMimN5cXT5LJlausNAs9mac1kqL+frArrC7NomoahCBaXVxgc3Ymi6KQyRbKpLEJWsD2LkdFBfN9i27ZtjIyOsrayzj/903fInT3HtolxhKogS1E63HQ6S6vVigZ5SWDaTdJamv7hIf7z//vrfPmLX+W3f/PT/NXnv8qf//mfomVy7D9wBbf/4+3c/s07uP71byCXz7Nr1y7+8JN/RKXS4m8+/yna7chx4CUveSmf+cxn+Nmfez+BpNCoV9h/5UtZXlxh6rLt7LryZTTtgHsf+Q3MVhvbdSiX+lhfX+fAgQN4nsf58wtdz94gCJAVgW22GBjox3EcDuzfR63e5NSZOYIQZClyz9BVlZdf9wrmFub56Md+n2KxyFC6EAFw20U3DBzPRQoDJM9DKJ1gHWSEkBOA+gerBy8G2UecNltRFLLZLK7ro6o6EEnJNC1yQYlBoxACJIHtRINQtVbtSlniTH+xl27btvD9qE5n0jkmJi7BMFLMzs5GLLPUySBGwOnT0zQaLcZGB7BtG13XUVWVtUoV0zRJp9MoisT1119PpbKGpmksLi52vZ6np6dJp9PU63WuvfbaLvun6zoBIa6/sULmez4HDl6G7/tcsmMn80sL+GGI1qk7vu/Ttiz8MKRar1MqlRBCkM3nCYKAVqtFo9kkn81Sq9W6ExEhBM1mk0KhwNLSEqVSidXVVRYXF1lcmCOTyRASZbZ1HTvy3A9CZD1yjjh27Bie57F376WcnZtGkqCvL1pd6e/vp1qNVkgkBFZoR8HbsoIIQVNUdF3hzJlTyDL4vsuHP/zrnF9coFAo8MobXsUDDzxAIMC1HWR1w440vuY4nT0dO7QYmFiW1SVIWnWTbaMTiEDCMR3SuTS25T5NDfuXKb1Z+ZKMZhhuSAwutuzf2/Qu1h6/XzsVIopd2T6+jc9+9rPceuut1GttPvapj/FfPvCLHD78IAcvvxIZGVVTL8jw1yWlwhBFkgmI2oOqJrcTm67nn1OSY83321dvcpXeEss1k7KPLsBN7FpwIXMdn0tcB59uktArgUnuJ36/SSfNZgnNVtcVS/Ceq/KiBtHfb3kiLkHP18+msiX3ES+lwIalWtgZeEM5IEAhFEHkliFJeHTqjSQRSir5Yhqr3cazzWhJ3TI7GfYErt+ZwXX3K4EIokDGzkwqCKPoVTkMCEIIPBt8BylwCFwbIUKQ5CiAUkhIEgSS6BxfRxEiYsIVBduKBsaAsFtxNmQaAaGIfKSjwIsL7bigE3gpOpmApADf93BcC8dtY1oNms0anu0iI9Fu1xCyRJ8xgBdEsz49ncJut9C1NL4XEKrRDfMSM+3oXm8AEp+Nxvh0tnYvmrJVneudfXetCYMLOhYhkhOsgCD0kMLIpkk3BFdfcZC18ydphoKx4TxrK4vUVhcZGiizfXyIp46fpLG+SiYdhc+OjI6RzuZZW15goFyiUpmnVa9RGhhEBJH3r6xArpinbdmM57czdskkp548ysrSIrv2TaHKeVbW1snlNcoDKXzfJvQEw4Mj1Gtt+vJpVtaWedX11/AXf/onGNkiDz5wL5N7LuXE8cMU+4pUGiZHHz/CvgNXUyiVOfHkSf7w47/Pjslx9uf7CIVMuX+YS/dfjpHPsbzWoG94exQomB+Nls49l/rKKvlsAdt0kEVAtVonkAVHT5wEAmzbRFMFmXSO9bUV9u7biarouK7Llddczr3fvQtF0wkQFPsiUPKKV1zP6Ogot7zlzQwPD3ckCAJNAL6NrMt4oY2sdAKNRMfBgpiD/sEAdFwbhCRt/P8CgmnXD5H9ED/0CYVPGAqEHDFlKSPVYdE6ADr0CYMQEQicjnY6DhZKGanITrPjc+u5kR2gZbUp5Ps7LGo0gW83q12AKwmJpu2yvrpGPpfD7dhkqh1df9hhwguFEqlUikajwtDQAE89NY1nV9MyAAAgAElEQVSeyjAwUGZ5OfJztiyLXC5HpVJFT0VJWUKiLH6yLOM5DmpHPqf4EVAMQp+UrpNOpyN3DlVFhCHFfOQyoikKnuOQSqVwPA9dVbEliUwqhRcESB0Zieu6eB1JSKvVolQoYls2fcUS00+dYWV1Fa2TSbZW1xAyhCLACx0CJ4gCOhVwHLjnnvvI59P09/cjiYh5NrSIJEEKo7iZQOAHIZ4f4AchQQiZVCrSpDctZBQss4VCyPjwEF/767/lmmuuodW2qFTrYJmUykWQQkyrRRB63RywfqggZBlElMxLEgqO7XVsT11830WSVFqtFulsnjB87sDIMy29sotNDGUoEXZyb4RSwhpNjsfLzW1uK7AdlyT72asPVuLtBTTbLd769rdh+x6BKvH+n/kZfuWXfpG7H3+YP/mzz5E1iihBNN0O2RhLJUnCD4JOvodkCm6JKFNi9AvfD9BUIwrY59lPwp8Jm52UtzxdkYSCJLNJVtHdBxugOgiDLlDeit3ulYIAmyZFm85LVnpY5s0+17GsQxJydE5hfMejY9q2jaJFdsFCeu5EGC9qEP1iKvFyTBhE7FMoNrREkiR19KcOuVyettmM2IlQjrTKkkTguQjfRek8aDdRYQAkRSeIwa0PIT6+70RLcKGP7zjIRJVSKFqk05NkQhHNYLeqEvG+XddFUuSuLuuZSio2OqtEKlARVVbDMLBdNwosKkg016uoAfi1WuSaYNvdGbRnO9Sr6/gB9A30PbsH8ENUoknLhUuNyQ7C8QWe6+C5Jtg1Hn/oCCktxGw1mTlucf+99/GG193IE3PHyZVnMU0bhMyxJ2f59u3f5GOfvAKrVWF4dBdmq8GXv/xlQs/lpS+9kmbDptlsMrV7B5lMG8/zUYwM7/2Z97G6sMiJJ4+yML3I+I5sN6DLcSNGan5xkUKhhOs75PQSQ8PbkdU0f/ypT6NKMqdOPcrUAZ0bXv1aDj/8CL/927/HSmWdSw9cB4HA8wL2HDzEZ//yr/j6XY/yE+96B5kBh51X3MitP/0BDl19XaRFLfUxMbWT5dUKlVod3UgzdegQO3yf733ve5imSbbjgtFo1Cj3lbnm2qvo6+tjbW2N/vIwMzOzHDp0FQcPHuCnf/7XkIWEockYcsTe+WEQtSHP7+pqZUXBx/u+y4sXfbY9KzebvtvYKPngf+BjPFcltjaLl/RVNQKUsRQmZp9t20ZiQxMZDYoy6XR2o08UAscOcd0AoQj6+/tpNps4jodtW0xPn4kkZUpU1+v1OvV6nWPHnqRcimQ6jU6/qShKN+CwUCiwZ88edF3lscceY339KY4fP06+2EcYhoyOjmJaLaqVOsViEU3T0Aydbdu2bXIlMAyDdrvdzTwZr6alUqlu3EjMzMbX6XnepkC81dXVrqyl0dEMQyQhyWezkYXe0hLnzs6RTqe7k4VyuYxpmqR0jVqtRrVa7QRXRoGrzWYziluwGwwN91FZr3P4oce48TU3oqeiiV0mZxN2noHruhBGweuxDMUxo/42TiYhSVFmxfX1dQaHRqhWq8iyHD1fofKam97AH/3hp+krF/ADsJptcrkcagcRxBKuRqNBpVLpThZmZmbYt28fpmnSbDZfEGlSzJyHYeQPn+w743MXQiCCzcFwvSUpBdiqbEUobVVMMyLLCENkWVCrtLjlXe9mcXGZB757Lze/9W3I8oVWcl0WfQsLuuiY0bnpuoxju13Q+i858X6m+95Kp3yxbbZi4J8OgyT9puMA3eTzTUpF4r7rYsxzshiGgeP5XcD9XJUXPYh+IZia3hlQr62LLMuITmcbA+j4u1arRUgQ2cfFABkVz99ggX3fR4qPEYveE0tUvu+jCIFttRO55iGMLXOEglCVaLYlpMjeqWOzs2nJBrpBQqqmYXci2buVepMWabOEY3MHkvCNZGNCkUpl8GwPCZn+wSFarRbNerUbqCPLcqQLDEI8z8EyG93MTEIIZOWHXJJ/sbobrTlGm2xsDNDVgjZra2C1qCyfo748x8jQEEuri4xN7ODJRx/hFa+6nla7zfDYKPlCirvuvhdZT9HXP8w1V7+E2dPTNEyLlikYGihz8OBBhgf6aTQrZHNRRsMHH3iIS/fsYGzbRJTOeWkJy3M5ePW1uJ3l70wmgySr+L5Cs+2QyRVpWy6qlsJxQ2RVRpJVyv2DNBot7rr/CAcuP8T2iTJaOs/Lrn8t2yfGmVmoMDk5yRVX7+bK627kfb/woWjgCRwUL0RPGXz1r7+BgtId3KQgThYQDSi3/OjNm5YA3Y6RPpLAd4Pu0qIkKShqsKmzlcMgkiKFHqGkQeijEAUFSYogxO8MUl7XJuuZPeJnvkrWXVF5AYFzssQgLKm31TQtmsQ5ToLdCYBgU7BRDBAjdx6jG/EupBDTtjl9+jSNRgMhBIZhUCwW8f3I277dbnP+/HkqlQqZTCbKore+jmKoaJpGu92mUChQLJQ4cOAy1tfXWVhYIJVKcf/9D9JsNjk3v8jBgwexbZtz584RBAEnTx0nl8thOS6O4zA5ObkpOCopAYCNJeuYQW80GqRSqe5StWmaZLORlGllZYV0Ok21WgWigLAgCKhWI8mJoWnMzs6Sz+dpN1ucPn2aUqnEzMwMekqhVMx3BvsI9Ca1341Go+tkoioaq6urpFIpTMth8pI9PPnoI+TyBdpmo3ufwyCaAMQ6ZcdxcByHubk5duzYgeu6GIZBJpPpjkvxWNBut/mrL36BHTsv4anpaf74k5/mlltuQdEMJEQ39XnSZSoGNOvr68zOzrJt2zbaltONO3i+S3zdaoedjKVcsRQlHpNjB6nk80/2IXE92ErqEP8f/2aT5jaxXQzofd/HtR2CUBBIKh/85V9hav9+3NBDhD69LljxvnpB/sZEVTB/fpH777+fW25920UlHfH5LS4uRrkCtvj+YtKWrbbtPZfv93nvOfVKE7c616c7bu9KwQbg3Sz7SGYmTO43Ke3wPI92u70pHiyuy89V+SFHMc9N6coNElZv3YG+80p2NIqibBps4m1DKfKVJNGYYiCe1PXIYYjvORB4hL4bNcBw88wpQEII+fs2jmTFerqK80wnK/E1xgE1MVvTaLVot9vY3oZVVdzhB75PGHgEnnOBHdW/+ZKYrMQTNt/3cVotFmanqa8toshQrddIZQscPX6CkbFR2q7JWr0KqsDxFV55403kCnna7SaZTIozZ2aw2pH2slQqMTY2xn333Ue+OIiipcgW8ri+h57KsLKyxvnzC1RWVqNAu3aTvsEh1tfXu4DCdV0KhQK1Wg3f97FsHyOdwzDSSFLUoZX6yrzkupeRyeZRNYNdO3dzy7vexdSll/HKG17DyPgkihoxnBldQ/gOhqqgK+r/Yu+9wyS5yrPv31NVXd093ZM3B612tVotklBGCWQBxiAkwEZgA8YGgwHjTDC2Afu9bIwDtvlsbMB+ARtjQAiDCS+IKBCgjOIqoLg5zu6EnplO1RXO98epU13d2zM7s7uSVlD3XH1NdXWFU1WnzrnPfZ5AznYoFYpYBNgS6jTDSn8kCpHIx1YRDoq8beFaQinv0ufmKBfyjA4P0l8q0ldwKeZtLBVho3Bti5wliC3a/8AxMdf1R1k6zmv687MC8+62Wq1kytqQMcuykhBy3faIvh/ieT71epNms8Xs7DS12izV6gyVyiTT09OJ6psv6E+k9GyGCVE4PT2N53lJVtdWS4fBM8R0ZmYmSV4yMTFBo+5x15338OxLLyPn5CkUComqbFmwe/dOCoUC27dvZ3h4OHH2SxOftrlUb6coY8/djjEbJk5I5lwmpN309DQ7d+5M+oP777+fUqmE67r09/ezZcsWHnnkESqVCrmcNn8wNuOGdAHJQEVEqNc8gkDf55mZCiGK++9/ENvNMVOrJu2DIc2mrKb85ngmTGEul0tUUvPdZO+DiL6+AitXruSKK17Ka1/7azQaOqxgo9HA8zxtx22mwWObaUOsTf/2VJkjGSc913WTWQQzM2D6GBFpK9Yptdr0Yca8cSF9UTqSDfTuL1V8Xj8KybkF1mw4mUbYthmf7zym/Tcfx3HIOXmuu+6bvOxlL1vQvieddNK8tr7dZHOhmO8Zd5tjdNsvHwu6iXU3YV7IbKFxzE3P8h5vNf+EVaLnq6wL2TfxPsZe2EvSEaGs8yanK7eOsW5hExPfEAIiRCzc2KTDFofIBsfJ44c1LAsCQlCx84ZlEbXiTimKUESARagUVhRo9UrpbIRRPP2gRNt0WdhYljHf0DaMKo5wILHHtiWpKaqctm9TSulUpVY7FarqahQS5dxyDrv36UoMevRNHLZqbHYW36sRBh79eZd6GBC0/CTLW6QUrUaDwPMYPzhGoa9EwT18VJ7OObIQO+hInqaMR6RTjRRJXbsQRYr6bIX7b/8RubzNyrUncfoZp7Bz1zZWrFzDUH+ewZFBCq429fF9n9vvfoBS3uWeO29l6cgwF11yMVa+j92PPMDMof1Mz1T5lVe+ike27cIPYGBwiNPPPIv+/n527T7AM886j5tuugkRYdWGU7DXO4wuWc3E1CQrV68mXywytv8QK1auxXFcXDcPlkMQKpREjIwupdn0+PkX/iKRZdPApTSynP5lLifZLhGis3Cin3dOBOXoMEOWhTZZ8kIsUxdE+wsonfko3q87PFNcp1FEYbOt6it0opBUQ6vMQSzriMrBfFOUC3q2KXTUY3O87uf/FMFxXGw7R6HQR7FYSqIxiAj1epV8Po/ruoQh2KJVU+PoZ1kOMzOTiNi0/EZH2zC6bDWNRkOnubYtfN+nOj2D53lUKpOxmcA05dgEQiyHqakZRkYGUJFFf3mIUqlEf/8glUqF2267hWq1jmVZfPf6b2uCG4sMtXodFYQ0a3VOWn0Sk5MVms06d9x9B5s2beLktSfTXyojCoKWj+UqXMcmCgPqzQaWo4kmtJXpmZkZBgYGsHMuldjsxHVdvEad6ekpPE9nViQKOBSnCh8ol7jj9ttYv349QavFWWeezsTEIdavW4sX1LFjAqwUeJ6P6/o0m62EnCultBIdm2MopfRAMGczOTnJ8573PO679y5mZ8Yplfp5fGw75cEBGi1txhH4IYKF41js3r2TVqNJ2PKJ/ABbLO3kraCYL1CdmaVerdFfKjN+8BDr1i7juq9+lWIux+TMLF/8ylf51Ve/mlBpElKr1ejv7yf0G0BEs1lPEsM4zlNHIcygwgxMklni+B1seX7Sb9mOlcyO+r6fkOug6VEq9qG7ZUFnAG6LZmZQkj4nkJhj2raOwBVFkbYTVj42gogiQDsNRvF0lGl5ugdx0t3ZKQulLLbt3MGb3vRGnFx7v8RmOVUeidebaCDJgNf07yIdyjmAdQS1wAwylIqS2b0w8lOD0t779OJO6Zn8tLpvrqnj0pUiElDxH2Lp7L20m9a0MJh8V4Ixze4m3NB+t4Pg+It4JywLOVqbRIOjHXUdCQmRlnY4mvRvutMJUZEQhealiyuepdWwzlGn6VjnHrm1r8HqyMbYAevopijmmh5aKMwUcKAivFaLer3eThXs+zh5lyAKkxFys1mPVfQjTy09LaDU8SFEXYq012jyjE2bGBwc5PQzNlOtztDfV+SUDafy8MMPc//993NobJyWF2BZwsqVK7n7rns5+6xz2Ld3jEe3Po7ruuzeuYfVq1fzwxtv4oYbfsTk5CTTM1Ox8pjj29+9nr179/P441sZHh7GcXIMDQ2xc+dOcsUC/YPDiO1w6NA4Ti5P/+AI9VZAEGkH2FarpZNvlEqUh4YpDwxTKg/jFso4bkEn37HmTwIQyeHOwclt6XJ4necGQkeGsU5lR5ItMhikZ81M0pKEJPg+1WqVWq1GELYS5dNMoYahJnrNZr2j0xLRdrkm6ZKJqdxoNGi1dBxqbX+dS8J/mcgZ2qFKT8UPDQ1Rr9eZmJhgZmbmMAVqII6WYWZJzLpmvcodt/+YgYEB7rvvPjxP2/97nqdJUxzPPx0VwOyfng3K5/OJQp/P53XYMt9jaGiIiYkJpqYmqNVqPPzww8zMzGDbNuvWrYtDwuUIYwWyWMxDHF40nZzFlMEonEZVbse0BS9OkqXNWG4nDGIlPE5MY/YJ4+gj5rvxRzEznOb+mvOkn7f219Fh90QU/aUSv/yKVzAyMsKznvUsDh48mNinW5ajQ1ZG2pziWPvoo0Wvvr2XuYExUTIzwiZkYjrmsal/JrximuAZcxs4POFYEgQgZW6glErMoVasWKHPFehj+GHnLMhc5gvJoF/Bpz/9afpKhZ7bpe/DE4Fu0xFT7uP9vHvVIfOszHJ3ObrV5Pnqwlzl/ZlQoo/1ItsjncUfq1eMSdCjGUTHYCZSHaNw01hBO550GIaJ8mvZORylzTmCoIVtx1NL8xi5iwhi2QQRMRHprHSdan27UZ7rWN0mHR0DAdW57Xz3Jj2yHBgYAKBY7me2MsVO9RitWo16ZQyxLYaLBaLUFE9ztkLoewS2vicGSikWG3X0WGYrjhu668nRlkUkCRcIECDcfvd9lMsuD995E44ND23fw1Uv+UXWrVnPjTfeyNYHH+ecc8/g0NhurnrpK/nLv/ogD/aVyOeFCy58Dnv272PDOZew4+Asew5NUw2FMzadxsjIENXqDMuWLePhBx9m1doNjCxbTi6vp8nzxT4OTVXwfI/IVlRqTcYrVVYtX0u15pFz+7CcPsR26R8ZIsSib6ifUOmoAW5cH9vmTHMPihc6Vahv9ZGfd/c+aXK0UKTr92Kh5pnGTK7jOISrOh7wfT9JbFIqlXAcKyGZU1NTCXEo9/fR31dMiJ+Jya39Ioog7Wlc27aZmZ5idnZWK9fVWaCzTXQch6VLlyZE1XVdisUS/f0lRkdH2bp1axIebvv27UkbZd4Nx3E444wzkgyVlUoFx3HZt28f09NTOI0G//O5azn//PPZvXMX5XKZKIrixChVhoeHmZqaYnR0FKVISPTMzExyDQcOHEgc54JWi9BvMX7wIIND/axetYKHHnqISmWGWrVBPudQrVbZtGkT09PT2KIdzEZGhmg26yxbtqztH0I7xnmxWIzvu84022xqcxdzrcbhcXR0VMeztuEFL3gBn//856nXmzQaOguksfs0x9WDFW2OYZ7X4OBgImw0m80kK6Tpw0yWRcfSQpDnNbjjjttZvXo1W7du5fzzz+feLXeDbdFoeYxPTeLYbtL+P5noRR7Tphqm3TFEv1AoIFY7FnPaRlpEsJBkcKjzLLQVVeNDBIeTXdB1UaI2wYyiiBUrVugyWJ1Z8wxBf+ihhzjzzDM7ZtQSvqKnofE8j/e+993JjI45Z0+y+AS2JZ3mUPObhB4N5pv10+va9uHdNtAdpqGqU5lOt+HdnCVtynM8cMIo0d3KUbf9S6+R5nyf9HaLKcN8o7u5ymCW0/bRppMRtNmEiI3ENpjp0Wx6ynmuzj498p2L3JtPesqk+7p6qb+J2UsP8tHr/qRtnUQkUTn0NEzcSLm5joqaPn8UdqooxzKa7q4rTymMIh1F7Y9Z1+sj0vkx28coFouce+GFFItFbrr5RwwNDdPf189PfvITbvvxndx0y+2sXncyfQMDbD7tdO688w5mqrM0Q5+fe95z2bp1G7v37GVwdAmr157Mhg2n8IIrrmDfvn0cOqQzzD269XF27t7HptPO4OD4JJWZWZRts//AQcKWtmPXAzObJctWUegr4eZL2LkC9VaAWyiC5WK7BfwQwkghTi6ur3Z8OTKngrFYItnr/ZivDTha5WQxpLtXG3U826QnEiZKhX6HQvzAo+nVqTeqSYeVJiWm3CbxRpt4tO9Dq9ViZqpCs1anWasnhDDt8JVWqs1+OolLPknSIiJMTk4mz9Gc37IsVqxYkcR61SYoTYrFIiLC8uVLiYKAtavXcM899zA5OUmr1aJWqzE1NcXMzAyzs7Ps3r076ZiNQmvsl81AwvMa2Lbw6KMPMzk5TsF1aDWazE5XGCiXqE5XGBoYwAKazSZ33313bI+sM2caW+/Z2VmCIDhMITbKpgnRF4Zhhx16Otud4zg0Gg2+8pWv8KY3vUXPEKSUaNPnmOfaaDSSmQPi8kG7zU6r4cbpyrZtHFvIuw5h0NJ+LFHE0NAQO3bs4HWvfwNeK8APIlp+20H9yUb6/ZmrDzHvXLqM3f1193bdSU8M0n10+vhmxtX0i2ZdElO9q7zmeW7atKnDByp9LX19Zfbt20dfXyFx3O1WX+dr34xQNp/aba4pvT5NPLvvYffx5yK886nD8+0733nTgw/zSR/HbJf2DUj/ni5Hr3XHAyeEEj0XcZwXR7gHyTEXca96eb92j/7AKNKdL6bpKA57OJZgRQ6hhGA5iBWBA1YUV7jYVidCEysRPfWcLNs5EBtlWVh0vsyWZYFld5QjWd/jfnQ3HEfTmacdLKK4cfc8D1tCchJhSUjQ1CoLVpwNK2w7wxSDFrXZGRzHwsnZHWnIf+owz4t6WKNv/sd1adnyVTxw523s2LWT577wKiaqAUiefM7lyquv5hnnPAuUz8aNq3jo3nuYnDrAeeedztDQABufcQo7t++iWmswtGQpB3bu5KoXv5jpmQqWnUNsnVFu7UkbOP/C5zB2aJLSwCADw0PU/Ijy0Ajj+w5QLjo8+OBjnHHucyiVS/ghWI5LuVgCccB2sLCI0M572iTjcKeN+dSG7m16fe/e73irIT+rMCYbrusSBK0Osw3bytHf3584GEZ+6zDiW6vVUEqRL7jJ8YIgoDJRSUiJslTKbESSyDx+HGvabFcqlZL0081mk0OHDlGpVBKnPstykuc+MjKSmHhMTk7SaHgMDg7SaOjsiEErYPfu3axZs4ZKpZKkEl+yZAlBoO2QJyYmOHDgAH3lfprNZhIjfHx8PFHaG/UZ9u/bQ86xOHXjBqpTU1QqFcb2H9CdtooYPzhGudxHs9lkbGyMNWvWEIYBA4P9NGJTF8uyqFar+L6fpAdvNptJ9s16vZ5EzzDmKWny144qoZ1A/+Zv/ob3/eX7+cQnPoHX9PW9CINkX0Pspqenk2QxZpY0DEMqlQp9fX2JU+nQ0BDT09M0m03yORvciEJMrMXWTpEAn/nMNaxbt57t27dz+eXP47Zbbu6wF36ykJ5RVXQSoiRsnOq0O04TpzThNb91kzazXXcike52ynEcVHiEmMpG8VZtW2MzKyEiWBHJwPKd7/wj3vOed9P06li+Na/NeSKA9SCJvdCLmC5WZDRIn6ubI6XvVfe97S5fN4FWSkc+aavNbXOZ7qAE6QGU1qY6SXJamW5nQNXmNT+VSvRCsBjyd7QkcWHH7vRKNrZWc+2r7Zi7VSmrTZRF6AgNoA636YTYmSDervu17a7gcxHpxVznXEiTdZPG1Gs0aTZq5Cy7QzkKW34ylWs66Hq9juf5qPnbnqc9es2mHGkUnKgMTo4gFEZHllCvNXELedavX88NN9xALmezb98+du/ZR7VaZ+WqVXiBz/j4OA898ijbd+1gcLCfUqnEsmXLOHjwIGvWrGFgYIB8sUDLC8jn80xPT7N23Un0Dw2zdMkSanWdsMJvNLHF4lvf+AabNm1ieHQJ/cPD9A+MkMuXsKwctp1D2+innVVAkixCT064i7nU3gxHhiFHRrlsNBo0m02UCpPoB5Zl4bd0XGgTCQFIdXJhQt7SymmaqBjl1bRLhiAa21+gnVEwDvk2Pj7eocKaKBau68btSES1Wo9jUbeS2NKmnanOzFDsyzMzU8H3PWZmtMPhwYMHOXDgQBLRYWxsjEajQS2O+3zzzTczMzOD7/vs3bs3SSk+tm9/7ExnFON6kvq72WwmIdceeOABRkdHGRgYoFAoJMqYmZZP9xVGgTbRjKAdDzetdJp77fthPPCp8653vYvXve51ibNniKLR8pLjGztp0xabc3ueR61WS9pi80yMKt9qNfF9ryNyhTEByeVsDh0aY/ny5XzqU59k8+bN1Ov1p6LqHkbaev3Wa5v5VNTutjmtSh9pvyOVNU0quyPGKKWoVCp887pv8Pa3v41isUhfX1+SuXCh6KVAH6lcR4vudjcdPjB9vWlTivS+Cy2TuV/p46bjt3cS6cNjSRtb93R7Zd6R44UTQonuheQhpJlWV4dsHoad2idZb56FLKyiRFFvsweSPEPxyC+KwxNZsaOSCI4VHWZvbMphix4l4dhYUURgOTpBigMoB8IAKwqQSAjFRnBxIogiC9siVqLjkZzt6pKIYIljVuPY2ta6e3rHtnJg23ofSxMek40Ky8ISJybsnbnn5yUjUXwvEK2oB1Ao6s61UCxhuTncch+RDdXpGVQYdSQw6Ovrozo9ST6fZ8nIqCbSlrnPT0MSNM+9Ouw+ztEQg1ZU4jWIwODwEn7x13+DsD7Ld7/+GVwVMjo8yDkXXsCe3bt41oXnUugrc8+dtzI767F244Ws2xXwje/exP9+8y7e+sZXk4tmqdc8xsYPMTk1w7BVZHTpCmozszQbIf/20Y/z5t9/B4UlK1C1aUTZBI2IH9xwC416k6te/gaqLR8Kw5Ar4vkKyQnRYfWcwx1epfeszoLvVY/fjkbRfirRa8rUfJ9rJuLJhLGJNoqbUiH5fJ5CvkCxWEw6L514RQ+awrAdd9c4Xvn1VhIObunSpXpWzRJCFUHQnj0Lw5D+8kCyb7PZpFi0mZqaolqtEoY6NvPExIS2Ac4VKRTiCD9RO+7x5OQkS5evZN/+/fEUeB+VygyW5SaJQQoFF69eY2igjC0Ki4A777iZF73wSm6//XZWrVrFD2/4HnZOT5mffPLJfPazn2Xz5s3kcw633HQj69auZu+u3QwMDDAzNUnOdTRBr9eo1xq0/AjLcsjni0RBQMF12XDyGirTU6xZswbXddm/fz8oodhXoFQq0mx4NBseS5Yswc3laTY8atU6tWo97uhDisU8/f0lSoU8jUYNZJQogupsg1qtgWXB4PV/8LEAACAASURBVOAg1157LY7jcMUVV3DzrTeRL/ThBS1sp529zXV1ghff9ymXy4yPj1MuD2BZDip+aVtxVkbP87CcAp6viPApOS6iVGKzrUJfm34EHnnX4aZbbua000570uttesZYbD1zG6qIMIxQYduJM01WLUs6CFbahtm2bRQKSwTBSrgAtEO1db/D3WYk6ZlEFXOWeE452TeM23ixBMtuD0bFERzL5tkXX8Leg/sp9xcIwrgvtxxQ7fIYn4te5JRU+xL17GtMeaw4U7EQRAFhqJJkMVHH9go7dQ1qDkEkPWPS3raT1KYH0UrFETiUbif0tnGbqIP1E0Vh0l2afQ1pNscM/LDjfAbp7ZToYAyhirN7xrM91Wq157UcDZ5WSvSJgl7KV7epxFzbJx/b6bHO0ikpzejX0vayOpbt4aYY7UgEJma0/hBPrRticzzMOOaCSfebc3XcVj9qp0g14ZuMPaSIxHa2PkHoH9fR4NMK0raFnqu+OGJh54sMLF3Bpc+/iiVrNmMXhxkYXQlOmVpDCKI8j+84gHKHeGz7QSq1iOc870ru2PIYDz6yh4OTDZAcG099Bkpy5PJ5DoxNUCgP0jcwjNdS+KFFpHJIvkS5fxjfF/ZP1tkzUWXXoVmcwjC2nSfweysdPet2pgp3YCFq1VOBtCpqTABc18V13WSdsZs2M07pDs2oz0bpGRgYSMwSDMFO21aLSLK9UW4nJyep1WpUKhV8PyQIInw/xLZzyeDbqN25XC5xnp6YmGB8fJxKpYJlWczMzGizk5hgGdtiExHDqOzbt2+n1WpRKBTYu3cvtVqNmZkZKpVKohg//PDDrFq1ilarSRC08LyGFgli57sgCBKV3hzf8zxc16FcLpN3CzTqTQYHhvBb2q7Y3FfTeZvQcdBW4c27ZSIemXts3iVjh27a0zAMKZfLfPKTnySKiJXvtuJqyIZ5dvV6PVHt022vSUhihKC0oGKetzE/MKTTKPlPhWlV97R9er25h6bepQlVmoClj9PLpGAx51yM8tt9HPOeKQFlSeIMmjab7G5v5/MxOZp218wuPRFteFrJN4OWw8j/PPsamHctHSElbcMOh4sWvcpvTMvy+fyxXlqCE1aJhiNPN3TftO7lxWAhjUG6cpl88Ub1No3QYceUtA2XYDnxiDiKR75hjjAARaRD4CkBBERhYevoHhK/PKnkKvo6TQBdG7H0RLoVE3FEJ5NYCMmZ6551V870fxGJsyjq5fLgEFEU0T8wRMur4bX0tGcofmLTFAQBQStP0PJpNZpd02FqXlX3pwLm+hagpIYobBG8QBhetpklK89AgoBTNkc4uRx+q4UtFr/7jgs4OLmf/kKZ1+aLRJHF3/7d31OZOsj0xCQN1cfGMy9i6+OPkhu0OOnUZ2GJwmvUeMvb/hxfcii7RL68lH5HENvlHX92LkoJvuTiGKiBLrpIMhNyNI+qVz3rrluLmerrqeieAHVooe3WUw0R6ci2atvSMUgyyUoMeQ2CFkqFSRY745zm5nOJIrxnzx58P0javEJRd1aGfJlpWB0yzk/MGIIgoFYLO2xsDYnX0TuKybP1fZ/JykRi2iEiCSk0A4Nly5YxMjIC6MyMe/fuJV/Is23b4xQKBQ4ePMChQ2NYjh4wmOPs3r2barXK6tWrGR7qI5/Po4goFPNMTU0l2Q3DIIqnlXX0i/7+EkuWjJAvuExOTlKt1gmCgCVLllGvt+M/m87bENHp6enkWRjS57puO8Z+MtCxY7U+7BiMeJ5HX18fy5cv57HHHqPZ1AmMGo1GkizFjcMJGjMP226nPTfP3jxLY6ttpsyBxInTlnaiFVNHDLl+MmGIWDfRtyyrIwtvui0wg6vufs98TxxfY4VYE9lOp8L52pr0oMSUK03w0kSy+xg2FsT1avXA6s7fSdsxt8+Zvh7Tv87Vp7f78c770S5jp+14ut9Pt8+9TEXS55nPZKY7iEIQdUYsiaJOB8L0/UrbuJtBplIKodN0JD070P29G2ZgeTxwQpPoEwXdZDK9Lr2cftGSfUhNvaSUYb0ufpEtGwtQloUoHW5OVxgrNsOIt6PLu9hMn9g6GQuAEgvL0unA1REI9LEQDqUUkWrH2rQsi/LgENbe3Rg/i2KxiC/taCVGVSIKtPf3CarQHRUWcR3zKR3tFRaW+CjAdhxUGKAcR6dQF4UVR2LxiRhdugxXHIIodljNl7DdlSxdthInZxO1GoyuWIPr9hEGClRIX3/AyMp1OIUSYehjWQ5EAbaTx/N1UH1LRckzfqJxtOfo9W5mWDjSHZRIp1NOWoXM2e0AlIa0mntuyG6j0UiUUhMaLOc6ifoDbTU1ESNiMtCO0SuYZE+gCZzJamgUYGODPDAwkKjNaVJhWTqVuekoTXKNYrGIJXrbQ4cOJe2y67qJKmzuxfj4OMuWnqITxsTE1/d9+vv7O9q8IND3aXh4kHK5zPT0NBMTFUZGRigWi+zatYvVq1cCbWJg1EalVDIgAZIweKVSiXw+r0msEN+vzrjFZv9msxmn8m4yMDDAm9/8Zv7pHz+YZGnzPI9CXxnHcajVauTihGDprLrm3plrMmQ/Xa4wDCHXGTrOEO+nCqaeLqQ/60Vi5yOEevuo535zEWI4XIxL84FeBLq9o2BbzmH8oXOfTlI733XPdS/SxLTXb+Z3M4BK54E5Xv2AER7ngnmm3TMdZuDUbj/a681xO4W5uXE8Z1BOOBLdnbwnTD24ueIIH65iHY3H2vz7pB9KGIaI1a7Eh6X37niQ5mFFKCzEElAKywqxUCgnF5td5LBU7GUqAlGoMxja7XA5SjqdHUTs5JwmSofORNgm6oZcW1ZninDLapP1znvX+5q7oZXxttNKPp8DIoaGRnCdHF51lrDlx04pHoVCERGLINIJGqzpSWZmKuRyo3FnpzoyEFpzeB1G0h7RngjEab64wMk2Pcp5eIPaGcJQm4bZOoOfRHp2AYWyAWLTHyAnevYiivexLN2oFHJufDzBcUvJeSy30/5WKbAsTTaUlSOMIhwTlzTtAGPKOcd1HKmuzIfFNs6L6TSeKMylnM93H060qCKe36IofeQM4VQ+YeSj/BClinGHFTsPRj6IHlTpKm/FdosqdigMqdcaqEhfY/d0uiGAgd9p3pEOfRdFEaVSEdtux+fVyat8wrDtGDQ7O4uoCIuIUjGPZUEY+uRyeVSkI1H095foHygTxAlK+gfKKBUCmoTv2bMHy3JYMjLEQw89hIjgWBbVqo76Ybva3KJYLBIEQRK2LIkdHZe7VMpTLvexdMVSHTbyke1MjE9x+hkutptDWdpp7LTTTmNmZoahoSGCICCfL7Jt2w7Gxw9SLObJF1ycnI3VEpYsHaXcX8ILWjrMmWURBD5+ygbUEisJoSci1GrTFPI5/vcL17Jm1UrOOe98rrvuOlqtAMtyaDQ8Dh4cp7+/PyHqHaqeaFOeKAhoNZuEvs/AwACt+Nqr1SqONRCbr+hBdrPVpFlvPOn1VikhSjIMarNGHVJTtNuU1cNUTul7llZ2DUkzg7wwDImMI6Zl65lguuyc0/1nCukoGt3k1rwD3YO9NiwsdH8WqE6SaVnpdqbdVxtVOs0xlEqfu1f+iU577va1dZpVpgcmStptWhSFHWF0zX1MrsWs71ay42NIYv9sHKEUoK/FstqDd3N8Q5jNuXKWNkPavWMXq1evxo4H1IdHYRFs2yEMWwnRTvpVcSB2lj5eOOFI9NMZ3cSuXfEj/fJ2jGb11FNoW9jEDYBqG9grEf1w0pFArN5qsmV1qs6kyHa6MUnvo8t67NdsFKm2B7ceFNRrTRwLRJEoOWEY6viinoeI3REvWivrx16eJxsLMUM4eshhy9L9vesZRtK5nc6ImZohWcDZepLUBZb4ZwVzPe8nm8wfC9IKjh5UW0kCjrzbtjk0NtJGYTYRMMx7b5zWWq3O7IUGhrCkhQagg7wYxdeyLBqNEBGlybIIg4ODiT0kkGQ7NAP40Di8ETuKWTn6SsVkG8/z8FsBlq2w7LZyXigUEsdKbaetPfkLBTcxvygUCriuy6FDh2g2m0nillZLE4/h4WHteDgzw+TkJBPjUwAJgTHlnp6eTuJga4fKEuPj43ieh+NYRCpMEq+YrLeW4ySKcRAETE5OtsPfSVu4MbbTga/vQ8Ovc+ONN1Kr1ahVG8ksQTputDlm2hY7l8sl7UcQBNokpL8/Uf5M3bAsS19LEDA1NfXEV9QuGEUyHYIujfQMSbfAlf49LQCYe5E+RrppPdJr3WtmOv09zQ16Eem5Bt/psqYJZjeR7T7vkeyO5yrvkYQpc8+Ph/CRPt+R1OMoilARSduzdetWNmzcmJiapW3eRYR6vR6Li5332Wx7PJGR6OOIbhKtGydBWzZ1kmg9KgXbUrrh0u6qyceKR24RqWQDTjvpgR6tpoiyUZotK4nGQaxYpEm0URfTy0cL0zAZuzgTo9R1XYZHR2jUq0RRiOe1kobX91r091sQ6alIQ8JNI3GiqXVHwkIak8U0OPM1xnNhISrwYlT7o9nnZw1z3aOnE4kWkY7kJiqycGwXJ579MkQliqDlBSgifN+EqPQSNRboIGNm2ZhQmBj6hgCm1bx8Pp+QGGOyYeytjVOjbmfaali53IfjONTrdcIwwveNiYmO+JHP5xkcHMR1Xeq1WRoNnZhE+QrymhyaBCP79u1LBgaep5Ur13UplUpJqLFKpZKQcWOK4fs+a9asoVwuMzk5yc49u5mdnU3u7ezsLENDQwAdIe3CMGT58uXs3bufarWKiEqegw5rpmeFWq0WI3HCFt/XUUtMPGkRoX9wOImhbQYz9dgkRSeM0ZkZoyhi6dKlbN++XduoFwo0Gg0mJycTJdoQatd1iWJzDvN8fN+nWCwmTptph8JefkBPBtL2tb2QvJMp86S0PW8vEp3uf9qENZ3dd/4yHYlEp/8botft5Jgmyt2E3wyWzHGONBvXoSbPMxN6JBOXbpi6lt5/vljW6fP1OvZCSbRlWfhBgFsosG79+p5lNe9Yo+Hhuq6usxy+zfFuo59WJHq+F+eJPl56BGi+9/qfNudo70fHNqA9cUVshEgTaLsdS1UphSgQFW9jKqAlSVg9lTL10Eq0cTIUrLRirdpKkyHcva6tu3xz3YN0GdPTL7lcTncoBw/heR75viLaYcgnH6fuDMNQmz9ECkcsGo1G4hgDJGYEc0GrA3M7L/ysoldj2b3uSM82Xbe7O5vFlGGx+3V3FvMd+0R65gu5r4u6f8dcosXDdIBGybQQHMdNHACh7TCtVEikIoIgitNKN5IYzkuXLqVWqyVKnnFQTCeqMEqfitrKNLTbMvO7cZgTkYTca6etKCbckqjG5jxGJfV9rZiWSqXEGa7RrBOpMFYldeIQY0dsomoYhVU727XtsI0ynE6OUalUEBEGBgYol8vs3r1bpwivN+P2sNN207STxizE93127dpFuTwQE1Stvtu043CnI5IopahWq0xNTXVEBTERPer1ekKuWq0WxbyDsqPEgRNg165dCfltNNrmF3oGoS8hRqVSCYmTfniel7Tthw4dYsWKFdTiVO7m2ZpMkE82DJk3y6ZPMjO/aYdD6FRxzXrTP5pnlSaxZp/0f4PutjEdRcNs34snpPc3504PQtLbdwtxaYW1Vzl6XVc3SU8jXcYjtdvp7Xr9bup5evuEw8Rl6I4t312OXjNX3TzD8B8/DHDcXBKcoftY6VkKx3EIojB5n9IDkZ9qm+hjQftBHF+yvVh0Vsz0ulSZIguUQpmIG3HyFYVCSVz5IydRmOl6MZVSSbQOS6w4W1xM4qU94jKku9dIeTGjsrlGs0atqNfrSVYu3/fZv38/eUcrL7lUprNGrD7n4oqdTg2e4anFQgl3hp8etFqt1DS2xL4TFiKaWBmTCKUE28qhHJVyqutMYmDe8fRUuyHI7Q5Tn8l0kmmiaaZaTcecDrdm6qQZjBsSIiJJYpEwVNi2k8S4ThyZ43i/uVy7zIbQGuXblNtxrCQzY1qVNM6JjuPQ19dHIa8V6YmJCer1OsYMT8QG2gq64zgdZNzzPOr1OpXKDKOjo9Rqsx0kwpBoc48sy0oSspjjiQhhqjk212NCd0VB+1mYQYiJBhJFUWKWYvZLCyL52Da923wmiqJkIAAkSSyeyhB30CledZMyy+rMNtg27WgfJ00Ou50UFyKyLVaISy8v9PhHOlc3gT8WzKdw91Kve4k16TagewDTXe5eBLrX9+5tRXSEtO71c11/+n73zCx9DHhakegoJaR2Op51v8hW+0Wx2g+v21lt7grc28NWHzdALP0itvdPOcRZncbx2pkFBLuDQ8cxxYmiOAIHgNKk145bSGU5SX4ZQ4aT/UVQokOOKcvSDmjxNmniLMYdM0WYxZiXsHAiPdeI1TgFFQoF7cVfLFAoFhk/eAjfayApcxIAv+nRanm4BZegOc3MTD+Dw0NEKAq22x7BSg+Fcp5ydjuk/qxjrkZiIY1H9zbzKcG9iPdi69Nc5+re5kQk909Ep/VkQU/7t0OZua4LkZ4BM6YCDa+JiNBXaGdQc4sFPD/Eq3m0gpCx8UM4jkMrTsRSyLUjcaTJS1oxM+RZ/xdEcrE5GNh2nijyseKU4YVCAdvW7Wk+n9ekLogdHoOAVhDiedpUZHi0nxUrR4hChd/yYhJtpQYD+pjGFto4JukQfdr+uVwux46WQhQqWp5Py9Nxqt1iHrvfYbo6w7ad2xg7NBEf04lJrkXBdRgeGKRUKCKDQzg5G0TR8r2Y7OuBQK1Ww7Ic+vrK2snaccm7BVQEtu3gONrec2pqilq1kQwcfN8nCNvEt1QqURmfoNlssnzpRk3Y9+xDHJtcIY/nNeLIIiWdLKY6Q7ncFztwauKvo4xAEEW0goAginBj9ToMQw4ePEgul2PZsmVaKIkHLk9FxkJD5M0gygyk2iYmncpkegCmt9d9cURsOhl3kd0h3EySDn2sVL+KYKUiZfVqA9ME3dS5NNJqbRrzfe/VDs/VL/ci1Ol++EjtTq/t0tc5X5+Q9nmIIsNzOkluGAYdx+ngTAKhUaLjZbNvWqWOYgU8iiIiE+5O0AlcItUzT0Y64srxwtOKRB8NFjNSnGv/o0Gv6ZleL13vkV/6y+HHTJbneSHmehkX+hLNh2Tf1PRI2v7Rb3oUCgXq1RkcuyvAut1OMWs6cBHBlqeXLXSG44P5lIOfBSRtwVNwbmMHa/wY0qpO2is+n8/H27btntMqk9+CMNCOaYKNj59EfUgjfey0M5CJsGC2SYewajsRhh2qtRIdXUQprZgbAmVC2xlzhrTyHEVtBRU6p/sN0oqmucb+/n5mZmbIxaYOzWaTWq1OtVpPBhtR1J5KLhTy9PX1Jddp2ZKYhJjjmnI5jpOE6zOmGqYcRgFPq+/mvolYyXWYsH9GWTfbGyXZXLM5ljHtMPGn0/Uhitr3Jn2+XqTPxMx+spEIRNJpltDdZqSJbC8ymDz/1DPvdQxzzm5Bp/3b4ap29/a92rmFCFhzkeG5iPRCMBcnWkhZulXlIxHS7mOaWSlTDvM/TaKjOdTnXqp0QqrlyHbV3ddxvHBCkOgjEd0nqkM9WoLd7QCXfpHh8KDkvUaoRglO2w2mX0owHes8JKNHeLrDyHJXbOlupW+hSnR3GU3Z01Oh5rpbrVbi2R6FPiiSRtyJvWnDlo/f9AhaLYh0YpFe51sIRLdiC9r2pxFHoy73wkLViWPFXOrKzwpxPlGQdipMIjykSKYhp2nnP7ONgSaEEAQtCgU0Ic4JlmXUVN3FGPMP096kSW4YaltiQ7xNe9LXV0yZmlh4sSqulMLzwyTkmxkM2LbN6Ogo+Xyeer2eqLbmXL4fJk6LxnHRtm0KhUKi8pqPSNu5a2pqSptwFPpoNlvs3z/GdHWW6mwdx3Fx3XwSoWTDhg0UXCextR4aGqBQzNNoNJIO39yLYrFIsVgkiiJqtRrr1q1LzDZMJI/p6WmiqB3rOiHVKkqeQz6fx/M8RCSxVTfOnEBirz4+Pp5E/2g0Gsn2ZjZRP1+P/v7+ZCBi7reZTahUKuTzeYrFYjL7+FSh23kuTej1oMrqGCiZazDf0/t22lWTKNvmd7OPgfHN0dt0Euhu1flIavHRtLu92tBu9PI3SZPPbjKZ5i3zKdBpO/LuMvQismmSnDbBgs4MqGZbncI9PHxmQHVloEw9704b6t6KffpeZzbRTzCOJ6nvpT7PNSpNzp8iziaEWS9F+2hxvMhK2p7ZhMIqFotIpJgtFGg167HTjCQKiO9rgu3mcoljgHkBjhZKqSwEW4YMi0S3KmzUT2g7DKUJZTqCRrctc6cS17aLNPsaImZIurFF1qRRSGdTg04xwJh/pMPqpUO8pcuYz+c7Osz2wCDE94M4Ckc7K2J6X/M/rUYnIeWUSswXTFQhXTZ9XONoaJz+lNK207ZtMzs7mwwGzP3VbafuyPU52m2keRaNpo7I4bqFDmVYXzeko5eYAYF5ruZadGIaLyHrxs7d2Eg3GrMdzozmeXaHkDMEyiTLSUddebLRTdTSSuVc25h18xHOXmKTwVxikz7mkct7JMX2WLBYVXouZ+7ugcSRzjmXwj8XTH1aiArcTda7VenusqTLpFTnYCFNvHuV+1iRkegeOJ43Of1ipiuAJXPZXXfCnmPEJKJtorvRHf7HKNHzNRBHi/RxTOdjRpjlcplmvUrLa+AHQYdaYlsWJq1h0PKJ4k7ZUouPPwnm3mU0OkOGxcBEa0hHyjDOc4YspTufMAySWSYTPSKK2spxFCnCMCKKdGhP2851zFalkVa1gsCYdLRJrGnHwjCkXq8nSVOiKCKIIsTWphBhFJG3rcSBL5fTETiMOYWJABQGEc1mKym/6chNSDmlVIcqb9Jkmzat0WjQaul4y7Vag9nYnnl4eDAOhVfEcRwOHjzIkpGhRL0fGxujWptl6dKliRO2joXdIJfLJ+p+Pt+XOGgvWbIEgJmZGSYmJhgaGkFF0mG/btR3E7LOxNg2cXTNAKjZbBKGelbQDATy+TzNZpORkREqlRkKhUIySAoCP7l/JjqIGUyYbIf5fL4jyseTjXR9Sg/gzHegY0BovqcHdul16VCvaYdWoGPwY+qsIc5mG5Oyeq5jHInkds9sd6PXcdI4kiiXvgfp7ecaZHRzlfT9TSvGvfbv3jZtLgTt5zMXRNpJ3KCdh0Irz52kmDRJTqUAD1PbdZpzRUTh4bMWxwp5okZHGTJkyJAhQ4YMGTL8tCLz5sqQIUOGDBkyZMiQYZHISHSGDBkyZMiQIUOGDItERqIzZMiQIUOGDBkyZFgkMhKdIUOGDBkyZMiQIcMikZHoDBkyZMiQIUOGDBkWiYxEZ8iQIUOGDBkyZMiwSGQkOkOGDBkyZMiQIUOGRSIj0RkyZMiQIUOGDBkyLBIZic6QIUOGDBkyZMiQYZHISHSGDBkyZMiQIUOGDItERqIzZMiQIUOGDBkyZFgkMhKdIUOGDBkyZMiQIcMikZHoDBkyZMiQIUOGDBkWiYxEZ8iQIUOGDBkyZMiwSGQkOkOGDBkyZMiQIUOGRSIj0RkyZMiQIUOGDBkyLBIZic6QIUOGDBkyZMiQYZHISHSGDBkyZMiQIUOGDItERqIzZMiQIUOGDBkyZFgkMhKdIUOGDBkyZMiQIcMikZHoDBkyZMiQIUOGDBkWiYxEZ8iQIUOGDBkyZMiwSGQkOkOGDBkyZMiQIUOGRSIj0RkyZMiQIUOGDBkyLBIZic6QIUOGDBkyZMiQYZE4oUm0iHxCRE5/qssBICLPEZF/O4b9nysil87xW5+IXCciD4vIgyLyd6nf8iLyeRF5XERuF5GT4/U5EfmUiNwvIg+JyLvj9QUR+bGIbImP9Zc9zvevIlJNfV8nIt8TkftE5AcisiZef46I3Bof5z4RedUxXH/3OU8SkRtE5J742Femfnt3fL2PiMiL5jjeCVM3euFEKt9TVXfj339FRH4S/3ZNav3rReSx+PP61Ppvperuv4uIHa//q7ie3Csi3xGRVfF6EZF/ievLfSJy3pHOcRTX//9E5IHU93NE5La4LHeKyIVHKkvX8b4hIkNHW54nElm9nbttmqfNXRtv/1B8rD9MHeuX43WRiFyQWv/auP6YTyQi58S/nR+f4/G4PslRXv8fiYgSkSXx90ER+Vrq/XpDatsjvisi8j4RecHRlCVDhp9aKKWyzwI+gA3cewz7/wXwR3P81gc8L152gRuBF8fffwf493j51cDn4+VfBa5N7b8DOBkQoByvzwG3AxenznUB8Gmgmlr3BeD18fLzgU/Hy5uAU+PlVcB+YOgorr3XOT8G/Ha8fDqwI7W8BcgD64GtgP1UP/+n8+cprLunAvcAw/H3ZfH/EWBb/H84XjbbDMT/Bfhf4NXp9fHyH6TeiSuBb8bbXwzcfqRzLPLarwauAR5IrftO6hqvBH4wX1myz9Ou3s7VNs3V5q4EzovX9wOPAqfH358BnAb8ALhgjrI8E9iW+v5j4JK4Hn3TlGuR174W+DawE1gSr3sP8IF4eSkwGV/7cXlXsk/2+Vn8nDBKtIiUYmVgi4g8ICKvEq2KXhD/XhWRD4jIXSJyvYhcGP++TUReFm9zsojcKCJ3x59L4/WWiHw0Hn1/PVaCXhn/dr6I/DA+7rdFZGW8/g9EK2j3ici1SqkQeExENqfK/Lr49y0i8ul43UtFK8b3xOVcLlo9fivw9lh1uCx97UqpulLqhni5BdwNrIl//kXgU/HyF4Gfj5UJBZRExAGKQAuYURpG8c3FHxWXzQb+Afjjrtt/OvC9ePmG+JwopR5VSj0WL+8DDqIb3wVjnnMqYCBeHgT2pa73WqWUp5TaDjwOXNjjuN1144PxM/+eiCyN1z8rfj63isg/SEpNPJ7I6u6cdffNwEeUUlPx7wfj9S8CvquUmox/+y5wRbzNTLyNg+7gVdd6gJJZj64vlCGBAAAAIABJREFU/x3X+9uAofg+zHmORTzXMvAO4P1dP81Xd3uVpfu4O0RkSfzMHxatbt4nIl8Ukb54myvj324SrUZ+fTFlX+D1ZfWWnvV2ruc7V5u7Xyl1d3ysWeAhYHX8/SGl1CNHeBSvAT4XX8tK9IDxVqWUAv4b+KUj7N8L/4Ruc1VqnQL6RUSAMppEByzwXRGR/0o9wx1x3fhx/NkYrz9F9CzNHaKV62r3cTJk+KnCU83izQd4BfDx1PdBUqN3dANglIIvo9WgHHA2sVqBVgcK8fKpwJ3x8iuBb6DNV1YAU/G6HHALsDTe7lXAf8bL+4B8vDwU//9N4O3x8hnAI7RH+SPx/2FA4uU3AR+Ml/+COVSRrvswhFYCNsTfHwDWpH7fCiyJy34tcAioAW9JbWMD9wJVYuUhXv+HqfKnVeFrgD+Ml6+O7/VoV7kuRHcO1iKf61znXAncD+yJn8f58foPA7+W2u4/gFf2OG533XhtvPx/gA+n7t2l8fLfkVITs7r7pNTdrwB/D9wM3AZcEa//I+DPUvv9efr4aAVtKq6Xdmr9XwO74+dqrvvrwHNS23wPPfMx7zkW+Fz/CXg5Wm1MK9HPAHbFZdkLrJuvLD2OuwP9Dp8c141nx+v/My53IT72+nj954CvZ/X2Sau3c7VNc7a5qWOdHNeNga71yX3tsc9W4Mx4+QLg+tRvly322QMvAz6Urmvxcj9aJNmP7huuWsj7mFr/X8RtcXzc98bLrzNlRL8Dr4mX30qqzc8+2een8XPCKNHoRusF8ej2MqXUdNfvLeBbqW1/qJTy4+WT4/U54OMicj/aRMHY9j0H+IJSKlJKHUA3JKCn2c4Evisi9wJ/RluNuA/4rIj8Gnq0Tnx+Y6P7fOCLSqlxAKXUZLx+DfDtuAzvQjf8C0KscHwO+Bel1DazusemCk1qQ7SZxXrgnSKyIS5LqJQ6Jy7LhSJypmgb0l8G/rXH8f4IuFxE7gEuRxMDc81GHfk08AalVLSI65nvnK8B/ksptQY9Df5pEbHmud75EAGfj5c/AzxHtM1pv1Lqlnj9NT33PD7I6m7vuuugidVz0c/7E/FzmfcZK6VehCYy+bisZv17lVJrgc8Cv2dOPcexjqYepa/nHGCjUurLPX7+bTSxWwu8HT3Qm68s82G3UurmePkz6Oe9GT29vz1e/7mFlnuRyOpt73o7V9s0Z5sbH6uMNkF6m+qcOZnv/BcBdaWUmSU71nrbB7wXLSZ040VocWUVcA7wYREZOIZzfi71/5J4+RJ0PYAnts3NkOGEwAlDopVSjwLnoxvovxWR7kbAV0qZFzsCvHi/CN1Zg+7QxtBKyQXo6WDo3UiY9Q8qpc6JP89USr0w/u0q4CNxme4SEUcptRcYiRsqY1LRjX9FK6HPBH4LrSp1nlTElrZDyftSP30MeEwp9c+pdXvQ9m2mwR9ET8P9KvAtpZSv9DT5zfE1J1BKVdAKyBXAucBG4HER2QH0icjj8Xb7lFJXK6XORTfAmA41bmSvQysVt81xH+fCnOdEK0z/E5/r1vg+LUlfb4w1tKdTF4q5SNQTgqzuAnPX3a/GdXQ7WkU8lQU8Y6VUE/h/xKZFXbgGraKac/Q61rHWo0uA8+N6exOwSUR+EP/2euBL8fIXaJsbHc05u5/Dk1Z3s3oL9K63c7VNc7a5IpJDE+jPKqW+xMLxajoHSXtoDypg8fX2FDTB3xLX3TXA3SKyAngD8CWl8TiwHT1gO9p3Rc2xnCHDzwyk3UY+dXjPB16gbv/Bg2zfOkFxaIBqxWdivEroC6NL4UUvOIP//uT9/Oaf/jy7dj2ENzFCRItNz1xKKdfgwx+4l1e9dhM/vnMvI0vKFHNV9ozleGzLBFe/bJDxaZtHts9y+S8VKZdWcM2HtvILL1+KKhzi5q/AK35zHbNT4+zdOQOFFWw+ewTfixhe4TKYd/jgu+/nre/ZxI4927n3phZ9oxGWG/HITXDJK1yeuXkjoddieFWOj79vJ1f++gZGljp859qd1GcD/uSvz+XLn3kMryn8/Cs2oZSiVCiRz+VZOfIMHMflkx/7Grt3TfCH730Btg1es0LTO8T11+1kYizgLW8/j1u+u5/bb9nH2/70Qr76hYfZt2eat/zuZhqNgP/zJ3fw5t/ZiF1QKOVTHrDwmj7/9592cdHPFTnttDwRYDk24lh84N37eP+HT6NcLDFTCXHzFo1anW98dT8tr8nZF+Txqi2++60Wq9fA6Wc6RFEEVsTA8BBLli2lnC9SKpVwHIdin00ul8NxHKycTU4sLMvC9z08z2NycpK3/+49vP+fNxJFAf/10QOcf1GZ8y/Os317lU9+ZJq3/InL1Jjiui8EvPEPB/EaNv/14Sn+z99uQByIogg7Z2HbNh96/y5e/qrlbFg/xFt/4x7+4G2b+dA/PSQi8mfAcqXU74u2gX6TUuo2Efkb4GVKqTOPZ91duWxYRZHCcWxs26bp+dQbTaJIsWbNKpavWMktt9zG81/4IoJQsWPbNtx8gQ2nnYllWXz7q9dy5dWv4d47bqGv2Me69RvZvXMbDz2whStf/ir27d7J3t07OPeSSyGCG771dS646NmsXbuB6772BS685LkMDJRp1avMTk9Qzll4zRaFYp7QD/jB7Xdw8TlnEYQB23btYXh4iFKhwIOPPsZ5p59KsdBHqBSl8gA/+vEdnHfe2QwODHD3PfdRr9e57NmX8djjj+H7LS4492xyhSLF0iCuW8C2baIo4gff/x7j42NceP55UJslCppYlnBgqsKesXEufOZmml6L799+L8+/6CwsIr7/4wf5hUvOQkT4zq1b+IVLz8MpFIiUMDyyBCU2P7z5FlauWM6ZzzyT6ekZli5bgYjNli1b2L1nD1de+RK2b9vGffdt4aqXvJSxsTFuvPGHXH31K6l7Lb78xc/zS6/4ZZSCr/7vF3jZy19BznWJ1PxmbLZYHd9r1So3/uh7vPCKlxKI4vrrvsaZ557H6JIVjB8a46H77+WyF1zJ2L7d7Nz6CBddcimTExM8eP99POfy5yZ1JYr0JM4Prv8uFz/nMgLf58Yf3MAFF13MHbfdKiLyceBh4KNo57TLlFI7ROSzwKBS6iXHs+5effFmlc/Z2JbFrkMVto1N4wch56xfzpKyy//c+ii/fPGpRFHEQ/uncSxh/dIBnnn2Obz/P77Eq597GvtqeSb27+CZyx0eGQ+5Y/sUr754HftnA3ZONHj3b7+JvZOT/OPHPsMbX/Finn3Rubzjr/6FP37rGznj1FOZnq2we+8+Nq5fy0zdZ+XKFQTNGq/+vT/l8x99H0uXDPPBf/ssZ5x6Eo7YvO/Dn6LPgfLQKFMzdYaGhti9Zw9DQ6MMDg5zaPwA+WIf//I37+bm732dWt3jda/4OewwTJ6BFSnCMODjX/4hO/dP8GdvfDHay0Rv895/+zqXn7eRF160iZ37J/nTj1zHNX/1a3zhe1vYPVbhXb/+fJqtgN/9+y/yZ2/8BdavHuEDn7qe/qLLb738WUBEFIElDpFTRiTPH3/of/jNq1/Epg0bCSOLwG8QBD6/9Zcf4s9/7zdYMVqmVp0gUgF//X+/yiuuuJCVK0b4+LXf47yzNrLxpOXUmhF+CAoHL4zw/YDZRpMgCGj6AWGoaLRCAhXR9OsEzVkevX8HJ526lFwODuyexrKF4ZE8fitg364qy1YXEULG9nmsXOMANvv3tFi1No+ds5A4MEiEw/j+Gn39Dv1DLrserTIy4rJ8eZ7775v+deBVSqmXish1aL+Az4vIW4D/TylVPp71NkOGEwnOkTd54nHNNd9j/Yp+8s4Ktv/kAGEYMrw2onowR7PpE4T6Rc4pWLFyDXc/uou1J62mmM8RtqYQYHh4lIGhR9j2cISF4JR8xAInn2P1KsXeQw7f/EyV0WV7Wbm2DzcPDUKufsMwN3z1IGMHqvgenHqOT6Pe5Pr/2UcYCBDxvBevYmi0QP9UgXWnWjz+YJ115wprTlf8+Ks+W761lVVri7zkN4e5/JdW86WPPUZpwGHlugKzUxFe4LPpjBLX/sceHthyBy95zUbOvWgQz/eJooiDYxX+95q7WL12iPf8rp49fsFVG7j4sgEu/bnlXPMfO/jD119PuZzn9//4WYgIL7xqPf/+obv4k7fdjooUz7l8OWtOKvHQw+Nc+6ndKAUqUjzjrAKbTi9gqbYwZAZOhiQ88pMZvvbFvSgVcdLJBS7+uTy+Dzu2hYztj/CasO1xH5Ti4p+zGBwRLBRiKZAIJEKL5CSNbvd5fN8HdCcWhiFXvXyIL31uku9/JyKKIl76K0UgZMlyi81n5fj3v5/GtoWrrh4gikIsZfGxf97Pa9+8gtFRBxAsESzLIp+32LungYjcBUyj7SxBK0ofF5EaWpHvnq4+ZriuS6PpcWhyBomvf9nSEcYnKkQo/FDPSjebTSzLwRIQFBBhrKmCIGDtuo3cd9et7N+7h+GRUWzbxvcajIyOcvDAXm767ncol8sMDg0hSkHgc8GFl7LlrlvxWx5RFHLS6pXYQwPc+9CjBEEIKFYvX4KoEBX4DJaKTE1VWHLyGtYuH+Wehx5DEMqlIs887RmcvHY1t992J/m8y+BAP1EY4tWnGR3s5577HuDr+/dz9umbWLt2DZZlgbKYrVbZct89lPqKXP/97yMo1i1bwrqVwyztL3BwHL590x2ICGesX0XeirBtm80nr+T62+4DEc7YtA43n6Phtbj5zvtRSsueq1et4LRnnIqIcPuP72R6egYRi/7+AZ73/J9HKWHtSSezY8cOPvuZ/8Zxclz+3OcTRZBz85x97gV89UtfBODs8y7ALRQJwxA9AaeSjxZWtcgpAn4YJu8GgB9FKAVBpFAq4OzzzueBLfeglELE4oxzziFqNRgdGebQvj6+/53vYNkWZ599HmGosBTceOMNXHbZ5YSE+vr8gCgI6SuV2LtnNyJyH/AY8G9KqYaI/A7wLREZR0drOO6o1Jrcs/0AgiACF5yyknu3jx22nYgQhiG22JT6y9x5110gILaFqs+yY7zOnomQpQN92JZ+JzedtIKDs3v48w99jNWrV7J+7Wr6+kogDu966+v5j89/mVpdE8kXX34pa9eu5G8/8nHqjSZKRbzmF3+BUp8WlJ99/hnccPsWVg8PUXaEQ7UWE/UxbMsmZ9ts2ngqj259nFp9lkKhgOf73Hz/Ds4/fSN/9e9f4Ad3/YR3vu4KzjltnX6uAgcrVT77zR+zdsUwv/P314KCl172TF586em8+Zeew4euvYEv3bAFEeGdv/Z8sGxedvlZ/ONnvs+b/vpalIIXXbKZDWuXc//je7j+x4+zftUIv/MPXwPgDS+7iIvO3MCtD+zlI9d+l+nZOn/x0Ws45aTVvP8dv4NSIfc/upWRoQFWLxskDDwciUDg119yKf/5lR/R8gM2n7KKs05biQotlPIJQodABDsQAlsRhIJv2UBEYIcIOfwohMjFs+M2OR40jizr48DuGXZPNwEYHHGxLF3zB4YcDuwJgJChYRvb1u34oQMeA0MOuUInVRBAKXj8sVnQfi+viX96G/AZEXknegbzuLe5GTKcSDghlOiX/Mp6FbZcxndOM+mN4eTynLx+Ldt37cVvNNi44SSKXoX8yhF2TVVYvXIJZ2w+nb27f0LYaHDWsy7Dn61w25130YwC8rlhRspD3Hbn3WxeP0ApZzOwbDlesUXBGeCajzzMm95+Gnsq2xgdabKk2M/YpMu9tx0glx9leLXN8EiZkeVDuLbPqiX9RH7IzMw0s7UWn/jHHVz8MovZ6YCh4QGWLh2lXMwjhWn6B5eAcmg0GqggYqBQZGR0iMr/z96bB1uW5PV9n18u59ztbbV1V/W+T8/09GzMwmhAYDwsGiEwBmQJyygISwSELDmwCSEU4ZBCgR1hR8iSHXIIKwIpAuNgNRIIDQJhBLP2MEt3w8z0Xt1dXdVd+6v33l3OOZn58x+Z5977qloShIDuMZUVL96rd+8795w8eTK/+f19f9/fhdfQaNjYOQWAOhgMRty+8zAGQ0h7pBQQEUQsUQ/Y3z1LTB3ee7yrsbam6zqqqqLrGoQOjR0hBEIIxBi5tj8lpg7nQEnM53NCCEgCFQEjJFGqqqKuaybDMSkaui7SzBu6ruPSpUs0CyXMW8CgMQPdrusQazhyfJMjx7eZDCeMRiO894zHw3ye3mO8xSQt4LlhOp3y2muv0aQFSSPWCoPKYWwkpcDedEYXAl2KSAJralQVXwneVmyONxGbmV5XmOi/+8PP8Nd+6F5uu22bv/q9n+ZnfvbDfNu3/uqhELKITLQ4lYjIjwAnVfVv3DAA/yPaIw/fr9ba5f9jYbwAsBXD8QgRwbkc5daUQYapatQIRCWliKZECC1WlBRBktB1DaTAfDHDFtz37Isv8eC991BVnoigSXASMaoYzQAV8mZlnU0VERDhSy+8xHvf+gAmhfJaBqzGDhHvsE6W79fCzDmXGalxVVFVjsoZVISoEBI0saNb5A2hdiFvYiVhTcIYxZAYDEb5c4wBk++liBBNhXEVCUUwqID3NViD8UOMMfi6zs+FqUANqTDF118nrDZusbC+/f34d7HOKSWUmI+rAdSgy77Jm2jV3Beqkp/RpMTUoRoxRbWQIbghiD90HklAkpIEiJkl/Phv/Dof/Nqvp1ks+N3HP8c73//VfOI3fv11x25xUvhHZMnB//ofO17X21/6uke1Z8fX+wjAsN6vqzUimUDTKPvTGQ++5RGef/Esi9kBx7YnDFwkpYSIENQx3tjmgbe8Faox/+An/m/+l7/3dxhIRETY2dkhhEAz2yemDuMMmxtbiHW40SYy3WU0rqiqivOvXeZ7/vrfYjwcIsahyWKMIcbIYFgxnzVsbe2gRqgmRxgfPcGRW2/lP71nyDvvr1CZ4NJieb8zAIyopuWmXlVJsbuhH5bPDiuCwJjXUUFKWP0ogvUT1FSYeguxA2KMeRxEQ0ciNZFmcYEYO0QDKTak0ALQlfPqouZnLObzaYMSsCCONiltGzhYNDRtYN40tCGwCEJKif3pgsX8gIPpHqqRplssn5W2bZc/p5SgpLkYk5bnL2Wt6K834Tj/ygFbRz2jiefMM/vcc8+YoTc8/nvXZO3aR8BcVVVE/gtykuHrSbJutpvt/xftTcFEzw5mPPPci3z1e29n93dgERra2YLhqEaIvHLmHHftWLZrT9M0jMdDvvCFL3DfPSPO73a03Zyru2dpupar030mkwHStoiAH1U08xm/9PMvs2gjKZ3lQ99wB4NxRdyFNgaQxOZWzam7jnD5vNK1ka7riDGSXJ5IvbOMJ0NsVfEd33+ca3sLDvb26LoOYxwxGGo/ABJiFHGBlAxGappFImpi6DzN9ABfV2xvH8UPhiABVYOwvpjF5URt7Sqktj6hG2NI8TCjHELIHJsCZXI0CkavE6+p5msrE2m/iABrC8a6FHL1dxZ7AzgzxhxaaPLXinUOIRwCPd77FYC5jhUXZO34/ecnjPFYazFG+If/42luv2PIrbcMC2gUvKtfb2h9RHJBBEf2S/3Lf7CR+R9u3vvlz+k64BZju1yIvC8LdYiIWMRMUZMXPEPCOUfsWlKRSJjOodpiFM68cpaY8t/fsrOFcxkAGKrMCKbMaVsk33bK7VfI8E6w1mGt5ave8iBWBCGD6oiSq5koYg1IRutiV6JWU0A04oAMYMWCJlNIXYvziZSEkCSDUAxJFVLEGMjD2SDWYazFudxvEYNYgwXE5A2AtYKIKZs+g2ARBGs8SQxGFVSIdIDmC+3JgPLdUoCsKWMLBYGUlCQRVNGUn1VNOZqC5u+GhJZ/AEkz8EqaIEWSKhoL0JYMMnuxrjGHQXu/vZKUx/tnPv5JbrvtJJYWUgMoNi5eb2j9FclFLyqy1/aP/0HG5R9qk9Uc4FBGGxs4a7n1ljt44cyr/K2/+2P81D/7SdL0LJA4cvQol6/s86u/82V+7fHnUBX+wnd/N8ZVWBMZDAYkyRsMFbDOLeeNlBLzRYvpOmod8vIr5/ipn/pFJkapJluEkLBthzECxrG/t89gMGJne5NXX30VmZxAuwXDwYgzF67x9nuP4GzexCigRjDJoEREDCJ5vOW550YAnee41eyZ57nVfJdbAuyh34mtEVtjXI2xA5AOkpJIWJRkIaUOdF7GXURcnvOdCkEFj2IjYLWAfsWJBTFYzU+Fks8fI/gQkLYlBkdXO1Jy1MGjasDokmwxxhy6zlUzrM/3/fWKCJfOzdCkDMduNde//mh5DzlhUYBd4Pt+P0PsZrvZvlLbmwJEL4IyvQKXr7b80H/33/L3/7f/g1cuXOTKlYZbdrY5f22Xtoncdqzl/Q/cwS2338ef+uBtPPf0x3nbO9/DlctnGA4tjg2Ojh0f+eZv59WzF7l05VcYn9ji7AuX+aZvvJMjtx+jwbCxvcWFy2dwseJgTznwU+645xYO9htmF1o8SttM2bsyp6rh6OR2vBtwdGuHlBKza/toF7hkFZcC83ZKqD10G4yDMPR5EqxHY2IUrl3dZWvjbkQs7fwStXdoE7EWFtWMFAO1GsBgjCXpnJjmOK+I1gUgGtAMnlUkM3VqULUYE0kJujazxSkqThJGFdESji0znqZEQoltAK+koIQuEIMSNb+GEaxEohUkWQI9a5GZqI/+0pTpwRQjZskoXr7ccOz4cAWoFb73+97G3fdX7B1MmS3mQCJpRK2hQ3BGCHG1aRBVUozE1BVwbLGmxtkBxjoqP6Iyhv/+Rx9afs6wHvCzP/+NuMreMK5U9WdYuXb8kTSx1YrViUrolNDGwkY5tCusrsnvMS6zaEZK/lVhf9CItxViFGsMySSkS8SUuPeu29b0upr9AQSsLUyoySHbBCCCAOvsOGSw76zgJZXzyRsZKcC/qgzR5c2PiMG51WKZNy8G7x1iDAEKCFcMSiUGYyFJIlQByuYub4gsKsp0ERFJeC84MTnqIMJoOF7ey6hlA2YKIBGAhKUDcVhpcWLQAozrlLI8AiUUNm0JgAoETsQi2siSjV/8F79EjKm8A1CYzmaMR6O13ynve+872drcKp9vUI3ELpLCAk2Jrt8Yqi77HPKGtW8p5U83mgFjSon3vethUkqE2S4V8O63P4A2+zeMq8I6/6Eyz9c3AyXi0PcZ0APBJQOtoD24SqhaFvMpXuCJz/0mm37MfNHR1EP2rw155K5bOHfuHHc+8l6+dWebW+5/hFuPHWUw2KZLke2T9xL3XoMQUTcihT12Nre4cLBPlSq2KmXPTTh/9SyPf/Ep/ulP/jyLaPGTE7SzKaHtmIwGkAKxC2wMHGIi58+f5eixE9iJ58G3Pczp1y5Sbe7gXM2wGtA1eUQk5nljm2x5nvqxohjnDgHL9B+I0q7eWyIjYrCaN8mm3sZUA0y1hVjBpNLPISBEMDOYOkLKLIeIJankiAXZlia5vPEaqfJPfuFjPP3iefonC+D8pWscP7qV95Dk+eG973qQhx+6m72pp5kn9qtIjJFpZ2m7SBsSXdPQdB2LtqENHbErJIwIPhmMmPzsmpjnA6OcvH24vG5BeOCBDSoj+HS4j1T1Y+Qk05vtZvsT0d4UIPpTH7/Ih7/+CJ/9/AWe+9I/YLI5YTAZMZ1d5ML5XUZHh1BVfP7Jl3jHo5vc/ba3s3/lNZ6+9CIP2E1iiiyuRe5/8D5eOXual8+8yOZoghAJnZKiJYWIT8B4jFWbmTtvaBLMO2U6v0RiASYgMiGlDEzB0MZAXWXGzBdZgRT9JKKk0OGGA5rZHDvZRCN4VxNUmU0X1NZRVSNCaBGxWFtjrWCkowtzNCgDPynaRENKgRC6wo6kwoYUJtqshRb7L8jMXMwTJiqkmNm/dYZ5GcLOpBwpQQgJLRP8emgXMnhSPcw3GGP4s//ZhO2dDQaDAZubm9R1TT0c5pD/eIK1HmJCY+Ly1Uu0bZvZbqO5vwQMMSd4La8vA6m0zpCoKTIIg6oUKYAgGMTkxEWxpoCuG0H0H0dbZ9T7/u+ZaLEOKeHtvm9XvVn6WvrfC1IALj1bxXpkQLCS+8mYfNtND3JSBn8ZgB4ONS8jAyb/7fXh6UNfmjI41pxj5bzPn2t6cL2KiKwf38hqjFmUJAK6pisWCttbtLXRrs5VO0guM4RAUgMpoUZwKpAMJpVrjRGw+RlQXY4d1Yj0UQtdY8k0J9kaNUQNkIRv+9YPk8JKypFSImlAk2SJRpIs6wBiyAxxf3+7rkNjiwYlpfx8alDUKJJWd/Z6yUg+s8Ps5no/vhkkdX+Q1o+DyjnECL/+0V/hw3/6a3jk3e/l7/3oj3L79ibHT97Oi88/xZ20KAZbeTCG6XRKCBaXWiYuoALTxZy6quii0obE6bMvYUPg07/zOAezGW60le9T07E5mWBEadsGZwzWOxZNy+bWBqHr0Kalmy1oYqRzlmvTGXW1sTYPZhfNJWusa9ekZjnPQmZ4r58T4fCcuvbbPDcli0qWLCEWjM17EGyOCalA0vy6tUgs54PgnD3EA/eRqhgjf+W7vpYuaj62eBKWmKAtUrsm5Mhp07QsQkdKFV5qSB2hi2DBmA5nEgtSXhuIiChRsvwppJh3ViZvKtbnhvV+er154Ga72f6ktjcFiL7t3prxeMytx67yYz/2D3nsE5/kx3/qpxkMoetgnFp86nj1oGL40pQHX3ya1xa7zPev8Sy/y8AHNs2tTOqWoyeOc/niJdje546TJ5jttTSt4ey580wGNemYkAaRdn/GLCyQgePitcDtdztOnDzCq8+9hmrIiVnJAoZZswDjGQw9k8EQ6wzjoaeuBGsSo9qQujmIJS0MprbUA0fqAtZ6jh09iU0DFos5R4+cIoSGtpvRhn1MPaPyE4zZKhN4JMU5bTPNCWRymC2CfvKWpURDxNI0M1SFGBJgMDYzoyIGI4IKKwkHQghK2wSc6UhRiHGavb4VAAAgAElEQVQl61gtIpYYV6DLe09V+eXC0uuwU0qEEKiqGtTRhZBBeszhQ8ifHRP4SkhESBFirzVdhc7XJSLODqj8ENRmyYDLchljMjPqnMNYj7UVmDdmKMeiSVdVYuiIRR6UgXPARDJ4DJqjCFEBi3Hrm6EESQsoLk3AWVMkAfm7KWHkJUMsRfLjVoudmsPAzNr8HmMUkYi37tDiv9pYRaxCiqkAZ6iMpwQ9cvhcFGOElPL3/u8FIaUskai8JcuTzOr1lHWYURO2yCgMLoOJEAg0oIZIHq/9RqoqjHSyFjVZztGH01WVKQFiHospFC166q8/n1/UhGj+TlJCyoC7ByfrY76/j+t6aViB6JQSGrsloF6XIy37M8kSnN8wVrhRKrB+r/642+uH9Pt7unoWb7jG5SY3IrHh2rkX+ZWfeYb/82d+le/6nu9n9tITPP/SGb7nB/4mpz/5z6mqiqaDwcCxOdng5SaRomFkPLvzjiP1GGsUPxhx7sIrPPY7T/CFz3+GyxcuU9UbGBJd23FkNGJ/f49qMKD2HoMwHA7xrmI2nXL02AamqjjY2+dd7/kq9vb2OHPuVbY3IkrMpEDyiMbVM2BkKSGTIr5ZE/hmec91G9Pr76H2Y9qUPZx4pB7j6jHGT+iIeeOvBjEtEiskWoyfINrmecIYsCZLrfpnuR/DMeZISIKgoFjEOIJCXeZgH7MMbOyg6WDslcVgzObI07aBeVgwnXfEoOzuXSOlAbO5o0uRrouEGJm3DcmwfA7MEkhzaB0yRnIUNOUk2ZvtZvuT3N4UIPrqqw2funSGydaYH/zBv053ADMLk8kQTXNspbztkXfy27/xBU5fTPzLLzyDSAsONsYNnbPsdq9x7XzD0E8Yu02eeu55Lpx/lcHWEBVo6hFBhmz4AZ1AXY84uT3m3OVnMVVOkDp2yxGGG+e5vDuHoGxs1IQgNKHDpsCsbTAIg9rivcWZrHn0WVRKl2Bv1qJSMRhkDerRE7fjqYnNgltvuYWLl87QdR3jicdXhqbdo0uBrfoISIfS0cz3EAJGE1LYCJESfizAwhhL1+pSRhBjDiOmVGycrBb20CKaXQWggIdkIELTdDjjST0TrYeTtJYTaGnD4RBfW+raL902etY1JQUMKQnRKBITbejouhXIVCwiihJRUmHdYwGc6zrr/HnWusJAO8AhuKJBTRjr8pdxJITrCPM/thZjQEu/iQHrDLHLcgE09qsqkiRve0qCoPZh0F7jTmaBiywYMR5n8v1KPSBN4VDwwWSpI8ZIYWJfB5iV+2NN3kxB70RBed/qnqeYirQChESKXWGhIkmE1K6SDvvP6MGnTXk8OGeWR3dSHFTE4IwtbHIimoiU8RO6rkQ8lEXTFeY6j/E5IUd8enlH3zlqCJpoVNECoqV8N0ph+uQwyFkDxkFXoLgH07CWpJhWEYb161TNkqc+wbDchdKn+R7F9f68Hkibw/126D59BbZoUpZVNJepfcU3v+8dxNk1HvraP8fn//cf48Uz59hjwrCbMTlxP+evXma8f5mBCNdMTdg4xfH7Jzz1pd9jpzL89kd/Cxtb/tX/+9s4lFO3301YTGn297EiHMwOUM0b9tp72kV2pdk+coQuJi7tXuXIeIvTZ15iePQY9777nbhrwu60Y2csObajDlnTeFP0wVKSdNebGsk5AgVEL/NR1sb/MsKUUuGaDVEcUg0RPyS5CmshxbJFFotKAqdEU5eYU0SMxbs+J6BEakp0LcaI0bxGJYQokgkbMdnlJQXqGIiaiJXHdwtsu2DQCa0X4sDRJU8zyjZ4G8OKLgamizlN1zKfdXQxMG88KgVEx0RbCI6U0uqZUM0RqxI5NPIGTbw32832JmlvChB9bGfC1YsHRNMyGQ3YGjkWe1O8rYA5B/uJfQacODIkxSmtjJiMNnCjlpHZ4PjtJ3j13ItMwwzvBnzpS1/KiRQKi0Veiu+56wHG28cYVZZGlJP3PMDVqxc5srHDlekl5otdNjY2qIZKdyXgJUsFYgx5gpnP6eqKWUhUfkBdzZhMhnRNAI1UdYVGoQkRHyIjU2GlB0GJ0WgEZDnEZHODrl1kqUadtYazZo+6MjmELGnJM/e7/5wAY1nqWHWVaR405eTGoi3uQXfShBQLIyOmgNmcfEZKhBAJIWb5BZmFvJ6d6lmRrIn1S6eGDK5kmYBp3Ao4mBIeXMoaRDKrLYIaiPTh9xXbBTeCiRgzMMe4ldY6R/Kzrtg4gia85OTCN6KJrkp/ZtJZWGfv1tm8vFiXRDTNm4HMfqUl6yVicyKdJmKRKuTjrBjT5WKuPXwTVHognEPk65IYoGyyhHotUTU7RkDQkOUIEpZa6NgZNFaHpB9t6K9HDyeTJiWERWGpDIPBAKOa0/60F2sX8ChLLJnfr7CIbQbjKdvPJe3KVYWccNtLdYwsAXRKia4wykbBO7cC0LCUrizlFOuAGC19m5NXTTm+FEDVA6vr/xag6Rl+WDLa6209mrD+HOna87s8j69IIN1vwkp/SsJZBwbC3nlOPvQwnan583/xL/O5x5/gwbe8jXT5BR5/4gnufeRRFm1g6D1TU/GZ33ueU1vw5NOnefSuUzz3wmm0mdMsOu5/6EHOn79IbXKEBDG4yZjZbMawrkkhsjEa07QLpvMGZyv8aEgbA/ff/wBffOJx7nnH23nyqReZPHorOxtDJIa8VZX1zaAFieX/hyVhStmgrssaWN2v/Jpmxx23HpWwGPGI9Rhf52hIIbPFKIqg1qNYoubcFin5HzknwoOk/B2wLm8We+V9QpBCHiTnSSFiUgbTwUdMa7GVp12U3IikNF2LtV2WrPgcTRwsqqyXHnU0oeNgtiCukR5NbIsrUywRR6Upm18om4p0E0TfbH+y25sCRN/7kPJCBR/+8EOcfmrKpz59mlO3bbC3fw1XA3sVn/3EJ7j3xAYnxye45i13PXAPta/Y232Fl5/9MmC44757OLJ9kheePk0zDXjvmIZAEmVUDwgJpAtsjGsOZguOHTuBmAs0aZcmBKwHNxJ8JRgjzOYNVW3YNhWaLLFLuNGQrnMMhhPq6iIaHcORxzuLLgK7sxkb4xHtYk49HtK1M8QkJnKUZj5nNN4kqMFawUnxTg6RMJxjohIWczRFxGTtsNWEFtYrpMJImpzo1NtzdTEQJWXwZARxQlSDFRDJNmNt15FEMxAKkRiUZJXOQ9M2JWQpxJSZ1X5qXHffqOsaW+XFw4gD60hY5k3AuwxmJClGslxEUg5JGrFFx9vRdUptHSoxM47WQackSUXH7criYTDiiEWrWtlRPrYzBM2SiJQUg6VNEfsG1d4MbWZPQ89UFjeS3HcZ7Bkj2FT6IAjBZBAHoIXRUVmxrSKC1UAquvjegkoKQLRSLL5KNn+StoCymMF50qzBTVpYfHIyKlCG0JK5XzJpkr2/Q5uPba2lXTTL69RyXJHMllfF7WO52Ssh7ZASB02DLR61zlmMaE5OBIxatAskLe4M1mN9AeOaNxDa9wGZYe/PVU3WzFcA1iDJLMfmOtjPxzps8bcOiDtdXfs6gF0C7QLAV3KODCpSiMWdJiElcsLaJid/v44BzyqYGyIlbw4AnZYa4GwystzZvq6MDCga/vw7pxl0ejtgNBrx5Gc/zfbxO2imkXvuvIv3vO99HIREbE/y0IZw/soVqpO3M5/u8vyZF5nLiOZay5WrM37ykz/NtWvXWCxa3vnoO0ltR03Cxsiia6iqisW0ZWtjM0cPNNJqxAxG1EdOcPnSq4wENjY2OPPSy0hd88qzLzHyjttuO0k7v8rAWGK1geuugiXP6QqehIolymqDCizlU+uROWAp+wAwxubEXpHMMAMGT1WNML4C77AJAjkx2+Cy5agJdCLEZPEqJDUEDA4pFpAVzvo8n3PY6SVLULLUMKqQUHyR1XVdw2hYbOyG46Wd3byd0jQNXRtxVZ4vtsbDXKglRKIq03lHSoHZYk7TtrTdghiUxaKla1q6GHDGElIkdIkugX+jQoA32832JmlvChD9oQ98F5//9D/j53/q9/gbP/Qd/Mjf/pv8wPf/KMMhHHQgOGJomc32iXWLxE2eevJJ3v7e9zFrErfccoqm2+XS7lne8raHaVLoc8mpvNDELCEYjgfsXn2Zo4Pj2DHs7c9IEqgHjqAd0+mcyjmaJjt0iPgCQkxhKfLCvkCJhdntNWx1XaNiSNM8+WyQE5NStLlyVco2ZotuRhsC3jjQvMN3xtM2C6qBx3hD6ld5VppMSCRWIURTQv269p6UFCQDDQNEVWKxGFt6oaaUHTBiZl763+fFIgPZLK+IOLPSXTvXs8G61AgetsjLocy+9aHyPqkupZQTsKQH5iUTXg2aKE4jaVlABcCQWRQjbnkcWQu198wnFKvCN6DFtltd35pEAPICm1KfcKSZ9JLMXrWpgK6eoipg1xiXvZJjWAHcAtCkaBTzhkGXeuCs78iaZMpxrUhe3NMqGpDIIDonKWZP5l53DeC0aE0MmLX7HFMPEvK5G8n6zXwthbUVAybiSpTAldedc6hGnIBo0XYbh9rC2VqLKZEQB1A021lDethxY7lTKmNEZc1u63qWkMPh9uV4UYXiUCPpushLz6qVRE1T5COhHEutZMsxMVl7rpGUCtDvt53XSaKyGMfkp1dNBqG66vMsX7lRP/2mbdkaBWCpLY5tw+WDfe64426uXHoNtdu8aDwnjm8TW0VG27jZBRa7e1webeJiy9bmDqe/9AIvPf0Ek/GA48eP8+qrr3LkyDEuXThftPuK8x4bQ8nPyPPlYDCg6zoWbctoMMTWFW3oWFy5wrHb7iOkhvd/8P3YwYRTO7fl5GRrCW2HGU2Q9ipiLNG4fNdi3ixeH0VaZ6zXwfXr/bxM9CZH/Yy1GOdJJjPNaLeUx2W5hi3joAiOydK7RH6WVAxqbDmm5ue5tIQu16W8SdPl/Aj9M2DQZLDWE6OiziC2wvoOFqv52RmLsXnMOhU6HM4ZQhown+e/tTJnjmCiJ6QF2hnUtcXC8ito7N5sN9sfQXtTgOi9xef55u/YYPfaPl98+tP82m/8MsZ11N0Ok5PKlQu7jOuaatyxuaP8+e/8dp566inOpYZ3v/dDvPLyF5hPdzFbkS888Une9VUP8bnHns4sgwgDJ/hBRT2sCAeeoXfsxwViArNuinOGZpG48Np+BrgeNCrtomE0rqn8gJSE2tWYoAycZWY8o80tmv09hlWNFcFbhzMNs4MDjm2OqI1jRoevBDGxTFoeq4EmtASNDKqKFBKDYUTEkST1EjxiUkJoiQFEIgmzBKa2JKb1yX26NpH29mYqIEYIKSyT/0LQZQUryJKJvOhnViqDDZZeor3dmXOOuq4Rn9lv1cw4iwht22aZSASpbJYUpJxM14NsyEyq9w6LheVnmlIZ0lCJxVpFNYe9vbVYLK44cagqMYScHFbKimcHD0d8g0byYjY/BNYOSS5sDncngWRyclNuiaUv+PUMtPE5AnHIQaAkEpYkqMzqK6aEe/P7ShVH3wPMLHcZDDeyRKNnhsVlgKyAKLFry72INIU5F83aaFPY7D5RMjvDlXtvsq5bJWXfZyyQ2WnrStTCeMTkTRB9IaGYTenEmKI5rZZ9IJIjC7ngS8RK/nvB5vA29pCMJLxO9KHX1kty5f/Xe3dHkkmo5k3derGWVNw+bLEj7N0QAjlfIGpi6Z/Qb2zKe7OMpDwb5f0iQtSIJCH2BV2IiK5OPG9A3jggspSjrM0JsJIh9XNKfi1vvI0R5vM5w9qTIgwGA5yruXzpAlf2ZnSv7PGWr/sGLu8f8LufepxH3/tOwu5Vbt3Y4TNPfZlTR7Z48okvEvAsrl1hJBOefvYZTp26nWY2JzZTMFnvG8jPd9d1DAaDZZRHVTFJuXzmHKMGtusRt917PwcpMdne4bbb7+QTn/0CD7z7fq7uzzhSQTWumA93WEzP4VLAVTW+HtDtLbJzRnncDrHRa3roFRO9vnFb/Zx6WZB12XnDeryvEGvLnCaIKc9Y0xCKzrmynoTLCYkogi+RvipvXMtzv5RxGVl+dvG0Wd4jV26nD2EZQYkxUseNIr1LdItrxJjZ6hAC826BpsiwqklCyVhRmlJKfDqds7c/pWk7Ll3dpWkD+7NrJMjzx812s/0Jbm8KEP3E48/wW/9mQe3gLY9exZjAh7/5Hfz0TzzB9qka60AlMo+JIA6Rhu3NmqdfPEM6dSe7e5epBlucOrXFYOzp9kyOSBrJxR6cw9cVEaUaDBlUY/x4g1l3DZ06UhQqtUwPAgfzbPPTl8kWyeWtDQYrjkFVQZvPdTCe0MzneOuonEe1xRhyMl0bSUGLxrQvIGGhM3hbsWga6spB6jAipBhAqhtYD9WcdBK6NleoK+xr6gTnVizvMjmvhLytMYc0m69XmWydQV2x0deFxiVLW3om2lgp1eD00AK70vxaxNz4WX273hki/84uE++8rwghZWcRMpNiiya6v47+mDFGVDwoa14lf7xtvVBN34frEoN83jee2/L1svBa56HIZHqGt7eOM4Xht1K04M5ii2Y/Z/yvSq57nysZOj/AVjWDraP4aoCphpDApsyGphAz09s2ubhIDERbkgljyAx2NweNOelRcvJUSoaVfV0AFZKCl5j9xW2Fryp8NcT5GuOLnCR0GTzGBqNaCqlo1uOnXoKRvaRd0XjbQsQtC5YIRaJEcdxYVYe8Xr+cymupsNn9e6Nmp4P1aMYSaPesfYpZDqPZSUZTLHVYFNsnFKZEX7FQSUupTQ+gDTlRU4pPdPbxjflOrp03+saM299Pu/G5LZKglNjZ2eFgOsdVniiWmLJsDCJf/6H38tyVK6Sm46FH3sqXn/wSX/forWiEOJtx+upFzrx8Gl8NSWHBfJaZ052dHS7MFwyHNbHtcONB2aAffr4uXbpEXde0iwZnLHfedjtnXnmRZ55+lnd97deTXM2Xv/wU73//+xm4Gbu759g+lv3Fra+YqcebYiFqi+OLpKWjzKodnov7fli5gnPDayC5gBC9jaPLXu5qC+udN4t9kqxKZvYzMy3FCidb40nWiaxsK3umvBQuAlMYakufLNnLiXLC9WqcuxjxPpAitC67MbkComlmxNBi2gWI5ARFFFfVpJQriDo/YL5YsGgTxs5ZdIU4SfGGfrjZbrY/Se1NAaKb+SYnTy349v/867l63vFzP/frPPXFJ6mHcLDf0O57BtsdXTLsm5p/8cmP8pZ77iG0e5w5+wy7V2fcesctnNi5k8c+828wkzH/9Q9+N//kH/0s4skh7hR59bULbI8cpDG3bWxwca7MNu9gNj/g4sXnWcQO4zfwfkrlKqoqMl3MaZsZRzaPEq0l+ZrU7DEcGTbDhMlki3FlGFQ1dWpx5y+zP5sxn2/R2YajR7YZ1UMgM9VN26KSGNcjupDLYMfQUFU5GSXGFmwGDiZkJ4Fm0ZASNF0uDV3XeWOR1JFSQBRCbGlDwEhFIhTtqicUBlCFzIjIApVsJxa6FqEq8hCDuAJk1ORqbmUCd25AXXuqyiEeKqlQYq48mBRvPEY8FMZQRDLrKokQ5yClfLRaRDNDbY2BlBcFb3LIsnIVYgzeQZSIEjAmIeKXlbZCAUCdzT7eTkIOb7o3xie6qt0hvauUiMRKt7hqS4Z6zTbLFJa9qiogFdu64oedzBoQX2XtW2uxvQe4EcTX2GqEq8dUk1uI4qlGGxjrMZNNkgrBelQEdVlaFNoFmlPuUY3EtsOmDpMSJi5wqcU2e2jqSPN9JEV8aomhIbZNAfiZUTeaNelqHeOd4/jxDsaPkKoiRM1OFoUVk9gi5KIx1lpG1uZjhhYXO1IMuG6KI2tWMzA3y76RBCbZDLxNs+zX6/t5GWnRgKghpAzie79oTVlLqqo54VWz33NSBZNBdCg5ka0VkiQ60aXHdF9VxWj2q070YH3FaEfJln4AVnUpZ1H0hk3tG9F0TS5jSXSqqPb5CB2tRpytMJIIbe5/N8zP4t5sjpWWBUOGkxMMa8+ga9nY2OB3P/8p9u02zzz7PPc88lauXbjKz519lnMvnWY82WQ0HrA9ciSJXFlMOXfmJb7uG/8cT37817BimM1n7GxuEaPh6C0nmU6n7Oxsce6Vl1ksFgzqEc2iJbl8jGfOnMbXFceO3YLf2OKll17iL/xX38fedIaGBaYeY02D0DEZONqTDzG4/DhzMVTjo7R7r2U7t+ue16Xl3bp8Y80JqN/s9j9bAM1zptoMlEUdyYAjM9HJBlIB19Z5xPls01mifRjBWIdai7jsia5iUfJmWUzZXJfIVQ/W8/iVJfmjqqXMEIeiLBqVkHbQmKOYKWUXpRgjzXxGFxq6riHGjjbOSAnCIDAcdHRdwNuK6XSKkYrZbM6l2Wt/dAP0ZrvZvgLamwJEV+YE589d4Df/7W/yLV/3l7h4/llO3fEAksBZaG3WOGtI7E8PGNlbuLB7wJULFzly9BSLueLdgCe+8CRbmzuYjZouLGBtk9yFhqZJdHXW98a2IYRA03QZuJgKJ0I1GGB9gzVZciDGMBwOsUXnNg8tXVISkfFwwGwGVeXxxjCLuYwwQDLZDD9rQmVZJMU4Dyn7UAdNxHmDs4kYWdrGQXHcKD+nFIhRSqU1SNoRW13qorPuOYOtJFLs09Y0dIe0cqu2dGkogDnXC+h1fdrL8ZZAz5VFK0/emR0OoYTpC6Pah31TYer6L8oZGWPWTi0nMxqTk7WMMThfLx0/eqY7hIBzh88/H/9wEtcb0V4XvPcZ/a/DWPWOAL1/c45QSGFYV3IFxS3DtsaudMwigusZKSsgFq1q3HADN9rEjjexUmOqLJOYd4EUlU6ylZxtM5DLIDq7eUAeY5WxVMZg7RCrHojFZtFiVTHdHBM6jJ0iIYBkVtoUn1vxFa4aYqsxyVVEtbSpI4RUvHjJ7G4IODQzl06ofJ3176WKuEkeSQGTKEVk8vgxFDZbi2f2sgLEqn+zxhhiSZgzJbPPFzmLSS5XOSxjWzV/hiqo5qqZkrQ43pRnoTCSKYv38+es6dWzfnv12X0S5/r91yJbP+wMwaGf36gmYsEYxqMB05ni65rhcMBwc4SqcuHV1widYKoBrlJid8DACUktinLixAkWXUs7t0g1YuQts0Y4mO6xODhgNBpQVwY1jqNHjzKdTpkdFBY7CaOtHT7x8d9mS7IcyI83CAi19UzGm7Rd5NyrF5lsbhP1KkK226y2Jgz8gOAqcBXPPf0MD77nT3Hy+Ak++tF/zaOPPsp8ep6tY56ipsmEQT0ufS8gLo8iNcs5etkvvE5iJdfpoG/4vWQgLcLSlubf2/dZJ90Xkur9oqV30ZH8jK+aWSYyomaZW2CszfUA+qgOLMd8rpxZokdOoXhK9y4dtquzw5J4au3ouoaUAvPGEbpIIwu6CCkJlfeEqqKua2IEeaMyum+2m+1N0t4UIHraPsfWUfiq993HY0/+X/zI3/ksP/hXv4V//OMfJYqj2gikAIsO7r7zHuYSOH/uIv/ln/lOXrk2Y/jwEVxVcfKuk7zw0uNUKfHSudPsHNvi6t41nFcuX3mNxTxyZPsuzl+9zLxRprLPlauvIZRKaCKlwpzSxQ4xwrgeIRZcbfBEjHHMu4CIMp6MmIyHbFpBUmR+0OCM4K3hypUrTHaGLBYL3KAGkxk5bw1tsYELzYIudjRty8Zkg9CB9bZojRXtivNDCKRkaNsG1USI4L2l62RND21RDcTUZQmK5OqGokIICed8KfiRnTlAC7MbSCUUuJqq05IBVVWcM3hvqWpHZAWou9SVsHxfRS+zmklD8dFNSzAcY0QoQENXAoceNBprMxtbnCH61xAlxoagQlVVJCJJE6GLWOMgZD1wSm/MUHa2OvT/dTmOEV0mx0GWF/XrrisLrDc+u2E4v+xXjCDVJrV3mbWOKWuCi87WawHPfojxA3RyhOhHNMmwaDqStqSFATEE4wqTlaU6rpdihLy56dpVsQdnPFVVUVUVTiy+PpHB+xiiCFVStG3Rbg9iwKZs0+gJeMkbx0U1JGlN1yW60BBih8byekq0ixldu0C7Fmstg6pme2NSrn2AGw6RwQSJEd8eYDXgJG/IJCkiAWz22rW6YumvTyzsWebrLehSSiRjl0ydal8lU5bMnQSLR2lLAUSbcuTG2LSSsoQ8znu7k1icdkLSpc2kKcxzoiQ0sgLQ6xu/N2oDSNnYGCPMQ052feiRt7NYtDx35hzziy9TOcP+/j5bO8e59Z778NZy/qXnme9dQQcTxtpy6aUXmGnF8fsforE1qGVzkJjP5+xeushoNOHcmYtMRiMWbcPlq1do25a987vc9rZ3MRhu8dwnfh0z3mI4GHP06FFmswU0c86dO8fdj7yd+fPPcec99/K5z32W40e3uHJll+l0jtkcUg83GG9tc8sscNdtt/P//OI/53t/4Ad56qmnODlKtG2LEYeakO/pcIcmOvygQtwgP6esEgNXvdNrkK8Dimsgep2JBjKJYfLXci6QtYRXY5YSCGNMXnlchfMV3uc5wHiPOIs12QsaTNFF20w4GEB6yYhdbdpFlsmwps85IM/rvtQbMMaQYhnvy+JbOZo36gKJSNc1oMXRKUamsxmXd69RLRqmbUdQGA47YoTKbfwhj8mb7Wb7ympvChB93333sbFxkTMvKF/+svL0M1/me77rDv6n//m/4W//D/+YtgOncOupI8xmB8yZ08z2OPvyaRZ2gxjgYHqVtzz8VhZPJ5AOZMojb38Lv/lbj4GF6fwAZzziDOpyKMuPMus5HnlmcxgMasRYUgqkBCM3oes6mq4jaA5nakwghi52jIyhrnzuxKBYIzhj8mIRoQvZ47bruswAaNZqWpsrDFZVxXw/AxgjHhGLc365UPdZ/CJSWOoMqJ3kGhorH+YeMOT+7BfoELolS5cXkezD2xdeycxZBtRaikjQA17JofDsd5pLpFHlaAEAACAASURBVIsV/LJqXGYhUqdY78hl0mM51grArGe6s9RNrxYh1eyz6lzvgnK9DjERUyAqWLX5c0zR5krEixzSJf9xN7mObRJycREAX4ippcVZSktdY6+37O3kxDqscxifLf7MYITz2RZOY8CKojGWhL+8gJrJNjhP60Z0ydJ2iVk7IxAyky0W9T67EzifQ7ldi/a68hhoFgtUI84YxCXaGAihpRoMUVshNucCiAgdilgLKWFNQqLBornADBE1lnmARWiI2icHKkYsbdeiJQLThVTYaJCY2G/bnJhbmC4RSzSGuhoiqSOFBdYIVvKzh8mA1+OXG72+aQHCRvqkvcOezzkQkJNnJUm2NVNTikgUdtIUp5gCQpK1GQQ7k8t8owQTsr68OBsspRoiKIrY/JCW7XmWcAjL6Mo66H/jQDRFl+8Yj4Y8/PDDPPHFL7K5ucl87wppMaXenOAnY2oH870r3PXuP42pN4mLPV577VXC9BJds6CJid29A6ohWGrGk5qUEptbG6SYk4RPnz7NBz/0IZzzvPLKK4SQeMvDb+eZZ1/kA+9/L5EhmxvbzBYLzN4eYW+PedtwMO94+B3vYu/qHsdO3kHX7VONxmwe3WFj+yjPvnyOb/nAh7g2W/B7zz7NHQ89yE/8xE/wkY98hEp3efnl0zy4czsuKhoSTQQxFQmLresSNeIGEI2u5qi+r65vh6JjrDbRh5w+rssDWZdoyTKpdgW+sSVp2roc5SiFtowpoFlKsi4GxC7nnP4YPYPdF0QBihNPmWP7CEuZB4IGjEbEVkBErM/2ob7kDEjFsAFkSlVPaDvFmGnJk3lTQIib7WZ7w9qb4gm49/7bmC+mfPLfnubJ336ej33iMf7aD/1FDppfwzmoyKE4UwtHdzyfOXuOD37Vu/iXP/cYH/zAQxyYAbvXLvLUSwPOXNjj5M6Avfk53n77rdTDEW03Y+9gj/HI0aQWNx5ycHnG7afuZnPzBfauXcKWxbttpjQhoErOVqZj/+AalTMcP7ZJaFqiWlxlGNUVzhkGZK3aeDhie3uT6UHHYpp37AezKalSRnaBqKHrctU5TYnFfEpIMKgrVCqsqbDWEbucoJOlDivmdzqfkzQgMQPnEHIBFGMN80UoIDrb4cWUEBNLyFpwrkIkInQYY+i6/D2kldTCCXShzedHwjmDs57BqMbXFb52hQ0x2VIuZbsp7/1Sr6vaFwjJ9nvrNnfrlb7WYYO1Hmcz2It62G0kxo4kWe6SkqNNLSTokiLBYgoz3nVvzFAeyY3WetKHc9Mag1Uu2CBYY1FfEcUQjSeI4KQmqEPbcr/TAlNVGOMQPwRjcT7fByZHcVVNsI4QI3vXrrG/f4nULbDGYW2N8UBSukVDoENMhZQEQWOU0GaWSZt59pcVJaS94ujisL5mMBqBcTn5z2hesI1CirnAQ39hiyzPCLGjbRqsSQyNMLAK0tGllBP9YiJ0czR2eKMYAqIdB9Nsl9VHICaDIUNX0dQOZyyT2uFVGekCJwmxfVLmYbtFuJHVvT6xNiWwxY4xaiKnTGSAuyStY9Y2myIXcuKIKDYqwaRiu+gzO17e09tPZtVGKYhki2Zasy/4upRjnSF/4+QchsrXjMcbzKb7fPGJz1NXnsV0lyNDeOg9X8PjTzzJf/ItH+GxT32Ma7sX+dInfpnuyP28/MorPHzf3ew2J9ALZ9lsp1w6/zJ3PvAwl89e4MzZBe961zvRFDh79lVCt+C+e+9m0QYwjguXrnDs1J184ZMf49h4wssXr+QoE45bTt3JbLZgsnmU40eOc9up2wgGJvfcyr1f/TU0Fy/wm7/8CxyceRE58yobJ07w0kun2T52K29969sYH72F4ac+yWKx4M5bthlUp3B+QEwtgmE6nVEPj9FQ06nDSrGEu+F+3Cjb6PNL+p+vZ6JZk2WsmOglbXDjLRBBjS12dhaKq46xDjEVBoNat8w1ETy6VpRJl/KvfCxx6ySHXwL2xJp1qFlt3lSVvsZo//8qrRxxVJVqPMOPtphOpyw6xbgZ13Zn2Z7VDv8wBuLNdrN9xbY3BYj+rY/9Gh/+hj/DD//wD/Ppx/4pu7sN3/5nv4lf+Ff/mi4X8APjuXzlMs/oZUbbwmKx4OpeLnZx9sprHL/1OLtXp0znM9qJ470feA+DboKvhNmc4tGrdHGBkqsypS6SYg6Bj0cjnPfAAOv2ECwhJOqBJ3UhL4wiOOMwgDdZduGtQZJgvEPmGQDVlcM3EQ2RpovUPpE0oDEz0YIQwoJ20VBVZmlTV1UDhFS8PUvulLFl8st669QlstHWGtuRssVWX8Gub9dn1/eL+DKsh6KplF0GVO3S+xpZJbVli7tyHsZmjWiScn5Zw4ckkqzs765notfPad2uCVbh0nVbrUOhbo2omuU9WPogmMPvfSPaulxj+Tt6PfSqHPTytRJ+jTiSQogJYmZykfIXxqBNg2m67MRRj9BiXzdyNQZPikIiZcuqrkM0Ysi2g8aCJUcZQsjyJEzCiUHoMvCLAY0d/aaLtLa5iQk1HaFtMSagNnvcGpcr06mQi/KUAj2kSAzdSgcfIslmXT9xsfy9kAsL2aIDFYEYOyJroFKz9RYp5zkEgYFxIBExHiMJZyVLQ1PEyKpsM9zog7LUJ699N2XM2OxLgjGZKTZGl/kLuRqogMmmY+TAEB5XwuSJlHqjjcIsm+wKRNk4GhWSZDGuSJFzZGHNGqAmJzO+AS2lRIgt13av4L2lbeZo0zDaGuMGQz73xBPcd98DfPZzT/KOd3+AJ5/8HQ4un2Pj6D3ceeoWVIRoPLuLliPeMdvb58rlyzRt4GA6pbky48j2DiklxqMNZvOG7vwFzr36CpvbW9x5591sbW3xxGOfYnu4zWRzyO7BHI2BnZ0tXj17gWoy4fnnn6dJgW/6zu/i8sEBm7ee4l0f/Bri3gWuXt7l8n7Oj1ng6BYNcd7wrd/+bTz22Ke4tjdjc2NMs5gyHFXMU8Q6g/UDTKpyYrYUe7rf5334d2mitYDl/HuzZJn/fSD6euZ6qYPuX+tlJlISlYusI0s5DMUMsxx9bYwbQzL571QV47Pzk0VIJmLSSq7Xn1Uqrkss7fgimoRQBXxdUceEH27gmoT3A5ydv4EbwP+PvTcPluy66zw/55y75P7WevXq1at9L8mSLC/IkmVb8sJivIGxjc3YQMM0dNANDQQz003HDEQ0dHfQM017oNkbMAaDCWMMNniRsCzLlmVZu1RVWmqvevuSL7e7nGX+ODfzZZWKaUN0q6qhfhE3Ml++3O/Nc3/ne77L9bpe10ZdE030t7/xHXziE5/hgfuOc/yJk2ydmmBxcYXJCWg1Q6zOyclp1EK65OzeOk6zNcfElhKPP36Sif2jWGuJRZ2Du4+iSgbXrPDJBz7LW97yeh574ikWl1cASauzyPyCYO38BmElRBCQG0mz3aI+MkItrlKOAoyxyChEGkk5KmO0H4yiKGK03CCMlPc1dhZUiAXiuEo5irBZl9B5zlia57SzhEaYeGQw9aK5LE+RygGakorBGnTiCEKJDEGGEmE0LvUDlVLC82+FV22rMPRL6QisDXE6xeUG129QncVJhTE+QnmAMkQRSgR0egnOCbTRaJN5V6WCFy6lt1CTYYBTEIYBQQhhEGML+kEgBBixyaGNY5RS5M7ghEE7gzE5Wvg4Z9k/CVCgORSbg0h5DrjFR8tqYwY+wtZ6GkMgYxSCzFGcRApag1Ce26uvkl+pfPFSb58GAJ4X7UM2QoxzZDJEF0ljfV4iWIQ2lzyH90voIpQkKGUQhDTGap4elGyQWkua9nAGcp3gBqEvGdJajNT0bbAc0gfs4FDCB1YkSTJYJZBSEkYhTvhoeqXUYGIDAmdsMcmyA4QtELIQsBalU09f6HXITeqPA5uR6ww5ZIMl8cdgrVIilAFRGECeI3DYLPXfh9FkSmFz3zDLUkgUSuJyCaUsAk3Q/94LD2YllL8sPMZ9Y+SdPAqg0TfxzocNQcGbtgLtZ+mYvluF9TZfzlHQQVT/weRGIa3AFjQibwbWv5Toy72n+zZ6xg242JfzoS/nbb9U5VTgaVKBoqc7hJGilwm6PcOunbtxconlxQvs3LGP++65l90HD8DETjpJTqvdopVaarUak9v3sbi4yPS2SZ568hlmduz1+gkbMrewQKXWoN1uMzs7y6nnTjBWraDGR6mEFZ577hiTM9OYjYxWt+NX3qyhtd6hWomYnhrn+LPHmZgY42O/+Wvc+OpvYce2vew//CrcqEQ3uzzz5FM88tBD3PX62zg7t0hpbQMXKqIoYHRiigtnj3Hz0RhNwFricDWwMkSFJfJeFwgKAeuVhIJcgjxv0rGK73CQ5y386oSwfuLmAnDCB5kgN1eiCqqQcJvPhxQDXrP/3fnxQggvVO2LkYUKQBbx9qpw7BiiwAkhBhpEJwXIYNCAIwvXEFHYaioQ0mPQkdtE0/vHolJqQIUSBSoeRilTmSOI66yub9DOBQRz/92Py+t1vf5nqmuiif7Dj/w573n/22nU91AWp/j0pz/Fjm3QWgITa5QBp/DhHRZGR8dZ76xTqsLcyYRbXj7NwyeO085yRhtbKddLLC1s0KjBth2TdJLdXJhb8dxmq0nTHlprms0mYT30bh3GC4OUFAPE1xjrOaqIIratGGzkpnjIJw76z9FvPIJQgZIEwnOF80IgaI3xriFsorxChqhA4IO2pQch+sLAy1DZvkMDUiIdfslPeGcLawsVtvOOD94hwxU03P6gv8mR2xSYOM9lFsIvDfZfZ2DS65Fmg/OfqUiUc85zXfvbJpdZYIoThmGT2iF8rNvmiekShwLv7uFsHznxz9MXZblhvp8Tl5yQhi+vRvUpKsPo1GCznqvopAIV+vRuKYZWETZjhS9H7QXeGUYIQRh6t404jnHO0elueMeNLPWPsRqttec2i8gnZ+KbaIccNOvedq2gFxT2VmEYIoVAFc4uQvTFj5vN3ebn8Q3A5XidHFr/6DeIxnh0WhuNtGbA31fFoZgF/gSt1KVe48PHfGo12km6RmJlgLaKXEkCIYvJa5HiifQx6kKiLQPAb/B5Cx8P54Sn0Kj+9+Jwxf/9/f3jjDFo65/XH27eC9sJnz9oFRjhBYpInxTp9QaAxUevOx+DjtW+0bHWrwAIkHaokXZek3A1qhwGpLkjKldIVprIQFKtVtjodHnm2Reo10eIK3VWVpbYe2A/z506w9S2nSS5pjY6wZat28iyjG63y8GDB1ldnGP7zA60MUglSdOUOI6pVEqkaY/5+YtMTU1x8ew5Rie2cPbk88QVSRQoTsxfZM/27VTCMs2NdaJSmSzLePzxx7nxpqOsrq4y2qjy5Nce5OAP3kx1fIKw1+OLJ5/l9ru/jY12l/vu+xt+4Kf/DeMTWzhz5gw7d8zSWlti1/ZpWu0LhPVxOklOfUSRa0NUKWPytgcEeDFOPHBXuYS+IQaCPeCSXTfcZF+u7fDH9JX3w/B9L78+aIIvu7+DQcN9OYotirHcAyryRc95+Xg5/D+vTSlul/3fqAdtIueIy1Vq2lJpjFHtdVHxdTrH9frHXddEE/3B97+NZy8+wO69qxy8pcab3/qj/It/+u84MLON1TylFktUnLO6rtm1Z4SLFy/SyTqE5S0EDcnh6QPs2rWLTzx0L7Pb99Kolul0z3LT0VfQ7q0zPllmtFGi1UrITIKhx3prFXchZ8eR7ezetZ/T555DOMdIvUo5CnHGkqQpWyYmiALjxRxSIq2gFBeBE0b6RtaaAp2DKCzjEESlFGOl984XhizvgnVo0yXPDUrGhahMEEjlRXrCkqcZgcgKtwQvalLKL69FKsRJh2ZTZCJl4OPFC8s3LGhjfKKh8JMOqaTne7p+o26HmiVfA95y0bhZ4QoenvUPE8KjooXPcF/4EsQxQvkcN2etdz0TruA25wPbveGmcdBs94VyKhjQVkxf4IhPyLNCFsvtBY3AGAKlBu/dC24uFyO+hGX6aO7miVgN+JABTgUIpTAqArxNmixQaC/mLMQ9Oh98HoAoVASygpAh5UodghAhFd0sxSRtz9X12dboPMcYf8yEyqNPpnhuUzSoeZ77iUq/YTTaN3DWQ7TOaN/gX4aUAgVX2Xqf8cHfFEFCxYTHFuh1FKFzHzWvpEUagXJ2EJqRp4nf79jiWNIDPn1/H/oJgaPTy0EKEl0mDkOcrDHmAkYiRawcocpASZwzBf3cc0X7ZYfbIlEwP/s0DSso7GIY8FqtFxf6+zjfkFOQMJxDWoqIb4PIIz/50f5zCe0nyoGTm5x+54qAGouwFoW30HPW+3MLGPzvapTptkiTjJFqiR27j9BNeqw0mwRRlbtedzef+sxfs3fqKGur8wRmnRtf9nJyAuZWV0lyx/ETz9HtdgnDkNXVVQR+7NmzZy9PPPUkW7ZsQUpJq7mOxNFLeiyurZJbw4033siFp45z/PiToAIqo1OsbfTokJPk61TyBmEYcmDfXp589BEmprawuHCRD/7QD3Li2FPsP3gD1R1bKYeSjY15toyWaW2dJkkNn/ncF/iut307D33966QXnmfX7UeobtvJQscRVEf8CkelhlElOstnGcdihURdocn1jenQdfxKxbCg9RKwQ3DFscjf99Lb+2Nj//rlNJF+U2yHJpcIDyJI6TncA4s50UeaPfjhEedgE6zpj71ehnhJ4+2GxuV+0yyEoG+yapGUpEKFESMaVBgytW07KMX4/HUk+nr9465roon+ygOf5eZb30YjnuFPPvlhDt80wuNPf4FV1eWn3v8uful3/5xQSDCWbrLBLbsOkkvH5x56lrGG5Lc/+hfMTENl204Wlx5HRXvZsmUfp85+lWee+wZHD76MuXMJYU2SpjkrZp4wlqytrbBTzJKmGVu2bEGFglIUUo5CEIJ2D5qtFlPlKqEMSNOcMAiRaD9Yusj7jwpdhIRIRke2IsOI1eQJlFFoneOkJc06BFKR5R2McYVAL6IURnhgwLG2vkhgE8KyJY5jqlHdowBFE61EgHWWKPA+n96cyBRIo8PoIiVNgDYaAoFQBdKpnUc0pcUK37w6rYvnLprZoUbGW8lpSmHZK1EUIL2QMcsyVBTiCAijkm/ghSmS2kDrjNSkGKcJAkWepYRhgCAc+EyDGNAGBLKYFAisNkWzL+ilGTIsUPdQkeZZYZVnfJzu1Wqch0oNn5yKE5YqPosJIvIifcwoL+6JRAmnHUmeYJ0e8gZ3l1zqLEPakKAUereOIEZbhxNQrzQQQtDeaGGsRlhFKGIvWHQCnWekeQJscuSNzREyIKQQG3mMH6zGOkNuPfcZNk/iffRY999i4V0rQx83rlQJJb01oQ29p7CWkCYOl6c45TxVSeebS8V200nFGEOn0xlYe/Wbcyis6LTnKK90NSoMyJyiXY3p1mJGyiGjxaTOf57N6nNSN3sWWfCOBRKHKig0zvnJmbUWKwSy38yaIv7b9cWIm8lvUW5wrogcdw6jJMIatPS82khbbEFDssVKSn/D5H5Fx9hLBI/6Crz6l6L23vkezp95gbhSYWJ0hAPTU3z8Ex/nh3/gB/izj/wXRkeqtLpNPvST/5qHv/Jlnv7Gw6TGoAthcbk6TlV5isro+DiLy+tMjI1x3/1f4vDhw5w+fZp6vY6Sjna7zczMDMceP8/41m1cmFvAWkulXMakXXZtm2CVCq96zWt48OMfRWcpVuesLhuCYgxL2+v86e/8JrI0zfrcOu/6wPfRSwyIgNZqh/roVj79iT/nW7/tzSwvLHLgwAHkiGLvzu08dfEiSx0IRprsmo2IR+q0CFDCFJ7Mweb+71dfIHzZMBNEfgLlrB14iHt0WIL0Di19QXi/fNMtuCS8gE1kuL8NkOKhsW3QYIsr57L6BS5RRIQXFneBGqLnFUEtQw17/7WFEN4FRPTFupvvRxQ8lkgonApQoaFmFWGpTJ5nlGLJ+vLM3/3Au17X6x9QXRNN9Fo348bDMzz01En2HTrEww+dQMZNtu1V7LnhAEEY0zUppQisdvSaXcr1gFSDdhEbIkG3YUd+jrF4Kxeef5JGdYbx+ixTs6PUaqNMjJTJncFmFlUqU25oTG6QSUoYaSpRhC4ijstxBU1KpD3y1mp3GA2raG1xyiFdHzUwOJsjROzRUieRYY+dM7dx+nyHVHRods4xWhrFCDBpigoj71RgM6LA85OVcgijUThyBzbPEAGUZK0IVZGABmVB+cFaKgXOO3JoqzBOYgq6hDE5CI10EoyizzfxvqB6wONTEqwx3sLMeaqIkgptNRJBrAJCfDohFLQT4bDCoZRf2sc6lLTYwsvYaus5tM5gBWjnEFJ5y68iPl0qiSkEV1IGYD1bJpByMPAbPJJH7iD0gTXO+PeFsVjhCKT0+0D47/5qlEYRFLTGoEhe7FurDRwZKMJhRIDz0kuM85MgYz2C2T8ZS+cjzzPt3VGUijAqRgaRbxhN7h1VtEVbXdAmfNy8w4Czntvbd10RfWTfq+Ckcv6EivJNqlUI4VBWkNNPm/Sn6n5Yg49Xh9xJBF7IKhH0snRAayrHFRCWTEisDCEUGKP8e3XWpycq/IRNOO+FILwRc5rmg6XkTT62xKetOJzNBtx4T6FyWKPoi7fAH8sAwknvzyxdwVMG5/TA1ktY63WwTmCwCGdxwh9rdkB58fspLISWtghXsqagF+EIhOdXa2eKWxyqEHca5yeUpo9qOwfWYm2OLJpxMUTneFHz9hKV7SbY0RHOzi+yPH+G9sMbvOXuu3jh7AXe+f0/zkf+628Qr6xy7198mnaa0quMMVIuk/S6xNbS7vUYHRlneW2VVidlz549zJ07TSWOqTUalEolapUqvW6LcqXGwsICed5DR2XvG96oMzm9DWEd7eYGyysX+EaeUj90A+nSEiQdMqBaqbO+scqtr7qdJx95gumxCJe1uOevPsmdr3stZ+YvMr53N61mE1PqsP/gHsqNGhcuLjJSH+H586ssthwdGzJZUnSTDkuUyUJHQzhUXlDXLhtCPJWnTwbylCJVOOo4a5Eu9R7sjsLW0iJEn2I3rJW4lMqxueqyeR8/kSuOaedBhUKCjSoaZIRAIvqLR4O4IVU0v35hxa8cyoLHPwhvckPWekO+0qJAsPvvw1vQFwEuxffhgNAGSCeIowCBJYpiyuUq1frY/5iD83pdr/9J6ppooltJjfsf+AKnTnV49/e+mW//zjfyx3/6Z3RzxctffROB6nnbqRwcISdPnmPrbJmdu2Oq8QTveNsbWJpfoDl/D/Nn5xmf2YY2GYsrLWYnAqrVMrVSyHqzhzHQ7Tmmto5SCrpsGa3QNS1SZwiVR76qtTKJNthiibZeq2N0Ti/rEQtHNQp8k2h9ozPM56yVR2nP5bzjVT/O4Rv38bO/+h6s6eDCCqCx2icPluMY8INcoBRB6HDColONEyGZLlwXBJ5WIR19t4c+Kmb7A7yTWBMAFqN9uqGQEhFs0gz61aceXGoJ1k/PC1FK4IxH24bRkWH0sF99/lyf0yql/2yX23d5949NhMPi6SAh3hN50yasTzcR3su4f5KxnmOLcOSZdzEh16Bc4VN69RDpQHqebyCddzWBIgwEpIqwBQJlnMNZQ+4sJtf0ko4XpPW/K+EbQpMVAQgqYmR0krjaoFL3yHOeJWRJgk593HWWe7Gq1hnCOXI83QBAqtD7zYrQT5qcxhmB1ZGPEw4kYSwwLsPiyOihZOUSik8BaqGCoODAeyqPKigoaH9yz6zFWTNwcpGyXFBUNHna8Vxl411AoriMsxphMgrmdxHMw4CjHUXRYLlcSkkU+AS3PnKfZwGu5AispVQ0L6oQOQq32V54txEfY29zzxG3VhNoP0nTwk8Pu1kBtVt/HIaizzV3g4micLZAkDXS+YmqcA6RaRwWkXuPdFk0+85ZpAFjTZ+H5D30CgTTOT+ZupKDzUtVp5+7h2zJsv3IUQ7e9U8Zr5dpnj9BqVTi/gcf5ju++/184S//kuW5c5y9OM+GE9ipGTqJptlq0ahXaHW9vmR6eorVpUWiUszW6WlOnjw5sNJcX19naus2Lpw9RSdzvHzvETYWLrBnzwGefPQRjE6pVCpUSw3ytXUO33ILpzJHZXyMLNW0NtYwnRZziyukgWR2xzRhpcG58+cYe/JpVro99h05xBNPPMb73vceoijizKmzHDl6I2ceWyQOA7762HH2Hr0Jsb7O9NguopFxP7atW7RxiNBPyIdL9n9MQuGkIBAK7SSlyhbSzjpC5C8SGvYndsP0jCuWuExvcNkmB83ti59j0IS74vd+2V08E8/H2PfPS5eIhcXmqpnoN+hsUleuxOnui4gjFSACR6VSweQ5W8avN9HX6x93XRNN9LnzbcLbJG+489V8+D/+Md1c0Oy2qI1Ivue938fEWB2z1vYnHRmyfccIa51lytUqquB7Oudo1McRaYqUFZaWFtm6dSvVcopSil7SphR4T2aERsaKkZEGI40yLk0xqQHhl+dCqaiWy6w0ixOkdTgsucnQYjOhbrBEzSY3N7BldMfgNlLOPTOHSwNGp8ewiY9Z1rmjXKoW1lxDFADllwJjHNoWXGR3aTBJv7zvrEBaUKoYtEXgedvKoxnWGXRuCYTCYS6Jpx5Y3F2GgPnJwItFcn7p20dD+6RuL4ZyfTeDoeXofnPvhO8dhtEOqXwD76y/TRVpfc4ULhJWFH2GT1mUwabgy3NH3aA5C4qlfz9hYOB1+lJXPxnSn5BcsaRbCMhUCAgvXjOen2ytj3d31mKxnr4CHspGY53AOkEUlihXa0SVMkEQoF0xOTH9pDz/nNZqsJ4wIAYaNY/E4sTAO7xcKlEKI5J24mPjcweBKhBagSP2/O4hu0EGFJWCfiMpuJabqDn4SYR01tNuBu/BLy07GfrJmTAIByZPyI3xTgPgaVqD12Mg1u3vZyEEMoovWR43xnjetnVueQAAIABJREFUtLUIU5gbWG/XJ50/lvpccOUsWOER4IKnjLEIn51MLiW5lSRJgtaaOI6JZOYRYuNpTYNL7cDlnk9tc3AO5RxgEMUKg3LW37cQYAY4rOs7eDCYFINPMXTCXfL7eSmrrQPGYsPF498g2vVyvnL+DEf3z/LQ33wJkxkqjTHe/p738/Q3HmRm507m15usd1K+9/t/iPNzi3zx83+FNjlTU9NMTo6zvLCICiRhGFGvS7CWtJcgA0W326VcLmNdxI4dO/na8cfYvm2W0cYIuU4I44Cxxhjnz5zl1NNP8d3v/wE+/Ev/nkN797MRttg+s4vHjz3N/oP7OHbsGK+4/U4aoyM8+uijTO/dx8LSCt9y+x386q//BlEU8YY7X8fDX/8ah2e38ujX7qcxuZVzFxc4PDpOu9vDhh3CcomRsITNvJ/35T2vb1Qltq8lEAohwyIdNRisMl1ew+Pnf2t6dHnDennjfaVG/O9CYxt2gRkW7g6/9rAzyeXNPPTBFDeY1CqlCKTy58m49E2/l+t1vf4h1jXRRP/8z/04H/3If+ENtzraG22iUZiZgOmpKe64+U7+0y9+nGACykoR4GinLcrVErvHD3DfvU+wZfwMk+MjPP5Um5ffsIOVXLP/wAxL7VUapUnOnDrLG177Gp599Bg2TzGxwriA6miVykiMsGMkK6soGxAiqVbKCBVSq+SFtRyEIiDNe/RciYZTA9HcpS4ahvHKbp78+hLPfOWXueHQbfzSz3yM3/3Eh7mQPeA9b0slsixjfGICkJRLZaJYEoR4ykMmCW0IIscVzbsfy9xAuNJvdlVQxjmfZhgGNd8AK4fSOcaG5C4hyxJk6BvaPuo1EMgUA6tviij41wKrPTK4iTRrpAzI85SCDusbOgnGphiboWTRMDpPVaDfOEuJCsMCG9QDVFsSEEof0uJBPO+x6yxobdG5JVIhw2JEYzS9XoJSmlJcCCCtJrQB5Sh+qQ9b/x2qCFNQXHyamEKoMk4oNIpertHWkBsvlnPGIq3zTSeCrFhZwHnOtEMQhIr61A4qo5NE5QpOKC96MznS5WBNQRHQCGewRvsJlCi45SpARiWEEETSkKVdXv/yozTXF1lbXcNkmpfd/Aqkivib+x9ho51gRRkbq8EExxXIORQnUQe59sd8KS4CHaxHejNrofARjwu1ft/VLo7KKAmVSgWspddtIYQkSxKPEg/5ivddPZxzBaLtJ3ppmqJsQCkyOBd4i8gsI4+KCYwzlIrnscJgcShZfMfWu4oYKVBC0dI5slxjqdml4yzPnT1HWC5RrVR49S0vY21lmXB9Dp8w2E9sK/jLynm0uoiJdg6M8vHjRnnBqHGyiO2QxWTT+OV9AfQ/qwcRsQKPcov/Vqv1P6aqbUO2Z5Zsbpljn/99wtokD7RajG/bz+6dO1hZmOMLX/0qb37jW/ibez5Pd7VFqiS/9du/SS9JqY+MUi6XCcOQJx97nFIcIlVIN/HOLyb3HvTlSoWzZ86yY3oLNlvn/JnnqdUqPPS1B3yqYaPBerOJkmtkJmH+zHN87Pd+gx6K2Rtv5Om/PMkb3vndnJ6/SK1apbm2wVe+/GWmt01x4tlnOfwtt6KVZcvUNHfd/SbGxsaYnBwn63a4574v09pokruUsalJNjY2yGdnaTnJCw89xGt3RIxKTSC9KLVv+yiEQLsAVAkb15A4XFDCRQ0ykyPwQtw+b3i4sb0cxR2+vR/7/SLnmyFk+Epbv9EViEv40n9bDTfwmy4wm39fztfuX7riPHA5aNOXKyjlv6NIKaJQMFqpfFPH2vW6Xv9Q6+p5gw3VV+57gE63QhRXeMvdtxKHEyTr06wvO37lVz6OCkEbEMZSCgRxuYRA8dRTx6jXxhgfH+Oeez5PtbGVo4dvoNtaZWVpGWkdNnN0N3q0222EhliEKKtod3qIMKKXZ+TOMDo6QlBwh4NAIhWEYRHZrU3hu3ypB+yVar3ZI4qr1GrT9Lo55CE7Zg6Q5wYpfANQKpXodDoDBN25TbW3n+mHg8GqjwwPD+5+KzySrSi4xR6NrlRqlEplnwIYbC6L9ykggwZpiLM3TNt4MQq96WVrjHnRZgv3gcu34efuD8p9kWQURYT9NC02Ecb+Y4dRkyv56fZfW2tv7dZ/b1ejnCocOGTkLc+CCBfE2CDEuGJCoDVZll362cA3qcYj7IXmjiCKiMtlolIF64QXiw4t+Qs3xKfF92k+ClwMGjShPGdeBoJ2p8kNRw7w9GNfZen8acqyhOml3P+5v+LYI1/jrttu4Kd+7Ptw2cWCVmEL2zlvmedpSxprNUZrdJ5ishydJViTe4TdaLI8Jc0STy0Rnt8cx/GAmiFlMNj3UVjy/GcZeq6720S5+umXQRD44yQMLzn+ho8vRz9BM0AiPaef4WZkM5QizTQb3R4do1lKc1oInjp1jtXMsLjRZWWjw/LSKrVaA4QabEIGfjm/sAsc/t/w7a5Yxreifx/vyYss/i9U39V3QPsRjgEX/mrU7K23Emy0ob3O7MGXc+Or7+QnfuIn+K53vI1KY4xDR48wPj7Oo8df4Pa7vpUgLNPudpgYHSEOPG9fyoDl5WXSrDfwH9+7b5+fwEV+1U47y5133snFixcJlaEUB1TrVdY3mqS9tk89jUr0el0aow3279zNxVMn+F8/9CH++lOf4a477+b+h7/BkcM3sHRxkf2HjyIVnHz2GHunt3L2xHFaKyv84R/+IWma8ulPf5qxiXGmpqYQTpImhjiOiQOF0RnNXg/jYMfMdozzdCDpssFvygv7FKgSRoWIoAxBCSMULiyT2wSHBxr+tob571qXI9F/GyL9932t4Ynqlf7uP/eVJgOXN/peqOjpa9FVtBe9XtfrWqhr4hfw8Y89zMZqj7/+3MP8yE/+n3zu8/fyq//3z/GFT/019aky22cFoyPQcoogUKRdTc90mN1+E+3VjMeOP8P0zr2Uy1s4txjQ2+hyfn6J5vIap8+8QKU8Rr1c45U33k3WbtNb6NJrtWm2Oyw3e5jcL4uX4xI9m4OLKakySlocKd1Mg6xQUmUybWjrHC0EEgMi94I6awnCmEe++CxjccB4XGPrZINTp8/x5te+h2qpShQLlIwQNmTnjgOUozpRIFF4gZfVlsApQlFCuRJWaB9a4sA4KNfGyHJLlml0mpFp0FaQGoO1JZSqE4gxomCMUjxCIOvgFNb49EVj3MBPejAo4xMYlQUVOFRQNLsypJ80J3E+4c4mWN1DZwkmy8myhFwnWAO5TUjzBO0ytLXeS1VJgihExgFBLAki3xzFQexFi4UqXBX2Y84UjiPaUxR0nmKd9gI9bXG5wxhHnmlMnmKzFGcMJstJkuTqHLxRDRFVIC4RRmXfAIaSqLD909ZgjI/ZTro9er0O7aTDRi+jnZpBs2oxBOWYxvQ2RrftpDxSJ1AW4RIi0ybI25B3PY3B+C2QYtBsCqm8l7GxWOOFdqVA8B/+zU+xb9sI88sriNooqlInqI9zYbVFMzV84d57+Jc//s959c1HeP9bbyJffR6VdZBGgFa4HKTzyYX9dMPc5j5eRBqMNDhpCJEETmCzDJslON0DkyClJowDVChRYUy5UmdkfIKJiUnGx8epj4wQl6vElfKgeQ4D73QjJYhAYHRC2m2x0Vxho91mPctZyi1JZsiEjyzPQ4sJDCYEp3zQhjU5Ok/J8h6L7Q6nVlY5k8M9T57gqfMLRI1Rtu/cTWNyFlUeI816NMohsRCIPCcQePvKfrPrJJFzRM4R4ggsBKjBJhGFtZ/0FJOiaRbShyIJ5bndTqhi1SIsJgLhVTl0zzz6JbbceAd3f+BHmTt1nKfu+3P+0499D3/0b3+CsXLM2YVFzl5c4Oajt9DsZOx89W00wlEWLlyk12nTaV4kULCyvEal1iAqeR/zUydPMjG+DaMdSdqh0Rjl4a/dT0UadJKxcP4kG4srNBoRW6a3sry6wqEbbkYQEQpFO4NydSt/9tHf5o7XvJInjz3BwekJmr2UH/1X/xctWeaN3/O/UN02S2ZDaoGideEid7z6Ft71zrfzT37gh7h4fo5yucxzJ59hYfECraUznH/uGU68cJJKY4yv33cvWZbSyiRCB2gXgfD7IRcCowKysI6pTqNkjBEl8niCKK7iUsjDLRhRI1cRWgbFvg18QAnyxQ0pILBem+AMwlmCgeHkpQ3sgEbRR6HFZtQ4l91f9HnRFIqZglIlrUW5HImfCAvhBpPi/mMGx7V1iCLxFrgEUBlclxYhLQgDwv/eIyUphddEC3G9rtdVq2viF7BlS0CpFHH4yDS/9zu/zsEDN/OvfuFH+La3386WyVEq0ShhGHmkI88IwwilBKNjVSojVRYXFzi4fx8Sx+SWcXbt2E2W5kzP7PSDRiBJ8i4jWwO6PU2aWbqdnI1OFyOgl+feLWEIqQUGiNpgIHMUjWgf+ZQDpwspFcY4tm/fzsbGBmtraxw7dgyXJiAEEyM7sSYcDEztdrsQxfVpCdajygjfmGPBeoqCdX4ZuNfrUa/XX4TKycK+qE+/6KO+QeD5qC8q5/nH/vUo3v+laHT/fQ6/jjE+OCbP8wEaPHy9H1/eR4UvRy/AD/ChCl7kDQwMlvOHEe1hxGTwN5Y8z9A6H7zu1SolIVCCUHo/a6XUoHECLkFOh7/HwQkqCEEFhGFIuVShUq4RlUtF1Lr/nvI8J8sy0jRFaz0Q8MVxTKlUuszVwn+PSZIMeL7NZpPJyUnyPGdtbY3z58/z2te+lvHxcYQKeeWrb+O5557jS/fcx4c+8AGqJUGerCFchpKex59ndnNVoRg1NlcjGDTAAGmaerpFnvtjYhAJXqDNQUylUqFSqVAqlYjjmDCIB/u/v8LQf/7h/T/8/8RKDBFWBviEx6BIKJSk3ZworqLqdWiMkMdltuzay7FjLxComLGxMWZnZ1FC4qz3sU57XZKkS64zVCAv8U0Hz3/vc/099Xy4yRHF36qghPeDWiQCL0xzQhUBLQLtiSxYIdFXic9fGZth90SVP/6t/8zotp3k4Sive/cPceDOd/DAA1/mxPMv8B1vfye/+bu/wz333sv09DR3vuOtTM/uoFEeoRKXWF6Yp96oooQjzQ1BXEKqkDz3+1yKzWNTOxgbaZD1uqxubDA+sYU4jmk0GizOzxPGJZqdLmGlxNGbbyAul3j66ac5euAQj379EUwn4T/+wi8wPjHB6Og4P/rPfgw5MsLIzDSvuO02PvKRj3DfffdRrVbpdrtMTEwwOTlJu90mDEPy3Cdi6iyn0WiQJAnVcsUfw2aIA+0kQsU4GaGCiNw577QSxKRWYOM6RDWMDL24tK8/vIxL/M3WN/OY/7/7/PdEp4cvr/T6g/dRUJyuZtDV9bpe10JdE5zodkfz2tfewMULD1FWL/C+dx+lMjMGJmLH5CF+5ed/jZ4A6pCklnptgvrWcZ6+/+usdzQIQ2djkVe+4gaOPfs068stZvfsY3Rsmkfv/yI7ttfprCxiRcLM7H4ef+J5qg3Ie5blZo+pqQZCpBAoTAec9DQKpUJC6y+NgxJRYSlnieMIi0A6f9I0zqJsSNJMWThzjv27d1AtR/zNpz7B+tIisxO3sLy4RBBoFAqTW2rlCkL65W9tLNYalCikhMKCTHHWoHXiEWQBaxtNMq2x1hVxyd4GLQ6qhVDRp8ClmUPJGJz0/szWK8l9A7fZHA9bH2025T450VhPZQlyUTT6CktGllqUCoqJRerdMvrNDrrwKC0cQnCFpZlAiBCFKsig/TTDPt2kcNN1ljxPPe9OljcdPXSfT+2jwZM8QQmJtmbAM78aVVV9xKhYClYKIwTabtJw+k20DxfxJ55Qea9ZGYQEYUxjfJy4XPdiWRX48BCryfKcjdUV3zimadE0b1IeLhHgFWErIoh8CLWE48ePc/bsWR/PPL0NrGDP/gOEUvDkk09y5MgRzp49S7PV4YVnzrNv9wHOP/8oN9x8E/PL6ySpI5CjHmkL7aBRHvaaDcOQYCh9ETYFgqbTxQpLqVRByYBSFPnj0OJ9x+MSZSExxlObut0uWZKQ5YYgDgbfm3NFZP0QNQjhEC5HaEvsfT5wSIy02KBK2ymeW12nlWU8fWaOam2D1Y7ihr07CAMIw4gbbtjLqdNnaa6vcvtrXsXzTz1GSfqoeiUDjCsChAqhZU6IsA6N9HQbTOED7dFCg/HiUCzWSbQqnDiswgjPi8+RPv2wT2W5ShZ3h25+Dfd/7q/YvXs/P/jP/zfGRmp89Pd/j0Qbvutdb+OLjz7DF7/8Dbbv3c0b7nwdTzz6GGM7d6BGJti9dYYzxx8n7fbodloIAao6ytEjR3j08ScInWVy6zTzF84zNzfHrj37OPv8CWIFca3G8uI6LohprjXpdnu84pX7OTO3xM2HD9Pu9njq+WO0V5a543V3c/+DX+HogYNU4xLN53o0Gg1Wl5bZWMx5z/f/ICsrC+zctZv3vu97eeIbjzLSGGPrtml6vR4P3v8A73rnO/n6gw8SlsscvHWWtNehVqtRHx3l7PljTG6Nya2gmzkqURmnGqSE5OEIVpTRNi/2e4RMNbEKEDZB2RTp+rSOTb/4b4az3K8rNd5XapgHt7krP/7vw6rfbKCHKR5copu5/D0OgBE/NSQKrjfR1+sfd10TvwAj4etffZjve/+PcMcdd/Ha19zF+ecFDz14kn//i7/Gn3/mT1Aa734RlTl96gJZ6kjSLlhFq635+iOPcerCCU5dPM1GL2ekFBGJkFceeQ0T1Wl2bN9PfWQXtfFxT4/oge4YvyScgcXR012s3URD4zAiVBHaQi/NsTonVH69LNcp1imMU+TWeZTJSsZHtrBzdoa5CxdYX1ujFJX4xMc/wZve8HYiatQrdQKpqMRlFucXEcjCKs83WL7pDZCihHAlrC4jhKLT6dBLE4yzlwjV+khdnvvQFSFdkfjWt4tTOKfABeD80rH/fA5jNpvoy7nHohAzap1fwjvO85QsS8iylCxPyfOcNO2R5f5vY/LCO1oWGygEgfQ+0GEQIIUgCL1lmbUa6zRaZzhn0CYbUByAwXvrc7s9OpmT5ym5Ti9Bxq9GBSZF2YzAGb88Wyjq/D7ZRGD7QSL9k5BSijAMaYyMMTI2Tq0xSbU2gipQ+kgFdDstWhvrdNotsjShFAaEUgya816vR7fbvQShLpVKg33ZX7mo1+vkeU4cx0gVMrN9B2sbLWQYUanWOHrDjdx08y3c9MpX8bl77yWMYjobbcoBvOn1t6Fcm3pFFMvCm6sLgQoJVHhJ7HsfrY4i72ttTI7NNVmvS5b0yPOcJMtIrSbRhlz7xlfIAKSiXK0gg4jcOLIsG0yO+mhmH4lO0xSXd7F5hnLe0YYoohdGJHGZr588y/me4/x6whPPnSexEecXVtl7+CAjo+NMT88Qx14UN3fxIvPnz9HdaFKJQowMsComE5JMhmQyIJcBuQpxUnm+uwywUmKDEKfCggcf41QEQYxVkU+ZDGJEEEO4eV2qCKkihIpAhn67CnXfPZ+jNLGN73jvh/j9X/lFPvX7H2ZarrCdFdoba+yfnWa0WmZyYoJnnnyKrVNT3PPJT/Hu976XkZkZStVxNIKt22dQQUza7XDm7GmiKCAsxWjjGB2f4pUvv5VytUKvm1OpNwiCwK9S5CnLq6skScITj3+DAwf2MbewSNLtUI4U3/Ydb+VrX/0K7/nAB5jf2ODcxiqvft3tPPfM43Raaxx7/HEmgpC8q9m9bSflcpXpqUk+9sd/QG4MS6srvO997+MTH/9TsrTH3MWLrKysMHfxLGsbTZI0pza6hczGmKiOjcboUieRFTJVp0dMK7G0tKJHTGq8F3yUrlLOV4lsB4EeCEmHUd3hSWa/hsWzg1TLfhN8mXPG8GOvdFv/+pW41Fda4bsSH/ryGr5t+DFX3gwOi7w6iyjX63pdM3VNINEHDu/m7JOn+T9+5ldxMfzcz/4Tdk2M8Nm//jKdFbj9ju9la12ykFqS1BBHVeYvrpGljuZCF1GDoBTxuS89zMhUzNGZA0xUK/SaLW7cu4/z588zv75BtXKAeHvMDS87ysnTz0DPoWSZTrNH7tqEoSIgJst9iEQoQ0wg0MYRRiEmT1BS4qIY63yUtnCSwkULpUrs332Ir5x5nvHRERYXlvjQe36Y3ecuEohtvPWNP8gDj/4Bwkmmp7ZSjisk+Ya3hQpiMpkhhESbHpgGH3r3r/CXn/t/WFx/kCjKSBPf3CdJghCSlBQpFM7lCCxKgTH5oIm22iEIMDoF5SchQiiskRjt0Ln3nzbG+BABw4Aq4IqoZiEESZIQhiFC+qS3LNdIrdEOAhWSZZIg9vHL5XI/zrxAZoxFFL7QQRASyYjEJAUirjBWYwt/3izLBsv4okDNlQsuQcuF9DZluU7JjCWMDEoF9HpXhxMdYPGyPt88WxFQrAoTDNFj+gJRpbzrRK1UQQYBIxNTBGEMUZncQmDBmZw06dFuNjHGUKtUkVL6JE3nSApKUVLYJvZXD/q+vM5Jcq0pRRFra2s0m00ajQZpkrNj51663S5j45PsP3CIeq3C0tISy8vLRJOT7AojOs0W7Y0cKVI+/Mv/L6+/+xW8691v5sO/8aeFWEySJlmBCiuk9I3EsKC0LyINwxBnNVmW+HRN44hKMVHkA01SnZD2uv4ELgQCRaVWJ+l26HRbyMLZY5hWYa0XazZtnSpVEqdot9tEtsTXTp+lPDGJrG9hbmGJTkuztLDB6EREJYiISwLrNDt37Obkqed59tnnmbtwkX27Zmmvr5FnKaZU878fa7F4Cpd/XbAu2aRdOUeR5oIrEgylkGBBKIMwhb+0c0hjkLYIZhHeMkxZgRZm4P7xUtdNr7qVL3zpqyyf/AYN0eH5i1Wmb3sHr3rLW/mj3/01Go0GZ05fpDG9h+XlZQ4eOczWAzv4+X/9s9x1+50YWWJkyzQrqwu4sEyveYGRHbP0Whucu7DEnp17KJUczzzzJFu2TEAQsrLeolIZZdvEONu3TbG+0sQZw1i9zpOPP0JUqfHcCyfYvnWaBx94kLm5Of7kN/4r+w4exZTgi1/4LId372Z6vMHC6Zw//v1fJ2lMIYRg285ZLnzlQbT14UB/8Rd/wXOPPMjePbspRYqJrSVqtQYb603q9Tq9LGekXKJlA5QJSW2DcqxotjtEtTKtXkaruUYYKkYm64yHETJZ8DaNLsE6SVV6AGawqtePzLZFnLsoXIfcJl2tP55Za/3K499C1fC3S16qo2OYMnf57S96b4Wlpvz7QODX63r9A6prAon+4D97E297x2tJUnj5LUc5duxpfvp//0mEgEoMYcORSIvKIE07tNfXmJtbw3WgFIIznp85NQYkKUjPy+xpzdjYCHMXzzJ/4SIb+Ty7dx3g9tffQSUsIVSATg1CxsWJ0XvHWgPaFI4BzoLLiZQh6XQRDjKT+6SyvquAiwikZWbrDK2kg8YhXUakLH/yBx/h2NNPsXT+PLt3HSFwDaqVBkuLa4w36uRpBhaSTg/pfOMeyTGm6jeRLm7wnXf/NEnOgLMdBBEve9lNHNh/yAv5rCZJU3JT8EkLhMAZ66OdjUQMIaEetXXozBTBDwrjfLabfwSFo63fvBiFgtvqEW+d20102mpynQyaX9gUVEmEt9TFFcEfAQ5ZuCmEWO3TEnWWgdNok2BNSm4NOXbwmQtMp0h3VJt8bheAlYjCR/pqlEMNPrNCEAqPmksRFM4Q/ZOj/z4FEMiQoDRCUB4jiqvIMCrEgilp2qWbdOl2EpSKiKKYMAz9JEYIcq3Js5Q8S721XZEeGMgQicIYnwhYiUJq5TKJyf2qRWYhs2Rpjygu88yJk7xw+gILS03WN7pobTn9/AscPXyIvft2M751grV2i127Z1laavHZz3yWu2+/iW2jVSoyohTEIEq0OhnNRINUaCRGRqRW0klzemlGbsDIEjaoYcMSQWMMHZSgNIIOaxDXSF1IbhUWhbFeaFqKIkqBt/brUzjCqITGEtVquDDEVsdYcgHnM8uDp07zpaefZnZ2GyVynjv2DJ1Oh/pIjdk9O9i+Y5oDB/ZRLVUZG2lgRc7Y+Djbt29jx9Zxbjqyj1ar5UkhMsRKH3WMCAuHjrBw3Qh9Ck1/K0pgkcKhnEJavNASL/xSVhI45X3SlfAJlxKEdEjFgD//Utd6u8Mth3Yz0aiTlybpVGf4tu/5YWZ3H+ZH/+XP8tb3fZA3vP0drGwsM7N3O8+fPEG6tsr3ffADLLebuACSTLNjegeVKGJiy1Y2NjZI0x4j1RIm62Gkp8GEVhPi6WrZ8jy1sTodHTCzbRbhBJXGKGvL85w7+Szf+a73Mr+wxOtf/3p27dpDODKKVlCOYt7yrW+lpQU6rGArYzxx8iy33fZqbnnZLYxUx7jx1lt5z7vfy8bKIieefpJarcz8/HkWV9YpVUdJki6r62ukacq+3buYW1xjOQk4t9ZjLclpZZbVjmG1lbHSXOPs/EVWmwm93OBMitEpynURLkM6S06AdhJtIdMFZ975KPHcgXEaZzNyk2Cc94E3phhHhSO1djDuQnFMSA94DNSEogAiCmqcH1McCIOQpnDsKcZJYQebdLIQD3qqkyhSS93QZq0GYXH4nASsK8KFPDBkCv9z1+d+W4c0fdTcYV3vahy61+t6XTN1TSDR//nf/Ra//PP/gc999sucePoZkvYYN7/sjZRiCCYE2/Za5k+AcIJASWr1EheaHQ7unmLp1CJpGpCUY0LRYcv2Wbbv2kUUKHpscPyFJXbtOoKUx3jhsWNkTcnk+Fa+5bZX8vy5FxBK0Up77JwaJc96dHNv1YSRaJ0TRz4JME16qEDS7HQpqQgRAGpTGZ1lGXlmWW+1iMsVXN4iCkIOHtzLJz97LzN797BlapTvfte/4MGHP8+2yW0cf+ZRsrTMli3TdNstopIgz3vsmXklE/VDPP27iO+KAAAgAElEQVTYQ4xM7aTTbSMCRa/Xwpg2SwvrhGHoEemyI88k5SjFWkeO9hHFGGxuBwKvPue53wxrXQy6QYFAeOfagjetscXSvad2+GjbNPMCHGMMSikMgizLBo/vN3vDIkWsR1/LUYgg8JG2QqGkw7nC9s0YcmOwdlOcKAUDRHpTJe4tzPxJxC/tB4FHsOWVBJQvQfn3Bwp8Sh6+CQwUBEFEFEWFr7HnTqogIowqxJWyj8Iu1O1pmtDpdf1nl5IwKBGXYo/qSo/Up11vi5ik2QDtFchC/Ko2hXe5plKq0m512Do9g4pLrK6uEsiItLPBY488SmNklMmxBocO7qe5tkotEpTqoywtrfHUU0/ztre9jZNnTrNt2wwmSzn2zLOUShUOHdzDlx98kJHRSfYeehmV+giZK0FcJopiern1biHOkiVdRuqe593q+GS7pZVlyuUqQgbUajWUBJP746DbaqO1ZmFxzlsCLszTEDA1MQrA9m2T2CwFm7O+vko36XByft6nPxrNW771Tfzu7/wOBw8epFqtMrt9J0tLK+zcuZMgiMjznJnp7bS7LS7ML9Pp9Dj57AluPXqIA3t2M/9sE0lAYL3mQGsPtZnCr72Qh+KK6JT+JcJPPCVgpfZ9iLXkonC2EX3PaY0VDiOK0CBRRIdzdahIq6ceQ/VaJOUZ7nr397Nn/1E++uFf5OGvfJHDd9xJGsxQro5zxxvfwuLiIocakyxcOMMnPvlJtNYcOXiUYMsWlpcW6AlFVK6y0e35JFULJ0+eZGx6mnK5zNLCHOU4otvZwCHZdeOtzK+1aTZXqdWrhFGJUlxh545pTp0+y2ve/K28MLdIMDLBXXd/B5VKme2z2/j4x/6IN9z9Rp498Qzf//4PcOcrXsV8c50L58+iqlWWVpcYmxzj6Ue+QbaxztnmEsJoGo0RnHPMz1/kwKHDTE9P02w26WSWk3NNv79Uj4mRBktr64RRhbm5c6ysrPDK17weKyR5Z40g69CzEYGzPq7ddIH+mBjS6xlE7kgXVwhC7/iRGYumT7nzY7NLuiidElqLchrnvnk8SxYN7qCEBdTfdve/Uw3P5/rXrS0QausDlQx4DmYOOr06WpTrdb2ulbommui3velufuCDP0MQg3Fljj+7xlu/8yAvnF7g+Mkucws5R2/Zxv0Pz6F7nvs7Ngpz/x97bx4k2XXdZ3737bln1r52Ve9A72gAjX0huAgkSIoESUmUrJHM8YTFoUdycMJhjyccpmdsWbKWkOSxRo7wyBpZEiWSIEhwJwBiaywNoBf0vlV17WtWLpXr2+6dP97L6mpYjJAdMhue6IPIeEAis+rVq1c3zz3nd75fcYV0Vke2BZrXotUG2+omRLHWrHHHnm6miw7dhS6aF04wkCgQ+Dq+byGsLHv2HmR6bQ4jpaP8SKvrEhAGUcVQR8cQGpZtsb5eRepgOkl0pWEJM8o5pSDwQ4QGbjukr7+fXEJw4pWX8FsuU5fOEzTWyThJ0naahDbCA4c+QXm5xocevRNNM0imU8xOT7G4PMXktUuM5O/i/NkJDh8a4sXX32JwYIRLl8+j6dHK2Qo9/MAllCH1hhsZkxgmlpbAsCJTi1BGlstB4F2Xd8RDbkEQYdeUUghNxvrpiAKioRFKH51IMw2xU6EAz5MEPpimGbclI6MXy7IwhIGlW1GVtZPsIjBNC8cyMDSBwkCFIPXrXOdORbuT7HckJJsJKbquR23yOFF3/evJ9Waiw80ITUT2wLomEEJGpisxOfg6sUKimxYCHctJYSdTWMl4aJJOtV2Ssq2N66JkGKHilKIZb1RanothGKRSqesnoMSGrCIMQ6QIsJSO64VomkGt4XPknge5eu40XsulvLxCd8phvVLk8ukSxYU5LCfB4sIyhf4Bdt+2h0w2z9zsEnv2HuTKlSvkMmk++FNP8J3vfouZmUnKlRUG+9Ice+VbtF1JZT0gU+gllUljOhnsRIquri5mpibp7+8jkU5TrdSi4UDHJpPNU6s1aLVamLqFphuR9lk3cBIpLCcJukHvljEUAYsri9Qqa1y6fIJC2sLSQ3SlqLVa3HPkPiYnJ7l8+TKn3znLHYfvYXV1le07bufCxSv09vYjlY5lJ2i7AQiDfPcAge+RtAK2DfXTn7ZYnbyELV00JaMKnArRwzByIQyjahyBQkiXjn141P4mruhFx0AFSCWRKnJxNIEgGjMkkEHkUhhGXRYtyrajZOwmhB9Ixj/8BT704D38+j/6PE988klefvNtdu27i65UPzXRwnWncJxRtoyOc/z14yRTaQoKlhYWWZydxkok0RM2/VvG2LZtB9/51jOkNA3HtOjq6iKVTrNaWmFpcZGUnSCTz1Outxke3cL88gnq1TV6Cj0sLC/hpHOslquMZvOcOnWKz//aP6Z/dCvT07PUalWqjSbD27Zx/4MPcOn8O1w5/w5zs0ucPX+O71fL/Mqv/hqrs1N856t/xb2HDpC3DJLpNFNTU+y8PYVQPrlUge5CF0IqSsU1rk5dY21mKuKYp5zINEpIKmtF2uUKUhfsvesBSqUVsilB6LZJqgYoj1azwXK1jgoUxXIRKSXXZou0fWgoHT+AUrOFLwVoBkIoEkmTQjrJgZFxdg0msC0Ty1eYOogfkwj/eKnHX8+S/i+NH+d5EBkBiQibqSRyExnHa7t49QbtlaX/qu95K27F/1/iPZFEv/Taj0gmQLfAk5J2AGkridcMaYc+idDATGgxg9WkkO+mslInDEE3DSxfkkmYrPsuKEU6afPG6Vdx2gP07nuURruGYSfBCDFEmytXTpDLpEhrJt35PmpeFcLITVAZboylYmOYrVORtdDRdSNqeUFskiGj4bnYIGVkbIzvfeMYzZaLCAKmJ65y+MB+UskkXtuluLyEabik7AQz16Zo1RXZfI5ABSSsHg7t72VqZp7Dhw/zzpkX6esd4YXLszxw/4Mcff0ojXaTIPABgZSxS5uSeH4D3RSoIGqByzBECCKLaNgYItw8OCnokAGuD71FsggZ0T/eFdG1uG4KI+V1rbIhDIz4GF23mEhhRhIMQ9cIpUYYXmdUbx602fw9onP4zwdoOt+389xmkxbf9/8W78i/eQih0GO/bS22+CbWSeva9fPXdR0ldEzbwbCcDXnGDWYHCmQQbvwOwnjo1Is3DZH5iL1Bq9hIuJXiBhc0XcMQNppQrK4UOXTwdl576XnSdhIV67KFgsDzEbpBvdkm193LbXv2sLCwQBhK7r7nCN/4+tPs33eQ0ZEhXnjhBXK5HJcuTaCJkMsXJ7nv/oc5ceodChkDt75GrVkl092PCNoYhSSG8tGlT9BuUi2tks/nMYWFLkIIPQwhkX6D0FM0Wy0My8YgoFZZRkpw2xU0XdBcL+O2myQMSam4Qm9Xjup6la3bt/P1p75KGIbs2XuQYrGEk0jxyKOP0Wi72PML+DKk3mzhBSE9PX2EMcs6m0zScBtgaiQ1hRc2sQgQSHwpUDIkVCGaiirRWvx3JmWw0U6P7vEO3UBu6kgIlJBoQiAJ0aNG+g0DZKj/eiTa31b84t//h7ScIX7/d/4NH/7wh3nl5Vf5zC/+MkePHef+R97PX33tT1ivVWi1FLv3HqBWXaNRU1QrJYaGBlhZWkCul8l19zAwMMSff/Xr/N1f+kWef+r/jTom7TZaqxXhGxMJLMPCVRBoBjMzM1w+f4aUEUkJKpUGua5eqrUGXeUyo709fPfpp/j4Zz7LysoSuqGRSNjs3LWd3/uDP+DRh+6nVqpQrq+DCvnExz/Cs9/7DmGrxZa+HoqrS/T2dfPW65cQQlCvr+Our7Ojb4hrVyfIHThIq13H0DUq1RKWmUQP2shQQ4Uuge+ifB8pNeqNdUwDqtJCD1xcv4nXatBotrg4vUCz2aRUKtFy2yytVJFKp9b2kZpGKpdHSg2MaI1tNg2a1QbUA7qzu8gJCzN2MZUqQKi/nYry33Zsxo5GnbU2vtvAb67f7FO7FbfipsZ7Ioku9MDiedi3a4jTE0soTL755+9Q8RXDdzusLLaplotoGjSqPgqdbCpBKDXmZgW1ch3dB5kGS+icOv06Zb+K1xphdu4sszNL7Nu9lwsXXydRW2KhuIZx+13k0iP0Jh2Wq4IwrEVSAhXQdANSugNWJ3GEhO2QTJg4po2tRy17XTej6oFQhGFAGAqSCYvRsa2U5uaZWVhEthpkunr5+tee5snPPMnSzFWq5QVatZCaW2G94iIlzK+u8j//g3/AhYvn2Ll9J+3Q533v/xinT18lnUhx4cKVjWprGIaRAYlSG7rKRrOElpSYGNFiF3j4XhsvcAHiarTacM8Lg6gdbZj6DRPXuqEhA5Ay3Ej+pApAapGTY+y6qOsmhqYipBoRo9rQrbhqDFbMqM6mLDqAfzRie+zNSL0Y0aYiLZ6u62gy3FDrb9AsEISxXt02TJqqecOgmW7cnEREi4fhdCGjBBWBITR82DQMp0WVaE3DSSZJpDJoWjTg1mxG1ebA8/HabVzXRQiBY1lohoFQCsuOudq6fcOHWbQR0uLkOZLQOFYCw7BRYeQWd+zkGZZXV9i1Yyezk1N4bkTx6BsaJplMs/fgYQYGh5hbWmVpaYGhoRHSu27jxFtvc+fdd9Pb3c1rr77C1u3jlNZWWVtZw3cDQt/hT/74T+jqyfPYBx/j3NnZyNpbh3azwelTJzdoGqlcF56UVBsNau2AnNRotX18GSL9uMruenSnkjRbFQLfw7IsGgvzOKZBby6NpxLMzl2jr68P28qx+66DfP2p/0gqU8C2k9Fg2dAIwtC5em2KVCrF4MAQe/btxfd9UqkMmXSOMAhYWJhhrbjE6swEI7kEqlHCCTyMoBEN2Co92oSG0dyAiMrMiIjIiBCgKYGu6dHflSY2ujkKLRoylBFLV2l6rCcVICJetJASIRSo63zpmxHf/N7zGCtnyCa3sCoK9O29l9v37iNUkpK7TuDqhA2d9cVpitk0fruKlchwcP9eTp8+xc5d25ifWyRtmVw9d44j997Hcy++hNB0Qi+WkPkekmiQ2Vc+WjLN3fffy6kTJ7E0ny1btjIxcY1s7yiOkyaTCVhdnsFQAiPTzXe+8mW27tvPcqmIqUeOiAOjw7iBoNJssf+eI5hC8sbRo3iBICEk+C4r5SqXLpzBNPSo8OD5jG/fQaVUpLtvGCkl9Xqdy+fPYOs6tcoauqGhNJNc0qJSXCaXyWNlstRqVVJJm4m5NRzDxK2ss7y8THG9yblzZzYSS8ux6SmMIQOftNUiYSUwtGgwO3B9kokMlp3ElYrplSqXl6psGU2juQLL0ZAhaP/N9PGRNv2/JDQVm8R0Ci9xJdrzPNxmlWa9THV57r/J2d6KW/HfS7wnBgvPHofxnSZNLyR0JXYaSoFASAvaNuODFlu3bMfQwW3oNOstkpagXQ9otxr4AlbWIdedQtOhrtcZ7NlOky5EqEWmDqk8Trof0QwYTadYXVthdm6SqxNnGNkyyMLqAoEQWIYeYcpkp7okUH6IZeqYmoYtIYGOpXR0XaAh0ZVEyYB6rcGr3/8GUmo4dhqFiZ1MsbwwxeLaIr6m8cKzLzBxdYFqvcrC7DLbtu2iu2eQ5cV1ZqcW2DG+i/nFVdotj5WVInZKJ5MO8Jo+AgMwqLV8XF+x3mwTxFUvYUiaXhkZNlCyTiBrhJpLSIAX+htuhWEYDaRE8o5IXKcLDWTU/lcyRqhtekCnVRgnAYaJEBqmZmw8dENgWpHFsm4YmGYCS7fQpYYlbEzNxhIWutCRKPwAQglBGCKkQEiBJQxMtOsDNERDhELFemOlokqN1FDhjQYsYXhz5BxSqXh40kBgIzEIiZIjiYqQhVqEgrOsBLZtYxgaoe8j3ZDAix7NZpuW6xNIYnXtdTqEiN0PW36LdtCGMIgGXpEgFCq2KZOEaCKBIWx0W0OzdVJdg8ytNhBSceTgbhKmT6NWZKW4xsWrEzz73HN885vfiD4MZUBjvcbFixcZGB5ASZ+Ll85i6QHrayvcsf9ObCvB0JZRzl0+z4G7DnPg8J1cvjLBgQO70fWA+enLzF49R8qQFBIW+C38WpEEHhlDYsomXr1ENmEQtmuUKnWcVBrTSdBut3FsG9sU2Iak3axRXlthYuIC165doFCw2b9/O7l8gslrF3nooUfYtm1nVD3E4L777qPRqFFvlPDdBir0cAMPO+lgJEykkNTr6/QPDmBZFtViiV1bt250lDBMpGFgxhIdtLBj/wYa6JraYOQaSkOXAl3o0R2r6aiNQcPYlvxdWDBUiKaiDlDUvAgRKkQEN0fOUZs8R3L7YXYfvJ8Tp09y4O4jvHD0DeZmZglcj5YuMHJJUpksl86eZd9te9g+Psh3v/sthoeHmJ1bIZnOsbxaZmjLGEI2uO/ewxT6hlgrl2i3m4SNGv3DQ4CGaVt05fKknUjK5CRSnLtwCdNJEwQentemrytHKHwCQ5BI5pGB4sQbb3Lkvnt55AMfZr3aZu9tuzEIWZmaYnFmntnlVUa2bKflh9z78INk8xkeuv8R+vt6kV4LW9dYWJhjfnYKS9dIJW1KlTKvHnuTbaMj+K6H1CVt10U3Debm5kikE7SEQGqCRmWdVq3JcrXGuucxV2kwW1zHMB1MI8lA/yg93YOM9I/Sk8+Ty2TJZvI4KQcjYWMmHXTTjoarDYFhgjQMam2JVDoYFsQdvB+HuLvh3zWFFo8jihhLrSHQYrOwjQ5dZy5REeum4w4qdHAh0UNeHxrsJM0qXtciQ6DoaygVdThlGK1Zfq2CbFR+ErfqrbgV79l4T1Si3arJI5/9ab78ta+RzkIy5dBYbhDgsTTnMTiYYnJyCq8h0BKwXlrDyHi0JCzMg2YYaAR0By4zF0/ydz//RRbnpvBlg/mFs4xuu43hgWEunz1PqQkZR2c0kSST6ibZNUppvs3IwE50rUkiaVGiQdN3ydoOQkSLHhiYpo6I6QvXJQhRRdD126S6crz4xvd5+NEP8sGf+QxX/+3/haqv02jWKbtlQt+lvL7G7MI0Pd299Pb2Mzl5FU2Dv/e5n+Erf/WnfO5zn2Pb2DgTExM0WxrpfIZmzUATGkfueoTLl6+yVpJIFWA7AULcKIVoe2WUhDAwCYkkDh0dtBAi1iBDEEhMPeLvRlbfHddCCLzoZ7JtO5ZqRG58hhGRNSLtnoahrg8QWoaJZZg4lo1hClJOAl1oWMb1czM0DT9UKOVunNfmoUfDMJAobE3+Z9gvKSNd3rufU0ptuErejAiEoPNPbC1DCJEjnRIYlokpNOxEAi26kWg2m/GAnNoYpOzg6joSIl9JQi+a9ieItYlaxF/2RfTzRhKByAFPSYFUEqWijYxGlIzXGi5JJ8mdDzzKs898lUBKQj2qirc9l4XLlykUCvh+QD7vkEpnOXfmBPc9eB/nL5xieXkJRwfLsjh95gTZXJpSqcRj7/sAi8tzFPLd7Nixi6985csMDQ2RTmfIZtPUG2VarTrr63U8z2NsbDzaqCqdar1GIpFieHSEQsJgcfICfd09BO0WxVKbfMahslZDyRY9vQWkskmlEiwtz3Pl6kV8L+TatSnsRI6hwUEarTbF1UWOvvIC9fIqXfksSdsiUUiTMA2E55HtKlDIZnnl+R9gmYKgVWP/np0Qs8qjoUA9cqxDQwgTdDMyUVHxTIGSKFykENE253peEm9qiAbEorwEDTDi4UGliciERUWGQlKJyCI6VEjt5gwWOkO7WJ5ucvry8/zqP/pnfO3P/yPbh7p4e+Id3mh4OJiMbBnl9LUJmr7k3LkztLwWW0ZHWV5aAl+ibIf9dxzg3IWLkEhTql0g8CGXyzE8NMrExDU0JI5jEQQBlWqNt46fJAgCuvIFZBBiWhYyCCmtLqD3DaI73eSSaXRdx3ZgZ38/E+8c5/d/89f5xMc/waVLV1icmmB54iq6JTj3zgmW52foHxrH931qjQZvvvkG6+vrWHaKgZEerFSOkS3j6E6a4eFhTp16h098/GM8982v0HLbKCLTpmw2y+rcNCuLS/QMjhH4PvW1IldKa3T39lH0QqpNl517D/Dyiy9yx52HaTQaEYIykSCZTMaWPzptz6Ver8frnEu72ULGa2VCQXFhnlZ3ktRAhoRhYpjXE+mbtZ79uOhsBDuMdne9Qr2yRnll8Waf2q24FTc13hNJtPBCvvzlb5LrS+H7LsWlGrpu4gaSnh6TsW05lqbX8VoK0wlxrDTtwGPbznGuvDZFOwwo9BjoXkh3ViejFXjq6L/lw0/+AseP/Yih0R3kMjnuvfN+3hQ+y7PX6JYBkxeOY/U22Xf7doLQYuLqRUZ39GFYJkJGltyd5E43NBK2Ee/IQzSNyKesw/vUI0TXD55/hdXVNX77jz/BJ3/uZ/nj3/0Ddu3azfaefr78p39GOuNgmBZr5Qqm7TA/P8v7H3sfU1OTLC0v0GjWEEWduw7fBSmdVq3M4UOPsFic5/jJ12g22pgWIDSCMBpb6jB244sZf1jHZIFNutnOUEgQBCB1pJBRNV3T0PWOzvi6GUgnOdViIoZhGOgiomSAFg1exg52tmmQsC0sQ8c2DCzdwDbMyEVOKYQWSTEs3UIobaMFGtE55MawoqZp2IaNG0RDdJZlXa84c30h3xzvdtj6SYYURgyvi/GIsY2zH3XrMWxrg6ChGdEAXbvlYcZOX53fR6eClMlkok2aAOn6KCkjrrCuk3SS0UbDsNDiylWEn4pyOcOwIvJFGJlKh1IhrAT1WpWp2QX2HjrMK6+8wsDAAKdPn2VgYIB9e+4hm83z9vGTbB07QLla5tCh23nm60+RL2QjQopp4gcBjeYqR47cxaHDdzE1NcPLRxvUag0uX7nIli1jaJpGubLGnYfv5uhrr9Lf30/braMLg9XlZebm5hgcHmJscIiFhQXKywLTTOBVq1xenOH973+Ek8ePM7viohsCgWRmZorBoV5Sqe6Na95ut3n00UfByjPc38v41q00amUqxVUKKYd6qUQ+182PXn+dgYEBdu/YSSqh0ywVuX33VixD8M7xN8lmEjQaDSwrEfHSZcTc0IRBEOvMUYqQDtsXpIiwYYFQ6JpExRKwDnFDaQZKKDStY2YkUUJHyEjaIWLZlNBE/LsNiVA/P/mwMr30DgZ87MHP8n//3m8QtBpkuwe486O/xNPPPE1P7yDTlTLD4zuolYqYoYvj2VQqFTRDoHyfhblZltfL9PQPUBgYwQ0Vvbt28eyFExSLJ7nv4Q/w6tHnWa9UsWwN0wq498h9nD99kquXzuEkE9RbHn0Dg9BqsbZWJJvvpe0GdPekKa8uU1lZYN1tsWvLEKvz07SkRlcuTf+B/Tz9nW/zUx/6INVqlbFtu5mfnyedzVHIFmi119F1i0bDJ5GzWV5ZY9feYbLZHFuGhykuL9BqNLFtm0ajhpmMNrlSSpKJBAnboe26BO0WjuNQXisxMDzK8MgWGo0GR+6+l3arRipn0tXVRRBIkulUNHQtBarRxLDTaJrGWmkFNIN2s07oB6jAI5m2cDQPEw8TE03dWAy4YV3f9JziulRMqutmWTdo7t8VHWfCv26ZvNFwq9M1uS4r2YwP7RCevFaTdquFd5P4/LfiVrxX4j2RRI8OSSaLEs8IIytRYVENPHQnifLazM0VWbwWMD6WZK7RZLlYw8lqNEoNRvthcg6kG3K1qNjf28OxU98n099HebmKI7K0Sy5vnznJcHc/vrLYfeQhVuYvcM8994CZIZXporLepKcwjK3r6LZFGIi49R7hYBU+vhuQSaU23OEiVz09NjrRcZwkiUKGZK6b9VKRBx+4n7zl8OILLzEyPkYmk0I3EuzYsYNdu7dw4vhxLp6/xD//5/+KpVKT3/2930LqFm+9cYz+viEy2X6UBK9tMnntIhCboZgaSurxwucTBs1IH6uiyqRhglKRNEAhCUOJlGKj6hkxlqP1eYNLqncoD5uMTeKjZRhRAq3rOIaJklESvTFUaBgkHTtKoE0D27JImnbEpg4lWjxhFxKh9VRsrtKpJNu2jVIReUOiUJpEGCImHly3og1luDFAuLlt2ane3ozwo4uIFKAJnVBBK1CEQCjAMEw0TcewzIiIEkoMXSeMHSchsrXuGIp0yBs130P5Et0wyWcjxFvnGpm2E/3sWryZMY2ogipABRFNRfpNhFK02i1EGPL22yf46Acf4u4jd3Hl0kUM1UJ568hWldX6GpfPn0C1K/QODLB77z6STorAh/Gx7dyxfx+zc1MUCjmef/4lvvK1rzM2thWpBAMDAzxw/w4mrlzl2rUJLCfBsWPH8f2QubkFAHTN5u4j97H79ttZWFigXq9j2zYrS0vs2LadmvTIpx1ee/nlCNuoRR/kI0PD0aa6WIoIMLqNbaUpjA4wN7tCV7fGV370LNlsmic/+QRXrlwhaLnkC70U8nm2j40yOznF5Xab0vI8SinOXT7PI+9/jGQyiS8EbQGandqo9CsE+CGBknhx8hChyRT4CqGlojJz4KNJiTIip00ZRi6bKpSxdEqidC2uPCtkqFDxXII0QpSMB0dj6/CbEQMFwVTYxde++jSZrkEy3f20nW76hkf56Sc/RYjO2YsTnD1zgsMHDvDCD75HxjTIZDJsGR6hWC6xvrrKtoEhLly6hO3k8ZVGdudWMj1DaO46rx99kTsfeJQrx9+kWl5hcGwbrheysLDAjh07WCkVMYWJEhrpfI5DB+7g/Pkp2sD0tSm2bR1mcWmage4+0pk0QbNBNpdnenoaXcJjj3+MCxfPkUrY9HTlOX3qbcbHx7h85gxbt27DDaHd8unuH0KYFtt37+Z73/8++3bvZG5qIpptcRwMTdBotWj5IdlsFo2ASqVCT18vvtBJOEnS6QQybOPoJqlClt5CFyulMqZpUqvV0HUdrxXgOA7pXArLNJmamiKRSJBKZsEPabkertuiWVsn3TtIJmlim3GAENEAACAASURBVOIGttxGNVrTIu70Tbk7boxOJbqzZruBwnMDGi33Zp/arbgVNzXeE5roL37xf0TTwfMlSup47SDaCGuC8ppkbtqjUZdYjiSR0nA9iSZ0/LaPoYEuHEJPxzU05uZXWFidYHK2yPTUJJl0muG+IdAhkUpgJxPUWi5St6nVPXrzXZhGEtu2KRQKSKmhGfoNQ3jr6xWazTq6ruO67140og/aKOGOuKDvnLtItVLCsUxefvUoK+U1Xn75Zbq6ujh8170Mj45Rqa3TaK1z5swZ1tYqzC2U+NK/+HVarkejXue1o0cJWk183+f0O2cwTIEuHDRhowkbJaPESdOifdDGpD+RPbIi4ndupot0KgpKvYsK8S5KwLv/veM+17Fyjh7aDa50ncq1EVehdT3CA3Ze03lsJnN0EuHNCXvH3rnDm363Ze3m9wIb779ZSbRUIuIzxNSSUCl8KQk3ufdBNAzaIW90rkPn2naun67rN1ToO5X4zs8Y/bwRLlDToj9eoUJ8Nx4ibUfW2u1mg3azFh3rNdqNOtXyGnNzMwSeS6NWpSefJ52wmJ64zPnTp8kkkxRXVpmenuYv/tNfsGXLOI888j7S6SzVao3x8W2sFpcZHh7k3nvvJZFIkUymWF5e4egrr3H16iRgsLqyhuu6hEGkB1dSkM0XKFdrTM3MUW+2SaRS+L5Pd3c37XabnTt3MjAwQHd3dzRk2PZouz6zs/OMjo4xNDjC3NwCluVw+dJVnn32eX7640+SdGwee/RhdKG4evUqpqkzMTXFer1FcW2NZDLJQw89xPjYKOlkAsex2Lv3dq5du8biyipLK0UM045su3UbZThg2AgnieYk0e0kmp1Ed5LoVgJhW6DbKMOOjroeH6PnhW6jdCNKnjVBqHXMKiLToZiHGA0iCm3jv2/WMrzoDLB27AVaxRkSXQOM772DS+dO8JU/+h1yToaXn/sRRw4dppDNMjM1TXdvH6ZpUiwWKZVKaIagt7+P06dOctuOnQwN9KEpycmTxxnfvoMwDMmkEiytFml6Pm6o0A2T1dVV9u7dy/r6OqZpRt0A0yGZzjI9fQ3PbW2w6Ofn5xkcHmV1dZWpazOsLq9w4dxZCoUCmUI3xbUSQyOj5PNdXLx4nkcffZSPfOxjNBoNrly5QrvtkSvkNzao589fZGhoiNXVVc6fP49t27RaLVr1CLnY6XwBkdzK80nn8ySzWYSus75ewW03cRt1hJJkcrmNuQWBRqPRoFQq4XkehmFg23ZkUR9G6y6x/l7TiYoqG2uidiP7OY73iqzj3euvlBBIRfheyPBvxa24ifGeqESfefUYA6NQqQIywPWhq9/G85o06jDWrbMqQspem2xSR9gWbXya5XWqHiScNlu3djMxs8ZaqJG7uoZlJ1levsZHHv9ZZiZO0t0/zEvHvseh/Q8wtzBPuymYmS/iiDXaLclEo83w1jF2DY+wZqzjiyq1dotms0nblYS+ZLinSKndYMfgCE4iTW9XCkMpQk3RbNVZXnBZXCrjWDbP/eh5bNtmcGiI8a07yBTyJFI2BBW8ZounvvEMjz72AV56+wRf/rM/5Rt/+Xv81VNf457Dd1NevcKxN95iZnKKbXv28nc+87/x5tmnOXb2W7heA+Vp6IDSYn9pzYhwXLEBTGS2YkYW2UKhaSa67hGGUVKjoVBaiNJAqQDotBEjG3Bd1wiC2H1Q03BsG0NoOIZ1g62tkvqGwYphmeimgaErDMOKuKuaDsqP5B9KR+gRf5oNxm6caGpEODgRoAk9RsWB0n1CEcQKwygRDaSHRBGqyORC0wS6ERdlb0I4yoscGLXIaAUVWZ0HSqE0G4g0yhtmK2aEp5OBF1FfkqlYCiRiJnRUaTeEgeVE17rdjlqmyXQGoWtU2l7EAo+T7dCPrqchNALfjSQ8MowMc6RCyoDbDj9Iz+A4F88eo1prELZciqUa1WqNRqNB70A/ISG7dm2nq1ii3ShRXplnbKifA/sP8errrzE1tcbU1AwPPPAQhuEwPraV5eVlvvLUU4xt24YQilqzhmXbBL4kYac4ePAgdx06xPHjb+Gtl9l38BBzc3OoMJLx9Pb2cOnSJTRN497778f1fQaGhigUuvn2N79GoZAjCCTj49v41re/R7PV5pOf/DTTc4u47RInjp/DNE2azSYjIyM8+eknWVpaIt/VxfDwCJVyk6mpGSYmJgBYXl7EdnQ0GXDXwTtZdxWFXA5DtzANGwkEYQuhFEY8YCWC6OiHIYQ+QioCy4sdI2PJhh9Eg4KhjwhDtMBHhj6a6tzrHiL6g8MQioAgInZIbmid/yRj4a2X6bvrQeYXVpmYvMzszASf+MwvMDW7hJ5w2H/nnVTdOkpKlpZmqZfWkcqlf3iUmfkZTAt03WD3zl1cuXSZi1NTDG8do7BlO2dffAGhO8hEAulJ7rj/fbzx8vMMjA6RtB2e//Y3QEK2q5tEtp+BLWOU2yH3f+gjHHv2hySSKZYW50jZFuWmz+6HHmVmoch9d9zFiz/6IQ8+8DAr5VUcQ+e22/bwl3/5FwyMj4OV4I/+/b/n8IMPkE6nefvttyn09lCtNxjOJKmUV1gpFRHpLgaHR6ktzuLoFr4VEhJSXVkkUOD7AV1daVwZkLAsGvUaugLTABnC4OgoWjJDUF0HdCzdpuSVyRVyNJtNFhbmyGQyZJMm7ZZPaXUO3/NoSZ9EOsXtW3s5tGuETMrBNLR4nY6QmVFE5J2oMAJSiLhLGCNiIFr7RYQDFZoWdRYJY7dBPR4+jEILjdiaXiKlj6bpXDdokdfxpSKiygil0OL0QFPX8Ywbj8CFwMe7OU2UW3Er3jPxnkiid+4Y4W4npNKucfrVBSwLEkkbDY2638LzJbmcAEchjHja2NNoVENcL1rUfD9CBIWuRDeSjA0NMrU8w3qjSdML6NMVYbtFubIaJaL47D3wAOffeopMyqayUmdqdpLuj30Awwzx3Dpm2yFsOZSL61i6RlU2MDMGsh6i21BsF/HbkoFCD/lsjvNvnQFNQ6J45eVXSSczPPLQgzTWG8wvrnDq1AmSCYdT75wmkUozO32N5374A375Vz7P289/m7XiKpap861vPcPdd9/Nyso023YPE6oEhdQYruthWwncVpsbOco6HU5ttNhdX/R03SSMh80ExItwZ8G+/jU6lc7NJiedyvBm10Bd02MtbogU16vLxibJR0dpoGlEdAqhRQu+us6Y7nyfzlHTtCgpFsCmKu5Got1JrDfxkYUQCF1DxRPkNyN0JdFUZLEboqHF1BOpIsMOY9NmYXNXoKM/tywLIQSuH2mjQxlLdgwdufGh1Xmuk4DHspww7i6EEYItILZjD/zo9080TW9ZNkEYsri4xMDQCFOT06yWaziOQxhWsGyblZUV+kcGKFXKfPYXfp5Go8GPnn+BXD7P//Ev/096e3tptCLKy+VLVxgfH+e1197k4MGD/MJnf4l8b47JyUmECqiUywwND5DN5Dl39gyPPfwwAIcOHWJucYlCocDc/AK1Wo2uQp5SucjuXbcTeB579+7l7NmzHDt2jCeffJLzZ88gpcbAwBCjo2Pcc++9vPjiy5w+fRrplenrG8AwNE6dPEMh38XOHbsYHBhidmGO5557jtp6C8tyqNWqaJpGd3cBTZcYwPp6hbapY8VdFcdOo8XDXUDM/AY6kgxiKrTWuR/1mGQQRCQZpeIuT4jS482qUogwQBcaEj/6CjKidChi/vRNknMYjTLN9Qof+sgTmHaCxflZhoZHOXT3A/yHP/p3rFXXqZTKJByHgeER9EGNpdlrFNJ5aoZObXWRpaVZLCfH7fv3slRcY/7aNLcduAPnnnsoLS9y8uRJ1sLIVVSicezYMW7buSsatnPdaINo2Fy8cpnHPvpJVsqr7Dq4j1Az+NjPfIpXj77C7PQ1zp+/yM//wi9z2/ad3H/f3fzGb/5rDt91B9W2x+rqK9x+++0kMmkq5Qrz8/MkEw7T09OUSiWOHOmmvt5g8uoEk1MTdPcPceC2UWqrq8xWS6RTWVaLy/FgsxbJpeIhbMMPcNtNarUGiUQSQzfo6enBMCLUZzqdpikETT9gZGSE8toqqaSDJkNk4NFqtajXahRXV9F1nXwyiaUphvv6cZIpDOM69/6vi79OF30zY4PtryR+GN60DuCtuBXvlXhPJNFzK0usTV/hypzOvkNJtu3YxTe+ehrPFeiWxVrVY8vWBGPjea5OLaKRoLZSp7gCtmkh9ZDJmSIJW5BPOZy/XOewvYQ08rz8yg9YWiqyvDbHo/c9gG8K9uzawV889Tz1Vp3773ic5ZlFPvpACt8MuDQzQ7WxQnGlhrtWo6+ni9t37iCTTJA1BWcmL7BjeJxto0O8vnISt6WxZjTpyu/nB1//Hm0vpF4PcX3J7Nw8f/hH/45Ws8mO7bdTqdb482d/iOM49Pd206hXWS5+k4sXLnBgzy5uP3A7lXqJv/+5X+G3fusP+dBD9/Ib/+Sf8a9++z8g2yMIbNrtxoYdtqZHCbOuWdGHu4rNiOPWsSkSCKmTTCdBuViGoN4oIWJXNWBDPhHJCCL9dyc6ibNpmtGgoG1jaMZGIixVVIl2HCeWs0TyA9PQ0fSOEUk8oBlG4r7Nhikd+ULH1Q8RUQ5EPIjYqaIqJRBCo91ubSTRnfPW9WgDsXn45ScZmh9pY6UWIoVJqIEXCEJhoNnm9UHO+Hratr3pGNnFSynxghDXdTHtxMYHaud9CSfSS3cMLDrMby3mpEgkoe9Hz4feJs2+wgsD3MBHMy3OX71G0CqCaVN32ywsLTE0NEit2eBXf/XzFAoFTpw4wTPPPEOxWKS3p4/Tp09jWRZTU1MUunuZm5+htFbm0qUrfPxjn8L3YMvoVlpeg96uXlbyPeiaxtrqCo1anQ9/+HGefvopxsfHGRgYYHR8K+fPnyeXy6FpGktLC3zxH/4a1WqNpZVlEk6SXTt28MQTT/CD7z7D8Mggtpmltt7k05/6OS5fvcLIyAiaBqvzks/+3P+AUpLf+d3f5PnnX+LYsbfQdcHhu+9kdHSEgwcP4rouL774EuVymWKxxPLyIltHR5menqavt5vQb6PrOqlkBt2ySCbSEZnGiAxxOsY4JhAGkXthpwvg+2E0LNgZdjU8NBlAGCBCD9x61MLXGugydv9UCiFDwtCLGNT+zdGViu4xWpUSr//gaxw88hjHj77A688/Szrfxf4HHmLt5EmGuwq8efYd8vk8H3zoIb7lVZlfLtKXz1JTFofuuoe1apXJ+WnymTy37djOt7/yFe555DHOXrpCV8rBEwZbBrqZunqJXbu309fXR1dXFyoMqbfb9A/04EtYvHSZMAAnYZPrHeT48XfYs+cwO/buiwYXE2me+c53efX1l/nXv/4vafkerz73EpOXzvC+x5/g0sVzDPYP8elP/wwvvfgjdu3aRaVSZWpqiqnJKbZu384HHv8Yc8Uy9fIKfquOaeqUKyu0Wg1M3UAJjZ6eHsrlMromcNstKisrOOkM3f19jPT3Y1nRAGK9XieXL5DJZCgX1wj8NoV0FhVKFlevbqyf5eIafiCRvse+7UNsHRtltK9AQg9xDG6gC22W1kUb4b95XC+A/M1eu/l1m4samxP6jga6c+y8JpA+fugR3Kzqxa24Fe+ReE9oogd2DPLw3Y9jBgYn36pz4vQJIBro0fWIdFCt+8gW5BMZ3LpLbQ0MDJpNj0BJhGHSaCjQBIEGXstjqKubeq2IaQq8wCed6aa4WmZ2ZoFMIkkqYeELxWqlyeJilayZoLlaprrqsrYCQyMjJDJZqo0qTsZmYuYaO27fyWxxmTfPvINNhrWFIoah4Xoh2VySRMKkuztJOpPg2NtvUqmso+k2J06eZHZ+jkCGFEtrZLNZFpeWSCaTPP7BD9E7OEoy4XDs9aN84Quf5wtf+ALJbI4LF2f4+v/zxxzevodqpYbnRh/WnUQqiusVY4lCohBx8ptOZzENG8tKRkfTid4R65DfrXXrPDYv6pu1ypuHDjs63s3/fzPrdHNVG9hUgb3x9Z3X/LipcqUUgZIRs1TKG96DHmkJb5528HryrgT4SuIBQdwN8H3/hmHId2vDO8OewMZGZEMuE1+/zus3XBllJNdQKjpqKExdoAuFkgFwXeqRSCToKnTT091LLpejXK3Rbnv4gaRvYIjhLaN85KNPMDM/x1qlTNv3KJZKrJXLLCwvMbswT767i0Q6hW4IDt9xiCc++hF+93d/m5dffonBwX7cdptatUa76XLy5EkyqTTNZpMd28aZnrxGuVwmn8+TyWSYnZ2lWCziOA69vb185Kcep7iywuXLF6mUypw8dZzt27eTdBxc12V9fZ25uTlWVop89zs/oL9vgD179nH8+HGCIOB//Udf5KmnnmLv3r0cOnSAbDZNMpXg6NGjTF67yjefeYoTJ9/ksfc/wvvf/xjJpINp2tTWm9hWCoGO2/Zptzzq9Qa1Wo16vU6j0cDvbEw2/U1oOpi6wNRu1Ppruolm6KBrCM1AaDpKt5C6jdRtlJFA6SZCM9F0E3QDTRhxF+nmLMMt3abVDhCaxdtvvkar1UCzTbbvvo16dZ2pq1d46dWX+cQnnySUiue+/x1+/md/nuxAH5VanaEtW1heWsGyLLaPb2V2dpbF5QUGBofQEXzspz+JGwSsLMxy8cxJcukE/f39nDp1CsOIeMz5fB5d10mn05i6QS6doVRcxW3UUV7AW2++ydiW7UxPzbJarnDf/ffzT//J/86z33+Wndt2Ylgmnt8mnc2ztlYmnc5w9OhRTMNmdmYe20pQXC3RNzDA2NZxgiAgl3KwdUG9VmPLlnGazSb5fFdMaokIOlGnJ8ZPNuuUK2tk8jks297QcXc2tlJKUqkU0g+orVdQhDSqFZbn56iWKySTSQzbIlvIs33rGENDgyTTKYS43gH87yXezT6X740U4lbcipsW+pe+9KWbfQ58/FN/50v/9IufYXxolBdePke9muV/+rU7OfbqNLpuIZCU10Puu2MPftPH9QXCFXiehpU1CKSk2QowTchlLbqGB6lViuwfH0WaRYprIcMDfTRqPtt27KCQ66JaXqPZDsFp0tvTx+jAbr731FNknCQ79z7A+LadGFaCa3OLXJlcpdmqk+vSMJM2db/NSyenmZ2PqhU9QzYKk7dfOk+x1KbR8DCskHa7QSaVR9N1zl2+RNMLsGyHTC5Ds1Gjq6ebVsvj7DtnePixD1JZW8XSNc5dOsmBO/bw8MP3c3GxzA/+05/xyrd+SP6AoO01ARE79EVaughzFCKVH4P1FY6dwxAOpp5CCANdT8SV34iL6wdtdANsW480oroGIkQItVHJNIxI75xKJLBMC9OIeNVRhUTDMC0Mw0I3LRJO9OGSsK0ImycAJdHj90gZ2ST7vo8fBri+j+95EZpN6GiaAA1CGRAoFblAKolUYeTsRkgYBshAxl8rpnJ0zAY0jQ+/7x//i5/0vfvlP/ztLylNJ9R0fKHTCCU1L8SPtYyRxEbDsqyNIcEoOfORYUAQSzK0eHAzjK3UhWZg2w66blxHDcbDmyqIqpnS9wmDgMD18FyX0PMIZIBlmthOAieZ4sChw2zbuYNASur1GsXlJaanplivVVhdWWLn7p1s374VKSSzM7NcuXKFer3B0NAQ9XqDnp4e8vkCrVaDRrPK/v37uXJ5grNnz/KZn/lZfv8P/oB9+w7w1NNPc+edh5m6dhWFZO/tt3HPkfv49re/jVKKVCpFs9mkf2iIQqFAuVyJDY1c7rrrTty2y/M/eh7P9Xn88Z/C93xWVhe4emUSGdrs3XeAI/fcTyaT4vTpk2zZMsrIUD/DQ4Ps3Xcb4+NbaDbrXLp8kXvvPUKrHZkVtT2X0++cYmzrGI1Gg1Aqrl6eZmhwhCAMcBKJiKoioVGv02i6NBp1ms0mnh/QbDYJ/IgKo4kIBakpEWtYo5tvAwup6bEbYURs0Q0LqVsIM4nQzUjiZDooTUPFZBU0nRD46V/8ez/xe/f7P/j+lz765GfRsn0YjsVKpcKOg/fiGSmunnuHsZFh8gM9HDx8L/sPHGDx2hXe+uFRHvrUR3nwsffxxtGjDI6MIFDMXJvijiN3srRa5MCdR3j7jTeoNxrku7JkTMHc1CT5fJallRVWlpYorSyjazpOOg1CI9vVhZXO0A4Dcr15toxvYXFlGSkkkxMz5LIZdt1+G23P5a/+7M/RNcHpc2d54omP8/1vfZPL03N05TI0Gw0O33GQdqvFxMQEe/bsodWosVYpMT03x+T0FG6jxsLUBJlUmpWlIomEA8pAJ8D3AxIJh1w2g2nZGLoeOY0mUoxs287k5asUsmlMy8K0THr7+yLHVtMkZdtcOn+epflZertyoCRXJ6fo6u1jbMcY+/fexqF9u8gWuiI5nbeObRmY8brQ+V66bsZFBY3OIqJuGP4WsTxPQ8U0pY0iQvy+CEO62bBF6yxG8WvExtrUKUlHkjqxgS0V8bC0lJIg3pS3m01c16W4MEVzbYX6ygKPf+5/+Ynfu7fiVrxX4j2xjbQ10NMpArEWoeSaNX7/D1/hfR/ZDW2J0CSGLkhmusEUeM0GntvCbbfBEDga6AJMHVAKTzZoCbD9NTTHIZWH4UQPq6uzBF6NSmWOkZEhisUlNCRJU5DtGmTPoSOcensZv9XEbddYL7cIXA9TmRSS/Wzfvo96pUqt1iDrQGU9gGSG2ZklLl9+m2QqS6sZYicsquV1DN2i7be4NjNFf+8Q6+Ua6aRDT1eObD4TVYzDgLOnz/CLn/5Z1it13jx2krsP3cWF0+eYvHKBR+/eht2fYqbZoj83QKErSTqTpFJeRRcagedjKIWKBwEDFSJDMEghMK7bcWsC09AxdQfbyaKbWuzGFksrUAghkTJiNQvt+uIsiAxWhDDQdIEQUTIX5QE6mm6hGRaaGfEAlYg0IUqDUAmCMGIUoDQMw8LULRzDxBAGJiYgUQJCBGCA0CMdNzoKAym0yE4ZbYMsIgQoJZFh5Cd+s+QcQilCCb7UcZWJL3Us3cIRgqgwKTANgWMb2KZB4LmEsf7ZC0L8UBIqUEKn7QUEMiSQCl9phAqEbmxU7w0dhAwwNIHx/7H33lGWnned5+d5c7i5buXUsTq31MqybGQ5SJaNEwZss4aDgTHsAHN2dj0M+LDjhT3AgYVNLDMLYxbbYJvBHgy2ZMlJsqIVWx3VOXflm+Obn/3jvVXVkg3MnD1Y2uP+9anuPt1Vt+q+97nP+3u+v29QRCpqi2PiMECGAUkUIqMYzw+JFBUrV2B4Ypp8aQQ/jmi1WliKQsa2gJjZrTPML13iu889RaNW55mnniFjZ5iamKC6usrNB26kurpCu1HH0g0alSYryzUSKRgZneBbj3ybn//Fj5ErDfGOd76Xh7/5KCIR5N0Mu3fuodPpMTY6zY4duzhx+hSNbptCKc/i8gKjwyMU83mEknDo0EGCwKOUL6EJjUMvHmS4mGO4OMqW2W0kWGzatJtvPvoID37jQZ594Vne/vb7iYXP8ZPHefChh/j2o49x6swFHHeIvqfw4Q//PG+/733ceuvd/Dcf+SVU1SZMJCNjZbZsnSIkwMhkSAybRHeQmkWCgoxiWr0WtUaVWq1CrVah123S6zYJ+108PySI45QfrQgUTX3Fh2roCENDGAaJqpIoOomikmgGseYQ6TZSdxFWDpwc0soi7exrsnaHp7fy5Qe+wuLV85w5cZKJ8WlWL13i2GOPcunUCXo9j26zz6EXnqXf6fJz/+Y3Gd00Se/qIlcuLTK1aStHT5zk+MmzaE4W3cxhmVnOHTvM+NgwrdoikdcjVgx6iUq13ibxemyaGGN2agvD5XH6fkgcAZGC74fcfucd7Nm3n6e++zSq0GiuLDI0UkC3dcJOh6nhYbbunKPabuI4DhfOnOWuu9/CxNgozz//PEkUsLS0RC7jUC4VuHThHO12m02Tk4zkc8yMjaAbDppmkcuXEEqcWtR16kRRhG5oBLGP1CSNRo0wTEORMpZNv9HEtTPopkW9XqXdqdNq1EFJp2SoMDo6jOXa1Nod2p5PdqhE1++zeXyMyZFhHNPF0ExUCeqARw+pW0eaCTuY4qUa5XVhoXqNBgbW0kqTa5rkVEQukAgSlCTZ+DySV6QXqhKUlABIuusmg49XlUi/h2SQrCljhEwgiVOx7Wu0516v6/V6qtcFJ/rX/rtf5Y8++ft85Mc/SLcDX/v2Z7jvbR/h2DOnsEwdUVBwgc989iHiQSK3KsCxDLqVmDBMEApYtoKVcbm6UCU/YuMJCydvkREBvlZnZi7P17/xADfceIC9Nx7g9IV5Go0aXtOn7zuMb5lheu9WuqdXMVyDLbvnUNw6pU6EVFdpNrKUC9t4/vghag3YfaBM219kZOoGTEq86F1E1SCMAoIwVTkvryxSLpfptvsMDbn0mnXUxOWjH/0on/iN/5EDt93Mzht28MzjB+k0auzeOc3J4we5cc92rl6+QGthnt/89d8gJsvdP3UPn/ni76IaHbZtnuPoy4dRVUGcBKBubGialiYNmqaNqhgkikYSRwgUdM0gTlI0d82/OaVViEETm5ZMUsHiWsO8Jh4UQiIVgTpoDkwri6IZ2FYOVRNoqoKUUYoWk6RotJKiJpouMaSGYWjYloFrW/hKiO/3EUIQr1EbrtnNkyRJ/VLlgPespn+XEuIkIQpClEhgmvoParm+okIsIqERSEEQJ0ihpxQTKfF9H9dNG6QgCIjC1Lpr7SCwhvYnSUKn08EwDNxsJnX7UNPgGkVR0LWUO95qNQj6Hokc8KiDgCSKCYJoICJVMbJlbDfHzt27KBTyhEGPoN8kaFaJOnU63QaWrfHe970bIQRRKLl48SKbZ/OMjI9wZeEKw+VRhKrx8De+zdjYGPniMEsrp7jjjffQ7XbZtGkTvV6HX/zYL/CpT32KD33on8JdFQAAIABJREFUZ3nk208RRQnZnMuBA/uwHZV9+/fT7lTp9kNqrRYXLy5gZc4zNTuHqWqcPn0aE4eRie18/eGHWa3VuXHfXrZsneLsueMEQZtiKctTzz7FF/76s7S6De55yxu5/eab+M4j3+b++3+csdE5XnzxeUZGR6lUVtmzbyuPPvooUdjm8EsHMQyD2dnNdLtdWq3UyzdXGqLV7tJottF0m67oU8jlKU9MIqOYZqdFv9NltdJASsny8iqKopDLZMnksuiaieu6aIaOYacTHk1NBaKqMFIhoZq6yUiRNkqhEEihp3x/IyBOQmQQIqKQOOi/Jmt3/+7dXL14kSQICLs9nn/yCaK4x3BpiKnpSbbv3s/hE6epNDsMtbosXF7iHR/8GVq1VV588UX233U3N7/pbQyXhqgsr6LZBqFq0m62iBsrJN0ezWaD+aV5dBnSaVZw7GGqjVWmJ2dYXugylCth5/JIw8APJCv1Nm2vw3ve8x6++eDX+eCHf5KOHxPKhP/8pb8hDiNuvOUmcs4e5ufnuWRYnLtwlqlNWxgpFTly8HkKhQKR36fTauE4DpXlRbxul+JQCVtLLSK7zRqnTwXks3bq5lIoUFlcpljIMTIyRqVSIZfJ4HkeipJw6eIppCYZGR7n/KkzDJWLqEFMr9NB13UKuTy9nk5iuRjZkBAFR9O5644tbN8yy9jEJLqqoBAh1yhpAzeO/z9ROtasUl/Nk75e1+uHtV4XTbRwFU6fafKNB7/OVMnlfe/+CB/72Pt5y5vfyi9/7FdQJGzeMctzFy8RSQVUUJUEKwwgVtEdA00DoSQ02h0MRdBp9/nu4ZO85Z276Plw8NRFZhKHA7fewPEjJ7Ash/HxcV4+/yxx2EAoZYgsHMfhpZeOE/gJwbEj5EdN/tuPfYKV+WWyeZV2d4l+/AzFYR3Xdti54y6kJvFaMYaWisUMQyWKYlZWlikU8gDU622WlpYZH8uya88c/+6Tv8XwyBQ/+o4f44tf/Btmp8d48CtfYvOWKcKgx8L5s8xt207JzfK5T/8ln/it38K1tnJg5x186eF/j1Q8osjDcU16/U5qDTcQk2lqKk4zDIMkTjmXpmkPIrY9FCVtjpEbnGdFEUihXcOHTtJUvEHE9Hq4iUghEkUb8Ds1E01Pvat1TUuRWWJAEMcSoYIgtc1TkhhFTcWLlq5h6UYaVZNEBFHK900TuSQI1hMM15nfikKUJKAI4igmWWushbgmhv0HW5HQiYRGKDVCBMlA1R8nCaahrf9cvu8jEwZ+2xaOkzbXXhASxzGO46SiTF1HUTRMwyQKAwI/oNPoEccx3V47PTQoa+Ke1IsZzUxtsKQAVWPTls1Mzc5g6TpLi1fwOm0qi/OEoU/GzVEaKtDrenQ6HaIoZvPmzTz66KPc9ob92I5DqVRm+/Y5jhw+ydGjR9m8eSc/+9F/wR/84R9y44038thjj7Nz5w7arToz0xN87q/+gkq1xczsBBdOvki702RktMj8QjrxmZqZ46sP/lt+5V/9a3bs2U+j2cSxdc5eucK+A29gdtMk+5er3POWNyLjCGMgyPyFn/tpPvOXX+C+t9/D4SPHmZ6c4Ojhl9j3oQ+ze8duvvHtR2i32yRIzpw9TzabZXFpBTeT4+zZs+y/8YaBcBM8PyAIY8aGhqnVmpRHx7AzWVRNx7IcMsUSujUYq1suQcan3W6mMcf9DnEc0+526Pe7qKqObdsYlonjZlNRopvGVGuGhaJu6AJ0oa43G2uJmxKBiDUEOokaI3ltDoCf+/Sn8X2fXq+HoivkHBNVM/G8PmeffZYgVhienGTzrt0szS/gd3rMbttCpdbAtS1aS4sUSkP0PIfhyXHKQwWKpRIx8KVP/xm+0Ol7XcojoywtBhiYCKkQhZIjx08yPjpKu92mODLGgQMHOPrySV547ln23Lifb37rEYp5l68//E0mpqc5dfYMu7Zux7Ztkijk6qVLdLtdfuTN29CjLocOHUEXCZZrsbI4j4gDut0u3aaKY+i4lsnC1Svsv/EGLp4/h4wjHMdCVVU8z6PX67F97z5ajSZBKDEth163ne6hUYCtG9SWVui1PfbdcCOqrtNptbEyeQLPo9fzyZeKDI+mibc37NlBIeuwdWKYQtZC6CaQHnwjzyeQ8WDat+FU9GpR4bW6lH+qVb1WVPhq0eA/9TVrcS6pE8irEwy//9e8Vvvt9bper7d6XTTR5+cvEiSwVKlSqXSRjs6ff+rLjI2VkQoU8iqWa6HoCoQpGqnpCkqSoCgxUmgkUUisQRiGuBkT1VLJWD6WsHD1DIa1SqvXIxYK+Xwu9R9tN9BUi1azR6vfoqjp5ByX3GQZwj6Xltq402V0FPJZBaFFdLoNSoURSkNZRsfzKKpEIOi1OxRyDurA3cK20wbK8zySJOHK5WXGR/NU6k2OHD9Cpx+QUOfhh77Cvp1byTgub3zTnYyNjXD08Itk3QzfeeQxwm6HxfklKktXsTMOSRJx8y03Eskex44fpN/vrV/H9U0XdUBvuAZpFgapADH1jE43yVeO41Kvh/T5MEBIxABJWxMMxgKkVNIoakVLx9hKKpASqCBjZLKm6hbrFk3pxizXre9UTcEwNRAJaqCiC4gCf/15XPuzKYpCco2tHWwIXNb+/lqV1DRiKUj7WRWhpB6MazzttQYqjmMUoa67Pei6PkB1/MH1fWUAi1AG6PUg8GfN0g5IUx+lXBewqaqBZujomonluCgCcoPkwyRJiGWSWujFUCiUadQbuBmder2OZZk8//xzbN68jSeeeIL3vffHePDBh6jXGyzMV8hlC5RKQzz33PPs3rWXnTt2MzM1jaapHDp0kJ/4iQ/w/HMH+X/+8otY1hjTM+OMjY3iui6maXLq5HkULcNHP/rzPProY8ztOcDySpU3vPFWNm/ZSraQ58EHH2TXjh088NX/xBvvvAPTsHCcDP1+n9npcT716b/njXe9mZeOvsS9b7+H0ydPEW2R7Nq1nWw2iyTmhRdeYGpqimeffZbJySnGRgvUaxU6vS7tZott23dw7uxZhkbHMN0Mhmmjmya6YZOg4PkhrmtjmCaGoqKpXrre4xDf0AbNdB8ZeemhLwgIw5A4kgOtQfqnaSfopvE9IUipPWQ6QUkUgZRi/dD7WiGRxUKBlZUVdE0jFCFCSLx+RC8I2bptM5XFSzi24IWnamydmyNbdKkuX8VQNWQcU716CUdXKW7dRrffQ1Egk3VYqdR4y/3v4onvPMrB5+aZGSuhGja5jEvGsMjlVUY1k363g6oLVldXuXzhIps3z1KrVdg2PY2tqyydPo2dzSJlgkAik5iTL58AQ6NVq6EoCpcvXmRlYZF+q0Ov2yEKfAKvh6GwRgDDMjTqjSqmaXDq1Alc08DOZui22tSCPvZgmjAyMY7tOPiehwxTf3ZVVdExUs/7GLLZfOoXrgiq9RrZoWGCIADNAIU0kVQRTE2OU8raZDImpqkTkTp3rjXE4pokwtdLoMo/Va/eZ6+j0Nfrer1OmujvPvkcv/5bv8yffvJPePIr/5E3v/9f4Jvwf/zxf+Q3fu1DPPjtb1BbWCIIUu6sqwsyWR3Z9DAFtIKAJJFopokfRkyVLYZKE3QaJ6mvNCkYFoUDB/DCVfJDLll7ltNHjrHnjgO8fO4EXjdhcmycauUSWpwD18SP+uy+OcupU0sc/e43ybkRz184TrlcYnJijHzJxnGyREmbfq+Knc1QqVQGvOwEz5MYhka/F3L82GnyBZt+0Gd6bIhatc1QqczwUJ6M7VGtXWRidD+2YdJrdnn2hecYGRqlVvM4f+Ysf/6Zz3L01HFQfHRtnGeefBYvrmFaGUK6qKqWbspxjBQpvcPUsgSRj60PoWESBTFCScVrQo1TYYuSpN7acUyEgmpsNMxS6qiqvk7rSATEMoJES0WDKAhVx1CzadiKZqQvpkjDWxJCFEUjimNQwRApBK1pEkNTkZGOZTogFSwrRZT9KEQ1TPwgQBUagYgRyiDJS2hIEjRVIY6S9WS/OEnQFA0/DF6TtRvqbsoqlAoCQSwTlCRCECMjlVgZCAdFagfoui62beMF/qA5DlF0DUPXU4GmbSNUhcAL190her3exiQA0ERKHZAiTdeMpcB1spi2xdbtO9m8eTuKZtPtdrGdPI6ZIZ/JIMOAq+fPUiyUaXUbDJVTj+V8sYiqqtx/77t54rGneM+730+z3WFiYitTU1P81V99Dk01yGRH8RKDlXbAgQM3cGD3Nhbm5zly6EXarSVOHm9iOyqNTodCsUTZynLzzTfjBRFPPfMMH/jx93Dx0hn279/JzNQkH/7gh1KrvPe8h06rxdzcTiqVCjfs24WUkvpqFb/r4wctvv7IA7zvgz9JdqjItq1beOLRR9i2ZTsvPPMCd95+Bzk94eWXnmPv3E6uLqxgmjabtmxm08wshw4dolwuk3cdyuUyL58+Q5IkNJotJqeHiIMwpT+pBgoCw7KwbZtMJoeUMf1+SsPxPY/Ib5DE4PmpwKrdagAJnXYTACOTxTRNbMdBaDq25YIyOBgNBLHJevM8cF/RX5tt+PzZk1iGTa/bYqW6jKrqTE5MYYYm01t2slqv8d3nXuINd97O5ZMv0x8dwc0WGR0bxzF15k+/zMK5k7Rqq+zYuZdVInTHYnZilGVD4+f+5a+w98YD9H2PZx7/DgLJ+PgE/X4fS9W5cvkiSdBHSIXL508wOjFKJmvzd1/+W3bv2UOtUcGfX2Jk0zS2aXDkyCEc02LHtt0s6rB0dZ7Lp45QWV6mWV+hXq+Sdx2yrkOz2aTn+eRyOVI4QRL2exiGQbPVIspmKY+MobsTJEJjcXERjAzCjhFByM4dezjWa9PptCiWyuTzearVOr1mFS8aoR875ApFwn6HIIiwCiUq1RqjpRwzYyWmynkcOxVbC1WgxDEiCYlkgpLCxSgJqGLjAKUorPOQX91YC5lCIlKAIlJhK0SIwRRj7bPl2u9iQM5L5ADgSBCDXxIVGQ+SU4Hk2oAXKVLeswSEmtoxpjrvgWg9QkliiAJEHCHkdUT6ev1w1+uCjFVbrXHk2HFuvGGKndtnKGYFYnBf+fzn/5ooipi/3Ey3gFQLgd8LMMw0c0lFYlpi3T9ZKDH9fhdLU+n1PBQEXhii6ibaWsKeatJqpGEN3V5EGAQIVaKbKm4mQ6PTQ7U0JmZdDh09wtJild2bt7BtchO37tnFtskRTCxiT1JpVbHyFoqpYVrKIHREDJwY0hCUTqePJObKlSoZJ4OmwP/0yd9MExp7Xbq9BseOvsSv/8bHUTSVodERHn/8ce6//36uzF+l2e0BEfNXK9x37/sI+g5SaWCZeUBBSgVIXS5SlDbB9/uYpglsIGIbfLYNo/wkeSWye+0occOyTknN3JI02nrwmSm6+qpllD5WnKKza/Zg6sbnrD2+pqfXShPKNfHd8fqNJW1LU/2jVDYCZISy8bhpM70RyvKDLqlqJIoKyjUKeTlIDUsG4SdJsk7VWHPoiNeCCpQ0vj1hY4S6/n+DWguxAda56WuPpWlaavMVpc34yNg4xVJpvQEPgiAd1wuVXq+HZVksLy9j2zaOk6HRaHD1ygL1ep1Wq8Ndb/wROp0OD371AZaWFnj88e/w9re+lZ/56Z9i82yJauUy27bPoqnwV5/9S156/gUMRaXTqFNZXWZiZJQ7b7udTCZDq9OmVqvg97vceust9DoN9u/bzeTkOEkckciYIAhYWFhASsnc3Bx3330PFy9dYHJynGeff47xyTH27tzBHTffyJaJcYJOlzPHjzMzNsaxU2e48667uTS/QK3ZIJtz2bd/jve+715275lDxglf/vKXqdfrvPDCC6iqyre+9S0sy0IqgqGhIRYXFzFNE8e20/UXJ+trK12TGqZpY9subiaHm8njZDLYTgbXya7Tb6IoIgxDuq0WnWaTVrNJv9Om73XxvR5h6L/CKu9ae0jleyVdP5DKuhlWV5eJwwjbMOl32lRXVyCJWF1dxnQzvP8DP8FLL7xIs16lsrTIhXNnqCzOo6sCx7KJfY/jhw7y5COPcPbkSapLK8SeR8ZxWV1eZHJigq3bd/GOH30v973r3fTCEMN1yeTzaLqJaTtYjs3ocIkHvvJ3WIbO7PQU85cvYds2uVyOdrtNvV5nx44duK7L8uICvV6PfDZDtbLKysoSqogxDAPP8wjDMKXWaBq9Xo/V1dWU5qZp9LsdTNOkXq/Tbrfx/ABd1zlw620EQYBpW+zbdwMLCwu0Wi1UVV0/xAohcS2TfDZHdbVC6AfIOKHXS+k+lmmQy2QZHSljGtqGnaWycUgSEhQpUeQ//2su/quB4n/4C9Zzh6RMBYbrosXrdb1+uOt1gUQrNvzx//UdRgzY8ek/4uyprzN+y3uxECRaD93S0DLgWBqKjOh5MX6gMrNDZfly2rC4lkk/9AhCyOUylPNljFaHw0cXGBttMr53EycvX8HMGdiaS6j7VCsLjAxlmZjIUa81UVSfE6deouXpbJ3bwbmr5xifzLDnlm1oFPjMv3+YPXMzlJ0edj7GNzJoroZZLnH44HH23XAzV87No2mpMM/zAlQVul3QNIhCBWnFCENFjxr87Rf+hE67Rrvd5uxJj/d+/AP82if/T3Kjq1RrB/nwhz+A5Rq84e13kz91EmTMvW++iS8/cJHVKzGWOc3sXsG58xeQMuUPW4aJkDFx5GHaDlHsARpCkakzROzT8zqsJRtKYtKjiCBJxDrdADYaNmXAlY5jScp1TtBR1lP0dF3fCD2JE6QcNIEiIYwD4kRgaiqJkMQkKLqCFqtrwYSEoYmGxAkDEIIw9tGESqSmzakkvfFIERHJYEDvkMRRQhgIIhFiWK/NaFE3rfQ5xzId6SMQpp0GcSQSXUuvTS6XSxPRkgTP8/C8FDmXa9xZ3URKQa/npc9XCCwr9fQ21JQWEgYeuq5jaiaxFPSCABQVVddRdZPc0DCl4RKaJdADBT0RGI6Kn8CVhQvoApZWVtm9bz+anvpOj4+P89JLL2JbLgER9UaVvbv3cM+b3siePXtYWFjgye8+wZNPhax0mxSHSrSCVVrNBoeefYEo8Pn4v/rXfMT6MU6efJmp4RJf/dsvUSqWmdw0ix9EHDl2kvve+S4ajSZbtmwiQeK6Jo5jcMutB+h3uikqGY+QJJDLFlldreK6Ns1GlZnxIYIgwOvWeODRh7jjLXdTHh8nNzbBodZV8pNDXHypQ7fV5NSf/xm757YxVC6mgSmKYHZ2hkuX55lfrrBlx14ajQYHbrmVRrNDgkE+XySfy2CqaUMbRQHxemqmsh66omg6pmOSJJCJI8LIJ/B84jik0+kho5B2u0q306LbaSGlxDTsAWfaRbMy6XtGN1MnG5na5OmvERLdbrcwDH3dt318fBzPC/A8j/bVCxS6HU7MX+Ytd99Ns9mk3W5DHHH+eBtV0wgGyG6cxFy5cJI4jjlz7Bgv6hYze3ehqwZaCD0Zsby6hOu6lIZHsCyL2vIqN9x+B9lslgtnTrNy+SSbR8dwEjh99Ehql5l18cIAI7IQScLQUJHnnnka17WxMy5FJ8viyiKWZdHvpn7NjmnSbDaRUjIxMcGlS5coFAr0eunP6kch2ycm8OMYN5vDTxRc2+T0iaOURkZptduMZLKUykNcPJM2jZ1Oh/n5efL5PP1+n1PHjuK4LvmRMXr9LraboVVZYGK0TNEZxTUULMtav65rByfxCtpOPIjs/v9aG7S9H0RdC15cC7xcr+v1w1qviyYaVeEXfuldfOM/P8pSpcfVS4uEvQRVDYliqNVbAzu1MHX20QEZ0/dA1QAPOh0P3VJJkphGo4GrZXE1lUQB34shhly2RK/fwk96NDqrzG7agycUhsp5ND3ltOYLZaJ6RKfdoN/3GS5votWrs2/3Tm564xRPf/Myt91YQiuYnL1yFT+RvOmuHdy8cz+Vc+oAufDQNVJ+tFTJFySBlwrOTMPEsiw2j25GVRImJydRFIXqUoUnn3yGT/7Gr/LC4YM4lsH07BTFoQKr9Rq5Qp764hUuXjxGrVHjIz/9E0jV5PNf+t+Z3KwTxxHKIAFQQUHREqQMiaIAVQ4aZpkQRsG6wlpRNxKpYIOjuYaorge4JBJNSQWKUkoSqRDzykCW9DHWkO01lEIdjCYVEpGkiJtI/y+9n6Q3EV3XicMUERJBH23AJVZJucZCESQiGdg4CZIkHiC8EA/Gkoq4JmrxB1wClYSB7dmAKy5ETCLkOiL26lq7+eiGhaalaCeQUlVIraoMLW1wtIHI0jTSSOokTK+bYZkoikagaJiOw9DoGEPlMpZtrvtPz7d7qGKAwvW7DE+MYTo29eoqzWaDhqkzNDTM0tICQeRj6QZy+w527Zzjs5/9NJ7fp9XrIgyH+z70syQyZGnlAsVshv2mQhz4fP5rf8Pbbrqbm269kU6jwaaZabwghDih1+txxx13UK1WiaKYbrdLeWQYVWMQBmNCHDE+PsqFcyeJgxASD5nE7NqxGyFjNMcmSGKWfY/9b72LihYRCo+JiSJ+3SM3lOO3/5ff5alHnuDph75NLjNO4reZX1pAJAGXz5+j60UUi8XUZSNXQKCwslxhZHwCx3EwDRuiEEmCGMTZb0w3UhqGEOpgCiNAFWiKihQ6ehyRSDV13EgiPM8jCPz1hEkxEJsa4RpvOkKPTFBTr+jXyirMtu1XoLbXTjtIYiKvTyLg8oWLKIqC4zj43Ra6ko784yQkChOEmpDP2kReH8NxCfo9on6fZq9G0PJBE5iWQa1Ww3IzzM3N0SyP4nkeh4+fRFMSun0fr1ulXq9hmDqtepOJqUmuLC3Q79QZn5xkfn4eRQHDMMhkMqwsrVCpVBAyYWJsBNvNUl1eYnJykmq1OhDxGnS7XaIowrJS4XilVsV2MwRBgNDTCcRQoUB1dYXRicn1id3Y2BhhGNLq+inSbFmp00oY4ToOvU6XoXIJ3XYRSUDe1illbYzB1O3ayZ6iKESD9y0i2Wishbhm2vdfz49OHydhg9Dxj++DawLXfyjYCuQr7gGvDle5toFeC8+6Xtfrh7leF0303ptu4vFnHuXeD76J973/Izz0lYcI6j56DgJpoPhZ4k6NIJJYDrzp9l2cPXOZlYU+GVPi6DqdMKCfxDgZhX4vplFZRNF7aPkcS9UW2wLBttk5zl88TsZxURRIZISMErbPbebcqQvoZsLk7AyqskKjucpEKcem0ji19mViqrz/J9+Aox/imSdOs8sdx3aLeM0aC8tNLp1fYvPIrfQ9D1UxECJA01I6h5SSQilDHCmYmo5r2CwsrTA6UqTb9JAyIT/ksrB0hlq1wfvf+VYuXLpMpV1h09wWrGKG8eI0iJDf/9/+B37pv/83fPYL/wFLd/ipn/glFirnOH/pEDIOUYwEGYeEfio4jLSQRILX8/GDgDD015PvBpq/tHEY0EBS9E5ZR6HX7O3kgJoRy9QfV6gb6YRrN4K0wU6pHFEcpGIgJfVBjZKUapMMqB1CpLaEmjZAs5EIv4dhaESxJBISVSqIgVOHADRVEIUhcSyJojSmPI4EivLaISJhnNJbkoFtIErKU0Yq6Mn3phAGQUAQBBi6hRAC03bT5mUw3k3jplWQybqQ0DCM9NpHCr1eL23MFI1MaQhDd8CyGZma4abb7mTL1m0DFLuK3WiwtLREEgSMjk3TbtXxfZ/LC4ssL14h9AOmxkfo9/uEfoDXjAhiyd/9zRcpFvPs27+T81cu8aH3/gxaNsP5ep2sY2GXNlGpVDj05Fne//4PsO8mjaXzJ6ktL3Ng+w4O7LuRY0dfJgrSqUGv10EzHe6//35GR4fTVM0k9Z+NoghNVxgdHSWfz/O1r36FbVs2cfutt9DqNElUON2uEusKSiHLWH6clSsrPPQXf8sn/vhPKM4liDjk3PJhZveU+Ks/Pc7b7n4To65Pq5Xl4mWbIJEYbhHddHni6eeZmt3Ck08+jW5YTEzNkslk08hnBIKEOFkTbr7SiSCOYyJhpG8cQIoYfWCtmLMy6aHAzRN6ffr9Pv1eB6/bSXntnke3lwpnVSNdE5puYprmevP6g656owqApivra0xKSb/fp1QqoSomQtfwux1830cplZASOp1eupb9Lo6do92p0ev46G7CiK3TbjR59tFH2LnvRhJFsHrpEnaxxOj0JBObNtHr98kU8syUNmPkclSrVa6cPYUrfEIvQMFgYnocVWiYqkomb6PKhGarztyunQwXixw9dgzd0CgWiwRen2azSaPVQYYB58+fJ45jarUauVwOXdfxfR9N03AzDt1ul8sLC0zNbGJoZIKXDr6I3++xfdcOpifGmZycZmlpiU6nM9AwpIhyt9ulVCqR0QySIGC+UqU0VCSfLzI5O0zBURhyLRRDX7+eaxVF0SsdL0TCP0af+C+vtQb6n6+Z/X6NdBzH30M7u17X64exXhec6Hvu/hGWFnvs3rubr33tAf70zz5POQumqaCpFo6dA6mBFIQxOK6OaScQC8JYYlsqjm2mz0YIvH5IFIaEEvphgJVVaTWatGttIl9heSnlEp87dxY365DP5yjksxiGRqVRod/v4jgOURDy/HPP0Go3cF2XRnOZ8rDJTTfvo97skrUdiODS0hLZkQL5kRLlcjEdvccp1ziKJLZtYGgSQ5MoCGZnZzl8tMHBI8fpdPsp569Z5Z63/AhB1Obppx5jZmaCqdlppjdPMVQew8i4fOvbD/Pxf/txvv7trxJJj2KxyHMvfZVCdoq77ng7UxPb1jdrISRB4OMHXTyvQxz7SMIBvSMZNMXXItGs80DXEOiNBnnQSA8c+xWppCRlQCgMOMoxa8b+G5ttnHpFD4z9E5HSR6SMv8fKKUXC9I3vySttnpS1Rl2sfa+UpyelIInB1I0f6JrdKGVwLTdukIKNw8W1Ed9hGBIEAb7vo6ZhdSgypb8wsOu79kAOmd1DAAAgAElEQVSS0j689e+0NkEQirZxwNFUstksI+Vh8vkitm2nwjbbxbIcwjDGH/hvJwlYlkO336PRaOAHHidOnODUiZcJvB4r8wtYpkLW1rj3bW9meHiUKIoYGikyPJJjdrrAUMHCsjQyGYd9+26gVm1xw8234RSLlKcmefqZZ7h48QIzUxPML1zBNi22bNmGoqiMjk+mz0EOfp4YCrlc6rAhoNVqceutt+LYOl6vg+lmOHj0OE6pyPjsNFKVFDIZipaL0vFJfAsiDdfN4vldTAtyeZOjx15E1RRmZqbYv38fe3fvYWRkBFUVvOlH7iKTyRAlMbliiU6nk75R10OGtO9Zm69E29L0OCkAmYb/CJHyXhVVRzdsDCeD5WZw3DyWm8N0XCzTIU5SsWi/36XbbdPtbXy8FtXtDva5KALS979t2+sUrU6ng9fzURSF0oBnryikKY5RsK5jSL3OIQ4j+t0erW6HvOtw/tyZ9QlKu9Ok1+lQqdTQ9dTCsN6oYuo6uVyBQmkIJ5NDVXWazSbZbDblIktIBhOMeqWKrqhcvnyZHTt20Gg02Lp163oEd6lU4pZbbsG2bcYHa811XcIwZGpqiiiKWF2pUCwWmZqawXVd+oGPqWtMTEygayaZTIbPfeGvCYOYbVvnaHU66+/bfD5Pu91G1xQ6rTaZTAYhBJWVBUqlEjk3M1hDg5Vyzbr5B23jhERZE+39s9U/zl/+p5qAa5tnRb7SGi++3kRfrx/yel0g0aePv8Dv/8Hv8MUv/iee+PsjlB04+Mxfcue9P83iQovJu7Yz56osKJfphAE9v4aTSxibillehqIZMVSwObPsp+iQ4zI+VkDgoderaJZGEPpMKy7LPcjoFkfOLjI9OkwUqOSFiaLGDBWy+L0WB267hdMXjjCWmaO2fA43VyDEwszmsDN1SpMmN93zLo4fOcjExBDIBIssLx8+RpDE+DLC0TUSRWIYkMgYy0pjj6cmx1haOs+9b93L/OICtVYPXU2Y3TLBNx5+EFPXKAy7LCxeYteB21hYaTK1Q8XrVnnx4MMsf+cogdljeHiYdr/G1cur+PJzyEjH0Aw0UycMIlRDQVM0wqBFHKgEyUCwRjDgQQ/SXpN0E4xkgq2oqAgMVUsFVbqBpqlog3jYJE5AiRGqisLghpD0EEmUKrlFQhD3iOJ+Gmud+Ciajqor+H6AqgvCwEsTtUSabqjIBN1Q19kfqm6gBGEqDpcxikh/NlVKNMF6c22qCkGUYCgSTdHQxGvTRK858a0nhikSVaiDJ5N2ykkS4/t+SqUJI3RNIwi8ddRPURQsJ4OmaQRKgohUZBCsI7l+kqI+zWYTwzDIDw2j6gaaYYFQUVWdidExhvI5BBGarlEeLpDN2Rw5mqNZrxElKomicOr4CRzbYv/uPezdu4vLZ08QBD633XQDK8tXMfSYyYkxdNWksriKrTlEPQ+pSEYnx3nmxcP0Yp382CR2rweuy6VwgbggKY2MIgKfL3/lK7zjLW9j367tNHpdjr98mNGJnXzrm49x15vfhGmBkAKZqHTrdbAcDDuHk8tx6MUXuOfOfSRRl9/7g99j046tvPftH6Dd7zGyaZjFhRrkdLbdfjOLl75LTp2hXgspGSWCmo8SSW7Ys4Mgho4vEaaLqsZUFy8yu2kbL588xehImSABO5MnX8jRba6k4lbdGTjIDCKQBzScZND8SEVFjeP0SCjT4UEy8ENf54cKHaErWIqB7WRxMvmU1tLvYHVbRFFEu9MkCDw6nQb1eviajcSLpTLdnkc2m6XRaGAYBp1OG9M0WV5ewrYdFCKqjTrZOI+umyRehKJseLhX65VUAFgYTq9DGLJ18ywLCwtkSiVGx8qcqq2Sz2SIghC/26Gnq5RHRzBNkxxg1hsIXWfx0jKagJHiMJ2+j+M4aIFJ5Pv02l2SJOGpJ59gy9Y5ms0OE9PTHDp0iGKxSKfVwLEzHD9xDCkkjWZ78B7R6Fa6LCwspYenKKK2vIpmZ8kXy9i2zRNHDrFl6w4My2VxZZWx0Ql020HBRxUCqYJhatQ7HTZt3ky3tsLObdu5fGUeRUkoZ3UMPJxskURRBvS5DaAgSRI0TSPy0/e8jBNIBKkkWww66FfS41IgYV3NhxTK4N82dBTfrxQSFKGkExWhpC4eqU0Ha2i1MnDpUCCdvSQK6tqUUFlLKYS134SQJMpA65IkSJkQhx5EPvFrSKO7Xtfr9VCvCyT6vnvfzv/6h3/Ez/3sRxmbsMkU4NnnH+d3P/kJdAmKaqGpGfwwIAygWulgWBkSBTQbwgiQEcW8y+hogSCK6PZTlbataji6yfzCCr1qjXJ+COHFdAJQNRsZReiKxC1ksB2TyOuhGzA6ViSTyZFIZWBRluDmXBZX52k2m5w/e5bpbbOMTk/SqreprHSZmppBCIHjmPS8iF4vBgWiKKbd7pLNZpmaKFMqunTbLTJO2ljruo7XDxBKwjvfdR+apiAVmaIfhSFqtQUqq8v85Id/nEqtiq5rtFot/KDN7KZJem0T3ZAkopEGnIi0yU2SCCEhjkOSJFpHi1O7I7lum6RIEMkrOXrXuge8mg8HA7ulNTibaxw5kghkPEA+NzyS15wq1kaAySDSFnXje30/juC1tYbkKGvotSpY2+RfL0rxVyOYa9csiqJXODNA2qgZhoFpmtcErWy8JdcEm1EUrU8YDMNY/xrLdjEdB9vJYFkWuiLQdBXT0BEDZDsKfFRF0GrUuXLxErqmknVs8vk8vu+zbfsOcoU8jz/5FGPjIxSHRpia2sLyaoXZ2VkUReHw80fBl1w5dwZTAUtP8HtVJqdKCNEhoU152GXL1kn8SBApFmcvXkHTFaTsI2REsZRncnJyQGkJ19eTpqWi1SiKyOVyvPnNb0YTqTDr9jvfCEKjslxhZmKSbrVC7LVwjYQ3/8iNbN9URno9TKlQubzKoWdfwtQNxsaH2LF3N6ppEUuIwhhdM3nkkUfQdZPA75O1TWzLREXQ73Tptjv0uk363Q6B7xMOPLpTxx8FIZT1OPvvx19dX+sytY0Mk5golqAI0FV008Zy8thuDidTwLZdbNtN9QCvUXCFYRhks1nCMMQ0TeI4RlVVfN/HMAz6/R5+0GN2eprQ89OPMFxfz71eLz3k+f665eTy8nJ62LMsut0up44fw85kGB4Zo95oceniWXy/S5QAWoo6d7tddu7ciZNx02mVIkDROHfuXKqTEIKJiQmGh4fJZbLEYUAcBsxt245lWeTz+VTgGMfr9KlCoQCkXuu2bVMqD9HqtHEG9oVrr9epEy+zafPWVDsiJFHfZ2JyjEIxpZlkMhn8fo9+P6WMCJFSjxYWFtBUQSGXwTQURNQj9vuoyvdvcP8hL/DvnXS8Pku+Yp+/Liy8XtdrrV4XSPRn/uLT3H/fveiaYPvuYQ4/fZknnj7Ov/zlX+SJv/8s937gZ1htguWo9MKERs2nZBQIFZ3MkMSrhqjNkERTUYWJ50MSO9RaNfpeRD+M8H2o1hvkRsbQRmcYEwFWTiOUdap1n4mpSXqtGr1+nZ63gmmHiCRBmDqxFMR+hzNXrxIJhcPPnWbzjjJdtYttGMzun6NR8+l4kiQB3wuxbAuv5xHGKeIQRCmS5UcBmXwmtZeq1JiamaBWXSaO0mby5ZdfppArUhweYXbLDrZsn+PxRx9gbscenj38DCgGq4seGTdPo73KxHRq2bd7x52QSJ59/hFsU0NzJKqAfgJgEg2aV6EkJH4fY/DKbzTG6oB3rKJrGpqqo6va+ngySdI4bhknSJEGfyjIVMYSxyQiQlHkoIkOSJKICIEccKEVJUGGEXEUgSqQCBSRxmMLIVFVga6rhLG63kTLOEzHhQKEltr3qapK5EcDWzCBokpUTUnR7NegoigiFnIdbUJR0uc1oGas8cCTJCGKI0SSos9ryFLezaTN86CZTCkbIAYNZpIkadqhlOs8y06vj4WKO5RHNUy2zO1ibHKCXNbF1gySJMIyU2R+ZnqKky8fo1GrYFupmC2OAlRVoVqt4jsGhpUGjvz9Aw/yjvvezef/+mvcdPN+7r5ljptv3cvv/M9/xLceeIiP/7tf5eZ9e8FSubq4ACYU9m3C6/ZYsoe5euoyy0sNts3t57nvPsWOuc1Mj0/QisA0U49sVTGIwj62oRGEEYGSoNo2vhcwVCzx0BOPs2emDInkzIkau/bfxlc/9x2Kped594/dzfCwhptzaXfbZL2Y5kqTIyfP8NS3HgMp+b3f/m3Cfp+zFy6jaDqPPf00URThZPIYlk2xlFI4pmdnKI/OYCsay+deJvQ6eN0qsYS+5WAYFpplIxQV3XDSxk6or2ig1w6U1zZCMpHEg9cwHPDkpZQkioIwbFQMcrpB5A6Q2cCj02y8Jmt3bRKSHqgCCgWb1dVV2u02rquh6VCvV7BNiyj0mZqcxI8TVldXcV0XI4kJw3B9XRqGhpnoKIogTgT6ALmvrqwQRhGjI2WuLlzh/Okz6KbFmVMp+t1utui1mgxNzLC8uEhhdAIvTO0jdV0n1nWWl5fXA3wkCdVahSD08Xp9KmGIbVp4foimaWkIjhFTLpcxDJ1uu0soYWh8nKTVwTBUYi/C933K5TKJUMhmHGq1KsnKKrlymdGJca5evYpraZAktFt19m3bkbri9PooJKwuL9OsjtCVETfNTaDKCBmHqKa1ceAfNM8yClFEihTHr2o+pZRo34cXf63A7/ulFr4auf5+tU4hkf9lKYavpqB8v0Z5bd1fb6Cv1/V6nTTRhm4zPTNFu1Nj586dHP7uZZ47+BI/unKRb37xYf7v3/kEP/7zv4uZMTByAsNKuHBxEdeCJATX1Yj9GD+MqVfqxJqCH/QxTAXhWASej6JI5qtVtFwes1hElWmiYKJavHjsKHtvK2GZNnbGQtMTEhljGgpuzsFxHAKvTxAlSKFgqZB3MkDaROmGoDRkUbtcH1jEGfheRL5QQsYBioRiIUMURkhU6o0Oe3duZ2RslHq9ws6dtyO9mChpUy6XUTUbIXQ03UbRYHZqK34/5puP/D3l0Rxvffs76XU9nnjiaTrNJqgtzpw5yfJilYyrk3EyGFpCGHl4Xh9NF4iB8XYURSQyQlVT1w0FQRxGxKpEd1QMNfVt1pR0xKeIdDS5liAopNjg7q6JWdZR6JTzLAYWd3GSIDQNZYCKbnhTX8MfvmbT/n58bHWdB51+viYUwmuQ6jUU+7WqKIqQqli/2Sjilc/t1d7AcTxAYQdI/NpYPIjSUS+DNDt98NgbaGj6WEEQYFguEoVIgipUdMtcF4TKJEIogjCKCMIUITRNk2KxiEgSIq+LrussLSySzbl0WgH9fp+lpWUO7N/JZz/zBaYmNzFUHuPSxbO4rstNNx7gxCmbT/2Hz3Lfu+5l72376a62UUyBX+sgEsG3/u5RqpUmU6NbOX36DDOzm6nXOoyPDtNo1Bif0RgeLuN5HrqhEkfyFc9JKirlcpk77riDqD6fIqR+wHceeZQb9s1SWV3g8YceY2RsiOktMwRRyPFz5zl28CDdZoub9+zn9ttv4/zpMxiGxbeeepzpzVtYrdbJZrOgCMYnpojjmLmdu+gHgkwmx0g+T3f+HF2vjR/0UJBESYIMPWQUgqoNDp8aum6mvt5sOC682p9ciDXOdOpIkwbxxMRJOpVSpEDRDXShIggRQiWxX5tmZG39VSoVSsVhAj8iChPyuSL9fodWu4ZlGfi+z9jYWDot0XSUgXdyEkfr06okSZ1YNNOg3+9i54o064004CZbRNMNwsBjeGiEVqvF4qVLaLqOlyT8v+y9eZCkaX7X93me9877qLuq757u6emde3Z2Vprd0Qq0K4QlgrAxEhISDnE4bNkyhwMCCHODL+wAywYMtpENQoSFQCDrWq1WB5J2d3Y0O3ff1V3VdVdW3vnez+M/njezqnt3BZYlzRDbv4iMiu7KzMp8883n/T3f3/eYn5/nzmDA8tppVk+fZWPjHnML83i2xi/75ElCs9mcJQhWyxUTVz4as9Ceo3O4jxSaLMvJ8gzHcRgOh7TaDRYXF+h2uswvLrCyssL1114nywxVxCDwDoMw5unHL/Hem+8iBOxsbdNot3j55ZfpHO5y8/o1qk6Zvb09jvoTyjKlXi1TrZQY9LusLLRx/TKWtB5oLE9yoGctsDJTh5MN8r8L9dUcOh7Vo/parw9EE3350pP8wP/yt7hw5jTX376NLEE2kfzFv/LX+NN/8s/x3//l/4bv/p2n+L3f9Yf4/d/zV7BXy5S1ZLVVJVeSw3tDSo5POgpJU0FpCbZ2Dzm96DCc5HiWRaNZpRPFfKRZ5e31dRbm52hXa2xubgAljvqHnFo+TZiNUYyAnFgNqDU8Dg7vM452aC4scm93j7ULS+SpIk57XDp7lkbFYXdjl+39LlLaxHHKZJSTRn0q1YCXv/6jxGGP5aU5mrUyly5dYuveXdbOLNIaNAGF44OQAW5QZeXsBbIc1s6eJx5PWFo9z9vXP0+5lRCmYz79mR9FCEGWaj7xsU/x/3zmhxnmO1TqxoYrjCckaV54lOZE4ZAcG2lBrkK0LFwfbMsEzDgOjnQIgjK2PaUVCBPPbZkIbrPoW2gLBArH0lgiB5GghYXSoNLE8OUUpBrjQK0sFJDoDFQGWuNYEq0StHZONI4ax7WJsgRhgS0sZFyMQKVEFXQNSwpcKUgsCZbCkeDYX31c+ltdMigTZ8Z1QQtpRJeFTVSuFSpV6Dw3qLIWiCIeOk1jQBNFE7LMxQkq2PaxP7djWyTRCCE1tXoFrQRRniMtl2ZrkUqtQWtxEb9cYWll2SCDjoVSGZaw0JnxTw88h2q5RNqs4bsOjm4RhiEHWUiWZTx59Sm63Q5ZnPH6G9fQwkI6kv/57/4dPvLSszz9oSdZO7PC1aeuICXc37zL//Bn/ippmqItD41E2h5CWYRhSFyaUK23OegdMYgzoliwduZpLj/xLEraBK5EaI3OoRSUUZYgV5ooSWm3lrGesPiFn7zN7u4h55baPPFYjWYp4mx9mVvvvs3mvT3ufuE9+uMRLz15lW//Xd+KlpJESyy/xj//sf+bkl9mfqnJl774Ku2lNd595xrPvfBhao0mzXqNMAmxgzpnLpzBsctUVs+TuT5ROkQlEWkyJAw1oTUxITrDstngeQGeX5lZwh37AOdoI5lFCYG0hBEcCPM7C9Nc5UlOdhLZs2yEkPiN94fPL6VFqVJnHI4YRUPQArfkGO0DilqtxngUkuUJ+/t7jEYjtGVTCSoMBwMazSZJHBOOI3zPmwkUcyuiUvYRusbd7U08x6NUKtEb9LE8Q7/oHUzIcsHqhYvs7W7TbLVIkoTBeMyFq08xHoeUkYwHfYKKSYMdDydUamXCKCaJIwLX4XDQpVQrkyUJo2GfcjlgsT1PdziCLCWJNV6lxSDOGd29T61e5869O5w6t4TtmqCcZ554kuFgghSamzev8czXfR393pC33nmdPI0YjMZUKhXWzlaQXoknL19i8+4tup0OL77wFKdPn6YzSamXXZpCIdMQ6bpoIVCF1SSFoFoLCaQ4IkdbFlpwwk7RcKOnyYWCY/qQgR54cJOO4esLKJDmKb86AwRC20wp0UKAIKfYvXPs5jG1sgNLF3aLSgPSODdpjVaqoG3nkJsppNAKy3Jm6/KjelRfq/WBaKL/jx/8h3z8Ex8lHyX82R/8B/z5P/eXuP3FTcpDqC61uB9FVNyQv/W3/yrdvS/ykW/8BFKXyBILr+TQ6WRYVQ0W2FLhYJajSr2B6HcpV0vMLTbYfnsdaxLzkStP8OlXP8P+oY+opDx2/gIHnSNa9SWa7TnW19dxfI+5hVUcx8Kv1zns7mJXPKp1j/c+v8tSQ+J4HuLMeSzt0m6eJgy32ds9JE3AdW3m5+dpzzV49bUvEo/7rK4s8KErF43nqC2whaRarRYCupxyqWoCSCyLaq1pAiYmIe32PNpOSKMQKW0kOQKB4yk+94Wfw7UClE7QCrRQKKHQSpFlOVK6BV8xRWkT7qAwHrdSg21rLEwzYFvOjIc7Vd5P7e3gGDWWYuqDmh+jEyov0ObMMK6nTWSxJgupUFphUyRLauNXakaNU//SB0eTU76s+ePH3tHThlkUSPlX41D/dpTl+9gJoIqEO6FRmUGbH35FJ3nSAkWuFXmSoJD4toPnl5h69MZJRJoU/HGrsBfEwg18gmqNUrVGrdmgWq1TLZcgN7QP3y44/EWD12jUiMM5OvtbZhOVmfCIeqNBnuf0Bl129nY5d+ECeZrgOmN297ZpNpvcvLHOG196Z3Y+fPTDL/Ds089SD4Iich129vc5d+4cVhyzuLjIQT/ks59/jZee/wR3b7xFo1rj9v1dni94zkpl2FKSJYlxOvA8nMDHsWxyrWgvrlCdW2NrY52VxRVAceXCIq16mY88foFcSVZPn+LW3dukkeLu/S38SpU3rt/C90skSnNuaYnrt6+hBSRxxtPPPseLL77I4vwCve4+Qb1BikOr1UJLn1OPXaLZbtDxDAI9GvbodI7ojcYoLVBJYiYJoUtcTnAsG9cLZnH3Bn02dCirQGWnTY8tbJQwoti8EPSe9Nmd3t6POjrqsLCwiBBVNMbf2thU5ti2SdasLDZI4pBGo8FwOKJUsen3uyzOzTMKJ2RZhuW7pHlOEAS4rtkQvPfOu3iBb/QecchRt2OcQEYDQglxrllcWSaJxmQFreLuvSMuXrzI+vo6i0trBHNt7ty4zrC3y8LyEgfiAKUUrbkW63duU/JcSiWfKIqQQK1WwxKaXq9HtTXP3uZdFlbPm8ZVWrzyyjfw2s/9NAD9fh/LsWk0Wty8sU7gGR/8+fk2ywvL7A8GACzOL5DrQxzHZm9vh3MXr/LejetYecLi4iIIze7eDpZrNquzKVohyptu7fMTKC6F/oSC7pHnOfKEl3ye51jyN3ppPukZfVxiekL+Bm1ATnKiEaqwdnqERD+qR/WBaKL/6B/7fbz97h2ajQb/5Z/6E1y8eIF3fm2L4bbif/rb/zXf831/jFdf/9eIRPAH/vCn+NaXnuT7//if4j/7838JNV9l88YB42FOpQVokCG4NYjimEmcIZ2I2qTHyqLFL/zqG0gJpy/WGIiM5so5Nu7vsbg8R+eojxe0uHfnkMVFj/FoxOmVRfYPBpRqDVCaK09cJNnfQPXHtNwaKhU0yotU6sv88+5dAr+Oayt63SH1WpVWs87qyhL97iFPP/khag0Hz3ZApwzDCSoOaTRqlCsthJBUKjWa7WUq1QZ+UKZSbvGZz/44py9UuXD+ce5v3ZsdNyE0lp3RbCxx2NkCmaNybZKxtCou7jlT8d2U32xjkycpnushpMb3fXzPxbFtHMueNTTTkJDpNX4m/BPyy4QmeW6Ei3mekxUthM4htwr+nMpBG+QkK2gkxg7PqNBz9JdxTKfNsTIkYbQyIS1SGgs/aRW8aPn/PaTgN6tMrLrxdDYXz5xs+j4euu9JCkCSFg4pnoVCEKc5yIxy4GE5BqHPnHT2uWktkApyBXEOMopxpEOtVqNVq1MJXOwixGYq1JtSRUqlEpcvX6Za8QnHA5rthjnmec5oMODxJ64wGPSo1Mr0hz2U1lSqVYQQbN7fYXl5mfn5Rb709jr/9Ed/nHNrS9i25GNf92Guti8x7B5ybmmZne173N48YDQY8+M/8Wksy6L1pRt8xx/6w0asZjtYliDXmlqtRp7npHmGJYURmkqHURTxwsc+SfXGDX7sR36McBLyxnuvc+mxs/yeT30TKEGEYL8/oTm3ys71TYZbR0wixbvX3qbsB3QGA+aWT+EFPleuXMaWFmk0Zm/7HgtzbQ56Y5768Es4vkepXMOzzjKs19m4fYMwShGJ4a8uNOvYtk2v1zNx0sMjkrCPFDaOG2D7ZRyvgmW7uF4JJSgSPi0TwCMkuRAoY6mA4xw3zFPU9v2sXIVEkwkqU+SWwLYckjxBCgvLtTg6OqJcLhNFEaPxLq3mHFmqSJKMJMkQSlCu1AizhGqryuHODkeD4Uys6Ps+u1vbxnbRdY3YOU2JBiNs36ezvYuUkjBK2JeSD3/4w2RZxrPPPovre5ArhsMhHaEIoxgvCAg8jyAIWF1dZdjr4to2VmC43J5jM7e0TJpr5tfO4JfKdLo9fve3/h5WrzzO1sYmR4OhERq2WsRpgrRs1tZOkSUx3SSi1Z5nd3+ffhjilwLSPENhGnPX99ja2uJT3/xJBof7vPXG6/i+xncdrl6+iG9bSMsqLEEND9kguwZJECcazyQOycIJwhLY7vEEarr5fd9q5l9d2CUxBTgMpU9zLBh/ROd4VI/qA9JEJ1mfqx96nLXWaW7evM0bb7zBytkG3Y0jtt/Z4tu+pcT/9StvU11rIYIadyf3+KPf/12UW6fpJbC01mTnTodS0yNDoIYpk0GOu+JSc0GpjN1Ol1pJ4s05TMYpXrkKvQ5tykzGuzjCZuveFnEcEg0hDGxsNyNLNJlOidKExcUFtre3wPeYHAxh/4DzVx/HpcT9O/tojMpd2ZqFtmR/d5vR4BDXdZmfn+fixcsIVzPXbPGvf+mzvHDqAjv3N4lzgY4Szp27QBylZJmkVm2hpcCttvjmb/2d/NA/+dts3N0BmeLYHgKJlgbVHYy2UDoz/AkkeYa5kEtZoA8K27EMNQOwhUA6QYFE21hSYksL1zZiQsFxWuHDnF4hBK5zHBAxM95XxpkjyzIirYnSzCy2aYolwbaMx6i0DJdaC41WhpetBeTKBLKAoWYc+10XN6VmHqVm8TZWS9Iyc4dUvT9NiXE1SMl14bWrTvAGp3xmbXjJnu+Sxcb1QRcqfumVcVyfcq2OY3sEgYfW2nhJ204RSGMjkNjCxi1VsIIA6Xq05uaZqzfxbAvbEniOg8ry2bE7Gct+9+5dtjfWCYd9avUKzz79DLYlaK+tMh6Pma/XyU6tsbS6wuRf7dsAACAASURBVJ07dzjqD8hSRbXeptMdkmuHvcMjFlbPEVouaRTyoz/zOZLJmCeeeIKJA4d9yZfuHrE/zFm4+AILCwt8+/f+QebnW+QqxXVcsizB9Tym3uC266B1jus7jIYT6oFP7Enm5pfIrDLt1WWe+uizzLebdO0Wr736azzzzIe4dpCz/rnPYBL/BJVymZW1c+RpRKxztu9t8ke+9w/z3rtvUC2XOQhDXNdF2B7nrz5He34Zz/eJs5hxEjGMU1KvTa7KxoHEa0AagVK4TohnG4HbZNwny3PCESS2i3CrSNvCLVWRloN0S2aaY7tYjocoeNBaFxjhic3h1Pnm/aqzl5+lu7dHrREwjk1i6GRyUEST29RqdROG43qApNZs0e/3qTfb7B92qM+3CdMUEHSOuly6epXDw0Py3Fg6hqMhjUqZbq+H12wy6A5xPZtU5cg8pVQ2NKVWe57F08YWb3HRJBlKW+D7JertOarVKgd7uxxsrCMsi729PdCKVqvFwf4ulpDUqzXCeMI4ycGymFs7w97eHhcuX+L67VtshzH1WoUcSZqmHB4eEpRL5FpQKleoLS1xdLBDkuXUXI/nrz7J7Tc0N6+9w2Aw4NTqCnGSoEcjEJLDTpegXKVUbXD5/Gk8mSGyCTrRaNdDaGfWQBv6Uk6eZqRxAirBFuD5ZgJj2zZT1d8DWpGHLaVPAAUPO8TMpoQnzqnZ1OurAAzHU76Tz60KpFme0MKYxnrm/V9MIN+vCcqjelQfpPpANNG7+zepVGNOLyzyiU9+I//w7/wjbNuETCxVKty7/jZ/4k/+p/y9H/rf2N4cEto5F9bOsBGO6e/uo0VKUILVM3PsHh0RxhAIsBFYGlSqyARoLBPCkkC13uTazhaPCUG1UqJWqeJjcdTJKbllzp+7jF8BKRSTeEilUTcRsMMecd5mex8eWxBkKiWJHMb9kDQztlGDQQ+dZQRBMLtVKjXu3L7Lrc3bfOzll3nu+Y8QJwlrZ84S+K5BJoWF61ssLi4TpRklywEh+Rf/4kcYjQZ0D7ssr1aKJtR4fRrJSlLYZEmksNEU42RhFkKzSOri3+aYS2n8OBzHMdSOE+mD8JUX55NIyQOOBA8JTnLMSFKrAgkvnL60MIK548cU/L7ieR4Wq8zEhZYFShlaiDAI9uw1zV7Xb9XZ+evXlB+rc3Vs31dcXOyCBjFtoi1Logv+45TnOH2875UMimk55FkyQ7O1MlHgUoIb+NRqNeoLi5T8gFqthuf5CCDPM3JzkM3jis+jWq2iMmP9NTc3R+RIDg4OWL9zi0a1RjRyKQUBnU6HRqPBxsYGS0tLbG5uMRn3yfOc+flFLMuiVC3zzAsf5s13bnB67Rx5mrC8ZIRidrnFM+cuc+XJF/mXP/VZjkYJzXqdUyurIBVh4YbQbjfJ03SWIOe5PmEYoyU4liZPY6Io4fHLF/m+P/a91Ot10ryH61nMza/wxVe/xPbuHvuHXdrLq5w/fZ7RaMTm3XvYjsfa2gq1SsBHPvwCN66/Q7fTYff+JovLK/hewDBMKJXriKmDirSQto3nB0g3QEUZifDILYGFBJVTqjbIs4QoU5Qdm0xAHsVkSU6S5yAFWR4jLRcryMlcD9vJTAqntIsoeHmc6lnQbaY/369GOooV1VqL8biPbbtYlk2z2WYwGICWeG6AFCmpSgHJeDymUq0SRSn1ZoNSvcp4MDTCbSG4s75uuM+9HnESIhGMemOWVpbZ29ujVCphOQ5KKc5fuIDvB1TbS+x1jwjjiFarTa/X49TpVVThHBJGCd3DQ8qlMmmeEeAxHA4pBT4HBwczOozneUyiMVgS2/G4fuMWpWqlEOVa9IdjsxZXyiTDI6SUDIdD5pdO0el02dvdoRRUUFGMF5TZ3N7CcRwuXbrEzVvrJElClmdUfZ/RaDSLEPc8j8AvGb5wFoOyEUUolbEQFeTqeG1wXZcsSs35cGLd/GBKDPWJG7N8gZM0vkf1qL7W6wPRRI+296heXeMXf/lnSXPBv//t38z/+cP/Ev+Uz1J1kXgw4n/8734Abx5ct81j511SNeTK3ONcO9igslTBWtNsdNZZXqjiVize/NUdlr9+mb3+CLvksdkfsXuUU8dhbqnGL3z2bZx6wFsbu+RpRvetd3j86hJjW/PM2tPk6RiVxfhWnVq1wfb+HiuPf4R2TdDZO+SVb77EC+cfJ2g3uH39iM1bRyzNNel0h8ydvcCdO3eQtstRb0Ilkziiw22V0R2Ouf7ODRY//jK9yYhPfOO30Okc0O8OsJ2gECppHNstaB8jbt/6Er/66k9w+cpFBuNtPM9BYpHL2LiFeCWSeGwuGLZAicIJOsmRtkAJiWWDQuNICyEKhFJaBL5DqVSgZ47Acopm2jCl0VrPkgQdKbBsF9/zsO1i7Cg0OTlJHhmagoIshzQreLl5Rq4UlrSwLNeIE5VpgFWRPJjk2XFjqUwCoRR2wRWX5HmKsEDlKbmKyVVajBWN2NGy3z+vVdvxcTNFmuakSUye5iiMeNALAvJcg8rINagkI1fGIxtt+Nwlr4ITGGQ2SRJGoxFZGpPFI7LcHMNytYnrujTmFgoerk0p8KmWPCqBTdmzsSxJlidonaHRIDJsaRLoAJZOnSNXYKNw/ID9gwM6Rz1WlpY56o3YuHsH17Fo1mqoNOKxUyssf91HSdKc3cMuncMuLzx2hV53RFCuUGnN8Q3f+AlsaXH1ymXj8FJEAX/zt/0ewzm1LPYOt8yEw3PJ85RhODKbC/QsAt1xHOM2giJKE7ySz+7+JqfPNQq3m0VzsHXC93//HyGKIj509RK3NjZ57LHHcByHjTt30HnC9t1bzLVqkE/wFls89fRVBsMxTqmBFDanzl1gcWEB1xJIcrSGRjWgUipx+erjHBx02N4Q5NGYPJ6AMuE4Ms/wHR83DlBZih+OiJOQ0Tgky3Ki3phYQc42uAEyKGH7VfygghQ2rusjHbPcSilnqX250XC9L+V4HuGoT7XdZtg9IosyfN+l1WoQRQmuJcnSGCcwCPTR0SG1enPmbX24vUOr1WIyHBLHMZXAJ85zVBRhKahWKzjSYtDrUK1WOTo64sLiGrZtMzjqo+uaSb5FvTlPlip2d7awbZub128wNzfH8vIyo34PR88hhCDVYPtl0lyRZ4r5uTk27txGKYXruqzMr+LNtfFsB8crEwRzbG5usrCyilUtc3p1hblPfQs/88/+CaP9XUrVKipLiMIBk1HE5Qtn2M4Sdu68Q6/TY2F+HpUm7G6uc/nxJxBeleXT51BKMRoO2bq3zpXzLY62b3Jx8SqWzkE5CGVDnqLyvEh5lMgipCTLEhAapTMEGolJy0RolLKxhBEfG0VgMV0TAnOpLuhrWiKksc40vz5GnB9AoUWGObkKgeI0u0XmIARCFAmxs2eGXNtoJb7MDk+qHKlyY9WnNFqnJpTlg9n9P6pH9dtWH4iwFQtBNJnw0Y+/TJT0uXX7HWoNh3KtzLVbt3nppRfBhsSGo8MupWqN3cMjMkvxzFMfJagJxlGHfBwR9sfEYch82+XajTtI4aJyQZYq4kSRpimlSplq3WPUD7Gl4ODoCL/aYhKmSJGBFRGUbObnGlgW1KsNakGN/mGfheYKVy4+ydryeWxZ5mB/wOa9HTbvbTHoT1hZWSEIAtrtORYXl/A8n16vR5rn3Lx1m/Pnz+I4FsPhmMuXHkdYLvPLa5w5d96M5xcWKVUrBOUSSsf80x/6e6ydbrG4XOP+1uYxQiz1lyHCJ+kXD/PWTtIyTnoYnxQRTu8HGFcCS4IU5NrYrskTwsOHg1im1L9UPfi3H0aWp6UKvFyL4zjrmU3c9LWAuVBIQaaNv6oymVzk2uAiUyT7/VrMZ2JBBXlu3rvjOLiui2UZ3P0kR/lBSz/7geOutSaKJ8RxPAtngYJyY1lFZHRImqYAM0rNtBn9SuNVKY2gr1IxftSpMq4tpUqZoFyiUitTrVdoL8xTqVQYj8ccHBxw584tkjAknIzoHXVI0ojbt28TpQnf+Z3fySuvvMKp1TVOnVplMpngui6+72PbNsPhkIWFBarVKpVKhVKpZHoCLZHY5EmOyoy4dPrep+/HKfjgU4Tetu3ZMYuiCNd1qdVqPP/883zi4x+n2+3y7rvvcu/ePbr9Hi+++CKrq6vML69w5vwFojjD88tUKhXqrVYR/31MVZqGhJzk4ztFAJCSEiUtcumS2R65WyV3qyivgR3U8f0aJT+g5Pp4WuPpDJmlqGhEOhoSDY8YD4eMRwPiaEIWJzPXFBBYlo1jWYj3KfVNemVGYcL+QQfhlhCuTxglpHlGqVw20wLXxH9Xq1VDHev3ydKUOIpYml9g0O1xenWNdqPJeDQgCscMBz2klOzv79Pv9xkOh7M4ei3g8KjDOJwQxhFKW6TKcJ+n6HCWZWxubs7WBOk5fOiZD1GuVEiSiHq9PrN0BDP1CsPQWCVmmYkBtxxG4xDPL7G3t0ej0eDs2bNs3NvEdv3Z92g46HNqbYXV5QVee+01qtUqcRjyqU99inJxDDy/xOHhYUED2efmzRt0u11qtRppFLO8uES1YqgZ03UxiqLZOjsNsTlpBzizCS3W3pM86N8IyvtbGdrylV7LV/OQflSP6mutPhBItMrgsz/7GmdPX+bU6mPoWHLj7hF72x0uLi4wGfX4z7/vD/I3/9kPobTF/b0jeknOl26+yTeebrF+7w7D7YzRtoZyiG3HLLfLHA6HXDx3mRvr12k3K2xsDVA2bHd2uHL5PNmNDb7pYx/nrTtfpNtPGCcC18sQwYg41DQrq9RaTZLbDldOnebee/dZu3AWpyJxlMXWxpCt/Q5q4tOqtullQ/pHxpd2rtlidXWVXueIXhRz0DkkTxV319dZWFjg9dd+jXK5SrXdZXF5mfml+ePgAhtc1+fmnVdZOe1w7c4tknyfNIsQooVlCYQwo2YhhGl4pXxgJDijOAhteJloEyOrFa7t4tqGA+26rmlyCo7q9LG51siiQbUcB4nA841AaHpBsCwLLTQqN0I5pYy9XZZlxwiM485ely2ksTTLcmQRSgHmIjhtGk82gibgQgASlQtyDUmWF/iN+Z20LYT9/glx8sxAidMLulIKr0D2Pd8njuNjGoxg1kxblrHXyjKFkjmOb9CpLEvQSuE6Do7rzT6TNE3Jx8Zqa35+nqX5eebn5/FtC1eaIAWDzhv06qTDiRCC1dVVGvUqB5st9vb2sI+OEEKzf9RHa83C0hqWSsnSGKEUWmUzt4Vv+eZPUm+2wW0wiiJOnz1r7BClGVdb8pij7ro2lUqJKDJpdq5tEY5CoijBC8qEkwyhNSoyjdVoNML2XBaXl8hzRZbmDIdDao06SoGUxxfpUqk0a0iEENTrdZ577jmUUmxtbaGzjHDQIUwBAhwnYHF1HiEE1XoLL/DxS+VZY4M2m688N3STg4MDer0B0WRsPieM6DPDRksQLmirDFpjeXXsPKTqHSHylLLXI89TuuMxUZYRpxMmkyGT/gAcm4lfoRTUEZZlXoO0TQKilFi/QceE/7/13Isf5V3Ppd/ZJ84FF8+dYzw4YtjvMRmPaM0v0O12ZqmEc3NzJt1x0MfzPHZ3tlhcXGR/b8d4OAuNyhLmWg1jjVeIJ+t1Q4VbXl6m3+/TarVQStFotBhn0D/q4leq5LYgGg3Jk5hqo0m32zX8bFfw+pe+RBJOSLVmdWmRUa83W2vH4zFCCLIsIRqPsByXQb/L2bNnWV9fp1arzdakC5ceQ6Qhg/v3zPkpNf1+l/39Q/7D7/wO7rz3Hns7u7z91ls8cfUqh4f7BOUKzfYCeZoxGvRIJwOq5YCFegWtBbmSyCxDFctQHMdI35utkXmek2fHwVaz5lk8yFd+wDZRfjmt7mGw5CvVw430V+JW/5sec7K+Eqd6Sk35Nz32UT2qr4X6QDTRnc6Yl1+6yMH+Dmni8sSlK/zkZ75AmsCrb+7ze3t9/EYVkSv8UokoTEkzUIx47df+NUmsiVOwtEPvKKU+79BulRiLnDRJqPgBCoUlwfEAR5MQ4QQ2Jctjpd3m/v51ylmFkuNSqZXxa2WuPP4U2zt7ZJHDExefRB2UyScujUoLO5fsdjo4skan16XkV3HtCIEmTRJq1QrhZEylXOLCRz/KxuZdXnrxo/zyL32WM2tn+L7/5D/mZz7zs6ycPY3r2ShpUa6XDZLpeSAd4nhMrR5wf+sOkGE7JvjELKLTBMIijKS4SU5ylRVohZ7arzH1hLZNA207D3CdH7aKmwWaSInk+D4n+Z2aYzRx6rDx1VCKGWotMCNLjlHak495mGtdvJoZih7HCWg5+7/3s6SUCAo0UQuktLGkgxT2LCJZ8mCwSJqloM1xtfMclJwhoqCQ1rF3rBn5JwA4lkFpp8j08WemEMJw4EE+sBmZHj/f90HnpK15MiXIcyO4rZQhzRJGkxihFYHvUSuXsC0YDIZoJMNxSJQdksoJrfYcvd6A8TikUatgS4HKE4JyZXYepVlCnERkWYbreriBRkmHoFQmzSCOQ3a2dyiXfBYWFuh2+/T6Q1ZXV0mSjChKWPBL2LYFHPNJT55PWhfncnGMpg02eTJDsI2PrfmMSpXqLBLaNDKFtWLhUqK1ob5EUcKA3IzbtRHBqqLJ1cIg06YCtBTIIIM8xc41Io8pIYy7R5IhZM6kEHpOxhk6V1iODUJjOy4ICyzb/Hwf6md/8l/x9JNXmKsFbO0dsre7DUCp1iSNEw4OD2k2Guzt7Zj3r/XMrSPPc+IsYTAYzMTFfhH1DWYzWalUKJfLjMZ9HMehUqkQNDyq1SqTyYTt7W2CestscgKfXueIdrvN3uEBjfYcb775Jo8//jj9ox5z7SYoRbvVJIkj426RxvT75rn7/T5nzp4FIcmVYtTrsrMpSSZjbNvm4sWLTCYTut0uQanCaDSmVKkYVxxhcfbcBd566y36+/s0Gg22t7fJ0DTbLXb3dwjKJSzp4ZR8UDm1SonJcICWy4wSQ0uzhdlsuH4Fq2iIv9J0aHYu/yYuXb+VSPTJenhtf4REP6qv9fpANNHdEbw41+Sof8jTz3ySn//0Z+j3u0jLIbVTXv+1t3j6uQ/xqec+yo98+lepV88hqmVyJ2dnYw8h52gtRGxvDSlVINQxWdJlEEespA0avstuv0urLHFdRaQy/KrArzusv3OD0qJFtQ6thQXm5yXbWzs8dfV5br67jbQ9Xn7pd3O4ech86RJpIti9e8CoP2I8tAmjmLNrp/iVz32O06fPc/PmlgkpmHQ5c+YMj106YxDTHZu9/QNajWUWF1b59M/+BI16nf5Rh/VbN3n+I1+P5QZYWqOFi8DmzNnT/MIv/Qq379ygVHKpN7yZbdlMnPQQUvFAatZUiCdMsIrjOLiWwLIkvu/iuS6uF8zQygccOYyzPwDSMlw9x/ewpTVr4pRSpEUCX1KECmS5Jk1To+qfRVlrKPjVShcItFamgZn5S6tZ0zhL6tPHlmA5mjTX5LrgfBcAi3TsWVjL+1PFOFY6OI5HzjFNIE4MLUNSvA9lXAuUzrGli0KTpjlKSCbhqBB/CtCGdkTBXS8FxnvXD4JZ0tr05ghwnSIYgWOU6uHNjGVZ+F6J+fkzlCtt5tqrRFFENBkBRhCb6IwsCbG0ApUS5RZ+EGC5JSw3oFJrsbC0jBYW9XoV1zbiKNOQH3sfCyFm4+zxaIIXlOhNxrz+zrt0jsYsL86zvXmbStnjrbfeodVqMZ5MeOONN5jEES+88AKj0QgVuEXgz4NN5pRHLYrm1rhJeNgOeJZF4NkkaZFm6dgFNcRw55VSWIXv9rSJNjQSi1qtRpJkOLZXOJwUm8QTzi9KahASHB+tfZQTIHUGbhWRx5TjMV4aE4cTojjES0KSPGMcR4SjA7TWDIYdpO1hOQGW65mG+n2omurz6s//DEG1RjkIkLbLIIK9owFlmaK1YDAc4vs+aZoihCCMxscJmllKOBoW+gpBv98rEOGUJD6mLkVRBIMBYRiydOa8iZuPY1zXRSaG1nFv0mP17GNYUhheftGEVyoVsjihd9Ahm0wYakW3d8Rk0EcUWopyuczS8jLjyZA4zTl9/gIHO9vcu7VHkiS0l1d56623qNfrXLx0mV/4qZ/C9336/T6LZx+jH8ZU5pbZvrfOXKVCOBqzvHaKl156iddfexWkzSRK8CyFErA436RULTEJhyTaZZQKDjo9Wu0qpcBM9/Svo3T+raBBzGhlv6nP+uX1gID8BCL9qB7V12p9IJpor24Rj0fMz1fZ3d3m2/+DP8Rnfu6Pk2QptoB68zzPPf0SP/q3/gzjA407V8UZ2+hslzjXPH55mf52l/b8EBoOfr3E5sEY2wclMyrlGuPDLsurbfaHB8xVbQ7HR8RJyhfe+DynTp9l9fQFRBqTJA5LzRV2N3ZYPfs7cGSVt35lnWazzc33rpPnip29LuVywM7OFqWgzu31LqdOneKJqxdxHIu333mPs2fO0DkccufODZ555hnajTLlsiQMNFv37xCFbaLoDpc/FDPqD3j+xQ+DaqKlxnjVKX7+534CbSlcV2LZCp0q/MAHFFhGNS0wFkRCaiQSbWl0rpAIsiJxUKJmo0XHsQwi71q4nofrGHs00wgat4tcG/RUa41C4EppxFXF7xEWCMt4NmuJyhSKHIWahYgAxrFCpSZKOXWxLRuZS0RmEPSMhExMAwggS9QDi7SeWvaJfBYZnmW64B4DBacaKI7Db39pUrA0tidwUstQTR5wQZEz7u9042MIKqHhmqcCS/h4ol589im5SiHLsB0LoSkaaouoP0QLh/ksQwoL44xViJKmKL42n7/Kiguc1jOXACwL4eWU7RJCKkpVnzA0IjGJoGabiOc4jtFa0/TqZjJSLmM5Nn6pbD4flRKOx5TabUONSCRRODGfQ0EL8lxDZekcdvj7/+AH+I++57t57Zd/hY31a/S7hzz3zPP4vs9bX3gV1zObuIuPX2EymbA632br3l0+9olvQAtRWKwxi31O0ow0N9xzS2vyNMW3iqmJa+gavm2+Q+YYKSwpDLIsJZAVPGQLIS1EEc9k2QLHsdBCIqSL1hmWJUEVwi19HJ+h8mKcbftkWpP5HlLlCBGSyRAhJ3juGBkO8VWCjWCchuRKEY8HpFqT2C7S8bH98m/PyfpQOUGDObtsNgxWFcuyiUa7rKys0O12aVbqTMYjFk+dZXdnizQKsS2fyeTIbLrSiFyllMsm0dGWBuX3PR+hI6IoIkslC3NL9AcDMiGY9Dvk0mVh+Qw79+8SxxHhOKRUqXK4u4NaXKY7iTjdaHL69Gnu379PyXNROiPwXDzHpnuwiysFjpRkUpNFEzIgzFMc22fjxg3WLl7C6/ewRY4WOUcHRzz2xNO89fbbs42otCXVuTkUDvPVCltuyXh/V2pU221+8Rd/kWH3COKUQNrESU6cjLgfhXz9Sy9w7dYdrKDK/lHIfl3jV6pUWi5TwplpMM3ETGuj5rDIEdO1UpuzaTZ9E2pmSXo8ZZtO5jKTYKglShjBtSgea9bA44ndtCwB6AJs4fg5pZbm3jJHCYF1Ir1Qzl6xKQ1m/dI5QhUUP62QIgapZjHmj+pRfa3WB6KJbjXnePPd65w6s8ZwMuILv/qLBCUXK4qRHvzv/+inWWiF7B9o5hcstjb2qLSrbN+VNOoNTp/z2clKNPI2bt1n/2BAN844c/k8e9d3mW83wRK8s37A5cdqPHn5Cnfee51YJSQCDl5b5899y+/jYLDPl268zotPPU/Vb1HzTtM/GhAPJIMsJc9NOEieKZLEJFb1exN6vR6XLz/GtWvXCPwq9XqdUqnEwcEBTz31FIPBgE5nRK8b4ruS8eZ9rt+8xfLyMmGWsLpyinfeeJOnP/xJY1unzYX6qNthGN4qxtBWkXQF0rGwhEAp4/ZgLv4OeabRZEw9PYUAxzI0AN8zosDAMx+567q4rkGjH6BzSIlS2jTUwjTWjuNhCYltuzM7POMiYhwzsvxBNNnQEo7r2NIrQ0obJRRCQa5z8ixD5zmSY07xFIlOs9x4YesMrXKyojE0/tIKrZgh6JZ4fzSyudbYloXr+qiSggnkWTqjnniehy0NjzCNI+I4Js1yoixDI7ClQhbvR2hNHE7I8gQ7iUikjXRsAkxjWq428d1j7+c8z1HCCBqnCHSWpg+IM9Pi3zN/4gLVLZVKAHiesRxL44QwNA30dCJRq9WoVCosLy8jLMn+wRHj8ZirV6/O+K7T553yTnd2dqhWqzNh4Pxcg7/2F/40f+Mv/3nurd/mqQtrtM6cQY/v4MYWX/d4BRmU8IIyuS+QS23OPbbG6ulzhut/gv/pOM7MnWT6/qbH4uTY3Bx7+Ledl5tz9lhgaFkWruuSp9MnLJBwpY2y4ATSPz3XhRCGmuGVsR0HlfvorIQIypBnWMEY3+2QZQnDfsekkSYjknGf5H06d0dOnec+8hxaa7bv3aZcLlNdXjS0jfYcm7eu0VxeZBJHuJ5HGI6xhIXv+8UkQMwEetPPIcsywjCccfmjKCqsDdvs7O+xvd/BcT0mgxGSnEqzidfwKFdrZMV35pVXXmFSTEharRb1SpWffv0nsGyH7d09870KShzu7uJ5DpawsNwA2/N46ulnuXXrNvsHh8RRSCXwac0vUK9X6O7vcO70KW70DG3E8lyazSabW/vcuXOHp556ii998fMA3F9fJ4onuLYRB49GA/Y7Rzxx9UlKrsOdW7dZOXeGZrvFXKOO7Y1Ii3XLsZwTR/nLKW0nrTyn35/faJnm+7eXxvHw7VE9qq/l+kC4c9i2x2isuHTpcT7+8ks05wKeeeoKloD5hQqZhnE4YjQ0F/8kSikHZRbmL1CtNukebDPs9xjHPdrtMpPBiLVzJVoLZdoLi0wSYwWXK8nmxoCnn3iab3r5d6BzsHyLuaUq8SAmHqZ80yu/i2Z5hbq/yLCbwBr/pAAAIABJREFUIAkQeERhzvnz56lUKri2TbthOHrLi4sstOcY9vvkSYrOU8oln6OjI9I05fbt21QqNSrlKqXA8AmllDSbTZ5//nlOraxy+swaX/jc51Gx8cae+g1VazYKwzFkiqJNqQuiSO8rELg8zwoEo7h7cR9RoNEnObRTzui0GTkZ/DBDRfQ0WnuawGUZ2zlhPSBwOfn3Zo8vHJoeDEd5sDTm99Px/wO/O/Fc5oJz7DqiC1RQq+lIvhAevk/G/1qLY4GY5WC7DtKyze0hDvlJrneWK3JtUFbTBGakaWJQ6Dwny5KZCNFxHDzPo1KpFOEu+YyXenKkevLnV3MAOHkenLxNR/Srq6tcuXKFS5cu0e/3uX37Nm+++SbvvffejFMchiF5ns8s+SzLIsvMaH15eXnW1OZ5jhf4IDXf8Qe+i9/3+7+Dd69d4wd/8Icpe56x5ssSan7A4e4ed27fYzSMWFpeIzshxIrj2Pj0ZsZrejKZzJqz6f/PnByK8/uk+PXf1KRMHz/dwE2P1cnP7WSz85W4p7qgKSlpkVkOyvLQbhm8EvhVpFfGK5Xw/BK+X8KWFr6UeFIgkug385T8t66XP/4x8xlOxjTabe7v7DC/vMzlq1dpLSyyuLoG0uLwoEOa5nheMFu/po4wU6rH9LgFQYAQgvF4PNs8dzodOp0OzWaTpeUVvKCM0jlHnQPG4zGO4zAYjbhy9UPYrk+315t9jr1ej6OjI5qNNo1WE1E4p+TT70ieUKvVTGIo8PlXv4jr+wAkWUqUZoRxRJ5E9Dv7qDTDdazCsq/HzZs3WVtbo9PpcG/9DhfPX4A8o9Pp0Go08X2fo+4hGxsbrKyszISMSZYymoxZnp9jf9tY83med4LvrE6sx3qWBKj11Gv5363m81HD/Kge1VeuDwQS/cSlD6FlzC/84uf4xt/xKQ56R4gswa3ajJOERMEP/uNf43v/i2/jV16/y3s33+TgqMvHXvn3wF7gtdd+ks2b8Mx5l1u3bnDxiStYcyOCquJowyWLJTrOsRUsLPn8yI/9M/7093w33VGfn3/jVZ554Tn+xY/9Kz7y8tcx2EmwUpvYGhEPJggcwuGY8ShkV0+o15o0Gg0GgwGPPfYY63fu02q1GAx7VEplonDC/u429eY8YRiyuLjI+vo6a6tnCMOQlbXTJEnC2toaP/3pz3Dx/FnWb9/hL/zF/4rJcJ+Kv1IclZR3rv8Sg/EGpXJAluYIaRpnpCYvQlS00ti2nFmDZVmOLppnx7YoeQ6uI3Atiec6BL6LZZumzHEcnIIPPUV0p7QADQgs4xGNjSUthLBBWwih0DojR5NrRaaPLfMALGGU53bRxMyquLAYZ2nTuMnCFk6caJTTNCVJEnIpUVqbJMNcGc9lJEJYBaptYRLr4P1a37PcuJ8gJLbrg5RIWXDBUyMAVUrNGo0oisjylCTJwRbUHAfbM5zYLDUNtFYZ0ilRqdaQtkOcK5QSBAqy0ASVTBHTKT/+JLI140c+1FzneY4qRJzTEXy/bxrIaROgVMbW1iZ5ntNo1JhM7Nl7mJ+fZ2NjY/Z+ptzn7e1twvFo5i4zHo+Zm5uj0WgQpwkKSWPtFM8urTCepPzg3/+73Ogp5poN7m1s8vKFF3j1s2/yZ//636TWajMcC6TMcFxDVZk2ubZtkxUhRtP3dywUFA+cg47jEMfhjA8+PQ+PN4vK8POzjCyFMErY29tjNJwcN8vFZkBOOdTqWEg7rYd5oYblYRLolBYgamidI5yA3HIRWYQvHBy/QhpOiCYhDqPfqtPz1631W+/Q7fQ4e/4MqbJ58tkXGE7GjMKEXNj4JZMo2Gi1cSzJ/u5O0cDGMyHmaDQiCAKUUrONnWVZs4Yyz3Ns24hsO50OTTS1eothlhAEZVCawWhIa2GR27fuoGyXFWHWs0ajwfnz57l36y4LC0vcu3HI+UuXuTbuEw4HCCGIRyN216/huy6l5jz7u7vE/X0c30faLnYQcLi/x2Gnw9ziIkkYsXd/g1qjjhtUWV5eZnl5GbSiVg24d+MGnmszP9ciT2M816XZbDCZhJTLAdevv8eTTz5Js1EhT0J++bM/yfnlZdIwQFXdE5v5aXy2mRgeN6EF/e7E+fqVbifRZXNOnwAuHvZwlvLLvv+mjkXaDwsPH/g7+sTfOXG/k+LkkwDAIz70o3pUx/WBQKLDMMLxPJSC6zfeA+3Q6+4zSTOUlngejEO4cP40927ewfMcjo4Ub7/7eYbDMSKtIoF2a5lyuc6Nu3e5v3/IUadDrd7AC8r4FviWIBcZg9ERGxt3+eRLH0dFKa++/kVWz1ygXl2kWVrm4tknWZ4/zWgwJI4mxGFImoSUggobG/dBmbG5LS3WVlaRQvANH3+FxcVFkiTh6tWrDIdDlpaWmJub4/z5s5w5u0ap7FGv19ne3ubatWszH1IpJYN+h/euvwnkKGUD9qzZUcq4KksJWmqUVGh5ctGFaYrfSdRMomZ8Z2/Kf7ZtHMt+AG17GK2bLprHC7BpVqecvGkpZRrok/c/iWY/7PpxHBmbk2tluLvqIR70Q2PC6U+V8wCNY/peT97n/aiZE4ae2tzJBy5C0w1BGIaGypGm5gI027gYq7sZciqLTYjjgO0gHBcvqOD5ZdxSlXKtTr1ep1wuf1U1/smL8fGxN6+zVCoVqZoDjo6OZmihaY5S0jQmCDxAMRoNaLebXLp0kUqlxGuvvWYQulYLz/Nmo/wzZ87QarVYWlqiVqvRbrfJ85xer0cSR/S7h4xHfYb9Hi98+CP8pb/x37Kxc0AiXVRQ5n/9xz/M8698nPrSPG61RKoiFCGWfYyUT/3JXdedUVRs255RMKY+xLPI6YJS4BUR41/tvDp5bCb/L3vvFWRbdt73/dbO++TTuW/3zWFywAxJAMJgOCRASLTEBIKiKbnEBFoulKsci7LN8oNcKr/KDwq2KFt22RQlirLpImmTIEGAIGECg8kz987NoXM4Oe28lh/W3qdP35mhKJHCHQr3q+q6t7vP6T69z95rf+v//cNkMn2PZn263w+5/+APKK5FVOGcY4CwSC2f1KognTLC9jEcD8txEcfG/9+6Wj99gec++nHCRIs1DYSmqPX7NGt1DMOcbowajcb0GBfXaSFIDsOQ0Wg0PfbFhKDYmM/+f9zvouIY07JZPbHO/Pw8oGk584sLNJtN7b+cJNy7d4+vfOUr7O7u6+lLHHPn3l0d7FKpEIYhtXoFWyWk4x7Dg12IJ4xaO0yGfeLJiE77kPX1dSwBnYMDqmUtVjQMgyAI6HQ6vPnmmwRBwOW33ubUqZP6vIo1l2cyGefrsPaKdlwLw7UZjkeEk4CSBUYWEoUT+v0+wPSaT5KEKA6mx1sYxz37/zzWn+fX/rAe1r+N+lAg0b32PlEQYAiHM8sNLCU4+eL38PI3XuftN+4iarC1A+uLNt976VHeDrZxqhOELXn3yit0tyZ4Fbh7d5OVM3M4C4qkbyFPhlTtgAhJtSW4sCTYN1Jq5Tl+8R/9X6yuevzcD/0N5uZW+dqrO/hihYrb5Nrly4xGI+7e2SSKIkajEU8//TRROGF9bZV2p0O1VuNLv/cVPv7xjyNlzDvvvMXa2hrd/gCJIAr6tA8sZBIzv9AkCALm5hoE4wHf96nvplqtaheP8ZjD/QN+6zd/i5/5whe4+ubXufTMi6BsTpxYZ7/Vx7YclIrA1A2RKSWGZZBhYCExEQgkOjzW1DxmS2LZJq7v4Vgmfkkjz36phGPZWJaDbTmYwkIYWoSVqFSHZwlTO4oIF6F8BDaGMJHSwDBS3QRnqW4QpvxfQGm0L1URluFiWg6GMBFCW+mZykSlKSq3bdMJhBmkGdqeTZJmcY5yCCxxFKYghKnRb5ULF4UNwsoTARXZlMD6rS2lQtLEzJthG892iGVCmklGccRk1EclKeFEh0mEcYISBrZXxXLc3Gs5peRauJYFUov3LMfHtl0My6RWr2shZhQiZMZgMMJ3B8RBjHAsTMsAkeWbDIVCo39W7kstVEaWJdimQZA3BcXGSXN6tYB0aWkFz/O4ffs2ruvjOB5CmFy/fpNnn32aa9euIUzBwf4Oo+GYSRhhGjYHBwcctlvYts1kpC3FwjAkCkKWlpYIogkTTAQmWaawKg0+99d+huGgh3LKfOIvfo7GXJPNexs4notEUCqV6A+CqQuMRjdtkkTb/aVZRsnXHFzdqOkxeUErKHl+PvLX52cc682qV3FJpSBJYrx84x7KGJlKxoMxo0mIowLN+bUM7XYjjzZrVo5Ki5z+YYgc2c650Ubu5JEpnVwplUAp7UUthAu2hXKbpMojYUSkAqR6MMLCcZBgBBHVah0jE/Q7fZTKePaJJ7i7t8vzL7zE9sYmN179GnvbG/qYlFyUUdfe0eMRlmEiDUHV90njmDiNidMQw7AZBzqExy+VqNT1Wlet1xgFIzBsgizBiuHUmXPgeARRQrnsECYTHMOiPxhRqTdwvBJpTzBq7xP1u5Qcm0zGLKyfZKXi0BSCIX3kKKU0MQmFpN9vMZnYxJnJ8HCPk+cvYCqDN//wS/gVn0Q4LK2vUHZKlGo16o0KW3eu8c2Xv86o16daLROGAWEYIkyPar0+nfrs7u5y5tRZuge3+MzHPkaz4nDm7AmEZeqpoOtiWrYW/Boi1y5ouk+axVh6hocwBOr90OGZz4+X1L7/wmQqPBRHaYWFO8f08+mGXjJNLRRiqjXQgmNQIpvS4oSSiBylMFDI/HMhlc4lQIKMMROpQ4MeNtQP69u8PhRI9FyjQRhOEFZKrz2kddBmc2sLzy0xCSIMU/tV3L23Ta3WICGlXK9gCYvBQYBpglfWi8lkNObkydNE8TD3eO1z0LqHaQocz2eSwXg8xnHg7mbIOIzojnq89MlP8/STz+A5Dr1ej729PVZXVzlz5gyu67K5uamRhShiOByysbHB4eEhV69e5fDwENd12d3d5ZFHHqFcLnP+/HniWN/wNzc3uXPnztRVYmdnj15vwM2btwmCAMdxOH/+PFeuXMkRZAEiYW9vhyjNNNordKCKThCcHRkeIdBTAZlZiLDMKVpUCLJm0efieR8kbvkgpFPTPeTUMUNRIMzHw1KKnzHLK9X8ZQWZhEwvzrNINFJhCIGZixotYdznfX2EWBfiPSklKv1wLObH0HGZ6cYi90wukgiBY5x04BhlQUewOximjTB1JLYSBsrIfYWlIkviKSKUKonMbeaEof2Ti59ZIN/AewSfs8dwbW2NXq/HrVu3phOSUqlEGIacPXuWzc1tlNI/+9atWzn/eRlhaO/rZrPJ4uLi9PW7rkutVqPdbjMejsiSmGAywjIEw0GPIBhzcHg4fZ2DwWDKsRZCTNMZx+MxYRgyHo9z32nnGFVACEEURfi+P0WrC5SxOM6ghbSWZTGZTFBK4bguqcwI04QoCRkHY/r9LuNhV4s74wRDGghpYGDqD+P9ee7HpzZ/jMgr58gqAdIUSMtA2SbSfTAWd9evvE2/3WJ/b4t3r7zDcNDj8ttv8tXf+xKPnT/PG2+8gWE7pFL7TfR6HSzLot/va2FyyQdDMBkMCUfj6WanQJ0L8XKxWSs+9/1yvvmxuHDpUSSCOINMScbBhHqlim3bBEHAaDRiMplg2zaGaRLGEUEUYtkup06fJ0nBMsC2ymBWUJ5NZxhQck38TPu0T9KM9uEh/UGHSTDi8PCQiu9pKkrZw3Vs3nztVRxLhwMtLs7T6bRpNBqUSiXKZR/bMpBZwng0wDK0Xejq6ipZElOvlSi7FmXPn55vcHxCpoEBff0V94U/j/VBE52H9bC+XetDgUS/9srrdJIJi6s+GxvbOMLi5Pk1smSHS4+ssLO5R3YAo6HgC1/4D/mtv/XT2K7FpDWhv60483QZo5QQb8cYSrCzfcDTTz3KTusyvbjLyrrP3VZAeX6BuDWm1Y14dKVE05vjjSsdTqzW8eyQ3Xtvsbl5g4MDHfEqkxQhBF6ePNfpdDh9+jRrJ1ZYO7HC8889y6/+6q/y+c//DIPBgN3dXc6fO4dlWfzWF3+bhYUFzpw5w8bmXeJUsrOzw0Jzju2tXa5cvspf+MTH6HQ6pHFCbzAiuHOXJ558KqfSxZRKJVYWTnHn3m2iqHBY0LZHWZYh7luwC0cOwzBw3KMm2rG0or5opnWjbeacYp36BxJDGWRpjqhNvahz8ZwSWtSHCUIjm1JIMhmhVIqSqfbdlSkGGkU2xRFVRCMjJkrm4SoyQWYpxnTUfmSLZ6Ajxw3jKAY6zlLMqYgyQ+Wod+GsIKIHIyw0DIPCZ083dlqcFscx4WTEeDhAZen0a16lhuWVqdTq0w2ObrADLMukUtGhJZmwEaZ2ThGmpjPUGnM4rovMYsbDAcMgBNOgZJgIpbBMQZKnP2ZZhiioNuoo1rqID/c8D8dxOMwb2U5H25YFQUAQBFy4cIE7d+7QbDY5PDwkSRIqlSqVWh0hBK7n5Of8NgCVSoU4jqdhHEmSEE4ChsMhCEVr/wDLstiLNM2iXKuybp/UVouOQyYlvX4XwzI5aB3ieR4LCwvTZlyfuxZJqkf5OhHTZjKZUC6X6Xa7eJ6HUopSqcSwP5jy6++ntcRphDBt4kRiWA7j8ZB7d29RtlP2795lJDP8UomFhRUMy8b2ajmCZ7xnU3jMnUP/77381vw8mYpibYs0M1F+CWHaGA+oiZ6vOESTEZZl0WxUiMIhMpgwDEb8wW/9P8yfPMt40MewfZxKhhsM9QbEcWi1Wri+g+U4FGJizdXPZtx4tIuRbYlpcqdA86UbzQWUgJ29XRZXTtJYWWdpeY44jjnY3cP3yzSbTTAE4WSEbVooBRILr+TRGQz4yAtP0qt4WAdXWCov8uNf+AI/97f+Jontc7vX5ZwpKJkxYwWDYUu/F4MuJ1ZP0mkfYvsl9va3WUhT2js7nFieZ9DrYOSb9PFwROvgENf3aR/us7y8jGubCJVRrZbZPdxhab5CGgxJ45K2fnM8TNMmk/oaTJOcky8UGRLbMJC2TTRM8Xznfc4fpojy7Ndn/1X3f/2+jdv7beyKn6eUBinuf3xx3r5fSzz72maBklmu9MN6WN+u9aFool1bUHWr9PsBfj3i7FKdrTtXuXDxMcbjAZff3KOx4PC//JN/TtQKKCmfOIbbV/uce2Ido9wjlDHBGC54Fba6A+yz52hYFe6OBgyDBFWGrf4BjmcSOBkDy0QGAadXl3jpxb/MN7/+NYLRmHt3t2g09eiu2+1Sr9dZW1tjc3MTy7LY2trCQDEY9jhz5gw/9IN/hb29PZaXl7ly5QrvvP0Wzz//PCdOnEBJmyRJ+NEf/RF+6Zf/BUUwR4HwdTodHauLwPc8Lj3yCL1Wi7n1AQifk6cusX3w2jRCW1gGqUoxDS0uMZSOWp5N/LMsgWWKPBpcW6M5jj1FJx3H0cM9x0aP74xc7HdU948VlczRM6n0+FFplblCgsj089MElMISIAwT27KwcpT1COWe4eoKhVR59LI6jjDr12pg2JZONxQC09IIe/GzCr4xwsBQJjJ7MEOVY80Ravp+xHFMFEw0Yiw1yuw4Dqbt4nr+FKE7cpdIMU2fwmGi6tpYjgWGhe0YoBS9wx0c28OvNyGTWg8gTCqlOprREWsv4wIpym9yZm5LqJTCczUa2O/3CYJgakUHMB4OePzxx7ly5Qo7OzskSUKr1cL3fZIkYW5uAdf3uHbtGtVqFb9UwrY1LzkIAubn50mieIoKe46rUcgkplbymQwHuL7exJXKHo5nU6/VEEJhWCZRkqEEVKp6g1Eul6fvNSiSNMJ1bcJwgu/7TCaTqefvrHPIYDDAc92pi8NsM62UwjZtskximxZpktI7OCAZDnj67Ekuf+33iJIRtlsiDodYtkulvoTtupQqDYR1nL/8XgT6vQ005Od37mtuIHAsB5VZmLaJZTwYTvSg06XUWGA4nmB7NoPhmPl6k2A4YtTtMxxdJohjypUKcRIC8pgjRzga06jViSplJpPJdLpC7pHsOM6x6Uej0aDZnGcUTAjDGMdz8Vybw50NLMcmRTttBL0BSgkqlQqmbdFtHdKNIxaWTmCbFjdvXOXpp5+lOrfExz76FFt/cEgUNfm7/+jvkMgqnuPzkec/zeNPfQe3br1JFMZEMsVzS2RxQnt/n0Zjnub8HE6Sce/ubZZXFugd6o3ecNSj1qhhGgYyy8iShHK5RBxH+rz0PVqtFqVyhd3dfc6uL5EpiZA5FUJmCFMfi8LLOUtjkjCCXBNSONpYrvtA3vt/03qvc9JDJPphfXvXh4LOsb81pupVODxISRQYlqJ/uM/Va2+zsDhHqQTddszmJsTJkFFnwt7dNo4NH33xowzDEXEElgVRGHLu7CW+/vIrmKZNpwejicDwbFI7Q8kMYQoy02Jt9SIvvvgCrdZddrbusbm5werq2jHrrna7zc7ODlmW0Ww2MU2T+YUm586do9Vq8frrrzM3N8fy8jIXLp6n3+9TqVS4ceMG5bLP/v4+v/iLv4jrupw5c4Zut0uvN8BxHF7+xivMzy/ieC6vvPoqlUqFzY0NgkELUnjuuRcJQ4nr+zCbRJjX0WKWTukUSsrp2LAYqxa0AdM0j0WSHKdZHNX7NQCzv+/IwulIba49pnUDaIpi1H389RbxyQb3C70KAaI1HQcbhqG527nTx5FYsgguUWSpQiZq1tnvW14CLbqE2WnAEVppmiaGqdMMbdejUqvj+/7RY5VGh33Xw7FthsMhg36fyXhAFAak0QTSBJWGROMhw772ah6PBoxGI201FqVEUUyWJKSpHhV7njcVERbnQKlUIoqiqYNC0agWY3bLstje3p6i/xcvXsSyLKIownVd6rUG165ep9lsEoYhBwcHPPXUU6yfPMHp06enDg0FLaVar7GwsEBzYR7Hcag1GzTn51hcXmZhcZHG/AJBGGJY+j2vVquUSiUajcZUEFjQUxz3yIe4cHsoxI3FtGM4HE7jv2f9igvKSsGXTsMAU0CWRMgkxTdtHKX49X/+T6nZBs89+xTBsMudm1c43Nugtb9Je3+bfnufKAiJwwiVHRfyFtzTRGbTDykliUxIs5g4i4nTlDifEhRlCRPrAcV+O5U6L33q0/iVKidPnePRJ58ijDMqjTnCOCEIxxhkzM8vcvb8RSQaee90Ovo4Jyn7+/vUm038chnf9/F9HyMPXSnoRMXxGQwG9Hod0ihGZZqaU63UWVhYYNhpkYQB7YN9wsmYG1ff5e7du9y9e5dyuczy4hJxHNMfDnjppZfY3tllZ2+X8+dO8uInP85z3/UMP/ITP4DvVglHQxayPWq+hedWcBwHlKaUKCk5c+YMyIy7t25jC+i2DxiPh0wmE5IkodvtEgb5FAW9TiZJwv7+Pp7naSFlf0C12cCv1lCmhePqNFHLspCo91B9DMPAcRw9dQpChKGma923BM39M1okp/eZh3SOh/WwgA8JEl1x5ik7gjCA194eEk4mPHruLGcffZL5+VUGrQk/eXqJf/ALv87Lr7/NoJ0wTmwMP6bbOyAYge1Z9DopJ1dSRJqwcuYk40lCFLcxPZcoHdFcFBiHIFNFa7vLxfUmu1ttbt68TpwIhOlw+dpVVhbmURJ8z0NKSRBoq6zBoMdkMiaOxpRKJdbW1qjVavi+T5xoDmm5UuXXfu3X+O5Pvsjv/M6X+PSnP8POToMzZ8/y5S9/me///r/M9va2RlGBF154gevXr/MzP/XTrKwuc+3au9hCgJkwX3sc315hMDpEpSbSTHKF93FXCmWkGKbAQmEZCjdviCzbyBskD8MQCNPSaWyWiWGZGIAlDNIs1s13JnUylSoaDh0AgszIMhCmiZQ6AU5KiTJk3qCkSCPTzh2JwjIEyJhMWVjS1H7RAiQZQsUgFIblIIM4Z0JonrRuzm0MI28+LYGDRTnziWRMFkf5aNTCFKCkSRZnCCNDpQ9mrGiY7tS2T99cyBPvbEy3BEGYo9A6oKJcLuuglCRBSaFv8HlzYiColStTikfQ62krwhzRLXkOwjRxDIVnmXiWqcNu0hRMzbd3c15mEATTm7lSaurrK1BEUXSsuazX62xsbGCagiAKWT91kps3b7K9u4NpWzSqVdbX17l+/TrNuRqGAbVaBdu2efON12g0GiTpQIduOJa2XhQKJRROycVVHqVyBWCKvIepJM0k9YUFLMvI0zQ1IqtkimUKBJoiJESKUFoI5Vg2qCNbr4ITXS6Xp7Qrfcy0K0SB/pqWBfkWzLFLjIKI1miCkIKN69dQ4YTHzqyhVMphq0PF8VioVNnbP9Q8WNul19mlOX8K13Up1aoYlg2mpjMk+fa0EL4mWZxPJEKkyshSiSx4+4WHtwIhDIT9YJroZ1/4OIFSPPX8R+i2e3hulbWzZ5n0Bpy6tMiZS5c47LQ52N5l3GtTri0SDrusnzzNeDzGK+lpwKDXI5xMSNOU5eVl0jSbcqC1sFViGWBZBkqmpFFMbW6RIBhTWz5BksSUPIfexjZBNCFOU/xKlXAwwKtW2Tjs4FmCYbdDzfN56523qTTmMLKI/+4X/jP+wc//JKV5l2/+4R+BkWK7MUkYoqpzlF2P8WRIkNNLTFNw9+YtLMui4vtcefsdzj5yEctziYZDJsGYlZUVzpw+zTe/8crUCrLq+1iGSTgJMJWB6ziMJmPmmivMNcoIYZDKTIvxpIQk05t+ochkpqlyZJjCwrVs4kmM49j5ei5zYfXRROOP9TbPEw2Lzbuh8ucpUEb+fCGQ6ih0SeSAh0CnoMI0jkDDEkKByBDCOpquSL0xFEoLz/VjcntTpYXlUj2YdfdhPawPS30okOjRMCbLFNWqQQaYToU0Tdm4t8ntu7fY2rnB9t7bZMDbb7d44pELJOMJtilIkz6WBSoTYMEwiIgmXWRmEoUSU0CcRJimIE0VSQqGZbKycpLDvT79/hDH0eO5nZ0dhBDs7+/T7XalzFhPAAAgAElEQVQZDjUHsFKpTBE90zRpNBqcOHGCwWAwFRo6jsOlS5fodnUEeJqm09TC27dv02q1kFKyvb09HY+fPXsWA8XSwjxRPMFxLF544UW63S5ZGiEzl5WV06TJ8RCV90MCCqFTUbNhE5rPqf/NlOYlFgiqtuBi2mwoAWmOos3+rqOPIxHhbAkhMGeQ59nnTx+jjrxHi+fM/g1qZtEv/oYpmosWG1pCI9yaC53kwkKIwvRPdxL+G9YUIZ/h3BallEKYJpaVI715M4wQCKGPZTFFCMMJg0EPpTIsy9AcdqU54rZpYRlFap5OF0yikHb7kH6nq/15k6PEyMnkKIK7sGyDI5578dqklDQaDS20quhrbmlpiVarxdzc3FQguLS0xM2bN6fj+uJ9GgwGVKtV3axKOQ1ZmT0mxftZTEJ8XyN2WrBVxnGsKQo++/7PonTvxzGeRf2VUvT7/enmo/jbTMOe+XuP7BrjRDIaRwyGE157802uXr/JtevXGUYBkyzGUIpzp07yA9//l/jcj/wAMg7J4jG99h79/i793j7jUYdgPCAKRyRpdAxxLMKNiveg4My/X3jLLJ3mW11zcwu8+uqreXBNwO72Fq2DPXzf5dy5c+zt7eWR4OC6DiXPxcnpB/Pz89PzajweU6lUqFardDodiqCUQkS7tnaSaqWO7fqMRhPCJKU3HGBZDuPRkCRJaSwsIJW2sazXtY2j51jUfJ9yuYwpDEbDHmE4Yf3USVZXV3n++Y+QJZIwGLN1+ypLtRrdQZdPfPwZTq+tMBkP8/Aj+9hxL86dIAjwSi7b25u0DvaI45h6vU4URdy6dUv7nEcR1Wp1aueo7fwGlEoeSRxhiRTXMbE8FydPf/U8b4peQ7G+FedhNj0+/6oQoA9r3X8PelgP69u5PhRI9N3NId5iwKQvKdVcGotrLC7XWF4/x1vX3+Ujzz/DF7/4Zf76z32ay1//Q/7aZ3+It966Ti/KNDpUqTMeC2TaA6PGpL3L2KtQckyqFY8olFSrZexShMwSdncyfvo/+izri5d49Q9fZzAc8uSTT7K3t8dkMmEy6GtP07FGnPf29vT42FkhSRId1x0E1Ov1KR/09u3bvPDCC7z00ktsbW7wmc98hihKaLU6nD9/nr29Pc6ePUu14mFZJo16mb29Hf7gq7/PZDJBmDFnz+pAljRNMc+YLC5eIhpXcGxtexarCHHfzaAQ8RSUCss88hx2nKOI5CzTTbKV29tpUoVACqljAYRAomOsldLogzAyTCRSpnnTZyGV/ppSEpkdNcq2IRDKQKqYTKYUKYO28I8EK7lo0EQQZwrUkady0fwU4RlH/Mq8uTYhjWNsy8JzHMJRkCOpWkwn5YO5IRWNn1Qy50TPfAidYihMi0qtPk0yDJOELApRWUocF5sdHYve62mBX7VUhSwljCPGI22Pl2aaV20bIeEgZWdzg3F9iGObNOs1Sp5DJpNpA5oVIi+OQmzS3NWjEDBubW1NRadzc3OMx+Ppe1CtapeEw8PD99z0C79gx3HyABnd0BY0jKJp0WElR8IlHRdvTRt+wzhy0Lg/NEJKdax5nv2+UlqgWlBPLMsijuNj3tH6dWrqjHbGyXBsk1TYKNtn9/Ael6++y713r/BTf/0n+LVf+V+pVEusNet4Frz6zW+Qpil/8yf/A15++WWuXLnC4b0rCMOgczCH6fo0FtawHJdqcwHbtqm4ZaS0SC3NCQ/jaPq3Zkne4OeUDpXJY3/Tt7rGo4gX/8InODg4wLHANyWtTpvN29eRBgzjmPWTJzHyzXGpUiUMQ8LxgL3d7WlTWWyiLMuiWq1O33elFJ7nsbO7j1vyMS0Lv1rTmgDPx3Z9PMclyyRBmmGXfdxyiXgyYdDt0O12MbjF+UefJIwylhfmkSql3xuSSvj9L/0uy4vnqJYdnHiPSwtr/Fdf+Bxvf/P3CPoWpnIYpzGTNAFhTd1DQJIkOjDGKfkE44Bep029qSPGW3u7VJpztAYdyuUyh4eHlMtlHYterfLII5fIZAppQrXsYlsGKJm7xeh10zDtKSc8jmMsIZBS60ekSqfHyJq5pmbP9fs1Ktz/+Z/glHlfmt5MaMu/Do3kfh70rMPTw3pY3871odgK27aFYZj4PmzcjRiMRnTGA4LxgLNnz3Kw32V57gz/8td+l8Eo5OSpVaIwQziajjAZTuh1eqjI4PBgwEq9SZYlZMokCfUYOxMJSgjiCCoO7Gwe0ml1WFhYoFqt0m63kVJy586daYNaoMzNZhNgahd2cHBAt9vVvrh5BPGJEyemccgHBwdcu3YNwzDY2NiYNoie5zEY9JAyZX39BGfPnqXb64MwsC3dfAyHXbrtDtu3bwJw+tSjjEYhaXo8FXAWUZmt4jGFnd10URZH3y+quLkXC+Mx9Bk9wlNkZDI5+nzmccfQZqmRVaFAKi2Uk/K4pRqAyB+fpcVI8r2L+iwaOYvWFTxrx7GPNaxFgtaDqPd7D4omThTWdEoh84dkucuJmfOkPa9EqVSh0ZijWq2TZYogiBgN+9Pjm6ba3SOKddR1lmrbvDicEIaTY+EORQM8q/qfRcht26ZUKgEwmUymSHK9XteeuDMNkGmaDIdDjUbOvD8F9WI2AOV+9Hn2vTwKIMmj6vOPgjN//3l9/Lnvz9svjn2xiZxFpYvQmyIOXuScY0OYGnVNE25v3OWwfUCqJK12n//6v/lvee3yNa7e3ma/N2CSKhyvRLlU5Uu/87usLi2zUKvhGwIrzRh1Dxi29xl1DxkPDonHXaJxjyQKNdrIEQ/WcTxM2z3GPZ+9Ph9UE12pVbl37x63b95i495tRv0+wWTAIxcvcP3mTR577DEWFxc5tbaO75fYb/cwLFs7bhja8cfNBZzj8XhqfVfYIy4sLOSC1Dn8UgkhBL5XwvZLWI5Gay0DauUKlVpdXxsCojRBprpJNQ3J/tZdNu/c5KDbpTMYMz83R2tvH8s08EtNOv0BFd+gZiVE+9f4+NOXWFteZDIcgBAk8ihqO8sywmhCkkbEiT7fLcNkeXGJSqnEzes3kGlGt9udXnuFiLVWqxGGIXfv3qXdbpNEMb3ugGASYaijacv90zvb1gJz03rvOXy/JeiDrD9JU/2QC/2wHtbx+lAg0YGUPH7hMc6bBo+cHzI67PLNrQ1OLS7ztZff4NJjz3H7zj7zK022r3Z56tlLfOqlj/Drd1+n208p2y5LZ+Z593CPg21YO5Ny8mSdvRGsNufZOjjEdDIMZfHYmVXmLp3DkRaDdp/D3E5rb6urrb3OnaNaLrG/v0+tVmdursmt29e4cOECwTjENG16wwFpFmE5FtVqBc/zuX3zNsE4YGF+nh//8X+fL/7uF3nhE5/k+vXrtNttoiTUIRTBkCxTbG5uEoYxCgvL9rl14x6PP7aLXylz4fzjCNcmlTFLiyt87Ls+xV77Ftvbb+twFNOamvRLKTUKqCRg4No2Zb+E77g4lo2d26RlOVfDVYYORRFogWUiUUqQZSmR1Ki0VAmOkavs0wTDshCZIEkDhACyGMM0Qai8wU41L7kYW2OSGopUaaoCSmFIg0gqTGXqGHGRImwrb8AlRn7zsSzryMBfSGzbQmEiUomR8wmTJMSyBFmmSGODLOMY5eVbWUXzpjmNYpp2l6apPi5CoBCYhovluNNRr4FGxUqeqycEpqE3bcGYJEoJxkM8z8OyLAY9HWTSqM+RZRnDQZdUZmQiodvZx7QgXj3BmbNnNZKcU3eUoRveDIUU+lxxLRvH9VBKEsUxzfkGwoTBqI/MBLZlY3tu7t3cQ6ojIZzraH6o67rT1MA4jvXf4bvvGZcXjbVMNaqMEBiYeciEwhS5CFZqv2dDHFE/DEMghF6ejlEjmLmRY5AlhcDPyPnTuaDT0RHMKssgS7AdjyCIaPUD3rzyFjdu3OCPvv4HCBmzc7CJZRp0Dtt89nM/zhd//8s84zeRvs9cs86qUyLN4OLaCdSkS6XZoN+bcNDp0RqMiIVip1nHtj2WF9Yplau45TKm5WGVyjrQwgBl56izsLClqWk5SUImH4xv8ObV6+z1hmQyon3nHcgUXnmBufoc3/NXfpgvfeXLrKysILA59+RT+KUKra17dNoH2J5Lr9smiWOq5YoOUqlWCMdjKr5PFATEacr84jKDThu7VEe4JVyvhl3yEcLAFoLD7W2qtQaxJfB8B9sw6Xe6BL0BE5Xx6InT3Lt7m2G3i18qMRgMeePllzl78RymKbAqVdLU4bFHn+Ybr77BJx9b5/XLVxGGizRNNje3MC0Lid5ANpvzKKVotff0tdXvk6YxYTBkbn6ZaqWCofQG0/c8ZJqSZCmuZzMK+jiWjZIp3X4fw4NhELOQZUxGYwzHw8HBch3s3Bs7TVMswyC1LWQcYShJJjOUkliWgYEOMNHiaZVvLJVen5mliBUgCihEzqXOtEWoMJBFAMvM+3tsY6rd5jUVjiMAo6AbGYahj5EBRkE9MQRkerMr0NoYpSSZTJCpQmbfIlHkw3pYH+L6UCDREsWg3Wfc6fDG67dxDQfXtXjrrbdYXpqnWvNYP73AJAhQEl75o6/yHc8/hWkadAZjyjUdDlGu2fgVODgYYqQpjiXo9tooBXGckiQpJ5bPsLp4kk5nQBAEHBwccOXKFZRSnDhxgm63y8bGBtVqVS+2rRZra2u024esra2xvr5Ou90mTSSj4RjTtDh37tw0EtfzPPr9PmfOnMHzPNI0nboONOfqnD59ll6vlyfcGVM1+GSso3MH/f40XVBmUCrbvPzy15lMRsAR+qbRQgBxJBQRx10hLGFgzHxvOhbPv1Y0IwVyOYuqZlky/V0iR5mL57wXhTi2dB/9LrNwrZjxQlXGlOox/drsuSA+GBHRf5eNZTrav9oAYaj3cKm/1XU/R7A4nsUEopgM2LaLZeWbmixDprrhlmk2nXJob23t513EhY/HY0ajEWE0QZFN7QvD8ZjReECndaBjiduHxFF6zPKwQMULxKvgTO/v71OpVLQTQe7rbNsuaSoxjSN6hSEshDh+Qz4SKx33TP4g/vJRc1A4x+h/lcoQQv2xiPP7IdTFMf9X1fS1mjp8xXJsJmFMu93m1q0b/Bf/+X9CHI4oVz0mwQDHtfmH//DvIUwLLBe/Po80PdxakwSLzLT53u/9DLbpYKqM1cUGJVvgCkUw6DPotDjc2+DwcIt+55DJuE8cabpDlqTTsKXifSneG/WAwEjpmFhIkvGE0Thmae0Mjz77HDe3drl9+zaPP/Io/U6XSq3K7t4eg8EAIUwdqmO7M1SxjGq1ShLH08lcGIbUKhXGwYRKRSPNzcY884sLLC4u4pVLU3rFcDjEFoIkCJiMR7iug1DwzPPP0ep1KVdqRHFMtVrl4sWLrKyucvPmTQajPtvbm/RGKYeHXVZX12jOL/DsM8+BZTOKUtIMpNKbNNu2p+4xZm4r2Ot3yLIMy3IYjUb0ej0A5hpNMiWZpBG2bUKaEIcB49GAgjq3emKZ8XhIGIbYrpOnaroIxXSTWRyf4nQ1hNDCaiEwOD5dND6U4O57T86jtc5A/kl4JQ/rYf07XB8KJNrJ4PrlDT7+iY8g7E3utPf5ro+fZ/f2HZbKJr/9O7/J53/6J/nNX3kboeDWvZv81c99ln/26tcJw5C9/W0ONjNWVx2SBHa2YLHaxzs9Tz9VKGniCImNhW8uY8gqpmXj+z67u7tcuHCBcDSm3W7rKO7hAMuyuHjxAhsbd4mjFM+tMBx2EUIwGcf4XhUlbXa2W5RKJZ577jk2Nja4ceMGSZJw+uxpdnZ2KJVKDAYDXF8vsnc37lGpVNjZ22V5eZmlpSUODg545vmPMAkihBTEcUy13sC2ff7wa1/lkUfP0R5sISUaoVNGbvFWoISGlgkKE89xcW0Hx7axRU7nMAwwLEzT0vZT4qi51dmDilTqRq4QhikFhogwhMIiD3Bx7NyFIsUs9l8q72ZVgSDP2OtZJkplJAk4jqlPNhOyJJvSBfS/TEVIGvUA0MExmvynXS+OaCoptu0iyUhEThN4gPQ8KTXtRabZsfGsYYApNDpqCO2h7ZgG4zBi2O0AkEltu1atlrEsi3pdb95Ukk6PScE53d/fx/d9pGFPOc71RpNXv/kyWZZw8eIjVBwH0/DzuOwcJZ+x0zKF3rgtLy9Pg1CmTX2mRVRhFExH07PcR9M8Uu4XVIXjvPwjKs7spsLMRWbFeNya+dw0j9MZZhvqWbtDKHjSRxQiIbR/tC4x86/IefyCcRCSxClbe/uAwe5hm9u3r4AM+KX/7R/zIz/8A/yPf/9/ICNlbq5BuVzhZ3/257hy+Rqp4WAKm7FwEX6JcWTw2rs7LJ9+iki9gWslZMaYLDUZjDLCJKJ7sEn7cAe/3KBcW6C+sIJt+TilElbOPReYGp3PDJQ0p8LDb3VduXmd/vU3mAxjPvEXf5TG/ByG5/CDH3+Bd998ndXVVc6fP8/W1g6ua+N4NirxsExNCSq8joUQ2hLUEFPxaqns0W23qdbrZIZLuVRide0UtmtxZ3ODp579Ti6//TYIg4WFOYatDqapcHJO+9zCPK2dPbJIN8/z8xpB7vV6hGHI3NwcvW4bxy3zd/6n/5P/+N+7xPrJFZbPPsrt/SsMcbh3uI/hWEghKLku9Xod3y8zGk20xiB3IFJK4LlVkky7vFiWRavTJhUZjmvgZRHCMTl94iTD0YThKMQpGawuL3Hx4nn8PEzG8XTcveOWp+dwQTVS+bVcJJOaH7A5/LOq+3nVf1Y1Cxg89Il+WA/rQ4JEl0ol+j3otjvMLdaxXMH+QYtKrc7ywiIXL57i6tV3WFtvgAG25RCNRwwOe2RJzN5+hsp0kIgwoFITdFoZnpR4vl4ULcPGd6rYpkV/0MEwFO+88w6VSoVOp8P8/DyWZdHpHIlJxuMhURQRRRGgF925uTlOnTqFbetFOUkSXnnlFb761a+ytbWVP1aLpQo+da/Xw3NLRFHAE088gWEYLC0t8WM/9mNcvHiRp59+mv/3t3+HV199lSCI+Ge//CtsbW0CBmGQcePGDVqtAy3Ew5wiuYahbbs04VZgm5b23cjR5vcszupo4dZlTP1cgSkN4QiV1qLC4vu6ccmRaplM0YhpouFMMzBtwkxtk5RlemxpGyL3sj6ORN+PJM8ik1JKUFqkpwNrdASzEEaOZgrUA4JxZrnY9yO0MtVotMx0+EoxvkemOsp6NGQyGjMaDImCEGSGbVo4lhYlzcZn12q1qY1b4f+8sLDAd3/3d1PyHLa3Nrj27pVpPPYs2lmIm1zXJQxDXNel1+sdc7IQQqcQxok+fzXabSKE+b7uI/c3urMUjtnzTjcRWe5YoV1JpEz1BsMUx5ru+0WEH9RcTKcxKgWho861b/nR/4XS6HsQhvQGfbZ397h7bxOAYbdDp3XA5sY9/sn//IvESYpfLnP2/CUeeewJ3nrzMiurawgMgihmFKeMY0nmlKksrnM4iqkur5JaLr5fwvd9qq5L1XdwTQOVxkwGPSaDLsNum+HgkHA80ME7WYrMXWXyI/TA3DkuNBfZ3tlk/tQJyr7J7euXscgY9to4jsPW1hZzc3N6KlckcaYSr+QjJdRqNYBpI12cAzq5UG+suodtCs/3IBizs7VJmqb0hwNKlQr1xhxLSyukaczu9jb37t0jCMcctFvsbG0TBSH9fn/qcd7v94mzlDSOWVla1te/XcPymkxCg7eu3WMsXW5v7pIoyLKjdabdbtNqtajVatq33bbxPIfz58/z9NNPH+Osx1lKyfMRkxjPsJlfXKbb7tFptVFK4fs+9VplurFPkuSYdSQcdygqPgrgAD448W/2Gnq/id0HTfHunwC932Pu//nwXrrU+z3v/r/jg372w3pY3271oUCiB+Mxly6UuXNnA9G0CQzFXGWJGzfuYMtdqucW2bi3z9/7+3+Xv/ETn+ef/tJv0NnaJRsHVF0bIzQ4veqQ7MTMl8pshWP6mcXFWpPdg3tIFfOdz73IcF8RjyTVUpX94YRmszn17t3c3Dwm+vF9n8PWPq32AeNRRK1WZ3lpnslkE8d1KZU84iQkCMY4jsPq6ipSStrtNouLi3Q6HRqNBrVajccee4yr167x6e97CdN2uXDpEo899hivvPYaKlVcv36dn/9P/0v6gz1c3+OF7/kUmaWFUZ//qZ/n5//2r5MpheBIMAWCJA5BGRjKwLIdTSdxNRJt5y4dRRl5M5SmEsvW3DqEjtMOkxgp0ykSrce0TJsdYWihoUKHFRSeyFkmdVqfLH5PflOY6WfDMMzRqaJpMpFSN+VHTadueHQqoUBkGoUuXEE0tUVqMZ7lAIkO3pCKWGj7wkw9mP1gcdO0LFtb8FkWQmXaCss0SaI+gTRI4pRyucqCsQhIDCnJshSVb1gGvQ7Dvt5wGIZBpVLTY/M8JGX2xidNh5XlZba2trhz+xZnTp/SLjGjPt/4o6+xfuoMJ0+exPf1Rs8wxNQ7umhGCl6znElT1HZ7+j2M42yGiuLnv/+4iPP+m+psFQhcmsYglW5ulSLL0j9DZb96TzM/2xCkGRiOg+FBhsk4mvD/fePrPHbxAtffeYtSpcTJk6d57iPfwbPPP8/mxq52xjEclDAxTU0FSKQ+FhKTrFqBUolJv86pJ7+T3s5VZBbjdLa0sHMYkKSSMI4ZTHrsj1pkKBy/Sn1Re0xXag1st6Sv5wfocPDy7/7ffO+P/SyOaXD56uusrqzhV6p0OyPW1tYQQrC3t0cWhdx89wqXnnyMm/17lGyfMIy0V3TuzW3bNnEUTnUNYTghSySe6TIZdHEdg8OdDZpzi/iehyNszp46z9admxx22kzSmCefeX5KL3L8Kt3DA0xTO75E4yHj8ZjmwjzRZIQpDC6/9TZRonj0zCn+8e9d5eobr3PyzGmGYcqdO5sgJCXLxchfU6WiBbyW6VIqVej3u2SpyeUrb9NuH+a8+YBoErA0P4ewHaoLyxhmiU/+1c/ylf/9l1heLbM7HDPY2ub2jQpPnmtQ82tUa1UMS19Thulyf39ZcI5nhbCz9a/TkP5xG8w/9jn86ZveWRT6wySKfFgP60HVhwKJrs75VKpVLMcinsQYGdi2T6eX4pVqHOwccvLkaX71X/4f/O3//he4cb1PGkWEkzE7ux1c2yWTCYftmERJXM8iISWMUywpsV2LzkEn5336KGly7doNXnnlFer1Onfu3AF0QzSZTGi1WqyuruqPlTVKpRLtdhsltQdoFAd0e21A4nke586dIwq1Q0KlUqHdbjM/P08Yhjz66KOUSiXSNOU3fuM32NzcxHM0/+77PvUpllcW+dyPfRbTFNQaddZOrmNZpl6gJOztHXDxwpOkiXjPwlWgtFM3C0S+CbCnTVd2bKinI6qPXDmOc6yzGeREzqTwccyD+shnGCXIyFkc942kj35HOv1cfICyW4rZn3z8hvJ+vtFwJLopQgpQD8ado0hqLNDTwrmiiPUWpo1tmPnoOyaKtN+syp9ToM3lcnnqnVyt1qk1GszNzTG/uKhpPysrnDx5klOnTvHU008wPz/P+fNnaTbrLC7OM9eosjjfwHEsxsM+/b72OdcewNGU/lFwNQv0sLAZtExnylEtzikpmZ4j79cs/0mU+gUi/n4o9Z/quANCZZhCYQqV+4cfdwgpfKnLFZ8T62ssr66wvLyMadiUy1UqpQqnT54hyyR3b90lSTJWlte0Z3aWEAchtmFiGwLbEKAkYRwRJCn1pWWEV8bwm5huDbtUx6vU8R0fz7VxXYtyycU2DUwpCUdDBt0DBp0Wg16HKBhpu8EsRWUPxuM8EJJytU5r95BHn3iGi48/TbOxyNLyCbIso9/vE4YhW/fuUi9V2L63waMXLzEeDYjDMN946SlGkRZZTLbG4zFuvg4FkxGtgz2EzIiSDMOw6Pd63LtzN6dCCRzX563Ll+l2e/ieRxzHnDhxgmazSZqmeJ5HtVJhf2eHyWTEZDLBNh1Or59kZWWZcWawcuoSu60Bnf6ERr3JhQuPABDGyTQcy3VdLj36SO5XXqFcrlLyS4ThBKXU9G/q9/t0RwNktcZT3/Esf+mHP4dfrmOX6zTm5lldXcZ1LMajAZPJGDhaj4vJ3bHKjtZNlel1Uf4pLoUHiQIfu94fhq08rG/z+lAg0d/1mSe4c/kq60tzZIMOA2FSKs8zvzJHZzTiI9/5Ue5t3qNRL/ON138D2zSo1T3ioeQggqobECKIyjA2EgwBq+dqfOmVO7zwned4fW+DsGNi2IqxjAgHE+abZbzSKq+++jpCCFYWFul2u1QqJdIk5tXXXuHEiRP4lSqp2qFULfP4E4/S73d55unHuXHjxtStYzQOCMKYCxcuYBp6zBmEIZEXs7Fxl/X1FUqlT3Ljxi2qfoV33nqbT396kU77gPW1FYRQLK01acxdZDQa4ZdcJqMYjAAIeeO1G4zilPq8VkyrNJvSKgxlIGwHSxhg6YhpzYE2wdCIc5opLFNTDwzL1PxiZZDJXNiWaUZInEYI8mQxoYMpDAyteDGhUIiDtmlDqdwf2ET7SAO2gMzGBIQSpFJCJnGEQmXkLhFHDNZMKSQZysqbZMNEqUS7kAhNERHCwDRS7WltmNiOg2GGOhnRsIAMx3wwp7JtaXQfmSf05TQML9Wxxv2uFi4VDWwYhvkYuYR0pEauDAPHq1Cr1aaeza7vMbe0iud5LCzMYVkWjmPlscqFBeCaHrNnMVEUkkax5sorgYpHBFnAwNQWb3Pnz6PS2RAdfSN2XS9HnuMcKdabkcIuD7TIVAiBMZOAqJQWR6EUtqnT2nQVnHrty5ymKUgtqJueO+QCK0DMCpdmeaJKP2dqq6hSzStVWU45SjBFhkUZwzSxnMKfOh+nmwYWBpYDJd8nSxW+57KzcoK3XnmFH/yhH+Hqu29TKZWwhCAYDqk1F9jd28FzDFzboFxvMh6PKVxChF91+RYAACAASURBVDB18qAh6Ad92uMuzUqdJPZQ0kRGAZVFnyQcYQcjyk6IbwrSVDKehPQ7OwQSBr0D/HIT169QKtVoVBv/ls/S96+PfuYH6Oxs8cKLnwAMms0mG7dus7e3R6la4vz581xvX6e1scF8bY6nXvgYEovBcMxTzzzDnRvvgiHY39nBc7VPd2F3qGJFmKRAiuv5tFtdsnnBhWe/C7vs0253WVtdIxU6rr0x1+T8paeYq9X52le+hO/ZbO9t0+12adQqRELQ2tc+/r5r60Y0jdnb2sQwod/to5KY02fOEwQBcTRhaWkBJVO2trYIophJGOF6HpevXdWGnYrcW9yh0ZjDsPR5W2nUac5VOeyNWFw+SaN3jd/8F7/M85/6Hoa2T3fzDrYK+PhzJ1hdKDM/P4dKE6RpUS4vkqRSM/OFIMuvE4HCkAoThVSZnrihPatnR3fHmuNZC8hjKLLmcevnW/p7Qq/1R09XRwAD6GZX5JqT+72pFdo55z10kLzxnwVOMr3WSWWSIqb6mof1sL5d60PRRE+SgIPOiKqHjhc+POT23Tt02n2W6iWacyuMgzEXL5xh2BvzDec6N29v0SxbtIIUy4NEKM5eqBLGknZnTG84oF4ViHHIolVCmHUapSa9/YgsNjlxYp12t49hGJw6dYowDPF9X1MOhA6TyLKMra0tlpaWODw85Oq1a1RrZYRhsLK6SqczoFwuE8chQRDQbrd55JGLCCFoeB4LCwtsbGzgum4eARzz2muvsbq6zI0bN7h1W3DhwgWefvpJKpUKhgGj0YCDgwPWzz6CTCc4ruTzP/f/s/fmMXZl953f55xzt7e/2qvI4k42u5u9qtWSZbVk2Y5hOHEWzyQxkMQJAg8GQTIBjBl7/vAACTIOAiQBnAEGCeCxPRPYHjvGjONlxtZiybYka+mW1CvFZpNsks0iWfvbt7ucc/LHuffVq+puxTYkddviD3hg8VW9V/XePe/e3/n+vstP8c9/4xcplQ7sxrQurL3yUbblEB9vto6Kv2b5dkbbKSoNhU2YSwgsqBnFyVUJ6binSPSMB7TMT8KCgs8qpghV8XuKa4ALJBCHT/BHq+C3Thvpg9d61Imj4MDab8Oo8q9SBXILB4it7+chNxiEyL1pJxPn9RzH0+NljEFIR7MpV6oIqTAWfM9jrjnP6soaUU7JKBw7giDIN0f58cA4QaN1dBy0Jklcs661pt3aIfAjdnfuI4Tz9nUlnagQhRQWozOUEodex1FeZrGOZr+epVIUdRS1Lp5rlkt5YFP37p7n+QCcLE3RxrkjWDTSGoQEIf1D/OnZrw1FEI5CAaUwJC27wIxqtUIY+ZhMoxBTS7P101U272+T4E0RySK8ZSpwlD5SOMcFgya2LjgoiMoIT2KFQQqFn8eUV9IYLUGkljh156nJaMAgSYkno9xXOv32Lci/RJ08eZLRMHYpq6fP0G63ube1SaNao9qssbu5xbXLV3jsscfodQe0+gM8EXDp0uO8ceU1BoMBWZbl1CDHg/Z95zoURRH9fp9KpYLWzmvZpBnJZMTm9n3OnLtIkqZ45TLziwuYMODexg4b9zdZPnmSrY1bLC2tUI1KJFlMs9lkPOi5OPHQJ/R9hv0Bk2TA5uYmx48fp1KK2N3dpdfr4QlDkiQsLCy40BbpEjaDOKbeXGBvZ8dtaD1v6v/caDRIs4x+f0A5VJTLVbbfvMbSw3XG4zELD52jd6/N933ih+ht3kTIDuVymcFgwPz8PEY4gW4YRrwz0+HgPDb777ej/iLP9e34fe9G33pQD+p7td4XTfTu/hY378JzH7nIxvWXCMs1Xn3lNqcurDIY7dAf9jhx8jj/4v/+NX70Rz5GezDhd//wDdZP1rg/7LN2ap6UHqkeMcmYprsdf+QUrXt3eezsKTaVwaQJ7b0RK4sn2Nq9x6A/IgxDWq0WyWjIysoK+/v7rCwvEQQBnU5neoI8deoUm3fvMRhUGI9izp07h0FTqkTMz9dZXV1leXmZrZ1tBoMBD52/wPb2NufPn6fZbHL37n2MMTz33HPUahWOH1/j5q03GY1GTnhYLlEBKpUKq+unKdUX+e1//SucOFnh+Vd+Dy+IifNENsA1mvYANQjD8FDoRNGYaGOwMwJCTxk8fIccG0GSaTLjOMhKeFhj8PDceNziqAg4BEVJhyIjwJMKbY3jcpjDvsCFjRkcNFtWHDRgzvUBB5scEakUXGjfP0grhAPXBiuFQ7PdnbjEO4ny/e/CSn17KS/A2AMBpJAefuAa1SAIKFVqU2FfYWlW/N/kAkMAPB8tJGurazSbTc6dPsfcfIMwDPMUwCIlTGLzRjEownSKi7MFi2ukC3671hqpYDIaY61lMBk4tK1aQyqJjjPnB5slKK88g2Y57/HCs9lthA6a3dmGGkCqg43NbBPuaCGHG+rC9su9bH8GuTaHkO4k7mFsxngwROsUKQx+oFDKQ0mBH1SmgS/FBrJA2XwpMCL36FaSetUJjNdWltldWeLGtTdQAkbDPlJYkiTjzu1brK+fZK+1Pw2wCYLAofTkm0vPBysIlI/QmiRL0MJjaDOUV0JWyqioiYgGeOM2CoFNJwiTYoTbRA5izSQbMWr16be2aLcr36nl+S3r+eef5wc+/kPMzc3x0iuv8NCFCzzx1JPcv3uP+aVFPvd7/5aFap3Lr1/hB374R3hze4+aN2Rra4t6Y45QpGxt36dWq9HppCRJNuXbV6IS5TDCpBnj8ZCl5TVKpRK3r71OWK6wcesmQbnC2uIKg+GIcqNG2tlGSkGwPE9YLhOEEcl4Qq1SZpKkdPsDSuUKezvbXLx4kX5vyNzCPN1ul1dffoXF5QVHjypFNKtV2p0eaZqysLjCysoKrdY+aRqztrbGm9evU6vVaDQaAEjlkaQZq2snWFuo0d2/zQuXX+dvfeI5yvMBT//gR/ns11/At028coUz5x/hZHCXILCHIuuLDf54PJ5uWN0mzIKwOap7mJJ3VBD4Ts4ah+hQxc8XYVVCYI7QpWaf4yiN6qiId7aOigsPriU6BysOn9sf1IP6Xq/3RRPdaQ2pV6FSXePxpzSbez02drpYv89bbxo27r/GxfIlLl06z+23rpFaw+MfXOHv//Tf5d/92V9g0B2QiAzrBwzGCWEIQeSTqD4v38uYpPssP9rED08w1wjY3d8FaZ1naJJSr9edZVKnM40RLk6GRThGq9VifnGJbq+D7nSp7O5hiSmNIsqlReJkwu7eDqvHjxGGIbWoTBRFrK+vMxqNOH/+PMPhmIsXL9Jq7dHpdKYc7H6/z7nKWRaX5vn0pz/ND//Y36Zcn8cPUz79J7/GILlBrVGh348xJps2DDYXCyrfqcpnmwnXvOTopFD4Kpg2J2mqkdKh2doatHFOHEp4KE8Q+hFSQej7KKEIfA/PU86sX7mwjEIcFxgXBW5tbpZnoUinc2N35+ih82AAYCpc1LmDwmy63sFJ2hw6iRcXKM/ziNME5XskWYqUAulJPO+9GSv6UeSaNWtd82oMSuvcmcQHoRDSoITKo39zpxLfIXdWuWjgOMsIlIcKy3hRhbBUpVRpuE2TsO6CKAVIhR+ESASel4vqcps6iSATxoW32BRp3YbEGkO13sTqFJs6u7wkSbCZxQjBJE87TNOUMHTJen7gYYzGFGmFMF1vR4WFWZahppSHA2cCMft6Z47lrDVW8b3ZxlxrzXA4pNfZwFOaZn0Ozwso+RUn/pUuut4GTNf9NJ0z9zoU+WzCCOsaac8h5oHvUQp9hp7P6tnTbG/dJ01jAj8giSdsbLyFF4S5f/Mwp3O416QUGC9BConIJL6GULrgozjn/o9TjdYS4dVRtQpSljFZhgo2KXc2MWnmfKUnCVVpGGUZg37/u7ZeZ+vpp5/G933u3r3LhYsPEU9i7u/tUS2X+dwffYrl1VXq1Sor50+z2+4w2dmiP27jGdBpSqfToVp1AStO/BpPtQDxeEIUhlhrCSNFv9el3dpnfmEB3xj6RnDh5Elu3nuL5bkF2sM+y6cusLgwx7XXr3BydZ3uoMvJiw+h4wntdpv1EyfxPI/BYMDm5jb1uSZJMkEJyXyjiR7HbG3cZXVlFV95bG7v8Mwzz7C0tMLly5dpd1r4vuIzn/kMi/PzxOMJlWqdNE0ZDMfYwCOqlWj4A37mZ/8b/uk/+w2ePVUiWDtLmEbcvn6L4NRjPJokjEYTKmfqVEt6qiXQ4sDir1QqEcfxjPuMmxa9k+/yt6O+HT753/I5citRZ4t6MIV8IC58UN/r9b4gNPXHE6QCm8YcXzxGZ+su5XJAf2/I2okm/VZCyQ+oVqt88pPbjFLD9mZCY2mJsg+qpBEZWKXcx1tBVHKjtUxJ3tjscKLZpNPd5fabd7jz5i1EBvVKndD3OHH8GL3BgDiL2d/fA9x412hLszHH/XubKOkhpLvoLy8vs7e3QzWqoyea7c1tNt7aYGtzm5379+m32+y39ihVyiB8xqkhiHyee+77+PrXvsz+3jalyKdRq7O4uMjSyjJ4PgbN3Pw85WYdm3R56rFH+I9+4m8hA0mv1875nir3i85jgz3HR1aeaxSEJ7BSkGqDc4EmTw4UYD2KkItC7KW1xmqDkhKFcN6/AkIVoWSAkB6IHGFR4OciLik9RyuwLixHoZA2DxCwGknmYOtcmCYwTkBlNMIarC0aKUlmIbMGjSGzBisVSW5dBy5pDJEj4lYjc4zFVz7kFBJPvTd0Di8o5w2sxhcWaRKyLCXLUocYSYlUCuV5ueM1CCkJpCKQgshTRIGHzdzxGI1GDMcjxllCmmWkWebSCa3jQQLTSGkn/DNom6PzylETPCyBcg4toR8RRRFBEOKHJfywRFiqEERl93/fJ4oifCUxOkFnMTqLMTpxTbTROOKCRYLztzVOdupJiVc4BRjrkHBtsNogEdicP2mlIbMJmXW0DBfgIxBGgHGhMwVvPI7HjHt7jFv3IDMI6+F7JXwvREUBwg8wnkQrC3ggA6zw83XqGmgrRS48dT7Mxhiy1OS+wBLfC6fHL0kSfF8hPQtkIDQCTZZOMDomS8cH1nkYbCbQmSWzBqMsVhgyYUE4jqjwAc/5VGcW0qCGjmpk5SVUaQFZnkMrgRdJgsBQjQRV/71Zu9VmgzffuDZdT6PRiNBzfOPl1XWMJ1lcP+Y2Kb5HJYyAAKtThhMXciU9D20zlO/sNdGGLE6QCpd2aVJMKrBpAibBVz7SE1QigRl1Kecorsk0ve4ud26+SSUqkViIynXu3ttia7uLNh7VyjyeCFlcWqJeL9Nv77E4P48VUJtv0hn1OXXyJOVmjc5+hxPHTtBtdXnttdcwWOqNJkL6PProY4wmCZ4fsrO/xyhJqS4scXrtBPE44eKZ0ySDPT5wsoaJeyR7m5xbVsjSHDUlEJ6HFwpU/qko1p4QPkWAkDEZoe8hrMHLbT2FldOpHTZ3rJkpqRxneZb2cZT6cRQ9NmiMKECHtzt+fCu0+Z2e/wDAsNPnxeQx9hZHJDcCLQ1WmPys8KAe1PduvS+Q6Grkk0UpN26+xscf+WF+6MMf5t9cfp1xv8czH/oA//Zf/QmRHzHJevwn/+mHmJMlfvP//Dx//qf/mtPHFtlO98HC7u6Ysi9AWsQoYb6yjldOsH6MjgWMnZBufX2dnZ0tshRq5ZBr165hsEShz+nTp7l//z4Ak3HMYDDgxIkT+L5Pmk04f/48e3t7LC0t5PQIhedJBsMhxlqU8oknGSsrS8RxivAU58+fR5LR63RZW1tjZWWFKIp48cU/56kPPE2v1+NcVGZrp8Xa8bMkkzbWDPjf/+k/IKZNWB5RKpVmELEccc49o30vyENIXBNRjBez1AnXUqMJA4sx+QheuJN0gQIqpcAYAs/Hk4pSGKGEPw3bcBxfhZIgDQ4RFSCtRxBEkKZIo1FCECcOLc90SpYJskyAzC3ocucKKSXa6inFxDXTdoqag5g6eRxFop0bQ3HBceEzSskp/eO7XWEgoVxiPHSexdJT0yjsqFSeHpPCP7ygLMggwBq3KdJaQ80hvJ1Oh/F4SK1So1SKnHetl29ifIsQ3hGHloJv7Px6C4qHlE48WoBLQrqmRvrBIfRX5K4mjruqmSQJSTLJrRBzilBhIyAP85mL1+bcXN7uxFEIAo0xxON4upZkbo8IILQLXtEmpd/vkaYxndYmkW9ZWj6G9AJ836HNApWvPYFQXp5cKQ8haMYtzXzsLR09BYnJm/c0TUnSST41sYSh468LJTHI3Mfbvd5UOEFlkiT5e5phxYGFnnAL0L0HUiBt4QxiEJ47TknmNAR+dR6Uh8oStBcRj/rIeITMUkrvkTjr/p0Nnnn2WV67eoU5u8Lq6ir/5nd/j2q1ykPnL+L7LsZ+b2eHhbkmw34f4iE3b99gdf0E0hoQFp0apBbT4+77PiKfRPm+j85yCk9q2dreoFytsSAkN6/fQBvB+QtVhsMRK6urXL95k4cuPEx/PERrzdraGuVqlRtvvkHYrCAmHvWsDjbj/uZd9vb2SJKE4XDI/PwC2lp0krK4uDh1CanX69zeuE2z2SSNk2lqYVBydIv6XJPheAKeT61aphqCn8UsqTFparjw7CfY6Ixo98d43i61Z54liCWhfxDXfojaINzkqXDEOVoin9Z9O6ztC3rHt6veqemGo57XeubrB5SOB/W9Xe+LJvrk8XWG+/epNapcu3yFxdUllhcX2U1DXn7lRbpteOv2XUp1iVT7bG5PkD6YWJKOR2glsUbTbEqyscUKiU4M2/e3GE9GLC8tsrXVYth1zczVq1eZX6hTqdQYDXv5xVBMg1EKq6Z6rTENH0mShPmFOTzPY2Vliclkgs00pSiiVqvx5JNP8tprrzEaTfD9kMFgRGZ2OH32POPxEM/z2N7eJooi7t69y/r6OlJK9nb3WV1bcxy6sEJtaZ5r166ytXuNM+fXwG+yuXP9baiBEAIpDjjQs9ZecDBmOyTiOnLiM8YhhuAEhP50NO4heXuYhsibEqvyRx0RDxpTINwCnRm0BmOcp7UR5m0n6NnxvZRgrcFohZQW7OEAgFmaQNGIHkZa3puxoo5jSqGPTgPntGFdAmPBHy4aTT/n/s5GgTNzE9JitQaTYTJnGTYaOdstX0XTBjXLQKlsRiRaPNfhY220QAqLtXKKUBWjZiEknh/mP5eH5mjnxlHJLffSVDMcuThw6ed8Y3MQuvO2AJZD6+BgkxbH6dRX3FqLSTMywxSR06RkaUyapvTae0ziAcIm+H4pp8R4R9aAQ5iL+lYXcrc2mApehRA53cn9jXEyPvQ8QqqpaLCgnUi3MA9e24zI9ajf7+HPJ9NNqLWWTBtEUAEvRFUzIi90ASzjAUa/N/aMb1y+wtL8Cl7gs7iwwM2bN3nksUtUKhWa1SY6mzDs9zlxfJ37d24zGQ0IRQZIyuUqk16PQdynWqq4xL7AxdQnSYLvyalTR1AKiBO3VuN0xGQ0ZDSa8NDFs+Ap+r0OaarpddvM1ev0hz0WlpYPLPbuvkVrf5ssTWk2m+g0Y29/m7Pnz3H31gZzc3MsLi7S7bbptjtMRkMG7T5LS0tTQWG1WiUIgqkGoVqtArC8vEy712N5dY2LDz9MNhlSKytG7T0ajYid/S6NEw/x9ZvbWCTD4XDqre6O/WHxbVHvtC6+E/WdaqLf/pky043ng+b5QT2og3pfNNF39u7y8KNn+NLnrvHIjz9BNkq5c+seFy5c4E/+/EV0DM3GGp/57HX+y58+z2d/903EBNZPPsPP/8xT/N3/7Z9Q8QSdfcN8XTKMDY3QZ//+iLWVEps7e1TikIXyEnHslN5SQrfbZdTvMB6PmVuYZ2NjA7RmeWmJwWCA7yVTk/4sy9jZ3uXU6ZNcv36d5eVl/EAxGo3Y3L7L9u4Ojz32GPVqg93dXZIko9ffY219jagUuZP1fotvfP3rhGHIa69dptFoUq1Wef75Fzhx9jQPPfoYsU44f3GVWztfYLe/hSdT4klGpRJO45KnccgKpPBzrrDjhSop82Y2c1HUeaOrtcb3fOcPbA4u8L7yHKqMT+SX8DwPX/qHvHZhZjSocucDkQuthMXzwBiNkipvFA1ZZtCZiwW2AmzupFAIIwuUpvjXuVhkWAsyUOgZjqxSBxsDdwFzN4SL+/akxA/em9CKjVtXOXfxIqVKhXQwRKcalVtljcdOzOfs6Q5460mSkCUaKySe5+K00yzGk7mNnHAeve12myzLqFfLhzZIs6mYRROt8pG8toUIU2DsQcqkJLcLVArhOdTUWjuNHzZS4vJ9igZVUqu7xn03F9qNJmPHK86dKwp7PudaUYSrHKQlxnHMeDxGWnd8rLSM4rFzcsjTMSfDLpNhF5tlaDMm8D2q9ZpDMK0EA1lmXOKhAWHc6xKAFhqRUzSEPOBkTxsBimAKh4Cr1GkE3DpLabcH+MrL/bw9hArcc8/4fs9uJF1zId62UYADpG46JSqmPlEuksxShpMYhI+oLKDKc1SqI4LJENvZ/24t10P13HPPcezMSay1fPHPPo+UkoWVZY4dO8bu9h7ffOnrzDWajPY7ZMmQ/dYWmTU88oGPkMYTCGLmFlfRacz+7h5Rlk6TWpMkZjKZUC6XGY9igtCFWA1HKZEX0Gnt8NZtn4WFJTJtWT95ijjNGCcjtu+2CIKA/d1dyuUyW7eu06w2ufTB7yNV8MpXvsrq0ip73V1KpRJZltFut/GkIihXUMpRlJ78wNN84QtfII7HNGpV7ty+lXP67XQiNh6P8X2fVqvFzs4Ox5aWGA17dOIJPVEjXT/FL33ua+CXKYURgS9o7exwaqGCNRlwIGg+CnQU7i7FJMPMrJt30nu8Wwkhctekg3Vd3HfoZ3h7w/5OlA175OeONuKzLjoUjxfuPGJs5vjdM7qGB/WgvpfrfUFoKlfL3H7rOqM+aCHZ2d1n636fJGuzulLBAmliaDZgNEx5+LE5yvMwtFtMJl28ENLUUqvhFMRWEFvtvJHTCeUKVBt1hpMhaZqyvLw8veD5vs/q6irVapWFhQUnENEa3/eZn58nSRI2NjYYDoc0Gg3G4zFnz57NwzMyrly5QhQ5a6UXXngBKaFaLTMaupFhkebleR61Wo2V5TVOrJ9CoHj44qO89tprrK4eI4mdG0B9rkyn9xavXvkSlUbI0vIKteocIh8PHpwQrbPjUwdfKyWm6YIFZWP2McX/iyoa6WlIiPLwpEIJeQhpnH3c/19AwLuNA2cvFu+GRjukNTskMnsnuzRX5ggK/xddbd/e6rZbxCN3Ia6Uq0jPHWvf9w/oA7lwzyHueRy6524iv03FojpFJ452NB6PpxHKs+h7IaSbRTqP3tybVbzPR3xhcy/l2ZuLVH97pLBSahoEU0Qbz/LpsyybHr9paE9+f/G9KSc5cY+Px2N6vS7dbofW3haD3j6jYRtpNapA1FEzgT3m0BqZXRfF997pPZh1ISjeq8lkwmAwOLCtU8VUx0NJDy+nRs3GkRd1yCEBpu/DUbeDo42LoyFJlNBgErfJ1JbMegivRKlc+46tz29Ve+0Wnuext7lNo1anVCpx8eJFkszRIdI0pVp2zaJNXPO0duoC1flFgiCiNxhhgFRbZOhP6TqlUokoigjDcLpOx+OxO36Zc0IR1tJt77nUQJ3y1p3b3Lr1Jr1Ol0AosjRBYAl8j3OXLuGVIy7fvIkoldFW0G13uX93c6ojGA2G7O7uM0lSQIIU/PHnPgtSkOqMTqfDQw89NN3Qep7HcOjSZpeXl6lWq4wGQzbu3CFOLZs7HVLvOGP/FK1RQpylREEwpTIY8xejY7wzqvvXt5yw8O3n5Qf1oL5X632BREd4tITlh3/iUXZ3enzso4/xxGaLW7c3+fjHn+SXXnyejbf2WF2Dq699kx/5xL/DP7/2Gb76+ef5O//wv6VWgfpime39ETubUJ5zdIKxBaEt9XKZvfYexBWazTq97j7xeMLWziZCCLb2tjh1/BS+8lhaOcb25j3iOCZL9RRZcol+GUKE04amXq/z0bNnSMcT7g7u46uIq1evcuzYMU6dXadSqdLea5NNDF7oocIIqyzjdEx32CW1KefOP8z+Xpd+L6Zcr/GlP/9TXnz5N/GqY/qjPqOxEzV5CHQu+CjG0dJ6KOk4n0UTprV1AjShwCZYk+HlDZLWmROYBRIpDJ6QKGVB+Uih8ALlBIteANI5aFD4MAuBkr7j1QqBNgakcA4PxuCyVwTCeGAl1vgUMeDGGqT08JXCVxKtUzKTYLUmMympTg5OyllClPkYYciMQAiDRE83EeRUAiFBCY2vLMqzCPXedNG6dZetWyWWTp0hqM0RVSJM7Bq0opF2771rLMvlch6R7JrjLHZNYOQplFakqUEnCePOPe5vZLT3q5TKFcIwZGnOJ/IUQnoor9iQuPWAPeDmuhtTr2+BQUhHwUFarLFOFIpAKteESwsmUwih8wtliu85dL8WVbChZTIc0Wq1cXHw3pSXrz07VexrrRlNJqSpnm4iQJJOxhidMuy2GfTbZCPnSCGF4826DUVEbBSBVqjMrScLuU0jSO1iypVSYD2EKCNSx0vOpOMv+1JhjUZL58Et8g1EKfQRosbx1TXeKinMwGJEBCpCywAjJYFv8ZRBiig/XnnQS5xNj6cQuSO5zd0dZ3UFOa1IIMhMhjYamYsGD2m+RIYBtLQgfYKlY9/BFfruNWx3uXHjBu39FsvLy6yurjLoDWnvtrl+43WichUrFW9c/gaj0Yjn/sP/mHSiGcX77LW3OfPwoywuLHD5q1+g5vmECwsM+j1EPHDrQie02/vUajWiKAAgKlfwgoBao+yCoXTGqNuhXKmRjMY0KlUmox6dTYVfDmhv3iPVMf0Ugm6XVz79Rxw/foKrl+/TrJZItSYxGk9As1lnd3+PzPfZ3Ngl9D28nEYfhRF37txx/um25dJAF+bY3NohLAUkqICArwAAIABJREFUowFZAMdOn+Mzr92iFJY5+cwz/Kvf/QMeXlgkazRIE42wEr+kkMZifIskRQjlzo1FCIrN/fTzm1RAlgEaKZy7hRLW8eiF0yUI6+XUI9xjLFjhhNd50tUM+CCn6LDzejdOL2DldN98CEWeeayjLrrzaZH6aoVbsxKBzV2RpJQu0Abr0mCFxBqJ1AIvk0ij3d3fQarKg3pQfx3qfYFE93o9SpHr52/s30NW61w4dZrN+xNa+0OW18DzFKWoRL9nePWVV/iRH/kI3X6P0WCIEJBpQ68HlbKjGeApjALhQ2ImCAVe4Oyc0jTl3r17uTF+yNzcHHNzcwBsbW0xGAymtnaDgfPVTZKEwWBAt9udGvoPh0Pu3LlDp9Ph0mOP0GzW6XQ6U6V7t9t1CGWlwrlz51hfX88TsjweeeQR1tbWpihafa7JS69+jY8+9yEWVmrMVUqgYRxPDgWXFGiklAeirgLtOIrcFiPFAw6umSJybkRtDyGb74QUF88zRebcHYd+zyya/E7861kObfF8xd9WNJezqF5xm72vQByPjiHf7W/+bpXQlkG3Q6/VIpuM8Y8gmLMcw+Jv9X1/Op0oNmnFfcVxMEnMsNej3dqjte8sEeM4JtZOzHX0PZnlxLubepf3RE6RVyk8hDj42YO1dZhvXjxnFEUopRgMBkwmE5IkcdSULCNO9fSWpk5DEMeO6zweD2m199jd3WV7Z5NBrzd97Gg0cq8rjp3t3pG19G5I9OzPzN4KBHw4Gk3Rz2L9B4HH/Pw8Ua1BisCSEakMz6agY4wWGBtOo9iL4zj7N0yP+0xTMvt7jyLjs48r3stZpLt4Pe9FNefnyBIXb14c1ytXrrC2tsb8/CIrC/P0O20ATpw6xdzCIqfOnqK1tcc4TmkuLrNx9y5BEBAnY/wwoFarTW0QizVThLIU79Vw6Lym79/bYDKZcPz4cba3t8mylMGgT71eI00m3HrrDkFYAgRnT58hKleoVuu8+uqrjnetFMlkgjQOZGi323ie29w1Gg0WFxeRUk4nD8PhkGazOf3M7ezsEAQBg8GAvb099nZ32d7exXoRb9y8zVsvX6aJcKmcvqLX7VKplpDCfV71XyDgafb8/NcZuXWWkTb3pHfONEZZtHxgcfegvrfrfYFEzzcabG536Az7ZDbGTKDV3uL4esQLX77B+uk6nVaL3hi2t+DUasLv/cFX+PHH1mhvtqkqDysdKhuoElppPOEx3wgY6DEqVHhZCTtRU86e7/t0ekOMcSO9nd0tSqUSJ0+dZOueO/EuLS8ihGB5Zcmp1Pf2GAwGPPnkk84Czxgeeuhhrl55lc3tu4RhQBiGvPTSS1hhuXTpMU6cOEUcx/T7faIo4oknnsD3fS5fvszVq1dZXlmkVKtz/vwF/vgbv87Lv/X/cvPuCzx0YpEoKLO4tsrt61cBUAhUTrdwF3GBMS56+mhqHoDOkmmT7EmDNQIlDEpC5HtgLYlWeJ6Pyi3z3FhfooXIkRCwQmINWOHEjACZ0VihsMLZ0xntOM2FYMwY6+LEjcTzPefjrARWWix2Spsp/IkL7rCQkjRH+rPM4CuLwaKNfscmutgATENovsslhkNSucu+yUjjMaunz1OtNxjFMaNuf+qbW1xM0zR1f7PngRCkuUgzVCWCwMMLfHSWYkYJWTIkjke8+fqrROUqZBnzS0s003jaeDuxoO+41SaPArYghHFpk26cQLFfFgLXQBeuHRSbMwXSOgcrkzlzRFtQIdzfXyqVCMOQnZ0drHXewFJ4RJUySR4pPh6P6fU6ZHlqYnt/l2wyotPexWQWq52F3qQ/xKIRQtNozBFEIUtLS0TlqvPZ1YawVHX2gDO0ldmNGDJBGYFFIk3ujz7l8Mtpo62QKOXegeOri1x46kMMNWxdv4wcdahWa+CFxLqGEQqJo2AV4rM0OdgcFmuwaIiLtTv9zOU82KJmm8eDGHV9iEvd6XS+U8vzW9ZXn3+eS08+jZSS9fV1Wq0Wjz76KN/85jcJgxKXv/F5ktGQ5uIya2cf4ukPfB/X3niJql/h6U98hIkIqFZbvHV5C4B6ZY5h1kJJn1otoNfvHHrf0jRFCUno+6RaI5RkOOhz7errNGoNpB8gjWbYbmOwrB9bY3n1ODfeaPPmtessLzS4duUmy0vzzDVqvP7aq+hJSr/bxUwSzlw4z+7+HuWqo1V12y1n2xc6PUm57NxydDpkf3eHcrlMEg8Z9DQmc9Z8nU6HR556lq4JePGPP02pUsNfXGTv/haVqEwpCFHkKZbSR4jsXTarB77K/A0Q5CljkGQYDImJUUbiIVD2vRHFPqgH9X6p90UTXal4VCol7t3b4INLTV574Stc3bhDtFjm9ftdShWJFyjqjQr/3o8/R2f7No88Aht3trhx9U3+wU//Pf7x//FPCHyfbntMdVmQjkCVBI1KwP29hKWFOht395mfn6e1t+/cNSyMxy5g4vTpU3iex82bb9KsNajVaqytrdHtttnf3yUMHUKVZRmvvPwqy8vLTjm+cQ9jNa1Oj8CDp554krNnz3Lm3Blu3brN4uIi1964QZy5pKzt7W0uX75MpVLh0Ucf5cTpUwg/YG9/kzubr9IZ3UWFHtdv3WT+xJk8ily5Ud8RzqWUHtYcFjo5Q//c5s7IKeJprZk2s75UeEqhkzhvxNS0OZ4KEbF5o2WddZdSINRhpwXh/HKtAIFCCJP/fonRhYVegC28UYVAKEjTBJMdNBEFWqiUcn7R1rggGOls+qw87EdavNbZ5vTbETbwVylrYtKRJbMZ0vPo12usnVnEVz5p4W6Ro8/F3wxuKiK0RCT5Big/ntJopBSkWYTSGk8I4kEHnUzYvnuLeNRjsrBAlLvCFCIqh2L7yEJgl1/brNVu6utJx/+lQJnd92XRXGOxvL0hmOXUF41I4bohhMBTAePxmP7IWZLt724z6HUZD4eMRkP293YQOgGbi0ZxKDVG5whuwnA4RnqKbrdLqVJjaWmJSq0O0qdUdqLKQpQJ5EJUgfSUE5hS0FqcKFBKiReW3OsTbuJiMmc1FijF+XMXSSYpk/YO99+8gkUTRBVKQQ2rMxLr1m6l4lBVEai3IdFFI3yU3z/LfS/WNDAVmRU/M5veWayN73Y9/cFnUHhs7e3yO7/zO/zgD/4gm5ubeaCNez1RWOb0Qxcpzy9y48qrXHn5BU498igf/vgn+OY3r9K6q/FqdZZWj6OsIW27JrHb7RKEPuPxkDAMpyh9FEV4+ee13myChmQyRpfLeJ4kizOWjx1jPByye/ctdt66y5nTJxjfv898/QSXHnuU669f5u7tW7TbbUq+4zQbY7h37x7D8YiwVGIcO5vJhYUF7ty+Te3YcXZ3dxkMBoRBbquYJfQHAxonT+OrKisry3QGA7Z39ynNzXP6oXMopTA6xSQJqZSkaUzcH6CFQtiD9fB2dw6NtYV38+HJhDzymHfTkNgZ5eChyce7HM+j3zvKzT/6deFaMwuoz06hDk3TpI+RPngBmVBIESBFBn8BNP5BPai/yfW+aKJLJVhemyfwLDfNiEcvXuQ/eOJD/LNf/ywnTvr44YRkYqhUQq5cfZEPfeBpbtzZZdK1fPqPPs36jXP8zq/+Bj/6X/80SkEQWsZeyCSKOb26TClK6G1MGLZjtoa7VEplwKFyvq9IkmyKNK+trdFrdwmCgFarxXDYp1ar0W63MQYGgwH1WgOtnYNCv99nYWGFpcVVopLj7V6/fp3bd25z7Nhx7ty5w/nz5xnFDhG5ePEilUqFT37yk5w/f56FhQWqzQat3j79eJPHP3iOl7/xMpWVNVAeg26PKIowaTINRShcMKTw0AXvOB8hG5vmF/CDxsfzPPw81S8MPKQUeAKkp8iMcZZ2uV+xO9k7jnMR5Sw8hZTKcW0RrsHFkqUpWR7cQm5t59DnAnVxXr1S5k2uOBh1F01IgUYDSOV+T5K6xi+12sUmK4Gxh8feBUI6S0F4T0pajI3RowzZ9tlGMtc8Qb05R7PRoNPtAgfe3oV94jieYISLazfGoDOXvFZWCmsNVkrssIcSlkgJQDNqbzPq7nN7wzl9rB8/SblcptGYIwxLbqweR1MKkRL2QDBaxGIr6bjSBRJdWLahEVJibB7kYp0VHoCQ3qEL6mg0YjSa0Ov10Jml1WoRj3okSUxrfxeTxC5QR6f4+abOxR67tREFKvc4t+jcK9vgxvy9wYitrS2icoVJoqnWapw6dYpyuTwVhB34Ux+gYAXiK5TTLwgrnVjQF7kDSTHFyFhpzlF64mmalYCvfanB6y9/FdHps5bElKMAWz+JEAf+0J46SAPNsmz6O50G4YAu4pBwpvSO2clJsdYLRNr3/WnDXbye73ZNkpgb37zM3/v7P8PO/h7tdpulpSUef/xxvviZP6RSrnPhwgWG+Bw7fZZP/eavMe9LTvzYY4yBUXefP/qD3+fJZz/EyoVHufrCV5hfWIJ0yGQUO+cc78CiECCdxO7/vmJ/d5dqpQ5I0jhm0OuSJAmd1j5z1TrDYZfJYEhkE5QwfPWLn6VUqYHJKJcjhJh35wRPkcYZgR9w7Ngx/DDk2Poyt2++iVKS+cVFOp0OjUaD/f19dGYol8vuWPiSjY0NqtUaYRhSrUSYdIiJJfv7Ldfsx5ZhMkGMQ8rlMivNKvOlFGUSUN/6EjpLBToqMnzPzll/yZJSoko1yl7A8fMPU5pbQKkq4/GYxf7p9/rPe1AP6j2t90UTvb+zy9Kx02y8PGA0APmhBb745a/ykz/1Y7z49T/j+ZfucPJ4nSzucfVGzPH5e1w6f4GvvLTLN69OePyRJvbeJp6xqJJHXWUQx3h1Sej5BFIwSjSlsmQy8Wjt9fACCIOQNIup1Spkmebq1WusrCxTLbnI7p3dPYIg4Mabt6fJbkIqGs06FsPFhx+i1WqxtrzEeDxmZ2sXYTVzc3M88/QH2N7eJo0nxMmYUqlEu9vBSogqZWq1BpNRyssvv8yHPvIxKnMhoUz48gtfZL60iNUeyaiHUBKbWgQ+VuR2cQKEVFipsFk65TtrneBATScw9Hwn5hHCEiiJpzx8JVHSy8WCmWvMEUghSIVE5wmDeGCsQAhvaodmhUEaJ1A0JiPRGpDYzKIwpFlKZjQShdYWbQVCCnwpMUIeoCTWpWEZkeLh0sqcRZl0Takht2vLMAZQCmM1QlrSvMF3SYkglBvh2/foemRQCGsJpMWMe2RhQKu1BcoS1heRwxEYi5QexkCcZnhBhJIWaTJcLLjGiJAMQxQ6MWKkBcIYsI53KCwkwoBNMZkl1alDfcMSJjWUoirC82lUylSr1enGolQp4ykPq7wcM3KTA1kIkAp6hAUjLULnAifjhEUAkgwrJEFQwsoOiU7pDbuk4wmTcUyvvYdJB86OMBuhJI5ypDyyLG/ScyuDLDOIPD4cDqzhCteQLMtIdIZOE7rdNkmSsLS0dMhqUalciKhcWqHBOh0EYLLcAUUYpMxc4JqQkG8IpfAIlaZWVhw7doxjJ05z7fXLjPsdWnubxGFATXj41UWsV8HiYaSHUAIlEoR2qLRF53HuAp2B1halnAuHsca5cSg5dZvJkpQsc+EcUx6/NUgs/nskil1dXWW5Psetm9dJUsiEpl4u8Yu/8L+i/JRnnnmGN27e4MPf/1EYdgg8n4XTq1TDMntbW9y59k0unDvPfLNJf3sLgUeawGQ4wg89dJYQek6sbNIMJRU6z1E1iROIWjRJMiZtp/jKc2FNAsZZQr/fp1wq0R+0aPUGLC8v0+t2SNIek0lCRkgQRNNQlzhNWIgi4jjmxRe/zvG1Y1SjEjozxOMRvV4PrEZK9xlLkgnGwMrKKpmxVJt1siwjHSW044Rhr0MQeOhKDWGhXnV8aqsTSiqdfogKVLewgZuNxS7KWidI9Zjd/JmDf8WMr39+ryw2fhaszH0dhRMBT1FwKadTJfccB6BCYWV3FCVXFJZ57imNLX7fAVo9fYyQiKBMEAh8azlemWNpPWH9zJNoren3u3/l9fegHtTfhHpfNNGnzjxBu7uHBboDqNQqnDq5yB9/6rdod1L8ELQZ8+YbKXPHAz7/J6+yeRdWlE+5qvnSa1/i0//dl3jh9/8l//3/8PPc8nZIO2NOn1hksDMkDOuYNGavtYdJFVHZvezhKCYquXH69vY2jz76CJubm5gwYmdnB88LGI0mRFGZUqmElNBsNul2u5TLZbo5yvi1r32NxcVl+v0u7VaXxx9/nJdeesmhFisrqBxxtMDc3ByDwZAzZ86wsbHBowuPYoxha/c1jq+s0bpzDxGmCClJukPGBcImBALPcaKlyrmzrpnW2mJsHnKi3UU7iiJnR6cNyg9yWkfh/+yaJ2slVoj86wJB0wjlu8humPHILURWBaqWkukMa5z7hpgRVMVJHqghBSr34DUCUJ6z7Lfupq0gzcf6AkiNxtOQmhTfC5EBude1WydFQ6IQeEKCEFN/7CB4b5ZyajXCWJSVQMao32Pjzddp7W3x9Ed+mKX5OcYTlwCYZobRcEKY2TxVT+XjXjl9fdqCH4SEvp9PFjIUrgkNcrcMJVyIxWQ4ZNTv02+3D9IqfUVYijh9/jz1RoNTjXOu4RQKi4t3h0O2sIfKCAFG5nxqd5/ETRSUUszVG1TLEdv3RuzcuYmnJF7mXDOEEITl0kHzLSW+KqM54AAXk4Ni+jCL5trcZSYiQiiP3a1trBTUahXW1tY4duwY0vPxQ4fEIwuU8wA1PhCtZoCXBwJZRN7wGGGROiEMFCsrK3z4ox9zmojNu3z1zz5Ft58Qjd+iXuuxvO6ORRDOIZWP9qtE0k1ERuMkp5WofOzuGmbBYXFtkiTT11l8PmZtHIH3DImOhOZeu839vV2eeOoJNjfu8+kXXwY/4yd/8ifZa7eQ9+4Sj0d89Stf5fipM9RXFujt73Llla+zvXmH1eUl2rs7ZKmhGoWQpSytncDb3WY8GqAQJDqj2qg7oWd6IA4tVaqUqnOsNhqMxrFrUI3BoOn0u9jIZ3/YQfZBeCFvvHGVIAhIMSw050GF+J4TMbbbbar12lRMurK0zPLyMhtvvUW9WmM8HDAYDKhWSjQb8/QH3fx9tzmNqIoGJmmKlyZI5YHyyQz0h0MqtTrSUywvL9OoeARi9C5c6G9VsyI8+w73/eXrL/sXvBP6/W50EiU9jIJA+Pm5x3muWyOwy3pKTXpQD+p7ud4XTfTZcw9x/UbG8TOWQXyXve17lPyYs2eWePrJ5/jVf/kHNKshjz/1CF98+assr5QJI5/WG13GQLUOwWqTD/34f86HnjmN3ZpQWfQYT/oQLaHHFp2MUCpgNEyo190oj9FBcEm73Z46cUgpaTabU9cIN4pzIRe9Xo/FhXl2d3cBGI1GLC6u0Ol0iKKQ1dVVhFBTX2iAa9eucenJpwhLETs7jnNYoG8f+chHqM81+fLzXyEIfNbnlnijdQesx/HKIlp46JyioWzeQCvPWXxJx2VNrLMbsnn084HdnaYUhFPnBylzZw4P3MlbofMQDssB19hd7N2xcc/lONlGW0Ruoae1xWapa+AzO7XwMsZgUFgU2gg8KaboeZpleF4AUmEQuBxpF95hXUYiWZI65DRXfXueh5ISa8yBiNCAJx31w/dzuop6j7h50h0HpHR8ZAt20GYSj3jjpS9z6YMfoRzV2GkNQRmU7+MHikqpml+EXHCK1s7JYBKPSdMU34+o1uYcMhuPAYOx5PHrAUpI/GrgOLzxmPGwj8kSBpMRscmoNOpEpQpSFOE2Og8RKTiPB42eKASjVk6bPSEEWZpTMXIE0QgXD/59z34/506e5lf+r18kHY9YXnC/C9xGqKiioQ1lSBiG0zU560gx6w1u7IFrixWS0WSC0YZ4NCaLnb+yZwVJBihBqARHBaWzlB9rD4SGxYK2xqG/xWZsvl7jmQ9/hNFoxEOPOcHwxrVrbN65yVu3LuNLRXNxFS+sMHfsNMoPUFZRETWSJMwT8CzaOBcdL3fNmW74lDoQOKqDKOjCJnO20f5u1x/+1m8Qzi+zcvw0v/3rv8SoNeRH//2/zbMf+wh/+Ad/xMd+4OP8Zz/1X/C7v/n/EJZLPPLkk4wMXH3hS9y48hJZlrB97y6lWp1atc76mRNoI7n75nU6vT46TUjiBOV5JKkGoQjD0tShaDQYU64qqnMr1E/UiKKITqtLOhxy9twlrrzyDebDGq1RF21S6s0GWhu8LCFQgiQZkJiIcrnM6dOnuXv/HnNzcyRJQrNWo1apEJXLJEYzHo+pVCqkqRN5h1HIaOTOq7VaDS8IiTON8HwyI6nONVmcX0LrlH5nHxmEVJsN5up1ampMVWX59KPwCT/83h4VEbrY8xlf8RkUe7bcVFG8PUhlhtP8rUq8w8/Nbi6/VRXo9VRr4vl4UiK9CKFcAy0omumD88eDelDfy/W+IGWNRi3u3HqTWq3CsA2vv/w6SZKgooDP/cmnWJqvcXejy52Nmwx68PP/6GdJbRdrQVmoz1ewCrZGsN2L+YWf+znCRLDTGzMcjhCeIgxD4kmC77vx1mjkIn8LO6YgCFhZWZnGMw+HQ6w1pGlCHE8wRlMul9nf36fVarG1tUUYhpw4cYK1tWWeffaDXLr0CLVahVIpRGvNxsbGNFGr3+/T7/c5ceIE9+/fB+CRRx5xUcuVCleuXuH+7gb1WoVmdd7xlIPwkNBj1obOkzI/iRdhG4eFIMW/R2/vVIdELzPhHdNUKusa3mJkDhJhDn6mQBkP/w7XlGmbh23Yg8YcnBDR4nqb2WALYSwY15S/k83abOBIYdVX3N6TkgIXHemcSqSUkGXYZEKvtcew33V0Gd/ZmiWJExsWlmiTyYTJZPK2MBYrVP5+iXwD5DFJMrJMYwVoYd3mRCmCsEQYlvCCMrVanWqlgRQ+Ah8pfXfhE4bigl+817OiwVn3gKPrp7hf5Rufar1Bc36JS489zeLqcTIDvqcIA59AKXwpCQKfMAxQSk6t+4qgi0LsWtyK3zN7v1KKwPPwpCTNEuJkcsCjNwbNwTqftZU7WkdfL+AIBfnXnoJmtczq4jyXLl3iAx/4AN//8R/i/GNP0s8EO4MRWzs7tFs7DHc3GAx6jMaDqf+15xXuKzpHv5m+d8455UCQOGsledRl5r2ovZ0d5ppN+vu72PGYpaVlVBBw+/pN5ufnefypJ/nlX/5lZ+emNYPhmL3tLa5fvcx40KfX7lAtRWTxhHg8IhM+mVT4QURjrokXBkjlpiCOZqbySZY7X9VqNdaPr9Ha2+fchYtMUsPi2nFkqUwv1gSVBoMkJcks/d6Qbn+EET5BrUlnnKCxhGE4tR5dWFhgPB5Trzur0ddffx0hBPV6nUqlwmQyYXFxkfn5efb29igSC4tNXRAEbG9vU6lUCKIQFUaMU4MUHhZBY36OufkGvsxQ4m9W8/iOjXcBDEgxs/kurDOd408hZH5QD+p7td4Xn4Du/gZPPf4QX/jTlxFD8OKQZ595ll/91O+zv98jCiTdPTj5g8uU5kr8j//TP+an/quf4Ff+509yfj1g2BnQswmLC3Dl9iavvPJ5/tHf+Tn+4W//Lyw3m2zf3WN/d+Ds4KKA3nDs4rGtmQqF2m0nPKlWq0gp6Xa7NBp19vb2SJKE1dVVlPIolUpUKhVWVpZyBX+FNB6ysNggy3l8p8+sc2/jLkopPv/5z/P93//9dLtd/j/23ixG0uw803vO+dfYt9yz9qX3bi7dTTapbpKiJEpDa2YkQSNCQ1seQxfywAYMjC9sXw0wgxmPDQO6sQwN4MEAhsc3sofaIBIkRbW49MLu6qqururu2res3DP25d/OOb44f0RmFZscSiOxWpo6QCCrIiMjIyP++OM73/e+z1vSCs+1H67NZpNCyer3zp8/R6M5z9ruOTznKEcXjnN39y5KasJigWHuNHfzOG5XOgjrYEJjkMIlU/FMknF/EbTPhZ6ymvc1eFNphcmLVqU1SuW7E+3OKByuzLnS0kXKjMxoMBqdKRyZk0KMHW+7nm/120zDNjRpakMDCiZAGUGs84JQ7p+8lTKzwuOgWct2SnPGrrD6at+1ZsggpzYI98EUIkaI/GIj0B2Z9/dNhhr1ePfcWeoLy5x4+hMkccagt0cWR/QzNcP8GWMoFsO8I2//9jRSVlPueIRhMKM7+L6Pm9Mi0MaG5FihBsZMkKJIoRTg+RUEfo6zs+SUaRFtC8h7N1wHCS+Cezdi1sgKmTKkCly/SK21wKc//wWuXLnEH/7ev6PsBRQrZRqlEnGSzJItpeuQJdn+5i9nJE+jy6chJUZrklQdiIW3eLAw9Nm4u8ZwOGRp9QiVJKNYNRgp8aWdDk3xe0pZ8kcQBPnxuI9bnB7vUhhcx7ObTp3hAq5nCwJPSYxxCU+epLmyQmPlKFvbG3znq3/AcGcb1dugePSZXN7VolAoopUBB9zA0laSXOYxNTpOn9s0TXHdfb3qtBv9oBjRANL16exsEY1j9HBC+WiLb778Z3z6459k9fAhfv8P/ohTp0/T29ji0y9+iuubHUw84vq1y8y3apQrRRxXcPLYSVZWDrH40eeRCM60+wzCIv1uD+F6OK5rqTtaE08yjBGUanXCMKRYLuEWKmzdXWd++RCpyviZX/5l1tbWWT19AtckXH/vfd678A6rR09y9OQjPPnCi7x/5SLnv/ct6l5Ao9HirbPfJzU2VKfX69kI8CBg9fARNjfXaTablMtF2nt7SGFN3rNY8skE1w/Y2dljZeUQmVK0t7aZWzqMNoLW4iIi8GjNz1EulwmdCE8qjHF/qJ7C3He9yDdt0oD6sSUcf5Eel8Y+mL9IM8FOIw+eZ6dbA2uS9cCRSCff6FphGXDv5vRBbQIfrofrw7A+FEX0oaWjvPrW96kulfHPD2k1l0iSCd3tPuWKR7edQirRyiHQBU4/foL/899+hVEEnu+zvHqYPeWAFkhVAAAgAElEQVSgFxK+/rU1ricxc+u7NFyIlaa1NMeWn2CyjCxOQFmzXbkUkmYRxhiq1Rqdbp9CEJLIDCMcRqMxrVYrpxGMGY8nNJtNAtex5AHHsLN1l07PMqBrlTI3blynWCzgCI/jx08ipeTie+/zwosvsbi8iorHtJrz9JwemdZIz+fEqRP86XlFENRQosZCscW2u0ZvuEfqFAg8SzMQrk2YE9LDQaBVghHgSgHGFmSO9HAdH4GDJ/NADemiEDjScpoxxhr/OPghn6F1PsYzCk2Gwd4vjkGhcJGWyqGtOQ0hMUbjSd8yhXGRYoqzs5xUpVKk0AiKSCNBSLLcdGjktFgSGGVwpIPRVsIhjdXiOk7e/zQyB/1bvrXMyRNSOEjJAzNnCWPhe47RNozAKJvkaECmE9JRj96WJD09wfMtmUMKUFkMWJnNvd1SAGGTBVG2A+T6SGMQaWYlMqnJDWwZ0iiEY4NElHJJMkWsNXEWE+uITKc4BqvZ1hmZzDXlBzYv9vU60NkVIt9wTTdR+d8qJK7UKBXjOYZKtcbi0irl2gLd/oA4zVhcXsLxfcjxb0mS4rp+njwIqFy2kd+3QuHnm4RUj+3jdR3QgmLgk2UZvusRT8bs7uyQZaDIZRx+MKO/pDMDo4tBonByiVCOb9SzF4xMGCDHdh14LWdTGKkJA8Hh1VVCL+TC0jFG/T3aG+/h7N1CFMpUFopkOEh3/z1h6SMHEt9yqYadnAi0sht2pZRFCmqF0fsb+Z/0qhYcasUqIu1QPL5CDJw+vMA759/kyMlHWT15kvb2BvguO70OiyvH2bp2iVLZZTDu0ywdwfMdogxkqUGlVkOnmlJjkXq9zt21WyQ6Ih0aJkmMcCTHTj9hUzsLIalWvPHORbI4ZfXwcZZOJCwtL/P+ubfo7O4x2N5m2Gmz3d+jtrjC6qknefTpJ1jbXGN1YYErQYGwPkehMcf84aM88eRT/OnX/hgXw8mTp2l3+2xubrO1tceJlQWUSvFzIpFKE5RSVJpVtMxwPCsJM1GKP+dS9V1cHVOvFCBwKNWrBGGRJIlwHGGNulohXGveRmgkzszwbIzGCIMwGkeAMgahreZOmgQj7TnuR00KZ8z3nK0Pzg9W50w3vSZXgWQIHCTWhyJyetPUZLi/OZ5upA0SF2sNF1aWZwRaODjSReTvIWPIH8MHcaEf0BTw4Xq4PgTrQ1FEX758mW67Q7XZ5PRzIRdvv8NTw2MoUeXqpT7SQCY0Z8+8zTiB1VPw8Y8+wVffe5f3r/d5tOHz+ru7/OLff4HnnzO8+r3zvB6d47OffYYza+tIp0ZvMCTwfSZpgudZc4TWmlKpSJIklEolRqMR4/F4xuCNJ6MZgm1ubo40zWbJXrVajWvXrtFsNllcXmV9fZ1O4NPvj/jqV7/OP/qN/5Lr168TxzGffvGncF2XJEkYdLssLy/j+z6DwYA4ntBuJ0yGe1QbS7R7u6wsFDk8f5R3+ufwih6+dBC5vtiR1ky3z0eeRjfnGmLHw/eDnEmrZiPkaTy0UilGK7QRVg8NqPvOi8YYslQhZYb2M7S2WDxtNMpkM4nG9LZTd/oHSQPiJEZiHfTSuChlzYsWgzeTqs6WUgpcZt1zS1oQGCNxprpoV+HkY3RrLBQEgf/XfZh+8NLGdo8dg0SgtY0GFkIg1YRsuMc4GnHtwlmaC4s0F1dtkqWrZ5xh3/fvQaBNk97mWi2A/eQ93ydJElIBrsjlNdKSKfzQyiBSLTC59j2KolxqY8fxniNnFJOpBMfMwlaYsbgFAi2ymftQa6wm0/EQQqMy2zUOCiWWVg6xsrrKzXOvWuSd0czNzRGWivv4QcebSXamHdppR1rmx7ItPp1Zl9o+Xh9XKUaTCJ1lvPrd73DsxCM889GPUQx8xoHVw07NhVJKjBQowDlwDE6P0SlaUav9QveeLlx+W19Zw+2Jw0c5fOgYnd6Q7Y013nt9xMbaOo7j0B+NqTcXKDeXkI6Pm1l+tuvaScL0/b5fuNybXnjw+H5Q5izH80niEd29XTa3U/7Or32WjasXyKIJrcUFNu6sEY+GnH7m40RRTPvOe7z27T8hGU9oNuZxlUEKn/mjR1g8foRDK0tE45jDx49w8/x3aFSaTFKfmvRp93t0+z3Wrpy3zG/fs7KOVGMwVOoBlZLPeNAmGY4ppBPCZoVK0aFSD2jWa+xcfovf//63aC0fpdcb0Go1+OzPfIbf+3//kM/+3Bc48+obPPb401y/cpn19XW7UReSYqnEwqHjXP3uy/T32hQKAeXmPI7j0U4Sjq/Mo6KMzbvrHD56EmFgPBjiugHKGJbmVwmDMkuVAnOBQZoRhgxc/y9g7NP3ff3Jyng+KNX14PHPgfcDBzTYf1MwfA/Xw/Wg1oeiiI4nY06cPERYrLInO5haSqNcZ2e7jwGyDEo1WF5eIU67bG+NOXkKlo8G6H7G1eu7/O7v/Cv+4T/6H6mUYeUIPP/JR1i7uAmFlF60R7lWordpJQ8YOYv8Ho3GpClsb29z+PBh0lw6USgUGA/7ZFlKoVBgb2+PIAgpl8t02m2OHj3MyrLHeDymXq8T+S5pHLEwvwRG8o1vfINPfepT1Ot1rl27xvLhI1QqFSaDLmmasr6+znA45ORjp5hrNnn8kePc3NlDG0WiEnwnpFSqIByXQIaoOMJ18oQ+YZPRpBQorWbFhx35e4DAcVxg33glhMEGAOyPuI2wXGCMxOh9KQVYUxaA1lbrKRwJuYFG6+yeYkBKC8qbFm5TbXWSpCRJhu/azreRgiTO8vu2I3RjRH77H+xmTE2f1py1X+xJuf89++8Hd7KXaDuq1VOGNrYDJQQi05jMYJyY9toVJv029VaLQrnEsN9FYhnLhUKBcrk8SzO0z11CO47vCaqYFmVKG6Qr82hqTSEI8XyHyWhMPI7wg9BuBnM9vtYaP/SRaMgNmM4UFK2n41iNcHIJhMqQxqbKKa1x8lzDICxY4kZgN0VZu42nNEtLK3QqFeI4pr27h0oz5hcXmJubs5IVbYvnaeE4PT5s4WqPVdcVuK6fmyrBcTRZEjMNqtFao1JNt73Ntavvo7JjlGotlMESR4S0yZpYNONBA+P0d81kQlPc3YFCdnqZvjccbUhFikbwyGOPA3DVq6GzOyRRxPDOJUbjXWqTMZ5fol4/RuC7RCaZpeQdjPZ2c4rEPV6D/HsPzJwlXHY31xmN+xw+dpqSH7K7tctHn/0k1WqZi+cu8Jmf/jxzK6vs7e3x7W/+Psloj8XmAhqHpYVFMtfj1FNP8+THPkKlUKGXaXqjPs35FZJxRHdjj7arGKgMp1Ribm6eYrHI6uoqhWoDVaiRDsesXb7Ele+/RjEoopOYzrjPKJ5QrFaoLp9AVuYpK4/q/CLjaMLJR4/T6464duE9Ti8s8ke/9/v4Vr7Li5/5LKEr+NbL37bSu6UlLrx7kUKpwrjfJU1jlDLMLS3x3JNPcPfaZVwzplqtMuj2ePzj83SHI8BOxSrVOtVqHaIRzVqJQuAyFT7cL5/7gadYHETMWYnS/V3nH/AgHPi5g2hHcZ/hcGoE/KEv7w8xGd7/WKe/c/9xPtgAq4fr4fqbtD4URXS5VGK3t4GUoJyU1uEaSiT849/4Im+eO8u3X97kIx+do7fTY/lQkZ4c8+b3b4BKmAwNy8db/NN//s946iNzlApN3GDIJHHxjQ+jEWmSkWlbREoh0TqXMyiVm58y6vU67XaberVGt9ulWq1aDFPBFiS+71MqlRgOh7ajPBjlj17a+O65JoHn0pyrU6uX6HX6vPPOO3z+858nLNq4ZPth6tLr9RiNRqytrWGMYTDoINKU/uAOGQU21tuUCxKjIDKaqicso1rYwlkIk0/VNNLZ17FNzVvTAnM6ZptSEaYnZq20LWwMSMfH5F3A6bIfDLkBShq0zlDKdifiLCU1qU3oM8w6igJ5oGAxM+PcNFFRZZpM7AesGC1mF6UU8sBJ/aBRcP9kLmb3LYTByTcUQho813tgqW/pgRAcIa12PHdFooVEkKJVRtbfZjzpc/ntgNVTj1MuFmYElyRJyLKMcrk825z4vk+v2yWKolnS3ZTw4DgOmdKYOMZ1HIY6wo3s48myjEmvx/LhwweSDO1zKaXMmcp2gmGvm37QajIchNJox1IswkIpnzLk3TOxr1efUg2KxSIvvPACausGg8GAW3du02237VRnOOL4yRMgXVKVzX52mv6ptSZKUoy2xYEUEtexx4QWGu3a31vIi3s/y0jiiGuX3kPFE5qLJ/CCAo4G6Vq9qXAkzoHu7kHE3KxwcMysgM7Ufid6/xgKSFWKcBRIh0a9xInjy1yoFBiVA8ZjRZQJ2lsd+r0Yzw8xh8Y4fgEntCzh6aZhKtdJkmj2OKav5Y8qvn4Sa2FllTtX3yMMHLa31/jey99g5dgxFh57iruXLvAP/uGvESvJnUtn+dr/93v09jap1qsYGRAERYTn4lXrHD52kk6nQ8UvoLOUW+u3OXL6UXq9DstuRqNWp1Aqst3e48L58zhCcvP6DTwHpJpQCQNMptgTEs8NqFarFCpFwmoVpaFUrnH6sadJUkOns0evu87G+l1K9QX82hzvfOsbHD52lBuXLrG8usKVi+9w/eYNllYOUS6Xee+99zh+aJnu7jZ9VxLHMOy2SScj2v0en3zpRVytGJ87Q7lUZ5xZ02KWpDTma/ieYHGhTrPi4vtgZIDWLp6J0OLHlTJYT8Jf9/pxKBw/7LYHu9IPdc4P18P1460PxVZTCEG3OyHLEjbWdtnttUnTmL2NLQb9LiqTOK7hxo0RxWJIoVDBCSekiSFKIM5Srtwcc/bsLjdvXUdKycb6HgZbiNZqtVyndiDdj/0PtCAIZiavLMsIc2B/uVxmNBrNqAHlcpkgCJibm7tnDBtFEZPJBMdxqNdrlEpFVlZWmJubo16vA7Czs0OtVuPIkSMsLi6ysbHBzs4OSRrj52P6SdS3nWPjMJkMcKRLGBapVqt4noMjbZiDkxcb0+7ZwefxIMHi4PXaqNll2qHb74LdexhYIse+CfFg90zrexm309tPH8f9hcGUHDJdWmv0B8hHDt7nwX/f36W5n9hh5R3iwdE5pkkFwgaiHPxbtNnXH0qdorOYzt4Wvb1dCoXCrLs81dHGcYzWmjiOSZJkdrn/9YyzNN+Qebg5TWaaXLnfud+XLIAtrqcEkIM0i+lxMP2aTRMMD7x+AqvJV9qaC5XGssCVAeFQb7aYm5ujVqtRrVZxXdd2pdttOp0OURTN7m9qqJtKOhzpzb43LTqnlynJY/p3hWE4Qxl2Oh0G49HsuZo9/vzvnHbgDxomp3/Pwf9Pn4upKTFNU1KtMcLq+bMswfWgXiujs5hKKaRWr+CKAKElySRiNOyxvX2Tne2bs0329BiYmilhP7Xw/s3ugypY+r2hPW4dSbNZp723y+nHn+Dm3Q3Onz2H9FwGkzH/5nf/d8Sok6djNilX6hTKJTKg0WxRr9fRmWU1Azzy2KP4pTJK2LCf9vYO755/hyvvXKTkS3yhKDngpBqcCj3tM/YL1LWEwYBkMKBcr7OwuEyrNc+po6ugIm5cv8pTH3mGudYSQsHP/9wXcOtVis0KcTqmHPrcunaVeDJifn6eNE25e/cujXqdou8RRWOMsnIiTxpMFqPihN1uj/44IiwVOXr8GNK1r08QBCijcVxLiKlWqxTLJYxwMdLhLwXoEH+9RtL/mOPpR+mzH66H6+H64PWh6ETfGCU8dnSJ0nKTZOBTqhUY6wmL8wtc+L/O0DwBnU7MfCPkW3+2xhD4zd/6DN/pv0WnM2G0M+bzLz6Fknt4bpkz565w/GSAPrnKxtcMCdtIUSMjybtUilarxN7eiGazaItg13JEhSNxEKRZjIoSHOHQatYZDAY4LrZzbTRKxzQaDdI0pRpWOLKyRDSacP7ceVzX5bEnHuPw/CqXLl/l0y+9iBP4jCZjimFAog1Zpjlx4hEOr55gHHXIRIqPhGzAUGpalTqLbsJOPCAGUiKKXjGXqSpLVlOglcoJDDIf/0k8z80xaRI38NHofGwP0hgynZEqbVnNOgT0zHmttCbV1nJoVF4YaoUS1rQltOVDi5zli1EYI8mMg8IgD3TasixDaJtIqLXMi4hcMoAgy6ypkAyUUVaWIXLTi8jZwUgyrC5aSol2BHgO0vPxXM8WqMLBcR5MJ1rl6D6jpY1Kt6BVW9gKiTYgMUgdI4xCDdusX77A4SPHqVRq3L5908otPA/HkZRKJVSWMsr5ukopPN/qvZ1cZxuNbFFaKJfQ2lAslhj2B4yiMdKROI5LsVAmDIs5Qm6KGjQYbbv4WgIYvJnkQGOy1E6D8gJQ5YlpSk7NSRKV2es8V4KxxbpfrlM9+gjKu8WJqE0vFKztDWkPxly6cYtGrcqpk8cpFUOktKEkUy104Ltoba8bj8dIKWcSFikLsw3d1JvguQGBL0mjmNe/+1V++mf/LmG5RskNEUIQ+GB0glLinm6v47lkSpEkGRJDKuxmGThg/rNFrRtkCOmjsMeUYzKKXpFiawXVW6fgFghWqvTHEdvb25hM093cQwjBqDeh3lrEC6s4QYDnBRilCV0PxL4uWubBOcKRH+QV+4ksR0yIU0GxWCCOJyyGNYbGYXL7Oiods337Br/z279NzYHEOMw3FzFpBiWH+eUVxpOUxsIc165dwcSK2sk6cRYTuB5hq8re+m2i3i7ohAz7e6JojEEiggA3kGRasLq0xOqRw7zyxqukylD1Q8a7u3TUNgsLi1x/+w2qzRaNhVX+/JtfY+XQcRaOnuL1N75Po9GgWV2kUA4peBV6g7Psbm2QGc3coZN4vs9w2Kcbehw6doIoHrO9sU6U5FOz3jZpd0xaa/HExz/LE4+d5K2z71Cq1PFKBRYPrXD66GmkyagHkjCQIIoIMyY1Do6xqaMIFyVA5sZtYcSMMINJrUnYKDukwpquDxbUB7Xz02kb+RRvX7ahEdIauD+ouTBdxpj9SNL8NvLgbe4rlo0UIPJEWuHOvBACLPf+YT39cD1cP3R9KDrRS/NzVEpVtm5tgkpYXFgmKJa4cvsWT398kUa1RZwMaXcifurTp3nmmTrXr93i1t0h0td0OxkXL1zi3NkNMuWxsw2DnqJUncfxMuIhSBNhhEMcpwjBDLEFkCQWxTaZTCzuKGfVlko2QGJq9ApDK+3QWlOtVgmCYMa5HQ6HdNo9gqAwG1XHccKVq5e4cOG8TS50HCaTmCRRlEoV/vzlb+M4DktLS9SqLQLXR8e2WziOJoxHQ4ohdAebRNlgxhG2Zq39RLnpOngilVIiHasZnkYuA/d05w6Gq9zfnbP3Z+7pdN/Pj1a5WWr6dXr9zMB133Vace//Z11Aaza04TZ6VjhN/yYhBFqQu80dSxzJNd4IG8H8oHSlRrgoA8qAkblcJr8YIeyH2cGRr9Ik8Zi1O7fpddu0WvMUCiXCQgnXCymWypQrdRsuIyVSCJI4RmUZvufh5l3MaYdz2uUslUq4rkutVsN13XsmDffzvA+u6fUHA1Dgg7WeB7u2B78KJEL6IGwIULlYoVWrUg49svGQfnuP7l6b8XhMuVSgWCzOWMGeH1qUlrC8a5MH8Hh+CAhwHLwwJCgW8QsFFFbJ5Pg+URRx9+4a3fYe6Cy/5FpjnaJNNvsaR2PGowEqi2ba/4NBLwenIAefD601kzhlEiXg+mg3QLk+fmDj1dMsJlOJTdY0GYPuDlvrtxkOd8nSCEyGRoG7zzUXwiY2Ti8PCnM3Gce5tMYnmiiCWp13z53lytkzPPrIKX77f/2XnFxdQilFs9nE930azTmajTniOGYcTYjjmK3NTVZXV+n3+4Sh9Y0kSUKtVptNIdI0JY5jMgPC9YjSjNbCPJ/4xHOUy0W+8fWv4QKeffnpdDoE+Wvc3dvk3bfPMNra4Ph8g6vvniMd9rh56V02bt5gMhnT7dqI7pWVFRYWlwmCAuPxkMlkgpQu4/GYUqlEszGHdLzZ62y0Zq5ZZ75Ro7uzxbX3L2MQDPt9fM/BlYK5eo35RpVAanymgUVydo76y67/UNf3L9MR/lE66P/QbT5QXvS3jIf9cD1cf9XrQ9GJvnbxIs+8+GlGO0MiT9Hb7TJqLeI0A/7lf/dP+Wf//N+ytTmik0Ws1Gu0011e/94tJhqe+9hpblzeIBoN+M3/5jf5X/7Fv6FcBpUW+d5r5zDlhPZ1cHsxaebhCBsjHU0UYeASRRGeJ5hMJrNdv1I24SqbxHieZ2UXSYLMI6bL5TLlcpled8RkMmFpdYEsSxiOJyxWqiwszNHp9Ll27Sa/8iu/hHAdPM+jVqvR7Qx49LEnePP1N/nyl7+M70pkscx2b8iJx46wu9VjGBtG4y7j3R1WjhzFrRbxpE+tVMpH8tMENImjASNnxfzBMAchbQ4IOHlXxKDyMbdNFhQ5LcEmb+kctyWlxadpLcgy2xHNQUqzYjbOUksmzcBTBs+dFsj7Y/A0jdHKMnJtITelKLgkaUIURfkIPUMryAS4ro0WB2aFjOvauHCkJU+4QuB5LhI9K/KN+SD00l//qq6eZHfrDp7RuOQGTmHxUo4RKJM/dUZiEIgswkFx5dx3ufFemZd+7ossz7e4s7lLUCywvbuH57hUS1YfXfADRqORla2USpQLRXzfnwW1eNKxlJdJRKvVmkkbOp0ORtguq9EancWg1ewYtj5RY9F5U6lFFBOGlrttizs7+nbcqVbSIUn2JSFTmY5SijROGY0mlsmMYK5apVEvs7G5ziiKuXbpPYKgwMlHH2VhaQUcG10+GI+JswwjBMVKZfYeTNOUoh/ud+KMYTweU6s3ZxteqRRnXnsVx3V54cXPUa5WabVaecqadZnJ3OTpAKiUt86e5cmnPkKhVPkBKsZ4PCaOY4TnEIZFoqSPkC5Xb6wTxSm32wnX7k4YDAb0O5t4QhO6dhpjUY6GWiFAqZThYA9lYH7lKMVikcb8IlJ69+japybcB5VYOByOKRSKYCTF8grVRx7h7T/9Ji3Poe67nJxvooY9Vg4dodZoWVOw41GqVlhf32Tx5HFOnTpFqVZHa02r1eKVV16hVmuA0Kyvr+F6tmGRZopCweeRJ55gZ2eHra0ttja36e61ieOYuWqNuN+nWAzY29tirrlIe2eb5vwCYX2FzB1y/dotbl6/hcrG7AkD0uXN99/FCe3HWK1SJU1jovEYpTRJr8ORp46Tqow0GuM4HsdPncYvljn/1ptIYVBpwpVz3wck5WadX/ql/4Gvfv3PKYdFlpYWWVlewnegFvpU5JDClNGf+UyZyQfX/Zv5D5KqWSTdB5sLD657u80HrjMHbn9f42R2m7+A3l5KOw2x/oeDt596IfR/9Ibh4Xq4/rauD8c7w7isb2wT+D5oQ7PeJEomeDLlK1/59/zdv/cF2nsRjz+1QjQc8annP8bxFZ8vfeklzp+/zNbuAKXhm994mV/79Z9nOIThpI/UGSMFT31yHlJw3CnWywZ7TAvOgxrMfUNhASEsfkwIQaPRIAiCHItXukdfWi4W6XS6FIp5cd3rEccxpVIJYzSNRn2mra63qly9epmXPvci2qQ4jmBn7S7VuSZKKoKCi0hjsnSMXywRihKD7gBXWu2vdGxnWUjLYj544pwW0fvkin1d8wd1H2bdmIM63gPkAJNrqA/eXlugG5lWMw2tNuaeiHSl09yF/oMpeJipsVPNOoH3d/6mOur7P5D2O3Z5YAwGi/Z7cN2SxtwCCDv2P/g8GiPQ5BHpRpDp/Ps6Q+iEUChMOuTO9cuM+m1cR5BMIqTRiHxzMDWgTnW+0w3FNHQlSZI8dhqCIMiRifGs6zcc2k7c9Fidvt5w70Qiy7LZZEYIMTOFTl+f6e+fan211jPdsVKKJI3pd7ZRcY7+wqBRSAzNWplqrUyaP9adnR3a7S5pmhHnJJz7td9SSorF4j0TEsdxZu/FGVbRkBNK4MyZN3j/3QvEkwnxJEJrUEqQpZaQopUiyzSteuMHtNNTqchoNGIwGMxewyiKGA6H7LW7rG/uohwPv7VKcW4Vv9LCuAWM4yH8AokWjOOMwTglilJUmpFFEZ3tu+xu3iUaDmdacJO/X6bvyfujy39SSwiBRRcblg+vEpbL1AoFEqM49+YbJEnK/OLK7LgJw5CgUOLu3Q2klCwu2S516Fm50Y0bN8iyjNFoRJLYIJOpzvzQoUOcOHGCy5feZ293B9exOmOdYyvj2HKkx+MIjGF7e5PBsEev12FheYljJ0/wi7/891g+ssKjjz/GE089w1NPf4SPPfcsxXIVKVy63a4NtapU8H0fCXS7XcZRwvz8IrdvrXHr5m0arfncqC1QaYpQinQ05Au/8EXev3rFMtfTiGq1SrVs7wvAmU6/csnFgzzv/Ljrg4yDH6R9/sBO9Ozc/+H/Ox+uh+tBrQ9FJ7rRnOfbr77L5z5xnMANKJfLeKHgyvsXOH2qxO/863/B3dvgqnVONkPePvMm//VvfJn/6r//t5xcqRGNelRKAWfeukamEp7/xDJufcz2Wo+nnn+cVtlw442MJOsgpMCRBq0lk0lMWLBF9Dg3BvZ6PaqV0kxPORwOqdXL+H7IcDhke2uXx06dZDCMKBQKtNttRiMrtTAio1Fvce7ttygUi6ysLvH669/n+eefY2X1GDpT7O5t8tiTp3jl5Zf55Asfx/U8sizFDULeeuciq8155ioBV261OXbqWZp+jVpVARKlMsuFliIvMhXK0vhxpHufxs4g2S9gZW6cBMtmtoltYOR+gp25h/9sO/Za59o9ITAHEu8s61mjMwOuxpUeoFFRNus8A/sUDSFwHXu4TQu3JM5HvKlGa5BSW17xAYPedBljSLXKBXr71z9oDJNTqFJtLdDfuoMrTQ5VVvvbUwnS7H9ASTToDEeANpJrF89x5b0L/J1f+XWiOGVz4659zaRHuVxmPJ8K7K0AACAASURBVB5b/nOasru7y3g8xvHtOLpUKpFGtlieFmiLlQW01gyjmKzT5ebN2ywuzBF6Htpks2RElRk7pciL4jiOCYOAOA+hCDyfKLIdUj3dVGkrTxlNbGFfCMoIIehsb3Pn6nl8oZDJGCldEA6Zygh8yYJXQSrDOIrZ29pmrzPgkcefoFKvs3roCGGhNCtmHSzxZTwe25AXIfALtuBJc0dqOQzwk4RkFNMZ9PFdF5VE3Lp2hTs3btJqtajOLXPo8BFq1QoqSel29mg0alQqdaTrozEksd2ATAva6zeuUvCLZNqQZbtsbe8Sp5pL1+8gnIBiqUR99VGKSYRbrtHfucukvYFWCU5QwvFLTKIJkziiFEoKvk86mZCMx1zs9Vg9/jhhsUgYllFphuN6qEzPvKk/6eU4LmHBp1yqQxgwGY2pFku4tSaDvTZz88tkIuDY8ZPs7rZZXFhCaVgIbXE8SeyGbW9nl3qzQalUyiVrE3yTEU0GLC4uksUJW5ubbG9v47kShd00l0ulGZmmUi0xHI0wBnRm8B2J43iMB0Pe+LNv0O93efXlryEdj8WFQxjHZWFpmfWNTU4/9jhnv/cahXLIZGIYDEakSUIxDOn3+zTml7h9Z41SMSAIQh594mnefOXbpNow35pjY32Nn//5n+fq7duYSp1he4dqyWNxvkW1XLQeB0cySWLAJ3DzNEr5I6ZfwvyEak/ND+uFzTTPxnxgwTy7ThzgQgs562JbHTeA8wHd6Gkj48PRh3u4Hq4HtT4URXSvu0N3AO1uRlAySA/uXr+McSU3b19lrim4UzN86cs/S7Q15NQTz3Lp/NvMzcFur0fBK7O1NeSFT5/g0vs3iCLDymno9CDqd+nqmEh08I1DpCzmTsp9CkGaprjSdrakMFSKRfp9S8qwujnJeDShXCvSaDRsPLOyPNRUK1y/yGiS4roj1rfuEBYDKpUKYVDEoBgMxviuAzqjVKjytT/+Gp//3HO88/ZZGs15qrUixbjA8vFnaLoupr1FwQVkylZnj5VmjTSRuG6GIUFndrSuhEJJa/yTzr522BoFDcK4OBqEcJCkuapAooxjk62ELWg9TyKFMysmjJbWIMOUIermDGSr71Taps/pzKYmZhi0tDIQZZKZIU3ioEWGUtOxeW5Uywwqs/WmVoJUWw20MdjHJkFhUJK8m2swCoQSaJNhhAE8lFF4EtB2bP8gVqqh2lggGg2JRh0CKfAwoLM8wSwnwciciS0ESImJYowRFMMiqcm4eeUix06eplZrIJAoIVE6xQsDfMdBa0USR7hOEdcNiOOYaJJgjI1vLgQBw+GQLMsDaQxIIVhfu4tRmrmFebTOKBUrRJMMQYZUErTtcKssIXIkLi6ucIiyBGS++ZECRwgrFRGaYTzEGIPrhAgF3fUN3HhiP0+VizAayHDRts7QY5q+pCg8bu/1EBJ2drcYxxELK6uExTJxHBMcIMGUy2W8OH9sSR5CY6yWOQgCXGHJHmm+8ZNSUgx82u02l969S2f8fYTr8tGPfJxyucyxYycYTCLcsEWkNTqXUqgswSGfyAgDjmHc77G5ucnN2+u2O7rXxfE8Gq05Ok4ZzwsIGytEyp47VDREdddtiJHW6CxFTQSJNhQDH60yHGPobN2gWCwjm0cIShUyJUF4ON6DIcv4vm87sb6k3myxvbVOL+2jbw8J600qlVLuV9D4YYmgWGJ7a4NytYJfL9Kqtgg9nySN6HbbvHbmDI89/iSdzXU2bt/CxUpGolHfllypJlPWHFsul0kmEW5gzab9fp9Mp3YqKEPiKEVKOxVZWVnmheee5dUzb/PMR5/jrTOvc/jwKltrV8mijEwlPPfCJ7l64zpKKaLxkFqjgQTak4ywUGLp0Cq379wkLJW5fO0aSZJhlKLdbvPUx57npV/4IpfWdpBBhfXRhGrJJ/B8XCSOK9BKk6kMLTOMqoA2OFoiHT0LLLpHWpE3qo2wYUzCWFPvlHY0LWD3eelTrfVUiqH3UXNiipV0gftDUwwWferdI+OYffcAOengv+3DnX5mWGO5kXYyIQU4TDcBCozKjefK+jyMzItrG0r0cD1c/ymvD0UR3WrNI9Ihi4dPcfb172DkLYrzJYSjMUT8F1/6JxxuvsaZ17/H5559ifmFZfy5FVa+ep3wVEi3HROlBc6+dR2wnUw3XeLv/6okzgRvvewTCXCsxQdtNEJAwfdIkpRCwbfFwTDCD9y8GMkQgOe7VGsVxuMxg8EA37fs3WKxSLs/olarzYrPw4cPM5mMOXr0KI88corBYMR4ZMeCRkgcL+A7X/8zVleP8JV//yeceeM1fqt5hIVDc1y7c4dC2kfUfHrjEfOLKzgpTMSQ3kRR8moIodF6ai7MzYNItCNtZCti1hc42MW1WjcH1xVoZWUGjpMnBuY8aAy2QLU2QYy2JBIpbNSs1pBlmkxp0lRhjCDJErI0RjkKJ2clqzghU+QyEJ3jAb1ZZ3k6Qk9TNTOXpYnKQ1N8pHRQmU3F0wr7PRTaGBKVkWkrE1HGQQjyOHM5S9v7Sa/RaEStWmP12Am21m4y6bVRxkojXPaDFQ5epJSEUiBQjDsaJwi5dvE8e3sdPvnSF9htd+nu7VCuFGeyAtd1mYwtRqxUts/rZDSwGK40RjuCUiFge3tzJkOSUqKzlPb2FidOnaRQLuF6DsVikSy1kxeZdwW73TaNch3P86ysCs2g10drTa1Ssj0n30clLqVgiV57j9de+TqD3g7bV85RngxtxDGWuqFmCYjaRsFj8H2XY4dW2OkN6Gxt0N7ZZNQf8vynXqBSKtDr9WxBIRyEFJSrpVmHfToVGgwGDMe2gxyGIcWinkldpJQsLa0wN7fAaDRgPB6zdfsq2wbeevU7ZEmKEVCqttBaUywWrbkvnuTm4YDxcESajAkKIUL6GClYPXQY13UYd7ZZKGY4BYf37lxF7e1RkimxVLRnRXlq5RnKMBxNGAyHuI5DuVwk7bTpddpsbe9SKlepN+dptJozrOBPemVZRqFQYDiOWL9xlZ2tDYZ7bWrFIt29NlJ41OpzpEawsLjM+tpdnGLA2bfe5me++Au4ruTS+++hkwmXL1/m2IlH8ZEcPn6MV//4K4xHPTxppXKj0SifJlg5WKoVBkMWjfPJVILjWV+H53kUwhLj8RiAu+s3aXc2cIMApSecPn2SMPB59dXvsXroKDffv8Sp04/iBS5Lh1YZDoeM9/okasLcyhG6wzYQ06pVaVbrrC4t4YcFFIaPPfc8jzzxBPOHD3NpfRchDJ/5zOcYjXusrq6i0oxq4EOSQKJACYzIMFKjRYb8Kzrv/LgTtakm+se53UE05v3phPd8Xzq2MMYBx8FMb2dslD1ZPMN1GqOQBlJhCSNGa/zC0l/yr364Hq6/+etDUUS3u3eYP3aU1Jc88+STXHznIl98+ld56507OIHk9//wd7l6dsSLL53Ecwzf/eM/4ZmPP0d7r0sgHO5sQhwrgio8++yTXLtxERWHJJ0j/PE3vs2oDc9+5BBnv7+GBhxppQlWJwpxnOAJievuEwgajQbbWxs583aCEGammxZCzExB9brF3xWLlg29vblOrVZDqYzhsM9HnnmeRGV4QYHBcMQTTzzG9WvXKJfqDAcT7tzeoNqqUik3uXnnXSqLVZZWT+AZh36njSdTSH28UGKYgLAxzrNi2giEs8+cdaSTSz72OdjGGFzPAyPJJAiTzQJM9D0fAhbJZIxGCj9/LhxAYnKKhsoMaWLDUlKliKOI1HEouNaQZozJUV4Z5IX+tKCfFjpKKVSWEziMREoHY0RO3XByY6GNtbayE0FqbAGdpCkIjedKm16oJMKxP/cglnAc2r0etXKZxUMnuJtp0v4OEo0y6geK5ykZItJThnNGEg0JwwL97bvcuPQuy4ePUjh0iDtrtxBCUAwCjDEzHXSnvYfWmiNHjliNtGM7eQBBaF+3sGAxcUlki+V3z71Nt9+j2mzwi7/4i6TZBKM0CIXJFFub60SVMYVCAVc6+L5L4HokccLtvV0KpSJhuYbnF+h0OmyurfHad75FKfCYKwZEwz7GGDwBYDtayClRRc4IJVoIms05BpHVQXfbbb719a9TrtX46c//LHGq2N7dwXE8HFfiB4Etko0hCIs22MRYP8NoOMy1zxbzl2WZjZR27EbBhpxYScqKSpFSMp4M6fTa+ff20GlGlk5AaYTyKAQhpWKdQqFAmmFRdNoaj4vlKmk6QmSCJ48vM1mq8kd/8IdkWUIx9K2uN+/YR1NvQc4ljuKUuWrVmjbVgJFJGfZ36e41WF5deSDHrislygh8L6C/tYaaTPCCEMcNaFWrpFrhhQGRkpQqZfbaOxw6dpyjh4+BgkuXLnH00DKvvvYdRsM+n/zSr5MID7cQsLt5l0ohZBIlpOkBLX2+sRxNxmRZRimX6vi+i3S9mT58OByyvLzMlStXKFeKpEbS3tyh0VhnOBiTTsbUyyU818FzfW7fusFg0OPQUx8lSTIiP6ZgJM1ajbWNDYZZSppkHFle5e1zb9FoNKgUVlhcXkFqzXdfeZV2P8H1EwpPPEYhDz6qVCrEcYIaTyhIn0mm8KWTd2zv7eoezB6Yrnt9EvvTvQ+SVhy8r4Nff9jP2P98kJ75BzvSB9f9v08K15olhU3+vKfTrQ1CK7TRoBUqGZFmijQzpEmEqxX+8YdF9MP1n+76UAiaShXJYLzL7Y3b1GohH3/6SVrlOR575FnOvrEF2nD86BJ376wz7I/42U9/iqePH+OZT5ykEBQJiz7VakC9HnDp8rusHpqn1x3y//y7b7PYbOJ4gCjhWSwsStsurJUy3Huy2Y/PdikWLQlhasqq5NHG03HktEs2HA5xXZetrS1arRae5zEc9UnTlM3NLdt91YreoM94MmBursEf/MFXcByP8+ffIUkjtjZ3oFxkojXFQg2Dg+NkVIKA0A/tVG1W5O6fkKeF2UEqx3Tdc7I006hj996uBB98orc/7xy4Tv4Asm6KcztoELQfllk+njT3jCunWuhpEAYcNAve8yrc42ZX5l4s3z4d4qAR8sEcypbJ6pKkGVo6lGt1klSR3YeLu/+ijSCzCmmEgSwaE3qCOzev0N66O8MZTlMu0zS1SW6FAtPo8/F4SJJEJEmE5zkIYZjE4zwdT1PwPSaTEYNelzieMB4OuHL5MhcvXCAejRkNBkTDEePRiND1reZ/c4vt7W12d3fZ29ubUWuyRDHpTYhHI27eeJ/3L7/N0tISC8vLhKU5Ui8gFi6JdEgQKAlKgJEO2vXRrofxfHADcDxqtQa1+hxRbDuRk8mE8+fPs7m5Cdg4+slkMtN7HzxupvSOcrk8e46DIMD3bSFr2dohSapx/AAhXaTnI10HLyxQrjSYn1um2Zin0Zzn0OpRlleP0GouUas2KZYruH6A6/sYIRHSxeSbOyEdktSi9EqBz7Mfe5rlxXmGgz4YfU/IC8aAY4M54kQzGsVEUYLRkMYRDoLxcERvr/cTP26nKwxDHC+g394jS2PCoIh0bLPAdV2EIzl+7ASTyYQwDFHacOf2GsbAysoKm5ubqCxBxRHjKKLT6/Lqq6/iOhLXvTfhcrqRnBbKU6M2MDOrTo2yrmuNgkEQWKlHavjEJz5JvdZkEo0wKAp+QL/fJY1jUJpqscT63btIJajNNVlaXeG9Cxd58tFHGfT6LC0u8O6Fi5w+ecIG9wQBp06dYu32HS6cv8D84rJ9R0qXOEtnQT+OF+AERSapQgkXox1rJhZ/dWz6Dyqm7//+j/rZH/e+f5ixcP9+phveg2hTZSVKWUIWjYhHfSaDbeL+FsP2rb/Q3/lwPVx/29aHohN9ulnhndGQ965dYdl7kieOHKHh1yk4gs4u3L475vb5Mf/gl4/x+Rc/w//0P/8r/vF//iVWFyK80iKbg9ukSrC7HeP4tiAZdWL+23/ys/wf/9s3+fJvPcb//a/fZ67hkUQZBoGU1sxmaRaAthHgGo2QhjgZUa6EaDU92YNKNYUwRHouk2GCUjHGKKrVOs1mk7m5JtVykZ2dHXzXYa/T5alnP8Xc3BzReMRkEnPrxjXm5pr89Gd+ihs3bvArX/pVGi2Xj338Sf7w5XfJsoTQKTJfqRNPNgkdl4LnI0SGUQatHTTadviEZSYbZWO3bTdEoozBEQ7iQAiJEFNiR4JQDk6us0MYZB4K4AhrUkyw9I8plk4bgTAanWor+9CGOEsxyso6Mm1IVIzAWC2g0viOi+N4KMN+8SMkUZSRZXrG77WRHgbHcWeYJaPtydzJi2mtrYwkyzRRbFPHJHYyIHyDSjWueTBhK0JlKAVjoalX67hxQthoMOjsIR1j9fcIEBIjJNo49jo3sH9vfrxJZdjbuEttUXLhje/y3M/9ZzSqNeI4ZRJrpFtge3uXRq2ELJfJsgzP82bEjDiOrbzBK6LTjF67g+u6FAo2sGQ4HLK4vERLJbx99g3efMXy0A+tLFOtVmnU6vQGfW7dusVcq8HcXDP3BKScOXOGwPPYXF+nUAwIQ9sRr1drZEqQGZ+5Y0/S63eIRz2MTpCA5/hI7PHjTska0gdH5lxow/FTj3Pp8nvUEPS6bbqdPR558qOM4oRSsYrjCAb9EdpkhH5AElns5GQywZSKVHO8WhRF1hAZFhgMBghh37dxMkEKl0LBam99P6TVXCTLMqpKMZlE9/DXdaZI0gmO61L0LPlDywBXSrwwZNDt5thAD8cRLC8dZnn1KLeu3+DdS+8TZx0c6Vge9RRtaAQGQW80xowUxUJIoVDI6Qcp25trD+TYLdWrFAoVZLmMASrlMi+99Fle+d5rBEGI4/pUa01a8wu8d+s6j3zsWW7cvkXgSRqNOhu3r5FpgS8UAyM4f+EdSrU6y/UWc/UK6USwu9dDTAN/shSlrQTA83Lcn+viuAHGpMT5sZxkY5qteQY7G3heyNOf+AJ77R1uXH6XcrnM4SNHuPTuRVaWFoiHEUHgUqiW8IXD2toG/UnEsZOniKKIx04/wvvvvEOjUkanCYEnefOV7+L7Adu7bZTRICXFoEijVqHRrHHtxlU+9tGPUq2W0UqhEzsFcwwMh33m6hVMzov+AWmFUEAekiIMktw4mjc/xIFEUCmt9tmeaxVCYKUU5t7O9vTf0+nhFEMnhEBM9c56aiK09yuFsRK/AxKO6UXmtbKRDv8/e28eJFly3/d9Mt9V99V39/Rcuzt7nwAWwAJYUDABrkFaAGlCNK0IXZaDClH/2I6wTTsc4UNBh2U7FEE7JFFBy7BknpZJkwIXIAji0AIEFlhgsdhzdu7p7um77qp3Zqb/yFeve3YXhMkwMWNzfhEV1d1VXe/Vq1f5fvnN7yEKSkf+RqRr35IASHOBZIrSCWmcMDm4zqS7w87GBcajISLps/qun/zzPE3v1J26reu2aKLr1RrjzR5lz2dje5dzp0+zsL7GN375l/nYR09zZfMAxZiD/T2yLOHuxx7ErzZ58qn3889/60t4soRxMpvCYOBwd0oYGzZvXENl0KgvcfLuq7iZT3d3VGzXzMwUcuFHFCe0Oy10ZtEsjPXADYIOUWTtuIIgsLZJ02neoCiyLI8hHg2479zddLtdzp4+hesHPPDAAxgxQ7gz5ucW2dm5gecH/Ngzz3D27GnG0Q6vvf4qi+058GJipRlOQ0pBFYTBEQJQqBxN1swcNzxEPhGYlW1CNVhn3ELEMnvs+P3scSMsP/G4TcCseRVC5A3wUYhKsZ3cyk1KB2Gsc4bI9/X4Ps0s7GbUDrsEf3NAynG0yqJ48th2juzZTO6RPXMAcTF4jv82z98fVrmuC66DNoJxFLK8soqM+zgYknHXvrdc8a6xXHaEhFy4Y4+7FVBJHNAJvutw9eJ51k7eY23hDnv4vk+nWWE8HmPyFYJut1sk/M2400KbQhA7sw8LgsDak5U8sgzKgc/2dMw0jHnl5ZesTV0YIaXleJfKvk2+zCc2uzs3rD96pUyalCgtLuLkS9mD0YhqtYpfqbFYq3DlwgDHDXCkk1+wHQI3IMsv/EY6SNchMza10vUD5heWyNIY17Vplhsb11g+cSr/nDVu4JNldsXF9T20smh0GIbU63UmkwnlcpkwDItz+7h1neOonO5krSsnk1EeiGSoVMr0+xYJrlQqGE9gyNBGFBNQz7cod5avCgghCmu+Zsfyq+86dy+Layv8/md+x3qE582QQYNw7ViD/e5EieXMGxSe5yFvUdjKjDdfqddwA/em8BnbsEn8UgXhOAwGPfYOupQ8j8byPN/4+nPUXIeT5+7nUjgBR7KxscEn3vUenv2/fg/P88giK1YTAFKQ5eMJUIwHSCs09D3PhhRpCxCUgoCB1tQrFa5tbuCYzApbUbz26qu4UnBwcMBoHJKEEWeCU2z3+3S7h5x74EFubF6lWq/jOA4n1taI45C5TofLly8zGgxpdTrUajW+8pWvMD+/yPzCAkop1tZW6fX7DEYD5ls1At8nju1KYgB4jotWMztGvi8/Wcz84Y+V5M/vcz7ebL/TOH/8eUhRxBAaAWLWVUvxtufa13MwWoFWRJM+w+4eB9cuMer1kEn/z+093ak79f+Fui2a6NbDS9x/kPKVV3f4937uY3zx85+jKw1/7z/9e/zx577OH3zuc5w41eCZpz/AK2+8zMLSEv/9P/qnmIbHxZdSJgksLFUxQBLB4Z7B8eB3fu0CSHjxhS1+/Kfv5pf/wSv5mGcHDSmPUtx0BpWKy+HhISeWlxgMhviuTYdLkqhYPo6iiMlkxNzcHEJEuK5PmioODg547LHHbGxtq8PS8gkuXL7EXKdpLyBJyiuvvIYblFk7fTeB57Kzvc3hQZ+d/U3OnHyci9dfYXP3VRZXqmhhqNTmSdJxQQ3QCLQBlSkyA6mWGFwwAsdxb+JA2yRBiuXT40ISxxWQ2mAUo8gDMrA8ayGtmxGmuKDGcYzriDxUIyFLUrI4KZbWAYRrmyOjjUXuleU0T6MYKSVRFJGJrGg+jnsXz5oSOGquZ69r90GhEMRxXPgeZ5ml3FAtU/YFJffWuHOEcQTSpdXqEKcR29vblKtN1u/p8OZL37KuIYVQ5+j/tMrs+8v7aRvsa+jt3sD3PAaTKb50OXH6NF4QEIY25EMaTanq4/s+0+mUwWBAu90GsOfmcMTi4mKRmimlZDqd5tuX+LKEUin3nr0bpVP2blwnyzIwFQKZMhpBHKVUKmW0ksRxzH2nziI9lwTNZDLJhUjg+gHS9ci0nfTFccxDj7+fbveA7Rs38H2fVGuGGlzPOguEccSN61tcvXqdLEvItKJaLaPSjLvChLl2h7r2uPzKq9z94IMEQalIwgvziew0sh7sw+GQtDfAGEOtFuD5JZRSNFsdoniK49jzbjAYIBxLeRqM7Gv5fol6vUIUWeHvLFo8y1Iy4YGAOFX2PeTCxSTNqObIfhiGhRe8EPa7US3X+Mi/8TF81+OLX/g8WZogjQZjcMRRoqUREKcRYTylWilhKpUf+nkLdsJkTMLphx/hqu/jeQ4vPP8NjNI0mm26iWZpfZ3eaMTZB+7l7MMP8MKX/pDLr16jXKuTZIBw0Mbh7F33MJUev/tbv8Vip01fS6RfRgiHIPDpD+1EZaZdqOSOLL7vo4VdVSnNju10zP7mVYxfobG4xqS7yXA4ptacZ2t7h06nQZZEJHFItVImiqdcuXKFclDC6Izu/jadegkhNM2KT5LEROMRf/zmGzz22GOYZIpE0KjWKDseJqjQnU6p93qcufsu5ubmWFpaLGhDcRqRZAYZK1zfoJIBSZbg+PomsOBWVkHPOEbpe6seo/gdiXEEQrr5853cZePm92KEY5kdWuCYDKUi1KRP2Nsm3L9Gb+MapVHvh/9m79Sduo3qtmiit3ub4CSsn4GSdOlud8nGE7Z3tjh1eh2/BEsLi2xd3yLyBGvn7kJF8MT7H+X1F17A92E8nlAplxhHEXEK1ZrPeGDATbl49SJnHlgjCCCObQuttcZBFuip5xlc17fc0UmU295Zb+UZz1IpxWAwYH19jUqlUggN43hYeNs2GjXCMGS/26PWqCOEoN/vsrW5zcrKCuVmAweHcDJlcWkFrTLqtTZrzr1cub6NVHNsXdtkaaFJuWpw8iU829ZKjFGk2liLOaPRhf3QETr8NqT52M0i1aoQEKJn9mvWS0FpjdCWywm2qXXNUSy3Ngqls5saXa01wvUw0sGTkkynxb44jmMFiceQ6NmxvGmfin08chYROdRjjCHLkdUs03kDbZAyT8tLFFnwwztfj5fneRgpGA77+L5v3Ug8B6MzKo0m8XBgBUga20wjiiRAe+yco2MoFL4rQRvqJY+t61dACu55+Am6h30GKsHkoSQz1LDRaBSBQa7rkrlWsOd5FkXNMtusF0itgVazSRxaykNnfp40TVBZQtk3NPJIZ2MEJb9MkiqGgwFxkuC4TqET8PNIZiFEQS0RjsvuYZ9apUl7Hg4P94nTlDjJ2Nm/RpJkjMdjhHRwPR/puOjUbstxS9zY3mcappw94RH4LhcvnKfSaHLm9FnG4zFeKbDOIgbiTOG6/tHE0PFwXZvkOBwO8f0Sw1Efx3HodGySo1IaKW0TrgyMpyGOY3mvpZKHK0oEgJOlRfiM1TOYYkIyS4qcTaptI2oKylKz3iIMQ9731NN8/WvPIXUCRuX/axBS4Hs2wdR3cqGpujVI9Hg8plbrEAQBUtoVpyROCv65dAO0FIynE/Y2Nzn3rvdz5coVRBqRCcHZU2fxfZ9q1frqP/7oQ7z80otUKhWarQ7j3n4xTriui84n5bNY+tlxM0ohfL+Y/FunlBKi2iQIAi5sbVCvNVlaWmJrexNHCFKl8aTDeBrSbrfzc9aOLb7r0KzVEa6HKySdhXnSNKXk+0TTKWmaMr+waFcyGlUWFpdZPXkKx7Uc7UajgTEWDEji2PphxzHEGS4xKnPx5QITnQAAIABJREFU3aMGVRvzVtCZmff+zb8f1VtR4mIFTnx/YWFxb975sePbsqmzR6t7s+dZSpWwk5kcgTa5GPEtFvxYzocBnCNaiFEYlaEdBVKi5K05d+/Unbpd6rYQFmZTyY2kx/x6wD/5zX9O58QqKozp7x9yefM1/oP//G+iogE//YmfYms4YTCJ+Ls//yle+fYVnv7RdRwJge8wHkc0mgFSwniScPaRFJTL7ib0+lP+xs89xdFYNmvo9DHagv07gOv4GCMIw5gkjUDY5ywvL1MqVdDaWvP1+0PiOGZ1dZWzZ8+SKcM95+7jscef4GMffYZrVy5xsLuDMYbRaMzgcB/fg067SbvZ4rvf/S6D/pR2/T4+9J6/xsee/nnuWXgvvlhAl2poIUkzTTpLj1Macls6bQSZMnkoig1QOV5vVYQfF+JpnZGmMVkSo9IElSYYlWFUhpDmJgFfFEVMp1PbPEQh4WRsI3OPCfwMMkc23HfchyzLmE6nxe04Gj0Tc87s72bbnjXaxxPzwjAkiqICCYyTjDBJydSt8olWJEmC4wpKvkX8M+MQKYfVE2dJjSBKU5Q5OqYojVEpRtn3n82oLUpj4ggTTRjubuILxZWLr9PrHbC6vkyrZS3oZser1WrRbDbtfqQppVKpSGKr1WqUSqVCmDcajUhUhiz7TNIYWSqBH+CU2vjVOVrzJzH+IqXWSZpLd2GCNolTIvUCOmsnWD17F+3OPHPzi0jHIyhZAVq5UsP1ArxyhdbcImEiSIyHV22zcOIML77yBheubTGcJISJwi83CPwqtWqHWrVDs1TFZII01WRIDvpD3rh8kUwoRqMB09GQ82++gR94CEeSIdDSodJoUqpWSFSGFhClCXGWMolCvFJgnSWCMkmmSZWxXtrVOtL1MQIybVAGRpMx40nIYDgmSRWuZ4WP0gtIlSZK0iLRdDZhcByHZrNJGIaWd52nRI5GI7rdPqVyjcXlFZ75+E9w6uwZyuUyi50mK602y80WzVKJipC42uAqTfAO8dE/jJo1tLVarfDp8T2HUhDglQJwfOaWlphvtfGly4XX32AcphjH4+w99/HaG+cZhyGTMMQIyebF86wvriCDKm6pCtLDzY/bbIz1vMBqJZQVA6dpShAEOI5d9atWq7hegFNpsLh8gsAxSOEyHgzZ27zK2lwHqRRkKRJ4+IH7KXkui3Md2u02T7z7cdaXlphfWSFDsNftsbN/QLNeRsURmxsb6DTDc1wa9Tr3PvwIrc4i8602CwsLpKn9vMvlMp7n0Ww2SdOU4WjE/v4huzv7xNMQE6ek0yOB9K2o70fXeEf0+biQUDp2rJ4h0NJqFAw3P99g3XWQDsYtYRzfelVLgaN9hHYwt0iLcqfu1O1St0UT3am3SaVhNI05/chZIkfRaDS4duUCV65cwROav/SR9/Gvv/Yc169t84UvP08vzHjxe4e8+soGYQzVcoXl1TLDQUzgAQL+9t/9UfygBRlUK22uXHvDxmbn/ZZhZkdkfZSPBh47mMzQDTtQWlpDu92m37eoY7PZpFwuF+Ktvb09zp49y5kzZ2i1msTRlO7BIft7e9y4cQOtNdVKiUvn30SnGVcvX+bUiXV2t/eIp4r51gpPPPpB5psnuevMI0SpZBolRaOqtDnmxuHl4pWbLZWOZ468Ff0wxqB4S4z3W9w2Zq9xkzvGsYju2Q2OBvEZmnz8/9663Rk15Ph23uZYobOb9gcs1STLdOHQYO3xNGmSkaVHriC36lpmGwOXMJwyGg0L6orneSSZwS9VyJSNF8aoXMRprHjIWOX7bGVEG3uMNIYsTkBlVD2Xbz//DbY3ruN6HjL3Ka/VGoRhSJZlRSPd7XZtEInrFp7LjUaDLMuYn58vjnlQLpEqg0YiHQ/Pr5BpieuXMcLFCJe5hWWcoILrl5gmitFkihAS1/XwPJ8oiimVyoCg0WojHZfxdEKlWmc0tmgfUvLQo49gjCmaJ5OpPDQipxr5JcrlqnV+yD/zg16fG9u7NpExiUjCiDdffwPP89jb3skTRiMEDuVSFYykVm0Q+GWkcAn8MnGc4jheIQoGSFNFpVIptu+6LqVSqUBKp9PpkRtJltGZm6dWbxQOKY7j4HgWRR2OR1RqNnGvPddBa838/HxB+fK9gGq1yrvf/SQfevpHivh2lWU4RiAROEaAMresEfOkpVZJQyH0sw1vhusFVGpVWq0WSwvzjEYjAs/Fr1RQBlqdOeq1MmXPY211nXP33sO1qxe5ceMGXlClXG2QqgzpWEcggWOdQHIXodlEcDYxSdK0QPetew2M+j0uvPkGS0srfODpD+MKiKMpxpg88MpQqVhKTikIKJfLVMoB5WqFZnsOIQR3nzvH2okT1IIyRmcszDXJsoRu75C5dsuuUKQxcWgdlzzPw3EcdKYKm8Qss/qL0SQsvnMqTYrI+Xes3Ed5VrIYFu3f5TvM+fWfci71fTnPb/ndCgvN2x7LJY7f97VseyCLZxopcqBaIrUALW7R9O9O3anbp24LOsf44BKPPLRCPDXcdeIc3/zCN3nz/AXSEnz3uzc4fPVf8p/9/E/wK599lhMPvZevfPZ5/uuXfoe/9nOP8OV/9T2MgVE3ZWF1ibLYpOR5ICL+1//pWyTacvH+j1+9jKdgdR1I62xujRBolLbiCqkSknFMueyCI1GpFezV61WSOMmRPZfNzevEeVz17u4WjzzyCIOBFTaNx2OuXnodMJzPY8Lf97730ao3aDQ90iTjxrUtJpMJ5y9eoNFo8OXnnsuFX2VG5T7tuQ7RpMI422cSpkDKXKmCVilCaLSQGKNJdYYwjhX4C4nJsL6/KBBWnOMJa6BvkGTaCptinaETTZxooiiDLMXgIYwVLGKsgwFSEGcpGoNKUtIsIUkiVGqpCFqlZEmMUQqMweT7M+NXyzyhb/Zzmqao/LFUKYxKrBBU20ZZKdveR1FCtV4hyTLSHF1WRqKVbZqjOLH0EAPK2NdWPkTxrUGikzCiVCpRLVWQUtLv96nX6/R6h6ytrZNlmrInufjyt9BZghAW9ZldXm0yZJ4UiSCVDmhwPMnh5hUc32P5zDne+NZznLz/3bSWl9m6cgUpJZ1OG6MtTzmaTG2TubdXUDf29vY4deoUrVYLAN9xSacRu70By8vLOI6Tc/wnlpYUjel0OhweHrK8vExnbp7hcGj9yZ2ANI4oBdZZQggr7IqiiDNnVhhNRyAdMpNZaqVjuZb33fsAD953H9/97ne5cPmy5VOT4Qd5gyIkoZrgOi7NZpksSZlOp7z4yht84/lvcdfZszz80KM4nssbL79quczlCr29A9bPnCYaxhgBvYGlbghHojE0W52iOfZ9n93dXeI4puJX0GpIpVazjRwpjrDiRUWMQmGUpFGrE06mxGFEpWJjrtMkQzpWmFXySuzs7FCv1zFhaFP8fJ/9bpcTa6vs7e3RqFXpj6Yo7fLxn/xZvvncl+h3D5H5urkWlh+txZ8QH/3nWL4jmQzGbG9sksT2HOz1utau8+CQxkqF6XDIlz7/uXwFqU+z3SEcdmnPLbC1cYWlpSUub23zxoU3efTxx+gPp5w4uYZDyvXLF3F8h0Qb2vMLNplwNCqEsHGSEARlKxLWhsWVBfa7h9Q7LRrNNnvbN6iVAp76wIf49gsv4Poe7aBNliUoAb7rcfnSBRrVCv1uj3seWqfdaTEZh2zv7lAtB9x7eo3trQ0aa8usLc1TcQVnlts4pYD1tWWoVplbnKPeblCqlqnl54XruqTRhJLvMxpN2d3bpWw0/cGYQc8QtKqoioPUHsoY3JnThTYIjA0qwdqpCmMQaIxOENIgMoWQBkfaVFHIr0FCMLOeFsIpvJ5tEzyj7Fkx99t4z9wcrmKEQEgnT1MUOBKMAwiJIz2MsLHvSBtuZJBIZtxoW/abZCxNzwgyZlQQgZImf+1bc+7eqTt1u9RtgUQbUcIVFuG5dP48gW9otNr0BgOiBMYHE+5eO8EgVBgpOHN2nSyFl156mWkKng9xHLO9tU2n0yEzGVkIF18bgAN+3Y5p2oVqy0W4Kc6xcI4Z6um6giQ5og5YFNa6HsRRWqCk1Wo15/oq9vf3EcIwGg24664z1Ot2EJ5MJjQaDXZ2dtjastHLruPQ7/cL1DqOYzqdDp1Oh62tLUajEfv7+yzML5KEWfGcmRPF0eCZ+ygLbeFMoW3SoFGYYlATaMgv0vZeIQqv5ePOG8f9nyEfmNGInP+mcl9cnamj56sZheRm3l/BE3zr6x1HOsTRYzYNUWO0IEsp6DVaq7eg5HlqYgpZakNfZnSSGVJ+KyoIAoSwARtJktBsWh5no9FACXDK1pnCOB4K1yZ/zVB2cXRTmJvuMww4kjTL6B920VnGtSsXqHoWPY2iiDiOi4CRWq1mefyeZDjqU6mWWFpeYDwZcunyBbq9A8aTYW7p6BQ8/ziOCyu8arXO3t4B8/OLRFFCmiobQy4c/FKA6wcIx2USRsRpRrPdYXF5ha2dbbrdPsPhmChKsMv0inK5SqVSY35+nqeeeopnnnnGcoMRjMKISZZRqlR56MFHuO+Bh0hSRbc/oDcYEUUJbqnM7uEB/ckILWAyHRGFE/Z2t1lfXSKO4wLFnTl7zNDByWRi6T5xzGAwoNVq0Wg0EELgBiWyTGO9z6FUqpAkGUmSMZ1GhdPLLJl0PB4zHo9zFNvy0cMwLNDbKIoYj8fs7u6yvr5eTGSQgmrVouw7e7vMzy1y9u57iFMbAGOtxDRa3BokejqdIl0XtCl4tDO6ShhO7HPGQyaTiR3vkhSVRJw6cxeVao1UCfqDIe12m0azje+V8pRBG9teqlQK4Z3vW7665V/fHFICFrDo9awt4/r6OkbZRMlqvcZXv/pVwjAs/PCr1SqVSsUKaB2XyWTC4vIS9XqdJLa8+1JgNSuri/NUAo+dvV1arRatVpvFTpt6q211H34Jxw/QQjI/P1/QS4CbeNtRlDCNE5SRNhFxOsGkWaHz+H+aOPj/Rr2VD30TVeMd/mZvTq7/cXIrUSfnQFu0+R2RaDNDot++rTt1p+6UrdsCif7emwN+7MOPsp3uMEzGJG7IN7/9Pb51PuNDH1njH/yN/5hYbhE0a5z/2vOsnlvlQx+6my9//iLrp+a4e6HEpQtb6DRhe3sf6YLnQRpXOXvW4/LVPk99BP7KX/04v/IPnyV1MwSebS4NKKMRQpKmGikhDEPblEmXKIyR0mU4HBc+s1LKvGma8sILL/Dwww8TxzFXrlyiWvJwHY+Dg25ui+fheQGDbo/xeMo4HDMYDOgsLpMkCRcvXqRer3PX6TPs7e6ysrrKJBmh45RWcw6/HCE9H3RiBYRGorIMY6z1G4BSKcJo63/tWP9SKVy0gxXguJBgUJlNCkyylFQrMqPJ0hSjNZI8NUxKi3oDLpZigFbHOLxH3GqBa/dBZMVFxHVdVA7EGDPzQ825dvKo4dV5+qExNgFRKYFWBuFYGk0Q2OCMIzGipXUksfWultIgM1HwwdP01jTRs+CdmWPDDMWSUjIYjOi05ojCKecefpy97RuMu7tHy/c5+ny05Hp0UwI8aRGm4eAQZzrCjyKe+/y/4uEnn6ZerxNFIdPplDR1MLnwM4otlaRU8hkOh/mxN2RZvp/aRq9PJhOUUgVqbVcKoN2ZJ0kVUjp4fokojunMLSAd8Jd8O2k0hkazidaabrfL/NISKrXN12QyQRuLcgWlMlEcIrRBKWi3FvjUp36Wz//hH2KkJFOK0XDAC9+8ggAqpYCS4zDXrBGHU8ZRiNaaL3zhC0gp+dQnf4okCVFZzHf2tplfPYmUkpWVFfb39wEYDHrMz8/j+Fbw6fgerhCEcYxXsimO1Vq9CGYpV2y8tNYa6bikmfWRt17ToqDmeJ7H7u4ujXoFiSFJE4TRlAMriBslMb7rsH3tKnv7O0wmEyajIZ7vIo0gSWImwx46y6j6vsX4LEhYoIw/7HKkj/FdhkMbajKdTimVSiwuLqIyRb97yMHeLrv7e7zvsUdJpiHhuMvq+vuYhBG1uUXm5+fZ2byOX67Qbs9x8cpVXM/B8ct87Mc/yaf/8WtF6Eqapji5U5AQogjImTXuOs1QRnP12jUqeRM8HNoGXgqBl2s1wjCkXq0x3+ngGJiEU8LJmGm/zyQcU682ePyh+7l25QIX3niFTqvB9sGQsw88Qn84oFWu4HYWcBodtF9lMJrYQJXcDnIWB6+1to5AU8t3397fwMsifOWQZRG1Wp1WpVJM4Aou8TE6GtwslJ5R8I6LwKWNly2e81aSxGxseKfm+fjv5pjAcfZYYRsqJNL1MFhbQetb7xydeyYXsJtjkwFhcqs+edP2LQBjJ6BC3BY43J26U7esbotvQIpLo1LBMRmZ1Jw6d5IwzKg4Pv3DPR554DT73X2CRgvhOSwsVbm2cdH6OAvB5UtbpAmo1KI79WYdraHamHL5jT7PPPMgTz35cXDHLK4s0F6oFA0o5MFijlP8nCRJgXA6jkOapsUAopSyXr05QlEqlbh8+TLb29uMh33QEE1tqmGWZYxGI3Z3dxmP7VL5dDqlVquhlGJzc5NSqYTW2iZ/JSk3trYQwiARLM0vUSk3Cm623b/jiYJHnOTjyK/9282D+QyNfjsP+RgynSfh2RewyLYonDwMxzl+M0R8xm98q4jlB9Vs/7SGLLPostbymPDzyF/6KAlRo7XMG+cZl1S+DRH/YdbsAjoTRs042nEcozN7jxEkWtNZWGSapCgp0I5EC4GR73yPkPYzk8KGMaiMwHHQaUitVisoBqPRiNFoZPn21SqdTodGo8GVK1eIosh6OOeuIVE0pVKpUCqVitWWnZ2dwnM5SZJCRDqLy65Wq7YpDypMJxGO9NAKJuOQOEppNTtMJmEhGNVaEwQBo9GIyWTCeDSh3x9ZxDeoIo3kofsf4HB3l8OdG8STCYHr4EpB/2CX7uEu40HXRgo7Dq7jUK9UCVyPK9eu4gcuo8kQL3AJowlJGnFwuEep7COksQmIeay9cCSHvW5uQyjItEI41skkCILi/Var1eI4ua5bPDaZTIqJ0WxyNOx3GQ/7GJUSeA7T8ZDxsE/3YI/rVy9z5eIbDA73ESolcBzG/UMG3QOyNLT75WEtJqVACIkRty6yXmuLGO/t7940vqRpSppE3H/vvWxtbXH27rsJcpvFwHVZXFjmoNvHL9eQrlPEnc9cYiaTEXML8+wdHBZe28edeAonCo6cJOqVarHtdrtdTJ7n5+cLsfFs8jk3N0eappb3rw2dTof19XV8x4BOScIRW9cusba6RKoMmzf2UEJSa8/hlpoov4pTrRPnHP80zQrnpWq1WrjNzFYbG80W0vEI44hub0B3kHA4mjDNA35m7+PPq/4k7vMPQqCL58rj4S0yt4m2xppHjfOfph34s/zPnbpT//+r2wKJHg1TvvHiN2k0S5w41YRU8eBH7qb20pTNa32uXP4OX/jKi4wGhlDFJNGA97xvnvEObF49YGG+zX7U4+SpOXa2Dxl2Rygj+Q9/4Rl++ze+wOc+8yp/8NmL/MJ/VycloTmf4QYQxuAJSA1ESZr79QoQHkpnpErjKk2aaYgSkvCQcrlsRS2lEq7xEcJhEtvY725/DMYlOLa8bpuSCOkEOc/NRTo+4TgkVYq1tTUkmq985Q8o1+d5z3sfYTSJGU9HzDselzZusNQpIbXAlYBw7UXYuKAEqVI4jsQojeNIXHLLJXEzDUKqo8js2UXJ3ku00Nhx1kECQqcoYe2NhBA4UmO09Wp2kGQqQ+VBHqWgitYZTo6oZloRSA/lJGRZCogiptqi1RrHEWhhCkcRoyVK5bZ1CHQqMMqQZArHAa0zG7eepmSpRimTN/spWayQvksU35qwlZnQcuaaYVcrrAXcsNdjPLZx3bXKGr4rWZtM2d28SklaDqrMkRwr2hEFIpW51ucWQGqD4zqMB/t4XsBnf/s3WFpd4ZH3vI+gUmZrawudalaXFrl6/UruiewxmYSMx9dYXl4mSTLCMKZctk1mrV6h2WwyngzpD7rMzc2hMsNwOKTVatnVkk6Hvb09KpUK169f58zpk2iVEsUZaaJJVcZ4aD3TcZ2i8YnjmFarRa/X49SpUwXlYTQacXC4y+HeLj/xsR/l13/910myGMeRhNMpSRxTKgdIoXOWkiFNLf8d4OWXvseL3/4OH/vYx4jDBJX2mBgQcx12JjErKyucPHsPo/EYlWUETmCdJ3L+9qzJ83zfOoKgaLfbqCQjimLSOOHg4IClpRWyzKbqZVnGje0tfN+3NJp+ShRN6ff7ZGpmJWi4ceMGSRyCOaJ9CSGKSWAUG3zHRSUKWQ0sRQqQzvdZSv8hVK3VwHckvuuQuJr9wz3uuedeskwxGo144cUXcIXL3t4eUbdHoxngO5Jqzef8l1/l8SeeJDAhtXqFUlBDCUF7fp5qucLn/+BZ3v/ke9FUMGKA5znYtG+B1obpNMT3PaZxhDCCre0dyhWfSqVC9/AQhKBcKiGkz+mz9xAnEcl0RCXwGY1GGCEZhRFLSwtW9Om6tOoNhv0+OIrTJ9YZhjFJtUm5VaZ0MKI7iim15hhPhlT9CspYuk2326VcrhThPaPJmPn5DtPEjjfVWonTp09zsHGVw/EBV7aHhLHPUmOLTrODV5Y4nrCrdY5EG7uyZ8g5bzorgAhHz4BdcxPqK4RA5gw94+SP5zxnW7MALXnkzS9ETvGz+gOLYjuzwRZHGKScpR26R/H1cvZcgxA2DMo20zefH4bccs+AcWThcw6QaW2dcu4wO+7UX/C6LaaRnpZcvTzGkwust05xsLnL0imX+97TZHtzyjde+ArdeMSr39vioYdP89prN/iNXz1gFB2AgP2DHk996GGubxwSJqCNA47mv/2vnuX8awkPPtLiv/kf/m2+/PsHhPGQOE5QiYMnPKSxQ1OcSRteYryjcAWVMA7H4EgG4wmp0QymQ/yyS5yF9IddEjUuOHTdfo+9vT36eTRwGIb5kjocHBywtbXFcDguLtDLi4vU6hUQivWTyzz53qdpzdWQ7ph6x2PnxnXKQQXpOAh5s6+yVb1Le89x9DdXUufcaNs4m5ss5I5b0x23Q5rVTQKVYwiLFG6xDOtKicTgIPCkd5PqflbHkXDXfTtafeQVLXCki9ZHCLnK6R5ZqklTRaqS3KXDFHxsi0YfpSjeqjqeyKiUYmtri36/T6nkM5mMSVNFfzgiThXzi0tk2pA5ZVJZIpYBsQzIRIASPll+c4WdFAhhxTyZ0WQalDFUPMnhjRtMBl1ajYrl+roOo/GYpaUlarUajUbDTtCkZHt7m+nUuhr0ej2GQ+trvre3hzGGyWTCaDRiOLT8VmMMjUaD6XRaRIuvra0Vr+HKPDCjVGZ9fR0hBMOh5VtPp1OklIxGIxzHYWdnh2k4YW9/t0A8Pc/jy1/+Mh/96EdJ05TxeGJ923NU3+RR8zqfYMx449K17hifefb3Oez3SNMYYzTbW1usn1jFoLj45gUC16KfM4eSNE2pVqvFBFhrTa/XY749x87WNhvXrqPSjDC0KP/2jQ0Eit2tDaJwzO7WdV5/9Xt884+fY3PjMocHe4yGPXa2N7l65SKbG1dI4gla28Z4Nlk9HijkOE6BpAohkHk40Vu/Mz/MmtF55tudYrwyxtgEQd/nzJkz1GtNPv7Mj6OUYjLqM9/u0GrWefLJd/PU+9/Piy++yMHeobWdjCMeeOgRyuUytVoFhGb95BlcL0A45OiutJN919oEOo5Do9Vk/dRJMq1YWVu16LRj9+/w8JDRZFSMyVqA73lUq1Xq9TpCulSqdcqVGoPJlPWzp/nxv/yTTI1L7PgYt0JiXFKlmYSRjfkG4jDC8+zKw9LSEsPhkKX5BXq9HsbYNNBJ7tYShhMwiuWlFZqtDoNJzPb+hKtb+4wnQ6J4jBBOkeJpP+R34rn/YK/oHzSh+kH/cxP6DNYL2pG2YRcO8Gfveo0ogg7zc/zWABd36k7dTnVbINGP3HOSN98cs3ltHy8dcXh9iF9rENfgA+9xubq9R6okIoHuwRBXtmg3+vS6gLW95I+/9jJSBHmyXkbDzPHzv/BjrK7X+P3f/Toq3uPMyTPsb8M0TFic04zHY+IoReDRajVp1Kvc2LiOUTYBcDq1yv1yBTLt0BtaWkW1lnDY3afdbtAdT6hVTJEQ1xsOmEwmpLm38YkTJ7hy9TqdhUXCJKbZatPtHgCQphGDwTYLcy0eefABPvmzf4tf/B//Os2lPb7z4tc49+C9tOc6qGyIlLNQFYEQLlIKhCMAjzhLkI4EoQB5k3BPZRlIB2X0TRZ1swu85duByBExKSVSSBxtI26FEGTKLu170kGZPKjGsVxbKS2lwRHWKFBlCiWOhDbHExNts2lRFiEMjjOjdNjG2PWO+NZpbnk1+780M3bZNQOlQGUgpSjewywc44dds/eXZVkhLJydC6VKlTnXJ0kiOh0rWhpMIp547wd49ZWX7P+b2aTHSkEFBmEkJk1RwtjPDi9vbjKiwxH3nG3hOA5f/eKXaLY7PPDYYwx0hqgEpElcLHePRiPq9TpSShYWFgrP6N3dXbIsy4OD1gs+d6fdKBrJ3d1dgsAiub7vMxgMuPDmGywsWOSvUqkQx3HhSz1LVBRCFBSo2WO7O3v5OQD9QY9ms83Jk6cZDEZ85CM/yuc+9ywlP8gndjqn9FhhKxxZf2nHsVxiR/Pi69/j3PpJ6nVrM3nh9deYRiGtZoety5cRnk+j3eJgb98mW0JBz/K9gIVGh8tvXkRKyWKng+d5XL1wHozkcG+D6xfsCsJ4PGZ/f7d4r/FIW1u4fMVBq8Si8rkY0RUuaJ2jE4Igt9Arl8tkWXb0HTuGJt6qJnomzIyiCJUZ6vUm1WqN4WBCZjRryytkSvDYu9/FF7/wOUgGhMOQ65cvcWJllW8//zXuf/BhLr/2ciG2DIKAg4PqyRp1AAAb2ElEQVQDzpw5w1e/+lUqzTrtuXlGvR5+qUwYRQAEZR+kwRH2WCTacO99D7K1tYXjOHgywCkH+GWJgyIIAjLfRxtFULJJmtVaC7dUob2wwvzSInsHu5w8sQ7lBmHFIUsyssGYJIxIsLZ80vXtmGLsuBWGIUtLS4zHYzs+JSlB2aZkTk2GSjXxZMr29jbKaFpzHd7c3WI4SXn5suLsmRssqg7lesvaWf4paB1/5iba3Pz7jEd9XFth/ybtTboYeUxzwSzAC/60TfU7WaLeqTv1F7luiyb66qUtHnnyPQgzoNd9g7Nn2tx//wf56je/wf/2S/+Qv/Nf/Jc8fN/T/LufuJda06XZ7pCGNabxHr29MQ8//CBf/+Nv8cGnP8QTTzxBFo5ZXm3wv/yz3+bDn/hRfuKDP8NXvvIsCw8/xNKH78PxfMgyPL+MTqd8/fnX+Cs/82Mc7G0TxyG9/YTPPPtZHrj/ESaTCd3BAZcuXODqxlXKpSoffOq9XL9+nZ0be0wmYcEpnSVx+TWfwXhiOZSTKVGacXB4aJsKKalUKjz66KO88vJL+I7m+uWL/PRP/xQiGPKhjz3IH/7R85w8O09v0Gd+oU2p5JMmIQYNRuG4VjRltF25cxyDpXQbm/4lpV2mM6bgeCtjOdpp7ugwawS0sUmFruCmxlcIgdA5r1rZpsDJl+td10NrgevkynpJgf6pfFBWmX19R0hczyFTNgHS4OHGDmjNdJrm47q1/LKv7RQqfBAYYxHnNNWkiRUVYkArUNnNTfetqDAMqeSxza7r0u12C6FhfzAs9m3mt10qV5gkmpXFBXZ3bhwtjypj7QsRCAHab4FXtWu/rvV+1pMRcXLIxsE+rnRYmuuQRhPiQZ9y4ON6HvsHhyQ5V3MWFNHtdonjuGju19bWiOOYWq3GcDhkdXU1F8ZeAeDEiRN4nkev12Nrawuw58Ss4TbGsLm5WSC7URTh+z69Xs+642TZTdzidnuO6XSKIySe69Pr9WnUWyilCMo+H/zg0/ylD/8Iv/iLv4iU9vypVGpM4ynGKPRsxWKc4LseVdcnG03Yv7GBWEipLC8xje1Er987II6mzC0tc/XSRVZXV5nkkdNWNFZm4/o1sizj8oU3CUoeW7nLxv7BNtPxpJgA7O/dyJFke1ZnaYg04OerLjpNUInCGEHJs84d1aq1/8uy7G3N8SxF8nZxOKhWq4V/NUhqtXruemPoDXqcP3+eu+57kI2NDdZPnSLc2+Bgr8uo12d1eY2djavU2x3K9TrxZESv17OTtIN92u02Z06dZn6+w3PdPcpLZbZ3tlAm/24biRCu9S+Xkv54wur6GaLUro5VyzUa6yuoKONg8xrKdTlx+hRJGhOHU84sLOQTEJckjZHVBveeOIGULvujMYNpSpamaCNJhGD55El8v0QcJQRlO7ERWD41YIW6YYjRmnAyRWeKixcuIYWhXa1S9UtcuPYKpcClUqsTh1Ou7Y65tNHFZNBZiHBkCeP777iK91Yv8OMrgMdX56zr0s2iQNsQv50H/f340MxeF4mRlgKCdEFKG6iCc5R6aGfvf3IdO1dn4+1b39+dulN/Ueu2aKLHQ+hPBqzMNxjtS5AOWxsXedd9D7HYKHPqnjPce/ddPP/tr5OGde5+tEMybVCpLfBbv/qbHNzw6NQEF15/gcWWQ9jvUak8SL2ccrDVZeWheV574RLlZpmz6/cTRYpBb5/3PvV+rlx6g2rFY29nm6XFFlsbfZaWSvzCf/J3kCJgZ3+XOA4ZDB7n+W9+nXKpyl/92Z/h05/+NOfOnuFf/It/iVeao1qtFgOMDcBoF8vmtVqNKBcHzpDg73znOzz80EN89vf+T37kRz6M1pCkB2ztXGE6jVhYrZEZTRSPbRIe1h+a3NrO+jFLtDZI58hfFGNyAYk5EhdijoJK3mIHp6xLNMeHeCEsb7FQeCNyIp8EdxYpK/HysdVxRB5PbsdjldvnWc6v3Rer0Ocm2oeUApV9/1Fcq3xf8t1VSuWuH8IeC8RNx/xW1Cw0wnGOwnpc18XzvAKZrVatA0S9XreWeI5HPO5Sb8+ztbNvrcWkB8LBLVVt8+V5GLeKFgLXKyMcSUl6ltrCCMezFlUmSfjaV/81/+Zf/iSyUiWq1wknI6bTqUXv8jCWJEno9/uF80wURYU9n1Kq4PAvLCwQRZF1schFha7rkqZpYYuXpqnlUCtVNM5aZ4XYcTapiKIon0SMrZtNFNNsNlC5jdhMHLa0uMJnP/tZzp07x2svv0StXmc4HGGkxgiNm3PFA9fFdz1q5QqdVhvpKLTKuHH9GmunzpIqhRaCJEvodrucOrlecLot2ppw8cJ5jEoZj8cEvsNw0KXfs84erivwXRffr1uqiBZI4RYhMFJKXGE/7+nUTlTqtTau6xZot9EJBoPnuG9rMmbCLnh7U3UryjrpmMLKL0kGxTkThiEnTpwgyzKubVzHcRxGwyGOI5iba3Pp0iUqpYAn3/VuPrNzA9/3i9dtt9s0Gg3mW22G4wGlUoUsDalW6hhhg3hmgTcYm5q4euIEWzu7fODpD/Pm+QsI4bF66m6mgzHd/R2arTaLJ07SnptjY/MKJ0+eJI1iTJpx6eoV+tMplXYNlaQcDgZEkZ20l6plvJJvUxBdl3LVhuqUK2VKpVIRuKO1xnc9DsKQEpBGMcPhEM+VVAO/OC79cIwrBTGQZYZuL2SpnqKzfFzNJ5k/SCr6/WgYP6i+HxJ908+zc0zY1TpyMaGldPzZUehZ3UGh79SdOqrbooneDVNKG/s4bshL11Pung55sBnzxs5VPv353+T3nn2Bb335NUajKYuLc3z+M19gZztjcRlSBS989xXSFIIAPvOZZ4kjw7n7VnjowTP8+3/9f+eBB89y773rjPdjGiWPF7/+JVrNJS69/ipPPP4wjaBMojK+/Edf5L77z3FifYV7776LF59/jvlGiQsXD5hrNfjUJz/Ol/7oc2xcfoMnHrufarXOB556iF/+p59mb/+QjRsjFhd9ms0OqcnQ0rC/v0ut1qDZqLG8vIrKNJ7r8fh7HuDE6hrn/qO/zVef+2Omg9P86i/9M5541zO87xN/i1/5lf+ZT/7N9/Cdq79G7IVI6ZGllj5htEVdDQLjGKQ0uDrnj0qBlLZ5jTEolZFpRRRaPmsUxVinXjBKIY1t/px8idNg0DPxn9a4aDxfgjREkaTk2oul1h7SdXBRuI6DF7gFVznOYnxyx5D8FHM8hzhP/gqCAKkkyDgXNQpcTyCkwhHgeC6zaPNMK1I0SaZJMshyHrfOBFpqshQc15Am01ty7s7oJFmWUa/XCcOw4AXPLjaTyYRarcZ0OmVubo6DgwPqnVWEN0UPQQQlvKBiGwqdIQ3ESFSc5O9VkUqJkA5eY47J4YTReMLo8JByEHB6bZ3n/uiLNOeXWb/rLrygSkMKhr1DgiAg8GrsH/ZYWFpkba3M4eEhCwsL9Pt9tLa0psPDQ5ROMaQMhraZ2tsfWHeCRqNwKhiPx1SrVQ66+8UEcTgeYHI7sGazecxaz9I8HCkYDgbU63XGkxFaGPqTEa1WCxNPyYzm1OmzxEnIuXN3s721ybA/oF1xEOYoMfO4o4wxCToxKGEneXs72/R6PU7ffQ+bm9ucOn03r7/8Pa5dv4jKElxho9FVqnGEwfNctJQkRtmlFC3IFGSpIvASRL5CI4TA82zSXrlcRmtLyajX7ffjiJaRNxXafccmw6bwvXOa5y0r1yMcxbhuzIm1U+wfvkiqrRjaqITvvvAt3vX+p9m4dpWf+OiP8UsvfI0Tp8/w3e+9whNPPMHBQZ3f/dyzTCZDdBTy4KnTfOeFb/LkUx9gc+s6D9x7Hy9883Xuv/9+trY2MEiS7j6BqDC/tMqn/p2fYXVphX/yj/4xo+GAzto6p+5/lN3ukJXTZ1g6e5JGo8GJU6sc7O3SObGClg73PfJugkqZ9lybYfcQr90hcFyM0lTrNaqxpNbIqM23cVJriQf2O6pVhutAo9miVK2gFXjSrpaFKqPX79NSGd3eASVhMFnGZDykWq3y4CMPc/78ecJBHy8ogTRc3+lS8uCecYTwE2q55aGd5OdKwTyh0E77FWJGtZMU59iRDd6M4uMeQ4xt4yvlLHDlqHE22nKejcx5jY7J7Z0FUvgI6WGEzMWEDsLkG0VgZsLG73cKGpkrHa2bh6NBqAxjMpQSSOWgbxEV6U7dqdulbotvgJCCLDaEU0XZB6cCIpySDoekgcPynEe/P8X3A6ZTKzArl2DQhemEQuU8A1iNgV53zNrqKbSG8xcu43llrl3bYOPaNS5dusyv/tpv0pmfZzAcsry2ykJnhTSGcGwbl1RZR4jFxUXKlRKtdoOTJ0/w1AfeR6PR4JmPPsPG1StUyz4rK0vce++9nDkzT5Ja27DBsEejWaPdbuJ5DpPpgCSZcri/w+H+Dv3uIatriyRJxL333YNXknziE/8Wh9194jTj7//9f8BX//A1/Gwdkzpo7d6EdjqOY1OvXFEIDI+W9OxxkDOkNlPYSO38puwxM1ocXfx5O8IwEx46jkAKU2wToXFc+3eLwuVR5O7REuVx27uj3ylU6tIuOBSOHXZbR+fEccu+Gdr7dps/WTRXt0pcOIsynjXLs5+t17UNXanVamitaTQaXLx4kV6vh0oT2q0ajz70AI7JSOLQhoMkmliBNuD5Aa7no7SNQQZLSajVmzmf06JllXIAOmFn4wol16F/eMD29jZIQRhbV4z19TVGgyFhGNJutzk8PCwChUolGyW+vLxMr9crjneSJMzNzRGG1q/ZdV0ajQae57GysoLnedZHNwwLj93pdEqj0aBctkl0juPgeR7tdruw0QvyiOZut4tWhnK1hpISv1RiOJ7wwEMPgxREYUIUxWSZwhjIMpWH8eQ8erCNgXCYTv/v9u6sR646veP49+xLrV1L7zZ222AzMAOMNRpDkgkJComQIgbNzXCb5RVEihQh5TovIhlFkZKLXERZSK6GGbAyNkQDM4Bp06Yb46Xde62nqk6dNRenqlxucJjSjGQino9U6q52u93tqjr9O//z/J/HZ2lpBd/3OXHikVGv85jIH5CzLZI0RlMVTEtH0TVSVaXnD4mjFE0zUDR19FzOylMAXNfFdd3JYwj3rqQcvxR/vHXk8faRX3Z7GFRdRzMMBsEQy80x3jQ8DOPR1M0mq8uLdFotoiCkVqvR7ba5desWvW6b3/neb9FttwnDkKWlJSAbquLaDhoKg16fR8+dwy3k6fZ7OPkc5WKRtbWzNBsN/u1f/pXXXnuNU2unKdaq2LbNf/3n66Aqo2mxBVzbodPpUCwWWV5eplatZivCrRbDYUCpNIfj5FA1AzdfwDCM0XG3wtAP0EwTx3Gp1Gu4o+EvjpvHch0M055cwRofU3K53KQsD5hceYmiiGKxSKFQIE4TdNNGUXX8SKHfj4iT8L4TvbHjzwn4/Orx9NsH+aI/f1A5R/aaUO+rj/5N+aKfR4ivs69EiLZtk40PDvD7KfOVRXwFdrduU1VgfXeTOArp96Hdirh5s0u5lkO3R23BEothkNLvM9pkaKCoKjs7XT67tZ1NWOvD5cvv0Wx5/Ohvf4Si2pw6+yhBGnP9+nViBQ4OP+Pll18AdciNzS1e//f/4PSZx7hz5w6+7/HOO+9w/ZNrnD//GI+eXSNNIp55+kmiyGN5ZZ5vX/gW9XqNSinPM0+dp5i32N+9TSFvYlspTz25xne/c57VBZdnLzxBvVbgjZ+8ThgOefPNH+OWDCJlyPPPf4/zF87w1s9+zLuXNplLn8VQcxiGg24YaLoOyqjnp5ZtLkxHLUaUUbDVNCULukqKkoQoaUQahyRRMGq3dC+cqlqSbfRDmwQEIBuyMgrLpp6NCDb0SfckDEPDtHRMS8cwdEzTwLJMNE25L+inaTwK2yqmrmIZWva1DH1Uz30vyI/LN6brnMf12/cO3NnnpSlEYUI0TAj60UMbtpJEMYE/zFJvMhr/m0LezZEm2TCROAoJhj67O3eJwoB6rcrBzja9dpNht8G5UycwCHFNDUXXCKI4G1ihKpiGSq1cpJRzGHQa3N74iGjQp5Rzs81cvR4/ffMn6GpMKaezfvVdHnlkCcPU6fcGuE6B4TBER2HY82geNdjf3cPvD7BNC8swGfT6dNsdDvcPiMOIXtcjiWIcy2bQ62MZJsOBT+AP6Xs9An/I1Q8+xLUdHMvG1I1JJ5rxJkXP84iiaHJ/vOnMtm2azSa+76PrOrlcDq+bjR0Pw5j5+iJpqnDx4rOUqzXaHY9hEGWj6+M0qx1PFVA0UsNANS00yyZXyDMMA4JBQOPgkDQMcE2NOAroD3pZWYphYlo5TKdEmFqkioUfpSSqhmZYWJaD4zhUKhXy+Xy2YXZ0UjQddKcD8vRG3fFtunRqejPvdDnV9MceVimSaVu4+Ry37tymsrhIEKaUyjUwDYrFPKW8y3v/c4WCY3Lt2vuEQYyuqXidFmEwZGN9Hde1+f4rP+Du3gHN5hH1SoWNj65SKub5ZHODuzt36HhdbNchiEJOnzpD46BBIV9EU3TOPf5Nmj2fpy4+x5kzZyiWXIqVOeqLC5PXV5ymfHRtnW67Q71SpVKpsLa2BkAQxRSKJfKlEqppUluoc/b0afwgm4aZyxepLyxlez8MnTCKMQyTQrGMky9MHo9Go5FtHozjyfPStu1sU23Hw+sNqNbmWVpepVhdwHLzqHaeVl9lrx3T7HoMej3iMIRjJ0dfVCM9/fHjNc5fNNFx/PcnJXZTJ3DTixaqqmetSlU9W6VQsq4cx2uoZzVdhjQ94VaCtPi6+0qEaDdnY+pw9/Zdoihlfyeg2QloHbbI521WTy/QD8APEhQNOl4X1QDLVYiJiVOFVIVU1YhSQNXJWjsPSUgplXIcHTV45PRJPv74Nm/+9BJ/8ud/RrlcppDPMxgMsB2VKB6wuXWNajVbNRsMA06cWOXTG5tYloGiqKyvf4yipDSbB1SqcywtLfHEE99gbi5bHbxw4QKOa2FZBvVahTSO6Htd6vUiSdLnd3/7Oxzs3mbt1CmSKGB7e4cXX3yJIAj56Oo1Xn31Vf76r/6CVnOXP375Jb7/wz8FIFXjrF2RqkxaDSmqOqqzHN/PWkNlUhgNS0nicNJ2K1udSEBJsiEeafKAg2syCrdJVtesgq7dO3CPa0DvHZxHB1Mlue+APR3M7w20SSct4ZTR187+vfu/g+nQMR5TPvnpxoE6yWq/H1qInho7Pv4exyUdWXeR7P8wCHzK5SKWZXB0dIDj5LKWfXHEUWOfyO8T+T3SKKScz+PqKmo0wGsccGPjQ7ZvbGDGPqWcTr99xOHONsmgD3GEZVqsX9vAMDQOd7fpthsUCgUWlhZx8znCMGTz+ieUiwU8zwOyX8LjsoswDJmfn5/USI9LUXq9Hs1mk8PDw8kwFcdxMAyDcrk8GasNTKbPjTcwOo5Du92erHTnclmtd3tU1gGjVb5giGNbeJ0utq5hGhpHeztsbW6gKMpkRXvcqWV8cqZpGoqmTl4TowMA2SFN5fCoScfroVkmiqYTxhAmKf1hTKPdxfN9YkXBcNzsqkyanZimX5Axjq8uT789/v6XfWw6XD3sFT3XdSmXy9njUyqRqhpuoYjhuGiqSq/bptk4QgP63Q6kKYaqsby8xNtvv83B/i69rsf77384aX+oKAppnLCxvk673aJcLtFqtVheXkbTNLyBz9nHz+EHYVYOZjsUy3MkKFy5coXHH3uU+sI8lWqVXi/bnO0HQyqVCje2tui02iRJQrfbxXVdSnNlDNtCUVWcUccY13WZq1YmJVS6aYw6/EQUx5+vKJNa9nF7v/ZoVT0IgskKNGQlao1WB1Qd03YxrByGk8ewbGI0vCCk6w2ycpEoRvmSh/PXDbK/6uemSva74jfRy/lBK+xCfN19JUL0YbPN00+ukiQRd++0ufE+3GlDOAi4dfUqc8s5vvnUHGmqEkfQPFCIw2wlM0kjgiCBFIbDmH4/GF3aV3jr0juYFnS9HsMoYv/gLmEA1eo8mg5KlPBPf/8PFN0crlmiddjjhef/AOKE1dWTHDZaHB4ecf78ORYXFynk53j3579kb/8ud3duUiwWKRUrGKbGf//sUlbSceoklXIZhYiVlQU0PaVQtCnmDXKuwj//49+xVC+jaRHLS/MU8hUqcws8feFZVk6c4uJzF/m95/6QoB+wvFrib177yywMa71jYTedlFaoupaFtVFngyQdrX4FQ6JwSBIFJFFIGkejGVUxKCGKGqEb6mTz2HH3VjnIapW1e4NTxivMhqFjmONL3Ol9v5xUVc2COnFWrqeAOQpKhqlhmvqkHGT8s00HjXEwHZdqZKvU2cbCSa/oKCUKItLoIW3USlLiMJrcvE4XQ9Ppez1Iss4mcRhll6VbbXRVI+e4mG4exbJRNQ1LN/jut7/F0GsxaB/S3N/m8LN1tj/+Bd2dTepOTFnx6O5s0N2+TtI9Qvc7mEY20W8YBIRxzLu//ABVS7n05hsoShbaNj/5FICVpQX2d3eZr9XpdT1qlSpn185wsLeP3x/Q63qkcYJlmDiWTbvZwrUdqnOVcaMslBRu37zFoJd12ui2O0RBiNfJ+viOn0Oum62Snzx5koWFBfr9Pt1uF8dxWFlZua8sZ9jrcPOTdfZubnHtg/e4/NYb/OLnl9m+scXm5nUs18F0bGLSrHZ5PPRBVUgVjThViJLPX2ZWdQs/TMkVqqDaRIpJiIEXpSS6BbpFqumEUdZRPUnvbcT93EN87Dk5vYL8oPcftOp8/MRw/PZhGIYB1XoN23HQrRyKqtFqd6guLKKqKqVijr2dO9z8dCu7CqXomIbG4+fP02432b59h1deeYW+H/DI6TMsLNTpNBsc7e2xurLCjc0tLr99BUVVWT15gnyxwOLJVfYbDV546Y9YXTvDE888ze+/+CK1ah03Z7P16SZOLocfBtQqVZQkpdXt4ORzPPH4NyaDgACuX79Oo9EiG0Ci0x8GeJ7H9t3bWG4OTTfxBtnYdm+QTdN0HIe5chU/jPC6/Um/9HFLyDiO2dvLWhqON+P2er37Oty4hRL5Yhm3UCZU4bDj89nNPfZ3DvB9/9iVs/Rzj+/06vGvujo83bv/+Ar0ffeV8aLFqKRjNKDl1/V/nQwK8XWmyNmkEEIIIYQQs/lKrEQLIYQQQgjx/4mEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmJGEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmJGEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmJGEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmJGEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmJGEaCGEEEIIIWYkIVoIIYQQQogZSYgWQgghhBBiRhKihRBCCCGEmNH/AjCWqUZDxI0tAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "flow = augmenting_datagen.flow_from_directory('.', batch_size=1, target_size=(224, 224),\n", - " shuffle=False, classes=['simages'])\n", - "imgs = list((img[0][0], flow.filenames[get_file_index(flow)]) \\\n", - " for i, img in zip(range(0,7), flow))\n", - "plot_gallery_images([_[0] for _ in imgs], [_[1] for _ in imgs]);" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "62" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(flow)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Search among images\n", - "\n", - "We use the class ``SearchEnginePredictionImages``." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The idea of the search engine\n", - "\n", - "The deep network is able to classify images coming from a competition called [ImageNet](http://image-net.org/) which was trained to classify different images. But still, the network has 88 layers which slightly transform the images into classification results. We assume the last layers contains information which allows the network to classify into objects: it is less related to the images than the content of it. In particular, we would like that an image with a daark background does not necessarily return images with a dark background.\n", - "\n", - "We reshape an image into *(224x224)* which is the size the network ingests. We propagate the inputs until the layer just before the last one. Its output will be considered as the *featurized image*. We do that for a specific set of images called the *neighbors*. When a new image comes up, we apply the same process and find the closest images among the set of neighbors." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model = MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, \n", - " dropout=1e-3, include_top=True, \n", - " weights='imagenet', input_tensor=None, \n", - " pooling=None, classes=1000)\n", - "model" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from keras.models import Model\n", - "output = model.layers[len(model.layers)-2].output\n", - "model = Model(model.input, output)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 62 images belonging to 1 classes.\n" - ] - } - ], - "source": [ - "flow = augmenting_datagen.flow_from_directory('.', batch_size=1, target_size=(224, 224), \n", - " classes=['simages'], shuffle=False)\n", - "imgs = [img[0][0] for i, img in zip(range(0,31), flow)]" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "outputs = [model.predict(im[numpy.newaxis, :, :, :]) for im in imgs]" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "all_outputs = numpy.stack([o.ravel() for o in outputs])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have the features. We build the neighbors." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "NearestNeighbors(algorithm='auto', leaf_size=30, metric='minkowski',\n", - " metric_params=None, n_jobs=None, n_neighbors=5, p=2,\n", - " radius=1.0)" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.neighbors import NearestNeighbors\n", - "knn = NearestNeighbors()\n", - "knn.fit(all_outputs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We extract the neighbors for a new image." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "one_image = imgs[5]\n", - "one_output = model.predict(one_image[numpy.newaxis, :, :, :])" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([[0. , 0.22400763, 0.25415188, 0.2831644 , 0.29702211]]),\n", - " array([[ 5, 28, 2, 1, 11]], dtype=int64))" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score, index = knn.kneighbors([one_output.ravel()])\n", - "score, index" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to retrieve images for indexes stored in *index*." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['simages\\\\cat-2603300__480.jpg',\n", - " 'simages\\\\schafer-dog-2669660__480.jpg',\n", - " 'simages\\\\cat-1508613__480.jpg',\n", - " 'simages\\\\cat-1192026__480.jpg',\n", - " 'simages\\\\cat-2946028__480.jpg']" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "names = os.listdir(\"simages\")\n", - "names = [os.path.join(\"simages\", n) for n in names]\n", - "disp = [names[i] for i in index.ravel()]\n", - "disp" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAFtCAYAAAAu612qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmUHed53vl7v6+q7tY70Ng3YuUGghsgrqIoytxEybLlWI4s2YmTzNgaO9YkZ87MaGI7mb+cOTqe8bHjcyajKJNkIlmLQ0vjjDaKpCiKBkWJ4gIQAAE0Gmtj7fX2Xarq+97546tuNClSliiCS7N+OPd09b1169a9uH3vU2897/OKqlJSUlJSUlJSUlJS8tNh3uwdKCkpKSkpKSkpKXk7UQrokpKSkpKSkpKSkp+BUkCXlJSUlJSUlJSU/AyUArqkpKSkpKSkpKTkZ6AU0CUlJSUlJSUlJSU/A6WALikpKSkpKSkpKfkZeMcIaBF54hJt914ROSAih0Tkf7oUj1FSUlJSUlJSUvLWQcoc6NeOiFjgReAXgBPAU8DfV9UX3tQdKykpKSkpKSkpuWS8kyrQzeLne0TkOyLyRRF5UUT+WER+XUS+LyLPi8imYr1NIrJbRJ4Skf917v4vYxdwSFVHVDUF/hL4xTfuWZWUlJSUlJSUlLzRvGME9MvYAfw+sB34OLBVVXcBnwF+r1jnT4E/VdWdwKlX2c5q4PiC308U15WUlJSUlJSUlCxS3qkC+ilVHVPVLnAY+GZx/fPAhmL5ZuBLxfLnXmU78grXlZ6YkpKSkpKSkpJFzDtVQHcXLPsFv3sg+hm2cwJYu+D3Nbx6tbqkpKSkpKSkpGQR8E4V0D8Nu4EPF8u/9irrPAVsEZHLRCQp1vvqG7FzJSUlJSUlJSUlbw6lgH51Pgn8MxH5PrASmHr5CqqaA78LfAPYB3xRVfe+oXtZUlJSUlJSUlLyhrLoY+yWL+1Xay1xHBNFEZVKhWpPDwODw0SVBioRlVodEUsUGdqzTQyQpm0qlTo2jjl+7AinTxzn3b9wLwaLikGdpz0zTjo7Raw53juc86RpSidLqUQR1oAVSGo9mCSh0uhBxeAdWGPI85z+/l56BpcTJVUiMUxPTTA7eR4/PU7encEbAWtQVXAe1BMbixiHiBBVGiT1HiqNPkwULNkeS1JphGUVFId6wXs/v+wIv+M8DkURVBVVxXsfbvNhWVURCevnojjnUMI+5V6JNQ+P5T0iF23h4a0V1vde+cbf/PUrecZLSkpKSkpKSt5W/Cx+37cltVqNKIqw1iIiQQiqkGVd0txTqzXIWx5ba9Dp5HQ6HZLIcP7cOQ4f2IeqEicxV1x1FTPnT5HYOql35GkX322StaZpOY8xBuccaZoiIuRxBRVHK+3AzCw2qRAnFwAwxoAaotiQT5xkamzk4n45j8tSJMuwOKzxGBN0ZxzHGGMw4vAmRqKYbp5B2sEbS5RUiCsVorgShLMqTgXvTSGEQdXgUXJ18+LYe49RLgpnLi7Pieq569Ac7+buKwiQKuAVFRAlrG896sBpHrbh3oz//ZKSkpKSkpKS159FL6B7e3vnxS0wX0nNsgxjlOZUhrUxdFv4LEe9ZzbvkFjDFduuIk9bpGmH5vkzdKcugBgcglGw6og0R2z8EjFqrcWGGi3VKMIpCIIpQjtEPeARNSRJQqNiwRi6DnAenwcxChZjIDKOarWOiiA2HAx4W8FECTGCWIOxgDFIcaCggBeDCJjid0GCiPZKhOAIkSHhdkUExHjUC4gr9lYBh6oE8ew9+Bx8jiUI6K6pYETwKKLhLrkHvC8q3QqFMC8pKSkpKSkpebuz6AV0kiTzwtY5F5a1G4SuRKgqxhhsJwJflEmLcqnNIkzuiYrKq9GcPIbI1MArBjBYUj+nDwVjY6I4JrJgxeK8B2sRKxibABrELp4otqiJ8YAVwUQGIxBXPbkaRD2K4sXhAWMjbBRj4wqKYJIIwYT9N4IXwRiD2AgxCaIaKsDeIRRWDMDiEVWMXqwwZ+oRcsR7VIJVxOBhga0D73HO4/MM9TmKgnqiKENViSiqz6rECM67sA9FxbqkpKSkpKSkZDGw6AW0ShREqMvJs1AhNWIQDQZlIwaMQSXGGBvEs1iMKA6H05xQTA2V59gLIi7YKrySA6KKLby/kbVEVrAWQPDGhCqyVdQEj3Ach4p1HFeII4tGEU4EnMN6xWKxkSeUrg0iFdLMk4hirOI1p1ppICYCBDEGY2OsFfAeozkGQQ1ELsfjcerwBDGsonj1GAk2DKcZcTbndw7VZucWWDzUYVVQn4FP8VlKrsH2YYxBu8XjCagr7sNF4a3ezxmiS0pKSkpKSkre9ix6AT3n5c2yjCzLEIXIRpjcBE90ZLEiwVYhHkEQPCKKRfFzwtiAMYIxYLhoSTDGQOFRFhGsDVVg1dDkZ0xRIbYWpx4UDBFRZLFSCNBCXIoI1oCKEAl4Y4L4RBfYTkJwilRyjAdM4XF2jkg8VjzWaHEgEF4D0byoOCuqDjCI5uAd6kA1x6ui3uF8hneEnwt80N578jzHZR1cN8fjcPlFUbywATGI9IvXLfRRl5SUlJSUlJS83Vn0Atq5DOcczmWouiBYXQZWUA/qFCmEsRgtrBmF2DOCWoPFoCpEhVC2YrCRzDclqgkC0VqDiCLGEUfhpY1iGx4/z5BC/EbExEWlGim8x0KRhRGsD0lsUTUIBop0Dy2quYYI8pycLuoFNQbnPYmxQahbG3zZCN2FzYK5C81+KhcrxLkj9w5RyLJsvvKc5/mPCWjnHOqy+fXmRPFcwsdCm4bjpc2HpYAuKSkpKSkpWSwsegHtF1SK5wWeunmrglDEvKGID3YMRLFiwNpQPcWDD+Jb8BhDUbUGuFhhlaKBMLY2CGmRIgKuuJ2i6g3BWzxnbyBUa51z5HmO8Q61UjyWCbaQKMIVkXCS57hWjrWWLM3JvQMTkarHGsHYCEzY97YqTj3iFHEe8YqIxXExrm5ONGeFaA4HHG7+9VsYbReEteK9Y67E/fLqM4AvKtALt1FSUlJSUlJSshh4BwjoIASNFcQz3xSHKuKLZR+sDV4EK4oRMJZwuwQ/rwfU5yASRKhZIBwlRLU5D84bnM+IjJ0X0HkecpJjm2KMIRVHbgyYaD5ubj4/WR2apeSmaIDMc7wWFV7Cei7PEa+kmgdBiwRPs+ZggkBGLJl3ZAq5d1gPcRE754uouZdUmFlgv1BFVENPZZGqgQeDwRNDsI1frEATXk8D889D557O3DqlgC4pKSkpKSlZJCx6AW0WiGTRuWEfoBqSNcg9SoahqMyKxRnBOEHI8VmK+lChFYVIYrz1ZFoMJVEHXtA5IYyQi0MliFnUoEpo5BPBxAaXhyQO0dB0J0ZJbIQtLCIu7ZIhaJ6jxhAV3miLhcyRe6E4GsDj8QhqLN4brBjEGFJ1ofLsDVWJMXHwYosIhvD8/cLqtwi5vjT7WYmKZYfP5ywbwVKiBNsH3uGw84J8XkCbizNTygSOkpKSkpKSksXEohfQabszb0mYsyUYYxHv8XFhqRANDXUSqsIioQQd5VlRjXWgwZ5hrENs4X3GBQFMEI7GCyIpHshiQbwUTX8eASIVcBaweGcKH7JgPeTGIxqEqItijIKIITYGa0NTIb7IbDaKRhWMjUkAieJgDyli6bxA3QQhjbWg5qJfu6gUzwnlOS9z7j25dy+xY8wdcKgKuQ+vn8kVjTwU3mq8IcKBA2cVU5SevThQA+JR0ZAtXVJSUlJSUlKyCFj0Arrb7rwkA1pEwEI+Z1EAwKM+R0yEiimSNaL5wSfeB98zeNQ4IAo2CTWYSLEmtB0mUZVKtV6kcVisAZ87RD2Zz+YtGFEUzVdrvQrqc6wVFB9EM6EZMIoN1TgJg1O8wxYuCG8EtRXERPMpH8aAFINXwBAZC0bxxoZmSBfsFU5zxF+sGGMNmXNERbCI9zneC14U4xWHx3uwoqQ4CvUN6sMyhPQOlEgdIjZYQ9QhavAUA2zUvEH/4yUlJSUlJSUll5ZFL6DzPH+Jx3jOxhAmEs4paI81BiMGGydgBGtirFBYHoJQtRLGaYs1YQhLMcREohgbV6kPDtPoX0aYZG1Qn+PTTpja5zMy8ZB10LSF9RlWCsuED7nL6kMaR2w91iZUqg0qtQYmjtA8C55sl6Ei2DgKnXp4IuMRNFTITXCORCZsy5MjKnhChF7wPWcv8UBHPlhR5gfNFAccqMM7yACcw+UO8WEIi/ch+5l58ezJ1SMuNCLm6HyzJAt/lpSUlJSU/ByIyBOqesvrvM0q8BhQIWijL6vqH72ej1GyuFj0AtouEMxzlWEjhQF5roSKJzJg4womioMoNhFewBL8xyF5w2CTCoINleIooVZt4CtVkkY/vcPrsD3DOKJgz3AZ2p2FPEPzLnHeQbuzmPYEpE3UdRGXIi7sm3OKVU/FGuJqlUZPH0mtD2fAZSkmc0glVK7rscFlaZgK6HJQRyQOIyBesFgiw8VK9wJvMy9L1gjWlhCfNy+gvcP7wketUqSTgNe88EI7LIKXnNwHj/fc5ETBY+ZyoBeklJSUlLy1uERCZC3wH4EVgAf+rar+6ev5GCXvbF7v92xBF3ivqjZFJAYeF5GvqeruS/BYJYuAxS+gK/bisg3WCD8vnMNtIoI3EEURcZKEISoigMHIQpuEIY7CfX0UYRv9mMHVmGQJplqlndTpdB0mCpXuPFe8RjjAi6GSVImiOiaKkE4VydrEeZu81UQkD1VkHJiEemOAqL4MrdTpdruIrZDhEJ9hUXJTQZIMoYXRWeppmzBM2yImJ1aFzBCTEb7DAqFhUIsR4R41oRHROcWa4MnOJYwGx0Hqg5FFBVRycrVFNTmkkaCGWJSMOYuIgikq8MU/r55SPpeUvPW4REIkB/65qj4tIr3AD0XkW6r6wiV4rJJ3ICLSVNUeEXkP8K+AM8C1wH8Bngd+H6gBH1LVwyKyCfjPhC/9rwH/TFV7Fm5TQ5WnWfwaF5fyq6vkVVn0AjpKqvPLUkwsSRb8TcxVpo04kkiIjGJNTBRFSNJDbKWQ2TkRQiQGogqmdxh6h8ijHrx40qxDluWkKohYjHd4l5N12sEmYS2ZjeipVbH1ZZj6MBZFXIZtTyHdJsa1sTiiKEJ7BmnHdTqpo9vuEgtkaYe020KzlJ5alf6+Hmxco5pE5HGNKGsRF9sUk4ZmSQj7UwxxCaO5i8g6c/GnizR4oFVDeIgqOIPR4Be33tD1OT5SnMvAhUZC53yYOC5C7j2CwfjgRZmres81L5aUlLy1uERCZAwYK5ZnRGQfsBooBXTJpWAHcAUwDowAn1HVXSLy+8DvAZ8E/hT4U1X9vIj89qttSEQs8ENgM/BvVPXJS773JW9bFr2Athqqr3MDTIwI0VxF1iuIYDEghkoUI3GVOI6JkypRfYDYCupyDI7YWIy3mJ4B8kofba1w7sIkal2o/tqESqMP51Kk2wGg05oN0/uMwSc18jyl1tNPklSxcwNXKhGRrWN9h1pk8AZaOXSyDrn3xGJoZylZt0O3m+KzDmojXKtDEhlcNUHjmIq1SDZLLBFSpF9YicJQmIKLY7ZNIXDDT6MhZ9oREvJCVLYNThdV1NgwcVBzQq28qNBjER9yRuZFtAR79tyY8sUuni/FafBiu58FHgDOqurVr/f2S0pexusmROYQkQ3AdUApREouFU8VB22IyGHgm8X1zwN3Fss3Ax8qlj8HfPqVNqSqDrhWRAaAB0XkalXdc8n2vORtzaIX0DE5Zm7ioARrwfzMEhSDYI3gowRsDRsleBvjJMaokEuExAliLZmNqdb6kEoPWe6ZmZ4h78yCNdgoJE34dhfvHLg0eITzFJdlWBFa3S5iI5xCUqnNTwsUnyFZTmIiOsbguimtThtQqrFixZG7lDzPcHmH2BjwOe12m7ZROlnCUK2OjRNqKFYN1SKHWgBjFk4MLGajvLy3zxskUkzRyOg13Fe9EimohDq8i8LIcy8OfE5uQgyfFgciKoqKYIy8JP95MYvoS3QaHOD/Bv6c4CctKbnUvG5CpNhGD/BXwCdVdfqS7HFJSfAuz+EX/O55jRpHVSdF5FHgXqAU0CWvyKIX0Al+buJ0aIYTH/KJC6xAZISuxLTSnEhjfOYQm2K7U6GxsFpHjdA31I/tWYo3lqn2JK1uC9EOSdyLiWKy1OHohvHbhYA03uNdjocwmMUZslmLZF2ILGIjRBRHTuqg2czxzuHSjKrxVLzSyVuo5vgsJxYw4oAwenvOKtEUixDhrSXyEcYqJrIILthOIDQLysUx276wVngRvCksHEbn0zpELOqKqY0SEZzPHkFwVkAMeIsaJfKQz40eB5xeFO2LfZDKpTgNDqCqjxUVvJKSN4LXTYgUTVh/BfxnVf0vr8/ulZS8ZnYDHwa+APzaK60gIsNAVojnGvA+4F+/cbtY8nZj0QtoTKh8Bq8zxRRCh8GixHRNTEssmTc4l2Py2SJ32eMlAiNE1QaVniEaHrqzTdK0g2u1sVmGV4PPs2LSoQUn4MFpRrfbJctSxAhRlOCpFqkghX2i6zBRHjKf53zCIiG5o9OiQ4fc5+TdVth/9URRRKNWwVrBZ548y3GqzHiHz3rQSkRcq9FTjUjIsMUQFedcyJpWxYrFoQg2mFmMoj7HmFChNt7jxIAoXkIenseisYU0RkwGEqY0emPIYkGdx6lHXciAdtaCV1xhoVG3uEX0Al730+AlJW8hfhohIsC/A/ap6p+8gftW8k7ApdpoNMCl+shD3+TTf/K/g0sV4I53v5tP/2//+ilcziMPPcSn/+RPwOX64r4X+Nhv/Ob9u3bu/Mt/+Yd/yL/9zGfA5S85Lfrs0z/kN3/rt7jmmu1cddVV/Oqv/Ap/+Af/4jb1+XwM7iviX3Z2Vd38qd1w5vWiBqH4Pp1fVV46H0FesqniO/P1Onv7k57DJeEtPvvBRj/3CyKL+dQ6wI2XLVF4af6zUVOkWhhSI3TFIFTmY93mEBOh1lLtGaRvyXKSWh/dbpss7YLPybIsJHbEdcQYlAjnQsXViJKmKapKtVrFRhG+yJOG8Ic1l+yx8I/T4HGdGdJWE+dm0W4bn4VpigalUqnQU6/S19dDnufz0xXjOCaKqjQqEcv7aqysCb2SYSSkYri8iLHDgwqOuabBsOzU41XwPlgwXFGFzlwQ0Q4hUyXLg0jOXQrOkec5meqCISyh0u0kjPwOj+MRr/zXJ55ZlOMIX1aB/l9U9ReK6x8D/mdV/Z6IvBf4p6r6IRG5ACxX1VxE+oBTr1SBLraxAfib0gNd8nrywH3vUxHha998hPffexfTM00OvHiY2299FyLKw49+jxuv30FPT52z58YZGT3GzbtuIE0zvvP436Les3LFckZGj/JLH7wX5xyrV69menqS4ydO8a1vP85Afy/OOaqVCjdedzX9g4McPHiQdevW4Vz4/Dt58iTHjh3jn/yj36LVanH69GmSJKHVaXPs2AnOnD6Ly0KM6Okzp/id3/lt0jxjcnKStWvXAp7Tp08zOjqKc47x8xdw6jk/PkmUJNxz11088cQTjI+Ps2vXLsbGxjhw4ADDw8NMTU5zzTXXcPLkSZJKzMqVK6lUKnS7XdrtNsPDwxw6dIi0nTMxeYFGo84NN9zAwMAA7Xabw4cPs3TpUoaWLmF0dJRms8mWTVuYmJjg6NGjeO8ZnxxHROh0OiwbXs7Y6TNs2LCaa6+9huXLVzM+Ps7k5GT4rvDhe2rVqlUcGRnhwoULDA0NMTExwdDQEBBuT6oJU1NTrFmzBlXl7OkzWGs5f/48S5Ys4eprtnPy5Emcc4yMjLB69WoGBgbYs2cPt9xyCw8//DA7duygNdulUonpdNu0Wk0iEzM0NMT09HQxPyE0tIdEqZDvP3d7kiQ0Gg2+/JWvvfGf6YVYfmVeWbS1Wi1qtRoiwl9+4Qt8/i+/wFce/OlOjGgxD+LVV+ClIvc1COj57b9EjL8GAf3y/Zy77xsunuGdIKAXfwXaBVuBeMXaMCxFNEKjCEzwIwsWdQ5Q8jwFwhs/SRRrE6q1OiZKmG03SduzRWOhD37kqEIkgkfJ8w5Z5lCBCBPymQG8A7WgOc7pvHgOKdOBuYxqAKwNA1skAh/jNGzHZSndbpfIQBzbYnBKeJPmeU67O4v3Nay19ER14ooliRSVUBWeayAUkfnx3loMRplrGkRAMKAekysRSqbB6oJ6fA7eZVgXg8/RtItXA86Bj8F7fJ5jMXjji0QOj5d3TAX6dffjlZS83gwNDRDHMf/4H34UVWXFsmG2brqMNE1p9NT4yK98gCRJMMawfv16VixfSpp2WbVqFXe95xZqtRov7HuRwYE+1OcMDvSTZ10GB/oYGuznpl3X05pp0m63aTabZFnG7OwM1UrM+XNnuGzDJvbv38+G9ev5jY/9OidPHadWr1CrV4JwPXyY/v5ehoaG2L/3RTrdFiLw1FNPMjA0yDXXXEOSJExOXKBWTbj6qiuYnJzk1MnjWBPjsoz3v//9HD1ymFaryfr1a1m5cjnHjx8lji3XXbeDp576IafPjNGcnSFqCztvuJ7Tp09TTWIGB/vp7+9ncnKIkUOj1GpVRIQVK5Zx+vRprLV86EMfZP/+/SxbsYzBwX4efvhh8jxjcnKCgYF+zpw5A4Tvknq9zvLly1E8V155JXEc8+1vf5vt27fPf4632u1QbLGWJUuGmJycYMeOaxgbGyPPcw4cOEC9XiefzFi+fDkzM1P09/fT29vgzJkzbNy4oUg8cqxfv5axsTGuv/5aBgYG8N5zww3XsX//C9x55x0cPnyYe+65j0cffRRV5cSJE6xcvgrnHI1Gg3PnzqHqqFar879v2rSJCxcusHTpUprN5k8WlW8xfvjDp/nd3/+nqCoD/QN89jP/15u9SyWLgEX/hT5fdV5Y7Y1j1EYQVYgVSBUnjjxfmJmsUFg9jCT4oiJbr1bx3tPpzhKbmHq1Sq7g0gyvHq85guD14ksbqsRpqOQWFeO5KnUSxaF6HMckURDFuXisOkS6oI7EQrvdJk+7ZFlGaoVuNwppIXEcJv/lOc4JE2mOI6JR9cRxhR6jGOsRk4TnbkJ2swpoeHbk6km84ggWD+cVox5s2M9YCyuGChVVnNqQ2KEgYgh52Yov/NUiIX3DEy5aXF8yz995Gryk5FKydMkgAD09PYgIWadLpVIpDu4hScLnRZZlRJUqS5cMcuTIEU6dOskj33miEH3C++64GSuwctkwg4ODnDx1gjiKsAKrVq1iYGBggYAO9ri+vj6eeeY5Yivc/b73smfPHq7ecTWNRoMrr7ycJ554gjvf826mp5s89+wexChp2mXnzhu45dabWLJkCT094Qxc3pll2ZIhut0u58+c5uorLufIkaOsW7OaF/Y8x6qVy/m93/0En//85+ntqTM40Mea1e/i2WeeZv3aNUxPT6MuZ+PGTex+4nF6enq46aabqNRr5HnObHOaNA19LdVqAuKpN6oMDg5iLKzfsJaZmRmaM1P80oc+yJGRo9xyy00cPnyYgwcPIDYiiiK89wwODpK7jFtvvZXx8fOcOzeBc47169djreX48eMsX76cWq3GkqF+ZmdnSNMOY2Mn2blzJ5s2XcZzzz1HUolYt25dqKQvvYwtmzcyNjbGihUraDab5HnOurUbqNcqnDt3jrTb5tSpUwwODrJyxTJaszPcftstPLn7cSYnzrFt6xW0mrMMDAxgreXkyZNUKhUajV5arWAfvPnmm/nhD3/IihUr6Ovro1qt0mq13uR38Rx/d6Xz9ttv49mnn35NW5fQ/PPqvLxC/GNV4PkbLq7/snXmnACv+DCvdqDy01Smf96DnFfY15KLLHoBbZCXXsSQG0MmQq4eIwkxSuY7P9bs5tIuJikq2DbCIlSMoTk9g9EI8OSZJ/OObtbBA85niImwIhgK24SDTHPERJii6U8IVV98jjpweCS2RMYicYy4mDwPIxCNWKIoIkkSnAun1ebsIS+ZNOiUXA2tdspM6miiVI0hMRFSDIAxxYCYIGhN+PtAEeewqsXZKCUqKscUmdDGK8aBFU9eROQ5Y3AGjA/DWbwoDo/B49WDD+O9nXPYd44H+qfhk8D/IyL/HPivwNQrrSQinwfeAywVkRPAH6nqv3vD9rJk0VKJLLVajSRJgnCu1xkfHyfLMoaGhhjoHyBNU9oKtWqFTqfDjquvYmRkhGuu/IfMzMwwMzPDpss24pxj7dq1VKtVzp09w9YtW1FVZlttRkZG2L59O1/+8pe595676e3tZcnQUmqVKiuXL2PViuV89a8f5Mz5M3zsYx8D4LbbbqM5Nc1jjzxMmuasXbuGqalx9u3fywMfuJ+rr7icEydOMLRkiNbUFGvWrubRRx8lthG2UcVaYXJmkivWXMFd77mDL37xi/T01Olr1LEofY06zalJ+jZvYrC/wabL1vJLv/ghDh06xOjoKFs2beTYieNMT4xTryT09jbw3nPne+9g69bNNJtNLr/8cs6dO8fAQB8+G6bb7TIwMAB4vvvd782/ztVqlSzL6O3t5fDIIXbu3MmPfvQjjIGbbrqJffv28fzzz7Nr1y62bt1Me7bFwQP72X7NVaxctZzDIwexkXDFlds4ePAga9auohJZVi1fxrEjI6xbvYpz4xeoVhP27n2eHTt20Ftv8O1vfoPe3l5WrFjBmTNnGB4apFqtcvrkCQYGBjh3eozlS5fQbc3isox1a1ahEg5uenrqqCqNRoN6vc5Mc4pHH32UzZs3MzY2RpqmeO9pNBpv0rv3LYYxc7mvF68LzVbF4gLLRjEX4ZWQBfdZcIeLAvbNsNuW4vknsugFtJMIK0oshRfJWJwYPATfroSR1Wme4VwaRLaCyzJSSajU+jD1XiKb4LMmzdYsnbRDnnWxomR5t6joegSIjMF5Bauo2JCXrDmRk1CdBWIbXnbvPd5EZM6Ta4bOzpKmXWqVGtiIqNJHZiqks9N4yanU6qAZojneCe12F2tzkiQhjmOIPOIdShoq0qkJGdOxxYjDimB9FCrLOBxpmBToPTHg1eOK3GbNlVz9vC98buR37vJizHcY952pI8pzUpeTO0U8uDzDZCld47HPAAAgAElEQVTOe4xquI8uTgEtEto+5n6+fBl4auEH5stuA9j5Kte/nNXAZ0TkMz/Hvr6mdeYG4cxVSX7evgkRi4kUE9XJOh2QnBCWExpXX4++jNdyennubNXc8txz/mmf9ys95k/7XFT1Df2mqjeCH9RYoZt2WLp0KXE1Js9zpsanGBsbo7+/nyRJ0PYscRxz7PhRrrrqKlqtFpVKhc2bN3Nm7DQjIyM88MADzM7OcuHCBVasWIEx8Myze3jf+96Hc45PfOITPPadR7nvvvsYPXKUyZlJNm3dxAsHXuAjH/0IjXoPPstpNBqYHhg/e5pdu67l6OhJnvrBs7zn3bfxS7/0i4yOjjI1NUVSiVmzdiW1akyj0aBWq7B+/Vp6+xqMHD5Ko5rx3vfewa6bb2FypsnevXuZmppicHCQXbt2cfDQixwZOciqVatI05TN2zbyzYe+xfLlK+lkLS6/Yhv/9W/+PyYnp4mM4artV9GZbbJt8xb+/b//99Qr4UxkT08PL754iA0bNvD883u57967mJma5GtffzhEluae/v5+8I7L1q9jxbJh4jjmwx/+MMePH0ddzvXX7uDBBx/kDz71BxwZPcimy9bzne98l3e/+92IF2ZnZ3n4Ww8xMzPDypUrieMKIpZ77rmP0dFR6vU6mih9jT4iiXjqqae47rrrUFVOnTrFxMQElUqFSqXC0NAQnU6H2dlZtm27grVr1/P888+zc+dOjh07xoEDB9ixYwe7d+/mvvvuYffu3Vx//fW4NGN6eprbb72Z0dFRGo0G7Xb7jXzLlpS85Vj0AjoynsiAMRZvDSqCxEmwPbggnvNORuZCo54tLAku91T6+ujtH6Raa5DlXTqdNj7L8ZrjXBayktUjajBxAjZC1ZOYGElDJrJUi2AOdVgJIcuKhlOg1mCNnW8cEBT1ntxloVmk8CA6ddgO4HNcLhgvmIii0UPnq9LOOWxk55fzPEc9RKrEKMa5IL5RRB2xk3lxbJ3SFciMIffBMtKwYFywpRgXquvqcsgV1RzNPJpl4aja5Yj34eIcvjginzviNm+sPij5GXlJI6t56SnR17vROEkShgaX8u2HHuP8+Dnueu8dOLrFmZnX/32ir1IJeqX1Xt7Uu1ip10OVcWhoiKmpKXp6eojjmEqlQnOqyfDwMCLCzMwMQ7XQwLZ+/XpGDh2mWq2ybds2Tp06RU+jzo5rtvONr38NgJGREc6fO829993N1k2X0ZqZYmZmhnXr1nHXe9/HyOEjLFu2jBWrV7By5UqeffZZLrvsMpxzTE1N4dVRb9To7+1jw/rVTJyfpqenh7Nnz5KmKTt27ODY8aOsW7cmeH03rAXgPXe+mziOefzxx1mzZg1TM9MMDAzwzA9/wImjo8xMTvDhD36QP/7jP6bVnGXDuvVs2bIJay39/f1MTU3w7HPPcOMNMbV6xMREENtTUzMcPTLK+PlzjJ3q0O20uWbHdpJKDMDNt9zEwMAATz75JOfOnQt2jmaTVqtFlmV4p2TjKVdevo2NGzdy2223MTg4yJ49e/jRj37Eli1byLKMXbt2MT4+zoMPPsh9991HnuccPHiQ0dFRtm7dSrc7y2233cLevXvZtGkTa9as4aGHHiLLMvbt28fll1/ObbfdRqvV4uabb2bJkiU888wz3HjjjfOC+pFHHmH9+vWMj49z5MgRrrzyamq1Gtdffz379+8niiJ6enp49tln2bhxI0eOHGHbtm1Ya8PZhk2b6OkJvc5jY2OsWrXqTXjnwk+2bLy8UPOyz7IFf9p/V8niJev+xDVzFF0w37gSUq1s8d26YEPzS69i4/ixx1m4zk+qRL/abT/NfUpeM2/xNsmfH4ksamywG4hg4gTVmMyFCnSWZWR5F5flqPNkqZJnHicRPQNLqPf1Y+IoxNS5FNTh8wxRB94VVgxFNVSsEmCgKmzd3I/vnqM3iRFfIYkGEe9xaUiv0DwITlxKYgw1a4nFY3yGIUc0Q7yiuaOSVKnVe7BxJaR9FKO54zh8iDvnSNMU59xLxmfneY7LMsTlRGmXxKUY10G7s5huC9Nt4ZrT+G6HVnMaooSnnt/HnpFRDh47ETzgvkvkMqymxD4n8jlWUyKfE0tOYhwRjgglEsWKEIsSSTizZUQxha1jMTJXtXw7iK6fdirkwsrry6uw8Nqqu3NUKhU+9alP8cUvfIHzZw8xMzHCf/qPn+X++x8gSuz8e/fnfT1fab9f6bpXut/c39DL+Un79Hb4/19IT08PlUqFKIpYv34909PTVCqVkPZjDNPT08zOztLpdDh27BjT09O8+OKLQEj8+frXv87+/fuZmpogy7r09/eSJBFbtmxi2fKl7Nu3l7OnT/D4Yw/z4v49LB3qo6cvZmhpgyXDfUxMXKDZbLJjxw7SNGV4eAkvvLCHnp469XqV9RvWcvLUCY4cOczZs2dpNpv09/dz8uRJtm7dTL1e5eSp45w7d4bTp09x6tQJjAkHBidPnmRoaIjR0VHGL5xnxzXbac5Ms2VLSMjYvHkz27ZtY/fu3UFsT00xMjKCqnLTTTfRaNTYt28f7Xab48ePU6nETE9Ps379etrtWaanJ/E+J89TvvKVB4mTiNtuv5V77r2bJ554Yt4jnCQJfX19LFmyZP61PHv2LN/61rdYunQpH/zgB+np6eGZZ55h8+bNfOlLXwLgscceA+DJJ59k48aNGGOYaU7Tas/S09vg6aef5ujRo2zatIkkSfiN3/gNtm7dyu7du3HOsWPHDlSVgwcP8vTTT7N9+3a+//3v86u/+qvceOONGGNYsmQJ1157LQ8++CArVqzg2WefpVarcfvtt5NlGddddx2bN2/miSeeYOXKldx0001MT09z8uRJJiYmqFarjI+Pv2nv37cSikWxGDXF2esJup1JNHcYtW/27pVcQhZ9BdoVY6etWNRWyYnJgDRz5N6hzmPFkNiIbl5UchViE5M0+rFJFe8pGgqDbUFUwYdIOBGLTWJMkoBPuf6qTYhrMnH+BHfu2oLYQZ54ai/1gZipPA8V5TxHjQGEPM+w1ST87vPCKpFRqdRCRQzB2uB/FkBdRporokEwL6xAW2vppClx4l7SWOhzBVHEBe91ZEE0TCw09R5msoxoyTJGJ2dpRzVqvUPsuvZqZo/sC55pEbwqpmjGXHhKO4gdgxpFnQF8qPIbj3HBKy3FpeStwU9bkf1J930tzFW277rzPcRxRDc1GGtZtbKXT/w3/4hHH36EZjrzpk6tnHtP/6z78PL1X8s23kimJydoNBpMjl+g224xOBBO7TcaDQYGexHjGTt1lnPnzhFX6kyMTzM7O8Pa1Ws4duwYS5cu5ezZs5waO4nPHYP9vVSrCcuHl3Fg7x6WL1/O8ZMnWLZsGUQVPvFP/3u2bVjFxsuvZNXdKzl+/CidTgsbCTtv2EXWbfPAA/fTPzjM2NgYSWzZdvkV9PT08LnPf5H+/uX81V9/hT/8l3/AwQMHWLViGZMTExw/fpxdu3aRdrrMTk7TmZmlr7fO7/3uf8fo6Chf+tIX+J3f+R02bbqMEyeP8vd+9ZfpdrtceeXlLFu6hKXDA3iUz//nz3HrzTdRSSyVuEolqXLo0Ai9vf3kWZN/8Yf/IwcOHODU2Amuv/56VJWjR49Sr9dpNqfZt+8ARixbtl3Ol778VWZmW9hEqETC7/7Ob/Hd736XzRs3cOLYKCuXL2fVimV8+9vfYnBwkG57hqVDfWzavJbHHz/J2KlzrFw1zJ133sHevXsZHh7m8m3bef65/QwODrJ9+3ZUHZdfvo2zZ0/TajWZnZ3hyisv58UX95NmbUSE9951J1NTU3z/qSf58Ic/TLvd5qtf+X/ZuXMnBw4c4MEH/4rf/M2P89xzz7B580bOnTlNe7bJmbFT/O33Hmft+g3cfPOt7NnzAtPTk8zOzlKpVDhy5DAbN11GJam+2W/jNx1VRUyEdynkGefPnmBooIZ3oYIk1caCNLoFjYI/zwH3T7rvq932NjvAf7uw6CvQGtcgrqKVOrbWwCc10tzT7qSkaRpSLfKMPM9DbrF6EMvg8HKqPSHHlMKeYJgbT+2xkcEgQYTbCBMJiVXGjuxlbPQQE2dmmTp9ju8/+iDXbe3hIx/aCa6JupBqpurwmuLTLt32LGlnFnUOdY52p0XW7WCMoV6rUKlVieMKjZ5+evoG6OnpwUQJ1lqSJKFer8973ARozc7Q6XToOkfmFa8hts5ai4lC9dpKhIkiWt7Tu3YtX/3+03zjh8/QrfYyem6CQwdHiE2MkSQkeJgEJMaYCCNJuJ4YIcYbCxKFkrNEqMQYQhUxNFMKhvJI/K3Iq1WbX636/FoREer1On/0R3+EqmJtTCVpkKXQbDaJoog/+7M/I4oWxzH9W1k8A/T2hoi4vr4+oigiy8JnYJqGGM+5FI5KpUK73aZWq7F9+3b27NlDlmUcP36cgYEBGo0Ga9asAjyzs7McP3EUxTExeQFVYf++Q3zrmw/T17uEX/9v/wc8FS6MN3n0ke+xYeM2fuHuD3B+YgaMkHa7+Dylp15lYGCApUuXMjw8zNVXXsFD3/o6u264nge/9AWybpszZ8bYtmUzt9xyC5/97GcZHh7mG9/4Brt27eIv/uIviKKILVu2cOTIEb797W9z0003sXfvXo4ePcqTTz7Jvn37uP/++1m3bh3r1q3j4x//OEmScOONN/KlL32JW2+9lbVrV3P69Cl6e3vnP2OjKKLZbIbs6CRheHiYkZERJiYm+O3f/m0+97nP8aMf/QgIZwYvXDjHY489yq/8yi9z44038oEPfICBgQFOnDhBnufs3r2bd7/73QwM9uN8CpLR21fBGMMPfvAD2u12sNM1atx++63keUq9Xi1sJ1O85z3vodlssmTJErrdLsuXL6fb7VKtVvnGN75Bp9Ph9ttv5/Of/zyPP/44K1eu5Pjx49x2223cfffdPPbYYxw5coS7776b7Tuu4cSpk+x81y7a3Q71ep3Tp09zxRVXsHHjRpYuXcqZM2e46667aLc6nD17/k18B791UJ/jsg7Hjx+kp6aks7N0pidoNs/jOhNv9u6VXEIWvYC2UZU4TojEIBri4VQAVbJuSpp2aGcd2pnHS6iSNYYGaQwNY61gNEOyGbLONJ1OB4NSTSpUKzVsFIMK4kNF+qbrrqJ/cJBjF6aoDvQysHINpjbIvv2H+c43v8lH7r8F2pNomqNpHvKhrQkhy9aQkZORUrUxPs/I5oQ1OZjgm+7p6WNwcIj+/n4qtcZ8AoeEtkhElCzt0Op0mM4ds86QicVHITFDJcT5WWvxScLI+Qk+++DXMb1LGV66nG7HMT3dZe261cFOoikWV3i9PVY9lhyDx85FBIpgjGAl+EcjoRhTHuICnYTLYuatLpheiVfb50shpKMo4itf+Qp33HEH1UYPasJwnqTeC1GCxBEbNl42Hzf5ZvJKz/n1OpB4q5AkCXmeU6vVqNfrQBB8zWaTbrc7Hz03PT1NFMGatSvp62/wK3/vl7j//few49qrufKqbQwPL2Hd+jXccMN1XLZxHVu2bGbNmtU0GnWuueZqNm2+jDyHgy8e4R9//Nf42lf/C0/tOcBlV1zDH/7Rv+LqK6+kMzPJX//1V7ECWWuaJ777KOPj4+R5zpYtW7j2ys388gfu5Z733ka7NUVvT53Z6Sme/dHTTFwY57777uPChQusXLmSp5/+Af/nv/03NHoqtNuz/IN/8A949tlnaTabnDt3jr6+Ph544AGee+45nn32WcbGxjh37hx33nknmzZt4syZM9xxxx3sP7CXdqfFhg3r+OhHP0qr1eLJJ5+k1WrNe3/b7fb8YJEsy3jyySf52Mc+Nh8H19vby0c/+mt86EMf5OjRI3jN+NKX/5Kp6XHOnhtj6dKl/Pqv/zoHDx7koYceYu/evVhrufvuuzlx4gSdTofNmzdzzz33sGHDOsbHz3PjjdczOjpKkiSkacojjzwCwOnTp3nf+97HyMgI3nsOHDjAtm3baLfbnD59mo997GM88MADLFmyhN7eXnp7e/kP/+E/EEURH/jABzh27BjjU9M8/8I+/t6v/X1Gjh5j9+7dbN68mS9+8YtcfnmIF7zjjjt4+umn6esbYtOmTW/a+/fVMS+7vBTRi5e/i4Xr/rgdzIEXBKE9dYHTh/cxXI84d/ocmguxTchn23Smp8G1UW9Rfry/YuFj/MR9WvjZM5f4sfDys/Bq6//cn28/+bVfjCz6Z1mxEEeWWhxTsQaLvOKXobWWOKlSq/fR1zuETeJQscXTnp1hdqaJNUKSJNRqYVjJ3GXON1ir1Wi322zdupXrd+7i7NmzrFu3jqmZWWqVOl/8T5/jlhuvwDJFJA6XgbVhgMqc7zOOK/OVDu89WZbRas7OV4aMRNgoIanWqFarYEKk3ezsLO00VLfnbBbee7peSDV4tKwXrDdEVEhtlZNOeO7kedZuvILVq9exdetWtmzcxKaNG4O4F1ecivaIUcRoUW22eBMuGBtODxmDN4IawRtLJhIuCM5anF2cp5AWm7C6VDjn6OnpKRpjIzqdDufPj5N2PUJMtVqnVqvxqU996uJAoZJLRhyHxI0sy3DOkWUZ1lparRb1ep2NGzeyZMkStm/fTr1eZ3R0lMnJSay1zM7Osn79egYHB9m564bwGRYZli9fTm9vg7VrV7Nx4wZ6+xI2b95ArRajOJoeBrZcS+Wqu1hz54dZe/sDvOsXf5MP/cYn2bFjB4cOHeLEsaM0agm9vb1F4kTM4EAvt968i3Nnx9i8aT2rVq1geNlSliwZ5G/+5m84ffo0hw4d4syZM9TqVZYtW4b3npOnjrN06VJ++Zd/mdHRUQBOnjzJypUr2bp1K4ODg7zwwgvz0wnf9a53sXnzZmZnZ/nkJz/Ju961k+bsDJVKhXq9zi233MIdd9zBhg0b6O3tpVarceDAAW6++WauueYa/vzP/5wf/OAHXLhwYb5H5cKFCyGpSUIc6vvf/34ajQZxHHPgwAHGxsb427/9W9auWcctN9/OP/nHn+B7jz/FFVdcQa1Wo9FocOLECU6cOEFfXx+HDh2i0+mwb98+nnvuOQYHBxkZGZmfxnj77bdjraXRaHDs2LH5WQEHDhzg+9//Pvv37+fChQvs2bOHe++9lyVLlsw3IX7roYf5hbvv5f/40z/jmh3XceDAAb73ve/xkY98hG9+85ukacqnP/1pxsfH+ehHP/pjsa/vLELyFprSmjhNX0+FmWabyFQ5PHKQkyeO0W23aDWn6TSnQLI3e4dLLgGLXkDH5MTqsLhgwcjdSxqVRIQoiqjECY2eAQaHl9M/OERiI2IrtFtNJscnSLud+YlRF/3Fbj5HVUQYGAjZqcuWLWNquknqPOvWb+D+++9n95NPceLEKV7c9xwf/9X7wbWoRjaM1obCjlEliWvzH3q1Wg2AtN0ia8/OR8ll3mGsJanWqNSqREmVNHPzH2hz+wOgeYvYd6n4jEgcPu8ymxt+NHKS7+w9RN4YoJ1FPPWDZ0iSCgMDA4wcOsjw4GAY+S0SqoUecjE4E5PbuBDFBo0SfBSjJsGb+P9n772j4zrvM//P7Xc6yqAXogNsYBMpkZIoShTVqOLI/jmKvbFjO4qdeOPz+8W7SVyyUZLdzdobpxzHzibxxjWytXFsS24RrUZSlNgLCJIgSLRBHWAG02fundt+fwwIy0nWm8S2pKX0nHPPBXEuMXcwL977fZ/3+T4PnqTiSSqCoiMolTOyiicpr80AeBOvOSRF5uUTJyvuL4JHOpdlampyZVEK6XSWQtGgZBjcdtttRCKR17wp73pfFF1jmovFIqqqYpRNFE2lbU07LS0tuK7LAw/eRyCo09RYxwd+5VF6u3swTYs1azpZWkqi636itfU0t6zBtAXC1fUUTIflVJaKk5FIrmCSTGYwTItwsI62G+5nuaSSnZplsLOZnTfs4LE/fIxY2uTCRJZ3feA3ePTXfgOfBGdOHGMukaZn7RZ6ezpQJIGdN+0GVyAZT6DKGvvvvYf+rh62b9tKW3sri/Eke/fu41r6X2x6ktpoNRsH19PW3sK+u/YSCPpYTiUoOybd3b2855feRb6Q5cLF8wiiR7SuBr9PY9uWrVSFI5w9e3a16EwmkySW4mxYv5YroyNs27oZx/GYnZ3lwYce4PCxEwRCYXAdbtq6mcaGenJpA1nyk1pOUzYtNm4YxKf7qauPMj0T41d/7QMEQwGmpqaIRAJ8/Hd+k87OTt7znvewe/duNE3j8uXLBINB1q5dy759+9iwYcNq0E1vXw+WXeall49gOxYzsWkWF+KEAkFEBJJLCTrXdDA7PcPtd+xB92lMxSY5e/YsnucRj8d58skneetDDyK6DrWRMF3tbaxfv77iJOJWiv93v/vdfOxjH+O9730vR44cvu7/Rv4x/vGc5HkOlPIsz06Sy2ZJZypElybLlEslZmankUQB1yxgl/OIwj9qTv7XsMf/2I3jlce/9Gddu+b/pJN+g32uPwmu+wJa9pxKAe25SEIlSOSa/dsrWWRN04jU1hEI1yKIFW2xbZnkcjnKlrlSlFZYXcMwMAxjNcQEKm4egUCAbDa72oxTXRNlbHKKhfgi/evX84u//Chz8wm+9fW/Z9f2jRTz8yjKtdhuoRL18or7g8pWq0fFZaNUKmGUy1i2i2FUziCi6houIsVicTXp0PO8VV2jUTaxBZmiEiShBjh0dQK9aQ3pnE1zUwe2YKOoKj09fVRXVdFQV0tqaRFLlCmLMmVJxlY1XFnFlQQcUcQVRTxJxpYkEOVKsuPK4ckigiCtHCKiICNe5xKON/HPQxAEHNvGMMrgiciyilks0dbSiq5pLC8laG5swjQM9BUd/0MPPbS6CHw9OJxcr4WCYRjYK43N69evZ3Z2lvn5eWKxGGvWrGFpaYm6ujpaW1u5cOECpmni8/k4fvw44XCYQqFALDaDJCkMDKxD03ysHVjPwMA6XA/C1TU0t7bhIWLaNsGmVhJCGCm/QJ1aoDakUO1TCWhQH43Sv3kzNf138idPPMfmPfdh2C7N1UFsQaJn7QZmF+axHYv5+Vla21qYn5/FsizODZ3l8sgol0dGGRkZ4bnnnmN8fJxYLMY3vvENgsEgjY2NDA0NkUql2LJlC6Zp8vjjjyPLMjMzMwBs2LABXddX/aw1TSMajZJIJDh69Cjr1q1bTfvL5XLceeedvPjii5RKBZqbm/mLz/6Pis2p7dDa3IhtGxWXJ8uqkCqZDJlMhvPnz9PQ0MDatWu59957CYVCNDc3s3v3bk6fPs0Xv/hF9uzZzdGjL/GNb3yd559/lvXr11eKsxU2vL+/n+bmZjZu3Ehvby89PT0MDg5SLBbZtm0b27dvp6GhgY6ODvbu3cvo6Cj79u0jm83S3NxMbW0tlmWRSqWoq6ujra2NqakpFhYWSCaTHDx4sNIACrzwwgsMD1/k2LETJJMp8vkiMzMzzM7OvpbD9zWF64Bt5vnON79GXVUU2wRN8xEK+dBUGd2n4lclAopEqZgllVzgn1rsvYn/23HdVzWy5yGLLghU3Dio6DErxbC3yvwGA1UEQtV4okTZdnEcg1yxgGfbVIUjqKoMjkuxbGEYxmoBDmA7ZSRRQdN1FEWhbFgIgsAtt97GieNH6e3pYnp6GtkfQA3UYJclnnj8i9y4+xZypUogiuOJXFNE4DqrnrSaIqPIGqZpYRoWQkBBVTQs26SQzyKtJApqmkapYCCsNP94Arh45AUfKakKy5I4P3IVOxgknimxMDpOXW098dkZuvo7uXnnjaRSKeYXErQ01FMq5pE0HVzwPAHXcXBc8BwTT6p4AFbsLT0EQUTCwxYEBGfF3cO1VrqNr11zfUo43sSPh+d5fO2Jv6v0DAhgGCbLiSRzpRnqa6OYhsHyUgJPFMD1iFRF6O/vf8110Nc7Ko1pAaqrqwkEAly5coVt27YRCoVQJHE1PS8ajTIxMbFaWKbTWbZt20apVOLMmTPsvftu6urqiMfj1IdCuLbF/OwM1dE6zLLNciqFouuIhRJ1nb3Ydpl8Kk1XVCW1kEZR6qitjSBJ4MoubS1rCVQF+epTPyCbXGBk2aXGByNXxwhEwlhOmZbWZmZjU/T2dRObnmZ0dIQbtt3IzMwCv/qr7yc2O0OhUODChQs88MADGIZBPB7n5MmTbNiwgePHj/P+97+f2dnZVY3wmjVrqK2t5ciRI7ztbW8jHA7zyU/8EeVymUgktEqyJBIJhoeHaW9v59lnn2XTpk2cOXOKyckZOjq6mI8vIXqgazJbNm2go2OApqYmNJ9OOpVhYGCAz3/+8zQ0NNDc3IwsV+RMR44cIVpbx8DAAHfeeSeHXzxEc0sT69avpbW1lZMnTlFVVUUoFOL06dOIosjmzZsrOu6FOaanp9m7dy89PT1cHb3C9PQ0Pp+PY8eOrTZUPvHEE6xdv47Z2Vn279/P+NgEsViMcrlMKpXirrvu4cKFC9xyyy2rixDTNJmcnKSpqYXbb9/LU089xb59+wBWz28UvDJFUJJlLp8+ydbNWzA9EccxKBdNXE8nmUgRCgZIzi7g81ycQIhQjUY5m0YOR8ATV0KjBCpF9SufjeL/5mv43xbg/9Jn60/7ujdx/RfQrigjCJU+PSQBSRIRV1gtSRKQZRWfFkQLVqEoEkWjSLFYxMVDFDQCvgCSKCAIHkbJwDRM8DwkQUIWFRzLxnU8RLmSLFhdXUuV5qdcLjO7EGd8ao5sNsvc7DSSrHLDju3MTE/R7vUxNjrBjTduByFEyVZJ5EsgKxQKBRAVzLKBi0M4XENLbZQ1HV2YtoVjeyzMTiGGMpjFIrZZQBL9uCUXQfSjaDrR+nrq6qOEw2Fy6Qwnzp8nmZinuiZCTTBCsVTGMAyCwTCxsWmaovVkcnnOnjnB2+66HaGwhFchsyvhKIKEKLjwShs7pyKNkTxwqBZuwawAACAASURBVGwN2V4l8VGQBWxBQHQ8LLHSgPgm3lgQRBlPEGlua8evyWiaRiyWJBjw0dffxezEBJGAjmkUqW9uoWxbeIjcdNNNOHb5n7XbezVxvTLP1+B5HtlsFl3XaW1tRVVVZmZmaGyoRRAE5hdmCYVCCNgkluYJBsPYdpnTp08SjUbZvHmQbCrN2NgEHZ2d+HwBFmYmaW5sYjmxSMbMIq+4BcmySC5nUhcI4BVT5E0bRdPwV9ejOCXQXFyzSERPIRdzCKKJYRiMp2Xe/5Hf5fBX/gyxlOFKbJ72tmr61q4js5xkfn6ed7zjHaRSGTZt2shicpG77rqTz3/+87z9bW/FFwjyzDPPMDc3R3V1NXv27OHixYsUCgVqamp4+eWXcRyHG3fs5OZbbuP9v/KrfPSjH8Xv95PJZKipiVIqGLhhgbOnztHe2kZvdw+WZaHKCj1d3ZQKRfp71/HfPvFJ+rr68Kwy73rXu2htbaZkGsiqhChCdU0Q17OojdZQVVXF1GQMTdPo7eljy7YbmI8vEPQHqAqE2HvHbobOX0CWRSampshk03R176FcLtPX24VllpmdmWLvHbeznM1w5coVJiYnyWazbN++HUVRWFpaQlYVWlpauHxllI2bBqmL1rOcTJFYSjI+PrmSYqtRW1tHPl/k9tv3EovFePjht/EXf/mXfOgd/465uTmef/55Lo6MMDM3x99+9avsvPFGpDegLG91TnIN2pqbsc0yqUQaXBvRcckvL9PV2c7E1TGa6hsI+ALM5/KEwtV45SKu40eW9B+Gpvy05rb/01z1yte5du2bhfJPjOue5pEEkFa0lxLXiuZKWl9lRSkhyZWGQdd1cayKlZPnuGiKvNrgVyqVMM1Kk56iKOgrbLMoigiSiOcJnBu+sMLSpBm9MMTI0Fl8MuzetZNNGzaSTme5fPkyb3nLW4hEqsmksxx58SiBkEsyMUpnewM1NTXcft9D3PXA/8PD73wvdz/8TrbefAfRth6uzsSZjmdIFCza+zazbtvt3Lj3YW7Y9/Os2/0wm+54hO373k7/lj2EI/UUsyUmr17h7NnTxGIxAoEgPd19JJJp/H4/iqIhyyq33XYb0/OLIFaSqFqampAEEU0SUYRKkqO8Yhevwz85VMFBFSw0wUYTbHQqwSuyZyNRRsRCxHntBsGbeE0gSRLPPPssVVVVCIJAPp/HcRzmpmc4fPAQNZEqRDzy6RSTV68wPztH2TTx6TJ37Ln1zWbCnyFM00RVVWRZJpPJYFmVXbOBgQFqampIpVKEw2GWl5fRdX1FSvPDh/TCwgJHjx6loa6eXDrF5ZER4ouLLCWX8QSINtTT39+LLMurDdGiplF2IG1CpmAS0FTm4jMsLicp5HIsTM/S0dlEtpAnlUrSWF1NX1Mjv/Px/85zh06ynM3T1tqIaVnEF5doW9NFY2MzR44coVAocPfd+xgaGsIwDH7hF36B2tpazpw5w7Zt21i3bh319fV8+ctfxrIsuru7OXHiBLfffntlzmtp4fKlSzQ0NJBMJpmYmOCRRx6hUCgwPj6OYRhs3LiRl156iR07bgBc6upqK4Ex8wsYxQID/X1Eggof/a0PMTV5lY7OdoIBHwG/zsUL5/HrAXKZLInFOKoKd95+G2tam5kav8rS/CyuaTE7NcXVKyOYRZtkPMlNN9xEQ3UtD97/AFcuj6LKCqquEYhEqK6po76hmfmZOXRFI6D7OXTwMKdPn+bMmTMkk0lqampWLe/m5uZYXl4mGAxy+vRpbrzxRvL5/Gqz4ac//Wc8//yzHDr0As899wwPPvggX/3qV1HVyiKovb2dD3zgA9xzzz0MDg6iadprN4BfYxi5NKoikc1mcRwL0yhhlUr4BAkzu4hbWEYTHObGxxjoHcCnqmh+P6L3Gi3M/62OHW/ix+K6Z6DFSvwIsiBS9hxEQUGSVuzWFB+y7kP1h5BUCWElLCWgqZX/69q4ZXtVfyzIErqmr1i3iUiSjOvauLjYlsfolXFUUcATXKKRKlKZJI31Dbz44kts3LSJm2+pNAW+9PIJdt2ym76BdbiezdXR89y4YycvHT+DP9jEoQNPUV3bRNE0MPI5+vr7SSSW8UQBRdbIF9JcWphF9wXwBAnd70fS/Ai6QjKX4cqF09QHPGrDOnPzk0xNTvLAAw8wPx8nncmzZdsNpFNZopqPZHKZmdkFunv6OXXsZTobG5kdv0xYBM/1wHPwbLci+nI9RNtC8jwsx0FyK8EytldG8BwEtxJH7mIhuQ6ua1ckHY6D67xZQL9RIKwE7iiKQiKRIBKJoAhQLpcruzRVVfTUdTE7MwNGiZpwiIVEkvb2dkqFPOGQxsM/t59DR45TLBaveyb4tUBjY+OP6MsDgQCu61Z6OEo5JEnC5/NV3H9kiebm5op3sWXS3dVBKpWiuipM2TRwHZv+nm6a29qpi9bgOTZlo4Rtl1e1toIgsByP405P0FjbgBqqQVVKNER9+DUNVSiiqDKBoEpXdz8BOU9uqYivDP0NrRydGOG//Onn+OhvvIdITQM+PUAml2f79u0cOnSIK1euUCoadHd3k06nWVhYIBaL0dzaxq5duwC4fPkyqVQKwzBWCuEdq+4Sc3NzADQ3N1NfX89Xv/pVent7KZcNtmzZhK6rhMIBmpo3MxObwi6bBP0+7LLJxo3rSafT3Lh1I5oOpplh4/o+ZqYn6e3uZXl5me3btjI3O8/x48fZumUT3/3Ok2SSWQRBYPfu3Tz5zW/x7e98n4997GOcPHkSLaRx/z138/JLz+E4FocOvUBXVxcLc7OkMmlkVaOrs5vvfvfbLMUX2bVrF9GaWu7Yczvnh4fYt28fS0tLnDs/RKFQoL+/H03TmJqMkcvleOihh4jHl+jt7aWrq4tUKsXb3/72VTs8y7IYGhpiz549XLp0iVtvvZXZ2VkaGxsrriEtLRw+fJh//+GPvGZj+NWE4Lm4goznCUiSh2OW0ASZ6qooC4UFVFEjk0/grxZJz6fxSRqF5WUWYpOUDj/Hlptu4eLQGerbWgnVNaPo1QgI4Dn/qLHvp7RT63nXEltwXRdX8PA8kCQF17Kx3IoBgiTLeFa5Mg/8xIz0j49Rvx5x3b9DQfAqcdLCNRb6h4l6sqaj+UOogRCaruC6dqXREA/HNCiXchQLGQzDQNM0gsHwatDDtSY9x3ORFBndF6SQN6mJ1qFpGpbtEfQHuToeQ1IDBKsbQFSYjE0zNj7FqdNDbNy0mWeeeQajAE9/5xl62hpYnr9AYmyI+PgQxfgUbiFBMb3I3NRV7Hwa0TEQHRPMDMXlGIXkFInYCLGLRxk7e4TLp16AUoqZyXHOnT2NIghUVfkpGQU8RAY3befsuUsUSmXWrh9k39376RvYQEtTM0FVYF17HbqVR7WzyLaJ5JjItoFkl5FtE881cD0TUbAQRBtBtJH4oR/06kNZFBCQVvTYAoLwJpv4k6Jir60DIrqsIPD63IUTBKFiseg59PV0oAguuiYxOx3j0vkhonUNeI5LdSSMSCX+vbmxgVQiSXwpgSjLREI64YC6Mo6u+2nqVYfjODiOQ319Pe3t7as2nKIoIsvyakBTb2/vqt1bf38/pXyO5GKcXDqFZ1ucO3eG2ekZyobJuXNncByPcChCoWSsOmH4fD6CwSCemUMw8xTKLkVBQfdruGaOYiqF61Ts9ALhCBNT00zFFsmbHulsgYWpK6zduINdt+8HR8S0ypi2xfzCApbr0NPTw7p16zh37hy//Mu/zHe/+126u7sJh8PU1NTw6U9/etWb+R3veAf33nsvDQ0NXLx4kYWFBe677z4mJyeZmZlhcHCQqqoqRi+PcfXqVd7z3ndzbugMN2zfype+9AXq6qOkkgk62tsIBwNs3LieHTt2UFsTIeCTEXEZ6B1AFBTC/ghLiUUc1+bkqRMEQiodna089dS3SKdy3HDTzfyvbzzJ+97/QVrWrGHdpg388Wf/JyUvxIEfXOA9j36crzz+LF/58tM8+ND9fOvJbzAzG+PE0cMcf/EFzp8+ztzUGGW7wJe+8j+5MnaRYydeZH5+noWFBaamphgYGMB1Xebm5rBtm0QiwcDAAJIkcfHiRerq6lhcXMR1Xb73ve+wefMgMzMxRkdHmJqa4siRI/j9fo4dO4ZpmkSjUXbt2sXLL7/MHXfc8VoP41cPK7svogiuWUJVJFzXqwSweQ62ZaJJItlEAjnoo6yqCA3N9N5+N7ovxNe+/g0G1q7Dsyw0ScQxCz9TUslDxvNkPAcEGyTTJjU7zdjwSU6+/DQLE5coZZI4JfNndg9vBEiPPfbYa30PP1M88VeffkwWV2KEBQULiaIrYFoWoqLgD4Tw+0N4noVZMrDKZfIrxviyLCEKApIio+g6juNWVnOuW1k9IiDJErrPjyxpyJrKut42FmIxfP4Agihx5133sm3HTkzLpqoqQl9fP3gu3V1dnDl7Ep+ukVku4DoeZ86dYNv2zZQNkGSVwopsRJA0DNtC1f0gyhRLJkXToGy7yIqEZZvIEqSnpwmqKsVsmoA/wODGLRw79iItTS2Issz69ZvI5PNUV1fhuh7BcJiamiie5zExMUY+McfWvg7IJZHsEnhgOx6u6+C5Lq7rgACSICIK4sr3VvTPiLieh7sS7OIi4LngAa5X8d5+yy/96u+9tqPhp4/f+73fe+zVezUR17Pw+wMYpoEHIAqVX/LrCJ7noaoq3d3dPPTgg2iaglEqoIgSoUAIURbILifJJJbQVrxylxIJGhobUX0BNL+CKnokEikuj03g2R7e6+1N/pTx2GOPvap/GxeHzzwWjkRobGpicWmJgM+PaZQwS3kUWSLg93Hi+DGqImEAWltbKwV3QxMTU1NIsoKHQCKdwecPsJBI0NjUTHdHJ6OjV2hvb8coWqi6wtD5i+RyZUrpFDW1VWRFP6ovQoOUwUNEFRwUnx/LkbHKDlVhP5FIDfWhBsJVNfgCfhJFE9FTmU6nqJYMfKpCQ3MnxUIOSVL44099ine84+d58fAhqmtrGZ+YYP2GjdTWVvPAA/eTy2UJhcJ861vfYvPmzQwODjIxMcb+/fdRU1PNqVNnOHXqFM8++yxvfetbOXToOTZvGqS7q4uOzm7+8q//ko999KNkUilOnjxDPL5ENFrP5s2VWO+h8+e4/8EH2Ti4hWA4jCB4PPHE4+y7cy+f/Yv/wfe+9wxPffd5vnPgIO0bb6TvpjtJFkV23nc/i8UaIhvuYGDtWm7atJt1u+6iuqGVrsEd1Kzp5cY9d/P9F16mZFucP3eGF54/TlV1DSdPn0GSZBqiUWoiVUyMjRPQfeTyGbZt3cZ0LMYD99+LVTaYnZlnw8aNLCzEkWUZ27bRdR+maXL58mXi8TjV1TWk0xl2776NK1eu4vfpiAKcOnmCX3r3u8hlM7iOjVU26erq5OLFC+x/6K2v/pzuuY+96q9JJYQM2ySfTuBaJiIuplGmkEph5rIItoltFAnJGheHL+Kis7xcwFNkahtb+U+/+xh9fd1InksgEMShkiEhyTKs5An8m5jgazt0nlep8AGjWEIRPQSvxKWhY6hCgYDPJhRwaWuqpzZaW0kaFhUERf4ZMTGvQ3bnlRDFn3jsXvcSDgcPDxEPFUeQcQXwEFEUHVn3VbyWBQe7aFE2LHK5HLZtoygKruvhCRVGpmiUcF0XXfVV3CfECrPqscIKqiJlT2Pjpu2oxTTZYpGFVInhkctMxKYr29PlMvPxOMFgAKecZ25qDFHSUf0+4vF51m/aTMkoo2ku4xMjJBLL9Patxc4tojgugiGTyS8TCtcwMbfA2rX9FPJZNFnANgq4donZ2BweZW64YTdjYxdxgbmFOK6gczh5mJr6MJrso6GphUhNmGxumeRCguq6KsZzWdKJJQKqiieoiHaFub9WpAmuAAKInojgeniChCV6SI6Ai1NhoJ2K16W40lgoeCC4XiWt8U38m6EoCl/6whdpqHLR/bVk8jlOnTzDf/r9P1xh+IXXVbCB4zh84hOfQNd1LKsigcrlcphmmUIuhV00UDwB0fUIB0P4VjxrRVw8D6qidezcuZOnnn4Ot7yyeHsTPzUsLi4iCAJLS0uV4I+166ipqaJULCPLIolEgpaWFuLxOJ2dnZw5c4ZgMEhPTx+dnZ1cvnyZZDLJzbfsJjYzy9jEJLlcDsmDaDRakUhsvwHbtaivj5LJlijHE7izlwhGm5hINfPA1q1EvWVc0cOVZTp7GijjYTo2kqfjehKSBBlbJGtaVIdq+e7zLxObC/L2W31IRp5gVS2FTJp3v+e9zE7HaG1txR8KM3R+GFmWaWxsZHR0lG9961scOvQiv/7rv87Ro0cZHh7Gtm2Gh4cZGBggGo3yyCOPMD09zdjYGI7jrLpjdHX3cv/993Pw4EG6OtasOmDous7Jkydpampi06ZNLCwssGnTJpaWllhaWuLXfu3XOPL8Qc7F0ux626MEJRklGGXR1rmacbmhpZ+E3kqiqo36lm5CxgVke5Hp+XHae+swHYWJyUVKaDz4K7/JN//+ywSLC2iyj+HhERoa6sjnS8xMT9Ha2srmTRsZOn+ewcFBvv3kN5FllbGxMQRB4C1veQt/84XPs/OmXWiaRnV1NWNjEyQSiVWrPk3TaGpqYnh4mGw2S319PbFYjMHBwVV7VsdxGBwc5JlnnllNZHwjQXRdHLOE7tfBMggGg+RlGUEVMbImgmNTdmxu3LmDSPMaDr30EiXDD2WP//KHn0QRykyMXaGurg5L1HDKNrZto664ZwkrxbAoSf+6Zr9rBfhK+JouGJw/fZLO1jqaoyqyrLIYX640jUolJJ9AoEpDlr3Xe5n7usZ1vzfqIGAjYL/iawBd1/H7/biuSz6fxzAMyuXyj/ooOx6mVaZQKFUGuebHFSQ8UanEUyNjCQqWJ+C4HrbjcfDIy8wkUqQLZURN4fjx40zFpjk/PEw2tcTw0BlGrwxzfvgssgI+n0ahUMDnCyAKCprmY2pqkmDQT0NDHZZlMDpyAcolyoUM45cvMDp8mqbaABOXzxNWoJhKUMomMI0cdfVVtLTWMzF5lampSZA0unrWsXXrVhTJIb0wT7S6Cp9WSWbs6WgnNj3GpfOn6e/uxKerlYlSEHFQQNRwZR1P1PBEvbIKF3+onRQrNCiiJ1bseQQJiX8+nfBN/Nvg9/v50Ic+RHtjHapTRBfLhH0Ce27dwd/97d/w/vf9EuFweMWe8fUwHYroemX7X5ZlHKfiYz49PY2qqqSTSUq5HAHdV/EiLluUSwZGMY/n2FhlB0SNwcFBfD7fmxronwFc1yUQCNDS0sKOHTvYvHkzDQ0N+P3+VR96y7Lo6OjAsiz6+/sJBoOMjIxQLpcJhUJ0dXUxMz3FpQvDNDXU09fdRSwWo6WlhUAgALhIksCGjetwHIvW1lZmJ2MIM+cpLVzke2fj5Lw6XCGIV/bIpzOUi0Vkx8Mri+h6kGQmRz5bwLHL+IIhduy8E7VtI5/52pP4cSmWTFTNx5rOLnR/gKqqKkZGRujq6mJubo4vfOELvPDCC2zdupW+vj48z6O9vZ3PfOYzXLp0if7+fkKhELfccguyLLNr1y6eeeYZPvCBD6wGlRw8eJDq6mo8z6OmpoabbrqJxsZGALq7u/H7/aua/2PHTvD00z8gFpvh7rvv5fCiRtdbPsyCr4esU0um4KNOktip53AzZ6hyF9m84WZ8pWFqxCS6vUxzsERIMggpZerCKgplpmdjVA/cROPgLTiCSHV1hPr6KLHYFN0dHZTyeU4dP86GgQFiU5OsXzeALApcvXqV0dFRxsfHeeSRRxgeHub06dOcPn2aaDTKjTfeiN/vZ/fu3UxOTnLx4kWWl5fZv38/8/PztLa20tjYSCwWY+PGjYyOjnLgwAFuu+02QqHQazuIX0V4goiHRdnKo0orCb2uQCaZIJdNsLy8BLhIns3YpcuMx2YpeSKbt99MS3MzN2zchOBalMom87PTjF84TUC0yGfncfN5zFwBSVOwSiVEWYYVmztvpfHPc91/JsLbxREqpInjupilLPnEBFPDB0nOD9FcHyKVLqIHGykbNrKoIiLjuCay7kNUggjCz7IR1H3FcX3iui+gPUnCEaRKES0I2B64koC80oFul8tYRWP1gSEIlbjucDiMrGuVkBBBxOcLoGkamj9MIFiF6g+i+v1EqmoqOj9dw+/XGbk6wfrNWxEUhdnYFP19XTQ115NYitPWWs/mzWu5cuUy2UIWy7ZZTi2xZ89uJEkilyvw8stHUVWNVDqJ69o4romAy1I8TnUowJqmeuxiBiO1SDmTwMglGT59lExiEQGX5PISqXQSgK6uLjxULlwa5aWXXiLs9+NTZGzT4PlnfsDi7CSzk2Os7e9kbV8n4ZCPolFC8AdwZD+eEsBRA6D4cBQ/ruLHVXxYUiVUpbKQEHEEuZJAKMsVI2tZxVNUkDSQNVB0PEl9jUfC6xuvDA0RRXG1EL4WrHP//fejB3zYgg/LldFCDeihOrr7NvJzD7+FL33x8/zG//thdF1ddYd5bSCiyBrvfd+jeJ6AbZUQcMgsp2hraads5CmbFiIiZj6HYRSRbBvXslhaWmLo7Gkc20YVA/iDIe69ax+i/MPF1+shWOV6QCQSWY3w9vv9ZFdka6qq0tjYSHd3N93d3QiCQCqVQlEUQqEQ/f39xONxyuUyoiiSiCcwSwaFXJaFhYWKl/z8PBs3biSfz2PbNp2da1g70EvZddi15x5yc1N4M6cZm1/miefOUTYEsEUE20VFRHFAMmxiYzGSy1l01yWiyTz99PeYHLuKUbIRq5oYvXges2Sg+nQaGhuZmo5h2zb33HMPIyMjtLe3s3fvXvr7+6muruaRRx7hwIEDDA4O8s53vpNbb72VdDqNLKucP3+eDRs2sLi4yLp16zh9+jS33nor0WiUn3/727DM8uoCo6GhAU3TqKurIxQKMT09vRpVX1Ndy9Jign/4/tP8u/e8H19TJ44gUeXTECWHmpZGpvIlkivPlNiFkwwdu0gooCMoMsFIK6rmJ6JK1Og+OptqaKzSCCkO9S0dLGSKzC/OY5aL1DfUsnPXdqprIhRLeWrqojz9zA/I5XKcPn2KYMiPIAhMTk5y/vx5ZmLTXL16lUuXLlEulxkaGuLUqVOcOXOG4eFhNm3axJ133snly5cZHx9HlmV8Pt+qk8oXvvAFampquHTpEo8//vgbKkjFE1wkW0RyBCzFRRBlyuUy5UIGu5TDL8LybIzY5WG8ZBwpHUe1Cvh8Kk6pgFlYZn56krnZGBcvDTG/NIdnFxg+fpChU4d4/POf5dKxg5w5foTxC0N4ZgHbLmN7LqZp4treqnzUdV1sz8EWPARLh7LF4tR5rg6/jOzkCegC+ZyBKCgEAiEWFhYwTZNgMIimabiegu4LIUoyCP/K4vZNJ48fwXVfQJc9cYWBljBsD5OKxkjRVDzPw3Pc1XRCWZYJh8NUVVVVutJFEUnViNbW4dP9+HUfkaBOKKgTrYlQV11NwK8jujaeWcAzC7i2Q01NFJ+uoFBGtHJcPneSqfERnvz6N4mEqkgls2iqn4GBddx2282ULYN7791PMFDFzbtuJ7WcQxJ9JBLLzMzMUTLKbBgc5Ojx4+TzeTRNw6eIiG6ZTHKJcDC04llaw9LSEsFABE0NMjuTILucwbMs1rQ0ksvlqIs2UV1VxYaBPmKjlzl6+Hm+8XePM784jyUIFBwBWw1h+Wux/BFsfwRr5TB9QRx/LY4WwVTD2HoQVw/iaSq2rODICp6q46o6nqiupBOquKKM+2Ywxo/FK+Plr/27chbYMNBPOCDjOhkEWadQBlH2ofmCKJqPmvp66usa2b59O7JUYc1eWYS/2ujv72ffvr24ro0sS7ieTW1tLa7rEg6HiUajleYboK42iqootDQ2UR+to7erC0HwcKh0ie/duxfLsn7k57/JSP/kKBaLCIKwuutW2cgVCUeqKRQKWJZFPB5ftbHz+/3kcjnyhRItre3s3HUL/kCIxtY2+gbWEgpFyKRTLC3F+ZM/+RRDQ0PkiyUMw2Zww3oeuP9OVMnm7Mkj9HSuJTN6AS1/lYSq8Xfn4nz34HHyhTQjFy5x6uxlxqaukDHyFMoGjgILtp9ytA1BFSllC/yvv3+OfNmmJhLAtlwMyyYZj3P0xElaW9pob13Duv71tLWtYX4+juvCi4df4uGfexvLyTTpdLqSppg3OXtmiHUbNvJnn/5z6hubGJuYRPf7OPTiYcYmxkknE6zr72Nd/wDnh4YRFZnxqUlyxQKZfI71mzZQKplUhas5cOAZnvreD6hq6sBds4OZlI1UKlDvV1mzppfWaDX9azoJ+/0YxRSeXMA0XMyCCS5IoonomOiBIK6l4pdF7GKGnBAk7Yk4hTSu6dJQ30zJKFBdXY3lCnT3rSWXL7F9x07uu/cBbth2I9OxWUzD4sYdO3nhuWdZTiwRjUbp7u7GcRyi0RrOnj1LbW0dqeUc6fQyR44cprm5kbGxK6vPxAsXLqAoChs2bGBkZISGhgYCAR9VVeHXehi/enAr+uKTh59BX5rGKqQqvUd4lLJ5lpcSZJeTpBbmySbnmbt0nq9/4XMszM/il10+9V9/F8GxkEWJ7t5+pufixBemqNYkervbGRk+xVNPfIVsYpbY6BDffPzzDB07hJFaRHJtsMt4rrOqQcd28QrgFeZ5/um/QnXTRAMy588NIUo6AX8NriNjlW3C4TCSJGFZFtlslkhNE7IWqTT2/2vt7d6M+/4RXPdNhF/6688+JokCniBhuh6WK+GJEqIo4VjOyiSh4HmVsyxXvJ89z8N2PVRVQ1XUiv5Z91fkCK5LIV/EssqYJYNSPodRzFEsFgkHdJoaa5ifnsAyDZaXFikaJvlcHlmWMMsWd911Dx0dHYxcHKFQyPK97z1LOp3lzJmzjIyMEq2rxzTLjBUeOAAAIABJREFUpDNpXNejoaEJYOUedJaXl9l5005KpRK7du0imVpmIb7IcjLF1i3bVnZ3RG7aeQv33Xs3V65corOzlWhtLZruwx/047mQXEwyevUydXUNXLh0ia2DmwgFw7iCDLIPUdNxJQVXUUBSK1HdgoiLWNGBCyIOIq7g4iDgArZX2U5CEHBXdNC26+J6Ag//4nvfbCKEf8I0i6K4EjYhoyg/9CT3qIy/XdtuYN1AO7Kg4cpBDMujbIFZtnA9CIRCyLJKOBTgtptvRNUryXKiKCK+Ivjm1YAkyey78y7uunsfmiqxvJygUMhzcfgi7W1riC/MUTZMJA9Cuo5tW5iGSaFUIloXpVQqIflUgqEQiiyzlEjy/AuHKJWKq7+76xGvdhPhoeeffiwSiZDNZvH7/dTXN1AsFNB1Dc+txHtrmoYsy5imyezsLA0NDdiug6arxGJTDA2do7m5lXA4TCAQIJfLUVVVTS6XQ1VVNg5uJBKJkEwmyeVyrF+3jsmpSbLZDHW1UcZHhwjU1jKjtjC1bJDOLOKnhCK4LCRzCLKCK6vMZzM8/tIFWrv7kAuLzEyNUecLkJm5RFNjHeHqWkRRoKO1mW9/5ztIksz8/ALdXT0Uink+97nP8eijjzIzM8uBAwfo6emhtjbKRz7yETYNbmX//vt59Fd+BaiMr3Q6TX19lA0bNvDwww/zlb/9CmXLIhAMctfddzM5OUl9fT1+v590JsWRQwcJBSM89dR3+eaT3yVvWrSuu4FEoJtQuIrOqhDtYT+6qmIWC2j+EAHFwTUTrLthB5fm+9jUvYhgZ1jb30N9QyuLyRKOIyPKFi4ii1KUpVKa9JlD5GLjBIM+Bjeto6+3j1w+RzAcob6hiUsjV7gyNs7cQpxIdQ0Li4vk8gXWb9iI63lcHRtjfHy8opPVddLpDKIocWX0KotLcQKBIBcvXkKSZDo6OkgkErS2tpJOpxkcHKS+vn7F2cPj/Plh3vnu970hmggFT8LCxJgf5au//UFuffs7sFyB5eQidsGgVDQxSgUco0SuXCI+PYMerGH91ps4dfIloqEg1XV1VNc1sHZgA7W1dQRDPuqrq5icmubChfPcsG07qfgMtpFHVjTGL5znyLPPcPXKRTzJQ5ckymUTxzK5PHScv//Kp+hqkWmsW0MxW0TRg0RqGllMZGlrWYMniOTzOWRRQgLMUglRkqhp6sRDRhArFr+rRfG/dm79V13/Opy3fwpNhNc9Lahgo6xY2HmeB66L61bYFhcPWVVwPBvPsfH5NCRFxvFcDNtBFhVkScIwDARJxvJc8sUS2XyBYrFINpullM9RLOUxyhaCYxEMBAiGo8Rm5iiWLGxLwCiVURSFXDFHsZDFLGbxrDI9PX0kkiU6OnpIpVLcd8+95AtFyq5LOptC03WqwjX8/M89TFjXaG5oQAI0RWV2doaFhQXmFhaoq6vnnvsewLJN5ubmyOUNDh85xsFDL/FXf/VZ4vPTZNJZmltbaO9oR1ZV2ru6WUgXiTb1sLCUR5H9ZLJFFtN5JC2M6qvClXVE1Yes+FBUP5IeRNQDiHoQTw/g+kKghRCvHYofSVIqRY5bKQxFD2RPQH6DrlhfySr/UKbhIYqsnmVZRFVVNM1HMBimtbWdlpY2qqpqqamt49Ff/wDVTc0owSoSy1kMy0VwXARPZDmZJpVMIwgCvkCQxrZeHn3fL3PfPfcSCgSRZflVk3MIgKZp9PT14gsGMMwCRimNJol09nSTK6QJV9WgyzKK52IYeSS7YnlXNAokE4vU1taiKRqW7SJLDj5NBtf5kcL5ei2iX01omoamaUQiEXRdX9VEX+sHSSaTFItFJicnKRQKeJ5HqVTxdi6XDQYG+ujv76VQKBCPx4nH4xw7doxz584hiiIjIyMcOHCAP/qjPyIajRIKhWhubOCRn38IUfBYzhYIYzH27Deoip8m0tDAVaGFF5M+Zt0qPK2aeKrI+bPnOHX0BLeu7UBKzJCcjBEsZWkMGMzOxdE0H5IkoSgKjz/+OJs3b+bb3/42kUiET37yk5w7d46//uu/5sCBA7z97W9n3759HD58mFQqxf77HuDuu+/mD//rf8Pv9/PII49w5MgRWlpaKBQKOI7Dn/7pn3Lv/vtQdY1UJs3V8THWrFmzGk7iWjbNjU2MjU3w5Le/T6pQJBSuQguEGL4Swx8KIFtFFmamyWaz1IYDuGWLggWBQISJiQmef+EgS8t5REVCklXOnLuA5fgqvTF+ibqmZgxJx5qe4tKJF5FlmbvvvpudO3eiKAqW41K2HCRFZcu2rWzeto1MPs+zL7zA4lICfyBIcjkFQmWe2bJlC3v27GFhYYHOzk7S6TS1tbVIksLiYgJF0Uinsxw/fpyxsTGeffbZFaemCRYXF3n22WfJZHJ0dHS9RqPX/THHTxMiIIDrULKypK6cZ/LKOPFsgfn4AraZQZE9lFKRySuXaV23ge4dN+Eh4gsGWZqa4M8f+wjtHWu4+8EHaOvsYjGd4rc+8tuYxSxXr4xiCw6lVIK33b+XP/7En7Bx0yClQgJfpIpofQtHjx5FMA1621o49NTXSS1NUVUTZH7kCG/dfxeRSCP+kI7tOgiyH8sVaWhqxnDARiAUDJKcm0fGoSoSIlLdAIJYkW54zj9NKPyXPKf/TZ7RP+4z+79XI33dF9Cy4yBec4FwBWyr8mHZtr3qWuC67irz7DgOpVJp9Xu2ba/qol27Eqpil62KC4XtUDZLOFZlG7RQKCDJMtOzc2zbvgPHhbLr4eLRuqadzVu3cPOtt5BKpzl2/Djf//73ueOOO3Fslztu38eLLx5l9y134LpgWU6lGA8GiMUmV0MoroW65LJZRAk616yhra2NkyePs3//fvr6+tiyZSu///t/wN69e1leztLZ2cvCQoJiweTQwcOMjo6yvJwgENBIJBYRRSgW8ySTcWRFIJVeIpdL43nO6sPpGjsqKzqiqiOoAQQtCHoIRw3hyTqCoiMpKrJYia7FdRBchwpP/cZ2UbjGBleY5kpXtKrqqKqOoulU19TT2zfAL/7i+7j33of44Af/Pz7z53/Ff/6DPwRPpbqqAVkJ0N3dj1kwsMoG5VKRYMBHsVhkbGwM13WJRCKomsxv/fZ/ZE1HG7qu/8wL6GvvLRiK0NLSwtve+nPglCgVK0ERtuUyNz2DJIrMxqYx8xW3BsMok85lMctlZFEiEgyRSSUZvzyKLAmrzWp+v/9nev9vRAieS3IpQXvbGnyBIJ5XsZ0MhSJU1dZTG21EVXVqa2sJ6AEyyxkmrk5gZIqonowuKeiqRn1dNcGAxsYNA2iqiG0ZlA2Tutp6LlwaBVFB0fz4gxGKZp5AIEB/bwdrWuvJ5QpUKQLZM09z6Ut/wOLJf8D21TCU08k4KplEBqfkUaPoLA0PMXL0IKPnjnPyhe/zta/8JapS2V0RRA+jVObmXbeQy+X48Ic/zNWrVymXy3z5y1+mWCzy8ssvk8/nGRgYYM2aNaiqyvjkBP/xt/4DwYifj3/845TLZdrb2zlw4ABjVyc4fuwkQ+eGOXrkBONXpti2bTs9vf0gyWTzBZqaWkimsiiqj3/4wQtoWgRRlbAKBfRggD237Cbok1B8fm6+aTtN0QYCukaz30d7azNtHZ30rd3Ab34wwo7NLQR1jcsj43hiAB2RQKNDMW9xJmEweXWEoSf/pmIxKhl0dlbSYkVRJBpt5o69d7F23XrMskUqmyPa0Mh/+K3f5oMf+nXuvX8/sqYSTyzR29fDps2D9Pb1cP8D+7Fsg0Ihg1kuIMvyKjPd29vLzptuJbWcA0/m3LnzTE1Nc/LkaSzLYXh4uBKyc13DXdEIe6RHXiQ5d45Lp87w4Pv/PcNnTxGwTdxEkksvvkB+OcHgzptpXbeB+NQMmXSJuZk51nW1M3zsMJ/875/i5j13Mnz2Ir/z8cc4cvwENZEqPv+5v2B6bhpdcdg+2M43DxzmTz/3NU4dfp6ckUMKBTg7OopZNti2fSs1fpUnPvNnxCYukysZzM3Gmf//2XvTKLnO+tz3t8fatWuu7urqeZK61d2aLMmSLMmWB3m2bIwd4+AYBwwECASSLO45N+fLFZxzV5KTwzmXhCkMJpBgErABYzzgQZJtWdZgzWMP6nnurnnctaf7oVrCJokTCNiJwn+tLXVX1V5V9dbut573eZ//84xVLRVdQcQfjuD1BSiUC+STSeamJojXRxBkCVsQ8cXqcC/K+34eBL/xtn8JTP9GCw38J7CxkywLwRWwZQnTEbAlFUkUq1vFknTpkAWx6sRhVRtrJMWDbds4joNHrcZ+FwoFXMdZSjcE1zKxzQpWxUAUxaofsiQzMDyG6hYoGCayAGWzzJWbNtDa2sqLL+7h+LET5HI5FMXDD3/4OA888Ls88cRT7LjhVppbWmifbePM6eNEawKcPX2OwcFB2tvbUZZs94yKyezsNO9//0M889Pn2LB+I/fdey8/ffrHqKrO3r0HuH0nTE6O09zUxslT51izajVPPvkkbW0teL1evF6NHTduZ+/el1hcTJJIZpmensW2TIJ+HZ8eQDdD+P1BBKlq5ScJArbkIig2om1jmjYgI0geRKmMUynjihKu4yK5paVufhvXNsC63Cfbf1w/3xh4MaRCFGU8Hg/RaBRBEOjs6mHFil7WrLkCSXLRNA2fz4dVMQhHAkzPjNPSFgVZYmF2hkx6FtmJEopGGBo4jx4MIcsyQ0NDLFu2DJ/Pi+M4/Pmf/ym797zCY489xuTkJOVy+Q3a6l/N5CcIwiWN3QO/87usWtmLV5Mp5VJUinls00KUFDyqSrlQrP6/MIukeHGR8PqrXrTpRBLbttFCOv7aGlzbwhXcS+MmXOxI/yVe38X6jXb6Z6Xr+lKPxSQbr9qMT/NSLOQxDINCKU8oECSTTqLrOiePHUdRFLxeDdsxWUykWUwuMDMzQ2/vSgqFAjMzM2zcuJGBwQu0tbcyMT6JKEqILvy3//p/8+CDDxKvryebWZJ3rO4jkVgkm8tTLOSIyw5Mn+Xkt48i60EWmprwihoGMv0LCUTDxVqYIz9+FlUp07tmBddffz3FYn7Js1/BcRympqaYnZ3F6/XyqT/8AxaTCRobG+ns7OSxxx5jZGSEe++9F6/XS2NjI6lUik2bNjE/P09rayunTp3iz/7sz3jk61/jm9/8Jh/72MfoWt5JPB4nl8vhAolEgrpYjHQ6TX9/Py+99BJzcxksW2B+Lo1cE2N6cRF/Y4FQQycVscCzL+zhph23okkmtgIlO4Mk2qhmitXNIjMDxwiHw3g0H6IkoofAKmoYoTbGZnPoudMYyWmi4SB//EefoGzkCSsypm3R1dXN2bNnKRaLDAwM0NPTx/KOTk4cPUYmk6JYLLJ27VqGh4dZWJzn+PHjfOQjH+HAgQNs376d7ddcyze+8U10vdp0aBgljh8/yvjY9KUmU5/fSy6XI5fLEQgECAaDzM/Pv9OX8a+5lpwvBIepgfMs5ubJptL03LSDSLyD+cP76T99FD1ay6qelcza0H7legbHZ/D6wywWivy3O+9kplDECY5y34c+zv/1qT9g81XryRcMTp7oR5TDIIc4+PpJfv+jH+ELj+1lKlHk3XffzTe/+w+0trYSCkWYGhnjwsQYNdEgicUUN153HbJkYzsVkGQGLwzT3NmLKKvomhfFo1JyTMychSTa1Z11sWqoIP5KUgd/U/CfgIF2XRsbm4ptUbRNDNxL3edv1J5edOGAaqztxS/si6CnUqlUbcJsG9e2EGwLjyTiVCoIOJimgWVZNDS2IEkKF4bHWUymkTwePvPfP4vpOux95WXq6uuZW1ygrbMDR4CFxRkmp8bYufN2XNdiz+4XMEoVFucXGBsZ5f777mViYgKv18u6deuYnp6mpaWFW2+6menJSeZnZzh65DC6ppFOp3Echw0bNvHcT58nlUohiiJ9PX0Ui3nAYWR0iGw2y3PPP8sr+15k29VXkUgsIKCgyF5AoFgwSKWyJBIJ0un0Jf9PQRCQJdBkCY+yxEyrCpIkIMkqguLBkXVcJYDg0RBVHUn1IkhK1Z3jP1G9UbohSRKipCDJKqIs0dXdw4q+1dyw42bufvdvcdWmTfR2LSfo16iLRgn5fMiicAkIh8NBykYBhQqqqmKbFoGAj0wyga55kFyLQj6NIonMzMxgOyCIMsFQhK1bNnPV5o1cf912uru7aWpqQdf9eDzeN0shhLeWRrzx/VxktAWqAV2lksFHPvoJrtt+HS1NzSQXFskXc4hLC1XTKBOtjSLLMjXBMHnbomAalIwitumgSFXnkFAoRCgYQVM91TAWWSKdTqNq3kuv4xcFwb/qBcPlUuFwmI6ODuLxOJlMhtGxERYW5rAdg2AwiKqqeL1edF2nt6+HWF0tmWya0dELlMslisUy6VSekyfOMj42zUD/MIW8gSpKjA71c+tN17GiexnXXL2FHTdcy3M/fRpRUBgeHmbnnbfR09XOBx66n21XraOxNoirKWTmp4mIRfylaWLFeRbOHSY3epL6uXPE8ucJy5PUNymEIzqTk9OX5u1KpYJlWYRCIbKZAul0lve//yFyuQyqqrJ3717uvvtutm7dSrlcZnp6mtdee41Nmzaxfft2BgcHicfjHD58mGuvvZbPfe5zdHV18fTTT9PW1kZPTzeqKtO1fAV1dY2sWLECSZI4duwYy5d1k82WMV3Il4rs2LGDUqFILrVIwKvwnR88xfGJeRq6ehkeGUVSRLyajEdUqVgC46fOIpXGiPoCCGh4A00EwxGS+RzFSpDhbAlz4jz7vvNXBChz1847QBDp6V1N57IVrF6znrGxMcrlMslkko9+9KNEI0FURQTXQvPINNTHELAxKyVuv/127r//fo4ePUo4HObkyZOUSiVWr15NpVKmubkRRak2nC1fvhxN0y7Ful/8vqyvr8fv97N69ep3+jL+J+oXkQq89eNcwQVRwjFNKnY1/VWu8WA7fsxckaGpeXyoJFLJpR1qGztR5At/8y0ypsnG9Rtp6FvD0NgcejhKY2M9f/n5/83Le3azrLWFJ374IzZu2sKq9eu55a73oobqsMs5clmD6UyOgM/Dyu7ljI+O8eyLL/H9xx6nmCkgYPHE0y8g4yCINl09PfT2rcEsG7ilElQsNNtGdGw0rw/LdDENi0BNMyL/iubyt/Kfvsg8/8pB+H9Mecdl30T43S/9r12uqFAQZAqmiyMrSIAoCni9Vf/Oqk2MieO6iJKEKMu4LsiKB0mSlwCQhCwKmBUTx7IwDIOKUcY2TRRVQfP6WL6il7r6OIZRYnJ0iFRyAa9XpaG5kfmFWcolg5MnTuE4VbAejUYQxGpH9V9/5auc6x/kttt24tE8nDxxlHe/ayeqonHq1ClCoRCRaA3+QICpqSlEwWTz5k28uv81ZmZm2bplK8nUPPXxVtrbu7j5lpsYHDxHPp+mkM+ybHkHieQ8Y2MzhCMhEqkU+UKOjvZOfIEgwxfGCYdDeD06gihRLhUplcvYtoNl29hW1a1EkgUEqgEyLtV/xCUTd1sQECQZV/IgulbVMxoR27ZwXLjrwXeg4eTXXG9sInwj4ywIwpvkL/6gTntbJ8uXr8Dr83PHHXewZu1a2js6qI/F8Pl0lCUfZ0mSkEQRFxdZVvCoMgsLc4T8QdLZArIoUCkXqVSMqvG+6yCKVfcNvz+A49p4vVVtqO71Eg6HSaVS3Hffe4hGa6itrSUSiZDJpC+9D4G3ZnjfuBi4eIiCiM/no7GpiT/8oz9Gll18PpVKpYBZzuPaBh5RZmJ0lIplEwmF2b/nJZZ3d1EpVwj4A+QzBURJpFgqUCwVUH06mk/D5/UgCDbzCwsU82X6BwcuOXf8ohro/wia6be7ifDooX27EokkrguBUBC/z4vu9VIxDVLpDMVCAUkSMYwyicU5HMcmEgnT1tZCoVBCUTx49QDlcpnh4WGKxSI9PT3Mz82yfPkyItEgfn+YPbt3k8tmyedyHD1+gr6+XkZHL7B6ZS8hn05zczOJxCLt7U1MjAyTL5ZwFRkLkVwxj1mcx/U4CE4FoWKhyx4Ur0y+UOKu224mX8jS0t6Bqng4tH8ftbF6vLrGYmKe+vo4+/cfYM+ePQiCwFWbt+C6LitXruTKK6/E5/cRi8WoVCqcPn2GeDxOqVSitrYW3atdsuTL5VKYZoVAIMzY2CSLi3P4fD7m5+Y5c+Ys5wdGKJZK2K7Ntmu3cvLw6yQLeeRAMyuv3Iwe8NNTFyW5kCZfSJLN5BkZm6BslFBciYpgoWoxUHRKlhfFIzE6nWYsaTCXHuXYl/8Huk9j4/p1pNNponW1CKLAawcOVJNeLZtoNEowGOSLX/wiA+fPk0wkWbVyJYV8nj2791Afr2docJBobS2ZTIZrr72WxsZGzp8/TzKZor29g/Pnz9Hc3Ew0GqVcNlhcSCLLMn19fZhWVUK4cuVKkskk2WyW+fl53veBD70DTYT2rl/+5DfOBW+1qK72qmBBKbPIzMhJXnzuGXpWrWHdldtYTGboXtHDKz95mpd37+aL3/4Jd91/D0Fd5+X9e1ECPqaGxnj+5d0YskxfTw9P/vjH3LD9anp7eti3bx+33X47m7Zs4sXdL9HS0s701AS1DY08/PDDfO7P/xRN0/iDT34Szevlq1/9Kh/+vQ+Smp1DUSQ2bNxIMjVPa3sns7NpFK+PXD5LUPeQXJgim1zE5w/gDQQpGg62IOCLNiBIb0Fk/VOSjn/tY3+t9Wt6rl9BE+FlD6Af/dL/3mVJGkVXxRaqwEQSq41LmurBKJepGCamZeIggChjmhairOC4AoqqoipydVVeqeCYBpZVwSwVMSsGrutg2i6Kz8+6jVuQZZHU4hyCaZDJLnLjzdfz+utHsC2HgB4gXldHwO/Dr/vpaG+nVLYwLYGHP/hhEqk0iCr79h/AKKQJhwJEozEWFhZJZlJEYzHyhQKu5RAKaoRranjqiafp613J1Vs3sbCwyIWRWQpleH73T3jwgQcY6D/P1m1XEQiGWd7Vyz33/ha2I2EYFslEivaOdvr6eomEg+SKZQTVi9/nx7Et8sU8hWKBYrGAazvgOgiChHtxW12UcAUBURRwxCrrabkCtgsIMrYg4QpV1xNHVLjz/gf+UwDoi7sasizj8/kIBAIsW76cbdu2s/HKq7jh2mupjUbxejyosoyiSqiqUs2eEaRLqYIuLqIoIQkS5XKJcDSKYVik5+eQHRejWCKTTBEM+ZEEiUI+R2NdnEceeYTeFStQZQUHm9raGpqbm8il0gT9OuFggMb6OjZduRERgZ7ubsqZPKIkYtrWJSAtSdIl1kkQhEv+0n6/n5qaGjZvuopwuAZV1bjnnvvwehVsa2lHplKqdqWbNoZh0tzSzMz0NGHdj6JpYLnk8gUc0yCZXkSSQZElRI+C5tfwCi75XIbZuTka6uPsfmnfZa25fLsB9JkTR3bV1NTQ1NiIx6NSLhsUC3lcHNLJRQQcRgYHEREIh6OoqkYwGCYWq6dcNujvP8+NO66jubUZWVG4/sYbWd7dxekzp1E1jbPnBkilU8iKzI033ci+V19B9+tcuDCMbQt8/RvfYuu2a3CwWdnXhevadHZ2UimXiUWjmFYFAQvXBUVQsC0H27FpamvFFbz4Azphr0Jf7wpqoxGSC3NoupfuFd0IgkAsFmN8fIy/+F+f473vfS+RSIThkQv4fDqGUebVV/fx/e/9A5FwlP5zQzz55I9YtXIlwYCfPbtfRBRlstkcV1yxjmQyTWNTE5lsmmg0hFl2AAvdG+B7//BDCoZZJRpMi46WNj76sY/xyt6XaA0plEUfdcv7MAolfKKFYSuoqgefBLrsB8VPoSgheYIYlook+RibXGAylcOnGjz91b+gs72edRvW8L6Hfoe1a1ZSWxsmsbiI3+eno62DZGKRF194gdde28/szAySLDE+MY7u02nvaKNvZR+NTY1EolGKhTwBv5+zZ85QKlVYv34Dtm0zOzvDihUr8Hp9xGJ1FItl7rzrdmbnplE9MtHaGJrXy4XhYTyahqSIKKrCgw+9A85KjrXrTb//0m4QbwWglygiS8AupRnpP0C8tgbDNFmzcROWK+FaFeaGBrjyyg10XdGLFIwyONjP4vws0YY6CgsJguEgO++/j+GhAeLxeiYnRli2rJPTZ8+haF5GJ8aI1jXS3t5BbU0N7d3LCGga0+MT7PqzP2V8appUMkHAp1MqlYiGw7zy6n7uvPtuBFyiNbUkU3my2TyhcBiPIuHRVPzBGkzLplAoYts2kfpmZF/oFxinf2Zs/zXM80WG+ldW/34B9GWvgbYFGdsBR5QQRBHHrYITQRCq28umeel3YWnLWV0KWRGlKnvo8Xgol4pks2lwLCpmBdMxcWwLyaPhC8RobmvDH9DJp+bIJOfw+RVisRhr165jYT7N6tVree7ZJ2lqamH/q6+xZs0VnDh9hoA/RHt7O9PTk3ziE7/PoYPHKJUMTr4+x+uvH8IX0Lnxlht5cfde2juXsW/ffpZ1dWPbJouL+WojyopOiqUMsVgNhqFS29DOjps309vdxanjaxkanKS+vo5ojYfx8XF0j0v/2WOs7FvF0UOHySZTTM8uUFvXyNDQEOryLuqjNbiiRCabolTKYpQqFAoFItEK/mAAj0dDVjVkRcYVZByqTieywxIb7UUUZBxRwnXARXmnL4Vfa10Ezhf1zqqqLtmD1bFhwwauueYmamojSJKILFWBtm3bCNUox0vn4QqXmlZtKlVA7biUSgayrBANhxnK53AUmeTiIqoqYxRLFI0yPT19TIyP0tfXx8zMDK7rEooGUSSJ5uYmZEEkny9eAvbJZJq7776bRCLBqhUrmE8scuj4UUZHx8FxkZTq9HBRsqGqKoFAgLq6enw+L/fccw8LCwnWXrEOo1KiJhKtOon4PPT3V62XDMtCkD3MTE3iZ6vnAAAgAElEQVQzPz9PY6QW23XJFgrYlQrJuTlqa6P4AjpT87P4YnUAVApZzg+N0N7VjeTx0NLSwtmzZ9+ZD/cyLN3rIx6PV/shfDrFUgHDdSgW81XNq8/HqlWrAMjl83R3d5NMJgkEAuRyOTo7Ozlz5gyVSoVlne0U8zme/+lzdHR0sGrVKl5++WXS6TT19fXs3buXRx99lC9++Uuk01kWFubIZDIcOXKCd73rDsyKQV19HadPn2HDhnVMTU3xyr6DaJrG8eNHqaurZ2homI1btjA8MkosFiebWyQUCuHzVQOuXNelu7ubUslY2l1J0dvbS09PD9FolJMnT3LNNdewb98+1q5dS19fHxvWb2RiYoLmlgbe8573kMlkmJycpLm5mdraWgYGBpiZmWF6eprbbq/a19XU1KAgki/lOXv2PK4kkc1mURQFTdM49PpB0pkkolVh25oeXh3cj1zawIHT/dx39To0TWNubh7RFAj6o+RyOTpWbWZodBRZC+BYIglBI5Nd5EePfA3NSFKx42iqwvz8PMs6OhkeHcEwqj7dP/zhDxkdHuH6668nEolw+PBhmpoa6O3dhqqqnD17lkqlQiwWY2RkhO7ubiKRCPF4nNHxCY4cfZ3Gxkbi9XU4tks6nSWfz/Mnf/InPPLI13nooYcYHh5meHQc27aZmJggHo/z2oFXsS+XvvC3lCxALpskVhNmYGYSX6CGYjaJR9LRvTLpzAJZ2+W9D32YeUfFG/AgJ7pIlXNkhsb5yfNP81sPP4xZzrP+qi3MToxw4sQxulZ0c/DIMRRFxh+qpbu7h6/81ed5/0Pv45YddxCMhShIEjfesINUOs3Le1/gQx/9GMnZRX73/Q9T19jCN7/2VR546L3oPo1K3iSo6dhIWI6IIUgYholgGNTX1SL6/DhLb0/8jZrtV1aXPQP97a98ZZclKpSRMAURo1JBFAVcF8qlMgAej4aue5dWV9VtaY+m4fPq2JZFsZAnm0pSKuWx7Uo1fMBxcAUJUfbQ0buSvlWrMIpFpseGyKYWsS2T9vZWvvvo3xOJ1DA7O4usSkSiNbiChONKgML0zByiKLFnzx76+89x5uwZurp6SMxPcOttN9Da1sT0dIKh4QnyRZv6plZq6+KEwnX09K7imaefZMeN19Da3IjrWvztt7/DgYOHWZifIp/L0Nu7lmQqxczsLF5dI5fL4zhFtly1kbNnzrB1yzYG+y9QsS30YATbgc5ly/H5g3g0L5KkgAuViknJKFEplymWCpiGiW1bS16SAqIkURXSilX2VJSXfKIlHEGuMtB37bzsGOjPfvazuy6ytJIkoaoqoWANzU2ttLe3c8XaDWzetJWG+joUWcajepCkKiC9eM6bmg2lqjen49ioioIoykiyQHphlqBfp1Q2KBUKSI5BbTBIPlPVeXpkmXQqQTjgY/XaVczMzBCtCWHksyhqVa7k8fkIhsIIkoKsapimjWnZyIqKHtSoj4VoaWqsur/oGqqi4PcHaO9oJxqNsnPnTqLhGDfuuJHt11xHQ1MDHs1DvpCjubkRr+7Dth0kWSEYjKJ5A/gDYSqWhWu5+PwBChUDUZIpFguoEpRNh2AgQDabJRqrobO7F0XxMDU6wNzYPJ2r+1BECQO5aul0mSYRvt0M9IUL/bu8Ph+ioiDKIrIk4ToOwVAAy6w6/aiyXE3ZcxxGRkbIZDIYRlUjLQjVXTxch8WFBUZGRwkEfJiWzdTUFLFYjObmZsLhMBMTE5RKJW6+5Ua8Xi/BUIjGxnpKpSxf+tKXUBWl6kwjqdVGUq9Ka3MDXk2ho70Vwa5w5aaNjE6MIYgSIyMTeHWVDWv66OpaxtTMNKVSiZ/+9Kd0dXVz7tw5dN3L0WNHufW221FVle9///uEw2FGR0dRVZUXX9jD4MAwDz74AI1N9fzwBz8imaxKFiKRCCMjo2zYsGHJ/3g1mUyacDiMruuYhQIvv/wyBw4fQVJ9pFJJcrkckUiEfK7A0OgkXb0r+f73HqXGq5EeO0UgEuKxV47QsHId4+kc+PykVR/TZZPBuQRzlQqzuSTj54/yd1/4LObwCSIhjdtuu4XfetcdtDU3EYvVcaa/n9poDFmW2ffqPiRJQFU8rFy5kjNnzrBsWQeOa6EoMhs2rMe2HBYWFohGoyQSCTKZDOfOnSOZTDI1PcWaNaspl0sEAn5yuQKiKBGLxXjiiR8zNTWJ67r4/X6uWLeeeDxOQ0MDL7/8MsFAhHhdnN//xCffAQb65yQcgvDWIPhN5b7heMP5/+R5Eo6TZfzsITIz4wxPLdK7bjOzUzOE62LMzy2QXVjkwulzjMwnufr2W5geOsPps6c48OpLBGqiqOFaamtr2bP7Zc6dPM3MzBRjk5M88MDvcM3V13Bh8AL/5U/+lLvuuJlvfPWvicVqufHmm0jlDIIehwfvvZcL8/NkUhn2vLiH667bysDIMGs2bMSjeZgeHyMei3FmaJD2zuVkcjkCfh/FRAKPayDINkowiOyPIdjVnpVLhO7Pv+c3juEvwiL/ItKPX6rctzj+Dc/1GwnHv1zf/uqXd1VcCVNWsR2hGk6hyFiWjeu4S1vSARRFpmwYSLKCoiioHg0BKBYKGMUCZaOIbVpYpo0gyIiShuYLEAiEidXV0d7WRi6XZX5uhophgC3guDa67qVYLOD1atQ31nP49SN0dHSRzRbp7OzEo+lIkkhHRzt/8InfJxwMcvrcOQQnz7LONqI1MRRFpy7exI5b7iRXKLFp62ZKJYMXX3yOyYlhrtq8kZmpKXpXLCeZylHf0EJfXxc93Ss4euwIsXgti8l5/AE/0zMzRGuiLKZSJNN5pmZmaF/ehSTJaLoPRdPxeHS8Ph2f14ciKSiqgsejVsNRKlVdtFEuUamYuI6L7biXgDRC1VpKRMBxHVzXxXFcHNdl5523X5YA+qK8wev10dDQSHNTK7fccgsb1m9i9erV+Hy+S1roKpvrvskb2l3SkF+UbshLWmhBAMcV8Goexkcu0N7RgusKDPX3oysSbrlCKZcntbhINBwim0whuzAw2E86MU9NbYRivogoWZTKBUoli0DAj9frxbFsBNFBVVUEQURWJGTXRtNUQv4QAZ+PK9ZdgaoozM0t8O67342qKNx2222USkVCoSCBYNVmMR6vQ9M8S7s1GrKsIEkijuNSLJYJBMIgyggilItFYrUxhgYH8eteEukUigi618NCYhE9EqYmHOHwgUNYlk3Xql4CusbYbJL9+/df0kFfbvV2A+jFmbFdfl1HEgUcy0YUBSzbrlpoGgayLKFrHlRVpWIYlI0yTa3tBENB/MEAhVKRYqnE/GISUZJZWEySyxVRNY2urh5effU1rrl2K8eOnyCTzfPSS6+gejSi0Ro2bdzM2NgojU1NNDQ28KMfPkFjcwOJxUVamusREAmHg3S2t+KYBuFQmEImiyDJjM8kaW5ZTrlYQLCy9Pb10FBfj+PC/gMHOX/uLCMjw1y4cIHGhkba2ts5deoUa9as4eqrt5JIJBkaHObhhx/m6998hD//n/+T3r5VlEslurq60DSN3t5e/L4gBw4eABwsy2L16lXURMKcOXOSZ555jppYI8OjU0zPzjMzM0t9Q0NV+icKFAsFpiYmEGWJ+blZJof7MfMJVqxez0I6h+oPsOfF5xGy0wQoImamCJbnefwLn2Xy9b00ag7F7CK1NWF23nk7miaSL5j4w0FaW1vo6GjjuZ/+lE0br+TUyZMIgsji4iLLly9H132USiVkSeHsmXMoHg3bcRgdGydaU0MoHGbDlRs5euwYW7duYXJyEsMwCYXCrOhdSSabZf2VGzjff56W1nbi9Q0cPXacQqnMdx59FAQB26nKVQA+8ak/+vcBoP+pn/+t5UIhn8ItpUlOjXD9rXcgeEMks0UGB/ppjMcJ+DQUj0TWLOAPaJQXZtn7yivcfMstrFp7BS/s2Y1l2Oy84zaGBs+wdt06brn5Jt7/0O/yN3/zCK3NLdz7W+/itdcO8N//+//Dvt1Pc9utd7Bq/Qa++o2vkZiZ5vod17Npw0Z2P/8sa9esZMvWa/B4dV7b+yJtrc30rd9AMFjD2PgYdbV1zM3OEvVXiRcTEdcTQNODuK6AANUQNHhzCqH7s++kS70wrvuP4ek/Nb7vKKHxzgLoy17CgeLFtmxcxKrli+viLMkMJElC0zQURcEwSriui7ykX9U0jUIuf8kX2rasJU2ojCDKyGo1XCRSU8ualasIBIIkk0li8XqaGuLMj0+QTC3g0TzU19fT39+PrMps2HAlG6/cxqPf+Qe6unuI1Rd56uknicciPP7440uvwQJJpFKx8KgaK1Z08JP/8yXe8zsfJJXNEAqFGJ+Y4JrrtuNaVRunSsVkdnqGSDjIqfPHufraTSQSCdrbWyiVC2xYv5ZUMkNzYxMLiSSOY7Ft2zYGBgaIRsN4PB7mUzl0fxjZo6KICrpXRxGlqv5b1/HoXoxcGtO0qVQq5AtZTNNE9RXwV0JVX2NNR5IkwEYSRRxRRBSFty3M4+2ui+DZ4/FQH29k69atXH31NQSDYRRFRFElwKou6rGrjapLtmy2bV9yN7kIngEMw1gaLxHHhUql6r5hmgaWDbG6GvrPnKQ91kBtbS3ZXImQL4JZcalUHMSCgVdRmJ+cJhxpoJA1sCniOCn8qoDgCnhFCzugo+vQ0tJGOpvh4O5naWmKY5kGtbW1FI0yiiLxyU98gmKxSDQaRZIEOjraEEURXdcolUoIgksul8EVwKN6cRyVUiWPKKtEa+NkMjli9U0UsjoD/eeZmZmlbFY4deY0K5s7sMtlkERsx0EU4aU9e2ms76BvTTdGqYBr5GlsbLxsr6F3ooaGhvB4PGiaRktLCx5NJRqNYts2wWCQYjGPZRpVZx1sfD4fZrnEZCpBqVSiubkZTdPIF0sMDQ5jWU416rtY4OCBQyxf3s3u3Xt54IEHeP3wMRLdCb7x9Ue4/vrrCQXD7N3zEldccQWHDx9mRW8PFy5cYGhgkHhdLZqmIoo+KqJAQ0MDup5H92hki0PE43HKZQvbNNixYwfRaJQLQ8M88ZOnaG5p4+EPvI8jR46gKAq6rvPEE0/wnve8B0EQeOaZpxgZGeXhhz/EmTPneN/73sfmzZt58sknueOOOy6lLX7mM59hdmaBP/jkJyiXi6xatYpCocDQQD+RUJA1a9bwtUf+lr41Gzh9boBPf/rTfPnLXyafzxMKBpAlEc3jA0BWwEZmdmyE1Pe/CGqYeHsXNZrE5Og8L54+TW04hFEuEvLpeIMasZoIH/rwH9HQ0MTs7Cznzk1w88238tu//R4+8tHfY25mmqmpKWzbxOv18uKLe7jxxhvZvXs3LS0tdHcvp729nfn5efLF6md1kT0+cuQIhw4dYv369RQKBeLxOH5/kJnpWVavXX9p9+D6669nZHiM559/Hr/fz/LODj7y4Q/x3HPP0dzYwPDw6NI8/w7Uzzc7v5Et/fn7/i3gbmmOTqfT4IuQKTucGRqkraUZ08hz5uwJQj4dJV7DrddtQbAcxufHeejBB/h//+JzmLbDXTvv4Hvf/R7br9nMhz/0QXKlEl/76lf44O8+SDKVoKWtnSu3Xs93v/c9yuUy5XKRZR1NvPzd7/Po9x6jODFOjV9lcibJbbfu4PmfPkvFdLnvgYf4xre+zRf+v8+RzxUxbAfN66vmO3g9zM/PEAiFidQ1UhA9mKaJ64iX7HYvkjQXS1zagaoO4c9khW/8+U3j+/MBLP/M+P2jz+cyq8uegf7GI3+zyxZVLKq+zYJj4KIgIFzy25UkkUKpCKKEpEioHg1EME2LilHBsS1ESQbXQVO8yLKKKCu4AnT39tLeuYJ0Lk8um0V2XUqFPOnEIpIsI0oS8fp6FhIL3LTjFkzTIl8ooXk0GhvrGRo8RyhWx/bt11POZsklkjz73LO0tTTRtWI5kqiQWFygpb2FQrHA2nWrCfj0avxxLkc6kaBi5Onp7uTYkdexTJPx6UmaG5uRRZvzQ8O0trVx/tQxfJrEnTt3Uldfg7nkIhKvqeHwwYP4g0F8wQjFkkG8phZd8yA4drUZTvEgyx48Hh+qKiMrCqIg4dgWFaNMqVzEKJUwbbPqzyEI1aCjpf0ix6kyrLfffstlx0B//q/+cldzcwcbN27jlptvZc2a1YRCQbxeDY+mLEk0JKp2PFVphmlWqvIXAVzXwbadN63+LwJF23YQcCmVciBK+AQDHBNJ8lApFhHNEuVcFp8/iG07qLKMKsn49Si4ArZlo2geZK9WdZXxqFhmAdcuY4sCgiwTCtTguCa5VJJAwM/8/AyKx0ddQwP19Q309vSQTKWIx+vI5bJoXp1KpUI6ncbv81MuGQiImBWrGg6jKNi2SShYU/WAFgTMioGiyBw+cpRSxaG9rY3elSvRVS/j588QrY9hOg6GWUFWFDLZHBVconURKuU8C/OT1Dc18OOnnqdYMpfCDS6versZ6GOvv7brIqhSFIWyUf7ZF6YsAwKBQAC/L4BX16oWidNTZLNZFhYT1NXVoSgKqXSGUDCM47hs2bIFSZaRRIl4vJ5UOsX58/3Mzc+RSiXp7uomkUgwPT1Nc3MzLS0tVe/jJU/0ifFJkosJkqkkuu7F7/MxMz2FIiqcPnmKungj5wZGqrt6+TQb1q7E5/NRKhnU1TWgeX0cPXqYzs5OXn31VUzT5tChI8Tr6vna174OAkQjtWiazgvPv0h7Zzvnz5+nt7eXyYlxjhw5QjweZ9u2bZRLBvPzc3R0tNPQ0EAymSBeF+PQwYNcGBrmxptv5f98/gtYts2xYydoa2tHkmTCoeClHghVVXFdAZ/PRyQYIuxVEI08xcUJzOQsC9PjxGvCeGSZoN9P7/IOenuW86lPfhyjUqJYLNK1fAWbNl3F+NgQH//4xxkaHOTw4UNYlkW5XMayLO65514EQeC3f/u3EUWRTCbNvn370DSNzVdtuWQ9V41aD7N+/XpyuRy9vX3ouo94XT2tre1cGB4mFKqmI27bto3+8wN0d3dj2zYiDs88/RS9PStQFRlJVqlUKnzkYx9/55sI31i/SjmBC5oqMzFwmmWrrsASFFzbQVcELgwNce7cKTZsvorm9jYk0cV1bRRdx7Jdlvf0cf0NN/HDx77PsmXttHe0sWrzVtJzc5RLJYqFLDffeANf/Mu/oruvj50778KxbZ76yY+pr4tRE9KoaW4nMTPN17/6V9z33odY1tnM8OAgI6NjXLFxK4VCiaBfJ5PPsqJnFZpHIxoNY5sWmqawODdHbVMzC4sJRscmWZhfZHpmGss0yeayuK5bzb6oVBDfQOhYS2Thm4ZiaZf00m7pv4bM+HXtDLz5SX75U38j4fiX6+/+9u922a6I5bhVCxfHwaGqc76o5SuXy1RMC0EUUVQNx6lqfnFdZElGFqu6Xl33Vu8HXElB1rz0rlpFtDZMuVLGsk0cK09icZaKYbJm7Rpc1yEQ8JFIJElnUwSDfnyqytlzp0im59m7/wWGh89x5PX9qIrAlk0bOHboEJ2tzSQSC/j8fl7c8xLLu1ew6aot+IIB/D69+rokkb27X+Ced7+Lg6/tJ+DzUCoUiPi8xBrreGL3s9Rf0Y0QDDAyMU0xm6H/3DH6z51B83goFEtcsX4TjqBgVCwEScUfCNPa3IRnqYHMdlwQRARRRFZUJFVB0wJ4NA+yqmHb4JgViqUCpUKecqGIUzEwbQfXdRDcJbWZALfeevNlB6D/9m+/s+u++97Dpk1X0dnRhq7raF4FQWRJvuJg2zbw5gkIfna/KEpvYqIv7o5cZKpFscpK+xQB2aNSKJUJ+nSyuRylfB5FknEdm1KxhFEuUcom0Tw6oquQyiTxBnwoqopf92IZFXBFHFHBqwcIhcMUi0UUj0qlYqDIHgLhMB5Nx3ZcIpEo/mAYRfUgKyoVy8aybby6jiJLpFKpS77pwtLfSaFQQBDEqgTFcVBVhVQqxZo1a6itraVQKpJIJjly6DCTI4MUCjnijXFmp8axSwXCkSDReBQFAbNSppjLYtgmx4+fZzGZwXUul+6ln9XbDaDTidldF69DVVURxOo8KIoiXkVGwCI1P0epmKVcqSArEuVcGn8wwsDgEIqiMDY2hqKqxGJ1WJbN8ePH2bJ1Kz7dRy6XZ2BgiGAwyNCFAVav7iMQCGPbNvF4HNd1L8WGHzx4kKuvvoZ0OoVP95LPF5iYHOOqzZsp5HMce/0Y+XyeXL7M7EKSQi5HLp2kpTXO4UMHKZUq7Hv1NRoaG5mbnQIgHo/z+c//JS0t7RQKRWKxOtKpNNu3X0cum6e1tZUTJ0+wdetWotEoTz/1E2pqaqoJhcPDHD70Op/6w0+h616mpqZob29jZPgCPl0nEAjx5b/+Gr5AiErFpK6uARDQNC+SBNFolJmZGbLZLF7dR7lUIpVMks7mMUwTr88LooBj24QCAa7dugXRrrB9+9V093SSzabpWbGa3p4+pqbH+S//9dOkUgmOHDnCU089zeuvH2HLlquYmJhgYWEBXffx6quvIkkSmzdvJp/PccMNN5BMJpmYnGT79u1YlsXo6CiKolAqlfB6vWTSWVKpNIriwbIcHBzOnTtHa2srzz//PKriYfXq1UxPT9PV2cn01BTZTJbE4iK6P8jY2Bif+uNP//sC0P+W+jmW1XVFHNNifnwASRQRJYWykcfrkVBklY2bNuH3+fAILuNjQ9TGawmFYwiSxtTkBAuz8xQKRe69/35eeP5FrFKRk2f7WbVmLflCkeGREf74059moH+AhoYmHEfALGU5cugwV197Nf5QGNtxeGnvXk4cP87A8BCnDx8mHI3StqyTVSu6GB0ZprNnNYZh8HePfod1G67EFgQ8LngkF0vxMTc9wf6X9gAmZ8+cIBDwcnD/PpKpBU4cP4oowOBAP9lMioX5WUrl0tIQCNiGjWNbOFRlmAI/Y6P/Wej6ttrf/QZA/1rrW9/61i7bFbDcpeAHqnZrmqYtMQQuhmFgWlXTcd3nX2INRSRJxKfryEtNYh5PlVEQVAXJo6P6fWzcfBU1tVFcF+bmZsmmF8jns7hUwwougprZ2Rn8fp0r+lZx6OABJqYm6B8Z57YHfo9gfQxfrY+yU+KVw69w9y23IYsQCgTQNB+dXT2Yts11N9yAKMvIcjXsJRjwMzU5SnJxkXDIT3tzM16fxqKRZ1Z1KEQ02te0E6oLcvXVV/PSc68QC8RpjkdJLM5hOzAxMYkoKbiugGlBIBgiXhtHcC5qot58uAhLTL0HSdGWfLLBdQQscynq3DQwTAvHdrCd6sLEdVxuve3yY6AHBkd2rVjRQyQaQpFlRImqf+gbGhyqQMW9JNH4+XJdLgHoi+mXVeCpLl2LVd9wv9eDKLvYwPiFIXyBMH6Ph2xqDo8qIeCSyxZIppKUjQomDl6PD6/fhysIlPJZBNeuJlqGaquLMFlEFKo2ZqblMJ/KIisqgWCIxqZmAsEQFcsmFA5TNgz8gaofuaJ6yOdysBRMlE6nEZbsDW3bplwuUSjkcV2HQiFPMBjCtm1mZmbQg0Esy6KULzDQP8Att+/k4MGDrL1iLdPTU3Su6AYHgrEg/lAQ03XIpRYRFB8nTp/FwXlrB6r/gPV2A+hXX3lhVzAYoFgsADbFQpZKpYzr2kiSiKIoCJKE7YLPq5PP5DGMCkODF+hoa8fr8ZBKJBm8MMqJEydoamqkqamRwYGBqmXchQvcuvMOSoaBi4hlC5w9f56OZct46plnWFxIcv/997Nn74u8+553sXfvXkZGR1je3Y3H6yUxu8DwwACOZZJMJgnXxHn9+Ck6l7Xz7PPPYZlFaiIRxidm2LJ1G36/TjabxO8PMDwyjih56OlbyV13vYstW7fy5S9/hZ133sXjP/gBzzz7DPtf289ndn2G/v7zFIt5fvjYD4jX1TE6Ms6a1WvZsm0rhw+/TqwuTiio0xCLocoK83PzPPbEj2jvWM7wyAT5gkF37xrmF5P4VQldk+hsb+OabVvw6xo+3cv8wjzbt1+Dpsp0drTg1VUikQD33r2T+ngt2XyaD3zwA3h0jWwuz8DAIInFBP/w93/P3Ow8c7PztLW2cejQIQyjzN333MPKVas4eeo0us/HhvXraGpqpFIxqFQMDh8+zNxc1avarBgM9PdjViocP3aM+oYYkUiE8+f7kSWZq6++GnAJhQKcPXWKulgdwVCIdeuvJBwK8/jjj7NlyxZGxiZYu+4Krr3hOvbtf4XmphYMo8wHP/zRt31Od21z18/f9utoLBZEGdeqMDl0CtWrIjomsujgDwSI1VS90326Rj65QNCvYZQMFI+OVbEpFvJ4PFU3L3B58KH3gSTiiiqCpDA+Ps0HP/lpfvD4Y6xatwF/OIS/JsLxA/sJqgKr1q1D9ngRJYl3vetuOtpauOW229i28Uq+8pUvUd/UyKarthAKBpidW2TNtm1s3bSJ+bk5dF3HG4lhWA6BaJQnHv0birk05VKB9WvXIIgOllkkk5xDE2FyZJBKMcPo0DnOnD6K4JjMjI2QSyUYGh5kbm4awyjj9eoIyCiy+rMkb+FnjPTFPp5/Vif9xmbPi7f92z+lX/7U3wDof7m++ci3dtmOS8Vxqz67uIhSFUCLoohlWViWhSgqeH1+BEEEqv7PsiwhSxKSKCDLMqVigYppovsDhCK1xBpb2H7dDqKhMIKokMmkSMzNoi+xFFNTk9REwizMzRMKBWiojfHsj5+kqbme/okLvOcDD6HFY/SuXsbo5BgbrtrK8OgEC1OTrF+7GlmUEWWFhWQGy3bo6VuJqqlLgMoCHATX4QePP0Y4GKS9o4PZYhqr1k/Fq7LviWfYctNdNLY2YRhpNvT08NqeA2xZ04VglygUiwwPjzM8MgqCRCAYoaGxGb/uQxKW0uYE8dKYuC6YgoTrSjiCgCIrKKqG7PEgSiqIAq4DJaNMpVyhXLU3ll8AACAASURBVCljVixwQXBdbr/zjssOQGeyuV2hUGjJ+lBYahSUquy7AI5jIwhVgFydTKvpmC4WrvMzYC3L0tJjqyDUcRxM08S2bVy3CqpVxSEaDGNZkEmmyKXTRP1hMAwcRyBXrBCqieGaDpLqYXZ+DtEjY+NUAxdcG1nVkDx+EOQlH+8qAPb5Q1U3Dl0nHm8kHI4iKSoCVXcVWVKwLJva2mjVscZ18Af8KIoXB7fqT51J4PGo2LaFZVpLzPuShluRKZeKhENBHNtmfGyMptZWulauJpFO0N3XTTK1QCjkIxqrJVxbh0/X8OpejHIFU4D5dJGDh1+vepJfZvV2A+jB8yd3BYNBcrkcmubBMKrsc6FQwHUEHNtFEERU1UPFrKCqCvF4nEg0QjKVpGJWmJicQBVFAroXTZHJZ3PYrsuKFT20t3ew/9V9ZNIp7rv3XsLBIGdPn2Z6cpIH/3/23jtIzvu88/y8+X07h+nJCYMJwCAMAAIgAsEAiqQokQqWRNmUZdnrO699Xt3tnqv27K29O6y3tm5r7d27uiTtybLXMmXZVqJkScxiAAPiIA3S5NiTe6Zzv/n+eGeGICW57LJFrVl6qroG09MzmOn3fX/v9/c83/CZJ1leXqVasZAkmXSqnlxulYGBfZw4cS/lcoWTD9zP+to65XKJSrVGbr3E6MQE41OzmJZFJp1kfW2Vro5tLCzMEY2E2L6tk0gsxv4DdzExMck9J+7hX/3ev+LIkSM8+uijGEYQG9/Z2cndd9+N4zjcuHmDSqXMwN7d2LbDE098momJSRAExsfHeeaZZ1hbzbG0uEg4HME0LUZGJxkcvEYoHGX79u0b4ksP7CqK7FGtlsnUpWlqakDGZ3VlnmhYR/Qd+nq2c8/xQzz56U9Rq1ns27ePeDzOyMgIr772KqZpEo1GOfPWGUqlEo7jBEmRE7O0t3WSStbxxpuvUyqVqKurQ1VVVpaXURSFVCqwxcvn8wwMDHDmzBkikQiWZaHrOj09PSRTSebmsqTTdTQ1NXPp0iVSqRRTU1Ps3rWLm7du0djUxMpqjonxcT75yU/y7W9/G8dxmZ6e4vr1IebmZqlWTQzD4LOf+xn4QLt/+w70jwDrOzfe78ZePwLoRDzHIr84iaSrmOU8iiJQqFTxzBqRiMHiYpbJmTn6dvaRnZ1kaXYW06nR2tpEIhElHNJxrTLDw7dIZzLs2zvAytICD538AK8+8xytrR2cO3s+CLhKp2hrTLM4M057TzcuIjXbob6+kXQ6Sb5Y4BtffYojdx/ilz77K1RNm9s3b7Bz1x40Sdo4R8OIosjaSpZoxECQNf7yT75IW8d29gzso7mtDc/1acjUUyuVwamRXVhicXGRYrFIXSpBRBcJ6QrpRJTlpRlEz2Y9l6NWKuKJAj4uCIEvu2XZP5L2+rfezLwPAPT7XkToeWx0/kREERAURAKQYllWkChoWRjhCBBwThEDH16zUqHimOiKvMUNkmUFRVNRdG0jtakOBRfT8hBFmUxDE7nlBXLreYrFIjdWFpgeHyOdTDA/NkJjXZyBgT2cuX6R3l3tLFTylMtFbNtmdHiW//5f/B4vPf3nPPvCc3zulz7DmbODHHvgUWbnF/EFAc8PLMHi0SiO49DQ1MSHPvgwzfVpLFHCDYdBFOiKpqAqoPtpRD9JXZNCuTRKsbxAJhOne/tRbo7Nsa17J66gsLxapOIIhMIGiiQGdjd4P0I7ACHgNntBUp4kq6hiGEFUEBUVRSnAuki5kscsmlQqFUzbQlX0n9Up8FOtUChIs1QUBVl621FDFDUcx9paTBRF2epA+76Pjw+4BAtAcH5JksRmk1rc2NEH8fIOgiBQrprochFVVknXZ3BqJiPjY9SFNSQhsJ9aWFhDNHQqlQqZTIbe/p1MZ+dwbBvdCOMKIkYojKgaqKq81fk2TRNN04jFYogb0dqSFET6pkMhIFgYNU0L6CThMPn1YpC2KGskEjJLyxUEQdgQtTrous7S0hLJZJJqtUq5XMY0A5/eY8eOsbCwEEQF+w7xkIooeFTyK0iShFsrUXbAsYIAgdVcieeff+E9P77vrjuFNf+Yy/M8crkckiSxsLBAJGygqiq6rjM/H9xMBwYG0DQDUZaolIuYtoOqG3T39gXUI1lBkzUURSG7uIBDjWQszMsvv4woSBi6xsz0FJcGL9La2kosGuHEiROcPfMWj37oA+RW8+zs7+PS4BXi8SS1msVf/uXXef3113n8sUdpb25ibHQZUVa5fPEi4UgCt1zesn88cOAAqiixa9dOpqYnsK0G9EiM+fl50uk0w8PDPP744zz77LPcvn0bTdP43Oc+RzgcxvM8vva1r5EvrHP06N0ookAul+Opp77Ctm3bqZg1SqUSv/3bv80rL73EyMgYra3tDA5e5sb1ERRFQxRFbNtmfX0ZTdNoakyzf18/yWQSy7Joa2tjcX6G+04cp62tjXg8yaFDh7hxY4iZySmKxSKrq6vE43GeeeYZPvdrv8rk5CTJZJJf/ZVf4wtf+AJf/vKXcRyHz3/+86yvryNJEr/74d/l9ddfZ3p6mlqthuB7NDQ0bOUXFAoFRkZGqK+vJxQKEYlEWF5exrIsXnr5RRKJFKlUHdNTM+zcuZNarYbv+5w9e5Zdu3bh+j7j4+Os59YYHR2lVqtRrZpomkJ3TxfRaBhRUDl79uzP+jTeqJ+Miv/GdNV3g693vdbzTAqrS1h2FXOthqFJrK3liMfjSL7L7OQY5XKRxnQD2WyWaq1AeTmHVyxRXS+wuprHc+GNN96gqTmDWs3z/J99lTPXhxlfWKaynqM+HcGsufyn//AHPPzRT/If/4//lWjrNiQliaKrRKIap3/4PFhVbECSBH7pn/5TJsen6ezfz759JZZyy4TCEWyzggREE3FSiSS1co4Xf/BdmlraaGpqIBQNIUgisgLLi1l81+TypUvkSiayFwj9C/k8iwvT9HZ1bWViOLV1UtE4i1PXKa/PoYXC1De1Yns+kViUsJHA9w2MSBhEH91QcWwbGR/fD25ognwH1HwfiQvf9wB6M5jCx0YQZCQkkAMwY9kmZrWCJAnYZg3XdVE0A1mWsUQRz7bA83A3+IGeKGGEo8iyioRAU30DiiyiSRAKq6i6hiTruEgszC3Q3JRGdBSa03vZ0dPFYnaCQ3ftplARqRQr4Jl4vsNSwWGp6tFzoJ1FK4eeSbPrwB7OnXmdg/vvZn19nbpMK5KoI/g+EgK1QgFP1QnF0uRWF2lvivNHX/kyJz/+QWJhg1xpnXs/+WEKpSUiazaUqmg21CczOL5INJWhcG2UUsXG9gUkSaVcsYPudiWHIAdAXBB9fA88ScBHRnRdfAR8YWO74fl4yEiySCgsoggq+BKiCuVSlVqtxtrqyoYbxfuvQqHQFkh2HBtgi/csim8D4c0KOM0yIL8jcXCTDy0I0paI0POCDYzr+gHlwbYwBI9QSEdSZGLJBJogoQiwOL9AEpnJkRt0791PJBGnZplcv36dxtYWZFUFQSKeSKPoBh4yjuNsbQxDoRi1Wg3DMBDEIPRmM0TIsawt8J/L5QCwbZt4PI5pmkiSFAD2uiZ8TyQei7GezyEIAsViEd/30XUdTdO2Qi8WFxeDEA9NJbeyQK5aJRRJoagas5PjGLJPpj5FuahQKJtYpk84FN94D3+y8PunWZvHefOY/mMG0pvuQrIsYhgGkUiElZUV5ufnya2u09TUxPz8PC0tLdSsKng+lucQMiJMTc3Q378DRTZIZ+qYmpqhbDqEHYvFxcXAIcLx2Nm/g7vuuou11RxtLa3YpsWXv/RHDAwM0NhYz5tvvs5f/dVfEI3GyWazNDc3YxgGXV1d3L59GzwXUQpE3eFIBB+Z4ZERYtEIrc1NPPTQQ6wtLwFQq9Xo6enFFUTyhRLXrl3n2D3H8dwADLa1tbG0tISqqiwuLpLNZrnnxHFCusHY2AiRVII9e3YhijKeCyu5NRoa6/ne975HYyZDLBJibW2NqZkZ1tYLyLJCb2PQGfR9l4huIPgu5XIRCACtbZv8yj/5derr67l9+zaW5fCt7/41jz/+YS5cuMALL7xEPB5nfHyc4eFhZuayFArrHDx4kDdff4vx8XH6+vq4fv06FwfPMjAwwO3bt7l5+xaGYdDQ0MDU1BQnTpzg6aef5t5772VsbIwHHniApaUl5ubmmJ+fx3VdVnPLNDc3c/jwYbLZBXbu3IksKfT29nL27Fnq6uqolissLS1w5vwFtm/fTiKR4Nq1a/T395NK1TE0dJW1tTV0PQS+yL333vszOXd/lAp35/r648VtP64r+rfpmJbLRQxDo1xYo2w56IpMLb/KwsoStmPi+y7F3AIhWWXo8i2++oNX6L/rCOfOXeDAgYM8/thH+Myv9TNw8jjF6Sz7jroo3/8+A+UCD917N/GIxJ57/1vOnv4uX/o//zd6t+9j6PoVXBQkxcGv1WhtbcE1a8zMzNDW2cGF198kUd9MMZtFdH26u/qooNK6PQOOTW51mdJ6DkOFyfExypUiqiKiqzK2WUNVJHRdJdPdzcL8POs3h9i7d4BvPv09Dh47wpWrl7l85TqSrIPg0ZiOcWj/AMfvfZC57AzRUB2uVcUwwqzOZ5lYu0GlUiXV2IKkqDQ0dCDKBoomEonEgsnrHRofIXjT/66H/b/Kev8D6I3aFGWJPviCgGUFgSiBYlrB8YLXKIqy1S3c5PTUajUqlQrRRJxYIomiRxBVHcMwkEUPRZYIGzqqLFEqF5idnkRXFRRJZGDvAWYmxvAROXLPcVqbmllardHa2I657uD4NRTN58h9A6wUZ6kTJHbv6+DN78wz9OYVBgb2k10Yo29PI5IkYZoVNFlB2QBftVqNtrY2REGgdVsbucIqPdt7KI+Os70tTWu9R1wx0V2VP/n//px9O3rp6d/B+QuDeD7MZudp6+giJMsY8Qzri8vYsoCkVdCMEIqqIsgKgqDg+S7CHYtXAO42CAIeuAiImkIkkUQxdDSjSqmcp7C+snFjeX+WJElbyuUAOIsbIMvd+vzO121+Looisiy/YwTmuv7W98iy/A5faDyDmlNDtqskYlGqhRKiIlNYL2AYYQqFAn3bt+MWquTMClXZJ5lM0traSqFSRtSCY1mtWYQjIRRZxrZdNE3ANIPwjEQigaxogU/6xvHd/J0LhQKtbc0sLCyQSqUAtiY49fX1Wx3lRCJBbm2FcrmMYRgbTgmBq0A0GqVSqVAqlZAkCd916Nu5i8WleXRF5ebVQepjMSorczg1g3AijB5NUpxZw3G8gFIiuD8TAP1+Kt+zArqRIGCZVWan1wBwbYdqtcq1a9cYHLzMPffcQ2tbI4lEAs+TMW2LtrYW8mur1ColTr9+jdnZLLt37WV0dI5SqUJvTx8LCwtBQ0JRUHUNQRIJhSM89vhHGB8fZ3Y2y9LSCp/45C8Qi8UoFkqUSiUURaEuk+bMG6/R0dnGc889R1NTBysr60TjsWAs7dYQBY+hq4NBbHE4yq//N7/BV77yFDv39mPoYfbv389LL7xIOlXH2moOkkmaG5v46+98l9bWVnp6uxF8j7GxMXw3CBvZtNWbnJzk5MmTlAp5SusFOjo6uXDuLVZWlhAUBS1koGkaN2/eYL++PwjNauvi0sVzdG9rZmpsHt93SafT7Azt5qtf/SrNza1k56dZWVni85//PNevj/CpJz7B6uoqhWKJXbv3BILAcJgDBw4QicRwPJfHHnuM8fFxfvD9Z7h8+QZdXV34eIyPj2NZFuFwmOXVHPeffJBCoUB3bx9Xrg3xwAMPUKmZhDUN06oyOaly9NgRFC1CMmnS0JDh6tUhJqcmCIVCKKpMQ3MDxWKRtpZGrl0Z5Mlf+gwjI2OYpsXQUJDkeObMGSzBQdtIB/2ZnLs/cvH7P/Lvvw8n+s71OBqNMnl9BcGpETZ0CmvLTE9OUswX2b1nJ6VSAUSfuaVVXj9/i/aePfS1N/Ebn/1DVDWYBvTt7GXi2nUi6XqM5iaOnzzJi9/7NrKqkhcN7n74XvoO38fv/n6Urx39IOtrRRKZNL6vgejgux7ddx1ifHyS7Pwy4WQTfe1d+KKAq7gUfRsRBQEZx/eQZJ1MQz0ToyOIskZjYz3L87OoukayoQlFU2lqamB1eZm6uhR93duIhnVOPnyS7z/3Imv5Eo4dvIcxzUXyMvT270aPJdidqUeSFCRFxnV8wppOIhSiUs7x3ItPc+PGKJKWor2zh+MP3EdzaxvxWApJBMMwUBQlEMcHB+nONx3e/dw/gnrfA+jNzh5iAGAE1wMhCA1wHAfRD0CAL8jEkyFkNeiQbV6TkiRtqdNd18d2g0S1SCxFIp1Ck6WtVK6Ojg6e//538D2XSNhA13VGR8Yp5XO8/sYr/PN/9pvcuDlFLBFlW1srf/r//jH/w7/+TaqST94qU7U1nFqRWklkcWmNeLqBxeVlMpkMuq5SKlWQZI+QpuDaFrKu0tW9nee++V+w82HyOZ8bo5dpbWqhr7mOaDyC6GuE5RCvPvMa5dw6B/btx/YEJM1gfjlHJBansamJ9bU1tvX0YucLFOcnMM0iVlXHiMaQVQNR1vEFAfFdZutCYHCM4zl4TkBMcAQfUQmh+CJRaRMsvj9PtU2Q6/s+rue+o3u82Sm5M/wjAMYqnue9wyoo6D4DeFsc6E03DssyAVA0mfWCTSwaw6uVCYd0FmdnqBaLaLJGJB6jvF6ksL6KpIRoaWog2dHETHaOuoZ6lHAcTY9sACcf1xUQBCnwHlc0QmERx/UxawGQ2fzdZSUIaohEQ1QqlS1udq1axXVdUqkUy8vLFMslEqkki8tLKKpOIplGlmVWVgJaRiQSYW1tDQg2BbIsImlGsHFVdZpaW7k0eJ66pk6sWByFGlWriqzHuD58I6AYqAblioMg/Gw6wO9OQvzH2oU2jOB9932fYrGIY9uUSqWNBEIdORoIrIdvDVMp51EUhfr6eqanp0knksiySCwaYT23RjqZ4urlK5RKJRobWzh+/Bi1Wo0LF86Rz+cBuHr5Ejt29gGws38H169fZ/fu3SwsLPDCCy9sWavpuk5TcyMnH3yIl156CdcDy7ERJZXZ6Rm6OpqRRYFo2KAunSYcDdPU2MzFixeZn58nnIiwZ/cAU1MzqKpKS3MTqiJjGAbxZAJJkojFYty4cYNUIk59fT0zMzM0NjXy6quvcvDgQRKJBOfPn2c+u0hXVzezs1NEo2FefPFFcsUqtiMyO7dIOKSytLSEpmlMTo1z4sQJVpZmOXLkCBMz03R2dvKDH/yAp59+moceeoQLFy5QX1/H/v37ueuuu7g4eIULF2/S29PCl7/8ZS5cPM+5c+c4der3+fQTv0hHRydmzWJ9LY9lefT0dHHx4hUEwaWxqYGBgQFEMbg2m5ubcRyHHTt2oGkazz77LPl8HsGH/v4ddPf2gSCyuLhILpdjZGSEVCrFwYMHeemllxgeHmZ9Peh+j42N8ZnPfIaR4VFCoTDNzSnSmQznzp2jp6eHhYUFpqenWVpa+pmcu38bAP03fc/fBVwHQWsRRF9HliWmpidobm/HsyGRyrC8WmB5qchi2abtwCEeOLSLTDJJrbxGbqlAOp3k9u1rdHU2UyitYsQa6OvdxReH/yMnH/kwmuRxoq8Zby1LxQy0Vw8cPcrpt14hXN+JbducfvVl1ks17r77bjo7O4nXNxPNNOMWq0jxFN2ZRnRd49/9wX/g0cc/RiJdT7W4SHvHdg4fOc6ta+fwXIvpyQm29XQzv7RMtVJGEgQMQ8cp11hyVvnqX36DqucTCsXIF8vIuLTUJXnwwQdp7+xCMSLoIQPBCxorvuggyQqhUBRF9AiLAvnVLNMLQ9y4eZmXTz9DR/t2Dh86ykc++slAmCwIdwSF3bGW/iMDzpv1vhcR/ucvfOmU63sgS4Hdl+shSDKu4+Dj4zkunufi+aAbBqZlY1lWEHG8wees1QKPVNtx0UIx1HCC+qZWdvR1E9M1RMHHdhxyuVVmJyeIhcPg2dQqZXbt2oGuKciSxNLSKtevj7NnXw8H9+/jwplLvPj8S+zc0Ut2YpJ0JILuynztj75LY6qN0dujbG9vQ9REGpq3kUo3o6gykiDieQ62D57rMzt8na6OVn7w0jmaMk289sKzGJKMXXHIzRX4sy/8F66dO8+//pf/E6In8hff/CZTc/MYRoREsg5BEOjc3k082Uxzqo7C/CRWeQ3LMvEce+O98pAEEUGU3uFZ7G/wmFzfxwMcz8N2HZwNICgrAT9XQuEXPvWx952IcHY2e+ptW59gkd7s2t65mG92lIMFRNkSFN7Znb4TVG86cgRgekPoKvnYNRtdUbAtE8G10XUVSZYxazVkQaJWrCKKArIY0Gv0qIERjrCcy6NoOtFYDMuytqgUjuMEfFbp7Q1OyDC2uJQB/ULDcRyi0Si2bQeC2mqVXG6NRCKBKAY35s5t21AUhWKxiCzLKIqCbdvouo5jB0KmgNPtoygKrhsE8giCgCRJlMtldvTtYDW3hijK3BoZwfMFPKBQNTl//hLVWhXHsX6m4PnOFMl/qHqvRYRXBt88ZVnW1uauWChSrVaxbRsRD8usYJkmsWiEcrFIIh5ncX4BQ9MplQqB3VxhnYmJKaYmp9BUjWqlgo9PobiG7VaIRCJcu3aV3NoqJ+69Bx/44AcfoVIpc+PmLdLpNKlUinvvvZf19RzDw7cRBLh16yaW7ZCdn2d5ZYX5xUW6t+0E3+eJJz7Mnv6d7NzRR6VYoVgsoCgqhhEiFArj+i579uzllVdepbm5meWlRVRVYXJygmQqwfLyEhMT4zQ2NlAulZmenkYQBHbv2cXKygoNDQ0sLS1tOCjViESiOI5N17Z2QGBkfJqaaWPWLAQh2ODOzExx5NBBVpYX2Lu7n0KhQH1jA6urq/Tv3s23v/00yWSKxz78OJ7nEY/HqJkVjh69h9aWelKpFOMTY5w9+xaiKLGts4vr12+ytLRMa2sbxWIJ26lSMysYIY19+wZYXl7eWn/r6uool8vs3bt3SxS/a9cuMpkMh+8+jCQrIAi0tbfT3t7BoUOHKBSC9219fZ1YLEY+n2d6eppNYWmhUGBH3w5SqTRtbe0Mj4zQ09PD1atXSafTtLa2sra2xsc+8cR778Jh1k4Jvs/m4x3weYta9U7b0Hfbh8KdmO1d0d4br7Edh2JhldXpUcpr86yt5TAthxu3xhi8epPR6Xm++ewZ/vyFCzieR252BFHw6GhpILe6wuT4FJ7rc+vaIK5l41RLTAwP09nbxwef/BzLozfQVIOD+/cxOTdFuq2BL/35d5ibW+ND9+wj01RPRDdYXlxi9+4+Ll+5wFJ2mnjbTpKpODdvXqK+pZOHTxzjV37rN/jeF/8f1sxl+ru68X0fVdNxN65nWVOpq8swOzVDe2sTiyur1NU3EYuG6erto1QqMD4+RSgUxQeqpoks+OzsTPOJT3yKcDRJOBLD37hfBNNJO8h+EF0WszOcP/cmS6trFMsWZdPBrtboaMpQF1PJ55YYHRtG0hRE3cD1BTwfRPh7Aumfu3D8VOuPvvyVU64PoiwiixK+6+J4Pr7nIkoieD6KIuMLIEkKgijBBkjUFGULbEiShKioxDMNRBIp2rdto6uznZih4Hoeng/r6+tMjQ8Tj0VoSCcpl0vgu8wvzNPZ0cmZty6wvXsnCwvjNNQ3sHv3PuLxDH/85T9hbjrL9Uu3GHzzMnYBVpZXaW/voLurg3A8ycD+I8TiKRzXRldVFFXB8QJB0/ToLUTPYW55FRELv7zO1XNXGboyyq3B63Q0NvDkp5/AdVxeePFVcvl1urp7GRuforOzk3Q6QzSVorG5EwlYnh3HrRWp2TUsK1iQbSfwgnR98R1+xb4f2KrduXC5bnCRuRuLuSxpiILMRz726PsOQE/PzJ3apPoIG44aQTdZYNNh407wHDw2/Z3FLQC9Cag3Fye40yeaDcGSSzQcxVBFivk8rlUG3yNZ14xtu1SKRSTfpVCuYpVL2BWbl954lQNHj1LX1EJTUwuyEgDbzf9jM17c89niZHsb7hmbXG7LNrdGb+vr6zhOIGpMJlNYloUkSaRSKZaWl7YoG8BWp9rzPFY2vhYIFoMAiHK5vHVtGUYwsanVHLRImFgqjaEn8D2PcsXEFn08XyKXy1GrVTZslN5bEP0jXZN/wHrPAfT510+FQyFKxVLgBuM64HsIvk8+X0JRVJqbmwmFQoRCgUtHMplgdn6O7p4e2js7yTQ2sbZaIhaPYZpVdu3qp5DP8dCDDzI3M0dDJsN6LkdI13n5pZfINCR57bVXSCVTPPzIBzh27AjDt27T3tbBmbfe4rd+87dZyC7R19fHzRtDfOADD3Pj1hg1GzQFNMFh/549+LJIU2Mji4vL5NbXGBsb48yZs8RicSKhEDevD5GMx1jPrXDinuM4tkUiniCbzVKXTvP9730fXdNJJ5P09XazsryA7wXWY4X8OiLQ3NLKzZs3mJ2bZmZylonJcRRd4+KFa4iyjKJIWwmk4XAEXRTQBJf2jg5C0QjZ7BJ/8Vff4NKlq3zk8Y8xv7jMSz98lXAkQse2DtJ1dfz1d79He3s72WyWHTt2cuXKNVzXo7e3l23bOhkcvEgkEubw4UM4rkNzczMAx44do6uri7m5OUZHR+nr62NwcJBisYiqqszNTGNbJuVSke6eXnRdJx5PcPv2CHNzs4TDYXK5HKqiMz09w+DgJZoam2hubiFTl8EyLerqMpTLZVZXc+TzBbZ1deG6Lvfccx+vvnqavXcNUCyXeOSR995ZyTVrp+78/MetAj8OOP+k1/yk5+1amezUKOO3LqMrCtFYkuHhUc6cu8Dp28ucPX8JAZ/u5hgR2eZ3/vk/Q5JhYX6RHTv7SaUzLC2vcOjI3SwurTA6PIJXWSYWVrEsm467DnH+zbMUqhYTsws81+vAhwAAIABJREFU9+IrjF6/TUryqOTXeOjDH8F1bATbRJAl9gzsRdcMTClMWBIozC/yP/6L3+XTn/4svgwNRpgHP/IoL//g+3Rs70QN67z+youENYmZ6RmqNZNt27dTLFZo7+whFIphqBrVWplkLMLFCxdZWltnJJtDEGRwbHo769mzdx+ZhiZkVUfZuE9tNog838cya5QL6yxklzh2z/2cPX8ZSQmRDIW4PXyLsYlR6lIhOtuaMMs1NFnHCBtoahC6JIri28D55wD6v67646994xSCgCJK+D4b3TYJz3URRAE27O1cx8QVZIxInEgkjior1EwT17aDm77nEU7U09y2jab2NrZ1dZEIhVDEgNbgez6mWWFybBhdFykXCui6TjqdplIqs54v4rsOc9lJlpbWGB4d48bN63R3tnL/4cMc33cA2RO578hxHrv3CLv7ekHVmBofIZnZxq79dyNLAiFNx7FsfCQ0XUcWZbZ193H69BtogkZcs3jiwye4Z99+Hji6n2P793Lo8CEKNZ9nXz5NrWZRq1XxgGgixYMnHwTfQg8b9O4cINHYiqhqqLJILKRRyq9RrQZe1rVyEdN18FwL33M3eEwibAR++L6P6AMe+J6P63r4CFiOjYPPxz/6ofcdgJ6dyZ7CB8918fzAci5QHvuIYmBpJ8vKhj1dYAm35YkpbPSsBWnLuD54euN5L7AF9PxNtw4fs1IkqYOohfFMl7WVZUzHJZJIk53PoggO8WSChqZ2ro/d5Jd/8bOk6hvxRBlZ1YNjJUoIooTrBrH2juPheW9znjVdA0FAVmR0QwffQ9nYTNbV1QUx9+UydZl6XM+lWCri+R6NjY3our7VSQ+FQui6TjKZDATXYiAIq5Sq1Mwauq5RLhVQVQVZltA1lXgihqbrIEqIssiN0TFkTaNSNXnzzYvUzBr5/PpPFAv9NOvOzvM/NIh+rwH0tcG3Tm1OCUKhEPpGct7m1CMUMnAcG89zEcVgsydJEvLG5mtzQ9VQnyEaDXHgrn3YdpWe7l4qlQqrq6tomsbMzAyZTIZoNMrhu4+yllsjHDG4cuUKvb19hEJhUqk0hw8f4s0336KhvoGx8TFGR8f4+te/hSjJ1Kout29cY8+eHVSqRdYLQZjH9u3bmJufo621DcMIkUymaGlpZnV1lUwms7UxW1hYwPfBCIWQJIm+vj6mpqa4+/BhvvjFL2DbgWNGOBwmnU4TiUQYm5hgcXGR/v5+RofHeODkfSytBHZxy6trW2mD7e3t5PNrPP7Yo3iOzejEGAISju9z5Mgx3jrzFuvreZ57/mU+97lfZv/+AUJGiC996UscOnSYaDTKtWvXUBSFT33qU+zcuZO6ujqKxSKhUIhHH32UGzduMDU1STweeKnn83n6+/spl8tYlsXrr51GUzVampvBh6WlRUqlEoIgUK3VME2TYrGIKIo0NjYAkMlkGB0dp7u7G1VVicfjDA8PEwqF6OrqIpvN0tnZCQhMTU3jeDZD166Tzc5jmhblUpFIOMz9Jx/6GQDo6qlNkOt5XtDA2njc2Xz4cV3nd3/9zuc2a9NC1HdMsuM3kZwKYUOlUCxy7vx5LNvGrdU4cmA3j588yr1HDjKXnSWRTPOhRx+lWFpGVgQQHPbftZd/+7/8PseOn6Cvfw9trS0MXr7GgRMnuXJukOPH76ezp5fde/dz330n+Y3HT1CeuoZTq3Hy4ZPgl0lEBKYmRimXS8TjcdJN7eSzY9SnDQ4f2U/FquG5VZyKT/Ou3XT19HLm9dcI6SFe+eHzmKUiId2gpaODdH09IUPHFyUi0Ti2WcUVPNaWF5nNziCrOvO5Io5loogCXa0pjh67h0SqDlnVsTcE5cH1L2DZNo5tUc6vU1hf4+vf/DblqkUuX2C97OD4AqFYgvtPHKUhUxek15YqOL6HoalIsgZCkGHgbwS1/N1A9M8B9E+1vvLnXz/ley6SGHTX8L0gMc0Nbgz4QcfUthwE1UBSDCQ5sPEyrVrgkCCAIEgImkEoHCddV8+29jbisTC6HNzIHdejVCqSnZlCVSWO33OUcDRMzayC4BGNRsjOzZBMpXA9D1lWWVnNMXj5Bl1d2xAFyKRibG9rprAwzVx2gcGhEWqmx4c++nGMSIxUMokAKLKM53vIioyAhKzqvHFmkLfOXaKpuZ5kMk5fXz81y+TspSFOn71MoWoST9QhShJGNIKiGRw5fAjJd1FlEVdQ6OjpR1VDqJLI1OQEy3OTJBNxoiGdSmEdt1bCdC1c08LzfVwHBElF8D1ERARE8AUcX0AU3l7MNruQv/Cx9x+Avn175JTjOBuLubsFRIMUQfEdPOd3j//fBmHBx+C1/lZ3WtrgjQviRqffdfB8D8+qETE0KqUal85fRRE1mls7UAwDSZZ54/nn6dneTdky+bM/fQpF05HCYaLJBIZhbHlSe56/9fttgl5ZlrcChjZFkYoccGUTicSW9WMkEkFR1C0ebWNj45a9mLAh0t0UkVWrVXRdp7CxqXQdl3g8tgXQqhtcalEUA/AMRKNRREmiLp3Gsm00XaOjo5tUOsnY2OiWyPG9rJ8GdWOz3msAPX776qlNEOy6LrZlbtFtotEIkiRuAGdhy2LR932S6RTNzc3kcjlaW1sRZBkjEsJybEJhg1KhzOzsLKVSiWQyiaqq9Pf3k8lkWFzMEY1GMXQdVQsERdm5eZ566qvU12eYnZ2jvr6B1147zZEjR5memSMSjVMrF/mVzz7JtaFL7N61i+mZeRobGjAMhbXlHO2tbSwvLnPk0N1EE7EtcV1zczPnzp2jq6uLRCKJJMvYtk0sFmNxcRHXcWhqaiSVShIOh2lsbGRubo6ZmRlm57IkEgmWlpZIJdIMDV3lwF13MTExTaFU3RLBlstl4okI2dm5IAXO9Thw6BC5tQLPv/Qi27d3sbiwyMd/4eM0NTWwe88unnvueZ588rN8/et/RTqd5pFHHmHv3r38m3/zb4nHE+Rya2iaSqlUYnJyktHRUZLJOp5/7gXm5uaZmZ1mYmKC1tZWAMxqiYc+cJKpqQlmZ6Zoam7Zikivy2QQRZEHH3yQ06dP0729l0ymgb/+7veCxMXz53nsscdYWFigqamJ5uZmVFXlqaeeYnJyklIpSBVdXl0knogSDkdIJGJcHxpC1zQ++OGPvOdrul2tnNoEz57n4fpv260Gvvlvf20TVL8TML/z591p0QpvTwFnp8aYHR3CqZVAdMgX8huND5G2lhYe/dgnee30aQw9QiLVSCSR4qtPPcUPf3iecKSO//zFP+Xuu+/jvqN3MTE1gyuoNG3bhRpK0FCXQVd0FrNTOK7LyuIisutRrRUZHb7G+avDTE8OEVOrXD37Q9qaG8EJpkSGqvNH/9d/4vCReykWK7imxckHHuXf/99fJGd76Eg0ZeqomiZhRWNtZQlRFOnt78O0LBbn50nUJSmVi8giOK6NXSkyNTEOwMTkFI4Hiizy8H2HOXjoblxPQDPCyJIUJJcKAr7vIQDlcgXRcxgbvc7OXTuw3eBeOLCjjX07OjnU34MejtHU3EkkEkbTJMyqSWFtHSMUxfUD+uPmNPZvFRO+VT8H0D/Veuovv3nKdWzYuMjwAxGhbZkBAPXB9z08QUQNxTAicTRdQ1cVXNtBEiUURcUXJTxRRlBD9PT00NHeRiysIwmbo3YfURJYmJvh0uB51ldXaGpsQPB96uvqmJqcRFMVVlZW8H2BhYVFWtu3ce/9DzE9l+XCpcuEI1FM12NydpmxuRxrbpj+/cd5+JGHEUQRaQPwR8JhNF1FkRVq1Qo+At19uzkzeBMtEkMMhcmuVBm8Ocro9CxGNEUokiSbXUBVFfbs3Yfj2jhWFfDQdB1PMmjf3osgiFQqNebnlxE9F9u0MKsVYuEwnl3FLBfwbAvbrAXdUc8DwX/7AhBEHM/D9wJu5SYNwPf99yWAnpycPuW67lZcN2yCZ2ELQN8Jln3fR7rDE/PdrwsCWAJO8OZs0nXtAOg4NrKiYltVDMnDsissz2Wplir4AnS1tlFcXaSttZVnX3yWg/fdh55JE47GuD0xgScIhMNhIpHIO/6GgCYibAHmUCi0NQ62LItYLLrleVsul4lGo1iWhY9AJBIhFAphb0xqSqXSFm0ln8/jed4W31rTNGq1GoosI8sStVqVcMigWq2+zf/e8KQ2TRPLdvEFCde28DyHQqHKhYsXsG2LYrH0E5Mdf5r10wDP8N4D6MFzr50qlUpYGx2lkK4TDocD+o3gI4gCiqoQDocIh4JzRlVVIrEokiQF/t2SRCrVSKVSRVFVdCNMYyZDsVikubkZ0zTJ5XKBz3QkwvTsFKZp0dqyjUgkwptvvUFdOkMoFObGjescPHiIs2fPoSgKg4OXeejhh1nPF9EUm4aGerZv6+bbT/810WiMVDLOzMwkLc0tLC0tUSgUcR2PkbGRLYu3XC6Hoigbftcy8USCcDjM0NAQHR0dlIpFKpUyZ8+eQVVV8vk8tm1z4cIF7r3vfl544QUOHjxI2IiQyaS5efsWz7/wFp/41CcYGRlBkiQKhXV++clPk66rQ5BFLl64QLFY5ubt2xw4cJCR4dtkMvX81de/yad/8ZMMDQ1RLle4fPkKsiyRTCZpb2+nWCzS2bmdb33r2wwM7KNaLXP69GkWFhZYWFiguzsQ721OgXzfY35+nhs3brBv7x4cxyGXy6HrOnsH9lGr1SiXy1SqNcLhMN/61rdobGxkW+c21tbW0DRta6PT2NjI9u3buXHjBrZtBzz4jQ57rWZy8OAhOre1YxgG4+Pj5NcL/PKTTzIxPs4jH3r8PV/TrUr51Du6x74Pno/veeAHHzcf3gaNbgtgewHtwPP9wFHK8xF8EHyw8fFcD9M0KeXz3L56Hs8sUKsUUFQDAZmF5RyVqsXnfut3+J1/9e84cNcx5haWGLw2xJWhIcKJJL7kU7NrdLQ18eD99/D8s8+wMD+LJim0tDZy/uwbOGYZ3ykjihCLJCmWKyD5JONRbg0P88RHP8T2zmZWJ28SES1a2luRRfBxsEp5+rp6yew7RDjVgCZo/O6//wN816KSW8Ct5RAklfXVRd44/Qp6SMNxbATfZzE7R31DBtus4nsumh6ilF/FMctMT86ysFxguVTFsgRCukpPcx3tHZ3EU3WEIjEEUcDbaCr6ro9ju4gCrMxnKRTWOPPWGeoz9fT39qCLPplMhv49e4jG47zw/HPMzs1SKBSxinkqxRyqpqOEIm+D5zseW/U3rrk/B9A/1fqLb3znlOc6+F4g7PK9gFYgSyKRSBhJFAPQIkno4RihSAxDD9J8KpUKbAAeWdNpbO0g09JOR0cndfE4uiohST6eG1yYpVKR2akJCrkVcvNZauUKqihQzK8jiyJayCAUDhONJrEdn1xuDdeHkYk5Wjt7GboxwkrRpKG9Dy2WwVOiXL89xhOf+CiyLOF7Hoau47kukqxgWTU0SaBaqVK1HTLpJqZmxvncr/0qhbLP7MIiSjjM6lqJ8fFpZFlibmGWtpYGPMdkeX4OXQ/hSir9A4eoq2/AE2B1Nc/09OIGz1RA1nRsq4YoiGiOiVMt4Tomtm0CFqbt4PsBbxZJCFYj/+3QkE2g8/GPvv840OPjk6cE0QfBxXWdd/BkA7/igM7heW93QNw7LBIBJDEAzpL49mKwCci9LUqIh+tYyJJIqVxFx0FwbNZzixy4+xC1cp5KYZW5qVF27N5NqrmRb373exw5dpTmtjb6B/ayo383mqbjeD4IMo4bcPdVWd2giYCqqlsfN0d11UoNXTfwNuhOlUoF0zSJR+MbNy2QJRnP94MAItMEz8fQdTRVwzIt8DcmJ66Hj7thKylRKpe3khtrZgVdMzCMMIYRQZJkfB9c3ydfqLC8ssLw8Aizs7MbYsT3vt4vAPrK5bOnQuEIiWSKeDKJEYrg+C6mY1Gt1nA9H8t2QBCIR6IoioyAh+861CpVHMvCrFYplPLYtsny0hKSJDAzPYGuB+dTrWrS1tZGIZ9n8OJFHnrkg/T09FDfUMe169fYvXs3MzPTDI/cIju7QHZujgfuvx9DVxkfn8J1XFaW5vgnv/5r9PXtYHY2y+jYGA89dJJyeZ1rV4dobWklm83iCyL5UgnPcUglU5g1k3gsRmNjPa7rkKlLMXh+kGKxQNf27eTzeXr7+nj5hy/R1tqC7ThMTEzQ09PD5cuX2dG3g4E9e3n5hz9kaXWJQ4cP88brb/Grn/tlVpbnmcouoocibOvoYPj2MENDQ0xOTvLohx/j6rVrgZtIUyOlcpkjR4+wffs2fF/m+LETzM7O8vzzzyIrAtPTs3R1dVOpmFy5PkR2YQFBkjj9xlvooQif/qUneewjH8MIhxFlmd4dO5mfm+Xuu4/Q2NDI7t17GLp2g76+flpa2ikWKzz34gvUTJP6hoCucfv2be677z5mZ2d55eWXuHnjOt3dXVy+eoW9A3tpb2/j5q2btHe009LSSqFQIpOpR5BlXM9jYmqCWrnK5cHL3H/ffVy+NIikqOTW1vjQ4++9MHyzAw1vd4vf3W3enHrieniOC54faDu8gOfPuzrTm0DcqZmsLC2xvLTA6NA5FMHGrFQQFZ26hgZSdRnS9Y3cOPcKs4tZ3rp8hcvDo/Tv2U92do5MUubg3j6e+IWPsKNnG57v0NCQorGlhfbOHXz/2Rf49d/876hUatweHqOrdwe51QKOazE/N8XiwhzN9WmaM3X84R/+7+iCQH1MIp0xqFk+oUjgN37l8iW6dh/E8UVWVlexaiZmMcfi5G3WFmeJJuvJzk4jiwKWWQHXZj47R2tLM1MTY6yvr4DvUKuWEDyBwtoavigiaxqlmovrCpRLRXrakxy95x4i8TiI8lZzxDTNoNlRLVLOryHJAqqsUihWuHH7FvPLOUTPprtvR+D4Yztk56a5fO0ab1y4wOpq8D1rqyvIIoT0aED73MAKkiS9Tef4OYD+2dVffOM7p1zH3hpRSqKAJMtIohjcoD1vY/QuEImn0I0YkqpgmzUss7YFBGOJFFooQiiWZFt7O3WJJKoqIAobANoPHAVq1TJWrUopv8783DSF9TyWaRMOh9BUjWgkQnZunr4dO9FDBqphEIqlaWzppKGlnYcffZwT9z3A1NQUmmbwP//ev8R1TBRVDZwwZBFREKhWqyiyhCQIyJKEHgrR39vFwydPoGkisViCyckxtvf0IkgSndu6SETDtLc04XsWYUMlEU/iCCLtXb20dXYTjkQQJAlVM8jnq6ysrCIqAXAXBVBVBcMxA7Gca2NaFWpmFcf1cVwX23WCOGop8JfdXNg2F6iPfeT9B6BHR8ZPeb4b7PDfAZ7fFlkCW6K3H0cDePfN4M4KfoazsfkLqBemZSH7ZVYWZ/A9h3K1RlNjA7ZVxfddcvkcRbPGoWPHkNQQTS1tFGsWmYaGwJ8aEc8PNjqe6+HYNooioWnaO36Hzb9DkZWtMb5uBKI/TdNwHQ/DMLbEgpqukcsFY/pbN28SiURYXV3d+lm+7xMOhymXSxQKBRzHCaY7vhfQOdwgcEVVNUDYCvuo1UwkSd7yk15cXKJSKf+8A/33qInRm6disTiSJOM4LpVyeWuzpsgBtSOzMf53LAtZlramFJ7nYtsWphkk2Dm2RTIRx6zWqNk2dZl6QpEI8Vg8mMaIYuBLXC5RLhU5f+4sTU3NgYBIENm9azeZ+iTtHS28+dYbqIqGYcSoVqssLM5RX59hcPAS1WotsKozFDL1KU4cPU48Hqeuro6nv/NdPvmpT6FrwQZwk8v8zLM/2HJ6SSXrOHvuHLF4HF3XuXbtGsVCnoN3HeD1N95gYGCA69ev85nPfAbfh8uXr2K7HrblISDQ2dmJ69oUC3nOnLuC7zrklpfxfJeWlmZaW1u46667qFarHD9+HNu2GRoa4tatW3R2dtLR0cbrr7/GzMx0IMRF3KA+ieTzazz8yMMkkwnW13IsLszzwP33oaoKN64Pge9x4MB+Cvl1Duzbx/4D+1BUBUWRMc0aFy5eQNc1PM+lu6d7K2nX0FQkUWRleSlwU/J9ZFlmaGiIBz/wELIss7S0RH9/PzMzM9y6dRvTDCgwthu4efz/7L15kKT3ed/3ee9+++6e6Z5z59hz9l7sYnGfPATwEMBDkiVKsUxbsqVEcRyr4nLsSgJVbNmusiVfiWRJVGwrLkqmSZEiQAAkQBL3gos9sLvY3bnvo3v6vt77ffPH2927oOgoKotAgvCpmtra3ZmemX5/7+99ft/ne1SrVWQpTDptNpu0220UVSOXy/Hgwx96XykcP6h5vn3f9bphUT1xdBB4faqdH9yakIb/72CaBq5jUy8XOffd59hZX2Z6epJILIGm6dx17310OgYbawskYxHSERXNtxAdh9PHT2JaTYZTSV59+RWmJvdRqzfwfZvdUoGRkSEOHD1J2zBwfZ+RsVFMK+Tm5wcyTEwOMTY6SiYR5Xd/639jfN8xfNtjY2GB9ECWWDzDQC5Hs9HAsxwS6VF2a3Umh/LEU0kqu1tMToyjJ7JYtsPayhJmp01uIMO511+h0ahjmgb1WgVRkNgtlMhmBlEVBUVSQVZ48ZVX2a50WF1aIZfUOHVsH3fedRduAJKiIcvKu/bdcnGH8s4mjuuyvbvLm5cu89a1Fda2a+zUG2xv7yD6LhPjw3iuxzvXb2LZLrYXUC7ukNBVVEWmVC+iaSqJ1MAtr+jbtEL/+fpRA/1Drf/41Wefsh2bdruDH/homoqmx/totB8EYZpeIBJNppBkDcswaTbq2EYbL/CJJtKk0lkEWWFkbA8T46MMpuLIYi9JLmzCJUnEclwKhSKy4KHpUTLZLMlMksJOEavd4uL5NxkfG2JldZWJqb28/sZb3H3/Q9z34IM88qEPMTk5gapqHD1+nFOnjocKeNPsW8l5gYfg+ohCyLF1A2hZJs12Az2qgBTaw8iKyAMP3E80Fmd4bIyb83Mc3DfNof1TjA4PMJDPoUYTjE4fZN/BGQYHckgSBL6PJMnYbsj5shwLzwdZUfCFkCMrqxqKKCARYBtt7HYDq93Eci0cx0dwwSekBfQWuBfAp378sQ9cAz03t/BUr/HoNZy9zby/CQCieCth8PubsNvjoYPv+3ff93HdkE/sdZt027bBaaLKAgMDA4iSGFJ6NAVBUhBVlWx+GDsQUBMpRE0nk82RSCa7DbQQIru+iyzJKLKMKIbK6h6y2/uZPM/D9/xbITCS0Hfh0CMhdUNVQ82AcNvv127XKBS3Mc0OkiwgKyKuZ2NZBoqidt8TEQIJSQpttkIaSJgmJnebuJ69X89uL5FI8OKLL+L73i2U6T2uDwIHeuHmtadc18MwTEQppAcZZgfXdRAFkUgk0m9OdC3SdYwRaHeaSJIIQoAkibQaTZqNOo5tIckyE1P7wjh6QSQWj6HHoiiaiqwoKCLMz89y7OgRUqkkz37jGVrNBjeuv8PC4hKtpkm5XGdleYvh4TEazTp//W/8VZ5/7gVOHD/Fm2++hSxKGJ0a9coutmmRSme4du0a6UwWP4Czd56hUqlQKpUoFosh+pzLoWkajXqLADg0M8MzzzzD+Pg45dIuAgGpVIpisYgkSczNzXHxrYtsbBdY2ylS3CmwW9zliSd+nEMzB3j2madpGRYjIyMM57MECAwMZEmlkuzfv5+1tTUuXbqE53k8+OCDrKyscOjQIbZ3Nnj22Wf4/Oc/z+zNWa5fv0k0qjMyOsxnPvNpfu+3f4eBdJpyschPfOYzjI+MsLW+jipJ7Gxtsb2xwVtvvknbaHPu3OtcuPAW8XgM17Epl0voeoQ9e8bJDw2zuLjI2NgYhe0NqtUKo6Mj3HvP3WzvFBgZGeHEiRNs7xQASKfTqKrKzMwMM4dmSKXSTExMoMeizM3NceTIEcyOwdjYGIuLi0SjURLJFBMTE5w8ffY939Nd890iwnd9eKGuIhS5B4jQpW/64RS6S7dzXRd8wolYl/rheT6BIOEYBtcunadRXUdWZOrVGoqkYNg+zY7J8FCOqX1HiEfjPPahh/j4xx4jcCysTgvXU6g36nz08U/Q7nQoFMqk8znG9uzBMDusra/hBy4SHu12g2wmz8uvvcGpRx6mvbONhInbqrJvKMX1i2/idtrUq3Us0yE+mKG2uw1inGapSRBLEomlaXdslubm2N5ax/U82u02sp7k8vk3iOkyi0uL7G4XOHbsJFevvIMW0bl89SqHjx7Bdiy0iI5pmphmh1deeY2mHQJiMU3m2KFJqm2D6X0zqEo4ZZQkhSDw6bRqNJo1Lp1/neee/jrnLl5kdn6FthVg+yK+5+IYFjFdo203aNSr7J2awLDb+I6D7fggKyTiMZIxlaWFFWQlih6PIyldYb0kIgR8XxMt8gOIHn/++lED/WfXF//TnzzlOg7tdhNVVYjHogiijGNbfXFU4HsIooIajSPJKo5rYXTayKKAFokQ0WO4roeoKAyP7WHP2BiaJEK/SezFMIdNh2kZmO065WqV3VIRWZYYGBwgn80ykM0Qj8WZOXKE9fVN9h86xvT+g0xOTROPRoioSrcZIzQ5dx0EL8DsWMiyiojI/PUb5AdzIIqhB7BlE9F1VKXnMyz3kYZsdgBBCrl2uqaiiALF3RLxZBpNT5AbGmZoaDRE/YTQKcE0Hba2CpR2C7iWEwoGBQlXVAEFJC1svKQA2bMJfB/XtTCMDrbj4QUBnush+ELYSAsyAiJPfPK9V2z/sGthfukpQaDvVNDb2G8PQwk/eFdT/YPEhL0/+/7PXTs5CFESQaAbvywjCmCbDqlEAkkMUCMqkihjOh7J5CDJgSFGxveixhOk0gNksoP9Jtj1fGzbQZLF8DoFoGpKn7LRCw/q+0R7YZMaOmyEP5PjOHiu30/4dN1w3N9TsCtyOOZLJBKoqoooykQiGp4Pge8SUdUun9vtCtRCFDoej6EoavdDwXXdPoctHIquAAAgAElEQVS60WhQqVTY3d2lXq+FBwneHzu7v+h6rxvoF55/+qlwAqAQ0SK4vofQdY1BFLq2hiKKquH6DqlMmk67QzSWQJAlFE0jkUohyyqqFkEQBTodA1GWum4BCfRIDNd1kFWZSrWCLAioqkqj0eLateu4QcDi0hInT50ioifIDw2zs7OLHtUZymfZ2tog8D0eeeQRCsUCiAInThxjfGyIYzOHqNXq5Lq0s7vvvgvPc6jUGmxsrnPzxg3G94wiC+HERZRk3pm9zmB+kIMHDyBKAplUEkUWUSWZyxcv0my1GB0Zx7JtThw9TKPd4dqN6+RzQ5imjeu5DOeHaLVDj+ylxVUMw2JwIMfq2ioAqVQSgOnpaebm5vjsT3yK+YUFWs0Wp+84zfjYOK1mk2wmw8TevWQHBvnGs8/xzDeeIZ2O02g1+dzPfY6Lly7y8qsv8+rrrxLRIwwOZpidm+P+B+7nnWvX8D0XSRQZHxtj394pJvaME49FuXlzlgP7DoIPsijj4fPgww+jaVFUTefatXc4efIUL738bR7/sY/RbrYRAoFMOoPreVy5coWVlWWy2QyHjx5lY32LyckpZEXl7StXyQ8Nk0pnSCbTFApFHn70w+/5nh441lPw7vuwnxzchSB6fti+Fz6X+yhz4HZtVr2ug4eL57vYtoXRalCp7rK2eJNqaZ3tnW2WlpbZLhTI54d58tOfwfM9ErEIgiyACNvbBa5fv8rU+CidZpn84ADbhR1OnjyJ5wccOHiIib17qTVaxOIJ7FaHgWSGSqXO1as32d1e4JH7zhINOmiBjeOIdEwTLZliJD/Ib33xWV5fs3jzxgr3fvjnUaMJbm4V0JMyp+48Q8d2iMazjIyNISqh+DuZirO5uoyKS7NWolEtEdF01tbWKZcryIrEHadOkUmniWgamYFBJDkUgKuKxE6hTNsVsUyTxz98D/c++CHiqQFUSSIQRDqtJka7xtLCHG+de5Xzb11gu1ijVnfI5oYp1+skUnECz2N6zyhHDk7x2Ic/zHBuGKHr/ewabSRF4sD+g0yMD6MIMsVCgXJxg0azTTKeRlEiiKKCKHx/SuFf0P77owb6z64vfunppzzXpdVsdh8WGgFCiOYR3miWaSIIKpKmoagRbMfCdS1USQ6R1yA87SQzGQ7MHGFyzx5imoosi91remts5Ps+uh5B8ANkRWFwMI8kKsiKSsewiMdjRPUog/k8Bw4dZXRqPwdmDhOPJ1ClUNyoqlpf0GXbdpeP6OO6AgJhsIYghhHjlm2jqCqJZAKBW6r5Hnpn2TaCJKF3ifq2bZJMZ4nG02jRBLn8EHoshiRK4Ug/AMO0KRRKVItFXMcJG2IEAkEJeVCSiiDJSIKEEkAgBviBHwoxHAvLNfFdnzACg24Yhs+TH0AEen5+9qme88Yt/+dbCG7PzaLnaBCulXejzkDXi7lr49P9d1VVu6jsrSZclSTwPJAiRPQoigJxXcdzCDdoy2ZjdRHT9fGBWHIAPRpGsgdBgGm7eD4ghYE8oiSgaDKBC6qm4nlu32mj1WpRLpdJpuL4QegH3ec4Ezbdnu+i6+E9IxCikhCgqhqe51OpVEkmU/yb3/7XBJ02GU2kbRlENQXXk/DxcT0Hz3eQZKnfrIuigO8Ht7yobZtOp8PQ0BCRSIQbN67Tbrff9Z7/f7necxeO+etPhU4q4cGpVqtSLBa7zioCuh7GVQdAOpnEtmyisRiKqqLIKqoaQRAkdC1CLBpDEmUUTcN2nDC5TRRxbBfTNEgmE9i2yfrqGuVymfPnL4QuHFoYGT83N8/hI0e5ceMmufwgruty+o4TGEaHGzducP3aVYaGhpmfn+eV114lEdVwbZN4MolhO+iRGG+dv0Cz0UKPJ/ixj36EY0ePEYtF2d7cYnJqmouXLnH3PfdQLBY5d+4crVaL3UKRdqtJvVoNJ2uiRLtjMDwyhu1YmIbF6dNnWF/fRFM1Xnjhu6yvr3LkyGFisQSGGVJWRobzpFIJzp49w+///u/zK7/yK/zMz/wMsiyj6zGWlpc4fvwI9Vqdf/gP/yknThztutuoGO0OA5kspd0Sjz76IebmFvnOd15ifX2172pjmib79k2yuLDI0tIyP/VTP4Fpmly/fj38PYohklytVslk0kRjUUzLQFYk8kMjrK6u8faVK3znu9/lb//tX6Var3Lk6FG+/vTTDAwM0mq3UNQwVCWXy5HL5Xj99dcxbZs77zzL008/zX333YcoiqyuriLLMpVKGd/3+PBHH3/P93TfDhvoHxSUEgQ9sEHoNtTCu57NQY/K4Qe4joPvuRidNs1GnfJuAUEIiKk+tUqB69dvMD29l9zwEKVqnaiuIgo+0aiO6Rg0Gy2OnzzN5uY6Ih620WRsdJgzd92NYXRY39rhW9/+NvFEhpHRMTxkRkczGFYdQfT50EceYmzfcTLZARxP4CtPP8fS3CKn738IIZphaM8I3/zmK6yWbe6+735Ky28xlojy8quX+IVf+G/wJYglMwRKFDmiIykii3OzId/baXPhwkUmxkZZuHmDeCLJ6uoa6XSGQwcP0Om0KJd2mZ6eYqdYIplM4jgO71y7hqhoXF3cJK0r3HfnMUb37CWVyeFYdhiu5nTYXF3knUuXuHrlMnYgEqhxCsUG1XoTXwjfd5AYzafYPzlMNp0hPzyC5wfsndrLmTOnefhDH2FqYhLPcdje2MJxLNKZJJXdMvValYHBgfA5Jd3KSwgbrv/3NNAfzHzl20oUZURBRhJlZFkl8AVM2+yeWH06nQ6B54Lg43tgOyae5yBJXXTOdVFl+srz3lhb1EIfRD8IgFuooqIoxGNJ9kwdCL15N9aREPCDEEnTRJ9Wo87S6jbT+xMkEjqS1E1sUxRUVcbz3f7YWhAF9FiUVsehWKoSUWUatTqRSISVlRVGRkdpGR2OnzyBgPcuazLXdZFlkbis43oBVVEkNTBIRI0hSOGYNhrX+2gpXXUtQDQaRRAC/MAltMsOhWyBJIIcIVBkAin0N47qOqLWQWm3ESyDmtmibVhYVgNVT6BFkwjdsf0HrW5HmXvoco9W0EOke8IL4JbDBrfCU3qvI4pif2sIggDHcbqv1fseHo4TpkPKsowQCQV3lc01hnKD7GysUyxsIwUBmtSNqA/C8XS7YyLLIboceOHPGnRpR6IoIskirntLmKcoCpFIpN+c9iLLXdclm81immbolRoEtFqhP2mn0yEIAtrtdn+M7vs+7WaDQmGbL33xGlm3yrdu7vC5z/81/v7f+zusrhfDBx4SAgKqKvcdSXoIaS8hL5FIsLCwwPnz5/v32u0i1R/V//Oq1WqkulxgXdcZHh5maGioe9ijP8VqtVoUipW+q8O+/dNIUniNLMsiEARsy0LXoyhBgGGZWJZDu20QUTUiEZXCxhaVUpF8Po+maRw9epTVtS3WNjbIZrPEY0le/NYLfOQjH2F5eZnPfvYTCH7A+Gie/GCa3UKFa29f4eydZ0gm4pw8dohMKslmoYwfSOyWKxw7cZL19XX27dvHlStXCDyfWr3C2NgYGxsbHD9+nG+/+N1ulHeaAwcO8PyzzxDRFIYGB3EcB9t2iEajrK6uks2myQ4Ocv36TTRNIfBgcnKMiYkJ3n77KiNjo3ziE4/xla99FcuyuHnzGqVygZmZMKb81Vdf7U6LVD73uc8xPJzn3/zW7/Drv/6/8LWvfY1YLDx01Ot1Dh48yL/4zd/gN/75v+LAgUO8+eabHJrZy9TUVP+54rkOjz76KLu7u7zyyisIgsAv/MIvUC6XGRoawjAMBgcHWVtbY2NzDV3XGd8zyhf/8D9x9uxZnnzySRKJBN95+SUGBgaQVY1Pf/ancF2XlZUVlIhOoVBgYGCA733vezz44IN869svYts2ly5d4q677goPNqdPc/XqVUZGh/qBSe919d6T3nPr9r21B0ncmuLd2osFIbilcb+NIy0EAZqigBajWq1y6fxLzF+/xF2nTtJuNxndM8K9D3+c86++QH4gxW6pQCyZ5eChQzSbTe568GFa5V22tzZY3ljijmyOoaEh9uw9yIOPfBhZjjAxvRdBlLl+4xq2l8H12zTrNq4osrGzRTQaYWrPFIf2T2J1TFxRpeBE+Uf/8rf55Mc+xTee/zb/9Ufu5u5jp9hoeBBP0Ko2SMggKRKyAio+e8fDhnlocgwjEGmaPoIg9deHYZhcunCe4eE8MzMzVEu7iJE4juOws7NDIpFk1wjBu1QkiqaGB2lBENA0nUapxOrSVXbW1nj9tVcwPI9KvUXTDKmkvh8GXnlegIeHbXfCBM1YHDSNiZlDyD4Y7Q4tw2FoZBRZi7C4usKxUycZGZ2gvFtC1aOsrswysf8QopAh0r3e4YV+r1fcf74++Aj0l7/6FEKAaRqIQoiEep6H69jYXRGMKICPSyApyEoUHyHkAvoekqIgKiqOH6BGkwyPjjE+OoSuiPhBaNWG7+PYNp7rhgEtQhjXrCgKsVgMLaKTSmdJpjKIioYoR8iPjJPM5pAjOtlMmnQqia7H8FwPx3G7vFMZx3F56aXvIQgyX/3KH1HcWUfwPb71zDOsLsxz8/o7nD93DsfxODRzCFGWcD0PQRRxPS9EOwGj3ULXNOKxBKoWjtMjEQ1ZEhEFuml3CqIkI8kqpm1TLBSxLQtRCNFpEQFEgSAQ8AQJ1AiOEkUSIvhyBFWLIEsikm8R+D5Wq0G7Wca0TBzH5Wd/9nMfOAT65s2bT93u9Qy3muQf1FSHG7/0p16n12z30gn7I0lBCFF9y8J1bQg8gsDFt2wCNYJtdHCMOgs3r9Kp7yJ7HaLpIUanD5OfPoQsKTRbbSBck57fdQQRhFCEKokhn9jxuuhNuKYNw6DT6ZBIJJAksU+luL16h8nbHTF6o1LDMPqI1TvX3sEVoiyurJEK6jQtHyU1zN0nDiPIMQzT6B9oFUVGluWuTZqMaZr9DbzRaOA4DqlUijfeeB23KxB6rykcP4x6rxHob37ja081Go3+tMEwDUzTxDAMDMOk1Wpj2w66HiUWj6NHo2SyA0R0naXlJTzPo7i7i+2EyLTjOuE0TFGAsAHXo1EEoFooYhsGr795jmg0SrFYYnZ2nlw+z87ODul0mrvuvBMCj489/lEuXDiPHlERhIBarcLo6DiRqI5hWthmB1kKKO7s0DIcKrU6Y+PjxBMJkt0wkEMHD1CtVDh48EAINuhRWu02Dz70KJZlMzAwyKuvvsbBA/toNRvsFgoYhsG+fftDXrAgYtoOc3NzTE5OIAqhY0w8HmN0dCS0nJueYnZulrHxMTbW1pmanuDJJ59kfn6BcrnMxMQE6XSaeCKC7weUditYlskLL7xANptld3eXUmkX27ZQNZXxPeNkB9O4rsXhwwdDQXr3kNrpdBACiVhM5/GP/RhnztzJ9PQ0Ozs7HD58mK2dAn4Q0DFM7jh9mpgeJ6rHOXbsBIdmZjh79izr6+tYlkWxXOaxxz6GbXvcuHGTY8dPkM0O8NxzzyMJ0Gg0KJfLCIJAbijH1tYWlm0R1WOcP3+era0tPv3pTzM3N0s+n+fkHe89B9pz7afC3CkhBHx8gIAwE1fsevF7+F5I8RIE+uCA54eOWT2yR6iBcnFsE9ux6bTqlMpF4rEo6+vztI02yXgOSdIYGRulXK5gtn3aZgddj+F4AelMDlmNsu/AYR584GH+5OvP0axXkSSJ0/c9QKGwQ7XWpNmoMZCJk4zF0RQFw6jRrO2SyQ7iCyq5oVH0eJa25RFPpInoYXz2E598nH//B3/Af/83f4mCJfLk53+RIJYlokXwCWhW65iGQXIoT7W4gx94PPfM8wxlUuwZHeLm7E3O3H2GZCKBaXSwXJe19R18JO576B7azSYdwyCdzrC5VeC3v/B1hvODmJ0GCd1jaHScVGYQSRKw2022VpYoFnbZf+QILcNlYXEDVVERVRnLtFFEAUUUsRFoVltUq2UiioDR6TCQziKrGvHUALlcDkWOoOsxJifGabfbgI8iCrTaVWQJaqUGiCKipuMDstidOHYn//9FH6L0IwT6z6peU6IoCoHvEQThSEfTNISgK05yu2ivHd6AshDQsU3oxlcHvoQjinSaDWLROODj+U7/9XvpPMLtpyRZDKOLCbq85oBOx0SWVaKJkDdaa9RRVJupqSkcx8E0zS7Kbfc5XIIgMDyQ4V/841/j1LF96FaRtbeuM5LQsDyfWrvCvn37OH5iBlEJv7dhGMTj8T53VJIkFFnuCgQlgkBAEAL+c37lthWO8VVFC38ez8dxQ4pGz70hCAJcLyAQVXw1hoREICmoAsQIkKUmku/SNjo0qiVEo/PDv9jvQ92OfvYEb3CrIf5+3rMQetu9yxda7H7d96PVth0e8PzARYsoeI6A71oEvovn+1j1GugxRDVDLtcGz0CQEhgelGpVMuNT+EqETDyJ7YXcZ79LN5IQ8EUXwZMRUPFpg++FPHpRpFKphrHccQ3X9ojqOp1Oh4gew3ZCHrTSRaVvR8s7nQ6yLDOQH+E//P5vs729zalTJ7Avnufe/SnG6j43K9uUdrZY3iwzOCTheWFzLsuxviDRsm0EwSOi6/248LD5KtJsNtm//yCzs7NYlvOn6DA/qj+7Jib3oHbTB6PRKPi3hR4Fdn/ttls1EAQkSSGixSgWSxiGxfZ26Lfs2OFelcvl6HQ6XL50hdOnTxONRgiAeCJOM50AXWbf1D7Ku7u0mzWq1TKVWo2f+onPMDyUIxqL0W61aNcbDGUHiWkRanaZzdU1BtKD1EoF6vU6A9kM2CZXr93kF3/lV7k5O8+1a9do1euMjY3RNg1ef/0cIqGji+U6RHQVPZbgjTdew/MC1tbWuffe+3DcDul0mssXL9E2WgwN5VlcmCeaHuS1c29w4MABdnbLZDNpojGddDrNYD7HE596MhSyuh73330PRqPN9PQ+Lr11lYmJCdbX11leXubs2bPcf//9RHSNb3/7BT70kQ8zmM+hqioXLlwgpkc5e/Ysv/7rv865c+coFAoMD+dZmL/BZz/zk3z35ZeoNUzO3n0XuUyGQ4cO8frrr+OaJtFYBN9zqJR3yWQyaJpGoVCg0+lwc26WaDRK/dVXuOeBB/j6s8/y0IMfolKpcPzoCQo7O1y+dIF2y8AyTP7DH/yfHDlyhACPixcvhnuTJPOVL325f3hdnL/B3qlxMpkMf/DvvkAmk2HuhvW+rN3vdzoSJEIRP9JtuhH667kHRNzuMHQ7oAGhNWe70WR3d5Mb16+wubbK8SP72N7ZRJUWEUWb7OAAA/lxEqksZr1OLD6A5HjEMzkkrY2mSMzPXufzv/yXefarX6e8W6G0VsQ3awSShiJGWZgvcPrOsywubzGYjXPkzGkwbb73xvfYWN9idN9+pqb3YnvQrhVJxqJsrq1xdN8k/+zf/gFf+/ZLuKZDp9misbVGLK4xkB9mafYd/sU//Ufcc+/9lEoVUtkBLl+9yuj4OPfc/wjLS/MkYjr5fJ54MoHvhb3Kiy++yJ1n7qJUrSFaFssrC0zsUcjnM7hNj/vuf4iJyUlc26RSr1DYWmW3uMNuocT3nv0mUxN7ODQ1jKREMBwbN59haGiICxcuoAYiKV3n0Qfv5/TZuxjfM9UHXAyrzODgIJ4bThJlNU52MASddFVDVFRanTpD+TzNaolkOosa0RCCHjWHP19i4e3Ph79Ayt8HvoH2EUOPwoiGbVoEQtjQaJqC7zp9FMv1faKKguc5uK6Da9m4VgfZ99AiMXIDGZKpOKZphl/T5ad53Ru2l+gF9BtpUQybaKnrnQsQj8eZnJykVCqxur5GPp9H1/Ww2e6OrSWBfvRqEASMjef46Z96kt/4h/8zJ/aNcGZmP9gt9EicpcI6dz7wEOOTE/2GOxqN9r0a5W76Vi9lLnxN6Ps2/4Dqce9u/V7dkAs/gEB4F20hCAJ8KYKvCiDLYQCDKKPKAhIuou+A69BpV3/IV/r9qd51l2W5/+ftwsCeyO6WG4fYP2zdfuDqXWuBW3Z3vf8LkPoPgt4akxQZxwtwfY9sNkaNQRxHwrIFIjpMHTyO5YskYpH+w6L3ukHQtX1yfILAJggEZMFD0aMgyGiqxPjEBJVqk7YToAQCjWabdDr9rgdXqbSLrocK7mg0Sq1WQ9O0MJSi0UIIYCiX5wv//otEnQ62U6HSgemZ4/z0z/48elRieXmR/fv39ykZIGKaZvd9DLAsqy8Ccl2XyclJarUajuP0UxVNs/OjJvrPWb31JMty6K7Si9IVBFQ52t+LBFwc18D1LWwE4lGd6OQURj5MjxTEgLW1NWzbZnl5Gcf2ePHFFzlw4ACz8wvsnZrm2JHD2HgUyyVKpTK1Wo2JiSlSmQz5fJ7R0REWFheJaBrlcplqtUa72abd7jA+NoltW2GgSyzKyRPHeOt753ns4z/Ol7/yVT71mc+G9JJWg4mxMQqlXWqVEpN7xtnY2GDPnj0UdktkBnKAxEA2S6tpoSoRVtdXadWq5IaG8QsFXnvtNR5+6CG+9twLDOVzOLbFmTNnmL1xE9s2sU2D0eEhnv6Tr/Gd73yHJ554gt//vd8lNzTM/Pwsx4+f5DsvfRtVVTlw4ACZTIb/49/+DgcPHuH5577Fr/7qr/G5zz3Bxz/+caanpxnOD5FMJnnyySe5fv06siyzuLhIJpviG9/4BvPz83zuL/8VBrMDFLc3adSqTIyP4foBRw4fZXZ2lsuXL3P57Ut88pOfZGRkhNdee43p6WlOnDjBysoKX/qjPyKdTtOoV4lFI0iCyptvnmN1eQnfC7CMJrVKkaUFkbW1NRRF4ed//uf5wz/8Q3Q9PDTs7Oxw8+ZN5ubmUBSFRCLBwYMhVeX9qNvpGz2rs1BD0p38+RKe57xLvH27NWePI90TPDtWSE+yDJOlxXfIpKIMnjzJ8HCWM3fewdsX3qZSLhKPJUllBkEUiKcHwmmvbYPrEngOviQwNjGNYBnsGcpT3Jrn0htf5NCx+/FlAVmRSWRSmI7P0eN3EB8dZHPhOq7jMzozw4EzZ/AdkVarg2G6lEpFajWVWCqDoij86i//LaxiGS2VJqnpJCcmQHDB81haXuXsXfewf9++cBpuNrjj1HEMs40oi2SzOSyjhSzLLC8vU6s1iUQizByZDq0hkyls2yYS0fmVv/m3+K3f+gMOjmfJjYxCl0fu2ibzN2d563tvUqrU2b93muPHZshkBxEkkYnxPbiuS71e54nHHmS31mQgM0Q+P0AslcETRGRVwW410KM6ptmh07ZJJBIhqEfIL283OzQaDQyzie+uUyhWCCSFyX2HiMfi/+Walx7o9acHwX/u+v9BAx0gIRGJRMMb6TYUDm6pdZ1AQO56iNqWEUZ+SyJSV9kqSAqmEQqZXNfFV/60n+/t43qf8Ma1bZtMJsPw8DCrq6vYtsXbb19icHCw36SGyvRGv9F1LLPvydtsNlHUKIfvvIePPvGTXH7lRYJIGqNaZDifx/aLnDn7CI4joagChmlg23bo1akofSTa8zw0TQtFk5ZNJKL2H5j998r3CQDHCXmsfZ6p5xOa1vndIMd3O064XcRC6PJpBUFFwEX2IR4EOKZFILnvzQV/H6pH17hdQNhbC7ejyt/fPL/Lvq7n3NHj7nUPKa7rIsliX0zX+1xEAVVRiUTjGIGAlEjjWy66vEs4IXGRULouM/67eGM9iomHiCh4XQ/oGLPXrjA0mOS5l7/Dq699jwce/THuvPsuaqZNNpsFUQrdabqHslQq1T9Q1ut1RFGk2WxSKpWoVhqcOXUHV65cobq5xZnHHufAwRnuO3EKN6GRz+fZ3t5GVkQcNxQn+oGLLEWIRqPd399DVdVwtBeEIS26rhONRnn88cf5yle+QrFYRJbFdz0kf1R/dkUikX6aIPj43eRQ1/Vu7XG9dSuEjXarWe0eaKT+wXEgN8jExAQbGxsMDw9TrdTRdZ2BgQHuTGaIx6JcuXIFQQyYX1jk8OGjqGqSnd0QUU4kEn1ufTSTYWN1jWw2y9LiAqVSiUwmw97pSVaWF0mlUszPzxNJptjY2SWbH+XrzzxLo1ZhenKC4m2e45FIuI5u3JhlZHScmzdnUdQo2zslXA/eunCF4bE8G2sbZAYGqDVaGPUaCwsLjIwOsbiwTKAqvPW9Nzl96gQAq6urCIFHfjDL3/jFvxb6S4sBhtFmaXsppMJ0+fqKovDiiy8Sjemsra3xi3/9F3jiyR/nH/yDf8DGxgYPP/wwYyOj/PEf/zH79+9nYmKCixcv0mo1SKbiuJbHPXfdzYcefoSXXnoJ33OYm11mc2ONvfsO8Lu/828QhIClpSXuufc+otEor732GnfccQe+77Ozs8PCwgLpZJzBbJprb18O9xw8NtfXODJziJdeeoVnnv46+/ftZXx8nHxukPn5eb7we7+L53msr6/zS7/0Szz11FOMj4/3n1OiKPL888+Hk4v3oW4HI4IARCkEBQIkCAJ8L9xrXccPubjdhrlXPTciQRCQhABRUxkZGcFo1jh8ZIarl9/myuVrPPDgX2NiLMfc9Zs8+uhjxKJpDNMlmYnScQJqjTIdo8UuXXtRWQV8moLJnuMn0JJ5hnPj1NoFbD8gk89w4NB+VlbWiceSeBsWheUd9h08QKvVQlQF6u0O8ViY/JrN5FlZWeP5579JvWkQScTwVRlPDq1NtaiO06hhGwYPffijtGo1yrub1MsFArtFRFPoNFzSqQGOHzvJm+deZmp6AsdzuXF9jpnDh0KaXjwV6lkEWNss8KUX/iWaEmFszzFGxiYxTJtMJIrRaXL86AnefPlF9k6Nce+DD3HqjnuQNZlarcbcO+9gmG0OHzmIKMKB48fJZkbYLZfwfHBsD9u3aDQaKLaJruvYls1Ou029UgwP4aurWJZDubzLIw89SCKe5fCBvVy7fplOx2Ry7yGyg5lwX5L+bzrg3rPg9mb7h6r7rs0AACAASURBVPB8+OA30B54AgiSgqJoODgIvtOnTNi2HTpNSCq3uKxh4paixdGiCZA0BCmCoKj9hrRLvAJuoYpAHymLaBqaplG2TMrlMpFIBFEERZGIx6OUSkVO3XGaxaV1qtUq2WyWnZ0dAIo72/1RRyaToW2baLLGJz/9lxAFFSca4caNeeZqs/zkX/0lzEBC7NQRrVuoZTQaJRqN9hs4RVH6aF4ikcCyjD+FfvqBj+f7tNsmpVKpmyjXpRQIdHljwQ9A+wJ8XyDwRTxBBFXDDQbwPRnB8dETNl6j+cO+1O9LRSJRTNPsNyK3C1pkWQ3t3aDrndlL6jPw/eC2z5X7Ij0A17X7FJsg8LAMG1kUEAIXAgh8IXRBECVEUcHxAzRVwDUbaJpILJlDFCRURQnTAZXwtQ3bBFECScRyHdSIhhjI2HYHt9HGEG3+xk/8JWYe+TiXz19g9uJbPPqNl3HMbaKRCBsbW+QGMth2OLlJJqJsbm5Sq5RJJRLEk2l2traJRCJkBjLE9SEcfH7t159ifXuH6f3TVBULzRYo7VbIZAcxrE7fMSZ8n0I6i2VZodtM96ARjYbvc7PZDNPtGg1UVWVwcJBms/4uG8kf1Z9d4X4UuvJ4ngeB1xeFCkJ4cAuCAML/wvfdflpl73M7nQ61Rj3c7yIRJiYm2DsdNlmGYVCt17j+ToGZQ/vIZrMMpFM0mwavvnKeobFhTKvN0uoKmqxQr9dxHYetrS0URebEiSPUajXK5TLf/c6LJBNx8oM5/vhrX2XfwaOUWwaSniFwHQbzw4iyQrNj4NoWqXSWhaVl8vk89z/wEK+++hqe55HQY1Sq2whIRGMJdosVmi2TWiOc9j300CM8/9wzTO7fj++6DA4OUq1WqdVqfQCiB4r0+P2f/dSnuXDlMnfeeRcXL1xiaGiImZkZnn76aeLxOKOj44yOjvLCC9+k2Wzzm7/5m3Q6Hb785S8xuWeCZDJJLpdjfHycZ599hl/+5V9mfn6ewuYWrVaLv/c//l00NUIqpROLxbhw4QIrKyuIgsyRozPEohEajQZf/epXKZfLVCoVNE1j7969HDx4kM31NXw39JCvVeuIosvMoQOsra2xZ3wYSYJKucDK8jzDQ+PcffYurl+/TiSqE9F0Xn/1NQ4dOhSKgdttLMvqOjYElMvvz1RREEKnny4bDh8PJBECGV9wQZAQRRkCsRvX7eMHtzzjBUVBCAJcywmtMLt7baVWYnzPFMO5PJ//r36ON958C3tslLvvv5fz517h8tuz/N2//z+xWy7iByIH9p6hUKygqxK259Js1tEEB1mUyeVylDe2aZtlUrkR5ueX8YIiqViKmKbRrFfoGAqT+6cp16qsbWwxPb2P2XdmGR4axLUthnI5dpYWOXt4hgMTYyjRBEbLQNN0Ahcsy8ToOKRHhmiXqkiaRmZwiO3dMkf3j1HYWCWezjA+sYfzb76BIElcuHyJwIahfI6VpUUGc1k0PYHZ6qDqAYWdCtn0AILjcGTmMACxaJTd4jbLs9dZX17ir3z+51DiaSLJNLYQIHihoHjf4aMI+OxsrZFOJvFaPpJYpVLc4e2r1zl88DDLSwtkMikM0yafy/KlL3+ZWDrHfffdx3axiJpMsDq7wNVr19l/aIZvv/wyd5y6l+F0lJuXXicQQFBnSHczDf4UHeP79/8fJDDvLZy/gPrAN9Cea0KgEFFUBFnBdUxM28FsVLBNA8OyESQZRdWRhLAREXyNwNOJ6DEESSaRTqNqMqlUBtt1sE0TLSJ3kUAZQRARJBnB99AUCc+xsMyQEyrLMrbvY1gmIJLJpCmVSuh6jHeuXmNkZIilxTl07RgD2Ry1eoVkOkXPj8GxbALHRVI0LEQeeeyTGI0yv//FL/JP/tlvYDo+mzsbjI4O4zgelmWgqhF83yXlumiqDPjoeowg8NA0lVaj3nUw8FG1SJhqqGiIgRCKJrFpNU1MyyCiikiqSBAI+KLQjT4PT/WSKBEILvjhw9YNPPxAwPPBl3TECHgueB0P0Yu8r+vgh1W95q6HmPbG4j1jf0VR3kXt6TXRPZW4932cvbCpFrGscJIQBAGqJIc2cQG43a8Tux7gAJoSwTQ7qIqGJqtIkoIv3HIAuZ36ETarCoLU5Wb74aHvn/zvv8Z3/t1X+PxPfozf/OP/yGc/8jC7K3N86iMP8Vd++Zc4cfI0zXabwWy6f/j0XRdZlhkfH0cSAkqV0NnBsiy2tzYYzGYwbIupffuJxFNMTk2EokRZxbJctrbWicfjWJYVHkqDWwfR8L0JNzlZDsWEoijSbrf7tJhTp07xzW9+s38A/FH9OSpw8Nxb6wM/QO6KW33fRxLAcZ2uH7jXn6p4ttMVtLrh353Qj9i1HZYWFpGUkCY2PDzMQDbN1J5xWq0WtVqDjY0trly7zt6DByiUK1y9Osvo2BSdVpNULMa24DI8NMhQbgBJkBkf3UMynmJ6aoqOYdExLFIDObRInFw8jYhO4Nhsr6ygDmTJ5LLsFKvMr6yTzmZQRyI0Gk2Gx/cwt7DI6uoanhci7NVGHZeAerVO22jQqpbZGRpkZHSMDz/0EKt7tykUCowNHcJxLRQlysTEBJqm4bg+8/PzPPLII6ytrfHA3XcjaxH27ZtGVVVeeukVBrMDBIFAo15hedHn1Vdf5dixYzz9J19n794pPvTow7z00ne4444zbG5scf3GO/x3f+u/5c1z50mnszTbbQzDYGRkhImJCWQtTP88dfoOZCWcwmxubjIxvR9d1zly5AiqqtJsNlFliUqlwub6GulkhrW1NW7evEk0GmXm8H4uX75MMplEVVUSiQSTk5NsbW3RbHW4ePkC9Xodx3F47KOPc+HCBQbSaRZWFqjXmxAIJBIpJKlDLKa/L0v39sCqcL8M13E4CSS0+QzkEKxwQ9DIsuz+2u4JnSUhTGtsd1pYloHkexQ2tkhndc6de5390wf5xtee5s577uX0w48zOXOK4u4mUV3DcwO+9fSXiCciXHtnlkNHTjI8Nk56MINr2Wxsb3Hk9N1sbG5jtTtkUpBMRFhbWSCZSaMpYYpkT5x98uRJDMPi5OkTpDJpFubm8aM6x++7h1Q8gZ5O4juh9sqx2hidFqIooqoKC1evMzQ0RKfT4V//q3/F2bNn+Y1//o85uncPT3zyk6ytLpNKJZmdnSUajZEfHmB5eZloNMrevXsJJBFVi7G4vECzaaAkdJqdErV6Ed82sL0Og+kEVxsVUkkNPT1IfGCUZDrF1sIcbcLMh+RgFkVSyOZGadbqBL7LzWvvsLW1xdWr77Cyus7wUI5vPPcMbV/m4fvv4fKNBXxxjZfOXUZVBPSojO14pFMpLlx4m6HBAUr1ArnMPqYnxvBqu9R3k6iiTCwuIndFy/2G+PueAz/wudCj8/wFrMUPfAONcOuBLEkCQeDhuiEVo8eBFgQZTVK6nweyLKHrOoqmI2kqkixj2zbVahmj3SHwhZDSEHi4joNI9+YlFPBJkoTreLdG5Z4Xpj3JEmtra4yMjLC5ucnhw4c5d+51PvaJJ6jXGlRrrTDExTBoN1soikKr0aRSr5DNDCCIEYTAo95o8MSTn6Wws0sml0MWBTods9u8qYgi6Hq0y3OU0DQV2zZxHAtJCoNWVFUNv0+7HQpFpDDspGNZtI027WYd2+igSVFERQ5txsQAbuM+394Y3s777ZUPuIKMq0RwVYcPYvV+77Bppo/c9WzAemvgdnFgEAR9twJRFHG7jaIoiu+Knu1RQ3y3S+1xnT4dp/e6oiThBwGRSBTfl5FUCUQFx/WJq1F6kb4QUoUsJ4wQFsTQ2iimhgcouRLnzk88id1Y5n/9saMUzG1eW1pi/PTDVIoFKuUi5793gcOHDgFhU7uzs0OAh9EO+XHJTJpKpYUg+iSjGqIoksuPUq21iMfjfV5tq23geaFv7djYHqJ6FFmK3IbWhyPW3vvWa6olKbwvbTvkzZ0+fZpz584hiuF996P689XtEyjX7q4xx+kLQnvr0PPcvlbEssI1KMgKavfQ43keiqL0I7NVVWVqaoqIFu2LQre3txEEgbZhsWfPJGvffJGYprK8uITrB6SOzFDYKjA6kuf6tascnplhY3ONY8eO9ZvW829d5OCBGV56+Q0OHz7MqZlJcskE/tQEgWWhRBSm4xnapgGaws7aOs3dEi3TJKYoOF6AZXu0PItipRTeX7JIs9kKM+tEiXR2kGefex7TNDl69Ci+74YUNNfFdxx2SiUq9TqDg4MsLy1gdCwSqTRLS0uoEY2BbI577rmLN954kxvXb2I7FqVSiYGBMKJ4cXGRI0dmeOuttzh8+DCvvfYKd999L9VqlUajwdGjR6nVGpy+8wzr6+uYpsnm9hZ33nUWSZLoGAaqF977lUqFXjJpJpNhdnYW27YZGxlmYGAAQRColMpkMimOHJlhd3c3RJcjETzP63u6F4tFYrEYsiwzMpzHdV2q1Spzc6GFn23b3HfPvVy8eBEQKRUL4YH+ffZf/37KHIAodqlwXbBCFEXEoEvp6NKSetog273lGJRIxCgWSuTyw6RSKVY2qiysLKOIDp7dJJ87RiKuUyhsIwcKjt9Aj4VTnCc/8QTbpToIMpKs03EEBkeGWFsLI9tVEeKxAWIxjU6nRatRRo8lu8JpGUkWutMNgWQ6gY/I5P6DyIqEa1gkEwlcAiRdoVEt4XsOsuAjKypaJIIaiVKvV/nCF77AT/zkT/Orf+d/oNS0GJ3cz+bmJmNjYwS+xfHjx7EsG9H32bt3L9vbmziOQ7tlMpiLomk6k3smGN8/SaGYJp8fRcZndXWVgWyaZFTj6Jn7iA5MIMkaghcQTSSxHBM1Eici63iew87mKpFIhFq9yfL6GhNT0yTXN7l5/QY3b7zDyMgQNAx2izs89PADrO+UyEYVRkeGOHTwAJsbRY4dP0671aCwvYntOCCJBKLH2sY8tiwR0VLIEQ2xd+17a7HXL/cpHD/cNfjBb6C71Wv6HMfBNQ0cywwpCqKEHtW6KWs+pmkiCOGIM1C00Eda0kims+iJJK7r0jatEJmFsHlW5NAT1XP7DXPvhhUEgT179jA3N4euhYr33gNnZWWFgwdnME2TjtHGcR1c1+8LNarVKq7romsRfM9FxqJSKtFqtciP5Nn9v9h77yDLzvO883fyOTenvrfj9KTuyTNIgzQCQCIQICWTBIMoKlik1lppaVvJXm/wbhUslV27slday1pplaWlzCSCIocEQIIgACINwhDEYHKn6e7p6XxzPHn/+O693UNobZXFYGH5VXVNN9A9c7v7O+c83/s+7+/ZXEMxdcyIRaVSQtdNFEX4/6LRCEgBirI1LBGNRmm3BZ/VcRxisVhf8Pm+j6RKBIS02g1KxWX8ZhMtyKJHouhaBElWQLl+klncxN4qoCUxb4gvQ6ArhPxg/HLf69UbSulVhfVuYAnQF6+apvUrJiIcxce2he9XCGH5uq/Z/vMV1UHhae79G7KqoSkqiqoSIISxEJwaQaAQyrLwnLlut70e6f+edF0nlBQ6josibaHzjrxzL88/eYbPzjYJGzXisSTv+NDPMpTPsGPHDvK5AT72sY8JMeO6wv+azfLm2TfYNb4DpzvI53aDNDqBL3yoqkYkEqFU2qRardJqtRjID7K4uARsieJehbndbvdDPNrtZl9AK12blKqqNJtNYrEYzWaTAwcOsLBwhWKx+LZB2n0/Vq+70TsEB57fP+D0Uii3MIUOrivY44a15Z2WJAk5VK6755lRg4GBASGkTavPEh8oDKLpIhH10tnz3PeOO5hfXGLXnr088dWv8cWTj3PzsYO0222Gh4eJREw0TcHzHGq1GpVqnVgsRnthgUzc4uD4CJOJKM1qCRUJxVBxFdAsg0wiimGZDMai+GGIJCnU6k0wVJptm41SkdO1KnNLq/gRC7vZ5tjhAywtr1IYyLK6vsneXTsYHRkmlUrR6XR47bVXePWVUzz44IMoSwrpZJLA84gnouzauYdoIsq5C2eZnJxkcnKSs2fPMzG5l3K5zL59+9jY2CCbzTI1NcXJkyc5cHAfhcIA1m23sL6+SjweZWhoiLnZeXEPkGBoZJgLFy5wx4k7KZarpFIpKrUGdnuDoaEhJicnabVaZLNZarVavxvW8yqXSiV0TaHVaonBcFUil8sBwuI3PT1NKpXqMv/FlIvTblGtVmk2m1ixOINDedrtNiur19h/YJK52UXUiIphpEkkEj+YzdsTzv0P5S5RSkKVAgJZBkkhkFR8fGxX0LcAZCRUWcHp2BCIPW+oCi889yzDuQh33nYrihZh/8EjtNstVhZnyaaTTE9dxLdFV2AgncK3bW699RhLCyuousrG2hWsZpJicZ39+w8JlngqiSxbNBoNopE4m8UVAl/MJclSQLtRxzdDrFicjt1CVhWq5Rp6JIplxVAVaAfgAaqqEbptdFVBDgN0zSLwPBrVTdqNCk88/jVefe0Vpuam+a1/+1v85r/5ddbXyqRiFpXqOtFYhlwuR6PRYObSZcrlMq7rcurl0+zeu5fRMYuLFy+xUbrGHm0Mz7apV6qY8Sie0yRuFTh0x12k00NY0QQ9vKpmRskVhtE0jWJpk+r6KitX55mZvcKlmXmUaJbP/NUXMZWA4dFRjh07xsjYDr78lceZmp7l8OHD/OSHPoxBhz0TkxiGRf1gnSCAqmkyNjLEhXPnCTyHpt1m7+Qupi9fJJnMYCaTaLKCEm4Vp/q74i3OjnDb53z31tteQPd+aNsTzdrtJp2O8P5pUQvdsvptddt2iEYj4sav6ciqgUSA77sErkOrURecZcVAkjx0WTBDgyCAMMTvRYR6QkiUSiWBX8pmkbr0g14Luge+7ziuIBiYFmNjY2xsbCAjTqWNWp2NzQ2kwEdTVTRNI5lJoekKuq7T8XwazTqyojIwYJFIJJBlCdezBcbJtrvUEUNgyEyzD5e3bbv/ICT0aXcCmm2blavzNIorSI5NUwXfdZATMrJqgPodQlmSkCS5XxXtT0iHPsgKsqahWFHhSXsbLtHeDhGDWNcnDErdA0wY+siy2q+AiGo0dDoC+Yak9avYbbuN77sgBWiqSqfTgtBH6iZsabqFpCrIqoKsqBiagedLyIrWF++yTJ/ZrCha/xrQZAU5FAxo2TRoN5q0XYcQlbtuf4hbjt3D1atXGRsRTM7eA39oZBjX9TDMaN9H7zgOdrvN/n0HubZ8lVJpk3K1TiKRoFFvIUkKxWKRSCSCoih9/yiIEA9dV7uMaaVfkfd9v+/b3/LjSn2ijKIoVCoVNE3rIx9HR0ep1USC2vr6+g+HCf+Wa3WzjiRJ/QHnVCrXJ/VAdyAacWDzuwOGiiz43G73MGfbNq4t7qXFYpFmo4api+qoIkHHcWh1OkSjUcxIhIxcIBqJi3uhF7Bnzx7OXZpGVVX+ySd+sV+5GhwcwlAVZqbnGRndjd3x8byAo0ePcejQYU499Sxvvvgy+96dJRVLImsB1WYdRY3hdOpEYyZB6JHJJNnY2ABcEqFHq94kEYYkE1ESE/sYMSN8/fw5rFQWI2KxurnGpRem2Dc5yR13nqBcLnP+wkXuvvsubrjxFlZX12m1PS5MTfHwww/TaglawNTsFO12mxuP3sLr3zrNZz/1OUwzguO43HrLcZ5//nka9QZPff0b6JrKgWNHCZ2AL3z2USYnJ7tVSokrs3O88e1v88EPfpAXXjzFrl272DcxyczUNI1GA2Nigrhlsrm+3h/wbjQaaIaohI4MDWK3O6iKwerGKqlUFrtVRpMlVEVmIJNmdv4Khw8fZnp6moMH9+P7PleuLLC2uoHjOCQSCdrttigU2R5BKJFIJIhEItRqNTLZBKqq0mp26HQ6P8AdvLW2d/Z6BClN08Sws+T0h1R930NG6hd+OrZNtVrFcTpMTExgGvDa6dPcfvvtLC1MMTd1gUI2w7n5S6iKjqaqDO3dS7owSpAZpFJrM77nGJ4vcdutCaanLlOtOzidNsl4jDAMWV9fx/PA0DRq1SaH9h9gfmGOer3G4OAg1c4mhAXMaIowMDEjcZHO6nawGy0iiSTIMvXqJors06iUIXSRwoBGq82FSxfJ53dTXC/y2Nef4q4Td/B7v/sfUBWFXC7Hz37853n6G4+RyWT613s6m8ULAubn5ymWyxzuUrtOnDhBLJHh3LlzXJ5aol79OjccOYzfKbKw2OT4iQ9gxZMEQdA9gEv9+4XgybcJQo/Tp08TjaWolsssXJ7j6IH9HN6/F8My2XfgIAOFQW648WaKxSLf+ta3een5F7j1poPIskqITDSRxNQtCvkhpmfOMzg4yNDIMIZl0Wy3sAyZr3/1C9zhdDh08Ebi8fjfeo98t9fbU9VsW0Icbgloz/PwbVu0QVRdvOkmqqr2B5d6D+GoKiNpEpoh4zRryIFP27BoNFoEA1kMVcW3GwjtHIp2QlccJ+KxfoutJ44SsSgLCwsEQcDY2BjT09Ps3Lmb1fU1duzYwfrGBgsL8+RyIjbTNE2y2SwyIbIUsnZtkYgeJxqPEI1GkaQQ1fUwLJNYPEk0GhXiQQrQNBFEIMmyEGbtNtFoVIho3ejjq4Bu4puBpqhokovbbPH+B+7j//6936ZdL5EpjOIFAfFEFkWxrrNsCMF4fTstCALcsGudQUKXDFT1e7OBf9Bre+W9VzH+Tga0EHSCdOD7IhGrN0QoPi+4jtChaRqeH9Kst9A0hSAM+qzoIAjQZK37uUF3uCmK7Xh9/FsvqEUEnGwxqBXJR+7i4SRZHNB6YQ2y7KOZBjcdv4VWvYnjeRTLZYZHR4nEEiJS2O3gdv3KqqpSajap1Wo0Gg0GBsSe7WGvFEWhUChQq9Wo1+tEYlExfa1pWFbQF8DNpqB69AR0rwLdE871ep1IJCIOk40GpiksJ+l0ms3NTXRdp1AoMDMz0xfj3+kr/+F667rpxhv7D/grczP4zsX+IVhWwm6EvNLdo6Ldr6rCjqEawtLmOA6BKwoCuq6TiCcxrRSWYeD7FjRLyLLMzPRFUXWLRzA0HT9w2FzfIJ3OMlTIE49FOfXic9x2y40k4iaxRJROq83Nt97AwvwU8eQAO8Z3MrHvAKdeeZmJG45i2zZPvfYy589f4Bd+/udAklG37c1mp02lS4Zx2x1UCTq2jaoI65Jl6tw8McnkHcf50y98nkuXplicv0J+IEM+l+zvwzvvvLM7I6KxubkpWNC5HE8++SQf/ehHAZlXT7/eJxwdOXyMG2+4mT/9079gcHCQL578EqMjY5QrdeLxJOPjYywtr+I5Hd797gdpNptcunSJxcVFFpauEo1GOXv2LO985zs5d+4cruui6zrDw8MkEuI6zGQy15GVHEdU6Z1OG9/1qDWrKJrCjTcf5qtffqzbzRG2hV279jA/v8jg4DCNhnh2pVNZ0uk01Wq1e+DoWtEkWFtb63cmduzY0ScDNeqt6wKUfiBLkt6C/exRjHoWt16xqve6CbYGZE3TpNFokEgkOPXyi6QzMW666Qaa7QbtjsPE0duE3eDyZXJRnYtn32B9s0Soxwh8h0w2yhPfOMnu3XuwNA3Xr6GqopikKAq1Wg3DMMjn4ri2TSqeYOHKJdbXVsjn86yvXkGVwes0iUQymLEUrXaViGnRdl0UGWIJk/JmhVpxlUazSjxiUauK6nGIzNjoCGOju1heW+X//K3fZn11k33jbYaGCsRTceYXF0nnRkmnIywtLYmEwXSapaVrzM8vMDw8LCLgq1VqtRqmpnL48GFev7xKrdEkbihYhQHMWBRN07vpxmof29qLAG+3RRhWNpsVZI9EBttp86uf+EdIUohlRNi1ZzeRWJxqvYFuiH387ne/m1q1wdlvn+LTn/409973AIWRUaRuwU1WxfB9u93GD0MM0yCdTjPq2Fy5cAZdMdl/8DCxWKy7JaTv2CJ/g4fju2g9etsnEX7qC48/QpcVKZixNnanieP6mNE48VSGWNQiDETFz1A1TNOiXqkBAa5to6kqnmvTabXRdYt8YYBENI4iI6bkZLlb2fUxdOEZ8zxRQYvH4/22dq1eww8C4ok4C4sLaLqG0aVzQEihkMcyDeqNBpIsCaayoRGJxtB0HdWMEEmkSKRS+GGAoukk0ykSiQSqqiBLoMghiiwjS7II2+kKM03T+uzctt1CkkXry/NDJFnBkGUatk1ptYhULjH12jeR5ID1zXWajQadTpMgsFFCE1kRHZKQAC/0cbxAxHZ6thg8clp4no/juvh+AIEIYPnwB370bZdEOD8//8h3oum2c5+hl9jnEgQ+mqb2xXVPcCuqvs2qIOE4No5rY+gGQeCLcICuyNZ0A1lR0DQVXTeQZYVKpYZhmH1RKkls43hvMb3D0EemR/5Q0DS9X/V1HB9QkCTx+mLxBLF4AkXVcNwQWQEkiEdj/YpO0PXIVmsVWq0muWyWy5cvY5pmv0ocjUZFJ6ZcIhKJdB9ioKkarWYLVdcxTbP7mqT+w7rnve0J4t6DseeNrtfr+L5PNBolnx9gYWGhP9z497EC/f1OIvzKFz/zSLlUxHVsZEkiErHQdA1N19B10WZOpdLE43Hi8RimaaKqopvheM7WwUc20TWDVDJJNBonlkwTiyWIxxJIZgTFjOMpJrNLq1w+9wYqEgtzc1hWjHK5zOL8LIPZNB/+8MOEnkM6FeOZZ55h7569DI+O0rI90rkCwzt2slGuks7kiSdT7JicwIwnCKMWT77yCvVGi4GIiabqeL6Hoqloui7SZ32fQJUJk0l+4zf/HWenp8nuGKMwPMSZ6Uu0fYdjh49y5513cPjgPvbv28vI0DClUokgCFhbW6XdbnP48BFxfSnCCvH6668zvns3O3dO8PgTX2V4eJTHn3iCWq3B+kaRQmGYgXwOVdNZurZCIp1hbW0Vx7YpFstIqkbbdqnWm+zeuwfLFOjSnTt3oigqy8vLZLNZzqbkFwAAIABJREFUkkmBGWs2mywvLxOJxnAcB8MwiEQitDsd4rEYlmmgaxp+d+hzZWUFMxJjcv9+HM+nbdvouoGuGziOi6YZSLJCOpPDdX3MiEEkGiESjZBMpfqH4EQiQSwWFRadrn/askxkWeJd7374+39PD/xHtn94HUqWLUEdBAFh9z7SbNTFfdXesiNpqkI+nyeZTJDNZYhKLmEQkMkWAJWBgTzVSo29eyZoOgG5/ACjQ3ncTovBgWHsTpORwRFMVWbPrp04bsDQjsOYhqBSWJbF4OAgayvz1CpFpDDA6dRIxhJoioKq+BRX11AVhZ27R7l4/gyu3cauFymtLRDXJc6fOY3nNJi7+AbVjQ1h55Q1ZC1CtVTmpRdf5NTLL3PTrcd55bU3iEUt0jGLf/BjP8o77r2btfUSe/bsp9Eok0ylyWRzbKyuMzt3hUuXLlMYHEKRJZKpFJ/93GfxwpBkLs+bl6ZRvToP3nuc/OhesoO7seIRFFnv/8xF9TncZiGUeOprX6VaqTCQH2Qgl2LH8CCJRJRSucL5CxdpttqcevkVFq8ucfHiRdLpDLnsAFFLQ1E1QGKzVCaeSKGpGp7r4Ds2ViSCHwQEYUgmUyCbTZCIZShWWuhdZKXopm9RsN4inrs6cGuzqD9MIvzPLQkFJJ8w6LXVFUEh0HQ0YyvAJAwCFFntIp0CEsk47XYbwzKBAF1VkTQdXVNQu95Rx3UxFRXTEAN5hmHQbta7F6/f93Sm02k2NjaQpJDR0VFWVlaIx+NMTEwwNTXVr47Pzc2RSqWus0OoqooqixOfbpg4joMfhBhWBFWV+8No4qTNdSIOtgR0r9rc6XT6g1gSoGmi1R/4MuVaiysL84SlTSKWQSGb5b3vfT+/+wd/TMV3aLVr+J5C0k+jmiYoOl4XbdWr7jtuB8dzCL1uqywUWeKK9vbcatfzn3vvB8iyBMjbPkdBkgJsZwsfiBR0eaV2vxXm+6KqI/atJFjkgbgxCE63hyLJSIGC6/poukYyJaKBe1UwTdPwvADD0K7bSwB+IAYKNc1HNXRi8YiIo9UEsssLxTUShMIzjaQgSy6BJ9qjjbagYARSiGxoDA6kWd24xvjYbmampslkMiQSCc6fP8+BAwf6VWNTtwh9iJhRGq06smrhhx6ua3ffxF7tVaODIEAiQJbEQcPv0kJ68wORiDh4lkptXKdDJp2kVNzo+8R/WIX+T69eF8owDDRDJ5Dlvn82nSqIcCdTfKxqoiWuyIKw4XVpM67r4rQFkaPVbuJ5Dn7QQVZcNipLtEtVNjc3WVpaYn19nYHCEFNTc/iuw+LVVQYH8+TSGcZGh5i9fBHD0imXW9xwww2cffNNGu2APQePkU3FuLKwyNiOcebm5hkbGgFFYd/Ro2RHRyjs3stf/+Vfct/xm/BrHbzAp9NsEE8k8B0Xz3Epd5r8+p/8BcnBEdpBwGOvvsbTb77O+37sfRw4fpxGvYwcBuzeuYfSRonTp09z6NAhXn/9dY4fv4WFhUVefPFFstkst524nSNHjvDnf/7nvPDCC1xb2aTVafPpz36GRCKBHwY02x2mZqY5f+k8iqyxf/9BFhYWuOeee7gyO81gTBwg8vk8GxsbvPnmm9x26y1ks1muXr3KpcvTHDlyhHa7zbVrYtgrk8mQyWSIxOJ9zOns7Cwdx6VZr6GIkFjiiTRDQ0PiGlKCPoEjHo/jhwGS55LJZQHwvADP9VF1DUUFwzL7tJtMJtP3VnueT71ex/M88vk87baIXf6BrP7AWHgdkkySJAJZRureS1EUQlUBSUFCwXNcQgIkGZqtBlXPQ6mUGR4eZHzXLs42q0TjCRLxKFeXlri6YJPNZgk8m4ihYqZHWJm/xPLcZZ57+hvce98D6JEoga+yWXHIDe9DMSzajSKxRBJZllleXUM3oiSSWVzPRvZ0iuvrZFMJNlereL5Ec+0q3q4dHDp8AxfPfJtrG0sMjo7hSzJ79k2CpDEwNEyraeM4DpVKhXQmzhcefQpDt/if/7d/xy//N5/gyIFJ5udNfvWf/ff8+r/8Bf7hT/wj7r7/Xi5OncFDoVUt49gtmq06u/eOcfbCKGu1OsfvOEaxXCSTznFo31HaeHRabSZGM5iaTiSewExmCVyQlADNsMAHrxuVHrgdFmbOMz11Ec9xeP/730+j3iIWP8KZs2/yyc+d5IH7H2R0pIDjOHzja1/l537+H7OxWeLJp54h8OHY4QO4HsTjcZaXV5m9fJFIJEI+n0cxIkiKRtQQNkUpDHFcmcHBAYY0nY7bolyukB7IY0rf4XX+Hg+6vj1VzbYlyzIhIb4vBKQkSSCrWFYUKxpDkhWCUODuZFm0ljudBoODg8RiEdptuztsFRB4PoQuK8tLxONRUvEYqqnRtgWTttFoILMVjBEEAclkksXFRXRdJ5/PdYW08JVNTU2JAIkgwDCMPn3Asqz+kJksy4RBgKxIRAwLK9JLlgv6oqvX9g+2DZr1vLi94Z7eAJbnebiOj6YagMDTybJMs+OzUapQrtW5euE8KdMll0ny4jef5Vf+8X/L7/3hH9Esb7ACuO4QWiSGZiUwoylUpSv4Ar0v1iVN7lYbhZj8XnmQ/mtY2yu829dbT8EKfuD2DzM9MagoWt+r3mMf67oufGYI4eo4HXTd7ItxRdHQzQgdx0ZRNdLpdD/EoTcw2pu07yUk9iqzvY8dx0HVxB6QJIlsNiuG8RxRPemRFXreQmFJUZCQiVhRmo0Wb755jkq5RipRJRaLMTc3RyaTIR4XYQClUolMJkM0GhWhQJqG6/q025U+wq7T6fQ9273XvL0t20P79cJ9SqUSIKr3iUSCpgx79uwRJIN6k0aj0a/y/32sRn8/1vE73yHEczdsSVNUyuWyCOCYvij8raE4oPtuuz8QG/gevi/2mOM4BAHdPSx10XYqV69epVwuCuHluKiyDKFMpV5hY7NCvWGTSiW4urJK6HsEnsO9d/8ISApnz55n3/4J7nvo3bheyOBAmqtLKxw4eISr11Y4cOQonUaThGURxAIGCyM0W20e/siH+d0//TS//LM/gSzD5vwmmUQW22/geDZ//cXHsFSdYq3E+K6daIrMRz7yEc6fP8/t4+Pcc9fdRC2DSqnIrvExTtxzO2tra7x5/iy1Wp1MRgzTipCgEp/4xD+hMDTCzcdv5TNf+CqBL6FqEoVQpuMt4YUyU7OLGEacTDbN5P4JVleXOXnyJJqmUSgUkNbW2L/vAPFYgpXlVaanF/Bcl3Q6haTAl770JQ4fPEI6nSaZTvRtB57voyoakgaDg4Mo3XZ3b2g4Ypmird5pIck+uqEShB62YxOEwgdbLBYJA3FdyXL3cIqOJIFtt7GsqJjjiQtLVn+IWVLxfYVW00PXjR/oHt6+toerbA+u6r31nsd+4PUpMz3b5ssvv4zjdDjz5mmOHTzA+sYyM/MzjA2NEY/HufHGG5FklYilEYtaGJEoUhhSrlUZzeZJ5uKUikVyEZ1Go9oHEjSbTXK5HK1ahWjUwg90Oi0Zy+wgByHV4iZjhSTlTY/HHv8q9zz0MMduu5NL598knUzQajvEknl006TZaKPJHVRDpbB3F48++iiVco1f+ZWf48UnT3L3PbdTrrb5jd/4V/yH3/9DqlWf1771LKHUQNZSJFMRHNuDUGbl2jU+f/JL6OYgg0mNWrWBZUVpNBo89uRXOTt3jXwqxk1HJ8gP5wllgbiUJRNZ8fBduz/T5HkejWqVdDrNzt0Ch1iulkV36WqHC+cvcestN/NXn/sU77r/fkJJ4qf/4ccYGBggkUyjLi1hd1y+/sI3GR8eptVq4Pth3xYYi8VIJpNsbq6TSiXQdJVKtcbg8Ai+L1J/A1XCUDXhBlD/FvGC30VR/bYX0GEo/J7AFkhdkjCsCLohpsnbtkvQRX31vD31ep14JI7badNuNZFkBdOUqG8WURWdZDKJJg8hhwaaofaJG2EgHtqaqlKv11lbWyOZTJJIJKhUSn0iQ08kbfdr9cR0z9vWv/i738v1iXfS1gAgb40r3f5+73vvta628HMKQeCjawaSolOqNHj19W/x/rvfwRc/9+fs6Nhk03GefuopPv5TH+WTn/wk9c1reK0aeixFKjeCpmmYkRjIOpqiiIqpouC7ohIaeF5/wv/tuLbE8/VJhL0bNGyL6Za2sIY9b14vRETX9e7fI/XTMVVVJUTC74prCRnLMrt/p4rjeCiy0fci9jBk2zmpPcvD9gNVjxyidq0jSEr/axOJBK16rb9/hDXJ3bZ3JDEhXa1hWVFGR8ZoN1oQqmxsbDAzM4NlWZw4cYLl5WVarRatVotCYQjLEhPpibhoDzcaDZDpXxO9n0fPEuN3r9fewErvexMMc2EfqVQqRCMW6XSagwcPgqQwNzdHo9Hof68/FNFvXRsbgnNcq9VIpxL4Hadf1Ww0q/2DWG8AFMQe94Kwv5+i8QSKbvUtN6oWUMjmuO/+B8VAoibRajTZXF/DczpcXb6KJCm4TsjzL7yIJCuoms7li4t87evPMjY2xv79B4hE4+RyeeYXFlm8Os9AfpgzZ77Nrr0TzF+ZZXBgsL+v5+YXmNh/AE3TeNLSUSJxWpvrJOMJzp49y10/cgeXz5/jwRN3kV1YpKHAg+/7MZLJNGNjI3zoxz/C5uYmmVSaP/jD3+NDH3iYi+fPkkwIT2WtVqdQKHDx4kVmZmYYGBggEgQ89NBDpLMDLFxdIhmPcejQURYXr7C2vsLwUIF2s8WunWMCKzcyRK1aJpZIUixVCUKZYqlKKhnjxVdOMzo6ihvKrG6WaTQarJdrhPgcOXKEA8duYO/evchdzGq1WmX2ygK1RgdJEqFYoSLuNbKqEjRbBCE0W21h9+p2VavVBkEQ0HBdVkvigBmxYqTTolqdyWQ4evQo+XyeaNdPur5yjdnZWc6fP8+lS5e4cuUKy8vLAk+Zzf3g0ZHbnynbrvHe/Xa7B1rThP3I9bbsdqVSqW9rXFi4wgfe/2NcOnOGuZnLpJNJCtkMm5ubDA3kmJ1bZB2Hdr1EtdLgljvvIp5I4XRskskkUcvk8vQUI8NjqN1nfz6fp1Kp0OnYgnSCKJD5XofL585z8y3HKVfrmPEso/ssUsk47Y7Hzj37cesVzp8/j9duEioKzVYHTZU5c+YMo6OjHJic4K6730GxWGZ1ZZPlpWUuTl3hD/7kz1jbqNCsN1jfuMrC4jK/8+//iKvLV6hvbiIhMTw4yN79Bzh/aYNEvUGlUsd1A7K5NMuX53AcmYnxAh/9yQ+hxnOAjN1pEUvE8V2bwA/7P9eePdVzWiCrXFm4hiyt8vTTz7JzdJhGx2NyIM+PPnAft995gsLIGPmhYaRQRtUMDh09ytrqBtl8mumLF1jutDl27Ma+Jz+RSFDcXMWyDAxTIHrT2Qx+IBNIYOoK5Y0qtqthRCx8Vd3W4f0bLBzf5fX/DwENfW+l7/sESIK3S4gmqxiGjBkxiUajRCIRqtUq6+vrOK02miGS4xRFo2O3iUUDnE6TZrNOq5Ukm07g+U53SEsiZEvMRiIRbNvun/hlWe5X23oCenukuNxtozru9W13Wemh0ui28sH3tyfZic/bLs57qyeuelYP8e+Jv0PXNQhFXPj8tXVOnX6Zy1PTPPLMc9x54jjfmrrAHTcfJZvIcPrl1/iZD/w4j3758xQrFUqlEp1GjcBt4KR3EI0nUHUDTTMIJQ1JEw/kwBPtoF7V9e22wp6nWO7hcwIIZRR1K6pbiMNwq8KMEN2qIiKxFdmHLku83Xb7N6fAF5WSAEkQUBQZny5jujuwGsgyqmKIQSfDJJRkFEkcBHt7odeFEKLT7x7EfELPB1lGkmW8boUpCAJ0TSH0fOxOA03WkFWF0Ac/DDD0aDdeXMcwNC5fvkihkKdeqxCJxRkZ28G+yQM8/fQ3eM973sPgoBhgbbebqKpMPB6l2bHxPQ/kkCCAer3ZRdk5ZNJJvD6H2O1XwIMALEsIOde1ofswKhQKNBs1IpEI2WwWw9AwTZ12Wwy39sJYvhdr++F1+/t/H9bV+Vkx+Bc1kcKAttMW4RqBjt4NyOhN2wehOPjt3rmHnbt3EYvF+gOyriOwZy+99BKRSIRMIUuxVmJwcBBJUskX4sTiJu12g1Q2hSLBc994hsF0hHgqRSY7wNLCFXRT410PPcCjjz7KHXfcwXPfPMXgcIFGu0iz1iSbyXH+jTc4ftut2PZWKNDYrt00m3Vs28fIZlhs1jk4voPFmTm+8OUvcettx7FiUZR6ncHdIyxXKswvLvH+999GNpfDDRTSuSE2S+v8xM98nM2NNWptl13jolv4q7/yz/iLP/sTHn74YcrlMqVSCS8M+OZzL5DODjAzM8OtN93IxQvTtDt1Jnfv4L577iIMYHV1nY2NIkHgceONx3jfe97D008/iyxDKpXi8OHDnDx5kt07Rjh0YIKnnnqKG0/cwde//g00TaJZq/LS88+xeGWOs+cv02g0qFar7NojwlOOHz/epTvUAXGdaLpO0/ZRzTiqpmF3HGr1JppmkUunmUhnKRQKZLNZEskokYjZH0QMfJfFK9N9QpXbabOxsUHM1Lj9lps5fuMN/WGxxYU5LOsHE6Tyn1rbLYy9woSjaV0xrSFJdl8HiA5bh2bTFtbK+Xn2jI+zc+dOOk4bZI1EIs7rp18jlFSCQKNZr5FIZhnetZt4NIYS+myuTPHHf/YZ/rtf+ueoRpTi+jKyotGoVamWSyiyTK1SJRozMBQbKSpTVTxCVcLIjmFKEo7dplktEc8UqFabzM9M4zaL/MUffYn77n8XhmWx96Y7kYFmu00YhiwsLGCZMS6dn+Pue+5k38FD1Fs29z6wlw/+5Mf46Q99gNxak3/zv/8697zjfnbu3MnS4gK265JMphkd1Rgt6LRbNjMzM/zUT36E0//rv2ZkeJj3PPgObD8kkRrGD2xQAiRZFDB0U3RCW60aoe/hhwHVapVKuc39972bX/vVf44MTO6dIFANbrvlOIXCAFcWr+L7PouLi/huAKrG5OQ+DE1j3/hukoZJiM/KygqappHNZllbWyNiqVTLmzRbNQYHhxko5CA06Lg25XKRWCSGK8s0202A/vPz+7He9gIaukEB14V/BEiSiqFHMQwTWVXQJNAtg+4kHsgSrU6biCzRrFcFBsYLqVSL+LJoEUUjJoXBHKErqs+ypuATEhAiByHtdkckD5Y2CAKQJY1YLNEV3w2C0Ou+BuFd7VV8VEW6vnIWyCKSMhCiSZJkkMI+d1oCFFlGQkKWtqgL4uu71Ud/62eh6UZX3Lp4nkS15bG4UuTMq6epFddw3QaPPvoZ8iPDHAos0tEcEVnj9Gun0L0O8dAH26OzscGCb5NvOqTSWSKJlEDWoRBIAcghoRwiycFb7A1vl7UdoSRElELI9SKqF/MtEIYasrz1s+hVirdXrXsdgu0dh54fvvd5KD0+dIjvia9zXZESF+kOI22v7G4XdluphAGSFKJ2E7x6fOcwlPAJhY86qiI7EPYrv1tT7GtrG+zatYff/j/+LcdvvpmFhQUefvhhLl++TKfjMDc3x/79k13Ekd3/flzP3xqAagtfX28QRXDYpX63qPd6e6SbXpJjp9PpDj86KIpCMpkEIBqNMjw8jOu61Ot1guB7z4b++9hdiUZElVH4xUNS2UFA4Lb2DA8LhnckQjKZFIEGayucOfMGp154po/i1DSNekN44nO5HL7jYhk6qVSKwHGQFJ92y8Hp2KihSjyZwHNc9h09wuFjR/uEh6OH9rG8usy5s28wMjzIY1/6IvsOHOLM2ZB33vcAKAHNdoN9+/axsHCVfD6Paui4TogsS8RiCZLpLNF4mi9+/Rv4N99K2tC47bZbuXp1Ac/ugKxRbFSIxhL8/C/8IrKkEImK+Zd6vQ7IgnIhw5GDB1hcXGLqpVfRNI09E/t46ulnBUlElgnx2Lt7D/F4mg9/4MNcuHyJWCIu2s6ZFJVSmfXNDQ4cOkggOeRyeQzLZHzXbv7pPz3C1Mw0tm2Ty6a49bbjjI2N0eq0+bVf+zWmpqYYHs5TGMxjmDqGYRBPxLjx2CFisRiGYSGrovDi2B0ipsGOsVFarRYvvPAcMzMz3HzLjezcuRMJD9OUMYwkmqZRKm1S2ljm6vxlWq0WnueIeRhXhHf16Aq2LYhNm+tiriJfyOG5ASsrKziOR6VSQZJCOp0O/8MPcA/317bOX7htoFtRxLySrhvImo5uGnRaDRQkWq0mPmH32etw3/0P8MTJz7P74CEcx2F81y4azTaqIpHPDTA1cxklcHjj1Ve5894HaZdWCdwsEV1j7vxL/I//4l+ysFohmYJ0Kk7DM1i/8gZXl+c4cPAGmqVNLNlifXmR/Ogudk3s4/K50zhymsGxPXiOTSZmcfbMK8RjSYZ37iGQAj7xy/+M9Y0isWSK1fV1zESSULd45rnnSSdSHD16BFVymJ6exnVd/qd/8au8dPoN/vQPfx/b9yhVy5RWFrjlzh/hc3/++ziNKqEEDz3wLorlGp/6y09ixZNUi5vgutz7wI/xlcdOMpBLkYwXkBDFPV0z8RwXSVEIUfEDG83QaJRXWF1dRZbhmW8+zc4d4/zrX/9fmJmZ5vCRgyCpeIFMxwnIZAf40pe/QrFcwXNl3vPef8CpU6fYOTJGPJXCCwMC38UyxcBqcWOTaDRKp+lQr6ySHhggGksShiIRWQ5Fh7RWraGYKqpuYBjGdaFlSH8LS8ffYb39KRyf/8ojSCG+5+PYHZrNJrbdQNMN0pk8pmnhOg6+04EQ/MDvttAdZEJs2xaphUGAYYoQCgmRopbKZEmlUkhh0BVJoRhSkCRSyWRfFEsyBEFI4INlmoLIEHbb7rJ2HSP3byI5yBIEgY8kgSz3BhTZ5g/der/XXt0SIdeHnEiShNJFw8iKwka5xkapytT0NOmExdLVWZqNMlHT5Kc/9nN4yJiRBBHTImpZHN6/n0pxEzl0kJSQSq1OvV7BdQRmRpZUkFW8IIQAwjDA7baHP/Ded7/tKBwLC4uP9BFKXZJG345wnb0m2Hao2QpN2e5X7zGWoZdoGLzl99oTxkEAsqLiBUH/0NTzqZrdlvt1TN/uYGvvwSJuMoIlDVL3z+4wqOsiMC0yIRKSpOD7AZK09VqFjz/O+voGNxw9xubGBvl8ntnZWaLRKOPj45w7d5ZIxCLoJl/1uiFBuFXdlGVRSY5EBHvdMre80IKvTXdgzeuL6larha7rWJbVZUprfVGvG4bgE7surVYL1/3edT6+m8L5+03heObZpx8xrAg7du7i4OHD7BwfY3h4CNM0uLa0wNTUJaanp7lyZY6zb3yb+fk5PNcGX4Ta+J6H3ekQjcUZGBggDIWgCrr7vNFoUC5VKJXLtBstWp0WlqbhuS6mriPLCqZpsnv3bo4dO8bY2G5S6SQTE7up1ypsrK1g6jq+71KqVHHcgFgsTmFwSBBeHBvDiiAh9edG1tbWaDYavHn+LMPZLK8/f4rJ3Xt45ZXTPP3iywwfPMT7P/hB6s0mKAqmobOxsdFFIzY5/dorTO7ZzamXXmTf/gO0Wg2mp6e4/bZbqVartNtt6vU6qWSad957D0Hg4rptZmemuevEneSyWebm5ojFYuzbv592p8P9999HPJ7g7rvv4dFHP082l2V85xjj42NIsszeiQmCsGvBkASv/6GHHuKNM2+QTCaJRCLCYpHLEk8kcH2fHmmgNychiE8BAwMDHDhwgPHxnfheAKFEp21z6qWXcRyXQn4QWRL8f4FBhXanheM43aqzSyIR73rbA6JRU/iou5ZBy7KIRCx27Bjrd4Y+/NGf/f7f08PrKRxAn7CwFa7SLSIBYRDg2Db1epVKsUir1SISsTC6RJHZ2RlmZ2eIWjo7duxAlmUR1BFPYVoRPN9D9xx8z+WO229D1VU6TY9I1KBV38ButkjELErlKom4xYVzZzAtjbWZV1HdFtGIidPcQAo9BscnSOXHMVWJeCIm6BbRBGYkSjQexzAsUuk8ZiRGYWwHvqIQyxYwYnF03UJVNVzXxpAlTF0nnx8kPzxKpVrn+C03c/r111laWeMLj30FL/DIJXTuu/1Gnn3hFAf278du1pFkmQtTV/j0579Mxw1po3Pw8BHiBnzqU59mz3CWn/qZj5MZ2kngu+iGCrKEJGnIoQxhiISPFDq063VmZ6d44vGTHD10gLHRQRy3g6YrOI7EwOAwsqJwbWmZM2+e4dtvvEEsnsCKJGjW67z68gvMLV5mbbWIbqjksmkgBCkkm8vg+S4rS4vUqhscPHQITbPQDYuwm4Aa+C5SEGK7AbYfEIvG+h1+pN4g/P/HfVqW/857920voP/jX335EQgJfB/XEQNLgWsjSyrxWBxdVak3a7QaDRrNOqKVLgvPjaZ38U1qN7VQpmM71KpVbrrlOBsbqxTyeSKW1RfQiiIET7vZ6ieshaIJj65puJ4DQpagKGofDQW8RQz3Pla6+K7e/xMVxK3K5HaRtf3remKtv5e679N9v1iqsL5RZHVjnQsXz7K+cpUDByY4d+YNYrEYq2ub7N17ENOKg6zRdH2uzixRGMoiyy0Cv4PiSDScDo1GDbvjEITiUNC/mQUyruMTBDIfeN+73nYCemnp2iPbyQ/bf/7bK8ew3aOnIEnC7wwSsrwVOyuYzL2vvz5BqVf167UjQySRtNYNB+hVh/UexaL7b/e+vmff2DpQSSJdUpLFIG2Pk94NW5FkRfy57fvtBRTous7a2jrXri2zvrrMTTfdzGc+82nK5TLZbI4nv/4kE3v3cMNNN7CyvEy9Xu/7rJHkfvvXtkUVTJZldF29zm7lOJ3u6w7w/S0PfxiGWJYlxEwqRaNRF5G4ikIikRBovWqVer2O47jfswr09kPp33V9vwV0o7T+yMKVOaamLzI7dZm5mUtMXbrA/NwMG+vLeG4HRQ7w3U4XLwUjC7aFAAAgAElEQVQiydLAtCKYVoRMNks8LtLo+t09WaZaq1Eql8nkskxMThKxItQbDc689iovvfACoyMjVBtN4vEEjusBEoYVp5AfwPVcCoUCu3fu5I47T3BteZnjt95JMpVmYCBHsVjEcVzMruXH0I0+K3lycpLVtXXOz8/hdFx2ju6kWKlyZXOVMJXmxz/+cXbt3kM2l2Ugl+1zbGu1GslEFEvX2Dm+g/Nn32RzY5NKucx7HnoPUzPTTO7bT25ggIXFqyxdu8bZs2fxA589e3cDMs8+/TSpZJSJfRNcvnSZsbGdFAaH+esv/rXw/ScTpNMJvvKVk6yurnQPs3KfkGFZFvF4gtHRURYWFrjttltxXZdUKoXjONRbLXw/xHH9vt+3t+clSepfG737UI+r3mq1GBgY6DPXCb1uAUbi2vJS36sbj8fZ3CwShmAYJu12B7tjY5kRrszN9w/hAwMDNBoNOp0O8Xic97z3w/91COhtq3c1hqHoBQaheP6LA6BHu92i0ahTqpRxHIcdO8aIRCwa1VJ/WLTVbpKIx9AUkMIQTfWZmpsnOzhGJJoimUnihsK2mRkYoW6v4TRqbC7NMLF7HNtusDl/HkPXMaNRJNmjY7tEYxnQTDRVo9ZxsaJJUEzMaIRvv/4t8rlBookEuiWuDdOM4voh0UgC3TKRCbkyM8O+yb2US2XatkPL9jhy5Agb62vkBvK4ASzOzdPuOEgh3HxkPwMDBWqNJqYCrhtwafYqr71xERSDRrtDdWOFX/r4h3ns8Sf41V/6RSYmj4GqoCkyrueg6hpBIKNJKoHn4fsdKpU1nn/2KUZHRtm/7yB7d+6iXm3wxpvnefyJJxke2cX/9fu/z+6JPTzz1NOomso3n3ue1bU1ZNUnaorCh2FaNFstNjfXyeezEAYsLMwzMJBD01RWlxZYW1lkZGSEaCKNaUWRZQ1JgnJpnXbLJpQ0BgaHME1r6xn8QwH9d1+f/NzJR2S5G6bie9i2TbtVIQwkdM1C6basapUSnXYbRZYwDQ1N1XC6FcFedK0ViZDO5Dhx4gQvnzpFo1YjGo2Rzea6VUEhbKPRqLhgPQ+6BBBJot8CF0JW7tIplOuEcK9Nfd1wGqKCKURY2K1Eb4m07xTP22kLSAFIYa+giKIIPrTr+Vy5usyFy9NcvHiR+dlpLl18k9LGGoVCgcl9h9m7dz/RRBo/CPGCAFfSiFhRjLhFrVFFlUDyQjwFPFsweD3PR5ElQlVFVzXCQGCSJEnm4fc+8LYT0AuLVx8Brqs8f+ewYPe3hiQrfcEqhoLE758wFLxsJJB8gtAXe4YtAS1JAmmnqgagdIeDQrxAIBp7Q4iO4whvdBhiWhGkrsc5ROCewnAr7EVRZMIu+xlZiPB+QqembRPe4PkBsqLi2G2CIAQkHN+lbXdwXZuzZ17nrrtPUK83OHfuHJ12g1QqRXGzxLlz58kODJDN5TC66Zi246HqJmHgoaoKpimIEIQiOjoMA2QJUQ0PQ/zu9+g4Dqqq9tt0rut2OzRBf9Le0HWWr12jXCpdV7n+L1m9a3P72/b//p3M7/9SMf39FtB//Lu/+YjTadKsVvDsJpvFDRqNGtVKiUqpTqvZpllvYnecLldYRlN14okEpmmh6Tp0q7/9cI12i5279nD//Q8QTyRZXVtnbW29axNScXybsZ3j5AYLPPbEEzz3wvPIisJAPk+lVkXTVVKJNJFonI7jMTg6zsGjN5LL5tgsFjFNk1anRavVYXBoiHbHQZakbqdBHJRs18GUNF799utUQh9flVir13jwwz/ObXfeQyqZRFGkfmdR0zRBRLpwHqfTQZFlOq0m73znvZw8eZJYIs6LL53izJtn+dLJLxOJxphfmOfCxSm+9uTTRGIpJFXnzbPniMXibGyudTsg8P988j9i6BozszOoqoxpRKmU68zOzvONbzxLOp1kx44drK2tUa/XeewrjzE+Ps7U1BT1eo3jx4+zsrLCwsIChhlFVYWlw9D1fpWt103qWb8URekHKlUqFTKZDACbm5vdA2UL13P7z6NIJEK5XCaRSGAaFhcuXESWZEzDxLEdisUSo6NjXL0qSFLr6+sUCgVM02R5eZkPfuRnfgACOnxEyOTe23cckLuH/u1WRtfzcF2fZrNG6AcEXoDneniuw/yVGVy3zY+cOMH4+A7mF69QKOTRVYPAdnA6LQI5JFcYIRYfwIikcHwXIxpHlVQ6TpN4LEHMsmjV1gncgIguUSxtEI3HyA2No0oSYzvGCTQDGRld17m2tEJyICdsJG7InomD1KpVvEB0hzXTwrU9YokUsqJi10qsL12hY7dIZnMMj+4mlctRGCkIvBsS1aogfpx66QX+/e/8Di+eepFisYwiSXzkoz/D6VPPY1kRHn/yafbs3UMqbrIrn+OmQ2McPnKIuUtnec+Pvo/44DiKKiOmbkCSNZDB93yk0ObyhdfZWL3K5alpRsfGkRWFl575KmY0yqnTF9AjOf7yk58ik8nw5S89xvs/9BFK1Qr3veNuDNklGYlx5PAR3vmOe+l0HAZyOW6/+TgvvfACHadNfnCQWq1JRA0pbW6QSugMjYxgxdKYRgzHswllqNWKlIqbdDxhQ7OsSN+6KIRz2C8YvuVNVn4ooP9z69NfePwRWZHQVK3fvnJaVWr1JrKkYBg6vudiNxsEvkcQuDTqdTEUFYmSTqdJpVKkUilMy2J0bAezs7NkMxlM0+D/Ze/No+S66zPvz91v7UtXVy/qTVJ3a7clGxsvMliAV8BAWBMgCQmTwCSHJIeQ8+ZlZuL3PTMhyUz28J4EAknYglkMJsY7GAnvsizJkmytrd632rdbd7/vH7eq1Da8M3mTEMBnfuf42N2ulrq7btX9/p7f83yeWrkCHU5zJKKjqmFhiSLJPSXN90PPp2NbCJ2bvSjKKIqGJIm9G3x3AIBLx+6CIOA6DoIYhPXYBIiSgMBLB+iNj++ukBscYuQkSURRQsVCkkV8QaRpeayuFpifm+XyndtZW1lhYvNm3vv+XyISTZPODLBpZBONRh0/CPB8H1dV8OUEufzWcPgSbRQUNFWHwMcw6lTrBdqWQ+B1EGiyBBK87U2vPAV6YWHxTrgUHutuZuAHn5uNm57uYyC06FwKPVxidgcbqDGiKCLJUufEIrRUeH7Hb98pS+l6U23bRlGUXnlOl8YhS2LnNOLSgC9KCgEiXscu0q3n3Uis8Ty/F3KVRFhaWsZ1PUqFAoP9WS6eO8OFsy9w+KlnKBZWaTUaKKLAhXNnOXXiBOVyiUbLYGJiokeZkSQZWVFwHasXcFVVtff9hRuS7t/v9ZobHcchGo1SKBRCAkEQ9F5TEG4a5+bm2LdvH4uLizRbRo8f/S8hcrx8IN74PL98oP7XrH/vAfquL/79naYVnhi1TRsxALNt0mq0QtVNEEAQ8QJw7DD0adsmnutRKhaxLYvC+jqZ/hz7X/Natk5uw7ZciqUSZ86cxTDa5PMD6JEoO3btIZpIEY33E0/3ke8fIJfrJx6Lk0qmMdtWiAmLJZBVHT0aIzcwzPzyKrFkhiBwiUbj2I6H2bY6yEYbx7aRFIW2aaLpGucvnGdq6yQDQ4Mk02mOHj/OYqFIfmSUAwcOsHnLGK4bvjYajQYRTccyLSRRwjEtBgb6WV5dptEyOHP2NIsL89hmG9tx+da9/4TtOCwtLzG0aRTLtrnmumu5ODvPE489ha6ryJLAmQuzuC5Ua01Ov3gW2/JYXl7FcTxUWeWLX/gCmXQao9Xi+PEX+dhv/x9MjG/l2Wef49ChQ3ieS7lSQhVl1tfXEUWZRDrL4OAwY2NjrK6u0mi3EBU5fO0r4amN67kEBFRrZWQBGvUatmXiOjaW2SaVTITCRhBQKBSRJJlEOkWxUEASYG1tuVOGEyEIPGq1Cp4PhWKRQrFIPJHGDwRSqSyrawWi8ZBidesbfwxFKoF/58s+8YOPednJGYBPgO+GpSqB5yErCkHgY1ltRkaGee7o09QbDaYnp5m9OM9APke5VMJyLBzHoG22SaUzYcopAFURWF9dIJHJoUWziJJG/9AAji9hWSaa5FJYmmFgcIRGq0Wt6TA8Pk3bMKjXa0R0GT2WQEAkHkvSbptEYzE0PYIvgCJrqJpGq9nAbLfxRUj35dk0MU0kmcOy2pw+fZpmtcbC7AKyonDy1CmGBwdZWV4lmc7y8MOP0N/Xx7lzp/na3d8g35fm4sI87/75X+bh7z3O2kqZc/OzfOg//Dzpvj7yqShTu65A1RMhQlUMN85hL1toCzp18iiJiEZEVZma2katWuPoc0dZWqtw6oUzLC7NkUqorC6vkEnr7NwxyfzMOZJRDUkIeO9738fU7j0MDm+if2iQsfExZFlhduY8oyPDjI+OUlhfZ+vkFpq1Mt/97sOMjo4yODqGrMawg4BWrU5haRnTaJLrz9FotekfmuhYk4QNCjT/EwX6Xz9Av+JDhJLoQwCyIhNoGlokQiSRwfLq+IJLs1ULb4SyRCwa6RwnQyQSo6+vn77+LNl0CkVTO8UDEfL5LO2WgW0aWK6D3a5TLq6gKQKunySX7Qt3rR2fqYyG6/ih6tjxZbmdIJciQeBdsmcIgU8Qeh+Ajoe4hyYTCQI6x+qh4onvh28WHVJBOCSAEHjg+wReG1FQkSVQRQ1JVvDDeyP5bIaxsTEKpTKnz51jeHCEofwwJ4+eIJ7OoMk+xbVV8EJbgIeAZbUwAxM7oiHG82iWS5xVhFYNUfCQDYFis01jbR63XSc7MEI81oeuRn88F8CPeG08Leiq/10rx8ZBemNY8OX0lMAPekPeRsyc+ENe+O12G0GQADEsOxEvkTYEQehZPML63jbxeLzHVnYdG0m65MtWVbXnHYSgp+JtDDR2/7uHxBN8Nm3ahOf5rCxc5IEnD/LwA/fSn0litGxs20SUAgRFJyIJZDIpyrU6Fy9eRJZlotEojUYjDMwqbi/Q2GXYiht8z5ZldoZqoac6R6PRjv86uQHHKLwEq7R3716OHTvG8PAwpuUwMzOD3lG+u171f+l6+XP307oqlRrRaLRzwwl6yr6s6ngdD6wmSMiyTDKZQVVV6vU6S2sFbnjNjVx++eXMzc1x8HvfZW21QDqdJZXJEk1nEASBffv2Ua+GNCNBUpEU0MQSmiBQLRUAg8npcaqVBsNDoYJ17NgxpqamkGWZsYlx8vl8aCmyXOLxJGbbJx5Lo2gRapUSUV2jWS2hqSqi77Bt6wRLSytk00m+9IXPcdlll1Gq1Lj55pu58sor8QLwAhAkmWyuH8+yKBaLOI7D8PAwrVaDHdt3srK6TK5/mMsu28s//P3fMtjXz3/7vf/M4cOHOXfuHIFtkIlqvPcdb2NlbZ1P/vVniMWiJJNJ3vnqK7kwu8g37n2IaCpBRJcZHpqiVFjnyJHD/OZvfoRqtcrQ0BCBAEePPU0kEuGJJw9y+xtv4vLLruCt7/o5fu8//yeeOXqCLZPTeEFALJ4mk+njbW97O6lMhvn5eZ577rmQ7hQIvc1yIpHBbDcoVSv09fXRbDVot9vkIyHP1w1gtVBEkBUaRotcNsPy4hLZbIb19fVeB0EqlWJpZRU9EuZzqtUysViMZrNOLBZjeXkZu4N+/Yla3dflhkxRt5xJ03QUTScSi0Bg0Sw3aNttook4ufwQpdJaJ6ipkUkmOH/2NIPDw6RSKSrlVaJ6FMtqE40lcN0A0bNYXT3P0MhWBFFEUmN4HkRSArZjkEwm8AdyJOM6lusTiWdYW1winc1A4GFZAbVKnXw+T6NeDt9TZAVRUhEQ8REQAh9ZDBADj8XzxxkcHMMUFSzHwXBDdVYVZLL9OWbOn0XuCBeKIFEtlNAlhY999KPc9eUvkOvv5/njR9E1mfsfeYS5hUVkQSWeSpPO5jAtm9zACK4QtsiqER0kCDlQYBstNDVGu9mitLbM5vExjjzzFLOz84yPbSZ1+V4+/Tef4oO/+PP05TJ89KMfxcMPS5lklVbLQNJ0Gm2baDyFpsosLs7T35djIJ8jlYxSLZdYXV1l8+gmasUlnj91gmtffQ2bt08SSaRoG02igogi+pw9+TyjW7awsrTISrFObqhANpv9QQJHt3DnR7Be8Qr0V775wJ0goCgqqqohywoRVUOWZAjC4UWWlQ4hAHQ9Qi6XJxqNkUyn6O/Pk+vPkcmkGRoaIhqNkE6nSaXixBNxYno0rDUlwLYtctlsTznsFlaE3k8bUeiEyQjT4+Hc4vNyO4a/4dje9/0Q+bVhhUzgl34sSaE1AHwCz8ZzTWy7hedYyJKIrKgoitYJjoXhMVGSadsO1Wqd9ZVVYrqMJApE9QjRaJyAUPHu+rQFoTvgCxgdfqbjeJ1q7wB8FwkfPB/HNjFaTYy2AYKMLIi8851vecUp0PPzS3eGdhypo5JKdD/uHjGGlodL7Ey4RJQIfXoCBD6B7+K5ocdR7B4/AbKsIkkyCIQFCoKIhxxaQoRLCneIwWsTCBAEEoqq49jmpbZKUSAI/J79wffCYKrnO4iEQVsfaLWNDklExPcFXM/DtCwEMUy0e4LC2voyf/Xn/4PluVkmh0ZIxqMko0kuXDjP1Nat7Nq2nWazQbVWQ1ZU2m2LBx58kAOvO9AJnLVR5A5Cr9Oe6HkeeiQalh4FHr7vIkliaOkgtB/JsoQshz+353nYtt2xfIQnJN2CGEkK63RLpSKuY0Pgd2wy//9Rcy9XmX/Y8PyvLW3591agH77/n+7s2jAkScGybaKxOKIkEUgKeiKJosWIJbPs37+fnbt2s+eyyylXapw8dZK5uTnq9TrZTB+lUoXh4U3s2L6DbF+WifFxioUCa8tzzJw/y/33fpvHDh2kWimQ68uRiicJJBFdjzM4uIlarU4628fQ8CaSqRTNloFptonEYkiyQkQLCTOu59KXy+K4Lq16FVnwue/b32Yw38/sxRka9RoLC4tcftke1lZXmJzayqkXTiNJYWVzPpeluF4gEYsRdFj7CwsLxONx4rEETaOFHwSk0ikee+wJpqYmGRjIk+3L4bouUzu2cXF+jiv27eO2W2/l/PnzFEsFPvRrH6Jeq+LYNo99/zF++Zc/QDabwndN+vvTBL7P+977PmKJGBMT48TiMT796U9x7XXXUq1W6M/3Mz09jWG0SSSSBK5NsVwll8uxe8/lrKyuMjo8wutf93oWFhb5wpe+xPz8fOe+4uLYFvV6jVgsyuDgIG++4w7ueMtbGRrexPzCEmvrRcqVGolECtMySaZSnDlzBsu0EIKQwmOaVk+skeWQ6T40PEitVkXTwk2sYbTQIzqe52IY4cnOu3/uF38yFejO6okUndNd3/NZW1+hViviE9objXabF144zcTmrbxw8jjjIwOceP4IyWSS0fExqvU6A/2DiKLcseBJSIJMrThP2yiQ7duM54fWRUkKsIw6EU0B3+TChXMEWoxA0ojrUVzXJBaPIysavqASeB6ObdM2GhitBoKiEYnEEUQNSRQoFYvUqyWsVpP1lVXyI1swbJNWo0xE01ldW6dpWEyMj3Hk2cNUqxWmtk1z2e4dRGIxbrnp9dSqRS7MzCDLMrnBYfpSWfbsuZy773mQndOjWI0S73zbbahKjGw6S7xvCFwfRdURxFDsEwMPo9VAkRWMVoOx8XFc20IRRfbs3k2ur4+qUWFycpJrrr2B7Tv3IetJMrk8khLBFxTUaIJAklG1CLoWpVqu4LbbzF04R7a/n0ACw2hSL1cZymd55OH7mNy+nW1bJ1E6ti4ZAcdsc+HCOSqVEql0BscxqTebJLMjpDLpl4UIexdCb1MVBEEYhJT+d5X3/3JJiozvOPgEqKpCXE6gaQpKJIppmmE4EAg6ZRF6LIYHxGMxJjZPMjiYJ5lMoKoqiiohSyqCGOA5LkLg49omvufSNs3w+NsxqLUqRPQEQeAhoSFJSugX7gzEL/cqb6Q3bByyNlo7Nq5uOOIHjqR9G9e1MIwmgW+iyCArkd4Q3/t7BUAIFci+TJb+vizDQ4Oszs8Q7yh1sXiEUqmELMvEY8leUYws6QSiALi0AwGicQLRRxZ1dESkwEewWxDISKZFvVZg3fNom/Uf8TP941kbKRobAf4bB+RQBVEuhegITxMu2RVcbKuN17FJdAstuq95UfQ7uMJQeQ4/d+n66V5XQRCEbFPXQZbCkJEveD01uW0YKIp0SbEGAhwCIWwjE4Tw+zPNUPn1XB9dj+L7Pu12u4eN8wU5bABsNMlEIsQicURZIJ7X+fndH+Dehx5h+44kohYlnddYW1sjCAL6+vp6Cf/u78jv3Ni6qrltheiooKMub1S5uoGpkFYSDsihVSX8vG3bBJ0/K5PJ0Gw2ufHGG/nmN7+JYRg9n+i/xMrxw9ZPC/P5hy2/k6VQNRVFUegfyCMIAq1Wi4npXVx33XW9TcjdX/4iejQeht2iGiObhmi32wwNDPLqV1+LqqrMz8/z9a98BV8MN/uNRoNWLeQmh82RsF5Yplgqc9stt9NohSG0xaVlcrkcbdsimUz2AqWCEHSeJ49KtUqxWMQ0bRRlJ1/4xy9x0403Yraq3PT6A0iSRHF9le3bdpJOprjry18im0khBDAzM8NHP/pRZmdnwG0jSyJLdpNoLE6qL8/IyAgzMzO4rs3y8jJXXX0lTz/xJG992xs5+L1DZNMZWr5JJjfA008/zbve9T7u+/a9XPGqa9i+O87999/PemE1ROAJAr/y6x/h6cNHWJ6/yGW7plE0nXx+kHvuuYd3vefdSJLEs88+y8c//nHiiTSpVIqzZ8/yta99jd/4jd9CkgIee+wxRoaGMJIJLl44SzKqs7S0xN13301//wBvetMdFAoFyuUy73znu/naV75IvV6l2ayzuOjxmb/7ByKRCJ7nUSgU0CIhKvWmW27jxgMHOHniBB//+Mc5cfwooiCjSALZbBoh8IhFoqi6hmEYVKtV+vv7e6deXYqOYRjE4/Fe7uIncnUHqF7eQ0LTdWKpFNnMIK1yiVqthB+AUW8hCTKSBLIocPrkKdrNFnosjiYr1Isljjx+iNceuJlqy2RgOEe9VmLx9BF2XrkfWVXCcKckY5stfC88Oa7VDfbsuZy1ikN/PkOpXGJ0cISlhTNkh6cxTRtVlPGlkMCUTiTRtDhm2yKeVGlUqgi+hecYZJNZtu29ElmPkNJiSHKMqK6zd2+MqCLwh3/4CQ68/g04XkAylqAvk2NrNk0ALMzPsmvHNNPb91AqLPPAgw9yYmaO3Tsn8Gpr5JIqtuPTl8+SSCYxTQNBUVFlEavtYBslxMAGNPxAZnAgw+rqKqlUBt+H48deZG55nre+8/1ksjlkLQ6ShuTVkKQolVoV17apVirk+voJ248D8kMjeH0Z2s0yjVqViB4n3zfAwvwy33zoO9x2xzvJJFPUSstIXoxkKo3RarK+vEi90WCtVmPItFlfX0aOJnjm8JMMjI0RjcWQBSFshe4Qa+gMzcAPWHv+NesVP0AjyshqGOQKvcoimhpBUaNEOjdz1w0HmHa7jSjLqHqczVu3sXnrFIlEAlWVQQiHEElUkBURpacCuwSdelDPtkO2cyDSblbQtLBu1bbbSLKMiNYhLvhIQqg0d4eZl/ifZeklw9fLQ0qu66J1Ql7dr3NdF8uq0G7VwQ+IRjQ0UUKSlR7fU5KkMFQmgC8IaLJMPKqTzaTJppK0E3EEfKy2wfzsRVQ90qMehAOdhCAGyIJE4Ml4rkPbdZGlFEI0iiqp4RutaZEMmigCyKZDsVqgVS/9GJ78H/3qeoO7q/v8wKWBTxRFfFHE8338ziYp4FLwjc6w2N1IdYN+0CV2dANrcogD9wKcwHnJKcVGZnR3oxRaIuhtfrrDedeHLEsSAQ6irKAogBBWBdtuWGDiBT6+Hwatuq2ZEOAHhEfzqogjwtnFBUYmthBTkzz46CEGBgY4fPwEmye3Ytk2MwvLuGYbQQ4pGcVisYc9Uzt10l3aTeBZOGYbRZZ6P0MQBDRbTQYHB7FtG03TMAxzw2sjHPy62D5dD6uMt2zZwtLSEsPDw9i2Tdu0X2JT+ecOwC9//A/b0P60rUYr5G9PTU3x9re/E0nUMQyDtbU1njnyGOdPv0g6GUeSBFQ9Sq3R5NY33UFU14hGdRKJBHfffTd//9lPhTYLwg15u9miUgkb9arVMpdddhm/+qEPc/r0ab7//cfZvn0nJ06dpGW22DqxmYiusTh3kWSmD0WU8GwPSVQR5PB90bYsopEUuZxItVpFUTR+6QMfxGjWMY0WAdAyLbZMbefiwgK2G3DTrW/kvvvuw3YcbrnlVv7sz/6cA6/bjyxCVIK19SK3vPGNfPZvPsmtt72JyS0jtBpNGpUi3/r617nuuusorRUZHhyiWCxy9dVX8/nPf57du3ezvr7Oa157I7Nz84yOjjI0vIn773uY7du3Ewgi0ajO5PQUWya3oqoqJ08cR1V0brrpJpaWQrV7YmIM2zZ55pmnuPLKK8nnc7zpTbdTqRQQRZkbb3wD//DFL3Du3DlufN1NBEYLXJfVtRXWCytENL130vLNr32ZIBDIZPo6IWCb97///XznO9/h4MGDjI+O0LItVFHg9MkTLC0skE6n+d2P/Q5yNEK7ZWAYLfZetpuB4VHu/fa9zM7Okh+dxmg0qdfr+OUyRrVIs+3iCw7VahPDtNB1/cd9Gf+zlyRJKB16UDqToZhIQnGZSqWCZbUp16ocPdrCd1rEkjsIcEjFolTKRRrNGvnhfnx8YrEEdtvDa9fJDW5ClSUKy0v0Dw3RaFTRZQctHqWxuERUj+BFMwS1c7SMGsmYSttsEYlGcdoGnlGn5sLg+BZ0NYXZbOAZBmo0SqlcxzQaZFIZmmabeH44DIcKYDYbPPn9RxkdHQ83Vl/9MpoepVarkM3m2DQ0RNMwaLUaLC0tkU2muPyyvRTKNZKJFKPj45x49AkKpTKj2SSvuXIXvuUhCsYantgAACAASURBVAqeH95vdEUNN9CujabI1CtVlKiK67U7s4lEJjvA//k7HyMRz/D6W28mkegjmUxh2xZGo0atWiRSLbC4vEazaXDo0CHuuOMO/viP/5j/8nv/F1EngSwKDI1OsLiwDIFENKazbfs04xMjpBNJmo0a1fVVVkoX2Dw1zcrCPC9enAME2m2L0+fOIwQ29ZUKA+O7aTabuH1ZuqF7gkt2vR+F7e4VP0AritprHvI8H0mSQ3exJCGpKoLvE4gisu8j2i6W7ZBWNERJQVE0ZFnt3aQFQk+gLMmIQndYUXADNyROaCq+66IoFtFOmNA2jdB7Katouo+u6wQEBJ4TDuCC3Ls5d4dhIdiIoXsp4WHj4zY+ptlsUq8uoUgiiXgcTdZQZBVxwwAtdogMQmgaIBBfikjr7++jWFhDUXU8x8VXw0Gr1QobfkRRADmkQ4heGDDwRAnH8nE9H0WO4UfzBNE2cuCieRaCKmHZHo2OevFKW77vQifQifTSYJkvBYgIeIKPEMj0OMqe/5KQXtgE6OELLx3GAgECIUDoBCKCDo3CEwUkpJ6PuXt9Q0eZdgVsxyQiR3ACkDpDuG1aoSodeBB4BIIQWkYAX1LQIxFsLwyKqEpYJW/bNtVynUgkgmtbaDEdFY3lhUVUSaZarzE1uZ10NsPzJ09w/fXXceTIEbL9WRKJGIfuP0ipWCSXTVOpVHjqyWeYnNqCKIbMW18MwhMd10XwPdpmA0WRcTwXx7LxCZAUlVgs1mHehpvVMCgpEwRh8YuihIN44IUkkSAQEDtK+datW8lkMjz2+JM9ksfG3z/8r4fgjWr/yz/307g++KEPE4/HOXLkCH/72U+zOHuhQxLy8X3oy/dTLEncfvvtbN+zD1EUGRwcxKzU+Ov/5y+JJyJomoJjOxhtE0HRWVldZ3rLODff/AZarRZ33fVVHn30IIcPH+G2225jdHQ0rIqOxTh24hhHjx5l547txKMRKtUyQRCg61FUVSebyyPL4LotPFekWmmwadMEnguVcgnBD/GNlUoFVdc4P3MRURTJDw7z1DPPcOHiRdLpNFdffXXPppHMpFk4d5prr78BUVaY3rKZSnEJXYdavUkqlSKTybC8vEy9VmXL1kmi0Tjf+ta9PSX9ueeeI56IEY/HOf78MVZWVhgaGqJSqVAsFnFdl6eeeoq3vvWttFot+rKD3HXXV3n961/P+ZlzLC0toWkaq6ur5HJ5Dn7vUaampkISRjrB5Zfvo9VqMDm9nXgyzcTWSQ4cOMAHfv4X2LlzO3pE6V3/3Y0zgk9El3tkkS98/u+Ix+Ps2jlNtVTld377t/nIRz5CrVIhooXvFxcuXEDWY6yurxHRVPK5LB7hBjqdTmPZNpdfsY9f/tVfxDRNvvqVb/DII4+QzuZIprOI/AQ0y3Zff/+zuaijRAtB2OCqqWqo/Pf1szR7jnY7DPRZlkE6O8L8hTVESeINb3gDzx8/ycTEBHv27MJybCzbI5HQME0jtMIpUQQ1QjLaxGwUULvFVbiIepSYptJqW2TjcZKJBEarxcriBUa2jOEjYPhtVDWGpsZwZAlVjeB4HufOvEBc14jHVcyWTz4/TLFUJpuKUlpd5+GHH+bAa2/kl//DB8nEdd79s+9ly5atLK+uYNsmzz37DF/9xt1EUwne/TPvwJYVkrk8jlPmyr1XcO8D9+H6oMfSxDN9rDcrLK4t0PZtxsa3Ioth1st3XIxmhcLKLHFdIRLLAVAul7Ftm9OnT5PN5RkdHWXHzt1IMhQKqzz1+EH27NmN5Qp84v/+L9x8yxs5feY8Tz32ONNbxtk6volHHv42iViUXH4T6b48qUSC2bk5xraM4/su/dk+lhbnmZ05T7Nh8PV7H2HHrt2sLM+jRZNks1nGRzfhBlAslMj2D+FYJmtra0yMjnQyRJcEqB/Ve/Urf4DWI7jNOoJn4TkBXtfOIEl4nQCeKEkosoimK9i2jWGZVJp1bMfFcV28ABSpa4MIVUBEAUkSCEQBORAR5bASF9XD8zQCx8VxLALPQRalEPdlt5ElECUFN+gEDIOwDLqH3AHwg5eoXeExvIcUhMf4YiCCH6LObD8A16G6NofjuyT6s2h6FEmNdGqaO+UvghQOYaKA2EkR+h49/2mXMayqMqIcgOCgKiK+6+DjoGg6CG7neMpFkAREBCRRwVNdsEVs10FQY3iZEVRRwPWL4FVJRCWkn8C8yb/F2nhS0LUHhJxmCQIxLDoRxd5JkiiKBN4l0orrurRbjRAzKAj4HcxhEAT4nfKSUGnu1H/LMoEfEPjh11tWOBR3n8euIq5pIR9XkBQQQj9+93Nih/zStXx0/2zbthHkEOsVlgmFN0khdslKUW+1iKsi0Wg40NbrVZZXFjh67FlyqT4udgaXaDTKQw89xOL8ArFYDFXXKS0ts2PXTlrNOpZlMTAwgCgGRPUIsijgBy6qHAZkHcchEtHxAkCUwPV7P1eoQBsdX6aBIEik02mq1SqyKPU2mo7jkEqlyGazrK6uEo1Ge2U1/1I1YmNt90/zuu/eb1KpVHrXSzyd6Q13+/ffyK23305/foiHHnmYK6IRXMfidz/2WyTiUUDEqrmkUil279pLf76PteUlHn/8cQ4e+h5PPPk4pmnSatpce+31eJ7Hzp27KRZXWViYY21tDUmSiMXiKIpCoVBgZGICTdOYn5sjnc7i4ZFIJLCdNlFNR9dVGo0KnisRSB61SolKucT0tp2UKjVy+UGmpqY4ceok8WSCa667lgsXwk3Bxz72MRYWZ+jL9qNNwxNPPsXElimmt+1kZv4MWdslHktw9sw5FhYW2Lt3L9/57r285S3vxPfhmmuuZnR0E5/4xCfYs2cPlUqJq69+FcePH+XWW2/md3/347znPe/Btm3+44d/jWcPH+GrX/kasixz/uwFXnXVFXzuc59jatsk9XodTdO47bbbeOKJJ5iYGMM0DQYH8wSCyOzFBRKJKrVmg4GBAU4dew7Bd/nM3/0tDz74IPn+QZLJJP/tv/5Xrr/hOlzXRSeg3qiTSCRwLRtFFLCMFtFoFFMT+Zu//ktes/9aDh8+zO/9xSf5/d//fSKJJAsLS8QiGp5j49kWguAjygKSZ5OMKFw8/yL//Q+OY5omub4hElEV12rxute9jg/80gdZWlr68Vy8P/D62zAc9Ybqlz6mK0ApikIkHiM/sImFVBp3dob+fIbC6QLHj59gZCDN4tI8ZqPK+fPnaTRrKFEdNZImFo9Tr5chaKPHsvT1TWJYBoXVGfr6B9D1fgLXx/cMhHg/vtvmiQe+RDye41Wv6UfWNWTZxmlViCVz6NEImp6k2TaIxLIErosE7N29gycf/BZn6yV27X0VqmkRiAHF+VX+/C//mmbb5qtf/Qb/+T/9LmuLFxkZHgRRwHMDDh06xMDQIGY7rGH/8j9+Ed9ySA2MUa42mb84w+zMHLoWZ319lVNnL/LiWZELCxYRRSTfn0VTJK7dfz2CKLN1YgBJEJBEDattIhHFNG3iCZWzZ2YYHx/HdW2CAL7znW/zqiuvYnpyike/8yjv+aUP85a3/QyHDx9mbHSCX/3gL5DP59h//dUEksCpEyd56olD3Prmd/DkE09xzf4bqNSriILP8uI8lVKZs2dP8/hzF1mv23gX11hdLTE5riPJLY6feJFrrn4Vlu1z8eI8ol5lePOuHkzhB/Ci3Y//Dd+/X/Ehwvu+98SdYctgqJIKktzzbnWHCFEUUQlvjrKiEgjg+T59uRyqpoZBP0FAUeROOKzDUxZCJViRO0UmooAkhi9UWQrLMsSOzzCi6SCCabbxg5Cp6zgOkij3bsqSJCF2huju9xYEAY7nYNshbgkvwPcDpAAc18FoNqlXSzRrayQTCWKxJKqmIcoyoiSiyDqyGgYIBUEAMazARBDwEWkaJuuFIqW1NfBszHYLSZZDVrEghwncTtEGgB9caqILBEIOcRCExQCA63jIqo4sS/iCQBC4uK6HKIj84n/8yCsuRHhxdu7O3gtVlJCk8BoJQnjmpfDlhhY/NlgCwmsA/CDcJDm2zaU/TkJTI6hqNHzOJRHX8/E6wzVcKjbpWUV8H3Vjs6UoIUsivueG1d+eFyKJAh8/CHrWMFFSkGUF1ws/3/XMy7KMrmk0m83wY1GDwEEQVTLJFCdPnMAPPNbW1mhbNpVaDS8IKJeKrKysEI1GQ++3G/CJP/gj2pZLvGMBsCyLvmwOVRERfBcRlyDwsO0w+BpysUVEKVTvuxuFbtlMN6Qb/gyhekan5bD7Gp+bnyUWi5HP52kZ7d7QuJHE8ZOgJP97hwiX5mfvHB/bQjyWIpPOsra+xod+/de57c1v4emnnmHv3r0kEnHOvPgiL5w4jmPbTE1N05/tp1mv43ltTLPKwuwcRw4/w9Gjz+G6Dm3DYOvWaV511X6mp7bw/PPH2bdvL77vUauXKJVKGC2TG/bfwJkzZxkbm6BYqjA0OEy1WicSiTI6OorveQSeT+C5mG4bWVVQVBVRFjn1/CmSyTRDwyO02jb1ZpP8wCClcplms8XRo8colcoUCkUW5pb45jfuYWhwhEDw0OMJtkxNkuvP8uV//BJXXnE1mqrx6MGDRKIRrrr6ahzXZfvO3Zx64QVuufUWPvU3n8IwDG655RZ2797N0PAmzp47z00334KuRykX14nHokQjEc6ePc++fftwHIdms8meK/fxsz/7Hl48/SLJeJzrr78GTVPpz/UxOjpGLpdj165dOJ7Pdftfy3qhRNt0SGf7cBwP0zQpl0o89r1HaTcbzF+8wPzcLKqmcPttt/Hqq69m+2WXEUkmuefb94Ekk4rFSCZTmKaFonoUCusYLZN0OsuTTxwKrR62z97L97Jz1x4uzoXWl2hcQ49G8QKHldU1IlqMTCqDJMgQePRlM0iiwPlzZzl08BEeuO+fePu7fgwcaII7O6DnDtVKuOR57jWodtj7L/tKATpINqg0GqwXliisLdFo2dhth/GJQSbHNhFYDoEI2f4B+vJDiJJCw2zjuTa+aZAfHMGyHOxGi2wuD4KK1W4hqRIBCnFVZX1xlq3bNrN5ejfFYgnXscOAbkTFtgNcSUbX89hBC6NpIGJw9oXnsR2H2ZlzPPnkMzz15NP0Z9J89pN/zVe+ejdvefObef65I0RVmZtu2s/kth34osK3v/s4Tx8+gR/Ak4ef5cWzK/T1pVD1JHOLRc7PLdEGDBvKa6ucmV9CsiWGRgbYv38/pUqFlbU19l15NUdPncb2Al48e5ZdO3dTLbd5/InDiIrG8soSgwN5WtUKxdVlDn7vENdecy1ICqsLs4wNj1Gr1xgc6ufUi2cZGRli356dbJ4cZ3hoENcx0eMZzFadZqNF27TBddl3zfVouo7ZNrGMJlIgENUTNJo25xdLRPUIRqNBf1+OfF8fAKbnIHgelXINKZLEQyYa62P3rp1omoLUufdeujYu+eIBEP/1IcJX/AB9/8MH7wxv4B5BR4XVNA1VVXvIMaDD0vTxfAffcxGCgEQyRSwWQ5ElBITO71/cwKjtILQEEYIOq1foqI2dIVUQwqEaAdTO32taFqZlh0qZfyks2AuGddTMbjOcbYX8VTEA1/XwXAfXdrDaBuXSOtXyCtGITCKR7rX0yB3ihiwpiLIU0jdEEUQRiS7jVcAwbaq1OmvLcxjNGp7rdMo3lLCEIgjCwb1rSwguqXAbrSdBhxwR+OFQ6EkagqwjSDKO7eJ4Hh/40K+94gboM2fP3dn9XchKSHfpvWgRe9zml1hwNmDhADw3LA7plqeExTsCsqyhqnpI4UHCF0IbkiBdom90j3G7arbnebheqN6FLZgCmqrgey6e56LIMq7n4PshIN91PXQ9gqyouJ6P7bpIskSz2UJV1TCAqMhYZhjYa7fbiKKApsfJ9+f59r334buQyWSBMGyoqirFwnpP8Y4nE1Rrda6++tUoqkY6GceywlZQXdWQhZCp6vkOEgGSICCLIq4XkjUkuZN+h5dsPDRN66hKKoZhAOB7fu81HTKxLeLxOKdPnyafHyCdTrO6uvqvpmb8W69/7wH6M5/5qzuXlpeo1qq8+pprePOb3sLdd3+TAwcOcOMN+5m9OMN3HnmY0y++wIsvnOD4saPMzFxg7uJFHMeiVq9DEOA6PpZl0Wq18H2fD/3qh/na17/O/OJF1tfWOXDgAP39/bRaLRaXlwgQuO76/Zw6eZKRkZEev1xVVVqtFrlcjmKxSDwe74VvVU1HUUISTRAEbJ7Y3DuJKFfKxGMxioUCqiJz9sxp8v05XCcMLUU1Hc91+MpdX2bHjl1UylXGxyYoFgu86sp9rK2vYdk2O3buJJ1Oc+jQIbLZLJs2jTEyMsb58zPs2r2bWr1Ofz5Ps9UikU4Tiyeo1utMTk1DEJBIJrnyVVfR19+Pqqns3rObo8eOsryyypaJCQYHB1grlHjPz74XSdao1hqomkYqnabeaLJt2zbmFxaZntqG47hhXqKDbbRtu0PKMDvBWx9Flpi5cJ7njx/j1AsvcPbsGX7rN3+T1+y/gU0jozx37HlcPyAWiaNpEZpGk1q9jOtZFIpFsrksy0srLCws0Gw2+ZVf+RW+efc3SSaSaKqO7wVk+zL4vofrhe8rqVSKIAhoNBqIokA8HueNP4YmwuAHKBw/uLrvycIGdVrYMDwFQYDnBFTqVcr1MkvL81SbBi3TBN+nXChw+twZypUq2Ww6DJ1GFF44/iyubTOzts7K8gp9uUECRcITBCzLRBIlZEXDdizi8RRNw+PkqadJ9+XRUzk2TVxJs1VkpbhIOjNONKrTajXxLYf77vkSgWHzp3/8l9xzz4Ns3byJ1ZUlZmYvsHV6kgM330S9VePt77qDW245gGl7fP1b9/OXn/ochYaNIOvosSxHT18gmkjiCTJNw+DyK3azaSjPq6/YR7G0zlvueDMPPfY0iUiaptXk/MwMruvyqquu4sXTZ9g2tY0TJ08wMTFB2xcpFCvkhzdxz/0PcmZmmWcPHyERT3HqhXPs2LOHWDROqVJhz54r6M/nWJi/yKHvPsoVV13LYH8flWqZZCKJZ7cxm02MpkHV8PAElcXVEqfPXeThRx8m05fh81/8PI16i4NPPMGzJ05z8PBRDNshECCdzRCIAuVqhUq9gaZrVBpNDMulZjhsndrD9PR2tm+bQuyWxgnixovi0r8F4X9zoP85q1Urk8jkqDXbIdPQ93tFE90QROgnC9+sHddCCHwk0adcLpPL9ZGMR3s3btM0O+GwAKFXYBFi6TqOkPA1Kob+6BAX5iAEAooioes6WiRKtd4Mm6F8p8fw7DboBILQU8ksy6LdtMJuecfBtk1818VsNTCNOu1mBVkJUJQBfEQ8L0AVQvtA4Asbiit8xCDoNTQhCD1vdHe4q1bLqLISqoyijCCEjUhwKRDndZXozht815+tKAqCH/TsJy3HASWCEM8TCUS8cvHHcwH8iFeAhyB0FP4gtFoEAh21Vuz9flzHByFEswWBQOD7CIGP74VNe/gBQmfTFQQ+giB1NlA2kqQhSgEeMoHo4Xc4092GJT9wCPzwhqGqOogCphni60Q59DxGIhFsSUKUBAITfE8M/duCj4BLu1VHUlQkUcI0WrSadWQl3Hg6ro0eUxHRiUYFarVG+P0h8eHf+Ch/8kef4Jfe/Q7+/h8+jaIqqEoYFpycnuLY8eMY7TZ/+N//hOXlZYZHxjDbbWRJJRYTiMUiyKJPIHg9hJakhOqxqsh4QXjSoWsajUbj0vWmhgOFrocDRiQSCTdxikI0HqNYLBKLxRgYHGZpaYlkKsPKygrVapXJyUnm5uZoNBqYpvkj9cj9pC5Z1XnDG27GcwOi0RixWIwrLruMB751D+vLC7TbbUzTxDdNEtGwdl3p2NaarQae51Gr1dh3+V7S6TQPPPAAqqrymc/+LYND/YyMjbFjOhxK19bWmJubQ1Q19l1xJZVqlUaj0dvwbd++vccBP3bsGDt2bKPRrNKoG2waHkf0hfDEznbC4dJu9k4hNEVCCDziUZ1Ws862qa0YhkG9Wqa/L8PI8CZUBXZs/wUso43dNlmYnaPRrFFYXWN6eppms4mqqpTLZe644w6KxSLVapV8Pk+z2aRSa1Cu1pnYorDvyqt48umnmJycBOCBBx/CqDe4/PLLKRRrRBNR5ufnSafTvP1d7yYajfLdhx/C91x27drDXXd9lVtvvZVjx55HVnUypk8sFuP4iRcQRZFUMkMikaA0P9c7hVRVlWa91ts0VGtlVFXFcX1SqRRra8uIosg/fu4z+IGAZTm9zfrP/eqHsG2bP/qjPyCVyRNLxXH8ZWLRKOcrF3rNo3/+53/K8NAIjuPx3ve+n0996lNUKzWy2WyP3d4VekIG+09ZpqUzPImyjNq5701PT+Pg8fyp0/T3jVFuzlCpGXz/8ad43WtezeDwCLt27eLk88cpV5tsGe7HqBTZMj7Klmtv4Nh99yA7RWwnBAzosoYoSDiOR7ttEY1EyA1upV5ZYmz7LlaW1ykXV2k2DVKRDI5dptUUsIw2cT3Bvt3TfO7vvszb33obTz72fWTB5W1vu50tU9OsFktMTu1ElmXm5hY4szbPubl5jp06S7FYDrsd4gk2j/SRjEsszxfYt3cKXfa49ortXLwwy+6tY6wuXySWSNBom2A30OISEV0HWeHI8eN4tsPY2DiyqjM5vZ1TZ05x43X7wXVIZ9M8f+o8jmVStXzm52e5XomRyg6xaWIro9OXs7Yyy96rrmWtUGcgn8NqG0RjKUBkcWGV4y+8wEOHjtC0fAzTQpJ1XD88PfyLT32ZZrPJuaUmgiTStixiqQytehNFUxFliWaziQ+4jo2mhRmfSrVBLJZganrnhrbaH0KI+RG8x7/iFei/+fRn78z29WP5ITpMEoWe76/7j98tIxHDum/PdRCDAFmLkkqlSCUTaKqKJIV833DovLS5kbpH9dCpXw6P30Uh5EwLYljbHdZwh3tiTY/g+z71av0l2LquD7arPpumieu4BJ1GsHarSaNRp7g6j9EoIeER0VS0WBJZ6Sg1stKzDHQbeQRBDIdhQegp0IEoYZg2MxdnmZs5i2Ma6LqGLOnIshayh0U6Xyt3Am9Sb3DeuELM2qX2PN+3cW0H1wNRCDFCP/ved73iFOjZudk7ZUnpqf2SLHcsMEKHs9xhByPi+S4hazVUnH3XwfVsPNfHdZ1wcAZEEWRZgc7vTZKUjpXnB4NvIZrNDU9GPB9ZVhA69gYAUZLxvbCFMEQ2hsO6JInYttUL53UHUK+jXge+h207aLpOrVKlUa+Em7LAR9P0jqquIkoSN9xwDZ/85J8R03XkblZAlujLDXDd/teyfcdl1BtN0pks+YFBVEnEMAyMdot0OoZj2ciKghCEhBFJlDFNK2xeVMKyl3K5Et6kdJ0QFRg2ZFmW3dt8Ok6IouwW2XSxdYqisLKyQrvdptlsEpa0WLTb7d4G88fta/73VqDrtfqd9brB9NRODh78Pk8+eZBCYZlWvYQih8efXdtaRI+gqVpoGxIhHo+ze/duVlfWKBYKnD17lkQigeNYKKrI2PhmpqZ2EY9FKZfLnDlzBoA33PomTr14koGhfuq1OpIgks1mSaVS1Go1YrEwnHf+/Dlc12HmwkUiegxRlvE8H8Noo6oaQoep7nkejmXhOhau41CtlGk1GyiyjGW2GR8bpdVsIIkCtm2hKCqjo5tYWVmkZTQwHQfLsVE0FdMwSKfTSJJEoVBgfGKUVqvBwGCecqXO9PYdRGMxHn/iCVQ9gtE2+fTffoax0TE2bRohFk/w7JHnGBgcpNFsMb1tO88dPUahsM701CS1WpWJsVFmZy6wtrJMuVhAj6d47/veT6Vapd5okEwmOHTw+5RKZSzbCj3MHcHG76jAlmWRTacwjRaObRH4HV66GBIHZFHAsdpEdIVSYY0Xz5zm9JnTBIHETTfdzhvveAvPP3+SRrXB0vI8lm0SBD6KIuN7Dul0imeffYZcro9EvA9ViVBYrxBPRHrYyPC+1EbXdW5/8zt+7BxoIaB37335P/9f/0cQJVRNZXh4E7fecjum7XPq7BkW5mcZ7E8j+hbTm7cQi+i85rXXYlXWqa6vIUkB8YjG/JFD5PoSLF08hSzYxKIaycFhfM+mbTvomo5MQKm4SCoSo1lt0TRBlCP09w8iyjKF1SKqDH19aax2i/Mzc/Tl0oyPj3Hrz7yDGw7cTm5oK/c/8h1279jG448f4twLz+M6Pt/53pN85Z6H0BSRv/iTP+Lk6dMM5NO87U038Z4338b73vlGbn391dxy000M5McZGujHdD0qtSYzC0XOX1xCklX6M2l8x6FcqpLJpBEkaNsuvutitAxs02JpcYlCaR1F16k2DWrNJrWGgRqJY7suswtLfP/x7+P7IlNT25hfXEJVIlSaDT5/1108cvAxSjWTr977KMt1h9VindVKi3iqj5bpYloupUoFWYmQ7MtRrjSQZI14JIZtWmydnmRpfp5rrrmKC2dfJJXKUavX8AnFz4iW4K1veQ+xWIyrrtxDJpUKBWZR2nCRbHh/7w7S/wYc6Ff8AP1Xf/o/7owmk+iJNCCgynJPVYVufbAAgY/g+wieB76D57l4vk0giCRTGSJ6lIiqIcpKeDRAQJflK8lyGKoTBERRQJR6Hg5ESQhvRmLI8AU//BgRRVYwzTbtttEZgMLn1nMdXMfBtCwcx8PxfGzLpFWrUSmuUVlfxjZrSIKIqqpIio4WiaPpsdAn2GmnE0PMR/jmKojIYvfAwUcQBQJBQpRU6s0ma3NncG0PQYoiyCF+T9W0sHxCkPC9ziDd8ZUFvk/g+/y/7L15mCTnXef5ifvIO+voquqqrj7V3VK3brXU1mXLeA22Md7B4ANjYICB5d7l2gWWFfN42B3OHYPHNtcAHgxGYAZblrFlC7CMrat1WFLf3dVduz6D6AAAIABJREFUXXdm5Z0RGff88UZEVRvtYrzYZgWvnnq6u5RZlRHxxhvf9/f7HpqiIssJEgl+4IlDlIU40fc9kiQiRkK3C3zrN3/jyw5AL1xauD9JSKkaqrDOkRCbppSKAwIYyrJEFAkQHUcBYegJW7lIMPZAhBrEsbCaU9IAG1kWQDBIgV7Gl8+6B0ki3GVEi1vMxzxCPOVAC2pIhKIqREFIFu8eBEEK0uW0JS/oI/3BkDgRfOpBp8uH//zPOHrkelRNcKXjOKFSr1Kr1zANi1Kxyl2vfCWSatAdeAwHXY7ecDOOG9BudxnfMYGqa1xcWCDyRuzYMUm312HHjjFkWcIb+RiGSeaRrSgqQRig6QZy2uXJjhtErKwsKWiaaP1HUYRpmmxsbFAqlXKKTBiGGIZBvV6n0+lQqVSIooiVlRVIz8k/BzrHVxtAP3viiftXV5b5m7/+K8LAQSVGU1VARjN1FE0ljCOQJcqlMnNzc4KqMRgQBgGrK6tEYZi60EiEQYRp2txy63F27dqNIkssryxy+dIlEkXjjrvvBs/D6ffod9s4rotumszP78VxfYaDDssrV5CVhOZmg06ny/TUFJubTXrdLoN+j4JtEfgeiq4QxiK62vd94fuq6RSKRSrlEqqqcubMGYZD4e/baXexLDtN1RMbprH6mADtlk3oBzQaTQqFIpZl4/sB62sbgMxw6FEsleh1OyiyzMz0NI31dUxdhGCM1et0NxsM+8JWT5Phsb/7LJ/8+EOMVSv80A/+EH/xF/+NarXOUyeeYn73Xrp9h0azy5498zzz9AnarRaD/oDl5Q1+5Ed/jAPXXEOzuc7ly5dIkphKpYxtaHgjFz8cYRlWeg9GIlY6BlVRiaMY1x0RxRGu6zI1NYWqSLQ2N7AMg5Wlyzz6Nw8TRRFnFxb4vu/7QX711/8T6xubfOazn6NcrxKEEbqhYho6w2EPWUlodTc5fvsdXL4k7MMMw8R1hsRRxBv/zVu/9gD6y/056XOSJOHo9dfzjrd9O9/8xjdz6sxZXjh5ik7fYRRGfPITjzA2t5ul5Sscu+kIszMTUJ0lNmtUp+aZ270bwygzGvhoikQiiUCsYafD9OQYp8+/SLVsoSkSna6Yi71OG2/ksXvvNTz15FPs2zdHuVJgfGqWYDTEMDVUXUbTZW46dpzZ3XuRFJWTL77IU48/xv/4pjdy/PabKZdK/OEH/itTNvzHX3wXGz2XD/zlJ/i5//PXeOjjj3L2hecZtC/zkY/9FY1mm5nZnZw+e4bQ63PN3BizdR1D9tm7e46RF2KYNlEUMRgMGQwdXMfFCwMuLFxis9Xh8vIylWqNdrtLu9NlbWWDTmdAgoJtmdTq48ioJIrMWH2c/XsPcPDAIT760MNcWm3S6nlohsnY2ATr6xsi3VZRuPGG62m1WzQ3WyAlRHGIZugEUYQsQ6/Xo9/tU62NsbG2wtjYJGGsMTa1m9uO38trXv11XH/0Ooq2nmrVrk4jfMk58q8A+h8ev/Mb774fSaE+M0scJySxlFaDyVX9uq5Dyk2VpQiSmDgMiXwHPwgwrSKWXRBgNU0sVJSMAqHkrgtSkiBLGf+KXFi43WVDUD8SJEQSYhiFrK9v5GIuSZLwo4ggjBgOHVzXxXGGNJvrrK8s0etsEnougeeKY1BVFM1A0w10w8rt6gQNACRZQpFVJEVBkRUSEjxfhMeourC5S2JYXr5Er7OJpapExMiKnoca+H6Quz588cQUAPHqQJiMowqiMu35Psgyb3vzG192APrs2YX7lbTqmm9MkETMdgxxLESfCRGh7yEncSqOSgjD1E4tSTsPcUIiRURxLISkiARJSRIVbk1VCf0AWRKboigMSaJY8N2lzI5Q+E1nnRVZEvMgIUGSJVRFEeFCUYwig6GrBO4QTZHTVDNxPS3bxBkMCD0fWdZoNhpce8NN+EGw5USjiEVzY22JjfUlzly4yN49e9mzexbHiWhuNrnrrttxnB7Hjt3G+bPnWVtZ5ei1B1levsLhQ9cwHPYxTBPdMAgiAdgSSSJKYnRDhEGIY43QUhsqz/NIEgnLsnCcIbZdwHEc4li0w7OEwswnezgcEoYh+/Yd4PnnX8DzfMIwyHm72Vz9Wo6vOgf6t999v++7FAsWmi4Th1vccbtg5+uImJ8JG40NJFnCNM2rItSTRGyWJyYmOXLkeqamp0iShI2NDa6srNIfDnnjG7+Jfq+HO+yTJAmtVgtF1Zmfn0fXDZaXl1haupQm4DVRFJVCoYDjuHS7Pfp9YTGn67qIck/5t1EUYZsWmQNOp9OBBFx3xJ49ezFNi1q1hqZpzM/PM3QcHMdBURTGxsZQVIWFhQWef/559u3bh2maNBoNZFlmNBJBL6VSmcuLi5RKJZrNZs61r9frwrHJcTh8+BBPnTjB2voaBw8dplYf4+ZbbuXZ577Acy88z9B1GPkeBw4cZnVtnR1TU9THx1ldXcG2beEeo6oUijbPP/8czzz7NOtrTe68826uP3oDjz/2BDt2znHp8iWUNFHTtm2GwwGarhFFgupXLpcFHTFNt3UcZyvh07QpFou02w0SErr9Do/+zaP8yQf/mL/48Id55zu+nR/8kR/hzd/6Fh7+9N8g6xaKrjJyHWxTo9VtYZgmBw8eYWl5HdPSiOKEb3zTV7+rKMXx/VdXmb/ckXnti2KHlKiYVoFD1x6hUKnyiUc+xYlnn8cqFPnsk0/Q3dzg0P49/O1nP88dx+9kbKyOrUgouk4k6ei6jawoSHIAcYwuQ2tzg6mpOitLl9m9ayfNdptysYIsy0yMjxFhUq4UuXDhPBvryxiBw999+iG664uUy1XUVE7jxQnj9Tq33nYbMzPT/Mr/9S4KlsUrXnEcy9BZXO/wkY99gj07p3jtnbdwYPcsi5fWWes5VKanObB7L9VanVKhwJ3Hb2WqanDzoTnGyzrNzU0unjvFZL3GaNinWitg2gVcP6A2VsMLArr9AbO79oAEg75wPioWSyArGKbNwsIlnn3hBZ548mk2mpvY5TKWZbNvzx5WlpdoNBq4XoikmzQ3O3Q7bSYmJrBtEdTleyMc18VJef7lcjmnL/XaHWq1OhESXhDjRwnDUUCtPs3xO+/l9ttuZ++eGSrFArqu5XTTfL5kXeAv7jL+K4D+h8fv/uqv3h8EPtWJCcr1MXrOiND38pOc251IElEcoWVRwbIEoUvg+wz7fSRJLOokEUkSs/32Fe1skJGQU8cFkX6kCnpHRqGQJUQGWIwsaYBEnMQsLS3jOC5xlBBLMHBcur0ezcYGjUaDhTMvcvniGVob62w2V1m5skSjuYrjuKLOLStoup5Gb27FgispZUNUxVOQL0u5a4GuWyiygm2bOCicee5JzKiPoaqEcomIGF1TMU3rKj/FDJhshXKEOecuC77IXgcCWA+HQ77j7V+Ddt9XeFxcuHx/Rr2RJCm1RpRTsWWYC/ZAUHDiKMxpA3ES5gAxe7+mK7m40DCs9Bxune/t5z6jKQRh5kaR+oOnYFoEi2RJiKqYt6nDRhLHaJoi6EoSOO6QIAwxTBNNExUoTVWxLZP62Divuu8+zp+/gF2w04AWGds0WFy8yJVLl3CHLrVqlYc/+Vd86hOf4Jve8Fr+9pFPkUQRn/3MZ7iytIJtGxw5fJBhv8vu3bsYn6ijqgq9Xi930UgSUsGrctUxZkDN9/1cWJW1lDPA1e128/OQ6QkyaofruszP72Y4HLK4uMjOnTNpDHiQC3a/llXorzaA/uRH//J+XdFQxJKUOseI43dHbj4HZVkmDHwURcY0Ba1re7BOdXyc3Xv3c/DwEar1MZqNDZaWlkQnoDbJa77utaxeWcRzhzhun431dXw/Ztf8XirlGs3NdZZXFqnXyiQJWKaNLCv0+j1OnjzFuXPneeaZZzl+/DgnT54kjmMmJqdRFI04ZpsfvyiGjIKIsYlJnNGImdk5+oMeV5aXWG9sYOg6s7OznDx5kkqlwo6pHYyNjbF7927iOKbT6dDtdllaWiIIAj7zmc+wf/8B/CDgzJkzLC0tUa/XabfbLCwsYNs2AOvNFuuNJvuvOch6Y4OVtXV002JyaoorV1bYNb+HqakZ4lhidXUd07ZwRw5RGOK6LnNzc9gFEykKUCQoWCaGJvPkE5/jyuIlfM9h6PT5hV/493z84b+m1+0yVhcCP9/3MAwzD0saDocUigXa7TayLGPbtgDTQ5dKpYLjBUixxMqVZWy7IDawusaZ06f42099ig/8wQcYeR4/+RM/yYlnnuMtb3sHB4/cyNNPPo2i6Gw01kFKMKwi1xy6lmN33PnVX9PjLxIRftko+ur7PZYTJEnBMg2qxSIrK1fodjssryzx6ttu4rp9cxw4eJRjr3oDxaKN64VsbjRYX19E11UMu0isaqiShBSDN+rQ6S7jDz2SwKPdcZBkjU67xZOPn6BULaHaNr7nUqtW+MsPf4Ta+E4su0pAgeEg5rmnTiCFQ8plg2FvQLFap1ypMTc3y5NPPsOO8ToH9+5ien6GT3/qrzl78gLnzp7nvvtew5Hr5rjx2n0YskEYx1y+vMAbXv86zrz4LDdft5849DBKNe56xX0cPDDLdQdmqRU1fE/QOgfDAX4Cnd6AMIZef0RMzMBxcUcj6uNjmLagVA1djx/+0f+Zy1eEfuKxJ57gU3/zCIZtcmDfHiLfwXU9BgMHx3UpFAp5+mwURfT7PWZmZpAVNeUwiz8LhQKB59Hu9SkUqySSjFIb4557X8V3/9vv4R3/5s3s3bWDgqnldrzbcV32vISvDIB+2YsIQ39INEzYXF6kPjlFybLph8FV7gUAqq6RjBCAU1PRIp3IEzeDN+jQWLmMoctMTExQKpWwrELKAzZQVZAigAgZFVmVUspG6txBKi6MRaVLtI3IgY0sy/R6PWRJxXVdOv0em4112q0GvXaH1voSJCFSnOAHI4gjgsBjOHTpDwe0Oj1GfgCyJjyt00AE3/cxVUXQKOIQiJEVBdWw0oqncBvRFYX9+w5SHZ9k9exz7NihYukl/EDDlxJsu4i0DdhlQDkHjWkFJItMzYBPBugyEPRyHJ7nYRhGLvpUNBHOE8YhcejlYDeKQJHIk/B830eSU6cVX8wLTdNI/C2ecyaqk6WtAB0hCN2K4xauLVucZ1VV8cMopzpki0gQCCBvpSl9mqahyDGuExAHPpKUoMgSui6LrooMpqGhqQa9fpv1zRa1cgF3OKRUKrO2usHm2jKf/eyjyKrC5OQkH/7zD9Fc3+CuO+/g3e99L6+57zU8/vQXeO1rX8+9995NEnjYhoJdLGIXTEC4L9TrdTzPS+eNmmoBZDRNBLm4rkuSSDmfOeMuZ+e91epQLBYZHx/PfZ6z65K5dRSLRZrNJjfffDPnzp0jSSLK5TK9Xo/BYLBFDUm2QopeziMmIYhCVN1CVWUSYiRZdJQ0UuEwMlEcIeLjY+JIQtZkTE10XCxLUHcsy0KSEjbWVlhaXUFC4doj16NqJp12iyAOcNwB7XaXbqfPLbccY352jtW1ZRYunGV8vM7IcSmXSqysrOH7Prv37mE4cOh0eszOzrK8vIzneWxsbDA106FcLos1RdaRpYQw9jGsEuNGQYDIQokgiDD0Agf2H+bU6Rc5c+YMR44c4ejRo+zatYtzFy7ieyG2baNpGtVqnTiOKZfqIMVcd+0NXFpYpNvtYukWrVGLQXeAXSwRIyEpKuVCkdFoxK5du1KnihqWVaDb7VOr1bj20LX0+n0WL1+hWqtQq1d505veyO///u9TLhaxbZPAcxkMelQqFVRNIYoCJNmmXCmxeGWBer3OoJ/wS//xP0DsgZzw1m97O+993/tIJAnV0PB6Pho6YRIRBhG1ap3V1VVqtZrYBEUe/X4Xyyyw0dtg4IywEgEoNE3Lu4YyMbau8n//yi+xe/duPvBffpfv/t7v4657XsXHP/5x3vzmb2bv3r088MCfcebcha/R7I2u/mcqvv6yR0rjUABJjlAUmVJtnEPXXsO5U89x7y13s7NucsvNtyHJGo889DGu2T/HjTfdArUacl/BtKuiaJRAjASqhqEXKBaq9FYXCWOLVmfADTft4fHHH+fao4co1yaRAMMwWF6+zNv/7XegK2au1fCDhE/+3aM89NefwRsOePt3vJ1dM0vM79vLrXffydTsXr7rO/8nfuM3f5mvv/Uu7jp+D81Wl4ceeoQf/omfw9BVxutl3vmOb+fK8hKvfs3X8+TnP8uRQ7tw3RE33/FKltaarF5ZoFapUirolGyD6R1dOs11rqwNWV5cpVKpiC67FBN6ASXbQoojmutr7Nmzj8vNy0xNTfHHf/rH+L7PTTcc4cZbbuKZZ59kanqG3/q9P0CRVTa7Q5Y31nC8iErZptVuUa+PEwQRml1gMPIYDAZU7CKtdpva2CQbzS61sUmOHjvMv/v+H+DoDddTToKcvggxoCJJ2kte2pcKwPqnHC9PVLNtSFJCHPp0m+t0NhpMTO8jDP18l2OaYvcexbFYSIJI+O8aBqORjRx7WJpC4HRYvnSRdmeT2Z27qNXGsO0i2bM2Sxg0dQU59/+V0tS/LfuUPNUwrUxnYNT3fdrtNt1ul2ZzhY2VZUZun8gbISdhWt0UsZoiS15UjRzHwRkt43o+qm7lVnmGYeQV4+3phXEcQxyjyJqw10tEFadeLHPTLa+gubZCY7PBnKJiVHcSpmBPVfS8HZhVlzNwrMlaLnrMvp99ZYA6AygvtxGGvhBPaRoREqYRYwJIgr6RpFGise8JekKSIBETBoJGMxqNsCwj5+xamkUUDYljhNgzyUCMCMFRFC2NVRdcey3dwSOJynIYBUgJqLJKknYGQj/IRa5EMXICqqYSxyF2oYDnxYSRgoSKplnpxkjJPxeAqQohVqlosrJ4kSCO8J0hR67bT6k6zuLKGt/ytnfgOA5LS0v85vt+F88Zcu99r6Jom2hyRG1HlUqlRBjGFItFut0uSAoJgmev6bpwNUnvqTBIGHkB1WpVVO0dJ3Wi8SkUSgyHLoZh5Lzm4XBIkmT3mEyr1RGCyEQiipL8wfR93/d9/Of//Jv5GpBHqvP3Y7tfriOrIsdxjOt6IG1t0NRUKB2LxUG4DcmC+qNpBoVCAdM08/j10WgkOIr9PqqqMjM9SxQlonW9ssTIcxgMhnijgGuvvZaZmWkajQYXLpzDsoQ4LQgCPM+j1WrSarXo9LqcPnUGxxlx9933kiQJ588Lj2XDMHBdN6eYAWlFOs4rWpIknGhkTWUU+IxN7GDv3r2EccLBw9dy+vRpVN2kUiugaRonT57k+PHj4n4siA1roSRs2zRTuF9Ux+r0ej2cbjdvMbuuy8bGxjZ6X4JlWViWxXA4ZDgYUK2UMQ0d3x8R+A5/8sd/xPlzZ5ioT7BnzzyWZdDr9XBdl13zc4ShWF+r1SrLy8tCLCzL9LsdKsUiQ9fnve99L9PT0/T7ffbu3U+j0SJJZEAhElm3RCQ50NA0jSD0iRMN27YxDENwxBXRAapUKkjp3JeBwPNQNRlNlXnPu38N3bColotcPH+W2ZkpHMdhbKz+NZ3DX9Z4qfs65U8mSZw/J5Mwwhv6RKHMdYdvptNdxqqNUyiWufHWW3ju2afYd+11DEcu4zuEW0u5ooouc+p+lajgJwEffvAR3vldP4DseCxcWebQocM8d+IElhyDaaKbJuVijWKhhjPoo2kaxWIRu2jxMz/zU1xeWOLxzz3Ohx74CKaiMbdzB9/9/f+Oem2Cjz/0EPfe+zqO3X4DP/PzP025XOZ7v/fb+Y53fhs/d//9HDl6C+9+/+9yyy03sXfvHqanpwkTmUKlTqfTo2gXuGbfXi4vnEOKYpLAZ26ySskyqE1a9NYHqWhbodPpoCiCxpVR5c6ePUu5XGYwGBAhCkKnT59mZWmZaq3MH33wTxn0u4yPTdF3PaqVOqYfszkYgqLS6vRx+gNmJnewuriKZpms9QboRolYM/ihH/hhvust344ix5i6iqokRJGEYhgk/wyody97CsdvvfvX75eJBWhBYXxmJ7GiEYVpypuqomlmKqySiZFRVB3VMBEGFgqSppJICUEYMHIELzkKYkI/IvBCseuUYoI4xi6UUqpEWv1T0naCnAoLJYjD1OZdkgCFlfUVzpw+xcb6GqtLCwzaa4RuD1VKMBUFmUQkGKZBLVl4RuZEkCSi2iwpiuD91WrYtojE1XQDSVFRFCFIIxGuIRJikU5k4Ttt6AqGbbPe3OTKwgJ+bwNDCjALVWK5BIqGrkEcCSGcrAjwHIUgdHPivySOCXyfwB+RxFHqRBKRxDFv+5Y3vewoHI8//sT92YM0iRJUXWPkjQh8wbPNzofrOPlmSbhwbC3kvu9hmmaucJfkhDCMSBKxkcvoQkEoFozt9Jict5q2k0G4nmSdjewBKknCWzmL5844161WI3WY0VEUQYfYLtZTFAVJVUV1Mo6QkoyClKBICcVCkWKpQKVUplous2/vHvbMz2MoEYYiUyka7NszT7lUwrYtFEXGssRnzahTkiT4zL7vpy4fRlqNVvLq+Xb6htiUbfG8s27IaDRC1438c2fOIuJYRcT3xsYG73vf+9jcbDI/P8+9996bVqS36Edfi/HVpnA8/FcP3p/RXMIwEhtxx2U08vADYRcn/LdldMvGtG1K5QqlQplisYSiqAyHDt1ui1Zrk3a7xcTEOIVSCcuysSybxSsX6XTaDPoOsqxw5Mj1TE7uoNFY58qVBVRVJFqura/Tbm2SJAnr6+uCz55AGIQEQciRI0e5ePEihw4dolAosNFo5p2VbF6oqppf7wzIGoZBoVREURX2HzjAiRPPcPja67hwcYHZuV2MTYxjFwogwZGjR+kPBpTKJZqbTaq1mihGGDqqJtI84yTGTlvPIO5Dx3Go1Wp5zHzWpcvuuzDwaTQ2KJWKaIrE8tISSRRjGgaaJlOvj7G6uoZpWqyvr2EXbAxDB8Q63+v1BD/askkELwxZklAVmaJtM+j1mJ3dzXDgsLa2zk/8+E/ywJ//GYZp4QchY9UapWKJIBBiT0kW8fZXrlzJKR+eJyiNiryVUOp5HlPTU+n8CDF0hTgSoU9nz5yCBHxvxGu/4Q1fGxHh/5eK4kvc49s7fKPRiM1mExmXHZOT2LrKLTffxeTkTnbO7MRQNW649TriKKTf3aRWLhB4LpoqQxKlH1HGCyJ6A5coMYklk3JK/zFMC1M3aK6t87GPfoSxWp1d87sBCVUVm9fBYICm6vh+SKlc4ugN13P8tuNs9no88pm/Y3Fxhcmpcaama7zxm17LB//0AX77t/6IUtnkjmO3gCRzy23H+PBHHiRWNNbWN9g9O0m/16Y+Nkl3MCQIEur1cQzTFDaRnk+5WsUZ+Zy6cJn+KGKjNaBcLiPLMtdffz26rjEajQBROVdVgUVKpRJhFFKv1ykVCzQ2Gmw0mtTHx7l8ZYVmq0+rMyCMktQ33kVRNWIkFNNm4AcUJ8YpT0zwn379N/j5//3n+bEf/iFuOnoUW5MxNBktpclKikLyj3ROesnX/iuF4x8eYSSEVOHQIWlu0NxYYXLuACPHJSbB90JihH9vtiAHYUShaGNFBYZxjCpJqIq46RTFYNDvEXg+3U4LXTMplS2mZufYuXsXmY+zJGUXbetmjSUgEa4KkpTkXGnDMGhsrCCFAZI3QiVCNfS08qAgydoXUSairZ0yMkqkIKsarUaTK4bBrl27UBQNzdBR0gTCLT9ohTjOOMsxSSITSwlEAePj4xy7405aayssvHiCaKPBtFGjOGahKGUkRUNVI6LYw/eFmIxEuio1MQMh2z2is5jpl+PottpUKhVBHVAcSMSNbRiG4BSnlZ4giPJrmMSC+5xV0BRFyc9boVCg198kimKq1XoKEkkt5YxcxJTRj7KHeZbQp+t6uqlKcjrD9vjp7eAboFyuEocRiqZjGBpB4KHrNkEQYJqm6DBIEEQhmgRh4GGoEoZqItkikt6yFAw5JgzBVAJKtQKVUh1ZVvHCANMq4AyGGIaOLIvwluwcRa6bU34syyKKRMcmCn3i1CM9iqK8q+I4Tm7dJ14vBIOKoqSbCHFOXNfNfc6zjUkYhiwvL/PmN7+ZlZUlbNvmwQcfBOCaa67h4sWL9Hq9HAS93EcGQk3TTLtFAlCjiMhjw7IwTVMUFNLzqCQho5HwYe50OgShiHiv1iqEkbDv6na7eF5Aq9VEllWqlXH27NmDJMlcvnyZdqeR0kBUFhYWWFtbo2CLynYGgAcD8TsyYdzU1BS9Xo/JyUn6Q5eVlZWczlMoFHBdl5mZmXyNzGhOMQkTExO4rstdd99DFCfs3rMXx3EIPLFxzUK1JElEw+/cuZOVlRV27tyZC0xVVc3DXoTA0cnXtS0nGyXn5p84cYJ9+/YRBi6DYY/GyXUO79+PP3IpFWxC3yNURId0dnYXb3jDG/j1X/9l1tfXsaxdqKpOEIg1ORMDZhsDRZbScK8EyzS4uHAWx+3huD1+/w9+h1KpgiyrvPOd38nffvpTJMlW56rX6zAzM5Ov2cPhMKeLaenPdxwHwzDY3NxkZmaGRqPBaOiwY8cOVEkk6BYLJqOR/7Wcvl/SyGxVt49sLcy6a9kaGUWBoCM6LknsMz87zituOYqhySxeOcn6+gq2MU2/vUkizUEcYOBx8eQJNE1jqBuMYoWxyRkMvUilME7BKHNg3/WEIYSxR7loMXJdpq6d4czpc7z6Va/hs595lInJSSRdJo4UdF2nUqkRRYJm1thsUq4WmN87xze/7S380E/+b/z2+/8LP/rD93P48Dy/9uu/xHve+276PY+P/LeP8FM/+bP8xM/+LJNT0/zID/0Auw8eprHR5KEHPsC+3TNoVoHDe/fze7/zu/wvP/6TaFaBgZ9QG9/JuXPnqM8e5nt/4AjPnLrAe37rg2xsCLeMVnOTIPI5duwYvV6PCxcuYBhW/tyWAlpOAAAgAElEQVTSNAV32KdUmGBsbIxypcji8iqJrDMcCZekoeMwMTnGHbcdZ2ltlR/56Z/irntfieb6gk6qis5YFEVI3ghdkpCUmERSiFFEQZN/PMUu65b/U4+XPYAmtWtTVJ141Gfl3EnsYplCwcYPEoI4wpRB00zR0rbNfHEsFCpIksJo5KAb4uFiyhpqIjEY9HC6mzjOAI+I26R72LVvT3qRtpL6vlioAJnfc/oaRWHf/G5md4yzePZFKkWLGCOvLAJXLZ5A3sIXYD+lCCDhBSH9bic1ohbHnT0ks2pd9t6czpHyv1RCdEVn3/5ruPPVX09tYoozzz/HypULTPsDiuM7McZmKJUK6J7KYCjhOh5I5MAQuOr3ZSLDl/KNfrmMwWDAaDSi2+0yvXOGjY0NisUinU4H07JoNBppq1zQPcQeWhjvd7vdlGqT5JVWgEajyVh9Iq8iZ6ERcRynnQclf+Bn9m3br0FWlc04wPnDfSQoDxn4DjJHDRIUWcv52WKDpeS8blmWKRaLojKoJSiq4EtqskgAVJKIckEnjFTRHtZ1wihC1g3RzkyEa4LgZsQoSkpdCmIsy0JRtNwdQUp54pmv8GAwAMhBrecJ72rPC1hbW0OSxM/u9XrYtk0Q+Pn8syyLVquVbx49z2PXrl20223W1ta48cYbmZ2dpdPpcOrUKQzDyPmgL3cQPXQ9wph8k6HqNqou1hrLskQIjyyAdBIJ8WsUR7j+SASspHOxWCzn69NoNMJ1POI4xnEGzM3uzyvDvV6f5say6AzoBq7v4nVdLpw7z47JSSRVZuiOsFNlv7PZZjBwOHbsemzbpFwus7S0xCc+8XH27r+GcrnMCy98gULRQtdMsfGSZOrjddGh08V1VNJ1MtNgZHHwuqGhKOZVFJ5isYjv+4xGI8bGxnBd4XXsui7VapV2u42maYxSVyE1BdRGuskbDAbEodgM7t29h8sLlzh34TS75naiqwpXVi4TEeBHIxI5QpZUBsM+qury+7//O8iyzsZ6A8u0md+7h2ToMjFWZ933UTQZOdUBuI6HYVqCWqNqBN6IyA8Yq47hDlz6vQ7tVpMP//kDlCs1JE3nNd/wOh544AF008AZuXiBjzPsp0QPITyWVZU4CECSGPk+/d6QYDwijsQ92Wg0qNfrOI5DuVrHG0X/wCz7Co+Xqip+UXU5E9Vv//4WL/bqynNMQhTFaKqMrsS0uy1W+w0uXVnE0hOcQY9n/voRLi2c5+3f8z2YqsrlhUucPvkCd73iOJ3BkOm9hwlcl8XzZzl96iSvuP0YsQSyrGKaOv1Bm0K5RsKIXXumKdh7COOQKwsX2X/4ALGkASKFNYlDHLeHTMLylTVK5TqVQpFhZ5O3fMub0HWVe15xJ5/65KfZf911FMoVqvUaL5x8kc5mk8FwhGmXOfmFU1xYuMwTLy6w+8BBBqFKeWKO2+58NW98+zv5D+/6FQ4cuAbdNDg2fy1RmPCe9/8Wj3zmM/iyQqTpJIpKbJp4HY9zFy4jSRKHrjvC1GSN22+/ncFgwCc+8UnhujUKiGKJzW6AopUZLxd45T33cPedd7Fv3z6q9RqWruH7PkXLFjRSS9uGISJUGUDLr7OUXcMkyhHVSzlt/L3pkP75lQDP8C8AQCeK8H2WJIkkDAl6TVYXL3LNDbez2uyKh4QiHiKeFwjenCwTxalUQVLQdZOBO6BkFwiR0CyLmqYxHPSQpITIc0QaoaQLU3sVQLlKLAjksbUZsE6SCCmRKJaq3H7HPSycOUUYxBQLFkH6AJfSGG5dF8k62cNAiMJidF20CqMEksQjCnw8z8UPY9QowUiFitudIr7Y9zaLh0WOKBgaN9xwAwcOHKBx/G4+8sB/5fyVc4y5PtNJQlSbRJZ0VMVE1xMcdyB8ptkSyGXejpkwJauwvhzHleVFlpeXsW0byy5y5swZbrrpJs6dO8ftx+8g8H08Z4ii6bijLpVyDU0zCMMYxxmSJBGWVWAwcATwbjdQFR27WEI1TPwgQFIVwiAg9lLP4hhkRQCD7ZH0kiShpzZvpM4axUIp/6yyquGHacCKKjzJJVlG0TUkORFtR89HVRPiOECWBa80Tt+jSKS+nIIaogDVSlmE/YQhsiKqdN1ej3J1HM8dYZumAO/BKJ3DCrKcCG63nBAlAlTHMRQKdnr/JQRBJHjgioZhGDlPtlAoMRg4gIymGXQ6HYrFMhcuLFAul9m9ezcg5mK/L/iE6+vrGIbB5YWLjEYjXnzxRRzHwTYthv0BY7V6Hi2+vXPycuZB+76oHmZCVcvasunMNmmZGFNKgnwDHMeg62be/UhihSSWCKKEKJSQNYnZ2dm06xLiug7NZkPwkzUxZx3HYXVjlcWFS0yl8eqNdjOnpvm+TxRF1Ot19u/fTxj6eXeg3W5z6tQpTNPk2LFjOI7DueVz7JyZ48UXX+Dg4UNUq1Wq1WpeKMjWyww85y3ndIMoSRK9Xo9isYiu64xGo7zQ4HkelUqFjY2NfLOReB6e5+XV5iSK6Pf7DIdDrlxezOkjkiQxPz+PN3Io2pXUktShXq+nletoi06VRASh6C7d+YpXcW7hDIZtEQUKhmXmHZtut3tVd0lRFALPvyq1UFGUHPBOTE5hGAYPP/wwmqbRbvV4x7d9Bx/4ww8yNl5NW+q+8PpPz5UkSfT7fVzXFeL2tBjS6XTy656dz39240to60tsgeisW+r7Pn4YEHkjRr0mJRNiy6Q/aLNrdoqiUeLBj/4lu3dOcf3ho4wZGn/1qU9z6+2v4OSL5/jTD/0Fii7x/T92hDAUwtQbbriBy5cvoygBlllN50yHubk5NhZdDLNAMDbB/DUHaKyts3xplfL4BFahSLlcpt3ZRJMtZEVmdm4cx3MIQgndqGCrFq97w+v5yw8/yPRUjbn5vVh2meN3v4Y773sdH/7Lv+Ctb/s2KuU61bEZNvoh3/Ct38OZlRWuHZ/k+XMtDtx4Hz99/14mZq/BjQ1UtYCiaeiWzI/++P/Bj/y4oHhmhbBOp0MSRbRarbwgUUjnZqFQ4Fvf+t15EUIU0nRkKUIlQZVkSLYcwmQpAWtr/iQvoZH64vX3pdw08tf8P1z3r4x0cGv8M7wD/mlHklIqZFlGISFxHRqrS+w7civFQplev0Wv62GYRUYjB9PUhUWTIkEsE0sSiqpjJAWiREJWZSHS0lUMMwJJZaJYx9QryFK2i4pIEiFEkdMKb5IkhFEIOYCWUu40IOvM7b2Gqfl9rCycYaJWR8lAryp8pzPHDkmS8H0/5cZCnGTtJ1HVjuOYdrvNlO+jakEajkDe3gdycCvAmABRiaQgJTG6AtWiTblQoFKu8cpvfDOPPPwgjcsLqJfOUFUtTKOMpuqoqmjJB/4WN3fra0tAKKLSX54V6MXFRVZWVtL2s8RgMODsudOsrq7SarXoddvEYcD09LRAH0mCMxgiyeIhGAZeXi0dDHr43hBFETvvzNkkqzaLuHhxHjNaQ/aQ3x7Jni0qmdVYtrHZ/uATaWI+1WpVhLT4W/6bAtBu6xqkqr4w8lGQiMIIQ9NQFcGnzlputmXS2FgX/w48kigk8BICQNFFuz37zGEQCICsqVfNm2zDJcCBlM/3Xq9HtVql2+0yOTnJCy+czFvMQRAwNzdHuVym3+/nokNRQdSJogDfT7juyGE++MEPIsni9zz11FNsbGyIcx34uZ3dv4QxGAwwTRPLstB1PQdeWfdi+0ZCStLN/Lb5pShKOr/UnH+OFOM4I06fPp0L1CzLolKpMBoF+H6cV//bvTa1ajX3Xo4kIeLudDoYKQ3ttttuZ3OzzdNPP8358+dzYOp6Affccw/dbpf1jWV83+fvPvcod915D8vLy2xubnLo0CE0TcspQBlNKDuuLPI3EzqXSqV8A5XxmcvlMsPhkGazKfxoez1xThSFVkvEaQ8GAzYbDTRNo1wuU6/XuXDhApOTk7z44ovMzO5Akcl5/Nsde0SlXoDmZrOJqojEzN/+nfdy572v5NZbb+bkF55DSq0DM39q1/HzlM2MmhRFEYuLixw6dCgVY7bYs2ePcGIyzZznLMnwJx/6Yw4dPkiz1WLn3Dz33Xcfv/iLv8h1Bwv5RlzTNPEcmZq6Sg9x7tw5Dh48iDsa5c+g/98NKZf15xtl3/fptdZpLl8mGDYoWhK1Wp21Vpv1RhNTbzMzP0MiweLGMla1yte99g28eOokd955J8+d0JjZMcW5k+epTM5w3eGDPPvM0ywsLHD8rrtpNtp0+gPaGyuMj01SKVVYXtlg0B9R3jFBfWqKndOznDklLBZd18UqVNA0jf5wRG/g4gcxtbFJkUyLjKFbvOmbv4U/+dAfcXssUyzVOHjdDYSJzBu+tcKea29ASh11XvcN8wSJTBILulvsRdi2zb5rDkKacJuk/G2SBDlOE9GkEFQFUKhNjCMpGvPT09u6oFu2cVEkhPFZtTchREZCkQQO2zr//D0SxksB3S+F4/zFr4m/6C3yV7gG8rIH0Ok0QCJGJhaCtn6bKwsXmD94E86ggyaFhOEITVNyrl8UyYyCUe5VKI9EO1OWEohDFEnGtG0R/qDoDP1RWk2DJEyINBFcgQTCNlpCTmQxkeJYVKZVBSlM0NWEUqnEzbffxfmzF+gPHcYmxvFCAXyi9P0JMkgKsqKRJBFmwWY4HIIECgmKoC9y6cJFZmb3omoGxYJN6IXIqkoYiUqzqsmEgBRLqXc1xDnlRExmGQlJlzly5Ajtdpe/Wm2ytHoWtVRAH9tHUphAlhQSQ0IKxAM0W9CF+0iUihZjojB42QLo5557DkmSaDabeaVzcfES8/PzXLlyBVWRcAZ9SgULy9KIQ4/QD/HSIBzFNHHdIaVSgTAUVSbLLhLHcU5XGI1GoouwzSFC1cStm4GcIAiwbZvBYJBTGLIHQwaoM5eU7DrXavXUIi7JBUTiGor3ZOBDIuVuJ1GuWBeBJkJMknEpxX2RYGgK3sgRnyEWbdSMbpJ5N7vuCMsSx5ZRTTI+bsbBdBzRQvd9P7e6i+OYVqtFtVqlVCoxMzPD4uIinU6HPXv2sLm5SbvdZmxsDNPUWVpaxLJMnnvuOXRNYceOCTqdDs1GC03TmJmZ4dKlSyjqFg/9X8LINrdZtTk7t7Is5xs3XRfOO3GqucjAVTanxPvcfOMjSRKFUg1VFUI1uyBCV0aeg+M6eI7L2toam5ub2CU75153ewMUTWZke+i6jqpo1Go1NjY2OH/+IutrDYoFofQfDof5wzgTM62trTExsYNms8mV5RX27dtHu92mUCjkvOoMNGfrU6YjCVJXl6zyPhwO83m/trZGq9XK6RyNRgPD0OgNB3ijgMFgwOTkJKqq5h7RtmkQRQGPPvooO3bswHUc4jhkrFYlCLycIiLuRRXHcbAsi35vgG2LzevmZoMwiXnhhZPM7ZpjcXmJYkotyixPx8bG0kChJN8Ua5rGuXPn6Pf7dLtd2u02+w8czDeJgurUwXX7TEzU6Ha7LC8u8f73v59SqcRb3/pWTp06xWNPPE6pIChbnU6HarWKO1Rzp5Rut4tu2v8oEdfXfGSfdXvFMoFMoO15Pk6/g99eZ+HSWe64+06qk5NMDHsUbRNdizl6/bX4owGKJDM+UeHP/uwTTNSqfOyjf0HR1JGVhLe84Q088uDH8Hot7EKJb33zWzhzcZHaWJ19B/Zy5kUolUogmRy9/kaeeeYEjRcaXHP0CIqpsmNmN93egOmdOxkMHLxRiKoVkHULU0kENz6MQY4xLJso9viO7/x+YlXFRccoFjFklRtums43vOJwJTRJIknEpke2VEgi5CzSAvL8gJhYgCZiJGlLMCvseBO0bYYIkHaWE1C3VZGlDK8AyDJ/n0Bx9dzZrtH5sq5rOv4eYL7qev/Tr+0vewBNnIAUpRVlCVQJNRywcuE049Nz1Go1Bv0uJMJaa7uSulKpoKQVPClOROqZrgmKsZIgqwrFcokQLU3GCogiQ1jNIQBLTIyccqKzdDpJEmlxUgzIKmHgEQO7du+jPjHJ8vJ5YhLGx8dJ5PR9bBHhNU1DVs30AOW8ymuWLXq9Hutrqzz5xGPcduwOTF1UmWQkZFUVE0lWkdjywBbtP64CV0kSY6oqmhFz1533cvnSEpcJuXzhAs7QZ3zaoVAdRwpNkmSQA5280hOJkIDt3tAvx9Fut/O/Z9zirFIGYg7JskxrY00olMsycjKi1VgRIr1EuFh02psiCEdShC+mBoYuUiJ1TVAYDMvO6RmaKqq+SSxSBjMqR1ZF3OJ8ZTHhIk58yz+THECFYUiChKKquCOPgm3mIClJIuREYjjsY9kmkiJ8omVZEuLWwEWTE3QpxDQruX5AVxQkYDgcUKqUiQMfOYmJ/IA4EfdOIpEDF4D19XWKxWJqITnCsEwR403CcOjiui61Wj23XnNdlzNnzhATIasSlxYXWF5ZE63+Tg/HcZiemuTzn/88SBFLi8LRYHFxBUlRaWxu4vsOfuhB+KVz5L7sxf6f1ZBRVZ0kkfD9EFUVG9wgiPNgm1JJxGKbupjTris49JljShTFqFra1dAUNFWnULQYDAYi7a7VFhurdGxuNvC8EePj9ZxnPRi6wk+5XKZYLFOr1bh48SJRlPDYY4+xuLiILKepiInoulx33WEsQ6PZ7+IOhoyGDvasiZeC3H379vDEiSfYu3cvMxPTFItFPHeE5woBqjscpGuodtXmcvsGKpGEVGnv/v08c+IEI2eIqsn0+90UuMt02j2G3R7Foo2myIS+hxN6FG2Tqck642MVRt6QcrkkuMuuhyyrhGHMcOgyNjaW0+vckUOW8ClJCoNOGzmOWFqKmZub58ajR3jwwQfxRiHNdovJ6SmCOHVP6Q/ze3VjYx3DsKgUS2iyQhSExLICcYI7dFAklX53gOf6qLKE7zkoSULJMvmd3/tdyuUyiqKwvLrCv7//F3jXu97FsWPHhKjdG9F3hrS6HSwvEMFiX4uRd8akq//8x44U2GXdlE6nQ6fbZ2xsgic//1kO799FLCucOnUWQ4oxb7yRi+dOMT8/y/rSJfbtPcCfffijDJoDbjx6kPvu+wYeffTv+MMHPsL/+nM/y3Dk8+SzJ5nbPSc2f67H1PROPv/YCW666Thhu8fMrt0M+w6abrKyvIZtl6lP72CzP8QybOREojJewRuJAoOsWihKgqoZGGWD4rgQ1sVsAWVxaFvBZ9u/n/09yU7dS52WRBbFv5cYf3/TtK3wJm0J1q/63V/Cpfiy19Iv9X1fobX6K8Os/mc0BM84IQpEmysKQuRgBG6HxTNfQJYS4lRA5aRWY1l1ot/v56BSAECJRFZQDR3DMikWyyknUKfdbm8TQl2tBM8qgoqiICkySTo544S8jZq1G+fn9xD6Po31DSGMMgRQzipFGdct+x2ZO0FGz8gswLyRw6DfxfNHVz3wsxZlEAQEgeB8j0aj/HtXPUSCECkB0zS4/c57KI9Nk/gRa8sX2Vg7Q3P9MgZm3pY0DCNvk2bVKtgStb0ch+u6eCkn0vM8HMfB933Onz/PqVOnOHfuHI1Gg2a7TaffozcYcPnKMhcvLbK0skYYk/PuMzFWdq2zTUcYhvkGBcit6IDcWWV7HLVpmvnft1cZs7mdXZuMr54J5zJv4CywJBsZ5zkDGVnFMvO8zV6zvcXvuu5VvuHZ5gq26EjZXNvOs1xeXs5b/94oQNdMigUBrOr1OoYhvKk3NzepVquMRiNq1TE+++jnsMwCy8vL7Nq1i+XlZUqlEk8+cYJbbz3Gk088zcc/9TBuCAGq8PN1HEajUR48lLXW/yWMbL4OBoNUjOzR7bVZW1/Jw2U2Nze3/n+quch4sdkmbfvaFoQ+rUaTXrvDxuoarVYTz3Nx3SGuKyq7hmHk3QMQ69XExATlsrjGJ0+exDRNLl68yNLS0lUVNNM0qVQquZAtCAJarQ6KotFoNLh06TytZpOHHvwYD330QS5fXMDzPM6fP4/runS7XcG/Xl29ypklK0C0Wi1836fRaLDZWMcfOXzh2acpWCb+yME2dHRVYdjvcfbUSaLAo9dpcf78eYrFIoPBAF1XU3s+E98fUa/X08h5QdXQNC2n4AmrUZ1ut5tzTDPnm2xuhmHIYDDg8499jm63y+XLV3CcEY4zSjU7fk5FySrym5ubeWXd87yce72drpBtkE3TzJ8fspTgey4SMRPjdd7znvewY8cObrrpJiZ3TKPpJmGUsNnq5Of/azrSbhhptkFGkft//ZKkra9t97qmaZSrdabm94gUxzhk/+55PvTBDzEzNc0dd9/NL//qb9LqugxHHhcvXEHXJD7/xJOcvbyKXanjBhFPPPkUr33Tt1AZn6HdG3Dk1ttYW9ugXK7y8MOf5uTZi5xfWOHFM+dptDsECczu38f4xDS+G6Kq4DgOumHjjCIk1SaKVEJU0AooRgHdqiAbBRLZIpZ0YtUUqceKSpbiuh3Ufiliu+0je89Lff1Dr/ni5L+vRJfiaqro1Xqur/b4F1CBjkXFSxGVXDmBIImJB5t0Vi6xuWOGwvg0qllhOBzmdkXZrrTZbAoe6chLHxIhcSIqjaoCyKJ9XrDtHKioquDLS5KEosrIWQUQIWSU4hhJTSOxFRVVlzBlhbGJSQ4dOkTz9NOsrK2yvrpG0S5gl8r578kmaBgnOVgRLVeVKAlRNJ2iJLOxssSzUciOmXlK5QRFkVFSvlJGD9i+AEqKnFdQt0IBFOLIA1Vmx44Jdu7cyeZFm8Gow8qVBepuhK6U0AoFMlcQVRVtyey2GY1GV7WSXo4jA13ZjZxtILZvyvS0kzDyfNbWm0iyRqFYQVYEjzJKyIU8vh8iSQqVaiH3uN2+q5ckCVVR8/mQVbwzgJqJPrKNX/Yztm/ostdt51JuiefibZxpj0QW19a0DJIozo9RVlQ8b4Q7GFAw9Zw+oigKSRjlANnzPAI/TH1DVZzRCEXRUFU9B/Cu6+L7Pjt37qTT6aBpWp4mZ9tFet3UAWEkxIgHDx5kaWmJUqnE5z73GJZVoN3u8vrXvx7P8zhw4ACnT59mdnaWtdUm01PzfP2r/weeffq/s/fmsZJl933f59z91vbqbb1PT08Ph+SIZEYaLiIt2qJl7ZZlRIvjRLETC7GDIPISJLEROIADA0ZsILHjCAhi2DAQx1JsyVK8SGIkbqa1jYaiKHJmemZ6enpf3lb1ar/7Ofnj1L2vujkk58kccqbn92k89Hv1bt26r+rWre/5ne/5/j6HqWznUaARhvbz9yjW6qvx1q48H1GfP7PZhCxPmkG1o7ymBXS96K+eJagHYXX8mePa56oeIA/3h805oJVukmTseeo1FdfaMrK6cPDatWvEy+Sa69evN8e5Oktx4cKFppPm4eEhRVHR72/QbocYSkzlsLbe5869e0ynUy5dutRc11555WU+8IEPcOXKFXq9HnG7w3Q6JQzDJsVlNptx9epVFDZfem9vjyLN+OD7n+bqtVc5ODiw76+q5PbNG5w7/yiLxYJPfepTPP3006RZwtb2JqPxIUHoN63ikyRphH+S2OpznWFtM7gXuI5N9VhN3nGXnWXLfGrff8bwF3/qL/PpT3+aPCuZzxKSuc3qrQfTqwk99WOAfb/XM2a17WttbY3BYEBZlnTbMcHSb2293taT/qlPfYpef53pdM5f+St/hb/39/4ej5w9x8HBwTfqVH39fI335up7d9UH7XkeJ06e4bdffJ7rN29wYj3m8o1dfuRHf4Isn/P7L1zib/0vf5fLL79Aoid4cZdXrzzP009/C2fOPsI7nnyceTLnW5/6AK1Tj7Bz5y5nTp1iPBnhuD5ffO5LfM/3fS97O/eIom2iVot2b40gDJkXmrDlkswTTJ7wwu9d4j3f9lH6a9t4YUClodPtoLwQHHdpjXDwUGgHjnpKHPF6Zsm+0n1e634P8+f3vw8P/bNSVeVKnFotElxUVWCSMbdeuQTLlst1dauu6K1mwh5V11j+b32/Crf5UK87e71WbJtRYLRqFmi0W13iyE6B1dWvIAh44okn6PV69Ho9kvmcO3fu3CegfN92kvLcwGZKK4/Ajwj8CD+MmipiFNk2uoPBgCQrKEtNWWqKSt/n/2t8r1WOoaLSBWm2IMsTcm2rlZXO6XZCymxKGCl0adCpYv/eXfZ2X2QwGDQX61XvLBxVJt9Sfrk/IKsj4trvOx6P2dnZYW844HA64fbOLofTBW7YIteKV67dpDIORalJU9uAxrbytT6zwFtabRy3qR5XVUVW5GgMynWax64X+9QfvgDe0h9f5Rl5OqfMbVJLnqaUZYHrOmhd4Xk+eV7g+wEGlywv0UbhuiElhrwqmwpkHIQobQBNFNlV2PNF2pyf9exL7WXWWlOUtho2T2327nw+bypkdbqBjaezlessLTg8PGwWRLU7HQwwXyy4dft2Uz38zd/8Tb73e/4Yw8E+3U4Lx4Ew9EnTBd/yLe/m1p3bHI5H/OAP/XE8z1m+R0vSdEFZ5lSVoarub99dv4YP8zl7eHjIbDZjMpkwHI4Yj6akSU5V2qpkp9Oh0+kszymPOl97dQBWVzfH4zHjsU00KqoSjcEo7huY1QkP9YzFYpEzn2fEcdsupi1zptMxV69e4ebN62SZjVgMw7gZnG9vb9turdOEO/f2ubtzQLbMcr5zZ5cih4PhgL29HXzXMD08wFQZu/du8MlP/Bt27t7lVz/+cQLP49Lzz/PsM7/N4eCA8eGQj//yL/EP/8H/yWI25cUXnufW9RtUeYGnHD70oQ8wGA1IspSiKjkcjVkkOaU2Np4yKymyjJdffAHP8+j3+5w5cwbXdRmPJssFsD10ZZjPFtbq0uowHk1Ik4zR4ZjFPEHrkjy3nUlbYUCSzKm0pjAwn+WMDm3Sx0//9E8zn8+JoojpdMoiL5gkc5I8xWCjSmczK6qTJGkKGwcHB+R5SVUZFov0vuu11pp5kp9m1FwAACAASURBVDFPMipjI1DrpI+qqkimI7pxwD//mX+CR8VwdEh3rffNOXlXq8hf6+vBu8IDnQc1YPB9j7WN07zr6Y9w+sK7ORylZPkCNzD81rPPcLh3j9FoyK3bdzm5fYYT5y5AuEamPX75U8/yT3/+l7m5t09nY4sPvP/b+a3feYb3vvd9YHwee+IJLj7+BItFyj/4P/4BTz71rTz+HzzNxlqf3sYWxSxh5/otfuvf/jv+0k/9NZywT/fEI4T9k3itLcLOFk7YxbgRRvnUC/dskQ7USlTu660Uf7Xq8ur96sHvl78EX/3+3yyaivRXeP2/3jz0Alqh7cVcs+xHCKlRtuFFuSAZ7zPeuUXUapMmCWWakqVzzLKRxGw+RzkOlQLjKLKyoDQGzw+YLhJKA3HUoiw0UdSi1BVZUVFWtolLURmKEvJMU5U5aIMuK4oyu+/DpRblUW+DU+fPc269RctXHExm3NvdIQz9ZroRRxEGHkaXGF0S+C6uA4Ef4bkBRiviIMQx8NILv8fhYIc0LyhKm/Frp2QrKgNZUWKUQ5VrTAlVrinSknSeUaZzKlzbtbEq2Tpxhq4X0O+t47kheV6yc/MW453rOFWGqTRGKzyjwFHkZYEX2EzWWui9HVgV0rXd4NatW9y6dYubN28ShjH37u3y/POXuHPnHrdu3SLPMjxX4UV2mptKk6V22rceYDUxWispCKuzErX/HO6vGKymctT543U29GKxWIkos+diZQzGUdRtsZWyWcuO49DqtFlk9sNXVxWL+aw5riAImqndOpmhHqzVlo2j+MWgsa3M53Oqqmp843Wc2Pr6elPJPzw8ZH9/n06ns0wsmTWLLJ9//nl+7Md+jF6v11Q8oyhiOBzy4z/+4zz99NM8++yz5GXBo48+iubIyrTaxvvtRL0grLYK1LMR3W63EVT1bXV2eF3hrCuqdfRffR3b39+/b5BXz5jU+fOr0ZZ5nmJMxZUrl7l79za7u7uMRiOm0ylZVjSzFbXNLI7jxpYwnU65detWc87UsVp15vfOzk5j9ZjNZlZ0j8ecPXua+XyK48BnPvMpbt68yTPPPMONGzeYTCZsbW3x2c9+trGo1IO8O3dvLwcaw6bBSz1wdByHNFvQ7bZ59NFHmvNqOp2ys7PTzLB4nrUN5blNvqkXaNbvv7r4YrO1O3YQuVzMWVXVfa9TPUCvZ7dqC0ZdKFplsVgwHo+bxje1XSvP82aGoX69V39X/231a1e/V+pCT/03vmVYEdWvJfhc1yXwHC6++0n+7E/99/xXf/3vcKhjwvXTfPsf+W4eeeJb8VsbfPSP/gCf/o3fJ9p8gmmxjtN+hA997Ef4N595jk/95iu8+Oo+Wa75tqc/xMc/8WnanTVu3Nyh1C4nTp9n/czjHExylNfBbW8xnxXE7W0+8zvPc3sKf/V//odcePLDhNEaGs+uoFIulXl9oliwGK3t14rF442wfTz0Fo7cKJxKozy76rbCAWUX05mqwqQLbrx8ifXT53FcH8/3qTS0Wh0GB3tEYYjRmv7aGtPptOkgp5Ric2PLVk+0jYSpPyyM0diZTRcc0MsPFJc6RaGyySDKUFUs2zab5bR4gBd26LZ7PHom4vLdHe7evEHkuZx55Bx5UVFqQxi1cFwrPvKiIm51SNMMx/fxwpDpdEqr22Vv9x5f+L3f5UPfsUbfD3C1oSjtBVJpO42XZ4owiJv4pnpKy5QajIPBpcwr2v0tdBCzEa8RdQtevvwiZV6yc/tlhoNdTjxyke7aJtqFaNmkoN7n25Va4A6HE8oStre36XSOmoPM53NefOkym2td8tmIVm+NjfVtPCdkfWuTJEkJorix3tRCtN73apOd1fQNWM6UrPiXVysKSjlN05FVT31dlQqCwOY/G0NVKRQ+ZZFhHLtcxQ180sW0aapQVkfH1ul0cIx7JMSK2hLi4UcxZVkyGo3Y2jrR+O6Lomi89PZ9ZhgMBk0Kznh82DSMqQcHW1tbfOQjHyFNZ7TbIVrnVNprPKSdTofBYEiapnz4wx/m53/uZ3nppZcay8hxFrauTok+DIsIa197/Vz6vtsIPaVUI6LqpIx64L3qiTbGEIRWdG1sbHD9+nWMPjovg9BvLBt1l776nK8j42pBmCTO8vdHC2DrQWO0zBKvBzu7+3dQysY39jqto+r38lxqtVpNDnSSJOzu7tLutHjppUt4nsdgsM90OmVvbw/f97l06RJpmnL58mXm8zlPPfUU88UExzWgTPN3197henbJGHuOguad73wHG5vr3Lm9sxSYFVubJ5lOx002u+M4bGxsNE1nBoNBMwOzOkBZW1tr7HX1+3E8HjOdTpcf/vbc29vbYzgc8uhjF2y8X5IT+V5z7idJQhC1iOO4GQzUneOA5jmsB+B5ni8bGB3ZR+oMdt+NmmOtRfVbYr1ALSpfh5WhwmAqTWYcnNZJvvsH/hxVVfBEpXE8RZHY8/onf+opSqV56umP8acrQ14Y/sb/9DfRpmBw7w7TwuUd7/12bly/ynDhcP6JD9o237rkx37iv6ZQAVkV0umfoL2mccOYP/Nfvg/X9cnx8B3bLbi5ziz/jj+IPn4tUb0qKL/SNg9u++D+Xs99v5F8rWvxG3WtfugFtAo6NpN22ba6QuEpWyHVALrAFDOe+8Ln+NB3fCe7gxGecuh0nOYDva6ChWHYLHqKg5D2MhXBD613rSxLCkeBrnCXOcieq2A5leku0xKqynbTUcpGvRw1ILEfEJNpgtGGMPA4f2KbV25c49bNG3S7XTZPniIrSmbTxdIn2m5ijNTSz5rnuU0Xmc2Ig5Abr17h1OlzhE++F+17dvywbEKoTMkXfu8LvO+pp60VZDU7uATjgsFlMstICLm6N+Xm9etUOgNT0YkC2qHDYnrA3RsFa1unOf3Io2RZ1Qi9t9PirAepR7u1cAA7cNrY2AKgqgqCIObq1auc3OyRjMfcvXGbpz780WX+7NKasxSndrq7xPfd+9p416J3VWDax7IfkrWv/WjRYdlUmGpxXn+Z5YepDb+3xx547rJblwZtqIqCKPBYzKplFrRtHNHtdkmSBIU9vsqBamm38D0oFgtcz2N9fZ00Te9rslO/zwaDQ86cPkeaZ8RxzGg0otfrNfF17XYblpVMK4JtFW0wGNBb28Rx7Hs3z/NlFzzrb93e3ubmzZvNgq63M/X7sRZvdfZ3LZ5qgX1kzTry1devV12tBNjf3wdohJ+9xulmpkNrTV57rJf7r697tnJq7Axc1CLPc3zfp9vt4rquja5b8V7Xi2rr6LYH7TdxHBPHMa1Wi93dG83sSJHb8/BLX/oSQWArvfv7+zZbeWl1qKqKa9eu8a53XmA6nXLq1KnGp9w0ZcnLpuChlOKxxx4jCF1u3rzJzRt32NraYnNzk93dXU6c2CKKIqqqaBYI1otsd3Z2msWUdcV5c3OzaRXe6naainYt2rXWTSrTdDpdPrcwGo1YW1vjx3/kR/nZn/3ZZgFop9fH930mkwlhaBsP1QWguuKstW4+65IkodvtNteGVssOUFpR0LRYrxMr1tbWviHn6pfxgAB8fXd5rW0f8PkqD0cVNnpWVUCF8hwq42GcksCz6yYcN6Dl+5gkx3M0oVOilUflxVx4ok9SGkKn4szj70XhUehqmZ+f8/6TjzcDyrIsUZ5LkWaEQQhofG0fXzk0Gc5NtrH5+iZZNXnNfwBx+WYRzt9sHvp59aC7Ba7XjLIN9mJeVGCMAp1DNmO+d4tAGXzHLlgZH45Q2v6czhfkSWpFc7vdfLDUU4V5njOfzxkOh81FuK6W1Be/1a/a+1lPjdXCqKoqijLHd478Wb1WyEa/w3wy5taNmyxmc1wnIIhjxrMZpTEEcYwbBCjHs9nP3TWiuE2r3cVVdgr2c8/+DtPDAxazGUVaLhdU2mi/2Asos6NqZFEUJEnC4eEhZZYzHo95+fJVvvTyq8yCDYrWBoXTwot7jJKcw2lqfXXTEft3rjId7tk812X1qG6e8XajrlbWEVNVVeC6tg38iRMnllO1LpPRlEob7uwPmMwP2dzq4Xs0vvp6KrteTGVFA8tGNh5mecWttGm+z9KcKi+bD0elFLqqcJSiyFMUFWiDt4y48jwXz3NxXQffdZo8zbyo8NyAUhuUH2C0QxCEjXiPWjHKVLTCkEIr/KgNboDjO+TGzpaUWuEol06nZz37QbScJi+b98dR/rr14I4nh/i+S5LMiaIYozVrvR66qihXKmRRFNFud8nzkm53zVqz0BhdorDNhYLAYzg8II7jZgbp9Xicv9IHyzd75ffXg6zIMQocz7U2K98hyxOyPMH6nX2MsTaeavmv0CVZVpDn1gK2WKRMxnM8N2Q2Texom6NscjgaFBUPiOfVRbFBENDtxqyvdwkChyjyWCxmDIcHLBazZlBfDxR7nRa+q+j3OlRVhuPYKXiMg9GK02dOsNbvAU6zMDzP7cLV8XjKYpHSanXIkjmHg31mkxHT8Zj5dEzou4S+YjgcNgK+Tueor91pagX+iRMnOHfuDBUVl69c48WXrjKazJglC7zQQ3l28IpRdNprzQDW90OuXLlOnpekaWrbefsuQeizubVBXmTg2sW8nuuSzWfs7u43jYhq61Z9HmbZnLJIiEOPf/7PfoYsy3jyyfewuzOg0+kxGBwymcyaTrtNVXk5e1UPOAPPQxnDfDolT1Pa7XZjL5nNFs06GqVclIHFbP6VT7A3kNdaY/QgX2m6/n7Lg52Jq7Ogba6su1KsdlFG4WFwtYtSHkp5OBp0VmAca4UjCHF8H19Zy2jLs7n6pjLoqsA1Gky1PEcrHGXbdLsOOLoiDDx7rQIcx8dZ/lNL06lr7Fd9nF923K8RFPe1LB1Hn0uv7zr2VrWIvNF2l4deQG+dOYteiubSaCqjqIymMsuKW1mgigS/nPP8Fz7HWjcmmY/Jk0kT81SLyjiO78tOrhdxgF1Qc+vWrfumN+sV0HWlrI4wqrepRfTqBWE+nTDcv01ZWY+gNgUnNjeJA7vq/PLlK7ay1mqx1u8TRhF+EDRNNupp+trnqpRC5wW6yPnEJz7B3dt3GI/nTCcps2nK/s4e25snmmi0utpy+/ZtXNdnOrNTh3fu7jDLNdHJi3ROXUS11piXBuPHzDOHyTTF5CXZZMru7Wvs7e2hlG0J+1Z98309WL2I1wOTVqtFkVd87Du/i0ceeYQ8zzkYTnCDNuub5zh99gK+HzbT6UcNTsrGNxxFUeM1tqeOg+PYxV51PFVd/asvlnXVo/ZbKscwm0+o9FEnybrC2Pihl17WozQFm2MbRy2KypAVFZVRpIWN1CqKim53rfFFry46q6Oz6kit+sO77rA2mUwIgoBOp2PfM2WO7zno5fulrm56nsfh4WFTZa49oHX03uq2YRhy7ty5xuO6sbHRWAP+IK/j6+XNfr6vVoCVUlSlwXMDXMe/7xxwXZcirzBGNZ7pevHharTd6jWnHgzFcXyf/WL19a691bWXuBan9XVxNSbP+vbtV6fTWs6+WCtcPTNYVVUzo1F7jG1V2Z5zRa6bWaD6d3fv3m0es0YpRRzHzflbn6v1MdVFkJMnT7KxscFwOOTy5cvcuX2vsUnVOdpwNJiovcz9fp/9/X3G43FzjtTvi7rbYJ7ntFqt5nNiNps18Zh1U6V6vUP9NZtZW1g9C3X58mXW19fZ3Nxsrh21BWo4HDYe89r+Vb9/Vt+Xtdiur0H1AKa+lnyzzvHX83lyHNH09V5493r2U/PgIr0/iKg97uuwGjX3tfb9ZuKrPY9f62cQD/QfCC/usnbiLPPd63imxNEZCtshTztWHBTGQD5h9+pztNsx584/wWyRUaLQCgLXZTgYsLbWYzq3F7BFktFqtVikGWvdHovFgqtXXuXChQsURcZpP8ZzbWecNEspymzZx8XBKPumCRzrC5wVM9I0o6263Lt8BTefowtwnRxFSUcbLm50uTUYMdy/y2XP4cN/5LuIWj3SxWw5HReSZcVSrGvAYX19k7xb4i0Xr5gy41f+1c+zczhmfWuLD33ww5w9+wjr65ssNJQLW8lQ2jCaH8Ldkheef5lJknAwGLF16iTTtW3cqAtxj/nuNfKdy5QYsiQjqzzW2hEHOzuMD4dU5x4nbm9jlIfyHvqx2lelfsPOZjPu3dul3drgzp27PPPMs/Q667heRNBag6DDLCnwkoSyMraq6hQYdb8to7btaK1Ry4WevuegAN+3H8JVURDHQSNelFJN9cr6MhPiOGyqe3WWdzPwWt7PGEO+TErwfR9XeSTJgsqAcj1cz7aWxXVwA5+sLMAYm1LjejiOh65slVDnJV7gN/FoWh+JzVUhY6fcUzzHJQp9NF4jtJRSTQwYHAmQWugDR/F4qR0Qnjp1inu65H3vex+f/exnm8HFg37Aryf1NPibkdWYQ5vtHTTiqfaG10LNVjkL9HLNRJIkzczG9vY20+l0RXyp+/zVdQXacRwwqhlIrj7v9exKLchXRZw9tvq81ZTL9RsWBTjLBaUFoFhbW2tsbfPZAuVAnhVE0bIJEfZ1qdezZFm2POetD7zVai1nNdrN+2yxWDTxnlVVcf78CeI4ZjAY8PLLL5OXmqqybY2rKm9EbL3Ar86ITpKE4XCI74dLq5Ot4NbnYqvVan6uuyOORiMODg6a93stfurM5zopA2jWLdiBth0s37hxg3a7vVy8fBR1aRf2Hg0465brq9Gb9YDj5MmTpItFk3ji+z6TpagX/v14q89kfSM5ju/6G/W8PvQCuigKNrdPMrl3HaVsCoXBuW/0boxB6QKnyLjx6mVOn73IbJHQ6fVIswXtXo80SRgMBgRxTF6kRHGAocJxoCisuNClYW/3Hmtra2gFizwDnVOVduos8CMqsFM4VUlqDEEU4qo2i9GESk/5/DOfJCpSKCs0S6+0CyjNRn+dvdmC4d4eL71wiaeeeopkPm1Whff7G82FejqdNhVLGw9mPzyiKOLcqYiDwyG/9vFfotvq8PQHPsCpc48RxhFow969u/T7fT7xbz/OK6+8wqOPP0Gv12c+GrLZ70C6YCP2cFshh67LfDalSBMWicHoDu0oxOQpt25e5cSpilPnHyedfnOm+95ojDFvrmG6ILwO6qpwvTBMuQpHOZjlojnHcTAK0jwj9EMbJ1cYgjjCTTKKNCUrDIPRoa3oOFY4B66zEhu60hGzCUE4aq5kxXOF1g6u62GMJggikiTB846EeD1j0lQ99dFMSVJkzGaLJpXm9JltfC9AV6ap0tbHUwv3OimmHnhZC5FLGPq027aplef6YJTtAppan3e/36cVt8mrghu3b7C7u8982V3QfmBrWlHEWqdL4Hqc3Nqm021T6RKDbgYe0+mUwWDAo48+ymw2wXU8PNcnDCLKolpatGzFfTweN13o4GhNQ92ts9VqsZhMqfKCzsa6HYB4rp1RCAPKMmc+n9Lv96iqgtlsQrsdEwQeWVYQBFFjzwhDh3KZwhMs036MMezs7NgOoXGM47pUxma71/53wfLVLF/HvU89a/jV7vNgxfVr8dUq8P8++/1G81rPyzdrdvChF9BZVhB1Igrlga5wdFG3fL+vnB86mjJPiEzFvbu3OX3h3dy7d4d2J+bu3bvoqgI07XbHVpCV9dd1u12Gw2HTCfD5L3yRCxcfI27HeJ6DrjLSxZzx4RDHOHTabYoiZzIZ0el0wPNwaXHv1l2e+51fQ813KRczAjdAKzDKISsyHM8jCDzaccSiMFy/cpnTp08SBHaKtKgMeanB8QiiFm6a29B1YxfnWJ9ozvr6Jp7nEPnecko25Xd+499R6M9SVRUHBwec2N6k1+tQZDkb62sk0zGdVkwchMzHO7R0xfXbV5hPDmw0kucS9NYo0oTJ1DYCiHBxyLl181UcX7G1ffKbdxIIgnAftf1ntYtlXQ2uhW/dgMd3fYw56jRprQxmmaNtq8dloQlCD61o/PGrBYr6A65OyqitEMYcVbrrY7JWJN3YedRS1NfTsqWxCxJtBbloIti63S5xHDZ2i1UbSpqmjbWn9jOvCnzHoamu1qIaaGxI9e/SNGVvf5/d3X0m41kjdOrH6XQ6nD59+r4mJnEcN90GbQU/bRrBhKHfLE6vIypra4WNdzT3Vc7t63M062I7GR7adRUntwH7O8+1vvH5fE6WZU0MYBRFzdocY45mbOqFjfXApn7O6p8XiwVRFNFqtZo1C2/ndKW3Ml9NtL8daAYKX4d9PfQC2gsCprOEk2fOc+/6y0TqqGnC6sW90A5VnpItRlx+4Yuce/QdRx2q4ng5Jb3gzu1bnD9/3uZ6lgWjw6H180UByWyOUYpnfuM3cF2HM2dPoauM6WhEWeWMDg9JZnMC12FwsI+pKooKtM64cfVl5uMxW62IbOqgNTYlxDEYxwfjoh1lp/TTnGla8exv/RYf/dh3EbU6jCZTu+DLD9Emp9vr2ziv+dzuS+f4fsj6+iZZlhAE0fIDrGKRzDgcD8mylPW1M2TJHKXnrG9sEYRtKg1q2SUvcg0t3+Pp9zzOv/lXLyxbLifNIkgqzWiyYKMdE7VctM7ZuX2DwHl7vDkF4a1A3ZIdaGwa9fe1tcMYw/r6+n33WRXbVaWX3uii8criKpRyl750+/FSV4vr+zULpouCqjKAc59wtYtD42bxcVlWJIkVkXmeUxl1X3Z5a9kF9sSJE02THs/zGtFs21znTX71que4bnvvOEeJJLWQTdOU8Xhsk3D8kL29Aw4ODpjMZ8xnCVVlCEObTtHr9dje3qYVBc11dW1tDW0qZrNZU/GvByZ1RJzWZWMxqgVyFEUskoT9/X2iqNWkf9SivFxGBdY52HenU1zXIUmSxg5TV9/r7Ofas14/L1agLxrbk12bkzftxesklHp/9etfZ3IHQdCkCr0deT0Vz9ezzdda6Pf14rWqyq9nIbXw1XnoBbTWGo0i6q3h+iGmqDB8eS/1Ag/XGPLZmO6JDa688AVOXnySyXREZ3NzKUTtqv79/d0mQcFepDNAE0ch0/EEF8NnPvFJvvd7v5sotG2NQ89nb2eXsizptVs4yrCYJVAFXLry+wwP77GxvU3sOIwPZ+S6InCsfcO4HsoNcFwPrTw22uuMb98kW+RcunSJM+fOE7Vt16k647YsS9rtdrNQx06LeraDVdxiMj/EGE2rFRE5sOW30dUy21NX6LK0j+t4LPKcEoXveGgNWZJQ5Sk//EPfz7/4+Z/DMRqjlgsTPJ9CG0aHCzqlJmr5UBbcunH7m30qCIKwZNVvXEcc2rUUfpNxvNqUp56yr2MU7Zet0lqBpShLjed4VJVZJsRwn5d+dbF0XSHO85J64Wt9DLU3vV6gmKZ5Uw0ttUa5Rx9bwbLKHcdxY1WrfcKLpW/XaJomJHV1Gmgi8Kz9w28sIzX1c2CrxhMGgyHT6ZzZct1Jq9Wi2+3RbreOFpTrmM3NdRzHRstNpuNm4WotnK2n2lseT0oU2aSd6XTaVIgnkwn7+/tsb59shE5tmaifxzpNwy5QD+4b4NTZ07ZYEjQNaWqfs505HdHv99nb22tmHxaLBd1ut/FY117o2v9dJ06trh8QhLcr6mF/E3zn9/2ISUvFyZPbzA5ucPmLzxArjet64NQLZ3wc18NX9iLuRDFBvMYf/uE/xe07B8wWOaFvyJMR3WXObJ2oEccxVLrJ2VRK4bhQljn7u3vkiwXra30uXjjPpUuX8COfM2dOMRkd8uqrr5AnCx5//HGAZuV6QMnuvRv4LgTKJ/AitKNwXB/t2v/TUnPt1atcvPAIhTGce8e3EPi2TW6Z5XhquSjLsS3Ka0+0/eCscGxRofnQKMpyOXWKbd4RBGRJguO54AU4QUylDYvptPmAbbfbDIdDfukTvwR5RkBBVWgq46G0BqWJgpCNfg/XVdy4c1eGu4IgCIIgvOV5W1Sgg8B2MtNlRRi1MXmCUe59HhitK7TCRt1NSjaiDl/43LNceOI9JFnBfD5js99jMp02I/kmgqbSjQe6zpp1jWKt2yNzDfduX+Xu7cvkC2vxuHX1JXShCVtx462rKx1ZluFFHtunzjI82MX4IYXjYhwX1/UosR3dZosZOZrJIrXRSYNDTp6OqIzBcWE2s4H4tgpR0O2uMZ/PKYoKxzFUZdV0qFKRSxjGywpTjuv46AqMgqLSRKHbxOQ5jtPEVtVxTj/4fd/Pr/ziL1A4Nu/XAbQHjnFIioRp4tBerjAXBEEQBEF4q/PQC2ijrFl8vpiy1VvnsXe+j2sv/K61HKxupzWlA45yiMKAxXjAOKl457ufpN2OyfI5i0VKr9e7b5pvMpmw2bdd1brdLovFogn+397cZOqWqFNbeK7BZHPGoykb69t25XgQkqOZzm2Xq/V1u4o6yTWPPXqBJLNTpUml8RyXPCu4dW+H69dvkuYJ7XbMbJ7x6LmzHO7tsrm9RZrbdqNRHLNIkmZKM8tztNa0Ox2SdM7J06d46aWX6HQ6jCZjoihia2sbpWZgrDjOKtvQxV0Gwtf+vPX1dabTKevr60wmExaLlO//oT/J//ev/1+U50LTsrxs8kSj0P9Gv/SCIAiCIAhvCA+9heMDf/QHTRAEBK5H4Huki4SDG8+TLBYESxHtLlt6GmcZ9G80vgetzXPQ3eaP/dCPcOXKFQJjI4Km0ym9Xq9ZgJHM5k1+bhiGzUpvT2kC31CmCUWecHKzz+F4Sp6XmNKws79Hq9tpFvTYAH9rqYjjNkEQcPXVV3jpyiuMJzN833aeq4whXUyXvjTNyfUN3vnYeYzv89T7P8DhcES707ftVnu9pslAq9VatsLNWSxmTWvWepFP3dXNda3YzSrbcKYO81dKsTrsqBcEOY5DkqWkiymf+bWP41LguQFxKyT0fDxXoXXF3f1DsXAIgiAIgvCW5+HvbqGseIuiiMl0AX7M6bOPYrg/r9TokkpryqpCVxkmT5kP9snTGc8+M6DYFgAAIABJREFU+9tsbGyQ52XTCjgIAltZXbaq9jyPJEkAOJyMCTstVNzCi9ZRwTpr248xyUP83kmqoE3mumyfO0uv1yOO4+b/IIiIu2vMU8MsKTl78Z2kBUStNeKoi+/FxEGHbty2rULxOJiMmSRT5vMpv/e5Z2l12pRGE3W7FKUmS62grUoDxlnGRbmAQ6/Xp9Xq4IcRfhgxmoxttdoctYdOs5woiojjuFmAY1en23zWbJFgNKxvnuBP/Uf/Mae2tzjZ79NxAwJtUEVJqEU7C4IgCILwcPDwC+iyIvSCZWtpg+8aUh1TJRlumUCZUGBbtDpVjqsLwKHAQ+cpcTph58XfJ/IcJtohLzTDwzGHh4dsrW9w8/rVJtS+0+nY+B/HxakMnrGV3Va3w2g2Ic1zwiAiCtucOfsYUatPZTx6/W1K7aLciFK7VKXC912iKMJTHh/5Q98OqqQoMxxX43sKv7uO1+oBNtrphRdfZa3VI1Qu1y9fIXBcdGkHCHlZUBmNUTCZTTl18hxVqfDcCEcFFLmh0+5RFhqj69bRBcl8wWI2p99bA6NIFiml0XT7a6xvbVIaTdxpE/da+J4iXcwpteGJ936ApEqW7XYNGJfszdmQTRAEQRAE4dg8/AIam23aarVwHIfJZILfjjl74XHKZStYpzIYHAwO2qjmyziKw9GQ7a11fvs3P8vWRo+iKDhz5gzdbpe7d+8SBAGTyYTpdMpzzz3XZHYOBoMmq/PevXs21B/Dvd0dTp89w3Q+I88KKg3tTo9ur8/B4JD1jS3KpVXkcDKm0BVnTp7k4qOPoh1Frg2l65EWmrQs6fXX8cOYwXjMz/3LX2RR5qR5xtVXrjDc2yWO7ULFOsZoc3OT6XxGd63H9skTJFlKr7/GaDQiiCOidgs38EmLHNf36PV6TKdT4jim0+nQimPmsxn7e3tkaYrRmsl0QX9jk05vjbzUbJ04ybc9/WHSbFnpVpX9EgRBEARBeAh46AX0asvaOhA+aLXxuh1K5VurgjFoBVpBhaHC/lwsO17Np2OS8YiTfZtksVgsmqD5MAzZP9gljHze9e4nuHP3FnmRNuH1tilARJ6VVJVha+sEo9GEIIgIopjTZ8+RlxWVgSfe9W72DgYMBoeMRhPOnn2EXq/P2toaH/3oR9nc3CQpShZVxbue/BYeu/A448mU/cEQzws4++gFvvTCJdtpKkvwtObVK5eJoqhpGJAkSROAPx6POXnypM007fbwvABjFGmaN+1p5/N5U1m3KR4FSZIs/dpe87yWZcn+/i5hGPLyK6/w/PMv8ejFx3E8F6M02pGuVYIgCIIgPBw89IsIP/SxHzRRFJHneRO077W6VLNDxju3mA13cbHCuQ7gr+PajKPwlIPGpbN+gnd/27fT7p8gTRPKIoNKs0hmOA5sbW2xWNg0jShqkSyyRjynqc1Vrr3SQRAwnU7Z3FonCAKuXbtGv99nsVjQbsegrXBN05SLFy+iKlvJLpXiE5/8JMZxODw8ZDwcEgchyhTMRkNmaYLrujx69hzve897qcqSsxcuMl+kPP7449y5c4dWq0VprJAOw5B2u22TPtKsaWYwnU4ByLKMTqfTNGEpigKF7eaVZRndbpfJZEKWJRzs7TEY7KMM6LJgNj0kGU85sbmBJkMD9w4mYoQWBEEQBOEtz0MvoL/tO77HtNvtJlouTVOqUhHHLjqf89JznydwwVXulwloHPAclzgISUvwOxt85w/8KOPxiDSZU2Y5k+mIbreN7/uMRqOmver5Ry6itU2wqLsdzudztra2KIqCCxcucO3aNbr9tabLlhXbC9LFDLCNVVzX5ezJsziOw97OXTzP5Wf+6T9hnszI85zAUVRlhqIE5YOyrWg/+MH30+l0KLVifdM+Zr/fJwxDvKCFF/gcHBywublJVVWMJ1M2NjY4ODhoulK1opgkSTg4OMDzPNbX1xkPd5t2vy+//LJtT1tlFEXGbDJFGZv4kVYpTgUnNjYxWlE5cHdvXwS0IAiCIAhveR56C0er1WoqppPJBIB2DKVxaG+c4R1PfhueG+I5BsdRKMdBO4pKOZRuTOH4zMsK5SlcnfO5z/4qG5s9JknGaDqjF7ZYW1vHcTxOnDhFp9PDdX32D3aZTEdUuqAoM4LQ47HHHmM4HFJVFdevX0drTScKCV0HX8Hh/h6B49Jtd+j31piOJxRZjvIMh5MBWZly+/ZN/sJf+C9YLGb0em20MhjXAdejUg4VVvz++md/A98NyGYz7l67ilMZ8hKcsEWaZ1Ygt1qNfzuOI+bpAuPA+vo6ptJcvnyF6XROt9vFDzz2D3bYu32Xy89f4trLL6HThOlwj+Fgl8PhAXmRkpUFFYZO2CEMYyrlYDynsc8IgiAIgiC81XnoK9Dv/8PfZ8qyZH19nTzP6XQ6FOmCuLdhvbxOyUtf/F3KZRtrF4VWGheF59hGIAYPpRRR2CEIO5x9/B20+hsMByNObWwwHA9YW1trYu2UUuzv77O2tkYURTiOY/Oh84qiKHBdl62tLcIwxFGGwWBAlmWUpW2cEoa2M2FZlvi+T7/fJ80SpuMJi+mEWzevc+febcbjMdPJ2LYfNxpjFHVanOM4pPM5P/oj/yHT6ZQ0K3n8iSdRvofr+ku7SBtjDGEYssgyTKVxXZfx4YgwDEEXpEnCF5/7fZTROJ4DRc7+3oCySpf+8hLXcciXjVqUsikevmPtK2EYNsdz7dZtqUALgiAIgvCW56GvQNfiNUkSiqJgOBySFTnD4ZAgCBhO5vQ27UI621BF4xptBWlVUmhFph2mqeba9VtUVcXLL7xAv9Om3YlJleb06dP4vr9sm52hlGJtzS449H2fVqvVJIFsbm6SZRmHh4fMZjM+//nPU5YlcRyztbXF2toaWuvmNmMMd+/eZTKesru7SxS16PX6PPnkexiNRniu31hEQB99OQYV+/zCL/48ZZkThyG7d+/ga818MsX3fcqyJM9z2z3R8TgcDDFFyfbmBreuv8oXf/d3uHr5EoGqGA12GOzcYnS4j9YJ7VaEoqQsMkxZobTBRRF6PlvrG/R6vcbz7brWHiMIgiAIgvAw8NBXoN/zwe80rVarsSwURUG73SZNU4Bmkd/utRcwxlBWhhLHVp6jLsZrgRcSeYrdm9fYWmtzcnOD8WjOhz/2R9ibzOj6PlW1bNYymTRCeX9/nzRNOX/+PNPpFIVLr9fDcRwGgwFVVbG5YX3JSimqqmKxWDAY7LOxsUGapmxsbKCUy2KxAF2xv7tLFAR4gcvNW9f59U9/hrjTIg4DFtmCssxxAF+5VFVFrx3SarV4/wc+zGiyoChLzl98B1luux8GQUCv1+PWzZtcfvESvbU2VVGyf3CP4cGATqdDmi0wpsLzPJQ2yw6IFWma43kBnY6NCKyr60DjJa+/B7hy/YZUoAVBEARBeMvjfbMP4I2mjnCrLRFRFGGMsRVn18XxPdrhBmcuPsGVq7cpgwDj2Yg5N2yRK5+yNLgeuHEb7TnkZUYUOEwPxwyGh3jr/cZn3el02NvbI89zWq0WJ06cQGtNv9/nxUsvU1WVbfPteY0/u27EkiQJ29vb+L7LfD4nCILlwkRDHMeMDm33vziOyYqUVtzhP/vJn+T/+sf/mCLLcAPH2idcj0dPnaHX7qBMQa5LXrr0AifOnUcFDnfv3uVd73oX169fZ3d3F601rjIMB3vcuzOj14lQjsb3fWxDQg93GWvnKE2elziOx9bmKYqiwnP0ch9O0+rbQPM8V5VkQAuCIAiC8PDw0Fegv/UPfbfxPDtOKIqCOI4pioIoikiShPPnz7Ozs4PG49pghMbDUw6BqSixnfS01ijPp0gTpoM79HzNxXNnSXL4yMe+j/2DPUyxwOiKWVZw8vQZXKNJkgRjjE2vGI+ZTsf4vvU3R1GE1tou0FumbUwmE7a2ttjf3WvuE8cxWZqQpinGWCFdtwzXRY7rwFq3zS//639JP/LotFtN9nVVVZhSW1OHcgjaMdN5wjvf9V7yMmc4uMd4MGQymRA4CuMpjOuSJiVog4OtHvu+34j+IPDwPM92bqxTSwy2HfpSMBtj0BydV/U5dv32HalAC4IgCILwluehN6bWFd+NjQ36/T5FUeA4DovFgvX1da5evUpRFGz1uzhFRrXs5JeW1sphXJ9KubieT39za5nhPOf69WuoKsfkC+aTMQcHB0znM7Y3NznY20cpxeHhIWVZcufOnabhSKvVaqrTrVYLsA1Nau/03t4eYRgym80a73Ttow6CgLK01ov5IiHsdKzIdx36m1vErQ7aQFlp8qKkrDSl1o2YrSrDxYsXSRZTFtMR2WJKmswIfBetYJEWFKVt+e14Lnme47o2Fq/f79PpdPB9/6h6v/Q1rw7Cqqr6sq9azAuCIAiCIDwMPPQCOg4joiBkf3ePw8EQ3/Vot2I21vuMR4cUecZar8tg9x7veedFIgdC36MyAA6Oq1jrdfFcSKYjdFlijGE2mdLrxPy7T/4Kp05vUZYlJ0+cQinFfDLllZcvs7WxSTtusbm+gYPCVQ5xGIE2TEZj5tMZeZrRimzzlMDziUOb4tFqtRiPx6Rpyv7+PgcHB00XQIB+v09elHheQFnAd3339zBP7ULJOnsaANfDcX0c3y7ou3ntJoHnUGQJ48MRALoCz48J4y55qSnyiiCI6Pf7tFpHFe06ZaPed31bLZTLsmxue60vQRAEQRCEh4GH3sLxvg9+zIBtShIEga3stkN836coCvI8J45j0Ip5mjArSvywgybgzvXLVFVBrxWjy4zJ4YgysU1OAldRFAXvfve7OXPhUdY2T3EwGHFyc5vZZESuTVM1ns/nTCYTzpw5xXg8tgvz0pSiKFhfX0dr3XQoNMY0jUr6/T4AN65f4+TJkwyHQxzHabbvdzsUecpgf4fR4IDxYA8q3fzedV20q1DLJjG6AnBwXcVwPES5MB5PcdyIyigqR+O6DkobIs8ldI4cF7VwNqZqUj8ae4vhy24zK2aN+hzbORiIhUMQBEEQhLc8D/0iwsDzmc/noA26rHCVQ55mtOMWk9GYKIpYzOZ0+1t4ZcE7HznHr37ys3Q7GxSzIabKCaJ1ZpMB1XxC7EVUyqGoKnAcwjjihRee54MfWefs2bMM7t1jPB6zuX2SIsspshxjDJvrGyTzBf3eGsPhkHa7je96lLmtGFeeh4MiyzJanTZ5njMYDNje3qbT6TCZTLhw4QK3b9+mqipmowG3Xn2JLEmYjg5AV8sM6bCJv7OZ0A6VMVSVwcUmZFTGobvWZ284wIvaLLJlddgoqkITOGDM/Vq39jgbo1e+v19A19s9KKBXq9aCIAiCIAhvdR76CrQgCIIgCIIgfD156D3QgiAIgiAIgvD1RAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAxEQAuCIAiCIAjCMRABLQiCIAiCIAjHQAS0IAiCIAiCIBwDEdCCIAiCIAiCcAzeNAJaKfVbb+C+XaXUF5RSv/RGPYYgCIIgCILw9uBNI6CNMX/oDdz9XwZefAP3LwiCIAiCILxNeNMIaKXUbPn/x5RSn1VK/ZxS6rJS6m8rpX5CKfWsUuo5pdTjy+0eV0o9o5T6nFLqb9b3f439ngP+OPCPvnF/jSAIgiAIgvCw8qYR0A/wFLZq/D7gzwDvNMZ8CCuC/+Jym78P/H1jzAeBu19lX/8b8FcB/cYdriAIgiAIgvB24c0qoD9njLlnjMmAV4FfW97+HHBh+f1HgJ9ffv+zr7UTpdQPAXvGmM+/gccqCIIgCIIgvI14swrobOV7vfKzBrxj7Oc7gB9WSl0H/hnwXUqpf/p1OUJBEARBEAThbcmbVUC/Hp4BfnT5/Z9+rQ2MMf+DMeacMebCcptPG2P+02/Q8QmCIAiCIAgPIcoY880+Bn7lv/1J86M//X/zi3/pz/KlW/f4hd99nr/xJ/8Yvu/y3/0/v8yf/9iHeNfpbb50a5d/8bnn+Fs//gPcHo342//q0xjgw48/wi///kv84n/zn+M44LoujnP/2ODzV2/xM7/+ef7Xn/gTKKVQngLsthqF67oopTDG3HdfZTRKLbdd3gfAdfz79m+ocByn2RZovldKNfuub3McB5a3P7hts8+V16Y+ptXf19sopXCW+zfG3LdfAOU6921/9Lfd/3NNVdm/xXEcyrLEdRy0Xj4PK/tublvutz4WYww4CmVAVxV65XbXddFaHz0Xy//r31dV1fydWuvmOOrb6r+vfp30yvbn/9xfV1/2xwiCIAiCIHydedMI6FpErYoz1z0Snfb2I4Gam5LQ81BK8W+fv8KnL13h7/wnf6IR0MB9otUYg7P6p9pNcBwHo+x+a6FWizOlFMro5nttSrzlYzr6frHsuCuCckWwNqIPcAzN42gFrDxmfSyrPCjmV/f54M+rt+iV19TzPDRHwl2rI3Hq6qPH0fq111gaY1AcCXXlOFRV9WWvVS126+deYyiyHAU4K4OTep8rD9D8bvX2ej/1Y9W/9zyvEdn1314/74/+5P8oAloQBEEQhDec4/iJ3zAqo8FY0WSwvhLHcdD6qKrrLKugYMXUK3cP+N9/9dcB6IQhf+2HvwtYVludlcouq1VL+3j3V3sVrrJVzqYqqgwKg9Ea5dbi0cVXPkov9+dqtDF4bkCFoXI0OLZCiz6qtCptUNrgUot5MMqwquVXq7j3Vb9XROqquKy3M2p5uwLMkViv/xaw4taoo325y+fEUQ7GsaLULJ/v+yrIHInT1zrGWnTXx1v/34hrwHPd+/YF4Cz3WZYlvu834htoKtVKqeb5UY7TDA6cpXi/f1BF87iCIAiCIAjfCN4UAtr3rR2iFnM1q6KuLEsrsJeVyG85s80/+vN/ym73gJh6kMYCsNz5aoX5K1Xgj0SoXto7HLuDpe0AFzCGCtPYMWqBrxRHFV3XQSkDLO+3rFA7YL9f8qAgfPC2B60dthp8ZH1Am9fctt7uy/+uB/7W6iun/L3Wc1sf26qNY/X/qiybxzIr26vl96uV5MYiszqIWXkcsxTZtQVkla90uyAIgiAIwhvFm0JA31f5vK/iumK/WLFX1Dzoy32wevuVeC2f8mqlddX6oRtvr7UlKLDC1VkKYhQahak0jlNbR1ZsCQDOsvq9rKzWFgvFlx/nax3bax2/MQZWPMzOVxC5q3/TgwOG+wT6yvN7n+3kNSwk9XYPbvug+K1ft2opcuvbmorz8vVrvl5D3K8eR/2YtWiu7TSr2wmCIAiCILzRvCkE9KqntrEUuO7RAj5HUU/kOyse3JpaPNt98GWL+ZrtVr+/zxZisYsPj7ZUSuE6Lq7j2qLzfYsTV60NCs8LMWZZUUU3+///2XvPKDnKc233et+q7p6cc9SMNCONcpaQEEgCJBAZTDLB28YER2yD07b9GdvbAbONA87YBhsDJogsCSVAgHLOYWY00uScU3dX1Xt+VHdP9WjwWeesDZ/W2nWt1WumZyp1Vf+466n7uR8VaqZD2TYOS4Aesl8IFX2sTuH+74jcTAiHSB5lT3F+JstR13d+5iixyxhV6bE8y6OWCTccRrbjsGw4bR7hfQUDgcj/wwL439kvTNNEG6OBMvw5Rt84ubi4uLi4uLh81JwXAtpZXdR0+5AsAAkyZD+wUOhCogsNPewvdlQvISSwlAAlsa0UAiHPFX9KKYQEhYXUBVLqtqiUCsMykDJU2RT2QVjYy0upOTzAMuLAEEJhWQFHlVwihLQlqWVFKs+mQ/BKRqwVQgj7sLErwZKRJsiwUI+I2VDzIYSaEkNiX43SkOG/C02G3CbRVeKw/SIieMPrjVEBH11VDmOhzkn4EJHmSwWOfUbSQkY9JQjfLJ2zT8AwjMhxOZsMnU2i5oc0P7q4uLi4uLi4fFScNwI6ElnmsGxYloUuRlVCI6I1WjhH3o+q4n5YkoVp2okazmWUOreyHRG8o5rsNIeIB7CsEXuBpnki60eE/Ie8IssJ5/5GKuoRvRr+RTkbJB3+Y4fPObzNDxOuzhi5yHkKeaDDy41O5RjLShOubI9uFBzti3ZuK/w+SgSHniiE1zNN8xzxPboiPrp50cXFxcXFxcXl4+K8ENDONAcsZTcFKvBoOspSIykMugZjuwmAcz24MLbActoHwvt32j+cjgUhRKR50Sk4w9aFSANcSBCOWElGxPCHin3He6eAVkKiQtVZIsI4JORNzbGu8W+9v2P5xsP7PGfZ0PGP9hz/Oz7Mvx1uahxr/X/X8Ofc5+jzM1azIhC5Ni4uLi4uLi4uHxfnhYBWTh+vsEJhFRKlogWTMm07hJQSFfbWWgpMC2TIMoEJdghdZBtjCS8QmKZdCdVEWAgbYIVSPRjxXUdEnTZShZZKQwhl+56FQiAdIluFXBYqWjDL6GY+iUBo0k7yEHrE6hE+ViEEwtKijt3UFAoLhIVQYsSqIUYda1Ql3SlYz/U/A4jwfUakMVGMRABa525zZNtjJ6AoR/Z0lBgXIhJXB/aglaiqdvhmyinkQ8uFl3EKcNNUeIRCWq6IdnFxcXFxcfl4OC8ENIQGp4joavFYVgynhSJsBw4LLxGygERZE8aoaDqbz4SIFqHO/YQtIUBkUmF4PcuIrrCOtkmMVQ0fXXlWoWq7JiUq5HI4pwob8hiPJHfYVe0RZ8e5sW8WEsRIw6NQI016TjtEdOU23KgHtvBX5zQbOqvAkbUc2czOY3c2KzqtLx9m7XAef/hn2CbjPC9O64d97RTKMDCN4DnbcnFxcXFxcXH5KDgvBLSUEqFUSBxGVxidQtjpnXUyWrz+v/HvMoOdQjksoEenethC0m5UlFKzS+cqOiEi6rOFq85jHPfo5Zy/K6XCujYSMxdO27CUBWN4gZUKVbPliPiXyinKPyzqL9ruIcSIPUKZ0SO7w/sLD3Jx5nOP9fmcAtzJv7OJOBscGWXhcGIPqBmJEHRxcXFxcXFx+ag5LwS0CFsfpARNEpZZesh+EW4yczYbhh/pR6YXjqpUR7Y9SqSOCLYRMadEqCKtjfiL7UQMOx0Dadsvwuvbgt8emhLaCwjOqbCGbRsqvMgoQamkhrLjQKLWV6EED6lpI/EaauRY7ZHmXiTByPZM4YzDixb8ChER4OFKtlK2sA6fM+c5EkJgRpoWFQIjMtEwchxKRaYfEkrcsE+VPEfsKjEyEVGKkX06mxzD2wk3kQrHjUF4EEv0dRQoIbCMIbAMlDxXXLu4uLi4uLi4fBScHwJa2E19ti/YJlxxNk0zqkEv/D9d1yNC7d9VlD8sV3ksa8hoP68QAo/XEyXKIxYCxhZsUdYQISKF6TGr5KMsHeHPqBzHpp2zjjPqzSlAz228G/1ZADTL/jwKFTGCjGk1wVFdjorSi64Yf1hlOFrAj6SWhNM+IscTumkZK5t6rG2F0TWwLDMk5FVUZd3FxcXFxcXF5aPkvBHQEcFp2iO7LWWP9ggPLxmdYzw6B1pKiZQSwwxERO5ocRztozajounGFJsh0RfxEjtFocPz+2HCNTwUJiz2nctKKUGem+4Rjuobva+xbCBKaHblGhAiepKi83itUHXfHkqiRarFQlnnnFeIFMSjfMsjvmkranhK1LUbleDhHHYy+n9O0eysRDNqv0LYTYdO37YQAqFMPJaJKSVC0/7tMBYXFxcXFxcXl/9JzhsB7Ww0C1ednSLVsqxIVXS0X9hZ2Y3xxhLAQgodHYGUI0IbhwCVUo8IPCUsO0c59H8RasBThGwCCNt6IByjxjW7uqyFaua6aWd2WKH9OCvQStn7s+wPa4tCbOsKjAjIiPAnnEQSnb0M9gCWiI3CaVtQTtuIBEYq2ULqWMpESC+hmA3bTy61ERPK6BQLGRLVgDDtHQgBShi2XVoppNAwLBNFeIjKiFAWoRHeUfF8kUbIUHShrkXi7izLir45cNg5kFq4W5Swi0ST9vkzrWDou+BaOFxcXFxcXFw+Hs4LAR1OcQhXm0dXIIHI0JMwSik8Hk/kd03T7IqxkHiEwKMsPELix9GUF1rXGZMmHIIXQpYCHJaOKHuH0z6hR20zqIeSJzSB1ySqQh7ez+iEkNHWhMjNgWNCYfhYIjgr5Y51pXT4t0W05QUpCEcCYo34yaP2ro06Fmc2NxoqUi2W9ghyITCVdU4joNNmM5Y1BKKbCcOV6NFV/nDFXkoZdUMC9k2EUmbEWy1d8ezi4uLi4uLyMXJeCGhwxpJFT+oLCzTT0TQYxmkviFSllUBqitahAFpMKonKD+gIBJpdSj3Xd3zONkc8y1bU8emOdR2iUYHAIjkxidbmFqzEeLtqKiVRzlxHJXa0bSRqyt6HJGUIIcAZ7eb8u5KRKvTopruo7TgFvWPfplJjLw+h/OqQLQMPSiqB/JQEAAAgAElEQVSEpZCWEVl/dFxguKrs/P+Yn1lFj3J3et5HX6fITY5QYFgoI2iva7rjvF1cXFxcXFw+Ps6LzquwlcJZmXRaNZzNgs4M5zBRlWopMSUsuekWXj16CuIS0IRCl7Y1w35FR9ON9lGPbioc/d4WqRI7ycPC8mjkzp/Kmp3voudmoKEhpMIQKiLAlTj3xsDJaP/0WFj2/UHkNRZKnnvMkSQPomP1IusIEUkacSaOhF9KCtszoUlU6Pwpx3CWqBuY8LE6KvDOmx7n9XNe99HneqxrAbZv2wwEMQwjqulUjHKguLi4uLi4uLh8VJwXAhorNJVPOcRhyE8bfrx/jpiV0h6cMiozOqiCiICi5vRxYoOdbKhspceXgYFCw0SiATLSpBiJilMSgf27JWwhaglbdNuxcVqUQJRCoQsvhjBY8/aLvPGP36N1NPHEr3/JoCFRmgTNC1JgRYSpFhrTLbFCUwhHi2G7khvenxY5FrSQmFQSTehoQodQAx1hH3hoewgNhYy8oqvmjm1LDVPYzYy2J1yP/E85XoKRly5DjZ26QPN6kB7dnuSooqvPmjMSUEUPWXEStt4opRCajJwTQhGCSmBXvNGQKIS0EBjowvZ5m0EDZVoot4nQxcXFxcXF5WPi/BDQjFgYRlehIVqY6bp+TlXS6bvVhCQ+MYH4OJ2v3H87zR0tPPXufk50DBLwehHSxBKcUzH9sKbEqKqzQwCqgEWf4aem7jgzJ+RQPmkC3R2NpA83Me76y/EPSeKUQEqdsGgNEzUoxYGzWju64j0W4W04z5mzahv+HJYyHHFzlu0fDqWQjJWm4fSiC0d1Wmgj4lsIDSF1+0ZGk0hdO6dqPPocj34/+ryPtnmM9bmdzZZSykjCyVhTDV1cXFxcXFxcPgrOCwHtTJqIJDKMEpdh4Tw6lSK8Tni9gUA/uSWlJGcVMTBoEuysJitJsn7vCY60DhDUfWPaBEYL57GIWseXSNn1S9ixcwP73t1LXsUEfOmZlBUWMnR0J3G6jscKgpLomteu4I4hhkeLzrH2OdrnPdoKMtbfw+JaSolpBvF6dQKBYYaGBxgY7CMQHI54jsfynDv3Ha4MCy36XCkpouwdUspIRfnDzuXoczBauI9lpxmNUyy7wtnFxcXFxcXl40Z82Cjlj5P137hHjTz2HxHI4eSNSDXVkSXsrLCG1xHCtl0EDEifP5vklFRyJmRz83UPEOvRiU9L4Otf/QqipQGj+aw9YQ8dpekgrEjToKZAFxJDE/jQsexQZNB0dBSaJqjvauL0yZ1cunwZf33uFaZcvYJCnySw4Q1qY8u49IrrGegfRiMYEYzKGiUeZXSFPfyZTOUcJX6udWRkAxomBsI0iYmJITA8iBQKSwmCQT9d3a00NTeQkJDAgX37GDduHAHDoL9vmJSUFEqKx9PXP0hmdi7emFi8MT474ULYnuKRyYh29dqyLGRIrzqbHu28axNhBu04PKUIKoVUgKUwlWPaYXj4SXgbcuScOLOyhdCib6IsE5RdPcfvtwfMWArDCmIGDbAs8j//MzeOw8XFxcXFxeUj57xJ4dD1UCycMiNWDad3NhgMoocqlM6Ks131HLF4CClJSEogNTOdzNxchprP8MJzv+HCJdeiqgweeezXlE2cRHF6KuV5Ofh62vBiAhq60DBME6V50bxeVNCPX0q8Hp1gwED4NLQhi4DHwuPpYsu77+FLTuEL3/0SsQUL6DpbRWpxCi/e8wOWLLsMU8SgqeCIKJT2JL/RQ1hGZ1uHsZsVo98LMXJjMWwE8KHR19NNrKb44J316Bqkpcax78ABgpYiMzeP48dPkVVUytOvrie/IJu8rAyONjTQ2N7BcMAiv6ef/u4eLl22nITYOPt8hwbSCCGwcIwwFyGRiwBHdrRAx9Kwlbdl+82VYYZSRezhMHaSyrkaN5Iq4kjjiEolCWVQoywUFlLXMQ3b+2yZZugxiqudXVxcXFxcXD4ezgsBPTq+DMAwDDweT0Rchf8Xthw4pw0qR7XULhYLElNT2LpzB4H2OvKyTzLg7yQ3vZA9O7cRCASpzcpj25HjfObaFZhdbXg9GlJ4MEyDQQTpGRkMd3bjTUnCFCCDFsnZGQSDQdJjB3jlZ4/zvf96GJmWDnoKZ/bu4azRSvmZWiZVTLFj3tToMddhoShCDX3Rft+xfg8z8reRqnWMtGg8W8Obb62juKSA7q52pk8bz4Z3txE0Lb7z2GMsnXol48YlEpNeQHZOAc+/todHvncbGXk6sTFx7Nt3iOxx46lqaqHhlZcpyS8mNz2dKZPG09bWRnJyMrrHR2RUtlSRQS6jky8EAikFSln2OymxLAUqFB+oLBT/fuz6aIQQCGUhsVDKQgqwwhnTQqAJAQost4nQxcXFxcXF5WPivLBwbPjG3SpcdbaUQOoaSgg0Ed0wZlkWWPY0Ol3IEREt1YgX2BLgEUxfuhQrLY2+njb6e+oJYLDixgdJlPFIqcgrzCI1JYXhgX6mTKmgtqGRvESN9JLpdLV2kpWXT3pKPKbpx+83qW+qpSw5jtPDnbRvX0NJxRTyxhVzybXXEpOTj2xq5uDLL3Ks6hQZi+exsmARfZo3OqvZQbihL2LvEM5BKA7vr9CQCHQkQsBAYBBdaiTExdB0+ii//N3jzFm0EG+cj4HOTl5+/X20GLhs+QySEtMpmzSPt9a8yhVXXsyv/raR73zlk/z2D/9i4bwZbHvvbQqLpjDk09m8ZR/Lly9E13UGe/1kZ6Qzc0IRS+bPwbBMO0FEC91vKQ2NIMo0CNvolVL2kBal7MowJsoywDSxTBNlWkgFQTVScbcsyxbkIaIq8ngAC2mZKM0A08IywvYPCyz7vUQQGB7GDBoUf+UXbhnaxcXFxcXF5SPnvKhAjyREfDgjzYPKFmSoKM9s5NG/pRBK0tjYSFFeHu21nSRLndbqk/z1kXv59iMv0t81QEt7O36/n+SkJDa98zYpPklPfCJaXStpKekEgkMc2FVPc2sb+BIZGPZTmeHl2Vef4LvX7SM+LoXxhSUEBhQZMWkwNQv9pRdI7OomMT7b9uoKA9S/O8USKUOVdWfjXlSGs/0zIO3Ke6C/H4shXl69kYaeLi5Yvozd+/dRmJFKfVMriemx/PWpX+ElgVdeXMMTf/sT1666hoT4WKaXZPL8868xYdJkXlz7Du0DJr5sDxNLcpk/vZO2utPMnjGfPm2QzKwUntm0jYM9kklZqcyeVExqnEJYQRQ6ShBKGHEkqAgQIjQXMNycGPKuK2WPC9cEoScGJppme87D60dH3RkIFKbhRxPSvq4hf7UI2eFtt4iFrut4tPPiq+zi4uLi4uLyvwDt4Ycf/r99DFSuf/XhcMVVajq2Uxg0GT21T4Qe1wO2qAr7ch1jqD26B6lLWnp7Sc7JIS07m9T0VNa+8AyTi9MQ/j7wxNLQ1kNHZwd1tS0ELD8ZYoi9p3oozvVh+QPUNpxl5tSJbN9+kM6BfgqyUrls6Wz+/qMf0hdMYu68KbR1dbLwysvwm4qm2jYqLr8as6Obh37yZ26/YjmG7iU872+sWDqBBoTCjqVjmfC5kJK4+EQCfj9xOgx0tNHf08xT//gD7R3djJ8ylVfeeIO0tHQuX7WMvHETyMvJZ9PmHfT2DrNr715mzJ5Bcmw8j/3qjyxduojf//VdOlpP09o+yLzyPFqbzjBjUgHXXnEtTY3NKKFRWX2MxoY6MtIyaG9toaq2hb7BYdp7B0iISyQlJcG2TIStHOGbH0dghghdRTvSWaDC4lcpNGGfFYWynzSMyvIWQoBlIJRhN0WaCg2Bsiw0KVGWZedOK4VhmrYf2lIkzb/sB/+jX0wXFxcXFxcXlzE4PwT0hlcfJpxAYYZEklJ4NA3TMJFComsaylKRqLTIIBRdQ2o6mqaDkEivRBoWQgqG/H3kl5TS39vH9BkV+Ps7yY6ToLxctOJSMpISsEyDnIxMhgc6GRIpKH87/cMaCYkSj+WnrrmH/KIShtoauHLRBA4f62YoAM2nDzJr4iR++dOfM2/ODL72+S+gTh4lIzmeb//idwy29eHXTGKEF4+0EywQDrsD9lsh7J/2wBP7ZduEdYTU6O/tZbCvC4Z6OLRvO08+/Wd8CSk0dCuKC9O44rLLOFF5ivyC8RQVF1FcPJ7f/+kZDh86RVlpPMoQzJw9hYaWZrbtOIYeYzKzrJA77ryemXMWs2PbDnLzCzly4jg1Z5vYtWsXMbFeps1aRE1dM7FeHx6vhiHg2KlKmgICKTWyU9PRdInfGEQIDYkOwvZBK0uFvNLC7u1TIfe3EChMTGUiNYkMnxdUqEEUUApNSnQBSln2qVCWXa1WJpqUmKaJEQxiBIMoy0QL+aQTF6xwBbSLi4uLi4vLR855IaCrN73+8EiesYykPNh9YtEDR4QQkUbCcDY0juxghO2Pjo3xEZcQhychDsM/TNAKMNhWxckTleQVVLB32ztcfekyOtrrWHrxEkpKCli75SDTK9KxtGy+/tX7OX3sKFsO1LNk9nhytHZ8yXlYuknPUDueWC9NXR184pO3sW33bpauvBWPiCMmu5j4rBx8AR+WZeEPGBhKEiT0+YhO3BiJq3PYNoSOUBpmcBg51EZPWz0/+fmPOFlzjHvuuY9te6s4WduBHujlgoULKC0tYdOr/wJLcKy6ERWTTNXxEyxfPImezi72HzxBSkoy9fW13HzDSo4dPkZ1bSu/f+J1UhL8VJ0+xU9/+gt6egdp7+2lZyjI1AVLWLthC319/TS3ttDYcJaclESqa6qpahlCl5L0+DiSYhNAGdj1ZFtAC0AJy54uiQRlN08qQJdaqCFR2EvLEfuNM79aE2AYQSR2g2nYrqMIVbIRyHBTpQKUcgW0i4uLi4uLy8fCeSWgbUvGyCQ+yzLPGRIyOgPaKaCFEOihqXmmZeEfGCI2KQGvCXsP7Sc7N4PxZeVYfoOe/kF6AvD4k5sZ7K+hKCuf1AwfxbnjSE2JQ/a3sHPHTq6/biWvrX2HohmL+dtT68EcYsWKK7hw6RJKplYQ0CWTp0ylqaqW7e9u5M777uG7L75EVtY4GoZ6Ef5hDCNAis9jZyCjzsl9Hi2glRDoSqFZvTzxp8dpbW2kvqmFuHgPz720i56Ah/S8LOZMKuSxR5/hssumcXD3VjZvOUl1bTNHTpzhyqWTKC0oZOOW9ygqLOXB73yXlESdZ597hYauYXThZe6MCnQpuP6G27j/vm/QP9jF7r2nWbFsISsWz+TtDWsoykwhO8XH3Z++jT/86u/ceNO19PUP09Lazob3tjNkCTLSU4iPlShlW2wEgLAQyha3UjiyvIUAKVGhnzCS++1MVsGy7BsoZZ3jkVaW/bKTNxQyZIpOdC0cLi4uLi4uLh8D54eA3vj6wyPVRxziOLpKG0mpCD3mH6nYjohrLTx2GtCEwAoGaThdT15+Lv6YRIrKJnJs707mTC6muuoMjz/6MJ4YnbiYeMaNL6S9sYXupiPMqyihuHwyT72wDp9pcuNlF5Cap3jwS18mPT2eHR9sxpKC8ikz6Wjr42tf/TFDg/1s3rKF2t4gXU09ZGRncrw1yNn2frZs3UlivJegP4Cy7Aq6x+M5twKtSXQpGehr53ePP8KmbbUkpSWwasVSCvKLeOGdKnxeLyuWzaLm5D6uvXoWb7/9FlffeAcHjldxuqEXaSnSfV1cePEKLrpiBcZggFiPZP26tyksW8yx0w0E+nr4Pz94gIMHTpCTl0FpaR51Z2v47jcf4G9/+AfBYD89A37eO3CW42fbeW7Ne5SUl/DCKxuoPXyIcWVlaDkFbNq2i77eXipKion1eTGFiVTCHkxDWFAru8HQvqqAbQOxr+9ILnb4yYJSCmWatoVDhG+mrEjuty2gbasPgBE0sEyT5IUrXQHt4uLi4uLi8pFzXozyFkLDPpTosdQy9ArFNqAsa6SRzGnrwEIKhcDCDNkFwhYPMRxk3IRxpKenkhUrObD1PTr6/Ly8YRt9ZoD7v/Q5ak+eoig/icH2Lu74zDUIn5fp85cwa+FiJpdmExcrSIj3YPQr/vznP/PGa28QNCUfbNrJm8+9TklBERcunkpNwxB9QbjhkuWYMRJUgEuXLeJgZRWVPQGefnsPL7+/jZ7AEGebGjh15gw9Q0MMBwykx4s/GCDe52Wop55XXnySY6cbMBVcc+0qll+6nGdXryM2AYaHeshOFcyYu5y167az9MLFDLZ0MLFkHCsuvoxvPngvcbqF8Hl4/h9rmTtjFu+/v57ktHJeeWM1K5ctZ2jI4Iv3fp0Yr6Kzo4On//EWs2Yv4OXX1zJl7nQa23qpq20iKyWeyWV5/Ozr99DfVMNvf3Yvd959CR5PG+lqgOaG0/QKnTff209rWw+aZaEEhL9aUgMzNMnRksL2d2t29KCSwvav6x6E1JChwS0SgQw1VVomEeEcvrEKv7csC2XaXnksNwfaxcXFxcXF5ePhvMn+Cntgw8LIfpxvnTOlTwiBYRgjU/IsKzKJMFyNDm/LMAwMBI0nTxKMDXBk20YWL1lExfhCzOAgqXn5zJwxjdXPvkjn9Im88sYmll5zGX/6xwu88cJrJGVkoMWlYsYOYXri2bL+KLfdtpglF1/Ipve209rpZ2piBs89+xJ1ja2kFyRjKUG8N4aKigqOHNtPa3sL7a2VSE8CbQMmVXWN+I1Bbr7uWipPVtI5NIyuaeRkZFBXXUlWUgKHDm6jra2NQzUwZVw8JfkZ/PxH32HyxHxO1Tbw4+/fRGNDM29t3c+l86dw/PARgloipi+F/du38+q6jVw6A37+6ONMyC/lg/feYv17e0jPnkpsbCrbt27h2w99nqtuugby0vn1177Pf/34Wzz47Z9xydIFNDc30t3dTeGEKUhPHAP9XXzr0Se44cqL+dFjbzI40E/XQC+LK6qZVJDBYP8A79Q00NnWwn03rELGCjCJjF8f7WOPXCtsR0cYTdPOGYiilMIaNZDGHphjp3cYpv0dcSZ5uLi4uLi4uLh8lJwXFo6at9c8rDnGdIetDbomI77XyON7h1gK50dL6fQSR8fFCSSDg/3s37+NkuI0srPzaGjq4brrr2fXrj1MrphK1fFKcrLTue2WO4mNCXJkzz7een09U6aXkpk5jn+9tJlVy+bx+D8fIzDQy4nKU7z1zvtMrJhGXHw8ZeXj0GI1ll++kuKiAk5WHSE9u4j169ZRVpiL17I4Vd3EwVN1DA7009fXz+b338dCIXQPQ6bJ+nVrCFp+XnnzZQYHuli+7CJ01YLujaWr7hBf/s4DNDa0cPp0PddceSH3/+gVhrv6+NrnVjJv0UIWLFjBkBlHbkocP//h/azZsJXtJ4aYkJfG0iuW8uhT7zPU10xL6wAEhrj9E8v58Tc/x7onX+SDbYfp7G9GyACemBhO19RATBwnqmox/V001rYwuaKMb3zh8wx2HOXqVRejhppJTk6lpaWNflMQn1dKr4LqulrKs3PxekNTAlGRawKc20BJ9ARCFXnaYNgj3YXENI3Id8OyLATCHuEdijVUlgnKItG1cLi4uLi4uLh8DJwXArpq4+sPm6YZiqizRZc97jq66hj1CF/ZiQ6alBEjii3O9FAjoi2elfTSPdBGVobg4hWX8OyzbxDv83D48C4SkrOpa2vmwJ6TWL4kFs5dyR///FMefuQNHv72PXzxKz8lNTuTkmyLXbtPcmTHO5RNmcWwJVm18nJiYmN56p/PkFdYRFtdDUnxcaRk5pCXm09SQhLrNryNf9ggPi6RXYcr6eoPEBev4R/sQ1g+du4/TE1dM3sP7OHUqXpOV9cw5PdR39BHRtIwZkCnrX2Yr3/rThqqT/DHJ9YTk5pFTnoB1Y1djM8LkpvsY8NbG5gyfwmfvfcnzJmYQltXOzV1dfzm8T/w18f+xtad23l+9asc2L+LXF8X9336anYc3MPKldeTEp/IwqVT2bh5G3/4yz944u/PE0DiD/qZUpLFlVdeQUf9Ua6/5kp+95tHaWpox2sJatsHuf/zn+XA9r14fRaHj51myPJS19DErLLxZGWloqkgltRCGjqcvKFGys5C2ANxwn8LWXSUc/y3ZXchWqYJlgJTIaQMZUtb4Y5FTMMiaaGbwuHi4uLi4uLy0XNeeKDHegQ/OroubNcIe5vD0Wd2jvDIOuFms5HUDoX0SS678mr++vxaOjp7WLZiOTd/8QHa6+upKJ/CUDDIjXcuYvW63/Dpz9zOzdfOoHugjx//7Ad8/p5Pc+N1N3K2oZ5PfPIzPPrY4+zcuo262rNs3ryRefMWoGuxTCidwtq33uHpp1dTWjKBPfsOMm/RUoaC0NJQz8KZE8lLjSMjKYmMtHR6+gaZMn02rV3tNLZJ0lMSGD9hNnVtA7QOQUNVDTfecA0lpWX89JuP0tuuqGyA+dPG8/6egzDQynce+hyzLljMg/9czcZN7zBjRhEZ2YmkJWksnjuLRx99lM98/gZmz8ji3jtv5q5rVrB4wRQKMlIZbuugICONLe+v48zJk4ggPHTfXdx+xRy8vQPMKS+mrKSUDa+vob/Hoq62iY7uYS67YgULlyxhYvlkPv/1H9Pu96GU4p6bbsDs74HYFHa0DfD62zsYDkikOWoQzhiEr/1Y/zdNM+r7MXqZsN0nGAz+//vyubi4uLi4uLj8f+S8qECf3vTmw2GR5Mx+1uRIVN1oAaaJESuA5tEiA1akpkfZBJQGDV21vP7WGj716fvZvWMnS1ZdzpNPPkVJUQl5eTm88MxmbrlzOZ6AxuY1Gxno7SQ9I4mXXnqNzRvWsmD+Ata/t4OywhQ0j4+09HSEVOTlF9E3GCQtM49FF13E2epKdGnR1d7CvAWLaWrpZKC7h+7uTk43tNBvWAwP+4mNT6LfP0RlZTVzp5QzdVwS2enJlBUl8vn7bqGjvo6rL5vJ2ldfxu/vZ8VV1/Czx16kokySovp4c18DxoBBffVhps2eib+5kdSsQvafbGb7O9t46a1TTJtewp6jNQz3dfCNr97PhCkLaaytpPLkYe76/Ge5eOF8fvXHJ6ls6OTx1S+QJgTf/f43+fZXH+EnP7mXjKxM9h8+TsDvJyYxhtNnznDtyqWsfW0dmhZk65YPWHbhHE5VnuC+L9zFa6+vxR8M0NcfpKmllcaubq5cfAGabiAc9ueR4rN9jaVTEIfsG7Ytw7ZwSASmZds1NCmRQmKGKtWCcKOhhSYkiQvcGDsXFxcXFxeXj57zo4lQmXZiBra/VSmF1LXwpGissLiGkaiz0FRvXdcjU/wsJezMYWkPkpZS0jfsp2R8CfWNDdTW1jJrWgUtR7exYvE0fAlFDLecJFl0k+rVuejShRw6dJgkQ+Pw4cN892ufYv2mrSy+bB7+Lw2TlSLpSE1m5Sc+S1/dCfbseZuWM5VccMlS0E3yCzJJ7Mvg+MlakrIOkRyjs6+jDaEsmlpb6OsLMhw0MPwDFKSnECs0EmSQb33h02haH28/+yJG83Guv34G+ze9w6yKMo5V9tJ06gMe++Un6G5s4MjJHvr3Su64opCB9lNMnFvAghkPUavgyiWTWXXlXHJyC9ly4AQFmR4Wz5/OhjfXkjzhImpOH+Tr3/w0X//a98hKEKTFl3OqoYqfffWbNNacxOsd5PXV/8UPfvsKNY3N5GanYPX2EjAHmTazhL4gGHE+SksLuPn6lax5bQPxMkh3fS0z8pJpGPTRbUqCgR7O1Pbx8u6DfOriWfgDw3ZihjEEYAtqpaL8zzI8rTCEx+PDMAIIZeARWmiSo8ASCqFJhGbH3mlBC0tZWGbg4/q2uri4uLi4uPwv5zypQL/xMBCJKhOhgRtSyEhlOUw4YSNcndY0DeFYRoxqUktMSeGN9a/g9w9wzY3X4dEkE2dOYebib/B/nvoar697k7v/Yz67Nqyjs7mDWReu4MTJGtq7BxBC4+UX1tF5YjOLLljGu7s/oFPzs+/NJ3jkF2v44v3X8cvfraXl9G7Wrn+Pd3YdwhroQAidnp4O+nr6iUlM5WztWQqKSwkETPr7+xmXn41AkpkSz9eunoTmC9DbeIzuM9Ws23iE6RNLmHvphbQ31HPqWAMX3/AJNKOdltpWVm+qZCgomZRqMLksi38+uZ5+Y4iJWTFMLEyjr6uFnq56igtz+caX7qOkOIeXNrxLTHwqGzZ9QF/HIFPLy9l7ppHVG49RVhzHpNIcSgrHUdvcTkpCEi+++Q5zZy9ky8atzJ0zgcrqeu646042bnkX3ZS8uGE/p862svN4HVPnL2Lj5q34vHFkZsZzurYOb3ImdS2d6DFxSDSKMhLwyNCcQgGSkVSOyFMFxzRCy7SbAk3TQJf25Mmw/92eUiixTNMe7a4IjfS2SLrgcrcC7eLi4uLi4vKRc154oJ32jLCn2Rl95pzY50zr0HX9nCEbMOKpNgwDU5NctupaLr92JQ3N1TR1tFDf1sPZ2i08//O/sWpVPPHZikBSCbkV43jjpWe48YZrCQ6brF+7ka99/nZSCqbyyJNvsHjhJC6eUoARk8CR3gMUTpnM7g/+yeQJ2dxyzRUkehMZJAGh+8jKKCYlMYmWtg4mTZrM8RNVBAIGKUlxJMZ4aTlZQ7HRyPsb15FWUsrk8jKSfLEUp8fQWHOcGDXMlIoiElSAv7+4lsK0FBqq6qhtC5Kk+rj8knnkT5rP3LmzufbCcr7zvQe4+55beeBbX2fVTbeycNEiNr77LrV1VXisThr2v8rD37uHs60d5EyYzZ7drfQD/sFYSkqKaetoxZeUjB6XRH5+PjkZiaxYOpvNmw7xyTtu5uvfeIw9+xvwpaYRl+SjO+AnNy+FD959m5uvu4ZTp08z2NHEvPHZGH29mBYcr6nj2c17eHbjHjr7hpFqpMYcvllyTpYca9pkOMbQeY3NoGE3FFr2mG8XFxcXFxcXl4+T80JAOxv/VPi9YUaJY8uyorKinWI5MvJtQDMAACAASURBVOJZKTweHwFL0dDRwbjJFQz29zCxYhJzL1nK9s27mFZUyNsvrue261Zxy2fu5JEHd7Jw4XM8+/w+iufNZe7UEq695mtMLS1mytRJ+GINHnnibfr98MxrO/nCt9bxy7/+i0e/fBe9HW3sO7aPeYsXU1A2DksTVJ9p4N3tB9m1bQd7DuxHBP3sO3iChIREEhISSNZNZhfGsXxOGnuP9BHvjSPd00/AazB93gRyk4eJ88HBHVvwmf3MnFtGSRK8t+E9xpWNo7cP1j/zY/SMNKZPn8DCSxZwzV23M3XBZIxgCwTOkqv7iRvoIlX08sJfnqfmTB/H6v38+LHVVHYZfOk7P2HK5Bz+8d+fo6jAA55ELli8mIKSUr73qz/R0z/E6hee44Ev30lsAqx5802kgNj4WJrbByhIjuXuKy+mt/4MD3zmJl7/1zMk++K4+eYb8Hn8FGV5UIEhWlvb6ejsJrlwHAdO1mBJD1JJhNBQSBREXpYAoev275hY2AN2TKVhSQ0lNKTQ7XCO8IRKpcAyEQqEOi++yi4uLi4uLi7/CzgvLByV61992Ov1RlWfYSSdwdkUGK5GhhvInMsKIYiNi0fXPcRoOv1dPQSGh2lvryc12SItKxFFPxWTp3DH1dfw1fvv4/rblnJrRT/N5kSGOvfR5U8iP0cjPSOblMwcdrx7gBPdFn97cAFffvBLXHVJGcc/2MKJgyf5059eZtEFS6itaaWuqp6KkgKWzZnMJ29fhi+tgOrqZpoHB2hoaae3r4ey/Eyun19Gzb7d7DwxhCcOFkzKYva8iZjGAGfPVDNtVgVxZh+Zmekc3H2IrZXd3HvXrZze+w6NXVBZP0B6lsVFt95Bc0cDmfE6zVWHaa0/jOzt453nX2XtW1tZ//5hdp04zZ4jQaZMmsKBU/2c7eyjMCGGxbPLqa2u4tWX95CdbZGcnMJrr7zJogsv4dnn1nPnbZ+guCiLGGkwYVwu2ek+TKufvsEBJhemMG1CAc+98BaLFpaRkCDZc6gGvzXIycpm+vsGuOHK66iqPMFA0CJgKk4eO4o1OMD0CSXE+rxE4uxQ0V8EJUNjzu0QQkFoEWE3Foa900pZIZtHaOS3pexR3otcC4eLi4uLi4vLR895UbaTUmIYRqTiHLZuGIYRiaYLV5hhxN7hXDZMX18P/oF+u75pGsT4fKhhhdcI8uwfnuKtN7bx4Be/xVd+9CN+9fhfiO2TqKRpfHDiLPMnT+XCxXPo6Gxh/vzZnD3bQHVvBx1KY3BQ56VXnmfcuCKa2nr53o9+wPoDGzh1fB+ZOelMnFpObBxctOICqg42sG3rDvqHGrnhtjsIDg2SHuuh7vBJzM4WejuhID+Z3iCcrmtC1ySJ2TnMvngJhTPK8AQNAj0WxnAsdXV+fvnrJ8gtSKe6ppPHf/sd0ooLaT55hNyUOJpPHqap8iR5ejJP/eU1CmbMZeKCqVx11dV86ZNXccMSSNCO8o37plN97A9896EruOby6Tz+y+9zzdXTufbmT3LsTDNJObn8/emnyM+RrF37DKlJcaxds57gUB9xXp1vfu2LbHrpjyybU86E/FSMYchOT2d4wOIz/3EbNe2KXdW19OlJ3PvQD5k1pYxYn87gUD/dPf0MKJ0TZ1swTfMc20VUukroRmh06kr4mo/1cm0cLi4uLi4uLh8n50UFumbzmw87PbBhq0bUxLpR+b/OCrRz3LdHE0hNYEiF6ZGIQBC/KThy+hA333s7U5cu48JLFpPa5+dM1S7i0jLZtL+Db3xiGj2GQWFROlkZmZQWFnLy+FkGOnvJTctm0owc9u46wHBPBy2tTXyw8wi7Nr7LoguW85//+d/MLC/ACBiseesDegKCsrxkkjMrePr5f5Em/aRLxfzSVI6eaOCKqy6k6nglXZaHNM3guttWcuTAXnIqKuisruL0sf0UT5xEYrzgghnj+Nfr9dzwyXlMqFjMzJUzGOhvxqw5TfeJg7y3bjOlFQs50VRD6bhiJhankC4Fq19eT8G0+Tz7eg0eXwypMQG2bdjK0iXL+cF//ZrnVm8hsXAqv35yNUfOdnK8qp26hl5aexRTJ+RTUZjJ7r2H2Li5mlkXLGDNa2/y7hsv8dCvfsPmV16krCiGmQtnsfrVNWTnFhKDn4L0PM6cOk12fID8kkl0+E00nw+vNDlSdQpfQipzS3Pwer2hODs1EjeoFCiBZQbtmSqmaQ9KCY3yDkfc2ckdVuR/4eErKNwKtIuLi4uLi8vHghhdwf2/wYZv3qvCnmanWJZiZICGszLprERrmobUHWOi0SL+aCklFooJ0yahpydgJAUQRhcDTZ38/Ac/4YKZMxhUFtMXXkBH5VHGT5qAlpmNr7+HPburqWno4/l173LHLdez4Y3VfOZT15CUlMG+g6c4cLyaoe52FixYwDOr3yMxOZauniGmTJ3Iogvm8eTT/+RwC4wrzMZoayEzOZ6+rgHKiuLoaBxk2ZWr2HHwDLlDx/jUbbOZODWfVnOI0rQs4gMWVdW1nDl+iJfX9pM7OZNxealccd89DA600XV4F6f372B4UMPwZLDwonL0lkbeOdVC5UA53o4dnGr0omQc994xn6HuanwJBWiYxCbnk1FcxoNf/yHX33oHQWli9vXR0VjLnEXzaWyHX/z6L1y4IIfdB5tJzUzAq3T8Hd3MLIPSilncdffnSEzPpWLW1SSlwaAfBgbsa3n99YvYumMvjU1+vv3tL/PaB4dobW3HHOrgsosWMjEnjyuXzCErFvwIdDHSOGpPGwxiGSbSUhiGgTQVhjLADIlpy8I0gyjTwjIMhGmigkGUGST/od+OPanFxcXFxcXFxeV/kPOiAn1685sPnzMoRdMIe2RH+5/DYlrTbLFsqZHJg4KR5kKwB670dvVw7OQpyudUsPfAVvLyC1iwfBEpiT4uXnkxeDXiYn1kpqSj+U1OHTxAXHw2B2oHmFJaTG5aDBddfCFvrHuHd97eQlZaHIWpCeSlxdPeVMOyxVOZPW0y2VnpZKfFc3DnNrpFEs1dA4xLimNo2CA7CdqHQVgGxTkx6GqYuUuuYNakQhhqoKe/g9mL5tDa1oQuDOI9scRoPj7Y08T4iT7u/tYvGeg9Sl5uMkOnjnK2qpbOQCaLl+QizAEe+P0hXt49yPWLkmju95KWlkVGTB0T8pM4Xd9M65BGn5XBD3/3Cn99YQup2UVs37ePDZv2kZc6zNvrT5Gfa/DZz95Pd+8ZztQ0s3LlMvZsP0bQHGbu9ALKKir4wo8e4fe/+g1feuhnTKwYT3efn4z0DJJiPdT3DVNZ38zC8nFcd9kCWls7OFjVjIj3EZOQhH+gj6TsQryah8KsNHQMwvdvKlRhVlbY22yLamWYCFTkb8K0UJaJZZpIBJZpYBkGphEk5cKr3Aq0i4uLi4uLy0fO+TFIxUG4ehz+3Smqw3nAYYtH+G8iFBNtWzlEVKVaj4tBSJ1Yy2SoM8isqdNpP1vNcEoBR6obSUvNJXVCEfHJSZxav4EcISg0ezh+qg0x6CN7Qi4Tykp5evVbHGpWxKtEinKKKUiFlvY2PB7BcF8fu/eeIDU7m8GORroDGvuruihK89Ha2oahPGRIi0NDBj5fLA09BvPmFfL2ujeJ13q456YK9u37gIq5E8hLT4e+XixNo7Gjk2kXjycvpZzm9i2c2LoDv7+d8tgkvJ5Ypk/I4cjBWv75Ugt/+dVdrN/wOvveP8rONsgwYM3xn7P32RqefmwfeeV+WpqrGRyCT11zIZkFiQy0tbFv3x4eeuA+8uKfZPVzhxDyUZ7+1w4WLZrBm2vWUV5WhAj2cMOqVfz2iT9Teftd1De0gC+G2qYWajsGET2D3H7TTaxK1nnyhZd4eccpFi2YSW1jDRXFOVQ3dNHlD9Db2sWll8aSlp5Cf/8giQkyqo9wrKchQghUKLIO04p4noUCMxBEjW5EdHFxcXFxcXH5iDk/KtBvr3k4ZGoGZUb8sc4xz5GIO9NEWHYImmUa9uRBFVnITmsAdM2eXmdJwcDwMJnpGQSTUkjNKyHQ10VfWw/zL1hOQmYiXQ0nSMmbSFKBhzde3k9pbBJ3/vJ9vvfg1SxbPofhQT+a7uXLd9/Mbbd8itOVp0iOVejeGLYeOMWgiEf3+MhISmT7oQYWrLqZhsYG0kWAYb9GjhVkaMgkIT0BP0l0dfSy9+BZckqyqKypY2p2OlPG5zMprwQ5cyZGbTWexAK8nniee3kfn/zyLajeHoKdVUzKzuHI/iMMKY1V997NlEULmVbYR+X+rTS1+REeH5ddvpTybD+124/zzKvr8GjQ2x4gJ9PDA/ffSnlRCnu27yElfxzV9YP8/m+vcayui+Zh6O8boHtgiGB7C/fecjE3rppDTvF4jN5m5q24kbyMeI40tHCqzQ8x8SR5TVJjPJyurubYkWN0dQUoK0zmqQ37WDhvOquWzuXI2QYaW+pJjfNSffo008rKKc1JI8YrsUKVZsuykAo7hUMBysSyTIRS9lhvywJloZRl+55NIzL22zQMlGWSsuRqtwLt4uLi4uLi8pFzXgjomrfXPBxpGBzVWCZDUwmtcGMhoEvb3hHlm9bs5YSmgxQEgkEGBgeZd8klHDx0iNr2NrydDZzcuoNB5aH+xEEqls2jpuog+VPyQOkEdRg/fSoP/Po5nnnrv0nOFPi7Otm8fgOtbV20t/fym9/9lrnTJtLSVEt1fRttnQP4dEFydi7PbtpHbGo6Bw6cIEENkagERVlxlKQHmDa5iK1H20hJiSU/1WTexEKWXHQJa7fspSABunoHUQmKwpQYjuzczZZ3DpKQlMETq09y2dJ0OhuOUZSaTm9zJ2l5ZbQMWSQnKZI0PzGaQV+bxbp9zcR6Fbveq6K4JJP24XhuvvNe2tob0T0B7v/cnRzbeYC5M0rp6K7i1uuv5+lnXiMQhK4BiBGQmTXE9Kkz6O9tob61hZRxM/ntn55j25Fqju7fx9oNB2luHyTZa+Lz+jCGh/EMBShKi2XIP8SPfvx9yidNYf/Rg6zffZK9+46iK5OUpBRSE+PJTIkhKVZjUn4+umVFMp2VUnZanTJDCXeh5BXTgpCFwwoleAjsmyTTMEIZ0BaB4WHSll7rCmgXFxcXFxeXj5zzIsZu9JAUCE0f1DWQAiVA8+gRS0d4+XDzWfj3YDBI0DIxUChNEp+cxD//8Q8KS8dTXFzC7Ju+QN642XR1DnPll37MQJckNi2f4bOD7H75aeIPVzG4cQ2BjkHUto389T9/wPbN20iNS6anvZEdG97ilhuuoqaunoOn2xmKyaehx6RzQFHd0MecKRVUV3UwbAkWTx/P8PAwReVT8JsW3b3dLCxP5Kq5kynPT2PPnjOsWfs6JtAU0Hl9XQN5sToNR/YwoTyHxFgfmz/Yw313zSY3JZF0Xzrdnb2cOtOC8EqK8nzU7tzO3k3bqakc5i8vHac4W2fBjEJu/+QFxOeWc/BUDS/943cc31dJrNlPYcoQh4/uI+AfQBdp3HbHd/D44Itf+RRTShLZ+PITxMp8OnpMegahuWOY7/zk7/T2Blh10VSuuvwiHvzqJ7jvP65j9/Y3WTU7j+mlWbT5ITM/nxkV48lL8bH3nddZVpLJO8/8Dk9sDJYVJCHGiyc+luGgBxWTjOnzouvRDqLRPvjwwBznoB3n3wA0BCpg2ENVXFxcXFxcXFw+Bs4LAR0eyywUKCFBanYlWZMoGRLVlh1hBqGpdULDPnyJKUEqiabHoAcNDDOAZmnMXnkF04snUD53HmZLI0fXv0xTfCyXXXcnO//yEvGedLSOGAY8GUy++nMcDaTy9ze3o3qHOdYSS0rxXOo6/KihVvLzx3P93beg9w3z+rtbqKzpYP+uzQRjY/nFa/vZ/N4xjh8/Tml5KcG+biqPHCWvuJDa9g7G5xfy3p4eulr6iBluIScxgZXXzKGns5ml88p5b289m3f8gQBZpOQk0tATi9XbTm1dO5OnZtPT0IToH+Dtd/dz1h/D+BUryEiKobbH4p+v1rJmy1Fu/cQCxqUbzJxVwaZ9p/jlH98iIaaHrqY+plTEUJATiyepkM522LFnP/sP7Od7P/gi3T3wX4/8nc/cdCFPPvJ99h9v4PjeI2RmpNPZDgvGa3z906vwWX4e/f06fvbEenafOMO0JbdTLzxcfPG1XLUgmRO7j1NfXcnKu79NS7CHkyfO8s/fPkowIDl5tpHO3j4CfcNUzJhGoC/IYEwCDbWtCKHZTxWw4+nsJw4WELZpmOhSQ6IQmKAMlBkEy0SiMC0/lrAigtrFxcXFxcXF5aPmvImxC1cXhebIg5ahGDvTQijQHJVHXYykbSiPwGtpSKkzKA0MDRL1eIrmTKXx2AlUcJgDVa3El+Yxa1wOZtsQRxuqWTB1BvkVRTT1dJBVUoghDHpqK8nKiuPd1W+Qm5LNYKjyGeMR5JQuZuU9D1COYMvZNsanJBAcNonNSCLV52XT0TpKs2OJN008QwH6fbHMr8imKKaPbWcGSfDGMyG1E4/HB3HT2bVrJ71eD2lFk7npggTmlhZRWqGgbAovf/GHHG0xuPXT13Bo+xYmFk+k8mwDiy9dwp9++xzlifD6NvjMfYvJz83g9MldHN3TRPnMifz30yeZN9tLSlwuvZ1nyc/0Ul0VICkN4rKK8Xl1csqn8X9+/Sq//tlDFOVlU3fyEBOygqhYi38+8RZrdvfi9cH4ojji0nN4b8dpvB7I9kFucSqGL5GutmHiMlMoyPKS7YnnVH0n+1rbONswQGGml0MfrOHipSsxEvKpq6tj/ryFlFeMIzczi4LUeMrjfEwcn4cUCsPvRwiBaQQQWCjDjrPDMO2flomyDEzTxAoaKNPCDBpgGViGSdDvZ/zDT7oxdi4uLi4uLi4fOeeFB7p60xsRD/RIP6AAOeKNDY92jgxcYeSRv9AEUkgMIWjr6SY3J49Zt9/ErqdfJF566fT3s+ruT1FoSXoa66hYeSlGRyvasMGBykpyMhNJyEikp3eIzJI5BEwfBRPGEfT2kR6fQHCwl7deW01rax9tWhYHdx9iKAaKps2npf401104gYKcAnadqqE4OxmvEGQnBsgsnEzdgZOU5idyqKaPSVOnYww10+cXpFcso6AklwyfzuGdR7j1lqUYPV3EJgTor2og2D3ERbfcQmtLDZfd/AlSNY2E+ER8MQbTyrLpbuilbWiYnv42du+sob2+i0VLxhGTlUh1VTPTZ09i4/r/h733jI6rsNO4f/fe6RqNNEW925Isy02yXGQb29jG2BgSMJ3AAsmmk2QTNmyym92EZDfZsKlLEhIgkEAoCb2FZoMNxg3LTbJldatLozaj6TO3vR9GsgXJvp9eeP3h/s65R57RPVc+586H/zz3+T9PJ/X1PjyuXP75G1/g/fdP0T8xzaGmcQSvj9Md/bx/8AD7d+/ixps2878//CPN7SPYnUkyRBmbChnIqIEAe46+iWOqn2iqj8GRBJ5sD6Nnh7DZgihx6Oxo50DXFBYlgWK2MRCSufeBh6muWYISTxJNJIilZAqzssjLz6PWmUVNeSEms4Cua+csGOnIuvSiYHprVEuncMxG3AGaoqY/DTpoM8uEiizj3bTT8EAbGBgYGBgYfORcEBaOWf/y3MpuTdPQFRXx/4g5m1v3bFJFVElg9Scuw65JLNu+hdN/+gten5vm+BSqJYvu554n4O+mtmEdTc+9gC0uE1dlVqxYQU52DbJ/Gqc+RnTsECYtSCISxia6CEVH6T78Btd+Yhu9HXu4svEi+lJQZnKxb+97fP3rXyBjapD39u0lxyGwrnEDd9/zYzBZKHTZ8foALUhpkY+uYwfxmCRWL17Oa2++zIE9B4mFJyiqLuRkUwsmk4lB/xQCIqLbRefRE9hVK8GBQQZ7uykq9OHL8WISJaZlkbJiF3sPJYiJCXbetJnqJQ3c84sTDIfg2RdP07i+luZTEyxeWYv1opWMhIKcbE8gi/DGnvexS5CT7eMfb9zJrZ/+JV/75s3svOV6XtobYypp40wABAtULC6lfuGl2EvLuPaW7+DMyiEVD2LL8RKKqJxq8xMwubj91s24dPjZ3bezIFvAk5XJu4dPcKazh/qly9AFkVODw7x98gQ5RQU4MiVkWf4/7++5gpU5Xve5le9zowwNDAwMDAwMDD4uLogBWtfVmeIUIV2WoXPOF62rGmgfXBgEEBFAEtFEAVOBj2AkyvHXdhMWFN5/8VXKly9FLCmmMMNFniijWiSauwZobjqCXTKTkBUEVaPjaDMkJulq6SAeSmFKBTm96xGyPHFGet+jojib+tVLOHK0iZ7OEHrba+x98Vme27+LGwrh5V/fz1XffQC7uxh5Wqf52EF++6938L27/4OjRw7TNQQNdStxijJLqucxGUmwvnEF/rOT9A4EEZMRhnuGGA9oFFZXYhMdHDzUzPutHazevJlTJ08yNDKAHErxxsFDdHWeJjw2zNDEFIfPhNi21s03br+Sk63d3PPAO5jMsHO1hw0LIDdjkts+tYPHHn2L5SXX4PHV8Lmv30718qU4UincKuzcWE90uo3vf/0irFad/S89xuvP/ABtKkEEsOZUsa+pn7w8J3f/8FF+8csf09szTk2xCZ80iRKAR+//EYGhEO0tZzD7XPzhvqe477/vZmfjEoodUFhsp+nEQaoqy3A6HJR5fBwZGCEejiCJae8zgoYozHjhNeFckYqmaSCkv1QJSIiCCREpff81Jf1ZmFksNDAwMDAwMDD4OLgwLBy7XrqbmXAyQZjbPCici7Kbm86g6zq6opLSVCxOB0ooRJZkJ2kzkWmSiEZjtLR1YJNMZOsKdquZibiMYJbIMZnRhPQ1dQQkSWRqeBJPloeUlmR0pJ9Fq5YiT/Xh7+1E0GWyMp0MdgSoq6vGLo9z9TfvQ+x8m+oKM+vXeMgu3MEvHngASYWR8QhXbCjjt394ntr6xfQMjWERwqys9NLRM4nNXcD4yBn62qdZvTyLZZUFFBZ7GJsIsvPOT7Pn2SeIjU2w6tJLae/oxaYGMQlW7vvdUb785WvJRKX5dC/+CRvmTIlrN1fy9HNvc6o3yt7WCF+8fjGnm/poH4Xdp6Mca+6lN5jEaoeukQk6OnqZHO5jaYmNb9+xjZZj7+POc/PqG0eYCCZ59Y0hIuEBvvPdr5PpMPPcruOsnJ+F0+Zk/TIXsWCIaAiGAjFsNjslS+bz4OO7KS7yMDwYZmQ8zOJFxcjxOH3dbaxaXIXTno1JhVQ4RsG8SkKRKXJ9OdSVFAIyzNo2dB1d09KHIqervVUdTdfOv6/PDNmkLR3ajMXDsHAYGBgYGBgYfFxcELLd3Fi6ufF0s8zaOuY+4k+ZBXy5OZg00FCJ2cCsS5jtGUzrUF5WgktPoQsi05EU6z/9Bao9BUTFJLoogKgjCjqCqqAKKcbGxpgeCpHnmk98WqPHP4bZBLt2vcK99z1Jb2crtc4Qv/hTO19Zk8vt11zM9V/eSdsJif/+0a0EUuBww6c212CSMij3ZbDAEyPTA+3dQeJTQ4wlpmlu6qOgoIJpAarnF3DRxg2cbu4kpYRoe+t16huW0bDpEva98BZT3d1k5xTQ0znB7577ET+85wEGeqK89s4oCZPGRcvz6BgbBlcWUcXC6kKQp/0sXVPI5h0X4QQsukyOBEsKbSz0wpevvIjqPPjWNz5BKp5AFE3sP9CMK9fLG4faUL3w0t4uWseH8A+PUuZQuO2Tq3jwwW9hio3zpa9+hqWbaugIQVfCw5597agJje6JESpr83DboW/Az6n2ThKOfEb0LMaiSSoWLSZ3fjmD/UM0NjZispgZHpv4my9Gs6TznUl7oecwqzTP/azMNlQaGBgYGBgYGHwcXBAKdOebL90NMDtLzdZwz76euzg4+1rUQU6lUGQZhzWTeDyBqsq4y0shEiVDllEEDbtkZiQcIXa2k5QcR0KaWUAUz+UKm00WbHY7mqbisDtx5drwFRahhCZQBgPk+fJoXFROT18HU3Im2y/2kJVv40RzO8daokyOjHPzlev4zx//Erd5iqbD73LDTdfxxlvvMDAIpfkgoXDKbyIS0jCr/dSU5pGMhXjt9QMUluTR2hVg/epaahcWY0nopBIK8WSUeCxO1aLVDPedwRQP0t3tp2MkgccSZ2l9OUNnA4wMpxgNxMhUweFJQUwjMj3M9s1b8fs7QYebdizmlb2jnGnt4JL187j/gf348mHPe0NYXCLlFTUcOOWnqMhHYDTGkfeOkpctcVljBU+9coDXXn2dqCLx+yea6OiZIMsBtmQYLQl3ffVahk43M3Q2RKZNY0vDcqxOG9MTozR3DyBasojIKt6cfLLdZjxZPrKyM1hcUoikJRE1FUmT02U5WnqBUNMUJFFEVbX0tzxNR1dV0FVAmVk8BBUdUQdNVvBsuspQoA0MDAwMDAw+ci4Y2W62VOPDy2NzlWk4r0bPVS7D8SgpNGrqlhDq7ccliunzNAHVYsVps4OqnLv+3EMURdBV1FQSEYngeIi+Vj/dJ/2Ysku4+JrLqV6QR/aSIpIJjZ7mSQoKnYRHh8nwNuL0KSytdnPsvf3cf+9PePjxZyjJy2T/vsMcOAU3fepqLm5oYH1DPSWZJv759nlcd9V2JtRMFm64hbpLryUieJA1uPMbT3L8vX007dnDj39zEpPTxfoNq2hrPUxJvoeyiiVMRYNY7fDpL1/Nwtpq2kdiFFQuxSXBb351J/v2KSDBusZltJx+jbqGRvC6Wbruk8RU2H75AmoW5HDVjkXcfutt+DygKRZ2vXaML1y/lbpC+IdtuWxf5eNzt19OQJPYuP0qLr72ek5MpChcWMbV22vZubaUKxtzeemhf8Nti5Hv0XE7FVYuyuOyTfnU5EmU5mTj8RYxHg5yoqWZnuEBispr+PWvfofN5iCeSi8FnrunM553UU9/STrXRMn5VsrZz4EgktM+LwAAIABJREFUCKiqiq6oCKoGqpEDbWBgYGBgYPDxcEEo0F27XrpbVdU53mdx5qfwNwMvcG7wnR2mQnKSxsZG2k80YxI0dIl0eyECXYND+LLdCLqMKEp/M3yn1W413Siti9gsDtSkBmIGBbWlxEwquRkOTAV59DUF8XltrN1agUXMoG/CiX38MCZ3NeP9I4gOOxU1i8m06Dy8q5NbrtzEvldeo7S6FLMYx52fz9JKLy+80cUbncMce/8EXb09ZDokotPT1FSauXJnIx1DQ4jxMIHAODn52ZQVFbN71+v0dMeorqnG4nBTUW3i5794mbyqtbz84nvceO0K9r37CtffdhsnOztoPh1EcGbz1BtnMJkTBMamWbm2mpffPMZbbw1hdia5aP0VqFI/pw6MUFwCa+qXsHljPYmEwFB/G4/+6RhKhsZDzx8lGJliYizCkgovG5fP56E/HeUnP78Tl8/Nt771vzTUNzCdENnfOsLouINTbaepWriIsKziySkgmUzS0d5ORraPrRs3YJEExrr7qC71IugaaCpoIGjpym4dDVVJ13brmoqqqGmPtK6lvc+qiqCnl0m1pIyuabi3GB5oAwMDAwMDg4+eC0KB1gVAFNA4rzLPJivMrfaei6ppKKoKgoDP46LtxDEkUSPF+bSOpK7icmVhUpR0vfeHFM3zP0VUVUfXFOKxEIoC3mw38TETTlc5eo4Pk8nMe6fG2XpjNYO9flqaemh9+0+UlJdQv66exetXIY92suWKa3johXbKnQJTAweprnYQnugiIy+fqdE2WkZSLGxswGly8cltq3EKSSbCEyxefhFxZMySkwwlwue/eA2rG5dhzXKRSgUxT+r0+kcYGuzjyu1LcTvcnD4Fb7/1Dj//8Q2U5aq8ezxJ64HnaToUoKGxnvKiClaWS3zu6ktIhrvZuf0qMr1uHG7IzV/A5Td9lUcfO81jT/8P3/zqp7n3ty/wL997iLrl63nlCJg90Dtu59rLlnPNqqXcdX09Jw/3MOUfYv2WxWy67j/53988zOe/cCttff20Dwzx/W98CYt9gt6zUZbWLkSLRZCTUUrnVbJlyyW89ebLhBMppuMpivM8xEMRQEPDhIyCoiuogpa2aAigk7ZzCKKOpqULVGafUKiqiq6qaML5/HADAwMDAwMDg48a0//f/4FZJEk6l+0718YxV3n+8PniTDOhpIGsKOn3kNA1gXgyic2ZgTVdYYhpznXnLpzN/k1Jks7bAwD/kJ/o2RD1hTWEA1MwOonLrVFYnov/3XHm52aikMfr+zrJ7Yjw8OsjvPPIN/nKv36Vi6/YxDNP7+Fn//pJjhxt4sSpHjZsu4LDZwP812MtWOQmdFlDi07QP5Tic5/bxqOPvsxzj1zLoVdfw2T18faeg3T1D3NdST5Ok0SWN4/GRYtxCWcprsxkoG2YhvpMnOYwmZmZPPPnfr76mYsoLfTSsDZE//AAx8+c4R8/cx2pxDRWMUU4MEj94hpqylycOXaYDAF+/fOv8eJTTxKJB7hs21IKSpfw2FN/5o/33cmXv/RzNm9O8b07b+J7//FdiorzEBX41ZPN/Pc9d5GUU6iqzmOPPcbAiMZdX7kSQR1kWc1yRiej/Pv//JJ1G7fRPRbCYTMRmJrm5ltuQ06lSMopXL4KbI4kqiojasK5MhVdVdP/nrF1iIKALCvpOENFRRO0dNzhjFf+wwumBgYGBgYGBgYfJRfEAD1bkDF3iE0vDp5Xnj88IM0O2KIoosaTiMxE3iGiq2CzOfDlFxAa9aPpOqIuonPeJzs7fM1aQVRVTfuwxbTFw4SZbKsLsOHy5DLVP03TwVEsuQXs3/U4mz+/A198knVr6/A47YzrNo417aF+YSmXXLGKoZZDTPkniUamuOW2m7nnN0+QX7uZzF3tLJ+XhcXpYvnqeqTsCv77wZfwAeGJCJXljcxb38C99/yKkooKxsNRAlN95PhcNEeCLFm2iBefeJWzbUNctr2CqUE7XS1BBkcniY62satbZf3aley4dienuvx0DPpZtaSUgeEkb+x5lu7OBN/59g/4l/3vsePypfgnQjS39eGwi+QXOGh9/ym6B2Ue/+OvuPTSKlzmGPf88j6aOuJEpThf/up2BgYD/OrHP2H75sVUzisgR4qzccslHD64n/e6R+kd13HluAkOBNnT1ExFdS0WmwUtLNHR1Ytdh7x8D+FECiFLQtJUBFlDZWZRUNPRNBVm6rpF0guDuqYjCQKqqqWtHoqKIqfj7owObwMDAwMDA4OPiwvCAz23yntmakZMN2x8YKjmQz7ocz9nBm1REtE1DSQByWIiGYmgqvI5O8Ds+enhWyP94F9HksRz/9YBQRcRdZ2EoiKbp8i0mhg5dZxlizzY8s0US+Aoyyc3M4/Ft3wBX8rPaE+Qn/7xBF1d09QunU94pJXifI1kFB7a08rr7/aQ6/BRau4hPhWmqXUa1WulvXeS6KCfKzfP54WnjzA60o0rFeV4UxeuHIn6ZdV4M+K8+FwrUqaLS9fMx47OxTtWIFg0xqNuHn9kF/94Qw0Wu8rFl+/kwKE+/ucnf6ZsYQP3/XEfCxdW48o2MTw4TYxsJiaHaW/p4sV3RujtGeDUwBQ2dzHvvNNGSZmbZatXMDDgx2rOo/tsF6OTQb76tU9xprmLlpMtmNUh/uNb/8z9j7yIzWVmalJEl6Y4dbyb5r4UDfUFhEIqrf0BsgvLGfePMjo2it2ZQSwmMG9hKRvrl9Ld3k5VfjZmNYWuiTMpGxro6UVCTVFB01BREATQdBVNU8/9TpVlRMGErivouoJ3y7WGB9rAwMDAwMDgI+eCGKDbXnvu7nOJGMyxbcxJ3Pi/DgBBBIS0Ki0KEqoIwWAQu9kCAh/wPc8eswuKc1MdhNnhHQlVVTFn2Bkf66Jw4TzclUVkzy8iPjGG2WfF7cjllb/uwm7NIBQZ59D+o4zHFCrzTESDPVzxifWoepJfP9vFhktvoP3oSVbNi7GospzT/iDuRfU89+oxnC4zFW6BwuIC2ntHkDKtpJQBdFnn9i/cyrOv7eHSrdt5+rEjDPSNk5ljpm9sGpMY5de/OkIiLlJbY2HLlvlo1vl894ePMRywEtdkzvYPkJ0hMNzXyuYtGykqKAGLmZ7OZjY0LCYQGcEkxcnQdCb6J7n08qW4s7NRA2eZ8Ee4+oaV2OxZ7No3TFtHC4urs5gcDfOt79zJa3tOMdzfQ82iKoZCLvyKmUVLVjERnKCrvRcxu5AoFnw+L54sF3a7nYH+PvJy7EiqCTkW4tqtjdjlJGZdSQ/QuoquqekvQVq6VAVdTy8Y6mnFGZh5H0RBIL1/KCMAni3XGAO0gYGBgYGBwUfOBWPhgPN+5Flm7RVz7RvnMqFnzlNVFeFcaoeIKIj4J8bx+XzpARn9A9ede8251zn3N3TQSCFKIo4MC3nlK8HhhESIaTVJYUUFqegYTU/sonFxLaebj1GQl0n72TiLl3i4dfsOJifaKKvM59Db7fz2yRf5/FVX8rN/v45Va+v417vvY9+ZOHX5JmK6Siymkcwu5q1Dx5iW4fvf/iWv/PF+chztnGh6l09+8hKSiWlyPbBsST6x8CS5GQKJqSTX3Lid9rZj/OPnr+KLd/ye7l647db5uLOKeeH5Hh79ww85eeQE2Xkl3PfwI5w8M0lVTR7DvWN85earqFuYx8Fjh2ncfBNf++bPefipZpbXFVDgiLJsWQOlxaX86Q+7cFpA1WHThka82c289Oo+9p/qY9JWyr4jZ7l801pCCXjg8adYvrCAUN58MJnxTwSw2kxkObOIxGNkZmRQNq+UHLOHxs0bybXaSUanQBfQBOUD91nTFERp5mmBno63EzQdAdAEAZ1ZG8/MFyHN8EAbGBgYGBgYfDxcECkcs8xViFVVRZZl4G8Ha1VVUdW0GnlOhdbPD8GVlZXnrjE3Z3iWuUPzXB/0bE307DnTUwESskgyGCHc20uh2YqqJujc38LiNUsIKhHKqgrIzvWSX1qCw1aEK2eaeZUVtLS0sLiiims2X8kdt67kmeef5vJP/xfj5JA/L5/pwSnMQCQ8yJg8TlXVPFQ7XHbjFzF54kQSMUb7B2l6ax9TvWNc98mVLKmdT1vnIFPhMU70p2hpHULVIxw62IM7r4Lbb11CSa4Fqz3Gg/seZCzoZ/d7+4inkvzjl/6JL935JU62+vHml/CTXz/IA8++QihqItcmgwrLyizU5DgpKV/IvuPvc8dXf0PFfC/f/+7V3HD1RRzY24Q9M5833jjC5OQYE119LCn24h/pZeWKRnLy3cRCSeyeTHLdGdjsJlKKjNVqZnp6GkHUSSoWstxO/vDko0wHFHRVnrkrGgjnc781XUHTFFRVTjcSzt47HZLJJLIsf2DZ1MDAwMDAwMDg4+LCsHC8/vzd55b6SGeSzYzF6DpIkgldT9ujzynHkFYmNQ0TIuigqzqKKoOuoSkKOunr6ZqOJIpoqoYopM/V0iEPiKLEbAja3HxpXdfRFRUEHYvNRmZ+Lgk9jFmW8WRlMD7qRzQJjA71Mj7qoqPpKGW5KtmeEH/89X62rqtlLCZgtynsO9KK3V1IPBWBsMyyNUs5ffg4W9Ytx+OUaGofpq07gM1mwW1XuWLTOkoLMtFj4+QXVVC2oITCiiJ6O3u49NJLKCjNYrRtnLK6EvyDfUhKNjE9wtpVVay+5WbefXsPr/3lFQb7ponGdf77l28wb56P1158l2gyyGREo6snxYKqUp5+vZ+aeS46TvVw43WNuDJFunt6qSidh6Kl6Owbp7Z6PtPjo1itZh5+8Bjzy8GswU233UQkMsmRzgmOnuiia3SKYChOJDHByZ5xLBnZBEIxRgfPUlJSQd2qFWRnZNDe00t1ZRWFGVZyMwREXUdjpoVQTzcLoutosppeChVmsqE1bSYPGiRBSH9WVBVd01EUDd9WwwNtYGBgYGBg8NFzQSjQs2qzpmkfbKabEz03+96HFWVBED7wnq7rxKMxBJ0PKJezivVcxXJ2aFdV9ZzyqSjpxkJd1zGbzegpgfHuENGgA8lSiGD3Yiqbh2veQsqX1NLR3sMzf3mTL316BSsXWygoqOO6G9Yyr7aW5q4uGjcsJ78wj/FxP1Xz5zMQj3Nw/wmGVZHHDh5j95EBdmy4lNp8kSwLeIsqCIZDlCyoRNad5OQ5yVi4EDIsRKNjBBODBIeG8dnDqKoTZ8EiPMVufAVJDh3dB/mLCCec3HnX/yCavDhdXpYvz8UkwZLqJKYQ3PGpS9jUmIsg5VO3xMNDT+7m8m3LiAbH2HHZJlwuE8V5bmKBab72+Wt46fnX6ensZff+M1Su9FC2pAGHu4ykrNHe0oJV1PAPNbN2zSpyS4oY6E1gzfRhttrwZdlZs3oV7iwX4/4R+vsHuKhxLVl2G1kOy9+0Tc69t7M/Z++JpmnnnkZ8+F4ZGBgYGBgYGHxcXBAK9KlXnr77XHydIP7dISr97znZv3MGLoE5Fd+kXwuzKubfqdiYXRY874H+YDvh+b+ng6ghpiAajBIOyUjFOYiaSv/pw+x97gzNx6bYvGMFRYUW8hcWIys23Fad79zzBN7SRXhEGa9XoqisChMWTC47VyxfwtBwP0JcwO2x0T46glkDNZEkPBVEigSxmbPIzs4kFGgnL78YUVc523qM+PgodTddjx4eJMflYVzJxj8VobBiHuFAjKfvfYS+3hiPP/okBTkC84qKSaSSHDpwiKqCHHK8KsNnm6ksr2QiNIWq2rj5huuZnBwhz5vFH3//FNs2rybX5yKlxhkaiWPLyEWJT+LJLeFYe5B4YBBzMsh0QiYcDOJXHEhWE/vfPU3VsjJ6R8YRBB1RECnOz8VqEkmmZPzjo5htLpYvrmFRcTYlUhKzSULQNFRdQ59RmdNLghoCoMgKoiigKgq6pqUXB2cyotFBU1U0TUNVVXIuvc5QoA0MDAwMDAw+ci4IBXqu8jirRM59f1Z51OccqOcPWZb/RoU+dy1FTS+faToSAoKmg5ou4kjHpOlp/7SaTn6YfS3ogKajxmSUVBJlOo4ylcAa9yBJ2ZQWN7DrUCeFuTaWr/CR4fISDkewanG+++s3mZayETWZ3oST0uqVqIpOntdOyzunefTxV9i5aj6rymDtgmKWZDupmF+FZLfTsKSc0XCUt5pOkRJkGldezFBnDyMTkyzYuJXqKi/H3t5FxdZNdJ9uZujILtY0FFFZVkJ8SiU7x813vnIlggTqdB85+ZnccMM2ahdWctU127FIdubPn89wfz/TwQjxyDjf/+EDPPfacQqr6vnxgb/in/Czb18TefnzmNIFPnnlNm67/TOc7h0nnIrhczlwOMyERiZZdXEjTlFg/UWbEQB5MkD9sqVY7VnYrXaGRkboG/QTiwTZuHYDuhLlaFsX+WYJq8mEoGhouo6gaghomAQQ0BB1DVWVkcR0ZJ2g6ZhE6Vz7oD5z72e/TImGCG1gYGBgYGDwMXFBKNAtLz91N8wow+cin4W/82h+jlKsffBx/3nv8hxl+kOJHnBe0RZE8QPXnf3dh9XvuYdZFEkmVPSUmUy3C2tiguR0Pxuv2cQjv3uS5XUreevVI9irtjA+4WdeWT4/uvdNxv39SAKcOtWKYFIRLALDU9Nk2jS06DiTkRCkoiTCMSbHQoR1lWjEgopGhttNeaGDrNxsLPNqSSTGqVpSx2DPMFYxRVGGidzKQvYf68BnM3HL52/E5rJy8xdvRtcymPSP8dPf/BmLPZvgeC9Dw5Ns2bKJnq6zKJEJtm9qJDtTwD+Z9ka/+cD9LCj30dY9zC23fZbOzkEGznbwh6deYDKm4kZHTKZYvHY1nUNd7NvXRygaRtFDbNywjtaeQQIJjUgkTEl5KYFwEkFV8HkyCU5OkJfjory8ikU5DjJFBUFT0BUlPTDr6jmvsz6jLM8uh+qqlv7djPqcPkc7l9KBDr5LDQ+0gYGBgYGBwUfPBaFAz/L3lOgPH+rMYPXh82aTOc6p1R+61oePWd/zBxTuv/P35h6JpIIeTRAeCDJ0VubSr9zJ1ttuJJgSGR/W8Tf3MxFVePvVF1lX62Oku4XF+VBV4iEWi9E/HEVTNbZtWonNlKS+cTNd4zqaDj6XhSw7mMwCAT94MjVOHjtLT/c4voIqhkf8OKwicWch/Wd7cXrzmRyZJqQ5eenV16hbXIwen6T9RDO6ZOa3//kfrL3hFnrbT7J9yzqOtQ6QJBtTZhH//O0nyXQXkVDA4YDyAisVHkgkEhztDHPxpZ9k+2VXsenKb1NVkY/JnIHZ4sRjtXLN5ctoXFHK4fePUVJUis0qcPnOrXR3T9M3NIw500MoJqOKZlrbWhA1hQynnamJcaanRsnJthGcGMNqsaDrs08AtHQG9Ie+wAAf8Dx/MMdb/Lu+aQMDAwMDAwODj5oLQoE+9crT51I4hP+XUuZZD/TMC3RdR9JA1bR0DrCugy6kr5EuFkRMG6TnFG/MeKbPXUZH1M/bNmbTPQSYOU9j9pcCOkoyhSYrqJpGRmYu7poGIprA6oX5vLf7baJKlNycDGwOKxkZXnZsXEhN7XyQp8nNMmOxCEwGwggmGzIqSjKMRTJhMqWQNRWTpvOJq1dil8IsXVDI3r3N3Pu791i+rJQMk4XM6lIGj++noG4dv//JS0z4xxnqSpE/L4elS5djsrkZ7guwoqGBjRu+xl3fvoHRrrPYdZm+U53kFvnIzssjoaUYmYwyPjFKflkuybEgrf0jdI3BjTtXce+99+M0wbO7T1FZpFHizeW2W7fy6DNvcKh1mnhcpdybyX/94E5+/vOHiCRSnB3xY3VmEUyGkOwuREEiv7CAWCxCRUUJy+aVsHZ9PSabk6psO6ZYBEQBTUvfN3QZXVXTnmg1rUaLGqiyMmOvmbHvAKqipNVp0u2FmqqQs/0GQ4E2MDAwMDAw+Mi5IAbo5pf+cjdwPp5uhg8rjLMxdrN5zbqe9jbrH5q5P5gP/EFLxuzioD4zNDNz3dnfz/7dc+ejn/NDS6KYHsJVDbs1g0goRiIcRYupCFl5rN55Gb3Hj7F102Y6OjsYHp1ENFs5dKSJ7p4hli5aiiSKnD49wHRK5XDzKPEkhGMpwgGV5QtyKfVY2by8jpql5dz4nS9y/aWrqSwr5NkXdxFOBliz40ryPD4iQ0OUKjG6RifJrSqgsa6B4NAAnWdaaOs+TSwURIyNocoS/vFB6pYv5I67PssjDz7FhjWryHNb6T7TRXFJBQMjIZbVLsBiTRIYifH+wQMc6YSFKyqoySvg9PFuLqrzEhgJUuQtRFdCuDNltESYX/9uD1XLqvHlFxGKhvGHdC7bvJb+0QlcmZnoqoyWTFFTVY7VbKK2ZiFLa+uwhsawmQVMQjqKTlOU9JcVJd06qM48FRBn8731dJTd7L3TZjzrOtq5eLvcy240BmgDAwMDAwODj5wLYoBuefmpcwo0+nn/84eTMc7Zn2e8sYIgpFXIDw3AcL6xkA+lcMx6pRHmnv/BxI8PVnzzgQF81j4QT6YQBJUMKcaeZx/CFhpk79uH2H+8n/f2t7Dh4rVctHYdZ1rPULNgAZrZRzSlc2h/C5bMDPKq6mjrHsRudZBMpvjhd64jERpm49b1NF6xnbgoEujo48Du19nz7juM+BWyc6qJTXThzbUS6BnhzUNdvD9i4Yl9E3T3tOH2lvPmvpOMTskoKZ0rr1xOy7HTZEg2Wppbae3oJ8uh8eyzLayqz2ZJVQ4dvSHePjyEwzxGPBgjx61TUVWC1SZgM5v4yWN3ce3NWyjQw4hWgUu3reLBh/bxyJOP8tQTz6NlWTjQMcbw5BT/dudnOdPcQu3qDXSd7SEUnCIzw4EvM4ves6dpXLeB0x3t5Dg95Ksx0GWQU+jajOqsqZgE8XxcHaDJMxF26szrWfuNNvslanaAVsjbcZMxQBsYGBgYGBh85FwYVd6qgs7M4CqBpkkIog66NHOChqCLqJKGqIuAhiJKSKqOjnTetgEIGgiCCU1LD+AmzsfViRqIpFXthKRiFiU0QUTQBARBTZet6DqiLqWXDgUQNHVGGU/bQky6iNlmISfPhyxESepnKc1y8MLBPgocOnULq3Bk+Xj8L7uprinDISjs2buPadnOnuY4RU4QElESwUPk5pjRExFW1OfTcbKNllNDxFItlDUsZzwwwXh7J1XlK+jqjXC6p41AdIiSvIvpP9bKn18+RKkzH7d1nIYKEy2dSXoG95DldZLrTZCdV0RLe4Cp4QCmvAgNS8rY/U4X0Sg8/MQ3eOPZZ9jUuJ5nX3sCX24mY1Nh/vWOz/CDnzzMq6cGeO/FO8l2CvS9exhTLEJbu59sl8QLL7/HpkuWcfNNt2JzWhkYkZlKgU2T6T19nPLSAqYC0/T29lKUl0tWhhOXxUqRZz4uhx05txRJV9F1EOUUMuniFB0dFBVl9skCpO02M4q/CKjqTNGKpqLOHIIOSko2UjgMDAwMDAwMPjYuiAFa002AhoCEruqIogldUWdaAmeyoTURZlKe08NUuppQR0hnNSMiSAKaKKLqIOoiAgKyKCBJJgQBBD0dYydJJiREdFWc8TsLoIGOiCiJaXVbFEFMK9yIOgISogQmTCSjKeKSFW+Rm5P7dnO8s59oXGDVhkZ+9thf0WMgWkUONffRsGwxTV1DrL+4hozO49jKfWS7HGxeuwm300pobISOMyc4M9DH9uu2UjavjCxfNqtylhNw+5iYiPClf7mT2E/+h+/84keEO04xlPSRCkjs7h9hYmQKLZXeBo1rJrp6otgmrAz7+5iXG+Ez165l354DDJ7tZcNqDyeOT/HrnzzEtouXogkOvLnFuKwCNfluDpw4yk9/cyfeRZWMdXcjWu0Mj/RjF2x0t7WxZvMnaHrzRfJrNuIomEY0W+hp7aC8sgrJBG63F8foNP2DA4BGNBxiYsKEmGnj8h1XEgglGD7bi1/SqK7IQ1JMyHIKTUvbM0wI6TxoXUcnvdwpMmPJ+T+WBFU1rVqrqB/LZ9XAwMDAwMDA4IIYoKNaAhUFVAEEBUEXMVkkUAQkSUISdARdBNGMRZDSyrKoYbJYSCUSIOrouoDVbEZPqFjNEibRgoAws5SmIEkCiOlBXUulMIs6ZtGMpmvYLVaSiozVZEbTQEJA1EV0HVDS8Wom0YRFMCOhIJgkUtNBgvZxxNFpOkem+OLNOzh5tInFlfPoGE5xuHkQc3Yme54/xcKaIp54/ThZdli8pA41meCGq2/AIcrsefkZ+kURd7aHypx8aqrmcXTXHnqbO0gl4WhnF2a3m51XX87wyVOMTQWou2QdG4Zbud6aQ8qRh7d8IXsOH+KHP34cq9eFrCi09Y9y5XWf5qk9z3Dzju1I8WmW/cPtTH/2nxgLJVHiKgePN6GZk/zy3n+HXImJ1jNkmSX63n4HWZF49Y23WL9hLQ8+8TxaHN659zFWravnvmf/yj3/+QPuve936EDH2bMIKDS5QhzpmmRS7MMspNV+iyiSX1TAgfePkONw0liaT5HNjJKIkhCUdP6zpiOqOop6Pstb0dR0DfuM93l2aXB2mJ611aiqiqBqH7DvGBgYGBgYGBh8lAgXwuDR1bRHT8oyaBqSAGazGavViq6mByZZSaIkUyQUGXQdm9mC1WrBarEwNTVFpt2Jpmm4XC50mxlEgVgkjslkQlAVRJMF0SSg6RLOTAeCpqKI6eFLVXQk4Xx+dNq6kS5nsVrNqEkVRAFVVXG5XIgIKGhYNBFs0/zytpt45N1ubrooj1OdAbyF82gdmKJ1YJzppIhmMRNLJti4fAEVJT7u+e4PyMnJZSISxGs2cXTXszz2+B9xeDMR5Sh3fPOfyM60sf+1d9nX1MLowCilVRXccvsNTI324s3IwiybEZ0iees38Oarf2HJksVYZEjF4kRC41QtXcnJfb1s/YfvcklDDdGuNv7tS2swqW7ql5fz6pu72LW3k++kGDRXAAAf2UlEQVT85C6EDIFjB/ew7d9+inp8Ly/+6UF27ryZg/uP8d7+46QQWVO/mKPNXVy24xJ++fsnebE5zrJ8JwOBCEEFYhpYJGjIg7aEC5dVx1tYTiISYsH8efg8OcjxKRrnlbE0P5/8bBdKPIzJJqAmYwgzCrSuKumnD7qOrCooKRmzKCGndHRUJF0hKatIqnLOJ62kZCQtXfe99L6X/+8IFwMDAwMDAwOD/4+4IAboE6/dr6ObEAQdh82FkooyGZhmXnU14WgMZ7YXVdHJsFrQdR2TycR0KECmMwsFiVQihKqms6AtGWY0TUOOx5EEEcHqwaok6G0/TnFhDqLTjSJY6evrIzc3F5szE6vVjs1mw4ROMDiFxW5D1gQsNgeezGwkm0QoMI6cVLBkOMmw2xElBSQrRDspL93GPXdeTndrP6+81UKxF27+/KdYvKyM8toGBF2kt6+dkf5unA4buQU5RFMRUEUyEzIP/epxRmURi9VKUV42HmcG5RWV/OI3j/DCWy/y+P2/wmu3EY8nqV26jHfe2UNpaSkXXXYJ8WiE003HKS71Mj44zrh/ErvLTUpIsHr1Gnx584iODHJsz+uUV5TSPdDHxZt3MDBxlsk+P3U3XEXTm7spzTBjQWTMH2TYP8VfX3+HjoEU3/netzi2+0V+/1obi0okOtUcxrpHaVxezp7TfUykdKwWK0VZmaDLJLQI45Mq1W4Tntwctm7dyme/dCPdZ89SlpNHRk4JJknC5s1h4GwnIhJFZWXI8ThmTx7/8bV/YvGipUiigzVrVvP73z9MSI3Teeww39u6Ck8sRMpuAzU9PDMzPKuqyvLf/tUYoA0MDAwMDAw+ci6IAfr4E9/WdU1E01VS0QCapBOLp8jMzKRvYIjiknnYHC5MZp1oNIrX62V8YgQECVnRWdSwmlAgQmaWh4mxaUySgJJKUlZWxJmmXeTk5HCqtQPBksuyVSsY7u2grGoB8dA4lsxMPN4SJifG0LUUk5MTpJI69asuIqVLqJqIy2kFZGQlRVIWMetgtSeY8k8z0PY+JYsL8XgkjrzyPG5fEQXlK5AyszCZTKjTk+i2LGRVIDO/KB3TlkoSmJ5CCau0tewmPDHJmy8fRhFNmM0ScjSO05HJ0roqSsoK2LvrTYrzCrj2xlvYu+ddOrs7aGhcSTI4RunSRYRTKZITg0xPRFjRuJG8NVvY/+KjlPgysAQiHDp5jEW19WR6PJgtJt5vOsyS8iLy5y/AVFzEX370M67eupHf/O4PFJUuwD82QWZuCb99aC8OLySTNq64bBVvvtPEibEYlRqoGTAm2vDHUuTadNbPc3PD5mXUVrgIqbD8ohWEZIgqOh67l8FggOoFi4ioE4iCjWAwiN2ewc9+/he6+s4SjkSwWt2kUgo+Xy5Op4PKykrGxsZoO3CIvNo6prpb+bfLG7HHFDQlbetQ5PPlOQ2/e9UYoA0MDAwMDAw+ci6IGLuedx66Ozjux2nT8I/0Iysx3F430ek4gqZRVJDL+NggBTkezKJOIjJNy7ET1C2twWaViY4PIspBAqPtSIR4+aXHEeUwxXluUvE4fn8HrgydPF8mo/4JyspKGRk6TaYUJhQaxmKNkZOjkZ2VIBUfJsebRTLiR4+OYTenUOUgvT2n6e/poby0nMBwKx3H9mGNdqPoKUgmGO9XWFBTi9nmwyEkmJoYo6ejheCYH1OGGTk2hRjsp+nVZ0iN9yASIM/rIDDcR7DHT1dHJ7KqIisatkwriqzjdlnYtHEVkcAUS+tXMuSfoPnYUVbW15OblU04oeLMcjPa309WUiQ0FuT++x+mQNJoXLGSk01N2DLsFHqLuOen97Hz2st5/8ABanPyESQTJi1FZ9Nx9uzdT5Y9mzhORqZCeHLzOXTkJJqeQFatlFZ4eKepmzPjccw6bFpXxdHRMImUxopclX+/bhF33LKFhsvXMJmQySp045+WMTucRFIpsnyZCCYNTYniyCpGw4VZdLL3zb0MjkQZ9k8gSBby84vIyyugva0Ts0UjK8vJ+0cOsenqaxhsP8LklMDGqlKscipdspJOsjvnmy684mYjxs7AwMDAwMDgI+eCUKCfuqtBH5+KYjeb8PisuLO9xOMyktWCK8vB1MQkumwhpSdR1RQlpfNxOh2EpqexWazEkzqdnZ2UzS+hrr6e3e+8hRwLUZGXj93lxT8ZZXHdagZ6T2O361gsNjoHgiyqrqWippzk9AiTk366u89SWlyEGk/idGXR1t6N1Z1FhtOGSbeSke1jIhjGZnfh9eWSW1BCNBklMDVIoK8Np9NJaXERg6P95OaXEg8MIWoycTlFIppiaGCY+uUNZGR56WxvZ2RijDfe2MM/f+Uuuo8cpm9okv0tQ8hSCjFuYd2qKi7ZWsfJIy2MTKSYTml0d3RhkyTGQ6PsuGwblYvLcGg2WvcdpOVMB/lF8+gPjPDNu77G3jdex26yMB0IY7Vmse/I29x03XUUuDwcO3mMMy2tLFrWiCBO09nZwR+e8bN5Wz0t3b0MdAUoyYOYAjmFPnafnkAWoCDbjJiQWV6dhy5M8fXbt6IE+8gtKsNT4sYfS1F72U4G330LMxKu3CKmp2Lkz6snGUsSlxLYpAwUQeaOf/guJm8+qqoSiURo7TnLupWrMQsiUUVjeKiPjevWEA1HMWVkcORwE8sL8/mH+QXomoYmKx+ocW944A1DgTYwMDAwMDD4yLkgFOj3nvivu3MLCrBbJIZHI6iaiZPNrUjAqeYW/MN+lESC6YlJkvEkipzEJGpMT00wcLYbQY6TSIYpnpeP05XB0toFBKfGGRweorg4nwKfk0RggFPNnSiqwuq1K/D3HGXSP8K+3e9x6N39VFdUkWGzcrari9a2dgRJJSlP09fehlNXmeztouNkE11H3mWk5yiR/maGTx/Elgow3tNCdDqItyAfp9eDO7+AU8feZ97iappOHmbRim1keT0cPfo6uTmZvPXqXzl68AAWRaW6oACHkGK4v4e23lPEU5PU5lcwnkhysr2Xkf5hVq9cx+DwMNt3XMrEiJ/SkkJuu+UGapbU8Nfnn2Prth288dJrxJIqi+sXY7LIxCNBKkrKeOrPz7Jx03pWrV7DwqWL+OsLz5HjyeSdfe/TOhShsKCIbLuFiaDEV798BS2nj2O25zEZCzGYVOkMwnBcQDRr5Dh0TLLG5Q35eHU/3/js9QTGRsjKK6CkZjHZeVXk5M4nMRzGU9fAwMAI+eW1OLOySIk6VqcZmwrRQIDek4M0dYYxW9MKcklJCZds3UY4FGJocAhHpovyshICkxNgNmGx2kCH0rxc5kszLYWkGydnPdBFV95qKNAGBgYGBgYGHzkXhAL96+uLdIvdwfyKYtr7OsjNzUVW4oQjKl5fEfm5OYyP9SMi4MhwEUuFcTpdhIPTBCanKC7yoegqqqCxpH4ZsXCIeCJFcUUZR957n7LiYtrbWnFlOJkIRshwO1latxKXK5sRfw+FuUWMjk1xuvkME+OTJEPTeLJd1C2rxe7OZf6ipYSn+tn37ntk2xwcPXWSO772OUYG+ilaMB+mRpkKqXQMD2L3ZLJsxcX4uzvJq61m36vv4sn2Yk0mqVxVR6jrDPsPHEDXdTIcHswOiZIF5RRkuTCVl4Mc582HnqavI8KB04OINhvEE8TjcZYtr6envRNFTbFhTQObtqzk+aefYsumjTz155cJhXVkUnz205/ibGcHl192GUMjI/zvLx9hfmUhjz7TyTe/VEdRfibZ2bX8/i+7ONvdg2gRGQ1qXLZhMbt2n8JW5GYqrjE0NY0jw44NGa9dY36JhyJXkgKrSuX8UjJMQcrKS4mkkhRXFNLfN4yKiVg4SDSRZPnaFXS1dzMeHGFJQwM52T6GI3GyCtzkJHO58fvPIYl2AoEAkiSBJiKZTTgcDhRVQFUSlBbmk1c+n6YD73P1Ndfx4iMP8O2Vi9O16jrIsnxOgV798FuGAm1gYGBgYGDwkXNBKNBHXvzp3aIg4XA6OHmqhyyni1g4yLK6GsbHBug9exZdM4FZYmXjWhxZXiZH+5hfWYbXl4XkyqC0vJwxfzopo7O1ncmpSZatWE5ebj4pBQSTHYtZwm63gyJyur2boqICnnziL8QikxT63Jw5dpxN69ZRWrmAS/6f9u7st877zu/4+zn7vpOHh8vhTlELtVq2ZEXyFrt2YieZeNAiSdu0HTTAoJ25LVCgjYGiV73oRYsOOkiLSWeathhMlnHsGcXpRF5kW7K1k6JILVzEnTwLz74853l64fYPOBdxNcDn9Rf8Lt/44Yvv99vf4rOrn/Hwzh0mh0f40R//GaMDA4RCMRKRKLNzs+AOcvPOKq74GB1PgMMnLnD9+kP++4/+mFNnnyMcTzEYj7K7Mc+D+StQLNI/Msa1y59x7PRZDr14hrZpspW3cCWHCPmTPJybZeTwJClPnVDHolCrUzRtWraLh/eXadhOtneb+NwBpjJhTp46hNcd5szZV7l8Y57ZpTw76+v4XV7mZhdYeLhKuWHzy/eX+b0ffItI0Ithtrj8wR3WSg/BE6VGgo1imYW1PXLY7DQ67FfbuLBw0yHodTKRdnFmqp/x/jhnnj3BtXuznHv1DTqhCDWXD8PfQyDZj+EP0T8xxuFnT+MKBylXqoxMT7G1so7T6aSvf5hoOsHK/HVuLRq0GiaRYPiLE94dm1S6FwyDVrtMpVrC6fFQL5fZya2ztLqKs2VxIZPBti2cZpP2/71UaHcsBr/1ff1Ai4iIyG/dExHQd975o7fMTpuVlRXGx8bZ29vF7Jgs3FsiFkuRyfQRi4cYHhzg0f17XL96hXgsTigcYnl5CcPpYu7OHK1GC8P2geFhdHSU69c+JxzyMTt7i1arStCXoFCo8LXXv0F9b5fi1g4zU1MszM5T2Cvy8iuvkcvn2Nvc5K/+4qeke3pw+gPcnr9LobzHeq6KM+Dhxde+xvQb3yNoeNjZW2U4myLuMth5eI/FG1eIpuL09AxQ29vHEQ8ydOoZDEeIubnbOJwQS8U5OHOc+Rs3mJ7qpyfuxRcw2NpdJ5kJ0miVGJgZ4vjpk3T26nicXh5vFmnhpV4Hv9fin/3g7/Gf/8uPCXg8/PKnP8fu1Fm4d592q0Nhv8XVK5scORDle2++xPrKA0oNuPjBHA8WF1l8tEudBvtbFtsli4ViiU4wQL3VwYGLTrtNIuYl5LbxuS2SLotTU1EGkj6OjKeJx9y89NIz7Fc2SCWcZLMJ8rurtOp7pBI+omGD1c11Ql4vQacLwglGhoeIx+M8uHkDr8dJenCEP3l7AbPVJhyJEIlG8fj9OF0u2u027aqJ3x1gY3WNzGA/pglnnz3H1tISzw1m6FitLy5XOgxsy6Jjmgz9zj9SQIuIiMhv3RMR0Puz77yVSMYYG5vA7BTIjvQTCPg5fOQ40WiMUDjI5uYGCwsPadSaJKIhSpUqLpcLp9OJ2+Oj0+6QiidJxONMHprkvYvvMTY4Sjzex+52juHsCH3pAZrNOrm9bUK9ET67fY1Xv/kG+7USttPGtBok+hJs5Hb4+7//A3713kXOnH2G6ckpDMsmHvLjdTZYnLvJVNrNxuI12tUG0WAUIxgkdeY5/N4AS7M3OXFihrDfQeHhAs21PW58cpVcvsz45CFapkEgECbVn2XfdOEJ9pKvWvSkBtl5tExxpwWWB6omoYCTqckB1pZXARtfwMZy+Ll48RprpQbL63nwxCk22ly7v0sVD4/22oTSUe4trvPR5St8Nluk4zXYazTZqbrZrBssPq6y5vOR79jYFrSbDXwOG49tEfZAEJOgw2akJ8yzMxnSPoPjx46wXdlnt9lk/OuvER2b5m/++hLjh05iRHsp1losb5Vo4CFQhl/94n8TTw3TOzxMNb+F23aRnjxIp1Ti5qXLfPbIoGPbRKJRlldWsA2DRq2Oy+miWmty9txpytUSj9c2eOP1N/nNpUusPVrktalJDKuB5fRgWx2wbayOxaACWkRERL4ET0RAf/Sn//atpfUlHE4HvfEYXo+H+XvLBPwhbt64icfjxTYcHDt5ksHJUXC6sJwuRofHqNbrROMxZo7OsL76GLPeYv7uLY6dOM745DTlyg65/B7nn7vAlUvvkyuUifamoN0mGorw7tu/xOPwMj11mFTPMAFfjFxum8W528zMTDF77QZOn0lxe4sHj7bA5SYYiNKfPUGu3mY9t8zdxSuMZdO094uUCyUmxo/w4dXPSSTTDI1m+HxxjZXHj/n6V06QPTRCvrAKXtjf2cbRNrn2+afkFxaobeWJJPuZPHaUSLSXiu2h/+kzlDs2o9nsF7+3Ti+FUp6m06ZuQqXjotBss7ZbJ1e3KFsOcPvJV9uUOw62a1CwDXINaJtu9p0tmoaJbUCkbtJqmXg8NkEL+qMehjM+jFabkQEH2R6DF8+cIJN2c/rEQdaKK2QG0/SmUwQ7NfKPFnBYFsl4GKfTpG0bjA6OkNtaZ2j6MJOHxgn0pAgMHcQZCOIZGod4BncsQX2rygcLe7RaHTBgKDuEaZpYHdjfL9HTE2Nle4P9QoFMXxav12a/lMeFk5eHUrQ7Bs6OA8P44oKkZdsMflMjHCIiIvLb90QE9KP3f/zWgROHGZwcIxgJ0LFMivkdkvEehoaHaLYajE2MYpkWlVoNq21SrpXYXF/m6PEZFu4t8ODBAxxuF8NjYzQaddK9KR49fMB+qcShQ4dwu11sNvJkMgOsLy3Tsg3cbjdvvvltcrs5trc3yeU2+ezaVTYfF3A5Anz0/udMTB3k3CuvEEikePqp4xw+Os3GzhLUc+TX19hfr7H6IM+Bg6fY3NyhXq5SLGyRTkdxUMcRClLaekw6GOba0jrHzpynJ5nF44iQ290inU4x2N/DaDZDNOghV9qiYdkEA17q5SKV9fukon46jRxHpweJ+bwELZNsoodqtUTIH2Fru0gHC6fTRSDgp1QpYThN2mYHw+2g1bFoWBY2FpEWhDsw0RcDq4Ev4CTstUnHfTjsJpmYxaGxKJ6OxczUGAcnRnE62lRKRVa2Nwimk5iGg5W1ZXrTaXrTg6xv7tA7PMja3QVymxtkBwbI5ZYpF3eotEysZp12NY+3VcextkBl9xaWafHZepB6qQ44qJSrtFodPF4XjWYVw2GwsbmJ2+licGiA3d09xkYOcuv6HK+P9gDuL0Y4+GKVnWVZCmgRERH5UjwRAb1746dvZSezGE4nZruJ2+XHaTvI54skU0lsbGr1GuFwhEa9Tqfe5MDUOMW9PXLFHIODWVKpFMFQiM3NNcbHx6lVK8TjUa7euEksEqbVqLF0Y4VSw+TV7/1jEvEI4OBnf/HnOFwexicnicRC+DzwzDPHse02tt3hyMRByjv7VCp1Prj8OR9+8DHf/Rf/kssXL+IOuUgNRfnmd15hfv46yUgPN6/P43T7Of/93+P9n/2cgOkgFfKzkd/i4NgUd65+wtzcLfaKBYanjxMdPYjH5+Wdd3/N0bMXuHV/GY8/SLFYwulwM3t3gYnpoxQbbQKJIDsbd3n15Wdptwr09/XRLBWJ+jp4PSapsIeg0+TkxADeRpnjY1lquwXcHj/tpkncGyToaRONgtdn4/PaBF02o30Rpkb7GBuM8MYrT/Pa808RCdv83X/4O9y+fonjZ2cIJby8+Hee4/at62QzfUyODRBLhmibDeLJMPXyDkG/zeihCTyGRaR/nFbHycj5V9hbmKUvnSS/m2Ol7Gdgoo9712/y9uUVYpEe9vcLtFptKvUSLrcLn9+Lw+EmHAgRjkQpl4oM9I/wq4u/JplI8Go2idVxYNkGNiaAAlpERES+NE9EQF/6kx++ldtaZ+nmXbbW17l55R4ry9t4fS5Mq83k1CTLK0sU9goU8wXq+2UuXfqQ3mQaXyhMJJ0klUrxYGERr8MmnyswuziPK+zkhRdf4MPffMiDe0t4Ah1SPREwDULJXqBDfzpFxzZwutzYHYOPL3+CaThIpdN4Az6CfQFu3bjDyaePk0p6eXpmhnd+8j/J9Axy6/N5fvHzm0wfOMbS/cdMT2SJJtz0ZfuYf/8SmYF+irsVjjz/OsGom9vXr3DhufMEwgGOn3mK/KM5bn/0MZff/QVfOf0M7VqNA+OjdDwxak2D0emTpDKj+HwJnK4QPeMHqbddjJ9+Gl8qwdzH7/DVc8c5faiff/5Pfxez9JhnpgfJFzfweTqUCnmy/QH6Yk6Gejz0BDukYzbJUIBMMonT06In7Ge4N0TcbTIx1MvRw9M06jUW7y0RDsZ4+uWXCD51hqW5R3QaTmZe+Bq9h5/C4wly4/YCDnec+NQM29v79IwepVlzUan42SzncDtsfLZBItFDqVCkUKgRNOt4HF4W72xxa9fAYZk4XBbBoA/bZdJq2TSbBuNjYzxaeIA/FOLWzevYtoNqrcDgQIqzET+G5aTlMMBq8/9WMWoPtIiIiHwZnoiAtjZ+81bDcoBh4XK4GBnppy8TZ2Cwn7YJn125STQcIeAOEPR6sa0WiVCMYrGBy2XTKJUxG3Wyo4O0Oi02tjc5MHGIdLQfX8BFKZ8nHvUTD/awvr1LTypKeW+JG1evMDY6jO12sLW+QWF3l3MXvsLYyAC1YgG/w8unl64yPDrIf/xPP6ZSrjA1PUXvSD+e3hjhpI/XX36Ku9c/583f/0Pq1RZXL1/j2e98h+W5a+zXi6SGRokHvAS9Hpqmyd/8+iOef/FVPv6rd3GHEyxv7NIwDHpTEfJ72xhBP0Gvgc9p4TX3uPHh2zSbDUqFTVKBFqYFAY+bUDTCs9/+FtFEmPBAL41Wk2dfewXTrHN4YpSI383UcB8hD/TEnOTXClw4neXk4TGcVoUTR0Y5MprGru9x6tgUHncTh9GiUS7y6P4sr33jOXby66RHhqC1z+bqQxxOSMajOOwKBAwce9uEA1VaxSJWs0TYMDDze2wtf0wo1aa/vxen14D8Pju359hevsfIQJJf/K//xshEmk9uNNivNiiVqvSkeykVyjxaXMXtsmk0aqT706yvPyaTyeB2eUgk0uzu1nh5NIxpmTjNzhfxbNsYGPQroEVERORL8EQE9I/+zR+8NTd3n2g4Rk9/mmbHooNBs9Zm4/E2nZZNtVLFNDsUC3uEg16apkkiHmNra4Ph7ADVap1apcFuocDZZ8+xs7NLpVKmVmuxvrrKyFCW7a11pg5MUc7ncTmC3J2dA8sik0pSKuQI+X0s33/Ag4X79Kb7eLjymO/+8F+zt7zIUF8vh08fY2RojK2Hq7z3l7/md7/7T7h2Z5axo4dZe3SPYMDAaTX4yb//D5yYOsKf/de/5vv/6odUahUqxRxbm2scOHKEtcfLZEcyLM3PcXjmOO9e/BWnjp1mZOIQsVPPsLT4iEgoSilf4+7teTqNKqePTVDYWqNc3mdp6Q7ZkQEo5Fm8fw9fMIDDsFjbXCORSlGnSSIdw2G3yPTFOXVqhtdefZp6rUR2apDzz5/l5OkZ8lur9PTHqFFh7MAE7pCbgfFBzj1/ATMcZOj8OQgmufH+e0weO0ViaBSPP8D+Xh5fJImvY/HBlSt4Qj202cdtbrO8uonTl2A4dZw//Xc/xZmL8M7FX7K5X+PsV1+m4w2TyWZZWnrIR7frhGJxKpUyhWKeQDBIb28/bbOJy+nk1q1bxONxioUK8XiSnZ1tHIaTV7JRLNMGy6BjWwA4HA76v/EPFNAiIiLyW/dEBPS9d//orVQqTjoWwO3x8vD+fWYOH2b50QMi4TCHDh3EoMPgYC8Hjh6hYkGj5qZp1Xjxq+e5Mz+Hw+2hYxvMnDjJXq5AKpkgkUhQqRaJhRJ0mk5algvTsGm2qmQHh3C5nCwvbbN8f5MjJ06y9Pgh4XCIAwemMTo21XyV+U8/oVYusruX5+DBaRztBnN3rnHkxCT/4yc/4eCBGe7M3mVyYgqnyyRXLvDCN15ncKifl164wOatj3G3m7gNg7XVJWKhKIdeepGl2zfY2cnjdFtcOH8UbyxDKJbi0efXSScTuOwGHQecPHeeuYeLHLjwOtVGAIwaEa+b/M4+hd01yqUy00dm8LpcVGoVsqdPUdvY4tOPL3Py6AzpTC8Nu0GlViaZTpDJpLl17TprS8usP37I6adOUa9XGEr3cvf2bYqFHdq0cTtttm7NsvfgHumhPqJeD7fff59k2E8wGaK5s06lsM3M0VN8/LNLHB0b59PL9/mDP/yUr780yma7yuB4BkcEjhyeYGAsQ8DTJre7RronRE8mydsfrrO+uUsoFCKT6WNl7TEeb4Ds8BCNWp3R0VHC4TAup49SqYTH46HTMXl1OIHZ6uAyXHRsSyMcIiIi8qV6Ik55i4iIiIj8beH4//0AEREREZG/TRTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIFxTQIiIiIiJdUECLiIiIiHRBAS0iIiIi0gUFtIiIiIhIF/4PIv9e5nNoIHcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images(disp);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using one intermediate layer close to the output\n", - "\n", - "We do the same but with another code implemented in this module which does the same thing." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model = MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, \n", - " dropout=1e-3, include_top=True, \n", - " weights='imagenet', input_tensor=None, \n", - " pooling=None, classes=1000)\n", - "model" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 62 images belonging to 1 classes.\n" - ] - } - ], - "source": [ - "gen = ImageDataGenerator(rescale=1./255)\n", - "iterimf = gen.flow_from_directory(\".\", batch_size=1, target_size=(224, 224),\n", - " classes=['simages'], shuffle=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "from mlinsights.search_rank import SearchEnginePredictionImages\n", - "se = SearchEnginePredictionImages(model, fct_params=dict(layer=len(model.layers) - 2), \n", - " n_neighbors=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(62, 1000)" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "se.fit(iterimf)\n", - "se.features_.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(62, 1000)" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "se.features_.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['i', 'name']" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "list(se.metadata_)[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(62, 2)" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "se.metadata_.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's choose one image." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'simages\\\\cat-2603300__480.jpg'" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "name = se.metadata_.loc[5, \"name\"]\n", - "name" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "img = load_img(name, target_size=(224, 224))\n", - "x = img_to_array(img)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "gen = ImageDataGenerator(rescale=1./255)\n", - "iterim = gen.flow(x[numpy.newaxis, :, :, :], batch_size=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "score, ind, meta = se.kneighbors(iterim)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([0. , 0. , 0.22400763, 0.22400763, 0.25415188]),\n", - " array([ 5, 36, 59, 28, 33], dtype=int64),\n", - " i name\n", - " 5 5 simages\\cat-2603300__480.jpg\n", - " 36 36 simages\\category\\cat-2603300__480.jpg\n", - " 59 59 simages\\category\\shotlanskogo-2934720__480.jpg\n", - " 28 28 simages\\shotlanskogo-2934720__480.jpg\n", - " 33 33 simages\\category\\cat-1508613__480.jpg)" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score, ind, meta" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAFtCAYAAAAu612qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXm4ZFlV5v1ba+9zIu6QU1Vm1kTNkxQgFBQFFJMICpYiLdJSDrTS6NcPtgPYtEqLPg5oqzi3iu30iXyigICWgoKWIDIUVFGMRVEDWVPWPGRl5r03Is7Ze63vj30ibmRS0CSSRd/LefPJJ+KeOHFinxNv7LP2Wu9aS9ydHj169OjRo0ePHj16fHHQr/QAevTo0aNHjx49evTYSOgN6B49evTo0aNHjx49jgC9Ad2jR48ePXr06NGjxxGgN6B79OjRo0ePHj169DgC9AZ0jx49evTo0aNHjx5HgN6A7tGjR48ePXr06NHjCNAb0HMQkXeIyPb/wz4/LyLP+hKP/3Ui8vdf2uh6fLVCRJ4jIteKyA0i8pMP8vpARN7Yvf4hETntoR9ljx6fi567PXr02KzoDWhACtTdL3b3B77Qvu7+M+7+zw/V2Hp8dUNEAvB7wDcB5wHfKSLnHbbbS4B97n4W8JvArzy0o+zR43PRc7dHjx6bGV81BrSI/JiIfKr7/zIROU1ErhGR3weuAk4WkZtEZGe3/0+LyGdE5J9E5C9F5BXd9j8TkRd0z28SkZ8TkatE5JMi8jXd9gtF5AMi8tHu8dyv1Hn32PC4ELjB3fe4ewP8FfC8w/Z5HvC67vlfA88UEXkIx9ijx4Oh526PHj02Lb4qDGgReRzwYuAJwBOBHwB2AOcCf+7u57v7zXP7XwB8O3A+8Hzggi9w+Hvd/bHAa4FXdNs+AzzN3c8Hfgb4pS/vGfX4KsJJwK1zf+/ttj3oPu6egP3AsQ/J6Hr0+PzoudujR49Ni/iVHsBDhKcAb3P3VQAReSvwVOBmd7/88+z/t+4+6vb/uy9w7Ld2jx+hGNsA24DXicjZgAPVv/8UenyV4sG8cf4l7NOjx0ONnrs9evTYtPiq8EDz4JM0wOoR7v9gmHSPmfUFyS8A73b3RwLPBYZHcLwePeaxFzh57u+HAbd/vn1EJFIWcPc/JKPr0ePzo+dujx49Ni2+Wgzo9wL/QUQWRWQJ+Dbg377A/u8DnisiQxFZBr75CD9vG3Bb9/z7jnSwPXrM4QrgbBE5XURq4BLg0sP2uRT43u75C4B/cffei9fjK42euz169Ni0+KqQcLj7VSLyZ8CHu01/DOz7AvtfISKXAh8HbgaupGjzvlj8KkXC8WPAv3xJg+7Rg6ILFZEfAt4JBOBP3f1qEfl54Ep3vxT4E+D1InIDxXt3yVduxD16FPTc7dGjx2aGbPbF/nE7t3kIgaqqiDEyGAwYLi+zfccu4mAJl8hgYRGRQIzKaHUFBSaTEQsLSxjw/vf8E495/BM5/sSTUAIuimdjdPB+mtX9VJ4wy+RsNE3DuG0YxEhQCAL1wjJa1wyWlnFRLENQJaXEtm1bWN5xHLEeEkU5sH8fqw/cix24nzQ5iKlAUNwdsoEblQZEMyJCHCxRLy4zWNqKxqI8MQL1YKk8d8HJuAlmNnueKX+TjYzjCO6Ou2Nm5TUrz90dkbJ/EifnjFPGlMypPJXPMmM+gb5Qq+xv5rzz7/+mz64/Anyp3M25paoGaIxkN2KMDIfDnrs9dx8y9Nztudujx2bHpvdALywsEGMkhICIlAnJhbad0CRjYWGJtGaEhSXG48R4PKaOyqc+dhVrayvknDnxpJOoNHPw3tupwyKNZVIzwSYrtGsHWMuGqpJzpmkaRIRUDXDJrDVjOLhKqAdU9X0AqCq4Eisl7buN/XfsWR9XNnLbIG1LIBPUUC3zX1VVqCoqGdMKiRWT1EIzxjQQ6wHVYECsBmUCdye7YKbdhAzuiuEkz7NJ2sxQZ30CZ/35dHKfbsMTlqfvFQRoHDDHBcQp+wfDM2RP5Rj5K/Htb2x8qdxtmoacWtq2paoCE4w2xp67PXcfMvTc7bnbo8dmx6Y3oLds2TKbZIHZir5tW1Sdlf0tIVQwWcPahJuxmsaceuqpkCE1azTNmLtvvpGqiiBKRlCH4JnoCQnVIZNiCIFQfAUMYyQ7CIJ2uYniBhjiSl3XLA0CqDLJQDYslUkRAqoQNTMcLuIiSCg3JQsDNNZUCBIUDYAq0t2wHDBRREC7vwUpk7k5ESFT0t3L644IiBpuApK70TqQcZcyiZuBJbBEoEzkEx2gIhiOeHlLMsCs87g4dDeIHl88vlTuiskh3FXxnrs9dx9S9Nztudujx2bHpjeg67qeTbA55/LcJ2XClYi7o6qEcQTrluvdsj20EU1G7DwA6olUQdQFMEcBJdDYdJ4SNFTEqiIGCBLIZhACEgQNNeBl0sWIVcC1woAggkZFBaqhkVwRNxzHJGOAhkiIFaEa4AhaRwQt41fBRFBVJEREa8S9eCIsI3QhQSBgiDvq656O1g0hIWa4lJClYjAXXsSMnA1LLW4Jx8GNGFvcnUjnBXGnQsiWyxg6z0mPI0PP3Z67GxU9d3vu9uix2bHpDWiXWCbDnEhtWamrKOJFKKeioIpLhWook7gEVJxMJnuiLOqLB6QyQSSX8J45CRB3QqdBiyEQgxACgGCqxZsRHNeiVauq4jmpqgFVDHiMZBHImWBOIBCiUVwoisiApjVqcTQ45onhYAnRCAiiioaKEATMUE8ogivEnDCM7BmjTMoujrmhUsKB2Vuqdqq7K16PnOdCjZ4JLri1YA3WNiQv4UdVxSfd5wl47t7D+g3AzabCvB5HgJ67PXc3Knru9tzt0WOzY9Mb0FNNWdsWXZ04xBDRpEWbFwNBpIT3xBAEwRBxAo5NJ2gFVUEVlPXQmKpCp5UTEUIo3gj3kmyi2nkqQiC7gYMSiTEQpJsIu0lORAgKLkIUMNUyCeJz4c9SeVAGCTVAO61dzkQxghhBvbshlWsgnjrPh+OeAUU8gWU8g3vC3HHLZGuxTHmc0+OZGSklcjsmTxJGJqf1yXk+EabcLNa3zev5enzx6Lnbc3ejouduz90ePTY7Nr0BnXNLzpmcW9xzmThzC0FwA8+OdBO0qHchwm7SUcGDElDchdhN2EGUEGWWHONaJqoQFBFHNFPFcmljFcrnpxbpJuFIRdV5TJBOAyd0OdklBFdXAXdFUOiyzL3zKigRUiIxwU1wVbIZtYZywwih6AMRJvNJKymXpBOXdU9FyiTLiEPbtjMPSErpcybynDOe29l+08l5mmk+Hy7MHJoE00/kR46euz13Nyp67vbc7dFjs2PTG9DTyUVV1ycaz7OQmdCVG8IRK2FBxAmiEEJZxWNg5SYgGKp03hOA9ZW+dIksVQhlQpeSkS3SvU7nfYGicZuG2Sheg5wzKSXUMh6k+ywt4ckYyV1pIkmJvJYIIdA2iWQZNNK4EVTQEEHL2EfuZDckO5INMUckkFkvmzSdvNtu8i43vjy7fvMllsoE75hlpq6Ww70gANZ5QuaP0ePI0HO35+5GRc/dnrs9emx2fBUY0GVC0iCIMUvOwB2x7rmVEJuJEMRRAQ2U16XoygxwSyBSJkOdm8CklAzKBtmUbC1Rw2wiT6nU66xCg6rSSCapgsZZ2aNZHU/PeNuQtEvESQnzztNA2S+nhJjTeCoTK1K0dZ5Ay0SNBFrLtA7JMsGg6sofWVfy6BBPB3NhQHfEveT2dNndGCiKUUGRL657QijXU2F2Hj49nek+/UR+xOi523N3o6Lnbs/dHj02Oza9Aa1zk7X4tOg8uJcMb5LhtCidh0ACWQXNgpCwtsGteArEIUqFBaP1rji+ZzDBpxMyQpKMS5lUccWdklAiglZKTiUjXLwkf4g6dYiELlSZmwktgqeEqxI7jV4gQJtJJnR3JQzDEFwDZkoQRVRpPBcPiClDqdCqaAJFBKWcv817YURIfmgNUid2zzOWpqHDEtp0SvgRy2TC7MYwm8h1vXZ/nwn+paHnbs/djYqeuz13e/TY7Nj0BnQzGs9CY9PwmGpAzLCqC+2Jl8QOKd4JkeIKiantvAIZvIQJNWQkdBo8cpmIKROYmiDSYEBbCWLSJZ8YAkQXyAEIWNZODycEg6SGeJkQc6xQBxGlUiWEktyCdbVD1fE4QENFDUisSpiyK49kAotaJnRCAJ+eZ7nZKOvhvammLpmRLB8SFpze+NyFZOX6aXI8GnQaP0yJZMiQg6OdC8QkgyuI4eKlxmmPI0LP3Z67GxU9d3vu9uix2bHpDejJaLyeiDEN2QVI01AZAIZbQjTiol2Gd5wV4Dcr+jswXDMQS7jOFY1O0JL+Uschg+FilxUeCAqWMuJGa+0sFBhjnHkNzAW3RAiCY2XypiSlxEoZVnUp4G+Z0EXjTAUPA0TjLNtcFaRrAABK1ADqmIaSlJNLmC97Qmzdc0FQ2pyJXYK7WcJMMHHUnIxhBkGchkx3FwC38hxKFjlO9IxIKCFKz4grRtdIwfUh+sY3D3ru9tzdqOi523O3R4/Njk1vQKeUDtG6TcNppTPWdCY3gioqSqhqUCFoRRC60FuZMIOUtq4StDQD6IrpS6wI1ZDFHbtY2rYbdwimuCWsGYMlgrW0YtCO8WaNYC1ButCdlfqfbiUrvApGCDWD4RKDhSW0inhqizYwt7gIoYolYwQjqiF48dRoiWBGLccyEuKCUUo5Ff1de4gWL1oJic4aHnQ3PjxjGVqAnMkpI1aaAZiVGqTMJnEjuSG5JMQkfJa0w/xjjy8aPXd77m5U9Nztudujx2bHpjegw9zEPfVQqHRCuOlSHiMqhGqAxqpMzhoxgUDRwZUMcCXUA4RQPBaxZmG4hA2G1Evb2LLrFMLyLjKxhAlzi09WIbV4mlClMT5ZRUf7oFnB8wTJDZLL2HJ2ghuDoFTDIUvLW6kXtpIVctugbUYGxYOyWCm5bUp3qpzAM1EyKiAmBAJRp9pDOURjx2EZ3iXEWso4zSZyy5h1ej6XLksezFOnycsEBJNEsqI1nHbwEgyd1iOdy5bvcWToudtzd6Oi527P3R49Njs2vwE9COvPQwnR2WwCL6+JCKYQY6Sqa0SmHa4UlflwnVLF8l6LkbC0Dd1xElofiw6HjOpFxpOMxuJxSckxj2TARBnUQ2JcRGNExkOkHVGlEWltBZFUvBlk0JrFpe3Exd34YJHJZIKEAS0ZsZaAk3SA1C3CGuqrLDYjSlPXgGiicodWqWiB9WSSkrhSJlgTw7UkxOTsBC3awCSlRS0ZGisBVRdwSSQPnVejZMXjSiVOyzRU6aCdJ6j7Z2700/iRo+duz92Nip67PXd79Njs2PQGdKyHs+cipXJ+PTetTD0kKpk6ClGdoBUxRqRepgrSTfeJiBBFIQ7QLbtgyzGkuIyJ0bRj2jbRuCASUMtYTrTjUQnXhUAbIssLQ8LibnRxFwFHcksY7UcmK2geEcjEGPHlHYyqRcZNZjKaUAm0zZhmsoa3DcsLQ7ZtXSZUCwzrSKoWiO0aVXdM0aYk7UAZT9dMwN2xztvhuv6YoxctnntJYneHrKgX3WIwZWIJi07OLeSS0JKzlc63IiQzBEWtxESn3pdpEk2PI0PP3Z67GxU9d3vu9uix2bHpDejgxQswLaSvIsSpZ8AcRAgoiDKIFVINqaqKqh4SF7dTBcFzQslUGlAL6PJ20mArIx9wz30P4CEXL0SoGSxtJecGmYwBGK+tli5Sqli9QEoNC8vbqOshYVr4fxCJYZFgYxaiYgprCcbtmGRGJcqobWgnYyaTBmvHeIjktTF1VPKwxquKQQhIu0olEemysIPE0pygg7t37V61m2jLo3qpd5oplZrcwT2UiKs7rqF0vvJE8dl0niICYiXffTaZS5EJTtvl9pP4l4aeuz13Nyp67vbc7dFjs2PTG9AVCZ12vpIS4pJpsXkcRQgqWKwhLBBijYWKLBXqQpKIVDUSAm2oGC5sRQbLtMk4eOAgabwKQQmxZDzbaILlDLkpWrXUkNuWIMLaZIKESHaoBwuzrlViLdImao2MVcmThrXxCHCGlRMkk3JDSi05jalUwRKj0YiROuO25piFRUJVs4ATXBl29VAF0K42aJlUuxr9h+eYmCLR0S6hxry8182JDi7FH5Rjab1rksESSUs5KO9uiC6Oi6Aqh9Qh7SfzI0fP3Z67GxU9d3vu9uix2bHpDegam3Y+LUkZYqVOZocgEFWYSMVak4heYW1GQkOY7C8JLsNFXIWtx2wjLO/ENLB/9ABrkzXEx9TVFjRWtE0mMyltYLuJTM2wnDAoDQKy0q4GpJ1ADEiIiDiZRJNhZSVhOZOblqEaA3PGaQ33hLWJSkAlA6UF7DRktyIBIWIhEC2iwdEYEHIJf0JJWum8FKVuqcweTbtQovosa1wk4NnBHZFIUeAZgpCDgChYwNWJBmnaAhfIvn7z6Av6f2noudtzd6Oi527P3aMNEXkO8NsUUf0fu/svH/b6jwHfDyTgHuA/u/vNIvIY4LXAViADv+jubzzsvf8LeLG7L3d/D4A/Bx4H3Ae80N1v6l57JfCS7lg/4u7vFJFzgfljngH8jLv/VveeHwZ+qBvb2939x0XkQuAPp0MAftbd39bt/6fAtwB3u/sjH+RavAJ4DbDL3e/ttn0d8FtABdzr7k/vtv8o8APdZ/zR3JgeA/wBMOzG9YPu/mEReR7wCxRRfwJe5u7v697zj8ATgfe5+7fMjeeZ3XgUWAG+z91vEJFTgNcB27vv7Sfd/R2Hn89GwaY3oNGyAi+au7LKd88oAadiohVrEmhNyTmhabWr/2mYRFAhDpcYLB/DksFkdYWmGZPXRoS2xVyx1FI6bgXIAgbZWyaTCW3bICrEWGMMu+z0Low3yWhMpfboVK8mUjLIx2uMGZMskSZrZfxuxBhZWhgQgmCtkdpEduegZaxdxgeRamGB5WGkpiV0xfxzzqXmqTtBAhlHCCWoqo5bQrV4StSMLArimJS6TEbAqwBNhWgLUrqFmSptJXg2shueSy3SHAKYk7tQrufNPZkfFfTc7bm7UdFzt+fuUYSIBOD3gG8A9gJXiMil7v7pud0+Clzg7msi8lLgV4EXAmvAf3L360XkROAjIvJOd3+gO/YFFANvHi8B9rn7WSJyCfArwAtF5DzgEuARwInAP4vIOe5+LfCYubHeBkyN4WcAzwO+1t0nIrK7+4xPdeNNInIC8HER+Tt3T8CfAb9LMeIPvxYnd9fhlrlt24HfB57j7rdMP0NEHkkxni8EGuAfReTt7n59d31+zt3/QUQu7v7+OuAy4FJ3dxH5WuBNwNd0H/UaYBH4L4cN67XA89z9GhH5QeBVwPd1j29y99d21+4dwGmHn9NGwaY3oPVB6pCqa5ddraBCEkG7DHEzI6UEgKjhBGKsWVpaIqXE6uo9tM0ELNG2bckcT4qp4URy0xQPiDhN0+DuDIdDQlSMaVKJk1JbtGoZsq2H2ZT1TlU5N0wmI6wtXb0UZzAYEMSp6zhLFoHi5VhrJ4hmFhcWaKkZStc9S0u5o1LeyMCFjGMK5kIWJ4tiLpg5HgTrvCEpl8ncKDeBtjJcA0kbCIGcUtHqGWAJN/Cci5ckd21vzUrmeI8jQs/dnrsbFT13e+4eZVwI3ODuewBE5K8oRunMgHb3d8/tfznwPd326+b2uV1E7gZ2AQ90xu5rgO8Cvm3u/c8DfrZ7/tfA70opcv484K/cfQLcKCI3dGP74Nx7nwl81t1v7v5+KfDL3Xtw97u7x7W59wxhPevW3d8rIqd9nmvxm8CPA387t+27gLe6+y3znwE8HLh8+lki8q/def5q93lbu/22Abd3712ZO+7SYeO6rPN0H44HPdYX2L4hsekNaHIJb4k5IZSi/eIRjxG06OKEUCYfnJQaoITA6toJoWa4sIjGmtXRCs1otUtwsaKLiwOiCIaT0pi2zbhAREudUADL4AE8kXNJ7igTephGOZnWSgUghNI4QCJYRfZynNw2TCYTokJVha6Af7kBpZQYTVYxWyCEwHJcpBoE6ui4FO/ENJFFRJi2mfWuQP80eQUBQcENTU7Eab2EXHHDElhuCbkqE3czwVwhZ7AKzLCUCJSbW8kMN0w2pyfkqKLnbs/djYqeuz13jy5OAm6d+3sv8IQvsP9LgH84fGMnm6iBz3abfojibb1j2gTo8M/rPMT7gWO77ZcfNo6TDvuYS4C/nPv7HOCpIvKLwBh4hbtf0Y3nCcCfAqcCL+q8z58XIvKtwG3u/vHDxnsOUInIe4AtwG+7+59TvNy/KCLHAiPgYuDK7j0vA94pIr9GkV5cNPc53wb8T2A38M1faEwdvh94h4iMgAMUmQeURci7OgnLEvCsL+JY/9di0xvQM+9HV09URKCq8BAhDqgcaJwsmZTma3c6dCFHlXrmGVgcDjEzxpNVKq1YHA5JDrlpMTfME4Jgvn5pS8H8BhPtnjPzltSxoqoqYlVRxzI5JzGCZ0Qm4Jk6wGg0IjUT2ralCcJkEkvWelXNvDc5C/uaRCayNDSqasCyOhoM0bqcu5Yaoi7g5exIbtTm5M7bkc1RNwhlnJV3IUEXBu5kDyVz3EFEKXVbHet0fiIlC9wo/73b3uPI0HO35+5GRc/dnrtHGQ92Zg/qbheR7wEuAJ5+2PYTgNcD3+vu1sk5/iNFtvDFft4XHIeI1MC3Aq+cez0COyhG5eOBN4nIGV7wIeARIvJw4HUi8g/uPv4857UI/BTwjQ/ycqTotZ8JLAAfFJHLO0nFrwD/RNEmf5yia4biGX+5u79FRL4D+BM6A7fTYr9NRJ5G0UP/nwzflwMXu/uHROS/A79BMaq/E/gzd/91EXkS8HoReaS7b8iV3qY3oBU59L8oSZVWhOSGSk2F09r4c5IucjNB686TEiIBYaDKyoGDqEfASK3RWmbSjjEgW4toJIjMwoKeofWEaES75BOheB+wVMKJGFIFogakqpBckVJpxaUSiDFS1zU5l3ql0zDlIR2vspNcWRs1HGwyKzhDVWqNSNeIoIRWtZtYFXdKcaScCe5dprgTOw8GXW1SNUczBDFSV6opq5IV1EqTABMnYyiGuYGVNrM5Z8Im1eIdTfTc7bm7UdFzt+fuUcZe4OS5vx/Gg8gBRORZFCPz6VPJRLd9K/B24FXuPvUgnw+cBdzQeXMXReQGdz9r7vP2ikikyA/u/yLG8U3AVe5+12Fjf6sXHdCHRcSAnZRERwA6Q3cVeCTrHuLDcSZwOkUrPf3sqzqv+l5K4uAqsCoi7wUeDVzn7n9CMY4RkV/q9gX4XuBHu+dvBv748A/spCRnisjOabLi4RCRXcCju8UAlGTKf+yevwR4TnesD4rIsDv3uz/nQBsAm96AzhIJ4lSlsCZoKLozKNnPUlqnNqkl56ZM9g65bWmkZrCwFV3cQgw11q6wsrbKuBmT2glBnDZNOs+CIUBULdq64LiEUrfTEzFL8RIAVSiX3cwwjbTZSN7iq6s0zYSFwQKESBxspdUBzeoBTBKDhUXwFvGEZWE0mhBCoq5rqqqCaIhlnKZ4RhottU6rgEomiBAsFg8HmUxTOlaZUQHmRu7qh3pyktus7ey09WzKqWs3W9rOtp6JKdHkRMqOGOTUom1DNkPdy3s25gLzK4qeuz13Nyp67vbcPcq4AjhbRE6nJOhdQtH9ziAi5wP/m5JId/fc9pqS0Pfn7v7m6XZ3fztw/Nx+K53xDHApxcD8IPAC4F+6pLpLgTeIyG9QkgjPBj48N4zv5FD5BsDfAF8PvEdEzqFISO7tzuXWTiJyKnAucNPnuwDu/kmKpGI63psoSYj3isjfUnTasTv+EyhaaURkt7vfLaUixvOBJ3WHuJ3ipX9PN77ru/3Pomi4XUQe2x3vvs83LmAfsK1LpryOkuB4TffaLRSv+J91XvYhcwuHjQaZJkNsVjzxjF1eK0QNWAi4VrT1MmMzmlwm8zRqGeWVsmLvQmO5aRls3c1xp53L8jHH06YJK/v3YW2iTRPayRhxR9wQV7SqIURcjKgV0gZacWQoIBlxI8hgFtqc6u6CFk0bOEGVEAJ1XXfF8HOZkMcrpe6pJXKaoNYCzJJuYowMBoPydwwMhsvsWF7ipG1bOWlbZOtCoBJHLZeaqcFLRnyW2SQdsjMRGKuSrIQulwJINpInyNBaS5sTlpzsidwabdti7qSUSN2xJm0m53KDMF+/Ibzlw9dt3oDiUUDP3Z67GxU9d3vuHi3sef0rXUR498du4NV/cRnZnBc+43z+6/Ofxm+86d088vQT+MbHfw3f/eo/59pb7mL3ji24Oyfu3Mqf/MR38rb3foL//tpLOfthu5jqhn/jh7+dR5x+AhJ09t2c992v5po3/DQiwqhNvPy3/pqr99zOji2L/O5/eyEP27UNVeV/vfndvPGyq4hB+ekXP4dnXnBuec+k4cKX/Br/9tqXsXVYzz5r3LT8xB/8HVffeCd1DLzq+57NE887lbe++6O89tIPEIOiIvzQ85/Kcy44F3H44d95K5d/5hb2rYzYuW2Jl7/g6Vzy9eeXKIiUZN2LXvqbXPrql3DM1kVEhD+49AO8+V8/TgjKJc96HC/+pgsREV7wqj9l38E1qhj4mRc/hyeedzqqypU33MbP/tHfkbIxrCO/8P88l0efeQq//9Z/5S3vKec3qCt++sXfxBPOO5PWMt/xU3/EDXvvZnU8YcfyIq/5oW/nGeefxTs+8Cl+/a8uQ1TYvmWJ1/zoCzht5w6uvflOfuK1b2Nt3ADOj1/y9Tzj0WfPfp9ekgJmzYBybktd95yxlHHPhKoGCQhGM56gXho3tZMGNcejkNs06+wprHfmtGbErbfcxJ33TvjuN1/57/5dbHoD+knnHO+RQjBTJdaLjFliJU3IBm3bksYTJmlUPAAWyoVG2H3y2ew65UziwhYmqyusPnA3OXvJ0E4NmKMCbopWQwhKrc7WxZrjjtvBJz99Pdt3ncTKxKmrIdauzEKBU22gilCHSBC6flRQDwddoonQNA2VOpYmNJMR7WQFciJI8ViUjHQpbWjdkSoyXNjCsVu3sHtxgYdtDRyzFBlaIkpp/9p6Qt3QLEwmDR6rbEnQAAAgAElEQVQi7XhC2LGTf/v4J6kWFrC25TGnnUBIzSzrPOdMkxM559kkk1LxgKTUhQ2n1zQzm8BT5zl584dv2FQT+dFGz92euxsVPXd77h4t3PyGV/nUbgkEJIYigdH103QvrdGnyZ5ZbWagSfe6uxd5T7ePqpJwQiiNdhRm8iLvjN8QSuLrVMajqhBYP7b5zFDOrEt9JHVtJqfoDEa6z6iqCmta2rZUiTEzCKWiijhUGmgp20QVUp4dKs+PuTMaD7kOVUSnJSIPk0uVPIXCYQ9dgmvHs6qqmNZuDyHQWktKqfx+6kF5NMfahKvMxi05lUWlChrLwiFQEmen111VyVaiR1jR7KsqbdvOknRzzuSulKR2ScCYoLHCELBJl4wLpJY0afBcMgDE6arRgNt6HqZay1133s4d94x5wf/3/n/372LzSzi69qdBAh6GJCpaoGkzyTKejSBKHSKTVCbZ7FBpRb20jVAPMaNLbCnhM3EHK6WJRAKhrtC6Bmt47CPORPIK++7dyzMuPBsJO/jAFVezuL1if0e+nBKuCggptYRhXf621IXsWgaDhe5HLIRQdHgCeG5pkiPekLsf8vTmEEJg3DRUdT4kwcWSgziSiwYwBhAvnbN0cZmDbUs8djc3PbDKKC6wsOUYLnzMI1m98Zqi3RPB3NEuKWj6A52u6kS0lG3KChgugqihuWj2pPvf48jQc7fn7kZFz92eu0cL7uW7Me1amFOuR9CSpBljLBxzp00lujEtqyhdbe6pxxPPpYFOzlRVRdBYeNZd/+k1nxrCKSVEHcfBMu5W2qdMPahC8X6KIEGLES8CnXE4NZrD/PdpVjysAgTFzZFpXXDLhQdBESlGsHTRhSnmuZFzi1Q1lpzKwGM5h5RSMVZzREJC2lJK0mMng1IHCeVcXAuXGifXRZKfUqkxHsICgQni4NnJXhoCqSiOoCFigCej0li0/GY0OaNxgIph7ZjkiRCH5TqrEEp2LYqU2u5BSlTHF4rhL1byGHLGxcENTLDUlmhUKouVOkZaMWzcoFNjPVTr32Fwti4ucld14MvCxU1vQHu10D1WhHqBhkiz1jIaN8XzYGWCM0uQnSwGUrFj13EMl7eUOqAiiBnKtE2qlfqiyUmWqeqIRiFm544br0asZbRqDOUerrv+PZx//mN57EWP5w9ffynuA9Aa94xhWNMw8ZYQlCpE3IzRuEUR6uECg0FNqCLiEJeVGJUmrjAZrwDNzKtSVRWqyiS1rK0eZDyomVSR1iLmJYElBAr5xFAXNAZWzNhy8sn85Tsu446DI0445Qxuumcfx1y/h1PqilJ5yRCs3MxUcAulRBJd5rt6SaLXPPvxKQ0mQoCyWiR8xTiwUdFzt+fuRkXP3Z67RxvTKi9T76+ZQdeJclYBBvmCzWSmns5pJMHLqq0YkJ2xe3iUfuZ9PmwbUBY83WJNvPMMZ+vKM9azKELOeeb5DiHMqsQcgs5YdjOSOxorlFLQJSCzsU+PIyJQD7Au6mGeaccQFgZ4FcpCrvJi6GpV9s+wJk7tgS0esNURq9ZSD2sqK50vPRvqRi0K5NLsx0puw9QLP02onS5MYoxFmhWLiVlVVVls4BAildaz6zY9d+mM6enV1gdZ+81/11G1WwA7EpWBahmrORoj1naLhtB9UwK5yYQQOsnYvx+b3oAOcUgl1q02jUCpF4o7bdOUCdUMM4hBiKos7NjB0jG7CEFQb5E0oh0fYDweoyIM6wEAEyZY25Zi9eY88fxHcO8dN/Kp667n5ONPZPsJD0P33s41n/ksB1dGvPDii3jT2y7Dq2MoM7OXLzcIBKUlYSSGYQFLLe3IkNwyrJYQDQQCy8tb8UHNaC2wtrZGOxl12eVlkhBxmmbM2njMgYUFVrPSSsBiydR2lC7qRNaaPXvv5MMf+gRLO09g16BhMs4cODDh5FNOQm/fg3gDXZklcSO4QRfyDCJkkfKjViG44uJEgRwDkrUkyJhs5nJKRw09d3vublT03O25e7Qwq9tN8SrGGOc8y+tyjKkExt2xOa/z1ODLned53giFzpCbSjK690yNaRFBplKRLhIx/Tz34pme2n1T43BeqjE9xvxzt8O8yda9Jxd+d2VjsE624V1tb7MMUylKd8ycWzQL7sra2pilxSHtuEEbJQ4XsHaMUDFJ+xgMBljKbFtdpdVj+Iv3fwxbXmJx2zYOrOxnzzU3cN7ubTzukeexY+syNp6wdThAa53JZUIIs/OLMZJSwr1bunVSjJl0RAxckVi81HSRoRAC2QwOi7RYm8ipXb9O3fZpLoO35bvDMjFW5TuzriunGdJJUjQWeUsIinlZKIUvU2Bm0xvQgwBBA5UGTBXPMvtRzSOEQFXXDBe2sHXLMYS6KgTAWFs9yOrBFYIKsSqZ103TzFrP5pypVVlYWGA0GnHOOefw8HPP49pPX80pp5zC1VdfzdmDRd70+jdw0dd9HZd//DpUlkitEqPMkVCoqgGDejA7btu22Moq9WDIMFaoRIg19bCENtq2pRmtklNDGJRV3ZSEZsbEhMYDjhMsIyiqFZMg3JmcT9x2Lyef8XAWtmylqpRkFQ/s21eaEEie/cBLh1nHPIDRddPysky0DKqYlxJRpoHWjSyQXcghbOaC/kcNPXd77m5U9NztuXu0MTVO572gU2PukH2cTv5QDLYY48yAnRrf0BV1ntNRTzW5UyMPOhnAVDLSeVenBrjZoTrnMGeoi6533PQ5o3f6OJUFSSdTKBGaNDu3GCJuzI4lIkX77Q5ZsJhBQC2RRpDCMluOP4vbbrkezc5kZcziMVuoBpGPfOQqfvvt76edNERVTjj9VK657lae/Zxn8qLnfws/99Ov4vGPfywXPPUpnPW1j6KdjHjfZz7JTo/c/9krefazn4bE4ime9z5Pue+WCZTrM/1Ocs4gRgiCTK9lSjM9tEz103OLjeKZL/pln3rzO4mUOuSUynfpQsrFI13qoa8vkiTo7HrHWH7DVVXNFuP/Xnx5/Nj/F6MiUXkmkEsoMK0TdT7cMKhqlpa3s2PXcWzbcQx1iFRBGK2t8MD9+2gm40NWVEXnlqnrmsGgJJ9s376dpmnYvXs3+w+s0GTjlFNP4+KLL+byD13B3r23c901n+BF33Ex5DWGMZQWr9BlgQ+pq4VZof6FhRIGbUZrtKPV9cndMhpCCTUuDIn1kKbNs0lhOh4AT2tUNmFgLVEyliasJuWje27jX6++gbS0nVEbueLKj1HXA7Zv386eG65n144d4MXT4apkgyRK1ooUKnII5KB4rLFY4VpjWuGhxkONVEOkKo/EGu90SD2+ePTc7bm7UdFzt+fu0YJ1GuU6xCJnCKXBjMb15DNLGZVIXQ+RENGqRkPVVSiRIq+RgKNIrKCq0eGwJAt2xhedTCCIkB00VkiIiEbMS5Ob7MXTOf380sly3QjMc15qYGaMT5P+5r2qIoJY0d9XGhAJqEbCYIhLgKBoFTEpCZMu4FEhKAs+QFYq7lhd5qf+37/hV97+Xn7nPZfz97fs56Ztp/KpwbH87vs+w8tedwW/9q5PcfdazfKJZzNe2MH9B1Y5ePAgz3/hxbzzny/jmBNO4if/xyv59v/4H3jqRU9knJxJtYXL79nPVaNl7jyYYdpKvtNjF895kU8E77TmeEmknGq7JZT/lkltUzzOIcw89tMFhae2LA4x4mBIqAfEwRBChFgW3BID1aB8r7FeQGNFqAbluxEh1DVaVYiGEvnSzohHEQ0M45cnNLPpDejouUzkbgQpgv7UrXymRA4hMBgM2HbsLpa2HotoKWmU2gkHDx6kaSfd5FhWWOPxmPF4fMiKqW1blpaWOHCghByXlpbYccxOPnvTzdx5192c+4hH8KLv/wFuv+Ne/uav38JFj38Uayt3UFXrPzpBZ4kK0x9WXdc4maZpGI1GjJuGNhnjcXkEpR4OMJS1tbWZnmiaKZ5SYtxMSBJZq5a5t17ivTfcyPCEU3ngYOLEE04jSaKqa8466xx2bN/OcbuOZd89d9NqpNFIEyKpHmCxxoKQu8x6D5EUAmgsHca6/x5LwkP5r6jE4sHpcUToudtzd6Oi527P3aOJaRRi6sGc/z/FzPMbQ5EcdJUiXCBUEbptqM6000wNU6EY0iHM9NBt286OPTP2DouoTKMTcKh2+nDP+HyHzvmFJaGMJeNoCKV6Bt5VtAhIUEIVyV6kCrSZdHCN33vdW/iH2+/nIwcmvOhHfpTv/p7v4Lht23j3v1zJq1/9+7zpje/gmd9wEduWI+//17cTKgiV8s3P/WZ+53//FuNuYfqEC8/n5S9/KZ/4xMd43V+8gQ++9z3s3Lmbl/7gfwMf8JZ/uYoPfOQabDLBU5FYiBs5teRc5Bvzre4P/36mr8UYi0e4w/w1mFVO6SJBszmjimgdsSBIFedkK+uRiBBKcrGrlMogVURj7JIeu5rqUrM4/PJ4oDfnr2sO0Z2oBkLJCmcatnHMfOaBWF7aztKWHbgGmmTkPObg2iqeEtu3bqOuI2RjrWkZj8ezLxUg5YagFYPhsIQZxyXb9ilPfTpXfPhyzj7rDG699Vbi4hL10jGkJvDGN7yOJzztKRwclcL82RUNoIEuu7cQb1BFqjhgMmmZjFtkqaKuBrRpwurKAYIAKIPBgNHqGKnrWTaw4azIAvvCdto28MnP3EBaXuau/SPuvG4Pu47dzV237eWMc0/nyU96Avv27eOOO+/lpON2M1pbIQyGYCXr2XImG3ie4KEUcnUBcESUgJNEkNxlmVtbBPyzfTahGO8oo+duz92Nip67PXePFmZyCeZkFjHM5A5TI61NRuMZrSKSDVfFc5FqxFiqbUgIRbYR1uU3TqeznmpptXSlnCb75Vx4ph0P5xMAp/wUOGSMwCELv1m9aXzmxVTVUnED8JTxTv7sKrRWaprPPNheKnV4m7j6vgfYcdEFPPWZT+fGq6/BxvdzwROfzZlnnMvLXv4jvPyHX8Gpp+4CW0IWB5z9mGfybd/+DC775/dy2bvfy+4Td5CpOO/h5xMUmvGEK678AOc/7jHceuNNnPfw7Xz2Yx/ix178nXz/87+VteuuRLWUi7NsGF2yYy7RJui863PXZF7qMV34TLugT/+e17bTfUdmzCJPxch2aEsi4LT5UAiB3C0AxMpiA9aTEsmdgW5FSx7qAUsLi18WLm56A9o0IlLyRQhC6IqUFyG6EGPNwmCZwfJ2qiqwNl5jbW2tEFsGLC0sEVQQccajMZPxBNwJEohakduEZUdj+aJ37DiW7YNFmqbhtjvvYs/Nt3PgwAFuv+1WQqy54MLHs/fWmznFz+Gz193IE57weJAtjFLNvSsjiBWrq6ugFZNmjJHZuvUYTjp2J6eedgaT1JKTc+dtN6Nb9jNZWyNNVgm6iI0M0UWqwZCdu3eza/dOtm7dysEH9nPFJz/JfffewY5jtnHM8jbWRg3j8Zjl5a3c8tlbOWHnbvYfXOFjH72CF3zjM5DVe/BuXhArZaNUDObL7+QSog1ealEiQvKSnStRSFLqN7ZqyObtiHXU0HO35+5GRc/dnrtHC+5dCT8vkgG8q+0clRAqHEpzkdDplXPCVIgojQvmJT8PDRiCuCAZBCFoVZL/Url2M42yO2KJIEKb21K1Q4v3WKtYDN68nhg41fXOvjMpRjMUg9iqCk8ZTalUVumMf5tWpIjFgKerAZ19fbEg5hArRJyVtVX+4l1XcuZ5j+D1r/sbbrv9Zv74T/+Q17/+9YxW1zh221Ze9J8uIdQVx+7cybXXXc8//eN78NFBnvMNz8JEuevmG3nNr/8E3/ufX8r/eOV/4WEnnsmTn/r1XHX5e3nUox/LyoERq2sNJ51xHssnCO0xC9z/scsQtDNQMznl4iGO9ew6TKtoWJvK4lLXq5rMrk8q1XacrpyfGUErVCGlhqBxdk1DFUk54xFcA1pTOjIBwZ3xpCHm8htw91L6MkbcQTSQxbt60i0sLX1ZuLjpDeggECgrl8B08g7EGGmahEggxGo9MaVNs0SVwULsVpPOaLRGM5kApSRLFWtEAm1bVpHuwsc/dTWrq6s8EB/gwB23srztWBYiPO2iJ3HNNdt53+VXcO211/Ld33UJf/3GN3HHHXfw/vddzjde/Ez2Xn8dp59zAfvHcOHTn0WslqiHFc1ojclkwsHVNW7YewdI0eCdcs5jUFXqesCkbdi/fz+jffvYvmVIGh2gXbmXtQOr3H/3Xdy6dy9333UHu3ft4Kwzz+HqT1/Lzp07mUxaYqx58pOfzPU37mHr1q0sLy9z0gkncNdn7yMEJXkiK0gueqaakgs+zQnPlLa8WTIBJ4gRSKWLljuQuyz0zVeP9Gij527P3Y2Knrs9d48W5uUBpiUpzcqG0sBjaqzNJepZkzCgGtQQK2KMpbpLJy2YJfZ1x/XO/Tur/iDF05xtvWkJFE91ysV49DmdvwOhK+U29WxPk1ZVtVSBC4EcMtauVwiZltNr27YYzrl0xZyV5evGqrkpGu4G3vyePZz86Xt4xY++mJe//OUcuG+FiHDREy/ghmuv48C++9m2Yzs37tnDIx95Fqsr+3n+81/Anffdz9v+9h18x/O+ifv2P8CFj38qx+08idv27mXHox7NGec8nJVmwq4TTmRpMORd73ojJ5/4KBZGd7NFjVAPkaBlfJ3zOOeSQDhfnWR6btZdm+m2NGnIKYE5sa5m3nU3x21afzutJ3JKJMZSu70ZT5jKmGeyq+EAaTMpNTOZSBlEaRZTdNoBrCoNmb4M2PQGdAkpOFG0hHOkInTlTWK1QBwuUC9uIdQB6Yr2L02zqi1hTZrp4CQGhoNhIYFoKeZuCcNIrXPd9XuoVXAxdm7bzr7993H87uN43/s+wKMe/Wie/JSSnPKBD17BRU95Gud8zXmYJ2647pM84cIn8YEPf5TF5RN477suZcexJ7A2GTNeOcg5557Lvffej6tQxQErqw9wzZ23MVxYwiUwXFwkDBaRYcV9B/dz/dVXsXvJOXbrkNvvuImbb7qJ5z73udxxx108sH+F8x93AQ/sO8DOwQL33Xc/e2+7kzPPOpePfOiDnH788dy251q2KoXEnvFkRdRvjqaW4E6bM8FKoffkDeIZMRAcoyVYxiyV0GLOs5V1jy8ePXd77m5U9NztuXu08DmJd52ueb7UmXupgjGrttElkyUc6a7J4fWXp+XuZkYf6+3fs5ekQlEpsiRfb5muVSzfUVXMqakkIbl1cgIhzCUWNk1DNVggic9qic86HnbGe1VVkG22wJxq9Kcwz6gJ99+3j4vPrvi25z2bJ59/JkvVmHf+02U88uHnoA57b7kJ98ytt93CqaefxuJgC4M45If/64/zjsvewWf33MUrf+Jnec1v/Rqv+LEfIU/u43/+0s/z0U9dw8knHA+e+eye62jbCddefyNeb+U3X/0b/OErLmEpZryTPU2b2EhXl/nwSiMAsSqLg6lmuTQL6poAdfumlAgaSwMZwMnEaiqvSZADdNfHU7vuuVchJ4PD+F6SPEO3qFRMQQkYX57IzKY3oEUc7f4Xb8h6ZyepagaLW6iXtjAYlrIqodOwtZMJJhOSGSkLg8GAemHxkMzatm3JboQqEuOQ1ZU1jj9lFwMJtE1meXGZG/bcwsNOP5vlHcfB3Q9w0017uO+ee7jv3n18y3Mv5td/7Zc5+YTjeOff/zPnP+6xfOrTV///7L13lFzXdaf7nXNuqNA5oNHIOREAARAkITGIokQq0UFUlixbkiXZsr08sscez3jsN7KcxvPkcRo5aTwKI8myRrSCpScxZ4IEKQaRBJEzGt3oVN3Vle6955z549xbVaDnrTV6IpYfMLWxanV1dXeFe3cV9tnnt78fM6UG0dwkygsBQ7XUz9jJEwwPDxN29yJTi8tqbRqDZGFK0IgjkvoC9cos0mrOTM5wxtQZHhygr69ArV7BItl+5dV87667GR4eZseua8nniyil6O0tcjAQbFkxjF+dIZANtJFoHWETjdYWYQzaRA5fIyxWWoTVKC1SNyKaGBmkQGiFEDodwrh8gf4XKzq528ndSzU6udvJ3YsVNuvkCscYzwYA/bQz7OykLVa6QUprLdpqR2QwBqVItfgaT/lph9m5CiqcrMAVvI4HrXEsbp0Wsqpt8M9ojXDVu0Ox6bjldJi0NM/Wk+78mRbHWjmFBol0yEernb7d6tTQRbiC2w/8FJ9Hs8BPVIAQEdIP+Pg7b+DE5AkG+m7j7u89QF8+oHLuDOemp6nNlfBXrGCmXKXY3c2SkSF++l1v4Uvf/C7PP3mAHVvW8aXAZ/zMFO9995vYufsKyrUSS0ZGMbZBIBQ7tl7F959+nLe945386Z/+Jfm+Qf7sW0/wb378ekSPxo/zGJm6LFqNEY4MgrVYNMZqBAKbapeVNaAtsXaddRWqTK2CkBJNjBA4bCPpsCXp4iJ1DVVKOfqHdvxopXy0jZA2ITFtQ5nGIpW7bysg8AOSKEalRi4/alz+BTStCVhFhlCyCOmmM8MwJAgCjKnTqNdJophKuYy1lnw+hxICGXr4YdgUshtjUmtQge/7BLk8VjtMztKlyzn24ov09A5greL2t72DxctXM12ac5zSzZv5wbNPMzQwwEMPPcDatWuZmZjFGMl3vvNP3HzLzchj06Ak5eoCxhimpmYc8N9CPU6o1Ro0Gg33HHMBcVLH9wSliXF6uvLMz89SLHazaeNV3HXn11m7di1zc3Ns3bqT6dIsV2zdQnl+gXJlgb7+QXSScODAAYSOWTLUT+XMFDJpYPFSkLsBa5qAd4lbhSdJAlZghEUI5aA1Mk1coRDCfVC5r5dfJ+RiRyd3O7l7qUYndzu5e7HCyW6T1vCZ7yGVuoDyAi2yQ3bdpqYr7QQP5bm/a8o4RIrJsw4nRzbI10b8sLY1COf7Psa6fMy62U1XQ2nRaYc0i6ywu7BD64rqOHGYRGNaNvGZ0cvLX5MnFcoojk/M8+d33MmeLav53Hs/RoLg4x97P+X5WU6cOs2PvfUn2bztSsrVBmdOnuCvPvfXLB7u5zv/+N+55da38Vd/9SecPTvNb/zGb7LviYe4+eabWPPtjSwaHmRq4hi+l8doxdVXX8VCrc4tr7+Zd7yzn4eefoY7Hvo+t+/Zgu4XziClbWC1ed22vreZxCY1QHJ6ZINJDH6h0Dx3xlpX5ArXWVZpZx9rsXGLjS09hWcFUWoo4w6+cthMa52VunILFyd5VyQpaSXbLfhR47IvoDUWi8QSoEXKUETi+zm8XN4xP4UmqcZE9ZhyuUySJOm2isUKp6Wp1p3zVC7IN7mCNtU6eSoHgSSyIduuvJqgWmK+WmV8tsYLBw5y/NRpVqxYQS2KODcxQVdXER0tMHbyKFLlCAp5JibOccWVO6jVI8LQcOz4AaamZli/YTNJ+Ty+Noi6x9zCDN09AxwfG2fz5o1UFuYJPUFSr2CSGmdPjWGJ2L37Ro4e3Y8BxsYnMCLHw9MPM7Coh9DLMzK6lN6BHubLM0yPT9E/3Mex8jylqUmKQYAVATJxHSSk+yARxn2ASysRxmKFIpbWdUJIrXdT21KZDrg4B9tsArYTP0x0creTu5dqdHK3k7sXK3TUcJ1LwGS6WRx6MCui23XNroPZojZkBXM73aHpDOg550ljDCQtioY1tvk3Ulx4/0LIpk65JSHJpB2meRu4xU/2fLPI2NWQovde9rN26gjQ7L5LDXd87yFOzBeYeW6a6elp3nbra9h17bU8+cRjvOGWN1Ds7WdsYop1GzaTGJiPLP/9Lz/Le957O2tXL2NqdgZfQhjC4pEBbrvtx5HSw8Pw/NM/4PqbXsvo4lWcn5gmCAJevedVdPf20dvbw+P1efJBF5oqVuRarouy5QKpREbTMBe4EiqR4gVT6kn2c63TjrVoGeSQmaqkRJSm+Y0UYEB50hXWwuHt3MyFap4TaMl5rHULJF+9Mjszlz0HWiNIECRt1wFyuRyFgtsaXFhYoF6vE0XRhTxPbWnEEZVKjSRJCMICRiis9NHCQ+MRC5/YCrSxJNry4KN7OTM1S6kSIUOfffv2cfLUaZ5/4QXmZyd54QfPcOjwCzz/wrN4PuTzIZVKhXy+iBQ+YZjn5MkTdHUVGBkZJo7rHDrwIkQ1osocxw6+yKEXnmZ0sMjxg8/T40N1dora/BSNepnhRX0sXbaI4yeOcPLkCVAha9ZtYdeuXfhKUxo/x1B/H/nQJ1SSdatWcOr0UV56/mk2rl1NPhdQr9fRQqLxQYYYL4eVIVbmsMJN3maJ6SZtJdLKdBXqPoDI3kgpj9HIy28r8WJHJ3c7uXupRid3O7l7sSLrIEOKcMZt7Udx7PTQyuHgpO9IGYl1FtIgkdJDWIlJLA4CaJBtvs4C5WQfRmCFJDFgTcu10jntCawRzrRDqqZhiCZdsGiDSPPSItNdAXfB8xHKR0jbwidaZzIilIfRMVg3GJpJFdoxcM3ObqNKpdKgKg2jvQGrFhfZvjKHYIbf+73fYeXK5Zw9d5pGpcyLP3iGk8eP0De4mA9+6KMYPMrjY/zeJ36N973z3cRA/2AvfiD46Q+8n3/4yhfoyRX4ibe+g3pSJ6ou0De4hEVDIxSCXgKvm7zXy8rtuzmhXeddCYlEICxgEnwlkJnOOO04k5rEeH6I8HyMBKuEYzsLiI12UiSdvl5foRKLrccklbrT9SsfKT3Aaa2NFI5WgsELA6T0EX7gbpICrROSKMbGiSO2pHIc8wpVvpd9AW2VQgvlPsyFILFglMALAufdHkXE1XpTWyeEIAgCenp68HKhg9ULST5fJAxDwkIPxa4+gkIXQaFAb98AhUKBfC6kUMhx4MhxrtixC+H7nD11ko0b1jC6ZBFTkxMsX7aIHTs2c/jwQeYr88RJwszsJDfddCNKKcrlCnv3Pk4QhMyWpjEmQZsGAsPkxAT93UVWji4iqc5Rnz1PNDdFvTKAve0AACAASURBVDzNC08/ztzUeQSG6ZlJZkvTAKxZswZLwIsvHeKxxx6jp1Ag73skjTr333M358+e4OyJo2zeuJrNG1bT052nWq8hCkW0V8D6RXRQBD+P9gsYv4Dx88TKwf3df2gSLTznhOV57hPBC7B+ACoELwQ/h1WvjObo/6To5G4ndy/V6ORuJ3cvVmQFpVLpYKDRre6nch1bTYv40N6JhpaMQimF57W6pe0yA5maqLRLJ9oZ09Y6h712soaUEht4zUtmFtRe/Hqe1+QUNyUNaRhwbolWYIS8oPucGYpkFxMnfOlLXycMeti4rIfbbtrNp/7T7/Oe97yDn/vZD3Dm5AnHFZ+e4aordpATAYdefIrrb7wGbRL2v/gcr7vp1fzDV79I3vP5yTe8GS+JGch7/Nov/BLTU+P8/m/+Oje/6m3sec3tnD15kEOHX2KhMos2EX39/axZtxYZ5jENd/zbOdcvN5gRbd9aKZuSo6YePD2OTWJHtnhIF4KJddSd7NxkEg4hMrOUVP9ubZO4IWndXxRFxI0I6hHUY2wj5pWIy76AjqxMOyHKWVKmgwF+GLhk1KbpkuV5Hj09PfT19VEsFt32UBAyNDhMPlegkMvT25WjuyvH0EAvw/39FAs5pEmwjQq2UcEkmoGBIfI5H58IGZc5+NxTnDx2gG9+7ev0dvcxOz1PGBTYtGkLr3nNdURxnTe96S10Ffu47tWvZXamjJJ5pqZmOHNmjFo9Yuv27Ty+bx8LCwuEYUjel0gTMTc9SU9XN3NzcwwMDDA5OUlXsZcw6OLsmSnmZ+awcczKpYspl8sMD43S39fH1k0bOHXoII8/fD//+D++zLnz54iFoKIFSdBNXBgkLvSSFHqJ00sj34UuDKLDXhpBD0muC5PrwoYBieejPR8b5DBBDiuD1CUrwEgPIy/7VHvFo5O7ndy9VKOTu53cvViRFbDuG4FQqSuk4IIubbuxSnPozxiE72FV2qnmQnpH9ne6jdSR/V322MAF95d9nxWR2e81TVPaddipXKQd89b+XIXynWW49C6QlrQ/prWWMMyxbvMVeJ7g1TvX0SidQ1ZLbFm3jlBJrtq6ldFF/WzYtJTJ6VPce993Gegb5MQLz/K1z/4FY6dO8Nhdd7J51VJG+gpcd80unnv2KTZtXk+3EHz3H/+C5184xF3f/WPe+uZrOXLgJBs3buLw4YP80i/9AlGUsP/IcUaWrcb3ChcUvtkFaEpksoVy+zHNjk12vSnN8Ny5MVIgQh+ZC1D5EBn4aAFWSYTvOadI37kzoiRagvQ9Eixaut9DClTo4+VCrEqLamMR9pWRNl32Gmhw05caS2I0xkqESk90olOxvp9qk1x3REqnaVJCEuSC5veeFziXIK2pVOZSzY4lqdUwcZXIwEBPganZGWqVMvlcjrMnj9PQgnqlwkIux/7nX+CjH/4IyhPs2/sYpdIMDzz4JKtXr+elAwcBWLJklEqlQq3WQCrFsmVLOH/+PL29vXiex9TUFDdcdz1gufbaa3nokYc5fPgwhw4fZfdVe2g0atRrCa+/5Y2MLh7hy1/+Al3deQb6V6OUh/QkxWIXY1OzHD91lOGREe6//0F+5h1vp9jdm1qg+shQIBONtBoVG4hjSGI0HkJGCC2xSIyoYTAYrUlsupWlJJh0wEWQ7lV14oeNTu52cvdSjU7udnL3YoX0PUSKSgSwonW9XU/bLNCyYjft/uqUZmGEo3c0NdBplzgjvmRfRVvh6yuvqcVvL4attXjaoNF4ykOLCzve2e84nbNpWU+3FeWAk3iIxGEMaS0YsuJZGIuxhsrCPNKUmTw/zsplS2lMn+Y7B46yYuVa/sfff5U9111Lqd7Lf/jd3+eDH/wYn/zD9xLNTvNb//YjvO/2d/HFL36J0Y1X8qpXbScoSEaXLUfmuvjAT7+BX/vFV/Mb//c4S4c3c+u1swysX06jbtm582rGpyv81Ac+yMc+/jG0ha6wQFXXW06C1jS13p7nNbF2GZe5OQCaaPCcdt3QKr4lqW7atoYwvcB3x0K3MHhWJ035CGTuko5i4imF1RbkhcxuN4QbI14hPvplX0D7JPjCQwvrBjWNwQgBSAwJXuA+xK1OKHQXMAi0MSQaPOlA//V6HT/MEVtDvdpwcPMoZRBaiKM6GI0S0FUs0tUzxKkzY5BodCyoNyJ836dcLVOtzNOozpPP51m3bgM/eGE/q1atY3Z2lje/8U189Y47iIyhND9LmMtRzHfzrrfezve//yThyIjrhPgBZ8+eYXx8nLHxcYaHF7F2/Sa+/c2vMTY2RhDmeXH/s0zNVJgvnaNSnmWutIord2wnDEPqUcSKNWt5+rmDDI2uY3ziHGGuwNx8lbofMTI0gueFRLqBlAbPaISwoDQ2iUAlGN1wqJ0oQmoPqQw2jlA4PaPV6QCE1nhWtKZkO/G/HZ3c7eTupRqd3O3k7sUKLdOurlJIa9KhUnuBHKB9aE1rTZALAVoFWvoz5fsgJUGQ2nKLlGVsDZ5q6wILN5RptSEmwumpA2fnbRyuTRjthtisRZOx0EEnbjGTSQ/A4eyMAIwlSVJDl3RHJpOEpBgVV4DjEHaZSclCZY7SmbNsW7WO02dPc+zUBFTW8nf3HObjv7ySD37s55iYLvGR9/46e7aOcved32C83OA//vb/xb//o/+MtZauYsCRQyd479t+jBNjp9Cex7J1G3n60GmuvGI3j9yxnsrME/zmH/4pjz19kNrCNPmgi+uv28Mf/Omf8fyzB3jh6//AR35sDyL00wWbRFiByhYwiXaDwdK0LWYsnoTEZq8/AU+BdMN+NsUCSgTKSKy2aJFapIsklb5opNGphMItjDzlu2NkEkdOERLlOzygsRHKc5r2oKe7WXT/qHH57e+8LDytkdk0shEkcWtrIVt1mja8jdaaWq3WvC1L6CAIMImD+yeRs9O0iSZq1NCx+/CqVCooz+P02TGuuvoatIHIWAyWZStXsGPXTq674XpmSyWe2LeP7373u9x88+vRieHm197CI488zo3X34wxEMfa/afQVeTUqRNEUdSEsNdqNcrz80gFq1euZPny5Tz11D7e8pa3sGHDBnbu3MUnP/m7vO51r2NmZp7Vq9czPj5FtdLgoQcf5tChQ8zMTFEshkxNnUdKqFYXmJ6ewPMFs6VJyuUS1jp8ju875ybf9/H8HDLIIYIiIuyCXDc66MZ6OYSfQ/kBnlRICRj3oSJxl078cNHJ3U7uXqrRyd1O7l6syAqxl8sspOe287NLpsltNyPJdjWyjqhJXBfTjaHR7G4qpTBpR1/5XvMxX07FeLkuGlpSi8Q4L0iVGohkl6zQz+6rHf/2/yYRgZa0JEkS4sQw2N/N9PQs5Pvp7hnkT776BGfHpiiIKklSZf0Vu3nw4W+wYfkQa5fCR35iOw9+69NIKfmTv/4Cb3/nj1Gdm2T81DHWrV7DmlVr8YMCM7aPux6apShjHr7/BPOVLs6cepG/+cynufv+u9j/4nN87rOf4Z+++XWWjo5C2lFul25kmnEv8B02zmsbwowTbNwaGjbGOPtvYzGJbl6sNv/smGfnJjuGFzgbpp8twlOO+iMFIs0JZJYXPspzHe9XItQnPvGJV+SO/v8aX/3L//wJaSEWiqoRRNJH+W7iGWhuK/hKEieaKLWU9fwAISTaGMIgRCqPSqWC1QnSWgQWHUUkcUQSNdy2hTWMjI4yPTtLpVxifPw8Ulgq9Qq3vvFWtm/fzt69j7PviX2cPn0aEJw4eZL3vvf9PPLIXnbtvJatW7czONiPwLJq9XLGx84RRxFLly5lYHAIKSX1RoP5+Vl+5qffzz333cvyZcvZsWMH+x5/lEYj4aGH9tLbN8DBgwfwpMeBgwcZHhrhhReeo7e3h4HBAYaHh1m/YS1TUxPUG3VmZqbpKRSI4wY6aaB1jLECz/MdqFx6KM9zE7Ce5yaGURgkqBAhPWctKgTaWqQxaJ2gkwiTNLBJg5/4mY/9zr9gKlxy0cndTu5eqtHJ3U7uXqyY2//gJ7IiKtHadStVSrGwljhJUKl0oEnsSOUP7UWYlNJp8aXEiNSMBogiZwVtBSRaI6REYEniGJl2u4WQWIRzzLMAFps57GVDg57nfiQct1m0PQfaBh+bHWdoFthSSnzP/2fDeJ5SCARKQnVmgaOT85ydmuLhl8Y53yiwY0WB67ZvY2aqxEJSZ3TDWj71qU/zoZ+8grWL83zviRLHSg2iyPLxj/4YXleOgSWLWbtmC+MTY+SUZv+x/fzbT/4XfuePPs1Hfv1XuOXGzTz7/FHOT8+yc+durtm1hzOnj/Jbv/HvGDtygBWLB9A6Qqb0kyY6TqlmF91Yi1LSGcFoi0kSV9gKMNbNQwgcb9uR3klvS3cRbCrLSYcu3TFz5jVkx8+mEplUGpM9tnNNl1gsnpcj0RqjLQM7X/8jvy8u+w60tRqNJtIJVR3TwGlomv7qqU6nXeReLBabyZ55qkdR5DQ2WmN1gtAJoZKYKEJgiOMGSZIwumQ5SvkcPXaKqZkSKgz5nd/9JLE1PPDwQyxavJiJqUlWrlmNETA5dY4zZ09y221vxtqE+++7h0YtYur8JCePn+Bd73gbp0+fJp/Ps3PnTsbGxli+fDlvvOVWxs6c4fz4OZ7+/pMUcjlKpRLGGK666hruuvNuZmdnkVKyZdMWqtUFwHD8xBHm5+e56+7v8fAj93Ld9XuYnp5E4ON7eUBQrTSYnZ1nenqaUqnk8Erpm91TkPMUoZ92SAIfpQTKCxB+iPEKWL8bEeaQQQEV5BHKv2y1eBczOrnbyd1LNTq528ndixVCeiQIIkAohRUSgyK170Epz133FEYKN4yWygW8IMAIp1NObILyJcYkjrttnDbZUwJs2sW3BhO7XYhsUE2IlK6hIAg8jI2wViM8hZUKIyQZzTkrpjOahPCUI4X4XhOzh5LNr9l1jUULD+E7iopTuDuJicwFhH7IyOrVPLT/FA8eLjNbTrhlcz+vuXIVe594lDMTU9x11z3c8YWvcM9DD/D2X/0sL1U38Tef+RSHHvoCC9rwj//Pw9x9z/2Uzo0Tx2Xuuvtu5muGhYlJauWTrNu0hg//3C/z4okJtu/Yxs/97IfZsmErsdGsXbeJL37pvzFdi4jLJTKjH6ENVsfouIFJLsRTGmMQSmIDhdeVd8N9gU8QBCA9Z7mtXHFs0tdqhMEIg7AGq5PmfYFzKRTKR1uBjk3q2qlRFqSxeAhsnIBOUi46RCZCCIsXvjLq5f8jCmhjBQ0EceJQKMYk+L4iCIIW4iSOWxiWdDWoPB/fcwnseR5hupVjkoRarUalsoBJp8i7unrYum0HQS4kzOfcz6tlqrUKR44fS/FIhr1799LX18fMzAwjI8N09xRYWJjnD/7g9/jGt77JVbuvob9/gGq1yhtvvRVPuec4NTVFqVRi99VXUy6XGZ84w9atW9Bac+jQIZSUrFq9ghXLV7Nl81Z+9Vd/lTD0qTcqzMxMsnzFUhIdc+LEOSYmzjM9U+LUmbNUq1WufdUe4lhTWqhSr1tiLSiXy0xNTTE5Odn6QK9WndYrRQQp5VbWvnQrZjwflSugin3IsIjKFfHCLqSfQ3i5f8k0uCSjk7ud3L1Uo5O7ndy9aJGi6oSludCytiW3kJ5K8601qCdSqoMVLafA5tAbbYN+acfSciGK7X/FYm7H32XfQ0vWkT3+BaYgaTTd9NooHO2DgtAiWGSP227+EkUReQ+u27GRt+0a4T++70qWdmvKtZg9OzYwVLCsX7acifEpPvNf/453vvftjKwa5tv3fJ3//OefZe2qEf79Jz/LdLnAXGmKqDaP1po//tM/5p23v4Uvf/Fz7L76Wgq5POfOnGV4cIhFo6so9g1RTyL+/iufp7xQYsWqleS7ey7A9WWvP3stL++0NyUrMiVFS+mK6PQ4G2gOH2bHs13mAjRlHFmB3i6hMVJglWwSO5SfJ7YSjdd8btnf/ahx2Q8RWitI8EiM51bsWKQw5PI5Qt+jVquRRDFaxyAVSkJUa+CHOaJEk8vl3MnyJPVqhEQTm5ikXm0meK1uKea7WLNxC9KDuFFn0eAQpZlzvPqGPdx333309fXR39PPtiuuYGpqikY9YvHixRw5foJz41N84pO/y9fu+CbnJqd45plnsFpz+uQp1q3fzOLFSzh55jRLV6+m1qjT291DLhdQrlYYPzvOjh27WDTQy+LhxRw6MkapLPn2Xd/iIx/6IP/w919k1w2vQgjFytVrWbNmDS8dOIQ4foSxsVMsVGrs3n0VxXyBs2PnWTCSfFhEaM1CtUy1XiOcC+nvHSCOeunq7sUPw2YCGwRSOsarrz3qUYI1MYS9WFEH4aOERHv1f+lUuOSik7ud3L1Uo5O7ndy9WCE9hbBg4sQNELYVma7RbPGDgDhDw2Xa25QI46W1mJNStDS7WREuM3KDbumWs2L3f1V4ZYVyhmF7ORav3Y67ucPS9juZpCTbiWlJOgTGaET63GnjGgsEoQIRV6hUatSN5cort/GVr36dK9f0E4R5nn7pRXa/5nXcdOvrOXzoJb7/zAtQq3Fu7DS33bib2o5NfPPuR3jH7b/B4ZOT7N5zA77vc2T/PrbvuBaQfPiDHyIMBfffey+1xp1s2bKThVqVa6+5jpdeeJ7NW3diTjyB1vUmkpL0mLm4EOWXXU+Mcexm4Wg9GQ/bDU+mx98Y4rbjlv1tOx0li+bgqDEY2gyHpEPZyVSGg3Rd4/bFzI8Sl70G+ot/9eef0HjURYgWyjkDYfH9gDiKieMYrQ1COK/0eiNCKUWYy+N5AUEQkM/liBoNSqUZdBIRxQ3iOMIkCTIIKPQuYtmq1axYuYz6wgxnTx4lF1i0Trjttts4N3ae7dt28sTjjxCGOR5+6BGGh0c4cfo0ubDAxo2bqdfr/MRPvpWFcgUhfabPn+bcuVMMDvdz5a5dnDp9llffcANHjh5n9arVeEEerQXjExPsuPIKhoZ6aUQRUuRYtnI1t9x6E1ds2cz42CQnTpwl8EPy+RwLC2V8GfPwQ/exfs1azp4+TRJFnDk7zuDQCMeOHaOru5fBgT6MhWqtSq1ao5E6hhkLlvQNIiSer1JdGAghs0UjVioQHla6yVctFD/+trdfVlq8ix2d3O3k7qUandzt5O7FivkDj3zC8zynTxYtWkXWNW4Wu43Yoe6MRfqu2+x7HqTdaWHS7rGSTksrnRDaUz6pcBYQSKGQcQLp7xtBU1OtlEJagUz/ISUmM/Ro67p6TuALxqQkPYmQCq0NGX4P4RjFSjiXPRnmMMJgkwaSFJtnLVJJrDGYxjzHjp/l8JTggf2zxMC2TRtZO9TLjp07uO7W2zh86DCPP7kPnxq2rtmwfgMjw8MMD4UsGSjy6PcP8Hdfe4iXHn+KO+59kl/78Nt59pkXGZuJePalQ7zjHT9JUeV51Q03s+vqGxkZHmLD+vUU8x7j01OsWbWW8pGn8QMPKZwOuV3XYKVsaqNNErtjnyTpp4Fo6p0TE4FIz0eSpLstIFXQkuSk2MKs221wuDo3N5ukx9f9WkYusdYikK3dBSWx2iEie7f/6Broy74DrUWORPhoC1oIGo0GYeDRaDSIGjFKKXK5HEHg0YgTrFAUCgWCMCQX5omiiNLsDNXyPLV6BSEMcZygjWMMSuGxbO0atmzZQnWhwrnTp2hUKyRCs3nzZv7wD/6IK67YzlNPPUV3Xy+Fri7WbdxEI7b4fhenTp8jXzjK/v37eeyxxyjNVdh99Q309HRz8817WLR4mBMnpykvNHjkkadZvHQN/cOD+CpgzZpVfPnLX2bV2hUMDw9Sr1f5wuf/gXINtm5bz+6rdrJj527qjZizY+fwAkWSxOTDmJ9637u49577uemm1/H8D14kEZbEQnfvAMOLl5DPh3i5In5YYGG+RKNWY6Y0S6PRIDeXp6vYQ6Gri2JPN54K0u0wi++nq33pYVGAROQVQkX/0qlwyUUndzu5e6lGJ3c7uXsxI0kSfN9PXSzTgintBFtrUWHo8GmphMOI1uBq1kVul20kSYLy3RBiRoDJCmSTaJASbQ0gkUI2u8Y25W9nlAmgRelok2I0O8dZ51O35B3C4Ipz64gd2WuwOkZaUEGORq2O50ZHsToh1gkCxUB3yLZ1moXnpvG1Ya5W4ZGT8MTBb7GoK+Rt7/8wd9//AN7ICHc+/CRHjh7gik3bmPM83vHm1/Hch36RkXVXc3SixvMvPsPKZXlWPHInjz/9JB/86C8wtGwdvT1VavUqOTtHouvse+RhZufn2L5zN1G1ggfEcdyiixjRZFxIV742z0N7B7+dvS1FC7koEehEZ3eAlH46rGmdVXtb5765iyDSZYh0j910pkzPR1PqgRs4TXTLAfJHicu+gDZKERvp7E51S5+UWWMC5PN5lBLUUm5oU1dlNPValahWpd6oouMUkyI9lOcT5PIU8l0UgoC+7m4mKmWq9QgrPIwWzM9XWLVqFaXSDAMDAyxZupR9+55i08ZtjJ2dZO3adXT39COE4JprruaDH/hpntz3NI888TTdPSG5XECx2M2SJSE33XQzV7/6ZvYfPMCuPVdz4sgJvvXtfwIJvh+yf/8Brty2meuu28NCTbBm7VI2rt/Ak99/ktGli5gujWOwnJuYYO2apZwcOw9+nkef2MfGTVtYWFjA8zz6hoapRYZCl09XTx5P+uRyORq1CtVqBd2oUqtYonqDarVKFEWE+SK5Qr5poamUQhiHkVFKIpXjlXbih4tO7nZy91KNTu52cvdiRVYQKaVSEw6nmxVWI3EmIyZx+ZDZQFv9Mi2xtWDTQjwXIpVqkh7AFduNOMoUCE5uQNqpTiUEWadbeV5L69ymyc0KvCAI3N+mBV0URWTqa6UUNvDwDCT1BlonLRyeiRDCEVf8MIdN3M6N57nX5edDtm9YTuPoHDfuXsSZ8ROsXjZM4JVZtWE9oR8g5s5xzYalnB6f4XN//Weo3gGGF+9EA+979+10DQ4xMzXB0OJljHRLFmye1775bbz9pxaTX7oSE0XghYRhjXNnTnHq9Bmu3HUVs6V5sHDs0EE25UIqtoWnxIjW4oAWik+ololN1kWGFGeZHhtrWu6LzjRGg5FugFi5Y90u99Cx62YbAUIKhHXFeFZAa63xVEv6kUQxoa+Q3iszXHvZDxHi59HKOTdpk4C1uMWhbXZBspVsdpvneeRyOaIoavJJdZw56wR4XkAuVyAMivQPDrH9iq10d/fgBzmGRxazcfMWenv6KM/XCIKQ5cuXcebMaWZmSlx11W5uuulmANZv2MQV23Zy+Pgpzk1McMcdd3Dy1DE8lYCSRFFCGOTYuHEjTzzxBKtXr2Z0dJTe3l5OnT7NDTfdyJ49e4jjmCiKGR87R39fD8dPHmXJsqVMT0+zatVyggCu2nUl+TBk2ZKlTE7PUF6oct1119HX38/AQB+Dg4PMlxdQyscLA3zpU8gX6e7po7e3n/7BYfqHhujq6cH3nQnCQmWe6clJpqbPUyqVWFhYaDoQyRSKrqREyhampxM/RHRyt5O7l2p0creTuxcpEqObg4KxNRgyprIHOCOOONZonTjUmWh1m103WCGVj5GOiJFketqMQ5wWcJ4nHVYwiS6w1VaBj0iL+EyL646zvMC2WhuDxaHwtI4xJsFaje+rC+gbUoJBI3yJDHz3M4DYYpO2wThfIXMBKIkX5gi6+5k+P0m5Mo7SZaJ6zNOHqxw9Z/j+Dw7QSCwHTo2x5Y230TcyytPPPINNEp7//rf5H1/4IzZfsQ1d09RLR3jjNVuYOPgM3ukDFA1Io5k8fIT56Tl8afnC57/IPQ88wFVXX0eo8jxw7/f4xre+yZf/4SucmI/wBcTKUJShy2UvwFrhuvfQ1KpnvO5YJ0ijsTrGSyU1Ok7SuQhNYtLjahw+kPT4txffOokQVjsCSiqtMUpgPInwFCrwXbc5SZqW78rIlEnfMVL534pIBVi/4BLVGpRpoBMDVhCGIYVCASmhEUdIz0N6AuV7xDpqTvIqpfCDHEII8kGeXJBzEHY0S1csp3dghNJ8lSjSFMIuGjUH3Q9zBaQK6e0bJMjl2HPNq+nt6efkqVOsX7+OQj5gYuw4m7dt5Q1v/nFyfo5aaZ4H7r2b0PPp7u2hWq1z4tghbn3Da3ju2b3s2LGJ7kKODevXUluoUsh3Mz4+zqpVy3n22Wexug7UmZ6cJIkrvHTwID29/Rw79BLSVLn9J97Mrbe8lpXLllKrLrB+9SqeePQRqtUF+vv73Vah5+MpRRI18DyPQrGXYtcA/f1LGBgepXdgkK7uXjypqNcqlGYmmTx3lunpCRbmZ2g0atjEuWi5oRfvgonnTvzvRSd3O7l7qUYndzu5e7EiK2bbqRhCiOZiLBvmk1I2KS/t0bSMTrvH7dKOptmK0a3BQE9dMKiYDcs1WdRJQpIkFxijhKFzPsxuazdSyYYFs9uN1k26BtDqzqbsaENaoIuWqQhItIWNGzczNNjHyGAXKxf101uQTM5M89KZBUa3XM9j+57jvq98if7QcNX2K5ieOM/AwBCve9OPQaGbUnWej/zKf+CevYd4/8d/mxePj7P3sSe45977eeqpJyl25fj85z/Dta++hg99+JeYm5vnvvvvYtmqTfy3z3+VZes38sSRUwR+N1IIGqJFD2knc2Qd4Oz2TM4hbOucKuV0/UqpJjfbSOFwf+miIyuitdbOpCmLWEOs0fUIHcUoIZ1VeOIMnXQ9wmqD311Ahj4mW6T8iHHZSzi8ICSJLcLEeGEO3TBoaykWi3R3dwO4Toe2CAVK+cSxphElCCCXy+EJqNfrhIUcUgRESYJRHl6YY2DRImRgEcoQFgIaiaFcKWGlYvv27UyMnyWXy5HPFXny6SdZumQJobScOXOUSm2ah/Y+RCNKePyx77Fjy1Zuvu4G7rv3TroDnxefe5ZNyjIOOwAAIABJREFUW7bx0KNPcPMtb2TbtisodhUoFvOsXbuaqfMFvvftb/DRD7+fB++7k56eLqLz0+xYv5JczvL1+77DtpuuZzI0TCGoTEzw5b//OxqNBiMjo1TrMduuew21RFCpVJDa0t8/yODgIL5wWqvEGISQSM8n9ANUIMgVLYWuCtVqlfnZEo3aPAvlOSoL81RmS3R3d+Pnu/HDACV9pADvFdoy+T8pOrnbyd1LNTq528ndixVSW4Qx6FhjA6+pOc6kHe1Fa9M6W16oW84cCZ0io0XaENI51lkpoBGDcvxmX3pE2hXJwhhMarCCkiijmveRhda6yTFvlyq8HEkHafEoJaTPDVLJgXCdVCGy2Tw3PGjT+7Ha2WSfn15gsK+fVaP9jM/MsXndWr59z14+/lufpBFHPH/2PK+5djelyOf4qZMMjCxl5Zbt/NlffBrjBfzhb/5rfv5d72NoUPDog49z6txZPvjhn2N4dAnnJ8e4/fbbyeUKHD96nIHBXrbvvoarr72Zq665mrPT07z7l3+e8gvP0hsUqOqWXCZbkFibMURaIdKByHZCCqJFRslMU7LzIVQqgbH/nHLSPIbpYtFai5CiRT9JF0hKKRIlUChH/3kF4rIvoK0QbrpWKqQBvACBaq5Ss5WfMYZ8vkg+X3RaGW0QWHJBSOyndqpKEEcW3/ewXh6vkGd02XJ6+93k9MT4OebL8zSSGBF4REmCRTI7O+f+s0gSVi9dzgMPPMDExBj7jx7lze/7Rc6eO0p5fpy5epW//frneMe738pCqUQul8Mmmptuupkoili+YikNbVCeZcnSEfp7u9i8ZSPPPPMcIyOLWTLUz8DAJM8dPcyhaIb8lWvoWT9IsSfPu7e9j7/53T9j4+LlrF4aMH7+HFblePihB8gXexFC0ajHdPUEBH4OkhhnF2/SZLVO4y8C8CyB8hB+ASED6hUPOb9ArValWq2ikwhVa5DPF/HDAC/IYS8/Kd5Fj07udnL3Uo1O7nZy92JFppWP4xhEm6W3aGlsMyfB9g58dnu7XbcQ9gJ5hhVOApNYg0Kg02IuK56toPm4fujYxVkXGloUkPZCOPvatBTnwqLdpFKPDG8HYCWAKxTjTJ5j02LUGIwBX1smp6c5eXaOyOTIy3luevUNjJ08zC++/zYef/EE9z6wj5He5Tz22GO87z3vZfXKVQyPLuJr37qTa7Zs4uZbXk//kgFWrF5HvqfA1qtvpV6vEhbyTE1Ps2TJEsrzdeJYMTTcy/GTJ7jznkcZGBhg57bNrFqzkumFiKhcZ7GZJujrbZ2nFDcYJXFzoBNo7i69PLLhSbTB+gJPuIFNjDO5Mc6e8IJj6kQUBuNJrHSMOqV8J+tRHoEfQGIQSGTgufuJEmTyyrwxLnsJR6a7c8Bu0dTaZTD1bLvB90LCMO8+cNJtxjDlboZhSLFYJIoiGnGdXC7H4OAgy1asYe2GLSweWcrwoiX09PYRR4a+/mFGRpdy9PgJCoUCs9MlloyOMjo4zJc++zm6iznm6nO8+2ffR9+yAW58ww34PUWued3rUT0D7H3uKZauXJp2aiwTExPMz89TKpXSN7xB6xjlCXbt2sWDDz7I1OQM+a5eqr6kZ9NKgqFe9j+4l2JhKYuWrWTBzvGBj76b02NnWTkyxLLBbpSpc+zwIR7f+yhjY2MIIejr7ce5OfkI6SGVj0yvWySJCNAEJMLHDwt09Q3RM7SE3qFRuvoGCMIC1UZMuTTH9PQks9MzVObLJI3Lj0d6saOTu53cvVSjk7ud3L2YYQSIwEMJ4bi+XNiFTJIED6fBdfQLd7tOIjxEUzoghCOWSOmhlN9EyInEoK0r0Lwwh1Q+KA+Uh5/L4wUhLYy0dOdNXFjcWSvw/dDpgdNiXgCpGTe+F4JtORXiu+eSaItULRtvXypXTEoPKdz7JwA8ITl49hTr1gxzx8MvMLDmOr5+56NUtaJSqbBx+SjvffMe+nOCG268mW9+9072vnCY7911H9dds5133v4mTKMM9Qbzk2cxDY0mQoSWJ57cy+nTp5mbryD8AOPFnJmY5V0/9fP84ze/zb/617/Exs0buOn6G+gvFplWBeYjiYfTkmudackNgaecy6NouS1qWnpoEbhFdZK6lOa6injp4kSrdAhUtqQ6rUVKutiwAoVAWndMpBfiBXmEH+Ll8k0JjLWWuFZFmxj7yig4Lv8OtEvyFD8jAeE7YqOU7oO50XCuPsUuwKSwbUEQBDSqVapJg5zvOWF7kuB5Pn4Y4OdCli1bxsDAED6aRmSQ0mN4ZJSZyXFmSnOUy2X2T41z6thRBvv7OHf0MIuHernyym08/uL32XDFCsarc1QqZeI45sihM/zyr/w77v3Gl/ne3XfyM+95H48/8TSvfu2bOHNuIuVAJtjE0tvdTZIkjIyO8uY33sqSRYNEUqGLRZCCNd0DUBPk7CDS9jM06lNZOEK5Ms7wcC/r1r6Kl46eZfW6zWjhMzldppoICsU8vpLpB4y5QLvlQmCFdZOxWJQXEMgiQvpIP8D356EkqVTnaJTdxHgjjlx3pRM/VHRyt5O7l2p0creTuxcrjI6x6HRxlqLTUplEe6c3qTVc4WUtMpRNAw4njxBksLV2E5SsS22MaXK2G40GUlt8L8BkcgvaUGmm1cW+wLjFWkcJMQaDatNYCxJct1soiUkXk5m0o50Ekr1f3GLUEgQ+xibIeoMnn93P2FyCsRava5jf/ouvsHqoi/maYeVIF8uWjFLoHmJez/Pgo4+wZf0anq3EFHM+I4sHOHHqNMtXrkY36nQXetBRjVKpxMmx01x99bUEYReJEZQrszy5bx+//Iu/RZzUeP3rX8vVu3ayetUKbGKplBf4p7sfYGU8wQd/4gaU8hAI3Fxmy4lRKNnUqCdJ0qSZgJOqeBasMWhrMHHScpxMC+es0+900GASJ5Mx2tmoN4c82/B1mXsngNUOLag8j6abzo8Yl30B3dTMECOEh0KB57YTorhBo1ZFKUHcqKO1xg/zTrskJSaOwBi0FNTrdYxU5IvdeF6AQjC6aATfk4QKCsWAIBeivBwaxfjZcZaMDiITnyWD29m0fg0TY8e5+qqtzFcl1XIVTANjE87PJ5yvGdbvWsFENENueJArdm1j3+OPsHvntZRKJYaGl6FkzrEiEdTn5zFBjkLPIDPTE6wY7eW/fuHvuPmtb6SnmGdmocSNb38L8wvn6ZqNYaFGGMOi/mESK+keGGb++SMsVGNiK1AqoFKNEcISV2cQnvsPQUjr+ORKYPGQWmNxlqgG4bAzeChPUihKfBGAVcgAKgs16vU6s9NT+MHlp8W76NHJ3U7uXqrRyd1O7l6ssNrhyzyFkH7bIqM1YKiUQkicnXObzMPzPKR1FtJZJ7NdXgBtfGib/r4S2AzTpuQFj0fb/bgCuYW4A1d8u/eBw+ZZ46ghKghdl9a2+MhZodduA97UT6eGQ4nVaGPwbczep56jWuylWyQsLCzgF3Lsn5mnLhVTc1XmIoEPlOdL/Na/+U2+8fd/gyLECsWxsQlKs/PMJYKB8gKnz42zcesOunqH2LpxJ54KQQWcPvUSf/bpv+TRh59lYFEP73nXB/jIh34WX+WI6lVOnTnKf/3MX3NqcoZNG1bQmK/h93W1hiq9FsbODUK2jhfSZhYyjmZitDOMsdYNw7axtbPjoZOoucsgMBgdNw1rmlzoNFyxrZEyfb8kGoUgTpIOxu6HjWwiNFvRRFHUFPhnPuxKKXzfb64as1VhvV6nWq1SLBbp6eun0N2PCvPk83k8afA9RTGfI/AUC5V5zpw6QS7w8ZVk165d9A0MYZHsuf46Vq7ZzMjoYpYtXkGjlJDU6/hhwp7XXMlU7QxVMcnWHSuZKjd46LHn0CZi7OxR/MBNrjYaUerg5ZKlXq+zfPlypBAsW72cmflpViwewLc11i4fZNkiQ7/foFsHfOlvv8zmTatYv2UTz754EGPhzNg5giBHT1fA6mVLKE1MMjM1S2l2klp1wU0xCxDSx7xs6hkym1JLYiBBIEOfrr5++gaWMTC8jJ6BYYJcSLVW+5c8/Zd0dHK3k7uXanRyt5O7r3RIP0D5AUIoxwcWFhRYabHSIoRFWOMIDp5CBh6ecnpcaSFJdzvaC9XMLrp9INGmQ23K0DRKsVHSLHaz38/yFZxExJrEdcmtK6jBYBONSZF3xhiHdzMWTypsYt0CU0NsIdJJ+rcKpXyk9LDGGZIoAzIx+IllyUg/zx09TQXF2oECK1euRKqAk1NVjk5WqSWGtZuW8e73v5fvfPeLvP6Nr2P18iFsUmbtqtXsvuZq5solegd6WbthPd29/axYsYJGVGNmbooDh57jhhtuYdXyNfzN3/wnHr3vAT724V9gfmaayfMn+NvPfJqP/cLHGRuf5zU37OJdP/UhckUPEfoIBVYmWCsQQrlzlfGt2xYgEoHUFs8KAs9PhwcbWGmRwgOrsSbBmgQwTk5iBTpxY5XGkN63ph5H4PkgNKJRR5oEYTUYdx8Sg7Cpp6Gx/yyv/r/EZd+Bbg4IyFSDpI1zHkq3BqV1q0QrPHr7C3hB6E5wenyVUtTr9XSFaYm1pdjVTVfPAH2DA4TpGyuXy7Fy5Uru+s43sUbTVcyTy+U4cvgYC3MzPPLoA3z8l36e/S+dpKevm9XLl/H5v/xv/Kvf+nlqyjIXVajFIUm9TH1BMnF+lt7BESYmJxkeHiaXC1hYqKI8QyH00XGElwtYs24td97xOeK5InMzlv1HnmXZ6FI2Lhmiu7cLaUOKXoEHv/sQlZkSu3bsJDYCFeY5NzlDV08vi0dHKc3Osnr9BuK5ecrnjtNolIlqOfLdPXhBHunlsEK0hhzahyQsJCbBJG5FmQiL9Av4VtKtsinoyz7VXvHo5G4ndy/V6ORuJ3cvdrh8ca9dCpE6BQLaFUpKKqJGhE+AUBkCLUb4buHWvhhpOhhmjOG2QcNGowFAEAT4YUAURc2hwUyaoK0BKZDWaxbUNqWoZI+Vmaxkj9Ucpgs8Z0duLZ5QWKWwJkGhmsV8VuiTcpBnqjHTCxFbVi+hP1dk17YG39v7Et02JBGCsbmYOx44wLlKjZkqbFq7Ai0NO3ZsZfT8ELlinlocc/2NN3B67Czz1QZzlYSDR4/zta9/m8NHj3Hq9Fl+89d/hY/+3AfxfJgvjfGtf/oen/qT/8KqlSs5eugQPb1drFwxyk+97z30UUDW1jE5PYFQHmCa7+fsvS0MTamMaVuIaK2bC2qRfgzo1ADH8zzIutYCBAKpPJLYDSc6BrShUAjRaQokSYJVsmnrLZVCWoh0hFSq5Qj5I8bl++5KI4oitLAI5TUF6O1bJTpynEib8gsbccVtIQhJKGVTqyeEoFarkeuxJEbS0z9Eb28vNknAEySJ0/GNDA9jk17qC3PMl0pctWsbc9PdWJvw2N6nmZ5c4J3veSPveedb+dSnPs1/+u0/5md+8WcYmzjD0pWjCBPy2c9+nWUja3nmxROU5yNEfsHB160bMklih7Ix9ToSxfDAIKuWL+bL332S0aWjfP4vPsv1N+1i0dIRbOJz17e+y8y5c/zOv/9tdKT5zN99Di0k3V29dPf0U61WWbthI119w/QMjnBw8hTlhWki4WPjurOWLXThBwVoG5Z4OXLHSEuiNbGxWBKk7xH43XRZgbLBv2QaXJLRyd1O7l6q0cndTu5erMhc7tw3ruNsEo30VQuZJlzH1pPOrQ5EugviIdJB1myYNRtsbb//dmZzEATY2HWe8d1uCdDMaeOwGghAeq0C2iCQqd5XeT6kaDWLWxDlcjnHrjYGP9t9UZ5bLKWYPaEkFgjDHEkUOytrIVjQHudmFlizYRlTUxV2btrIjddcxbnpMjX9P9l77yi7ruvM83fCDS9URhVyIgCSIAXmpECKbJnKLVHZstRjWcG2rJHtsZzGHqe22pa7PR5LrfZyGoceW8GygtWUJVOkSFNUokiKEgmQRCICgcr5pXvvCfPHue+hqLbXkryA8QB+e61aJMjCq1f3fOe8vff59vcp7v/aw2zetIv//ndfYmLjpfzhRz/KTddeyctvfyGdVsbo7BTjmzbw+JOPUa0MsHPnTmYWmhw5cZTXveql3Pi851JL6hw4fJDP/f0/8Dcf/xRPHHyC2dlZfuLHf5TXvvYO1q9fTxRFDA4OUwhN5BwHv3aS6kAd8ME4xtgzvHBrekW0EAJVUloAIimxWbCd99aA1ogo3Bz48tkiBAILhHWR4owuNMHRHh0lwVa8xICQ4sw6l7KAMjp7ae8Fn0CjdODBrKngzRrBdaxDKU3hfLha1HEQMIeejmOtVgsLJRTVgQEq1Spj4+uo1WpEOoiuQ+D4VCoJ1aROZf0ox48fY2ZmhpnpSXZetIcv3X0vV191I1/72td43k3P54d/+Ic5cPAQH/qdP2BwdCA4TWUFRSPi0MJT7N5zMQPDo1RrQ2zfvpNarUJetIMAfFyhYwNJP63WaTRabNk4Cr7FkJJ88RN3ISpVtBdcvGsbb33Na1hdXeW+e7/K4uoye/ddwYEnDnLdxjCQk9TqjK+fwDdbCK3RONp5uEpUWYbKMpJajorrPdvdbjjO8MbWal5aY/HOoaMKafXfDFvo7EUfu33snq/Rx24fu+cweqYmedDzdc6hTEhMHeGZZC5HC0mEIGs2SJIkdHFFSNSCJrQNag46JLCS0gFPCyT6jPRdrPE2cGhzXK+QUZ5yyLQcJBSl86ELpkHG5qF7bC1ShQE3Zx1eOAqKnmnQmY52J0j0GYOi/F7vcUICJR2itG5/6OgUnWqVV992A1UJO/ZcyksvvhxrLXe84hVIpXjBLVfz0le8nG+8+rlg21x68ZUsLc9yanIWMztHNa4hteLJg/vZc/HlXFe7HCFzPvnpv+X3fueTTC+eYs/FuxgYrjJQqfLGd/8H3vczP01aG8WLkPxaAVGuOHT8OyQdiUmavfVBQZF1UHEUjJKKAkpOcrd4gTP23tZahIxQSQKJArN2rXNE6VDonYM4Ck6lCLxUSBXjUEQmp1AeLT3kBSbLkVEonETZyRdniQN9wSfQslZH5RlalpPhhAXpHj7h4PF4m9HOMgarg1Srdbw1tFvNXrWbOcfAyATrJjYxsXUrmzZvBOvIc4NSAuE8tUpCJU1IEkFjcYmRkRFGRkZZXV7h1OQso6Oj7H/iYZSSPH1sCu89z73+On7m7e+kksY8+vgBdu7cyabhYWaX2xw4McWTTz7JZde8gKQ+iveWeqVGkeU4F5FWUnCel9zxZj76Z3/E9onNeDPLW1/yOrKGQSYKU3jq6yY4tdDkznvux2UFeW44fXqS8fUbuPba61lanCGJJVu2bUaoCoXNmH/6cTqr8xw/foJmYwnXatBcXkANjFCpVEjiClrHUG5mKCtyr3AyBptTeIdH0i5ynDw7nKN/S9HHbh+752v0sdvH7rmK7kBgl1tvnUNp3cNM9yuOI4pORtm/7JmbFGsHBrtfQXK75wqotUaoNYYngp72tIrKW5VSfUMK2RuGEwSetbOhM5qmKbk1WFcgfPg+4TxSBSpC9z31+O0uWFqLNcu2di4gyzI0Hp87Eh/xP/7xGR56+GnueOVtHJpr8en//be45NK9XHfttZyenOQHXnw7MzNT7Nm9jUajg4sUgxs28cjD32S12eCqa27gI3/5NzgR8cz0JzFe40WV+7/6ICIyvPs/vIl3v/cn2bh5A5WBUYQs8E5hRRDk6zoptrJVPvxbv81PPHcvVVHDO3+GPuHB5AVOnhmuNM4Sl5383lqU54KMo/CcrEN40aN6dCk7PRdJEbrxvqTamKJA6vB+ZKTwxmKK4lmYUEr1Cu+zERd8Ah1FEd4apPC9jdeN7oIZkwd/9ARy44isJ4livGgGeRRASY3xnk4nRwvNULVKkkYodWZK1HtPtVol0o7nvvQHmJqaYm5mmpHxEYSHyVPHGZ+YoNFo4FHMzc/x0b+9kzfc8XKcc1yyazs7tmxk7vgRZieXeHL/04DkOVdeRafTYXR4CF9uysKaIP0kFEl1iKar8OBjD3HtFdtY7kgu37uPyeln+PLXHuL45NcZ3biJjZu20VhZpjYyhI4Tbrrhelori1QijTWeuJKiVIXN23dy6umnmJ2dY2J8HcYYTk9OUbRXyGyGaVYp6kNEUY24OoiUDikUWuiwsSRo7c7wtnj24EA/vrfoY7eP3fM1+tjtY/dcRZczK0reMJyhU6yluXjnwmCqCfzaLiWDSJ1xKPTgjcUTMNpNqK0x2C7/9p/42dKHpNsVpisGXRqkuGAG5IPcXtYJSb32ZzjQgWZighueFDgnenxob0vOs3WhYypETyVEyjDQ6k1BvZrx7tdfx4e/8BhPnfD80ae/wdhwhX27L+ehx4/x4KPHGBoZ4isPH+Kx/fu5+YUv5LnXXM7WrWNBW11UeOLwST5x54eZXVgFKbjuumuYmjrN1o0TvPiWq3nXj76V6669hvFN27BSE7acAgnGtJESVJTy13/+F3z+vnvZsLRKpapRUtJqtXo3Jt46dBKSZVMUQdlEBEv07lmg19BqrHdBYtBYnF2ztt1nV6656WSgFc57pBdYW+BdjrQCVUpgUs5eOOeQ3eRbyT4H+nuNKIoweVZOcYbocmISHfeqWBnFRHFKnFbQcUQcaeIowZWe7Ln1WOdYabUZGBigXquRxlGQUik30ODgIIODgzz4jS+zsjDHvn2XM1CrsW54iG898ggbN27k9OnTgOTkyVPsuGg3L9p3DU8/8zTPHD/CNVdcRuEVU6eWOHZ6gTweZd8V13Lx3isorCHLMpQQ1Op1KtIjhGJ1tYFQEW9669vYf3iKlqryTDtifv9pjh0/wrFTcwwMjqKiOqdOn2agXuGKK69lcuoUU5OnMKMjjI6O4p0EIfBYrIwgHaE+tpmiuUzWzlg/NsbS4ixLjXkK1cR0miTVUUxREFdStI6R5RRtkO05I8fTj39Z9LHbx+75Gn3s9rF7rkLLoAfsbVDaUF2evbUhoS6HLm2RY6XEZTlSR7hIIYQMyg8ILKW0mVJYkyGFxnnX04vWwmE9REmC8V0HwUDPCBrHPmg5l7QCpRQeX7oIQtylgCiFUGBdoIA4H5wH8R7pJVpAjgPjkMLjTCgchbdBTcSWRiJe4LCoSFOvjbB34wQ//ebb+PIjJ/iHrzxKqlLmlxsk9TEWlps8c2SKPDc4OcBn7n6Iz9zzLS7dvoFqJaE6PsID936T9fWCn37PW2hnHV7/ujeydcdOcuvIm0ssz88zWKvjsmWcE0y1HIODg1Trg2jrePrgYe665y4mp04xPDLCK268Bu+bdJqt4NLYlaNTEsrCIFY6FAfe45UMya+SFKXutpMi0FyM7XGchRDY3BDHMUVukLHGCfB5Hig0cYQTJW/dgdMS5UIBJcvbgt5alZbgfRWO7zHiOMbkESYPvuihWgyC/bVaDZsXdDoelCZN0/CVVBHCYz0EdyhNmkSMbdrO0MQWBodHQuXqHGiPt6Eq6nQ6eO+pV6o8c/Qo5DkT60ZZNjkjgwNUqylJtYIpABkzOTlNXDnEsZOT7Nq1l688fJDx9UvsvfRyNla3YubbPPjofn6yUiNyBc5ZKpUKeZ4TpwlZ1qYaS1YaTYy1vP41r+XLX7mLV7/uzXzr4QMcnZxh3bY9TE/OcPTRAwwP1ZicOc2OHVvQwnHq+NNoIXEq4drn3RielYdWXtAyGp+OgVUkcZV8dZ60MsBYkbPSWqEo2rTzDs426GQDpJUqcVJDxglKlYL/5eTsWmvTfnzv0cduH7vna/Sx28fuuYrujcZa7re1NiTQrOWFgymx561DRYH24ozBSY/SXSpC+bquOEMPKGXvnHM9624hZUiinUeseb6uLBKDtKAliqLwz5L+ERLyoItss6LXxQYQ3mMwIaEEutbt4e+cKRK1UJgiCzrJ1tKOHLpW4+rBiNrVGa+//R1Uhsf49Oe/zKFjpzHtVSoTKUdPLTEyOsz0/ALOWw4cfpq4WmH06JO850deyc/95HtYnJtkw6aNxPVhPJIk0qj6KMMjG1jNMg58+0muv/ZmKmM1ilY7qJBYyc69V/Bj+65idXaGxw8dIPnOvTQ7BbW4AlB2fXmWqslaDn/XUKVnWuNLK3MXzGpMlpeDgLJHXwlUG49UCieCuUzo0BskgX8upaRodcLP0wonRM/8piunZ+3ZKTAv+ARaqXDtkZfTmlqWkiZIuqo3UkqE86RphThKEVqRt1s9zo21lqHhsZ4dba2SkkRxqTxTOkYR+D3jExMsbdzMyWaDQ089wczp0B0ZWzdCvVKlXqnyxBOHuOqqq5iZm0XGCdsu2s34pu2Mrd/MTTfdxKUX7+Gzn/kMxAP88s+/j6zTIqmkWBwWhxCS1dVV0iRMZtcqCXE14mW3P49XvuRGctvmqisv5/Dhx7lk/SUcOXIEfZkmby6jxE467Sa1SszA1u0UHtat38zA4HCwGVWK8Q3rGd+4heMHl4kqA/gO6MoAcRwjTBuJZzXLaLQXWS2ayEpGnteJ0g5xWkWntR53bK22Zj++v+hjt4/d8zX62O1j91xFT+XCOZwLCasouchhCC10oKUUoYPrfehWl4oQxhi8EOjyday1oUNdJnzeWJIkGJ0IAoUizzM8vsdZ/m5N424y3X397vvrxtrEHOh1V521OH/GRdFhsSb4LKZpjCv5ut46pPNB4s16oqWCuabkK49+hZe+6IUMjYwytG4DP/ve/4XF5SanJmd55NHHqA+McvNtt/Jzv/RLvO71b+SrX/sWBw/t533vei/rJlKqCay/fB8z06eR1mKso55WcF6QeVhprHLZ5c9hebWBztvESUoUa3SaUhQZyjiazSajwyO08w4q1oHzXNJcur9X97l0Zee+27kR2x20VEjCTZXQqpeAd1+nR9/IciIERgQtaedKh0NX8qylDAOagt46KKkSuJY0AAAgAElEQVRxSJRWmDw/K1i84BNoHaUI1SY3wQFIxxFxWidrN4OEjA+C3EJ0p3I9rdUGzcYKptNEKMng8DqqtQGEEIwMD1GrplRiiUJgrS+nUR3VasrwuglUWmPd+gmq9Rr1aoVqLWVqcopYwpNP7GfPJRdz8MnHufiyfdx97wO87I43cP2Nz2X79u3UKgk4z5ve8lasDRt5dTmj02ojFLRxJKiSJwWZgGaW0c6WicbX4YXGC8XgUIX3vvc9HDl2nJ27d/OFL3yBSy65mImRGsK1cQJWmzn10Q3s2n0xQ4OD4ApwljTWrN80zvzcCM2VeZyuECuJzdvEw456pYVuLhO1miw1GmStFplKEPVB4soIteowKo17VqSBuH/hdULOdfSx28fu+Rp97Paxe65irYyfMxYnymv5kpfsbaBYZNagkjgkbTY40BkEWqpSCcLhy8S3KIqQ3Jbdz06rjY6jM0mzEqWqjO8lZN2EztrQRe3qGK99n2vlG+FMMudtSfnw9DjUHpAyOA4qGZGXNyuBDpUjrAfraLda/P09D/C5B49w9ZVXgRVUpWJh8hQirrG8ssq1V13Pnj0Xs37rDppFwR//6R9RGxrmFa++g/biSUx7ldZSh9OnjjP14DdIB4e57vnbyJHkTiOEpbUwy9jAMO3VOYaHJii8QitJq7HKzOR+vnPg2ywuL2CM4eVvfDt//D8e4GdffzutLEOKGCnDwF53eK9XvKzhNHc1uCNkMJVxHroa0TIw0rtylkqpYO/tQQgJyoeiOw/mNVEcg/Bk0hNX4qC4IUB3XVEFCK2I4visORFe8Al0uBZQPYBXq1W8CA+vK5sS/j3C+3JDuIKiyNBKEacJURTRaDRIZdCATJKk/BAQqDWe6kophoeH2bhlM6c6S8wvLTL3zCwb108wvmE9g0nMQL2K1po9l1zGgaeOcPMtt7J582ZGR0eJlCBSEuMNUkKalteGStNstkmqFbCCJ544wOWXXx6uoSKNd1CvDfR+37XWpLsuuoi0VuNFL3oRRXMF7XKmJmcZXz/B0MgQYxMTDA+PnulcKEXWyWg0GhQmxzuBk5rMC1wc4Z1GqA6JTJB6AeUKVto5zaJFa7FD1s4DP69TpZLWwsCGiIhkRD++v+hjt4/d8zX62O1j91yFRIQhzrSCXZ7HK4Epu5keX7oIumBKkodus8GgRFcsOPDrTVEgvEFIgfI+cJBL7r3WGl/kODzG5T2KQeA5B51mQXi5SGgsFmHBFUFWT5ZW4ngLJnCkhQt8fmctSmuKPA/7RJ3p0BoXutdGdBAoEEHBAuexrVV8VnD86Wn+4p7HGNk4wdGnD/Jnf3sa61q87U2vJZIN6tUKh/c/zJbdezl04FuMrptgYt04nXaH1tIC69Ztwq7M0Y7bHD9+nMbSEuvXr+fgdx5l774rOH70Sabm5tm370oe/Nr93Hr7y8kyD7Gh0+mQZRmVgUGe+9wXIpTm+PHjtOcXGN15EZ1OB12rhcSYUNR478lMgXJnhgiFLPnNLrgQ+lLOz3sf1lKroKmdFWE9pcCWJHTrXJCuixOSKCoTbF92uINmd/cWJlIKkFjvA/8ZsN6TWfPPwev7igs/gXZBO9GVlo9CqLLSk71hgSzLUDqiKAqi1JfXQB4tdbiGzHO0FwwlCWNjYwwNDVGJFEI4PLa3WN57kiRh586L0CYniitYU5C3OwilWWx2qA+NECvF6OgoL3rRRdh4gK0X7aZer6MEtFtN0ko1bCJjKIoiDDsgabctSaypDw2z3FgFQEWaOE2p1+vgXe/vda1JO1lGrVZj+46LWJqbYWV+is3bd5OkFZCa0bHx8GHgPc55vDc9u92u2YFF4FEgI4pEIXSKVhotFXUDTq3gWi0oHK3OCg2XkyRDYHJ0WkWUblr9+P6ij90+ds/X6GO3j91zFV2FDe89Ok16Jibd/0a3M1wqWxhj0FHUo1bgw/X9WkpA93XXDgSKsjssStpFj7csBb7spEopcbLUO3ZF4CiHCUM8nkgqnLFoB8bkCOPwPnTIKWkZxmdorVEiUE5wgdvrjMWLMDTplEA2l1iYLXj/39xNZWyU0bhgviEYEYrMRnz4L+9kx9Z1eHJuvP4mppe+xfj6db0Ctt3ukErPoScfY/P6cVZaTcY3bmDd1t0MDA6hhWf/Q18Db3ngS1/k2MHHue0Vr2Ry+jTVwRqzx1bZvvsyBqojSAE2L/BZxr6Ln0MuJdH4eu49Psu/iyUMJZAJhLIIDzpSIEKR2aO/GEukNCbLsfgwC2AMKi0dCW2g3zjv0VEctLGVQkdRKEaUxHiHxSOsDbJ5yuE7OUTB4TEzhkjo0NXXGufore/ZiAs+gZZSI4VGSY3WMd4JOnmnrHYcrVYrON8Ih7OQFx2sLVBKYo1FGEOsQ5cjTdPe4S+TCCnDdGe4ihQ9yZl6bZCtO/ZQHx7j9DMny8lbQ5IkJNLRWFnm6PFJdu4eYGCgglLhQySNIuJYY53piasLKajUqjRaBTNzi6SxZmVpmTRNOXbsGBs3baLRbrHvyisQWJw7A44gVC6p6wrGehalZGhsHWlcQyhJmqZU65U1XLkwqQpQrYaBHucNUgTjAHDBHlOn+EjjVYQQkmqlgkxaRM0mImuz1GnQbGdk2QpxZYCkOtizT+3H9x597Paxe75GH7t97J6rsNaSVtMwOCjCUJ8sO50CegoLWkicsWFQr0y+bGmGAkGHGUojlDL5lrjAsXeGQKANnWMvz1CNnMl7vF7vDBSlVJ0Izpgh+fZB4g5Bkefh/ZX6zpEQmKzodbXjSJHnWaAy+DP8YHxQCMmKFi7LWG0J/uNH/4HK0DCXbBhgcnaa6YU2RavDxhHN5i0bQSi27biUqakpLt+1lU67yex06IrHOmFmYZ6jR4/SWVokSRKGhoZYN6RZXZ6lYS1Dg3WarRbveMe7MNbzs+/7jxw9Oc1H/+bP2X3xTj7zqY9x2eWXcOjwEzzvebeSVodZXmmSVKo8dXqG9tgI823HlqqlocLvGrjN8lnDnziPEmFQUAoRbmCyUEh4QCuF7ZTPuXxOaZpiTHCEFM4jiiBDiDHoSGNdGEx0lQQAkxXUqhWKIvzcgIHAwVayn0B/T+EpULEMfKbyKqF7SJo8eNwHMfYWnayFSip4EWFdjva2x51p5znNdlEugkAIh+1KNDmPLa0+vQ0i7PXBIaRWJElCp9XuDcJkWRsR1Vm36SLqQ8OoOCWNNYODg8RxTN5pU+RFWSUFR65/vO8BNmzYxGc+/QkmxkfZvGE9d3/27xDeoeOYxeVlTr3oB3jFq16B0KJXqdlyaEJKcHmH8dHREozhv0dRhC4HLYQEIWJQikolpj5QRScptNvhykyGze8FOCfIRYSqDmN0im4NonSTgUoT3VxCrczQ7Fhay/M0l2bQ1WGi6tC/IgrOz+hjt4/d8zX62O1j91yFxGGzVs9RzuVFMNXIg8KFlxInQGrV49v63OC1LxPuYCltvUejgmGHK2XqODO0Zl1Ick3WQeio1IQWQVrYgzWBN+2VpChCd9ubAkUUqBpZgRMebwqsDPQeL13pVmgwhSm1jgO1IJKSot3scaels1hZQ9PCLrd4zx/dR0bGDTsniMlZbTimF3Nc6njty25gebrBtm3DnDh5jPnVDJempFpx9fXXoWsj1EfHmNi5i/FNW7CtJQYHh7n33nt5zWtew913382unRdhjOPYzBQj80v85m9/kI6rMT42wft/87+w2moyOztDmsb8wItvZsvOZxgdh3Xjmzhy+EkO7j/MK372HXziE5/iHc/fi1pXx1MWu3kWZheEL/WtAeOwxoAKa6DCQ0cUFhB4LXvFTdeau+cMKTyRlGRZRqyCDrqOFUWR9YpqHYcC2QuFKotVKwBn/yd9739pXPgJdHnNEkUR3tke3y5JEoQPB7ozZdcht4BEC08r74AxODzeKQopaa2uUKvWAYd1Re/1izx/1uQzAFpSqVQQeNLyQ6TV6qB1THUgEOqXVpaJ4pwdO3ZQFAWdTqfstuThg6a8ctowNsIHP/AbXPWcXVSyGU48dICNAwmZdSw1F9i1axf7rrgUGYWf3W63qdfrJEnSu66ItMZ3xdq9QAjPP6clnmfhOjGOkvB+rKMwpTi8FyDCBjfW42WMi2soFF5FxAJqeLRaRTlDs91iZXEO2W6d+8W+wKKP3T52z9foY7eP3XMVa5UuRGGDpnNpBe29p3C2NyS21p3QGIOIdOksWA6WlZ3ntYOBRVE8Sx5PCIE0hiLLAq6jODjl+UCzMIUjiiLA42SgaiilsNIirMMWbZTLgsye8BhbIJ3vOR5iHcbZQNUoCpIoDu6FPkO2OxhnufPrT7FkBZduHaVKm7mOwKkEIzssdDTTCzAykiJEnWZ2nJlGg6c+/xBPn5jCyk+ybeMosYz5lV/9RSbWjxJX11EfG2PProt44O4vsm3LVoYn1jG8boIr6y/gzi/cxW/8+q9w0e5dfPPRp7jvgftZV415y1t+kCeeeILp2RU+d+ddzExNs3P3Dq66/iraRc7U7DIX/cBL+IUP/Td+9+0vwdZiZJTiRYSQoL3FZHnoFAdIIzwUnQxdSfDOIazA+CJI0KkgZ6mUCslwuXaUhVEwZQla6t2udrFm6NB5j9SSrN0Og7Wye0uUnRUsXvAJdJAtEcRpQt7J8CIc7EkS4UzRuxIwzlGNIqwtMCb4p5ushXaWJK0xPjbC4FCdTqcT/k4p07TWVvS79SmlDIe5EtBqhYOsXq+zfft25ubmOH7yBBMTE1QqlXDod3l0AlZXV3t8wc1bxvnBN76a3/tPv8oVuzZy7aW7IW9QSescnT7JdS+4hS3bt/UOlWq1iiyrs579aNmJCa8J3v/zdpZdCaozv5frTSjjz1x3db+cSnGxgHI4IJKaWAsUBukKMAWt5uI5XukLL/rY7WP3fI0+dvvYPVfRXW+tNSIzQelBSUxZqERKY/wZ++uu4kOkI7ySPQ41hcVFqvfcu8+3q0+syuE+74OsHEogEBiTESkVlCKcRwuBM+XwoHEUzoIHLwqUc7hWq3dTIvEI4SmK0kVPCCipQ05K8JJ2KxRfxhfUXIWvH1/kz745ye7NNfbu2IhwbaoUCNrgHANDksefPImMVlhcPMDounG8qjE+MYCLU1rtnNtvuZFX/vtbaTSbfOxjH2N4eJBbbrqBo8dPolzGc667GuNjZmbnuesjn+b+B77OG37wDi65ZA+3vuD5XHf9Vfzyr7yf9//2/0m1UufGm67mquuuZ2BokB07dnLs6FFyA+s2bqYaKXa89OX85zsf5H0vvwkT5eiKh2pKlhUoJLZwCAWKYGrSXQ+hZLitcaXJjQjqJ06Ua+4FmNCR7upuKyUwxRpXwyTQlpxzRHGMyQPX2nuP6TTpOh+ejfg3kEB7FIo0rYaNY13obpRE9m7HofCi9+DzrB0GQ5RERcECVKiITjun1WqF7klU8qjWDGl0NQ2dC9JN3nvyPGdkZIQNGzZw/Phx8jzj29/+FuvWresdlnEcs7Ky0jtwi6xDkiQ451hdXSWKq+y97iZuf9UbePTL9+DTYdqLM2yYmCB3M1x7/a0UhSKKBe1OEDpvNpuBF1h2RLrSTMYYsiwnTePeAdN7Vi44JBWFp9ls9riF3joECo/DuzMfVN2D3AgBSgfwS4kQMQKDdlD3nqKT4dXZmXr9txR97Paxe75GH7t97J6riIWi0+kAknbWKouMIFFmXIESCiUE3rtAz/AgpMbYApXGREKSWxNkzXCYskvtnEPaYNIhnA0DbK7bXRbYwiB94KU7D1gT1s2BIiSBzhpsnuF8GEbMOm1E0cZkgR7kpSxfx5+xD1cR1jt8pINyiHPYAiyO5RnDh+76Fu2mJKpWOXz6FBSayUZOo4hwwGrDcPD0aW68Yi+HnznBY1NTeBmh3SmKzDEQNxh93fN56PFHSOuD/Oqv/QZHDh3mwMFHMKrCxz/xBTbv2MONN17PyUee4P77vsxLX/0mnNK85yd+gje8+mWcXlhkpBqRbxjn2Ok57rrnAT75mS9y9VWX86u//j62b93Mti1b+NZ3vs2GjePcftvNzO29mL/90j/wQ9fsJPcRopGj0xisRwsoXBjm7CrYCMJgoUUGPWgvwAmc8ShARhojg5qG1AovFFqEZ0BRBHMbAaadoeII7xxGGKw1oePtLJHWmKLA9p0Iv7dwFqwIII2ihIIC4Yre1V2eB/kfq+I1k5kObw1RUiepDoBKECpFRHHvYIQzIulrBeuttRhjSJOEJEmYzzrMz8+TpilSQhQp6vUqc3MzXHX1NRw5epLFxUVGR0eZmpoCYGZqEmstRVEwMjJCM++Q6IRXvuZNSBFTVFOeeOIQB5ee4g1v/3E6XiFby8jszFVmtVoN0lFrDoEsC/yggYEBsqzd+96eo5J3WOdoNjvMzc2RZRmU8kAI8AS5me+eXgaPcwLvJFZIiBOMH8NZjSgclYEcu7J6rpf6gos+dvvYPV+jj90+ds9VdOkaRVH0lBvK/4HSGm/La37AOEekFBYfaB3WYcWZZ9ijbkiJEjIMtfYk8c4k1s7YMBQoJEoB1lBkndAFtx7vLc4UKO+gyHGmCPQPa7BZjs8tOE9RcngLa5EqUBCcsWgp8ZnBeHOmuPIt7jzaYf+cYcug4tR8i8ZqwegEDNUT7EqgmrScwDU9Txw5xdxyg4E0YuemKvXYcdO1l/Ocyy7m9MmjtLJNfPrjX+V3P/AHfOOBLzE6PsBjDz9CXhTIZIBvPX6QybklDj0zzcuVY+9F2/nVX/oFLrt8H0anPPTw19n3nCv56tce5A/+5K+xbcmJ49M8/vhhDjz2CNdeey2LzTlmpxyDUcpgvcb+5TbfPt3khss3YFaWybMOIpZkziFtsFOXHozyvf0QV4OzYOEsOoqItA5ygsaEYdqygMSboHaypiDN80AP6VI4rAsOlEprvIDcWISO8P8cj+r7jLPzKv8/Dms6mCIQzWMdIbB08oLlxQVajVXa7TYGSRRXUMJTiYPDVJRWSKs1hNIMDA8TJ5qhoRFyU5B3wjS5tRbrBV5IhArXdEmkEN6Sddq0W81wVSAV7SxUzCMjYwihqFRq7H/scUYGU44eOUi72WBsdBylFIPDQ4yNjbFhw4ZgT1mE68UMya0veSW7Lr+abx48wWt++J0U3nNq6hma7RYLiyucOj3J/MIyc/MLLK+skGVtWq0VwOG9JY4ljZXlADzriHVE3snACaQTxCpGImmsduhkbRAOFYeKT0QKFcWoKEYojYpipI56HSDrHc6HIQunKsh0CF+dwKbrkLXxf20onHfRx24fu+dr9LHbx+65irzUT15rie1cl+7iQlLjHM4E+2yDx6mSAlPaY/foPj6odrjCBGWHskhZW6gEhY1g9CGFwBUGm3XAFGAzRNHBZ21Mu0neXMZ1VnFZE9NexXZavZ/p8BTWUFhDZh0tU5B5R+4tHVuQW0NBoIBYCYdnDR/9yn4GpeSmi4cZrxRMDMUUjRZZljFSTxiqJVg81mtUkrJ58zibhmNectMl/PrPvpOX3HYdk1Mn2LV3H1KucvXlm/jBN76U//rhDzJQH6HdbnPRzq1cvOcSqtUq3/jK/Vz5nEu48rId1GLF4vwUmYhoG7jlha+mUp/g+Tfdxsf/6o95/gv2keUrHD9xlPXr13PixAlWV1fZtWMnlUqFz3z2s9z84pfQGpngmYUVnI5xViGMRHiJlhHCBKls6TzCOnxhKNodXFYQISE3Pb54t9gJhTTYIseZHFsEPnOXfrMWFwDGh2fqBCRxBaQiGRg4K1i84DvQiPDQgzNTmIQ2JlwJdrl4QmgSFZXfB1orKpUKUVJBJTFKh6nsxcV52s1W0DhFhdcqCiTlkAhhkEQphSnOOPBYaxkeHibWihMnTrBx40ZOnTrF3r17+frXv8rLXvEqlpdWWFxqUJiMdrtNc7URjARWVllYXmB0ZAwhU4S3LK+s8KpXv47pqVlGxsfRUtBqdUoAxUgJlUo1TKd7RZLE5HknWG+WVW8cx+HnNJthsEdpBJJWltFsN2muLpO3WySqiow0AoUIWkG9A2Yt97D7tTYcYITGRCkmLv6/XPULI/rY7WP3fI0+dvvYPUeRJskZjefizPBgN7rPSXjQUmJFeCZKBU1mym91ziFKrrSUskcz6j7PbqJtC4NyBNttZ1DCh8FYW9DJgsmJFpB3GsR4TJEFXrMRWOsoyluNwlpirbHGUTiB9I4i71BYS61SwRQFzawTpNacZ1DBc6/YyT2PznB40UNRoKoxk9OOSlVT04qJgZSFRodaWmV5foEkqfCcvZu47Zar2blzF7XhdUzs2Mvm3ft4QWuVj/8/f87CXJO77v971q9fz1OPPcz60UE+9MHfY++lu3nnW97A4aefZufm9Tz2+He4ZNcehPOMjU9ABFjLk0cf5+N//Un27z/CgceP8cyJOTZuGmTz5o1MLpwG4ODBg4yMjTIyUiGtb6TZWaWRJiiVkLgc02kgK7J3GxPmAEuaDCJ0jJ3HGkMOiCQKtzHGlvQdiLTEFUEy0pdug92hz6BA6NFxFNQ6TOjWqzQmwtPqtM8KFi/8BLqM7qYqigLTaVNkwVEHqahUw9Szc45Op4MQhCnoKAl6piphcHiUysAgxhianYw0loGXQ7giyLIMb89oTa6dFN66dSsHDx6kkgRBc2stURRx7NgxLr74UjqdDq12k8IUGBOu/QYGBlhcXMQYQyVJcdagyViYm6PRaDCxcYLZuWlUGpNWKywtLRDHKUoJ0jSlVquGLkZZeRdFQa1Wo91uk8YJeZ5Tr9d71prWWoQWODytdoOF+dPYZpPIjRFXa8RRFSEVKNc7rLoHDPzPB3lXeslKcLHCU/3XWfgLIPrY7WP3fI0+dvvYPdth8gykwIpArUCDUCW3uHs17z14R5FlgTOrNI6QXAnn8EIQlTJnUnSTOBkk8kp7aaRCWofLMzAGa4vglukDJ9d1OjiT470NFJuiwDoblCSEJO9kdLICiwiyeTYkhnmRkxWGJE7xTtLOCvKsEwov7bHGoxx8/ekmT07OsWo9c7MLDNdrtFZytm+bwNmM2aUGq82MVChW2k0u3rONx47sZ7FT4dHHT/FrH/hLfvEX386pk09z92+9n527dvPOt/2vbNmyjTcceS2f/+I97L18H52VFerDg9x888185R/v46FHn+DvPvclqrFFRjXe+aPvYsIWDI5sJE2Guf7aW7n++hfysU/8FVOzf4IQguuuv4n//F/+K85HfHH1fpJIMTM9ydvf8maW5maJxXpmlxaZGJ/g1JEnGY9r5L7UZo4kOEHuPIqIwhpAY/McaX2Q+8tyRKxRSYxVYTjTECFkaZBSBAWbKIqQgeWBEApTgI5AoCiMJVGKdqNBmqZnBYsXfALd3VDdq788z2m3m3Q6AbBRrUJcqRDHcemOlVOrVUnTwL2TOkHgsLbAFTmtxirGWoRKEMIQS0mndI7Ce6wLm8+agnq9zsLCAsvLy4yNjSG86101SSlZt24dJ06coJMXLC0tkaQVtm7dyuzsLBJBkiQ0VlaZnZtFlAT4KIoYGh0mihVxHNMxlkZzFak04+MVBgcHkVJQmIw0TcmyrJx+T2i1WuEDy4buUJZlPecsvKXdcTTbGZMnj9GYn0TkGU0drkrkoETqBPR3HdhCIITsVX7dqzHnbTiAoghVqSHlBQ+1sx597Paxe75GH7t97J6rKLIOUZrgrQfnsIVHof8Jd7mywCgzKlHKnwE95ZUu37n7bP2a/493YINuuSoKrC3QUeDVFnmGMgZhDabIAzPfmt4Qa/d1tNaYomvgoYKph1QgHZmxwWRFC5RQmDJx9B4aVjDfKqgkEmmWuXTPxWRZweFj05yaWWVsuEakPF5LcJ5cKZ48dgpPnRNT8Jl7HuCaW67ijz9yH4cOHkUmAzx1+DFe+aoFMtckSas858prWJqfYf+jj7Fh6yZkFDM5t8irXv96bNbhgx/6Xf79HW/mzz7yab7+4DcYHBngxS9+Mbe96AdYarSoVDWrqyvcc8+9DAwMcPjQCZSukFb2cPjkk/zhf/s9RoYHqdfrzM/PUq2mFJFi+njK2KYtTB94jA31Ct5miDQith4ZSYwwFM02QgULb901PbG+p+espcSUToWFCTcySZKU3WeH8CLI4CFBKpTwqK6boQ6c6LMRF97u+q4IG+HMQW6MwWYZzhZoHYevOC3F9jOcM70NUNMSEQmiRJI3V5DO0k4qNBot3PgYidbYrNGzh5RChOlRKRkcCId4T9RbawbrNY4fP45zjq1bt3Lo0CF27LiIqZlptm3bxszsLMePH2PdunGKLCdNU8bGxpB4pPBMnzpBNR6gNlClVqshhEcXhqSSUh8YolarhY0rHFEUI4RHlJIt7XabWq0WDvM46Un1AKWHfEKkNJEoKJot7rj9RfzhH/xftFcXGF2/BeMcA4NjKFV51tVh4IydmYrvDl0UvrzCRRCLBK0veLr9WY8+dvvYPV+jj90+ds9VyOBiQm4NiUwwzgbHQSWf9TyMsUHvGY+UZ+y4u4m0FzxLvs45FwoQygLQWazJiZRA5MH0w5hSOaLIsUWBtwbpbUjQnaUoHRGNMeS5wSMJtvRh4NE5i7GerBBEkUfF4IWklXUQQlDkQTVkZqXD+OatPPLMKUbWb2G2XTAQwZ49W5mbX2JyepVIepzWCMBISdtYnE45fPokP3TDS/nIX3yedjwAWtNqnEJVIt79U7/I+MAg11xzMSdPT3PL829ix0W7mFmc5cEHH+In3v1j/NVf/Xc6WcHHPvVZPvD+/0SbGFUfZ7Gl+OO/vJOPfOJuGitNLr9iF0ppxsfHeObUSd797h/jL/7yIxw59jS/8JM/zsaNI1STIZR3VIWGoknbZVx20010GquM3HwDVa+oRQlzJw9TzE3jzSpCxiTI8CxTjT++xxUAACAASURBVPEekxcIL6h7eoODSkcYG1xDpQ7KLJVKBesdUkX48lywzgVtdiGQaYJ27p+C1b8oLvgEWqogau8IQJUqRkQRQicktTr14RHqlRhnCpJII4mIdczy/BKuMEilGRwewVrLSrtNnNTotJtkrQxdUUhHr9OQd9okUUSr1aLVCvI69XqdVqtFvV5neXWZKImp1mscPnqEKInJTUGtVsGYnB3bt9Jut1laXg0dCiWoDFSJ083kWQd01JNIKooMpTXrRkZ6pHq8Rcnu5i91FJXCGBO6Jp0O1WqVVrtBLGKEVBSl1qjGs5q1WJyZZ1QqvnPfXWxbP8bJ6enw/ofnGR1fz/DwdpJ6ipASITxOOHLjcDhyl2ONoVO0cDZ8QHjrAIkXFzzUznr0sdvH7vkafez2sXvOQgQSTyQjrLeAD8WOFNieIYpERlFPF7xLfPZeYIRHKUI3syxmusWb8mupMgZpHKaxGnTNpcSaHEwezH5sFkxuXHAiBMitQQpFUYBxmsIGioLDobSjKCxCRERRcM2LY027bVAaKlGMMS0u2rOPJx4+jE8073zXuxnZuI2TJ49z4/VXo5VkduY033rsII/vf4pvfftJBoZhZa6DrKdkeYFyCV+871GydDgUr+0OKZ7IOU5PrnLy1DL3P7yfl93+7/iTP/8Uo8M13nDH7TQaS/zpn/8ZTx8+xDve/R4+8Nu/z69/8BMMDI1zzb6LGB8ZpLmyzOT0IqsrTYrvnGCl3eDhR5/khptvJBlwzM4tUU09L7n1eYwMrMMS6C7VwSG8rTKSxqV6jsVaSKQj77SZGB1idf9+zMwU1nXIbY7SMcqC9T5QNdIYqzxxFOMFvURaa40RnqiSUgiPEDFJpU7mHWmlQqPRwJUFrRMS60ORcjbiAtxdzw6BAmHxrns1o8J1ShQTJWeE9L1zKKnDgIZ3DA4N0G63SSop4Ii1RkQxcaTQIsit5EVBqjRpEgZDkiSh3VwtuwGBj9dutxkZGWF2dhYhPFu2bGFycpKBgQH27NnDwYMHe12ao0ePMjw8/KxrOa01WuowgJKk5HmOdZ6kUkVrWWpUUl5PnhksWSuV1LXQBXpVWp7nQVw+Ch8CzkoWV1o8ffwYfmGOaiVh/dgYr3rVHXz4j/6UJZvTaq9gjWLIjqDTFFSMKSv2bpcpLzrkJscbUQ5peBCgogseamc9+tjtY/d8jT52+9g9V6G17knZWcK1fsCP7xnrBKUW3zPN8GuMVWIRdKOL0vDGOYcUYeDPFp1eN1oJKPJOMAHyDoEDZ3qvLznTbYZSj9yJkhLiiOMIl5e23ELR7gQMdbIM6135vgQIx0ClRnthkcF1W/jCN7/DC177VqZXG7zyNa8nrVSxpsBYqA2O4gvPS15tmZt5hp/7mffy4pe/gl/69d9nbiFHl89kamGFnhumtLzrh1/Ldddewuf+/j6OHT/N7stuo91us37DJr729Yd5/MBTfOA3/je8dTzv1lv4vz/6KT70B3dBVKWiM37559/Fzbe8iMnpBf76Ix9hebXBwSMniI4mnHzmFFlW8MSBIxRFxnvf92MMDI0gkoRYaoR3pEKgZBQSX2/RSiCcwNoMRIRxlsrWbTS9oX38BHGp7+w7OU4J4sEahvD7dLKMKInxSqBUTGYNUVxFKoXxjqhWwUlFnKYIramokvokJThHIgSrC2fHYOjCu9/5ruhWoM/iNklNpVKjUqsjpMJ5MKaDMR3a7VXm5qYQwlKvVzF5gRIy8OiMBV8wefoZFhfnydo5xjhWVlYQQtBoNHqVbHcTDg0NceLECay1jI6Olge6YHBwkIMHDxLHMXEchlyGh4fD8Eql8izOHsIjlaBaqzA0PMjg0ACVSkKlUunxt6Io6h3gazld3Q+F7mZyzlHklkgnaB2X06uKZmaZXVhicWWVxw7sZ3JhgWqlwlf+8T5++j0/inYFzcVZJk8/ydzMMebnnmFlZS5MICtPrBVJFK5mlQycwe771yWHsB/fX/Sx28fu+Rp97Paxe66iq5rR4zcLgY6iXsHSXQutdW+4tDt42TOhKb/Pl0YrztjQtTcFwho0HpdnSEGg5HiPNwWseZ1udAuu7o1DT1KPM66JFoHUMdZDFEVo3aV2GIocVluGFSdoyCGef8cPseGinTz3+usQaGR1BB8NIqM6uQeXJvh0mPXbL+FP/vSvuPX513PnZz+CVgWJElgEBQqhJJFU1Cqa66+9iLnZSX7z/f8Hn/3sx/jg7/8OV165j9n5Oa6/9gYWG46/ufNe2l5y4tQCH/7QR3jfz/0IJw99lc9/7pM8//ZXs7DcYstFe/n5X/5lXvXal3HLrTcyOzuNUoo4Sjiw/xDtdpuX3X4bSZLiYw0qBp2g4gokGhFLfCRxUhBFqlxDj1IRi2jUpl2IoSFENexFkjBUaDv5s+zPtdbBxMYYqrVa4EI7S1qtoKXGGIfNLZFSCA+2MKwur2CbbfJWi8HhwbOCxQs+gV4rsr3W7z6pVImTFKUUWRGGXLoi3BAsXV1hKEpd0SzLUN6wOjfP3Mw001NTNJtN2u12byChu7G6i5xlGdPT0wwNDbF+/XqWl5fLzRO0CuM4LmWegpVo989d96ruQbj2e777q3tIrB1cWLvB1/7uXcetHiexlNfxDoSKWVhq8OAjD3PjLbfyxLFTHD89g9SKL919Nz/yljczoATNuVNMHX+K6ZNHaCzMYPMmsRRUophapUK1WqVWGyBJwgfN2t+jH99f9LHbx+75Gn3s9rF7zsJbOu0mRd7BFEXpAGiRQhBpDd6HP0sREl7nkFLhnEcIiXfBVj0UNS1M0cabDsJkJVYd3husMzgT5BJd0cYUWUi8tUAo16MQSNmVYZSYIiTM3lsy0yKtaLTyKGHCrYAUOFEQlwY7SMnggALbpuEVW2+4hs27drB1y042bd8d1tCBjKok9WGiuIoQCmcyPIp4ZCObd9/AlrExfuNXfoqBIY1SEco7JgY0tTjn137+x/AefuRt72J8dAP1ep2IhLe97QdZbS8yWNOsXzfCqWemaDYznve8m5g+9Ri/9FNvpZbk7LpkM1HqWbdpG+1WA18IvIvZsHUbK80Wg+ko/3jv/TxzYpYbrt7D9s2bcF6grQUlQCuIk0DrIv5/2XvzKDuv8sz3t/f+hjNX1alZs2zJszxhY4wNxtjgYCYHAoEAGclwM3SHhCS91k1udyY6CSR0OoROckNIQwjugDuAAWMDBowHBkueZcmWNZekmqvO+A17uH/sc0oy6fRKOtbNknKetWqpSipXHZ/v+fa39/u+z/OggjIqKGKF11OSG2ZPHGa1scQff+S/sWepgTEO6wRZNyMqlRGFAjKIkGEESHRmCCxEUQFESFwqUSrXMDIC5deSSArSVgudpbg8JxaSKAiQUUjSGdjY/ZPgnENwUnVrjMEiMFpjcIQyII4lhVKBcrlMqVRidXWVubk5sk6XMI5I0y5KhSRpl0rZkiVt2u0mnc4QoyM1tMkQQvj4UE7OU5VKJW94PjLC4uIiUkqSJFlTi0ZRtLbg9k/EpVKJLD/ZSgSQSvQsmvxsl7VgjDvpodj7vn415FS1dp7na//Wfz/A/4woCsH52NqDM3M89PC32PvMs/ynr93HS6+7mp3P7ObaF13KaK3Ow9/6Lu9601u5485Ps7iywtLSEkmrgc1bZCObKFdrBFFMGMY4ESLCzL/XWpN0uifTogb4J2PA3QF3z1QMuDvg7umCMYYo8gmWRpzsclivqkT3DkKp1RSC0B/QesmFQgiUlARhjDEaQwDWu3lY168uW/xctcBqQ2585VkqiUCuiQ6F6PkOy4Bms0mpVMJaP1qSpuna94RhiOvF2FsDIE92JoQltYq2leydX2HPXQ+wsPJFTiwsctMrr+eSSy7h+htuZnh8Cucs1gJSEcWxd/CQEuIaw9Ob+aG3/iDfvP8h7vrKt8HA1Pg63vSaa9m2YZgrX3wtpUqRxx57gnu/cS/l2jjFcpH3vOc9fPgD/41KbQwV5hw48Czt5SuYP7yXLE3ZetG1GFOAboHvPnI/V155JU89+Qjbtp+PVl4X0Gw2ae9f5aoXXcnNr9iO0RlRUZJZR9QTtwohsL2ujJSyVxXO0GmbJ5/8Dpdc+mLCQPLvN53Dd+6+m/n2KlPDZXSoKVYrdPPUH4hEzyPaOVzPa94KyJIEAsNQfZR226dv9tedQqFAnudkWYbVlgRDUIxfEC6e9Rto8O1E7U41obcIERBHZeK4gAwUoYCoGIMUeEWIoJN0KUlBu7lKvV5HaMfK6iJGeuubcqnA5NQYLvdVEBn6+SOLQ1pHt5swMjLMwtI81oIUIZVKrfcQaGGd7r2GGK31WqUiUH2Vdd/x3c/uYL2qVAjfXuz7nwq8IEIgkEKuLeb+v/dtkt7IHFJKwijuLbI5WgtWO5rDxxd57DsP01icJc9b3HHH7UysX8fFtshIeYySDHn4uw8R6YSqM5Bqkvl5DpmUiXbG8Mgopdqwt07CLwxIh5MOIX0a1wD/fAy4O+DumYoBdwfcPR0QQqyJNEUYrc1Du56zhgwUTuDnZI3zdmjOeScG55Bh4A9ngb9m1tmed7MfCenPxgvj/04hMMoLAYM4Ik96cez9UQ3hxaz9ERLvrhKiONkZsdahc4MxrucZHiGkZrXVpNvJ2XjBZTzVPsr9u/aycXqK4fIwH/vY59i69RGOHJvh7W//QYbHt4ISWED2ui0A2mbIqMDkxq389vt+h8998XrWj0/QTXMKlRpbtl+EC8v8j9v/losvuZQf+9GfoTY6BVKwvLzMnXf8PV+7/wnCAF59/aUsN5ps3l5lfOpcZlePMlofR5uMq664kn3P7qPZabP89FPYEC7ZsY2Hvv4wxaDC/mefo/DKcxHWkmWasFZeswlci0fvHSp0rsE5styy48prAUG73aY+Os7Lb7mVr37kw6wfrWEVdPOUoBCDg9x6L3ed54CjWq3QSlKCMIQgRDtLuVwmSRJ/cHGOPDfIMMJZS6YdxVqN+AUabToL+zv/EKfa1OieFU0QSIrFMoVCCasNabdD0unS7XZx1hJFfn6s0+mwsLDA/Pw81vlqRZ4kHDq4j8XFBRqNxlq0qE+gcmuzdn0P0H7FIs8NgfKtRKlOeqX2W219b9DvnanzFRDXs3ryaUiyp/o+teqxdroT3/Mg+B70/12ogKVGk4WlFY4fn+FFl19CFAsy22FouMbbfuidqGKJTMQE1THq68/hxptuZWJ8jNFaRK0A3cUFjhx8mqOH9jJ34gjtlRV0lpHnBqt7D099MoZzgH8eBtx9PgbcPXMw4O7zMeDuCwSh0MYhVYh1DqkU1jlUGDxvo2ZzS24sMnj+Zkm7zPs5G4OUgT8j6RxrfbW+/zMMDiskTkUEYexHI5AUCiWCIILAzxlbp4kLIUEoKcYBhcg7uQRBgDXgrKDnLkixGKMCgbaaZqdJuVpiZKjKI4/vZnY+4bxN0+zYVuedb34FX/zcf+ePPvBbbNt8Ia+75c38zV/9GUp520bhfPCLBaRz4CRGhpx33mV86e47eNePvhkCyYc//gVe/7af4b4H7uMtb/lBpqamGB6fQndTdDuhqATv/4NfYd1UBWuhNDRKw5bYfPktTJ33Mradfxubz72RT/yPO3EGzrvkAtrtFr/zO+/jwW9+jZ/+qXewbv0ohaJi33NH2bRhGmsdhUrZz6dbDVajkLheYI3VOVJBZi1xdQREwKF9u7nni5/l/e/7TR7e+R3Gt28nNxqrHFhDt9MC6dDWeacd4XAipNlJiQpFRM8pJwgk3W4bozM67SYSQVAoUqzWCKICshjghPSdhxcAZ/0Gur+AnzqbpoS3G8JopLMkSYdGo8Hs3AmazVXAMjxcY3h4mHq9TrXqleHNdptms8mJ48e54IILmDlygMbK0vPEK/0FeXl5mUKhsNZG8K3DgG7S8aIDFRGFhZ4S96Ra+NRF/NQFHk4+kPqiiP7vPXXx7/95EvYffBiTA5aFxSUWFhaYnTvO0aP7mTlygJde9xLSNCEsxnz5y18mjsqgCiSyxDIlHtl9jHVbtzG5boShsmAiCLBpm7njhzl2aD9zx4/QWVlBJ6m3CNISZxW46P/X6342YMDdAXfPVAy4O+Du6UL/2vTFev2P/nXpX6e1jXDfleMUYadzDtETpflDzUke9J051n6mPDmG0J9jt4a139GfcxdCoIJTY9UtxvoIaesM1hnSrNOzcDNr/uEuchTHaiSmw2QZ6tWASy88l1Kg2bJ+nFfd/Aq+/vWv85a3vo2lE8dwWQvEyVCY50FJbr7p+3jvr/4qt9z6Ghotx/jUxfzlX93FPfd8iTBSHD+wj/f98e/ykz//k9zyxjfx8U99ibe/4x1smKzyg29+HT/0tjdx92c/ztzBb/Nnf/YrhJHlV3/t/bz42pt5w2vfylN7DiKIkC7kM5++kxtvvInlxSWc7TA9MYnsHWR07z3pC3KdyQCLMzlZ0iaKIm+5aHPSboutm9YzOjLM5+/6Ijuf3A2FCmHkEz8LlTJBsbg232+tJSoWcM4RhvGa53qr1SJPfJiRiEPCWpnMeY9wi8MJRalUQgbfG7rzf4azfoTDWouS4nmqXG0yrJV0294z1BlDq9noWdM4wuEaYRTRNd7cvFwuk+e5j2qtDrNjxw6+cd83CcOQA1PTVErltZvOIahWq6S2u5ZGpU2GlA6pIpzxEaxKhcDz2xr9z/tfn6xk+GhY/7A4WQXp4x+rgFhrQVh8IlNvkVeANeTGMjM7x9N7n+PgwUMcObCf/c/tZrhWYvv557Nh/RYmJ9ahophumpFLgVNlStNbkIUUvTpHpWqxWZskFzRbCa3lea8ud1Coj1MpV3FOrD2oBvjnYcDdAXfPVAy4O+Du6UJmjb/uTqxVAKX0G6RTD0BCBd42UAgEJ2fkfZKd6h2Q/My0lIG3TcsNQjg/JpBmaxt1KSXO6l7n4eQmuf+7+htsz3dJmmaIXqR7EEoKRKRpShhGvZn8jDTLsDhaLXh03wmWVw2/+2s/TWFoiEJ1mEIc026uMDs/x9jkegjLDNXGEFKQZ5kPgvmeUQShHBrJ0PAk//n330exGPHA/d9hcuO5PLRzHw8/eZg7P383e547gdFgtOD+b/01G8YLfPkLt1OtD9NxBa5/1a043eXt3/8ubr319Rw+NsN73/NbfPO+7/LIo8+Qdrt866GHmZqaotFoMDW9hXXjgo1TGwijCOMsoVAgFNaCcxolveuOzVOCQPQ2vyE6g63bLiRUERu3bOeyw0cRecL87DHq3RQZW1S1RLPVZqg6jNMO0RvhqVQqtFotKpUKhUIBVYjopAZHQLFcIuu5+TRXG1RKZTJjSdOUPE1eEC6e9Rvovk9nGAcI58UHgRCsNleJwiJhpMAahDVgNJ1Wg267iZQwNjbB8PCwP7H02iVT6zaye/duNm5Yj9aaA88+QxQV2LhxI2NjdSIV0el0iJSvcGidrxHFi2L6N2RAEMQI0Z8PfH4EKJxcoHWWIqRXFlt30iLnnwK/iAqk9Cfr/oJvtaRYrSGkotFY5dqrr6K1ssDGTet5/RvfxJHDxwlUzMTkOEePHkX34nBtsYBVVaYvuJmVY3sg3A+rHSpxxmq7Tasxx6HOEqXVDYyOjlEsDxFGRRBn30J+ujHg7oC7ZyoG3B1w93ShL8wMggAZKHTmBZu6t7H2119jtTnZHTjlgBNFESbXBEqRpl6IJ0WIyTW5MRSiAK199TTLfDKlyVJfxdQG6/ycdRAWSbsd1ClV6z7KpRK58SNGWZaQ5YYoCjEnM12I4xjjLGOjMLGkePmrrqO52qAwXCdJNffe/xWanTbHF2a54kWXcvU1NyFkTBSUkVJ43QDfEz8uLDiJto5QRfzKL/4aneX/BGGR9//JR3AIioUhbK7Zds4mtM5orNT44R+6iQ0bJ5BxjWR5lkJYohApUie44/a/Y8P6rdz+yT/lox/5O+6886vsfOwJAlVAELGwuExtaJp3vP211IeHyaRCWIdxBiUCEH78SWCxWQrOkCU5hfIwOssJw4hcG1YaTWr1KdZbxVC5zOPzi6huE4GGKCdQck1/oIIQFHTSBIcP0FGh7yC4giI1GtdMiAM/B511U4SxBOUyNk8wefqCcPHs30BLCw6CMMDFMXGxSLE6QmoaWKFptVf9CTVQlEvFnscnFItlRkfHGR2vUx8eIowjgiAgjotMTNTptjtkSYdU52TdBksLx4lDgbY1xuqjZEmnt2ArAmJ07uMlEV4xrnuLd6jAmVOM2J31ZuP4m9G5k+0hIbz9jhMCgT/xYq2PK3Wu92kv4tUZsBZnukgReScZGaOCECv8ujpRH2HTpk3MLy6x59lnWTe1gemJdTz5yBNUhkeIA8vC7AkwmigMMQjStE3iErJijKxMEKeaCicQ7VWkMAQdwUKrS3P2MLrboD65gUp5lEJU+tchwBmMAXcH3D1TMeDugLunC65XAFY+ThAZeK9f2ds8+06DAtHbXApweAcH6CU1Wksn9UIzay0qCHFo4kBBniOEwSlFWBBkRhMEfpzDSlChH+mwJkMVywQ4X9GUDmEFCINEEyIRUYRD4ESC0Qbr/Ox1EIQkWYbFR46PVYcZH64RxYpWe4VPfuYOHt39LNPrNnLDK17OxRdexfzsLJWhCXQCqjy89n6cOjQirN/SCSkwThDVamy9cBt/8scf5sLtWxgeqSGEpVq5nO7KMc67YDs3veIaXvWa1xKE44RBGRMf4xOf+Buue9mNbNuymVtuuYXf+4MPkLmMV99yA+dfcA5/+Md/zokTKalZpVIbRSdtLtm2mcxaECFCOgyKQOKFnDZHWIEwmnZjkfLIKHmaUAgEjz7yBE8fOsh99z1IpVLhlpddz+U7LubCK6/mxDfuYVTG6DCg4KDbWkULRalaQJVH0K0OoZJ+1t1B4ATKWXTa9k4saRclBc5m5C4kbzUZqlSJ5AsjIjz7N9AqXKs8FIsR9bqgFIUU4mWSJMFoSxRFFIvlnpo3ZHR0lCAIqNSqjIyMMjpWp1QqMDQ0hNb+BKTzlCTpkrS7OKEQTrO0OMfWoRpJp7U2L9U3tk+SLgKLv73xJ0jsmi1S/xSplEJ7r5vntQX/V8KU/9XfWatxJseajCxLcCYnkEAv1tQrmCVSSWpVSX10hHq9zlGpKFXL5FlKuVgilGrNJqpv/yQEOBuSWUcjSRkpljDFIUJyir3XKpzD5JpG0qW5cIIkSRidyBmpjZ6mK3z2YsDdAXfPVAy4O+Du6YJQvtJorPUeyUF4cr7ZWmQvqTCMojWBqeNkZ8FYRxCFJ8WkKB8XHShkL+DH6ByBhJ7Hs8TbMQZRgFJ9a8acIIzQSYIKI8BinK9sO+cQxoCxZDonVAqJRQPOOtqdDkEU+TFmKVDS0c4033jgfszQJr5436PUq2V++qd+kuHhGvXhUTZtrWNlAe0E1uZIGSJROP4xq0LP8f/rZ/8dJ44f58t376KgSiwvH2XTeI1fevdPEEaOy6+4Fk2N1dYylWgWqYa44cZX8fYffjf/5f2/x/XXX8sVl7+YD/6XP+VXf/W9XHDRdr7v1hv54B9+ksnpYY4dO8rF24fYvvUcRFxHxkWsE8Rh6EOQbA7W0Om0CHSXoUoZm2tOzB/l2NGjTE6OMnICbnrJ5Rw6dIRPf/rTfOnLd/GGG28kX21QMGVUEBDHIWmaU50eBadJWx2UlGAshaLngM5SSoWYXEjvtQ4ooWg3W4wPDxMGXmDsnGPkBeDi2b+BDgNsnmNxRFFIJagSxyFhsUSSJN7MHHAm9/N25TIGqJTLbNm6jampCWq1KlEUEUaKQEX+dJVrhLPoLMEaTTdJSJIE8g6r7WWKhSrOGRRevRsIfwP356lOXbz7QoS+PU//xu63hL53wT51QXjev9kMrVM6nRbOJoQBBGFxbQZx7fcKQDiiKGJ0pM74aJ1101OcOLyfSqFAmqaUK0UWFxf9A61cWwssCFQBJwWg6ToBpQpOWgJZoIBEOYvI2uACVJLSWJ1nzhi6SeM0X+mzDwPuDrh7pmLA3QF3TxeE8k4tWmsCJ8icIa5UyJMuQaDItV6L++5b3FkBxlqE9WEmuTG+Mtkff+jNMRshfVpgsYTLNc4pQII2IKQfHcDhsKieeE0iwBrStLsmTjPGEPWEiaFRvoqtQkIh6JJ7q7UsAwSOiEgJ9jx7lGcOzvGlb3+DZtrijo9/iMmJKouLsxw8sIcHHriPy6++jiuvegmlkTpChBSjKqJY/N+9W2RJxm/+9m/y2BNvZPcju7jpFVdz86tu4LEnn+BHf+TH6CAYMsvseugBHnj0KW577etpthNue8Mb+IX3/Dp/8ef/mVfffCOf+sw9/PKv/Dof+tMPEASKTqfD7IkMo1v8v3/yl9RHttOKLSUREijpXU2st6/MswSTtnn6qUc575ztZNbxnQe/yo2vvIUorHDNi4cpFyt0kpRIRBQrBf7+9r+l6KBSLNFOGiAlYRyTAaED3e5Qnhija3Iaq8tedJx2sWlCsVrxI1pCkKcpI7UhrDa0uk1aSZfxyYkXhItn/QYaGRBEyo8dyYAgkMRRkTAqUcyyNYulLPVWSjIIiAoVtp57PlvP3U61WiWKAhDed1FJb1cTStlrnWic9V6iJsu8pY2TdFvLxHGICCHLuqggQBIjpTdqV0Ji3Ukz9r64wb/Mk4rivkClDyH86TfuVTZOtYlK02W67QZYR6kYE0s/K9SPvlRKIaRECLBCEAcBlVKB+sgw9aEa3WoFgSXtdjh88ABRobg2U+bbmQohHYFQOBNgdE5XawI1hCiViFSEEIo8Sam5FqGAIMlZWJmn3Vj8V7j4ZzgG3B1w90zFgLsD7p4miEDgpEOGksw4giAm6Qn0nDaEYS8kI1BIZQmjCJ10UbJfGcZ3LwI/Fy9sz41FCbTJiXpdEasyTK7BSkRot+qX0wAAIABJREFUCMsFrNEoY1BCgYY0z1FSoYSgUChh8C4zkGGkAQMYiFRAqlOcVRTjgJVGl0CEtDqaYslh0DxzcI57Ht1PJzO87OqLefrpPXzkI3/F5HiNUjHi5u/7Pm545St59PHdXFKpYnSGM4Jut0mpPokT+Mhx557HXUKJ7mbc9NKrePOrrsFZS9KaZ6JcJbUd8tWcrDLMBTuu4sEnnsUKQX10mImpMk7AO97+89zz5TtQMmH2WIs77vgSo6MFrrzmUtZPTfELP/46Nm/Zho6hIqsIJ5A4cm2wGIzO6TTmufeuv+fySy/j2PFDfPSvP8YP//i7yYyiOlKjFE76LkL3BASGlWabV7/mVv7it3+diycmUDJCqAgZCIqFAJE4ZL2Ktt5+UFiBzXJiBFZKkixFd1OM9kEsuXUoGVCrFTEmx3RfmCTCs09h8D3wqleFc2CMRQiJFQKUQkXR2kcQxkgVkmZ67XNvj+IXJ2+n7iNcA+V/plQBQVhEREWiYolCtUKhVKFcLjMyVCZUgizp0G2v0mk3ydMuSjjvYWhyPy/HyUSrU62fTv04Nfno1L879WN1dZW5EzMknTZhIImDmDAoEZyykPcrIVIIFCDkSZW2Uorx8VGMyVFKYHJN31C+3W6vWQMZkePQSGOIpCSSCqMtSW7JgzK2NIErTRDEBeIgpBoVqKqAQJ99hv6nGwPuDrh7pmLA3QF3TxeEjLBO4QjWwjIKhQIIQVgs4JTEqZPhHdZaciyp1VglcAKcFARRiAoDCBWZM2jhsEBqNbk1WKmQUQwqQBTLGCNQQUxQrGJECGGRYm0YEZdIncIQEgYFhAiQIkLKMhZBEEeoQFCIInCONE29OLEYoQJDJ2lTKxW5/1uPM99oMzxcI3Uhf/f5b9Jo5Vxw7vn89m+/j6uuuR4TVbni5a+iVN9AdXIaWY0phgWUzXCuN9MPKOEdSoTJUTYnaazwo+96N4vNFlu2bCCWmte/7ma6rQZLM8f4g99/H//9r/+Sn//Jd7Np0yZ2PvYom9Zt4D+896dIkw6Hj5zgbW/7AUbqNZ58cjejUxs4eHA3L71yK5deuA0VlgjjAiKMAIN1GiENLksIdYudDz3Adde+FICHH36Y7eduY3SoRn1iAleoYsMIGwW4YszsscPcf88Xaa202bRpE+12m5WVFZZWlhkfnyQyEpDodga5oBqXGSqXWFpNyPIElVuy5aYf2YrCnnjXEDpBp9NZE4e+EDjrK9BhoYhuNRAmxeQO02+rKYXpCUGkUn7xK/jYz06asNxqkOWaXGvf0lH9dpw3XkcKb3EkBYGTyKCAcBYigzExLtfkedqbhVN004Q86xIokMon5kipCJzzRO9bIQHYk6pw5xxWGKw1KOcfJtJJsAZjNJl1oHNWZg+RW011vE5cKKGiIkiJkJE/bQvlhTRSIHtqFms4mZqkFGEYEkUBMnAgcqJQeoN5csK4AML7XzqnEUogESgZYiINmSTTOSIqY0Y2EEmBtgtgVqiWFOqF4eu/KQy4O+DumYoBdwfcPV0IonDtMCM4eeDJ83zNNhFYG38B1t5ray0WQxiFZHlO0POQ7m+0LT6oRIYBVgovhA1CCASB1YhAYJwkLpWx2vjDoQyIC0WwDoNFB5YwjBC670et/eiIdRTCiG6SUiqV0DpFBZC0A4x0TG/ZwsFnZuh22+x55hCFSPClB+9iqD6EqIwic00Ql3BSYVFA4KuyZDSWFqjURxFSIXoR5GDBZhiTE0eKTGc8d2CG6ZE6w4UijUaLxBju+/oDbNl+Pm96y7u450tf4eqXXE2hVARtiJWkUimyceM0YQSvf8Nr+MIX72F5cZWf+rF38Zbvv40wKiOIMVYArhfs4v2ydd5lZv9uLrlwG61Wi3a7zf79+3nrW97O1PrNpM4SiByIEU5SiktEW85hw/QUj+96kpWVFVpOMlQvEteqdI0h0xohJB0jOTozT1yM+Nj/vJc777yXu/7nf6VYkuj5LkPVKjNzJ6hWq0gZkLY7yHLUC1x5Yba+Z/0GOo5DdFege76BsrdwndrmUEoRhZG/IWu+zbOwsMDS6goqCogCiQjBufAUyxjZs8uxxGGvwoDwsa49D0opwWpBGIaUdIluntHttlFhRBAVyLIUGZ70I+237ewpbcX+4pBlGXEYe/N3J1FOktucTqdDt92g3VigPjpOGMS+8iPoiRNClAqR8h9e6v5sYJ7nz5sRVEp5dXCW935GsBZ364SiL04wwufQ+4eQQ0hJnmviUg0lNKGQGOHIm1D4R4UOA/xjGHB3wN0zFQPuDrh7umAB2eOVF1pKtLWExRKilyqptfZWK7I/shNhnMMKkEWF6Y1tuF7Mt7D+mqs4RjiLEmAMCAeBkGhyRKHg+WGsFzJGPh5a5QHOeG9pkWmIAnSnRZgZdJ+PoQStkdpSq5bopDmJNkgRYklptROeO3IIoWKCUJLLEqX2DHOzRwhKEYHo4DDYLEOVhhCBw1mBdRCqECsEx48cYGp6E0qFJKvzGNOk3Uqp1WqEYcjBfU/x+7/7B/zSr/0yI7rDtk3rePCxg3zwY59l27bzuOzqVzKxaYKZuWUiVaRWjckXF3nZy17Orsd3MloZYWpyiHMvmkbnDX7+3T9FOVIIqTDSj1dhHC5PcMIhbcbqzAH2PP0omzZsIAgUj+18mH/3C+/BBBFpmmOjAKHByhzjcoTJCYXkyPE5sixjbGgUq0KS1FCermNVjBIldi/uZ2mhw+fufZLPfO5rhNU6uRzi1z/4SV588UZuuPZS9jzwENe86EpaK6uUKzUyl1ITRRp58vwRl38BzvoNdOAMpVKJVk+x2xeNFAoFAC9AAZz0pt+I3EfMtlssLi5SqZRRpQJa6J7wpT/1olBBr3rRI7JUEikkQhmcAxVEfpFzBi0ElTiiUCiw2vQnsTAM11oJSqm1hZzeAttv5eVphtUW43JfhbEO7UDnKUvL87SaCwxVQqIoQqkAZ4Vvfwq1RhQfbOBfu/eL9Kfr/gPE2JROt7X2/VIGJEmCDBRxJBGi92A5hXenhghI6R9jVimyLEOHNWQtIJIhqZZknbNPzHK6MeDugLtnKgbcHXD3tEEqtLWUqzWyLCOMC73qM+S9qrNUEiV7iXg6Rynpq8LCz0/bXKNtTqj8THue+XhvK71VoTMahwUBqc4RSiBkgBQO0eMf1qHQmABEAFmuUcWYLMmIChVSmkRBEZskZGmXsFTyM+0yZSSwrKTQ1b5SGxZrjNRGyDJJt9XEiAb/8T/+Iueds4lOt4sSy4SRItPgpESgMdoCkrYqMjwywr5n9xAFIfWhOhGw8/HH2LzlHDqtFZrNJmOjwxw98hgPP/AwH/rNn6PVaPHt+x5CmDIPPvA47/nl3+BHf/xtvPSlU9xxx9289pY3UBmqcf72C/jTP/pLbrvtFmaPHeHt338bN1x/DdLmSKd6PBQIZxFYjFS4rMX8zHM89OD9nLd9I3FQ4Atf+jxveuObcU4wMjqOlRFCBDilcDrHdhsEeZvUOIZqRarnrmc6zhnduIE8DknzDJ2usn/vbj7/mfu44769LLctJiyhu10yJ7l35z6+tWeOBx9+mquueRnv/ZHf4t4P/wqtY8cZmp6kmyRIKddEzP9SnPUb6PbqEtWRMVZbXVB+QcuyjDAM1xbzLMuwVhAEIblO/QlUWpaWlhgbG6VWKa3NwSVJ4kUhwiF6aUbWetP8XmdyzZpGSn9zWpMjnCAMFYVCgbhYYqXRotlsktmcMAzJc/+nEALXO0Fb61Nzuq3U3zx5TpYlWK1J2k2SToNua5kgdIThJBaJMY5IKHDSP2B6DwOlLNI5BCcX8v6MXn8hXllZIgpCAhmDDBDCIXvhAap3sjc98fmpc4BC+GpPv03lnKOd5xAWEZUJik5ilhb+dQhwBmPA3QF3z1QMuDvg7mmDVBQKRdI0JQh7UeXS+3jL0DtgOFyvA+AoxUVvO+ccRhuEAqUCQqFwUpBqjRRe6CkDicsznJCEBZ9GGMYRSH/9jDG4HtmsNkgkkZAIB6m1oB2hKCGlRQT+QBSPTiEbCTLV0FoliAOOrM4z21im1ckRRHR1hkpaGFtEqjKhzAj0KnMHnkPImEK1yH/9q4/ys+95L6pYw5bGUUKiZEisE1rNZXbs2MGffOiPeNl1L2Pbxk1s2bKFNO0yc3Se8fFxTpw4weOP7+LSizYTFQtYGfEzP/dubjl+EKsiKtXN/P7vf4gdF1/CLbe8iqNHjlEdKXL40NO8/KVXcvfdd/HmN76JzWPDJCvLlIeGkYWC57nJMQDGoNMO3cYCx44e5tytm1hZWebxnfeTJxqlQqKwQJrmqFhiyTFZG9Imq/PzjI4No4SjVOwFsVywHYNj6fABntq1i5nZFh/6xN0cXMyxSmBFRCxh/cZ17N33HO0uuHSVpfEK7//gh3nFS65EZwbdadFcLTM0PUHmzFqI0r8UZ/0Geu74DNWhEYLI56cL6RfyIPAChDAMe2+mAxES6ACTZ+g08226btdXESJF31Rf9Xwe++0+pU6KURzgnECqwCfvGG/kHwrvPwr+RhwaGvIty1mvku4ru4MgwPVuVK/wTv3ry8DojKTTotvtsDJ/FJt3KISKKC7hUBhj16x7dM/Kx7ec/NdSKYS1fgFYawEKGo0Gy8tLAISRV7zLwC9MVtjnvZ9SyjVhy6ltEJ/SZddm0EKTkiY5xoCKKhSH/qF36gD/ewy4O+DumYoBdwfcPV2I4iKt5ipRoHDCYLVDYnBWEKmQXAhCFWCcTys0ToPOiQsxWimkTrHOEkQCYzRCOZyxCClART41MI5AOqx1OKOxqaZQjNHWUlKWiICluSbFqMI3dz3Ba177evLWcbKN29hy/jaQMWGhvMYJVSqTpl2+ce+97H7iSe659yDlQpmrrr6CddN1vn33F8ijEjQ1RDHnbZgixLD7kW+z/YId3PmFz/HLv/V7tFpNrE4odhdxYREbVUApykNjNJZmufXW13P77X/LRH2Y666/hqzT5sldj7Bhapy5+RN84Z5vcs0VO5hbbTF7Yp7R0XHiyihCBbRW5/i/f+3n+NX3vJd3v/snOHL8EJPpBNe95HKe2fMMv/izP82552zlyIF9RDrHpikMOYzOCSLQaYZ0ObrbprG6zPLqKpNDFR757k5qQyNs3LSepJtTCyROaJy2JM0VQgJ2P/ZNtp9/Aa3GIqHr0l5YJO2ssnfP46BqfOzT32D30SZ7j69gnYIQcAJJjrZw8NAh4jBASWg7xQNPH+Wic7YwUoloNptUgoisvUraKiAKMUq8MPfFWb+BXjl+kJXxMYoj02SZJuj5QfYtiOI49gKELMNYQSwDUBKjc5ors8zMFBkeHiYKCxSjEJQ3UnfO37BOOJwUOAkgvPG6kODlCMgwQDqHcwprDKAJlcRayVClRrvRotttE0UFBMqLRfCLcZJl5Lkht4407ZC0mjRW5mmvLmF0iziMEHGEIcBaiRDeNsqYHKklUji0EERSYqTBGQcYtPQzXriAarnC6OgoxcCRBzGWIlYGiMD2Tor+NJ5npqcod6hedKZz1seqCgtYUp2Cwoswcol1vg2mpSQaqv+rceBMxYC7A+6eqRhwd8Dd0wXLySAUIQNU6JBEmDzDCSgWixhjkCqk3W0TxSG2WkYbi3COyJaxoURaS2JTtHDIyB9AIp0TSoXTDrAIAyYVmCbsffoIe/bPMH3OBfzhn/8li1YSVurkGfyHzz/Km193C7Ofuofvf9tt3HTz6xBWUSzWiKMIbQ1xXOW1b30nF12xh/XbzqEYxdzx6U+xYcsNXP+K67hwR5tPffYbHJxbZf/+FsMTb2R1cYZHd32H8fExWicOkQlFSIt0aAyBRIVlL0zFUR0a5ZwoZMeOy9j71GOsrvgY7CTP2LXzCeZWl+kmmqhUoVgeYsOmKvv27ePKa7dTHRrhiSee4sDB5/iJH/8RDh8+zNLyEq96xc3c/cXPsm3rZnS7wcrcCaxJe/ehptFYISqUsGkHYw3ddpNmZxUpvTPK3mf3U6xP8+B3HuHd7/pBptevQ4aKtNvCmpxkeRadw4bxaWLt+Tx7/CDPPvEUs7OzJKLMV+//Kl9++CBdij0vdB9X3sepW2FjLQXbJBMxU5PTnH/++cwcPMZV11xKM1nxY07WC4xfCJz1G2iSDkvHjrJpfB3GCKw5WXUAf4IvlUokQpBZi4gDnI1IE0PWWmXu+BHq9THiuEAYBMRSYQwEgexlsoueCET5eNce1mbUhPDVh14bzzkLwiKRBFJRLpeYm5ujUDCEgX+oaNe3MeqSZRlpmtJYWaKxME+etJA2x5oEV/D578p4BXK/CuIrOylCeNN4a4Ne5KwFHGmaE0WWqBQRxyHrJqeo1UdprK4QC0NuHNIWezNjkk4nAefWxC79/z/Az56pk1+fagfVFw11Oh3EKYQf4J+IAXcH3D1TMeDugLunCQZHUCoRqAjtej7OSiHDiE6nQ5ZppJREYcBoYQKdpOQLy8zOLTE3u8wd336SXU8+SRzHvHj7DpYWZ9m0YR1bt25m76G9XLbjYi447zzue/RpLrhwB9/57k52Hz7BV752P8Njm9mxItlw9fVcWa0xPDzM/tnjHD12jPrEMJs3vJyoUGLvM0+xfdvFyEKRTBtEz1ZPGcfGzVuZmhxm8cQMm6bqBEFAN1nhmSef4JZrL+KuBx/hxLzmD//s47zz1peyYbLMpvPPI2uvIooVqsMT6LiEDCMsmgCJQyCCkEKxxm1v/AEeWT/Nrl3foVopUa7V2LVzL0sry2yYmmRqcoz6xEY+/vGPc+trv4+DR48w3O1y5TVXk7S6PLJrJ3PzR6kNT3LZi67k+IHn2L3zAc4/7zySgmSoHJGkXbTWTBW9287y6hLl6hArszPMzM8yM3ecL3zxm+g0IXGC9cMlysUCLm+SdhcxuaWbtFiYO8Fzzxxm/8xRpsZrKJWTNTOq5ZigMs3HPvlV9s2s0JIVXzV2zx+9+Aee10BXFslFgcd2PcG164fYft52mo0lRNwPNXphBITwb2ADLTodmieOkm05h6GJ9cwtNnB5RhRFa9Y3QRCgggARKGJV9It0IMnay6TNFZ57+nGcNgTbt1MuFXq2QxHOCZyTSAFCWJSfdAN8/KpSylNbeMN+pF+grbM91bU/LadpSqeTUCyUKZRLJFlOt9tldXmJdrvN/MwhVpbnsVmOzjskzTaIjKGhESamJqmPWYIoJi5WkL02pxe2KNAapTKEVVhnkCivWtaa2EEoYf3UGNsvfzHP7XmSom5RLA2TmiqdJKMYh9RqNfLsZOhAf0Hvq8h1LzoXWJst6s/u9VuarVbrX48EZygG3B1w90zFgLsD7p4uhHFEpi0EEcp5kWba6aKkICqWUEGAdZooNxw7eoy//ujfsnsho+0KLGWwcXSIysYdzBw5xoNHW5gsYl+6CPvnKVeHOM4xHpvvMjla4uDcLOdcdimbL7mI87ZtoVwd4RtfeYhV3WXT1cO8+jUvYeaZ/cTRdcycmCUIobU6j0naXLRtOyZrI4IiiIhAOHSSYnSGRFEpFImn1yOkZu+zi5x/zvm0Fxc5d0Od5dYKO3cf4qYXncN1V13Kvmef5cUTk8i4wEo3pVxwpN0EFQsyJEEYY5xFWgtOsG7dOj79qecIVMTk5CQLi03SJCGo5xx6dg8HZha57LIrOHjoEBrBoaMzVKtVHv7uI2w/ZyOXX345n7nzKyytLHPFFVcwu+8Jnt3zNCeOlRmbGmfz1u3suOxydn53Jxeedz4KizAZD3/rQcY2bUFS5MGHHuOyHeexccN6Ll5XJjBduqvHSVZXaTcTlhqrPPToHp565ji7npxhYqTAy669Et2ZY3xigts/8yWeOpaQyhBBSmAzNGWc6B0mT3GYkc7ihMQRoNBU80U+84Ff4pxyxvFDe9gweRlaxD6y3Qk/rvMC4KzfQOusjWk7FmcOU5+Yolos0dR+ATo1vjWIQlyC9ycNA0ITYdKQQAjS1grzxw4RR5Lx8XGq1SrFYrlXWYgJAhB+gh5JgAyEr4z0FnQvIAFnc6BXNThFiS2lpNFoIEVAt9tlpdlgcX6W5aV5GssrLM0eBee9JLM8AWvI85R2u0uz3WJppUGS5SBD760ahmuinUKgcM5grQYsUimCuIi3UtK+paUU2849n+GxCY4/8xiTkwHFqEqWh2TCUSpVEJG3DQJ6NlJ6rdpjjBfd9K2YjDFr1ab+wv9C+S7+W8KAuwPunqkYcHfA3dMF7QKE9NV2aR04SxzHKGfJpY+HdwtNPnHXN3lgzzFEaYpoKiJrt1Hz8yRYxsbGyDLtD1CVmDRPqdUqxMWQddMTjNXLSKUYGhqh1WwSKsn0RJ1isciP/MQbaDcbHNz3HA/cey+vvOlVSCnZvH0jx48dpdNpctmlV7CyssJ4oYQSsHD0AMWC9/vO85wsSVhdWWDT9DTHjuynvbRAc3mZSqnMdL3KlnWW557NOHzc8vT+o6zmmlwqIkKECmm3uhRKZaz24wjWOHSWEYUxhCGT67Zy2+vexEc//kkeeWQfBw/ux+iA9fUq73zLbfzcb/wJb7z1Zh548LuE5TrCpMQyYHrTJo4cPIAKR3n1a1/Dw498m8vPOY/x6XXsenIPW6OtnD++gaef3MPo8ChFqdBJwr7n9qBlyGqSoo/P8ZUHdmGCEGMgVhl/+5nvcM6WzZhOzJ7de/nat5/iyZkOna6j2c0JlWXPgcM8tudZEhsQxjUSqxA4rMsRKLQogkiRDqSDrhhBSYtymi6a0LYYMjn//vU380Ovv55y2dBNBaWJjayuNinWyzhhCYIYp16YzszZd3d9D4RwWJ2xujDLytw849PnonW2JmgpFApeoWv9XJnLDVIp4jgmSUpIm1IMFXlnhZmD+1leWWTD+k2MjIxSKlXWuoeFQgGHoxAppJAnrYZ8c6X/YnrtBi+KkT2FudaaLMtYXl5mdXWVhYVjzB2bIek2MWmCdH7RNDYjDgMvlpEgpc+j7yQzdNOMICoSxTFRFPX8MU8maJ2aooW13qe0ZxQvhaNeqXHFi17KwoljzC/Os1EFxMPr0T0v1EBFa8If12sr9hfpUIZrYok1Q/reR39hV+qFmTn6t4QBdwfcPVMx4O6Au6cLccHbwSEEFofONaVSiSzvYm1Ge6HJ7R/6G56yNZ5bzKg6w8LCIcIwZP3mLVidrL1vtUrVf54Z0m7GxOgIo8NDrF83hsRbAxaimJGhMsPDW3phIE1Ghys061U2b9zI7MxRrLXU63UKYUR1fJyVpSWqlSFWl1eo1UPqE9OknTZhpQJ5TqmUEwSS1WYLoWJ2PvwIl164nbAyzEi1wrVXTPNzP3Mdl5+3gamJOh0rkHGFUnWUsDKMdiHgbePQGXm3hdM5uTHIQhmH4IqrruLxJx7lxMwcYVBmYblFnnXYv38/jz36FNvWjzE9OcqdX97FTS9/CZOjYwhtsRaGKhX2Hj5ASMb9x49xeP9+zj3nQnY9sZevfmMXlaJi3dgEU/URjhw8wLce/Da3vf2d3P65z3PNjhfx4NfvY2piAzMnlrCuw+7DHd7xC7/LW257BY6QO+7dDapCOVQoNEu5IbcRJiwirCSzDuFyMllaG9MwUiBcSEhKnrbZoGbYMFmlXi1w046r+YG3vB7dXCAqWZxJyUSR4nAdxCyJySkWCt6tBWAwA/1Pg5MK6Qy6ucCJw89Rn1zvT25+PSM3ljAsYpIOYRCRO4GSAhlDBdBJ4luAWDpJk2Sui04z2mNthmp1yuUqI8M18lqODBTFctWrw4X3FRVScFLwaZFBiM4AYRBCEcclgjjk6NFDpN2UxvICOm1guh0iIVBRiNYOIR1G+MslZYDthxLIgNxoGivLzMwcoVgqMTw83KuyRARB1DPh9wusyTUShVMOJyOctCACKgW4+NId7HtuL489+HWOHdnHeNahOLkN42oYEVAI/c1lTIYKHNJJstS30IT0dq5+McrJ87T3WiUSR/ACzh39W8GAuwPunqkYcHfA3dMFGXrHFikEWhuiKCbNNXGlgplb4u8+djcff3aFLJlnaHSCxvICARFZJ+e5vQcYGS0yVBPkeU63nSGEYGVliU6nwFCpQqk4xOzxecbrdfKeX3AndDSbq2zevBmTJizMznLjDTewZ88eFP5wk6cJD393J2OTdS6/YozJiQnCQhnhwKYtjE4xpugdVbTvMLSNZWx8ik2btlApldh6xVaue/UNfPOBx/nDv/gIv/CzP8G5F53LyvGj6IamUB4idRDKiLBYxIoAY3NMu0XSWkbFBcLSsO9E5ClXXHoxn/3cPSwtd8lczuVXv5T/5/c+ym23vpKtEyEXvuhSRtdvZ7hS5LprX8r7P/BBbnr1jXzi9k+x9aLzSTslzjt/I/ueeoLdj+7jGzt3I1TIlg3jfPqOz3LzK66mqyUHD57gN3/j/XztgQf59Ke+yqbpaWiscPjELKazlZZ1lIc38Km7dhJJAaKCcJZG6vj/2HvTIEuzu7zzd5Z3u1uuVVlbV1VXqRehRi2hFSQk2SwCAmwGMB4mJsYe7DEwExPBxxkcnmDC8wE7xhMeO2xszwCDjWHYkUACIxmQEDLq1tZqdauruvYlK/e8eZd3Pct8ODdvVct8oO1uayr9PhEZlZWRd83nPfec////PI9xzFpFIYjIYTB4rJSkrmTRl/z3P/RtfM+3fSOPLC2jtAc8Uy9mXRZJ4WuiTkKTr2HHI6KsQ9nUVMKgl5ZY1BqiDtgCoSOitPOacPHIb6CNdUjhMNMcv7PFztY6xx95jDIvcHjqyuAISmopw4xaYyzdXofMdpk6hxYCrQ7FLwmT8YimqjkY7hFHKf1Bxokzj3D6/Nm5n6gQhwKP+xrRkHQpkTOvTzGrmCRJwvbWOsI0iKpEY9FJmBXUUiFk9FWtu/tzcR6JsgqpI/a2d7i73UIIAAAgAElEQVSdJJw9G9KIoiRGRQmHyVeHFQnnzKzV5/Be4oQH27C6uso73/0e9jbWuf7C57Bb25xMluitZCg1QKgIrS3WVdR1E1K2vHiFgMUY84qqy+E83uGsXos/P1ruttx9WNFyt+Xu64XGaQZLa+H1dmqapsF7T2Ucy7LD88OcQdyFbsbt27fRWmOcJZ15FkNFN+uQpYrlE6tMJhOOrYa0vhNri3z+C58hSzV37m3w/ve9hzvXrvDWt76TjY0NrDHs7E2omhF720OWV1f5F//o5/gvf/C7WVxe4ta9Xc6eOMHm5iaPPfn1CKVBQTMpaIY79BLFblnTkxpnG7I4YTreZ9Dr8KY3P4HvJWze22VvfMD+2PO//b2f4Td/46O84dETvOWpN/Kt37mCKgxOaK5f3eTkI2dQKKpyyO/97u+Q1zWPf92T/NEn/pTFpRPYqmRjY8S4qbFe8z///X9BArz/rU+SDTJiqznY2+fxUyeJpeDco+fJ0i5nzp9jbZDwT/7JT/MH/+YjYDXOfYpPv/gSwnpsnvOb//Yyw70Dfuaf/WO+433vJeklWFcgohRnLMI66p1N/u/f+jg/9XMfhkmNaWpElOC9IesNsNYyHo9pUoXWYMdTeiJmMXZ89Gf+d7ppiU8S1MIi8WARH8U0pqEqczCWtJNQTKYIYtJuH6cKnGlovCNOEpACnaQIIWiaCpF2sHmJ0+VrwsUjv4FGCrxQKB3jyjHrL79Ipzeg2+1QN57GWVIJUZTinKHTScnzHGMM3e4CQijKMidOgtl+KiO0F0wmI/KDXfJ8QoXlHeJ9nL346Gy2z88X3VearASEBW72O0px8dx5zqytcuvyCyz0MhzJK4y+oyiae6BCUGAfLpCNCb1Mh6BqDOODYUgUmL3uQ7P+wxbf4W3nbUURTOE1hljFXHzD47znW76DpWMnuPT8c6zfvsrJekJv9TTJyin6/S5xpZlMBUVegWD+IQO84vEOfUvnj9Xi1aHlbsvdhxUtd1vuvk6Ioog8z8P4TtJBRuEg0dGKr7z4DH/yyc8w7p1G1ZsANJVhdXWVfr/P5uYmZ46dop6ULHR67GxuIaXkLW95C1euXOHu+gbnzz2CsZZYai49/wLHl5b44jOf4cKFCyx1OzR5RVULfub/+kXe9b63Mlg+w2c//xK7u7vsbW7T7S5QjkZMpiMmd25z9txpdF1ghvvc2tnm1GNPUA73KaYH2KahF8ecWlnkX/36R0mk4CMf/yxXt3MqF7Gzs83N7T3Up79M5D7K9/7RF9nfucs3vedddDopy8dWefqJr6P2lqR7jGc//wxbOwVK9rh9Y5/f+7d/zJ17+1hCZbfbOUPih0x27/KhW+v8leQ0v/KvfpXv+bmfYnvjOv/4H/ws3/o97+FH/uZ/x87OHXa39rGu4Jd/7ZdZjft85uf+OXEEoquYFlN05CibDarZdSJjRdOUdLvdMOu9usKP/egP8WN//XtpjKWsDUopoiTGGFhYWGBvbw+hLVJLmvEY5yvSTpc4TWjMAJ2kqF6fRoBvSmLrELPZ/+pgQjEZkaQdKqZY0xB3u8F7e6a1cLODpVAS0ViU0tjqtYm4P/IbaK90MLIXAm8MzWiHe7eu8fjT7+LezkGYJVMhGaqqmhCjKiXWEZJ1hCKOUybFhH6ni0EQZRlLUcR0MkIIj61ynPNIEeOcQWkA9QrRCjCrQrj5Au+9RXhBr7/Iu979Pq5f+gqmcfS6Gc1MOCK0QkpFHAeD/UN19aESO45DopX14H2FbWqqqqA2Dm09yUwwc/i4D87nzd8j73HegbR0k4inn36axx57jO1v/GY+/Ku/wJXbL7NS1Jz0Hrt0HClitEqJY09eTOZRtYeVgEPyHqrtlbovhGnx50fL3Za7Dyta7rbcfb2QJAm7u7vh72lKkjijrHNUtMzSiUW+/S1P8KEXbhP1FphOp8SzKPfxeEyv1+P63busHV/lyq1brK0sk0QRX3nx+bCZG5VcuXIHJSXPHezx9FNP8Oz2l3j8DSf45Cef4S1vfTOXrmwzanI+8dnLPPbmr+eZL14hij0X755gUil+4u/+Q/6HH/lvuHf5ZU6trnLtmc+w2Oty7fnn+MqlS/zAX/8b3L19k7u3b3Hq5Br/8nc+zN5kxM987EW+65ue4ur6lFt7E7wAj2Spt8DBwQG1SPmV332WMyfPcPejX0BgWF3q85GFZ1ExYca5hN3cEEUJX/rSJaI0wXpL7AX9CBYHJScXl3nmxVuULuXzX/wi7373m/nt3/oIIl1lRMaFi09Qj4ekWiIs/POf/n/4+Me/yM//vb9NE9UYbYnTHiqKiZMEa2r6qWRa5Cg00gmqfIqXgiTWNEpD2iHGEc0Ok1VV0VvuUNiKzkoPI0NcfdrtkeUO52qsSIjSYFtIMUVqRdM0GDxoSVnXKOlIBhlSRHgtkTLCA0JIHGD9YVqpR0qFsRaJx8evzdb36G+gZ609KSUKjy9ytu/d4eJTb6fXHTAa7zE6qEjSHmWZk6YxcRwjlQAncUKgdEziu1gvkDrEdupYk6QWhOZYb5k0XkCKaLZIW7wPamg5qzR47zHWwHwhF0g/ay/KmEcuPM6JcxdZv36JY0vLwYrHOYRW+AeU40II6romSRIAnA8Ls7WhuuKcY39/nxN1jY4aopkKu2ma+YfB4SLrvcc7h5AyVE28I1aw2Osw6HZZGCzxge/5Af7gY7/D9s3r6BuXWNQZaTIgms35SQlNHVTuDwpnvL8vZAmRvUevEvJ6o+Vuy92HFS13W+6+XmiKnNXlRYq6Iookvi6Q1rK5e4243+Gn/v6Ps/h3/i4vbC/wp6WkLMZs3ttibe0k21t3mVLTeJgMJyzEGdmxLvc2NhntlGxNQsCHwxHRcO3qdZYWF7h3b58n3/g4v/3RP+bCk0/yyU99iaET/KNf+ggpCjcsuHL9Oo+dOI50nl/6xd/mhc9+gaaq+dLnngUdcfL0KV748lV+6Tc/xl9419shSXjx8kt83YVjiHzMe9/2Jj79wjW2h9Dp9+n2MjY3Nxnu74dkxaaid3zA9c3LDLZTtIoYjUu66QHOOdJOgpSa/HZFVTfsTgq2dvbpCsmp5R5Pn0o4sSzpRxmbxSLXNw7417/2GdaOr/BcLNkqG/an23R0zG//xod529NPkqURm/f2+IV/+Lc5c3KAlAKpE0wzDeFBdXB+qaZFsKVEYqWASIUDtPcI4YEGIzReQpxGSO1xyuHdTBxbuuCMIQVVLwEniYSnNj74vs+uHaUEznpUFKGxSD+7pmbuO1pHNN6hZnaZhwJE4RzOe1QUHvervaP/Q3HkN9By9iVwSGZ/sPE+t69f5dwTbyWfDImEwZiSKFLzqFlrJWVTombKcFlKoihCCg/OoIQk7XRoQmYq07rE+rBYeeOxkQ9egwL8bEheehniXJ0LFRKtEMYTa0+/3+cb3vVerly+ynias3JslcqEyoKd3d4TFCNSRXhvSbsdptMpCFB4lAAl4cbVa5w6cwEdJfS6HUxlkFpjbKh46EhiAOEEEoEU4Oatz2D/JBGIWPLUU0+xv3/A793b4c69y+h+l3jlIr57DCkUPhGIRlCW95XNQQUfLiy8w87sq1q8OrTcbbn7sKLlbsvd1wvF5jWMs0RJDBNJNdrHTHfJN7aoJNgq54f/8lsZjXOeuxbzK5+uuWd6XLlxHRFLptZRujGJ1tzcGHLl7hZVPaGXdUIXwTZ44OkL57h7sMcH3/M0ExHx//7mh/DAy9duoqTkbWdP8+P/449ycjHh7Pk1OgvQ9I9RlmGEIXUKbxq0c0zzIcbWaBmh8FgXOCYjhR+O+el/8H8w+uIO3e4KO5Mh4+mEopzON47GWTySfHtCz2X4nqbxsL9/QLXURzae0UGDsDVlfsDptQ7/7O/8OG9+/DSx9mjlMbYkzRTeaTAG56E0nm7vOHVdI7WgqgqUdSTf/V6qquaTH/5pjIhZ7sSMZj7uFhBChwOqlDTOgU4RKiJKUpQMhzpmHZLD2Xw16/7gHUp5bFkiPeA8Tqv5gTfu9vHG4rxFqXBIrGc6Au88Uiucdag4wVUNUor5wFbTNMg4mm+cgQfGukBFMWr2nF4LHPkNNM6DsLPKhgAt0GbC+tWXWD35CEtLS0zGB+AdvV4PY8y87bWwsICaGdcL58nzKZ04CqNuKvwhe4M+hoher4e1DdYmwfKI0PZzuJmpv8AFiSlCSKxzIYlVakxT4YCz5y+yfOw4d+9eweFZXV3Fy9nt4L59URQhdTp7gXJebUgHGaPRiM2Nezz7zJ/yjne+mzROybIsLNhah9k7qRHc92INYhTmFlAQkrtSrYkSx3vf835u3rjDTQw3r14ln9asnszpLq4iTIr3E9I0pa7ruReps4aiKF7hUdriVaLlbsvdhxUtd1vuvk7Ijcd5wWBhhXJ/ixtXLpPJmulkQpJkKJWwu5dzd6Ngd3/Cd773Hfzi732SFT/iB773+3nbG57gkVPHedMTj1HVY+KFLnGiyfdHdI8vUjclg0GfIuljXUOWpKTC8U//z/+FprEgJUpbGlMi0BgEghjrFTQVsYopxxWNCdVsaQzW2rC588ySMS0RBt/UFPmY7/rg+/j5P/x5NosYB3jpgUNOhM1epASlnWIjiRxOWVte5YPf8gHK/YIf+ZH/mpMnO4AlS2PiCGpTYUQ0F8Z6OaCSmto0SAS4BqUEtVAQd7BNSdRL8dLSKIGJBJE6RqwiCm+Jk/gBG0VwTYOXkigJFo9CamrvkMIjkQhvcFIhhJt1hCRCSLxpcFJBnIRDow1VYek8OI8pp0RxCipBziwcxewgKF1w15HCI4XFehHWGhn0BVLc90M/fO9Cp+jQ0vHwmmgr0H8uhHk3hW0MXkrwEAmDK4bcuvQlHn/6nTgZYasJeZ7PPTellIzHY5aXluYKbBB4qdBakkSKJIrZ398nTsO/eZ5zfGkhtCxEWBhxoZ14eApywoWF2Ya/e5qlSCkpy5Ioijh37lG+dP1Ftje3iOOQIjQpK7TW80oD3J/vi+N4XmVwxpIkCeOipipzJuMDqrqk0+nM3otApkMv1sPXFUQ1ej50f+gd6huD8JCmCe96z/vYX7/B/voNNu5ew4mSfjWlP7iIShryPCdJknnb8PB+IXxQHMVZvNcbLXdb7j6saLnbcvf1wukn3kJeFgitkaRcfO9JdASohKKyaB1xVmvebC1CAM7wN37iR/G1QTqPQ2FMg5AlWafHtKohVaTdRYq6Riaa/WJKnBeISOGwDP3MYzwW+NoiiRE6AiHBOISr0W6MMQ7hPYnW1E2F8g5bl+BqUuEpyoJICPzBHuON29STPWIkmRnx3W85w0//ySYiUlgn8TaMD3lKOhT8pXe/jR/7b/8qj6ysIBOLihUyjnBZRBJn1MagZUTtahoUXkdEUYSxYTZeCQeuIlUCL2OU0IAH32CwyFTMRpMipBTEiQJr8FWBQuCkwhmDUoAFYQ3CS5wLEkXvPEpqjLCzmWOJm/EdwPuwiZZCBK7PtAlOg7QGwv4W5y2NqcBUCIKLjBIK4xrkLADFGovxGpmE61BZG6ra1qMUBHefWdS392jCdYprXlGR/o/Fkd9AM5t9kSqQQ3povMNNdhmu32B37RTd1ZPoNAgOtNbzONY4jtnZ2UFKSVNWKKVojMH5sOBpBcjgJ9ntdMIMkAp2LF6GxVbp4McJQbHtjUE4h9CBYEJpdCxIpWLl2HGefPJJdl76POsb99i8t0Gv06XTH8wf57BaYWYE9d7P0qg01htUFNMTkq31O3zRGtZOnaM/8CglUTN1uHMhwappmvnbJJScL+SHr997hbMVaMna2jFOnz7N7rUOk3LI+u3rLBeWWPWJut25Ol1rTZ7n8/NdWZZzhXiLV4mWuy13H1a03G25+zqhrGtCLLpFpx2Eh2k5pt/pkMiwQWqaBkyoOta1IYnC7Hg5nuK1IZq1+auiYWEwmFsCpmk6F2GiYlCSsq5mFdywiZZCM52O57Hp1jWgFIIIoQ2RDsmWcdrFGk/SHeDqiqoqWOgfw2HxqyfoPPoGTFmDaFD7FT/x9g7/k1SkURA8etllXJT0uwlKO0wEcRZ4KNUAL4BIEYmIaiYatUqidDbj+MwmkrCRjB4QtSJjXFOH526DN7qQEukMzlqaxs4Or+HQYYXAu1kiJoFTh6//kIPeOpwxOClCOJL3iMbOHzP4otvZCIiABzzKhU7m32vMvOtjZ9eKFbNYpNlNAq9nkd5CEFI/Z9em1HPRrrUGiQv28D6sSa/V+EZ4rkcc1hoQEilkEHsgg8enbfDFAbdffpEnF5cRUUSSJBymODVNQ1EUOGuJ43i+GB2mQXkf5s8EiqIsWTp2bF6VmI3avSIFygvwNpAtiiJ0ElqB1t+vFMRxzGOPPcaXBgMm+ZTpdMrdu3d58qllrHfz28ZxTF40s5aFII4EgvBY8rCVh2S4v8fu7i79pVVSofDCBV9EmC8y922aDFLFWGcpq7AgozKEtVhZ0+8lmGpMkgpGE49rBNv31oliRbrw6PyC8d4TRRFVWb9iAX+tTnz/OaHlbsvdhxUtd1vuvm4QCilnB4e4i44kKsuoiinJbAOsoghXVvNNsbMOJ0RwpYiAmQ9zEqVhDEAopJJ4b/FAlCRhLEGEwx/Co6TAORsOTBJMEzoKkQguDxaPd6EDEMfxPC2xdgJPhM4SGudQSqPRVM4gUwn5hOZYSp1MkCINrhP9mExFJD6Z8UqT6ASHwzuNUBZnbRC7OtBxFK4PpeGBkSAn5P3NpJ9VmJ1HuBLnHcKb+ca4MQ5vw4ZZCYF3FhUpvA58Eg9sPg+vycODR3iOIcdIPbAxltbjbdgMOxXGiQ5dcry7f21b1yBRID3CNOAcZnZNH/JZKQWW+XzzfCPsHM6ZWUdIMbt7AJQIgl1J4MtcE/AaXRZH73j6VRA4vADr5sGXlGFVRZic4mCbg43bpJ0uZVFgypKqnOKbhjRNmUynCCmxArwUVKbBeI+OYsZ5gfGQpR1M40jTDsZZqsZibAgTaKynMVBXDmvqMDBvQovi8A96eNryXpAOljlx9ixnljp0IsHOaMK9zQ2SJJj6W2thZg/jXSB/HCmUhDhK0SrGO0EWJ0gPL73wefZ3NyjrhsZ4nAuzhk1jsR6qxuCFxNYOb8DWjqY0lNMKU06xKKxxCGtYPX6Kvo5ZHCyhVUJdGzZu3eZg4wbSVnjr8E6gfThd1qZBxxE6jhCvUfb8f05oudty92FFy92Wu68XjAeURkYxztQUkzGmLhEqwkmFQVBZh4kkZDGNFog0wkQS2c+Ie8vIdEDcW0ZHGUJqPBJjPdYH3gY/7zBPL60H4bHOYJ3B1FUYBfCGuqloPNT5BDfdo2mCJWPTNFDkSFPTVFPcjDMCh7UG4xu0tAg3RWYauWBYihZJ0gwRxeh+ShVLRJIgu4tEK6eglyITQRS72eiPns3zS5BBKCudgTrHV1NsPcWWE0wxxhRjXDmBOoc6x+ZD3HQPlw9xpsKZBmaOGE6DVR5iORszkhjuh/YcWiYejgc5gMNOir4/4w/QSPCxxsc6iG0F4CzONHjbYJsK21SIeoovRrhihKtrMAaMQWARWLxrME2JrR78KjBlDqbG40LXSQmEdwgfDgPeWbxpME0V1h6Yf70WOPIV6NoLpHUIHY4lFgkiiDq8tfgy5+alF1k6eRapInQUYR10Oj12d7ZIkwTvHIsLC4zHY6y1ZFmGEIKV5VWqqsI4S6fTeeBE5gJRUCDB2dAOURyenGxQqAuPtWDM/YQrqWJ00qPfHXDuVMrl9Q3Wb90k1YpTj5yhbizGeZK0g1QR0+mUurFknR5lWSGjCJ0kjMdjOv0+W5v3+MLnP8s737PAYhSjnKcx9czaJVRD6kqEGaq6nqu5tdZ448BLPApTW7qLq7g4YzlbIO03XLr8FUxt2Lhzib3dTY4/coH+wgpOQapStNbz+2zx6tFyt+Xuw4qWuy13Xy+4uqBuCpzzxJEM7ioEI2HvLTiHmlUnfdOQKIVzEEcJzhiMD1VipRQiUnhvUEKH8QyvaUxIqZNNg/eW0k6gNPOqp1Aa08yqp02Drxu0lDgZEyHxzmObOogNhSJB4KyBQz7GER6DE+FwqRzICkpfQBWevyfM/XopMa7CF1tzi0IvwNpiJhq1SEL12TQN1ocqb6jOBiGttxasoxH3Bavu0N5NRQgkXswcYIRAh7HuMKPsfdAvqBivwvxyeACLc+E9URA2xA9sS8N15UPHCTDeIw7dOQjdH+1mG3SCG40XHrzAzq5XZoc/f/9OD2WVr3DZAJj52uCsf/AWoQUFQcSrxGteMT7yG2gR97BNxWF8qkWgZ/M3DsA1+GbC8194lne+5/1s7g7RQtLrhajXw+pD0zQkSYL3ntFoRBYndLMOVVURJTHT6TRUGKQAZ1EzsmslYCZCUfhgA2PtzOw7WCTdN8IPp7zRuMA7TxJrzh4/xss3r3P71k36/T4rayeoGsNkHIQ3h4k/WmvETPBS13VQuU8mZHHCzatXOHHyDMkbn8JFOnyOzcKwhDd84fNf4Ouf/gbiKA1erDMFvDfgFXgUo0lFQcK1rTG3btzAunCi66Ux3USSj3dYv9mwsHqSk4+co6ruC29e0Tpp8edGy92Wuw8rWu623H29oHyDdx4tBHWjZuMrCrzFO4+bRa4L5xFRjBUgVIKQGp0Er2Q49OV2KBG6DKYxaF8jCN7eVluoPZGRYQMIRFpTWYfUYSMbJTFSx/OxHuGCQDSOEpxwWGPDpnbGSyHUjJMCLwVCCoTW88qumPkZSylnAkJAhhl/b81c0KqsI2yQwdHgDs1WDr+Zb1Rnc8tqNtYx2zzD/TEMGavg6ew9Qkoaa5BRhIqSIBY8HJfwFmtDZHyoVtvgZe494oGNu2Qm/p0dBA5vP5vgCGJhwMn7IUM8MKr14Iyy8q+0nHtw4zz3eJ7d/sHXBPfHlxzx/Z/9x5Lvq3DkN9Bxf5XyYBMpZidIgvKzsQqlBLgaqgnTrdvEwhPJYNp9sD9EEv6fT3OE8wwGg5koIdgGbWxscPr0aYajA6yfsre3x9rqQmghqCA4qOsGBbOBfD9faIUMBuHOiwfaIZLG1ETSU3mHxzPoJCwv9hiNDrh98xZZt0+c9Ykzz3A4JMsy4lllxjYWLTVxkoXELC9oqpokkTz7zGc4ceIEttMjTlN0HBEB1gkyHWOqmjTpzAUUVVVRVCW9/hKTsuby1XW+/PJ1JvEyTWeEzQ/IYsEwH1HX0Ol0yMdD6qqg183oLZ28Pxs1E8+0eHVoudty92FFy92Wu68bdDpPYdSE1yqlxJuapiyA+xVYQYxQEQqDNwbrHMw20ParN35C4FUEOBrTIE2NQAahntXhoFbVCC/wxs3DgkQqgx2blEHsplW479nTlVKiojArH+zUwuMLGSLlhQweyFposKBnglNE2PAZ77AmVNXnXQp1fwZYuvvR7WES+YGNop9tnuWDfuMC4fz8Nr4KQr2v3swezhTjw35cmAY3s0UU3s421H723t13m3F2ZjknBI77G1snZhthOdMN/Bmb48OO0OFz8X/G7zz4/Z814//gBvvw8Q5/y7tWRPiqsHrqNLcOdnCuxksxK+k78OG0iHNoHJFQfPkLz3LxqW9ge3ubSHiEjIIX6Uz4kWUZJp8CoQVxGA8KUFUVt2/fZmWxGyohUbjgrKnnF0SaJvdba2JmMSTUK+bxpuMRe9t3SGw5m82yHF9Zoam32N/f5/LlKzz+xjeRdTrz093hh4t44BR2+HMjBK5ucAg+9rGP8Y63vZOlYyeIk5RYwuRgl2Mrx2cfOvX8vu7du8fxEycZTw6YFIa76xtMake6doGekYw2rjEtD5BRxrSoMLakl2qqsmbzznXyRrG4uMh4PJ5bN7V4dWi523L3YUXL3Za7rxeW3/SdR+9FtXgoceQ30Drrs3D8NNPNG2hvkK4Kp0rvcDLMQjXeQz1i89rzdLsZZ84+xiSvMAicgFgp9nZ3WVgYMJ6WwTKoqMLpv6xY6A/I85xrV65y/vx5mqbiZJShg6iUsippTDXLE5B4EU7MsQyL5qSZUJYVXdHn3uUrqHqKa0DJGoGh5zwXlvvc3h2yt73OZS159/v+ImlnQJlPZirxhKpqaJoGa8NM2NLSCnXfoEcj6rrGm4qPfuhX2dg/YGl1lXe+492cPv0IS0sr5A5MPsU0BcJ5htN9WDe88OVLjIqCnd0hqyfWGC8cQ6V9yAZMN69Tb1zG4KmKispqFropOxsbHOzvYc9cJOsewwuN0EdPzPJ6o+Vuy92HFS13W+62aHHUoX7yJ3/ya/0cXlf83C/88k/2Ohl7G3dnak4Hzv97szZYg4hixnnF6bMXGY6npFlGVZUsDgaYpqEoy1DhsA1xEoHwCEL7oq4rrG0YLPRJ4phev0fV1DSmpjENRVmQ6NkcnneYuqaqa2SkMS7iYGeIzYf88e9/iLjYRxiDtw3OeqTwOBw67lDUDdOiwnrJI2dOk+c5TdMQxzHLyytzBWxVVaENMrN/KYrQ2jLG0Ov1GB0MufzSS1x96SXwBtNAVVSU45KbV66T6pRP/dEf8PnPPUOSxPT7PcoiJ+sPMMUYaWuop1SjXfLphLLIKesgvtAqCDPG4wlKaxZXlimKCX/tv/rB//U/OQEeYrTcbbn7sKLlbsvdFi2OOo58BbqqGtJeSiM0OIt0DWJ2KH/QliWRDlMXpN5yb/0OJ88/yb17d+n2MtbX12ezP45utxcqGUIynU7p9/vs7e0RxzEAX/7Cc5y/8ChZN0NribMVZT7lYH8P6SW9bpemqRmNhvR6PdAaRYd7t9d5/jO/j5huYvIJsYpxAryQVE2F1Jo41nSzlLzx3LhymZMn14jjNPinWk9twnxXnHZQZQ1SzV6foNvtz0QuK2gtSSNNVVXkeclnPvVJGvcJrLXs7Oxw/FqBQaIAACAASURBVNgKg0GPpqpZXlqgGB/Q62RkccL0YIOOs9y4c4XpaIfhcEikFfFggaYsGI2nSClJUUhqbt+6iowEq8fWvnYkeEjRcrfl7sOKlrstd1u0OOo48htoHceMJwVrp85y78YlUuHnyuQHVZ+Nk9i6pMqHXH7hOc6cewNJkjAajehkGXhPWebcvXObs2fPorVmZBqG+3torUnSmGIyxQvBn37qUyglOXX6BM5WjIdDjK0Z7u9TTKbESrK7s423lsaCcxU3r11ienDAaielGkucm/krSo+XEXiFk4J+fwHKmnFpeebTn+a9H/iLpJ0ew9GYurHoKMH5mv5gESkl+XQa7svVRFHC0tIKVVUQx+msKmPJiwn7B3tUVcnSwimqYopwU5aWV4mTLtaFaEznHKnydCLNN7zpIr/9oRfIsoyqLKiqKgh2rGM4ylnuZqQdhXM1G3duEst2bO3VouVuy92HFS13W+62aHHUIV5LReL/H/HN3/lXvDOGiJpbX3kO3eQocV+5O1fwigilgu1N//ijrJw8z9qFN7K1vcGptTXy6ZTJJMy0pWlKr9fDOUdZljjnyLJQKRgfjCiLgqJu+PZv/1bSRGFNg9aS4XCEMYZBt4MUnk6nRydb4MUrX+Tyi1+iK6ErJRu3riCdJZYgFHilESpGKI0TmijucP3OLRrjOHP+AqfOnCXtDvDWEUURRVFgjKHb7eJnitatrS20DgKbNOuwN9zHe0enk9KYiqb2OBtStoLRuQmPKzV5XZN2BkRRhHWCpq4wdY7Wkl/71V9BeocT9+1jvPckBnr9lLQTkaYpQmW8fPVyu5q/CrTcbbn7sKLlbsvdFi2OOo78Bvr9H/w+XxrB2toxJjs3ufzcn5KJEKeJjGeq6QipNJEIFkcyzYizBb75L/0gd+7uMMlrkshTF0P6C2HeLYoi6romyzKwjtFoRJIkIXZSgTE125tb1HnO0sIiF86f5cUXXyRKI06dOsFouM/Vqy9TFzkXL14EIIqiYI+EYfPeTSIFsYiIdYqTAqkinAr/lsZx/eo1Lpx/hMZ7zrzh64ijDABT1WhBSEOSgmRm8B+SsBqcs4dOMnO/ycaYuT9mUZTEcUxVFEitQMfIOMM6Tz4eU1UhIrXb7bK3t8fvfOx3oK6IabCNw3qNcA6EI40TlhcHKCW4eXe9XchfBVruttx9WNFyt+VuixZHHUd+hMM5RxwnHBzs44wlSbv4usCL+96A4fcsTsw8F0eG5bTHF559hvOPvYmiaphOJ6wsDhiNx5RlycLCwryKgnXzWbwsy4LXoxcs9AdUynPvzjXW71ymzkOr8fa1l3CNI+lkpGlKFEVzE/2qqtCp5tiJ0+ztbOKjhEYqvFQopTF4lNJM8gk1jlFeIoRgtLvP2skU6z1SwWRS0O/3qaqKqmro9xeYTqc0jUVKjzUh2Ws6nSJSRZKERKyqqlEywtngPNVYR5qoeXKRlJKiCClI1lrW1tb4rg9+Bx/9jV+nkQIpVDBJ1yC9pGgKxoWk2+l8Tf7+DzNa7rbcfVjRcrflbosWRx1HfgPtZ2bk03zM6mCJRx//eq6/8Fm8kK9YyL1zGAlSSNIkJj/Y5aCwPP7kG+l2M6p6Sp6XDAYDtL7/to1GI1YWlyjLkn6/T57n81SpYysrjJVBnFhFK4+vphwMxywvHWMyyVFxQo1jPM1xzrG0tIRzjqJ2PHruPEUVjP4L69BSUVcNt+9tcOPGLcq6oNvNmEwrzp05zf7WJivHVinrhiiKSLOMvAgzclJKqrrGOUe316Mop6ydPMFLL71Er9djODogTVNWV48hxAR8WKQr60NSkw1txqZpSNOUpaUlxuMxS0tLjEYj8rzkO777L/N7H/5NhFYwj841SCkpy5I0if5T/+kferTcbbn7sKLlbsvdFi2OOo78CMfb/8J3+TiOiZUmjjRlXrBz88sUeU48W8zVLDvdSxWqG94RaeisnIH+Mb7lu7+PK1euEHuH0IrxeMxgMJinAhWTKUmSoJQiSRKapqGua7RwxJHHlAVNXbC2ssj+wZi6Nnjj2djeotPvhWhOpciyoCDXWpNlXeI45trVl3npysscjCZEUYyUGus9ZT6exdM61paWefzRs/go4um3vZ39vSHd3iLD4ZCFwQBrLWVZ0ul0ZtG3NXk+QSnFZBL8TI0xpGlKt9tHqbDoVtZhvaNpmvnvPfjx572ff1AUVUmZj/nD3/9dFA1axWSdhERHaCVwzrK+vd+2El8FWu623H1Y0XK35W6LFkcdR99lXYRFJE1TRuMcooyTp8/hCaf9eZylCzGfxlqcrfB1yXR3m7qc8Mwz/47l5WXqOmTRZ1lGHMfhhJ+mxHEcFvSZ5+f+6ICk10FkHXS6hIiXWDj2KKM6IRqsYeMulVIcO3OawWBAlmXzf+M4JesvMC09k8Jw+sLjlA2knQWytE+kM7K4Rz/r4q3HodkZHTAqxkynYz7/7DN0el2Md6T9Po1xVGVYWK3x4OUs5UsBksFgkU6nR5SkREnKcHQQqiZegJBY5ymrIODJsmyupD84OCCO4xAXmxd4B0srx/nBv/pDnDi2ytriIj0VEzuPaAyJa9fwV42Wuy13H1a03G2526LFEcfR30AbS6Jjtra2EMITKU/pMmxRoUwBpqDBYa1F2hrlGkDSoHF1SVaO2PjKF0m1ZOQkdePY2z9gf3+f1aVlbt24RpIklGVJr9ejrmsiqZDWo32oMHT6PYaTEWVdk8QpadLl1OlHSTuLWK8ZLB7DOIVQKcYprBFEkSJNU7TQfOM3vQuEoTEVUjkiLYj6S+jOAIC6rnnhK1dZ6AxIhOLG5SvEUuFM+KCqTYP1Di9gNBlzYu0M1gi0SpEipqk9ve4A0zi8C/G31jYU05x8MmVxsABeUOQlxjv6iwssra5gvCPrdckGHSItKPMpxnkee+rtFLZAKREU4l5Rua8tDR5KtNxtufuwouVuy90WLY44jv4GGrDW0ul0kFIyGo2Iuhmnz1/EIACJtB6PxCNxXsy/vBTsD/c4trrEv/uTT7C6PKBpGk6dOkW/32d9fZ04jhmNRozHY55//nmcc2it2d3dncW7Wu7du4cxBofn3uYGJ0+fYjydUFcN1kG3N6A/WGRnd5+l5VXMrGW5PzqgcZZTa2tcOHcOJwW18xilKRtHaQyDxSWiJGP34IBf+a3fIDc1ZV1x7eUr7G1tkmVBMNM0DWVZsrKywng6ob8w4NjacYqqZLC4wHA4JM5S0m4HFUeUTY2KNIPBgPF4TJZl9Ho9OlnGdDJhe2uLqizxzjEa5ywur9AbLFAbx+rxNd76De+mrGYVF2HDV4tXjZa7LXcfVrTcbbnbosVRxpHfQCsVjOirqkKp4CEUd7rofg8jotAy8x4nwAmweCzh/4131E3DdHxAcTBkbTEoqvM8DxWPKCJJErZ3NknSiCeefIy767epm5IoihiNRigVKhp1ZbDWs7p6nOFwRBynxGnGydNnqI3FenjsiSfZ2tlld3ef4XDE6dOPMBgssrCwwHvf+15WVlYoGkNuLU+88et49PxFDkZjtnf30Drm9LnzfOmFF/HeU1cF2jmuXrlMmqakaQpAURRMp1MgtAPX1tYQQtDpD9A6xntBWdZIqfHeM51O5xWeoCZvKIpiNjeo5++rMYbt7U2SJOHSyy/z5S+/xLkLF5Fa4YXDSfM148DDipa7LXcfVrTcbbnbosVRx5EXEb7zA9/l0zSlrmu63W6wK+r0sZN9DjZuM9nbRBEWcCklQoi5bZCXAi0kDkVv6ThPvvVddBePU5YFpqnAOvJigpSwurpKngdVd5p2KPJqvoiXZfD3PJzZi+OY8XjMyuoScRxz/fp1FhcXyfOcbjcDFxbQsiy5cOECwoaKihGCj33843gp2d/f52BvjyxOEL5hMtxjUhYopTh3+gxf/6ansMZw+vwFpnnJxYsXuXv3Lp1OB+PDgp4kCd1uNyjOy+AxqlQQ6wBUVUWv16MoiuBZ2jQILMVMZd7v9xmNRlRVwc7WFru72wgPzjRMxvsUB2OOryzjqHDAvZ1RO5D3KtByt+Xuw4qWuy13W7Q46jjyG+i3vufbfLfbnVsclWWJNYIsU7h6ykvPf45YgRLq31vIkaClIosTSgNRb5n3f+f3c3AwpCymmKpmNB7S73eJoojhcIi1liRJOPvIBZwLSurD2NrpdMrq6ipN03D+/HmuX79Of3FhnqoVFv2cMp8AweBfKcXptdNIKdnaWEdrxb/+hX/JtJhQ1zWxFFhTITAgIhAKrTXveMfb6PV6GCdYWgmPubi4SJIk6LiDjiN2dnZYWVnBWsvBaMzy8jI7OzshYrdp6KQZRVGws7OD1pqlpSUO9jax1iKE4NKlSzjnkLaiaSomozHCB+V5aUukhePLK3gnsBLWt7bbhfxVoOVuy92HFS13W+62aHHUceRHODqdzvzkPhqNAOhmYLyku3yKN7zxrWiVoKVHSoGQEicFVkiMymhkxNRYhBYoV/PsJ/4NyysDRkXFcDxhkHRYWFhCSs3x4yfo9QYoFbG9s8loPMS6hsZUxInm0UcfZW9vD2stN27cwDlHL01IlCQSsL+9RSwV/W6PxcEC44MRTVUjtGd/tEtlSu7cucXf+lt/kzyfMBh0ccLjlQSlsUJiCYvwH3/iU0QqpppMWL9+DWk9tQGZdCjrKizUnc58jjDLUqZljpewtLSEt47Ll68wHk/p9/tEsWZ7Z4OtO+tc/vKLXL/0Eq4sGO9tsbe7yf7eDnVTUpkGi6eX9EiSDCskXst5G7fFnx8td1vuPqxoudtyt0WLo44jX4F+2zd/0BtjWFpaoq5rer0eTZmTDZbDTJk0vPTcZzGzOFWFwAmHQqBlMKT3aIQQpEmPOOlx+uIb6Cwus7c75MTyMnsHuywsLMztlYQQbG9vs7CwQJqmSCmDT2ltaZoGpRSrq6skSYIUnt3dXaqqwphg4J8kISHLGEMURSwuLlJWBeODEfl4xO1bN7h77w4HBweMRwchBtc7vBccuhZJKSmnU77/+/4LxuMxZWW4+NgbEZFGqWjWtuzivSdJEvKqwluHUoqD/SFJkoBrKIuC557/IsI7pJbQ1Gxv7WJsOZtzNCgpqWeBAUIENXkkQxs1SZL587l++05bCXkVaLnbcvdhRcvdlrstWhx1HPkK9OEiWhQFTdOwt7dH1dTs7e0RxzF7oymDlSDoCMb+DuVdWBitoXGCyknGpeP6jdtYa7n0wgss9rp0exmlcJw8eZIoimbxrRVCCBYWgvAliiI6nc5ckb6yskJVVezv7zOZTPjc5z6HMYYsy1hdXWVhYQHn3Pxn3nvW19cZHYzZ3NwkTTsMBou88Y1vYjgcolU0b1WCu/8lPSKL+PXf+FWMqcmShM31u0TOMR2NiaIIYwx1XYcUL6nZ393DN4ZjK8vcvnGV5z77Ga5dfpFYWIa7G+xu3Ga4v41zBd1OisBgmgpvLMJ5FIJER6wuLTMYDOazh0qFNm2LV4eWuy13H1a03G2526LFUceRr0C/6R3v951OZ946a5qGbrdLWZYAc7HJ5vUX8N5jrMcgQwUk7eN1B3RCqgWbt66zutBlbWWZg+GUd3/gfWyNJvSjCGtnoQGj0XzB3t7epixLzp49y3g8RqAYDAZIKdnd3cVay8pymI8TQmCtJc9zdne3WV5epixLlpeXEUKR5zk4y/bmJmkco2PFrds3+OM/+EOyXocsicmrHGNqJBAJhbWWQTeh0+nwtre/m+EopzGGsxfeQFWHFK44jhkMBty+dYvLX3mRwUIX2xi2d+6xt7NLr9ejrHK8t2itEc7PkrgsZVmjdUyvF6yqDqs8wHym8fB7gCs3braVkFeBlrstdx9WtNxtuduixVGH/lo/gdcbh1ZCh625NE3x3ofKh1LISNNNljl14TGuXLuDiWO8DlZHKulQiwhjPEqDyro4LalNRRpLxvsH7O7to5cW5/N+vV6Pra0t6rqm0+lw/PhxnHMsLi7ylRcvYa0NcbNaz+cEDwMBiqLg2LFjRJFiOp0Sx/FMIOPJsozhfkihyrKMqinpZD3+2g//MD//sz9LU1WoWIY2ntKcO3GKQbeH8A21M7z04gscP3MWEUvW19d54oknuHHjBpubmzjnUMKzt7vFvbsTBr0UIR1RFBGCsTRqZq8khaOuDVJqVldO0DQWLd3sPuQ8ctbD/H22tvUi/Q9By92Wuw8rWu623G3R4qjjyFeg3/JN3+q1DueEpmnIsoymaUjTlKIoOHv2LBsbGzg013eHODRaSGJvMYREJ+ccQkc0ZcF49y6DyHHhzGmKGr7xAx9ke2cL3+R4Z5lUDWsnT6G8oygKvPdBRX1wwHh8QBSFObs0TXHOBaHITPU9Go1YXV1le3Nrfpssy6jKgrIs8T4s6IfRta6pURIW+l0+8uHfYjHV9LqduQertRZvXGguCknczRhPCx5/4ilqU7O3e4+D3T1GoxGxFHgt8EpRFgacRxKqGFEUzT984lijtQ4JYofqeU+I5Z0t3N57HPd5dcixG3futpWQV4GWuy13/z/27js8jus+9P73zMz2XWAXHSAaCZAAwd4gkqIoSqQoibaKJUVyje0kN7Yc19zEiRM7kW/sN4md5HVsx05ubvxeN8mSLBc5LlShKFKFYifFDhKFBNE7sH1mzvvHzC5XNCmJch6r5HyeZx4szs7OnJ0dgr85+zu/ebNS5646dxXlre4tnyCVG3koKSkhGo2SzWbRNI1EIkEsFqOzs5NsNktZNIKWTWO5d5RKmc5XilL3YAkd3fAQLS1za4nG6e7uQlgZZCZBfGqSkZERpuMzlJeWMjI0jBCC8fFxTNPk/Pnz+cL3wWAwP0oSDAYBp7B+LodvaGgIn8/HzMxMPocvl8/n9XoxTecrwHgiiS8cdv6z0TWipWUEgmFsCaZlk8mamJaNadv5P6qWJZkzZw7JxDSJ6QnSiWlSyRm8Hh1bQCKVJWs6t57VDJ1MJoOuO+WZotEo4XAYj8dzYRTJza8rvAizLOvXltx/KsqVUeeuOnffrNS5q85dRXmre8sH0AGfH7/Xx/DgEOOjY3h0g1AwQEksyuTEONlMmuKiCKOD/SyYNwe/Bj6PgSUBNDRdUFwUwdAhOT2BbZpIKZmZmqYoHGDHE7+gqroM0zSprKhCCEF8apqOk6coKyklFAhSGitBQ6ALjYDPD7ZkamKS+PQMmVSaoN8p4u81PAR8zmzyYDDI5OQkqVSK4eFhRkZG8nejAohGo2SyJobhxczC9ZtuIJ5yJuzkaqACoBtougfN40wsOdt1Fq+hkU0nmRyfAMC2wPAE8AUiZEybbMbC6/UTjUYJBi+MrORme+e2nWvL/cE2TTPfdqlFuTLq3FXn7puVOnfVuasob3Vv+RSORas2SHCK43u9XmeEIeTD4/GQzWbJZDIEAgGwBfFUkpmsiccXxsbL+e5TWFaWomAA20wzNT6BmXSK7Xt1QTabpbW1lZrGBopLqxgZnaCytJyZqQkytsyPXsTjcaampqipqWJyctKZIJJKkc1micVi2Ladv1OWlDJfMD8ajQLQ091FZWUlY2NjaJqWXz8aCZPNpBgdHmBidITJ0SGw7Pzzuq5j6wLh3qzAtgA0dF0wNjmG0GFychpN92NJgaXZ6LqGsCV+Q8enXfjmL/cHXEorP/s8/zWr5NfaZMGXhrlzbGBkVH2VeAXUuavO3Tcrde6qc1dR3ure8pMIvYaHeDwOtsQ2LXShkUmlCQWCTE1M4vf7SczEiUTLMMws8+pq2frE00TCJWRnxpBWBq8/xszUKFZ8ioDhxxIaWcsCTcMX8HP06BFWrYkxa9YsRvv7mZycpLS8kmw6QzadQUpJaayEZDxBtKiYsbExQqEQHt3AzDgjF5ZhoCFIp9MEwyEymQyjo6OUl5cTDoeZmpqisbGR3t5eLMtiZmKUc2dOkE4mmZ4YAdtya5n68mWYnNqkGpaUWJZEx5mpbUmNSHGUobFRDH+IRNodpZACK2vj1UDKl/7NzeXaSWkXPH7pH/Lcehf/IS8cPVFePXXuqnP3zUqdu+rcVZS3urf8CLSiKIqiKIqi/Fd6y+dAK4qiKIqiKMp/JRVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCuKoiiKoijKFVABtKIoiqIoiqJcARVAK4qiKIqiKMoVUAG0oiiKoiiKolwBFUAriqIoiqIoyhVQAbSiKIqiKIqiXAEVQCvKb0gIcZMQ4qQQ4rQQ4s8v8fwfCyGOCSEOCyGeFEI0FDxnCSEOusujl3jt14QQMwW/rxdC7BdCmEKIuy5a95LbEkJ81O2bFEKUFbQXCyF+JoQ4JIQ4KoT4YMFzX3LbjgshviqEEBft61EhxJGC35cKIXa5+94rhGh321uFEM8LIdJCiD8pWN8vhNhdsO/Pv4r+XnJbL/cZCCE2usfroBDiGSFEs9v+ASHEcMHx+oOLj72iKIqiXI7xendAUd7MhBA68C/ADUAvsEcI8aiU8ljBageAlVLKhBDiXuBLwD3uc0kp5dLLbHslEL2o+SzwAeBPfu0Fl9/Ws8B/Atsvav8j4JiU8hYhRDlwUgjxfWAlcDWw2F3vGeDa3OuFEHcAMxdt60vA56WUvxRCbHF/3wCMAR8Hbr9o/TRwvZRyRgjhAZ4RQvxSSrnrZfp7yW29wmfwTeA2KeVxIcRHgM/iHD+AB6WUH73E8VIURVGUl6VGoBXlN9MOnJZSdkopM8APgNsKV5BSPiWlTLi/7gJqX2mjblD4ZeDTF22rW0p5GLBfbQellAeklN2XegqIuKPLYZwA1XTb/YAX8AEeYNDtVxj4Y+ALl9hWkfu4GOhz9z0kpdwDZC/qk5RS5oJwj7vIl+vv5bbFy38Gl+yXoiiKovwmVACtKL+ZWcC5gt973bbL+X3glwW/+92Uh11CiMKR1Y8Cj0op+6+gL5fb1uV8HZiPE1S+CHxCSmlLKZ8HngL63WWrlPK4+5q/Af4RSFy0rU8CXxZCnAP+AfjMK+1cCKELIQ4CQ8DjUsoXXkWfL+XlPoM/AH4hhOgF3gf8XcF6d7ppNT8UQtS9xn0riqIo/w2pAFpRfjPiEm3ykisK8V6c9IgvFzTXSylXAu8GviKEaBJC1AC/A3ztCvvya9t6hfVvBA4CNcBS4OtCiCI3T3g+zkj5LOB6N/d6KdAspfzxJbZ1L/ApKWUd8CngP16ps1JKy005qQXahRALX93b/DUv9xl8CtgipawF/j/gn9z2nwGNUsrFwBPAt1/jvhVFUZT/hlQArSi/mV6gcPSylkukCQghNgF/CdwqpUzn2qWUuVSHTpyc32Xu0gycFkJ0A0EhxOlX6shltvVyPgj8yE2nOA10Aa3AO4BdUsoZN83il8BqYA2wwu3TM8A8IcR2d1vvB37kPn4YJ63iVZFSTrj9venVvuYil/wM3LzuJQUj2w8Ca919jhZ8Dv8OrHiN+1YURVH+G3pDBdCvtZqBWwHgeXc2/2EhxD2XeO3F1Qx8QogH3X29IIRoLHjuM277SSHEjW5bS8GM/YNCiCkhxCcLXvMxd/2jQogvuW3tBesfEkK8o2D9bwkhhgorGVzU3z+5RBWCDe62jgohni5o/4QQ4ojbXtiny1VGuM09Trn2dQWv+ZUQYkII8Z8X9edy1QzqhRBPCSEOuNvccqn38xa2B5grhJgthPAC7wReUk1DCLEM+Dec4HmooD0mhPC5j8twJu4dk1L+XEpZJaVslFI2AgkpZfPLdeJy23qFvp8FNrqvqQRagE63/VohhOFO8LsWOC6l/KaUssbt0zrglJRyg7utPnc9gOuBjlfob7kQIuo+DgCbgBOv0N/LudxnMA4UCyHmuevdABx391ld8Ppbc+2KoiiK8qpIKd8QC6ADZ4A5OJOXDgFtF61zHRB0H9+LM4seYB4w131cg5O3GS143Urgu8BMQdtHgH91H7+zYFtt7r59wGy3T/ol+joANBT06wnA5/5e4f4MAob7uBon1zP3+3pgOXDkEseiDtgK9ABlblsUJyCqv2gfC4EjuX25/cgdi8eAm93HW4Dt7uMwINzHi4ETBfveCNwC/OdFfToFzC84dv/Xffy/gXsLjl33630uvQ7n7hb3+JwB/tJt+184ATPuZzKIky5xECe3GZzR0Bfd8+1F4Pcvs/3C83YVzohrHBgFjr7StnAqV/TiTBDsA/5Pwb+Vx9z1jwDvLTi//w0nqDwG/NMl+tRYeO7iBNT73P2/AKxw26vcfU8BE+7jIve8OwAcdvf9V6+iv5fc1uU+A7f9HQXHZTswx23/W+Co2/4U0Pp6n0dqUYta1KKWN8+SC6Jed0KINcB9UsrciO9nAKSUf3uZ9ZcBX5dSXn2J5w4Bd0kpO4RTzeAJnLzQDill2F1nq7u/54UQBk5AXA78eeF+C9cr2P5m4K9z+xZCPAT8bynlEy/zV3PcKgAAIABJREFU/mbjVGCYJaU03bZGnEB14UXr/hBnstZPccqfjQinBFeNlPKzF637O8CNUso/cH//HJCWUn7J7fu3pJQPCiHeBdwipXz3Ra9f464zv6BtA/AnUsq3F7SdBH5XSvmC+9lEpJR/IYT4N6BTSvn37rb+UUq59nLH4a3md99zl/R4PHg8HqSUYDv/njKZDKFwACEEXq8XTdNA6Jw7d45MJkN9fT19fX34/X6mpqbQhMTr9VJcXIzX68Xn8yCEIBAIkJieIZlMMjMzQzabJZ5KMzo6iqZpzG5s4sSJEzQ0NLB+/XrO951D13UGBgYoLy/n9JkzTE/H0XUPJ46eIpVOMD4+xooVy4iWxFi8eDFer5eJ8VHS6TS6rjMxMcHzzz+PrnkYHh3j1ttvp6frDB0dHVRWVrJ06VJ2797N2bNnue6669izZx+hUIjJyUkMTbBx40YGBgYwDINAKEhxcTGnT5+m83Q3INF1nS1bbmJgYABd11m2bBknTpygoqqSdDrNtm3bmNfcwrlz5xBCMDg4yHTc+fJI13Wa5jQzMNjP8uVLCYUCHDjwIosWLSKZTJJOp0nEk/j9furr6xkfG+XMmTOsX7+e/v5+TNPk5MmTBINBTDtLZWUlQgiKi4uZmZpmcHCQWbNmIYRgVl0tHo+H/v5+fD4f0WgU27aZmpqiq6uLlpYWzpw5w4033sz27duxbZuOjpNUV9ZQUVEBwPDwMFJaFBUVEQqFGB4epqmpidHRUYLBIDMzMwSDQR7+yS8ulcetKIqivEG9kepAX2om/VUvs/7F1QwAJ20CZwT7jNuUr2YgXnoviPz+pJSmEGISKHXbd13Uj4urKrwTeKDg93nANUKILwIpnOBzj9ufq4BvAQ3A+3LB8+UIIW4FzkspD13U33mARzg5pxHgn6WU38EZvfuiEKIUSOKMxO11X/NJYKsQ4h9w0nXyga2bTvK3QAXwtpfrkytXzSCJMwK42m2/D3hMCPExIITzVfx/G2WlMQDC4TBCCLKpND6fDyklmgZer9dpz2YxfH7KSmN0dXWRzaSwrSx+X4SELiiLxZiZmaG6opxYLMb5vl48hoEuoKamhmg0eiGAjsfRdZ2ioiIOHjyMRxds3nQ9R44cYeGShYRCIdraWnnuuee4bsN6pqZmOHzoCEKTZDJpVq1awdqrV1NaWko4HMY0TcxUnIrSEtLpNCODAyyc30pXVw/1tbM4duQwNdWVfOyjH+GBBx4gEg4SixZRO+sqDh3cT0NdLVNTU0jLZM6cJnY99wzhcJjVq1fjCwYwTZP4zBSZTBpN0/D7vSBsgiE/sVgMTYeGxjqmp6eZmZ7kHbffSldnD2vXrubMmTN0dJxE6AaGYWDbNrFYDNPKcvXVVzM2NsLw8DiWZdHQ0ICuOxcplZWVBAIBSkuKicenyWRS9PefZ9WqVTQ1zebw4cN4fQb19fWcPHmS8rLZzG2eQ39/P1VVVczMzGCaJvV1jQQDPoaHh8mkk/T19RGLxaiuqiARn+aadWt5YdczTIwP0zJvPomZONFoFF3XOX/+PD6fj1AoQiKRQAjBmjVr2LdvH1VVVRQVFeH3+0kkLi5ooiiKorzRvZEC6NdSzeDai9qrcVI13i+ltMWFagYbrmB/L9sPN8fyVl5apssAYjhB5SrgISHEHOl4AVgghJgPfFs4N4tIXeZ9BXEmmm2+xNMGzkSnjUAAeF4IsUs6N4j4e+BxnJtbHML56hsuVEZ4RAhxN05lhE0A0qmk8GMhxHqc0e5XCnxz1QxeEEL8KU41gz8A3oWTzvGP7gj0d4UQC6WUr7pO8ZuZz9AJBALuqLEPGQwyNjZGNpulpKSEaHGUTCZDUkLA7yOVSrFk4QI6OztZ0NrC9PQ0sihCY30DlmVRV1eH3+9neGiQeXPnIaUknkjS2dnJokWL+OEPf8hNN24mEolQWlJGwOenurKCmqpKHv3JjxkcGeS9730vAOvWrWNmcoodT20jkzGpq6tlcnKM4yeO8vZbtrBwfiu9vb2UlJaQmJyktm4W27dvx6Mb6CE/ui6YmJ5gfu18Nm64loceeohwOEhRKIiOpCgUZGZygqLmJmLFIZpm1/GO227n9OnTdHd3M7dpDmd7zzE1PkbQ5yUSCWHbNtddfy3z5jUzMzNDa2srw8PDRKNF2Nly0uk00WgUsNm589n8cfb7/WSzWSKRCGc6T7Nq1SoOHDiApsHq1as5fvw4L774Iu3t7cyb10wynqDj5AkWLV5AdU0lZzo70A3B/LYWOjo6qK2rwWfo1FRWcLark/pZNQyPjeL3ezl69EWWLFlCJBjiyce2EolEqKqqYnBwkPKSGH6/n4HzvUSjUYYH+qksKyWdiGNls9TX1iCFc3ETDgeRUhIKhQgGg0zPTLJ9+3aam5vp7+8nk8lg2zahUOh1OnsVRVGU1+qNNInwN6pmIIQoAn4OfFY6dzODl69mkN+fm8JRjHMjiVfqx83Afinl4EV9z1Uz2I1zk4uygueRTh3dOE7O8uU04eRdH3L7WwvsF0Lkcj9/JaWMSylHgB3AEnfb/yGlXC6lXO++h9wErlesjCCl3AE0FU5WvJh4mWoGON8EPORu63mcG3BcdltvNcFQAE0XaLognUlRFCuisqaSqllVJJNJjh8/zsjICNlslkQyjm5onD3Xw4IFC6isrKSsrIxly5aRTCY5ceIES5Ysoba2llk1tVRVVTFrVjWJRIJNmzZRVlbGRz7yEXp7e2lsbGR0dJSJ6Qma5jVx7OQx7nn3Pdxz1+9gZ00CXh/F4QiZdIL29qXU1VYzPNjPhvXr+Mo//gPZVJLJyUm8Pg+1ddXMb5tHVVUFgYCPltZm2q9aid/rI+T3cf3119K+Zi2bb95CbW09k5OTxGIx2tvbqauvpauzg0R8ipHhAZpb5tDZ3UV5ZRWpbILW+S2Mj48zMTGFoWksW7KIVHyGlua5HD5wkLNd3cSnpsGyOXXqNELovPjiUa69eg1LFy+gv28QoRtYpk1xcTG6gNkN9VRVlFNbM4uP/dHHWbxwAa3z5nLjDZvYvu1J1q5aw5zGem7YeB0nj51k+ZLl1NXUUVVexbbHn+DYi0fQJHg8PoTQufHGmxkcHMbv8RPwBigKFWEIgz179rBs2TKampqYnJxkfNwZ6fb5fJSUlJDJZIjH49TVNXD11ddgmhlWrFhGRVmUnq4OqirK6Ok6Q0NdNWc6jlNbXcXCtlYyqQTXXL2GoN9LZXkpunhjpNEpiqIor94bKYD+TaoZeIEfA9+RUj6ca5cvX83gUZwAE+AuYJt0EsIfBd4pnCods4G5wO6CbryLl6ZvAPwEp/IA7ox/LzDivhfDbW/AqXLQfbkDIKV8UUpZUdDfXmC5lHIAJx/6GrcyQhAnvSVXUaDC/VkP3FHQv0tWRhBCNAs3P0QIsdzt7+jl+sXLVDPgpZUc5uME0MMvs623lGAwiN/vp6ysDJ/PRzgcpqioiOrqanRdp7y8HJ/Px8zMjJMHDTQ0NNB5+gwTY+O0zJ2HlTUJh4IsWbyIrb/6Jc/s3MGhgwd44fnnKC4KM69pNonpSUYG+/F7dDZev4nOM12UlZXR3t7OunXraGxspLW1lZpZ1fgDPmxpEQwFKI4U0b5yBUXhCOFwmKGhITKZDEuWLGFsfJTS0hhSWjQ01lFWXsKG69azZOki+vr6qK2tzaePHNy3l96ebqYnxlm39mp6urp5fOtjNNY3cPvtt7NmzRpuvfVWJifHOXT4IGNjI0xPT3PmzBlisRglJSWkkwnGRoY53XGKdCrJ4iWL8Po8+AM+1qxdzerV7fT0dDE0NOCkc8zMkEgkyGazpNNpxsbGqKqqYs6cOaxbt46bbrqJI0eOsH37dsrKyvB4PLS3tzM2NsaPf/xjkskkpmnS0dFBd3c3sViMQMDHzTffiMej09TURGtrK8eOHWNycpJ9+/Zh2zbr1q0jEomwZs0aWlpaSKVSrFy5kqqqKpYtW0ZnZycVFRWEw2G6urrQdZ1wOMzy5cs5ceIEmUyGcDjMoUOHmDNnTj5fWtd1pqenaWpqIhwOA9Df308wGHw9T2FFURTlNXhDTCLs/O5npBCCpw6e5gvffxLLltxz3TL+6I71/NNDT7FwdjWbV7Xyni98h5NnB6mIRZBSUlNWxH/82bv48Y7D/Ok3H2VubTm5vOF/+tidLJhdjdA1bNvGtm3a3vMFjt//OYQQJLMmn/rKDzna2UcsEuTr//MeasuL0TSNrz38FA8+uR9D1/jcB29i48oW5zXpDO2//w/s/OYnKfJ78/tKZbL82b/+jKNdA3gNnc9+4EZWtzXwo6cO8M1Hn8PQNTQh+Ogd13DTyhaEhI999UfsOnGW8ZkkZcUhPnXXtbzz+mUIIbAFaJrG2nv/Xx79wu9TUhRECMG/PvocDz99CF3XeOemFXzw5naEENz12W8xPp3AY+j81QdvYnXbbDRNY+/p89z37z/DtGz8XoO/+cNbWNJUzzd+9DSPbHfen8/r4XMfvJmr2prI2hZ3/+W/c7p3iHgqTSwc5MsfvZPrljXzi+eO8I8/eBKhCaKREF/+xF00lsU42TPAn33zxyRSGUDy6Xdez3VL5iKEQAjhTKyTEk3TkFJiWVl0BLZlYZsWUlroHi8IHYFNJpVGk6BLm2w6g2ZLpCGwsiaadKrGCGznpxDYmSTnznYzMJLmPQ/v/a1PxPq3r/2tzGQyFBcXEw6HGRkZoaioCMuy6D7TzdTUFIZhkEgkMKVJaWkpU1NThANhIpEIp06dwuv1EotGCIVClJSUkEwmsSyLcCRIIOAjk0zR2dlJIBDgne98J/FMiqGhISorq+nuOUd9fWN+31VVFTz66KNcddVV6LpOOhHn+Ikj/Oynv+LI8TPEYsV89rN/4Uxma25E02B4ZJDSWAmWZdHR0cHs2bPZu3c/W3+5jfrGBppb5hL0+iguLubBBx/kn7/yVe644w62bNlCpCjMc889wz333ENvby/Vs6r45jf/nY999OOMjQ+ya9deAv4ge/fux6NrhEIh5rXM5dZb386BQwepra3NT8xbsGARAIlEgkMH9mNJ+Nl/PsbYxCShYBif30s4GGDp0qWsXr2as2fPsnr1agKBAOfOneOpp55i5cqVPLH1CeKJSUKhEIbhpa+vj0WLFuH1ehkaPk97ezvDw8MMDY6yZMkSbNums7OT9evXMzExwe7du1mwYAHLly/l3Llz/PCHP6S8vJy2tjb279/P2972NizL4oknnmBycpIPf/gj/N3f/R2/93u/x9e//nXWrVtHQ0MDjz76KLfddhvpdJJHH32UD37wg0xMTHH69Gl8Ph+dnZ359I0HfqQmESqKoryZvCEC6J77Pytz/dDREYaOBKR24f8UKSWaJD+KZ2l2PkATXCjHJzQjv46maZjurH8pJRpg205qrnSDX13XkZaFlBLbtp3X6lzYti3zgbKFs44QAmHaUHjs3IARdx8ejwc7kyWbzaJpThCProFlIyR4NJ0sTpvQNDCt/Kaswj67QeNLjoPHQNP1/IVBISEEmmY4x0PXnPdhWfk+IbX8+87aWUzTRNM0NK/P+WlL7KyJ1ES+38IyMU0TNIFmOBcOOgJp2/njrmkalm07CeS2xMZpy2az6LruPG9ZWGlnMpVmSbdqhUAzPNgIsNNI2zk+mFnMdAZp2UjcNsv97OwL8zA1O8vgQB/9wynu+t6zv/Ug5Mt/82kZCoUwTZNAIEA0WkIqlSIUCtHff57JyUn6+4YYHh7G4wsipUU8Pk3dLGfiXVlZGUNDQ0zPTGGbFrHiCH6/l8ryCvr7+6msrOTc+V4qKiqIxErYsWMHLY01zGltY/PmzWzf+Qzl5eXohmDVinay6RTC8FAcK6e/vx87m2Rycpzzvee4/4GHKC6uBF3jr+77HB0nT1JTVUF31xkmJ8dpb2+n8/QZkjNxDhw4xIFDL/K5v76P7u5uHn74Qe69915+8IMfcMcdd7Bz507S6TQrVqxgZGiYWfVVDA2P88D376etrY01a9YwNjbGrhf20tnZjWVJzOwMf/OFz3Py5Ek8Hg+zauuRUtLT04NhGJSXl3P8+Ek0odPQWM/DP3yUF48ewxYmxf4wH/3Yh9i5cyfLlq4klUpRWVnJmjVrePLJx4nFYjzxxBPcdttt7Nmzh2ee2UV8Jkl1TTnt7e0cPXqU8vJyampq6enpIRaLUV9fixCSlpYWduzYQWtrK+Pj40gp6ejooHF2A0II/H4/k5OTHDt2jDvvvJNkMsmjP/0Zq1at4uTJk3i9XlavXs3Ro0fp6+tDFxrhcJidO3eyaNEi6hoaATBNk6mpCeLxOD6fj/379zOnaTY+r5+Hfvq4CqAVRVHeRN4QKRxSCnTdg/B4MXWBicyPwgpdw+PzonkNpNcJOm0BmhAInJ+5IFIIAdLCtrL5Kge6BOGOVqJpSCGQ7muklJimiS1sbGGDbSEtE5lxFmG662Sy2FkTYTsBrY7IB4y2lNju9vP1AW3bGWEVgK659QJBt519gI2tS+dCwR2hNaWdX/Ijt4BlZZG6hiUFmiXyI7mmaSJtGyzDOQ5ZDc3SAQMpbITubAcLkBpS6IiMc1ylBNO0sISOrkcwhIEuAUti2RJLCBAaEoGmG0jdQKJhaB40N5DNZDJY6CA0bDNLJh2/cEGhCXShISRoCMhdhBg6Pm8AQ/eC4UHz+sCjIzUJwgJbYJtZbDONNN2g3zAQHqf6Au6x1XQPmu5xRq11g6JgEM2T+W2ftgBEIhFKSkooKirCMAyyWeeiJJNx+pOrwuHz+UgmkwQCARYtWsSRI0fIZrOcO3eOaDRKKBSitrYGsInH45zr7UFiMT4xipSCE8dP8/hj2yiKlPKeD/0pNj5Gx2bY/tSzNM5p4YbNtzAyPg2aIJNOY5sZwkE/0WiUsrIyysvLWdg2nyce/xXtK5bz44cfJJtOMjjYT8vcZtauXcu3vvUtysvL2bp1K+3t7XzjG9/AMAzmzp1LV1cXTz75ZD5Q7Onp4YUXXuD48eNs2bKF+vp66uvred/73ofX62XlypU8/PDDXH311dTVzWJgoI9IJEIwGMTn82EYBjMzM5w/fx6v10t5eTmdnZ2Mj4/z4Q9/mPvvv58DBw4AYFkWo6PD7NixnbvuuoOVK1dyyy23EI1G6e3txTRNdu3axfr164nGirHsDIgskSLnonDv3r0kk0mSySShUIBrrrka08wQDPopLi5mcnKSDRs2MDMzQ2lpKel0mspKp6Se3+9n69atpFIprrnmGh544AGeeeYZqqurOXfuHOvWrWPz5s3s2LGDrq4uNm/ezKIli+ntO8+qq9pJplMEg0EGBgaYP38+c+bMoaysjMHBQTZu3EgykWJoaOR1OXcVRVGU106/7777Xu8+MPHiU/dpmgaa5o6gFsT1wg2M3XZNOBFgYYW33Nf5QH7UVNd15zkEEifIzQWluZ8XysS5I8uysM1hS4kmnNFTJOiahrSdbXk8nvz2LtWHfN8kIEHIC0GgbUuE0PIXAUiJoelgSzRDzx8HTTecNAcspJ0lm7WcwNujO8dBFyBAk140oaNJjaSQaLZO2DIwZtJkUmk8QsNrSkxDgGWhWSaGJtGwsIVwjlPBKHzhexDCCYRty8p/NoZhIJzvCZAIDONCSotlWc7xdj8/3IshJIiCUevc+rn96kIDaSGQCE3D0HWn/oltownnuAtAGDpoAilAmhkws4xPx2m97X98/jWfhK/R4f277ssFyE4taKcGdCaTIZGIMz09zdTUDKOjo3h9Bk3Ns4lEgixZsohFixbgD/iob6gjmUwwa1Y1DXW1eH0GlRUVhEIhhIA5TU0YhsG53iEG+of56SMPMNDbTbC8Fk8gzA8euJ/P//XnuP3tN/PEk08yv2UeOhY7d+4gHCkCJDU11ZiJSYL+AO95190cOLSPuXPnMj0xTl/vOQKBIA2NDUxPTTMxPs7AQD+7977AyvaVTE1NUVlZybPPPktdXR2Dg8782fb2dqckW2UliVSc0dFxrl2/npGREUKhEJZlcb6vl+GREQJ+P+9597sIBJ2AtLS0lLlz5zE8PEwqlaKxsZETJ06QSCQJBILMa5nH3n0HsWxJIOTnzttvY9OmDfT2nqOispKf//xnBAI+UukkwUCQDRs28Pzzz9PV3cWLLx7GNC0237CZXbtewOv10trayoYNGygrK2FgoJ+5c5s5ffo01dXVmKbJnj17KC4uZnx8nI0bN7J161aisShnz56lsrIyf1F044030trayuTEJLqu09jYyHe/+12KiorYtGkTZ8+eZSqeYNtT2/n0n/05Dz/yCJMTEyxZsoRf/vKX3HzzTdx///1s2bKFnTt3UlJSQXV1Fbfdcfdv/dxVFEVRXrs3RAA9fWyH0wlN5INfkRtZzgeSmju66yy2vJDykAs2c6PKlmXlA2iEmyKRS8lwUy1yi7NtN2i2L6RK5EZ6nfCQXwu+L5ZLYygcPc71DVsiEE7waMv8SK2UIv9+kFx4Tr+wHdPMIEwQlkYikSbg9WKZJpppYxg+MNNotk7GnEL32NhWinBqAiwfD+04xOHJBGezGvvODfDjp/cw1j9EOFCErnlJZbP4hI7QX3rxkguSdTdNRErn4sI5VvqF4yAskAJ03RnZdwNsIZzQOn8xJASacPKYLTP7kuC58PPDsjHNDNK20NxzQNo2tmk6FziahtB1NEN3tqlrgI2VTDA5NcO823/7AfSRg7vvs6wL52I2ayKEIB6P4/f7qKioIJlIUVVVRTKVYmJiHK/XQ7Q4Sjabpby8nFAoRHVNJfGZKXxeD6FQCK/HoKyslOLiInwBnWhxlNNnuojHE0xbJnOWraF507uJNLaQMvyU1czm7//+q/zR/3gPI8NDmOkk6XSSuobZlJWVApLpsUFKS8vxeA00A1pa5gMSr6HzxJPb8AcCnO/tpetMJ+UVZRRHo8xpauLMmdME/EGam5s5deoUuq7T2dlJe3s7lmWxaOEiDh4+wPRMAkPXmTt3Lg0NDTz99NN8/BOfYHx8jEOHD3P12jWUl5cRDAZZu3YtVdU1DAwMIKVkZGSEhQsXEgyG+M63v0Mmm2HP3gP4/AF8fi+xSITGObUkEnGqq2uZP38+iUQCXdc5duw4kUiERx55hKvXXk1ZWQUbr7+Rn//nVurqZiGlpK6uzqmEkogTiUTo7u4mkUgwOTnJ+fPnKS0tpbe3l5mZGSKRCJWVlSQScaSUdHd3U1ZWRiAQYHx8nO7ubk6d6sC2bZLJJEuXLiWbzTI8PMzixYv5zvcfYN26a9i69THmNDVzYN8+EokEd999Nzt37qC7u5vHHnsMwzD4+Mc/ycmTJ7j9zntUAK0oivIm8kaqA41lWfnAOReIXTwibFmWO1KsY9tO/m7uBgvgjozmRjYBUZBHncvJ1TQtH2Dbtu2MeAqBbhj5feRHYAuCYd3tk2VZTlDuvr5wRDX303LzqoVwRm6xJcIy8+/N0A2kTX5bQogLKR2WwDYsZ+TWNjGTYOphIlXNnD/bgWZJ0jMpgiURPD6Dffv2888/f5ZsOoOhaVTPbuD4qXPceNNG3nfH2/n85z7LqlXLWXnNOpoXLyKbTvLMiRcpkwZjZ/Zy443rEYYT9OaOe+592baNtC10nOOT+0wsywJho+sCkTuWpnnhQiKXP12QF67rOpbl5C9L6eZ527aThy3BMk3ns5QC07IxNA1bXAiwhRCI3IWUlBiGAYYXj8eD3+v7Lz4bX51cdY1MJkNJSQnT8QlCoRB1JfUYmmB0dJRbbt3C9u3bqa4q59Zbb+XEiRNMTk7T0tLC8ePHmT17NoGAD6TG4OAgZWXl9J0/Ryo9RSQcwjJhOp5kdHSSVDpLUVE5dSvfzljSizbYxeLZNWSrq7nu6hWcnUgzNjDF//nXv2ZseICDL+zgwJ4XKJnVSPP8ZUT7zyIRrFm9nkzGZHRwhFi0mLfdfBOG7iFbX8/k+BhDg6N84PdvQ0pJMBjk6NGjtLS0sGjxAhKJBLV1NYTCAcbGR8hYaZqa5nLNNdfw9NNPMzDYx6zaasrKSwgGfKxYtpxtTzzFwYMHCUeCHDlyhNmzZ2OaJgsXzOd73/sed999NwODo5w/f55bb7uF//ju9wlFisC2WL18KWUlpUxPpDD0IONjE5SUlLBo4WJOnz5NeUUZ53rPcu9HPkw2m+XAgQMsWbKEz37u0/z8579k5cqVhEIhTp06xcmTx1m/fj3z588nGo0yNTXFvn37yGazzJ3XzLFjx3ju+WeZN28evWfPkU6niYTCaAhGh0dYs2YNW7du5brrNzipLGe7GRgYIBaLMTg4yE9/+lPuvO1Wenp6KC0uYk59HRMLnGOW+7f//ve/P//359lnd172olxRFEV543pDBNC2G3R5Nd0JXg0dS9r5VAbLstCkRNM9eL26E3DpuhNoWllsKbClAKEj0RCGM6Kq6Rq26QaoALYTlAkhsCTOV+6WhRBOdYhcsCx0zZkEZ+ho6NjuBL+XpGW4fc+N1ubznwtGuQEnbxqBrmlYtvM+dZ/XSW/QQdNyFwxOKobUNQQaAWmQitv0ZT185f9+j2B1PRX1s/AZBovbFjGaHWH3M4fp6U0y2NfJeMJLXV0DE5NjjE05qQN33LOFrU88SUn1LP78Lz6DzMQpKi3n8ce3kfZE2HV+gJlkmCXTFlXF7kiylFhIDE1zRrrd0XGhCazcaHw+t1sghQ625XxGQqC524ALEzGlmc2n4Rg+/0tH8zULj6ZhWxYeN3NHA8xsFl03sC2whInhpss4n4MJuSAeDaHp+I3Xbw5WKpXC4/GgaRoLFizg2WefJRKJIC2TtrY2hoeHKS8vp6ioiKNHj+YnHO7evZtZs2YRj8cZHh4mEonQ2trG9PQ081sXoGFz7lwPRbESQsUaEo20aVJWXcuIKKJsZoAyb5xnrDOyAAAgAElEQVRIxE9agOZJUhoto7xqNiUtm/jc13+PpRu28B9f+xI1sTAzaYvm+QvZ/tSTRCur6e/vo7ZuFqdPnaS2voGjR4+iawYnT5xidHScbdu2MbtpDufOneNHP/oRX/ziF/F6vfzkJz+htraWLVu28JOf/IT777+fd7zjHfT29gKwcOFC/H4/8Xic0dFRfD4fZWVljIyMsGvXLtra2qiqqmJ4eBhN09i0aRPPPPMMs2rrqamp4V++/g0MfwDbtGioq8Y0U2SzzoTcyuoqJied9Im+vj4aGxvxB3w0NjZy+vRp/H4/69evZ//+/Zw/f5677rorXy1jeHiYG264gUwmQ1FREcFgkOrqavr7+5kzZw7hSCj/3NjYGCtWrMjnqTc2NlJTU8PBgwe54YYbON/fR01NDR6Ph/GxCcbHx53JnLpOT08PAwMDJJPOnQubmpro7u5m+/bt9Pb2Mjw8SktLCz6fj97eXsbGxl63c1dRFEV5bd4QkwihMF1A5tMICtMJ4MJoLYbuVOhwK0VIAbrHALcNTcung+RzZQVOmoKbbpC7vXJO4STAQrZt59f7tdSMArm+Fo5CCyGcyhtu8KnpulM9A+lWtHDSJ3SPgSVtpGVD1sKcTvAv336EX/aNsW8qzfs+/gne8967qSwu5qlte/nCF77BQw/+go03rKU4bPDs0z9H94Du0XjbLW/jq//2FVKmiWVZXNW+jE996l4OHz7It79/P8/v2E5ZWQX3fuR/gvTxyLb9PLfvOHY6jTSdFAshbSwzi2WZSGnnq2jkjkHhZ5N7zjCcWy3nFB6DfOUUyyKbzeZHn3WPgeY1sHWB8Bj5ke/CbyJ0XUf3epCacCqDeAw0w0BIkJazrim8BP2vzwh0MpnM14EOhUJ0dHSwYsUKVqxYwZo1awgGg1RVVdHW1kY0GiUWixEMBvMVLIqLizl27BhNLS0sWLIEbzBIRU0N4WiUyXiCWFk5piUZHRvH4/ej6R7KZ8/FNDPMjA9T5PcyMTCBmfYQKapC1w00w6Zu1nxC0TAPPPo4ZriaE2M2CRtOnD5DqLiIrJVhVm0N09OTzJ3XxPBwP6dOnSAUCtHbO8AHPvAB5xbc8ThHjx7llltuIZVK0d/fz969e4lGo+zevZsPfehDbNmyhWQyycDAAA0NDZSWlvLss89y1113UVRUxLe//W0ymQyBQABd1/H5fIyMjHDkyBEmJib41a9+RSwW48CBfWzbto3GxjnowkCT4PcZLFuykPXr13PVVVfR0tLC7Nmzueqqq+jp6SGZTFJTU4NhGKRSKZ588kmGhoZobW3l/e9/P/sP7KNmVjVr1q7mI390bz74jkQi7N+/n6effpqlS5fS1dXFY489xq5du7Asi+bmZqanp+no6EAIwQsvvMDPfvYz/H4/Dz74IKOjoxw9epRVq1bR3NyMEIJMJkNfXx/XXHMNbW1tfOITn2DlypWMj4+TTqfp7u6mvLyS667byN69+wkGnVrQN9xww+ty7iqKoiiv3RsigC6csJZLs4AL6RG6rufLumWklQ+20DRnjhk4QZWu53NkNY+B5jGckVI38BK6E2wLXcv/R54v1SZEfj+58nCF+y8M5HOPC0vI5Uat7YK7j+dyhvOT3gqWrG2RsUwnRcHQ83nfmBZHRyeIrV3JNRuvpTEWwk6NsXLZUt7xjjt5etsjXHt1G2+7eQXYIUTQx9ylG7n51usYHB3gyad2sP2ZF7Dw0DZ/GUuWLKe8pJre/gGWrVjKubM9eGyTMwdf4I8/+C52PvQNrl3e5gT/2Egri21mkZazCC6MuhcuhakzluWMQBemfVxcXg+c9Jrc8TVNEzOTRWYtyFro8sI+cl9v57aZuzAS7sVIrj/Cdj593esjFHj9bkYhpWRqaop0Ok1tbS1er5fe3l6SqTiWnaX3/FniiWkEJiPD/egamGaG/fv3Mjw8yNKli5kan2DXrt1INAKBENOTE9RUVePRdFLpBIbhRdd1DENjejpNKBRCmmlm0jN4fD6CpRV4LOc8s9MJiv3jGIlpRGKcVCpF54TB73zyC8xpWcSyhUuZnEwTDIWYN7+NQDBMf38/7373uymvKGPJkkUMjQ6xefMm9rywi7vvupPNmzdz+PBhDhw4QCwWY8OGDflc75KSEjo6Oti9ezejI+O0tC7ga1/9F6YmZ/J5xiUlJSTjKeys4OC+Q9imxdymZjQEXsND85wm6mfVcuMNmzlx4hiVsRjFRUF+93d/l2XLrsIf9GF4dTQNYiVhbJmltKyEaDRKT/dZOs90Mbd5Hn/whx/iqnVraWmbz6zqGjZev55IJIRhaHT19DA5NcGcptkYHp15c+fQUFvD+d4eNl5/HVve/nau37SJrp4ezpw5w6pVq5gzZ45zcej1MKuulpMdp1i0ZDHVVTUE/EFGhkfp7OxG0ww8Hh+lpeXMzCS47rqN9PcPcscddxGKFPPxT/4xv3PPu8haFsdOnKC3r4/vP/AApaXl6LrnlU8yRVEU5Q3lDTGJcPLIjvuE0JASNBuk5VS+QNMwDA9C07HdAE8XoEmJ1JxycpZpYbuBqnRKdgACIZ1F0wwEGrYlQRbcgAPhbk+QzabRcxMNwUkPkdKZVOhW5tB0PT8Z0SlLIZz8aiGQugYer1P2zZQgLtSLtt0JZkJ3A3ABHt0ZQTU0HStrOlU6DA+aoTGTiPP1nz6PP1jKwf0neH7vfv7405/hBw89zLGjR+g8eYrrN25gzrwWWltm03u2j2ee28vCudW0tC6ktr6W9OQId7/77fw/f/vPtM6vJRgqZu68VjpPnWL+/DYS8TSJRIq6eYuIlFcQiRUx038GicSdMYmVNdENHc3ju5Da4i65nG77ooBa03V3wqSzHvmqHh4nLcc20TUnOBZCoHsMbJya3Jpu5CcJouloUpJJZ9BM2znOUjpVQIRwKpggnJQY2wI7C4ZB6TV3/tYnYm1/4hf3FRcXo+s6mUzGmfTm81FXV0cw6Ke/v59wOMzY2Bg+r4dkMonP52UmniSTyTA1NeVMyFt5FWfOnGZichLdMBgeGiQWixKOhCgtK2FsbJojR08wPT1NSfMigjXzsBJThESS0nCYvrFpbDOJJkxGBobwBgMEImGyiQnKY6WUVzSwZOW19Bw7QDTio6yshIyZZXR0jNmzmxgaHOD48eMEgyGam5t5escOFi9ezKJFiygqKmL3nr20tbVhGAajo6PuaGo5ixcv5vHHH+faa69laGiIZUuXMz01xZ49e2hoaCAen6G5eS6HD79IT3c3FRUVLFq0kOPHj3H77bdy7txZt1rJFAPn+/H7/UxMTlIU9PChP/wAnV2drL/2GlLJBNHiIl588TANdY2kUyn27d1DW9s8Vi5bjpA2Z053ILAxMxYjQ4NMTYwhpM6pE6e4YeMNJGfiLF++nNMdp6koL8fGxusP4PUGmDuvlRcPH0YTGslEkueeex6fz8vBgwfJZrNEYzHKysro6Oggk8ng9XgB6OrqYvXqNZw+fZqxsTFKS0v53ve+i8/n5ciRF5mamuTqdU75u3nz5tHd3c3ChQtZs2YNlZWVtMybh6ZptK+9Rk0iVBRFeRN5QwTQ08d23gfkRxuFR3dSLkTByCeALJiU5lZmMDweDK8zkSx/U5CCdAOhXZh0Vvh6hIa0Lbc024V0DF3XsWwb3chV8cANnEE3jHxptsJyb4bm1EPOjWbbpplPXciNLJumiaHp+RHa3Ih3Li1Ew0JIQXomw8e++RQ9Pf3cdNN1fOrjnySTTHOm4yQrVyxhYmwUQ3PuIDg0PEKoKMwDD/6EL/yvv6QoVszuPfu44br1JFJpIuFq1rQvZaB/gKqqGvwBPwnTory0nMrycrY/8wsyCUFy+DyB7Cgenx/D43FzvJ2LA9ut5Zzvp3tsnYsQ+ZIJflYmi5nNOncN1C+keUjpFLuT0gZpk81mnMcCDMPJHc5mMvmvQ5wbrLipI0JgWeZLJn5K4Vzk6PmqHE76Tsma237rQcjpE4fuK5zwWl5Rka/TPTExhm3b+bsECiSlpaUMDw+TTCZpaKhH1wThcIiK8krOn+9lQVsbDY2zKSouxjAMLNPCtDII4eWZZ58nmUphB0rIBKN4wuU0lBQT9Vn4QgEikTBe3Sm3Zut+Fi1ZQXVVMVYKQqKIWLScU109PPjg/axe2UakuJRwKEwqlaamqoKBgQF6e8/T23uekrJSYrEY3d3d7N69m1hJCTfeeCPxeJy+vj6mpqaoqqqir6+P1tZWtm3bxvT0NKWlZYyOjjIyMsKyZct45JEfuXfdO8O8uc0EAv8/e+8ZHddhnus+u04vqINOAEQjSJAgKTaQIlUoUSQl2ZESS5ZLXOTYvnbavcmN4+Sco2SdOL7ujmPHidzi2IolN8lqESWKFIsoNhEECZAEiA6iDAbAANNndrk/9swAVM4v/5DkteZdC0sghRnM7D1r8dvvfr/ntVPfUMeqVbVg6MyFZkklkxi6RmNjI5l0Er/HRU1dKU6nSl1dLRktQ/PqJhLxGHW1NUxNznDk1SNs2LCO48ePcOjFl+i52M3qxgZeeukQX//aN9i2dRvHjp1g+MYIe/feRk/3WeKxBV47egKnw4EowPT0NLF4nECggtOn32By4gYd69ZRUlzCXXv3shBeoK2tDYfDwdDwENFolOrqakpLSxkfGycUCrF//37m5xfweDxs374dVVVpbGwkFAqxZ88eXC4X1/oHaG9vp7+/n87OTqamrAuFI0eO0L5mDceOHeMPHv5AYYAuqKCCCvod0rsiwvHW5btcgYq4YvjNuZy5eIAsWrEHDQtbp2lalvKwHCXIIe3eiq6TZTk/9L01u2yYVtMfghX7kFQlHwPRTMPKXks3UzySySSmbpAxdBDF/ELZyveWY0bnBurcUJ2TYeqYusH83AIHmhX+54f3cdfG1biUJMeOvsi6NS2IJkyMjRAMTnP5cg+mnsJp82CT7fzxZ/5fdu7czfqOzfz1Xz1GoLyGb37jO/z433/Gnlt3MzYxSXFxBdWBGsanJ7l0/QrXBoYZC43yqb/+B2JpMZ9RXklBWfk+Vh7XHAVj5TkRBatAReJmGkkeSQiY6MiKiCCaGIaWP1+545O7uDBFAd0w0FYg4gB008i61NZ5MGQJVBVDfmf2YXPxlfLycurq6hBFEYfDkY+4qKqK0+mkubmZoqIi+vr6aG1tJRGNMBecIRJewNQyXLx4gRvjE6STKS5evICum3g9PmKJZJ6E4XA4cLvdmKkIQipKLG0QFxTsThtGKkJ8YQFDz6DrOi6vj+HRcUbHgkRTJuGlGNOjA6zp2ErX7QdBF0ll0qS0DFPT02QMK/fb3t7OxYsXefTRR3n++edZvXo1Xq+X4uJivvWtb+H3+5EkiUceeYT9+/cTCATo6+tjenqaAwcOMDIywsTEBOvXr8fv99N/bZDr16/z0Y/9IRd7LnDLlk38+Mc/oqy8lIW5EPV1tXjdLjo61rJ161ZKin24HDIiBm3NbYiCgtfpYzYURDc0zp0/i8ujUt9Qw29+8zThhQi3bN/JU796ho9/8jNUr1pF+4Z1fO073ydhejj0ci8f/cTf8pMnDvOT/3iJ+99zL08/8ysmboxx9o3jnDlxlEtvnmFydJC0FuPHP/k+A4N9nD57gqmpKaanpxkdHaWtrQ3DMJicnETTNEKhEG1tbVmMXh9lZWUEg0EMw+CFF56js3M9ExNj9PdfZXR0lJMnT+J0Ojl9+jSpVIrS0lK6uro4deoUd9xxxzvy2S2ooIIKKui317vCgV68evKxnJMoZPOuhmki51jApolgmoCIKEiAgIEBoohhGkiSmKVZ6EiikuXXWfxiCcDQEcFiMYuClTs2szldwSJh5MkQhpGtuxas6EiWMAEgaNmyFcOqyTYFwXpewfpZIRt/NgQzXxxiiisaCgVrAJRVxcpii1nahyShKyqiohMJp7iltYzwwgyd23dz9PhZfHYFPbrIyPAQwalJAoEKFsIR6psaqSoNkIhFOHWxl65NXVSUezn86qusW9NJWamTrls3UVdfg131AGkUQaS2up7pqRts39XFf/70KZZiGv0TIXY01oFDR9HtmNmqdAETIxtZQbBiL4ahA6bFaxaschRBN9D0jOXUK5LlXOey4mhWrMO0im1EUUIQrfOIaT2fIApoup6PbIiihJ5JI+oZdGP54so0rPMN1mlWFAVDNxBMkeKtB952F6/v8oXHvD4fFZWVBGdncTmcpJIJUokoiizhcjo4e+Y0fp8XgJqaGmvgDlQyPDqKJCuYCITCizicLqZDISoqq1hd30B//wB1dXUk4xlUu0LPpT4ikTSJ8ALFJX6WRCeqw0dAWsRERBV0FIeTjC6TSev4vU58vmLKPQG8/mIcLieheArRVBkPL1AkJXGoCoGqBuKxCJKk8LWvfpVHHnmIE8ePUVRSwtDwMGvXdVBSUsR9991LJLKEx+Pl6aefprOzk/Xr1zM8PMjBgwcoLi7i/PkLnD9/nsOHD/Pggw9y7NirdG5Yz+rGRuobVvOvj/8rf/P5z7O4sMC5cxeYmZmltLSczs5NmKZJz6WL3Hv//XSs34jb60UQTJ588gnu2nsn3/mX7/LCC6/wm+eP8Nyh16jr2EbL9r3MxUV2HLiXYLwY37o7aFuzhu0bdtPedTdFgRoa12+leFUz227bx4tHT5HQMly6eIGjR87gLyrm3JsXkCSZQGkpxT4/w4NDuOwOItFFNm/azPjYGPfdu59MOsmNiSnWdXQwPT2DLMtomobd7iCVSnHt2jVmZmYoKiomHF5k9+49DAxcx+mwIwpw/txZPvKHHyaytIiha2TSKRobG+jr6+Xge97++FFBBRVUUEG/vd4VA3TkyvHHDF1Hz5IjyGaOjaw7+dZyDgDTtNb1pOxiWs4hVWTVeoyUHYoFIduKl0XPZYkc5griR66JcNkpFrKtcmaeQmHVhJsYppEf8iFbVQ1WJCTHgsZAkazb77k8tZEtd8kN4/nnJJexlpFMk+4rk3zhiRdRZIVvPv5zjp86y/q1LUzNTNM/MMj+++5j285baWhqZXFugR/98D8oLfXzt3/7Od7zew+xd+/t/Od//ppXXjnMD77/bzzy8Ae56+57sNskpm8MEI1GmZ0N0dnZAYK1SHnXvtuYF2DgwiXaiosRnNaBWuZpr8DysXw3YJkTbX0Jugm6AbqBYrdbx0cUQTAtJJ4goIsCkqLky1vILiFa7GgBGQEtt8Cp61akXZKyy5/WkujKrLq+Yvm0aPM9b/sQ8spLzz62uLjI3NwcY2NjuF1uXC4niUQcSRKZnZ3F5/MRDocJBAJcvnyZdDpNTU0thmEwNTXF1NQUmzdvJp5IMDI6ylxoDpuqUlJSwvnz51i9ugFJFukfGCIWT5KMxXEJCeyBShYoZc/GtdT5VHzFPpxeD3X1LZTXVGJzu1AUq6pdVRRmkyaz0Tg+m4tXXz/NVCRJW40fQZKwO10Yuk5NTQ1Tk1NUVlZQWVVNcHaW6uoa6upqmZiY4Ne//jVPPfVzHnnkEa5fv87o6CjJZIJQKITH42FpMUpXVxerVq3CMAzOnH6DiooKxsfHCQQqKC8v4/pAP3abSjQaY8uWLZSUlNDf348oipSXlxKNRmlsbCQWizE6OsrBgwc5c+J1njt9ha6DD7N+4za23flezNJWggmJlqpW4r5NnBioYNf2djxyDMUWYWYhSqDah7ekhEjCQLa56LrvDxidX6KqvAynqHPtaj9OhxOnw4mhJfB5PTQ21HP9+gBr2lo5euQIuqbj8XlIJpNs2bKNJ596kk0bN1FcXExpaSnz8wuEw2E8Hg/xeBxFUaitrWVubo7JyUl8Ph8TExM0NjZSXFxMMBgknU6zbt063njjDQKBAHfctb8wQBdUUEEF/Q7pXRHh0NMpBENHwrwp66qqan44Xln7fFMeNps3BfJ0h9xgB1nChapYJIysVsYT3orOy/2u3HPeFCHJkj1MUcizNrRs3nmlRFHMD8r6WyIIK2uyl6uyBSRBQNThl/91jJElJy9cnOPy2Bxr29ayads2nF4v++7ah8tXxORMiEBlDRW19SylTb71nR8S8KusbqghtDCPIoLLARWBYu69935EUUbG4NKbPdk4QSvBmTm0ZIau7TvYtmU7992+B3dNJQ7VjUgmH7/IvcaVrzeHq1tJI8kVweTiLrm/y0Uc8gU51gOQBAFhBc0jV5KCJCKpSr7BUFBkJEXG5rDnSRyCJCKrSh5RqJvm8pLm2yzDMHC5XFRXV7N161Y6OzsJBAI4nc78ZzGTyVBfX08mk6G1tRW3283Vq1dJp9N4PB4aGxuZGB/lSu9lKgPltKxuZGxsjOrqalwuF2AV1qzraEfXM9TU1HBjZAxh4hKJ6T5e6J4hYpZhCG7MtEk0vEg6HkfWTcy0iN3uZm4xQnQphq6lcbg9bN2xF7W2g2//7BmcGMQTKVSbg1UNjdidLvx+P1evXqWxsZHJyUl+9KMfcfToUTZt2kRLSwumaVJXV8e3v/1trly5QmtrKx6Ph127diHLMl1dXbzyyit86lOfyiMjX3vtNYqKijBNk+LiYrZv305FRQUAq1evxul0ImYjUKdPn+Wll15mbGyCffv2czxoo/G9/w/TjiaW9BIWYw7KJIkd9gjG4gX8RpDOdTtxJC5TLM5h1+apcifwSEk8Spoyr4pCmvEbYxS1badi/S50QaSoyEd5eSljY6Osrq8nEY1y/swZ1rW1MTY6wtr2NmRR4Pr16/T39zM0NMTDDz/M5cuXefPNN3nzzTcpLS1l27ZtOJ1Odu/ezcjICH19fczPz3Pw4EGmpqaoqamhoqKCsbExOjo66O/v59ChQ+zZswePx/OOfHYLKqigggr67fWucKCjV44/ls8qS1bpiGHoFmVBkjBEqwpakCULW2eaiIiY2XY8DKsGW0AAEcTlWRlRUhAFCV03AKtARRQkpGy0Qtd1BEQwrUY9MxurMLGcakHTwTQRTNCt3IVVD579MgURSZJBMLDAIQKmIWR/RkDXUohkySEsLw6uxOIJgoCQSRGPZ3jmVDeCqFBd5qTMmaK01MmRo0e4847bmJgYx+fzMTAwgMPhoLi8hqrqBp544ikeOrCbzdu3sn//e/j6t75DIODjU596lEBlNb/65RPcvfs2WtasYSE6j0u24/IHKPJ6kAQ7doeXpYUopl0lmUjjluPIkt163wAYKLKEaWTPkZk73lYsRpSypBSMPJPbFESLbZ09hmJuONZMTE3HyGiIgogkW45/Ls6BIFgutqlni2xEkGWLoiKYGLqGoemIpnX1Z2CAroMsUbRx39vu4vX2nHtM13WcTidFRUWQvWuhaRlKSoopKiqiqKgIXdeZm5vD5XIhSRKVlVVcvnwZTdNQVZXgVJD5+XnsdhuabhCPJygvL6empppIZBFRErDZHSzMh5mdX2T9pu1MjlyBTIyoq5HxsSnaq0uRTB0REVVRkE0RkiLB6RCRZBqbICMqcPTVI8QSCQybg1QqTKUQR3Z4cXvdeNxuDh9+haqKAJu3bOHY8eN0dKxn9epG3G43Pp+PtWvX8cwzz/D+978fVVVZu7YdTdMoKSmju/siW7ZsYXR0FFVV6e+/xu7du4lEItx++21MTU7hdruorKigoqISh8OB0+nEbrczODiIqsr4fD5UxU73hW6OHzvOPfc/CHWbiGCjSJVR0hFKalYxHArhtBv4XHYGB8Y4clrijq0ZVCGBw+5HkBS8qoRNceF2OrBLJpLTjlFUx9TYdfqOP4uRSdDW1kxTUz0NddVMTt7A7fVx+swZHA4HIyPDlJaWoNrt9PX1sbQUxaaqnDz5OsFgkEAgwNTUNOFwmN7eXnRdp6Kigu3bt/P666/j8XiYn5/H5/Nhz96VeeaZZ6iurqa3t5eBgQFUVWX/ve8tONAFFVRQQb9Delc40CtdZVMAzVh2LckuE+oriA8rlwqBfD42x8nNucq5/HSOziFkOc9v/Z35OIKwHK3IO9KqnP/KcaJXUhfkLAEi95w3LQZiDfCGKWAI4k3uc65QJPdlZDR++tNfY1O9tNZ4ufe2W/jKl/6B97//D/jkxz/CxOgI1YFyEnPzbF7biV1Q6e89x67dW9ENjb7ei9x5WxdPPvUTHLLCe/cdQNYyFDtk/uL/+ixzoWn+4fN/yR07HmT7nge4MXqN/oErRGML6EYaf1ERjU2rEW0OjNQy13ml879Swoo/mqLlOufOAdy8LLmyFCXHwdZMAwPzJnJKrnnSKkuRlpc6RWtZUWT5+dLpNJlUGpJpSGYwUxneCcXj8fzr0fVcV6OI11dELBYjk8kwMzOTHY7tOJ1OIpEI0ViC6po6dnTtwunyUFFTS0vbGjweH4vhBWZnZ/j6179KT08P0XiCZFJj/bq13HfvXlRJo/vcSZoa1rDY34step2QauPnF2d4/rUzRGNhrvZe4Xz3NQZHB1hMRomlk+gKTGtO0qW1CKpIYinGU798lWhao9jnQssYJDMaczMzvHH2HDXVtdTVrKK9dS21tauYmprBMODE8dd54Pd+n/m5MOFwGK/XSyyaovtCD+3rOvjmt/6Z8opKBodHsDsdHDtxnMHhIcJzIdpbW2hvbeNSz2VERWZodIRIPMZiNMLaDetIJFL4vUUcOvQKv3nhZfyV9RirtjKxoCElYpQ7VVataqamtIjWVQ14nU6S8QVMOUYqaZCKpcAASUwh6insLjdGRsUpi2jxRSKCm7AposfCGCmDQHkViWSMoqIiMobA6pY1RKIJtmzdwYH993HL5m2Mj90glcywbesOjr56mPnQLKWlpaxevRpd1yktLaa7u5uSkjIW5iOEw/OcPHmcqqoKBgcHLAKPLNPb24uiKKxbt46rV68SCARwuRz4/d535LNbUEEFFVTQb693jQOdyzobkoAoiciKgg43Dbys/HNcxnkAACAASURBVLNhWO60aSIqilX3IYqIK9B3ueU+Xdf/e/TDWKZzYGaxdCtiHpArcjGWySDmcmZ55WvKIfKW/5+Qz27n3OosYPmmx+UX40wTu6wQjptcmwyx65YWUpE5VtdWsbqplXg0SkNNDR63jaraUiaDM5w5d47WtrUszc6wd+dW+i+fIxNPUVZezomjx/nYhx4iEltgfWcnUjzJL372ZY6d6OPHP/479IyBx1lC167t9Fzq4Ytf+hI7d+7h4rU+mipqUGKz+chLbojNvedcZbdpmGi6lm0UVMkvFeYuLsTl8hsEaxFRkK0MsyBbX5IioxlmvgTHxETIDuImJpqhI0sSejZXbmENDavBMHvuJcMETUeQRYq2vP1LhMeOvPSYz+djaWkJp9NJeXmAeCyG3W7DNKyLA5vNhizLpFIpbty4QSAQQDN0bHaVsbFRenouUlVVg9frxeVyEYlE8PuLiEQiqKpKx/oOfD4fc3NzRCIR1ra3MzI6wtLSImUlpQz19+AqKWFCrWZ0Pkl4MYiTBIpgMD0XQZAVDFllammRJ17vpWZ1C3IsyMToIGUOF4sTV6isKMNbVIIoCtTXVPHsc88hSTJTU9OsbmwiFo/yve99j0984hNMTNzg0KFDNDU1UVJSyl//9V+zYf0mDh68l0/80R/lP9vhcJjy8lLWrVvHAw88wE9++hPSmQwut5u79+1jJMuFdjqdhBcXOHnsNTxuH7/5zfP8+pnniaYy1LTfQsi1Go/XT4PfQ53XiV1VScVj2JweXIqOkQrRfstWrky1sGF1EEFbZE1rE+WBGoJzCXRdRpQzGIgEpVJmE2HCF44RGRvC7XawfkM7Lc0tRKIR3F4f5YFKrlwdYGBwiMnpGXxFxUwHg0SiMdau68AwTa4PDjI0NEQmk7HY1eFFRFFioP86wdkZXC43fX1XkCSZ+vp6QqEQNTU1hMNh1q9fT3l5eZbsYXLp0mU+8IcfLzjQBRVUUEG/Q3pXONCA1RS4Iktsrvg+N4yudEVXotFgubUuY+j5IRnIu8S5QTWXyV3ZmCdJErKq5J9z5ZekGRjpDGJGv6nqe+Xwm/vduczryjw1gCApNw3n/6322zAxNJ1YdAnRiDAbnKaoqIjU3DjPP/cc8/NLfO97P+By31VeODzA77//zxkaSbHvnkfYvfUuhq/08IEHHqL7xHFmRkbZsWM9qlOksqYW0e7mIx9+P7e0+jl1ZZrqsjXcva2d6uZaUkmTjRu3cNfdB/ngRz5KKq2jm2C3OZdrtLOOe85Zz+Wfcxg769hncXSadRxyx/utuWnTtIZiA9M63rm7C7kmQ01b4eRajxEkMd9OaLVPSjdfTKkymgQaNzvkb5dsNhs2my1/iz6XiY5GoySTSebm5ojH44yMjBCLxTBNk0QigaalSaeTtLW10NraTCwWY2ZmhpmZGU6fPs3FixcRRZGrV69y6NAhvvKVr1BaWorH46GqIsDDD70HUTCZX4rhJcPg4V/hn3kTXyDAdaGaE3MObhh+TFsRMwtxLnVf5PwbZ7l1TT1SaIK5kTHciSUqXEluTM5gs1k124qi8MQTT9DZ2cmzzz6Lz+fjS1/6EhcvXuTxxx/n0KFDvO997+Ouu+7i+PHjLCwscPDAfezbt49//MIXcTqdPPzww5w8eZLq6mpisRi6rvONb3yD/QcPoNptLCyGuT40yKpVq/D5fCwuLmJkNKoqKhkcHOaZZ19kIRbH4/Vjc3m4PDCG0+NCzsSZnhhnaWmJEq8LI50hlgGXy8fw8DBHjr7G7HwUUZGQZJULF3vJ6A5isRgOp0RZZRVJyU5mfJQrZ08gyzL79u1jx44dKIpCRjdIZ3QkRWXj5k10bt7MYjTK4aNHCc6GcLrczM0vgCCiqiobN27ktttuY3p6moaGBsLhMCUlJUiSQjAYQlFshMNLnDlzhsHBQQ4fPoxpmgwPDxMMBjl8+DCLixHq6xvfkc9uQQUVVFBBv73eFQ50+OqxxwRRsIZMwRqeTQEkcTlO8dZIhmxXrVwtWC2CpmkhzrLNhbIkI4qShawTRQzTRJGXh3RBEixPWDcw0K0WRNF6rIiIIICEaTmmolUBng0RWHQQ8+YSkSyUzcpKaxkETETB+h4zS5MwlwdvQRSt14sAhkk8tsiFU92UBGqZnJqif2wSl2jyvWfOsX5TJwcO3oUh23n0s/+TzWsq6b1ylcFghP/1N5/jf37lcWorvMhGgvHpGPcevJ3xqQkSms7qllY+//m/5+//4iPcf2Aboj7Jp//q63z+f3yBVHIR1WajvKKCH/7sKbwuP90vP0NHY3nWLbZyy2Rfr24YmJpuVXhnLxSELOJOEsDU9DwtJUsCRJSWWxsFQUAyRAQDDMFC1ZlZJJ6uawiGbh1DARAFZEnOEglzDGmLVgIipqkjSSK6ICDbbKiqDV/nXW+7i3fm5KuPJRNJWlvbsDkc2FUHGCZ2hwOb04mq2rMXVQKqpDI9NU14IYxNUlElBZ/HQygUwuf1oGVStLY0cfHihexiqUygvJKhsTFkReXOvXeTSmeIRBcQRYloZAlFkRkbv4HbbsOYG2Pw1GH0dAxv/Xpm0nbcokgiNIeW1HDKEvMzs4xe62Fm8DIjvec4duw51rU0sXXrFrxFflLJDKKhMzYxzqMff5Rjx46ztBThxOsn2L9/P08++SRbt1gLc6lUCrvdzqnTb3Do5Zeoqq7k4x9/lIWFBWKxGK+//jp6RmMxvMT582+CLjAzFWT/wQNU19Si6QaxWJyy0nIGh4ZRFZUnnvw16ZRAwkgiayZNm7fR0LkXr1vELYp0da5FFGy4HQpOZIrL3ZQV2fFU1FFZZXDrxhJIRZmdmSdtOPCqbsSiGFrM5HJE4NrIDS4//W/os2PYVY17792H3WYnk8mgqG723HY7LpebsbFxookkaU3jfQ89zJ7b99C6po3eK30sRSJUVJTTtqaNxtWNrKpfxdjYCNNTkwgigLU8a7fbaW5uprWlnUs9vUiSwtzcHKYJly/3oqq2fKPj/Q/8QcGBLqigggr6HdI70z7xFuWGSl3XrWFMkvJ85GXUG+jpTN4VzTmkOXc054jqmoaZ/XuwnGlFUVY8p4gkiRh6BkHIkiREE02zCBHWUGgtKhq6lh/aRVG0OMWiiKTI+QwzWE5oLr4AN+eFV2a28ySKFfQKTDA0nYxmUFLkoSe4AI4iPCJ8/anTRJIGTiGOpsVpXnsLrx1/mu9/4W+ZXQqxtXM9r/3m24iiyNe/+2OO/vpbfPmb/8n02BBNLWsor12NojqZN/0cOrbAmhad40fGWYq5mRjr5Re//CVr12/E5fTyox8+zgcf+gCf3rcTdA3DkMBYjqzcFIERrIsdIRt9Ifs+cu/dMAwEffkuwU0lOUKW7Z3Ngt9U1pKN1YjZCxZN06xFRlm6CW9oHTwxO5RLSIKYr0x/u+V0OgmF5pmYmGDL9m247A7isSipVIpYIorP42UxPI/T6aTnQjeKouBw2NGNDKG5MKH5WaamplizZi2xWIypqSm2bNlC/8Agq+rrGB+bQBQlRBM+/1ef44Mf/CCBigqWFrPxjo525uZCLEWixGMRArIBk330/PhNZKeX2epqHKKdFDLXZucQUyba7AzRsT5UJcma9a3cfvvtxONRMpkMsqxgGAY3btxgenoah8PBn/7ZHxOan6OqqorGxkZ+8YtfMDw8zIMPPojD4aCqqoqFhQW2bt1KMBikrq6OS5cu8cUvfpEffO9xfvjDH/LpT3+a5qZGAoEAkUgEE5ibm6O8rIxwOMy1a9d47bXXmJlZRNMFgjNh5JIyJkMh3FUxfJWNpMUY//XKEe668x7sUgZdgYS+iCTqqJkFOmpEpvov4Pf7sdldiJKI0wda3E7Kt4rR6QjOyGVS85MU+73833/+WZKpKH5FJqNrNDe30NfXRzwep7+/n7a2dpoaGrn45gUWFxeIx+Ns2LCBoaEhZkNBuru7+eQnP8kbb7zB7t272X3rHr7//R/idDoRBIFUKkF395uMjU6SyWRwOp243A4ikQiRSASPx4PX6yUYDL4jn92CCiqooIJ+e70rIhy54UyW5eVWO9HiBOumSSqTsfLN4s3thLlb/8Dycl+ezmCiC9bglkxabW4GJmktk6+gXomqW7ncl4t4rFxWFAQBSVUsRJtAvm0w54j/nyIcOeWG/hyWL6fce5ZlGYfDQaCkBNM0mZmZ4YUz1xlPumir8yMnDYYuD9J/9QLeymJO9I5w/+3N3Lbey+SSk7AGM1EJ2a5w275tVDWtorGhmfnZKYIjvdy5t4P9j/4l3/zZRQ48+gme+PH/4tTrZ0lkl6h2bd9NciHImeNHKa+qQnYX/felwdyCoGgVyBiQj1cI2ZjLypw0ucHaMBCyRTi5I5I7VrmfzVebZ5cHEYWbjqGmWzxtQRSz7rZgldGIAopqR8vip98J+f1+GhoaCAQCLC4uMjI6zOzsDLqRwuv1oqpqnjSxpr2NsvJSFpfCjIwMkkwmiMeThBei9FzsY2x0kv5rQ8SiKVRRYuT6Ne656zZaW1Zz664d3HnHHg699AKioDA0NMS99+2nrbmej374IXZu30hVqRfTrrAYnKRIjONOTFIWDzJ75SyRkR4qZq5QFr2KX56golrBX+RkYmIyH69Jp9NomobP52NpMUY4vMRHPvJhIpFFVFXl6NGjvPe976Wrq4tkMsnk5CSnTp1i69at7N69m4GBAQKBAGfPnmXPnj189atfpbm5mRdeeIFVq1bR1taCqso0N7VSXl5Fa2srkiRx4cIFmla3sLSUJGNCNBHnzjvvJBGLE1kI4XEo/PRXz9M9HqSyeQ1DwyNIiojDLmMTVdKawNilPqTEKMUuDwJ2HJ5qvP4i5qMR4mkvQ0sJMuNXOfHTb+Ehyf33HgRBpG1NB42rW+lYvynLtE4yPz/Ppz71KYqLvKiKCKaG3SZTWVGGgE4mneDAgQM89NBDvPnmm/j9fnp6ekgkEnR0dJBOJ6mpqUJRJDKZDE1NTdjtdiRJyrdUSpJERUUFbrebjo6Od+bDW1BBBRVU0G+td4cDLcpoZItSJAlTEDGQrHgDgoWJQwBZwhAEDFFANgHTRLapZLQUJlbJiaSI6LqGKMnohoEAyJJgxShMCydnZNJ5wocOSEgWfk4EWZLJpJNWa6EsYSLm07U5hxqyZSwmCKJkLTSKMhhGvuwlm37OR1KsyIeMoAiY6RQmVs5XF0Cyq9hMg0BDA8d+8TrDEdAzGndvKGJTUzGnTp+kumkNE/3XKe+9zivHjuLx+vniF77Cvz7+UTxOG01dD/GrF45zua+XPTt3kKlr5NDLL1NR20h0ZpZEZJSmtkYe/eSf8PsP3s+mzk3ceedevN4yMobO6qY2fvLTH2Ak0mQiYQSHioiAqRuYglV2YhWaLC8HGoZhDdESyJJ609BtIFq3swUDwbAGbisGY2AIVqOjqS8vVQqCgIE1WGiaZg3lholo6EimgJhtI9QyGmBYi5kGpEkjCiaS7Z35KCeTSRYWFjFMcLhduN1OZFEimYoTXgwiixKKLJJMJgmH5zEMg9raajxuJ+NjUyDINDSsZm5ujlAohKIobN26lVBwmtbWVkw0aqqqefWVw5SUlBCNRvnud7/LXXfdyeXLPXRt20ommaKkyI+WSdOiKhz+r8NEIksoLiczS4sk9SRmeBbJYUPSTZSMhlNxoDsMQvNhVFVlZmaGuqYWFEVhdHSUbVt3kE6nOXf+LKtXr+bI0eP09fWxe/duDh64jzvuuIP29nZ2797N3MI8mqYxMDDAiRMnqK6uJhQKsWPHDuyqQl9fHzMzM3QbSTweD/6iMqamZ9GNJIHycmRZpqenh1TGIJVKYQoGTa0NnH3tKFcvnEOqOMfu7V3YbDa8RX5CozfoHbiOQ7Rl4y8GquIjqaXQbcUIsko4IeBy2piayxCMzTOvz3Hp8f9NscvO5g3rGBsbo6yqnJnZWU68/joNDQ1WGU9REW63my984Qug67hcLjZt2sTwsJVhvvPOO5mcsNz5WCzG3XffTSqV4uWXX6avr4+GhgYuX+7B4XDQ3NzM0NAI01Mh3G43LS0tzM3Pkk6n2bhxI6FQiGg0ytmzZ9+Rz25BBRVUUEG/vd4VGeilgdcfE7M5ZlEUkGTFIiwospVzzg6gudv0ljtpOcGiLGVrvK3lNXKucZYZjbDcSMhbXNXcMCxmnVPDNC2X01wuDxHegp9b6VbnBknTNK268FwmOPtY69cv14QbWcxx1kdFYPk59WQSI5VmJpqmuVTmQ7c1kk5EMSWVnZvXoMoCHn85Y9PzXL12la9/62t0bt3IhQuv8fJLZ5mPRnju6deoqm2mqlSmsrqSi70DvHr8GHft6aK7+wKdm2+hu7sHt9POzh07Ka9sxObyEYkv8Z8/+3cS8QhNdfXUeiRMwcy75bn8siAIGObywCvmKCbZ90k2ay6IIoqiYhg6hmGh3WRZttoKVzwGlp8rt3iYv6OQ/V7EwMgiCHNDuCzbyOgmpila3HDBWkQs2rD37edAXzz/WElJCdVVVdhsKslkingsiolBeD6EgMHwwAAiAn5/Mapqx+v1U1ZWQTKZ4tq1q+y98zZq6mqQFYXb9+6lqaWZy72XLfbwlX4WwgvIiszeu/Zy4uRxnG4ng4ND6LrA977/73TtvBUDnbXtzZimTmNjI+lkkrLiYjJaGgEN0wRFUNA1A93QqV5Vhyk4cHuc+B0K7WtaKS0uYn52BrvTQUtrC4IgUFZWxtjYKF/+yld5//vfT1FREUPDg7hcTlKpJCdPnuDnTz1Jkb+Ya1eu8+yzT7Nu7Vq8HjdHXj2MKMosLUXo7NzI/HyYqupqFpfCFBf7yCQNQMPp8PDUk78mlsqg6wZaRqOhdhWf+vSnOX70Nep8CknRRXlTO6lYApeokdIVVNWGSwKn7AbFTSwuIdm8pDQVSXIxOjHLxEIEl5rihX/7Mo31FWzcvJ4PffgDbFi/ltJSP3OhEG6Xm4ZVDczPhTj8yiucOvU601NTSLLE2PgYTpeT+oZVtK9tp6q6iqLiYuKxKB63m77eXhKJNJs2bUbXdaanp2htbcXhcFFWVk48nuS++w8wPTOJapMpLi3D7nAwODSEzW5HUkQUVeGDH/5YIQNdUEEFFfQ7pHfFAB0dfOMxURAwMhqI1tKfIIpIspW31Q0DRVUxs3XYYvZWvoFpuZrCchuemRtcc8OcZD2XtTG4HMvIRRJM08zXcZtkWwQ1K8ZhkR9ujo0A+fhIbsDMN+xllcvx5iIdZJ9XQLKGc0O3sGwsD59CWoN0mtO9A4SXYgTKvdQ3rObll1+lvbEcychwuvsq6zs3cODeezh/7k2m5yMszSeYnBhn24Z2Whtreem1Uzz44HuYjySprGuirbWN6RsDrF23AVG2s6FjPQ31tfR0X+Tc2dOk4klGR0ZpamkhFolzy8YtiOFJMnoqz2hGWPHeV7CYhRXvN9cGmEPRmYZ1kYBgLWJigqnraLr+fxyic8cxJyV/bkzMFTnpHCKP7HkTJAEJ6yLFv/7Ot30IGbrW+1hFoAKn04XL7cbM4vziiRiqIuN2u6kMBPB4PKTTaZqamtB1Hb/fz8DAAEVFRQSDQWZnZqiuqSaRSPBfL75EbW0NmzdvJhgMsrS0RFlZGQMDA3z7299mcOg6oigyFwoxPDxCaUmA7du24bC7WNVQja6n2bVrF5WVZUQWl1hVW0N4PkhNdSXh+Xm2btvObChEcUk5pqnR2d5CU1MjpWVlRCIRampqkGWF4uJiMpk0VVWV9PRcpquri56eHtra2jhz5gwlJSVUV1fTtWMX0WgUm12lubmZZDLJ2NgYHo+H8vKAVXHudjMxMc5dd+0lFotRUVGBhEk6k6bnYh9XBwaZngnm406zczOE5maZnpjggYP7mRi5REnDBrp7+uhsbcBb5Ce4GCGe0TE9pcwldWrbOhibj5JSfSwZEqFkmrmZYZ75939CSc7j9gWorS6juLiYqspqpmdmWVqKMDU1xc9//hQvvvAizc3NiKLIhQsXaGysp6NjHQ6HndHRUWZmZkin0wwMDFBeXk5ZWRmVlZXMzc8zNjZKUXERdrsNSZKJRmNEIhH+7M/+nKNHj3DPPfdgt9uJRGMYhsHFixepqanh9Jk3GBkZ52/+x2OFAbqgggoq6HdIwluzru+EJp79kqkoCslkMlt4YuWfhZwDmh1207HE8iClWotlVn5TR8tkELOUC1O0ls0MTDAsd1PXdSt2oVvxASGTBlGErJOdW3hTFMVqyssN5NKK4pYVbqtgWE7p8lAt5HPVYjZ7bZgWozg3gIt2F5qehmQcEatcJe9kJ5KkF4I88fwbnBxOMRZOccvaKuqLXWxr8LNu43rEylZePnqC2WiEeCREPCnT2NxCPBLFYddQMhpf+M4vuRHW6Ag4mRUdHPn5N3jq579C9FQwF1nic3/xWWKzYaobViMqbjKJKDabyuLSLK+dOkXXpm0snvw5Nqe6fILkFUOuuLygaWajMKZuZdZNSc4fH83ILDvyWToHgCkoN12QmOayc68ZOrIoWVEYXbMuhnTDutOwYvFSFOTlx0sCQiaDoGvUfeAfb+5Ufxv0/DM/M4uLi7HZbNjtKoJpkIzHUG0yiwvzpFIpvE4XExMTqDYbsVgMWZYpKSkBYGlpCdM0iUUjLIQXmQrOIssymm5FZPx+PzabDUmS6O7u5tZbb2V71zauXLnG9HSQyclJDC3DyZOneO/976GlrTmf4deNDPFojGAwSCwW48bYOKUV1Vy41EsiqTE6FqS0zMsHf28/u3d3sbC0iK7rnD59mnvvvZ+rV69SUVFOb99lGldb9d1f+9rXOHDgAFeuXGHNmjX0XLyMy+nlc3/9l0Sii3zxH7+Uj0KUlpYyMTHJ5s2bWVhYoKWlCZtdoaSkhOLiYiLBWQ69epgzb14imZHo6+tlaWmJ8vJyIpEIsVSG9rVruXDmdTZtugVbeQ3u5q10jy/x/g99lOD0FKUeB4LTSzgcRs9kyBgZDC1JcnyQ53/6XVrcEnaPym237qBryxYwNUrKyhkYHqa6wmp5/NWvf0kmk2JxYYndu3dz7Ngx3G4nupGhtLSUnTt3Mnh9mP7+furq6ujv70eWZaLRKKWlpSxGlti1axexWAy3281scB5NM/D5fFy5co35+RDt7e0UFRVRXbsqvzT59NNPY7M5cLlcXLp6/W3/7BZUUEEFFfTb613hQC/1n3wsx/q1aAtY6DSwkHG6VaghWoyofPvfMmnDojXkIwVi9va/JGEay46ziYkkStkaatOqmhaXUXT55zOtkhYhGx9ZuRBo/T4rlmBmYwsIYt7dBhANQDdBN5GV5ZiHIFo12LIkkUlrSAaIJqAb1q32VJob00FsHp252QXK/UWYosZU3OBi90UmLp/n/oMHCY6OUO7z0nOpl77+PjwuN7GExr7b9/C5v/kcX/2n77AUS3Du9Gs0NlczevUcfZd7+NAjD9HUuQOXy08ylUYiRUZLcPr061wd6Gd95yZIpmB6AB1jmVMt5Mu2LcyfIGIaJlI2OpPD8xmsLImxjpWA9R4NXc+70rIkWvg607DuDuSUu0tgGMuu94qLm5wkSb7J2ZcE65z417/9EY7Q1OhjbqfTOhaajigKaLqOYUAmlUKWJZx2G6qqkk6lSKaSVNfV4/V5cXs9xBJx4okEwdA8oiQzG5onEomj2u00N7dx8uQpbt3TxYXuiywuRXntteOoNjvFxSVs3bKN0dERqqqrqayq5OlfP0NVTSVzoRC1NRUIiPj9Xhrr6zAyKfw+P7HFJQRJZmxqnpraJpLxGIK2xJr2NiorKjBMeP2N01y90sfw8BCDg4NUVVaxqr6eS5cusX79enbt6mJubp7rA0N87GMf43s//AH/35e+xJr2dSQTCZqbm7Hb7axZswa3y8sbp98ArMXRjo51lBT56e3t4cUXD1FSVsXQyA0mp4NMTU1TUVlJJqMhigLxWIwb4+OIskRwZpqJoWtkonO0dmxiNhxBdXs4cvhlhKVJPMQRF2/gTQb55T//PRPnjlJlN4gvhSgt8XPvfQew20WisQxuv5e6uloaGlZx6KWX2LrlFi719CAIIqFQiKamJpxOF4lEAllS6Ou9gmKzoxsGI6NjFJeU4PP72XzLFt68cIGurh1MTEyQSmXw+fy0rlnL4tISm27ZzNVrV6mtqydQUcmbF7qJJZL89Ikn8nfWrEw/fPZP/7zgQBdUUEEF/Q7pXeFATz7/FXM5MiFgZAMOUnaIyuWbTWF5cDKFZTqGYWgYuo5oZrF1dpv1D5RpIJjLQ3cqk0YWJQxNRxKsNT4hm73Wc4g6ycpOryxvgVwEg2XHmOW8czqdRjKX89GmJCMboCVTmMJyjEOQLewapmi5rFomiw6TSaUSKKkEo8NjnB1cJJQ0mJgeYdPqMlRZpL62EZuisra1lXA0yvj0PHt//yEkXzFlFRvRgZNHn6R5w1ZSupPSihoWhs6hef2Ex65QUlyBo3oVRtpE1yTMTJjpiTHGxidYv3ETC+ElAMZ7e2nTJ4iZK+InsrBcYCMts7QlyXLc9YyGqqoY4nKkRc7OxaZpWouIK6IziqJYi4KSiKTYrO9zFz4ZzaKoCAaCYVqLn4JVlZ07HzbVkae16LqOTZHQ9Qx1D/3vt93F+/Hj3zQt99lObW0tLrcTm82W/9zE41G0TIp0MsV8aArDAK/HRzQRJ5FIUFNTQyqVYmhklOsDQ8RiCcLhMIIkMj42QVNTCw6nzCOPPMK5sxeYm5vjF7/4BbfffjsPPPAAX/7yl+ns7OTs2bNUV1fj8Tq53j/ABx55GLtdxeVy4bCpZFJJFhejLC2E6e67zuBUmGQSwqFx/vKPP0zH+nWMjY7zzHPPU1O7io999EOcP38eRVFwOp289PIrvO9970MQBF588XmGx8vmhAAAIABJREFUhkb42Ecfpbf3CtF4jG3btvHss89y9947822Lf/d3f8f01Cx//CefJZmM09nZidNlZ+rGBEU+LzPTIR7/wX/Qvn4zL79ymI985CP8y7/8C9FoFJ/XQzQazZf1yAroyCQzOjaHC1Q/gfpmPHaJVDTItcuXKfX7SCXjOFxOHJJMWUkRj37iQ1RWVjM9Pc3kjSnuvvseHn74fXzyU3/EzNQkN27coLGxkWvXrnH48BH27t1Lb28vtbW1tLQ0UV9fTzAYJBpP4HQ6yWQyVFZWcv78eZLJJHV1dUiSgNPpxO32MjU5zd599/DUU0/R2dmJy+VieGiUkydP4na7ueOOO0gmkxw6dAhJkhgaGkGSJHr7hwoOdEEFFVTQ75DeFQ70wrXjj0myVeWsW3amNcyKEqYJhmFiGCYmy1XeuZ+xcrpWVtlAsJxLslEOw8TUlx8niKbFidaseIFuWkOypFrs2zxLOO86ixjZqEaOQwzWsqG1aGg5qpJk5a0RrSFQzDmsAgiyiGFmYyM6YFqlJIaAhfWQlquvbaqDgUuXGVuYBdNgdn6J4KJESpNZmAtSXl7OYjLN1t97kLmpINPz81TV1PHhD7yH23ZtYGvXrWRSIvHIOH1nznBrRz1eI4VggGp3sBCcQ9MlXE47P/zB9xkeG+buffehCArPPfdLui/3cvTlQzTUVOC3CyRFA69gx5RFq5TGMDENi6VtCgI51kjOTZMFAcPQrf+aVruirmXjBKZFRJFMMMxcMQogiPkLJ01LI2SPqyCKVgRHtGgppmkiK4o1iBtm/u6AkCFfauNbd/vb7uJdOHfqsUAgQGVlJYqikEwllxdHZYse4/F4cLs8OJx2FElkavIGS0tLzIbmKC8vR1EUFsKL+Lx+DMNkx44dSLKMJEoEAhUshBe4evUaM8EZFhbmaWluYW5ujsnJSWpqaqitrc1HPYqLixkfm2A+NMf8wjxOpwO3y8XU5A0UUeFyzyXKA1Vc6R/G6XQQj4bZvGEtLpeLRCJFeXkldoeLN988S2NjIydPniST0Tlz5jyB8goef/x7IEBxUSl2u5NXXj5MfWM9V69eZc2aNUyMj3H+/HkCgQA7d+4kmUgRDM7Q0FBPZWUl8/NzBMrLOHP6NIPXh9h79z18/Zv/jKbrXLhwkVWr6pEkGb/PiyhajX+qqmKaAi6XiyKvD79DQUxFiYfGycxPMzs5RqDEj02W8brdrGlqYE1bE3/6J58hlU4Qj8dpbmpl69btjI1e5zOf+QzXBwY4e/YMmqaRTCbRNI0HHngQQRB4+OGHEUWRxcUwJ06cwG63s237jjx6zqpa97Np0yYikQhr1rTjdLoIlFdQV1fP4NAQPp/Vjrhz506uXe2npaUlvxT74gvPs6atFVWRkWSVdDrNJz/9mYIDXVBBBRX0O6R3xQAdvnbiMSDv/uaX8DIZ8n9vWsUqOX5wjgyRu7W/zF8W8kO2lUeWECVrGDNNA1myBnXBtBYNxWzDnpx9jCRJZPLFLEqeyKGqat6Vzv3enBObc1Dz9d3ZGIKuaYi5Adl60dZjs5lek2WahZVaMPGoNmaiEVxOB4JhIoki84uLBBc19r33/Rx55RBaOEjA52Ddxs3Mh6P4i0tpXrsenB7mFhb45J//Da+82s2p86fZtHkrV3t7GRq/wVRwlrZ1HfzkJz9iy7bN3LP/vczNhjj1+msUldfwxa98i66d2wnNBdlQV0vaTAEyurH8/gRByJNRyLru+TsHumHh/7IDtJRb9pOkfH4c0eI9G5LVNokp3EQyyUs3rJbIjBXPkYSsa5/RkBDRMxoIAorLCSIYGPjXvv0DdHhu+rGcU6+qKoIo5LP8DkVGQGMhOEMivkQynUZWJJKRMG5vEf0D1/PYOEVVKSsrR9N0uru72dHVhcvpIhKJ0t9/Ha/Xy/XBfjo62vF4/Oi6TiAQwDTNfG346dOn2bXrVsLhBVxOB9FojPGJUbZv20YsGuHCuQtEo1Ei0STTs/PEIhEi4Xlq6wKcPXOaRCLNiZOnqKyqYmb6BgCBQIBvfvOfqK2tt1oDy8oJL4TZvfs2IktR6urquNhzka6uLoqLi3nh+ecoKSlBVf9/9t40OK77PPP9na33Bd1AYwcIEAQJgiDBVSQlrrIki7a8yVriNbaTOLbjLJPYSSU3c4epqeTOrcT35k5yr9c4GWfGVhxrs0TLluRoo7iT4gKCWIh9bwCN3pez3g/ndIOeu3xw1chSVT9VVrkodAM4fVh6/u953t/jYnx8nIsXLvH7f/D7+Hxe5ubm6OjYwMT4GH6fj2AwzNe/+W38wTCqqlFf3wQIeDxeJAmi0SgLCwuk02m8Pj/FQoG1RIJkOktJ0/D6vfYOg2EQDgY5evdBREPlyJFDbO7ZSDqdpGfLdrb29DI3P80f/8lXWFtb5fLly5w69RMuXbrMwYMHmJmZYXl5GZ/Pz5tvvokkSezfv59sNsO9995LIpFgZnaWI0eOoOs6k5OTKIpCoVDA6/WSSqZZW0uiKG503cTE5NatW7S3t/PSSy/hUtxs376d+fl5ujduZH5ujnQqzerKCr5AiKmpKX7/D79SNdBVVVVVVe8ivSMMdGbwjZOC08hnSevUC/GO5r4yW7kSH5ClX6A5lB/vC8IvouMqWWZJBE1HFAQMLNyygmGZSLJcadQTRBFBliqteqIoVQx0uelQc0x9+c8qP4+DtitLEhy2h1AhQmMJIqIiV+qxK+lf07K/wjCwikXO3ryN1+2lNuTBMEv0bGrj+s1bPPfqeQZn4ozNLmBKHlBVrlw4R3xhCQOR//lP/4xXXn2VP//qH/LeY0d5+MP3cub0ea4NDXP8vgfp7uklnU+zc+cuGhtbmJ6cIRQOEInVc+Khx9i6rQ9RgU9//vOoiyuEFAvVoUqUS24EJxBt/8TrsYyKgXauvYWFKIj2xN95naHr9uscyop9sFiPwmCtXz/LXMfoWdi17qZhYGg6kihXJtKGS0YSwDT0X4mBfvONl0+GQkHy+RxgkM+lUdVipWpcURQEScKwwO/1kU1lKZVUbo+O0bmhA6/bzdpqgtGxSa5du0ZLSzMtLc2MjozYyLixMR586P0USiUsRHRDYHBoiM6uLk698AIrywkef/xxXnn153zk4Q/x6quvMjE5wabNm3F7vawuLjM+MoKpayQSCWpqG7h09QYbuzr46Usvomt5aiMRpmcWOHj3PQQCPtLpBIFAkPGJaUTJTU/vNj74wQ9x8O67+frXv8FDH/ggTz71FC/89AXOnD3DX5z8C4aHh8jnszz9o6doqK9ncmKaHdv7OXjP3Vy8eIlYfQPhkI+mWAyXrBBfivOjZ5+ho3MT4xMzZHMlNm/dQXwlQcAl4fNIbOzYwOF7DhLwefD7vMSX4xw5chiPS2ZjZxten4tIJMhHP/wQjQ11pLNJPvsbn8Xt85DOZBkZGWV1ZZV/eeIJlhbjLC3G2dC+gQsXLlAqFfnwww+zra+P6zcG8Pn97Nm9i5aWZlS1hKqWuHjxIktLS/j9fjS1xMjwMJqqcvWtt2hsihGJRBgaGkaWZA4dOgRYhMNBBm/coD5WTygcZtfuvdSEa3jyySc5ePAgE1Mz9O/aydF7j3H6zBu0trRRKhX5jd/6QtVAV1VVVVW9i/SOMNDZkTMnFcWOUSBL67xlYX06WaZrSLJUMV//bzllURQquWnnD+0ab8tCMsxK7rmceUYS0VQVC5Bdiv2SyntLmHdUdJf5z2XDWG5wK/OlKxloy7INs2kiSoJjnrGXDQHNmVgLloBlOZNW00LWTeZnZ/j55TGQ3ajFNY7efTdaZpkjB3cjiSaTI6Ns6drAyMgIn/7Mb9De2MD2vh5e+fkr1NfU8Olfe5T6tgY6Nm+hfUsPu/Yd5Z6j9xJraSOTL9Lc3EypaAIuvF6ByelJnnnuJUaGR7n36D309vYSjNaRnJlByS0ju91Y2LlvQRIRBQFN15ElqRJvqbCxjfWpvOX8wzQMMOzDiYSAXDbOZnlJcN1AC1gIgoQggCkKNhZPFJAUN5YoIkoykqIAdqxDdiv2tF/VEXSd8PZ733YTMjp0/WQoFCKTyeDxuCmV7OlzLpfDMgVMw0IQRFwuN6qm4nIpNDQ0EIlGSKwlUDWVmdkZXKJI0OfFo8hk0xkMy2LLlh46Ojo58+ZpUsk1Hv3oR6kJhRgcGGB+dpZPfuLjLC+vUsirSJJMbbSeRGKV/v6dHD58hFwuz73Hj5FcS5LLZckXiiSSWW5PTDA+NUtJVYnVRkiurbJxQyeLi3MEAz66OjsIhELs2r2HiYlJDh0+xJ/96Z9x4MABTpw4gdfrpVQq0dHRwf79+9F1ncFbg+TzOfp39KFpOo899jgTE5MgCIyPj/PCCy+wtpogvrSE3x+gVFIZvT3JlSs38PmDdHV1OcuXJmgFFNmkUMgRq6ulqakBGYvVlQWCfg+ipbOlu4tD9+zj448/SrGosnPnTsLhMKOjo7z2+muUSiWCwSDnzp4jm82i67rdFDkxS3tbB9FIHW+eOV0habhcLlaWl1EUG9+XyWRIpVL09/dz7tw5AoEAqqri8Xjo7u4mEo0wNzdPbW0dTU3NvPXWW0SjUaampujbto1bQ0M0NjWxsppgYnycRx55hKeffhpdN5ienuLmzQHm5mYpFEp4vV4+9etVDnRVVVVV1btJ7wgDnRl+8yTOlFgU7MKT8kZN2ZAahoEi2VNQu9bZbgA0DQ25PMsVBGdqjMNvtokRAjgmFRBEZI8He0tRQpBlJEm2iR2OF7anouVJ+J3lH6L9taKEYRkosmKbZLtCEVlS7CGqsJ6HFhDQDRNZVirmWxQEJFG0zaJlT09dCMgmnLt+Bdnn4YlXbnLs3vfx5ptniEZCiAJEgmG6WyNYpknfroOMTU+zks4zMXabfbv72LN7B9lMCp8/RDaTxuevQbN0LMng0uVL5LJ5gqEwouIB2WB2fplHf+2zTEzN8MXf+U2aGus5fPBuPIrE9MIKnmKakN+FYZqVqbMo2LESLKcVRrJRgBbYkRNFBlkC08LQ7Ky52+e1Wx11A1O+g89dZjo7n/P6BNu5fDhlLYoXSXaBKCErCrqzUCiIAlqxUHlKUNP39hvom9cvnVRVFUmSSCbXkGW7sl1RFOLxVaanZ6ivb8Dj8SIrCpqm2SZREIlEa4lEo8iKQktzK61t7eRKJQzLJBgMce3adeZm51AUiZnpaURRIBwKMTtj85QvXbzI/Q+8B4De3m0MD43iciuYpsWFCxd5+ulncLldNNTXsxRfBEHi4pWreH1hdMMkl88TDHjZv28PXpeLvm29LC0tUBuN4Pb6SKXSyLJCMpWkra2dmzdv8uyzz3Lt2jXe//73s23bNlpaWnj++eeJL8fp7t6Ez+MhlUpy4fwFAoEguUKB+fl5Pv3pTzM1OUV8aYmWllYuXrzEmbNXUBQ3isuF4nKTWF1GlqClIcqB/XvY3rcNj9tF96YuJifH2NjZQd+2Xnbu3MWJEyfIpNLkMhlW11IIgp2Rfumll/jkpz4JQFNTE1/8wheZmprihz/8IXNzczz2+KMIgkUwFODRxx5leXmZ+fl5kskk6VSStrY2gsEgbreb4eFhe0nV7SYUChGNRllZWcE0TV57/TUKhSK6bjA3N09nZyeCYMd3RkdG6dm6FROL4eERVpZX8Hq9jIyMkMvlAYvOjR3U1kapr2/k9u3bfP4L1Qx0VVVVVdW7Se+IKm/T0LAwMAHuMFSwzoA2TRO9UMISBQTLQnSvG2tBEJyltvUWwDub7cqTY9GJgZRKJUTDQpFdTla3jMNzeMXmOv3jzsyzZVmVLLSJVPl6URTQsafMgiRiOhnqcm64/LvIsowoiqiqar8/Fi6XgmnpiMUSF68OMp/SMS0LORDj3//dE3TWBUgXTDY0BGhtbsIXrCNtpHntzdP0dm/kak7D71FoaIwyOT1D24ZOjFKRoC+EodpEh6n5Gfbt24/LHUA3BTK5NS5euMDv/c6fo+kF7rvvOPt276Kzox1Lt8hlsjz30qts0Jb47IcOI0kyAraxNZ0DRaXG24m26LpeoZmAHYWRLXsKb1hOltmJ55QPJOXabpumYUd4ZFnGNAwE50kE2K2E5XtCYD02YxmmnY+WZZB/NRADwzBs3Jks4vV6CQQCrKyssLCwQGI1SVNTEwsLC7S0tFBUC2BaqKaOzxtgamqG3t4eFNlLbayOqakZciUdv66ytLTE3Nwchm6ytbfHZimvJmhraUUrqfzDt79Df38/jY31nDlzmh/+8AmCwTDz8/M0Nzfj9XordAlMG+nocnucsheZkdFRQkH7nrr//vtZW44DdjV5d/dmDEEklc5y48ZN7j50D6ZhMT4+TltbG/F4vFL/PT8/z6HD9+DzeBkbGyUQrWH79m2IooxpwEpijYbGep5//nkaYzFCAR9ra2tMzcywlrQN+ubGRmprI1iWQcDjRbAMcrkMYNLQ0ICmlfj0536D+vp6hoeHUVWdp378HB/4wPu5dOkSL730c8LhMOPj44yMjDAzN086nWTv3r2cOX2W8fFxtmzZws2bN7l85Tz9/f0MDw9za3gIr9dLQ0MDU1NTHD58mGeeeYYjR44wNjbG8ePHicfjzM3NsbCwgGEYrCaWaW5u5q677mJ+fpGtW7ciSwqbN2/m/Pnz1NXVUcjliccXOXfxEl1dXdTU1HDjxg16e3uJRusYGLjO2toaHo8PLJEjR478Su7dqqqqqqqqfnm9IybQ6cFXTpqGYfeayHaM4s6murKRtRFxdn623IsniYLNh3bMcdmkWv8fsQpZkRFlCcG0HEixUI4pr0dFzPW6blg36SBUSiosbP6xZZqYWEguF6ZlYlomkhMjEUXRbstzDGfltZZl86dlGdMy0TUNWS/x5HOvkBLdKKbOhdEVLFlmNpMlr4kUcwUMIJHMshxf5o//+E8ZvnqakiUgKRIev5+Z+ThFE/JaicvXr4IsISluOto243L7EBQvU9Mj/K9f+xr/9N0nCdR4+K3f/DR/8pU/orG+BUs3mZ2e5P/8+7/l9twKPe2tdIfdSB5XhaIhSuuLm5Is2aNi5/MSnCg3Dh/aNAx7qVAU7JiFKCKWc83OAcXQVUTRIXqYJlgmogCCs5hoWRai4q6U1Gi6bpM6HMqHiIVumiAK1PQee9uneDfeevOkLAlIooCha6ytJtA1nVw2SzKZYnZ2llu3hvB4PPh8bgJBP5IsoWk6kZoaivkshXyGawNXuTk4QGtLK7Ozs2QyOepjDRiGgdfnRVHsevtYfT0zM3Ps33+A1dUEdbEYb711lfc++F527d5Jb28vjY0NtLe3se+uPaTWltm8pZsLly6huPwMDd1GViSyuQyiqdLS3IAiWah6EVESefijj/LEv/wIUZEwDYumpmZef+01DM1gZnoaWZKpq61leGgIyzTp6urEoyhMToxj6Dq5fJaurk3cvHmTq9feoq+vl0I2Tz6Xp6dnK6MjQ8Tji+RUjaXlBF5nubA2GqVUKtLT1cHoyBAbWhpZmJtDUmQEATZ2d/Gjf30SELk9NsTS0hLf/e53+f73f8S+u/aRTKZYXFpiQ0cHicQaPp+PBx98Lxs6Osjlc3zms59h+44d3Lo1ysrKGu3tnUSiEZaXlykUCvZTA5eLrk2byGRzNDU3Mz4xyb677iJfKNLW3EI0WoNlGtxzz0G8vhCmabJ5cze3b99mdHQESRKJRiN4vB4MQ8c0dAZvDvDA/fdRLBTQVI2JyQkOHz7M9PQMOBX3bW1tHLjnSHUCXVVVVVX1LtI7wkBnb589KTgounLhCJKAJVh2tbdlIVgWpigiyhKiYiO+LMO0DRT2YlqZ1lEmQ8D6QmG5SAXsBT8cioelGXbBinRnlGB9am0aqh1XcCILoigAtnm706QL2DxpSZSwNMM29SYYgoBu6AiYCIKMLNsZXtMpVBFNE7Ok4tE0puYXeeXWNLXRMMWMhi/WzEoyTSpnc65bGsL09rZx7N77eO2N57n32BEKxTzp9CqH7j5CS3s7c4vzdGzqJBiJEo420N7eQTaXI6cWmJ6b4vixB3nfiffz5S9/lv/pj/+cPbv2kFyNk8sl+N73/omvfe3vQXCx/+AOPvGRx1Ay4+Dz2gcG0UBARhDsiEu58KYi0ymzsez4RZlsYhiqfd1FFwiGnfu2TPulkozdbm5VptySJGMJJiVdR3K5EWUBsaQCzusMHcu0zbNg2ZN/EeFXskQ4NnztpMvlQhRF8vk8uqaRTqfJ5/NYhojb5cHr8bKWWEPTisSX4limydCtQQq5LJlMClkSmZmdJRgIMTE2wVpijbraeo4fO8qWLZtZXYmTzaTBsliYn6NtQzuyLBGL1TE9M0NrayvJZJJXX32VcE2YteQamq7R2NjIpq5NnDt3nlQqjcfnZ2FhlfjiAu1tDdTVRojVRtjas4VobZQNGzoYHb3N9es3kFwyzU0tzM7Okc/n2djRQSgYpKmxkbb2Npqam2hsbGBoaAhD14hEIqRSKRqbGrh8+TL9/f34/X4GBgYYH5ugubmFbDaFgMlrr73G2MQ0mm4xM7sImHg8HvvpTDHLvj17WF1e5MCBA6wkVtmxYwdvnDnDU089TU1NhLNnziPLEh0dHezcuZ3r1wd47fVLRCMBnnjiCbo3b0KWZf72b/8PIjX271UTrmFmeoaxsSm6u7fw1lvXWFxcIBKpYc+ePbS1tVEqlWhpaSGfz9Pb24tpmly8eJH5+XmWluLUNzRQG6vD7/ezspIgkUhgWRahUJhjx44xPj5OPB5namqKTZs2MTs7y4kTJ7g9ehufz09TUzOhcJiBgQE2bdpUqTxfXl7m4Ucerxroqqqqqqp3kd4RBjrjYOzuXMgTnSKUShGHQ2XQtHJFtE14MHStMq0sxwMMZxlpPWKxvvxnl5aUKu2Gskv5hclwmcZhllvwABBsc+9kcO02vvXJq/1/7qjllgSb5iGJSJKCKEogCMiiXJmml+trLENHxCKdynFh4Da+mhAxX4CaWpNbQ6MYJRkRgVTRYHgyTtGyzWN3VwOBoJ/GxibCIT9NrR1opsHWvj6WluMkkmmy+RKj4xP83de/xbe+8w984xvf5qt/8Pt88bc/R0tTjExqlSeffJIvfvkPOX36Aj9/8RVkRaR/xzZ+8/OfJeKP4rUyZPO59cyyc0WsO66PiFBpjCwfKnRdrxxoyng6S7CvqyTJ4GTUEe2csyzJWE6VuiiKIILL7cHCXiY0SqqziAmiM92XBBHd0J1MvEj4VzCBvnblzElVVSt4xUw6Q6FQsO9TTNRSHrVUIhQMkMtkqAmHWVpYxOv2kM2mbdxcOsnExBRTk1O4XW4K+TwWFunMGpqRJxAIcOPGdRJrqxw+cggLePDB95LP5xi8NVSpxj5y5AjJZIKRkWEEAYaGbqFqOvMLCyyvrLCwtMSmzq1gWTz22PvZ3ruVrT1byGfyZDJpFMWF1+vD5/NjWAbbt+/g1Vdfo7m5meX4Ei6XwuTkBJFoDcvLcSYmxmlsbCCXzTE9PY0gCPRt38bKygoNDQ3E43Fqamoo5IsEAkF0XWNjZzsgMDo+TbGkUSqqCIL9d3tmZooD+/aysrzIjr5eu9a7sYHV1VV6+/p4+ulniESiPPT+D2CaJuFwiGIpz8GDh2htqScajTI+Mcb582cRRYnOjo3cvHmLeHyZ1tY2Mpksml6gWMrj9bnZubOf5eXlyt/9uro6crkcO3bsQNd1dF1n27ZtxGIx7tp/F5KsgCDQ1t5Oe/sG9u3bRzptX7dkMkkoFCKVSjE9PU15sTSdTtOzpYdotJa2tnZGRkfp7u7m+vXr1NbW0traytraGh/+6GNVA11VVVVV9S7SOyMDfQdTGdNCEJzH8+UabBw2tENxMDQdKBtmGcGhYViWha7r63SMO96//O81TbOLGTTdzusqEopix0bKk2rTqZQWANF5L7sh0Y5d6Lpu/8fUqQy3nGU3j8eDpmm2EXSy0pYk22bbKX0RJNs8u90edFWz4yiCQNaQWUhk2bi5lZWVHLt6tnDkrj0srGYoGBKvn71MS3MX33v236hv6uEbP/gBB/b08777j1LMl4guLxJrbmRg6AY+b5DOzk7iiRxj0+N89IMPsv/ug/jdAQZvj3DqJz/jh//yFLdGbrG8vMyXvvB5Hn74wzQ0NKAoCqFQDZogo5gmI2dn8AUDgIVp6li6sZ4LN2wWs+4cVCQn0gKgiLbpBfuQgCwjKLLN4S4viQoCAgZgfy5l+olhGCABFsiKG03TkJx7QHDiMbquIwt21lpUfnW3sa5qBAIBksmkXfwhiZiKjGAarKSyKIqLpqaYk8k3yGRSRCI1TM5Ms337dlpbWxFFkZVEkWi0QCq1xu7dO5mcHOeeA/u5evUqTU1NNDfUo6oq3//n73H3kYN885t/R9+2fj732U/R3NzMj599nki4htnpGf7o332Fn77wM+obYly4cI4H33uC//r9H1I08uSLKWoCCmFPgBI6sfp6VpYTJJJJpmdmWVyMs23bdsLhIC/+5BStjTES8QWOHTvG3Nwcfq+X2ekZmpubOfXc85T2F+ncsIHdO3cwODjA9MQ4omUyPjqCBDQ1N3Pt2jVuDi6QTxcZHBAJRWpIrCRx+XwEAp5KxKq2Nsb8zCwhr4Qsy3gDfubmlnj+Jz8hWhfjU5/8DINDw3zrO/9IX18v23f0Eq2r5emnfkx/fz8LCwtEaqJcOH+RUlGnr6+P9vZ2Tp06xdDQIEeOHEEQ7Wn3wsICe/fupaenh/Pnz3Pz5k3uv/9+Ll++TDKZpKWlhcX5OYr5HMVikZ6eHqdhsp6hoWEMQ2PHjh3k83kC/jDjYxNMTEzQ29vLrp27qauNkcvmiUQirKysUCyqrKwk6OvrI5vN8rGPfZLvfe97HH/gOKvp5K/s/q2qqqqqquqX0ztiAp0eeuNfFhLiAAAgAElEQVSkJEn2sqBhIoh2EYdo8zCwywkFNAwkQUAWBNRCAdkhN1iCXZIiCmCYhh2zkBVMQBBMm0ksOVNOZ+nNkuzvocgymmViOeUfNnLOadKzrMrUE9MCk8qk1VQ1BBxWtW4gWM5rsDCNdXa0adplKpquIyFgmaZN7ijTJrAjD/lciW88/W8IHg/3Hd5DxO+le8s2jt13gt07+zm0fx+HDuxiV38XX/rCJ9nd38PuHZ3s27OPWH0dK6kCRa2AR/YiumRm5mdobW2hoTZGKCjx8mtv8Ouf+vf8X9/6R4ZGxjAlC1HX+fjHP8hX/uirNLVuxBsI4Pb6MCURWZcYnbqOe2IcU1HBMuwFPhF0tYQgCUiyjF5uaLQsTGfqXM58l5c/BUFC9ngQ3DKCSSXPbmgagm7YOXLTRFRku2YdwaajyC5MQUbWVHTRQpIEBFVDL6mVKA9gR3MkkfCWtz9HeuPK2ZOyLFcqrz1Oc155edXn86LrmoNDFCp18eVWxfLEvaE+RjDoY/eenWhage5Nm8nn86yuruJ2u5mZmSEWixEMBrlr/0HWEmv4A16uXbvG5s1b8Pn8RKO13HXXPs6cOUtDfQNj42Pcvj3Gv/7rU4iSTLFgMDx4g+3be8gXMiTTdplHV1cncwtztLW24fX6iESitLQ0s7q6SiwWQ5IkvF4vi4uLWBZ4fT4kSWLLli1MTU2x/667+MY3vo6mqXadud9PbW0tgUCAsYkJlpaW6O3t5fbIGMfvPUp8xcbFLa+uVdoG29vbSaXW+MBDJzB1jdsTYwhI6JbFgQN3c/bcWZLJFD978RV+/dc/ya5d/fi8Pr797W+zb99dBINBbty4gaIoPProo2zdupW6ujoymQw+n48TJ04wODjI1NQk4XAYwzBIpVL09vaSy+VQVZXTr7+B2+WmpbkZLIjHl8hmswiCQKFYpFQqkclkEEWRxsYGAGKxGLdvj7Np0yZcLhfhcJiRkRF8Ph8bN25kfn6ejo4OQGBqahrd1Bi4cZP5+QVKJZVcNkPA7+fYvfdXJ9BVVVVVVe8ivSMm0L/IcbabAaU7ijvK/3O5FLRiiTLkzjBsaoN2R4FJ2e8Kdsu2bXbLVA5pPc6BQKUYxV5Ucqq/LbsAxLrj/UQLTMOejHo8HlRDxzA1BEus4NtECQRnybBMALGJHiaGplcWFWF9Ii4IAqVSCRkLSzVxWwrPvTbLpcsTfPih44yu5Hn6T/+KLT1b2btnD/MLC9z3wP3E44t0b2onmy1iKhKhxmauXL5IJpdl5+67+P5/+SGmoDC79CS6JWMJPl4/cwFB0fnipx7ni7/7ezS1NOINRhFEDcuUMOxAsm36DYN8KcPf/9X/wpcObsUn+LGcpUtBEBAte/JqiuuMbN00cDmT/MpnUaaQuBT7OhmmfdAok1OcyE451iIJ9jTeKhM6NA1Rtn8eUbExeLqm/cI9IUkS+p0Nhm+z/H5/pWTGMAw0TUPXdUKhEMFgkGKxiKqqNkVG13G57Orm2tpaGhoaWFlZoampiaKq4fK7KaklautjpFbTLC4uksvlAOjs7KSrq4tMJsPc7BJNTS14PC4aGppsSsT8Et/97j/xkY98iFQqRayunpHhUQ4fOsLySgp/IIRaWOFLX/oCr732M7Zu7WZ4dILazbWUSnkUROpqIiwvxNne04vsVUilUvj9fhobGzlz5gx9fX24XB5yBbseu1wfPjQ0xMGDBxFF++9kc3Mzk5OTdt34UpxYLMb09DRdXV289tpr3HPkMJOT8/h8NpFDFEWmp6eJRIO89PLPefC9DyDMz7Ktfye3hkb58alTbNu2jcmJKb74xd8iGq2ha9NGnvjBv/DHX/1Tvva1v2bfvn187nOfo66ujv/wH/6Chx56CEVR8PvtBcyXXnqJxcVFGhubeerJZ3G73Xi8CiMjI+zatYtYLEYqscx73nOcGzdukEwmaWvvcGrELWpqajBNkyNHjvCd73yHzo6NRCIRfvSjH7G8vMybb77J7/7u7zI6OsrWrVtpbGxEURRefPFFrl69Sn19I263l/Hx29REQvh9Xvz+Vq5cucKGDRt+ZfdvVVVVVVVVv5zeERPo1NDrJ8smCieywR0mqdJuJwookgwWlaU/+3H/OipOtLDfwyktwSE2WKaJ4dA1ym165diIaVl22YcFpqZXjJ1Qpmzohs01NuxJooCFZNqm2jItLNO29IahU0ZRlA8FlmFPm03DrPzM5Wyw4NRTYxqIRpqmqMLY8ioTyxZvjS4yMLZIR8cmbo1OceHyIAsraU6fvcLf/O/fYmxqFVM1KOZTZJMpVlJ5BgbneOLJnzIwOs/k/DIbN3WTziRpaaijpaGG//Qf/4RHH/kQLe0bEFxuFEl2uNRg6ioiOpIi88T3/pG//frfE06mONS/AdnrsuupBTsBbWp65dCh63rl2pcz0GVjWyGOSOWmQQtTtyfw5YiM5eTcASwHdWfXtsvougqmhmBgH6h0A0vTHWzherGNKNl0j9Dmw2/7FO/KhddPZrPZikn2eTz4/X78fj8I9kKs4lLw+334fX4CgQAul4tAKIgkSXg8HiRJIhptJJ8voLhceLx+GmMxMpmMXXxTKpFIJFhcXCQQCDA9O0WppNLa0kkgEODM2Tepq43h8/kZHLzJ3r37OH/+AoqicOXKVe5/4AGSqQxuRaOhoZ6uzk08/cxzBIMhopEwMzOTtDS3EI/HSaczGLrJ6NhoBfGWSCRQFIVEIoEkyYRraioLghs2bCCbyZDP5zh//hwul4tUKoWmaVy6dIkjR4/x0ksvsXfvXvzeALFYLbeGh3jxpbN89NGPMjo6iiRJpNNJPvnxx6mtq0OQRS5fukQmk+PW8DC7d+9ldGSYWKyeH/7rkzz+a48wMDBALpfn6tVryLJEJBKhvb2dTCZDR0cXTz31NP39OykUcrzxxhssLi6yuLjIpk3dLC4uoqoqdXV1WJbJwsICg4OD7NyxHV3XSSQSeDwedvTvpFgsksvlyBeK+P1+nnrqKRobG+ns6GRtbQ23283s7CzZbJbGxka6uroYHBxE07TKvobL5aJYLLF37z46Otvxer2Mj4+TSqb55Mc/zsT4OO993weqE+iqqqqqqneR3hETaFm0ecCWYWKKgs0dFgQsw3CaTeyMsaGpGKKIWVIRZQVTsckd5aiH4dAxJEnC0EuIgo2JK/OiZcHEsEBxu9EdLJtlgWCaDuPYjmwIplEheVhYWI4XdyHbj+YlCUGy4yISgv09sN9MtERkAVRM0E1EwcLUQRJlBMtAsEzbeIt2E6GJgaTIBPwRtjbV8wcfO84bV6b52ZtX8UgeVlNZ3IFaEqkcs2OLqKqOKQZ55uVLPPPzt+jZ0IjP68YXi3D6lYs0BDT+4Hc+QaFU5JGPPkZbRyeqYaLmkqRWVwn5A5ilFKYpsJg3CYVC+AIhZMNkYuQ2L/78RRYW56iJRHj//t1YVo5iLo/idtkHEd2wq9EN08n8ynbsxrKwJHtJUJRENCemYooCkhNzKWecBUHAUO1prKbqiC4ZUwBLVe0ctUvBFJzcugmmLCKZ9iFIdIx75bMqLzea1v/PHfY/TqYg4g+F8fv9uN1uJEEkX8hSVIsUVQ3DAlU3kBGIBEMIAmhaCa2QQ83n7cXYQoFUKoUoiqTTaWrrokwtx/H6XBimiq5pbO3p4fbt27zx+ut8+JFH8fl8+P1+Xj/9BgcOHGBkZITbY0OsLK2RTf+EBx98kPn5WaamZpiamCSXWuZzv/E5wuEI586eR5IV9u3bQ3JticHBYeprG1haWgJRZnxmCrciU18XY3kpTjgcpqG+jrm5Oerqarh44TK+gJ+enh4WFxfp7evjv/3zf6Gzo4NMJsPU1BRHjhwhlUqhl1Q+9tjjnDp1ClGROXHiBG+8eZY//7N/x+3x27j9PlwuLx0dHfzsZz8nnU4SCPh4+OGHOX36NF6vF0WRqIlE2X/gAC1trcxML3LPPUd58cWf8sILL9DQWMeFC3E6OjaiaQYDQ7fQsbhxa5DBwUGCwSCPPf44ra2tdh5ZN+wDwNXL7N+/H0EQuGvffs6fPcfhw4eprW1idHSUf/5v36e5uZmuri5M0+TKlSscPXqUgYEB/ukfv4NlWRw7doxUOsnOXf0EQwEuX7lE58YOYnX1LC7G2bp1G0sry6yurnL2wlka6mKMjY1x4sQJnnvuOa7duEFJ034l925VVVVVVVW/vN4RE+jkzVdPglOUIa0Xl5h30DHsaAUYlgm6gYCIJMv2Y3/dsPFnomhPg50JpWkZ6+1/DpPZtNZrpsUyU+IOzrQ97V7PMJdpEqZpIt/BlzYMe/Jqqro9lcWqTK4thApNBKxKM6JlmRWGsixJGLpmZ7xNk5KooxdKtAUDRIIWj7zvGB958B7SiWWKuSSamiLgU1jL5KmprSFXzGFhsrySYCWbIz83wWc++T7+8Zv/mdZGG4EWiTWCIKHIMpLspjbWREHTuHVriA1tmwnE6uyIiWlRMgTqm1rYe/ch9vTvobGpHn98GMtQcXtcIDkkE+sXK83vZG6Xc71ApYZddMgdoiBgqFoFcQc45SvYTxAkCUvXQBBRPB4w7YpzQRAQZQkjX0Iof8ZOlth+SmE3SBqGSc3Wo2/7FG/i9q2ToVAYSZLRdYN8Lodp2ag+RbbzzbFYDFEU0VUVWZYQxXI5kIGmqZRKRfte01QiNWFKhSJFTaMuVo8vECAcCjvNiyLHjx8nn8uSy2a4eOE8TU3NSE7jZt+2PmL1Edo3tHDm7Ju4FDdeb4hCocDi0hz19TGuXHmLQqHIwsICfq9CrD7K4YP3EA6Hqaur45lnf8wjjz6Kx+0CqGSZX/jpT1BVFUEQiEbqOH/hAqFwGI/Hw40bN8ikU+zds5vTb75Jf38/N2/e5BOf+ASWBVevXkczTDTVRECgo6MDw9DIpFOcu3ANy9BJLC9jWgYtLc20trawZ88eCoUC99xzD5qmMTAwwNDQEB0dHWzY0Mbp068zMzNtL+Yi0tjYiCSJpFJrPPDeB4hEakiuJVhaXOD4saO4XAqDNwfAMtm9exfpVJLdO3eya/dOFJeCosiUSkUuXb6Ex+PGNA02dW+qFB953S4kUWRlOY7hFCXJsszAwADvue9+ZFkmHo/T29vLzMwMQ0PDlEoqfr8fzbBpHmtra8iSRMx5upDL5VBcbmKxGIePvv0tmlVVVVVVVf3yemcY6MHXTpZjGqZpOFXR9hJheeFOFEREScTEftQvWHZVtghomoZhmg6WWKgspIGdT7ZME7fictBrIi6328bfAYZjkMuyDaBViSXAOiVEcIy8jcqzowSSU5RSiZ8YJiDcEVEwMHR76uxS7JY9LDsvLZRrwA0LMVlkZq3IC+fPsnPnDmKxWhqbGjl0914OHdjFXf3bqAu6ed+xA/zpv/stRgfO8dXf+QxRvwuXscZ//Mrvsaevjda2NlraO0mnk4guD6pp4lYUdMPCFCXWUkk2bOikUDAw1CKSJKEoMrLHi66rCLpKcm0NURIxRt/CJUm43DKGYNk/K+stkeVFucp1E9avhWA62WWHnmJouk3MKF8r57NCsD9HQ9ORLQtDFHEp7nUWN7ZRQTfthU5nym05k25LkJFkBd0wiWx9+5cIbw8NnNR1g0LBLiIxdI1CMY+ua4iCiMfjqeARvW6Pc1ATyOUzSJIIgoUkiWTTGTLpFJpaQpJl2ju6KtXz/oAfr9+H4nYhKwqKCKOjw/Rt6yUcDvHCT06RzaS5NXiT22PjZDNFVldTTE7M09jYQjqT4vO//Tl+9tOX2bF9J+fPX0IWJQr5JKnEMmqxRLgmwsDAADWRKKYF+/buIZFIsLKyQjwexzB0YrEYbrebdCqLBWzp6eHUqVO0trayurKMgEU4HCYejyNJEiMjI1y5dIXZhSWmF+PEF5dYji/zwQ9+gC093bxw6nmyhRJNTU001kexEKitjRIOh9i0aRPT09O89dZbGIbB4cOHmZycZMuWLSwszvLCC6f47Gc/y/DQMIODQ/h8XpqaG3n44Y/wnW98i9qaGlbjcR55+GFam5qYn5nBJUkszs+zMDvLpfPnyRVynDt3hsuXLxEI+NE1ldXVFbxeD21trdQ3NDI2NkZLSwtLC7OsrSVobm7i4IH9LCwu0dTUxI4dO1hYXAKgpqYGl8tFT08PPVt6CIdraG9vx+v3MTIyQm9vL8V8gZaWFsbGxvD5fARDYdrb2+nfva9qoKuqqqqq3kV6ZxhoZwItCAKG86hfcOgUlmlVzKhmaIiyjIyAZIk2J9owkUTJNiOOibMsC8NyMtW6iSSKqCXVNlwIdumKaJM77HoV4RdKUQxD/0WOMfw/DLRpOotwhuks3pmVCXjZQONMzSVRwiW7UNUilmkiOwty6CaWppPPZnn252/w3efPEq3fxLaOGNFAgFQySSFfIrm6Qv/O3XR3d3P4+HE8wQAPvu9B+vfs5uixo3zggYPU1XoQdYmCVuDm1bfIFop0dHUjutzouBBMnUJylVCwhmJ+jZDfh2VJuNwu8vk88xNDnD79EucvvM7QyHX69h/mG3/11xzf1k0RDUGyl/wM5zAhSZI9VXWquMGOUxiGYeeiLfv3xrIQDMumdUj2UwBN0ypNjUiifQgBBBEsWcY0LEzDxhEaAuiSU8oiiZiSgCzaxBYEAUFWcLldSLJEcNPBt92EvPyz50/quo6iKHjcHnTTQBDlCuPadJ4+KC43uqkRjtSQz+Xx+YMIsoTidhMMh5FlFy63B0EUyOcLiLJELpclHA7i9fjRdQ3ZJZNYSyALAi6Xi3Q6y8DAILplMTY+Tv/OnXi8QeobGllcXMbr89JQH2V+fhbLNDh27BhL8SUQBXbs6KO1pYG+ni0kkyli9Q2YAuzffxeGoZFIppmdm2Ho1i1a25qRBRELEVGSuTk8SF19HZs3dyNKApFwCEW24zxXr1whk83S3NRKSVXZsW0r6VyegVuD1McaKBZVdEOnsb6BbM5mZI+PTVEolKirjTE1PQVAOBwC7OXJkZERPvrIhxm9fZtsJsvuXbtpbWklm8kQjURo37iRaG0dP3nhp5z6ySlqagKksxk+/smPc+WtK7x++nVOnzmNx+uhri7C8MgI9xy6h5sDA5iGjiSKtLa00LWxg/a2VgJ+H0NDw3R3bQYTZFHGwOTw0aO43T5cbi8DAzfp79/Ja6//Gw8+cIJcJodgCURqIuiGwfXr15mcnCAajbB12zZmZ+bZsKEDWXFx7foN6hsaCddECIVqWFqKc/T4e6oGuqqqqqrqXaR3hIFOD75+UhAl3B4feiGHINrtfRZ2ZbYg2kt/kmhnbxEEdMueVAsCCIqCIIoOUs1EEEF0qqFFYb1kxdI1TFPDMnUwDCxDR7K5deslIRZIiE7UQMTQVPt9EBBFsEwDwTQxLNPOPxsGhrNIZzhmUkC0Iwu6jqGpmIaOoasIplNCYppgWJj5DGYux8TYPH/91GnctRFKqRVGxud49fxFerq70YsZ/B6Z5fgikbo6ZmcmUUSI1YQxSzqp5Ap1dQ14BXC5FRZnZ0mtrdHU2Mjq8gpN9TEWxoeYGL9Na2sbF8+9SW/fbjRNwFJMdN2iWCohyhLt7Z1s3rIdrzeEjMjYrQG2Rn1IAS+m5bC6bSg3mmmAYdeQS+J6vbpgWkjWejuhZVnopoEoS0iKgqUZTtOkQ9wADOf6UkbAmXZzo2mBLLuQnAm+4LQbCqKEgQCSnYFHFCnpGjWb73nbTcj46ODJQCBgV22bJsnkGvF4HEVxIUkCXq8Xt9uNBdSEQqglFZ/fj+JyocguXC4PgiDhdXvw+/xIoozidqNqNl9aFEU0VadYLBAKBVHVIjNT06yurnLx4mVcbq+d6dcNRkZG2dq7jVu3hojV16HrOrt37aBQyHPr1i0GB27Q0NDI6Ogob7x5mqDPja4WCYRCFFQNr8fPpYuXyaSzeANBHrj/Pvq29eH3+1iYm2dDRydX3nqL/QcOEI/HOXfuHNlsluWlOLlshtTaGrIsI4sSuXyBxqYWVK1EsVBi9+49zMzM4Xa5efnlV5mZmaK3dyt+f5BC0Y6sNDXWEw4H2bdvD9/97nf58pe/zMc+9jGbCe31Mz4xzvbtvaSSKf7yL/+GHTu2YRgGiuyikMtTG4mysrzC8eP3MjIyxiuvvMbMzBRlRGaxWKSrawNjt8cYH5/gscceoVgsMjg4aP8ecXuSvLa2RiRSg8/vo1gqICsS9Q1NTE1Nc+36dV559VX+8A//iLXUGr3btvHc889TW1tHNpdFcdmlKrFYjFgsxpkzZyiqKnv37uP555/n7rvvRhRFpqamkGWZRGIV0zR4z/0PVg10VVVVVdW7SMKdhSO/Kk398C8sSxDxeH1oag6cpT/gF2q5y2xhwzCQFcXOPwoCiHfUdotWha5hWZYd4Si/h2mbOcmlVAgSkiQhiOtFLKKTsS1/P9FY/3NBtGzTrNssaF3XEXTHTEt2tbhgWuiWvo6ys0wwHT60bmAJ9tKkKQkIayskljV+/3unUD1+mgMWiazApqYIJbWIrgl0tNVhobJ/3wE8HhexhjpqorXUNzZTKBQxLYuF+BItDTGSyaTNuJYDBENhZMFicX4WLIOfvvwSra3tHH//QxiWC1/Iz/Jihg2bekFx2/lyVcMqlUAwUUWRr//NX1JXWOPe7gbMsBtJlUDSEUQRFPt6lq+b4GSkFUlGL6kYWPaSoKYheew8reREOUwsZLfLZmNLkm3ATQvDZR92NE1D0DQQJGSXG6tQBEVCcCtouo4iyAiShKTImCYIkoRhmbQ9+EfCf39v/Y/WN//zf7LCThbY6/XaU3TnfhNFKqU+2WzWzjY7VIeuTZ0VY1cqlZAEJ2vr9WJZFoVSEdkp7fG43Hg8LvRikcRKnLBTm728nGBqep7p2Vmi0Sj5fJ5EIsF9993HxMQE9z9wHMG0GBwcRFVVlpcSTM/MsX1nP8PDw+zbuYVIOMTc0ioWMplMhqamJmZmZth/8CAr8UUswySZSlAXibKSSBKqCXP6zDkkSSIUCtHd3c3PXjiFx63QUFfH2toa2WyOYDhCrlAkGq3BHwwzODhEvlTCMiCTSbGzf4f9/VqaqW9o5Klnn6EmGGVoaIDGpgYiNVEeeOAB1tbWKBQKyLKLxx7/KI2N9Xzz69+ira2NZ599Fr/fPnSkUik2b97MI488wv/2t39He3s758+fZ0vPRjo6Oio0H1PX8Hg8LC8vk0wmEQSBQ4cOsbq6SkNDA4VCgbq6OqanpympBbxeLxs2bOAHT/yIffv20dvbSzAY5PzFS9TW1hIKhfB6/ei6zuTkJKFQiNmpSTZt2sSFCxc4dOgQL/3bz9mxYyfPPP1jfvu3f5tkMonP5+PGjRs0NTfg9/v5/Jfe/nu3qqqqqqqqX17viAl04vq/nXR7vE4RiY5lWoh3RDfKZSOSINoZY6ewpLzcJ4lSZVFNFACnrc6yLERMBAEbZ2fakRBJFCsYtHLu2s49OwuEmo5gmkiWhaE7k26wm/dMC01VwTAxNR3BtJAdYyhaOOUYIpqqomsqgmZg6rptTnUNybJQiwX0dJq1rMBf/NcXEIIhNrfWkMplmFnKkcsU8Eg6TU1RFMVDe+cmcukkLbUhDAEKhQJgo/cWlxYZGx3FKJUwdR234qKuJkAhkyKXy+D3+zBMk8NHj9HR2cVX/+Qv+fY//IAPfughOjrbee7pJ1GEIhfOvkRjfRTJ5SKZySKKIj94+hkEf5g2r0ydW6QoYRM1nLpz4w5snX3ZRQzVbhQUZQlVVe2DiyTaS5OqVmkTRBRwud2VfLDlZNhF3eZmK4qMhf01ZX63oen4vF5MOxeBaZmIol3jLYgiwa4Db/sU78WfPHsynU6jqiqlUolCsUCxWKRQKFAoFMlmc6iqhtfrwx8I4PX5iERr8Xi9jE+MYxgG8eVlVM2eTGu6RklVK+2Ysizj9fkQgLWlOGqhwJnz5/D5fMTjKwwPjxKrr2dxcZGamhru2rsXLIMTD97P5csX8XpcCIJFMpmgubkVj89LoVhCLeaRJYv44iLZgkYimaKltZVAMEjIKQPZsrmbtUSCzZu7SSdTeLw+srkch48cp1RSqa2t4/TpN9nc3UU2k2Z5aYlCoUBX1yY7FyyIFFWNkZERNmxoRxQkRFEiEPDT3NxkI+c6OxgeGaaltYXZ6Rk6Otv50Ic+xOjobVZXV2lvb6empoZA0INpWqwsJyiVirz88stEo1GWl5dZWVlGVUu43C5a21qJ1tWg6yW2bt2MqqoUi0U0TSOfzyNYEn6/lwdPPMCePXvp7OxkcXGRrVu3Mr+4hGlZ5AtFdu3ejd8bwOcN0Ne3gy09Pezbt4+ZmRlKpRLx1VXe+94TqKrBrVtD9G3fQTRay09/+jMkAdLpNKurqwiCQKwhxvz8PCW1hM/r5+LFi8zPz/ORj3yEkZFh6uvr6d9VzUBXVVVVVb2b9I7A2ImYGKW8bcxkCVPVbLPsGC5LFDEFEP9v9t4zSK7zPNO+Tj6duycHTAYGGSQywQBGicGyJUqiZFnelWVJK1vRtj7b+6131/Ran1e7cvmzZUvOWsuWZMsyFRhEijkCzAQ5GGAwEZMwoSd2On3S++6P0zOg/+qHSFXNXTWFmppQM90HPff7nPu5bl3bNGzSC5B6hDKTIqqUDqVER4sKO2qGTPKmpTcRmbvAraLoRrSchhKlQiSEgR9NkjUVf4M3HPhoGIRCIFwfoUhk4BOq0S17qQqEoqAoAYEfQBAiwshwG6qK75Qvm3kREqoJdCqE6xU+/ddP4uJyrKcJE49iSbCw6iFswXtvP8b6QonOzixT0xdZLroI28bWNQ4ePYKeyJGsq6epp4/Gtm2ElTXS6SxPPPEEd955J48++ih9Pb0EgeDi4jy55TX+8H/+GVWRoLG+iS/+4ZcpVsrk84vYtskt7wp/d3cAACAASURBVLyObT0z1DVCQ2MbY6NDDA+O8nP/z8f47ne/x8eu2Y3WkEQSIeTw3GiirEgUXY8OKYEgDIIoWhEKtOhBR/FDQEHqUWxDCLFZzb2xiBgqEkNVcV0XU9MJFQXd1PB9d3N6qJtGlJ9Woqm1EIIwOtnUnsufvjq7OjBr0ZN4PB41VhItWArpbT735dIaKAqaZmBbCRYXl3Acl7m5iLfsex5BEC3qVSoVzrz2BocOHSIet5FAMpWkmE1BTKevu4/lfJ5ycY3V1WVW1tb4wPvfS0tzI/FEgnKpRHm9QHNdAwnLZs1bZnZyivpsA2tLC6yvr1NflwOvysDZIT7xmS8wdGGEs2fPUlpfp729nXLV4dSp51GR2LaNG/jYMZNYIsXp088RhpKpqWlOnLgaP4hKVc68+hplp0RzcxNjoyPEsw089/xpduzYwXx+mbpclngiRjabpaGpkV94z7t57LHHEEHINcevwimU6enp47WXB+js7GR6epqJiQmOHj3KNddcgx2zePzxR7nplptpaGrENE1eeeUVErE4R48e5Y/+6I94/vnnWVhYoKWlidGR87zvvXfx5NNPsVaocvT4MRpzOXbu3MmpU6cIqlXiCRsR+qws58nlcliWxcLCApVKhaHhC8TjcdaffYarrr2W+x58kJPX3cTKygr79x5gYX6eM6+9Qrnk4DpVvvVP32TPnj1IQl599dXoTpim873v3oNlWSiKwtjIeXq7t5HL5finb/w9uVyO4fPuW3LtbmlLW9rSln5yvS0m0IVzT969EdlQaqUk0WS51nInBUqtLGVzYQ2FUNSYxLXylVqK+fJUU142M5HkJlFDE5LAdQlraC4pBYoUSBESBD6GplGrB9msYQ6EjxQhoeeg+D7Sq4LvEThlZLWK8Fw0RULgEXhVlFoG2tI0RBggpIviOAjX477nLnDqUpnt29I0xQUrrmDNgbk1H9832NHVSiqjkow3cCk/w6X1dV47u8B9j77Cv9z7CI8/9Qzfu+dB+vp3YyaSaGachsZGpFtheGCAhsZm6lubaevpYf+BQwycPccd7/p5PvmJX6aprZWp+VmScZtf/uUPk0gkWFotcnF8kkcfeojxsfNk6hI88KMn2LGrn/rt/fzVX36Td/a3IwlRFQ0pDTRUVCEJ3QBN1Kb+Impy9KsumhHFFxSUzbZBWUPWaboeZcZrpI4NLFgE2ogmyshoqh14/uaEeuP7eK4bLWmqGkqtRjzzFmSgX3v51N26rm/SNpCitmAKhm5j6BYKGqBuFvEgJTHbJpvJkM1kSCWTxBMxLl26hO/7XLhwAcepMjY2hpSSZ549RWGtRGtzG74fMjExxmJ+maXlVXK5Brq6u9mzexft7W3MzM6iaxqVUpl8folysUKpVCFmx9F0Dc9zSaVSHD50JZOTMxy56hoefeIZrrnuJJ7nkUwl6e3uRtFUSsUCba2t5PN5GuobWcwvE0+kWFsrUJdroFR0aG5uZnJ6ivlLc2SyOVzXZ2JshOtPnuTFV1/FjsVQVYUrr7iCSzOzlIrrBL5HW2sLZ157lUce/jFXnzjBPf/2XUzbYm1tjT179nDm9dcwDIPDhw/T2trK/Q98n0KhxI8feoTf+6//k0wmxu7du9F1nb7ePurq6kgkEkxPT6MoCnNzl0hnUgwPj3Bu8By33n4HjQ0N5Ocvsbgwz7b2NlLZHEeOXoVEY+jCCE899SQ9PT3U19fz8ssvs23bNo4ePYrrujz++OPEbJtcNkcsZpOImbz04gtcnBijVCzQv6OPZ595Ct+r8saZM8gw5MMf+hCPPfIInueRq8VuVlZWmJqaYnx8HCkl/f27GB4e4b0f+KWtCfSWtrSlLf0M6W1hoFfeePRuAMMwUP2I/4waUTbUjaxrtEcIsLnwp+lRFhalho3zQ2SNsatp2mYWeiM3rarK5Xx05M5QVIUw9NGUWkQjDNCkRPpR5EJ1fULXg6qHCKpovoesVBBOhbBaAddB8V0Cp4gUPsKvErrlaKLuV8H38asVVBHgBy62MHhpcoU/e3SUvrYEe/taMXSVQCosF6rML1fJZQyE6zOTv8Tp10aphDa+tMnVZdHjCSw7yW0nr+Mzn/4Ivl/l3vvvZ3J6mrhtMzY2gutVuPLwlWhGnJW1Av/63R/ywAOP0N3dSk9vH319Ozly9BD3/+hR7r3vQSYn59i2rZWjJ67iyqNHOHHtSdZXS9z3wGPc9vO3UZfNsKrbPPnUy1zVtY0wkKgqaJaB6weoqMhQoiA32dqBH91F2CB2KFIipNzkdhNG2XBV1qrQJUg1mkhrihotkdYOQJppoGoaAolhmohgI7YDYeBGE2gVUjt/+k2EF86dudu2bQzDQFEkUgaAJAh9HMehXC7hOBHWjtqh0KkUWVtboVIuE9Q40Kl0mmQyST6fJ5PJIEJJLpejtbWV5uY2GhsbuDA0xNraKucGB+np6UNVYxRKJXzf48jhQ5iGTn5piWw2y+LCQpTHnZlmbu4Slm2xZ/dORkaGSSSiCm3FtFgrVTHjWd4YOMvU1BTZTBbP9wCJW3VobmoinU5z4cII2Ww9YxMTKKrJ+noJ1wuYmp4lV1/PpdlZGpsamJyaobi2gq5r6LbF8tIyhq5zaXaWfXt20tTYwNrqCm2tLSTiMa695mos02Dw/CCKqnJxcpJKpcJ6YZ0wDNm7dy8vvfQSuhHRYu688z2cPHkV3/jGN5icnKS1tZWmxiYeeuihGgtaY3x8nGKxQCqdJHADdu3cxfvedxdD584T+lUmJsZZyi8Sj8d58MEHmZqaYOj8Oa46cYKGhgZOnTrF3r17o9cJKRkaGiIRt2mor2Pq4mSEwpudZmZ6ip39Ozh//jzz83M0NjbQ29tDLpelWCjw/OnTVB2HiYsX+fznP89DDz1EXV0dsViMSqWClJLh4RGCIODDH/nYloHe0pa2tKWfIb0tDHTl7FN3+66HrqhUq5UoDiBCFE0hlOEGKjiaEodhFNEgom6ouoahRAQMlAiFJqKVvWhCHYbR14YhUoYRHk2LeMQyCKMlQSGirEcYmR9fiFpjYIAMPULPQQYO0vcIykVwiwROOTLIoY/vVKKJtOsg3SqEktD3ARmZ8TBABgFBGFCd9/nvD73M2opCW0eWtdIyK6s+4/kKRc9gpVBBBFB21+nr6mNstsDZmQIX8w7jk4tMT6/irM9x6zsPs7C2RCnw+cyvf46G+ibGpkfwPMm/fvdBdu/pZ9euHUxcnOPb3/oOt/38XRhxgy//r/+FTZkXXnwOt+KhahoLK+uMTUxx332PMjM1w9VXH6Sxrp5nn30ZYQh8Ao4dOEBDbx/Pn36Jg81pAtMAT6CZJopU0RWVUAab03994wAjRGSrlYiYoSgqYSBQBai1qAa6jmqZoBloio5UNKTvoaJE6DzP37z7ED1NAaoaoQQNXUcEUTY9s+eGn7oJGRs+e3eE8/PwPI8giIyz53kI6RMEHkIEhMKv0TQqeL67WapTrToUCuus1aaTpmnS1dXFtvYOLMuKarxXlxm+cIGOjlba29tobWkBNE6ffol0LkvVc8hkM6ytrrG2to7nVpmdmaFUKrJv3y5yuQxCBLzx+hlSqSTNjc38+OEfY8dSzC4uUfYknutSX99ALGbjuFUqlQqZTJb5+Xk03eDgwcMMDp7DDwOS6TqWV1YBDcuyKRSK5PNLWDGTYqHAiWNHefrpJ0ln0qyurNG+bRuu62JbJuVyOcoFNzbieR7pdJqxsTGOHzvGeqnAsWNXMTszSyab4dChQzzxxBPRcqWdoK2thTfeOMPY2Dif+9zn2LNnD4899gg7tu+gVCrR3d1NZ2cnP/rR/Xz84x8n8EPcikMQhtx7333MTM1QKKyiaRqDg4MszM9RrTh0d3eSy2VxXI9Tp04xNTVFPp9nbm4O3/fp7++nXCxiGgaVcoWV5RWqTpG+3h5mZ6aJx210XWV1ZYmRkQtoqsGB/ftxq1WaW1qwTZvCegHdiGJjjuNQqVRIpVIEgaRQKPKJX/v0loHe0pa2tKWfIb0tMtBhGNVv+76PaZpRQ130ATRdjxYHa5PjQAgMTSNEouoahIJQuUwS2Yx4qBG3GEVcjg8gLrccBiHCD0BR0TQgDPBr5AMllJHZDnw0KcD3EIFPGIYoYUDoekgvjBYKaxlePwxRNQVd1xFBGLUWugGBDDan3sgK949XGVwK2JbWmF2uUCr61DVBJmkRFiKjWBEKoiw5PzbL0nqJlG3Q0xYnaQquOryXfXv6uTQ9TsVt4/vfOcUff+lrvPDs49Q1phh45VU830e1Urx2dpi5pTVGZha4QxPs7u3iv/+X32XP3v0Eus3LrzzP/n1XcOr0i3ztb79F6KhMTS5w9uwo5wZe5fDhw6yWl8jPC9KGTTqZYHDd4fVLZY7tbSEoRGZNMVVcIVDDqE5dlRBocnNJ04wbCBHgi4ieYug6gqjlUW5EcKQEGWySPTYeM8/zNokmmqYRCoFm6NF1oUQ12YpuIN9UfPNTlfQJgzdFhoREV99EjVHAD3yq1SpShptIxdDzcV03YmbXFiQ1NYqrjI+OoRk6qho17NXXZenu2EapVGJtrcDMzCXeOHuO3v4dLCyvMDBwgbb2biqlIplEgjkloKW5gebGejRFZ1tbB+lkhp7ubiqOS8VxydQ3YtlJGpNZVGJI32Pu4kXM+jpyjXXML64ycnGabF0OszUyyS3bOhgeHWNycoowDKlUKqwW1gmQrK+uU3YKlFaXmW9uoLWtnZtPnmSyd46FhQXam3fiBy6GEaezsxPLsvADwcjICDfccANTU1Nce/w4umXT19eDaZo89dQzNNTVI6VCYX2FiTHBs88+y759+7j/3vvo7e3mphuv56mnnuDgwcPMzlzi3PlBPv8bn+WF518im62jWC7jOA6tra10dnaiWxqWZXHloYPoRox4PM7s7CydPduJxWLs2bMH0zQpFouYusbKygqz01Nk0zmmpqYYGhoiHo+za/d2zpw5QzqdxjRNUqkUXV1dXLp0iWKpwqtnXmF9fR3f97n1HbfxyiuvUJ/NMnpxlPX1IkiFVCqDplVIJGJvzbW7pS1taUtb+on1tphA519+6O5NzJSI8spCCHTDqJWRRBENEYbRrXwFZA1Lp8gNNHGtAW+jTjsUmxGCTVSfwiaSTpPR4qCqKIggQPheFNlQBPh+NG12HYRbQfpVpO8SuA74foSlC6NpqB/4SCReKPFlCDWkWlCbMAqFaOlOUxlZdPjzBwdANbh+Tw4pPEzdwK1W0FSFZMymUAkoeSEaKg31aRLJOFlL8HPX7edjH34PfT0tDI+N0LdzL2uFRVK2zaFje3j5pZc5efIGhofOsZLP8/7334XrVfnRffcTj8d598/dTCpmsrA4R3P3LlyhsnvXYRTNpK2pnQ9+4F2MjA1zcfoiHV0t1GUzDJ4bx5NVDu7fR8y2ue+++7ju+hvRVBXdd4mbJkEQPc4AhmIg/LCWXY6eG1GrWUfIqAwlrBXJyOg+gaKp2DEbIUXE3A6juwRvjt8oSrS4GLGmJSG15VHA1G1CBexUimTP8Z9+hGPwlbs3llR1XY+KcnSdMAyjhsww3CyXCcNgkwpRKjuoWhRBsuwYumYCCqZpEYYCTVexLIvdu3fT0NBMS2sb3T29GIaJkAIRSvr6erkwdIFqpYIUkvVimcaWFhYW5mlraWJyfJR0Osnc3CV6erqpq6sjnckyOTmFZcU5ffpF6lJp9vX0sqejnT2tbWzLZGjNZmjO1NGaq6O5vp6lS5corK2ztryMpml4UuLKkHWnxPzCPJ7nITUVt1xGCkF7exuGYXJ2YIDpqUk6O7YhRYjrVJEiJJvJsJzPM3tplmw2Q7XqUClVMK04k1OTlColFEWlp6eb/NISExMT5JfyvPHGG6RSKVpaWpicnGTv3j2cOfMa/Tt38PLLL9PZ1cXQ0BBtbS00N7UghKS1rQVFVfADn4pTYUf/TuKJJI5TRdZq6WdmZpBSks/nMQyD4eHhiOWt65tV5utra9i2RTqdwvc9ZmdnIuZ17U1KSblcJhaLYRg6zc1NNDc1Eo/HyOfzKAoEgc+ePXsoFtZJJpKUiyXK5SKeV+Wjn/jU1gR6S1va0pZ+hvS2mEDblhVNFjWNwA//XQMgcJk1LEFXVUIFBJG5EkFk2KBWuS3FZZ5zWDNpymWus6JEyDlNgAhDhAjQFIkUITL0qbqRQdYV8KolTCSB74IIEIFCGAr8mjnywxBT1wkDgS8UVCnwvSp+GJKIxQh8n7JbRdMMFCFJa3DiQA+PnVlkdFWC76PFTeYWBLG4TkLXaErZrJSqJOw468srWFaMfbvbuPHkQXp6+khkG2jq3k379v1cWynynX/6P6wslXn46R/R3NzMhYFXaK5L85U/+xN279rOxz98F6MTE/S0NzNw9g129u1AEZL6xiYwgDBkaPws3/nWPQwOjnHu7EVmppZobUvT3t7K3MolAIaHh8nV15HLxbCTrZSrRUq2haZZWMIjqJZQY+rlmm6VzcdareXVpZCEQYAHKJYRHWiCkGq1CoChqwg/QNdVZK3cJgyjqe3GQUQ3jYjWEUTTes02MZBUqs5P63L9d/I8r9ZeWTv4BeEmYzyaOsvNj/u+h+/76LqOFbOxbXvzgKBK7U1ZfRU7YdHY2IiiKJh2DNu2a0i0FgxTI5fLMTQwyM03nODi1Aw9fdt58KEf84N7f8ThK/bgOA5tbW3E4zaGoREEHoVCgbX1IslkEmdykrpUjD1d7fSnE5TXV6KGT0vH18CIWdSlE1gxm5ZkglBKFEWjUCyDpVN2XPIry7xcWGd8Zp4wHsMtO1yxbzczl+ZpbqxnfnGJ7T2dbGtvI5vNUq1WeemlF3jxhdPceuutaDMauUwGEQSk0gl6uvtIpBOcPTdAf38//f39DAwMsqN/O6urq+zcuZN8Pk99fT3Dw8Pce++97N6zk+bmRmLHj7C4OE8qlaC1tZXxsYvRa4ACre1tnDt3jhPXXM3y6jrZbJa1QgnXydPa2kp/fz+VSoX6+noKhQKKohCPx2ttj4UoWmNoVCqVaL9CV2hoaAAgHo8zMjJCNpslHo9Hd0qQeE6F9fX1yFQnU7S0NuE4DnPzs+za3c/42BR6XMeycqTT6bfk2t3Slra0pS395HpbGOjAc0FVCJUoWoFeq4X2g01DRo1w4LtuROTQdASRWVGEQCoKRg1zpiobJk6NEHlhGEU7VA01FAjPhSAgDP0omyolGiCqVUTgIWUYFXz7PqEIIwKEouJVXaquH7XgKQphGBlDz/dw/QDLtJFCxXF9PLcacZJ1SRhINAHPT5QZmluiGEY822wyQaXg0dXZhAhd8mslimUXW9EoOGX6d3QyMDbIajXGmbOz/P6XvsF//s+/yuz0BI/+0Rfp6dvOx3/lM2zb1sldY+/lwUceY/fe/VQLBZLZNNdddx3PPfUkL585zw8feJy4GaIaCT7+nz5BU+iTzrViW1mOHr6Bo0ev51+++03m83+LoigcOXoV//vLf46QBo8Un8YyNBYX5vjVD3+ItaU8ptJMfm2VpsYmZseGaDQTeJKonMZQQSh4QqJh4IcBoBN6HmooI9yf66GYOpplEmo+mhAEGChqROgQfjStNQwjaoCUoCgagQ+6AQoafhBiaRpOqYRt22/JtTu/VERRFHK5HC0tLWSzDWiatonVU1U1aqZUVUIRRZM0NaJ2+CK6vl3XxXfLVKtVlpeXKZcK2GZtGVaBqudRqVZJJBLY8Th1ajOJeIr6+nqUQNDX18fZoRF0Xeczn/o15mcnsW2blpZWLF1jdOQi7dt6cashQSA4cOAK9u7dx+lHn+SN555n5+31ZJMZVEOwXi6i6Um8apFE0kbIgLq6DPl8HvBJy4BKsUxaSjLpBOkdO2m34zwyeJZYth4rHmN+aYGhZ4fZ2d/PiauvYXV1lcFz5zl58jquPHiE+flFKk7AueFh7rzzTiqVCoVCgeGxYRzH4eCBI7z6yst859v/im3H8TyfY0eO8swzz1Aqlnj0kccwDZ3dVxxAeoLvfece+vv7CYIAU1WYGBvnzGuv8b73vY9nnztNT08PO3f0Mzo8QqlUwtqxg1TMZmlxEUVRMAyDUqmEYdmoqkp7awuuU0XXLObz82Sz9biVVQxVQddUGutyjF2cYN++fYyMjLBnzy7CMGRiYpKF+fxmtttxHIIgoOwGCKmQTqeJx+MUCgXq6tPouk6lXN08QG5pS1va0pZ+dvS2MNC+W8WwLWQY1W+HvkRD32wgvKxa5XbNUSm1aAewOfXbyDu/uY1w4+NIAWFA4Llovk8Y+uhGlKv1PRctCFDCgMD3EABhgODyBByi2/SBH0RTZUXD98OoCVEVuEGI73mouoKmaAQ14ygllEKF5YpPzFJRg3V27ejHdX1GLy4wu1ikPpvA0CRSV0FIPE1j6OIskiRT8/CDx57l0Mkr+ZtvP8nI8DiqleLC6ADv+oUVXFHGsuPsu+IQa8uLDJ4ZoKWjDdUwmVta5Rfe/35Ct8qffeWP+fn3fIivf/v7PP/iC6RzKd75zndy4823sFaqEIvrFIsFHnvsCVKpFKMjU2h6DDu2g9HpIf7qq39CLhvRIpaX88TjNr6hsTBpU9+2jYVzA7QkY8jQRbENzFCiGiqBEuCXHRQtanncyAgTyk2es66qBKFASIkfRNPcDXauUASKjMpZBCqoGpoi0Yxam6EeZaLfCh06eBApJYuLi0yMjxJ65zen5qomo1ZFRavlwUNM00TXTQzDQLd0PC9aPhR+dAfGNE3SqQx2LEvMsgjDGJRXUFWV0ZHzUb13Ko5lmITCY2kxTy5XT2tzE6lkgtPPPc3xIwdJp2yS6QTVisPhY1cyeXGYVKaRzq5uduzczekXnmfHlQdwXZdHX3qewcFzfPITvwqKiu66WJaFruuUqw5r6+tRzt+poitQdV10TcNxHGK2yeEd/fSfOMrXv/dvDA0NM3VxgqbGOpoaMtHnxGJcffXVOI6DYRgs1UghDQ0NPPzww3zoQx8CVF58+VUsyyIIAvbvu4KDVx7m61//Bi0tLfzg3h+yrb2D1bUiqVSGrq4OZi7NE3hVbr/9VsrlMkNDQ0xNTTE5M00ikWBgYIAbb7yRs2fPbu5XtLW1kU6n0TSNuro6LMsiDEMsy8Lzoim9V3UI/YBCeR3N0Dh4eB8P3fcAlmXhOC66rtPT08fFi1O0tLRRKpUQAnLZ+k1cXXTgiA6UUoGFhYXN16jOzs6o4j4IKBUr+L7/lly7W9rSlra0pZ9cb4sq77G//ozUdB0vDLBUi0CEKJqGol02woqiEPgeKEqNCa39u1v81G7XbrQTbkjIyIypqgoiJHSrqCJEcap4nksUBoHAdyOSRhggZcTqVUSIX2sXDIIArxogURGKiueLzarqIJQ4vsAwFFAEUtFqxknBD6Ks9VyhypLRwo9feJ7VoImmJoOUAapqsrS8xtxCEUOVCF2nsO6zaqikwhChGxAW+KX33MZ99zyIY6ZA16mUHLSYwc6OLI2pNIcO9TN9aYGT11yFLJdYXM1z6MAB7rj1Fr75zX+k6vp87NOf40tf/P/IV03OnruA52usr6+SjNuUCmX2Hujj1Kkh+vrb6eruZM/eg/zDN76N0OB3P/cJ3nHzceJWBk0KCivL4JdxhIsIoVoqoiseOamRMCyWpkcJlhaQYQVFNbGEgq8CthE9nrWSnGQ6hauGGAqgG5tLdaoeVVzHYjF8AlTNAFVH0XSEEFiWhVQUVNvafL5bb/j0T70O+Wt/+kUZmeLIwJum+aaGxohtbVmx2nUc5eLDWj28F3qUy2VM00ST0ffIZFLE40kSmTridoxkLI5PxCpfWlphbGyM/OwI23t6Wcov0tDYguu6TF4cR0Ph+ptuZHZqikTS4qmnnuKmG26ko6uT8YtT5OqaaW5tp+xU0TWjhtBzGB4Y5LU3Xufc8AW2N7VwrKuLVCKNqmtopoGQUfSmWq4gFHAMk//x+39AMpngnbffxu7uHp4fOc+FuRn6e3eSyaTRVUFzUz2NdQ2Mj49j2zZLS3k0Taezs5swDJlfWkDTNObn53nHbbdj22m+/vWvc9111/HwIz+mvW0bg4Pn6evbQSBcfD/k9dcHaGhqolRYw9Q1SsUih48eJh6Pk8/naW5upFIuUqlUOHLkCE3NrQwNDVFXV7e5HAhQLBbJ5OrwfX+TIV2qOMQsk9D38KouFbcMRHhNpEpPTw/T09Osra1tElI22jbDMCSZTFN1XFRNbrYfbmSjN6bPkiiiY1lW1IyoKDiOw5e/8o9bVd5b2tKWtvQzpLeHgf6bz8uN3PPGm6ZpqIZOWDNHqqoiav9GsY7LJSmBUvt8VY0iIFyeGmvycqGKEAGKHxKUCghUNEUQBlUIPMIgiCanEkKhbk6FvDBArU2aAx/8MEAzdIIgIBE3qToeoTDwJfi+i2nqVKoBmi6JmxZFp0Lv9v088MoofjJD58795Fo7mZ6e5PjRg+iaSn7xEq8NDHN28AKvvT6E6/nMLlVJJm0cz0cTIc31OdbLDn5tIc0IBYalo5lRS2KpXOD2d9zE9MVx6rIJ7nrPO0hZkkKhwMToCB/79U/zne8+yN1/8g+kMo0c2t9LJpXm4uQ0q4UyxUKZxuYm5vOLCCn59c9+hLb2Jr54918RtyWnH/sBuWwDIVHcpVIuIkMf2zZriLmQMARLFXhVB5w1ioODBIvzhKKK73lolhmZDRlNmjXbRLV1VCMiaiCiia1lWQRKVNctlSi6YceTuFIQi8Wi2/C1CanQo+dCkdB+00/fQH/9a1+WkUm2MCwToaqb+dlctplYLEbMjt7XDQ3DMNDUiLARyMho+76P50REjopTJgg8QlHFMkzKlSLOyjpLS0vMzMywuLhIY3Mroe8S+h6O69HS0oSta3Rsa2VlZQUrFh3siOKcWgAAIABJREFUVFVldmqanh376NtzBfXZJBOTU3R0djE+fpGO1nYc38FzHJZWlhkYGub73/wmv/uRDxMWqkgFqr5HKp0mqLo45Qqr1TL/4++/QSadi+4cxAxitsa73/VuUnVZSsVVVCno7e5jJb/CyOh59u7dy6uvvsrRo0eYnJxibGyC+vp6jl9zFfv37+cf/uEfCFGYnVuiWCyysrJCOp2mo6ODV155Hdu2GRwaRFMNdu3aw/T0JNdffz0TYyNYhk48EWPnzp1MTEywsDDH8WNHov+7nke5UmX//v04jsPCwsKmYU4mk8STqc141/LyMlXPp1wsoCnRoTeVjjjcUXW9oFwuE4/Ho0OQFDiOQyKRACAIBIEffS9Nv/w6VS6XMXWDQqFAPB7HD1wqlQpBENDU1ITjlPF9ny9/5ZtbBnpLW9rSln6G9LaIcGxQC7Qank5T1Wgpq7YMuEEyCGvvR1vvYhN3ZioaCPDd6PaqEAJViRb+Qr+6ySbWFPC9KlKRqFKgIEAEm99f5fK0GWr5VVGjeygC0zQQXq2WW9Fwqh6hkFRdl1CK2s8VTaFTsQTOyirphm089NIbXPveX2ahWOJdd74fOxYnDHyCEBLpOqQvufXdIUuLM/z2b32Wd97xc/yXu/+UpRUPvfaYzK8UNg8WhhryiY+8lyOHd/LAj57k4uQltu+5EcdxaG5p4/Tzr3D23AW+9Ae/iQwFV99wkr//5+/xla89DEacmO7ye7/zCa47eTNzCyt869vfZr1YYnhsCmPcYnpmFtf1OX9uDN93+ewXPkkqk0OxLExVR5ECW1HQVCMyvjJE1xQUoRCGLigGgQiJdXRSlgHO5BSmYkRxmKqH0BTMdIKA6Pepui6GZSI1BU0zccMAw4yj1mgdRiKGUDVM20bRdWJazWuoKgiBpSgUV1bfkmv36NU3RObZMEgmkxiazurqKvPz84yOnI/yrVLFMAxC34laFD0PEUYZfN/3o/dFNOnUNKU2hdeZnp5mdXU5uvvi+eiqClJlrbhGfmmNYsklm00zPTePDANE4HHTyWtB0RgYGGTnrh3cfNvt+IGkpTHH9Mwcu/fsZ3p2jt37D1AtlUnHYoikoKW5nXLF4c4P3sVffP2f+fxHfhFVhaWLS9Sl63HDEl7g8v0fPEBMN1kurNDV042hqXzwgx9kcHCQq7q6uP66kyRiFmsry/R0dXDN9VexsLDAG4MDFApF6urq6OzsZGlpidWVFT71qc/Q3NrO4aPH+JfvPYQIFXRDoVmqVIMZAqkyPDaFZaWoq8/Rv2sH8/OXuPfeezEMg+bmZpSFBXbt3E0qmWbu0jwjI5MEvk8ul0XR4Ic//CH79uwnl8uRyaWRMqonD8IQXTNQDKISFjV6OfR9nyAIiMdsfN/HqVZQ1BDT0hEywPVchIxy78vLy0ihAiqqGh3oQ0wUBVzXIRZLEAY+yVTE1A5ruXdV0QlDjUo5wDStt+Ta3dKWtrSlLf3kelsY6A1qxgbKDkVBN4zNW+EbWeiNj0fEg8uc4Q3KwQZ5I+phqS3/BT4KoCtKtMSmgFAkigAZRu1wm6i7mi/bYA57nhfFNLwgioaE0R9IVdcIUTB0Ey9woxY64de+JsD3oFgJqAiFmJrhmvfcSFNvD72mhYKOGs8ROFVUVeBJ0GwLqZg0dyX427/7JvmFUe6/99tce/17MDWdYqgg0TA0gaFqxCydo4d7yefn+MMv/lcymTo0O8FXv/a3fP9793H08DGePv0c/3r/E9xy9X6mZlf4i698my/8v7/Npz75H1mcz7PriitZWVxkW+9ufuf3fo8XXnyaF186w+kX/irK4hoWr74ygOM43P6OG7Esm9DUQZpEBTGABgoCIaIqdUPTCISCoko0zWAJnVhbH8raOkrgI4IKqmXgu1W0qodqRoedDRSYJ6LpejKZxPWiIpxYIo6i6rhBiOqFUS64tqxYrlax1SjDns6+NSSDfD7iHBcKBXLZNGHV20TYlcoRB9j3o2vDsiKjJKUkEHKTwJFIpdHM2GaGXzcEzfUN3HzLrdFCoqFQKZVZWlwg8KpMX5qO8vee5Jlnn0NRNXTD5ML5KX78yJN0dHSwa9du4okUDQ1NXJycYmr6Io1Nbbz++mv0bN/BxYkxWhpboqVPTWP84iQ7du3GMAwejplo8RSVpUUyqTQDAwNcd+0JLgye5dZrrqN+coqSBre++11kMjk6Otp5/wc+yNLSEnXZHH/9N1/j/e+9k/ODA2TSSQAKhSLNzc2cP3+e0dFRGhsbiQvBbbfdRq6+kcnpGTKpJHv3HmBqaoKFxTnaWptxyhV6ujvwPI/29lYK66sk0xmWV9YRUmV5ZZ1sJslzL0TV275UmV9apVQqsbhaQBKyf/9+dl9xJdu3b4+iQMD6+jpjE5MUSlUURSGVSiG16FpUdR1RriAklCsOhmmhqtEhf329hBCCku8zv1JCSkk8ltxsjayrq+PAgQM0NTWRSEa/++LcLGNjYwwODjI0NMTExASXLl1CVVUa6xtwnLeGILOlLW1pS1v6yfW2MNDICGVmGAZCjQgGkojRrNYyzUIINNOIDLIQKBuTZlVFimhBS0qB8KM/iIqUKELWPicyLaEIUKRARSD8WkNcGKCbGkooIKhNl1UFVQVdV6MlQUDKEDeoYsf0WmlGiCINUBWE8KOWMsdF0QzSKfCqDiWp0X/sELlt3bRs68GKxQnRohY+I44e01E2frbARRoGZq6V9lQd8Uvj/MF/+zxf+erXqayoyDCgKaUT+B7/7Xc+iZTw0V/5BCg2ZswkCEx+5Vd+kX/81j/S1dpOc0OO2Zl5yuV+7rjjehZm/xOqJvClR9/Odgxb0tDWiVMpYekGUpi0dHRSKFdozrTz1BNPk8+XOXZwB13tbQipoIch0qjVPSoWKrUSHF0lyvd6qBqEfsjC/BSlwjp/88/f5uqdu9mbsBFSwXM8zGQCxYqiH6oRNQkGXlTHrZo2KAZWXEPVDAJVRddUCEJMVcEtlQgCDxkKLEXF1HUCJNXKW2NCpi+ORYt/CRtFChzPico1hIlZK8gQQtSaCaODWW93H929PSSTyc3Do+9F2LNTp04Rj8epa65nubBCS0sLiqLT1JwimbJxnBLZ+iyaAk8/9gQtuTipbJa6+kZmJicwbYN33vYO7rnnHk6cOMHTT52mpa2ZkrNMuVCmvq6BwTNnOHr8GK57eT+go6eXcrmI64ZY9XVMlYvs6epkanSc7933Q44dP0osmUArFmnpbefS2hoXp2Z4z3uOU9/QgC80cg2tLK0s8ov/4aMs5RcoOD49XQ3k83l+8ze+wDf+z99z5513srq6ysrKCoEUPPX0s+TqGxkdHeXYoYOcPzeCUy3S39vJzddfhxQwP79IPr+MEAEHD17Bu++4g8cffxJVhWw2y759+7j33nvp7Wxn7+4dPProoxy85gSPPPIYhqFQLqxz6pmnmZoYZ2DwAqVSifX1dXr6ovKUo0ePYhkGhfUiEGEJDdOk7IbodgrdMHCrHoViGcOI0ZDLsSNXT3NzM/X19aQzCeJxe3MRUYQ+UxMjVKsRicevOuTzeZK2wVVHDnP04JU4joMQgqnJcWKxrSKVLW1pS1v6WdPbwkCHYUQn0DSNUFEvZ5YjdhlBbUveFQG2bkTtdNrlRT1NVdENizAMCNFBRDQPITemywKiQmlEEOLXJs+qFiHGNlrkNpcSVZ1isVjLO0bREtd1Nz/HMAwkkdmOel/UzUm5UASu0CgLlQv5NYYefI6ltR8xv7TMzTddy759+7j2+lvINrbU6pwBVcO0rIjgoapgpcm2dvFLH/ggzzx7mgcffQFCaGls4723n2D7tiyHjp0gnozx+usDPP7U4yTSjcQSMX7zN3+Tr/3xX5JMN6AZPhMTI5RXD5KfuoDnuvTsOUEY2uDYvPTasxw6dIjBs6+xfcdOAi2KIRSLRcrj6xw5fIhbbthBGHiYMRVPSMxak6OiKIjwcrOeIiH0PQK3zNmzL7LvwDEMXeXznb28+OMfky+v05JNEBgBsVQSx3dR1ehug1YropBKlHcXCnjVKughmbp6yuVo8SsqIwkjBNxG9CEQVAnRY2/NbfBEPJoyRlEjSba+BQDLMOhra8O2beLxOJlMhnKpwMLCHK+/fobTzz4RHQq1KBddLJXRNI2GhgZCzydmmWSzWYTnoWghTiVabNOlTiqTJvB8dh7Yz74rDmwSHg7s3cml+UucHThDe1sLD/zwB+zcvZfXByQ33vwO0ARlp8TOnTuZnJymqakJ3TLxvejQmEymyeTqSaRy/OCRxwgPHyNnGRw/fozp6UkCtwqqwXJpjUQyzSc++WuoikY8ES1JRgt6akS5UGH/nt1MTc0wfOpFDMOgb8dOHn38yYgkoqpIArb39pFK5bjrvXdx7sIQyXSKUqlEY12WtZVVFpfy7N67B6F4NDQ0YcVsunp6+exn9zM8OoLrujTUZzl2/CgdHR1Uqg6/9Vu/xfDwMG1tTTS3NGHZJpZlkUonOXjFXpLJJJYVQ9XNaJnTrRK3LTo7tlGpVHj22acZHR3l8JGDdHd3oxBg2yqWlcEwDFZWlljJX2L64oVantkjFovh+S6O42zeUXHdKCO9tJjHsiyamhsIfMHc3ByeF7C2toaiRAuHv/uWXL1b2tKWtrSln1RviybCtVcfvFvTtGgZ7E1lElJGTXWKqqBqKqqp15oHJYqiXq54NkxcL+JDU+M2SyFQUFAVkDJiQStBzUgLgVQVJBLd1Al9H4VoYh1h8i7j81wvMm36m1BpUkqCUBL4IV4QmY94zAJFoeJUKBcqbOvbxWQp4Pmz06TsJKZp8ejjzzM6ehHPL7CjdxuxRBapKghFRX1TjCVEoGgaqVSGfVfs46tf/RtaG+rQdZVjR/Zz7PhV2Ol67v3h92huaeH662/lxLU3ceCKQ/R0d/HEE49yZmCY9fUiN1xziIaGHK1dveSau1l1lojFNVA92tu6GBsdZa1YYHFxEaEGXBga2qyS9pwq1xzt5Yq9VyJUGyMR32xvkxsNkUTvB74PoYdbrdLa3omiajjlCplMhra2bbz+3DN0NOaQmoKvCHTbQlFVAqJq7kCESEWSzGSo+j66bqAaBqppYJsmQojoDoWIIiOqYeBLgRRgpVPE43Fi7Vf+1Nvcnnjy8butWJzO7h727NtHd1cHbW2t2LbF7Mwkw8NDjIyMMDExzsCZ17h4cTwq5glFlPUPAtxqlUQyRWNjI1JGhmrj8FcqlVhdWWNldRWnVKFSrRAzDALfxzZNVFXDtm16e3u54oor6OjoJZvLsGNHL8XCGvmFOWzTJAx9VtbW8XxBMpmiuaUVwzCoei5WLI5ClL2OxWIsLCxQLpV4Y3CAtvp6Xn3mNP29fbzwwss8/tzztO3Zy3ve9z6K5TJoGrZlks/nsW0bxynz8ksv0N/Xy+lTz7Fz124qlRIjI8NcdfwY6+vrOI5DsVgkm8lx403XI4SP7zuMjY5w3TVX01Bfz/j4OMlkkp27duFUq9xyy82kUmlOnryee+75N+ob6unq7qCrqwNFVdm+YweitoegKhHl4rbbbuPM62fIZDLE4/EoYtFQTyqdxg9DlBov3jRNPM8jCHykFDQ2NrJ79266uroJAwFSoeq4nD71PJ7n09zUgqqA67okEgkUBZxqZbNlMgx90ulULdsuSCTsKEetKIBCLBYjHo/R2dmxWcRz14c+stVEuKUtbWlLP0N6Wxjo1VcfvlsIWStHuWzQNEPfnNIBCAGhkGi6zptX1oUqNhcPNUUl8ENk4AGytkwYoKrRdFkqCihRWYeiKGiKgq5HleGRMQchQgwjileoioKuKUhVQdN0Al8AyiaKzLBMUAQoUCgViSfjWLrJ4MQcEyuShsZ6dvfWccuNx/jCb/8Gt9xyA5oS45Mf/xSmIbnyyBFAQxXRYUFIWfvdFKSiUZdr4rqTR8ikbYZHx3j+tWH+5bs/ZPv2du58951ouk5dSxd+xUX4ARohx4/v4P4HHqFU8rjh+uPEcy2c/Ln/wP//1W/x51/5Ln/519+kub2ZA3v207itiaHz5/nSl/4YTQ+49Z038eLzL4MK01NLfPKjd9CxbTvxuibQVAgDFCQqGmKDwy1CFFXiei5mLIEMQyZHBzn1zFPc/8N7UBWFdCpBUrgIA0Di+i6GZeALie+5mLqKUAw8IbFiMVCiyaxhmziVEiIM8DwXXTPQYzHsZBI/CFF1UHQTRTWJtx/4qZuQ0sri3ZMT4wyPnGds+ALjo0MMD53j4vgo+cVLBH4VTY2WWTXdqH1VVNltx+LYsTh19fWkUlGGe7PVUFVZLxRYWV2lrqGeHf39xGNxiqUSr7/0IqeefZZt7e2sl8qkUmk8PwAUrFiK5qZG/MCnubmZ3u5uTlx9DbOXLnH02NVksjkaGxtYXl7G83zsWIxq1cMyrU1Wcn9/P/MLiwxeHMer+nRv62Z5bZ2JpXlkNscHPvpRenr7qG+op7GhnjAMSafTFAoFMukEMdOgu6uTwYE3WMovsba6yh233cHw6Aj9O3fR0NjI5NQ0M7OzDAwMEIqQvu29gMqTjz9ONpNgx84dXBi6QEdHN80tbXz/B9+nVCqRzqTJ5dLcf/+9zM/PIURkhIeGhqJDVCxGKpVm27ZtTE5Ocvz4MXzfJ5vN4nkexUqFMJR4frjJkNd1fTOPvtEUubG8bNR2MSqVCo2Njdi2TblcBhkgRIiqKsxemqFYLNLU1EQqlWJpaRkpwbJsHKeKW3WJ2XEmxi9uHpIbGxsplUpUq1VSqRR3/MJdWwZ6S1va0pZ+hvS2MNDrZx6+W60VamiGvvlHRvLvS0yEvMx5luJyZbeIxtIQCpACKSQg0LXIaEfmOUCtxQ+iTUIR/RNGfwhFIBAiQIoNVm8U3UCRCCERKChKhMbSdQMv8BEixAu9zd/DME2ElAhN4lgJxvMFttUnaW1Occ3Vx0kk47Q0N9G/aw//8SMfZfe+vRTWVrAMHVUzgc1W8k1JRWFH33YOHb6SuYVFXnplmI6OXQyeHaU+q9LV08Xq4jJ/+nd/wT9+85/487/6O9YrLldccYSZiWG++Ptf4Pobr+eaq47wZ//7v7N9ZwNPPnWahx5+ke9857s8cP+PSGbqGB2eoLeni6effI7+/n28+OJLhL7Lb33ql2ho7kCz/i97bxpl113eaz77v8czDzWrqlSloTRZ84QHGTyBLRtswEAgQIAQhgTiQHdWbufeDMqwum+yOiuXhKQTCJPNbLDB2BZgG1uyJMua58klqeZS1Tl15rPPnnd/2CVBr7u6P/QHx16rft+0VLVKNSzVu9/ze58niRdEDyg3Hmh8B0kCfBfXiSQZruuCZzE7NUI6HqNaKXPg1UOY9Qar+vtQVNAMHaFrqLHY/MZQIgx81EQC3w+IJZIRH9ey8AIf37KJJ+J4AoxUCtv3MGIGLasVsaRTKZAEsZ51r/sQ8h9f/vtdjtWkWa3g2U2KcwUajRrVSolKqY7ZbNGsN7EtBz+Mhj1V0Uil0xhGDFXTYH77e0Ou0TIZXLKMe+55O6l0hmszs8zMzEZcaVnB8W36Bwdo7+7imd272bvvZYQs09HZSaVWRdUUsukc8UQKy/Ho7htgzfpNtLe1U5ybwzAMTMvENC26e3poWQ5CkjBN8wa72HYdDEnl0PFjVEIfX5GYqde49/0f4C23vo1sJoMsS9h2hGVTVZV0Os2lc2dxLAtZCCyzyZ133sVTTz1FMp1i/4FXOHnqND996mfEE0lGRkc4d/4Sv/jlr4gns0iKxqnTZ0gmUxSKM5Gh0YVHH/sOuqYyfHkYRREYeoJKuc7lyyO88MJL5HIZFi9ezMzMDPV6nWeefoaBgQEuXbpEvV5j27ZtTE9PMzo6im4kUJSo0qFr2g1Zz/X/V36TCGRZFoqiUKlUyOfzABSLEWrPcUxcz0WSInpKPB6nXC6TTqcx9Bjnzp1HSAJDN3Bsh7m5En19/YyPj6FpGrOzs3R1dWEYBlNTUzz8Wx9dGKAXspCFLORNlDcEB/rSV/8ovP6L63otQ5IkAn6DCS0EkhyZ264fCV4foD0piOx2fgBEB1uCCEUXWg6SFG2WPdv5NdKOkDDwkOaPDz3HJfBt5Hkix42ebxAQ+NC0nXmTmI+ux3BcH9u2keYHfstysByXgJBGA/YNFxmv+vzrP/wXjEwGI5XFSGWwAmhYDu1dvaAm0I0UkiLhe3IkglHV/8fXJuoFC+QQQmz+etcu9u87xMDgMno70qi6xs+e/gUXLl/D98D3JCyvSV+HwXPPfJ9cW5ZU52DU9/RaKBZU7QpjU5P88Rf/muMnzpFMZ7BbLWzbpLu7m1qtRiLTxqIOiSe/8c+kugYglo++xvP1ljD0kQjwPJvAsZEViXC+Uu81K3hWE1XWqJbnGBmbQHItxMwUeb+B0FXkVBzLc8iksri2hRQGeKognkjStGySySSe7yMbGma1STyZQDK0G733IAgwDAPHDxBSiGtb9L71s687S/fTH3l3qKpq1IsPQ3Q1qiLZtk08pqOoOrKqI5RISX696x+PJzFNE13XqdfrLF66lFtv3YGEzIkTJyhVyoRhSCaToaurizAMWbt2LZZlUZqr4vk2nfkMl4dfY/jSRRKJBLquoxkxOjs753u+OoqqMToxyeKBJehKiO8F2LZLrVYjm82CiDja8WSKer1OLBbj4sWL9Pf2MTs7y+HDh3nyySexLIuBgQE+9rGPsXX7tkibrWmUy2XiRkQQSSQSXJsYJ5tNMn1tinK5jOc5HDl0mN6eHubKVR7/8Y8wDANJkhhasZLJyUmWLVvG9PQMk+NTdLRnWdzXw/jMDKlkGk2Lc/CVQ3R0dFCplli37iY2rFvPN77xDdatW0epVMJ2Ap566iksy+IHP/weTzzxI3bsuJWWZdLd3okRjyErKl4I+bYOOjo6OH/+PLbnkk6nEUKgaRr4wY0HmVqtQkzVsCwLx3HQdf0Go7xer2PbLWZnZ8nn82TbckxPTqIIiaZZp79vgFqthm3bNJtNhKzd6Knncm0RIzyXo16v093TgWma/OO/fGuBA72QhSxkIW+ivCE20LXTL+y6fowmFBl/Huflzlvprg9M3nw3WpIkxHXkHaDoKoEfDdGu69w4bAv8ENdxUBUZ349kG9d/GQa+hyTPD8jz5A1FVXDdaBt3fcsabcBB03UQIWEwbyV0XTRNBRmiDaKPrKgIWZCIy5RaJnfdcxu5dIZENo8XyvxqzwFOnT7NgYP7se0qne1dyFoCWTWQEAhZRPKQ39SPCx8QBEGIImS2bdzKxbPniSXS/I9//SZ7Dxyn1pDwnRbLl/aRzegYcpyP/fY7uf+BOzCSOaxaGdn1MAhwg4Dvf+c7CE/hj774SZKxODNTs4yMjSOhk05nmZyapC3XzWd+70F2bNmMryWQhD7/wKKAFG3rCSOzI6GP59poepzA81GkEDeAer1BOtuOqqj09Q0wNTpK1jIRRHUVhEBVopfOFU0FVcb2PEKk6GV1VUGSBQ4+YQiu3UJFAt/Hbrbmv/c6oefg2i0yS29+3bd4j37t33eFIchyxCa3HRckEdU1PJcg9JFFdFSWzuSIxxNYlk2xUmPbzbdx1z3vIN/eyenTp2lv60RRNFzfJ5nNkc23ccttO9D1GJbt0t7RRYiEb1bRBJiNGi2rRL4th+/79PYOkEqlOXnyFIYRwzRbZHM5NN0ASeDZLrFYEtvy0FQDPR6jUaugK4KW2URXZWQJ2nIZZmdmyGbS/M1f/xVrVq9CUTV27tzJHXfcQSBJ+EGApuvE4gmkMKRYLBIEAZ3t7TiOQ39/P4qqsHLVetauXcP+A3vpzOV4z4PvIq5rhJ6LFPoohPzeJz7GksHFnDh1mmw2TXdXJ3fsuBlJEry4dz96Ik4mYbC4fxHl0hyl0hwf+tAHyedz7NhxG5u3bMBs1Wk2azz+o+/z1rfdxvbtN/O//ulf8Ks9ezlx6gxaPEWjZZNKJBkYGGTr1m3ctuN2MukshdkipbkydsshDCUsyyGZTOG4NoW5Iql0mqbZoNFskEgmsF0b2/W4OjqKomk0GnXyuRzFwhy5bKTyVlWVZrMZVTrm5lAUGVkWmM0mEFKtVpBlQbPZoFar8fAHPrKwgV7IQhaykDdR3hADdPnkL3chgazIUc8WEJKYP9qTkK7XBmQRVRx+gxeNJOGH0eGgbVkoikoYgqLqhJJAuX54GAQgyQhZ4PkesiwIkQiQkFWVUMhRB1pRUebtdoioGhKG0ZZThBFWT1FUAgJ8PyBA4HkBsqzgeh5BKEXHhYHGwLKltLXn8aSQb33/pzy35wC1psumzdvZvGkblUqVXL49Ong04pEYRJKQ4NcK81Dc+HOIQGgaV8cu8+3Hvk1PVydDyxezqDvF6lVrMKQWW7cM8bnPPMTHP/lRVL0bXc3hBy2+993vEE/nac9l6eru4uvf/AaaHmPL1o3cdNNyRsfHQErgBnWCUEcXEp/52P10dXWDnkEoCr4koyhyVEYPbCQfQtfCrM5hJJL4foChwOnjJ3jl+DEe/d7jHDh8hGwySUdHOx1tHZRHrpLSDMKEiorAsptYnoesCeRUBt/1UWSZAIkIzR1hAn3bQlOiBxxCP0LZqQqe45KMJdAUnVjf639E+Nzun+26XsOQZRXbcYgnkghZJpRVjFQaVU+QSOfZsWMHa25ay7r1GyiVq5w5e4bR0VFqtRr5XBtzc2UWLepl9arV5NvyDA4MUCwUmJka5crwJXY//Qz79u6hUi7Q3tZOJpkmlAWGkaS7u5dqtUY230bPol7SmQyNpolltYglEsiKSkxX5tXzHm3teVzPo1mroEgBzz7zDN2dHYxcvUK9VmV8fIIN69cxc22a5UPLOHvuArIs09nZSWd7nuJsgVQi6rvrus74+DjJZJJkIkXDbBKEIZlshn2j032RAAAgAElEQVT7DjA0tJyurk7ybe14nsfQ6pVcHRtl86ZN7LzvPoaHhynOFfjs5z5LrVrBdRz2vbyPT37yE+TzGQLPoqMjSxgEfOTDHyGRSjA4OEAimeCrX/0Kt9x6C5VKmY7ODlasWIFptkil0oSeQ7FUob29nbXrNjB97Rr9i/q4+667GR+f4Nvf/S5jY2PIsozreriOTa1WJZGI093dzbsefJAHH3o3PYt6GRufZGa2SKlcJZXKYNkW6UyGixcvYls2UhiiyDKWZROGwY0udaFQoGdRN9VqBV3XkCQJ02xixAx838M0TXzf57d+++MLA/RCFrKQhbyJ8oYYoCtnfrVLyPL8Ad08+xmQRDQwK2qkq44GlflIzNM5IlOfoigIWUYSYv79QyQhkFUl2hr7HpH5Q0KSQRbRx5MVFUVVomHa91AUFc/1btRGwhCEHL0ffkjgBzhuhNGLjuqjjbFpWhGOjYjuUbd9jPZuzl08x3DB4Ue796HKGv/bf/ljli9bSlu+jd7FgwjFIEQQygJJkhHIQPD/+rWSJInt229mdnaS0ZEqKSNFvTJHf1ecRz77ITauXcqOW+/Al3M0WnVEUAQ5QT7fwYc//mnWrV3H+g3rmZos8JWvfZ316zewYtVS3MDlxV8dJpfPMDNTYuXyFH/wux8mllmEHE8RItBULVKlBy4ELi2zhuQ2ScQMCGB2ZoILZ8/Q3p6mWS7S19mG32qyb98rHDp+hHw6RW1inAQSyBH3uWk7JDvaQQLX9ZGFAD/AiBkQhvhehHQTkoTnujeELZVyhXQuR0yPYVkWrueRGtz6ug8hP33iB7skIdB0HU3X6OrqJhaL4wcBy9ZsYOcDD7F2wyYWDy7hp0/8iEvDV7hydQRFFfOkBpslA0u44467WLt2LdVqled+/gsuvXaO82dPc/bMKYYvnGPkymVmpicxGzUmrl1jbq5Eb98AtbqJqhrMFmbJ5fO4QUAylSKRSqKpKrGYgTT/s9qol5iaGqdQnCWVTPHotx9loK+PVrPG6lWr0FSFy8Ov0dvTi++H7Nu3B0UWKIrKz3/5HI888giTk+P4tonvtGg1a/ieg6LpxGJxRkZGkASMT0ywZNkSDr96mHe+6z4OHzpMMp6i1bJJpbMcPXqCe+65lyNHj7F+4yZybR2cOn2W9s4c9VoDIUk88O73cPr0acZHLrNs6QDdPd1s3LiRZ57ezdvuuANVVTl27Bgf+chH6OjoYcmSZYyMjPGDHzzOw+/9AJlMisOHD9Pb00UiFmN0bBRFSDQaJpOTkwihsGHjpvnjTYn3vvdhrl65RKk0B4RYVovDR49z9Nhxzp2/wMxsASErJFNpdt7/AH/w+UdYsmQZB189zPnz54nFElFtJx5HhCHJRIJEMoFlWVi2RSaTma+FiRv1l1ardePw8T3v++2FAXohC1nIQt5EeUN0oEe+92ehqqp4nocSSjihjxYzcOePxDzPQ5lHyF0/8AkkbvSUERD6wY3+MnCj9oEQ+KaJLCB0vfm/98CLrHeqqgJh1K0Noq1R4NgQ+Nh2CyGFNz6u4gYEksDzfRzfAwSBJNGyXTxfYDkOARKeLzNbc5nTslwameXnr75G3W7w48e+zKaNK5mbm6VYLLN//142bruNzVtvJp7LI0kqMS2F9P8pVpDwHRfNgHe/+yHOHT/H3Xds4563v43p0ct8/GOfwFFUMrLE/pf3s//EWd79wLuoNy1+8dIr/PiJZ/nKv/8fdGQ6+dTn/5Txict8+V/+T46dOM5f/eVXiCcUKpUSpw98n6HBrTSSAXGtHUVEsho8H/BwrDp2s8qlsydYsXQIJwh5ed/z3HnXvWhqEtdtkYglMS0bTdKIJQ2e/P53ic1Os7mzgyY1YvE4pioj8jnUwMM2bTKd7bR8F3f+5e9ms4mCRCyVxHLs6IHFcaLKSyKO6/o0rBYdXZ10bP/Y694j/cB7Hggdx2FoaIiHH34/sjAwTZOZmRkOHd1H6Adk00lkWcL1JepNk9/60G8TN3TicYNUKsUTTzxBrTQXca4Jo+Gq0aRcjox6lUqJ9evX8/73v58LFy7w8sv72b59O41Gg6bVZNngEmKGTqNWJZ1rm+/ZGshCjfr1fvSzHjc0zFadSqXC4MAQkixjNmpYZhOIsGyO4zA5OYnjhWzZsoVnn30W13W5MjLOlStXuPOuHfQv6iUuw8xskXsfeIDvfufb3LfzneTasjTrDS5dukSj0eDWW28ll81SKpcpFots3ryZxx57jOXLl0fd6XicWq1Gf38/R48e5bXhS6xatQrLstiwYR2maRIEAZqmceb0Sfr7Bmi1bEyrSTKZxLIsOjs7Gb48wpYtWxBCMDY2Rj6fRwiF5ctX8K3vfJvXXnuNO+56Ow2zCZ43X/GCmG5EBsx5/rrrB9Tr9Rtc+I9+9KO88MIL7Nmzh4H+PprNJolEgsWLF5PKZMlms7Tl8ijxGK2miWk22bh+LV2L+nn6macZGRnBbDQx61FNo1QqUa4Ub3zulUqFeEzFMAye/eX+hQ70QhaykIW8ifKGEKlIikQoQoQqcPwQRdGxbBtV1Qg9H1Wdl2QoMkKONtGe1UIWcsSK9iGUZCQluqSXgui4UJElPN9FiyXwfZ9AdvBdDwKBpPqoCYPA95B9H1mSwQPbdZGFjCxJGEYcnxB8D3DwhQ8+4IMmK9ieTRhEau1KrYUiqTRMj1g8xMfj0sgsvzxxBdPxuX3bTZw/f4Gvfe3rdHWkicc07rnvPt52112cOHWOtckUvucQ+hKtVp14votQ4sax5PVKBwCqwGs53H3rVh5++1sIgwCrUaAzkcIOTNyqi5PMsmrdVg6cfo1Aksi3ZensThBK8OEPfZ5fPvdjZGExM9Xgxz/+OW1tBpvfsp7e7m7+8HffycDgcjwdkiKFFEoIQlzPJ8DH91zMWoFf7X6Sjes3MDU9yje++Si/87u/h+PLpHJp4mpXxN5uXQPFp1Jv8o6d9/OVv/kzbursRBYakqwhFImYoSBZISKfwgtcgsBDCiQCx0VHIhACy7HxWja+F4lY3CBEFgrpdAzfd/H/k3TIv/fZ3yeZTHL06FH+4+tfZWLk8m/wqqGts4PinMz999/PqnWbEELQ3d2NVa7yb//6zyRTMXRdxXVczJaFpBpMX5tlxdIB3vGOe2g2m/zgB4/z4ot7OHz4KDt37qS/vz9SRScSnDh9guPHj7Nm9SqS8RjlSokwDDGMOJpmkG/vRFHA85r4nqBSrtPbO4jvQbk0F7HPkSiXy2iGzvCVqwgh6OxexMFDh7h89SrZbJbt27ffqGmkc1nGX7vALbfdjlBUVixdQrk4iWFAtdYgk8mQy+WYmpqiVq2wdNly4vEkTz31NKVSiVKpxLFjx0imEiSTSU6eOsH09DQ9PT2U54dtz/M4ePAg7373u2k2m7Tlu/nBDx7n7rvvZvjKa0xOTqLrOteuXaO9vZM9L73I0NBQRMLIptiwYRPNZp3lK1aRTGcZXLacO++8k0/8zsdYs2YVRkz9tYznOipTCogZyg2yyLcf+wbJZJKb1qygMlfhT/74j3nkkUeolsvEdA3P87h8+TKKkeDa7AwxXaOzPY9PiGEYZLNZbMdhw+ZNfPIzH8eyLB7/4ZM8//zzZPPtpLP5G8fOC1nIQhaykDdX3hAVjtqF/btCBCBQlGgo1jTtBmfZD0MQ0g3qBoDju3iBj6TIUcdZSPNM5ojZ7Ab+vGY7iFBoQQCyQMhKVMvQDXzPR1FUFM3AcX2ErKLHYgSSwHF9JASqokb96VACScUPrpNCIva06wU4rovZskkkk9iuhe1ayGqCR589ypTp0pHLkc5lOHl+FHyf27Zu4o//5E/oWNSPnMzTu3wNRiyLnkwgqRJKqKCoAl8Ko00rIIuoC43vIYUeVqXCxvUb2X9oH6tXLMFulnjnve+g1mpSmS7w1a99lXPnL/C5z/4BmWyWvQf209newdYt6/n57he4++330NvbxaFDJ7HsFltu3sbu3U/zwQfv4r47b0WNpVGNBJJqQBhErGt8AttC8ZsceOkFtm7agOu6HDp0mEwqw8YN62nrXQx6GhSFQIDr2xQnRjiyfz8d+W6q18bIImi2qjiBx6LBQQgiVKBruchCJW7EMISgWGkhcFBDGbthIhQZFHkel+cR0wwsx7qhes8se8vr/jL4P3/p73fte3kPY6NXIy6wojBTKBAgcfOtt/PBD3+U++5/iFPnLrJ69UoIff5m159z7Pgh3CDAclyEorHmpg2s37iBZExnamKMk6dOcPjwIQ4c2M/sbImbb76F9vYObr31NlRVUCwWGBm5CpJEKpGkrS1PuTRHV08PRsxgfGwsosngz+PmWsSNOK7XwvddzKZFKHlUygWmpsbpXzxAw7RQNZ31GzYyMTWJqml093RTrdVob+tg586dOE6L3kX9JBNxTp46jeMGLBkYYKY4RTKVRddiXLhwgdOnT5PNZnlxz266urqp12usWrmSfD7Pl7/8Zbq6umiadW655WYOHnyFe+99B1/60j+xcuVKTNPkv/7pf+NnP3uakydPcfXqCM8+vZuly5by/PPPYcQMyuUyvu9zzz33MDo6Qn9/H67r0N7ehqLq1GsmptlienqCXDbN9OQUptnkkS88Qr1RZ9Wqtaxas5bvfv+HDC5fhg/okqBWqZGMJ/FcB1UR+K5LPGbgOi2OHjnE6pUruXJ5mL/+3/87L+8/gOU4TE1NkzB0AtchpqtIgYsmS8R1jZihUqnO8fKeF9n70q9QhEy1UkIKfe68463s+qu/Ydu27eTbuxYqHAtZyEIW8ibKG2KAbl5+ZZckBEjXEc1RNcNxHGRZ/o0+8q9tfUJINxiuIaDqGq7nIQuBEL9mFfuBH43mskwoy0hCRlZVJE1B8n0kRRAS9TyRBEEwT/aQ5UjsIqIdkaKqSJI8z58OkHyfMAiRhYrZslA0gyDw8UMf2xK4yLzWUBifa6LgU6rUscwaLzz7Q9569x2o+R6UWAo9nkbIKqFQCIWCJKsICeqVEoZhICQ5UpD7AYQ+BE7UOyUkwOXxJ54kn0yRMWRy2TZM2+XFX75ER38/H/3EZ3juFy/Q1t5GoVxCDqJjyn37D/H7f/B7GDEd14Vjx04ztGIZ2zev46MfeJhEPImQ44SySqjISEEIUlQD8OwmU5fPsai7LaoQNJscPPgqO3c+wODyVbiSQFZlJEmBAFRC4ukkK5f0M3zxIiPnz5AXMsm0QSyTQkomIvKGJGg4IVOFMvWWzT99ezd/+Xf/wQc//B7iKY2WaZLN5ShWSmQzGRRZwW3ZCD3CHmqaRnLg9e9AT46N7BpYvJRkIkMum2dmdobPfv7z7HzXQ7x68BAbN24klUpy8fx5zp0+ies4DA2toCPfQaNWw/dbWFaF8ZFRjh4+xPHjx/A8l5ZpsmzZCrZu28GKoaWcOnWSTZs2EgQ+1docc3NzmE2L23fczsWLl1i8eJDiXJme7kVUKjVisTj9/f0Evk/oB4S+h+W1UDQVVdMQiuDsqbOk01l6FvXRbDnUGg06u7qZK5VoNJocP36CubkShUKR8dFJfvLkT+np7iOUfIxkiqVDy2nvyPP9732XLZu3o2s6L+7ZQyweY9v27biex6o1azl77hz33ncvX/n3r2CaJvfeey9r166lZ1Evl14b5u3vuBfDiFMqzpJMxInHYly6NMymTZtwXZdGo8G6LZv40Ic+yPkL50knk9x2283oukZHexv9/Ytpb2/npptuwvUDbt3xNmYLc7Qsl2y+Ddf15/F/c+x76UVajTpjVy8zNjqCpqvcv3Mnb9m+nVXr1xNLp/npM8+CrJBJJEinM1iWjar5FAqzmE2LbDbPKwf2EgQBlhOwccNG1ty0jquj4zheSDypY8Tj+KHL9LUZYnqCXCaHLCkQ+rTlc8hCYvi1S+zd8zw/f/ZnPPyBBQ70QhaykIW8mfKGGKCrl/btErKM63komk4oSfghKJqGUFQkWYm20DJISsRLlmSFACkyF+oKIUQb2ut/z/wgrqoIRaCoMiAQkkCVo/ETWSYgOhREyEi6Rqgq0SGbrKIaMRRJJVQlPNdBsTx8OepPhppMKCQkKURVFIIw2nQHgYLleNRMj58euYgZqiQNGVdOEmvN8p733oeRShGECoHvEDgOkqwhiWjRGy3KBZZlUipeIxFPICSJVnUW25yhUiygihBZhsuXTvP+93+Ef//Wo8xcHmHt6n4OHD7H3//7D5gumGzavAk1Lmi2ou1uOpPAtlvYjkw8o6FJCpVqmZpTprsjy+c/8QlShoasqgSKHj00IAhdizDwkQKH0tgwZ84cRlNkJAKOHjrExz7+KWLZPLJQCCQFRWgEhPihA46FAoyPT1ArlQmrNZKyhiQFJIcWISkJJBHjfHmS0Zky3/nFcf70v3+Ls5MNGoHM2OQMxVKFrr4ezp84wcolSzGbTXRNp+W1iOtxWraFEILUkm2v+xDyta99edfk1CSVaoW33Hwz73rnQzzxxE+48847ueP2HYxcvcILzz/HhfPnOH/uNCdPHOfKlcuMXr2K69pUazUIQzw3uMENDoKAz37m9/nRj3/M2MRVZmdmufPOO+no6KDZbDIxNUmIxK237eDsmTP09fXdEIFomkaz2aS9vZ1isUgyGUlpFEVF0w1UVZtH7oUsGVwSCUV0nVK5RDKRoFgooKkKly5eoLOjHc91qJTLxHUD33P54Q++z+rVN1EuVRhYPEixWGDrlk3MzM5gOw6r16whm82yd+9e8vk8vb2L6etbzPDwFW5au5ZqrUZHZyeNZpNUNksimaJSq7F8aAWEIal0mi1bt9HW0YGma6xdt5bjJ44zNX2NpYODdHd3MVOY44Mf+jCyolOp1tF0nUw2S63eYOXKlYyNT7BiaCWu6+HPvzoRj8cjCdK8ICUMQ4IwQFVkrlwe5tTJE5w9d45Lly7yxS98gbfuuJ3evn6OnTiFF4QkYkl0PUbDbFCtlfB8m0KxSL49z9TkNOPj4zQaDT796U/zkyd+QjqVRtcMAj8k35YjCHw838P3fTKZDGEYUq/XEUIimUzywIKJcCELWchC3lR5QwzQteFXdvlBSDyRwPMDFFUjmmkj5FwQhgg5YuuG88xlSRKoqoaiaghFgVDCD0IUVUNR1Ej5LRQkWUHIYl6OEoJEhKiTJCQhI0kiklwoKmKegRFKEpKi4AUBaCq276IKFUfy0IxYxJN2PZS4gS8kICCphPgSmG6A2XQI9SQnJ5p4io5jWriey9//xR9w95078CwHRfLRhUfg2oBAchr4rQah08L2QtLpJJcunkdXZAxZRvY9Tp08TDaTxvccioUZMuk4heII//yPX+N/+fQHCH2Pp556gasTFhcujnDy9GkGlgyyclU/P/rRD1m2ZCVqTMWzVb796PfI5VJMjI3y9rvv5L3v2okhSeiyglAVhKpHXG4xb4R0TQoTw7yy/2WWDvZhqDF2/3w399/3TjQjSbazG0mPIyk6kqIS+h6+WUN2GxG1RATkUjHakhoD2zeQXLOSIJ7Gl10uj57nqSde5H88+jwnzo/ji0iYYgWC6WKFY8Mlrly8hNy2gi/81Zf5xM5bscplMtksludFlR3XJbf8ltd9CPnlc7t33bvzfpYtW0EylaajrR3Ptjl76gR7X/glr104R6kwg2uZKIqMrqpoioIsCyy7hed5VCo1hpYvZ3BwkAsXLmAYBsePHyOdTbFs+TJu3n4z7e3tFAoFrly5QigpbN6yjUajzvTkFLZtUywWo41zEGBZFlevXqW7uxPXsykWS6SSuQjBKKvzyDYPb74D7Hkege8iJJCFhNls0N6WR5EF9VoVWUgsHVwMoc9b3rKVwAfXdtBVlblikVK5zODgUnw/JJVKUi6X2bp1K2EY4jiRrGRmZoZytc7MbIFFvX3ctHYdl4aHWbp0GR2dXfzil89RLddYuWoN5XINSZEZGRvDcT02bNzEjh07OLB/H6XSHENDqzh06DCbN2/h+PETNFsuQSChaTHGxsfnJTYJZFlhtlC4IV9SVRWz2UTTNAzDoF6PPjffc0klE8zNTiMFHufOnOT4saOcOnUqkix5Lp/61O+zdt1GXt53gEQqTbajE9v2yKTTjIyMUKtV8X2PV145QEdbJ0IIPvWpT3H06DEC3ycWi2MYOrZtRwKg+X9TGEb964UBeiELWchC3lx5YwzQl1/dpRsxbMdFUeerFGEIkohkJ2FIKIGi6EhCRjdi82/D/GFbiJBlZKEQCoHrRf1lIRQkVYEgICRE0eaFK6qCUOSIOy0BskCSIPB8JCRUZBRkAi8ADyRJQUbFDyVUYaCnOxFhCtWNEzbAUDNM1RwmK01KdQcflVYQcOL8OBVfIEIdTQ544NaldOfyuKYFgcWX/+lLbN2+HWEkCBPtiFgaNZ5DUwTNepWeni6+8h//iqrJJAyddDqBY1tMTU2STCYoFmY5duQwrUadW7atB9lg+623sO0tgzz0nrdxz9338n/9yzd561vfRm9vB1PjBRAhJ48dY+XyQfbu28udt7+VwZ52DEUmpirEdINg/uEiJNrie1aDZqXA2Mgw7bk0tVqFAy8fxLZsNmzYRCKZI5Aj6UkQuvh2i8CcozozRTyuIRGgyi4yNkpnF2gKcxOjnNi3l8Ovnucv/uFxnj9xjYYb4qKhCkH/QD+FuWJUqbEc0pkMT/zkabatX8O9W1biNav4skYqn4u+l7JM8j8BY1er1nbVaiYrhtawZ8/LvPLKHgqFKZq1OVRFjSpFkoSqKsSMGLqmR3UcAclkkrVr13JteoZiocClS5dIpVK4ro2qCRYPLGFo6CaSiTilUomLFy8CcM997+Ts+TN09XRQq9aQJUE+nyeTyVCtVkkkouO84eHX8DyXK5evEjMSEcvbDzDNFpqmIxFZPn3fx7VtPNfGc10q5RLNRh1VUbCtFgOL+2k26shCwnGi497+/l6mpydomnUs18V2HVRdwzJNstkssixTKBQYGOyn2azT1d1JqVxjxarVxBMJ9h84gGbEMFsWX/2Pr7G4fzG9vX0kkimOHD1GV3c39UaTFStXcez4CQqFWVYMLadarTC4uH8e6zdFqVjASGb48Ec+SrlSoVavk06n2LvnZebmSthOhJazLCva0s9vgW3bJp/NYJlNXMcmDHyCIKqAEQYoQsK1W8QMlbnCDOcvXuDCxQuEoczb334/Dzz4EKdOnaFeqTM5NYbtWIRhgKoqBL5LNpvhyJFDtLe3kUq2oakxCrNlkqkYtm1znTpkWS0Mw+D+d71vYYBeyEIWspA3Ud4QA7Q1fmJXo1FHERKSAoEfIIU+hKAJFULQZY1g3lAX4BM6LrquIgkZNfBAAlWTIPQRUogUBtHBoWLgeD6qpoMi44XhvLrbQ1UVHM8jJnxiCJrTVTRX4+VXTrNm7XbsmoPbdxODW99KZvlWutbfSXrFdmID68lvfhvGms2crHnsGyvz6Asnea2kkF2+icyy1ew9cYbJkkOj5SNpOqsW93Db2i7MaolsJs1TTz/L5/78b7B9n0ACPXAjgrQcPQToepxmo053dydP/uQJrl4dJteeo1opceroUZxGhSvDF3hm90tsXruKeDrFlZExHMdFi7WhqQmazSrvuPsO/vy//SWrVtzE6ORVhC9YvrSXylyRh9/zEJs3rqVeLpKLxVBlhVgygRcEKKqB5/rgtnDNBpVKkcmpCVKGxsH9+0ml0/T39ZHPdZLI55BUgRT6WNUiwrY5e2wPXV15HNsCu0R9epJ6cZJTrzzH5JURvvRvj/P4i+f43ounKVkSoRwpyyWijnmlWkWRBbKQsEOV0UKF5QNdLO3KsGVZN4ai4PoOiqYiyQIhhSQGXv8Kx4mjh3ZNT03y0os/x3NNFAJURQEEqqEhqwre/EFrOpWmv78/qmo0Gniuy/TU9Lx50wMiCY9hxNmy9RYWLx5EFhKTU2OMjowQyio333472DZmvUa9WsZstdAMg4GBpZgth2ajwuTUOEIOKc4VqFSq9HR3MzdXpFat0qjXSMRjuI6NrMl4gUdIiOM4xBMJFFUjkUySSadQFIWLFy/SbDaRJYVKuRptUmM6YRjg+z5t+bZoaI/F8RyXQqFIIpEkFovjOC4z12YBQbNpk0ylqFUryEKwqKeHwswMhqYR+j5t+TzVuQLNeoTVUwUc3L+PX+5+lrZshs9/7vM8+eRPyGbzHDl6hIHBpVTrJoVilSVLBjh+7CjlUolGvcHk5CyP/NEXGFqxgmJxhtHREcIwIJNJE9dVbKuF41nE9FgkRQp8QgLCABRZIfADWi0LP/BptVp0d3ejyBKluVlius7UxCgvv/Qcvu9z6epVPvOZz/EP//glZmbn2LvvAOl8Ftfz0XQFQ9doNmsIOaRUneOWt9zM6MgoIKHrBi2zSeD7PPjeDy4M0AtZyEIW8ibKG2KArl89vCskeilTktUIQadoRCq66FgwBFA0TKuFUGSCmAGAFILu6QhVRw4VrCDElQShoiFpOlrgooUSIgiR/QDhBWCH+LWAK5emefXgJapOlkf++l/5+t7TfP/IFV68WOCff/Yi9VQHzzy7G5GM0bdsDbZQkWNp9FSOQFZR9ASr1m9kUX8f7V15tm7fzMv797JsaCk9PW0sX7qYifEpSrUazUqVDz18L41ygdnZa8TTOXoXdeK4DsKyCFWNQBJIarRdB9A1g3QySaVaZnJ8lK7OLnzfZWpykpHhUYbHJikUq6xYOURvbx/JVJbRsXGWrlxFZ3cP09MzzM7OsH3bdsbHJ5grF7n7jrs4dHA/y5cMoBKgSGBZddLJZES3CCJduixJeJ6NVa9Qrc8hREiz2WT06gi+EuPVI6d56223smz5chRdw7VNQquBWb5GUKuSjMVJqhpKEFCYusL548c5d+Yscw3BE88e5BeHrnCtFhBKwK8b7P9Twh9obAkAACAASURBVDDECFqAzE1DS9i2bhUJs8qSoSV4oU0oRxWb0A9I/ydUOL721X/a5TgtkokYqiYIvGiwBIgn4pHgR4iISR6GzBZmkYSEYRg33i56KT+qFnV0dLJ27Xq6e7oJw5DZ2VnGp6apN5s8+OBD1Gs1Ws06YRhSKpWQFY2BgQE0TWdycoKJiZF5A14RWVZIJBKYZotqtUa9HiHmNE0jHo8jzfdvfd8nbsSQpIgZXalUIIRWy2LJkqUYRoxcNoeqqgwMDNA0TUzTRJZl2trakBWZq1evcvr0aZYtW4ZhGBQKBYQQWJZFKpUilUozOjYWqa2LRUzTBCCfz+M4DqZpsnr1Ko4cPcq1mWusXLWaXL6NzVu2cuLkKU6eOU2zZWI5NkNDq5m+NkNXdzf59namp6ducJUVRSGRjHP69EmOnzjGzLUit912O+vXbeDVg4fo6u1nZHQEOYxMovF4nGazgaqp+H7UQ0+n0xHebv4h3DRNVFXF96OHm2QySblcICSkWq/w8ksv8/3vfo8nn3iC3/nIR/ncI4/wvg/8Fs+98BJCiyFrClbLJG6olKoldMNg5cq1TEzOYMSiutm73v2BhQF6IQtZyELeRHlDcKB9QpR4HEXW8MJ5jrMsI1QN0zRxHA8hBJqq0GZ04lk2brHMzGyJ2ZkyP371DMfOnEHXdbYPraM0N8PivkUsWTLAxdGLbFh3E6tWrGDvifOsWr2OQ4ePcm7sGs+/uI9s+wDrKoK+bTvYnEqTzWa5MjPNxNQU+c4sA31vRTPiXLx0lqHlNyGMGI7nR3WFIED2Q/oHltDdlWXu2iSLu/MoikLLqnDpzGnuvWUNuw8c51rB4x/+7TE+cv+t9HUlWLxyBU6zihRLksp24ulxhKoR4KEQacYlRcWIpXn3Q+/jeG8Px44dIpWMk0inOXb0IqVKmb7uLrq72sl39vPYY49x/wP3MTIxTrbVYvNbtmE1Whw/dpTZwgTpbBcbtmxm+uplzh3dz8oVK7AMQSah3ejjdsdieI0a5WqJRCpDZWaSycIMk7PTPPPsy3i2hRVK9GbjJGIGoVvHbs3huwEtq0Fx9hqXL41xZXKC7o40suzi1B1SCR0l2cOj33uB4ckKDZFElsKILPIb+Z+Y10BLxHAlg5PHTnNLb4ahFUPUayUkXb7R0/7PivAl5EAg+QH43NDAh2F4Y6ATQkQPJ7aFpilomhYdi87XJ2zbxkgmyWbzLOrpIxaLUZi9xtzcHNVqlVRbF+94x81MjIzi+y6uZzFXLOH7Esv7lxEzUhSKMxSK07S15XBdn0w6e2MYvjx8hVKpQqEwxxe/+EWOHDnCwMAAq9asJfAFQtKQiOybuq7T3t5Otd6kq7ePUqnEkqEVTI6PMlctM1sqkk6mGBwc5ODBg6TTabq6u8hkMqxZswbP8yIRi+PQaDRIJBLs3buX973vA2iaxqlTp6jX66xZs4Zyuczo6ChtbW2oqsr5167QcgNWr9vI8MgopVKJ/v5+NmzZyvnzF1m6dCnpdBrP9WmaNqZlR7IjISiVSixevBikANtsEgQSsVyahK7wi2efJJdrw7VtLr92jr/927/lv/7ZX1KpzZJOp1FVFcuyMPQYnudh2za2bZNMJZidnb1B+9F1nXq9TjqdRjNSBK6HU2+RSSWpVqv09Xbz9M9+wt4Xn6febBFPp/m7v/s7vvGtb/LB3/44IfD4d79NMqlw5txpJDlEM9IMrVr3n/bzu5CFLGQhC/n/lzfEBtqaOrnLC0DWDCQhUFQNx3ZAkpAVFS0WQ6gC3fOZnizwL1/+Gl//xRF+dnSEp05PIilxpFQH10o2RUdlxpQYr7c4fnWSOTfGtabLaLlKIh2j6Xp0DQ6ybPkAywf7uXn7Ri6ffo1atUL/0g7uv/9t9MR1dmzchNtoohkyEjZWs8HyJUuIaHtSpAmXQnzHxnOsCJXnO6SMOOmUQaFQpDOTx24UmatWma26TExNsWFZB7du3cTlkUn6+gaQU2laHqhGAtfx5reAAULI+CHg+4S+j5A8fr77GeaKFRTV4OyZYayWSWfKgMBieHyG5cuGKJXnaNk2o2PjtLe3ceCVg/T3dZFO59jz8qvcdfcddGYyTF2+wOTEOJXyHI5jk0ymWLl6FadOnKAznwciQsGeF57DSGVoWQHffPQJ2tvb6F/Uy9rFbSxd3IMqLMziNSoz15ieHGfPK8fZd+Qiv9hzgeHL0ySTXcwVZ/CFwTd+8HPOjtcwkQlDBzVsEaKDFBFSpOsKc0lChEGkT0dB4JH26jz191/gHavbmJsapr13EUIYBKoCQkIIQXrZ67+B3v30T3YhSaiqHnXrZQlJRBgYVVYQkoQiCQhC/CCIGOSSglBlVE0lFo/R3tFOd+ci2nJ5hARzxQLjU5N4Xsiq1Wtoy7fjey6WY9JsNSjOlSmX69y0dgOD/YuZK85yefgC7W05HMsmnUpSLBZpNhosHliMbTvMzZXI5fJks1lM04xoENnc/AOIQBIKQpbxgxBVixGLxSN8m6pF23HHJ53KUigWGB25ytatW9F1nYGBAUZGx6lWGoShhCTJZDIZYrE48VgqEopk2mg2TGZnZtE1nUq5QjKexEgkQJJQNZ1EMnXjQcP3fRKJJIlEklqtTjKZoi3Xhmm2KBbnkBWBkAXvf//DHDlyhHQiSS6bJvA9apXI8mfEdIQcPaS0rBYTE2Pouorvexw/fhTLMgkJ+Pwf/iEHDx8mkELi8Ri1Rh1VUzGtFopQMIwYxeIc2WwGSZJoWSayEMiyTqVaY3xi8sbm/jqPXAIC3yOdSnLi2FF6Ojt45cA+tm3bTjqT4/iJU9y3837uuPNuzp2/yLWZWe6//10LG+iFLGQhC3kT5Q2xgfZCBUlExj0RhBAG6LqOHAa4AkLfJSzW+c7ul9l/YQop3o3WreE0m8iFAhYB7e3tOI6HaVrEkjq2a5NOJ9FjKot6OmnPJxCyTCaTo1Gvo8qCns48sViMj33yQZr1GiPDl9n/q19x191vRwjBwFA/01MTmGadDes3UalU6DDiyBIUJ64SM1Q0TYmMZpZFtVJkcU8PU+NXaJaK1MtlkvEEPfkUg4sCLr/mMDYdcP7KBFXXwxUyGiqSrNJstDDiCQLPRRH/d3tvHizZdd/3fc65W99eXvfbZ8MMZjAECNAkAZGiRJEiJZOSIpmMWJaYSLHiOLFTkuyozH+ixE7JJSdKlWJZZiKGpiWLplaKErWSFCmGAiWSIk2QBEiBwGCAGcyGWd7a/Xq7+zknf5y+dwaKXMmTKgZQdT5VU9Pz3uu+t7tvz/ue3/n+vj8PrQxVURAGEQQBm8dO8463/W0+8Ku/wVe/epErVy6hKp/jKz1+6J3v4B/9xHv43u95K5//wpcJOisIlRNJn6MnT/Lclct4wSrf+be+m6989REePHMv60eP8dgT5zkdnua+9RM89cR5VgerxNKjyjIuPnueSgaMs5zq1g5//PnHUH6AUhB5BR/8/S9x5u5TqCTi/Lmn+ZNHnuSJGwlJapimJYGnOX/5Gn9+/gKZ9gmiJTLtITBoUyLwqEQMIkcakAZSsYwnNZ6pSKkI9Iy+KvnHb38r/8Xb30ino0hzQXvjLsbjKfFKByM0vh9hPPmCXLtBECwqypo0zUHY61gphS+9hWffDgIS0rNTLgOfIIjodDq0Wi1aLTtSOssyJpMJ0+kU3/c5dvQEShmOHFnh5s3rZHnCbDYnz0oeeOABjh07yu7uLs8+e4E4ts1pZVmS5znD4R7D4ZCDyZjzTz1NkmR867e+GWMMFy/ajOUoikjTlDiOmwFFnmenKEZRZCdJCkGWZcjAJysLVtc3OXPmDJU23Hf/A5w/fx4/bNFf7hAEAefOneP1r389WZYRd2z6TadnY9uClo3MG6yuMJlMSMZjlpaWMMaQpik7OzuEYYjn2WFKcRwTxzHz+Zz5bMagv0QrCimKjLJI+NBv/DoXLzzN+so6p0+fIo4jJpMJaZpy8tRdVJXNjR8MBty4cQNjDL6UTMcH9Ltd5mnB+973Po4ePcp0OuXMmbPs7g4xRgIeCoPB2B0y32+SPMqqQJuAdrtNFEXWI+55TCYT+v0+YrGLIoEyz/EDSeBL3vtz/4owihksdbl08RlOHDtCkiSsrq68INeuw+FwOP7qvCgEdNRqU5YlCIHGUJWVzW0tU7QumO9N+dD/+Ws8qZd4dr+gZxR7e1cJgoDjp+5GVxlK2UEfS92evV0o8rRgY3WZ1UGf48fWkHgURUErjFjudxgM7l4MA5myOugyXelx6q672L5xHa01KysrtIKQ3vo6B8MhvW6f8eiApZWAlY2j5MmcoNuFsqTdLvF9yXg6Q3gRj37lq7zq/pcRdAcs97q8/qGj/KMfeQMP3nuCIxsrJFogoy7t3ipBd0BlAqiTrauCMp1hqpJSKZvSgeCh176Wx7/+NbZu7BD4HfZGM8oi4dKlS/z5157k7PE1jm6u8tFPPcZb3vTNbK6uISo7Urrf7fL0tcsEFPzZrZtcu3SJe87cz2Nff5qHP/MY3djj2NoGR1aWee7KZb74hUd4xw/+EB/6yMf4ple+hi/86Wc5snGCG1tDtEk4dy3h7/zY/8o73/FtGAJ+59PnwOvSCTw8KoalotQhKogRWlJogzAlhWw3Ng0lBcIEBOSU+ZwT3g1ObPZY6bV4yyu/ke9/59uppnuEbY1ROYWIiQcrILbJVEncaoHU1h8vvRfk2rVDfaz41BrSNKEsy2Y8tO9bH7LnebQ6XXzfJ45jIj+i1WphjGE2S8jzuRWK8znHjh0DzyeKIloL+1CSJJSFIgxDHnzwG+j3+2xt3WTr5nXC0Kcdt7lx8zrJbMry8jKTyYQsyxDTKXEcUxQV/X6fCxcu8MpXvpI4jnn88cfZ3NxkeXm5GTzU6XSI4xitNa1Wi7Is6Xa7dHpd/DDg/lc8wCc/8UecvfflXLhwgVOn77E9CVqTpinf8V3fyf7+Pr3+Ejdv3mRzcxOw1pywFVFVFVIrVtZWybKs+V6SJGxubjIejynLEqVUM5E0iiKKLOXmzetsbGzgy5Dnro6I45gj6xt4nm0uvn79Jq1Wm1u3brDU79Ht2mut3+/T7/etRSUIUUpRZDm+EOiyQJcFeTInDFqsrqxz/fp1fvzHf5z/4Z/8OJubm0gvACPodnsUeQkGpJSN9cQYw2QyAaAsS8KF2E6ShCzLKMty8R4UhKGkLBJGwx0+8ge/Q+DBdDx6Aa5ch8PhcPx1eFEIaBn4qLJACpvxHIYReVkRdbuonSG/9Suf5FcvHFBku/RXN5iM9vAJKZKSZ5++zPJqTH/JZgGnc5uvenAwJEla9Ntd2nGf7Vu7rK+sUOY5AElgmE7HnDp1CpVn7G1v8+1vfjPnz5+3tSdjKPOMr3z5UdY2V3jwoTU2NzbseGsDOp+hqhylbPVOVYZ2u8tcadbWj3Dy5N10221OP3SaN3znm/nc5x/nZ3/h/fzYP/z73PPAPRzcuk41qWh1+uQGAhkSxDFa+ChdouYzstkIL2oRtAd2EmOZ89CrXsEffOT/YjhKKUzJg9/4Lfyzn/4A7/iev8npjYD7X/MqVo+/jEE35g2v/xZ+5l++m7d857fz6x/6MKcfuI88aXPvfXdx8cmvc+5rF/nMo+cQXsDdJ9b57d/5A976bd9IWkmuXNnin//Ez/Ann/8Cv/3hhzl59ChMDri2tY1KTjPThs7gBB/+xKOEUoDoIoxmkhsqjbVfGDvURlNRYVBS0tIZA5PxD3/wO3j7d7yeu5ZX8HwDGOZGLBpIJakpCNoRZbKJmk4I4jZZWZCLCn95mYHvQ9AGlSL8gKDVfsGu31pEt1qthXAOrI/bs5aEKI5ptVp4fojv+wRBgGcqsmxGWZYcHBxQVgUAg+U+lSppRS3G4zF5XjIc7iGlz6C/xunTpxFCcvXqVUYHu7QCH8/zuXz5MltbW3TatrJtjI2om83sMerGuCNHjjCZTNjY2GA6T7l58yZBEJCmKZ1OhzRNOXbsGEIIhBC2sXexsF1fXydNU974rW9CacPdp89YYb/INg7DsFkcJUnC8ePHuXnzJsePH7cLZKxHvB72YhscE6qqWoxnL5vJo0VRkOc5jz76KPfccw9VmTKbT9g9t839Z89SZCm9TpuqyKk8EMJw4sRJ3va2t/Hud/8M29vbxPFJfN9miq+trTXNgHWF25OCwLe7InEr4tLlZ0jSCUk64Zd++Rfp9fpI6fN3/+7f4zMP/zHGCDzPnudkcsCxY8fQWmOMbbAVwv4fFCweP0kSoihif3+fY8eOsbu7Sza3CwVf2J2rbqdFlhUv2LXrcDgcjr8aLwoBXWqfpeVNO+ykXVCWJcYY8kqzItt8/SBhKexAJ+a5556zjVpa3ZFkkNOJ28Qtj5Uja8xmM9bXbHPQkc0Bj331EeKWz/VbW7z5TW/g+qWLPPTQ69ja2kJVFXvDGXk5Ybh7wMraGr/wcx/gB/6ztzFYWebarX1OHjnC9vY2L3v5KxGeDx6Us5TyYI9u5LGfFXSlzX+Nw4j5dMRSt80rXnUfphuxfWuf4XTMaGr4qf/t/fze736cs6eP8ODfuJ+3fvcqXlqhhc/lZ7c5etcJPDzy7IA/+sTHSIqCex94OX/6mS8yWD6CyjO2tiZMywJlfP7Jv/gFIuDND72ceCkmVD7j4Yh7jx0llIJTp+8mbnU4cfcpNpci3vve9/HpT/4hKB+t/4wvnDuPUAaVJPzew89wMBzz/n/zHv6TN72RqBuhdIoIWjYjW2mKvW1+8ff/mJ/+wEdgVlCVBSKIMKYi7i6hlGI6nVK2PHwf1HROV4QMQs3H3/8v6bQyTBTh9QeESwNMEFJWJXmWQKVotSPS2RxBSKvTQ3spuiopjSaMIpACP2otxEqOaLVRSYb2sxfk2p2nOZW2wtD3ffywjR9aa0ccxwRB0Hh7jcptDrFWpEVGlmVorfF9n253qRF3WZaRJjlaa5Jkxl0nzjaV68lkyt7ODTzPIw4j0iIlH6c8e+EimxsbCF8yTzPa3R5Ij2R/xGyW8LrXvYp2u8XS0hLXr1/nk5/8BGfO3svS0hJPPPE4nW5MGLRQyiCEZGVthSAI8ENbYbWpLBW+b//LqJslwyjA86wFpRaT3W6XoijIsozV1VXS1GYdp2nKYDBgNBrZxr2iACnxF4I6WvifZ7MZurJpMGfuPs3Vy1e48Ox5Tt51nND3eO7mVRQlhcowUiGFz2w+xfdTfumXfhEpQ3a2d4lbbU6dOY2Zp6yvrrBdFHiBRBrrWU6TnKgVW2uNb5s8VVGyOlglnaVMJweMhnv87u98mKX+MiII+Y7v/h4+/OEPE7YikiwlLwuS+XRh9NAgJNL30YsdtawomE7mlGvKDqApS3Z3d1lZWSFJEpYGK+SZ+n+5yhwOh8PxYuNFIaCDICBJErulHbWRgf1F3PY9njr3JT7/2UeYdo/jFdsAlHnF2toavV6P7e1tTqwfo5hl9Ntd9rZ3kFLy4IMPcvHiRW7c3OLuU3dRKUUofZ7++pNsLC/ztS89wpkzZ1jutCmTnLwQvP/ffpBvetNDLK2c4CuPnWd/f5/h9i6dTp9sMmE2nzC7/hwnTx3HL1KqgxHX9nY59rL7yA5GpPMxqizphiHHVgf86u98nEgK/vCPv8Kzuwm5Dtjb2+Xq7hDvC08Q6I/zjj/9GqO9G3zLG76JdrvFyvoar77vAQqjiDrrfPmxL7Gzl+LJLs9dGfFHD3+O67dGKGxlt9M+QWQOmO3f4A+u3eSd0XF+61c/zNs/8NPsbl3mPT/773jr29/AD/+D/5a9vevs74xQOuU3f/s3WQt7PPKBnycMQHQ85ukcP9Bk5Rb5ooomQ4+yzOh0OtbrvbbKj/7ID/Kjf+8dlJUiK2x6QxCFVBX0+32GwyHCV0hfUk6naJPTancIWxFltYQftfC6PUoBpswIlUbkOVJK8vGMdDYharXJmaOqkrDToarscaS0Q3a01ghPIkqF5/movHpBrt2isNXDsiwXIrfT+Hh9328quHmeI4y1doC1e4Rhy0YGeh5GexgtKJVBVQIZCE6cOMF8PqcsK9I0YW9v1/qTAytmkyTh1s4trl2+wpGNTQaDAbujPSt8fZ+iKFBKsbKywtmzZ6mqgkuXLjGZTBiNRjz11FO0Wi1e97rXkSQJF25c4Pixu3jyySe47/6XMxgMGAwGtgK9EPr186zFdK/Xs5MMtUYIwWQyodvtEoZhY1+on3+/32dnZ6dZbJhF2kVdbTaLxdd8Pue5q9cwxjQJGKdOnSLPErrtPmmakiQJKysri8q1aib7aaMoKxuR94Zv+XYuXH6aqB2jSo8objVpGuPx2C7S87yptJd50SwC6vewFrzrG0eIoohPfepTBEHAaDjhh/7Of8Wv/soHWV0bUClDnhcgvOa1EkIwnU5J05TJZGJ3qhbJKPX7Xr+eDofD4Xhp8aJI4TDjaz+5v7+/qGLlhJ5PWSTEYQddTbn+xLNcuLVN2O2SlQV+FLLcHzRbpMPxiHanw3O3brLUbdOKAnZ3tul1O0yTlPFoznic8PTTzxIGEY8/fg4pNZ/97L8nzXKeeOo5Lt3a4zNf+DoP3P9yPvXpx7h8Y5vRLGWaan739z/OA/ffRz8MWWvH3HrmPCJLufT41/jy5z7HvWfv5calC1x88gkCo/i1X/slvvTYY7z7g58lkpJzV0Zc25sxS1MUgqX+wFYuRcD5i9sUps+z13Z4/NwVLj57g6987TyPfPVxvvjYU+zuZ8yLisms4JGvPI7wffZH+4QGln3Y7MPZI0s8d2uHg1FOECpWN4+wff0aT10a8tmvXuRvfc+3cddaHyEqfve3/wiM4aMf/TP++3/wX9LpBVR+geiGEAqibgcDxC2PPE8Bg9AGrSo0Gt/zUH6AbncJ2zFhp23HnWtFp9+hMCVhO0K0W4hWRNDpsuQt4Qsf47fxwgAtAFUhjUaVBRjbrpWXBUYqgihA+iH4HkjZ/DFCogwIKRbTJ6UdUmIMJvTpnfqPP4nwg7/2yz9Z2yVsvrL1O9eCUmvd7KgYbePtgMY3XVsawjAkCH2UrqhUSZpl7OzscOvWLSaTMVVV0m7HVFWJVhX7+/tcvXqVrZ0tlvsDup0u0+kUZTTdrr1tc5rXeMtb3spkMuXLX/4Kjz32VW7evIXWhizPeeihhyjLkhs3r5FlKefPn+f48eNUCzHb7/cbO4hSt4Vq3WBYWy/qhUGr1SLPc6qqoijsblJtDdnb20NK2Xi9tTHs7e0BMJ1Ouf7cc43n2mjDrVu36HQ6PPnkkzZVQ4DveVSVtYNEkfVU29Qamyayt7eHJ30uX77Ck09+neMnT/HQQw8x3NtjNp8ThrbKf3BwQJJkBEHAysqKXRyWBVmacfXqNdbW1tja2WY4HLKxsUG702Vzc5OdnZ1FGkfGs5eeRamKNC9YWV3j+77/nXzsDz/O2spK4+EGmkWM1toOFgKSJOHEiRNkeUEQBPzNt36XS+FwOByOlxAvitJHmSasrQxIi5wgkJgiRSrF9v4lwl6bn/4X72LwE/8LT+72+WImydIp27d22Nw8yu7ODeYUlAZmBzP6YUy83uHW1jaTvYyd2QytSjSaADvWeHnQ59atES+//14++vHPceblL+ezf/Y4B1rwc7/xh7Tw0AcpFy9f5mVHNpDa8Bsf/ChPfuWrlHnB449+GfyAo8eP8eQTz/Ibv/cpvv2bXgtRxLlnzvPAmXVEMuWNr3kFX3jyErsH0O716HRjtre3ORiNCDwfVeZ0N5a4vP0MS7stfC9gMs3otMa2iasdIaVP8lxOXpTsz1J29kZ0hOTYSpdXH4s4siLpBTHb6YDLW2N+/bcfYXNjlT8PJTtZyWi+S9sP+ejvfoTXvPrlxK2A7VtDfu1//584cXQJKQXSj6jKOQZQhd06z+epraAiUVJA4CE9b5EwYICSSvgYCWErQPoG7WmMtsJBZtomY0hB3o1ASwJhKCrT+FytMBNoZfCCAB+FNPbrRnqAwPcDSqPxFv7a2mMrtEYbgxfY4/7F7Oj/WNTCsq4257m1XkgpyRdV9TAMCYIAvRBVtfgsiqIRp3meWt/9omLb6S3j+z5LS0u0O9aqlOUJSZqQJylbWzYnut1rN97r8WSGF0iydk4YhvhewPLyMjs7O1y8eIntrV26naVF4+wcs3jN6ma+ra0t1tc32dvb47kbN7nnnnsYjUZ0Op3GV621JgxDqqpqhHR93kVRNJX3+XzeRNJtbW0xHA4bO8fu7i5RFDCZz8izktlsZpsDfZ/r16+zsrJCuxWhVMnnPvc5Njc3SZMErStWlweUZd5YRKqqsp+RJCGOY6aTGe32EqDZ39+lMponnjjHXSfv4tqN63QXTX9SSiaTCaurq7b6vXgOtUf9woULTKdTxuMxo9GIsy+7j52dHcCOYJ9MDkjTKevry4zHY25cu87P//zP0+v1+IEf+AGeeuopvvilR+h1uiRJwsHBAYPBgHTuN0kp4/GYsNV+wa5dh8PhcPzVeVEI6HT7EpVWBFEIM0k+GVHN90m2dsglqDzhv/neh5hME/78UshvfaHgVtXl4pXLiFAyV5pMT4l8n6tbB1y8sUNezOjGbfI8pVAlBnj1mVPcGA/5rje8mpkI+NDv/QEGuHDpKp6UvObkcd71Yz/C0UHEybs3afeh7K2TZdbC0NIepirxtWaeHFCpAl8GeBiUtlVGGXiYgynv+9l/xeRre3Q6q+zNDpjOZ6TZvBGOlVYYJMnujK6OMV2f0sBoNCZf7iFLw2RcIlRBlow5vtnm3/zEu3jVvccJfYPvGSqV0Yo9jPahqtAGssrQ6W5QFAXSF+R5iqc00dveSJ4XfPYj76MSISvtkElZEIYhChDCt5VcKSm1Br+F8AKCqIUnbVICi6ppLaQ8DMYoMBrPM6gsQxpAG7Tv2cczIUjDrgAAG+RJREFUhrDTw1QKbRSeZ6uHhVIL64KxKQ5K44UROi+RUthkDaw1Qi58uLXQqBvcALwgxFuc0wuDnZppjKAoKnxfL85bM5lMMMbQ69mx2K1QNpFtURQ1yQxKafxgsZ0feAR+SKcbM5vN7LS74Yj5fN4ccX9/lzzPWFtbaXzWs3mK8Kzg7naXWF5e5tKlSyhl+OIXv8i1a9eQcjEV0dg0j1e84n7iKGBvOiadzcnmCe0TLfKFyL3nntN86dEvcebMGY6tH6Xb7ZKnGXma2GFB85n1ePtB8/pXVdUMkgEwwqZ7nzl7lq8++ihZMscPJNPpeCHcJQejCfPxhG63TeBJqiInqXK67RZHNlZYW+2T5XOWlmzCTprmSOlTVZr5PGV1dbXxYKdZgpQ+WoMQHrODEVIrrl/X3HXXKR585d/gYx/7GHlWsTcasnH0CKVWJElCMp0vFmmKnZ1toiim3+0RSA9VVmjpgTak8wRP+EzHM/K0wJeCIk/wjKEXt/jFf/d+lpaW8DyPG7du8j//5D/np37qp3jd616HH4WYPGOazBmOD4hzW6F3OBwOx0uLF4WATiqDNoKl/irZaIcrF58hlgXz2YwoivG8iP1hwo2tlP3RjO9+4zfywT/6LKtmwve/4/t4zdn7uOvYBq+472XkxZSw3yGMfJLRhM7GgKLMWFrqkUY9lC6JoxYtofnX/8c/oywVSInnK8oqQ+BTIRCEKONBmRN6Idk0p6xsNVtWFUopK+6MHUJtjCKgwpQFaTLle77rTfzyn/wy22mIBoy8Pa66FheBJ8jUHBVI5MGczZU1vust30Y2SvnhH/4hjh5tA4q4FRIGUFTW9uFHi2qsXCKXPkVVIhGgSzxPUAgPwjaqzAi6LYxUlJ6gCgSBt07oBaRGEUZhM2ZaStBliZGSIPLtUAzpUxiNFAaJRBgrIoTQSCHASISQmKq04iKMEIBUtiostQFtqLI5QdgCL0IuqpJiseUvtUAY7DGEQhkB2uYma62RwlZ45R3iva7i2ug1b9FI+sJU8erqpTHGVmmx6Qvz+Zyq1E2ludPp4C+1m2EbaZrayLPQJnMgTPMcy6pguLtnmwnTFKh90/bvOjptMBg0XuMoihgMOsRxxPLyMufOnbNTNS9d4vr1681jC2HHiLfb7aaRrSxLhsMDPC9gd3eXPE9J05KPf+wPmacJb3/721ldWmFra2uR5pHZaYm7u9xzzz3kZbWwUtgoydlsRhRFjEYj8jxFCMHjX7tCJ24xGe6y1F0hTz32pxNuXL/J6uo6k4MhW1s2sWM8HrOxNsD3Je12i6LIWFlZwfO8ZgR4EAQURUEURbTbNoFlPLY7NwcHB7RaLbIsI0mSJgovyzL+/Re/wHg85urV50iSjCTJyPOSLCuaCnpdkd/f3ycMw8ajbZs6E3q9HsYYiqJodhFuJ7B4CGEo8hSBYX1thfe+971sbm7y0EMPcfnqFdKsIE1T9ocHrAxEk1DicDgcjpcOLwoBffy+B0myFOH7SFrc88aj+AHgRaS5wvcDTvo+r1LKDqfTFX//n/4IpqiQ2qCxvkghM+J2l3leQMuj1RmQFgUy8hmlc8IkRQQeGsWBWUxgCwWmUEhChB+AkFBphC7w9ZSq0ghjiHyfoszxjEYVGeiCljCkWUogBGY8ZLr1HMVsSIgkria87cETvO/z24jAQ2mJUTav1pDRJuU//ebX8KP/9X/OXauryEjhhR4yDNBxQBTGFFWFLwMKXVDiYfyAIAiolG2o84QGndPyBEaGeMIHDJiSCoVsCbQRGBMgpSCMPFAVJk/xEGjpoasKzwMUCFUhjERr26JotMGTPpVQaG0Fnl40RwEYY0W0XDRhsfD+ah+kqsDq20VjVw5VjiAAwBMelS6RiwEoqlJUxkdG4WJEurJVbWXwPFtNlItKuDAGH9CVAl0+ryL9QlCWJVJKZrMJeWGFcVmWSOHTbreRUjZNf3XDWL0IqOPPpGfPv6psM+Rwd9g0mmmhm5HgUkqM8ZuKay3s7mwcvHz5ciNwr1y50pxnba8AuPvuu23kWhAwGo0oS8VgsEKnE2GoMErSXx5w49YtptMp586da5o4L1x4mte+9rVcvHiRpaUl4oX/OorsIJN2u81sNuPSpUsIrBd6Z2eHMsv5xtd8A5cuP8ve3p6d3qcqrl+7yomTp0iShIcffphv+IZvIMtT1tZXORiPCKOgyYZO07QR/mlqq8+13zpJEpIkwZM21UNK2bw3nufZz04xpRVHGGP4sf/uH/PpT3+aIq+Yz1LS+YylpaVmcdbklS8WBnXDqFKK0chmN9fRdf1+n/39faqqoteJCT1rBbHNrgEHBwc8/PDDLA2WmU7nvOtd7+Ld7343dx0/0fjAHQ6Hw/HS4UUhoLOiQAhJVSn8VhthYJ5N6bXbRLJsfklRqUVGbEUUhPh+SDadY/yKYLHNn6cl/aWlppu+HlZRliV4IXiSrFhUDReCRAqf+XzaJCYoXYLnIQgQfkXg+6RpStjqoCpD1FlCFzl5ntLvraNRmLUjtE+fpcoKECXeKOefvrbN/yg9WkGL6XSKkR2maUavE+H5miqAMJYLAbWEEUDgEYiAfJGJqzyJ59usaeFJKySxAixYiCghBMgQXRb23JVCCA8hJVJXaKUoS7Wo1NpFhxICo61YM9RT6LxGjFZVhVEaXVVoKZqqpyhVc0wjrPK2FhAB8raIFX7U3PapGl+wWlTblBC2Zry4i62Q3q6SGnNbtBvpL75mUKpCohEGhLE+6BfOvgGj0YgwDJtKdFUVTbW33WvR7Xab1Ar7cZN4nmiq6rUIRtiKZlVVLC8vU6qKQAZIweJ943kRckEQLES5vc/m5sBODJSa6XTM7u4uSZKQ57d9vbUQPHr0KKPRiKLqMxrPubm1hzCK9fV1btzYIo5j9ob75GVG4Bmmoz3WBn22d3Z54utfJgq7fPITn2BtbY1zTzyBMobNzU3iOOYTH/84w+GQ7/3e7+WpJ5+g14lZW1vDF5KHXvda9vZ3SfOMUlWMDyYkabGwBEGVV5R5ztNPPckb3vjNDAYDjh07xng8ZnwwwfMl6+uraGWYzxJrdWl3OTg4sNnvozHJPKXTkRRFxvLyMu0oJE3n9JaWKA0ks4KDkU36eM973sPdd99Nq2U/n0VVQjonLTIMtvmzqipOnjxJmqaNCN/b26NYpM8kSdZYVuo87TrasOeHIDyKRdKHUop0ekAvDvnNX/8VfBTDgxGnTp16ga5eh8PhcPxVeVEIaISHlIuc2bCDH0i8OCZP50QLAewFATrLb2+XKo0WgqAVoQJgkcMcBS1rAxAe0pMYozBAEEXWliCE9ekKO0hBa4UyFZ6Eqiys2BACrW2yq9G24SsMw2ZaYqEFhgA/jii1xvN8fHxyXSFbEpIZ5XqLIpohRQuFgV5I7AVEJrLCCZ/Ij9BojPYRnkIrhfA9jAY/tPnBxvNByqbCqoW8LSbNosKsDUJnaKMRpmqEcVlpjLKC2RMCoxVe4GF8O/hD3CE+bWXTNAsPe44gDHh3CGOpDGaReqA9K+yEELbwrUXzOEqXSDyQBlGVoDWV1gtvqmiqgiiaSl8jhLVG62phWfBYPDwAnjAYrZGIJj7NnsT/r1fof5A6YaNu/hPCRqDV3mStddNkGEURoCnLvGk+TNPUCjB0Y+/Y3d1tBHa9oKnfG6UU7Ti8o3EvQwjBxYvPLPKmrQVhOrW7J3UMXN3kNxgMmtQMPZ0yHA5RStGJo+b2cDhEa83W1hb33fcyVlZWmM1mjEYjxuMxDz34Mi5fvszGxhp/8icPc/eZs1y+fJkzZ84wmUxYW1vjM5/5DJPJhE5sR10XRcGNm9cXY8aHjXWktlpIKcnyhF6vw6lTd9nEiqJgOp2ytbVFFLZoxR1832e4P6YoCtbW1poGzclk0jQ43s7W7tq86UUzp1KqmQ5omx9F87U6Mi8M7aRC6utqQZIkaK3p9/scHBwQBFGTSiKlpChsmkbdPFlbPKIoahZKZVki0c2ORG0PmU6nL8zF63A4HI6/Mi8KAV0ZCHwfKSS6KkjzEumB8AK0tEKjUgoRPD87tdKaoB3h+TFaW3EltGnERqUMCFstFVJgNKiqIkCifYNaiDRdVvi+RBhFUSr8oIVKZ0iTU/mtJoOYNEEGPoWukMJHWOcxSlUYafClxugUEfvIoGJZDch8gVYVfuSRV4aQCBl28FpLaDVHlilSaTQ+HlYMN816QtgKclVhAC0Wtgms6PSF/TmMQakcoyqEUYvK8B0Nfz4s5g8jsBPyKqPxzW0/dl1Fq4Wz9CTeX2KLKCUIz8dIiaetgNbaVqWRAlULYhRGLbzfZnGeWiOkQGDFfKVLhL5TQN8W70aA50ukFGDu8AALg6lKKmPAGBZ17BdKPy8mJ/pN1TkIvMZOUfufa9+xXiwMap9wVVWNAA8jK7pWVla4cuUKRtNYLMIoaCwb9ZS+qqqYz+fNMJY6DSNN5eL7ujmnOrO51Wo1EXvGGLZ3bzQZzUvdNuPxuLE9VFVFu91ucqDTNGV7e5tOt8358+fwfZ/9/V2m0yk7OzsEQcC5c+fIsoxnnnmG+XzOq1/9aubJBOkZEKZ53rV3WCnVVO739/cBzb33nmVldZkb17cWAlOxtrrJdDpuKv1SysYTnWUZ+/v75HneJKHUFox+v9/4i+vrezwe290gYzCL639nZ4fhcMip03cTRRFpWtAKbLJHt9td7D61ieO4WQxEUdx8durXsF7wFEVBr9d7nn0kiiLyPCfwWs251qJa/wWx7nA4HI4XPy8KAa2LlKJM0doQBnJR/ZFg7FY+WuPVXf1lSeR5dhBFEKGrisqo22OHAw9jKjyx8Iwan7KyTUGyLDFGkakZZFVT2ROeT1UuqqdliSlKfCnRMiRAYrSxecVS4gmPCCuKUdYW4YUBhgotQCPwNMgcMpNCbs/fYH2/RkoqnWPSHYyxgsgIUCq14lUpJLb6XJUlyliRan9ZayQGoxQoTSlofmnrOt7NCxBYASqx1Uvf2rqtR9kYMBB4Icaz/mV7AIXW9jXxAF2VmDtkqV2UGMQi0aQyBiFvC3CtNb5eVEwBLQRGGDAChWlGW8PtarIVwPYrd6ZsAIvFiUQrc+c9YLGAQAjwxGKZ8MJRi59avLGoJNfiqRbYtX3CWlN0Y5MBmmolwO7uLkAj/JSyE+7q6D+tNUXtsV48fi3ClbK2F2MErVa7qYr2ej08z7PRdXd4r6uqotVqNRaPO4WcMYY4jonjmHa7zfb21SazuizsIuDxxx8nDG2ld3d3t2l6rBsKL1++zH333s10OuXIkSONT7kZylJUzWJXCMHp06cJI49r165x7eoN1tbWWF1dZXt7m42NtcXkUVu1rnc60tRG+vV6PcA2F+Z5zurqajMqvN3rNhXtWrRrrdGLa6nOzNYaDg4O6Pf7vPNvfx8f/OAH2d/fZzab0V0aNJXuKIo4ODggjuMmC7t+HnU2dZqm9Hq9pvrcbtsFSrsVNiPWwzBsjudwOByOlxYvCgHtmRKjDb4QFKW38BN6dsCGNk1+rtAGEYQoAcKLENLHj2xWMrBo/NF4wvpDq7LCNwUCjRAG5SsoDEElrQDEVr5zpZG+FbJBFCL9cJEAIRDabvOGQYQWGlUpK2pN3XHv2Qo1AiNtpVv4/u3M4kWecS2kDIC0Ysuo28kFntJYgQyaEl1P961vNEJ1Ibq8ha1jIZ7htg1Dhp7NdDYGISWlqpBBgBdEtlmwtksYZavnxoBWGKMQi8cQdwh3iWi2tQ23779wcFi7AaClvt3QJ27bOe70KHt3VL3rx7/dlGied/87nxOL4wJowttf++tefH9N8rIgiltI38MPAjAlWZaiTUXc6uF5waLSKVAoDIpSV+R5SVHY9zLP82bYhvXzekDZCE2gqTAbY6jK26kk9etV2xfq0eGz2WyRjzwjSWZ0Oh3C0PrS62rsUreNMYb2UhelcqS0n6GyUBgtOHpsg/5gCbDDT2yTYobvxYxGI5Iko9frkadzRvu7CztEhtZWmEeBYDgcsr6+jud57O/vNyLW5jhbgb+6usrGxgZpkfLMxWvcvLFl7R2dNpvRJsK3Fd5ut0u302/yn9vtLufPX6QoKpucIWxkYBgFrK6tUJQ5fhhijB0AlM9nbG/v2opyGKKMaJJQ7FTCOVWZE0c+v/mhXyfPC+6//xWce/I8Z+99gP39EZOJje7LsozBYGCryosR7GCHu0gAY5gvGisHKytkWUYYhsxmSbMbEUUewpQkszkOh8PheGnxohDQ+C28ejIb5nbaQFVQZilwuwIrCBFegEeFqSqU1rAQ0OovCj8hMF4AaMqqRFYFAmkb9ZRt7CrzAmEEptIYITBCIFrWmiGltM1uvmcfe3G6Ukq8wP7CtNvF9vhCCoTnWdFsDL7wQYG/EDgIK/gqo1GVraoLsUjm8G57gOXCEqG1Ri4izBqhaBbiWd5OnhAIOy1wcR+T2+rlXxSztacY635AVCV60aAmjFoIarN47W5Hxmm1iJwTAs1tYavFQghL+1rIv0Qc31lhtML7//kzd97+y9I07hTY9fHqnzL6hW0irCvArZYdE12VBt8L8RaNj3bQh2yEqbcQg0mSNtXYWgynadrcrhMvgiAgjuPGm1tHrdWvSS2waxtHvSCrPc+1CLc7FfVCxNDt2ug3K8wVZWkWNoOSLMvwfb+JybNV5cXI8sJAYO0j9fcmk0lzrBohBHEcN2O7kyRprA53nuvRo0eJ45jhcMhzN59juD9pBs3UOdr186u980opBoMBW1s7jMdjvEWCSR0pVy8iiqJgaeH5Lks7sCVJkuZc406v8ZrXf2azGRIIw5DJNOGZZ55heXmZ1dVVRqORTdno9RiPxwyHw4XH2b5fVVVZn7vWzxs9X8cM1seth9DUQ3TcIBWHw+F46fGiENArr/hu9xvE8ZKkFnbNToIXNnaiO9Mz6gpynpdobSufaZo22/7r6+tMp1OCIFjc//auRS0aa9uGtTaZxroBNP+uewTq86pFnD23uhlWU1XFHcJNAFY85nkJCPr9Pp1Oh7Ismc8ShIQiL2m12jY1BLt4mE6njS0iiiI8z/rA2207IbHT6TRNjEmSNJMZlVKcPLlBHMfs7+/z9NNPU1QapQxCeChVNBMP6wa/brfLbDYjTVOGwyFBENHr9UhTW8GtbS51LnTtF69Hd+/t7TX9E7X1qc58zhdJGWDFs67UYvFjhfHVq1fpdDpcu3aNKIqa99YYg+/baMayLInjuPFe182JtV99c3OTLEnI85xWq2UtIQtR73A4HI6XFi+0hdTheElT+5IbXy0aIwxGGEpVoYzGCMiKHBBEkU3nCOMWXhChjCAvDfsHI/KqpFAVpVaNaC6KgjwrKPISo5t+ytt2lkVDYFkqtJaAjzEeYdjCTkn0m/znOqGi/rcnJL70MEqTpjmzma2IB6HH0WPrBH6IVqap0lqPtW6Ee52kkWVZ4632fUkcR3Q69nn6XgBGEAYReVZQlYqlXp/VlTWM1Fy9fpVnr1xmnubN7ocxmnarRb/bI/R8NtfW6Q+WUNqmldQLj+l0yv7+Puvrm4DEkz6+FxCFLapSWQ+9tt798XhMnt32jd/Z+JdlGe12m2QyRRUl3W6XsBU1O09+FFJVBaPRPoPBEkqVzGYTtK4IQ588LwnDFkoZqkqDlFRao4xB3mHn2traotKaKI6Rvo8yhjzPG/+7w+FwOF46vCgq0A7HS5U6vq6u/MLtanBtzyiKRTyiF2CMbKwI1spgs6OVstXjqtSEkY8WNL7a2wNUbttV6qSM2gphzO1Kd31OtjfAeqO73S5ikYTRZH0b25BoK8hlM5Cl1+sRx1GzKKjjAuvUi9oSUfuZ77ShSElTXa1FNdCkktTfy7KMnd1dtrd3mYxnz4vq8zyPbrfL0aNHnzfEJI7jZtqgreBnzSCYKAqIomhREfabv+vmSaXM8yrn9v25bfsIw5DxeMRsNmFjcx2w3/M9O61zPp+T5zlxHDeWnbr50xjxvAE5tcCvLRp1Ukq96KgnQdbxhnUzqcPhcDheOjgB7XD8NWgiDrnd6Fffrq0dxhiWl5efd587xbZSGmMEeV42uc14AiG8RTbxwmP/F5I76uZDO6XPAPJ5wtXzPFot65+291WkqRWRRVHYHHF9OyKw3W7j+z4bGxu0Wq2mcbAWzVprsqxo8qvv9By3Wi3ACug7q97GGLIsYzweE4YtgiBiZ2ePvb09JvMZ81mKUoYosukUS0tLrK+v026FjT+73++jjWI2mzUV/3phUkfEaW0nPR45cuR5vvQkTdnd3aXVajd+8FqUV4uoQKUUURRxczrF82QzZr224UgpF9nPNoWjtoFkWbYQ6EnTy2AjBAva7XaT8xwEQfN49fufZVnjbZ/PXROhw+FwvNRwAtrh+Gtwp984DMOmKayOU6tzrcFWPust+zzPrYirKqrKVmmtwBJUlcaXPkoZfD9ESpqkjVpA3il8bYW2AuTzGtPqcdRaW9tDlhVNNbTSGuHd/viHiyp3HMd0Op3n5RonC9+u0TRDSOrqNNBE4HmeR7gYAFRXZIHmNbBV4wn7+0Om0zmzxFae2+02vd4SnU67mQqIjlldXUZKGy03mY5ZWVlpqtF2CmCClP7ifDJarRDf95lOp02FeDKZsLu7y/r6ZtOkWlsm6texzmhWShEE4fMWOHX2dJ6nzTClLMsan3Ov12M4PGAwGLCzs9PsPiRJQq/XazzWtRf6zmbQ+XzevEcOh8PheGkh3H/eDofD4XA4HA7H/3dcE6HD4XA4HA6Hw3EInIB2OBwOh8PhcDgOgRPQDofD4XA4HA7HIXAC2uFwOBwOh8PhOAROQDscDofD4XA4HIfACWiHw+FwOBwOh+MQOAHtcDgcDofD4XAcAiegHQ6Hw+FwOByOQ+AEtMPhcDgcDofDcQicgHY4HA6Hw+FwOA6BE9AOh8PhcDgcDschcALa4XA4HA6Hw+E4BE5AOxwOh8PhcDgch8AJaIfD4XA4HA6H4xA4Ae1wOBwOh8PhcBwCJ6AdDofD4XA4HI5D4AS0w+FwOBwOh8NxCJyAdjgcDofD4XA4DoET0A6Hw+FwOBwOxyFwAtrhcDgcDofD4TgETkA7HA6Hw+FwOByHwAloh8PhcDgcDofjEDgB7XA4HA6Hw+FwHAInoB0Oh8PhcDgcjkPgBLTD4XA4HA6Hw3EInIB2OBwOh8PhcDgOgRPQDofD4XA4HA7HIXAC2uFwOBwOh8PhOAROQDscDofD4XA4HIfACWiHw+FwOBwOh+MQOAHtcDgcDofD4XAcAiegHQ6Hw+FwOByOQ+AEtMPhcDgcDofDcQicgHY4HA6Hw+FwOA6BE9AOh8PhcDgcDschcALa4XA4HA6Hw+E4BE5AOxwOh8PhcDgch8AJaIfD4XA4HA6H4xA4Ae1wOBwOh8PhcBwCJ6AdDofD4XA4HI5D4AS0w+FwOBwOh8NxCJyAdjgcDofD4XA4DoET0A6Hw+FwOBwOxyFwAtrhcDgcDofD4TgE/ze+nUnhw79wPwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "texts = ['original'] + [str(_) for _ in score]\n", - "imgs = [name] + list(meta.name)\n", - "plot_gallery_images(imgs, texts);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Using one intermediate layer close to the input" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(62, 151875)" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "se = SearchEnginePredictionImages(model, fct_params=dict(layer=1), n_neighbors=5)\n", - "se.fit(iterimf)\n", - "se.features_.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "iterim = gen.flow(x[numpy.newaxis, :, :, :], batch_size=1)\n", - "score, ind, meta = se.kneighbors(iterim)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAAFtCAYAAAAu612qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXmwJdld3/n5nXMy825vr1drV/VW1ZtaSC0JSQhZakuMjQUCA2axxwxg5PF4UHgGxg4zMR4Tg2MmWCbwRADGHi8gMIsEBtyAhIZdEkZqCW3dUku9V3d17W+/W2aec37zx8n76nXTWqqtblGv89Px4ubNzJuZN+vbvzz3tx1RVVpaWlpaWlpaWlpavjjMl/sCWlpaWlpaWlpaWq4l2gF0S0tLS0tLS0tLy1XQDqBbWlpaWlpaWlparoJ2AN3S0tLS0tLS0tJyFbQD6JaWlpaWlpaWlparoB1At7S0tLS0tLS0tFwF7QB6DyLybhFZ/AL7/LCIfM1zPP7dIvLbz+3qWl6siMjXishnReRhEfnBZ9leiMg7m+0fEpEbXvirbGn5i7TabWlp2a+0A2hAEkZV36Kqm59vX1X956r6+y/UtbW8uBERC/w08DeAO4C/LSJ3PGO37wU2VPUk8C+BH31hr7Kl5S/SarelpWU/86IZQIvID4jI/c3f/ywiN4jIAyLyr4CPAsdF5HEROdDs/7+LyGdE5PdE5JdF5B83639ORP5Ws/y4iPwfIvJREblPRG5r1r9aRP6LiHyseb31y/W9W655Xg08rKqPqmoF/Arwjc/Y5xuBdzTLvwa8WUTkBbzGlpZno9VuS0vLvuVFMYAWkVcC3wO8Bngt8PeBJeBW4OdV9S5VPb1n/1cB3wLcBXwz8KrPc/jLqvoK4GeAf9ys+wzwBlW9C/jnwP/1pf1GLS8ijgFP7nl/pln3rPuoqge2gJUX5OpaWj43rXZbWlr2Le7LfQEvEK8HfkNVRwAi8uvAXwFOq+oHP8f+/1lVJ83+v/V5jv3rzeufkwbbAAvAO0TkFKBA9l//FVpepDybN06fwz4tLS80rXZbWlr2LS8KDzTPbqQBRle5/7NRNq+BKz9I/gXwR6p6J/BWoHMVx2tp2csZ4Pie99cBZz/XPiLiSD/g1l+Qq2tp+dy02m1padm3vFgG0O8D/qaI9ESkD3wT8P7Ps/8HgLeKSEdEBsDXXeX5FoCnmuXvvtqLbWnZw4eBUyJyo4jkwHcA9zxjn3uA72qW/xbwh6raevFavty02m1padm3vChSOFT1oyLyc8C9zap/B2x8nv0/LCL3AJ8ATgMfIeXmfbH8GCmF4weAP3xOF93SQsoLFZG3A+8FLPAfVPVTIvLDwEdU9R7g3wO/ICIPk7x33/Hlu+KWlkSr3ZaWlv2M7Pcf+4cOLKi1lizLcM5RFAWdwYDFpVVc0UfFUXR7iFicM0xGQwxQlhO63T4R+NM//j1e/pWv5fDRYxgsKgYNkcnOOtVoi0w9MQZCiFRVxbSuKJzDGrACeXeAyXOK/gAVQwxgjcF7z8LCHIOlQ7i8gxPD9tYGo83LxO11fLlDNALWoKoQImgkMxYxARHBFX3y3oCiP49xKfMkYsmLflpWQQloFGKMu8uB9J4QCSiKoKqoKjHGtC2mZVVFJO3vRQkhoKRr8lHJ1KdzxcjeAvokrbR/jMp7f/s32+r6q+C5ajeEmiwrMM4RNOKco9PptNpttfuC0Wq31W5Ly35n33ugu90uzjmstYhIMkgq1HVJ5SPdbh8/jthun+nUM51OyZ3h/o9/lPF4SAiBo8eOkZnAzuWz5LZHFQO+KonlkHq8zThEjDGEEKiqChHBZwUqgXE1hZ0RNi/I8jUAjDGgBpcZ/MZTbJ179Mp1hUioK6SusQSsiRiT7F+WZRhjMBKIJkNcRulrqKZEY3F5QVYUuKxIBlyVoEKMpjHIoGqIKF7DrpGOMWKUKwacK8sz4z5bh3pimH1WEKBSICoqIEra30Y0QFCfjhG+HP/61zbPVbtVVRF8TV3XZJmlJFI712q31e4LRqvdVrstLfudfT+Anpub2zWywO4v+rquMUYZbtVYm0E5JtYejZGRn3L99ddDAF+NqaopF08/RpY5EENAMApWA049YrOnGUVrLTb5Cug4R1AQBNPUJopGICJqyPOcfmHBGMoAhEj0ySiCxRhwJtDp9FARxKaHUrQFxuVkCGINxgLGIM0DS4EoBhEwzXtBkjGPikMIpHL3tF0RATERjQISmqtVIKAqyYjHCNFD9FiSIS9NgREhooimj/gIxNh4XBSaB0TLF89z1a5EeZp2jWir3Va7LyitdlvttrTsd/b9ADrP810DG0JIy1omgysOVcUYg506iM3P9eZnu60dxkdc4wEw6vEZONOFqBjAYKnizE4Jxma4LMNZsGIJMYK1iBWMzQFNRpeIyyxqMiJgRTDOYASyTsSrQTSiKFECETDWYV2GzQoUweQOwaTrN0IUwRiDWIeYHFFNnogYEJqQIGCJiCpGr3g6ao0IHokRlRSyNETYE14kRkKIRF+j0aMoaMS5GlXF0XhBVMkQQgzpGhrPScvV0Wq31e61SqvdVrstLfudfT+AVnHJGAaPr9MvdSMG0ZQoZ8SAMahkGGOTEReLESUQCOpJP+qTBySLgkhI4b2oeEBUsU0OmrMWZwVrAYRoTPJmWEVNylXLsuQ5ybKCzFnUOYIIhICNisViXSS5UAwiBVUdyUUxVonq6RR9xDhAEGMwNsNagRgx6jEIasAFTyQSNBBJRllFiRoxksKBQWuyepZ3l7weIewJNWrAqqCxhlgR6wqvKfxojEHL5nwCGprPcOUBoDHOEvNaroJWu612r1Va7bbabWnZ7+z7AfQsp6yuU16dKDjrMN6k3DxnsSIpvCcRQRAiIopFiTMDbcAYwRgwXAmNGWOgyZUTEaxN3gjVVGxiTOOpsJagERQMDucsVhpD2Bg5EcEaUBGcQDQmGUF0T/gzdR6UwmMiYJpcuxBwErESsUabB1K6B6K+8XwoqgEwiHqIAQ2g6omqaAyEWBMD6XVPPl6MEe89oZ4SSk8kEPwV47y3ECY9LK6s25vP1/LF02q31e61SqvdVrstLfudfT+ADqEmhEAINaohGc5QgxU0ggZFGgMtRpsQYWN0jKDWYDGoCq4x2FYM1slucYyaZKisNYgoYgKZS7fWZTad39dIY4QdGVnjMUGaHDihqclOIbg8s6gaBANNlbk2XgWDA+/xlGgU1BhCjOTGpgeGtSk/EKHcW7TiQyo6UbniqfABHwOiUNf1rgfEe/8XDHkIAQ317n4z4zyrNN8bLgw8vQimNeRXT6vdVrvXKq12W+22tOx39v0AemZcjDFXDI2G3ZCZ0LQbQpGYwoKIYsWAtelXPBFieggIEWNovCcAV37pS1PIklmbDLqkimyRZjuN9wVSjtsszEbyGoQQ8N5jYkCtNOcyKTzpHKFpTSTeE8Yeay115fExgHFUGrFGMNaBSdc+USVoRIIiISJREbEErrRNmhnvujHe6cEXdu/f3hZLycArMQZmrpZnekEAYuMJ2XuMlquj1W6r3WuVVrutdlta9jsvggF0MkjGChLZLc5AFYnNckwhtiiCFcUIGEvaLimvLAIaPYgkY2j2GDBJLYNChBANIdY4Y3cNufepX2dmK4wxVBLwxoBxu22Pdvt4akDrCm+aQhzvidp4Gkj7Be+RqFTqk2FFUm6dejDJUCOWOgZqBR8DNkLWtD+KTcujp3k62BMGVEVUU21PU91NBIMhkkFKX7ziCSHdTwO730NnX2e2T2vIr5pWu612r1Va7bbabWnZ7+z7AbTZY6xFZ03nQTVVeOMjSo2h8RCIJRjBBEHwxLpCY/IUiIKTjGgjtTbN8TVAFHRmkBG8BFSSUUUNqqSCEhFMZgg+VYSLpuIPMUpuHbYJVYaqpEZQ71FjcE2OnsVCHfBRaJ5KRCIRQY0lRoMVgxhDpSF5QKKhIxkmSzmBIoIhff+41wsjgten9yBVXLMciH4WOkyhTSWFH4mBgN19MOwacnOld39bCf7caLXbavdapdVuq92Wlv3Ovh9AV5PpbmhsFh4zxiIxErMmtCeaCjskeSdEkivE+brxCgTQFCY0NiC2ycEjJENMMmAmCiIVEagzQaI0xScRAZwKBAtYYjBNPpxgI3gTEU0GMbgMoyBiyIzB2lTcQmx6hxpFXYGxGTkgLkthyqY9UhTomWTQsRZ09j3Tw8ZwJbw3y6nzMeJjeFpYcPbgUxV8TPfPeEVdhCbHj2hwBAgQrGIaF0iUAGpAIiqaepy2XBWtdlvtXqu02m2129Ky39n3A+hyMr1SiDEL2Vnws1AZABGNHjEOFdNUeLvdBvwxpvw7iKgJgEvhOjUYp1iTyl9y16Ho9JqqcIs1EH1ANFLHejcU6Jzb9RpEFTR6rBWUmIw3qSjFZYZOlqcG/jFgm2hcNILaAjFut9rcGJBmAgAwOGPBKNHYVJQTUpgvqEfiFc8F1lCHgGsK3GP0xChEUUxUApEYwYpSEWieAqAxLUOqIkdxGhCxKUSpAVFDpJlIQc0L9C++f2i122r3WqXVbqvdlpb9zr4fQHvvn5brNgunpZmxZpY8Yo3BiMFmORjBmgwrNKG3ZDCtpGldxZo0GUDTTF9chs069JZW6S8cRBVsNGj0xGoK0WNjTS0R6ilajbGxxkoTuoup/6fGVBWe2Yi1OUWnT9HtYzKH+jrlBoYaFcFmLlWMEHEmImjy1JgUwXQmHSviERUiqZVTyr+rn5aL52IKie5OeNA8+NBADFADhEDwAYlpMoAYUw9Sdo14xGtEQiqI8ehu0Q57X1u+aFrtttq9Vmm122q3pWW/s+8H0HaP4Z55KIw0iXCzn/JEnAGbFRiXJeNsHFHAkvLgUgW4weYFgk0eC5fT7fSJRYe8v8Dc6gnsYJWAS2HCUKPlCHyN+pLMT9FyhJlsQDVEQ4mECgnp2kJQrEYKa8g6HfqDefLuPMFAqCtMHZAieVB6mSHUVZqdKnjQgJOAEZAoWCzOzHIP5Wk5djyjwjuFWFMbp11DHgMxNvl8Kk2VPET1TU5ewCJE8fiYcg1nM3gJETPrR7qnWr7l6mi122r3WqXVbqvdlpb9zv4fQBf2yrJNIbq4a8DTNhEhGnDOkeU5IrMZrgxG9obrDJlLn43OYfsLmKVjmHwF0+kwyXtMy4BxyePivRLVEYAohiLv4FwP4xwy7SD1hMxP8OMhIj55Mwhgcnr9RVzvIFr0KMsSsQU1AYk1FsWbAslrhDFGR/SqCWlSV4sYT6YKtSGjBq4Uk6TClWRgo0TUpIKYEBRrUm6glzRFLQGqmAKqKqDi8Wobr0aqikcNmSg1s1Clgmk8Qc1/USOtGb96Wu222r1WabXbarelZb+z7wfQLu/sLoukzvn5HrMy85AYCeROcEaxJsM5h+QDMiuNufc4BCcGXIGZW4W5ZbwbECVS1VPq2lOpIGIxMRCDp55OUrjOWmrrGHQ72N5BTG8ViyKhxk62kHKICRMsAeccOlhikvWYVoFyUpIJ1NWUqhyjdcWg22FhfoDNunRyh8+6uHpM1hxTTJWKdiBdTzOZgKoSG2+HmiuvwWnKxVNNReyqEAxGU96ijYYyeqJTQqghpIKWEGKa+VYEHyOCwcQUE515X2ZFNC1XR6vdVrvXKq12W+22tOx39v0A2mryAswa6RsR3MwzEBVEsBgQQ+EyJOuQZRlZ3sH1FsmsoMFjCGTGYqLFDBbxxTwTLbi0tonakLwQNqfozxNChZRTAKbjUZpFyhhi3sX7iu5ggTzvYGeN/wuHsz1snNJ1hmhg7GFaT/ExkolhUlfU5ZSyrIj1FLWOMJ6SO0Po5GiWUViL1CMycUhThW3FpckJGlS1me7VNIY2vRpN/U4DqVOTKqjaFHFVRY1NM1+pJ/lsGk8RFomp3n3XmEtKE5xNl9sa8edGq91Wu9cqrXZb7ba07Hf2/QA6w2NmM19JCnHJrNk8ikGwRoguB9vFupxoM4JkGBW8OCTLEWupbUanO48UA2of2dnewU9HYA3WpYrnOCmJIUCoUq6arwh1jRVhXJaIdQSFvOjuzlolsUZqT24cU2MIZcV4OgGUTqZYCfhQ4X1N8FMyYyB6JpMJE6NM65zlbg+b5XRRrBo6TT9UAUzTGzQZ1aZH/zNrTKJBnGKagpqo6bMaFaegkvxBwaWpd6MEiB5vUjsobR6IKoqKYIw8rQ9pa8yvnla7rXavVVrtttptadnv7PsBdE6czXyaijIkpj6ZDVbAGaGUjHHlcZoR64DYCltupQKXTg81wvzyAnZwgGgsW5NNxuUY0Sl5NodxGXUVCJRpGtjGkJkYicETIU0QEAz1yCJ1Cc4i1iGiBDxVgOHQE0MgVDUdEymiMvVjVD2x9mQCRgKQpoCdheyGYhEc0VpcdBirGGcRQgp/QipaabwUqW+p7L5G04QSje5WjYtYNCioIuJIGXgRQQhWQAxEixrFRfCzKXCBoFceHm1D/+dGq91Wu9cqrXZb7T6fiMh/AL4euKiqdzbrloF3AjcAjwPfpqobIvJPgP+2+agDbgdWVXX9Gcd8M/DjpCrXIfDdqvqwiPwPwPcBoVn/36vqp5vP/K/A9zbb/pGqvldEOsD7gKI536+p6g81+/974FWk/zsebM4xFJEfAN4GeOAS8PdU9bSIvBz4GWC+Ocf/qarvbI71i82xauBe4B+oai0iC8B/BE405/+/VfVnm8/8LvBa4AOq+vXPcl9/EvgeVR0077+7uSdPNbv8lKr+u2ZbAO5r1j+hqt/w+Y61H9n3A2hM+gWecu7Sr3zVgMGiZJQmYyyWOhpC8Bg/avp/RqI4MILr9CkGy/QjlKMhVTUljCfYuiaqIfqaNOOWhSAQIWhNWZbUdYUYwbmcSKepTm/CeGXAOJ96j87y1URSBfl0zJQpPnp8OU7XrxHnHP1ugbVCrCO+9gRVdmIg1gO0cGTdLoOOI6fGNs38Qwip56kqViwBRbApqGoUjR5jkqfExEgQA6JESX2ZIhbNLFQZYmqQNFtYNIY6EzREgkY0pF6kwVqISmhCuRr2rzF/3mi122r3WqXVbqvd55efA34K+Pk9634Q+ANV/RER+cHm/T9V1R8nDQIRkbcC3//MwXPDzwDfqKoPiMj/CPwz4LuBX1LVf918/huAnwC+VkTuAL4DeAlwFPh9EbkFKIE3NQPjDPiAiLxHVT/YnHu7OdZPAG8HfgT4GPAqVR2LyD8Efgz4dmAM/Heq+pCIHAX+XETeq6qbwC8Cf7e59l8iDcB/hjTY/7SqvlVEVoHPisgvqmrV3Ice8A+e+eVF5FXA4rPcl3eq6tufZf1EVV/+LOs/37H2Fft+AG2epQ+pUdNUVxswghfBNBXiMUa89wCIiSgW53L6/T7ee0ajS9RVCdFT13WqHPeGaCKKI1RV8oCIUlUVqkqn08E6Q2RWVKJ4X6dctQAhXgmzGa7MVBVCRVlOiHWa1cugFEWBFSXP3W6xCCQvx7guERPodbvU5HSkmT3LpHZHqb1RBBUCSjQQVQiiBDFEFWJU1Aqx8Yb4kIx5JD0E6iyixuJNBdYSvE+5ehGIHo2gISQvSWimvY0xVY63XBWtdlvtXqu02m21+3yiqu8TkRuesfobgbub5XcAfwz802fs87eBX/5chyV5egEWgLPNubb37NNv9pud71dUtQQeE5GHgVer6p+RPNUAWfOne48lqUF6d8/6P9pzjg/SDIxV9cE93/msiFwEVoFNVX33bJuI3Atct+d7zDXnGADrJM82qvoHIjK7R+z5vCUNrv8O8E2f4/58UXwpj/WXnX0/gCak8JZExdrUtF/Uoc6BSXlxgk3GB8X7CkghsDxXrM3pdHsYlzOaDKkmo6bAJaa8OFfgRIgo3k+p64AKOEzqEwoQA6gF9YSQijuSQbezKCezXqkAWJsmDhAHMSNoOk6oK8qyxBnIMts08E8PIO89k3JEjF2stQxcj6yw5E5RSd6JWSGLiDCbZlabBv2z4hUEBAMaMV5xKLWmkCsaiR5iqLEhS4a7KolqIASIGcRI9B5LerilyvBIlH3rCXn+aLXbavdapdVuq90XnkOqeg5AVc+JyMG9G0WkB3wtyev7bLwNeLeITIBtUqrD7LPfB/wAkANvalYfIw12Z5xp1s0GkX8OnAR+WlU/tOdYPwu8Bfg08L88y3V8L/CeZ64UkVc353/kGesz4DuB/6lZ9VPAPaQfAHPAt6vqFxLC24F7mvv2zG3fIiJvIKWcfL+qPtms74jIR0iD8x9R1d/8Io61r9j3A+hd70fTT1REIMtQ68AVZApUSpCA93t7dyo0IUcj+a5noNfpEGNkWo7ITEav08ErhKomaiSqRxCiXrm1qWF+RRTTLLPrLcldRpZluCwjd8k4e4lYDYiUoIHcwmQywVcldV1TWaEsXapaz7Jd700IwkblCTj6nUiWFQyMYmxETJ6+u0k9RFVA07fDaySPSmi8HSEqRiPYdJ2ZNiFBFQpVgtpUOa4gYkh9W5XY5PmJpCrwSPrTZn3L1dFqt9XutUqr3Va7fwl5K/CnnyN9A+D7gbeo6oeavOmfIA2qUdWfBn5aRP4OKbXju9jN8n8aM49yAF4uIovAb4jInap6f7Pte5oB9k+S0jR+dvZhEfm7pLzmN+49qIgcAX4B+K5nGQz/K+B9qvr+5v1fBz5OGujfDPyeiLz/GZ70vcc+CnwrV7z3e/kt4JdVtWxywd/BlR8QJxqv+E3AH4rIfcDk8xxr37HvB9AGefqfGLwx1CJ4jRjJyVDqOP0LRRehKjF540mxDotQGMNwewejDoj4OlLHQFlPiUCINWIcVmQ3LKgBavWIcZim+ERI3geiT+FEIpJZnLFIliEhw/s0FZcRi3OOPM8JIfUrnYUpnzbjVVC8GsaTip0qMETpGENuHNJMRJBCq6YxrAZVUnOkELCqTaW44hoPBk1vUhMVE8BKxDetmoIxBAMmpkkCoiiBiCESNUJM08yGELD7NxfveaPVbqvda5VWu612vwxcEJEjjefzCHDxGdu/g8+RvtHkCr9sj6f4ncDvPsuuv0LKM4bkcT6+Z9t1NGkfM1R1U0T+mOT5vn/P+iAi7wT+Cc0AWkS+BvjfgDc2aSGza5sHfgf4Z00e9d7r/iFSSsfenObvIXmEFXhYRB4DbiMVGj4bd5E85Q83HuOeiDysqidVdW3Pfv8W+NE932GW4vJo8x3vIg2gn/VYn+Pc1zT7fgAdxGFFyVJjTTA25Z1Bqn6WNHVq5WtCqJKxVwh1TSU5RXce05vD2ZxYDxmOR0yrKb4usaLUvmw8CxEBnDEpt84qKjb17VSPC5K8BEBm022PMRKNow4RrzU6GlFVJd2iC9bhinlqU1CNtoniKbo90BpRTwzCZFJirSfPc7IsAxeRGFCq5BmpTOp1mlmMBKwINrrk4SAQqNKMVTGSAVEjoekfql7xGnennZ1NPeuDb6abTdPO1hpw3lMFjw+KRAi+xtQVIUaMavrMF4wgtTyTVrutdq9VWu222v0ycA/JM/wjzet/nm1oOlO8kStFd89kA1gQkVuavOP/Bnig+ewpVX2o2e/rgNnyPcAvNcWAR4FTwL3NYLxuBs9d4GuAH21ykm9uOnsIySP+meYcdwH/BvhaVd0d+ItIDvwG8POq+qt7L1hE3kbyNr/5GV7pJ4A3A+8XkUPArcCjn+umqervAIf3HHc4G/DOfpA0m75hzz1ZAsaNZ/oA8NXAj2nqTvKsx9qP7PsBtDMRZ8AYS7QGFUGyvCnUSEbcT2vqkApGbBMaCz5SzM8zt7BEp9un9iXT6YRYe6J6QqhTz06NiBpMloN1qEZykyFV6s0pnaZAXANWUrNPRVMenTVYk6qmIXkkNEZ8SIUueZ5jjCFowE6B6AleMFEwLuXfzQpfnHPp+p3dXfY+FZc4VTIUE0J6CKCIBrIgu0baBqUUqI3BxxS67FswIYVHTUheHg0evKLq0TqidZ16qgaPxJj+QiCm5L60TQSjbSzxamm122r3WqXVbqvd5xMR+WVSmsABETkD/BBp4PwuEfle0iDyW/d85JuA/09VR884zruBtzWpCH8f+E8iEkkD6r/X7Pb2xjtcN+u/C0BVPyUi7yLlMnvg+xrP8hHgHU2ahgHepaq/LSnv5h2NR1mATwD/sDnHj5MK/n618dzO2sJ9G/AGYEVSSzlIre8+Dvxr4DTwZ81nfl1Vfxj4F8DPNSkVQupEcrn5vu8neaMHzX37XlV97+e51f9IUucRTypGnF3D7cC/ae6VIXm8P/15jrMvkVk18X7lq245rI5UDR6NweU9pvQZ+pIQoa5r/LSk9JPkAYg2heYQDh4/xeqJm3HdOcrRkNHmRULQVKHtK4iKEdBoMFkHrCE3ynwv59ChJe779EMsrh5jWCp51iHWw12jO8sNNCLk1mEF0nxUkHeKptBEqKqKzCjRl1TlhLocQvBYSUYyVaRLmoZWFckcne4cK/NzHOx1uW7estx3dKLHSZr+tVaP0YgJQllWqHXU0xK7dID3f+I+sm6XWNe8/IYjWF/tVp2HEKiCJ4Sw+wDwPnlAvG/ChrN7Gtj1pPjGc/Kr9z68P63580Sr3Va71yqtdlvtPl/8P7/wL3Vj+zE6eQckYKZK1lmiqiqqahtHRKNhZxzIcnB2g/WLI248ej2LPUPp58gKz0iFoRrObw05f/pjiNxPfzVji/NINKy4l/LBM/dTu8CNSwU2lrzi0JtwskSZ1bzr4XvQsfA1B29jYk9xYXKJ24/cyYG5Vc5snkWHj3PX0b/JpfIzXA5r9E2JhECe9WHQ49LGOdY3P8ijl7Y4tggblztcfmLKG177Cgb5HQT13L/2cf7skc/wkhsX6PZGZNuOO0+8hstbD2GWlZ31TV5x+9tY6N5MT6bU5WXGkweR8iYm2mGD85BdYDz6DCEuspDdQi8Ky50V5vqHGGKpdYu5/oDMdGA4YsdvsZhnUFdcHq9RRuXs+gPMuUM8tXOGM9v3ceLYdfSzJebMYUxxiKq+wNG5w5RrwuM7mxxeuZF+f45htc6HT/8sR1fewE0rb6OshlyqP42WD/B3fql6AAAgAElEQVTk+P1sxi0yLTix+EYOdF9JXZ3FmTXcdMqWeYrPnr2EjBydFcOovoivPMsrDi0F6+7g1MobiWabi5c3+d2nfof1j3jGm47XvTHnxvkTfPChDYb2PK956VFOXziL7mSsHFkllGf5k5/8r/91ab7wLtc2AaHG4MUSbJcpGTVQ1YGyrna9H7l1gME5B8aSuYK8v4DNO8RIU9gSIXpEFWJqTSQiuDzDFTnORF7xkps4dWKRsHOGv/rqU7zi5DHceIueBIL3GBGC9wTviVVNNRoRqgm+LgnllHoyZjIaEmpP8Cm0aW1GpzdHUXRxriCq3TWiqrrb/slaS1VVu4Y2FbhEom+a8vvkpXACFsWp0O0NCMbiVg5yenvCxHVxc8u8/k1vTh6M5k9IeXy7D6A97alELGoEbeSkIohRDBER3f1ruTpa7bbavVZptdtq9/nikXN/ypmtD/DE+hnysEhmc5w1rG9dZL67Ske6bO48wYOP/yHD4cP4YFk9tsDEbvKeT/wuj2w+xiQustQ7AvWIejxie2eD5YWXsrh4Jz2d54b+nfTcCXbGARNhVCtPXoJaIdCjoMepTo+TyxnrGxd49KkPcfnSA5S6wcgPyTJL0Vkm2ApvDLk1PH75kyiCGEcoI2hOVl/HwQVYcF0+8dkpxZzlsdMfBbfOfHeBI/Yob7n1ldx94uu5bfFubj36Vdxx4PW87LpvwfgOuRHCdJOBZHTjIn1uYjF7KdvbjzIJG3SqLvPlIY717mYhP0Ue+/jaIrHASk4/GhiXxElJNS2xsUZ9jSHgwwRiSTXZ5qEzH2Vj8iC9YspC1+KHR3Hcxnaec2arZDi1bE53GNun2JZPss05tqs1enKAO5e+FTMS8Dv0iw7dWGBNj8wskHtLx1yHmjkm/jRzeQ7jCWcf/30WTJ+u7LA5Pc+yXMdgfBS/45ic93RsYHP6Wepwhsl4hXPbH+fMIzU3Ljvm52vyiWN7e50jS9ezcQke2LzAoQUYZjVP6BrbnS+NFvd9Codm3eY1w+ZdKhzVuGYyrZLnISoSIjF6CEqQCJKxtHqIzmAu9QEVQWLEMJsmNab+ol7xMZDlDuMEF5Rzj30KiTWTUaQjl3jwoT/mrrtewSte95X8v79wD6oFmBzVQCQSq4pSa6w1ZNahMTKZ1hiEvNOlKHJs5hAFNzA4Z6jckHI6BKpdr0qWZRhjKH3NeLTDtMgpM0cdHVFTAYu1oKIgEaOCcZZhjMwdP84vv/sPOLcz4ciJm3j80gbLDz3KiTxLEyCYiBDTw8wIGm1qkURT+W40FdGb0OQlCoaKKIIFUpai/bJp4Fql1W6r3WuVVrutdp8vxpP7MB2o4lOMQp9HH/8jtv0aH//MJn/9lV/HctdwufwAR29YZmAtUy4husSh7gle9pKvZ1iO+NjDH+auU6/k8OAmitzw8Y/8IUdf+VeZ9LcJw4cZlXBpeJYza/C1x09i8pr5lZK57iGCZjizzMHiJN53WBs+yM5oh5NHXkNRL+AnY6i3WC5WCdNN6mkg66zQGRxjqmu4qoexOf18EbNwO2G6RdfOc+jgpzl59Ga62ZDKeKa6TVXMMW9P0s8PkxU3Y8oh/e4KNTkH3MsJc2PmZZWFrINRePD8h6h0jXOjDzAer7Ka3U4YdBjkXWprcCHNeDmdTlnqeeppTR4gqyOmVpzp0HUVhWZ454k1mNpyoHMzvl4kBBgPA2d3Pk1d5FTlNkvdl1NOtji/+STzccBk3KUaVHQ7FTWbZL0Ox9wtzGeRcbWNrWoWu8eYs3+NMl5mahXxhiWXM593GXQWGSzeQRFWOGqOcfLmr6AYrHJYXspG53GKhS5SjNjYOse8Hif2lBs6X8FtC49z5/IqNgTOP3aB6197K4vuFB+4/0PIdpfV1QK1wpn6MoPOlyYos+8H0NZ1yCQ2PTgjltQvFFXqqkoGNUZiBGcFZwzdpSX6y6tYKxitET+hnm4znU4xInTyAoCSkljXqVl9VF5710u4fO4x7n/wIY4fPsrikeswZ87ywGceYWc44dvf8jre9Rt/gGbLJMusYE1q9mkNNZ6Ip2O7RF9TTyISajpZHzEWi2UwmEeLnMnYMh6PqctJU12eaghElKqaMp5O2e52GQVDLZboUqW2YjAmmdVgch49c557P/RJ+geOsFpUlNPA9nbJ8RPHMGcfRbSCps2SaMRqhCbkaUUIIhjAGMFqyj90AsFZJJhUIBOlbaf0HGi122r3WqXVbqvd54uyPs+R/lcy6B2n6wfcuPJ6hnGC8eeZc6sQp3TyO7DlPLGYJzMjCgoGkkEnY763yHK+woVLj3Dyurs40j/A61/xSjCgsgNsslOd5pPnHUUHVsp1PrK1zo3FcZx3VEYp4xabG5fpMofL4O473kQ/P4S6PlWsyWzKh18bXmZ961HmDtzCwcFXMBw/ytTXLM53mFQjpJNxwN3GuNzhDXe+kSO96xmPzzPXP0HfHeNwv8PUB4IfsiAFVcjYGQmiBUU4SqfoMl+cYLgzRWVMHRfYDI8wMUOkyuhkCwyrDSb2Ejgh2iUqznN2p+bwwipabrA+fpiic4wsHIM8UJQGsXPodI35fBUJ53FuSrfbBXmCg/MFW9tDoj7OcnEclU2G4wssmotI/3pOrHwFtR2h0yE7xTqP7dzLSn4Xc9xC0SnQnUusVUO26vNM1p/gluvvxvttlot5Om6JKo/k80o5GjHPYfpulWk1h+tCdTHn4OJRbJznJf0xvrZ0xHFs8STf/NK3MQ5TjhzoIPZx4rBH7C4yt5jx1YdPcnP3pRwfnKE++z7mbfEl0eK+H0AXFqyxZMYSjUFDMkrPzP221pLlOZ3uHPNzy9g8SwUnRMajHUY7Q6wRXJYqr6uq2p16NoRAbgzdbpfJZMItt9zC7bfewWc//SlOnDjBpz71KU4VPd71C7/E6+6+mw9+4kGM9PG1wbnUyD8VAQhZVlDkxe5x67omDkfkRYeOyzDiwOXknS4xxtSfdDIi+Apb5EDKO5y1WiqjUKlNBTQxIBiMySitcN4rn3zqMsdvup3u3DxZZvAxY3NjI01CIOFK038DokpUC5FmNi1N/U1jAGOIzcQA0VhqjQSBoEKw9sXW0P9LQqvdVrvXKq12W+0+X1y/+GpC2WFxbgmvF4nhPB+57/18+qGK+4t7edWrbmJj+igLZgkrhzEBnrr8PuToGzB2me7iTWA75L0BD5x+gOOHXsKNR17LZDoi9wfpLR0hTJ+gHH+Clx3bRrpzvM7P05cj9GyPut6ka1e47dAb8dMJxcotHFi+HquHGcWaMl4kiiI+Y663zNSPuLz2KQ4cOci86ePrCieGgj4m7GDDHHnoUvQOMnCLZIMRhCEhnGV9fYtOv0NVpQl+toc7YHcQAmfPPcnq8hGOHzqGBI8GYdA9iE5vJWYT1scXEWvwVcFcUTEa7qC2w3xxhCrsEOIUmxkMBWAoupFpnDDVbXrqCN7gbJdyklGHHtM6x9p5YtxBpGRz4yKH5m8Accwv3MZifieh7nF07lZ2ynOUYY317SdZGz1FzHoc1K/gaHYrA9sn7wp+XLN63RFsPgeyxeXLZ1hZHGElnfdy+QTnhp/gwJzl4qUdji+/BCdjdrbPMzdXkHUKut2CrY01Qu1BAiE8wcrCKZy8nFImrG1v8Z1v+BpunBsQQ2BQ9FkylvlO+YVk9kWx7wfQGR6rpglkWaIPuxXKM+PpnMOZjN5gkfnlAwwWl0EMmRUm4yGb6xvE4BkMBqkoZjfPLZDn+W6z/MXFRaqq4vrrb2Bre0gVIidvvIHrr7+ee37jN1m7eIEHH/gk3/lt38wvvvM9dLIFamogNfK3NseI3W3Sn+d5KoyYjJEYyPvzBFWiBoy1KdToa0IIlJMRRZaMZVEUzGYAUj8mi5YiRpwEpnXNhAH3PXmGB3fG+P4ik9px/0c+zt1v/CoGnXk++uF7+cavup3188nToSZVx3sxBElV9UFj41nJidGjXonqm36mERGLmIBEIIRmxrGWq6HVbqvda5VWu612ny/c3CrZXES7OUwWWOj2ePOrbuK1L3cUdoCvAoenY6inUD+JD2toscVW/QQ7lx/hSN8zGteMJg/zXz78Ubp6iG9509sZx9P8yZ+9m0OHVrn1updx+6G/QfRreBsZGEeeDYhVl+nwMkcOHUS6h/BuhzmTI9pnvR7y1OUznF/7BNcdcxzo3Uxml5jvrYCLhJ0phwanoOsoxLEzfBIxQkdW6OU9toeXoNtn0O0RnENknusO3kCe9VFqbITu3ISuyxFGnLp+gfn5Ad18nnI0ppqOcbEgj/N0/VGOLdxOpQX1tKaYu47o1nDawXpHL1+hrAsW5+YxxQCRKVFrKl8yiWOCDplOx4wmQ8qJ48TKa9BsjtFWl1MHb+PIkjK32OPAwkupykgMAdGaC+sPcfrixxmXZ+kvLDKdTil0iT4nCCFHgmc6GdApMm5ZPAlSsTU6y3jnLMvZYUY7ZzHG0aVL1j2OGV5gKheZuM9ycTRlffwEofNS8AcZhwxXBjqdnJ1qSs/2QY8z3lJ6vSndvuF47yiZHmM+d4zqmoKMVx9ZBdn60mjxS3KUv8Q4DTgU0dQM1IjsFoFYa1NDexGKvGBhZZXe3DJikjGt65KdnR2quqTf7SGiu96H6XQKsGsw67qm3++zvZ1CjocOrrC0fIBHHj/NoNvh1pe8hJu/4Rt477t/i9/8tf/E677yNfzxBz5Eb+lQ6iVKmspVmuubPWjyPGc8mVJVFcZMcM4hEol11XhzDHmnYDKZMB6PybIMa7PdSnHvhWlV4vMu46zDugQ+9uBjHLnhJJtn7+Pkbbeyvb1JluecPHkLO8Mph1ZX2Lh0kdq4lC+IEk3TekkjQQ1R04xayXSD2sazJKB4ms5RiChGBJV9GEt8nmm122r3WqXVbqvd54tBvQDWE0eG0kzwk6dQ06WXHUE6GTujx7l46T1cXBuyvDBP0Z1jrneCTu96pmXJznCbqiqZTIccPtChHm0DynWHbuVl7jwPXnoPH33iIYr6EHed+Gv0zM34uQuE0TZBh0zCGuvDR9nc3GA6eoLFwSm63MhIPMWgw0F7AJtdZOSfYEWvx0jBxfWnOLRykEoD4/ULWCuMy0+xHc7SiwdQGRAzQ+5HLNRd1nbOcHb0EWLZo+qcZc4ssto9jJgDjEfbuPwcD539KNeduJUb69fTj0tMdyLaW2Vt8wLjjXNcHp6nv9rj7PppTPcE3mwyb49SB8OC9ih7GdvTHuvDi6wu9inLSC0drDsAQJZ1sTGw3FskzwcMPazkA7SK9Hs5g4UDVKWyvn4Go0Le8XTyVWzu8XYDMQc40j/MvLmD+ewEzvcI1Ni+w+qEcu0clze3yaxjMb+BTq5EHN57Lk8vU/nAoYM3ELLAIF+ga46zfDAy8qcJ2kE4jIur+FCytrXB+elp7vnAn3D3V9/Jcv84txx/GX5aMh2N8HaO3M5z4fQW/TmhW/S/JFp8EQygFWdiY2BScUUyhkqMyZjneYdBf5H+3BJqLJWPhDBlZzxCvWdxfoE8dxAi4yoZ8dmDAMCHCmsyik4nhRmnqcXR6//KG/nwvR/k1MmbePLJJ3G9Pnl/GV9Z3vlL7+A1b3g9O5PUmD+owVgwFojJW2OMocgcmSsoy5pyWiP9jDwrqH3JaLiNbWa2KoqCyWiK5MkrowIRZShdNuwidW257zMP4wcDLmxNOP/go6yuHOTCU2e46dYb+eqveg0bGxucO3+ZY4cOMhkPsUUHIqgKMQRCBA0lagPEmHIaUUQMFsWLIEGxajCxTvOc7u6z/wz5802r3Va71yqtdlvtPl986LM/y603vYnBnLI5vpfR+EEmZeD4sbfSzeZYXB5w/uKQvID+3BKT+ikG/Ru4uHUaly0x2TiHaJfFfJk/uPAg2RQ+8tlf5+uXvo8bl1/JIxd+nxjHHD14hGHYps4eYrF/iGm1xdrwIsHAcHqOrL/GubVPkC8cZMJ51jd2GBSHWB1cj6+VTlbhxNMvDDcffQ1Oemxuf5Yzax/g5A2vZaG/xJxXzp55itH0EkdP3EkmUDMk65ZMLj1BcPP85qee5PXLT9I/FljsX4fVKQN3M0uDx5nyMKU/xWLnEL7rWffnOL12Hx1ZZxwuc6T/Fgp7C8tdz9icpd+dZ5lVOiWYjlCIMtq+QMfOMVcsMgo1WZZRxmYWz0xwTtgcX2a73gSzwcbww1x+wrK09TL6Cytsjx/A+R5LHGRze0wnN6husVU+gY87PPrUlDrvcbz/CnrHX8vG2jar856tjaeYVJEha+yM4ZC5iYWlecxkxI5WGLfIeHqZlblldL5POc3IzQrz+UkOHvhKYhCsMaxtX8DMTanMGuMcxnaLxewwI11ja/ggZ898jLmzBxmFDl4z7pg/hR9f/pJocd8PoKNxiKR6EaxgbeoBKiJYKziX0y0GFINFsswyno4Zj8ep7EMK+t0+/z977/mjWXbf+X1OuPnJlbo6h5mexMlDDilSWoqUaCrB8O4KMrSWBRteAzL2lf4CrmTINmD7pd97YciQIMHWrtZaURQlkcMZahiGQ07qCZ27q7orPPmmk/ziaY6wBgyY8DS0Paov8KASUChUfe6tc8/5fb9fJQVCBOqqpqkbCAElFFpGOGPxLiD1quFqOFxjkOS0bcut3Ttcvnab2WzG7Vs3UDrmhU99kps3rnE6XOSDd6/w4oufBNGlsjH7iwp0xHK5BBnRtDUeR6834sTaOmfOnqexBmcDu7euIbtTmrLENkuUzPGVR8icKElZ39xkY3OdXq/HfDLlOz/6EQf7OwxHfUadPmXVUtc1nU6P6x/cYHt9k+l8wQ9e+w7/9Es/i1juEe6d/gm/OhqUwsO9OT+A4BwKhwrgCCAENqyax4QWWCGQLmCkR/zDasT6SHTE7hG7D6qO2D1i937pcNrQlBVCV+Aeo5un1O273Lj+LhfOHmd9OELGEcePnaXfOcVskdEvBjgtmc48frpHv3OaWPaJIkmR9Amxpw4HHO9vsqm3CckexlS8ufsdkmjIcw99FictdBsmk9c51X+GLFygM7hOiCIaseDa7ve5cOJxupFCmH28FSyiGVLGWBdxZed1TPwqFA021GRKEYcuTTSn0z3JRn8b3VQ4U6JllzQ+x83x65gp5FsFw+4ZvNWUYUahCtJMY9qU4GKESomTknJyG10Y2spTiwWNuMy0vUWnfQydxHRUjHeOu8sZkZCcGY3o9BIsDV4bnJ+xXJR0Oyep3BKRRFR2QhNaSnOAEGMW3jI622PSvEzpclRqkdU5SlNyZ/we3W7E1sY2hIa5XzIOeyxreOz4p7HBY5tdjJnzvTf+L7bPbuCyQ9J4xEa2wbxZInTMOMzpFZsM5IXViMtGTmuWzBeH9JII10x45fVX+GD3VT71wnP01zdZaiiOQeUPmCz2OL5+liQF1Ixls+AgCEZba8R5D1//vxYz/kT62C+g1b3sTSECih/fvFetUW1rEUKhdPR3xhRjPzSqJJleGU0IVFVJ26wGz6MoItIxQiiMWR21hSB4/Y03WS6XTPSE2c4NOv01Mg0/81Of4e23B7z07e9w6dIl/tmv/6f80R/8ITs7O3zrpW/zpV/8Ijffe5dzF19gWsOn/tHPoaOCOI1oq5KmaZgvS96/uQNiNYN3+uIz91qzEhrTMp1OqcZjBt0UW80wi33K2ZLDu3e4cfMmd+/ssLkx5KELF3nzrUusr6/TNAatYz772c/y3pXL9Ho9Op0OJ7a3ufPBAUpJbLA4CcIFHIGYlRf8x55wx6qW1wmHIqCER2GxwUIIgLs3s/fxyyO93zpi94jdB1VH7B6xe7+0NlxjfPAGkZljkytELmZt+BjlPMVUCxaR59jWw8ThOPMDRyGfQ/kJtBUBSRb3EMRMlwse3Ygpkj7YNe4sriF4lse2fpn3bv8lN2ZXqJ2glz7J1Q/eotNTJJuBKOpz9/Au59e36RQvEkUjcC1JNEJSUFdjCmWZzcbE3YaOWGNZTiGfYYRnrTiFt6AimLcLalGS5V2a0qKDxAVNsClJskkv2+fLazs8dOw8ihNMmiVRtg5RSWCdfnSKIjpFkmRIYygnhxRxjjEZSbdkXtcMNk/RskOhJDGCO4tbBCSp7FDbGpFB2bTEwSDuFQV5ImQCS1dSL2Y0peVgPObUyWPY2TXaKsL4HDPZZaM4gYrOkOcZvc4BXlrakNNNnmSye5OOCAwpsIcekxtG3W0G3YzNzQGIFq8Tbh0esJEtSH2G6o0w0XGm7Zxq+RLSL4CHWBs+xHx6ByM0N/ZfY+zGOCnoRNsIC40tefKJNaJyTjeG2eElQpjSiTvszhoqZYhEwM9Xo1kfhT72C2iJAAJaSNrgkCJCqdXMm44ydJoR511UrBD3QvuLH7uqvcW3qxt7VVUIrUiT9F7QvUQpjfcWj8eawLvvXSaWgiA86/0B4+kBxza3eOmll3ny6af57OdW2agvv/IdfupzP8PFRx/HB8v77/6IFz/1GV5+9TXyzjbf+Oq/Zri2TdnU1Is5Fx95hP39Q4IURDphsZzw9u4t0qwgCEWa56gkR6QRB/Mp7735fTaLwFov5fbOVa5dvcqv/MqvsLNzh8l0wbPPv8BkPGM9yTg4OOTmrV0uPPQI3/vbVzh37Bi3Ll+iJyH4AMERrF85vn1AWoMKAeMcynucd9jQIsLKuCIIeAzKO7y3q6NF5/AfQzPL/dYRu0fsPqg6YveI3fulJC8o4gFx2sfGWwyzY/gQIzPHon6XZZPiZMTO5HXWs2OsZxs4lgjzLrWNyfMUaUuuXvsexzYEA6U4LC9x/fqEPX0V2Z/zXvkW792Fh4otdGfJ3cV7vLd/ixeKF4jiilk1pmq26KRrxEJwuH+J+cEV7HALE+1Tu5q8u8X88BIbG0PW+12W84QkPo8kw4UZ8yZmYe6iZRdvAzP3DiodIYXCuAmT6Q7DwYhjcsmx/AIqq1D1HrevX2Zw7mFkLZCxXSUyaofvKIJsmC92yOMOm9lpIEa4BUbdRaqcZV0zWeyz3X0KRMSsmrFc7KOjITZYImKKWGG943B5SGMjYq3Zc+8xFy2TGqbTKTMz49Z8ycUzEtccUqtrpGbAQf0a/XwdRYFwDd1UMhKKSKfk3RYpa3obMbLVjHpnWMYtTk8YjAIq0ngf2N37EZO2pgz77Fy/xfFeQSu/xW51mefOfh6MY1udR5V30fIya1lKnGcczM4xWI9x86skTbky7yKp6sBobZ1ed8BGMQB2ER/RdfGxX0CvzBSr12o3JHzY7CSimCTvEhddkhS8tah7M2ymafCiwXqPdYIkSYiz/MOYox+bRVzwqEijdcpyUXLs9AaJUJjW0ck7vH/5OifPPUxnuAV3J1y9epmDvT0O9sf88q/8Iv/T//jfc2p7iz//06/x7PPP8cZbb3I4aWineyidAJ5yMuT2tatsbGyQdPtI53BNSVkd4JEs9gWNabH1gno5RgbHzb1DbvqajbURg0FOVS8JSJ56+pP8u6/+BRsbGzzz3ItkWYFSin6/4FIsePz0BlF5SCwbnJc41xKsw7mA8B7nWwIgRSDIgAgO5QReCKQAL+4ZfKRAOIUQbtWQJT5+gf73W0fsHrH7oOqI3SN275c2h6cYFRcwTcmcEmNLDibv01NrmGpJkp2nsR3qxjLYPodqBhg3p20l3egkeTakE3JObC7YOL5JkZyl4wVttYuLdmnUHrGHi3HKMO0wsddpdYnqKGLlKThLyyHdbJumnBJEwrHiMbrnn4DEkST79JOTCBsxbSZUzSEh6tHPRsi4T1mW2LZEJYJcn2S9ewaL4tbd75CeeppuskVPaM6dPo5nscoP1wfgS4S0qGgXrc4iZcVsUWFGJY2dUxqPjrbZyoZgFqiiT6S6IBdE+izCL4mVopMpIi9oBSglCF6TJn2C98jgyVWMtRaJIlcpOo0JUqHjEUHFTMsWZx1recwg3sTWLUKnJErTTRSjbodcrGPKBaNkC7leUKoFUiUEImI9pZzPSPN15liyeERwO2SdLpIE0R7QkTFV08OaHWxYUvR7GFfR1nPWultINcFFPbJsiBYt/XybMxuB6wffpGlu41pLrzjBbAGChpAesD7cRgLGSipbfyQsfvwX0PydY1vx4wrUgJAaqfXqBh3HeF/T1DW2NSznc0IIZFmKEgKZaKIk+dBF7r1HfpgfGhGnGcHFSBVx4sQpLr/5Jr3+iBAU//if/CrHTp3jYDJd5ZQ+9hg//MH3WR+N+MY3/poLFy5weGeM95J/+2//DV/4+S8gLx+AkszLBd579vcPV4H/AWpjqaqGpmlWP2MaY2xNpAWTO7v0Ohmz2Zii6PLoI8/z1T//P7hw4QLT6ZRPfOJZDiZjnvjE48xnC+bLBYPhGs5a3nnnHYQzHF8fsry5j7QNAc3K9u0heIJf5ZNKVs56ay0Escq8FIqAI8h7MVVCfegGX739+O2E3G8dsXvE7oOqI3aP2L1fWoxfJ1VDnG5xDXjdEkTNzq0fcPLkCC9yBI62ndCGBqFbWj8Hn1NXe3RT0HHBxvZ5+koSfE1d3aTkFpdvXmfQhTOjlB0ZeHvvAwYzOLl9nhOjDWysib28l+DSgk0wsiVKJe1in/2dy5w92ZLGF2icZLqcMhc3Obv2JJoIhaZfdHHlFKUsIJlUV5mWEzbWLpJ3HkGjWE6vsj9+m6rd4eHBZzFCsCzfp8lmdLdAJBFZMSBmSJJ0qduStjbs3L3Ew49cxFYDrCvRsqQfnSSjYWIbWhEYxk+RaY1TmuAFwafgOjhfEswCLSMqU+NcQBpLAyjXpSqvUkfrzJeC+SLwmROnSZViTkDqAlrNML7AIDqBsxOaekKy1qGzNYTaQXBEqcM0S2q/QG7kTA9fI3OBfgIqWdA2c4KCfrxGWpyh/9SUnutSJgJCl927b9PPCrSumS/3WC4svlvKe+IAACAASURBVLuGcxF5ktHMZuTqIUZdjUMik5bNEzBzNdoNKIoRShTE4SiF4/+THIGAJBDjhMaLVQxQFKXoNLvXruOwpaGtDfP5HGvtvUzQQBASrTVlvWqeSuNs5YKWq4igAGiVQixpQ8KTT3+SuJwwK0t2xxVvvHOJK9dvcPr0aaq2ZefOHTqdAtcuuH3tA6RaHT/cubPDE08/Q1W3JInn8pV32N8/5OGLj2Hnd4mcR9Sa6eKQbm/Eldu7PPbYIywXMxItsPUSbytuXb9NoOWFF36GDz54Cw/c3r2DFynfPPgmo80eic7Y2j5Bf9RjNj/kYHef4caAy/MZk/09ijgmiBhpVztISAEBhL8XSRUkwgeCUBgZVjsh3KvedX7lZL9ncFk12IZVa9iRfiIdsXvE7oOqI3aP2L1fynSfebnHaO04g84Gi/otgpXEg5S1zqcpjcdHni2fspE+xKJZAIGNzjkGChpp6RYDIh8xnV6nDWNUmjJMH+fxM0+xc/At8IqNfgcT3WSQbHOyd55UaHSABsdo42G01pBJ7t66w7HNTbZ6QxZyRBqnGBWhdYbuzJjVEimfpisGoG5TuhqdZijZgmip98bkvZj14z9FliT4+ZTx8j3+8q2rPLUG9VbJovyAStyh67dp/BJr9vFuDiFBKQMh0PglMj5Au5pMSfYX+9RL2Nxap2TBQbXPoLuJYoFtFP14gFICxJRYTlEyp7ara1Xoip7PcMpzZ7FPawT97ARZFEhyRWQFygVMdRctt1iTGZmX5Ml5JA02lSgVY3VLEhq8OGR2aEjXnsZHfQJ75Ini3NZZWreDbgsW5R7O5PSiDiE4nLlJItbw8ZQi0QhjmYgxNiww1nE4u0m3c440K6jbW3jZkqUKu7hF1nuSSfMuWm6QpxnlpObyB1/nxNZpOv1NDg9++JGw+A9gAS2wq0yff+/9NE2J89XR4GKxgLalbVvcvdmYEALGBVxoaZwHKUizDh5JEAonFAGJFwITBNIHrA/8zbdewR6O8UEgk4hXX32V8+cvMJ3N2NwY8sYPX6PoJPimQker8P3x7j5ZViBFRJJkXLv2Op1OF6UUxtS8+86bnDlzlnYpuHz1GllWsH3yLFcu/YiHzp7h8GAfZ5Y09ZyNzQFRDFeuvs+1a9dAJZx/6HEefeQR3nzj+0x2d3jiyefIkohESU6dOsFr3/lbdncFj1w4R5bG1IeHaC3xSJAKLwIhWIIMBBoQArEyfa8KsZDIEPD3sl0VftWA9eOWLClWTVpH+ol0xO4Ruw+qjtg9Yvd+qZtdoNUxWarpxBlNJQi1RTmDMKvCkX5nwFpniAsW3x4g1YI0Xyemh21vENyUte46eRxYNI7SN4S8xE0FxzrHMNVtOv2TiGzAIO6iypi2vksh+yykIYkK5rMFke4wqcZsym2SdMBmukY3NbTuOog5UdbF2SmN2Cehj5MxzlYo68iSHsYu6OptttdeRMt1JnffIMOQJjlnO4JB0QckjZhRLxNSfYY87iClZtA9hbEZUqUYO0OHmEdPfp4i7hHMDoGGQf80IQTGywNknIKIEamGpSMXEQJBP90icjlCCKIkIziD8p6N7jq1qyirQBtnnNm+QKojsBnlomIYj7DLAZ3eJspqsC0ykaAErR8zreb00gHIhvXOw9AETLAYWTF3O9hZg4vWSZLTJEmCdTeQKDrpSdp2df0LpcjiLsgGZxMG3TNYGyii0zx0TNO6DGdbIKCLKeu9AbvlbRq9xNYx/fxJUFdJiCmiA6Rd4myNCvIjYfGj+S7/ASuo1U3Xsor3sQG8Eug4RmuNbVtMWX84W/fjEP1er4dOE5CaICRZVpAkCUneo+gMiPMOcZ7TH4zI85wsTcjzlHfev8ITzzyHiCJuXb/GIxfPs318k/29O5w6uckzzzzGe+9dYracYazlcLzH5z//MyilmM+XvPLKt4njhPHkAO8tzjcIPHt37jDsFpzZ3sSWU+rxXdrpPvX8gDe+/22m+3cReA4O9xhPDgA4f/48gZg3336Xl19+mV6ek0Ua29T81df+gru3rnLr6gc89sg5Hrt4jl43o6wrRF7gdE6IClxcQJThohwf5fgow6gEr2OCjHBC4oQmqJig9SpQVceEKAaVgE4gSgkq/nsm4cHTEbtH7D6oOmL3iN37pVwNyaKCYCIi1lnrnmOtdx4fj6hcwrA4QS8akcQdPDGF6uKNQMiMmJxO0mM2vg2hwpiGSAVgn8PpG8wXr1Iu3yYIjxQxvfwYoXE0zSXQe1i1GpUxdk5j7yB8RSwrhC0pZEQ5u4oxu7TNjLJ8H2k80i+Y1XsIC8FrGrNH3e4gQ4mwBlvv48o5y/G3aA+vs5wtmfkZ21kgiRWBBuki+kkXbxbU5i6L+goISz8rUL4l05pYpqSpQXGIlgvyrqXTKdCxoyl32Rz06SQpqWrQukUoh8UjohhijY4EqYwJJtBVKS5Y7ty9iU40qZREQUDjKbLTnNo8Bs2UbrcA0SD0nMrcYVnvICNLbec4s6CDZ7J/hcXyBtbPqVtDYgVF0jJZvs313b/GhFuYsEMbrhFFJZ1CkaRzhLqBk7sEaVapPGqOE3u0Zkoie5zdehhTzamqGyS6oGmmSNmhEx+nbS+zmN9mtn+ZVKzRH51lbe0svV4XspKon3wkLH7sd6DbsHJ+BxS1DTRIEIIoiQkhEJz/sCVLa02e58RxTJIkHJZLVJww6A0IIZAkCVGSgpSoKIYgV3FCVY03JQGNt47RaJ0sjYhokWbOpddvsHd4yJ/80QE/9bM/y/hgxsnt45x96ATDYZ/5suYXfuGXeO0HP+CzP/UQX/vqnxOnGfv7ByAFSiZ88lOf4dvf/jabm5skSUIWSea+ZXqwR6/TZTqdcvL4Cd56+4c8+uhFkrjDlcs3mB1OGQy6nDlxjOnkgONb2wwHAz7x6EWuv3uJq++8zZvvvsU/+uIXON7rsLSCTtYlSAU2YL3HeIcxDmcsShQIY/DOEXSLtxHBWaz1uOBXux7OE6wlKAtCrRzz8uN3lHi/dcTuEbsPqo7YPWL3fsmIO3SSIZKA4JA4BIJp6aXnMVZT1zWtu8Xca7rJaUbJgB7nkSJBWI/wMUWvoG1bhHS4EEijmI7dohKXKbInyEWMkzmVL4lUSqM0ngV9lZCTcDC/TRTFRHmfs2sPEztBwBKZmllVouw+hAgRhozyh5lPdjlx7CJC5CgnwVlqU2OlZzi6QF0dIMIhadbnzsFdums9ku3nKfIBJAFbxwg3pIjWqYRlUd9EyZKRUHg/RYkeSnuESZg27xHpnCLaItI5hIjTJ5/FKYEPDaaB5WSXtXgbGTcIXWDwSK+QEjIZk3lJKyVzYrbiAelQoQIYUWLTksZCNlyj19ukNjUiOKxarAysPmGQXaAjIfJ9MrnJZFrSyIIN70m7ArUYgV3N+PvZASiPUJZW3GVW3yXWFqkN09kuiUhIXEEen2DhFP1kyMzvMox7ROJ9suRZvJYs2zm57nAodoidQkiQ8i6Z2KCNE7pbDyPbfZI4I0T2I2HxY7+ABghiNRdmvcMHiVD36lGtwzmH1hHWWpRa7Y5IKVcfC0mcxh9+rHWMZxVkv1xOkVLiXMBWFd6UtB5GvZz98SHVck6Wpty6doXGCerlkkWa8taP3uC//q/+OUoLXn3lZSaTQ/76b77DuXMP8/Y7lwA4fnyb5XJJVTVIpTh58jh3796l3++jtWZ/f5+f/uzngMCLL77IN176Ju+99x7vvvcBLzz/aZqmoq4sP/fzX2b72Ba///v/ik43YzQ8h1IaqSVF0eH2/pgr1z9gY2uLv/qrv+E3f/WfUnT7OOcQMkImAmkdMjiU8WAMWINDI2SLcPLecWq1qp51DhtWuaVCSfD3DC6Ce1VfR/pJdcTuEbsPqo7YPWL3fkgJTRoLLAbvDIo5RaJxokcsoW1KtAyUsz2SXo4o1tFyteMYRR5rDE1pCSLg5ZLWSbw0yGaCLScUxXmkzTDOYP2SWHcwwdLJCmDBMD5GvUzpkpHSIRq21M2U+ewyqa9JakGsBwQdMZ/t08YN9eKQ4FsikZOqiGU1BeHxoUuadwCJqVqsF0gRUCEn6x4nVhLXjJEhobYVZnGZPB0hQw8VJXhd0wbIhCM4g3Mty/mYUSEIWjBd3iSNevhgqWyJ1ppgG4JpMLZBKQ/e4r3CeEvwMzRQK4m3MUmSAh7jZ+SygwgVTA6x0jHXE5IsJqBpmwojW7JcE0mFlil36+vkUhJrTdtWtKEGP8W1c4poxGb/HJO990mjGC1qVJQiiVdm4ShG+ZhhJtDBY2qBjCzO1iyZ46WjXmpOrT+CF4K6niCNRIgOWfYZlHqLOKnIsxGVc1y/8zoXzv8sMtrC+AOCbD4SFj/2C+gISyQ0ToRVvrz3eCEAicei49VNPDhL3s3xCJz3WAdaroL+67omSlJM8NRlg3MO25rVHzqAaWvwDiWgUxR0eutcv3kbrMMZQd20RFHEvJxTLmc05Ywsy3jooYv88I23OHv2IcbjMb/45V/gD//4j2m9ZzIbk6QpRdbl1/6Tf8z3vvcdkq0tFosFSRRz69ZNdnd3ub27y8bGJhcefpQ//ZM/4vbt28RJxptv/YD9wyWzyQ7L+Zjp5CxPP/MUSZJQty2nz1/g+69fYn37IXbv7JCkOdNZSR21bK1voXVC6xqk9GjvECKAcgTbgrJ41xC8h7ZFOo1UnmBaFKt5xuBASol0Dh3EvXD/I/0kOmL3iN0HVUfsHrF7v6RCzmI2R2qB1lPSeIthPqS1DZUxEDwdCs5tDZmUS9p2giYjCIGzFYUaYWWOkhk+bOJDhIgMyvRI/IIs2yYVfWy9YFHuQbKk098kI6xm9T1kUY70CcK2tJQkhSDP+iRlQWjmeJZI1SHNpszmSwbddSQO7xoyMaChJktGJD4FaqxvUGmOtTV5ktONeyjpQSs00EtH+KhkOb9J3HrSOEdFMVVbkmU5QSmSNKBsTCxHdMU2VrUstUUpx2J6iIlnJPGISAhClmCNRyhJpBOsbTFNS64Ey2rJVHk2OuukSQetJapRmNqhkph+1qGuK3YPd+inI/rDYyyWFa1tKJTCa0NjWuaz2/R0RKQUcRiyaA3BT/ANiDCjG51GhVscHuwx6imcjcizeydUXqNCzvH0k9RVRYgMppmTRBFNBU24iy8bTvW3uTm/icq6qDZg9YRlu8louE6y3ME3NUnheOMHl+n3h2z2H2JRXsNW44+ExY/9DLR2DvljN7IXWLOqNrXW4v3qfe89Wq/ar5xzVFX14eestR/O53m7Cve3rVm5oa2jbSqcWd28lsslSmtu3LrN85/8FM5D6wOewMkzp3nmuWf57E9/jvFkwt+++ip/9md/xhe+8HM46/nCz/48L730bX7mc1/AezDGrf4pdAquX79K27Z47z8sF5jPZkgF586c4dSpU3z3u6/yS7/0S1y8eJFnn32O3/md3+WLX/wih4czzp17mN3dfcplwzf+5pu8++67HB7uUxQJ+/t3kRLKcsHBwR10JBhP9pjPJ4TgUEoRRRFa69XbKEXGKSIuEEkH0i4u7hJ0iohSVBSj5eooCO8Q3iFZvY70k+mI3SN2H1QdsXvE7n2TlOTxGTp6SG2nRLGkrsYIJQm0LJopQhfkYoRyS5wEhSP2BqsccZpR9IZ00gThDHU1BmOII8MwHyL8EmKLEHMiljT2AxQNVkZYPE4GcBaZpjgEpVmyaGYsl2NiKRh2EkY9hbANid5CJQmd4jSYgPIS5JA4OUXm+0SuRbklPq5JYokXKSLOEKEF42hNyRKDCZ5UrxFHGeN2j7qZ01EdjHSE4LBtS7VckOqEXu9RrO4yqe/imgbXNsQqYytaIzaKxA2I1OaquESsdnqToMlVghAKrwRx1KV2NZ08JY0GJGmOTnMiIkKIUVGHzeIplBFoJ+lnayTZgLKyNMbQigrnB9i2YChPUeQDTo3OoXxJIhp81WJDybH+eUbdbbzrkMXbqGaNyBhaP0OKhCw6jcCRZRnD3gkKNWJQDIk5SVW2BFEwHJ6gkx4jS9bAlWhZkfo+QsTE8VmUC3z2uRfpqx6ZCmxm2/Q6D38kKKqvfOUrH8k3+g9Vf/i//M9fkQGMUJRe0MoIFcXU9SpIW+vVJnykJMY62nuVsjqKEULivCeJE6TSLJdLgrPIEBAEXNtiTYttGwgeGzxb29scjMcs5xN2d+8iRWBZL/nSl7/EU089xSuvfJtX//ZVbty4AQiuXrvGr//6b/DSS6/w3LMv8olPPMXa2hBB4Oy5U+ze3sG0LSdOnGC0to6UkrppmM3G/OZ//ht87et/yamTp3jmmWd49dvfomks3/jGK/QHIy5degctNe9cusTG+hZvvPE6/X6P0dqIjY0NHr54gf39O9RNzeHhAb08x5gGZxucM/gg0DoCIVBSo7RGSg1aI5TGo1aOcZUgpAahVk/5ISC9xzmLsy3eNgTb8B//5m/9y79HFB44HbF7xO6DqiN2j9i9X/r+N/74K1k+xAtFaRcUnTXqejVDHumYRBf08xGRjNDKk+khVT0nSzNMCGgRIbQltA7nDCrJVw9sIdBaSDtrFNEaWiTMwpip2aXDAO1SIqnJ5ToyCLRQSCUREkSIcI1DCUmkU6Iko6w1STqksZ5u2kWTIiPNfLlACEmuI5wzIA3zMKenY4RRJEKBM2idEETA+pq2uUsIGcJHxFJhq4pTo4cIKiCCQAlFbSuquqaQEuUbGjMlkQWZGOGlwrgaQYbSOYaACZI86RKcpWpKlBYrY6GzKBmBtNQBZBB4b5BCIbRn2dzCuBKtuuS6IFKaLNEo6XB2hhQeQUIc5wzyEVmWsjR3idMcTYbWCeNqwbjZo2lStJqSCkcvOYVAk0QFKipoKHFhn9osKZRHqUBlJxTxFlIrjBkT64yim4OI8VRIv0+I1kjinMjM6SZbCDEmTQsiKUh1jBcJxga+8Lnf+P99XXzsd6BDcDgcrbOUztDcO4YxxiClRCm1mgu65wYHKIpiZYAJASlXeaRt26K1RjhHcBbhLImS+LZF4DGmwVrL9vFTKBXxweXr7B9OUEnCv/zd38EEz19/8xtsHjvGnf09zpw/hxewt7/DzVvX+OVf/kVCsPzV179GU7Xs393j2pWr/Nqv/hNu3LhBlmU8++yz3L59m1OnTvHln/8St2/e5O7uDt//3nfI05TJZIL3nuef/xRf/fO/YDweI6Xk8UcfpywXgOfK1feZzWZ89S/+Hd986S/57Oc+zcHBHoKISGeAoFw2jMczDg4OmEwm1HW9ms8TAq0g1YokurdDEkcoJVA6RkQJXueEqItIUmSco+IMoaKP5Sze/dYRu0fsPqg6YveI3ful+WKf8f779LKKXEma1pInffABrQSdvEMIgtliisetog0lCCHROgbhsX6JDy1xnNIpuoAkiwsGG6fxFJjWI0REREIKxJFg2N0iJqUpxwQjEFaihSTVQ4p4A+1zlEoIKqFsFYiYTHXpRQOktzhp8Fh6nS6xTFc7w1LhvMH6Fhtq8lgReYmzoBHgw6ohUAS8q1Chj5AjmrbENw4RCpTIkXL14JCTkMpolWhTHEerGGskvtUsa4UKPRKZI91q6RfFCqECjoZGLGhDjQuW5bKibluMr1nU49XYkAzUriVSPbK0QClB1umvzHoIUtEn1z2UCwjrSXSP1klm9Rjrlhi/R21vo4Kn2xmhvWQ9HpL740RhA6QmSxKkaIgjSRQcsYxY726i05zZfA/ZeIytyNIe/d4mh7Mx0jsSnZDkXZSQ9LKCtcEFhOgRvEMVPUaDEyRxj6ad0fglafbRXBf/IBbQPggaBMZ6PAHvLVGkiOMYIQRt22LMarZuVYe6+rUoHRHpVQyQ1pok0ggh8NZSVRXL5QJ/z0Xe6fT4xJPPEKcJSZauvl7OKasl71+5fC8eyfPKK68wGAw4PDxka2uDbi9nsZjxe7/33/J//us/4fkXPsVwOKIsS778pS+h1epn3N/fZzKZ8MInP8l8Pmf3zk0+8YnHcc7x7rvvoqTk7LnTnD51jscf+wS//du/TZJE1M2Sw8M9Tp0+gXWGq1d3uHPnLgeHE67fvEVZlrz4mU9jjGOyKKnrgHGC+XzO/v4+e3t7f3dDL0sCDkFY5Y4qgZaKSCqklKAjVJqjigEyKVBpgU46yChF6PTvE4MHUkfsHrH7oOqI3SN275dG6xvU1tCYmJQuoS7RXkCowAukSqhcQyVnIAWOllzmBGNwTYX3LRqwwq+q5SXEaYYXKaBQ0hNoMU25im7zILUh0RFx0iMSEhsEVWMhKFLVoYgHxFGBFhrjauq6wgZD5SYUjFbjQaJiVh8StKOIC2pTI12NIMKainF5AEisq2iNoHUWFYAgSKNNpLPIIBAhI022sBa0T0llD2scmUxJZcx8MaG1DZKIJMqxriXCEXuBaxtcY8ijgiwCH5YIEXDSUvopB8u7zOpDbPAsm4bx4Q7GOkrbooRGOpBKE6UJMjeU4g7OgrM1whUo0QER4YNZjWdFMU56dFrQ2Nssq10chk5SMEhyMm0wlafobBPJGOE1zuxjlnNyBB2VI02GVEN6nRMkskMQgZyUfjJCKcF8sc9yMcFZiYq3iYXHzGFQnCHvDPGui05HBCVXo1izQ2bVwUfC4sfeRBiCwKKxXq+e2AlI4UmzlCTSVFWFbc29oxSFktBWDVGS0lpHmqYopVBaUpctEofxBluXH1bMVnWgyDqcf+RxpAbT1GyurTM53OGnfvrTfP3rX2cwGDDsDXnyiSfY39+nqVuOHTvG+1eusrO7z1d+53f5oz/+E3b29nnttdcIznHj2nUeevgxjh07zrWbNzhx7hxVU9Pv9kjTmHm5ZPfWLs888xyboz7HNo7x7vu3mcwlf/rVf80//y//C/7gf//feO6nP4MQijPnLnD+/HnefuddxJX3uX37OotlxQsvPE+R5dy6fZeFl2RJgXCORTmnrCuSacKwP8K0fTrdPlGSrH4nSuFZPd17JYicpm4twRtI+gRRg4hQQuL0R9M9/w9JR+wesfug6ojdI3bvl+Kog1RTli3ELkMES5YP2Dm8RZp0yLKYZVsTpwlNvSCloaUmUxGhdbQuYFuHEjHGtaigiBSooFk0U2QkqZuapl0i8eS6i7WaEBwoRxT3EJHEm5rWVAgiareKxPOhxQePcw6lMlpX0ct6pHpI2ewDBmMVWsbU2lKFBiXB2wbrA8a1xFlK1h2A8yzLMUlWoGQfb8ALQVtVJLqLdClaaVBgWodyNZ4lQVicTVGJQVOQJz1aOyfWHq1ThJDgwduasj4kUTlexUwaiy1v0NYlo2yICZY8yWlNgxQJwQkUKVK0q3QcJSmrXbRSKBMjxOq0JEmG5DpFtgZHg0HTtgaUJEkSFvUBUvZIk4KlEUSdDo0VBGfpZwnCamIX06CYjHfo9k6jm4ASGh/HWFsj4nteCqfBg9aSsmrJkxHj8Zh5/R5xvE8ea6Ikp20XCGqEDIx6W1w7/OAjYfFjvwPthMZ58CiE1IQgPtzxqKrq39sBkVJSVRUhhL8zb2i9aslpDbPZhKataE2N8aubv4g0xWCTk2cu0OnmmHrO9PAORSdiY2ODp59+luFgnaeefJ63336T2WzGy996BWMcr7/xJlJozp49y+3bN/kX/+K/4fTJ4zz66OMkScJ3v/sqO7vX+Ln/6OdI0pyz5y8wX9ZcePgiRW+L/f0Fp86e4+Ij5ymrKRsba5w5dYoLD53jt37rt3jyySd5/LGnef+9W8xnNSEIrl+/Tp4ELr31GqePb/P9V7/Dj177Adev32Q4WufK1atMlzW94RpFZ0BrHZPJbOU8v32bvb09ZrMpZVnei5haHbX+P18kGTLpILIOIe4Q0u7fNwoPnI7YPWL3QdURu0fs3i9Z7+mtrVHbiuAklVnidMAFR12XeL/K+JUovPdMlmOmzYyD2T7zcsy8HFNWLQGJSTXzUGF0A9oT9XNkV6NTSfCCRPdYzy8gSDC2wXtJ0BlFUlBkGcYuae0c6yrK+pC6GRNoWJbT1cMh0JolxrXISEIkWLDAqYZW1Uy5gzWHdEQMLsZ6hRdgdUBGEb3OBrlaQ9kuuR5h2ha7XDIbz2ib1ZhHZStaa6iahoPFPnWoWJqaql4ihKLIh3R66xT5gFQnRLqL1qsTFqGgMQtiJB21RqQGCFKkCshYk8kOdTXB2AWtWbIs50QiRboc6SOsbanNbZzV+FARcCgZIUVCbUrG89sEoQghoEQXhKOs9zBuhpAWpf2HGfBlNaVuDT5EtNYRySGSVS66rxzK50SiT0SMjAMIw8boBInqII0iCzFJ6JLLPpg5pl3gTIlplghncM7R+tV4mBAfTTrNx34H2okUKyJcACcETdOQxJqmaWibVcNNmqbEsaYxliDU6g+aJKRJRtu2TMaHlPPZPSA9xlicDyAVUmhOXjjP448/TrlYsnPjOk25xArHY489xn/3e/8DTzzxFN/97nfpDvrknQ4PPfIojQlEUYfrN3bI8g946623ePnll5lMl7zwyZ+m1+vyhS98ms1jG1y9dsB80fDSS9/n2InzDDfWiFTM+fNn+f3f/33OXjjNxsYadV3yr/7XP2BewSeefJgXnn+WZ559gbox3Lq9g44V1hqyxPCf/bNf4y+/9ld8/vNf5Ec/fBMrAjZAtz9i49hxsixBpwVRkrOYTWiqisPJmKZpSKcZnaJH3ulQ9LpoFaOUAgJRtPpHGaQmoACJyBRCtX/fKDxwOmL3iN0HVUfsHrF7v1SWc0RXYHxN2TikLjGiQosY6w1lNSMSMbY1lKaCqCCNukjXspztY7xjNNhGpSm2KygXUyIRiIXEKPAhkEaKre3TLJsDGlszm32AiQPSaRrlUK1H6kDbNngnaduatpqRFRJbWXxoWNZTgsxQyrI0S5xoieOMpZjR9RVSGERznTgQLgAAIABJREFUlyLdJIQCj0TJhLpd4Nsp1ivikK0Mcr6hbSASOQpLr1uQdTJECNhQomSGihQi1iSZoikrrAl422LEDK81IaxGToxraK2hcRWxVsRCEhqLNp5O+gRNeY1FfRdElzSkJKkizgWolkCLCwotE7xWKBtxOP6AYvgICIdpHE6Mad2U2i7/b/bePMjO6zzv/J3tW+/aKxo7CGIhKJAUqYUSZVE7JdqJJFu2JIsjW15jW/ZEXssZezQzqYyTSTlO4hmnHI/XSWzL1u6NslbSJEWKEkUqJMEFIBYCDXQ3ervLt59z5o8L0FOZqYo9RWSKmH6qbtWtRgOF+u7vvve7533f56GqMwI7zTjPSXyEMXoyS10OEHqDpjKEpocQmsAIvIPNskAFlr7s0eQ1UimyvCb1nlbYJaeicgXnV06zY+p6vFdoaRiPNvBVjKFNK3aTWXiR0jQNta3Y3MhodTsMiwskwVYS4d9JTilqJydxp5c8MpVS1HWNv+SRGccxSgnyS76hlxdYvLMUeUaVZxRlhq0nbQMhNUobgigmiVskQUCv3WZpPCQrKrzQOCsYDMbs3buXjY01pqam2L5jB1/72tc5fOgoi+dW2L//WtqdPkIIXvWqV/Kh7/8gD3/tEe576BHanZAoCkjTNtu3h7zhDW/ila99E08+/RQ33/pKTh0/xWf//M9AgjEhTz75FDcevY7bbruVUS64Zv8ODh04yMPfeJiFHXOsblzA4Tm/tMT+a3ZwenEZTMz9D32NQ4ePMBqN0FrTm5klrxxJy9DqxGhpiKKIMh+TZWNsmZGPPVVRkmUZVVURxilREiOlfuH6CgdeCpSSSDXxK93S309b7G6x+1LVFrtb7F4pNcJT1wXaBJTFkE6gGZUD0qDLWrZIJYYoMbF4E4lBWYN3E2s2opxEaTCCsR+RVxE5ljpwVM2QwWgDhUXSoUw0jQwRtaIl5lBxfzL6UJdkVU3kDEJrGt8ghEGqkMZWBAqUUqxXy3idEEUBqqio3IhN05BXQ3TSoSoLsnHJwE+SJ4OoTVEP8F4QGo0tK0bjEVp3SNIetd1kKp4mjKexWFQUULo18nqDRO9G4QmTLkIKTFDj6hpXCwo/pigc3o+xmUcokNpQNEOaURfCMV62cdJQ1gPanR4rm99g2hykHtdIJbDWIhNBSggypcjWGZYjbB1TeUtWDWhFCRbP2sZpRNwicCHWTVxGwqANBVirCEyKswpsg8awuvo8aatHmC6gmzbGDsiHy5SNJ5IJy6tnCOIeNMu4pkPZVGivCbSaLFeaid15rAOct9SAVBbn+9QlmCAgzy4SqRrtN8hdg+LF2Q246kc4MDFWTZKbrGvAe5xj0lK4dApijHmhsF/eDo+iiKqqXvAntXVz6c8CtA6IooQwSOlPz3DD9S+j3e5ggojZ+W0cuu4I3U6P4SAnCEJ27drJ2bPPs7a2wS23vII3vOFNABw4eJjrj76cZ0+e4fzSEp/4xCc4feY5tGpASaqqIQwiDh06xEMPPcS+fftYWFig2+1y5vnn+bY3vJ5bb72Vuq6pqpoLi+fp9zqcPH2C7Tt3sLq6yt69uwgCuOXmG4nDkJ3bd7CyusZwlHHbbbfR6/eZmuoxPT3NYDhCKYMOA4w0JHFKu9Oj2+3Tn56lPzNDq9PBmEkIwmg8YHVlhYury2xsbDAajS4li038SJWUKCmRctKm3dLfU1vsbrH7UtUWu1vsXiGNwxiRdKmjGLoJNk4ohMMnijpUDHXFUA+wgcInPfJA4COBNZKkO01lBESS9XqVcTmgrDPyKqfWFdJoIpWS2ZwxOZUWVKbBxzGZbxjYDCcto+oig3yD0hYMbUUdKlyaMEKy6SxlGKD6CaoTUsYxvp/SdBIGjcc1EtfUOKUJw71IvQ0d9HBKULiJE4YTEoIA0hjT75DpCp3GaJPQafVp96YpTE2mJ24ijS0ZNKuM7DLjZgWwjMucUb6JEw2h9lgJo3Jj0vUQJY2wiEBSiWl+5If/gA+88zepC4sRbaa7O6nGJV54UAlN6SjyhqqpcY1lc3yOsVunFCPa3Z3kfsBmXVF5hVcKpTVaJfjKob0nUi20i0jNFK1ohiSZIg4PUdmAuvI0taAqLBvZGWTjUP483hgIF+h0F2i1ZjBBiBM1JmjweUmIJqszKlcBkiBIkIEBXVHWjqzOqRhQiTWcyHBqk81smaYZUlTnXhQWr75313+mSgV4k+ClQHqHciW2ceAFYRiSJAlSQllXSK2RWqCMprbVpc1xNzG1DyKEEMRBTBREaK1xWHbs3kV3ap6NQUZVWZKwRZlPTPfDKEGqkG5vmiCKuPVVr6Xb6XP6zBkOHLiWJA5YWjzJdUdfxh13/kMiE5FvDPjKFz9PqA3tbocsKzj13DO87Y7beezRr3LTTYdpJxEHD+wnH2UkcZsLFy6wd+8uHn30UbwtgILVlRWaesyxp5+m0+3z3DPHkC7jO995J2976xvZs3MHeTbiwL69PHT/fWTZiH6/P2kVaoNWiqYq0VqTpF3S1hT9/namZhfoTk3TanfRUlHkYzbWVlg5f47V1SVGgzXKMsc3kxStydKLvtRq3NLfR1vsbrH7UtUWu1vsXimpXhcZJTQywHanqdOUImmo+iF+boYqSvChRAUBwrQgUuS6YSzGlFFG0FY0qsEqQeU2KG1GUdbkjcU1ZpIQGKeUTYbDgwJvDNZIZKyxkUR1NIVxtNuz6G4bn0hEO6ZuRdgkwbUTou4e0u51qG5KJg1Jby/XXpjjaPcW8qCDCLsE3Tl8nJLhqQModImLFWMJvp0STPcokoANmeNiQ61CIh2jg5jcjVmXQyoDm3ZAJWOGOWjZJ4p20O/3CZMIJyrwJUIr4laEVxqvPSZWxOks0zO38PRjx1h+/j6+953/FK3HpOog3dYujE5IW106yTyB7qJNgg5qpnv70FFE42us7SLjkEaEeKUxpou3bVwQ0JrqkVUlhoJOv4uNWnhvkRJMsA0ZwszUERK9mySMiFJJ0JpDhzei4mn0dI+0cwjrJbVtGOWbrBeLFOUQdE3RZAgjaZoGowOqeszGcA0pOijTQ5oOThpy6Vgdj5HJNqZbR9A+fVFYvOpHOHQQ0tQe4Wp0GGFLh/WeNE1ptycLFnmeY+2ktaGUoa4tZdUggCiK0AKKoiBMIqQIqJoGpzQ6jJiam0MGHqEcYRJQNo7heAMvFTfccANLF84RRRFxlPLwIw+zY/t2Quk5e/YE43yVe796L2XV8OADd3PTkZfxptu+jS998XO0A8MTjz3K4SNHuff+h3jTW9/O0aPXk7YS0jRm//59XFxOuPvPP82P/NB/wz1f+hydTotqeZWbDuwhijyf+tJfcPQNr2MldFxEMF5a4g//6Lcpy5L5+QWyoubobbeTN4LxeIy0nn5/munpaYwAbxsa5xBCIrUhNAEqEESpJ2mNybKMwfoGZT5gNNxkPBowXt+g3W5j4jYmDC4tFIDWV18hv9LaYneL3ZeqttjdYvdKKY1iRuWYjA1mXY9GgPAW7wVJ0GY1H+JkhgxmkUhayS5GgzM4WWBUSqwjai8xssTnG4gkwNaOBEMZOGRi8OOIYb1OqA1KaIxuo4QhoYWylkGrDbFDy5CujlirLgKaQLexGqwAiWc2CFj59HH+4fvfyvPFKmqmj10J2N7bzq6FOb518UlW+iPKCwVBnFKbAKfAUmNUCC6k0iUyDciqBiczbBjQIGhCBTbAKomJQrwTpGYWJVKMlBQiwTmLoqGhwamATIBXJYl1WAFrjHjHy9/C4oPfIgkFZTxNo1KaoCQ2ETZqqCODrDYJTUAuYirnKZOC2HdRKLAGHU0hZETjNomaaaraUkmJ6ezB1iWlzSixJHGHsc8xKiEICpTool2CK0AkhqjpEClPkeZUkUAgyZpViDxKdKkl+KbGhSElBUptYl0Hb0ZUqotoInxwnix1eO2QVYbWhn46S9yappCaCgFx/KKweNXfQHshQIrJ4okDdIBg0i4UYrJ4cTleNo5T4jjFe09jHQJPFITU5tJmuBLUlccYjdcxOolZ2LmLbr+H87B04TyD4YCyqRGBpmoaPJL19c3Jh0XTsG/HLr7yla+wtLTIkydOcOcHfoJz508wHFxgs8j495/6Pb77fe9mtLFBFEX4xvKGN7yJqqrYtXsHpXUo7dm+Y55+t8V1Rw7xzW8+xvz8NrbP9JmaWuGxE8/yTLVGfOM1dA5Mk3Zi3nf0A/zmP/03HNq2i307Ai4sn8eriL+59yvEaRchFGVR0+oEBCaCpkZIAHdpZtHjPSAC0J5AaYRJEDKgGGvkYESeZ2RZhm0qVF4SxykmDNBBhL/6RvGuuLbY3WL3paotdrfYvWJSGq1CtGuoqREIhAeXSWoqtIpAehpXTvyyfYAKU6zVlE2DJsBjsU0NaIzq4OtJ3LXzNbWzeC2RPsVEMUWxQVt3qZ2lokYoqKSn8TmF6YCWCCsxaLzQ1MKjvaeVGjbHQx74xjcxusUtR/ay2lTs33eItDfD6edP0RnOsRls4NvgpCEIJVZ6iipHCoND4lxFEHWo7AaFaKjJsF4RBD2oK4x1IBSNFhAkjEuL0iVF4FG1Q1UN3gQ0gJCaRlqySqCVIlQzbJ48hVg9i+90mdu+izpOqNU6+DEECSIKsDIiV5pcKVw5oPENOEXSnqHKJO10jnE9RHhNmPSohpvIVptKTP5vzqcEJqLUEi9SpBdkzlKZLsL3kLKh0htEkaJ0BqW7VM0IHYD1jqQOKKyDdpuQlIAYSYNjTCMMRhucARn2iOpZrIkYF2OSUOOlIRQhkprItHF1RpjseFFQvOpHOC7P3TkAKV6YtbucgnXZU9TokDCMJwXnUpsxvOS7GYYhaZpSVRVlXRBFEdPT0+zcfQ37Dx5h2/wOZue20+n2qCtHrz/L/MIOTpw8RZIkrK9usH1hgYXpWf7j7/4e7TRis9jkfT/4AXo7p3j9Hd+G6aS86s1vQXWm+OpjX2fHnh2XTmo8S0tLDAYDNjY2EMLjvZtEkGrBzTffzD333MPFlTXiVpfMSDqH9xDMdHnynq+SJjuY27mHkd/k+3/kfTy/eI498zPsnG6jXMFzzz7Dg1+9n8XFRYQQ9Lp9QKCUQUiNVAZ56blH0ogASzCBNkxo9WbozGynO7NAqzdFECZkZc1wY5PV1RXWV9cYD4Y05dXnR3qltcXuFrsvVW2xu8XulZIVBVIGJEEbpUM8hlB1MWhiExCbDkbOYr2ibjJwOalMMbqFkhKnHE5IAtMmMDGB7hKFbYTTaB3ROAtArDsYQjQepTTGtEH28T5EyQglDUMaclvjmDCthaQVt+gmfdq6jaxyZpOQz917H8eeehaXWdaLmlfc+W7u/LGP8NaP/BLnnwoI9TwA2mpCZzAqxDuFtRbwSNsQm4g46qAICLUBLwl9i5SYWBiEBy00ymgaWWJkhDYxPooQyhDoEOUdUzKlFU1TC8PO6aNMqw6hr9m2+1p8BzZ5HusEpZJksmCzXkcHLVQYUWDZ9GOc9lgPDgiSFC8dQjYEaRdlpghaM8hLrijGGHTawQcSLwSVVwjnKOoKrwIO7X8dP/D+f80HvuNX8cU+ap+C0AhX0DQOZRJkXROaEKmjyTJxqFBhTGDaKN0hjnp4wCtFELYQwiONw2MJgxgZdHFBwNiNyYxDpt0XhcWr/gTaOSaG28hJ0JUwSCRSTlJpyrKkqiritAVMTj+QgiAIKLOMrCmJjMZae8l/02DCABOF7Ny5k6mpGQyWsnJIqZmdX2Bt5QJrG5sMh0OevHiBM8+dYLrf4/yJZ9k20+XGG4/y4BPf4OD1u7mQbTIeD6nrmuPPnOWnPvKLfPHTf8jdn/8c3/f+D/DgQ4/w2je+g7Pnl/BC4HyDbzzddpumaZhfWODOt7+N7XPTVFJh0xSk4Jr2FOSCyE8jfZ+ZBcN4dJzh+AKzs12u3f8ajp04x75rr8MKw8rqkKwRJGmMUZKJTeLkFOTyYyIxWSxwEo9H6YBApghpkCbAmAFsSMbZJuVwsjFe1tXkdGVLfy9tsbvF7ktVW+xusXulJBpQ0tC4NsNqAy0VoW7RuIzUzFKqAXHj2SjXiOMOwgiybIxRAhP28UhKe55EzyCCFm3VZqUZg3Ykep5hdRGkxluJdwojQpT1mCBh1IzxdoxREUHSpak3cU2NFwGltkhtUFbjhEPVMWlvGwcPb2fjy9/C64rzz5+nv7AfBBgBNTUf+vC/41P3/mMKV9IgiUVCR6fkTQ6qQlhP6XO0a9Bq8pq/ef/1fO7003gvSUmosjFNAJIUhEf4IYaESAkaUVO6HCsk3XiWSBpKG2DdDG981Ts4/fDXOX7sOTatp1w/RxzO4ZqMOOgzzM4QhB1iBLVT+CYnkVCokCBtIxsP0lGKHGlahGFC6RpqX1DX1SR1lDZGGqp6jFWS0uVEwhCFLbT3XFj5On/66WPM9a/hOrmP2fRl3Dd8iFJKnG9o8pJxsz5JIlQtqEYIHyBcQSpDnIOqKmikxhuBtAk9UobNkDQMCYVBiBqEAlvRIAnki/O+uOpvoPECIQSeGiH0ZGZHG5xzVHVJmWcoJajLAmstJozRWlNJiasrcA4rBUVR4KQiTicm5ArBwtw8RktCBUkaEEQhSkdYFBfOXWD7wjSyMWyfvoHDB65hafEkr7zlZQwySTbMwJU437A8aFjOHQdu3s1StUY0O831Nx/law/exyte/mo2NjaYmd2JkhHCexSCYjDABRFJZ5q11SV2L3T53//gt3nTu99OJ41ZG23w+vd8O4PRMq31GkY5YQ1z/VkaL2lPzTL4T8cZZTW1FygVMM5qhPDU2RpCTz4QhPR4N0m88miktXgEk4RTgXceh0ZpSZJKjAjAK2QA41FOURSsr17EBFffLN4V1xa7W+y+VLXF7ha7V0pC4YVAqwDdRAQmovaOgoZECpyv8UoinScQAa4usb4h8ClIg/cFxsQINMoJqD0agTEa6wqcz5EiRWtDEraxUqO1QSiFsxXOFUgbY3RIKqeRqkQ3Q1phgncSi8dJyWa1Ti4brvue1/Dgw9+iZWPmb3wZ/+pf/Rrv/vDPgJ/M/o8vnoT1BX7orl8hVB2MhFrU/P4n/jklp2hwaN8gpEAYhaocz376r3nzbbcyjgJOLp9hKEeTwJKmJhAKaz3e1RgzGSmpagjDCu1nSPUR3vDat5EXKY8/foYLZ5cZ1Y5ZL9mxbw/JsRQbNHTCbbjRgJYPJ9ZwWNomRgmDsI7GNpigja1zjDEUdU3tKwIdkOWeQHSIfZtGb15a8osAQaASrAXvHVU1xBlPI1Y5tvwESRzzyJMjXrPtbSx823fx2Uf+kLFYpgx7dFSEQaOIqa2iYwKC2iMCyXq1yZicIEoxPsKQUthleukUvlY41eBdg0QhXYWXL86t71U/wnFZE4sfeSmFRlBVFVVVIaUkCIIXfscYQxAEE1N67xFiUsSzLCNNUzq9Pkm7jwpj4jhGS4fRijSOCLRiNB5w9swposBglOTmm2+mNzWDR3Lr625jzzXXMb+wjZ3bdlNuNDRFgQkbbr39Ri7mZ8nECi+7aQ8XhyX3PvAY1lUsnjuBCSYRrmVZYa17YY6wKAp27dqFFIKd+3axNlhl97YpjM/Zv2uanXOOvilp24D/+O//kOsO7+XAkcM8+sTTOA9nF88TBBGdVsC+ndvZWFph7eI6G+sr5NlokhgmQEiDu3TtLj8ArLVY62kcNAhkaGj1+vSmdjI1u5PO1CxBFJLl+f+XL/9LWlvsbrH7UtUWu1vsvtiqnZukCFpPHPUILlnAldJSuoqiGlP5EkJDIzS5KwmjHuiY2o2RUmB0gtYBLvI4LRFBSmMDmtqhtcF7hfM5QlqSeBqvIlxjUd4RRS3iqIP3duJwodylLsBkph3hMUpDnJDKLks24NHTBY+vjvjq1x4iq9c4u3iBsoKsgFtvvIaf+9Ff4vzJAXd//s/4q3v/khPHz3HXO3+ZN77yR2nHPZJknunkRl535Ed5y+v+MU7uYvTUWa4dpEQ+wCmN0TGxkSSBIQgTAmMYFTmjIsd6gR/s4Qff9z/x3e/6AWZ788z2El7xsiP0Fvbwmvf/IDtvfzNfefIzNCLHypzK5+hWnyZqTazppCPVIdqntIRBWIvQmjSI8LYhF5Nr3zQNoQyQVZ9/8PqfQolk4lMuEwC0ZOKAwgjvR9hG4GWMV4JCKtyBLg9HD/P5P/k47z30w8x0rydNegS+wdYZ0kgqX06cekIBOAwhvbBHRIQXASOXY8IORVMjQ03jwXmBMQGhjFDyxQlSuepvoL33l1qJk0J9uQhdbg065yjLkqZpSJKEMAxfKFKX/07TNEgpsdZTW0/QatObmac3PUWoJ/9mFEXs2bOHE88+g3eWNI2Joojjzz7H6uoan/jsp6kbePLYaaoqY9+unfz+b/wOh6bnuGnXHDfs6PGq/dtJiiHFIGNpeZ3u9DxLKyvMzvaJooDRKKMqHUoZrHfoKOCaa/dz5swZFk8/z+aa596/fpT8Qsah7TO8+qa97OomLMQJ3/qbBxmvbXDzTS+ndgIVxpxfWaPV6bJtYQGtNQcPHmR+ZhafDykHFxmuLZOPB1R5hr3k1/p/LeLApeeCxlls46k91MIjTYKJUtqdPp3eDO12/7/2S/+S1xa7W+y+VLXF7ha7V0qVLyhsQWXB+5TGV1R1jSRlMT+L8W2apsIDeVNhVUzdZFg8uIqmqYidxlY1rvaMfUlg2tQ+oRb5ZGzDCOqmoKxGDIpVqnJA2WQ0oqL0lto7LDUjOyDDUnnBhhpiXYUzNU0ToNcrODXPtuXDOGBcVvzFAw/yYz/9UXyjKWtYWRvxqb96kG8ce5bPP/GvOT7+S86s/gX3fvNX+JtH7mZ7+xbueOUv0JYH+MAdP8eBhRuZTa7hmtvuZO3UGdaevI/X772V1EyhvKNSDtd4iNoI5ykBE7T5yAd/g5/80EdZXQ05vZRRS0MchgzygptvvZX24YM8cfY0Y7eJQGOJQDm8atGIEExC5RusFSjRIKWhFU9hy5JaKCoRoeqAkJBATn7Hyoxy0/Pe1/40b73hwwS6j/U11guEHRGLFiU1m/UqBSUmSKnrGiEqKl1THrWcG5/hzuu/l27Qx2mDE5C7EZEKiQJDaStKKlwgQBmcs2R2TCVLnAIvLU2+iWs8lbY03mCURrkXZzfgqr+BvmzKf7kAXS5GMCnSl7fBLz/G4zHj8Zj80jf3y7N6QgjyPKexnsZJOv0Zut0uvmnANTR1hcAzPzvLzu07iELDYGODa67dz569ezl86AgPfPURvvClr6JDyfu/592kKuZ/+eVfZXBulcXHj5MUjm4d8snf/XOm23NcWF5jOKjI8hHGKLyfLJk0taO5dApSVRWzU9Ps3buXc2eWWOgu8Pu//rs8ef8TnHzsFMcfeY5/+Uv/grs//kl+4SMfIZQhv/Xbv8f9D30dHURMz8yRZRn7Dx5iqj/LgWsOkGqFyDaoBqtka8tkGxcpsw1EXQL8PxZzLyROSmrPxOaGBmE0QdKm1Z6i2577r//iv8S1xe4Wuy9VbbG7xe6VUhh0sNbiXIP1GxTl5NQT0VBVBVKEGNWjFc8hEeT5Jt4Lqiq75I9tKK1FCk1oIkIDvhqBG+BtjlEK5SfJjoUoye0AmUSUTUEcGryvKeplivoCmR3TKIdJuljRJVcpYy8QY8XwMYdxUxT5mE98/BNkvuL2N7yHN3/3D9HdNoMEglBi2jPc9/hn8CLD1iOsHeOpePLcZ/jY5/9HBuOK73jTD3Pq+AVOnXyW5QtnUJ1ZZLfN0uITLH/ps1wXtKhKyzjPqOsaVUxCgbzIeP0tH2I0EOSVYGn5LE9//QGyjZzF82s4IVm+uMLSyjIm6DAYaGQQ40TEoB5RiZLCZgxcxXrVMMLhfEiadNFaIyVI6cCVRLFGqC7ZMELV22lJyeraozx37CSugtde/x4iOohqgHIVEkcoUqQOKJqcylvqyuGsxDbgbMmDFx6msTk2Tym9xoUtNoqaoN9ltSzYFJIBnlzAyNUMXYEPE4i6aBchaoPVMRvNJqJJCZBE2hBp86KwePXPQCuNcxZ5qfB472kufavXWoN1KKWpnZ+0FnUAUiFgMpNXVaRpinMOKxRJu02cJEzPzpCmKUbLF7Z2pZTEcUgStojnpzh9+hTLy8ssL51n3zUH+NIXvszLb3o1X/3qV3ntrbfxfd/3fTz5zLP823/xG3Sm2pOkqbKmHhmeXXuaaw8cpN2bIkm77NmzjzSNqep80g4JYgoLzjuipMVolLFzYQp8RldJPv+nf42IE7QXHNy/m7ve/W6GwyFf+fIDrA83ue7oDTx57BlesTBZyAnTFrPzc/hxhtAajSOvJq1EVZaosiRMK1TQeiF297Icf1vcL//cOYdtLN45tImJkqv+u9qLry12t9h9qWqL3S12r5BqO2CUrZAkM5MkS2EwxlPXk/GKSSR8gBFtKixRGOMaj3UVSnqEB6kMgQqofY2RFVU1JpaGOuxS5gWdSNCgMSJGNw1tEVDanLJ0SKVxrkGKAOUdCoMApHcEUYzKM77+J3/N7Te/iUbmvPXVB3l8U/PBD3+UXXuvo/YJwxy6AaTGkDdjarFEpFKapsBIQSQ7ZLZGxyN2zCWMV5e5uPI0K5vnabfnOb3xGDu2TzHTfjnrJ5+i2+vSCzRLusFrRWFrrC8JA8FHfvzD3P3J+zj1/EXe/pZ38MEPvg+RztBKu5gxDMYDNtcvMtOb43ve/kvc9+ifUHEvoxx68TTOV1BrIpUQIKhcha800ocETuMHmp/+0C+R5w7tDVIF1DWMHLRb8KW/+kvKCxsk0Qy3HnknDz35cWy9iRUSL6BpKqzQJNEMkamo65wojNFOU8hNWlM9ts0c4Gy2RChi0nSaUZFDlFA5D6IC4XFeUHpFJ0ioa08gHEZpRm5NQ4HwAAAgAElEQVSy4IjNMEGHotlE4/+LnP1ddNXfQMu0hapKtLy0Gc6k4F4uPpPC4/G2JC9LOkmHJGlNZnqyMc5N5t5K52j355iZ287crl1s37EA1lFVDUoJhPOkcUgchYShYLS+Qb/fp9+fYrg54Nz5Faampnji2DdQSnLy1AW897zmla/gp3/gh4ijgEcff5J9+/axvddjZTPnyTMXeOqppzhy8+sIW1N4b2nFKXVZ4ZwhiiNwnjve9X7+6Hd+kz1zO/DNCnfd8V2UowYZKpra05qZ49zamD//4r24sqaqGhYXzzM7v41bbnklG+vLhIFk5+4dCBVT25LVk49TDFc5ffoM49EGLhsx3lxDtfvEcUwYxGgdgNQvFG/vPcIrnAzAVtR+MquW1xVOvjjA/v9JW+xusftS1Ra7W+xeKZWjRYJAkJdrJGGPNOpRNetYW5PEhjhKWd88xny6j+m6ZBS1qGSBxqO1oagrYhVS1iXWj2iMIzYG5SRRvIDyI5QfEQUtZGNJ1muOppJvtudZztcQArQICFotXJkjnEQ5aIpVmu4CD/7WZ7mu9yoeOfYcr3/9bsaLF8iTw7T7HVbOncC5hjTdh3CS/NwFdsxOcXq5TyNr4iDDN1A0DWFQ4fOdiKxLUZzDOeik2yGEUbPC/NQMy+fOMXvNTsLc85Zb/gEfP34vI38RRZ/NepO+7PCxj/0p49ITRi3u/uL9LF48xbapHaxvXCTPc2TSYmZugdWzJwnDmG9/w3/Ln34qo9M6jhKayg1JvaYbT1NWQzI1xhXTvPW138WRfTcgEFgLWngaIcjLBi8F3jqGI8Pr3nQnf/XJ32ZszrItuoVOcJhl8RhGxYRGUTWOWCdEKkSbgPUmQzlHWZf0TQ+jFFP9OdZdjB0XGAFNLQkiQ2OHjPMcpQVKGmY7PYZ5Ti08WT2gUoYxFVNmH9TnJsvGsqLIsxeFxavv6+l/JmPMC4ssf2sJNNHlQm6tpakd1kPVOGrrUSbACxBa4QQoqWm8pygqtNB0k4QwMig1OWG5vPxyeZ7vzW9/C0dvvgEdGfqzfbZtn6dxNbNzcwRhhEdxcXWDP/r4n7M+zBlnBYf27+Hg7gWK9UVWzp3kqSeeZH1Q8bIbb6Ioikvxt5IoimCyk40QijDpMnYxX/tPz+BMm81Csv+6o0Rph28ee5b/8Cef5bEnjrGwfTfd6RnmduzCRCm3vuqVZIN1YqOxjSeII6I4ZseefRQYVlYuMjc7w675aUyT40arZBsXGF5cYjRYZzwcUdcOXzdIJ9BCI4UGGaC1fuG6A/+3a7+l/7K22N1i96WqLXa32L1SCoM2sZkiidoIUaKNRWAItMF7SVOVRLIDdUZclnSdQitBY2ts3RAqBaJBJJ7KWyrnsIGhEY4sG+C9R0qFUoJcVEwd3smzDz9O5/7T7KghEiEuUKix5wd2384N7b1YV2PilLpp8JtgTMjLb7mZP/vUnyIVbN+xl2ywQSoVo5OnkKHk/NmzPPiFu5GjktXHh6gyh0aidR8ZOQwpd73np3A+Y7B2ER3FqLTFer3JDb2Eju6w9/AUF+/5HKcHi1x44EE+8p0f5eJpwbhcpi/nuevbf4WLZ1NOnznLcLiJtTV75ndSSk/lHO20RZmPCcOQPXv2kWfLjAaLvOsdP0m1voDwEVJOMZYjhvYsBRDm+/mJD/wyB3Zcj8DTeEflPJXz5JWjqBzDYcVGVjHILRc2c6Z60+SDi6ydP8O1e19LY0saO6auHXE0idX20jGocipnsMJgAkGoY2zV5qlnH2U8zEB6xtkGUnk8Db5yaAcRnmq8zjAb4mxJgmcm6SOkpixqhMjwrqadTFxp0vbUi8LiVX8CbYyhqUq8a1742WUj/1AHL2yISxNggoggitGBITCawIQ4OVlWqazHOscgy2m327TSlCgwCNwLyzKdTodOp8PXHvobBmsXOXr0etppykyvyzcfeYSFhQUWFxcByfPPn2PvNdfy5qM3c/LsSc6ePsHNNxyh9ooL5zY4tbhGFUxx9IZbOHjdDdS2oSxLlBCkrRaxnBTx4XCEUIb33vX9PHH8AplKOJsbVp9Y5NTpE5w6d5F2ZwplWpxbXKTdirnhxls4f+EcF86fo5nqMzU1hXcShJgkNEkDUZ/W9A7q8SZlXjI/Pc3G+gobo1VqNaYpxoTJFE1dE8QRWgdIbV7Ytvf87azjlv7faYvdLXZfqtpid4vdKyUnIpJoipWLi3QTST5ax0QprrEgQvLyIvPJXgb5c8TKMyoHEAuCEGxTUltDHBlGxRqBSakpKW2DtRWRDgkwlA1k1YBGVTy+fILbdhzm9PGT7H664Nodc3Rec4CvHXuObeOQONzG0sYSeavF5tI5nvj6MsI/w2oBSQgWS4Ckn7Z55Ftf44ZolqcfeIAH7v0ij95/D5/7+Z/hoz/3M7RKidNjhJRIFbCx2kbVEUU1wIQJznu0rWgvPceRWNOan+WZMwGH/9Ev8/Q9T7Ouj3PyiVP8zz/7eywPzzFabFg+KUAPWV9bZ+/OnTx/8jh1NuL08nnSTo8VNO1uREaNkYrxYJXyZMXOvbfy/nf/E37n4z+BSSFQPTQd7vqen2RK7EJ48AFYoHJQWU/ZOKoGqtqyPhhQVhVhGHJg2zQnmwKEAynZs/flmGMLOLdE5TyuLFBBm7Ku8YhJOI7w+Crmru/+ac6cyQh6FS5XjOoxUmoQFVXtcL5GK0GIotWZYuzBS48qRjRKo2ND6g2r2VlCHZL4Cisdnq0Z6L+TgiCgqQxNZSepPs4BE8P+NE2xVU1ReFCaKIomjzBBiEnSziQdShOFhunte+jO7aTT6yM9eOdAe7ydGN4XRYH3nlaccPa556CqmJuZYrOp6HfaJElEmMQ0NSADzp9fIoif5dTz59m//zru/8YzzM5vcN3h61lIdtGs5nzt0Sf4qTjFuBrnLHEcU1UVQRRSljlJIBmMxjTW8p53fyd/c/9f887vej/f/MaTPHd+mZndB1g6v8xzjz5Jr5tyfnmRvXt3ooXj3OmTaCFxKuSW1756cq08ZFVN1mh8NA1WEQYJ1XCVKG4zXVcMsgF1nZNXBc6OKMo2UZwQhCkyCFHqkuG/9y98UF6NJyFXWlvsbrH7UtUWu1vsXimVTYmoCvr9DpETbFY5+XiDSFmk0jRVhhSaEstm4Fn1JR0ZYusGLxQiSKlqUE7TjtqMKou1DQ5LVY8nYSQIokhjnWMjz2DvLvYvwrHlp7jtwBT6ifO8sXMN4/mIzpLljuvfzAOry/hYkExtI53Zxsz8HGvDRe6574u8/po7GdiaQjik8aw/8hTnTp7ic/fewyc/82lOPfsUK88tkxyGQbZMaHp85If/e7K1MWXhcCrE2oppMeRQomj5FuN8TJg/zlPHPdPf8b2sHT9Hk3YQdcmudDvF7pJP/uU99Of2EsiA8xdOc+fbbsfTcKA3zXMbA37rTz6FloKNtYt0O33iqE1ZCYajM9hNw13v/N+4+95f48fv+nGSpo+SgACHp7KC0kKRN1ROYK2jthUmCJjqdjmzuEjPr/Oxf/4/MHvkKCbsM7P3ei4sr/C+d/4sf/wXH0Xqhto2UNV00ynG2QDhG8p8nUPb3sbpExVfePg/MBTLhFpRljVpkNI0NUrHOFXimobKSXw5cd1wsiFqxzx74RQi1wRWIpOUSkVczMZk4yHOlS8Ki1f9DfRk61ZN2jTWoqVAKoVETuJjmczmCeeJopjARAitqPJsUny8x1pLtzf9QhxtGkeEJkAI/jYxCouUktm5OTYWdvD8eMSzTx9jeXFyOjI906cVJ7TihGPHnuWmm25i+eIKMgjZfc21zG7fw/T8Dm699VYOHzzAZz/9aQja/Hc//zOURUYYR1gcFocQkuFwSBQahBCkcUiQGN7x1tfyHXe8msrm3HTj9Rw//jiH5g9x4sQJ9BFNNd5EiX0U+Zg0Dmjv2kPtYWZ+B+1OD3Hpes1um2d2YSenn9nExG18ATpuT1KFmhyJZ1iWjPJ1hvUYGZdUVQsTFQRRgo7SybzjpTnGy8+39PfTFrtb7L5UtcXuFrtXSs43VHZEYgIiQoog4sL5k+zbvpPhaJMw6FHoCmc75IGlLtcYViHCC0rraKkGpzTeS8ajDGU0iAYfGEBR1zk4QTkuUUrQT2d5bu0pbj6ywM7HdnPu9BLT1+7E+5CLj6yyd/csvaDNW+amCA69mfc/+rOMRiNOnj3BZ359EaUEzdOfotp1BxQjfvYP/g9+7FV3EJ1e43a5k+zLX+d5+xxBuINQKiIlyPMQ6TXOahpKai9RRuJOPkqwbZ5Tzz9F0ukTzBxm/ckv0Dz3DHrbXnqtFOtCMu8xccR3vucOfu93P8by+EG2z+7mmvZ2Xn7zQX7xIx/mVe/6DqampiiyIQCj4ZBWJ0XRUA02iHrbyYcD3nvnz2PHDlKwDqyHxgrychKJPkkDlYTaoLUmz0uiMGZqdhcXPv+rnPryv6OU38t1r38vvf4cg3HD5rLg+971UX7nY/8S55ap3ZCmifE+Jyjb/KMP/hs2FyXPnP4Gq/YZinpIYTRKG7xKKKoh7VAhhpokjiirMZVvwGnwnqX1nLSTUlUNgZS0gj6jPMMzQGmIXqS3xVV/A61NhFA5VeNwMGkTRpO5n/rSVjhIhJgUMe892XDEeDSgKcYIJen0ZkjSNkII+r0uaRIRBxKFmCT+CAc4kiSiNzOHilJm5udIWimtJCZJIy6cv0Ag4aljT3Dg0EGeeepxDh45yhe+fB/veNd388pXv4Y9e/aQxiE4z3s/cBfWWsIwZLhZUmQ5QkGOI2Qy4+YslALGZUlebmJmZ/BC44Wi0435yZ/8CU6cOs2+a6/l7rvv5tChg8z1U4TLcQKG44rW1Db2X3uQbqcDrgZniQLN/PZZVi/2GQ9WcTomUBJb5QQ9RyvO0ONNTDZmYzSizDJKFSJaHYK4T5r0UFFwyeZmYgfUuKvvJORKa4vdLXZfqtpid4vdKyUlHLYpUGjG9ZjARMz2e3gnaGrJdL9DMR4RiJA4kJTNJkZ3qUvLOFuiHfaxrsH5EhNL1gfrBLEmLxxT/T5FM6Lwm7gmZ6o1x3gj5/bX/ROClacpHn+e6f4u2kaRiCWCnV0Gmydop3vxdU22dpbQRMwlHe5/7DFe/bZ38OXf+mfc9OrbiU9+jmEledtb38H1B47y1EP38cO/9gt85Z7PsLJ4nKO3f4Cs2SRVU3zk+z9KPrBsjEZgHWGrR750irNLK+h6QNmUsHmR/sx2Xvm29xFd+3qePfkcxhic8yA9dSWw0vOhH3wvv/4HZ/j8J+7j137xn/How5/kj//wM/yv//aPyTfX8fyf7L1pkG3ZXd3523uf+c45vnxzTZJKpZJKA0hgJISFERgBAjEb7HbbNA7Tdnhof2g3noMGHLSjHU03djcf2jZhN3Y7sLBFG0EDshiEBlBJqirV8EpvzunevOMZ99QfTmZWSdGEIaLKxHvkirjx4t3IvHnvPevsfc7//19rOSIVYExDGA4xxqCUwpqKuJOxzCukzKhzkHg6kaBqPI12IARaa+I4bq0EVdv1KMuSOD/i2m9+kNe+/jLbV66wuXOJvNTEUUgsU1imfN1b/hJXHunxbz74f7A4XPH+b/gBBslF5rdSntn9dT5/8//ByJosy6jqJUrGCBESqta2z3uLdwnaKepmRScbUlYFWWeLIOyzlAfMJrfppufA1VTVgiToonTzinDxvr+A9t4jRTsTFkURWZbhRTtIrpRq24u0kZret36l1mm0rgmUIkpiwjBktVqRyDYxK47j401AoIIvNv8fDofsXLzAnWrGZDZlfPuQne0tNs9t048jet2MIAh45LWv5+lnr/HOd72bCxcusLa2RqgEoZIYb5ASkuS4bagC8rwkzlKwgmeeeZrHHnsMJz0qDPAOup3e6edtT6L2FuuhBx8k6XR4z3veg84XBK5hb/eQze0tBqMB61tbDIdrL1UulKKualarFdo0eCdwMqD2AheFeBcgVEUsY2RwhHKaRdmQ64JiWlGXTTufV2WtOCBUSBESyldm5uiPEs64e8bdexVn3D3j7quFMIAw7NKUEY2u6AYRqUwBSdNYqqqhWdWc68VoPSM1a5TFEYmUDLMMYwuUFDifszu5zWCwSdUY4iTGOTA+IOsMWM4V0lzioXOvJQxH9B94N49/dQ3NASst0OE5gpu7iMGQpbbEMmJ/toDBBiJexy3mXH7iq3jD+/4qH/mVj/CeJ17H537hF1gML5N2Y/7J7/4aV7/vK6nTdQ5u/DqrxbNsqKs8evmrCI1kUS+otCMKBzS64M0PXmF3eZUbd2e4tItsNNXBnKvveCeL3jbnL9bkeU6tPd1+B5B4FdB4+Ivf+zf4zfijXAliJvVXM3rbwzy5/xGmd2Gz9xDZxgP0B1329vZYX19vU/6sAy+xtI4apbGEwiFcCEJRlJowbG0nT8aGGmMQQqC1YXHt4+xkmhtzRZILLsfrCCsYrWXkTUUpQrL+Gk9/9gbvfOx7UMTIIuapay/wuZs/y8pP6CQxRa7xocfT4H1E444QMgEpCYOAMIgRVhN1W0EygUIECeVqTmUbkixlpQtkmqLLElvt0Q1emYCh+/8C2gmEUDgHQiiEUHg4nQ+z1rYikSBEa02YtM8J6Qlkq2humobACwZxzPr6OoPBgDRUCOHw2NOWmfeeOI554IEHCUxDGKVYo2nKCqECpnlFdzAiUoq1tTXe854HsVGPSw8+TLfbRQkoi5wkzRBCYIxBa43F45CUpSWOArqDIfNV23ZRYUCUJHS7XfDu9PdO0r+quqbT6XDl6oPMxgcsJntcuPIwcZKCDFhb32w3A+9xzuO9OY3btY1ufUUReBTIEB235AxUQCAVXQNOLXBFAdpRVAtWriGOB2AagiRDBAn+ZQEAZ/j94Yy7Z9y9V3HG3TPuvlroR+uI2pF2h9xcXCNqKqwQdKJ11tdiGttglSaVHXKT4tMMsyxY4fCiA1IRhRLp10h7GfiQvD4iUwGxSCndnCa3dBLBay98DW9647voR4K6tKjHvxa/3CWfLiitp3fpbXTVCpFPSAJBvH6Z8Pzj1E6x9sQ76fTO8e1//i3cvfsNXHnoMv/8+3+EH/7hH+U7vvMH+Xt/639Al4YPffQTbGfbPP25z/HHntjhax57O8vbz1KXBmVTdq5cpa5LdLNgePUtDN/6IOPZnL2DI+ZW8/Rejtz/DN1uF6un5JN9hvYiYZSSZRlCKEzleNPXfxVvf+S1/OTP/gQvLj9CE93FdmqW+Rp+z7O+eYV+bw2HxMmQfDVHRjHdaEhdhThnMKHAC0sceOIspKqOOS8VZdNQG49wNRrB9MbTyOF5hqrH1vmHyEtYG4VIH6C1QAiLriM+89SvoIMbNDZDCo1lgpMHRNEGgRyh9U068SaBHKBNidAe1akwZY9AgLENWh8S+DWEqOkGAWY1Z1lOWNvaYX93SWdgyeIO+wd3ePDcExj9ykTc3/cX0FK2Fj9KBgRBhHeCqqmO7Y8cRVHgrQHhcBYaXWGtRimJNRZhDFHQVjmSJDld/GUcIqXAnbYiW0P7MAzpdvpcuvoI3eE6d2/fQiFw3hDHMbF0rBZzXryxywMP9+j1UpRqN5EkDImioG0vHSd1CSlIOxmrQnMwnpJEAYvZnCRJuH79Ojvnz7MqCx5/0xsRWJzzKNVWeowxBIGkG6QY65lKyWB9gyTqIFRry5R105fNynn88Xrbnnge5w1StMEB4PBKQpDgwwCvQoSQZGmKjAvCPEfUJbNqRV7W1PWCKO0RZ31EGP1hUeCexRl3z7h7r+KMu2fcfbWgbIhxDciELJAsq5ILyTbGSlIZESYxqpPRT4ZMF5LYhFgVQSLZP9rDFTkbwx160RAlI8q6am+EnAPfVjTTtMtXP/F9PLDxJlAaoyWBkqwNB5jBgGzLcP3FF5i7gOHmQwy2L7N/6zrR1jqH0yUgecs7vhrvPVprBoMBR7MJk8kLfOC97+BD/+v/AoTI0ev4iX/6z/mhD3wdD6xd5gfe+6c4+J1fQhOQZz1Ub4cESTbsULsOs3CNfGUpdchwbZvZ+BZHkzG9TkwUS7Q1CBGT53NS396s9vt9jJQ0Hn712c/ws//xbxGkExKVEnRjbk2e5DW9r0I0Bhs4MCFVVTHodwEoqxXewmIxo9fP8L0ueIiTlMWiIAgChBCtLWW5YNxEDPUBneo2qzCis/0Q4eaDbfdI1/ikfV2tNatGs3lxi+fvfAqRSHQ1JZAhjVOERpG7Bd20T6girCsIAkMcxJRNQUiGU466qUnikEg6MjmkyD1Jd4ARliZfMsoS6tmSWEnWhzsYK9GvkLj2vr+A9mhUJAmiEO89tdEvxcg2rRJTSol1BVVdoOIUL0Ksawi8PY5LhbJpyEt9XGUQCOGwJxZNzmO1wVqLt44gCOj2B8hAEccxVVGeCmHqukSEXTbOP0h3MERFCUkU0O/3iaKIpirRTTsjqFSbyPWRX/t1zp07z7/7uX/D1uYaF85t88s//0GEdwRRxHQ+5857vpZv/OZvRAQCfTrDZI/V2OCais21NaQQeN8+H4YhgRQI7xAShIhAKdI0otvLCOIEyhKJAGla6xoBzgkaEaKyISZICIo+KsjppTlBPkMtDsgrSzGfkM8OCLIhYTb4Q2TBvYkz7p5x917FGXfPuPtqobAVG/0+eEPIGqWY07cRR0GASqCol+A0hzZiWUPkofaWo91bhJEj7caEYYRSHmM1YRijnSRUEUW9j8dybvh2XnfxTXi7Qtddqqqh11FkKRwezlhVlqTfJ/I1s3nJMo5o4k10I1FxRKIE+/v7NE1Dr9cjSrvk013GN3bJOhE/9a9+mqwf44sSmY958iM/T9LsM72xx2h9xJ5bp7l1k2i6zxeiNUa9NbTzrI6m6NUK4zVGCnTdJhda3VCtGtIkYjhap6EdJ2qahsPDQ7rDEbpu5+y/++v/e37hwz9OFGkmsymiv+D8a3f4/K89ycUHHqU/3CDNUqz17UjH5hrSt+45SkmqxiKNbd1jjEFKyWq1agV+pqIxgmz2DHfuvkA4HIIIuX0w5nz3Al7GVFXFcrkkihLKZQHGs7Nxjr3FPrLxpLEjTDoI6zBiRhJLnFkSRyFBmOFtjHBL4lBTmD2yZBurJKWukD5irXORnAYlDFEYUOUB59cvomUF6UXqaobF/OeJ9vvA/X8BfTybE4Yh3tnTebs4jhG+XdCdOa46NBaQBMJTNBUYg8PjnUJLSbFc0Mm6gMM6ffr6umm+SPkMQCBJ0xSBJzneRIqiIggisl4rRpkt5oRRw9WrV9FaU1XVcbWlaTea43mic+sj/vGP/T2eeMNDpPUBNz/5NDu9mNo6ZvkRDz30EI+/8XXIsP3bZVnS7XaJ4/h4Q1CEQYB37liwIxDCI3+PGJ2mbtuJURi378c6tHEID84LEK0C3liPlxEu6qBQeBUSCejgCdQS5Qx5WbCYjpGvUPLPHyWccfeMu/cqzrh7xt1XC+uqg6tKctnQRAE9LTgKNEEIq7zGCEEQCYxpyJykElNUHLG2vkEWD6hdBTJgYXJkkyNlB1REUVeoRBDIIW953ddTNA5JQllUbK4lKAUvvngLGYQUhWG+mBIFITU14y/sUWtDGMYkUY8giKl9zr/+yX/EJz72W3zgO7+Ln/qf/ycu72xhnOKHf+Tv89v/6Rf4wFdeRtZzouUMjyPIBszTy8yP5nzrN72ff/bv/wPBtZscqjvcnH6BQVGyunaTh//kn2S8KKkXJSoVeCHwKiTp9lBhSBYmeNHaQy6XS5qmQQUKlESaLufOvZPrk39NFg8JGsNv/ObP8NDOt7GYTduwmTgliroEccjRwSFFVjIcrNPrj9C6ptaOWDu6cYxxHqMti7wi8B5sxdHnP8Vo52Ibrx12+Y7v/l4+/J8+jRUKTENdW5xrsN7RLO9g9JxQOWSUor3GKYGtlkSRoGkcznmiNMSqmvHqFv3oMgQdqsIRpUvyFcRpB03JVBxhrUEicFVJp7ODj1PKekmUDNGmwrtX5ry47y+gHRIVCKIkpqlqvGgX9jgOcaatbFhrMc6RhSHWaozRmLrB1AWBs8RJh831Ef1Bl6qq2t85tmk6EcOcJGvBS0lbUraLuRJQFO0B63a7XLlyhfF4zI1bN9na2iJN03bRP5mjE7BcLk/nBS9c3OS7v/Nb+Ec/8rd540M7vPV1D0OzIk26vLh/i7d91bu4eOXy6cJ/kpxV1zVBEKC1Pq3EtK8J3tvf8zs7saB66XO1GwCuLYWcpH+dPJxKcJGAIEBIQSgDokCgMEinwWiKfPoqH+n7D2fcPePuvYoz7p5x99XC1IzxztB48OEWtRFEscZWu8RCUdUOrSP2qzmjfp9QOhb5CmMK1te2mR/skmYS1IqGkNTHZGEPl4VYPL6MiFVEU3iCICDpBFgHjYbxZE5vOECokDjpUM3HWKsJpSdMQtJOjyjs0Ms6HF2/zY987/uYfeBxnBN857/8hwwHa9QoOp0e79z8Wha7Nxj1U+ZNjSYiOfcarh813L11k5/5lY/wzLVbSL/H8GqX+O7vMr2+4LH3fxeHU0NjKtLUs6wcPgowiyW9KMSrFK093VEXZzWCljdCtBxCet7+xPt4eLnDh3/1g8SBQacRnfVzzO+8yGw+oTtap9sbcv3mDaSUPPDwa7GNZjqe0Fnfoilyqlwj4xBrDbW3lLrG5EvOZwKhBIdGEUUBJugjsOSrOUl8iV5vnaOiZrlcYr3BmJqqKojXJYEYYalZFEvSZB1ja5ANgepgLWhjWa1WRJ2cRPZpjOBoWqJkxnI+IY5TuumQolwQORgOL7B7d8y5Qcr88IDEQDeJOZqezUD/vuDwKBRJkrULj3VtdeN4Buak4qC9IIjbebGmLlthiJJttKz3CBVSlQ1FUbTVk7AdWhMvE2mcpI6507oAACAASURBVEE511o3ee9pmobRaMS5c+e4ceMGTVPz5JO/y8bGxuliGUURi8XidMHVdUUcxzjnWC6XhFHGo297B3/im7+DT3/0/8UnQ8rpAee2tmjcAW/9snejtSKMBGVV0jQNeZ63c4HHFZETayZjDHXdkCTR6Ul1+l05hwe09uR5fjpb6K1DoPA4vHtpozpZyI0QoAKEksffQYTAEDjoeo+uarx6ZVomf5Rwxt0z7t6rOOPuGXdfLYybORvZGtJVxIHjSDekZHhdEoSaKEpZVBUyqjhcTBGRYn3zEuPxF7h7+ALba5eRylLWEhfXpD6gm6SsnEapCOMgX+wj002OjmZs7IwotcQYw9WHX8N0doS1isYYeqMNVqsFwkZ4q3FNTaM9hXdMG8nnbjhW15ZceeuAUFl2d/cQAnSWtCMjiwU4zcwJmmxEdvd5vnDn01S9ObfHApVlCA6Q13tsLbbYee83cLteMZ5+jOH5bX796d8hyhp2um/i/PBRlkVOEKfIMCWQAmMsaRxRufaciKIIGUgC5dnuvYW/+H1vxVlQYYNwEfO9x/jVX/r3LOuSvcM7RMrxq7/8S2xs7iAJ8C7EHe7RTxJk3eBri3KOnU6X6+MZcRQQHT2PDxNGGzsslwv+7H/7twHY3lojiQMODvYoihV1XaLSJUlmaXzGrFwgRUijBU5kLFY5cRwSxBKnFct8hQg1g85rcNag7YIgGNJJ13CNBi+Rvo+1Hudz6qKmSUZ0hynToyVJkiAVBL7L+uD3vpH9g+D+v4C2YAUIFbazTmiE06etu6Zp7X+sik4XVnB4awjjLnHWAxUjVIIIo9OFEV5y4n65Yb21FmMMSRwTxzGTumIymbQHT0IYKrrdjPH4gCfe/BauvXiL6XTK2toae3t7ABzs7WKtRWvNaDQibyriIOZ93/pdSBGhs4Rnnnme52bP8h3/9V+g8gpZzJH1S63MLMta6yjvcc4RhiF1XSOEoNfrUdfl6c+eLMrOO6xz5HnFeDymrmtwrUk6AjwCjz9Vvr8Ej3MC7yRWSIhijF/H2QChHWmvwS6Wr/ahvu9wxt0z7t6rOOPuGXdfLURxF2tX5M0K6wM62wOK2tIbjsDUlIuSjcEGh2bMG9Ye5KniJov5AWGQ0RFdZKCQIsXYKbHss/INPeFJXciinLG29jBKlcRZQCRSivmcae0xTY7XFT7tUNc13itMXZF0uhSzBcujCVZahAy50LnCxvZFbk/2+fGf/r/5F1/5N9lfPo0/KomylDhYp/Y1optw8/AubL6Bv/7f/QOS6XX+zF/5FuSbzmPrObkqcKUm2Xoji52LzOq73K4/zTARfPbW77C+fYFxfZtSfh7HJcLoCgJLTEJerOgN1mjKisTVKBUQCtkKVp0lCAOqCkLvME1Ag8eOr/Fll4bcPZyydukiDz54lW//9m8nSyO0hGYyhqZi8uwniCOYjJdE+XWyhx/n7W/9JvK84sZTRxRkuPkeRT6jAt70tndyaWuNW88/zdILTN2jbo64dusjrEcrYpUQC0VelSCL1n8mCJAioijmbPQvkjdjynoKYpN1NWSxGrPW32ZRay5uXGE1HZPrAlPlZFFMVQTMzYQ0GCGTGaFfo24afKSoGvWfo9nvC7/HNNb9A2sqjK6JVEAUhAgsVaOZT48oVkvKssQgCaMUJTxp1CZMhUlKknUQKqA3HBLFAYPBiMZomqpVk1trsV7ghUSotk0XhwrhLXVVUhY5QRCAVJR1BUhGo3WEUKRph6c++zlG/YQXrz1Hma9YX9tEKUV/OGB9fZ1z584hEQjdthdrJO9+7/t46LE384nnbvKtf+bPo73nzt5t8rLgaLrgzt1dJkdzxpMj5osFdV1SFAvA4b0liiSrxRxcWxWKgpCmqsEJpBNEKkIiWS0rqroE4VCRRAYKESpUGKHCCKECVBghg/C0AmS9w3mBdeBUikwG+GwLm2wgO5t/2FS453DG3TPu3qs44+4Zd18tKCKCdIR2Id4pmqagqMZY3SB86xMthKcbBjTkuOWYyJcsyxvE/SG4DmV9RJb26MgNIvoYJ1npOZ1Oyk62TrC06GXORjdj9+4BppxzNJtSOrCVYf/uLfbvXuNgUrA82ueTv/Eh6nyX/Rc+jWymPPnkbwOOyw9dIeoafuJH/wXbm+9kWU9ojCYIQ4q6ojg6oMrO8anPPcPT15/mmcOK//iRzzEZ70LQHts47XBr9Rn2/Mf4wuoXsfVdAmXIgj4+AIRgqsf87vO/gIsURaMQqqQoCubzvNUiBO08dJIGRFH7EAJi6VCBwArJclEy37+LLY64MExIJ09x5zc/yMFv/SxlveKFj/825e98mLsf/VfU0xssSeg/8jjysa+n98TXIQJIewkPvvkrUZfeiu9uklcll3a2+PAvfojrN19gfzImTdfJuj263Q3qZkVlaozweAuj7hpVbcgbw9pwB1AEssOqac+pUKQsl/t4DGEcYLUhURHT6QSHpJudJ4l7lGVBv7tNk5cUiwLhuqQuo+8DrKsQ4pVx4bjvL6ARbYWiTWZqldDGtC3BpjkWjbjW0L/9OQgCRZqmhHFKlCSooFVlT6cTyrxoPU5RpxY1JzNw0ApJTpK1hBCn83r9/pCtrS0ODg7Y3t4G4NFHH+Xzn/88X/ZlX4bWmsPDQ4qioCxLDg4OmE6n7O3t8ezzz3Hz5s12DtAb5osF3/wtH2B/7xApJYEUFEVb1QmCCCmh08ladbr3rcq8qdC6RmtNEASnCtqTlqNQATJQlHVNXubky3kbq2uPRToiQMnwdMbwVLQDp1ZSL29LQlsrMiLAhAkmiv8LHOz7DGfcPePuvYoz7p5x91WCa2ryymHxNGaO8zVRLKnKCdbmREFMWWp0PuVmcYdUtdHrieygi332x09htGO1WrBqDjFuSew9qQqxuWGrM2I9VthyzPjWNR566AEOJmOE8DTNkqPDm3hdkIYC5Rcc3nyKTuRYi0KuyobR/vNcYMrs7ovMtOb7/9oP8otPfoyf+bkPUlSCOE2ojUZbQ145dkY9vvDis3gjqBB88/d9G43OQWqEat1ouskGTT1HCo+KBTkOS0QUrLFlH+BqsUNzY0YaxWT9fivWA5IkIQxDoihGCEHQJl1TFBVFUeKFoHaCxSLHF1NWk12cc9RENCJCpl1stWLymx8h1EuO7Aqf9FgWOfbgaW7/7i9zdPsaRkPloTRghOKRd3w1l9/xzajeFr/00Y+11XrbEHfXmC1KZGioG0OcGubFDBEGJElCZXPSJGRr0EfKAK0rOp0+ThQMh0O21i5Q50viKMMRgPF00247OhJLglBzZ/caQlUYBKFo6PdiXLPEVhZnNZUdU9eTV4SL9/8F9DFO5sa01piqRNcVRVFgrW2Vs0mCc46qqvDet62/KEbKEKli+sMN1re228WvqqmNwRqPdBalFHVdt8EAqk3fOk2YEoJLly6xu7vLwcEBWZYd/82Q69ev85rXvI6qqijKHG1KjDGEYUiv12urNMaQxgnOGoSrORrvsVqt2NrZ4nC8z2I5p2kaZrMjyrKkPI7KDYIAFQiUamcDtdZ0Op3jxb7dmLrdbjtr5z3GWozwODxFueJocpf5eJ9qsUCXNcIKJMGp0OUkMOBLHyc4sV6yElyk8Fn2h3j0722ccfeMu/cqzrh7xt1XGmEYYxvD+toag2gHYxYoEnq9AdJDJ0npj/rUOCwpIu3SHZynE6c01ZQ0CzC6JkCgTcE0f5GqmVA1UOkFibZU9Zy965/FVFOmszFXHn493ayDLQsWszt00oa1/oDr1z/DhZ6k009YhQGFsJTFmL4q2Dh/jkBBP9O84W0P8j1/7nuZrjyLyrIqSryC/qNfSZkX/M0/9y3gPFuZpbl1CyNrZsURTktmxQEpIabRRGEHuwrACLS13D26Tr+qqT53l2ufukMiMwpdI2V2fN7VWKup6wakxHioLYAkjROwgkXRsDg6YHbjaTppRNM0yCSlXi7wVUkqPKZ4Ab37JHFdoVcHmGKGqzWyWhEffJbP/Pz/Tnl4QF01FFVN0VgalfHY69/E5Z0LlFoS9y6gZEYnkyhpSZM+YQQq9RTVlHqZs39wl8YukXnOcjUhSjpEQchycUQaJBSLXc6tbRFECV0V4SYeU86Z5XPqckESdRl0zmHNkEBoItnBmpK6WVDLkpwGI6ZU5pUR1973M9And+wnrb+maSjLnKqq2gW1kxKlKVEUHadjNXQ6GUnSzt7JIEbgsFbjdEOxWmKsRagYIQyRlFTHyVF4j3VtQpY1mm63y9HREfP5nPX1dYR3bUSmau2UNjY22gpHo5nNZsRJyqVLlzg8PEQiiOOY1WLJ4fgQ4WwbWxmGDNaGhJEiiiIqY1nlS6QK2NxM6ff7SCnQpiZJEuq6Pla/xxRF0W5Ytq0OnWw8QgjwlrJy5GXN7q3rrCa7iKYmD8DqBtmXyCCG4EsWbCEQolXCnyzmUkqctyAVMgxRaQcp73uqveI44+4Zd+9VnHH3jLuvFkLlCSOBQhCohGHyKLsHH6cTPU6/18EamEzHyNBS1Qf0k4uMl/tg4PzoQe6u7pCmCqcVzuV0upexRPTigFml6cY9VBIxGG4RpEN2D+ckqcM0gnOXHiPpjdi9fY0mP2T385/Avhjx8Du/lsbGVI1D1SWrwynbj43oNjVxU/LX//Jf4O7tG1x97etRLmdV1bzmiTdikkcQV97J/LP/Dq9rvvzhc3z6o59g49vPI1EoFZKmadthiSIaozk/2qZWEm+mXFSb3KyOeNN7v4Js8XFsEhE2NVY7hPRtMI/TqKD1HPcCrHVEcYQKYFE5lnnOYnybbjVGO00/jZnu3aQbBhT5Epwl7qQEWDwSR4T3BePxbZz1BEnAYRmyUWpC1eCFoixXxK5ieutpfvuf/V0eesc3UCwyGgJ60ZDKNAyGHYprM5IkBidIkoQL8UUms9s03mMFVG6OEBIfNEzzCVU5QcodNIamsYzOpdzaf4GrD7wNXVYsjo4Y9hWlXm+tH1WC8DWRjSjNimRdcDRb4vUrk9B531egTxadk4XcGIOta5xtqwVBEBFEybHZfttqO6maZIEkDQVZLGnyBdVyRlmWrFYFTrQZ8FbXp/ZCJ63DIAgYjUYsl8vTxe3kudVqRVEUXLp0idu3b3P1apvQc/nyZYSAGzeuk2XZaQLX+vo62xubnNvexlQ5obB0exlra2v0eh263YzhsM/58zsMhwOEAIQjDNWx56gkCALKsjw9EaF97y/f3CSC8FhkoPOC9/+J97B741nu3niW2XSP+ewQ05SnIpYvrX68/F/nHNoft3ARRCKmE6T/hY/8vY8z7p5x917FGXfPuPtqod8dMN6/QZb0ENGCvJoiAoO2DXkDq7IB5ZnP56eOLMvlkn5/Cxmm2MoynY1RcQRBSGMFpW6Y52OsFzgRcfvuHlootIgZDofUpkYlCYeTGYcHMx557dvY6Hd477vezmOPv4Xu8DxR3EdlXWZ5Trkq2Z8ueeHzT+GxKAlpr0fd2cRHKVHa56nPPcNi/BRNf4TYusTdgxWjnYd54i1fxrC3hpRtx2Ixe8kWMY5jDsd3AQgCqOw+ZZRz7eA6X/6ur2m/n14HFQaEUuGNxWvDiU7XaFDCIgNYlprbBwcUyymxWeL1DBXAajklcSuWizFNvSJQlqrIcUaznM9omgqlFHm+pKwWTKZHrF14kKMSau25u3vIqqjxo6uU2QUGkWf61K8QHnyaXmCxzhCErfC3rOYUumahDT4UID1x1CcdrBMHIVUzpmxKpIhYLmuCeEivcxmpLYHLmOS7jPrtTcIk30XZmnw+Jl/dwaLBBwyDjCgJaWzDeLpHP93mws7FV4SL99/t6ZdAqtbU3gFeSKSKEGGICGLiTpfucEQ3jXBGE4cBkpAoiJhPZjhtkCqgPxxhrWVRlkRxh6psLVKCVCEdp5WGpiqJw5CiKCiKAqUU3W6XoijodrvMl3PCOCLrdnjhxWuEcXtH2emkGNNw9colyrJkNl+2FQolSHsZUXKBpq4gCE8tkrSuUUHAxmh0rE4HfHuiSinBeZxp25zGmLZqUlVkWUZRrohEhJAKfew1GuBZ1gXTgwlrUvGZX/swl7fXubW/377/4YS1zW2GwyvE3QQhJUJ4nHA0xuFwNK7BGkOlC5xtraq8dYDEi/ueaq84zrh7xt17FWfcPePuq4VQJmxuncNpTxpe5CC/RizehDWWRbUgSVOEtKyPLpIvNKWecfXca2i8YXd1kwubV5iudmnKGUp18cGKorH0RhuUi5xCC8BRlBUiLEizHulggC1z6tURwySknC9oyhztFOloAx/10XaKiBJmyxmxjenKhlU9xc+PMFGPUecC517zVsrbn8XWOVujAUkypBMI7KW3cmeV8r/9yw/xf/7YD9KXHbxrxbE7D7yW5eHs2O/ckW10cM4QIPhC3vDeB/442/UOlx5/F/NVTVPkdLpbmMpg6opOlhAlCuPBWYdu2g7IfLnC6JLMaZQEoQR6tSIOPDpfUVclSngaLAYFcYQ2DdprAhUzWttGO025WmG9A2PaREKlGHR7ZIHBZmvkkzHdVDFYXSOKH+PabI8kzZjl7Q1BEkaEQZfxckIUg1Oeab1g0B0gpEWqmMzF9EcdKt3aPMZ4sBIVj+innrpZsNAvkmhBqFIWzfOorIPVEeiAZVQgOxCT0klG1OXRK8LF+78Cjfoi+x8h2raICCPC+CUjfbxDSdG2wLyjP+i17UZnAEcUBGSdhChUBKK1H2q0BtkOvzdNQxzHlGV5Wg2QUlKWJaPRiNlshnOOixcvslqt6PV6vPGNbyTP25Sguq558cUXKcsSa+1pdUWpNpY263TZ3Nom63SxzhOnGXHaCgSA4/bkSxWKl1slnQQFeO+pqoo0TVsl+/FMoJQSZyXTRcEXblxnejQmS2O219f5oR/4AZpixWyyy+2bzzMZ3yafT6jK5bEQqPVTPKky1bqiMQ1a61MxjRegwvtvIX+1ccbdM+7eqzjj7hl3Xy3M8kPyQlLbhll5h2H3Av0RzMdTullElPRY5TMWszlZJyROe3gaBA1lOWGcH5CkXQbddYbxNl27Rhz2WS4KVqsFC9Vn3kiESnHGssxLrDbs7+4SKvDKUE2eI6inBFbgCbCNQQURve0LTKeHiE4XZTVV2XBjd5eDZUMthuxPDebcE4QPfw3ygXdjd55gsZhSq4zIlyzokMuE2WJOP9vG2ZJyZjlaTAgDyFdTmnJGsTjENxArz8Nrr6fXXeOoKNE0lCuNsy0nlfRYaxB4sBYhIc667B3OkUGMzEuObj5NPb1NMVuAM0wne0wnE3AGU+XU1mFMg3OGqm5aQbD1xP0u/U6XuD8iG+0gvMAbTyQVwlpqFfLou76JcLCFRiLimOXNJ9nspdRl609elw1GF2Aiup2U1XIGymBDWNQlgQxZrfbIm0Nu7T5Po0vG889Q+5xuz0MnZeoW5DmkrkOy7vGhoDPscbQsCDspdceynE2QiSMOU4piiTCvzKXvfX8BfaJcfnkLDBmQph3SThchFc6DMRXGVJTlkvF4DyEs3W6GaTRKyHaOzljwmt27t5lOJ+3BN47FYoEQgtVq9cVJUc4xGAy4efMm1lrW1tY4PDxECEG/3+e5554jiiKiKCLLMobDYSteSdMvmtlDeKQSZJ2UwbBPf9AjTWPSND1dqMMwPF3AT54DTmfkTjYF5xy6sYRBTBBEx/Gyiry2HB7NmC6WfPbpp9g9OiJLU37jI7/GX/mh/4bAafLpIbt3P8/44DqT8W0WizE4T6A8UaCIw4ggiFCynRk8ef/B8QzhGf5gOOPuGXfvVZxx94y7rxYaV+HwrArL3dl1TC1YTPYhbHBAuaowVUmSRu1NUNZphap5wVpnh1A5dNOwmpXMV9fJqzuUzSG9JKCbdrk9fZ548BCVlxRFQb6YUuZT6mKBszUyPyTWU2IFcW+dIl/itaXWEi9TesNNvApoqprdvSn/+Kf/Az/8d36Mb3v/+/j0p34LmppilaOtYJkX1I0jr2pyY8jzI77i/f8VSTqgrGZkyRqNyRn1NkjSPkEaszQpU3KWbsy23qBcldy4fZNb128AMBgMEKKdKYb23LPWEwSKQEnq2hCmHQaporz9JHF1l+XkBod7N1iujpjNjlCRojKasqlpY35gb2/vOPQnYL6aM8srDgyIncdh9ABZ3N5Ynowo4RQlKS7qEHYGbYqondK1U5p8im5KhPR42pvAphb0+pvEyZByWeNMg/AaJQ2ddJvNjdewvnaOQZCRxu1MSu0EpYmJ+iusM+xOpvjUUtspo/MRnShDB122di5SzAzOh2idIMXgFeHifX8B/fLUpxPTfSEEcZoRxUmr5NbtPNqJUhraSFenDfrYV7Sua5Q3LMcTxgf77O/tkef5aeXjxFLpZAE/me3b399nMBiwvb3NfD4nDEOCIEAI0aYCSXmqrj75/0l61clC+PKf+dJHEASn9k0v36y+aOM6/uwniVunM4nHoQHegVARR7MVH/+dT/H2d72bZ67f4cbdA2Sg+JVf/mX+7J/6HnpKkI/vsHfjWfZvXWN1dIBtciIpSMOITpqSZRmdTo84bjeal3+OM/zBcMbdM+7eqzjj7hl3Xy047+kOUo7mu+yMrpLIJb1+zLlLOzSmRusFKmhIonWMVsznc4oiIlJdlIkoVg1pFBNFIKUijjp4p1BpCong9sFnQARUFhaLBcvpmMV8xqDXQXiHrnKErqmMZ1EVBKFHipIgkSzygsHaDts7D7F3OOP8xgX+6l/6GwReI8j50b/z15hOjmgaQ17U+GaFrRb4agXGIuuatZ1H8Q0IaWh0yaq8zfpwm/l8iXUQqCWxkTwSvY53XXgP0mT4OKA76J862uR5DrSCVYCqbKgqQ9N40gC6seLw+vPcufYZmuWEvMoRYcRyvsRaQWMUWmuc98wWcyb5Ah0IKuGYrBpyL7kzK0gvvJnO1Xcy3HiAXiqJouhlrjuavIEw64J2aCvJVzUUdxgNBDKoObd9maquiTPVfjaxgVk6Hu7vYMwM6WP66RVCLXhge4vF+EX6wzXG+ZzSNyxXz2GZ8NzdzxD3txj2RjjXpasuU6+6VIsXqJoxq2XJ9vAiMohRqmDp5q8IF++/s+tL8PIF7WTxcgi0MVg8yIA4jhmNNtnaOs/lyw+ytrbFfJ4zGR/gvKGuS3RTM5tPaeqcpsrJ8yVFURAdx7WeVBxO/qb3rQL2RMQym82QUtI0zWnVIoqi08XYGIOUkizLiKLodIFuBTLtTFbrlSoJAnla9Xh52/Ck+vBytbbW+nSDOlnwQeKOPVilUCyXS5554Vl+65Mf49nnnufv/v0fJ1u/zKeeu87SCDr9NT75sU/w/d/2nWx3Uux8xtHNF9m7/gyT288yPTykqcpWEBPGREmXLMtI07ZVe1KBOcMfDGfcPePuvYoz7p5x99WCUR1co3jg0nlE0IFqyXiaEwrH/moPESVs9x+iqioOltfRfsZwSOvzHKbYUFCWBdY7VoXhYDGh9A2J62IbSy0KiBxOCJIsxTvN8vAuMsxoFi+gqClFRIljeXCzHRuKOqjOJna+T7J5gUX3PBJPZ+sq/a0dLvV3eOPWeRIPf/q7v5H9W8+jG4tFUTWaVb4kX5UUJidwEhdsoAhQTtIdjjgorrPU+wiXgxnSn7+FJ67+ac49/m6CtU2SbEC+f4cag9c1e3df4LkXX0R7QWMMzku09YShwMoA6SzN/CYBKyaTQwIRECcKFSqCOGI6O6DSK8g6x8FHDdp4DmcTDidjDquIC2/7VnqXvpy14YhANIRJnzROWvtH53C2odIOM7jKioDatudCWcBGmNLvamrj6XUuEKfniDox1XKfeb2iXh2Q6D5JtEY/6OGUZzzZpzvqUHtIoiHaxURskMqLJLJBYsjLArSFZJskKvFJj8KWDLobRPGIxWyCSSyuqV8RLt5/A1L/P5BSYo4X15NBfCEC4qhDHCfIQBEKiNIYpKBVhAiKqiSTgnw5Z21tDWE8s/kEK9s5u06WsH1uA6/bKogMFZbW01M6T1lWjEZDxkeHOAdShHS7/eNNYIXz5vg9xBhjTisVgRJfVM3ASXCuTa1SCiHa9qK3pl24ASUlAoEU8nQer/3941lE+9J3EUbt5uOMxhjBvDDc3J3w5Mc/yWKyj9Yr/u2//b/YunCex1zKqLNBJkM++YnfIjIVPW+hNlSHh9ywNVt5w3C0TtYfttZJKJxwID1eeoRs07jO8AfHGXfPuHuv4oy7Z9x9NVCWNd52GQw7ZNmIWXFEqUNUuM5wkKOUZ9lUzJcTwsyx0bvEF27e4JELD7CqG6ra0xmW6Caj0x9hy4KyOeLF8Wfpdc7hzJRVuTwdO+qMtumH7XjCdDzh5s2nWeUTdq4+Qhj1cdGA2qekoeJ6HXPh4pu5tbQIV/Ps889x8dw2f/l//IcME8U/+cl/wGJ2k09+7ENsX75KZBVaW+IoRagGjKS2JQ/s/DFWzdPYesUXDj9Omqzx2odez60bY577xKf5uZ/6ef7pTz/C16xd5Olnr3NpZ5PIOZbLFfVyRb7cZ7mqqMsjHnzwMUbDdYJY4RxUBurDWxzdeo44DBkMehhdY60h7GSsiopo1GWa54jsHHplcGaJ8YqDecCjX/HHcVtvpFIJZb4C59nc3MJoh/OGTqeDtoaynKKCiGlTEVhFEAqm85xOMSUaTugkCeXSMBwNqJuCg8M7bGYD1vvr6HlJlACxZmXG9AYb2LoktznLlacb9UkDxdpgB+8UZW0Qsca6kmUh6cfncDogz8fIxJOLgsBmqARCF4I9SyL8feNEGOKcawUYpiEIJGnaIUkynLHUZUFVlJRliXeOKGrnx4qiYDwec3h4iPNttUJXFTeuv8BkMmaxWNA0zekmcdK67Pf7px6gJ5UKrS2BaluJUr3klXrSpG2/LwAAIABJREFUanu5Sf7LZ+pakYrHOYP3FucMUr4kVDnBy6sjX7QRfAlOrZBUwNFiyfhoxu7uHd76xBuIYkHjCgbDPt/9vd+HSjP+P/beOziy+77y/fxu7JwbGZjBAJM55AyHUYGUSEmUSFHBkrySLId9lsOuc9y1bNm05PXzOq39bD+vbcnPZa+DZFuZEiVZlBhFzpCcHDHIodE533v7xv2jAZCU/aq8tRxrZwqnqmsaQKGBnnvw/XWf7/ecry10lHiOzOguXn/v/Qzkc2QTGokQmNUKywsXWFm8RGl9mW6jgWvbOI6H724cnq5/XSoh/xbY5u7Lsc3dawfb3H05trn7ysDqNcnn89RqFUprVZpWla7dYHVxibgsUVhcxnYdJicPElZ20qjXGBnZhe31aHQKZBJxfCtBpdIgHcuSDI2QjU/giBbRWJxw1MfeyPOWNQ0UDVVV8QKZcCxNOp9hbNc0gZohv+8eerFxTC9AKKBnR2g5sHjlLLPnn+dTn/gYmUSEyb27ie84wAd//jd438/+BwamB1iau0S73UbTFNqdJq7dIfDAdqrkU9N0u20anVkSiTSKJtOqVRBKwKGjR1FCNp7ncHnuDKZd58LcCT7z+X9EURQsw8TvtcFuMXv5NHjyRicowLJsNFw6hXlwHfREDiWWJpTIoSbytEWayPTd+FP3ED/0brrRKXw1jKcmie44THjfGyg4GT7yC79Er1HmI7/y0xy9YYw/+p2P8PVHPoNhGPi+j6qqqFoY3w2Ipofxoxk8V0ITIXxHYBttFE/FMjvUGit0ujVyA2manSqK7uKGXHzVw6NLy25Trq+xWlzAdn1k1cewmyghgedVUBWXdGaAjuniiX796FkGba+K0AVafIBGawlVlkiG49SNOmuL868IF6/7F9CbBfylLUVZ9OOG8FykwMeyDFqtFsXSOu12E/BJpRKkUqmN3M/+dqp2t0u73Wa9UGDfvn2sLs/TatReZl7ZLMj1ep1QKLTVvuy3DhVMy0AIgSJraGo/BzUIXswNfWkRf2mBhxcPpJe6xTcPjn+ptdiH/89unucAPpVqjUqlQrFUYGVljtXleV716jvo9SzUsM5Xv/pVdC0KcghLilAnwonza4xMTjM4kiYZFQwoCn6vS6mwxNriHKXCMkajgWv18F0XXInAlyHQ/k2v+/WAbe5uc/daxTZ3t7l7tTCS2cVSYZnACgjkdQzZZzQ1xmh2DNv10GIhTNOkXioSCqvEtDT1eoFifRlJC+EYHr5lk8/mEH6A5fbIxhKklL1UG2XKtS7LhU9jGg69jRl927ax2m3cyCTRgT2o2X1kd9+FFM1sGOdcus0GucEclUqJr37pYRqtIve/6bXMLpxk9txxytVlZGESGnP47Q//ET/5Yz9EqTKHb0JI03EDDce3UJUYmojT6wrqVhn8MLal0jNsNCA2GPDL/+8Hmfc/w7Orf8sV40v8wE/8e0599lFy6QyRfJZ0PMfa0iKlmVkcbACsnoNhexQrDSqlWQw1jpyeoOFFKXUFDTtMZOetuJExItE8ih5GjaSxh2/HGzlKTaR54tGv8B/e+yAnzz6P6cHXvvokd95+B7/9mx/h+z/4ndy0d5BjT36BgB7JeIyQJpBjeWKDOzF7FpoKPiYeKt2mga7lUEIqqtahWbFIZgawnRo9SSDkBJal0+nN4jkGIvBQQj6uL6H5CsIMKJa6nFu/iGsoyJpMhCixcAYvcOmZFp0e2EZAOjKG6zaQlRBDkd2kh14ZE+F1P8Lh+/2YpM1CKcv9ney+L2F2+5mhgefRabfwPA+JADWVQNU0TM9CCNFvSTgOoVCIaDzFoUOHeOzxJ1BVlfmhYWKR6FZAfoAgHo/T882tbVSuZyNJAZKsEXgCEMiySn++Ttoqxpv3Nz9+UcnwkeVNo8yLKsgm/v8UEN/3QfhAf2uVEAJJBnwPx/NZLZa4cGmWhYVFlufnmJs9TyoRYffevYyN7mRwYARZ0zF7No4kCOQokeGdSKEebrNELO7j210sR9DuWHTq5b67PIBQJk8sGicIxNZBtY3/NWxzd5u71yq2ubvN3asFRZOZmDiA1V6m0bxCpTHPxGCGQA5o16rkE1NEU1Eqq7O4ZhTh6Wiqg+2FyYTTWE6dkZFxFmtrSJJAkjSqtTKh+CC1aoNkXKNmzDEll+lWdRTNoeNYhIRKu1NlYN9dFFcW6ZgurdYCqh5FaCF6jk0spLK2sogqeuwczTM2uRs7iOD5Tb7xyd9n/9hupl6d4Tc+8vt8/Bu/jKGepW3tIp3MIPwA3xMEroccKOwZv5m54jKhUBI7pOCbJm3HpN2ysOV15ISg47YJnUzwSw/8Zz72V39IBNDSeRrA6I5JXig8i66qW6NKHcOgUzgNvkXPj1MtVHARRKI5uj2XTNPC9S0s20GIAMts43ku1UaJ//LLH0XxwRMqX/zCl9FDGTzHoFmZ56/+9Df5wZ/8ebqGz3e979/zW//Pr/Hau95NdiiDLHqomQH87BDhoEvbV0hHophdlQHjdi7VHia900PXuzQ6Jm5gMD6yB8fpIosGoSBDysthRdeoFAooqkw2twPH8slm00hOjIn4Qb554TPs3XEQWQ3otkwm8ztpNwyKbYNEQqLdtcjlsli2QTwz+spw8RV5lP+DsZnTqeoKIvD6RhEhaLabaGoYVZPB9xC+B56L0WlhdttIEuRyA6RSKSKRCJIk4QNDI+OcP3+e8bFRXNdlfuYymhZifHycXC6DJmt9k4vcVzhct79hS1VVej1zy9ghSQqKoiPE5nzgiyaYTWwWaNfuIaQA3/PwA39LGfnXoF9EBZLU38q1WfB9VyIcTyAkmVaryZ233kKnUWF8YpQH3/4dLC8VUGSdgcE8KysruBvrcP1wCF+OM7zvDTTWLoI6B02DmG7T7HbptEosGjUizTGy2RzhaBJVC4O4/gr51cY2d7e5e61im7vb3L1ayA+MMLt4HqWnkAiPYRVPo0VkTB8UoRDXQxiGTVxNIUWimH6HZDxMIA+ytHiF4dAgSiDTbK+h+gbIg8RjKdBVBgcGsKwuHd/h4vKzjGYPUSv7pFIxFpcX6TRL5IdHkHyPyzMn2Dk+QSgeJ5ZLUyg1kCRBcXWF+9/8Zkb37SWZH0E4IZAq+JXzrHW6jE29g+Fd+3nt4G1IMZ+5tee4OfYaVCWOZZvoIRXbtKlUDHxfw3Q6RMJpqj0LJ7BIxidxuh3i1s0cjk5SThSIHRpi5Y/bLLTqaK5Lt9dFCScYHhkhlUqhKgr1dgcAs3CFSEjjfLnKyOAYridQ9Qi+bFGtluhZHZRIBCWQqbdb2I7DR//zQwgc+ta7GF4gKJcW2L9ngHfcezMvHH+SH/2JH+Ef/8fHWV02+MUf/2l+9w9j3Pz6N5FJJBFaBi86hOpXyeHgNNeQlSEmpnex8tSN5KUOrWSFaADVxiq1ZgM1vIyQJTKJGxCVOqZcZ2R0H0uLK+ihXdRrbRQlQqCUcawMuhbB6DWoVrqkcmMcP3eMAzv2kkuGqTcXCYWSuLTouGWGUrtfES5e/y+gJR8CUFSFQNfRw2HC8TQ9r4UvXDrdZl9BUGSikfBGxieEw1Gy2TzZfIZMKomq9x3auh5mYCCD2TWwLYOe62CbLWqVAroqcP0EuUwW2zI2CraMgo7r+EiyCkIQAO5G8VZlCLx+qLgk9XNPAwH9th8EQT8Gqa9ySAQBBEIg8PtzeL4PQiCCYOOuIAhABB74PoHXX4OpyKBJOrKi4ot+XR3IpJmYmKBcrXFxZoaRoTGGB0Y4e+IMsVQaXfGpFNfBc9FUFQ9Br9fFCizssI4UG0DvucRYR3SbSMJDMQSVjkm7uIRrtsgMjhGLZglpkW8PAa5hbHN3m7vXKra5u83dq4XTJ58lkhwlk4ojAo+De2+m2+gQyQzhtH26Q1U65RhaTCXstqk5JVQtT6O+jixFiGRT2G4NRRb4uoThVND8DKqqUSmu4Dku2fQkXmiB9a6La+QJRUfwqRJIAb7tUG8XGEznKRbKBLKKHs2RS2dwXRdfkjG7bfxknWTmKI4laBoJGI9grKxz/NjTOFmbidckmR49xOnmk8wsjpOKxEgmU1idJoqusWfyLr50/BNM7X4NjcYayXyeyy88RVzPkg5282Pf/SF6PZPLkzPEomlmV5dpNpsIRSWRymF2LQrJLJoKQniMj2Qwex6y6rHQbHHq+cdp7NzPyOguNB+S6UHanRqea1BfKzE2OoWmR/nwz/8I4CEBHvAnn/hHzG6bcrnIj/3MR4mFdCKJNEHg0ayvc+HE1+iUbf7gN36WXx3+e9SDNxGNSgzuvglj/gVUu0PHNMjum+LYY09x4403k8h7rPpf4dyZE4hQCsnrkNAnaHRn6HiLjBOm2gUhd5kcO8Ts2gnMdoKpwVHMSJygtczInhxXzraJJnXiQZfYgIob0uhUClxZPUZ+4AChkEYEn3Jz7RXh4vX/AlpWt5SHcFgjkxFENJWQXu9vvHJ9NE0jHI7ieR6yrJLNZlEUhVgiTjqdJZvLEImESCaTuG7fge06PSzLxOqaBEJGBC61aonJZALL6CCE2No4JcsylmUiNiLJBSBJ/Ygkzwu2Woj931fe2jL10rbgv2RM+Zc+5/sugefgeza2bRF4DooEbGy+6sczSUiyRCIukcmmyWQyrEgykXgUx+4RDUdQpX7LVQiBrusbBwkEvortB7SsHulwBC+cRMUhvPG7iiDAc1xalkm7so5lWWQHHNKJ7FW6wtcvtrm7zd1rFdvc3ebu1UJEbSH1kmTGosxc6VAwqmTDu/AMD1kJWFo9SS46BqRYLKwRysZZXCihhyCZjGO1Osiqy+jwFEZtDVkK4TqA3aBeX2ZifIyOsYaqh1lcOsuO/GHWVtsofpJmbZbZKxfoWQ0sx2Kpcorp4F5uueON9ALB4sJlhoeHaVdWqDcLHJqK0vEcJN/h1ntv5/RfPc/Ujh20Mhr4ESy7jC7yDOYH6TbrGEYXTdNpt3u4hoXvqZw6+xgHduwmsD0mh6ZIp7O8654PIsvgijBmINGurpJLpEikkthuD9/vr5MfHJ7A6jnEUmEM08d2ZXa/7l2c+/IXuPHIHQSuxWOPfZHxXfsYGBgD16NaqnP0ttdiBvDD73kXInAI6HeCEDISDo8/+nmee+oRCmszaKEUD77te5ncfZC73vABXF/FarZZnLvE2dNPEU1FGRzbBdE00o7b8Kw2qtnFUWKkI3HmZy+xQx5DiqdIJnL4nk4u3UbSEtDOEDgVSq5PPptgV+YQsyvnyWXHWWgW6fkmYV8mqsdZmJlhbCTH8PB+lucWGM9OU2kt4nlhhowBooFNs+ohKxEKjZlXhIvX/wtoVcF3HHwCNE0lpsTRdRU1HMGyrK2g8cBz+vN20SgeEItG2Tk5zdDQAIlEHE3TUDUZRdYQUr9YicDHtS18z8W0LCzLAseg2a0TDsUJAg8ZHVlWUUS/MG8aXl5avH2/36brF9kXw+83HdTfWrCDIOgfCN/q+PZtXLeHYXQIfAtVAUUNb80gbv1cAYgATdPIpjPksxlGhodYX5ojFgrR6/WIxsJUq9X+gRZNbC0sUOQQgSQAFzMQEIkRSD6KFCKEhBz4CLsLgYJs9Wg1y5Q8D9NqXeUrff1hm7vb3L1Wsc3dbe5eLYSUFLFYmAszixw58gCVE6fptOqUugXGxlSifo5EoNDyPdKDcTqmRS47wcCIzPmz8yRHQ9SMNnpLJRWEcRWFsC5Tqi8R0hWiegIZjXqpSDKVQtKqxEdSrC6tkhscw3ba+K5HYlRldDzO++77Hmy7RXHdxjBaJFNxMNNoIsry/DpTk7uorq1zuvACJ85cwENnPbOT298Z4eLMeUa0e2jUS3TbzS0OKpJGzzbQpQma/hmQ2xTW6uQGB1gvVUlqI8gCdM9C9i0uLy1SjpVQEPS6Nr4bYNod/t37vw+AVsfHR+LK4jxDqTzxgZuwgjTJUIibbnk7ajiKkCXsjVXxnhTCKq9D4Gz8r/ffhL7pre9g4cpJcskU995zD3/6Zyc5esvdOEKh2q6i6R57Dt7KqRe+ydiuaS6efgbbEhx91avYdfAoshJGjYdQI3lMw+Leu17NJz/1aZ558izTt0TIDKSZny2iKzoWNXqOSy46Rt0qozphVgrrREMjLC2eZWBwiPXyEiNjo6wbEgORATpuwOrKRfSQTL1uY9o2+VAWX2lTKanYySe4de/3EculXxEuXvcvoJEUFE3uL6OUFBRFQtfCqFqEsG1vRSzZvX6UkqQoaKEYk1N7mZzaTTweR9MUEP0tV7KkoqgSqiTRDzJyCfz+gL5n2/2M0UDC7NTRdRWhgm2byIqChI4kCYLARxYS/oZpZTOGabNwS8qLG642DSqb6MfRuOgbysZLY6J6vTpmtwV+QCSso0systKPb9paECBJCAG+EOiKQiwSIpNOkUkmMOMxBD4902BpYR4tFN5yq/fbmTJCClCETOApeK6D6boochIRiaDJGkLIOFaPRNBBFaBYDpVGmW6r+m24+Nc4trm7zd1rFdvc3ebuVYLvxVFFClmtU61WSYd2YYkWrdY6bSeD1YKhoRSSIqhXm4wOTmE2YO3SOqMDaQq1K/hykoSvoIUlZDlKqbYKagpdd3CcgHJpntGhKdLZCZrri/ipOPpAA8UZJeTk6NFm5sRlHnjnd6HIUeqGi9MuY3suRr3Druk9nH/hPDvvc2h1mrSbJeKZQe58fZgrFy/zH3/ud/j65b8lqoTJ7R7j1KlTdOoFHEsmkZGJRQYI6VHuvfN7+PxTv8jaWgPJi+A2UzilDkoQxug5fPnrX2OmdIyZ+t/zxtv/I8V6kUtX1gi68Hu/+XEabfAFNNo2xUqRYmmJysoFaq0ymqzRk6LYCIx2Cx+J0dFRao0mlmEghEdYlTAdgH5G+4PvfCdWZw7bhC985VHe/Z7vZK7QIazFqbd6tNcXuPW2Gzl85I387d/8IbtH0qgoLF66RCQSY3h8N44i4TgusqpQWJ7l4NQu3vrmQ2QGBvnkN38dKVRjaf0cieg+1LREu1UgUKJYXR+bdZL+AF5gUK0ZTIznWF5dRtVGKKyeZ3LqFsKhBrMzp4goO6ksLyCNhYkPTzM1fTNPnHwG1/eJh7dTOP5VUFVtK9LI83xkWem3ImQZWdMQvk8gSSi+j2S79GyHlKojySqqqqMo2kYhFQj626sUWUESmw5uFTdw0RSVQNfwXRdV7RHR1P42Ksvou8IVDT3kEwqFCAgIPKd/EAhlS9HYLMoi6L8LfalS8q1u8W9VSTqdDq3GKqosEY/F0BUdVdGQXlLIJUnqF3ICBBBIL7q0ZVkmn89SKRdRtRCe4+Jr/Z32m2tBJUmA4vZboV6ALEl4kozT83E9H1WJ4kcGCCImSuCiez2EJtOzPdqOwzb+17DN3W3uXqvY5u42d68WwhGFamMVLSLjOSX2Tw9z7pxFJhvF6JrsHN/Zvwa2y96h3XiE8VMddMaZqz3LZG4E21CJexoygggR8oPj1Bwfq9vFNn1yA6MkwjLxoMLlzgK2JJBVH89ew1f2Ek8NkGrWuO2mu+m6MqVyhcuLpwgNqERSKvMra8TlBLGQxuX5i/iexekLM3z0Zx7iM3/4aeRwl8GhEXAk6utldozt5HxvjfiuIitnI6RidTK5SYoXTHYOH6TrdRmRbuJA5gCTD9zM8swCsdQoejqF1biIEHVOzn2SwdzNSMmLvPW+X8V2QJKhVG1SqjepFIv4PZOeYaMKnU67i+4qaJqGbduEw2E6rTpGp0s8nqBXc3nbfTfyxUdOYishfvrXvx8n+TyyncAzWhy95QCF5RJaRMXsPofIBiQmB/jiV77IW97ydr7zfd9HzwIfl4/9+R9w8spJHrj/7eSGdpGI9+fF66bLyI4puq0Wc7NXeOMdP8iffernmBh4Aw2zQcqHVqiBXS8zOD7F3EIVy1okGo+Q0dO0qlWikQzxWBrbHaZlGNQLRZqmRT4fY+TgNOvVKmoQ8PhXvwGqh9+sUakarwgXrz+L7rdADYWBAOH18BwLb8P8IckyCLF1X1Uk9JBKEAQYPYt6p4XtuDiui+06BMFmm0/B98ELBIHUvymShKaFCOkRIpEokViCSCxFJJYgGo0SDUfAd3FsE9ex+gYVv7/SVgQBEiALgbypePgBgedv/esLD8fvbcRA+QhfgO/hOTaWbWN02jQKc/S6JiFdRw9FkLUwKCpC0vqzgqL/fANJIJAQQsH3wHXdrXlBVVXRNAVZCUA4aKqE7zo4ttGPZRLu1vcEso8QAbKkImn9LWK25+NpUbz0GFp8FCmUABniEZlUWP120uCaxDZ3t7l7rWKbu9vcvVpoWx3C6RARPcLC6gl0b4BsKk8muxslGIReGsPUiCoahYV5DKNGvXSJBDrD8iTnL86AYeBLLoXAoS33WK6XCYQMboih7C58T6LbayJrKtnMMLlkkvVqnURWEB+UkHWdD3/4Q3Rsl/Vyg/nFM3Tdy1wpfZndhzOEYnEO7tnH8sUrDA8kef70o8SjCY7NLfK1Y8/Q7BmcOP43NJsFFi88x3/7gw/TkuY5vfYlkjtcavUC6+vzDCQHGdQO02ysUzbncKwOdqXJl/7u4xx/+rM89uzvEY0GHNj5HUjsYa1wjg++46+56457MHvQMTxqjTrl9WXMVp16scDzJ78Owsf3A0yrTUgXxGMa3U6NJ5/8GiJwadZrNDoNqqUi7/3+D/CRP/wlwuMtVpszuJkl8oe66BMlQgeWOPRglPxBj6E9YWZLX6Be71Kv1zl14QSV9jJIKj/xM/+Fn/ip3+DI4dfx/LEnKKzMYRsd0sMTrFXb+IrKrukpOqsxnI5Fy71MLK7TaTcpLhXYkx/F63WZmpim1axTrznUy3V0LYbnuUyMDDM5dICYpjI5updSw2DPjtu4NLsGkkwoqTM6MYhR76KqJp1W7RXh4nWvQOu6imsKXFnGdV2kjcK12aaDvgqgqVq/SCb6bbxKpUKt2UDWFDRFQqgQBOqW8tB3Zge4ro+u9mfc+ktdN7JBZQVJAt8VqKpKxI1gOjam2UVWNRQthG33kNQX80g323b+tygdQRBg2za6qvezIgMJOZBwfAfDMDC7LbqtCplsHlXRkSS5P28nCWRJRZZVJOmfX+rN2UDHcV42IyjLMj4C13Y2HkPZWncbCBnoKyie6LeH+u3OACH1WzN6JIEsXFQh4YkApw0h3H+rS37dYJu729y9VrHN3W3uXi3IIYVILMHyzDymaNExSvSkC5h2mnxeRwvZyKpKs9UkkVNxFJtV+3k663WGc3s5cuQwbsVkqdHAVxxCwGA8TnxwlJVOl0KxSCD1uFKf5/Fjlzi8ay+ReJoD+27FaraoNc/wg+/6dQwLHF/G83o0jBVC8TpxqcPpk19ix8T30GhVCQkdo7xO05hnfHoM25P46O//DYmdU9x320/SMWb5+D/8MdNvOMzEHpXjp1pII4/iOCO4NZmwLLNagCgZCr1l5owlfuiB9/Pme+7BzZVIJupI/hhn577B0PBOvueBX2PPwE4a5QBPcVlYWmOxMI/S84iFdCpBjy888hccvfMwETfMqdMnuHz+PKVymfseuA/TaOJ7Dngqh2+9ncVz7yG6J82FxqdpV+bJRw9T8GrEhmK4URu5nUZxw+STIZ4+dpz9h3YxW8ywvtYhkrP5xhMfI6vdwMGjd+NPTKGqI7zmNXfxxGPfYHrqIPnsBKNjU3S6dT718Oc5cug2vvvB/8rDz/4epfIcqUySXQO7ade6mGpAPBtjPJcnldvJhZPn8AKDUruI78ncuG8fjeYKVtPhyI1HuDL/HGgdxnfsRg+rPH/8DKFYjqfOPs+dN935inDxuleglcDr54kqKpKibbXlQqEQmqZtFfNAkkHI/Xdmrk2v26FarWKaJp7nbcy69XCcvunFdd0Xi60v6Bu4JSSxMfMmJGRFQ1b1vtKgKsRiMVKpFL7v0+128X0f27b7c3wvySQFXpwRtG2cno3v+ni209+K1DPpdrsYrTa18jrl4hKqKqFpGrKsEPiiPzcn5K3n99KVri+d79s8QDy/h2F2tj4vSQqWZWFvzCv6vr/RjvVetpHrpdu4ZFnuu9ldl56aQEoMo6XHkMNpfFn/t7jc1xW2ubvN3WsV29zd5u7VwrnzL9Cs1Lnhxls4fOAOarUOViuB4zkYzQ4zJ07i1WtEoimOn3sOfJubJl5FWBunWC3hBQHVlsX+A7cS1/JUOw0CX8OsFtm/az91p05YCWEYBjccztNy56k212lWVyhXlnj2hX+i2bao1SxmZmaYu3CCbHgCs+OR9MewrSKhVArTNYhmcqwvdpg6NISeSHJ24RirZgWFHqoywcLaFe77wds4cOs4Tx1/lkgoj6xoFO3nmCtc5pknv8KR/Uf5wFs/jG06XOo+wbs+9ADj79nFKesMp+YWWSqvkUvs4R23f4gDo7djuTa27HDy/HkWli9zYM8N5LJDeI7P7Nx53v8j76cbrtN11qkbFY6/8A/EYi2WlkqE9DiyohGOJ7Btjbd94Aew/CvkswPkMjswTAdVwPlzF7F7bXbumGJwKM2jzz1HLBam3vSZmppG1Qz2T7+K1J4IR+4+xKG9e1lbvESluESpbvGWt7yHF049w+raWRYXZwlFM9z35ndSq69j1Dy+9x0fIlAqJDWTleYqzYhFLJagUllHFT6FuTV2H8whdI14eoSm1eDP/uK/k0yPkMpmsHs+sVSUoeQIET9H50qLB+9/PQcOTnHnrbewNLf8inDxun8B3W3W0HUdDxk2wvRt294q5qFQqB/WLxQURe0XpsBHlnxqtRrdbncrhigIAizL+meF3PcDgqAfDer74HsQSAJJVVFUHSGrCFlF0zRisRgDAwNEo1F6vR6GYeA4zpYz3XXdl90sy8Js98AD23IwOm06rQal9WUV5yY0AAAgAElEQVTWlq9QX18gsNv9daJIeF7QbxsGUv+A2SjA37pWd7OAv3SNbaNR24qekiRlqzDD5mKEF+myedBsHoyqqr7sZgOOGobYAOHcGFps4N/82l/r2ObuNnevVWxzd5u7Vws33/AqRgfG6HRbdKpdOm4dS1rHtitoYZ3xsZ3EQzKrlZN4GFxeeoLAjaPIYW458iYKy3X2HLyJ5eIMQSdGsVpB1yTa1SLFpRXyA1nOXXmWPVO30e3YBEHAiXNPo4UsvvbYV0gndGZnr7BavES9XEQRNqnICEd2v4W5lctMHJggNSIxPjaFaZp05Q6Ee3SaNvfd/3qS2TAqEo4nGBiZJKKG2ZmZZOf4Pi6cOU88HGFq9xTv/aE3kshluHLpNK1Clfe+7ld57JnPYlptLLPBeH43+R0TqMjc/+of5sCOV9OxbGxPY2m+SstaYnA4ge9K6OEQejRGfiKNPhSi0l3AEMsY6hr/+OkLPPjWH+XyytdYXZ+l1mgTT0exTJtCoYAsYkyP3M1AeifIK3ScIsIV5DOjdJsFHv7sZ4kmE+y/4S6cwCWXH0RSehSW1jF7ZQxK1Ot1kokYf/WXf4TvNVmvGrzuvjdy7Oyj9NwyjXoZWU9w9Ohhmq0qy/MOsj9IbbnJ2MQuAl2jsFZkcniCfHYXgfBZKc1Tb1aZ2jnByOgAb3zLm8BNc+r8SYyGTduss//g7ZitEqZV4fKFpxGyjW8pyOHoK8LF6/4FdKmwCr6Hom3EGikKtm3T6/XY3FQlyzKSIiNr/a8DuD2736YzTXzf31A3XnzHv2ko2XRyw4ttvyAQCEnZKHxiwxjz4iyaEIJkMkksFsM0zS0lxLbtl6kNjuPQ6/X6920Py7IwOh3q9RqF1XmqpWV8x0STJAJkPO9FtWKzyG7+ji/9+FsLeqvVol7vzwSpWt/xrioamqq/rHgDW4aazcNhEy+Na1IUBVXy8R0b2wOhxQgnr7880quNbe5uc/daxTZ3t7l7tRBVUnzz6Sc5efpxVDPGaHYnq3NVpJ5ATdgYCQkG9mIrMpI+RNu2icWSRKNhKuUmB/fvZa1SYb1UIhj0SEYtGq06fiyOpTa5NH+OvXuPoKgeqgYhdYhMJk2r2+It97+Nd7zxV8imR7FsgSf5tHtVtIhMszKBnsiwstxG88ZIJsYIZAUnfobpA6MQePzNJ/47XtcH3yQyFGDJXZ468w1KTpWVyhq/9V9/HcWTuGnfHdTbsxBto0TCmF2Zytwq77r//QxMjmAFDZSwhMBmOLqH1914H7IErlB5/LGnOHfmL3nksY+xY2w3uBaqrhGORHAli1QkRkxXKNXm+YEP/jKOI7BDTfbdOcauIzEGhzIEXQdZ8ag3Sti2jemd49knL+LZMslUnkxaUK81cWSTd7/vQY7evJNSoU4gywRSncJyAderors5CgvHef70o6ysLPPme9/Cow9/Cqijawn+rx/7IY6dfQzbKtJuFEilMuzcsRsvaHLj5LsJ5SeYPXOebn2F8eEETzz6OVabyzjCpF1rc9dr7+VrX/knOt0qf/+5T7Gy2mTfwQMIL0Y8EWGp1mGxvsS6UWX/3rtYL1QpGTY1e9tE+K9Co7BAo7pOONxv6YV0HV3Xt97Jq6qKruuoioQiBLqkoMsSnuvQbhRZXV2m0ergegGqpKIo2pY6EPgbLm5JEEj0zTGSQFI2vo6EpPbVBkXVkSQNAFWWUIVEMpYgHNYxzW7fOd5z+zfLwun1Noq8h+MHGIZBs1anvL5GcWkOo10j8HyEJOOh4PsSQvRjozzPwXNtfK+v2LBR4AMvIHA9XM8hCDwIAuLRGNlslrASoCk6PmF8SSFQfNSwBkIiEBKO7eF7IPwAGYHw+4+lCAlFAgkfx+2BHCCp/QPPD1wCHFxJQktmvj0EuIaxzd1t7l6r2ObuNnevFtbLV8jnRxnKDkLIoWIv4wYaUihMOAhzYeYya7NzyK0ke2+c4Jab3s6l8hIiBFpU4elnFpAd6LYs3F6L1958Py2rwcrlJboehCUZXc5SqV8hHB4ikRkgkAJULc7S+llkSyOkyURDUdr2HF64Rceoksq53H3oR3C83YRElnq3jJoxme8+RXndYXh4J7fesotjZz/HX3z2D7h06VkkWeWW172ZWqfGRGaSF04+wY4946xVVvjCNz5HfNwCP+DylYvkxwYpVww+9fefZH22zvriKQayMb7zgV/AcHt0e3D25BmqxrMUnFPMX6miEEKWBT2zxwtXvgrxJY49/whzq0Xmipd4zaHXEHgdVoozHD/5TTIDOrYDjfYqqqwhxSRcCUptm8ERlXRshEg2ydnFE3TsGo88/gzHvnmR5cuzrJdnqJZaNO0imWQIORHBkBucW5nn+Nqnee7cpylX13jwwbdz9vjTNKtlOqsJHvyON3F89tPEwwMsrKyRz+cQQYTx2D7umH4XY2MjTE8dZXZ+jre+7bspzSyQjCW5+da3cnH2PK7wCYIuR48cZaVyDuGEkTSdkJ7F6hpkhvZyw9G7WCjWkGOCbCjGeFJ+Rbh43b+AxjKora2gKgJZFviBeNm7e1mWiUQi6LqOoihoej/WRUJgd5qUCssUCgWanQ6W426oAMGWIrIZUyRJL78gL1VNXmoS6Uca9b9fkWSi0Qjtdptut7s162fZLpbt0u2a/ZikVoO1wgoL81coFlYxOi3MrtFvPzoujhdsqSkvqig9XNfG850t9WNTFTFMk16vhxABuq4yMjhEIpMF4aELD9+zCXwJVdUIhUIvm7976fMTQmz93Bfbqv6WItR3l2u4vofzLUsJtvGvwDZ3t7l7rWKbu9vcvUqIZiJ4CoTTClI6wVqxwdT+HXREjzOXF4gnM1Q6M7TNGrq/g2arSrteo1guUS7MMTIa5tnTX8cJfAxR4/FjF4jnctx2x62USnPcsPcmio05hgamWZyfJxzPEU9FkGSPTs3hxhsOIySPbD5PJp7m+PpnKPbO0m5UUESON7z2R7DdOs1Wh5r5NJIRod4o8/mvfIJmp4EWGGQGekxOR0loefKpPM1GlWpzjQuXXmBx+SJO0MHxPS4sPImXNEmk0vg+KLLD1L4xbn31rZSKJvff+gsM5oewXZ3z50+zVinx+Pnfx7Iy/Ol/+yztRpVGs0atU6TiHuMfv/ApBsZ3Ek47ZDODNEoWzz37HJJcZv+eSb558suksyrVaoV6o8ra2ipPPf0EjXKR4vo6j574Bik1wd6xm9k1to9/95630zWarK73aAdNduwepeGvMu9f4AtP/d84jser776bpj/P2JEIc7XnOHnxCWrGHJ/7pz/m8twTzCzMYUtFTl74axAqZ849QzKcJ5UcZHrwNg4Pvo0Lz8wyODHE4sIaAxOTnJ55jkRapdmrMDSRp1o2WLxc4eLl5xmfnCAWFQS42MJF8kKsLXYYTGfRQwozF2dIaK9MvKP80EMPvSIP9H8qPv47v/OQ49ik8nkSmSwtw8K1e1utwS1jhxB4voeqyCiKjJAEuCaObdNttxFCIRqNQuARBD79xbCbxg+5L4IgkISEEJuFW0EWEpIQG5/rr5EN8JGECgj8wGdlZRXDMPG9AF9AxzBptlpUyiXK5TLzl86xOHeJWqlItVJgbXmFcqWAYZj9zViSjKppqFoIsXFIbW7XQggkqR8Z1Q/0FwRBv+2paWFkSSYSCWEgc+nUcUJeG11RcKU4Hj6aqhAKhTeeY1/52ZxN3CzgnudutRhd190q5C/d7NXtdvne97/7V78dHLhWsc3dbe5eq9jm7jZ3rxb+6fQ/PCTLKfLDIR5/8nGmJoeYO99AVnymRpOgygwN7sU0TAYzwxjuCtlsDMtRGE7mmV+6xNhUjiBQmJu9zE033oTnN0iExyiXzqKrOcqNS1w5u8C9d91GuWSiyyaX5i4xPnaAW6fejh4OMbu8QMcus1x9FDUSEPQSpDJp4rEhFuYu44aOMbFrhE6rw6XFWRZW5omF4yiWRrFXwHMj7N+1m1pzlUKlyk03Hcb3zT5/Ap+xwd1M75xkZWUZ2U6R0EIMxKd5/+u+n1Y1wc9+8HcJizEcX+Lk2TP84oc+QHrSwtcV9oy/mTNPz3D40BSzsws89vSfkJuWsZoBpYUVDuw5Snmlwuc/8TgPvOtBvvDUb1Bp1oinknTLMerFKmMTU7R7i7z6DTtYX1unU24Rz0ZJJwdYWy7RtR2++PlHuP3m29i7/xa6/iJhSeHK4hIdtcXK+jluO/o6mp11XN9ESDo3730Nn/nCX3LjkUPE8yq/+is/x9DkBGvFy0yNhdG13UyO7aLRaHLm7LO0W02GR6bBljm1/ATNisNicZ70aIxIKMNwOsWVc5e453WvZ8f4IVZKFxjI7SLwHc6ffYZ6t8XN+4+y1lxD9yWSiSH0jESGPHccftf/9t/FdR9j59pdvG5AdXWJzMAQ8XCEtutszddtrc7UVAKLfuFTFVRPw+upKELQ6zQory2iaxL5fJ54PE44HN1496+jKCA8AA8JBUkRG8qIQIiNki8g8PvveoQQELzoxJYkiVarhSQUTNOk0W5RLRep18q06g1qxRUIXIQfYDsW+H2lo9s1aXc71BotLNsBSe1nq6rqlmknpMgEgYfvu4CPJMsoeph+lJKLCAI0WWZ6ai+p3ACFy6cYHFQIa3FsR8UWAZFIDKH1Xd7AVsHePAQ9z+8vLdhQezzP2yrsmzFNmzOO2/jXY5u729y9VrHN3W3uXi3ILliyxcyFZZpGA9mXCCV8oiGVlUKd/NAA0XiGo7eqrC8XiVg5lIhM2LOwnACzahJLD3BgJE6gNGgbZQaGYqxUzhHPZRmKR4imX8XzzcdYKlxCERkmMjexVlymtFjudy5cj7Cqsr5aZWn+MrnwXu550zv40uf/joP772Dvwd189tG/xktWKXaLdFptbrnpCJlUmm6vyP6puzh76lne+cYH+P2/+DkO3XgPp849wu2H34EVFPnSV7/O6+94kDMnT6CoOQ5O5qi1l0nYIS4em2UsneHMlx/nkZmvc9/dP8yXnvpT7vrAjaSzPXoLOe5+9X3M5y/xzW8ep27OsWN6BLw6u/fvwHFccB3e87Yf4//7s79EkxR233CEtcJlCoUWP/6zb+HEMy8AHuVmgd/56O/ymjtu5b3f8x66hsXF+QKODfc98AakQOWpZ04wfXCFPVM3MnfxLIOZJGcvHOd9b/sQn3/449x0x40cmroBx9eod1Z58/13c3nhmzw3f46Hfv0nefT5xxmbSPPJL3+Mm/Y4jLz1PxEKq/zD5/+SZELmlqOvJpfJMpzeA5LJ/uy9fOPE52hmXNJjU+zav0S14aBJTW7ZdQchT0X3ZSYn97O8tM7Xv/wIe/ft5uTM17n3de+ivuwzt37ileHi9a5Af+z3fushH/AllUg8Qy47TM/tm0Z0XScSiWxkgPr0Ld0u0kZIf8/xkfEJqwr4LkbXpGV0kCWFfh5pX+EQAmRZgSBA1zQkSUaWNzJKBf0NVGJDBQk8EAGSUJEkGatnsby8QqfTpWfZlEolVlfmWJ67Qq1cwGhWkQIHSYDv2aiKjCyLLaXFcV3anS6mZRGORAmFw+i6TigU6ru5lb4CIskKsqz0lRIhIwkFRZIQQX+RgKyEsW2bhaVFOq0aCU1CjSTwRV/x6T+nfrt0UxHZvC/JG8t1Nwr9pmlm0ym+ef+7vvMd15UScrWxzd1t7l6r2ObuNnevFk4sP/VQqXIOhQz79+0h6CToOB3cXptywWTfngMkk4NcOPsCB/ceYnG5xfTuEU6ePMvI8BgxrYsez6D0wvT8EGcvPEk2PYIsErxw+cuMpgfxvQjdXplIJEWpsoZtSPiu4A23/QCj2VFso4vARZYNGv4a73rVT7N6qUguPUKhcBFNUpgcfD0nZj7DY6eeZHLHFI21KnsPjNN1GgSWR2G1QqXWZMdUhvV1i5tvOcrSyirpeIJdE4NcvrTGjZMHSOWGCGSJdq9O4CZ56Jd/nEhE5wd++Ee55bV3YooVzq78HbFIjBeOXeGnPvgnaEGcv/m7/8Gho3v52onfxos0KLaL1Noue0ZznDl3kuWiw47pDE8+/ihPnP0ivtthcnCar335OKPT4/ztJ/+Mg4dGuPfNN7NDi/CpY49yZeYya4Uy7333u/nrT34M19K5886jCLWJ8HQuzpzHtD2m9+7h4S99lttvfS1LxWN4AQRulJXCEg+/8DAJy2dkeoJOp8OBm/bTsw0KxVWURJwD07eSi41w5I7dnF75BCvrF4kMaywUzuNJAYvrZ9gdvQHPcwj0DmfPLmAYBuVykenUNC2jQSIzRKtd5bVvvo8hLcm6U6fnGGRSSS7OLaDLHm+9+0f/t/8urvsZ6ECSkQIPt11hfWkWz7cIRaIoiobvg+P5KGoYfIGqaAgljKxGUaNJYskkajgBoTCeBIbVplZaZ2HuCiuLSxRX1ymtlWlVW7TbbdqmhS+pCFnZ2rYlZAkhy/2bJCMpKoEvbxV0XY+g6CorK4vMXD7PlYunqKzO4hk1NFximoouy+iKQNcUVEUipOtEwmF0TSGk6cgioNWos7q6TLlc3lIpFEVDUbSNEH6p3/ZzXHBdAs/uKySSiy98YiE4eOMhJvcdomt5rC1foVeaQQtc/EDHEyqK2jfM+L6PrAQoav8wk0V/rlCVFfADXNvBtkw8x0YEPhIBiiS+3VS45rDN3W3uXqvY5u42d68Wau0KYT9GtXuOlVKTQDYYyuQYSI2RCA/QajY5d+5ZCitV/vzP/5jcWJJTzz3DQC7FpSvn2DV4J+fPnuNzD38KfAXbAN+OUlqbJZ0dZqVU4YlnHqPWbGAaMdzAJyx7jIylcWUDTwhcx+D504/y1MynuWf/O6iuSsSGSri6yUpjhk7bomPMc98dP4XnBCwvl/m1//SbrK2tIVSF24/cSSoRJZmIERE+wwkNOpDNhjlxap75+WV2TezFqFrIco9oLElyMEbif7L3pjGW5ed53+/syz13v1W3tq619+5Zu2fhkDMiKYmkJFJ7JEu2IPhDYNj5kCBfDAQIwC8BAggwHDiGNyROEDtxRFsRqcU2KVMkNZythzPTe3d1VXXty626+z378s+HW10cKgkUQtNRun0f4OBWNW6d21X13Pecet/3eZ7JPBe+fJlwps3VvzbJ4gsmG90/IgsqdPcNvvzl3+LLv/gSK3fe5cs//3m+8Wf/M+2ox61bazjWFCLUuHFrneu37/L5ryzQjNb43vV/hZkvo1s59IrK6YtTfOvdr7N0ReYPvvEvuPbOfW4+vMVsZZrxQhVJTvj+W99j5eE6i4vPYlsOObnIP/ydr+HoRWIvobkbYDm5odtO4nB66kUuLMxw4dJzLFVrvP76T+PYdTRVp9/1uHHrPhef/RS99grvffhNkAdMzVziyI2ozeX4cPVP+Dt/528jyzaxJ5hcOEuq9ni4tkGpOEas9plZOEOj18bKTXJv+ToLC5d5999/l3Z8SKdxwOBwwMr6PVz3gO3e/ifCxae+A/2P/t7vfBWREaeCRFKxiyUqY5N4njdMjRLyMGb1WOSSpglJmmJaFgqQZCmqoqEfWy3puoXvefiei++79Lod+oMWyDKFSgnHyiHJEor8SPAx7IQAZAxjYoedhWF3Ic0EjcMDPnz/XSKvhxR6yCRoioIiy+iahmFqyLKMcaxkfySiGfqFqsPn6TpBEJGJjKnpGUqlCoZlourmidDm0X6eJA33B2VZRkjSUPEtBIZlo+kGhwcH7O1uk8QxlmFjWzaaYSKrKpKQSLOIOI4AiSyVgPRkbPgoXStJfihySZIEVVX59V/5ylPVCXncGHF3xN0nFSPujrj7uPDd9//Xr9bHJknYo145w73lNxkfP8Wtez+gVj7PuYUL3Lj1x8yfuUwofC6dfp0PP3yTerXOeHEaWYXEVfiZL3yBvd4OS/Mv0O8NKJQtNCXhO2++xfPPXSUIZcr5aU7PnaPvJnx49yGGKeNIE4RhgGL3eLh3l1sf3adSM7jx4C63D79Jph9QMGWaBwqz9Qv80ut/g9u7X2P7uk/Okjjs+Lx/7/co69MEqcKd1Vucv/wSUbuNrFvcvHsTRRhMjZ/me2/9EWdmi2weuoQDwcOdmzSCBql0SHHM5MH227z39ibPPPMc/9sf/Bsml/psrR3xT/77/wl1vMelK1NYTpH1w21u3b/Nlz/7RRqNu/zUV36Zf/mv/xmBlHDuXIkPbtxB01Wk/oCwADtrd3j2xVewZAW7pNLyuvh9HTc8oGiVWbw4yb3rO/z0Z3+Kj+6+g2k7nJmdYxBKvHfvQ37tZ36V/eY+sxN13v2zdzHzY9y4cwdd1jmzeAnTLNBvN7j/YJmp6TNMVPI4ksPCxGnW1m7y/vurhJ6C591mrXGd82euYufG2NhZ5vnpTxHnUkSqcf7MOd6/8T1M6pybn8WLNAq5cSbqOYSScnjgEiQNKvkxLj1/BTl3xIRzlt3DXf7Gl/7uaAf6L4QsISQFRdXJgj67D+5gOwVyOZsoFsRZiimDpplkWTIUdngeSZKQyxWRJIUg8NCNodm/KWuoQmIw6OF1m3jegJCUl6Q3mF1aON7t+2FSFPxfVdDDEdvxcxSFpbl5Zuo1NpdvU3QsMoyThCzgxDP10fgujmMkSSJJEuLkWIWNRBgn9Lud4Uj0+Pt+pEqXZfmk0H58vDdcEhSoJOiKztLps3z6J79EeWyC+zevs7u1ymQ0wKlNY1SnyOdz6KHKwJXwvRAkTjovwI+83qNCfvJaI/x4GHF3xN0nFSPujrj7mBAzwZvvvcn06RJaMWR66jTbq9uoikl9uogbHlGfnEEVGtPjM3hxg6uvvs7Rbotuu0cQ7zOIBqw8vANaSJKEFCyHKy8t0W3P0mkMuL/6fcacSxRNh7xW4jA74urzl6lUHPbkb/GP/+E/pX5qCjl0mViYpiHfJF/P8Tv/7df57d/4LIfWDvuNVT5f/RTvfXifvPQMcwt5Gt2AxvZ16hNLOI6NZoxx8fwL+IOQZmePzM+II5+rr/wMd++s8KnXP4eVm6DgeoQckqopc4tFvvWNb/P8cy+iOVU29jaZWZrhv/mv/0tWHt7jb/3n/yl/8Hv/Ctns8I3f3+bTn3uJ1156hVajz0GjRb1ymve//z55yyTw9nDMn+L5yy4Xll6hbGT87ve/zWtXXuXD9/+Ukl3j5u01Ll84z8VLF9hYr1MomKyt3OZXfukr3LnxATk9x8ryFmE74OVXXmBsJqNgSVx54So1o4ShaqRZl8nJKmO1Ep1Oj6JR4fTSRQpGAUex2QlS/NClOeiwf3DA3/ztv8XnXvoC7tf/hGglxDJsPLdD0HORFkNEwyWvFrHVceZOjVPMjSPFVWbqIeVSxr07hxjVClkKly++zHsfvUk9u8iE9SqKkWNifuET4eJT34H+x//gv/uqrGon4hJFpCSyyuSpBToDH0mSyZkGqqqRJDFxHB0XuhRFUUmToTDDCzwMTQdJQdFULMNEZBmyDLFIqU/MML9wDlNXkBUxVIEfF3VZOu6KyMBxx2BY4IeqaUXRMTSdmx99gCbL5CwLWZJQFQXN0FFVDdM00TTtRADzSHGtKEO/U/lYuStJEnMLCzilKoqqo+vDMIFH8a+PiuzJbt1x6IAkMoQkocgylWqVpTNnOXv2Ihubm2xsPySOYwxVIVOGaVsIBRCEkY9yrA6P4xghhtZOsvzDKNtHF5HffMp28R43RtwdcfdJxYi7I+4+Lvzba//sq2nk0xkc8O7b3+HM1KeQlZDFc6cYBD3u3L7J5WdeRBFQK0xw2NtHyCBnBWytRCJHnD5ziWs/eJte2GesWMfRTVqDI25/cJtT06cYhAGnl54hTUP29zYpjpnc/OgDGq0O1+9+xM9/5QuoqsVPXH2DZnRIc3BEfXyKajVGM1Ry5SIiE/j9LvW5CZ698CrvvPdNnr/8OkI+YqJ8BVNv0woi+u4WSmbQGrTY2NnhhYufoXWQUirnmaw5rNy7y+TYHB9tfoeJyXECP+Lzr/00nd42py8tYpsmi0sLLN+8x/Vb12h12lx99RlOTb2O4aT8L1/7p7SOHkIoIyka3aMOMxOTlCsFLp/+DJLXYnLqEs3DbRarVSbPL1Cr1Tjc7/Daa1/i2996l5l6nQcPv4fwqpjFFK8zIF/IEcUJkqTz7NmrzM3MsdlY5Zd+8efot1zafoeLk0vkSxKL55ZQJJlBf59O75Bqucj2zjrlYgE/SjnzzCy7O3uUrQJ2QSWII27c/S7lisKp6XPkihUeLi8zlp9BNnTIZAjblJ0KOdvGyVd56/v/gbnZcxzsdxAi4f0bH3B66SwiSymXDdY2rxP5ZRzLxCnVuTL/xl/6ffHU30D/o3/w978qyTKqoqJKEkqaMkgyphfOISkmfjAgjXwyIeF5LooiH3ceZCShEKcJiqwgS/JQKa6rIMkoioYkAEkl55QYG5/l1NwClqEiyRkyw+L2SMwihBga6WdD0YwkgYJEBiSZimnbrD1c5fBwn3q5jHSsVFc1DUkaqqwfFfIsy06KuXRsc5QJMVR8SzKV2hiVWh1Z0VCOrZ6iKDpRvg9V8AqyMgwAQBru2EkIFBkMXSdn5yiUqxjFCkedLq3DBmLQRnYqSGioioYA4sQniZMf8SEdpoT9sIA/Gi/+9V//paeqkD9ujLg74u6TihF3R9x9XPjmD/7lVy+fex5Z1Hj5lUts7a1yfukMjV6TdttjcnoMR8uxuXObODRAOyDOYvJqAdMscO2dH6BaEsW6oNE9oFweQ0phrLBAruAjkSHS4Y1cu7NFRkROlwijNmcXn6NammHtzruEHYXVvTUiuuwd3KVUEJwae4OV7W9RyM9AGpJlbVQ8UrWAZclsbjVp+LeYGT/Hd7/5Nl5hHTMtESYRL5y9zOT5y0RuC10SZIqGG27h90IQ4PYaHPQHXFh6ga/9wde5sDTD/RGtf4YAACAASURBVK1vszB7icamy97RPnPzY0xWLmA5BZTI5Ma9t7lwaZ7F6mlkuYfbEvzE1dcoTSm0jjK+9/Y7vHK+zq3rd2m2jqjbGhvru7x78yN6rRUaB9v89Bu/iJVLyLyAKBP4wRGnyks0DrskqoQIgSBGcxK8gz5dv4GqTHK4f4vOwQ6qmbC83ECR+ojUx4t9zKxH5ERkrk+1epbtB8t0gj3OL8zQFQqi84C99h4HrU16hy7FfJH9oxXkVKXVuY5GnZ3WCvvrfYxcjk7o8+zsHHZ+nFRuIhSo1Gp8ePffc3b+Cg9ufY+tdovp2VnCfo84k3j90s+ORIR/EeTjQyJDJkFkIaLfZuvhKo7joEoymiRIkgBNG+64adqwUMVphKIoGLaNbliYVh5N0VGPbYNM20ZWVWTFwI0CUjEcl4lEkDJMyhqO9BgmZckyknosdAEkVUGSZHQV8vk8L77yGbxYpe96OE4ew7bRNB1FHXZgBMdKbkUDScLM2QgpA1mgKAJFAlWG9dU1uq02URQOR45hgiyrJKkgTjIyIZMASSYhMglJDEeR4jj9angBkpB0mcuXL/PC1dfJ9Dzbe1sMDh6QuR1EIpAlBWEMR6ZhGA4jbz1vOEJME0SWgshIk5g0+WSMy/9jwoi7I+4+qRhxd8Tdx4VaYYpBPyaXBzktk0lNJioX2FnfZLq2RLcdEcYy0xPnMa08vXaL9t4upWKV63e+w2/88l/j/MXLyIrG82c+haxkGEWNw8M97txf56M77zM3VyVnG9y/f5vpqSUKzgI5Z4Ktw7cgCjCNGvNnpzhz8TSClNnZWfrdFD/e5Oz8T3Lj1p/ixU1UXSFwPXSlw3ipyF//yi9QLtUI4xZf/MKXyfyQSqVCL+kxcFu8/fb3KZUnUUwTNYatB/vkDR1JDlicvcCz56+y2WtgAqdPn+XM2OeImwpJuM/F6hJaamMVDQ42DpHSAZ9+6SWWJs5Ryheo1oq88PxlQtlmvxkxVZnjl17/GXrrAVefe5ZXX/oMjYHLSxde4ersi7g9n4VT4wg8et0Wp6bP8uxzF/D7w7Chg8YuV158nitXrpCrK/yHa99gYWqKa9eugYhotXsMugHry4eMTdlM1OvEnYD5+kVso0jVnOT+w7sU6zlsR6E2XSXyXMwk4LAfc+fme5QsDysO6LkRipVybvECClUqpTJqLqU4Y1KUIgpSwvr2FutrN2jvbOGkNhItnr98iY53g1hqsjAxTT7T2Dpaxk+anwgXn/oO9D/5+3/vq7Ik0JRhwZIVkEVCL0ip1CdxnDxhnAACx3F+ZGfMcRxytj0cAwrwfQ9NkhAZyBLIioyma8i6RXVsjPpEHVPX0VQFpON0qONiBsc6lozjcaJAQkJIQ0ukNMtQVJ17d2/T3NlAVhTyjoOiDm2QHlkZAciyjGYMx5/DkaCKEGCZNoHv03c9Bp5PuVTCspxhN0UexttKsoymDQUuH/cIzf7cyqAQw26LBkxMzrF30CR0XQ521knTCEUD3dSJIpksjtA0DeCHXqRZShiGJ+dL05Tf+o2ny9D/cWPE3RF3n1SMuDvi7uPCR8t/+NVOT7C69e8Yy53H9UO0tMj+YJ14YFKyHGyzTLPZZG3r+8zNXmBp/hK7ey2q5Rx+GhImMbXSOJtb76PZGbZ2kXJFxYttDrp3eXBvmVde/iKmlRB6Gv3ePosLz7K90yBvVkgUGYkIy9RRVYmx6gR2bpz1rWVOn3qNRuMOFy4+S+hBPV9hef0aK+v77G8+QKgqO9vrPHv+ZbZbazxYu8P80iyThUmSNCXpCe5trHJmeglVCjg9eZpeMODb3/k+llWirMGZ2imMFDLhIzIdz5V46bkXOThoEYg2ppWn761h5H3cTog36NHt92gd9ZlYOsXs5Gm2tt8naPVoHz1ErSp8dP0mS4unST0Zxy7Six5yauw0kiZjGxr7h222dlaYnjqFbevoumB57QaRH2OaJqWqzZiSZ7W5y1g5j6yUmC/NYJdLmGqFXs9jaWKeTLLY72wx45yFUsAPPrqNFvcYmymiBTaN9h65Yo2ffuWzFNQ85cIMQdLkf/znv88LF2dJsYniI0pjZVpHISUcFs9dxLQs8rmQOPIRocr42DzjxVNsbK0hlBaT1Tmq9hyr20dMVcb4ief+8pOZp74DLUSKJARpnAyjUeMEOQ7A77B5/wayJMhkjTiOhwrxk1GYoN/v8/H0J5AQsoJq6BiWieMUyDLQdZ12u43neT+StPXo449HykrKUH0Ow+JpmiaWZaFpw525ubkFkiji8KBBr9fDNkyAE/X3o5Hdo9fQdR3DMNB1HQDDGAphwsBj0O8SRsGJ0OSRYjuKIuI4HsbXBgFBEJz826NEKwARJ0gCTNPglU+/QaE6iYhS9nfWaOzf5+hgAwMTwzBIkgTDME7Gh2manrzuI0X4CD8eRtwdcfdJxYi7I+4+Lqw8+BBd11HUmDTyOFV9mWs3v83WQQPdkhFRRrfRplSxCNI1claNtfUuTt6iYozzJ299g0Zzh6QTMH/qVRAqpH1u3n4LM2ewuHCGpdlF4lDn3TffpVLNk1NrtI526He6pKqOWdCJXYUgiMkynV7XIwgHnKo/T6u9wade+DncfoCQM1qdIzItIXNS1LqOY09gW2WWHz5gZuYsL75ymbDvEnVAD0BLIy6cXcQq2XT6TXzhoFsmk1MznFmcJ0473Bs08HQLXRmn1R6wdHqO7y5/i7OLl9CzFKOu0nFjvvPm+5QqMzhOiXPnrzI7t8T1m99BUwU37n0TTwqpLVxguzng0oWXcLsdzJyKL/U4e+YSldwEUTzg4OCAOI5xA5ejo23a7iFTU3Vu3bvO5vY6t95f5uBBDyeX4ydee4Mkdnn5uZdAUsi0BNyQrrfGw+33SBUX2YkRIkaRFE5Va2hkNDfX6A56tEKXmTGDt9/9E5JMIzCb5KIC/9V/9l+gaDqhaLO1e5vt9SNmJ+skdsp3rv0RvnfA2vodMjlmr7NFt3nEnZvvkrMrBK6Opqg0Bl1Ozy2hi8EnwsWn/gaaLCNLEkSWkKUxIo2J45B00KSzu05zfxvT1CkWiydFTNM0dF3Htm2Ojo4YDAYEQYAsy8RJQhSnxKkgzQB5KOJQVfWk2H78Y13Xh6NJVUXRdCRFRZJVJFUddiYUFVU3MO0c1bFxzp8/z9TEJIHncbC3j9sfYJsWuq6jqiqWZWHbNrKsoqo6mmYAMrI83M1TNB3HNmnsbvPR++/iewFJJsiOx5CSrJJlwwQr13UJggDf9/F99+SIooA0jY8LcghSQr0+xvT0NE7ORiZhd+shh7sbhG7j5GL3yDbp40U7CIIfiZcd4cfAiLsj7j6pGHF3xN3HhHxpgvqkzaef/9voegFLi0EJ+OKnv0iatThz5iyR36PXijgz+wbbRzug+5h5A/SIz114ntRtcO/Ge+xv7zBuLLG3fYewbSNHLZ5b+FnOz7xG7Ge89szP8947f4KqJ5SqVS5eukJt2iAMUlIrRU5dwtSi2dxhb6NBRbMRasLG+i57Bw9wgx0aUYssKkHW4/7qCkJYTE4uENubPLx7B01UmM1f4rC9x5hdxSo4uEGbWyvXmald5t76LXrRIVfOn6Wzs0KmhMyM1+g3N/G7Ibtb+yjhkPdetosf7OEerJCzS+hpDV3LMT4xzW7zAX3/iItnrnLr5rt84Y3fIhD7NJtdpqfn2NzZRTYc9hsHBD0XxxjDDVNMVabkFKjnJpmuL3BxaoowDFl5+CGzs7NYuTzVuo7bX2aQerT2QxYnT1MwK1x64RkOOxvkqiq1koGZy3AHbTTFZHVjjdgvMmWq6DkN/yhmff8+H936Abuth2wcHoFi4PaGwszVjTvYlQKVoolkFNAVi3ZrmUHWZGKqTBeBYQrSLKBYtPDjDoVSkThoo+kF2vv3cJwBZJCqn8z74ul7d/05pGnyMVuf5NjKSEFKY4TfZevBHUiGO2uGYZxEzcZxTK/XOylKjzoaQnD8KBEEARIKQRCg6zq6rv8/2gcJieHemyShaRo5O49l5oAfdgp0XefMmTMUCgUKhQK+67Kzs4OqqiedD03TsG0bVdFByMiSiq6Z6JqJZpgnFyHTNOm0WzSbTfwwJkkykiQjTrOTTs8jkUmapiRphCAlzWKC0COMfKIsHXaPsoi8Y5CEfQxTIksEWSBxuLdL4+AuzWZzeI6PXQgf2UE9KvKPuiIj/L/HiLsj7j6pGHF3xN3HBVWDjZUBGw/fp9XsYWgF5qfP0Nw/Iur1ONzboViysHRBs7tDv7uN56Ysr6wRpDK25lBTqrz4wk+Sq+ZQJINSvswLF09jaTq1Yp3DvRa723eZnjjFuXNX6HXbtJu7eIMee9ur+O0mA7dJFDcJgkNmahfJWQblkokbNMkVNCxTEAU+yG3m6nUqxTHUXEgcPGB/Z4WKUubV587TWvWQVYNMM8g7ZUh1LMshH0VUJ4pcPjvN0UHM1sYqUtojjTQmy/PknRm6SptzFyfYC/aoFRfptxPq+edJfYnm/iZnTlUIgx2OWgP8foIhCqzcu0O1VuTatZvMzz9HpvdBsTm3OMvC3CUyETMzdQ5Dq1Iul+m0QkTWY2PnLnLqsb/bI+7FVItlirkihDFK4vDMuc8RpQ3Qy2ysbvDOW3/K3Y0HTExdwajmiEWPfuphOTpbO+u42QaWnSdOArJI5/Tc51hcfI7nLs1Srp3h0y+/SLfZIRpIOLZEIV+h1xkQbrfZOdqmZifEoUcWSWxurNFsPkSRKuTLVYQmceHsJZTMxG9mzJ66QLNrkIYmHfcevn/wiXDxqb+BlsgQEqTZULCRAYGQQKRIiYffPaS7v4Vp5wh8nyQICAMXEQ/3egauiyTLpBIIWSJMYhIhUDWdvueTHO/AJXGGadokWUoYpyQpJOkwSCBOIAoz0iSCTJAlKXESkiTJSdF/dHEwCxUmZmeZKdvYmsRRb8DewT6GoZEkw4sS8jAdS2TDDo+uKSgy6JqJquiITMLSDWQB925/QLu5TxDFxMlQMZ4kCXGckgoI4wQhyaRRhkggjTLiICFwQ5LAJUUhTTKkNKE2PkVe1SkVyqiKQRQl7G9u0d1fR05DRJohMglVDEU8URKj6hqqriEpTz3VPnGMuDvi7pOKEXdH3H1cyOlnyeQGncMALYKg7yMpNl6UcurUKfYP99nvNkmESacJ+WyaU2PTFG0FWfbYDw4YJE26yiGF0iT93j4Lp86z1wIv0rh79yYFOwOpQb8XoTGLrkIYDTg1PU1RKTNfm+XS6XkMxWSn8T06vV0q9UUOjrp0mg10BBNjc0xPztI4WGH78DppHHKqNknY9wmCHs2dZYy4zvmlBfxkl6WZqzSlAFSFce8U52tnSGS4//Am586cQ8sb9KSE3fYN9pv3iZSUD+4uI2VQnJpBSSRMPcE08vSCQ0R2SF6x2N66je9+iKkYKGZCMV/g4GADWU/Y2+nTGhyxubPM+s7bJEaIUkgIM+j3fNqdBktLp5GVSUrjp4kiBalcpVgZI3Q99veaLJ6fQ3FiAgS+20ONe2z6e5gF2Dh8i9W1b3L73gNW+wNa2wkrq1tUatP4SQtDAjVzsOwJJF1me3WbnKpAIpPGPv3OIY4lM9jfJRj4hC2PyvgVnl96maBxSN6aQHVLVI0yIhigSjUah32iVOF7b1/jxatvcHrpClmQcOXqFxj4KmmmUC2e/0S4+PS9u/4cIiERpxkZgkwI0mMBCZKCSFNE4LFx/w5ur4usaKimTZpJ6LZDv9fDNAxEllEqFoddgTTFsiwkSaJaqWEaFpIiY9v2ya7bo4KbpkPRyrBwxsN9wPhjnRmRkCTRyfOzLENWdFTDIZ8rMDc1g07G7uYGh3v7jNUqOI6DEBKGaePkiyApRHGKZTuoqoZh2zjFIilg5/M0Dvb48IP3GQwGw+5MJoYXkTQgTQLCYIA76Jzs6D3ay0vT4cUmTGLiOCUIInKlGpluUamOM3VqhiyNSaKA/e373Lt5jV73AEmKyRRxsmP46Lwj/PgYcXfE3ScVI+6OuPu44Ca7FGt5lmYvUq+XyJJt8ppN2ZxEcsuMF3WE1GJ940MMYQ132NMYx6zgdnwcLc+pixdpPGgg7Q3QEpWd1U3GinnGig69fhvVtli99ZDctEqrfZt6dQy166AqFqaRRy/maOx2sOxZztd/GsuqYguH1JCZKC9RqtQ52urRbnosms8QBOCIMkVrCTXKsThzmpnxV5Eim3JuDF2YHLXXCRtNrDQiUlq4RDiexvzEcxSVIkZxkZnxy8xNvUx3cMhRc4/Xzl8kyXUYHO5TqJlISp7d1h0qpfOcOfNZAinH9NgcrXaDM3NzBK2Uam6SduuA+ZkLCNHFo89nFl9nrLJAXnIw5HF29n9ATvL46KNv48UDZCWjlNep1OqUrXnCXosk0fnSK7+KmZYwrDzFKYeOZHFv9Qavv/YL3N2/Qdf38VOXarGEODBZPH2J2dMT7Gytozp12t0eK4fr+NE6bhxy/sws5+c/y+HBBppZJpQ8+t0ukSoxM11H1zKaOzfIm9OYdp1eEhIUfTqeyoS9QJbEzE5NIJspXuRy9+23maxPkFOrHB5uUc4XcHIZ99586xPh4lN/Ay3pDqn0yABfIuV4rCUPuyJkMSIecPPDa5TLRdwwwg+SkwhXVVWHRS2OT0QjvV4Pz/NOdtpkWcZ13ZOCHUXRyfFINPLo80dimUfHo5Hex4Ukvb5PlgkMXWV2fAyv12Frc4N+p4vjOFiWdbIbmMvlTsz+LeeHH5fLZSRp2BHZWF1hc+0+vtcn9Ie2T8PXT5BEwoc/eA/X6+P7/snINI5jAj863tPzaXb7+BisNfp8++0f8P1r1zjqdOkNPEhCvP4Ruxv32d99iKJmJ6NFGCZmPY1ilseNEXdH3H1SMeLuiLuPC/14m62dFWrTc8gqZIqEikLOSnAsE8uycXIpLzzzGueXXiMOXfa2NtjbOcAyavhpzJ0be+iAbdtYlkO9PoYmC7z+IZsP77C5eY/zly/ROFjlhQsvkLenqU9ME3Zc3rn+p6zvPCBVBa1enyCMyFsOOctBx8SUTJoHDQb9iCjKiCOVvD2HXS1y/8Yt6uUxsjClmfhEZkzT2yGXzyBLGRsbo5KzqZkOtqkRd3coj81yZ2MFiZiHR/uoiU3ePkVxbJxTU0uokk25rHDrxjvoFhTKDpKQUW2TWDlCj3PMnV+k0+9hajZh2sFRZtnf3GDcrlErzrPXuE9eLyIFOaq5CiJKKNozVGtnGfRjpMxHZCGlXAUp2sOxbDQitEjGbXXZWL/DO+99G9Mo8vzLL/HRB9/lyoXXcV2XcukZer0Bb9+4R+KU2d8POLPwPOdOzTM1MYVVK3F0dMC4kyNIBYeNAWfHX0RTbZxqlUE84NBt0j7cIVMVPMfETlwKxRqqksPtuSiSIApCdGuGze0twjhhamaOsXwBr9nj/vJtMqlBztYoOtPMLD7ziXDxqb+B1vM1UNSTnTDBUFEdpyCEBFkE4QC3sYUuCbRjm6Fuu4OUDT8PXI/ID7B0g1wud1Lc9/f3KRaLRFGE67q0Wq0f6WoIIU66Ch8/oigiDMOTAp8kCWEYHncfIjRZIESGEBkF26BScnB7XbY2NvEGLoqso1sW3cGARAh0y0LRdSRZRdUMnHwR08ph5/IokophGFx771367SO8wYA4SMiEhCwkyCQsVScJo+Nx5vDC4vs+7XabJIzodrvcX17jxv1VBnqF2K4QyzaqVaDjR7T7AWkq8PodDnfW6LcaJ+Ib0zTRdf2p3MV73Bhxd8TdJxUj7o64+7gwljuDI9scHK6wurlGo9NEQ6Wg5rCkiLTvkWeJrJdRs4osjl2inMsxXq+iGgmq7SCpfU7PnaIz6JEKBS/ykHSbBxtbvPbGZ6lNTdHsH7C7u4bXzFjZWWNAgBfEzE9fZqwyTRYLJqdnuHTpGVRVp7e3Tuq6KKpDisbc3By5nMH4WB0rNdjtPmR8rkQ/GFApl8nn8+y2j3CTiG47oWBX0U2LIEsgTQgThb6ts7z1DoUJGyXuoEQurrvHweYqH37v6/Q7LgVrkiTMyNsFMgkEKmOlU6wsXyNfyeMGDbqNBMt2cKVD/EHKzMIceklmYeISejZGGHcY9Pscdpbxkj7l2hh+FrFwdhEj8Tg67ODYGtvbG8RpD19dJ47HOGzv0ut0qRdn+NQzn+LO/Q9oNgfUS7MgJGYnLkKSkSD4hZ/7SQ4OblCt1aiVJukf9DHcPuP2Wcbzz1DV85BJ+HHA9vY2Udplr7uPahlUJ86iYXDY7aJ7Ehv7d1jtPsSOU1QR8nD7Lko+xirmUAwTW5/BKeXY2lvBV1xe+OxzBF6e89PPcrS9AvYn48Kh/sVPebJRm5pms3tElkVDGyMhARkICSmTIMtQydAkhVsfXmPp8oscHh6iSQLp2GbpUVyqZVkkngsMBSimadLv9wEIw5CtrS2qpRxkKYo2VEWnSYR6nGJlmsZJ4UY6thiSlB/Zx3P7PVqH2xhpgCSrCFLGq1XiqEG73WZ5eYWzFy5h2TYCTmyboig6KZaPLlqKopBIElkUkyHxrW99i5euvEx5bALdMNFlGHSbjFXHkWWZKIpOzrW3t8f4xCT9QZeBn7Czu88gyjDriziJTG9/DTfoImsWrj8cTTqmShhEHGw/xIsVSqUS/X7/RIwzwo+HEXdH3H1SMeLuiLuPC3/3N/+Hx/dN/cpjO/P/b/FrX/oET/arf7kv/8on87/4v8cXhw+fe/lvfmKnfOpvoFUrT3F8GvdgHVUkyFmIhAwiI5OHnpmxEBD1OFi7SS5nMTN7hoEXkiCRSaArCq1mk2KxQN8NUFUVzw+xbRsvCCnmC3iex9rKKvPz88RxyKRmoSogCwjCgDgJySRQj1OnZFlGl4dFcxAPCIKQnJRnb3kFJXLJYlDkCIkEJxMsVvJsNTu0DndZVmVefePzmHaBwBscq8QNwnA4kkyHPk+Uy1WifILa6w3HmEnIH3/9a+y3u5RrNV5+6VWmp09RLlfxMkg8lyT2kTJBx23DbsLtW/fp+T5HzQ61iTr94hiKmQergHvwkGh/mQRB6IeEqUoxZ3K0v0+33SKdWcLKjSEkFekTso35jwkj7o64+6RixN0Rd0cY4WnHU59E+M//xf/+Vce2aO3vIJEijgUdw928j8VApQmSptP3QqZnl+j0XUzLIgwDSoUCSRzjB8Gww5HG6IYGkkBCIEsQRSFpGlMo5jF0HSfvEMYRcRIRJzF+4GOo+vH+XUYSRYRRhKypJJlG96hD6nX4s29+Hd1vIyUJIo3JUjEMHSBD1W38KMb1Q1Ihc2pmGs/ziOMYXdepVKonvp9hOLSIko6DBHzfB4Z7cY7j0Ot2WL53j9V790AkJDGEfkjQD9hYeYipmrz5nW/zwQ/ewzB08nmHwPew8gUSv4+cRhC5hL0mnjsg8D2CKABAVRSESOj3ByiqSqlawfcH/PZv/tpTlYj1uDHi7oi7TypG3B1xd4QRnnY89R3oMIwxHZNYUiFLkbMY6fiP8kfFXAiBIWckkY8pUvZ2t5mcP8/e3g45x2J3d5csTYGMXM4ZdjKkoYAln8/TarVOEqlufXid+cUFrJyFqspkaUjguXTbLWQh4+RyxHFEr9fBcRxQVRRs9rZ2ufnuN5HcAxJvgK7ow30mSSaMQ2RVRddVcpaJFwvWV5aZnKyj6+bQPzUVREkGsopu2ihBBLJyIuLJ5fJEUUS5XEVVZUxNJQxDPC/g3Te/R5x9lzRNOTo6YnysSqHgEIcRlXIRv9/FsS0s3cDt7mNnKevbK7i9IzqdDpqqoBeKxIFPr+8iyzImCjIRW5uryJpEbaz+V0eCJxQj7o64+6RixN0Rd0cY4WnHU38Dreo6/YFPfWqWvfX7mJI4Mdt/JN4QQhBnMmkUEHodlm9fZ2buNIZhDGNdLQuEIAg8dra3mJ2dRVVVeklMp91CVVUMU8cfuAhJ4p0330RRZKamJ8jSkH6nQ5JGdNpt/IGLrsg0jw4RaUqcQpaFbKzdx+12qdkmYV8myxiq1WWBkDUQCpkskc8XIYjoBynvvfUWn/ns5zFth06vTxSnqJpBJiLyhRKyLOO57vBcWYSmGZTLVcLQR9fN465MiucPaHdbhGFAuThF6LtImUu5UkM3cqQZSMc7g6YisDWVFy8t8Qdfv41lWYSBfyLGIc3o9DwqOQvTVsiyiP3tDXT56dvFe9wYcXfE3ScVI+6OuDvCCE87pB8Zpz2FeP1n/hORJQkaEZt3r6PGHoo0jDj9+CEkDUURSJpOfnyB6uQ89cULNA73marX8VyXwWC402aaJo7jkGUZQRCQZRmWNewU9Ls9At/Hj2K+8IWfwjQU0iRGVWU6nWHCViFnI0sC23awrSJ3Vj5i+c4NcjLkZJn9zRXkLEUfpsAiFBVJGcbRZpKKpts83N4kTjJm5heZmpnFzBUQaYamafi+T5Ik5HI5RJYhSRKNRuMk7tW0bFqdNkJk2LZJnITEkSA7jpElS4cxvMfxt14UYdqFYdJVJhFHIUnkoaoy//prv4ssMjJJPhnNCiEwEnDyJqatYZomkmLxYHV5VM1/DIy4O+Luk4oRd0fcHWGEpx1P/Q30T3zxl0WQSNTrYwyONli+/g6WlKEoKsj6sWpaQ1ZUNEmgKAqyaaFbRV7/+V9je+eIgRdhaILI75AvDvfdNE0jiiIsy4I0o9frYRjG0M9TgSSJODxoEHke5WKJxflZ7ty5g2ZqTE1N0Ou0WV19QOR7LC0tAQw9RS0LnYSDvQ00BXRJQ1dNMllCVjQyZfgYJBkPV9dYnD9FLAQzpy+iaxYASRihShDH8TA9yzDo9/snfqlZliIrw5+PLMuoqkqcJMjycCDh+8OI3ND3kVUFVB1Zt0gzgdfvE4YhQghyuRytVos//NYfQhSiE5PGGalQkbIMSf65PgAAIABJREFUpAxTN6iUCiiKxMbO7qiQ/xgYcXfE3ScVI+6OuDvCCE87nvoVjizL0HWDbrdNlqQYZg4R+QhJQfqR56VkEiQiI+0lVEyHD6+9x/yZS/hhjOsOqJYK9Pp9giCgWCyedFFIs5NdPMuySNMURUgU8wVCRbC3vcbu9jKRNxw1bq3dI4szDNs6MeB/ZKIfhiGqqTI2MU3r6AChGcSygpAVFEUlQaAoKgNvQERGzwuQJIles0190iQVAlmBwcAnn88ThiFhGJPPF3FdlzhOkWVBmgyTvVzXRTIVDMM69kmNUGSNLB06T8VphmkoZEKcmP37vo8sy6RpSr1e52e/+CX++Pf+DbEsIUsKMpCpIAsZP/bp+zI52/4r+f0/yRhxd8TdJxUj7o64O8IITzue+htoIYEEuF6fWqHMwtlneHj7fYQk/0ghF1lGIoMsyZiGjtdt0vVTzp6/QC5nEUYunhdQKBRQ1R/+2Hq9HtVSmSAIyOfzeJ6HruvIssxYtUpfSZAmaqiKQIQu3U6fSnmMwcBD0Q0iMvruMF2rXC6TZRl+lLEwN48fDpOk/DRDlRWiMGZrb5/19U2CyCeXsxi4IXMz07QbB1THagRRjKZpmJaF5/sniV1hFJFlGTnHwQ9c6pMT3Lt3D8dx6PS6mKZJrTaGJA1ADIt0mA6DBZR0OGaM4xjTNCmXy/T7fcrl8nE6WMCXvvwL/Ltv/B9IqgIMi74Qw2SxIAgwDe3/61/9E48Rd0fcfVIx4u6IuyOM8LTjqV/huPq5nxW6rqMrKrqmEng+Rxu38D0P/biYKxzvkMnKsLshMjQV7OoM5Mf4yS//MisrK+giQ1IV+v0+hUIBSZJQVRV/4GIYBoqiYBjGSdKVKmXomiAJfOLIp14t0e72iaIEkQj2DxvYeYckSVAUBcsaKshVVcWycui6ztrqA+6tPKDbG6BpOrKskgpB4PXRdZ00zaiXK5xdmEVoGs9duUq71SHnlOh0OhQLBdI0JQgCbNs+jr6N8LwBiqIwGAz9TJMkwTRNcrk8ijIsumGakYqMOI5Pnvfxy58Q4uRC4YcBgdfnT7/5b1GIURUdyzYwVA1VkciylN3D9miU+GNgxN0Rd59UjLg74u4IIzztePpd1qVhETFNk17fA81icnoOgXwS/ZplGSJLSLOMJE3J0hARBbjNQ6JgwHvvvU2lUiGKhnGxlmWh6/rwL/zjyFRVVU88P9u9LoZjI1k2qllG0ssUxxboRQZaoU6q5wgVhbGZaQqFApZlnTzquomVL+IGgoGfML14liAG0y5imXk01cLSHfJWDpEKMlSOel16fh/X7fPBtfewnRyJyDDzeeIkIwyGhTVNBAj5OOVLAWQKhRK27aAZJpph0ul1h10TIYEkk2aCIBwKeCzLOlHSd7tddF0nyzJCz0dkUK6O82u//htMjNWol0o4io6eCaQ4wchGNfzHxoi7I+4+qRhxd8TdEUZ4yvH030AnKYaq02g0kCSBpgiCzCL1Q5TEh8QnJiNNU+Q0QsliQCZGJYsCrKDH/t2PMFWZXiYTxRmtdpd2u02tXGFzfQ3DMAiCAMdxiKIITVaQU4Eqhh0GO+/QGfQIoghDNzGNHFPTC5h2iVSoFEpjJJmCpJgkmUKaSGiagmmaqJLKp157BaSEOAmRlQxNldDyZVS7AEAURdy+u0rRLmBICuvLK+iyQpYML1RREpOKDCFBb9Bnoj5Dmkioioks6cSRwMkVSOIMkQ3jb9M0xnc9vIFLqVAEIeF7AYnIyJeKlGtVEpFhOTmsgo2mSgSeS5IJzly+ip/6KIo0VIgLhTD7q6XBE4kRd0fcfVIx4u6IuyOM8JTj6b+BBtI0xbZtZFmm1+uh5Sym55dIkAAZORUIZAQymZBODiFLtDstxmpl3v7+d6lVCsRxzNTUFPl8nt3dXXRdp9fr0e/3uXnzJlmWoaoqzWbzON41ZW9vjyRJyBDsHewzOT1F3x0QhTFpBjmnQL5Q4qjZplypkRyPLNu9LnGWMlWvszg3RyZLRJkgUVSCOCNIEgqlMpph0ex2+d3f/z28JCKIQtYerNBqHGBZQ8FMHMcEQUC1WqXvDsgXC4zVx/HDgEKpSKfTQbdMzJyNomsEcYSiqRQKBfr9PpZl4TgOtmXhDgYcNhqEQYDIMnp9j1KlilMoEiUZtfE6L7z4KkF43HGR0uExwo+NEXdH3H1SMeLuiLsjjPA046m/gVaUoRF9GIYoytBDSLdzqHmHRNKGIzMhyCTIJEgRpAw/j0VGFMe4/S5+t0O9NFRUe5437HhoGoZhcHh0gGFqnDt/hp3dLaI4QNM0er0eijLsaERhQpoKarVxOp0eum6imxaT0zNESUoq4My58zSOmjSbbTqdHtPTpygUShSLRT7zmc9QrVbx4wQvTTl34SIL80t0e30Omy1UVWd6bp4bt+8ghCAKfdQsY3VlGdM0MU0TAN/3cV0XGI4D6/U6kiRh5wuoqo4QEkEQIcsqQghc1z3p8AzV5DG+7x/vDaonP9ckSTg8PMAwDO4/eMCtW/eYW1xCVhWElJHJ/yd7dx4sWXYXdv57zt1zf/n2V/vSS/Xere5WI0ASQiAhAWY1MIOHxQqHwYztIZixGTvsGCKI8QwxNhMwjpnwgACDDdhoNDJIYCRAC2hfWuq1urv2evXqvZf5cs+7nXPmj5v5Kqv0qltPQu7qmvOJyKibJ++WN8+79bvn/s65+atWB16rbN21dfe1ytZdW3ct63Z323cifPzN7zBhGJKmKeVyuRiuqFRFDXboblxk0L6KQ3ECl1IihNgdNshIgSskGofK3BJ3P/x6yo0l4nhMniWgNKPxAClhYWGB0ajo1R2GJcajZPckHsfF+J7TnD3f9+n3+8wvzOH7PmfPnqXRaDAajSiXI9DFCTSOY44fP45QRYtKLgR/+sEPYqRkZ2eHbrtN5AcIkzHotBnEYxzH4ciBg9x/732oPOfA0eMMRzEnTpzg8uXLlEolclOc0IMgoFwuFz3O42KMUccpOusAJElCpVJhPB4XY5ZmGQLFeNLLvFqt0uv1SJIx25ubtFpbCAM6zxj0dxh3+yzNN9EkaODKds8m5O2Drbu27r5W2bpr665l3e5u+wD64W/8NlMul3eHOIrjGJULoshBp0Oe+9Jn8R1whPNlJ3IkuNIh8gPiHLxKkzd9x/fT7XaIx0PyJKXX71CtlvE8j06ng1KKIAg4fOg4Whc9qaePrR0OhywsLJBlGUePHuXs2bNUG/Xdp2oVJ/0R8WgAFAP8O47DgeUDSCnZ3FjHdR1+57d/i+F4QJqm+FKg8gRBDsID4eC6Lo899joqlQq5FszNF9tsNBoEQYDrl3B9j+3tbebn51FK0e31aTabbG9vF4/YzTJKYcR4PGZ7exvXdZmbm6PbvopSCiEEzz//PFprpErIsoRBr48wRc/zWMVIBUvNeYwWKAnrm1v2RL4Ptu7auvtaZeuurbuWdbu77VM4SqXS7pV7r9cDoBxBbiTl5honTz2M6wS40iClQEiJlgIlJLkTkUmPYa4QrsDRKZ/+8J/QnK/RGyd0+gNqQYl6fQ4pXZaWVqhUajiOx9b2VXr9DkpnZHmCH7gcO3aMdruNUopz586htaYSBgSOxBOws7WJLx2q5QqNWp1+t0eWpAjXsNNrkeQxly5d4O/8nXcxGg2o1cpoYTCOBMdFCYmiOAl/9MMfw3N8ksGA9bNnkMqQ5iCDEnGaFCfqUmk3jzCKQobxCCNhbm4OozSnT79Ivz+kWq3i+S5b2xtsXlrn9FPPcPb559DxmH57k3brKjvtbdIsJskzFIZKUCEIIpSQGFfu3sa1vnK27tq6+1pl666tu5Z1u7vtW6Bf981vM3meMzc3R5qmVCoVsnhEVGsWOWUy57knP0M+eZyqg0ALjYPAlcWA9AYXIQRhUMEPKhw4cZJSo0m71WGl2aTdbVGv13eHVxJCsLW1Rb1eJwxDpJTFOKWpIssyHMdhYWGBIAiQwtBqtUiShDwvBvAPguIJWXme43kejUaDOBnT7/YY9XtcvHCOy1cu0e126fe6xWNwjcYYwXTUIikl8XDI93/f99Lv94mTnBN3nEJ4Lo7jTW5bljHGEAQBoyTBKI3jOHR3OgRBADojHo958ktfQBiNdCVkKVubLXIVT/IccxwpSScPDBCi6E3uyeI2ahAEu/tz9uIl2xKyD7bu2rr7WmXrrq27lnW7u+1boKcn0fF4TJZltNttkiyl3W7j+z7t3pDafNGhoxjYX+MYXZwYVU6mBYmW9GPN2XMXUUrx/NNP06iUKVciYqFZXV3F87zJ41sThBDU60XHF8/zKJVKuz3S5+fnSZKEnZ0dBoMBn/3sZ8nznCiKWFhYoF6vo7XeLTPGsL6+Tq/b5+rVq4RhiVqtwalT99LpdHAdb/dWJehrL2kQkccfvOc/kOcpURBwdf0yntYMe308zyPPc9I0LZ7iJV12Wm1MlrM43+TiuZd48jOf5MzpZ/CFotPaoLVxkc7OFlqPKZdCBDl5lmByhdAGB0HgeizMNanVaru5h45T3Ka19sfWXVt3X6ts3bV117Jud7d9C/S9j73JlEql3VtnWZZRLpeJ4xhgt7PJ1bNPY4whV4YcWbSAhFWMWwI3IHQFVy+cZaFeZnm+Sbcz5Ik3v5HN3oCq56HU5KEBvd7uCXtra4s4jjl8+DD9fh+BQ61WQ0pJq9VCKcV8s8iPE0KglGI0GtFqbdFsNonjmGaziRAOo9EItGLr6lVC38f1HS5cPMdH/+zPiSolosBnlIzI8xQJeMJBKUWtHFAqlXjdo0/Q6Y3I8pzDx0+SpMVTuHzfp1arcfHCBU4/+wy1ehmV5WxtX6G93aJSqRAnI4xRuK6L0GbyJC5FHKe4rk+lUgxVNW3lAXZzGqfTAC+eO29bQvbB1l1bd1+rbN21ddeybnfuq70DX2/ToYSmt+bCMMQYU7R8OA7ScykHTdaO38GLZy6R+z7GLYY6coISqfDIc4PjghOV0a4kzRNCX9Lf6dJq7+DONXbz/SqVCpubm6RpSqlUYmlpCa01jUaDZ595HqVU8bhZ193NE5w+EGA8HrO4uIjnOQyHQ3zfn3SQMURRRGeneApVFEUkWUwpqvBjP/mT/Oav/zpZkuD4sriN57gcWVmjVq4gTEaqc5575mmWDh5G+JL19XXuuusuzp07x9WrV9Fa4whDu7XJlcsDapUQITWe51E8GMvFmQyvJIUmTXOkdFmYXyHLFK7Uk3XI3UfOGtg9zkrZsUi/Grbu2rr7WmXrrq27lnW7u+1boB96w1uN6xbXCVmWEUURWZYRhiHj8ZjDhw+zsbGBxuVsq4PGxRUS3yhyiic6aa0RrkcWj+m3LlPzNMcPHmCcwje8+W1sbW9ishFGKwZJxvLqGo7RjMdjjDFFL+pul36/i+cVeXZhGKK1LjqKTHp993o9FhYW2Lq6ubtMFEUk8Zg4jjGmOKFPH12rsxRHQr1a5o/e914aoUulXNodg1Uphcl1cXNRSPxyRH845s677iPNU9qtK3RbbXq9Hr4UGFdgHId4nIM2SIpWDM/zdv/z8X0X13WLJ4hNe88bisfyTk7cxhg01+rVtI6du3TZtoTsg627tu6+Vtm6a+uuZd3ubvsEqWnLQ7PZpNFokGUZUkpGoxFzc3OcOXOGLMtYaFSRWYKaPFEqzotbisbxUMLBcT0a8wuTsUSHnDt3FqFSTDpi2Ouyvb1NfzhgcX6e7c0thBDs7OyQ5zmXL1/eHfi+VCrttpKUSiWgGFh/msO3ublJEAQMBoPdHL5pPp/v++R5cQtwOBoTVCrFfzaOpDG/QFSqoA3kSpNmObnS5FrvnlSVMhw/fpzxqM+o3yEZ9YnHA3zPQQsYxRlZXjx6VroOaZriOMXwTI1Gg0qlgud511qRJvl1sxdhSqkve03/U7H2x9ZdW3dfq2zdtXXXsm53t30AHQUhoR+wdXWTnVYbz3EplyKacw26nR2yNKFeq9K6eoV77zxOKCHwXJQBkEhHUK9VcR0Y9zvoPMcYw6DXp1aJ+MgH38/K6gJ5nrO8tIIQgmGvzwvPn2ahOU85KjE/10QicIQkCkLQhl6ny7A/II0TSmExiL/vekRB0Zu8VCrR7XaJ45itrS22t7d3n0YF0Gg0SLMc1/XJM3jLW7+NYVx02JmOgQqA4yIdD+kVHUsunL2A70qyZEx3pwOAVuB6EUFUJc01Warw/ZBGo0GpdK1lZdrbe7ruadn0hJ3n+W7ZXi9rf2zdtXX3tcrWXVt3Let2d9uncNz/2JsNFIPj+75ftDCUAzzPI8sy0jQliiLQgmE8ZpDleEEFjc/lc6dRKqNWitB5Qm+nQz4uBtv3HUGWZdx9992sHT1CfX6F7VaH5flFBr0OqTa7rRfD4ZBer8fa2grdbrfoIBLHZFnG3NwcWuvdJ2UZY3YHzG80GgCcP3eW5eVl2u02Usrd+RvVClka09raoNPaptvaBKV3P3ccB+0IxORhBVoBSBxH0O62EQ50u32kE6KMQEmN40iENoSuQyCv3fmbnsCNUbu9z3dvsxq+rMzM3DSc1rGN7Za9lbgPtu7auvtaZeuurbuWdbu77TsR+q7HcDgEbdC5whGSNE4oRyV6nS5hGDIaDKk2FnDzjDsPHeRPPvhhqpUm2aCNUSl+OMeg10INe0RuiBKSTCmQkiAKefrpp3jsG+Y4cOAArStX6Ha7zC8ukyUpWZJijGF+rsl4OKJRq9NutymXy3iOS54WLRfKdZEIkiShVCmTpimtVovFxUUqlQq9Xo+jR49y6dIllFIMOi0uvvQcyXhMv7MNWk3GMg12h2EqxiaVKGNQyuBQ9NRWRlKtN9hst3DDMqNk0kphBCrT+BKMuf6cO821M0bPTF9/Ip/Od+OJfLb1xPrK2bpr6+5rla27tu5a1u3utm+BtizLsizLsqy/Trd9DrRlWZZlWZZl/XWyAbRlWZZlWZZl7YMNoC3LsizLsixrH2wAbVmWZVmWZVn7YANoy7Isy7Isy9oHG0BblmVZlmVZ1j7YANqyLMuyLMuy9sEG0JZlWZZlWZa1DzaAtizLsizLsqx9sAG0ZVmWZVmWZe2DDaAty7Isy7Isax9sAG1ZlmVZlmVZ+2ADaMuyLMuyLMvaBxtAW5ZlWZZlWdY+2ADasizLsizLsvbBBtCWZVmWZVmWtQ82gLYsy7Isy7KsfbABtGVZlmVZlmXtgw2gLcuyLMuyLGsfbABtWZZlWZZlWftgA2jLsizLsizL2gcbQFuWZVmWZVnWPtgA2rIsy7Isy7L2wQbQlmVZlmVZlrUPNoC2LMuyLMuyrH2wAbRlWZZlWZZl7YMNoC3LsizLsixrH2wAbVmWZVmWZVn7YANoy7Isy7Isy9oHG0BblmVZlmVZ1j7YANqyLMuyLMuy9sEG0JZlWZZlWZa1DzaAtizLsizLsqx9sAG0ZVmWZVmWZe2DDaAty7Isy7Isax9sAG1ZlmVZlmVZ+2ADaMuyLMuyLMvaBxtAW5ZlWZZlWdY+2ADasizLsizLsvbBBtCWZVmWZVmWtQ82gLYsy7Isy7KsfbABtGVZlmVZlmXtgw2gLcuyLMuyLGsfbABtWZZlWZZlWftgA2jLsizLsizL2gcbQFuWZVmWZVnWPtgA2rIsy7Isy7L24ZYJoIUQvy6E2BRCPDVT1hRC/KkQ4oXJv3OT8v9eCPGFyespIYQSQjT3WOe3CiE+N5nvY0KIk5PyvyuE+NJM+T0zy/y8EOJFIcTzQoi3TcpCIcSnhBBPCiGeFkL8TzPz/9qk/ItCiP8ohKhMyn9WCPHMpPxDQogjk/KHhBAfn6zni0KIH5pZ1+9MtvvU5Hh4k/K6EOI/zWz/J2aW+WMhREcI8Yc3Oa6/IoQYzLz/cSHE1szxe9fMZ2qm/H2vtC6rcJO6+4OT30oLIR69Yf4vq2N7rFMIIX5RCHFaCPGsEOLvT8rfLITozvxO/2xSfkgI8eeTeZ8WQvyDmXX93sz854QQX5iUPz5T/qQQ4ntv2AdHCPH52bolhPgNIcTZmeUeumGZxyb16Admyg4LIf7zZN+eEUIcfYXvePfkbyQRQvzcKx3rSfnXdK6wLMuyrH0xxtwSL+CNwCPAUzNl/yvwjyfT/xj4X/ZY7ruAP7vJOk8DpybTPw38xmS6NjPPdwN/PJm+B3gSCIBjwEuAAwigMpnHAz4JPLHHuv7lzP5+C1CaTP8U8HuT6TuBOybTa8AVoDF5/47JtgTw74GfmpT/j9PvDiwCbcCfvP/WyTH4wz2+/6PAvwUGM2U/DvzqTY7XYK/ym63Lvl627p4C7gL+Anh0pnzPOrbHOn8C+C1ATt4vTf59801+61Xgkcl0dVL379ljvv8N+GeT6RLgziy/OX0/KftZ4N/Nbg/4DeAHbnIcHODPgPfPzjM5Bt82ma7M/F3c7DsuAY8Bvwj83Csd60n513SusC/7si/7si/72s/rlmmBNsZ8hCIwnPU3gN+cTP8m8D17LPojFMHmnqsFapPpOrA+2VZvZp7yZL7p9n7XGJMYY84CLwKPm8K05dWbvMzsuoQQAohmyv/cGDOaLPMJ4OCk/LQx5oXJ9DpF0LI4ef/+ybYM8KnpMpN1VifbqEyOUz5Z5kNA/8YvLoRwgF8C/oebHJuv2F/num5He9VdY8yzxpjn95h9zzq2x3w/BfyCMUZP1rf5CvtwxRjzucl0H3gWODA7z6T+/E0mfy/GmJExJp98HHLt7wAhxEHgncD//XLbvcF/C/wBRZ2eruceiqD8TyfbHMz8Xez5HY0xm8aYTwPZHt9zr/MEfO3nCsuyLMv6it0yAfRNLBtjrkARIFC0TO0SQpSAt1P8p72XdwHvF0JcAv4W8C9mlv17QoiXKFqu/v6k+ABwcWb5S5Oy6e3sL1AEB39qjPnkzLreDWwAdwO/ssd+/G3gAzcWCiEeB3yKVsjZcm+yv388KfpVihbNdeBLwD+YBh0v42eA902P3w2+X1xLOTk0Ux4KIT4jhPiEEGI2AHm5dVn7c9M6doMTwA9Nfo8PCCHumPnsGyYpFx8QQtx744KTFImHKe6UzPpm4Or0Am4y7+uFEE9T1Ku/OxNQ/zLFBdNe9ewXJ/XnXwkhgsl6DgDfC/yfN8x7J9ARQrxnkg7yS5MLslf6jvv1tZ4rLMuyLOsrdqsH0K/ku4C/NMbs1SIF8N8B7zDGHATeTZFiAYAx5v8wxpwA/hHwTyfFYo91TFuUlTHmIYpW4ceFEPfNrOsnKNIxngV+aHZhIcSPUqQ//NIN5asUKRE/sUcw/K+BjxhjPjp5/zbgC5NtPAT8qhCixk0IIdaAH2TvYP4/AUeNMQ8AH+Raqx3AYWPMo8B/BfyyEOLEK6zL2r+b1rEbBEA8+T3+DfDrk/LPAUeMMQ9S/CbvvW7lRQ7+HwD/8IY7LbBHC6wx5pPGmHspUiZ+XhT5/t8JbBpjPrvHfv08xYXiY0CT4u8HioD7Hxlj1A3zuxSB+89NljlOkUb0ct/x6+GVzhWWZVmW9RW71QPoq5NAcxpw3ngb+4e5yS1ZIcQi8OBMS/HvAW/YY9bf5drt3kvAbIvsQSZpH1PGmA5FTufbbyhXk218/8w+vBX4J8B3G2OSmfIa8EfAPzXGfOKG/f7nFCkdPztT/BPAeybZHS8CZymCmJt5GDgJvCiEOAeUhBAvTvazNbMv/wZ43cx3mKa4nJl8x4dfbl3WV+UV69jMfNPW0v8HeACKlKFpOpEx5v2AJ4RYgN07F38A/I4x5j2zKxNCuMD3UdTRL2OMeRYYAvcB3wh89+T3/l3gLUKI357Md2VSDxOKi9Jp+smjwO9OlvkB4F9P7mJcAj5vjDkzad1+L0UO802/41fpqz5XWJZlWdZ+3eoB9PuAH5tM/xjw/04/EELUgTfNlt1gB6gLIe6cvP82ihZibrhV/E5gekv7fcAPCyECIcQx4A7gU0KIRSFEY7JsBLwVeG4yisB0ZA9B0cr13OT9w8D/RRE8z+aE+hTBwm8ZY/7D7A6LYkSMtwE/ckOr9AWKzoIIIZYpOqeducn3xhjzR8aYFWPMUWPMUWBkjJnu5+rMrN89c0zmZm7HL1AEUc+83Lqsr8qedWyP+d4LvGUy/SaKToEIIVYmdW2aAiSB1qTs14BnjTH/co/1vRV4zhhzaVoghDg2CawRxSgxdwHnjDE/b4w5OPm9f5ii492PTuabBqmC4sLzKQBjzLGZOvIfgZ82xrwX+DQwN7mgZfKdnnm57/hV+lrOFZZlWZa1L6Lor/bqE0L8e4oRBhaAq8A/p/gP9veBwxRB5A9Ob8EKIX4ceLsx5odvWM/7gXcZY9ZFMSzXL1Dkce4AP2mMOSOE+N8pAopsUv4zxpinJ8v/E+AnKTrp/UNjzAeEEA9QpDo4FAHL7xtjfkEIIYGPUnRUFBSjK/yUMaYnhPggcD/FKBsAF4wx3z1J6Xg38PTMbv+4MeYLQogcOM+1ToHvmWxnjWL0g9XJdv6FMea3J/v7UYrW6ArQAv62MeZPbjgmA2PMdHi9/5kicM4pOmP9lDHmOSHEGygCfj35jr9sjPm1PX6n3XVZcOjootlpDYjHKUppPM/l+LEDBJ7L6RcvkmYZvu+zOD/H977zW3GE5BOf/SJPP/8SUgq++fGHOXRgBaUUf/TBj/HEo/chJPQGQz79uWcYxwlgWFyeIwh9Bv0xO60ejuPgui733XOCxfk5Bv0RH/zwJ2nUqwgEQsBjD9/HPXfdQalU4g//859z+MAqjz/yIL7v47oun//iM3zwI3+J57gIKfie7/h2Hrr3LgCUUiiteeb0i3zoI3/Fj/7Nv0Gaprz73/0Bg9EYrTVzc3UeeOBOhqMRnV6fVrtDliVsb3YJI5+oFKK1Jh6n9LpDjAHHlYTlACEEKlfEw4TiHCQISj5eINHaMOzETM9NQghqzRDA5JGiAAAgAElEQVQhBcNuQp4qjAEhISi5eIGH0YZxP0Vrg3QEQcUDAUJLsiRD5Zqg5O/+bjee9ybXJNd9LoTAlfKm88xe4UqujWh043yz25vd7nR+gGEv2Su1x7Isy7pF3RIB9C//239ldnpnCf0QhELGBi+cI01T0rSHi8ZoSX+k8HxwnR3am0OOrR2hUZIkeRUvyBkawcBINroDNs5/HiGeorzo0WUDoSXz7v184tJTZK7i2FyAoxMeWX4Lrpgj8TJ+/8X3YUaCty7dzdi5g6vjLU6t3sdCdZFLnXXM4BwPr30PW8lzbKsWZZkglML3ylApsbVzhXbnE5zZ6nKgATvbIdsXYt74xCNU/HtQJuep1hf4+EvPce+xOlFpiNdzue/w69nuvoBsGvrtDo+cehf16AQlEZMl24zGpxHJccYmZIcN8K4yGj6H0g3q3p2UtKAZzlMtLzPAITNdquUKngxhMKSfd2n4HmQp26MWiTast5+l6i5zuX+JS70vcfjAQcreHFW5ggyWSbOrrFVXSFqCc/0OK/PHKJerDNI2nz7/btbm38jx+XeRpAO2smcwybNcHH2Uju7imYDDjTexEL2OLF3HlS3cOKYrL/P8+hZi6BLOS4bZJnma05x3MYnAce/hjvk3oWWPze0Of3z5j2h/JmfUcXnDm3yO1Q7ziRd2GDgbvP7+Nc5fXcf0PeZXF1HJOh/+FfNfPAhZPbhopsGsH4DvetQqVRxX4kmHerVGtVwmiiIkAkfI6wInZTRa6yJgzXJyrYjThDhNGYxGtHtd0jQlV2Y3aC5FEaUwIvID/MDFlQ6B6+EIiXAkUspif1yPUqlEuVwm8H08z8N13d31TOeL/AA5CRSNVhhj0FqT5TlZlqGUYpwmpGlKkiQkScIwjhmnCYPRkHanQ28w3A2glZquozhGxhiUUuT6+kByr3OPkNeC5oK+LiDdKxAFed17PZtSrsSXbWfP7e4R9Aohdm/RyZlAehok3xhA68kXNsZcO557bHv2u0/XZQNoy7Ks1xb31d4BgJeu/CWj/Ay+czcnG6cQzhDXkWx0N1lrHkLHPa70X+Cli89zZO0wlcoSiwfqjGWHjz/5KY4ceJQji/czVy4x6JwhGw3p9Xc4duh+ooZLtjNiuXwUpQ7THz1JqQLDzNBtw/1LIESJgIw7whI6zGnvXOVK0masEpKVAwzzCM9zEGET5aTkUuIjObf1RY7O3YeQLnmiwfh42UGW6l3qbsRfPD/m+JLD2fOf4/5TK9TcQ6w6a7zjrjLHVu6mm1/FrSjuWXgD3eoDPN37Q3wpUHGHSskj0CE+NXwv4OLWl8hLq4QqwtfLzJVW6KZDfFUmzxKEH+AIn7IydMYJWnqkjiDSGSbPkL4kVWPQCek45oVLn+PY8glKgaQeOeSDNdy5I/T8EYNuQkk6dLw+xunTEy9RIkSlKRWxyH1zP0hnuAn1PuUgYpAEJLKEJ+v46YDAO4iRVcb5eeb8MuPemPULH2Lt5KNE4gwbccI94nHEyGV7vM44y2ksSLbi58nUCdL4GFd6f8GllzLubXpc1Bn+uESPNqtzR/nUSxs827nKsTq8GGcMTYtq+OrU3TwvBq0oWlRdEq0ZjFN8R5K5Lo4zQkqJROC6LhkgJjGV1hpNEVxqrVFGk6ZpEbRmGZnO0VqTqyIYLWI8WQSjeU4mJI4E4YJGIl2B0fpagOe6RSuq4+BJB1dIpAGhDTrLka6L60k8pzgNSCkx0in2BYWSBiEUoCniPYEQEiEkjnBxhQJdxH3GFAG+ycEIQWYcpMwngbRBCAdj8usCVa31noHrrBuD59nA2ggXowWYYh81CoPGVQJlNCIMme3SKMSXB9N7mW7HGMN0caUUjuNMVwRCIMS1gFnposwYg5lZh95re0JguBZwcws0YliWZVn7c0sE0KPxl5AhpPoyQ1XmzLk/p5e3+MJzHd72unfSjCTbycdYO9qk4jjEbCHMHMvRYR689zsZJEM+/+KnefiO17FSOU7gS77wmT9j7XXfwrjcQw1eZJjA1mCdSy14+6GTSD+jNp9QjZZRxsOVTZaCk+R5SGtwmv6wz8nV1xNkdfLxCLIuzWARFXfIYoUXzhNWDhCbFm5aQjo+Zb+BrJ9CxV0ip8by0jOcXDtB5A1IZU5seqRBlZpzkrK/ghecQCYDytE8GT4L7kOo6oiaWKTuhUgDpzc+SWpaXBl+jNFokUXvFKoSUvEjMkfiKgMG4jhmrpSTxRm+Ai/TyMzgypDITQmMR+7m6Axk5rAQniDPGigFo4Fivf8MWeCTJj3moodIxl02Ohep6QrjUURaSYnClIwOXinkgHsnNU8zSns4aUYjOkDV+XYSvU3sGEQumXN9an5EJWxQadxDoOZZkwc4eeIBgsoiK+J+dsJzBPUIEQzZ6V6hZg6hS4aj4QPcXT/Hfc1FHKXYOHuVI0/cRcO9g4899UlEL2JxMcA4gkvZNpXw1WnA01rvttKCRsoiwC1FAY7KEcLgOBKjFJ7n4TjObgBtjLmuBTpTqmiJVop8ElRLOW2xvtZ6qY0hzTOklDhKoDG4QoIWCCOQUiKEwHGc3WlgN1AXogjmgWJ/JvPe2DKqdbFveZ7v7pdSanf+6Tqnr+IiABAOrrzWAq21xvw13xwwQiKMBgw4AscY1mpN3v6WtzDojhgMBoyN5k8+/smbtgZ/JabHbj/LCiG+7OJg9thOP7csy7Jeu26JADrJNlgtP0aldIgor3Bs/psY6DEy36DqLoKOCf17cJIaOqjhySEBARXhQehRKzVo+vNc3XqJkwcfZrW8wDc98jqQYEQf6NBPz/PFDZcghPmkzWe6bY4Fh3Bzl1QaEt2ls7NNRBXXgzff8xbK/jLGLZPqDM9xUUrRGmzT7p6hunAnS5UHGIzOEOcZjVrIOB0iQo8F925GSZ833vcmVktHGI02qJYPU3YPsFIOiXOFygfURUCqPPpDgTABgVojDCJqwWEG/RgjRmS6Tke9xFgOEKlH6NUZpDuMnS1wBdqZI2WD9X7GSn0Rk+zQHr1IEB7AUwfAVwSJRDhVTNyi5i8i1AauGxNFEYgLLNUCur0B2pyjGRzCiA6D0VUachNRPsLh+QfInCEmHtAP2pztf4p5/2Gq3EkQBpj+Fq10QDfbYNy+wJ1H3kye92gGNUJ3jtTX+DVDMhxSY4Wyu0icVnEjSDd9lhprOLrGveUReeYQCpcDjZN83/3vYqRiVhdChHMOPSihowbVhsc3rpzkRHQ/hyqXyNY/Qs0JXpW6K8S1gFUphZQSrXWR+yyKltBU5YgEkizD87zdtIAirUHvBqvKzEzrou3zWiB7bZlMC4QSkyC6eKpP5ihUbvAdd3eZaQCtJ9uYDST1zHZng7nZIA+uXSBMg+hpQO9OWrehaIXfbXEVHpgcKQxaaFSuJ6251weje7U+F+9vTOG4PvDcnZYCgcbF4Br4jrd+KyvVOpfPX0Dlgv5ozDBN9/xeewXD0wB3NlVj9rPpcnulk9xs/hvNHtNXWodlWZZ1a7slAugjjcdRSUijOkduNtFqg8986aM880LKU8GnePTR4+zEZ6jLORyxglRwefsjiLU3Ip0mUeM4OCF+qcKz55/l0PK9HFt9gnE8xM+XKM2touILJKMnefBADxFVeUNeoyxWKTklsqxD5Mxz9/KbyOMxwfydLDSP4JgVhjoj0ZtoYRC5R7XUJM6HbLeeZmF1iZosk2cprpAElJGqj6Oq+CoiKC1RcRt4lSGoAUqt0253CcshaeohhEtv0Aenj0CxfuUii81VDi0fQKgcowSVaAkT34X2xrRHmwhHkqcB1SBlOOhjnJBasEqq+igd43gSSQBIgkgT6zGx6VEyLiqXuE5EMvbIVIk483GcGlr3ESKhs7PJcu0oCJda/W4a/n2orMRa9S76yRUS1aLdu0hreBntlVgyD7Dm3UXFKeNHgnyUsXhwFcevguiyvX2J+cYQRxTb3U4ucGXwJAtVh82tPoea9+KKEf3eBtVqgBcGRFFAd6eFynIQCqUuMF+/A1c8RCLGtHpd/tYb38qxagWtFJWgzJx0qIXJK1WzrwshxO7LGEOe55NAsghglVKkaYqRRfCpjL4uhcOImSBZsBvQKq12W6aLf81uLjF5kYYhpUTjF+kcjoMvvN0gcJrrvJt2ALvvp0HbbOA/+32m/06XnW21ngbejiN2y3b3iyJ9w3MEjz34CK7r8pFPfpI0zTFSI/Qrp1DsFcDOBqPOZBhtRZF3/OBdd/Dmhx5je3uTKxvreKUAx0hCYdga94uc6q+w9Xt6PF4uML5xf75SLxegW5ZlWa89t0QA7VYX8aoaE/kwrlOPSnzro8d54iGXwKmQp4qVeARZDNlFctXCBF262QX62y+xWs4ZjjKG4xf5q09/jsgs8/1v+RlG+jwf/vj7WV5e5K6DD3Jq+TvQeYvc0VSki+9V0GlEPNhmdXkJES2Tu32q0keYMu1swOXtS2y0nuTgAZeF0gk8Z45aaR5cjerHLFfugMglEC79wUWEFIRinpJfojfYgqhMJSqhXBchahxcOorvlTFkOBqi6pjI9REMueNInVqtQuTXSIYj0niEqwN8XSPK1zhQP0VqArI4I6geRLstXBPi5C4lf54kC2hUa8igghAx2mSkecJYj1BmQByPGI4HJGOXw/Ovx3hVht2IO5buZnXOUG2UWKjfT5potFIIk3G1/QLnN7/AKFmnXG8QxzGBmaPMYZTyESonHlcIA487GydBpHSH64z66zS9FYb9daR0iYjwokPIwVViscnYfZ7NYUx7dAEV3g/5EiPl4SaKMPTppzElpwzmEKOuoVSKicqSQ6U1PHOAmu8yzDICPB5fXQTRfVXr8LT1dNry6wp3EjQJ0iTDOGo3eHXETEsw13cmkwaMNqA0aZZjkGgh0RTrMsJBaAFSYoxA5wo/DBE4OI6H5xWdBcOwROD5SCHwpIPnFJ0NXcdFOBIcWeyPvNYqPA3uphcEUATdnuehUlG0ihuQwiXLRrsBpe+HeF5KnCR4vuSJU/fwziceZX2jxaeffgq10ycXCmGK9d+YvnCt4yDs/UyZgjRFyrURGvKUH3jbOzhYq9LqtNjpD6hUqmitcRH00g6BX0IIgzaTcHuSsyykKXKn97BX6/HsRcXsfDc+EudmHSNnl51ejExHHvlqgnHLsizr1XdLBNCVrA5Ojh5KEjkmH1/GyIiSt4oIPfrDc2xufYDN1oBmvUYQVamWDhOWjhAnCf1BjzRNGMcDVhZCsmEPMBxcvosH3Q1Ob32Az114gSBb5uHD305JniCvXkUNeygzYKxatAdn6HR2iIcXaFTuIOIYQ5ETVEKWnAUcb5NhfoF5cwQpAjbbl1meXyI1ilH7Ko4jGCVP01PrlPQCRlTQnsTPh9SziFb/EuvDz6CTEmm4TlU2WIxWEHKB0bCH61/hhfXPcfDwXRzLvomyniPua0xpkVbnKqOdK2wPNigvllhvn0dGh8llh5qzRqYkdVMiKXn04hLtwSaLjTJJoslEiOMuAOB5EY5WNEsNfL/CIId5v4JJNeWST6W+QJoY2u1LSCPww5zQX8Txc3JnByEXWC2vUJP3UPMO4+YlFBlO2cUxY5LWFbY7PTzHpeEfJfQNGpc8z9mOt0lzxfLSUZSnqPh1InmI5pJmmJ9HmRDBCq5eJFcJre4OG/F53vexD/Pmb7yPZvkQdx56kDxOiIdDcqeK79S4er5LuSqIgvKrUndnc4xvLJ/mF8+20EKRvwvXOhHC9YHbNO94tgVaa7Pbou1OO/ophRD+bqrGbAA8mwc9/dx1XTzPQ0yCZyklguvTKqbrmAa5sy2y031JkoQsy3bnm231rpVcHr/3LuqhS9sxVKOAfruHcQTk14Z5uy4dY3L4ZlM4Zu2mfggwjsZVmp/+b36Eai45d/ESJirjBxGlcpXxeIxQKa4ncXO5G6jebJ27v8kNOcqz5dOy2eD3xlE5tL6237OpKrMB9VeTT21ZlmXdmm6JAPqTz7+bu46/hUrV0Bl9iuHoNONEcejAdxF5VRrNChubA/wAytU5xtllKuWjbHbP43pzjHeuIExEw2/yoaun8WL4zPPv4Tvn/h7Hmq/jpasfROsRa0urDFSPzHuBRnmZOO3SGmyiJAziK3jlFldaT+LXlxizQXunTyVYZrFyhDwzhF6KK3LKgeTE2utxRYlO73kutT7GyaNPUC/PUc0N65cuM4y3WDt8H56AjAFelDDeuoBya7z36Yt8U/Mi5QOKRvkgjompuCeYq5wj5kWS/A4a4TJ5lNPOr3C+9SVC0Waktlktv4PAuZNmlDOS65SjGk0WCROQoSAQhmHvKqFTpRo0GKoi7zbRkJkc4QlcV9AZbdPLOiB32Bl8mu0LDnPdBynX5+mNnsXNS8yxRKc3IvQlxnTpJhfIdZ8zl2Myv8Sh8iOUDj3BTqvHYi2nu3OZcaoZ0KI/gmV5nPpcDTke0jcp0m0wireZrzYxtTJJ7OHLeWr+SZYWHkMrgSMlrd5VZDUmlS1GPoycLg1vhaFp0R2cZv3S56muLzFUIbnxuKd2B/lo+9WuxteZbcWdmgaps0GinnlezjRo3e1UmGVkWTYJUq+Vq0nsNpueMZuTPM1Tns7jOA6+7+P7/rVOg9LZnZ7d39l1SHMtf7oYUjLd7TCZ5/luuso0WA/DkG955EFOLi+jsxG+CyXfmwT3BuS1dJHZbV0b6+KVj6mL4Uff+Z2IzoiX+gMGqaEWSqJKmThL8aMQPcowRmP4+nTUmwbT0tn7cxsgW5Zl3f5uiQC63U1IRmOEOwZ1imopJE5Pc/HCaU4cXWNhron0PdZWjlKvHKI3iKiXGyhX0u1pdHeLeuUwvqzjeZJyUMf4mti0WKsvseSuYoItsmzM0xufJvDmeOTkN6JkDtWETudJDtUfIjInqDQuYDyPRAw4v/E5Thy4h6rnILJtdC4YeD2k9MmVx9krT5L5n4JyQm5iIsfBN1USr0+lepDF+ipuMkZlI1xZJfSPcWnnSbIulJbLzFWPoHOXkelRdsqEkUuWhhjlI5wQPxgx6qzjljPSsSYWAxJxhm56mUp6CjfwqTg+Wik2hz08ITnSbFKpBeQkaDdD6R7DwYhq5SBjNUQEHuO8Q2JSRlkLIXYY6Jzm0Rqd5K8YqRJOmCPHxxhlI67uvEC16rG8uAomoa+H7JgthjGcWnuC3GjyZIMs6/PZp97P6tFFVNQm9JssRov0kyHC9dkxfWrlJRryRJHislgizYb0B21qgYdKOnz8yY/z0sanePzRR6gvLDF0obwCY92iM9hibeEoQQg4PYbJgJYRNJfn8Us1dHzTBzN+3e11278IFL0iUGTa+lh0plMzgZ2aaYGeBl6ZhlQZUm1QCIwWGKNnOvG5GCMQwkEIZ3f56SgY10YFuZbLPDvKhisljhD4kzxpjLwuEDbGkJGhETiOh+N4uG6+2yqeZdl14xk7QuM5LqsLDe4/chivWmfUTdEqZqEUcVoYXO2Ri3SSk2yYvYgQMy3EL5vSIBSPnbqbpoRLnYQsg1qthhIOUalCOhwzHidEwlDyPTZaXZDOte1NrzxmAtyXy3eevRCZ/Y13y/S0NdpBCL3nmM83dhy8PsfaBtqWZVmvVbdEAD0/N89O6ym8rE8enMVTPvNzpxj1Q7LxgIGnWVm+A9+s0W8pyvIRHN2BdIxBEvk1BD7d4YC7F33KQR3yea4OziN4mFPL38kL6x/iYu8ssRLUwvs599IzVGoOwZLB8+pstjc5vrBKpfx6PK8JKiXwmkjKxOMdyk5Or7eDX02oiHmGoy6UemRCM18+hM7B8aCfDojFiKhUJRnluEaijIvJQ4JgiVq0zdvnr3By5TgOB+gkQ7xoAbwRhgXq3iHK3iGCIEJmGaNOm7JfIssiguqIfhzTWDpEyhXKjsRHcHVwGYMklBXiPEZEMEpSfJMhxGToMzxkAEM1Ih70SEY5rZ0dDh1cIe+dJx17ZLpE1tlgsXwAxztCqRRRq7TQMic1JarB/XQ2LlERhjnK5G1NVspoVldpVCOWlhogUrQbcLndYjEaEOoIp9Yk89bopn3Gw48h9QA4yfzcSfrdq2TC5eL259lROygpqHiriBySfMT9987jjfpUfei1n8eYLhW/wkYvYexkeMKg+zHpzIgL/yXtlS87baHMsgzf8xCiCJWuBU8zDwOR4trwdJMgK8+vtUCnacb0QSHTTorZTAc/ZtZbBNjXpx1MH5gyWzYtnw6rh7k+9WP6Uhgy10N5/u4oHNMROfL82gNXpHSIAo+7Dh2kUa8Tlsrk6Qgv8FlbXMR5+gWUc/Mxn29MebjZfIHr8G0PvI7Tl9ZxwxLC88FxKJfLJEmC4xjKnkczLJNlCcKXu8MKGmMQfGXjQM8e01ea5+WGpLs+TcWmb1iWZd1ObokAOiiVKfsN/LBO7i8zF62gjY+MFIP4NMMkREmPK50nWYhWWIgWUQwR2Wni3KdUCpH5iHPnP8vKoqDhOLRHz3PhQoct9xyy3ueF0TO8sAkny8u4lSGbgxd4Yfsyj5YfxfPH9MY7jJNlKuE8vhC0t5+n3zpLPrdM5m0Tq5hSdZl++3kWF+dYqFcZ9gMC/ziSCGV69BOfQbaJK6vo3NBTz+GETaRwyFSHTvcKc40mK3LISukETjTGibdYv3CGxrE7kLFA+jmOBMdV6IqDkQn9wRVKfoWl6DDgI9SAzNlEOiWGcUxnsM1q9QEQHr1xj+FgG9ebIzc5Hj5l3yHXivawTZJ7+K7LlnqBvkjpxNDtdullPS73h9x5RKKSNrFznjBr0Io/T720gEMZoRKqoaQpHDw3pFRNkTKmtugjU5dm7QhDP0W5HRpNg+O5aG3Y2PoSnTRmZLa5cuEya7UyqfxLNsZneOTomyFTrDrHcUabuPIM81GIX4po9Y7RWPBR/XMEyQhXKGIk49jQnF+gVm2wWG4AGwj1laUB/HW7Wd6sMWY32PQCH67Lh50da/n6oLEIVM3u2MrAdfnTu2kck/GYp0HvK5kGzdNOgdOUj2J5Zzf/eTZ32pPFSzkuievizrwyle/umzKGahSx0qjjuhIviPCiCkEQsLawwHKjwdXRAK3VdcH8jcfw5fYd4L9+xzvYGXRwozpu6DEcDhFSMh4lKJ0h9Jj5RoNqJSTO62Rnvr53JfZuVbYsy7L+/+CWCKCX5g7RLJ8gS0b0GZHlI1qdF6k582TjIUF0nCSvECc5jdVjOEmDTPVJU0nVO0gpmqNiShxYGrC4tkQ5OEpFC9LxBsrbIHG28DXc6YfMhRU6+QVSd4RTcfAdTZmjpLSpRqskoy5GBKyUT1E9fi8EiiDYph4cROQe3aTDOGljvBr1qIn064xGI/J0hBMISu5BFqpHyHG4vPlpwkMPUg2WqQmXY4fX0AyQEhy3BXqEkDmOt4HrHEXKMb3BmKw5Isn7jDKN662yHM1BNsAp1/GcKsgBnnsUoYf4jkMlcvC0IBXgOAKjXcKgjtEaaTQlp2hBlDiUnBA39DHSwfWbGMenO0pRuWK+5NPwl8jjFOGGBI5LNXBoViuUxALZaEAzWEYulBk5A6QTYPDw3S6jfo+wtECfnMhvYtQVokoVSYBIW1SkzzipkWdXyM2Qcr1GpsakcZ/56jLS6aC8GlE0hytS6qVVjiwaLrQ+SpKso9KcWvkAvQEIEkzYYmFuFQlkuWScx69qHb42qsJkdAytkdJlHKdIx8N32E0d0Mx0ppuWaU2uFKlSaA1ZptBKFiNyYJBMWrEn25vmJgPFmG6I3eBUmOnTDiVagZQunvRwhYsr3es6Fc6mcBS50ZMAdzoqyCSodqWDy7XOf7NBYygly/UajXIZbQTkGWFQIajX8TZ3uOfEcTafehIhim8gjUSRzR49YNqZcOZCZDLpoTl153Hmy2X6Y03ke4yGfbRSjIZDqtUKwhE0yjVWGyWcqEYYazrDGKM0kuLJf8YxiMlvJfT1gfx+R8PYq6PhjRcHN6Z/2CDbsizr9nFLBNCDnScJnTmUm6IS0G6KETFXLn+BgwebaFFCoEjT/4+9d4u1LM/vuz7/67rs+zmn6lRVd1dXd0/PDB57nLExjrFRbERAiTM4SATJkAeCAi/wwCuPgLgIIRAIyXkACUUYEmTJk0AiIogjWU5kOxomHo97xjPdPd1VXddz3bd1+V952GefOlVdPXYco66O9lc6ffbZl7XXWf9Vp7/ru7+/7/ccl3uEdri0hFTTtUeMStB2wLWbbzJRkpw6uvYjGu7z/kd3mY7g9b2ShzLz7aP3mC7g1Ztv8sreNYLV2CQxxgAOQoGXDlNK3OqY44fvc+dVR2nfoo+S+XrOUnzEnf0fQWNQaCaDEbGZo1QAJOftB8ybc67tf556+AU0ivX8A47Pvk3rHvL29KfxQrBu3qWvFowOQRSGajDFMqMoRnSuwXWeh09+n7e/8HlCOyXEBi0bJuZVKnrOQ48TmZn9MpXWRLWpNs6phDgkpobsV2hpaH1HjBnpAz2g4oi2+YDOHLBcC5arzE+9cptSKZZkpB6A08zsW0zNK8RwTt+dU+wPGR7OoIuQI6aM+H5Nl1bIazXz029QxcykAFWscP2SrGBi9ykHrzP58pxxHNEUAvKIR0++zaQaoHXHcn3EehVIo31iNNRFRb9YUKvPsTfSRCSycFx/BRaxQ8cpg8EeSgyw+dNJ4diqkFfTKzblJflSJW6ahlSYy/a/TTX20zQKgBAiIUWCTzgX8P5pu58QAvlcCsSWQF/mRBMROaPU03/SV5XqLbbpINsBwq03Gz5OIl/ko76qeG8fV0oxnU4ZDocgEiE4qsGQ2bWbrBcNh+cLro+GPDo7J+RMlJvGxC1eVDACILIki8R0WvFzX/g8+9dv0jx8glu3nJ+fXXq9pcxUVcX1azewOjG5dp3vf3Cf08Xyskjmk/D/R4zcVWV6hx122HtALKcAACAASURBVGGHfzrxUqT6V3rCsjmiNANu7L+FUJCDxE5L9od/koG9ST24xeH0x7lWfg6pMsjMteEb3N67g1QFo8GUPb3Par7k7PQ+KpfMih/ih17/c4g8gzTk2uQmt29pbr/xGrevv8nAvEqVh2QK9q69jdaaoio5Pz7FIjkczyj39ijtHbwyaD1EDxesuodIKRmpKbVqIS/QZYW2BbrIdO0Z9dhw8Mo/TzWcQc6crb/H333nPVZnDV3RcNZ8k3n6PlWykBLBH5PiEkKPUh6yp09rpD1Bx46R6ondMd35MUV2NHnFSXtMh8KxYtEvGbEpuEDMsXJOrQwITRIgdMtYV1QlLNfHOC+YVK9QGUtRK/YKi4oZ324sKNdlRSUsN4s3KYGilIzGlqAdhVhRi1PC2QNKaTFmQkZTF5o3Du+wNysp9D6r5oi2axibIVJEov+IQuyTbMugcAxVIIozQl7hfOR08RG23qesBnTuPikfU5WK0N+nKsf4+AAtBXVdoSO8/96vcfT4t1m15zw++eaneg5f9TFfbfnbeofbrqPre3rn6Pv+MtGi6z1t5/AhEUMmxkwIiRSfLTvZ3r7aJrhtAIRnUzSuxtltSfYneYufV0WfT+J43he9JdLOuUuiqLVmMplcpHwIEAnve7SpKArD2Ag+d/MVtJRICUmkZ/b3k78yIyX49/71X6RzPUkahqMJ6/Wavm/p+xatJXVpuXXjBkps9kUVBYumxZM+dnz+uPEiC8/VmL4XDSE+7/neKdM77LDDDp89vBQK9Kh6C6ctVakZ2oq+FeQuoKJH+E3hyGQ4ZX84I+ZAcidItaKsD7CMCe4eOc7ZHx1Q28yqjzSpJ9cNcS64MbyBbx8wnLyKqKZM7QjVWFz3hIGcsJKewgxYLlYYPeS8PeO6vElRTrle7jMqPS7eBbHEVCNimNOLYwomRGmJoUWFSFWM8WHFSN/k5v5PouUB50++RYWnLGruDAXTwQSQ9GJBty4o9evUdoiUmunoNXyokKrEhwU6W7746s8ysGOyf0imZzq5Tc6Zs/UJ0pYgLKLUsI7UwiAQTMpDTKwRQmCKihw9KiWujQ7oYkvTZpyteP3mW5TaQKhoVi0zu0dYTxmOr6OChuCQhQQlcOmMebtkXE5B9hwM34Y+43PAy5ZlfEhY9ERzQFHcpigKQryHRDEsX8U5Rx8TQikqOwLZE0PBdPQ6IWQG5jafu6FxsSIGB2T0YM7BeMqj5gG9XhM6y6T+EVAfUGAZmBNkWBNDh8qfzrXgVS/ys4NigpzjhRc6gdoM5W3LUqSUiJTYDAgKYvR4Hy+TLjIZUvoYKYaNPSOFSPSbZIyQE4oMUgKSmCEhLhVo5xzJbKrOpZSbocF8Ye8Q8tI1IYRASEmKkfRcXvOWiIcQ6Pv+snZcIVAic3h4yGB2SOxOyL5HVDV7+3tURnM+PyLaEcftmm/d/RAbNRn/MbuDEBClxERJJx171vAX/9zP8+SDD7nzI1/m4OYrfPjg6xR1hTjLFEozrEvG4zGVDsicefX1H2XetvzOO98kSU0WfnMsgZyf2iiyeC4DI328pvtFfu3Lp1/JzN6syYUtB57aRID0XGY026HDvNmrHXneYYcddvhs4qUg0LWaoQxkbzD2gP3RG/RjxfH6A9pYsDc8IJiCKAMpWgZqROcFoqiwqWZYjFmcPWC4v5m+N0pBOuZ0/j7tKmB4jFYjpLCM6xvk9YK+/32sDgQ1RSDwYYkIS6xUWNkiQsPA7nH3/F28Uji/ILT3kUEg04pFd8R1PSEnTe+PkN4wsbcQwRO6Y2KzpO/exZ3OSXrMQi24WWUKq8j0yGiYFJbkV/TxCSvmjMovMKkGqOQ2FclSU5anKE5BrqhHgeFggBaR/ugRh6+/js4l5J6oE0JFQpKbdAKt0Sohk6XpHCNdEnPg8ZOP0NWEsg+YLKBPDKrb7NdzVs0Ro9EAL3qEzrTtOSJHRvWIrlsS/YohicfH3ycPOkKa0DlPLQSDwvHh/NucdZHXb38OmStC/pCReYNhrVjLJSLeIxLJcg+tFEktieIM52tmxWvcORzwe+99m7a4x3R0g1X/HlIOGdpbOPc+q+USmvc5vHENuXdAlg2jCvqqwUyKT+XcfREBekquBDFuiGFKkRDSMwRaXhDeq1aMrap81eLxScrpVt3eIsZIfI7wXh06fFrKkp5RzK/G1223eVUd3W7r8iunZ2wR2kiKqsaYitAKlosV1/cOqWfXqdSIL3zubbrVe7x2eMh7Dx8QLvZzi22SxeZYbi4qlBB89U/9HKnpMXXJcLJPPRxx85VXad57j9H4gKZdUVdjJqMxo0px/eAQbUvuffe7+Bh+oHXjD8IPIs9/FPyguLwddthhhx0+e3gpCLQXjxkWMyQZwSk2Z7J3jMs38UHTdR0u3meZNKPiNnvFlDFvIkWBCAmRLIPxAOccQm5SAUpjGYZDWvE+g+pL1MISZU2bGowq6ZUmsWKiCmoKTpYPNjXI9YQ7+29joyATML5j0TaocAzZIPKMvfptluePeOXG5xGiRkUJMdD5jiATs7236NoTRD6lrCY8PnnCaH9McfPHGdRTKDKhs4g4Y2AOaEVg1X2Ekg17QpHSHCXGKJ0QvmDefw+jawbmEKNryIbbr36FqAQp9/ge1ueP2Lc3kbZH6AGehEwKKaGSlipJnJQssRzaKeVMoTJ40RDKhj5ANdtnPL5O5ztEjgS1QkSFSAXT6i2GEkyaUMnrnM8bejngWkqUI4Fa7UFIkBNpcQIqIVTAiScsuidYHZDaM188ohAFRRxQ21dYRcWkmLFIj5jZMUa8S1V8haQla7ek1kNOxUNsVAgJUj6hEtdwtmB0+DbSHVPYimzCp3LuPv9x/FN/8IY4b9v1sti27GXUFR/z1g+9JbovsmR8XN3eYFtmckmG88fJ8fONhtss6av+5qsDiVdtH1e3td237Ta2+yKEwBjNaDTa2CdkQZIRIRRaFSQVOX3ymG55jgmR66Mx98MZIj57UbD1KiuRyTJic+Z6MeDRo0csfMetN5cMJ45Hj54QQuL8/JxRVXI4G7JfG4ZFwWAwwefIo+MjztZLcrjS/pgzQsgrijofe/8XDQBexQ9KD/nDJIv846aP7LDDDjvs8PLipSDQSmhKKwh4UvQolgwKTRRjrATXN2iZaRZHFOMaMThAy43iaEwieE/fBLLIJLnGRUmSHtmfE5pzBoM3kaHCR09Ia6we4nNgWA2AFTN7g25dMqKiZIiZObp+znLxPmXqKDqB1VOyNiwXxzjb061OyclhRE2pDOt2DiKR8oiyHgIS3zpCEkiRUbmmGt3CKknsz5C5oAstfvU+dbmHzGOUKUi6w2WoRCRHT4yO9fKMvYEga8F8/RGlGZNyoA3NRqkOPdn3+NCjVIIUSEnhUyCnBRrolCQFS1GUQMKnBbUcInIL56cEGVnqc4rKktG4vsVLR1VrjFRoWfKku0stJVZrnGtxuYM0J7olA7PH9ckbnB+9S2ksWnQoUyKxG5XTWFSyzCqBzgnfCaQJxNCxZkmSkW6tee3gCyQh6LpzpJcIMaSqfgql3sEWLXW1Rxsjdx//Dm+9+XNIc4hPJ2TZfyrn7lWV87KhTkpSfHZIMMurw3cJlLjIh35KoJ/PQf6DFGiAtm1xzmGVvrQEXFWdtyS68w7pnmZCP29X2JLiywzoK22Dl/nUKT4l7PHZ/S2toawqcDU9mb7tcesz3n/nd3nnO+/w+PGa80XP9dmUh+cnJAkg4cIKIvNFHLUQCAkFAisV+wfXWHx0l3e+8TtEWVKVQx4/OkLFwKTUHE6GzKYDjC4RSE7Ozvjtb3ydRdtdDCH+8a31Hxb/JMr3DjvssMMOnw28HAQ616wWS6QWaD2ntIfM6hku9LTeQ04MGfDG4YzzZo1z52gqshDE0DJQewRZo2RFytdJ2SCMR/kxRVpRVTcpxYTQrVg1R1CsGU6uU3FBHBJUpkamAhEcjoZiIKirCUUzIPdLEmukGlJWcxbLNdPRAZJIij2VmNLTURV7FKkEOkLqUWVNCB11UTOyY5RMoBUaGJd7JNOwXn6EdYnS1ihjaV1DVdVkpSjKjAoWK/cYiZsE5VjrgFKR1fwUbxcUdg8jBLkqCD4hlMToghAcvnfUSrBu18xV4trwgLIYorVE9QrfRVRhmVRDuq7l0elDJuUek9kNVusWF3oGSpG0p/eO5eIBY20wSmHzjJXz5HRO6kHkBSNzG5Xvc3pyxN5YEYOhruyGaCWNyjW3yp+ga1uy8fh+SWEMfQt9fkJqel6b3OSj5UeoaoRymaDPWbvr7M0OKNYPSX1HMYh86x+9z2Qy4/rkc6yaDwnt2adz8uarRBSEFGzbuZ8hxDGTtz5bCSnHSxPui5TJTcQdSMQzzxNXtptSImhN0/YUuqAw9rLAJYRAtJaQMr2PSO2QbhNfVwtx2SZ4dcBwewGw/XJxQ7x71+N8JEXIYmM7EVmSLoYeB4OKwiiC94z2xtQGXPIc37/LN7/+95EMOe/X2LJiMp5SjQ64fv06b7/+OqvHD1m3DYvzOUhBCpFqUPL2nTucPTriwwcPiFlw7/4HlLMDbDliUA1oigEPHx/xw194ncIofPR89OA+v/2t32PZdgQ0Kgf8CxJGth7154/5Py7EC9bt6tDg9vvzSSiXsXdZkNKLhzt32GGHHXZ4ufFSEGikpLavo+WSJszZGw7pTs5Q5ZDsHat+zWx8h1qMWMYnRDnCxIhMmbWKDIqKwlToIFmuFnTtiooCazyzeoZIa6gGiH6JYU0fHjLknyHIARCJMkMMyGpCRND4NSr2aBep1Ih6WJBlx3zZU+hDVPGI4eA2+IwyEuQMWxiqNMHFDdl2RaCIChdLhPWI7MBrXPZ4PDEnSr2PNyec9UdUccqhGuJiS5kjwTl821Dqgjz+IoHEefdtpBkTU49VFXvGELxExTFR2U1xidCYJFA5IZVACE9SAmtGdLFjWI8oGRHLjJYWlT05W5RRXB98GeUTOkom1T4LIWjaBms8TnhimhLcgIP6GtQrBmqISg2FUDStI5ieG5M3qdSCFBuqcg/Vz9DK47RHioLK3KZv36GsKnRxg+BO0IMZZytF25yQpwNms1dI1PTC0bsnaNlSpgmtsFh7BxUdP/1jP8lE1VQqY6qbrNLBp30Wv7B5Dj6eByw/IRP4qnJ5NW3j+e1fbb/btgM2TUMqE4XRICUuBMoL9TlIhfeSYMxGQbZP7R3bZI2r+75VsLd+6C2hvqqIx5xwweNCQEhND+TlklIaTFWSk+DJ3Xsc3niN3hv0+DVEKfmFv/AXefX25/j2e9/mf/2l/57m+JhVv6a0luneHijP4uyMr8/nnJyeUpiao5NjUs48+OA9br7xJcqyBqEIEVbrnrsf3id4xz/6/Xf5xne+jxjUm2MnIts/cZvf7Y9umXg+xznnvA2u/gNftz2mz9twNpvYkecddthhh88iXgoCXYeSSg/wSHxe45VF2imDcoDRBd5MqOwEKTX7g2tYPWHZnTKqRyifNw1nRELYFFkMh2Oc65BYtNpHqCmlnDIrNSfxASfdYyZdi5EV0mpUKKn1FJUEWXVUZkSKJTF4Ip6kK4y1ZOEY1wOWIVJoi88CkyV90yOlJkVHjgkUtH7N0IxIQlHaAdmvkUaiyPiU8e4clMWKa2i7ol83DIWhsZEUHEl09KnDdQ1DWSKjQ0WBVZoiDknK07o5ShcobaGIrKJjWgxJoaNzPZVRKLnx5SoEiUAfOqRQbIa1MllDVmeEGCnshFJqhINxYVCiZNXMCX6NVDX7+9cZFlNMaSAusGWFTgOyULT5jHnzGN9X2NJTisxI7hOUwpqKrCxdccQyfpeelkGMKHVKwzm1PWQ0GrGIx6z7JYO9GhcNMZeQPOOhQZmSidlnaDM5zzmcjRACdPQkOUbK9ad9Gv8T4Y/qh90O/nVdt7FtlJaQ4uaTCKXIMW2UbAlOa7RUBFsQY8QYgzHmY/nSlwq0c88OD16Qau89PgY65/Ax8N333ufe/Y94tRxxf76mHFpsOcSIkr4XPD474/HxCf/Rf/5fMLlxiwd37/M//Vf/JalfsmoDZWEojOXxw4d0zlGrgqOTc8ygwhGp6iG6sMTe43uHHtT0PuCC5+T8jNJojh7f5f4H7/GLv/Dn+V/+9t8kIUEUkP/4GipfRHavXui8KLpuhx122GGHfzrxUhDo5eqYLiy59doePkh6F6iLCSSPVoKiHpKzYLGaQxFJWSAlCCHR2gKJkNaobLG2xNqaU+eo7ADqASErvEsIYTAUlIA1gll9SOxX9M0ZJIXIEm0lQs0QKtOszlHKklVB43oQlkqNGJspMgWi9igk4+GItnNE12ONokmegCPkjtqO6PpIF6AyAp/ypiFQZEJsUXlClpbeHZP6iDADlCiQ0lJogXaOUhpQMNa3Lso2JClrmqiYDcYUsqKLPWgwVuFzJtLTi4TOmZgD3brFVAlvIHqHFRZ0posOo8bI0uG8oBpOEKJHIijFhKRbiB0pJwo9xkXJojsjxDUiHRGCZGheYTTcY376kAM7QySBkmuQmkpbcu5RpsR0Eass9eg6Ujnmp0eoJPGipSqniPF1ThdnjKYFhS5IekTuJeNqwHR0h8fzD8gpokZj9vQtmnZF7xY4rSgr9amcu88PD169H36wwvgiL/IWG1L7rF/5RbnBW7XYZ64oyGyG+C6i7EKKZCWQ2iCUQbYd1lqk1AiRkDI9s/3LGvG4GYb04amP2ntP53p672nblt47Fn7Ft975XWZf/DLet2AtkcD3HzxivWg5n5/x4z/zU+wf3ECmxN/4lf+NLCKtT0xGQ5q+4WS+wDnH2flyM5BYlxt/d/BUVUU3XzI83KNdPiHnawgJ3gnu3z9hMjRMZrf48ldG9H7BZDRFnC+RORL4hOOfntphLhbqqbWCj+dGX430g4tWyOcef9G6Pu9rf+Y5UlwOde6www477PDZwktBoPcOrnF0fkLvLSUjcteg04QkW8gaaQra0NPKBZWURBy1rMneE8Mm41YDXiSs0GQJtqxIOQMeJRMZh+/bTXRbAqk9hTYExsjW02ZB6gNFpSjVYKPUGY8WGR87+r4jZEEbzxmwh0uneNHSdWvq4ZiBHdC1p4ylQEhD8C1noeO6nRBii/MCZwNKAllQmus07QqyQFBRFoeEAFqVlHKE8z2VLAkSlqtzikojpaEwBV3vMBJsEkTXE7OmNgOyDqS8RohMlAGflvi2I/qE4QDX9yyXJ4yrGwTh2CuGyAhSaaQWBNPTiMeUYYoUHSLuocSQSCRljzEaJSyRNboc0IcHxFYzq64zLAZMi5ocPctlYnx4EyUlImlCeEhaS2oElapxnULaAePhkLBakkWmpqQo9ujUA5ar402ZTilR9iaChF/CdPA62kxwsUcP98iuwXWOtmlJ5tMlIS8iwz/o5xeVbVy1aFzFVcvG8+95mZjBxtd81W6Rc6T1jipUxOfIdxKbBsEkQG4bwWNEpKcJHD5lfAi4GOhToPeOdd+xXK/pvaOLnnXX4nyHjnDv3j3qyjAeT3n3O7+PUYbF/IS28/zwn/gKjx99xP/zt/8W73/rW2gB9bAiC1jPex4/fsKNGzeIec58uQBgNBpRyorVakXf93z/+x/y+h3NvXv3kMIyqIccny4p6gPu7O3x/37jXX7rG9/CXru2+b2eO05wxUrznDf66kXJNtbvRST6k9bg6jZetI6fdEF1tShnhx122GGHzw5eCgJtzRCp5qwd2FghcqCqpzw8vU9ZDKkqy9p12LKg71aU9Dg6KmXILuJiJriIEhYfHSorjAKVNat+jjSSru/o3RpJotYjQtDkHEFFjB0jjCT5DudbBIYubiLxUnakvFH5lKpwsWVcjSn1jKY/Bjw+KLS0dDrQ5h4lIYWekDI+OmxVUo2mEBPr5oyiGqDkhOQhCYFrWwo9QsYSrTQo8C6iYkdiTRaBGEpU4dEMqIsxLiyxOqF1iRASEqTQ0XSnFKomKct5HwjNPVzXsFfN8DlQFzXO90hRkKNAUSKFI4SAVpKmfYRWCuUtQmyGn4piRq1LpPNEejwa5zwoSVEUrLoTpBxTFgPWXmCGQ/ogyDEwqQpE0Nho6VGcnz1kNL6N7jNKaJK1hNAh7EXaQ9SQQGtJ0zrqYo+zszOW3few9pjaakxR49wKQYeQmb3xIR+evvdpn8Z/JLyIwF3F84rzix6PMRIRaK0vhwg3aRsbf/R2qHDrd7bWoqOhbVuCMUj1dFsiPE3XcDHRB7/xOjt3+T2kyLpryYBzDqUV0+EIJSTT8YR2vUmHWfctTdfy5p23SKuWv/rX/1u++913uHXjBicna47Pz2j7jvXKUZYlKW3i/mJKGGNYty36Qp01xnB2tuLD738fY9XGujSYIhQMRzO0lmhl8QL6rt0c24/PCv7AddiuhVLqY/ddXatPWp/ns7Ofv2/789XIvKve6B122GGHHT47eCkIdEiJ8f4+XWgxcUgX19Q6E3Ok6xoGg03Gr0SRUuK8PUNoT9NlWg9SK4wuGdYjQilpcovQEZVLTFmTVUCJQNcJCjum0G/hAB96kJasKwZSk7Rg1Z1dKn5dd4pRHlOXrJsFZaVBgvNrshBII4kIVqywqsapjiY/YewNQ2FxIROSQohI1hkrDePhNTwdwSdqHThrTwnrNU3jcCWUI0EbNh9d55BZNcdIKXFeY3LHeDBjUM+wFDhnUEKi5ACRelJqEAp6v8KiGKp91upskwmtMtJqKlFzsjrC2AHOD+i6jqIoSSGRRUMIji49QKvPIXVLJqJkhRQFnZ+z6tYMxofknNFiBKKn6Y4oChAqoLSi1jVKCc4WjyiURWeDCxFjZ0gaCJnkIsqOMEIjCEibIXiu7b2CEHPwikpaimyoZWLuz/CsiL4hkdGm3LTspUwtJUJ8en7T54nWiwjvJ7XciQwCwVYfzWz+c5EeDXx8AE1kNokePG0lDEKSQkApRRYClRIyJLzfZDL3PtJ0PUq1GGnJEYI2WB0Q6mllt1KbZIi+7wk5bWrHr1SP932/IehZ0q47pNREvyb6BluBMhp8ZrVc07UrXPY8ePghf+N//6t0qwVf+aHPEYRmf7aHuHuflCLrZs78fM3joxPO5guqwYDo/IaEtx1FUeB8oBrWhJzp2g4tHCJnyqJgPX/CN0/v83t373HUtyyOT1AZgpRwRfkVSW3WJme0fNZeIYS6jPB7ps78GQb+gng6IS7eQj6TjrJdu+3Lr/rML7eWElK+eKB0hx122GGHlxsvBYFumiViJPCpo+kjUjd40aKFJSRP0y4wwhKcp/EtmAGlGSGjY704xqfI3vQmqiwJI0GzmmNExgqJV5s63dIoDm/eZt2f0IeOxeI9vM3IqOlVRLmE1BnnelKUONfh2gXVQBLaQMo9625OlhVKBdZ+TRQOayvWYsEotUjhEf0TBuV1ch6QkChZ0LkVyc0JSWFzBcKSUo/rwYgaRWA8GlANK0TOhNygZIUyCmE1RaXom5bgMyk4vFiQtCbnAFnhY48Lnj62WK2wQpL7gPaJYfkl+uZDVt0TECPKXFKUClsLUI6MI2aFlgVJK1QwnJ69x2D2BRAR38dNW2Cc04U1zjfYuM+6balziTEaZKbrFwh9TnCGwkwRQmPNJtJt3ncoG5nJKaH1SKVoWs8gZ4bFhBaHSx0Pjz7klb0vkbNCS8N6dU52FYYRwyoxrIdkMdgMskXH/LxhOBmz7B5R20+nifCPgi3JUhdDfs/jD8p+fh5XS1i2276qpvoYMReV3q1sWevN4KA3hkIbhFYopS5V660NZFvb3ff9ZQb0VsFu2w2RXq5X7E80e5Mps9mMwcFNXju8yQf379P2HY+PTlgul+wNaz5/5zaLxTk//tM/y4/97J/le9//kEk95Fd/+ZcR2fPh3fc5OZuwWjX03lFV1SWpLYqCrmtomnZT3jIYIK3Fp8R33/uAtm84XsyZXr9O0x6RYyTn53I3xGZwVikJKW8y1K9E+L2IQG+vyzY1589+WnA1YSOnDZHOGZQyL4yzu7r28LS8ZUegd9hhhx0+e3gpCHQQGe87tLH03ZKx1az6BQM74bR5gBNLlBjiZUTUBhUNOW2i2ShbaqXBCNZ5RetKWiLeJlxYslido4hIxvS1JsgC4RVDcR1VzTbWB9/TOE+ZDEJrQg4IYZCqIESHVRsicuaekHVNWVpU53BpxdwEWrdE12Nc39GsexY5E1LCliM6vyBnQWE0sXes1iu0HlMPpvg4Z6/ap6j2iURUaenTKa0/p9a3UWSKeoKQAmM9yXuSF3R5Tdclcl4Tm4xQILWhC0vCagLFmixHJGno/YLReMrR/Ovsm8/j1x6pLoaXasGAAuSArjlj2a+IvsLlSOMWDMuaSOb0/ENENcSmgpg8SE9hR9BBjAprBqSoIAY0hpOTewyGU4rBTXQYYeKCdvmEPmRKWfPk5C62mkJ4Qgpj+uDQWWO1QopMMhsiUmlLyhEPSBVJeYbvwVhL2xxTKo/O57QpoCg/7dP4WWX5BQR4S9JSftrq90mRdldTHbY/Xz6Wnh82FB+r3+77HqTACNDkywKUlDa2jG3zX4wRGRRab/4UxOQvt+W9v0zi2CZ9bAcHtwRbCMHrd94mqBH/7L/4Va7ffpPf/rX/m1Xb8OjsnPlqzWqx4HA24oN7d/m5n/8qP/GzP8/KO6wdobXh53/hF/gf/rv/htoWHIynlLrgbL3k6OSEyWh0maMcEkhtN8OGyxWrpiPHiEyOs2bFa2+8wWz/AJTm3kf3N4RWPl0HKTaDx1JKZH6qugMXQ8niYwN921dvGyU3a7G972K7UpLS9n5BTupyba6u5/MDhTvivMMOO+zw2cVLQaDXRUVRl3i5+R9ZVJpeJGyt8VERtEOJBUZXZDml7QMDBBFJPdln3S8oS8mZPyGKES60eJEpIkszVAAAIABJREFUrUYaTZlKmr4FWqLexLllWdHkQIiOkbQ07hjnK7zq6LOiKGqSrmldQKUIhUUNarIo6G2FqiD4xCJElJCk4ElKUxR3kPoADSQFnV8hMmgxAGthIDH1mCY59KBCq4qxLQg60+FxcU3yjhB7uryiy+eoJCkZse5bZJ5TjTWFFqwjrPpzqsEEKXqCiBgrcWKff//f/R85ud/xV37532BQT9ifvIpb95RiAKom9D2dDsgU0TIyX99nXSWEcIwmr9KGBdFrQlZktSFYOtZkt0DnTKmG5BSoTElRjghGkPMep8uP8C4TvCB3kdbdpcoJlR+SzS1INxlbh7YDMnOS9xgbSG2kQNP4BqkcpZBYW+OEh9TRd4kkWjKeLAJJNCQ1Z954khQ4337apzHwlNA+n/8r5MaSEZ/PA/4DsqO3t6++ZmsrSCmRxYUFJAEpbohw2hDOLJ6SeisVwXmyMjjnLgn01hu9VV63vTAb0hw3BSppYwUJPpGFxLnA+WrFvG2wOvOv/Jmv8tWvfpW90R6rPnN0ds733v2Ax8ePcVEwme1RliWPjp7wJ/7kz/L+/RO+++3fIbYtj+7e49vf+V2a5Yrxjes8PN9YliajMaenxyxWq8t9NUoxmc1YLBZ0cfPJUhCJ1WrN3sE+Mmsm9ZiVc+jyFLp+Y6W4IMZabDzgKSWMKZ4ZFBQZpIIUQapN9F8WTxXozRo8++dyUyrzdN1zEmQiYutxVurjXuh0pcZ9Z33eYYcddvjM4qUg0Go6QUpHHwJqUuNzoBNhk59cHeBjT0lAKYsQFsSSNnhSDPRlwFpFEIEoBS6d08eI6PVGfQqGqprh5JI+NEgUKMjSEJFIo4lZosaarktMB9eIwpPJCCp870AKhFaU9hpSzFA20ywD9fQOB7+3ZPjFPc7FGUIVWDUki4qmXWGsIOaeQtesJVSDAXYo6IRl2SyZWIOPBUNZ0dnMujtjIZcoI+ndAqMHLFfnHAxnlOYQPTtCZUMSDpVBaEU1LMlSk7XDGEU1uMZo8Da//zvfJrX3+Td/4T/lb/29/xidPk81dKQ+Y4cWksDqGnKHVp796Ru04j79ao1OE0xlCaIgK4dhQo4DkrUM96Y0rqcGytk+nTLkHJFSI9UNZPERB3s/hMwWVWS8WWHZJ7gJqtpHDjWlm9G0D4gp4NsWL88pwhhpI11oGBhD6AK1tqy6c86bObU8RJkhKfckuaSViZPlmun+bWZ6n6PT73zap/Ez+MPWOT/fUgcvHhzcbk8IcZEu8/S5Vx/fkmMhng4VbqLsLopPYkDEgA4BITP5QpHdbluobd34s/nPm1SOze3ObYZOSy35d/6tv8DP/eRPoIXk0eMjwmLBr//a3+U777/P3mzC7VdukYPH2gIRA//nX/uf8Unx0YMjfvMf/jbWal69+SonJyfMV0tOjud85cd+lPv377G3t8ejJ8cYY7DW4i/sJGVZ0jUNQkDoA+lCcY8xcjY/Z7VabbKwhdgkwVwQaKv05YDgCwn01lKR3AuV/+eP+VUCLVBkkclZPhOP9zEV+mK+Yjc4uMMOO+zw2cZLQaAHZcWqX9NwzrU0JQgQOZKzoLYjTtolSTZIew2JZFi/xmpxlyQ7jBpQ6RKfJUb25PYcUVuiT9QYepuQtSGvS5b+jEIblNAYPUIJQ80QFSOL4QiqhJYFE11y6o4BjdUjooYoQJK5Zi1HX3uXf/UX/zT3uhPUwYx4ZLk1vcVrN6/zzeN3OJqt6B912GqAN5akIOIxqoBU4HSPHFgaF0iyIRaWgCAUCqIlKokpC3ISDMw1lBhgpKQTNSlFFIFAIClLIyCrnjomooBTVvyZr/xLPPjNb1IXgr7aJ6gBwfZUpiSWAV8apJtTGEsrKlzK9HVHlScoFESDLvcQsiSkOWXYx/mIkxIzfp3oe/rY0BOpqzHr3GJUjbUdSkzQqSZ1IGpDGcaUKtMNWlwpEEiacAJlRokJXkIOnlQU9HQoNSemMdmscGqCCCXZPqQZJLJOSNegtWE2uEY13KeTGoeAqvpUz+HnVeIXkWL4eKPdVbL1fFrDi4jWVQU650zi4+r1ZjhN4r1HXXx64IJHew3NGqRACQlKk+XT4bnNRtPle2+tHDFGWrfxQa/7Dhc8kPnnfvhL/OQX3+b/+mu/zNs//CXapufv/B9/g+99eJ8333yT2WRGt1pQFhYfYTTe47d+4zc4PT1F1hOC69C6RmvL4a1XOD4/Y9W3/P3f+k2m0zFVXVxaSYQQoBWN6y+aEzf3x+ipypKyLBntTUlSXKrqQubLAUmtNYWxaK0vfl/9DIGWXIkVTE8rzX+QR1mkK2t5oZJnMkl83Cd9qUBfeZ+r58UOO+ywww6fLbwUBBql0apAp4DHI9goQqmReBxalSAzIfVoqTDZoooBMWr6ENBYMpEYPKAxakz2m7rrlD0+RbKWyDzAlBVdd85IT/Ap4vAIBU5mQm7pzBi0RESJQZOFxouMzpnhwDBfL/kHX/8GRg/58R+6w0lwvPXGFxhMD/jw3geMl9eZ23PyCJI02EISZaZzLVIYEpKUHLYc4+I5nQh4GmJWWDsF7zAxbaqKtQBbs+4jSvd0NqN8QrlANpYACKkJMtI4gVaKQh0w//4HiJOPyOMJ12+9hq9qvDqDvAZbI0pLlCWt0rRKkfoFIQdIinp0gGsko8F11n6JyJqinuKWc+RwhBObfUt5gDUlvZZkMUBmQZMizkwQeYqUAafPKUtFnwxKT3BhhbYQc6L2li4mGI0oGGCpkAQSa4IwGG1IBmQxpfTXiKZk3a2pC02WhkIUSDylGZF8Q1G/8mmfxc/gqmK8+f6He/4nDZ89Q8QuXpNzJuVn32d7O+eN7zmEcKlKa70hjX3fo4REmIw0z+5YSvkZ4hhjxMVASJH2IoEj5kRIkS++9Qbvfee7nD1+zNe++XXe/953SLrk8NU3+ct/6d/m0cMj5kcPObz5Cr/3vXdRSvG1r32N0eiAycGMmDVlWeO6nvfufoBLkaIsefvzb9E1a46Pj3HOYYyh73uKqqTrNiUwkNBaUlUFOSZGwzHaKpCadLHvSimk0Rv7kdZUtrgcHFTKfIxASwU5CWLgKYGOkZgzImdiflq0ApC5etGymZPIOaOASEZmCPlZBTpdPv/Z9d5hhx122OGzhZeCQEfRIaWltiOULIgxU6gSEzUYyGpMyMNNGURoQLYM5AAvDD4tSCqRo8SaERGJ0BNk0SISaK0IaVPnW+kxBkkgo5QGVUO05NCgZEmWniUBHRPpYvCqsJaiqpBoai1o3RHX6oK/8+u/QS09B7de5azz/Kk/+6/xoxKch//sP/nLVD98SE49OupNyYtK5KQ2DW8yI+PGP6yEJAaB1pKcJUUeUuFJQrLOCSU0wiSC7DGyRJpIkh6BwgpFdA0jOSCWFctwxFv7P8K+GhOz58btz5HHMOceRRrRa0GUHdn37NspSpd0oafNayptif2GHNh6QJYJIQO2nKCywg4NXmT6tKIyJdoUZDafErgssSnSxkBWli+8/jP8Cz/252m6E37la79EMKcgFCJ1hFBRmBrZzCmKgigUJIcyioRBJ4nCUpVDYnRkpbBySJcz0iSyzxR2jBQjEgvWcU02GaUmn+o5fBU5Z55+ur/JpNvYnV8wMHg5iSae8du+aJuXt7fRaM9Fom02d8WOISQxpg0pDonoI1lvYiO3g4AxxotWQvlMscuWPPfB03u3yYx2F9aGlHEhc+eNV/jrv/yr3PvgA97+/Bf4r//Kr3BweId7d7/DvbsfcHR2gguCf/ln/jT21tvEtuX0bM4//K1/wL333iOHiJpN8b7n5s1DkILz1ZqQIu9897sMBgNa3+NSYlCP6HuPlJq27REKrLWE4AFYLxuEhOnN6yQBhdn8TkYqyrLEGHOptCulkFeSNzYE+oryr4rLCxARnyrxV0lvzhmh1TODgZe3s0RcPNfIKz5oMlnlp1aOT1jrHXbYYYcdXn68FARaBFDSENKIpTtHS0Whh4TUMDDX6NWCKmTO+1OqaowwgqZZY5TAFDMykj4+pNYHCDtkpEYchTXoRK0PWbpjkJocJTkpjChQMWNszSqsyXGNUSW2nhD8nBQ8WVh6HZHaoKImiYTyFYPpDT7/xVuc/71vkrXj4b2HzG6+BQKMAI/nL/0Hv8Sv/vp/SJd6ApJK1Iz1gDa0oBwiZvr/j703j5LlPKg8f9/3xZ5r7W9ftFuyJFuy8Y5s4x37YOMVo4Z2g6f7GGjWpk8zpt3Q44GeZpmZpofhwMyhgQa8YCyDjTdsS0jCtnZbq5/e/l692rNyje1b5o+srJev9CQ8nOnR00zeOnEiKzIyIjMiTtWNm/e716V4VuOpCkL6fN/l1/GFk0/gnKRCQjHoowOQVEA4hOvikxApgRYluU0xQtKI54ikT24CjJ3lNd/zZk7ecy9PPnaMtnHkrbPE4TxWD4iDKbqDUwRhnRhBaRVOpyQSMhUSVGpI7UBacpEi/SphmJBbTekyyrIgCAIENXzpU5R9jJLkNiUSPlFYxXOOpdV7+cSnH2N+6jKeJw8zV3k+d3a/QS4l1ml0mtPXLerVvYSqCkUP4QKEzajIEGuhKDK09HC+QJqEJhW6ukslDAmFjxAlCAWmQCMJ5LOTwvFMA/92Yjwy7WK4mNp8MdI9TnKfagW4uH3EmGGpiu/7aK1QQgzrrLcSPcYJNLCtQo+i7LTW22kcRTb0Gx86dIhf/Omf49z6OkZLPv1XX6bVSUnzjFe88nt427t/lNxYRKXG5dfcwNr6Em9853t5+MgRVjttXvLCm3ny2Hfo9XsUm5ogComSmAceeGBIntOUKKkihCKqVCizjDDyCa2l1Ol2CkhRFMi4gpSSjY0N0jTF87yhd1p5hOFQefaU2rJ/DAnzuAKtxo75SH1WQmC3yoRGldvjx31Ymb4VF4gc2jecBSG21egLvjEYntwhkcYhxYRATzDBBBM8V3FJEGjEsPzBUwGejgj8iNJZMjSJFFhX4pREWkcgAmyZY5wmcBWQPs5l+H6MwENZAaXDQ+D7HsZmWJciRQXP80nCGkZ6eJ6PUAprCqzNkCbG90IqcgapcjzdpRomOCsxOKyUtIsWqdQ87z0v4+v3fIuqiVm48fn81m/9Nu/4yZ+HrQzY/tpxaO3mx2/9NUJVx5dQipL/8he/Ts4JNBbPaYQUCF+hCsuRT3+R73vFS+lHAcdXTtGVPZxQwwFYQmGMw9lhnXYpHEUJYVjguVkq3rW8+uVvIM0qPPzwKZbOrNArLXNOsvfwQZLHKphAUw93YXsdqi4cRsNhqPkxSvgIY9FG4wc1TJni+z5ZWVK6gsALGKSOQNSJXQ3ttdFa43sRIAhUgjHgnKUouljfocU6j608QhLH3P9oj5ftegO7X/VOPnP/n9IXK+Rhk7qK8PFQxJRGUfcDgtIhAkmraNMnJYgq+C7Cp0JmVmhWpnGlwiqNsxqJQtoCJy+NS/n/SfxjB5qNq6VwPid6FEvneUMCLT2xFdl4Xokdf82IQI+I84hMW2uRSvHXf/3XJFnI7BUHWT+3zFc//0WuuvEK0oHPbZ84yWavz+XXX8eBA4fwpaLanML5AT/zq7/FFz7559z3d3dw4PC13PfQgyjfI9OGotOhXq/T7XYpjWG20WTvnn1Di4SEbrc7fG/9cqsdVG2/5yiKyKXb9jn7vk/oB/i+j+/7eFv15UIIPCkuINAjb4VzDissTjo0AifVNlHfeeMixJgabYdlOFJK7JbJw7mhjeMpSRxbP+Z83coEE0wwwQTPMVwSrKO0Fql8SuOIo6G1oLADcmPIbUGm+wg/gNBHCw9teoRRE5xHqTsEykPKBE8GaL/AGomggjYaoy2e52OMwpIiZEISz5DbYvgVsrMEUZXAr1PaHCsKpLJIEeD7DcpiAMLgK588TqiUgmUT8ODJjCuv7XHsm99gUG5wZnGJufldZBpeeuNlpMZx/8NnePz47Xix4vDea7n1B36ZY4vf5Ovf/jOcUCRinhuveg1hNeGRR3+H3uNnuPKy6znnAqzyCLyIQEhC6ZPbBIlPLxtQoBFO4joH+bEP/muES+gPStLMsr95LXf22lz/Qz+G3/T58qMfQ8sUK1IKl+JVp9CeRDlQwhKIEK1DqiKjbVJE7FEREdoUpKLAFJbIl4QyoMymeNsbP8Rn/v43sXJY9mJshifBINCuh3M9jK7jZIxTPTKpsFc2uKe8h/jjT/De7/8gnzn1aTbTswROo/UwPaTIcgLro0KJdRafkGZYxaLQQtIzKX5YJ9MllTAkLzXWCXw/QJphYc2zgadVEN14VB1jlo4LXzNqvRRCDIOKt18ztHTsVKV32gieTp0eKaDniZ/AWtDakufF0OohFdaTYM22IuvGSKG1ltxoSmfRODI9rAW3ODxbsGdqlm9/+rN0zE20NvucXlxj3/7dLK2tUqnPsXTiBJdffjmb65sEtRpgSfMCjeUt7/ohcqO548t/w8rKCo1GgzAJQAmkFMRxyGylwo0v/h6uvfnlpPmAB7/5TbQxdFprGDdUeX0l6aU9Ml1gGBaYhGGIkBZP+fiBIvQ9PCmRSmyTa8+NlaUIgRtvJlRyS4EGoS0Ii1Qe2l04sFA6tsmwFefPpxidEzH0VI/OwWg+OoceYkKhJ5hgggmeo7gkCHThMjAGbcEXFbRLKcoSSYXF9AyJ10TrLg5BqgukinF6gKdqYAu0szRkRK5LrHT0RU4Q1CiLHCM2wSp8X5BmGXnRI7MZYsuHqEWBdgLhLIaSzHQIZIRzgk3VJbIGG1mcruJ1B9i1A+xK9mOBfl7w1fsf4Bd+7iM47ZGXsNrq8Zd/83Xue+wIX37k98hdn2QgOb1yG6c33sGLr3w9b3zxAe66/zbe94b/jjwrSY3hsle8hdOf+102sjbf+5p38KkTd2Fdj8Kz+KWDpIYY5ORAENT4qff+R3zjsbbu6JcDGo2EOIT2ZpebXvpSsrTHffd+jb5tI6SHIQJlcaqKFgblKYqyT2BDlCgxwqcaxxR5Tun7lESoAsLAJ5ACKzSZHJC3He99+c+x1tnkric+RS8/hSNAmR6RarDBBu1yHV8l+EGFvCxRnqPwFPJ6w9n+Kd5y3fv57Lf+AOu6WJOT2h6RqhEFirxMsdJhA4FUPlaXDEyKkGroGZUGnbaxBBSBQZQ+gQJhsmf5Kn7qwD/4x6vIO/HdxuLBhQ134xXS4w2DxZaf2RiD2CKVIxK/0wc9zIEeqtcwvDcoEXzhjq+jipwzD9zH3suv4lWvew0M+lx99dV0yoLNfotvP/wQ19ygaOCQcQBSMOhn6CDg7e//IQ5efQV3feELdNsbnD5zHGOG+5dSkmUZ1coUgR9Tq0/RmJqmGga0N1t4noe2mrIscU6wsbHBwt4DzMzvo5flCFWQBDGeL/GVh688PCnGLBw7CLS78KbECosScsvnPzwOGIYJG6OfrUKi4TEXFz9HF+zjqYkpE0wwwQQTPDch/+FV/tsjDOpb/6g1xm2S5X201iA0RZEhRYivmlTjeSSCNG0PB68VA5RSKOWTG4MUHqEfEfrgih7YDs6k+Eqh3HDwUCZyUtNBJhG5zohDH+dKsnKFrFxiYPpoZfGTBkY0SFWFvhOIvqL7kMW302Rpn7/45F8wcAW3vPpdfN+7f5zGrtnhALxQ4tdmufPh23BigCl7GNPHUfDo2dv42Jd+hU6/4K2v/SAnnlzixPEjrCydQtXnkI0ay4uPsPKVz/C8oEqRG/rpYBhHlmlQEicGfO/NH6DXEaSFYHnlDE/cezeDzZTFcxtYIVlZW2V5dQU/qNPpeMggxoqITtmjEDmZGdCxBa1C08NiXUglaWypcyClBZsTxR5CNRh0I1S5h6qUrG88yLHHjmMLePl17yKijig6KFsgsYSigvQCMp1SOENZWKyRw2QDk/P1pXvQJsWkFXLnYcMqm1lJMNVgPc9oC0kHRyqgZ0u6NsOFCUQNPBshSh/jxWzqNkJXCJBEnk/k+c/qNfxMivBofjFv8sVI19MRrO+GeI0TtVH74EjlhvPWjJGtY2TtKMty26ax7XUuCsqyJMsy8jzftnooISn6BW9927s5dNXV5FqwtrbGmVNHWF87x1prA1RAbapJtV7hySNPcPcdt3Pu+Cmy3oBIejgMm90+lcYUN7zoRThPIoTDWr2dtBFFEUIa2p0Nur1NjBOkWYHyfMqyJI5jlFJEfoTnSeZ27+KGm1/G/gOHqUQJoTesHQ+CoY0j8M5PI1uH7/t4nrcd9yelxOf8pNT5mnMlLpx2Wl+2BySOFdPsrAffPoajbW5tf4IJJphggucWLgkFujQdeoNVkmR2qCgJH993lKUliqpbEVwBvqhRYIjCGKsdxhYo6bZaxHwCFVC6El8WFEWfWPqUYYM8zahHAo2HL2I8ramJgNyk5Pnw61lrNVIEKGdR+AhAOksQxah0wL0f/yK33PRatEx5/Uuu4uG2x4/85EfYf+h5lC6hm0IjgIrvk+o+pVgmUhW0zvClIJJ1BqbEi3vsnU/or6+wtvoEq+1z1GoLnNx8iL17ppmtvZDW8cdpNBs0A49lT+M8RWbKYSlLIPjZD/0kn//UnZw4vcabXvdmfuRH3oeozFKtNPD70Ol3aLfWmG3O8543fZg7H/w4BXfQS6EZz2BdAaVHpBICBIUtcIWHdCGB9XAdj5/7wIdJU4vnfKQKKEvoWahV4St/8znypU2SaJaXXvsDfOPRT2LKNkZInACtC4zwSKJZIr+gLFOiMMazHplsU51usmv2Ss4MlglFTKUyQy9LIUoorANRgHBYJ8idoh4klKUjEBZfefTscIAjZoAf1Ml0G+9Z+ir8u1GGnXPbbYFCnK+32zkAUXC+BlwME6LHKqRH5Fzg3HkbwSh1Y5yojzKdrYGyMPheuJUEcp44KzX09gLgeUNPtHNghtsZlq8YSq0x5ryKnec5V1x2OS98x83803/xz/n+P/xT+mVOf2mJsiiQYcRCNWFaa/L2Jr5zBLUaaZaztrbEoEhxSqEEPPGdR3n+859Pe7rB866/njjyOHv8GJU4IS0Ng8KweOY0yewMfjVk1749dH1Jt7VGd3OdNE0BhxSahQOHmN11mGpzil0HLmPQ3cDzNJ5UBErhyfOEdXzQ4OiYDUtQHJLhNezMUDwWxm2T3qHFZmTjsGwbpzl/4/LULPCLV7o/3QDRCSaYYIIJnhu4JBTovLdIEGjSfAMjJHHURADGlESBTxxX6PZO4es+M2VOLKv40ieUPpFXQTuLkiF5mVPmHdKyQ+xLfCGpxbtJojmUc0RBFV87Kq2S6wvJdG0BJ0OEUHgiIanuxkumEc5DWbCDdbQv+fs/+QwHm/u5/7FjNMOA/uISqasST82zevYo3Y1FMBZhIT27xN65aWIxhZBV4iDGEZFpTegXuHQeMWiQZRnWQr2yBxEqenqVhelZVjqK5mX7SFLH665/GyEz9FybEkWrbONcxMc+9gn6uSOMqnz+b+/i1d//NnYt7KXUGZ12CxnEzM7vZn3lNGmrx/e/+qcJui+i7jdRwkPbnNAUTIcNpBNkqk+exbz65vfyL9//6/zMBz6KNDGeSNAyoJ1r+hicKen24JWvfQsba6usLj+IG8TUg2sogwirYkJfIYHYS4hUSDWqgnAoa8nLnClXwVeK6al5KlEMOsMXYEuJ70VIpUnzlELnOKeZqzcpspTCprTLDh3dpms7JF6TRBQoL0L6MZl+tq/iZ8bTKdTj+Mc01D3TNkdq88hmML5spDSPDy4cKc4jNXr0/DjKsmTXnt3MzMxgdM4X//bzXHfN8/A9j/n5eWanakSeRFpNt7PJyRNHOX3yKGvrywhnWd9YJe33CIKAq666ina7jed5LOzdw9XX3sDug/spMSjPUq0FKN+n1+7Qa7XptTfZ3Nygl/a3VduyLLn8uufzuje+iX2HDxFXquxa2M309CyeCrYV5lEqx+jxSPkdny6mFm+T56c59t8txtXo8X1cUGIzwQQTTDDBcwaXxF/uMKgR+9MkUQ0hcjzfIBh+1eqcRBc5kaxDOSDOcxpW4SmBNiWm1IRKgdCIxFE4Q2EtJvDRwjIYdLZUOYVSglQUTF+zjyP3PEz9rpPsLSESITZQqL7jnx24hRtqhzC2xI8rlFrj2sPq3xfefBN/9ZefQCrYs/cQg84mFanoHT+BDCXnzpzh61/+PLKXs/5wF5WnoCWeN4WMLD4Vbn3Xv8S6AZ2NNbwoRlWqtMo2NzQT6l6dQ9dMs3b7FzjZWWTp7q/zsz/4EdZOCvr5ClNygVu//9dYO1Ph5KkzdLttjCk5uLCPXDoKa6lVquRpnzAMOXjwMOlghV5nkbe/+acoWrsRLkLKafqyR9ecIQPC9HJ+4od/mSv3XofAoZ2lsI7COtLCkhWWbrdgc1DQSQ1L7ZTp5gxpZ42Nc6e44tDL0SZHmz5laYmjCgBOWjpFSmF9jPDxA0HoxZiixuNHHqTfHYB09AebSOVwaFxh8SxEOIp+i+5g6JNOcMwmUwjpkWclQgxwtqSWDIlUpTb9LF7BQ1wYcWaf4onemeKwk4CNe3IvRra+W8VyfNvjtoxxQj3yQ49PI+vGTrvH6PNorXnzm9/MiRMnuPeb9yCM5tjJJ/jel72Cw/sO0Gg2ScKAJAyYn2nS21zj+NEnaG2s0Gmv861vPcjGygqrK0u0Wi36/T7r6+soJRikOZWpafZfdg3Xv/BmqtUGoR/RbrcZdLosn11k6eRJVleWKMqMLMuGSrJSHL7qecwdOExcbyCUIooSAj9EKW+7QGZEkMctFOOkeefxHrdV7Dyvz9RS+A/dJI3WeaY4wwkmmGCCCS59XBIWDisikmia1bVFGokk7bXwowpWGxAhab7GQnKITnqMWDl6eQdiQRCC0Tml8Ykjn162QeBXKMnJjcaYgsgLCfDJNQyKDloVPLwOaV5ZAAAgAElEQVRylFfsvYaTTx7nwBMZV+ydp/6yK/nmY8fY1Q+Jw10sby6TVqu0l8/yyL0rCPcd1jNIQjAYAiRTlRr3f+ub3BDN8cTdd3P3HX/Lg3fdzhd+8ef5yL/6eaq5xHp9hJRIFbC5XkOVEVnRwQ8TrHN4pqC2fIxrY4/qwhzfORVwzb/4ZZ64/Qla3pMcf+QE/+Mv/CEr3bP0FjUrxwV4XVobLQ7t28fp409SDnqcXDlHpd5kFY9aI2JAiS8V/c46+fGCfYdeyg+945f4Pz/5E/gVCFQTjzq3vuenmBb7h4kPARigsFAYR64thYaiNLQ6HfKiIAxDrtw1w3GdgbAgJQcPvRD/sd1Yu0xhHTbPUEGNvCxxCJQXDr8iL2JufffPcerUgKBZYFNFr+wjpQeioCgt1pV4ShCiqNan6Ttw0qGyHlp5eLFPxfmsD84QeiGJKzDS4nh2PdAjjKvI44PGLnhsGVoqcCgpECiEdNv10tvrjWq65RZxcxYphlnaIzvHM2F8IKCWEiGHdSFD8jaMYTPGARcq39uDDU25HdeWRAmNWoN7vnEfMzNTvPa1r2N5ZR1dWnr9DrsP7uehbz9KEPo432dps4WKAppTDRq1hM4gZWZ6jk6/w1Q1Ji8zZmdmSKKEc0unaDQa9Adddu0/SF4YDhy4gn6vy2AwYHlpEa01zakpBoM+eZ7jhRJPCqZn97L/8ivwwggVBHR7bVZWljA4lJB4nkQpgZICT6jzxNWNfMvi/GDKrSOqBBhrhk4bK3BmOLfWXOhpdxJrDMNFDpzDWQtuXJe40OIz3PfomYl9Y4IJJpjguYpLgkDnOkcUGVNTdSIraBcpaX+TSJlhfFQxQAqPHEM7cKy7nLoMMaXGCYUIKhQlKOtRi2r0CoMxGouhKPvDMhIEUeRhrGUzHcCh/Vy+CI+tPM4rrpzGe+Qcr6lfRn8hor5seON138fd6yu4WJBM76Iyu4vZhXk2uovcfuff8r2XvYWOKcmERfqO1v2Pc/b4Cb5wx+186rZPc+LI46weWyG5BjqDFUK/yc9+8N8y2OiTZxarQowpmBFdrk4UVVeln/YJ04d5/EnHzFvfz8aTZ9GVOqLM2V/ZQ3Yg51Ofu52p+UMEMuDc0kne8oZbcGiubM5wbLPD73/8L/GkYHNjjUZ9ijiqkReCbu8Upu1z6w/8Zz5/x2/zoVs/RKKnUBIQw3/mhRHkBrJUU1iBMZbSFPhBwHSjwanFRZquxcd+/d8xd+31+OEUs4euY2lllff9wC/w55/9CNLTlEZDUdKoTNMfdBBOk6ctrt71Bk4eLfjyPX9CV6wQeoo8L6kEFbQuUV6MVTlWaworcfkwdcNKTVSLObJ0ApF6BEYikwqFilgb9Bn0u1ibP9uX8UWxU40cJ9hDMiWHMXc880CyccVS8N2r0TD0M+9UsUeK80iRHb2vkZ1gfNtSStI0pV6vk2UZ+/bt48/+7L9i+xs0XMlD99/H2cUzPO/QIYQQLG1s0DfgBxFL55YRR4+xa99+qvUp5mamieKIIIhobbRJ+wMO7buMU6dPEAYValPTpEWJ27WAKXI2N9qkaYqUklZ7A98f3ijVooRKY5qbXvkK4lp92Kbo+9TrPvlUg5VFMSz9kfa899mNWzOe+jnHz9H5QZZPVZzPD8R86jcKbhjn8bTnYtwz7yYC9AQTTDDBcxaXhIXDOk1hevjSEkmPMIjYWF8m9CKyXhulamRegTV1Ulml1AO6BRRO0NMWYfRWLa6k3xugnIcSoAIfPEXpUkqT0e/nlAVMVeY4tvE41Wvr7Gse4OzJZXqiwoYLeeL+dVqqRjNo8Lr5a/jAq36MLz14hF/97T/iVe/6YajMo5RAP/GXFFEDsh6/8L/9JhunjxOd3OAWuY/BV+/l9MlvUfQVRioiFZClIdJ5WOOhySmdRPkSe+pBguo8JzbX6ZeGYPYaWu2zLB/7Dm7XHM1qBWNDBhpUHPGD73ojJ48+yF0P/h5Pnvoal9X28K5bXsef/+H/AaRMT0+T5UNDcK/bBS9AeYKis4nv+6TdDu99yy9i+gl4wzFjhYWsFPRTS1FCXliEdYSeTxwm6MIQBRHTc/tZuvdznPjq73Lm8TuZnj9Mc2oe4aC9IvjRt38Ez+5CWJ+y7KJ1B+dSgjzip//J/8LLrnsbJ1fuY918h266SjvbRHk+TiVkViBDhTAeSVynlIa+yCitwxjHciulUq/gKUXgK5rBFLIwuLKD8iB5lm4FL2bH2Lns6YjuxTy2F7N9jK8/Pr/YtsafG1fCn85SMr58p3I+bnXYtWuB1dUVjNE8/vhj3HzzTXzqU5/gyPHHsEJy8/XXM1dPULakGgRIXbC+tkKRpZw5fZIzp04w6LU5dfwISyePc/TRRwidw7OGc+eWKAtDmuYURcGuvfsQYUhldoak2cQISafXp1arIaWkXq8zPbvAldc/n7m9+56SZuH7PvV6/QL7y+jz7CyM2YnxlJKL2TWeyYLzdOtcbHs7tznBBBNMMMFzC5eEAq2ExegMhUe/7BP4EXNTTZwV6FIyM1Un6/cIREgcSHLdxvcalLmhP1imFk5hrMa6HD+WtDotgtgjzSzTU1Nkukfm2lidMl2dp7+Zcssrf4lg9Qmyh08zM7Wfmq9IxDLBvgad9lFqlUO4smSwcYbQj5hP6tz10EO85A1v5qu//1Fe8JJbiI9/gW4hecPr38x1V17P49+4kw/+9r/ma7ffxurik1x/yw8z0G0qapqf/acfIe0YNns9MJaw2iRdPsGZ5VW8skOuc2ivMTW7hxe/4X1EV3wvR44fw/d9rHUgHWUhMNLxgR97L//pj07xpb+4k9/+Nx/lwXs+xZ//6W38zv/656TtFg5LoLytkpImWmuUUhidEVYSuv0MKRPyPkgclUCQFY6iHNYQl2VJGIbDlAY1TIZI05Swv8HRu2/j6msPsHDwIHO799NPS8LAJ5QxdGPecNNPcfDKGp+47ffprPZ4+5s/SCPaR/t0zGPn7uTxU3+DljlJkpDlXZQMEcLHV8PYPucMzkaUVpEXPSpJkzQbkFTm8fw6XbnC5voZqvEusDlZ1iHyqqiyeFau3Z1k7GIK7nf72u8GUg6LZkZZz99NCshoPyOPs9p67QgjT/T4gDYhxLCWeutxu9PC8+XW8mHEXSs3vP7dt3LggQfpr6xxx+1fI6jWWG53scLiK0kYx8wszPPE0aN89StfpCgNRaE5fPAwD999B+12mx/8Zx+g19+gP+gyNTuDcop+L6U36GJkwexCE5MnlIUm8PcgsCzs3kd99wJJpUEYhAilcEBRFGTZ0CP9j8XI0jE8LhfeCO28UboouX6Gc3LBdTHhzRNMMMEEz1lcEgTa98D3qxRpQFFmVL2AWMaApCgMWVZQ9HJ21ULKcpNYT5MONoikpJkkaDNASYF1fc6tn6HRmCMrNGEUDtvXnEdSadBtK6Tez+W7rsb3p6gffjXX35JDsUKvFJT+LrxT5xCNJt3SEMqA5c0ONGYR4Qy20+bAC17J89/6s9z+ldv5vhdcw8Of+xyd5gHiasj//sDXOHTry8njGVZO3kmv8wSz6hDPO/BKfC3p5B2y0hL4DYpywAsvO8i57iFOLm5i4yqyKMlW2hx66avo1BbYsy+n3++Tl45qvQJInPIoHHzo/f+Ku8O/46AXsp7fwtSLruCh5dtpLcJc7XKS2cPUG1WWlpaYmZkZNquZoT/TIHDGkmqDLyzC+iAUg7TE98HzvO04tGKrxrgsNZ2j32R3UnKyrYj6ggPhDMIIpqYT+kVGKnyS+jSPfvskr7ruh1CEyEHII0ef5OFTH6Pn1qlEIYN+ifMdjgLnAgq7gZARSInvefheiDAlQdUOU9U8hfAi0l6bzBRESUyvHCDjmDJNMdkSVW/qWbl2L1CPscO4OufYrqYbw3mVeDSgTSKFfIqyvDPebnzZ+AC08di0nWT8/O8OIYeTVICwaF0AFuc8nDufQjGKZ9t+n6NtAVKdj9hzzrG0eIa9u3bzK//Df+Tf/cqHOfadR/mRG5/PXX9/L4dveAGnzp6i2+nheQGnF88yv28f11xzLWVpWN84x2V7L+Ox+x9AqpLlpTPEcUw2SDl+5HF27duLLlPiSkJa5AjPI4oifGPQaU6zVqe2a55KUhs2LkqHpxROKnx/mBFd6hyHRg2rFRHW4aRh2zfu1IWk11ictVhttm80hnYMg8AO524rgXA033G8z5PpZ76B2n7O/uNuoiaYYIIJJnj2cUkQ6Howg8gtcbXJqc5RgiLDCEElmGFmOqQwBUaVxLJCX8e4OEF3B/SwOFEBqQh8iXTTxLUEnE8/3yBRHqGISW2bom+oRIKr976GG2/4XuqBIE8N6vrX4brn6Lc6pMZR2/8iqqqH6K8TeYJw5gD+nuvJrWL6Ba+iUtvFu378JhYX38zByw/wR//ko3z4w7/Gu9/zz/mVX/7vKVPNZ//uHhaSBR59+GFe8YLdvOa6l9A98wR5qlEmZvfBQ+R5Sll0aB66iebNl7G22WZpZYO2KXl0qY9c/hbVahVTtuivL9M0+/CDmCRJEEKhM8uNb3olL7nyan7nY7/Bse7tFMEippLT7U/jlhwzcwep16axSKz06ffayCCkGjTJMx9rNdoXOGEIPUeY+GTZUK0WUpEWBbl2CJtTImidfBTZ3ENT1Zjfczn9FKanfKTzKEuBEIYyD/jWI1+h9E5SmAQpSgzrWLlCEMziySnK8hSVcA5PNih1iigdqpKh0xqeAG0KynIVz00jRE7V89C9Nt10nen53Syf61JpGJKwwvLKWS7b9QJ0mT4r167nqzFlUm0rueMDxC6WtrEzXWO0fKcF43wVt7uATMsxFXmnH3p8G+OK8viy8X2Ntr3zvYzfHEhnkXKrHnzLMnH27FkOHz5MEFW55TWvp99Z5fi57/DIY0eYmq1Rn6mx2eowvTBNr5+x2tqg2WzS7hWcXF3ihle/kjCKyMuClaWztDc38VWItIa818OZklqzsZX3DE4bqlMNwkpl6HneUsxHBSjaOTzPo1Fv0q412Ux7iFH+tbswsxkurEUfj+0bkeens+WMLBjjgzgvRpifjkQ/3XmbYIIJJpjguYNLgkAr46NtATIi8STdLGVvtIA2klgG+FGIqiTUoyatjiTUPkYFEEmWN5awgz6zzd3UgiZKBqR5RrVaBWvBDRXNOK5yywtu5fDsjaBKdCnxlGS62UA3GiTzmhPHnqRtPZpzl9NYOMDy6RME8zOstrqA5KaX3oJzjrIsaTQabGyus77+JO9840v57H/+T4CPnLqG3/i9P+In3vkGDk8f4INv/GFW7v8SJR79pIaq7SZCkjQr5LbCpj9Nv2dIS5/m9AKba6fZWF+jVgkJQklpNEKE9PttYjckTfV6HS0lhYOvPvEtPvb5X8aL14lUjFcNOb3+EFfVXokoNMazoH2yLKNRrwKQZj2cgU5nk1o9wdWq4CCMYjqdAZ43TIMwxqDTDmtFQLNcoZKdoecHVBYux5+7bFh6U+a4aLjdsizpFSVz++Y5cvY+RCQpsxae9CmswteKvu1Qjev4KsDYAZ6nCb2QtBjgk2CVJS9yotAnkJZENhn0HVG1gRaGot9lKonIN7uESjLT3I02kvJZIiJSwvlxY2OkmKeS3tH8YtPO5y6+r62Kbp5KwMbJ7k4SvrMV72Lb3bnvnV5hORrxtrXOuXPniKKI9fV1Nttd9u8+xJ7L95EVOX5Y4+TpY2SFpjlfx/k+c3tCtMlpdZZZ2DePVIYnTx/BWXClpVKpUEkiorhG6QxT8zPb77lWqyGEIKzV8aJwq9DkqZ8VhnYU3w8pS41AMp6CMW53sba8cECgZptAX8y//HTYObBwpwI9IcgTTDDBBP/fxCVBoAcmY7ZeB6fxmSYVbeomYMPzUBEM8i7YklUT0M0hcJA7w8a50/iBJa6G+H6AUg5tyuE/UCvxVcAgX8Zh2NV8CdfsuxFnepR5lSwrqFUUSQyrq5v0MkNUrxO4nM12SjcMKMI5ykKiwoBICZaXlymKglqtRhBX6bfOsXbyHEkl4Hf/7A9I6iFukCL7azx0+2eIimVaJ5eYmpliyc5QnD5F0FrmeDDNVG2a0jp6Gy3KXg/tSrQUlPmwudCUBVmvII4CmlMzFPhYaymKgtXVVarNKcrcEAUe73vTv+FzX/wPBEHJ+mYLUe+w5+rdPP61h9h3+HnUm7PESYwxbmjpmJtGuoBKpYJSkqwwSG0IggCtNVJKer3ecICfzii0INl8jLOLT+I3myB8zqyssae6FydDsiyj2+0SBBFpdwDasXt2F0udZWThiEOLH1UQxqLFJlEosbpLGPh4foIzIcJ2Cf2SgV4iiRYwSpKWGdIFTFf20adACU3ge2R9jz0z+yhlBvE+8mwTw7PTpKLUMPxsZNvYJk9KbJHqLQV57Ov68SpoJ0DI8+QUIba1a8lTFehx5VMIAXIYhzcSQ4W7WG34hb8LJRBK4ITbGkbsRrtGsjXYToihZWHshmC0TycESioaUzPc8sbXc/WVV1GNAmQQctUVL+CqK27AWM0ff+z3+ca999DptFFeQNpPQSpySqT08L2AotBU/SpJXEcoiR+GOCEQKkB6Cj8KCYIAay1BMFT4g7EK7iHRVyAUtizodzosnjqKy1KQILYyAw0gnbyQNI/P7TC6zjq7NTc4LBaLE2577oTFCQtyaPsYEvSnV5pH9x07b6SGR/2pyyaYYIIJJnhu4JIg0DOqgs1S+rKgCDxqpWDDK/F86PVztBB4gUDrgsRKMtFChQHTM7MkYYPcZiA9OrqPLPpIWQEVMMgzVCTwZJObrnkTg8IiiUgHGXPTEUrBsWOnkZ7PYKBpd1oEnk9OztrxJfJS4/shUVDD80Jy1+fjv/Nb3PP1v+ed73kvv/s//yYHds+jreLDH/1VvnHH53jnyw8g8zZBdxOHxUsatOMDtDfavONtb+e//NVf4x09xao6y6nWcRqDlN7RU1zxlrew1knJOykqHpIUp3yiag3l+yR+hBMRURTR7XYpigLlKVASqavs2vUqTqx/nCRs4hWau+7+Ey7f/YN0NlvDspkwJgiqeKHPxsoqgySl2ZihVp+iLHPy0hKWlmoYoq1Dl4ZOP8NzDkzGxuP3MbV737Be26/y7ve9ny/e8SBGKNAFeW6wtsA4S9E9iy7b+Moig5jSlVglMFmXIBAUhcVaRxD7GJWz1jtNPTgAXoVsYAniLv0ehHGFkpSW2MAYjURgs5RKZTcujEnzLkHUpNQZzg6elWvX97Zqs63dHnBprUW4EYHeUqiFvEAt3iam8qkq9AiCpxIrKYexd+Pkb/x18iJ+6v+7CvT27+PbHbdzCIEnweqCerVKHMfb8XJK+WTZAHC8/a3v57W3vImPffK/8th3HmHQ14RehLUBQRCQ54ZQJfi+P0zS8DyMMUjPQyiJ1pqpyjRaa5IkQeK2mwTl1rcko/c6KnrJi5Ref4NubwOhNGrsT9y4ujyehGGtxeqLl6T8Q8kb49i2xDztGmxbfCaYYIIJJnhu45Ig0C29hrOawoHz58m1IAhLTHaOUCiy3FKWActZm6l6HV9aOv0eWg+YmV6gvXKOOJGgehT4xC4k8WvYxMfgcGlAqAKKwfAfcFTxMBaKEtbW29SaDYTyCaMKWXsNY0p86fAjn7hSI/Ar1JIKGyfO8NH3v5XNd16PtYL3/On/RLMxTY6iUqnxqrnX0Tl3kql6TLvIKQmIdl3FiY2CxdOn+JOv3M5jR08j3RLNQ1XCxQdonehw3dvfy2pLU+iMOHZ0M4sLPHSnSy3wcSqmLB3VqSrWlAjstspo7VANe8kL3soV3d188au3EXqaMg6ozOyiffYYm+11qlMzVGtNTpw6iZSSw1dcjSlKWmvrVGbmKQZ9sn6JDH2M0eTOkJY5ut9lTzJULFe1Igg8tFdHYOj32kThfmq1GTYGOd1uF+M0Wudk2YBwRuKJKQw5nUGXOJpBmxxkgacqGAOlNvR6PYJKn0jWKbRgo5WiZEK3vU4YxlTjJoO0Q2Ch2dzLucU1djVi2qsrRBqqUchG61nyQKut1A0psA6s3fISu1Etxyit4Xw8sBLnI9fG7Qiww4qxtf5TPLtbzzvnkJxP/RiS3qe3ioxjJ6HeJodbive2Cr1tE3Fj23JgzfBadGZ7fYDAjzDG0O938Zwk9hLe+4Pv5Zv33cPXbr8doQI2O120HhBHFTwVE4fh9jY0DuV7KN8jqlbQWhOG4VBxluqCz6GU2ibAZouYJklCJWlQRi2ysneB/UJY8RTlebuu3IqLNjNeSKrPH7+L+drPRwI+1Ru90089/rqJzWOCCSaY4LmHS4JArxVtZpNppM0IPctGWRCT4MoUzy8JgphOliGDjNVOCxEoZub2s7Z2nMXVJ1mYPoBUhjSX2DAndh7VKKZnS5QK0Bb6nWVkPMfGxiazu6dIy6HCdeiKq2htbmCMotCa2tQsvV4HYQKcKbFFTlE6Bs7SKiQPn7T0jnY5eHMDXw0zbIWAMomGlpFOB2zJphUUyRTJ4hGOn32QrNbmzJpAJQmCFeSJGvOdeXa/8c2cyXustb5Oc88Cdz56P0FSsLt6I3uaz6M76OOFMdKP8aRAa0McBmTWURTFcDCVJ/GUY6F2Ex+69WasAeUXCBvQXrqOr37pr+jmKUurZwmU5atf/hKzc7uReDjrY1eXqEcRMi9wuUFZy+5KlRNrm4SBR7BxBOdHTM3uptvt8IGf/LcALMxPE4UeKytLDAY98jxFxV2ixFC4hM20gxQ+RSmwIqHT6xOGPl4osaWi2+8h/JJG5Sqs0ZSmg+c1qcTT2KIEJ5GujjEO6/rkg5wimqLajGltdImiCKnAc1VmGuZZuXaVGmums8NUjeGgtfPrOAdGACiGxgyJ9EZkcGcO89gLdwjQI+5onMIy2ofcJr7DEXMXHwh4gZ8ZOSwVcWIrCcKhpBwqzs5upU2IoZq97Q4ZWiHElvVESUmSRMzN7iL0FSgQRgMWJSD0AwZm2ERpjeSmG15MtVbjgW89gBf4dNsDVpZXmZ6epTcoqFRqOOOIkwqVWh3rySGJDqr4vr9du611gZAOpUKskFgBUhucMVghEc7Rb29SZF2k0NixNJRxAr2TJKPPK89666bAODO8KXIWhxtaOEY/cpjsIcVwgKIVAuRWG+G4/337xmTserjwrH63l9oEE0wwwQSXEC4JAh2EVYzp0S96GOdRWWgwyA215hTonLSTMtuYZVWv8fzpy3hkcIpOewXfS6iIKtJTSBGjTYtQ1um5gppwxNank24yPX0FSqWEiUcgYgbtNq3coYs+rsxwcYU8z3FOofOMqFJlsNmhu7GOkQYhffZWDjK7sI8z68v8hz/4JH/88l9iufsobiMlSGJCb4bc5YhqxKnVRZh7Pj//C/+eqHWCH/2ZH0DeuAeTt+mrATYtieZvoLN7H5v5ImfyB2lGgm+fvp+Zhb2s5WdI5eNY9uMHBxEYQiL6gx61xjRFmhHZHKU8fCGHPktr8HyPLAPfWXThUeAwa0d58f4mi6stpvfv47LLDvGud72LJA4oJRTra1BkrD9xD2EA62tdgv4Jkiuu5yU3v41+P+PkIxsMSLDtJQb9TTLgxhe9iv3z05w+8ihdJ9B5jbzY4Ojp25kJeoQqIhSKfpaCHCBwKM9DioDBoM1sfR/9Yo00b4GYY0Y16fTWmK4v0MlL9s0epNdao18O0FmfJAjJBh5tvU7sTSGjTXw3TV4UuECRFc/c5PffChcqoiMPNFsK9BDOOaQncFYwNC0LlBoRXfVd2QJG2xnOh6TXOQvivDIqxKhdfYtAu+Hj89YMMfQ5ywsfi2FnNUO/9vl4vJ1Wg51qtnOObrd7PpPaDbczbgkZkVTf95mfm+PqK69kfi5jbbXL7oUBGxstNjbXaLfbTE97uDwnKEvCICbwfKQEazXGlERxgO/7hGGMk+eTSLIsRSkfFQTAMMfcGAPCIMeO78gDPa4sjx67cUuHO//c8HOObnIuPB5ubJpgggkmmOD/X7gkzHiKAC+eorQ+ziqKYsAgW8OUBcINc6KFcFR9j4I+trtG4FK66UnCehNshTTfIIlrVOQsAXW0lfTKNpVKzO5kBq9rKLt9ZqsJ5xZX0Gmbjc0WqQWTaZYXT7O8eJSV9QHdjWXuveuz5P1zLD/5ILJo8dBD3wAsBy4/SFDV/Mav/TELc6+im69T6BLP9xnkGYONFbJkF/c9/BiPnniUx1YzPn/7w6yvnQNPYJwljCuc7n2LJfd1jve+gMkX8ZQm8eo4DxCCVrnGA0c+hw0Ug0IhVMpgMKDd7iOlxPeGfugo9giC4SQEhNKiPIERkm4npb28iBlssLcZEa8/wtm7b2Pl7z9Gmvd48pvfIL3/iyz+3Z+Rt07SJaJ+5fXI695E7QVvQHgQ1yIue+HLUftvxlXn6Gcp+3fP88UvfJYTp55keX2NOJ4hqdaoVmfJix6ZztHC4QxMVYfNiP1CM93cDSg8WaFXdMjzFF/EdLvLODR+6GFKTaQCWq11LJJqsocorJGmA+rVBYp+yqAzQNgqsU2oOw9jsy0S+P8+RjaIIWl025NUbE/KEyglt+YC5UmkEkgltjOYx9v0xpeNWy3G14MRoXVIOUwDEcJtEXO3vXx8PpoQQ+It5PDx+HPjdpGnS5IYrVOW5fYAv9F64z7hnUQ69AIW5naRhAlh6BMEAfV6jdnZWXzfR2s9zGvWw8xlZwzGlmhTDK9pUwLgecH2Nq21WKfRusBay2CQXeCLvrCCW2PtUCUffwwWi8GJrbkz28tHjy92fTmxVce9w4bzdEkr/5CtZoIJJphggucOLgkCbYucfmYxOAr9f7H35tGyZXd932fvfaaaq+747rv3vX5jq7ufWlJ3S2pJoAYkQF7IzLGNbMA4kBjsgAMkOCbg2GA72LJXm18AACAASURBVCErIRATE1ghSzYEiFFsxCAIMkLCCLWGnqfXb37vzjVXnXnvnT9OVd26rx9O/uvurPqu9Vvn1q5z6gx17r2//Tvf3/fbx9gEz5fEURutx3iOTxRlZOMuN8M7lJSLEIJAVsjCPfYOnyfPDKPRgFF6QG6G+NZSUi56nLNWabHsK3R0yOGtK5w/f5b99iFCWNJ0SOfgJjYLKbkCZQcc3HyeimdY8lzOyJTW3mU26dLbvkovy/iOH/qbfOLpz/IvP/ZvCGOBXwpI8oxM54xjw0arxrWrL2NzQYzgG779W0izMchson4A1WCFNOkjhUX5gjEGjYfnLLGmz3Im3CC90aPk+ZTr9aJZDwpDCdfF83yEEDhOUZEMw5gwjLBCkBjBYDDGhl1G7R2MMSR4pMJDlqroeET7338KNxvS0SNsUGMYjtH7L3D7S/83ndtXyDOILUQ55EJx8T1fwen3fAOqtsYffPqzRbVep/jVJXqDCOnmJGmOX8rphz2EW5hfxHpMKXBZa9SR0iHLYiqVOkaENJtN1pY2ScZDfK+MwYHcUi1VC+qIL3HcjDs7VxAqJkfgipR6zcekQ3Rc8HBjfUiStF+Xe3e+8e7uBHia8M7rFTuuxHUVUhYV6+k6juO8Zpv5seNJdZHoKmeaXE8/63hMk/f5pVT3SKrlUczjtU1zR3xiKSXVapXHHn104pZ5nFc8a6YUAimLB11lv4YULvVaBak02kSUyj7VapVms0kQBADoPCdJklli7rouWmuSJMFxvFnluVhq8jydnJdASZcsS4pJAseTem2yWVg0Fo2xeRHCoNHkNp9NMIrJxZ+f7FopsJJJNZy5CYs8NnmYnwT9ebHAAgsssMCbC2+Iv9yu66PTnOWlJRreBnk+QBFQqzWQFipBiXqrToJBU0KUqlQbJ6n4JdK4S6nskGcJDoIsD+mOrxKnbeIU4mxAkGnipM/u9WfJ4y7d3iH3XXiIarmCjkIGvTtUSilL9QbXrz/DZk1SqQeMXIdQaKLwkLoKWTl5AkdBvZzx1nee4yPf/VfpjiyDWDMKI6yC+oPvIxqH/Oh3fyMYy1pZk966RS4TemEHk0l64T4lXPI0w3Mr6JEDuSDTmu3OdepxQvzcNle+cIdAlgmzBCnLEw3qBK0zkiQFKcktJBpAUvID0IJBmDLo7NO78QKVkkeapsigRDIcYOOIkrDk4atkO0/jJzHZaJ887GGSDBmP8Pef5Zl/+wtEB/skcUoYJ4SpJlVlLj30dk5vbBJlEr+2iZJlKmWJkppSUMf1QJUsYdwlGY7Z298m1UPkeMxw1MYLKniOy3DQoeQEhIMdTiyt4XgBVeVh2pY86tMb90miAYFXpVE5gc6bOCLDkxV0HpGkAxIZMSYlF13ivPv63LtKzWKaRM8nvlPViCL5nVaiLc7E8VE54HoS5YDjChxX4HpyNuZ6EscVKAekssVSFuspJQoutXJmYaVAOArhKJTjIKREzh1TcYx3Va5Rs5gl2bKgY8xXY4WcHIO0SEexfuoUtaA64Uwfb84rzEgExhSV6izTWOXg+SW0MNTrVarVOlI4eNUapVqNUrmMtRohLOVyUFSpnaJ5UGc5vlebSC2moA3CaEyeIoSaVKctQRDgOMVraw2GHEOOthlGWIywaEyxlBqjDEYZmIR0wcgicCS4AlxRPBly7bGQrkFOlriAC8ITs/eFxyz+Q2O4CxLIAgsssMCbDW+MBFpZymWBi8RRAc3qg/SG18lyj0ptGSsF7e4h0tXEyT5Sljkc7pHmsNw8R2osTklhpIsROZXqaTQeNd+BPKPq11CBR6O5hldqcnjQp3vYJUkEJ05d4uSZtzIYG/qdA3ZeepKn//RPWDuxhRA+cWqIooi9gy6Z26KqPPw04od/4HvZvn2DM295CKUUozjh1FseZHn5Iicf+w76hxqbJZxabfHUp58seKUolHIplUpEUYRyPNI842RrHd8NsG7KVmmZmzZm/UPvpXzmNDrwcKVEZ2aSWJQn1UeLKOi0aG1wfQ/lCgapYTgeMzi8jYoPyUxGreQz3r1JyXUIx0P63Q4mz3GmVTg8rLUcHt4mGh2SpWMOuj0GUUaSpeTGMByPUCZmcOsF/ux//wd4O08SDvqkOqfkVchzQ6NZIUx6hdmFEARBwObKFjZSpKFFZzCO+4RJD+ukdMdtelEbK8tk5KSppnbCY2/vKuvNVXynxqDToVlXVINlDBJUgLAJnvZIohFeFYb9IVmcvT43rzoK5YhZOE6RqDqOnMX0tXQVwpFF450jEI5AunL2s/IU0pXHxuZDugKhQE4oIfOf7brqqArtCBz3iDoiJcX+52gkxZJj1el5Csi0qmqVAQVWWoyyqHLAl73vK6hWi/txnlc8q/hOXP2EEBPaicBxPEqlCuVylSDwENLiSEWlUqHaahAEAZ5ycBCoSUNmUXkuJiJaa9I0nalXFPvT5BmkaUpvsEc06iAEaMmxavIxDedJdRleS7mYTiCkOuKLF5Ofe4fjSFxPzcJxBI4jUAocR+C6chZKMYvpeo6zoHIssMACC7zZ8IZoIqxXG1y9/ixnL7yVzA4Yxwbh5GQ6ZZy65EkKytLv9yn5ZdI0ZRgN2VzZQroldKzpRocsLZ0kxyXVgoiUKB6ircAIj9vbu7jlJlb4NJsV+uMQLwg4aPfotXtcfMs7iXZe4UNPPE46FrjNk4xGBlWu0uvcxNEee90h4dXn8dAoCW6tRjtdRSUGz3F5/rkX2TjjUDr5IGLtFNv7I1obF3jHow8zqkWM8pw0TQnDhFrDIczGlMs1Dg63qa9v4TgQ53tEXsqV/eu8+4mvKq5PrYJNFMIqbK5B5zheMffJM1BCIx3JMMq4c9CGLMTPh9ish3JgNOwSWBiOh2AN5cAjDscopRiGY1JTJDj93hAwpBEsPfgonQiavuWwfYAbBHitM0TlTZqmR/f5T+L6W7gnH0GbHMctdHajuI+RFRLjsFQVkFt8r04pqJAi6Y22UaqGFB7DYUKp0qTinkZmGY4p0x7v0KqXESYrfnZWGIWHRMZQqayDdWg6Dp3A0h8NGXW7NMvrVFe81+Xedby5XyEzZzbCcXkyw5GeshYTZQyOy8jNJ3R/nvyZ1hppCyMTawXKHHcglHOqDoo5+oGxKOVMaA5H/GSlBIqpUgeFGscsmWR2zFYKpHPUjPjgpbfy5e9/gsCfaDdLick1xuiZNFyapkfydHlemMYIie+XMKZLpVLI1Ant0e51aS4v0dMao3VxDYxhHI1nOtFTi20oqvd5ns90lR1VRrkuN25eLporoVAAmVI5OK6gwUTw5JhixnTM2CNzGytmnYJCqGOUkOPfzZwlulO4EUr72vrEQrJugQUWWOD/H3hDJNCuDFhdO4HJLCV3i/3xFXzxdnSuGcQDglIJITXLrS3Gg4wo63HmxP2kNmdndJPN1fvojnZIox5KVbHOiDDV1ForRIMxYVbIhYVRjHBDSuUapUYDHY1JRh2agUvUH5BGYzKjKLVWsF6dTHcRXkBv2MPXPlWZMkq62H6H3KvRqmxy4v7HiG4/i07GrLUaBEGTiiPQpx7jzqjEP/+V3+aXf+pvUpcVrJH4rmLj7FsYHvQmXf6G8koFY3IcBNfGKR86+wHWkw1OPfwE/VFCGo6pVNfI45w8iamUA7xAkVsw2pClSZEAD0fkWUTZZChZOM5loxG+Y8nGI5I4QglLiiZHge+R5SmZzXCUT2tpncxkRKMR2hrI88KRUCka1RplJ0eXlxi3D6mWFI3RFTz/Eld6uwSlMr1xhu/7BK6H61Q5HLbxfDDK0k0GNKoNhNRI5VM2PvVWhTgbI4TAx4KWKL9FvWRJ0gGD7CpBJnBViUF6GVWuoDMPMoehFyIr4FOiErRIos7rcu/O9JyhqEQz0QS+KwGWqFliqsRxPeNiPYDjfFtr5qyiVbGSUgJMhlQSY47bUwsBzryRip1zGJzTUJZiwrGeWY8f6ThbkR+pSlgXqcAIjRAKIWzB4fYqfOCDH2K5WisSeGEwUqKFxiDItCHTZpbw6xzSRKOUwaY5Tg6t2hJCD6DqcHBwQLlcAjtVwbCMhyOQAsf30BKUK8FqwiShPKF6aK0RKIwQSMdlqXGCt5x/mM9uX0XJHM9CPm3+s3aqMocxE49BcZQ0G3tkyW7M0Z9Fac1MmtCayfRksuJ8enwssTZH37uZ0+i4W/N5mugvsMACCyzw5sMbIoHujQ8YhxLlpYTZHZrVTbTo0bnZ5cTJZaRfo9fdJUtiarUGRvtYUgQ5UdTmUEOlVMWRLso0iEMP61qGg5DxaMBA1UnSiEq5hMk1w3GEE0j2dnaoBy5W5MTtV/CSAVYLLA46zVGOR219kxe6B2ysnkfpjDhK2d3Z4USwQVk02evmlE+8A9/1kIFAl1cZDLo4bhkvDRlQYSwDzKBPvXmRMLpF1NN0Bm0ajQrjURfpCEweY12BrywXlh6CoaATRhhy4lFGqTRtkrJonSOQBQ9UCvxyld39Lo7vI8cRnYOXqacHmPEAV2q67X2ycVLwR7OYRNWxVqNcSZykCNeQa0u5XqWUZRjpUm5tkFqBzS2eVAitSXyXB5/4em5/8qNkZCjfZ3jzaVbPvJfDYWGlnUQpjgKXJaqVEp3uDn6pjFaSQRLhSJfRaBchFIPeNo1Gi0H4DKXmFtWaz9At0c13seMVSqZCsGpJxpKKX6MzDFmpN0iIGR60Ka3VcXSJMBzivk5sJDVxxLsb06GZ2Q1HVAEj75VAT6qXYm5b5CRJFDjiyNJbaDkxZpnK4B2ZmShxVOmemavMjQETG/Gpbfc04Z7Zs8wdU46Z0oVEQTMples8/q6v5JFLD+N5HmgL8wnjpIkwyzKsLRoIpbR4nsXYDNdzKNmAMIvJdQzkNJtN9g4OSPMMqw1ZmiKlpFKvkZmjRLw3aOMFPqmEXDiTJtqC2z2tUl+4/0Fu3XiJmzefwXfNxF69MM22YqLJPX3NVDvbIrBYYyaV5rnvcTLxscYUFuivSYInEyRzNGGat1s3r7015q7Va99bYIEFFljgzYE3RAKdmhiDYBRquuMbrNdXGI73wNUYIBnF5HFEUPbxfR9BIZ0VhyFLlQ20icnSlDjOQXbJ0xHCcWlUVxG6yu3uZbYajxCnPfIwRNsQT6ck4QDjVnGTA7ysh6cUsrbMYDjEK2uSTOLLErXmKlY5pHHCzm6X/+kXP45yfp8w/+/5+z/xk7zvfe8lTDI8t0YyDvGDKolOyPIck3V47zd9Fy91PkoU9ygHS6TJmFZtBa/kkuiQYaRIGSFMzHp2mmgUsX/7ECKHzdObNBqNoko7USkoOKcWxylKnmGY45Yq1H3Lzu2n8W2HYXebsNejVi8z7HWoV+rEeWEMoyoWAezu7hKUqkgcBqM+qXTIpcLfeBhaZyl7AVId6eq6xieihPEq+J4li7so3SXQXbbHmkz5CGmxFNxXkwtq9VWEchkcHFApgbAZSuaUgpP4TplaTTFqp5R8BSkkRpDlPvX6CB3m7LS7tFotkrBL6+QKlbRMYhzWNrbYa3eoVgNMFuB7r8+tLN2jBHo+sVLyaMxx1KQ5bpKAMa0Ky2PbGqOPJbzFDqYLOUugpVRYO0mu5TSRnkjqzbkXGnFvSTVpC/6v4l5GK8edEIWwBU9aGpTjgFC89dI7aNTqRa49d6jGGLIsm1ErjC4SUNeRuI4/k5yz2sN1Yhr1VfI8p9fr4TgOvUGfcrOOdBT1VhMhJSUpyfKcfr8PaY4fuCgBYo5qMq+A4roelx5+N/uH1zDZoCBxTyrG2hb1YDuxXBfT78xOpg3FxTwaBya8E6Q8etIwdXvU1s40uOWM8gHSOnPrvhYz4xyb3+PdBRZYYIEF3gx4QzQRGmupNkp0+jtstM4QyCG1us+JUxukeUKWDVBOSuAtk2eKfr9PGHp4qorKPcJRSsnz8bziUbXvVbBGoUolCAS3958B4RBrGAwGDLuHDPo9GrUKwhqyeIzIEuLcMohDHNciRVGlHoxDGksbrG+cZ/egx8mVTX7w+/9LHJshGPPf/jc/RLfdIU1zxmGCTUfoeICNR5BrZJKwtPEgNgUhc9IsYhTdZrm5Tr8/RBtw1BA/l1z0HuCJzQ8i8zLWd6g26sVEIY4Zj8cAJEkCQBwVE4Y0tZQcqPqKg+uXuXPlGdJhm3E8Rrgew/4QrQVprsiyDGMtvUGf9nhA5ghiYWiPUsZWcqcXUtp8hMqZ99NcOUutJPE8b6L+kZHHGeMU3HIVMkOmJeNRAuEdWg2BdBJOrJ8mThL8sirOTayQDw0X6hvkeQ9pfeql+3Azwdn1NQaHV6k3lzgc94lsynD0Cpo2r2w/g19fo1lrYUyVqjpNMqoSD14lTg8ZDSPWm1tIx0epkKHpvy73rnTELFzfOQpXzaJo7nNnjXCeW4TrKFzl4CoHzymkCV3Xw3HcSTiz7aQjUK4slp7FK0lKVRcvUDiui3JcpFII10F6LsJ1JuNOEa6cbe+6Pq7rI1wPq5xiEjBR7pCuMwvhTcJ1cCo+eA6PPvY4733v+3CVc8R54Ljk3ZSXPGvEU8wa+fI8J81i8tQSZyF7nV1u37nKzt42pVqNjVPn2Ng6R7W6TKOxjOsFjEYhgVei0lwF6ZEbi7EpuU5J07Sg/giwwiAdlxMb9/HQA+8uOMuTcZTBSnssjCjGUBzT2D7WPDlZD3Wk+T1N3B0pZyHUUcxfa8eVx2LaZCpVweOe1/VeYIEFFljgzYM3RAU6VxVUqjh76iRpXoFhl8N4zJlyjRujXVaqZ1kvn6cdjhlku/jSodk8iQ1dIuGgXUEUhYBiFOZEaRuvVCYwVTpph8QJwTOYSBCUS4x7Y4YH25RPniPtPE2AJRIeGsNw/yaNlS2kV0H5y+irTxKsbjKonkSODZW1M9SN4FR9A8eFq/vbfOe3fZif/flf5tSFt+J6ATrNMCZBGw/hjHFVgHFWUAyQxlBtttgPrzPM9lk2Dchb1PsXecfDX8fSxiaj7iFBPGa8dwevdg4/y9jb3+bgsMTm5inSPEcKB60tgS9ItIPMUtL+TRxGtNsjqoGPG0BmFUJ6dHv7uB6Uqi3CTgfrBgjXoRe2iSJLVjnBg1/2zdTWzlOv1lAiRQZ1HGvRWU5uNEanxLnFNs4QR8+TaQelDFEIK8slIqfP9aGlVtnEL50gtXeIu3sMspRqmhOYOqJSou7U6OkBh+09qq0KiYXAa5LlDh4rBLJEIK8jyRlHGWWvBME6gR1iqRFmIxrVFZTbZG/vNpVmgBm+PioczhyF41g1VxzRNoBjNA6DnKs0H81hzVwFezZmjlMGQGGsJggCLBqtc5LYgHUQsuAq34279YiLyvKc5bexrzmHyRtFBVophJKUvRZf97VfT8X3ZxbV92pynD/feZtyKwTScXB9H78U4IwlOsvJkpTN9ROcOHUfOQq/XEIpRZIk5LlhaWmlOC4xoaugJ1rTAkepGU1m2rwYBGVOn3mAK9dfYDw+AGJAIoQpjtsYrCloHDPut5nnzoiiyjxRzjm6HtPmz6PzfU2Fef67skd8kNl+0HPGLgapJMeeOCywwAILLPCmwBsigY6iBKurNJoVyuUWvbBDlLkod5lmY4xSlmEa0x+2ccuGldoprt28wcXNs4ySlDixVJoRWVqmUm+ho5Ao7XD18FlqlROYvMsoGhb/qKRDpbVO3S0MSbqHbW7efIHRuM3GmYu4Xh3jNUhsiZKruJ74bG49wq2hRpiEly+/wtaJdX7gn/wzmoHif/m5n2TQu8nnP/vbrJ8+g6cVWabxvRJCpZBLEh1xduPLGKUvoJMR1w4+RylY4i3nH+LWjUNeefIpPvbz/5Z/8YsX+aqlLV54+TqnNlbxjGE4HJEMR4yHewxHMUnU4dy5S7Sayzi+whiIc0gObtG59Qq+69Jo1MizBK1z3EqZURjjtap0x2NE+QTZKMfkQ3Kr2O87PPjeD2DW3kasAqLxCIxldXWNPCseuVcqFTKdE0VdlOPRTWMcrXBcQbc/phJ28ZptKkFANMxpthokacj+wR1Wyw2W68tk/QgvAPyMUX5IrbGCTiLGesxwZKl6dUqOYqmxgTWKKMkRfoY2EcNQUvdPYDKH8fgQGVjGIsTRZVQArnELLu7rgPmq5PQ1gFSKQkf5uCsfgJ00ERbvHVE45hU5phBGcHderXDxfAXCorVC6yIhlAqwrzX9mCbqswR6znEQmIgez07o2HZFBVlgUaytnuLUxmmUNdi547bYuf0cb2ycUjpyY5BOUeXNjSaMY/r9PtJYdJqxdnaNUhBQbbbIJkYq6BzfK82oIYbCOTDXKcYUOtOq5M70tqWUGJMjpUejeYJTZx7g8ssDtI0nnPEj620h5XGqhhSIuQT5KDmeux53P7CbU06Z8s3vpbJxdK3NZJ2ikVHKqW36azZZYIEFFljgDY43RAIdJ31ObZyl07kO2hClbcZpxJ0bN2ktS27cuEVztc7Zs5dotzv0uh1OnjxHqmN6oz2W6g1MDIedQy6dvw9hLWW/xjDdplK9iMk6pHlCLagW/9C1LdzNrKJUbSFWl2iut8jVEqsPPMEwdxC6oEb4yycZZJYbrz6HHg/4zd/8Nf7Bj/9jTp27SE7A9/zIT7HT+TSddsjNqy9z6sKD1Ot1hqM+vu+iCEhtm9XmBfau/RlxfJV6vYVFMegcIhzLw489xm8Fr6J1xitXnyVKu7x49TYvPvsqf/Hbvp04jDDJENKIK6/scu6+tyGEIM8taZ7hKUl75xrkGX59BadaxtE5Wmv6kaZy4X7GNqBmfcajA3DbaCGpbF2ilDbZyZr8i7/3Y/y9H/27/MTP/Xf8/u/8Nn/3R36M++9/K+96/1dRLpcLq2VdIk5zKq0NonCA7g3xRIDJBGk4xHFrxNGIjhjgeMusrLXo7x6w3PDIgrxwbmPMKE0ZdVOiYZ9y00G5hjDtU6uW0fkhvrtMa2mNUZSDcAhclyQOyWhT8gVebZXdw8tsLK3RKNVoD7tEN/Zfl3tXus6RJJzQkyZAgRSWY8nXXJaUc9SMNk23jLFFAjfHndbWIo3ATFI3M/lEbV0CX+A5HjmSNB1j8EDkqEnTm5nbuxACYc3EEdAgJg14s2Rvvsg6X5meNBA6jkPJXeXbvukj1GtVUGJmnIKw2LkGOi0kVii0KM7NSIV0JA4aKSxZnhGlEVprvFKZLE1p1uqk4RgrFKVKCaUcsizD8T0UxZMWzyssUdIsJo1yTK5xvTLCcbHCQSgPozOshMxaHM9lfe08N159nlHWRQinmAhMedDy+AQGe8RttlbOKuzMTQ7Ua+rN4tjPRTI84VdLC7ZQKBFILHqyvppL2o9PNhZYYIEFFnjz4A2RQJ9cOsfNnVvUHAvBLqEybDa32GycoJffwqsGRFFEd3+PoFpGmhbd7g7WjJB+nSzUyFyzuryCMJY4T1hr1FGDGu3eAXkSU0o/xtm1b0PbFK0tEoGOc/LyWSprmsQKGqsPIitLuGFEmueM+z1W1le4+tLz/MHv/jaPvuN+vu5r38+V60+RRkPKJ87gi4hgK+On/9b/TAb8/Ed/mar7DgLPJ7MOxsa4bhUlApKxoJsdUFdbpClIUjzhUl23/P1//j1cS/4vdu40IY/4Jz/yv/HB1ffyXd/3A/TSFKeTcPnFzzDuDci+JgUgTjJirRmNBxzuXyF0a5QqVXpJRDoeoGSJypkHyVWNMoI4yzCmxXjjcdBjOqLEpz/5Cf71r3wUmieINPzhH3yG9z7+Hn76n/3E5F++5F/96q/y+Ff+BRq1Kgz7RGKV6npCZ+9lfBcyIjQu436I762ggi6uM6J3mNFcWiPNOqSyjK/qRHHKKHmRijqDsBonkMRDSckoRGTZ644ZqgMquYPXUviZT7m0xDAdksQxmoAgtLTKW+R5D+UEnChfpHcieV3u3Wnls0igj1Qv7qWyMUWhgnE8gZZSYhDHKppAoYIx3W4yrpTFcxxcR5PnFs93yYwE4SAm1eTCSG++IVBMknsFxygkrz2+Y9bTSuMoj7ecf4CLZ8/hyAnV5C495KmJitaafNIMaaXA87zJZC8njkOGYUQYJfh+QKVapX/YoVpr4PslxuMxt27cpLW0jFAOynOLXgYliiq7zpAFQ2RiZ+9NIphZfRe0CIXjeKytneTs2Yd45WqfSA9nDZZSFtd1eq7FBbi3Ksqxa2KPPyG4F/Wi2D+zara1E5lAoY59nrUW5L0/Y4EFFlhggTc+3hBNhI6nOH36IUq1Fkk44PDwGsLRWGUZDtqs1te47/QFhBmTR4JM+3hCIXSJpVILR+RsndxC23ziGubR7hzglhSjUQ8/MHTCq0h1QNyPsemI0biPNSnDUZvGxSew5dOMopzdW9eJRiOMMURJjO+4bN++gSsSzmyu8q73vZ+tc29HlzR/9Os/w80//RQbSZWf+omf4aEPNAjd5xjGAzzHx5MSicDmGmUd7j/1KGuVTZpBg1Z9Gd+tk1kYDmLG6hVUPWQkbpE/lfJjH/6veP7lZykDa61Vqksn2bzvLKMoxndd8jwnyzJGoxGj7afBxCTG4/bOITudkMhZYS+r0OvHdA8PuL19h/bhHgeHewzDMdf39vlb3/M9/Jvf+A20cPmtj3+Ckxtn0VlI//AaH/2Ff0a1DGD4ax/5G3zsN36JO7cP8EtVqp5Ha2mN5vIJlpotym6JVrmCa13Wwsc5vKmJTYbvj+mNOnS6Q1rNLdxAoUo9gmCJplyhVpEc7uyQJ2OWl1rk1rC83KJRWePc1nu4dfMyyrMozzKOI+5bPUPdrdMdhhgBw3GM5zfIRUJtafN1uXeVY49iogShlCoqnFKAkjN7bZQEVbjRSWmLpbIzi27HAaUsQmikNEhlUI6dLadROBsWttuOK2eug0pxZBPuctwq2gPrWuzcmHXMLLhrfLoUnoP0fNZWVgureHv8j8Z8FQc8AwAAIABJREFUonk3DcWYgrKQZRlxHGOFIihVqDdb+EEZYyWVWh2nXKbabFEKyugsZzwagbVkSUqahSTpmPF4wKjfZtjtoGx+rAFv2pwJRZNtwZ3OcV2XlY2zlP2lYoKiBEYJrCNnE4Qp7jXxmeeNSynRSqOVnl1HO7mu0zCOwbqFZrd1BLhyFtYRWEdgFLP3tQAjBUYukugFFlhggTcb3hAJ9OraSQ76LxFFCfXSFnEywisrIgOOcKj5AXGYUnOb1MsVnFpOa7XE2ulT7B3eoiwrOFbRH26z134RrKJWbeL6LutrayBcRibnpVt/BqUunc4AoVNuXHuVnVs3GPTbSKO58vKXsFlE4EmWV1oI5SKlYO/Obb7uL/wFNh94mMbWOdZOnOHE1ibm8AW2X3qKZLfOxrkHef9feTeyari6/XmsDnGVg9WFS2EapRwehhjjEWUjfEcQJjGZjqmUthDSoRa/i8f9j3Cy/ihnvvxhbo+G4Lt40jJOxjilOhsnT9JsNimVvJkiR7TzKuXAY7fXpr68Tr25TqnaolSu0W7vs79zlTBqk4z7dPs9DrtdfuLv/gNMEpNkMVgfbQUH+9d58P41vulr380Xn/wM/9nf+dtcOBVQIuS//oEf4vOf+T0O2oeF2kB5CV05gVtuslL1yfvbKBJOXzhHpf82VuU5gsYGS8vrKMej0+8R26sIJVmqvxWhEyK6nNx8gDjq4QeKUTgmj1wsPbJY43tlwqTHrZ2r1BsNnnz+c0gnY2WtxDjZxQkicgaM8h0qzbXX5d6dT5qnMUu6HIV0igY8pJi9vtc2s4qvlLOE8M97HwplCDmx8D6K1647jfn37rX/ex2PM1EQKZUqLDWWjhLOu2i+R5baR3zvKSc4mXCgpeMglMJxPQQSgyWKIlrLK3hBmWq9zsr6GtVShVKpRJIkjMdj4jieJcRTVZKpRbix+URiMZvtTykxU40xxhBUK9QqK1h9b6fKu5U1jnjix1//eevOx9G1O1LxADP7ed4iXfwHnlYssMACCyzwxscbgsLxzFN/RrmxyVKzhrCaS295lHFvRHnpBNnQMD7RZnRQxau6lPIhnWwf11ul191FyTLl5SZp3sFRAuNLwuwQzyzhuh6He7fRWc5y6yw6uM7uOCcPVwkqJzG0C5mqNKM73GG9tcrezgFWufiVFVZaS8U/aqmIxkNMo0tj6TGyWNAP63CqTHh7lyc/9+/JllNOf3mDC5sP80z/M1y+cYpmuUqj0SQe9XF8j/vPPsHvPvlrnL/45fR62zRWV3nli39CzV+mZS/y/d/xoyRJxCtnL1OttLhy5xb9fh/huNSbK0TjmJ3GMp4LQmhOnVwiSjTK1VzvD3j6C39M78yDnNw8h2eg0VpnOOqg85Du9j5bm+fx/Ao//iN/G9AFnxb4F7/2r4nGQw4O9vj+H/5JqoFPud7CWk2/u8uLX/pDRgcpP/tT/wX/cOM3cC+9nUpFsn7x7YTXvoibjhhFIcsPnOdzn/oT3va2R6mvau6Y3+f5Z7+ECJpIPaLun6Y3vsxI3+AUJdpjEGrM2a2HubL9JaJhnfPrm0TlGnZwi5P3r/Dqc0MqDZ+aHVNdc8kDj9HhDq/e+Ryraw8RBB5lDAf97dfl3pWOONIARkwZs0iOHs9LKdHWzK135Eo3a0yzFsNdTWlzms4zhoG1BU3aKTjR00RMTsxR5ukFUxpBsdmcmQuvrbIeDdiZrJp0BMID33FZXV7DCkluwRESa/NZ9VnnlsxYMguZ1iAl0nHQ1uBIgVaFDXeepsWTkzRhNOzjTtfxPDKtcX2P5Y0Ndnd3Ub5HEASYCbdYKUOWFiojxmSkyZgoiqjUcjw3mF3neW53kmdkSY5Q4DgeqYnnzvPu856nc1jUVFGFo8mAnfJHptcUi5B31SCsRVrn6LpKfaxx0RqDNmYiL72w9V5ggQUWeLPiDZFAl90BMmmwtFXh8qsjdsI2y6Vz6FCjHMvNO0+xUtkCmtzY2SZYrnHj+j5+AI1GjXgwQrk5mxvnCTvbKBmQZ0Dao9u9xelTW4zCbVy/xI2bz3Hf6jvYvjPEMQ36nStcefVFkrhHnMXcPHyaC/aDvPM9X0NiBTeuv8LGxgbDw9t0+zs8fL7CSGdIk/GuDz7OMx/9Aufvu4/BkgemTJwe4ItV1lfXGfe7hOEYz/MZDhPyMMZol6ef+xQP3XcRm2rOnjhPq7XMt37ge1AKclEispJh+w4r9Sb1ZoM0TzBGo5RifeM0cZJRbZYII0OaKy5+5bfy/Cc+ztseeQ82j/nUp36HU+ceYG1tC3JNe7/LY+9+P5GF7/1L34qwGRaJARAKScYff/K3+Pyf/B4725fxgiZf/w1/nbMXL/HEV387uXGJ+0NuXH2Z5575EyrNCutb56DSQt73bnQ8xI3GZE6VVrnGtSsvc5/aQtaaNOorGO2z0hoivToMl7DZIfu5YXW5zrmlh7ly+wVWlk9xvb9HYiJKRlHxa1y/fJmtkytsbDzIravXObV8gcPBDbQucSJco2JT+m2Ncsrs9C6/LvfusYqkPV5VfI0u8tz4UaPeHK/2LlOS4v2pcseR0kMxNEnq0CinkLtDGIQ9ktI7niDOJc13N8PNf7YEpJ1Voac239VqlalcnBFgprbb5mg5vR5TOblCuSUqtJon59Rut0nTlCAoUavVZrzlmU6269BoLdMdDeh3eri+h1KKNC00n5MkIk1jBBYhFVEUUa5kBEEJrfWscm+sJctyev09oniMtceT3/lGybvHjT4ytJlX3rAS8jw/ptt8N4/8aDIjjl3r6XWar1ZPxxeNhAsssMACbz68IRLowGlSrZZ48fINHnnkwxx+6RlGgy774x22tlwqZoW6dRgYTWu9xiiKWVk+zdpJxQvPXaOxGdAJh/gDl6YtkTsOJV+x371J4DtU/DoKj+7+Ho1mE+m1qZ1scufmHVbWt0izISbX1DddNk/V+MiHvpM0HbC3mxKGAxrNGkQtPFHh1rVdzp89R3t7l2d2vsiXnn0Rjc/u0hke/+YyL11+gZPeB+h19xkP+7PHv470SNIQX56mb54FNWRnu8vK+hq7+20a3kmUAF/HKBPzys0bHFT3cRAk4xSTW6J0xF/5q98FwGBkMEhevXGNE81VamtvJ7YtGkHA29/5jbilCkJJ0mhInudoGRAf7IKd6iUXagRf+xe/ieuvPsVKo8kHP/ABfuF/fYrH3vkVZMKhPWzj+Zr7L72Lp7/4p2ydu8BLz3yWNBY89r73ce7SYyinhFsLcMurRGHMB5/4Mn79Nz/GZz/zHBfeWWZprcW1K3v4jk9MhyTLWals0Y0PcLMSt3d2qQQnuXnjOdbWT7B7cJOTW5vshpK18hqj3HLn9kv4gaLbTYnSlNVgGeMMOdx3SRuf5l1v+S6qK63X5d6dx/zj/mmiNJ9Yzo9P35tWMAu+cPE592pSE/IoIZ9Wk4t1juTmQBZZ3nRbMZ+YHX2mtscTtiJxFkUCL4sQjkAJheNJ6vU69Xp9tv88z0EcNQ1qfaTBPOU9T2kU1haKN1NucqPRmCTnioODAwAqlQoAo9EIx6/QaC3hVir0ej2SNJrRN4zJARfXK/SjhVQEQTDjWbuuO6NR5LpI6pMkYxz20HY0kwP8f6NMHKNtiKPrqTGv4U3Lue/vXp8zVSiB41KGs+s+d48ssMACCyzw5sEbggNtdA1XNFEutNttWsE5So0Sue4xzDSjLgjZRDoBg17GRvM8Tuqy/fI+m2stdjqvMkpj/NzieRKlKux37oBu4vtlssxysH+NpdYGW6feQpaOML7GX+vhLPnUaicp+cu8+qU27zn913BUhXHokA37pDon7I44d+F+rnyxjetmDEZ9hv19akvrvPerHmPn8Arf993fT/+wTDqosdLa4vbOLW7depm9nTa9wQ5JGhG4JT743u+k6nlsb/eQukzeb5LtWRxbIowzPvHv/pBPP/db/On2P8S2brLH5/izV3+Hzz3/u3z3f/Jd5AZSC71hyuVrN9jbv8lzz/0xOzvPI0VCIhUpgv5wQKc3oLFyEhE0iHONEJqSK7GFRgNIl6//5m+mWTO4Dnzi9z/Jf/SX/jJjCyWvRneQ8Mpz1zm1dZ6//t1/n6B1moceeYRaxeHGyy+ze+1lTJySpZooTlCuw86tW1w6f46/9R9/J9/21d+PSjaQgcvN3eeJhzFOGYbDHaz1iccB3WiXNCns1dudkJOnVri1fYtenPHcrRcQokIpyLhx44u0D7vcef467b0elY0LvPM9X41OtsiNoRY0Xpd7VwhzFBMbc4TBoDForDAUwhcWpMUKg5ZF4AqMtGhhwBGgDMKxBVVAmdlr4VgQGoRGyMIVzyBBaVxhkO7kaQIU1eFJTMm4VhTmLQaJtq+tuMK8HrKdHa9xDFIEfPDxr2FzaR1fOjMlC20FuYFMW1Kdk+l8Rt8wQG4KrWjX83FcD9fzcT0fzw9ASLLckOUGqVyqtQbKD1jdOIlBoLF4nke92aBaaeJ7RXXZIvH8Co3GKivrG1TrhcW9yVMkFoXAGEiNJTOaJIkIewdkOiITCgOzKE5XvCbsnMmMlBJHCjxH4So5a1y8+9q9BraoXFtzRNWZri+sxJEujnQn+7FIuUigF1hggQXebHhDJNClskO7dwfPVehsnwcvbODhsbRcIRxHnD61iVvykJngLScuUhJ1/KaksX6Km6PrLK20qPs+Nc/DwaNMmXPrp2jWWpT9MmlkWFnbpF5S1Owhe6PrHA52EW6MttsYB2rNNZqNFd799q9AW8X+wSGv3HiaMfuUmy7Xbm9TU3Wqgccr114i1zHPvHiZv/rD38fb3v4EqjRm/cRJqo1lursH3Ld1BlG21M7tcft2j93tlwmHXa68eIszG5eoLq1zYf39fOXpD/ODf+OfcuvydcZ98FtNYu8lhOjy1NVfJ1FDZOMlvvFbPkKaFbbIh90+e+19Dvf2MElEOE5xhc9oGDIeDojCMePREHTKaNAlHA2pVSpIk/MNH3obNcfgBx5/76e/l6zxBZSn0XbAY+98iJ1bHTzPEo0/j3WfpH52n9/5/d/hsHOLv/yR7+LRx7+RS49/BX/0hU/zq7/xS7z80p9ycLiDMYWMWCfKOXnfecaDAZ//0z/ha97znyJTj9NrXw2yStOUIdCkwwOW15tEUcRe/wblWpkTrRaDdkSlvMRys8Xy+gaDMOTatT36UUwlqPK2SxdI8jaxHfPHf/BH2N4Y0+9weHvndbl3rShq+VZMzDmkLPSPscdiirsbx+7+eX45bcabjs3k8uYoBBY9s8sWwhZuhFKDyI8d53R89t4kLBmWbDYuJoZ8UgocV3HpzNt44MIlKpXKzHVxmhRO6QdTB0JjCqturfWMAjI1QUnTdNb8Nw3HKfSegdm2QRBgjGE8Hs8aAYUQ+L6P7/uzY5DCIfDLOMpDeS5CKTSWXOuZeUuapoyGHVKdgjl+vHdD3sVlniqKeJ4zsWI/3oA5/93Mb3P39zf/ekbxmNJ5cApLdeH+f7rXFlhggQUWeOPgDZFAD+MRpVZA2S9z/c6X8PUay81VlpYv4th1SFqEkUfF8di5fo0w7NDdf5k6PhvqLC+8dBnCECNzdmzGUCXc6h5ghYI84MTyOYyWjJM+ynNZXtpgpdFgt92lviyorUuU7/PjP/6jjNKc3YMe1248yzh/hVf3P8HFdywRVGtcuv8Bbr30KhtrDb7wzCepVep87uoN/vBzn6WfhHzpyV+h39/hxouf53/42R9nIK/xzPbv0rgvp9PdYXf3GmuNdda9d9Dv7XIQXSWLR6SHfX73//glnvz3/4ZP/dn/SKVieejMtyC5n+2d5/meb/pXPPGeDxAlMAo1nV6Xg91bRIMu3b0dvvDUv5s8UrdE8ZDAF9SqHuNRh8985g8RNqff7dAb9Wjv7/Ft3/3t/MTP/RilUwPu9C+TL91k9eEx/ul9godu8vDXV1i9pDlxf4kr+x+n2x3T7XZ5+sUvcTi8BdLl7/zwP+bv/OBP8cg7vpIvfO7T7Ny+ShqOaG2cZrs9xDgu5y6cZ3SnSjaKGeSvUK35jIZ99m7ucP/qJjoZc/70BQb9Lt1ORvegi+9V0Trn9MkNzp54iKrncnbzLez3Qu6/7928fGUbpCJo+GyeXifsjnHdiNGg87rcu4WxdBHTZFlbczQ2qQbfrQF8r+TrXuP3Uns4/v5xhYf5uBfm93Ov/TFXp5VYLl14G81Ks5gY3MO2e7qc6VpPEms9SWSn1t7WWtI0LZwI83yWgFarVay1BEEw4Tgn9Ho9hBAMBgOyLDv2OUdKJBLPCyiXq3ieVxjQyKPrM9WFFtJgHYkw974e8+dz93U/4oBPi/nyHooof/53da/3pucw5XxPKTcLLLDAAgu8ufCG+OutAodytc7eTocoGzAK90nki0TpiNVVH6+UElQVo2hMfcVFOyl30i/w/O4ncSuSRx55B6WSz81ej9HoABH3Wa/VOLm+ietU2dnbw6QJr+5e5V9+/JNE7ZyybPHQA+8iNjnb/Wf5hm/9MGEMmVForemFtwlqXWqVEc889btsnb6P3niIiTPCg1364TVOndgi1ZKf/Jlf4fSZd/Khd//nbFTKfOz//HkuvL3J6ftd7mwPuD78JIdZh15nn5JSdPagwhI7yS2uhjf50IcvceXWl3h1+w9o1LtIU+a5K38Ecofv/PA/4v7NM/QOBEmWc/3mHa7dvEY+iqgGPolN+Pjv/TKqnFAul7j88gv83sc/zkd/+ZdJ0pAo7GN0Bhre8a7HefT9f4mtR8/zYu9jPH3ltxmPY3b6HWzNkFdSlGzh5CVWGy1efPJpHjh3jrXVJXa3R1iR8kef/kU+9fu/zo2rL9Dp7hHnOV/+5U/w4gtPs7+3QzLM2Nw6TyYdfvO3f4v9vZf5jq//p1Sccxwc3MKUA86tXWTYGRMNIgBOraxy8b63sn/Qod055M7udZ567gusLK3x/7D33kGS3PeV5ydt+arurmrv3Qy6x2EwM7AEQdAbkKJEUSK10ilWXivt3a50EXfShfaouNXunXSxdxdarXSUViG3EkWuSAEkRAeA8MAYjLftvS1v0/3yd39ktRkQPMVt3BJgRL+Iiu6pzqzKzMrpfvnyfd8zFAu7VOfk8ZPMzF8As0r/YActiS5uz8xhxDO8cv0Nenq635ZzV0gfIX18AtuAJ4Mhu53npBKo1J4idx8SFV8q+FLZTWjYoW93D5n57EWf7Yu5oyk5E/zbUAWGpiIVg6AkRQtaB5sqs6IKQAYtfNJHKuKux84WKArBIKIqQbVJmh0c6hkjGgoFFhTF33v4HooisZwGni9whUBIH8u2sWybhmWh6mGE1GjYAlco+Og0HBeBbMbjhYhEQoTDYTRNwzCM3SFE27ZxHId6vYpEBBcESqBSB+UkGlLR0EIRVM0EFIQQQVNhvUajVqa4Os1aaRFXlJHq3gBfoESLppc8IOM7ynTQImgE3nQlsJPs5HnrqoaKgq5q6Kq2eyfgzXcJgurz4HJqP2l+s3qP9INuQuUdMYpygAMc4AAH+P+AdwSBvnHzIqVsgaPHT3Pv5IPk81WschJXuNRLVaYvXUYU8kRjLZy/cQF8hxMDDxMx+9nMbSGkJFe2mJg8Q8JsJ1ctIn2TRm6TiZEJCm6BiB6mXq9z9N52yt48udIGpdwK29klzl58hlLFIp+3mJ6eZu7WJdKRARpVQcrvw7E2Cbe00PDqxNoybCxWGT3WRSiZ4vrCOVYbWXRsDH2AhbUZPvQL9zN5pp9Xzp8lGm5H0002nQvMrU/x+svf4uTEKX7yid/Cabjcqb3Ep37zY/R/eoQr1jWuzC2ytL1GJnmITz7wm0z2PoDlOTiay+WbN1lYnmLy0FEy6S6E6zM7d5Of+JWfoBYpUHM3KNSznL/4n4nHyywtbREOJdB0k0giieOYfOInfx7Ln6E93UGmbZB6w8VQ4OaN2zh2haHBUTq7WnnuwgXi8QiFks/o6BiGWWdi7GFaDkU5+dgxjh0+zNriHbKbS2wVLD7ykU9z8crrrK5dZ3FxlnCsjQ99+IfJFzao5wU//cnfROpZUmaDldIqpahFPJ4km93AUHzW59YYP5JBCZkkWnsoWUX++M/+iFRrDy3pNhzbJ94SoyvVQ9TPUJ0p8/GPPs7kkVEeOnOapbnlt/UcfnMixZsb+t5K+d2//JvVTABV1VEUjaA9MMB+C8dbrQPfI9lhP/nd/+/v2pGgNFzBZHLoCC1tKTT9rQnem/fLtu3dYUJVVXcLVALSK3fTNIQQOI5DIpFA0/YGAR3H2V3OdV3i8fiuZWNHgd5/vD3P2z0mO6p3o1GnVqsG/ud6vTl4+Objqt41APjdx81HIvDl3rqe56Eoym7Kx877vnkwcGfb3nz83+pOwvfajgMc4AAHOMA7H++I39z3HX2Y3o4+qrUy1VyNqlfAUjdwnCxmJER/3xCJsMZq9jKCOlNLLyG9BLoW4fTJD7K+XODQkRMsb04jq3E2c1lCpkolt8nm0grtHWluzJzl0Oj91KrBH+lLN17FDFs8+8K3aE2GmJ2dYXXzDoXtTXTFoSXaw8nxjzC3MsXA5AAtPSr9faM0Gg1qWhUiNtWSw4c++jipdAQDFVcodPQMEzUiDLUNM9R/D7eu3SQRiTI6PspnfvEDJDNtzNy5Snk9x2fe89u88PqTNKwKVqNIf/s47YMDGGh89JFfYnLwEaqWgyNMluZzlK0lOruT+J5KKBImFIvTPtBKqCtMtrZAXVmmbqzxd1+5xcef+FWmVp5ldWOWfLFCojWG1XBYX19HU+KM9TxGR+sQaCtU3U0UT6G9rZdaaZ2nn3ySWCrJxNF340qPTHsnqm6zvrRBw96mzhaFQoFUMs5f/sUf4IsSG7k67/nQBzh3/Tlsb5tiYRstlOTUqXsplXMsz7tofif55RJ9AyPIkMn62ibD3QO0p0eQis/K1jyFUo7RoQF6ejv4wEc+CF4rV25epl50qDQKTBx5gEZ5i4aVZerWqyiag2/paJHY23b+7idM38uqsf/n+wtH9i/7Xb5oqaIqe7f538oisF/ZfPPr3W3R2LNmSFx83wvIpeK/abmAQCMNDvdPYGgmPiLIqd5HmPenTziOsxtXV6vVdp/bIdT7fc+u6+4+L6Xcrfre8UuHw+Fm4oa/m+DhNPOjd3zTO6+5463eIeW2bQeWD89G+C6u10BRveZ+302cd0j3/s9uz/7hNctZxF3r7Vy87P+6c1dg55jsHxrcK3fRvsvXvv+5fywV5AAHOMABDvDOwzuCQMf0Fl579WUuX30RoxGnNz3E6lwO1VYwkg71pAodh3F0DTXURcVxiMdTxGIRstsljkwcZi2bZWNrC9kpSMUsiuUCfjyBZZS4M3+Dw4dPohsCw4Sw0UVbWyvlWpmPfPQTfPID/zPp1l4sR0GoPhU7hxnVKGUHCCXbWFmuYIo+Usk+pKbjJq4xNtkLUvDXf/tHiJoPfoNol8TSarxy7Xm23Bwr2TV+73/7N+hC5cQ9D1KozEKsgh6N0KhpZOdW+dRHf4KO4R4sWUSPqCg4dMcO8Z7jH0JTwVMMXnzhFW5c+wu+8cKfMNg3Dp6FETKJRKN4qkVLNE48pLOVn+fnf+5f4boKTrjEPQ/1MXIyTmdXG7LmoumCQnErIDziBmdfvo1wNFIt7bS1KhTyJVytwY9+9uOcum+IrfUCUtOQaoH15XU8kSPkZVhfOM8bV59jZWWZD7/vIzz39JeBAiEzyc/881/k3PUXcKxNKsV1WlraGBocR8gSx4d/lHD7ALPXblIrrNDfneSl555itbSMqzSo5Cu8+9H38ey3nqFay/Glp77MymqJe45Moog4iWSUpXyVxcISG/UcE4ffzcZ6jq26Q96pvy3nri9A+gpSiruGBt+sNrtu0Bq53/P6ZhKMDGLopK8g/Tc14qGhoKEqepBNrIRAaQ7UqT5IFxUfXVHRUFD8HcLrE/RvK7uNiDu2BSkDZXcnLcRHoPouvg8xM05rMk04HEYFZHOYb8cHrCgKmqKg+hLPcfEcB7thIfGxXBtHetiuhYuP5bjYrkfDdhA+2I6PI3xcX+C4No1GbffYVKtVfN8nFIrg++B5PqZpImVwTDwvIOeO5wVE3A3eu1opYjcaCM9BVcEwDEKhCIqioWnGXcR3L49ZRUrBbsFi088tlGCwUZEEVhEpUTXwfa+5fKBCG1qQ0qGioCkqKkpznX1Z336QvKEp+m7yxi55lgqqot2VNX2AAxzgAAf4wcA74jf3xvYM7e29dKU7IeySdZbxpIkajhCREW5NT7E2O4dWTnH4+ACnT/wQd7aXUMJgxnRefX0BzYVa2cKzyzx630cpW0VWppaoCYioGiEtTbYwQyTSRbKtA6lKDDPB0sZ1NMskbGrEwjEqzhwiUqZaz9GS8Xjs2K/ginHCSppCbRujrcF87RW2N1y6u4c4c3qEc9ef4s+e/H3u3DmLqhmcfs+HyVfzDLQNc/HySwwe6mctu8LXnn+KRL8FvmRq5jbtfZ1sZ+t8+UtfZGO2wMbiFTrScX7sY79B3bOp2XD98jVy9bOsu1eYn8mhE0bTFOyGzcWZb0NiiXNvfIO51U3mNu/wrmPvQooqK5vTnL/8Gm0dIRwXipVVDM1Ejat4KmxVHDp7DFrjPUTTKa4vXqLq5PnGi69z7rXbLE/NsrE9TW6rTMnZpC0VRktGqWtFbqzMc37tK1y48RW2c2t8/OM/xPXzr1LKbVNdTfLxH/kg52e/QiLSwcLKGu3tGRQZpT9+Dw+OfYq+vh7GRk8xOz/HE5/4KbamF0jFU9x35gluz97EU3ykrHHq5ClWsjdQ3AiqGSIcSmPV6rR1HeboqXezsJlHiyukw3H6U9o/fqL9V8A/PpQXIBT67qSFfyz/93u9VoBmJJ3Umo2F/u7ze48m3sqq8ab32bX5UgZ5AAAgAElEQVQvNJcNa0aTuL71Pu0n9xCQRtd1cW0Hz3Fo1Oq4no3TqO8RUyHwPB/PC7zS9Xp915qxU0u/Y/8wTRNDNzFNE9MIk0gkMM0whmFgWRaO46AoCtVqlWqtHNg3rBq+76FpBiEzQjQS3922/Wrxvj1HVZW7crWB3cbDHevMbsW5vqMU+wEJVv/fBxNhzxbyVgkg+608BzjAAQ5wgB8svCMIdKwtitAh0qqjtiZZ2ywyOjFIVbG5NrVAItVGtjpNpZEn5A9SKueoFPJsbm+xvT5HT2+Es1e/gyt96kqeF8/dIpHJcP+DZ9jamuPo4RNsFufo6hhjcX6eSCJDoiWKqgmqeZfjR+9FUQXp9nbaEq2c3/h7Nu3rVIpZdCXD+x/9FRyvQKlcJd94FbUepVDc5qvf+ltK1SKmrNPWYTM8FiNpttPe0k6pmCNXWuPWnYssLt/GlVVcX3Br4WVEqkGypRXfB11zGb2njzOPnGFrs8FHz/wGne1dOF6Imzevspbd4sWb/xeW1cbn/48nqRRzFEt58tVNst45/u5rX6ajf4hIq0u6rZPilsWFsxdQtW0mDg3z2uVv0po2yOWyFIo51tZWeeXVlyhub7K5scFzl56nxUhyuO8+Rvru4cc//UPU6iVWN2wqssTgeC9Ff5V5/xZfe+Xf4rqCRx57jJI/T9/JKHP5C1y+/RL5+hxPPfOHTM29xPTCHI66yeVb/wkUg2s3XicVaacl1clY5/3c2/kJbr0+S+dAF4sLa3QMDHN1+gLJVoOSnaVroJ3cdp3FqSy3p96gf3iAeExB4uEoHqoIs7ZYpbM1TSisM317mqTp/uMn2n8F7L9dD3ffjt9P1nYsC/vb6Pavt3/dPWKlBA2DaEipIqUKaKBIhPDxhY4vNHyhs/Nf2Rfsqtj7X+t7Ra7B3V5mr6mehwxzVyl9KwK9Y1nYTZNo7q/nuNgNC8eysBsNrEYNx67he+5uooZpmrvfNxqNXf80ECRqEJBW0zQJhUK727e/kbBUzlEq53C9BvVKGataQhEOphpE3EmpoKp7XuWdr7u13AgUVe4+fF+gKDslNWpwHNkj3AH5VoIcbnykFHcR4DfH2u2st+PV3on3228b8YWK9DWEd2DhOMABDnCAHzS8Iwi040nMcIKWdBsvvvp1ujIxVu40kBYcHk7T1mLSM3icaCRF1IiCWmWgP42ia7QmkmxsLHL42CCx1hC3b9xhdKwdIUpIxcCgTq1co9pY5ezzr/PuM8cp53KEdY2bt64wODKB9HTi8RjLGysITUWTRUpcY7O6gKBAKplhdXUJmbjK8NgofZlhZhZmyRW3WVmuUKkWmNucZmp+kcHeHnzXw3F97rvvNOl0W/AH1K1w//F3c2LiNMtbFyiUc7jFMme6f4Lf+exfkXEe4c9/9zIDrQ9QrvlcvHaV3/iffpLpjSdpaT/C4MADPPXFp0nGVLJbm3zn+T8gldEY75/g1mtXyIR6kbbBr/33v8TQ5DBXZr/F4uoMoXiUs2+8wurKEoZhEEvAL/zyj6AIFdMNM9DVy3Y2z8ZGmfVcni994Ul6u3o58+DjtHZpSNdiZvkKRWON1fIthgbH2cjO09neQbFR4sSJEzzz8hdp6wkxfE+aX/8fP8vVW5eZX15CCc1SaeQZHhinXs1z9errXL1+ha6eM5wY/DCzi8vMzC1xa3aadG8L29kCh/tGqW3leeT+R/jYRz9JuiPJ+kaOZDzBG2+8xOLqFH29vdiGQ7VQoic1Ss/hNDG1/205d/dURXUf0VN2vbpSSqSvoOvmXeu8ebjwrbBfGX6rAUUhfFxfQtOyEQzrwV4xyFtjv8caqd71uqJZ0a2+yZf7VoOJO885nouQEl3Xg8G+pq2jmM3hWA2k59KwajhOoBzvHScDzxV3DQQChMPhgGA7NqNjg7ue6B3l2TTN3bQOy7J2VXNd15GoTWuGDOw130Mk9pspIrvKveLjS695MRBcuOwo577vIzzZ9I0Hy0nELineu2ja8YLcfez2+8B3lPjd1xWCRqPxPT+rAxzgAAc4wDsT7wgCrXngqhbTt+Yo1Ytovko46ZMIG6ysF4ibBrFEG6fOHMayN4laGUwlTUSYWK6kkWvgWgkme3roHWynUt8m0RJhJXuDRCZNVyLK5MTDRKIaS+t3UJVtBtpOEDM0tha3qVQqrG1liRgGG6s5luancOse733sk9y89AqNwhKHj4yzsLbCUmGWzdom1XKF0ydO0tbSSy2xycThM8wtXGCgv5evffMLJGJJrtz4BoP9x0im47x44UUUXePa5UtUGptkOjPkK8uYOcHtc7P0uUmuffNF/vCvfpvp2RW+/srnefdPHqe13SbhZXjskQ9x5NQQr712ns38VQbHeggJk/GJQcaOjoPn8ulP/HOIVTBVnfGjJ2nvjLO1Vebjn/4IY/cOAYLt0jq/9b/8Ltu5Ep/5bz7ND3/wR6hUPVwH3v/+9/Pexz/IK69f4sqd5xjsOsb2epnOthTV1Vk++4nf5Plnn6VmuxwbPUpHpp1CdZUPf/QxppZe48vP/zWf+zf/gsWNV2ntNPjiN/+E75z7M2zPJhwx+M9f/Qv+5ql/z4sXnsGItNHdeohMT4THHnofxVyeUsEjZIwwMjFIruiiqCVOjzxIWBiEfI3h4QnCfojvfPMbpPUYl6e/Qypp4lZ95uYvvS3n7pvTNHZ8slKKPe+yoiKFiiJVVEUJGrObX3fIru/vqdO7BRwS8CVS+Ci+CkJBeuAJgfQkwgcvSFtDk0qwrJQI4QX5xzJo1hOeRJHqrh8XoaH4OoFbGnzp4UsP4btI4YEUIDwU4cM+Ag/sEUBP4ng+lYaFKwMS7SMJRyM0bAtFUfAcl0alhqIGjY2a6qPgoSkQjSabPm8d2xOBXQSBripBKaOiks1u8Vu/9ev4Pmi6jqGraCoIz0HxZTNZL9hn3TTQ9DBCSCzHwrFsPNduNif6gcdbNocmm7F4wWcWJGz4gJAST+55vXcIruPskF/wm95y13XxXL85zGgHhS/SRG1GCaqKtkuS97+W5+49FCnB9xHu23P35AAHOMABDvBfDu1zn/vc270NXFp+5XNb2RvotDFxzyFkNUnVreLZFbbXG9xzaJJUqpNb1y9y5PAxFpfLjI33cPnydXq6+4ibNUKJNnQ7gu2HuX7rZdKtPWhKkotT36S3tRNfRKnZ20SjLWxl13DqKr6n8P77f57edC9OvRb8cdfqFP01PvXwr7F6Z5NMaw/r67cxVZ3hzse5NP33vHDlZYYHRymu5Tg82U/NLSItwfpqlmy+xOBoGxsbFvedPsXSyiqtiSQjA51M3Vnj+PAkLZkupKZSsQtIL8Xn/tV/SzQa4ud/6Vc5/ehDNJQVrq98gXg0zsVzM/zLn/u/MWWCv/7CX3Hs1GGevfS/I6JFNiub5Cseh3ozXLtxmeVNl8GxNl5+8Tleuv4P+F6V4c4xnv3meXrH+vmbL/4xR4718L4P38egGeXL555jZnqKtfVtPvOjP8p/+uKf4FkhHnroFIpRQhEhbk/fpOEIxg4f4umvP8kDZx5lafMcQoL0YqysL/H0xadJWj49YwNUq1UmT0xgO3XWN1fRkwkmx86Qifdw8sFxrq78LSsbt4l2myys30SoksWNa4zHjgbJB6Eq168vUK/X2d7eZKxljHK9SLKti3Ilx6Mf/hBdZooNt4Dt1mlrSXF7boGQJnjisV/97e/3ufsXX/4Pn1PQQHGbntmdVGcFkEgkiqLukqi3aiBUVYW9JOi9yDSF/akOe6qmxEdBB0WgKz6GIlGR2L5ECKWpyPrNBsT926PsKrI77+2LpvUEFVDQVZ2wYZI0kxwfv5/W1ta9991nV3GFT6VWxXZdrGb6haIouJ7AcVxcz8P1XCSSaCSC7wlCZggFBdMwCUejhHQNfB9NDTKWw2YIRdWwbIt6w0bVFLK5NXq6h5H4aKoBUsHzBK7n7O5HOBRBU3V0XUNKH19KVCmpF3PkrQ18XCQK7Ng3pETZf0x8ZTcP25ceqqKgqRoIs3ksJb7ca0zcUZ13LnoAhPBRMIIqdwJfteu535WasqOOq2pwQSOEoFqt8nM/+f0/dw9wgAMc4AD/5XhHKND5SpaIHydXu8HKVgmp1elqy9DR0kcy0kG5VOLGjbOsr+T40z/9QzJ9Ka5ceJ2OTAt3Zm4w0vkQN6/f4Kmnvwy+jlMH34mxtTZLa7qbla0sL73+AvlSkUY9jid9Ipqgp68VT6sjFAXPrfPG1ed4ZforvHfik+RWVeJdW3ihBivFaaoVi2p9ng89+C8RrmR5eZt//T/8LmtrayiGzgMnH6IlGSOVjBNVfLqTJlQhnY5w6co88/PLjAwcpp6z0DSbWDxFqjNOsjvBxBNHsfsKnP5MNyMnwyyWnsa32ihthHjiiZ/iiU+eYebmWZ74xHt56qU/p+CUuX59jnikB2kbXL2+wJUbt3jvx4fJOXO8eOULhBOtmJEYZpvO2GQP3z77JKOnVL761F9x/vU7XJu/zkBbLx3JNIrq8cqrLzIzv8DIyHGikTgxNcUf/N6XiJsp3LpHbs0iEo9hGAaaF2es5z4mhvuYOHKC0XSGRx/9APFoJ4ZuUinVuXr9DpPHH6JcmOHcpW+BWqWn7wjZmkNmMMal2Wf4Z//sl1HVKG5d0j18CKGXmZ9bpCXVjqtX6BseZ6tcIBLr5vbUFYaHj3L2my9QcLcpbm1S3a4ys3CbWm2TlfLG23Lu2m4+UCc9bc9H7Hl43l6m8Q528o33q9Y7ecyKuudV1rQ99fKtMqR9n10VeK/8w0dX/aBfZSeubp89RModO8PeMN1ehvG+wUNpgFQDG1LTbhGsL+/av4ZtYbsupUqZer0eqLh+kKwhkOghEzMaIdXaQsgwCRkmkUiElpYWwuEwYTMEviSZTKLIQHEOGSZh09xt+9M0je7u7n1DgEH1dTgc3fVdG4aBlBqO41Es5alUC9j1Gq5j4drWdx2/N+/P/osatamUq1pQtKIQDtRiz0OIu/Okd6L1dhT5/YOS+197v3q/8z47EXxSSizLOoixO8ABDnCAH0C8Iwi0ajXo7e4n02rSm0lze+5VdF3l1uxVUi3dDHQcYWP5EkPjw2T6u0jHB1hZ2SKihRhuH6HqVuhLjPAzP/0L+EqNh+5/gnKpTirdRibaynOvv8DQyCC6nsHQ4hw/9BiWEubs5SVmVi+ytDxLuVqivTuM6zT42je+wWblPM+fO8czt/4DldB1KuI8a6s5Il43//HXX6anW/K3f/EUab2dalbjL5/+t0RMg/XsFuevT9M+OIxVLKF6IdY3lyjlBaYW4fmLzyLr69xeuMjGap4Ld76NH1PYqM4ycryL587/Od/+5iV6evv5u2f+jmsrXySa9vmRzz7Bl779B0ze187k0QewQwrfevnbnDl+FE2r8FM/+7P8/ud/l6XCAg+8b5i5+dts5UusTt1m1b1Fbus6Xf3DHDtxlJY2g4oiKWYFhWqO9ngrXUMpTD/FcF8nN2eu4mDy4z/+QXxSvDF9i/tP3E+6pY1YSGX++grTc6t8/blX2Fhd48FTH0GJJAgLjzt37qDIGKcmT9CitnD/xKPMzLzI7//xv+Ol515lON3N3Oo1RgfuYWklj2J4PDzxEZyQSzzWy5l7H2BjewpRiZOJJ1CTLYRCKY5PHMWXNr6Msl3coCvTxWPv/xjt/SFOjN+HJ96eU7lUziOVOpI9XyuA16zzDtTOAEKIIEYN8KUMNNB9ecQ76qRuqDhuHTyLIB5PIFUfXxH4SpOs+S5C+FiexGk2IEpVBvYRXyPYDIHEapLnPTKtoe97BPFrOw8hPKQA12nQaFSaecjB6/q+h9NwcRoelmXh2jaaou62LlqOHeSk12rN91HRVB3VMEi0tBCLxAmbIcKmgakqTfKrYITM3fVrjcZdjX3dnUPBnSFp7FpbPM8jZIQxdB2rUaOQX6NY2KRUyFMplWl4FuV6hVqjjiNshJD4Isi+3sl3llLDFyrC2/Ny79aO+xoSFyGLqCIRrCc9XOHi4wWfn2/g+cG9AB8FBR3XFQghEcINPN1SAfy9zG38pvVERZMhpK9gNRx0bc8ff4ADHOAAB/jBwDuiQ9ali5fPvUzvWAtGyqa3Z4yV2RV0LUxnb4qanaWzuw9dGvR29FF3tzj94KNk1/KUCmUsd4OqU2Vm/iYYNp5nk4zEOXVmlFJhgOJWlTuzr9AeP0IqHCdhtLDtZzl971Ha2uKsq9/mj/7g83T296DaNbqGe9lSr5HojPF7/+uT/PRn38N2ZJWNrVnem36Ic5fukFCOMTicYKtksbVyhc6uUeLxKEaoncl7TtKo2uSK6/gNH9dpcPqBj3Dr5gwPPfo4kVgXyVodm22ELhgcSfHtp57j3hP3YcTTLK4v0Tfax+/81q8xM3+bX/zvfp6vfvkLqOEiT/39Co88foaHzzxAfqvC5laezrYxLrxygUQkjFVfJx5+P/cerTEx+gCtIZ8vvvIcD596kEsXvkNLNMO1G3McnbiHySMTLC50kkyGmZu5wad++OPcvHqRmBljZmoZu2Bx/wMnae/zSUYUTp08TSbUQkg3EH6J7u407ZkWisUyqVAbY6OTJENJ4lqUVUvQsGvkqkU2Njf5pz/9izx+5oPUnnwGZ8YmEopSrxWxyjWUERu5VSOhp4jqHQz2d5CKdaC4afo6bVpbfG7f3CaUbsMXcHTyfs5dfplOf5KuyINooRhdQ8Nvy7nbmhykWJ6nNTkMGLsqb6BseggJumrg+3vJDF4zqs33fRRV2SW3qqKC4lOvN4jFYiA9AnusYGd+b0cxlrKpdioeBgKk2CXmvlSIxcLUqhbIpq1A36ud9pW7FVH9TWUsipRIx6PRaOB5HpoWZCVv57dJpJJU6jWq1QblchnLcRBKoKS6rkuxXMHzPOr1OrLZOBgKhTAMI+hnaZJ4z3PwfYFhaLvv7ThBTnS1WsWyAnU3Fos1hyVdpBcQ9D0LRTMTulnMslt1bjsIz6Zil/A8f7cGfO+OgESVPsjAeuF5Pug7RTMST1roioqihgiHVRqOgaoZaBp4nhUcdzQCq0agyKsIXC8g1pq+pz4rTeU/iMvbuVi6WwGPRqPfj1P1AAc4wAEO8P8j3hEe6K+f/+PPCadBsbrJ2deeZ7znIVTNZuRwP1WrzM0b1zh67D40CZlkF9vlDaQKqp8karTgqQ5j40c4/8ZrlO0K7alO4maYfDXLjYs36O/tp2pbjI0eQwibjfUlUu1hrl2+yFa+yJVbl/nExz+Irkd47PS7yTnb5KpZOjt6SKddjJBOrDWF9CWNSonOwS6OTzzI6+e+xb1HH0WqWbpaTxE2C+Qth0ptGc0Pka/mWVxd5eTku8hvClpaE3Rn4szcvkV3+yCXl56nq7sDq+Hw3oc/QLG8wtiREaLhMCOjw0xdu82V6+fJFwucfvAY/T2PEooL/vJLnyefnQdbRdEMStkifV3dtLYlOTr2LpR6nu6eI+S2VxhJp+m+Z5hMJsP2RpGHH/4wz337LH2dnUzPv4ispwmnBPVilUQyhuN6KIrJ8UOnGewbZGlrlh/+5Meo5GsUGkUmu0dJtCiMHB5FU1SqlQ2K5W3SrSlWVhdoTSVpOILxYwOsra7TGkkSTepYrsPVWy/Q2qbR33uYWKqN+akp2hN9qCETfBXsAq3xNmLRKPFEmldfeZbBgcNsbhSR0uPC1YuMjR5C+oLW1hBzS1dwGq3EI2HiLZ2cGnr3991H+h+/8O8/ZxhhUG2Qod1cYakIfF+iqWrghpbB4JqqQq1eQdMCdVJV9xrt/KbKqygSTzjYsoqUYZA2EBC/gPRKUERzeYGmCMDDkz6uG6jctl1D8UPEo61YVg1JkGsclLHsb+VTMA0DXdNQCLy/hqoSVU2Geifp6enFMExeuvQ8ma40dt3FqXqUa1Vs26beaFBr1FFVlUajgWXb2HZzqA6JlB6KCpqm4AuB8D0cx8J2bDzhInwP1w083/F4HMf1cFyHQrGMROI6Fp4ncGwPx2vgek4zak5B+B6+L8DzUH3wbAfheahS4tkNcpUtGl5t350BDUMPoao60hcoqE3VWSIVvxljF5BaTdVIxTuIhkKEQwnC4QiabuI4LrJZ8LJzx0AIQSikYds20teR0tunZsvdiyrDMDENA8MwURU9OF6WRSwW4yd/9GcPPNAHOMABDvADhHeEAg0eZ+57hOW1HA+cfoCpO9McHz/GcmGNQsFmcGwAXMna5m3i5hBEt7GcMMlwL4YW5cKLczjHJUOT7UwtzeMoDRqOQo8+yshoDc8VtCeHUXSbQnEdFR3fkaRSPqMjo9TtUW5ceB3ptvOdjZfQEnU28zN0tEiOjr2fczf/lNbWHhTDJ1e7hrldItw6yeHJk0zNrlC0s3R3hPn2V2cITViklX7yIsupe+6lEg1TWl0mEpIIqbGSm8H2bLbyK4QcyfTCNPcdeYQvfuWLPHp6lGs3vsHIyKPMXF9kPZ9lYnKcVPgwuh5B1BssLNzm/Y8/QlLGqdRXKW8VeN8Dj+Any0zPqnz9W8/yY48e4ezli1ScKqWYwXqhyHRhA9nY4pnnivyTT/84treOttaOJSpsrlXpT4+yuV7ANzUUW5DfWCfebmA2NC6cfZ2W2CSN/DJX8nmMmM+1N+7Q0ipBunjSopS9BSmFSs0m036GuUu3sNwsfWNdzOYVqtsXWHFVFrZcIkoHA2NjNOwsigKF5SlaI/eykV9ifcWmczhDhTLvOXOGSCSO62+j2AbHjx/j4o1/4P0PfoYbl7/Dcq3GyeOHyeVXsRBvy5krvRKKGieX2yKTNhAiEqijeHhCoqgGuq6hSQ9feCAgEjWRNPC9OFJVg1m2HfuFFHjCRdM0ivUs6XA4SH8gKA4xNANNUfBFQKZ9IXA8F0P10HwXDQPPk0hVAhWqdpFQuB0pIghRQdEEUu7kJAeKbSgMqqLjOB5IDU0TSN+namexXYlaF/yf//A7/LvevwGrRC1fxlGNXYXa0IKYOSEllnBAkVhWg0gsQb1cRdouirunokspqTUaqKZOKBRCURSSiRSFQg7VDFGqVqg7dXRfR3gWluVg2y6q76IaGkbIRChqMCzYvBDw/KAJUvo+0vFxhMD2GyjSQ8FHuCqK5uOrEumD8H3UZhGK63qYiomC06xOd5ECTF2lJRklEc+wOL1ES3c72D6lRhHfU/AVC4mHJ2watoqqh7GtBqpUg6FSaaIKBVUFXVNB+GAYqFJFCEm1UQ8uYg480Ac4wAEO8AOHd4QHOpPsoVpxiSVAFa34So6utglWF5bozYxSKjjYrkpv1z2EIwnKhTyF9TVaUmmu3Hyez/7IZ7hn8iiqZnDv+EOomk8oZbC9vc7NOwtcvnmBwcE0sWiIO3du0NszSjI+TCzexfL2q+BYhEMZhg71MD45hkQwMDBApSRouEscGnofV69/h7qbQzc1rFodUyvS0ZLin3z8h2htyWC7eT70wSfwGzZtbW2UvTLVWp7XXnuFltZutHAY3YXl6Q0SIRNFtRgZmOD4PadZKm8RBsbGDjHe/jhuTsOzN5hMj2KIKJFUiM3FbRRR5ZEzZxjtOkxLIkk6k+LkvUex1SgbOYeetkF++NGPUF6wOH3iOA+eeRdb1RpnJh7g9MB91MoNhvs7kNQpl/L09x7i+IkJGhWPWq3B5tYap+67l1OnThHr1Hj2/FMM9/Rw/vx5kA75QplqyWJhapv2nihdnZ24RYuhzkmioRTpcDd35m+R6owRjWtketM49Rphz2K74nLz2jlaInUirkW55qBFBIdHJtBI09bSih4TpPrCpBSHpOKxsLLMwtxVCqvLxEUUhTz3Hj1CsX4VV8kx3NVLwjdYzk7R8HJvy7nrNOKguKRb+yhVtvBlAyFcfFsy0NFFT1srhucCPrYd/Mx1PBYXFzFMjbcaONtp9avVariuG5BT390dONzfaOcJH1dIRJNQK01XroqPonpohocgh1A2MLQk+JG7KrmllHguuG6Q7LETYex6Hvl8FttuoJoqlhWopYZh0HCbNdpCYBhBPbVlWdi2jaFq6KqGFALLrqOHdCq1BlvZPMVikVwuR7FYxKrXqZTKVEplHMthZXmJ7PYG2e1NpLCxamWqpTzlUpFyqUCtUqZYraBoUXSz9a5a7iD/eideLhjQs50atlPb9W7vKMX1ej3Ik7Z9HEfsrut6VtMrraErcUJqkkgoiusLKpUKvgK1Rg0hfWxRxxU2vlDxhWzWjwdDiBJnL7LOu3vwcMe2s/OZ7xzPgybCAxzgAAf4wcM7gkDHTahWPaZmn8WtQEjtZWV5AzWks7mWo8VsRRVR8tk6t2efpSMzyslj72J9c4PRoSFW8vMUi0WGuo+Rz91BKnlUukh3JWjJ3ENd1vnWs1+jPT3I6TMnKRWrrG1MMz56L3Y9AVKix1M07CqGIulKd9PfcYj2jhGW1mbpapsgGYkxMNSPLXwSkTA3bjzL2ctv8PTX/4a41snS4gw93X20Jbq5fPM1OjoTxGIJBjIZ8is5rk/dJhVL0J3pYLh7FCF9vvXMC6zMr9Di2HzgvocQWxYJTScWCiOdJJOTk5h+glJpmWgqzHrxCp6yglUrUq0WKeYbTM/cgbjg8MhJitVp8huLbBWXqLibXLz4Kun2Hir5Ol2pLgb60kS1OFKtkG5Nsbad48rV8/T3DRJrMenvS/PyK08zPXsVRVE4eeJewqZEMUJUqiu0Z0YZ6h5nZHSSpNpDISuYGLmXsBZno1yklS6GJ4f5xnNPUsguk24JoWBSq+VIpTP89Kf+KYOpSQb7xtHdLF/6y+9QyM8Sj3RQrCzQ2zNEpWbhNwzuGTnO+Pg99HYZhMMKVrVCX8sk4x1nKOVsQnGdrnSKlkgrVj2G6X13Vfb3A329QyBD+FIQCcfwRAOJQzQaRlVViqU8ninRKNkAABjwSURBVN/AEy6KCp5wkVJjaGgI3w+i2HbI3ZtbA+9O4djJLhZ3/0zVED74KAgUNAV0FZB7ZNwINwhFbTyyxOKRQGVtQlE0hNccnJMaAokbjC1i1evYXg1bCrY2NxGuT92uU6037iJ/OwUnlmUhXA/f85DCZzu3RTa/TSgSwfN9crncrm1BuB61SpXtzS021wPivLG+zPbGMjO3b7K2tMj2+iqlQg7hOOB7SNfDqpVpVEqBzaJJoF3XxXGc3Xg4XddxXRvHbQA+Ej+It9vNdXaCiwZn57gHg36aGsbUU5hqmGg4jq47PP/CC+SLRcxwiO3tbUq1Iq5v41LFpYhQPLxmKoonbBRlj5Tvbx/cOU47++84Dq7roqrqbgvjAQ5wgAMc4AcH7wgCPTN9CdM00XQX4dTpT9/P+WvPsby5hRlRkY5PaatAS1sES8wRi2SYWygRT0RoC3XwzKtPsZVbxStaDPU/CFIHUeHajVcJx0KMDI8zOjCCa5ucffksbekEMT1DPrtKpVhC6CbhpIlb07AsF983KZfqWHaV/s57yRcWeejkx6hVLKTqky9m8Q0PPy7QO03i0S6ikVam5qfp6zvEfQ8cxa7UcIpgWmAIh4lDI0RaohQrORoyjhkJ093Tx/jIEK4ocru6Rd2MYGod5AtVRscGeWHq2xwaOYLpC0KdOsWay/MvX6ClrY94vIXD95xmYHCUK9eex9AlV29/i7pikxmeYCVX5cjEGWqlIuGYTkMpc2j8CG2xLhy3yubmZqByWjWy2RUKtW16ejq5fvsKSysLXL8wxeZ0mXgsxmMPvxvPrXH/iTOgaPiGBzWbUn2O+ZVzCK2GGneR0kVTNPrTGQx8cktzlKpl8naNvvYQr519Bs83sMI5Yk6S3/yVf4FmmNiywPLaDVYWsgx0d+JFBc+ff5pGfZO5hZv4qst6cZlSLsvNa2eJRduwaiaGprNVLTE2OIopq2/LubtdWMexghITRYuynd9GKA5dmTSOLSg2Sri+FqiMcm9gzhcqjuOhKFqTJLu7Sqn0AamQSsSDcg8fpFTQdQ1F9fB9Z3dZVYIUGp4A4UsURUNFwdQMNFVFw8DQdBRdwYzZ2KJMKtqKrgaeXavhokkTPAU8ieaD5/rUfZe6ZWFZRSynynjXPVhOgYblUvUr2I06rhss4zkuwvXAE1TqZRq1BqVSicXVJbq6hmhpa8EMt6GbEbr7+0m3t1O1LGynRqWWZXbhJhevvM65N17nG9/8KrMzt1hfmeX2rcvMz91hYWaa4laWcjbP1tISqwvTbCwtkC1kqderzaHDBp7nIlUFRzjUa1WEJpvWEhX3rlg/Fd8D4foIPFTTx5MejvBQPBVdNxHYnL1wlhPH7iVfzFOobWNZNo26heU4eEIiccjl18EzkL6J6/iB4i8cpKeg7zZGBo8dUu0LFde1UaWKvi/m8AAHOMABDvCDg3fEEOErN776ud6BXgY6H0S4kpAhWc1O8fCZxyiVNzgyfpLNtWVcAW2tbRQaFqoBbek2EBa98RhVq8DazBy2D12pflZXp2gUTJIpycTwu0npGdCitJkZrt56kd7uPlKZNPFkmtauKPlsFakLIqpNxYtQKs5RybsMpQepKzW2VnPkq3NomoslAJHEFlm2tgqk4n3E4zEa+hxzt2dIZ/rIaAMUi5u0RdJosTBFJ8/69hb9yREWNxZQwlXG2gepFDZxzDrJWDuikkXUdW5PzzDcM0TRy5KI6mznpxBuDV1NU87ajI1OkohHWNq+iecIRoaOsLw4xfGJM2zkp3DKGp1DvSzOr9PSkqRaruK6DrF4HOGF0HQHXRoktDSheJjx9hRblTK53BxGJEYi1kkqoZPbvkFf3yhb2w7j/QO0JQfo7mnnjTsv0tnRiaIV0BULR0RQDEl2tYqvxegxVVzNprJdZbuS5eKtq3R1xrgzs8bE+HGq9RpRM8nUyk26h/uRfpVCzSaiJxHOBkIXJFuj1KWB6mVBUQibMTzpEo6EaVh5bCGgvk5bRztWw8SICB49/mPf90Gsv/y7z38uSIoQSK1KPNpFNrvF+NAwUkYoVHJI30NRVDTNQFFBVQVSRFhamqWlpS1oyGtWSmuathvhVqrlCRnRJvEGTVPR9WabYLMUxfeD1A1Nkc1hPQPUnfIVDVUx0HQNVTODITl8HCtoMrRsB03RMbRQk8T7KJoabIvnEzfjDA+OsZ5dJ9Eax6sEFolIKoJVcahbNuVKBbtep1qtIXyB5Xq4dYtKY5tCI8f40ASRaIhSucbs7A2WluepNcpUKhU2N9dYXlmmWMriOHaQvayowfdCgqJgmAb4CkgFTVFRVAXhCaxqFc+2aVRr+NJHM00UTQsq1F2PXHEDBxf8wHqMAlIEdg5VC4b7hG+hGxJNA9lM6ZB24NUulwvE4zGsuoNlu/iKhe+D5dTxFR9f+nieRciMYOrx5ucQ+Kp9XyI8hZAZxPQFnyfNwUIdVdGxLRdV0YjFo9i2zc/8xC8fDBEe4AAHOMAPEN4RQ4S6AYszVRTlGogOBvoGGeodJ7eRxSmX2V5fJdUSQaguS/lVUKKEQsNMzcwx0N5D1IiT8U0OnTzNsr2EpoRoSbQy3p2h7JfJpDpZuDqNLOcY6BpCiTuUSwWEYlNv+NTsLRoFF98QRBSBZZn0ZSbJFTdpbQmztJYjlozjWxLHamBECwy2j7BSccgqa7jWNNlsnf7eVh48EeHWzSr9Q534RohEvJWibRGJxAlVSqSHUrR3mFy6PYPlzJLJRBGOSV/HEE61xHp5kcOTXaxb62RSI1QKLp2Je9luzJPbXmK8vw3bWqVeN2lUPDKRJDO3bzIxOcr5c5c5et8JVmZugzbE4ZEBOjv6mJm6RF/PEapegWQ0yczCFqZaY3F1hXR3go01iWu5tHe14sg6WC6a2caxw4/jiC0wh1mcXWR2apOO/i66ek4RalNxa2Uaok4mbnJr/gYJNUomegq3voXvmIwNPk6FHK5RozUzziP3t1HKFfFQiPcoJBNtlItV7JUCq9kVHh5NUa7V0bQES5tzmJE4bVobidYY5aLL5OgRZqZmaeR8BkYnWLh1nYwdpli7jWZE3pZzVyoW5XKDcCSEYYQRTpiwEaVslZFuAl1qCBlYB6TvInyHRCKGqumMjA7jSQvZJM+6sqdGKoqCaYZRFIEvgyruer1OXIugq3oz5QJc4eH7ElXRgmQJxUfRVSSg+mGkr4IPiiKQSgPdUHCcBo26QMFE04PilJ2bUZqmY9l1DMVEqhLLcXnh9Wd513vfw/TFeXJ6EalKUtFWHMvFtT1oVltX6zVWNjbo6ehkNTtPxc7x8usvkIhEqdd98vkNHMdhYWGWkBHCdqxd24WmqAhfoCoqpqHj+wqq76MqBrqho+s6ihYMDgokmqKA44H00SIRItFYsP2Kyv/T3p38OHKedxz/vlXFqmKRbDZ7n+ltVmksWbFlKU4s2ImCIEGAHHzJP5prENiJY1tKjHgZW/uMZnqmdzbZ3Iq1v5UDZ0bHgL5IAn4fgIdG34hq8NvFt54nLdLF2LvaUNPAOCVVnVFXi/PkrtfANFzMy6DFWSyPqV/ObLbM45Qg6GCpyIoCE7rkZYYxLkWSglcyncVsbe2QZgm1fTFNxTVAxWKRjYHaWYytwyxehaWyNVgW68tf3JUWEZFvl2/EEY6W/xrWuWTUT2nkkE4TjBsxzyv29/c5759zPh5Q1iGjAXTsLvubu3QjF8eZc55eMCsHjN0+K6s3mE7Oub3/gLMhzPMGn3zyR1YiC+aS6SSnwQG+B1k+Y393l67b49bGAW/eu0Xghpxc/oLR5JS17TtcXI0ZDS7xqdnZPGT3xgGXF4847v+BqsjY37hBNk1I0wmDk88Jim0e3L1NUp5yd+9dBiYFz2Vrvs+DjfuUDnz25I+8fv91Gp2AiSk5vX7I+eAzcrfit598jrHQvbmHWxpCvyQMOkzSPrXt03GbHD//iCT+HaEb4IYl3c4KFxdHOH7J2cmU4eyKZyef8/TkA8ogw10pySxMJwnXo0vu3r2H495gdeseee5ieut01zbJ4jnnZwPuPDjEbRek1CTxBK+Y8Cw5I1yBo/6vefzlv/HRp1/weDpjeFzy6PFz1jZ2ScohgQHPtmlGOxjf4fjxMS3PhdKhKhKmoz7tpsPs/JR0lpAN56xtvcP37/6Q9LJPp7mDF6+yHvSo0xme2eCyPyWvXH7xwW/4wbt/w72772DTknfe/UdmiUdlXda7D76ei9cUdFYiHONSJBFFMabhevz6N//NycURdW6orfdqTnEcx1Slxyx9RpGXnF0+p6wzLF+dlX35CvwIzIv4rg1ZVpBnJa7bwHN9XNdbTKCoLGVlqPHB8XBcF8czGKfCGCiKiryIMU6GrXOyMqGqLYHbwq0d6tpQlYtjBmmSUZbVq7F6k1nKrz78OTc3Dji4dYjxFuunnxx9SVHleM6LqRpxzHg8xlYzjk+fMYqvKUxCnE4ZDQfUtiAMVmh4TRqNEExFFEWsrq7SClustFaIgoigEeD7AQ0vwHUbVOVifnJdW4zj4PoNWp024Uqb0lZgDEEzJGq38MMAHEMcT6nqEnKHMjXYoqauCooyJS9iShtjnQzcirqyHD89pbbeYrFKVTMejwjDiHhWME9jaqdmOpuRVnNwFvG7GPrXIM8qZvGYJEmwtqbILcZZ3G3+arHKYntkbQ1lblntrLPW3aCqKuI4VkCLiHwLfSMCOi5P6W50uHvwBtvbq9jymE4johfewMQ9tro+tRny9Oh3BHUT13WxVUE7XCMeJbQbHfbfeIPLLy4xZzMapcfJ42dsdjtsdttMptd4UZPHf3pCa9djeP0R2+ubeOM2ntskDDr43RaXpyOa0QEPtv+BZnOdqG5TBQ47vbusrm1z9XzC9WDOnfAt0hTadY9u8y5e3uLO3j32tv4ak0f0Wpv4dcjV9VOyywHNKid3h8TktOcNbu18j67bJejeYW/ruxze/CHjWZ+rwRnvPXiDsjVi1j9nZSPEuB1Ohx+ztvqA+/ffJzUtdjcPGV5fcv/wkHRYsd66wfXwglt736Gux8yZ8uM7P2Fz7TYd0yZwtjg5/19aZs7vf/8z5sUMx7WsdnzWNrbpNW+RTYaUpc8//dW/EFarBM0O3ZttRqbJp48f8pP3fson5w8ZJwlJFbPeXaW+CLlz700O7u1w8vwpXnub6/GER/2nJPlT4iLjwf0DHtx6n/7FEY2wR2bmTMdjcs+wt7uN37AMTh7SCXcJo20mZUbaTRjNPXai29iy4ODmDk5YMc9jPvngA25s79Dy1un3n9PrrNBuWT795a+/lmvX810KGzOZJszzjLJoMMsS9vYOGFxf0IgaVNWU6eQKW6X0NjoUZkxNRF27OMZbTIqoc4oXRyCyoiYvAWsoC7v4I61qautR2gJMgesZjLOIa8dAWedYC+7i1DM+Ia7nU9qCvCiwlSFPGyTzgjS/XkxiSfqUpqCwFUlekJUZVV1B7TCZZ8zGE2aXY67Cc/zcklu4fed1tqNV1rvr/OqD/6Kx3qaqHfwwpKhysjnMkgmeaWJshyYB0zIhTzPyYobrWHzH0PSbdNsdAq9BO2oRhk08v0kYhji4UNfYsgYnYTaNSZPiq4kkVUUeJyTpYqlJESe4xsNzGmTxlMFoQGnyFyvVS4qioshr5nlGUdVQe4ttgKYmyy3G7TK8uqTODGlqmecZThVg8ChruzhXbgzG5uRpga0W4//8MKTIDaaKyG1MkqfESfZqBXpVLL7gq4oKWzjY0qHR8MjLa56cfYrFkuUllaZwiIh863wjAnpaHPP85BEbu4c4HljX4OHSapa0myHNZkS7VfH2W+/x4O57FFnM2fMjzk4uaAYbJFXBxw/P8IEoimg222xvb9JwaubTPs+efMyzZ5/y4LtvcnnxmLe/8zadaJftnV2yUcyHf/g5T0++oPJqhpMpaZbTabZpNdv4hIQmZHBxyWyak+eWIvfoRIdE610+e/gntnub2KxiUCbkYcFgfkKrY8FWbG5ustaK2AjbRGGDYnxCb/OAj48eYSh4cnWOV0Z0on26m1vs37yLZyJ6PZc/PfwQvwkrvTamdvCikMK9wi9aHD64w2g6IWxEZNWItnvA+bMjtqINNrq3OLv8jI7fxaQt1ltr1HlJN9pjfeM1ZtMCYxNqm7HaWsPkZ7SbEQ1yGrlDPBxz9PRjPvyfnxEGXb7/w7/k97/9T975zk+I45je6ltMJjM+ePgpZbvH+XnK/dvf5/X9W9zcuUlzY5Wrqwu22i3SqqZ/OeO1rR/Q8CLa6+vMihn9eMB1/wTruczbIVEZs9LdwHNbxJMY19TkaYbf3OPZ8XOyouTm3iGbnRXmgwmfff4R1lzSihp027vs3Xnra7l2Z7MJjpcRtQ3G1oRek+31mwyHQ7Z2N0nKFIi4ddDDDa6xqUdaXFIUixnKW70tvLqBa33KcvEgYVFUpMliWoQxBs/zcJzFfLkknTJJzkiKCfNs9uJhwoqytGRFyXgaU9iKkoKiyABLUdTkqUsyt5RVjuuXpHaCJaM/PMNrlKysNoiikDxLcGtLy3WZji44Pv8M13VI48WmwSAIWO32wPjcOrzLL//j37meXjG47pOmOZ7nEscxaZpTGsvl4JSr63P6VydcDwdURU4zCNjsrdEOm7SCEN/3McYQhiHGNPA8H9dp4PvBqxFvSZIwm05J4znzWcxkMnk15i/LMoqioKoq+lcXTJIBs2RKli+mcOR5SlnlWFuTZSXJ3JLMy1fvsesZxqM53ZUNrLU0gyZX43PqCurCJ0kSkjRjFsdkRU71YmFNPfexRY3bcNhcXydsBNjCYOoQ1wmYJzNabZcsSxcry70AxzNcDa8pHI+KirTIGc/ir+XaFRGRP983IqA3W/dpOxEX/Uc8fvYll6MBDTxWvBZNk1NN53S4i51YNppd7my+Sa/VYmt7HS8o8aI2xpty73Cf0WxCVbvM8znGj/ji6Dnv/c37bNy8yWB6wenpl8wHlkcnXzIjZZ4W3Nr9Lptru9ii5sbuHm+++Rae5zM5e0oVx7hem4oGh4eHtFoBW5vbNKuA0/ETtg5XmaYz1no9Op0Op9dXxGXO+LpkJVrHD5uktoSqJCtdppHP588/ZGUnwi1GuHlMHJ9x8ewxv/vFvzIdxaw0b1Bmlk60snh+Co/N1X0eff4bOmsd4vSS8WVJM2oTmz7JrGLv9iH+qsPtnTfx7SZZMWI2ndIffc68nNLb2CSxObdfu0NQzrnqj2hHDY6PjyiqCYn3lKLYpH99ymQ0Zru7x4/e+hEff/ZbBoMZ26sHUBsOdt6A0lJS89N//nsuLh6yvrHBxuoNphdTgnjKVvQaW523WPc7YA1JkXJ8fExejTkbn+M1A9Z3XqNBQH88xp8bjs4/5vH4CVFR4dUZT44/we0UNLst3CAk8vdor7Z4fvaIxI15+/3vkc47PNj9C66OH0H09UzhCIPVxQa62lBXNasrPah86rrJ0dEJF/1jjAdH5yP61yl5Y0yalNTWx3GgKl2eHZ1QFosZxNZCVS3uMr+MZ8/zXsx4dinKOUk+JMnH5GX+ajY0tUNVGorKMplNSfMEyxRLQk1GVkyoSfF9jzBYxTEBJQVRJ8DxcmpS8iKjKDJMVVHEMS1/neOLE6wtGY+nTKdTjDH0NtbodDvM44o7+/c4H5zRH/YZDofYOmeexMSzObbOmc1HzJIR82xGwzG0opBup4XvNWgGIUHDf/EPgvNqtvPLePbcxe/CMHyxCrymKkuMfbmS+6vV4Hm+uOMcRAFJGVPYnHSeME9m2Hqx3dFaS20NWWpJk4okWYS3MYZut8fJcZ/KLn4usaRJQthYIU1TSgtxmjAcjRYj/tIcW+Z4rsUPatJ5ApVLFHSwVePF0piK07MTOisBf/t3PyDLBxRpQjabw7zk5vo+P37nXdY6/tdy7YqIyJ/PvPwAEhERERGR/9834g60iIiIiMi3hQJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZggJaRERERGQJCmgRERERkSUooEVERERElqCAFhERERFZwv8BPlPYz7LbkVkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "texts = ['original'] + [str(_) for _ in score]\n", - "imgs = [name] + list(meta.name)\n", - "plot_gallery_images(imgs, texts);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is worse but expected." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Going further\n", - "\n", - "The original neural network has not been changed and was chosen to be small (88 layers). Other options are available for better performances. The imported model can be also be trained on a classification problem if there is such information to leverage. Even if the model was trained on millions of images, a couple of thousands are enough to train the last layers. The model can also be trained as long as there exists a way to compute a gradient. We could imagine to label the result of this search engine and train the model on pairs of images ranked in the other.\n", - "\n", - "We can use the [pairwise transform](http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/) (example of code: [ranking.py](https://gist.github.com/fabianp/2020955)). For every pair $(X_i, X_j)$, we tell if the search engine should have $X_i \\prec X_j$ ($Y_{ij} = 1$) or the order order ($Y_{ij} = 0$). $X_i$ is the features produced by the neural network : $X_i = f(\\Omega, img_i)$. We train a classifier on the database:\n", - "\n", - "$$(f(\\Omega, img_i) - f(\\Omega, img_j), Y_{ij})_{ij}$$\n", - "\n", - "A training algorithm based on a gradient will have to propagate the gradient : $\\frac{\\partial f}{\\partial \\Omega}(img_i) - \\frac{\\partial f}{\\partial \\Omega}(img_j)$." - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/explore/search_images_torch.ipynb b/_doc/notebooks/explore/search_images_torch.ipynb deleted file mode 100644 index fa389a8f..00000000 --- a/_doc/notebooks/explore/search_images_torch.ipynb +++ /dev/null @@ -1,991 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Search images with deep learning (torch)\n", - "\n", - "Images are usually very different if we compare them at pixel level but that's quite different if we look at them after they were processed by a deep learning model. We convert each image into a feature vector extracted from an intermediate layer of the network." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Get a pre-trained model\n", - "\n", - "We choose the model described in paper [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "SqueezeNet(\n", - " (features): Sequential(\n", - " (0): Conv2d(3, 96, kernel_size=(7, 7), stride=(2, 2))\n", - " (1): ReLU(inplace=True)\n", - " (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", - " (3): Fire(\n", - " (squeeze): Conv2d(96, 16, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (4): Fire(\n", - " (squeeze): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (5): Fire(\n", - " (squeeze): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (6): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", - " (7): Fire(\n", - " (squeeze): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (8): Fire(\n", - " (squeeze): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (9): Fire(\n", - " (squeeze): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (10): Fire(\n", - " (squeeze): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)\n", - " (12): Fire(\n", - " (squeeze): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))\n", - " (squeeze_activation): ReLU(inplace=True)\n", - " (expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))\n", - " (expand1x1_activation): ReLU(inplace=True)\n", - " (expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", - " (expand3x3_activation): ReLU(inplace=True)\n", - " )\n", - " )\n", - " (classifier): Sequential(\n", - " (0): Dropout(p=0.5, inplace=False)\n", - " (1): Conv2d(512, 1000, kernel_size=(1, 1), stride=(1, 1))\n", - " (2): ReLU(inplace=True)\n", - " (3): AdaptiveAvgPool2d(output_size=(1, 1))\n", - " )\n", - ")" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import torchvision.models as models\n", - "model = models.squeezenet1_0(pretrained=True)\n", - "model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model is stored here:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['squeezenet1_0-a815701f.pth', 'squeezenet1_1-f364aa15.pth']" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "path = os.path.join(os.environ.get('USERPROFILE', os.environ.get('HOME', '.')), \n", - " \".cache\", \"torch\", \"checkpoints\")\n", - "if os.path.exists(path):\n", - " res = os.listdir(path)\n", - "else:\n", - " res = ['not found', path]\n", - "res" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[pytorch](https://pytorch.org/)'s design relies on two methods *forward* and *backward* which implement the propagation and backpropagation of the gradient, the structure is not known and could even be dyanmic. That's why it is difficult to define a number of layers." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(13, 4)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(model.features), len(model.classifier)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Images\n", - "\n", - "We collect images from [pixabay](https://pixabay.com/)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Raw images" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(31, 'simages/category\\\\cat-1151519__480.jpg')" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pyquickhelper.filehelper import unzip_files\n", - "if not os.path.exists('simages/category'):\n", - " os.makedirs('simages/category')\n", - "files = unzip_files(\"data/dog-cat-pixabay.zip\", where_to=\"simages/category\")\n", - "len(files), files[0]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAACxCAYAAAABFe9cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACwj0lEQVR4nOz9d5BtWZafh3177+PPtenzeVPetJ8ezAymOQMSjgIgkJAhxACEoCiGpKAIBkMhkWIIITHEkKEUJBWCRAUREAWRcIqBwCGDCBgNxrGnMd3Vprqrq17Vq+dN+uuP33vrj3MzX2a+fK5M1+uu81VkXXfu8fed31l7rd8S1loaGhoaGhoaGhoanlfkZ70CDQ0NDQ0NDQ0NDY+jEawNDQ0NDQ0NDQ3PNY1gbWhoaGhoaGhoeK5pBGtDQ0NDQ0NDQ8NzTSNYGxoaGhoaGhoanmsawdrQ0NDQ0NDQ0PBc0wjWhoaGhoaGhoaG55pGsDY0NDQ0NDQ0NDzXNIK1oaGhoaGhoaHhuaYRrA0NDQ0NDQ0NDc81jWBtaGhoaGhoaGh4rmkEa0NDQ0NDQ0NDw3NNI1gbGhoaGhoaGhqeaxrB2tDQ0NDQ0NDQ8FzTCNaGhoaGhoaGhobnmkawNjQ0NDQ0NDQ0PNc0grWhoaGhoaGhoeG5phGsDQ0NDQ0NDQ0NzzWNYG1oaGhoaGhoaHiuaQRrQ0NDQ0NDQ0PDc00jWBsaGhoaGhoaGp5rGsHa0NDQ0NDQ0NDwXNMI1oaGhoaGhoaGhueaRrA2NDQ0NDQ0NDQ81zSCtaGhoaGhoaGh4bmmEawNP7MIIb75Kc33rwohtoQQP/o05t/Q0NDQ0NBwFGGt/azXoaHhpwohxDeAKfDXrLVvfNbr09DQ0NDQ8LNOE2Ft+JlFCDGdP/6KEOK3hBB/WwjxvhDify+E+BeFEL8vhPihEOLyfLrLQohvCSG+LYT4d/a/fxxr7W8Dez/BTWloaGhoaPhc0wjWhs8LXwT+IvAm8OeAl6y1Xwf+CvA/nU/zHwL/obX254B7n8laNjQ0NDQ0NDxEI1gbPi9821p731qbAx8C/2D+/g+BC/PnvwD8f+bP//pPdvUaGhoaGhoaHkUjWBs+L+SHnptDrw3g/ORXp6GhoaGhoeFpeaJg/RQrrf+YEOKKEOKqEOLf/DSW0dDwjHwL+DPz5//CZ7kiDQ0NDQ0NDQ94omC11v7iJ71QIYQC/jLwx4HXgD8rhHjtk15OQ8Mz8q8D/4YQ4veBdWB00kRCiL8B/B7wshDijhDif/CTW8WGhoaGhobPH0+0tRJCTK21LSHErwD/G2AT+BLwd6jz//4iEAJ/2lr74bzi+j8DFPD3gH/DWts6Ns9fAP7X1to/On/9bwFYa/93n9iWNXy+0cVjTmwx/ztKkiSEYYgQgr/5t/4Wf+Nv/i3+8//v33n0bOZLsPuzEiDEw/OtJ7IH02MtYMBa6t/f0VUVQoIQIMT8k/r54WWKgxd2Pr9PkEdtw6fCycfiuUE5z/HKNTQ0NHx+eNbcvS8Cr1Jb+lwD/oq19utCiL9IXWn9r/Og0vpvCCH+R4+Yz2ng9qHXd4Cff8Z1aWj4RHnrre/yr/7Ffw1rLb1uj7/6V/7jT3+hQsxF6FOKTvH0kzY0NDQ0NPys8KyC9dvW2vsAQojjlda/On/+C8Cfnj//68D/6YT5nBS1aC7DDZ8pv/zLf5AffPe7n/FaHPppWPvpRTsPIrb25PeflsPf/4lGZhsaGhoaPk88q2D9pCqt7wBnD70+Q+N72fCp8hmLqYdux8Q8WmoPRVk/ynw+QRrB2dDQ0NDwnPJp2Fo9TaX1t4EXhRAXhRDefLpf/xTWpaHhEIJPNGdyPqunmqt4xPMTsMBTt0z+uAJ2nivbiNWGhoaGhueZT0Ow/us8odLaWlsB/yrw94F3gb9trX3nU1iXhoZj2Ef8PfrTZ5nTo6a0iKPT7gdV94Xi0+rFT0pXWvv0f49dn0bwNjQ0NDR8+jzWJWBjd2L3q54PP1prsNZitKDSGm3NwXeyNMUPAqSU/Jf/+a/x63/31/hP/t9/E4OYX/8evTwhBFLYOlolxJE/e1BR/WDaw49Qz3t/+uOffRxOms/+ulhrqYwlTyb8g7/7t/m1v/6fMpskuBLKIicKQhzHQUpJHIe0oxglJdIYimzK1t6QoL/Af+9/8hf5+j/1x/AciZSHt+F4Bbk4svwnre/R6cSB/nhSBO9Rnz/YbtD24c+OHwOAtX74k1czujxhAw5XLNlj74uH3j386UmcOMp/4jln6/+seWApYCVgERisNRw5zId/awD7rgGHFnqwtie4DHzifKpitHEJaGhoaGh4Mo/NOz0uPOCokLEnXCh/+Pb3+Uv/9v8crKXb7fJ//g/+8jOt0LNcHT5pYfpRqEWa5u7Na/zOP/4NRsMxvqOwRiOwKKUQQtDpdPA8lzzPCYMA31PIStGJA/ZGI65/cIWv/vKvYgn4NC/g++J///Hjzet4zc3zdG1/3Lo8KWr4dJM9cTEc+r0IAUgwBms0WpcAOI6HeKYFnrT8YyvxSdtcNTQ0NDQ0fMY8UbCehLUWYyzWPBz1/Pof+EX+/v/vd0EIlLAPRCXHB16PLOmBOBYPa4CT1uNp3/skOS7y9iOKRZ7xo+99h42bNxEGlADXdXECnyiO8YMQawxVVdJutQjDED0bgS6IfZcSxa1r15hNRwQLwaHlwSfrY3Q4Sv74COqTI7mWOqPkeAT48HI+5ur+DGFNre6rLCFPRkhRIaSDDNooL+BIds6n6Q7Q0NDQ0NDwU8gzC9ZapIG1BmMNxtb5ebA/uCeODvIdPKmz+Pbllz30sRSAsPXjCTzt8PdH5VnmcZCegDjYB5t3bvHtb32TwXhI5AdILFJIXNcDJFmaE8URnX4PByizjCrLKYsci8QWmsnuDlubGyz1146tk/1Y23g0PeDkbXnW+R0M+8+P5MOzsEeE608dz7JLjmUWPLw/52e81ZTZjPHePaTJEAa8ICQ3FT4dlNfioRuAw8L1Sev0tMfxac6lR1lVNRZWDQ0NDQ2fEc9UdLUfUTyIsB7kzz0iWnfoO9h9WTsXrvt1GocqreHoMP/xlIRHCbfj05yUynA8J/bReZ5P3n4AgcUAuip494ff49rVqygpqcqcqqooy7LWGwaiOCZqtajKkjLP0WVBlqeMJ2OM0bTDEEcb7t68ibH62HqfvC4nbc9J2/00HM/7fdI+f3jfHq67sYfW2T5y/T9bxLG/T4iHTiOz/yOgSMaMNm9jsylZkpKlOek0JZ/OyKdDTDEDK7D2udxhnyCf0r5vaGhoaPiZ5ll9WIETclstJ6TRPZ1YObh0fYRiqePC6mmE5+HpPmrk0lqLNQZjYbCzybe/+btMR2MUAnG48EhKlO+hlCKbzjBljislwhqKLCVJp3ieRzvqYPKcvY0NKl2ilDqYx6fN0+zDx4n74995vvJYT+Lx6/dMOdSHnp985gnAYIqE8fZd0AXGQJlbdJVSeRWe9rC2QkkHrxOCUA8vY78T1iexb4/k1D7m86eZz0den+f9HGloaGhoeN54fErAoWIQy9Ho50G0VRv2L9fWWgQCKw5/d1/QiH0fnxPzVD8Jnl7oPnh+sG5HPn/4om3n6/6gSl5gdMkPv/8W77/77kEEOYoiXNfBdVyU4+JGdf6qIwRuFKGrgvFgQJEl5EVJpQ1RFOEFLarZlKos8L3goeU/vEJP2sjD2/foffCR0wSEQNoH58V+NH1/0c+/cP0UqDe8fj4feDCmYLR5h2K4g3B9KjtPETCaZJqSOQ6e5+EoiQpjHL/Nw7+OE+4IGxoaGhoaPkc8QbDWzGXoEdEq5YNsAmPMoW898N05onv2xSrU4k4+XtQcLvp5mrSAx83jMA8iv/tR1oOp54/moe/sT3fYEspYmAx2+K9/6x+zu7uLLSviVozrOChH4Xge/YVFgqhFMhljTckszajylLLMyMscrUEqB9/3KMucnTt3yJKEOO48xTbZE0WrPXHaE6azTzPNydFWu5/eIcS8WdOxGxoeTvH43HAo8miBIhkz3N6g5XkUWuD5PtYpycsMJQBdYgtNMlW4rS7KDUE6tc2VEMe06nErrv3HJ0Q7P6prwPF5Puoup6GhoaGh4VPmI6UEwIMhfCnlidXzDz8/pPhqlXMwn48zpPzJC6L9srCTl7Wfv1vpig/efZsrP34XgcKiqaqKHPBlgBdEoJx5zmoJZYkuK7Jkxmw8RFc5YHFdl6LICRwfm6ZMJ2MWl9c+9iYcj4Y/els/GR691z5H7IvL/ai9qZgNtvE9j9IIsixD6hJrLboy2Mpgioy0yKisIOikeF6GCAIEijrFfP67EYeV6zGx+hTJCQ0NDQ0NDT/NPINgFYcui3VE5yFjf+YC1c6jkHAwVF4bpDOPyokjhTmHh9ofZ9J/sCZPUXz1+M9Puqg/xbDrIfE9Ge3yO7/1G9y/ew/P8XBdB8/z0VWF4/q4no8QimyaYDVUlUYAVVmALdFljhe0cV0PIRTSSoLAJZ1NH7kthwLDD635Ud+Fh7f78fZUx6ffDxQ+KkJ9bH5CHFlqU04DYKmKFInB9VySaQZWI6r5/sOQ5Rloja2gKipmoyFKKGJvFaQ60L1Pn3X7iGN8eHjgYNKnELaPynf9vEXNGxoaGho+cz5yhHWfwzZHWEtlDWVRkqcpRZXVBvrGIoVAuS6uH+K6Ho5yEEoCEsmjh/2fZsj6cZ6hJ4su4CHRfPjxxIUhrAUr0MZw/YMf88GV9+dOABopFEIqpKsIohYSSTqaoCwEgQ+eQzIZ4isJUmKwtOIeOD5W+OSloZwMwFRH1v3B4PJDWwbicOuGQ7mTT0F9uI5PvP9aHhr9fXy0+dCSP+ci9UFuM9Q3aFWW4AgojUXrijLPQCqUEJTJAJOl2LIiy0sIQsaDPRwhCXp9hO8daSdQ36wcHvr/uJFUe/DwwGzuGEeTvQ9Z1X3cI318WZ/vM6ehoaGh4ck8lWA9qQTk4PlBEVI9VF5kBZPBDuPBNtPxLoO9XYosoypLLIL+4hL9hWWWVk7RXVzGDULsseHrp7FoehYrqsPPj87z6QeyLXV2q7WQJWN+9L3vsre1gxCCoixB1ykBi4tLWG2YTaYoBMZW6HxKnqZIXSIqjSscKifAD9p4QQsrBH7gkeoSrR9etjjhgl5r7hMiZ4/YZSdFWY/v3n0hf/x7Dy37EdHwp71h+NnFArI+NkZDVSCFwiLRum60kecpUleYqsCWFUJrbJmT7G3hdxfZBbxOm+6Kh5Uh8sRz9OMP+58UcJ03kAUEcu4zLKSssxHqe7VPQFo2YrWhoaGh4dn52BHWI9RBP6ajPbbv3uBH3/8ht2/eQhiLEAYhodSGlZVVVlZXOHPpRc6/8BKLa6cJwgiLi5QCcayG5Om8QJ/WIeBwhOrxF/7jIs9gMEZy/eoVvvvtb3P71i2iKMIYg3RdOt0uVVUhMcRhhBIC5QSYIgdjMLmmrCw4DnG8Tru3gkJjy4y8krjtGCVVPT8hQM7lyjx/URxbt2e91h/ensenCDzuFuVJKQafT/Zl5X60siryeUR+/qkFU5RQFegyxyiL1+lipYOfF8xGA9I8J+x2yZIp7SJDuA5WeQe1V8CR3O+n5pE55fthdIPVmjJPmE6HICxKAkLhB22CsDUfDWnEZUNDQ0PDZ8MnK1gBYyp27t/mm7/5O9y8cRshLI4Az1WEQUA6HLGZ5Wzfu8eVH7/L0uoKL73+Ji+++SWWTp0njNtYbF1yIkCe0P7q8b6g8Hgh+uhc1ZNTC+QDC68KsjzhR9/7LoO9IWEUoauSKPAJ4hjpKGxRYSzMkgQlBY7QVFmKshalFFJIlBPQ6q3juS7oDCnADzsEvSVKU2AwYGqrKCP3peox0Tq3EHvmcqeniIo+yilhPoPHzPrzLmjm3b+sxlY5Qor6mEuJ1RUmTzF5ii1zjDYUXkm0uErQaqGCGD/usrF5H+U4+MEW3SWFRiCEREhR38QAHEvDebD4x+//w6LXYrEayqJuFZtM9pC2QCmLFyh8FSLdFsaWGF2hHP9T2WMNDQ0NDQ1Pw0cWrCcWQs0to/b2dtna3GI4GNCKQ5SrEK5CIOi22mRpyngyIUkTdjbuc/f6Dd75/vd47ctf4o2v/AGW1s7ghXEd5TEPUgT2l3N4aP9ovisPvfd0PBytPb59xliqqmS4u8nO1iaj0YiyKFGyFpbtVossTREGlHLxPB+BJUtmTEcjTFnguQJlod1ewXUjqiJBUSK9ENcPcDyX2XhIoUuU66CExtrDzcieLLafYTM/VpT0Ucv7vEZeD8fhMSWmyJGiNoMTQiCtQdoKXeTYKqeygjDw6z4BShB3VygqS39hEVNphlsbtOIW2hNUGjzPOxC/+00pHtrTx6u0jkwwj/ZaizWaLEtIRtuk0z08pXGlxPVb6EpTZhadF3hRgd9uodz6HPz0bkgOr+jn/aanoaGhoeEkHitYH5T0iEP/f3SBcS0sJVmWkWUZjlQ4QuJ7PhhLkWZ4ysGVkpbvY6qSKs+4f2fIzs42N69d470ffJ8v/fwv8oWv/0F6i8sIpR7KaT2ILD1GNH30i+vxiOW8Fa02JLMptz68wvbWBmVZ1u1XlaS1ssRsMkWXJVYIOq0Opa7AGkqtyauSPJnhuYrIj1BBXBdeFRnClriqhx9GCCWY7mxSDraJVy/U+YuCg+08oZ/BkW0+6XicPPHDn38SQvPzKlaPYrBVjqRk35aqTGZk0wFZMkGaOi2gzDXx8iqtpRWEdLFSMhntsbezSbsTsbd1l8h36axfYDyZErotolYHFbhgLI7ng5BHivIMFiHkg+M7/8wIW3eJ1YY8HTPZvU+RDPEcje+4GOsgpE9ZGHSl5/msBU7UQagQhPv0m/9wJ4onfeHwxE+/nIaGhoaGzxVPEKyPv4ScJFBc16cVtyiKDKMNRtd2Tr7n4Xse0gLWYDD02m2KPKcdRhRaMx3s8fZbQz68eo3337vCr/zRf5YLl1/CDyOQCilAWVMPhQt5wvrASV2qTpru8VtWD7VbMxerxjCdzbh74yrD3S2EteRljuMohJRkaYY/j3xhLMksQVcaKQVlluN6AUWWU2mNFT6O41PmU0yR4EctgtYCUsCs0IyuvMXmqUW66xeRdXzuQSLAJ1icvZ9mcNAS4jFOCw1Ph8UitCCdJeT5DN+JMWWFTifk4z1snjDe3SEfDVAoRnvbnLKaUy++xmw6xmRj9rY3uXc/pR277A63CHpd7n14hTK3TGYZ62dO4zgBQRTT6y/Q6i+gPA+r52eKqtcEwIg6uUaUiiodsrt9jSKdEngSoRM0LiBwXI+y1AgLruvWjUBkRBB1kaoWqwcuBfBsLgEfq4VrQ0NDQ0NDzRNTAp4kWvcRQiABKRXLq6dotTskww2kkHiOS+AHeL6PEhIvDEmSGclkirUCoQRCa2LfJykK0smEb/3Ob3P39i2+8Yf+Gb7yC9+gs7CE6yisFBjm18DHRFIfFWV9UHT05Om0MZSVYTYZsrN5n627t5iOhwBEYUgcRniex+7mJtb3ifwAP/SpKk0ym1FVJQKLI0G5Lq1okU6rj1QWihlKQ6e7TNjr45DSKiZkmz9kfOscQueg3IOd/0kNxx6ey0na9PFR1wdR7o/i0vAzj60L8zauX0GmW6xefI2qqhBWI41lPJow2t4iG+wgtKGwlpk2yKjDcGeDt771LVr9RcJeh7jVoagqqnJGOtwC6bO3tUk+3aXV6jEaTwjjFmG7zYXLL9JbWMb1ApTrIWRdpSWlQucZg42rTEa3accBLc9nPJng+xGODGpXClfi+x6mqtBaY4yh01vDCVrzKO7RkZaGhoaGhoafNJ940RVSsXL6PJ1ej8n2EEdIpAXP8QiCCC/wqaoKx/Pw/QBTafIqYzqeUJUlnShCA7k2XLvyLlsb97l29Sq/8I1f5cVXX8ePYqRyUFikFE89/H/c3srauqVsWdadh1zXfUisFUXJYHebweZtZntbTIe76CJnOpviOS5xt8Nwbw/frxsHpFmK0QYQpGmK1hrHlZSlRmLJTUVlDVprlOMQxjEqinAjj1BnRMV9JmWKMhZTVVhVR8CO80nYfe3Px+4Xb+0XjB/6vpTy2H579Dp8vDSMT4Mn7YdPyKDJHpqTFVQ6p0z2+ODv/V2W/+VzSOlToXEcl7ywVJWk0vOuV0JgdveopgllkRN4Dq1WRG9hCSlc4rADxnL23Dmmk5TvffctWnGPYjbBGI0f+vzgW9/kR7//Tzhz8SLnX3qFxf4ifruFo1x27t3gxnvfZXWlxdnzlymyirQoCaI+jhvgKY9CVxR5iasMRpdYC44f4EUdQHGQInP4zvVxUdOTrNaebY8+gefpHGtoaGho+EnxeMH6hNG8k6yllID+ygqnz53n2rvv48zf9z2PIAhBSjxX4ToecdwhTWaomcTpOiRpQpZlKCnxPEGlS8aDAb/1j/4BH1x5l1/61V/lF375D7G4uo7wfEDOC1sOV/jvNwQQh66b+1HVutuWNgatDUWWMh0N0NoShBGu42DmmbvWGKoyZ+PmFfLRgNloj9FwgLEWiSAIAuJWzHg4BARlqfEdD1vVIjgvCsazCaDpd3ugDaoq63xCYTC2QsU9sqpkNpnghRX9XoyvztGKupRa44n5sP0J6Q+PPSb7TgkH2/+0XqrH4un2aEbvoxwYjuuXxwnbnxyPEz+f5DrN95DRpJM9prt3mQ2HTJKUShdUeQ5lTjHYIxns0eovYYwhL2urs9HGfd7/9jdZfukyveUlJrOEsDKMtrZRQpOkIzpRQJXOaLmWd9+9wssvXySfDRFBF8fx+NHbPyBNZ8RRxN33fsTapfP4bsD1d36PU2urnFo/S1lVJGlKq7uCcGOkkGjhIBxQVUk2HdOKQ5AObtxBOvvR/cc5RjzN7nnWff2TOm4NDQ0NDT9NPFaw7uuTpypAn0frpLC4ns+bX/0q3/3WP8EpKnSlSbME40gWlpbx/ABjbe1Z6rmErYg8zQjSlKrSVLpkOh3Rb3cIvJLxdMbWvXv8g1//dW59eI0/+Ct/iJe++HPErRZSKpQ86iRwktWTNfVfnmcksxlFmVFkM4osoSgKRgNwPQ9r6rxbKQRFnjHY3kBozXA8YTJNSNMU33PpL/RJ85x0ltButfFdD6ENaZLQ67TpSUF3NiXVGaay9Lt98jRlOh0xG27RCTza/QWqfEYyzFC2i3nhTc5ckATKocqnEMfUhTuP53AU9CP2RWCeYXGCA+uDmTyqYcBRsbofaf2ciAthsdZQFRlbH36P8d5d7lz9kP75y0xHA2ySMbu/xcb771MZi3/mHNVswng4IU8yMgPx3hbBVoAQPqku2NkZ8MpLl/nhD7/D0mKbpW5E5MecWuuTphWDRHPt6m3SQhF3+rSWFtgYDBhPR+h0hs4SdjfvkydjWt2X0JUlLwoECqFcXD/AGlvftCUJlAmB7yAdByMc/FYXlOJIy92T/hF4lKXW4Shrk8Pa0NDQ0PAJ8MmnBABKOJy7/CIXX3yRnRs3EdYyGY3wPJfxYIDXbuEHAVZrJIKiNIAk8COcXoCuStqtFsl0xmQ2oyxSdvcG5GnGO+X3uHH9Q/7kf3vKl776dcJWB8dxDix/pKwF3v4jzPNRtSabTRnubpPNJkgFZVmAtZRFXkdey4IiS6mKHKUU08mE0d6ALEvZ291mluTMZgkI6C8tkty6TavVohXHtMIIYyydfg+AJElYXF5Go7l15x53t7aRQtEJXSLHQQQxZVEx3dtiY7JHd/k0YWeB1huvEPkORpd1t6GPcrF/ROLx49IFPle5psDTRfKeZp9YwNSWZxt3mMw2mU2nXP6DP48MIvK9XXbv3cRKy4Uvfo2FF15hWpV877d/m8FwghtFvNzt4QZtcjxePHOZrY27IC2lFty6sUG5usjyUgjKZ6EbM50Ifvj+Lbphi6jT5/SZM7RbHRwEbqfLaDRhuLFJJw5RoiIvEhy/RZIWlNrgSgfHUdgqx5WWoszwojZSSZQfIv0AK+Tjo+OPOl8+9fOoicA2NDQ0fB55fIT1I4glK+rvdfvLnDp/lr07dyizHEzJ3es36a+t0XUUZZJAaSjzAqFcgijCDwO0MCgpqMqCoNPBDUP8yCcIAtKiYjQZklY5/+Wv/S3y6ZiXXn8Dx49xXQ/f9wnCAOW4eEFYF54IyNKENJkwGe2SpzN0niEQGFsPt1tdOwFgLGVZURnLaDxkPBzUInc8ZHcwoHaqMhgDZZ5T5AWe59HtdmiFIUJKqrJCIolaEZXWzKYpr772Bq7nI6XLcGeTYjqhNJo0nTDe3GJje5M34jbT3ftMeYPIDViUAdYqDidJPup4HO1gxZHIah05fTYR8aipn68c1Y/Ds4qeR4kzCcLU0coyq49/lrN2fo2FtbP0FxbZHo6p0pwsy8i1Jlpc4IU3v0i2u8Pv/ObvIFGozgK59eitrOGGLr1ui1vXr3HhzGne+/GPafcWSCuDUm3insJNBwRBjGp16fbaJLOEZDZj4vkM7u/Si0NMljIe7nLqzBpWOfitRTp+m0pXUBYI6eKUBQDdXh+hBGVliBd6COke9qZ4jmjEakNDQ8PnlY8dYT1q3L+vrAy+5/PaF77I+9/7AWVRYjRIJbl78zrbG3eJwrq4pN1fIF5YwvP8uhhKWFpBiBWCTJdkaUJrMiFsdRlPxqjtTUaTEbvbO3z/O99mYbGHH0V4rovv+zjKwQpF3FkAqVAYppMBVZmRzpJ6uF9JiiQ9sPCpKo3FoHVJWWnSLCdLpuztblPmOXfv3MNYw3g8QViJG0aMRkNmsxntdpvZbIqwFWVZ0opbtLp9pklKlRWsnj3DLEuhMpTZFIUhmYzw45gwDCmDmM7yKp210/j9FVRVUM00ruOipUUdukY/tfD8uEXdxwKMz+bX+pwIh5MtEJ7mixzzUnjklOIg39lSZgmzZMrNa9c4feEFHNej0NBfP0dlXTa3dxi88w7Lr38Boxxap1b5hT/8K4hZQavbJUFS5Cmz6ZDAU3RXV/A8nzfefJPuQpfBaEKvs8bezgZvvHmKyaxg495t8uIsC4uLXLt+k1mS0m5HYC3aWhZXz5AVmpbjkSYZnYUOVZah8wlZVoCuiFotcBzSLEP5Po4XHums9rF52lSCj2KZ1dDQ0NDwueGZBevRfMmTLY72O/GsnjrHqXMXuTl7h263w3hvh2IyIt0rKHtLBK0esXDI0wyMRSpF2O5SVJqiKolaIWHg04oj2t0O3tY2VVmRTBOmozF37t7hvR+9w+UXzyOlJIoioiDCIsgnQ7S1eL5PqUuyNMWUmqrSxFFEmqZ1VBUoigKlFNpUZFlKlqTMJmPGoxFpkjOb1RX/xlqKqiCbGcajMVprJpMJnqMo8pyl5WVcP2CSpLTaXYyYUhYpHd8jtxk4ITpLcZRiYWEBpxIEC8uc9U9j4i5eb5HZzjZuu43xVN2L/uOIhroajacZ2j44lkfNWhvgMWb4tv7MWHQ+Q5czFnpdhnu7TEe7eFFMZTVO6LO0vorodymLgiiOWFhbI+62ufrW2+xe+4Dzb77JbDqsHQLQ7A12kY5HUWqcLEQ4Ab2lFYqqoDSG9eUFssmQVrfP2YsX0dZS5jlplrO9s8t0MubiS79IVuaUlUXYknQ2ww8ClFKoOMBRHtZY0iRFG0N7ZQHhenXa9OctQ6ShoaGh4bnmqQTrSdeuw2L1eARuvwCqv7jK6QuXyIYDpDUoqaDSDAe7CCFJJgmOOyLwUjLHwfM9ksEYjWX94nkQhqqsKMqS0WSKRRBHMe2oxXi2xWQy5b0fv4cSlpWVZcZ7Y3oLfTzfx1QVZVkhpELOI6nZNAHAVBVCCipdkcwSpFLYPEMISzKdzVMIZlRlyXSWUJYVAHle4MYxmFrkuq7LeDxGCsHCwgIGSVIYXNdna3OTdlzn4xZFjlUSa2BhcZHh9ha9Xhsny/DbHdIMNrb2aC9tcub1LxCdOlv3cn/KgpWTWskePh6Hj9fh9x4xt3l8zT584J9JwD6HiudRRUIPT/hss9UVVT5DSQ3W4nsemJzZaBdfgjY5fuDRW1uj2+0iJUyHY3Z3t0iLjKQqcbAIU2IFDEdjhDV0uj1u3buPGY4pNayurTMeJ5w7s8495zY/evfHRIsLnLlwET8I2NveQEiHNM146dXXOX3+BW5e/THaSlwhyKdTfOWihYd0fXILeTpG5AmdXh8vbmPFfhtWHo56fpSo9VPv80+CJmWgoaGh4WeVZ4+wPiFg96B9qsQPAl78wivceOcHeFYQLgWErkO73SHJDBKX0dYWmRfjeS6e79BZWsQNPfa2t+ks92sjfqOJgpAyScnShP5CDxUG7I0nbO7uId59nyzLaUUBWZbUUdW8AASlMbS7HZRySKdTfD+orXwchzQr2N3bpdPpURYZVldMxhMqbShKQ5qXOK7CCovneRRliat80mIKou7vHvoBKFhaX8EgGO3tUqYZvV6X8aik1YowAuIgIs9LlOty4YWX6Hfb5HHBaJqAEpjCoCuL1+mwfOkVkHLeh+rZeJx4fab5zB+PzOmpZvscCtVn5imbIgBYQZ5PyCa7eCjcuMfyqfOks4ySCZVSLJ46TTKe4jgOjiu4fuUdbtz8kGQyhMBhdek048mUzc0dBoMpfuBSmYqw1aPX7TKdzPjOW2+z1FtksLdHnk4ZTxMuvfgKW/duMd3ZZnF9naoquXP9OgtLXXqLPYJWCyuc2sKqKojafYwEaypMYamyHI8CPIEIfITywDwQqQcd0A6PqhzZ9kM3Q5950V4jVhsaGhp+lnkmwXowXHzEwebh6CpAXaQvOHP+EqcuXWR08xZSgr96moX1l2oHgME201HtbWrRVNqwu7NJq99n5exZHOmQzhLKvGAyHpOlGdYasnSGtJKFfpe0rCiKkuvXb7CytIiVAs/z8B2XPM8pqorV9TWCMKRIM6RSyEKiq4okScFYxuNRXZyVzKiqin0rqSAImEwm+L6P53kIFG4UMZuNabVaeK6LtoYz584St9qMBwPGoyGnVtfQWhPGMUmaEoYh2hi8wMfxPE6treEKQTEaofeGJGlO0OlghcB1XaI4OrHA6XFFTx+nIOqwyD2UkTxvDHsoIivEg1aunBy9fW54UmTvWXreP7ZRA1RVQVHkFEXJhUsvYfw2sywj29ig32lhfBdaAdKvmGzf4N4HPyQKXFqtde7e32Qw2MOfZaws9rm/cZcgXCTwXD5478esrK7guwF/4Oe/wtbWBq4ref/HP2B9/Txf/eqXuX7jKnduXue8r1hcXGTr7i1acUieZxR5ztbmBmsrCyyuncLxwnkLV9BlhjIZQeRT4JEZSVQn5AISK+piv4dtzjgQsXXTiUPiVZxwg/Uog97HvdfQ0NDQ0HCMxwrWk0aEH5ceAMdEq5CEUYc3vvo1vrM7QOgK5UWE4RKtVpc4Cpm0eownuxRFRlpkKCXRWpMXFeVkgu8osiShyAuKskApB9/zmU6mZAX4rZhKa1Ql2dzcJmzFlOWQIs3wPY9ur0synVEWBQLBaDTCjkAJgdaGMAqZJinGVOiypKpKlHLRWmOtJYoitNb4vk+WjlhYXGDj/h18zyMrCk6fP4fjB8yShOl0Qr/Xwfd9lFL4QUA6TEFJKmtIxmPac2Hq+D5hGBEGLdLK1B2wjKYsS8ajEUEQHvOWfZYj9XgeJYZPykU+KVq7L1qfJKqfG6usT3FYWghqP9OiIFpYxYl73N7cxZqKVuiyt7dNpx1x4Utv0mqHVPmUhX5IYXxU2Gac5iTTGcl0SKftc/7cGZTrsTcY8IXXX+bah1fxg4gvfv0XuX13g3RS3xSdO3OWbqx48wtvMr57B5uNcVqLKGm5f+cWrXafyWTGJMlIspwlKcnLilbUwhQF2lTMkjGu18Nr9Ul0nfJy4PsrJVLVNnEPRk0epAbs/86ttQ8irRw7E08SsA0NDQ0NDR+BZ04JmF+6jhbnHP5cHGqXKgSOgrOXX+Lq6R9y550rLMQeeX4f6QhakYfnLuEHHlmaMJnuMB7uUeqcskxJhwnWaKwBIRRSKbIsQ6DxoqAuospLnFBhBeyNRtjhEMdxcF2XvCyxSlJZ6PW6KCmwRQ4WqrygqEryqmRpcZmyLDHGkiQpgW/qnNc0wwtCur0F8jwjakdIAWma0IpbrJ1eJ2y1SGcpuqyw2tCKW8yShKjdokhnWARFUeHMW79Op1PSPMNRAiGpzdoR+J5LK4oxRU462iXv9VAy2g9VP/tBOtLl6ll8RR99TI8u4oQirZ8GHpWHuW8LdsJXHhPXBupIvK4Mrf4qbtxjaRF0kXD/3h1cV9A+cwbfc6mKCb50WTlzmvGkZGc4o9VuU2QJ586dwxiLlIowCDm17pNMJ5xeW+Gt736fl159gzdfe5W7d28TRDF7O7u89tpLtNbO8f3hLtc//IDXvrTAhYsXePftMZ12TJnndLoLKMdjZ3eXtVPn69arnoujYqpswt07tznzUoc8nXL1/XdBKLQxRHGM47i02h2MtbVtXODXneXm+2rf//hgp0nmUXkxj84+IVXgcZHv5zFq39DQ0NDwmfF4wXoQULEHXa8Ovw8P21odKcKSFqwgarV44fU32bu3QZnmpLMxRmj8ICT0W7RCjygI8TyFpzyyXLNx+3YdZXQdok5MMh6xvXGPqixxXQfX97BlhdGGra0tFhYWkK4iTzLiOCZJEsIwJEnq7lmdThtdaYwxtSOA1mRZhsaS5wXGmAPngCzLkFLS6/XRxlBpjZQK3/eotObU+jp+GLK8usosSahUgesJZK9Pmsww8+hjlmSMRiMWFxex1HmzSil2dnfZ2jWsLi7RWVnA77V48fILnLt8gU6/h5SQJRM8z0M5z3BPMReqoj4Y8wO2/3fsoD7tLI8f0zlPI1Ofy1SBk/jI3Zjq4XMhXKR0cJSD6yqUAissZ06fJowCwsDHQVOUOVZA3OnT6Uck2VXyNOPCxcv0FvqMRyPiKCYrKxYWVyjzFF0W/Kl/7p8nzUtcR3L2zBleuHiRzbt3CcOQbivk0quvcON9GA52MLpCScFosE3QanP+zHpt5eYEaANpkdButZDKweASRy0c12frw/f4wfffJmx30AgWl5YZjce02l2SNGd5eRWsJQhDlFK02i0WFpYI/BApVR2NnZ/fSiqUlHUXsINWwQ/zU3J2NDQ0NDQ8BzxRDT3rsO6RfEhRP0rhcPaFV7h+5T2GN64hE8M0SUjSnKneJm538aM+fuCh5BJVUbA93iUMQjorC2xv3uPuhx9QZCmd/iLtTpcknSGygrIq8JRDMpuhAo9Wp02WZbTb7QOfVd/3SWYJnufUfdzzHFcqXM8jcBysNZRlSZ7ntFoxWZpQliXaWLq9Hq7rYq3BVx6VBaUU7V6XSmtMVYGucJWD8TxCKbFaY7Qm9H0S1yUIAoqiwHEcOp0OUko2trfY2tnl5VdeZHF5kbWVNVrdLl4Y43ouwhTkRYbjuCil5uLv5HjmyRd+e8Lzx1fMPa4Y/KRlHutR8PAafIYpAU+97P3h7odyeB8/fb2QejlVWWGswVhNlc0IHIHstFAYlCNRwmLKAmE0QkmElEhhObW2Sq/TJU0zjC5ZXFpCOg6yMBjhkFUCrMckyTFC4rdilFIsrywjq4xOp0UQBKytrdOJI0aDAUoKivGQGx9+QG9phfPnLzIaDhCmHsZvt1qUZUkYRsTLa3jS4LguP/ruP2GwtYuwa5w5fwEpKzylmQ03KIuKq1t36uItU9u7nT5zlvthTLfbx0oHpKS/uMzC4jJhGCM8D2Hn/waIE3KdT4hqH/n8J+ou0NDQ0NDwvPP4HNZDF43DI8zHLx+1MJ0LKns473Ju6CggjFq89pWv8sPZCGnrC/JsljNLZ2TVLgsovCjCdaAsBWunz+C2Y4a7u+zd2yQMYqJ2Fy/w0aaiqkqM0WzvbOG5PmEUIY1meXmZrWSTmLo9aqfTIQxDlONgrCEv8jp3tV23hkWCtoaqqlBS1rmtVcUsSWi1WxirkfPtmGUpUjkI5YAB3/cxRUlGgnAUtijxPY9Op43rOAwHQ07FEefOnePO7TsIWadJIAQrS8torRmOhqyeWsENfYyxGK3RpqKsSsgSfC88kkf4TBwJi3OoDdZTfO+IXnjEd+zBAHD98gTp+nxIjcd0UnhMKsA+jxRS1L+RsiyQUlHpknwyQwiL6wcYXWCtpMg1SkmEcklmQ3QxxG/1iCIfx/GIQ0mR5yjXEnViigrSrCT2A+7fvY8X+IxnU3qLy1y4eJ7TZ05TjLfRukQq6lzpJKHditkd7BEEPssLPXxPsbiyTFUW+GGEmqekRFEEWKzJQTlMRiPSSV1IeP78Oc5fvEhRVrSjmPv37qCkZXc6IpklVFrT73WokgFaVphcMhiNQChmw22G2316K+u02/XvTkqFEBKlFI7jIISoz2d40Hb4hGPw0D5vRGtDQ0PD55pny2EVhx5PKLJ+cF05NqG0SCtYP3eJ3Rc3+GD8T4g0eEGbvNNlOtlhmsyInFoMdpcXkYHH9vYGw80tpJAEC31cL0Aq0KZkbzxiPJnQidrgSIw1oGE8HrO8soIpKxzr1HZURUEYBpSVxgKu59ZNAIoc1/fIi7pF5XQ6BVu32oyiEN/3scZgJRR5TtSuo7fLy8sUZYHvehjP49SZ03W+rpDMplOyPGc6neIHPmEYMp1OKcqCIAiYzqZ4nsdkMiEIAi4vXSCZJeRphpAO1hh0VaErjShytK4ADzjUB+BpjtFJbzxl/daDlIInRyoPZ8c+qvjus+Dk9d5Pjzi6Xk9az0e6IVgL1pAlY3SVk2cCKcBxBLpIKJMprudQVQV+EAMVO1t32bu/S2ZcrFBMxjMEkiJNkI6g346Iwz6/+fs/4MbdDXrtFnEg2d4Z8p/9Nfjlf/qP8Of+3J8hardo9ZZRykXKAolhOhljy4IoClk79TpBt4fj+hTZFOX5uK5HVRU4jsJaQ+j7ZMmI3/2N32Bvd4cvfu3rrJ1axfE9KluRplNMWXDr5g3ube1iSg0IJuMhaTJkaWGBQatXj1S4CmtzhrNdpoO7hHGb7sISrh/ieB6+H+E5bfwwwvU9pKxvAqV4cAyElEfOu5+alJKGhoaGhk+dj9Wata5iP3whP1zg82Aaay1SSITrs7S2ymavzf3hkMjxaXe7BLFLMplRGotyIM/HmNQw29uhnE2orCWdKawVBEHtFdntL+B4IcPRmMlsgpR1FGc6GtMKI9q9LsLauf9pTjGvjN6v/h9nOdoahKPQlcV3vTryZOtikryqh/D3C7iqqkKYerrA82j3urT9EFFpltZXmc0SpLFg6jy/qqqIoojZbMZsNiMMQwCklBhj0NqwtLTELEnwfJfZdIrvh0gE1kJRlkjHw+g67/a4Y8An5bf6aSGORc9+0jy8bw55iR65qTo67dOIpCPzthZrNJ7voIsUYw1lqdFlhily8mmduyqkIB1PeO+9q/yTH7zPTCscN6Dd7nB6bY0Xz5/m0osXkcCZ9fPcHiQsri7zjV/8KqGveP/WgKXldf7af/L/5P8yHvNv/S//ZyjHR0iNKoYUaUKpK6yuaHc6dPqLdJfWUEArjun2F1F+TOC4SClqL1YrmIwn7G5v4vkO2BJrKvJ8hrUVnXZE6J1iZ3cbub1Br9fh7v1NHAK+9/Y7WGPwghaukqz0W3zly1/khZdepSwLPEdgywzlucwGI7ZmM7KkxI9ahK0Orc4iUauD57uEQVgXJWpz8O+JkPJoZLVJEWhoaGj4XPPUKQHHL+RHxNPB/w8X+DyIvUkBej4U2I5D7n/4I0bDIbNcs3LhJYQTIjHg+gijuXP1Xcqyor92hiqKcCsDjkfLDynyjNFoyCRJkb7Hyql1Fqq6qGlvdxddlFhrcVwX36sbCFhracUxaZqQG4sxhk6nwyxJMKVGKgfHdfFcl9l0gsWijcFRCs9xEaIekh+Px5w5e5aqLOm0O1BWLK2soKTEcxRKSGy7he8HWGtJkhlKSTqdNq0optQVZVkilaTX6xFFEUEQIoUkTRMm4yFSQNTp4AlBVRbkeYof1IUux6ODJ7XGfag46gTBeJJ91aN4nE3VQ8s/UZt+NuLi6LoeH8Z/WPM8qs3w4c+Pf2bn9k6+71OWJWWaoHVJnk4YDwe4yiFuRaTpDK1L7tzc5Mfv3Wf13MucPbPGKy+9QKsVs7CwSKsVo9G0Ftbwwy6vf2WTq+98n26vR+X53J5s88f/O38EPw75N//S/4Ff/qVv8of+yB8G5SHVFKUkbhBTFCVWOljl47W6EAT0z51DqgCLxBE+UgqEdamKKUUFne4CpiqYDnfZuHOTpfVTuH5A3IqYGc3qyiJ5MqYoNGE75IObd9jY3KEoNMJCOxC4r1zm1JnzrJ05hzP/PUnpoI0l9gNiz+V+coPvfuu/5uq1O3jRAutnLvLyG69z7ux5Op0eQRASxxGu64IxtUPGSf6uTYpAQ0NDw+eOjxRhfWi47sTrxyFzeWsRAqSAsLPEUqfFte/8Dp4T43QXCeIO1XiH1EqCdp8wbBO2HDr9Jdq9PtM0QyiXsshQnkcQxxjHYXNrk1kyZW19HRX6tHtdsumUZJpgjaXd6bK9tUmWpph2DNqgpMQay2A4wFEOvh/gBOFBfp3neSRZSqvVQliBEpJKazzfx9eGzc1NlpaXsGWF4ziAZTwcApZut0uapzi+Q5qkOL7LcrgIFiajMUiB4yrKssRx63QFoy3aQqmrOrqEocwzBBLX8SjLrI6yugrFyRZXTxKczyJQPwpiLiiep4ivNeboGw+N5p/cUvjIVw5FYk8U/oDZz780FmOh0padvSFYW99ouDHlrODtd65zc2PI0sUXeOHsMsu9Do4tCJTPbLRJMlG02iHSkeAEfOFLX2Pj5k0qPFyheGmlRTXc5Nyli6ysL/Mf/9/+73zlC6/QW7+AlPU5pRyPVrtNGAR0Fldo9ZfBwI0f/5h/+F/8Olev3uTnf/EX+ef+u3+WMG4jRcDy8jrnL17GFDPGwwFGCJZWVkiTKUo5aKNpxTGduM12NuTm7fts7QxIcs00KfCVZKEd8XM/9zXOnr+AH9XFjsJarDEYNMpzienQ6/ZwTMVk9z6D27f4zlvf4h//Zp9LFy7z9a//Il/+ys9hl1dqSy3XRR1q87yf79qkCTQ0NDR8PvlIgvVodPXRdeJHLy4CRYkXtrj8pV9i7+pVJnmOchVbtz5kcPc2pa648MqXiNo9KqMxZUrQ6WI8l9FwxM7OTm0xpSTdxQWEo9je3qYqSnzfR0qJ4wcsBBHpbEaSzIjbLaajEVlRYI1BSIHv++RpRhzFCDG3m/JcpFJoa3AchyAIMKau9o9aMTaZ4aqCJMvRRUWpcqSF3cEAi0Uqwc7ODkII8jylv9AhSRImgzFlVVHqCke5FHldoDObTomjmDiO6XR6hHGAH0YYxEH1ubGGqqwoqwrXenVRk/14F+2PY+z/pO8+V2kKhwSrfVCQfoTj5+f+ywfRVnHgdHE07eXBMozRlFVJkSbMRjtoC8YKtraHvHv1DuPxjCvX73Nzc8Tq8gJLSz2m4zGOLhgPJem0gzYVyWxMr9el09tkcX3K6vlX+PIvfYO9u9eJoz5f+eKbpMWMq7dvc2d7l73rt/iNv/df8c//+b+AQhAEMWmW4LgCzxVEvdpx4P7tG3QWV/nj/+yf4N133+N7v/2bXHvjIhdfeIN2t0cYR0Rxi1a3T2U13U6XwdY2/aVFCl0QRi08zyNud1Dvf0Dn/Q9xpUTrEkE9hL/Yb3H5hcu4XoBSCqvNvPsVdU64NZQmZzTaYzYZg6g7us1me2RpTi/02b59hR/LnO7SOmcuvkBvaY0gjHCVgyPF3CarEasNDQ0Nn1eeKiWg7hXOwbX6UcOpRy2tjkWrqCOs2nE5/eZXufr7v0usKwaV4t7dO4w2NhCmIHQVL775NZACX3i4UlJJha4Kgig4KGCaTSeUVUmr36W3tEiZZiSjCb2FRRDguw7bW5ucPn+eqN3CUrsBREGMUJLA99FaE4URnV6XMAoZ7u0SRhFVWc69K10Qgqqq/V7HwzFVVbG9tYVcWiZLU4QQOJ6DUhKpFEWWU0wTtqYzfM8nnSXM0oQwjpBS4bpePbzfEiilyPN8nqOqkMrFcXxcz0PI2q2gyDOKoiCIQqQ9waLhKXiUwH38MPhj6+afOIR+MJfnIIfV1nbAT/rGfKT5sO/sg5PeHjgsPBg5MMZQFjnjwS5bm5t40iAdl92dIb/37bf50c0dXGEJfZcLa20unF3k7PoS7XbE2tISvW6X0WjM3bt3WF1bx1WSG9eucev6Vc5s3GHlwqtcePU1drZ2mU4zbn9wg3/0W7/DUhTQWe7xw+98jz/6J/80fugRei5au4RhSBjW3qrJYI/Rvfvc2hrz5Te/wJfCNkFZcfHSZe7eeJ/FtXU6vR6TyR6YCtf1yPOcTq8PSLqdBaJWB2zJ1Bty/vwZFnstrt6WjDMNFjxrWVzoE/g+UkmwoPbztE1dwFiL+oKqLOn1l+h2Rlz90RWMFnjAlStX2N3d5Os/9xW++rWfY3DfRRlwVtfwohghnENHad/8okkLaGhoaPg88fgIqz1URnUs+nQgaI4VsJzEwZCxrIf5OsunWH/5NXZu38IYl263Q5WkbG1v8+GdTarqLS698goLa+sYR2DykrKqi1fanZh79+7jhQGOkoSeV/ug+h7dxUXSJCEMA9wwxJvnfoatCBeIWzFBEDAcDAh9D63BIul2eyyuLpHOpmzfv0/cbuErl7IsEKrOoyvygsD3mZQlUikcV6GriizL6fod8jQjSRN0pXFdh1arRWU0/YU+Hd1hNBox2B0QhCG4Atep/Vl938d1JL4j8R0XgaDSBkcYdFkghMQYjZj/99PGZzWEuy9Y60i1xRwpunq45e3hm67DonW/4O3BNA8EbFVVJNMx2WyIoyR5llClKXfv3iFwJD/3yiV6/Q6nV/os9bts7w5QyuXM6TMM9rYYjvdYXFzk3IWzXL3yAadOn+Wl176MoGIyS0hnCcqNOXv+EtL3OHP5ZX7hF78Bw/v8/b/5/+Lexh7D+9foLXeYDm4ilYfyO/iOQtmS2WCD1YUAKTWVmXD/3k2EF9Jdv4gftrlx/UNmsxm3btwgnw6JophOt8vC0hJq3gTBdRVlXqAcRVVmhL6kFbkowVyQSoqyJC+Kuf0aaK0B5v7BlqIqMNrguA66qrh56wZ5npGkFQkS11M4QYtub4GFTofIU4x37qFNycr6GcK5E4ishx7mzQh+Gn8NDQ0NDQ0flccK1uMXhP2L+eFrvRSPF1IHF//6BRJQvs+rv/xHef+3/yE9JdDml9i6fQ//9m3G6QzRbjPOKlaVixNG2CTDj0LyqqQy0OkvgKj7nCdJRn+hT9zqoFyXfr/HZDwmiiKkkJRZhqPcuXd5LUCiOEYXOUp5BHGLVqfL8uo6Eghdj52dbfIsP/CMBGi3W4xHI7AGrGE0GiGAMAwZ7A6YTidkecJ0OkVZi6scgrhHtxPhegF7ozFFVTEaj+n1egdNBHzfp8gLqqoiyzOCIKLMc8qyJI7j2l1hP5p5wjH5JDgSLX3cAh4xrH5S0ddnnRpgjDlYBzMXrfDwes5fHBOs8uB9OQ+q7g8y7M/B6LrZxGB3m+HOZi3WlCBLE6I4YnkVUBGLq6dQUlNUMMsMw2SXW3fuM51M0VWJ6zi8/soLrK8sM5tNKe5vsri8Tm9pEVc6KKPZuX8LJ4zo9ZcJ4pg0D3BbEbvTm3znm7/BKy+vU6VjFlbOYxJNoQTSC7j247dZPXUWJQTX33uP3/7t3+HP/ff/FUrh4cZdTp8+x2hUC1WTpyil6HRalGVOnqW4vk+WThDCoiQINHHgEnsO3chHW0WZzYijmFYcz8W9RDr7ot9grcBRDlIqAi/A8QSXLp0lLSvCSLOy0GdtZYnzZ06z0G6jrcJxFEIYsskeu1gWVs/gR20cJeuOWvNc7od+D03EtaGhoeFnlscL1iMX9WOfHXQQOJoO8Og8R3EgWl1r6Zw6z+U/8IvcufoBZ1/2GaUZQZZSTVwK6aPDDlr5gERbi+u6hFHMaDSi2+0TxBFaa4w1tDodVtfWmcxmRJ5Pt1Pnj+qypMozQDCZTAl9F8dR+L7PJMtYWVumt7jE6bNn6fb6hJ5HOUsRwN7ODr7nYYDZbIYQAt91qCpFmWdMy5KFhT5ZlvLWd97i2rUPMVYTR5KeZ5AVFAQsLK2xtHaGCkXQiubdiXziuIXrumRZhh94pGmGEA6u6yFUPaRaVRWuMU9n4n8SJ2nGx3z96XNQjxdxzd/9qOv5KbBfwb//x+HnhxEP0izEPHKHkHU8WzAXraLeYikwQoKx81SAPbbu3iSbjbEYlBPS7ccsZoatvavMTMlb779FJ/DxlGWaJDgKzpxeZ2VtjbXlRRZ7bdqBx2y4C7rizvVrmKoiz7q1pZrn0l9cIQhD0tkEXaZ1gVWrzauvXub0cp/xnWs45Kh+F9+X5NNN0skQW6QsX3yRzd0xalLx5/+Vf43l1WXGm3dIJ9v4fgxoiiLFiLqpxt7ODkIKlldWyWYjvCBEOi5pMqEqUtqtFoL6PJlMEjqxX/sRa/3gnwMp5uJ+vt8MCGMpioIojJHWcm5tmShq0Y591k+d5uz5CxgheOvb38L1fBYWl+m12vhhSDKbsXLuBaKo/s0oZQ+aadgTouUNDQ0NDT97PHXRVX3tFgfD++KgAOjpv49gHhsRuAKWzr9Ebj2q61dodVqYSiOtQNi629N0OiYmph0F5FmGsALfD5gmE9rdCN9z0VrjuA5FkRH6bi1MtMFWdcFUVZSMZwnGGELPw3E8irzE9XziTofzly+xduoUQRig221c16mfFyVJllCWBilrL1bhuEjlEQUBSgnKLOGbv/d7vHP1OqkTINvrtCLoLnpcXIhoGckP3rtJ3Fpk/cJlhCtAaCwV2laURlOVhlmWsri4gCwKvKpE7keZpKgbIjwid/ip9/uc56Qc6ifGcdG6H3U9UZTvF7PNRWrdPrUWRHJfFBmBoW7qMJtM2N28z8adG5DtEbiKMG4Rxi2cIKK/sMjv/9630MmA9+7N0EKw0O1xfn2J5cUWX3jtEusrK7hKIKxhqR+T5SVha5nRLGHBC2h32kip8IIWVWVAFsyKKbsb9+j3e1w6tcY//kf/kJ6TcWE9Qmc7VK5Dq7tEmuWgU4qyZPX0aZYXl7FWsH3/Ntv3rqNsydKpC+zt7eF5HpKI0WCXGzcGnD17lo17N/HDENf3UY6H63hYI+gvLNLttXHvbOO7daMLazVgkVJgjH4Q2TYGYyyVLkmTyXyfulgrGU6mjGYJnruGchykEHhKIauC33vrLWZFyeXzl3jh0gX6e0PysuL0uReI4hbKc2sxP3f2aGhoaGj42ecZXAIOOQOckD92OLp6UuFVnRYgDqJY0lqEcjl17gKu5zEtC8bJjA+uXGUyTehUBoRglmVoaxgnUxzHY7m3TFlpZskMIQWnTp1CCUGWJAR+QFXVnaKqsgLq9qyz6YQwbpHnOVma0e12KYuMIAjodDpEcXTI2F8wHY64f+cuGggCQVmWTCYTpFTEcYzn+0wnI+5ee5t7Gzfxlk/zx/6Fv8DvvXOb7btXuZLtcnlthddOrXL2zBrjcInF5Uv0OyGVKUnTFOV4ICTdbrf2naRuWFDM3QziOEZYcJTzYL8d2v/PwrGs48dPe2zeR8Tdoxa7n878PLkEwENCtRZQx+yuLFitj7YeFiCkQApZR1sPUmEEBkOZF5R5znB3k+17t0iGG6yuLOFHMcpxWVtfQjkOly6fRTiC7d0RSVagnJBIOUzGE+5cu87mrVssLy/T6/cIfYmVhnOX1nH8Dm4YU+R5HXGXHq4fonWKoyzr66us9gO+/bu/y8bOCBP7BExZWB3TFR38MEcYSyd02b11g4UzdYRTC0UrDui9+BIGQVkZ0iTFdT1i3+H6+++hjcYRMJmM6XS7BFGLtVOncWJJu9UlzSuMFARxm7yY0I8VrcgHDGWVIyoPx/EPziODJUtnTIa77OzscGdrkw/v3Of9G/cpKrhyc5PTH97m57/8BpfPn0EqKLKU2TTj2vXrzCZDXn3lVYLQI8vGLK+fY3X9Io5y9g/ygy5rTSFWQ0NDw88sT3QJOJy3ejjCus/TiqeTOjUJIXBch5VTp7FKMNrcYuP+DkiH7toqbhST5hl5ZZCOYjDao7Swtn6KJW8ZqeY9ycsCVyqKPCfLCqaTKXFUpwzU/qqS2WyGnIvSPM/p9boAuK6LlBLP8w7E9Nr6KXResre3y/bmJmmazvui19MZY9i5d4O9javI0MU6LqutAHPjPfTGdbIw4Mpwj2+8EfGV82t8MGhjuqv0YklZVnQ7fUqt68iSlFTVgw5cjuMgjWVaGYQF5fpoU3e7qpsHPDsfV0I+fV6qPVxI/5mzL6APi1VjDNZoLIduoPajsNgDO7EH572q8zJl/VpbQ1GUZMmM7c07jCd7TEYjijxHOiHCCXGCmNW1U7TaPfoLHzDc3kQoSV5UpGnFNM1Rbszq2iqu51BqSRx0cKSm0gVVNgZpSZIEKSTLK+cwRhOGEXubt1he6GCE5txqhxfPLLK3NeDm/RmFuslrbg+rPPygh7CybpmqDQiHZDyhyKaUZYYfhHhBxGQ0JEsmbI0GjEZj4rjFrZt3ycucja0d3njzC6RJQhRFGGvQRiOMZpZMqUyJ43hooxnPEioD7jziaq3C6IoyS0nTGbduXuft732fG/c2uLuxRZprSiPRJkdtDvjg6jWMqW8iL5xdY2tvjzTVDEYj7m1tErYirCmYTaYIXJZW1wjCENf1kPPfxVH3gEa4NjQ0NPws8QwRVos4KJ6q3zkuQo9HVk+KtD5s1i6RElqtDqcuXOD1LMP3PULfY297h0maErRiluNThGGMHwQIW4JwiMOINEkoy4qiLCiKAiUVUkKWpRhrEUIRBgFlWRIEAVrrWig7Lv3FRYRUBx6uUkp836e7uEhWFOA5aFOSZTlRklAZi7GabDxh5841eqGlPL/Exjsj/qN///9KlU1wfAdVRGxtbWC9DusLi9za2Eb7X6a9EDMbT5iMJmCAfREqJcJaiiynkgW+66G1wUkdWlpjq6ou9uLZBesnJVaf7UufwII/JofF/dE0gDq70s5tlwCEfdAy11qDsebQuSvZ73RmraEsC6bJjO27t9jeusvW3h6D7V2ktfSX17ncbuO7Lo4j6fbavPz6q2zf73P39i1aMci+YHtvytbWNlmecenSZdZOrRN321hTIWxFmWVUSYKDZDrLuHvzCu1OB9GKuHX1Ct4LLxOHLmdfeo1SC/6jv/p3uL2X0dvZoOy9yqtKYt0pi92QheWIggrhBnQXFphOFHYGrXbM9uYmeTLBVgWz8QjXcRnsDcnzAj/0WF9bIwx8fM/FcVxwIAoDzqwu8f6NDWZ+RKFLwihmZXUd1/UR1KkAZZ6RpVO27t/h6pV3+f73v8/Ozgg/7LG8DNP8PspYlLXEUcip9VVef+11JIJee5s4DtndGWCdgMV+n8VuBw/BaHuDK1nGzto5Llx+hV5/EdeTKDW3LhOiLrB8CveShoaGhoafHp5KsB7kre4Pl37MYbeTvm+spdPv8YUvfrEuaBnusbdtafc6+FFMNksJ4xZx6OO6DlY6lHmOrXTdpz1NsdaSFinO3N/UcVzCMMDausNVnueEYUhZ1jmsYl4UopQ6KOJwlCKKIpZWVqh0hSMFk8mYPC8oipKyypkYzXCww89f9Dj39RXuF5tc/93ay7LUJbaE1ahPVyq8UFJJF89zCMKQwd6ASld4joeuNNbUUew0SUmS5MAZwHXdg4igLstjvqIPd2U6eUd/rMP05NnvpwCIY+1h98fV+ezcAvYdHo6OEsyzr+1R2yvsAyum/ZxMawzGWqyp1Y8xtVhNkylFVTAZbZHOxnRaHXzHrW9sKsNkMiIKHRzVosIQRiEXX3iJuNVi+/5NdJ5w6fwqcecVJknGeDrl7Xfe5dyFi6ytrRLEHfwwJZsNCRyXU2fXUH6bdDajyFI6S2vs7I5Iux0uvvgSF1SEbP0m967dRARttu/fYb2luLkz5o/9iT8GwiHwXYzrY6zE1yXJdMxgZxdH1u1PrQFdFERRxHg8JQxDTp1epShSxsM9Fvo9ZrMpnudjraXTiljqd7l15Rbr3Yh2q43jeHh+iCkrkmRCkU7Yvn+XH//wB7z9w7e5vzNkMKnY3b1NXlVoAUIpjBAEkYvvKULPZ3X9NIvLq7zwwksYYwjaPTwvIE8Tdnd2sLrAVFO27nxYO468+Apxp4/vz/2NDyoAafRqQ0NDw88QjxWsh4ehD6cE1K+ffDV4lOXRQ6+FQEpBq9VCAnY+BO77fm1NNS+sso5kksxoxxFKCspKMxmPscLgui5lWVKVJbPpFMepW58KCVHs47gSrCSOay9W3/Nw58Ubhx0O6uhr7aPa7y9gqwrH9ciznGQ2JckEiXKYpCUvrEpWLsbY6Bz/6dU9BncNwjq4bY/XL6xxNu5gcNhNJed9gS4rBAJjLUmagoUgCGoHhHm6gta6dg7wa3FQlgV5UZuuO65zIKyfN8RhoXDS+z9h9o/lvmi1lrntEgcC2xgzbyl7+It1YaARIK1FW3OQroExKKvIpymD7V1Gu7u044DTq6dpd7tE7UUGgz0kJa5/jiBuA4Kq0iyfOU0Y+4x27jMZjxmPRiwur3Hh0gsY4eC4IWHcwY+i2nHA7yNtSZEVhI7Fk5JZlhEFEVEQ4EZtkhziU6/xv/hL/w7/7v/2/8hv/PY3+ZNfeY2L6+dw+hWnX3yNPM1wlMUNHTAaTwmkrdi8dwejBLkWBHG39nC1Bf2FPuPRhPt379LrdXCkYjYZ01rwybKMLMvQxiIdHyyEjkAJUFIhEEipyNKU7fu3eef73+X733ub7cGA0SxnOC5Iyoqyqhtl1Kq1Ii8yhLB4vk/Q6dBaXsIUFbrU4PgEUYvJcJftvR1WT51idXWdoigxFNy59T7L6+fo9pYJowgHsLJ2eeBJNm0NDQ0NDT81PCGHdd6BSXIsSlXzuF7sh9MBDn92UlcsrEUYi6OcA4FsjEY6Dr12BysFW1vbpLOExV4frEGXmjLPaLci8jRjc2eH8XCHW7dvcPfeLuNZguu6XLx4ji+8+ir9xSWkkvR6HYR0cH1/Ho15uGp8X7T2FxYwxjLY263bowYeoRDkZcWIGOnOeCN2kC/F8C9/mf/i195nb0vw2hun+NqlBS6sr/HW27tM9GniwKOc59caY0nTFN+ri1PSNMXzPIIgIMsyrLXMZjOUUpRFTlFklFWFZ+pKbObtW3/SF+OTxOfxYz4vgdk3NPrskLU9FWI+5G9ASoWxGmHmon8+/M/Bafgg6lrbtgqskCAMpiopy5yyKiiLFCMsYStmlozIq5ROd4mV5XWKTpsyT8kzg/IqPC8gjGov3jjq0ustMdjdZm9nlyxNCIsW7YU2rh+iHAejS3RVt/9VwuC5gjwdI4TEi1r4sUsQxkinLsaSKuTshcv8S//Sn+fu/XtMDNxKLN/4U3+GYGkBOR5gTYnOErIsR2BwXQfpuly7eg1dZCycWaeoKhaXFwmTDNd12NvbY2NrCNJj7fQphKkoK00UhmgDe7tDWn5AUVYMxwNGoz3aC0u4yoGyoEwSxuMxS+vrJFqwuXcHrMV1xEHrYa0LKgHb2zOufHiHxcUPcPyQ5bV1PD8gjEJcP0Ag8ZfWCMOA3Z0dqion8BymyYyiSNm9LzEV2OVVgjDAxc7tSJ6hucAzWsA1NDQ0NPxkeUJKgD0oNjlJsB7mUeL1UWL16GJsnb8nJEo5CCnwg4B2x6IRTKdT2q0WvlI40mE8GtURX1OxtbnNcG/A/Zsfsrd5g7tJyf2Rg9vvo61i4933uX7tfX7pK1/nlS98iSCMaXc6OL6HsZYiz9C6wlr3oeFjx3FotTtkaUJV5mg0RoPj+qy/+PP8zvaHfGP7Gl87e4FTX13ka2e+xu0bO5xbcvj5V1a4vz3j969r3vjaSygl2d0doLVBa4PvB5h5NPVwjuX+vimKAq2rueNBNr+ezps0PMfDnQ8f289oPaREGFM3fpCAskgrkVZixCGnAGsx5mi6xUMervOUgDzLmE0mbG3d4fq1DxgNdljsxTiOy2Bvl3T2bVbWVllcWcc6DlaDH7RxgxbCcZAY3CAENyCIA0Y726SzGVhFGE1w/RAcF+UESOmTFwVIh8CVaGPZ291EG0F/yaHbj/H8kCKdUZU5Z0+v88XXX2G3rHj5F36JaHGFqqooyxLHqc+bjTu3uXLlXYwxeL5fNwbIEpJS8/Lrb7K7s0kUKRypGA6HpOmM0WjMjZs3OXv2LNoKEIrJZEgYQjt0WWj7vPTiy3S6XXRZkE3H3L17nVvXrzEeTtnY2qIXR5xfX8SicHwPpVzyPGdja5u0qOjGMS+/cJmLFy+xuLSCkoqqqqh07QQipYOQiijuIWR9o+lKiUWiygxXVYx27xFEAWHgz9OU96OrT/tDOdnqrKGhoaHh+eCJjQOeJFQf9b2TCq4ehZTySB6pUgp3XkFflBWO4zAejxHGks9SqrKsK7qrgnwy48o7PySqtui0JdcKn9b6Wf7tf+/f5d//D/4fbN+ytC9Ktu7+E9LhHU7/2f8xfhgQxXGd11oU5HmO5/lH1n/+DN/3iOOYssgRykXZKYEfcqYTwiv/Q/76j/4m/43kDutnL3H63CrV5TNkM8v3fjTlO9dcXv3ar7K6tsR4OiPLU1y3FsZFluO5tY/svkPBflFYmqYEQYAQkiKrrbjKPMdG8dPnr34GPE+2VkfSV6RAmrqoTlp5UGCneZAacHy9j7R21RVlVVIUBVkyY2/3PoGvUP0Fur2YKHAo05xZmVLki7hugB+EWBRZUWCdHBeDchWu69Hq9KEsSMQOg8FtZkPJ6pmLBFGAcF2sdPCCmLDdJ8umpLZCW8Pi2XMEfoirfCySrLJUecZwb8hoOMJRin/mV/9p1pbXats4QAQhoJlNU6wQnL9wAd/z2N3ZJp8OiCMfiyFuddBlxd7uFmVZHKSjhGHI4sIiRVGiHJeqKnH9ADeIKPWE1dW6CYLjuuiqYjIasrO5yfvvvctgOOLM6dOcO3uGbr+PchyiqLbr2t3dxmBxgxbtVp+lxT7dhQVcP0SKetlKiXlEO5m7NTxI8xiNR0wmQ6S0+L5mNEnIywrPC2m3O6h5h7pH8qTz9Dk5jxsaGhoaah4rWA+LyBMRJxSEH3hyHpvw8IccE7Nivxq7zjsTFlzXIwwtXsjBsO1wb4+8yCnynKLIEdpy5/pNZrvbvPlGjx3PoxqPGGxt8O/9r/4Su/e3qVTFuX/q6/z5pfN88Nsf8K3f+nv8qT/7F0DUvqcCiTF1lE3Kw+v6oEjH9Txc1wfhUOUZjuNyoZ2Tb/2IYfcP85e/+ducC7dZWc4ZV4ph0WX18hf55T/yGp1Oi8F4xmw8pSwKRqMxSTKj1+khEAS+jzaGNE2pdG3A7nsenudTlSVJVRHEHaqyOhBWz6tghaMOEfvRyc9oTQ4q/6WUGAUSibQKoSxSK4SUmMpitMGYet/PN+LgvLba1DdIxtTWZnRYWOwz2tvBdR2MFbh+wGh3j4WFRVZX1vFdn8D3EI5LVRXoWUkYhJjSqfeLqSBwaK+u40UdqlKjEVQ4tMIWyvUBhTUaXVXkSULcaoMWKOFSVpaiqCPz2WzKvVv3uHr1KlI6LK6ugiPR8wYVWVEiZb1da6fPgjVMhzvc+PAKOp/iYinTCZkSBH5IlmUsLC4wnc0oCk2v12U6nRJGEZHnkSZTrt+8yzvvXSNwfZZXluj2+yAkVZUzG+1RFQVYzbnzp3jljS9w+YVXaLc7jCdD7t+5i1KCc+dO02q38NuLtFo9qkrPjTMsVVUw3NtBOgrfDyiKkkpbppMRw+GQWZIwHI4oy4LXXnuF5SWXpX6Xja27XJMuZy++RHehh+t6HKQF7KdYnyBED87QE25ant9fWkNDQ8PniycKVjghSvqIl/aEzw59cuytBxNqY9C67vcurcVzXErHR8QuVsBkMkEAvX6fqTvFTAzCEVS55Pwrr+Iy4ouvBdwoS/7BO5vYUrB1/UOqPEf4IdNkwsr6El/5E4a//Ou3uHNvi5df6SKkrI3ZkfOinLpxwIPrVi16/CDED3NIE7CCymhWL76CJz28hUXcN/5FqEqEgI6SfGGpRxzHaGOYJDmT0YiyLLFC4vkerTigyiuKPEcAldZ4vj83q5/bMVkLxh7cFJhD6Qo/LXyW67p/syFlbfYvsAgkwiqEsQipkFIBAkwtTC16XphVH3eAqiwp8xxtKqytfVLX184QOg6725tE7S5Ly0ucP3uWO9ev8/6VH9NfXKa32KO/sESnt0ipDUWageeCgCqZUJV1gwjmrhR+3EZKj3Q6IwzB8aCqKqQShK2YrCgQUlGZhOm4TgPwXQerNbIqee3yJS6eO4sbxQgUorQUpcbxQ3RZoAKJg8ToCuX6ZIUmL0ukqYv5XMdhsLeLVIq79++TphlxFLC3u42Ui7h+QJIkpNmMySTFkS7tKOTMqXWUVGAM6WzM1v1bzIab/Mqv/BJLp88T9xdxHR9dWqRQLK6sopSkyBKUGyCVT5qmDHZ3GA7HxK0O09GQ4WCvbtzhOXzw4XX2Jgn9Xp/RdIR0JFmWk84SsrJCyXd4/dU36cYRt6++g5WKc85lup3u/EZzbnV1EvPGA0fOnU/vtGxoaGho+Ig8VYR1n6MFVw9PLx7z6gj2qISVsrZxEgI0Fg04vocrJVmW4bourVaL2WyG4zgEYUQUxVijqGzFajDhlQtD2tWEV16N+L07u5iibnkpRcl6CB1liTzLufNrbI4NF/IKx9UYWx2JvhxPZZBzURu3YsDgRyGtToe43cXzXHJdsLCyTCtu1Qb/WmNNRVkUlJVhNpsdWCYVWW3DlZcFvhfgOh5lWXe+aqlaaPiBR5amSCGpypJ2u3VwDH4aIqzPCyc1qdgXokoprFIopXCUg5WaSluq6kEUe3+fW2OotCbPM4o8JZ+NEaLED1z6/R7WSDDQXTnFyumLzMZjBrtblFlClSXcub6FNgXWCnqLq7Q6XTxX4UufJC/wWxG+HyKxzGbbhEEHXRWUZYbrBwSei7W1b7DrBWgDnufhOA5VVWGBuNenFcd4UUiWFVRVSVUKTFlgjEbrCmMsQRSRTBLe+v7bjLOSwSTDpGNe7i9iTAVYoigCwFUeo8EQ33fo9XrErQjleOwNhyTTjNh38Vxbtxkuc/Jkii1zpsNdlpZ6rJ65QHf1DL4fMNndZjKZ4Pk+S2urOK6HrQxZmpEmCdvb23zwwQdcv3mbMI5Z7Pe4fesGu+OExYUe27sDPrx5H2sFccvHD+r81ciP2Nrapd9ps7F1H+/0GVphQDrYZLTbJnADpFA4joMV4oGPNMdHhY5FVj+1s7KhoaGh4aPyxBzWB8/3n3wyEQghHlwYpJQox8FxPJTr4hiNUIKyrDtA7dsK7VtSWSzaVkReSFpqbtzwiMMer8Qd/pu/kDO6V/DjH08QpcfKGZ+vXQ5ZUIpyOmFXfAkxGTHaGxDF0TxnVh5s7+HcxcOiNQwjoBY1q6fWUZ6HkIpkOkNY0GWJVBIQTNOcWTLDaH3gr5qlM2xlwRocCXmW4cR1l60wCBAWsjTFaE1RFPi+TxzHuK73oPXkIZ7juivgs42u7i//8M3HYYsrJS1mnscqpKh73Mv62O173xZFgRACXWmKIsdagwWkq+h0ugRBQJFn7G7cZmfrLo4rWDtznqAVcq57EYlkPNpGSo2SEiU9HOkglYeQEi8KifoOxhiqIidLJjjKx9qC0WhEELRQSmClxXF95NxBw/UdHNdFOg7GShzXocoKfM9Dug5By5IlU3SV40jqqL4XkVeawWCPu3fuYIXi2s3brK4s4QY+VaWpqgIhTT1M7wek3qwechCGvMiRSYofStK0wGrNpQtrWFuiHA/fcRgPdgg9h5XlRU5fuEB/7RxO0EJUGuV4RJ02YdTGcf25z/KAyXjE9es3Gc8SBqMxg/GYH1+5giNheWkJberRlVarxfnzp1jqtTm1tspiv0eS5HR6fTxHkSUzKl2BsAhpGOzdQytJGHSRjoOQoKTzQIja+f8OKdP9OOtnfd42NDQ0NJzMUwvW+o1PXibtNyNQnot1AqTycKRGmwoJ+L4/F60Gz/eoiowiz6gKjeN7LPVbDM6+ytWt7/ONry/yB/1F5H9rhd96a5MbGzm/+ssL/PKCRxvJP76W4fa+wGK1hS01hTYI6SLnBR3Mt04gELJ+beb7oRaWEaIrybMCpKQoinmhVFV325rV0a00TZhOJ3iuRzGbkc8S2nGL4WAPKQWj8awu/JkLXGstRVHvj729PaIomospCUqgXAfHqYewD6/nifvz2GfmEdN9LhAPbI32O6pZC8wFq5YKhMIg5l3M7EEOtaBOB9Blha0qjK3Y3riHIwq67Zh2u4e/GnLq9Gn2Nu+QJjP2Nu/juwLjKkptURL8KCSZ5lTGMtzbQpsSHJ+oqgj8AGwdAdUWHNdjNNqiyDWuCkj0GNcNaj9k10e6Tp3BoA1SSTw/AGNwPQ/l+Qir0WWOJ6mbIZQVZVWQlzmjccL1aze5cfs6pTG8+eaXmOztYKwmzQqi2KfT6eF6PkmSoMuCoqpIkhlZXrAoXKJWlzwvWF1fIG5HjCdThLEYW1FmU9phn8uvf5FOf5UgaoMQFDYjanfp+h4AyWzK3tY9bt+4wfsfXOXD2xuMkpJsNsVWGWdOneK1115jaXmZ969+yLUPrxFLh6996YtcPLPKxUuX8b2AsqqoKkOeppRlyt7uLlEYoI2l342ZDja4c/MDlO+hVA/pPshJBx6I1oaGhoaGnwqeoTXrPvu9uj8GD2qt5q2/93NFA8rERasCx3EwRs/9GushdaPrAhopBI5UhEFIHMecfell3v39DRavjXnlhVWWvvZFvnJxj7TYYX0h5HTc4fu/+xa//naPN3/ecObMIlUYMB6NWVtfR82bB+yvldgP/84bGhwMKVsIw5B+f4HBcEgcx3WELClqg/88I0sTdFVitWY8GyCtpdNukyQJrlsvp9/v43l1Z57ZbEZZVsymCVprWq3WvEK7JAxrpwDXdWuxKp92v+8XDdnnoUvqZ8N8CHg/Ol0XYIEQ9iAtQCkHqRwQos6jrjRGm9rqShussVRVyXQyJkmmjCcT0mRIVpYkWUq328YRhjDw8BXMZjOKbIYxLmG7P8+b1CyvrRJGLfJsxmw6oUgLbKBJZhOUUuRZThS1KLIpVaEJPZ/xcAdrK6Ioxg1CvLCN4yxiEAhXYq3GVAWmqru2aVNSZQlFPiWdjbG6JJnNyPKcjc0t8kKiHJ/heMwPf/Qjvvz6F3jx0gXQHRb7EdPJLnGrXTfUcF2qsiKMYnYHAxCKqtIo5dDrdjlzao2yqrh5e5Mf/PAKX3z9VUwxJk0MK2cuEbf7SCmpqgrHrfN2HeXMbzxLyjxlNBoymyUMdncZpxUriz1evvQqp86e4eVXXqXTW+C1N77A/fsbfPD+VfI8oyyr2hfa9WjFLTw3oMhy7t29TrfbY2FxAek65FnGeDTkRz/4JllV8MYXvorT6R5pgnKkV8ShG5v91w0NDQ0NzxdPLViPxFY/wUDr/sXBcRyiMCT3XIpsf/biII/W89y697uxGK3xHIc8TVHKYX2ly+jlL/Abb3+PH7//Hl/7whkuLvfJUsF0MObXfus6H2xf5svf+DKXzq9ghCWK2mDBdd0DAb7viHCSj6ySCjv37+x0OjiuQzr3UK3KOrKqq+rABsl1JNZ1atFi67zDSti5L6ZDGNYV2dPplN2dXQaDEevr60dSIAAC38d1PZSjHnkhfXTM9egnD5eXHOVnMj927jxRP32QFrAvWh3Hqb1/5+kAVVVhTd3dyhhzcI6EYcgs8ZjOLOPplMU8I4jXaXd7OEqSZxl+O2Vn4y5I6PQXUNJSFAlZlpCOE8psBtri+hGe5wCibiHsOugypyoLHOGgy4Q8GRFGAbPJJkwgCLuYIkU4EdINCIOgvgHCUuU+RVlBlZEmE+7evY3rSHRlaqsnV+E4AaWVLC2t0olvsrezyaDf5sUXLxL6Hspx6bYD8iLHZDmu55MVBcPRmDTL8cMA1/NI04zA99kbDNkezEDfJRkPWV5u4cUtfC842Lc1ts5N1/ogX3tra4vhYIjneVw4d4qLl18kDHxOr5+it7iIclySJMELQi5evMjFi5fY29nl1o33+cHbP+DM2fOsnTpNELbxAoEfRBR5RlGWuELQandYWFhglmds3f6Q62GbF195re6kN0/9eHB6nPy8oaGhoeH54ukjrPtaR4hPPH/yIFdUKdwgQqYJtshBcCAwtKmHQaXyMNqQZzmj4ZisLHF9n9dfeYmzp1b58Mp7/Ffv3MBk96iyHC/s0jv9Kt/4pZfoL61SZgVZmROEIe1Wm3a7jRS1sbqct3M80k6Wfc1j68ZJ82HjKIrwfL/2ii0yrNGUvocSlspVCAt5tovVtcjN8xwpBK7r4ihJMpuxvb3LcDCkLEqWF/o4AqyuCKMOQkKaJbi+V3e3mgvf42J6f/89LkXg8KsnidafKfajrIf2j5SydqPYj7I6Do7r4DgO6Tx3df/GQ8w7obmuSxB4KGUR5ZRuf4FeZ4HQjxFW4joBUb+DNpowblFlY6ypkNbBVoZ2GNdd40Ifi0urfwpjCrIswQ8CdFVQpBOsKfF8STYrCDwHacBWBaaqKK3FBC572/eI4x4TXaIE+IEPyqvbFA/3cJRL5Lr4rQ5SOty/e4dbd24QhG1U2CFJMi5dusz7P/oe7djn/IXThGFMb3GVMh9hkbi+T1EOyLKcJM1RTu0dLJXi+vXrWOlgXRc/CnBlSZ4N6S5+jc7SOl7ko1RtGabqQ4CZdxbbz9FOkgQhBCsry7z08mWiMEJby3A85Nbdu0Rxi9F0RlkZPC/g4sVLrK+ucWr9NBtbW2RZxngywfNjfNcljGOS6bhO5RECISRLy+tEcYwxHtPZlM2NDdTp04RRhOSY28bx308jXBsaGhqeO57QmvV4IYL4RKKrJ7Vwhf2KfB+pvLqN5jzSdfh7ZVEiRC1igyCg0prhcIDWFUpKXn7jdV7/0hcxlcYYPS+ocfD8ACkVUkj8MCAIooNqayXkPD3hqHXUQWTS1CJVQt1HXQisUjhCEMe1GHEdFyUFSZKQZCm6KPE8n9l4fBCtk44iikKMrti4v82dO/coigKMQbQM1hhcx0GXJfg+dm6xVKdFVHW7WrlfTPSg+s0yF9LH9u/xw/SQfc8jjsPPFIdE60GkVUqE49T5qkqBUgipAElVVmhTHjQUAKiqEs9z0Ai8Vo881+xsbxFEPv2FRSphcZXAUQoZtijzGTc+/BFpWrK6foreueV5jY/A8VpIJ6AsNUFUp5SUhUJiEBEYU2FtQTrJKauEPE0wlUWnMyLfJ466lMmYyWCTsBWj3DXa7R6hVHhhhLUSx3GptGZ7a5OyylhbW0U4Hls7IwJXkc3ACbrc27jFYPtFFvoLKA+kiCiyXdLpGGtKgshnPC3J7ZRTZzWT2YRur09VCoZ722RJysJSH99TuGGE3+4h5rZsUiosijpIranylMH2Xe7cuoGjFK+++ipBGFEUGVc++IBvfudtVtZOc+70OqPJlOFgQH9xlXt3N7lx4w6nTp1iodvGWI2SislwRJHmxHFcpzF4EUgH1/VwHUVlS4IwIAh69IRDpXNm0xnKC/Bd+cjfSCNWGxoaGp5PnimH9dMeMlZKEYYxWTAjn00RQqJ1cVCgVFV11yup6vqvyho85VAVJZv37+N5Hq7n4Xgeru/VhUqAMfVwZBR5B8PAQRDRbrfxPO9YG86a41XmljoVwWpNHWqVB92phJDAfKjZcVCugynrtqoKyLKMMAxxHIWSgju3NtjZ2aEo6m2Logjfr3MHlVJURUmWpHQ67f21mfvEmoN0gcPOBvsFzx/3yPxMDYkeEqj7z/dvRg57rdbnVh0RtNZirDloaaq1rlMErGU0ytjZ3eb27WucWl7i0uWLDAY77O1sE8cxy8vLtDtdhLSUZY4UijQZ0Op0QHk4rlf77kqLrpL6xsToOsorBbnRKKeO6OqywJYV5WxIlST4novjqLpz1Evn8VdP4QYBwmpcL8J1Qzw/wPctaTpFVyV5kjDc2yVJE9rdDuPxDsPBAOlEaKPpLizx3g+v8847b3HmzDLWdMCWZFmORDLY2+PD6zcYJzlLkYvvB2RZxnCwR2E9rt/eIfYFX/vya5w5dw7Hc3CUg8TDzgvJlKyLxOpCxBQBlFVOkk1BwOz/396b/kiSpGd+PzPzO668s7Lu6up7prtnOEPO1eSS3F1C0AoraCHs/meSoI8LLKT9IAhaaUGCe5JYHsM5OcOe6bO6uu7KO+Py08z0wTwiI7Oyqqt7js4h7QckMjOujAj3DH/8ted93nzC/Xv3uPXJXYS13L/zMdLUXL9xgxduvsjyygaXr9zg0eNt8rLkJ+/fpxPH5PnUeXvDiNXVVdbW1kjShLLM0TpAa0WtG7q9JSAEoVBWuZNSo5l97Pmqqsfj8fzm8KmC9UwRY1stsBhx1Xb3nPWxP1+GfsZBYfZ3lJREUYIKFEGgqCrRekglaZKCtUwnEzd3wFrKPJ9XDpu6QTeaDEnZaCZNg1KKJMuIpaIsS1ZW10BIVpaXybJsPl3LtJMDXHi/cIvn7QNb6/I4bduIg7QI7FzwdLqd9mfhlkB1g1EBvUEfKUEGEt1oaCOMsIbVpQGDTsf57kIntLGWLM3AWgIpEQjnP5RQlzl57iKNXNRV4NIVlJp3r9l2qdPONhJt4sHCJjqx+LlQVH2aqcAubr9nbLvfiArtKeE697HOMlkD9+9gFirbZVlS1xVa1yRxxI0rF4mlYP/xQ/a3HxHHCZcvX8bWA4rREBmBbioskpuvvkHa6bXiTWBNw9FRztLSCuCaCeM4ZpznNI0hCNxJVhTFlLpkdLDDxoULJJ0+YZQggogkCgnjlKWVTY52HnK4/YD97UcuXirNyPMpR0dDgjBgc20FEV6kqmu0EVizw09/8iOKRjKcVpQy47/+xffoD1b5nd/+DkkaIEVAkqT0ez1qA9PKrQ7k05KlpQHrG2t876cf8vjRPm9/7Qbf+NZvs7x5hSBK0LomiFMnCq3BWjc9zFq3nyZJyvr6BT6584Cf/fxD9vf20HVNd7DC9auXWF1e4YUXX+LKtRfI+gMCGaKCiLJu2Nvf5+fvvsOjB/d59PAR12/cYGVlxQ1XkJKmLhHCEoSKMAoJ4wQVJFjRDjWYFhTNPlESEyqFDMMTVpGn7i8ej8fjORd8pgrrE+L1KWW90xcJxBPxSieql4u2gECSZhkqijDj44puXdWEQdhO/1EusqeqnUdUSoqycDmVYUSjNU3pKmMycUuUSkqXbdrtknZ69NJk/retteimAStau4FxQ6YWqq7WWve32sYvIaUTza3PMU0TlHKiFWEZj8YEUUwQhIgYCC1KKaaTMXGcgKHtVJfUWtMYTRJGaN2AtRRlSZJlRHFEFIWuqUQ3hFFMlnZclFGgCHGPI9qYHjGLXmDmbbXzJIbPc/hdzIA9XYVm4bpzKVpn+2srUk/bT1ylWhEGIWEQIpWa20aM1djZWNc2m1VJSb/fp5umZFnC8uoqZVXT7WTk+YS6qYkay+HeHmsbW1y4dg0lFUrA9Gib2x/f4+brX0FFIdPJBCkj6rJs/ZdQTKt2CtoRSjZI1SBDwWB9C20lZZEzHR0S1DVGW3Rd8+jeJ27U78oqWafLxsVrpGmKMZaj8YRyNAWhqEvL2so6WxeG7B3laKEYrG3w139+m7/46x+xeeEiN196hSCKmByNoa38Lw26dLtdhqMJ4/GYF65fY/RXf0sSB7zx+ot0+0sknVVkKLG2wVK7bFsRYI2lrgtMUxIEgu3tx4zzkstXbvDOO+9RFjXXrmyxeekqV69c5eLWBcrGcnBwwNF4StMYOr0Ba+sbLPcHvP7iK6z1B2zvPAaLa74MQybjMUFgKfIxxlYE4QUGgwGImKquqeqSQCkaAUVZEsWJG8s8y9Q7udP8cg36Ho/H4/ml8DlirX7FCIEMQuKkRxiN3MSounZL5U0D4GKtgmDuM5wUOdZaN+tdBUynU9I0BSBNEvqDPghBlmUkSUK300EJ5h5FYQHtloOxxh3DjJ0Nk8cYtwRvrQGjnagtKujEc/+oEJIoihgMBlgsts331Lohn0zAWuI4IUwSgiikyHMnuK0lL3IarTF1QyfNkEKgrUFFIWHWJUwStLYUZU4+nVBMpsRpSpymzk4QRfOGE4kEsdiY5Y+/cxY7wpmlBrhpV2EYEYbuBKOygLHUZdHaUNzgiH6/Q0DD+voag8GAOM0QUmF1gxAW3ZSURzvkRwd0Ol2q8QFR1iMIAh7eeZfV/hYCSV0VBErSIDl88DHD4S5LK+vkkxFmCnVdsHLhMoqKw4Ntuv0Nkt5KW+pvGA93SeIOveUVLskXmYyH1I1h/eJVgihGJYqy1pBX2KogUFDmR0wmUy5e2GJzU/B373/MznBIkLrRxbc//Dnrl65COaGpCiyCr775Fp3eMvt7u7x/+yH9LOJ3vvZVVlfWaeo7vPTiDXq9NVToIteklG30nEIIhaVB2IZycsR4PKLWJT//+c9I4oT/7o/+EGM0y0tLhHFKmvWpqoa8yHn/g494+HgbrSXXbr7Ihc1N1pZXyLodLqiL9Ad9qqJEICgLN95YioYyPyQKlwnCGIRqGynd58VkOkElbuCCak9C1HyKn3xyX/F4PB7PueIzTLpalD1nLPGfKq49q9Z2VpXuhH9USuIkI4zi+dhWXTcIXDVRW5Ct31NrjQVyoNEaW9d0Ot12IhYkSUIYhnS6XXq9PlmWoZRsRWYbYYVb8scYrHWTj6wx6KZBtp37TeVek8RiRY3Oa4LMjX7EGCd2AaUC0qyDNpa6brDCEsbtMiRQFTlCuM7zsiioypKizGkqdwBWgUQKRbeTsbqxRtbpoMKAMFIIVTMaj9nf28EiSLKU5eVVlpaXCQL3fqi2yqqUOjG9x/6Ssh2e5XM9nV5wbphVgc9IDFDKogNFEIWEsZsqVlUuV1cI2RbcBHleAJpO7AZGAERRAoFLhsA01OOaUVGxsrrKyvIAjABdU1YjwiAkiSE/2iXtdphMxqgw5Gj7FrousVmI1BOEjlhaWSfurbLcFERxRtZfJog7yCBifHTAyvISUdLBWEk2GKBNQ2Os23etcM+/KomVZGl9HRmEZJ0eu/sHKKW4e+8BvV6P9+/ep9vLWF5OGHQTAmnJBkuM65yjwyEffvKA7//kZzTaMJxWvHbzMsaC0jm//eWXuHnzFTrLGxgLoZRI0U4ssBZrNNbUKCnQdc1k7EbWLvUSBktLLA26jMdT9vaP2LrYAynY2dvlvffe4+BoiLYwPCoY/fhH/BTN2voqFy5c5sb1a/S6GUZXGGPpdTrUdc3O40foesTG5gZKOFvP3MKMBaupiinT8Zhe53jc8el9xOPxeDznk+eqsJ4pUgTMPAFP+6j/7LJFtJVCQ5zExFmXPJ+SVjWj4sgdVIRFtXmpbpa6nc9/r8uSJIrJ85wk7SClQIUhIMiyDr3+gDiOnwgJN9Y4YWoaFxwvFcI4TyuAaAy6rjCBRAtBWtWIpkJJhTSgF8SglJIgCIiiiDRNqYscEDRFiZQW3VSgG3RdcXSwx/ho6PI/tXstkzF0ugM6vS7dXo8sSYiCACEDLC4PFgzldEo1HZKPhlRFTtp1tw+DkKCdiATixIH5Fw0ke55l/3MnVhc5lRgwtwWEAWEckXYyur0u5WREWeaUZUHV1NRNTRi60ajdXnc+icyYhliGKIEbPKBrok6P1fVNgihGyNYHbQ3rW9fJq0PqySOKw4rxZEpvZQXqEcIIpNXISGAFpGkHYwVxbxWRDoizAYiQKOswHo2AAKlCVBCjWruCAbQB09Robdz3uqRWCrQhLyukDAjDgCiOqOuKEMP1q9eZ7j1gOJry8QfvcuXqdUZH7n9t/3DE3tGUvKwwuEi2fhaj9JRvf+Mfs7K6iQoUCIPWjUteMNaNsRU1dT1ldLTN3Tsfcng4JIkyNl/Y4OGjR3z/ez/i4HAIMuYn77zLq196jTIvqeuaT27fptKG/qBPJx0AAaPRiKL8mMn4iBvXrxGFIWXpfKtRFDEZDxkdPebGC9dx1hiXtyqldDm4kzFBGpLE0XEiyAkj/jnebz0ej8fzOS0BQhwXJOZVjKfd9jM9LBZXHYyiiCTtIuQh2lpoRapSaj4JqmkahJQknRQVKPLxhMl4QnfQRwiI4oQk69Lt94jTDlEUHT8neyzALAbqikBr6qbB4nykGNs2WmmkgLAS2KNHNEePCV78ElZZ59trKzruNQjiNp9VCkE5nWCb2olnJQnDCB2lqMA1Tx1EKXk+JYojev0eQRAShE48hXGMCgInOqW7b5ZlFEVBU1UU0wn5dEqVT8i6A9Y2L5B1+3R6XbR2wlmK42lP7fCuX4jfnCSBM1YEFq5ZFK2BUoRRRJSkJJ0uYZoQFQlN3VCUFabR1KahCgHbw1pLURWEcUSkQ7TVVEWOEZbu8ioq7hMnGdoWbr9VAVZaBp2EJhoz3HtIN1EEuiCKYxptiJIUXRuiOHPPzWhUmIIuQAiCMECpmJW1i24cqTYoqVFBhG0MSeT8mpPpmPHhHnEUMFi+RBRm1Mag5YHbj6wljkJWBhkvXN6EKOXnD2p++LMPeDHX9JfWONjboyxrdnd3CZWgu9wnUpKXrm7QW+rz1Tdf4eVXXiNMe8ggwDalc9BYAdLQaA26YufhJzx88AlHR0P6g2XyaclH77/Lzv4hH99+TF5Zjo7uMRwe8e57H/LCiy+idcMLN64hMQwGy2xtXWJ5dYP7j7eZTCas9HtsP3xA1u3Q7y+5FZY6p8zHJHGAlAJjnL3HaI3FNc4Nh4cEtWBF6/bza/EDzItVj8fjOe98LsH6y6qoPkv8SClJ0w5Zt8fwYAdtNEkcU1VlG+/UNsRo130fhxFyoOi2qswYQ5KmLvuyFYezauPMBjD7OwSKsqqQTYMwGislwoCsTRuDY8Bqih98F372A8Lf/QNsp4/BIAFr5dwSYIyhMS4O6eDggOFwyM6jhywN+qxtbjq/qYW6rdxtXr5CPhk7ETJLNUgTkiwjyTI3llUphJAIAXEcu4YSC/l0gq5LiqakKUumkwmD1XXWty6SJClpKpDCZWK6qtPzic1P245PK0idThP4Yhuxnp1COxfwzKwBiiiOSTuuKW86nriJZEmCMTVHw32KckwQGBCGfn+AsNJFNxlNU7tmI4tBKYsVBkmAUjDMRyRpRhR3sFGPMEmYjiaYakoUBuh6CLpEqRChYqSKMVaitUZY7cawGg22QgYBnX4PbSxGgAoClBLUTU0+nVDrmv7KCnHaQ0UJVV6wv7vLdDhCSOm80rrhxRtXWVla5t7jPZaXV1C6ZHt3jw8+/BCbHzGajBmsrbE7rsmnOZNmwubFLYwIefPNN1hZ23RjbZHueQsB1qAbA0awt/OInccP6KQpg/4Sh4dDHj16wN37j9k/PCSOFcPxAcKWbKz16XY7jPa32djc4PKlS7zyyivEWQ+hFFmnx9aVyzx88IhiPGLQ75KkMQhBv9dj++Fd7t27w0sv3SCIYxrTUJQ509GYyWhMWU5Js5hS12Bp7QL2pGj9ZZzNeTwej+dXxudMCXi6CPlF5YkQgASJIIxDBoMB5XSNNukUrWuM1pRV4cY9toMEgiAkiiJ6/b7r9g4iGt2w3MmI5x5S0XbTH3e8u8abkGDQwxzsM/z4Y3hwn+VXXkR31hHFFGsMpizgkzskX/0a9VtfR0YpNJbGWgwWMPOuYyUkQRSzvr5OnER0spRiPEYpF0slsQSBJDYROnbRRnVdzytCCEizLlHSQQZODAgJ0kIYBsRxQqdrXCf44Q6T4SHF8BA7HpLnRzRVzuraJeTaCoFMka094Jd9QH5aDfM3ZcTrcdVZzG0cSZISpxlhEqFKiakaGquRQUCcZWhjKdthD4GEo4MdsqxD1skoCydy66ZCKOlSAPIh08kevf4ryLYZKA4UMswY7z8kTkLq3CBpIOgQRClVXpB0ulhrCaIIoy1KGqp6CkJCGBFEMQaBxQlFaQ1NPqI4fEi3vwyVwuiKaZ6zt7PNdDRlaXmJPJ+C1eSTkoOdXeIg5NrFS8QB1I1L2hg2lryxHI1HHI7GFHlFv5/Q6S8RxClbV246m4IVWCQiiBDWYE2NaRqkUDRV5cR/HPLg3l0+/PBj4ihhsLrO+7fv8NYbX+I7b3+T9Y0LDAZLRHGEtKC1QUUJGokMQpqmZjg8otPpcOXyRY6ODpgMj6iKgk6WsPPoDh/e+pDr129w46VXSTv9dqKWZToacffWLZZWVqh1zeGkZmX/gLX1zafE9S0GwrX7yK9lT/R4PB7Pp/GrSQl4jk/50weMxYadWU5mGIR0e32KfM3NRc9HhNa0gwAK8jxnNBohRERVVnQ6HfI8Z2VtjW6S0un2CMPQfUXRE/FM8wB5IVFRhF1domcvIQ7uwjt/i7z5JlYLaNoq1+tvoF+7iektuWiB2XPFdZvL1rYwe/woikjihGkUogZ9gtAt7ws7W5Z01b0kcTE7de1SA+IkIk4ygsgNOpg/rhAEgSQMLUEYto1CKSoqqMrKDSkYT9itP0E3GtmOHAVns3BNMWe//4ub7rkq6Au5u8+aoHXuhOtC1NXxRWLuPY6TlKzrKntVU7oqunQTzqbTEiUUVu9T52OGBwn9pRUGSwMm0xxhBZlKUSpCCIkEhkd7KGGQInCeSamQBG46WhSiwpik28VIRRxnhBKaOsfogCDKkCKlLkv3VZculUAqgkgiRYDRhslkyORojyqfEAQpMsyojKYYD8nzijBQhEnMeDzm4HCfnb09gjBkfXWAjDI21pa4d+djjo6OiKKI4bSgqTQ3b9xkmhuODnZZGaRsri3R6w0IpEIEicskRjo7gK4RVrcZtAFSQn8wYHS4Tz6ZECpJWeZc2NrgX/6r/5krV17gwtZlrBAoFVJVpZsIpzUGXBKHATTQNNy79RFLa+sknZSqmLL7+DGmjvnkzi2uv3Cdi+sXiHs9GiOwTc1wOOThw0fs7G3TXxownYw42B+xs73NlWs3CMPgeN90uW8n95Pz7MX2eDyef4B8zpSAJ3mWaIFTVbdn2MZE2wThPKAWIWJW1jdotKaqCsIYjLWkaRcpQpQMGY0m1HXNZDJBa40MQ3qDJcJ2ipWcdTCLk89l1nSjtXb9XEFMvHaV6g/X0HceUO0NUZMJttEYKdCrm8iVLRQSrJkf5Gb+1Vnz12wiVVkUjPcOONjeZePCBmmSHg8kEBYhLFIKtDbzKl8QBERx6CqxrVidWRkErsyqlCKOY8o6IWv6Lu+yLCgmUzCGuqwx4r57uaZhsLzs0hJEOBfJ7vGetg3smde1deQT9z1RjTpv4vQ5mFVZ57aAJCbr9uh2l9l//JBqMqWpa0IZkE9LmipnaCvk+jL93iU6vR7FNKcsCiSWTtrBCuk81dM9Rjt36a9fwmAwpvU6m9k2kIRRSqgEqBCwVHVBHESU+RAZZuh2WIWRFm0MSRATqgiBi1lrypy6HAM1YRDQHSwRJq5pS4iEo6P7DEc5B7uPuH/3DloIur0BqyurvHDjRUyg+Pj2bW5cv8ba6jJbF68wmQz567/5Gz74+BZL/Q4XegFxBN1un6w3IIpirLQYKRCBq6bqfIywFUZESAFRqBhPhjTGsLd3wP7ekLWLG7z8yhusb1xCBAlChVg9BRGgsVRNzeH+HkmcEgbupC3rDQgCwWS0T1nkhEGIQDIuS0Zlwetf+ToXNjaYDg/QjSGMA4pqxPb2Q+4+uM/hcMRgb5+yGGEs7Ow+5mgyJs4SIjnbX4UXqB6Px3PO+cUrrM+pUQTMl+OfxewmcyGhJGEU0RsMKPMJ4+E+AGEQM61zqmnF6OiITr/rmq1kQHepT9JzzVZpmrnmo3nsznFoPMyyWGfd3BYhDCqK4dJlAvOYqqgQRYnOEtTqCloJMM0TFZmZWHWXC6QUhGFA1u9zKYlJwgAlBUiBJcA0FcLWGAxCGlQoQEQIpRBB2C4pi3l11b0fAmFwdgIb0s06YNzI2GawgpQBxdQJrHw8Zq+5A6ZBm+ssr625JeYgQITO2/p55KVzFyx4Uz/n4/zKOUuAnIyHmN9uUbSGQUCaZiwtrbDT6bG/+5jxaMRoMiEvCqSyXFgd0BhDHEWgG8bjAokgiAPKMidWEXVZMTnawwiBkoJ8dEDS6WEUCFOBAGVK4jjBqC5NOaGqJjRFQdBbxihBUxVU+RRkQH91kypssNpQ1Q1G1FSNpsqnKBWQdJbcSZyUWNNQjMbc/uhDPvroYx49esjwYI9Ot8v6+gb95WWuXr5MEEimdcHW5jqh3ORwOCQvG4QVpFnG+O5j7u494uJSh6996SbCCILWYytw+5ISkrquaKoCXRcEsYLAWXd0A3UNH9+5w6C3zIWLl+l2lxFCUk6HgGUyPqIuS45GY+49eMgnH99mc/MCd+/e5dvf+V22Ll5EChgsr3B4OGJ4NCLtxLzw4gsYY1hZWuZwf5/dB3fZPhyxtnGBR48ecf/RNnXdEMUxDx49RikoNITdKdPplKZx08eUVE91yvwmnoB5PB7P31c+f6zVUy6fRcY8efmnT1o67YOcIaUg63RYXltHNxVVkaOUIs0yoiiiv7FOmqV0ul2SxHXW11VFU9eQukalWeVz9thzgdn+5cW/ZwWYWMHWCogGc6vCqgg6CXVRYGWIlSDaxILWJDpPBpgJOmMNSEGcRISBAgm6bqDRSGuRgXINW8YAAisDJ1jbquriFCmxIIRn76ix0DQNZVmSZF2aWqO1BiGpq5KiLDg82HY+W2NYWVkn67i0AtsKzV/ooLxQMD/fLDzDp1XSFm0BcUxvsMRgdZ3HD+5QVxVFMQEB06Lk4eOCTqI43N+jKUtW1teI4og466CimEAJ6nLqBHB3BVTE+GgbY3Ky7gBrNEZX2Cgli1OK6YjDw0O6gzW0lJTFEKskUdhD11PnlyYgznroxmXEPrr3CaGw5PmQbm+JztI6eVVR5yPqouLunTu8//4HvPvuzwgw3HzxJisray6iqmm49dH7PN7dZXl9jY2VVZZ6A5QMKYscpUJ0YxhPSwgSKhTbR0f89ff/hq2HD9lY32RleYWl5VXnFZ0MGe09JgwUmUgIZERZlmjd8PDhI6QKMRg63T51U3N4sMejh/cQUtLpDvjx9/6C0Thnklc8un+fLFKsLXW59dHPeHDvQ3r9FfqDFSIZMK1KRCAIAoW0kkcP7nPv7id8dOsOP3rnQ/rLq0wmI6QKWF1e5tLFC5SNoRhNaKxCxHvs7u6wubFBoJQbwyxUu2ssrAJ5serxeDznik8XrL/EjMLP+yizDu5uf0DdhuzbWiN6kiAKKWsnTsdHhzRFQtrp0OkvzQ9ATdOAhUC5A9PiLHlwcTzGuJnp2mqXI9loNBa71EdcrjGTqo28AhRYKVB29qokQrqubmMMpvWwOjuCRQpJ01SuOUZKZCjRjXY+UykJwggrJKZ9HPfcjp/jomA9/tkSxwpjDHXd0NSaOHPJA9a6DMqizCn29mnqhkCpNjJrBRXINnVgVrl9Mk93Ucg+cQKykLLw1NXUL3qJVR6r6ROtNLPstFlGwEyftPmsUkqiKCTtdFhe26Q7WIEHd8FqdvcOKKuKC21XezGdIqzBCMP6hYt0oowo7WJNTdOUBEmfrNNF2oa0KdDlGB3HBCp02z1bop4c8tE7f0scZ3T7xo04NQVCS0xVEUQhUZZRNzWBSuf/QwrDT//mvxGGsHnpGmU+pTaGe7dvc/vjO+zuDxmORly8sM4rN2+wur7J490D9h48ZjweU9YVcZIxHI14/+9+SqgiTJDxcHuXzfU1irzEaMvhwZhiJDga5nz4ySErS3/Hcr/L1tYFXnn1VS5fuQomRzZTIhVQ1QGD1VWqqmF39xHvvfczRqMRURQihOK9d/+OpcESaRzzdz9/lysvvOTyY21DN4v4zjd/i9XVFS5evkylNe/89KfcvvUhl6++iEQyWFklzTLKcsr+4T57Ozt88NFt/uYnH7E7zNmZWkxTc2FthdG05P6jXRf9pS0HwyOGpeSl4XhuwzneAcSJE0SPx+PxnC8+xcP67DvPBOHT5sufuO1nfGKnH0O1zUkr6xeQKiDtZEwPDzk83GM6HtJUtROD2qAbjZCKNM1a4STmB6SZAJxVW40x6KZ2sUGANhrbaJfCXhvKskIqRbF/RNxJsIMMg0Va1Wa4gm1sOz/dNV8hJBbTis4A27QTf8oKbQ1WKcIwIQhcBI8BEBKlZvPNj0X17HER7aDJWX4sFiSkWQLCjY5VQTv3vmnABlibzLNap6MDDnYTojggCBUQIdQs3ueMEKgzOv3FqS1pFy4/O0TqixStC11hiJNPRR4337lrF65ss37jJKI/WGJpfQt1612mxZSiqAiDkCiOMHWNUQqEJQxj6sZSVBUqrpG2oakrOt1llAyhMahsBW1cU51BI1RMaAyj8Ygbr71OFHXIi5woUAjRoakmQEMQpaggQ1MwHVcc7T+mynOGR2MmecHe3cd87/s/YXV1nYcPH1HU2p2YKMXacp83vvQya5uX2Nk/4m9++j537tzHVCUykMRxxHg8YTotqWpD0RhMoHh8MIam5ODgiERl9Acd+r0uSgomlUFMG4a3H3Lr/jarayu8+dorLHc6DA8eE3f2WVrZZ32pgzSSXppSZRlZmvHJ7Y8JA4lJMg6GQ5IoYDwc8sZbX6Ec7xMmkYsRazTaQlUU9HoDjoY5hwd7XLv5MnGaUJU1wlgCI8EElJWkNgFZ2kVrTa/TI1AhxgiKpmFnb4+6bLBBhtWCfFohRYAU8sQ+PrO7eDwej+f88ewK63N8dj93zuZziN/jm57d7CWlJE4S+iurGNNQTqdIqbCVoZpWGKMpi4owTlm/cIE0jdFN3c6DD52Ya60Aix5Wreu5laGpaxcAoA1GNxjdUOcF2mrygyOsqQmSGBUniEBhZRs5ZWZNXLj8KVzjVSBc85iuK5RyMUnGGCpjkGFMGKbomX2gzUoVSp1YmhSzJikhEbQis+1cl1IgRYYUbkxtVZXURe7ii7DEcYjWhsloDHKHMIoIgoBur48QEUq4prHTVo6zTkTmAk+IM6XoqTa7Z2/wXzGnM2HPEiIuO/TJk63ZOOBOp8P6xhZLaxd4sH0PEY7ZPTyi0gXdOOHy5iqFrplWmk3hvNa2LjjYeURd11Qo0iQlizOkihBhiLANYFFSUdU5cTagqaY8eHiHpLPMoLtCEKRU+i41JbFcomlqNAZTwYfv/JjH9x/z/kd3mIxGrAw6DI8OyfOcazduEiYpQsKLL95gdXWZ0WjKT37+AT/86bv86J2PMNo1fo2L6bw5CqPp97psrAy4fuMmRVkxHg358NEeTQ27B0dMi4KV5QEXNjaIwpCmrgnCmJ3dPX74zru8+epr5EXDx+//HVXVsDbIeOHyGlrELK9v0VQlw+GIq1evuZM2o4mkot/tkqYZ0taEUYg1DePhEDOcUhrJpLKMCsN4/zEf3n1Ap9vh6PCQfrfL9qNttg+GbO8dMi3diV8URsgw4PH+PmmWstXZYFxUTCYlYRJx6cYWKgjRZmGAQLv/s/A/5/F4PJ7zxa8m1uoX4NOW46SUpEmKWr0AwmU1ZkmHpp18RSRZ37hAlnWwWtPUJaYOaZSksZzsum9FmRQSY5z/01g7r7A2VU05Lah1g1zKkFGERGAajREFAREoV0WdHeRmdgKEaZeGa5RSCKmoq5ogCJxoxmJMQ1UXBGFMoIKFpq2FCuviF8e2AAsIKdpoLkmKayRrmoamaZjmOZPhAaGUWGAymSCE4FAFSOm+lJRIGS4skR9zusL6WQcAnKtl1ec9p5q9r0oRCsFgaYkXbt4krwt29g/Y3ZtQ6BGT3SOUvcXR4S4b6+usrq6SJDFRHJPrknJ8RJz1mOxvI2KFyDqEaUQQhlgZgopACAyCuLtEXHfIJ4dkgyUq69IKQFKXNcgDoqSP1had18RKs/P4PiuDDJ0P6WaKN974Ov3lVdYubBHFXaqq4eDwgI9uP+D9W3d48HiPvGh4+eYVlBAoFfF4f48y10jRsL6c8fprL6OEQlhBZVPeGR9xOBojmxAVCufZHo6YFjnrq2uEUjGeTrhy5RLGwmg6pZOmGAEffHKXDzG8+0mPMJBc3lzj6sVNXn/ra6xtbDI83CGSlgf33GCBIi+oKsPRcJ/d7cd8dOsOH93b5ijXDMdTiqqhrg223aVc/Btoa9FYBksDRCSQxtId9MiLgloIAmOoGs20qpkUNb1IsL55ic3NzXnc25lNg1+0ncXj8Xg8T/BLE6zPE1l1fGQ4HZu04B87oxRrXX+8G1nZzgmPkpTltXWiMCLv9WiamigIkIF0TUW6zSpVEms1ui4RMmjFgNOFWjdutKPW6KZpK7Du96aqqfMSISDMEoTKELMcVVzjkgwUInAWANpJVMZoTFNjTYNAQ1OhhUWFCUoGNE1DGIUYC0ZIhLBo07RTkdTCi26jt2bLljNLwML7bewsHsnMo6663S51XVEvL2GakmI6caNHg5CymDIZKoI4Jc46RHE8n6I1e8zj7fCU7fvkxvl7gDg+UZibRCWhVCyvrvLNb3ybG9dv8r3v/TV//B/+mPuf3EIGNUmSksUJvU6KaQo+fOdHKGvodRJW0GAmFKWEKqTJQ5LuMkl3lTCKaIxGqQBdV+gqJ427FOOSZGmJxijCdBWYYGrNKN9DBSGmMXQHK/zuH7xNGCXEWY9uZ4Cxgjt3P6Eqa3Z3P+H2rY/56KN7jCvL3e1dNtZWeevLrxOEAQcHe6wuL6GbGwwGA1aWu0QqJIoydvd32dk94PHd+9y7v43C7d9RIEBrpuMcuin7R0fEcYwSsLt3wIXNDW5/coduN8UKSRBH7OzscjQtiaOI/cMxt+4+4OMHO7zy8qu8+vKLmADCbMDO4ZD33nuXR48eMZnmPNw+YJRXHA4njCYFKggRUlFVNU1TkaQZFuV82WFAFCqm45IoDqmqnLXVZQ4PDhFCkudTHu/sImTA2sZlvv2tf8T169e5cmmTOFTOCmKZC2HhharH4/GcWz63YD17UszZfkagnQZ1LEqfzPp8ekVuls1qWz+qFWAVJHGK7bnoKycQDbqqAEsQOQEYhiFSgDUNKghp6hIh5YnMVGEMtv0yTYNp2ok9SiBUDML9jVkHv2iX0a0AlBOwWIOuK0xdYZsCrHaVGhlgRYNtakwgCcKQxhiCIGyFrnJfOHuCau0ATqyKtjnqlNeutQnI1h5gjJk3dLlc2QprDSqI0EyoiwITutsgJ4TjIw52I+I4bUVyhJSg2tcin0OFPm07nxs+JdXqqZeKhW8CEG6bXbp0iQtb/xO/93t/yM//7if82X/599z95F3yR3vcebxNKMFiiKXlrVdf4Epni+76ZbL+gCSUBNIQqAipYqzWQIPRFl2VVNWEaTmhqWpUpJiakCSOQYbUZQMyZDyekKQhFy5fAmMpJ2NkGJJkISpMeH3lK05Abj/i0YOHXFhfIsr6bG6ucf/hI374/e/z1S+9zHe+9ha3HjzmP/759/jo1id0o4A3X77GlUsbHBxNyCtNgwRTcmkto5clJIGgaQy1DphULty/KkuwsLd3SJGXaNOAcJnG06oCKRlPciaTnH1t6KQxMkhozPsUVc3W5job62ssra6TdQZ89NGH/Pl/+yvubR9QNpJAhaRZSFGW1IU7cez1uozHU2rt/k8MmijuYtq4Npmm7O8fYI0lH42I0y7ahCyvbvLGV77Bt771HS5tbdDvdQiC4yEfi9FmJ3aF87RK4PF4PP/AEc9a6p2UzVOv/FyCdVbBs/aUYH0++bOY/WmsxViLbhrKYkJd5tRVgTUaAXOxOhN/cRyjjZ0/jjHHHta5WDXWVVitRRh3IDMnGqCOc1xFK6DFbFBAVWCqKUKXWOPGxTpxGyKCAKRAhSkohQoDrHGC0gqJFWrunXQTs4J5SoCQxwL2hGiVcv4OGmMx2tkBZtOMDg8OOdzf52DvMcPDA+IgJAzcaNgky+j0BqxvXWbz4mXSTpcoVO00rM+f0fo0olD92o/8tnly3/3s+sMtF8z3OwtGQ1kU3L79Pn/yp/8Pf/on/x/Dg12We13yfMyLl1f5g29/nStXr7N19Qad3gCpa9IsJu0to2QMNNTNBF03VNMpR4fbBAEc7W6TJF3GJfQH684nGki6S2s0dcHR4WN2Ht6DMmfv4T3quuLKS69x4fJ1sv4yMumghKSYjnn/nZ/yg+99n/7yOknW4e79hzzc2aOuNb//e2+ztrLEe7du89/+4sccDIdsbi5xYWWZXr/PxuYFhuMhTTkmDSWT8Yj7j/Z58HiP2gRoFLUFFWUYAsBSVRVVVTubCoaqatCNQWsL1iAsCAxBIMjShBeuX+Ptb3+La1cukkYRB3vb/PinP+WvfvQO97aPKPKSQAmyLKMsnWBNk5jxZMK0qNFGuzSHNEVKia5K0ixzJ4MqIM8LEAGbm5f5vT/4J/zB7/8jbl6/zKDTJQzlqfSNsz/PhBAQJl61ejwezzngc1dYFxtwzrz+Gfd7niPAmU09M5/o7HeYizwQKOWE4Wxq1HzEaxi2Nk3bihaL0bUTpK1QPRmELxBqdiBjIfJGzKda2XY0q2ka6irHNiW2GCNosDOximzFn5uypa1FCUljLFEQoo1BBeqkkmq1u5hXV8UJz+38+9zTinvNWECRJAmdXq9NP2go8xGT4ZETyMqJ0qYsqYMpo4M94jh1VgmRuAqtEPNghcWn9LRtc16P5me2hZ16Xc/9WO1JlhVAYAnjkMuXrvDtb7zN9oN7/PV3/4LhdMybN6/wO2++xiuvfYWVi9dIYoUxMB5NmeYjNqKIpBNhZUggUoTOKW1JU42oJw1CW8qiJokztK4QQrlMYGGdrzZKyEvDdNQwNSk7hznf+7//E2vLXV586Rpvfu1rxFmfuNPnhVdeJYxj/uN/+C9srK/z22+9xv5kys/evcW//3d/wvJSn5dfe40/+sPf4ehoyMOHu4zGE6QKuHJpizLPGGQh03xKqSVffrPDhx/8HU1V8njngEcHY24/eEhpIkQYI2SA1mAbg7E1RrthHEEUIKSlqRoCFbO+vo4Qlsd7B/zr/+PfcvXqRb71O1+jn0QsL/XZWl/hcJSD1nS6HYRw2bjWGqq6JE4SGgN57qLatNY0dYNAUFSaMEkJsw6vfu2b/NabX+H1V17ljVdeZanfIQgEUobH1fPF7Xt6e3s8Ho/nXPErbbo6IRk+x0HgqcLIWuT8ejetRim39I9w1UnaJXUVBM4CoA0yDOed/1IKdF0jdINox1/O7LeWY7HohCethxas0WA0xgK6xlQ5VlcI04AEY9x9bbvcb4QTgVIErWfOeXCNdjPUjbG4JKz27wEIixUWIU927Z+sBh03YAksWjr/pZAWbSoaXVHXBbrRxGHMdDxCSvd+GGspiilypFBBRBSlxFHY2hSEE0jzFq+TMVa/CWLVYZ5y+ac86yd07mJ+q0VaC8IgA8XKyiZXrl3lwb2PuLic8frNy7z84iukWZfh7h47xZCtS5cZLK8iJQiC9jHAIhEqIAwTMIbdh/dQ4RKd5WWyTpe6dmkUcdJBSUmtLXGa8qWvvIWpLXmRUxQld+/e54ff/wHf/eHP+Ok7H/HWb73F5sYmS2urXL15k7cr+LM/+0tuvBjxykvX+fKXv8ondx7wH/7Tf+P/+nd/wvJSjyQMuHbtGmsbmyRpwtHBLmnQEEYdrm5dwYiAfDIiiV7D1AXD4YhHO/tU+YQ7jyfsj3KCKCFLU6IwpG40KgCjNRIIVYy2mqqqefj4EZ1ORr/XYX1zkyCKGI4mTEdjPrlzh8d7By5LWLlVjOl0TNbpMs0r8rImjiKqqiIOQ+fvlgGNMSyvrPHKq6/zre+8zW999SvcvLxFJ82c17z1ih+bkY63qxenHo/H85vBrz4l4LRF8Iwooee6/1MHFIl2DrzEClfNsW081KyiaIxxQs0YZCsgRdulbaxFmBqhNdZo130MboyrECAC9631u1mjsbrBmla+GQ22cekAwsVc0R5IeSLnUcwbyNxrss5/21adz6r0nNX85CquJ20UYvaag4A4SkmTmuXlVYS2SARaa7TRVFXVvieWuiiZTkZMxkcMVpaOPb3SNbdxxt+fb5Pf1P6U5933Tkd6zS5rI9GcbxgCEZJEHbqdASvrl8iW1rAqJAgE01JS1DVBYlAqIC9LVJS4MbzWYmw7gCJJ2T4s6PZhpdOnsRKE4dZ7PycKFOsXL9Hp9wlk6PYXaYiTmKqq6PU7vPbaK+xt7/Pdv/ouf/wn/4UoDHjzjS/zu3/w+3z5y2+xuXGFf/Nv/i1BFPHtt7/JzRdf4OVXX+Hdn3/Af/zP/5VKw0/eu8XFrU3e+vKrGGPIugOCKGM4mtLtDTBNjcQSqoClTkooV1npd3l0WFMPx+RFRVkUxHFEHEdEkctUbRqXvhFFbvqVi5Qz7O/tMY1jjoaK8XBEN8toGkNRGSfmBewPR+hGU9UjdK1RUpKPS0BRI0k7A1597XW+8c1v8Xvf/A7Xrlym10kJpJj/z8Lsf7fdkHO7y1MsAB6Px+M5l3wmwXraBvCLfMA/9z3twren2BCcYA2wbeOLaJMEZsJs5leTUmCtswvotnFDWIXWEiSuymoN0lqsbQAw1HOxKrCgG0xTuQV45awIrrQpnGAFV/0Vxw1aTxbtnNl3tkItFpf8T723pyurZ77nrT1ASkmgFGnaoSoqJnbavhsSIRVFPsUYQ5IkGK2dPaEqmYwOmIxXCYKAKIpQrSB+6snFMzTfb5qO/dS4rrl/1c7Fltaauq4p8wkr/S7f+da3uLDS44Ub11laWsKamjgO2NhYcicybQVeCmjKEegQZIDWgqqJ0HLAS1/+JkvLm4RxyPBon6PhIfv7Rxzu7nD79m3e+MpX2di66Prm2mi2IHCpFcbA5WtXWFlb5atf+xrf/f4P+NM/+yt++NP3+fZ3foff/b3v8D/883/C//vv/5T/5X/93/nG73yNf/Uv/wVf/epbDFbW+LO//C57o5xx4QZo5PmUKLtI2VjKsmBj85Lbi4TkcG+HvNSgEtY2L9A7alD7U1QQEIYhaZoRBHKedTzbZ40xRFFEYxrquiaNY5Ik4XB4iLGSe492yPOass0p1tpNjENIjBREnS5pmnL9wiavvv46X3nzK7z60itcvXKZbpYRSue9ljjbjz3j/+h59wUvXD0ej+f88Zmarj5VsC40Xc2Xj8+osAo7u/jpC8xnPqszDigue7SmbkonMtsDpZJqXk2RUrXP3c4ro1rX2FZ8NnXtkgF0g2m0a8LSGmMaEBIrA4Sp2/trdOWaQJRywgN5LDTnz0+GrlIpjn22SimECkAqpAoRwgkPqZyPdZ4R236XUqJkcGxPmFdsn3yvjDVtQoCmLGuGR0MePnzI7vZDJzKGQ5qqQhtLp9dFhQGBVCRpStbpsLJ1la0rN+j3uvMOaiFckNbJRdRT2/P0JuLJ0LIklL9+BaAr+zzV1FmX+DOvn/9s0LqhaTTDw0P2H9/H1Hv0s5gwsGALqnxMIAxKCbSMaMocW1cIq5EC0m4fqyJkmBGHHbDCTUULnE3EUNPUBZPxhN3dPQ729tm+9wlG13zrd79DZ9AHGyCVi1LTjW7zewEsSoSMipp3fv4Bf/2X3+cH3/0eX//6G/yP//yfEXcy/vYnP+NHP/ghr736Mr//T/+IOO2yezDk/Y9u8/5777M+iFhf6rB+4QKXLl7iRz/8MV964016g2WaumI8PGQ8HhMEMeO85D//5Xf5d3/8Z0ynlatqSoGxml6vRxzHTCYTjDZzT3kQuglbnU5Gv9ulaRr2DoccDifUtUVIRZam9Ps9rly6TLc/4MbLL/P6l77Eja1LLC8t0et0nVhvBaoUduaHcf7xZ6zinP7MeiIZwN3o+GffdOXxeDzngmdWWE+Hxz/xYX+GgBQL3+0ZH/Wu8sI8UfRp1YwnhNAzqh9SCpSUaOOcrWph9KZoo57my4KzY5lUzk+qQjeYSsAshNM0OJ+q0Qglj6ums+cPSKEwi15Xceq5CeYV1tn1x9edFPxnvc/HAw6eMAU8eV+OLQvg7AxJkrC6uooMAqQK2UcxPtinzEeoMKAT9tqGlRpd10xHR+TTCVmauHGi7Qay4uQ2fT7sE6L1XPPEiddxmsRiSoAxGm0NRrsotFA12Kri0e1bgCEOBbuPHjAdHtLvd7l88wXKomB/Z5eD3V2SOODitetkKxtAwejoFrquyJIIFSiUihDCEMQBgQq5eHGVra11rt+4xKO7d7n90UfcfOVlsu4SxrjnLdvxulVZY4wb1TvoJXzzt3+bL73+JV57/TU++egW77/3Ad94+21e//Ib1I3lzp07fPj+B9x85TVAsbV5kT/787/kR3/7kH/6B9+hv5WRLG3RW9vlf/vX/yf/9I/+GdeuXmNw8RXWwoi9/QP+5i//kvfubNOEMTmVG4ksIJKSojI0pqLT7bKyMuDKlStUZcn+/sF8QlsQdzASXnjpGp3egCuXL3PtyhWuX7vO+vo6S/0eSRw7a490E+OOT5Znm06e2HRiYfu56584Y37y9h6Px+M59zxTsH7W7tn51ZZ2mfoMH+Dsdvb0pU9yukjyrL8vpEC1snI2vnTWXX/WYwgUVrZNUKqtxFrAutGsxmh3/4XKpm2fvKugqra66ubJnxCsrtTUNoUc/93jaVXuGZwVV8Wp348F79l2APe8bGs5dc9VKotSiiAICAMX7xW2y8dKKeq6pq4rJM4e0TQNTTFhdHRAlmVICWEYzp/nZz+qnxMZcNb+csYo1ieum1lAZr7l9qtpNGVd0RQF5fQQnR9ST4ZYa2iqgnxYc7A3YtDpUuUVR48fUjYGi2A4LvjZOx8zyUtefTNFxT26nQ5HhxWPHt5HCI2UCbrRdLsR/UGPMEyI0y6dLOXmKy+z+3ib7Uc7XLySESUpKgipagMogtBV4hujiaOMUKasJAO+/fbvEoUpR0c7yCDm8pVNxlPNuLD86Kfv012+yObWZZApX/rqN1nZPeDAJOyXCR89GLP1wlf4re8ogmyDaZMQ1jFB2ifuR7z9+/89X/vWP2E0nTCdTtje2WE6nswj4aq6QknBoN+bD7bodDpIpVheXmZpaZlOZ4lOGpOEAaFSzjvebpfZyGB3AbSda8+x2Z9yo/n/5+l9gqf7tT0ej8dzLnguD+vpSqBblF4MlzotbFm47hh5QtAudnGfdahYqIpy1kHouGfdPadZPJR7XNEe26wxJ6qPx4LVVXmMlShrnZdVOvGKBWk1UrtOfysViABl24eXFqlc8L8Tr07Y2tkSuit5tsH/x5FYAjcEgDZ31c6ej2gzXudJAXL+dbKi+iwrhmir2s6rGwQSqXCJCMIShoogCghr12VdFxVJmrQZly76a3x0QLc3IIkTgvm02c+TBfU586N+HTxNzCyMxV28bLb9nNUiZ3iww8Gjh1STbUQzptPpsLJ5mdHhLhMO2by8RT46Io175JWgqBqkUoRRzNrqOlmccbBzwOrFLkbYNpoJ+kurgKJpSobDPbpZQqmhyGusCIj7PVa3LlIVFXVdI4OQIIwRIsC2HlGBIgwzwihDyAgZBCwtrXDz5Ve5/UlE2VjWsj4bW9f4supiEGxdf4H19Q0uhxEvvfHbGKGQwv3PKOP2pZde/dLcyuPOX6z72c4+Ccxc1IP7FzHGugi42f49/2r/bxcEohS2/b9Z2N/POlE6vYrxqZv6SeMR4snTaCFwU66eYSXweDwezxfLZ6qwwky0Lh5LFoXrqfs/8fvsAHL6oPDsufVPVnoXb7MoROWJ8q3AzhuaFiuu7mew9lQFth2xagCsQaoGIQJMoBBtV7i0tr1OLQhW0UZhLcRgCeF8hhyHlDth6gSukPL4YC5nQwZE+5jHKQAnm65Ovqsn3qeZIKe1SAQukzVNU/IkRYQhYZLQaE3d1FRl2VblBGVZUhQ5cjJmMhkzGCwRmXB+hnHasvDpnAOxepbw+IxiZ/aOznRMXdUc7W6zc+cD4tAwWFkiyjKM0aysXSDLEop8SNqJSOOQuml48IFrnBrub2N1zeXLF0k7HR7c+ogoS5lMp/S7fRod0O126HRXmQxDDg6PSNIlev0uRVEw2tsnTTK6gwHCKoqiwlhJECZY60YFqyBEyYAgSNp9zGW3Xrl2g/WtKwRRDHGfKzfXuPpSgFDRcYA+EC6cWFk4Pnk7wxNiZycz1rbXPz3tYhYYd7z/ivlJ3cw6Mh8PvPjZcHo1/3PuV4v3mn1+LTy5xSs/1+N7PB6P51fPrz7W6gxOC68nr59VVk96P48PhLMK3qKnTbQiwxzf1h5XV2djS8E1Qc1E84mIKGEw1jVyWGtQRuOarhRCaoRpxbAI3PQqZt5VOT/gzh9voWp6/DMIobDtZTOf6syz+lyJAE+8T0/4Jub2gDAM6fQG1LWmKArqqqSuKzcRqK7nQrRpapqqpC5zyumEuq6xNnFVM/H5hcIXysLy/hOXPSeLVXClFFIqiqKgLEpMYwiODtDFIbU2dHor7O/sMhkdYU3F1oVVAglaG9679QBbFQzSkO5ghZ29fX7ytz/j27/3NvtHe4wnmms3rqGtpdaWNOvx4N4jrOxix1N6/R6ybqiqGhlpojhGxgIbxigRgJXIIAQkQRC2jX0BQoWEcUDYVfTFzL5yvJ+dHvm78MpPLMWfdSo617DyydWLs259VqOmOKUcz2oo/EV4akPppwRf+JQAj8fjOX88n2CdHftnBxNr57HsT7OFPfOBnjv86PSB8Pj+Z63ezbqljw+O8kkf7bwSqRDCYjBtSL9ACIMCd5kNEETMhghgIzD2eHlTqeOq6eyA3ApPFsTr4thVJ1jbCuvC5WJBrEopThzgPwuLHe8zkRWGIXGS0OsPKPMpZT5FGIvRmqZpSJIU3dRUdYMqS8bDQybjEWmauLn3Vrhs2QXOMmfMvp+7Q/3TRMtT3t8nbr3wfoZRRBhn1CKAZsp4OCZdGXD39n02L1nysuZ7P3yH1195kUYLjvYPWF7q82hnn/FwzL/4Z/+YTm+ZB5/c5oXX36K3skVz5xFXr1wlilOiOKSuS8Z5wdGkZuvqGkJBZaC/uo6Qiqqo3DhhFWNFiBEhURgjgxBtQYQJMojc/ilDNzpVSKyUro/uRIXxs2+tp/mon/d+n1cMftqqi8fj8Xj+fvPcFdbF2odZKLvMOv4tz142FuL5ROqn5mJ+yn2FsK0dUczdAWc/LwltSqlbRxeINuNSKIUlwAiX2+oqrgFWWoRsYG4HaI2yc5+e69CfjQaQUrXiVLYRV60oba0HM4E7F76zqteCkHieSusJ2oro8ahZ9/rcNLAArEDr1t7Qim5jLGVZo4KCfDxkNDxisLREFEVYKVqd/uTkq9l7PlvaPXYVn18swIKwP5MzqrJCCMIgZGlljTDtcvDgAf1MUhOxdfEah4f7rFxY5+K1m0waIEootGU0PmB1vYcIIV3K2D3Yoz9Y5cpLr3P/9idsbV7g4uVLYNz0sU63R1PXrG1eJust0egSGShsECKQjPcPKfIjsqULrGwsE3d6COWSIMIwRKgIIQNaVyjqxAmHmL+2T1nkeMZb89k9pL/IY/wi93mOBz1/J1gej8fjOZNfmyXAHfefvXT4y2HRRnAqTmrhNuDEqLO+ylmiFUYoLK5hREjX4W3NrKkEsAphzVykumzz2dIxCOR8Stbs+9yuINtq7Uz8zSuyoq3wthaDU97Vp3GmuLez6DA3jWn2XWtNGEV0ej0XZm/N8W0BXbfTu4ylyHPKsiRJElfxVZ+yvdrH+Cwe0S+U08/zyVJ9++24GikEhGHA+uZlXnrT8CE1o8cfg4CkE9McGqbjEb/19a/y+PFjss6AetUwrTRBPODx/i7f/+mHvP3Nr7K0skynO2A0GfPijesEYQxYmsmYQBt+/OOf8FvffJuovwyjPWQYoozkaO+AH//gx2jgrW9cIeqtEnaWkAtZvZbTvmw4teB9ypLz7FOMZ1VUnydo/0zbyjlifgLzFH5D9miPx+P5e88vRbAeO0qPG3+OOf2Rf5yH+qxbwfMI27Oudw9+egnSVRKPPa3HAtp181ta/6mxIFXbbe/yRN1IVtN24yuwBjsb3brYXT7zsy40YM1MgIvRVCc6rmc+wtltkCdu9+zX+vR3ZfY6tdZobWi0RhtDWdVYIVBhcFxRBnRdUxUFJutQljmT6YROp0MQPrmLnFqcPaOJ7qk3/vXxVD/lKc5KB2DR3nDc/S6VIslSrt18iQtbW+w+vE1TjrCmITwqKa2lM7jA9e46Dx7cJe1cJhokrFwyfHXpFepyxLt3JlzVJRevh873ejSlvxZgrSXOlmjqir1hzf5Is7zVp7uaYpqK8bjgg3sHTINVbrz8Klde+Tppt+/21bZyOk+dOPU6xVk/fQ5bwJPNj59+33M9PerEiYlYuPh4pz2Hz9rj8Xj+QfJck65mkUnHloCFXxZCAmZLxicPkE9WcixiPlTg9H1OHCyeOMgdL20upgRYC1o3WHRb+DzOPJUL1SRr9fxvLMbwzC4zxrQRPaaNCWI+LAAL0hwf4J4IGFgQxvaUOD19/SzR4HQzyllNV8fvwXE81uJzXvx59qXb5980DXlRcXh0xMH+PpPRiL3tx4wO911TmRCotpGomuZ0el36SwO6y8usXLjGxStX6XUygkAtvKcnt+SpbhWewEIafQGTrprSflr17AnOuO1seMD8dyMw0mCswGpAN+imocxzVKAIWm9y3pRo0xAgaaxAyAAw7O1vQ1OzvLKELseMh0dk3QFpmrn0CSzbe/uoKGV5ZYUkjrBNRVUbjJBEcUYQpwSLmaRzkXpyXMPTGqo+L7+I6DyXgpUnP29Ofx7KODufT9zj8Xj+gfGLV1if++P8F/3cny3jOwHxZHc8bmnaHh94ZmkDYm7dOyn2zl7adF9KqRO3dVOz5pecXng9vv+CH/WJ61gUrOJMwbr488mO6qe/M6erWJI2E7adNx9FEWEUYYxrlVNBgGkajNZY44YMqDBAa01dVlR5SVWWLsP29N86+ao+dbN+UUd7a8yn3+a5xOwJed4OqGijnhSgXL5tlKVYDKp9zFCkAMj5uDd3+dLqcmuhEAir2cCdAAqka4iyhu76tbltZHbPmOOK77F/3LKwU7pbnI5tek6eWmE8p0LzLM5qzHqebfz05AKPx+PxnBd+YcF64gP+V+hVm4vGUxXL+QGprYKK5yzmPf3A1PpMF/7u7PbHCQPORsBcFC8sKR6r4yf+3snnfixYnxSnz3cAPX1AnvlRF7eClNIJ1jAkSRKyNCOfjE5cb4zBCtBaY7XGaI2pG3TdYIxB2qfFHz2dL9q3+Gmi6/mf3+kFdYs7JZhdsNi4c1z1bCNM54aJ2a0W9qy52JSzhxWCebavXXCc8BmW8MVZt/n1b4sn/j9/jX/z0y7zeDwez28ez7QEeDy/qZhyOt+xvwjR8rz/V5/l/+9XIQKfJebPTTf/F4iI0r9fL8jj8Xh+Q/lCBgd4PL9qvmjh9Lzi8rN00X9eofpZO/W/6PfO4/F4PJ7TeMHq8Xj+XvBZvLfPEvBesHs8Hs/5wwtWj+dXwPNUNL9of+d5erxfBr+MoQYej8fjOZ94werxeJ6Lfygiz+ewejwez/nDC1aP5zeAX5dY/PsQb/WL8g/ptXo8Hs9vCj4lwOPxeDwej8dzrjkr/97j8Xg8Ho/H4zk3eMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znXeMHq8Xg8Ho/H4znX/P/SoPGKEln9/wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from mlinsights.plotting import plot_gallery_images \n", - "plot_gallery_images(files[:2]);" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Dataset ImageFolder\n", - " Number of datapoints: 31\n", - " Root location: simages\n", - " StandardTransform\n", - "Transform: Compose(\n", - " Resize(size=(224, 224), interpolation=PIL.Image.BILINEAR)\n", - " CenterCrop(size=(224, 224))\n", - " ToTensor()\n", - " )" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from torchvision import datasets, transforms\n", - "\n", - "trans = transforms.Compose([transforms.Resize((224, 224)), # essayer avec 224 seulement\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor()])\n", - "imgs = datasets.ImageFolder(\"simages\", trans)\n", - "imgs" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from torch.utils.data import DataLoader\n", - "dataloader = DataLoader(imgs, batch_size=1, shuffle=False, num_workers=1)\n", - "dataloader" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "img_seq = iter(dataloader)\n", - "img, cl = next(img_seq)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(torch.Tensor, torch.Tensor)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(img), type(cl)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(224, 224, 3, 1)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "array = img.numpy().transpose((2, 3, 1, 0))\n", - "array.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADI5UlEQVR4nOz9SY9ty7bnCf2smuUqvNrFKW79qqiIICEjMkRCpgSNlGjQyRYdJBogBH1EBwmSDh8gPwA92oGEAEEoRAaIEIHiReSLePe+6t5T3H125dUqZmUVDZtr+XL35dXe+5z3Urp2tI+7rzWnTZtz2jAb4z/+YwwRY+R37Xftd+1vXpN/3QP4Xftd+13b334nnL9rv2t/Q9vvhPN37Xftb2j7nXD+rv2u/Q1tvxPO37Xftb+hTd/35evTZQSQ8roMCyG2v8cYiTEQoyDGSPARHyKBsPecDToshEBJgRAgxr8jEBHEeHXcY5oQAinitp/NZ7u/R9J10nh3+h6/2D3+vuvc9/ddbXPth47YfUY3z3noWpt7ijESYsRHCN6xPnvLP/2//J/4F//FP+PP/+wvyXUG0eOGASnAaINSCq01SimUkmglyU1GnmXput4TXE/TNlwslqhyys//9h/xP/gf/o/4xd/5b5AXJVqAkDef/+berrdr8ycN+hFPZ98zSN/cniti7+ePnVP7nv++YzYtxM283d9/CFeysG+evTws917qXuHcdPbkJtjzTq5PwNu9PjyFn96u+ryz53suKcTdD/wpTTx4a7e//KgnsRly8FxcnHP67j1v37yja1ooIlpJQowE7xEIlFJ47/HeY4ymKqdUZYmUEolA6kBQAmsHiqIgSMH79+84Ozvjp97vEb/Ht1tTJe58KK6OufvsfSd/fPuUM3FXhp4iT/cK52N2k8e3hwb4qa6z+4LE7Y+uHXb3y/yk9/6p15wHWySGiLMDb1+/4rfffMNqtUYbA0QyrbDB4SNkWYaUEmstWmvKsiLPcyIwDANSCAyRYHu0FBSZYdkN9G3H4uKc6C0Qx3v8BDe6eWXisb3tirb4JOJ5UzP82HbfPLrvu4+yOa8P/ONu4tNRIW6oTNc/unHY41TFT9F+CKrHzffRrBf8xS9/yV/9xV8w9AN5nqEQDH3PMPRbzSCEQFEUHB0dMZ1OsNayuLyk7zoEkGWGPDMYJSEGhr7DO8f56Xv6voF4fff8FIva9R7ue3rinr/+q90e3Dl3f+5ruxNia08CAkHkyr681uee5W3zZ9w57j7h2Kcq3BzmU2y2T6sl7On/gWtftfhR49ja1MFz/u4dl6dvGbqWobdoIairEtu3qCxDSEmWGaRUVFVFURQ454gxkuc5VVVRFQXSDxAVZAYfwQaBD4F3b96wXi04OH4GqD33tDFl7h/zve86cvvF7jn/xidcW6Q/YpG9a2y7+IAQyWze3PPm8Js4y/1jvt0etDkf09KEYAvkxAiROA58zyA+oQzcJZiPansWie/D8n1az7vL1N0qN+x/6RswwzrL2zffcfbuLXqUk7IoGIYOJQRZXqCVxmQFWZaRZRl93xOChxjIioI8yyBGhr7DtSti8EghyY2CsqRdr1ivV0Q8xOwDX8IjH8d/ZdpNK/rDF4Z71dr7dpO9SNi4at9CRK8feGPs+46LT/i3mRMfCFzduIcPnQubZ3X3M9sAU5tjgBvHxp3/71017mhXTyJuP+nalrdvXnNxfsbZ6RlZljEMPcF78jzbnqWUJM9zrHUMgwUE9WTCbDZPQFEI6X2GMAquRxBxfU+zXrO4PMd5f+tZ7L2HvSN/ans84vrp+473HHF9Tm4/i3d9v+/46+2jds4rQbyC8Df/3VQrBOJK2dguLvHW+xNcF7q7hi43SJ64Up3FPXD2tWvscetcDZa9c2o/jH/Xd7fO3rOpiFt4lLhPhbtjTDfNikAgxMDy/D1vX7/i7PwCT2SSa4IbKDKDEBKlNEVe4JxnuVwRQiDLMurplKquIIIdelzfE/phu/B66wk2sO6XVIcdlxcXBB9uKJK7au39z+Xavey/zVvn3DzuofM2z2nfe7o+X660lhiv3tnVcxa3rnPlfYg78+l6l/s9Ew8/o09MQrh7Ndh9eeLG3/uOu/OYuP+YT6b9PLqjR9iwu7vktu08m32m0ke0ze7p7MDbV9/wm7/8S968e0dWZEgZxl0P+r7H+0DTdoBAKU2WF5RVjclzAgI/TkYtFVJIBmfprYUIRmnqokDGyOXZOdYOsF2UP7w99vY/8WO73mLq8c539tF932zfE1q7veZ9auynbj+QDfJJAKK9pz+1z0doAjtHxhhxQ8/r715xdnaGd47MZNhhIPpA3/cA9H2HUpKqKNFSURQFRVUihMRbCyGglUpuFmfp2pZh6IkElBKJoBACF2entG1LDOF7eDU/0JzabXe8s5tmy2Pmxq3RP/EBfZBauw+hvSagEe7zIW5UjN0j7gI3gCcBDZ+KOPCUdlNl+rR+svuR8qvnDxGBCJHF5Tln79/Tdx1SJNeJIqJIhIMYI1prjNa0TYvJMtRITIh2QMSIi5HBDvihx9qeEAPBO0IIGCMJQKY0ru8Z2vZONs7HrW/f/0r8qX2a1/r+yPMf5UrZtJtCuRWynZ8btPCmPXHvInjT9rpHwJK6eH18uyvZZiz7vrvZ9110vC0kzs0V8uOx3Ns9XH3ywTv1zgJJDLx//YqvfvMbFheXxBC3AiKV3DKB8jynaVuqoqYoCpTS+MEmG945nB2QgAge7yxD3yElEANCQJnl2LZjfbmgaxsiYXQn3F6sHvEQPuy2n9DNYxbtu465753tnnvXCG/1KW7brvvaB6u1NwVgvOb45Y0hPrQi7Tn+rzVDw8buuPXF02fUVg3aorUf3udGbb3ND964r5K6+v7Nd7x+9Yq+65KNqA1SJN8kXHGly6rElAVBRLxzeGsZmo6+aRAxpskxcqdD8AxDj3WJESSIyBiI1rFerfAxPIhl7t7yzSPj7aMebHc+ucd0c+uYPSdtFLfHX/nO47YY/EYwHzHGR6u11zCtG+jX1c45Etl3EOSr4/ahYnuu89cplJu2Ge4D7+BJO53g0WjyzbYZym1s74YmAyyXC969eU3brAHIswwpIQRBlhm00kglybIMhMTFgBYiUfVCRBIxeY7RCu8sbTcwDBbvHSG69DN4tFJomVGXBUPfEeP1QIc9t39t3GIjoeLuoz60xZsPat+73IOe32qfUKu+fbmHJ9j9wrkHWNx6QHYEdDdqxfuECF7Zi7DRd+JOX0lpvDHsG0Bv8iyI8Xqba++3Q++61Zsq7KOF4ykv5sbF96t1O+6hO4dwhyp/54V3n2SE4Dh9+4Zvvvo1p+/eE5yHTOOdxyhNURQAKKW24zN5jhz/VhEypVBK4J2laRv6rsV5iwsRkEQk2mTUkxohMxQR2zTXIi/ueTTX72hnUn0ikHx7vbhv8n7P7aYBtP38Dr/3Q8O63+a88fd2Emye7Q377UrVTSvwzujYK+nsExjBTYEVm3Cwh8YaP8Jue3Qb/V27QILYN7araXJT6K5IEzdf5yOQWQExXj235GOWxBjwQ8+rb37DN199Tdu1ZMrQNi2TsqAsS0xmsNYiRFJt87ykKCqkANd3ECNBRJx32KHDe0ckEELAWpfuWUiKssQYw+A868Ul/boheP/hm8+obT3UHrOsjk9mfMZXS0PcnRvxhvDunn8PzrLv2F3iyu65Ie6/ws23ft98fVCt3Rj597VdIZVS3rmK3u77avibHTJutubNMTASDcTV37vfXRvIoy77ke2mgbw7vt0R/UDLNSOXM3ra9Ypvvv6Kd+9PgRRHKIUgy7KE0oaIUgoQZHlONanJywLb90kwQ2BwDuctfujxPqmxPiQGUBxtcSklQpB2197Srld47x494lsT8sY7f0of92tCd7wDsX/f+igO7gefeXd7EBB6jGBufqaXJm79fp9/6Jor5o7dY8NAghurzkODf6B9Ol/mBwjkXfPgCfNjFx2PwXP6/i3ffPXVyPiJKQzMpPW373uccwgE2uTkZYXShhhSeJmUMoFG3iV1eHSdeDvgnQXBNhg7Ib4BCQRraVdL7GAfMfbbWtbjcMv97Sk+x0/fvn9s5JMQ3/fR4W7aXU9Zla7vqLALSd9FvbvLPXLf9T80WuCvt91e3GL0ONvz9tW3fPfqtyip0MoQcXgfkpBKiY5p11RaI5VO6K33BO/x1kEIEJKa5r2n7zucTULtnEdlOpEUvGMYejKpyZSiXzfYvnv0O/5UoN/3CR7+TQAmn6zW3sdPvGsV2/WD7r/GLlS0/ZQkkDuwh3gs//Lp7S4SwYMtskXenore7l7vGoD20Kk3Fj8fA+v1ktevvuXi7IwQdgkhcVRpA855hPSYCC4EjBZjULYljoLqfcBbR9u2dF1LdP2osqbd1RiNUhopQMRIoTXRe6wd7nWlPPrm7r1vrk/GPc/ko/pP+u6tfvb3Le75jr0b01PsTXhAOJO9d+uTO/+874Ib5DXu2KPX72lzA7s3G7co7V2K4y279ZO3B5aDa2rtD98iybZ8+/YN33z9G1aLJctlS5lneO/Ix3QjwzAgpCATkrwoEFJiTIZtOzYhCYO12MESQ9pJY/BAwHuHEHJEdSVSCpSSROuZVDOkADsMH/EUPt0ute9t3TaI7mj3bEKP0gLvmCpX5PinzZQnqrXi9nPcM86bN5J2vBG4EPIKZUyw2bbvtAEFwmZVECCTuO654KcViH0q8/ZebuA9T9+9b6DVV1e9db3HDTYkz0lMCLq3Ha+++Ypvv/2G9bohhoASAp1lZNoQYgQhUSqjrCYYkyGFwg6WobcE74k+EpGYLEPEQHCa4CRuCEgiQiiMzlFKJe03CIzMkgrsumSX7tiUVz/33Fvc/WWcsrvO8Tue1uZJ7u9Q3Pn97vr58LMWjxPERwzuY2fok1wp+y724K1u/JsRQgxpEowAT4iBEddGjI4aKcffhEQgCURkAKGuX09wQ53+BMJ65y58Y9veOwFusKWuq+p3r+f7+rg5lu3Z43Mibnyb6V/fLnn39jvevn1P03ZM65rgLRJBCIGqqvAmQ2qD1AZi4uC26zXBeqQU5EVJPpsRg6NfL/CDIWqNcIIoBUIZTFYSZWLpKl0QXaTrOxiatGDs3KPYPqubq9lOzGxMQrm9l5ta2qPXYbGj5d2l3m7myvWHui9kbCRujsffsWBzff5tr7ILXG5dNx+mGXwSQOjBlqQRQkw8zWHAe4d1PT74lOFtPE4bjZQKneUJuJCaiCQEgZAChEAk38F+AbrR7lWz9w41Xt8tHzzj6ry7287LYzOVHt/E7i+bOTsC28F7zk7f8f7tG4YhJekqioJhtcLkeVoEQwKFjEzPVghB17aIAIXRFEU+8m4dfbuma9a4YUjgUCBFqBiV0F0USucM1hE6i9AB4/2etea2oN78/Nrf+9auJ5rwuzGY+9tOp/daKp9GK9tdBz6k/SDCuZkgfiRRd82KtlkRQk+MnhgCQ98TAyit0EqTlxV5WVHkJVlWobKMtNTdrb5s2mNsz0csxk86Y6v5PmADf+xrj7vbSfR4N/D+zRu+++0r3DBso04guU+klKxWKwAOj07QSm1TYkoJ3g00y44QPM4NKVzMW2RIO6FDIKLAmAytDUpn+ChwXcesKHG+hxG4u2sW3ilnj6CwPaV9CORw/R2lHXwX89iqy49UdZ+Ce2wAqLva9yKct6NXwIeIHYYkmKtL+m7NMKxZr5e4weLsQPCRYRggCqYHB8zmB5TVhMnkgHo6p6hrhNbJbt2ow/c8jMc9qLhX63gwsmLP/W5Ar5ufP6Wfh46NO3tvjBHbN7x9/R3r5Wr0WYbtC+/7nrquUUoxnU4piyLFdYZIcB4tBSK40cZ0WDsgY0AEn4jvQia3zCiUQiiUzpBaYzJFZjLC4GibDueuE9937+WeN7T9/+Z+rn17FwL7wTL91JPuP/72+D5gu7+n/TBqLWnS2H6gWa3omhWubzg7fcvpu3eslktsP9B1HXluCBGkNhyfPKOuJxwcHvPisy+YHx1TTedJvRIymSk3KITpcnG7jN50v+yDxHfl4S5r5aPX96e+tztW6i3WHSGGwNnZe95+9x3r5ZLLi0sikcViQeyHlDlPJpL7ZDJh6PsUv6kNemQMSSnJlCbq5B7BOUL0Kel0jCAVOtdkeY0yBZkxZEohSL7OGAPaGIxJms1uKOFDt7613e5R/PYuVjc+utn/k3nUN/p5aJe8HfDxgSDlA3Pig4XzSXNtZAwpqSCm1P6ry3Nef/OK7169YrVYQYj0fYsPlqIsCFFw+uYdh4eHFOU39M2Kg8sXHL94yezwhLystw/pVrmIm3/vIioPDfWRn12/vf1HPMYmfqjFm3+JuFUhvfe8ef1bvv7qK969ecv7d+94/vw5y+UCLSVKKZxzHBwcIISgaVq0UilSRQiIEaXlqCFbYFzwpAA5RhkpjTYFWT0ly8u0yHYtIVpyofHRMy2Su+b2RN4BRx7R9j/HB2baEzSc/affGPN2wfhUCvc9c+772jmfTgcQxBiwQ896ueTVb1/xzW++4fV3r3HDgFGaLDdUZUG37rhcrZDqHNs21HWFHwbq+Xd8/pOf8NmXP+HoxWeUZY3JcnwAIRMXUd270j6cQ/XeO3jiyZ/GMX7j9cYNvhawbuDbr7/i9ZvXRJKwWmvJs5xCa4L3aGOYzWacn50jEJRFQVmUSCGQQiCUwA8DUXq00fjo8DZcxX5qjSlqimKClIrge4SS5JlBRYkUChcCztvtrsmW9C2uuTHuu8ubj3Z3N7p3pn1y3/bTFpSH24fPuY9Qa592xRgC3vXYdsmrr77iz3/551ycXeC9xQeHwCMGR2YEk0mNtQN+cAzrhq5pOD+/5Msf/5hmtWR1ccZPujWHJy+YHr9AZRVSKMZNAEIco/aT7+7One0eg3y/UD2O0L97hUcfKfarhBuQItnGyQVCBBc96/WSN9/+lugDIcaUzlKmdCMQyYqccjZl1TTYYWA2meGdp2mapM4ajQ7gbY93fUJltUGJGtlGnPUoZSjyGZkpAIeIEe87lMqQuqCcHaGrKRFHwEOUiDDuvEDcw97eZ2IIIXeE+oaa+uinOPZ733f3Lpb3B/nvwEM7o/q4xfe+9gPZnElVisFzfnbGm9evOT895+zsDKUEVVlA8HjvWK/XOGsJzjP0PQLIq4qh7fjVn/4pBwdz3r19y2Kx5Bd/+Lc4tpbDk88o6wkeBVISRUIPNxQzuG/X278u36bzfdhLuHvVvHvK7QeGkuYRQwpH8t6xOD/n7evXDL0lRsjznHWz3tqaLgSKImdoO6qqYt00ibA+mhkxepQIZEoSnUv8W6UQJFBJyVGlNak/71LOWq0VhJBofCo5oIMf89uK0U848i7jTf4n2/305k3feCq7k/+eZ3Xj2w1ctgHnnqS5PKAM3rnE772dx133o0LGPkmLV8DMYAdW6xWr9QpIJQMXl5fkRpNl5hrFTwCZ0RA9Q9/y3evXLC6mHB4d0a7WuMHy2eIS99OW51/8iKKaE5UmaE2M6XpqM4Cdtn0guzrXrSX79pv6MNvmej/3vf+H+Mebf8E7CJbF4hznPCFEmqbBWguA857gHPP5nMxkaCExUpFlxZb/rLVGikh0A33b0HRtSn1JQEmQPqB1hlE5Qmpi8ITgAI8QGqUMOssxWY7KMvquY/AOZXKkYIznTe6Y+ACqvrm/zTO48VTuPW/PEpYoBGIfYPNAu+Pdf4j9+cEso532wwinIKksIaVmtNYydB3rdUOeGco829pAWkrKsmQ6meL6gcViQbNc0g8Dk7qGEOibFiMUf/WrX/L69Sva9RI79Lz44qdM5odoKUDqHRDoEY/21iGfyuq4uWvsOeIJEyiS6m52bcPl+RlaK87OzpIf2TuUVBijkUJwfHzM4uIiZWu3Hmc9JjMURUFVVWPS6AY/DDRNQ/QOrSRGp6wIMkoiKQm1cwPBDQjhCTYZ+JE4MrgCfdcwDB1FWRMQpAD5q+TMNxlP+57Bk1uE677S8ffN2rsTIPA0AXn4nT2ql1uo8dPE/BMI5/16uhCJM5u4tGmg3nmEEHjnkHlGnucYJdFaoaTEW0ewnmAdWimMUqQ1PSGzbbPi8vyM6XxOcVmzXi0gBGIIPHM/4uDkBdokGmAUt8dz7YWJDXf3cWrUx7Yrtevmda+Pb/xrS3WEDRAEzjqW52c0qwXNeo0xBq01zdpRV1XKD8QIEPUDMabIlPnhwfZYKSV93zFYS7NaEZxDxojDpaBsoVFaIXSOUBoRB6QEIxVSKbTJMFlOJCG+fhiw6yVqdsiGa3lVymrn/h56Pg8FMuw+slto05VFuH2CnwCUu/7O7jvm+h93RbI8tn2vO+c1H6RMK1rf97Rti/eeSV1T5BnRB1AyxR4OA1oqcpOqKksE5UjGPr+8BJlyrwbvOD8/Y0ZkuVpjh3/Oer3i97sOgMNnL1E6IwiQd4SUJ04uXFdhPhV5645rjv+/ed2bq+y+eNgYw4jI9pyfvaNtGtbr9XbkIUS896zXDV/+6Eu6vqNvO3RmGJxFIJlMJts+jTHEokAQaVcruvUaQcRogTQZKsvQWZ7AmhHQGxhtUWXQOgOt0VoztGu65QXqxRegMsRm8RE3Quk+Fj/ZB8bf8HXHGxe66Zfcfc43v7/7kvfPC3Hzjx1pvbZAPGHtfyBk7DZ2tnvdm0ygW+ffeABKapRUiWid56wulwTnmNRVGkoM6RHEFMW/uarRGq0naGPoh4HlaK9qZVhdLpkdHLE4O+Nf/r//C969e88/6C2/LzWHx88QWhFHyHBfEPiWHnSTzfIpN9CHXXU77UoNTM/vauLEGLFuYLVccnF+Tt82LBYLFsslzlrsMHBpBw4P5yglaboe7xxdn+zBzvS0XQKHjDEJECKkZ7paEqzFKIWSJmkdCEJMtEsZQwKkBGiVYjoh4oInxkC3XnH66ht+/rM/RKorNFOImzsZjxbQx9Lkbs3DPUDqzVjNB9XoPUDW1XewP+nRrkTudnVtIDcuc/c9PhjPuae/W+jYgxcS6eEUWUlVVjhvWa/XeO/JTI5SGxg9oo2kLiqUkCgh6LoWFzzeObTS6FKRaU0E2r6n7XqWl+dUdUXwjldff83B4TGZMUgB86MTjDFXYx1344TiBpLj/Tbedxeg+EGY0JNP2lHPYoAYCRGs8zSrFYuzdwTbjTZdYLAdwfnt858dHHD6/hThA3VdkYeQtBCp0yQNEW8dArhcLXF9h5IGZEwaDoKIAjQEgbMd0TUQLCYr0FmJ0gWSyBAi1keGt19zaS/p/+F/iCkPyAg7QrmTCPzq9va0m6rjPavafQveXdMwXr/4vcHh972z7U1cP/9Ta12PU2v3rESPOm13OxcCqUYUNYQtrWxjg2IMZZlqRUohCNbhfEo41Q0pAVVuMrq2SxEWxnA0P+CUcy6XS5aXFqEz3p1dcH6x5N2bd0TgZ7//RxwcHaOzjG10qIiwhfu/X3vzQ82dja25qXMaI3Rdz/LinMXlGc16jVKSly9e8u2rV9TzMiWFdg6TFyxOz5hUFXlRcHZ6ChGkSBEpdV0nhhBQVzWyqhFEVstL+rbBhYAOqcCR1hJBCsCWSIxOwmnyEil6nAvYvmNYfkPnlrTdEj17wVW1uP2VufYv5DePfUhArj2xax/uO/PWm74xjqfS/m6Fjj3qrMe37x2t3dh1ApBKMZlNOTg65O3rc9arJZnRqNH21NvMfYIsy1FSYjKDsamwqxssQkq0McmfSWQ+mzObzzk9O+N8scTkBe16xV/8+Z9RTiYIIfjFH/wR86NnCCVAhFFlgyCuFsibNuCnbB8KSAQgRIGzPiG0zZr1csF6uaTrWgCUkpRFgdGG6WxGUZbYrieMdTXPz84QQmB0cn8Yk9JjrtfrlPBLRIrM4O1A1zYQIlVRc3hwxHQ6RcoI1oKzKRl1ngRT5wYRApkLlL5jWLxBxA67vEA8d7B966nd9ht/fLu+z366d/cQEJVe576F/ONdMLvtB3GlCCFARKTSVPUMrXPyLKOVAimTjRVcQOg0eTKTocbsfSozSGtSNrkhJayClAmuHwYuLi5Gw0ZwOJsThcRkOe1qya/+3X+JUmmn/sUf/l1mR8fJgR7liOIm+3YX6r9/4twuKX5fu24LPfB89pzjfAq16/uOtlmxXJzTtyv6tsHbATtYzs7PRkaUxBjDfD7n9evvEMDQ91RFyWw6S0T3KLZgnB8L3obg6fqU7SDLcsqiZFrPyfIC6wZCiCjfI2MkMzl5WWPKEjKNsJZiGJDNimH9nqrIsM0CGTwIvZcdtLnHDxHQW1ErHzj1N4DRzXd57yJ661L7rv3off9R7XsRzrviGKVUVJMpRZXCmMq8oMgzjFQjUBAxOgOp6K1F6QQ6CCmpJlOU0nRNi3WWpmtwo9N9UtcIwEXwMdL3Hcv1ir7vqIp8LOaj+fkf/BHzgzkiy4hSEhFbAvid437CJLobFLv75e8TzA34473HOUu7XrA4O6VZXmD7hr5NqGrfd/gNMydGpvMZxmiCc+R5nkomaM3FxQVVWWHtVW7ZLMtwzqJ0gdEJ/ZYxUtY1LkLXDxhjMJmGfgAhUdqgTEZW5ORlhnctOR2FW4CMlFoThwHhPShFBKSQ14XoKdvJ3mMfMjZvCMg+dJZkH9600x6r1qbj7i6I9Zg+HtN+MPpeFAKkpKynTKazVAZda+KmKnIkERGQCCGpJhOUUkl9G3c5bQzzgwznHJM4oWtaVsslwfuUU1WQIlKk4MgcsG4bfvvNN/TWJzBEwE9+/gsOjk/QJktqbkwFe+6D2D/ofnd8k2ljF1uB2yTdVmP9y5svchucbu3IJb6gW11gm0tss4Qx3nK1WqG1ZlLX+BCoJxPev3+/pfLlxtA1qTxf27ZkWQ5A13U451LpDAVaSYJzeGdZtx3TyQFH86NEAXQOhUQXBbqsQSuiAiEFxoDRLaa7pHMeIRTBX/m097anPNK9x97Xwf2dX4WowX10+k/B7rkKX7x/WB+M1n6qJkgRIwFBXlZMZnOEIO184wQoijxVw5KavCipJjVIQT2dMnQdQ98zaAMRtLcEPGWZoiuadYO3Fp2ljHNSKqxzEGGxWNJ2v0lJrEKg6zr+8O/+PQ6OjpGbmNBrPrG7YIzHtX2B5pvd03uPHQacd8SY/IzGmCu3lNgBgmKqUL1eXtIsz/DditiusF2DtT1CCpxPZI6NfVnPprw/fU9ZlnRdnzIejJrBhuDRdh1N02zVWm1kAum8Q2tFlhmcH1gsFwRbURUZWZnMEGkynPcMdsD0kqmBWQ3BOdYyIytqglApQdsnsAHvAmzufPaPvOpm57zJXLrv2ncdc+dYtjrzh8+lBwoZfQBezZ6HNO4eUkJRVxydHGPyLE0wa4khTxPIGLJMk2UZIQScTZPZj4JVT6YEH1ivFoTx82qM62zWKdKiLiYoY2j7nrgGbQyDtZy+fcu/Hv5/XK6WRBH5W3/3v8bs8BgpcuJGrR7tkN1oleuTY/vb/ke1VZWu7JlIyqgeQsS5BLrYsXx7yHLIczb+t7gVzpRdb+jWNMtzutWC2K9p2zWr5QLbD5giR8aUd1ZrTT1NmkZZllyu0245DANaajKpiT7S9A3OJdU2xEjTNvjgKIucqsgBSTcMSBXIs4q8zClyk0rWKwhKYL1j6FpEjGTZgDYKspx6esD08BkqeDyMwfBPjeK5MXPulY3dL58I54nkStu4RLf4zm53D+6YDwnuzpEfyBR6IPvefTctrk/oXRbGtUGOoEtIPEydGY6ev6CcTujcgI4p76qQAhc8ISQGjO0DIkqKLEdkKU+qD4GuX6O0IQwD1lkiEakzVJZ8oV3XE7uOKCLRO+xg6XtL3w0gBN/++s8pMoEi8Is//DscnDwnywsiCrVhs9yR22ZTQCitqrefyK4qCymTgPMB7yPBWfp2Tbta4GwPKAadMWRZAsRG/XcT7iWAbn1JuzyjXV2Cc9jB07QDg4vE3o3VwyRZZlAm2ZZ922GURmZp5c+1IZcaZy0SP2oLAk/EBgciYvKMrChp1y1aaw6nU2YHB2S5pu2WSN8jDw8wskQoiQjggsdFCfkRmVQc1pF6foTsGnwYCKJG4a/PA/ZN1Otz6trzvCkAO+j6FjG9yc+8q+ct+2FXtU2dipvXutr0xoveHPfTVN3rO/TueO8Hxn444rvYgEKS+fyQk+cv+Kb+DW6sUOXduEvmObYLFHVNXU3IszwFBHtP3/dMZlOi9/iqIGtbhmEgNg0TrSEKXHBYm7L6maxIANHg6K1DaUXbtPzZL/8M7wXBR37xR3+bw2cvyYoSlEoByLANNbt2G3toYJu/tz/H03xI/tthXEScHRhGldQNPT5EYmxQWm2Tcl0BDECErlnQNevEQSZinUtq5TBs3SHT6YR12zKfzfnqm29YrVYcTmYpf1BVpQx6PuD7ngDMDg+YCWi7lrzMGGxH7yyhaTg+OuZgfoB3lsuLMxbe4fuGSa7Jq5rMBZSwuKGhyEq8yPDFlPLwEB2TfzVaR/ADY6bi78k5tX0jmzfAbaG77/i/Ke3+8fxggBAjAV4gmM3nnLx4znQ2YxCK0hgYJ+eqWZHXNSbLyMsCENjoU/SD1rhhQGiNVpJMCExWkJmcfhhASoJ3tJ1ktVwCEEPE9j193+NH1dlaz7dffYUeV7TfU4bDk+eYLEeOwFQiLe0kqbrJ39wD4myEM4aIHSy272nbJqUA9RZvB4KzeOewo90ZosR7BTESXCp7sMl6363X9F1HDB4XAs24GPV98mM651BKJV+w0WgpUyZDa8myjDzL6No2ZTTMMwpjyIsCpSRSSUxusNHhnENKTV1PWTQr2tWaSZ6RqeTqkjpDyvSObN8Qh0AMLd5OOJ/OODx5TqY8OgLBEZ1FjAyhH2hy7fkNPt7T+NfbfpjUmDv/l6S6kNP5AZPZjEU/pCxvQuKdI0TBREq0FCxXCwKCoq7S7kLyWYZRaLI8R2aCTBuywoOSuKFHKoEWisEODNYxdD0r29Nbhx0MRmf0TcNf/OpXIBX5ZIbJMqbzgzF5mICYyg7EGO/Ij3PjHjfCGcBt0n+u1/R9SwyeSCISxJBKuHtnxyeiiMKneEmbBFfplHyra9YMXZdAJGdZrlYM1qaFxvuRRCCYzWbEECnzgjzPCTFQ1VXSOhAYY1Aj+OScS7UjQ2RSTxC5pmlbFosV3373HYSI6zu8zahzQ64UUmcIqZEIunbNsr1En2uK+TFZfcCzFxpTlGjGBcd/X8J5I1Pig9rl/ajrw0jshwv3p1gW7rc5d1W3J17sbl1aoEzOyYuXPH/5Mqm1TZt2gnZAakkYLOuLS5yAfDoljr5LvEdLmcLG2i6BPj7gnSOvKrRSSK0pi5JipPq1XTeO3nN+ecm6abkMqTKX1Ipf/eqXzI5PmEwmKCUoyhqlNHGs9pw4qfJaErHd369FOoy72dA2tOsVzWqBcwNKJT11Q+aPYzWvRM8b7b9hwNuEsCqnCDGyWi4TXXEYWDcr1s0aP6YP3bhkTJYxn054++YdQ98zn87o+p5iFFSlNaPDkcwYgg/JFJACoRQSwdD1vH9/iveBsqpRWYEwCmFydJYRlaYbemQD/XpFt15glEHqgtXFOYtVw2T2nMrkiCxPIdZxg89fnwvX58UTZ9XNw2+7Krfv5OoQ8YRL7LvAh7XHKNkPtUfvnDfR19sfPqKDEVaWUjE7OELnOWLMEheDxw6WiSlpl0vOTk+pj47IJjV92+G6nkxpMqXp1y3L80vsSFQoqxKESJWzjMHFiA8pwkUg0FJRlSXOO7Qy+AjOO4SExXLBX/zq31GVBUrCwfEzsrxEaoNSCq0USuutTxJugxtb14dzdO2abr2k69Z41xLsAD7lBXA2qaFhRMFTcmcJRJzzeB+JAQbb410K/XKDxXmXMkg0ayQqVZweQbhEccxT4uhxly+KVMk6z5JPOC8KIDI0LTJXhBA4fHZCVRYsLxcooTiYH1BVNdV0TkSg8UQ7IHwgqhEU8Y6+bbk4uxgjUwztRcny8jPsF5/hjBlVYI1g1DbEfdP0E+6td8nBky7xicazc993H/Pw5R4nnHcsKHcxXh6iQQkhmcxmVHWVygCMaKWUgr7vOD87o5hMybOM6Fya1Ei8Hbi4WDAMA0ZnlGVFXuSYPMcRUnT+WEvSOk/UmqKuycoC02eEGFGqx4VIN6qHmYD3b9/wy3/7X3J8eIgUYIoaZVLRno0vMssylFapPERMVMTgfUqo5T2D7bF2YL26pG+W2L4j2IHgLZuizyFElBQp305ItilyTOpF2qUDAjuW4HPO4pxlsD1d1407ZlKdGe136z103Vb9bruO6XRKUWSURUnfd2SZxjmXQu+MYfA5VT2h61My6OcvXvL8c4XJcoqyZrCObr1gaNcM65Zh6OkUCCdoVysWizV5nvOZkhQanLc4JFZKhActUsgZUV5DQSNP3zlvhVtdQ1J3e9rPfHgKieBeHPkpxITtgrSfyB95WHbhqVEpe9o199A2XvLG6RvXg4ggUlhSXU14+cXnfPVnv+T09BQTIkom0oA2GUVVsVyt6QZLpgS2T7uJlsm+UXVJURQUZQkIJCnHjQ+BLM/RZU5e1QnlbVvE0hCQmLZl2azphh4VPXjHerXi/P17vvv2G+YHc3JvUSpDSY01GqU1RZ4hlEbpDFOU5OUEbx1GC4a2oWmW2KFj6Bv6rsUOA5BSs3jrUSJxhWNI2dXD6F6JIsVLBu9wLqUasdbSrFdYO9APHV3Xslyu8M7TdT0KhVGJbxx9ZPX+lOgDXd+jtcZoTduukaSQsq61eB/IdA4SJpOaru85PztHqYz64JCsLMbq1BHbrrg8fUezWJBJyaTI0EahiWgEUWkcgryqyasJNoCNAecsucrJ0XiZKl/fwlM3vzx2ht492Z527p52JXAbXPmmQXuHE/ERBAVubJ5X7rfHUxK+J0Do/ssLkYKtj05OmM7mLPJTlPMQHMYklPby4pzepgTTxSggk0mKuqimc3Q9QWuDNiZR3VxEZwXTaUoP6YAgIv1YPyR4T4gBoRRCp4Dv1WqRmDQhUdq+++1v+exHX3BoFF5alFSEoNFeE60iJcfV5GWdkitbS6YV7XpF2y5SmXY3YPu0i2ZZlmxKl2hySim88zjrxtokjojHezuGx6XvrO3pu5ahT/bm5eWCdrTLh2HA9hYtDYP3lNMJy0WiMHZdR1mWY8qSNYRAWRYsFkuMMdRVTZblWO+5XKyo6gmzgyNUlrFu1kTnUYC3A0WeE/Ic17UErzHKkEnIsoLp7IBIIJvOkfUcnRWYGKDtkNMJQkqCiCjErZ3u2g63Z34/NWxrX3u0pbc98KP14btP/wiz8wGG0Id3fFfbrDobYSvrKWVV49uW6AWFlAxDz8XZO6IP2LWmz0om8zlxklZtoRV5XlyzAfOyQmeGMitQUjE4S9O3xBDIsozDoyOqumK9XmOWq5EeZxkGDyGldmzaluXlgsl0AiTmjSCHoIibGoRIgrMEN2CdSyqjHXC2I4ykB+8SQSCoFLcaYqDvHcaYlGLSuy3lLtmqHh8CwQecHbDDwDD0NKMPuO9SahdIqvG6bZGiZ7CeajbFj75P71PAdYjJnaJUsj8Ha6nrmqoo8FEw2J754RF5USK14uLyAtf34GPKJwqjKm/o1yuEkGQ6R0aPLmrmWYGQnmI2x0wPmR8eou1AaC5h9oxgNrvkjmL3A3o1niaYm7/j9zO+j+jzfuG8T539SE6iEJKqnjKdHVBUNYumTeiiSNkPZIwMfUOwEtd7hFTk1YxiOicg6bsugTQjcUAiUMrgA2OaRovUKZNfKi+YcrhKqXDO07VtysIgGwZrWa0SGnp2esrBwQylBV5JBA6js7GuZXqH3ltc3+JDwBWJ4eOGPjGbBgeB5MtEpGRbISG1G5fMxkd5tUskldC79HPoU3qRtm2TwDrPMNjtO1E67eLtak0/pBozIQSUUkklbhqc8zRNS1lV5HlBVU9oup6uH6gnM5TJ6O1A165SBkRjGLqkFnvnGNoW71OfVV2R6wzft6i8oDYGqQJB55AV6CynXy2xi0umP4UgBWoEve7dnP46283xCMG+hGR/ne1BtfYxC95Tozc27oeqnnF08oLX1dcs5BlZUZApzdC32K4h2oEQAlop6rpGK00M0DYdfT9QVzVgx9jPpIo2bUqjmdcl06pGqZRKsh/TnTCimymkKvXXdz1Iyft37/m2/obppOLk2SF2jAzJ8xxRpuv7EIjOYWNPiIHg+kSO8I5udO0EGwghEJxH7USjCCFwI2CVJn4Ck0KISZgHixuG5APdUhk91rqRc0tSJ7MMjwAtsdaOKHFSe0MILJcrREzJo631zA+PQEjen1/w/PkLyqri7OyctmvQRlEUOV3TEILFZCVVVSFCwA89McuoqwolwIWIKnJMWeOjY9X2ZH3H4CzLviGsWl6YHCEValNLV1yfI4l1t6vXfoRd94g5GEc65IOmFjxIhv+h24PC+b3s9KP/sKgq6tmcvKiYzQ9QMqKlSohh2eKGtIsIrcbEyS1ZOZCjMEIxNG16KcYQ5MBy1bBarSinFVV9hMkMbkz/aJ2jHXPlhhAxWY4xGUbp5HMMgcEOnJ+f891vX1EVOdpo7OAY2gFCGm/YiZ+01mKlQhlDBOzgUAj6rt8SGAapCMFvVfAknBthC/iQAp5D8DhrRxU5qcYxRKzdAEURpSTOeYgCkWWUVbXdicOY+mUYd9IsM6myNQKT5ZyenlLPDinrKaen73DDQJkZIoG+WWGHIXGBgyMSyYucIc+JdiDLNTIGtJaouiAKRdtYmsUSMzmnPTmgLCdooTHTQ7Qw6ABBR+TuDBpBkl0v5P72MTrwvnPFja//GplDT7j0IwGhT3czVyuiRJuc+cEBR89OiENLGAaEFBSuwk6mybaLiaPZNC2lLOiaDu8CVrZEoKpKrOhpVuukmkjBfD4jM5r1eoWzQ8p+IETKoiAEIaQol6oqKYuS5XqNdY5Em4Pz80vevT/l2ckJAsHQNwipCIwEfDcCOtYDEqkGpEkuFuc9Q98lIkNMibVStW5J13WpTHtMgec+uBHRS+BS3/cpi561DNbirKPruiTE3iFEUjltjNRFSV1PaBYrnHfUdYrOOTs9TcKqFDrLqOqKN2/fYrKcyXTGV199jbc980lFphXOpnSbYvSbxuCBSJ7nXIZU3k8rtc2E0GuFtQEXFb4fsH1LiIHJ8QlGGor5ETJBQeML333598ywa+jmDQfEkzSzB47dq2N/38K60//erH372yOFc0cl2fnoKbv/TdK4EAkUOnx+TDmvCF97VBQIk2FyTz2ZIIOD6OltwOgcLTTNcokcAYqyLGjdGpNppDFkdcVkNkFKyfnpKZ5ANamQShGtxZgMbz2Db+m7DmLg4GhOHzztMBCjoBssZxeX5K9Tsusiz4nB0bWKSNqd7NCnbHdC4nwkLwuymBKIuaFn6Hu0cQipcMEiYyouZK2l7VqESClF7NCjlSTGwNAnMrt3ISG31hEAbRQpcbNKPmKpiM7hXUzhYS4Jo1SSGCJFnjP0A1IJDo8P6a3FhsDRbMa3X/2a9XLBbDpNgh8jRqcM8VY48swwDC7RKbUiCMF0dkCVF6jocVoxDJ6oNFJ6unagWSa7WOYZxcELysksLYBydBo8ct4/Vv5uZh+4lY3gg+Tsxu6+8/unUXB3odvr7b7+n+5K2RIQuPMhPJS24YoWB9ODGfVsSiASraOsSrJJjSKQK4U2hqaxKFWAkPS2J+CJMsMOlqAl3ltKJcnzjKZpWKyXmCLn6PkJRVWk0CpjIMQEzoxqZ9P2CCE5Pj5m1TScL5f4xZLZtObickH59h2H8ylKpcBm61M6SdsP6dalout7rLfkriDP8nHX64kiIy9SKsowJoP2PhWc9SFSy0lScW2AkHyxfXdVwj1GgQ9hu7D4kILLhRBEIZFCorWm7/tk04aAloosy1IR4qLg+NkJTdMxPzjk9P173nz3isP5nMwYVus1eZ4hqxLnk9othUTLxIhCCI6fnXBYT6mNxPkBGyKhTzu5kKCUxpgiAXExMjk4xJh8G4+yqz3uksrEIxGih3PL7jvpwW7vdNeIG7/dFVWzS6Z4jH16S1R2HsZ9w/3holLGtiUqjCB7UVQcnTxjfnSIaAYQHmMyZJwQ8op8ckC5Hhg6yzB0xJAc6iF4BhvABvIiQyrJarkAraimE+aHh+RFPvoVk6q4WCwSwjmSBFJaTgtCUhY555cXNOsV89mEvh94/fo1gkCRZ8iup/QeLdWWGTTYjvOLS45G6p4vPTLC0A8pQ+A4TZ21Cdl1jjDW0HR5ShniXfJr2i16m7i8mwwHzrlrNmWR5/R2zGIwquub0vJFlicbXSlOnj8nACcnJywXSy4Xl2RjKYZNv0VRJDvTOTJjiBGKskCbDB8DWZYzKSuMEoSuRQw9Igbc4FBSM5vPycuCECJSCCaTKUqp/e/9nr+AD9vxbvAGPlQ5fdp5T7/KraN3tub7guoeL5zjmO4a2pOHLJLao43h+OQ51XTGunmL61Ky5CwviLkmw2CKwHq5QK0XSHwKnJYk+7Qo0UbRrFdEJcmqaixNp3HW40Oi/znrkv/R+1RuXckR1BnwIVJUFScnJ7R22Ea9DL1ltUrpIq33rNuOfMwOGEOgbTsuLi7J85yJFAkcGhFZ731yg4hUXCg4hx8TkhGhbdvRxeMZ+oEwZhXcILsb6uDGRVKMZf3yLMeMybc2SLZSEq3NNn/Ss+fPefbsOTpLKVCsHRj6nsIY6jqxprIswxhDP7KKdtf/wVmkUpRlQTEitb0LMDi8dbTNGpUVlHmWQt+IKfJF3V0L9f72CC7qzTMeuWPttrvG9uCVr03up4zzOgn9NgXwfrbQo4Rzl2l1V2ePGbLYsVO3GRJEIsHPjo5wqxWu69LEFp6inKLzGZn1SCXRavSRiybFZiqFUIJ1s6brO6rplLyqWK5WFNMpmTZph/QBoxL5XcbIYkREN6hr9J6+69BZxrSYjJEsjOlPWmSEKAWDc6zDOmUaGHc2JRKBfeiHRB00KcWKHZlJwkuMStzWvutRYw1MO9hkdwuBHYXZmHwL5WuttyDPMCS2UVEUEBNBYDKZ0A/J1+sHh9YG5x1SKz778otUeyZEgrX0XYckUhUleZ5vI1qKIme5GkAKpNZJ0ES6z3o6payqkYHlUSOBIvl6I72z+GaFMGLrJtpkAnx6uzF74v6Pn9jLiP1cYxpc47s+5K65//tRuO495u4beIyr6FHC+WRt406S8FWh0S0wFAX1ZMbnP/oxy3fvyMuKosgIUqFNTp6VRB3QMiRupzIIaeiGNSGk7AjWO7LMkGeGvus5ePY81f1cLCkyTVEU9GOg8mK5TKUgQrp+WRQJjPGeoevIVI0UimGw1GVJ13UoITGFQQpD1/Ws7Rrb9xwdHSU1bgR7hJQ0tkEJmdBWnxaVFHUTtzuWlBIfBrxzGC13YjPlaG/GbUB1lmUpOmYsGHRxfkGMgulkQvN2jdaJFbVeN/joqacTirpEm4z3795T5hmQqozVkxo5RgFByq+ktN4i4hu/pHMuxZBaxyDSYmIyg9GGPC/pXRLuMKLOkXTOarWkrCdo/fC0ulfT+t6A0w9MtbX3pO/fFfNhUSkf0Paja3FUbTOOnz2nnEwYFk3KeiBFyukT0jHGaEJZoHRCRVUnaNt1AiZ0UiWb9Yrjl5/Rdh1BGXSewrHOz89ZXl7StYlJU5YVeWZwdqBr1thhoB0GrIDOOw6PjpM/E1itVgggCzk687RN2tmXF5dIqZhMavp+wJAmux0GhMkINuKDT6ZASAm7tBpTgSqJHSxd35FnmhCTSpuK3yab01lHiGFrf26EqigK+sGR5RnaaIahJytrnHdMplM++/JzEILT03OMyRj6RAWcTmryPKfre4wx5FnKoj/YgTzPt+9l3TRY5zHO0duBqijI8wwHaGXI8wLV91SZQWd65As7gkvah7UDMVa3UdSb8+EjpteHT8frZ37IHv9D0hMeVcjo1pPk9sOJ2/8/EoWLkeSijkgZmZ+cMDk54dVv/gq76nh+/AIReuxwijEagceoiBSGsp4QRQAU3vX0w4rVcoXSGuctWgbm8xpi4PTtW4Y+kQik0OhMQAysVyl1yeAsSIHORvtOG7xzTCY1wXuk1izXa3TfI6Rk6Pu0+xnDqmmIUqKynFJIlE5snUSYT75LrVNomfeeJgTiaE8XeUmmDMFFnA3Ywab8RSJlLhAilWFQOgWA53k2hqp1FGWyM+3Q07QNmdIEIvPjQ1yMVHlKGF0XBatmzdAPFNPkYmqahrwoyMqCtm9xPmAiCJl8qDGyrd25XC6Z1jXeO7y39CNlEaDtW2bFnKqqmFQVOIuwHX5Ii1dCfx8nQndwex5xvLj1yf3n3oalro585NzdnBN3P0t1YAWfll30NG5t3PdgSAnQ7vCt3Ak5j4emeHnIq5qj5885eH7Ewp3hB4dwHkTEDaC0pCgrXICYG4gVSiqcy0A4irwgRmjahsnJMW/evGJxdsnQ9RweHgICk2VA4Pz8gsXFOSKGlIozz7E+EBD0znN2erotU2iyjIvz85SGc2TkOO+ZzqbJLxlSqJbznizPxzG5LSoaYxzjN1MGg67vyYYBrcyWbRR8YhdprdBabdOQJNVfkucm5RTqEmVQZwmdvri4JFMqMZek5PDwkKbraNqWqixpm8SGSrZrCuDSJtmWfhxbluV4n/L5Gq0xWcYwDFvbNhBTukwieVmy7ns8aZfv2pahLAgx4LzDDi19s8ZOUvmHDYn+g9u++XdL4G8K6Kfd2/bZhtf33uvpqa8ff7/APwSefWJXylMUjtGYJqXsN8ZwdJKyEAitiCKybhqEDEgFOhqEEgiZoZWhyLNREDREi7cuBU8rw9nbtyyWK7TUHJ0co3PD4FwK5m67pIb5QPAWpWUKnI6R3lqQCmcd3736jp/85CeEGCjrisuLi636d3l5mfino7q5+dt7nwrVDj1Sym0F6cGnGi993zMMA0or+r7bgmPe+wRViBRW5lxClje2mxwLPNkx0iTZuI6yLNDygCzPOH7+LPGFs4y3b9+QqxydC5rVKiG5QjC4xDzKi4I8y2jahovLSwRwcHCAHnMMCZEI+9Za3r17j9aSg9kMXeaoJqOcVNBJnp2c8LNf/IxnLz8jr2uEkjhvGfouFaJS8tGz4a658/CMijsi8jHtQ0b60Dkftzh9oHDe9cie5ljeULbST8nB4SHT42e0ixbdO4JTdH2HH3qkNfR2oMgrtDAIYciUQssc7ytC7dHKsFg3YBRFnnN0dMxq3bDuW+ZHhxBSubrl5cXIzlGpcplIvFfvHEEmWt9yueTtmzfMjw5H10gYEc5i64IQQox2Ilv3CaRaoE3TJEBnrA0qRMrqp7UeQ8cSKGOt3YZ7eSlYr9dorTk4OEBqTT8MI1HeJ79kcCAlWqdggJAbopQcHR+PnNqMIi/w3UBdVjRFTpEXLBcLzs/PUzxslULnFheX2GHYhrINw5B8nlm2fU8XFxdkRZZSwWjB7GiOWGu+rD/n57/3ezx/+YJyUpGXBVpnCRvwDh8ccXwWj2s7bIW902jPFyNP9mOqYt7cvf6mkN7hsa6UmwmT7jGq7wQA9qkHIuwAB5KymvLyix/z7V/8JXboMCpxPYdhQIRAZy0yBKI0KF0idbHlrhZlhXeBg4mhmk8YoqdtW/Ii5+DZEUg4f/eOs9N3NOvF6Bc0BKDvO0xeEkcCQSQVR7LOpipoWjE/OEjB1aN/0FpLWZYMQwJUNvacGuuvbPyVQ4xb3ipCpDy1UgERPybbGoYhuVesS6Fjo2uiygtiJpDSjYHUBd5LXEh1UkJMBYniGDpXlCWXFxfMp1PO21OkEBwcHOCcx2QpTYsxhrZNAQNqrJG6QW/T+NXWZjQjacE5z29ffcfx4RHzgxlFXfLZFy+ZTKrkb1YSlEYZg1YSKQLeWXzI2XASHgKIdibY7T8jRLFHBMWu+vhAR5+wff84bWp3FGl7Qtv4P0cw49pX42e7uV+v/u0el/5pk3Nw8pyDZ8/I6xwh46jGCZxLGevapqFfL7HDmqFf44NFyoSUzmYHHB8e0y5WvHn1HTEIDseyf+1qyel3r1gvLsiUoioL5vMZn3/+OfODgxRDquQ2plRJhdaGN2/epmwMVZky6w0DZVkynU6p65qiKNBjArAYU77ajf90M+k3Scm11uR5DiNRIYSwFcQsz67cLN5zcXnJ6dnZWIAoCVDfJ3W5rmuUTHGs6/U6CeVyidEaay1v375Da4l1AzHCar2mns04PDxASMHQ9+RZRlmWW5fWprhSIhMoZrNZMjWOj3Dec35+gZKS6XTKz372E2YHc4qyHPPgJgJEes+BGBNV0XmXEOtPMMeu+OLXXXPbH7v/PnG7Pm/3zN8bI7t57Ie2e4VzNwv59rMb/x7X7nf0pv1YgpAcPnvGycsXRAlFlWP06PCPMPSO89Mz3r19zWp1inctMbrtBAPJcrFkcXnJtK55/vxZSmg1WN789resLy7QMSIFZMakOE0hqKuag8NDhEi7x7ptWC6XFEVBs17z7t07yiql/2jblqqqrrF3zMi8KYtidMb7rY24bpqUpkQmFFarVCxIG31NOJVMqVNg9BkulywXi21tk4TiZgDbDAdCJJCrruuxzmbP4fyAbFwU2mZNkefkRclisSIikEoxnc2oq4qqTKSEoig4ODjg6Ogo7djj/W2Cw6UQnBw/oyzLEdzyKKNQRm3taiUSlTClIQljTiS3dw7dPZvu2QnvZOjc1cf33XaEb9zeP/W68GSbczdW/GFd/74HtWFXXNmdCEFelJy8eMnp178mrBuyIqf0Nb61DEMPUdJ0Pf7iEm1SlrzEYxX4EMnyjIOjE6qDCVlZ0FnL+zevWV0skEJhypogBFGkuiTDkJz9gpQMa7laMAyWqihZrVbj4pAm6cHxEb/+q19zMu56wzAwmUy2O2eiNyZ2j+/7q50TUu6iEPAxpBw7Y2FcY0wS5ugTxc8ndVwqxWw+xYy+zDzL8DFlRAh9IsgPfU9RJmBsNplinUMJQZEXrNdL1m3Ls5cZzesVkch8PktmgEwlIFwIzOZzDg4OOD464v3p6Vh/BqxzVGVJBI6PjjDaYJ3l8vKCyTxRAKVSOO8Jw4DUGj0mww7BE71Fh0SVjPK6b/vJcybu+eOmrchNsf3UQnofNJVI/reu+BhpvWeYH4XWXidDXTWx1UF2N/x9I5VbuhoiImJESc2zl1/w9rMvWL1+Bd4RhSTSY2RGyEuyqkTI5NLwYwwoQiQQQgjqgwPqwykWDwRyqTk5PKYbSeFy5KMKCUPfsVwtkjtkDHzuhpZ6OsEFTwSM0iwWC370kx8jvpas22YEksToE+y36C2AD57lepVsUa3I8lEttcMIIrlUqXvMYpBnGZk2rNoORuqe1GOe3Bjou7RbL5ctfW/pUkqERKvLct6+fccXn3+WUmMuE71wcJ7PvvwR5xeX5JnZUveEECilWK1WiVmVZzx/8TwBWiHZpoMd0EbTdO2ocudY6zg/Pefk2TFyjH6RWm2fvfMe7SwWgVABJRzB9visSDTGj1DvbuuNN7/c3bU+bv+6m1a30+++6Tyq3p9ySfheo1KuqHqb3/dA5aNKukmpKYDZwQEnLz9ndXqKRaAyzXSWM/SOpu/p3EDXL+nbgba01JPJKMCQFSlP7Wq9xrqBb7/6Ctt1KCWpJqk2aJanCdj33eiI9wzWslw1GKlRItl3RVEA0KzXmCwVov3yiy/pmlSAiMgW+UwqrsbafqtdbCI/pJSjq0SMmQtSahIg+TSdQ422plIKpRO4s3GhbKJIrE0pWUxZIoVkWDXM53N++/U3qDGFijGG1brhiy+/HNVQz7OjI6SQXCwut2pm3/fp+7Fm6abuyoYy6JzbZvOz1vH27VvKquDgYE6Mo2/X2pEPLGAbOZO0oTBm4o9hj1r7IfJzUyC2Tv+dDkf09qkk+mvX4BEI7j7QKuleN4gN+/vb2+ee9oOHjN16xjtgEaOAKpNxcPKCYvYtq/NzgusIY2a4vKwSG2MViC7lqM3KFFCts4J6OkMYDRLOTt/x7OiQrmlphxbrHKfn50ilqOuSsq4o6gIXPIt1MwYrF0xnM6IUW6pbGLPHX15eJrtsBHvapt3al33fJ7BnvJf5fJ58mqPq50c20qaWSQiJ0bEhtq/XK9wwoLMMow0CsRWYPM+3AFI9mWDKkvW6oSpLlJAUZUmxKTOPZGhbjo+PU4aCyYSD+QHLxXJLBVytVkwmk617JhEcOlarFd57JpMJ1totsnt+fk6WZfzsZz9lMpmOcag25eYVDVlWkOsxE4RzSK1BKEK8QuNvVmbbfffbuXHfhN0rELeP+TjHygdSCW+c9Bjl/ere7z7yo1JjXnu447FXwsbOjphAnxhvd3dNjRiPC0JSzmYcHh/y7hs4u7zAYCjLKVVZUk9rZvMS2/Z4n9gpzlpyIQmry7TL9T3fffs13TpxZ6OSlLMp0+kUpTWD7Tk7O8NkmoPjY7Ki4u13b7i4uCT0A3lVMJ1Ot6X2Ls7PeZ7nnL0/ZTKdbInoiWWTbQGgoshZNyuEEBRFMeamjdtK23lR0PVdsv20TpkLhEjcW61HWiOEGDDabMkNG0DI+0Btct6t3jHNCpxNmsNgLUoIvHPMDubUdc1ytSTPi+RuiZHpdLoFobTWzOfzLQq8celsgrU3aPMGna6qiqFPFc6UErRNQ1u2OOfJ85JMjySRDfLrAylhYbxXQO+aTzeD829PzD3z53tq9y0iG4UwbsbCRjgfO6a7n8cHp8b8qGP3nT5O0PQz+diUhMP5lG65RIfIpDSoXNL7kOIruy5lN1AKk+cICc515JnEtQ2ZlFgRU7kHknq6XK4oypL5fMbJwSE2ON6fneF84OTFc2yIvD89pRnDsYqioCiKlO92tJ2quk4TOc8pi3I7wdfrNcakR2qt3SK3hLQzKaMZ+h5nHSDQUo/2b3KLGJXocta7bW2WEMIWQd0kOQveYYymKktWfcvB4UFCb31g5T3HRycorTDaMHs2pVu3iU4nUlaG2WyG1prZbMZ6vWa9XhNjSnsipdyyhDYq7tnZOdPpNKnMqxWz2RSjU0nATZK0TYW1IALBOnKVCAhxJ1D8UXbntQ3h6WSXj0VMP/T8zW75KXOHfc9q7f7V486XNC5DQkiMUkTfMakN0/mMt199xbBaMJnN0dUEPbpCYoAgBIFIs15SZpKL9ylDuhKkxMhth7OOrKqYzaZIKbBty9CsiQJm9ZTL5YrLxZLPv/yS2eEBp+/f0XVdSso8DNRVxdD3HI5hYkJJjDZbkrodEzcLKba2Y9elHTLTJu2i3rNYLhFSYnRGURUpNMxflWOw3tP1HUdliTFmu4Ol6yTGzuTogKODQ06mB4SLUybTKbPJlNX5JYeHh8zmc4JIu/QmNWRd1wwu+WDruibGRGTouo6qqrb2ZZ7nW6AqxsQHfvHiObPZDGst84MpkzoFBQzDQOkDfdcTI2RlKkwlYFtxzTqHNjfLz98zgzesg6s/PqB97PkP97z79+Yqd8AqH9zuj0q5xegRT9PJ4472vdvVHjVke2Mj3K61QovIv/3jf4nKZnjXMliHzzSqLLemtw8BaXIgUhjF21dfc3F+ynR6yOTgcIuWMmZ2j94zmcxwzrFcLViulqzajrwqmc/n9DaVp//xT37CxcU5QkrWb9YISDmLxuK0ZVFSZjneOfqmQ2tNWZYUZc7Qd9eSRudFAk2apknujnEXibDdIdumHwGOK+CIyOjPZIzvjGNtT0c9ndHblGpFSblNWl3Xk7RTGU0InkxnKQ9RiMxmM4hgsrQDbup1JvArZ1LVSKXohwGpJMGHLZBnraWqKoqiuhLAGGm75PZBgNQp++EGWIohZQ2M4Uo40/x5aAbdYbXFna/u7eLTC+Xm+qOC9/CVPoGm/eSdc3cwV0WLbuPKG9Bs8yLuzZayY5NEkehuUeVMZ4d052+5OP8VUktML8hMTpgcgEi1O+zQjGptQbdY0q8WCJdUSqEMWaYRtWIyNwid4YJPBHciYgzoNkMiN6zbls++/IKizGnblmeffYbUkrZpid5jXZ/qhErJ4eHRGJM5ZttTChkDfrDJ/opgsowYIlob4oik5nkxBjiT3D8+5R3KtMGFKw6vGyx1UYEPCQATIgn5SIzvh4HlMDCdTTFa03UdUiUNQgJdswbvkSYwmVYsFguIkaqsaJqGuqxSFofoMUZTjhREYkQUiRSfygmWXF4uUzmHqqZZtwz9wGxW03RrfPAoCVJEtBlLF8WUIUrJFNJHrMZXvEn99TAxbWPm3ERotxIy/rrBOfZuJPfaolcz8lGifN+CsOe7+/t83Bb3+DQld353Yx187NYadx7yTpMCgoAoNNV0zsnRMd/+2Z/iYqA2NeX8GaFrKQqJEQFhOzoXKISg6wbyok4ZFOoJZZ3An8vzM6wL5FmGiB5nU8Y6bQwFgJJ0ztJ1Ha++/S3PXzynzAsuLy95/vIFP/rpT+jXKy4vL+mHnqKqU9XosXq29R5G9VPESHB+tNkSGNKMNl2MEWMEMUSUMQiZqo4JQdrdbSJG5HmeKHsypUBxwafaolnG7GCOQHBxcYEQgqOjQ4zSdL6lHNVVASwvF4TgyfNsRJHFtsCQJ6QgczswmdQYbYgukR+GYUAadeVm6TtMpinKghDCyCMW9HZA+gRSSSEwWiMAN2aESCp5YhNtUNsYn4ik3gXJ7vz6wSZeFPum3/VDdq9437FPHsDjTvjoNCW3FN2tzfDAAG4+mXj1mSQQhaCoZ7z4/CeczP8di8U5Rkq6tqH0lm55QVgvWF6c0weBMjoFEevjpGJlJWacmDp7TjcM9NaT6xzvzLaEgQ8BlGR2dMjw/j1d2/Lu9VuevXjGycEhq+WKsipRcgrAarUeI1EiRZETQsXi/IJhGDi/vOBgOkshYAL8aO+t12uIbAEXiGNaSYPPMlyMuCEVyA0hbClxIQSKvKDUirbv6Yd+W0rQjWosEdrVGkWqF+O9x5P4rBt/ZYqgAaE2e1ckL3PKKhXVxcdtFj7nU+qUTcZC7xMam6qfJeJ/PakpqwJjNLPJhLJKdVZDSOynq1cat+jwJrfux3AR9k6j+767z1XziHHcdchjXEB3p+p5fPsEgNDT0LSHu0lKTxCQVXMOnn/B0eEJGQKLTOwgAt1qSX9xhm3X+ADD+pJ8cogjlSwQsccMPZFAlIooJdZ3rFZL2qbZukKqSU0QMFhLs15z1nXJhusHCIGToyN++/o7DmYzZgdHOJ8c+G3TJJ+qlFSTmsuzM/ohZajXxlwJmtFkWZaSe6nErOkHmyZuTFkAtdF0Xbvl0QIj8cBDTgK+RJrsZsyZ66xN5fzGBGaTyYT1KoWbLU5PiSKS5xnr9ZrLy0uyLGMYetZNw2Qyoa4r2qZleXGZdsi2xY6xnok0kVrXdbRNx3x+wHw+ZzqdkmUZOt/J+rep1h0CWm+IFgEZr4QztZhyJLFLPPlAaf2EqOgP2PWT2uPLzu95iHex7vc9710b4LqdemXlixFAEqOyrPKK6YsvOXj2AukCK+eQeTbuFkuWF+dcnr7Fh0gU8LKsKPIC5yNKgQyOPKsIUhFsAkK6TaKvxQIAaTRHz06YzqY0bUPbdejMoHViBEmtODo84uzslBcnz1Ox3rZleXmBjwFTFOOOIDBZQle9cyAEWZYSaLlxx8nzPAEljCqwkKnMQxyIgi3hYJM8GpJwCK22tDs9gjsiQqY13qa0KEpIbIwsFwvW6zXzg9m24tgGaXXecnx8vFVZvUspOa1NqTDzEdjxI2NKa81kMqFr+63AtW2bYlKzmizTIBWRTamLlCspxhE/GNX6zblE9elm/k0b706w8urTT7Gb7R3KA/3emQ3kgfaoqJRP7+S9ZeUDV3lY5MaS1Tnzl19SnbzAlBNmJ884+uxz+mHgu9eveP/+PcvFkna9YHX2Frc6ozKSKpNgW5S3yBDJtSE32VjxKyTe6phn0znH+dkZb9+8RUrFyYvnzI4OMUUKOF5dLpExcnR4xJu373j2/DlVVaZS7F2PVCqxlIocrTXWJYFIIVnVKJBx6xZxziGlJCsKqkmNVBI7fraJBNm8TGMMbqzP6ccdyI2lAaVIFco2mR02qqMQY5JpnVw5u+lSiizHD5a+aWlXa7z1ZFqnKmJKEcbdfBjV2Q3BYuPr3bCl/FgZbQNqSanIipKyqlAjJ3iz+6byhm5Lxvg+WmRHBG9dYqew3yMvf0vAP2jYd58UH3EMPCWeM+799cYB8c5vH9Ox2PwTAiFBSMXk+Dn1sxfkdc3k8AhV1DRNyvLmnE/uFedolpcsTt8ShwYdLbmCXEuMGB3h3uHsgBDJ9qsn9WjT5WO2guQWWDVrTJExmU6v0pKcnjOtJ2lye898NsNZS9Mk+7Oe1CnFh3cJDMmyFJnik5qqRjssjkKaZ2l3nM6mmMxs02duqHRDP0CMOO+2tLwYr/IRNas1XduyWq15//49bdvSti2r5TIdN+YsyrOM6WSyfS3eOprVmovTc9p1g4zQNi2vX3/H+3fvEuqsNUVRbuNUY4wImTSkDQc3ATzpGkJIQiSBPSNxYTNW72yqnDb6TB+cB/HWJ49qm3mz/ePW9+LO7/YNY+8FntDidqnY19noBIyp4/sey/3COb7UtCJdPTyx76Brvz9FQMWNv1ItECFASSjqKcef/QhZaIQ25HmNURotBOARAlyAfnCslgvOXn2Lb5aUeQolEyIiYhgd4ynDeyr5oPDe0raJ1TOpa4o8I9eK9WJBHCM08rFkwWqx5Pj4kOAcZVlxeJTSgljryMsSnRl8SHlqi6rE5Pn2FdVVCd6nSBYEUqag67wsyYpiG/2S5RlVXaeIjzFMTY4lF2IE7/xIirDEMRKk7Xu0VinNZ9eOQM5AkWWpCNOoUvZdz3rVsLhcslyu6MZq2e2Yy6gY8woJxMjoUWhlUFKnn2Pu3HRcTqZVKrqb52QjWyiVKVRoNWYcHCzeWuJIP0zBR3fCLE90RzytPVr5E7tz+L5/93RxnZZw61vYNf3u7utem/PqEvfZm/Eq7OvGuTd17YdSmAgYgY/kkpAiEk3G4csvQRu00tTVlCzPKIocX1TY3rJar3EiwOkFwaXd5bM6ZX9HGUKMabKEgPcBH1Jy56ouU5Lpdk0lkgpWFgVlUab8s0Iymc6YHRykibxec3x8nOI4pzOGkAgAiJRaU8rkrihKk1wjAtarFUZKMmNS+kkf0Jkky3OKsuTg+Ijl5QWrxYIIFEWOEmpM87EpWZgyyS+GAedC4rm6hNZORoAmBs90OqFpGrI8I44ocQiRxWJB8IEsM1vbN8tS4PdJfpz8rc7Rdi3tumGwLlETyxLvw1bl3gBaWmsEET3mFpZjDqYQY8qOvyH2IxAxxcmm3XZ3Vv2w7ebUuzk3455j7mz3yOZ99uVTbd5PRt/bvfDHxQXs9CJAKMXs+WecfPEzhtWaqjRM5jNOXn6B0SXKlKztd6yGnmHdUVUTlk3LdL2mPDwmqzKcHX1tkEjvw4D3gaIoadq0+w2DTSXjTYpfzExGNwxYZzk6OCbPc968/o6u65jP56xWK44PD/EktVkpRV0m0oAcU5ZkWcaFtZg8TzYnMiWintZjKfgEqgzrBiPVWLclhV1tyudtIls2RPqULFrTtGvyohjdOcnPKkSyoafTKYvLBdZZgk8xrdqkwktSRvJMYYdA0IayKNBKs+oHmnXLumkIo4NskwdpE/a2EdBNvVRjDEZ7hEi2bvSBznXbJGYbOzvxBsS2gPDHt0c707fH3RV7vGl/XejsfWj1J3Kl7NiNQtxhmD+tvytEV1IeHvOjP/h7vP6LX2G05OTlc4J1ZPmEYrJgUIb35+cYrclmh4i8HPPQAsogQtrRlNYobRDO4UIEIdEmS1ZAMnLp+iS4MYPJdDLaU5HJdEoMnvV6ndg6eZ7STI75YbXSqXbmCMo457YpQIw22DiAkJjMUE+nZHmebM8ipzlM6nLbrLdCxajSbjK9h5B2zMXlIqUMJRUo8s5ird5WTZtMJvR9nyh4ckR7RWS5WqaCTnlGv26QUiO1ocgNRVGOwd+Orks5eIdh2Nqdm6yDG+5tMg/TTpgiZpJbx8ewJfxvOMdSSjYsnk/XHtvX/g3jb4qr5KF2v1p744FeGd27Sbtu7Jrb6JL9L+TewjE7/W+aFKDygue/+CPWl+f0tuX4+QvazhFQBGV4JjWynpAZQyYlZBlRGYTJEtQvPXF0RWR5tnW4RxGZTGdJaIxGac1quaTrO8qqoKoqkKlGaIyR4+NjiqKg6zomkwnD+Tm271g3DXmR07YdpdE4O5Zuz3OqukaMDnilDdokO1Bpg85yMqOo6gntagVEloslLrik1pPUSGCLxBqjUQKMViij8c6yWqUyh5tsDKvVCq01Z2fnXFye4b2jWa8RURBdQrCLekY1nTOti5SZT0i6waUKa2OazGwnCZjflC50DohkearcnTL1qS0iusk7tIkH3eUJPzS/Pl17PKfth3SvXMFEj/PvPrhzfopV5qkxd7vHKyJIRfX8M45/+lPefvWXZJMZRy8cXW+5WK2RZUHmqoRwBolXGUEXRGlAalwYUv1LJcjzAusCXZ9ShkwmU3SeEigXVUmW50gJJs+pp9NUqStGjEwZ+8qyZL1e04zO/GHoxnSQkq5vU+rOmJzu5RhZ0jUNMQam9SFFWVFNJtQjsyYzitl8RrtcoISgLAsa78lMhsmSGrkpSZ92UE8xEukZa5IqZZjPZttjpZR8/Zuv+Oo3v2bdLEnRYhFNgKEjugiqoJodcnR8xHQ6A50RkKjMUJRFYlZpvU0FuskAuFkkNgymzeSIMdW3iePnu8m9dvnV4xv+yBn14Ax6/Hc/4DZ6H4azrz0onJ963I9dqbY7c0w348uaZz/+Mf3qklXrqWY11WxC/62j6VuCiAxdh1EFOQovFDZEdNjYmokH631AjX44axNTR+sUV+mdYz4/IIrAdDpNwmcdq/Uaqa7Kvc1ms5SDp+9BkLi0WXLEuxEJVkpuk3dtqovlRc50PuP42XMOT04o6xpBZDab0x+sWUpJVdVEH9BKb7MobFJyJlqfwMWYUk/asaZn8Fv1U0rJ69ev+ZM/+RPOzk5HBFlQFpLDiaLOIlJFet+yOOvxtocI9fyQAPjBYjIzlqIwWztxYz8Ow5DK1Fs3vkOB0ynZl9JXwrsR5E02+70+zh9QMO6gcu+//icYV+ri/o4euswDwvmYUYotTj2Ctx91X5s19trfAhSg5yccfvkLLn79a1R05LlOPNDB4QePDFBWGdqknD1911CUGbmWiEmNd5aua4AU5+mcY92kSmVVVRFFxNou7UxSJuJ4ZpBqklwCIWKHgc4HDmYzlosFXdcxdD0gk32XGYwpqaoaIRQhuDH6xaCNoZ5MmR8eMp1OyIsCYkQB4XlKttU1DQpB17X0w7BNaWJMnvILVYr16i0hCryPSZWNQAxkRvPu3Vv+9R//Me9O39FYiwsKqTQUGXVmOKwyJkYikSwuGs6bS07f52SmJp9MCWNJQO8dUmY43xOjSXbjqO6umjXlqEV0fQKgihggpqgYJVIKTh8CIiR/6NVr3ZkdnyAyWdyQ+e2ft9DZp3T6mIMecqfc09HGJfnAdR4Qzn0e3RuJoneOukuX3/wd4ZrDaeOKiXHn+Jv3LFIYk46RqApmL75kvlizPntDUZaYsXRAkRX03uFsj5UCwTQFBHfdSMaO5MZgtMb1qVCP1inPjdaSqsxpRVrp88zgnGW9Wqb8PT7FJpZVQWYy1sOa9WgjAhRZzuXlJWqsEB18IrY362b7XGJMVbgnsyn1dEKeZeRjqQYpBJGAUpLTd+9o1w2FiNiwBie2ycBSmswAUpHnCqU9VVXD6CrqbMef/+qXnJ69Z+0CvdDE+gBZH9JW0FYKN8spJxmHmeH5keXPv3rFquswJuPg8BgnAeGIBJyzOCdRRWIqyeAT6OMceYhokxJhmywb03sm1DrEtEJvmEIJELpCau+ifX5ou9nT/WJzt2q9G6a2tQ/3aXePBYp3+n0q6R4+BVorHq9DX+G6uyvmdbT32sK64zPaoLd5UfLisy947QaKtmFyOGe2WuE6S9s3XC6WVKWnLErmB3OsSzGXyS3isdYjZcqwLrTCuVQrJQqoqjplzCtLIJWGj6Ov0WiT6p94jyDxYNu2IfG9wxgOZhAjn9RtCitlaQKHGEdSQwoHy8ZSB1f2m9+S2dfNGucTZ1YaTZblY+WxVOp+E20yrSqKPMd5R7decPruFW/f/BbrPVbklC8+Y/LjP2QwE7rujPP2jNpkvJhPOJjNyYPAC8PXby+YPDtgenSA1oq80IToca5P1daKgsFaECIlDDs4GGNTk+27uY8t4Z3kVpFGbIPJhWBkGj12Yn3krnrH6Q8mABPXfjzQ3weO8ZGn/eDZ91Lbg+Lufnpj8LsRDFJKJvM5h91nDNFz9PINTdvw7ru32BhAK9RYsTkicGPspCbS9AODs0xn8zHRVo9Ukq5r+Pqbb6nKkhcvX6KUTgwlpRj6nsl0irPJX7jhshqTUo9cLhbJ/rQW0XcUJlH8VqsVBwcHSRWVYksk10pjjN4paCRHHmtg6Dvq6ZSDkWgvZcoDtLH7uq4D2LpXNrtU03a4vuHt66+xrsULmDz/jL//H/13+a6JLHpBbztae8HbpuVHsiafFhznBaURZPMJB5+dMJsfUmpFXhq8d7Rtqp0iRyKHUnrLtd2k7Ny1LTfZAuu6Ro7khGtalhDcPytHS21Xk/p0U+y+j+8ezvbEfRL1QG93sfh+iJ1z49PcxxB6cl87v28I8LvX2X4XU2aBg+MTRKZYLi/pVitWixXSZCAUOs85PD4hL0ts8CitmU8mRKlYvX7N6dl7ZgeH5EXJMFh8hLKsyYocpZOaHINPOYKqsRyE90RSabzVMMAY5dH3qR5mP6Sga1EJYkjFgJ49S2X5lBLoQW+zpAuhrgnYxrFfFCUHBwf0L15SlCnjfN92tG27JY9vIls2WeZT5vme9eKM1eItPjhElvPs8xf8z/4n/2P+9b/7Nf/5f/5/wK7e492SFY61nRFyx2wGx8UEWUr8vE4qt5ajcHryPC00zge0uUJtN+9hI4zee4IPEELi2jqHGyxOKnSWb10xMURQDyOpVxbOffvcrrDctRVd//zJ+9yOYG3U8ifN8zuUw8e2xwVb7658Ozbnxmbce/wdT+KuFfFWusE95213T6XIq5KpgOOTl7ypviIzOXlesLIrghQ0dqAMKWh7uV4zXF7Sdi2RyHK9oneezz77gsOjY8BvVa/NTidjKqUQQqBZNwghubi8xA0p7MpZi21tIqznOXabv7ZDy3K72w3DQJ4Z9GgbK5Xs3whXgjmqxCbLmUxmDEc9Qgq00lzGi+19b1wUm5CyoigI3tOsLnl1+oYwrIkSRFHQdx0X795wXGri6Xeweg8agtCcrVouRYspNc+mJaaYcKYLTF2Ty4hSyS2S0quAdX4kcajtGDY7/iYl6FjtJiHL/bBlOKm8QI/xnJs0meI+HHNrEj6kgIo7ft/p5y4//c3D7rvKPl/9Xefc09mHpPD8/tTaJ2olG5vyvgDcKwEFSSriM5sdcnL0jN8WX5NlOc+eVRwdHXLy8jOKLO0AKIXs+xGoSE52ITV2rHs5m0+2dpwbmTrSO7ROZPYYI02z3ro03r9/vy0C5IPn8PCQrChYrFbbTHl5nm/9oT/+0ZeYTZ1OUm6dDSVv82+jMlZ1TbNeUbuUtDlVpU6TWWvNajXmxC1LpBAsFpcM7RrfL8k05KWBkPPqm+/43/1v/jOKcsZ6fYaILUVxgLSat+8bvm0u+UdZwdF8ihGey2WHVgqTSYyM6dm4ZG+rMXEXXFUhW6/X27KHWmsykxFCCkS3ZkAJiZIp720xsqxCCDAuWndOD3H9l6cT9W72c3/7EOX54bF/mvYBwhmv/3oLsr7aZfetFJG7EPRdu+SOFWsjuDGtwlKMVbbmc5599hI7VvI6Ojokz3LadcO6WdEOA2VZcTypadZrVqsVZVklAoLReOdwUqaUmX2P6weUAO97fPDUVcXhwQEXF5doIVFKYu2AkApjctp2iRujL1B6DBdLQl2WJUKqMURshhz9lxsQZSucgDEZWVlgihI9DJSTCV3XkZf5+DwDenQBRSA3BnEZWZ6fIXxDphVFnVOLnPOLFW++fU0Ubwh2hZQBk2UwJJdPN6xAHVAVEJRD+Q6ERBpDURhkP9C2HdFH+rYljPeidHKrTOp6tDM9IsLQ92M9lgwhJIMdEEpSAjH6FJnyqLn18G5387B44+fje/+b3R5MjXldSOLWj7mxNXdv9yZEvo+hf+OUJ2/1AohCjIapQGcaVWRU8yk/rWvqqkQJ6LuWZuVYNWtsjGAMwmh0ljOdSoJ3dM0iuVm0YTKZMKkmzKbTFDa2TqUJ+r7n3bt3ZCYjHzOna51t0VXnElKrpCI3GdWI9G5ss1SeL4VgFWWZom5GYGv3ecmRmpeXJZODOY6IEJGhb7HW0LUdWZERB4mpSkLwaFIeo8uzM3Ro0UVG/GyGJePVVxYRClzfEIcWoQ3N5QWCnLrvmOk5Wjq8a5DeEn1GRKFNhjSGMFj6occ7nwgVUpFpk1KBDgNG6xQ36j1ufIdt1470vVQUqZ5OEolfJJVXxEC8V0Sevt09ZfZcAxyfcLkPbx+HwzwpTYkYt7ybfs7N9x/T9mJh+9hECX0iwjYdRpZlnJw8G0u5B9zQ432isRV5waQsEEoTQ2CxWODswOF8TpGZpGYpjZSKoe8Y+oGyKJjNZjRNQ9M0VFW1LUp0Nha09d6jR1UuPY8kkJeXFxweHm4Bn2EYttnSN2whwZUPcPceNypxWZa0bUvfaGbzecpZGxOlMLcBoVIdl+gGBJHV6pIXWWA2KyhfVixETpQDw3JNtAMRT/AS3zZI5VEiUhuDkRJjJDYzBARaQFGWaAXepUpoWmuMMjjntzmOsh21/eLiYlufVEq5RaGTewliDGxigYX49Am+Pq1e+ohT79AIb21E+/CWPV/ctzk9Ua29WZH6KXd5v1LxUE+3YkNhhPMj2mjmB/MEXtiBOCKDaZfT1HWNznKaVcPR0RFKjiXXjULplAeHwFgVK9B3HU2z5uz8bOSMJjtp4x4ZhoHLy0uEEBwfHxFC4OLiYqQEDlte6YaInihsabxKqttAxY4qv8kjVNc1fujRUoCQTBmrYTtPZwdqrcBlLLOM3lmyXPDFkWT9omBdT5keGi4vOuKoYYQYUCFgcqirnKk25GgyY2gyQZQZQmyqhCWQx1qLzDKsczjrtvVGYSwyPNrUm6JNm3ezUem9vyp1OAwDZfAoFPe1q1myS4B7SCH94RTWO2XpA4fwwSFj9wVJ32cb3jGMRx53d5+7iO3uDp6ZDBVjCpNyYpsnVUpJlpkEXvRDcuqP+VWts4l8RCQERxg5t5k2NG3DullvwZiiKFhcXnJ2ekbXdSyXS05OTpJzfujSWCQIEXn+4jmr5YrZbHatuG6Ky0z26O6z3fy+8eGmMY8B0XnKHq9NRhYjSmtEgGHpCCEhzFJJBh8QwfPFkcK9KHAHM77+w2P++KuvEN6kiRMZ65YM1HlBFSMmJHCtDQInDFqJVA8GwXQ2S6FnbQcx5afdhMJtUqoIkfIVbcLEgK3vM6UBVdv3vgGENtzbu96zuPHbvt1mz8x44PtP10bF7cEhPCyrDx/xQdGvTxXMXeDjuhvmfkF86HMBaKXI8yzFaspUEEiOgptlGUVZUteT7Q5mTEJgz87OePvmDX2fkEWZJJXLy0vOz8+2Sa26rhvL+xXboONNekjnLM47pBKparQU9F2/9UFWVZWQzDzfCulG3d0sNDfVms33m4wDeZ5C16oqBWhrYyjyYiTsJ7W5HTzWBV4cSH460fwkD/ydv3fM7JkG6UbZFESp0KXhsxeHvJjWHNcTymKKjTnWG2JI4WCDHei7jhhSsi83quMbZHYT57lZdDbhZE3T4JzbqrhN06SFLyQq4GZHfQrOEO/44+Osuae3a3yE0Yy5OZfvILrd0dvDsvNoQOhqQA/2+fCwPqEWchUbF7d+2CjillIXQiCvK0ye06yTKoaIHD87ITMKYsQ6i5aKZt3gvWc6nRJJ6liMMdmZTUvbNNsIf+89ZVWM2QgyFotl4r5GR11OqOuaokjl94xOiPB2jPe0zQ6a5zllVWHHrA1mpAAGNik3Z0SX8uQOPiJ1Tmkccxw/14o3P6n5/X/wGf/q//ENvgeQyKLi8OUzfvTjLzieZszKgrZx/ObbUy7XhhORqnIP/UDbpSprVZlU86G3W1fTJgLGGLPVEKy1W5/nYrHY7vxd12Nym1JnjpN3G0r2iMm0OeKm2/IH2St35ul9e/z2YCG2vtn7F6DHjf5e4dxVQXY7vou4fJf749aw7nC/PERcuH3Dozq4+1BItThiTDtAXlTUdUUgFSLqujaFZBVFyv8zxhKtl2uGvmc2nYyUvo7FekHfdbhhoG2WXJxf8N13b1ksl/iQisz+5Kc/5h/8g7+f7FilKItUqk8peRUoPWY1iBsUi7h3kbtpe06mM7wPWHee3DRCghIIpZDA4HqsdVgUKx8pDDyrC0xW8up55N//x7/H6dcdv/nlKUIalDHM5hUHVcbRpKIqay4WgdNLR3VwQFnkyBGNJyYb3AdPcKk4sNZXdMONkG4IFJtdcfddSZmYVpCE3u+UA9wcszcz3rVt6uZTusMK/T7Mzhuo8APL6vW/7iQdPJ7L9wAgFEaELY7/7icuf/Tz2bynPe6YW4cKwHtECAihUcqgtE+TyidVajKZorOUI8c6mxKG+UBwDt+n3D5+TKpcFTmTIsNFjwgO3/d0bc+w6ri8fMPXv/0r3r694Oy8pXMOG0C8PeWrb37LN998y3/0H/xjXrz4jH60ZU0mEVJgnUfqVCpCKkmIYYuESrl/B9nsnlobirJCLpaE4InB07sepEBGTYyC3nlkecJXbUpdUuaRtR/4afC4Hwv8f/r7/NP/q+b0m0BdCv7+lzk/q3pOqhRg/fXbC16dwWcnGWVRIqPEDilX7jCk1JbLxZKqTFXYIAFjm2BsSAECiUY4kOf5tvhuXuRIJXG2w4cB6y0mFOg48oluTpjN33tUq7226O5h23M+dhbuOT8+XWNMO/1jdtGPQGtv6dU3vntoiFfHjCverZCxuwd/f/8pq1uMIV1HJpAIQClNPalxPiCkTsCGTTlxDg5gaDuKLEdJSdd2eO/wI9jRDS2rxZKLiwXOO95/+zVv3n7NebvkYmVZW8EgJEEmO9VHz19+/RWh6/gP//F/ixc/+hEmy1AqhVJVdYZUEh831a03475+z/uFdCOgBSubfIueDC/SLqS0QQjJ0dFz3l8GXl2846dvv2b+uUaqgqwymFwxMz/n/TcNcnHGz358yo++LHj+8oCA4tX5QDE54vBojtaKputYrxuaJrmLhmGgqityk3F5ebmt99L3/ZZf240qcFmWaK23LhcpJMH5MfQsRf+onQiWKyL8TffD7py59sWNCbI5Ruwc87Hb53519WN7ufPDe+T20cK5+/tdwnr/aO45Xjw9X9/GVXKrq5EDKoSEmHbSMEbwyzGHkJEqIbZ9CmZOYJEjOMt6teL84gIpBRdvX/Put39F8A1SKoKusUZg6hw1OSDYgF2/x4c1b8/f88d//C/5h3nG5z/9OUIoqqqmKFPRXDHeY9/3OOfTThivkNt9z1PK0f7MClwxELwjk9CHHkaPTJkXHB8e0j37Pf7ZX/6f+fufnXFyPKPMj6j1HG00k2PJW+/gZcXv/WjKH335BYWs+Dd/+hW//OqS48/+67w4OUQqgQspjWWqpB0SK0hKuqZFiFRjdIMqbwob7VYGuLi4AEi1ToeevMhQMlH5UimJsCVh3HijaY5c27geUQ/2ZpTEp25P6P+usT5uB73dPqpWyoe0fbr4xlq8+ylcfbc9f7TLUsqRsQSAEGiltj7Q1WrNYD3SqO1kIqRI/ejDWKSnTWT0GLFdi4hQFSW/+c1f8vqrX1KrAXLDRRcZpCE7POIf/vf+Y85ay/n5gtWb3+AvvyIMC84vXvGv/sX/E+8df+/f+w+QUqOkTBnhs5TJwDqHHYscwXV31b6Xp5TCZCYl9JKSKAxWOqLwZMZQVjXzqiD/xT/mz//sLf/m/N/y32laSi0IQfJlXnHw4wmrz2uC/AU/rZ4xEYE/+dW3/LP/zym2/BGfffklVZmlLAcjM2pjLzdNgx3V1Y2bZJPEa+OT3USvtG1LVaUSFMYYMmMIPmwTXQ99T5YXMJL9r8+p/cjL3bNunBNPdmHc3+7m6O5Rm2+gm3uv+xEDelL2vYfadoUYx3N9ssXtKnSz33TcfXbmdcFMNlmKF4y71xFii95uyAdFBOtdCrhuW9xg0VJuy+VlWUrAHIOnrEpsA1+9/g3f/fZbTBw4OSy5cI7oI9ZH5vMD/hf/8/8pr88W/K/+l/9rmvMFJ8+POZlNKd68IrZv+PUv/yW/+P0/4NlnL9lA3JtS9AhG14Mjz692/6vJGreayQZUMSYVVsrzHDHuwj3gupTRQbmG2q15+Y/+U/7JH59S6r/ib/34LfWx5rCcMi0qZPEchcZ3A//mz9/xT//lGWvzY37+B3+H5y9fEiP0I2XP9j2QFgbnXAqclgn57rpui0JvwKGN4G521E1858aeV8NAcH4sixGIN2fdLQPyUbPtCZ9+bK+73+wI6D50c9tuLx57GW/3tHuF8ybF7NF+zbs+3fPFruH8pBbT/6QQXKfBCdRYAl4bQz84xDCMkSiSoeuxXU/ftmOtDzHmiQ30duD01WuWZxf0qyUvnhWUleasFwivCLGlb1b86b/+N1SzA+JqQViv6X3Fz//9v8XP2wnLf/1rfvvmNb/6k3/F5z/5OdJUKcv7uJDIbVzglUN+7w4ytqQRbHkECKGAFNfZyjVCSOY6sH7zrzn+6X+f9R/8J/zf/vT/yMXla37vRz0//blAFTVBl5wvHf/yL87441c1ffZTfvTTL/ijP/z51p9LFNRFwTCWghiGtMPbYSCGsE2VaUwidsBVzdFNHVCzk+EhhEDwgq7pqGdXfs6EF9yxc96eHU+fG997ewwqelNFf3p7cOd8ip15s7T87uHXF4orFeEmCne3hXwDLJEi2ZW7q1EIV//G6lZxrMasYwrZsv1APyS7z1kLgHOpGK7rOtarFavLS4yIHNQFVa3JK43wDmi4PH3H//5/+58xnR0wnL1D2p6gZ2TPJ/zt459wcFzwz/9fX/Fnf/Zv+Xv/6L/NT+Y/R6ndwOqxNPsj7fGE6spU1l5K9Aiy2JBiKPMs56BWmPW39H/1/2X+4ie8efGf8E/+5J/ws297fv7Nd5jCMMicr9943q0rZp895xe//wt+7+c/py4MNjq6wdGuO9arS1brlq7rWK9XgGA+m1GUxdbt4ZzbIspCiC04tEFwy7JMPlFrCc6RFan03yYZ1+Ntr7tW80ee/tfRHgmzPKZ9tHDeXvz2Pz2x56/rrIv08zGuoVR4NhBiJI6+7RhSEQElJFoabLQoqVGFQshU9MdZix5RxV6mVJkQ8NESkYQoEVGmSmMSphPF8VHOZSxo3pzhrQAp6ZqGZtUR2wYhI8FBpwLltOanP3+OcT2n//ev+fVf/jk/+9lPUFLsLFwSIdQ40VPir6tnsv/NijGjgOx6REisqD5EnPOY3FDPD5hWU05Pv2HRD0SVkz/79/h29ZqwPKA/G2idIGQTfvSHP+Xnv/dTPv/sc4qyxvsUZZIqlzXbYsDWOZRW1FVNVZS4PtXwLMYcSJdjSXofUu0ZJSWzyQytFd4mwoVzDgnkBTjn6YeBKoQtePRB7W+yYO5p+6Xhcff+oFr7qMvut6CvtyfCyA+dHCEVzR3VWyFAxlRuTyudoviFBJnsPWctdkh5fOrJBKU7NukzQ3R0nSczBYfPnjN7e0QVNJ+/PGA2C7xrwdOPpRaScAx9D2GAqOjPFjR9h5BT6mnF7/9kwn/zb0/5F9/+FYvFguOywowIslJ6zFEkt1E16R72CeeVu0FpgzIZtu/GnVTT9X0ip1dzns8Oyc5XVM+eE4qC8OMJ+L81UhY1LgSqgxkvP/+cg4N5Aqe8Y3CexWJNs17BmIbT+5Sh/ujwMFUw6wa8Syq4ViplAxQpQXeIgUxr9AawCnGLK7ghLYZJxfUjJpDu7dPVTbmrXc3Px22238+WfLdlfNN9dLs9aud8+LIfdmPXfaA3P7ve7y1saQe+DyFua5QorcdVX6OzbFsgd6OK7WYsFyIRuvMsQxsPQTKbTfmD2JEtv+HlsaSoOmZioK4cQvTEIdW5FMEnEoQqiP2A6AbwFmWgPpjwRz8/5p+/c7y96Dh6fhW7KQVj5Md1u+sud8oVIUGTZYboHYNPE915T15VlNM5+WzOVOdURzPmL18k4R/dTVIlJDvPBPlY+GhT29S5lJKzqkqGvieMhXGrskQKcHZIZPwy3wI9wzAQiORjQV07DFs0fFNXZRP+pkd1PmVQkGNx3Y/0TTyq3TaYHjr+h9GYH3+VB3fOx/k0vw+M7O6b2IxpY8dB8mWmZMhjhedNAaBR8DeEcmPMlnq2yViAFNSTEjmGTZ189pK6WjMvL6lmGZ/pyGfPC36TLXHDACEQU30xIgGtYKIlhQhoKdFSUGrL4fPnnK89bWcpyjxlafc2+Tg3dxmvI7Y373MTXbPJnuCNSYmbh55ISrd5+OwlZVXj9ZKoJeWkROmcLE/FeFORo4DCJSIEcFXyfixsOz7uYbA0bZsWEQEiBqRI02SD3rZti84MxnniVvCSOrsBgzaCunGbbO9zx+7cou93TYEfWIW94UP4BAPY18fjwdVHCee+zvbteh/dbjigb14v+TdBjGqR2lQOUylxcRz/Sa2QaBCkTHBjQqq6rlEqlWPfRFCkyJXi/9/emz7Ljlx3Yr+TC4Cqutvr1wvFJkWRomVNjGcmHGF/sf98O7yExv6ikRRjSabt0UJS6sfud++tApDL8YeTmUigUHXrLq/JD50dt18VCkAmEnny7L8DrRuEwHAxYHN9i62/wpefa3RXI7413+KnP97gr963+OZxRIQCE4EQwcTYbIHPNoxrQ1JJ2w/idvniJyBtsX/c4+p6g6ZRqShulIV/wrRez3n2KUoqWSspWzGg6Trc3t3h8f4B2921uDeud/j4eA+OAQSHRouBxmmxDIM1mC3c6Eq+5uHQp/jhQQhYqxKoH0NADB5tqwvgWCYqYnEJDYcexhpYbTAk6YSI8PgoqPBt287WkUt6v7WvtWZ+aj63vPdL+nvd+J6NIfRJp2Qm0T4dNkUJMQ9EUnJAjSCtYZM+E2KESs7+nNaU/XHWWkn9aqVgEEFBkcbgPe454OHgYLTFtmvwRfT4xVd7/OkvbvHdr38LNzAYChQJoIjPvmjw9fsGN1rBEkNFj989asDeon94wP23wGfvb2EbW4xm53bONQ6afbdt26RSCQpt1wmxNi1s0+Kuew/74QOINTQY7EcwIqwmQGl4ZjgX4YLH4MaCbrDfP4o0wAFudPBO4nitVui2W1jTAKBZoaTs68yirnMOfd8XLt91Hbq2g1IkhruV3OAj6MtnLa4z84dJq6PFsScvekF/n6o9OwjhexviU4SZ/KZECkpnHFgj+meyFHrvy+LJETkAZr64wBGBpeRe1xg0rcXH+0d89zCiHyy+6u5wxwE/vf2I//Bnt/iHv/8W//zPA6InEAzIevzkZ9f44ppwpRRU9BgPe/zro4X+8j1w/wHDQayyeSEuQyJzWyPK3KaCQg3aNsA7j6tryVNtNh0CMxRJIaTg04bEhOhj4XiHQSKihnGAT4WIYgqOGJ1k7ATnAQaalJPaHw44cI+m6bDbmWIUyjrmOAyp3AUKni4RFbdKzl3Nz3dWnHujxUWLfy+69WsZ+aVt0ck5ufOZnLMORH5DcXbZxdImlD8QQEwATcgB2hiQMogk9S9jZIzjgOil2nMOM9PJymiMQJdwjMKBoCCFoSNsa2CaDdruAeb6M3x7+BZ/qhVudrf4iXfY//Rb/PbfH/C/ul/jm28YUA2u3zX4s1+8w5cm4so2aF3E7w4jftO/x83Ne6j9N4jDCO8cAm8QQaAEVXJSZZCD0xRUSAlaa7RNi9hJFsgwOLRNi5D0OWMMYnCIDIQoZg6fKlzL+YP4JRMKQnBOAjPGEVYbWCWW6GHo8fiQkslJYbONsI0BiGEbAfrKorFtGiHivi81OcszpQgppTXalKSt9TF+0qVtdWmcaa8juE9ArnT266w9HxqTnmRqZ9rph60DK5b9lY8McPJk55BGZQygLJglckYsognZgBiUakzmxGsiKwWMQgBH4a7wHkwKkQimsdjutrj6/Kf49XffYfAjrm9v8BVt8dF1+A//jUYwO/zVf37E46jxZ39+hX/7k2v8vCFcawN+dPin74Df0U/wy0bD4wBrPkP0Ec4HEYcpBebnZ095jSKhTz7lbMyqDSqKNKwhxJbRtSMOVmBM4jiCIRuRaSK0EvfFOI4AJHAgV8LuD1IyXhPBjwP2Hz/CWIt2u8HYD4jBC+HGZFzTgis0DH1lvCJwFOgUEY33M2KLMYK1lqLFRkNpterfJCIclQpbaVnPXRJnPEGiM2PTsp1ahqcDaz9RO0/8TxfPfVr1e0Y7faMnu6gVidmFUlJeaY0YCKiMRQAQuYr5zBxI62SJNGkhKljbwGgLpTRub28wfPZj7A/f4Jt+j/dfAJ+ZG3wFg0No0G7e4euv9vhuvMfPftri57ctvmp20Bzw229+h7/4lQdd/xJX7hH2/Qah3UEZnSzMBopkfPVipmToWlrHM8cMCTVdkRSozTVLtBY0h6ZpMKTaLxQkyybfJ4NvheCRQbmDd2ASI8/d3Z2oACEK5GZVNLfv+xL1I9k7IYXlcdlgspvq6uqqWNHbNpVhiAGaWYIV0jO8VRLFi9sJKI7vZVhnjJ7LdkHK2OvH8yatSEk0My5kQ4nWGlA5c2OqsAygZO7HVCI9hpAc7oJoXqyhqUTgu3e3uP844v5fv8Df/H9/iy9uAm7vCH/yboctBXzWNPjjGw0XHO5uFH7++Ttctddw3/0Gf/P3/4L/9A8Nvvr3N+DD73D9bove7uCChx4dopcx0JpYd/SVyjGVUBtyrctslNlsNjj0B3QJgT4/y+iE0CadOwdijAALMnsMEYolPtkYU/CSTCq7kA07GXAsz2csUT45wD0U49A+Qbl0XVfek8n+zgTc/f1YLs5x49/fouYsKFyA1fOicgyX4r986pYJs7EWg7GIY192kxziV4uEAu6VoDIoiYshQpOCTUYTREazsbj7fId/+C8av/pNh1v7iH/3S43Pv/wS3fsdrrf32LsrqHiDXUO4u7kFHQ74z3/za/zP//Ejhua/xrYdoLsGqr1GazfohwGHYcDVzTWUmbuoylym9zXD6E3n6JQLGVkIJAcm3NzcSPXqpI/mIAH57AunOxwOiCmGWCXVRJK+pdsMKgaWKKhs1RYLsRh3Hh8fUynCAO8CvvnmA5xz2CSUhKXbpLyfxs6McEftE6h2L40O/ENqzypk9HttixeYx5SNQtYauNoIUSKLJmMKQ4IVAIFbkfhcyYvUWiMmvazjDd7dbfDuy3f4xw/3+Mtf/RP88Bv8t7HF+68+x1fXN3CxQYxbNGrE+PEe/+mvfoP/5f9k/Cb8Kf74l/8GP/vxFba3O5Bt0ZgWgEQWcVr0pahPpWM+ZeEgpUr9z3ztZrNB5Ighia65EljwrnDDzOkARgweRhtEa0XHDRNkpaIUkhd9Sgr3hXMCKClj3nnc3z/iw4cPUt9luy3ulJy1AkixXwkSmVSPXDDq5DM+c63V0kVuT8ft/v6i5yeG+XT/n7A+52smYMXevEKYgLwInfB2MvQ/kRhXpKryVMC1gDqDJdaTBdLEe4+43yO04nlzfQ/TNvjjn/wJQk/4p7/b4y/+9lf4zYe/xp//2Y/wsz/6HDoO+O7+dxj8iP/3Hz/gr/6fiI+bn+NP//uf4o///Bf4+v1n2LsRAxjbRmPXdGi0xWazTXiuc+NPVqiPpJLlNC6mNOuDIAlTzCLmOPbJUCoXNLYRtxE45VV6maMEROa9h4tRkgEW3DkTbx7z/rDHhw/fJJymK1xfX8MYgYPJ18mcd7DJOpvVkRgZrD4tW6tVn7mHIR95PvLGm7VndHwRcc6iVy7u8NJRnA5xuuRWlAxC2hgoa0HOgZ2ItXnBZ84pHEuCu8s1UYPgMY4Og3tESLGhTbvB5+8+R/PnBtutwf/1lx5//dt/xK8+/AM+v/4nbEA49HsE3eHb3sK3t/j6F7/AT376M7z70dfo2MDvHzCyL4aXruuw2+1gjRGXULI+TqSZZqQKbQNJRTU5Xs9Z+iOCsRYbktQtgaccy7Q1VoxemjSILRrVwI2CwO6TDj4HuJ4GokT2R/QBh0OPft+jP/R4eHiEUoTd9gptY+HGAVoR2rZB2zYpdjjA+SnoI0c65TGfXA3ZnrCMEDu9BJ6QOFYMP+dOf5P2Npz5BZyTFv++dhdc9/WVW9Psg/TGfNyrUlDagrQGaZXNn+Ulj+OI0QmOkEmo74iMwFKxOgQpT9cPPR72jzBti25DuLu7hlY/w3bT4jf/+I/48Ntf49txj3++fwD7Ddpui9s/+iPcfPEeP/7Zz3B3+w5dt5U408ZKtI4Swuy2G0GkU2p6Gs7/rETR8GLXL7po9YcIgIp/UbhcgBtHHA57CcUzGsE5QClEMLrNFgzCx+++LTopJyOR9x7WGjRGQwzecvz+/h4PDw94fNxDkcLt9Y0EIzDDDwNGAN22Q7dpU8VtAZJ+3O/R7q7kFZHk4BJw/Kwrx57YsuffK3pgZJ16uUhWT/8EbVqrJ/tgPAlP9GKxdh4L+tK7PNEHAbSY9ayaHXtVknMfE6ZQrlmSFx+l/0KMiRvJ9xgZTdOCTELJcx4Pjw8gJZEuXdfi66+/xru7O4y//CX6Qw/XDwCLIWZzdY1mu8VmJ6jsighRCUfTYFgjbonia80uE8yzU+bi2LRIa1E3+fQhEkG24srz5+D4pmmx3W4TlIu4TYxSoGQsYnDiZhrBj4WoXUo+z7AxbdNKVbFhwH5/wMeP9xhHOV8xS7FcoKDTE8TVktH5rLXYXV3Pni2EIMWJ1STqnlo/lyyrpVdiEi6OV8hz7/3adraPJwgTeKXOeb4s+Ovb0f55oqusG+lULQygkiuZoTGKFZEk59Mn40wmmBijgGhpwSdy4ygLMxOPUtheXeH67lbS05ikxED0aLsNfIiwpoExYgypi/60bVcIxxgjKA6q1jfT461EBdXfATEoELOUeE+zr2jy4TZNUyqgNUnHi0HgKd3hAKV1CWonoJRYyGPOc9W2LUAE5z3uH+7x4cMHfPz4scCWbDYdtsldcn19DRCh224k0shYdI0UFpbnUikiK2Ap8+SN4NkbfMV5VjnUgjbXJLNnJXw/i9Wuhbk9n06eXchotot/AsJc4xxPtRzvOSPOxBEL16QpwTf7/YRrxslVwYxxGBESJOTD/T2cc+LsNwbtpgPixB3IaljSIK1hko8VzMUqmf2vWhspjJsc++sc8ekczxLxwpi4boiAVuUeufye8wGGGW2M4OBx2MdS44R9QA9CDAHWGAx9j4eHh1mdFnHdCFGPg2AJZaut+IN1CYTIeZviPwa8c2iTb1SRRCrlSms1waxjKE3PWpPOmk94qWB90vasTp4SyC9rlxmEzt7+9dL7a1w1RTRSGm3bYWx6DPtHEKTMn/fVgqcU6O4lXrRpGpC14NhhdCNcCFKfMomgWQfz3qNpWxwOBwEP224BRbBWS+1K58GREVWAMQImnaNhZIyqgGPlBT4z+gCzTaRuRwQaI2Kp80lSimqxoTVNg9anYP+mgXMjms0GGAY0VsYbg+ilPhUiyhXVhMANlAIe7/e4/3iPw0EwhbLYa42BSZKB9wI2BgDeeXg9gpjRE0FfX1dhkymIgifLL4DiVkqq84Vr4bI1J/c6fe5SjZiuWenx9+A4vczPCeD0Q554mJO/rJx78sHP32XSWUQsKtn3xiIYC+/Hwi2zQxwxQJEQbobHHHpJXNYpxC4GsXhKtEuD7W4L7xy2my200QmAmhEdoY+PINICI6KlDH3mgOKU1xOO6wrnPPVc9e9LAiVInCkjQkEXsRuYEBMlOyXAAWhaKVsvlcIei/WXlCqV0EKC3AQArRU4xeV+9913eHh4AMCFCK21khGTI42igFBba8GRS2xzKMV2Gxhryhhnydf5PRIXXbxmmScC7S5cIXLu6jlPXFjsGm8avvq89gydczHCJ8TqZz/PTIa5/C5zo4LU4KAU9K4qH6dSStKjlIJpGmhSGBNnVIqgjIXSCi4EuFFC29pGiAqRcdjvwT5is9uCtEKIEX0Cqd7stiCSkLwQIx4eHnB1dZWMQBK+1nVT4jGQmd2CUxajLBdjbCHQ/P9qUec5owz7UQIzpBLZZrsF9owYW8QQ0LYNmAWm0xoDBrB/eCjW1TyE4ANCcAKHaS3ubm7EeJQgTIyRDcckEXi322G73RakhNy01inAQwEJDTGHDxaUjcw5lxsRnzbn1DZsOvrlHCkfH1znlJMtZfnzqWWf7S9rdoKXtpcbhKoRpvc6n4SlijDz0Z0Xkl86nEyM2ihAiYMdvjIMpXjRxkjSswkWXnsEZnjn0N/3xd2iqsCFcRxhjIVpGjAD0eU6k9JziIBKTssQxEBk2xam6UpJgxwUXvsv8wIkFrgT1PpX5TUBZO1yjOAQZxyVk4Eocx5A3EgEoGslUkjian0huCF6MEc0XYvIAmHJAyN4Dz86KBCi91AM3FxdgaOgth8OBwRiKUsfQ0nFc+MIZwwO44im7dBsdyIhACCKIA4I4wDf93BKFylFKQOKDFAOeiAU329FnDmoZFojky90TqCVCfFVdDHnzOeYTo74oWSdesvQ1otqpZz7vjg7/XtCXEuEeYo8n57PbNmjucgnAxOIDWtFZwTgU2zp0siSA+Gdc0KkyVo5joKgblKqk3MODw8Pgm5eoQBYa7Hf70upBOccNtvNZNSJEZvNFrZJhqRkiClPkcW67NtM/j+k6B1C5hxc/LqAYNiCU/A7z//y3KkEi0sMGKOx222LnsfscXUt9VoOhwNCAvqSWFmP6D3aRow4HANs22AY5VwkvT76gPuHR9imxTg6tNaK/uqEqHMuqNIKprHyXkrKWMA4DmDFiNFCG9lQl8tQ/MBLDkQ4Si0rFtlpRT1NFpcrXKcMUjOOmKTwNbJYU1+eo+690pXylD66bGlnfMHGksjyxG1JFg8RlJFygEQKguBIJSA8i1zZr0ckEBrOJe7BnOJCqYiUuQblx48fcXt7BwD49ttvQYl49/s9rm6u0Q8Drm+u0TYdtLZoMsDydofO2hIhM4ltnHB9MFEUc5JcJUtRGAqXxUmJCKkQKMBBwMyEYc65LoCCncTMiEEihyQh3cGaBtE6BFJoVQMwF6u11lrqpHiPtu0AMNToRPLoWoQooY9tY0EsImz2cx76XkR5iL5rknoQmOGHHj56cfU0MdmzcpW4FNYIAlevuqguaQmtLIBqjcw/nTr3XHuuifPsuSv7yaXtVcT5PMKcXfTCvk43BsBKcjVlMXRoWwefCDEHJGSDTOZkQSlwiPBAcUU474uI6b3Hu3fv0LYdhmTZzC4SZsbd3R2aroNLuZKP+0d8/v6L5Avcomls0a9qiyyRgoJkmQi3RBJNIUYVEDim8oaYyxsupYKpZAFFiCBIYV2sOPaVUthsOozjgMf9AaPzICUuHqYULGGnAA0QQH5E03W4uX0HNw7o+wOaTQciyS3lbNk1FhpU8kpjjDBWOCYUSaFfbcSQ5iSbJfoROvmZwYAJAdqaMlZerKli2a4U0TUJbinevrQtrz4n6T3ZU+Huz29vEPj+som45MGW7gbgtFhNmfFw0kWUAZDD2aZA7trX6b2HIoJNSAnZYjk6ybt0zhVLa4giHn/77bfYbDbY7XYYhkFArYzGZruB0hrWiH+v7VoYOxFmHjtnMTSXMEx6Y4SkagnHjEKSqfZoFlspc1hwIlYRgdkzGBqwAgWqMhemCb3PGIvd1RV8CFJDZhixp3sY1+Lw+CiYQjEWq3K73eKOCNvdbhK1IZbcGCN8CGCO8KMUOtLJzzkOAw5Dj+iAW6VApoHSBqQ0lGboKCKzGw9SxNgH2KaFjc3k9wSJJFC977XXznyeWN+q1RqovLJarP10/V4E8HXOX/Qcvrm0bL2m1W4UTpOWrEJQ2sI2LYYU1J2zNbLvEhB3gFLJ3M8TzpBzDqQIwQm3zeJddgPUrodc6OfzL7/A9mqHcXTFZdGkEng6lYhH7cdMon0WTwunoGouC+HGlMfJC0KXGWUGKABAkOspG1NkjmuXhbUW1zc3oAcFHwK0sbi+lRqejw+PIACbboO2aUEcMbQt9o8PGPoew2HA4bCHcx4f7z9iv39EjAKNud1u8flnn+N6t8N2t8PNZ+9AinB7dwfbttBWi5sqJ1pHhTiO8H5EeIwwzsG6Bl1CW6DEiQl11YGMtIjyzr//3JK0Ma74R8sZaxx9xXd9SXu5K6UcrQ3bVacr/VP5l06d8spGUKTFsqpMCXIvUTOVXqmUkoK6Sgq7EqqIFa3QZlgQpdD3Pb77+BHv33+Od++uYa2U48u5i7mac7fp0NgWXbeFTvG99cxk629SaAUIO+VRUkRCcRax1ocAxQwiKU8IzuOr5i1x1DAGUGOhi2lR/mpnf46QyhAkgoEb0Lse3dUVbNvJZkIKiBHjIGBdV1fX2HQb4FZ6HUeH+/uPGN0gRNsPyOabfhgQDntc0Q3u7u6w2aaADsog4AbaMGKQsfSHA7zvQb2oIr6CMWmoKZuLcP9Y7A7TYp/WHs/W4adrNVP41O2VYm3N3uc8dHXoE+ssJ5wj0IsnIC1KYoA5iIioFbRpROdRYqwwpESvYwYxsMk4Nwm/NS/mRhs8DiM624CMRtu1eP/+PQCJuSUiDKOgClztdnh4eMDN7a1AnXQtus0mGYT0bBsqoWrMAKfYWgUgBICkRGGxPkZBctBKCJdiTEYgBZXFWs1wKiAeHmHtOygYaNZgdskYNoGIEQkgV470KRw4CLaQYgY7Bx8DnBvhhgHjOML1PcZxRN9LlBCBMPQ99odHuFEihr784gvc3txBkUbIBaYSh2mthdWmSH9aa4TIiEEitbLf0/cHkHdQMUJXxIwMz8IAkQQ4ZJA3ZkmnezuyPC0Hzn6hyWD4KduzXSmLX1EcU/kr5oeOTq/+XfqQXt4m6ycnmA1lDEhrgDS0tehCRB8kmVg3Egebs/enyBgRbQ+HA7xzGIZRrIYEaFIY+gFN12Gz3WGzbUuyMWmN/WGP7W4HrQ2atkXXdclNgLIDHQUUlH8YITqwVyU+lzgm3ZREh4wAfAA4YLAEr4BdZLR9wMPDA/TdO6lVygoBlHTwaVPIXdUpYj4h8QXnMB72CMFjs2lgtEIMHogBBIZSCVgsBNzf36eyCxqPiWD9OODDN9+gabf4/Isv8NWPvsLu+lpCIZWGTgY4ZgIjQvmY6qrKOIP3YD/iwB4xetmwiGCaRkIFjYGCzAMnySK/d6ZJ7Tvl0njWOlprCw9Dns0c+HLyolcu7jdBQvg+WPxxmxY3URJ39CRKtm2Lse0w9q0YHmgs+pdzrpRoyHU+skU3pCJBZAwMhKs+fHePq92uxJOG4DGOCjF6PDwS2k2Hm7tbdJuuiMxnR55dKszCsQQ4V2w/yUWSiRPJohmDR4wOQQMMAxUVvI9oR49tt4MyBkxA5ACGGJSIJveN0gqGBGlvGAY8Pj6KMUxr+HEA3VwL4QaH4B2IROIQizDwMN7j4eM9YhA0iWEccXd3V3y/EqRhMLoR9w8PYEVouhZmAVWSLbs5S8c5BxcjwBFhGCSgQ2kwQzbCzRbUSal60TsZMemd9FK/3HPbqqmWZsePSfG0nebS9r1aa/mZc/l0zO06i1ZKwRqLpu2glEEIDB+D/CUjT86oqGEnS/EdItiuAUZCf/gIqzT2j48IzBi9x0+6DYwBlLG4++y9WEO1hVKStpZ9o8s228SSwUclo1DkCIkTIqQcZ0kNYwiKXkJoJ62xHQHEgEH1iP4R1GwBo9O8zEXoIkoTQRPPNg6jNRQYhz3BD4NoqkYhGF30cfGjalxdX0ORwsP9AzgGmGgBRfjis/fFrdN0Is43bSPxvFVcsxhzCEqJYSpvYjmqi6Nw0HHo8QDZALvtDgqULMQGFtPGl3XRep28iT54KT2dZrKryt1ahtdT7cXEeayUr7R6pOcI84IJmT/UwjWxaFMir/zFZCAx1pbFkLFxsq6ZMy6MMQhgNEqMI+rmBv3+gPEwoOla/Ojzz4XbGg3btoiRsdlu0HQdVEoN0xUHr8efx6oUwRNLEH7yccYYwTGfh6Rnie4pkPSCGGicBsUI4j3ahw/wH76B/sl/hagVQLGIyXlKp8AEFpGwjEGsn857OOcLxKUxCiAFoy0iNLgV3dUYA6UMnA8pHtdge7XDdrvDdrdN1nIFY0WstykBu048yObWmkCHxEVHNyZfdMQQPDg4cAiw2giHb7uko+d7KORSivX8vpwwJ4v5S9pSszt7Lh0T7Vr7hABfmI/05Kgz1b5eRs8tJteD0QbdZoP+8IiRCJFDiQnNLpZxHIvemaEbDSk476EgeaJN1yJwwPX1dQFXFksiEEKETlxTnO1mTpgTM5NpyP4AsECHOA+tKBFhnOYgMhDysZhEOIDgEd13cH/71xj/7lfAT77E9pf/FqxS+N+EEy//5+lfgQudxPphHHH/8SN+9+EbWK2lUK5XaLtWOB8I1jcYmxHGNzBtC9u2GPsew9hLDVSjEZnRtV3yZSo0bSv+4ZQXWuqlpEWpKlDsEAKCD/K4ISB4B2sUHCKIAUVSRmN7FQWCRqXEBlDCgnorter0PV6+Mr9nsfYtJmKd9b+d7lBcBl2HdtzCWKmh4pKjPeud2TBSL6DMRXMNT9IKremw2W6glca//Mu/YLu7wvXNLW52O2hj0Y8DTGOlbguq3bCOqVw4rrVWYtl0Lllpw7R5s0QHUdI/M9GBGez3uP/f/ifE/+N/x+6rH8F8/d+B2x0CAQoRdeNF/6ECge77Hv/6r/+Kh4cHDMOIX3/zL7i+vsbXX3+dIpsaGCW6+OjHsokF7zHsD+j3e+SYXQlKiGiMFb+mFiLNaA/I7g+axpJDI7fbrZQiTH5T5iBo8sxwIDw+EFyIoosaW6y4kz79CW0ez2amS2L8AzAIXdJ48e1EFYuXt/p2iRnnbHopFJvQ4bNf0jkRl6xJLpQpmkgrjWbTgJTUKxmdgw8B1lh8+eWX0Nqg224Bkt+NUthsNmKdXYopi69UuIeGaRvE0YGdk+ErhZgQ77QHKOmbzBEgIdDx7/4O6i//Bjddg/jnPwd98WPAbsQ/WfmauVw7DcAHL3AmEPF9u9kCMcJoha6x2G032Gy20CmdzAdJIldKo91sJEiAAX/tMRz22D/uMab6KblYsTZGMnJsA6Vtig6q0O0J0JrAnMTZccSm28BfXcO7AX5kgEOyKo9wLmBwUspQWzHIda1slKwjOLuLFirUS5bXkYB55h6zn3j16Or1z9E9PxFxHs/O3G3yvJk79yDz39IsKeE+xmq0bYPNdgM/XkMTwAk7h6MUhg1RxCof44Rzw1IHJOuOWinsdldQKVulaVv0/QGeGbfv3pXcTaMlAEIln+sUvbTkoAQiA2pbwI2AG4DDKFZTS1BdC6BNKWIOCD5tZhH+H/4J224L+vqnCH/yZ8Dt52CjwYFBEfDM1aa0tB8STAmMINze3qJpDBprQDFiOPRomhbtZiMQl6IMSwZPCrXLkoXSBje3d2K5di4VTGJoY9G0G2jbgJSRcWe6zDa8ZBjKVl7vI9pui7t37/Hdd9+g3z8iOg9iBwZB+R5EEUYTFBPoOm0EGlDKovhT0iJ7CtXuiL8RFffyZW3F2Le456TNTL0dEeYT/b2MOJ/cmX4frpV5K+Xy2gY31zcIbsTQ93AhlOyOkECUBTbTTX5PEIh0Ep+kQI9OOZ6kk5m/aWES2rnWOtUYMQDmWf7z3MsU9I68jjSoaRCtxodf/Rd88x//Al9qjc//3b+B/+nPwWignAOFFICACNrtEL/8HPrrHwOffwHXdqKzMpeE6axfAnOrbQ06prVOKyoZiAAM/QFK6RRznKAsUzBB13ZAixK2OAwDhnEAM1eo714qiys1+SdzUnUVdjjNL2AtxJqegvE3mx2C9+idwMMwRFyn/SMetQGRGKasNTBWI4HLz0I5U0/pSdedHGutjjN6u3ae/Z4LQXy6ytja7V8pPjy7vxc2Iipilm1atJstjNEILqdORZAf4YNH3x/AHFMETYA1LaxtZvmgm+0WTSruM4yuhO1573F1dVWqfimaYB8BHBMrAYCECarWQt9c4frHX0D96A7d3//fGP/aQ+kW+rMfAT6CXIACEClC393BGYL66o8Qd9dAypkUJ2n97LUIPSeQfIzBcF78vGQk/1IpEU1VcrMwC4JfCK7MQ4ZbGcexEGoIAZtNC9t2co+kxytVEyYVHTFzzhyIQGnziwxoIxZfx5LUzYlbD/tHaGVgbYtm08G0DWxgEMIsVHLuFqisG0cS2LTa3sIk+dbk8HSE0LlOPwGDfO0t6xeglQJSypIQaCfObu8L4rvlBo0bENoG+/0jxnEAIIaQb7/9Ni1OWRzbvsftu3dildUGV1dXaLuuoNqppPfVi7GOb63FW0UkyHRaA22LzR/9GNv/8X+A+fGXiL/9gPC4B7V7cQX5hLxAQLQbxM8a8LsvodqrKUuC5pwSJFbNtSK12RAWkxQRQyhzUlcEAxiKkVwwKDp5jlEmElzfHMSR9x1rTDHezJMnMt0IQZbyGSoHtROUNgCJyyZwTNJLykHteygo2LZDu9+KT9VqEKZ0sxINVc31mlqUlIvZkaOzTiz8ZUpb6efERXkkzzVcXZaV8sKbX3LvV7cyF1O2QBl3wtax1mK7u4J3Hh/9KJekhcgxQGmLrhMrYNtuMA4O+32Pw2EPgAogdIgRtm2xu7ou4iyRJF1nv6k681z1M8cYJUwNWnTk5hrhiz9GaBqY698gPHpw8CDP4FHEOybAM0DXt+CrWyjTlUmIizWhcqxuPVWJg2eL7TgMGA4HPHz3EYfDI3a7bSkpXwIHWEnoICanf868yT7iHNShlEgqSXZN84MFgWbrbeag4nMW2BINYxo0bcDQH7DfP4LjAJtqy+QYW/PwEU3KnrFGg7rqIUlBLS241dwU/+/a+1kS6Cph5jPrd8oVSMMJoj2xLs6J0W+EhHDqwGtudmFbGJmWRK8SEba8Qbd12D/ey+4MSOyo0uJwTzqd+CsnM7/3Ej2UF3YJ8YPoX0g+UoFHMcmwMJ/yzEHyPUpRoJDfmQIpgO0G7uYrxNFixHegQw/txJoLAiKRVIvuNhibFgYE4mTgKrpcxTkWYnXmfDn4wo+juEUe9hjHATdXV2islWrhzMj5pJnb5fkUrsQATJmL7JIyVlAosqvjOJ81zwlKUEG+zjZNyXPdbLaIfkS/38P7IAY2Jf7n/rCH/fgdGiOofkpN95fAhPnc1+vqtGD7vHaWuSxueq6Pc32/nDh5ZTNYDOhZrdZj32BAecFmSx5RItJuC+8GyboYvBAlKcQIeBfQHwYRb5Podnt3i/v7jwgxwHYtlNHwMUjGSEKh22w2M4wgYP7ypgU9GS6mVZr+RxFKAcZ24N076D2B+w+ILDHBCkBUhNhY0KZD0BJnSpyhPqS/TPgM+Y2jyJoxxGI5zhFIpIRzbTYbdF0rEJakE6pBChtkIP1P5jgZmwiCZa1IgyF+W5DAvlijZzCYx9FS8sxEgFaEmCqdxSC+3BijlCIMW3CMGPshVd0GEALGscfh8SNMDvrQOgVAaChWoJCfLfebcj/XQiqfs8TOtNmdqfq+Rienr5y1Cytbz2VzThN7XhddsZDRXBdYDvGUuHHy5NmhxQESdwYUQ0FJuJ21aLoWQ99KJS4S0VcrDaMMEBnsA6IP2D8+SNC2Ufjs888ApdF2GzSbDs1mg831FXbXVwkzSKcaKChibSbImmPOLbgJkiTpjJSN74qgtg3M9RbhsIcfejCNEjxhDWLXot1uACXuICpXHqPFZ2NO3gvEvZJ1MwWiBnEHgXchqUimiIAQZcEbAwQCsytcFCTxwKAosUhKgUjLv1pE6fw8SukFh8nrRkRBScARwtZRw2gNn9ATtbXQpoVpPJgBN4yILJ+D8xj2jzBKwTYWpmmhjIU2orsq0tCApAdSRuh7etef2VeewVLnbsKsy9ab79krT7Zncc6sRBcddPH7a/RIOvH5uP/jE04+YpojEaEEYqNpGpimgRpk1w3OF6uhSWjuEQwXA3bXO9zc3cE2DXyIuL65we3dHW7v3qFJIljmVCbt4Nk8vrTU1qKl/DYlD8/8X8SA1dBXLdBfwbkeFBziYw9uxQdKxogP1HsARtDsgLIR5H6XpShUnghkkVLBNAYdbQGOsMlyGmNEiALZokmMahFxQrEniLEJkCCARJzIImzW77Lr6Mh6Om0gSonvUqvJryyg1AKdqY0t/mdK2SveexAYQ3/AYf8A021gGkl1Q8MwRiSCyXk5t52cbhW6wmtYaqHNpyj8fCcXECetfPr0rSjc1fM9d0erW66A3XYdNlsRbaMbysKV6KHklzMaV+/u0GwECLrbbNC2LbabDUhrPD48YBwdbm7vYIwEcHddV+lU64Q5+TonCav2fQKy2zMBsBp8swG5HdCP8Pd7ECvopgErqaCmWPyTQYJQkQsGyfqfE30mxnpckw4aYLRKIXfCJMlzAuASNAaduGB2LeX7MmmAhDBRzWVNlHMindwptatHKZRCTxk32NoGMYgkIxZywdaNUUL8JHXvgMeH76C0TYgWGkQSwJ+kd5H1Tu3qT1mALminmdI5I9DTMCvfW/jecxsdfZjEsksJdClCq4T2vt3uJCjh8FgWjAQstIL/YzaSz2ktuq6F0VIbZBwGRIgKtknAybkEBCBI6ZRcJPUYMvxJHoMQJ4F5qnJGmNwhDAZrBd8a4GoHfRjg7h9B2oC1oA04F2Ej4KJHVARlNQTSJPWlsq49J5Kik7IkW4cgVuPIUUojkpZgcpWQJTLXKhE9udK16OqkVPXvvL/aUjt7twv3ikgtE/Bajm2WgkxSV1QpA2PFnhq8SAouBNBhn1AfNBor/mxrNWLU0KzAea1wClB4Q4/DS9ulfPwiV8pFHV547vnz1n1Ep8ToS1q9yyutYUGITUJ8azo4OyD6gKA1AkupgW67FZ9iZIzDgDH2Yu5XCto26LZbWCNgylmU9N5PuEGLZ8zPPEXocBIfK6IBJ8NL+s4Jga9rQDdXUA8HMKa6o1AkcCwQIwxFSRkTfW+++PPmwMCMOLPuq5QC8cRFSRM0EVgRUBmasnEnBxeE/FYygVLFpYvbZM4la7G/HI8ssJ4whXtqbQCMKWbXIBiBK9VRrMgxeAz9IPHCUWqgHjb3aDcbqYJmjRjtoCvuSbM1lcP8jo6vWNtPpnadYBT1Oj+XFnau/cFwzqx/LdsqQSaxkC6Qc+tJIiQDkDFoWykBz24EO4cQPGybKoRxxMeP3wnX8A4KSsoMNA2sbST42zmEVE2slAREKimwII78eeJgJ0ReMZGCQ0TwAewkGyM2BvFqi9g7UOJaxRKZ9ESOkhRdxOPkSpnF9WJaKFm81lpWqIIkVscYwS4CJGoAKQ0EIFaFiIGED6wEuJsTgSZpuiLQ+XMXsfZobpItg6hIItYG+CaJsIl7Bz8Id1Ya0Xt4H6A5wmqD4HoMh3v0hx26bgPrxZinVDaYTe6spf9+vtaeyV2fPPXF7ofXuVLeUgmtb8WX3JvyY58nzGVUDkiCrbvtFjEI0nuMAd12g8gRh+T87g8PEu/JgFVSf5ONnfk6c+jeZrNJHebMkHnI3DLwPXOouhxe4Zbeg32U+F+fwLDBIKsxfvcIGkaQNWBNiIyEUQvxcqSUsYiQXCiZWy2MMkRl0U5RTFL4iTmCQ0BAABChrXCyCJpqbBIlJk9SZqG2hdLUx7GYS2UTri3ZonNP6IBt21YgYTI3IYm6zBHEGjGL1yFKHRjv4MYeh8MDuu0OtjGwjUFkwQbMiebTGKpWHchyx1qkUf2Iz4nCzVM/v9XT1z9BnGdusNSt+QXyPGNu8ck90uzbeodP3TjJLMdRQ4CGApoG7WaHXZQF6PZ73P/uA9x+jzgO0Ikj5NhPxAiXAK22V1dQWpVKWyIym0KcS4NInp/8byHOGMsTcmQpUhQTFwGBSYr8wkXQGOC+/QhFJHmWqkFQCrbMDRXOyAJDOEX0KEpip0QjxSjRD1K/hKFJIXoHRQwNIKTc0ugCKAYo20GbBlACJh2zCZynfrKYKB1S9Ve9Okr/42P1JqvJGgqWNWKUjZBjgHcOxjYwugcCISqC0RZsGeNhD+cA5wKaccS4f8B+s0XbNWhCI7pwwjBCMbxxgfNcLq2Z5FGvp9nvfEQadfmIU16UWtC7RNQ9T5w03Wwyny4GcYZm1mT349GuHVv9cqqXlfNoPuHVLqiIEmqAWG4DInxwGPd7MCcEPlJQrATgKwS4GKHJoH94AHIuJ4Cua6W6GCDlBa0uGwIw6Wn5c+ZSubI2Ku4RQgAHCSgACCEFOjCziLJe6or6wwAcekQDoJESg6QlZC6GUBYJgYvBiVgCzaEJCaFIdMtcExNCGBwk/JBJ+hc1mOF5gLaS7Gy1FgJd+GxVcqVMx8rkzzn44r1OkoXMjYQAajScEuSTYc5YK4kIKbdW3mUqc8GSPO/GEXro0e8fMWy3qbK2uGVYry/ho/Eu1sx0xWIt19cfXYyTBPocHvO0WEuLf1/Y0dPtFKXXx1fOeSp5r2q1iJkNREYbqfdhG4HgGHuEEDH2I4ahTxAaEcyEfd9je3WNm5ubqRK0IvSHPdpuC2NliLWoCsyJtHyvAuJLyQhOgmmU6tWcfAHBeynYaxIUST8gKgZ5DxgD3STfZ+ZSRKCcClZFyXDxe4oIHXycAtzBCCzPWoOeCbSJRwwErQhaiT8xbx7HHJDOfq4NRbPrKp1TpI4UtZWqwTVNA99YHPaSqUIs+r1trMxbCsinYYDp9+gfH9FWGTJ1WN+rLLbLJfjG6l3dXhCE8PRozrLs1cvP3fM0YZZ+ZpM+UyCOb4PpXCKCMRZtu0XYCSSkCw6mH6BoL5EmjQRkO+8xBoc//vILAbBKhov944Og/AFADIgkxYDOWesoEdBa5FBM8CSc3Bic8idDDICdaoZGFwAwKET4yNCNlXi6pE+WTI/ZhGWMItESOYQEKjYZ5HwQn2euzDZNZEDwI1gnGExjSv2Y8oxVwMNynstnVJy0ejkEFGynLAvnui3GJDQFJTG42mkBtGZBEMzSyDAMIKXQ7x+xbwQHSWsDk0DCiJYRS6fbyTW8bkVauwPWqSXN9AXjuIA4p9svRZIXtQX95INPk/yl/a4oEMszaIL5b6wFbaSGpQ8iMiECm7aTGiVRiueOweFn73+O27v36LoNNpsN+sdHKKMSp/FQXnQ7tdRzqwVagt5JAYjHi4CzqUEMTz4lgUcFUGcBbQBtpCpX8mVmw5JWSLAdc6PG3CiVN4QAjmINpSSSMsRHGxJ8qKCzL3CJokOIInVMqWKT8WkZFbRmra2t8vlSVY1RaFuVbJfNZlN8n8479EOPGA9ARAmsyBuJdw5uOGDYP2LfdNC2RdOklL6LLI0XtidvdYpajkn1VHuaOE+JjRc+5+oOcdmhl937GdcWEcsAbbfB4HbYhgCrFEJaEM47bAHsbq6gGour3RUUafT9IOXXmwYEhvejhKJpi5DSqHKmRu5vIhACEMvCzjs/h4zyLjG+3jn4UQLwkRKiYYQ4SekSy6o0SVypUuJaUTSv1wkkoq/dK4Iez2FEiARSprhicg0XrXUyBPNkyAAjRg8QClJEfqKpq+OwvTowoV6RVNsdqvMVoUCYtm2L3W6HyFKISqcUszCO8CyYuXnTC94DPsCPI/r9AW3Xw+88YjRA9nlyisJ6jZj7RjR+7jaX65zPuWs+5TWy/Qvauf5ydsbRcQgXM9Zis7sCJeultwbaebQc0XUdIiK67QaKFNzgki8uwWAmkU76CcWwNMNsxaRbij4ZZilcHKME3rNYbb0bU8SRjC1qBa0JUWlJ6ZIbFzFWqQRilrlgIo4CvIxE9JwAwxAFVT6KcYe0ZL7kdK8QApQW/CQfGRIoKPqqBDvIuHPEUD0eYE6gT4m1xSVWGcjkuaaQvlyA6fr6GsEN8OMBfhgQQpSU2BQcEWOEGwdo28CMUmyp73vYxsBYk+7/vCplb65WXnjDNw1CKNrCCpEsK4afu8exAXd5cbUj1yef66NszknBQoJVBMCaoEmjsQ2w2cnvWoGsR2MNwDGlRInYpI2C1pNORwRYo4DoERgwthFLKAHMAYAqNUpiCt5Gdp0wAzEl62YfY660naJ1wKqUbqdUIFgrJURFEs2jlMo5XMI9kXyuyeXBDMToZfOIHuAAnfoGMsECpKzorFrGbJsGWgmErriKFAjimshW5mkDmN5MsU1lp0V5TccGJJEj5kTNacyTeiAcOwaHxlpcXd0ADIxDD0UkiddaY+gP6McDSGvotsMw7tH3e3TbDazn9F4oIwEXb4+spHVMyDNbfvn10vX9xA1n7cXEycA8KP0CLvnUGaeeb/26yzXgbOyoj6TqleA07lzCgRuxjjIi2qYFc4DRGhylIlYGrcpBBkopQQ8ggvcOpG3pJQQpoZC5ZAk4DxJkAKTAdWBy/vuA6L1wtez6YBaMHSKwggSG54gcJEaURNmJe6XFHmO5t6CoeyB62QiQq3QxmMT3KvmZko+Zs1N0SkaXpavSX2XAyhxSDlafUWHXpre2sNZS5v6YZ9QAsViXcyyvBI0MGMYe4+hEQjGmQJKOo4P3AREepvEIfoQbewyHPYbhCk2TS0Sk4kwlmusyHnoUmJB96UdrTT7whUR4qr28HEP539Rm3Pop1l0/xZkTafHvS9rS3FS+Za5C8nqyaKSNRksdYnDQpMEc4TxPyOX5vjRdk6tiZ6LNUURZ7Kutssi6Xz6eghIknlbMp5SL7qbTlU6gYQQoI3psyR1NQ2JaLBZmcPCIpbzBKISZXCdgIJIUtU3uyrJBKlLQhlKooDx7mO2e1XwW7lYTYh1fS6vXZcLMrpO55ReAzr7PiTODqGyOIQbs93sE56BJoW2aMiecUsvGvsfBPqJ9fMSmbWG0AuucsVIFzix04YvayqKcBITXF/d9U7E2DyWLC8etZrWLq1ZotLhGnjVp040mIyJVxxc3qywUBU6z6TCOexAMwEFKsmN52RRuNkeOF2vt6Ebx1SWH+dIqO4V/VegEoAQ8RlWZOzk365kESGnD7LpQaj6leeI5iggbHNgNiWMOyEnTJdYUALG4YMSnGaFYSiCQVgAxvA+wjUGuGlH3tcYVheaWRIkjI1G5T/4/1X5oBaW46Jpt26JzGwQfEpRmhLEjiA6pMpzo1BJArySlzDk4PWA47HF4fMB4tYNNCIMECex/OrJtsTAvXouv11I/CW7ti4b1+mc5utF8zhPBVgRKiXNmnSi7V5SWTAjBch3LDp+5QX6Z2SKbX3AWcYdRiMAYA+fd5GpRqmDkiL4ZE1EmtpU3EkVQxMVSmmNDa7GqcJ3iz0zj4CxuBkQvhInMMcOI8vKIwEoqk8WsT2ZLZrqXAoRAo9xPGwvEMtqVV6ZmRrAl4c5dKtNx0LTmJ042GZRyMLwxVqBJtCRh21RvBTGAYoZ/kc2Lo+jD0TsEJ+KtGwd4JwWnpMRhLaaeUpOmjf2l2SUvbS8jzuoJZs52PEVjdNFZn7IRi/g3Me5j7qyVQlQagxvFLRFJsi4YM8LM4XhZzJJSdgI3mT8rAAgSWECQBOFCBJkQKsIsG8a0WmVDycRYDlcbRc05U0EkDgHRjYhuAMIAzRFADlzX6V6Ta4cEJl84ECQFTBiRBqmkKzNLlgqesL2tEOUa11y7Ztp45JHz3DZNg93VlQQVWMkO0kqB2MMNPbwfETnCmAZKpxBF5xGUQrQOYRQO2rYdbNMiKon6uiwmPG/stZo1QVBfvKKfufQ/iVh76VmfdB8qfrlF73R6nHkBCWdImEBKJTdEhBRvncTfzGnz7p5rf4jBgZIlk9IxQZiPCf6jRmev+wcw3zjyeAv3loUxievzZ6QU7heDF9E3BiCKgUvOzTdMQQc115Z9IRl1UPQypUjqZ4YAYzWYz2tTywCEU1yzfKc51CQncT3r3Hm+rbWlwJRK4vyUnO2glQYsEnaRjD04gRh1Yy/RXN0GpunQUANdg4CV9TKnoJqd1CPPftILTSfTzZ7RXk2ca4vrWde/dgCn7lupsrW9dm0OC5fiihDS1i1FkLJVN6HOZWxWRinSo42BD1G4cnJzzOYGYqRQHJPal8RWXoynMPGJEOvfQOnZEhfNxARAuKV3iM4hhBGKGOAgsboSTlPJ+qKbMZUbgijrnhEKwiFjjDDKgkTkEAOR1iXwfTHr5Y+qjWVJmKuutpk4hkncJzGGwQM+SFBIiFLlSRuFrm1xtduhVxomlaUgEoNWTsMLycrbH/Y47PcwtksqiCrGpykooeyGhTfOiHJGjdX6JeCSOLfntE+XbC2WBkyDPR74KmFmEe05hJ4md3nFnDROb27VXEtANQiKDJTy6WVQ4TykJg4m7gvRT6F1WjTijwzeg7RC9H66eQig5CIQ2AzUbxuTl42mTYI5LXA1ncNZJGAx/KTP0Y1AcEAcQcEBkJC+UO49WVCFIwIgIVAGCawkqYXIrxACxJ2Cyfe4BAsTzs4JA4nT3kZH7/McgU7vg8DEErKYAidCdOlvhHM9huGAod/DjQ7EBIqMYRwQjJegjLaVKY8R4ziAtII2B/SPj+iaLWLTIloDGJr83TRt43krPvKxr0hjl5DkS8j20xFnJXZVB06c90bdXfhDTvbNP8/EQsqRNWkhF6iOJNLqCfIy60NKq+TvQ+E+ZXGCy4KPomwCLH5OikjW08JvkC2gDABRT9wsZYAQ53NFZOUYwOl5OAawd+IjhSxqYZBUqmYXAi3Swfq0ZYMQk4TzaUx7EscIMjna5nLZZ1Wkrd5K6buSdCZDm0nGIC2QpUoh+ADnpayhjxHOBagEN6NzOF8ICEFJzO04ou8P6Ice27Arz3lisFjaIo7PKQM+eoa3aM8gzt+vIedse86wOL/8xS1oMg5kv5sihUiSyUGAROtgrkvl2NlCsCT5hSrB2EkpQcn3TCcKQSYLY/F1IkXJZAIHxPiiBEW+JqgpTzMIOl0WbTmAgyAYEMdieBIDUBZrFTgBcolh7PTkFS5CWZxVkxHkCUOKzM/Tr6P2i846Rhb7pb+MtRsDg6DRbba4unaIXvJiGzeKMY6mnNn6XYGFUL0b4YaDVESrVI8cP/wCzeyi9pLbPoM4z9/+Jfrm93Gv5/RXvyxKnE9R8iOmv8zB6iihKdMk6W0sYFTiq+SJ2IiS7krCOSG64Gz3jgDUVDo++ztzPqIsWBGNKQFd1VKAiLmh4siJoFRtdEkEioqDFoU7twnGk1KfIj1UiAvVZgbmCbd2Prur831sJKq4cLrfMj7XGouukwK+BICvrkFRLMqcyiRmN1C2olPagDhERJ/gTNxQiBPIdWvmRrbz7fthVH8wAF9/KE04aPWZEt8kFB269uXVBK1TmXZKxpqYjEPlGqUSRAiKISab84FMXCyxtshGEXF/cMh6qYjGlKOKgkc2XCGdQaisrUgbAkP0p6RfEqiAcmU9ik9wDmbRtWOyTufczTwHb72ZZn07567KVwWlNJqmRfQpUdx4SUBopNz9MPQY+kPhmjkQHgAazQItGgO8d+Lz9L7AmiqoZE+4eISfvL2AOGWBru4d37vk+7YdLkVbIcIcfRon8RKTLpRffjbti04HILkgwDlQAUJESoGjSkjpAKtEGDFO+mSGyMx+SWDyzWbCSPmYnIgTSeyTsU3ELoaODH6SAa4UlsFla+LtsUbIxRjEF+qbLyFe5smglOdZa5Yq2ClZwDuPcRyxHwYchhFu9PDJrQIsygFGhm4IOsaESTRgGA5wzqXghqQ/nxXyv//2AuKk07J5bcl6hfxeQ4nkBXZyLE/e7Pz9a/qexNtqYZCC+DwlOTqb20u8Z2UcykOajPCCJYtyPwVOuh7SAqcMjpUJmFGifFLtvTKRnA1JBNksEoKfZLVoQHHCR6pFtFTxC5D75XzPQm6TZDDN5tw4k6UJyqLmIhVuiup5WqS9pAmhTBKJSq4ppRhaCQfNBOqdIFhk/7E2RvTwOKkf+Z0xGD54qOTz7LaPyWeqodTlhq00Mc9uz73k1RFCwFxHpBPnAC/lc+fJ87Kr5r4Wro9TdbDarYFspM3K5mQpFaLVYpwgnfrKxYzyQk1/rBDhE/Byir7ROml5ksKF0o90UDJJWIw4hfMlgs0GoJh0LBl+/rSEqsxWz5wiR8ipXyAJfirdq/xsaSPJc5OzXTDNTe1KAeaEWgdTrOuXqmwetZ5X6/514+ROksQbqasSEhq89wNiGBHDCBU9DBiOeSoloSVkUtxAond6Ioz9AYfDXmA0W4alOdesDV45H+d4Xc3bRS4VOneHeVNPnvGCHeJUey6J1Rg7a8Hjz+o50+DsHtWIFgl5ZUHNmELFTbNeilrfq8v9pZeQsWyTOFlKFyQfaU6posViR1pMczd4ta0Ul8p8f5ntjoUwaqJZWRx13+deUvXb6puoCPH4eaZx55vRMxbq1IVYyLuuQ9t2kohOgqMbIkAkuabBC66wIiXulRgK7AuHAJ/C+cZxnAVUzNZZbQu4ZGxP/F6M6heu5RcjIdBiIb1UhFm25Z2KhfGV91m2p6yKc51yEuXzwltGRtXl5evfmcVSipgXrEpxuhqKGTGJo5T6yO6NmDgokT75MMJRMhHkVOGJMPJ458887TbF3fH8XXOV8I5mdOW+l6s6kytmDu+CUtdmd3WV0uwUNBkclMbYH4CEu+QTGj8ltIoQQgm7jMGnQPixiMHFt537pJUghBPtU5hbXp5sfUT5x5znJW3tqtmxC2dh7ZSTu9XKPefiGJUFudQ1l9cc9UEAMRU9E4lARbpjEVU5W01j4X6zWz/5vFT5LJNh44lrijRZCw8L0e7Czksr8sITRqBL1saRrJDcJzlFL6PCI0kxwQc45+FGhxAll1ONDr71sE1z/G5iRPRjsto6hGihWKKk6jFkbeg5xHepsXS56SzbRcRZXAlHN728iYS4WMzVuJab8cy9UF179Iwv2LKWi+M49G99y88LD6jxYOf3rX2eeXxCOCqFtYnuKZkeScRlnRB6AGKe8GAXBpejRc2cpOYcF5v+csfVuGbvjBlQ+RkWm0zNXKv3viS4mXRzJiChDkY41j3XW3FRzQ4mw1BKDdMJqiUb1kCUcmFTEd5U/ybEAJN00KxyFESKRJzjMKBtJBC+Hl+9tMpo10Q7wnGpyqOHqtf7ZZbuyzjnCld58pKjhfTU+cfX17vmiaGcJMyZplZbZ9f6PjuuZByJnAwlE0J5Fhvz4jwbCsZUCBPJjSIEqicOSlyJm3kzECJZap61yEoqG3imwHZanlPGjuTfrOJ3Z3NTRw0dP88RkVb65an5Zb4sWmje0dR91vMD4qx/AUbzIA4wRNDEQBTUepNAtoMPUqEs6XqlKFIQPCI39hiHAX6zgTEaFKeor5PjWvv+EkHxCcbyjBKA8ztNv72hxWjZf+lxrY9TT5UIsbaUXNIXHUsEssCTK0XJEa7OXy7SVeJMYm1R7vKOnMVbJZE3k/+SQTFFtmTfJU2ElOekcAvCxDXzr4Rq8mg6lAm0cqXUmwzKJdV4l7JvPWFHnHQSrevrXqbhULUxMSKF2XxnQpM45YgM2SXogjxLKYshI9ujFKAyRiOGADcOGIYe4zjCWgOt1clgjOe1C0S6J35+cfheLXaeQ8d78o4n6G5aKnzipHONyxAuk8AzTAiX79LUyjEUogAvji9a9qMy4mTcyDt/mT8CoBDLemax4EZZ6FMaV+K8QDEsFzfOjDgZyScy9ZfGXIur+etElHMWUBNZLcUUcbvimOV7fc2MA7+gzSymWfJBqqUiMKFEuSShvG9jNLS10I0FOwH7YucQrYVJ3NB7gZwxRpdY26GXgIQYGXwhKtfTpEeLs8Qhw0+smbq9QeD7Gpzg+aFP+tj6IJcvdZV+afptxt9P3XNlK6SJwhbW1zSKLAayqiii7i8nYT/VTx5bulalqCOmEilEJN2AoxiINEGFnOGSdMPkUFdI/knKNTFrXTPdK8cE18oO1WPKovOcOPOx4g8tWTZLrn/8l41nc+656I/mx8+2QqB5Q+EyHKWVEKPW0MZCWwtlDEzTwIYABsM5jxikCBTbuUvOGAPrA5Qb4YZBDElBUvlmC+7EUn4G+zl/xRk6fSbnPE10LzEln3I6H92RTu/By+Nz0Wd9fM+1JE/+ztM62JpeW8LQ0liUUqVQkUQLiVM9kgJRSAYhJVQaNaDkvCkQQqVABBH2soug5mJC/JPIWcaTuX0ZsyqRQnNDjZquX3DHpQ9zTnAo91qbn0vm/EnIkHSfCSXRlggfolQzlKS0odIprzZZbk2YxGJmgYsJXv6cGwXEO4Oxzdbek8O+uFH1vynI/zR1PtOVcoYbnji+Ziy+DD2B5p/mFp6JHT3RisHmorNP32MxpDyQcvC0sSkRFlWLL4XspYBAqJiNQZw4nppC+yrOmVls1qdJCbEKAt+EwoecMD0jOpo9x/R94oxlE1pyxer6ehN4jsvkEqyeU5t12fzS4Yx62DSNVBwfRtimgzYHKJ3wkRL4dq48ntHp8/0Fed+Lj9M7BD+KkSiK5JIzcsAo0sKRUW7l8/Pa+SsvJ84XjuDZ3BS03tdMQqgFy9N9ZLH0kp17jfst/13mgZ5afPP7pOCvxeKkWpzNuZYqxciylJBXKh/PqAk0SdcpRjZzyoI9W+hJ4ZgwqzmoIpdqLjjnmpiItX5uzI9dOr+njl0aQF8oJX3PdVTGtkPbDWi6LnHBAcFLnZWsdtTpYTFGWKuFOKsq5XHBOZkxc7OdElKfTRYXmlAuJ05aJ4O3ttU+o9zmRe25Iuyl12ejztOuFFlUR/cpHEqVIErRQxWIpdyd0hGARlTCYwWOI825Uilonkt9FCrESULIS+LMemn9/Uh0xRw5fiG+rnHOqZ/LCHVtLs8RaAl3W5wiKBQGtmnQNh2sbWCsFZHWaDRoSq3ROv8UQIoKyi4Vj+Bcwh+O1bn1y3rDlvYZZEZ0or0+2ZonjvJaQjjTyxPnZ3TXV/a9tpPnPYkw62EyfmBxzVxkn4Km56MTTC0BD6NUI3PygarkMNdgooSvKkQLICE7pwpj4EKodbpbRsirdUma+e9Ed2OqOGzKZ6S0cUwZLgsuKR9mc1bmY3H8tW1CKpC3PMtYyn9KwTYNNpstvB8xDodU5VvcIjXifgnfS/5OHQOCdxhTMIJz4maR5PZJDTga1/rhM2ctP+PkvXN7ns7J6/eKi+X3HCP6UQZCuduZQRw9sBhIjgggmeEvXifVRjMdyjv28X0y91wcFVF1Ftyc9cHsFsgvPXNVgHJ6PyHhFglxTlZVgKGT2BnFqMQ6Xa9AUOke2dKaRN/8mdRRdedVww5R8ekSpmOZ8LIxqXDc+l7PbM+JNJNpoZSwLsEIWisYKxXIXAae1hZGGQwMcJDgDg4RIUZYa4uqE2P6CwznRgz9Hv3hEePuCm1rAZiyquJiRROetmHIm65sBciqyeXzcxFxziydCxqYcFDn/T6DHqod/oxoU+5Js8/ne1wzR51p54ZQDAPpK8+JdU3/rGMnCYL9UzqpxeJERMSpRABykjcKYcwUSlZgCsjwztmVkodPRV9ccDJSeYlUxqaJCAt6/IJwJVZXHRHxcvIoPfupytaz6bzAQJSvL/MpFy6IerKIUyqzEHyEG71Al4QpnFKpqTpaZMBHBnkPdiNc3yd/51hx2vlclP4uJTBC4b7rG/n5dmFs7akvL2sTcZ0SRo+541NkeGmPn6Kd0junxVeJfItI6jqzhJVwQPlRo5TxEx/LtCh4Krsg8bV6SoDO48lElo6SqvrOY1MCYlZzxaJ31hwVavY99zPnuqkfVIvxiTlbtjWjWvkt/W8muucfshWXkpvFCFKfjyNCQiJUi/5ysrbSBjrEFJDgi2WXo0B8EtbdZK9pl67G3wuGEK18OnXGy4nqJXz85e2UUaO2kmbmV7wi1bg4EQiXjBUkaK5E+HklEoGyBVInOaJEB1V95tJjqBdzFnMzAeljsVZ+mP3V15T7H3HEt9P58+clh6yR/2KMEjcbI3yYiIqUQtM2aLsWzKlQsZbE9FytW2sN5xwohAS0RkAU36dL6WaTEYpXpIRXPueF550lzhUt7qJb8xsbiS5t8x1uKaOeG/v556qDCZat3ulrEXI1qZtocgUsbqigEJOvM5ctqaWGnNkPEDKgbBKWRQye5O2J+02DTBLxVMJQFQKbIEconZfTz2bEWp2zJKLlY75lmxKfUThnec8qVfUmVVQEbQxs28AODbyXMg0KWoAo0nuJSeHklNBAyQ8eU4J2Lt+otb6Yy81kPeaEsbTyHCevOm7nA98vOHJJJ7+3VusJZ8dXL7BJdzpn4p8WLsrCyG1Nn6pjKrNImM8t/RbdJhGMFp2lJGxnyyUTCFFAqfO9Mnes9bPFeAUlYE5kJfezIkRS1ecyQ0vDERZEW846nqN8h7J/PI15uybW1sY65gQbyhJvGwEMwwA3jqkkoBCqsRYeKLrnLAmepJBxvo+ItjXnTOF8T67tST0rI+RsPX05zTwvCGFxy0q7erLvp5wd2bI6u+sruW65+q2dp8t+FoS2NAatXDDpgmXFQqKDVBKlYv4dBVir5DhmUSxxTtQujxMLP+uORZ9EvRngJNHlJ6DqPvkZZtdhEmzXjEAzBntiI6sJcjVDqJovZkaIgrY3jqOE4iX0g77v8bB/lCJOhMJRgalqGZgRUzpZ9nnmgruZczJbXLZwaPbppNlnRhNP3/dysTb1Ot8LTw9kPbh/7ewLxORnX5Gvqrjb02ctTj07zatNRMS4WHBVT7VIuzCc1P5QBoqBR+6RuCZz0ZEILKlfNF/stCCs+ngW94vYXxNWtctnHbPm8BPRH4u79bHTnPPUnF2+a8reIX3l+FpV/dlUH8V7B+cc3NAjMCdj2Jz7M0sggndSHKnlUMFmDvAhFG6do8yyhf6pVXHy92cyiGeKtZc3XtxgKWhlAe+c6FzUjaMXeEms7KkzaPVbLXbmX8ox4pUr0ufFDnbMBZbVxqoY2Oq2NP9fOjgRRllczEWcLSLaCkzbGnFyRVRz7lbrqJlYeU5wVXTRNK6qnyqh+pT75DntpGhbSSdKKanRSYTAEYGjMIXICC7AjR6C75s2tArpICZjkUniK3NEjA7BD3DewYUAHwNUFL18LgnRbEwvZR+rl1bt01hr11jRxDhmjydrm7F86Pxb/S+Q1sWJB7p8Qczk7UqXqa9fCO0naZ1mHznVkjvWOVeOodJriWYLnBfPU3ZuEEjxYlLWhrXgYIvvaxy2NlItOeqai6Qm3tX7neDiy1a7R+pjiweqxRAAyXWidQmCH8cRnqVEoVIK3nswhxSNOGE/FR+mkgwWIkqB8ImTOsEhOssi641z+QKWy+iF+9QbEOeRcnlyMGuH6eQvlWD5anvTE4Pi+Y782ramQ61xgtqAkw0IWYSq7zO7lgDkcL9cVPIVxHny/HzeyqZ5ylp7KTGeGutpVxQA5hIhVOYsPcdUlt5gn7JQtNZomkYAp4MvRp4cIKGNBkcqYY85fcyneioc4up4nt1esZzO65xnF+w6tzsezBs84IXt9HhfQ3AExoTavtLrk/efEWE11uOXPxcN63Nnx+qosKR/rvU5+3yCW569pnwGLiXQt2rrxqFJKiESF4quOV9yN0mOpoPE0gqAGnMo4Gs5xjYwTyllQSq0yV8KXMB5YOfZGMvonrfazp37Ms4pMtdxR3Sihkq5qL7+RT0vB/FmV59eYJdtLkR54RxJX5e1IlE+LQ7Pz8fEQXHiOTJhXkBQ54julBX43H2eZ/A5zUEZjJh8lDNfJxGstWjbVqBGvAeHgHHoMQ4HhFyWIeV25muMtULA3os/MxF3dqtwSOUZk33j0tW2VFxes0bfpBzDhT8986RPd5Patzg7vnLXmTj5inbOfUBJ31wzLiy5btFPq6ZWONtR37TAAXpijHPr63rgwUvF2Jc2wrx4VLFJpHeUo39MEnO11vDeQVfjzJXHMvZQViOIIRwzlVeMiTA5qTz0RKTQ8S+XEea5ffyTh+8dmVrehGs+v/88hmwMWOUC5aJPK4qvEdypBb4MhjhJWE/0t1xYs/vUXqdVAj3z2wXc9W0aATTVKxVrLaBZDEJaa4zjWMRZOSbVwyIzkHTITNwhFT6SJHXBCs4TEUJE8B7RR7CNkoxQNlHMJ/vkej4/D+V9nnviN1F6f2g/tB/am7enCxn90H5oP7TfS/uBOH9oP7Q/0PYDcf7Qfmh/oO0H4vyh/dD+QNsPxPlD+6H9gbYfiPOH9kP7A23/P1J1v3u3KNtUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.imshow(array[:,:,:,0])\n", - "plt.axis('off');" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAD0TklEQVR4nOz9149lzZbYif3CbH9s+jKfu/62JduQI4ma4cyQPYKGEPgqQJhHAfq3BGggPUjzID3oZQhQ6EEPJTanSXbfe/v2/VzZ9MdvG0YPcTIrKyuzMrMqq76vB3cVKs8520TE3hErll9LeO/5LfwWfgvfP5Df9QB+C7+F38LV8Fvk/C38Fr6n8Fvk/C38Fr6n8Fvk/C38Fr6n8Fvk/C38Fr6noN961rZ3UOV+JDy/OCKx/inOf4IQV9wgzj8AcFc9lgfvwPvwFb++5c1rhRDrfsR5f/68b3GxRYS/eOTimXW7H1tb/sb7uQucjfV92riiSXHphxd3H+dZO6+1977j+Uig9JU9fmCM8td8/0Bw5YSeYe4FhLixndc+3n04lw/cpvvvxLJ1205f33zuBcQVP86OvTZl14zxfL/wV7T3vuO53O117+nDTNr9IeeV4xPXfL/pvveFqxr9AAvrrnCb7j/mEM9fk7jqIDcixAcZywV4bcqueTE3nX9fuGrzePtF9wb3h5zvOr5b3XfX1XBDo2/dHT8C+EufN133oeDK13TdhuqvPvxBx3IZ/JVf3x3u0Mh1c/ZGE/c3ad89W3urZ7nraripUfHWnxDkyvcRz8L917QhLn2+Bv7dRLszOfhcHr7m/Fvhbe/twr0fi3K+bQz3skHcoZGLc+avOH550u7hHb0fct44gFuwtR+EI7hqIf19cVMU6+F/oPG+tdlbTsbHopy3fgX38a7u0MaNHMd119wN3g8533kA97Xw/GsfV8KVMsmNvMlbjl6SXa/Rtnrvw/+3DO3t8DFkqPcE799T23zDveJt568kX+8B78NVfBh4uynlSrjNQ9x0zfvwixe6Qbyhhb8VvPGe17yKuITAXrzJxrwxkLv2dbmZW7TzLgjwzjz5xRd5z3aFN5p7n3XysZV7H/I9XA13p5wXDYvnVOQW7Ov1jb3b9fc6N9epCu+9o+8G7vSaP+Bc3qsi7oab32NpvX+DN3EEt2vl7sh5Kzbxro3d1n500/XvCv8zQEDg2vfyUR7vHTp5r3HdUSP/ns3dUTt3/ak76EDega29qrd7N9ff0O579nctq3p7OIuDFbdiS7nmEc8M5+L13+8M76LV/p/LxnTPcOdXc8UNV7VxB7vs7SjnfWj47gx3bPcuMtZls4K/dO6Ny8XtkPCqrs7/XICPoVu4FZv2vpvcbcwzHwg+tg34TpaJ6w/dBW6HnB/i/d8rj/+e8PdYt/DufbzDIPz5nw8E72rO+IAa4yv7+zhwC+T8QP6E97F47mVo97jYPrq2/eP6el7NBtwR3org79r2+4zp+8vW30LmvI3cd0vPktte+RaO67X7L+2e54aVt77vM9ujD3a0i/6l/qIwGuJSxOstX9PkKzPM5aGf/35vLvKtAswV8uoF09BtZNn3ZU9v+3z3geAfC75jkfwG5LyLMvc2u+H6aa8Q916zN7+P+etWrm8eL9yFnx6QeB9uCvLlm88jhDhf6FehyVvn8qoTlxFCvA3ZrujhNeS7Vut03YjuF26ak78n+PgafOgx3/BebkE579MofYWy5T1au2UX11wgw6J2wcvFY3HOgvdIqYISCPGmb8J3pQC5Ei7OxyXEFhePf3zvltfgO3tl16zX78tmccMY7sjWfoeauau0Z+86nDMK6cE7izUdznZY2wKCKEpQOgKhvx+TeA7X0eszOONMvgeDvpK//9hYcU1f34PXc5v1ew92zr8/cGabPGNfvXPYrqVrSpxpQViEkDg8UoDQkotR+Rdz/IqLLOX3ARmA78eq+y3cF3xktvYd4Up57X0a9HjncKalqVfYpkT4Dq0kQiq8Fdgu9CFVch8d3h1uhfBvyvCvn7vc1kecvyt1Vx977XyP2dpb9P89ZWs/8NvzHu8sbVPSVHO8afCmw0cRWkfgHc47hAQpNR59AVduGtur8x9+Dbyt9Xvf0S7BOz7dlbd9qDclrlYQfrT+3w8+MFt7G3vIVZT5Bt2nv+qNvzKSQGA7X2ND1+167/DOYJqSZjXHtTUCg3eGprL4BLyx6NgjpUAIjYoyQOO9BFxA1OvYWS8u9HkHeBdXvjuz0xfeqb+Kst4wptc7v2PfF2+7PLcfEDFu1fQ993+j/exWJoV3Rc4bbG5vgbfra6/5fgERxBvXvRrR1SNz4cgZ0niHaWuq5Yx2NUcJi3MOYx3CS0xncZhzM6hEoJQGqQmmJf+qzRuf7eoR3R5u6a/51kXwsTmfdZ9vDOkazfK9Uvi7vOu3XfuelFRc/vJu8/COyHkNYt71mW5zvefWFOL15vylcx7hfZAzywVttQBnsN7SdYam6YijCAClNc52mA6kFCjdIOMExG3svveJEFfceyPluQ4J7glunLPLiHmRG7rm+lu3fdNA7vK8172z69p5H4R9t/vek629bBR/91uvhTu0Kd74FTo5++u9wTQV9WqG6xoiqXBOBPYVh+kMzjlSkeIcWGsDcnYNUWQCcq4VG9cP//snu9wbvNOcvfME3sNA7rPjO/R3rZvY3eB2yHnW+Bud3Afpf1+44snFm7ug9xZnWtpygatLpPBY62k7izEW7zxgMc5Qe4dUCh1pjBLEcYK3LUJqrnXku40M95Yh3w3eJjde4mJeE+nf0Rnhtfu+D5vPVWzzFXCfOHyXtt6HoF+A2yHnW7mk71rTdUkWfY2Qi7WSyOO9o61WlLNT2nKJ1AqPwnmBlBInwFuHMYa2aYjTJHjXWkMcJ8ikRusY0O+giLlyyJeOvW2DuQC3RbC3zdk5p3nDc5y5MX7HDkZXwm0o08cmrvcM95Aa8wOO+laL4oaLfNhlnTPU5YJmtUB5j3BBE6t1hBAepYJ8qZUAHM4aTNvQVCvapsJ2Dd51Adk9vNNzf18W+Z2Gfsfn/GjP6F99fEjE8W98+Wjw/S5kdKuXfv1Fr96rwzQVq8UcawyRjlBSI6VCKh0oo5LBMcE50iRG4om1REmBsQbrDM52nBts3iWz3l0UiX9f4aMgyoWOPjRFe0Pzeg18gDn7Dtz3PsxW58/+npvmxPlx7wymWkLXECcZKE3TtPjOoeMIqSVSaXQUY42lq2qEd6yWC4TSyCQjcRasAW9wMuxqwku8EGuX0TMB7ypTwlV74HX8Jnx8H9TvI1ylS/j4Xd4aPsDYPgxyXvuQ77no3ul2jzUdXVMhZbBbdsZircX5NUUUHgl0dYXwHiU1Tb3EdR0oh6wb0qYjUi1SG4gl59qWs/SZ59qXNdxkbrj2AS+cv9Ja8D5KuCu1etf3dR99vvOUn2ux3rWB6+FDyqj3ONx7Ymv965/XDu4DKFJuhKDUcc4ihMA5j7E2NCcEUgiUFxhjQAistbRti1YRCEWkE2zb0TU19WqFsx0Cd0Of9wQfhFJc0+iHokrv3e5dG7iNZ9V73v/Obd8N7gE578no/UHkrOBDa9oGgSdJEoRSeOfwziG8w3Ud3lryKCZRCtu1OGtx1iGcp20adBThrWMxm9FWJd5272iW8K99XPHjewxXjPO7HPqVipr7IFuXOKDvcM7uga19x5fxgT3L/FmpAGcBh5ISJwRSSIQU+M7i8UQ6QgqBqSuapiQS4KxhtVyC91ipsPOIKElRSJrVEp1nyCREq7wK+PC3sLuJK655i83urR5md1wgl1nTy/ffyLpeMc7vg1j82ju9rwFdaOc+5+yOcAfkfMdeL4lR4Zh/f1vhdX2J1w94Z/BdB87hrcNagzEGYzq8c2AsWimEt7iuXsudkChJuVwhkpxIaaaTU4Z5HwoH1p4/wp0e5drrrnm37/uK3tUB4co5u4fxfAj4aNray/CB5uwC3AE537HX2xjc7wXO9LXitUOBRTUBkXA4D847vHcBYT10ncF0FdZUCNdh2g6sB9OhM4mSkuVyQa4TTo+PiPt9VGLxQq7bXTNDZ4j6BsZeplJc8fsy8rwrNlzyGvLnxp8r4ApzxMUcSeda6Hccyq3ghrFdB/e9cdzUxn0q5m4J9+tbe19w52Zfdy/zCIT3gANrkAIQEoMGDN5LBAprLY2pUYASwVLijEdYiHWEqRvmJ/sYLGnRJ80zZssFq8UEnWVEssCLt7j0XR7fnZ7rHRHTv3Ek/L9klxWI840F5xFqnTMJ/xZ24C0P8M5L4SrkfFtDlzq6ryX4NgX6d8QxvCdyvmXUH9lm9MpR71X32JDtIAR6yVdXOrDWhaNCYNsG6y1CRSip8KLFCoEuekTVinI+pWxapquS3mhIVZVk1ZIoTnDeItHrhGBvYx3vwP++B9E8p3ueC6lU4CxDn19/CiHPyxQiBMIFruPt3b7l7EdbwOKanx8Ii27b5Afo/sPVSrlopuLqSz5Et6+69zhn1g7tZwqiM/MJCO+wnUE6ixQe5x2dc8hIE6UDOuvAQSQlpqqZLFd8tvuQtMhQQp5reb3vEEoC8oZnvMNGJq46eDN4xKv0nvjzZxdhN8LZjrqpMKYFPM62SKVIkh5RkqF0FJwq7ko1bz/Ae14H92QpuFM/1xy6S/e3fA/vjpznHdxBNrgveOPh1jTrTLHmPZzJlXikUjgTTnofkNaZbp15rwXT4pxFJzFpkqHSAhGlGOeZA0Wc8/BHu1RtR5xkOOsxbYO3BonGS4sXIM/SbV7Ib/vaK7iOcl55+Dr28TLfeiZrr9/DWWLswDrgjaFtKppyzmI+Y76YkOUR/X6BlArTCUzTEsUFeX+IjuNrxvl9Q0w+RIO37+cdN9Dze29x67tnQrg2auItnX5g+cBf/OMszgR7pAC0UnRn+WidxxuDaxswLViDt4ambVnNV0TFAJUVCJ0goxwrWpzUVE3J81/9mt/9vZ/z/PlzojQj70uEUzgEXhL6Wzs3nCFp0Kvc4cFv+54uIKZ3ZxkfAqvqbIOzDYvplGo5wXUVcax5sNsjjiVSglIaFeUgE4zV4F1gceUF8/eHlunuBDexYfc12HU7Nzb3HrLvh6Oc7yh7XHnuXNd5w823Bb9eoBa8C7mEXNBYCgFSSqQQSO+wzuBNB7bDGouxDicUWU+SxgkqzZBJhJcS6wV5f0jbNgghwVrackWWFzgUVgmwASlF6OgcIYVYU3a/lurONLrn7+Xs+dcv6S6IeaGdEDFj6KoV5WpKWy6wtiGSkI5ytFIgHN6FFKBnXIZAEEUKodWbm8h3pAy5Gi4hzBUc1J3hvI0rWORr+7l6aPcN34O8tR9CZljbIk0XGF4h1j4Cco08oKXACTBrk4rAESUxOs2QkUQlEosBESOUxhlPmmWkWY4zDu88y9mUXq+PziOs0zjrUVKilMJ7j7yAoLCmnlc85pkeVVxefK8uCB/iosrr7KsPXLz3mK7BtisOXzwD35KnCiVbpNSAxhhP1wU3xk44lOpQsSTKIrROEFK83v73Ed5VzruxvVsQnOuQ9APpor4j5Lwt23AXOFtYwYTifWBVpQiLP7B6hrap6ZqKtq3p2gaxVggZY+isYzgc4WPNsmmxSDIV4YynM55ES+IoYn//JcNhj/l0yng4Ikrz4MDgoPWWLC2QQkF0lvMPhCd4Jl0x4leWlivEhddw0YNw4AShtosLih/bUlclq/mManGMFJY4ViF7Az7IxTbcI4UED50xdKYlUREaCVKBvIJyXoYPaVp4re27mlg+AlzX/Qca1tuR871sV7fgbz+ABtfjwFtwHUoGOey8rphzmLqiayqMaXDOIAl+tjiHkgrbWXY+2aP2Eh2lxElMawyTkykvn7+kKCKkEizKFS+//ZpRL0MnMSodUdUVnTFo64mTHCcDQuJC/RXO6q+sw8w87lxJFd6HOF+TF+jt+nX6cD0e4cMzOWuwXUWzmnLw/Fti7chTBVIipcD5BLxC6BhvPdaadV6kkOLTexPYfRmBiMFrbmSr3zh3j9h6Z8S83PcNY3kD+W8ru343xs63I+etxnPVwD/ug5ypRQKFCjKmsQ7rHVKEJF4Q5EzX1timXCuDOpxpsU1LW5U4r+isQaUJD378cxwKj0NL2BoPaZZzvvzNr+gPekRJhPeWVbkgmU8ZJDltvWAxX9JEK9I0pxgNiaII7wVSKrRPQAikCjVYvAjjPV+L3l9BOC1CeDwyII8DnMOZinI1ZTk9oV5NyRJBkWV0XY1pDUpLnAuZBLvWBEd/IVBK0XUd1hmiRKOjBKmjoAS6UgN5y432tUFflqc/FKzbfifLwV2e6buh2O+Z4IurDnxkWA9qrWQRDpz1NE2DNQ1xlIZE0ms7n21KbFPhTYdrK6r5nG61xLYdcRTjTcO3ywVpr8/44WPKuqJrOurlCokhUpr9ly/Z2dsC6XASluWcwoxpVlOOnj9Dq5TpbMn27g6D0YgoDtn88l6PNM3Ie31kHCP02rvIOvBibS+9RDWExwkPToJT0LUYs2Qx3Wc+O8J0Df0sJYqgXC0QCFSUAJIoinA+ZHLw1qG1RmuNlBJrNTKKiOJg3xRrWfxN+K7n9xq4jYnzPgned0A83zPB13uM+N4edr1r+FfL2rYti9MjpGiJBxs4wzoUzIAzuK7Dti1tWbGazWgWM4S1GB1hpeCwbMhGI6KiwEtJV674za9+QZqmTE6OWTYl8USSpprOGGy5oOsq2mrByeELNjZ2Odx/yuH+UwajETs7DyirGqk0o/EGo41NxtvbFIMhSmq8C88hkSDlG4/nvQ5yZlvTVifMJk+Znh6QJjHjfg9vA9vtPRTFEFBIFFGU4DwoIZHxOpGZC7GoOoqIkoIozoPC6LraoK8df4c5+yBBDrds8z67vUtb98QV31Eh9D5uEZfgvV/cK3IeiOYZc+vp2orpy6dkqmOUpngRY73DWYdWwZG97gxVWdHWFV1T49uWxgepDi85efmCzU9OMd7RrOa8fPYNy8WS0c4eWmv6/QG9fo6xjjzL8LYjltCUC9TWDoN+Tts2YBp8V+O7msWsoqtX7L94yub2Dg8//ZTBYEQUZ4h1PiOl9bkcKgg2R+EFtilZzfZZzp4zn+8z6PUY9gvatmW1qvBe0e8P0Sqmcw7nwBiLUgqlFM6G7A/ee6y16CghTgukTvBCIc6z2b9lJd12zi45YVw7d++8Qd/2pu9GVryZK77duO6oEPqIeuQr4aIR+iI5f4WoBkdra6Yvn3Bw9JTN4RA92kOubY1CKpSKsE7QGYcxDmsczgRliTGGbDgmQiIRzGdTytkJi8kJZdXw6IsvKKIhWmhGw02MbRkMRnjvKfKMQb9HFCniWDM5PUb3+ywmJ0ilsG1NJwVlVXF6dMDJwUu2dvfY2N6jNxyRZDlRlKwVNmvtrg1KrOnRMybH35IlgmFe0M/7mKajrhucE2TZAB3lCA+mq5FK4JqWKI7RKkxz13Xnm5jSQd5E6Avv8q5mlHed+/dQCN6pyys03x+DBb62wbNjN9lmAtygELrtZH0s5l68hp7ndr6LtzqDdR3KtixePGOy/4Ld0Q5IjxMOR/CC8V7gvMB7iUdhETTW4qwlw3N6eMCD6YzRYICtV2xsbiKmUyKtGWxusljMaduWOI6DrOo9cZqyt/eAOM150b7kybff8vnnP8A7UL5DSo3zMdYYpkfHlLMZ+8+fsff4E3YePma8sUWeF+gkIYoTvDUspsccPf+a4/1vGA0TdjY+p+gNaeqWtunwMiLNM6RK8EITaU2hg4bZGoM1dq1A6s5xTypNFKdIHb1iD6+14V3QJF8xH+8Fd1o2b6ixb4BLfOWVQdMXzr8R4ve+4tpVnMHlY2/v4wa21t+Bf74v5LxNO5d3RLtOemDwzYquWuKMw3Qdi6pk2wdtpacDb8B2mLYFL5FRClGHMwZDG9hIJNVsylf/8a/4vX/yv8IJycNPP0UlCcZaqrpmuLnB06dP+cHnnzGfTkiLlCyN6fX6dHUHXc3s5ISDbET0SYJdHZPlPdJigBOKpmk5PT5B4NFCECuFWS6Jk4jexpj+eJNqMePg27/l5ZPfkGcxWxsPSLKUznesyhWCiCTNUHGGlHrtiaSDEwXtOpjchGLA0gf2FoGIInScBtsmcOa2935zeGlhfBCZ8LbE4gokuFNf9yCuXYcnd8iseHcnhI/Cwd5Gfe9fXevBmpp6MaFdTFhOT6nLitaGHdF2Lbbrgg9t29EuFjTzKXhBmhXr5izW1LgOmqqmLWumBy+YnxziTcNyuaCzFlc3VPaUje0dFosl08mErqvoDQuKPEEI6JqKWHtGg5z9F88ZbAzxZcWyqumRkaZ94jjh5eIFXdcw2txg1xhmk2O86+hcg3WWen7K/OQlRRbz2WefMxxuIGXEsixxzpEkUXBUl5qzcC/rAWNBgFKStqrwzpJlMVpJLBIZxago5lXtl/uA71rkuQS34xxfv/g+h3ttO7fv4Gbk/E7e7U2dvkLM4P1jaeslpy++ollMqLqGuqyIsoL+aIBta0xZ45uGdr6kPDmhnU/R+QCdF0RrRY6WitY2TCdTjA95hWaHL+kEVKuSxWoFrUPFGW1r2djY5snTZ+zsblA2SxIND7Z2aZoSZxo+fbxN89Uhi+WKbtXQtjWVjdja8DgcIta0Tcm8WlE2FcIY8B2mrVlNT6nmp5TLOXsPH1AMBngv6RqDqQ0CSRQnKBWBinDer22Z4JzFOYPCo5Wg827tnSTwQqDjFKlfRZ/cySn/XufxI8C1JsDL8CG0yld38/pYrucGvge+te8CZ/KHB+/x1lIvZlSTl9TVnNZ4jo9PSZOMtNdjenyEtA7fdiyOT5kfn9A1Nao/giTF4lhUNc1sQVfVzJYlUZYT245mucDFoWzDo8ef8mT/iNVyRaQ0O7u7HB6+4PnzF2xvb6B8w7g3wnpLnqf0i5S9nTEuTpjPJEdHU7xXJDIGKRhujDDesaoq5os5wzwPa8Q7sB3Nco5pK4zpcN5hrQuZGrzEA9Y5NKCUCu6BiqClbQ22q2m7mkhCniZEcYz1Qd7UcYpYa4XvjJh3SQz20ZwR3ga3RbqPNL43unlXhdDHhluzFRdYWhFyAjXlgnY5petKGiOo6prNR58is5zVwSmxt7iqYjU7xZiWpNdnsPsA3RtSHx+wrFtOjk5p65a66xjohN2iRxRpWqlpW8enDx4zax3mZILpGobjATt7D/jr//BXaClJI8/xyQStInqDMYvZjEGR0aUZz6zg5dGEIkkpsiVpf8BwNCKKE6SQRFqT5jltU2KMQfiWcrUijWPEOsLGOoPSMQ4w1tJ2Bu09WirO0o44s/Yosh1dW+GFJ83GwRnfucDSxvEF8wlvX7x38rX9qOrQW8KtSect4eO59t1jZet7gNuwHpc/fagg1rUNy8WMslmi0z5pUbD7+efEvQH90RgzPaFpSrq2JMpS+o8es/3DHxHlfUSiefZ3v6JDsmg6yqZDFB0iSfEyIusNODw8JesPGW9uUfR6nJwcomOBdZ66NswmK/RGn+PTJb2iT6INnfUkUUTVVizKmuPJgs1ewWi4QTqQpGlKHKcUWU50ppxRmrozlIuG1apkPIjIsxicoetqdBQTpRFdadeetsHSq87ul444iRGdRiiJUh6lxFk9J1QUIXSEEwL1WqjafczZFRN4lWvdTcvnfZbXdV5sr3m5vaWDG/u+0Yh5N3jL67/HeM67TPJV0vrd7j9zAseF+MSgFHLgHbHWDDbHjHZ2UDphtLXFZLWgLkO1sM4KnNLoPKe3tYlQnh/+5KdQN/z6179hdnhC3Vm8jpguKx7uPmJzJ6VuDXGa0OtlvHzyNeyHcK3trS2WszkP0j06C1XnadsW5zVpntIdLynLEuOgbDr6ozG9Xg+Px3mPsw4DLJYrHJ6uM9i6wRhLVbVIAW1T4qQm7Q2IooRMKDwaZx3WdMhIhkRdziKcQ0mBTlPiWKGUxFiHUBodJwi19gi6jDTvDHd0XLhJY/k+Q3qNil9x/PL54OD86sTbzC0fVXF0F+S8cbfz7zDgiyrvK5DTv34psI7ICAvrVd5ogxCOKE1pFkskho29LdKsj7cSnfVQ+QBnFdIrTFOznE5pqpLMO6I0Z7C9w85nn3KyWDKZLtnc2KI/3qSVirK2PHz8KdPlgtGoT72cE+uIrmnIsoxPHz3kl7MJUaxJshwhJbHug/NoKeh1ku2NESebm8ikIO0XFEWC6QwHh8d458jzHqfHE+JEkWqFqyvKsmSxWDHeHKAiTZz3EULirCDPBzRNi+s6ZGxR6w1KmhAqZ51HRwk61ljrMLZD6zxkPkAFh/sL7/WtcGPO20tU8caN9joKe1+r/g4b/a03KHHl12v7v4z07wA32zlv3FG43fnrbrjJYvJW8LBOOdI1Fauy4uToBKU1g83HxGmKdwIRxxTDDYremCP3DW3TUh0fMz49JRlvhty2OkIkMemgz09+/hO2NrZIs4Lx5iaHJxPGjx6xmM/wvg0Z/YSgXxSkaYrqSXZ2dtjc3EAoTd0aojhGCYE1HY8/HWFkQlk1tFXFN998w/D3f4fhcMCLl/tUVYW1MJ3PyLOIpN9H61Ca0FmH6YInU64jqqomL4rgTO/BdA7fNbTG0DUtrqtREnQcoeMES1AcOecRSiNUxFmOvXdbNhfXxBUtXOaUr7rmqjX7Ian4awTgY8i9t0HMm8dyA3KKe97R3gLXeqhcOH7BScT7MCzn1hkAbEvXVsznU4QUqHRIZzoSKTAeVJLilWK2XHF8ekq9KBlNJoyNQQlB1isYbG/x4yQmMp56vqIzDTvjIYfTKW1TUa2W5GnEoNejK0t2d3dou5BB/rMvvmBja4f9w0PazrCxscnspKXpOsbjMUkS8enjR5wcHVKtVljrz5NpGdOFxxSe8XiDRCvq5QKkZHfnEUU/xwtJFCVUdUOchD6DSbPDOY2gw3Q1GEOUpSRxgheStjN0rUHotZZ2HVca1LvvMqd3kB2vu+aDrqfrEPOKcx8U3p+a3eBbe8aXn/9Zt3vPD/m2ubosnvrXLxawznBQopWg3+/hnWU+nVAu5/QG4zByKZCRJs5SRKSI4mhtnjDB6VxreuMR/dGAg6+f4IRnMZthTEeap9TVCtM1JEnCYDTmyTdfAZ7laok1oc7nmfeQ1ClxmtMbGhyOsq6ZTidIPINejzZS5L0eRX/E408+pWtDUd7pbE4cR5iuYzKd4vF88tknCK3xSDwS5wxt2yB1HCJL4ggpQ+B1kmhUmhCnOUJIrA2IaawnyxKiNA1RL3dRNr7B0l7eLW9YC1eevgKBrnTPO5Pxzs69w7r7Di04NxKbG+BmmfNjcAJ3YfnP2BMfvM6ctSEMzDY415GnKdato/67BrwFBF3b0JqWwcYQHSkanZJnKRJBnKZo+nRtiRSeqm1om5qT0xOKF8/IBgPaOpzLsow8z1kt5zx99pTOOoSMaGczOmvoD0dYr7AOBsMxHofQiod7u6yWJUeHR5TlAi8VveGQraZhPpkg8NRVyWw6xTQNi1VJFEd4oWhNyIJQVQ1JWuCspalrlFTEUYxWCh9phBdIGTSxtu1o6hprDCqKSIpe8AqS8vVF/q7iyFsvuWOjr7HCH3CxfUxrzk3EBrhpQDeXALy18/s9wpmm5+z/mxdwNpveOUzXoKRHELS1XRty0oKjWi1oqiXWtnjXARalJUorekWPOI5Js5QkTTFtx2q5QkhJazqquuTk+Igk0sSRIo7Dwj+ZTjG2o20alFJkecZ8taLpLNaH4rydDRSz6wyDos/nn3xCFkUsFzOOTk6YLUuckKEkIY7FfLZOgu1o6gatIx48fMzG9g5CxVS1wTiCQsg5bNtSLhZgHdYKPBGoBCsjms5Ttx1d1yKcIU0SkqwApfAimFXuNh/Ad7AM7h2+Kyp6Lbx9QLeoz/kdPdFbF8OFky6UXPC2Q6lQHDdJE4qiINIS1zXYpsa7kLqjqUuapiHPg7KnKAqcd5jOMDk+5fjgiOViwapc8eDhA9qmIdURbR18VLuuo25a0jSjP+gTJwkPHz7COod1jidPnrJ/cIBe+67u7x8ym05p65qjwyO++vpbnu/v8+zlC45PTojjGKU1TVtT1xVahTIJ/f6AR59+ysb2LmneD/6zPjgsaq0wXUusQtoS7z3OSywRxgscgs4YhHdEUpClMSKK3o0thLAEvpNlcIMG/647xt+zDeY9Mr7fwY3rzZu58U3daAgWeN/StjO8qdDOo4QGnZD1RvSHGyG20RqkkEgHWa9PWgzwbkWyVsZ4AbatOTp8wZOnX9M1oQzgYHNMWvSZnxyDFMxmCxaLkl5vQpoHxcp0Puezz39IVdfsbO8wPZ1SNh2/+MV/YDzYoJ+nzGdLqs2G+WxOax2OIN/uP/uW008e8ZOf/Q7s7lHVNVVZY61FaYGMJf1hnzhNyftDnDUUeYFzjnI1peiN0EmEF56mbcjziK6twQvaeolyDUo5hJI4rRAyBhTCrd/9G/lpr9KqXtIz3NYd7ybTy/vUTLxKJr0tXHn5XdiCS7vUndnku93w/awy9taJh1dCiqftauazU7yxaKWJ4pykGJD3hiyWJdQdaV6gnMNJyWhrk6ZqmC+XPMThXMPJ0UuefvMlSRJhuxqhBFZCMujT6zqOj0/pjGM+n+OffEPRy1FScXo6YTyesapqNje3grterxdMI8YglcS5jv395+AgyzJ+8MMfMZqdksUC19Y40xGnKcPxmNnJKc50jEZDoiTGGAMI6rrh9PSUPNHkRUaW56g4ovOOaJ0f17m1i1/TIrqaLNVY14HWoCIQEuHWmQjX2f/eq675FWUn3gveZnL5zvxyb4APIa9fgA9XZey2iPtO+O05KzsAIIWgrmuEh729PeLBBipOQUhmizmrqiaPIjIl0VlGMRrQCIXwDV054/TlM+rFjCLPiCNFWZa8ONgnHwwZjzbwzqOlpNfLmM2OSdKdwIrWFf/mf/wfefz4E9IkQQrP5saIH/7gc+bzGf1eitKK6ckRWkXEcc7Dh3s8+uwxL559w2w2YzY5xa0Tb2VZRlM5kiQOmROsAe+Yz6ZEUWBrZZSQ5AVRnOG9wLtQKa1tGpy1+LYm0YIo1ggvab0MMZxBr41Y13N5QwF/4yt/9b6B4DB/n/mBrrV9fg/hyjV76eA90K332TtvgGt2wltcdhOc64qcp+vWQcVSYBH0BiOK/pDWwnSxCq5wpkVpicVxupgzqZaoVFFVcxanB6ymh8QyqH+HozF12/Hg4SO+/uornnz7hOOjI4o8o19kRAoG/YLReMhPf/wTsiRitZgyOTmkKVeMBj3++B/+AXVdcrD/kn4vp6lWPP32a/CGXpEhpMAYy8nJCdViThpJhr0ekVbniq00ianqmrKs0FpxfHhIazqSJAGh1hnzJM6HnLhKheppkYI4Do7wCE3dOTp78b29QrKrvl/+/+qd+0tz4C9Nxk1KvBvgfB1cuvempm7d1TtS+Ddu81doXOGNhSwunns3eDtyXvfinXtzAu5rkm4JQoh1xbDgi+qRGCSTxYrJbMmqarDOB4oGLJczVlWFzDKGezts7G4RRQJFRy+PEMKitcJLQZRlWO/ZGI84PTnmqy+/pMgTfvazn/DHf/xHIOD5s2eU5ZL/4r/4p+zubJJFkkcPdzk52md3e4teL6c/6K/HaemamlhLijQiiSSfff4ZOzu7RAqKRONcqL5dlSXHRwfMplOq1Yqu63j67Bkv9vdp2hbrQccJVd1hrCMrihBtIgRdW9M0K4xpcd4RpylKx1hH8OF1Fufc+r/F2fD9MuK9Pq1XI/PF35ePr09eP//XrZWg8Xr9Ot6ylu5End5DGeYvH7htu+9HOj9uyNjZg74nuT9DTIQIjt/OEicZe5+MyYebHE3mPHv2hDxNeLC7SZomlKs5Dnj4+WcoBVoLtJKUiwW9Xo6zlqQYY0TET376c375y18gpeTnP/8Rx0dH/OIXf83u7g5Fv8+jBw+Jo4QXL1+ws7XJsFfw1Zdf0bQd//BP/xHjjSE/+OHnzGdzIump6zaMMVZEyrE57NHaPovjY472XxClit5wmzjSxLHm+PiUwXCMFBJnHVlvyKNPPqeum/AKraHtLJsbm5i2RYhQo0UAy6pECIizHIQItlLv6Np2XTD3gsFYihCEvZZbISCcWBdjuhjreZZS8+zdXxUH+gaCinWF8Xdhfa/bLy6un1s1ex8L7qomL7d7//qX92Nr34VCijNVztm/d+oYCGk4lJY0TUtrHXE+QCU5w/EmP/zBFwz7PU6Oj/n2m69ZLhckWUpSFMR5D6EVxgYPniRPyfo9prMpKororOHBg4fMF3MOj/b5h3/0Bzx8uMd0OuPZt0/xLmRm7/cKqnKJEoKHezucHu/zi7/+D8RK8YPPv2A4HATPIe/orGF6eko/S9jbGrO7u0Ov32O1nHO4/xJrWnZ2t3n8+BFJHJMlCTvbW1jjiKIQupakOc455rMJURRYWoA4jtFak+cpRb8PUnA6OcX7ICtXZcV8Pme5XLFcLpjNZixXK+q6pqoqmqah6zrMhQyEryisw67Talprzyntlf/P/p1R0nflnN62zq9kKS98faPLOyLMlUO+vOlc1e79C8j3RzmvmogrtHnnvy7IGGfKiWsf71I7Z9yOEIo86xHHCVjQSUbXWcpVhVaKzc0xU+FZrRbBlzWKz2tnOiQO6PV6CCGI0x4q7nF4ckpZtbRdy2AwIIkUL/f3GY/HjEZj+qMxrjOkacp4PMbZlpfPnvHDH37BL3+VMZ/P+ObrL/n57/8hD/f2mKUJ29u7lPMlq1WN8J5+kTHujWhXSyYHMavViul0wt6DByznp2RpSl2VCBxaCY4O9tneGqMjTW0sR8en/Gz3k0DdpMSskVBGMUXeY//Zt1jn6Y22IEppm4rjk9OgQEJgrCXLcqIoQmlNXhTESXL+iuM4IY7jc+rp1zGzZ9RVylBF7TqX1YvOfSAQd6Yql9jbs/vfMOVc4en0vjhyG3fDS8O69vd7wodla9/G0ryzOLqWfwjpLYXQSKEwxoL36ChQkOWiZrVaEseaTx5/Qq+XkxcZURQhnKFzQVEkI01e9HFOkhUbLMuGtm0osgGP9x7ggV6/z+T0lLapmc+m6ChCRzGj8Zjp5JS9h4+o245/+p//M14eHFIt5piqZGM0xrYtP/7BDzjd3wdv8D7EWsZakfWzENBtLd45JtMJy7JES0nX1piuoWmWpJHg8cNd6rpkMVuwsf0AHcV451hWFb2iQEYRSMnhsyfsP31KfzSms540ixB2zssnX1F3HVGSUtU1WV7Qyws6YyiKPlnRo2mDq99oNCaJExDrFCgicClRFBPHCVEUB4WTC9RR6HXB3fUuK9eII87n6w3B7Wq4lv39nqptP/CwPqLMGSZJvPp6P626wEopqZBCoKRAKfDeEEX6XBaTal0yT3ik8OAs3lo6wppQOkVpTa/XY7msmM/mVGXNg4cPiOKIJE0YjUZIKanaFi80DslgtEFVrjBdy/buHo8//4Lj0ynT+YKNJCMrcuIkQghom5okSdZsqGI83uAHP/oR0+NjrOlYLRYkcULdNGhjWC4XpL0eSRqT5xlNVWKNpej1WMwXKCWpqop+v09rDBIYbu0yHPZx1pIXBVJKvvny7/jmN3+HiiOKXp+qadESlq5jNpsjVEi03bYdvf6AyVEPYwxa6xASpxVJmtLr9RgMhmRpDgi01CGVqJUIJREylBj0ApRcO4qcz/cNyCnEDUvi/mW6e2/6ysX97o2/FTnfpsUD3lQKXDWO19q4Qka4CW4wdFtn8c6TJDECj/AW4S1ZEiN88IlVUqIjjRCeWCtc24EzCBzegUWAcKSxZnNjE2ehG47x3lM3TbCVliX9/oDNrS3qzpJmGULFWNuxsbXL0cEBJ5M51f4BxWBEbzhAaEWiMnq9PsNBD+Ec29ubZHmOiGOyQrC1s0uvKFguFjjrwFk++/RT5tMpbV1RlRXDwZA4jknSlMlsgesMMpJopdjd3Q1yoHNEaYbrDzELS39YEGcF09Njvvq7X1Eu5hT9AV0tyZKURMNqNadrS5zzICRt21Kv5pwKteZCIuI4wjpHmueMxxssh2PSNCVNc3SUgiCkTolj4iwliWIQek091zTznHD6q9fNdfBaNMrltfam8umd4V5x/v5k0fulnB9iY7vEGvtXWzHehRID1lqsdLRdg7IGvCWOFFLoQCW9W/vWBp/Urq1x1qKVQkUxSidYp/DO4J2lyFO6yFCWFanWbG6MGI7HGOdZlRXD4ZAozmg7Q7kqmZzOyIsCITx1t6CdzvjBj39CkmX4tUmj3++FDAfWYJ0h04rMC7qsoEhTsjSlbVts22Lqki9/83eUXUuUZgzHW2RZxmqxYDgYslos2dzdBSHQSrGsqlBqEEBpZJIh4xQhBWW5YjWf0lUlJo4QaczGeECvyImTmCTRdG2HNRYbScpVSShZKGnLinJugi2VLZo44rAMro/jjU3q1mCdI8t7DIYj+m6MKgRCy3ON7pls6vHrffYCwvlbIut9OjvcB3xAIn4R3gs5b6KscPGdrr+87ZY7+il677DG4Ny6crWzWNti2gapFUmcIAjHO9tiTehAChBKY01LV5V4V62pgCaOJUlS0LaGPI+p6wp8x2oxJe8PyNKYOILpYsnmeJNquaQuKxazBT/64RfkRYGFUHNlXXY+yzPiSJNncRijO1OVBOWKNZYkTui6DghhcG1dkhcZXVuztRWobZIkJFlE0R+RpynOOxaLBW3bkmVZeCcuIL9Q4VkXp6esFjM8ikgrxhtjdra3SdOc1nRkcUJZLqmrCiEibNvQtoauaajrmrbryLKMSDmk7/DOE0tNVy6YzmYhhjUtcLZFicC5pHkPIR3SS0C+Vl7wDGnP68GIC+qiq5SHZ2abiwh6H8jxPm18pH3ifinnlQ8s3nbyzhDm6UzVENqMkxghWoyxmK7C2w4tYpoOcBYlIIoU4DEm2Pu0jvCmwbQ1pu3oVE2UFkRxsh5nh3ct/SxmNp8jFGAaiqwAEZH3epTLJY8e7NFtbfPkq2949vQZUimmizlda3j0qWc4HDAYDNjZ2WYxOaLrQpiZkGKdSiSmbZt1kjJP27Uoqfj8s89DdoZ+j6LfQ0c6RKQoiTGGuq5p2gaAYi1bOmtwpkHJkPSsazu6riZNUlSSs7m1zc7OLuPxBkJqZNOghGK1mIdCTsbQ1jWns/m6QFKwbaZJhGkqWi3IsoJYS7xrUIRIIG9KFqdHmKpCJQmjrT0GwwFKKdI0XWt3w5yd1Qe9aE89t7Fet6yu8OO9SUK9eSG93+23g/db8++AnNe9QnGlHOyvkzmvbOE6ze4FM8r6r/dgTEdVrWjbhkQ7vOyQCFCSJI4QSlEtK4wz4CLOLKxREp/Lk/PpKV1Zked92q4jTjOc86xWFUppLALhLJPjY8rVkiTJUCpiOq/51a//juPjCRLF0yfPmM2nREnCy/2XbGzv8J//83/OP/uz/5KtUY8vfvRDDp7FZHmfJEnX1CBoQb2zNGWJ6Vq896RZysbmBiqKGI/HRHEc4jC9Y7mYkfUUaZYHn9q2JU1TnHNopZCxoq08XVPxYv8Jf/0f/gM6CnVBt3d36fX7REmCtQE52rbBtB1tHUpOHJ2cMpktsMYihCCKIhbzOZIO2/UR3qFloHZKOKIoxnQW35Ys6pLKWMq65OQ4OOhvbm2ilMa7UNE7SdKgEJMxUkmkCpumlNdrdM8p58U1dpnV/b6xvsAH9RC6nm29fPyKqshXjOteaKf35wgqvcF2Fd4ZAEzToiQI4WnqCvB404CzdK7D+ZChzhmH1hIpLW1bMp9MOHh+ROMkKM1qWdG2LQJF2zTMZhPyPEUrz97GiDTKOJlb/od/+z/x9PAY5xwPd7bYGOY4VzPONIfPnvDf/p//L3z91RP+D//N/56Hjz8l7o3RKkOuCw9ZaxHOovE0ziKsAdNiTUsx6AebKhLnJVJonOuo6zl7jz4jzXJoPHES46yhMwYlE5RKiBNLXc559uUv2H/2LU3Tsb23R7+fESca522oV+pa2q7CY3C2YzqZMJ/NqKsaTKi+0omaslxQVgl1XVKVJUVvgRWaLEtJIkUEFEWGAeJEIMtjukaTiQ1WJ13wA45idKRxJsK2BVJkRHFGlARbq1KvVokgiB7n62Vtz31vJuydF+BHEjIvwb0g520jh14X/N984DeiHm4Ym+lCtTClRTCRrOMvtJJB9uoavGnR65k2bYMQIL3D1I7p9IiD5wd8+/ULXuyfcjyv6KynbUzQQCrN9njA5uaIwcYG9WrOqm757LMfs/fpkP/4m684mi/4x//Jn/I7P/6CIg4KqsOTFfNVyy9+9Xf8xZ//a6Ik5v/4f/pvGO0+wNv1QpQOYUMOo6oqWS4WtF0Dbp0UWkiKYkCU9UjjGJwjEpJBUQRThoporQ8cglQ419K0LYmOEEKxWq44Pto/Z6PjSGO6NuSwNd3a9BHY5MGgjwROTk+RUuCtQUuFlJJlWSK9gspRlksO1TFZ0QcZkSYJkfKMehm7O9sMxxtoHWNNh44EbR1KSeS9AZH0lM2Kru2IowxBQpzk9Ib9kE5UKDwysL1rJ34hgkZayksUM6yQ4Bp4tgBvA++MX98NRb4XtvY6X8u3w+sm6rvuTmeyShzH+DhG2BpnO7xx2NaBt3jb4bqWZu3wbWyH9xaBp20a5qczDp6d8s3TY56fzIjzATpNiGPP9vYOu7s79CPJD7/4hE9/+BlFr6CrWna2dzGd4Ce//lviXsYf/O5P+ezRLkkErZdMzXP+6X/6R/zsd7/mv/t//N/58z//C/7hH/8hf/Zf/VkoICQ9guB4vn4Ysl4Pvwya5TSJ0VFMkmUkeYaSoXBCUfTorEFFCU7FpL0hSRQhcMSxQ2sdqGjT0rQdxnp6/X7I1Ocs1rS0TQ3KEMUJzlriOCZPU7SUDId9pvMJbasZFH2WyxKhPEjB8cmE1XIBHnSUIHWEEp4i0Tx+sEtRFOw+eEyWF5TlChXFxElOlKRkeQEIbGvoqopqsaReByYMxhvoOCVOevR6Q5IsR0eaOAkOD45gyxZrl8mzuT9jgj9cEabvHu6Nrb147C4vTFzx7aaxnPluKqWIk4Rq5nFtg+tMCDp2BmtCki5cyAzvnKWuK9xam9mUNYfPT/j2m33KVpD1N/j888/4/LPPg5dRlvHw0UM2+n2iSJDmKcVwSFYMUSrGtpYHn3zCyekRo0FBliWoJGJRWVZe86M/+GN2drc5nZzw5f/1/8l//6/+nD/543/EzoO9kMvHG4QMCp04jkPMaBTSrVjnkR4cMsSlKomXCp8kJDpHRKEqdRppnOnQWiEJubv8uTZYUhR9quWStm2oyiV1uWI+mxBnBR6PlJAXGVJAWUqyLGE87JPGGiU0i+WS3qDPZLFk//CYsqwCokgFHmLl2Rr32RqPyIs+m9shw37RHxAnKVEUBySWIbF1rDWJksxnE6pFycHBS7788he0nac/3GJ75zHjzW16wwHjjU16vR56HRonBWit1h5Ll5zvr5I/X1tkHwOB75/1vSeFkL9gLxZXIvXbjq9beE0hdN3GcNnZWghB13W4tlu78Fm6tqKulqyWS7zz9IqCNE3QkcNaiXCKpWmZlh2NU+zs7bLzaI/NYZ9PHu+xtbmJkII4itjY3EAIaExN17VE3iNkhM4zdvYewF+FZ3dCIXXKyfyYr5+9pGoNWX/Iz/7gD/nBX/4Nf/3Xv+Df/eVf8s/+7L8kygo8CoRESQnr/EOOM68aSec8UieIKEEmKUJpBjs7IBxN1+AN54Z+a85kUoeQEus9befwCIpeDz83ONOxnIfInIFSJEm8FuwcXWcBT5Zn9Ioc17W0nSFKYqarkpf7B8yWJcZ4jLF43yG8p5cKnCtIs4wHDx+R9/oIGRFFIXgcQEiFdxAWbozMQeGRvmNy8pKXpwc8e35A2Xp6g002tvd49OlnfP7FF2xubtPrBQVakqRkWfpGxMyZJvcqU8zHhfvfAO6JcvLay7pVOBFvIqx/g/q+zvReHsNZqJNWCqMk0oMxYZGvypq2M2RpjpARcZqT9fpUVcnBwTHPj5YsrGbw4CE7O1s8frjDIE+RrgPbkMYJUQRVOQ+USXm8bajLOZ6Iop/zxQ9/zHAwxnlJ5yTeeqR32NWMk2dfs7O1wXhzmx/95Ef85b/5S/78X/9r/ugf/A47Dz9HrGVDCFXSoijGpx5rJFmaInRMnOekxYAkSwGBrQzffPVrfvOrr1gtW8bjMT//3d9jc3sHGYfCvc50ZFnOcLjB3oNHnBxCW62QwjM5PcbiGYxHKClouo7WObwNTu1pkqClAgems6xWJd8+fc7RySnOC+rO0nYW4SGWoFXMeGPMz376Uza3tlFRgo4T4ih6tUy8xwob6pFKQRQl+MSSpRlFliFsx3x6wmRe8uLlS6Kvv+Lrb37D118+5tHjT3n44DF7uw/ZffAguGOuNUdSyleIyhV06+L6eWVIvXzVFXBfFPCmdm7u53ZJpS/DVZrYOzkkvGr+DSeFNxylL/jknls2WTu+hyBiay2mM1jvQwKsqqFq2rDjZjlSadrOsZqvePbiBV9++YyDSUlU9NjdGZHnMb6raRsQSUxZhoBlhKeqO5JY0++lRHlBJhStSojTgu3tXX76s9+lqhqkjIiE5OG4x//2P/1TtnOJ9h1CQpqnNG3L3/7yl/zmF3/D5uYuah3Z4ZwL3jleBK2lDI7jaV4QJTlxkqGkplpVfPnrL/mLf/2v+OVf/TVPnr0kSlL+d//yX/Jn/+JfEEebICRSKpIko9e3bGxuM5sckecZ5WrFfLmiGA4RQLVa0jmH1sHE5NYbXZblDAYG5xc0TUdVNUHJ0xqatqUzoOXaf1ZJ9nZ3+OSzz4iSUMhXKk2IRLwQOiYIThE+aPWl0gipUFJhu4400oyHPWarmunylNlyytHRAS9fPOcnP/4pmqANVlphbUGSJmilUVpz5tgnL6yYV366Z0LqWxbum6v04gq95T2XwXNzrZSb270zcl6PghfPvNlxoJKvHUGIM3Y4fH+9res1ucETxmK8xa0d2Nu6pO06rHPr8gaCsm6pqlOkkLSd4+XRKb/59gVPXpxgvGRvRzEeVKwWElMuiJQky1IGgz6Dfh/wLBYLrO3Y2d6gGHQIJ0g9lGgGw01+/g/+iL/6//0bbNeSFilpf8DOeAutoGpWLMo5Rycn1Nbz/OUh//7f/U/8/h/+A4ZZghIe71jbAS1t1xJh0UpS9HrEWYHUGudaTiaHzBYLfvrz3+XR1g5/9+U3/H/+1b/ml//u3/C7v/dj4i9+QtwboGVgJaM4Jst7pGlGk+XMl0uSLKVXFHR1Q1s3JHmGdxbnQGlNVhQIIUmzHOOg38sp0jS4KZqQC1gIiRBBOZPGir3dHYpegZIapRWCdWD22Xz5sLVKPA6PcR7jWuqmpKlKuq4lTmJ64x5ES2armqqqkUiaXg/XlNTLE473I1arOcPxBoPxZti8CFEzUgiUkAjxSlnEelN4P/vLe7gQCdYI+u7dvxPlvA/OXohQ5+TMtev1UL2L7O4rKnqeLsMFiuPW7ntNXWPaFm/NWnkgcA6OT2ccT+YsFiuWq4rjyZL9kznLxjLo5XjbEgmHBLIsp5elwfe1syzmy2CuMaFc/MG+IV+UJMenjLcW9Lc64kiz/WCXT774gmY5oW7W5fUUWGNYdR1Pnj/n17/5ispYZouOX/3y1zx/9oz+1hYCQRTFZFlB0wZlVSQDyyZ1hFSBPSyXC6qy4ic//wN8W7M83Oezn/ycF18/5dO9XcrlKUdPv2bj8acMBkMAlA7JqrvOECcpG1tbWBvsvIvZnNFoTCQVjXHoOMhz3jqyNCOOY+qmZnjUQ/qw+QmpQgSK80CQbfv9fO1nHK+dCdZZ/fCcud15zpDVnQdkWx+cR1arJcZY5osldlFzeDpnVVYIF8xd0nWUi1OO9r+lbVcUww26rsJ6y8BtkhV9ojhBK4WQoC6u/jec5a/DjA9ow7xN92+B2ymEzr19uDZb+MVHvA2Le37fHa89i7B3zmKahqoK0f2mqknToDgp65bFYsW3T1/yd8+OOD6dY00XKnZZTxZpxoVmZ6PPxqhPliYUvZyN8QZZmmKMYTKZsFwt6fVydsYbNE3NdDqlrmuWyznp0QFtWzPcfsQPfvwDXjz9lmVVAY4Ohak6Xh4f8W//7b/nm998TSoFqVBMT2c8f/qcH/zsd9GRJtIaE2ms06QyJ1E+xEzGKVJH2LZjNZkxP5lS1Z7dzW2KwTb92PPFFz/g9//wZzx89JjTl0e4fUkSa+I4xnnDajWnaUpiLdE6yGpVVZEkWXAH9JDEKVlvQBzH4CzGhLQm4/GI4bBPr8g5mq8oW0Nr/XqfdOg0osgLer0CuXYSCM7t4txxAMBa+2reYO0Pbem6kPaz3xsyHNQ82z9muazwThBJgTeG48NDuqZkuZzyyaef8kmkaKuCcpYQSY2WCq0UqAtU823xw1edukjdbr8Sr2nsfuFG5PQX2JO1fH9+7PKLuBbNLvtFXqO5vc1YzhzcnTV0dcVqMQ9a2bZFqQhvPMvFiqOjE16+PODoeE7VWbJY0y8i+nnGaJCzNR6yt7vJaNAjyxKyPEVIT5LFFCpDami6iuVqRb8/YGt7lzwvODzYZ7lcsJxPyPOCyWzOJz/4GY8+/wGz6ZzlYkndNByfTvjymydMTqf83o9/BJ9WzF48p59IZocHtKsFelDgXYftgo1WyRDQHK2zxQsBbbnCtzXNYspf//Uv+Cf/5D9l0OuhdDBN5P0BDz75jFQlvDx4yVdf/ZrPP//BOsNfQ6QlbVOzWi6J0xQhJUWvABHc6dIsJ0kyIh2BD6aoEMcZo5Wk3wuyXt0aOgdyjZxSBoeBM7n54lyL9VydHxchgsi6V6lOoigiTTNG4zGTRYlzR2vEDtrqqu6YLZZMV0sa5xiMhjyyDZga31XYuqSrUuIkIdLqUoGmtTP9Gz65VyDUO+HYPSDmLfD7Vtra17KvAe4NDyFx5ffzY7xC3KsSRPnXedpLiBxaeIWYLhSDNR1dUwYndyVxa4fwzlomkwnHR0d0bc24lzKSmlG/YHs8YGdjwGjYRykJQhLHCVvb28SRoq6WlNWCNE0Zjnp4dnnx9AXPnj5l78FDtne2yPIezrQcHjyjrmuy1HG4v8/OQ81guMFovEXZ1GSDEb3hiJ//9HcZJprJt3/LX/4Pf441jnp2TL04IcsEtl3Q1XNwHpWkKKFDbiQpkM7S1UsS7djeyCnrAYIa6yNM0zFfzEAnRHmf7YcaI+DbJ084OjwkyzImJyfMZ3NMWwMCrTRZnlH0eiRZitbxK5lNSQLX65FKhJy5zhBpQRJptJLQWZx3QX5cZ/Cz1uLOnNjX8+QuUMozp/bgFGLO5VEpBFIKTNdxeHjEarXCWkvdBLk2UFyQaEQUFHtZHJNEmkgJbFdTzqdIrdBKoBAILZBSnStqz7T/4rV19S6U8jq4CsNuqRG+he31zsjp1o98EcEuUtLLFPHiscuIeRlJzxycX0fk9cOs4SzpVFPVVOUSnCGJI8rGYUwTrKXCkWUJjx7ukmUDVJTQ6xWM+gWjfkhVcnh8ymJZoqOEcWNwxnB0PAneLesg5o3xmM2NDb768itOTk4o+gOSrGBr9xE+ivFodncfYmSC7SwtJf3BgPF4zOb2DsKDFBK7mvLMTJh8usdkVtHUK+rFhCqDcrZPs5yjdIyKBd54hE8Q3gTTzXJKgmE87JHkGUJanK3Zf/mCxWxOPtjAqgwVK7b3HuMRnJ5MMJ3h5OiUyemEIg3UOCQBy8l6RYjKcX6tpnHB39aatTY1ZI2QEiSOLJLksaJpW5wPmlFjA2vatR14gr323Cfg1byKtcN+MH28ij4RUuCcYzqbMJ9PaNqKtjPrwO/ArqZpytbWmIc7O2yONxmONhgORwipaeoVZV3hlQimLqGCaUpIJBfWvvd4cSEL4Bs48T4s6lX33VUjfD3ciJxX5ikVa4Q8P+WvdKV6GzK+4pb9G0N9/XrOrz8bi7XB22c+nVCtluEeKREipIBE+JAvKI5DEqsopj8Y0B8N0FrircM4QdN5posS880zurbm6OiYruto24Z+/yU//+lPebA15MHONrNVxcnJhPF2wrI2ZP1tQsIsRb/ogVB0dc1RVaKzlOFok1jHoIPZByVxEpZNy3y55Dd/90s+7XYx9Tx4+WR9hE2x3mGjGFGXSK3Yf/otWRwzGI1QCKy1LKYz/r9/8ReMNkZsbO9h0AjpUUnOxuY2bWtRUjIYDKkWExK9zgahJEmaIIWgqWu8d6g4wrmOtrV4b88Ji8CjpCBNYvI0IhKecb9H03bUVfAUStLkPENDoIggVTBsvMYZrWdYKYkwEikDFY+ioMjZ2BzROIedLNHW0y96pHHEoF/wYGebvZ0N+lmG1glahxo3SoUMGG1dsZrPkVIHpEaETUXKS9kYrot5+oCy42uKmLt3dSvkvBjVjl+bP/zFxJah57No9zNwQrxJOdeXX7QRC4Kj87nh84Ia3F641lmPNW4tQ81pqhW2a3Deo6KYrm0w1uNReKHonGFe1vRGPVxtOPz6Kb1YkuqYsu4wFk4nC168PMTaDkHQHCsZY4znydPnmGrJ9taI3SLndDZn/uWcze09+sMxo/GY44MD+mVFlucY29E5R8aARsfYKCZJEpzp8HFGJzSLckW5WjA9esHuCFyzDHa6KEK5JhTHLUMW98Y2NMsZyWjMbLmi7Rx1WfIf/v3f8PVXT/mv/+t/QW9zIyhybAu2RUhFluc406K1REhBY1riKIRoRUpRl0uatiNJM7xzeNvhhVwvaHCuw7sOLUFLRVO361QlGU1r11rmiCLNKPIcrVQI8BYEU4vifNL8GmnxIJEooZCEpGxJnLC1tYnzYKzHGo91sDkeMuwXbG1tsrW5SZHnGNOyf3CAkJLhYEiSxGjjcKamnp+gRaDeHoFex+5ygcU93ywuyMGvfb65+tef74G8N2lrb0DYW1PO16joGknPjr/q6ZJSSLyqBSmEwJ+pt8VZ7Q7W3/25Seo8Ml4InAjyrfCAC65jXdtQlSvmkxOWiynCtJiuAwRKJ+Q6wXrJfFlzfLpgZSUuNjzZf4F0lq1eCtayWJU0XQsi2PiiSJHGmuGgz/bmiCJL6GcZtl5xejqhP+wh8cwnE0ajMavFBCXDwjs5WpLlGRubGzghiHUIfO7wCG8QzqDTjLQ3oChSHu1tsrMxwpQLzOoUHUWIfh/pW6TUmM5SzR2dEdA2jLe3EdmIw+MJxy8OSfIBf/Yv/iW//6d/gooUXV3RVjOwDXiFVJK6rCnLFQ63dvo3OOtYzuchbjVJSJME29bgPUprZBSvTUktzplzHYsQkiiOKauauu6QIsTLKhkQ2nTt2sFA8moiAR/m/FzyW++5UgRZ01qH1oqmqRHrsLskSUliRa/I2dwYsb21Sa8/YFXXHB7uM5tN2Nzcot8foKRCrx0vuqZBKEWhY6RMzzEiaJLXnNiFxNhvWfWc8Q4fHN5HIXQRXpM/LyHtW2569fUV9gWEvCCTIAQOEBd2OCEEPsQNnds1rTW0TU1drmjroAwS3pEmCZ3pULHCEXLSDgYlVd0RVR3ffvuU/ZM5eMGLNAIsxoYEX/0i45NHe3z+2WM2xgNGgwF5mpDGijyJwXSUq5CIeT5f0nWOxXxJfwxlvUCti9nK1tF2PawPTuHeOYwzCK9xbcViucTjePBgh4e7uySRp1wc4qoVeZEgXIWihbVs1nQVpnE0zQovNeO9x2Rbj9h+8AlSaHpFj0gLVvMp89kJy8kBtqvpD3fI8wylNGZdW8VrTds0VFVJWZboSLOVJmt21hPjQIRkZW3b0FQVXdMSrdN/FsUJfv+YctlgDUgtQ1ZMoK4qnAs1Q/1aUSTXaTJfJZvm/Jw1HU1TY00X1o4Ta/tqqAGjI0mWRPTylCxJSJKEoleQ5hlVWXFweMjTp8/Iix7b29uMen2yNGPVtDReMLYwHG2SJhlEgF6nQzlTWp1t/tdSrbsg5Yc1qdwKOS9Tz8sU9eLn2+AMEVlT0YtRBT5c8Hq/1uOEwFuLdY6mrqnKimo5Z3Z6jKlKYjrcWn+c5QVynbRrdw/6wyHPnjzj2ZNnuLZkXnWczD1CCZI4pogjhkoBhjjy7GyO2NzcII5USG8C6FgjpSdJEtJ8wIuXpzx/sc+GGbKr99jZ2cUaQ5KmxEmO9ZLOGKT2WNfRYajLFZPJCVorHnz+KdJ5fv2rv8GsjtkdKCJpse2Sts6IMkmcxWujOjjTcHJyzOhTT14UpHGEdyH8ajY95ejgJSeHz5kcvWB7c0ze26BpGmaz6bnJwgnoWs90OkFKyXg8xpqW5bxFakkUp+goXkezCLq2Cc4LcYKOIiId4kGTyOG8ARHm39pQkDiK9NqH3uHXm9UZnGWMP7NNd11w6pBKEcUJQiiE1DgPVV0iG0kaj8iyLCRFS9NQX1VALAVNVfLk2XMaY9nc2ubx7gMePXhAXhR01oPUxDomknpt0tFIFTaMs4iWsBhvtfJvuPDDUtc7Uc5rFUSXjl2Ec6+8M5PI2fOIde6YNbLaCzvbxRfoCAmvTBfy21SrJZOTQ+bTExYnL+mlmiJLiZKYzlqyOCGPEpSOiZcLFqeHfP54Eycd6nTOqjVYH8KjHuzssrc1YnezYDjogeuwbY2OC4SS67ILnjiN8AK28z5bO48oqw60YDTeIMvTkDlAgJARaZJTlTV5T1GtGrrWUlUr4jji8SePkc7w/Jsn/O2vv6TQllwMKLII4RzOdDjTIr1DC4n1lp2tIcq12GpBU5W4tsF0jijJEVKyvbXBIJM82hmRJinpYMR8NmM6nZImCd5LamuItOLoYJ88zxn2e8wmE6qmJMlS8ryHdY44Sen1BkRSUeQ9nIUsT8l7BWmWoitLKhS2a5HCE+ngH9yu5X65ppHWuvN5fGXrXDuqe4vkrKRD8I2um5bj0xmLskJpTVnWVHVH2VoerVvFGJqqPLfZns6XLJclzaqiXC0Yj8Zs7uyRZBmrXp9IKZIsQ/sU6RRK6dfX15l+461w4fzH8Tt4DW6tELp47OK5q6pUnZtEfKgC9vpJzmVLXFBYnCfsX7+s84RP4pVHiek6/Jq1LZdzVrMpdbmkWxlsvxdiCaVC6wgVRaR5j6apSbOE8bjHI9uRJppl1dB2DkSEKVccPC8xVY43JeVowKwoGI3GFL0eaZqghMN7i8cTaSjyjMFohI8SlNY4a+kNhoEb8BLvoej3sLZDSlBSEw8H9FONbVa8fPot3z75ls4JRFSwrBzzecNyUaNSA6IhSlpUlOCdIVKCripZTU6Jij62qUniHCnBeojShDwew3AYuBGVsFw9p21bojjGWsdoOGD/+ZzpdIK1ll6RUzcNnWnpD/pUq4ooTkiiBNu1oZboOrt73uvhpaAzjiTLMYsSLaCXRmgtwa+ps7eYrl2zuNFra+VMKdh2a33BbMpyuWQyn3M8mfLy6IQXR6fMVjUISRIpjqZLjqbBne/HP/iCQZGFZGIu6B1s19I2EZPZDGc7nDXoOCIvClSkaLuKwXCDwXCLJOut5c4Lqv9b2BnfWLfXIegHQtw7U07gjWI2V12L98GO5l65LKzFcrzw5woi4cJLE1KGz4vaXSmAgBzOWcBiTUfX1LRNxXw2JVGQZwlNW5NYh7EOnYQg7OF4k66tqeoW00KuUlarEuMsKI3SOXGcgrLgBc44DvYPONw/ZLSxydbWFv1+Sp7HdKaFTqJNBNIQJ5o4SZhOF9QtRHFMkgSTitLrEvDOEScRkUwglrTKkUQRcRwjdcyyNPRlxGxWc3AwRSV90n5ClHZIGa/9hhuMNsxnS7aKEVEUigIvlyucbchiicKHRGRSoXAURY9+v8/xwYK1LoTJ5JSu60jiiNVqxXw+w3tP13RIpdnZ3aNrDc5V9IowF1EUEqEtlitQGu0VghVJLNkc9siSkBeoaRqStiGJYqQUb1BN5x1t11I3NV1bB8RqWyazKcezKWXbURlH2Qb3SiktZWuo2xA3Kpxhb2eLKI5CZe8kpescQoecu3VdB227t3RtyXx2SFUvWFXLkJEhLbgX7LmuiQ9EUd+KnBcR5fLn2Yu/6O96rqs9tyld0uT616tQXWQzhDszUov1BJ/JLh5jgwbcWUddrljMT5HSEcURpmuYTGcIFSFkSt0axlKBDEoT/fAzoiinyJ9TLufESoMSLKuK5aKmNR7rHXhFrz/i4cNP1tpfaDpL1DlSERNnMc52WG/BNtTVEik9QoTK03GSoFVCFOeUZU1epOR5hPRdyGGEwAtHL1HsbfZZnKa0ZU1VlWA8OokpRiUqzamrFR6JEhGRjCkGAxAe23VoHVFV7boEREklPc50WAdJllPkPZbLFafHR7RNjdaC08mE6WRGEiV4Jzg+OqXtOpwzTGcLNje38N5TViX9fn9dyzO4m7RNHUxUXcd0PsealjiSlGWFc46qroOL42jzXBHmpEUSHOEBvDV4GzbY+XzGt998xZe/+ZKvvn3K0WzG6WTJqjQYE7LvexeCxevGUFYN0/kMpSFNAzextTEIicqQrMqGumk4mcxIiz5xFpKYKSmZHh/hnUbKlMFwhIsksYiRMmSOeLVOv59wI3JedCS4iJBnn+c+lP6MvQ0sgxSvVOcC1uytx3l37mF0sQ9BkO8A/NqhwHuHdZ7WWGzX0qyWLOcTZtMTXr58Tr0KWtteluGRpNmA/niLKM6AEJmR9/pIFWSj/ReWcrlAIOkVOf2iR9N0TBcVnTEYp4izHrsPRuhIAyGNpo4VAoc1LfhQJlp4j2sNsQoKiFhH5LEm0iCFQgvPajblN7/6G/b2ttnbGtNVK2Lp2BnnlFs9Dg8NsxnMypq5neLyKTbusSljWt+QxAWNMeSJIMkU3jY4qej1cpRwzGch360xlrapGA77SK3pTEe5nCO8YTJfsJjOaJqWOE6YTkNOWh0p5ssVDs/2rsILiCJNkiaBRWedQV/AJw/3eHE4w3R1CEfLcryKqNuWsqqJ17/Degjz5pF4B95ZvAuytLfB/a8sS7wxPNx9ACpmueqIuhD8jQAtBRqBN466bqjqGscApCDSkkEvpTXBoyiSFmMlZd0yWyzJsilKeMYbgjSP6OqSajkj0pIoTfE+BBb4dV0Xzhxd3mBzr0Db7xNbe5b89+wTAsW8iLScjevcxhuoqF0TTXl+7QVKy+sscWgvUM7gn+mCMsgFl7KuC0mUq+WU+fQE6y111zFdLGiqiulkSpLmNOvs5FoJIq2DrklCmiXs7G2jpOfk6IiTk2Mqs2LY65P0UkxnmMwrnj9/RlkuePz4Mbu7uwxHI7Iix68N88KntHVFU9cIbymbFU0XKkyXq5rZ6ZSd3W22dx4QK2jpON5/ThIpdrc2ibIeA61Aa1qreXb8C76ZnHI6K8mzFjn2DB72SUwP1SgKLVB5QponxInCa0nnDELmxFlOf21OLMsFRa9gMBiwWJSUixlxpHGdwbYNzhjOAgaWyxIhJGVVYp1lvBFKG2ZJShzFBHY2ZBzw3tMfDMiSiFgLhv0eaTFE+pCnKE4SPvn0U/q9wXnweMDItZN712FNw2I5o1wsWEynfPP113zz5CnVqqY/3OSnP39IPtjil7/+is5OsYSMgNI7dKTo9woePnjAJ48eEGlNVZZIIWnalul8TqzlOnl1TJFlDHo9iixHOE+9WmGM5+nXv2Zje4eN7YeIwRApVAgukASN5bncdYPXwPeNrZXylWr8qorHV93zmpLIX6zxuN5ZcecvxHuH88HQLWRAzrVvCdYaTNfSmo7FfMrkcJ+T033KcoWQGhXF0LSAQCcZcZIGh3Yf6lqCDSkWtSDLc3b2HpLEGVmeIbwBa2iblvEoR0jP8ckp+y/3KcuKxXLFo0eP2HnwIMQrrpVUxXCDNK2xTU3XGQaDMa21LJYlVbng5YvnfP3Vlzx69IBqueDHP/kxW1sPWCxqsjwmHRQMkxz98pQn+yf87fMJPs7JvEB/c0yU76N1RJRpjqYLNkcFD5KIvJfRWPAuOPgLHaGTlIP9fZq6ZHtzxHJVMjk95MXzp8TSIZyjn2csplP6/f46TAtWqxV5kbO1vcdwOCBLQjrLtq7J82I97yJk83Mh3nVz2KfuJCezGU1Z8nCzz2g4CuUAZVjsWgbXPOfdOlF1TdtWLE5POXz5nF/96hf85ssvOZkuqCrDavUN1gssMFuWIDxKCKwxIRH2aMje3jYPH+zx+aefkSZpKP47mrO1tcN0MuF0MsUiGWxssbezy+7ONqP+gKqqefriBV5oknzKbHZCWTZ8/sWPiHWMFWc5nATi/UpIfzC4lULoomPAReS8LJO+FjrEqw3lsn30dWXSmUY35JhhreG11mBNFyinNWv3LIuWkMYh141SmsFgQNe1HE8mbO2ucM6gVYLWAqU0DovzAqkUWVGQZQVKC06OXgCONNX0B30++/xzpIo4Pj3l8PiEsix58vQZq6Zjd3eXwXAQ4kWlQicCXIOxhrpdsLG1zd7DXYSKsF5wcnyEdJZvn73geP+QP/y9lL/6q7/iix//iD/60z8mTQs2dh/SG43p/BFSRKS9HlIJJofP+crMWDYdOs34J//r/wRkMOWkWYZ0GkeEFwqFZ3N7m5PDfU5PTknTmCyJ+fSTxzx/8g3Rumx92zSE7O0xTRPy2O7t7bG5OaRuak5PTgLl7feRApq6CY4hzhFpTZGmbG2MOJjWVHWNwBNHEWVZsZwvzrXkeNYVsA3GtHRtSTmfMZscc/DyBfsvnrNalTgPjYGytVR1F1LNrF3wvfPnDmjOWzwWazuM6dC9PlnewwvFcDTm8aNHNG2H1Ak6zciznDhS+M7S1DVd06BijxQdTTXn4MWzsIkoRd4fBMWk1muO7bUFf0v0eQ9+9ha33oiclyNPLh6/VlN7/v1sFBfbekUZzxVD61J83q01wQDOYdo2lMbDgze0dcXBy+fgLTtbW/R7eShn4IOWVkUxL16+YGM0YGtrg6wXSrA751BKE6mYpm6Is5Q0L5ifljjToppgp+sPxzx4sMfWzi6z+ZLD4xMmkylFb0ia95AaIqlQMkJnOUaAMZaqrkK5vKRHJDSffPIFwjs2dx7RtS2i6yh6PcY7uyT5AO8tD774CX/4J/+Iv/iPT3h2cAi240F/m9/9wUN+9sVnHExWnFaWrc1HZPmY2XRJ1otI8jFWxVjv1+/SMRr0OdpfIJxGaI+OY1SUslrOqFdVMC8hKMuKJAnFb60xHBzsY7qWKI7Y2BiB8KzKFV6o4BPs3LrcQyiytCxXoSq2EowGBY8ePuDho8fESagv452jqmrqusTZBlOvODna5/m33/Dt11+FwkhtS924c08uYx2tMYRQNYVcs9ZSAVjaumJ2espiY5PReIvhxpis61GXFdYYxhs5+WCEjjM60zE7PeHg4CVlWbL7YI84SRBKYqwPm2e7YrWaoeKgGAxiF+eJw66GKzAp2P5uQp9bN3cV3Fpbe5Fqnsmg54h4ZgPiZk+h8+e5MECxToZ0Vi3srI1Ix2RpTlmVTE6nvHz+gsP9A7xt2d7epN8rGA4HGGeRKqboj1jNJyhvyLKYOElQcbpmdzVda5CRYjDeQGmFloLVchpiQ02ItlA6IUkyPv1sk50Hj6iqlizLiZOcNCtI0hQhwdseOm3pmhqFYzZdkbSawWDMbHLK8eEBW9s7VHWNxLG9u42IY9rOoOKUdLTH/+Kf/jNeHFf8t/+3/44nT54xkJboj36PcW/EvPTkGnpbm+ikT2JD8SVUMDtJH6JIkljjW6hXC2xTUgx6PHuxj4yDR5PynroK7oMAaZrSdYbT0xOU9ESRYmtjIzjEr1boNCdKMqy1lGVJt9bSLpbluk5MRaQcCrt2q/TBoV0phFSYLqJ0ntVyzmJyxMnRAU+ffMvzFy8p65plWVI2hvnKUNWO1liMc4DEC4HrPC4UoaCzGoSn6BUUvR5CR6g0o9/rU/QNTVnhXNCqi1ii45RiMKRfldRdS94r2Nl7gBSKumkBSZTE1NUcLz1DdZbF75UI92qhvrZqr1jIl37fhYje8rq3U07xJuW8zOIGmRS8eMXSBmoYRuzfyGviX6XRP+tGnPnSO4JPUMio561HS02kI3pFj9FwzI9/8hMmRy+CRk8KrO3Y2tpiMNqi7tYpG4Wla0PVsTgNlM50LdbZ4I6m1rGNaUy92mA+m3B8fMrx0QnWCbZ3M5I4ojfog4iRKkZF0XpnDwZ259YeQVlKLCGJa6SSaAxpomjqkMB5f/+QxXLGFz/4EZ31jLf2SHuStD9i+3GPf/5f/W84mcz5f/2//3u6TrAqPccnKzov+NHv/Q7DB3uYTrAsW1IvyVSKzJI13xfkytViTl1VTKsVx5MTqrpGScXe5iZHbclsvkDHmke7uxwcHDGdzqjrml4vY3NzE6k089mC/lCwORyR9XLq+lUFs16vzyeffc7Tk7/FmRBW1jYNx0dHTCcThpu76CQLGfHWFcalEFTlkq+/+or9/X0mswWtMRjn8H7tL+0t7oILmbNru7hwtMJibXDIT9JQFCkv8kClhUApRaRjnCdkBIwi4nV60NHGBvPFnOlsymi8xWCQI4TEmJa6WlBOJ6i0wANuCGmak6YZOnpV8yfEf94Oic5w5b7hBuQU+KBfCQmIEefs55nDQLCV+KAWPUNQ73Dnts9w7bmZ5QzOT4eAag94sU6p6Ow6c7kLdkVvUAriLEHoiChNWS2mVG3F0I0o+htsRgVRGhNJQbWaUVUW04GQOqRx1BFxnK1rcUS4xGOiBCEimsaytZVgW49zhsnxIatyzmBrm+F4mzRPkCoJcrXp6LoGbzuwDik8QnuiSCI1ONGRFBk/+YM/oG4MvfE2QmqiKER1CBUM56nzCKHY2d3l57/zM/7j3/yCjSSiAY4qw2c/+x1+8Dv/kLQ3xDYNfedwtsUag10u6KwlUhqEJC8Ktnd3ePbkCc+evMBagxSe7V6GlhLnPcWgIM4S+qM+Hoece4z17B+eopRmNBqw/WCPXlGsN+VQLVwpRdEbcPDLpyznS3ppBq6hc57ZYspsPqGuVyRZDlGMcx10Ha5tkT54fu0+ekg+3uY3X3/L9GhCZ4IYIoRAScCtOSovcDiMh64THJ9W/N2XL9Eywnn4oXXs7j0g7/VQOgYlQChyHeEJphGVFSRaksYxp5NT6mpBGgezmJbgbA3W0FWe2fEJiii4oklNJCSRAiXXDjLvw7reA9yInALWSUGD0Cy9xwt37rh+lj3vjUdYm0xepfy93g0QXnEFnuBsYK3FGEPbtqyWcw4PXnB89JLJ5Jh2NUdLWJUrrHUU+YhPPhUo6VD9grxI8NbSGbtm5wRFr49UGi8ihIoRzhPFgt5AEcUpi/mUw4N9vHcMRmN2Hn6CjnPqekVTHxLplChJ0ZEEZ/DGBrdC0+JTTdN22M7gnaPrHEiF85LBcIyWGqVitnZG6CjGe4GIUnCOfi/nwe4Oe9ubCNvxcjEjrbf56dY2uujjVYyKHEWvd876V6sKb8w6FWjwO47ihN5gSD5bsJzPUFJQN02g+FoxGAxZrFZIKSmKAgEcHB5S1y153uPhowKlNNPphLYziLVjelWVfP311+y/fEGRJaFuZ9fhnFsryRLObdtS4ERwzOiaJsj3ccLLgyMePP6Uzji6tuPoaEIaKbTyNMbSrWuTOm8Qa+2+FCBcoKZ13TCfLzg5PkHrmM4GP+A4TknSYPaRUq+98gSChKzo0zNhDXkBkU7AW6L15pwWA6z1VOWSJM/PvdCcUKFvLmVQeB+4TtS7od1byZyvh3fBudM6a9OIuCB0XhqUu3B/OHR9RMsFqynWWtq2oS4rlosZ0+kJX3/1JdPZKeN+xnAQ0jJqHVGVK7758tfEScRwOCBKErK8R170EUIwHo2JkgyhYrwIjtRxIhE+oa0kddchopidhzsoIVjMS14+3Sfvjej3I5QGfEdXd9S1D1H3KLROyeMca5pQviGOEc7RNiX7Lw84OjohSXN2Hj1mNN6gPxiQFwVxnCJdjVIh2uLxwz2++PwT/vLf/SVewe/v7rLx6DEySTDWYsuSplySZhFxkqKjiMODfZ4+/TY4eFgb0qgUBVJHGO9Zzpdsbm6QZj2++NFPsKYJVanjiDSKads2+Ab7oL1dLlY8ffaU8XhIr+jjAWssTd3QtTW9XkzjGrJEoeOMBzs7fPbZZ+zt7aG0wnQttTU0dclyNWO1WtA2LeWyZP/FASfHpwzHY1xbMSiSEFztPTkRcm2KqauG5WpFuw4RzBPF9saQRw/3+PTTT/ns8y9CUSQRUo/WvgprUSnkGfuFDCUhYk+a92mbFo9C6jA3SeJoupZISdIkpukamnJJkuUkScqrMqGvvN0+GNygn7mTtvYicl403J6Fgr3+GK97Eb0az+vH39D6+uBFZG2gTIHNNaRpxMbWiKpaYqyn7SzaQZZmaKU4OjggSSTed+w8eISKY6q2BeOQUtMbaKI0Ilpr77wzICRRltPXmjRLWE2POHj+BNM0FMUQU3bMWxn8Y5MMta6upZUiSnpY45kvVwjhGI0GRNoTK81o9xGbDz9hPpsHG2CSkaQpaZojpaJuO9p6ju1aqrJEINjd3mZ7c4s/+cf/mP/lP/nPGI43AInygFREcYS1jqqqMK3Ddh3L+ZSvvvoapSP29h7QtAZ8KEQ72thAKE3dGXZ3H/Di+RMGgxH4oAVX6zQezgaPncNDg4532dnZRiqFXecUjqKI0WgIz/dJ4og0ibB1R5ZEIQ8RAiU1Ak/XNcwmJzz99huO9p9x8PwFZd2xubGJEI481vzsRz+gqhuE0mGjShKkVMHXdjLh5HTCvKwQSIa9Pp9/9pgvPvucnd09sqJHUfSQ6zSfbdvSdS2iEmi9dsuTQTElVUyvp7CZQymFtRbtobMG0dVU5QIdtVS1w1hLnOVkaQYqaIvfRCResXbiwsEbU2teg4A3ICbcEjnPEdMHEwivsbSXbaCss69dMpdcop5vjjUIoW6doe3sHmsMbVuxXEzYGA8Z9np0XUsSSyQ2JIKKMxbzBWCpypq27dhMM6SKgtzgoe0MOgky5ZnCImwqOrCiXpFGBTvjLU6OnnGy/xWd6egNt9nY3iXJMtIsRicFjfGUdUUUZew8eITtGlblAqETrIfZfIGQkt7WJpGO0TLCOh9iHTlLGN0SEjgoFqspq9WKxw8f8dMf/oQiThHWhXw8UqLTlDgSdKala4Ptd1WW9AdD/uRP/hS9VlKdnp7iuhV4i5RRqI2ZhzJ8vWKAc4blYk5ThxC3pm0w1qKMYTjcYmtzMyhyqgodxecVrJu2ZXt3h+5wgZsuydKE3d0dxuMNdJycL37ThqwUs+mEZ0+fcrR/QNc5xpvbjEZ9olhTFD28hzhNGI82yLLgatl2bcgLNV9QdV3Qjscp2TrJV9Ebhjy+gOkMOHteQiJUjQupWLQOYsPZCtM6ZA40XUtZN5Tl6jyetG1alssaN5sTJcEGflZWkgtrOyzwC5/nCPoWxLx4zXUIegPcia31wiOFvCBzSqQIAbZeuOAT69YZ3M8Nym9Gr1zlxAABqZ0H7zxN09A1LVVVcnJyyOnpEavFkqpsiOKY3Z0NekWCAI4OD2iblq3tLTY3d+jlQ5q6I07WO6oKKvmyXhDbZp1cSqOUBgFyXUpwUc4pO4MXmjjNiHxKXhRkeU6apxjvqMsKFaVkvYIs6eFdKEUYJQmT0xlpltJ2HVJJ2s6SJJY48gihsV2HJ8hrrjMsVxVV1XIyWzKZLRjkBWkUImCMCSk/cY62qZDeoiOJ1wpnHeONTYqiQGlJGofS8G25oisF/TwJnlq2Qylo64Y0LZhOT1gul9iuwVpDHMVEuiXLUsbjMf1+P9j71mF+Td1QliVRmjF9fszzl4c0dUM+yMjyhDQLGloPCO9o6wpnLePRJqPBiJPDA7w31M2SKNrgk08es7f3AB3FGGdQIsTMVnXJ8dEpdVMxGA7Y6++S50PyfECRF2RFio4TvFDBo8yaUAB4TdnPQuPKVUXTtIBHyeB4b5SkdJbFfMFquaKqVySJpsgL0rQgGkbsH0843H9B1hsQRTFKKlQkzlnaN/DvWoS8CgnFDeevhxso56tSCYGjFazd+c8F96v+s47P9D6oxt0Vg3q1K11IGLaO1zTWhJeuFGkkadtdlssTYq356Y/31iXTDWkicW3LbDojyzLSrGDQHzMabuCFIE5joiTDQwj5Mo7OG1SS4q3HOosnOClY1yGymGxjjFQSuSjwTtAfDmiNpVssyIohaVEQJwUyCoVqEZq2bWjrmlgHlq9X5OcZ0GMVE0fJOhQqpJQEgbWOtg1uf19//S3zxZLHDx6S9jJkrCESOA1YT9e1dE1FUaTBbVEHD5es6KGEx7QV1WrJdHLEaj5Za8vBq5A5QApFohOc9RhjyLOU4bBPXTe0raHf71MUBcaEdw+CdF0X03nPweExv/7Nt5zOKtI4puj3SbKEJM3WQQWACOz0YrGga1pOJ6d0bcPW1iYPPvmEzz75gt29BwxHQ5CSVbWiXC0pyxXWGja3NoN/bK8gznLSbECa9nFrTb/1gYsCjyTIw23boLouBILrCKUEq1UIJzRde77W6qZhf3+fk5NTrO348Y9+SL/ooaUmiSVFmjCbnbL/7ClaxYzGkkSE3FJnupVXybBeX8f+LVTxvDTFW+CV2fFNuAXlDGp179cp9/0ZvT5DQkmwtxCCp9cO7OeWkzPEu2RK8bwuz3rnQ9JhE9jOLEtx1tLQMRgNefDgE37z67/lb37xNyCCQ/aDBzvEWrO1PUYJ0NIhfEgLkuQpUkRYW2HWLmEIiUBibfA4Ck4PDuldiIj0LpRCGI4oiiFd27KoliAkw94W/f4WKo4QwtPWISgZ0SGVQEea2WRCnmR4D23TrilLRFN31FWNMTaw/dawms843j/iYP+AxdERvSRdJ3suUDrGu5DD1ntI8h4qimnaGu+CYidJEpASZzrapqJpG1arEoEj0jKIA3UZalpKhdIhn2+SJgzHI+o6OMAnSUwUKWazKWU5Jyty+oNRyGbrW+bzKUdHJ9RNGzZn5///vP1Xl2TZdecJ/o660rS5DJkaAAGyBMmu4qrpntVP/TDz0E/zMPMFR36CXrWaNTWsrp7pUiAAggSQIiJDuDR95RHzcK57ROpMAKy7EIjIcA93czPb9+z9339Bqg1lMSLNMrRJ49xHoKsP7Dc3dG1NmSWcnh4xXSw5PjlidnbC9OSEIr+Lb9Dsdweapou0wzwhTTTGGLTJQacEGdHSrm8JHsRwclZNzW69pmnraM9pDF3b0nQx9VsrwfX1JZeXV9RNw2Gw8oyrQMv1zQ1IRVk2nCyPmU+neLdiv7rgusjxAmZyTi4yhIipad84Voav/ucfC0L6njPn26BV9K0VIrqaiRBFvtGhK7qo34ttg7gvTgYpEbwNLg2keO+xvcX2fRRVi4BzPb1tsTbC8fP5kvfee5/rYd0RpKQcTdEyMC0LVlcXPPvsE/a7mqOTB5w/esS+3mESQ5aVpHmB0il+QALv9Hz4ENOkbdwhxnbQ0bQ1wXuK8ZgkKxmNZlgb6LoDPniyfDxI4ex9m5WXBVoZqqbGuYBOM6q6Y7PZUR/2ONujpcT2LW5QjORa8dG779LZnunyCJRGRPNIvPV4F5f+2iQA2L5DZ4OzudLR3a4oEdLQtB2JAJWqaIAmJEpJ0iThcNjhQ6QxbrabIfelRclYyIf9jnJUYIYVlOgtjhaPR6lI3OhkRDlnQ4aKQEDwCBFjI7abW1bXF2xXKx4+PGU2+4jRfEk5W5KNxpg0iVKyYX+Y5wXqJCasOdtSNS25MihUJBf0PX3XcthtsS6gdRpvmNs1h92OrosjjtGK/W7Hq4srZJKxWC6xfcfLiysOdUWW59R1Q992aKUYbXastjuEELz3zgecn5xhhGO72XCtDcKkg3dUXA8peefUwVeK8ct/JWKJIL7jxPw+1w+bOe/4nG8Nym+YQoIgY3F6+eZzfPADwHMX//5G4XInSwrhzp5f4twQHU9ABIHvYi7KeFSSqmMyHaK3zWjM6dkZWkd7/tXRKdeXl4NAt+Lv/+FXnJwcM50uY1S7CzTtPqJ2WuKNHtKxBLa3NHUVASjvIplaabIiJ8tGaKPpugNd0wGKyWQ2xPdZur4DIciyBBFiu6q8wrpoq3JoDzE0NjFkWbSjjPHwnvF4Qls3ZHmcZ3sPQkqsczGBTQq8i7xTJzzBRjTWZNlABvH0tudQ1WiTkuQFm+uXHKqAEoFROYrMGOfuDb+apma339IMPFutNNZ2KBXntyyN82rfddjQ46ynqmr6vidJEibjgvG4oBzlEDx916J0XPI39YFECcoiYT6fc/7gEfl8QVpOUErie0dT7ei6Ls7DWjIt56RpGq1HbB9xDKXBRUO3w37H5dUlVd1SlhPSxFDXNfvqgA+BzaEevJICLy+v+fz1FUJqzs9OSbKUxnpSpTBZxr5quN1ssT4wGY9iKh0aKSRFGgG0arel3W/pZhNsn2OVRph4M7zbo36lTr7yF29Gta+rqe97/fBVyjAjftO8ea/NHDxNg5C4YO8L9G309k4bCvGNFmc/h7XxBLVdS3PYx5gF16BUjP2r64aqbiHAaDJlcbRgefaI2fKEuq55+flz2k3F+vaGIi3AdaxvdvEkdlHbmOYlo8mUNE0RIpDkKa6zNF0XT5wkR6cFUiWAw3YHuq5lNFoggK5rcN4jZEQDhVLYPtIDA4IsL1DaoLQBJFUlSYe4OmujEiObCMrplLIsMVlK21varh8c63okkijyjjaSzvXRagRI0gznPYf9gc8+e8Zut8WhcMJwdfmCcR7NuoSA4C1JYmK73RUAJCYlWEd1qIgC5ISiKMiyuEdVxtA7g3M3iCBJdKQvChzORwtN23e0TcVoNAZv2axuIVjGo4LReExSjkiLCVkxRrierq/o6gO73Y4sSxlNJ+isJE0SCKM4E3c9zjn6vqfa77m8uOT58+fsq5pyPGUxn6OV5Pb2luubFYempchzdKLZNw3XqzXbXc3zF6/JyhRjJCaJvrvBSxKt2e0PSARFntJ1HdvDDqOi6kgZRV/vaQ5bbFlihxWNEPLrC+ubQJ5v+Ps3fHTxh+05v02R8rUFKaLsS0oZ3belwEs53HU8zoX7Av3C9wixOK2197/6vqep9riuoyxzgpcgHKUPTCfLAVDpCN7S1A3FeEI2muCF4PE7T9HiKXfJHDc3r6ibuI/03qFUdD9vm2SIWzcYYyATpOUYH4hAxNAltHUTbSCVIEsNfd/Q2w6hFEkS93zOxQgEIWUEs0xKAKRUKK1JsiTORr0l9IrUaFxn0TJGJOgkIZVqaO0jMObdm5uV1pEJ40NUwkjZ4wfL0FevL3jx6mVcoGuDlwlIFbmmwxAkhMA6S5ZlGGPiEv9QQYjEhNG4jNEVOiLXQiqatmG/O7Df7SP1zcfHpJSIJIbBqjLRCknA9R3BO7JRSTGekpYTpE7xXiAd7Lc7rOsYTUqMTiKhIk0gCJwLUd7Wxxa7Ouy5Xa25vLqKOtura+rmt2itWM5ndG3D9e2K1gaWywVSwnqzxaQJY6HRSpGmmiSRaB2Dkaz3FHnBYjImUZpRkZIkGu+iA0MxzOeuq9iub8izEqMytDJ4GVDqh06T3zKB/jH2nG9f90hsCN98avLFlvcuTcrfrVhCLPa3d5mEwf7SWmxv8cMcI6XEKUGaFxg9QshAMbL0dc1+u453cduidezxnYstc5pnpFoTPBwOa5CBJImzjVCSJM3J05w8K9E6jQ79OpLbtYh2nRGkgrY+EIJDoEiMwfuOuq4JAUyaIkUSAZG7BThxtybkG3cHkxiEindflCbJc5TWuK5HiRilJ7REKT3s39phH+tREqTR9+2eMtH5vmlb6sOezXbLfLnkP/zH/8TJ+RneCxbHZySho7d26E4g4Om6liIvY3tbt2hjKIqSvo+khK7vML1Bqj6yogDnIgo7HZckuUEIF9thnZAYTdPsOex3pFpSZBkiVZw+eMjs6Ih8PEHruMfER5YOtkeZhLQYYZI8AnSDo17XtbRNw2p1w+3tLYeqZrvfU3cdTdtycXVJU1W8zBJm0wlJlqMFWNtTlgXHx0ekZYMUglRrxuOCybikyLLYmjvB8dGSIk+xfY/tWqQS0eOIgJDQdTW2rfFGsV7dkmbjKOrXIIIeuhm+yBwKX/nDXQX8kPL6yvW9i/Pt+fPuRI3SsWHNMjjqift58w1p4Z5ZxVsncXgzf4YQ7vm0CDBa473E9pIkKdBJghAwnkxRWlPvtyACly83fPy7F6y3K97/8CckokBriZTghYwqEZNSjARygKyjI2DkbPZ9j9Qxlbl3AaFjupUPfij2HiEiwqpUitZySMRqkDIaLsfC1DGNOTH3PxuB2EWouFKJcKOMBS1jlocM3BcnSg4AWXQTIIhB4RGf/zshgYDIGd5uuXj9iovLS7Is5+m77/LpZ5/y/nvvIX2Hrde0XZTCeW/Jixw5+NG2bRdb8LJk1bY0TY33Js62waObniwraLqGtmnRSlGOCopRRte1SKHerBYGxpEOivl8SpIYlqfnZKMZ2mQRuR9WVqPxlKzICVKgVAJCYTtL38Xsm/X6lv1+x/XNLa9eX+EDaJPGDiWLuSp9NybRitFoRJJmHOoaJQX77YbRdEaiFVkieXh2yoOzU6aTCWVexJ/ZC0ajctjBRz/h9WqNGk4NT6Dtm5h2pjXGjJjPG/q8QJoYbS+l+IbC5PvV5v1h+t247vd2QoiFSVypCMGb1jmejkFGPV4YUFiEiILaMDCG/Bvanoh9FlJEAMV7H31uvIvAkVT0Xct2tWI6yRAhpxxNyYsSpQ2TyYTZfMZ4PGZy+RIlJdX+gOt7jIltjKePFLTgyFODFIKutTRti7UO6yvarqV0Np5ISTK4lWsgSm+8j62QC5CmaSTBdy1d20bqWoCurVE6GU65GAehDXgU6l5lE7dhSgoEsc3Hu3teaDxVo2cS3qJEuCef3NmL+uCwztH1lu2+4vWr13z8u98RBHz+8iVP33k3nszO451H6yy6q/ctSaIj8WIUowB9CKR5SrXb09uerrf01lI3DXlZMJkmCCHpe4vzbuD0KrztokwNMQQCxRuYEhKVGWZHR6R5ST5ekBZjlI7yLtf30eZSKcpiMry5RfSG6huqw4bN+pabywtevnrN66sbrm63dDbuZQ+HHbZrKYqCo+WS46MjZvM5bdfz/PPP2W23HA4HZstj3nlyyqRMePzgjEePHlPkBRIZ5Wp2yI0ZCAzj8eg+g+dOtK+1Is0SnLfs19dspwtMHmdRLTVeeGLI4O+Jxoqv/OEbr+9UpQwVNfz+hrt096G7lYiEKJYVkpiTqEA6gohu7s7H0zH4NyfL3ZpFDN8jzp0dddWxXq94+fwTxoXm6OSUBw+fQACdpCRpgtEJJ2cPWS6WNPWe66sr2sOeNliSZJjNfKQDGiPjbrLzSGFI04xEJ2it8H2DDwlOCDjsyNLkPu/De09vHUpqQvD0fRvnPBvIkxTb9RB6bNdhkjz+G0TsIqSMawOGU1DIIUNSDDvdqJMSUgMRlXW2BdcjfPRZiu1eT9+29K6lbVuquqWqe/abHSEErm6usMHz67/7FX/2J3/G6vqC2+srtNFkRQS7irLEu4iOK63RxqF0DDwySYLSGmsteVYwHs8Yj6eMJrGIlkcLLAKhJK7vWG32tG2Hs9E6hOAItiF4Qz5ekI3nJPkYY1LukH2hDUnqsX2HEOqNabj2KBXo25rN7Q231zfcXN9yfXnDet9SdZFokAhHkWrmkxHvPH7Eex98wPLomLbrmM3nfPLJZ7x48ZLqUHN2mnN2csJkPCHNSvLRGCkV6fA+czayz6r9lq7rKYsSkyaUo9F9sFKWZ7iu5+J6xasXnyAGgMxojRJxrf9FJvnXExS+vqT+iGjtFwbXoTa/3OLeEQqiqjz+fvfn+CUimf1e4/klSl8YUNq2bWjbhqataZoaZQyHtiOrara7bWxvbEt9iCYXWaIwUiCCpcwTqkM/IH4WU8SdY3DxLiBEIM0MZTElywuk8LRNHf1bUTjr0Zmi7yNaaIyh73uCF2RlSt/VsfW20VpRykBT7fA+rlLK4CH0oAxCeJSW4HUkaUiAKC4WQcbdpbcopQkitpK+7wZaXRdlaN7i+p6ubWm7lqZtuLldUdcdUmUD9VCw2e745NNPefzwEc+fPePxwzNs11CkmuViQt9tsc5hdFzjRHlVXGHZrscMPNI7u5C27Yaf20cBs0koi4Le9miRcahu+PT5K955eM6TfYXC07RbTCOZLE7I06i6UUp9wXxcSnnPuLnj4rrBFfAOJNwfDvR9z2G/p9o3tF6QJoaTxYzFLIYSP3hwHgOM5guUNiyWxzx8+JiPP/6Y168vOez3rFeG8Sgf1tixKKVSqAEkyrICgqdpK6SSFEVJURQIIehsTm87OtfTtnu2rxq80pFbnRi0zL7omPCPeH13cX4J8n27ML/gjvAWKPTF4rw7fXlTlMPa5O7F894P1L3ogCClJM9zmiZns2t49vIlm92es7MTjo6OmE7HQKC3ILTE+kCa5Wht6Nqaqq7jqmQ6jyweHwN4ojQpj5rIak9dx7SrqukoxpN4ioso/QohtlRpkhOcQwSwfYxEz7MsCrqbA0rFn7cWHtnFGTe4Dq0iOCZUAjLubfWQIh1CjF73wkeigff4vsXbaFa93axwtiO4nr7r8UDfRyfC25sb8nzOZDaPJ0KWsV6tKLOcxWTKbFJwcnpCahSzacl2E6j22/s1SbxVNUip0MagjaHre9abzX1xSK3QSfLmTaIk3klWuy3rzQHr9rx8ecXPftKQmA7bV/R9RL61NlHQPrwHnIs+vyFIvH+zPrt7fpumoWkatFLRrM16jpY10uzpvSBJNA/Pz3j65DGLo6PIKS7KuAf2njRNefz4EUdHR9zc3HLx+pJqt2Kz2TCd7QhCkmV5tKxRmsRkEQsJE+pmj+1arO2xQyxiWRQ0rWS3XuNsR90cuLr4nMl4SpllaKW+cvh8n+uHfO798/4Dvnr8/UuFeleYd/991w7KYYXy5ocIwzrF3eck3hfo8IJprXDOoFF0XTMs42MWh/MuLvONIS3H5HkRY+d8FPYG12OGEyYMM7FUGp1orG3xvaXtGg71Ae8DXVMhvMMOmSZZOuRNDkZPTdMMP0Ok2wXv8NZG9wHv6LsDzrZkSQ7C0zY7BB6pDK7vUMMiX6gUoZPhrp0NEenx+XA2qlScswhn8a6j2q/ZrG/wNlLivIszrw+QpQnHx8d4b/DekRcl48mUp0/f4dXz5/zkg/e5unzN6dnPUEQAKklLBJLReISQkrZtcd4jVXTM63tLXTe0XbQlsdbStS3V4UAQAqUkRmuc9dzcrjk0MQ9lvV7j2iaS0qcTkryMRSnkfXd1V4R3J6cxBje8ptZafAhRTH84cHNzzeEQSSJplnCWHbE8OSVNkphwfXrGbLGkKAuE1HFUcg6pNGmaUhTRxmY5X/Lq5TO2m1s++eQTFkfHHB2dMJlO0Uk2UDgBETuIO2T+brcqlCRN03txuhcHQt+wunrNeDwlSbKIrr8FjP5jXd+vrRXizVw4/PUX2ENfU6DyLil5yJuMdpfu/sURvFmp3NHpjDFxtrMtxiRROC09eZFTliNOj085Pj4lm0xROsFoTQgBlfRxx2Zqsq4DqZBKRfmZFYjgkTKA7/Eufm9jQAaJUgnTYko5noKIrVjfR8AgTWOYLN7h+36IM48UOoEj05rUGLy3ONvEInYWJxV9a3BNBTJBJ/G07rMUQSBNosQLFVX5bdNEsCU4uqrC1gcCRO6qklFG1TQ0Xcdsfkye51RtRxCC0WjCg/OHVJsNlxevOD874+bmmvOzY1wITKZL2uaAkHGssDbiAFIpur6nbluEiieekBEEsjYCZ9vtlt3+EKMutMIM+9imOmBtTdseSNIpeVKQlpOBIinvw2rhjTF5CH5AoqPvbhgAt972HA4xoHi72+GDYDIek+YZZ+fHTCdTjFForamqCMg5D71zSK0py3E0EtcOKRXT6QwpYvbq7XrN9fU1Qqj4M+sErZKYqRoiG0sMbfZdG971liLPmc+PsN6RZhvaNoB3bFZryvGMNMvuD51vK9DvLN7v+Pj3a2u/65vGpWS0MBkK7p6MoFRczgvxhQL94hI22m8IAWmaRHVCmbNZBUKzIx34oUoZBHFt4fvY7hljSPMSl2b4PsMYjW32cU8oBUZGn52u8yQ6huIG7yKQ4QNCpuTjJdrchcm295o+IQV1W0OwOBdj3JUUdNYhCShjwIPrbbSzCPFF9LYF3xG84LDfkhdTpBBU7TaeuomJb1qpUDqlrmuaakdwLrqRK4VKUpIssoxCkNR1w3q1Zr3ecHT0EJUV7HY7DoeaPC94+PABL599wmw65fLVK95553F8XMqQ5QV9u40rIa0xRCKDdRFw6lpLXbcUhUJIMSR9m5hBcnOD1AkqTcmKEp3s0A0Y5XGuQShDMVqQj6eYLEcq8ZWWL85o6p5bLYfQKu+iuXjXdQghKPKSJMsoyoLRKM6BUkRDsP1+z+5QI4bWuW46Dk0dwb0kZTKZcXJ8wmw6J88LZrMp1kUqptaRJNK0LVlmEToavKVphrqPkQgDuyu+jFqnjMoJxhislfRW45xlt9tFqd6Q9Snvou2/7/VHBYS+8rW/hjX01ul5dzeKv+7+Lp5kd5Q9N1Do7rDfO+/QtutARMJA2wyWFZ1FmYC3nt1uj9aGuYypXtFOP969jJRYk2DUmJAZ+mZPPbygh7rGuZ7FYk6WFPfcXVDopMRk49gK24BUDjPsb72PqKYf7tJqeJzWxgL2rsdJQV1XCOkJzmOUxjYVIc9Is5LNtqWr9xgFtovWJPiENCsIwdM5F09e5/DOk6Qp4yLKpoQ0MTczS0izlLOzUw5VzeGwRVlL29RsNyvSJEGblJvVms+e/Za//Iu/pD40TOcLqnrPfD7Gu4TgI7Hf2R7Xxfh4peJpuT80OATFKEMqEel1oxFFsafrfUwm2w9UP2PQMgxfT5GWE5JiEm9Ww3vvbgfOsIKTMlrWBBddHLztsF20DR2VJeH4GOcDZTmiKAukFLRNw/XNLb2PM2u8cUZPXecCbd2wWW/ZDzeo9957nwfnliLVNHWPQFLkJWkalSvBRy6w8B4pIM0KkjTDdi3OB1IdNb5axdc8BE+WZqSTEucTdo3F9TXVYU8yoNxisIt/W6P8x7p+2CrlS+DQVz5XxmCYu/4vDL/u9lpvmEF30XBDWzss9VyIT5oPAQ/Mj04iOT1A3/UIVbHfK4oyR2l1714uRNTyxRuEpncxIu/y5XO6ztJbz3Q2J8lylDGoYO4/VycFUhv88Jii9Ua8k9oekiTDWYFMJIFY1Mb3uE7EJGjh8b5HBqirBtIE4Xu6Q4LJSsrRhL5pqesDTbUjSQz5eILJCvJyhFQa6wJZMYpSNnHXYiqss9R1xXazousagofTszOqquX6NpqczSYjutbSdYFyuqTrG+qqYrfaUo7G6ESCCGR5TrXfYfse13X0XYNSgfGkRBlDZwWh7XECetex3W8HE68Zh31NHwIu7OmallJJkiSmXSPiekslkVTwxgpVDLGOAeHAMwBD3mH7mv36lqvLi2g7Yy3jySTaU2pDkkbx+OXVNb/+7Sfc7CoenD3g/DRaqBz2e9brDVJpJrMlzgmur29BKG5vt5weLWKOZ99RjiOwVe0P+N2Brq7Jh7ZUG33vVK9U3O3eiTiEIIYDEwUIeZqgEkPnRTRX6ywm9UgVE8hjCXxNRwnfh2/wtdd3nJxf/qrfzrL/Mmr7hZ488MaX9K1Z8+7Pd7OoUm9Cjzbb6D0qbFSlFKagHBUkiYkMHhvVJDH2PY1WID46w1eHA1VV0TYtUhsm0+kwEyX3KKJzYWA0xXb0DsS6U9IASBHeUBCDHcgCllalaBRKxG1m37ZoGSLq2nfcdNeEtGQ0P8NlBYdNwNrokOCDwHqBVAlZXhAG8bUPb9hTXRdNrl+9fMF+v2U6md6THuJMLihkRlGUbLZ7kiznydP3ePX87/jdb3/D8XLJYZtz9ugBXduSaBVfvaEjaJua/X7Pertls9vTdD06UwM4EruU29s1aZIjpKZuHVIZgreUo4zzs2MmkzFSSYSK4wtBDUjoIMtTciCcDIljYVApOU/b1jH/Zn1L8B5jUiaTCVIq6qri6uqK559/zqvXr/n89Q3XV9fc3kTrziRJhlZYoZIcYwwCweuLC9brLevNLcvlIibTWUuWJgghqKqYij0ej8myjKIogDh/BwbGmBQ45xBAmqUMixiEIHpJoVHGRLlgGEy11Zf9s75cJF9XS999/cC29q4RHf5LfFFS9k182ztXbXhzWr4NDt39gogW7nZb+r7jxcvnrNbX5Ebz3jvv0DQ1r16/pKlrbG8HT9WCyWRK0RcxhEcKehFVFlmWUx9qstyglIrBukkMsHHBx9ZbBIJrwccFdCCA4x7MssHhbfyzlgpEdCZQJkfKnuBqFCI6u0tBXuR4YeiCpG46ZsZQTmYkaYI0BiXjnJKlOUoalLjj3cb07t52wy7YQojBpNWhQiKYzef03lLVO9brCqlzlEoi0mg7kjRnv7e01Utubl7x+PEptrU0h5aQG5qmxXY9UmqsjY59z589Z7Xe0vaWzLr4vOU5XdtHoMrBtrI8e3kZeckaTo+mPH38iOliTppHa8x46pjB4iRm3USu9cCSggERjXan2mjG4zFVvaPvo3xsu9+Ch/1+z/XNDYfDgSRJODla4FyMnZ+MRkynU7IspyzHjCdzfIDZbMF2v483lmrHJ88/Y5TnMSpD3ckTRbSQGbAQP6xirO3ouhYwZFlCwNO2/f1zEVAIEe1YPEOTKIjBvnyzk8F3l9MfBAh9zT8eWtuv23fGD3/9vvOuXZBCYt8Cju7Q0btC7fsO53r2+x1919G2NYnI8K6PLa/tWN1es1lvGI/GpOYcBUPr2xCDb6KPjBAS5wO99bRdTzqAINzR44SgbRsEAm1MLOyuv3/c3se7fOzU5X27o1WCGQAk27TI4CnLkrqOAIUZJwSZQBqVHmmaD4ldcYUj43Yc17U03iOVRgyuBvvNOgbqiij6noxKkuQRTdNED14JdV1ze3vNarUnCEOQmteXN5ydPqBqA4fdDb/9+Lc8fPiA3hqE1ByqPcK7yIJRiuXyiL7vuN3seHVToVswJsH2Me/TGEOe57RdT9U2bPYxlfpsnvHh+084OT2jHM9Isnx4SwS0UgQRIhkDBipmvKFLKei9xw2KI60Ns9mMF6+f8/rikjTLsb1FK81+t+fV69f4ICjySLgwWnN6csrTd9/l4aPH9xajaVoAkqqu2ez21E3Li4uXfPzJ71ht1jCecHV5yWQ6ZT5f3ndNSqkBKIqn5d1jNMPcrHUYxi2FlIY7AKvvW3orQCX3eZ9fNrD73rX0Hdf3Oznf/sZ3TPevmT2/rjClvNN2xp1n4C5V7A61i/8u3lW7QTLWEQI8evSQs5Mptm3BWm6vLqjqimyw/tdSxNMFT1PtSbMcocM9L9YHwWx5zPnDx4NLePT90VoTCLR1hXWeohihhx3c3U5OSknf93R9P8RHyOExR/RZyoB3HYfdCmd7Th48xAdBlsc2UCcZLkiMiiR3gUKblHq3wzlLvdsPsjQwJpLog4io5H7gvI5HI8rRmHI8if61Pgzibk2171ivtuz2W9o+0LYdr6+umB6f8fzzj/m7f/iU8XjBv/jLKSen53gMMngq1yMIaK0jArzdUjUddd2SpYK2benajqIomM6m7HZ7Dq9uI3OoaTn+8IyPfvQ+i6Nj0nKKNClAlF3p4Wbt7t4ifjg5uX+97wgmXesR5ExnC66u17x4+Zq2aVnd3pIaE+VtxZg8y5jPMoq84MH5Ax6cn7NYLChG4+gbJKPv7Xg8YbZYsN9XaKOQwXHx6hWEwOFwIMtyxuMxWutocuZc3K0ryfYQgTql43weKY5R/ymlQSqNCx6FRPSepmkIqiLJ4nbgzijga+vl22rpO64fjNZ+8/f8amt7p+tU8q3dV+BecnO3A3tbE1oUOUIUhBCX8tpHf1RJYL1Zk2YJR4sFUimKIiNPU5rqQGIS2iagDFgfXeOSJOX4/DHz5RIIkTYX1/7sD3sOVUMxnqIH/WLfNl9QyrRti7MOKQTWWozRwwkh6dsDwdYE31LVNdIYyvGCNCvvl/x919O2NVInOE/MEhGCzWbFfr+5nz+RKrJY8oK26RDCk2cpITiqwx5pLKPxFOcD+0NLYkpOT89YrdfcrLe0rUdrw7Pnn/PP//Jf8F9+/h94dbXjH37zjKdPP2Q8nVKOSnDxxGqqfWyvB6S2qhqqpmXqE4x5Y/I8m6XUTcNuv8M7R5YkHC8WzGYT0nyESUdIo6IjY3CRhSXUkHcp7llhMNithJgkZrRms25o25bF4phHjyzX1yter69ZrXekShCkIMnHjMcTjpdznj55HJ0QilEEcRBY63F0kR+sItUwzwKTouR4tiDThs16zfXV5T3JoCgKiqKgruvhPSJxricEQQhxls2VIkkTQtCxnZUK38f1WZJo+iFWsa6q4QahvsiW+8L1e6JB/JGK88tUvi+fnHekhLuVyl3L6Ly7H74jpA+73Z47a3wtHLkO0ezXe95/9z3mx8uI2B0q0jRF6eg/GnxA2p5MaNqmomkaxqM5o8kYaaLdY2Iiu+ewu+Xl55+Rjxcs8+LeLsW5eKeXQkVFR9vc84LbxiJFXGIH3+P7GmMkaZZQN/FurU2GTnN839N1fYxZ73sqQKqEvo2OcH3fs99taNuWvCjJspyOGG+wWCxpmhjCJJXkUDccqoqq6TAmpW17qkONlIrTkxM8klcXt5TTBb2HYlSSl1OqzYrXV2t+9Xe/ZraYkRVFtPHUsYVuupjZOR6PmUx2JGnOfB6Dc29v16xWa87PThiXBXJw4RuNck6OF5jExIW+yRBa3ofPhoGVBGIoWHGPfEfRgEVJsASqquLFixfMFkckSY6Smu1mixKSxWLObD5ntjzi4cPHzCajIXDJUHcd/XaLqhtCEPR9jzEp09mCbODHlnnB0WKJkpLMJBgdH39VVaRJErnRaiBD+Aj4tU2NEJ621WhjyJVCiISAGnTCEWsgqMHpL7KEnHdf1CZ/tTp+77r6/YvzrQfydSbRgqjEUEJFH1AVd0hKKgTR1CtYFwnfw7wJd2itJMsT8kQzyjVlnjOdzeK+KkvxITBdxtbaOUua5xG2F4HQV4SuJTcp5ajE9RVN1ZNlZcxJEY7d+hJbbymOnqBMgscOoUQSoTO8h3a3odnfIpMEIxWubbEojEiottdIHPloAlj2uxWr68/ROirrcYHdZo2WkXDf9BVCKIyOxlF5OWbUNnh/S99bZvOCrCjxPtqPjCYz2s5yaFqUEygHh33FdhvXG+PRmOvbW66ub+jrmkcPTpAm4/nnnlefP+Ps7IzX3mHyDNs3bG5vmB2dQvBo1+GdZX/YMxpPePLoEYe6p2k7tCTG1tcNiRLMRhl5OUaZDOssk6nm7GxBkY7Qytw7Pwg1FOGQEAaRSRy5jxaPJbgW29R4Kei7GkGgt47VakNT1zw4P2O3XpGmCcfHC05OT1ksT1jMl2gT1xwuBParNTe3L+h7G10KkYxnMzofOFGaUVHGhLjxiCTL2GzWEYx7CwSqDof4d0IgdIxl6NsdfesIFFFNFER08wjDii8QfZ56G2mkadQZS22+oQb+cHL8Dy/Ot3afXwaD4oe/itRGqZJCaoVUAylavOHhWmvxcM+/1FoxmYzIUk1z2KCSZAiENShlYsK0EHRtQ2FGRHTQ0ffVMEvWrDY7gpRoLRgNs6YSAtvV7Le35ImmyKJ/rQ8O6QNKq7jn6xtWN6/ZbW+YHh3jpSL0Dfu6wfcp++2K0XhMMZkhhSfLUtq64rDfY7IJUicUoxIGdUlcXTSoPM6do9kcoQTFeMRmu8MiGM0WZFkxaE1bhIo3tWpYtBtjWCzmXF9f8/nnz3EIyqLk0YOHTGcLfvfsOVmacnt7Q1YU7Os9merYrFKuL1+xfPg0vtH2N6TKDy1dwsMHD0nyCS9fv+bi1UtuVhvqtmdSZpSjKePZlKPFkhevLilyTVkWlOWEJHvjzauEjIbPPoZcxb9/G9uPsY/O9dRVy+GwH4zJtrx69TGjsmBU5vyr/91fYW3PYj4fiOoGOYjQXYDeWghwfXXFxfU1Td1RFGPe+eBDkjSnrWsm5ZjxdIwggjuj8Tie1v2wqpMKow37/T7qb10YzMsPGGOYzBbRXykMe/MwCBgGGqqzPYEOdIcJ4Z4p9LW5tH8gIeGP09a+9UDuAJV4zN+1tTG/AiHvd4h3rUK004/hMiEEiiKLRkv3UHd2//XyPI/k8bSg94EyySL4Yy1KeVTo2W1btus1SkqKPNomtk2L9h6T59T7NX3bkGdjCBbbt/fZG1E1Y/F9RbW9pt2vYDJCJildtyfYlt44EmMoJwt0OiL3cR70CNIsi9S3LAch6TuJ7RrKLCfPQauUgEQqQ5olWNezPA/UTYcwCSpJCYGIkO52eB+YTSfMplO8i+ZmDx48AGC12fHgwQO8c/z8b3/Oanfg9OyUZz//BccnZxgtUQqKzBB8x7jIKMdTRFdCXxMQXF9fs93f8JtPnlO1Pdqk6Kwk2IrWAUqTpjkSR5kI3nn0gKPlCeV0gckLXAjcxWsK8Ubje79QHZabQoTYBgYxCB8c+8MagccYmE5HnJ4cM59NozdU2w17X4t1NZ6G7XbPbrejaVvK0YgTIXnx4hV1XfOf/+N/5NNPPmYxnzGdjFksj6KKpCyYjEdkiaZtWzbrLT54yryg61sQgaauaOod3lbky3mcudWwnw/xFiOlIITBVCA4ut7jZI1sarK8GKLr//gk+D8OIPQWevsGGJII6WFYUkutBrV5wPaWrmsHGl20JUHezamw2WxouySuHYLl5OQYrXU0p0oSrBsg+kHArJSKvi82GkUXRclkPosBPES7D6P0oMnsoiFymtF3e4IUmDTFEajaFiEVvllj2y3St/T1Di0cwrWURYIPHpNlpPkYoROEyxlPF3gE+WiCTvIYPJQVUVWDQAhFWUQnPyFU9PYZ5moXAvkk8o6lUPF36UiSlKap6ZpqkDwlKG3oreWdd9+juL6hbTtMUfD06VOK1ZabzSGqSfBY7yiykqOjBSdHR7T1gcXRMft9S7ffUh0qdvsDry9u+N0nz9jsDgghqdoOj+Th6YK2s1jrwHXMCsN7T59wdHRMmo8QOomn5p0tjYivebgD/LgTScQC1SqqQfrhdV/f3kbP4XFBkSekSZzz27ajqjqch6PjE0bjCU3Tsdvt2W43PHv+OVJp8nKEdQ4pE0ZFwdXrV1xfvWQ+n7PcrFnMjzk+XmLOTqN7RdegjURrhUk0o1F5v7qrDjsEfVyjhKiSkvJO7hjuqZyCgFEqAlHW0bUxSCkMdqJ/7OsPL85vaHPFwLOVMham1tEnNs1SuspEa0kXLSABlJS0XWwv2ralaROOl3POTxaUZTG0u3poMUQMqJFyILFDkAInBFIZlmcPWCwWMbsFNcwFHu/AKMNoPCUIaNooRNaMqJoDTduTFDl9tUb4hlQLfN8hfILRgSwztJ0jzwtMktA5UDrFZGNUkmLy0QC7i4ggtg1C6ojIotAqiabROsW5mK2pRKQBWhv3i4IwxBx0EDyrw2HIFImzXG8dbe8YjSYcHUc3hqbteHV1E+mMUrCYzTg5OaEoDEU5Zr2+xT77mKPzh4NtDDhnIQiyvOTo+Ixd/Tnb/Z6qiaqeNMsZlSXb9S3Vds3RfMTJckFRTqLhVaxH7sX28U0w/C9AcPe72942SN9zOGzZbtZstxvKoqTMS6bjKJKoDhW3qxW3qzVpUqJMgkkz0qyIoEsIcZ3kLKvNhvb1a9bbHZPRjCQxFFmKx1FXUX7WVA3ed9FJXuu4zxaSqjqgtcIOBuLV4cBhv4fQ0bUNUkSutxo6PRHEPeBz76kcIDGaZOi4vpwHFDvJwe3jDyjaPxgQisykGDR6V6AQQTsR5L0CXRuDSQzJAOq0bU3X3e01bWSQBA8IRqMRWZ7inWO93pCmCUmS3O9JJR4lAgKHILY/BId1Fo8gKydg8nvdHSIG8ooQkCYjKQTW1wi7I3SeylZcX79CmhwpF3TVFjWwXLxzsS0zcZGvkyLOQgynHYpiMqdHkuQjQogvqtIJSVawXq3IsyKSfoZnTKjoQiOkInJMomY1MVE72nfRkuSw3yHxtE2Fcylt53AI6raLVMUQVxTOOU5PTtkeWmbjEaG3zCYzmmrH65s1P3r6ACUEN5dXhL7G1jXOOpRU7PcHXl9ccbve0vUW6+Pz652lyBO60JLqwJNH5xyfnFAWUbd5txNzLgrIlVRvuqfhsYkQqY5NfUC6hu3mhtubKwQSJTSTyZgkMVzf3PDi5StevnrN7XrDbH5E0/Y8e/6Cd957l9l8xma9pa5rdrsdV1c32GFdJaQjMSnedkijkVrTdi0CydXVFYlRnJ+dDW/awG63JUkMSZIMdqOS+nDAuYrddsvpg0ifjFTSN69ZCHHH3LYNTeMpk4I0ibLFfyxd5x9vzwnwFmtIhHgHCioWqB4YGWrwX42KeUMILppLDTvGLIvmxmlq0ArKMr9fGHddtASJdidp5IsGT3CRT+uCpRiPo1+qyYcXL85qUgmEjeJaPZx60BHaQH3YI0ODQRP6muA74ntNotMk+rgiWG8OjNMRAYEPUYUSlEClJZ31ICPHU6thN1uWTGcLbNveC4RFeHNHDS7aZ6SDVMl7R+v6e0ldnmc4o0hMijZpLMzGcnmzisbMaYKSkvV6zc9/9Wuev7xEOMtmtWI2nfN3z57xq76CtmY8meB1wdF8wub29r6oX19c8uLFSxofne6kc0MKV850PMKnkqOjOY8ePmC5WJJmRdzrySGNenDWkyq8WalEEi0+OPq2Yb/dcNhecX1zweuL1yzmJwgkbdLTVBUXry54/uwFm92eLC/Z7SouLq7wwXFxdcWf/PRPBgWN4r333gOhIl1SK2azCdPRlCLNqNuexvYD2hpom5rnz5/T1jVFkTObzcmyjP1+z3K5jDmrWuO9G0TiId50Q1zzKR0Dk+7e07brqQ4H2i4g05rCduR8cZz76vUNQpHvcf1w+t43fbOv0Pq4z1KRMjqiS23QJsLP0sRCdVZhlMEphyUGGW3Wt1jXc3y0YJQn95QqH1w8kYdZE6LplO07AqDTfGB0JEgVZVRCOKzrQEZfWBcszvUYU6ILhRM1rm8ZlWOESEilwAmJMylB2KGYM4QXZElOluVIFb1W70gh2qT4ej8IikUUdgsBaMrxjFYesD7ehPSAVAuh7knjUmu8i2ZkzW5Hc9hCiHvOdDQiS8eRdC4EaWkRicbZaJ1yqCqsd/zpT3/C8mjByxcvsSjGszHT+ZggA9fbA0leUlc16uiItrO4tsZ7KIuc2XQU/XSTBAJkKvBwOSIvMlp6Hp4fc/7gjLQYgU5AKQTRXjL4cE8KiDEEMcZR4MH2bFcXVNtrLi9es9psefDgEUUxRgjJzeUFNxcv2NcdVd3w+nJNkllmsxmfv3hFmqXUTc9vf/MJxycntF1LYgxHyxn1YY8xmtFownKx5PzBQ5RJeH15xWq3J0sMi9mMardls9tEQ2zvmc2XhMH4zbaWttohCJRFRpaZgW4owIsBIHR4fOwSvKVtG3onaNpooTkM29+/Tn7A9QOL8zu+4ZeAITFoNu/MnUySYtIMk2WouhqE2BHa7m0EiaqqAgLTaTnQ5CSHwwGloxA4dR5hog1J13UE98byQgzfJ4SAkpo7IytxJ4wNgp7oepckJagcK0xsy3TUAGodwSOrdOT82g58oGvtYEAtUCaJpwUQc9YkYhBZC5OgBmVJ/AxFVo6w1uFx9zBJdOpj6DbiMrvv+2glYiPFbjZbkI2myKAhgPWWtj6wWa/Aw3QyJTGG09NTkiQu29975wl//9tPsEim0ym7zYqr1YZROeJ2tWI6nRBCtGHZHBpuNxt2+wNa68i00obJfMRyEeMO97s1y8WMo6Ml2mR4FEGoiMTi7umZDCcOxBkN19Mc1ly9fsF+u0KhODk6Zbk4JgDPP3vGq1cv8H3Lfr/n6PiYfe355NlLDoc9RisuX1+Spik3V9dMF3PKcUmWGJ48esB77zyhKHJG5ZR8NGYymzOezFkcHfP85Qu26w2p1izOzymKjDRL783Kx9MJGkdb77m9uWK331AUi+hC6OJr5PE4bwnYwfA8IsiRly3u9chysD35ehLC788Ogj9iW3t/CfGFB/vlfWckgqeYJKFREmQEeJI0QYhAwLHbb7m8OsQwoNAym86xzjIeTeiMpeu2UfIzzKXWWhBhuOnFHEyEw4dIlpc+wuG2j6nXaZahTIbQA49WCVAalXqktyh9iPxTHPjoaiAkKGkIQiJVgvfxSffO0YsOqeKb04goeYvAwaANRJJkkWni8cNqSaLv9rx9TIS2zhKkYH58ijEJOo1+OcHGO/bt6pbqcEANK4ndZkvTt7y6uCBJEhaLBZvNnjwr6Dw0dUNiUmblhKbr+OzTzyAEDD379S09kuXREY+aEGfOrmV1qEmymLQlTUqel6RnD5gvjkjTPIrF7zoEFaVT8RX397IwEHR9x/X1dSQLKM1ieRQjHpqOw6FitV6zP9RsNmtcgExUGBM4PR7z8sVLtJacncwiD1oElOgZ54aT42POT0949513mC8WoCL3VWkTczrThCdK8nmApq4psihF04kmMQbrPJNxgbc91W7F9c0Nu92es/Nj0oHI7nzEL5x3tHVDWzdRMdS2pGmC6OHeRF1808n5Ldf3rNnfvzi/7RuIN/q2O/renU9LnAPvGEMKoWI75IPDCx+tcaXAW8Fuv0PJyBs9Wh7RdR2r21umswlFPqXv2vv0K+e6OOPUFcakUZkiAgwmTiI4mjrGxuXlGFQy3PkERgFK43pHW20jA0QLXLCAgxDlaS5opE4BSXABYzReBKy3CMWbk8N5XB/pZWJwnhcQF+pBDvvfWKDCCWzf0VR7mnqP0TIS+5PkHsyyItC7jq5p2G+2ZElKXhYEApvdJiZb73fkeR6NuntHmua8+/Q9JmXO6xefoRPJ0dExSWLwvSNIHeVbzjFdLti3lrYPCO3w0uAHlFmbhLwsyMppZOoM5YiI8/ydvXIYWsAIkQ0/U9MihGRxdDS4Fzh2uw0XF1cxQmE04Xaz5+NPPqYclQTnyNKEDz98SlEUPHjwgOl0SlHk9xznohih05TRdEo2iu2+vQvBChalFfP5jDxLef3iRbxRdj1yYKz1vsd1LV1Xszvs2O42LBfL6E1VjNEmiWQH1SGCYLO65er1BUYpTGJQiUZJEfNyuu7eD+ub6+Qto4L7+viO+hmuPwCtffvPX1KtfOFDb6L+lIotrDFJ3HsaM/jDNrg2xulFt72E8WRCkSfkqYzC46ZlPssYlxPyLGGzuqHtOuaLRXRLcJEWlmbpMBNahH/D8+z6hqbeIDFR9a70oJvUCJESU07ayGAaTvhGQkTLwwB6aLQy9F1PIHqghiBQQhGUiUCEj9IjF4YVT4hnsDYGKfWwB4ytbPDRf1dJgdGSqq/pe0siHMK7oQA0nY8E+PXqlpvrG7TUzBcL0jylHaLex+NxdBaoOvabLScPxgjvqatDBFFC3B3KgcPcI0EqOtvy6tU119crDvsanWiKIifPYnxDXowoUoM2g9+Ojw72Ug3OdcSijPtBNzxXUWSQpim2r6PLvHOsbm65vb7m+vKC0WhCURbMFkvCJ5+RpAkfffA+88WCs/NzxuMJRVGSpSnaaLxzeOsQSiN1MliXgE5TlPfstjusHYKadHRyXB4vaZqawy7Q1DVKQKolu/U1++rAi1cvSdOM999/n/nRKUlWRHvVPjoMpiZFiYDvO7ou8r9t3dNaS+sM+WjL8qiHnK/4Jn33Fb5zSvzjt7Vfc90d//crlTSJ+snhxY20PU1vJUFEyNp5z2iU0/WeNNEslwu87WmaPVrlbLZbinI0gEXxza51SprmCBR3sRGIoTi7BnxHmpfx1ArEmVAoAnH9EYggljKaXsSVRzRdlrgAZV4g8PT1HpXmCLJI2jex2P1gPCZNAvfyMxW7AnRU6DDQ0azH9j24nmD7yDFuG7q+xluHSfuYlSklzkOWaGazKQJBojOQESlNjB5ogwlpmnDx6gKtINGSo8WUxWzKxesX7A5bjo6OcM6x3R84VA297bm9ueXq6or9oY7paCqQp5pRmZGmCah4eqokJnAxtK2eCPYxGHCJMHBrh5uKdw5jNPP5HCmgrfZcXV4MCpEeJaFzPUlm+PCj95hOp/zlv/grlsslaV6QZQVSyijZI+I0YYjGEFKTIOitjaMvEiUV69UNtVIsjo7orcMNVqxGK2rX07eSfFJwfXnDvjqw2ax5/4P3OTs/j7pUGRUn3jpC7wldT9c2ONchpUZrFTnP+y2tM+z3W5qmZfxN1j1fvt76vC9ooL/h0/9Ri/PLFiZv5s6Y2RGArm9p+zaedPJNDktdN1y8vuVoOSVPNX//93/PdJSTKMmVFGRZznJ5FBUjdYO3jkQbrAuk5s5XNMKp3kZI3/YNZAEh1IAsMyzTJZ6ACH7Q9ekhqj1BJxm980iToY0m9BYZPHLwDgIZIxUCSOkjLYwe5+yg8NeIJEP6EJ/su/RvCc5a6sM+spv6Ln4/bcjKCdIYetvR19Wg44zFrLWh7hoIUbZ0s7phs93S9T3HJ8ecHC8I0qCSjLJ8SGoUq/UFbueiVrPr2B8qpDKUJuEnPzpmvjzj53/7S8CTGMmkTJmMCvIswzZgkixG+SFQgnvFCSJqc72zSKIhlnORVKBklNmNRgW2b+n6nrIoYihSXgz2mIGzswWPHp6xWJ5ychpnWxfEwC2WoOIe3HkPcnCHHxDSeCJD29QoETNEN+sVfW+ZzucxVsH1Q/6MZLPdkCaSq6vXWO/56Ecf8eDkjCRN0WlGEPFmID0E69i3DZevL7i4vGCxWEYVlbeRydRHQ+w7DbLW6vc4Pb/9+q9ycgL3hamNQScJSZqTpNlAJo4Wjc72CARFUd77wux2O64uXrFcjME2jIqM0XTKZDpDaRXdEqoaow1NXZMXI0T4oqeo7Wvaeovt+tjOQtzR3RVwEG/4oMM8dRePp3SCkOo++8M5h1ZRbdF1B0w2BnQkzw/7tfhmsgx9bVTlSH3fKdi+j364ISK8+/2Gvq6j89xoTFKMkNrQNBW9g67es93t2VcNh0Md2+FBRNy10VZyv9uhlOLp4ydM5kt2dcPLl6/Y2Y71asXN9TVZkjJfLpmEmG26vl2R2sCPf/wjEmN4/unvEKGnzDV5HjNptFIkaTb47ESbjjhZx4PAWUuwLRHA9QPVLd6MtVY47+j6PjJzjKYsR1RV1Iienp/z3vsfUpRTTDYiy0bR/oVhfpcyRiMKReh7rO3wnuiowWDGpQUyL1GDHnfVdxx2jgCcnJ+SmpTuULE/HLi8vgIcTWd58OghP/7pzwhdHzupJO6SGRz6DrstTdtQ1RWr7YYkzynqBtu32D6OWdvthv3+wLzvSQa70/vrzpTg7f/+vifscH17cf4+SPDdA3qbMTQ4ukeET6LNUJxJjlYx4NX3fXRUHxz8dps9ve2YTXO0lqxubhidnw4zSEKaD+QE61BAtd1QlAXB9jghY9iMjgFBfb2irzZIBFJqHB6JYtiqRPJ2iC4HDFxYIROMsUhpCEPuZj+c8KmOKGXX1ei0jI7szhOIEYZBBJx1GBmTqZTQA4NmMCYU0ezLtjUhdGSJxJANJA2FUtE2RakpWVKSJSVCZbiw4erqmsP6lhcvXtBax/JoiZCa0WjEu0/fZTqZc/7wIdtqz3qzQoacH3/0EQ8fnDOZzlgenWD7hueffcZms+HFxWteXF6xnE55en5CU28YFzlKJ9EMTTMoUCLNUEiIx6fE9RFcwbUEG6IyhQQvJAFPomPshVRx9Li8umaz3rHbVxTjguXpOePJEaPxPAJtYqA6hi6ioUSCgPMe5zrqagdIjDZIaYbcF43UhkRKZipQHVYc6hopoDu0wxpS0dgeKyTXu4on7/+YD95/l9Qk7OsarIt+TirGMzrn6WzHarNms99Rt+2gqz0MeTYOpQ1tG28yTdeT5gEZItc4IhTiW4tRfI/6+g5rzO9fk9/nkgMR4I5nm+XRN1QMvi51XdNbS9N29Da+2V8e1iRGMBsV0R7Cj5lMJlhnaeqIlDVVDcHjnKZpKrQHlSS43mG7muqwpWsayvEUSSC4fhidhqoMdlg0x1AkFWIknNDjuBKS0PY12htw0T7SyPQ+UzSEltC3A/FHkKQZPgiCi/5A3oXojiAU3kYfnxACLgSkMownGUYnKJPEz/cB27a0Xc9hf+D6MkavN10X8yezjOVywe5Q0Xct5w9OmM7mLJYLjo9OohdS3/Po4UPyNGW3WVNVFbPFET4ENus+7o1VnLNvb9ZcX1zyYDFjNkop05JM5xiVxS5isI2U0r9lOxM9gbxz8fn0DqEShIo85rtwor635CZHKs1nnz1jv6nIioLl8THL5TFJUqJ1DFMKImD7FmdrvLdondBbR1U3NE3F9dXVALgpQoD5YslkHF0V5cD1HU0m1G1HmiQxUkMpfIjWoA9HI7z3nJ6dkSRJHDsI0emhqslHHcYY1utbdtstN6s11ze3dL2jaeM4EFxP03cErVBaxtCjvsM6G8n9QsT5mG9jDX2/+vp+be3b4rzfp2C/sO+M+RtJEnWZaR7v0ncnbtdFJ7S2tzRtPfijRseDNM9I8xRne7IkjbF5zhGEJ02T+OI6ixnaVWcdru9wfRdZSSpmTNqmRicxMTq+kWxkvIjIetEiEExK0AneNljbEx1OLLZpMCOJ09EQLHhHcC19s8dDjL9LUhAG1w83gaFYFALvGW4yMU3aBhlF3DoFreM9VwzhvW3DdnXDzfUlu92G1WpFtd9HpUqec3RyQpbnQ5S8ZjwaQYhiYu8s3vV4GwOChBTsD4f7rJo0TSnLEne5xiPY7WsSAsfzx4yK4v7OHttZMRA71BDoO6zKBqVG10fHQC0MDHTJMJiJQYy82O0qdrsdJkmZTGeMJtMYOjwQRZxtCcQdY982NNU+Uuac4/LqhvV6w+XFBSDQRvP61WvOzx/wox//hPlyGamOw0xudEJd1wihSbOMPM84Pjm+fx+O8py+66J96uaW1e0tVe8pxzPKouTlqxdcXN1QVfWgfNFUVY2W0beqd5a+q5Fpg7t7D/rBDlREi5Vv0nj+kJn0e86cb8G+31qgX//BO96tGJDTyApKSNOcLC8xaQyYcYNlZm8joGKMRoioxPAhcHFxQZYoRqMJtmvpnUNrzWQyAULMpMzySIkTIhacs8PsYvBC4qylbTckWU9aFEgtY4TC8EuIAEqSmgKvEryMwE+uE5z1tM5Fb9y2wg+R5aBwfY0LgbQYIYUhSSS9MAQXheRd3yGcRSJxfUPXHEgG+hn3elcRH4ez2L7nsN9yc33Jq9cvqfYHqt2a1e3tYNmYRvSy7/G6J0sNh8Oeq6tL2t5SjEtm0zGpTujaDqMMh+pAVdfUhz2HQ83tbWwBEZLxZEqa6lgctmW337De3JAVI7KQo6QcWm0NPq5Letvh+4a2rgcSuY/Ppbhz9vf36O56vUOZlMSkjMcjkiS9n027rqE67DlUO9IkAoWb1YrVzRVt17Ha7Li6vuHy9QXGGI6Pj6n2Wz75+IBUcLY74/jomK63CGA8HrNZb+ldh3WOxdGcQhQ4F0XvTVNB8FxfXnJzecHV1TWvr1eYrOTs7JRnz59zdbOKz8t4zGw6pesth7pGD0nlXkh2ux27XbT29EOnEFPR1ZuR7g+4/jiA0BfuEG8Nwm+jtbyF2A47ziTLyIboAaX0wPaJlLkQ/OCGbrm9uSQ1gqPZBKUN69XtYN1YMFosgGj1b5KIuMVZ3EerzODjoK8kMslinF5XAw5tBEKmiCHQNziLlxphCoyOGZL7qqapKpJsWCkYjfMW17cxDWk4uf3AhY02/sQ8DjReRuAnNA3b1S1GiWElVMX4CB2R1TuqYIwpiGDN5eUFl1fXvHr5itubS/COo+WSJ0+ekpclTdMyGBly2O+5vr7m4vISnSaU4zHz2ZTlZB7d/bQhSVJ668nmCRBI0hQfoO56EhWNrA6d5Xqz5dPnz6m6nvF0xnQ6o8yjL3BelKRZfEH7tqHe7+iqA2maIkSCEgatoi9uNM4K7LbbaIKmNE3XUHfNPUfZ2g5ro6fSzc0VaRYdGHrruLh4zXq9wQuF6y3eOpq+Q6sTzs9O6K3lsNvwoqtxXUPnAllWcnJ0NDyGKEfcH/ZY2zOdjJGB6IvctLx+/Yqb6xWfPX/Fx89fIXTCg9WOy8sLut4xGU/QpqcoPUURR46mbWn7DpMKstRzqPbs93vm8xnJoFCRIpqV/4HsvR9qjfldaNM3PJp7Afaw75TqC3NnMYifo+OBH9wSLH1rWa3XGBmNhqejnKquqPd7jo+PMUZRVQeU0RTlGOfj3T1NogmXsw0+eFSaoVRJog3CO6SMEiHbmzh7oVBCEAQ4nSJMDr7ncH3J89/+loDg+NGTSKgfWEHeNkgZsH1HkmQgBSYxCAnWecyQHB1CQPiAMYZ6t+Fmc0Nq4ipFlrEDkMrgnGWzvmF1dRkzPXrP7WrN9e3tYMYF89mEhw9OWB4thrWLZrvd0TQ1V9fX7A8Hmq5ltpwjK0FXV1TrDXk+wglD0zlWmw2JltEb14P30VZz3x3oKo2zBU3nuF7XzGYvGY9GLOZzjpYLzs4fsDw6ZjyeoJSiqXY0hz22bWJz5WsKUxCCxDmPtZHs/9mzT1mtbgkhsN/vB4d3gw+Bm5vLyOttapSU7HcHZFIShBqIDtC0LWmS8vjRQw6HPbPphEePHqJ0VKe8evmSF58/QycFx6dZ5A2v1yiTMh6V9K6ntz11daCpG7abNbZrWa1WfPr5Kz6/XHO9awjScuhf0bU1aZKQOU/VtCT7A3k+bBeUxjUd+9WG0mtGsz11Xd2vht6uk69UwxdYQt9dtd8vK+W+rRVvfdsvfV74lpb27c+7L9CYVZFmOUU5Js0KxJDYJKWgbnqub1ZRWJ3EGXWxWID3MRreWS4vLylGI2aLJcoYdJKhkgQho7MahCGjM0dnaRzUu2ag+zVxJnM20uoYApekRElNtzvw6sUzmrpmcXRClqZY18XYAXqUdCgZcF0PJvrAJkkK2kR7DdsPzKgImkghyLOUlx9fY5s9WZEyXsQQW9NUOKDZbbi9vODy8oq66dlsD9RNg5aCp48f8fD8hLOzc5RJuFnv2B2qaPLV9VR1hRyMoOtDw2Ff0dQVwVrybIRMS27WG/aHmuV8Fn11bFz/2N5hO0dlPd4Fqtqx3rbcrg4UWcqouGQ6nXD2+pon77zD6ekZiTF4VyFsDAbqhadpdqh0NMQvxh1o37c8++x3NI2l63o2m00koXvPfrfj4vUrjo6OKLIcbxMur25ZVy3z6YS6aTFGk/qA0YLZeMyDswXHx8ccHy3QSQz+7ZqKz549p2o6pvMl6zXUbcs4zQkhMJ3MaNqKut5zqA/sDzVd23Bzu+b5qyte31Y0XUCnkl3VEpwnyyL7y1rPvqpJNrt4ePhACIK26+lWGyaLw337/iZnRdy/3d+msv5QDu73iAAMcQ/4bdjvW4rvt8tWfM1Je9/eKjHEsCWxtS0nqCRaXzRNzX5X4b1EC1BKMRkXZEYxK0b0tmO9XlNOJuRFiUnzeKppjReSnoAXgJBImaBNidFJRGWlRZscKdRAp/MEbIS/pSFBEFxPvd+iU8Pp06eMRhOEBt/1UVwLyCyFEJX+BIc2GmlyUBpET28P2D7Ol9bGiHWlDUqnvLr+DB8s+c01x+sNECP+nBdUVcvmdsP1zS2r2w3OO84ezHn08JQHDx5SFCM22z2vr264ul6zulmjCFjvsFVD2cN2tx+W5Q37/T6+zCplvd/jAqy3O4o0jUG5XQ8OcpOTGIVJFA5BVUcvVx8kiATrD+wOz7m62fHkyYbFYkaRKlIlUCJQVTGeT5h15BoDUupIbw4OJUHJeFMuixFVVdNZS33Y0WQ5mU7pe0vTVNxsLplNItDj2gPBWUximE7GFFnGaDTGmIjCiuAZjUZMJlMOVcvV61cIlfD0nfeZzmaRm2yjINvalsSkJFnOer3jUFvq1iNVQprG2EPvAwhFbiKCfpfZua2iGEIhcCisF/jeUdUdtg/EOCN5z0q7n+y++H9vCvR77Dy/3ypFvPUXb5+Qd3/8Qtf77d/0bZVK9HMZWtvReDDGEvgQmRjRoU+RFyVV01BXNSaICNCMSsqiwPswCG8TnFCkWYjkbuewXRefdC3Ax9wRJSTS5HidADHQ9S5JiiCQgxTN+8DJ+UOyfBTRusOBLDPoJKZKGx1oDnuEAqkETmgQBoHEBYezHX3bU+1usF1H2/Y0VU3T1YOze82ri2s+f35JkRfc3q7YbONOUKqIiB4fR9L3+fmS46MlWV5QdZb1vuLFxS2fv7ykqxvwlqZtGI1HtG7DZrOjqmpActg3IDW9r2m9QyUG0fQ0raNrDhHQ6AJpnpLnOcUoj0Dc3dJcKhxQdZbWB3avL7jZbjk/P+H9p0+YliWh79lu1qR5yu2uYjwdsZxNMELhbWA2nrKtGoLzTCZTurbl8vISkxjKPCMxhu1mQ287ijzDBkGSJLzz9B36JhqrmTQlyfNIdUQMqzZBXcWbX7zZxhXPeDohL/Ph7erpOoeW4JsO4QIahVEJiclBaJRygyukoGkqpuNJ1P46j1AiUjNDNF7z1uGFJsgUnUU+tR0iO4SIwU33ZfN23fwe1/eYOb/lC3/5Q4K3HhrfWKxvm04rFfd2o3JEXoxjlJyUSA3Cx9C9280WISxlklKnB6bzMaXWtF1H5zZkzsU9nNYkRtFVDfV+S1Ptmc4Fps/wARQCLSUogxB6YIj6+8d6x+DprEWnGYkCaz11tYm+OmkRpWYuYBJBVVeAQyiBJB3I7IPJsBd0TcXVxQvaw4HdruLq5pbtakWwPX0fqA4tzz59RZbnGJNQNS1Nt6Msc05Ojzg/P+Ps7ITj5YJyPKW1cL1a8cnnr/jtpy/45LMXMSDXe1xwjCYVUlryvARp2Kz29L0jSTWtjS4R5XiED9C3XfRYkgqTxlNoX1U44RmPSkZFSZ5HxkwgamJVkqCUoO5aPn72DKU07z15ihGCfdPxerXG+0Be5BzNxzw8WRBsj0lydB9I0sB4bKkOFYfVlvMH56RpSgjRBS8Eh5aC46MjjFYUZQmppmsOmCxHJyltdaBvW7xvUTrBugBSk6Q520NLkAJlDJdXF6RpRtu18bTOUprtluvrW9a7A9tdxcXVLXXT0g2osUJF3XGa0HQd7aGlLAuSLMVaRycktrcDKp+TZeWAOt+ZSnM/un1j3dwfaH/gzPm1Xpx/6DX04HcFagYApyjHlOMpSTFGmlukMdimYbtfY7QgMYp91TApCrrecnl1Hd/USUZelHhrCban2W+p9zs2qxt88OisoA8b0iTF6IQgov+PGAgIURAdCWnRkMoSECRpie1bmnrF7e1VjB/IiqjnTMyQParxrqf3PVIn96G8ngBeEGzL+vqSl5+9oHfwu0+f0dYtRgnGZYrAkqSC6bTk5OyMvBwNvkKe46MFZw9OmYzHOOtYb/d89uKCT56/5refPOezF6/orCNPM7TU7OoDt9sKQiA5xDe5tT1lmZMaySQZ8+DhQ+aLI6qqwnvP7WrFq9U2rnqsI1hHH2IKWNt1LIhWk1JI+q4jWIeSCdIkHKqKq5sVi/mSUZYTlGFXNdzerpFS8ZmGV8czzo5mOCtpeyjG07jk3+7IyglJksed8BDXoYSm63q0ilzlvuuRwWNdQFoLIdA1B7q6xXtJUIbGOqqmp+oc+6anqne8uLyh67pB37qh6zom4xE4z6vXl+zrht2hYbXZ0bghH9aDkBKTJljv6bo2hvVqTek8Uhta66LBWmeRWSDLS4qyvPdfftvg6xvXKD/gEP0Bq5Q/EBfmzQMOvOHaGmPIi4LJdMpieczk+ojLq0vggAs1SEXvPbuqZbWNSVlawmwxwwcYKzMkS0eASXrL+vaa3WZNWpRsNhvGCFIdWyw/tDpx0Q9hYHREZFVgvUeZFKPUIKqu0UbFbMYswYVAYpKoKCFqM7umQWcaKePM7ENABgHOIlzP5evXNF3A99ES0ihBosYsllPOz484ffCQ80ePKMopWV4CAilBaUl1qHh1ccXl1S2//eQ5n3x+wXbfkAwBOom889z1HKoaLRPq6oCWjiwVTMZjTpZLpuWE6WzGcjkjiDm3my3b3Za67ThUFhOittaJwcW9bgjhlkBgMZsjkTRVQ992jEYleZoREFRNS2pMZHmFwL5pOBwaCJbb1Yqr2xlpEs2h5yphOl4gdMU7777H/OgYrTTex+CqNLkTLiRkaRpBpRAjHvqup+l33N5cs98d2FcdlYXWCdbbPevtjv2+pqpb2q7FOktRXLDb76IWdDCnPhwqqq4nCIlJM2SiCNbjvCfISJvsXB/dKORbK78spes66qqlbi2mtZisYDKZURTFwKsVX37D/0H19AOK8w/f29x/peHoV2/Nn1JEX566a7m+WbHbVoRwoLMuMoaaGuV7+qZkUubRZa3tcc7fu/PFPWGLwrGcT9FZjhKeUG1p+j1pmiDTLM5dKqpJgpB4oe65o4HIihEqIVEprt+RZSOK0QyPpHOQaoOt9xEo83JoEfckyQikHtBZRVvtyVLFbFaw2lSMxnNS7dEisFxOOT07YTKfU06mjEYjdGLuta+r1RprLftDzcXNihevLml7z6gckxcTTkTkFONBDxzRq/Ua10XqqxKWPJW8/95TTk+PEUHSVg2H7SZGIvQdh6qmblt6F9swISA40D7SDeu24/r2lq6LjCxCRHMzUbA4PqZpa9q2Qc0m6CInL+LucjvsFVub07hIl08TQ9VZmsmIRw8fsjh5wGyxRBvDYbuKN2qlqOruPrbDuy6KInpH3zXs9zsuL2558fqSF5drbnc1Te9pmo6mtzgXsNYTRHTXEOuKvo+7zphCLgebTUgzjTYpNvQIBVpKkjRhPBlzu17HRHag7TrW6w15nkUdZ2eRKkUqg0myyHYajeMa7fugsV/mBHzL9b2L8y1A9ve7vuYfCyGQxLu/VhqdGNI8x2hDZjLa7m9ZHQ74EAun6TraTuOyhK5pyNKEPEvI0wQtodlvsfUBLQJohWsqtO+ptxWNtySJwmQpWTkiG00oymm0AlFD/mIIcZ0zPD5rHd4p0mSEJKFvQSc5fnAzSJKCbgiYDbbHigYfoqN7CA7rekxiePz0IY9E9ND14R0SpSnykiQrsIPb/eFQEaoaKXfc3Kz4h7//mK6z9C5wud5StQ2T8ZT3338HIQSHas98OiFLoz2J1Ib9oYqAhbfYriVNEo6XJ2R5xmq9Yn27jvEOh4rOOg5NG0EwIdHKDI6Djr7tECGQmJgDsqsqukGfafsOuVVkRUFiDOvVCklgOZ+R57FAdZJwqGvsoaZniMfbNzjrWa+3bA41VigePbGcnZ6DSlBJVCZ5odkfara7HfvDNlpR1jWHw4Htfs/tesvF9Yar1Y7NoaXrbRQsCIH1Ae8CIEFAluWYZMT+sKdt7UCYj8IC4RWucwM6K3DOkuc5o9GI9WZDluU0TU3TxlM4q1OiCX7K8fGC07OHzGYLFosF4/FosMj849LRv3dx3n/Tt6VV3+so/faP31lxSAGFKniYPmQ8GvPk0VMev/c+/8v/93/h9YvntIcNZQKT6ZjFdMZ0PGYyHVFkCVW14+bqFfvNmkQp8jylzAum0wmZykgTidLFAJdLpHJ4W9PUkhRBmss498AQLyDo2hpcF+dCo2mrA04mjIoJfe/RyShqQL0iMfFN3VUN1juSNKP3sUXS2ZiT8ziXmCRFmozRZD6sdgTr3Y7bmyu0cDRNRd0f2K2ukb5jdXNDHxRXN6toPOUciZH89Cc/YTodcXl5yfNnV5yeHJGnOW1rWS6WnB3PKYokevp4hRGCRAlGZU7bW7a7LVe3W1Y3G5SIaGzAIxGDM7sg9C6qcUR0bLCDTYhEgg00+5psNgXg5nY9uABGsERqBVKyP1S0fU+aZGgpuFptyTPDrqrZHCp+/dvf8bOf/Ix3nj4mTVTMM80KhDas1is+v7jm9cUlbdvS95b1Zs+u7mhaS9MLvJdYJ2AgecQQLDskhFt6axmNxoQh4U4NEY5SK6wP9HVLnt9xtC1aCrJEMy4yOgd910XzbTEocpQmz0ecnT7kg/c+5OGDh8xnE0ZFgtFxPPrCe/7tU/LLh9MfvEr5poL66o7lGz/ze3yx4bcYAS+EYL5YMB6NOHlwxgcffcTf/e3f8vzjv+fm+nNS7am6npGQbKuazX6Htz1tEy0ujVLMpyPKLMUYSVaOScsRUmvS1JBoAbh7WZhWatBWCsIg9A7O42yHktGXpu1qqqomLafgO3obUGmOC9GlIE1TDrs9fecIItA0Dc5GcsNkviBLMgSRGN07ogPhkJy1SFNGkxG4nuqw5frqEh8cqYmgUTaeU0zGfP7yFcFZfvub3+C6jj//5/+EP/3oPa5uxnz6/Bn/+ZNf8eLVNUonPDw75unjU47nE44XS6QQ3G53HKqG9b7Cu2h70jYVKjgSBUYFEikwAyEDYSJTqesQRPPorontn5aKumoGeVUMO1Za4oOLbXLfR8J8CFSHmqbpyYwB72kyQ3p6RJrHVLXf/u5j2rbhaLlgOpkMZtw5SVaA1CiV8uLlSy6vXnK12tI68CHK+pIkxQZBPwA1d/k6QkRH9t5attttRP+Fim56IZCqZGD0EJ35XbwBMTCYjNbs9tuhe4h6Xh8UqcmZz0949Pgd3nvvA46Pl4xH5eCxLN9aYX6VpCO+rhj/IMnY9/saf5xrOIjv+nadJCwXR4yKMQ+Pz/n06VP+/f/6/+a3//AL8D2b6gXWtmRGYwapTsChg6Msc3SiKcsSlZXIbExWlCglUDKg5V06lEGImDxtvY0GVT4MZlLgnONQVXjXI4QnuJbusGJ3aGG6RMkwhNvEzxUqutrv9xsEnvlyNrx5PcFabFfHx9kbkBlIHV0hkhFKKcrxBB/g6uKSal8xGZVkZcriaMmoyLi8uiLPU66ur/nNr37JX/75P+Wf/OynnD18Qjr6Nb36DZ8+e8HP//5jPv70Oe88OObDdx+QJobbzQHrA9YLhNYYLZlPC7I05rikRpKo6BzovKTroe4DnQv3nkqRHRM41A2ddeyqmMsST4HogNBbS93Fk0tpFUcS52gDuN5SNw1tG5O0H5ydonVK7wO7Q41ShtlsQpalBB84PRFoqZFCcrve8epmw6HucH6ggCpFmmYgusGVoAcCeZ6SpRm7/WHYTVqCDPH0E+LepDx2BTFwS2uNR3C73qCEoG8HH6E8JXiJSjNG0yNOHz7h4aMnnJ2fsZxPh7As8xUXhC9YZX5ZeP32e/5bru8WW3/la3xbqf6eZfz27uct31slJFmSc3JyjlEKRyDJUn75y//C33/8O4LvKYxmVBZY13OoD0wyhZaOB2dLtocDdIHjpKBUMUhJyRAN+VQSDahFtHoMLnryKCXQqaGrela3N3h6yiJl39X4vsK1gsNmS5KkMbxXqEEKlYA0Md5eSbquisZlXUdbN/T1nt36FqUU/XjCaLYkyUdoAjKRIDQ6STk9f4BWisvjE37zd3/Hzc0NoxB48vCUNNEc6gbrA58/f8b23/x/+LN/9s9494MP+e/+6l9wvJzzn37+S/7uV79lfbPlhd6iMsOj85N4GglBkhVDEO6INDP0bUOWGhaTEYlRrNc7Nvua3aFFNR6PRhozdBVh8NmJtEjnA23XRAuR4c0oB39iISVRLN0DguBBaIMUgf2hoa5fstnuWSxuuL5ZMZtN+PFHHzKdLzAmw/Y9WZpTFiXTyYTFbEZ5vaLuA64L9D5gXY9SMcY+8nObYcccU8nlEI7VdR3CRdd/pdR9wnXcr0bLlzRNadqOqqpjsJaQ1E2No0MnGWU24vTsMe+8+wHnD86ZTMqYiJcYtJZfa1ESvW3FQIZ4877+vte3FqcI9//39t9+27/43t/4G//ZHRdxuNsIAVobxtM577z7Pm3fcLte8erigtX1Fbvtjt55hIgOaw+Xpyzmc9J8RB8ky+mUPDW0dQXOkWpI8pSkSAaZVnQvVyLEdra3BGcJoaco0/gUhYgWCpNguyaeoF2UHRGiP6wuS5RRqMHVvmtrLi+uuL26QDmHbQ6sry9p6opiPOXhux9wfP6INOtJCodMc4SIgoCjkxO0UjTVnqo+sNuuOT4+5qP33+MXv/olWkqWJ6e8fH3Nv/v3/xtt3fGzn/6Inzw55Xha8PT0hL/9xW+5XK15dbOld4Hzo2XcKRM4Pz0lzTPOz5bgo+zLKMluu6PaB7Rw4Bs0fmhvHTaE6IygDEma0fYWoSR5MuJwOGD7mJ0Zuj5alFpH8AwzqMH2/f2bVSUZwVtu11tu1is+/exz5rMJN7dr1ts9H33wHonWZGnMNCmKgvl8ynIxp+48vavjyeYc2seiMObN6TUaj0iM4VBVtN2WIi/wPiqH0iERzA0GbH3boJVGaU+12SO1IniBF4oeSbCObJQxny957933+PGHH/HowSnTSUmexIjJL/Jpv7xO+f1KAr5PWxt++HH8HV/w+38RAahoKGWSlNl0weMHT3jv3Q+4fPWSvm25aRoOdY3rO56cLXh8fsbx8ojJ7Ijx8pjRbIpQiqZu2d7e0lY7ZosJZ48eU4yjPjEaRmkUBuECPT3OdwTf0bY1wnu0jCsTHxR5XlBtN2THBdvNFiMlve0RaRb3ZSI69202O37969+SSIHvWrr6wM3tDc6/5sXlgfc/PHB6csTy5Ih8Mh2UGAaTpGRlycOnT2malr/921/xyScf8/Sdd/jR++9G2ZJQ3G63PPvkOSrAYbPinSePOHnwiNmfzzg5WvLx8xfcrjZs1iuqquH8fEZZliwWc8bjEbtMkOkYKFxXFV3XcXb+kPMHiqurS/b7Pb31bHYVq10dPY2CQugMoSIRgxD1ttEjSca8l66j73ruIuiFjMJ2JSN4IwKkacH5+Tnr9S2b9Zq2t/yXX/yCT58/4+/+4Skfvv8ep0dLJqOCLM949PCcQ92w3ddstge8tcSA3OS+4KbT6aArFbRNg9ZRCGCSlM1mG6l1QztrrR1GkjA4Pzqsi1xdRyBIQzqZcbI84YP3P+SnP/kT/uLP/4LHjx4wHuUkWg2pAm9I7l8uzC+0ub9H2fxXM/h6c33/hxggxpgPbP80SZhP57zz+DHPHzzk6vKClRT0ruf8eM6f/ugD3nl4xpPHTzh58IR8sogthxKM0hFFMabdbxDS4VyHtTFgCBWtMWXQoPyg+IeuO9AcDqTaoKWi6TpQgdlyyeXFFcFZFssjuqoiSE+SJtxFOyRJxpOn75KnJZvNHmd7qv2Oycme1xdX/P1vn/PJJ885PZnx7vtP+fFPf8pseYRQKQGBSTJG0xnvfvQhnQ38zd/8DW3T8N/+q7+iaWp2Xcf/8X/47/lP//EX/OLnv+bl56/45fHHnJ4/4E9++hFaWd59MOfx0YzPX6TcbLY8e/aM09MTnj55jFGSRApGeUpINYlJmJ88oCjnbNYbRqOUrqlwvWW12bNtLC9e33Bxs6FuDrigkEkSmVEB2rrFOY/SkVxCIlBKY/s4x5tUAZ627wnO07YN2igm0xnjyZTxqGC33bBa3fLJZ8+ww+rGe0tb7zns9ti+I0s003GJVNGYO8syQgBro9th27Z4H9lESRYtcLbbHV3XkaYGQrRitdYSpIzxi4ONzHS+YH+oyIsxp0+e8Of//M/50Qfv8/ThY44WS46nMzKj4lg0nJbRXvUN2PN1BXoX3fCFN/b3KIPvKE7/zVXD9/sGf+gVCf1+CAeKJsLj8ZzzB+es14/IksA40zw9X/D07JRHDx6xPDrFCENoew67A33fUpQjyrIkPzpGCB9nS6nftNAAQiKEjmoKoQlBsl/fIIoRQqY0rSefFIQgSLMEZ1t0mpJPxrgQ0DrFuh7bW4SWFGXJo6ePOW4dTdNwOOzpup7pyQ3olH/49a/ZfPqCm82OuvX8yc9+yngypa5qynG0FhnNppw/ecjyNydcXlyzqRrOzk7QVc18fsRyfszZ2QP++q//Hf/wu+f86rfP+eTzl5wcTSgSw2I2Zzye0jjPxdUN+6rmsN8xzjX4DmtlLJBlTpKVOEckvtNR7TeI4CnKLbMmWkzut2vqQ03bgbQjkjzuqNNyaB29o22buH5xDog31TRJIwjsZVx19D23qzW7qqIsCvaHLa7vyfKMclQgleJmtcL1HV0dYxuubtfsq+gzhRCkWcqoyKnqGotnPB5Rty2bfUvdthQi6qLc4O+bDBEYWZKx7XbRBlNqWgcmK8gnC55+GE/If/LTn/DhB+9T5jlpkkSUWqn7yA/eUnzcLRW/7vr6OPrv997/juL8jl3MvZTsH+G6h5/vQKJYnEJKtM5QSrM77AjOMRtNKVJDlqeYLKG1HaHa0a3X1PWO0ahkMp5g+4icChGjBk1y9+TeOZdDEGH4HoYsy8mylOvrK4QsSYs5DokyCaPxmL63ECzOCZIkRxDjHbRWOGvpvUUZSSoVWZ5SjgqsdUymE6azKYujOa9evuD28op//7/+R168uuQnf/JjjhZL0nzF/OSIcjLh4cPH/NVf/bf8T//Tv+FXv/6Uk7NHPHr4AGst4+mCYjzh9PQhf/1v/x3/5ee/4Nmz59TVEU214/j4iPff/4DHT55ycv6Q2XSMkHB7c0WeRapeXk5IixHWQdPsIPQxrt0ICJ4sT9ls99iu4/Z6RdcLvLCsDgequkUPOtIkTREiBiGng4GWdY6ubem7jjwvBlO0GLHBwBG3tsMbyYOHD0iThMNhF5+fxRJFYL/bs9pVrHYHDnVD3TTUAwG9bWq6tkWblLqJCpW+tZRZnAn3+wMixCQ0D7gAvXMokxKEoxxPGJUTfvqnf8Z/8y//BT/5yU959OCMWWoiRXIQaLzRZUaSQzwg36wUv8ADEF/98+9jWfKHtbXf+v2+Sfv5Q8j0Mc/Sf8kpWw6Moiwt6ExFlhaU40lMl85yTJbR9j2d7blerVhtNqA188USISRparA+qk8SpZFC3Z+gIRCJ60qABJPkPH/xD5TjI86KJcqkNF1PYlL63nF9cUGWpkynC5TIBraKj4oPYRBCggz3XOK+7zFGk6QJxydH7DY7Pv/0M375t7/k008/5/nnL3n3nafMZzM+/PFHvPvBh+TFhB//+GcU+Zy/+Zu/4T/8b7/gJ3/yEx49fojWmuUiYzZdsDw+4uGDU/7tv/0bVusVZTni9dUtq+3PeeedJ5ycnUAYYXTCuCgwivv1Td00IBTO9dEBr++QQKI1Mk2gyKhHOVmiMYkmcQrTQdP2uMH6FPiCufJ0OkVKSdu2tG1sOZ2Lqp0oho860sl0SltXfPzxx7EdTQ2CQLXbMy7L+DiSjMlkTucEQRqS3tPZnrptsM6D9IjOIoTEeEmOxrcO2/YIYvvaOocJCq88SVZwNJ3xl3/+l/zlX/w3/PhHP+LB+SlplpEYjQ5xNfRVEvvbO/6vaSHvWa7fsD75Adc/4sz5dYX5bZ//pWIeCjK89XsYrBi9dbjeU2YFq97jLJTFjMn8FJNN0EmOSQVTbRiNx4TgyYuCJE2i16kgusPZHm+ifvLuMd/JGEMIeAROGmRSgspIihFZVtD2UaEvlaY+HPj4H/6exXTGaDHn7NEjpJJRvSENSkdTsbcjKUIIZHlKUeaMihF5mgMKLySfffYZP//Fr3n04JzJZMZyeUKalSRJwqPH5zx+8pj/2//1/8lf//W/5a/+27/in//5P+X8/JQ0TXn/vSecHC158uQx//nnvyAvJ7x4dcGzzz7jZrVlNp+htaKpG8rMoLKEgGK92ZLmJWU5ItEJwkU/2uADnY0smcwYssRE82SlqJs99bALFCEMLJ4hQtFE4XLXRavJtxVIRVHQtm1MNHcxM3N1e4t3lsQYRuMRgcDN7YrNekOWpcOqLHB9s2Z/qGi6HuuIMfTBR95sb2lai+stChF3sc4S2XwKGwIyycjLEY8eP+FP/8k/4V/+y3/Jn/74pxzPl2SJivtyGaJ9qvhiYX79yff1xSe+5WM/5Po9i/PtdvMPuL7y78OXPjyEsd6lSA133Lau8C5yJd95510W44zp9Ijjk6fRHnKQg41HJYvlnK6v0erOAuXurgaCmCMZJNwVpvfQW09rA20PvTfMjh+wWJxzdPIQkxq8EFRNg0ZQlCVN3fCqekn34hl93/Hw0WOSMkqhonG5HKLa48/knEMLhRASlQiWR0uMSZgtlhz/+tf88pe/5HefvsAFybZq+NFPfsT7H3xAmmX89Kcf8q/+1V/wb/7tv+Nf/+u/5he//BX/4//4f+BP/uTHlEXGbDrmZz/7KXVneX15S5LnmKJk37Ss11sO+z0y9KSJ4uj4CITg9evXnJwpFoujIfIhwSQprbXs9zuUEBgTieImSSOBQ0psF4XPSkVAxpi4+jAm/qxJkgy2LvH59T7+7GpIObfORtcEKclMOoRa9ewPkaWzmC+wDl5e3FBVDYcqRjj6wICwx4xbaz2WPrr5IXCR0kQQgsl8Qecds8mMDz/4iD/90z/jn/3Tf8p777/PdDol1ybqfEVAcpcYFovz/lz88v6S/ypwy/f0EPpKEX3Ph/YDivfrBue74rz75VwMmFUiRNWJfpdMJywnJY8fnjAaL8iLDC3BuX5wQRtyTQZLS4LHaD3wIB3OBvD9ELBrYoEGTSBHJxOykeSjnzyiHE1J05y6rdFJyna7odrvuL64oLcQnKNuata3K4qiRGpDmuZ4Ihvpro2LMQV62LUF5BCWpBNDmqWcnp7w+J2n/Ov/+X/mV7/5Hb/99Dl/+8u/43//3/93/MVf/DNm8zH/8l/9JUFJ/uN/+jm/+c1v+H/83/9f/F/+z/8n/vTPfoYyOePJhI9+/COu1/8/dtsNSZqhtaIcj0lSQ5nmUbsqFFIq0qKkKEYYk1IU0A9L+L73CN1Eo+8mRgOOZjPmdWDdeKoevBf3e8YkSZhOJ3RdPBnvmDgQieVCRMOzroteTHHOD3E/OiCaSZrS9z1d33O73sQT1jqsg95GYTV3HZQP0VdWRWlXlqYIFXeq6bAf/ZOf/ZQPP/r/t3fmP5IcV2L+IiLvOru6q485yCGHsytyaS0oSoZNrQEbBqw/2fBi4QUWMnaN9VqUtTJlayUemrPvrjOvyPAPkXUfXdXHkDDmYWq6KjMyIjIiXsS735/xr3/6Mx4ePmSn2aQSBDZouASntCmeWdGjUCMLC5JyU19+fZP1fQ9xa28O1k5+OZIus6iYvr4MMdM0RYiCw4NdPv74CfVKHd8RCJGU4Ri7gEFnsdVBaWVju+oMTBn5ILOG9o7rUeQpWiqEsqEnlBPgugHGKJxKQLW2h6sclBNgTEHkOvR7mmqtTjKMGSYZblgtT/Mhr1+8sjFtms0yBOgoRKOYOj3tCa21Ic1sQlaEIaj4VGpVhO/x4vScfmL47o/P+fLL33N62qHXHfLTn/2E3Z02P/93X1Cp1/nl3/09L1++5L/+zd/S3tuj/fA9lOvTarX46eefcXT4gH/6X//My1fHVkFfqYBOKaOBUm80GAyGXF5esbvXtjGEpdW3CqkogHiY4PgBbpzyzK3iVI857gzhvE9RaMLQ+jNmWcb5+TlFYRX89Xp9HOlgMNDE8ZA8t7lOk6RMlSAFOs/xfZdK5FKvN6jV6wzjmDhJ6Pdjkiy2Rg3jNTXaEBSVqGJd/RyHsG4dyj/5sx/x7MOnPHxwxJP3n7DbahH6YemaWEb7EZYcH2WZN0JiEGNydmERT4SzSxby5viwDdwrcl53bs6elmb8xOSyteqw/KYBXdgci76Dqxx8WaDTDnFmyLMBSuSkyRApNJ5jd2kjfRvjRecIndugxzpDUOD7AY4f2ZgwQuH6BZ4HAgdXSFCgXLvD63yIznOQBYEviIImUeix294lyzWvXrxi2L3gX776Lb/+8tfs7e0hlcATNp4rhjJtudX/6ULjKYUxNoYRlDYXymF3b49f/OI/8fnnP+M3X/6Wv/7Pf8Pzly/4L3/9t2SZ5uc//4Kdxg6ffvopDw4f8esvf803X/+R//FPX/JFtUlzZ5coqnBwcESlukNr/4jjk1P6nVN6vZh6zSeKbMoIqVyUcnn9+oTWXof2wSGVsIrOcxy/glEhQZriKhvseV9KKq0zvv7TG1697tCJe1yeX4IA3/NI8wwoqNZq5FpTxNYPMx7acCFCytIw3UUpSYHG81zCIMD1HGv0AVBo4mFMvz8gSXPb1zIZVBh4+IHPbrPF4eEhURRx+OgRn/z4xzx99hEHzV1C1zo1KCkYR/YppcOSKbvXEukm0lex/HTceLWLmV/MXJ29fl0bm8etvQF/OQ5Jv8Xzo1gso+jZNucGYIzlfZRABAJfVRFZn/7VJVmeUqmGpOmANB5wfnKM7ypqtRrRTouigGGvSx7H5GmCKWyqgiAMqe3s4UZ1jPDQeY9sOCDPMlxXgtag5FhAZIxBqgLlKhwvQqqCqOpRGIEfPmHYa4HJef7ttzz/03fs60Pahwe4noQyEJQoHbspU8kppdDaYIzNI4OQuEISOIbDdgv383/FMB7yq//5JXF/wFdf/R+ODtp89PEnBFGVvDhnt91GOg6d7oDXr17i+T7S8dGFQRvwHJc/ffM1v/ntP/PsyXt8tv8j/MDDC6uE1SatPcPv//gN//irX/GXn/2Mg6NHBGGFStTEq+/ZXKYFxHHCycUFV/2Ubi+hMIJClNH0tWaQZNYQXhj6wyH9YTymejxHljlebHbtOI7xPBff9/E8dyzxrVWqDAd9er0hhQbH8ZFehO+HhEHE/n6bZ8+e8fjRY95/7z2ODg9otVpWlVPyuGWy9FKgY0ZU6hSlNkJMuQRpzOjfzDreYLVfc/s+VSnrKl+JeOtD0k+fnNNVFEUxvlYwCe1fGMs36jyl070gG3Q4fvknwkqIzmroNObq4pQ3L18iCk21WuHRB+9TazSQxpDEMacnp3Q7V4S+y+7eLka6BIXAr9RJE02vc8XF+RmVKCLwXCrVkCRJLR8pFcbkGFHgerF1OSptYgNXISsBP/rkYw7297k6P+PNq9fstHbxXKsIB0meZ6WJmUJKm+Ihy6xHzIgnEwKrEzQ2ltHP/+rnHB095OTNGwadCxCSojC0dlqkSUavN+D84pLjswtOjk/Z3z8kqLhkaW7j8CgHL6zy8s0ZwySn0mzywfuPCIwDboWgJnGiHf7bL3/J85M+//aLv+Lw8JBmc4corKMcG+n81ckFf/cP/8hv/vdX/PH1G7pFTr/QYyGPkApRFHhCUqnUkRJc1/J+1aqL77k8ePiQ/Xab4XDIixcvODk+IyvjAQsBV/2Y/rDAjVo8ftCiVm/QarX44MkTPnjvPY6Ojmxa+TDEc12ckR+utPlxrImeTT41vfJm0vPNret1rNcq2FZv+fb1nNfCtP5nlXBpBLPCn9HJqUvmX+uMLEtI4z4mHUKekicJjqso8oxXz1/iSsnrF29QUtFsNCh0zuXpKcJocl1YlyIhybXhu+9ecnZ2wceffkJUa6CzFApBGISo3T3Oz864ujjjUOySpdZKZTCI8QOPer2C0TmOckiyzOYEBaIwJHNd2lLhuS4vXjzn4vQcKUspp2ONGwpjymBgAsf10YWwmceAosjLbGMueWZJ7/39Q5I4I01S+r0OGonj+XhewNHRI/qDlGGiOTm74ne//wPVeosnH9oU6lKkXF5e8Ievv+O8G9ONDel//w0vz3p8mjgMEofD/X3aD5+yd/SCN2eX/O7333F6MWCn2bSxcmtVLq6ueH3eJajv8tHHP2b3wRPOLi/pD/qcnZ1xcXGJ1po8TqkHAWEQAFbdkWtDrmGnWqfXjzGcURQFYaXB4/ebpGlGGIUcHhyw196nWt+jvX9Ee2+X1k6TKAwIfQ9PqbFKahxiFZBTdOjIeX+0/OYTOK9cpdsgz5gknn9mIhm6Czb0bpBzkxcbm8hNDRbTp6cYk7OU162ULsdoTZ7FmCxGYoM4Z5kNAeL5AcJoatUaJi8IwgjfVURRRJGniCK3bltZXqoCPIwRDIcJFxfnuL7NXt3Y20eqAMcJcJTAFE2uLgqO37xGKYmjArTGRmVLBtRrIX4Q2shwlM6/1ZrlJaOAutihPxjQ7w8Jh0Nqross319KgbZRrzEIHMe6HQkpyHWOLG1UXccDoXC9gr39fU7PLvBOTximGdqUuVscye7eAYNYk2nBN1//C2cXXfbjnEajyv5BAy9q8u//4y94+hc/YZikCCnYbTUJKxWu+hmNTFBvHvJvvvgPOK5Hq9nC9+1Y1ao1/NCn3tzjyZOP+ELYMJq5NmVGcs1gMODy8pJ4OKTb6eKU0ei01jaSXxxTrYT4vk+WZ3ieRxjYkCZRFFn9ZxhRrVYJghDl+Na+WYCkQAkzPhWnrXFEuWbE9IKygTyneMmbocmy58Zrdco/04z/X5QYLalh6dVV8HYN36d55jGuiik+syxW8il5lhAnQ/JhTDrokgwuSQYXZP0LfNfBCyvshSF5GvPm1UscKWnsNOlcnNMfDHAdiTAwGKakmabm2SDUhYFqrc6Do0Pae3tkaU7nooMfGWu0oBSe51GrVXnx8rwM4BSiygV5fn4BRcKe51KNaiTxkCCsMOh2kZ6HQOCFIQ/ee5/uVcd62UMZ+MumeyiMjVHkONZL37LVwmZ3Vi42Wr2DclxQEIYVGs0W2kjOL3vEcQrYeEW9QczzV8cM04L20XtcdGP6ieawukNUqbJ74PH+00/QQlFIa4AuBSglkQYcYTeGojQWkMjR5FiTREbbiMAY+wEoRCkTKKM8CGyeGGvPOooHXKpLkDMnniqFNULOG41bY0qJVYFJDGOCVKhJ2fK/sRxnCmw166U6N9FVziDsjMfJYltj09PZq1u1dzvkXGj/mlcW898tRs6THiPDgzxNiftd+ucX9K5OKZIrPKcgz2KiqAXSwfEc+gObayQMPZQrEKqJxOC7Nppdrz8g14Y01wglqdWrCGNzrui8YNAfEkR1/CAEIIkTClPQ6fQIowY7rX10XhAnMbXQR+exTfiKYjCwHvznZ2cURuGFIV41IqxUcIKAhnLolLFTPT9AlpOmlGMzPiPIM8tvgk1/4ChvrMoQUuBKF8dxabf3+cvPfkKncwVC4bg+jhfy/pOnNPeOuOr2yXTBwf4B7fYBXmkwIIXECBuV3ggQpkBJuxlIY0lDpECXUyLKeRTTjg8jNdeUVlAaK/wBMKXrlCsdS56X5aWUYARC2XmVYpr3KyVNI1JwBtNM2dboxvRn8meZR+OkrtVwT9qP2RZuaa1wx7a10xc27NmMJLckFUYnZ56RDvv0Omd0z4+JfIhqFVxVw48ivNCm6nOkpF6vkiZ98iwBURB6Dq7jUBhJUsDwqsObN6dkaczV5QUvvvuO3WaTZ8+e4Xs+vheA1lz1OlxeXoCxyYma9TaO4xOGHl4YI2WBEJoi7dtUEMOEMHJwvRCwSXLzbg8/jHBchascWq5nTeGy3CYKxi5ySnLYdR0bFc5xkcJFKesIbmOtGkwhrNlbmrPXPqDZskl8kkzjBg61RotKo81j10O4XmkrXApIpEAyQRRjDKqM/lAIUEZMCJmSLJxf2AaLBGOb0RnyzhYY8XoCUeLrCLEo1+kIkUfIODXnc6RpIUZnNRSifA9jytN7eumIsRpqdhXeHCOuXbWrsH6hG2b2+g00HteEKZmqbGvafRmtwfIOCjGyVoByUQHkWU7c75P2rkj7HZTxiNMI5fg4jiJNenQuY8u/hDXyNEZIRa3RQJSh/YUwhNrj5Kzg7PSSuH9F9/KMwHNptRpIRxFVKwwGPU6//gNBFOIEAd1un1ajxXAQI2SGF/g0m1YCKUVBNtScnJ5Sre4gpEu1UqHX75EOYlTuIJKMQjq4UcXm2igKClIKIzHCGicUZbgPUwanHnlACDlGJ0BQYGy6hVqdIKpbW1Ll4gYBxvVxlM2IJZUqVTUWOUeOwHZM54QYQqHK3X00I3KBRlycMzGNSUKMT7sZnbWYQpARwo8J46malhmUC4GavirskzN1jmC0KSyBaUOWqeJrEW/9/eV3FznNqeI3a2gMmyPnTI9uSRQsJccnJK4QIwS1wY8Hg0EZXDi36b3zlGRgyPLEnjyOS5KkHB+fUhQZOk+oRiFR6OG5UOicfq/PydklgasIowZJv0unM2B3H/Ki4MWLV1ydX/DwvccoFJdXXfLMxsyJqlXSPCMMfcIoxPdDlEk4Pv6aYQxBL6beaBBVIqrVGmlqLZk810Vrjas8ezJiPfcNoKT12GdkmWIApZCOTcUOEsroAlKAqwTGSDzpWN5LKFCqVEGMyEJpkfPa+RFLv65/Ypb1WFt24b6YaWrZ86vqXKEAma52KSxN+b6qLGuQbP7pm9qTz21em8AdZbbevEGYLjv74LQHgCoXXmEExqbysr56aUzcv8DUIpI0pRCKJMlRUpLGCYXWJMMYk2l81aAQEk9Zf8MkzXlzfG5zdCrYP3zATquNLuDV8SnDQcKh9HCDCnFuiC+6PP3oKa3WDkIKBvEA5Tq4jmKY5Ph+hd3dvbHnQyEEjh9gpM0SjbBJZKXU9jQUkJkCKRzLh4nyxFROiVSy5DOtYfnouxQOSigMtk77sYhtx2syqKPNbWHI506S26RE3+TZdWW2Qc5N4Tbs3abPbZs7aNnpfT+2tdd17EYbymqSxKand8qTRpFkOW7pNpYnAwpfoXPN8ekJ7QMJWP7v/OycnWaDYZwSJylZYtPXR0FAtz/k2+ev8aTgvaM2zVabqFLjatAnzjT13QN29o5QjiLLoVGvU6naVPdB4JW2vRlSuHS6Q4xwyAtBpVYj1zm6KHA9h9ALkK6LlC5ZmlmEkdaHVEkXoRSFkbjSswIT5dixEArh2JNxjJzKpha0gcgsUo5sS8V44EdqqMVxvB6uX9arYuPcdNFtUve1MNftbVuffXxxDO4lideWsJZqWAkTp8ftP+vqZLLzCyFQjoNyPbSQOH6IAbIkZjgc4nkBWarpdvpkaUoQhiS55v/+4RuevzrBC2xWsFQXdLo9HFey22pQYMiMYXe/zW67TZppOp0ezZ0WTz56Rr3Zotsd4Pk+B0dHOK5LluUkiQ2ULKRNdZ6kmtPzK4T0CKIqrh8wTDJQDl4UjWPriAKyNKHQGXJ0MgoHodzy4yGVB8rFlIGulRug3ADp+gjl2Zwu06emtKcsI2HJSAUxp6BfBov3boBUU0KOTdra5rMx3JKzEmt+bfT8qM/M/V3yLjd6P76HAF/rdqR5SZzjKILQRv8edi8waUa328HxAnIUUaXBwaEgCiOyPKXa3CGq7/Dq+JwPPvoAJwjJu93SWz6nUvFo7tQQBlrtHZSr6A8HZLnm4ODIButKM3rdLu12m732HkpITFGgHEXkuXiew2DQwwhFvbFLVK2jXB/HFARC2JNO2YBgeZqRZylpv4frh7hBHaVClGslsiDLlAeWhEcopONbIZEQJb0qEUaiSmmoEVbSuUoieVvycJv65ufrbfRnGcyce+sIgU1o35uyaDd5zWvauhPkXIlu1wmUFuiw0e0RWetSqTao1ht0Lk7pXb4h7sUcPTggyw1eEOENM968eYNf8WkfHPHZ55/z1Ve/s8bYQpAZg3I9+sM+aRZbZ2shiLOEftzHlFm62geH1JtNTl69pnN5ydOPPqRWq+IoB51r0iQmTROruC+FMg8ePcYLrG8kgOf5gE2FV+Q2YkO/26XTOSUIq3gVQ0NGeIFNLyikHOszlXJKErYU6JSCookoZnontqMuzJQYY5rEE4ub4GgdrFoPmyKXNa1cLhMclzWwGO94A7gh4yhW/lhXcIMyt9RTLq1k+uc1dX8PoTFZgbRm6rKV2rrKJarU2Tt6yGDQIxlckHYSsiQtkQRcz2EYJ3ihhzQFrVaTD59+SBwn+F7ITmuPy/NTtJFkGhtdoNPjmz+9ptXaodmoEUYVvCDEcWxoDakk1UoVx/Gs0tyVZP0eojQ4Pzk+ptvt8f7TH+EFNYzJrPAKmz5QGTC6oH/V4fWLl3Q6Fyi/w6MPGwjHRwUVlBtaCyA1QUaQpQe+mFr9I5Sa/Joft02k57fZ4BfqmtpEl4GN+yYWylht2RrW5k4QYUVlSxFt2cVZ/eu1Lc6pG5eIutb+XAebRUK4BjYSO2zEYJuxyYcQoByHIIxo7R1gjMZVBcffSvpxD42N0h5WA4KqzXbd7XTYaR/x6PEjBr0rtAY/rOGGKVFdU6mneGGP5DLl1Vmf06uYZquNUB5IGxIz17pMPW7TyFvzdEGS5dSrFbTWfPfdc05OTvn0Jy5epUoy7FmTO6wk1mhIhimnJ+d88+0LUq158HiXqLZLVN/F8StIZY0FJgIeppBy7qxcmIdyUU3RcssEK5Olt73QZ9NyotRRTxsDrDo0rVBZ3NGJtLR3c7+nGlrSnkEs6evddGx+va+zQVjV4h2enOtHfK0h8aTU+KCwEk6B6wiqtRqO95haNaISVelevcKphDbZrDF44RVnpyf4lRrC8QidEOU4XHavqNaaqKCFE0pUMCCotanGDplOeHU2pN5M2DEh9dQOh3Ksf2Z/mBBWLbmqc00QVDBItNacnl3RjzW9YU5tz0c5GhEIHKMxCNK84PSyx4uTK64SkE7EzuGHtA4e44c1pBwJeSaGcuP335j22uy0nK3/9rB0lmcP97kCS564fzZ0pt0lsljGo7KC4rxZk8vslUYwP0jXwx0i580kXiNYqjSWVgrmCEnoVPE9n0q1Sb97RpYMyLOEPIkJqjFBLNhpPyGq7KOUS7/f5bKbMdQ+hXJQvqS6U/DBRw0++HOPJB5i9IDX5zGDpENzV9PKoVLbwQ1sJrFa04yNAtzApgp0Ax8vbFDxG/RiTaYlyqvgR9afNNeaOB3STwXCb/Do6R67Bw949OFHRPU2jucjxJQ5t5gsoHk02tSYYGbkbqhimFGLrDltFs6maygiM7b8Kp9/CwKisqUl31ZfWX11CqbGdua9N8Dqm6hm7pfnnJ6ILTo3ESyU7j8j0Yjj4Vd8PL9CnqVkSUyeJbjBHkePU5rNHRvaUUiiWkZQ27d5L4oCYeDRE01agOMGGKMZDDucvH6BThOa7YeosE6z7VAYyz/mwsd3AoIgoNA5pihwHcmf/8VPSQvwoiZG2nySvueSO0OcQlPIlAdenaMnDmFUJarvEJZ2wIzIzdG2PRqisZnK9ufcKqpsU0f39RVuADPSppHedWLSt7B2742sna/+jhtaVdU9vYtYO0l5Uo7u7RWy1++wS1I/GKyLkijdkozAGIUwxbhPprAeLAZjw1MU5ToRoDFotI34XZ5WBRMFviYnTmyaPptjESgydJaQJAnK9XCUZxOoCoPRGiEMwzhBYw0F/MC3/phKYbSNsFcYbMJWVZrilZZAs2ckC7ykWLy0YrDGFawtdlPk3O50W44A08i5UPc9I+cE1jd0U6HyrWAZle+FS3uwHjmzeEKU3LPFxHLkHPkhaBCmtEGVE+QshSmF9YMCU6CMJRgLAVpYrw5hDMqUng4C62snrMdDAeM8NPa7Rhob6a0wIBghlrGhREYyq1KYY+2BbUwMU1qRzxiHM9ksZiXSYoEXFCx6hIyHgsVDdiPkXKFDWRRY3HaFzjawwLKMZFhTZPzdI8YdS2uva2qLvi+fv7KlFci5lqy9CZ28yTPLF8L0tWkeBawhk3U1EuXzpjw5Zg4QMS1aEajxs5Myo+dH30fKfYtUIIQCYyPEWT9gUXbCIIycqmpU4QgRrf/hiBCfvI6ZnIhGYsQk1t60iGA9XzTnKrVQds1aEXN/udm8roYxPb6+V/OnBYw33LvDzzU1Tc3H0kGZL3gdjm7Z6evmbxlsjJzz+qq7pgRmd9rRRduaJZGmENGMylv+bRZlJqfF+MrC5mgW2kRMTtCJIm/8wOz1masTxBlFdJg/D2d08wt3Z0rO3itfeBNcmqlHTKM9ayfsRifmTH2zp+WEy4RRoqvVpOxdIuayvt3i+Tvo2G2pke0FQob7VVWthGlEEsuuTn4tIMh8VXNE4cyELOeVNtEIzOD60omZ4jc3gtuMsFj69cZQvv9EmLWu1SWnpZiq5F5gZkfegJRY8uyq298TbIWc0xOz8rTfYrdYNX534VI04ZM3WBCbVL1Jmbew9r6HXdHCnazd9U+PX+1G77i4c25eTbmljPjhcaSHJdXeSFh2s0lbi5wL1iB3vELuc41NCLvVrazbHLbjyya79ibGFrb0qtZXXF/JJi2W33R27ptV2RbmKeVN+7SKPVw9xtt2aKqtuZhXawVr4/y1YmnZNc0AW5O16+iau53eu6hNMNEpmtJ6Y4HSYsmOyXIkW9rPqShrm1lBjTaOWX/McfklfNhivbNS32X1rwUxEqzZ0saYDSSni+85ebf1281WYCZLbNO6FvteitS3pbaumf9NNuyFMreQvW3uz3mthHnb43493Amaz82PuM1IbQDTAbHXF5x+v6Vc8zVw09GZpyXm+FLDjPBp9jWub/M+5mweNpvBLTB74zrvd+0sg82Rcyk5tR1M7Us3rmP71lbrvm7curnV098j/Tg5q+dhRms0Kr1xP+/qhZbN2ZKW5m/fsvn72RBvv7ZvYb63/Ygscjj3zXXOtrqqxLqTbuW9axB0I551nhwbUWMjMvEGhgIbldnw2tuH6+ds+e0tyeprqcDt1sTydm8/om/Vn3OKa3mbza7qxPcCM/zaogRj4/G5bcyedeT3pjz42zNi3wxuctDfjWzjfuBmMYTWgVn9/fufyh9EJ354sOKQmI6L8/8rrJflb3D5ekr8xnD3J+e8OHSGhLibY2tjEfsyf9ENKlpPkv4QlA53DIvC4Knrb3fOlj9z3dP3MR9LpLUs4cPHCozt1IyblNoaOacrXd7A3NWZAiVfcAfqp62rKBsee7/P9G2b2tbwsBufMKXCZNlArpjj227MMwbnc31dH8v2+5mzpcOwRQX3sYWuqm+2f3eDmHADsnb+YFxfYsXdOxi1rXfhsmExWmlzm4YtdPt+re/EVHvTiCdmb8385W4X2k3qeZtzNr9vzvDgW/ThTsZrq/UgNm50077dguc04z/r38EwU+Ltq4sWm1x14b6p1ZktdvJtYa+4/rEbwg9/zsSoc3NdWAZm5Y8768y9Vb1R8z+EyNbv4B28g0W4e2ntO3gH7+BO4B1yvoN38AOFd8j5Dt7BDxTeIec7eAc/UHiHnO/gHfxA4R1yvoN38AOF/wcc2B9hwPWD6AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "img, cl = next(img_seq)\n", - "array = img.numpy().transpose((2, 3, 1, 0))\n", - "plt.imshow(array[:,:,:,0])\n", - "plt.axis('off');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[torch](https://pytorch.org/) implements optimized function to load and process images." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "trans = transforms.Compose([transforms.Resize((224, 224)), # essayer avec 224 seulement\n", - " transforms.RandomRotation((-10, 10), expand=True),\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor(),\n", - " ])\n", - "imgs = datasets.ImageFolder(\"simages\", trans)\n", - "dataloader = DataLoader(imgs, batch_size=1, shuffle=True, num_workers=1)\n", - "img_seq = iter(dataloader)\n", - "imgs = list(img[0] for i, img in zip(range(2), img_seq))" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAACxCAYAAAABFe9cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz92bNtWXbeh/3GnHM1e+/T3Db7zKpCNWiKVQUQEASAPSmJlMiwLTsUIi3qT3D41W+O8JP9qAdHOGyHQ3bYtCw9WGHLpqWgLNNBUiQhkwRAAIUqVFVmZXPz9vecs5u11myGH8Zc+5wsNJUAqyqzxPVlnLznnrvP7s5cZ475je/7hqgqCxYsWLBgwYIFCxZ8WuE+6SewYMGCBQsWLFiwYMEfhqVgXbBgwYIFCxYsWPCpxlKwLliwYMGCBQsWLPhUYylYFyxYsGDBggULFnyqsRSsCxYsWLBgwYIFCz7VWArWBQsWLFiwYMGCBZ9qLAXrggULFixYsGDBgk81PlbBKiL/4Ifx4CLyV0Tkd0Tkd0Xkf/LDeIwF//Lih7hu/3ci8khE/vkP4/4XLFiwYMGCBR+FfFKDA0TEA98A/nXgPeBXgb+hqr/1iTyhBQs+JkTkzwJb4P+gqn/ik34+CxYsWLBgwX/b8XEZ1m3988+LyN8Vkf9YRL4hIv9zEfn3ROQfi8hviMjn6+0+LyL/UER+VUT+Z/P3fw9+EfhdVf22qk7AfwT8d39QL2zBgh/SukVV/7/Asx/hS1mwYMGCBQv+pcYfR8P6NeB/DHwF+PeBL6nqLwL/W+B/VG/zHwD/gar+K8AHf8D9vA68e+Pv79WvLVjww8APat0uWLBgwYIFC37E+OMUrL+qqg9UdQS+BfwX9eu/AXy2fv7LwH9SP/9bf8D9yO/ztU9Gn7DgXwb8oNbtggULFixYsOBHjD9OwTre+Lzc+HsBwh/hft4D3rzx9zdYWK0FPzz8oNbtggULFixYsOBHjB9WrNU/BP4H9fO//gfc5leBL4rI50Skrbf7v/2Qns+CBR8HH2fdLliwYMGCBQt+xPhDUwJE5PiPP/2zP0VOkQfvPeAzn+/Rkvn2N7bcu9+zPnEc9pnnTyKf/9IpKTre/vYLvPe8+eYdvvWtJ/yVv/ozBBdZry64e9Zx6/yMF1cb/tZ/9OvEFPmpn+7403/mPqqB9x5sefEEyhg4TFuSZkLo6bsOHzz7Yc92F1F1pitQ6LsGHwA30jaCA3JSrg4JxPGVL3+Rr33tpxGnHA6XPHr4Hk8eP2S3izx6FHn6TMjJI2RCcHivuAC5FFLK5FRAFcGhCikLJQsxKiUXSo6oRpxX1quW2+drVr3j0aOJDx8eSNn0DoqipaCq9UMQEUAQASeKuMJuWyjlh/zT/xFBVX8/+ccPFTfX7r8s+Jmv3eX2nR7UUUrhr//7P829l1pEM1oiORdSSkwxsh9HYpoQKeQcGYaBFCOioCLgHL7xhBDo+56+6UA94xiZxshhf2C73bK9HMhThgJasGslZ0LrOT1fc3a+5vTslM1mzWq1pu1afAh0XU/TdATnyTGx213x5NkTnj17whhHxEPTCiEozgNkcopMMZOL1sdRvGvoug2b9RnrfkMbOtbrDU3TomRUhLZtCT4gCOIdf/s//Tb/m//lP/tY7+knsXYXLFiwYMHvxcduhWYtrDY9b3z2NinucS7w2c/fIcZESpHVpuH81gYfCj4IX/2T59w5v8PjRxO3b2/YjyM5jkxDoS2e027Fz33tLb72J1/l2dWHfPjgPTQJ46h4aTg98cSQCL0ypoT3hbYF0UQXhJ0IKSpFlZLhMA6IQNMW1n3Ai0OzEifImvj2t9+jiLLetISQefb0KcM4cRgjMSsiHpGClmyFJIKqIyclTkpOinOKiKJFybVgLUVRtcrSeYcP0ARP03iC97z8kme9adgPUBByzkzTRCmJnDOqHiHgRPDeEZqCbxLjkChF0OIpRck5k5NWla/ivOJCoWkE7xQnwhThwfvfU+XK7ycWFlTt37S+fws+3XBO2Jx0VeStfOZzd/jL//ZPEuMLVEecOH76T7zM7bsnSAqkmLHFkm4cjup3l0LJBS0FpKBF6xqZ/y8oSs4FkWwHsqCgxQ5VzhGahrZraboJSkazUFRwjloYF2JMTFNkGkdC8DRNgw8eZydLVO1AmEsmpkTJmZwLRbHrVwpKAb1exCJyvD7FCUj9B3WUYv/uEESVIvaacy6gGec8DvCNw3mh5H/pzjQLFixY8GOLj12wDsOOlJUy7fEBQhMQCRQyiOC8J7QBFxKH7cTX//kW5y7puoav/Ow9Yrrkcjdx2Hl6lFuniZIyq66hCQ2hadgdEjF6mqB054I77xnGgRdXO2LagxM8nr5ztE0gxkwaCzHZpuu8Q4ugORMclJSZCuAdl5cjv/3b36VtlX4F0zThHYyjMo6CarZiQKwA1eJsI52wgjUrzoGVnZCLoEUpJdkbJIr3jqYRQuPx3uOcI5dUi0uYbwpgxI3UIqKgeASHiAMtrNYO5wI5CTkrKal9fwGk4LzSroSuU/rO4X1A8ZzenvDeIQiIo21GmgCqhRA8OXmmsWfMijpHTonHHwyIKzgRKJ6chVwU74VN37LqAuKgZMc0JpomMEXlu+8vyU4/LPz0125zdmtFcC3eB1577T7/9l//JZLuyJoAxfvCYViT4iVOoOs8mozBPxZ2qqBKKcXWdS1aHQrFOH9R8AhFrMQtqqCC5kLUgqgQxBNCW9d8AQHnPc4JzguoB6fkevgJwa4BVShaKOX6Y+4sqApFlFQyKSVKfd4igopSsCvDHb/mUKEWouBwOPGgUrsc9vVSCrkUVCCVjGpEPSDG1v6Fv/xZ/s7ffpvf/Z1l/S5YsGDBjws+dsE6jQdjXErCuQahAbwxkwqCr61tuHPf8+rrZ4TgaPyaGDPjNOGcMo6ZISZiVC6f73C6gdjSt+dc6gWHcaSkTNt7ujagBNoBYhzQ5JHQ4Z23VqEzpqUUrZuVbVgpKZ5ihZtvQJUYFecKmcJ2yIwxkbUg0kIOOG+FY87WirdNT5kmYyCLzszOzFLZY5ZScM4YMO+FJgg+2H2BBxFjgaE+t5uMF4BSNOHEAVYEq3hSSZXxNYZVK3uEYOxSlQ+EUNhsWkSgFE/MjUklREALoQXnQIsnZUcqEHXAh0AIAW0Cr32mxfmJrgmQO4a95zBl+t7xyp0Vt89bghdSbLi6zJydnPCTn3sTdQekeUyWJwjK2eacnD1DfIFzK271P0eJ/Q92xf63AD4Iq5PATHOLKH/x33qFz3/pFtOYGQ6Z1z53zunZKavmlL5bc7q5T9/1TCWSi60dQWnciqIDKY1QRugcwbUIvt53QKXYQQhj30XEDjTFilNbSw4njqjlyLwrde2LteBFTRqTU7ai1U54dt9OjvftvDM21fu6Lot1CHKuRWstiK2aJZcC9bDmvcOeqV2H6oyJFbEDnJOEQykoInYwyymR3ATN+lhQu1qwWhfDrlpxDV4KzrsjMbtgwYIFC3488LELVimKUzCfVoMW+1YnwT6c4JzHSyJ4pe8LTRPo2o5pUGsLoky+cCiRISrPng6U5HBtSyOnZB242l/SN95a75IR71BpmeIBCQrBfGLOKZBrq9AKuaKKZmwzFMV5was3VkcSXfB0nSPGYgxj9IDDidC3DTFO5JzIxRjQkp21TVFcLRStxZgpOYNasQFSX789j3mTjjERc2FKhWmCFAu5MknGNEEp2f6k/nmsA8SYoypRKEVx9c7FqlYEYdXDyYkgePY7aIOQij0nRawpnAqleMYh41uh3whdsMImJbjcJ3ISRs00ogRv0osUhaIBCYUsylg8g0KbWtbdint3bjMChzzwxmu3uX2+Yrc9sN0XvHuZV+68wq3zzQ9oqf74oungJ76y4mxzStM4br3c8bU/fZdhSDiEVV9Yd47TVUccC9OgqARiKQQinokh7ujaDY2sgEQh48Sz6m6jJcKoOKtAQZSila1080Gosu5AzkpO12vQOWNh0brsrGI9FsaJTJwyNMm+txaFRe3aOAoJahHovTfdaGO/F0pWppgZp4gPDc5FShPx4kAgSKBpWlarDeM4EvfT8eCoLqDOCmg7hDmkKB5H8B6p0h9RwYvHix2c5+c3X19IQbTY75TijgfPBQsWLFjw44GPXbAGFwhOTA9WGkr21QwRjGEUa9G1TaBvYd0LXbfGSQ8545wDIk3jmErk6XYP0hD8itt3T/GSQT2lOKao9pEiYypcbTPbnZLbQnC2qdqHtTSd98wRrqoFrW1O25ATgtCtGkJwBA9FHSE54jS3yl0tgAtOINWNOudr3d/3QrDXbBNmqYyRFZw5C1kFTfY64qTEWNnbyjLNDOt8/3MRizgzviB14zXNbFEQh7HZTurjC33ncT6ZRGISevWMKVEKpERli6EkkyysethsIIiDCBFH41pyyuSU6VpH0zhyL2Z2a5V+E+l7z/YycrEd8f4MLZ79NvD+s8ygnnW/Zt31OPEE6cjTXUQc7b8EBOvqJNCvPE4ELYXXfirTnyox14NGgFc/o7z56gn3b5/RrRzJwdq3pKjEFNlrJvhE4xpyOaAZQuhJJXKIha49QYlISaB2eLGOhuIFvBOcBLwEzHIoR0be2uwOKnepR9NSZVw51qv1dpVhLUouICWTfEYwtr8Uuw9VBSdILSh9EEqxA6KoFZeoUOp1McWEnyJOHKmNBN+Z1KRoNRiK6cHVimDnTI9KfX5gUgKHxzuh8Q0iQtKCd+7YfbAuhRXt9joKmgtOMpqtoF7q1QULFiz48cLHz59UbDN04KUh+GDFnWY8QuOF4At952hCS/AOT0+OxnwUzLgVnO0Vz3YDOQVu3brLOlrLnqQEArurA8Ngm+wwDjx/kUixwRXP3imhauZC0+J8JKg3/Z3OG1+h7rtoUXzw18Wfutr+bCgl1Y21oCXixTbBURMpZSq5CpjRxMSr9nfvXG3jz2/PXIAKOUOKdvOU7e8l26Y5F6vzd1khD6JKzhNKY/pCHOoEJ9bez6VAFjCJK3hP4zxdB84PIImu72naljAO7IeJGBXNHvAo0HUNJ2to/ISjUJzistCElpgKOY+A0DRwq+vYx4Gmzay7zP2XOu7dbvB0BOnJKTNOiScvJrbTxNnpyPnpCW+9/gabvnB16ei7U7pw/sdZl59qvPHZhnuvryna0DSOL3ztFl/4yXNu9YH9MPKd997nydPnxAj7MZFyIY6J3eHAyapBg+LaFu97UGE4GEM4juBaR0oJT8DlRGg9XdviA6Q84MnVEkVdmxm86Y0d4ajptMZDZT2rBlQqa5+zHj9QqnJF8M4jKLmuTytklTFGtAh9p3gfoBKydh2Z9tUUB2YcdM4RQmMMqBPTRmPFe0qZEgpaZg23ree5lV/KLLtRez6Cma7ApC4KXoTgHU3o7LYlV3bXGNWY6/WKFdVFTYbjAe+VlOBP/tLL/O7vPP/RLZoFCxYsWPAvhI8vCagudifO3LYKqOKZN5WM95nQFlSU/QFKYy7f3WFiu59IuZjmNUMumSEoL652dG1mdeI4Xa05dANXlxMvtiMinpQycTLmNYlnHJXSCLFktEDwLaka4820YZuoqjGZ3nuTCqjYy9Vgm3YaoDhKZW1Qh3eeqVi7/yb7af4U/ch7YZt//Wc1o1bOpsEbYwESXlwtBK1Vq+WaPRIRxFfma5YykLAwJm+mFjEpgliztz6WfRZ8YLNese6hX7VMKVrRog1964gpcygTUxRzWuPYbHqakGkCDDGBKE2TudVm+q7w/DIAgb4X2lYIUXBuwgXYnEDr1+QpkPYnTHEkpcyzix3Ptlfcv3POYXDEMdC4Dbdv9az6ExzrP97K/IQgArfvt0c9dtMrP/fnVpyGQNM3XF4mguwIJ2va1Rmn5w3NKpBypuBpWs/JukPLCYchkS/2lENBszBNydbGGGmkoMFYT5VE1oacA+OYADGXfEm0bkNDQDUx6UCjipNg+k2x66gUSwSwJWnrS7FDkOBRF8xU5z2+KE1jLfiUEiknFKHx7lhYqpRqVsJ02hkSSvR2HZRjB6LUa0st0LkWyEdJQBDqLwrTtjpnWtajBvc60g1meYyZGp1xyHZtFqzzgCVioMXkR84hziMkcsmkPOKyo+AR7wjBTKFFC0WzGdI0IFL4hV+5z3/8v//6j3p5LViwYMGCPyY+dsFqsUvGZM7xTiLmmReBEIS2E8TZ5jSMhRQnVDPPL7aMQ64COSXJhJLp28BhumI3KW1ZEUJDv1qhumO7PVCIOIVSjHPMuZBKQXMmpkwuQkGo3UQEpW2MBc4JUoyoJnMrE4hJyfuEUM1URUgp4UpBGk/Jlggwx91U39KxrQhU3R6/p1gtNRsqJ9PRpWRFtckLhOAtUidTi87axhVXtapmy6JprN2bUs1kvZFLpZUxcs4RfKANHZSCJiXHTMl2n8F52qZHSyTF+j3e3qnQTtw6czy/jFw+23L7THj11Q4njm98J/P8eTqaUoI3s8z2oLjGsVqtuXOn5aoEpu0IUojjxH4fefLiit0usdtnzs4azjd3OV+f07Zn/8KL9IeJuy+vONkIJR44O1+xurPmq7+yoW8bfNsRy47t5SUujbz62hkXLzLf/K0Lynbi1kuTSR6CktuGpJm2ddw6X7PqHJfbkWGMTEOmZItXipPiGwGvtKHqrL0lSMSYyRrp29uIC+QyUXKpsVETY0mo6+mbthasVrw6PEkLRVOVqMj1R9U8F6jMqJW0ztVEilowFq0SGwHVTNZCKlawWgaxx/tSD3LUNW/v4czc2sOZ4appLRdZxbz+9nhSuyCFGCMpZ1o/R13Z6wmNw0XTpWoqqJs1QNRkAmdyGRyuali9r7IcCqVElGImUCdkzWTN9nuqGhctkm7JcluwYMGCHyf8EUZSWpvd1c+ViJWIldU0QzwpQ8qF7VWqBiNlGhMxggueUuOhQijEuGU3BdxlZpy2rPsOLy3gr1vn3jITc6LqQCPiIs63FIWYMqrOzCbHnMmaq+pKjemBw2Fif8ikWOi6pmrwhJJgzGZM0lKIMVtOJaUyVsZuzuar2fyh1V2tWkg5m67QGzcEjlx1owXFuUDXeSjKNE1MMaJaKntaNamKpQw00HjHNM2FRM3JlGst3zFhQAXRhjQVxsEb69RYVJUWZ2kJzr4uUvCucHpWuH1HaTthfzUROnjz1cS697S949d/c6JgKQWFzBgzL14ULi4zfat0beAyJ2OqnUPIaBK2V5FhENp+Q7sKiIfgV/Tt3R/QUv2jwznh5dfPmNKAlwCl8NKrgfNXhPN7t+hlxaMPLyg5M20n3nito7vfsd1uieuW233Habdm3G/ZTwPiB5rWWL/9bqTpB9o+I6ElrRwJx9p7bp2t0ZMVq34gpsI4ZMYhEaeJKSV8bkmjw6Gc9sq67RgoxKy45Fl1Dd73iIppP6cDKiNZFGlv0bEyM1MZiWlPKWO12F3DkgBAczbhs9qazhSKQHFSBwTYnwU1RlaUVB39qXYHcql5rLPDH7vy7RrwIDPDa0kZ9u8mIcJrNTy5o1kwpULKpaYG+KpXBR98Hdrhq7t/fjGVMcYkN4Lgvckf5kPcbC6b2WbEZBZZTf9dVPHWzKDUgnzBggULFvz44GMVrKt1S9c3R3YEOLYknSuWOxos83DYZeJkk5pyibXdreQi+AwuCF3X4ATGIfLe+4853ay4d+eEl+507PbZWuviLRWAUjcpy1idUjYjixNUPFlrA7Tko9FqZj9LoWanQoqZKaYahWOt9lIyKc73l5nDx81hbZZpcZaQUIoiNYOVIubqR6ylWhTvgmnu3NzeVGI2dqnrGhrnqq62IZdEzrUlSvXzO7UYsCC0wdH4hpzt/sc4HTW49uZbjuzhMBHjCsmQpkBKGVZm9jnszVTTBIf3FqUEI6dnjtOTQuOF0zOPIqzWA+sOXn2p4+134MVFBrHXN06Qi+PDDyOUHa0GrnaZjoYcJ9ogdG1jbV4JjDGBz2Q9kEpC/yhnoh8gPvPVFW++fo8//Ze+wrvvf4OT5hbTdsv+6sBQIrfvnbLyay4v92y3heyNxQ9ZcU1v7B2OPrT0/Yrt9IIpbVmfbPj8T5/x3e+MDLsD20sFnxGX8L6jDcpJ29O3DZu+JwhMw8j7Dy9Ih4Hd7goJZzjv6BCkaWyiVJNRaehcT+fP0JI5WZ9xGK4oxdIyihQG2dE3a4toKwNp2qEl2doUjkUns6Y6FxBbC1kzqViL3AI/BIolSZTaoZjdV2ZeLEc3fc6ZGCPOBZPe1HXoJKChoDlZkobUtBBvU7JMUqtHOVEpucqKZo1pppSEqh36rmU4c2TBLB+AOYZAxONdQJw7DvqY/61Qql7VHeOstJrQrlsVwnrj+Oov3OXX/5unP4rluGDBggUL/gXxsaqJvg+ERo6TaCx2MRsr4gTvnIWMD8L+oEwjTNGBFEoyrak4h3NCE4Kp0wrs9jbdpkzKyfqM9z68YHs1cnG5IzRV25czKQZyVBsKUKwlmNQ2QkTQkqFUp3DNd0zJjFPGepbaklVEMk6EXNv4drsCtc1YiuKDo2k83rvKPmHGrGoQMcgxV3KOCzpOEmLW+c3mESE4Kwycm93bVZ+HTeuydqfQNI7GOdTbhuvV48STsNbm3MWNJB5f7EguslpbsRLHxDhcgXfs95NNsGoK4gptE0AzcczkUmiCsOk7nr2AwxRY9x5x0DaQojCOgXFScA0+JD54f0DzgYBw+TRz57TFofS95+QEslyxj1sud3v6vXKyGlB3j0z8AS7Xj48vfuUuL987IadC35zRBEdpAnfuvcTlxQvSYaC5c85LL91BeUouHVEVHUY2/Smy6YFAzi23Ni+xGw88fPGCz73c8Lkv3CbFLd/95gHGTBoygxu4cgdWjdKFhpXv6VeBVbenCY7GQ/DgxbKMSxGi8+ROrA3uFAktJ81tWmkQKRSNFM2QlTRl1CXUDeynS6CnpB0lD8zKVZsKleZ41+rOzyDXQwOcWIfD2PyWUmw9oKYHvY6Ks9sl4zDJ2UYcz0khUtMBXGUy52LQOStUTSfrUVf178GT1Ualiqu6bbVJb4o9P4uhmq8hjBWu5izv3JFlPVLJx4L0OulgltdIThBC/b5S349yLGJXq8Dnv3S+FKwLFixY8GOCj1WwzjmgpYZ8W0tOa5yVDXKME4wxM4w1FP9mlml19qKujnBUogjTpExTZpgOqHtK23aQjeWxYtHV7xe0zPE3Yi3Oyv4cp/nkTE6J4DmGlM+u/lxHUVJn54iY+SnPoyDLrFU1ZjXUAPMQPEXra3TmLp6VBzmnI9t8vYMCovW5ltqGNJe0Yk7/KaajrtW5OiJSM94JXevpGm8B7onj9+R6X0DdoE2OEPPE06cjm8HR14LzMA6oCoch1jgroek9fdtQClxdZW7dFnwdpnBx6Xj7XY+85bncJqY0M6WOacLa+whXl5Guu6KkPdsXQvA9Z31P33uaKRLliourh+yGu1ztIpC5e/IGyvCDW61/BLx6eoeYlYcPH/Pay68yHS6Z/Jb1aceqv823v/Mdnjx/QdedcrZpGQ8NOTREHTnsDpyebWh9Ty6emBRKoOCJeUL8gW490feJ4FqLTaqaznEaGVNiSJF11+GDrz9Xh1BMt0qh4BimxBiVBnPch7YhhEDA4UNgGCd8s6LkBDkjqpAik9/ifSGITXcrORsDr1WXWWxoxTwKmMrgq96IT5t1qMzTpGyKlGodcgGVtdTj4ItcLMs052ymKJlJ0MruYms9BFdZ41C7FPaRcraDq3fHzge1WHXOrjkfwrXetZgZ8TobFru+jEelqOLE45ySUqzxWianna856msSZr1uxTI5YMGCBQt+rPDxClasHZ2qUcGMDkIIVvhNyUaZjqOSs6u5oXMx52urEXIqJOcR7xlj5HBIpGyRPM+f71itEsE52uBoXQAX0FQYcgQnVZtpm5BzipCxcT3uuEkVnaygq/mO+ehqLkeHvY1TnQtfamzO9QZ2c+66w9hhISCNIzIXv9eYGdZSCiml+jl1og8chpEcAlNKjDGSteCpaQsy56pmchbT+kqmqEfVkXMkZ7U57d5Ya5G5SBdcE9BSTVpOyEmYpkJJHh+UrvWcbhwhRNQXYsp8+CFsLzvefd9c/Q/ez1y8KDx+WhinjmFSYgQJAprBmaTg6nJg2HnS2LHt9ngyQ96T8oGmT1xcvceLqzNOzu+xWneM04GBF3/kRfmDgG4veTSObDZrTtcbVo2iJeGCMg4X7Ic90XtWJ4Hbp3d5/vwFq5OGlA9cXu05uVOIY6brOzukoOQsXB1GVmnL+qxhcw7jGG1kcbbItFQKhzgSoifUKLS+a9isG8YxUnLEVRPSlCLbcaJNgbZ1FPbskgd/zpqO1q8Q5xk1WuC9FjMOqZmLCA68IFXXae11anxaoqiZjlTtGhPRY8FatDKrYrprGzLgzamPHovVYzfd/mZue9FaclO14AUVyzkVZzIAcbZevfd2/YhQHKScyCixZIJmnDpjXF3tOghQTX+zXrWqcasMSXDiaxqIr8pd61bkYoX1HOCh9fXmbN2XOUKuUrEctUMLFixYsOBTj48pMFSUTNPcYPicQ6rpIaVCinoMqrdWt7mVZ3PS3FKfxkwkM8VISgIS0ALTqHhXkE7MIZ2VHEFLOLI6c5yOq5uUVC7Ie6Hre4ulmiaGYSRnKvN1PU/92tmPtUlrq5DjhqhH4kVVzCgi14/knZDFlH3zd91EKYqmVE1Z1tLPqhyGgUFN35erJs/7edZ7HY+pQo6BmC3cPetEzo4USzWfSG2TamW0xN7/IpTsSdHeh5yAEnBScJKswCGz6oXsCoc9PH0cOBxadvtMyYl3vtvStplYwDezYa0yWSr0/chq5RiuhN3WEUTIJbJPE88un+C6gaYB7zO73XNyOeVk9TLBtxyGT0YScNIF2O/BBQ7jQOfg7OQUJNH2ntt37rI7jHzujbcI2vHk8YrghSk7ht2BcbtHNmuapiAZSioont2YKOq5dfuc7V3Pg/euyKMw+EJolX3jkOAhmMkoNIE7t8+IceLp8y1xirhNpG0aSolsdzvWq5bgPUULk+5Y+RNsPXqkmANfcaja2FLrQiRbY6J1oIQZjXJOlAw52dpLudgIY61sfo2OMp1OMeaxXgem77a15l1AXa5dgBq+r5kitg5VFVFHEQvpF9Q6F1KOof3iTAogzoMTfNRjioAPARcCODMWFtHaScgmFUDtIHeUz8ySG6mFq6+JCHq8PopaEsPcATreX6GaQz2zrkfUEcJcGH8iS3TBggULFvwR8PEKVi14X2i7gGohlxpplZ1tErVlLU7nceVYOXfdNpy/lpLFUqVcmNWfUueYUxmTmHKV0TlS0aOj+OiMv+4n4qQQPHRNjfNpO8YxUXIyJrQK3FRvmJZyfa5Yi/+jqAVCsbB/V7WnUif2CNaqpFi4ztEzPetR8xzhA7OHJVdd7fwfClkyXoWU7QBQ+/cUF67zKmuRP7NMWpk+m+RlU4AsjL2yRUrV+Zqru22Uzabh9CRw61bLbveCNGSmsWEcxVIMMuxyJJVAt2poWtBiWuA4ZVRMA4nLtH2HC8JhP/FiW+gzjNGSA3Ip1RiUoXTkkhjLc6bxk4kPirvInb5jte74ibde5+nl+zjpGOKezq157bVbPHvxgufPHnP/9j1ee+Uez66eoSWwS5mnz7a8vDllwBNCx63VS+ziBYf9Mz58uOXNtzo+85PnbK+uePJ0hCCMkxJGIUwtYZzoXIMPLW2/sqEOYU/KhbYN9J0Z1eIhMY0j2jeE3lFKsglyojVDuME5S6LwIhb35BKaleJcbafb+pSiaInEpHaAzIVcqtY8iA3YKMU03zLrqUud0KXgBOcC3mU7oomx/CVHSxcoBVw5FngyM5WlVKLW4YIntKZf9Y3HNY1lpQr4Gt7fNi0+NHYdV4140Uwh3/hdURnVamK8NlyJpVNUthV1CJ55gpfpeCGLMyMlNg5ZRW3wVuAYx/UX/sqr/P3/6gEfvLv/0SzKBQsWLFjwx8bHKlhFhBCsxYw6dKqaVjUGTlUQX6rbHbMc1wLrxr1UDR1HV69D8EFoGl83TysgxxhpvK8FmansbCrP9f3W4aSg4MXjcCDOsk3F1clS1Rssxr5okaPxAqcf2XivC0MH2dzGsXZGXc3sKmqZlKYssKLZ1ZYqcGR6bBDB0RlynBx0NGWVQixm/nKuFv05k8lEor0eZ69H1dzqDhspWxAzm1Uln+BJGWPIjoWs0raw3jScnATONhvOT1aICofDFao1MF6d3bcoXe/pu0AISkwJdVaspAjjoaUJBacezYEY4XKbSOpYre+A7hASfX9G15/QNCumSbiUhwyHD/8Yy/JfHN/49lNeeqnntbvnnB8uePviCS/SASHTNYGTcId2FaAIl1dX7A47dpdXlOBIjePZGHk1Cp16mtWa9aplHVuebgdifMaYDqy7FTSFIjY0IBcszmy+JtQEMc4FfNtbASeFJgTa4ImNw43R8oqzs0lVoam6Z3PDO0zTXMRRVIjJEgFoCurs8Da3wcU5fBAkJTtYpkLMESj47FBtKjNftdXOGQNZ0y/KzLqKXUPeCdkBpOP7mmfjkjkp6+Gpxqd5Y5add7jgqi414LwVys6ZPMA37fF5z0ewXGO3ZvOh93Ztz3Ib4Gj0nw+Dudi12fiWkguxZrAiQk51HLQr5Jwswkvnccc1V7rzx7i4BQsWLFjw6cbHY1jnKVcOC9dP2dz/tVXpqj7OOYdrnBV1taDMqTIyUkebOmNuBMtf9AHEi91H1Z1a+xEoprnM2UwT9njV0FX1bqKQxWaYO+cYp5FpjOQ6ClW4nnVu3cBaQM6h51wXkvZSLZYHreNU51an87XgnqdmzSzv92549m/zvKGbetib8oSihWEYLHNSja0Vq6PJUvDemR6wau+8OFBHPsoDtGoGjWUqSeo8K6HvO85vt6xPYLWCpmmgwGp9SnOV0bKdu8D4oLSNsOoE76D1noJpi5MqMYEchCYIJcMUC0UdU3Js/AnOdVhYQ6Hv7tCEDcM4cnEReK5PuLx68EdflT8APNhnHn79CimF3XhFCQMpbxkkMmZPbiI6rWlZs3txybPnTzgMO1xr7/H6/Bb96pRV0xJ8i/iWvhFSesbj8TnDNLHpC01nU8lytIOMSEAIOGnw0tCIJzvFNy39+oQ07Oiahq5tcd4xxMQ4DuyuQJynOxFjtb3iVGlCQ67Tn1JRhmlimibAs1o7QtcdKzgnnlLHBZt2M5FSQjWh2KFwNjflOgp1PlgVzdY1qAzqPDHOjFSWIKCqx+9TjIU9jhZ2xoaKF/CClcHW1p+D/Z334PxxXZeqoRXncFUi4LwnNI1FtBW9NmA5kx7Mr8HSQGazJFANigp1fLGSixnVUkqg0IR62K0yitD4RQ+wYMGCBT8m+COMZrU2d4qZNJmRQWvF6NU0j6EOD/A1/Nv0aBYZZRmMtsHNW8Qc+1RKTQWYO/ZFiNHyTbXM4xnluuDzs6bNisqUI7gRcY7ddkeK2QrO6qa35NW5gOToNqZ+OutbvXc0wdMEjwKpbqiKUHK5dljDR5iZY6h/1R8cTVhVdzcPGrhZGFPjdXLOqMxmkCpRsCeFqzFEYAWBU48rvhYCig9KU2UYmq2gdM4K1nW/YtUqzh1IubDbZ8ZcGAZFsxDEkbTQ+sDZOnCybklptFzLAillcoZSAuNe2Op8CIFuJTShoV9tODltGA6pRnKd0YQ1F1cXbLcTOT/n8ZP3P+4S+4Hipbu3+fCDLV9/sOUxka5LtKeC6x0nmzPiMKIlcvXiKc+fXBGnZNrkmMgu0LetHQZyouQBdRnyAXxEvDAMmX0YbBxusJZ6irY2vPeUnBlTQVrPSSvETU/mFod9i2KTz1arnsM08Hi/5fKqGPPYjeR2qs59QNQOdGpygJQzWhKrEijF2uHzWVBu6LShFq0149QVS7Zwrr1eoXPkxfGamCUlVTcKdRiAx7mClOt4rFkrKkBwjqwFpxlyZEwjTW5tXK1mO9TMU65k1qDOWlg7WNo45Ixd6lX2IzcK1qqV9S4QXIDiEHVH+Y79LrC2v1d/1OOWqn/XUsfUFrDJW0JuAuuNZ8GCBQsWfPrx8U1XquQE05RthGRlPW1WeLERqmIOdytYM5oizlkUValFonOWOjCbKK7b+xxb6aVkUlbINbBfanar1LzJOl+8oKSilBQZhgnn7OtzcWitTantcmqRbc/3pgFrZjebxlq1wQtZICYzvqhaZFCpOtT5Gc8b+mzaqnfGXLrOqQS/H763FSkf+UzqY5qGwjlXY4QczoV6vxnvC86ZM1vFQYJ5VKXgcAU0B7bbia5bsR8z+10GHF6UgNI3Db0PtDh8aBjjRBqVYR/JySPqyOq5ujKpQROg74W2byhlwrke51uURAgNwTe8uHzBYXvJ1eUjnj3ffbwl9gNGe3KGkwticgypIzcNve84Xwc6Vwhdg9+s2G1fMJVYVSx2AFMyu2FHdsL+sGcVGtquZcyJmDOda9hfTqThOb7rWW0cu20hHjKXL65oOkfftzXD19GKsmoDp9rQNLfoEfquA6cE7xFNDBMcYiJEi1rTYO15ULxUlU1lTVUtesy5Fiehmq7sQCE1lH9mPktRcBYRJ5jmxnn7N09E6uALZme943h9SXCEEGwtZkVJdg3UGKuPNBfUmFfRmtwhmPO/yha0Dj/wIscoPK2Vpmo6dlXma8p5V6e/+WqMsoI11IJVcZQyx91BLpazTAHXqCWVzJefSp1GN6HOH2lZUeW//zfe4H/xP/3tH82iXLBgwYIFf2x8bA2riBV8KdnIRmp7XsTYFqgbnbMQdCsnSzUF1Riq43hRX/+cJ2cJxQN104qx1JggKw2dsyJSavGb02xAqmzQjYLXJljNhalhHik5f/2jcYy17emE0DQ1I9LVoQTXG+hc+GplPz/SSFSpRaQ15ec485mNkrpJV/2B/bvMfKXU5KCafCDXdYC9P5mS5RjL48RRst3iaJohU3D1UWsGbVakNEyD53L3gqxbkMB4yJR0bRorKUP2pEkheJpmza32lGm6ZBwOKGN9hpXN8qZnbEKHdzbytqilP4g2NGFFzoVv/u67PPzgCu8+mUlXjx4/xTWZ26sVZ/2Gk5fPONl0UPb43CDynMyW1794m5dfv8c3fuMdDrsRKYIPsD1cER1MKbPOLXfW95jcGYmJfEhMKbPbZqYpo87TNI5WTKMaU8YLtI0nOkFyIZPo2oa2X9E7z8oJMccjoz+kzOEw0Kw74iqTQjQzVK6B+jmjJdd2vByj5LxrLdGhWBPeNR2NYtdJrpOtTECCVs33fMCSuqBLrq35oqirrfxa3M7yF5kLXmaG1P4+Xz92QDO5jsVOVYbWCXNuKkKNcLPDXCkF76q2XedhBFJZ3WDaWD9f2/Ya5nHG3nsymLxHBC8BL4GYR4qoyQ5y1aiqPd40jZZyoJBLtlSNZULrggULFvxY4GNVE05m1/s8iaa2ykvd1ERwXinqjndoznchpUgp1aB0nOVthVzJlluanYKEKhvgGOVkhiZvZglXwEUrgNRYH2N6zOQhVceXY6yJAtftRJjNU+5Ga74cC1GhFoR1M3TOEl5vSgeom/OMudh2zpsJphbIMxs03+ZYOMscZl7f07ks1TmCUmZ6ywQMlalF8/HrVCbYigFjkVwTcIUjiz2VwmGaiLkFAmkQxkNhN0Yy3u6rZKS+h+NUKCvLf81ZOb19iojn9pnn8mIgxmTPvepmfbAs3JwKbXAchoGYRs7O1kyj0PhTbp98hsZd8vz5Ff460OFHiofffUZ3Uri7Vu51t5ECm/UpiQ2b9Yrt9kBKe0q65P5Lb3J+Z8NuO9paQGm8ZfvuU+S17h5n3S3GcGAfb5PKSJoSOR5QhK5tIWZaFxCviPc0TUPrzdA25Ewsim8aum7FKjQ0peAi9G3Luu8oaSKnyH4/ctlc4fEQNkiZD2AF7zwBIZbEcBjZN4G26eikxXmPaz2lyjqSS2ZICsFYUWcxaK467EuxLsn10Aw7fKq34tI5Vy9zd4yWgqr/FCtK7RhjecI2AMCOX178fIQ089ccUyX1utd0XbRmSwqwKLWAD6Hqs6tpzUnVy9rvgeACfj7iHc+ANamkZDRnigens6lyvhYLOWVyjQXJpRBCY9F6CxYsWLDgU4+Pz7BixaSI0LaN5aTOLf3aES9ZLadUE+KEcUzEmJhzE49jF+v0qZyytTi9I02Kc+XIhtp0qVok1mLVeTOfzLrWUhx+ZjBrNSzVcX89her6Nfg67rQUa4sfC9bZda8ZVWs1TnGyyTwSauH80UJ0RikZh78uML8H821n2cPMVkuNurIvy43b3WB0mQtjPbJRxrQ2ZFVymluc3jS2ahv5lBKHcaAPZoY6O2so24mrfSGlqv3LxrGlVLg8RPrWM5bM5lyQUvCuwbvW2sU1AzSrciiKc4r3meGwo0hBXGbdr4kToD05wnr9MuvNBauu+zhL7AcOqYx+0xay7vjia5/hyeHAyZ17iER2h8xmc4/NiWMat9y7f4snj7YcDgdq2hLjNHCII5mAThk0UqIV+7YuGtqmQZ0yDYmshQZ7f1OOlUVXoiopi+UMS8SHnlZaghPu3rpNSgnv9mz3E3EYuXBbmtAS8ASRyrIXUppQzXgHjRdEa8GZ7UDnnZmcSh2D7Jwj+MDsrTJG1B/Nh/P0Os1zWFo+sqCzLMUKXGM/kZlj1dopkNo9MMOVFYWROI20bUeKE8Ng6ziEYAfVyuyLeHKpB0t/fZBlvpaDJWN4sYOaU/sd5PDMEW92yc1TxhIpTZSSaaROy5plOvV2uWQ0JYoWAkpKHTEuBeuCBQsW/DjgjzCaVcjZtivnrMBKmK7To1ielbPA/poLGie19rU5PExjSjWDpPyRwjLVqeVQtach2LQcZ8ystefrJ7MRaQ5Np8ZRCYjk+pznj/m21wWjZasaU3T8/lrojsAUE0OcKPNt6542Swrmj3nEJU5qJqXJG7zIR24PR57nyOhaQVCTaOUGG6QflRvYxlw1uUATGooT0/fmQhwtlEhNQEzwjibYjzVr5uzc02w8zVUhfQjDvsGrJ2sh5ongHeMw4bVhipFpiHRtZy1a8SChGt6sfZxjYXs5EsKKaUqM04HNpkFueVIqxFTzbqXhlZc/y6ptPtZC/EGjacyAM0lh0D2qO3yZSNOew3CBSsPt22+R9TFPL97n/mtv8dqLkW9/+7tm/CmZ/X7LmEYudlc8uVzR9Zk8ZqZxrNpqZ/m8oogv7A6RU78i7hJPXjynaQMvn95n3bVcJpu21HhP8A7vAg6lKytWXc/UJeJUGEsmRRvtGpsJVIhxIqdEzgUnDuct+qqoaTdTGvFMSANeLDVDbkhIZj2pVNNhTsWuUxWL4MKhNUvZidYQNcBxNEqG4Mk5HNd0ljqgwCnBKV78se1v0MriJnKOOCc1saAO/3BVoiOFrIWsVvCrgDhv1z1aB8w6PN7e6yMlXA+fasYue5yEMb21s1EPsd55QgiklEjJfveUPDI4Y6g/+/met7/1yYwQXrBgwYIFHw/ft2D1Xnjp5VOGIRJrRJUWm26lWgiN0q8CwTfE0aKuRBpStA0N/DFXEqzt/L3F6lFb6gCUEIJpScW0rrkOEnC1Z+9kZiTzR8xV8/jVWU834/dkLc5sqJv/Yq36osqYcm0vWrvf9KaZooWU0/H+LN7qut1483G+N8qqPtpRO3vU+1Vn9qyysPupWr/ja6pGs2Lz3ld9T5FEGZWSM6VYE/uoMChWPItkaDLtytN0Ayclc34akOjR5PHBU8jcPjvhpdt32PQ9V/stl8MBJ4lpMoOR1HxbUUwj6TwpZS6eHxAfEPGcbM453ZwzDol3332X9fqcWKUiw/B7WecfBeY29z57RhE+vHqCk4bD0w9RPDEJ+zGSU6JxHeN0wU/81MvkrLz99ntcXh1o2gf0bcuHLz5gs9lwWjyr9oQX+2fGPKvDO3fd3lYb9iDiyCkxThOFQuM8nW/pQ0srDWHusPtACC2NbwlBCAGmaMVyTpFcEk6VlEfLalXBO0/jXb2elCmalMC5gbbzrNoeV6OkQvDkxmQ3lpJseaiCFYWhWeEnG3kMFidXYj4eMEFqwTvHQV0fxFC9YfAyqYEWORq+5qzWkhM5TwhqAf5qE9e8M2WtiiWJlHpgtYJcq9xAcWqSJC/B5Edo7SYkbH5HRqqEwTlPjJFxHK1AF+tINOLAK9FHEs4KW83EKdL3ntfeaJeCdcGCBQs+5fhYDGsp1/mjFmI+j0RVNhvPyWmH9z377chuO1WXL/jiuNaQWdFlZqrviXiCI4NoOZGeeYi5sSGJUjLem7lFHJWVrJusCJBIKZqx4nvc+b+neBXT2kk1kJhfSklafk8UlZlc9FgM29dvtPe5aZa+saHbIzNv/MzGJSozhDnInUodv3ltRFHnCL7qVO0FUBS8DzShRXwgpkTUqf5MhKYNjDlV2WvGNbDaOLqVokRElbbJeCnkInis2GqbwNl6xUnf03lhNx549PgJuyETUzYTXTXnWKam/UwPhwEVR983NE1LmjI5C+998JCuu+LBh4+YJsdpd/5xltgPHCkLocDVPnF5paz2ifNNw62+J7sV7VjIo+fOnc/y5OnvMOwOyOmB1994mXe/+5CYI/thj0ikSE92yn6InJ+c0nVrLnaPbVyvDzjJOKEahByNa/BFa4SSJQH0LXQhGPt+g/X3IjQhWA5xUByh6pkzMQ1HzWcuUz0MtgihXh2FopPJaIaRKRVEtBbAgabJ5Bzr0A1bjbm25O0iUpwEgvdQOw2lTJSc6nOseh+ZTYQ3NdlVLjAbpZzUUcazobLU6x1KElIpFlVXjZkiEZHrlBElg9OaP1wj3agB/yIE50zsTSGWApKPpsNcJnKeyCWR6iSvUAoNpsE1Y5ev0oX6zhWLu0opk8snM41twYIFCxZ8fHzfglUVxrFUnSeIr4ygs9GffQ99Zxmqfd8wHCLeQy7OomTKdX6nTdXBWFJvbcjvLfKuM0s5auxKsUJgjq3CWTyWDRqwTRmcZS7Ok3hQRD96v8ditTKrx+Kzupv1WHrenF2eOY5DlWuWadadzk5pMKOZcM2MHrW1VbIgc6h71R5K9WppuSExsFvUhzAWyzeBtmvZnKzp2oZSEnGM5Kj0IdC2Vnj65Igp0TTK2RlsTpXuBIaDMo7CsLd4oqOZTCxD06Gmf5SMiLIfRrb7iPgGLyBaKE5rgVRAomklS0JcIATo28A4ZA5j4f0H7/H2+w/puxNOXz/9o67JHwiKV0LwIErTNJRS2G13fO6N19jlhr5pGMtI8C0xeVQCL66e89b9L/Dqa/f57gcPmGKk64z9G6Yd01DYpA3edcQExdl41LZpabo9qYw47xECnfeUpIwx0vcdbeNxUodiZPvhOxHaJnDr7NyKWxdww8gwKdM4sndK7z2uVEYxK14c3vWVafU2rlWUQ2VPpzxBdenPkpnje1IqA18PTiUXhIYQzMjkJJCyZyq7Or61HOUw3yuvcTXn1BjQGld3nCRViNNkRkCL/yA0uRaIWodw1LQBV8cki+KDR7wVlk5yLVorW+xDnUBXU5W1RlelRE6RlI1pTiUfM5vndI55xKtz10zx/DzTHOu1YMGCBQs+1fhYDGtK+WhEmV3wPkDXO5wrFmOlNXi/sSBzzXIsipi5QrGxi1q1aFpd70dGE7GKWDxz0Tj7Jo7a0cpWiiuI2MZfSjaHcH1uWrWi6EcLYLDnX4pNzClFa++YGz17Ob7O8hHmpfbvgXmIgv4+xq6bm7oZzWqb/yZUbPZ7fXi4fg+O91Mfcx5ZK04xIsyer6gzyUUQQhNQMQY0BMf5bdicHXD07LeZq53j0ZPA00c2yapxwpAzk2ZCCOCFJMrF4cD2MDKM0aS5lR0ualODgldUM7P+1gfHZtNy7+4tVu2ax8+uePjkMc8vXnA4RKbDFe+Utz/OEvuBo+CZpkx30uC9chiek33g67/9O7z6xk9At+LZsw8Z9YpMoOtOQC4Y4hV37p7y9OIpSUdUIJWJq+1T8q7Qr1uKV/r2lP20ZRonupOG87NzhAvGMTKlxKb06ASX+z2bbs06hJpTam1ydR5qa7/xgdXqlHNpcUHR7QWxWKegFMwoVLTKpS3/2AL0Pd6DiqPVjiJWkHJDbjKfr64PWh5xDblqjUUCwa9oQ4ePgXGyqLM8s7pHXarFyzkJJqCRUg+Vc/flWh4zG84Uu068t4NijNGGerhQryY7ULhgctMQTFpgJH69fn0d71o1sjZJrHYicqna3nSUGemN4R7z63ZObOjGDTMaOmvpE5/7UuA3/qlw2C+F64IFCxZ8WvH9GVZsGtNsthK1Aqppg008amyedykWPxNaG8c66+j0hlHpOlJnHv/IsagEKvU5F421JT/rUuvELLttjXnSjJIsODybJvXo/Ddb9PcUgjAXpDcVCRaNJbU1OLdBqYHnH2Vobzr4bVbtDVOXfM99iq/u6RuVqT2DaiCx8rvozUEH1/dhm7fUXNsMZM5OzvDi2A17DsNgxXnNqiy5kIoyTfnYyr26THz4RHj8zLM9ZIIcaILFdiUyjy4ukSCsphX7aSJmJWWlJLWftbd0h1wHOfjg0GyHCecdTWhIKZK8cnm15+mzK3b7CUGImnj8+PnHWIY/ePhk05faVUfbWc5vuznl4ftX5PxdaGErE4dyYHV6ynqzAi08fPqI81de4i9+/hf5rd/6Oo8fP+X51QuKBWLx7W9/m/uv3OVkfU4qkVQNRWebNSWOTNPWDHsq9bqw/GJx4GS+FsQKfzVzVGgaVpuG+3d/nvvnX+Ib7/4av/Puf01xO6AeyKqW0zmPxVMFY0aDIJb4RMEjLht7P4f7c32dgXURSm3Lqyv1kCeI9PRtj5MO71uGtDWtaE4wZyir0bVa2U1uLPnrg5oVrTlHLG/ZUgCKJqYpWoazJCtmMXY4qKdtLY1j/pgznptqIhR1R8mADRPIR+nP8fdEfZE5Z8ZxpG3byh4L3gW6dkXqCyWZrGDuatx/qaFtl4J1wYIFCz7N+COkBGjdLG2D7FctbauIlioD8JSSCXXmvJbrQnHG9dxx5ZjYfaNolZqbOuenzqNQZzPSHB0lx2rX14grvbE5y/VjHdnbWgaLI5frjc7icWxzrLn4x8eZpQsq85OcX0tt7dccWJV56s/8TfOmNxehDm4YweY2pTpn8r2q3bVN+EZlAaCC84JvBBdANXP/7m1ONxtc49kettVQk23efbY8yv0ehkPLat2QRTnsYRyM0yooMSvqTMbx9OKCq/0VTdPgnecwRlIy7aEdDao8IyspJ3wdyauVwuv7NcMhUdKuSh3MVDf/LIRPZvTlKjiGCZ4/OtA0A3fuB4b2iu5+w7vvPOb1e2e0J8K4G1itbpOz4uQETXueXX7Aq6/+DC+9dIunT58zTomUIxN7hm0kPBdu97dom86KIRH6tqFrLU6pqBJTJkah0zp+N8z6D0VLqsWctebFe1Zuxf31m3T7DV997U+x3z3ng8tfQ3OszKKjCT3imsq0WrSWd6bpbluhaEA1AomiqerBrdCTYus3pWg6zjkdAIe4DqnZqU483rd4bZHsbxy25Ph7INcxxU6upTOlXOcamxZ7XiOKmyCJMsVokhTnZvFMZXBb2rax616lTnWjHkDtNcgxuXge5RyZDZizuco7b1PC7Gazf/FGcIHg8Ue50XVnZylUFyxYsODTju9fsM7t8vqXooVV03B2sqZpEtvtnmlMtF1iDgefd4ib+k7gRmGp6KzTrKzNvNldj5W09nMp5gKWWbc6awQySHFQbELPzSEAs1bUWqLGUnZtQJxjGCaG6brVaa3/UolSubHp/n7msFnQd926n5lne2Y3Rr4W0+XdfAuP6lfBmFcxhtYdv163ZLUpYc6JjbkNlrvZeHj53h1un52zOdnw8PljPnj0mMNhoG3sEVJObLfCB+9lhrEhpoY4paoznCUY15KEVKzdn9XjvBCTiQGo76lK1bwWm6aU1KKVrl+RJ0VIZWQ/HCwdorJX3nm8/2SKgeBXaMkMY2aIgpOWrm+xENPA9rLw+q3bvD9ecvHiCZmW23fO2Gw62vWaKUWaVgjOM8TElCaCS6SSef78Gaf3NnRNgwQb59uGwKrtacOBmF0dAwwlZWJKpKahEalZv1BKohRvOlMRHIGH775DfPIOwTX88s/8m3xz+wq/+fbfQRpHSUpRwfvGWuQz01rXqlOHSIPiUT1Y5wHFJMuC+EAaB1IuOM11nXqc93gJlYWtLKWanhX1ZjTUur6LTaArdWQyHoukKuDUjFuFOiu14jgKGSUlS/Xw3sKqLLHANLU5FFIs9AErNJ3De7tu2xCMFVYoZT7Mchw8Ihm8Co04snMUmfUQtdBVO8hZssNscLx5fS8F64IFCxZ82vH9C9baGnd+1qhB1wdOVytCB8MYGcaJKUaUmpvqQTJVwzrP+y7X2tCqsTvq7G4Uitcs46z9tOL2WOjWArKootYlryaS2mKtzn1qISAOgne0bbC76xtSseiqGXM+7IyP5Kzaw1Ypbi1CvR6LYmOmZu4H5qgtZW7L1oICK1KdfPSxqLXfzC7PoegI+EZoWvuw4ITM6WnP2XpF2wRef/klPnz+FC0wjhNCTXDwgTit+eC9SAHGKdsIS1cLiOzq21sZMhFSgsCcgHA9uUjL9c+pX7Ws1oHxMLI7REpRhsNE4zxDHnny7DmHYfhISkLzyUxmJemE04g6QYsjJYeqMKVIQnn47JIvfPZ11uHAVZzIyd7/NCXi1UjWEYonjhAzpFSQ3tGvHWmMECdWvUO8q7pgx9lmwzBGnl9NjHGijw15iuwOWxoPp22Plzmf1MaPOrxphSWx229Ju4DXHZePnvP5z3+Vdz78/7HbP0O84tSGOQTX4WWe9+RqzJRdeyqQtca0lWQfCtM0MqVELtc6ZOMyZxlOPSjVg5vpzDmuEepBUCQgktCSyQqTZJOdF8HPecRqIVrlWBBarmop+XjdaM7kXAg+EMQTXKBxoRqu7L7axtMGb6khWSiSEYSijqJi8XO54MWBCxRXaEIhi15n0HKzU3NTX/7R6/Dnf7nj//23Dz+ClblgwYIFC/44+L7lhABNI4SmFp4KXdWGoaWaNgrTFFEx0xVSNXt1bngphZTyUaOpWsxEUZkQKzDnTbNO39FyI6s1V8ex2oYsxhplBdV5og1HRlOoJGgtWr0X/Ny2x+NDoMR4g9G8LsbnVuExG3Zmbeeitc5bn8tTd9TdKjMZeWRuqm53fnmea9nAzeSBo7FqliQwt0Kt+HdeSZI4xJFYMk3jySVx79YZZyc9w1SYBnORO++5ffuck/Up4zjx+NkTYjQZxVnfsOl7tlcj+zGRdCbDhKy12CimLjTjW52KpJkQHLdu95yeNqTY8cGDC5LCMCZg4DAd2G0PTFM6aoXxpRZHP3oMu4F10zD4TIzQ9oGcExdXO5IKg0v87rffIa0n0smGOAzsrvZ07QnD+IzURO7efpWf+Nzn+Na3vsP+csSTuX97TVOg18KdzQm7PB2Ng13TcHayYkxwmGwQhSuOOI3sU8u67ZCj5vl7nrA6poPgsl1nFy+e89rqC7xy+/O8HwemPNXDUaAJvRWHzPIMO8C5+aBXY+euzVBCyhGlkEpB1HJRRRSPx7tMyr4OvBA0C56OID0xXoG3rklKuU7W4jiSuWSLSbO0DaFQEM3XxWp15uea+GHr3K4Dh8VVBR9oQk0rCIG2Mda6bz3BWQarDRWYiOSjDCHlVMfHml6+pUUzxNqdOB486++HuWPRdV1NLLBc5ZIL9176hGYIL1iwYMGCj4WPxX81rYWaZ4s/pAnW/hvGyDQmVCFGC053jqOBouTMPD88pXTUps5t/7kdf1ODqjqPVk2klMj1Poz1M+bIecdqteJwcMRoOa2qUouBYho5teJW5HpKlNbNzYwd7shu3ixY54ITBVdboTdriyPTWs1ZR/lBNdKUUqpTWY+DD+ZNWqrb69ogckPKINeFzNGg5q6lB4pwmBLfee997p7dYZwipRT6tqWUSPGFVDKN95yenNI1HcEFrpqOcZxYtZ6f+czr3Dk75+mzK7757gMux4imeVymVka4EJxSvDsa0xSMqQ4O75VV3/O6bxgmYb9LDJOw243kNJuKrlnrObP2R40377/Ei8tLyAOHA3z4cMsXz2/x+psrvnu44HDIvL/f0o2eXnckcVyJp717nyC3iIdnhFcKX/rSmzx45z2ijpYFGuBsfcLLd+6wPuvIUzVVYYeirm3ousSUI2iu7nQhaSKpFXPuKBK5bl2XqaEpHc4pcRzZbZ+RD5Evvv6vEqfEw0ffADCZhdyUzYDDX489dQ2eQNe+SXI7cnoX7wbmNkHRbONlJSM0RAqEHhGHOq2xcIWS89GBP7fNU8qkVEi51BguK1phPoIBc/TZcfHUNBBMA1+qJMU7hxcILtiBMrhqMvS0TUcXAq13+KNUyCNYZnJOxYpb7yk+39C9Sr3mM0XkeOC1+lirpEBv/G6wXGFnv1oWLFiwYMGnGN+fYRVoOyv8SpynTNk4xHFMpGhZhjlf68FC49BgbWY3XrNJpRS893WztQ33o605rRFVWllZ+2ia69B9FPquYdV3eOcYDxNpysfJRtSNW49kphDJjC7hJNh0nJSPG9RNLdtRpqDGlrr6eDfjpuYEAqmU6FzSzoFbwrVyoG1aNqdnTHGkxAnqpmlMtRUQqlCkcIzKYk6D1aohxMbbIsQMv/Wt73CyPqWj4XK7R8TROk/oHfsyUYAmWOSROmibDilb1n3HS+ennIZAc/uMpxeXHJ5fghrT7ZzHB8G7Or4zCznVoPmauCBO8EFoO+He+ozDAUre8ujRC6ZpIuePJiqUonOIwo8cP/fzb/Lbv/mA33n/AyQIV7sJV5R147h7vyduG1596SXW3Rlp/BDV55QE+8OI+kxxGVXHnTunnG9WDMNI7wLgcG1Ld9LRrhtaZxPeXLG10ATTXAqTjQItLU1lqsda/PUyS16MgVYtxDiSy4h3nR3Unj/lO7/xa/zkz/4rfObP/iR/+7/6X/PsxXcoORNjpAlrW/NSahi+Ox6kuuY2v/DT/y4vLt/nn379/8KuPDiOkvUuoK6QYsTkKwkvA67KeVQThUTKIzlHm6ZWux4pZVLM5FSj1ajDEeYDp1HNVXduJkqV2STlEW9Tp5zU3FeEEAKiNs2OYhKHII7G20ADL7WLoYIEK5hF4vUP2gle68HQOYIAzpGr0zJz0zBWLAJLE6rFpmFV09ondK5asGDBggUfEx9Lw7peN5YGoIUETHHkxUViu51s8xKbcX907dbvC8EmU8WYj+Ma57B+J4IPFntzPWM8143R5qZbAVS1c8fJVGLz2J3gejPSjPsJze5YcOb6+PNM+JwScYpmJAGTIlRZgVbGZ24zzmyrvY6PZqMyW0TkumA9vk2VuS1Hx5nQ9j2f/cwXuNxe8uCDdyFPxjAVsQB3qSMCxMxqIliear2fQMImB5nprBR4+vySf/ZbX+el83MOcYCipv1zDm3VDELDyOq0J5LrGwFaFI/QiNB6YdU1Jkeo+a3GOlMHCNjnoq7GilmhPY2JEDZ45whBGCh0bVcLgflnxZFFL1qYYvoXX6V/DEwCX/jpt/jmw4fEYnmm291A0iu8b+k62Jyccvv0Hi7B9nKiPTkjhoZ9Hjk9u0MelcvLS16+c4unDw4wKXmCsSjbaUCi4LyjbaGMxaKspKEPE94VxhTZDQ1N19FMcJCEtB5fFJcU5zO4gqgSWohlxOWAKkz7A4/e+S6uPeVP/vk/zVuvfpnt1WN8cKz6NY1vbO1o1a9WF72o8NLpl2jHnlvdKzTthmStBXJKHA4D0zj/TIRSBEeDhITzrWlPi6UizIfHXAq5mMEppUjKGdGCK1YUJl+IwYo/7zziCrkYkxzctV7UO5vqRS1Xg3hCY0xp1zQmBWgauqaha1obQQt4ucnM+qPMaB7c4Zxp1RWlOI9KXbdSKOSqC9eqXc+1a1MPn7UT4IPS9TAuE1oXLFiw4FOJj6dhFVi3npBg8ELRwnaX2W1HmsbRtI6+aymqNEFBLde0CZ7cwjDUMYw1exJ1dULSdcEXY2QeTWoFLMbcuOtC1VjI2ZSl+GrOOLbma7F8Ux86c5Y5qzmY56LQy/UrrN1ZnRMIMEbZWKIqRJjZ1JvmsLmIrcYqPvJv4JvAG2++xThlri62XF09QSUdPcladbc3yl57vmq5p6UkYnKEEAitB7EYog8fP2XY7QnBod6Z6USFxjmyOB4+eoZvO1KcOAwHFGE/TlyNEyddR1IlFiVzrS9V9HhocAJOmuocr5QwcNhP7LYdufOcnhQ7RKhHqlxj/tnM4eylYNPOPgE8v3yBDkogUVQRPIVAYsDXCVAP3n/C+rOn5EOkCyfcXnkejRPT/kBZdYy7wqPtY1zjuXt6n8vtE/ZPBy7EEZxjN0Vu3e6RILjiSLEg6lj3PWeriYvDYO3+Yv+uRUmlUBxmGqpJDQWB6PB5RY6JGEfiGCnqiRMcLjOfee1rvPfet5jKM5qwpvUNSc313/gN6gqlTHT+hPunn2N78ZRBLyk51lZ4trHFNdbN/sxoUXaaKe0JTThBakJEIR814Xo0Ld3QeWfFi+JCOGq8HZWtrD/yOVbL19Z7CDady7S4jlCzZNu2ZdW1R+1q17R0ocHXaVrBB3vMYpO+5EZXRASoRs9SD8LOEmnJVV5ElU/Mhy+TrFTJizhU4O5L8FNfbfm1fzx9Iut1wYIFCxb84fi+Betbb56yDhBUWHcNFCWJECebUd62QvANIh1OwbuCaMBpa+06l0EiFrkjQMC5huADzpnxI1d2dJ7vPW+MUjcfJ/OMcqGoubbbYpOfUoyoZissa+vabmfGkzlHdXa6z0XhjHkDts9tM7ObSd2wTRfnqgbQuRvjV+fm/Vzkcl3AgokYVuuOt954nf32wG/883/McLiy295IRBA361T1uvg93kN97mUuhI1pnTL4EEgps48HTpqORjzZw/OLK7717e/QNoHhEFGF3Rj5rXfeh899hsOYePLiyoxw9aFKqSycXLPgZqQp1wkPdGwvM0OjxHygCadMcaCUxLW8Y9Ybmk64uI9OA/tRYbUWYulZtR0w4jMMh0jojT1enTquHu959uKSy+dP+ewbb9A6ge130alw9fQKx55+vcG1Dfdevs9ue8n+6RX7FNHgkdCyyj2tB2p73DJKwblQuw7OEinU4qQUi6cqCkXd0awUx8KmP+Wwv6RMkZJG9ldXhNAQp5Fbt1/iK1/+83zzO/+Ie7dfxasnc2CcdjT+lOAbxumSs80dOndOWDXk/cQbt3+Oi/0zUnrOOA0gJgPIOaNkVDNTylAnWzV+A6qkPDGmHUkrw5r12PWwKVOKb6QOtphZzo8y7LP8x3tvMhUfLAqsHnCceJrG07UNTROODGvwAe8DoR4SbcKW/Z5wIqy6nvVqRYyR/X5fmdZg3QG06snNbFVKwqLzrAgvUnDeRhQrMOt4vnfwx4IFCxYs+HTh+xasXedpW0+DA/W0JRMPiThm2tbT9y1N05FLYzrXAtDStivUKVdXW1IUK2JxeNfQNi2rlcd5JcZMSiOQqxTg2q8hYO3nJlTdq6BFOewPxDiBwm67RzUdGdYZXhxKQeXarXwsVMUdfVNap01V8371wVgxqjKrUq+1pbWEPVpMtFpKbNe7qXPFir1pz63TFT/1U1/mwYff5f33tx+VGchHTVlzPu1Htb3CbDoTFCdC33acbU6Y0sSz8YIUM21o7WWKsN8fOFDwrkPEkbLw3UfPePzsAucsm3UsyUwtGOM1x//YsrA4oKyluqwtpqhUg92jx5eo7hgOmZgix4L1+J7dYLA/ATx+dsmdzW1evn2Hdx4/IO+V7YuJ0MHJLej7My7SwO6w59bdu/SbU0YtZPUUga7fAJmUoXWeQ76iOz0nPrmi7CfipExJKOpRMoVCTOXYRAje07gGqe3pkqNFQRVHkkBzjJRwiCZEhX61oawjw1VPGvZM+ws+fOd3ufvaaxz2LbdOXuZnv/xv0DU9rrS0nWNKI7urK+IQGMYdysgUFYKg0rHq7tK3p2z9pRXLJZNywvmGqcp5hEzMB5QJSkKLkJK1z6+1n8ZWWtGqVcNqgy2OH86ZxORGN8R5T9M0NMEK+K6x90SLUaPOOZx31JBlLMm1XgPO2WgDZ4y/onRxYpj80cBpKR7VhCZmGJP54rZXTK6H16z5+iBb5QRFFVen9904xy5YsGDBgk8Zvr8kwAl4cMHRFCtqkgr96HAuHCc0+SDW7ixCCMLZ2QrnhMMwcXlR24AOvHc0rafrA75ObwrBchW/t7Zxs4v3yNZ4NMPhMBIvBzNX3Zio9RFzFFCqRlSOVIpWjWktQks1QR1jqLihUa3f8z1PSxXKLBNAocb+K8WMVCqIOsQpt07X3Nr0TNPAOI24Oh5yKrvfM/LVubkMvh6kMD83QaCYXjJ4oWsbzjdrViHgtND5lmmaaCQwTPHI2pmqwooHh/18dlPBibWuycKUU3291QQkiTDZz6k+kfq5ElMkRJtIlAtcXV6REse4orlFq9XoYvXHJ1MFvPHS53nnnW+xG17gG2UqYi59BNcU1rdWPO0izy+e8tm3fpoYD+xUSZNwdnabl19+lenwgmE/kQikLvPKW5/h3Qcv2I4vyCOU7JmGgvjIHDE15/t6FwjBpCWUYsMbalBqCcnifGOosoqWcLJnmp5w++U3GfcHLp89g3Lg6fvv8OLJI7ZNT98Hfubnfo795TMuX2yJTWAYCuMgfOe73+buvXucnp4zTpBzwoc1QVdQCpqF4Fa0XUPWSEyTDYUQrY0ERdWR8oGSTcaAzONLMzlr1bAmShFLzoJ6fdzIUXaOUMf13oyGC87yakMIeDdPmzI23opWXz8XQnDXRXBl6m9mHbsaheW9N03rsftQB2OI1nQKvZF0Ybmyplu//h1QskXmeS+cnotJCz4ZFcuCBQsWLPhD8H0L1qhKBnwQAo48OfogpLUnlQYXzPGeU0LVgRNCE+i6FQBd2+PDJZqNJWwaT9MI3heUjDgb54o0FqFTWR1VK5bnCKw5Bkux7FDrspajoWKOhYJrA5S12+fYqZlFnTcsqnz1DyioRE3PV4uv+UOPhard15FQnO9mJhmB7W7H8+dP6PoVfXPO7dsv8/jROzirP+tzreRS1dse2dZZCqCutkTFTCgONqsVJ/3KzDFF2Y8jFOVyv2c/JVJ9H01G4SrZNOfEetu0ixXYIh6RxhhWTSABtMo3BNq+xTmhlMw4TuQCMSViykCoZrH8PYyw6Xmdg+YjX//RwTUHy8vVzGbteUFhmjLOWeH34uEjhmgRSS+ePealO/f44NGHaCy88soJfbPijVv32e6uLAFBIt3mjM//5Bf4zre+zfh84LAZuOqaqlfOuCag0fJKnQ+03pt5KRe2aSImoTvpzD1/g+EvYh+HYc/ZSUBxjDGj04BPwrOHj9ic3Saljicffsjj99/m+dMLfOO5uhrJWrjaR1556TUcnmmK+K7FtSBJKCnRd6d4vwEZGMYrUj7cOHTVLFcyRapufM43lgwULB7ueiBEUWGKShMzqRGa4o4HFpMIXHcOQpUDNC7Q+gbxtibzLJ2oDGyoH967ej0Xrqd5XUtvriUGNlRAqvTH3tfrSLu5/zH3Ro5dDCfXsoE6vUtV+Jmf8/yT/1rYbxeqdcGCBQs+bfi+Bes8eeakbwgKMQrqlFXvGarZuGRrK3u3Aok0jYDkyrxlfDBDhIjgW49rHKW63n0rrKSh5MbY23jA9G222V3HYNUNZmZEkXmv/QiOhZNQZQJ1k5XKfnJdUBaVY8D4996Hw+NchxIRnbe9KhU4GrP+oGLMmKFxnHj3/ffZrE9oW+H+vds8+OCc59PBQr20HDf1eoc35AFcj1GtbmbnrIiYplSNJDNj5RjiZOMxAdHMdQWtzAMArvW19d8VkwPM04dU8OLBBTOdeaVpjfXKSRiGie12y6zYnSeLzcMR6ksgeFdNNoqWT2bU1Xcfvk2/XjG1a8bDFueVcYI4edCGInvGqTDuCt955z1KHHm2veAzn/0iITt2Tx9xpz/l9fv3+Obv/nMOKXLr9n2+/Ce+wt1bd/idr/8zxt3EYSisNy1ND6gSi02TcjVrd05fiDGTgqcTj8fjMGYQZl+bME0TPgS61QlIw3b7hBAiD97+Fqcvv86rb7zO7379t3j66CEvXlzgcNx7+XXuv/Qqd0rmcNhyctKx6lasVmvEF9pyzp2zzxEOT3j0/AExXqE64MSjrquM/pzSYccx70FJSJ4L0HpU0+trSC2xH7i+Nq7119eT4Lz3hMqshsYKUudc7YyA8zcK1eDtw9t7Nh/gbOlaNnETGlIp9F3HuuspMdeILurvA4fTgleh4PBOiccEi7pW/axdr5FducZ0uXnk8IIFCxYs+LThYxSsSiOKLxFSxqkiFJq2ITsYBiVnCzR3eMTN7WErinIZ8KGghMq21FaftDhn+aO4TEY5HKw47bpQC8uCq21V21Btk5QalaN/YME4m5iAypIeHezMW5LW6CUryku9zfyx6k/47Gd+iu+++02mYXvtSMZ4m+uN+fd57Pr/UuDx06e89tJz1l0hFMfJesPFM0c6ToCaEwZgrsBvGkC0akdRyGqvZoyRi+2W89NTmgbWfc84jKaVnFmw4xOzVxu8o+83iDiGcSTGyVgppL6/Vmaj1PGaAAXnFO8dWlyVAozYYAPLJEWMCT+ya5UZc+LwCHV2wo8cpawYktKfnbDenBAfPmB7WXj+IrF+mjm/u+Jhf8HFw8yjOCJEsjPWues6RHdc7LY0YYUrmcsXTyg+cPfO65zfvsOrr73C0/2F6TsLBNdSfCRRSFnxddqSP0aG2SjWtukIbh6JypH91qLstlvi+YHXP/s5pmHkV997F8fI/nd+g9OrS6QJtMHx4vkFL56/oOtXhItnbDYrlMz65IQPH3zAK6+8gnMnnJze4SyccRif8hvf+s+Z4sGuKbFcVC0exdIcisTKqteop1wnRGEHP5tcF4yBJXGUK8NRu30zzxj4iM50ZkN9lQCU2rlw3tIvbMFbCkbGVQ06ZM1V0mIylbbt0GpQLDmZpv1wsMlVtZc/p4RwvE7r5XRDtoDTyqzWaViWgbfUqwsWLFjwKcX3p7+cErzg1EYhTjFTnBK6lk2/IsWJacjGsjjFqyPlyBQP1eCxp20KXdPjfQd+qkyNuYCb4FH2lJLxTunalr7vUS3HYte5XKNy6sZW239mWLnRi7+BefM11eq8Ic66UbsvcUAxxtgp1gYVoes7fvlX/iJ/5i/8Vf6P/+H/ivfe+R1ULfjfGB85Mp/zox1RCzipG+7F1Y4Hj59wZz0yRmuRh+BJyVihj7K7H90tqxTVJAwFYso2ZSwrTy8uaLwdAlZtz645sDuMpJyPU3yYtbliMoLTTYuXwC54Lq4SRS2j8pplvn5Ns6a3FGgbT5Zy/W9YRNDM/F7/h0UdVaZKEHCfTAUwDYUH7z1h/zxz0rQQlBIsLzhOhf2+0BRHjhPZC1POtE0gxoj4Bp9gP1zwFOX+S6+TSmQ7jqgEVid3eeXVN3EXDQeJlFwLUJfJzuKU3HwIqQxr37TWFhdP57wV8xiLLrmgYeDlz93l7//d/4w/9wv/Bj//p36Z/TDw6//4H3H1YouuL3j6+Alt63n65DF9v2a92ZBS5MOHH/B//3/857z82pv8jf/hv8PDRw958MFjvvonf57TkzXenQBzbmtjulC1lABbc4FCQh2olzqjQ5A8M5KBUBRtBNHEVLSaq2rHo1ANexwPXvO6zjkzpkTXFjpXEzecmBRFbWqduID4FvENzrc4CTVL1UxSjgxStfJe8MUmY7VNoGsbckokEUoq5PqShMpca5mFr3DkgmE+KOaazeoIdQLdggULFiz4NOL7FqxJISXLBZ3UcyiFEMB7QXxD0ypyiOQ8IgTbgaeRy8uptkQzXesro9qRKEAmuEAnnq5tSXkkaSKIcnKyous7co7EFHEuElqYBoijO26E1lb0zBmh1oKcW9N1iEBlbWb9aqnmkmPhqbaJSc1nnVuUX/jCz/CX/vW/yq17b/Hlr/wCJ5tTvv3tf8407aEyx/Ncq/k/xcweoq7qN419nGLiw0eP0bOROCaGmPFi5Uqe1XXXUkJEFOe0FttUIeD8/JUYE3MEVsqZNgSaakCZHf3H71Mqc6o26tJ5gjhyCOy8Y0w1UsvVHM0bMypVLaYpTrFqWOXG+27aP1czcr3314xzZdWQOibzX3CB/nGxaXqGfaRkYXCRRhXXOmvPjxFpG/q2I08DWYXttnDiHWOEMRbakmn9iG8CUZXgWjat53B1yYcJtES6dsNJv2Jix2E/st40rDYNL8Y9OikdAedtfbShs/zXnC32y1nmLcVGl9pEYceLiyt++7d+g7M793j9C1/gwYOHXD59ivMdcRwZDom+X/MzX/4y03Tgve++z2/+5tf50k99lSIt/80//U1+8ee/woN33+ftd97hy+df4aV7n+elp1/kwxfvsi8H0GJjjMV6DmaI9Lb2ZurUCeKF4BpwDU1omLwSPHgfGIctqokUlRgLbVZCqddA1ZPPpiu7TjzeNTjx9bApeBziA6HpcKGjaXqapsW5gFKui02xNeyrLtp5wXsbEd13LSVlRhGy2thYO6w5OwzMB1OR+lrnjOZyNIyqmmQDUX7ya/DP/sEntGgXLFiwYMEfiO9bsOakXAwFxDNG5RCVk9ZCwE0yJohTch7JRVA8SQdU/OxTOoaHi4NcjGFcNQ2btseLMsUD+2li3bSEdY9vPXESGPZIyDSNgnbEUY5auTnz8xhRdSyNrv88ak5r5aY6j1CtBiq10HATzDkQz/n5Pf7iX/prfPZzP0lo1/w7/+7fZDzs+dv/z/+Ud975Dg8fvsuz54/I0xZUcfNbqHX6j83wwVcRqgCXV1uakgk4hphp3Nxe1xvPR4+F9dGQI1SG2J5fmQ0kCpIyU0q0IVjQv/OUG4yqPSew8Z92hx7Ba8GLw7s5jcBu6Pxs8rqhq1SIMRmbivX258eBPJfG9X5qlJGzQjvlTMlqAw8+AZRsr+f0jrA5gRcPoaTCcBhYn4gxduvMeuW4OsD+KtN2mf1uBO+ZsuK3V7y4ukJf/QKlPeHi0busux2Xz79DblacnN0h5ImuazmMVzQdtK1Hmkw6JBocIqbZDAGaBhonR3bS3vty/fNG2I2Rf/Lrv0F3cptf+Ut/mUfvP+DZyRkX+4ONIw6nfO4nvsD6pOPhwy2pKG2/4nNv3OH+m1/kv/g7/x/un53y2c++RhqveProfZpVx73zL/PWnSd8Y/cPGbjiuNjquFa0I2u0JAV1iAeH0LieIGu0NHivNIGqaZ7IJRuDfpTSVPkOFh0167GdmHFQ6p8mCbAi1oWW0PQE3xJ8R/AdToSs41EKI1ANguCdHZbbJlC6lpJtFPP8HEyQgrUGZlGDlsrsBgqQyHgcOUvNzrXfc97DvZdno+WCBQsWLPg04fvHWmVhmCDmqbIUQs4FzcVa6ZUBLJrQMiJFUJdRqROPajtevAIRx0jbBFYrx/nJGk0JveohH1j1QugCtGLsymAaSnGKC1KZPnteZY6Fwt3Qkcr1x7wfzy1KqaHi1Sw031xEMSd+z+079/krf/m/w7/6S3+OzWpNKtYmpQn8m//Wf4/DYeDp06d845u/xa/+w7/Lhw/eIaUaxi4FVxRRa5c2IdjmWUfNHsaR835FqIxT4z3puofKUbKgNwpWAKoO8Hva9Tkru8OBTd+jIlYiqFaj20zZYpt1yQzjxOm6p4jWTM35Pbu+rVS5xbFwnX+2pXZUncP5YKauckNyAMdDhLG0UHJhiuUY8/SjxocfPOD2uR2yaAu3XvFsr+DZ48hq0yLNgG7g1n3P8G5iFTx5P7K/vMT5wNtPPsRvI5/77Bs8ffoht07v4rs1zy8u0OkFcnrOtgmsu/usmjW+m0j5AtdYMbXTiVgyTfGWltA6ukYITvDzW1v1vlZUWXE7RuXJ42d8590P+IVx4NbtW6SYcKsV9196idt3btF1Db/+T/8JV7sDX/7qV/nFP/1n0DSSU+Znv/Zl/s//yf+Vz7z5Mn/ql3+R/eVzXn39Ve6ff4bmc/8ajy7e5WL7O4Cx5DIfVPB1KEYkF0sF8L6hDWuCrCjFJp9FiZTcMzY9eRqwwvTYZOcjOmzmdWHFquWy2lgqUfu688E+QoO4FpHGvkctRcSkQQWdv188IZjuuuRsBWtdrzYWVqzLME3kIjYFbr7kBYuHUz1O+0qpkJNFWbnj9LsFCxYsWPBpw/ePtUqZYUzVLOVwXplyYhgjPigp5TolyYxWqjYGVVVo25aYE94pRTPOZcQnyxLtlPVJQFPD7nKHlJ6+yxAK2RUOw4EYC6HxZojA2NBc5gB7rQwnVbB2ndR4swSDqrNUYzw/IjcVu+3J5pxf+qW/yM/9/C/xs1/7eVZtD2XElRGvSmbCoaz7jv61N3jlldf4yS/9Cf7BP/i7/Nqv/2P2h0ucs+zNkiOaI6tgs9tjSozR3kcfHCsNHIZI61umXMjHnFKFagmz8fBzC15qUX5drIpCzsrVdqBv97S+tU1bLH5K5mSEmsXqgN00ErY7ujawPwxMMR3NMSaPuFb3Hd86OJqmFJNLeBVSSYhYMWH34Wprtc61F2+t32Me5o8eX/7pV3j2/Bm/+c0L3OQ5WwXWsXARC1raOgFJj5IXl5Ru7Wi88PTJu0yauXP+Mue3XuUiXnDv/itoUYb926TDljurtSVfuBVpCkjoifkFfWs6WdcqojVj1FkLezZhIeWGDnhuYQNu4tW3XuXXfvUbPPh//R1eXF3xN//mv0fbtqRUQBxPnz5hv9/z9/7+32O13lBK4ie+9FN86ae+jMaR081zvvTTP8Wqbfnw4XPe+d3v8M3/8G/xlS//HD/7iz9DqVFeORdmYn/WG4tYkL5WNr4JqyPrWZJZ69VD8ImmaRlj7UxwzaSKzCW41HVlh7ZcY9SginDErlRX1DKJ1ZOLoxQHAQSPqlhucoFCxEljCRbM69HkKCHYcAIFkhaaEIgp4t0cA2wHujo/FnXzRLJs8W65FqxzSgbLeNYFCxYs+LTh+2tYU2GcCikLPoD3hVKUUkZCc+BwSMeJOFTdY1EgOSLWcsNnUGMivS/gPD5kio5kAqHrkMbRroQsiXFKHPaRFIWUrL2eot2X1lGhxkBWJ7NWdvBGILjKTYvFnJ96XTyJzCNX4bXX3uSv/JW/xhtvfI7GOUijsTs5U/IEmix4P5WaUancuXuLv/yX/xq/8Iu/wsWL54TG0fUbUhx5+uQhjx++w7e//k+4vHhOTIkpJ3IprJqGHDNZPENWio43jFezVMFYLytSPzrB65inqhBTYT9OaCMEF2hCYByHGpcldZzrtX73Yn9AdormYuYsNfZUPlLiX0dU1Yezn6sYc+y8t9nuOduHZTKhqkct6zyz/Q8Jcfih48WTHVfPjUaWYNOTfBDSXrnaJs7vtsQYGQ6RKcLlTrl9JzBsn/LkmfL5L3wZV4RcDsRxT7/quXN+n2eb5zzfXrC73LM5cxwuH9HfeZlbpy9zePacaRxYrzfEEeII6hyHKTKlCe8yJ33PVCbWXceqd/ShQTSRpRCaHa+/9aoV0cOB997/gLff/i6vv/oqv/uNb5IzfPDwAd/69rf58NFjbt+OfPN3vs7VdsfFxZ4333qTL33pS/yJr36VB+8/YHv1nPffLXz97ff44Hff5+LJh5TPHsg5gpR6yHO1UM2WgSwFRFEanKuRVN6TNVgUVWsRaVkzKU8M4wumqRCjjWlub8RCiEj9XWHJCbmuF9FqhKyyHpGG4Fq8C9WsWG4kDlhGLZrJ6lBxtiidzoqgOmzApCqhJELwBO+Oh1t01q1iWa3eIblKdZ3ga2KBZrh3z/HWT3i+++1lesCCBQsWfJrw/TWsWa1tlh0+K84VoiukRnD+QIy1bCxaN5vK6anpCMGT80QuE84r4mzjK5rYjwdK8SRXcK0gwcYkToeJEm2S0DgqoXgrWG+0oGdx25G1ucHeiAqoZ253Xwee11scW5hwcnrKX/jz/xqvvPQqwTs0RStvtZBzpV5KqbFEyjQeGKeREDpOzs55+aX7eO9JOZOrkWscI8M08k9ffpP333ub995/l4unD8gy4hpP2zakVNjoipIzUSPXJeu1pGH+U6q5iZqTOUcHpVyYUmHVuso0NbX44HrC1DFqwCZwqVb1qdjX7GcxM6W5aitnaUCh5HyjiLXixjtP8A1J5eiyBisAisxGsjr+8hOqWr/x9RcM+4S77fAOTtc92+hIwyWXLybiK4UxJfb7QsoNu5KYsiL7A400rP0J7z78Ftw65/mTC761/gafffMLfOXLP8s3+xVPnn4Aw8QXX+s4Owm0zS1eOf882/IhXScMbWGadsQysN0+5rA/4L1w79aaYRi5e3KOu9sSu0SOhabpOFttuHq2szXtHDFlfuu3v857773DxYtLtAiPnjzlvQcPuNxu6brWWEIX2Jzc5WRzRte1nJ2sKXng1q0Nr73yVVIa+Lv/2d/h+X7kFz/355BHiQ8efwfvPH3XEdOekuzQKc7ZAAEyqUxkTbS+rh/xoBZnFmMk+Jb5gJWLyVG0uHrGqhKR+dCFgPO1+Cx4HMVsUDjn8SHUzOVZzjNHtNXilUzBUTDjnMqskTUdfQgO1UDWli5HUopktd9NJev1CnZiAx60IXWZnArkyDTawbdfOdYbh2UVL1iwYMGCTwv+0IK1Zn+TkmlJFUWyuZtTApFZ12otveBnm9N1Y14q4+aC5VKCEGNhtztQciAXYT9NRBlxGaAwDWO9B2WKprmkjoW9GXB+s5k+F6UCppfT2l7X643tODq0fmPbtPzpX/6z/NIv/gpd20KOcHQnF1zV+VkRK2hM5OnANIyc3j+n7zp7j7TgHeSUKBk8Std4fv6X/gJfTYlpmLh68ZSnD97mwXe/yYN3v8H09DGbALEE0mG6ZoAFijiq9BZxdVpV7YM6XJVE2GYeUySqsWJmaAm1+DC2VOvr9jMLLdWoNrPNKtef38DMZM/RRyarqLpk5/G+tn2zA0nHn03OuRas8/3o77nvHwUuh4hmpZ2E4UJwpw1SBtJO2YfM80fCyV3lrS+fMP6jA1dbePQ8c6sr3Lu64rC75PLyCcG3bHeJq2fPeXHnBaumY32yYZXvMg0vePbsgjwNdCcHBl9I3tF5z3q14fLqCbvtgYtHA4dDsilv44GmCWw2J9xuOt5+8QG4Ezba4vQ23/3Od4gpQhFeXL7g69/8Ouuuo+tWXG63PPjwEU+fX9B1AZxydusc5xyPH7zP1fMLvvn1Da++9jJvvfUGfdtRUuKrP/MFXru94eG7l/yJL/55Xv7My/yXf+//xNX+McO4R8Qc8qrJ6krnEBxO5l8PlnrhXQvq0aKEpmXOZ5VK+ZdatIq71q/ampyHU5gGvZL/FolV17xULewcR1cXjzG/9b+YY534ZmkWxSmucfgyJ4EInbQkzUwp2sFMC7ky/qWawey52SHXI2YIRU3W429q4hcsWLBgwacFf2jB2q8CoXWUbBmLkk23KFUDJqJ1UIAj+Hk+OGhRvFdEE0UiwRfaOgwAhWlKpLRnmMTyGzXSOSEIHPYjcYrkYnpVIdjTPLb757b5NYs3u+ArOVN1nvMggJulLbXVbpvpq6+8zq/80p/jZH0KJdYirxgrUwpxGpiGA3GcyDkR48RhPNB2G1arjkKGXK7NXTlCstB8p0oTOnxY0fUNt26/zuuf/Rm++NUXvPPNX+O3/snf4+mHbxPJlWmeDTjOtHZy8/VeF34CHCtwINbAdHP+e0R8jeuyW8+RW3NiAYq5wHX+Oje0jHAdCVbqzwag4NTitOaMWefd/BBo/mhRasXrXLB8VGLwo8L6zLN9npEcaL1juz8wDBkpQslKikLJsOo9p2tld1WYDsJFgnzIPHrwNkMSLl48J2lECjz58ANOztd0qxXnnHLpBg5TIT5+gnv2gGdDYmgyt++ecn57w7C7YvdkJB08/3/2/qTHsjRP78R+73TOufO1wc3HmCOnKtbMmkiJ7G5J3YC0ENQLCmoIAiFtBGihT6MvoI2khQQIQksA0Wqpm8WhyKoia84pMsLDwyeb73Smd9Lifc81i0oyilp0eizuP+GZnu7m18zuPdfO8z7/Z5iPxkwmI+aVYtdvWd+2LCpDgeF21eBHgtvxG6bHJaZUtLVnvd6i1CuW8yXVqGO3rRFCYkyJIKC0pKoKnj19Qr3tuLw6h2vNdFwx/aVP6epbLIFms8I3DfPJmJPjEybq1/no2R/zVz+9QRmN8w7vUgWrFHJfKDE0pEUiRheIaIg+B7qJHAdHYKhDHa4XGVMKhlIKpXQCqDHgXESrmJqm8n9c8DjX4VyPMQURRTKAaaRUeJcOkCF6gtDpQCTJtcRu0AQglSCHYaFcuj6H4oK87tlvD4S8a/Db/+8AVuUgxTnMYQ5zmMN8m+ZvkQTktTG5vSY7d/EDmycRITchyQRUnEt9rfucSZEAbpIMiGTS8uBDoGksVaWZTAxTKVHWUjcd3gucj4QgMEIlpnC/ps/M38AAZsAqB3Zm7yRKWYsDcBqir4Z70aeffI//9T/+3/L++x8Rgtu3EcXoE1PqPNEH+qal3m1wNrVDBSTL5SkxWnrbY/u0OtRaEUP++nwkCknUgiAMiIBF4IVAVjM++t7vMp+d8ad/+F/R/ezPubrdIIJNTHUGAHB340xf+rAqTbA2ynQj9j7StB2VKZIj/75zf9D5DRFK2ZyWH5wh7H/4XEOU1cBG+5h0qgzstFSJlRKZRcusrRwAckwJYX4fa5QqWt/FtI0jRIENEWPg+KTi8/Mds5mmqxy71lG2EEKDFoFCKnwfaSK8fLNm0+7Qxyc0sWexOKa3Frnb8La+ppxM0cbQthuWR+8RuoIi1HwwUbytL9Eu4Jqe3dqyXvXMZ8cU4wpVKeSkopCWrQr87OKWXdfR2sB0YbmY/Yijh6eMJgXr9ZZN3SJVimO6Wa0odEGhS6SIlEaznMxwneNHP/wJphhRFVOePH6M0ZHLty/wXU30ju3timbdcHvTEmzPaDLF9z0h9jT1BiFDKg4gMaRSDFm6nhg9ITiUkQgv8CJA9AgCUimk0Dhn6TpQGowiR6TdYzL3hGl6TyOG2ImY61FDPlD5nGMcCdESgsV7RwiOEFMhhSNFaXln8d7f5caKlCmstEztYjk6TkqJyBuTtGEY3hupfcuogJMSreIeyM4X6mubmMMc5jCHOcy7n28GrPcouBgSaE2r6JhB1bBuT6tgSP3c+5pOVDZeJIOTI2B7j/cKHyKF8JRFxcgYxkrS7urkGs76zBjT6lBmcEYcGnXC1xjWn/uS9zKAO6bkfvyS1pof/ODv8Pjps8QURohCJCNJ32N7i3MO2zWsVzfUm1sgOZ0fPfuIajKiaXbY3ud2H4nEJDOUD8mFne7rBGFzi09ioXwAoqSYLjl68ITx+VcY8woX+ix1GGpOBUMtazI3p+8lDEYzkV8bmdb7Xe/oug7vXX4WxN3rI2Va3zJojOP+n++ftD2wEJnRSvrVEEICp/kGnkx0w2OLr/0aRsr0vQ6A4V1McEnf3NvAdhU41y3bdU+1UJhCpiQLoOssfYhUlcAYzabp2WwC40oy05ptu6OcSK7WHd2bG46PJ+zqmtOzM4yWfP7qr5nPTzibPsC1HR8ejTFl5IvzV5gwx1QF5XjB64srYux5//0jSuORUnC9bnnzZkc5KRgdV9RNzWhiGI8nCLFLzXJ9z2azQemUcbu5bXC2Q1cTTGH44osXgOY7n3zCyXxCvb2mb2+ZTzXtbkOpCza3O85fXnL64BHbzS0PH3+AFCNwhmn1gG13nmTnMRkbBQKhwfsWG0H2gsJUGDVFRlA5Yq7QI7Sq6J29e18y/Fz4OmiUKh9wIWvM82Eq61tjdIAdViRfA6w+pCOQ9D69L6zHe5tMYlnffS+pLrGtWlPE1M5nvEnXdD5EBSJaKcrCJImTy3KWmKKyfvP3Rvybf9XStQfEepjDHOYw35b5W01Xd271HCflY2ZDknM8DiadeNdss+8VDyFlhPoUFO5coO8T8xpiYjNKrTBSplV88Gm9HMgO5vulnwLw+9Xj0KDz9a81A9h8n0nA6evANkYoyxHvv/8RWpVAYg2dszjXEbyjrXe4vqdra7quyevxyGQ2xxSGGAIyBGT0WWcqEDGBVz+45EOgry1RaoQqQWlENpdI5Zkupnz8d36L3kNZVHz11Y95c3OB8w6Rn7ukEbwPMf+mtCGtNGEA8oO29Y7ZGowvA6AMcWC1PIMB7Q5wyizrSKyWiGCUQigFUiGlQQiVzDUx3kUD/TuoqNQiJHlX69XoBVJHVBGpd6BDkp1IFTAKYhDYHmRUxCKCEtSNwzmwVnNz7ZnOGkptCT6wq7dcXF6zPJpxujyFqJmVR1xfveVmfcVivmA+O6Gvb7h69YaXr65ZPn2CXAScDfTWURjNYrpkNI7Udc16tWW78SzPFKZUVOMFpp0jRMpuFYDzlq6HggLvK5xLBxgkXFxfsWsbJuMZtl9z9faaR4/fYzabsr6+RYiAdY6696x2Nc+elXz54x8zOZnx3/u9f0TfRm5312g9Ztt/Sec7QrQIEZFRpus5QNQFEZfMky7QdQ3WdljX78sq7pTrd2Y7JZNMxSiNlhItZTp4ZVOgzJXIKf7Dpw1OrmONuTo2xlRcERC4/L4LBJxLH6+xgM4VwaCEoCwKfIx4PNoptNf4/L4S8q4YQOXIMeTdIUsMupnDHOYwhznMt2q+EbAOelAYQF8yQIjMAqb1YZIMBBEgJPA2AMUEoDwEibdJDpBuCvdX3jG584dFco61kUIO9ggGYDrcHAdwNpi4El6OeR0+6O/4Gqi9uxkJjC6YzxYIBH3b0zcNIXSAZ1fvqDcbbNsSvCXYzFoKiSlKQojYrs833UDwASUlMSQWWma2Jzn7Hc7ZdD+2FqE0ogvMJwWFVhQnR/zyr/wa3tZMxhXis7/mzeUbvOvvYHrMjNRetytIpe+DTCM/Q1lbev+GO+Si/g1Yn1aycXBBq58zmQiZPqe8d1gQw+uRWfcYkoFmKHCIMaLEHbO6f83eUXGA0gm0jsea3dayqyNTozhbjrFly6r2tDeCfuvothHrBL2L+Ag+Qu8ib9/e8ssfnyCN4sKuiFFws9ry5Ml7zJdLRHRc3x6xtTVRtEijmCwe8dXL11yeW0xV02vL8uwBD6sRwTc03TVVeYKgpO0s2kRGo4Kj+RGFrhBBoZTEFAJn0yHReYuwESkN09kJWgpibGibBqMVJ8dzTo6n7DY3OF/T1B4lCnZdgzQFu5sdz957xnsfvc9sOWd9e8N0OWI5OWHXbBmbJ/jY0ncviUERVRaexECMFp81phGN7S29bXCuzSxnusYGPcnQfjZoqo3SaJXqgwdNafpZkkCo8A7fW3xhCd4RpGDIplVSoiVYH3BxSB0BLVNcFjFJYwQeotgHYyDYa1GHX0prRM6LznTy8JMhG75iPthlE9lhDnOYwxzmWzV/K8N6N8NKPYHNPYMq1dd65dN6Od0YQoTgIl28Y+FENjgIIfEeOmtxFPS9Y+Nh61OY+x2hGO/Ar4+EvHJHDFmlw5d3TzPHsMIeUgHuGZaA+XzJ8fEpt7cX/Pm//TN26xUfPXvMYjnl+vaa3bYmeI8iIgn01jKeLSjKCiEFza7m9vqaajyiGk/SI8vcEZ8BdMg3wYQffdKDuh7bbWmvd5SVQZspy+mMT77zA37c9Xz3IyjLis+f/+zeDTUDxuFbjF/3SEXyIYFh/Zpv5pldHcwt981md7mrcf9apf/KLuroIacApMdPBjtC3Otp97m7MQNjRI4Yu3sdBib2XcxkZlhvLN55vIdt65GlZLGYE7Sh3t3QNVBfBlwQ9Nbhs87YhsDISERRUKgCHTaYyjIea2ZFxeXbl0xnBZNJxdnZGfbyDTFYbtZXLB99yJOPPmBrQfSBsS5YVnOa9TXL+RnTcsFi+oCTpeT1V1cIuYMgUUgkLXpyy+/+/i+zurnl9ma7f829C9zWK64uthSlYT4riD5yfHTMe49Psc0tu+0Ns0lJs75iPH3A1apGG8Ozs4c8efiQo0ennL33mGJc8ObtT9jWF+y6NyACk+IxYZzej1HUCNEghc8sb0/XbpHBYvtA7zpc6EDYO31qSIy795EgPd5Zgjdg7kxaMTn+8vUSwadCgOBTykTwnqhkamOLNhmtQtpWhHQKJIhUDhBCSOKDENN2JspU5BCzbCbeSVbgTgoUYwTvBkUC6aibhDZiyJAVkQcPFV89d7/gq/YwhznMYQ7z75tvZlgzmzkwI1LovEq+F8gfc3C3SWAtZFYv6V3jHrQMjzM8rhDpz6x1tLajbS23bVpfunsAM8acJJDTB9iv/OPfMEXcAWJEWqeTm6wGZnX4mh8+fMio0Pzkh3/JH/zB/wff99j1p3z30w9Yb1Zs6x4pJZUxaBHpuo7FySnapEap4D2rm1u22w0PHj2iqIAgiXIA8Cm7NiJQSmCdy6AbvHVcvPqKQgVMMcJUI3Qx4fHT9/hZs+HJw2e8eXtB22zTMxDFHp3eJ0KlyK1EGSymnNjUCx9kuHsu9sxs3ActDBFD9+cOYGa5xWBkGYxfeW3rg0AqzcBsiz1jNcDou883vNbvYj78ZEHdOV78bJtkJgL6GLm+6XnycEYRNnSdR7rU4DYaa3ZtSgMQEpACJwNvV2sejSuEgflxyclyjJct11ev6foljx69Rx8E55cvIdzivOd4OuWT737IFz97y8UXX1C3HRfNhu//D3+bD599RN1c89nP/pTt2nP26CkPH5ZoLfG2RsgdQmqkDGgt8DZd5z6/l6y1AGyEZzyqeHh2hKLGxZ7ZdETfbKm3ltuNYHm8pBpXLI4mzI6nTI/mLB8c03U7Xp//lMvVF+zsBRKwLjIaneHcNdVoTKTGuhXe94hosXaLig7vJSE6hIwolfJPU7VpxHUBpz2FSu+0FIUl0VkSIPNGZQCsIutVJSDxCOGzhpt72lWRDhJ5g+JCQIl9l1aSLIj0+ZLe+66tC76uY98D2JgqsJRUaC3ROhWTDHIZheDXf688ANbDHOYwh/kWzd9iurqLjUqgNZcD7AFlAj5DdJSQAhmHld+ddnTQnKZO+jtAE4JLLUObmtY6Wufp94Yq8ppvAFEyAdb9qjnHWGVsJcXd392HYgmr3pm2JJLjxYztxRv+/E/+LS+/+BIhJW+Wcz58coyOAW8tNgSEt1gC1kWMMdh2g+8d222KoWqbnnnvUMoTpUcKn3eRiuAcPmec2j79PiBxQXK72rG5eslsNqaoDKYYc/r0e5w9+5BXz3/EJx9/h5/85K/p+27/LN99P1+v0ExxWHEfni6VTNmo3AHW4bUkP6fJMDdo+UR+XbLpJma9rLifRxkZ2qxCDEm3zJ2OVogMWDOT/q5A6v159WrFgydTnrw/4ac/WhEj9D7y9u2Ok/mco9mStr5B4gnWp6YyJWl9oPcgMKxWLX0MyNLw/odPeOOu+MnVcyYazkrB5Ytb5otjRtWY3gZW6xtW257i6ccsiorGtohFwe36CofjxWdf8GCsud1eg93x7PSIZ8/OGM0N3ltu27cIdQPVA7TRqZbXcO89KDAFOWJNo+cFSgSuL9+gtWJcjXG2pagMlVaUxjKfjClHmnJSUoxLTDGhGFd8/MGv8tMv/zWXdY0XChc8m/o5u/aGugcjJVKFLM8BH9O1aL3MjVUecBAtUmZz3yDLCRElJaXWlNpgVHLuKyn2ByIhJFGKzGyGvX41Rpm3KR7vfdaEp+1KzLrrKBLI9eLuvT7sB9J7IZm8lEpg2Zgib4Tina5aRpAhN2alYgJibmo76FgPc5jDHOZbN/8Bpqv7AGRg7OKepbuLisnMiUi5rX/T7HR/9rpHUgh503ZYR65vTMB2ALgiyn1H+aCpFSI3NPn0KFJmlmUfAzUwk1nMRtyDNykFs3LEl599zovPn3N2dIyQEu8cNze3mNJQFZq2bWjrBi1gPFtiJLTrK7pdw7Zx9L2jGE2RKHwqw0KrmG7ygf1KP4S4l0oMQN7GyJdffcV8VrE4WrBYLIkEHj/7lG63oW0bjk8e8ObN6/Ss72+gd6yR2EsGUsuYLhSUBaYvsNbtP+7nZpAFZKYpZnNbDMPXmD8sa1Zj1v3Fob4yBkK4M3ul60De+zv/c6zWu5hlccbLH99QLSSf/OCM5z+8JHjPervlL3/4kmePl9S1xwUQDpptinUanlehkjKi7R1X2x3f0Q9YlnNW63MEASsj0/mUze01QaZa2m3ds1h6dt2adnODlop+UlCNLEYLblZv+OGfdzw8e8DSHCP8iqVQuMbz9uqWzoDSHcYEptOK1fWWOOQIRzCFolIC2we8B2cd55crol1RFoKTY8VsXIB0jMYCKTzO7ej7LU1bY73FVCUx1ljfsGmucGGHENPEmkZBVR5j3RYft8SgUl6vigTXp9C1YO6SQvDEYFG5HlXJlLihpabQVcohVjqXTdxFyt3XlspcMuCcx1qbEwUGA6AYzlg5Ms4SokJL0uckxaiJOEiA8ntsX+3K/vom5gNaTMDWD9muIeJC0i7HGNFS5Ad9N9ftYQ5zmMMc5t893wxY791gEvAcWJCQGbi0fk8MqtrrJ2PusE/ygAHUxMTuhfygOfMw4V1JcJ5g08eE4FPsUDYcCfn1LyvGwfjF/oZ3H1TfMYvDTTJ//QLKouTs9JTV5Q1tt2akIWLwccZPnn/Fg9MTlFbYvkPEwGQ552g5R+Pp25p6s+L6ZksQhuVsTrvb0nSWyWSGUirVWkZLjAKlNH5INIgJYFhn0UUJEd6+ect6u6XvHZPTW5599D4nDx5ze/WSxw8fU++27Oot+xagGAkDiywEIsTMOgdGRUGMBd46+q7HuyG6ajhUkMDPnhVVid3Khqq7uctUTSt/lfrlySkQBAiCqEwGrRmscgd278tI3tX8o//8f8If/Os/5yeffUGlNadHY243W4q5YnvT8tc/fEvnAoRIIQUyCKwQSAPEQGctRaGTlMBZri4umT9espwfU1WBYjTiZHaEXzfIQnN6fMLrN1dMq5IgHXW/BjGmdQGBZDyZ8+B0QXCBl29e8vbVmqtXNVeXl0xOFV9eremi4/2nx7x3tuB3fv97/EFneft6BQSUTutqU0hm84LgNePK0FlHsIqiMiAK2q5nPBZoKSjLgnJkEDKiS0U1ngIttq9xsaPtW4gG53uMETTtDutSTWylHxLpILSI4IjB01uPCxafJTnO9SBzbbEQ2egEQ8KHzMarQQo0sPFSDprq9P53zlIUZr+NQQwsa8CFgAsR50PKYiUm7KklUhnurtdBi5ri50IId1Ka/LNq8IeFQWIRBS5GfBhSDkSOgBMHfvUwhznMYb5l8x9kuhrAoM9rOoA7Jz5EH/EiOftTY44ixJBySTMYkokGvWPw9uah1EATB4NO9KQYqcSQSjkA5bTKjjGzMzKt98Xg7CWkm+X9TNA7keVeDzuZTpktFtzcbug9VBrGozGruuOia7Eo5tMxo6pkPCqZH50wmc8RSIL1hN5iEMl9vVkjO4sqR0nXKUpkyJFfCIJ3OfopYq3H2ZSyYExBVY2y0xqur1ccrbc8lYrZ0RnzxQkxeJ49fsLnL57jQ2JMoxjyJuOeeRpirIwxBBcojEEphXeOJCeQKAFSyf1NWIgszQiQbviawZ4lhuVqDHc6wJiqMFNiAdxpFO4vZL+exzoINIaazl/0/Okf/RG/8qu/zkcff8Qf/fEf0bfnaC2YzkvoAhdvWnwUGCOQKiJCwAmZZRZgrWc2GzGeVhjVcbXeUkzHjFSF0qkVShcKrzX1pmayLPn4w2e8fv2GUhUI5WnDGq1GVNMp3u/og+Xx+6doP2ZxtuNf3HzGn//wlo//zhShDH1jud02HE1qJrM5i6MFb99u0gEgH9xEBC0j1UgzHhUYbQhW4Lynty6Z5YRBaZhMS4qyoBqXTGdzprMZ1+dvECrw8s3nFOWIk+kI5zxt2xMKgfXXdH2DsxItFem9Z9FKpOsv+GSwAhABqbNelSE+Tebth4e8XZAZvEopCSFr4EXStyqt0Fp/7YATM+B0wd/bumRdajb+xTh8vNhfp5GkY3XO4ZzLJsA8+b1zT91KFLlmWCuEi8kkmiVJj55Jnn74/4cn9TCHOcxhDvPf6fytxQH3q0+HcPAhjkoIudenWuvS+lskwBNjyGvArytK71z7dx5d8CA8SkEUARXBu8R8yCgSQLp38xFCoPIjKBJTG+8xrfkWCUhEXkkG5wlB8OzZ+yyOFug3F0yPHiJCx9Wmo+tqfPD0zvPB+x9y8vAh80nFeDLFRYPtHPWuo911+Nbz+s0rrnc1Dx8/ZrGYZwA5R0qJVknvG5C5KEHgncf2fTJiSY2pRsh2R289ze2GXdPi0aDHzJYPabYbHj54RN22vL54nTWrZE/z3TMXGJSoMIS1370+AqkERaGRSiU9rfUgE4wIYpBdZIPV3auUA9nZP6fJvBazTlHkwqD7UOFOtLDP5n2Hq9WRhP/z/+n/xmK54Hd/7zcQvufi5iXzeYWh4uL8FcSINgqpPMLlmlAv8ECfiweMERRmSow7Pv/sJU+enFF3gdXuFbqE6WhOu94hGsuoEAgZ6Z2lqhSLkzl9N2HXvsG5LVO9RPqe5ekxDx+OuX17y5efKaIwVNJx2++4Xtcsj3Y8qCJSa4IIRAEe0GLQhCfN6GRaMBuNabYtbeeZzKeMC8F4pNE6ve6z2YzxeMp4PKWsypQx3PV0XU3drmg3W0BS6AnT6oRCj7ndvMa5NskEGLSpAfYHxJhNVXfvNCUEWqQ61sIYCm2y2Up97SAzHGwGAKuVxmiNVnemLB89PtjErmbA6kPIB9wcGwfp55NMMWQiX6Nh//Nq0K+nTGCtFDa4PYOL1CB81pYnRjWI/N4SMBoLxpODLOAwhznMYb4t87fmsO5/P6zr9v9/cJXfB7UhRTv9O3IMY7wDRHDHtKZqRTAGlBKEoBEiuey9C9zXwN5PFB3iq9KKMbM/8POfO8sVjBnz7NETvvfd7zOuKibjEWVV8ur1BVIIRoWh7z236y3bH31O7zXH0xL3+Iz56TE3N9eszy+ZCcFmW/PnP/wxrfe0XcvTh49xPmJtz2Q2o4mB2WyapQ0O54ZIrsSUKqWppjNubi5p2pau79lud7S9pSzG6PERXk0IIXJyfMLtds2urrmDq3EPDhEpUP2ulpVsbBleK4kUqZwqIMik2Z5lSvLIFFs1yCtC2Adcfe25T8cMeZd3CXu9oLj3mqYv6+cbsH6R84NPn/GHf/UlX714ze1mxdMnc37tVz/m5cULrIbJrGSzagl9IJQwKiWij7RSQCGwztN0lhMVmU8rir6nvqnZrWqO33/A1kSabo3vepp+w3i8QEQ4e3iMa5P5TiqF3W7omxbnHfVmQzzRSA3IwGQh+eT7T9HTku32Bud7bOzpNpZtv0tAyxj6rs+vvMC6SPSOsky6y3JUMp1O6BrLaDJmMSsplMr5wZGqmjCdTFN1cARtRkQkWhui6LJpSmLdLV27RsoRSpY4LDG49Jrn8+WwKN9nluZyAyVkAqsyPa5WCmNMYk6VvLsWMtMa8ntWSYnRBm00SiVJUSQZ+3wcqHy/f00TaE26A+ccWmqESs1VMjs1/XCwy2bN4FNdtPNJZhRijr0KHr+P4srXfIh5QyO/VrZxmMMc5jCHeffzjYC1KAYnQ8Dvs1QjUiggEoO/l/k5GG+Gmxr5f7+uMb1b18cUWxMFWkm0IbfVaKSKqR7V3gHk+wBoMLwLkf9NCnbNa/8BPOfPk7+++XTJf/E//1/w5OEJJnrmsyl9u2O7vmU2nWCjp+07ohB0XcNPf/YzPnz6CFzHx4Wh6z1vL1cUR0uuVhuaCA/f+4Anj07YXN+wbVu2bcPZo4eJ5Qmeoqzo24am7wnZnOV8QBWG2fKEq/M3xPWWrnesVze8+uoLPvr4uyyOH7Krd7x+8VOqquL06Ihd2+B93D+xMSaJAAi8D9RtS6E01tpU0JBlFAmdppv5wIyJLAfYS33jnaErPdmJULsPTNMnHfSzQ5tRvgYi2dQS94/yN6PMftFzc/mc//3/8n/M/+H/8v/ki6srmp+u8P0ENYqs12tsl9bs0Qd8VIwngl3wqJhYOikyGx0j2A5FBF2w2fScdJHF/Jh6fUUvWvCwWt8yns15+uSMq4tretviQo80GlMWKCbcrG45rkvOihG6FMxOR3z+wytO5k85efyQalZw8/Yc10Es4ezxMS9fXnL+5gZpFLosUaTtgvUkw5ipeHD2ACUFZTViMjbgPTJEqpFhPFsyPjri6PQMY0qUFNjYcbO+oOtaEiDMshrl6Lo1MSqIMrGN4S4PWKmsRSci1R3TqqTAZLBq8i8hk5v//s+GBDbj3fs1/1L7ayQxtiEbrny4W9M750jlFMP7P0lWYsi/GwAr4a71LWRg6n2qGfaeVKQX9jrXVEAwAFbufZ0HsHqYwxzmMN+m+UbAWlZDC1KOsRESGWPSRIrEUAxrwsGAs7cvSInIQfqJ/VP5JpWYVCUjSnm0TivDslSEIPBBJjmAy8YMmZeOkRxrM4zYa1QHwwTcZbMOzVdBwMlizv/oP/4HfPz+M4yEerNms6nZbDbUu5qqLLBYttsdUQhms2PaLukW55OKpq4ZVWNChKvVhttdy8mTZzz79FMezkfcXp7z4vlrjpsGIQWTyRjwaFNinaV3DqEMPihChPGkZLmYMxqN0IUh7nZsb6/5/Id/xsOHjxlXI07OntK1LauLlvl0TlFc0jXNHjwk7JiqLkOATduipKTpGnw2uw3r42RWSckKebMLOUooubGzoHhgb2MyzsXBSZUreBkOCjKvbr3HhSGEfch2DZmSu/fY72CqYson7z/mV3/pI17+8yuIkbptmE8NwkSqSiAsKKPwMWC9QIpItJHOgzTgvaDedRS2JRqPlZq+67m5vGGilvSxwEVL37REGo5D5Oj0jGk1xpaKru2IXrJYPqO11/jOcv5mw2j2JR98+gFqAuv6musf1jz7zjMoJaPjGV0XcSrSNykBIgToeyiLguXRkum4wpjIgwdLlosFo9GYqtAUo5JJVUDwCCJlNWI8XTCZLlPxRTXClGMuPn9B8B4tNSHa9H0PhxHpUuh/tDkyTabkhPwxImcbk9M6GHSh91z/QuX35VAQkN+LSYqSDqVCSrQpKIpir2EdkicAfIhJDrBnQdN7P2WtRu6KAmS6jmP6fD6E1EyXr/UY77T3znuS+jjuAW36ZobSk7QJsdZTCM3f+x+Mf6HX7GEOc5jDHObfP98IWKVMaz+lFcELgk1B+EJ4gggJuMTBqX8XzD+s1YRQ+1WgDyHlhMrcIa4ESgvKQjMea8pSUe8sm10qCQj7wHyR2bs7t68QIq3+QnK5DzfCRAaHr7GGEcHf/73f4R/+vd/DSMBZLi5u+Cf/9X/LTz9/TlFotKm4vb3l8mbFw4cPsS4QVTY5xdTWFb1jUpU0my3lZMqDZ+9xupjx6suf8fbymqubFbIo2G4WaAO9rXE+oguTV6AFEYUyBbbdYbuaQKB3jmI0JsSI7XcE1wMjynLCyeljuu019XbD0fyIXV1nI8mdkQzSKrOzHkjsatLoDUpX6L0HqfasVYxh74SOg7kqSIRMz18MPkkYhtzbuzCA9HIMJrwMJkIIKKUQSO7lGNwDLL/4+X//07/m7PFjfuOXvs8f/PFf07RbOudp+1TLqQxM5ppHz0559eqK7dZSCokRAhR0PtB3sNr0zE5HhBDQEmoBVze3TKZjlkfH3OyuWa07eheBDvuk5/h0Qe12cNNR77aMJ0tMrOiaAtd7uq7FWst619C6gNs27LZrpuM5Rw9OcF2Lv42sV1uauiNkZt4Wkaa1zOYTZrMxZTlKZrsYknlJpnSAoqxAaqpqwniyYDxdUhQjdFFiigRiR+USGcYE2uy8F3upAMLis1FQDJsLIPqAkoIg0gFykAMM2mkpJVprjDEURZGuiWErIjLY3GekakxRoLN0QAiJUpIQB3Y0bXVCTJsYHzwyCoL0KYEk6D3IHiS2g7Y1/dhIcXcqf11ANmzFpFWNg5xII1W6fp0LOOvRBoIPTKbv4MI9zGEOc5jD/DvnGwHrbK5BRMpC4wJ0jUerpFHtrUeI1HgUfEiANgyGisTKDS7evZM/u9MTaM1mCKOZzyrKymC0Y7Pb4GzSnoUQ8MKjxBD4LfN6MecpxogX6W411I3GIUqL1Dn+9PEjvvvpp4TgGULLXQCkJkQwRcmuaambFoXEdw7o8c5zcX7OxCiWkwmPqxMePn7Ay64hBMnnP/kRl18a2s2Gq9WOcjxhPCoJvmd9e43zHiEls8UcVEFUAmMkRM9mvWG7vsY6R2t7jk4eoYtJyp/MIFlohdI6ufVjiv5JFZV7YvlrE8Kw9kx6UiE1A9TwISQHeVSEXENJdsPHkBhqKchsXo4F8vFrLmspVf6kd7rl4TWCDGLFAFDvAuL3oOIXPKvo+ad//Jf8p//Jf8JHDx/wl59t6K3Ae8O4HLGJazobCNLz6fcf8OKzt9i1xwjJdBS5cRIXA72LRK2pCgsxFT/00XKz2vBscUwZC0SQFKOCyWyMkhYfG0bjMZvbK4ToEbKhKAWmKGjrCgQ41yKURCjBqNJ4Z3GxYTabE0rB5UXk5mpH2zpilJTGUJUFk/EIax29ddg+1coiJcjUciZUSYhQFRW6HOERBJckNrbvMOWEyXTJZLzEyDHOrXI0VW5qQyLi8D7Lhw5x53kUezY+K5pFunaMVpSFoSzuWNNhezJ8dMhaaikVymh0YdBa5axWmbYpwSFCkhPEvdkrsf4+RJQPCClxrscpnaQJctgGDAzuUI1834SY5UIZ0cYQU0NXSC1dfrhWh5QDF/7GRucwhznMYQ7zLucbAet7jydEPEVpiELQ7HrKIsUmbbc9PoBQgs56mp2jqTOnKYb++rs+byly2H3M91c93GeH8PCh017S9W1i7mJAZAORFHc3njR3APUunSABtwgYJXlw+oDf/53f4+zsYWJxoqftLZ99/pzrmxumkwlFYXDOIYXEKI3tehrbg9RI77m6vubmaMHx0ZzpdMrkaE5YbSmFYL1t6GxEj6dMJxWPHz9kMRsRYmS7q7HW0nct2qTVozAGQcC7HucdyqTV6HgyYzR7gPcdru8JI08goMqK6XxJs73maLbg/OoSZy0xayz33T5xWG8m/Z2Uav/n2d9PiEMtrrgXEZYFHFHuG8V87nV3Pte7ynTTHxjWmEshknPbEwN7dk0Mkuf7Tu13pAX8+Dc+5vXbNT998QV//9ee8ubNOZuupWnEPkopqkBvW6IMzBawtdDvAoXRTEygQyF1YqV9AOtTaoWNgqvrLQ+OdkzGE6aTGaKSiALWzQocPH76CUU1QpkaqSw+BoSKTKYlbbfh/Opz6r6mmkrqnWW7ugXTE07POFqeEs4io8kWrUoKkyLKbN+zXq959PABphhhbaS3ElVMQRXo0ZTFyTExeKQQTKYLRqNp0q4qg5QK7yyrm3N2zRVR9AneCZH14+zlPOmA4v6m83KfByFIi3QlBUYpCqMpC0NRGEyOVpNSoZQa/nE6fKG+JuWJIgPV/TWk0TGipU4xefj9Y6WD6T5QL/+M8XlbkA5Y3vssfYmQNazpV8ga2MQO+ywFIJcThBAICBQp+cST9M2HOcxhDnOYb8d8I2B9/KhCaZmYQSGwfUlhCrSRdK3FuoDSkjZ4tuue8/OWtoMQBG3j7ow9JGPGEIBfGE05kmgzaMnA9oGutfSdx9uQta4yJyNlxpb7zt0EWENM5iIlEwDzMVJozScffsTv/fbv8Mu/9MuURZlW413H+dsrvnzxCu8s43G1f9zJdEoj6uyGhrKqmIzGEAO73Za276nGI2bLY64ub3jvySOClDRtz+XNDdPpiMlkxHicci273iWNbwgE16cVqYTetnS2w8e8TiV9f8v5jN12aOAJhJBMJqKcosoxi9mC5fyI1xdvEm865MsO8oe84txH/kD+3vKhgZzDOtyo8/M3ABYGhiq3iimVG83kncN7+OchhKQrDEPNZpYo3stcHQDru9Kw3m53/Opv/jIvvnjBx08W/MPf/w3+X3/4h6y2loePjphPLW2saXc19QhG8zFds8PaiHUOZSKVKYghYC04peitoLMR6wIyRurNlnFRMl8+QJmI1C3rukPrwO3tLUIaovJYX9M2PaYYoY2mMBU3V7eYSjJ7oOlrT3vbMhuV7DYND48esJgXFMagdYHXZCDmEcGzWa+YTMYsThZoVSLViOXxA0ZVwdHpI7RKRRxFUVIUo6RdNQYtNW/ffs5PPvtXPH/xF9TNNUrn91V+hZP7X2ZTY04UFvdf13SIFDGBVa0kWqcYN6lEYkylZIjCEoBUKhmj9rLzoawiyYbkvXIBZJYPcD8xNZmxBoOWUhIhB7F6IAaRkgVCSJXI3hO9Ty1dMaZGqwHsyqR59UEQZTqQ7U1fQ/1wbr/iQLAe5jCHOcy3Zr4RsD57b442kqJQiVHzKSFASUVwaR2sS00fLLutZTat2WwdvYXNpsP2qT41hIjtE62hDVSVwOiINglkWhfRWtK2Dtv7rGfL7GuOmJEiudZlNnYMfgkhBpdvYkO0kLz3+Cn/4Hf/Ht/59FNGpiLmutdm13F5ccPF1SU+2BzLI0FGtNJ51ZiKAZTWLBdLThczvLPc3FxTVhVFUSZtqoyUI01VSKryFKRkNBrluK8EOk1RoJVGas2oqlBa0/Z9YsBUzrDNjTxVWeKtxXubgUnEaM10eUJ9+5Z2e8PJ0THnl2/TDXlwXsuYDSsZYESRdq+Rr5lYGCBnBpcJg2T2KwoQIbFdqMSqDtmrMv0i6xCTZOEuDzRGsq756zFASqmfi0L7Rc4nn3yX0WjGv/jhc+blI/7ub/w2P3v9hh+/eUOlx9zYWzofcNtIOYkcn86RVU8x61PFvAcbbSp2WLeURCaVZN0GvJCUheHl9YZHSjE9WbJeb/Cyp515xpXi1VcvWRyfIeWI3a6haVtm8wJjFFJJCBotJdNZyXbiYBtptg3OO2IQtFtP11rKsgQiXeuJIdB1PWVVYXuXsn3blu16h378FGMqlBlxfHxC8B4RYzZaFVSTCUJH3l58xo9/9odcr77AxwZJsTdTqdwIoZREGYW0yQDJ/UMQMKQKkAGgVoqi0JjCpF9apcNmZk3l3tmfrlkpNVIapDQIaZIJC4giA8YY9yt9kQ9TIqbrWyqVH1cgRa6ODSFFcIVUDZxF8PtMViXkHlyntAMDEawIhKCBgLUWazucsyB0zpd9NwkXhznMYQ5zmJ+fbwSs3//+46Q11TLnGfq95msAIkpJfAg0jWUxHbHZ9TSt5/a2pmkDIQq8i7g+ErwgRo8pUiB7lIJd03C72iIV1LUlBCgqifbkfnuxz59P1YoC4SU4mXV1OUorM4QPlkf89q//Oh9/+D6F1tmEpQghsl3XXF7dsNmuU+yQtRRFRfTgo6f3Dp3XoUVZEmNgVBYED9b2iV0kUpQFq9UtD4pjtFSMSgMi1VNCpCwrTNsjlKIajxmPR8xmU3oXuN1ssC6VLGy22/w8Bvp2h1SCrt3SdyPIulXbW4RKL9PxYs7p8Qlvz98Sskwi5hv5YHBJ7FFmsuCeNGO4+d4xomLQ84lsMCM/p0EgcmB9evLD/mMHkCJkTIUD+d8Pa97EgieNcgwBG74OdX5R8+zJY9ptixeRF69u+cH3G/53/5t/xH/zz/6Q69ua7mrNV9uWSMDZjuvVNeWiRFcCEx3NZcDagHXQacuuhLN5BQSQgqPTBet1zeXrax7O5wgheLW6YecF3bRiMi5YoHFOsbq+orceb0ukEOixpO87iqJM6RtK0vSR5WKE0QYZZ6yv1wQnGFVVYj0RGZBF6rpjfbtipBXe9tjgeTWb8sknn9BbkMWY0+PjxIQKhTIGoSSqKDg+eYIQKh88LN5HlCrTtZSlPCrk7YZKCRSpWXlorksmPK0EhVEUWmNMMlqlX0UGrFkOkM19+9MSEikUUmik0Ag06eCULP0+hiQ12TPzMh+Wwp2OljtDZyQBYh8TUB3irhDp+hMis8YRdE4uUUannyeuR2uZ3i95O+B9gOiymewAWA9zmMMc5tsy3whYHz2cpeBvwHmHtZYYRaoYzSAxVXxGmkpTaMV8qmhaz6iEpgvEKLEu5KgqcC4gZEgB9lIQcKw3Edc6nFOUFegigVXvEjNKHGpdBcpJQtTIfoheEkkfGEEKxccffcCnn36MKU26iUVF8J6m9jRty6be0XctwXukVPtg8RgzU6klWmqMUnTdjraZUJRFBhcpMWA0mXB7vspxVQCC0hQ5BUGijWHiJwipmS2XjMcjqkLTrzdAxtbB07ZNbvsR1LsbdDGDGLF9j1Lp6y6MpihGSeMXHU8ePuL29jZlxmYDlAB01gpGKfG4JJUYXshs9hdC5Kif4W+GWsssD5AxSYllRqEDu7rn1/KKNqdH7P9pFj+K/eMBOUDo3cBVWN1ecnx0wq///q/yJ//03/B//y//v/yv/vGU7z1bUDw74e//+vf4gz/6CX/wJ3+arlV6vOsYjUrqVTqYKSmQASp190zpwqQ83egoq0iza3n+xQuOHk6ZmQI9nrBraqIG33tc4+lqyaiac3byhNFY4MIV1nX0fcF61dC5QNSCR2ePOZuc0Wwit7ctVTWCqKjKisl4Qtf1EKFrWzbbXWpO84HTs9PM0o+QqmQ0nrI8PmEyXaQiD6lAarz3nF+cE4Ldaz8h7tNAkAIR0nUgRNybJIfc3RQzl56XwiiM0RSFyfrVZLZKhQEKmQ9RcmDdB4Z0T9lLfH5Pp3iqfODJmwEtJU7lnxckVtpZi/cerc2doZMkRwCRNhbeQ0zZsnd66pxoIJORUSmdUjmCw8tsBEsUL0SBtxEhU/PVYQ5zmMMc5tsx3whYl/NJYkKkJoSeru/wHrwbdJYJsVgf9trHogBjHFKDzS5c5xI723WRvkudPUEIApHelyBk0ny6mI0dCVg5R2qhyb+IkRBTjE9dq8z0JqlAjIFxWfKdTz7maHGMEhrrLNDTdyI1SnUd6+2GvuvQyqB0uomPy3EO3HeIGHl0eoJGsd3cMioLotLocowPEhs8QYALnnpXM5qOqKoRo1GJzsysLkqkLnA+Uo0mjKcTgu8T+M4365D1dZPJGK2gqdcUGFSGfYJAURgApvMlV8bQ1TsW0xknx8e8evsWyPLTHKg+/MueFKB+3/ykosorzp/XmQL75IC7vx40qMP6d/jT+9WXicb9+XKAwWATiO8Isl5cXjCbT6ibmrqzvD5v+Jd//Ef8/m/+Bv/yj/+K85cv+f3f+S1+9Zf+Z4znU/7rf/kv+dHznzIqK3wp6VhTjpIOpVR5pWwKjGrZtD3X6zWjAlwluekaHlQPcLsdxgoWqsLbSLfZYBTMZ0tG1YyqMJQGlCuRUlP3jtOjRwi/wyhoPHTXnnJmmS3HyWkvA1IIxtWIOIHCGNbrNT5YIp5JNWW7adhtalzf8uKLnxEJnD1+yHyxROrRoOmgtzVlqRiNSspS43xun5KkhAoliB5E8Cl2TiXH/P16ZikExii0lmiVzI2FSWkfQzKA3q/t764LkU19MUaiJ8VoRUkIgihj1phmiUxuXkv61JAzVdPhRwm5j9K6m7TAT4foLAnYr/OzLlvm6Cyt0UaRiksUMUi8TLpbKQQ+N1654IeejMMc5jCHOcy3YL4RsM6nMwQ6Z4i6vEb3+6giHwLWOlrrIDZY5ylixAXJVJfJjZsjkrz37GpLvY10vcVmfWNRaMIkoI1M+rPMcsQocC73iPsUQ4MgGVliwBQOa0PWyAo8jgezOafHRzmiKeD6Di8SmJVScLu65ebmhhhi1sJKuq7LLuSkKVVaczyeMC0qdqOC+WRM3dvUkuMdLjfkxAjOOpRUVGVJVVXphm0MUUqKsoQ+mT+kTn3xLgJCIXWJ9EmPN64Kovc4FxhPwdkO73tCGNb8CqkN2oxp/A1GRx4cn3J1c0Pf96mRKt9k1VCtes+0FbPTKrFQOinz8qozDFm2QtwB1vQ3d+xtZrK+VpE7aAvvGeHE/Y/JesUYkob5XYwpFC9ffMknn3zMmxfXfP4Xn/Gn/+ZLfuU3fpvH3/2I56tz/vAv/4T3Tp4xuqn4z//jv8+PXnzIX7z4GefFNfX1BvCEHOFWOsO4mlCtOxSBtgn4IDFG4Ai8eXtDMam4uK2pysSax7hifqIoRyWVLhEioBWMiilBOgIllZxQnZxh5wVjO6KvS9arhu2Np9AlvbDpGgCU1kgROFrOaG2H0opRMaI0JcF6Xr38iu99//usrq94/tOfcnLygNF0Snqbp9embbc07Qbv+8S+7gWqecNAYjgLo/CFgujxXqaDR0ibDAEZmErUsP6XAq2G+DqV31PpIOT2h9uBFVWA2l9uKbUivU9DdMToCDGZzAgu67FTeoGScr8tGPJdB4OYFCl1IBAGnUr6voe8VSmRSu7f7+nfJX1ssB7bebY2v6di5J1dvIc5zGEOc5ifm28ErFU5QgqNVhUhBgqt8GXM+rG0trfO03Y9G1niXUTIFikcIark3HVJFhBioCgskR6/g2gDCIdRmmCSTnXIVxWIfVi6CwmURhKLqHQCZdqkkPwkMwCP4uHJKbPRCO86bPA09Q5rHVIZxpMZu92Ouq7x3iOUwOYVo3NJ7gAJ7LmuZjweYfSE4CyFjPi+xbueKBRFUaJNCUIRfaQwaRW6Z5WUJCIRItC3NcGOk1u7rFC6pSgqgg1pRakkbdsitWE2m+JdR981VKMRwVukSvpTrQuiD/Rdy2Q0Yjmdc3F9mXS1Pmn/ROKoUuxUcEAk+gQUJBJUJJI0k0P+6hBnhUh1riKDl2Hbn4WsGYR+fUUqh0iiIVIsZoY8x5fFKPHu3ZiutvUF0Up+9qPnVCODE4KXr7b84R/9Md/9wUd8+OknvHn5ln/2F3+GKQM/fv6XvP/kI+aVZD0VLJ5UNBc1k6MKqwS2D6xXlu88eUrx9oK3mw2Ni7R9QNvItPL0K9g5Tzw1aCkYmxJTBLxooawRasx8PMMU0PvIyfxD+k3EFyUdChUUl283XF2v8Q6MUozHFU3TEEJAiHSNCimYjKu01rYNUkZ2uzWvvrIYbVgcHWOdZzZf8J1f+g1Gk6N0UBKa0WjBbLZkOp2z2Vqs9fvGMp0NdIFIULkkRIIYGqVkkg9oJTGFSTFWZYEpCoqyzPpVjZI6JQVk5pQ9I5/0pIOeNUaRGdYsVREhaXrxxOgSQx8DIBKrqkgZz8HnoosESAOBKHINsDbpZ05IOdEpvUKijSaGpLu+i2FL+mxCwJWWUVXQNhbvPCEkbethDnOYwxzm2zHfCFiNniClQqsyVTjuK7bTD/wYBN57qsJS6hKjDF3f0LuU7xgi9NZlhtXRTizVyLHadLR1h3WB9U7CrkerZI5K0TKS4CUyBGQOw48x5rWsytE7IpnAfMR5iBQsl0ukVjjX0rYt9a7GaE3X99jepoBzYzL4lXTW7vMZY4z5a06WZEkClL3t0FIQnGSzXVNNllTViNliSWkURhd4d2cSCSFpR5VWKK1o6o56dctoGnK2pMKYgl51jMcjRuMS5yLaVFTZYEP0SCJK6RT637X0XYsQEec80giOFnNubm+w3iWjir9rr9p/Hbn+R4pByxcSqyayaC+AJ2dZZs0pAOKur2q/Fx18bYm/IhLzISPFBqWN8QBU2VdfvitJwHSm2ax75ssxza7GTCX1NvAn/+JHxM2aD7/3Kf74lK/evGHVbSn6FnH1ikaVuNhTjgyh1ExnBeZoiruxXFxuOTleMJsuWfU9u6al7SJVFEwWc6KP+G3Le0+ecL5+TUdEyILC9NhwSzVaMiqm6EIxH80ZcQYuYHtJ2/Ts1j3NLuA7QfAOqSWz6QjvHDerNcZotEra0fVqjZQCa1N8nCSyq2us9xwd3RJj5NXzLyhMxUff+1XK8QxtCkaTGdv6gt7u0msoY65STYarwWc3GB33hR8iaUWNEZhSo7W5q1Y1Bl0UiQFWKkVHCbFP4RB5zb+/pPK1eT9tIoFPmQOsMoMbJM4JnA2oXMHqfU/SW0uEUvvrEriLysoRbneP73MxQgKre0MYUASDlT1KpLQDlfW8IsSc1XqYwxzmMIf5NszfAljLnJGokASkLPPfxBxOL1BeYZTAKE1hiqTxjNlwIwTWuWRq8kkj2tlI3fa0naVpPW8u1lzdbOn7LgXtu5yRGAQuSvo+4L3Yx9OYosjsTcqmDCFJBhSa6WhEJGKtpes6uq7FyBHOdkgP89mEoihACJzt6buOCDjfI/PqPCJwPuRVeQLmfdcwKkuMUigJWpfMF0cUKrVpxShou57ZbJIqHnOfuRAKpUvq7RYZPT5UGFMSoqI3HdPZDGMkIUqkrpBSYJRAkDM3pUmq1BiwfYfzLoWgx8B0NGJcVax22xyY7pIBLt6ZqCDu81O5rz0dDCaZ1Y7ZoZ22/3H/8ZDJsXjn0E6PmSOHhtgqsYe6qPypU5kDCQy9g/nkk2c4V3LxcoXtLK++OkfJHt9Y3PWO+vyc2YNjplPJ+tbRa8HkaIak5PZmy9HJjKqPBO9Yzibc3NzQh8iLVxcUoyneBrRI37iUgl2/YzatmMSCR8tjvLph3e3wsqIoKqzrMaOCcrLAxAJnQIYx/bZlu2rpraNtPEIKdvUO7wPOdRijWS4WSCW5ur7JmtNU2LBe7xBSYbShKFNYf9P0KLXls59+xve++11cu+Pq7Zc8+uB76b3hWpRKFaqyZ59FOpxh9kAzr8r37KgUSaNdaIw2GP03jFZKp3+nBuZT7I14Mmf5xuCJwYGwSZIgFFYIBCaxuHvNa7wDzZJ9DjNhKAqRyFwpLEg6Y8LdYUnsHYFiz9AmRjVXO5NeM60V3su8KUhgVWm5zx5+RxHChznMYQ5zmH/HfCNgTYK1sGfQhFDE6BMrIwYGzROlQBeGsVb47NZPP/A93tvUPpWjakIE5xy9s/Q2sFxMuV1vEiPaNOyaHutD0pER6G1J3wdikCih9saOy+stbgCsMVLEimlRgYv44PAuRVSJ6JNZQ2kCUOiUM9p1lr5N9ZhSJFNIChZPX19r+7SGVYLeB2TXoYqKvq2RkxmyKBlVhugt5XiM8z1t11FqhVA6MUFCo4uCdlOzWd0iiglKJHmFNoaqmiCExweBNiVKqmw2SS6z1GqVbvK271IJQfDgA9qUTCcTVvWOQKpTVWGoSh1i4MVAiXMPe+TXNv1p2tDmZf8AWPJv9+xz/gcJnw0uN7KkIH2+hPezEjbefZJ3VHTFavMV0+kjzh7NqOue8XzMtmmIQmKQdKuaH794w8au6G1EKEUfe0bjBWf6jM32ir7v6VpLG89pVx0PlzMcyUA41gZtBLbviN6z2q0QI8tsMeP5Zy84PVtgpuCDQKkZZeGody3NJDIfnyGMoK81Inj6ZkPb9jStxXlLWRY0dYsUklFV4foeKSKF0TjnGI8rvHdEBKOyYjweJ/bdO4qqYlfX1LsNP/zLv+CDD5/RNxua7Q2j6RHT0TFGD1WoKh0+8np8KIEQ3KUEIAYQSMr+zZRryK81w+FFZsA5AGAk94srcl4/MFT7ZgY0eAgqxaqFkNf79419MW8I0rUXgt/HTe0PY/kB8yW917TGLFJNX9s94DwUkcgsFygMlatyfF3Ah4ZO+OELPsxhDnOYw3wL5hsBq4gKEX0CJsEjpAccIabFXYgeF1NtpJIGpQQKgZYVSphknghunwqQhGoJvDrv6V1PWUqOjwq6rqPtOtquTzcrEfF4rBXYLiKRFIVBSYXUmpevb+mtJQBKKPx2imwfEIOla1tc32NkxPYtXRcRKtI0O6xtCd7hekt0npTg5PExoJTiaDRmMZ2w7Rr6EJlNpxRVRdf3UNeMdUEEClNSlDoZYpRiUs6wtqO3AeH7DM57gvR4oal3LaMQ8FIQfEAqiS5G4Dt88BhdIKUihoCKKjFRGRA626GkwMtUHau1BgGL2ZS315f0wafmKXnn9BdCZpkD7M0u+x0vmVFNv6RIetZ0c49fQ7eBSFSCoiwYj8cgIm3d5HWrxLmQmOosSSCkz6l0BhXvCLFen7/Gekm3TSBkMleorcLWkTfXNzx4b4ldt2xij/WCXR95fXmBN1uWR3PW21vWvaW7cnRXK0QhmZgNiwdzrm9WnI5nWL/DjXqaXiN8AHq6WNNuOoyynH34FD2SRNFRaM3R6H3G4imxW2I3bZYAJPNT3zlEhOV8QbCBUpeE6FguZtxcX9O3Lc72OB9xzjGZTJhOZ4zHY4wxkNf5y+WCsix49fIrdruaV199RYwCU1ZoU3K8fMbJ0Udc3HyBsj3BxmxyTAcUGbK5SUmKUtH3Di88SQaUwCji/mp9AL+SKIea1fTzQYqYpCoM6R8kgIpHyJDZUgjBEaRMmwURcnvdIFFIdQMJrLqs5VXcEwJkKU+uJRYKKT3pGJXBd46+k7mBK3hPVBKpFNoYjPP0yqO1xxSpCtfaiFQHwHqYwxzmMN+W+UbAOrh3pVQEEUhmCFBSZ6dvNumIQQOXMhMRIa/yNBINSAKOiINoIDpU8AjrUKZiMjFYO8I5l/NRE1ALMhCDxvc5mkmpvUThdDnD+QTUhBTcXBhe/DTS1z226/HWoaXDI3FeopQGGrabTcpztBZcSLpDKYhCsKhGPDs+YawluwhN01CUBaezEwLgIviYAENVVAilCL7Hdx5RlCiZWnMQAWctTdti6XC9J/QWXYyprcWHSNf1iBjonKesJiyXCwqT2GMhRGoqEtB2PeubS/A9XW9RKuVIDjo/JSX4dIP2eQ2fWC95ryo1s0yKBEhzKUAUMa9hU22mFAOzmsCFKjSzxYz5yZLZfMpolAoN6l1NiBHnBc46bq9uWF1dY9t+v15G/Hz71S9ymlVgeRI5eXBMXfccn91ys1G0KvDFuqP46Ut+//d+wF+t3vDn9ivaPgCay/U5LmzY1RY1NZh1wO4C5bGmC47Nbk3re6wvs1wFllODmsBIGlarDd5q+vOO4+P3efrwA6xuabuOmX6GcQ/wzhD6yG5V09QdIDCmpKlrtFKcnj7g9nbFqErZvmVZUrQd41FF3XbstjuqokBrjbXZXBccpycnlIUmBs+Tp0+ZTme8/PIlm/UOU404PXvKeLzkaPk+k8mCutvhvE2Sjvz650V6ApPe77WmIr+35V4HqjG6SIBV69SSJhVCqawiTY8VSBuQmLcACWC6tNKPaUMSokrxWTJvc7LZap8MIkKK2fKKKNIGJUkbVDIjCgFCJ4ArAWyWAACOHM0V9mc1ID/uwOLKDLxVbvIzKOlwv+Br9jCHOcxhDvPvn28ErE3bYIoEjASpQtHHDqJGqgK1Fy9mliN4Io6AJ8p0g1OyRAiJDQ0x9ERC1spFkC615RRlkgD4kG8sSXsWBUhpIMrcWJV7xBHMpnOCzytyAUYEXny+prMO61OOoooe6y1dr3h7ccnx0SLFaPnkqC+MwfU9wQeqUcVyOmNRjQjOUWrNeDymbluavqMoC6y1NJsVPgaMVphSYAQE37PddmhTpoxHsukoRpxPaQbRx71+LuX0JHNKiClbU0uR6iVj6oGPMrm6vXeU1QiRq06FFPvIoM12R2fd11b4QqaDg1QDw8k+8meotUwANRDxyedG+nuFIPpkqioXI977+H0ev/+I0WRElTWSwZMyc0PAuYjrPNfnM14Kwc3bC5xLr4fMYLXv3g1L9a/+xZp/WL3EPZRU5RHvPf2Yy3PLanUBNvD2pkbawKdnj/jyxSW+CYyqESOZGs2ENMwWE24ve0ZScPreEf1qS1CeajYiRBBKs2091gY+evSY3/mVX+bPfvJnfHZxge/g8u0Vs+mSs/ceMqoUqp8gomZ9u2O72bFb77CdReY4qBACFxdXLJdLFvMZzvUURcGHH37I58+/xN3cMtOazXpL1/bZOCSx1uFsz+Vl+rd9n5N4raPvOqQxdHWN71t0VWLKCTHKDPCS+z/uMyCGlX3cg0dByGH+IhmTlEyHJa2ziU8SkDmJQGX9QDrwkpMkkCG/vx0ySILvcEIQSAcrgUoaVFR+nGR6tDKCjOBznioit7INZr9Baw4McVRxMHGxlwEMMWx3MpWQM4ZF/vfqXvRVOhRzaLo6zGEOc5hvzXwjYL24umQ6M1SFpyomCeyJHnIA/VDDmdbLSX/pfcSFgNZ3DEbSowVcsMTYIoXJNZNuD6KiAKkkQwOP9ymyRimDltX+5pQMyEnzORiMBILNOrGhSIvzHkHEOk/X9fRO8eWrlxwtf52j2QwjBF2IWO/pQ0R2lkdHJzwcT4g+gFH03oJObVOr21tModnUNbocUxSG3rY0jURVhhgj1vW0fZsTDQJFmTWpIeZc1IDtegIim6dS9FXIpqa23iUwmQG7NCUxZ8NKbYhS4UOg0GbPHpXZgJYyLu9GqmwukVmTKMVenysY6jeHutaYQEJMa9YgI9NxySe/8glPP3nC8mjBqCqBkL+3FEXUdj3eBkSUlKXGu4DrOja36zszDBH7jgBr01i6xjG2LdOjEdILTk9O+Mlnb5BIVrtAvXE8O3vExw8f8Vc/+YpgDFM1o6k3nJzNmRRTdl+tWR7DYqK43QZG8wrMDHvT4UUCS3UbaHaOk6NTfvuXfgX7l39O20fkXHFzu2axfMh8PkdQIOOIzfqc1c0NtnfJCNW7lDSRWcjXr9/w8OFZus76JBn54IMPALi6umI8TqUCSiu6vicEj3eO7WbL9fUtENFaUG93nJ6cMJvNuL25wfU7ijjn+Oh9qvIIKV+DsCDCXq/5dZ1zRKqYZAIDSy+SFEDka9OHAD4gRcDHuF/Np3d8OvwEIiFvYHyAGC2IHiE0SioIliDC/toUMuW+7iuX90eyAVwmPSp7s+HQqJX038P1l3JZEyhV9wxXQ2ZwavLKEVcKhJbIXDVbVQX+b7yvDnOYwxzmMO9uvhGwnl+cY/0YKbacLM8YxQofdkjhqMoJIXQ4VwOgVIGPDu8jwYnkulURKVKFqAsdfd/gfI0SBq0LnEtZj1GSzEUxYl0HpHYsIhgTkIWBbApxzqF0NicR8npcJPeyUemGGzylUQip6brkwH7x6iW/9N3vMCkrpCCZqnyKuyHC1e0NZ/MppZEIZWispfYdRknKqkAZxViOUbrcV07avqNTEiUNQnpC37Pb7uhtTzkeMa7GaFMk9jNGeucIqiR4R/AC53qkjHTNjug6qqrCuwQGpJTgwbuk97U+Dvb+/D+RqigplKaLbs+kZocZUgWUiulGnIP99w6o7OSPHsgxQmSGDy15+ukzPv3Bx0yPxxACUiaJh1IiZVySWOUQPUVRsTydEXhCsD1vnn/FbrPLq2Tu7WB/seN8BKFZTCqqEqbVKX/yr/86PUdKsqsdndWczY4IbUO9s+x2Paos6Zot86WiqFpmDw2q98wrQfH4iHIZMdOKV84im4rZbstl67l4c87/9Z/8l/ynv/Vb/E9//7/Pn3/xGbtOM60ecLJ4j8XsGNcGri4u2ay33K7W9L2lKAxGq9RqJsDalLZxeXnJe88eY22krmuMMTx7+oSrq0u01pRlxWw6pb26ygc3SWGSFrwoDaNRhRSKvrcordms19xcnTNanvLw7Af87m/9I/7Zv/o/8tWbH6WqVpEKKJKuOa39jdY47Qm5/COEmLcaWTqQmgEA0lp+MN+x90HtY6ucD7iYus/AIbOWPRIJPmWxkmUCQgwRWAKi+jmz4J2LfyjICAilGZqxhj2GkAIZJUKJZAZMobJJTxsGuZOkKBTeK3xpsK7C+0hn7Z6lPcxhDnOYw7z7+UbA+vZyx65r2W1qHj7YMpulIHSBYDlfEn2ksy0IT2FKTCGxNrLbQbFZU1bgfIvzligktvdstmsKbThenmJ0QYwOpRMP43zPZrfCh8Tcud6jDRwtPUbPcK7D+Y7RaJSC8aOjqiYQB0NIpOtbgrOU4xKpDXUjmYwLqlHFm4uL5K4OkUKm8HOjTGrs8pYX5+eU+iFFLHEhsqt3FIVmOh4TXNL0GSPTDS83XzUxUlWpQjUZV9Kft02DRFCGBAR76xAmGU5SJ3rAuR4jAW8Tu0PE2Q5TVjjv8D4VI+Ads/GM0NXE0OV4oLR2ryqNb9P/T4yRyOBSok16TsS+kVXceVUQ4AcwmxCsBxanSz74zjOOj2f0tqVtOtxwQIgR23tCgGbXJjBSBoTUTOcjHrz3kBgCb758Qdu0e93gu5jewaZuWa+u6axjVAXOzpbMXozTmrwU/JN/9qeUxvGbH3+HF282XH214dFHp5wcfcTxfMZq8xNuVjWyjRydbLF6jBSOycQyOyrolEFfX7MoBZNK0jY7/vk//9f8/m/+Kr/83ifYMOHq1jDSSyo94aa94vb2BiEE4/GYtr2hrhtGVcFoNGI2nSJVcsu/fNninOPRo0e8evWKtmk4Pj7i9PiI3gakNEwmE6xP6QPOepzr0drgvSBEyWyxZLGYs9lu0Vrz8vkLIor3vvdr8PR3+bPxf0VZfEnbxTtDZK4M3mcTD5KSfIhSOiV1pIKAtP6P3LWdiZiaqOLgsQwkQ6BPbGwyTWWjIz0ypmzZFK2WItZS2QBJJoDJF29AiPSzJ4aAdy4VYQyMbggpdk7J9J4JESQEmaK7kh42JQSIrHW9f22mQ2IW8kqyHOndXLuHOcxhDnOYn59vBKyfP7+hHEVurld88eKW2UyzWJRo3bGcL/C9ZNt0VGNJVWoeny1p+8Db8xrneh6cjrlZ3dD2PUpVdG1kvaopq4Jnj1seHD2gGkeUFigFu7rm/OoK5x1GGVzvUdoRIkzGAe9tcvlHh3MdkKoTnYOuNykuq+uxXUv0Kb5KCoGMcDKeUq83FFLzdHHMs/kxvXfUbcOu75EOemtZ72pOy5KqMMxjMoLd3N5QmhSWXhQpUt/aLq8WU5h5DB7bNTRtQ/COIq9M266ltx5rLaYM+NjjvadpdrnJSiDJsogMErx3SATWAaSg+Nl8St+uaeo+xYWFdAOvRgYrerxL7JiUIDVIFVEpKhfkUM16NwIQ+yYjIILWmrNnpxyfzPGup15vaeueoTbTe4e3HqUMwXoiYFuPMgZlDOPZmMWDY9bX13iXHN0ytzP9ouf6KvLmrQPxmqfvReaLM47PBN/57ik//fFrEILd1vLly3N+8Csf8/D4lJ99+ZKLN9ecPV2mjvl2wm59y9Roms5xvjqncopd3KLjDDORoCOnM8F4LlgHWN/u+G//4N/yW78jOTr9kPef/hKL+TH1dsXNzQ2bzRqJoG27LH3x7Ha7HEeWmqSMVpw9OKVuapqm4fHjx1xeXrBarXjv2TNev3lDXfd0bY/rLBIgek6OT3A+gbm+rxlXJfPZlKdPHzGZlJycnEBILOSoXDCbPkGrCYIuG5fuTHIxZ+wO7KYQSb9a5DYrLTVKSBAyL+Bzmxq5ZpWQ8oFjwOVUkJSbHHLcVZ9yDUIyWSqVW+yiyBrzmB5RSnyOyEopFjKrbUWSF4SwlwNEMehmxT3D4f1JWxkGc+j+z9hrWYVMbO+Q2XqYwxzmMIf5dsw3Ata//tk5UllcLyiMQ8qe5bJiPPbEeElTB5yXVJVkPofvfHRG38PFVcN2u2V5NObqeoV1EdD0vaPrHEoLLm83vP+0YzpxCCK6UFxf17x6fQlEyiqZfJxrWdWB5bRBqlRIMGtHWNshRaDrepomsFlPqdd9MlGFFNUToqftWupOMtMlY6+or7ccRYOSAldVrJSi8yuUGjEpSzrn2Wx3TKYTlpMJUinqrqUoNFIryrziJ3qs8ziX61C9p2t3bNcrYvDMYySagqgEbdfhnaPwDhfAe0e9W1EYQ0Ahi0GXmpgs7wO97QhRYgqdKjKNTnFWcbDHpAaf8UTTC50qVvFJdygHvWG+me/NI3egNeVkstcEE2C8mHD84BSiZHWzYbva0myTRjJtXEOK+5EWo2VanXYNupAU4wqEQhsoxyVNqwnO3QuD/8WP0RXIfh+MJE1AyJZypFL8mHK8eL3F4xkrCc7SN5HLq1fcrAL9yjFkESMUJw+XuOCpJoqjhxOuX94ijKPSGqsCu94xLxU72/MXP3nB7yx/hbJccHN1zdvXX/H2/C3b7ZZSG2zf0/fJVBVjOtBstzum0xHWevq+5/rqmtlsxoOzE3b1jtXtGq0UZw8e8Fd/9SOMMYQQmUwm6XAgJUezGVVpuLo65+ryAtu3zOcVMT5CCPB9R9fsMKMxR4sPKNSCWqwSG57TJYTgHsuafq8AJQRaSAqlSVkA96LSkHfZrMP1JuQ+aSQdeBJojVKhhEdKi8/mqRADMkr26a4xyWgSjs+fY2gSCHelACHelWMMX7PMbGl6pL+poc6ns7xxGL4HrZKh0yiFzqYyrb85pvowhznMYQ7zi5tv/Im8azwIR/Al28ahtaezLUVBDu1P6zohArfbQNef4x30VrLd1by+rKkbR0QDft/SRAy09oZtA/N5pG97QoD12rHe1EQC40lBYRRtu+PtZctsfMt4LDEFzKZjfOgRRE6XDTc3jpvLGZvbEbZP2lRrHaYQqYmnDRxXUy7fXPP26hId01qwGJeUWmOUoTAKoyQhBrZ1i9IatKKUgvlsilAy62hDYldlAgvOeZyzqfXJptgv7xM71bUtNnZ01iGlxjpLkDmiS6ZGKxHl3lE/MDohhJwykABliAEf3L59yzlLCOnGPJpInFaEKFLCQM67HDS+CbTKpDvMEUVp7jX5pG5PRtMphSnZrHa0dUPX9NTbDikjk5lBFSpV4TpPWaqkTbYW51MGp/cxBd5rjSlL3Dteqy6Xx5hyw2q9oyze0gfNeDLCiyuQEmkEXdQQBb/y8Xt89eoNdiyJBup1zeaixUwFUgW89YQ6Us1HiF7QdCtCsWL+UNKtYVRWCNGw2cJypBgtJjRdj/OOm9srzs8vuL2+RSjBrk/Ra0opfDYIKiUoyyKtrpXAGMNisWA6nTKdzphOa66urmmbhpPTU5RWrFbrfKhzKJVaqBaLKUoKmmbMzc0Nt+sNq9WG1WrFyekxo2JC39WY8ZjF/ITT0yc09i2hqwnB4T05YUJkM1M+9MSYK1UjRJk0oSEiYrz7O4Y83/SiB8CFO4bV7Vn3u21CTFg3R1klDXZa+yfoGuIQt5XD/+P9Nrd7wFoOjPBQACKzpvVO3uC9R+i7hAEZdWrw0jolHUQIhcMVhrY0eOffzYV7mMMc5jCH+bn5RsCajLgyR9wkx27b9bStTzd8pQixQ8QC5wW73S6RF0JjbYpYsiGBPCnSTUhIBVFwcxvo3Y7xytE3jq6zhJAeJwTBrnNIYenanreXlko3VJVAG8HZ6Zyub7HWczTfstlU2LVhbkb0fZ/NGxFvQwKjoSVGQVNvCaNIUJJm3VI1MJ5oZmVFCB4jdc4zdWy3qUFKjAEpCV5kgLpjNB7hQ4lRBbvNjrZrmI5HuN7R95H1rqYwCud7uj4SlaKcTOm6Hl2km7pWCpnrZmW+wXvv9wgvlQuo7N5Oua696+lt/v6CIIjAg7OKke0JPiJVYmcTmFU457Eu4AZ3v7+7eScDW5YNRAhCUU0m+BBpdg3B+VQ7KhRKRmROEVBKEIPEaENVCbyVNG3qs2/rjs2qARRFWRF8/85MV+k5jBRFRYyWrukoRorl8YwPPzjj7est3c4SqshXb3b83V/+hM028N/88E+YTCZoL7luO8YzhZgJrq9axksFZcHTh49Yt1/ShYA1mpqAJlBWkl0jsLpC6gllUXF7c8Hz51+wW2+JCNq6Rd3ThYYQ0FpiTDIIFrMp0+mEpmlYLpf7ZrcHDx5wcX5B19R475nN5rx5c87R8TF93+d6VElTb6l3O6wPuCiINvDixWu89UwmI54+e4/QbBCLE54+/SV+9JN/idEzOrfF244oIfgBCN6tyiWSQhcUSqd4q69l7KaPIaTnPFWpkiuD0/Xog8f5ZJBSUeFJNb4ilxFIKVLcXX6sQcc6pASkileZr+17LWwRbHAIBEabJHURqbhACInPkgUXIyI4CBIlIUSPGrJZZTrQpc3JPdnAQRFwmMMc5jDfmvlmwCpDdqdHZIJvKeolBLQ0ON+nVWKqoqezif1Q2XEsZWJikREhNTEknVuIkeAUXQ22c9g+EvOK0XlBjAJfe5QEa9NNympP3afP07TbVL/qA+u1RMcZqjWEcaDvOwpjEviL4GNAiIjRmtl4hBgXPHv4iOc/fcHttmbVNUyqMb1L8Tg+pJxYGyxt3SKlQhcGWZgUuhMi0Qf6uoNC0PWWrneUpWDbtKx2NTc3axbzMcYobN9ixpPkZvYS4fU+rkdmjZ6QIrOqKXtWSIkgYFSBiNnc1TZ0fZ+ez+jwDoKyfPzJAofA2h5jND4kkBBjpLee9dqz3VmcE/R9wHmBdwmwGuPROrNZsqCoRsk5rQRK5Eguk8xmfecIvSVEBSHJOyqlMYWmbT0iQHDplxIKUxT0nXingPVP/ug1//AfHGFlz1Xf8/ShYjI54rvf/4TJ6IJqdMnl2xv+9V9/SSXhyeNH6J8qlFT0bWAynTBZSnpRI6RgVJR0NmJESaVGbLcbdrsk0QjGIUNMZreipKqWTEZzXr54TV13dM6xXq3x1jIqC3SOHnPO4b2kKk3Oy00HltFoRNt1bLdbnj9/wbNnT/no44/5/GefcXF+zuNHD5FScn5+CVLkeCdB24rEDAqZ0xrStd92PRfnl1TlmIdPP0j5qaiUnRx9LgkQew1ojMn1nySnAi111q+adNiSuX6Z4SUWiQ0NKYMYEfbXdEoYIOmu/+Z/YiR6R8wsp0DmpAJNEUjtbZEsg5FIGYkxSYPSxiB93lTxKkEO2tMEmpMRMidgkAtNEKh7aHQvbYCcPOD3n+MwhznMYQ7z7Zhvbroi4jJAJccURWK+WWkIfb7ppR/0A9CKIiKVJsQOHxxG6dxbXhCxRBwRRYgR24ccg5Uicob6bmcDUSliLNJNLwp87wlBcus8Psc7Ras4mS5wncOpVHOplCKEiNGGKD3FuEIHweMHZ6yk5cnxGcXHhq+urrm4ucXFkFqcAvv1YuySYWS126HLkkpIeptc2MElYLlrW243G7recrvZst5u2NSJAWv6BExCiIxHI3qSBtS5ZDYJMSL1UDKQ9H2QjFDE9BwbowkxYG1PXdes1mtkdCiZ1vLKeL7/vSeMJh3W1RitEaLA+yRbaJqW23XNetOzrR3X1x3bjcdZgXMB6zRKBXx0CDPCFAVSBkZVge08nbfp4/oIvcPHFqUNgmQMs1bS94G2s0QMMUSkNMToUUYnGcU7nOubFhUkXbR4Gbm6uOK0mDBezkF6nLdILVjXLT/+yVf87t9dMjMjLi9W3Fw0fPKDj9i4N+w2gWCh0gV6POXNxVsmU0VXS+pGoImEIuDbmN8Xhun4GO8kXZdW4XXdEGJEa00kgbfY9+m1d1DrBikF290O7x2z2ZTFfM6ubri9uWU2S9KA46NjLr1nebRAG8Pl5RW965lOl4zHY25urui6ntF4xGQyIcZIWZZYH7i6viF6ODp7xPjkGVqPKItpSrYIDga96KA7DclKpUQCrEol4+FQxzoE8YeQ1+0Egowk1Uuy5wuhiUhk/vfe+gSolQelkykSkKSKYAH5sZOW1sWAi+wrfwMBgYdoiV4Q8+bDRwhC7pnfSNx/Xc45fBhKBkDpVLxxV5WQ/vtu+5Da86Q+UKyHOcxhDvNtmb+9mjXkkO2sp7wrXRQICpSSWE+mWSQRB3iMLrBWoqRGySLF04hkhPK50UkpQQgqAQdACJUqHkVmTlTIsTmRKGS6VUWgj0SZqktH5ZKpXrASW3xMbTptZ+kKvddzBhEQ2mCUpnCB8/Nrzm+umI5meOuJMtLtWkCgtSKoCH0qo7xcrWid52g2RUnJaAR939M4T2Mdu7bF9pbNbkfvHNb3yBhodjV9kULIBQLvLEJGvIu52nbQqybWVujM8uRDgVKJwXK2p20bbm9v6LqWYDtKo/A+oMeBJw9PefBA4XyDVgohSoKPdH1D19XU3Yam7agbz9VVx+q2x/WRXdvx6s2OEKCzELVCS0kMHhEFtutTpJVLWbWBQK46QEiPQGJ7ge09AnA2xXBlbIESEqXM/vt8FxNjxFlHkGBjoCgDKnTE0LA8GmHtEc2uwwXPF8/f8uu/8hEjNebyyyuEKDh+cMTq9Vu6NmIcNNsGM5+w6y1xJxmbMbWs6brArhEUFWyipRuMeIAxJfPFEqUUm82GzXqNlGl1vauH9f4sFWgIQdd1KZoterTRnBwf4f2cm6sbClNyfHyMlDJlsVYl2miatqUwBacPTmi7xMQfn5xQbxustanmN4LWBiE1TdNibcdkvGQxe5wOkkEQuXP8C2QqDfASlCRKgfUO6zxFZlFlPlwNDXdCqLRB2ANahQ+pMjiZpyRKgJHJUKny4XL4JUnyACUHN2BER7WXIwkEPnpcSJ8zeIF3ad0vAxiZNaz3tOAxs7xJmpBqbKUQBC8g2gTIVdpqGGPS81oYRrmW9jCHOcxhDvPtmG8ErF2f8j3VfTYiJl1j8Knxhkj6gS/Ah5TJarTZr6WNKSBqYpQgErsqcoyTkBCsJQbPePyY+fwJLli87ymLOaPRlBACdbOm9w3OWaQwtM2Kpr5kVk05Hj+k3nQIIjerNbfrDSeLOV3f0Vsoy5LoIxbYOc/OWoSI3DQdE6XxzjIdFehCse3apPvTitt6g4+S2/WW1XZL0zZUZYna7YgI+s6yaxvatsOFiBXJeKIkyBAJtqfvO8piRG97fA41lyo9h0oInPcYlcwkg7t5wHdKKXxwdH1L17c419N3PZKkSfU+JJnDZMrpckZqAUgOFms7emvwkwrrp3jX4VxkfdzRtsmI0lnHZ1+8xbrI7e2O27qkFxHX9XgX8NZhNBQyZcw651MzkRI5o1LumTPbO/rOEb0levA+ff2FNqh36brK6Nl6uFm1VA81zfaGnesoqxmffPqMUTnj5tyz3tb88Ec/4zsffMyf/eiCXWj58mefMT+ecq1u2Al4+brlzLxFLpbUAbSQaA3WCqRWaJO0vseLRxzPz3C9xRiF90mr2vc9ZVkyqkps22T2s6AoVJYDKFzwtH1D13WEENFKM5/PaZqGl199xXQ6RSlFWZYobSiLkvPmiu12S4yeyWTCaDxmMp1idMH11TUnJ6d859PvMJtXPHvvPc4ePKBZX3HyeMlv/Np/Rmdv+dMf/z+4WT9PWax7QSdIIREyV7Dur8/BpZ9arJLsM2lVoxrW8HFfNuCzgTCBQ4nWBUaZLC9IjK2SKYZOZ21vFIIohwMvhOByigHpcweRmeHEsFoChdIYY/YGRik8SqaWq85nHa3LOcxaI4XEhYiUEZnLCqSUyHws/3pjwWEOc5jDHOZdzjczrCHVdqa8SAeQ14HZ0JB1qlpnxBoUMRqEMMmdLpMuLZLCvkGhZAXBE0LKW0REpF/wYPprPDj7BClTksBi/gCjDF3fsNmtCCSQVpUlm+aC26vnzJUmNoLV6oZSSzbbHTHCuNRUhcbm3EelNLd9x5V3vN3sUq1q2zKpe85mY5RIea3TcUUrAj/84iu6zmK0ZlwVKR5r19A2XdqaIgjeoYRA+ByGnuOhVBQ8Olkyn80wpkJoTWcdLj9nMkaiszn+RyC0RgmBkhKlNIhULEmMdF3HbrtlvV5R17uc7CPTOpnAYjFO+tOQHN0pNijgbMxNTwotR+hCUCqBCIZxmcoFQgiMypK+92w2Dc/fWL54G9jUXcq/lYqqMMQAznfgLEqAlhCiza5whRICLwLRWyQBLSH6dMMX+t2mBFgX+euf7Pi7v/kIGy54/rImuMjZkWdUTVkcL2gay2TkOBcL/vQvvuIf/xe/wa98/AH/8i/+knp3izAGIwy73uGjpNQFu2ZNr5IZSguFVBahUnD9o9MT3nv0PpWqCH1gt9uy227ou47xaJSySL1HKsV4PM7RTPmqEhFtFNoX2N7R1pbXr96wWq2Yz+cp17dtqaqKvu+Zzmb84Affx1rHtm54/vwFD85Omc+XnJwcUxYVz59/waNHj/jo0w+YL+bM5jOEiFmzarH9lq6zEBUIz7AgDyHktIkEIAc2VMrcQpH1q8F7AhLwyJAOQ8Gn9IDhe4sxidzTda7QRqNVgc5AWCmNVFnPnT9napkymJw8YKNIYRZSo6QhxjY/rtx/rSmbWOQoN/bNBSE6nO9x3oIA5XMJwqD3VklyNCQKDNrcwxzmMIc5zLdn/hYNK6QWKZ/yQYNDqWR2ClIDhohH6QKpAtGp7EaXBBxCplpFKYebm0AqA9pj+wBoRuWUvpkTOo2wMJqO2O222HpDH1yqag2RqpgRAGEjD6bvc1wsWZ1/yaa7wTqHRuPT5hDb9xSavTEEJWlwXLuOG2exfZ/W2HWLCJ6NkZgY8CJwvl6Dh2k1pjQa6/ocKZVYUB8jvXeI6JlUY4wy7GzPpuvovceUBYvZLJOdicGJIhlGtJJE54jB4yMYkxhIU2hMUSa5Q4gUxtC1Het6x5s3b7m8OCd6i1aKkB3m44nk7/72U1brS0YjR4gdbWuxVuGdR6kU6xWJKBkhCGzPPjNTIDlZzrDWIYVGnG/omjXtrkklAmWZmKu+J4Se6NMK1gWRdLXe0ruAEArXB6INSCkolMzu8oApQL3DKMsY4fbGUa9rZIT1xnM7iTw7LSl1gbceXQhev3xOMS0pZobr63OenCwpFUgZwXts46lvkxM9NILxomDrQckJI+3pvSWS2NCTo1NGsqCtW1wfOD9/i4hgtE4HkN0u5fTOphTG4JxNzWfOYyrJtBqjdUrZCFHQNBbrLMbkZitrs4EIrLU8ePCA9957j+fPn3N5cYkQgqocoYVgOqn4zqcfcXx8xHI549HTx/R9j/eOQip6u+Pq5gU+rok0hGAzc55MSzK/d6S4a7gaQOtQjepDwBNSiUBMSRdCWCQpDUTmFIwokrxHCZkd/KRkgTwhbx0YAv/zWj+VaiQDaAhZspCTC+I+4iq97xOwTixujA5BYoudt1hvcc6ln2M64GOui80tXAJ5V2xwmMMc5jCH+dbNN8IJIZJj3LmAFCqZc4RACJOcuTGitEq/9x7bd0ilUh3joGlDpBs/Q4C4SWk1ArSeM6rGzE/ew8eerr3GdpJde0Nbj9DC4GPAR0+sAs5ZurZhOlki6Sm1xBYlMcBmu2XbNgRnqStBDD26KJjN5vgYaWzLareirreUxjCbzWh2Nee7BtVEpkrio6XtA++fPmQxHnO5WlETaX0kmOTulz4gRaAUJcfTCSAwUuIjuL5Lq1olcd5jfQLtUsoUEeY93lqUlmijEaTgfaEkI0DpVErgnKXvWmzf42yPJCZgEAPj8RgfPCEKfvzTN9RuxScfPcCFnpvbHc6CkorRSFEUghBcypTNTuki62qNFjw6XWBdZNc6rtaW7c6C9WgtCbanaVMsQ6EkMoScc5bii/rep+uCmOOvItYPzK5kVDhi13N92f0CLuN//1gbWK8arLEQBH1QbBrLg6oiBEc1KpnPj/nsx2+4uWk4vzzn6OgRxiTJQ73z4AUGQd8E3rxsOCtGFGNF39d42yXdcQSpDOPFCCMMXevp25au7/e1pgMgMtm4VBYGCFxfX1PXLfPZmNHI7TNHC10giUynY8qySq8jMJlMUEqlw4aMHB3N2O2OOD933F6vKE3BqCywzvLw4UMmkzFFWVAUBVJKmq6jqMasNld8/uWf8cWX/5a6uU5mKyJSDDrQrGWVMgNVQSBdhypGpFAIPMFZnE+SETAI4fYMrJQKJZOeXIj0PZW6xCiz12nfB66QfV/3Oc58EI0i6b3TB8jECmf2VohBE5veawPsDN5hXQKrzqX3gveBoAIOj7UehUTLJNkZ9LSl1vTa/Xd/gR7mMIc5zGH+g+Zv4b+S6z/EZKCAlLHqfWqREQxaNYeULkVNBZc+Jqb1npKCvm8QaGIoCNnc4UNH22xRCJ699wxnPT60uD5ibWDXvKWUExCKgMdbl7WZHd51TEvB2GhubNJObnZbdm1HjHC9aTnTGhk9UkWcjTRNy67eEV1Paztc32J9xAYwSjIuR7gOet+lCC9rETlpwMtIjBIZk55XlYZFVTFWml3bEqRCk9adSiaTiFIKF1NlQsyR6qn5icSqmqE3NT1/Meethhjxzufv0yKIjEcVwShCCJTG0HYe7yKvzzfs3I7bdUPT9dSNBXTKyywESnpcSDddKSTW9SglKIyiKhXf/+4ZSpZc3Vh2dZeyXEVa/yZ5gUsAQAGB3J6VGHOjJNGFZBRXghAFoXcpMksoJqMIGrx7t8vVurFcXm4pTxIQaTtH6yM2WPragiwhVFxdtjgZ+LMfvuQ/+4+e8Vu/+kv8m69+jCcwKg3qRLJb9dzeOrZ/teGjHxTUBGSpEL2k3gbcNBK9ofMW+p7dbocQguA9nW/37F3aXET6vmO329LbnqZpMSqtu8fTEYKIklCWI8pyhClKRlWF1pL5fE5Rlux2O7bbLaPRiJOTk7TaJ+mHx+MxSkratk1sZAg09Q6hUvFEDJ6iGDGdzgh0ONflNfzQFjVUlaoUNSVTgoXKOtZUkTq0UYUc8j+E94u8pk8xVlpJQkzsZ6kLjC5yNJbcs7XsAWr6fao9junULCL/v/b+9Mm2Pb3vhD6/aQ17yMwz33Mn3VuTpFLLbmR321JgeiQaGnjTTfC/8YoIeAMRBAFBBxGGAAOGCNm4LcuSLJWrJNUdz3xy2Ln3Xmv9hocXz2/tc8rgW+0I40rh9a3IOveem7lz5x5yPb/v8x0Kcmq+qjPq6QOxYA2pKOPrjTvVuDpr8dhTccC72zQamVUsRtR0qHnTKoswxvxKDYMLFixYsOAX8d0Dq6h+zNmmrt7MKVxbo6kMZA2kd06wJhDjoOtC43DBYowjZ5SJyZEiAy5YpAjDtIMycRhfsd18zmF/oO1bvFnz6vIrbLohtGuMK9zutSnL4LAIj84umIaB/f6GcRy14KAIU4yMsWHKQoNld3uk6zecn22xX78l54RIZkoTMYv2nxfHVU5ILuymkS9eveRev8JgCa1n5Vs8Fo/2vLfeE4yBVHBG/z3JLZbCum9Ul+v1wl4AbwyStTozOIepGZxz7mbbtnjvyDlRSibFiEim8Y7Ge8Z9xDq9gA+jmnWsCQxRSLuRYSrEBFm0PMCielJjsjqsAbDkDCIJazPeCVe7b2lDzzBmbg5OY4IwlKyDpjXamFUkn1a1Jwd2bfPy1mG9JY+ZUuqgQcE5S06/+gv+FIX9Hj770WPuPxC+ff2G19cD5Z//OZ88fcxkrunvrfnBjz/k53/+jC++vuJwe82//9d+nT959iUlaBRZptCdOZiEcSgMl/D443PGkBlTAZvw0jLeZmzeQ4bD8UDTNKpHPhzx3ledZk2vQPAhENoOzMRq3bM937Be95ScSbHQtR2b7YazszNl13Oqg2Lh/OICY7QVa7VSFvbLL79mtVqz2Wxp2sCrVy8RKbRtw/1HD2pD1iXriwf0bU+wHmO9Pscm61akykaUrdS8Vu8d3jmc18Ef5ka2GuBvVKcuVnWhkMHqmt47r5KJ6sQP3mOd02HYqQxgLhw+Nb7N9bAIxlotwjD2dHj2viGlQooFI1pmMW8hitHGgflw5bVpoA6sYIoQUwEnOJPJxWqcnqm62xrN935W64IFCxYs+NXiOwfWnAveegxKsZWil9k57H4aozqgs5qxcrbEqBcrFxzWCilNeOs129Blcj5iiq4mszVMceDZi39OKQ3jcMVNjMRiOYy3yCT0RiNzcp5wzhNcR/AbWu84xEgIGvETgsFNI4fdLV0TmLKw20/0vaNdWR4+vMeTRzeUl9oWNUzKMmU073FMiZQL0RT2ceTh+kz1fKXQOk+oMTzBWhrvSMMEpbBqV0yqj2C77un7BhvcSYNn6nrTomaQLIKVgimmrh8bQrNSveg4IWg0lw+BtvXsmlDlA1Co1bbWYp1q+GJK7Os6tpiCkYTD1NSAGk1WG4Xy3ByUYZrg629GrMnKmLkOyQ6xmgigw6fTCz3z8KrDRCmFGFM1qGgr1ylHVjSTN0ZDHH711pVjEl5fZsabRNgIpEgZLPtD4sXzb1ld9ESX+PDTC64vb7n+y9e8envJZz/4Hud9zy6PvLm5Je0L9868VoC2jsNe+NQGbUqgsFmvOV8/YsUFTV4z7A0pJm0Rq4+NtZamCcRpZHd7UwdYNTU1bcuUEuOo7WBt0xCahn7T45xm8q7XK33fxQlBP+fBgweUUtjtbhGBy8srViuVDOQU2d/uOT8/x3qD9QHjDefn92m7li+/+kO+ffnHHKfLGhP3LkB/Zj9dZUBt1Yba2kolkt9rm5LKzsIpzxSwpg6LOI1FM/r1xin7aazTA1L9yiwFh1U9bG3Lkvo/TSOo1a+oJOBUGiBWDY3W1red3gfNby4UyUjW95XmwqoW3WZBXL11efezzz+J/VU6BhcsWLBgwS/gOwfWkjPG6zASgqXxasQxJkHRVV9M2sUtknSglQBozaKZ425OlwBdMQfnyBRsE2qG6XPNfhRDHA9kCZQStVgg32ofeRwJocXgOVv3p3rLpunpupGUj/R9h7m+4c3VNWdbddBvkyF0A6tVz8dP7pPikbdXVzgDA5BjJk2D9qdbo3nnYmuVY6ZtPF1QhtlVh3TJGuxvrVMtnjGcn61xbdCWKOeZA9WtFWKMtQRhbgfSIUDd0Q5jLFMcSHnCYDSuqNMh1lhDCA37/S2So1bbGqvh61nvV5KMmVklKWpwYc7I1PWmFUuRCFIwJiBimKLKEMRaQskE63DWVqZX44qKCBnBe6s5spRTGoE1BpFETHqY0aB2iCmzuxGG27vSxS7sLq/ZSkOOwmGcWLmWgtCFQCkJ30TW6xac5ctvL/kPm0AohXQ4crwxbILBDqodniTCaBlvjqzOPOchkAW8ceQ8McaJq8sdu91e82pj5GJ7BnXwM0bbnKZpwjlX498C+/2R292e9WbFatWz3WyQq0uGrqXvG1Je0Yaes9U5bdvQtz3TOCJA0/Xkkvnkk4/Y3+6Ik2awqgHP6/MJ5GI5v/8YTOH5mz/n2zc/IZVrjMl16NOBUAdWg7E6eGqFKjinrwNdrZfTAFtyIacRazzWtlij7xdvla0tuPqesacPjEakAcrQUqVHxmhTlqh2O0llTqUg5V1zleasVgGBtRjn6u3ocy7KlWojFuW9fFbBkMlAdl5lBXVYd07NZT5lCAvDumDBggV3Bb+EYVVTgoYoqpt9Ggea1p4GGu/tKUEgpYiznYaeOwei60DIpKx1hzPrYiSTJOODdtTvji9whGqw2NN0DdFExnyNmJYhZ7I50vlA33jVtE4RKYaua9FWroxg2R8GXr25wlnHGAuh9Vgj3D9fczhekMeBwU70LmCwHIeBKSecC+QUQQyHqDE4K2m5WK1wVk1XJqu+z3qLN5YmtMQ44BuLCwbfePWEyLvHUNfA763Uq+vMGnvKW41xRIoOLl3XE7qO291tNeskrV6twwFWb61kvXors1obfhJ1ILIarl6KpiWIpZSIiDJd2kKkTJmRRBJwTcBYqZma+WQSyiXjs5puDJBTIuVMEzwxZmIulKKVr9OUSaUwDIbD4W44rksWdlcjDy7WtK7Bdw4xDh96rDim4YBrLD/4wfd4+5Xw/OU1r1+85rPHTxi+GXljRwyWVAqHsWBXhtIIX1/vaXaGjx6v+fo4cn1zy6NNUsOh9Ww2G3a7Pd55mhA4HvanNXcTAtZqJNPMYGZTOI4T9TRG1/e4FGklcHNzg/OOvh/ZbLfkGOlCy2Z7hnXh9Bo63N6S04QxhuNxIKfMOI68fXvNBx9H1mcr1ttzDvGGzfaCzfk518eeKe51/f7ea1cZdME6qpa9VNZTh0SdYmsLXtEoK42z08E2eIu3gmSVFljr8c6fBkcBLROhYOfbsxZs1cMiFCk1CqwguSCST9FZJWvDFVUXLsZSjLbIGSzGeazL+BDompaUhWK0WjkVvS3vAjF7ukbLLrAGArS5YMpiulqwYMGCu4LvHFh9UEZxXmOL2FNeonaXOyUlbdKVWtW9BefxbjYwQC5RjUU1AkvNDQOIEEJPyZaUJlKJxAlC0KxP4zI53ZLLhA09wkTTGkxBK2ONJ+UByUWVk/VKW4zj+jDSdx2Hqxs2Z1s2q562gaePH1JS4urqCusd4yHSeK/RRGIY4sQ4TWQrJCm8vb3h4WpDFyzeOm3hQapxqsFYyzRlTHD41iNGzR+2GlV8bSWaV+kAITS4GphujCHGUaOGgqfrOtq2JZVCTJEY9SN4R1NXqWNKdG0LRcsKitHWL0TrNMHW2J98YqKMcTqwou5ujSuzOqRIQYrBWXW055T1MUhqUokxopWWGvAea6uVM5YcIymDiCPHrJIQW+PF7sa8ShbLMMHNzcCmbRhyYjwIl2liGjL3720YhwLbPf/J/+iv8cWfveT/8H/+f/Ff/Od/i5fXN/w0XpMA3xp8sGQKxcDYOJwI8Vj44Owc7x/R2A03+0QRhxhdSxuBt5eXmFoBHCd1retzH/VwkZWt3GzWdXB0HI8DUgpd03LYH5mmSNM0rFYrum7NOESefviU7VlHGxoePXrE29daIhCj6jVjSjz75lsuLy+ZYuLf+9t/m9UmkXPk2xc/43L/DOMN1rVImarNUmUdBoMzgoNTvukcI6UvZZXCzNmlKiEAZwrOCt5ZnNGsVLFGG95qIoBI5T/rwQljazGBviZ1KhZEaq3q3DwlOsQa67RJzajRKuXCmApuSlgbCN5hnce6pFKi0OBjImYdrpktYfW+m/r9XTVyGevq1mLBggULFtwFfOfA6lx17NoGFwwZHTp1WFX3swsOYwuN8UjR/E3nHMYKJSq7mFLC+0ApHjX/JFLRsPLGGrIYkhSscxqcHhwiR6wtWFcoORJcj2RD1zRkDMUYQtfgR49M2mIzTmNd6QVEIKVEKYVxHElZmJIaQc4fXLB9sMEYYXc18PVXzzEiDNNE0zX4xp80dAbLbjwQS2QdOnpf2Vwgx4FDHLkqA7ZRGYBkZSSNdQQctlaulmpp1gv7HMLu6kA4aUnBeq2DKIZpHInTxGF/oGlafNdCmRiGEUQHVyTp4GBnLZ8OsKaaR+YPY5Qp0wpNQUw+iTRUf1jAZqY4IKUeUtK7YVeZ1ozLgrUaZ2UQIpEcdU0uormgOWt7k3Puzrisr4fM9mDobkZ+9PkTXqZrNusLddGnkdCdsd12FMA1I816pEii8YF1t9KhJgibBy2hDbx5PXGME771rNct+6sDn/X3GSw1NF8zSne3twgwTSPBOrw1HI8HRAqrVUeMUTNXJ42B6tqWFCNt17HZbElpAoEUM3SGfrUCEQ6HAfC8fv0GEfhAhPuPHnL/wQM++vgjbnc7drtbdrs9TWhompZpSrx5fcXl1TXtWc/bq695c/lz3u6+pvEe5y0l2fpamY30Ro2Xwsk1P2tWT7WlNQLLOV81roJzBu8MvrZMiVjE1BgsozrUXGZNfNWOvrfqN64OsBisoO1bkk4DK8yGLL3tIvp2VdOVJRfBC/U9Uf9k/nn0e4K+t3UoNyeZgoh+T2NcjeNbsGDBggV3Ad9dHCAFkUgIHd45hKJB+GrDqStCoWmsxhrVwHiINWJH4528ayhZ6NoNpSRSKnjf4F2vpqw5k9IY2kaDoFKO7yJmiEBl+aynENgPI7kUQtcxvH2jmlNj34XjvKdJu90fePX6Nfn+fZrWq9OehHWGzXbF59/7jJcvXzO9fkUaD0gpTNZQLNjGcVtGrg97Lto1Z62akAQdkgdJ5KDGknlo0150dUUbDBS9bxh7cmHPa9E4jVgDm9WKVd8jYjgOIzFGpnHEWkPfrghWiKOQYsJUbaAYRykaNaZ6vkypBql5eFXns6j+tGYCSa2szFmHcisgkokpU+r6djatzAPK7PyWKjrMJVOyeo4EZb9yzlqv6Wfzy90YWI01NJuG0gj9pmVz6BECMRVC23Ecjzz+6EOevXhGSRFM5u3VnufPr+iswztYnQVMn9kdIqnoYa5bt9je8ObFxKdjITQjUxkoxXO722v1cNYVtm89cVImvW0CKWtN6PF4RAp0psNZT7MO9P0KY2C1WrHuO7zzjOOEcweefPCE87N7WAOXl5fs9wcuL69Yn60JqzWr9fp0YBvGgYuLC5q2ZdjtCU2HC56rm0ueffszVuvC47Tl5jgSgidJAik4ZrbUVka0ZrKetgSV5ayDrXOzLlWPKJaMnV36ziFGHwNjpMqH0LpWACnYoskJc1azvmw1czWXQkmJkiIlCe9IT4MxDqxDspByxmWICZrGUzAUDFNRqVCpX4OoVl6MvkbVCDZra+eoOW3vK/mOrAgWLFiwYMEvq2Y1FMn6q1+UQTQYUi54H5SFcFrbmpJqHtt2zThMpKTRRoZA3zXsj0ecC0ilUpxd6cBTMjFP6jZHEJuwTqqJixpcHnFOAIf1Df36AbfTFSmrPhDbcHVzSdTd9ClrcdYIHoeBm1tL2/VkGsY4EtOA84bWw2p9wWff+5yHTx7y/PlzXr56qe1ZTnWLxxLJTnAykSIkau+4sRRvcF7XpTFGbfKpF/uTuYRZD2hOq9P5vpVS6Fc9IQRKLoxTPP0cIHjn8M5iRGPESl2hphQxwWu+JU4HRs3mQYw2jqn5qrznnNbn1FqtxjVGi9/FUCOvCkXAGlerc+v6V9QAY0V1s6UybJLBiK9ubECLkSoLz2l9/KuG85b7H26J05GbYU+RxMvnb+hWLR9sLximI8Ogw+Sbmxv6pkccvLk88PjBBW2n1aHjOFGqxrGMwvXlgaZr4MzxR9+84cefBPrzyNVh4Lg/EppGkwIwHA57hnGg71p9rUzTKVnBe3+KvHKVddf31IRDB8JxOnK73xFTRJ5qgcSDhw8wOKZp5PryGmc0ompzfs7N7Y57D+6xWq24OL+P9dc8/fBDfHBc3T7j7f4r3l4/Y9od6DZniM/sU6TqAbTlSmp1gNXYp5xL1T2r3GceVo2zUIO6Gmdpgq7kQ5UMFTsbDfWwVq1QqoMtKg04Vb5S3y9V2oJoXJYaAdXY9m6Fr58jJErOxFRoi5sDMpSxFTV0gUZcqalQWfAkhSnGmooBhNq2hcbJLa1XCxYsWHB38EuqWYvGLoUGgFISUzqos7kYnAt45zgeD+QcKRIo2eF9p7E2lXXxwdDmhphGxqiNQxTNBNVM0kgugjGNOpIZ1UFc5lWkRUrEmIaHH36fx5/8kJEvGQ/XHG9vwARSgtv9gSlGzVssvl5QDaVkDsOe230PVhjSQCojZUpEn4FA267ZbDd8f/U5Hzx5zM3tjsPxyJurS6ZpwlCIUihlUpOH83hva4uUkGMEM0dV1X50a98b2ubQfXv6+5wzbdOoZjUlhmHQx6H2meaU6NuOkiPD8aBmksp6ScmkmChB0HHBIKIXfRFb5Qa5kmPzKtWc7ouG1xswiZzf61AX1fJKcae4oFTqiFGTCDSrMmtWZc3QtBic0WEV9DbzHbngG2s4e7Rhd23ZJYMtGVcS02g5HEdyyHz9zdfcu7fhdgejueXT3z7n//oP/wn/5f/g7/C7v/0j/v4/+1NWYjCt01QGKjtOQ2gDz18cuf/qih9unjIeBqZpYpo0yF+fq0njyazjeDxi+v50eAHVCU/TRIyGlJNmsZZCTIlpyrRtQ0qZy7fXSCms+hVPP3zKkydPiCkzjhMpZR4+eoQg7Pe39FOPiNAEz6/92iec3z+j7zZ89eYtN8MVQ4b9VGgPRy4efQAl6/up1PLeWhwwl4a8i4qqGmbnmNvwEC0J8d6d3gNVkooVQzGzrrqy//VtUapWdv47U5nPd25/U13+VaRtasyW0UYu6zSvTZusCs4YnHmXRjDrV5tGo9hAjVTyXvTVHMNlMDUpoWa/LjmsCxYsWHBn8EubrpwLql90jpQSVNOOFIdvAymNpCkjxmGMI+VIEwI+NAzDkZgnymgZJ/06iyVnXcmJGCgG4wuUevE2ESFixGJtU9kTR9s95t//m/99Pnn6G5QonK17rqcDu5RIMZGLcBwjU0wE7wnegalaW4kM0XB1e0WyAy5ATAdKMrjSMtgJsEgJBOfpmhZzBl3jiHHiYIzmkVa2RpuevLb9VPcy1qghzc3NParHm0PW7b9gvhIRzY9tGnJdD2vVbYM1lpRGcswYEdrQVKmEIQvkVLi9vSGWdLotNbw1ek2v0gO9LGdKrrHsUt1QuvSteZpWWbtS8MGrHrWauaCyriVVSYNKAYQaMu+sanSzroIllTqg50oQ342BdRwTP/nJcy7uOZx9yAdbg5WRl/uJFy/f8OjhObvbV6w2HmsCr9/sKEfHmBLX1zs+fHJO83MPRKZBH/9gwJaCDJl4iIgVLvdHLt/cEkcdNL33WGM5HI+Mw5HtdsNhv6drAsMwEGpSwDzEHQ4HDdYPnhhTjZCy9KuelBJt61j1K5zz3N7e8vzZc5rQ0K9XSClcvn0LBu7ff8Bnn3/O1199xfX1FTFFnt6/4IOnT2hXniiXvLn5gpvDJa5fU7yr0gUweIwttdXMYJzHGA8la6bsnG1aau6umV/37r3DmjtlNVsr5KKSglK3H0Xmxi+NQpMqM/DO44tqu431YDPGeZxrsDmTslTG1yEOXEn4Wu9aikp0Uiq67UmCWJUVqIylyg3qFmFmct+fScUYxLw7WL7Lll2wYMGCBb9q/JIcViGrCABIGlcjDSU7XT+aeQDS3vUQHClFhjIQGoOxpTKJyl4guWrQDMZpjEwpOuQ6G7AWUooEr2xMzhGsZdU/5Td/9Hf4wad/gzINXN684bC7Zhonmm7D5uw+9vUbgFOuJc4gtmA8lKgd9ze7G6Ls6fqAdYkSPaSRnG9JKXK2OaOkekHOCUHo2wYpWQcQM4eWc6p9LCZDDUH3lVXipKRVNtK7Fh+8auREL6YhNITgkZIYB6kufM2wTSkzHI4gRS/IaDNPFiEXZTOzQDZRH9+Ua2SQ0xWqVgcgRohJM1N1vauPq6vDpz5vhlwHTTXZ1fVuNaiUWhlrK5umxRE1gqgmDeh6OGMl1+rdGgd/R1zWUuDm+sgHTx9yPIywaXjyYMttvuTmeEkILSmNvH5+zfn5VlnN6Dh70HP95ooHnzygbRxT1KzWYiNlzJQo7C+PjFPGe8MowtvrHYejRny1bcs0jsqoGuFwPLDZbBiniHhPykUZ6iq1aNsW5yxTnE4GwhBGhnE46aJjmrh/7x593zNNEy9fvWR9XHN+fg9jDLvdrt6Op+ta3rxJ5JzwQWUHQ7xlileM+YpkMm2zZZoO3N68IU1JEyR4J11xRnOCSy0OMShZr6x8ru83dCPCnCJQDYY1AMtW06Eu/+vniqpMkUKRSC4189eU+dVbDYJyymrVLzUnmYI+ufqhxkDVWuc817CaKk0xOrSKQTJIlmouMzUTIdfvV4sJ6tscsxQHLFiwYMFdwXcPrEUHvrYNpHRAJGOto2RdF1PmX/AWRBlYHfZGjNO1srO9MnskQtA1fyqJQqTkkSZ05GLBZHJRpkSywZlACB2PH/0aP/z8b/Dk/mccd3uGwzXD4ZZhONaLnyWEntB0teJUm4BSjmAz/boBGxinI8ZZhmlETKJfO4YpMpQ9ISYOYyDnQtMGmtBhjSenI13XEEIgxaQ6U1TLl0upxpD8bsVpLcYUzKzD452j2pisJiciXdsTvKfkSEyckg28CxSB/WHP8XBkvblgtVoxDEcON5ckKQz7HTlGjjlh1lHd0xmCCVXzW9ksFWVQslXW7DQ8Gl3Dipph5gu7MsEGa7SmU+rAKSXjvK3DbKkJDglrWs2tzRkxmSIJMU5rNmvygOo37waMNRzGETONkC54fHbO85sD+7Hh5ctrtlvPi29vGI8a5j8MR2wqvL684tPPP+HJ/TO+fRNVk5mKxpdlYRgzFsO2tcQSuZE9BQe2odTkiuOwR6TQNA1919M2DS60lDSxPxxVp+w9TRNo25acM9M0sdls8D5gjePN60tEiqYS7G85357x+PFjxnHk/OKc/X7P/fsPsF4Zx/v373F5+QYpsN+PvHjxio+//zk3h2/JeY9zGXzBhkyLJw8HpNSSAOOwxuCsw2P0de0DkjK5ZjIbbC2QyLU4pEpFRGqGqqarWvSgVcr8fuCkDRURPcCVDDW2Sj8MRgq5/rc5kWDWhRtUUjMPrWo4VDZVQ5Cp7zXqQGuQYqrURZ8/ZVENwzDRNCNN0+C9xzW2bkv0OVmwYMGCBXcD3/kb2VqL8xmRUbWbpqgppHbGl1zqkObUgCSJJjhS1sxPvajNWY1Zcw+txQdHyfFUt2qtw7paX1kanDOsm0f88Ef/ER89/U3I2sV+3L9iGCdtvLEeySNCwTpL3/eqBc1C1wdubm9JOWFDwBahadWYZGrof5HCEBPWJKZphBK43e/pVw1n24f0TasSABH6tmUUQ9d25F9Yi+rQWnIml6LB5RJPwfzWWEQKqUTKdMSahhA0nzUlTVHw1hF8wIcACDkLwbV89r2nrDZnCIHDfsdYCsfjnvPzC16+eskYJxoRSirgCtlEUi6qwUMNcRo5ZCtrBlIKqRz0eaRTslhMzWhVJjWEBq2qFMxJs6psOybXeLJS16VzfqaulK0JenapA++3X9z+//TF+68CEeHqas/9VUeOB1ZYGqAxDWkyvHhxTRm0KKOYzGa75mY38E++eMFnv/Yh/8O//Tf4n/29/yOH24FVazgMcBjABkvvTU1BE7JEjGs1xzZmxuFITDXhwrnTcBoaTyzpVMu6XnVVvlIYhoEYI4f9gc1mi7WG29sjznnOzs5o2oCIcBwGzs7ONC+36PfanJ0RU6Jb9Tx5+gHHw5HXr9/y9u0ll2/eYPrMOAzcX91HzJ7d+Ia2Pae1a6bDUPWrnLSgznoweuCRWsma39Og2io/cVb1ucbWQ4tB+dRcNBFA7DsJQN2yvDMCgrYAJ0qxiDMIGg+XJZHlXbXtbFzUamNL8A7vVYKQYmIaIzG0BJ9R6YsaItXU5jBWM5+1xMSe2OKSa3MWyuLKzLIuWLBgwYI7gV8ysCpfNxxj1aM5YF4nZ5wP1VxlGONQ12wN3m1J6Yi1OrzmHPFBmUnvVF86lYixAZGWcRoJjeBcIbQ95+tf40ef/Xts1w+5vnpDcIHb3Q0yRVwIxOmIbzqO08Db65cE353apLx3dGtPQhimhJiC2ELoTF1d6nozlUzTaWWlc7DfDYxD4hAdVzdH7m3v0TQea7QNJ0kBp8Hi2iilQ7sYNSTlUjS/tcxuZ11/5hIxJLzLGGvJYhnjEScZbz2m9TWsPyEG2nbDB0+f0m/PycZxe0yUIeJ9QxNGTDbcu3eP/auhslXzhT+j63rRyB4rJ32eMaZekFUe4FxArKVkdbBrVm6s5jYdTjW2aF6lglQ9X0oqQ0hEnNTXhBgyWlJkBIrR7va7hJs3hacfn+Galhe7kefPX/PYBX5+c+Dp57/G60vY73fsrjOhM4T7gU9+veNrdkSb2Wwc9y4CV2lEBKZBf74iwpgF4wXrPWILYqmu9sQwjExTqo9xJuWIL47DPpKj6lzbtsHWjFbNstWhVU1BGiF3fr4heA8UhuNASZ7bwxFqKkXfaU2r954QAk0TOD8/5/6D+wzHgf3hSI6J+4/uM6URScLW9wxTZBxHgu/0MJJqG51xyrA6D8bq8GiMHn5KIRuDweF8g7NaKOGcxzhXfz+UUyxVLpwYfyk1nfe9EoL5hapFF4lcLJZ5GNafLxllY1OJeNdAZVu9cypbQB/zcRzpuo4pumoamxlXZa3jpIkmmpYhJ0nDHN8GVVsrUlM3FixYsGDBXcB3DqzGauxUyQZvG3KOBOdwTp3pxmoitzYmjZSizGLb9Iioc1mK1rZaZ8m5ID7TNGoIWvUrSvaUKSNZtZcfffzb/Nav/8c0tuPLL3/GlPd0zRk5QdwP3HvQAJlxHBBxjNOemAZyTmoKESHLQNcHinHkLDgPbeeIsZCy1sEaYwnBEtOEtQ1jHLAexGT2xxsOhwNd13K+XWO9I8VMSBpbZep1TBBiTsQcyaVgi9cqyZTxDaRkSGWk8UKWEW9bxljIKdFao4NKjcMSgaZb0bY9TdPUi3+DSwFxh5pHOSEJQtviG13pWxuq3PRdlmUpAiWfJHilFChZc23FIhIQsZRiMbUlS8RWzV+pcUtSkxpU02prNJEUXQuLpKqJnfWI5mSegXLnyKmSoZiEbwPDFbx4seOjD+/ThxXTdODxowf885c3GG95/GhD4yzrtefeow1vrq/5ZHhI7+E2GHY3s8lNN9AWofWGyRSsdxxjUkd6LtW9ngE9LPR9p+7/GOnbDoMh58zVfq9pFGY2CAnOe6x3ND6QSyamien6QNf17PdHgg9cX91ytj1jt9thjOH6+pp+vaaIME0TwzAwjhNPnjzmwcMHpHLD1f6S3fEVF+uWRxdPeXHzmqkkOu8xpag50unAar3TQwiArc1VOI1vc47g62u1DpazzrkUTjpoKVLD+x2GWSNr9YCTDVa06SvljIsWgza7SdW41kYBlSNgyLa8N2QWrYXOGm2VjT1JBGYWNxdNEZiTGFJKIDX67VQu8N7A+t63XbBgwYIFdwO/tDggFTDSaMwRaqrB6AU4xgHv5+BtT4qqP7MOREam6YCzq6or04tZKVL77Q0xZnIaQQoxZbabBzx9/H0af8Hh9g0pTdwcnpPiSEkdN6+v2Ww7RBLXNzekaBgOI+N0zTBFionENNE7z+a8QS41J7ZIIpcR68CSauUsxHHCmMLxMOEsWC+E4LE2MB0Tw7ivmbCCdx3uOKmWU6jO40KcEofpQJFCzBEhMQ6F7dYTJx2WjXNMKWL9QM76fUyNthrGAUFouzWb9TnBtyAFIzWix6ljekqJ4bBXVss2GKeslcWe1qrWan4qIuSizUCaoVlwVleuUtMBctUbW6gDqq05r1KHJg14pzLKOWdMLRSgVrlmMsYoG6sDs0ETAkQ1zncMxRRsSKzPVhyHzAePH/Nj1/IPf/ZTPvtBx/qs43hzpJTE2zdHTFkxTYbBFhyBbXPGS95qaUM1EJoCXQtnq8C+aBJG03icNeyPEzklrLHEnNndHnj56g3nZxuGYcQIOOsYhoFhGDRn1DtijKxWPd57pnFi3r9PKZOmiXFMJz2stZbr62uCt9XQpSavbtXrRsOrzrjvO5yzHMYjxhrGFCmccdZueSHPOE4jPmzoQjit252zWkVc9MBi5V2sFAi5Vv++XyqQa8WsmESxKpUoWQtHjJ0Pt/ZkhJob2iy2evSkSkrsKXYq14+YEh6pg6+pjGzWSL2cTiyppma8G/xLPYTFqNFXKStba3GkIkw5EUsmlkzKpUbrvSv3WLBgwYIFv3p858AacyLYBusM4zQRgpyC462Jyq46reH0jNAy8AAARftJREFUtmdIB1Kqw0xWVsu7OiDlQtuqEWWaJqCo1tMIRSJOAo8f/oDd7oizf8mLZ39B16643r2k9JESt6Qc1cBiJ6a4ZzwIw3FknAaGcU8xR6Z8JJUV1mbWm5ZhiIzDQNvVHEfSKQ8y5QLiySnTtB4xkYuLLbe7xOH2iPdCSgPDJEgeOA4DzlkdCLNenHMaycSqyz2wWjekLIxRnfvOq1yiiGGMB5wJ+OBJeeIwKkMUmsDD8/usNmc4FzTaynmKsVgDxgSmKXI8HiiAmdwpfF0jq8y7RiKZG7R0YJ1jtebiKSO1DjaNqgW0Hms8mHLK01TWlFrzqrdbSiaEhpQqCyWzW1zbrQxW464k1yFB3oUl3BEE50k5szrzdK7H9y1ME3lK3N5Ezs56hsOBN2/3OixO4AO8vB346uev+e/+u/8Bj+79Jf/kT37Kze0NJQtTUtZ1awqP7m3Y7wvHlMkxUpLmlVIHqDkTuBQhhMAwjHinA6q1lhB0ne+cDvvTNOGcJcaJvu/puw63WhFj5Pxiy8XFOdvtGkrm9vYWax0fb7aknPU9ah0xJdq+o2mbmnTR8cHZp9weX7I7Jozd8Xj7mNe3b4klsmpXuFQj/I3qco0zuGJUL21dPXDaU8SUrdnApg6zpZqnrOh7JeVMKoLFqeu/KAsv9b+900RXyz96WNaUAL29WBIxp+rkjzqwpkRKscomStVPK3udOv095WqOsx70AsZOeoBNGSeGacocDyNNEwg+EGru9DwkL1iwYMGCu4FfkhLgKXgMmm0YAlAski3i1JSTcwSn7J53LdZqNJMUTwhrmqbRC1OasE7Zu5QNKUHwRSkqE2nDPe6df8J+f+CLb/6I/e4VXXjAfn/DNBxp7BNMthRGdrtrxumWcRLGY6Jtz0hhxDTgVx3eOw7HPU2jF/2SQYrU72/BlLry04tnv1ZDxjBmhMRmGzjsLT4USsoIkeM4wDBqXmrRNWPOhX7VYK2GqVs0pkuzURuMNSSpEUU24BsdLpNodq1njSNw78ED1uszmralaVpCaDT43Dts1oIGsByOA2Mcsd7BWleqiK5ArRMkF4xtiLkQo+Za6lOsK3xbh1Mp2l7mnAPRJijN4azJAOTa9V51qQCmag9r/3oumsmLMdgyFyTokFxKAePvnGnl9nIgBMtXb5/jnnzI15dv+c3PPuOLty94/uoFxmwwtmGYDpx3LavthnBu+fKnl/zpH/+U++tzfu83/jpPzp/wv/o//T2GGDFdpt1a7NbiGk87rEg5M8ZRix2KhtJbo4e2aZrY7Xanx15Koeu6U5nE++US0zSpQ16EzWbD+cUZbTMPtYYYR2BF0zZMU+T16zdY6+hXK1IqdP2Wh48eMwwjh8PAi2+fce/xBef9fYJYDrlwubvk6eMPMM7x+uYFxntaZyHXHNi58coK1p7OQ8y1x957rWZ1TmPZrGrEDWBUZK361yzavGZ0nT87/TW0v672c9JYtDmGSp1sFGNODGuURMgJbz2SM8YkvNd2rZJ0UE5p0iG2ZMr8fTRS5CR7KbVe19oqUxCVvGh7cc10rVmzCxYsWLDgV4/vNl3RAYGUEs52CLHq8Wo4vZXqsNWuoyZ0NE1DKYWUVP/onK9GHTVFUGs7EVsZEamh3yN/+cUf04QV++E51loOx+cYq+vUNkRyNry5+YacCuN0y5Q1RTFFoesbJgxEMFaD7ccpgzF0XUdKA8Gaen8SiDJaSAv2qD+jc0zxwNn2gs22o2mE3c1AKhEMpDxiHGQpWG8xzrA+60Ai0zACVfNbNYopR2xOpBJx3muclylITCCepunpmzV9v8U6j/XKJk1x0mh/1+ig6z1N15FyYYwJ58ALmFIwOLw3lKKDeUq18hKLsb4OQBrOLuLIlf1y1uKMxl+lNAIGZxtKGWsdr1VneC1L8NZTRHXCltp+VMV+YjTCzBgPEutK9u4xrC+/Tjz+sAOTePb8Gz5u4OPtBWIaMEeurq5Yr5WtnuLEi9ev+PyTj5mmia+e7/l7f+8f8TvXOz77wVN+98c/4h/97CfQZO496Di/50hHXY/nSd3qKWXNMJ2HVlGd5vF4VJ2ysYS2xTk95AzDEdD3hFYfV62nEaZxYLe75uA89+6d0zY9l293fPPNt/z1v/7XWa83TNNUta5aKGEMNEHjmsZxZKz1s94KjkxOE2LhuB8QMyE4XGgIQk2YeLcWL8VSnFDQofqU0+qslgV4r1m9ztTXRdWYloKUWuebJrSFzVO3/6eBuJRMjIJ1qDa4RgEba/E+AE5zoVNCbCY7B0VIKdbDE78w7IPqUimlypD0Q4Pf5irZKmOZ85WpetYiNfN4GVgXLFiw4K7guwdWY2manpQnrPFYtyeXiZLl1ASjrJwFNF4G9CIUQsNU4onJnJuSNGxcDVHW+npRV7PS9c1LVqstx/ESYxzTNNF1njhZYthTyLy9GunaM4pMiHW4UDjc7lg1ERegNaEOmIZxyDjv6TrL4VbLAIzT768XWcN4mM0Whmmc9CK3FYx1SEk1d9Qri3qcKEVU6+otvnH0a0uaYF7HGys0rQeXNZRfwAWDcXrRziVRJLPuz3De4EMNZZdEnEYMkSKGBksTikaHGXRYNAWc4FuPbzQbNU6CD4YYC1aMJjW4BuMCkqNGBUnCiNA0fe2DB+f9aTWbUiL4npItuTiKOB1Wy3uDk1V9qrW1srNQA+XV1W6qaWuOey3l7mSwzrDWcP/eCu8bhtsjeyZoDJ98/AOu/uJnrNdX3OwH+sbQ+MLNLvLFXz7nxbMj/SBMck38x/+En37x5/xn/+l/CO7IP3355xgvYDPJFfCJtgMfHOOUsQass5QspFQYx4k2eHLOhDZQRDQRoJqvQAe9ptFBdrNZYyThnWE4Hllvt9xc3/D21St8CBwPIz/5s5/y/e99zmq1Og2YrjZA5XqASinx6tVr7n9wjrWCt4lp2tGtt5piYCaVAwRUQ10X6bOM0530pryLlsK8I9FlLgmwGOeU0cyVgTdG81iLbitEULPgu4R+ZZLrIaeI5juXmZ2thquU9CAo1pCzw9TSDNWvag3xfN9U0iIUo5+Ts0qVZqbVmMryooxrSkXTMYrmv+pZ7I6tCBYsWLDg32J8pzMmy0iWqH3dFpx3NE1DaIJq10xTLz7gXVDmRArWQgiG1bqtdaQO7xt1H9uGtu1pm1YHPBygDVnGJG5uXjNNR1IewY4UGXUlP11yO77iOF0zxWPtMx9Icktij2sKoRHEqBM+J4OIx/uAs4aut6d14zhqzJAL0K1s7T+vw57RNAMfhFQy/bqnX/VAoQmBJng26zXbs571xuJ91ExVK/Qbq81aZgKTaDvLah0wRk0fJReQ2RySGaZbhmkg58Jx3HN9c6mlBylVRnR25xeGaY/YfEoy0HYpwCQgaiZlCDStNhy1TahpCOCdsl8aEyS1VtPAybxiMUbtLMZ4lQ7M6VwyM6ezUUZfG94ru2at19tgJtbm5IA7Rq+ieszVyrNdB8qx8PZmwrcb7t9b8+jhhcZzFUPJlpIC6/Wa66sR1wSOEih4/IOeb6cb/qu///ts/Jbf/Y3/FuyFwz5yiANuXbj/aEXbeuamplJDnUw1tVGZ0xhzzSg1OO9pu46+71mtVnRdhzGG4+FYA/HheByIUwQg5YyxjvsP7mOM4dXr15RS2G7PGI5HvPd09bZyzjx//pw3by8JvkWwOOsINkOOHKeBXBrWNhCnPTfTGw75hmKyGhWdanlDcFgzr9LfVRDPQ6IO5++YzrnaVOBdPNo89PLuNTIPke+eKB2O1cRVtzi1CSvlzJQSMSmDXXLW6DpRA+DMrmp6QNYIqzqAe+/1ve7f1QznXIhTZhwScapSmKyVyIZlYF2wYMGCu4LvjrVCtac+eLwTgnUUKpli6lrPqNbM+6ADDROQ8Z6TJq/vew3bLxHEYX3AOkg5EkJHTpFSJqY4EqNqKE0UfIBEZkojxYykErEZvN1jMKQ84dtM7yy2EVKZdOByXtebFkLjNLrJ5Xqh9VgjNE0HJkIDHC25RJou0HaBIpl+5ci5owlbbq5uKdmy2a6xLmKMIabIeuMREqGxpKQuaOdF8x29oe0sw3BkDt4vNtGEgikekUSWkVgSRSaG40DXbTA42rbHGI3Sso2laTy5TKoB9AVji7JXTlivPFMacdZjjdN4nzggWLwvdZ0KkKoRh+r0F6RU2YBofaYLIOJUj+uSdrjTYZ2tDJayXvMYYp2B4ilitX4zG4JvEEYi6c5pWGMUbq8t/crTWM/uauIvvvqS3/zh9/nmlfCD733Mn/zkW3IZublMnJ87fvw7n/Dmm4F/9l8/53YfMVYI93q+ur7h2Z8e+S/+89/j/qrn97/6Q6Y4IMEyVf0qleWbB07f6AEiF02OKFm14c55QLNyVbIhOOdrisRI4zX/uGQ4HA4E77h37562sjUNYJiGkdevX/Pg4UPuPXzA4XBge3bO+f0HfP+HP+Tq+ppn3z7n9csdn37+u1ztv+I4/UOGFJmmzDQMbKKjhBFCIXSNDs2lVCmImpqMNVA00muWBVhbGctZdlpZ1YLKRcDpFqZ6qnTArXKgaq6iFlgYY5WtL5oxPOcC6+rekkoh5aSSltlOJXVQLnofco4Mw4A1Fosj57l9Td+jqkKQU97qKVlgriMumtOc0t3bEixYsGDBv6347uwhcTWcGxovOFMzPY3BOF/D5WdNmgFTcE71a9Y4jYhCSDHVmBqHMU41ZybqRce1OG+razrV+KRG3cCiLmfjYMoj0zRUI1ABO2FcpO2EpqvmLyM4X/BeB8amcfhQV/5icb5gHaz6jQ6sYkl5IoTAerUiNA39qqdpPOvNiqbtcVbXt13fENNIaAXXZNoVGJdYrQLnFz1tZ4GMdZmuN1hf2B/2OpCYwCza88ER2oDYwpRHjulIkj3TdAsUjM14r/WQLgRCE2jbnlwgm0nlBUY1orlG+qSxkFNkrrC0JuNMxlqhbZU9th76dU/bNTSNe7eMNZbQBHB63w0jzhQshq71hCB4K3Stow1BmVtnT3Wt1lqC9xhj8CHgQ6P/XOUhdwnTKNxe9Xzw0cdcPL3HaBIv37xkPNzgXaTkA2ebXqvlM4zDQCmZH/z6x3z2vYd4J0z7I8OUwML1Yc8f/smfIGPhNx9/zrpW905JpSMGKqXIaSgqRbCuht57XzcQNT1ACuM4Mk0T0zSeGMzb/YGhaqQP+4G3l1da5FEHVWvh7HzL9mzD69evidOE944swvbsHOsaRFR3vN1uaLsVxgXW6w2rrqFxlpwndrsbTPSswzmNa1Vn66vxzlJfd5UZNeiBxRgdOMk61BaNqLKodMRZV5MEXGXkdcCdo7B02J1NV7r2n+uCYY6XsvXrNe81lsw4TUxRTWki2jgXrDaJSdXEpqRDpzK1WiNbqp521uFCLWd4byOg6R/LwLpgwYIFdwm/JCxTMJKhJOa6TqkrTamxOdboRURKQuPF1fRjja9NM/ZUi1hqsPzcykRlTdqupWk6XG3Scq7BWsiSMM5hTEAylJwIrQWfSTIidiJLJBMp7AnVsVxEkJKxtpBjoeSgF0oXEXRFPk0j4zhWFsdQSmBztqbrXb2PDTk6Xr14Rd/D/YcdbQtN7+nXgaa1OhB7h/WJ7blns21YrQNNZwjB6IXeOERs7VxHa0wFxilinGW98RzGt7VwYOJwvOQ43mKs0eaeOLLqV2y29ygkjCn4AD5otm1MI4IaxlRfqm59Zw2Nb3DW0nhDcA3O6BARXKuHClv74oOtjx34oIOuNQFrDDABCe9Qxto5nAHrwXr978EL3lmaoIcYW4epu4i2Ddy/OOfiYstq03P54hoZVWIxpSOblcEUUfe7Fd6+uebbZ9/y0cf3WXUOiZnGtkRpKNbws5fP+efPvmDrex72W3KewBpMfUxKDaGfs3J1iMqazlANgOM4qpa7RkTlrJ/TdTo0KsNdaNu2xp3pgeCwP/D27RVXb69wTjcA9+5f8OLlS0SEzWYNxtH2G1brLb/26afcuzjX2LSmI2waXG/oGoszCesDZ90DLvoNwQIl1teIPbGSmYzYArboKh6N0AJOMhZNFdAEgSY0NMHXvGaLmxl+rSKoMhylXk+B/VneNa7lUosHtDVLGWtLkXdDr6mDsT5nlcXOal5U6YBKCLRFbB5OleWds2PnsoH3DxayxFotWLBgwZ3Bf4NqVjX+lFQQ599z/6JDqXW13lAZ1hNPYaw211gN789FLw5N43HeUXKseY5CCI3G3zSZPAx0TYN1HTEeKVZZF13lBzV6oSyVpEKRQgi2rla7etHJda0akGzUQGU8Llja4AmtV/Y2jjSNq1FUYE1hiiNN05GjDterTUvTjTgf2Zy1+KCB5dZC27bEKTHFia7TisopZbw7eVAweA2ED4au9+TiND3BB7q2w7lIKpm2/wgxiSke2VrPNB0pZLZdzzDecH39BjFW2VcSpQSaxmFrNWZOoINqJmd9LlSPV2i7BrDEca/MnDOsVitK1rWt87pWZl7hFlsZLqt/JwWh4Lyt8WAGrMoEbG02cjYQvMVkzeCdxnLnUgIAhmHH8fYNViLnqw28OdKGFcY4bnZ78uTJqTA5wRGIh8yx3DDGAfGWMRnKPiPJcDyqrvObtwdc85x7bsPAJUOXuXjSEYcj06RDj85xNSM3atRZRFnxUGUbpajxpwmergs4b/HFUyqb2fedVpJ6jWq6vT3UYdGSi7Db3XJ+fo/N2Zb9YU8IAYzQr1o++96vcbi5og16sJkyPL96g7eRbbfieNC61YIQp0K72mBciyNSjGjCRBFsLhRRkyVAEY2vEiyCDn5z9q9zDjEGm8EaQazMhPNpJX8K+a+Uv6CSCVeHxpLr759aODKv7g0GYy1YhwW8sSedtQ79ypIK8gsNVznlU8ZsEU3sKNlwOBzZ7Vt8o6y31OzWBQsWLFhwN/CdDGsbAt7pIJNLPK0Ci8yh2gaDx+CwFm3FMZBFjSQYfzIOOedqfqQ7OZjni4/qyOr3bNUk5Z1Wp0q9IIMatqydO8A1m1RITPFQI2uof0aMVeewkFQTazxNo2YWEIJX1keZq4AP2pfurKPrW5rW0baO7XlHwZIlERrBW69rcW+rBs6quSu02grmGpp2DVVh55zBmqAmHBFyAu8auuYMK45xOHB+fp9u1XB184rjuMc6gzUTt7u37K5eQBn5/Hv/Dj5s68+nK85hGElpou9D1c4WINE0lhAMkgWKpW0CUgayHDBkhAkhgikEb3BWoExYI5TsgYBz/tTqZWxBJFFKYpoGXKj65ZKIeSJn0UgjM5HTARHhm6+O5Hz3JtZnX9+QY8a3hdALpvV8++I1537FNAk3tyMhGKYIL18fcdnRtx1+bTn4wotXhZAbzjYX3NxM3OxGrm9GXu32PPvmDXZntL3NqUFoPrho0D4nRnBOf/De44OtcU66Lp/fJylqZJP3jq5tURay0HjHfn/g9nDEuYAxlpcvXvHixUu++eZrkII1cNjvAaHrA08+eMj9h+ccDwc6u+F3fvDf49H21zlkj+tb7p1taBkZ84FXl5ccxsPJiKjuf1MlPLWC1TqMDxg3FweY04ei5gyYd5KAkzmrbm6sJCylJhHU9qy6us+l5rLWwbPU6lVbK2DFGAoGMRbrfW2EU/mCFi8IMU0M46DpCwUoNW6t/u6Skkl5YhhHhmlinBIxVtlAHZAXLFiwYMHdwHcyrG3XIyUTkxqwxFRjhAimAFZZE6Cyq3LKMTSVoxBmx7ClbVtMrXW11mBrhmMp6dT1bawwZkuwtrJ4etEoNWam5FIHUB2ShXexWcZASuXkUgYNHA9BB0dsizHvmoW893VNmGhaT85q2NAqVkuyqv0MuUdntyPCu950zcs0rNcrtGFHW4VmDsk5i288OYKYVIcXoUjC+zUlqZFMJLIfrpk4IIPnaveaMQ1Yc8br5zc8ePyEzz75Id5Z/uxP/+8M00ucU5fzOE7c7m/U2JYM1jZ4r4ae+XEDoaD1lXgNVMdkcskq1chJDVW5oQ2BKaq8I8WxtlhRXdiOcRzwIaAdA8q+ziHtUx5q/JaWR9xFfPnFjvGgeZ9+nYn7wtfPv+UHP/icFP+cWJQl9I0mKtze3HI7JR4+ecL9B2ueX+54/npHvD3gvJY7DGNhPyQO+4HpTSF8EEhTUnbRaqNacJBLwXt108eYAIPv3HtZp/qc5ZxJMeK9B9HDnnWWGBPWGIajFiBghOMwsFlvOB4PhKbh8vKaP//ZX3Bx7z7TcODs7AwjhnE8kuKRF8+/ZXPvguN+oKXn4fohedpRDGzWZ9imQeykBz2ZMMxSH3XWzwMjRgdVO1e1vldnOjOgoOt5e4q2Uqe/oBFTiGBKqWkhnBhUEU1XMKZmqWrWFZb6vtbysJqwQDVr6e+cOd91blubEwZinl+nNSO2xu1pYx3EqJrVlBMuvctkXbBgwYIFdwPfObA6F8C+M4UYjLKobq4DrZmH8M4RLU5d0UYQ8251KDV0voj22qNbZWXucqYkrWo1CDkWcky0KzVbKMvnKV7zSPW+JKwDjNP+8lq3qmxP0KDz7HCuwXlbI6CCGsBkzhhtORwixmgkVtd1TJOjFIPFkrNqNft+RY6RKe1xTjMbvWvIZapxUi3TeMSamrdpCm2na15llyZyAWt0zdu2Ht8I2RjGQTgMAz5p8kDXO4TEzX7HdtNzHG6J8R4ljzx++Bn7j1/yxVd7hITJquubpky/KhgrSHQMwxFjHRhP03T4YGmlRfXBjhhztbPk2v2eca5FitbUGtEYsjFOOKvh7RYHRR/HYRjAeJxOsiSdyHFu0iEDc1p/30U8e/Yt63ND13eYe8J60+O95eHFOcINl3vARUQcfddyFRNTHNlsAjnB7nakiCY97HaZ+w9WlAx25bl+NuKfTcSDDkqn9wboYSVDQhMzdH2uj6lNCWssWQRbLOM40bRqPtzdTmzWazCpxpkZUkpq3vJWyyxKpneerusYx5EYoz43KfH27RWXb6755ssv2e9uCKsN3TmMxwmbI822w3YtPlpiyvg20PkWlYPkql+vmlELThwFqzF1dVjNGYwz2Bp9No+PrpqtfNWdFslQBCkahmYMWFGTVRFBrFNGNCrjGqeJNE3kOGlpwHxAkvLuSPxOf4OOxZpnW+RdCgBVfjDnq5Zq8soJUoYUS5UMJGI1ZOW8MKwLFixYcFfwnQOriOCsxbqGlFNdNdacQzhp1eaLgV4czIlcm13ogpqgtGNgDiNXhgiJJ2ZG68QNEgtYyElwRiUEGYs1AVA2Vqih5K6r5q9MLh7jJiQBOKwJ+KYh5YF+5U/rvhgTwXdaU5odKQrCSNt2IIY4FpoAXduBTbW6dKya3TnKx5GnSfWcCMZa1eJaX9e4DdvzQBwLxQnDEIkRfPA1h7NoZ3l2YAOp9qDGHLnZv6WQ2Y+XiGj8l8jENE2EsGW12jJNO0pMWAnKXCXRYTRNNS6sYJxgnYfKioXgoWqSsbayr7nWhDpySupOJ+jwmgvGgzOWlBIGX1MdDJIMzrYYRuXSXEFMJqYRZ9tq2LqbkFKqBjKT3URzHthc9GyblhtrORwK2/uWNBVShO32nKvLPa20ZGfIx0y/bvG9Pr77XWG99uAsZ5+v2D8/MlwmvIFYQ/BzescYGtFiCmNgHEdCcCdWcR6+5sionLXK1HsN459iwTqHYMlZaBoYp4H1Zs2Dh/fZbrd4H2jbjtDoRuF4HHn58jXPnr3m53/+Mx59+CmfdhfEBLdjIq89F/2WPnjc8QrBE1zAFH1tz+9pay3BGdAGX0WVOIgom+mMkE3BmEIxNWXZOWxJkOoAnDXGSh3+MDdjgT2xzJISOSdiHElxUHOhJKSy+VKkNuUpy0/VwlaOtR5cqwRgjrFSovbUepWikJJuIYYhc3O9p+sCq1WHd/603VmwYMGCBb96/JKBFWVSrMUBJSXA4qytKztTV3hUw4Vq9oz9RWlsyWqOUqd0QUQpVhF1GlvrMN7V3FdtztKGJZUPNG1LmpSBLAUdWKVgvcGYQGhaLDX0uzb7SPFIyYSGelHldJUtxdS81kDTdfXzkzK/UrMf3YQYhzMNRSLWCY1tEWqsl9UhwllLSlGNYS7gbEvf32Ocdlin8gXnA84FxmMB72matubbqr5wjHsdCiRTXOH69jUZgy97enfGcbollciwH+lXDU3nycnSNi25CM5pKUHbeJomM90axAnOFZyfM1dn6YTUx9+R80TTaFFAThotJAUwRSPESEhdSasmcATUQa8muoQx+RRJJCQdzEK5q4oAQFfuh/1AS2IYR7559YzOep7e6/HlPs+eDRSE1arn5ipi4xEaS7sV2gvP1YuEXI6sHqy4PRwYB9VN92eWs4cBszKkJKQh62NdD3NaswqnB6dmfsYp0niP5Iy1uvpvbHNKF2iaBu+81hCnRNd3mnvMcDJsPXz4kPv37+F9oO83WoAghilGNts1682apmmx1vPtV8/55HuPePLg1zi8uebl6+cMm8Qnj57SmzOOw2u8EYwUwGFEkwCygOBqlNW7yCljbC3s4J3DvjrxT6hlGTlX41N9XDDU6lq9LUw9+KZMTAPTqMNqTqmasPS1rP9XNe41saSIILmmXziL9/JukHaGaObDtB4aoCYSiIEi5CSVaS1VtrAMrAsWLFhwV/DdsVbVuWuMmiz002uHuJ1rWJXlmN28UoPP5+xD1aVVbRqzy1fNGFL1lWqW0ExG7y1NG7Deg3FAwFlPaGpTkyjzVyRScoSSNa6p3j9jHM67qmEtOF/o+gY1WgW6bkXXrXDOU0rWWCprcLbBGnXca8TWrHs1p+xMzaK0FMnkojrYUrRSU4rBOW3SQYS28VAy1ql0oYjVi70YmtBQijCNo2opfamf57m+2amzOe85Hl8zxmtuD6+5vP6am923jPEKjBDHSNM0tK2v2t2JlDTD1dmGUsxpeE9JsKbD2Q4IBK/FBL4xmptLIabppE8VqQ1Hs9u6ZJw35BwxltpTLzinebfanjXHA5lTu9BdxX/9j/d4d45H2PQNZMM+jjz96D4P7wVaI8RRaLcBQ+D+2QVdF8gpgAMX9LXrTOHxk6f1ACIc95EyJXzvuf9hh3eh1t/OmAc5RckFqR9GpDK/aGNZCBrjhCi7im4nfuHrS6FpO6xzpyisGCfG4cjV22tevnrJ1dUlcVIW98GD+/z4x7/JRx895eLeA/qmYdvfo5GO3c2ey9tbEpZQUxNUwqODbxYhlUIsmVR0CHyXJPFOvypVvw0wk+y5ZLIUSqHWoCZyjuSi+vFcMpRSzVgFqfnCuTa+nZIC6ve0xiNiT7crRllcZ/UgaatUaTZ4vmvm4pQjW07FBPOhW3UbOQkxlpr+seSwLliwYMFdwXdrWI0mBJgaQZOpl6c5tgnN/NQLjDIg1rrTmi+XymRUNnYO6kZUI1qKmi6MzaSoTv7QOMRArCyqk4AmBGSMpUYuobmvYvBGmRBBDSFibP08KBaMKRgTNMtVMilD0/bYyoyqK9tXxsdq9az36qK3jiKWKcqpWtV6rSLNKdXYL0AsbdtXSURimhI+1EBzozFQxjj6VaBruuqe9pWhtGrwGgca3+HWLW3bIXHQrNh0xbibcKZlPxwpNzfEMZGLo0jGN8rkFSmkHGsmZa0YNWiW66CPg7UWySodSHmi77X1Sw8RNT/VGC03CCoZGCdq+HqklExMAqZgxFLKoGtsUw8zYk/av7s8sMZo6Ls1XYDkwNPQ9WtGMTzf33Dv8QZ7gOE4MQ2JTbvlbNPz/PmBBw/vcfv2jT4WcSDt9rStxXltVdvvIqvzFedPG96+yNgp6TtI5rxRToNTER1WY1KZSwih5oQWMA3WGMQYYozc7o/cv9jiDIzjxNnZlsPhwDAOfPD4UY0py4zjkbN7Dzi7d0ETWg6HPV99+SXTqPri9XbNw8dPCCEgGCyBxp2x213rc2sd3nYU4kl7WwRSlvpRyHWdb+qavZKW7xHHtUqgaLFI0cjg2j7gyBJJOdZyAYOcWE+LqxKikmeta0ZyqgPy/HvH1IznUhNHbH1ca4OWyfWZ1tY5jbriXUlBHahnXe4cOKZsbK7VxXLKl12wYMGCBb96fOfAilEzRM6zKLUOnXXNpm79TC7KkoiAFdR4ga7/CwVjlX1EDEXU9GRq6KIU1e7ptUNzQAUdsCgCeF1nS9FUAQmU5CgyIkXD9VMSrPW0bYNzLSkfqznF6lCQpOpfHcZpfmOpweVzI1OOGQz0qwZnhSkKgjZCFYmUOiAb8VW3aqq8weCdxvbkpKYYKQWiOV2wEY0qsqala1o1jVlP3zaEoExvzpFj2tF3mqFaimr2tBGsYMgYExmHibYL3N6oDtVYAZNB1PA1ywDSCHHKiIyIDPT9ilKqic1k2mCJcaBtWkS0kMBYS5GJtvOUMoEVmsaQkiclfZ6dycRYaENP27UchwTFaj2rD1XfaO60xbrkzOF45Dx0kEasLQiOyRQOtvDBxw9Y3wrPvn3Odh2YDgfOzzfc63t+8vIVMWUohjiByJ42tNzejqy8o107DBPJeM6etqSUOBwyBc0XDcbUuK+CrcyePraFzunrLWfVEjeN6p1nSYYxBlMPWNa604q/aVvmGlfvPR88fcpn3/+c4B37/Z7r6xu0qreja1fcu/eIOAl994jH9wOSLoAOU0bGMuEaKGnWmM5yBk31MGIgq3wkpagj71wtW1TDYMVQUiZbhxGqnECqZEc/ckqYWSM/17simJKwUkASlKwfczFBnZ6N6O8T58Gb+T0qeOMQqzUigqmNWhpxVYrKBOZtTqkpBDMbrO/nmoVbqCkHCxYsWLDgruC7NawkSqVHTiwG8y91HWDMe3FWBvsLLAjwbjhFGRBdwdW6ReN0qDVVg1ay6kutakMlFwrK3lINFN5bijTAxGwQPsVoWQNGQ9QxBetbZVaxZAFrG2VfEXJOynRZC1Iwrqges2phBcEaV7vOs1Zo4kGUQfauIZOIU8IFh7VykgPkOaqn5lPCuyEDkzAWgvVYp8NJzhFIpJwZJ81yjXFEBHKeVKNaRqxLSEn4pqddBdXWWst6vWIYJ7yreltfcMmBEXKmNo3pSjTnhK/h8SkV1n3DlNVY5p2v+bmZlFNd/RuKOKzzuJoHVHKhWLCtDuN6ydd4svlr3g0Cdw9FhNBv6NqGcXfL5t4FPnhuhxu2FyuCBM7O4NmzwmQEsZ7xkPn0w4fsXu+46gfK4DjcRLaPGw7HiTQJx53w+CNhOgghOEIH4krtf+Nk/gFbK4iVEXTOkpMemNquJac5f1hX7a5mnWIgtAEop9i2EAIiME26Xu/6FX2/YrNZU3JiipGnH36IbzrGYWSzWmGcRzKcr78P5i3bT39EKr/DYfoZl/ufcF1uteZ0NkOJ0ZzYYsgWnKjxSsScDpy6hdEDnKAyAoOy/Km2VqWc9UNULmRyQWpDmmqr8/yGxkjBmrk5D6zYyuoaxAjOepyxOKoWVh/WmmTiyCaforeM1VsJxVNKqGkBieCFHCFnlf2klJnGRNsKNsy864IFCxYsuAv47oG1ZHIGER1wsKa6nAtF5tUZ6JVYnctSh9b3JQCzpnVeiSJOG3ucr4yrsh7z5znnMKIrU03NmatclcV1zlKKr85g1bZK1Wwam5Gi2Yw+tFgXqivYaFMPnLIhDQ5nAzmPOKdMZc5zLmTAeoeVgq8slxFPSugqExDjQFQ7aK0hOF9Z1dk5Pbug52QBlQw451R/lwwJYRwPdSXvMVZIMapkIGdiyQgHQmhxPjONEyKO1brR7vU86tBjzel7OWtYrVtSshz2IxYtOsilalOdVoQG31WmXDAUrM64lKLSAoM+FkipUhBX0wNGxESm0dUcXYPFk0qssUXlF7SWdw37XebP/vSK1e98BOKRdITpyKbvMNOeL19fsW239KuWDz94wqONVdNS3yMxc++8422KtN4zHjOpznUlwjRYpqNwcz2Q9+DbBrkd323MZdZ21mQMq6xpQYPy5RSV1tSs4EATmvqaKWw2W4ZhYJomQGe1cUqsVj3eOlarDa9fveLyzRu6riFOyqJ3fcd2s8LiGIYDt/uIsR2P7/2QvluRSubt5ZqcC68O/5wSrjCALabe4boROb2m5TRkllI3IhREnA6rNQ0hiQ6qqoUuVcuqA6utbCzMMokaTXXKbuVUJ4xVWY3qTQvWiGpWjcHXlAL9HaMtVs4ru2qMwZZ6WK76WMmZaVR9N6amCcy/E+rBAP1p/o2+LhcsWLBgwb8c3zmw5pqXKKIaNIsOsUV0hT0H9mtEjV5QMKZqw+rQWgP2U0o1aNzXqCuDcb6uF+d2GW2gsUJdkxdC1YxKAclFDT1GTU5S7Ok2MbqiL5LIySDF1bxFZYZD0JaBglTtaF0rWoeIqw+Fo2SDs7VFS3RQlqyZsnMcujWOubI2Z72vTaMDhma+6gSTstawap5jxtqomokSyNlos1SxiLg6mOtjfTxGrHOnCJ5Yh1L9UHYYwHut2IxxxPumDvuhGnUM1gnTWOULItoWBOQx6gGjOEaZKGVSfqyIDgVkjNGfR9D+d2u0fjMVqDw7QkPT9BiTKNli8ZhSEyHu+MU+5xr0vys8uOc5HI6kUfvkTUkcjxO/8cMfIeUIMhAc2BDANeTjASFyHCyrM8f5doMLVnWiucG7iF/BMUX2pehznitZWZ9T5+rhzxowaupL1UQYglcJTR1iS/FM04T3jrOzbTUYQtd13N7e0vc9oWkIIXB+7z4ffPCU4Xhgv7/mcByQPBDjhLOGpum5vrkhpYT3nofWY7K6803pSJNjGjPjuCes5xKMuj2hJn3MBsqirHAWbVmbX78qeBDsexuQOTlgLhkQa8lJZREnKUF9D2AsxWqmc3GOpgixrvVVkaRtd9aCt5bg3el+5WrqdG7Wp2oiiEaDebLzJJ8xNjL74eb31fweLEUoUhYN64IFCxbcIXy3hrVIZRsNRozGpqJ60pLV+a6aVv10bZiaCwX0oiGokQERLA7nA2Kqs17kdDmc/906j5RCiklDx62nZO0Uj1F7zq0XBF9DyQMavaQNUtOYKNmBaSniMOJorCF4S5Zco7nAO493DjA45qHYYUygcT1Zqos5JcBjTdBBVajxWBpdlLPQBNXHliI0wWGMJ2chJr0Ya9tRIk6TsmlFG6myZkjRND0pTfpzSyIlcESwRWthsxBTPLHDuj4WxGR9vJIyz23TAlS3fkTING3A4DTJoZrTSil4H1QfaU2NqNIVtXcWKbWIwWmfegGcA2M8FiFX1lWNVp5cBqRoXe4U44mtusuQImQpuG4NpuflN29YPz7Desv2HFad5duvfgqp8OmTCx5dbIni+PwHn/Lycoe1GUED86c48MPPPuHZ1y9oQybhuXybKMUSVrDKDburCEA2AlElNGp4KzhXGKdJ19el6pWJBB9ObHdKia5ryVnouhUxRrpO19ubzYbNZssHHzzh4mLL7votu6uC8RbjAsG3XL1+i4jQdB2pFI7HY23QcrRti/OO0Hq8afQQ6Uxd79fHaz6UAsZq051I0aapedhk3sroc59IeGbdtP7d3GZVRF8jwukkVv+wOCNIzVidpT6uHoJn2Y2zGp0WvCP4UAfjGk+Hq7FV7qRjLyW/l6GselbrCkQ1hc6DdUpZ3186kv8bfU0uWLBgwYJ/Ob5zYH2Xp6jaRWVGZ8nYu0EVOK0354F1jpMppUAB7VayYKo7WqroTCxGdKWNRIoUvG2x3uhKPNeucdEuc/GNsoxSV+/oqh2EaUzEqE1Xmn3a4F3QXa0krQ2lMkGlkHE4OzM/jhwN3jd60TKJQiKlWPWryiRjDNYWxqg/Q991eO/15zGQ0qDRPdGqscQIKasLXBV2Hmva6kjW1aZkg7N9jerSXFXrlFEqqQ4GGc1pEGWU1UlNbSLTi/esUy1lPlQUQtNjcQgFV8PntZ4yaXqBc9jskfr16n7PtA0E1xLTpCYwEZwpuODIE6QErYc4FeYQ+JISKWaa5l3d6F2FkClmpF31tP2W3t+yNj1He5+ffbvjbBNpG0GKpUyJ598+w7uGf/fH38O4xD/+o7/ky2e3jEPhsD/yR8e/xCOMx5b7H3YYsYxD4uKRJ64d+92E1EFulgbMAVA6VNVaYRGQTM6aedu2Ld5rg5VUOcF2u+X2dqcHvGpaWq96pERePf+G4XjkbLvl4ZMnbDZbxiESUyTFyBCVvde818jlmzdaAWsM5/fO2IQnrN1jYsgkM9b7o21wzhhK1Xxz2rgon6rSHE6O/9lxT8qIUX12qmkIOWdmr74mY5kTs+qsOW1UYk0gcMYi1mCdqXW1+r4x6ADrgzKouWap+pOxTSuhXV37IwXJGcmB1Gdi0jSLOOp7JqdMnCKx0Ug9udsv4QULFiz4twq/pDhgzn3M1YBQ1/9Fr0yqc7Q1hmcemGZ21dXaSWURjcn18+tKUeT0uaZeiI2DOQzJWk8uav7R3NfZLW3IqWBqTagRTcsp2VJigGwQ6+r9MZRYauC9xTj9WVISUoHgDLbxWsOadED0YsiSyGZea5eaR5pwJuBdoEjCWrRi1XvqRrMOGpGUQMTXlfoEM3trTZUAWEpJyvIhONNgbVCtsFGDmZQExRNM0Ic9DwgFYzzGWlKasMaRUyE4r4yRNRqyXmPGDEGNL0yqsbXqWseMFEbIhVI65Zi9retnfb6KaPJDKVHXqdZhnWaFihF8sCdWCjzOGcZxQssfMsMx/3+8nu4SXj2/5ZMfQm7W3JY1Tz9+wEXY8hu/9hsch45/+kd/zsVFYnhbMEX4d379R/yzr77gg+Mtnzzu+dNOJSKhZrLe3kQ8DshcXR6ZRuj7hu//xhk/+YPXhOCYcq6HnveNiTpcuRrxZDA1T3dOxjA4p4zgOI68fv0GEM7PzxnHSAgNwTvG457xeKMbAdGM165fEZqOaUpQhOvrK3IRVpstGMNutyOEgDeWVDJihM25pbU9MTuOw4RpwFWNM8bqezpbfS0YzWfVg2t951bdukZ2gZioB7+YmKZ4GlhneU7tomJ+NKAG/6MaVu9mjalBjFejJlpJ6wwEb/FBfw/lrBNuTDpg58zJ1GawiHeU4EiTU1NcsMRYyGkOI9DXd87CT//kQMoLw7pgwYIFdwW/dGBVl0hVpVVNlzH2FBkjxaI2pNkgNZutzHufV40T/1/WbGbWhpp3TC6SVYJQvccqHTCImQ0RMyOjFxlqALihqSkGKDOWdYCUlCneELzqRimJkjTaSiptpe54q6YQ0WFLjME4W9381Zjh5ppNi/dzekKpOr1CISJiTwO5iMU7h9Tg/ZwLyWjtpJDxrsF7rYRV00ipj6nHSEOwHQKMJWKcamNnva91quWjqFM6Zc1KzakOtkZ1uD6ojjfFUh8bEPQ+WBMIvqktX1RtbsQarYQtkjEEPU0Yi9a8qv5xOmbeJ1JzzjgvjENkv7vbA+ublwXSwNRO/NnXI4/9mv/4b3xKtzrDAx88XPP1s1fkvePzj3qctzSbc55d3fD1s2e8eLlnOGbcyeyjB6jrq4nra4P3hUefODb3oOkd3tempfd0nZpqMb9XqinQ6PtKg/BVq6qmPIhRXfMvXyYOhz1N09H3PTFNmFHzkK0x3O4OjKO2wuWiOaTOBlJMiDEMw1jlII7DYc9wOCLWcP5gTbk9qj5dRggGMVnD/GVe29d4KwMZfb2qUUlOpj8xVS8uhRwjqURinEgpnsxiVM1pqjm03jn92YUadQWtc1gCmciUDIXq+K/GS+/087xztV0vY8tsZrMnHbWxau5y1hCcZZ8N+x0cbg3Ho+HnP4VnX+rvOWsnrE28eZnnNK0FCxYsWHAH8EurWUFdt8zSgHpxdVYH1SLUYU9Onz8PrjA3zFiwQikZqUzMvDI21qgersh7TuqEFPsLLUGlSG0tsDjf1G+UEVNLA1zAeXTAqg1P0zRScsa76qCvmrY5Tgj9adAb1oG71D5MMYKxluBbpCTsLCWo63fnKoNaXculJDCq681ZTU1q3NIhzwCSDJKFYgo514u+JIpVzajHkyRh0VYsKbqyd9aTpDsN+8K8hlezSzEq0ci1f13X96EO+zo4lqzh7zllZXnrUDzrEtXIY4CsBjU09soYg/MOYzXySkQ1uSIFH1T7O8VETNNpSCh3uDTgfdxf9bxOBy7f3NJ0nl2aaFaW+w8fcHNzIB4vMcaw7VZkyWzWPTevX3IYEvuhqJZTjEouLDTB0q8atheBb35+ze31yKuXOx5+2HD9ckKyECdBtOMUKZCkYGPCWs8UI23bINSA/izsbvakPmuChNFotHGM7HbPcM7x6NEjpunIqmvoQkMpsD8cGQZtPptSomt7Vqs1MWZSLrQ4Ui44B3E4MI5HPv/hj1ltMrfTc47xDfvpms29HkOuh5b6OtbZ9KQ91+VKNSyBmreMalRFhFxX7SklNTlVyQOz9t24k8wooyke1M2JtZoAYOrvmVR/QcyNeK7+qQO0pi3MciTVa+vP+/f/7iUp5XqAzfz8zwd++mfDv+RVoVuYBQsWLFhwt/DdpivMaficY2dE9CJtjDs5hzUjVV3N8G4YPd3KiXXVi5idr1WVsaNWexaZvRkzo3u6G8z5rsZYrPc1tzVSRI1M8xpRqCyirRE6tQ+9FNWBWuvwrlDqCnbOt5y/n7M6JOb6DZWlrNWYVftKXd0iGg+VKxPpXYOhRcgnpqxk0XrLom5l4yzYhmADSCTlIzEfaFxLcKEO/w6ykCUT84AX1UQa0fs6HwZyLtVAohdryWqMKSUjZdSFqwUTW8CT00SME0io6Q2p5nkKMcaTHtJ7T4wZawLOV9MMTqOJckKLCjzet6dVqppaPEKLjud3v9by3uMHHJ/Ddcx8/0ef8e1Xz5DVik+//wn37j3kMHjevnoNqfDqzSXhbMv9izN2N5knT7a8fnvLMAjWW4YpMo3gc6RbNfyNv/OIf/ZP33L1KvHwUc+9R2vimLGHzPGgTHkWwZl3dasiosa8KsFISc1CwzDSNCNtq2vvFPX1FuPEixfPWa1WXGy3nG3O9Dmo75uUErubHbfmyHo9ItZhrEMYmNJI21hyGvjk44/43d/7PZ5d/gPefvOcy90X3I5XJNY8eXRe9eoqNbDo1kHq4a4mTp10uaY242EMSTTRIsaRNE3EaVI2mrq0gbpZmbW98+8IjcjSc66+D4O3UAxZ0KpVVxnifWZ/OyFVAzzFzP/yf/4Ft7dJD54CL56NC1u6YMGCBX/F8UsG1ndmKmNm7em7v1dWQ+cX7eg2NRpJ2RvgF6JsjDWYPHfPUI1MjlzZV3XUmxOTY22NwylV7ypOL2p1aLPOIdlWFZzG3IRGmcNMxqRCqYUHGsKv2Y3WqRbP0mCt19ghJmUPT6tJp8YuXB3OB+o3VndzrumlWYhTBps16Fwc1jRqEBNHMVYTFRIIDusCxnR430Ie1GHPSCqCrxKKbCCLhrRLThSpxqcCmPLusUdZWg1Hdzix+v3qMJFT0rgk5hafqhk2NVeXpsoWZubUkEtEavmC8y3e1374YohT0SxXW1S7iRBjomQDolFlyqj/0pfVncBP/+LAD379jHjcsX0QuPz5La9//jVle8Z+Kvze3/kx3z67Yvr6BR/f/4C/+0//kAcPHnBx/4zbP/qWMmmbmeREyWCymtO++csdrlnx9OMNjz/oMcbR9oZ+q+zg8WhOkUkWFWHPGaIlC95qsUBKmp0LcDgcqxRFD02q57YcB33tgGWKhXXfUyRjo6kNdIIPDTFn1psNPhjGcaDvGiyJ9arHyBFH5PPv/ZgX1/+I9HrPFAdK7lSeM98/0Xa7WbNdTMZ6cFjMe3mttlYj22rEyylqpFpOSFYtLNZWOYGcDo6zzEdPprUMBOptatzdl18c+Kd/sFOdvLX8xU93/Omf3PwqXj4LFixYsODfIH5JcUCpegBTB5sa/yKCrWakeo2av+Ld14r8AnP07uvfozpqbE6pqQNSV9sGB9bgXA36fk87q4NaAaMsZikeyerAt9YpY2NUZmCqQetdwYFQkupWjbW1YlVqjBM6mImaioyxOliLxb6rCsBaVxt7tHVHL94WVx1gpRTsnEc76xS9Rk3ZGqau9ZIqY7DZARFrch30Lc63xKhr2Jgnchp0DV/1xBqq7msW5ZyW4GrGrZpVRDIhaDZrijMr67Cm5ld6C4QaM6QazJykShqElISu00EhRWGaJmKtr7VWJQWpTDWr12Kq8Qrye6+Hu40//idv+PS3trjtkRtzxcFnPggd++OBb795xnFyfO/TH/DD//Zv8/bl1/i2449/8jXf/945Dx6vGL7ZUwZqm1hTpSCWeMi8/nqiP2tYrxuGwbA6E9YHNbZZS82znTcHUuUXMnuWMDVXI+WkMWVZSE0iNB5rLOM04L3HBU+MkavrK/aHPbvQ4qylaRq6LjFNGRcabC2rWK3XbLdnOO+4vbrEO8PTxw8ZhxsuX31DjIk2bPno3qfY/sCUBnyTlZFXpQhzpL4+35zeazNPai21YCRDiUiKlBzRpBH9Oa2l/jlXqOpXf/XFgZQKtm5rvvzywH/1v39eHyvDMGRu77g+esGCBQsW/OvHL9WwzhdUmJuoKuvpMiJV01arUOdqxtmA9D7m1fN8m+i/vfc9auFA/XdrbF31azzOHLF1YmJEv/7E3hqDOwUZGHTcrFf/rBk86tLnxGZp801tzgEKqkVVU4eyuZKNXpHtO5NXyZkU35kynHOEoBfeKaurvmZO4b3TxyRPlFiwGA1cz5FiBG3BMvjg9b9Z8NXQNZXEhJAkYRI1CaAyvhaMyVVHW5m+yqCqGa7gvMc4ffycUwOWwdVBt+prqcO5Vde/rS5/KTWSK2XGMTOOEWs1+cEaq7W81DzXoqYXIapT+6+GhLXqbwvRC7u0o/3wgs15x4svvuV2d80XXw6UN5m/9V/+Hn/0k1f0985wz295/vKSfuMRW7DOMgwRV7TyNld96uXLwu52z0/+yPDg8Ya2F9q1Z0Vi2As3b5WpTAImFdypVlRD82OOp1il4zAymIgbBtq20efVFFyydNJjatxULoWcC21oKIBvWoYpYnNVPxutPe77nrZ19H2HNZnnz14S/uhP6C8cF/LXePrp3+R4OJD6b3mT/wBcHaR1yqzvv1p6IHPg/ntDqxSsMThTsJKqJj1Xt59UnbMevP7+/+Wam0vBGY+1ht//f7zhcFgG0gULFixY8Iv4zoH16vKIsVUzZtS4lLLq75yvLVEYmtbTtB4r5eSQ1yFz7pWfh15l/mZjk1Y7zgNOHbTkPXfue2TsL+hiTzrX6gg2rlY4Sm2yKqeAcmtnQxFArgOpVJNYpmAq8yNQL/gFvW+cJA76TecShFIyKU8g2pblvRqTrHFYo0kBGqej1a+pBv1bq2ytxlYpO1myVLdzlUEYq7WWdW2qLGmmJI2bUpOJ/vgqAbYqT6h6XX3syilPtWkbmsbX7zk/5soKIlJlBYL3jWZfVmbXBx1+S67tRRKVPS5OLSkmK/len2OhJjLUx+yvAoxktn3GPN0q8yyJ43TL67eX7Kc9+2PCTYVvfvo1f/HlM/zFBQ8ernnzKvHtqz3DoEy1sXOZA3qosbDZCMU6Xn47cXtzy0efdYQucH8jHC5Hbt6q5rogJFHZiBND8UX/vggw1/g6phpmb1zHxXqlGcUxMspI06q0I2Zd33tfMKUwxgnn9bXfNE19bgqrVctHHz1mOl6zPVtTYuDDDx/jGwumxfqe3/+T/ydPP/2Es+1zjjwHn1QnXZND3t+sFCtYo5sFU1BTGcJhH/npT3aM00RMia++GPn9v7/7BQb+cKv1zwsWLFiwYMF34TsH1j/6g2f/jW7k7LxntdFAf3OKnHp3RdN5b75Kze4p+OFvfKirVLEUEWq1d80nLVDelxCY0yBr3rvi2ZrlqgrKzC9cDevgaU73JZ/W37qGlMr4lJN5TFngQko6zEmpbGtd8eeSTgyt6mhndknjg6xrtfnHgbdew/9LlU/4Os2g2Zs5Sx3w9e4pa6pr4FLlF9r2ZRFba2vtPJjPrWK2utWlHihyNaepREEHZ9UIn5wuNUO32v3x3mGNJWaNxBJU6+usQ+ow4qyr90v1uz6gtbNJNculTKSctNa26obvOqQIzlhWnYck5HHPl9d7utZx/VZYbw2xEc7uP0JS4M2r1zx5+gD/dM3l60QugzL6xeIdIIWY9WBy/qhF0/WF3/qb97h6vWccCtYU8qR6bItgnWO9OaNvGw67HU+fPuLy7VuOxxFnHX3X8es/+pxXr15yPA78td/+LX70g6e8eX3NP/j9P+Aw7hkHHVpD4xFJiGiL2hQngvcUEdrOc362xjvDm9cvefBgzeOH9+g6jyGoBtsbvIOwCvyt3/1bfPvFVzzs/xOepb/LQd7opqHML1ZqNbFKY0wx/O/+19/y5uWIRq/B9eXIH/7B9a/4WV6wYMGCBf//gH8t7pib6yM318d/5a97/s3NKd3mffyLEsg58MoAv/7jD+m6wLyHVJZvDjbPSM1U1XQANW744Hj4ZFO1rAXnwi+kHpSTTlZO9yWXXB3Peo+M0eFT9a/gg8ZOUdebpeg6t23mRAGtOs1jIWf9Z+MMVagLpQ68aKGAoFIGzeOEXNKJzdLGMFMNVh5Mrkaz2UT1LopHo7lMXd+/OyxYqzWiOhybqkWVk644JmV8VdNbpQrGQcmULBixeBcqQ6yxWinqz2McpGRICUyouoy/AnjxrPAP/m8H/vZ/54LQNkhruM17uthye10wIXP2qeHB/RXHycA6cHl5w2ptKGVEMoxToum8tnxlKMnQrD1TtNzuRn7t80c8frJiu+r46mc3PH34IZsfZg5P1MS02qz5D/6j3+PJ4wtePPuW7332GW9fv+Xy8ort9h6FyGefPuIv/vJn7G52PLh/n1Xv+OTDh7Re+LOf/Iyr62vGaeKwO1IkEfuRpu1pLs6ARNd2nG8bzraWYD3BB26v39J3mZx7tttzCnC7PzCN14h5TeMdzkfGQ8d68zEvXj/jZ//stjrv9XXyd/+3z/jqLw/6YAocDypzWLBgwYIFC/5141dq507pX30X+Md/+NW/8td4b3n8dFM1q7pGf7/r/l/U285j6+OnGz786Kzqb80pdN/62qJ1Sk1Q05G1BuctxjRQ9Zzvt3rNLGrJBevepS44V01aRqoywsIcIm9nJrVWWaqy9qQbnHNgT4Y24XR/6x/MjWL6c0ollsuJ3Y1RNavOaduWFI0uk6L/LEXXys4YSkkqF8CoM94AOLS9a9Yj/9WYWkTgepfJ0bFdWaIXto82xNRgime8KXz8+Clvry95c3Vg2wVubias1dpf6yawltW64+rNLSnpkG9Tg4yWX/+Nj/if/I//M5Ajx/GKT7YNv/mD38EUT9f2UDJ/8Zc/JzSWDx6d81s/+pjxuOfjp2vONr+FwfD2+orLN2/57JOPmaaBt2+es+4e8tH3P+GTjz/khz/8jD/7yc/4+tvnvHj5mpubK8bxQNc15DxibMuqc3zw+JztWU8eE7fX16ResPac/e0B8Gxtj/WBFI8YY/jymxf8T/8X/xsEg18NvHjzLX/6h4sbf8GCBQsW/GpgfsG1v2DBggULFixYsGDBHcNfjd3tggULFixYsGDBgn9rsQysCxYsWLBgwYIFC+40loF1wYIFCxYsWLBgwZ3GMrAuWLBgwYIFCxYsuNNYBtYFCxYsWLBgwYIFdxrLwLpgwYIFCxYsWLDgTmMZWBcsWLBgwYIFCxbcaSwD64IFCxYsWLBgwYI7jWVgXbBgwYIFCxYsWHCnsQysCxYsWLBgwYIFC+40loF1wYIFCxYsWLBgwZ3GMrAuWLBgwYIFCxYsuNNYBtYFCxYsWLBgwYIFdxrLwLpgwYIFCxYsWLDgTmMZWBcsWLBgwYIFCxbcafy/AQQpmtTJZEl2AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images([img.numpy().transpose((2, 3, 1, 0))[:,:,:,0] for img in imgs]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can multiply the data by implementing a custom [sampler](https://github.com/keras-team/keras/issues/7359) or just concatenate loaders." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "from torch.utils.data import ConcatDataset\n", - "trans1 = transforms.Compose([transforms.Resize((224, 224)), # essayer avec 224 seulement\n", - " transforms.RandomRotation((-10, 10), expand=True),\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor()])\n", - "trans2 = transforms.Compose([transforms.Resize((224, 224)), # essayer avec 224 seulement\n", - " transforms.Grayscale(num_output_channels=3),\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor()])\n", - "imgs1 = datasets.ImageFolder(\"simages\", trans1)\n", - "imgs2 = datasets.ImageFolder(\"simages\", trans2)\n", - "dataloader = DataLoader(ConcatDataset([imgs1, imgs2]), batch_size=1, \n", - " shuffle=True, num_workers=1)\n", - "img_seq = iter(dataloader)\n", - "imgs = list(img[0] for i, img in zip(range(10), img_seq))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAH/CAYAAABw7JSNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9WaxuSZbfh/0iYg/fPJzxznkzK6uyxm52V1WLhCSKpClRTbrFBi3INAwDAkw9WLbBhp/8RMAGBPjJgB74IMD2gwG7bVE0INFokG64xW5Y7Oqhuqur2JVZnZWVw715p3PP9I17jPBD7LVPnF3n3iySlXXT5llVJ+8537B37NixI/7xX/+1lnLOcW3Xdm3Xdm3Xdm3Xdm3X9lk0/aobcG3Xdm3Xdm3Xdm3Xdm3X9iK7BqvXdm3Xdm3Xdm3Xdm3X9pm1a7B6bdd2bdd2bdd2bdd2bZ9Zuwar13Zt13Zt13Zt13Zt1/aZtWuwem3Xdm3Xdm3Xdm3Xdm2fWbsGq9d2bdd2bdd2bdd2bdf2mbWfCKwqpf7Zp3FypdS/r5T6gVLqh0qp//WncY5r+9fXPsVx+39SSj1TSv3zT+P413Ztn8bYVUrdVUr9t0qpt5VSf6qU+rs/7XNc27V9SmO3p5T6faXUnzRj93/z0z7HtX22Tb2qPKtKKQP8GfDvAg+BPwD+R86577+SBl3btf2EppT6i8AK+D875776qttzbdf2k5hS6iZw0zn3R0qpMfBt4Fev59xr+6ybUkoBQ+fcSikVA/8f4O865771ipt2bT8j+0mZ1VXz719SSv22Uuq/VEr9mVLqf6eU+h83O57vKaU+13zuc0qpbyml/kAp9b+V73fsl4AfOud+5JwrgP8b8Dd/Whd2bdf2KY1bnHO/A5z8DC/l2v41s09j7DrnHjvn/qj5fQm8Ddz+WV7Xtf3/v31KY9c55+T1uPm5rmj0r5H9y2hWfx74u8DXgP8J8AXn3C8B/wfgf9l85j8H/nPn3DeBRy84zm3gQfD3Q64nzmv79OynNW6v7dp+1vZTH7tKqfvALwC/92k0+NqurbGf2thVShml1HeAZ8BvOueux+6/RvYvA1b/oNmh58B7wP+ref17wP3m978A/IPm9//rC46jrnjteqd0bZ+W/bTG7bVd28/afqpjVyk1Av4h8GvOucVPv7nXdm2t/dTGrnOuds79OeAO8EtKqWsJ1r9G9i8DVvPgdxv8bYHoX+A4D4G7wd93uGazru3Ts5/WuL22a/tZ209t7DZ6v38I/F+cc/+Pn07zru3aXmg/9XnXOXcG/FPg3/9Xadi1/f+WfVqpq74F/A+a3//2Cz7zB8DnlVKvK6WS5nP/zafUnmu7tp/EfpJxe23X9lm0Txy7TZDK/xF42zn3v/9ZNezaru0T7CcZu/tKqVnzex/4q8A7P5PWXdtnwj4tsPprwP9KKfX7wE3gvPsB51wF/C+Af4IX+v+Xzrk//ZTac23X9pPYr/EJ4xZAKfXrwO8CbymlHiql/qc/uyZe27Vdab/GJ4/dfxOvG/wrSqnvND9//WfYxmu7tqvs1/jksXsT+G+VUt/FE12/6Zz7f/7smnhtr9pemrrqf/gf/gfOGI0xEeDQKFAKozUm0lRVRZLEVJWlto4s2xLHCcYYyrIkzzPe/+AjHj1+yr/5579OFEXM5zPSNKWua5y1YGustVRVRV5WLFdrVusV4/GEbJuh0Ozt79HrpSRxRG0t1lqcc5yenfPw4SOOnh1TlxVKw+tvvM691+4wGAzI8wJra9IkYr3eUJYlDx484OHDj9lkOTdv3uLwYJ88z7G2ZjgYcnxyzPHxCbPZjJOTU5zz4tr9/T3iOKIsCm7euoV1jiiKePDgIx59/ARbW3q9lC9+8S1msynOwWDQJ89zdGSoqpqz01PKoqIoCo6OjliuVixXS5xz9Pt9ZtM5o/GQg4M9RqMhWVailCKKIpyFwWBIFBmWiwV5nlGWJVmW4ZwjjmMAer0UHRkmkzF5XrBercizDGstw+GIpJdgrUUpTVWVlGWJ1posy6mqkiRJcM6RJCn9/pBsu2W1XtJLUpTSxHGMtZa6LgHQWmOtxRhDFEV48gbquuY3fvO3r9Il/0zsv/6v/+t2YCul2p/wb639Xk2egc1mQ5qmKKX47d/+bX7nd36Hv/f3/h5aa5RSOOfa773ouZFzyHHle9baH2uLc649jvwur4efBZo+ry+dR74jP9JOY8ylY4dtknbItYef9+NCte2Rz9R1jdaaKIou9Vf3GqV9cjw5dtj28LN1XbfjJjye/NR1fak93X4JP2ebeUHOr5RqX6+qqp0z5PXuuZRSFEXBxx9/zPHxMX//7//9VzZ2lVKfOe3+aDQiauYYXjD2f/U//Fu8fv8+1DV1kVMXGUZp4t4AHcegDTpJ+Lmv/wKqdtTbjHxzRr5eUW43VNkK1uewWZBoh0766PEeZmefeDwn6g2wGLIiJ882lHnGerlmvVqTb7eUVYWJYtJenzROiCKFMYpI+zXMaAPKYcscm2+osw22yKjzLa7cUpcZVZFRFzngx79BYbQiMhqtFUorrHPUDqraUtWOooLSOqwFh0NrRWQMcWT89wCnLLWDuoayqikqR20d1joULpgXfOCGs468htJCbf13KueorP9xDqxVfP+H7/HOez+6dB+cc69k7P5n/9l/5qqqYjwet+uRUoo8955/ay1Z5tctY4y0tV2D9vf3+f73v8+3vvUt/vbf/tucnp7y4MED9vb2UEpRVRX9fp/NZsNHH33EZDIhjmPG4zE3btxAa83R0REfffQRg8GA2WzGer1mMBhw584d4jhmsVgwn89J05TVasVms8E5x2AwII5j8jzn6OiI4+NjjDGcnp5yfHzMjRs3uHfvHpPJhJOTE548ecJ4PG7Xy/v372Ot5fT0lO12y+3bt7l9+za9Xg9rLZvNhuVySVmW7ZxTVdWluXU6ndLr9drPDIdDAIqiaLBWwna7ZbvdcnJywtnZGePxmOPjY5RSTKfT9jqKosAYQ5qmHB0dkaYpe3t7RFHE6ekpjx8/5vOf/zzD4ZD1es16veb09JSTkxOUUsznc2azGXEcU5Yl5+fn7XePj4+ZzWZUVcXZ2RnD4ZDBYEBVVdy4cYPhcMiTJ0/4zne+w9HREZvNhs9//vPcvHmTBw8esFwuuX//PnVds9lsGAwGGGP4r/6r/+ql4/almpHJeEiSJMRxjLMWhQdOZVFgIuMHpIJ+f4AFjo6O2G42nJye8M++9W2stUTG8I0/9xXm0wm9Xo8kSUjSmCiK0EpT5Dl5nuOcIypK4igiNh4I99OUOI7Itxv2dueMJ+NmsBeoZiFdL9ecn56zyjJ2Zjvs7MzY29thNBqhlGK9XGHrGqMUi8WC2WTE815KbR1JEjEc9pnPJmy3W3q9HnmeobXCWcdkNGK92aCVYjoZkWdbSlczHg5AK6x1xJHxIFpbBoMe0+mYtJegtSZNExyW0WhElufUdUm2yZlMxoBjsfSxDXEcMxgMmE6naA2TyYR+vw/4NkVRRFlWxA0YnEwnbDeGqqqIY8N26/uk1+uhtWYwSMnzLVVZ0e8njIZ9BsMhaZJ4sO8czlryPKcsS6q6BmdJpyPSxG8khqMReVawXpWMBkOsde2Dl2VbBoM+aZpSFAVpmpKmKVmWtZNSCJBepYUgrtumLjj74Q9/yH/xX/wX7UTxa7/2a5c+3wW9IdAMgXB4bjlHCCCvApHh8T6p77rAMgTEXSDd/Uz4fembsH/C78rxruq7rsl5Q0Df3RSICQiNoogoii6BZfm+UurS3+HGQj4fgne5RgGqoV3V993Nhvwt/fGvk33zG9/k4ODA/yF9p/zvClBa8ct//b/Pnbt3sbamrqtLm4MoitBak/QTEhPhqooq21Bt12gUcX+ISXoQxdRaoeIIyhqbxFD1oKpRzhG5GqoC7WqSWKPjPro/wKQ9ojgiShKcjlCRQWuIjQbnUMphNOTNxl3VJU6DdQoq/O8mwmqN0grXbGKcdeDk2QBNsxE1BlztI4CVQqE8gGz+qwDjNNYpVDCeKgsWCxb/u3UQGyKtccpjfOsclVXU1rUAtzkASoNR7Z/UDpzzbXPKtwGlUMrikGf7szHPAiyXy3ZNGQwGlGXZAp2dnR201jx58oSqqtjd3W3xwEcffcQ/+kf/CK014/GYv/N3/k5LighwEmJGgNh2u2U8HlMUBUAL+Hq9HpPJBGstR0dHrFYrbt++fWmzLMAXaOeYcG6I47idlwQ4AqzX65Zom06n7O/vE8cxdV2zs7NDVVUsFot2Qyzz23a7pSxLzs7OsNaSJAn9fr8FgrKZDwkNa20L4sVCIijPc4qi8KSfc2y323YdLooCpVR77Kqq2s04QL/fZz6ft/OqMQatNb1er8EdkCQJdV2TJEl7b8fjcUtIGWPo9XosFguqqqIsS9brNWXpSayiKLDWsre3x3K5bAH3zs4Ox8fHnJycsL+/397L0Wj0iePrpWB1PBq2jVL4h1wpjer3MEaTJAnW1ihtQGtuHOyzWq2YjsfcPjzANQ+2rUrSXspoOATlPDOrFMZoRjs77aCoqgpnHUVRNGh/gzaGyWRCb9Bjd3dOXdcsl0uqssRWlQecgz7b7Ybd3TmHB/tMxxPGoxFRHJFojVaK83NNVRaY3V2ePH7iBziOvZ0der2U87MzD1L6PaaTEc+ePiOONGnsQflsMubpZkNdligcvbSHdX5XHMcGYzybORoPUQp2dnYwJqKuKs98RhHj4YCyrDg7O+foqKaqqvahGA6HJGlCHEfMZlNA0esN6PV6pGnK+fk56/XKAwjlGYO8KBmOhsRxxHg89g+fs/R7Kdk2wwyGxElMVVUeIDvFdrsh1p7tKouc8Wjo2dm6YjwcgoPRbIZ1lvViQRJFGBMzHI2o65rtdstsNscYTVHk7QDPsoxer0dd1+2u7lVayITK3+G/cBkcKqX4uZ/7Of7+3//77Xtd8BZ+PwSFV7Gmtl2FfpxN7bYxtBCshccPWc6rvifvhyzwVezvVQD5qnOG73cZaFlEQnY2/H4IGkNQHPaLfD88Rngs8CAovEddQC4Tddi+bluF+Q+vp3vt4TnkefysW6/XYzafovjx8S0g5mtf+xq/+qv/ATiFrS1FWWKrGmdd25cWx81btxgN/eZeaQ3KAzxtdHOf/Bwo96+uy5YZl3sdxRFxEhObCGcMWkEUR7gibxlDbTQ6isAYLBERmthBjcYpg1UGp8DEEYYabSKM0WgckTZEJkJFKcbEGK0oI7lPfp3RCoosA1fjrMZZsMrisGC0B7pKY22NLXIo/Y8tC1xdgWzkFSg0CtVgd093WgfK4tdCj3Oxrtn8ORrW07fIaOfBrbLYqAEgeBBbOc/EljXUDUsKoKwH3boBz7X1x7fNFQpUdqqBzkoA9GfDsiwjiiJsQ4QcHR2xXC45PT1Fa02/32/JDdlAGmP48pe/zOc+9zk2mw3GmBZInZ6ekqYpg8GALMtaYLNYLLDW0u/3238FYKZpymg0atlCIYIAqqpqz1sURXv+sixbcCl4ZzAYoJRqCaDxeHwJ3A0Gfm0WAieO4xbwyb/CLq9WKxaLBefn5y0RkiTJJU+kgEqZj7reqHATLu0WVtc5x2azIY5j0jRFa+8BFa+rHFsYbecco9Go3RCIZ3Q0GqG1Js9z4jhuzyHXn6YpAIeHhwwGA5IkaQgzf+0hnun1eszn87Ytckzpn7qumUwmRFHEarVq++pl9lKw2k8T4iQhTRKS2IOezWaLc5YkTun3eh7BVxXaaGKjSZO4Rf3n5wvAsTvzO5C0lzYd5BtalAXWKeqqJi8Kkigi7SWMRkNmsylZlrNcLsBZ6rKkbnZk+3t7HD17xuLsDFuXaOUwRrNeLdjbm7M7nzUdqIjmM1xdezaw3yOJIw729ykePyaODPP5jF6aYpvJd7VaAg6tYDTssbszI00S7t29Q5Hn4BzO1sSRYbvdeEbAGEwaMZtPmU4nVGXJeDwijmJwUBZF+3A8XT1js/Huf2v9ZK+VYtDvURY5hwf79PsDnLX0+0Oss2Rb3/bhoM+jRx+jjGYw6BHHftd2eHiAMRqlNMZoqrLEBS7WNImpG1fooGGPV4tzptOZB61KMR4O6Kcpfjq0FFnGcNBHoRgMhmgT4VxEv58SmYi6Lun3ElCKPMuIIy8VsbZGa8VoOP6XmO5+utYFQuHroTtY7CogKyYLc5ddvep7L2Ltuozsy87dZXC7jGMXXIYgNWQLrjpHF5Re5XIPvxO2LTx22IarGNDue1f1XcgSh+fvMrIhyBXrsg7h5kTa+aL+v4rhDtneV2k3bt3i537+axfMtCL4F5TSvHbvLr/0b3wDraMW9JsoIopjkjgljmIi499z1o/fsij9PFR7gOScwzbubqXFza2bkwD6gmmOIo3WBoejrhVVVaIqf1yH9WBUqQaQGnRkqAuD09ofyGh0pCEyWDRKg44idJQQRRZiR20BKowG4yq0NkRJDxOnxElCHCc4E6OcBSzW1kRpSlxWVGXliYG6xlYW7RqQWlW+fdZ44KgM1la4IscVGa7KsWUOVQHWUjsP/7RyHrgC4HBOg/X9ommeGScMaOPSd1DahqV1/uNOKWoEvCoPVq1375e1d+nXdfMMG0VkQYa1DcCqbdz+tgHNHihfAN3PghVFQb/vPW7CcoqrVzae4/G4BXICwgaDAf1+n16vx8nJCefn5xweHjKbzVgsFhjjvYh5nrNer1ksFq3Hd7lcXgJysoG11pKmKTdv3mQ0Gl3aREubxE0Olze3URS1AHc2m6GUYjgcEscx0+mU6XTaMqTdNabf7zMYDNpzVlVFlmVsNptL641IAGQeKoqCLMsYDoctYxrH8aWNvrRR5ig5v8xXXs5oWwAunk7pn6IoiKKovXaZY+u6bplmkWYJUE1Tj9n29vZaOZUQaEopTyQ2OFAp1YLl6XTKvXv3yLKMfr9PWZb0+/2G1Jswn8/Z2dmh3+9fYnBfZi+dleMkIk1j4jgiiiN0pHHKsd1sOV+cU5al1zJFfhKLYoPDeoYwTVBaeT1RWTCdz7hxeEicJB7kKdCRpqwco3HKeDrBKKjK0rvhnSPpJcx3vcZ1u81Ik5RBr896vWF/b58833J8fMzpySm7cw8qJ+Nxs+tJUBo26zVaxQzWKauVH1ij0ZDxcEjaSzBxTH84JF6tSHD0B363NhgN6CUx49HQd+zejMHjIYvlisGwz3gypChyQLU7sOFgQL/fw8YxvThpHkjNdrPFmIgsy5hPJ5wcH7PdbNGRB5FJEtNPE6yD6WTMwd5+OzC22y27O3Nsbcm2G+7fu8tyueTo2XMmkwnpJGV5ft6ys9t10QyWGZPJpGWsl8slODxQXa24ceMGaZo2D7tmZ2eHLMvI87wdyEmSMh5P6PX6fjOwXrfuCVxNHGn/meGgcZdAHV+4CV61dd25oVv6KiAkn5G/u+xqCHKucsNfBVLD17tsbNf93j1X2KarAG7Xrf0iAN0F6+HxXgTQQ5ZSJsCudWUH3ft+FfPZvd5uu4RRkL7pXoNcc7jhCO/fVf0Sti9srzAUcl5hAV712P07//P/GbPZDINtxqoiVgptFMaAUY0G0xiU0u141trzrK4BWW1fq4vNgFKKyjUeMq0xqgGNOmAStfdHKwVGwGpsMEY3fe9oIFQLrLT2zKZR/hejlAeVqnHHN+1EaXANI6i8BtREhjryIFQxQCuFokQDqtdDJz0ikxLpqAG/CudiIlsTVRVRkhCVCaYsiKqEmtKzpLaGqgJn/XeMwTpLVVbYosQVBVQ5dZnhat9HDg0YauvA1Wigdl636nC+Txrm2gNV1YJKr2P14FVb1YBdi3Wa2HiAWTsPUksLhYWyclR1Iy2wntE2xt+72nlZQQhQXSMNsNaD+88QVsUY0zKZWuvGu2hahk/c0lmWtYBImFZhXqfTaXs8cf8LI5ckCcfHx5RlyXg8bgGszMXC9osrejabsb+/T6/Xa4Gj/FuWfuM2HA4bmV3ZzgHClALs7u627RNwK+eQ4yml2Gw27bUJGBcJQXe9EfANF3OugFo5tkgpBEyGx0mS5NLcmCRJ2891XTdyxryd7zxGu7jG5XJJXdftJkFr3cQY5SyXS+bzecuWyvwo1yNySTm/YAK5P7IZiOOYnZ0dyrJkZ2fHzztVxXq9ptfrsbOz07LXcRz/qzOroRsuz3PG47EHRP0tJ0de4JvnOb1+j9HEaw6UUsRRjNGaUX9APp6wWi7Jsy15ltHv9ZhNpjhlSeKYLK8wxg/UbJs1oMoHHFW2piiLht7vNTfNcnCwz/nZKYNeyv7+LsfHZ5RlxVe+8mV6aUra80A5TWMi4yfh8/Nzbt26ydnZKXX9cau5jSOD0T7YaHc+5+njxwx6fZjNKfINu7u7HB4ecnjjBk+fHJH2Eg4OD/yuLll52ltrxsMBRilmkzFVVfvdRFUSGX/Dp9OJ32Gtl82k7TUlcXNtcRwzGo154403mEwmnJ2dcX5+znQ6pd/vszxfsjPf4Xxxymq5JEnidgAYY9jb26Pf7wEwmUxJ05T1et3qVARwbDb+mvb29iiKgsViwf7+fgu4RbS+2WxRyt+XqqpaTYw/jkaptNkRpThHu5MtiqJ1e3wWrAuI4DLgCV8L/73quyFz2WUJX8Smvui10KUdHl+AUwiwQjD8Mjf2y9p91esho9oFnd02S5tCGULo2r+KMb2KgQ2v6UXtDYHqixjQl1l4b0NX9VX3Lvy5amF5Fbazs+OlUq5uGE/t3cPay3+M1hhtLgCqanRn6mLz413VTf97CNse3+GPpbVpwGJ0mSHSCsyFVOuCWfXHUThwnk11gSbbGH881ZANKoqwKJQTSth40YKzOGebdvhgXR1pnIvRDPy1ugiNQ8eeUNDG+HZp76A3xrNLceOKrMqYskxwlV8jbOkRni0bZtVEYDwYtdZR1TV1UeBEBoBpArAUCk1dO2xdo50/baSsZ0wNuKbPa3cRbFU3gVCVw4NP5ahRjaveg0ylHBUiA1AUVpFbRW0tykKkwRpfR1SrZjugPIPq2VXVyg5cAGA/KyagUHBDXdecnp7y7NkziqJgNBqx3W7bucYYw3LpA4zF9S4uYwncmUwmLSMbRVGrx5TPJ0nSgjpxbwsYvYgD0Ze0pwJ+V6sV2+22ZfVCMkM0myItCKVHos2VjW1IXCwWi/bagBb49vv91m0urwuw626SZf4TsChtF5e9MLHhfJYkCefnnkAUplWYTHH5n5+ft2u5c67FAsLShsw30AJY0bRWVcVqtWrnVPmObD7k3ltrL7VPiDR57f79+8zn83Zz85MSBC8FqxKNJmJpGRhxHLNZbVqgVJQFm82mveEajdOGOIqItKbfS8E5jp8/5+jZUw+u9nfY2ZnTi2Ocg8Rohjtzpo08QGtNnCbtTkc12iG5GaPhkM2wT12W4FwD9obs7u4wnoypqhLnKgaDHs7B3v4uVVVSlDnz+ZyT0zPSJGazWoGtGfb7jEcjtusNCqiKgp2dHYbDIbu7u4xHQ/qDHjs7c5T2gua8KFAK4sgwm0zo97xkYj4fcnZ2SpZl7Ozssr+/i7U167WXGIQ7suFg2D4s9+7do9/vt7uXu3fvEscxp6enLBcLTk6ec35+2uyaNHGcNIMJsnzDeDJsF7Hnz5+3C1BZlty8ebPZvXjJxGq1Is99XzjnOD09bYGq16FExHHSujCcc5yfnwc7Zy4tllr32p1uXdete+VVWReIhuxeqLmUh78bFNb9fDgBhRYCnBe5m18GarufC1/rgjxpV9fFHbaxCwTDY3U/K5NOKAG4iiWWiU20YuPxmKOjI8BPiMPhsGUoBIB3A7Ok3V13fpdN7gLnbh+FbK+wqt1rDoO9usA17GsBWNKOz0pgYBIZr0tv+8O7131mFtAqBKvmor9DNjq4DOd8QKVzDpQPmFLGEEVxCy5pPP/KNEDWNIulNq3ES6vmHhmDBqIW3HnTxrSA1rdBeZBpVetO9zi3yQSDQqlGb6o1LjIoFaN1D1wErgITeeSm/PHQPrreX2ZMVVeN7MBLIGzcZH6wFgp/3SiH0v4z/rQKnKOqaqq8oC5rlDEeNGvTkL+a0nrJl3aOSFksisgqrGlkAigqq6mtorK2jdQvakA5tHVU1noga/x9dArK2rOrRfNTVUCjV40bEBqZRqOqvNbVdSUBDqzPI/ApjsR/MRNwFDKHw+GQ1157rdVpCvBSymcJyPOcNE0pS5/5ZrVacX5+zvPnz7l79y57e3ste5ckCQcHB21gleg+RTcqEfUy1wjTV5ZlO3cNBgOiKGpJmKqqEE2mAFR5nsQNL+yfAC8B0BJYKABaa83BwQHD4bBlH2VOkXUznLtDBlSkEwLsZA4LAWpd1633U4C0tHNnZ4c4jpnP58zn8/a8IikQj6gcJ9SgAy2gFgLs/Py8ncPDzA7heilMrlyPML5yXgGtksUhSZJ2AyLXKAFdwoa/zF4KViV6XKLXQrQsi0VZltS2ZrP1upSqrBgOhjjrePL4MeAYDfvNTRjR6w0pioyz0xPybO2BrXMMhkNu3blDb9AnimO0idDGgzjnHGmaUFUlxiivC0lTzs6PODjY48GDx3zw0UOWyxXG+MFbVYqzsxVJGjfsgE8p0ktTJpMJo0YuMBr2KcvKu8Oa3YLRBhOZljGMk5gojrC2pj/os9ksybIt69WKoihJkpjd3R1u3jokMtozupFhMOhT1xWRidlmW3Z25jx69IiqKqnKEhwUZcl47IOrhsMhkvpjPB5TliVPnz7lgw8+YL1csVmvsa5iuVygVMRs5mUYo1Gf+c6Mfr/Hdrvl6OgZadprMwlIygo/gPxkvtlsWr3IcrlkMBgwmUxaIG1MxGazJc9zFotF+zBNp1OGwwHb7aaNjgRNlnkWVzYTMlm9ausyc5/EHsLFzjYEVl1WMASS3SjOEHCFQKoLPMNzd8Hqi67jKvbyZdfbfS8EeaG+SSY/oI3slJ39YrHg+9//Ptb6zBaDwYBHjx6hlGJ3d5f5fM5YnqfRqJ30um3oAuEwxZS8FvZ9F7B3AX848XcDq8JJ/qo+k3sUHlsYhFfNrMaR8W50gkA0ZRoAScOsNq5/pTyjKkC1Aa2gfAS5kz5vrl0pVBThTISO4/aYYkpLX1xECRvTgFZ1EVwXpie7ZA2grVvar7l/WBw+VVNdlz4SH938GzxX2uBUglIGV6vG7X+h0VQ4f61ON5p8g440JjKeIY4MpjbUZaNhBLRJUEmCjhKcdSgTY7XxrvjSUlfevR87hVEGZQw449nXOsfVFU2iJYxy1Nanw7J4VlXAY11DXXvQWjdA3NhG0+ogMoDy7OjlICtFbb3O1TXXWtMkQdcNl+1co1ttGFYuGNvPikkGHpk3ZC4A/6znee5JniADkICm9XpNkiRsNhuOjo548OABURSxu7tLURQ8evSI4XDYBvqI+xpoXeWit5R/BUhKkFeoxZTxJqyiaDCljcL4yZzZ9SK1noTmGCLbk9dDgOmca8GY9IO462W+Cj1WYaCUXBfQgsBQGyzniKKIGzduMJ/P6fV6LZCU6xGwKlKGNE3bfnDOtcFRURS1gF02HSGZIVpeWUOEeRXgH7LNQl7IHB/Or9J3Snndazd+5Cp7KVjNsgxtDEWe0R8MSOLYay0bmjyOI68hqWrvqrA14Fiv1pRFibM+ArWcT+ilPeqqZL00bLMNdV2hlSIvcgaDIdPplDzfcv+N1xmOR1hbkWdVI6yPiIyi1xuyWm9Q2hDFcPfuHY6Pj5lMh/T7KSenp8x3dxmNB1RlTFFsKfKcQb/PoD+gKktOgdgY7t6+DQqmk0m7u8u2W24cHhAnCVm2JU1j+n0vP4ijmNl0yqDfZ7tdsVqt27QNt27e4K0vvtmkc/KBXbKzyvOcvMh8pKSJWCyWHB+fkTWsbD9NONjf4f5r94gijdGK+WxKVVU8efKI7WZDXRXEScTeYLfRnTiyzOcCdKLHsoq6cmgdMRiY1mWfJHHrGsnzDHBkedbkYc3J8oy9/V0m4wlZnrf6IudcC7ankwm1rZlNfW61x48fk+c5Ozs7nJ6ekWUZaZo2eddOGQyHVzKIr9Je5IIO7SowCRcAKgRgL2JPu8D2Kr2mvNdtW3i8kA3tvidA7Co29apzd4G17LbFDff8+XOWy2Wbc++9997jgw8++LGI1m984xtsNhsePnzIwcEBr732Gjdv3mxTtjx9+pSqqtpo3+51hsFZXUD4IlY4bHsI7OW+XMUCS9/IxNjVJHe1wnIs8NKnn0Q/9WlaEkV4gtKzfFqD5gKseoDqdZTeY+9Bqm2AIdp4bSheZ+mswzrro9y1wqjI61XjyLv3lfXsKj8ebNYGWOmr05CF487f35q6cgGKUlhnsc4HYlnbBMu6BqxyebPitMJhGrGBwymNVZq6gXEazyyD86yy8nIFpTU6jjBNMKk3hzMGk6aYpIeOU5wFVdU4k1ArQ2Ghrh3aAE6hTIyJYqDGlRWVqzx76xwOL8eoaoiNZ6E9MPcsZ+18LtXKefc+eFK4tI7KORKn20h/H2jlA67qJugK5bXGtpEAaEBbH/UPrtXF2qZ7rYPhaNQCtFdt4v4X4BK67KMo4vz8nCdPnrS6xV6v1zKuotkUplNc0SJx89lw1iyXSx9kvb/f6jCB1r0t5IswlAIwB4PBJT1oyOaCxzoyN0oAkgQvibzNB2Cv2swEQuJJ+51zrFarNlbEZ0uyrftcPJPyWldCIGuoZNQJA5fEwmwFXW+V6EYla4LMt9IO8Ayq5E8VsBsGYImbP8yOIO3J87ydHzebTRvgJZghXOvyPOf8/JwHDx4wmUxaBliAvcgTheX9SQiCl4JVrfzE6aylyHJ6vT69ZgeSJBEm8rv4osioakeSNCmoihVlWTY7B8uzo+doII21D2xKU2prqWsvHn/06Cnv/ugjjFbc+9FHfOkrX2J3b4/VetvkSbvFrRuHRFoxGY/9xFyVoCa8/vp9Hj54wMOHCbPZlOPj5wxHd9BakyYpz549BecwSrNeLCmLkvl8yt2791isFsRxRJomaO2j++e7M+raEkWa+WzGdO53h87hg7f6PT7e5E1EvGcKrK0YjQaYyJDlGWVtW41OluWkaUKWFRR5QW0t58s1RVFitGJ3PuXWzQMODvYYDkb00gSjFcvNitGgx+OPHzAeDdBGMxlPePToSaMVjTyroBVVVbNeb8nzkn6/x2g0aJlwAbRlWeCcRRtNknj9ymq1Ynd3l9FoRF4UbNYbtNYMh8M2mnC73ZBlGTcODxkOB5wcH9NLU27evNXojzIGgz5aG/Lc/57EPkXMZ8FChlNMJrAQtMhPuHDKZ0OA07XucV/Wjq6LOwSkV7G34WdedN5wsumykFdd2/HxMR988AF1XbfJux8+fEhRFHzve9/j4cOHLfuhtW5Z+bt37/LlL3+ZP/7jP6YsS77yla9w+/ZtkiTh2bNnrFYrnj59Sl3X7XdexgJ3ry+85pCp7gL2EKCH+VNf1P/hPe0yul2QK/fpVTOrUWwwyH1s2E78RlZrr33Uyms3tQBU5XWqNEC2ZVqtu0hvpBWKUFtKA9Ka86jGDd70Y8iESPDWVZsJuNA/O2s9sHQ1rgk+8mC5xtqa2tbUVdlCT0uTtsd6TahSdSDEbILfXMOqOuvZxyB9lLShfU6NQesIlEaZiCg1RL0BJu0TJalnOq3D5BmYFKtiH3BmFThNpBsGlhpnaqyuKV2NszWg0A4qPPiMnb8KyYfatKbpDyisd9KXylE6SK0j1g6tNLa5BtUA09q5oK+gNv4eR809x11oV2vnkPyr+/uHJMm7bLebn/o4/Be1p0+fMh6P0Vq3qaOcc9y8ebMFPsJASgS6PMPCgsp8Zq1t1yhxra9Wq0uaT/EErdfrFuSJVwhopWgSACQACTxoE5kjwPPnz1FKtZpNSZEl8iYBq5Ir9ejoCGMMh4eH7OzstHOWADeJ/xDgFmYxEIAeAmJjDP1+nyjygdiSr1XyuMq1CugDWk+mpJQUaUNZlqxWq0vMaegNlx85ljCn4v6XDYOwsHLfJEBLNL8CNAX89/t9+v1+y7au12vef/99bt261a41Wms2m02b3rLrxXyZvRSsDgaDNmKrri+idMsmYj+K4nai09pXbOr1ZxwfPSeK+yhgOp0SJz6xf6QdcRxRNXn6tDYsztc8PzlludoyGE8YL7b88N33OT9bYUzCnbu3KPOCo6Nnjbu8R5J4CjsyQ/b397l//x7Pnh7x+OFHRNqxXa9I4gicz8G2Wq2oipLNck2R5+zu7jEcT5nv7nB2doKkeBI2Yb321RqmsynT2RiHj/YTGn25XLC7t8dHDx62kfQoH4SWJAnbbNsA3ojBoN9ECtaMRiNOT89YLpaA16HN51O+8pUvcf+11+n1fM7T8/NTTk9PePz4cRM41cfh02qt1udNtKhp02OAz3AgecvS1FPxYX45nxpjS1n5ASdJlSXCEgdJIhuRpH29rmtmsxna+Ophw/G43bmKhnmxOKOqfJqM2WzGs2dHWPvqmdWQkQvdlvJwyCQZvhcCpUtBJ51jhv+Khe7lLkAKGauu5jQ8dvd83ffDc4dgO3Rpi4UumO12y/vvv8+7774L+CCezWbDyckJRVFw7969dkH4whe+wHe+8532WD//8z8P+Ht78+ZNXnvtNQ4PDzk+PuaLX/wiBwcHPHr0iHfffZcPP/yQ27dvt5HA3WCp8PrC/usC6+41dy1kaEPQGh4v7P8wqEM+EzITF8zgj7O+P2uLo7hJj2SbCHS/2faMqrtw/Ut/NTk4lWo0jGE/Nlp/lGqBqDbihhP5pkPc9dKfQOvSFBZX0dwzOYccGprz03h3Ki8HqGsPKJ310fl15X9sCU75ACUcVeUrQTmlMMoXn/FEo2tc3j6NlHaukQL4Z9Sn/rtopzE+q4BJHFHq9XkxEPX6RGnPFyZwilR5oiHdZmR5TlH5iH1XWXRZo3oRKk1QVqE8VUqx3fgof+UT9xvrSKwl0jQBZ9pXrcJS4qD2gVY1ngkvrWdk0whi7dlXn7GqCZ4CHI5KNAA4XyDAuWZD4gGqbRjWkF39rNijR4+4f/8+w+Gwfc4kSGc8Hrd5PIWxFzZY1lYJ0lXKB0Tnec7x8TG3bt1i2HjrJE/nYrFomTprLavV6tK4FfAqiepns9mlceKca5lMYT3lM8LCipRBGEigXTtPTk7o9XocHh6284noZ4W9FZe6uO5FDiDspADQUK8agvUwmCqUbMkcJSm4ROqwWCxaFnO5XLZSAnHx+9SjG87OzlgsFuzt7bVSh81mw2azaXPbSv8IWAdatlsqVkksy3Q6bTcpkmVBrlGwhART5XnOs2fP2oIHw+GQw8PDn2h8vZxZDQS2Wlvy3NPLskMRLVRdVaT9PrP5jPl8yo2DA1arVaBZcCTRLnVZsFou2osaDEfESZ/NNufpsxMP5E6fsXnzTc62FWWe8d6HP+Lzr7/GjRv7OFuTJlv6/QHxzq7vwDTl1o1Dbh7skhU156fPmU5HbIqMyBiG/R6bzaZxTZRk2ZaqKhkMe0RRSlH4VE4h0wawWfvyaKNxn7KybDZZC86KsiRJfM5RYxSv3X+Nfr/vB3C/z2QybXco3i1SM5/PWS1Xl8DQYNDn8MYBk8kIcJRVQVWXbWWrz3/+81hrvWZ1s+Txo0dkWU4Uef3udrtlOp1y48aNJteqafO5SZoI2T1Kmptwd1QUBaenpwyHQ78rK+sW2EqZOnEh9IdDirLk5OwM5eDJkyfMZjOeP39OkkQtU7deb8jzgtls9hMNwE/Tuju2q8CQPPihXvVFv4fHkX+7QEpAT/h+99+rGL1PYk/D9l8VpNRlVkMAdnZ2xo9+5EsyfuUrX+Hg4AClFE+ePOHtt9/m2bNnbLdb3nrrLW7evMlXv/pVHj161KZ2mc1mvPvuu1href311zk4OGCxWHB2dsbJyQn379/nV37lV3jy5An/5J/8E05PT5nP55e0VjL5dvs/7Ofu/QklEeF1hkD/RRsQ0VR1wX7oeguDtcL2/SQ5/z5NiyKDaoGIRQGRUi24FDZVh4BU3hNNmNZINysdpGtrwGrL8DcArP3RrtkMS97mBuA2wKkdy3gQ1oT3N5WufGCtMRGmrrHKl9N2zleLctb64CpXNxfnKwV69FV7AKY0ron4p8nbTKVAFY20QQOJP7fwsw0Aquuaylp0EhM3CyuASXvESYpKvBYWE2Gdr3iVZVuKoqSofIJTZxr/vvbyA4uhdobSaipX+wwFCiLlQWOMIsKA88n6VfM/3VTMra2jxlErDzRBYY1rday1bVz7NEUHfK+gGtGqL3Humk0FrVZVJMGSF/azYML0CeDysSMX0eeSnzNMVSTrkLCiAtzkPWH9JpMJg8HgkotZa90CTJlDoii6lHVgs9lcqpAkZUuFEVwuly0DLPOBtE0CsUI3f5IkrascaF31YX5SkRfIMybfhYvqU7IGhxpPCbaS14TwCL8famFFbiGSA3HJC2gXoLvdbtvgafneYrFgOp22xyrLktPT07YcrcyHRVG035PnTCQEwlYL4H369CkPHjxgPp83sS1e3hl6t+Qa5FqlsMNVhETXXgpWZYcigKuQpNLOi4AnkzGL86W/qKokyzYoJvT6KZPJuNWFVHXBerlgPt1jPptQ11VTh73HaDxmtdnw4OPHLDclpR5x88vfYP/Nn+PxRz/k4/fe4fztD7h9dMy9W3sc7O0w6KWsFgtGoxG1tRzs73Lv7i2K0nLjcK+JkXQUWUZZlYyGI1aLBSenJ5RVQV5kzUR+kZdNco49fvzY71i2G186rqpI0z6bdXaxO1SK0WjA3t4ei8WSwaDfDsD5bEavP7y0II/HI6Io4YP3P7wkdJ6MJxhjmgoOCbPZDnEcUZbFpcEwGAw4Pn6OQ9PrjVit1kSRYTwec3h4iDGK8/OzNg+auBpCNsnvcmJMNGndDCJVkIe2Kus2G4E8vL1ej8VyycnpGav1muViibOWtz7/JpvNBqW8Jmk8Hrcbmd3dPaLok1NRfJrWBUSyGelqFMO/u+7n0EUVpiKRz3cfsO4xwwlLgONVQPcqdjYEYFe5xbtANbzuEOyJW2w4HHLv3r02KfTu7i5vvPEG1lq+/e1vM5/P20wf3/ve9zg8PGSxWLT1oD/88MPWJSe1tQHOz8/byfBXfuVXODk5ab0U4TWHk9VVwDwEji9y+3evT84RBifI+bqbgvC43fN3JQKvOpOF0cazkc5DFy0Atcnz6cGQB4qSFYom8MhXdzKNDMB5AKUV2mq0kbyswqh69tZ/3bXFB/y4DVzr7XgMdMPW6zO7n48iyYNKC07B4ZSvvGf9l3G2iXNwYGuLrTxYtcpXmjLKR85rBdTeLanqGqUrDyoVOFt7KVndZBbAZ6LRSvvo/iTFaU3U6xP3euhIAnYtKlI+GCvuoeIeSpWIQNgByuEj8ZX26aicD4KqG92sVV7r6qRKAJKgX10Af/SFLEJ5lhhnL3Kmoqic9rlUJSDOehCrtEM50I27X6sGpOJLtVoa8PrJ3tOfmSVJ0laxEleyAD0BieIal3lVAqwEoDrno+wPDg7aQE1JKD+dTlksFmy32zY7iRwjTVPyPAcushIIswd+fsnzvG1HyKpeldc5jPAXEyYwyzJGo1GbVjKcjyTCXXS6cJGmSgLIhOmUPhDZhAR2yQYxJBxCb5AQThKoFa7z2+32UtEAydADF6nFZG2TeVn6UPpAWGm5b/KM53netj+sgCUM+Pe//30Wi0W7qejqhqVYlJxDZAkv8p517aVgVahapRRJmqC0oaxKxqMxNDTxbD4h7SckSdwicF+Ro8KYiLq29NMBRmnyLKPIfeBVHfgvVFP+01lNOruJufFl6slrTA8KZrMdqs2KcvWMt9/7mHff/RF/4Zt/jsnOLkpZ77p2Y167d5cnT56yXq1J+yPqylKVJUmc0Iti0iZtxmq55vCwSTlRFlhX0x/0SHsJi+U5ztWUVYExijiJcNaRJDFJGtHrpwwGfe7cvc3dO3c4Oz3nyePHDf0+bEuPJmnMauVB3XQ2RynN8bEHyqeLpXenDwfcvnWD1+7dZT7fJcsLQJNtN9y6eQuUIttuyfKtX4yUrwq1Xm8wxmsJd3d3m4HqH9C9vb12ULWLb+T7trY1w9GI7WZN3kzsvTTFWUdlS3pJik28nmrbCMj7vT7r9dpHFjpIkx7TyQScbUH9aDRiNptxenoCwK1bt4iimLOz008cfJ+mhQwn/Hikvzz8IRiSh14e4PDz4cQidhXAlQmgy9RLm0Iw2v07tKuYXDlGFwSH1yLvSdvquubk5KTVq1ZV1WpNf+/3fo/d3V1+9Vd/tQ1wODk54Z/+03/KN77xjSZg7qxNEp3nObdu3WqZC2Evzs/PGY/H3Lp1i//0P/1PefbsWcs8SP+EAU9d5rR7P+T6Qza6+/nwM6F1Qa2wrPJzFTvb7dtXHWBljMEXtAcPU6XY5kWqItswriIB8OaanwsACQT6V4NuovpdAzy9ztS1YNMHMPmk/tqTej6AKzB/H3yuVBAJSqObxksUWr2r88FdyjViUwGq1i+IdQNWfRR9E0KlHdY0JVubU1faoqxF1RZUhVWeqfXPGm12Ad0UH1AmQjeR/UnqK2CZKKZukv8rrdqALJN4plZrjdKRD/pqSqeWzlFY37a62R1oHHXzr62ASHTEzZyBSDVUe1c8A6rQzZSkmij/ugGuTepar03Fs63KtTi4GQsXcl4PVF3D1n42TNYemXskQNM512ooBdBWVXUJyEgkeZb5YGTJwykud8mzulwu22Coqqp4/vx5y64KaxkGeAroCjexm82m1Y1KqfAwil/mTQFjEsQVziFShUkY/XDeEqAsgDSsSCVzi8gdZH7KsuxSX8DF2hTOmcJ2CjsqwFO0snmet6RDyPLKcQSoi2RQpBchEA/XJjmm9OPp6Smnp6dtZiAhJiTIWhjVNE3JsoyDg4NLwWYyTuCiEpcc+5PspWBVdkfOOdJeD+ug1+watPJi4nv37nJyckJVVRwcHDRi57pJ4u8nsyRNieKYsrLo2lJXFZPJDK2gyiuyrCDPS5TSDPfukJkx4+2GcQRJ2sf2ItKDEevTfX74g3f4v/83/2/+3b/0b5DGhiKtGQxHzHf2SNOU5+crkjihynM/WTiLVo7xcERVltS1Z4kBjo6OOD4+5vbt215LW5X0+j2UVpyeFlR1RdFoTHzhgh5xEvH5z7/pWUqtiUzE0bOn3Lp12IrE67pmNp20btQ894zns6Mjnjx5QhTFDAd9DvZ2ibShrh2DwZAoilsdiK8KRpsfbjgYsrvTa8u+DYfjVlw9Gg19OqyqatMHScopvxPyuqFer0dVVpRFwaARcwvjpZQX81e1Z0Ikm4Bzkii4z+npGZvVkrIs2xJ6onO01jKbzRqN8AZjXm3JytC6wORFgOUqN7T822U024W+81r3eFe9H55LHuBwUrqKPbzq2OGxQjmDAENJk/Jnf/ZnKKV4+PAhX//61/nqV7/K97///Tbq9e7duwyHQzabTRvRv7+/D9BOXt/85jfbXbX861l902qmJBBCtE/hNcrEfBWr2pUHdMG5/BsC9VBiAD+eGSDUpnblBF3Q2z33qy63arShttXFtYmb/RIu8aDU/6o8Y6okJ2uTQUArn5AfmuICptGtQuVknPgAJhkvRjfFABoZgG4qU/kzyjPjcO5i4XbuonSjaGeVMijdJPKvbAtUJWGoX/g9iKhqR135fKROaa/TbdztnkVVl4CqgHLnLtKwXTxantn14EOhGoYpSRPfky4A5sbnXtVxQkxTcjaKgqCvus2fWiufpUApjW0kC559BWUdUaNlVY06QUEjxWjYMWETG5bVWL8TaNvd3GArzze+TKtuzqNQ7S33uL8Z00Bw8a/UBKDJplRc03mes1qtWk+rpE2Uz4buZik7Gub8fPr0aVtd6fT0tGVH67rm2bNnKKXY2dlpN9zCpsq5xMMkbRTXuoAquJjju8FHInmUtVK8jpJGSwBhWN/+Ks+aaFUlz6t8ztqLfKVhzlEBt8I0h/0kYFpy2xtjOD8/b88r5U2FVRUAGxIDIskINcRheVVpv1I+rVjeZAo6Oztr73eWZS3xMRgMmM/n7b3t9bz80md5yts+kLYnSdJ6quFyFckX2UtnZbmp/mbFjCdTv5jVNYN+j90GicdxzHq9bkuO1bVtUxslSUJe5JgoYX//wLvLqxJbl9i6Iupp0l6P2oFOUtLd26ikT5ofM+s1mZB1xHDQ42D/Bmp4yPl6zY+OHzCcnfHm/RFVmTPe2SXuJfTGM8CRpAlHZydeY3J8zHKxYrFY4RxsNmtOT89YrVYcHR21ugq5wfv7++2gkOhA51zrlpfdWBxH7OzsUNf+gZLFW9zj1lo26xVn50uOjp7z8MHHYCGJY/Z256RJBM3OyFfw2rYP6XA0bNjqiLOzM/b3D9pgMWt9SqrNZt1UirLs7u62O1lx9XrBd4rkPlRKkW99OTjR1MrupigKNtk20NM0OQmb3fJqtWmrc4QDfLlctmnMzs8XVJXP4SoRma/KQrcyXEwcwCWgIhY+LLIz7r4u35XXu6AnBETd4KwuSxh+JvxeFziF3+myv/JayFp2gdlqteLtt9+mLEu++c1v8hf/4l9sv3dwcEAURTx9+rRlMnq9HvP5nFu3bvHs2TOSJGE0GrG7u8uzZ884OTlhPp8zHA5bZl0YkCdPnrC3t9e2TQBQCMrDPuzeg6s2AwKIQiDfBZ0hiBWGJdwEyD0Nv9MFp13w/2qtcfgqH2SkVZNfVJBK8xnl/GtORSjtwaHvI7zOEZ+83r/m86UKoDRO+tvnoLbWNlKAC3ZS+txrXT2TJ658a/EVnhQ4balr1eb9bMe4Mji0Z2CtBVuBrS4CrRp3Y23tBVhFY2uLMo1nQvs0VkpbdOAyVEgASo11oZfiYtyhNKZhmC5YeB/OpDyqRkWaKE5QJmoAfQSu0Zo2OVOV9hIK5/DptJyirqvmXnh9qtJeJoHCs51KAuN8cQDt8BIAoFIXEgfX3u8OP+4u+vJik9D864Kx/xliVqWEpoAw2ciKrlLWGSFVwqDmwWDQBmYBbfCvzJFhbtY0TdvgYQnoEY+IrE0CdIVBDMGzuLeljVJCNSQgZM0Xt7ZoPgeDQSshEAbXOdfqYmXOCnXwcg5pg7Ch3c176MWTv+EigDDUA4urXube1WqF1prJZHJJ73qVF2o8Hl86rgBhAZ3yzIfaWfkRBlfSYTrnWuApv4t8UEriCjsd9n0cx23O3JBNfpl9IrMqN6iuPUqXCLLRcIBrRMIyiCQPmnMXOx0PxPwARilcXpDlBc5WaK0o6prVeuOpgLhHPJqQFzlJkqOKDGsN2qQksS+jWqs++3dvszd7i+zZ+5ytMvb3dtGxYaAcUVpRFhW2LhkM+2w3a8oyZ7lckOcFe3t7zOZzzhfnpGnKwcEBvV6vLU06GAzalBT9ft+XVW1KwskOpk3m2wysovSBSjdv3mSxWLQJ1SX902q14fj4OUZ7pivSEeNh36fkunUL3UQgOutdFOIOOTs7bTcB5+cLBv1BMwgt/cGAyXTCYNhDNUyCpLiQ4JfNZkN/0Gcw6Lc7uLgpUzgYDCiKgvPzc8Av0IMm7URVVezMd4CLiiKgOTw8bB/Up0+ftm7l/f39lkkVzZIwc6/SrgKA8Mm7uKsYvu4k0mVNr2JPQylAF0h2J5GuZOFFLGT3vHLO8BgCDp1znJyckGUZg8GAv/E3/kabI6+qKu7evcvR0RHW2rbi2XK5ZDQaYa3l7l3vNTk7O+P4+Jjvfe973Llzpx0HEognkaDvv/8+R0dHPHv2jOl0eond7AL17jVeBURDlrjbx13AGuq6rtqMdFleuSfSZ7JIhq+9KmsUiQ235gGrB6YBMGnKnTaOe5RqElk11J4SHWsA4k2rJfYEp5Z+VJq6ri7dn4vNnTCmnum0qkmR1bTU1V4OIHIE22xwXStbwOdYtTWurnD1BWCtG2+QXwitd+crA9pfLyaiwkANxoQbNHC2AhpGVfkSqmHbW7BqLpK3i59dhBQo5yt5JTGR8zIJh2hR/RXohoE1UVPitLbUyr9rnUNZi62Nv1NBIJRrAsQk4KpBmH78aUUr6Qj3H5fGQANKmyA0p5XvE9W89xkCqWJa63Z9EBZNqk+Fmv/u3wI0e71e64qfzWaXdKWiuxQwLHlOBdQK6JWoeglgkk010AIpAV1SWCAEZELGyPwmIEsAsACvME9qGFwVbpTFva2UakGgAGdpp4xVcd3LehBKuWSOCzfu8n3JZCRYTRhroNWtCsCXvh6NRpfiCqStQtLIsQSsCokhpKRsAsL5VFhZkR2IxOLo6IiiKC7N9QLcpTBBKLt7mb0UrEp0nTHGp1NpEHOapih89SXRdXhhcQ9rx5ydLdtBkOU5pbVMJlPvHt+ZM5mM2ayWVFWBy2ufANlEuLQPSrE6PyEb5SSmxER9jBlS147NZsXThw+5308YRyPi+R4/Ot/y8fqUL96eMIpAawOqRhvFaOSrZU0mYzabnJs3b9Hv97l37x7f/d73mO/usL+/3w7eOI7Z39/n5OSkLbM6HA45OztjOvXtf++99/hzf+4XfEqOhr63TV7V1WrVBixJv8znM7ZZhnNQVZYkiumlKdPpmOGgj61r5jtzX02qqpnPZ37h0QprvQan3+8zGo05ODhkZz5nu91wdPQM07gmlNKtPkbu2c2bN3HWst6s2Wbbtk1lUZBts3ZQTSYTAM7OzijKkvv377f57LTyO0GvCfIuicPDG0SRoWxY2X5/0KTQ8ox1luU+B695tQFWcNmt33Wvhy6R7k72KvDzIv1r6L6/ymRiDne24QQk1j13eA2iLQrfe5Fm9arrf+ONN/jiF7/IYDBoXWnT6bQNyAvz5pVlyTvvvMPh4SFf/epXWS6XrFarVqsk7i4JABTX1Gaz4fnz53z7299muVzyb//b/3bLOkh7u4A+/De8F122tHuf5Nq6TKzcs3DxCb/bDdYK2e6Q7Xjl1ddaWg2U80zgJQAuIkdJA9AAG3lPOQfWooxC62ZRi0yTg1Q3oKtuwGoT3FM5H6gUh5u1yxstq0J9tj+XtY1b36k2g4HWF8++D8qqsU0lKFfXuLrE2QpnK+qqoK4q6qqmsgp0hIpE4KBAWZT2ZUxVVTeg1OJs2QB2nyxWNYDVcwjNRtBclNPFes2rthblaqBCUxNrhY2aiDMVUVuH4wIUhF4WZ6F0Fa5qovGbgKuShrgQtrTdMDRZAcJb5JoiDZpG7vDjkhd/G5uqY9b6QgmNFODSvNFoikeTGVm2/Vcddf/KFqZLknsg0eiyfoZgDrgEEgVHhMVIpALTcrlsSRZJs5QkSZsnXECbADXxGoqn01rbVtgSeUCYlincvMpnJAm+eFel9Lhs6KV94sKX+UPGjABbyawTutdFfiBATtI7wQWgl/6By17ubj+GbZXjhhty2QSInlg+I0BaXPSyBglWCNdMAb0HBwct0BfcJJpUkQpImjHBJBJoJXNrmKFIAPpPEifwiTIA6Ziyqoibi9FKUVY5Dq/hsM5SVTllUZDEBqg5OXlOr9dnNt+hLCvyoiBJe/SSiEoX0O+TZY6sqHB1w2goRV5ahkBRV9SqwhiNimO0rijygvPj9+G1PVQV048jhpM9Hj4/p/d8w9duTYg1oHzi+yLLGeYFy+WK0WjI3t4cE8VooxkOB8TN4BedngzwUVAVRDSoVVVzfHzKyfEp2+2W58+fA35Qn56cYZShzCuMMsRRhFZNAFNloXL04pjNesXebMpr9+/xxbe+xGy+w87uLpPp2A8aW6KNIs98vtY4irl54yb9/oC8qlgsztlsNwz7fQ4O9qkaVroqK+IkYtAfYJ0l0pos25I3+eX20wPWmw3bzYZFUbYZCC6CrrbESUKSpJyenhFHEQq/qCVJinOK4XBEkqTUtZf037h5i4ODG2yzLavVmqosKWtL3ER8/iQ7pU/TumyqPJRXyQOuYkW7xxLrAqYu2xcydyE4vYpdfZnrv2vhLju08JqucnHHccznPve5ti615M41xnB0dMRisWA8HrcpWubzOXfv3uXtt9/mm9/8ZpvmJU1T/r1/799rCmRclEnc2dlhtVoBXg/27rvvsl6vef311/n85z//Y9fTlQB0WeHu3+E46gLWF90D2fF32dtuv4ffl368ipX9WZtrwar/8eynbfWM0ATeeAVk8D2LsxZbe+xl9AVzY8wFWAWvtexuDMLcwN3NHXTHprCCHox6ItdXnIJw4wHO1dS29KC0LHFViavq1vvtWdbKg01tfUQ/PnWUctbnN3VeGyqsrLKl/7JSaBO1wNq18oaON6Vhp8WN3vajVsRNEROnNKrJqtWyVsbgogtpQFVbD0aVxilfvaq0FmoD/v/N8ZV0WrulkHtb17W/Qq3aLYf0r4BUnAfCyqo2rM5fTsDUNn/duHmb588e/4sOs5+6CbAM0ySFLngBUwJ+ZLzJ70K0RFHEdrttj9l1VYs2Vby+AsYk+l9AkQAmoGV6ZVyKTlQCf7qbYqnYNJvNWm3qYrHg448/ZrFY8IUvfKH1VgohEW6+ZS6RggByXQIKJWWTAEP5fJheKmwvXDx/YXUwacN2u21BoOAYITqu8jgJIJf5QUCl5IkNPX7SR3Vdt9KHUF8sGFH0vXKPQrJTWHKlVHsOuYfApYINL7JPjCSQh9a5C7q31+9TlYr1eoXDP3zDQZ+tgu02ay8+zzMW52fMZjvY2k9OWVZQFRlJHDNJJtROKHbfmXllqXXMttaMlUVXBaouSOuabLuhLtZobSnLnF5s2BsOSQf7PHzvT7g9TLixN6ZWDqzBqdKzBs5H9O/t7xGnKdbW7OzMiWJfijTMD7dYLNpgpKOjI5RSTeRgyvOjY5yDo2fP+fjRo3biryq/s9rd2SHPM3ppynq1wgGR0iRxRJFlzGYj7t68wVe++mXmu7vcuHnIZDqlriqOnh8xn+1g6w39fowCIg3Fds2TRw8xiWe0yyLjZLsC54HIZDD0GrQ4wtWWPNtik5jZfIfN1ssfFssVzjXamV7Pl8gtS5T2Jdass03aqbKdJHZ2dlksfDDVfD7n+fPnrXsgSVMmkylZnrNaeTdP2utxcHhIZAyLJp3Rq7SQpQsf0K4LWV6Xv69yOYeAqfvd0Lq6zBeB3/C8XXBw1UIrnw3BrrCG4fuhSZvX6zVHR0fs7Ozwp3/6p/zwhz9sWdbnz58TRRGz2azNJLFarfhLf+kv8a1vfYvVasX+/n6rVf75n/95PvjgA549e9ZWWhkOfRaM09NTDg4O+Gt/7a/xJ3/yJ3zwwQccHBy0evDuNYdscLevZGIMr7t7T+TzXS1qCHK7DHX3WOHGRf4W996rNCeh4a7CWdFYdsaSXEfzEwJb1zCmvgKUXKsPntLGtPOSADtwuCjCll0pgPz7YvDunPVzu7XefW/iNtOAL7Pqg2x9eqoSWxbYovDloXXciGczXCMH8CVHfVCVVgZjvJa29jVNsa6iLHOUrRoApzCR5aLylmqBq7jenXPYum5Sf/lMAJGJiKKYOvbaU4WkoVJY51m6Oqpx8QXLWlvn01nhmuT83vtV1I7a1X4t0wpDDVpjlCPWilr7Agh1QIzL0NTaXZICtPcSz9A6HM4qbKNBDqHvZ00OICVABZgul0vgIlm+xGYIyyggT5i4kGFcLpctCyiJ+SV3u2yep9Npm5dVgJmAI3mWR6NRO0eFuV3hwvUduvPDlFLD4bCNu5FE/1mWtdcrr0kglICzULqktW7JAHHXwwVTGibsl74C2G63P7YOiFxANgVSslbkWyK9sta2/S1yAmF8QxlC+Lq0SaQR0gfSPukv2VxI2wTryfXIPRB5j8guxCSAS9JnChgWmcfL7KVgVahbpRTj8YTxZIK11lcwakT5ZVnibN0OxLqu6fd6GG1I04T1ZktZ5Nw+PKQ/HLLdbikL4yeRumwHsjaGurZsNxu2pWMTD+n1Nb1ehOpposhhtGZ3f4/Zzg7DcR9d1VA7dvtDqoN7vPfwfXbmA/r9gQdWZUXU5NbzKS367Q4uTVN6TXuFJZrP55yenvL48WNu3LhBHMccHx+zu7tLvzdo6/WuVitOjk+b3Kw9JpMxzvl0VEo7XOW1WX7nUxFHhnv3bjEYJMxnQwaDmDQxaOUo8gwF3Lpxg9Vyy2qxJE4NRZZRZCW2rikzH+C03mzJc59jbjjo0e+npEnCcDQmTno46xiOhqw3W7K8xJdojLDasVlnWFtTVWUbrVdbS1VXjMfjxkW8akumed2iawfRdDphNBoyHk/QxpDlJdXpaTtxyCA9evbMp9wKHupXYTJ5hK7h0B38Ite9PKSyawV+DGx1mdirgOVV7F2XweueN/z8VccP3dZXvR66sWSiOTk54U//9E85PT3l4cOH7e55f38f5xyHh4dNMQef5+/tt99mOBzyi7/4izx+/JjZbMZHH33EwcEBt2/f5h//43/MV77yFfb29vjoo4/Y29vzOvDZjDzPuXHjBsPhkLfffpuTk5O2sEQXpHavNQTu4YZA+ivss6v6tss6yyQsY6Db7+H9v4ptf6XmKv9jKw86JacRIdt58Tc07mKaXKjavyfcm9Y6yJXa8HJatQszuLaktnU/HrKjPOL1wFk1bKDzP20qKmpfDlVFDb3YvOd8QJJrpAdlWVIWGZUzEPugMB2lnliwJY4clTcBOk1Al2rSETjlg7WqqqIqc7A1SmuiqCIykidSKpo1z7sONjDNlRntmaE4jT1L26xFtZOiCE3qLePBfXtbaosxjeekZTg9a+uDUWmVxpruZlVAaStwuHi9eaW9l+qC/XX4nK7aNWx4B6J+luCq5N4UMCRuYplvhVkNmVLRlsoGHGhxRDgfhEBUUmCJdEk2mDIPhFHnwmKKl0nc7mEmHHn+5fMydwhrK/nDpa1hBS4BuPJsyVoYgtf5fN6yjXJ9Sl2k+QqlCLJWhbIC6SfpA5nj0zRlZ2fnx7xdcg/C63PuwtUvx5HsA3BRmUs2GvJ9ybwgnpdQWiVBZtIekXoIcBVgK/0hbQ43EyEL/En2UrAqKSAEbYcah/V6TZp6gXOeZaxXy1YfUeRFs5P2E8Fycc7Rs6fs7O4xmk4Zj0esl0s265K012O+s0NkjE9rla0oq4rcjHGmJjKOui6838vWfnIzsU9pRUWda3RZMZ3s8/6zB7z73gd87atfJE56DEeak+OjVixcFAWD4YW42MsZqpael2Ax2bFJkBhA1gQeeb3LlsePn3L//j0ObxzQ76fs7eywWi+ZTEZeZjDoc3Z2zqA/4M6dWwz6CYlxTKYDRoMe/V5KP+2Rl14o/vzoGdbCzs6M4+Pn/PCH7/Hxw0ckSY+8KKgdFGVF2ht7VtfAFz//OXYmmvX6GeeLc6IoZjqdMJlOGY+n9Ht9qrpCK8dkOmK1XLJe5+3EsNluqK1t016MR140LWXxJpNJ66LZbNZNUt/nrDcb8qIiz4sf2xnuHxxQNLumV2khMyfg7Sq35lW/w2UXaQiSQlAYvibHkEkqPNdVjGD3O93zdtnEqxjIrru2+15Zljx8+JAHDx7w9OlTyrLkq1/9Kmmast1uuXfvHrdu3WoTSY/HY87Pz3n8+DG//Mu/zG/91m+RZRnr9ZrZbMbBwUFb4leCJw4PDy8VhZhMJi2b+vz58yuvrdv28O8QWIYAtAtgu311FXMastGyCFzV591zvWoJi2ui5kOwqnzD8DBHgqrkvjcSAEfrFsc1NaCUwoqOUmmPeFRTfcqETKShqmrysvSMo3EY72X3LvSgP40xOGNQtQ9icg6vw7Q5Dp/bVNJkaZ2gTIKKYlzgiSrLrecI0yFpb0jtoKotVZHhnE9jiDJoU/piBvgE/R6M5BRFjrMWpTWxtdTGEpmo1eTGsXghrMf6TZooFYwf3eSdNUZTOwW1MNgW50ocdQP8NU2A/8V4FXaVJvrfOa8vdk1WXEGRL0CSDi7oVLrzjwSoNWDVOXymK4dC+/vJ1d6dV2nC5oWAS9ZUpbz7V1zKoSZTcIa4t4VdFdeyMJjitg7LiIYJ7+UYsr5J4Hcok5L3JbpewFcX9EohAqkEKUFVIbAK52SJaBe2M9wIS7/I8QXgSWrLMMhInjMJbgrd8cIISxou0XoqpZjNZu21yfwmYFCuSXStYaYAYUCdc22xBWG/5fpErxpeUxiMJQz1dDpluVy2lciECJTYhhCsS4D3T02zWtU1SZw0u9foQgTsHBqfJ284HJImCbb2CWO11pRlQbbJAEdZ1tROUdYWtGGTF+zszEnSlM1mTZoYplOvcaHIKNdnbJdnrIdDNrXFbDegK3qDBKU0/b7vxM22oNxWDJIxWF8c4Madz3H0wR/y8cePuXPnDkna5/DwJidGU1WWslxhjG7TPJRV3dLYWiv6/QE7OzsURcH+/j5xHBFFHtwWedkO8DiOfS7XsmI2m7BZLxutkd/Nuaoi7aWkaeKTTxvNdDrGVofs7u2gTcJwOGG9XqOMbhMdP3n6lNOTU374wx+xyQqS/oDcFqy3GbPdHQ4P5lR1j5vRLo8fP+N77xzTj04YDmrGo5goyijyjLOTY5I4YTye0Bv0G6mG391mWUZVVlR1TRzFrBfn7WA9OztrB1JV+brekoYqTeN25xSZiGTcJ4q84DzbbhlPPPNa5AV1w9a+SguZvC6LGjKQL7KXLQShOz48X/d7XXDcBb9dMCufuer11hVZX64EFQLVriv97OyMo6OjdtLf29tjPp9TFAWTyaR1TUVR1Fa3mk6nvP/++4zHY8bjcZuqRBJJHxwctC66nZ2ddocuC4JsDF977bVLrrDw2sPFo3sPukAxZE67r8uiFG4OrmK1ZXLt9pNMxuGi0L1nr8KsrVACWJ1t2TRlHWgDOJSr0crQhN00IMznsG4Sc6K0Bl35fxstKVpYZZA8qh7DK3r9PpvNugUTstiIu/bSxk8blI5ARzhVeL1pE/Aj3S+sbW3tpWMWReHTGeqYJBl60BglmDimLjOfOcBWPhCrLrG115TaJkagyDOKqvDFDFBQ17jI4oxnn1CgnUY5fcFKO1DONu1rniG518JYOh9kVtuauikT6+9Hk3pfXRT8aEFKkxVA7o/nvL2UAV7GeoZqVb8pkH67avxZ12QWUJIrIjjMZ8TC50yCoSQKHi7nPhaXP1zkMBXg1fWESBCPgGABSUVRXAI84ZgVJlNArbjNpZBJ6KoOg6HEVQ60+VO32+0lzaZgIdGNyjUJoBUmMnTBh3pNyTTQ6/Xa7EPhuJL+uepHCLOwTGnITgsYvooJDQO/RKYnrKyA6bD0bHgtcFEqVnTBQvLJ56PIVzsU4C0MtwDVsMSqZJyBnyzHKnwCWI2imMFo5N3qde1F8FWFwqI1bDceHE2nU3q9Hru7u5yentLrDykKP0CKsqKy0J9MQRvGwzGusqg4YjSasN1umEyGpGkPs9yglieUiycspntsRhFDLEY7alvhVEQUpVDXgGE8HDEd7IBOOCtLtBliJrf4s3ff5/bhHmYwYzgekWUbTn7wLtbWzGZTnK3RcUQUSx7TLf1+r90RaK2bHV7McNinqmrOzk7bHUS/3+PevVttaox+f8DZ+Rk3Dg8wSqPTHpEx7O7t0+8PMEZDmnLr7l16vRTrfOR8UZbEScrTo2N+/1vf5p+/8y5Rr890/yazm3foD8cMBjP2BzPQcCOJSHu7nOc505snbPOC8SDh7ORjnj5+D/IzYucn2n6vx/7eLpPxiOFg4KdPrdluFhgT00/79HopvV7M8fEpTinyrGhF08ZEWOva3WdZajabrNEAGfLcl9DdbrfcvHmTSCvKImfQ79NLE5bLV8usvoixlIf2qgUhBDxh5PiLWMCQkbuKpb3q9S4wDT8Pn8zqdVnaq/ScMlEdHR1hjOHOnTvs7+/z+uuvc+fOHUajEa+99hrz+bydJDebDTdu3OALX/gC3/72t8myjNdeew3nHA8fPmxdefJ9KQgR5g0UF5lopoRtvQoEXgVArwLx3X7v9mWoUe0C0u7vIeC3AYCSawtlI6/SnGhAG72qlF51ynpAFDWRug0r6pRGNdH4QAPifb5rXfs8prqufaJ/OYlSrZ7/ol999amwD67atDnn9Z0+xb1u0is1bmrnJQlWXQS5uRCsNj+Vtbi6JqrrJlOBZ1cqE1ELGKxrbF3i6gjnPGCry4Iq33r9Kw6UppbcqfjcphgwNsJa471xcnWuyRNrpfoWoOyF1lfa1oCOqqqpK1+R0TmoKxsssBeJ/i2AU759ttG++kSuDZD9CRDlCxlY+baifVqa/scJg/uKZSuNhVpNoN0ECjNXtv1atdrFEJR2s6YI4yZyHgn2vGqzLkSSRJsL0ypzhAAlAVIh4A1LpsqxBfDJZl1AmehPhR2VOU8pxXa7/bFMInJ+Ka4iQE+OL4yiBCS9aK4MpVACesP5X44pbHYYHC7XK4Fvcg9kzgwZWgHDXaAZgmW5H6If7q6nQg4JUG7lou5C0iXrh7wubPHL7KVgtWhqxltr/Q1KEpSzFEVGWRZY63eox8fHxHHMdrttWDl/c87Oz0nSFFdazs/OUNow7A8Zj0ZNChy/+9o/2GM2m7JabWF5TLJ+ynbzGm7yJgfjGRRL4jSm1gmfG8w4vHWDuDegZ2OiKCar4TwrKWqN6e3y3o9+yBuPn/G5ewNM0mO2s8fhzZs8efRxA6YHRFEMOKytSdOkqcJ1oaFJ04TVaslg0G9dGnt7B5ycnGCMaSQCvnSsX7B9tanhoM9sOmsHYBRFjMYj1uulB6rWkmVeA5NGEe/+8D2+9ac/onIpf/6/9yuY6QFL12c2nTIdzHn7gWI8nfHaXskof0hpFWk65ta4z9HximF/wGtf+RofPvgR2dGP+PC73+Ls+TnOnvDs6XPGox63bh6wu7tLkiQMB320johMRFn6Kl/T6YTNNiMyfiD7cmpxm9qjjSZuFnrJJasUzOczNps1vV6KVgrnLHme/USD79O20A0csmihuzh8X77T/bcLWF/EqIbH7U6o4ftd1/ZV4DZ0L70IOMixQ8mDfK+qKh4/foxSihs3bvD5z3+er3/96/T7/UtsxNnZGaPRqGUdvvCFL7C7u0tRFNy7d48HDx60KUkWiwW3bt1ib2+Po6MjfuM3foP33nuPv/AX/gJ//a//9TbKUzRlk8mkjRa9CoS/aMMQMt9hn4bMQ/h6mN6lu+HoMrDh/Zf3u8D1VZurLzSrNFpQ6zyQxIirUCpMGRwREgCrtMG7rRVOAJTkZ0ThjEZb3QTvhGPN523VRlN19ILdH2jGnpbj6Jbt0835HA5rK58yyiNYHBaLxRmFihKc0x50mqa0ahwTJQl14WVkPjuKwWqD0z4Xa1UU1EWGrUuvn20qXqFBOYMiggYIO1U3YC/YtKpA8uHqBvhdPGt1XbWLeV1XlFXtgXhTCKBls5yjbjIVCGjFNvpa5X9vA6dcyKGCIFPvyhfla6NBdiFudQEBGwZVNXOBFEP4qY6+f3kTMCLPXJgAXinVrgkS4S9zkFi4Wez+Dlxy/wOXNsgCguSz4lqX0q7ynbDYizCPciy5BgGD4VwgkgLRsYYMcZeUkPkmnJ8k/zhwCeTJvBQCefmctLH7/IWeQpn/w0AvWacFFAoo7q43YYYEcdeHLv9wzZc2h22T9VTApgBm6QPpb5F+OHcRwCVlcUV3/K8cYCU7hZAqjk2MapIfV5VfmCRR7EXj/WLQ7/cbcJdQ1k1t8qLi9fv3mU7HXrCvYTgYMJ1OODo6I9+sUcun2NUzHp/e42v7e+yMen633Buxb1JUkmBVD5s7qrpiuS5YbjOGaR9TTUgO3uTdj4+4sTNnON8nSXrMd/f44IMP0Eaz2W6Y7+231S8kaGo4HLXU92KxROsLwOmcp8x9YIplMhm3Ka+22y11E2S2XC7ppb024nEymaC03HhFkvSpa8tqteb5yZJ3nmxJX/s6N/ZusJsOWGaWnShiFjnS2JDrfUbxlHH6hJGuWKw3jHtTTK9H3Buw3VSUOmF46002RUYy3qV4/Iw4MgwGQw4Pd+n3UjbrFVWVNjtaODk7ZzqbkfZStImpraMovOZGtDrHx6csFos2CM4516btktxyUrni/Py8pf6dc+3O9rNgIYB5GbMZgsHuJCSLmewq5XsvcmlfxZp2Wb4uA3gVeAvBbRechhayEXJcqfpy69Yt5vM5u7u73Llzh/Pzc/I85+zsjNMmSO709JT5fM6dO3e4d+8ey+XSpz3b328nqePjY+7fv8/5+Tm//du/zcnJCXVd8+u//uu8/vrrvPXWW/zu7/4uN2/e5O7du8BFdGvYRgFP4bWHgXBdsBruyEO31ovua8jUhKAffryimZxLxu1nAbA6AaquRjICeBb1InjJ/21QyutGJTeA06pxbzebsNpSUjZgymJ0k75K6xasXmzAlPeoNGysaXSZDg/MrHWe6G10r0rhAaPW2CbRvXU0QUv+X9vkQ/Wf9wn2ozgBZbFNdSvbAG0jTI+CylbgFHXlUzx5Ta2lKHzArs+F6q/d6zkNxkDU5I5ytsLWCvCZbPxY8+mw/H2u8XKAJrbfXWTZEKBaVQ2YaYB/XQe6cdf0hfXBVa5heZuX2zCoEEz67noxtPQSghe/4pr/eHAdvOU+G3A1TJwv4FC0j0D7TApI6wbfhCZ/h/OBgF65R3LOkMENWUCJU3HOXcoYIIxqeHy4AGDyXQFhMhdJgFio+5S2CCgL+0CuQ9zukptV2i7BXmF+1TAuqPVMBPOjtCMkYKQNIouQ9gkmE5OcsHI+YVGlPcPhkMVicYkFDe+bAFY5r8goRD4BtJH9IasrsgkBxdb6IjQ3btxoscZVHpwfG18ve9NaHzU/HA6ZzWbszOe4uuL0NCeOI8B3lIh7PbNScXJy1Ha6H5glzkKvl/qoVecoy4rRaEBdF1S2ZDodk6Yxyo3YnJ6QDt7jw8Eub4++yDdu90lVic0rVKSb6s8x2sVsNjnZtsRVFTYq0TqGZMRx9pzF4pzBxFdiipOU2jl2d/dYLJZsNz64KMt8wuHxeMx8vtu6BfzC6G/kYDAEjlmv10wmE46ePWO8v9uKx4fDIWVVMplMvN4q2IFFUURZFbgmhUtV1Tx+/JSPP/6Yj89L3I2fo0z3qXsp6zwnTgbs9h0TfYpTp0R5H11EqOwp2m7oqQrNBu0UuVWUtkaXa6LelP7ha7j+hKoq6PcGDIY9bh4cMBqknJ2f+YFna9arFbaqOD8/w2wSojihqmvOzs+oyqoBp/02ulOqWp2cnLQAVcCqpDBK07RNtDxsyvC+ShNgA5eDbbomrqsXTZbh3yFoDCejEHh2Px++Hv4enrP7fnj88FjhBB5OaGLhcWTyHo1GjbejYrlctpN0URRMp1MmkwnvvPMOP/jBD/jSl77E1772Nd566y2ePn2KUr7yyu3bt9nd3W0zCfzmb/4mAG+++Sb/0X/0H/Hrv/7rTKdTdnZ2APhn/+yf8cu//Mstyxpqu7r91GWZw0lYrj1ka7rusfAnZK+7x3gZKx5q2MLvvSpzddkBrA6DAtOMXyXX1LgGGz2qB1E0Sek9kLJ17d3wzlJXGqPE9Wc8qNVSTrWpgqWM36TbmogYJQultRfgzF3Qf1ppVKNhlcAgVxfYyuJc5c/vahQNUI1iksRhItukgsJfo7pgvH10foWtARxGgVLGu+SLHFtmvrypcZ5NdRqjIY0joshQu4ZtF0lCU1hBKe2Lz8hzaeX59OeR16y12Mpiq9qn5UI37OoFcKitl1nY2l7E5zsH+iI4yr8kx7/qRjfnvSiB8OIx4Ro9rJJnXrX34FWPV7GQYROSR0qTS7+FUfyy+Rew1C1FGjKqzrnWdb5ardpALHlN5vGQIZXMASEgDeegLpsq80xYhEWpi8CkEBg7d5ETNcuy9tyiw4ULSZeANQGzYkVRtOC9e83AJR1riKcErMp9l3YJSJxOp+09kM+IFELwykVK0guvk4DRzWbTgt4uk+qrmV7IqKQ/8zynLMuWvBJgLN+TgCsB0U+fPm3lFFmW/avnWZWOD1kHkKg/1Xb4ZrNpwUu/32e93rBcraiqmjTtsVlviIzBAk+fPiVJYt5883PNTTf00h5vvHGfR4+fcnKasS022NPH1DvP+P7DPXbMhDcPUiJTE6kaSkORrckqTVHWOKdJsTx59DHWKRITcV44Hj15yt7+TZJej8lkShzFVHVN2hN9ao/SlG0kW6834PT0zBczmM1YrZZNbeAhWZ7jaEThSnF2dtYm2fb6lZQoMpSFZyWsc01gg2rcCn0U8Pz5CT945wc8fPSY+Re+QTXdR1UpVBVxGqP7IzZ2TR/Q5Zbzx4/opTF2viWvahQR/cTvMOml9HWFiyo2xlAQUytDVZcYA/PZhOFoQFXlaGMoi5LK1uSZ39EVVUW2WFKWNb3BgPOz8zYa0JgVx8fHJElKv+/rMI9GQzYbn3xY6H55AAQYPn/+nOfPn7fvvyoL3SWhy6Q7sV8FnuTz4W72KpAUfr/LxnVZ1/CzIWDtfkfO22Vhu0xsFzyH1xcCPtlMSKTnd7/7XRaLBcvlkjt37vDo0SN+4zd+g/Pzc37rt36LN954g7/xN/4Gd+/e5Q//8A+5ffs2N27caMsaHh0dcXp6yv7+Pr/zO7/DL/7iL7bZBZIk4Rd/8Rf5wz/8Q373d3+Xr33ta5fyCl4lkQj7OXy/CzRD67r85D6HLEQYiCafCfuvOx7CIIarGO6fpflsACVYz6ziwCrTYFWFL6tqPFBUwnLqptoVPqs9tkmp1MChSlE1uVaNUpg4RkcG4WS1kWpVCvTFYi0Ljtb6Eu0nTKzSIkmIA5bSB0hZW2NtiXU14NA6wkSWGIWua6+nRbUFCrw7vUmFVXm3P8pSaY0xMTiHEm0qvtBsFCniSJMmKb00JdIRWVFQ24rKVujmWrSyKB2kyGlKUIXAG8LxFjCo4o4P2FcbBlrhUJqmLzzD3ILfy4e/fJ9xeBmA8wz1lZ9snmnVfinof29pf8B0vsf56fOfbIB9iibPchgwFcfxj2kWBbjI8xbqJrsbVgFRAtaEgRQQCBf9EXpQwtRN4h2WDakcN9zkhkUL5DUBdWGFKZlHZJMLtIC2u8YIIzwej9uAJDlmOLcJCBVJQ3eeD9eQMA+0tFFkD9LP4g0TZlmOJ9+X+yCAVcCn9GnIwIb9Ju8JEA5lakJKCJuulLokv5D+CdOcyns/iX1CgFXUlgubzec4pYmjiNR6d4y1dRuAIx3sQWCf6XSOtVAulk05uIztakWW5bz3XsaTJ4/5+te/zq3bN5lOIl67e5MHd2/w9Mk/p5cMqDYb+tvnPDl7zh/pimKtefPunIGCbFGwWpXoKCFKeigdUVeWbe0YTyZsVgs+eHiCefKYt77wJZK0R5L2uXHjBk8ef0y/P6TfHzIepaS9HkrB2dk5ZbFivdowHIywrmY47LNcrnj69Dmr1ZbaKrZZTlnXTGcTyqqkKH2aqn6aYrRhOJ2xu78PCmpnvTbWKiJjWC1XvPODd3n7nT8jHk0p+gdsSk2qHTuTCbO055NqlzWxNZRZ4fswrxn3R5gyw2i/sDiniXWCc1u2zlAlY2pOWZ6dYWvF/v4ehzcPiHspLgenSmossdEksS9FWFQ1fZOwWR97YNobXHKd+qwJGWenS9JehHM1g8GA4bBPXfvBv1gsOD4+vjRJxLEhil59BSu47M7vgiS4YPKA9tqvOla4Mw9d893PdZPZd1m/sB3hv1exhN32dcFWCHa774l7J01TFosFWZYxHo/54z/+Y+q65q/8lb/Chx9+yD/8h/+w3RVba3n27Bn/4B/8A/7j//g/Zr1es1wuuXfvXqsP+9GPfkRZluzt7dHr9Xj8+DHPnz9vq6ccHBzw5ptv8p3vfIcbN24gSb/DibkLWuW1kEHtAvzuvQjBZ3hPw4n3qvsXvi7uyJBZ+Uknzk/TrC19EGmTEUA1rGpzpfi0VaJZ9SmeoNHKWQu29jGouoker2tcw6BaY6ijiEgrIvl+0Pc+ub7P4iIgVRZ+LC1Abr0VSmNMRG2sD4IV17qzPqLfeWYV/Lxl4giUz5CiK40SltI6bF1RlgVl4bOV1LWFSBMpMFHkA8SUwuioLaUaJxFRHDHoDxk0hEBZFti6pLKgVY21NVorTKzQTvSNPn2XVuKe15jIEDvoNaxpXQtI9a59zcXY8wv9BRvrUyE090SpBqADuCBHKj4YrQHBTsa6Ug0QDzbE/oa2QBYnDKwCp5u//Xd1FJGkr152JUyquIflOQx1jGFSegF6IQMpAEeA14tycFrrUz+JjjUEjzIPC6CS5zqKopZYkWCtcL0L2xRuYkNwKZsVuT7w84gwg8JyCsALQZ5ExAvLGLKkMqa6Js9fuIkOZQBhflkJ3hKgKOeUoCjpBwHuodZXJAHGmDZ1ZagHlrbI/XHOtcUSZC4IJYA+NidrGWHpJznerVu3Ws1yGOD20vH1sjdFtOtvYoyRjjOGOI5wzlwSEsuEPxgOKMqSosgbLUXVduxgOKDX8511enrKeDJmNptyeHjIa6+9xnvvPeD0fIVCcfbx+/SG+3y07LEtNaerH3F7luJcQr83xjjH1gFRyjOX8GERc2O75fzkGUePn9PXx6yX54zGE0xk2JnPefToYQsoiqKgP+y39YtXy7XPG5vnGKM5Pj6l1xuQZwXWubbG8XK5ZG93jnM+3+xkPGIym7I4XzCe+nO1A63ypeFsWfHgwcf88R//CQ+fHPHa115nY0YYHbPXTzgY9uklKZVVuGjASE8w45r7b+5Qqh5OwWgyxiioaoO1fVRtUP2UrU3Z1hWr5TGr50ekScJoPCZNfQlVYyLK0lIUNWVZE8VN6oz+EJRiuVwxGSvPcjQPWZblTU1lRZr0qK0hyzyrut1mTCbehSz3VQZjWRatzvmzYiGTFgLIUDsp74dgqcu4hpNJuGC3zBM/rnUNgVk3iCu0kF0MAXGXTQ11VS9jieUzomPKsox3332XJ0+e8Lf+1t/i3/q3/i2yLOPP/uzPePDgAUdHR22KFpEFzGYzzs/PuXPnTps/8OTkhPfee48//+f/PL/0S7/EYrGgqir29/c5PT1lOBzyuc99ju985zv8zu/8Dl/96levDEgIr+Oqtnf7pctmd+UPIeAMAWj3e11GNjxvNxr5VZmr6yYjQN2CGK3xiEeYVbz7XSuDUxrTROI45yPVcQ5be4a1KssG1GhsFGMUuNqgDBgUhgsPkBKWth1rF5VrcBCZCGMifzblXfvGRmjt3e0CTKVogC8X6mUGTnnQSKT960r7AirOa1tdlVMXhfcAlRU6TugPxgyGI3q9AUZ7EFCUJbb2GWniyFfM0sYXGEgiQ7+uKKqCcptTOp8GzGrl03aZxpWrFMSGulRYDc40z22zEUB513/mfLAXzqK1z80dxzF1VWMbHeuFe9Yz18o5nL0o/XrRH21IW8CiKnC+32ni/aWcgwu2J07+DeYEYaRftSdALHwGJZiq60oWhlQqLwnYCb8v82mYAD/MxymSMwGC4dwS1rSXDAHhXCMMapgTNmRlw7lFsE2osw37O2RoQ+2tzDGyyQsBm1xndz0R6zLDXQa2O3d22xKmzRIJlgBs8QKL5CkMclNKtYUPwn4Kr1+0/SHrKsFXYX5aqUgm+mFhpYUh11q3+brhMpnwMnspWJUBE2rA/INoKcsKuBDebrdb1uu1R+XGp3w6X5yBok3xVNc1aa/fCoDPzs4YDPs451Pd3L19i9fu3eL0u3+Ks5r87Ij8/e9i76Vku6+R1zlZvWa/X5BXCktOPByzqVZ8kEUsSegvlxw/fUS9PKPsWc7Pzjm4dQdjYkbjUeM2uKj9a2LTCJ0Nw9EIW/sKXZPJmO0mYzYb4FzBarliOBpirW2kDisGgwGTyQTwmRNMEtEfDnzUbjNwtps1tqo4O1vwe7//bd59733i4Zit7oNNOej1mUaQ1CWJSj0bYSLysmaYOHYPdnm+iKidF/DPdnZYrirWK+8u1JEmK2LWmw2Lpw/Izk6Y9nzpV6ONT1sTRYynM/rDCXmWszg/BwPHp2dsNj61kIliIn05QtpnTFDkRc42q0iSmLKsOD4+YTQasbe311a/CseBPByv0q5yHXfBi1xnF8zI710w2p1Uw2PDhXC+C3i6E1X4WjjBdd018rkuA/mi9+R4IRiTEoFKKR48eIC1ttUi7+3t8Vf/6l/lt37rt4DL2qejoyO+9KUv8eDBA6IoYn9/vw0Q+O53v8tf/st/md3dXX7zN3+TL33pS5yenvLBBx/wxhtvMJ/PuX//Psvlsk3xchUY7TKk3Z/werrAsrvbD/s6BKRXAdzuvQvHQNi+V2W28kBVWXvhYg7Y1JZdReNcA20atk45wHrNp89v6oOF0Bpnjf9+bSCIZLd4bafTPkBIKfwGt/IAzZaWrNygjSFJe8TSV1qhiDAO4gQoHJVzWOUj8T3z63AupsG6DfC2WAtK+xRXDl/dSjvv5kcJKND0eyNGkzn9/oA4SkF5kiHPcjRgjMZSY0yEiWJMrIhK7XWurskKYEufJQCLVKcyxqAKi1agtULVzrOsxhdcsKlPVVWVNZV1l9JGGaWIo4jaOuraZ2KI44g4NijwTC6q2TSE/vsXjyvp9+CVSxrWKwFpg2D9eH31ulXZ7ArbKUBFgI9YCN6686yYMKRtXvOgspKAn1Cn2l1zQtZSXpd5SNzQoq+Vz8sxu96tUE8aemi6jGxRXBTJCS1kd7sVnAT4hfObvBcSQeG1dRlWoE1JJWVlpf+FxXXOXSozKy57Oaf0YcjUtt4TfVHxS9huaWPIaAuTG+a6lSpdwrbKJkL6Wtrf7bOr7KWfkAOHg89oQ16VjW6kbKPhJfpru92iTNGkrhn5hPdF2YqJnz592jI+aZpyenbCvXv3eOP1N4ijmK//ws9hneNPvvsOuJrsyftQGwZpymLnBh+ZiE2RM6+gHytWJ2ess5zh9ACqjPXRE04//JD8+CPOBo7tZuuTR2svzPY7Y09fb7OMylbMZjOUUmzWW9bFhuPj4yYqfkCapKzX27b07JMnTxiPR2w2G+bzGb1ej6quUUYzG8+J4ph+2rtYbOua7XrL99/+Ad//wbuss5z9nX0G4xm1jogNmLqgLr1LKo0M26qispo8z1gsl2TFhDjtkaQli/MlWZlgXYojwyQRLppQPl9z+sF7VMWW/Xv3uXHjJuNRH+ssRVFRlrUH1HGCVZpnx8dsN5tGEA1J6gdWmMKirhes11u2Wx9Ql2U5ee53akVRtPWIDw8P24nFP0iKLPvkVBSfpoU7z+5ONASFcAFaQ1E98GMTU7iLDSe0LgAO/+0CrS6LK9bdPQu4CoFs97NXscDhpCoa8izLePr0KU+ePOFzn/sczjk2mw0Ab731Fj/84Q+ZTCZMJhO+853vNFXaNty5c6fdaM7n8yZjxpA33nijDbLa29vjm9/8Jr//+79PFEW89dZbTCYTvv71r3N2dgZwyZXUvdYQWMo1h2A77O8uiL0K1If9cNUC373vXYYidO+9KqtrD1SV81lXhFG9bB32v8Er/pMNaK19oJBP42RxkS+XGikDylLiNZ0oLxMwutEbVk1/W0tZWao8Y3l+TJwkTGa7DWC+6OMojlu3tcNinY/kd1bhlE+n1dR18iFY1ssTUK4JlGo2LVykL0JpJtM5s509JvMd0nRAZGKcgjLP2cRb6qpAK7CubrIc+PNorYi0xmjtgXqjrY3jHr3eiDjy7lLtFGVSYq3zOcTxcQZtlgULRZ63QcF1XaNwRJHX6Krm+mtriSNfCetiAW6CoD4BpDZ38oXBVS9iTZ1zP8GRf7YmbJ0E4AojGmpTxd0sG2O4vGEMwVEI5kJAF84PUoREdKzyTISFAuAiNZW0UVhbuNCBhmmb5DwSJCqBYN25I5R9yeeFNQ6BmbRXgsuuKgIg1xjOZcKwhmm2rvLaCUYLZQhy/hCQdtc6+VySJAwGgzaFlPSTgEpZU0RqAFxKNyUbgM1m024C5F7KdQuRJYG6ksGgSxa8yF4uA2hSKyRpShwnaG2IjCYajkiSiM12w2a9Is9zVssVkYlIk5QyL8i3W3CW4aAPTrFaLcizjMlkxPHzY/K8IM8LDm/eII5TFqsVtq7p93vcf+0uT5485+HjpyRVQXn0AadlQfq5X6S6/RabZETptvTOzkmwpL2U8vSYzXLF6cMf8eiHP+Do6TtM3rhNHCe+Iknts1b7QLCIui4p8pznx0dtBJtzrgVqz58/5+DwgNVmzfni3LOpm7UPEItjBoMhZ6fn9Ad91qsVdWWZzeYYExElMTh/M1frDU+ePuX73/8By9UWh6YsCkwUk+UZ280KM+p5eUSaQm2p6oo46REpx43DPjfjKTcOC9zmGc9PlmgTE0UQx4ZV5TitLKvjp5x99B79JOKLX3yT+WxKv5/6LAjWUVeW58+POT49o6hrZvMdbt+5i9bqovaxs/R7PZIkxeFI0pTy4ydst9mlSkbGaKLIVxRbrTZU1aP2IfQPffqZSF3VfQCucqV3QdTLjtVl/sLJ4ipGNpxwrjpHF7CGx+6C16vYX5lIwlx8MulJ6pXz83OePXvG8fExg8GA6XTKxx9/TBzHzOdzbt68yRe/+EX+4A/+gGfPnvHkyROGwyFPnjxhu92SpmlbyUVcb3/zb/5Nfv7nf54nT56QJAkPHz4E4NatWxweHpLnOa+//jrvv/9+C4qFJeiC9asAfLdPwmvvWsi8huC+e8+uup9dOUC4WL5KqyqLdtan3FdglddQGgGf2lcPVLrCidvahQxyE+le21ZS4PGu8YFBdY22vuiAq2qsUtSaNoera0CyrWvKPGN9dsLy/JTRdOfSeBZWSSmfc9UYja6bDaIETinlJQY6aipIybNgWwyujcHECXHaJ05zorIiSiN2dveYzOYMR1PSXs9LHlyjLVeKfBuUVdaRB5jKB3IlUUI/sbjagjHoJKbfHzLoj9C60fjaijhOfKquqvTVvwATGS91aEBPWZZNGiyFT3UbEccQRU0QSVlxkaFBXPog2QOav9r7e7HBcC3b3KB9rtqUXP5L/gfBrPISuPuzM6lKFG6wQwZOXOld3Xh3E9oFcOHzH4I2eWaFVQzfFz1qCErDc4ceGAFXAkgFqDnnmgI5l4OQumARLqQA4XshYBR3vKw5ou+UNocucmmf6D7lmpRSl4B/6PELg6G619gF7dIOcelLYJmA9TATgHxO2hvOkZI/Vf6WPu/qVAEkeEs+G/a19Pcn2cuzAcQRCkjipHEBKoqiRClHXlY45/VNzjqiRk90enyKa1wBJjHNRFBw6+YhZVlydr4gOjxgcb7k9GzB29//AWVp+Xf+nb/IfDYhzzKq2vFzX91S1xUfPfwY4wr02ccsv3NG8exD6huvUxjNsMrpm5hlXrCqLJvzBU9/8F2Wz37IYORIYl8Zpa4rytKnoLK1Y7lcUBQ1oFqx8fHxMVlWcHh4g8PDQx4/fuxZqTwnTWOy3Bc8ODw8pLaW7WbL2dk5cZxw88YtjI58neok9cFHQJblnJ0tePe9D/jwwSOKwssnirzEGc14OmW8e0hial9TfTxBO8t8MkbplEivqDc1zj2nXB2xOT8j0glxkmBii1UxKzdgscw5//D71MtnvHbrgM+9+Rr9oQeLm23uI2mBtNdj/+CA2XzOer3m/Pyc9WbDZrOlqkqiJjVOnEQN6NxnOBjw6NETTk5OyfOieQghz8o2WXyc+F2VSD201hwcHHzi4Ps07UVMnvzdfT2cZLouqXDiDcGTWMu6dJi+LiC7Cgx3v/NJ5wuvq8sShhOELLTCqCqleOONN9jZ2eHp06fUdc1o5D0fX/ziFxkOh3z729/mP/lP/hM+/vhj/rv/7r/jnXfeoSgKvvSlL1GWJQ8ePKCqKj7++GN+4Rd+gadPn/Lw4UPu3LnDN77xDW7fvs1oNPLP+dkZ7777LtPplMFgcIkdDq83BPnymriEusx1l2Hu3oPu7+HGJGQxrvpceI9+konz0zRra3yqpSbu3QHo9sc50UM2YLSJjrcCUG0D0qz8XmEVaAU0pUyxvkqWrSusck3Mjmmfb3DYKme7POP82UOfpmkyo3YW1Qki9BrQxr2um1RW/hOgPLuqlcZZn2bLKketPKiuLYDBpDH9KIEkIeqPMcow29ljNJ4wGPgKh16Ta8HVlGVOoVWTIqtRdyoNymGihChJSax/va5rksGA0XDEoJ/ibANqtCGJE3B+jcqyDGtrTHSRAslnutjgsCjlZRG+DHeEL0ntyBtJRTi6WnDjmn7vmuv8oZSXcTSg1SGiX2HVL3SuFqjlEM7LGD4L5uMZtq3rN5RHCeMn60M4v8qzKe/J5jt05QuL55y7lJJJnlkBT+Hxwmc63NRLgJWALWF6xU0ueltha8PUWgK+gZYQkHsdBmJ13dxtYY6Ot08snO/DXKuyxjp3EdAUZizoAtcuWIcLD3kohQv7LpQFXEWmhJ8XplnuZ9d9L8eSex8G6cs1dLXCIqH4JHspWE2ThM024/jkhN39A4bDAa5SFHnW3JgUcOzs7HB8dMTZ+Zl/rJrUKVXm86kaHXF6euYF+jrCGsfOzpw4TjhfLnn08AF/8sd/xFtvvcV4PGI8HjGbTfjCm6+jNDx6/JTteskgKqgffI/Tx+9ynKQkOsXplLO8ZpOXmDwnP/qYWFmSJjCs3++16aakri1KMxqlrFZrdnZ2mk5MyXOvj9nd3SXLM6z1g8VEhuMnT5lOp2RZxmw6ZbvZoJTyyW0PD+j10jb4IMsy4siLu4+Oj/nggwfkRYEFoiilrCyL9ZohhiIesSiWnC6X7E5nGFdjnEMZhcExTzLWyxVZfk4c9YAUbSwKzdYOOa4TticPOXr3T5j0Y7781a+yv7/vH7SypDfuAbpdhD766AHL5ZLT01Ocs2R5xt7eLs7BarXE4Vq9idaG0XDMdpuz3W4bl0vE2dmC1WZNXfsHJNtmrXtHcqd1y879rK0L8MIH9UVu9atYv5eB3qusy8rJd7ounKvYwvC1q9oSWsgohqAu1FX50rhD7t27R7/f93mAnWMymXgJzulpW9DjzTff5K/9tb+Gc453332Xs7Mzfu/3fo+DgwPu3r3LauVTmZ2dnVFVFX/0R3/Ew4cPGQ6H3Lhxgxs3bjAYDOj3+zx48IB//s//OVprxuPxj7nkw81A1wXUZTbDCT5Mo9Ttx5fZi5jVsO/Cz74IEP+szEqNeQVOKxxSlUoAawNWLTjlncHO+VgC1zCmPj+rMJm+pKitQdUaXUdY64OarAVbO9Slkp0eFFZFweb8lNXzI5Lh0FeTqh22gUpOXQAl5Zpk+LLANe30UfJNnzbg2ymHcz5K31Y1SkGUJCRJj6Q3YjSyGKUZT2b0e4NLpTnrCiKjMdqnfPJpsvyaY50FFaFNiokrdFmRJh7m9Ucj+v0hSRxTVaW/ZuWzDMTuIipcEv9f6PBin5KwLFHKZzSIoiYwxURUdU1ZlU3FrYYpc3idqw35zgZsOn0pYKp93/lSsQJLQzSrVDiGr/YufBYsZNwFdIk7v/tMS/nTMIl+ON925zY5bpgTNDxm14UugC9MkRVKDcJgrzC/spwDLpjYkH0M1w4BgcI8dlnjMMAqzJgUpqcSRjKUOAiwFbApYDUEhnLO8DW5rqvWBYkdkH4JiREB7LJBEFlFKMGQ48s5QxIhlBWETLgc3zkvOwtlCqHcS6qffpK9XLOqNdPZjF7aY7NZg7NEzSQRJ75cKc6L+bfDPtbVPHr0iMgYsjzj6dFJCwCtdWTZFltbqrJgPp+zvzdjOp3gcCwX57zzzjvs7OxweHjI/fv3GA769HoJw36P997/kOVijS4zoniNLiPyQlOphKiuGdsaawt0f4u2lrIqG/dA2Qw8y3abAdq7Q2cT5jtzULpN6nvj8JCnT56Qpilp2sPhWv3ebDZlsVi2EdLbzYbd3R2SJGGzWbOzM0PrCK08QC6a/KOr9ZbTswWbLKe2lihOqKuK1fkp9WLFsn5Msj9mW9Sstlt2RwnKGNZZzXa7ZnF+6l0dJkKpPnE6pqoz8lpznCvOF2d89O3fZvXwz/ja5+/z5S9/ybMRwwFYKMuKJ0+ecn5+DsDuzpxsu6GXxJhIM52M2sh9Y3SbN9enM6pI4oQbN26Q5znrRvKRJBF1JelILFHcp66r9oHq9/uXkiO/CgsnPfhxkCjWBbBdljNk3cK/4WpQGb4uD3TompG2ddnbsD1X/S7H7b4XXl842UsaEl9xzXH//n02mw3r9ZrhcNgGxZ2cnHB0dNSyrUopHj58yGg04smTJ+0OXZJFV1XFG2+8Qb/f5wtf+AIffvhhu6M3xvDkyRP+6I/+iOfPn7O/v9/k7L06cCG8pvBaw+sI2eOQSbiq31/0mXCh6t7b8D6EurZXaa621DhQBoXySf+dwVdjakCqVT7avykpqhytttKzj8EPTT/bCltrDxLrCld5d7oFtNO+VGgTsGVtRb5ZcP70Kfk2BxMRmRhbV1TWM4xOOcqSBnlpnycVD8C0koyoAmIvKjtZ6ytreUmCLykbRQmRSYnTAVoZlIJeb9BI0OLWnVtXviKWwqFUjcLiy8paKmuJnMLoGBUloLdEkUZHCcPhhF6vj1aauvKlwpWCOIpwNkJr5Qsg1CW1q0m0D2Hzi6uvomWM9kFlUYyOEnCOKKkhL3C2lGKyDYBtMjnI2GwQqrqI679y7Iu9aIPqGfXLkNV/7rMBWOU+heBFAnPCkp+hDlNApYAZqZYoz2yYjkpYWwFfcCExkh/RQUomFAGbcj5xQYdyKnlPwGo4d4RzkDC44bEkWFuK50hbBQRLuixZZzy+uChm0NXjhkREGOAeki5CvIVAUtossgY5phxf+k9AunxPmGQ5tjDOQkCFLKls6sJ8seHcGqYp666tAorDtetFHscrx9bL3hR3CYh7TGPrkjzPiKukiQ4v2WZbnLOMx0N2d3fIt1uUMkwnU46en3B8fILWDUJ3Huj2+ynT6ZhnR6demLvNePDgIZvNln6/R7+fcrC3w2Q8xDmLjhQfffiQp4+fsclEWzoicgW6XGOt1xzVde6T8TuYz3Z8reuqoihrjo+fk20zen2vr+wPBpydLdhsNpycnPDavfsXqTXSFNd0vtf7jdjd3WU+n7PdbpnPfdWu+XxOWRZk2Za59nW1o8gPjPV6w9Mnzzg5W1CUPnfgbGfGZrWiXC3Y0RY96LMsSvR4wNHpOWk8oc4rzhYLXJZRFhVRv4dRPazqAzGlKzjdOB4vzzn54E85+tM/YNKLuHvnjgeKaZ/t1pfTLHKfCqbX65HnGSenJzw/OkJpRdob4mzNarXEOkeWF4xGI+bzeZseZLPeNjk6hyRJ1GZOqMpVq2lMkhi4ADWvWvMHP85ohsAxfFBD3eJV4DHcqQoADSePUC/adR93QVTI5nXtk9zb4Q5WjiPt6AJj2ZWLDuns7IyzszN6vV5boW04HBJFEW+88Qa9Xo933nmH58+fM51OmwIZPR49esTJyQlZlvH+++9zfHzMrVu3WgB6+/Zt+v0+0+mUJ0+e8PTpU3Z2dnjjjTe4c+cOWvsUJavVqp2sw135Vf3U7a/wHnV38vJal+0INwvh98Lfu3//pNrln4VJXyntsFaYNdViT+tos7I0UNRjFefAWpT1f6sm4MpJkk/lWtZVNXlQrVWo2ussna3bcq3W1qyXS46ePPFMZuWlCXVV+Pygjbu/chblQGsfba8aSAqA8kGjTvmsA9LOFlRbn4/V1o6qLHB9SxzFRImvIJjGiQ9c0sKa0QDKqinpakkiQ0WT1aCusdZhYtNU1PIytSTp0e+PiOIYV1f+Om3l8wM0BINyumVq66rygDh4zrRWmMig0D5uIzI4lA9abdi1C2bMM2nS//4ONcSOe7GO+v/L3Js8SZKc2Z0/VbXV11gyMiJyqcqsvQpoDEAADelmizTn0NI8cTnxMNcR/hv8O+YylxmROYzwRo7MsGU402RTyEYvILrQaCyFKmTlEpmx+mpum6rOQU0tNBxRVaCMoBNakhUR7ubmZmpmqk/f9773we3j1Pa9LYS/rg68AuzeOebq7FWXUPZ6ml/khZnrnrTw7GIIBv2z13b2jlJKhsPhjVKnfiwLn30fiq/rug9Lw013ES8VcNKOa82qr3wF3PAI9UwiXEd7fHZ7CNBCAO3nAj8O38YGb0eRQmY4SZK+0qPvl9CuChxA9PKK7T7w5xm6Ffjz8oytP++maXpAHUaqPIj3xyqEuMH0elAfvu6/w9prhwEPereJn5Cx9f/8fv25esD+Ve0rKlilGGudUqoP+bgkq/VqwcoYt/oUijwf0NQNu7t7yH3JYrZgOJownU45v7igql24BOuSBtZlSdwBx+VigZDOXP/8/IyqKrl375i3Hz9mPI55+/FDJpOM3dGQv5OKpy9est4UrDcVkXKZnm6gsGRJRpIPMFiUjGiqmrosKMuKxWJOqzVlWZFm7kZZF2VffeJqdsXuzg4Xl5dEsbtBrLHsTHZYLJfs7e7S1rUDxd3Ddn5+wd7elHw4hC7bVbeGalOymC14+uyEYlPRtpokTXn44AGf/PzniGJBe/mcZHrERihKbWg2NZzBOJakMqOREyokmpTSJqATYp1wOV9wtii4PH/OJ3/+Jwxkzb3793n48B5KGmZXF6xWa9I0c/ZVomE+X3Dy8oTTl6+Iooi93V3G4zGLhQvrIgSj4dDZd3USgjx3LMf5+UX38AiiKHb7VSum0xHTnR02pXMtSKUz/d5UBa1pvvLme50tXN1trwBvYy23PxeuysOBZpu9C0Fq+Pf2ZHXbxHQbq7v9mXCQCreX8toN4PPPP+fVq1c8fPiQu3fv9ln7g8GA58+f8+TJk14T5ieMe/fusV6v+Yu/+Av+1//1f6VtWyaTCV//+tc5Ozvj9PQUKSXvvPMOeZ5zfHzc98fDhw/5/PPP+4EqZDFuY4e3zzN8bbtPQsYlvA5+u+3wl3/9tu/9Ilb3i4DE31czrUFIiaarDoXEAKZjJ4XRiLbpJJodAyRED2Cw9gZQEsF71rbQJV2hJLRdaF4KjHEeoVhLWzes5gvWyyXj8YA4TdC6QW+uGTCpXNa8sKCk6cCw7tlcIQQISSy6pKBO29l7sFpXxtUaQ9tWtG2FxU2gUZyhVIRz6vLPAoDBtCXKNCQqQtMSSahbi9YtbauJ4+5ZRmKEIE4z0iRDKEWra3RbIzBdElV3Lxg3disMbVPSNDFRlHTuKN7myIJw+5VKIKVjAb35+U1G3rpFBc7LVuCYWovpkuJuLqoMwv0nfjWCc+NvryHofvgtknzgmPHX6BgYsoo+yuaBnQeWIbALE6A86ArH4jB07oGit8IKy3n65tk+v/9ttjQMd4cs73aOQGgb5ccRv0/P2A4Gg/6aSCl7BwC/31CO5ZlK/88XBwiZVH+OXm/q5RP+nNfrdV9QQAjRExFeM75NzHi21Nprm86QEfXgMnRl8P3trQ7D6+Cvp78OfvswgWq7OpcHyb6/Q89d/7x4yeCvQxB8hc+qYjJytjVxp8XEOK0RxrBZryg3JWmSMJ5MSJPs2murNazXax4+vM/O7g7nF1eoOGG1WnB5ccFqXTCbL9jb2yPJHJ198uoV5aZivV5zenrGZlPz9ltvsre3Rz7IOnN6y2Q65ezyikVX69waS9t14GgyJh1MaOqSKFK0TYtpW2Il2dmZslQFOzs7HVjdUFUlw6Hzj1RKcfLyhKZpGAxy6rIkywZuta8USRJjjGYxn2GtYDQa4bwEHVgXApQS1KXTkywWS5aLFdpYxyxLxSDPObx7l6re0J5+SnrnIRy8waIyHGQZrY0o6oaRUkTpCGEkRkiUyBAyY7luuFhUzBczfvIXf8r67ISvf/AOv/ONr/H+++8SxYrFcolSikE+4OzslJMXL3j58iVXV1dOq2Mi1kVBmqXkg0Hvj1pVFU0ntHbWYgOyLGNnZ0JV5R3rrLi4uODo6JDFYkHTtiRZipDX2YVV5yzwOlsIEm9MCluMXAh2QrAaspXbTNxtLRwsQn1suI/tz98GSMNtbns/lDeEx7bta+u/dzweM51Oe82pK/RguoXKgufPn/O1r33thmXJyckJ1lr++//+v+f8/JzT01Om0yl/+Id/yLe+9S1+8IMf8K1vfatPqArDWm3b8uLFC54+fcqDBw9+JQS2Dda3mYnwWm33oT8v3ze3Xavb+tZ/zv++HX4Kj2VbQ/s6mjHWhdFNB1Btx456YyrbLaQCYOiqMfnz6XYkXPlUBZ1s1SK6zwnTYrVLfrJaYqV0xvmmS4qpa8p14QCvsKR5hm5qtLUoJdGNREYxSnaG71I7Gyq6EGoHkMEgjXbG+t1CH2s68OrkASjhJLnGsZrGtHRZZdguccxdF9kBZBCmQVpoUUgFqRS01qJ1TVM7g/48H7Ap1m6yBWIlIY6dR2rTuPK1VhDFCVk+IN/kGN2yaSqqOkV2jO61x6djag1unI8iBaRd1Kq6BidxhG41tW6vAeXWLWU90yzAYpB0zPEt9972axbZJ1v9toT/4XpM8mF2z/htZ/yHbCnQR+RCGU44pmmte+bVh769rMCzlP5zX5RQGRIJHqSFusywj/2xh0DXH6c/z23g6MFlmqY9KPRMpPc6DQ36Q6nCNtkQSijCCqHhGB+G7ENg6I851MmGINh/v+/vbVAuhKAsS5qm6fCN6AGvB+197g/0INgvBkJZQnhPhOM80MszQrb5q9qXl1uNY0ajMXmWk2U5BkNdOt2aVNJl+mZ5LwAeDocopVitVr2v1uXFOVIqppMRRVmTJgnHx8e0bct6vWY2m3F4eMjx8THGWorNhsvLGcvFik8++QXj4ZB33n7MYDhAKkmSxDx69CafP33O+fkFi8Wis9UpabRmNB5hiKi6zs/zrL/QzkvMsrOzw2CQsS4Kzs4v+xvDWleRam9vj52dXQSKzaZkZ3dK03nKugSsO5ydnV+vwqztxfVYQ1tXzK4uefb8Reea0FlFtA2r1YKj40OePHkOV08Rl7/AjPeYiZy9QYJNEy7mG5o8dZWmBhkaS20Eba1ojeGyrPnB9/8jp5/+iN1BzvHREbvTCYPhsFuJpQiheHX6ku//+fcxwcOhdcPe3g5pmjCfz/oHINS5uAfZstZrhIC9vb3ON1VQVS6MXNcVd+7coaoqFstVfyMXmw3uPn39UgDf76Hw3/8MH6AQuNzG3oWvh5+/jemEmx6fIZi6LdTxReAMboKqbUAWDsShBtb/tNZlXo5GI/b29nqt6ng8Zrlc8vHHH/PWW2/xj/7RP6Kua87OzlBKsb+/z1tvvUVRFPyDf/AP+PDDD/lX/+pfUZYlf/zHf8z+/j5t2/LJJ59w9+5ddnd3+/4qy5Lz83MuLi4Yj8copfpJPOzT2wa08Dy3pRLb5xxOIKEEIOzTbeZqe+ES7jvs89cNVMGZ0VufFNVJAIx1oNWhH6dXNVb3WEUKgeoXX/7ec68jROds1b1unIuAy9p37K0xCrTBCmfD1NY168XCLeZNNxk3pQOYWqIiZxckhQBrMHGMkII+4Up2dloWTNugqwbbNKDr3uFAqpgYhTQWIRRaC5q2oSoLpBTIKEFGCQZJ0zhQEqdD0uEubV1CvULJHG3A4Iz5IyscA2oMQrjErTjNXAVGJbEasLrL7nedaoE4diyql1fotqFpIozxFbxML2WzQhAppyXUrUYJUMJ5uxJHxDJBaktdGzzkvulKZYP/+5dvbHCjfRnT39+34Q5fU9seU7dBUDgO+lA+0Ht7+/d9Zvg2iPHPvddxerDq9x3aIHnQ5uf+MFnIR3q83tQ3f7z++EKZ1bYu1o9RHuh668ZQsxuG/30LTfX9MXvg6xc7WmvyPOcb3/gGp6en/PjHP+79sv2xh1ICoPe7D1soYQivgz93z3xvs6P+ezwjHGqOPbsasq7+u7YBp2fVPXgPCQa/39Ca66val4PVJCVKUqxU2E6MLskQwlKXLkSuOk1F3TScnJz0N56UDsxeXlw4JrUoSLIBdOzL/v4+Dx8+ZLlcAnB2dsaDB/fZlCU7O7s8efI5Sgp+8ekv0Lrh7Xces79/h8lkynK5YjQccHG5z2VXl/7FySua1rLaVCxX9Y1SbW1XAMAY01lVGeaLBVdXl3151el0yqtXrxiNXJWrs9MzdGuZL2ZItUuWJZRl1d0kisFg0PdTnjnzfQdIW5q64uL8nMvLq77Gtl8tnl1c8Objd/jxj3+G1g2V+D6H6YiL6T2GozfZHU5Yq5S1VrRW0rQSg6Voaqr1jHZxzk//+j9y/snfME0jPvrgPR4/epPjw0OWqzVVXbMpCqw1XF1dkqYJm2LT37gHB3tdCKDqb2K/6kzTlLIsXXhBKcbjEXEcsS5WWANRlECQdODLuZVV3T+069XalXJ9zT6r4YOxHSoOwaDf1r+3zYBuP+hftF340G+H5v33bwNh/9CG7/vj8t8bhrVD4f/2cYQDTgiaJ5MJ4/G4B5V7e3so5eo/3717l8FggDGG3d1dHj58SBzH/PVf/3Xvuffd736Xf/kv/yX/z//z//DGG28QRRHf/OY3+9C/3+7q6qrXtx4dHfXi/M1mc0MCsL2A2Aab2wzy9jW9beERfmZ7XyEIDfsx3Mf2dXndmmutLVY47acw7p80zmdVqeD8OtCJECgpsObaWBw8695NqlJ2C2oDbeO8Va2F2IEkYXGsKV3hgEgxyFOUlCzOZ8wnLxHKEiUZIkqJlMK0mtY4/WtkcmRn6aSkQgmJRWONRDfWSRuMJTYWhEEbi8AZ+UdKIWWEUDGxipFSuEQu7zWrEnSXkKRkhBQSg0AL6dwHVERTFQgpyfMMsDS1M/NPkox8MCSKI7AG3bbUVemW0hbapqHt7K9ckpizDmubFiVr97duMK1GqS7r3JfXNE6gEStBlkQoMgyGLI5QCBZFidnGqV/afo0t7bXUIxybfhv4VQ9mPOALPT3DrPVwPAi9N/2z7UGsHwfDcp4e5ISfCWVGPuwM11WswtB1WPRmO6rjn3/Pjvpj9cfht8/z/FeqR/lcl5Bl9HN+aOXlAaFnXUPpA1wDvAcPHvDWW28xmUx4/vw5q9Wq7zPfnyEQDcfD7YQtv99Qq9pLeTrmN2zhPBa6KTg7y+QGOeK/22uEPaEXXnOfeOb36Y8rLOLw/xus7u7vI+MYY52lhxAu01HgQlWmbZ0cYLOh6ihuY6+NlMuy7ATNMVGluLq8QEbXIl1n/+Gsj1arFVIJHr/1NnfuWPI8Z7mYU6zXvHjxnCSNOTo6JIoiBnnOwwfH7O6Mme/vcHZ6itEtjRE8ef4KY2sG+QBrLbPZDBkHNW5l5EKeAgaDAWXVsFwuWa/XfRZ7VdVcXc549eqMw8O7rJYL6G5iX4lrPB7/yoOHdYxEXZWUZUXdtGhrbtwcF+czfvijn7DRhtnZOZOyRkUJg3e/S5kOeJBN2Gxq1otL8tHY1fW2Gl0XnH7yE07/9i9oTn/JJDI8fONNfucbX+Ngf4e6rrDCJRacvjrj5OQ52tRdaVy3mhuNhiAgyzPSNGG5XKGs6PVE4UqxaWrqukIIN3jPZyvG4ynGWPJ8wHq95Pz8HID5YtGXmqtrN/gvFsuvvPn+vto2sAxX7KHn2zZbeVtYehv8bIebwtXrdtjmNqAZAqNtQOwHhZBpDBO6QmF8yBr640yShCzL+jD9crnk4uKCt956i+PjY9brNavVqh+A/MLxwYMHPHr0iHfeeYc0Tfn2t7/NcrmkKAoGgwHD4bAX6/vjOT09paqqXhP78uVLTk5OePnyJffv37/R/9uhum2wHg68/vXbQGa4r1B6cds+tvs4vHa+7/xz+rpb22oX6DXOU5WuVr2LVihi6fvKYlsNVmOkQKoIYyNnai9Ud1+4alVWO5/QbpnmLK1s4FFqLUK3aNGF6cqSqiwxrcY0NbqtaEpX4CERnda16YoxNC2N3RDZhEhKl4lvwVhL2zZo7XSaUrgE29a0WG0x0ullYxUTd+F9ZVsiUsf+Wk1jDCoG6+8RazFNjbGCZDCibixSxtha9nIrKQVtXboFdZY7Z5cOjDTVhrqtiOMMrS1VtaFqvJWWuwfapkVwzbi1jXMgsMZpTpUURMoROFKAkrKzSowRSpBGTgYgJWjTQdCe2f4ylhTg9gWzI2evE6qCD/zWtDDDPVxke5ATAq0wSSgEWCErGkZcws+FACz85zWRXiqwHWHx+wnLtfrv9fO6j8Bug8CQFPBJRXVd9+F0P4/4eTAcT0IyaFufGUog/OtpmrK7u8t8PqeqKvb29iiKoi9ZCteZ+f484zgmz/O+SpQHouHcANfesJ6ZDaVwXlvs2Vq/rT82Xy42juM+jO/lBr4vwwW/wxFNLzELr4mfX3352f/f1lW6rslTl5EpcAIjpdxKKEkNInEZpda6sJVSMYPBiCh1VZzqtgGlWK9WVNrQGshUhIoi5rMFq/WGO3d2qZqGTVnz/PkroijFWqjrhs2mIssHvHp1yvrHP2a5XHB8fMjBnX2EitndmZIogcIwzHPmqw3PX16R5oI46jJRcX6BxsL5xSVp4qQNUgour66wQrK3t0fd1E6nWtdcXl65wUYpzi4uiCLFGw8fcPfgLpvNhl/+8gnF2vmODkcDt7KKYqzRzC4vWcyXLJYlm8pJBJLUsYy6bdFNy7NffkpVV+i2ptqsma/X7MznDM/PuXj2S+IkYxQbojmIZkM1v+LFL3/K2dNfIjcr9kYZ77z7Dh/9ztd4+MY9xqMpdKL/1XqFMQ1ZmpDnE169Ou1Xgw6AllSl87jL8gHGWBqtEVIxGLnQ7XK5YGdnxwHuqiFNM6a7rj63UhHn5+e02pLlQ/cQ5QMWqzVV06A7Hc6vk933m2whwxgykOHv4aAK14NfCFpuAz9+354V2AaJ4X62mdRtoLUdmt6eqMJtQ1YyZAP9YBJOEMCNVfBoNEJrzWq14rPPPmOxWHB05Apg7O3t9RWt4jhmPp9TFAWz2Yw4jnn58iVPnz7l5OSEvb09pJTs7u72x1QUBfP5vGdxnz17xs9//nN+9rOf0bYtBwcHZFl249zCfglfC98LX/d9v70wuO26bC8ithcZYT/d9l3bff/33ZqmRdkIG2mslEijUdpgpUHXLUgcKLR01nxOLyqNA6CCCBmBr+gkcFjXdvk57jXryrlae11ZyhhoBa0xrOcz2rIC7fSzEpztYFWjcN9ltEWoCKE6Rku3pGlGpCKsEGhdYQSIOEZEAm0LZGMRbYM14NydDAp3PlLXmHWDlBHJKIMoRpcrGiERKuqcCCzVcg6tJUoHkECjW/LhkHJTYawgkgqlYjIVk+VD4iiiaWra1jnXGN0iYkvTlBTrFUVjUB1gqeuGpm0QVnU6X4NuWoS1KOl0rw6suuIGQnSvR64KF0qSRIpqsyGOnHzhWpbh77luPPm1bzPRuQl8Edh9/dIVoCep/Pjpn0PPsPmQexhK9695Ns4DnLBkp39mvR9nmMXvgV4IusJKSl6fCTdlWn4ba20/3h0eHvba03AhHo4H4eL6i+YI/57/5wGet9sKF+t+Hgn35Vnak5MThBDs7u72v4f79+SSP6Y8z3sm1LO94dwE1wuKkH3eBuKDweAG4PXn5plqL3fwr4fJXCFL7dnnMGnMyzFuEJZS9q4IX9a+FKyenZ1SlhvG4zGT6aQzSE471iajbSp0XdFqjcHQtoZ1saJdtggpieKYfDhguS6o6xXGWF6+eoWSiihKaJqapp24hKck58WLF7x48ZLpdMrV1VXXgRFRFNNqzcnLl0gJgzxjMBiCNQwGOdhddKM5O7+iKAqieEBbu/DjsAtznl9egZCMxxPoQkpxnFBsNhSbDZGKug6O2dvd4/mLF7z/wfssl8vuYgjWRYHRmrZpuLi85OjwLjs7U8Zjl0FfrNcsFnNOXp5xenaOtYI4Tpwc4vKqy5aT6LYlVgolYmSkwBrmz3/J4vwCObpDPpqwM4g4a9bU6yXlakFTV0hhGQ9z3nrnMd/7ve+yv7cHRlBuKjblhrLasFouubq6ZDGfc3bW8OrVKW2rmU6nRJEiy1L29+90K72M5XpN3CXF+TYYDAHR3fApURQzHI+p6wYl4O7hXV6enLJYLDDWsr+/z850h9l8zpMnT5ib+a9F6/8mWwgaw9+3Q/9wM1npiz4frk63B6fw4Q81sH6l6b8jHBi293cbe+u/IxwAwkH5NvAW/i6ly+xP07TXk4cM6mQy4ZNPPsFay/HxMbPZrE+mevjwIZPJhM1mw5/+6Z/yp3/6pxwcHPDd7363B56TyaRPqLp//z77+/t9QtbLly85Pz9nd3e3z569jYHeZkO/CCiG721fx3DxEV6zbSC7fU23Fwl+cN1mY/++W6N1x6YahOo8SaWmFS3WCGJpnXWU7UKmwrF40jpRqxC+X/CUHtd1j4wDr1YjrEIKOuDqsrmshbau2CyXrlKVcRMKViKJkAjQLaZL+LIIhFRIIWiqinqzIYpTknxAmg46zWpN27RotzUgsbpBW2c3JYUrX6qsgGpNqxTJaEqcpFCv0bjz0W1D1Va09QptJKZtGI4mUFUdiIy6a22J4hgpFWmaIHAM72ZTUJUbZ1rQNpSbDZtiTVFrkjimLDfUTe2ICjStcSVnEYYoEkTKgdRIOUec1uq+0KkUwn1nEpFGEdIXDmhcFE8I4SW82CA96jryf1PB+ivNW15tvf+6F1Zh2w49bzOaYQuBT8i4AjcWmiHr6vfhx8GQ0dx+L9zXbVWWvv/97/Puu+9y//79Prn4008/5eHDhwyHwxvlRUPgHY5V/vhDeyd/XP59Pw/44wxBnu+H8Hw981uWJUVR9HkGPnHdf4fv6zACCJBlWS/5i+P42gavO24P3MO5JDzubZeEcK4J9xPqdrejer758/XsaSh58NffXw9/XF/WvrwoQIfy8zx35skdSlZKEcUJMoqQWU6WZ5TlmtnlFYvZjE1VU7ctw+GQ9XrtkqNkxGKxYjyZcPLypFvNrFkXK/b29hiPxzx48IDLy0u01gwGgy4hauCode1WO5/8/FOsNjx8+IDpZIS1lqos2RQblvMFGItSlqoqWS6XLFcrQDorp8RNst6aoW1bqrKhWLu/m7bh7bffoiguyHNnXXV4dOR0TU3N+dkZ4/GY0XjMQWsZDIdd5StnPtxUGycarkpUFKGNpqpqrIXj43vuPJqyN1dXKkNFEisUrTawOkevryjOFLUwSAXSCoSUZFnKg/v3+eC9d3jnnbfIBylSOZPw9XpJVVecn5/z6S9+wdXlJUXhKhPl+YC9vRHj8RiXfOVuxuVySZY1DLsHwfnCrvvsvizLGI1GxFFCmuXMO3sxt3pu+4pIq9WKi/NzXr48YTKZcGd/j6qsXvuEv82Yha9vA1P/um/b4Mk/tOHAGjKc4QO7DZBDW5Dt/W8/2LeFvm4bBMIWrlK3z8O3tm17DfFkMiFJEtI05ec//zkvX77k+PiYi4sLJpMJH374YS93efLkCU+ePOHTTz/l4OCAH/zgB7x8+ZLf/d3f5aOPPqKua87Pz28A17ZtefXqFX/yJ3/CgwcP2N/f7xmFbXZz+7h934ZgdLuFYD/s/21WdBvwh0xGaDfm9+OZCD/5vM7WttqxojiwqlUngbAtRoIV1iVTIdC67f1YlbUITAdAuwQrKTG2xZguSciaDjA6Y31vS2htZ7unLcVySblcILoFVpYkCKtc9SgJtm0wSrjwu7UYK8iyIU29wZQldbwmzYZIlRInUCPBFB14VggZY3WNsK7CIbIlExIbxVjb0FYFplojBiOUVDRaE8UuNFnXFU1bYWTiHF/qhCzLqWo3JjV1BVhU5MCqFE7/qnVLVZW0TYMUUFcb1ssFxXpJUWnaJOlAS92VgNUugQ3IssSx0h7YA11POysxaUEJVFf5L00dw5rGMZWqsdgOlOC0pt1/3i/hi6Sq1/fw1lh1yz3jgOzrbz6DfZtl9D+3WT3PZIYL9e3FfijV8uNpCKhCttK/F44LYZTPJ1XNZjP+7b/9t/zzf/7PMcZ05dbLfmHtM979528jPUKdbQj+PIi9jXm9bcwPSQ1wZWuLomC1WrGzs0Oe5zeAYRjRC/ft9+XnBA88wzE1DNVvJ4v5c/AygG0SZls65xcC23pif13DBYPfX7i48PObLyH7Ve1Lwaqno+u6RkiBLz8HEMXShZ2MswVx4vaUtkqptUZ2E8Dh3UPOLy8Bp4u8c3CHwXDI50+eYrqQ8Ww2YzgcUNfXmXLX2fuu0s5sNkMAeZaSJFlfaancFKyXSxbzOW3TksQRRbWhqTZIIZjN5rSNYb2puHN3cEPEraRiZ2eXotjw8uUJVV0xHLyibTRZ6vzzZrMZWIvqOrqua1f/WlxnIFosrW6J4wQlJU3dcHFx0Wthx2MXpk/TDOz1SqfX4Ni2q/Et6NwBu9W6uzF3pzu8//7bvPvOY+7ePWA0HiKkq8MdxwkXF6cs5nNmszmnr06p6wqlnCG7Y5JFZ+Yv0Frw8uUVURQx7oCLn6Ank0mfYbnZbFguVhgD+3fuYC0sF4su68+x0m23IGmqksuLiE2xZpC5m+7XofV/080DkpAxCx/a2wCgf5D8A709KG2D13Dlug2K4YtDRbcNNNuvhwPYNjsRguNwm21W0euLkiRhOBwyGo16RvXly5fs7e3x8ccfc3R0xIcffti7RlRVxY9//GPu3LnDv/gX/6IHu8+ePSPP894VYGdnpy/jWhQFTdPwySef9KVYm6ZhZ2eHzWZzI+kxHAi3X9tmYcKJL9TphmzzV7XtiTLcd3jtfhuYKm1AtM5gX2qD0QYtDNa2SOOiwVp0oXljkNIiJR37adEOVSEkGCuxpqFtKzDOxcV5NklcSn7XB9IZ1pebmmpd0FYbaFvSLGI4GKCtwZgGawREkavghHI+3MaZ+ydRhLEtuixo6goVJ65EgDEI3SKNQcoIQYvCotBI22J0Q9O2LtEqjojamqZYEo33nFazM9mXyhnxN1Z2OlhXoCZJMpI0w9fMMm2NVBFYaJoKrO4SSkF3DGVZbliv3fi8aQxGt9RVg7OcFthOz5vEjhVq6xprDSZy2lb3D8BV/hJRRNIVSEmSCCEscZIQJw3WaDdeGiibX61r76Grb7+y6LIBmg0+u93uHD3g1bPPfkN35a/XPCAJQ/geLPpFYpgU5ceE7SjH9n7gJssaJuz498IF6faYug2g7t27x49+9CMuLi54+PAh3/ve9zg6OmJ/fx9rLf/hP/yH/nPbUaBwXL5tHgndTkIQHsq+wn15UtAf82Aw4PzcuQ2NRiPW6/UNpneb8d2OBoW6XD+eekmEP65Qr+qPxQPs3d1d9vb2WCwWXFxc3GBwtxlZuI4aAv11DWUWoU7W/73Nqv86FS+/FKzmeYboysxJKbBWU5YOoEirqZuSzXqFNhojoGlqrG1J4pjlcsXpq1euvKiF4+Nj8nxAVTfs7+8RqZj1es3FxQVSCTabDXk+YDhwGehRx3IsFgvGkzHD4RCsZbMpWCwXFMWKe8eHLGaXzC4uWa/WWGMYZDnr4gprHMJ//uKEWKUYIVguFsyuaoajAVEU8+z5C0Cxu7uLUhFtW3B2dsGmKHnr7bcwpcHr4lerFWmaUNcNQko25QaE5ejokOFg4AAsoI3h/OKCk5MTVusKpSLyfEhd1wwHOSJNaJqUqvRgylCWm27CkCgliOKU8XjE3f093nz4kPFgwP6dPY7uHiBjQVluGAycVOIXn35CuVmjpOTTXzzBIjozeJfxGMUJi/mCOI45Pj7qwVuWZeSdsXEURTS1q8LVNA137uwzmUxZrwrquqHclDS6ZTQadcCj5OL8smekBoMBR3fv8uz5cy5mF0RK8WWJBH8fbRsQwa8m5mwPQiGgDRlU/9kvYzjDFg5M/y0gaBvsfhU7vT3ghZ8LJwWfSLW/v8/x8TFSSt544w0Gncfuy5cvaZqmT4TK85zZbMabb77JRx99xN27d3uHj+985zv9d5+dnXHnzp3e5kRrzccff8wPfvADHj9+zJ07dzg4OGAwGHB6etpn0d7WH+HE4t/f/j2cjMJrtv3abZ8P+ysc8G9jW7+I1f37atpaROt05Mo603ytNdY4S3kjNMIF5MFqItVn+gAukQpapDCoOAKrURiapqaqDWnuDPKtsB0oM0gUlYXVZs1mNUOXGyQ4AJYlFHVDZix1tUHIIXEaoxGYpsLIlrrakKUx6IZ201DMLokHI4xp0U1Fu1l18gFJW9egK1eBCk3TCOr1klhYZCwwVlAWK6KmxlYVTdsihCTPMgeSowFtuUFJlzNR1RsG4wxwmfrV2oXnEa6eVlmVlGWBlBkkOevVjHqzYVUULNcFbWswbUvTtJ39lkQqQESkWYruciqstdQaUqsYqAgpfChbEVmLVJI0S4kjwXCQMxw4X3BtNEmc0GpDWVWYxlf06p5X4azJPCMeNg9m/XDqRBRgtxa/QgjSfPibvTF/jRaG4IH+dw9gthNSffg5dDrxY0mocQzHZP8Mh6DJb+eBkWdrt4/Lg1ZnQbnPL3/5yz6q8sEHH3D37t3+83/913/da2pDVnBbUhQmDvlt/bmG4C5kE/0Y44/LR3XAMat/9Vd/1eWZNL0/ekiQeA0sXCcM++/f1u+Gi3lProTgcHvxZIzh8ePHZFnGZ599xsnJCYvF4sacFDKoXp7g9+uvzTZDHjKz/pr7z25LNW5rX7rFulgziRRVXdHqBjAdwwgkzgg+SjNsU6OA2krKsmW9LsnilNVqxeXsghaB1ZAPBsRxxHKxYLVYYBEc3b9PXVVcXF7w4uSUyXTK/t4e2ljGwzEXF2eoSHTZzK4IQRRHRCrl9OSUti5o6horJK2Fut6wXC2YXZ2zWBzSNBXvvfcBg9RpZI1paRoNRBwe3Xer7daZN+eDIePJFKkiNmXJ3u4+ZbVBa1cOTlgoig3GunOZz+ecnV+wMxkzzJLOqqfk4vKSOEmw65okzYmzIY22DPOUNM7YnY4pijVV3VCUFUq6i5/lKfkgY5Bn3L17h4f37nH//j2yNGO6OyWKIparlfOWXX6ONYblfIXWDca4z6soJs8HZHlO3WVsj0aDLkzrrIT8A+idHSbTKW3boCKJEIrVas1oOGJnZ4rWbqJcLhbEiUt+G43GYAVPnz7tV1WD8ZSHjyLS01OmZcOzZ8+/8ub7TbYQKIb6UN/Cv7fBSsj4bTNy4Wpymz3d3j4EZCHoDb83/N3/Ha6Aw7Y9UG4D2m0g1jQNp6enGGN4/vw5aZr2ZfvG4zH3799nNptxdHTE2dkZn332GdPplMePH/PGG28wHA5vrLp9ooAxhkXnANE0DXmeI4Tg9PSU//P//D+pqorBYMDx8TEffPABaZr2XoLbx36bJirsa3/twozTkPn+ohZ+T9g/23qvMJHDD6ivm10VwtlKqa7Ck8vad4yesKaLu/i6SK2rHKBUx88ZjHAlVV2CqUZgwDQo6TxE2846R1jbRcYEWiVs6oZiMadZr2iqishKtDXUraaoKsatpm0L6sqxpi0CU9dkaYYxLcYoZ6WlNeVqRtu4ilRGG3RZkAlHDFpTYdoKJSyRVM5Kq9mg2wQtY1dQpKnRVUm1XjirH2tohSCJEpokQRuNNm1fPrVtKrJ8iBWSpippW2dVqOKEKM4wxYqmKUiSjCbO2dgFUgiscRUNb/pMdyyciomSiLptKOvWOSOsK9LayRLybOAKAOgYa9wYnGQZibKMhhn5IKU1rkyrFILNpiKOYqrGlTC/2XwCFSB+dfFm/T/Rk6u/dS18hkMv01BjCtfsG1yTBiHTFto6hVWSQrlACP5CZjY0vg8B4fYYPRqNqKqK1WrFfD5nd3eX9XrdH8eDBw/47LPPePXqVe9m4E39/bl64OfHpCRJ+gSz0I80ZFo94A0toXwE20eSR6MRb7zxBp988glPnjwBbsq9wns1nCtCyynfT2Gk2o9r4b622WcpXdLbxx9/zHQ6Zb1eM+qqWvpz87aEWZb9igb3NgIlvPZAL2PwzV/Pr2pf7rPa0eauSlSL7CxTqroiz3MGgyFpmiGlQrcNg+GIpmlYb6quCkKF1jVKJdRlQRJJVJdwlCQZi/mSqiyJooid8ZR6UzG/ukIhaNqW509foKRwQFnA3t4Oh4eHSCm4urxid+y+v64byuWGq/mCTVny8uUJsRIsl0uSSFFXJbu7U+JYIZXEIliuCrSxXF1eIYQz9V1fXVGmJQcHBywWC2azGU1Tk2UJcXzdwXmeM1Duhri4uGQ8zFHCZXluNiVFsWG+WNHULUnmJvzJaEQSSUbDhCRNgD0QsJgvmM/nXZUUxePHj8gHrirKcDjqE1PKrqSpe+Asi/mcxWLhah9rQ9vqngE/v7hASpeFOBzkfQjBr+D8Poui6G+SfJAzHA5oOt3huiiYzeb9qnNvb4/ziwtmyyXD4RglJTs7Ox1jNiCKFEpFHN+7R7lxhQNeZwtDEyHb6B+McIDbDiV/GaO5zcLCTU/Q7dX2bWAybLcxt9vs4PY+trfbXtX7wWK1WrFer5FScnFxQRRFrNdrjo+P2dnZ6f3/2rbl+PiYy8tLmqZhMpnw4MGDXhjvB10/YC0WC4qiYDJx5ZQ9y/pnf/ZnvHr1ir29Pb71rW/xve99j8PDQy4vL5nNZj2Tuw38bzu/LwKvoYfg9nX5qmvn+zsMR4af22ZjXl8TLkTviqxircYa4ULcugMr1nSWSAah5DWTaIUr02qlkw4Qo4QF2yKMRkkBwmDaBqOc1Z1BYlvNerGgmF1hNyWm0agkAqXQ1tC0rjJdnkg2qyXreYJIMnTT0uY5SEHTWBIpwRhMXVHWFcY6rawCNBaE6iSaAmVBYEgsVG1FXW6QFhphEHVBcf4Ckphyfg4CIhURJzmj0QSEpG4b2ramKh2BoHXL7u4d4p19Ls9fUlUFsTEkaY61UNUlVkiEjNAGmrrtM8+NcTY6g4GLSCmpiFRErQ3rzZqyqhEWqrqhFZKpdj64vhiDUYo4TkizDGUqdNsgcAmO+XDAerlE67XTvAqwxt/T3T0rpAPyItCyBu23HajCTY2//9uPs9vhdP8Mh6A2tKYLrZfCRbz/rB9H/Hd5oLvN0IUaT79vcIVufPb8ZrNh3iUHv/322z0zuru7S1VVfbLp2dkZL168uDFvhmNTqL3cHkv8OLbNFHuWcTQa8e677zIcDlkul4zH415G5eV5ITgP55xwTL0tmuf7zAPikFAJgW14TrPZjPPz8x6c3rt3j729Pa6urnorKr/vUHN72/wYMqlhpbKwX36dcfcruVcfSgTTMylGGwaDEUbTZWA6wblUEdOdXSyCxXKBVBIZRaSxq6QTRTGXiyXnF1eMRhNa3bCczxiNRrRNQ5rE7EyPmEwmnLx86R703A00Z2euFOuzpWOI0iSm1hqBQBtLqw2t1swXS5pWk0RuhXV4eADWuAHbtLRGuJAOgjiOODo66lc2R0dHRFHEs2fP+gs63Zmy2ayJItlpQd1qvG4do2SM4fTVGWjNeDxmdrVgudywWq1J0gFpEmFN4wYaIzk4uEccuZsTLM2RK3GadvZWBwf7TKdjVpsN+WCMEA50X1xeIoRgPp8TR3FfIWy5XHJ5MWM8HhPHCULILY2guyE3m02fUTibzQCXbONrHG+KgrpxZv5ZNuwf/KqqKNYF89mcfDBkOh2wWKwoNxuMMUwmE5SKQMDl1TlN07C368K/r7OFtiPb+k7/Wlg5Y/sh2waV2yxgOEiFbKdv/jvDles2SNv+PfzucH/bA8E2oN32c/XH9PTp0z5hsWka/uZv/obDw8M+OW65XPZsq/ddlVLy+eef94PqdDqlbVuiKOo13NbaHsx6RvVP/uRP+D/+j/+DN998k//uv/vv+MM//EMODg7QWvP8+XN++tOfAvDmm2/+ChjfXoWHCwj/XghQQ5Y1HIjDRIvt6+37N/w77Mft0N7rbEJKl62PBeNkABaNtc7YX2vHnIJASEGLK8DpGVlpBcKIbhsNXRlUYZ2NkpISKSy6bagbjRUVOnKLVCsVrbEgHcOUJhkbbYjjhLOzGfceHGLjhuXFKaiEwWTKZr0gjhKEyWDggGsiTFda1VI3NVLGaGHRpunSupysTFiL1BrbWnSU0CqXWCbbGt0UxFoibeOSx6xxFoPJCIQiTWOiKEFrtxjfrFZMJzuoJEepqHNxkUSxwVpomxqLQqBompbNpqRtr3XneZ4xmUych2pXuWpdFC7pFGi1pW41otUYrdG6RbsVgysUkMWoWELZ0mqNlYrJaAespalqTNv2YfwvauE9emP84Bqo/rbi1RBAeVAUAtYwXL3NxIVANCQZbhsDw3B/HMc9ePLfHzKpHniGYXRjDMPhkMPDQ66urlBK8ZOf/IRHjx7133N5ecl8Puf3fu/3mEwmSCl59OgRz54944c//CHr9bq/Ph6MecvG6XTKbDa7Aeq2w//heJMkCb/zO7/DvXv3mM/nfPrpp/3+vUWgB92eifX7C5laD5BDMOgciK4Trg4ODri4uLgRuvctNOkPdcGejHjzzTdJkoTnz5/f+O4QKPvr53Mfwuvro3Mh87o9N39Z+1Kw2rZtX5PXBDqJqqooig1aW/J8SJqlICRNF1JKswE7UUIUpYynLW3TVbMpSprW3ZQvnj/v0HbL7OqKwXBI01Qsl3OUkrz5xkNUlHTWOK+YTqfEccRqteLzz5+xuzNl8OCYdbFhPl+wWK6YzRe8PD1zN75Me9uegzv7zitWCpCKsm5IumpMWpu+XnpVVezs7HB0dHR9IYVls1mTpokLoQFSCZqyptg4W6+qrnn58hVV5TxaZ7MF1jhPs0hJZJehOxjkjAZpXwITLJuyZL1eMRlPGAxHjMcjlHKZplezK1Yrpzc01nB2fk6SJOzt7lGVNVVVoZTi3r0jHj165MKsWD5/9pSrqyuyLGNnOsF2iWxedO37RWvdA5a6rqlXy07LIxmPxmRZ3pdxs9rQtg17d+5gDP2DWRQFm82SKJIM8gFX1RXn52ckyVdn9/0m222Mafge3JQHfFmizm0M3xe95/e/DUL9z20Q5Qev7W22B+ztz4WDym3faYzh9PSU+XzeM6JlWbJYLHj16hXz+ZzxeMze3l4/kfhF29nZGavVqvdm9Q4Rg8GALMvY3d3tM1RPT0/5N//m3/B//9//NwAfffQRf/RHf8TR0RFN0/DkyRP+8i//kvPzcx4+fPgrmrWwT8MJZlvAH35m21ngtte/DKz638Mkui9aTLyOZv2EbjRau+x1lMFaJ6cy2gTJPRJjBMI4EIayoC3W4MCqbUFJJ2fFvW5w+niZKlQsMSKhbGCz3tA2FXE+oIk0sW2xFoRSCCnRdQNCImSMjC1V0yKFxNrOWzmKabVFWpzXqbQuh8s6SYNF0BjtAHjrGGMhNLp2NlZJZrFtTWstommgrYksJHGMFM4CyyaualWcZLgukAjRLdqahmK9YpzkpPmAeJXQdswpQmBNi24ahHSOMGVVORcW4XT+49GIPEvAGuoa1lXDel06mYUAbVpa3RJp7TT+SmJkhBSic0qJEBha3dIakElCFEfMzy9d0Rasm4PCa+2tAPytecutF4LT63u4u7fx1at+eyBsCDp9VM9nim8/r2GUwz/z22xfyM6G24aRMSGuQ97hojOs9AQ3E16Pj4959uwZv/zlL7m8vOTk5KQHWf/hP/wHfvnLX/Ld736XX/7yl5Rlyd27d7l37x7GGH74wx/24fj9/f3eC3W5XDpZ3GDAcrm80Rf+OD2Tr5Qrb/3BBx/w+PFjrHWFXPI8ZzQa8a1vfYs0TXu5nT+HMDlqe5wM+8/3eagLPTw87JnkkIUO+3LbycCD/bOzM46Pj7lz5w5XV1c35k//2TDhLJQIhGPtbdfj/7cMQOuWqtygIkUcRcRRTFEUvDp9RVU2TCZTBsOcnZ0d97wZF85QKkGqhEE2xAJ127BYuAo467J0hvjauQjcv3+/K9O46Uv1zWdz7tw5QEjLycvnbLoKV9bCzs6U3d0d4lixLgqSSJANBqxenDJfLKiqCoHl3vGhs7eaOl9VrTVp5BKtjOm0YOKaUi/LkpOTE7CWOwcHYC1pmlDVtasDLbzfpWOcRkMX+p4v5pTrNZEUGGs4v7xkvd6grZ98nY5MCUESKXRbIzCkScR0bxdjYbladzdqynLtLCtenb7ipz/9GVVVMZlMaY3GGI2UiqurK7Q2qEiR5znT6YQ4kRTlksVyxdXlJbu7u51G0KBUhJAOmEupqJuGoig69kyitXM0mEzGRFHMYJB3TG1MWVZUVcn5xRWt1myqit29fXYmYz7//KmzRcoHDtyMB9w9uMtstnjtbgDbN3+4itwGSOHPcEANP3Nb2CcMpfj3fp1wRgiQt/e9zcb67wq39+9tM7rbQnpvbu23H42crOTHP/4xBwcHPHz4EKUUjx49AhzTPplMerbh/Pycq6sr7t+/z3A4ZDqdMhqNSNOUpnGV3/7Nv/k3/Pt//+/Jsox/+k//Kd/+9rc5PDykqiqePHnCv/t3/47vf//7HB0dMR6Pb/RbuPIOtaTbTOr2tfN9HoYAt/vL2usQ4/b19ODcsywh4/HrXsPfZGu1JlISi588XL6AsAKrnb2U1hZXCERhrUskMsKlXRkM2hpUV2pV4JhW6QhNl6hlW6xtUcTU2lKWNeV6Rb3ZEA+HxFmGaku3IB4MiLQlUq50dZIOEHGKqGtXxhS6e63GKkWuJFhnno/pIgESx0IaS1NW6FYjbIMxFXVVo5HOEcWRsZimRdXuusrBwMkVdEuiIqyV5PmQdVk4NwLpQowyitisl4wmeyRpSpRklOWcVrdOIqE11mqkNdRVjRCKLB8wmERMRyPyYe6cXYxmU9csVyvqpsEC2rjSsgBSCrRpKEuDjDOSKEYpB1YlbmHYGkiSjFWXY9DUnZ2T9QC1a5ZO8tH90b0fMqpf3X47gOq2M4oHPj46e9vi3G8bsnjb2fb+eQ3HDc8CegYwHBPCOvX+s/53f0xRFDEYDHjrrbfQWjMajcjznKpyJdXPz8/Z2dnhyZMnfPLJJ2itefbsGW+//TaPHj1isVjw5MkTHj9+zAcffECe5/zoRz/i+9//PqvV6oazTjjHhFraR48e8b3vfa+X5flSpW+//TbHx8dYa3ny5EkPoEND/dsAagg+twkO39I05Rvf+AafffYZl5eXN/rKb+vHTb9Q8O+XZclms+HNN9+8tXBC6OHqGXB/XuFiI8wLCe+Br2pfLgOwXb3XpkW3DU1VOo1PVXN5ecH5xRnFZsXjx48ZjYbEcUwSJ2TZsFvlLqnriqIuWRdrdGuIIqfjEdLVhY6TmN39PWZXM9arNdPpDsvlks8+/Yx33n+HBw8e8PTpU6SSzk91UyCES1YaDBw7eH55xmy+6LJGLXf3d3nz4X3yLCFOJHESuXCPKbHSXcQsTanrFislRVFQlSVKKop1QbvT0DYNVVkwHo0QUcxsfoW1treFStOUpgbbakajMevVgvOzU16en7FpnLfq1dUlk8mUPE2ZDnOs0VSbDWWasFwt2NnfBeEqVKzWBWdnL3n18hXLZcHp6RmLpfOovZzN0a1md895ro3HI5qmRUon/B6NhpRlyXJVMJ8tyAcDDg8PMcb0ofzVakWkIsoOvGjtSjoqBUpBmma9jGCzKbob2+m3kjQhTmOKeYFdG+qyYG/vDjvTMVezOdYYJpMx1lrWaycP8Elcr6t9mRY0fN1vu81a+t/9tl+0zxDobIewb2NQt8PN20yD3/82MP0qNjJs/v04jvsywvfv3+fq6oqTk5OeRXUOHXnvKzidThl0RTQePnzYM6ve688zr1VVcXV1xZ/92Z/xb//tv+Xw8JB/9s/+Gd/97neRUvLq1SuePn3K//v//r/85V/+JYPBgO985zvcv3//CzWnXwTUtye1UPJw24C3zZDexjxvD5Zhe92sKoDP0HfBfVcKFH/axrGqtmPjjAEplSsnao1jWYUvImERprs/XLaVY/YsCKvdZzQ01kVKdNt0si5B3TTESlA1LamQSGkQ6I5UmGKEoDE1TV2jIkXbWqKopSkLsiRCC4FRKVJJom6x3NZd+LxpwLRY2zingLbFqBbd1CgVoxuDbjVRUdAkGVhFU1XOrxsHOl1RFYu219KQJImpijVlsSYdjVBRjBCuP6WMHCA2hijCFawZjdkdjp2PdeIIiUY31I1htdlQFGus7VxpjSFSCpFIl3NgrfPiVBGWCCUlkRRIq2nqhihOUTbm/OUrVpsCiekLAgQXmr4CqydXnfSY7lfHpgef+tW71n7B73//bXsRHo6TXkp023Mabhs+9+FidJuF9YvNkKXzY2td1zfAUjjmVpXLp0nTlFevXmGMYb1e87u/+7v87u/+bj8+/cN/+A9ZLpc8e/aMzcYVGFosFvziF79gNBr1C/y33nqrl0i5Uu0VZ50fe5qmfdQWrm2upJRMp1O+9a1vMRqNKAo33/r3fCLqkydPOD8/v5F/sR0t8iyo76svii7599brNcPhkPfff59nz57x+eef9xWoPDj1NlfhPOSPrexyjHyCmh+TvTOA73v//dtFE7aPMTyPr2pfClb9AVhrqauKoqr7UGJZ1NRNw89mv6BYFezt77K/v8/+/j5QYtqGptpQbArOr664vJwxHIzZ2dljkI85eeEmzcuLS7I8YzIeEUlX3/ng4IBiU1CsCyyOGt8UTnM5HA0Z5DlNVbgqWLVLBKprZ+eyMxnz0YfvsbczYTwa0TZO4B/FMcvVmiTPGI3HZGmGUpqiKEjimPlshpSC5XJB2x64VYp1Wc9xHDOdTtlsiv5i+my/6zrBJfPZnPPzC8cmd2BtMBiiTUucxCjpVs57ey6MWpYlMo65upxxfn7J8xdPaZuWk5OXVFXdr67qtObxW48BqKoNAkmeuWSoOIr5+c8+5fT0jLt3D8myIfPFFU+ePCFNU/b39/sMQ1/bvc/QxCU4GNMiBIxGI4bDEeCMydfrtSvq0NWD96upKI5YrVeMx2OyfMDF5VVfl9gb0DuZw29HC0P84aDoV3shmxqCTbgZcr9N3xqGkbcZwrDd9prf13ZCgt9nCGi3QVSo8/TXMzwvP+AMBgPu3bvHdDrl5OSkX+Uul8s+NO9Zj+Fw2If479y5Q57n/UDjE1FOTk54+fIlf/Znf8Z//a//le9973v843/8j3n06BFaa/7zf/7P/Pmf/zknJyd89tlnKKX4+te/zve+971eLx0Oov5ct5OdwkEyBPdhH2730XYLw2RfBFZDdnybYXhdTVuD9CDFGGdthEbaIIlFSLBOsypciSSgu79xIMhYi7QGa8AKV0FJ9Nu4TC2DBJUgpJt4RJQ6yU9V0qYxi3XBdDikqSvapqSucuqsBanQ1nZAVILUIECaBmME6BabRqAiVJQirMW2Fca4f8K26LqmKitXKUq01E3lWMu6QmhD2a7ZZIJhWpMIOvApHXg3LZGUNFzb6Egh0W3Fer0gH09I0ywIPUYMx7sUmxIhIR8NSQYDBqMJRmvn9VqVaKMwKKRqGAw0QrgwcpKmtFo7D+48xRinWcUzYmmOkhKrWzZlSZYPuTi/YrFY0rSNSzzDVQjrU/txpKq/23xqVSctvnYA6Lbw1/U1E/9f2JS6LnEKN8GqXyCHyVQhWxouusMIS8j8hc/odpGV0P7K6zRDr08/Jp6dnfWAcDqd9t/9+7//+zx+/Ljfj/cZDcGmEILZbMbHH3/M+++/z1tvvYUxprf+84UEZrMZL168YDqdslwu+3P3faKU4q233mIymVCWJT/+8Y/ZbDY8evSI8XjstNLrNXXtckg8mPV95s/dj5v+PL1W1H+P75c0TXsg7cP3g8GAg4MDLi8vncwvmL9CkO+/x19fn9fgdbn+/TRN+2u/PTeGMgg/ZvsqW9uE0Je1r3QDCG9AZ820oe1YvViBkYblYkUUuTJ0m/WapmmJlERYw6bccDmbs14XVJsKKVzW+NHREbPZFVeXF8SRxErJYJCz2ZTUTcVkOma1XvdsznA0pGmcsf1oNGR8dJfZ1YxXp6e0jl6gaTTT6ZDJeECWxigpiCNFWVUU6xnWgowjdnZzrBEU6zVl6UDwIE9daT4haFsHQk1rKMvS3RzC9q+v12uWyyV11ZBlOU1TE0Wqq+BjukxPr03R1FVFuSlIRi6ZKY5iBl1y1nqx5OnT566sa91Slhvu3TvGWjh5edpX9srznNVqwWKxRIqi92VrBg3j8YTVquD8/AKwDIYp+/u7/U3tkrmubzZ/M16cn4Mx3DnYY2d3ioUecI5GY3Z2dnjx4gWz2Ywsy3rrjjTNSGLXV7s7O+SDIVdXV8Rx3D9cq9XqK2++32TbBn0hEAwHUbgJUL+MhfUPVKgnhZvMaQiOws+H2hz/9zYzGgrWw8+ExxOGar5I7+rDTeCyXlerFVJKPvzwwz6xylef+vTTT9Fac3h46BIX07RLsrue6C8vLymKgpcvX/L06VNmsxkPHjzgD//wD/n93//9PjHgZz/7Gf/7//6/8/LlSw4ODnj8+DHvv/8+f/AHf8CjR4/4/PPPew9Ff7zbfRBODCEA32ZktuUbX7Rq32axwwEzfP+L2O7X0Yx23ptWunHEWuvsnLomZMeyAPTH7P4W/Ts2AEEdW+tBrfAOAxYrImScovWVS/6JE5pq07GlGiMlZVlj2gZtLFY7v1aDIhJOPxtFCp+dH0WAcfp2ZIOMEmQXwte67Qz+W2xVoRtN0xgnmYqdVrfclES6IlURRd2yNC1tvOZOrEA67awQ7tiVEA7MW9vNE9CUG5qqwFqIopgkSdlUJUrGSBURpymmqcnyAUhFPpqi65r1ck5rLMY4/9rBYMi1vFR2BESDiZyvrSt/LZG4xCuUIsI4ZwKjqOuW8/Nz6sYxTcZasLYDmqKrMOb1tt0zvm38T/Bs929d3xNu0XHd3P6+Wvv3m2p+QR+OtduRKg+sQl1kuFC9bawLX9vWtcNN4HrbgtOPERcXF5yennLv3j2klH0VvjzPefvtt3vG1reiKG4wtH7/V1dXnJ6e9k4n5+fnPUbKsoz5fM7JyUmfG9Ln/QSkxsnJCR999BGnp6f8z//z/8zl5SX/4//4P/ba1dVqxWaz6YmGTz/91EU/9LX/7G1zjO+rOI577HBwcNAn0s5mM+adk9B4PObOnTvMZrOesLhtPAznLK01ZVmSZVk/D3rG3M9J2/OYfz+MFvq+9DgmTAr7ovalYNWzKf7mCy+mRGPQJJFikCUIY6k3JbpuyLKUuiqxumW5mLNerFitC4xxg9venT3aFtJUkKQRV1fOVidJM3Z399hsNpyevuLOwV2KoiDPc/b2dq4nMAyvTs9oW42MYqqmoawa0iTjzYf32ZmO2NvdRbcNJBF1XXWAd4SKIpq6wRhI05hys6ZYr6iriiiJmU4nrsMlZMNBf4MMBjlV5XSYaZq6C2g2lOUGY1qm0wlXl3PHYlj/ADopQBpLpNyhLAuUmvLq9BQZR1ghWKxWvHx54iQJ1g2SWe7K+x0dHfVi7aZxWpo8H1BXDefnl12Y1jrmNpZYIgeCrenDv0IIV+mrLPsVkJTOS+2tt94mTROyLMFYjVJxXyd5vV4znbqEusVige7cDsJBw1qXIGYRjEYjlstlXyZ3vV5/5c3399G2QWcIUMPBdNvbdJuJ3WZGt0PQoX1HOKCG22wPBH7b7dB1uJINtUq3Ddq+bWu7yrLk8vKSOI4ZDoc8ePDARSg2G87Ozri4uKBpGuq67pMF3nvvPR4/fsyHH37Yg9Vw4PPjwO///u/zwQcfoLXm008/5X/73/43Tk5O+izRf/JP/glf+9rXODg44OjoiOl0CriFUNM0NyqKhX3ix5iwf8IFhh8MQwY7nNBC0B5eO3/9bss83WZ1w32+rqa1QYuuIKp1bJzuKgUq6Qu0uG092CG4f6QUSFerGc/NGWz/nlCRS9RSMXG+S2s0dblivVqyu3uHcrNGAmVdg1Q0temIW4mx0LSWqi7ZncRUbYNVkrrLFYgTiZXClVLVGtm0JIkDq1iNaRpM22CtoaoatBZoJAqXwKXrijRxCUubGs6LkiiWNIMS42UMpnEygXhAJCXGuHtety3lZsNw1/VDFLu65JtyQ1VtMAgiISm1AQFCRQxGE9q6YV0UtLVmU9UI4e6Vum3BtkgUWIgjhZGik8O1ZIMh2oKWBtAYXfcetuV8wXpdXIev6cYc2Y0V/fWiu17dYtazq9aCNfSOrJ1UwDX3hxCOZvUj0WA8Zby7/xu8M7+8ebcgX5XKg5QQmMIXh/hDABqOydv17MG5DbicirLfPpQZbO+raRpevHjR78cYw87ODg8ePOjHzjBC5cdQ4Mb7HiweHBxgjLMH9KDWkwLezH+1WjEcOoleCAb9WORtAL/zne8wnU7Z29vrmUs/NldVxYMHDyiKgs8++6z//rB/hRB9vydJwoMHD3jvvffY39/vt9VaMxwOe/upn/3sZ1xdXTGdTrlz5w5nZ2f9tfLzj+/jbRbbzwm+j8PysmHhh23ix/++zah7qcBXtS9PsOqo2rZpscaZU7sHyYuUFaPRkMEg76wknDYoSRPyYU61KdhUFXHSMo0SJpMJTVPT1CWTvV3iNCGJEsrNhuVqSaYbpHQTxsGdfXZ2pmRd1ajNZsOdO/tEUczJyQnr9Yrlck1V1SAjWq0Z5Al3dnfIs9SFtpE0jTP897Szy1IVnTl2jZKC1WZDpFz50nJTgoAmTjCtptwUCCmwNkFgu5tOUpQl2miqqqQo1oyHOfnAeYuuVkusdfKFpvMsbduaNLn2e/vlL5+AVLTGcDVbEMcJdVUznozZ3dvn6eefc34+67P2d3YnzrlgXVAUG5bLBVXlnAQOjw6YTEfBJK76810uXWJb27ZOAiCd5mp/b5fpdIcszyjLCl07Brmua+fPOhyxWjlm+86dO0jpTI+rsgIhqKq6m/w90yOYTHao64pVsSL/LRH9h6Ej37aZOA8QfZ/dxrKFv4fA0v/zEYjtbf3f24A0BGn+37bWK3zotzM0w/1sn5cfEM7Ozrh79y4HBwd99SqvT724uOgTpT799FN+9rOfAQ5QeicJL+Ww1vYD+4MHD6iqiv/6X/8rP/7xj/mbv/mb3p91PB7zx3/8x/yzf/bPOD4+vtEPVVUxn89vnHPInm6fy20MScjE+tCS3ya0Xdnu2xCAbi8KfltC/2HTrcZIF7o3xslNMQaDA6vC2j4HXFgX6hcKwCBk5LL3FQhlQbiyrY65c1BIorAiRquEQZ5TLWYIbWgrF8LWCGKlMFJjbM1qXZAkkjSKEUqhrWPxrLWsipKxcqwmxqCblrKtUFGKFilGtygDVV1hdEtTbdis1whrHVNpgNhZSem2JhaaJB+gEdTA5WLNZBhTbQrapnHfC658a2yIpKRqNVYZtGlBxWhjMUYTRTFx6qIEq/UK1YF/NyZYTLWhrStG4x2atmWzXqHKgkZb0skeozil3iwwbYvstIzlpmRTt2C659nQlZ5ykg0hFUpJ6rLuxoPuPpQSKwxSCVQk0VZBfz93C14pnbuCvy/9goRQjdqx5rfIAdw1fn3NP4M+7O2lcp5B8yRJCHRukzt5wOSf8e0Qt9/Oh92NMTcM+P1iOBxT/Jg3nU578OjJl7Isubq6YjKZIISrphkCqHAOkdLl3Ozv7/eJT2ma9vOHj0r5sceDVe/N6qMAjx49omkadnd3+Yf/8B/2BQn8uSilGI/HfWT37bff5vz8vC/q4ueDEGDnec7Xv/513nrrLbIs68e3tvNO99t5D9eXL1+ilGJvb4/ZbPYrCXK+37cX/b6PPdD0fezPz7PMHjP4vvPaWGNM//r23Pll7UvBqtHGaZLAec9FEYMsdStjbYiiGBBUVYkxbWc4n9PoliRL2T+4y/7BEcv5ktVqiZTO0L6uXSWPSCgGecbB/h5ZEiMjV67OWsve3pTBIGd/b5fLyznWaIp1QaRipuOpE71ry9VsxXxeMBqPefvBETvTMXGSsCwKhpkry1c3NXGcIYV0/qutpilLJIZBniIYAxJtnAi+KAqaOEHEMeWmoGlqlLCYtsVqjYolaZJQlguapkIKQVU10MkO3KDlbvBIRUipyNKM0SAFKVFRjK4a5rM5m6pitSqQUe2E+eeXqEixs7tPlo24vLykrmuuLucopSjLkr29Xfb39zg/P2c6naCkYjyeMB6Pubq66jW1/iZq6oZ8kLvkt9T538VRxGazYdMJw6WMKMuNK6Uru0lNSDZlhdaGJE/J0hzsNVhwutYNw/HYVfbqtFZuRPn1BrjfZAsfvDCMsw1E/UMcSgHCjMgwrBWCodvYV/93+NO3bbAaAraQTQ2332YCt/cbgtyQOfThKp+Z6hnz4XDI8fExo9HIJc8lCe+88w7f/OY3iaKI4+NjmqZhPp9zcXHR989yuWQ4HPbh/v/r//q/OD09RQjB17/+dT766CN2d3f59re/zcHBwa+cx2Kx4OzsjL29vRvhKn/84SIBrhMH/LmE/R0mFIR9/VUSgG3A6rcPr/Nt/f333bQ2WC2wPnEKZwdlcTpUYR1YEYGqEehq1HcVk5RLtBI4LanoGFn3M8JEGcSpA1HGQGswFjZlxWA0QLYtZbPGQV0wxrE3rW7RdUUSxVR1S7FpyAfOL7UuS5QwKGkgMsg4R7St06Ea6/5pF76vm5a2BSMkooVGF4i6YZAnSCXQEvJUkkvL01cz8mjEcHZGNhgRxxnWVtAUZOm4Y+xrojgmGwyZX54x3TtgsnOH8WQP3R1DWVWUZUMSZ+isZb1aIqUgjhOyfEAUJdiuvO1gNAYZc9FUtE2LsKCN81lVcUIkXVlsCyRx2iVaSWpt2NQNJy9PaesWqQIrIWsxxmVQKSmv/VZ7drVLPhQSbRuscAy1sT7r6rdgUP2KFj7bHoT4392c0f7KeLktq4KbOsnwmfaf8dX5xuNxX2HJP/O++I2PCgsheunTZrNxi5fVqgek6/Wa2WzGw4cP0Vozn89vHSP8ce/s7JCmKfP5HKBPLPIyuPl8ztnZWa8V/fDDD/mbv/mbnv307ipeKhdFEePxuNe9eleA8Xjce6l7WdUnn3zSzxfhuDkej/nOd77Dm2++eYPd9OfogaI/r/F4zC9+8QukdNZbns31fR6O32HU0ZdqD+UeoUuBB/D+u0ObLv9a2J/+enr2/Mval4LVcKWipECnaU/5eoWU7AZB79/pD7iqKnZ3d9mZ7rB/sMfO/gQpoK4a6qqmruvex9Xf1EmUk2dDskEKaKJYdRWUIuLYlUudLdfdTVdwfn7J2dkZddUQR4okTdjZnXDy6hWbsmR45FY4q9WKyVh1DgCutJ6v4FPXZVepK6FuGuqmcUUKtCbqxMlScmOlpZRis3bUf5qlbNYbd4wm7kzyX7qQXXfBlZREcYKKE+qm5epqDipiOBpxen5BmiRczufs7uxgjObly1OkgHfeeZc333yT2WzG8+cviOOE9957H6VcRSIfcjfGOoup0vmu7u7uOh/BsnRsR9sQqxFZmvQ3UlEUThahrin8yWTCYrFwVTg6tmrTecmuVqt+ZepsORLKskIIxyyXZcVmU5EPBr3x7+ts2yH5EIRsM6Pbmqdwu5CV3WZIt9s2sA11StthMLhODLmNYd1mZrcZxu0WMrBh+/TTT1mtVpyenrK7u8tyueTo6KgPLb377rvcvXuX/f19hHCV3Lw/6mw26xmMly9fcn5+TlEUfWnWo6Mj/uk//af88R//Me+9957zFe5CUeFxefb29PS093XdngDCVb3vy9vY7bCfw2ux/Xeo2w1Bcdh3oe2K/8xvQ9PaZfVb45lV60LgvX7V+QT0eVXSIiOBihUqjpGxQinR1ZpvXUEAKUBJiARWRZBkCJU4o3pt0K3BKuWkB1JhcWHGcRyxUpq21tR1iawajK0x2QCsIkoTyqolkpam0axNi40Esa5pmRONLFYMEHSLZyGIhKKoN7StxipAt8hWoxBENqIuDZVo0EYgteZy0fA8MgwH50x37xJJZ9CFiDD2esGpvX41ilEeCEmXI6FkRBxbtIa2aV35zDjuvKc7o3UlabRBxjFC4oC5ARmlTgqAJc0yRqMhRredLCEiTRKsthQbzXJTcXJyxnq96gGm7UCqMRZrXEkEKYOFNN0z3r2mhcUGSxH3nuylA2FK1m9T83XhwwhRyMx5hjV8RkN2dXsB6p/b7fE5ZAg3m00PEo1xLjTj8Zjj42OeP3/OarVCCOcdHbKMnl0Nv2+9XjOfz/nbv/3bfl9t23bVJa/JH++0U9d1zzRa66wBlVI9YB2NRpyennJ8fMzjx4/59NNPuX//Pm+88Ubvke7zQKy1vTWU78M8z4k6Umm9XnPv3j0uLx3mAfqFQJ7nfPvb3+bNN9+8cZyepfUgOIwieRxXFAX7+/t9Lo6XGfhrE4JLcBLIyWTC06dPe2AaRiS32dJQKuBBve/XcMz3lb++rH0pWPXUvRvMrw9kOBz2dXC3Q5VKKfLRsD+QKI6I4hgwNG2Dbh1t7nxTLZPJhDzPSZKEi6s5RVH23n2zqxnr4iXr1Yazs1PG4xHlpma5XAGW5WpNWdYkccS9o0PGkxHz1YrZbMl0OsH5xJaM8gEYS7nZoLrJ1Hdk2+puIKkR8rq+b1VV6K7+7WCQU9fO8qkoCsqqIk6z/kZ1K/Mc3T2wSZqw2XSJWRiSJKJqauJ81zHHQnJ2fsl4MmYwGLBarblz5w77+7tkSdKHqjxD6m7SK87OztHaMBwOmEwmvSVVUWz6xKjpdMKm3PQ3zHg8AmNIkxijW6I47ityVFVFguivR9ukSKE4efGyY82vC0Pcu3ePqqo4OTlhPp/TNA3D4dglXaCRSjGZjik3pbPA+TUE038fbZvlDIHoNqsWMrDbIGkbpPr7PsxoDJna8Pu3AdX2PsJEA79dCKLD/W9v80Xs8WAw4J133uH8/JzPP/+89w0cjUY92Dw9PeWTTz7h7t27PH78mHv37tG2LVdXV5ydnXF5ecnFxQUXFxecnZ31OqqiKJhOp/yjf/SP+B/+h/+ht8DaZlPBTQCfffYZ//E//sdelL8d+t8Grrf1lz/37aSMUP+03Xe3Adnt7/L7Cu+B133v1o0lkpZIdlpRYVGAsF3NdQVR5JJzpAChJCpxBv8yUsg4duFmKRDESDTIrhBArLoPCZS0jv2LYlSsII4pjSFrDVZI4uEA6hrZCuIEWg1t5/VqDVgVEcfONaVtXX9rK5gvNxjdMDyIacoaIWKnYa1qdNPS1I2L2JjuvrYNslHUIuZpAeenl5RWoaKM2bKkIuFigdO3ViWVVMSioVUxjdWuSII1qMgxzlHiXQNACIWSUTdWRyilwUKaxVTlhjRJ+4kUIRFJilARxhqauqGqXMVG3bqS33niyndvygpjceWGpWNdq2LD/GrBy5MT2o7Q8SF9a7rnFYESjgHv72XcAsQx5w50u9cAC0p1EQbrJHi/rS3UYvqCANuL8bDilGfy4ObY6Zk4uCYM/DPq69ML4fIkyrLsSZTDw0PKsmTQESY7Ozt9GP3i4qLP4+ixSaf59Djm6dOnFEXBn//5n/PkyRPeeecd9vf3eyAlhKs2dffu3X4cCcG4H992d3d58803sda66OVmw7e+9a3ep9qPZV7WUJYl5+fnrNfrruTvALh2VyjLsnfluX//Pi9fvuw1q+PxmG984xs8fvz4hgm/dw3woDD0RfVFgHwC/Wg0upHdH4LMcI4E2NnZ6XBT218vP9Zus+a+CFEYOfR9FuZC/brRrK8oCqDdQ2ctUrgyca5m/ZCmdTZWdV27rEip+mxi1dHwjmGTCBGhIokxYG3ZXyTv01XXNcOhLyCgXSUWG1E3Lft7+zx+tMNiMeOzz36JUjHrdcHJixeuSoiQpKng+NhVkTg7fcW6KJlOp1R1RdPUaBT7+xPOz87IBjlZV7feGNfhURTRtqbzDHQrjqosqYE0TSjLgsVizmAwcCCyaWjN9QCdJC4xabFYON/T4YiydA9kHEWMRkMarUEpruZL6qZhVWyQyr1XbDbOSmMyZrlcEamY2WyO81u07O/vY4xFqYjNpmS5XJLnab+YuLq6cgA6itHa9hrCtmnZ39thNMyRjfNOHI1djePBYICxlqvZPLDmKonjmDfeeLNn0Dy7+uTJE/b29jg6OuLq6gohJav1itFwjMFycXFOFKXsTHdI4oTVcvmVN99vsoUJUf7BCwHPNgC9DTyFjNw2s7nNoG6D4vBB3A5Ph0k9IfgM9w83a2Hfdgz+PMOQt58cxuMx3/zmNzk5OekTmxaLBVEUkec5z54960uwbrr77+HDh3z00Ud9Hewf/ehHvHr1islkwt7eHu+99x737t3rF5gfffQRw+GwD+GEBQiqqqKqKj7++GP+y3/5L1xcXPD+++/fkKj0yZpbcoqwb2+TW2xvu73Q8J8PB9lQB7fdn+EC5nVHBACa1tAogY4EWjhmVQjrigJYBzqFkl3oTRElMXGWEicuehN3TihCCPdZC1JJVByh4hiLpCVCRDlSwHKxoGwarIzAaKzt7iPjFqEqAhFJNqXEWkmSZsRp5twEtEsEMkKjsoR2U1M3mihOQKUuU96CbVt002Jaw3JdUjcaLRVSW7QWXDUpz+c1T1YLFpXLjRimEeMkRWWKeeESu4rl0l27RCCSEVXTOKeEDghGKiJOXEVFAIRAKuV8vRHISNNoTZrkjMf7REnmpFlCECcpMkpJ8xwpFVW15PzsnNWq6OVSu+MhRteUZc1oPMa606e1luVqw6vTM1fkhU4Xa1q0cfNnEkVE6mbVIHASDaz3DjWOALC2d3u4Zvx//Yn9dTQ/lnmw6YGlX9QD/ULSkzGhpZMfv6y9LvXt3wvHTw/ioihif3+fzz77rHe8uXfvHsPhsPcCzfO8t37ymlKg9wP1+MMYZ0F1cnLCv/7X/5q2bXv7vp2dnV4Wtre3x3A47BlQf2186XUhBOv1mslkwtHREUDnhT7id37nd/iLv/gLrHVlVD2b+oMf/IB//+//Paenp3znO9/he9/7Xv8dfpwsS+dxv7+/z6NHjzg5OeHBgwd84xvf4O7du33/hmH/ENj7Mc8TcZdd+fY8z8nznMPDQ05OTnoZQsjCevZ0NBrxxhtvsFwuubq6unHN/TUNx16Hq9qeefX97JuXavhr8FXtS8Fq1TgfuSR1zGGaJIClaWrauqTVzgNQKWdOL3ClSaPGiaut1ggL+RAEMUYb0jRhOMyJYsXFxSXLxcKBtSRhMBqRq4jBYMggHzJbzlCRYr1eMp8vUDJiPr9itVoSJzHtpiVNYvb2Jhwe3iFJMtZF1WXlHfZyBaUky9UKIRWJNlhtkEJSNy7XMokjBA64zmdzhHRWI9ZaRFOzWq76kpNpmqKNQRhYr1akSYJMYixQlbVL1FIWGUVuAJWSJElpGs1sviBLU6rG+aPOF/Oejk+ThLOzS/b399nb3WVnp2C5WhJFEc+fv2BT1TTGkEYR94+PsV3G/6qYkQ1G7O4fdKukIWevXjgqP1XEcUrTWOq6JB/k5MMhTd0gpCSSkhSn51mv1wy6VefZ6SviJCFJYopNQdUlX23KDffvPWBv7w5lXXWUfkOe5Nw7vs9sNnOlcwdDd/6vsYVaR7gZ4t0Gjn5ACBNxwgnBP3zbEgH/YPr93wZY/b7CScYPuNtANQSv2+eyzcpuMxHbjGMcx9y9e5dvfvObSCl58eJFv4/FYsHFxQVVVfWTRlmWPHv2jF/84hdMp1OKomC5XPLGG2/wB3/wBxwfH/Phhx/yxhtv3FhJ+zCVb1mW9SbZL1684NWrV/3Av7Oz8yts8m3ntP379mthv4dgNVw8hM4Bt4HS27TLtzHjr6O5BCGDtRJpQRgLOECGUEjlnusoSlykKHPauDiJiZKEKIk7AgEXLjcWFSXILCOKE1dTr2kxuOp1m3JD1WinRxcKqSJao4mlREQRwzhzyUeRM8NP8xykoKxKYqloLURpRhRJ6o3Gioh4MEIkGabV1E2DLjegNbrWlJULobfGIIRisYafz9Y8WbQ0FobJgJHC6V+VIlYOTFabDavFjDgWVGRIK2jbukusirDWVQpEKqxwCUwIXHKUUs6aSzp7J2Msu3t3yLIBpjPdb5qG4WDAaDx2E2vbsl4uWK8Kl0RqTKd7LYjjlGwwxCJpWkNV11xcXnE1mzuNr3Ve1cZ295l0PrBwky0UUoKQXUEHL2Xo7kXZJdN1JW2tp1qdNoBOCeL2+Tpu1K3mxwOfXOXZw5BdhZvjbsisbY9/ISsX1rL323gANRwO+/ByVVVkmYt67u7u9k4kd+/e5eOPP+bq6qoP969Wq46kcexnnud88sknSCl59913e7cBf4xRFPHgwQOAHgiCu6d8sqrHCMvlkkePHvWyAM8qf+1rX+Nv//Zvuby8BOCHP/wh/9P/9D8B8Du/8zs8efKEb3/7232IPoxG+fH6/fff58033+TNN99kOBwC1/eUB6rbwNDLu4qi4OOPP2Y+n7O/v9/JFp3j0HQ67V0BfAuZ1QcPHjAYDHqJWNgvoWY4BLi+GXNtA5plWZcnI/uk7l9nzP1yn9U4Js9zt/Mug6+uS1qjsda9L40DqlnsgKw2javB3LrV5Hq9pG5rpHQ6Kt22JLELH+3v7zHIXPhwsVgwnk5J0gwhBU1dIwQUxYrZ1cyVa11tiCPF8dEhp2cXCFFhMUynY5SKqKua1WrV0fZO9yWlW1UjBHGaOC1qFFF3N3Xb1hTF2nVwa4mURHfgJUkSLs7PiJRwetdOFlBXNYPBkDiKXCa9NRwf38MYweXlFQd39pivS6xxmqmyrIgixenpGeOxq/yws7PrQldKcXBwQNtqqqrBGufnKoRblS+XS6qqcSLw+axLlnChiziKObp3j+lkQpZlLFcrri4vuHf/AXmn4bm8uCBSzsKl3NScn1/0K984jpFCdMliJWdnp731StNqxl35Tf9A0jEucRJTNjVVXbMpCi4vS7IkxWiNlIJVl9n4OtttICgEOSFQ8aGM23RTX7QP/6Ddtr8QQIXsbLjt9n7D4w7BZwhyQybRTwDhQ+6Px28fRRHvv/8+e3t7nJ2d9XZWz58/7wcvb83m2dDnz5/z6tUr8jzn4cOH/It/8S/48MMP+4IfSZJgrWU2m/WFIubzOUdHRwwGg/67h8Nhr4f1jMK2nva2Pr6t78Jtt/s0/D3sl9sWCP6nB7K36WLDe+R1NYvzVbWmq2JlLXTsquq8Q5N8RBwnRGlKlMZEna4/TlOiOEJ0YBWrXVJokqOyASpOHePXLgGJbtuulCgIpGMCLY4BlNeaz9WqJR9mZHFMkkVUjSZNUoy2yDRFJim2bagqTRRnDCYTtFI0m4p1XWObklQa6qam1g6kag1XheWzK8vTdUmLZJimZNKSSIFtnZY2BYaDIWXZspwvGA5zVDZEI9Gmpm01kersjawD50K6ogq+YIIQ1xEWpVx0LN3NiOOIOtDPpUmC0Zpys6EuS7C6c3FRgHE2RUoyHE8QMqKsG9qiZDZfcnF+SVm3WCs6MGPo18jCJcdp3WJ0UGUIF9o3HUPrHwkVgFUQaN25DXROADcyWZ1Fj7uHXyPr6p8dH172Y4ovLuJtkMLokg/B+5C8JwW2NezAryySvevA3t4ep6enfZ6GZw+Pjo7Isow8zzk+PuZb3/oWP/nJT/irv/orPv30097SEeDs7Iz9/X02G5dk3DQNz54946233uoTo0ajUS8B8MenlOLy8rLPbjfGMBqN2NnZ6eVSPuFJa81kMuHRo0f8+Z//OfP5nL/7u79jOp3y3e9+l8ePH/PjH/+4Z2m3SRRfhChJEo6Pj3t5gh8zPYsZZuN7JtsY0zsL/eQnP2GxWPDd736X6XTa9//bb7+N1prLy8sbZIBSinv37vHuu+/2mllf1SskXq6fr18tDuGZ6VDTGs6fv06+wJciiuFw1Ie+nW6nomkdbZuk6fWTZQzQhU5l1K0AcebR1roKHkniJjMpqVvXOZOdHQbZgLKqyPLc0eJVicWVeI2kJB4MaKqKOFK0jQstGu0HHkWepTiz+4L1ugALO9OJK6uXxG7/m5JiUxAlCXEcMZvNGI/HmC5bzes3hHBG2LZLGCvLEmsMMopZFate7+GkASXrYsNq7Qz6Dw6OGA4HXF5eMhmPMLrFGhduuLy65PjokN3dnX4VmOcZk8m415EoJZFK8PzFM5rmgCiOsEZQNRVN27K/v8tgkLNcLfn0k58zHI3YmboQv9HaeRwqxf7eHpPxECEERbHGGN0ZULtiBLPlvNcWb4qCQZY52UakGI9Gfb1gr0Esy5LRaORu2iiiKDbESUqe5z1ga6r6OqwrbobFX1fbBnnbq77tgdBv53+GIeNt1jQEjH7leVtYO9z+i8BQCLb837d9dhu4+Wu4HRoP9+dXrA8fPuwToD755BMuLi54/vw5Z2dnXF1dsb+/31tXeeH/7/3e7/Gd73yHb3/7233GrV9Be1Non3g3nU5JkqT3G/RsgGc4jDF9QuN2f4eMcMjAfFmoczsxKuwbv69QJhH2a8jqbF/38Bq9ziZw5vF99rh04lQZKeJsQDaekownPThVicveTdKUJM26Sk8CiwGrQRuiJCNKB86XuqqwQuGSuFwCnFAxCtktoGMGeYJuClSk0K0mjiOiJGKY5iAlurVEqXJlTzOXkGlaQ9kYxoOIZJixqjW6rcFoaDUqdQVXDO6wWi15tWp5ualpDGRJhNGaSmsaDMpapDHIJKY1gotZwUCltI12EgMrKCtXGlvEMVq7axsHmuP+OQ+uf6QiWt1i/PuA6RJqyy43oSordA+wLE3doK1GSMWdnT2SNKMoSow1LFYFV5czytKxvMYYjDY9k6ukQHVWU621fSKYIwA6/W935bs0OjfuiGtnEmN6x9V+S3dO1p8oAEq9PpIgXDz7fg+1px6g+LHL//RJRj6xJ2RORX9eqg9x+2ff+4Du7Oz0rCrQA0drbe8A4Nnew8NDvva1r/Hpp5/eqOjkn/m2bXnjjTdI05TZbEZVuYTsJEnY3d0ly7JeVuXH2ZcvX6K1Znd3t3cAODw8ZDwe96xrGInb39/n8PCwT2D99re/TZ7nPH36tC9J7ce0bSmTH/vruu5LvPo+CsFqOBf4/gcC3/gBeZ73gNezxuPxmJ/+9KecnJz0ofyjoyM++OADiqLoQb6/1uEcGR6zP9dQ1uGlHU3T9HZf/y3EwJfe2WmaYUwnhLZOZN7qpj+gqLuB6qYlkqp/drTV/QOrjaYtuonIWtLBkKwzq1+t16RxSpbnDgQDq+WCqq5Is8wxdURUmw1Pnz9lMplS104s3WooNyVZ7lYakYoo1hushSxNwWrqsmFvsuME9YOBS/QSLqFovV5TFGsHEv0NYa/DwE3T9BrW1XpFWbkqFKenp9zZv0NdNayLkpPTc6QQRHHCcOCLF8BkNOpW/M4apig23LuX9hUtLi4u2N/fdwL9ju1pry5IEpdJvymcNlV0CRZx25DGKQxy0FOyLCcSsJzPMW3L7PKCTVGwKTdkedIDCK2dR24cRwgZMxqN+ixG0zYoCaOhW/laBEdHR8znc6c97pwgkiRhPB4zGAxpG81qvUZb25fnvLq45LzTtxabDVI5243X2bbBpWd6w/AT3DSBDx+eUOgfDpj+9W2w5FewcK019e/5/W2H6reZUX+s4YMfbh9ut/2Qh+yiMa5MsA83fe9732M6nTIcDvnd3/3d3p7l4uKiH6T+4i/+gslkwuXlJZeXl/z+7/8+d+/e7Vfey+Wy90d0xSg0VVX1k8B6vSZJkuuCGda5cKxWqz5BIOy78Li3wfhtfRf2WfiZ7X34/t/+vG+3yTlumxheZ1MdANHWYoVFKEWaZ2TDMel4l3yyS5KP3SIziYli5x2dZpkDqyrudZDGOJvBOHZA1iIoywprBcZYNlXJpqoxOECc54NOu6kQNnXfj2aQjzCmZjQc0LQNsVIkWUaUZmjcRLlcrBBxzGA8AiSY1kWtrXVjTZrTNgbTGmpjWdYRp6VlpV3ZVqyg1QYjfWlYizKG3FhqV5MVKSHKcoyMqVtL0zE4SmsaHKgcTiMHAq1jVoVwuQ1CBDXak66crXW+ttq0iG5B0DaaVrcIqUizAVfztSuhmqTsTIZdlb6KTVlT1RXnF5fUTePAfsegSaWIIkWknFuOFC5nQ2owrm6uS3JTyiVUaT8eCYSQHRscuoQANxxXfxW4Wms5fuPtv5+b9Ja2Lc3xLGDoiuJfD8Gq17D70LGXDoQJWiFb58eX4+NjdnZ2ePbsGbu7uwghGAwGPej1i2qtdc8EfvLJJ6zXa8qy5Ec/+hFf+9rX+iI4Ozs7vPvuu5Rlyd/93d/1Uigfun7jjTduMIIeMPvIlWdgpZQcHBxweHjYF8cJmU4pJV//+tf7Ai3D4ZDZbMbnn3/ON7/5zV5P68/Bh/rD8T30Tt3Wh4ZjrL8fPXA/Ozujrut+PvA2Vd6lYTAY8OGHH/Lw4UPKsmQ8HvdSiWfPnvW2XnEc92RIOLdtkzJ+zvQOQSGJ4nHPlxETYftyzWpZ9w9MpGRnrq/dw9+tmHwoWVpLFEdoDdJqpFRYJZFaYm1DEkfotnGJWFlOFCkGw2FXgcRNrmmkODjYpygKoijmaj7n7OwVRbEmTTOWy4L1qsJaF8aJoog7B/vs7e2wXpdEUUw+GDjdqDA0jaYo1k7sLzumpzNdjmNXvKCpK6TqSgt2q9c4ThAC6qZBCpflVzf1dRhTQJzEGGMpNhV1XRHJ57z3/ttEkaTYFGRJgokFkRQY41aEPgHr7l1XmctbffkLmOdpFx7TziRbW4ajjL29XZbzJVVZcXx4xIN79ymrktVqxXq15tVy4UL3dUtVbZjNaubzGYeHh0RK0bQNaRKTJDGiVaRJijYaJTJnSWY6CyXpvns6nZIPBkjlHrymK8oQRTECJzLX1vZlVaMoYrqz49wHJlMQ14btr6vdFj6/bRs/iGwDye2Mcf9eOAh4gLMNasPP+ednOwQebrcNRMOf4TH5/YXHFzKsfhCt65pPPvmEjz/+mMFgwHK55PDw8EaG6P379zk+Pu5NrPf29noG/dWrV/25+RrV4cDmmw/DeTbWr5aLouDi4oKnT5/Sti1pmnJ1dYW1lul0+iuWXdthIf93CMC3r0GYMBcytCFo9dcmDPkDvSegb6EUwE82r7P5Mp+ubyRpNmC0MyGf7pGMdokHE5J+MenBqiv24Wx24u5cLdZojNbEkXtda92VKXVOKEVR0mjrgmNY0iTrJq8IEQnnI02EkhaJYphnNK1y5bWzIZWWji01zvh+PJ0w2plgsOhmQ9s20LbUxYZRnLCpneVUZTSnlWXZgrUC1WlfXWJUt8jA+XK3tiMOTYWKBsjBEKMS6tolL/n8gqapqTvGy9KBJ+XD406rKoXE0CKjiEgqpHBMJtZirEYqCV3irBWWLM+4c+cO55dXRJEkzTKaBjabknVZdaFkZwtklUJYHMiNE9JYEXWPi7besF8glbzOiRDOc9X4IgP4MeT6RvjVRRzdT78Ic4xsF0L7DdyRv17zoMkv3D0QBW4ATQ+sPGvsIzb+Wfa6Sz/WhGOxf453dnbI87yXH52envbVn/znvSuAZyJ9ydHT01P+4A/+gH/37/4dm82GFy9e8Hd/93d8/PHHPYiTUpJlWT9uTSYTDg8PbyQteZ/qyWTSm/p7sLi3t0feJXK3bXtjvvfRp2984xvOQ/3qimfPnvHGG2/cKFCwv++qkfnxNZxHPAgNPU639b9wc/7ZbDZcXl722/voaJZlfaJb27a9LebBwQEAV1dXPH36lGfPngE3XRx8275HQ4mV/93fA9uuMX6br2pfClYXi8X1KkhJhBREUQbCCf51t9qL0xSMdmbUkSJK0l6PqTqwY7R2VULKgrYDR87H1OmGhqO8K2PXUNctT548RQNXsyvKTYlBOPCkWopNwXg0ZDQaMh4OGWQ5ddUgBJRVSaRaJqMp1mjKukZZyHNFU1fESYaxFiXd9xNFrmZ2JKnLChFJ6qZyDJGAsihYLhboukYqRdW0bDYlSggGeYYQrhJL3bQ0tSZNMnamO+xM5yyWvrxkJy/wpRO1ZjQacXBwhyhWvHhxwmw2Y29vB2Msum1Yr5dkgyFl1fDLJ0/BaqaTCVGiqKqKZ8+fYYyzKHrj+AFat7w8OaVe1tRNBdZSlxXD3R1GgwEqUgyHA5RKr8XvTdUPBEpJlvMVLmKmUVJ2RQAA7SaNpm6QUlIvGyY7O4xHrqpWudmwKStGk6nz0W0aimLzZbfWb7yFD+0X6UX9dqH20bcwlOFbyMaGcoDQJsm3kNULAa7/GT7M28e3zQz64wwHhJusy/Vq21rL1dUVf/mXf9lXjPrJT37CcDjk4cOHNI3TP3sAa63tK8FEkdM2x3HM5eUl6/W6H6DeeOONbsHivPIcu1T0tbU9A1uWJZ999hnr9drpqJdLlsslZVn25X/98Yb96Adef37huYXnHA7I20A2/FwISMNJbpvNDkGs38frXmhJ//UGIpWQDKYk433SyR7paEqSj0i6cVl1DJ4zt4+JY0XcAW4BDqwa0zGLnW8i0LQNdWPYlDVFUaKkGxeElEglHWuKQSmwrSSSCbGyRJHoKkMlaCRoN5bWVjAYTxgNUiJh2Kw3LrNdG5pyQ12VlM2QygpQEVVpuaxaKt3JlKyAKGIwnrKezbGmca4wwo3h1rjqhtqArg0i7axysIg4QRtDpBQiilgt54x271JTkyWxS0aLa1qtXUEW3TrvWtOilOjsgoYMh2OWqznGmj6kLKVgPB4SZyltUxFFMfPFhvmyYL0pqMrSZfsHrJmSilEWk0UAltaAaTvvXGuJkrh/Xq/vxZsLY4vpdKrWyTnw7gDc/Bl8AkGXKvZ6mgenPsHSM4TX3uz8CjAJvcv9ez5L3I8P23kEWZbx/vvvs7+/z2g06pObfBL0nTt3enDn9z/p8jo++OADHj58yMOHD/nggw+YzWbs7u7y05/+lPPz8z4KN51OyfOcV69e9ZpNv3j33+MqcrqQtreq8uNcFDm5obfJXCwWPVD3LON4POadd97hf/lf/hfW6zVvvvlmR9RFfWKX94/1JIMH3V7va63tIqi6nzt8P/p5xX++KIr+eJ0l56BnVeE65+Hy8pKf//zn3LlzByFcAvb5+TlVVfUFGDxREY7B29FGfwx+AbGdcOVlhN7i6qval4LVMKznHmDXgY59sJ3O0t+g6TVtL52NiOx+xpHTRdR1jcaJzIUQGKmutamJotSaxWLBbDbn8vIKIyVta2i1IR+MKEuXdPXo0UN2JmPiJKYoCk5fvWK5XGGQWFyWfD3OGOQDVJK7fbQGKS1Nq0nThNEgp+3AWt1qN+AohRWwLtZEyumnjHbWXUkc0xpDWWxYRTGDPGO9XpHGCYXcUNYVZ2fnGGPYbEqyNMUKxXzuQvm+zOV6veLOnX3yPKcsKwYqZzIZM+w0JLOrudtvktB0GY7G2G6VJvn5J59y8uIFVV32lhhZ5thtrVsOjw4BS1GsnZet0Z2FR0a52ZBmIGWXwNGFotbrNU3TcrB/gFSCzaagrtzArJQiimO00X1IZ7FcMp/PyNIBVeXAymDgKnLEiSuu8N+iRflNNP+weGAespi3rTy3w8K+ba8Y/Wv+QQsH2+3v3t4euHEs4f797yFADoHVtl9dePwepHod0yeffMLTp08RQlAUBS9evGC5XPLRRx9xcHDQ69C9HMQ/41475p9xrz1113fQT66r1Yqf/OQnfcUrL/nwoNeXEnTPgsu0/eSTT/oBy7MvX9QHYV/c9p5nwkONcHh9vMg/9HQNB0f/+/Y189fn9d+73T8pUElGMhiSjiZkwxHZYEic5aSdbV0IVqMoIlKSKPIsvwUTLMLs9SKnaRtW65KiqBEiom01UsaoKHLZ9F1iUhRHZIOMSFjaagVWk6QxYDG6Ihaun3UcEyUxu3u71JsVVa1J04y2LpE4i6uiqhmMJywXS4aZYKdoWKWWq3WFlYKD4we89/V/wF/85//I4vIlAoiFpNWu+pVSEU3TzR3We0gaokh2VKQlTlKG42kHRGXHuF6zrUCvJc2yvHsur58zb1voE4KSxFWmitKEpopZL9cslisWKzdmWusArVKKOIqdPCKSDFJFLLSzRDS2A+7W2RV2JTirbmyXUnTH0CXtSFcQQFuLtc6rQAi6ZKuOPBUgPQuLv7yvt9yqD7n7584nBAkhermQl5VtM6pef+kjOB6w+tB6aHE1HA4Zj8fs7e31IHdvb6/fnx/3wzHNj3HeIcCzrg8fPuTDDz/k+PiYn/70p/yn//Sf+qp+z58/5+nTp4zHYyaTCaenp/29NJlM+jn9+PgYpRSr1Yr53OWELJfLPss+SRKqqupBoh+brHWFDeI45p133rkxLxljmM1cdNTrSnWXY+P71YfTw0Qnv/D3Y2xd187GsmN3hRBMJpM+ihbqdf12w+GQp0+f8vnnn/fnGzKiYQQqHJM9iN1m1v1+PcANZQA+KvnrtC8Fq76EWBRFJLGzMrq5EjSdP2nZidotDYY0daEpV8f5OrQRJQltl4wjhATbmc4bjdURTee76jQs8PTzZ6RZxnQyZbVcobXLhjw+usvezoSqrpiMBpwJWC8dKzgZjYilqwstlLNhkdbVAbVcPzRlWWJ1S+SrlxiwbUtRbMizIVhL1VWUMNrgak1HZHnmwj7a3SSDPHPaJ0P/EDl9Kxhd47rFopRAKbdK8SucxWJJFEc8fHgfmcFyvuTOnX3atnHeqaXT7hwdHjpbrvWa2dWSonBa3b29PbTWnJ2ds7u7w/379/qbYDqd9CBD4KviGFbrBVEV9SEAr031MoDJeMJoMqFtWpy3qxt4NkXRC9Wn0ynrTcHl1TlNbfoBwVtrjMZDsvyrK1L8plsYYt4OoWwzqSFb90X7CQFUyJaGwNT/He5nmwnd/j38bMj03gactmUIIZhu25bZbMYPf/hDiqJgMpn04aeiKPirv/or7t27x97eHg8ePKBtW/b29vpB1Ie1fH/52tXD4bCvylLXNScnJzx58oT33nuPyWRyQys1Go16/ZNnASadq8SrV69YLpf9pOXPMcwE3j6nbXC+DfrD9/z74aAf9udtrLUfsLdDja+1+fNSEfFgiMoGyDghSjLiJCGOrhksNzE7sCqlIw9cX17rG621XdoOPRAYDnMWqwIRx6g4pSwXGANp6UqIFpFgZzQgkpDmKQqNbguXMKUlpq2wRhNFGRpNIi27uxOSWFGXzoBfSEWaJuiqBqFotEUoQd1qLIKos6RSSqHilOnuPst1wYO33uPH8wtsW7typlIwyhISBaPJhHiQUwP1pgRhECiEcLpOFSXESY7VrtiBMQ6Yby98riutdXKJDswabSm7eagPoZoGK1yVQylrB477ma1bFCunT42VIokVFkujHavaWMeNImAwzLvE2hJjQvgc3pMA3TjhHQ3oVAHCFxfgOuTfRThvvPYaWqgH98+dj3Bss4rhcyqE6MPr4Xy07cMaRRGTyYT33nvvhrdokrgcDV/Ryoe6/fjnfVa9NMADNc+ea605PDzk+fPnWGvZ9i5JKAABAABJREFU29vj7bffZj6f07Yt9+7do2maHoB6436/kJdS9kWO/DjpZQH+PL1Xqp+PfF9lWcYf/dEf8ZOf/OTG3OHZaN8H4T7yPO8TpYwx/ft+3ApLhXsJhC+h7b1mvZNLOI6G5Itn/sNkVn+dbpNUheOmB6qhHjmUfoSJwd5d5tchCL4UrF5dXfV6teFwQBRfl+EKJxfstXVCVVXMlwvSLGXQZZS7kJQbFLxnXNO0yFSRxDHolqefPWFVLEEoNpuSqq6whl5rNY4S0jTh7sEd4kRRlQWL2YxWawSG4TCn2DjXgMkgQwlLWTVkkSXOcsf6Ro45MMZg2haJQUUJuvGuAC1Z5sTOPkUzyzJKoxEiYrUusOCyATuwmsQR1rrMUAAhJEmacvfwLurqCiEXLnsVS7FZMxyMWK1WjEYjdnd3mEwnKCXJs4ymann69CnWOm2flCvKzYaL8zMGw1F389VMJmMmU1fbPcsymroGK7DWMJ6MGOTDPuEly3MEktVqiRWSSCWOCZARO7t7GOuqcqVpioodwN+Z7nbJUo5hvbi6Qjc1dcecTSYT5qsFTdPSNLpjyn01rwhrNdb+qkbz77P5B8w/bNuMXaghDUFtuI1v2/pIDyLD7cMWakzhJpgKgZP/OwyDb4e2/edDMb1fwYZAzlpXLeXnP/85n3/+eZ9gt1gsuLy85N69e5092RlRFPGjH/2Ie/fu9Wy5r1zlWYS8c+fw2aa+dOFoNGK9XvPuu+8yHA57G5RvfOMbvV1LURRuITcY9H3pk7AuLi76Ki4h8AxlF9thP78NcCNjeDvsFF5PPx75z/l9+cHztu23AfFra0YjpMQaTd22GCGRibOHUnHiyol29kB+QlDqeuKXvXxRYiWdT2uXZ95ZYjnzedOxcwqEJMkS0ix1iVmdiX8US5QS2MbJrNx3QV2WRJEiiWC2WDGY7jIa5ZSbhqZ1/ttCKpRKqBqNEbJb7BosgqoreSqpUV21PN1UFMsZVe0s/IS1RFKyO0hIdclkvMP0zi5WRlhtaeqaOFHOz7sjV1WSglIuPyIfuIpQrcZag7BO34p08jOXINzNX8Z0Py1tXaOwmKbz7mwahIhQMiZJY+7c2UPGEZcXM5fDwXU+B9qgtaKWOLmBdAF8qSRx6giGNEmgY2TddzopRO8uIoLIiaWj2btksf4mCUCpCH95fTIAz5yF46cvXONDxl4aEEqn/JgxHA5vMLPhmOwB2OPHj3n//ff70L8fh5MkccSSuc4f0Fr3ulHvBe2L3Agheg3r5eUlq9WKn//853z22Wc8evQIKZ2f6ePHj3njjTd6YOlZwtDZpK5r1ut1v2j3xvpCiH47b0flo1n++mqteeutt5jNZpyfn/ee1549dZ7x16SSB5+hpn9bMuHnp7B6VdM0XF5e9oRTVVVsNpsb844HwP54/XeHC/owrH899lwXaQgBqT9H74bg+85LS8MciO0577b2lRWsiqLoTrghTq7r+vaLOmtJ4oQ4STDa2Z7ESUpRlEipEAi0t7tKnK1DGsfO+xRotaYtS6x1uqrleuUsQTyiByKlODw8YjIekmUJTVNh2pq7B/vMZjOKdUkcKQSGJI4YDXPWyzn5aAeVpFgLceQyZJu6QXU+IiqOXai9NahIkauYuhtEZ1dXgJMoaK0deLYWo50xtGyNKzsbu88MR0PSrKvgJRVplrKpS1farHLWWAhI0rTPwgZLlsWU/x9zf9psWXKd9+G/zD2f+c5V1VVdPRV6ANANNAASbMOEZcsSHZKCDNl6IYfDX8svbIU+gBk2HZYZlhWiSYugCdIA2ECjC93oqbrGO98z7Tkz/y9y5755Txca8N8iSxlRUVXnnnuGPax81rOe9awC2kZxcXHRn/QgsCbWFkRXRHFAmmXcvn2T8XiEkPaGDqOIpGuoSNKINE2Q2FFnURiBlNYvdziwQn5lWK9XjEYThsMxcRIjZUDdNmisPZXSGtUlClpDmg7Iu5t8vlhweHxEUeRIGRCGMWqkyLIhFxfnpFkK3VzxZ7l8BtL932fZ4IuM5yaw2XytTeZtEwT7AGwTaD2NxfWBs3v/zef5jK8Dqf73AvrO/E8++YR33323H59XFEU/JU4pxXg87j0Et7a2uHnzZg9Wt7e3+1L/crlktVqhte43hbOzM7a2tvrpLMPhkLt37/Jv/s2/6eUHWZZxdnbGcDhkf3+f27dv93O7fWazKIqO1fqiPtVPgl0QdeU9/7j6x3rzd/xz4pfJ/HPj/44vBdmUFDyLZWtAhigK7SjUOCGMEttMFUR9L4CVAUjb7BTIPibL7hISBkBihDu+GtVtplXd0LYK1doRzA5UaK0RaNq2pqokaEETGVA1bp69QRNEkkESU5drdFMxHg2t7VRZoZShVYYwjCgWLU2jKYqaptEo1WAMKCOti0ogUZXCFGvuffwh23vX0EBIC8IwTCL2JgN2xgkH13YYzqZ2wlMHQI22rgaYAAI7LAFzyQbptkG3rT023S0jZUCaDhBIoJN6oZHdfaa6GJznebf5WmCpVAsIoihkdzYhFnCxyCmqFt1ZVlXGYBqnzbONyVEYkKQRk8m0BwFKKaIwRHSjVjszAHudG1v2N8bKtITESjiwUyTtK7srZcMV4JkKAexyZX93v7n7zIEh57fqEwausuO7tvj3rWvU3N3dvcLG+UDV2VQ5YLTspig6gCilTZjc4648f3FxwWq16mUIji199dVXybKs13lKKZnP5z3gc77Sp6envPfee0wmE27cuHGVyOvex5X/XSxzUwOFEL3TwMXFRd+85IDmcrnsY7RbZVn2EiD3Gg6U+iB4c9SqM+UPgoBPPvmEra2tPqH35QLudRw43iQW3DlybPnm8uUdDuQ7AOvOuYv/Tibwm6wvRRSz2bTvMM3SlEBe6uY0DbrrNFWqQlctggCtoW7qHrmnaUIgBRhYrVcEMiRNs87jK8aEQCjJphOCyI5SbeuSfLXoSgMt41HG9mxEmmUWPNYVAQYpBGkUUVCgdYNqK2bTCeM0oSpiBoMJSoSURYFu7dQoLa3RtNEtAkjSGGlaO4JQtZe+akkCSPLliuW6QOmGNI4xbQtGcnoxp9WGsGv3TJOIoiwQgSDNUk5PT6nLiulkSo6kKq15ddWNYW3blsFwG6VgOpswHo+4dv1aDxTOz87Z3Q2RgeTBgwdoYwijJePxiDwHGYRMplts7ewwm0yIwpDz83OauiKLbakvyzI0kqIDLDIIqJuSIApBCtZlgRKC6dYOMgjs2MWipCqrrmFNdrKFNUVZkJcWsJdFweNHD/ssaXt729ocTcacnZ5iMFfGCj6L5Zg1uCwn+4C0Z6E2tKV+Ccs9zwc/bm0+7jL/TXbWZ0M32VqXhW6W9v2As1kGd7/jf16lFOv1mh//+Md89tlnfOUrX7H654uL7h5MmU6nBIGdA+1cHObz+RXt0Xg8JgjsgI6TkxOyLOuDu9a2y98xCPP5nB/96Efcv3+f4XDIv/pX/6pnYw8ODnj11VfZ2tpib2+vZxiKomA8HvdDB1wQexpQ9Rlsv3TvM9P+huCfH/fzzee6Y+kz5c8amD5tCazVUhSEXTk/QIqASFrPTikt0JPSgqgwsN35gu6a6CYd+deJUi1K25jdNspWRFpDWVRIIQnDGCEkdd0gpaFRDaZpqKRBqwwpNMNBDCiKsmSYpkjdUq0vmG3vAZrVak1e1DStJgijTt9cYIygbjVl3UAYWP/pRtvkWFhe0uiWNl9x/OBTZBTbLn0ZsD3K2M5SdnenTHamGBlR1tZ7WkiN0RacG0KCILJsaV0RRQkCSdvUaGWH0lj9p+0fcI0rbNzrTdMQyKsMlgwlUoZ2ApWBoqzAaHa2rIXg2dmc9bqgwcrFtEs8uw7/IIoYDkeMu1n26/WaKApJ05hBltEqTVE1VF3SpztQbK8Fu3cK4fhbV+7n8n/G/q2f8aXsa8RdCfppVQ73XAciXZe8n7xvSgCAXk7kV8ZcMr1YLHrW1AEsN/JZa917slZVxcnJCY8fP2axWPQjRmezGavViu9973u8/PLLHBwc9H6tTjpTliWfffZZz8o6e61PP/2Un/70p/xH/9F/1E/SgsuY7aSHjlH0iQkngdrZ2WE2m/VA2H0HlzS57yql7HWk7ucOBDo21jGdriHLbz5LkoS2bbl79y537tzpz5HTwjo5xmYvxqY0bXOP8jXfbk9yMdeBX7+65T6jOx6/SRz+UkQhA8vQZVlmO0yFQGu3QViNqjauhNkShTFRlGDMgKquqaqSustc+k3WCKLI6uLSLGM6nTAYpGgjODu74PT0zPqbrXKWyzU721sIA0VZIANJrTVFXtDUirZpqKqWIAhJoxg9HJBEoR0BGyasi4rWWNPouOvIj5MYEQjCyN5Y+brACIkMA0DStoqyqEnSBGMEylgrkrLISaOY8XiEkhGNNm5wCELAaDhkOp3YCRiDARfn52ilmV/Mqaqa0WiC1iUaw2Qythfo9jaDYcbR0TFN01JVJVEUsV6vyQYZaEPdNEwmE8qyJAhkx6gItqYzBuMxw8HQGvlXNWmaMBlbywvXgVjVNYirNhuudJAXJVEUYyJNmowwg4bHj205wmhDXbc0Tc3FxQXrfM1wMLTTqzrGrigK2rZltVr1E0OsnqZhsZj/2ovvb3v54AS+2Mjj30D+z32m7Wml6KeVnjfB8CYA3WRjN993sxv+aXpVX8PpBzytrfXb0dFRn6QIIfoJLc4r0HVyCiH45JNP+Pjjjzk4OGA2m7G7u8vt27f7Etvenh3f++jRI/I8ZzweX/FMjOOYf/gP/yFpmnJyckKSJGxvb/cdpMYY7t27x/HxMVrr/nUGgwEffPABo9GIa9euXZY+Pb3VpgbVz+7dsXKJwaakwl8+s7N57P2S/9OSlGe5pLD3eSDtBCNjNKLr5u91ft3PgyAglNL6XNNdb8IlQb4vY93/UUpRFQ1GW72A/f4SKSNUa6g7YKuikFIoiqYmjm3jVSgUoYFASMrlkjjuJtqVJetSsVo3iDglCiVFWVArRYuwzULQgVWJNg1BYJnCLAqoRYSqWxIpSOIEM5oSG80kDUiSkJ39bdLhkHlR04gQ1bb2+3clcxmERN3I77ZtyAbWm9KxeaJrSgqkbXpBWKbUGNts6pZrTpnPbQm00XZkqpQwzAYEwjWtaFoEwywh2JogRcAiX6MajVEtRhs7CawDY7PZtLcR3JlNCKS0Hf0SmlYTJpr23I6w1MbYQTvCAVE6i63L9YW93Tih3bOTAWwCE3et+lOVHPjxLa2AvunK/33HxjlQ55hXB6ic5CDPcxaLRQ+CHIPo2FyXhAA9gN3b22Nra6vX3M9mM5SyZvk+UHWxxyXobn8+OTnpx5c+fvyY119/ne3t7f69HVj2dfxuFLUD7/4+kKYpt27d6sdgOxLBua44OWUQBL3MwIFoJ9XytaoO1Lpj5fpKwF7jJycnrNfrnkH1m0/9rn0n32ia5gtJvzsXvh+uA75wtQ/E1yS77+37tP5/1qz6H0CpFuPdIVZ7SufjpzFKUeuSqrI0fBiEZGlix7RKenGvNaPWXXdaweHhCUa17O5u0zYNGkHdGIIwZbZlp1NMJhPG4zFVWdqTrQ3L5YowsP8eDgYkcYQ6seWbulGESco8rwnCBG2gbrruUAGBFLSdTggMMowxraasGpQGbSSrZYERChnGBGFEkmZoYyjLotOhaOq6ZTwekyQxu9tbtoFBQFUWzKZjJpMRx8fHBEGK03HGib0Jqqri0aOHjCfW5UAK2+nqOgillAxSa9bvSgRpmhCGkq0taxvVarg4P8eoliJfITqLk7KyTMJ0OmG2tc3F3JY5nDGyG0E3yBLy9ZLVYsGJOCIKA4xuWS3nLBdLks7eYm93G44184vzTuRuGwR8QGa/Z9AlN0PCMP61F9/f5tos72+ClF9VsnfLDyQ9QPCu/6dJAHz21H9tPxvd/EzuRnaB0WcXXLD2P+MmWHXX0gcffMDFxQXT6bTXKLmAmOc5JycnV8DdcDjk8ePHfPzxx32jwPXr1/nWt77Fd7/7Xfb39wF73wZB0A+AcE1ci8WC3d1dfu/3fq/3CTw/P+/ZCicteO6554jjmKOjoyubz89+9jOSJOnZXP+Ybh7rp+lY3WN+eeppTOnTMvbNpMR/fbgcKvCslhQ2jggMotOYIgNEECA6VjgQEApB1JXSQyeJAJQBrZUHxqyHaKuarhxY2dHORiKElU8ZJEp1s8XbhrptWK6rjo1tGQ8zirJlOgjYHQWUyzMkiijKaGtoVEOxyKmUIYkTmqpitVwRRCF1nqOMJk4SRCShtcNiCDRJGDCTEctaMm9qru9sMZvsMc8LAl0zGwhuv/QcN24/zzpfUVYKEQVWxiVtmT2QkjCyybhuG6QQxJGLs1Zi1rbWTSBKU2+OuwVLbvyp3aw7fWvHDtVNizYwmVj/7ny97m0Pq7pC64AoCRmPU6q2plGKumt4Ggxi9na2uXFtn+l4gNGK7a0hiQwBQV6WHJ9fYERAGIgvlMadjlZg9ywHR/vVJxr239KIZwhV6RuI4NLGyo9rPnDxS/yb8dmPAe45Dqg5ttAHZE6u5Jhwx6A6VtSxmq4T3Y1Bnc1mvYuAi0EO2PlMobOhWiwWbG1tMR6POT8/78HdcDjklVdewRjT601d7HXN3O4zOGbYHQs/Eb99+zZxHPPJJ59wenrKcDhkMpnw5MmTXmcbxzGnp6dkWdYP+MnzvCcoHIPtYr0Dkw4AC2GbvE9PT3nw4AFBEDAej1FK9TIEp/11JX//3Lhz4O9Rbgqocy1w4NVNBnUMtDGmZ6h92cJvKgX4UrDqdCRWP2l96bTpSnNtdxHSaaOMxqBp2waldXdjWU1NEIYMh0OKouw6+i2NHoYRMrDDAqrSNvM0rULIkLrWTLenZIOMbJBR5AUGQ71eUzc1QSCpG6uTS5OEvNAEArRqaQ20RNStZjU/J01CxsMhdWu9YOvaMq1CQNsahISiKmgVrPOKqm5tOSyAuipptW1IKJuWJLbNDFJAEIYkccxsMkEKe5JkEiMDwWyyTVmVFHkOUrJcrtFGd2DXMqiPnzzh6CjglVdeRghbQjo6OmIwGDCZTLh//37vdWvN2xPqpuTho0dE8pjp1jZb2zssl3OKYs1icUEYRmSZHen6cVOTpBmT6bTX3VjLLDdRyI4YtGU5O6VsvV4ihGY0GrBa5eTrVWd1MSDPV9R1xflZ00/ucKbxAIeHh9aDMUqYzWb//0W8f0/LB42bQMYFyk3w6v72S1LudfwORvf6m6/hXtt/ni8D8BlT//V9aw8frLrX819nM6gbYzg6OuL999/vxv7u9SXOvrlRiH6soJs6FUURSXJ5nl599VW+853vYIzh7t27rNfrfjSwS25c1+tPf/pTVqsVv/u7v8srr7xCEAS8//77/NEf/RGff/45QgheeeUVvva1r/GVr3yFpmn4/PPP+yB7584dfvjDH/aSBccMbDLZ/vH0AaUPMjef75+fzX/7mtTNc/+0Y/6slm2wAdA2rhqNERKE7BqnhJ221DmMyODq5C2lDVorep94jC31BzbmuTGuxthJTaqzg6orO5UpL3LyqqKsW5pWYdqG3a0xZVUTXpsxikFjSOOEWocYLVmvVpR5iUgyTNOwvLjAtJf7hBACIwSms8+K4ogWQxIJ0JJ1bRgNUp7b36FY18RtwXQgePn2Adef26HWgrxS0EnR6ICcoSVKRnZylwxQuiTJEmQgaVRD2zaEgW0sC0LrgoIRtE2LlAFt3QELhG04k7IvnZZ1jUEyGozI0pR8vaaobDUqy9J+k46iiEEWcRBMGKxjyrIBCQc7M8bjEbNZRpZECEJkAKo15EXNKrfSqiBMKKvL8rE9lx147sCqNuJK45VdpqdYjdUEPNPlPDMd0HuaznzTb9PpTV2XugNYWl92ubtKjmPj/NI30BM8Lkl31WDHqm/e2+v1mocPH/LVr371CmPpYoP7jK7ic3p6ysXFxRWGF+grVjs7O9R1zXK5vNK4NBgM2Nra6mONe10HtDfJECklt27d4vr16+R53ssgPv74Yz744IMeRLtK5o0bN/qGLCll77fqvrMfE7TWZFlGVVW91HA+n/ePuRGyjgF1v+sPQfAbgB077BheJ0NwEgn3fXzZg/td93x3DPxmrC9bXwpWow7Q2ZGdrQWCSnVaHAuu7MWIHa2qWgwKDF0Z2Qr5hQyIYqvPiaLO07FpKPIc01SkacpoZ4uqSNGt4fN7H7DKC7LxkOUq58nREaPhEAGURQ5aMxikSJHack7bkHUszcNHj6iVIUjH1C22a79WqMyChaKskJ3e1X12lKKqaurGsM4La19SVlR1SVMXCGFLTkmcIoxiNBhgfVutXYlWLcZohsMBQkAcp8RxxHg8Yjwec3pxQVGUdopUmrJYLPqu7CgKuXfPjk28ceM5BlnWaU9rdnZ3GA6HrFdrWtVQViVxHDEahuSrnIedF9pwmBIGdiJFnue9XqpuaoqypKyqvgwwHA6YTWdMZzOMUhTrvBto0BCE2K5iYztSZ9MRq9WS8/NTkjjl+rVrrNdriqK0YxrznDiKMJjOjqtFygZBxcV88Wsvvr/t5QNF+NWl/025AFzVufr6Rv93N/Wv7rFfVeL3NTx+5u7YgqeV+DeBsHsPH2B9+umnHB0dce3atf41/dnVLpt1GbWzWXH2KwcHB3znO9/h7bffJk3TfvrUvXv3+oz5pZdeQmvNZ599xocffsi3v/3t3mfQ2aK4piw3IODs7IyyLPtpWR9//DFlWXLjxg2+/e1v89FHH7FarfpRib4kwGegfXDqMzfuu/qgc/PP5jnxQb9/Pv1j/ayZ1UAKAol1JEGhjbIxpmfa7P0ppQOqV5vFZKdxFa6GrBQiEEgRk8RWtxpGIVXdIBHU2oKAdV1xdHrBfJUTRDFVVVNWNUY1FE1DOhhAlNJYhSShiAhkxHKVM784BxEiVERd5hSVHQrg9PJBYB0HiqJgkEREQli9KZZlrdua/emMNA05Oz1lmEj2tkfs7Q6JI0VeFojAurw0qhskIJ3swUJy4UqJIqDVBlRrHQA0VnomBNIIlLJuNGGIZV1rq/UbjsakScocy0xLBEEc2UpcXdPUFUJAYE9Oxx51Jdk4ZJgGZPEIEARRwDBLSJKYEG21s11Mni9WnFysaBqNCBPOlxesVuuuEUx0r+/JVpTG2NFYX1Lm7+jVZ0it+syeizubPtdOq++PWHW/60CgA+3AFf2mn9RqfTm2c9O3039uWZZUVYVSiuFwSBiG7Ozs8PDhwx4QOibQJeTuexhjWK/X/Mmf/AmTyYQ333zzCisYRXas+Gg0YrFY9LpZB5IdC7lZxfPdCvxj545FFNmKsiv5T6dTrl+/zuPHj3sw6J7rfFwdUAd65to1ujpw6o7d8fExVVXxzW9+E4DT09O+mdARWY6R9r1c3ed336Hv7+kIzaIoeobX9SO47++z6k7i4O+Lv8n6UrBqjOo8Rm0pyi9LGKvhp20VTVP3wFVKa7li9aSdFYJUGK1QTUOcJiSJLcUMhzvo9rITerlccXp2zmK9om4Ndz/6hNHjjNu3nuP63j672zMQgjRLiIKwA78RZVmgtGakNMWn9zg9nTM9SAiTEVBTFiUrrUiSoC+Dl8pqOcMoxKApy4qyVtR1Q1WW5EXBcrWyk5xSga5rkiCxI/qMYTywNhuoligMkAiksLOJhZTkeY4xhjiJuXGwRxzFzBcr660aBJS1QgTWpaCpG+Io5uH9B1bbFAqqKqdtara2dsjSAUVpJwEVRYkUQXfTbaOURoaC0WjIYDBg2xiUsVNmfAbJ3kQVobSTvObnZyRJitFQ5oXVxIaQJJdWRmCnbFizZ8NqvQQE0+mYsR4RByF5kYMUhFHEcrmy10Pb0jTtr7yu/q6WC5K+FtRn1+Aq67YJMn0gsxkMNx93zQV+xuje272vbxPisl9fBO+DVf/9N9lAH8i5aSOu+ckFyaIoevBYVdUV31XXDes0pNeu2ca+P/7jP2Y6nfL973+f3d1dfvazn/Gzn/2MPM/55je/SZqmrFYrFosFP/nJT/jrv/5rtra2eO2116iqildeeQUpJefn57z77rv85Cc/4bPPPuOf/bN/1gfu5XLJZDLh+eef55NPPuHk5KSXLrhj6Y6Rf5zd+fSZVj+R2HQGeBo77v/bP47+teE/9qyWDCRBAKYDqka3qKa2MdhYPaMweuNadp/ZloWvgNduY5BSkmWaNEvQpyvr0mKdm8irhrNlznleQZiSJBllo2l1iTawqlqOF2tOFgWSmK00IGwNRbVivljRNg1K16AUMk4J4xgjFCKKiKVAdpP/WiPQBtqmQsgQaQxaGSSGoiwwShAGguEwYX93QiQ1QjUEYYoSBm2sHRQI6xjT2sQc4xp/rXtMqxRohdEaIa3na5pZrapjkejATF3XyNgOgel9OY0dqW0AKaEq1xitiCJLMFRV3TkxhB1QsIYEUtju/1B2krG6RooAbSRF1XC+WLIuys6DNuHs/IL5wt6PUcfuIURPlRpjrI935xGBEc7moT/fAAh7XJ+pDqBbjoF0QNKVn4GeIXUg0ZXZHRvnAO1mhcqVsbNuz8/z/AqL6eKFq1K5PcyV5R3r57TyP/jBD/jwww955ZVXroBdB3LrumY+n/Ov/tW/4q//+q/5+te/zle/+tUvVGWcJZ9rgnKlc/fv1WrFbDa7wjZvWjz5x8eXNillfVUdCLx27Rrj8ZivfvWrvTzSMbr+85zH6/7+PtPplCiKWC6XXFxcUFUVq9WKg4MD3n777d7Oyh1v5xzgGtJ8my5X5nef05cauH+7eOQ3Zrljv8my+oTCb0IQfClYta/jNDF9bcrbLE2/8VpbD7vaxjY1gSAIon7GsR3NWVFVlq25fv06k+1Jf6AG2YCLiwX7+3toI3nw+Al11XB+vuT89ILnru1z7WCbJLIMptYtUroMyh3QlOX6MYOqJpIt+6MR1BVBW5MYAS0EtUIBSlh9Z600RdOQlzVVXbNYr1jla9ZFjkAybCWRUESBJMpS0jQmVJaNGI1GZIOUMBBgNFEYoDRkacZsOqMorIfpredvMluuuX//AcvlorPgqhlk233XtSuhbO/MEAJWq5yHDx7QtorpbNR5YM5YzBfk+ZqyqphOJmRDmxHaTtchcTroMxh3c1gQ0KI8bUhTN9SqYrVaslgsiJOgt+5wOhJ30WrTkMRWF1QWBVIGZJktNzf5irqq0G1LHEZkafjMwaoPcPys1WfbfIDqM5i/qrz8tFK1D0R9HSpwJYi6x32w6gvaN0ss7j3cDe5ez19N03B8fNzrUfNucIOb9eyXcpbLZc80OFPo8XjM66+/zle/+lWUUjx58oRf/OIXxHHMf/lf/pd861vf4uTkhJ///OdUHTt/fHzM8fExe3t73Lp1q/chBHjxxRd54YUX+MUvfsEPfvADLi4u+OCDD3j06BEXFxe9rMCflPLo0SOee+65Pov32WP/2PublwNfwJWNYdPZwX8Nd478AOmXyp6mN35WS0hrRyWluDIm1eopu7HNbAR+6arApp87D1fBuy1ZJ+zubJGvG8qyoikK2qYFJK2GIM0oyppRZEupTV3Rtoaqrrn/+BiD4YWDLW7vDZglAtGUNFVB02papVB1TToJMCa0ja1BQKEUq7KmrlqyNEYoTVk2iCSgUoZVXtE0itF2imobAgS3n9tnlAmiIEBrSWgMy+WcVkiCMOwGsWiCKEJ3AwbAjp+WQYjRmrZpMEKSpIOuezui9kqxRmvqbiM2WqOaliovMFojA0lVN8RpCkZ3bLbVyArpmt7o9Xit0mghCencK2pBVWua1o4lV1pQVjWNaq0bQZKSlyXzxaLfzMEQEICy06ns9U53Vu1gAcHlY84WwMoErLzjWTZY+ayk+9slz+7+c3HJJfLunvZHd/rWSA50OvsnFyellD2T6ZhEsCPi3c99xxNXejbGGvfv7e3x4x//uG/y9G2e3Oe4d+8eP/rRjzg9PeX4+LgHZe71HVB058+5ofjERFmW/fExxlwBzg6o+mDVB8JuNLYD5E5za4zpdaZHR0ccHR3htLNJkvSuAY51nU6n7O7ucnp6ytHREUVR8N3vfpfRaMSjR48Iw5DRaNQ7BriY4r+n++7Alb3KHQfnmeqDcdfD4jOqfhXT34v9WP2r1q9hVr9oKeAuQr8pxH0Ye4Iuv4S1UQgB2ctrjDBkg4zt7W32dvcYDseW1lZWl/Lq66+xvbPL+dkFRZFzMbejV+lYyq2tCavVimA8JAgERbkmThKm0YS8KNnf3+fDj+7RFjlffe2rzJIMU5WYskIGEqNhVZW0GObrFS1QGUWahEQiYIFhudbk66WVDAQhISEisLqhKEkpyoI4Crl2sOedEFt6vTg7QwYB2WBAU5e0jdV9yagijEJ2du2IuLKoWOdrmrbh7t27jMfjzroiZz4/Z/9gj9FwhFaaBEkQ2pnfUZSilPWFbduG8/kFddswnkxIo5iyrsnL+krWtlqtOjBQEXc3rtYarRRhKBmPh1R1cUVc7XcZaq0tUA8CkjjsnldSlgVRJBlkiU1WdEKrNBiFeMZDAXzbqs1Sr///zbXJrPnP3yyH+MDHfz0XFH0A5LJWd9+4YL0JUP0AvlnS3vy8q9WKDz74gDzP2d3dJQzDPuBEUdSXp/I877tid3astOTtt9/mzTff5Nq1a0hpLcrq2lrOPX78mA8//JCbN29ycHDA/fv3r/gDvvDCC7z99tvcunWL3d1d9vb2eqnBV7/6Vb7zne8wnU754z/+436qzMnJSR+8tdYcHR31JS03inCTufYTDF9Oscm+wGXwc39vaoP98+m/5uZr+eXIZ7X+/Mc/5z/77lsEQoBqMEVOXaxZLCKCYAbESHk55tNek7rrK9CdfOCLSwqJkJLJZMx4smK5HnH+5Iy2bpivCpSGushZLZZkYWQ71hEkSYpSa1Tb0jaGxXzNIhGEqUFVBYv5wvYyYCBMCeKaWitqpVCNYrHOreRABgRRTF0VtARoI1hX9pqbjAbsTidUZc61/S0GSUgSS7LBmCQbs7iYo5uaZDhCC1vu1jKgUZphGFnZg7CWfsa4hjJFmg3tQJUgoGnseFaMHa3dttYuKopjWq1QTWuHCUhJXhREYWx1uZUF9GFoR6XmRWmFEEahgbJqrA1iHEEQ2gEBWlHXirK0TVdSBsRxyngyAiDP15zPF1diBXRxBSyT6lcFsGAU4RxoNqa0dUkK5tmBVRcjniaXcuDM3Zt+fHNx0YE8/56Eq82wviTAGNOX8o0xvWbU6VIfP36MUqqXJSmlODw8ZDQacfv2bRaLRT+kxIEqX4fpgOjTWD8nZfB/5uJT2jXxuTK5nzi6Bi7n0epPgPIb0VysdBMvfRcBV8o3xvRg1l1DZVmyu7vLzZs3e/AspR0ze/36dU5PT9nb2+MP/uAP+s/tCCnHkvrnwB17H1D7TVc+k+oa3nwCwCVz7hrwQSpcyuT+P4NVp4FQyupQMZcNIe5L2U3hqtdWGMdEUdxrE6S5HDkmAjorjxlpmllhfBQhQ8N4OuUmhtFwyGw8JkkiHj05pG4Vn352nwcPH3N9b4tROiNLE5qmBkLCMKIq3ZxlydZkRCYMz8/GiLykNQoRh5hQAgHDQYoymq1BRmvszOZWa8pWsSoLDgNJWlV8/viIVd3QBpJkOGSdF4RSkudLru3tkqaJnbrRtihlmcu2bRgMMkbDAcV6TaM0g9EELbTV26JJkpjFYtnpeuueaj88PCRNE5oms0yJgOFoQFPbUvEgG/SZ6XBkBeVVUxPGsR1hWNUYownkpf7GgWljjGVCuwzSZmstum0xaCaTcR9EmqZhtVr1TTiWYLfntqkbiqpCG0M2sF5zSAsWiqiibVVXHvvN5v3+ba7NEuiXsaXu+b+qDOyXLTaf4yd1myVnd1+4YOkyd59Z9X/uA+NNZnATdPtGz4PBgMFgwHK55Pz8vO+KddYnfhluZ2eHnZ0ddnd3uX79eu+9N5/POTo6Yr1e83/9X/8X3/ve9xDCSkEcO/vGG2+glGJ/f/9KicdZZrmu0lu3brG3t0ee55yfn/e6MQeo3aZ1586dXt+0eR784+k2Nf88us3Fb37bZGE32VIfEPuB022O7p55lqvpmn+CICAMQmRgx6nahLgmCgQqlCjVmW+rbhKVsBIBy8DyhWsSAW1dA4IkSxBSMNqakitNfbGirBpWywV1VdnKWBTRdkDLbVBKaVptyMuasFU0xZqqGwtdNQoZtTRqAXFGrWG5WFJWll3KksQ2sTaKNgipuurL7mzM9mxCIiGOIsaDBGMUg9GMaDCmbGrqpkLEMSYI7QhtIWjqhiSNGY7HQMeSG9BdT0UcpwxHY4S0Gya6pa0rtFZIGVEWueUrA4lq7fAV3doYHkVJ1xRcUJUlURQyGGRWAtzY61B3zKdSijy31aY4sTrVoCNroiiyzbgyJAhCaq2ZL1fM58u+Gui07L4MBuFdw8LNMzAIFxLE5Tyry4a5Z8mrXtXa+7pTB7CSJOnjnnu+A7AuyXZEClza1vnsq1Kqt5ByybgbfuJewxjblW+MnQQJVvLkTP+BfhT5j370I77xjW+wv7/f3/uORXRSBSEEBwcHAFcIOgfgXPxxLLK73+bzOY8ePeKFF15gPB734M3FFxdvfMDul+OdRMWv1LlrxTZI6565dcfcsaBxHPPcc8/175WmKTdv3uT8/Jy3336bt956qx844J8LuATVjtX246pPADiAC/QJg8+muhjr4rafjPiVQ1dp+3XrS8FqXtjZzFKIrss7JgwDku4mNcYgpCCQ1nPV2AhpRwFKW6rRSqF1S11Zw2NDi8GypEEYoMG6BwiIk5TpdEYaxwzShDCSpFnC48MTJtMJwkAYWsavaRQgkDIiTlKSZEBR1ezuKr72+qs8+ehTqoszhjICNEpoEDHGdG4EoSQOU5q6QktDU7QkbctQSmZb28wMDETI3cdPqOuGoqppm5LFckESBgxfHFltVNMSRvaGSxOoZUPdtlR1TRiFEFpmQgSCpm04OT6hLKveeHq9WlFXNVVVE4UhaRKTpQNWiyWqabhx4znSJMWYgPV6Rdtc0LRtp6WSbE1ndhwgoJWirErCIOy7FoXbfLsbII4S2jZHyhCjFBpj7cXAdhhL2VuQuMlEVVmhlSJNE5TqfACFoG4ahsMho9GoC0pW89s2NeIZl1L9rPdXMaA+EHJrUzLwNJb1CuPhZcK+DMAFHAeofGZwE6j6bgAuYGya/7sylmMWXNDc2trqAanbIFzgc+y4q3I4GcB4POa1117j5s2bfTY9Ho/5+3//7zOdTvnFL37BarXqba201nz++ee88MILvXn2fD5nOBz2k7Kcf15VVX357OOPP+4D1u7uLovFgrquOT8/73VV165du2Iz4wdIXx/mB/bNJohfJeHwWXBf6+r/zD/H7v1/kyz/72LJIEAEYddAZPqJdm0UoFRgB7K0ikBIDJZZNKob1KIt8+oOjdbajm+tS8qmxRhFEFofUSUEZWNdXIyRpNmQdDimyJe0bYOg66hubZLbDiOqSrGsG1Rt/bUbBXnd0pYFSSoICXl8cs5qVZCmEZPRCCElZa3IlaEyEq0Vs/GANI6ZjFKM1iRhzGCQMNvdIcyGGBkjpSYeDCgqhdKCdJgRyoAoaojSFLCNUgaBUg1RHBMmI6IwBCFsQ5a0IzfzdU6aJlRlyWq5QAZWRtBq62TTKm1HsUYJ6/WasrTOLdlgQJYNWSzm1nZLStqm7Rttm1bRGk3VTe/K0pgwsM1YMrAuDkVZsCxK8qK2LgnetXqFJdXWglCI3s7BAmNthQBCXB0QYABlOmb1GS537zgA6oOUzeTQrxj5sh4X/xwj6eKeA4VOb+zK7js7O5ycnPTlcRfPXEORi18uqR+Px2xtbfXyANd05RMIzhbq9ddf72VNblzqZvXLfRf3vcGCyuVyyeHhYd9kuvndN8FtT/R1SWFZlr2sy2fd3d8OsPoEikvci6Lg448/BuDatWtX9qc0TXnnnXeYTLoKtactddUtnyH39zV3PoG+9O+OhdtvfZbcMbJO4uFiu3veZQJ81bLtV60vBavbu9d6DUQYRkjhj0HcnGMurMZKBgRR2G2O9N2rWqtuOkpAZLsHWM0LorjouwZl0I0kTRMmsykgaBUcnVywNZmwt7fDjRv7zMYZEkPb2qxfKU0Uh2zv7CCjmDovOI8TPvrkM/Z3dxkOM6sBAzBdKVdCICVNKzobFIXWHV2tGkZhwJ2DAxoBP3/4gKquWa2WGKV57s7LjCdTktTS7HaUmhVat1pghGE4HtsyRVGxXC1pHBgRIVFgGYqmbuwkFiFQraExLacnZ0gEaRIRyYDTo2OiOCaIws6eo0G1NvNuagsWQylJk5gwCOxx0ZcXf9NYH8G2qamrEnrbsIC2sY0NbV3byS+4MgNkWUqWpeR5SVU2NG1DOV/ZZjpjiLohA3GsCMKQOI4QUtCqlpD4qezk3+XyA8omCwpfBJ6bZSf3tw9mfhWzuqk79YOar4HyWVT3c2d/s6mT9W94v2HAfY62bTk9PeX8/LxPLpwA3rHqjs10QcV1cAZBwHw+50/+5E8w5lL/9J3vfIf/+D/+j3njjTe4e/cun3/+Odvb2z3bPhgMePz4MR988AHz+Zzr169z8+ZN3njjjd52JkkSvvWtbxGGIZ988gmff/5532y4Wq149OhRr4964YUX2NnZ6ct3Nglt+vPhA3Y/U/dLR+64OcbiaZujzwZsJi2b16nbGJ/lMtiivkaisH7WWitw15RSKK1w41KVlFYyAL2hvLUTFKjWDhRo25a2qQFDma9p6wa0TZaXqxV12yKDiMl0m2w4ZDAaMZ+foVVL09lN2a79hqZV1I1t/opEiBEwz9csy26KWwLFKufo9BxjBEkSI4KAVrUUVU3RNDRaM4gjko79B4GQhiyL2dreIs0s2660HcPdKkEoQ6IktXsRAi2VjV0iQAdOs5+SZQPoN1L7/XXbspjPCcMYbQRFWVDWDZPp0DZ8tZqirEjSlEa1LJcryrK0WslBxmg8oapriqIkjCJr9YfFknEckQ0ymvZSA93ULZUuO2mCHThTlQ2tcc/ZkKF4iZkx1hrMJSgg+hK/6WzI3BKAFtZhW5svyvb+LpersCil+iS5rusvaDnB3nuOaXUspYuRPsh0cdCvVLnv6BKJ7e1tAI6OjvpKpYsNDkS5GO1Ak9aaa9euce3aNebzeR+royhiOByys7NDEAT8wR/8Af/iX/yLKyDM9xp1+6wrpdd13etrneTJVTZdpXmTBHHHwzG1To7lN4c5MOw+5+Zxd3uJz7QeHx8zm836uLparXpngGlnZ+lkC+66dQMH2rYly7IrNlPu2Lnv7ZIM/4/bd5x9ojvmTofs7LX8huJ/L+NWm7qiLHJrV6U666p+871keaS0m0QYBIiuQ1J0m41WGoztlLejOKzthxSS8TAji0OabrNOhgOGowFGqV57s7uzzfTJEwSag50tO7pVCpq2pVUNaRqRJDFxNkaGIVs7e2TpkEE65OEnn/D/fPgL4iTmG2+8zjROOjuXq6Cjbmq00TTadrIrrYniiO0o4uXkBh8dP+Tk5IQolDx/8zrPP3+D4SAD6M2IlSp7U39lVG/JUzcKZSSqqgHJcDRCLZY8fHjfgrwo5rxZUNcNWZaSpBnrPCeQQ6I4oWkVZ+dHRHHEzu4O0+mUOEm6SWGXgEgp2zQWhCGhDPomGyEDqu6ir6uKVrdUdWHdA4YDylwgAsvQ2EPejRbszl8UxuztHdC2dd+BWTcNiEvbDJeNZVnW2WeVz7wr1QE8lzH7zJxbm4F9E8z44NQHsJvP9bPyTdbVL+/7AMv9ng/I/FIJcOX3/PKYA4/n5+d9F6r7fqvVCqDvsPXBsitvXVxc8H/+n/8nr776Kr/927/NxcUFZVlydnbGzs4OL7zwgpW3KDvG1Y0WTJKEw8NDfvnLX/Lcc89xenrK3bt3OTk54fPPP2d3d5cXXniBwWDA888/z1tvvcXx8XHPqB4eHvYZulKKmzdv9syGC7InJydXPBf98+CCtM+6biYcm3IN9/s+e+r+3kxUNgHys1oGSWMCWiOQ2tAqO0mubRtkaHVhKgpRgbdRCAnisrrl7Pkc09TUFU1jG9jiKOTw8Ih6tSaLIkyraeqWaBAz294mzuwEwlbZ6U1ocNOzjDEUZcWZUSRSkwQQGMXFuiJvNFkaUxvD+XxFqzRhHCOk6DfevKgp25pRljAbDizzKARaNYxGKfu7W2RJTFXkNGEIYQhlQ6sFw8kYIQJrrRcICGRfCg+CkCRLiZPUAn1nGSSgLtacX5zTtC1JZv22V3lBECfIKKbIS5pWWdWvkFTdJu40/+Ox3VtWFxcEYafNaztmSdtrKYlijKrs2FgFjbGDZ4y5dM+RUhIliZ0M2FYYc9V2LfBAqO5apQz0e+Fm4vaF6+Ypydff5XJ7kf/ZXNXIB40+iHHgL47jnoEE+10cI9fLCT2g5IChO0+z2awHWcfHxyyXS/b39xmNRr0e31UbfWZvPB5fqTw5oDmdTpFS8p/8J/8JP/7xj5lOp1c8qv1yP1yWwV2sjaKIb3/72z0O2Iw38HQyxEpKLp0O2ra9MvXJfUcHbN17tq0dNeuaVJ1Hq9805fYSR3BsbW1RVVWfTLjXd/u5HxvdZ/Slof5UKr95yr2GK/G7hit3jN3P/VjtjsmXrS8Fq4dPHvfajaArZVhdh0SIqKd5g0D2mhkh6MyfTQdgQySXk3OU6DKwMCQdjAiiECVrlos5Rw8eo9uK4SAlFAFpNqJtGva2Z7x0+yZhIG3jU55TlYXVqjaaSBliGYCMGA3HjMYzBqMx2XiMShPuP3zIBw8f8/aLLxFjy+UGg+zQfiAkNXBWlnz6+X3yfG1HR27NWK4WDAcp4+GIg/09XnnpNoMsZndrp8+C1mvr0xqGIVGcULc2uzs5PWU0ntHWinVe9PT+fL6krBoibUDa6SutMggZEIQRGMUqLxHnF4RBSJqlDAYJy+Wy81gzlKUt+Y5Go/4CshckyMCe/DiO0aYribedH5qxF59WmjAOmUxn1FVl51JX1WWpSUqiJCSKbbkrCCVBFDLpbih38SVJgo2xl011g8Fvni39bS0/G/Qzcv+m2CzBbT72tMC/ydD5INSBKQd6XPa4yaj6y5co+EHFPbYpB/C/nxDiSgfocDikbe2EKadF8gOam0b10UcfcefOHdbrNX/4h3/I2ZkdcXzz5k3+8T/+x/1r7+7u9vZXUkrOzs5omoZ/9I/+EUIIjo6OeOONN/j5z3/O+++/z87ODm+88QYvv/wy9+/f7/37Pv/88x5cp2lKURTcuXOHO3fu9AmP+94OZDsQ5jp5n1bq99lw/7v639kFXv85m8feD8j/IWhWlYHaBCRaQKsIm5pWWbAa6sjaRKlo47rSHg/XSXqcm4sVclKXJUEUEkpJFid8dn6f5fkS2ekuaRWpEAgZ0HZlVW06skF2NmFty3xVUJaSQSIZxiGmbclrgzYW7OVlxTIvCYKQKIpR2rBYWo1dGMWkgbWXSpIIoTVtXRKGAYMkoi4LDh/nxFnKdHcHIyTZcIBsG+pWkyQBIQbVNBhhugEIkA6HBGGMEQGCy9Jyvl4xPz1hneds7+x3yXtOqzSj6Rilrae2Vpq6tlUrVZYIY+PHeDIjilKqqrCVuTCiqhqECFFa99OvwjDo9dj2JAii0DKwPgAQQNtar1vh7nMXc+TltSmRFrA+hYGDL45+flqMeBbLJZpw1TrQgRk/TrrjsjmGNE3TL1RVfON5B2LdY46BdRPxHECeTCZ9xcU95uzznBVWkiTs7u5ycXHRA0qX1A8GA8Iw5O///b/PRx991INGvyHIxQ/XwKr1pe9rmqbs7+/3rKu/XKxx+4mLcUVR9GOyNytufqXOZ5x9JtkH4u5zueNmp09OevB+enp6hQl3v7tJBvhJw3q97j8/0OMMn1DwLa3ced50A9iULvi2WL9qfSlYDYPL2bNB5IT+9uTHUWq1QYEFq1LaDxhGIWFX1g/CgCgIkSK4ZLYCG0wEVuxf5HMWiwXLiwuqoqLMV6wuljRNTTYYcfO560xHA+qqgDhEShAyYJDOiJIBO/vPMRxPrN1LZDWVaMNwOuPabUE8GjK5dp27f/MuD44Pub2zh+ysYPDEzOfrJX/6ox/z/sefEkjJbGfKjWv7GAwvv/Qy08mY69cO2N/dZX5+jtaa8XjcT/gBazY9HA4ZhWPKsuDs7Iyzi/s0Ch4/tsD/1q1bFKU12z45O0dju0aNgUEQUtY1SRgyGI0oqxqtS4qqQqkBSRJzdnZGHCdIGYAQ/ZjTJEmsmD8IrH7J6XS01ZpJNFIKotBR/oKqamiDbuMPAtJB1z0ohE0+AIEkTkApO3bRjmRsCMKga2bQ1rS6s2yxwECj1LMFq3DJTPpZHHzRpsrXTz2NSfUZu83f8ctawJWs0QW1p0kSXOD0m6r8UpfLkP33dM/RWpPnOVLK3mos7Ubjuqx/03/QmMs52S64/eAHP+D+/fs9MPzoo49omoZ79+6xu7vbb7xBEHB2dsZwOOTrX/86aZoyn8955513+u7a09NTHj9+zNnZGT/5yU8YjUb84he/6L+f1prt7e2+TPftb3+bvb29vjLhyv9OY3V0dMTW1lYf4Px53+78uJjyNL2TSxgcUPU3B3dM3QbpSwgcMH+Wq9VQtIbECvppW2tI3zY1RqfeBtWx+UpjAoWREiEsYSCMTVx1586BUTR1SV40JDJFNapLjDuWsvMuDWRgq1fGVs+MoZ9aKISgBGqlaaIAjR0sYJoaaSAIO4BYFGAMURR2152tcgyGAyshMgGz6QgCSasqgjAkikPKqqEqT+0wle0d0nRgjfqzAUmrqOsKIRRtVdOqFgKJ7GJf2DVdQeft2NYUec7i4pzFxTlxnBDGMXT3rAitw4puNY1ShIEkzTKMwWr0UcRZRhTHKG0hf5YNqKoCayVWo/Tl/WolcF7yEzgiRECS9Br+oij65h8pZff4ZWy4JFeF9cB9yvWxGUv8xzDPDqw6ttOX62SZrUA6cOl09Q5oOpDiGEQXH9w97QM6X8fqyutAL6Xyh4qMRqMrJv+OKHJgzGlcjTFsb28jhCDP8y9oOKMo4mtf+xpPnjzpP7P7rm4P8FlOoHc3GQ6HPdnnvqu7dx0b6e8hLs65Rim3lzgQ6UsPfHDo3tfZTW5KyByQdfuFswADeoDsJ+vuuLvv5GwFHejd9IZ1YNa9njtORVFc0eT6Mjb/szl52q9bXwpWD27cYjQcWfYmy0hSa8gbBgFSyH5TreuKurNpqpua9WpBWVpro6qsqCt7AQ8GGePpkOEwQ8qAqixYnM1Zr9YU65zlxQXKGFarNU8Oj9jb26EoCkZZyu7uFkkUM8jSLiOKaJS0gBOJkCFBFCMjSRwEVgQvAoIgpmg05zdP+eyTz7i5u4cQdnyqUCG6VZR1xSf37vPR/fuYNCYZDYlGQ8RwwI2Da7z8lTskUcC1/T0CKRgNMvJ8TZRE7O7v0lQ1eV6wWq1RqqXIS7Qx5EXJ48NTDk/mVl+mWs7ndjDA8fGpvSHSpKPhNcvl0gbN1GaISZzYC0lI5hdLppMxycR25zd1RVGWDAdDhoOMNM0QUiCEtNNaggAEKGVQHXgKgwBB0A96sONfy+5iNl2CEXbUjE0pHOCR3TkPQoiiBIw1vVZKIaQglFH/flpBFKa/9uL7215PA6d+gPfByybDCZcl400w6QMmv6TlB5JNaYCf+W6CWT9LhUs/VT94+GJ897nDMOxH3hpjuH79OgC3b9/m/v37HB8fM5/Pr5S53Xs+fPiwn2/tvvtqteJP//RP+au/+it2d3dJ05TXX3+d2WxGlmXMZjPquubu3bu89tprHB4e8j/8D/8D9+7du7LxaK3Z29vrAbPTpwoheO+99/jGN77BN7/5zZ75kFIymUx6YFkURT+Mwm0yJycnnJyc9Mfe75r1gat/vjcZWf/fPjj1E5TN33kWq9GGZaWJY40MWnTdoKvSDgZQLZIQpTpWT+uuqUoghUF0aMeWnjtW1Rjc2Nb1esVK5eRFhRCS1gjOl0vLgoYBRttpWXazbNBGIc3lfdFoTSgEVaMxpiUNJbEMcM1cVW2buxB201YG4jC0TU11A1IwGg6IwpiyLlHKEAuJKltWRW2TXgTpeEUyyGy1wFnfYEeVaiEI44QoiQnCpPOBxjY8NW3P5NR1iWoqO30wGyCEpK4sCEiiBKM087NzmrpFJhHr5YL1ekmpWibbW2xtbYMM7eTAKOqAYEBV2zItIqAsy94/+EqS2/mTh3EICBplbd/KzgnjssxqW6SMMfgDqK4wpO5nXny5ClTtueVXyAP+rpYDRFVV9RUTuGTR/Pnw7u80TfsGS+cPqrUdDeqYOT9OO2bTlwv4WlQHqnySwT3H6TGNsTZXbjy1EILZbNafEx9kuiR7Npv17+s3DbnP6MCbO/7Xr19nZ2eH0WjUuwo4k31f2uCWA6Ouz8DFNQes3ePuMRen/EqgO97uePk2VK4vyH0ed7wc0eU3SrnH/X3NAU2/09/9ce4u7thIKXv9rEtWXBXa+cr6n9v//5etLwWrL770Sqd9jAFDXVWsFgvWqzV5bqn0sihpmgqtWpQX5FTbUPYXBz0aDx5JkjghCIPeRSCUAUEYkKQxZ+dzHjx6zHJV0GrDfL5AtTUHO9u89MLz1lN1OiGMY9IsJRukpGlCEMVEcQoyQBiQWlvtJZL9/QMuzs44/uQeRd0wTkLbYKBsdi26slIaRIg4JBsOePmVO9x+4XnG4zG3nr/NIE3IkoiqyKmB6WzGg4cPGQwyAmEvnCgKWec5J2enIAKUAqXh5PSCfJ0TxQFVU4ORRHFixxmWdXeyNKdn52htbYiQAc9d2ydOrIa1rirWecnp+UVfnrAXmgYRQjfS1kkRAke5GxvMrEm/3bQCAppGgxYkUYIU3QhCZb0S66ax/68VCGGTk1D0N5MA0jRGGUlelmhjgZSbIR8I2Xk0Prv1NPAJlzey/38f5Pjg1a1NJsP/v9sYfdC32VgFl1ZUvl51U+Pqv59fyna/41upRFHEwcEBd+7c6QPD9evXGY/H5HnOkydP+LM/+zPu3btHWZYcHh5eyeDPzs76DdYFrslkQhRFVFXFxcUF169f58MPP+TatWu8+uqrrNdrzs/PGQ6HLBYL/uiP/oi//uu/7jtM4zjm448/5vDwkPv37zMcDlmtVqzXaw4ODjg6OqJpGl577TX29/f77lN3HlzAHw6HfWbftm0/TtBOcCuuBGmfEXABc3PD3mQMHPvsP+bOv9/I9qyWMrBWkqg2CKGIY2tw39YVbVNBFgOathvzbCseBiE6M3UBOLdOKToXlZBBNiAvcs6WC/LKsp3pICWYr+3I5LVtttra3bVMYWCrN9poAtFJI7RGRgFJFBIGkGYJ0mhUXVM7lkdYmZHtThesi5yqaRhmA4bDAVEUs1rnVE1FJAMqNE3RICPJeJwxHI8ZT8YMswyMbc4VuDGnASIICMMAGdjJVNoIdNN0SbiXHCqFQZKNJowmU+qmJc8LkjgmCEJW8wWLizmj7R2KYsHx4WPyPGdrd4/xbAsZBlR5idaGJEtZVjV1c6lJLIqKrGtO2UxGTSfNkFJaIK06O60osse0a4KV3QgxbezwAG266xWBxiBcbBACIb5Y6rdA1Ut2nyGz6lgyd/ydVtExiU6D+TRpjusxcFUO15TkyAAfqGmt+zK+q8q413Dx2IE5FyuVuhxI4HStxhj29vb6JqTpdNrHH3/vcAOMjo6OvjDUAC7Hw7o44rSxvrRhc/94GknhGmXdyFMX151fq7vGNr1ZgR5cuxjqALVbLr5Op9O+IuwPOPDZW3cuHOj09zt3fl353vlrB0HQA1MfiLo/Dvy6z+47APym1awvBaunJ4dUtW2saavKBgTjmKT2crNu7dxqB1SNsOUZGUSMBiOS9LI8GQYBs8mUra0tpBTEcQBG05Ql5xdnfP755wghWC7XVK0FwMenF5wen3J2dsHO9jbP334eEYRMw9Q2DbWaMEoYjAwiCAlEQBxZHUUUx0ymU2bb24g0YVFWTAcZqsk5O11w/cYBiQy5Pt3mtdu3ebBecnDreb7y2uu8+dabDLIBW9tboDXz+RmT7QGLs1PyfMVgYDWCtapZL1f9RTsZT6x9yVByvliRxhHCZAihSeOQ4WDEMEs5PrZM0dZsYhu82pbVKicIY+pGcb5Y2+aotiEKY4RSiChBNIZxljDb3mF7e5vReEwUxURRiJQBRgiCwJU/O32usqyD0C2qVcRJ91xtUFoRJQGxsD4pQgpM10nsArNfrtFakcb2fFZdsHClGAFEXRB5lssHpX553/3fbSybz/fB6qbG1AUZH2T6YNI9d5Mxdc9z7+P/2z1/sxzkByHgSja/Xq/Z2dnhxo0bvP322+zu7vYgzJV48jzn+vXr/Pmf/zmr1Yof/vCHPHz48AtWLmCbBL/+9a/zjW98g+PjYx4/fozWmtFoxHw+57333kNKya1btyjLktFoxP/2v/1v/Nmf/Rlt23Lr1i3+m//mv+Gll17if/wf/0d++ctfcnJy0o/2c5vQYrFASsnrr7/eSxYcQPTBo3vcZfCOtXWT3vxjeqmbv7SN8Zlkd6zd5uU3SGwCW38jfJbr5MkDDp8c0h5cY1G2FG1BV7TrmqawoxZFwRoDgwHGXE6PCYKAUEpru2psR7xbgQgJ44x2tWJ+sWS1XNmNSmnKomCV5yAEo8m4l2sZA0hBIG1yPxlmTAapNSTPS1SrqKsa0NbpBYXSmjhOGA8HKNUipCSLEmIRsJwvqGtr3l4JOz56NBiytT3j+vV99ve2GQ5iNNYeLxSXk8papSyINqIjjA3KWPa+qapOKtDFMARhFDMYDjHS2gwmSYox1gVhcTEnHQxI04jPP3lIka8YT8dMJzO0ETRlg24VWZZa3WOraFtbhQJrnSSDsCvtV30TnLOXEgJk11gVRwFSxr0utW3aLka6YSD0Hf9SdMZUplMhC2H/eOsS/HxxhPCzWj7z6ORxftI+GAz6GOC+g/vcTu7j217597iLA46ddD0TTdP0ZXcH6jYBlZR2xLrTrS6XSz7++GPu3r3L+++/z+///u/z+uuv96V5V+5238kYw40bNzg9PQUu5UO+5ZV7P9dFnyS2x+Tx48e89NJLfex2INzJJXyG1MUnZ/Rvq9PlFZmD/938CpzPJgdB0FemfMbXvZ/r8ncg38U73wnA7TfunDqy0bHgQM/KusTBJScubg8Gg/4c+8MR/AqEi8W/CUHwpWD1449/2b2ozfRCtwkEAhlY1B5GEbG2ZfUoSREI4ixjNBwxGo8Yjcdk2aA/sUab/gIKAmknHRlFFEk0iufUDaIw5Oz0lKYb8yeFwCjF/t4ubdOwLkrW64IwignjhDhOwRiaqgLRMBiM+gMTxTGxMQwGI+LhgJN8zfXdLRqlePj4ETu7O4RhyGw2YTffJk9CXn7lFV5742vcev5F4jhBCGyXp1YEUlCVJYGU1FVDvj4nSxNGo5EFrnWNLkuKMmeV2411PMyoy4rRKLNTr2SAHkMShVR1zcH+HjIUREHIapSTpSkHB/vs7e2S5wUPHz5Aa8NkOiOKYmRgM5PTs9OuRB8xHsdkgxGTyZQ4SXvdsNHaTlrRCtVqdGPBZhDYYQpRaHVcWmma7jy2uqWqCspi3bPjTV1TOalHXTG/OAes2XJdWRa9LEsCKcg6acOzXC4AbJaG4VL472fPT8t0N1/L/a6f5fuv7V7DB74+AHbv5b/u5mfzn+ODbKVUzyKAbazb3d3tM2XfoNqVe77//e8zHA45Ozujbdue2fS1rFJKDg4OeOutt5BSsre3x82bN6mqio8//rgPRp999hlHR0ckScJiseCnP/0pQRDwu7/7u3zve9/j+eef5/bt2/xX/9V/xbvvvsvh4SE/+tGPePjwYS87ePToEQcHB7z00ktXGqd8Jts/Fv7nDMOQnR0rC1qv1/0G5ssv3LnzQagPgl2w94+tK0kKcTm95VlrVo3WJHFCo6BpFBGaQRqQpRV1WVCXCU2aEAUBTVNR1xLC6AqAESYEo2lbC+CaRrFcrcirFuvFH6IMNKqlNRpkiOriRFOVNGUMSiOM7bgXBuIkJgwlWRIyG8SkgeHsYkXVKloDQpuOD3RJW4PRqgOsNs6XVdszsEEAUWqHSUymM0bTMaPphOFsymQ8IjIGo1qiNO4Zf9n1JthExE5uqquK1XJJka/tlL4oZjgekWQZYZxBGNF257jMS8oypywLwihisr3F+fk5dZ6zd7CHCKyHtzEKhLEVvMHQysYEaNN2VTF7H1ZV2QMJC0gMSnXSC+/adpt5z74FAXEc9TpK4SxVHS71MKeUAm/4MM72yl7zXgx6SpXm73I5YOkn9Q74uLI0XFZZfWLAb75x5XVfe+k63f3xnU776+Kj3+DqvzfQg0QhRO/Ven5+zvHxMaORlTq++OKLPRD0x782TdM73fjVKFfxgUt2WAhr35emKWdnZz0A90v0PgD3K3FxHPfWUs5j1TGQ/l7gmE+/GSoIrCQlDMN+nKyrwDrw7YYOuD+ufO+an5ynq38Onb+sP7HUJSROPuCWO7+b0owei3WstPvj/3+zAe1p60vBahpHhKEtBWFEb0wsRGf8H4YkcUKaZgwGI5I0Ie70kkrbbHe1XHD05DGL5RIhIEkzRqMh165dYzQaE8qEtrFTRcI4ZGt7RiAhjQLauiEvSor1krKqiOOQtq149PA+qmlsJyiglCbLrAVONhxcueAQkgTB9s4u0WDI5w/u8/z+HmGSULVdVhZKlDDoKGD7YI/rN29y89bzZINRF2AETVszDiRGK5q64tHZGaPRhDhOuDg7tV2IrfXyU0oRJzHTKKYoG7ZmM8IgQkhNEkVcv3aNwWBEWdpuv+lswmg4ZLVes1wuydK015ZIKXn7G19nsVgwXyy499kDnjw5Iook4/GYYZZQ5ivqquT05AgQnRsDvdedFEGXKYWEkR3NGAROFN5169UNBmyjgrQ2OELQdyRKDFq1oDUBmvHANnlNRxmr1ZrFHNJQolRLWxcU6tkyq08L2pvlY/+xzcfdzer/3AUvP0PczG43Qerme/vgzH9tH8y64OOuY6f1cTKMnZ0dfvu3f5tr164xnU6favMkhO3m/+3f/m2ePHmClJK7d+/yySefXMmMoyhiPB4zmUx46aWX+PrXv943Qv33//1/z1/8xV8wGo148uQJH3/8Mbdu3WK1WvG1r32N3/u93+N3f/d3e7AspeTVV19lMpnw7rvv8t577/VB9PDwsJ+Atbe31wPVXwUM/ePlLLSc7mtT4+SCos/Q+ufTZxz81/UDvl/uetZgFSAKJEkUURY1q1IxXwnGWURZFIRpQlJa7+uks4UicdemdWjVwk5iqpvCTvrTmii0kwKF0JRlhQhs01NSapJUUpYRUefu0tZW2oWxTT9CCgZZyjBNGAaQBYbhOEFoCKSgqGqMDrpNx05UisOAQEIoIRSSqqlo2paqkyDY7njZecIqVGOtEpXaIoxTYikwTYUMbXnbdLIm2yvRlUWNoaortLHERJomlqBIUsI4QQYBRinatqHMSxbzOcYIojRmsrVNlRccPXqEQSLDFKUNdd2QxDFxmiCjEBEESC06IJCwXlubNevssujvozRNusftNEU/PvixI45j9vb2WK/XV1l88cUGqT5O9BWczebQy+cZ8+zdAFwfi69X9b+7S6pd9z5cTjGCq8SBz+w5sOWOqWNRB4NB37jlgKFfdveTX/d+YRjyla98hfv37/Pxxx/zp3/6pyRJwn/9X//XzGazPh74e4EDgY7lNMb0VSzH+IK1c9zd3e3lBAcHB1cqeX6J3e9vcN/1/PycxWLRkxM+ceE34/qEiy81mEwm7O3tsb29faUaupks+Gy1m3jlWGn3vX1Zh2ue64cNCevi4Cpn7ru4SWJwCU59dtfX4roEwr9Pvmx9uRtAmBBFXdeXDIiixOpEswFZ1+iklNVTlcWaw8cnrNdLqqKk7GbHF0Vh/e2SlPFkjGpa4iCgXK0R2ljNjzAWzCH6zSjLBhTLJfPFghclLLtpCwJNma85OztGBpANMtphS5LGlgVFYIxGhgEiDAiwnZnjyZSd3X3ef+993r37S169fo1BmlCWa1opOD274Hyx4vmvfZWXXnqZbDggikOEkBjj9IaWvR2OJsx2D3hw7zO2JkOiOGaxWtvhAFHMYDCgqmqEiNjf3WFra0arYZ2v2dvZZjqdMhgOULplMBgSRfazu8alPC9sV6iwDRSu9DkcjUiSlCiWrNZLprMJ4/GINI0IAuvZGoQxdGUkG/jcBVlTFmuatkZrRRLHpFnWgwytW8p83W8GVV12cgBDWRREUXeBAwgo3WcaDEjikDiy5uVlWdLUFXX9bN0A/BL9ppZxExhugshNsOkHWwf0/PeAq6X/TenAr2Jx3WfzS9g+WHLZrF+2dvrRGzduMJ1Or8gENj9/EAR9R70xht/5nd/h/Pyck5MTpJT95LGvf/3rvPzyy3z961/n2rVrnT2a5pvf/Ca/+MUv+s/hHAi+9a1v8c1vfpP9/f3+fvW9ALe3t3stmDGG83PLwtd1zSuvvGI12d3aBKzu+/vHebFY8PDhQ548edJvAk7O4ICCz6j639/Xwbn3cq/tSmm+lMOXYzzLZbRNbLUKqKuG+bplnNWkaY0sSqKkIghiAmntpNAKk2AbpNrL8rIQhiSOOtN5QakkedkSyBCwtnRGtbRVSRhIJpOpjb3FGqVb7HxP2+keScF0OGQgFEJXYASpNCTSoCOJUhBIMMbqKwWGMAgIpSAKA2RgrPTI2FnSgZTEQYgwmqaqEFmCRNBWNVVZEw9Swji2Ugb3HbWmrrpJWkoRxhFgNfJBEBMEsttgBU2jaIuKpq6oyoKyqTFCMprOGA3tYIrDRw8tI6t11wSrCYKoZ/6DMCQMJVoLwiCkqhqa5rIZ5irDL4hi515RX2GWHGAIw5CDgwNGoxFHR0dXyrfSGIwwdgQsV704MQbhwoqwWlUHXPv7Xtr5Ns9quePggKp7zAdEDrA4JtGPWY5hdaDJHRvHcm5Wv1z3fpIkvW7SvX7TNIxGoytg2WlRB4MBN27cYHt7m5OTExaLBX/1V3/Fb//2b/ONb3yjB8d+Qgv0gNLFnl765gHOyWTCzs4OURT1Y64dgHaDT55m1yel7L2uXdOzO37u+LgmK3dc3O+54zsYDNja2mI2m/WsqjvOvo2Uk0I5kOjkQw5w+wDTr8QBPUvsN2S54Qx+1Woz/sKlzMB52Tpw677Dr1tfClaRIYPxlOl0ynA4JOq+fJ7nnJ+dsFqtWa/X1FVJXdoMvlUturG6SKVaEJLRyOonMFAVJatgabWNXTYaRxFxKIlD23ClW80gGxBHEcPxhP2Da+RFSVXX1GXO1nTM4mJOFAiaIuf8xN7c06khzSBJU2vh1IuRre3Iq6++zi/e/wU/+/AXiLqmOT5F1Lbc88nDJ8jtLW48d4vReEKaZlcCjdbKZv2NBXuTyZT9/X3WiwvbJd00aGN6UF4Uuc2OmpxRMmJv/xrLlW1QiaLImg6Hsrt4h12Q7Eyop6Pev1YATduSrwsWi0Wf3T85fAzYmb8ykIRRAFJ0E07sRuA286ybBuOAgJtmsVqu+8AQRVEXDO0FaIhtN62y51GphslkbIOu0iRJRJ4X5MWaQTZie3sLbTTb21ssFovenP5ZLd+2ys+Q/TK9X4pxYNJlvpsleD879pfPsvprs7TvnuMDJh8k+4yqr99xIMzprwaDAcfHx7z33nu88sorPWB1LLp7bx+wTSYTbt68yT/4B/+ABw8e8Jd/+Zc9qLx16xZ37tzhpZde4vr160RR1PuxvvDCCzz33HOsViuyLGM+n5OmKV/5ylcYDoccHx/TNA1pmrK1tcVkMuk35dls1lvROKYgyzJef/31PlvfZIP94+GOlwtur7zyCkopfvrTnzKdTrl27dqVkpILsJvnxL2u20zc8Xev7Z+vp0lGntWSQUgYSLI0o2la8qrh5GJNmsQEYUUU5IQIQmHv8aa25t8qDAmEbbJKkog4suVnKwkwBELQNgqDHQMdRWvSKISmpq1rJuMpoXSdwLaBCyEJAguKJZooCtC17e5VTWNt8YR1DNHKJmBRbDe+srF61ZFMCIT9vLPJADov5+2tGVkWkyQZaZISyoC6LFkvF8RRgEgjAhHQNIqmNSgDZV1TVSVNXRK1qZWkGYPoqoBWphZQVjXz+Zy6srq/KE3Y2tsmSqzX7/1PP2NxemorbKpBa0MgQ+LY2i6GYdhPhZLC2PGrhd1w7ThPSZLEgLunm06ra+UAQkgGg6wbW11hEOzubbG7u8vh4WHXrHo5MEcKgxaAdglvVy7uGq1sRwFfkASAvWazLOuHazyr5RJdH1z6pWZjzBV7KndP+g1Y7v71DeUdm+pimj9K2t3LTdP0Y6fb9tJn1W8gdWAzyzJeeOEFxuMxd+/e5ejoiB/96Ed9bHPadT8mDIdDzs/P+zjjdP9OZ+pGULuJWs4v1Ump3Ijp3d3dftCKey33/ZbL5RfAnwOjm+Dd7Ulub9jf3+f69et9o5gDk3Bpfegvn+10YP7i4qLf/1x8dGDWgVT33k6K4cfULLOOURcXF1ea6xxAdRpjd+7coIWnfb7N9aVg9ebN5+w856Lg7OSYqlhTllZMrpSdYhRI2TF5djSe1sYaykeBDYaJLcu4C0oGkqZVHJ+ekqYp29vbVg8yyMgXcx5+fo+mbbjx3E2iJGEwHFLXDXFqs6S2yRkOU/Z2dgijGINgNJ4wHNgO4jSzTgNK2cYiQdBreba3tnjjja/y2f1PuXdywrhoyPNDTCRYG8PXvvo17rz6Otvb20ivvCKE7YiPo5DWKJtdVyWzrS0rC2gqUJqLLisyRlvGtq1pVUPQhpyfHJGkKYGE1WpJNsjseMDhwNrGRBHz+Xl/0mwWaDfhwWDAZDLpL6LxeMxkOu6bWPKiYChD4kAi5GWp023ivu2Ry3zH43HfyedAmGrK7gI1yOBqZ2Oe56zXBWmSdDpiEEiWyzVGC0ajUU/rO4+7Z718G6JNUOmX2t1z/PKxy1w32VLfh+9pzKv7Xf/m80s4PuPrA1S/XOhnsS44lGXJarXiyZMnHB8fI6XkjTfe4Pbt27z11lu88cYbX2As3ZLS+uu9+eabfP/73+eXv/wlx8fHjMdjXnvtNV555RVu3LjRz5R22bcbLrBcLvvgVNd1D2aHwyH7+/u9CbgDpScnJ31QdkbSWZb1z30aa+D/7Y5D27Z9gJ9MJnzzm98kjmN+/vOf99exYxf8BMQ/D/7f7mf++fGvAb+c96yXjaMBtAIpI1plWOQtp/OSMEwIw4JQghTajjPtfi+JY+IoIAkDtIK2UYBGGqjKmrruxl4LCQaSKGaYpYwHKVU3zKRpFE1do5TTYFugpJQlKrIwRWDHrVaqIQgEiRFWA6ux3frdIJmqbqkahRQlgyQgjgJaZTWAYRQRhZCkkslkwNb2HtvbW4AmCENkYJP5QAZIGaFlbPW3XQOKaiorN0hgurVD1PmZukZTbZb9NYIQRGkCRjA/OePs5JTz01PatqJpNUZZ2ZNLeuzob0EYWla+qEqq0mr8LkvO0o6XDiPrG95097U0JEncM3lKtcRxgkYQpxmmi8mDbGBHYbd2LxXCtrS52VVuPpfVsnq6brDMdAd22rZBCEkcJxjz7BKt3ubQS7AdYNos44O9x4ui6MvVvg2UD1hd1caBQxebR6MRSZKQ5zkXFxcsFosetA8Ggyukw2w26yVJq9WKOI755je/iVKK8XjMe++9x+eff87JyUlvoQWX+4QD1A5kOX2n+2yfffYZf/7nf07TNNy5c+cK89g0Ta+1dwB8NBpdAZJt2/ZNVVLKHvT7+44D9kBv0eUIKVf6d5IpV7p3Wmmnr3Xv5fCYD4Qd2+vLLpye1H0Od+276YjOD9xniZ10wwfSvRtUcDnJy10LPtHwZetLn/E3/88P7bSouiYMbUcj2I5Mo63uMYojgjCyTEAYEcep1T15ZTmlL5tSlLEdkuPprB+Hptua+WrFejHnYmk3vPD4mKptmU5nRHHEdLKFkIJIJGzv7KMnre32jFMGozFhGNsxrE1N07QEcUwQBhhMr/eZzbZ44+tf48NPfslnd++iBKiyRLeQ7uzx1W9+i2vPPdcBQ9+TUVpXhNXSaqKCgLP5OavVijRJaFpDUdU8ePiYBw8fUFclw9GQyWRM07Qs5kdkacLW1pTRZAoi4MGDR0RxzGq1ZDQeMp1OKPKCxXKJUpprBwfs7e+hlOpE4NZ31ZY9YvbSPcIwtM0z2nQ2MwHaWvL15TB3w/lgyr+RHBXfti1G10RRCFjdllJtz0hhYLVcYzR2HrlSCAFGC+bzRZ95xnHMarXqpQvPavllf7hk2Z72xwdP7pj55eLN52w29Wy+Plx6pfqAzCUF7vdcWckHsb4Pn18Ks2Nscz755JOeYfiLv/gLfv7zn/Ppp59ijOEb3/jGU8GWENaDb39/n+9973v8yZ/8SZ+kOJbh9PSUhw8fMhqNem/V5XLZN1MdHh6y7jTVeZ5zcHCAUorFYoGbpw1w//59/uIv/oJvfOMb7O7usrVlmXZnwbLJoD5NiuGOR9u2vSbNif1fe+01zs/PryRj7pi7c+e+sy+N8MGsLw1x59qdQ79s9SyX6XSfWlsrKy0ktRGcLiqCcEUYCQKpkKJFtzYuGCnQqkUSI02A1gKtArRuEUayyBuKCkQQYjBEoURKQRwF7EzHVE3NuiiptaFx45eN7VdABHb6U1NT14LYNEhpbB+DMURBgNCgA0HTNuSqYTgcMB4OUW0NKJpWkcQRkbSbXpzEBAGkSUgUSuqqRJuW/f094jilaVoMoIym1QoEtG1Nka9soj+ekg6GZNmQ6fYeURRY6ZK+bIrpkx8DZV3x+OEDFmcX5HmBUi2NUVZfqoFAIMMQEYYESYwGwjBCyoBIhMRhyFq16A6gSylQumNFpWVIdXe80iS2vQ7dCG6EZDAccXCwz2q1BGA4GrJcr2i6mGDJni6h7kjTXiJjvATUGKQIul6RIavlstvnBOYZygAc0HENZ46ZcwDFPcfXMrqytusyd6DFGfpXVdW/nnuOA48OiIG9npytnSvFu/d1Bv1FYauT9+7dI4oivvvd7zIajbh58ybPP/88R0dHnJ2dMZvNvsD2+bHJ94t1z9va2uqlCIeHh9R13Y8x3dnZASzTulqtiKKorwy5Y9I0TQ+2+14Tbw/y+xJc85Ux1mHBkRSPHz/m4cOHfPzxxzz//PO8/vrr7O/v95IABw594Oj2Kf9xt3c7gsIdbxc33eN+vHSg0+1XDmz72ljfAcHJFhxz/v8ZrD76/FPvQwKiy/m0AQKCIOynj8RZShylpEnWfzkHUu2GbLtJt3d32d7ZxRjTbYZLBmnCeDRgurPHaDajrkoeP37Map0TJxnD0YiyLgmDkPFoRBgE1HVjR/cNhl1DpLFMqrAWIG5mdNvZaglpp2tNp1O+9dY3yecrHty/hw4F060pv/X3vs+Ld+4wHI4wXZcpxjYWaG1o6oa2aThdLojDEK1a5vM5n5yecnZ2xsnJKeu1BWlVXXF4fEpZVMgwQhvF1mQEQhKlKRByeHjMvc/v07Y1W9sTrl27htGCotP7fvrxZ0y3pty4cR2M4eJiTpIk7OzsUFUlaZYyGU9sNlS3NEojQ2vAHUqbobvAbYGAPUbaOydCSLIso20alssFRtcUhel8LgVNc2kdlKYpdb1ksZgTyMA2bQhBHEXUdcXFxZyqqhmPx8xmsz5LflZrE5DA1eYjuMqy+hpS9zO/tO+zpz7AdM/dfC8HsDZ/7rOAPsvqnucHSF8rdXFxwcnJSV9W+p3f+R1eeuklfvGLX3B8fMz//D//zwRBwJtvvvkr2cEkSXj55Zf5/ve/3ycU77//PlmWsbW1xRtvvMGLL77YB7/hcMg777zD/fv3+e/+u/+uz9g/+OAD/uiP/ohHjx4xmUz4e3/v7/H7v//7vXn2xcUF7777LqPRiG9961s90HUWVC5g+cfbnQf/2DvtW57nfPrpp8znc2azGTdu3ODs7Kw/3g5c+sdvE7huXgebsg0XdN0G+qxXEEg7eMVAEifUKkBoTWM0y6JisAqQQoFuadKWMI4YhzFohTQ1Oo6IwgilAoK2QZuAZSWpTYCQEmO6qXahrUZtSdsc+ag5oakqtGm7eCqsB3YYMYhjslAQ0hJgXUYCAVXddbOLAGEMoRS0xlAUBXEQkMUxEKCVQinTlcl1F1NjmkpRByWjwQTTKtbLJcFEEIYJRmuUbkC3aFUjpSCJI/J1TRgnTLf3yIZD4jizDGVT9yXcIrcytbZtaVXDYr7g8MkjBIHdJzBIaVnUoNP1hmFInMQYAXEUMxik1GXB+dkZxTqnyHO06thD7KhujLtXNUkSknbWQKv1GqWsBdx0NmN7Z4e6c2cYjUYcHx/b/dUY6rbpkgNwpX1fDwuXlm5V3VgZR5wyyAYUedFVPapnGncdAHWsI1y6p7j73WfpNi2f0s6z1t377j50MdM5AjjNus86TqdTS3KFYU+COfbRgb7T01M++ugjzs/P+zHlUkp2dnZ48cUXGQ6HHB0dsb+/33s9+3HagdPlcnlFhymE4ODggN/7vd9jMBj0w1bOz8/54IMP+P73v89kMkEIOyXr4cOH3LlzB6AHvz6Q9ZvGHJBL07T/zo6ddY8fHh7y7/7dv+O1115jOp3yr//1v2Y+n/Paa6/xn//n/znvvPMOu7u7PcPpZGOb1ltgrzEndXAx04+H/t7ngKnfmOVsy6qqukL8uN91cjB33JwdoRvj+mXrS8HqfLG61E4KW6BQylLIUTeqzyWBhsKO/dPKjgU0FjwGQcRsZ4fd3X0GgyFlVXF0dGwBV5qxNZsxnU4ZjUeEQUyrWlRTsr17wNnxCacnpxwdHmMMPHfrJkJGtsQUpnZcH4IoCjC6JRD2AIdd84BRXQdp1xhUt/agPnfzJi9/5Q6PDh9zsVzx4vWbvPzKHbI0wla/rYWTRGI06FYRBRGDwZC6qijqirqtmIyHXJydcu/eZ1zM553nrDXSj+KYUMP5+QVJlLCWOYeHhxRNQ1W1LOYrlouVvfCCCKOPWMztmNn9vT22d3YYjacEMiWQkqo65cmTQ46Oj9iazdgyU4bZkJ2dfepWUZS2A0+1LTqURKFlTxC2Q9ixDaZt0V1XolI2k03iiNFgQJ6r7qKxInSlFFo1aKUYDIaMhimr1Zq6qbpGg6bzpovIi5owSjm/WLCzs8VwNP61F9/f5vLLOJuMnZ8F+sycnwm63/W1r3DJvrl/O8Dll658oOzbjrjH/Nd15TL33o4NdK/vAlRZlv386rfffpt33nmHW7du8d3vfpeHDx/y7/7dv+Pf/tt/y3Q65aWXXroCztx3AevP+V/8F/8FAH/4h3/IBx98wNnZGf/gH/wDwAbfPM/J87wvKX3lK1/h9u3bvQ75xz/+Me+++y7rtZ33/t577zGfz/n93//9Xvt0eHiIlJLr16+ztbXF0dER4/G4Z7s2y/7+puwDTlceWywWPHr0iHv37jGdTntA7thov7PUnf/NpMRtWi74+o1Z/vnePHbPYkVBSJokaGAQRSitqaoSiSEKbbNUXmoQikpVhDXIuCEOBU2tGKQxSaz6knaLoNEhSoMUkjAIKZUijiKSNCOOa8JAEks4mi8IJCzzbiyoMASBIAoEwzQkjQwxBsqWLA7RrW1OEoEh6HaDLE7Im4bFckE8m1oZVWrHYWtteiZeioAirwiEZDWfs7uzw3g4RmhNuV5ijGG1uABABBKkIE4Syqq2NolxTJYNMEpRrhdUtdWnLpdLVosF+TrvNk+rh0yThChKEbIbS22wmteguw6MpT3iJCFLUkxbszw/5+LMVtLs3hdYxruxPRlta5vakjhkMLQlbXuv2I7p2WzG3t4udduyXlv9d11U/T2vPTsqvGv1CqsaSOI0RQpJ3drKJsKgdIvSFoy3qkY/QzMAV2p2960rZzvg5cdZv6nIb37crHj4M+uVso11zk7JL2W7/SpJkn4anu/52bYtDx8+5MMPP2Q8HrO3t8fx8XEfOxaLBYvFgqOjI/b29tja2mIwGPRkgm8JuFwuv1ARCsOQV199FaWsx7XWmnfffZe//Mu/5M6dO+zv7/fHx8kB3Od3WlVnyeeYR+d+Mh6Pe+Dsf1djDKenp/zRH/0RH330EW+//TZ5bnHGzs4O/+bf/Bv+5m/+hn/+z/85f/AHf8CtW7f6Ur9Lljb3MpdU+EmGb3lluiRUCNF73rokwZcduuPuGuA2+zB82y83qfDXrS8Fq4vlkjTNuq49g+zeqKv/YrTCSDuJKkmGRFFI2ypa1TCe2CaIre0tlNaslmvW64ogjphu7TAaj5mMJyRJbPVZdBuzamiamipfU5ZLtKkxRjIaT6jrhuNODzeZTBmOx4Rx3Hm3SqTsvAYBYbqZ2NqgdRcItCIJA5I4ZDzMmIzGrNc5d77yFStHMAYjBFIGiE7LQZ9BWG3ucDxGSsHxscEYwdb2lNdefYUnj59QFCX3H9wnjhJ2trcQQjAeDFiu1mSDhCSOEapluZjz8PEhRgsGaYLWiixN2N7aQivFcDhka3ubbDBgtVpigDe++ipxHHN+fmHN/YOAVdkwToaMJmN2dm1nZdPaIQ1aW0uXtq47M+sWKSTKaNZFbkep6payKUiSlDAOaFeaoq5ptMJ0F+OqyAkD0Xu4BYHEmIBclbSqpc1bC7aNYbFYdHPjF4TRr6f1/zaXnxVvSgL85Qcd/4b1dTVubQLfzddxf7vX2XwMLnWo7vX80op7nl/WdmDMgdjhcMhkMmEwGCCE1Qq/9dZbvP766/1oVWcd8zTQJaXkzp07hGHIw4cP+cM//EOOj4/5yU9+wnPPPcfu7i7Hx8fcvXuXDz/8kOPj4767/+DggN/6rd8iyzL++T//5xRFwY9//GP+7M/+jH/5L/8lP/jBD3jzzTc5PDzshfdPnjxhNpvx6NEjptNpb0i9eUx9oL/JNPtlogcPHnDv3j1efvlldnZ2rpT6fVmHz2L7oNVPUHp94oa+7j8EsLqYn3PjpddJw4iqgSyL2drap20bdKOoaYgDw7pqKJUgiqE+XTMepWQRlHVBElVdE1WECSybCu7a7vSVWpNkUdfE0xIxIQ4DIimJZGgbpqRkNIiZjBOmg4BMagIFbVNRNrZyJYVAComIwDQKgQatUNpQ1S1BGtDWbiZ6QBIlTCYj6yoTCKJAItEcHz4hHQzY3Z4gjOH87Mw2XSk7eU9VDSiIw4i6LFmen4FuaZuGRw8f2CElbct6tWK9ztFadXIKRRzb4SZRnCDDGBkGtEqjlW1a0kaDMcRpShxH1EXB8uKMi/MzlotF341tN+SuG99AUVVE0pANEoJQsl7ZJqcsS9m/dsDWbIu8KCiqkvFgSFU3XHT3qgBCGaCF6gY4OHkLVr3aWakKIYmTGClCxHrdjcourD1ZbYFvVyd6Rlfspa5SKdXLjJx2VGvdWz35GsUkSa7YWLl7c/NedXFytVoxGo365ienB1VKMZvNAJtwu/jjXsdN5YuiiBdeeIH9/X20vpzkN5/PaZqG+Xzes5zD4bAfPODK5qPRqI8PDkj7SbD7rCcnJ9y9e5ednZ2eTXR2lMfHx1e0oXmes1gs+oEF7jVdFcqfXuUalIwxPHnyhH/7b/8t7777Ljdu3ODVV1/lww8/ZLVa8dZbb9E0DXfv3uVf/It/QdM0/Lf/7X/bM6xu0I87Rv6e53S4Tp/qmqTcMajrmtFo1Otde114txwJ4DTG/us6Btb9rm8n9uvWlz5DIzrdkEBK7I0cWx9VTacLiyLiNLPZeRSxtbXN1u4+cZpRFiUnpxeotiUIQpIkZTSbsr2z0+sVtFKotuZisaDOl2SRJA5DBmmC2NtmNBoTx0OiKKGqK4SUdjoVnr9iIEFZ8KiVQYZ2WJ1yN7Jx3XZWz1pXJZPRkOvXDpBh2AuT67q23nqym8DVtpfdoDIgSWynW93UHFx7jvPTI6oy59rBAePhiOVywdZ0QlFa0XiSJOzu7HB4coowhiyN2d6eEicJRVUjZUAcSMsmjMddc0DE1tYWaZZy/bnrDAYDzs7OOTk5oiyLbtjCjChNaZSirBqWizUrsbasQZyQJGl3nkIEBt2qvjOxqguaVrFarYkiSVVWtMp2sAZhhNKG8+NTyrJiOhkDopvHfWnzI6Tt9lXaZs9FXnRZVkPdCPSqZWtr6/9dpPv3vDZLzJssni8HgKtMrL983ZD/2u65vrh887U339P97W5gv8nKN8l2QNtnD1xQdSxnXddWM901N6Vpys2bN/v38QGuW+7fYRjywgsv8E//6T/l3Xff5cGDBxRFwfHxMZ9++ikffPAB/8f/8X9wfHzcv8fNmzf5J//kn/Bbv/Vb7Ozs9IH2d37nd/ja177G//q//q/81V/9FR988EHfHfvw4cMrRtUvvvhizxL4n8f/rn7Q98/BbDbrtWtHR0fM53PrqCEvDaXdRu9ex210rtzlM7b+Juie6//+s16/+OlfcevVb5EMBlT5mouLJdPJhCSNEQTMixIRhMwmdvqdDCOqpkWvSswwZpAERCKh1SG6EehGYaiRge22163qyvIaI6zsIIoCUNY72WhFFISoTg8/GIZsj2KGkSELDE3RsjLGAiyhbStrBzqNstOjhBAYYaiqmkGSUFbdWMbUxqekG52dxlazmq9WaNWQr1cUg5jxaEiSXqdVmrxjUlXd8PjRA8qiQIYR52enLBfntG3LYrGgKKt+ymJHlBI4AkJc6sm1aBHCaoKlCLqG0QAZCIzSLOZzivmCYr1ivbQm7dYj0iabStv23bbzoh0MB6TZEN22xFFCMkrZPdhmPB6zXKxQ2MZTWkOxtgMJjNaoVtF2YASuxg/dES9GiM6uykoXjLlsTroSf35FQv53tfxEMQgCiqJgPB73McyXPfksK1xKCIC+acexo37Fw+1jzvMTLu97V4J2U5+cnElrzWKxYDAYcPPmTV588cW+Y/8nP/kJJycn7O/vc+3aNZbLJWma9lIGx0S69/GbldxjLm672F3XdT+56smTJxhju+TjOL7iYuDkKnU3JdQxmX4Tr3M3cO/lmlwvLi741//6X/OjH/2Ipml48803ee6553jw4AHD4ZDRaMR3vvMdHj58yNnZGX/8x3/Mt771Lb797W+TpilpmjIej3tpl2NBg8BOv3LNXk4W5UC/a0JNkqRngv3j5M6xS0Lc1DBHoDjtsd/s5Z7/69aXgtUss9pFazNi7VCiJO06JEPiJGO2vcP+wQH7u7uEod2kHh8+Yb1eI4Sw00QGI7a3Z9y8+TzD8YCmbViv1ywWF5weHfLwwUMOj54gBbz04gs8f/MW08mYIMgYTycILKs57gTLbdPSKjtVKYwTpFC0dYVSVhBvVEhZrcmXC5bLBVGc9Ac+jrN+sMH29ha1ujTrbeuK5XlDHEcMh6Pe/sleOAYZRqhGEUYxeb4mSVOmsx1GowlaK1bLFccnxzS1NeFOOkC5f+Ma+WrNermkbRQH+3uMJ+P+Qtzb3WdnZw+NIek+a9s2HB8dc+36dXZ3d5nNZhS5FVVrA2WRU1Q1YZTYzv4wBAFNY0e2Ns3cZt5NTRLHDAYZaZoxmY65ceM5irKkKkvyfM3JyQlN05JmA4bDESenp5yenmG0Jo0jJBBGAaJjqPOiIM1SlLKZVxQHtG1DGNm/27bh7OzsN4twf0trs5y/qYf02TVfs+OX+X3Gz3dTcOtpGtjN4OWDWP+z+V2tcNVj1QUIF6RcIBkOh7z00kvcvn27120dHR1RFAVbW1vcvHnTdll7QfxpjLIQtnz6xhtv8M/+2T/jf/qf/ifKsuT//r//b/7iL/6CX/7ylxwdHfWvcXFxwWuvvcY777zTNx+4nw0GA373d3+X119/nX/5L/8l/8v/8r/0m4VjJIbDIUmScPPmzR5cb0orfKDqg3YpreXMcDhkd3eXg4MDjo6OWCwWV1hXpylzm9smQ+M/5mtc/c/iNtv/EDSrSmseP3lIkg4pyoYwiliulxRV0LFpLWUVkcTbTCYjolCSxQEGRRyHZFlCFFrv6rKq0LoiihPW64K21USBJA4kRVVbL3o0YefgL0VEEk0YjVKKqkEGAUmoGUeCJDRkSUArMxbrkqBSRKH194yiCCEFMlQ9WNXGUJQlWRwhhGW9hp5rRRAEDIYZSRQyGw85PT1nPr8gSWNkYK9TpS1Tq5QmSkN29nd59NjG/iRJUW2DNoLpbIe0yikra3PoQJExBt1dA2maIoIIGUbIOLKjTY1EaU3btFR5xenJEfl6aZnhpu32sq4fQmvb8GYsW6u0ZpClZIMBCEkYZwwnae9/fXExRyBJswzVKhbzZd/Jv8gLC4K9pks/niiloHOEaTsGUUo7cAf4AvB71stJdhwg8xlRP6a6+891obtq0+YoUmff5CfzxhjyPO8BcBzHnJ6eIqVkd3e313mC1dynqR0L7CaF3bp163I/7TSwp6en3Lhxo5cGuDJ7VVV9vPKboVzc8YkB930Hg0Gf3DvJ1ve+973+Oozj+Iphvzvfvu2WX31yVqEuVrn/v/fee7z77ru99vPVV19Fa835+TlvvvkmOzs77O7u8uabb/LjH/+Ye/fu8b//7/87+/v7vPjii8Rx3Oto/SEKzvlnPB5faZTzy/su3gJ9X4HTSvvyLHeuffsu36PWJSFVVTEe/3rZ4Jdzr9YzgyiMCKKQ4cB2e8dJwu7BdfYPDphMpqim4ejJY84vLqiqmiiJSJKY0XDEzs4eN67fYDgcMr+44PN7H7NcWX3Icrng4uyE4+MTijwniDqLkTBBaYjiCGMa4igkCCOQkiiKCaOYtq4IQmtLZcHvgqIoybIhdaMIMOimBqPRnU7TSNmZ4xeURYFWymo7jaGuS5bzM5qqBGM4uH6DwWiCDCLKqrSvoxRatzSNFfpLKRmPp9bKR0YkGUxnBqUappMpQSA5Oz8jCAN0qzg7tYylEZooiZhOhmhjSNMRaZoymU6QgWWKsoH9HvP5BYvFiiTOGAwyqqpEGE0oDHEoqcqcZV0jhJ1/PBgOGXSlCiEEq+Wcs9MTTk9PO0aAHtAoZcHEtes3CMOIKApZ5zlbO3t88vFHtEpT1YooDAiBuLsQq6rutDNDyqq0jLa2Gb+9cZNn3mC1CVZ9PaTLBjdZx01w6ZemNxnWTaCzudyN6oMl91rAlWDkA+hN+YJ7bhzH7OzsMBqN+p89ePCABw8e9FOtoijixo0bPXPoA7anrel0yj/8h/+Qn/3sZ7z77rv89Kc/Jc/z/tzt7Oz03++dd97h+eefR0rZNxgEQUCe59y7d4/xeMwf/MEfcHFxwQ9+8APOzs76clVRFAwGA65fv34FKG4y324j2JReAL1+y3kIBkHA2dlZn2j64xQ32W13/tx14QCpr9cCrnQnP+slhWA8SlEawsDKrsaTEXEUMp/P7aS7SHKxLMjLGtXW3NidMB5mSB2jGgOhpG4aWqURGOqqZrlaEQYhgYSmqTBa09Q1RjeEUhB2I7AHg5TBMGKxXqMNxAISGlKhyKKENkyIwtAmsoFEBAFRZEe4Cnk5WMFojVaaoizYms3s9Q2AG7Np41Ya2xizt7NFJWwZ0XlXG2NQTU3dtjStsLFza8aqKAjjmCwbojrpUljFiDKHskQ1GrSN2yKy9XRtNN0ViNYt2tjKUVnaxtZqXbJenKNVi1Z2GE3b2vHUUnbuHa2yQ2xEB7ZHlskKgpA0GzKeDAhDyXKxsOXcOEV1IANhN/RqWVGUhf3cG/enEF1zslbIQIAQKGU1y4IvVnr6e6lrNH5Wy6/cuPhTVVW/3zjGFegZQriMhS5Ob1ZYfNbSSQEc6+pYUCc/8KdLuVK6+3+e5z27mWUZSim2trb4/PPP+991ekyA+XwOXMaMJEmueDUD/WQnp9t8/fXXee6557i4uOgZR1/H6jScjmV0zLOUkvl8zvn5OXt7e721pPOPdUyvEIKTkxN+/vOf96/pEnnnkvLtb3+b4XDIYDDgzTff5OzsjMePH/M3f/M3/M7v/A67u7tsb28zHA6vjI/1u/qdm4YDmA7UukTA98N1cdN9V1+z6p7rrgXnEuASkv831awvBatFYcs2yTRld/c6zz3/Attb26RZSqNaFvMLPv/sU+qyQLctIrB61Gs3rnPt+nVms23KouDh/c94+OBz8m40V9WZNVuthm0auXnrFju7++zu7BKEMYfHx9aPL4kZDTKCMGZn94AgkggRIBJr/mzQSOGmlrSUZUEUpyRhyLqtyUZj8rzkYrEkTVLSbMhqXVBWDWk2YIwVyC+Wc6RpCYxCtS3Hh4+RZyfs7l0njCOKVU6Z5wSd/2hZVbbbHkMYhSwXtnzgZlhXdW31OkHEYrFgOp2yf/0GTVP15ZvVagHGMB7PSOKUuq7IBgOUaimKnOF4wnT2PBfzOeW6ZLlcI0RAWVQsVhdUTUMYJSCs+8E6D1ksF0RdZ6uUVpsym+2wtS2JoxAQ5Pm6o+IFdV1wcW4v+qaFwWDIK698hVdffYMgtONt14sFy4tz221a1xBYr9Woa3RbmxWtAm1s40fbtAS/gQblb3s5LQ5w5cbYLM1vsq0+EHUB072WC6Y+4+qX8+EqUHY3rV+Gdj93N74L4i7T3NS0gs1gn+ts1Zqm4d69e/zN3/wNv/zlL5nNZty5c4fDw0Om02lfdnfrVzEvzkj64OAAKWX/O1mW0TQN+/v77O/vc/PmTd55551ef3Z8fMz5+TkvvPACUWSv788//5yXX36Zf/pP/ylKKf78z/+8B5Hz+Zytra1+DOHm59ncoPxjXVUVn332GZ988knPiDjQ6oIzXPV4dKzMJkPrM62+9MAvQfrn9lkubTTr1ZzJdBelJKt1yfnJKQcHu2xNprRliRDWJD8vG1arC0JRU6wTqmLIzvbEglBzacreNi1NVRN1E/aqqqRtYblcMMxSjLFjlY00DNIQIQPCwEqNQiEYYkiEJglBh7aUH8kQEWCtA4WdHCWEbfrpzEMJOjmK832Mo4gkicjShFgGoFoG6cg2yUoYJAOCZNA1u9qmUWdBaBQUZUMSRqzVmrqqiCYpYdfhLwOBDAMIAqqqsZrbpgXdYDpXGq0VKIFqG5qqocyrbnxnjaobhDFUZU1ZNVTdJL4ojLprCDJhR7ta/at1D8iyIUmSdse6ZrEu0EpbgqFsaOqGIAjJhhmt0gR5gRTW8cEqZk1/vLQ2ttFYW2YVWrRRqNrFoqff00J8cTjJ3+Vy5W64bKKxn0v097JLpB0z6nSsDuj4vp0u9rrY6ErIDgA7wOOafM7Ozvqy8sXFRd8kFYYh169f5+c//3nve+rueZtkBD3L6uKBa4QSQvRNoZsyrTzPGQwGfczY2dnh1VdfRQjRe1P7MX0ymbC9vc1isSDLsh60lmXZd8U/fPiQoijY39/vJVOOdY2iiMPDQ95//30++uijnt29du0aW1tbXFxcsLe31/uoD4dDXnvtNY6OjhgMBqxWK959913u3LnTx3L/fDgg7yoQxpje99UBbweeXcOZq9K5Ur8jD9x5cefTjcd1z3Fx2LoM1X1i8GXrSxHFZGuPa9ev8cLt20zGU1aLNR/cvcvJ6QlllROGkkGakKYZ23sH3Lp9mxs3bjJME/L1kp/++IccHT5hvVpTty2IANXUrJY249zamvH887cIAsvWLOZzRsORbeLRujOiVmijiaRA65a6qQmCiCCKrIWI6Ax74yEqMwRBQpoNqcuCOMrQqrW6WwOq0/U0bUOUxLSrVV8GUKpilGW2pKQ1mRA8un+Pcr1ma3eHLM3QWrFeW8A9yLIu64fFYk7ReZ8lScI6X/d6k3W+4ujoiE8//dQC1v09smzQCZNToiBECklVVywWc/KHD7oLIUIZuHHjhrWuqQvW6xwpQ7LBkGvTWxyfnbPOcwLTMUQopKoRlbJBUEC+VhRlQdvazt/ReMxgMCCKApraoFs4OT61FmRhyHm+5vPlksVqTWsMW9MJO9tbpKMJ17Z3uoEJgsXFvC+vrNcL8iIHA0o1diziM8zw4VJPekUD5mmP/GzdD0JuOXDpa7Dgcqypuyk3S/5+cHXradIA9+9NPaUPZN3rB0HQd7jOO9eJ9957j/fff5+9vT2+973v8dZbb5FlWc8o/KYryzL+0T/6R/zyl7+kqiquXbvGdDolz3PeeOMNXnrpJV599VVee+21fvMZjUb8yZ/8CYeHh3z729/m4OCAv/zLv6QoCt566y3+0//0P+Wzzz7j9PS030hefPFF9vb2royOdcfClwE4LZorDx0eHnL37l1++MMfslwumc1mvPPOO9y+fbvXqG2W+Z2ti9+BuplkuMf8nzl24T+EJbATjRaLc8qyIUlHSGE4Pztn2ski5vMLAgOjQdY7cgilAY0Q2jZJhVGvs6+qikGaEAcBy8UaYzRlVZMYAYlBBJYVtVOvAG1IoxDTHd9BEpMJ2/yj0ogojnsbqjRNaBUoLRCi03RqgzaSQRrZyVtWZUBbl0iTQVthmgbTxqimYTIeUlclIpKEiWNbbFNoK6wMrVWaosgtSRCGVFVBXFsNngS0sNKzsQwII6sFxBgCJMJYX1jtroHWdPNJ7eAErVrrEVtWrIraAvwucWwaRSAhjkPiNEaplqaBKLKjZa2/t7PY0mgtkJFksVhYS8csJUzsOOyqqHi8XtO0DUEgCXRAq+xe4twIDNav1XbX26EM7nMLJ2AVzqCxu14A/l/c+/++l4tVvi2dY1Truu4bahyQ9Z/rwKuLtb4dkpMGxHFMXdd9Y5DWup/4dHh4yPXr1/sSs2vuGo/HLJdLhsNhP6TBxQoXV+M47oHp9vY2xlgP1d3d3d5yz49LLk7BZdUt7HpfHBvp4rfvPNK2LVmW9c9zSWQY2hG8169fZ7Wy+mgnw3KOBADXr1/nJz/5CT/84Q97ZxYhBDdv3qSua37yk59w7949/n/M/dmTZUd23Qn//Mx3vjFHzpkACmMBVBUpFsmyZsv40A/99WfSm56k/1FmehHVD21Sq6kqskYWhsKQyAGZMUfc+Yzu/j342R4nkhDA/iQx65hVJTIyIu69Z9i+fO2111JK8eDBAz788EP29vZ44403kKGv09NTjo6OGI/HTKdTRqORTxrsBh7IdZP335Wpdbt/XQ/Wrv5UALoMZYEbphNW/FWLQDmf33V8J1j9yV/8OXlR8PzoiLNf/YLToxesVitHFYcRu7t73PvoI9597wMO795jNByyXq/5+1//mmdPv6aqW21J3Tjz/sGAMOixNR0Djmb/9NPPKMuS8XjMw4cPmbb/tlwumM1njIYDBv0e6826DR4o6A+GJNYSxXErkAetLVk2IIpSGq2pmwalAqq6oT8Y+oEwA5RNw6oNO5hOp74FHsUxm3zdPngQGMv52RFRrCjzHkEQefsMrKHXH9DvOV+1p0+fer3HYNgnzx1beXp65lpF/T4vX77k8uLS3dBVydnpOVEYMhwOiKKI1WbFZrNu6X032DCdTtnb3UObxmlkx1NQinGvz8NHj1BByGa1Yb1asljOKIqcLIrdcJUMTkQBWE1erKmqnPnMFQndGCajMXu7O5yfnZEXOWCZXZxxen7JcpPzDJhO3GBHlqXs7e+zvbND2s9c26sfESVTCAJWqxXL1Zp8s3rtrdTuQwXX4PVVYNr9uvycPJTdYim7S/k5aZd0f677QHf1WvLvcFMTK3qgLsP3bSystJEkujQMQ372s5+RZRl/+Zd/yYcffki/3/dap1eBsnzOVw85F++++y7vvvsuv/zlL/1nePDgAT/5yU84ODjgrbfeIk1TlsslQeDSsOq65t/9u3/H9vY2Dx48AOC//tf/ysOHD3nzzTeZTqecnJwgOq6f/OQnTKdTr+2SQz67LAhSvFerFc+fPwdga2uL9957j7OzM87OzvjZz37mgaVY5cj5lIWsK6/oejJ2X1c2HbI4de+P130o5YaV1rmTIGVpyNbWhKqqOT8/wwV2QG5yAgzGGmqt2ZiGpindEGnWYzwaOfawqqjrgmGaoMvSWfBt1ijbDmHqhiBKsNaQZj2U1RjdoIwmar2rkySmFwfoMkcDURKjkgiT1wRRTBoF2NqCKq5lAECSpqRpgtWGMLLoqqTOc3IF6zAiy2Ly9ZIsUiRpjDEV5DU2SFBBhG00oTWkcYQxFVXt2rX9NikvChRR25JXWErj3AnSOCEcBOikwTS1Y1TBOQbUTltvmnZauY06LbWTBkCAuMJIa91YqHWDzrUjGtKQQBt0VWFCQ6CSVqbmfmK1dMMr/UFGmjiwqm3AcrEkb59nbQzWGqy9DgMwIonpbq6sJVTtrL9yb6lV6XEtqQhf65BVWZYMBgMfp9mtrVmWtemO192urqZYnnv5utReAZ/dOizPLeDrp6y9dV37UIDt7W0PfNfrte96SgdUkvriOPZen10tqehdpY50A1usvXYOkfco0+4CrvM895IqpZTfWL/99tueMRUtrehr3333Xb8JF/C4Wq2YTCa+qyZ6fXAg+NGjR1xdXfkW+9dff83Ozg7z+Zxer8edO3c8cbBcLvnqq68YDp30UBheAZiyIXj+/DlbW1s3OmGv6orFJUA+s8gIuoNi3Voq3yeAuKtn/e8Gq7///SdcXlyQ5wUKSzYY0huN6fd63L59j3v3H7C9u894MkYp+OyT3/GbX/+SdTtRN+gPSLOUfq9PnMQs5jNOT084OztrGSLNcDBha8tllN++fUhd11xcXLBar4hiR9Ofn50xnk4JI9cyWS7mxGlJ1sucHRQBTVMRBA5kVk1NWa4xunEa2DQjbn3NiqoijCNG41ELDGg1on2Mte3AlsISMBxtUdscFSjKqmI+O29tMmo2m4jxZIs475FlKcPhkK+++ort7S20bhiPR8znc9I04fPPv2A0GnHv3j36vT7r9YaL8ytOT05ZzBcMhj2CNrRgPHGsSRRFzqLKGhfnGjhwuVytKStNXpYkaY/heMxoMmV7+x5R/AZFnnN+dsZisaAsK1RdYxrnGRup0OVPNzVhAEW+Zr2c0e/1GI8GpL0+WhvWeYE5PSdSoKwF3RAYtxCtZhfYpkQlkb/BetkQY9xE+sFbb5KkCVX5/Tff/8xDwGZ3CKGb4gE3NVLfplmV3/Nq+6fbtn9VAiD/3X1NAbldGw/53u7EvhRh+Xu3qGutmc/nWGu5vLxkPp/zzjvv8N5779Hr9Vgul7x8+ZLRaMTBwYE3lhbQ/m2HvE6apnz44Yfs7Ox4KcHBwQFxHHPr1i3G4zHL5ZLf/OY3pGnKD37wAx4+fMh//I//kb/+67/mX//rf83t27f5u7/7O/7+7/+ejz76iMPDQz7//HOMMfzwhz/kxz/+sbfb6p7rLlCVIhwEAU+fPmWxWPCDH/yAra0t7ty546Nanz9/7jWxUiCF0ZYFTxai7jnvMrhdqcar2tU/BLDqWKMFvf6AQMN6vUChGA7HRFFAnldMxtv0spiqymmKEqs0TQNBPyHPSwZx0voiVy5P3jRUmw2Vylmt1zSNQSmLaRqauqFCoSLr0rKqnAhNFCiqpsJgsEFGEIXUhW2jQzPCJIPSoq1rByrj2MjGaMIgIAyskyNFsRuCRdPvZZRFThopLs/PSbKYptpQbpZMJmN6PWeVaIIGpRxza8oKGwQkUchoNKSpG1bLJaPx2NluKYiikCROiKKKTVG4EAFjUSqgJsApDlyLUmGxCkwYENgU1VhAE4YJde2mzQMFcRhijKbWNdpoYhXTT/supdGnBLbAFqibirqQ4cKEne1dhsM+KEte1JyeX3D8zRGr5YqyLNtrfb2Rssb6rpTDoa0EKXBpY27G4mZCHrh7f3tnmyj5/qnq/1mHsGXinfpqglWWZfT7fQ/Q5Lnvbji79VVAm9TSV1OlxIJpOp2SZZnXyCdJwsHBAYPBgM1mw3K5pGkaxuOxt/dL09Tbaw0GA69bFRDb7/eZz+d+4r3LGst7Fb2q1PjhcAjAcrnk7OyM4+PjG90day13795lOBx65lX8VUW6JYzw4eGhfy97e3tY67T/Ozs7N+rT1tYW9+/fx1rL3t4eX375pfOtb+UN5+fnHB4ecu/ePS/LOj8/58mTJ2xtbXF4eOjXIHFQeOutt/jmm29urD8ikSjL0st5AH8dpbZ2Qx8EkFtrvdfqt3XSxBbre++v7/rHg90d9ra3CYOIMHa73PFkwt7BPk1VM18sIHBDFr/77a84OzkmjkLu3bvnTrx19honpydcnJ8xu7xwusdGk6Q9Dg52mU6m9HqOrm90Q75Zt0JyxdbWNnlRuvzqwRClApraaaGMqbE6omlANxprnaVSGEJVlTRak6UpqABtFWnmJvxq7WJijS2xSrFeb2jqBf1+xnK1Zjzsk6UpUZxQ6YbhaEwUpRgDaeZY2zRIGI5S0iylLCvW6423xQijkK2tqWtBjCeE4REPHzipweXFBfWwZjgasbe361I26oZis0IbZ6UyGo8YDgakWY9e1sNaQ1XV9AZD6sagVIi1kG9yyqJd4J8/p98fMJluMZ1scff+fdLEWUtcnJ9xfnrC+fkFQQCJsgRtslUvS5jP1mw2GqMtl1czhqMJh7fvYlXE86dP2KzXFFVNnMUEVlFUFWa5YjSZEgeJm/ou3Y755fkpT77+irTXe+0Z669On76qKe2ypN/GRMp/vwpC4abpf1d7+qoeszvU0/2eLjvbLQjd9kpXuC//tlgsuLy85OXLl6Rpyp07dzg5OeGrr75itXJyk3v37vHWW2+xs7PjfUhFR9YF493PHQSBn/Y/OTnxoFJr5/krGrAvv/ySIAjY29vj1q1b3Lt3j//yX/4L7733Ho8ePcJay69+9SsePXrkWd4gCPhf/pf/hUePHt1o/8tnlqK1Xq85PT1lMplwcnLCs2fPePjwoV9YxuOxf997e3ucnJzwn/7Tf/ITrdKK6+7uBah3/Q+BGxsN+buwO/Ie/xCOqqxoGt1q3xXLldN19foDytLZ6mXDET2dUUUx6/WijcJ2m+3VukSpkqIsieOINFLMF0sUAUVRUdU1cRJgqxKspQwK4sRFaCujSZVm0EuwWezisIuKUIXEcUoUhIxGAya5ptSKomqwKmz1mxmrvEAFzq91sVozHQ0py4LNesO4n5JECcoaNqsFpycR9+/dosg3rBYzdvf36Q37JIl24M2A0Zq61mhVY+qaQFkvE7PQMl+GOA5IktixlUaj2yEtZ2flPCqLzYa8rWt1YyiKmjx3bLDRxtsfxa0nt7QtDcbJBDYbVN+gdcVFVRPGMda24KmN+e73+2xNt5hOJxhr2KzXnJ1ccHx6znK59iDMWguqI4nhOhhAtRpZwIUqtLHGWhs2ee66f0FAGLmo84O7DxiMX59loHQ1pMXfBTTdAaVuCErXd1WAkDy38hwKySCMa1dK1X0tYQfTNOX+/fsAPqkvz3OyLPPm/2VZsmgH4MToX1r/WmtGI0c2yRBnv99vAyiupVZd55Esy7wF5vHxMV988YW7h9oNs/jC/smf/ImvrYvFgouLC5+yJsNdXbYWrv1cgbYTHPk16P3332c6nfoNwHA49C15AYp5nvPhhx8yGAw4Pj4mCJwF2PHx8Q3PbtkkZFnGP/tn/wylFI8fP+bFixee9JHI2yRJfL2Ue1k8V8uyvEHSdGUTci2TJPFsuFLqv9+66vj4BK0N1ih6gwF37twhSRNOz06ZjiY8vH+fk9MTvnz2jCJfuUVtvubi7JymLjG2di36xkUmlmVJlqbcvr1PfzBivlxxdnbaRjxmlFXBYrVEqYDdvT107SbOXfEJWC03vtUnmnRlIYxCwjB1fqut1idLXLbwJi+87khbl7dtrWW5WLJpAZ/Eo2W9lIePHnBw2CNSlt4gIwicTZcKLOPJhLS9Ud1wUUiSOH++XtpnurVDXVdMtqYopegNRiRxynQ6Zb12U6V11fgLVmtNfzzi/kc/BGuYL2at/6BrJ9V1Q3/QJ01SVnlBVTdUZY3WuMhua1HWuqK/XFDmG86OX7rp3SRhd3eXnb097j24z3q95uT4mPPjl2zWG0zdEEduCKusqtb8Gy4vT0AlnJ2dsbd/QBTFXF5eYEzlklYUbPKcOEndME8YOGsZFZCmCXVdokxFuSn+31e7/4HHq8NScDP2tMvwdYXw8n1dfY58/dW2f5e1fbVt323ny+/qto1eBctdn9Wujku+T0Tq5+fnbDYb7ty5w8uXL/nss8+YTCbs7Oxw//593njjDcqyZL1ee4YeuJGT3j3k8+zv7/PBBx9w584d3xa6e/euHwDo9/v86Ec/4vHjx6zXa8Iw5M033+QXv/gF/+E//Af+7b/9t+zv7/PFF1/w/Plztre32d7e5v79+/zlX/6l3+l3wb98Pq01z58/5+joyBdIsTPp9Xq+mBZF4TOxJ5MJo9GIoih8GpK06uBaW9zVqr66Iei2FV+9B173Ya3Bahf+sVmtyYautmlTc3F+Rm8worGaoqpd7GfaJzYWU5XkRUNDTR06vaexhrhpqEKFNYmLba3d9HyVr+ilblPs2DBNmiaEocGgQVVEUUwQxMyWOUan7E3HJGmfQWSY5JZcR1xcXJIXFZMsYzQacD5boILApeVpQ6M1gTWkocLUFdlghGlcit5qvaE0lt2dXYrlDBsoisolXYURjqmFNnCmcUCz2BCmEs8JSoV+eCYMA+/7aIxhtSmcZMG6a12u1pR5ydXlFdpAXtbO3staojAi7fXQrT2gDIGEUYjBkKmMIFAkUUijG9IoJlARvV5Gr58SxRFZ1vf2TcZqNpuC09MLB1LLis36Ontd9L4oxSYvMNp4X/9AKawC5/GdkaYZveGYMIqJVmuiOCHKMtKkR5KlRP0hjX19XQGxI5JzLxP3XalNt67K9VJKMZ/P/TBUt0YIKBJAJDVEbJUAL7MTGdHu7i57e3sUReHlU3IvjMdjiqJguVx671yZB1gul9y+fdu/3y7Yk1a91GeRO/T7fR8yMBwOvUUmwHq9JkkSL9G6d+8ed+/eBaAoCubzOXmes1qtmM1mN8Dtcrn0nq7yuUVjO5lMuLi44NatW/zZn/0ZSikPwDebzQ0plDHGB7u8++677O3t8fLlS/I856uvviJNU27fvu07ccJQyxCYdNuk3d/r9VitVl4CIMyq6FPh2s5Kaq6A5yiK/OeTeiubgC5j/t86vjvBajUHAg4PbvPmmz+g3xuiooD9/X3K9Ypf/t3PefbsGVdXl2w2K5q6djF1SYo2NdZq4jjCBYO4abnxcExeFDx+/CWNMbzzg7e5desW1sLVbE5RVuzvHxK0LIn7oNrfOHIj9drpVcAxv1FE2HrQJUnaRsE6FlE1hqqu3I453xBYy3DQp6kqNnVFqCyXrdTg4nxGlmZMxkN6vQG0AHcwHHq/syzrEYaxp7kHwzGbzZreIHbpUda1xGutyXr9jp7D0B8M/U794vKS+WJBWRQMhwO2d/ZI0qxtpzQkmaEoSsIoYTyZsFgsqUqNCm4a0NvKpZdIjCqBQuualy8Lnj1/yqCdDNze3ubWH/2Ipmk4Pj5mdnkBVqEXMxpTECiFwWB0idYVT5587eICJ1Mm422axl1TbEWjK+qmJAwjrLZtcY4da9vq217n8W2aVXkgurZFXaAif4ebTKr8nq4G9b8FfLsPIty0qJLXf/W1uqBYElO6oNUY478+n889e/Dxxx/TNA3vvPMOb7/9Nj/+8Y99y6gLgKuq+tZIu64cIUkS3nzzTX7zm9/4wiX52UdHR5RlycHBAdvb237jef/+fT744APOzs6cX/DeHr/61a/4+uuv0VozmUz45//8n/tOSzcdqgsYJXFmMpmwWCx4/Pgx77//vgekwnxKW/DZs2c+EvHJkyfXG9hXPlP3+neLodSQLqCVRbB7n7zOQzcN50fPeeOdH2ItrJcLgiShbmNY0yxitSlYLOdEQUSWJtgwIspC0lChqjWmKSgq15LFagIbslq7MIAwjjGNJgmts7AKY7RuiOKMPC/I0gBCxXxdEscabZ3l1KYwELXT+kVBlERkvQwCpw3Mi5KqbpzswELVaKq6YTafsx0a+j03+KYbTZxlxLrhcjZnU5QQxgxGYzcXr0LWeUFvNIAwpHY5sSjr4kmN0URKufreajbdgh7QNHW7eIZEkQs7qBrtolrjmP5gSNVoNkXFYr4iTTNoazkoVBgwmowwpqEpnWdwr98jSqL2XglcnG2/RxDGxFHaSgIApQiCa+um9XrD+dkF63VOXjYcnZxhjWmJAvcsDAZ9VmtnTeSYVa6N461Eyg7IeqnbAFiojUsfs3VDWS0ZKsWqOGd//+D13bNtW78LQIRJlU1k99nrtv6lvnZ/V7dGC2va9VWWaXPpIMk5f+utt3yEqqRRSR0QD1WpxwJ6JxNnQVlV1Y1oWPlTgLBSyoPbzWbjX7fX63FxcUGappydnTGbzTz7Kozj+++/72UQq9XK2aW1wLk7WCYMc1cjKwA0TVPu3bvHeDzmL/7iL9ja2vI/e3V15QHneDz2KVPn5+d88cUXvPfeexweHrK3t8fV1RWPHz/mq6++Iooi9vb2yLLMX6fpdOo397L2ADeuqRxSMwWwvrr2yucQ7bFcN7hp/fV9x3eC1cl0i9u37nDv3kN6vQG9tMdiOeP3H/89xy+ec9VOoxdFjtWaUClCcA95U6O1i/gcj8Y+1ebps6dobUh7KXfv3+fhw4dEUcTJyQmz+ZKDw0NG4zH5Zg1WscmdN5q0I90NbR1Yqmv6/SH9wYjABhhj0Y1jGkUfUVcVCsdSFJs1dVlQVwWhsgx6KXbcJ46cmX6aJDRlyWI2B6PZ3d1yXmRlSdCZcDQtk2hta+0QRURx6v5UIUVVsly5Vs96taEXJ4ynO86+oWmI04hKa6btQza7vGA2nxMnGUXp/CQbrQlapkOvc9RmQ5b1SNOEsqwpqvIakGBfAUwNWEUUKnRdMrvI2SwTvnn6NaiQvb199vf2uX14yGa95sWLZxyfHFE1NZFqqIoSpaCuK6qqZL1esZiPuH//PtPpiLLMWSyvWr2JY3yuNYOx30S8zuNVoCp/ysMPNwFT95DPIn/CdZF99eiC0i6D2tVhddtF38bOdjWuskt9NY9Za+0nU5VSvHz5krquee+99/jzP/9zfvSjH7G7u+uTUoRVlqIueqXu0QVyTdOws7MD4BccGap6/vy5B70S1ydWI2+99ZbffN2/fx+lFN988w1pmvLOO+/w05/+lPF4fKP93339qqo4Pz/3FjZffPEFm83Gf5buORBJQBiGPtf7Vf2vXAthX4xxRtmXl5fcvn3b68Je3WR0F8o/BM0qQBwGbjDIKgbDISjFajXHGtgNAkb9gfNCLjcMxi5vfrZYsTfdYjKaQK1gVQGWKAyxxlBpt7HNm4I0CFCBpchL4tgBIatCNjmgXPhLVRl6LbsXoFjnJTURSZRgjJtlSKKAqLX/mS2W5GXl8uutpigrdFPT5Bv620PyJiQ0mqvFnNvj2ygVU17MmM0WHB7u049br1tjaEzDbH7FYDRBhRG6qVwiVeQs+NymrE0whLbV7DbNZVlS1U7+ENU1jTGtXMwS91IyM2RqLFYFLBYrshYMaGt9Qt94MuH0ZY6lwi4WbG9NGA2HRJHrIsWtzEwFEAaOCTUGtNUts6WZzWas1xuurmacnF2idU0URljjarYMK9ZN6ymL+939Xp80y4CIOE6wRlOUJcurKwfclSKKYnZ29ohViAoCtscThoPha7tf4fqZlv+WjaBsDEWm0zWFF72mGNyLY4gQVPK1NE29f6ls5GUYM45jsizjzp073L9/n6ZpvG/p1dWVr2nyvIs0QDyjHzx4wN27dz2QMsbw7NkzrLVMp1NvlSWb+CzLuLy85Pz8nNFo1MaMOzvO2WxGWZZsb2974PvGG29w9+5d30oXOcJqtfLDT2In1ZVfLRYLv3ER6cD29jZ/+qd/yoMHD7w2f2trizAM2dnZIU1TD2KlMyAJhUVRMJ1OOTw85MGDB57Zvby8ZDKZ+OhU0c6C67p98sknN+QIWZZ57+uqtbHsEjhST4UwyfOc6XTqZW1d8kb0sN93fCdYff/9P8JaRZL2Kauap08ec3rygjLfoKuaKAzahKNruleSPaIoYjweEwaht2PQTYMKnLbl4PCQ+/cfkKYpV7MZ5+fnDMZT9vcPyfMVBIpyU5AXuTcCv94RRcwXlyRxxs72AZaQzGTuBtaGMOgIf437H9ZSVzVNXRNHEaZxmlaja6xtiGO3wMVRQF3mrFeWKA4Iwoi6qUnKyttuCPgo2qzouixQYUzYaKI4QqmQxXLhdVRHl2ceRJRVzXJ9TlkUziA6DFhvNhjdYM3iWs+R9dm/dZvFcklZNaRJxPn5BfmmIEmvNTNaa6Iw8BOYWZpS5C4EoS4rwkBhqgZdQaSgKDe8/OYJL55/zfbOLlvTHQ5v3+XWnfucnJ9xcnzEZXlGoAK0EWsmWK+XXFycUpYrF013cI+qqiir0p9vR/NHVFX52i2AXm33dtvu8A8BSReYdr/WFfxLm7nLqMoD2m37d4GpFNbuawqD2tXydFlWuGZkJQlKdrYyNSvevX/1V3/Fv/gX/4KDgwPPVnRBmPw+GRTo6r+kRS4FaDQaMRwOmc1m3nNVnC4ODg7Y29vj9PSUXpskJwV5tVqRpimHh4dsb29zcnLChx9+yP/xf/wf3mLKdwE6AFmGxp48edJKZdY8f/6c+/fvc+/evRvaYulO9Pt97t+/zzfffOMXFQGx8vmttW3oyJKyLPmbv/kbfvvb3/Jv/s2/4cMPP/wHGlY5/wJ2/2DAahSShIpVUVE2Db1Bn/FoRJ6XXJye0OsP2drdYWdngjY1aRSysIar1Qpre0z6QwYEmHKFMTVlY1zbu6qw2pD0Y3LtanYYJehaY1VFGMeUtaao3CYnzlICIEBxtVizKTUDFUIQ+in1OApcS3+zoawbqrLCoqjqmkhZ0ihiU9Vsas3ueMjFYsUozxnEbqjo6vKK9XpD2M+wRtOYCqMM5WZDFCX0BxNUYlmvSmjbh1o5TaewOa512ziAGoXkuabWTZuCZbHaUJsSYzVJHJGmMYNRD103lG193xQFURgSBkGrFQ6dvVeWsdlUhGFJnIQURcVwFNLr9wnUtQSlrBqCtotWVRWXl1dcnF8ym83BwqCXEsUxum78/bxYrTDWYGijgKMYwtDNS4RuWPX45JSiLiAMmWxts394y2knbUAQRBgcgDg5Pnpt96toGbvAVBg4AVzd2iPP/7ATYiNARn6fMIVyCFPZ3QB3N+NvvPEGSZJ4ICo1oCxLzxYqpbi8vOTs7MzX9g8++IB79+5RFAWPHz/2lliipZXXFk/Wri/sy5cv+fjjj7m6uuL8/NwnREltnU6n/PCHP/T6TgG0olWVYJX333/fM8jPnz/30/0C9sIwZDabcXh4yO3bt2/UP+lkCZsqry0gWEDtkydPGAwG3L17l8PDQx8mIxKs8Xjsz/fp6SlRFLG7u+u7yN1wh+7gmwzVyZommwu5zrIOy7WSdepVYue7ju+OW037RHHM82dP+eb5U9bLGXEUkMSh203GAalygnKjO9q82L3p+WLBZrN2KSLGooKQJErY3Tvg7p17DAdD5vMrXrx4iQ0Cl3lelgTKaTrWmw39Xp9ef0ijNXm+bs1lSxbLpdNSKQcmB8MRvV7mvpZGBJGiMaY1n1OEUUiaJgTKUuQ5JYYwUCRRwryek6UZQRQTBqB14953oFrtaI3RmvFoTJa5yWtrIU1SyrKmpiIRkX0QkNc16+WKq9kVW+Mxw0HPx4+enZ1ycXnJaDhka2uLtXF2EIvNmiSKqRs3SFBUmlX+mFu3brM1nWKxxEmPujljuVoRRgG9njPUtQ1gGjabqt31pc7wW1cufSwInbG2NWA1ti0CxWbF0WbN2ekJxlgm0wnvvvMuxcM3ePLkCUXVcHJyAgpqXZGXOUFgubw8JwoTtrZ2iNMM01RUlXNNSJKYuiqcE8NrPARwdMEOcAPMycPW3RG+ysZ2/97VlMrRlQZ0AZl8TQCUPJDXkpBr0b28Tjc2FPBFsvta3eJ1cHDA/fv3bxhTy6bhVQZX9FnT6dR3BGSXK0W0qioGgwG/+tWviOOY1WrFZ599xueff84333xDkiTcvXuXq6srr8UqSxdycXV1RZ7n3Llzh16vx49//GPefPPNG8bgXaAqYPf09LT16l1zfHzMwcEBf/EXf0Gv1/OFTs6bH0gBL+SXYimDD9a6eNiTkxO++OILfvvb3/Lxxx9TFAX/+T//Z+q69lpcyafvFt8u8/66jygMGfT7KBUwX62ZX83pDUdMt7eZz+YsFjNWqyVhC8aGwxHD0YgoyVhXNXGW0U9G9KKQ5fyMTblhXVQEQUwSRuTtZjZNEupaUxtLlPao68b9XTcEUUiUN4A7L7NVyXJTM9FAHGGMBmOIQkWgYJOXbKqaptFAQGMgCoEg5GRVMB6N2GjDqoar2Yredh9j4fLyisvzC6K9HawxNEYDGlNVNI0iSQaMJlO0sZjNhjjLSNKMsqqpyoIkjlAqQOuGpq4wRlNXJet2EY2CABsoGqXQTQPWkmUpVVXSH/RpGo0BkigiX2+IhkOiJGa6NeLFi2M2m5LxZIso6bkQBALyoqSoarJeSqggVAFhEKGNpcoLrq5mXLRR1lEUkYUBcRITRTF1rQmCkE2eY6xBG4MKA4Ioct03476W51fMZ3OMMmzt7LB36xbb27vkZcF6ueLFs+dobQnimLfeepOnv//0td2vMtndlS4J2FNK+Q13Vw8q/y3AULopMiEv4KbbDRH2Uynlbag2m41P+HNhQwuvrRRJgTC2AuR6vR6bzYYgCJhMJr6bZK1zXImiiMlk4usl4FnIW7du0ev1PHher9fUdc3t27cBV/flZ3784x9z69YtX+devHjBeu0sMsURQF7/6OjI19Ioinj77be9LCuKIt566y0WiwVpmnJ+fn49/GeMT7mS8yZrkLTxkyRhMpn41ENZJ/r9Pnt7ex6wytfkve3v7/PgwQO++OKLG165UpOLovCDbrLZkHWuO9ws17zb1ZLrKyzudx3fWZWXC2c1dXFxRlUWxKFL3NCaFpTGqCBwE5Aq9G+8m8WrAG3bXOcgYnd3n3v3HjIeTyjynOOTY9ZFzls/eAdrDIF1NHmVFwShYjgaE0QR6/mK84tz0iSmrJy1SBRGrNZLNnnOtKrQrfhYa3WjXaSsJQwNw9GIqnR50HXjdv9RHNNrBfEohbGGSEUoFHVVMZ/N3M3YxhS6nY8zkk7TlCyL0cbFCkZRhALSJGbQ71GVBWVRUCsL1p2b7a0pRb7m6vKCwaDP7t6+S7QKY4q6JusNaGqXXBKFIWenJ1xehARhxGA4cq2KuuH88pzVcul0oq0ivyoWrNeW6WRKax1No6/tQ6pK+12Yte49aa0JcKko3zx7zLPnTzEqZHd3n//9//P/ZbFc8OWXX/L02RMqbUlRaGNBNZxfnhDGCft7e8RJ5Lxwg5gwiGma1ysFEFAjwKPbmngVXHa/Jj/bHZT6NhYWbvoEdv+tC1q7QFhYzW7xlffWZRzka/Ia8jPdiDo3mJGxu7sL4C1gXmUjZbBhOBzy8uVLr3+SKVfRkgoDMRwOWbVJc19//TX/5//5f/Lzn//c60fFRNsYw2Qy8c/83/7t33qt1AcffMBHH33k2YXudG9XcC+tsDiOmc/nXFxc8OMf/9izJl2LlK7OTCnlQfBgMGBvb4/d3V3iOObs7IwnT57w61//mv/6X/8rL1688MXzb/7mb/jyyy/50z/9U/b391FK8Wd/9mcEQXCDEfpDYVaNhSAMGQx6NMZQr3Ly9cptiqOEKElwt547V0VZs9mcAu76r1ZLJqMhmakYJkOGQUSoCuqyxDQ1Whl0EJCmPYqqJkpcbVuWa8IoxKIYpBnLVUEQBqjAsFiXXMxWbO9toZRBKdrulLOqyvOS0hhneacsARBHEbVVbDTspAlXy4LSwKZsIIjRKHRZUCxmrLOYBkVZFpT5hl4S0yNitV4zGI8YDEdugDRNGLZRlatWcgX4gdEy3zjA27alAxW0vqRtraxrgjaiWtcWbVyISy9MUdBuJN1g4mg0oMgrZpeXDHop/f6AQFkXDx4GYJUjBOqaqi4p64bzi3Muzs+J4hYQ9HpEoSLJ0padq1gsHOGyznOCICRzolf3jOiay4tTqqqkKisO7txlNB47OQcQqgijna1hmedkWZ/VekFtXh9JIJtdGYqSdUbqkeTedzfVstHuenhKjeoOR0q2fBAEPnxHwJYMYIkEQTarm83Gv95ms/FafwHVXessuG5Zx3HMaOSsLeV3CNgyxnh2U1Kjrq6umE6n7OzsMJvNvKVWVVXcunWLt956y5MTR0dHrFYrdnZ2PKgWeyphJeV37u3tcXFxwXA49FKJ9957j6OjoxvSKcCnSHXJCpFadFvz0+mUuq59l0yGxba3t1kul8znc6+N3d7e5uLiws8rPHv2zGt3uySNgM/ua8q57Tq0yPok5z4IAu+9+yox823Hd4LVzz79e4zRhKEiy2Iw1wt0FMdut2otRmuqwpk1G3utUZHDWBdJun9wwP37D5hMJk6rdnHB1XzJrdu32d3ZpcpzdFOz2RSURcVgNGY4GlHkG87OTtC6wRI7fWmaEifOR9BFgrn89F6/TxAFRHFEGEZEgStYQoOXRUEQRmS9PkEQUbSWFta2IQO2vQjtelXXNavVCtW2ntyJljgxTa83QKHINzlplvpdjWhO8s3aZVMHlUsXUQG7ewf0hyNmiwVhkrK/v0+YJCwXS8qqZjQaudQvSe2oKwLdUFzknJy8pN8fMJ1ssTPdYbVZs9646eywCKnLEt3odtDA+htHdpXG6hvtbLezrciyHlEUsC5yzi6u+Pqrr9isC3b39vijjz7iT/75nzCbzzk7O2OzXlHXOco0NMWaq1lAlvVJ0j46cvYvm2Lz/1fB+x91dLWk3QcLbrKl8hALg9eVCghg7bb8u3rXbhu5KwfosrLyvy6DKu+ra8MiGtXu+5RC1GUGuslM77zzDsPh0EcFCusrAw5d5kIGkJ48eeJ9+Y6Pj32qVDcRRfRdoh19++23KcuSX/ziF3zwwQccHBx45gPczv3p06e8/fbb7O/v8+GHHzKZTG6cmy4zaoyzqvrmm28ABwguLy/Z29vj8PDwRuyffH5hfrvBCw8fPmQ0GjEajdDaxS0+fvyYn//85/z85z/3livyHi4uLnwL7/DwkCAI+OijjzyL0C2sfxiHxVq3iG9tjWiMZrUpqYoNaT9kMBwSxRlRnNHrO2u/s9OXlMUGi2KT56zzDTGwM8jY25pwMNmDfMVqNXPPrwFtNNpabKMhqKmqmrAJyfo9ykaT525xL6oN81XO6cWMe3f3iGPrOllm5eykgsCZtBhDFIbEYYgKFL00o2hcLPY6r7naFFSmYdgPye0um6rBNk63uVktqNoNzWq5gsGQ/iRk3bZOxRItjhMfV5mkmc9Jl+GqvHCuEartUuR57rxRg/YZt1CUjvlK0hiUi3etypowCMnzgiIvvRXhOlmiq5LL02OqfEDWy4hTN9irgghrnFtFXdVs8pLlfIHVFiI3AJaEkPUz4jTFGmcTtjUZYGzIfLUhCq8tigpdU7bvPwpjxtMtrNG8/OY5Kop5+GbI+ekF060t3njrbeazGaPBkHWR47YHr+eQmiMbybKVyQFemyqATCyQBNyGYejlRPK9EjEqdVnIA5FQmXaDIWCnaRpWq5X/X5ZlXhIQRRF5njMej32tk5otv0tY1TRNvZOB6P/DMPQJf2KHdXh4SBiGfPbZZ77OyOY/ipxH/F/+5V96p4LlcsnFxQVZljEcDn0dEy1t0zRMJhP29vZ48uQJJycnnJ6ecnBw4OUQEs0qji0yPNat8bKmhKEz3ZdBWef77n7m/fffxxjDN998w8HBAVmWsb+/z8cff4y1lsFgwHQ6ZWtry9t6yf0pv182FDL8JcO/8j6Bf2BhJYy7dPa6RMH3Hd/5HU1VkSQxYeh8OU27jjpavHSTmEq5to12liGiF5KdVBiGZP2+8/+8e4/JxHmCXV1dtb6eU24f3qFYr9GNS32YzxdEUcx4PEUB5xdnrPMVvbSdMIwStHFi43xTsFyuSFN3Aeu6Zv/wkHHicpqNdTYwstvp9fuoICRMYvL1BhU47am1Fm1cfq/o+2TRHAwGVFXltbfXgGPNZNJQVhXauAIp7UvxIEvSzLUjjAUV0lhLlCb0AoVVIVXdcHF5xfb2Dlk6YDafUzc1aZZQV24HEwaBW7TiiCiIyDdLXrZt2d3dPfZvHWBxptizy8v2vLc6vyBAo/8BeBMD4CAIqcqaXi8gilPCqsHUNXXlUm4++fh3fP77z9jZ3eXNt97inXffo9/vs85XnB0fMbu6xFgoK5ec0+v1GG9tY+ev16uyC/y6AzrdAiX/1v3+rjygC1y7LfVXNbDfpomFm3Ge3WEqkRF0mVbZJQsLKDt+YQy6MgFp9QjglNc9Ojpif3/fDz0JGBZGcmdnh1/+8pdYa9nf3/eAVD5XURS8fPmS3d1dPxn6zjvv8OCB05Z/+eWXfPrppxweHjIYDDg7O/OSgJ2dHeq69rGs3eIpmwE5V6LTWiwWPiXm/Pyct99+24NU+cwCVCVbWhhaiU90zNqKp0+f8uzZM/7zf/7P/OpXv+L09PTG4iYtKLH/Wq1WPHr0yO/+u+zAHwqzGrSymigK6cUZKlBwOmOdV1SF08lnwx7T6Q5JkpIkKSqAq6tLiiLHNC5GVCvL2brgbJ3TjxT396bs7O6impI8L5ivi9a6zrrpfeMsppSC+XxGlg2o64ZKazZNxeV8zmq1ZjiICNo2nzVukj2J3T0aqYA0Cgha3a01BqsUV4slVWMom4aL+YqzqxWaiLIpOLm8Igwdy4kKCaMIE4QYQBvDfD53Qx1JjOXa9ixt67RY97jZg4TFYk6oNXG7sLu5CU0YR/T6TpdXlgXaNgShaymHKnBDYYljP7VWpKlj1qqyaCUKBm00qYqx2mCaEmNVG+1dYnRNEkUkw4gki5wELXZx1kEQYYFhP2GxWHF0NqOoG7I09nXZnUs32zGZ7mBRzK4uKIqCvYNb1HnO6TfPuTg9YbK1RZI4/9DZYtnKL17PIT6jYi8nA0HCgkoOvLTeu50rYfO6xv8S+tFl84RdDYLA1w6ZnhcgtlwuPYsqTKmkU41GI/97hMDqEgoC1GazmbdmEqcS6eiMx2MP0iaTia9ZVVUxHo+9lvT999/n1q1b3kP12bNnvHz5kh/+8IeefEjT1EeqCvB8++23+elPf8rf/u3fcnR0dMN/Vc6rtc6+ryxLP2AmczHCavd6PW8XJcAyCNx8y3w+ZzweMxqNePHiBXEcs7+/D7g5ha2tLW8dKAlf29vbHB8f3whyeNUZQPAF4M/lsg2JEvAv/yYDWvKZvu/4TrCqG4MNLQRtQodygM40rv2jlCIMAqcNRexywvZ7HbsZhRH98ZitrR1GwwllVXB+dtbePBn37z9sRew5ZbFhNp9TFjW3b+8xGk1YLGfMZlckcdRqLp3f3mq15OrK5WY37ZTnxcUF4/GYvYNDTOudolRAgPsMYRSRZn2CMCYvnGl13TT0hw6MLuZzv7DFXOtb0tZOSv4uJ1v8LKu6pqxK77smrYY4jgnCiDhNiaraBSsoV2STtEcUZ2xaCcB8sWDQH7O1tc3Z+Sl1XREGQXueAwJliAOFDUIUEXFkWcwvmF+dc3r2ksNbtxlNdtjZOWBxdUpRbJyNSnuTiz4xahk9mSyPoti18owhCBICKkxtMXWDwhAFirosODt6wcnLFzx78pQfvPM29x884N79N5nuHKKrklBZrmaXrFZOz5v1Xu9UatertNuChmvhvhzfplWF66xr+ZkuoBXQKw/dt31dfk4e5qIovIhd7jP5/aPRCIDPPvuMZ8+eeesTmXa9vLz0LRNrXRpMlmXeo+/s7AyAhw8f3vhcImKXnx2Px3z99deeAblsNzdRFHF8fMwnn3zSSmlc8ej3+75V9+abb/J//9//N8PhkPfff5/5fM58Pvc62P39fd544w3PgnblEV2JQ1VVPsZQcrCl/dRlqMUZQfRg0qbX2qXkyML38ccf8/Of/5zHjx/z6aef+qLfZWbl2sZxzMXFBUmS8M4771CWpdfJdWUbfyhHnMQuF940jHoZ+aBHVVt0u9i5kBDH3llrGY7GoAJmsxmb1QLTNM4f2Vqs0cxLzWfFCfd2RoyzGKstQRiTRQEoRV5VJLHrUi3Xa8/Q1nVDnCakacb55SVfPn7GO2/ccgxnr08cr1GbksmwR4Az8+/FYSsfsMRxRNMELDaFS8MCTudrePINt2/dZrEuuVzWjEclo37PDXg1llqVxOs1k3ZRXK/X9G2fOE4wWkPs3EdUO2zlrqEhThLiNHEDU0lCkjqN8zrfEJg2GjNSqBqs1ZjagLUEIYRxSNC4OQet5X50TidybsIoBuVamtY4Y/9er0evl3kdY1XV9Aduk6GNcUyrds4MtXaWjO1gf2vn1Q60BgFZmrKzs0OS9ri4vEKFEfcePGI0HPLy5QtMlWObgosiJ856ECRobVrx1+s5ZJ3pts7hpl1V175ONKyyNkkrWzaW3YlxAaldJk+OJEnIsoxbt9zQmVLKa2AFDC6XS7a3t72mVepPt2Uvm52yLH1XUxhMAYNydGuqOBl0wXev1+ONN97w7ObR0RHPnj0jz3MPmCXqFfDuB6KfFUmVgOpXiRYXF9z4tc1aN8cgv7NpGg/2RZqZZZk/d0+fPmU4HNLv970P69bWFu+//z6/+93vbpwvOe9bW1ucnp56YC5gvqoqZOBbXBMA73EL15ZXYehCpMIw9Iy6AOjvO76XezW4nGR3M7pkFCJLgLrWARGgVARWYU1AECp6aUKapPR6ffr9IVEcU+YbLmeXrDYb+v0h2zu79LOMIs/Ji5zlask6L9je2uPw1m10XXF5fkoYGKIwxhpLnq+ZXc1ZrdeUZdXeXHUbg6oBxXK5apmGdgIRBYElVBFBaFFBhArC1ux8iCKkLC5JYnchp9MpYRjRy1xaSFmVWBMQt4EASrnFoShLjHZRpnEYsypXFKoE5eycyhbEWAuxn4Z0w2bOVDdD4Sy3wiBgsbgiikKmkxGX55XXvzZN5eyokpi4jZwdDPpcXV26m7Cfcnz0gtPTY7Ksx/17D9jZ220N5FcQOGNtg3XvV7nNhLXumoZRgDY1QZCggoC69UbsLt4KhbKG5eySZ19/RV1uCIKI0XhMrzcgTBMOb93BWpe8Iy2213VI4YSbbehuS79rN9Vt67+qZe0C2e7Xu2wpXEtkJBe6qipvnVLXNTs7Oz7p5MGDB144L0UniiInAVmvubi44MWLFwwGAw4PD/3DLOC2m/QiedEffPABW1tbXh/V/T6xGhmNRnzyySdcXFzw3nvvAW7qsyxLXr58yWw2uxHVKrKC1WpFGIb8+Mc/5uOPP6bf73N5eUmautCLwWDAwcGB76YI69XVnQmwX6/XflGQFJfBYMBoNPIsheivyrK8oQOTv69WK46Pj3n+/Dm//vWv+eUvf8nZ2Zlf6LpHV64hC8xoNCJNU98a7Mow/lDAqjtHFWEQ0pQloVLEBPR7faogRBGg64aqHZZojNMwNnVJ2DKj1sU/uefYWsBS15qvjy+Jw4DxIGM86DPOMoyuoFy3cwnOzB8FZZlTFDVDRqRxzHwx5/jsknv7E5KsQQWxa4dj6CcRqpdiraGXRJLdQhpHBDjpkUGhMRgCNpVhUyuCpIe2liBOaCxE6YAgaLBKkZclfV2TDXrYxvmcWhyoE1Aj95ZuaqqyRIUhvcGAwk/6Z/QGfYragZKyqDCmDYkxlqapqau2XhtaYOW6RUbXxFFAWdRY0/jWtVIBVdW45MTA1dIsS7A2pq4jZ6FVFNTaUGvjan1jXJJXXrDeFGzyHIXGGrdZCMOAJE0ZjoYopbi6OGfQcxvGzWrFxfExTZ2ThAoVJai4hw1jGu1AOsH3WwD9zzpkMy7sqHTvpBbJxlnaxPKcC/spzKv8vHSPBMwEQcBoNPK1SEiCIAi8r2hXOymMnqRRbW9v+83u5eUlTdP4eiuT9jKUJe8rCAI/SCWvKSBbZAtxHLNcLp1kr2WB79+/z9bWFk3TcHFxwe9//3vOzs68xZQMfi0WC89Ei0WnvJ50EuR/wtiKZO3y8vLGhmC9Xvv5BN916OhD5RpZazk5OeHi4sJ7tp6cnLCzs8NgMODRo0c8f/7cnwdhaA8ODjg/P+f83MXOS/dMNhrCWAsTK6SErLMCsOX9v5pM9n3Hd4JVlwwVOP+3RmMx123IIIQQb8js2FSXbx8nCVnWp9/vudaUUpRFwWKxoChy+oMBk7HzLqvris3GLV55XjIajrlz5w5hGHF2ceYypNOEpq7RjUt2OD8/Y7XZUJUV63XBaDTxN1teFNxtWRd3ga7taNz7dODRvaeK/mAIKmSsDXkcEScp/eEQa52EIImcDmuz2biddK/v4HsQECVp257QJKTOmN86NhcFdFi264UwdNJVpSiLEoWzqHEt4JLFYk0SJwwHQ9o8LqIoZLNeEyhFMh4Shq3PX/tQK+VaUAGWqtjw7PlTbt+6zfbODqPRkDwvuLg4R9cN4JKzVOC8+UQD6Rb4dkisBXrSgg2CANXe7LppKPMcoxuqsuDs9JgkTTk4uMXWtmtJqRYcvc5DgNZ/C2jK0Z1W7EoCut/XbRN1f0cXkEn7SwDTkydPOD099VPu1loODw+9VnJra4t+v++j+wTg3b17l//1f/1fGQ6HPHnyxEervvfee56JvLi48IVOPASlcIomTIB5d2hoOByyvb3Nzs4OX375JRcXFx6IHh0deU3ncDj0EYTW2hvdgvF4zL1797i4uABc9Onl5aVPJpF76Zpdqvz5lHMkRt0XFxfe7uXevXvev1DOpyTQyOIA7jl88eIFy+WS4+NjPvvsMz7++GNOTk5utKO+7eiCWGE0pG3cHfx6Vc7xuo7jly84PbtiZ+8ArRJWeU6gFFm/RxRmWBVQa01eFGjrul26aVgtLjFGtyBI06aytMDV/be2lsZYquWGVVmz6TcMezHZcMpiuaRp3PyBVS7tymg3lNTYBm0seV6wXm+wCqq6QmtLEidOJ09KgAPHaRphUBijKArnSGKts6sKgph0sEV/7y6b6gmLzZy8dIlCjY6gMYShWzuatoWocfeCapkcCYqQSWi551QQECYxg0Gf9XrjmLY4Jst65HlB3TL/Rlua2jHB3pxchdA+M2HbWUqzjEAp33KN4m20tT7adbVaolubLKVCjKHVz1pUa/yljUVbRWUUlYZ14RbvMGjXC6xz1jGaIs9pqoqL89M29CbG1iXWGqIohihFpX0aozAaf311U73GO9Yd3an9bidSwIqsORK3KQC2q0cX7aPUs+5mt9sxA/4BuBQSwWGKnH6/z507dzwwFeN9qVPgatPZ2ZlPgJLEPX8/tWytAGutHRaRfxMAJgDx4ODAS6uOjo44OTnBWsvWlovDFQ3r1dWVdwZQSnmdrczJCDMJeCmUnFORNwgYFfmYn09ph1/l/CqlbjDU4u/64MEDjo6O2NvbY7FYeN/7vb09xuOxn3mJ45j33nuPX//61ywWCwA/oCWMtySDCfjO89zLteQzynWTdaq7ofmu4zvBaldP0jSGqi5p6sbrKJ3IPQEVEMYJceysJ9LERcOFYUhVO2uR9WZFkRdk/T7D0Yg4STDGMl9cOCupsiBJUu7cuedYm6sLZrPLdhdiWC7doNJyuWSTbzBat56uhn6/51mae9Mpmzz3puVykWTh7gKS0XiExQ1WNboBZYnaFk8YhmzygriXEqcJWb+HbrQPB4iSmCRNqeqqvYFgHMfUrcBfFj7RucgF7ILXMHS7da9HaTTFZkOpcmaXF9y/d59+f8C6nQBeLpcMhtcDBl5fqxQhTldMYLFas1kvKYsNxiom4y0OD+6wXC5Yb1bMF0unC0ORpT10c71Qi75FioB8lrjVP0qbRxZ1rRvqynJ5eUJduzZEmg0Yj8b/rdvqn+TotvC7bX55sAXkv8qidZk/aV3B9UCU7Pil4BXtJkxa2U+ePPEFQwCdtPzFiy7PcxaLhU+bkgIrzMPDhw9JkoRbt275aUxwz+NsNvNWTIvFghcvXnDnzh0ePXrkGYsgCPwEaffzBUHAzs4Ob7/9Nl9++SUvX77k9u3bbDYbjo6OfCtevPdEu/306VPv7SeLiNaa+/fv88d//Mf8zd/8jZcSdIeopJUmejGxuKrrmpOTE549e8ZiseD58+dMp1PfjpN7Mc9zLi4uODo68kNjV1dXXFxcUFUVJycnfPrppzcm/uU8fd8h0a2vSg/+UFhVOTZVQ782BEFMExpMUxGrkCBOXNKTrqnKDWW5wjQ1YCg2S3SjcQNa7vfYVgbgv4BBWYOuFbnRFLUmWQZkUYxVFnRDFBjCwKKw7ca4QesGo52Ob77aMBgPqcuSsmxIkoyqqjG1QmHoZTFJEqKtoqwMYeRAoLWu49EbDpneukM23WL15ScEecn5Zc7ejiNJkihEa1eT6tJtesKWKeqyUzKwJ9q3pmlcb72NXS1LB2Z7KiAKY+IoYb2aY63IU/CbqqIsKaucMIz8vSE1L45dLZjP3c+qMCZJE+I4oJdkaN1QVSVNkztAbp39mG4c2K+1dpuLqqKoa5Ry/25ajao8v03T0NvdbeUsBkxNAvT6CVVjqFRM1J9QaYtpSqypnZNNmxr5ug4BotJ+lvVCIjq7tVQ6KDKII/XRdRyv9ZWic5Tvl98nz3q3FS5tZZld2Ww2XF1d0e/32dnZ8S1oaUkLEyi1/OrqytcgGSbqhhMIGNVa0+/3ffwq4FviSZKwv7/PnTt3KMuS4+Njrq6uWCwWTKdTr5Ov69oDVTlfMlCmlPLMr3heC/so73m1Wnnpgmy8hVCQ4TLZhIvG1CVjag/QRcd9enqKMYbHjx8znU5J05TFYsHR0REHBwdsNhv/WUUOIf7a8vzJexdZgFhRiexBAC84Bxd5H4vFwg+vfd/x3cxqxycLXHtEt36qrrPuEkDSNHPgLXGZ9mkct16pGzabNUWZU1WlF1qDiwbdVGsWizlN3dDrDTg4OKTX67fJE+do46yvLi8vWS7n9LKWydSGIAixpkIp6Pd7/gYTy5Zumxa4oY+ANmIyTUG5NtUU2/58SK+XUTcNozjx6SgpmW87tB4oBFFIGmYewDaNawl1LYbkZ2Sxlq+JJKAsc2azmdtxWYNtGixuF3VyesTDB28wHI6Zz+ftgNeI0cgBkcFg4Fq2QUAYtK3XuiGJr8UbRVmwXDlGGxST6ZQwijg9PcNaCMOYOE68NiZtpxllZ/xtBUm8NeUmDMMAZfEMTr5ZUb1mGcA1k36t6RFQ0m0fSUGUzc6LFy94/vw5z58/Zzab3bAGmUwmbG1tsbu7y2Qy8ROr1jpvz6+++oqjI2fKfXBwwO3btxmPxz55pauHXK/XvgUNN50DlFJ+Sn9vb4/VauV3vPfv3/f6pydPnvDmm29yeHjIaDTyhV6mRV8FXkq54a67d+/ywQcf8Pnnn3NycuKv52q1Ym9vD4lYXS6X3Llzx5/LyWRCURTeH1X8+ba3t/nyyy99e11aUXmeey9DKfLS9nrx4gVPnjzxRXs6nXp9rjwjp6enfPHFF3zyySdMp1PG47Hfsc/nc7744gsfDiCf7x97iCxDfBS7erA/JMBqjHU1V4UYAmptsHVFqFxyXVMW6KZB65qmKtu4zms2y7YFzjGa7cYoCp0cSTduQMga0IZca8q6JoxChlmK0RXKaPpp6lKXgACNSRNGWUK+yYmCgH6WUhQVlXbyocZoeqkbgnJ12hJgnXuMMd6TO4wCkjhhM7tktVoQa8PF1YblqmR3Z4wipm7crIFpGpq6oZ9l1J2EJNFHw7X3bpIk1LppQYnz0y2KgnyzQUXtDEEUs16uEUBvCKibmjCMwNYUee68s3HrQ1VUmDb2tCwKlss12ip6g4w0iShUQZo6oBG0rgNWG3TjJABVVbHJS9abDZu8otYaXbfe1y2jJsyiaBXX6zVJHLI9GjPs98iLmro2GBNSNm2MpW4IrAO7WPMavQDwz7j8zxjjBzW7CUciR5rNZgC+hdzVpcPNhD3BIuLmIRtiAUHT6dS7+gg4k7omlnxyTrv6UnEekPf/6qzDNVnX3ADP3da31DvpmP3xH/8xURRxdXXF559/7tcISZcScHd2dsbl5aXXzQvAL4qCy8tLz65KS11quuAIuO4gCtHRtUUUEC7XAvBpVvL36XTqNfxlWXJ5eendBy4uLjg7O2N/f9+ztHVd8+jRI9I05fe//z1RFPlwA+mACcaaTCb+/K9WK0ajkZcPiFtC99n9vuO73QBanUYYhsRJ4iLe4sRhtdClFfX6fZIkdZKBQNinhrKu2KzXFGUJWE9vX+s+DFULkPqDAft7h4xH43a3saBp2xmLxcJNPCvIstTfHLXWVHXt9J6hcyCYTMbELYAoSzcRL20+YQsHg8E1k9VKHKI4pj8YEEftDi5QHryhrlm6oN1ZKa1ptCbydlAW1d4Qpl1MRZPT1d+FYegYYW04enmEtRqtK/J8TRA4XVfTuKEbazS6abi6uiTL+mxtbXN1dclysWx3Lco7FWCtG6RqdyiBco2nMAjaTcPK7bDqhqvZjE1ruzEZjVqngxptChrdEFs31WutuXHjS3GwgKrrFqyOsRbqskb1AwIbYhpDnMbo1+yz2mVBpfgJSJUdnoCio6MjfvOb3/D48WPm87l/KMWiRBhWEb1LO//g4MC3Rx48eMBwOOTw8JDnz5+T5zlbW1s8fPiQ3d1drLWcnp7eaJF1B4e6hVkAk7yeaDWHwyG3bt3i4OCAk5MT5vO5Z5TW6zX9ft9bRnWLudyH3QK3t7fHb37zGy4uLpi1CXJi3j2bzfjyyy89UJZCpJRivV6zs7PDarXi7OzMF9HNZsNyuWQ6nbK3t+eLejf7WhaP5XLpbVlkClWcCbom2x9//DG/+93v+O1vf0uv1+P27ds8fPiQ8XjM559/zu9//3uWy+UNrfE/5oiiiB/96Ef88R//MXAzSrfbpvqDOExNXW0IaqdJrYqcqiowau1av9plxNMOLflDOXKR9nmm/f8kyxhNHOivW01ZXdVOHqAMGouuK5a6Zpj2CaMEoghjG5qqJAoCdgYD0sgNp9a1BqWoak2lNVYFqCCirjVRFlFrJxkLgaDd5KNAWUu1WPLN558RZwlNU2GNYZGvuZotuXN7F3SJVQqlAhRONiWxqHVVEYXOU1XWBNfpaojTGFO4r6OUYz/bgbEwTghDNxS2nK2wukErt54Z1WBoWbK6Yb3ekCSuVmhtofUNj+OUPC/YVBV1UxMEijSMUAHEcYgJApRxqV1Xi6XvALr7uqBpDNqhS9dWbgeP5N6TBV4Bgyzl9uE+eWU4Xq1oImedaJsG1/9X2CBo/7u98K/pkDopLJmss9JyB2dTJ3XPkz/gWbmurlGkZN1hVGG6BaAJgOx6i8r8SlEUPjBANsNybqWVL2SE/Kz8HumeyXs0xpnuZ1nmHQqkU/bOO+94+6nxeOwn4L/55ht++ctfevurra0tz6qKvZa8JxneyvOcp0+fel2t1CZhN8F1WCXRSt67dAbkM8hryLkTRlrY4aIo2NraYjKZMBgMePr0KePxmKIofF1XSnF0dMTdu3cBPIgWxwPZgHRdbtI09Wx2d8JfNhLyfdI566adfd/xnWC1qBoMAXEMYRgRhAlh6KYkhZqP4pg4dEM/1mi00TRtpnzTaOKoZVyTxBnta9Nqe9x05fbWHv1+nyiKmc+vWMyvMNYQBIq8yDk/P6cuKwajARblQHKSUq7W1FVDlvUZj8f0+z2UgrPzUxrttCGXl5LrbhiPJygVYIH+4HqAxNVzxwgqnJuBtZY0aVnVdqemlCJuQYXCscoCErssnjIuNg+l/J+ymyzLEl27HVoSx7w8OmWTL+mnKWkcohtoTIUKYwzuXFo0m3yJbizj8ZS61YeFodscDLKMqqlQUbsbrWxr2u8Gy8IgQNcV+aZwoD4MmM+uXOb44S1GozGj6ZTGWoq69pYwjW5odIWxmkAprFIQOHBf1Q1lWaMbQxiElG1LdTweoZuGJMtQ6vWCVXkApLjJ1+TPIAhYLpf8/d//PZ999hkvXrzg4uLC71AFLApgz7LMe+9JoRLrDdntSy71+++/z9HRkS+wUsAkB1xE9KJJ6hpgC1jtaoZl51oUBYPBwFuOCOO6Xq95+vSp3wEDHqTC9U5X2AIBiMPhkN/97nfkuXvOwGk4t7e3vX7r6dOnzg5uf59er+fTSuRcnZ6ees/Arm2NsPJyDpxevfC6XrFAGY1Gvr0vQPbp06c8fvyYx48fc3R0xHq9xhjjB7p++ctf8vjxY66urr7T8uRVWYBsWj/66CP+t//tf/PWL93v67LffwiHrmvK1l5MtwATwCrl6iGSyNZ2E1AtKpTBspsDN2maMp1MiJIY2uSoi8sLmrIG69r3xhrqpmZp8nbavwcWalO2Os6ATVWxqitOr1b0sh4nVxf0sp6Lta4bgiQCFaJUSKACojAgCtzEPgBBQG01lEuKJkQpnP5VNyw3uQO7cUzV5Cjnu4/RhkYbVKDI12uiJG7v88DpYoGyqYkjF2lalSV1XRGEobO7WlnmF5eMptuEaUIYR2zyHBs6zags9spCoEKsgSIvCdqBrqpuiJMY9DXrtl5vUCh0mqBwQQiELslqjWKdV8ShIlQWjCYKAkwAurnWZ4ZRxGK+oNYacbwJAgfq66bm+dExJhrT371HbS2b5ZzGrNz3tcNwWBmTeH0DVsJqCoAUgkY6nEL6CCDsunAIWJW6JYBGQI0AYanp0tYWgCWMYdcxRWvN3t6eH7Da3d31TKL4RAvQEm2rDIWJvRZcD4YJQJTXk9ojdWs4HLJYLHxk6fPnzz2oljVAolYlIUvAvcwKiLTsVXZXNv3WWt8FFCZVzrcQMQJeZS0RO6ssy+j3+1xdXXmCRCRag8GA1Wrl1zhrXWT1s2fPePvtt5lMJqxWK37+8597lwNxb+imliVJwnA49PV/e3vbd9fk3+VaCtgXecL3Hd8JVrvt7ChyBtBRyyTJFBy0KTum8SdY6wZrHbUbhTFR5Nrr3YQFt0tQaG29BU1TFV5zk29Kzi/PWcwXDPp915Jpd9BVdW3bcPv2Lfb29mgap4O7upphUE6/eu8eYD24KEtXeIx16TvyoMgOMAw77EoYEHEdj2lkgi0MqTuAoH1Krx+ywKVjmfZrcuGtdX6QF+fnTMYuFMEacQaoUdAuytrLGURa4PQsK87OztnfP0QRoUJnDZZkKXpzbdRruQYK3RZ4UzcYbVlt1kTtDdI0Dav12j+406lrU2S9Y7SBqtbUdeOYjY6sQmtNkRdtEXEpWev1CmN23YStfv2t1FetqbqH6HiePXvG3/7t3/L8+XMP4oRJFu87WcDk+gpolQn4wWDgdUbSkhmPxz7NRMCkTM2LmF4Y2W6LRto+wkbIdCfgU1mstX43vF6vOTs7wxjD7du3vd5I2lpdzV1XEqOUYnt7m48++ojPP/+cTz/91A8LPHr0yLeAer0eFxcXPmVqOp36lr54DR4dHXn29/z83IPvOI55+PAhSinvfSgRgV0JQK/X4/T01E/mzudzPvnkE37729/6VC2RB5yenvK73/3OG0rDt8fhytEF64PBgB/84Ad88MEH/PEf/zG7u7t+kxlFkWc//qBYVWgHPEo3td75urUW2qFWUCgZglSteZFSWLSzS3L9EIIW0CZpSpL1UCi2VOj8Ty8vaYoCZRVWuaHSxmpMVXJ2ecX2ZEJvvOtM+/OCoqqoqoY4O+P+/XvktSYMNUkQ0wQaJ4kPCMOknXGIwVpCYm9npZRybfk4I6hrsA2ETu6wLhumkz5h287HuICBuqmI2qGrrBq29lIGbd0mvawagiglTdxQblE4Y39wUarnyzVGw3h/l95wwOJqhtENKrx2ealKZztlraLRmsDoNqGqoSicPZTRmn6vx9paqrKhqtxAWxAqsjCkrirOrpaOpMkirKJ1mAmxZdW6s7iB3EY3juQxTmiREBC156doFNrG7Ow/YLT7gEBpzo+ecnm0utH5c1qP19/NEhmGrGEisUqS5Ib1k4Cdoih811PqlFhBCSiUtr6Eoog+Hq4lBMLkrVYrTyKEYcj+/j5BEHB6ekqWZezs7HB0dMTl5eUNk/uyLD37J8BLXk+Gur5twLaua87Pz/nbv/1bb5z/R3/0RxwcHPhBUEnZy7LM+0s/e/bMd7GkBd80jQe9l5eX/jUFbF5dXXlmVOqezBUA/jwLoJbuliSHLZfLGwEEWmtPognQF3YU8LMFshaAC5U5Ojri/fff9+9DhquAGwOxMnwlmxHpnEnAgQyzdc/rdx3fKwO4Hki61kV0NR7gfOq8PYpSbVs+Jo4jwiBGBVG7wVckCi8mzvOiY10REbZWK3mec3F5wWw+QxnnDQquzR2C//6Dg0MePnyItXB2ds7Ll0fM5ws2ec7tO3fc7mC5oCg2zGZzPxFqrPHZ5vL55MboUtrdlkP3BhHA1j1HIsLWxji7klYzU1dVO6npftfsasblhbOcqOrSSRsa9zDopnGWLOqaGZGWRd1UFGXOV199xc7OHtPh1F34yNnGBGHQpoLYGwBIdqFlVRKFMav1mvl8zmAw8KbJItRer3Imkym3b98BC7///PecnZ1SNxptjGNY288iN3fTNCiU964bjsYYY/0wwus6XvXEfZVdPTs74z/9p//E48ePve2I3L+DwcDvPP1mpdXsyM5VngOZlO8+cNIiEe2ogM9uG0YsRaQgC8jssgfCvBZF4ZlPrTWTyYQPPviAn/70pzx8+JCPPvqInZ0dD7jFekqOrnehPMNhGHLv3j0ePHjA559/7lnRIAh4+fKlB6WDwYBnz555yUSe5/6ZLcuSr7/+mtFo5L38RLe72WwYtXGYMux4fn7OL37xC2azGS9fvvSSoNVqxZMnT7i4uGA0GnmDf8Brvbs6ODm6A4vyzIoJtkgo9vf3uXfvHh9++CF37971xVOuN+Cvp/z3P6Yl9U91GCOtSgc4UR17rSAgUO5rBKFvsbc0a6tfNDhZpASkOLsmgEU7pNHrD4jCiMXlBflqiSIgUE4KZIGyqTibXZFlKZECXWmMVmgVstwUbMqaqrSsdUk47JFlPQJliaIEo0IMIdqG5BaCbEhicDZcrXNMnPapygJdV8QBNEHK+TwnTDOMiaGVV1W1Jkp0O0jqmNQ4jNGmAhSNtm5YqtZEUUoUp74zoVo5wNb+DmcvT1lvcrZvHbBza5+Tb15SlyVBOwAWtDZgZVU6xjeAOAxQQehbl4HFJS2WNaCwuHa+Bi5XOet1Tt0O5NaNwoaOVTa6wVgHrhutCYJWJlY3hIEiVIo0DLAqpJ8N6W/vMr7zBiaZkhclNDkYg20qMA223YTIuvE6SYKu5lueR6l73X+T56sb1AE3n0MBsmL83/XrlLa/yJaknom2U0DY4eGhZyVlIFXmDp48eeKvJeBBc7/fvxFqIDVKpE5eztcSHsLOjsdjjo6OfMdN3ASm0ynD4ZD9/X3Pzl5dXXlmdb1e+3VCdLbz+ZyTkxOfPiV4SWqdrEEC4MWWUGRa+/v7fk2TQVlhsUUaJwBTht96vZ4ffAIHOgW8P3/+nFu3bjEajXjw4IFfC+ScCaCWc91leLtzLxKZa4zxwQ3djuL3Hd+JKKRFppRyutQOBS+MpGuLWxTmxtfczRtApFGt/rGqKoqq9rqcuq6J4pBe5lr4rtWZc3l5ydn5GcZqxoMRddOwKXJUKMlDltFozO3bd4jjhBcvXvL0yVOapmaxWFK0w1yOUXSa0LJ0N9DFhctr7vf7nt0SUNLVC74KdkSMLd/b1bIIAyo7sHUn/nK9XlO0D0Wv16Pf7/P111+7oqIMe/s7RGHUprYo8O9D+wcCHNNstGW9XnFyesx4e0Kv16csSoIwJIrcw6qbhorqBqtr2qGGvC5oWk3QYrFgd3fP/3sURdRNxXq95OLygpOzU8aTKdPtHdarFavFzINu2d16fUxV+LbBaPx6XQDkePVe7LYaiqLgV7/6Fb/5zW9YLBZ+9y/Xdr1es7297QuZFEspjNIJkM9fFAXz+dwXh27bRdhUmXqV8ybgVoTlUoBFIy7MhMgGZMIf4N133+Xq6orHjx8TRRGTycR7rXZZje49LPqrbqxdr9fj8PDQg2bR0f7mN7/xgwv379/n4uLCG2zL5uny8pK6rplMJiyXS1arFV9++SVHR0dcXV3RNA1bW1vOXH65pCgKvvjiCz799FM/gSu2K2VZeknGYDDwi5AMIrzKosp1gtbVYzTiBz/4gY9fFZnE3t6eT2KRoiosuTz3110Vt4DKpPIfyuH41LaQdyRHKgggaPWcKsQGoQOyAOKEFLba9djdt9pYLM4bNOspNusNl2fn9Hs9xlsTRuMJVVmhm9INaYn8xxq0rlitSwIUo16fIIAAS1k3zBYrskGfpqxYlzVZkpDFCY0NMSYEFVJHAQyHpKl2Q11BQBi5cx0lCUmvT1NVLtK0MNjzJXmjGA16oC0EUJ0vuR3HRBgXEgOu9pFQVBviCAicz3YQxITK1eayKPxsggoUcRxyeTUj7Q9Is4w4zdhsZqjG+DkGo5ykIAgCAhugQqcKVqqdyA0Um7Xb3CVp3CZf1SzznKK5dl3QugHr2F9o2/vuUhJFoWf1FA7AR2FAkKUMtnbZ37vLPK/Iixpl1tT5inKzYHF5StOUKIkGtw4uK6VuxBz/Ux8CJC8vL33iU3fjJ+tRFEUsFguGw6HX48tEPODro3SsZO3tOuwIuSSMqHShZrMZx8fHlGXJ3bt3ubq6AvA1ejQa+aHKxWLhp/OLovA+rHAdQiAAUbrC0srukg5lWXL79m36/T6ff/65r3+3bt3y6/4XX3zB22+/3XZ/rzxbfHBw4M+H+ElLIIx87u5gqpjuy/rSdTsSbavInURGNhqNbqyF8nOyOej1en74SV67OxAnEi753F3ngi4B0nVkEfApBIJEtnZJQPkcIpX4vuP7QwGM8w2ViyM3i7sR3YcNA+Vsno3FtKJv5xqwQSncpGp7sQkiBsORZ0Di2JniF2VOmefMZ3POz8/cQMl4SBRH5EXhIkiL1KVQJRnjyYQkSTg5OebJ1084OTn14uwgCloNTI3WDcvFgiBww0snpydUrS4lzdI2+UVAarsgtsVKHj7ZHcjDAu2EaFlSNw1N68WW5xvXzmk0i8XS+Y0mCfnG+fxlvYxBv0cYKNabNVkvZb1aMehlBME1EHcyB00QaL9L3GwKrHVs7HI1d+2CQZ/ReERVFbh41dYLsXFLnKP6jaw7bNYrB0rqxvn4Nc5Q3GhNmDjNVVUXgKEscp4+e47RLqbz4cNH1HXN2dmp/9k8z51wPQypK5f+sdlsGAzHr1U7BfwD9r9beF6+fMl/+S//xfufSttEHjq43ln6690CG2OMH7wSc+RJey8KczoYDLi6urrhbScA9+Ligjh22cij0egGg7vZbHxqinxNGEJJNbl9+7Y3v/73//7fs729zb1799jZ2fEMhljtCOjVWjOfz3n58iX9ft+38LugT3a8Iq5/++232dvb80EGe3t73Lp1i5/97Ge89dZbvg40TcPDhw9pmsYD0TzPOTk54eOPP/YsRBzHjMdj/uW//Jfs7e0xn8/5+uuv+dnPfsaLFy/8Oe96KnbF+937SZjRvb09/uiP/oi//Mu/5N133/WMuJyDbgGUhVAWS/lvOZfd4x+zy/+nOpyns/NnBtcKRwX+fyqIWjlASBjHPqkK2xIIYUQYJWStsTdAWZSUScF0OqEqShZXV6xXK4ajIZPtbfIyp8w37eIDFudcgnXDSKuioJdkxElK3TQcn1+yvbXNZrWhtKBDsCYgilJMkIEKaXBMbJgq0nZQMwghDK6lGmEQoKKQpmo4n69Zbip6WUovyQhCxaAyxFmPYRJyuD8mbu27qrpBW4utatbrEqMCVsWGJHDPf13VlEVFlGXuvEQOgF+dXzDd2yMbDJlfztG1BuPa8kYbIKAsK4IgbNdBp79tGrfQDkcjCCxFXrDKa4qydu9DqbYLZajrhqr1xTbGgFUkSYahpCgrqsJ13sIwIu0P6Y8mHL7xFls7ezz+8mtOLi4ZDmqyQUVVbdhcHVFuloBpB9WEyXTM1f50+lruU8CDNxnKlGe4242Fm9P9Ukeku9SVHsrmH7jBZgI+1lw2u8IUirZf6tvR0ZFPXbpz545nK99//31++9vf+s3qeDxmtVp5oCYdV6kjwmLK+5b6LcBZWNj79+/fkBacn5/z5Zdfstls+Pzzz7l9+zbn5+dYaz3QXa1WgEh+Kt+VEgZU9L0SbS31WFrvsnZISpXohLua224Mq7CgwpzK7xFGVDYJ8/mcfr/PYrHg7OyM3d1dRqPRDccbAe+AB7TL5dJrf2XqH/BkigDc7qZDyJzvOr7HZ9UNQUVRjLVQ11XbQmp1lu0HjiPXNhIw54IAoKrKdsHRzh5FQRRHLu1Eafc9ZdWaPjeURc5yOW9trhJ6aebbOg4wx4RBSJwmKAJmM2df8/LlEU0bAYuCfj9j0Etp6oqmqqjLiuEoo8wL8rICLM++eUrWy1BTHLNZNy54qm3lG+MGlLoM5fXN64BhXlYY43Y9uq4oy5z5fIZSirwo2axzdrZ3iKOQRVWimxqrG7I0oq4CRv2eWwSw1E1DVdVt26HxO3GAsqyoqgJwJtZFXlBVJUUYtCBgSrHZ0NSGzaZwVi9YyqZGty0mx2StXBCBtRjdWqe0GlPTRvXVVU1TNURhALqhLitOjl+yXC44PDxkd2+fMAi4OD/zutuwBVzSJk7S3mtnp+SBFLAqDLhIGK6urvzXBCB1d4qyY5e0GrFGG41GbG9v/4M2iBRL8cSbz+e+wF5cXPjUFWFgRXBe1/UN6xbRbckuXt6z6FEHg4HXfeZ5zv/z//w/XF1dcevWLd59913+9E//1C8GUvSEvXj+/LnfaYtm9OnTp5ycnPj22fPnz9ne3vZsrYj6ZXJUpnn7/b7TPK9WjMdjn3LSnZRdrVb84Ac/4NGjR+7e2d29wUrM53Peffdd/vqv/5pPP/3Ut+VeBaxyTWRx6PV6/Pmf/zl/9md/xoMHD9ja2roh3egOaggjI2BVdMKAX5jk/gD+Ach93cf84pTxZIsgcmbzBA6kGhci7djWICKI3DQ81g1lmabB2Aalrs+fSH8klGEwHjGejCnznHy9Zr1cMdyaMJ1uoYcjqkq0bFXr4dpGD1sXy9oYS9bvE8QpJkxRvTGNhUKlBGFKHPZoVAoqdOl5bgLIhcwY54qicbUodD1y93VraOqaTZEzXwbEcUoQBvRXA2oTcvdgi0mt6NWGxjQsNwUajSk1eVESZW4QUCtQ1tXvYlMQ4xbwIIwIopDNekOYLhj0+sStt2RoQ7zkAjec65peAVEUOvcDq5yFVVmzztctEeNYayXsaOAGZjGu7S/t46bRJFFMksTkm7x1F0jojbfYv3OfbLzN/t0HnD7/hpOjUw7u3WP/9h3qumE1O2dz4YaqVOs4EFhLEoWgjLMbq+pvu43+SQ4Bm6JvlKASed6k7S2AqNtilzVWarCAqm7HSYaeukBM6sXLly+pqsrPCFhr+bu/+zuGwyFJkvj5AdHO37lzh9PTU99tGo/H/rnY29sDrgkOkeNJh2axWPghJqn3i8XihtRKyA75XGVZ8sknn/gO7HQ69bZS4/HY61FlXRCf0ldTnuQ+kk6hsNCyRsn3y3ns9Xq+kyWx2V3Xgy5AlbjWyWTimW/ZRFxeXrK9ve1lb1JPpW4aY3w4QDfoQe4Jef9C1EgHUgby/jGzAt8JVuVkyE4ljp1NU9Vm6Aoi7mUJWRp7sCq7KaF3jRXtgiKJI5ra0f5NXVPmOVpLTKUTGQst7cx9G9I0aZmrvpcQaK05OTnh+PiYptGdNl7AbssyCXiqqgrdaPJ8w3qTOx2YMQyHI+Ig8tNsrdTL76JUGPldkwAHYW8brSlyN6Vb5XkLJg11VXJxcU7TGOqqQcvD2Ljdfxi69o9LoHJ2JyLilkNuJrkpxBtOBp2qqnIRi3LDNDW9nmPx1qsNSS9Fa3ctmlaPKuyeAwSxs4Jpd6TdNocADedlGxAEytuRXV6ec3V1QZqmHO4fuHZCr0ejG2wQUDY1eVGQlcUNMf3rOKTdIDthuGZZLy4uOD8/91FwvrXa0XxJkZLC2d2szGYz9vb2vBZIdqBy3datLlge5MvLS46Pj8myzPutXl1deZ2p3H+Sdy8FWJ4nAc6Xl5ecnJzwi1/8gk8++YRnz55xcnLiffx+9atfcXx8zP7+PltbW0SRi2+9d++efy8vXrwgTVO+/vprvvzyS549e8bp6an/jKvVisFgQFEUPn5VistqtfKtqnfeeYfj42NevHjhpz3/9E//1Kdv3bp1i93dXQ9ipSUo5zeOY7a3t/mrv/orfvKTn3B2dsbR0RFRFHF+fu4HMaXQJ0nCwcGBB127u7tecyWDEFLAu6ysSHNkBy/vRVpnXda2e73/UI5isyaOU1ScEoROn44K0LZlO5UijBPn7Rm7SfVGhWhVUWvAtgNBHTAuIEHXDcPRyLXjtKsVVVHQS1NGozFxEmO05ejlEavVAtvUDmgCBAFJv086GJGkPVTaJw17NNa15nUUYoMYbV19MlqDbdoB0JqmbhwDjAWtiaKQKAoIlAN6Yaiw1r3voi4IdERtoGw02lpUGFE0DVGkaHRNGEcU64K8qEiDmKYqSKOAKIK61qw3GxLr9KhBO4hWVRWLmdtUZoM+y9WKqrU8dOxp7QmbMIgoy4p+f0C/N2C+mLNcbqi16yS6mQ4IlCUIFNo6jb8KA+IgoKmdttVYRV2VDAY9dJZiVYBNRzx875+R9gfU2jC/mnFxcUachAwGQ5qiQZcb6tmcBEWUJAQqwBpNGoX0exlVWRBHGcSvr+52uyjypzBpXfmg/K/bape2sGysBcTJ8zwcDp3vbMssdiVOURRxenrK6ekpMoMh5v7y8wIuz87ObthZyVS9gDe4Bt3yGt3UKDG8lzohdXuxWHhwKN0grbWPVxXbKcAP5goTnWUZW1tbvhsmn09mBoQt7tarsiw9OBSM0m33S62T9y1dtrqu2d7e9m38LvaYTqeegBF5GVy7ZIj+WACw/N6icOu9gE/xgxXmWM59N8ZbhquExf7vlgEIy1DXFSqwaNMmTeSlZwHdIgBRqPwCITeb3AAi/pYhos1mQ1G477FGt54bbrgqSRKPymVRybKe92ldLpee0ZFF1rXJlJ/ink6v89E3m5ymTWhar1cUhQNvy9WK3e0dRr2hv7BBCxyLomB3bw9aCUBX0+darGvquqIsXVqEspamKgEDVlMVBVdXM8LQ2cOcn5/7gZvhIKXXy5xEwWgGPbeD6uoJBbDLDSvt0SBoNcP1tT5WAY2uKYqcJEmdFKBqWnZW++9zGhndTrlyAwjJA93V5UgbxrsctNo1pQKK1tS93+9z//59dnZ3UWHA7GpGXpSMGv3aF/xX9TPyEEvbQ9hMuLa5kntPCq3YqfT7fW8rIrpOYeXquvbaTHk41+s15+fnHB8fA+45evHihQeBs9mMhw8fsrOz44GYyAtms5nfFYsf4Waz4csvv+Tv/u7vyLKMv//7v+fp06de931+fo4xhtls5ofnbt++ze3bt33ra7Va8dlnn3FycuLBpTAJcs27Guzz83MWiwVvvPEGVVVxcXHB8fEx33zzDb1ej1u3bvkBq6urKz799FN+9KMf8eGHH/piJ4X11Snarj9gEARMp1MmkwlvvPGGZybk5+T8dRcH+Z4uQyOLQ9enEa51rvIeupsT+V3d4x9bOP/JDqWI0owwyYjilDBKXNSocZPk4Cbqg9AtuFa7ZDorMgDtvEFFtiPPgbFt6zIImGxNKcqS+dUlVVFSpTm9nmuZWyyT6QSlLMvlAiVatChBJX2CdECQ9bBxRhSHBNZ6NwJtrBso0m7TrusK3RIFWmvQGjBuPMmE6EaRxAlhGKA6Mh6rQqIoIQxjKmM4Or2iqjSL1ZrRIKHfT0kSzXqxoao1Ji/IF3OGox5xHFDXmjyvqAkJo4gkcVHTTV3TWEuwWNBLM+I0YbNatXMHJU3TDuIZy6bK6Wc9ojDm/OKCdWsnFgWBk2YgUlbVMscu2jYMWzcS4yQBYRBQ1w11kxFlAxoVkkz2WJaGTbUhDBTWrLFo+mlEtZpRzxZUxRLVrBimEagEFUYtSxuSpTFxkhFEPaLB65sZkOdSSI/d3V1fWwAPCiWGU+yiuixblxi6Hu4O/JS6PJvCvG7kOkSR12uKo8D29jbGGN8NEtAlDOJ4PPYuKAIou6ylyLHgOp5Z3o98XUDqcDi8sdntgsYugyiuMOJaIJtH6QQKSSHJUeKoIENc8l7kNaQOdtlMqW1C2MkaI4cMrwmQ7M62yGtImI3UUlnDwIFt8cCVNLHuawqQLcvSA1SxPRSALPjiVcLgu47vdQMA2huwptEVde1ATxjE/sXczaluXMRrQ12cT127QynyksVsjrGWIFSo4HoBkQt7c/r+espXrGzKsuTs7MzT/UEQesDpkoVCrwVZrzdEkbtQ6/USo6EoSoI4piwKN+3esrdaa/r9nvfNVOF1dNzV1ZW30bk4P6dpKqx17d4kiuilKevNiuV8Tl1V1EVBYQqSOPHm7ffv32c8yhiOBuTFhjC89qPr7kTk4ZNzmOc5ddMQKFfkLddDJqqdCC4Kl5kexxm9QY+mbgXMVYVpX0OKgADUprkG4bJ762ozu5YacRQQAEkcOdNDpVgul7x48YLRZEK/3+fg8Ba6bVN0meLXdXQBTxec7O3tee1QF/zIeRDwKC4JstOWLoOwAHKIDZLscAeDAU+ePGE+n9M0DTs7Ozx58oSyLNnd3eXFixd89tlnWOtSTaR4Hh8fc3Z2xmq1Ymdnx7f6T05OePLkCf/X//V/cevWrTbRbekBuRSooih48eKF36WfnJzw4sULvvjiC5rGRfd1d+Qy9SoDdv1+v93sTTk5OeHWrVu8fPmSOI55+vQpv/71r/n973/Pn/zJn/hn9fj4mJ/97Gd88803/MVf/IXX/b4KULsDigKMu4uR/L075Pht17C7GHTb/sKCdDcm8rm6LGr3esv/5DXkmfpDsq9SSpFkA+Ks58Bq7NxVLEHLcjqrKZRLrLPKeXUaownbFrRqN6dFnvu0PWstGEsSx2SDHtPphLosyNcr8nxD1uuhjeXi8hLae6xuNGVVgIUoSgiihCBKiZI+QdwOiUpIQZtSpUybytfUWF07ckIblNGYtu2vrCGwESYIKJqaOI5I06RtDxuMClqHmRQVhoQqYDZ3bjLjUcb2dEQviynyDYEKMPmCpigII4U2EVXlnut6k0MQEQYBUZhgUVRS88a42G1jWa42FJVzOTGqQVnNdDIhDkNm8wV5VWHadU1xvdBqa6gb3aZJucFjVysDgiBiU5QkoaJRAbYJme4euu6hjVgsVgRao+qCKNBgSjIM9eIKrCFShrSXABE2SNAqIjSGOAroDTICFbq0r+z1MavSDRF2UECitL7Fqk6+Txi3bmek+zyKlZKATGFpuwOqXZ9PqT1Zm8IoLhBhGPqpenAA0xjD1tYW4/GYKHJpU1J/ZM3r1ivxKO12bmS6v2kaPwQrn1PY5a5FlFgeLhYLv3kcDodsNhsfHNPv930ypDCd0v6X3yEkUve8iHRKBpYknlpr7btbVVWxvb0NXMfQi+ygKx8QBxa5FlJbl8vljYFeAZ+CLbTWfsZCvGC7Q1lSs7uEiJx/0bV+1/GdYFWoYneBNHVTOgYUSPu9lq527SitbctwXrMZTWvFFGh1DZZaX9UgDFGqNVdRrYcZ1+lC7vtxLZgwaplMxxBdXc2YzxftIhV5xlFa53leYqziaragLGvG4xFV5bzzyqKmqivGacJyOSdLU8qyaBc97e2sTk5OaNpWeJalvPjmGxaLOXt7e8xmVxT5ikF/QADopkZHoWfBijyn0RoI0NpQVxWr5YL5/Iq7d/ZJ08Rn+8pN0e/3Mdrtvn3SV1VTFiV53kYqIuxz5L1d2zWHqqqZzxdcXS148OghURSzWCwdK64MjdFuMhU80LL2OuHIgTFhVfHSDAHNZbszlMLS6E6Luiq5KgrixAmz93Z3SbP0/22t+x96SEEEfFEDtyO/f/8+/+pf/Svm8zlPnz71Dzpc22vItKX8HgGsm3ZYrisZEImFFNvpdMpsNuPFixfe0mmxWLBarfzfv/jiC0QL+sUXX6CU4uTkhMViwVdffcW7777Ll19+yeXlpQf/o9GI4+NjryPttr1FFC+a0TzPPTN7fn7uC5u0YMAJ4oWNmEwm3Llzh729PT+dKvF70+mU8/NzPv30U2+B8vTpU59o8vXXX/Po0SOf6NU9N12WoQteX2UwXwWNcG051gWvwiR0waeAy+4EqmyiXwWm8vOvsqvd1/xDYlaVCogSx6iGcUIUJ0TtRtq0bfKqcWlGtmm1uO1AbBQGaBtiLS6wRbox7aK8Xq9ptGZkxoRhxGAwpK5KqrphuVqztZ3R6w+cHm+dk2YZKgyczVIYg1VYIyyiBdOgRccuAK6u0Y3G6BqMA37ufwalnRTAWoPBeu17qWvC0A2VxGmItqCCkDCMHGgNI6yFuqo5v1yx3pQMB25OIlYhTZkTxxa7ycl0gq41Ra2hbrAEaOOiIGttqauautIEKkSFIUYFlHVDWVVtw88yHg1RbcBBr9ejatc122n3dhkwd93cuSF0TGutHZA1Nqa3u894+xCjQvJNQV2uacqcUMEotqSRJbSGIIxpVOTAehSSZH1UEGCDmMqA1YYwDgnSzMkQao2xr+/eNcZ4uzoBfa/qS0XTKNppIQZkDepuIOVZBTyh09XES72F68FJeZ4lhrdr09TtHC2XS9+tTdOUs7MzD8q6G2oBcvI5XKe59rZcwiJLfRV/bmEchQARj9duFw+uY+ClhS9+qOKIIrVM5AayXgvrCddOMrJeixxBiLDNZuPlUl37Rek+yaCVfH55b3I9BGwLSSMDWV29qtRqIV6apmE4HPo1yrsatf8u50uuXZf8+W8d3wlWRavhToobrIqiiKSl7T0j2u583eBRx6C+/Vlt3AULgsDpOK1xCSE4H0FJiAuCa31h3U61KxW2gmYoy7wVSi+pa+0GrjpMgehdDIqy1ixXG1TbQnBsIjTaZdnrpnKpIlZTVznL5YI07TsdUJrx9OuvsUr5Ke8nXz92v6NpWCzmKGuoS3fhev0UbRs2+YaiLCnrmrpxA2RYZy2SxDFJm44li2Vd1WhtGAx6RFHQ2lMZelmPQIU0TUFRlNRVjWR7R1FIL8tQuFaexbX9i9w9nI2uvTVGlmUUVUHUBiGgrAtFaG8yYVMl/cM6IwSaRvud0jXLFNBo53WogsgXZq01prV4UaahKEtOz045jG597833P/OQIiHFT9orUogePXrEv/yX/5K//uu/5unTpzesU4RtFiDXnQiVAiXgRinlpzlFN3R8fIzWmvV67a2Xtre3efvtt/nxj3/sd7ppmnoQHMcxb775pn/PcRzzk5/8xL+vX/3qV4xGI8BpYAG/exfWVz63DHEppbi8vPQaKwGJ8nkWi4WfLL179y6PHj3yaVRXV1ccHR1hjOH09NR7DN69e9f7sE4mE374wx/yzjvv8NFHHzGdTm88+3AzkEF22F19mBzdn5FD7tNuC7+7Mxdw2/33Lhsi16e7oHV1s90C3S28f0hg1Rn+R4hBIO1wTZREGOs2wy7+ufVVBue/2npdg0t+srhBIas1Qfu5mxawFnXFcDQmShLSrEeeb8iLgnC1YjzZIkmdLrvRhjhNUUGEMQrb1BSrBWWrgw+jsPWm17gcP4tuXJSrSwnU7n/GtI4FGqzY9Gm0cW1ylGM84ySh3+uRBAGETquLVS3R4aDkepmzvliz2qSuxgYhUWAJGwtFTZYaAgzrsgX0BNTakA3GWALy0j03ZumIkdV6Q90YtDEurjqKKMqKLO2RZj1Xr3s9Vps1YRJTtc+dNsYB97YbaIwBa7A28Bt7YyFM+vQm++Q2YnlxCXVJEkAUKKI4I4kN/aghaYfoKkKqYIBNUoI2ebGxhtiAKRvn611BnEAQRk4b/JqObstYOje9Xs8PGnVrsoAbedYE0IluX55NAXbrNrxGgJJoPf2ab1zQTxfAiZ6yG8AikgKxuepaWAaBswdcrVY3NJkC5rosptQJGewUJlh+hwwUiURAulZdUkRqmRAATdP4KFP5ncJ0yhotOnzZ1AtolXZ7V0oo1oACYmWAS2ZhukSCmPTDdQ0UJlSupwDorjZXrqe8prwneS/y8yJVKIrCA/ruRk+u23cd36tZhesFJwyVP3my6AVB4LONwSJT7D5etBXRXwuUS8/ahWHo6s8r7TsBUa59M0drQxQF7QNQOO1PGPkTLgNR7vfXaAvr9YY8z0lbU1yRDzgNZ0O/nxFFsQcli+WC7Sglz+cMBm4qOutfJxSdnp763VqWpWA1WtcYoxmO+tS1Y93Ksmx33G56VJsGYzTTrQnb21tuJ1Y6kLpcroiikMHAXfiqM1glN6XoaboPtPy7HFVVezNiAZCixen1+8RxiLUnjoXV10xSd+fXjZcT4CM3VFd3KEBBDvcQO0PrOIoIVEDZnqfXeQiAlAdCduPimVpVFbdu3eKv/uqv+Pzzz/nkk0+4uLjwWfPd9jLgdVCTyYQ0TX0LSXSuDx8+5OjoiBcvXpAkCTs7O9y6dYudnR3eeOMNHj16xIMHD9jb27uxWwZ8gYfrXapcRymSL1688DtXKfQi24Drbka3kHUBuvzuNE3Z3t7m4cOHvPnmm7z11lvs7e35on1zs+iKz3w+Zz6fU1UV+/v7vs0kRba7ce2yIt33JoW3+31yfBu72R1q636/APkuYP2275N7ucuUvgqGX2V2Bfj+Y/RT/2RHx+TfWHG0dsNHzkXVOhP/NrTFggOGuM6Jm21v3EYVFwggz7UDhvg/ozhlNJ60td2wyQu0nTMcDhiORq5lqJu2k2UwukY3FU4l6yJGw8hFOkuHzRqX7IRcJ2uxmPbvBmt1+6dx2tbADSsFLWBNez16aUrk0Bhw3XrXTQNK0RjDapUTBBVJFJEmIe4jWfJSEwWKvLLoRpPEAZu84vj0jOlkQllVzOdOa49yw1iuq2cJAldzK62JkoQwclrXNA4po8DVdl1jjSEIoza8pb5mWJVyrg3afdYgzUiG25SlIS/nmKYhwhIrQ28wZDDeZkBDrDeEKqC2EdomBOmIpJ8xGQ9oGsNqk7uhVhy5UFYVjVYtm/e6blQ8kBR9aXeiX/xBRQsqa5WAKJFfyc92a6PUS2FTuxtWIaIEj0hXSDbrAvRknRMGVuKq5fd0da1d4kuAVHdNFvAXRS5ZTyyaBJQJOJdhJampgnlE79kFaVVVeW/ayWRyAxDL2iOgXGqosMKz2cyTU+KDLeuG1Hy5FvJ+pC6Ky4HoaUWeILhKwLO8B/mMMmMhrgVdYkg2GuK9Ku9B7oWuT6z8jJyj7zq+x7rquoCr1sS4O10tbOk1O3G9e5I3ZHFsoHwIGfyx1on34+B6Ys2a6zSloijbm9ugdUPTOK87GRCSYiiLpdycxho2iyW5ZATHkQep1zs7yNoggqqqmM1mNHVDXmww2rJczjk5PWEy3QKugbcY9z54cJ80DjBKfGUtYvLrCpUkVpn2AQvZ2d4iSRPmszlxnGC09e8ZpVodcOB3cQJM5IGWm1p2ZFq7PGhtDE1z7digUNh2F5TnOY217O/t0O8PWC+udY4CjuSmlKLQBaOv6jmlPXDzupt2iOLaZqNqz/frPKSoAN7sOM9zv2MWtjVNUyaTCfv7+z7uVCLpZJK+6zkqiSQCVuXej6LIm9vLgy+SCQGm8lB2WT/ZkHS1UN2HXoDsdDr1rOm3DQbJ75NDfp+A0Nu3b/Po0SPeeustfvjDH3Lnzp0b7fRXNZxdEHjrlmPJu6xjV2/66iG7+e5m59vYVHnPXYAoP9N9ne6/yX0oBdmz+x0WVs5h917u/o6uqP9VsPsHBVQBSf5zXqetP76BRjvYanSb3hXF158Z93fnjWoxWAeYcN0V0w5AhkFAEif0Bn36wxFhGNFE192FUDtAuJgvnN0grrWtdYM1ri77YC0CLA2mCTBRRBgG7Xs3hC1wbN3rCRWgLFa1X7NuGAksVrcuNNbJFaJ17KRmxhInKXGaEIbXaWNGG+p2gbWNptY1eQNREBGFIWEDURhgg4RSN9Smoao1jS3p9RoMUFZOZ9i0MeHunLp7xqUeRhijWa9WxFGIMppAgcaSpY711gaKqu48m9bH3zYGdJCSDKeYMGO9KTGmJggssYJ+opgOE4aDFHRMXcfUNqAyijAb0B+N6Q8Shv2ExTx3JI52FopxEqG1mw2R8/S6jq73qZeytd3ZroRMap6wgF32ToBpV1bVBT9SQ0UrKmC3G/ohP9vVSnb1rgKY5PUFjEndETzhXYHar6/XawaDAUqpG1P/UteGw6Gv/bJmihxA8JC8P7G8kmdW2F0xz+86J8h7F9wl67CwoVLnpesH10BYhptkjRc2Gq7r6WAw8JJP6R7KMKaso/I+uoNteZ6zXC69pWC3rnbPt1w7sc6TgAMBsP/Ymvu9oQACSsLOblkWQr/4avEivU6ZEFTvPFmvdyp14zRMTdOQmBiluB7U0hrd6BbotIUMt+uua9fGclIBi7V4Ib5EjApQWm/yG21D7HU8qiycwpiu1zllVRLHEWXphgcuLhbOU1abG1pDB8JLzk5PuX17n1AFZL30hr3X9YIncW0B+/u7DAY9rmZXnJ9dsrOzA9YFLozHw7ZFUZN2LCvW67UXNHeBRNf4Xa5F3TQUpdOzaKNpOruXIIqYz5dYA9OtHcqybjUoLUCNbOe9Xw+ZyIMsi3u3CHUf6rquMa0soaoqCAKaNt7udR6il5H7TrSoXV2P6KfeffddyrJkNpsxGo18NJ7sgrtJIV2GTzZycp+laeoBrAClLgCSr8m57E6+ynPT/RnRQMv739vb46uvvvKvL392W+6TyYSHDx/ywQcfsLe3x8HBAYeHhxwcHDAcDj0bKkWyqx19FSh2/7sL+rpMZRc4y/d3AWb376/qS7vvvfuaXea5CyhffS9dCUD3vbwKQOXPVyP89K4AAQAASURBVN9r9+t/kEAVQLl5edXOCqANNBqrXD3GQhi2JubKaURrU7mfUaHTegYu7UkDgTKu9ugGrRuMtf73RC1jUtcNm/Ua1x2KAUVdFlgjDKjzSDVG3zhn7popjAmwovNTgG3/bMOfbKDAtD6BCnAiBZfW5aaTaCrHxkaxe4atbjs4VU3WG/iORtrLyOqKqnH+0BZD45+vkCBUREHo9KcqojEagohGWzaFs/eq6salavkAlevUImHslssVW6Mho/6Iur7uGBpryIuKor52oAAc0A6Vk2uFGWF/iop71MYx34E1xIFlmMAwixjGAb0QClJqm1FpiPopg/GQ8WjAoB+BETeMELcJcF1Nty+Qe//1BVqIo40QIMKAdlvHstZIl1AcVWSaXzqH8n1BEPh0QbiuG13GVYCl1F3RZ3af+a5UCLjR2pbBJWEdhbCYzWZ+zZV7IU1TLi4ufAKU1NOurrPbjRPAKqxol7SQNVT+W4bCBfx1ZRJd6ynR7UpNFEZbOt1df21J95JzLeyrtPiFMZavde3HAL8OyXvoDrPt7u76ayyd1K5kQq6XAN48z/37kt//P0wGUOuGiJg0bnfKGLRpoLHEUYqkJhlr0dLO8S1/5VtOYAlUSFncNPt2hsvy364ANo2+wfB0F1AnQwgpS9ltXbf65MRUVQVGEyVxywQr6sq9B9c+giSJ6fd7rQxgSdi2nWzL3C4WK+IoJghgdnVBnjsdja5rsJa6LsnzDVHkNITSVva7Ia7blaPxkMGwz3q15uXLExbzJYPhkCxL0W2xT5OMqlKEYdQyyZarqxl5XpAkMXESE0YBcRzR6/fQRhNYx2pao12oQq2v22z2OjrWGo0xDUXuWnij0dCDUghQKmhZZ40x3Hig5EGJwpDaONuxuuOj5q5R60sbxTSNJggVjanJN/n33nz/Mw+x4JAHWnajXX++VwdzumxmF7xIMZEi1L3fpBB2z5ksWt1NRhekyr/J75LrJX+X+3g+n3uz6aZpePDgAb/+9a+90F5+NgxDxuMxP/zhD/npT3/KD3/4Q5881Z2Olc/cZcy7bKycj+77ls8pn/9VFrL7jHbPTfczdY/u931b+6f79e55675PXy8657x7TeXzdQcmuq/fZUO61+/V9/iHcFRFztnLJ+zfe8u3zrV27e8wdIBUQLuxEISGUIdOQ6lUO5jkDPmtom3LO6ZT6xrd1OTaJdkJO1tVrrVtlaGu3CYW5VrOtp3gdxpU42sOgGnnFRQtw6eiFqBKrcE5E+CyDawBqyymZVhVWzvld2qtfcCBjZ0NV9MCoTRNicIIZQxZEqOHLnraWuM9vFGtjCc0hCrEqhCigFC17K02Lv0rjFzbP4x8/ezee8Za4ij2ASGRCmgqTZ4XrPKNs+KyyrsAgCNVFBbCmKC/jY777ntsjVKaBM0gMEySmH4SkwYhVhsa69r/Kg1JBhm9YcJgFJPFIVVuoR2eQ1miSDSFUNdutkG/xlCAPM+9tlJIgjzPGY/Hnrzork3dtKQuyA2CwE/Ey6bheijYEV+i/7xBmrXPvXQfu5P50p2UqXgBoV2D/H6/72O0u+BU7CyzLPOsKFxLpUTHCviOj2gzhSDp9/vfKtsSckpqmbTTpXvU3ZjL7xYPWQHJAg7ldZumYTKZ+HMrGtHuawuoFpAtGwUBxdLZFUzTlRa8GiogkrvuPIQ4J8lrShjDer2+QYCJHOC/e8DK68b8wtXuaAKZ5HdfU0phsWjTUDUNVe3SmKTt7haehqZxu3q/eKjrdr6cQLjJWsmHkpalQ+DGTfa3/mHuhnLqLKWg10s9uA0DaJRtf1ajUAyHA/oDZ/Eh2hDnZnCdHR5FEUWes26n9t2kvPt6HIX+YltrPfsl56yuXIqXRGQuVyuOjk44v7jCaKdN7Q/6/rO53WDf75qKouTqao4xbkhLBXQenBBtNGnrwmC0ZrVcsVqt3C4ldFZW14MmmroqUMp5Hi6XK8Iwopf1kRhBdy4rXzSuNcquACjxmLOWun1IBh19Ul3VqPY+CCMXNVi+ZmYVboIuOR/C8nXZPgEnXdDZbbvIjvPb2Ei5V+Xe7X5fd0ffLTry3123AgcSqhusr7SKpIXz05/+lHv37lGWJS9evGA2m7FcLnnw4AE/+tGPePfdd28UqW4rrKuJ7YK17jnqfi64CTi7DGl3wXm1Bf8qGO0u+q+ycP8tNrN7vuScdn9nt+i+CkTle/5/7P1ZsG1Jet+H/TJzTXs659xz7lRjd3VXNxoEQRIECQqGrIm2ZAVl+YGmQwzbCj+R4ZAoW3qQZJPhgaEI2QRDliArZEWQZljBsGlqIoOEQ4ZFmdYA0gQHNUYC6G5UdU13POMe1pSZfsj81s697r63qltdfS+N/VXsOvvuvfZauTJzZf6//zelYFTONfaXHbdpfL5XQWzfsbw65/YbHhWRnlLBKoPyaDGl47HRnB7T9ocD4yKrVAiE9Zr4shivUd6FnKv9rvVJEUqDimVLrMuiIIufKc4P1/ND6c9QQltrD16jfGi78iqm2AruAF4rvNNEWEeq2ni/HTvbW2zfoYzBo+gbi+3aeBC4mIC/Kgu8DX6gGxvKYHtvwWV47VA6MK0hq0KM9VeGrJyCqoP/qQ95YkOWl1giPLLPTdOy0Zq+s9ysVqzrht6FvnE+ujOQKGQofDHH5jOcCx7GCkdhPLfyjKNcMS0y8qwgzyd4PcHZHJ0XFGXOdFIyn1ZUmSHXhtY7nI9zW5lI1vjIdHv6JmSNeVki6+TJycnA5ImPvVQAlH1TAp4EzAlDKD73VVUN7ncC1CTTgFi6VqsVwODzOrb4pnhCGLy2bYdiLmk8iPxOSIKqqpjP5wNIkyxBTdMwn88Hy5jkYk2ZZAF1wtSmqbsk+8EQcB5BpqzTUtlKgnClEIK4VAimknNIcJUAS/HrFWuvpIWSrEPivypsp7V2cH+TPhJQKaBY2n7rVnCLFIulHCMucGm52xTTybosGElYYYmTkf3q0+RTfVa3C3pQzbUKqaIkaEpAbN87rHVDIEsTk/7LJBZaOAWhkgx42OxVADpybbmJHZN310X2cTcAQ+vA5OZ5lmgckpopahPxQZ5Op5RFGQc/lF/te48xdgBtolkImA39INWnSoqi3JlAW3AYGN/j42NmsxnL5ZKHjx7x9OkFXRv8ZdumCf2H3+nnAAZgubyJuV63gSRi7tjerx76e7VaDRpVlucovTtuTZwcAjZWqzVaZUgahrRakvgNpRu+MSYUPohalrRJHrwhJU4ydqlJ7GXIGEzK4pWCKQFbYwCU/kbOISByHyBLrQUpGEoVMEjAfwKqZOGGbeJp6fezs7OBbRAzyW//7b8dMamIj5Is3rJwyDnGoDQ1m6fv03tJRfoovU9ZpNOFaHzPcu60L1PwmX6fgvrxtVPWdHwN2PWpTsGp3G8KrF8EYuXfryJYBaKCr1ADvUkEkkqSjWAj6AzAMs5FQh5r7xUu6T90PFdcN3ECd2VFcjFyfmu7DyZ66U8bLWgu5hKN5vP4HwDK4VWPj+VLlfhweiJo2wJqp5LfDf0fUkPZrqfvWkxuMHi8UiGJACFYtO9C7m+lg8uCbTuyzJBrhQP6psWpEJCb5RlKhcqE2hh8ZE2zItZYtxlDjlqd+G9DNKGWeAWrpmbZNLTOkhDLQSnwoTCAApSZQDaN34F3PZlSzLOMWxNFGZkzbzJcPsVS4ZQmM4aqyplNppR5HkpfO0Xb9tjexZg7FVy+ehuKG/Q9tmtfajYAkdRPNc2bngLIFDxK4KXs97I2iE+m5IA+OjoaipjIGiJrkOCLNEeoMHZyHdmXhNEVcCVuBsJAyjos+UJlTxRgDQxmdFkzxCUASAi67XqVru2CbQTEpn6bcr70fqRSn3yeukcImBaAnwZACa6Q4HJJZyXXkawHsi8Jqytr5NHR0YAtjo6OBj9T2LprSb9K21L3wXRvTX2R08IBgp8+S4zLC8GqLOYBnPiYokqjlNlqzsScnM5HE42NAVLB5yQNMAlM5JbFKSJbKp2n42KWsjljFiQAJimNKmZcG4O4ZLBd0OSVioB1m96njPXetdG0bUNvQ+RnoOC3GoeA7t0B9OR5ESMMt6knhI2VSXR0dDRoMx9/8gmXl9e0bSg365wNbhPRP0omveTqlAfKJY7yMrlTR2vZNDab9RCIpZTC6FB/WkCFMZq2Ddoq2gylF9suVL2axWS8ovmkyoSMW5Zl5FWFiRqWMNyDA3li1lHxYX3Z2QDkYUq1VgF+8uDIuO0DKCl4ShlWYOf4MWuagp4xcBqDppTZSxnbfezkONefmKLk/Km/UQou08V1H4OaHpO2Rf6mzGkK8OR5lb6Uz8aAL1VY0/4YXzOVcZvSDSFVlsYgNpUUiI7dPNJrpAxAetyrJWp4hXyfOq59IYDHx6nqJYxpIFQjy6k1ymu0Dmujs2INC8ypQFUJL5ciAqFClt+xhnkfzPZeUJrf+kkKMPWSccD66CtKcElIxjW0bXcu6NgS5wQBWmzfBrDameQ6wf3IOUff1bR1ZBS9AmfR2qCzLJrtHL3tsbbD+ZzSKKw36e2S5SE4B9cN/rjo0D+ZJ7gnOM/1cgXO0bRtSAXowx6kCKm5PJBpE4ZKZ+jyGJ/NgmnMWYzrOCo1t6qMeZXTeRUyDWRTOj2hNRNQmjJXzGcVkzLHKI33irrtaFsbfH0Ra0UPkcBp2xZvY0XIlySypgkAkj0LwjogQTzynIm5WvJWyxwTZlBKq8rzKedN59DYAiMgKJQVz3bml+wHQsoI+eV9SHgvaZ2EtRXmVQBYCrQFqKYZA+T8adBs6rcrCf7FR1bYyTEGSpP8y94jWESi76XPBJxLLMkYjIsyIMrCZrMZ+uLm5mbYW5xzQz5WaZu0Q0z1YqmTfpd91Tk3sNwpoAd2YkZk/4Jtfllh0/9rZwOA7YZltEHHXKqw3Xylk8NkDUmbldomSM6yfNhYwgbBzoSTqPZh0/K76Xvk+rtMiNRi3l34UiZLNmRrQwqJum7AK6aTCbPZFDx0fTAThXYZrO13HgxB/aL5GaMpy2Jw7pdB6/twjkC5z8izkk294cGDB1ycX9B2Nmrf25QXwKAxyUMeqkkEs3wYzG3EdZ4XW6YvLlaB6t+micrzPARZ2G1ZSiJnURQFVvWx3XFs7bZaBxBNNTlgBpAuY1CVJUbM5HHM5bplUeDsNmdb33XYfFue7mVIukilbKB8Lixxely6qO0DLGOgk4Kd9JiUZU013O1zsgu6ZJ6m10zZxhQUyjXTBS5lZ9McsGPAnCp+6f2k9yTfp68X9e0+UDnuk7Sv9p3reb7AY9Y6ZanH10jXmPT7lFneN0ZjhvXVlASsaj0UVFFKgY6+VIRiABDAldIh+EdpQoUoLYxkYGMh9gPJe7c16wvrOPSxixHyiuCPKkB2R1xsp8d7HV8eF1/PgtVRFgoXgLIazhHytHZtG3K4BnSId/Jc91jbguvxfYvgNKd6fNcQKkcFa5VHYZWi7/qYAoto3vfBgmU1zpmQF9ZEtj/zuD6UipWqf5MyFMLRwgDiUU6UwPCMWg9kE3Q1p1fBOdfQMzGO4zLjqCpRJqPrPKqs8MURfTaFvKTQhqow5IUhyxVZZvB4WuvobCh5rlRw6eisxUdiIMRqOLpm9b2ceN+RCMsnmVDkvQArYVMFqEhJ8TRJvZAhwAC8hJETBk6Y1jTjixwnie/FhUDSQaVWQrmWnFPWH2EOJUJe/sr+IXlglVJDKVFgAL+pe4GA9uPj4x3LnrV2MNsLwTOO/HfODS5hkl1GyAphU6U0rFxbTP7AsL+lGQ1kHIRIWiwWw5opfqqiDIjLg9yr+CGnGRBSAqgsSxaLxQD8Jd2VKA6yxrZtu1OWVgK+0kIDL5IXglUBUX3fh6ohxkff1GBi18bQxYjSIs/JTI41HSbPUDpUnVKdxeuQLDczBqN1qH/sQ3Sn9+lGssvIBKDqCXuJjmxjyKEHdui0LNsytFmWxQU3mon6njq6JIROnQ5+G7YP10dtTZzSqWmeyWDyNpRlMTCqSukQIODEtxemkxm97VlvNjx9es6Tp0+pmw5iYJcxmqoomJQVRZZTZME05XE0TR0nOUMy35B/1YKXgBPNgOk9bDY1m02zA3SstWgSJtta6s2G+WxCURVgNF6pELXvelwdzV7R/ylUvCoGAO9cYDqCqdHH4IgtS9Y0DQpCJoMswysVsjq8ZHNUqgXDs8FQY0AJWwY11ZzHfpwiKVM6Bj5joJSCsBTcyXXTYCnYBXCpWWysxI0BXXqttJ1jsDwGdGMQnh4zvvd9oC/97kUgPpUUCO8Dpmlb9v0+bcs+gDy+/xe1I1Ui9t3zy5cIDDWhDr0m5H8ysb9D7ijwgUlF6ZgtILgCaK1xPrKwMRo9KOkWHxV0vMdbyYkNhAyhAZz6kGbKx6aooQ/H/S3OBBoBm845nFLDmpNKyq5qtXVpUD45n3e4vsN2GRD8Tr2Pa5KPjKaLfgwk8xrAWUJhGY3SOc6FXKte1eC2Fd9MFogI50IeVW2DSwWAbTOUDsULAPq+o+9jiioB9NHFITBrLhZlyHE+mP6V7zH0ZMaTGU1WhHKpXjuyoiQvSsgKTJ6hlcFgAvCOwcc6oG3e+/W/w4P33h8yEYTMOj3O9nRd8K09f/gb34sJ911Jmss0tUZNp9MhPVLKCKaBPwK6xJInz2Ra6lrW4s1mMwCl1Pon65wQQmkp13RNFrZWRCyXwj7OZjOm0ynL5XKHDUyBnzC/co/e+8H9YEyUSAR9WZZDkN75+fnwGYRqoW3bDmVbBXgKcSJWwbquh9yoaR9Lm+bz+WDVFaKvrmtmsxkXFxdDRoYsy3ZSUYqiMJ1OB+VHiDQB7kJqjV3NhPGVMraiRKT5XeVexIKYEhDCQn+afGqA1cCueYd1NvpFxYGPN1gWITJT6/DQKhX8hZzzIWGx0yHNRp5T5AaMmLGe3WAEHEsHpubykIR/+29JLVQU4rcR00V00Y/HWvquD1HqcUCnMQF/07S0XTewBL3tdwZtHG0cJnS2dQb2W8DRd/3gw7perzk/v+Dp+TmrTY0AVQhZCI6PT5jPZpGZCO4MoZxpEydkrJntQxBZVRVobULkK0Gj1nqb3qrr7ODGMDB12g9gtes6VstVqCE9nYRE1l4CzkLQWJDg72sToLllGNWgJckkTYFT3TSYZPLLuV+mpPeR+k+mIDE13499OAUkpmymfC7nEA1dFhL5Pj1ORMwtMpfGc+t5pu0UOO07JjXL7APCY8D9PFZ1H2BNGYkxiE1l3N4UuI9NdWNQmrYpbcunAcZ9AHQ8TvvaN5ZU8XplRSm81hF0mQD6oiuAQovrebxHl7gAqARPyvhKYJQNZmMr/qc+AjIfs0mFdVHBAMjkLCm3sNNzanutAQA7j8fhpZ999F0l+HY61JYclt9LpgAfWGFv+xhv4FHaYV1sn7C8w3OUKHxs2+a8G8q8OtejrKbHRwY35HENTFGGToANfspaG9rVkr4NAaPaGLTfDQYeZGASQmyC9w7bNfSrK8oM1sZzbWtc19NZ2LQ91aSi3iz5lZ//mzz65L2hIxXBe0BiOJx3rK6v6dqXH7j6PBFLm5iSJdBGGD7YWn4ExKRWSmFihRVMFXP5rYDUNDtAGuQk55bzyL8Fy0jWAQFT4sq2Xq85OTkZrKgC9KQkLGxd9oRVlLFP2y/ZByQbgKS4ElM9sOMOIEBZAK1gCGEdJ5MJ0+mUm5ubwX1AYmm8D3690+l0x91C7i2tOCX5WFOf1vGeJ+MhluXpdDqMkwDr1OKWAvKU4RarbPpexkrGQO7fez/0x6fJC8GqODLD1h1A3qebilSv8j5GJiamYklfZWOiPXE+lwVi30Yq6DyAgOBzmufbwdB6W183BGiFdCvy+6brkDr3fW+HySWTRx4c2/dD+igByGm0nQBiaec+n8LgbxHcH9brDRcXV1xdX7NZ1zgr/pJ6qA18enIcwVzHZLKbk0zu3Tk/mEr63jKZVMPDKyzEZlOzXm8im7JNG5EyxLJI9H0oy5f6aCql4oQPD4hMGPntmIlsmm4nd508BOlDKotM6kj/KkgaCATPmoFlXNMxTk3wKahKgeAYwI2BUgooRaS/UtN3uiDL9VKgPY5Ylc/3gWx5TvcBwHFb9wHUtJ0iqf+u/C71VR1/92lM7/j6+/pwH2P7ovPta/f4t/s+f/VdAKIoBcoEBBP/eiQgNYVmBJAorlV+ZAFwHlxkCr38FWAqzOhzxPstiwsD3Nv3G0lSoBA/WYsPbEI0vweEqvXW39p7H1Ju+V2mvbcdqtXgM3QWqlh576PXQSghjTf4btc6sdsfoXCJVQqls5D/1Id4h4FhNSYEnioJZnMhbVbfo7zFqADEurbF2Z7NesXFkwfDvQ9txqPzR6AL2nrJ8slH3/24/z0kwiweHR0N65qM6zhllMSEyHFpoFBa1Uo+88k8FmAmYEqsocKqCpAUP0s5B2xZwbScqeyVAh7TVFSCA9K1QkCzxJnI77MsG3KJyvotVZ4EJKZBzLK3wjaHKZC4HZohTaTs/8I0S9sEfwkwlfNuNhuurq7Isozj42O898xms4Ghlj1agqdSNrcoiqECpuzpaUnZlFxJY0FEaZCCAsLeyvcpoJZsBdJecal4kXwqsyp+IulgCTAaKjwg6YF6uoQVTQFuMNeD7S1axbRSIz88GQABWJL/UwDrFiwGVmHr5+KScqMe6xNTUET4ocTafJgwEmDTNiEtVdN0wwO02+Ys/t2t3iUAVza9uq5DhaurK+pNQ0iFZSiKktksRDKGAgYW5yS5ruXq6mqnGs/gdpFJJoTgRiDtDSY9z/XNdaiVXFRD/0m/K7NNmryuN0hgQhg/FU1eNkZaGsS/Rmh/WShSFjG0gx2tTDYT0VbFPCM+Rq+CCPCUB1n6NwWdY2CdAvE0elIkZQ4FCKfKQipyntSsn/5NlYLxZymATn8zllR52LdZp2zqPoCY3veYEU6BeXrufeA/VXLG1x333fNA5vjYMYP6IrCaHj/+7fP6bvz5PuD+siXAyGDaJwZWecn7x27/4LYgzDmHGoCq9FVgUH1kUQOgdQMrOMBOwaQ+uMWGvFIqaU/CsIaL77TD4gLJqzXOQe+3z1GacBx2FS+XAFU5xlmLVV1Ifq8BFc7tvQsMszZo5XixeixA3HFz/njIRqCUxuRFcGPLc9AGbTTLi6d86xf/5nbOpc9VBKTOuVci+v5VEUm1B1uXABlrYDDLSw7R1FoHDIUBZrPZAMAEQImpOU0ROZ/PB2wi66uwj4JXxMonoDU9XkCptEvOm2b3EdZT/DnlPmR+CghP/VTF1C+BQ/JXKbVjSpf9CLZ5VGFbCSw9VlzTUvDo/baktviiyjUEAF5dXQ1VDCVGRvZpwQxt2w55YGUfm0wmO4FeqWIgrGma5UF8ugVcy7nElxXCfiCssQDVoigGX9pPk08Fq9KRKSMkzI90YDg2FAzoui6a3sWkLqU5Q+JlP5jFJaH1syZWke11PNCTmlGV2ppFJU9o34d6yS4u4kopjFJDGdOqmiC+TsIstl0bq2Zt84mlE0jaNTYRpyxw24ZAp+VyRb1paJoWrYOPq1QNUpENrYpFHOQ+1qG3zBfzxO1BMhJo+j4wJlm2zSMnoHW5DCklMpMNEzSAJ4fRW/DS9x1ahzQt26AinYDtrYKwy5xv50H6XZoHdPw3NYe/bJHFIV20xgw+pBXatv6qqYwBUsompgxmCljHn42ZVmlDCorl+3TupcePGcIxIyjtlIV4H8P5PKA6Bp8p8B0D4PE9ja8/BsbPA6op25ECzOeZ5V8Esp/33T7gOQbY6Wevqpx//C3uffmH0VmOdR50cFvFh1KqW3Y1VLsKoDbkvhbfyx2RcVTBlzT0UwJUg4U9rBNICiwfswOIK8Czvs3PjFs6/9gN3EvHWcZJaY1KzIuQjo24FbgYY8DQ7sDShrn0yXu/irP9cE1GbVZKc33+MJznIN9TSevXSzooiVIXVlCACmyBnoA28V2U/SxNkzQOEprNZsMeJmmdBFwJThCGT+aQXA8YWEFpmzCBgmdkLZPAI4mIl/0uBdopqSd7aZr1IM2IJG4CSilms9mQR3U+nw8Abz6fs1qtntkfRKS/UlcJpdQQfCXPVzoeWuthLKT/JUJfcFxRFENfptH7KbkjwH+cVlT2f/mujlUsBRxL9hrBKcKwC/P6WUTt2xgOcpCDHOQgBznIQQ5ykFdB9KcfcpCDHOQgBznIQQ5ykIO8HDmA1YMc5CAHOchBDnKQg7yycgCrBznIQQ5ykIMc5CAHeWXlAFYPcpCDHOQgBznIQQ7yysoBrB7kIAc5yEEOcpCDHOSVlQNYPchBDnKQgxzkIAc5yCsrB7B6kIMc5CAHOchBDnKQV1YOYPUgBznIQQ5ykIMc5CCvrBzA6kEOcpCDHOQgBznIQV5ZOYDVgxzkIAc5yEEOcpCDvLJyAKsHOchBDnKQgxzkIAd5ZeUAVg9ykIMc5CAHOchBDvLKygGsHuQgBznIQQ5ykIMc5JWVA1g9yEEOcpCDHOQgBznIKysHsHqQgxzkIAc5yEEOcpBXVg5g9SAHOchBDnKQgxzkIK+sHMDqQQ5ykIMc5CAHOchBXlk5gNWDHOQgBznIQQ5ykIO8snIAqwc5yEEOcpCDHOQgB3ll5QBWD3KQgxzkIAc5yEEO8srKAawe5CAHOchBDnKQgxzklZXPBFaVUj/7eTVAKWWUUn9HKfWXP69rHOQ3p3xe81Yp9Z5S6heUUv+VUupvfh7XOMhvbvkc5+6JUurfV0r9XaXUryilfvzzuM5BfvPK5zF3lVI/ENdbeV0rpf7n3+vrHOTVFeW9f7kNUOpfAH4XcOS9/ydeamMOcpDPIEqp94Df5b1/8rLbcpCDfCeilPq/AP+59/5PKaUKYOq9v3zJzTrIQT6zKKUM8BHwe7z377/s9hzk+yOflVldxr//kFLq/6OU+vNKqV9TSv3vlFL/Q6XU34hM05fjcV9WSv11pdTPKaX+uPx+z3nfBH4f8Ke+Vzd0kIOIfF7z9iAH+bzl85i7Sqkj4B8A/jSA9749ANWDfK/l+7Du/l7gmweg+ptLvhuf1d8O/M+AHwb+x8BXvfc/RgCcfyQe828A/4b3/ncDH7/gXP868C8C7rtox0EO8p3I93LeeuBnlFJ/Syn1hz7HNh/kIPC9m7tfAh4Dfya6Xv0ppdTs8236QX6Ty/dy3RX5p4D/2+fQ1oO8wvLdgNWf895/4r1vgG8CPxM//wXgi/H9jwP/Xnz/f913EqXUPwE88t7/re+iDQc5yHcq35N5G+UnvPe/E/jHgX9GKfUPfA7tPchBRL5XczcDfifwb3vvfwRYAf/y59LigxwkyPdy3SW6rvyTyfEH+U0i3w1YbZL3Lvm3IyyGn1V+Avgno//fnwP+EaXUn/0u2nOQg3wW+V7NW7z3H8e/j4D/CPix70UDD3KQ58j3au5+CHzovf//xn//+wTwepCDfF7yPVt3o/zjwN/23j/8r9uwg/y9JZ9X6qq/Dvz++P6f2neA9/5/4b1/03v/xXjMf+q9/x99Tu05yEE+i3zqvFVKzZRSC3kP/KPAL35/mneQgzxXPsua+wD4QCn1A/Gj3wv88vehbQc5yIvkU+duIn+QgwvAb0p5YTaA//A//A+91po/+Af/ID/90z/Nz//8z/Pn//yf50/8iT8BwB/5I3+Ef/af/Wf56le/yt/5O3+HP/fn/hw/+ZM/yYcffsgf/+N/HICf+Imf4C/8hb/AT//0TwPQNA3ee6qqoixLvPf83M/9HP/uv/vv8m/+m/8mWmu01njvcc5hrcVai7TTe7/zEpHjlVLDewBrLUqp4bzOOR48eMD7779PlmV87Wtf4/T0lLZt8d5TFAVKKay1w/mUUgDD7733NE1D13VkWUae51RVxXQ6RWs9HJ+2T9ojbarrmtVqxWaz4fLykouLC95//31+/Md/nB/8wR/Eez9cW84HDP9O+8BaS9/3tG07nGsymeC95+tf/zpt2/LOO+8wmUyYTqfkeT60ZzKZUFUVWZYxmUyYz+cURUHXdWw2m6Hvx/cl96aUwhhDlmU0TcOjR4+o6xrvPb/v9/2+bcO/z6KUerlpLr7P8pUvvMab986Gf/8P/rEf55037z1z3HY+he7RWqGUjt/p4VmRsVZK4z0oBcT3wPAcdG1Lb3uc7en7jrquaZoa7x3eK4zJWMyPKcqSvCjIy4LJZAooQA/z19oe5yxd37FebTg/v+Tx4yc8eXrOxfU1q7qm6zu8dXjn6a3FOjusEW3fY62j61q6rqfIcmazGUpB17VorXl0ueYXP7j8TP3pvX9pc/cf/gd+j//rP/d1/tK/93/iF3/lm/z5/+Cn+d//K/8yWiv+yL/wv+WP/E//aX7ot3yVv/23f5E/+3//i/zrf+J/xYcfPeCP/fE/CR7+m3//7+E/+Av/D/6Tn/5zgMcT+qBvG95772P+lT/xf6Tre9544zX++P/6f8nJ0QIT18fxcy7rhMfhnKNrW9q2xvY9HijKHOJxWhls78PYx+O11mgT5tRms+GD99/j0ccf8Ob923z13XcpypJ6U5PnJZgcpwzW9oBHoUBplI6civM417PaLFEe8izHlAXV9IiynIV2K00YOo/ygFc434PyeDxd17Fa3VDXS5bLJVfX13z48Se0dc1/9x/7R5mf3MV5hVYeVDb0xX/2X/51/qO/+NOxL4C4Bjrn8M7iXE/X1Xjn0cawqVueXlxRFgWTqghrpDFopfHeYYwO7dcKpRUmy8izApSis6HvnCf2QTI5PPHfDoXCaIUG2q6Nzx38zP/7Z1/K3P2Tf/JPeoA/+kf/KP/qv/qv8s1vfpO/+lf/Kn/4D/9hlFL81E/9FL//9/9+3nnnHb7xjW/wMz/zM/zz//w/z6NHj/h3/p1/B4Df+Tt/J3/lr/wV/vSf/tMURUGe52RZRpZl1HXNH/gDf4A/+2f/7LBHyf4k65Hsm8Awl9M1zRiDjvNJ1g7n3PD7LMuG50BrjbWWpmlomkAITyYTyrLEGDPct3OOtm1Zr9es1+u4BjbUdc1ms6Hve7IsYz6fc3R0NOyxSinatmWz2bBarbi5ueHm5oa2DetVURTD/lyW5dAfeZ4P15ff13VN27bDX3lf1/UOBjLGDC/ph7T/gGTt3/ab/B3jr/S173zOOfq+p+/7Aaekf+U4pRR/6S/9pRfO2xeC1b/4F/+il4lijBluxhizcwPphIAASCeTCcYYfuZnfoaf+Zmf4Sd/8ifp+57NZkNZlkynU7IsGxos55VOlHPJzadgtes6mqahbdthso7Bq3QQMEyMsizRWvPkyRMeP35M27a8+eab3L17d/id3FvTNMMgS5vk2nIfMsm01sxmM27dujW0O/2rlHoG+Mq9WGtZr9dcXFxwfn7Ob/2tv5U33niDtm13HohxX+8D7wIWP/zwQ27dukVVVXzwwQcopXj99dcHoCr903UdeZ5TFGExraqKyWRClmV0XUfXdcOEex4IHwPyzWYzPCy/9/f+3gNY/R7IpCwoi4ywbymmk5I/9N//RwK4JADKt167w72z453fpfMknXfpv7fjqnbm13C8D99BgD3D5uAd3js26/Ww8ATA6YbzB0Wu5PjkjKIoyLIMZQxamzivUoU0PFdd23KzXPHJJw958uSCi8srrtcr6i486ziHtQ7rPNY5rLMDeJXNq+s6yjwflMeua/HesdrU/OrHS6423af2+csEq/+tf/gn/B/9F/8ZMpOhjQGl8M7h8Wit8J4ALuP4KqXouo6iLNDa8P/6T/8L/p//yX/Gv/6T/xu8c1EBWKEVHB/foqqmof+8wqPItB7W+PE8SQGA846+62jbhjauv9DjnQVAo/HO03Ydne8xxpDnGVpnlGVF17U8fPiI8yePmJQ5X/riF5nP5lhr0SbH6AzvLH3T4H0EutqgtMZZR9/VNF3Nul6x3qyoN0vKMmNxdMZscZueDK0URgEEEOiVx/s+PisGUOBDX7Zty2q55NGjxxjV8/f96O/EVMe0TmG0waNBngUV7lApwEUVwPsAVPuWenPDxx+/x2q15OzWGU8vl/zir36L+/fu8tq920wnVVhnUfR9CzjmkymZ0RRlxmQ6ZzpbgDas6o6mt/SWCEh398IgFoUnNwqNZ7Vacn5+Tt91/IP/xD/9UubuT/3UTw1r7r61JAWB6V7fdR1VVaG15q/9tb/Gz/7sz/LH/tgfG0Cq7E+wBZht2w4Acrz3jwFqSlalCpkAqRSDyHMgoNU5N4BVIbOkPSnobZqGzWbzDFgVHJFlGbPZjMViwXw+p6qqHbC6Xq9ZLpdcX19T1zXOObIso6oqqqoaQLuso9Iffd8PoFhwUdd1Q/+kOGbc72n7U8Auz7sc9zywmv4m7fd9RNo+sCpjKdf7y3/5L79w3r7QZ0QAZ8p2Wmt3btAYM1xQgNAv/MIv8FM/9VN471ksFvxL/9K/xHK5HAZhMpkMEyGdxDI5RcYMnvzNsmzoTAFG6UYl7RSQJSBMtJKiKDg7OxsmhDC9cl657tXVFcvlcpi4bdtyc3PD+fk5l5eXw2Q4Ozvj7OyM5XLJ5eUl6/V6WPjDgp3vDJhocEqpYRIKm3tzc8PV1RV1XVNV1TAp0wduzHCmmlTbtpyennJ8fIwxhrfffhtgRxtLlY5UU5Pxkwk+noSp5rSziSXa0XQ6HVjdg3x38sXXb/Nb331zYFR+/Hd8hd/ypTdQOi4ahM1UDhBGNLzfVWTSz9PPBKAGkKqfOSY8mwFQKhQujnffdztshLDv8ts8LyjykjzPKMqCPK+oZkfxeQBQ8bfJgmdtfPUBDMWFf1PXNF2HdQ7vXGDwfGDPQOZnACU6ua90sxFp25aj+YzZpP1MYPVlijEZ1WSOViqAJQzgsbbHYyNzGTaqpmnIjOFXfu0b/OS/8afwzjOfz/gX/4U/xOXlOX3XE+hwz2w2w5iw3uFcmENak5lsWINSRkQkzKlwmgA8NXleUvQdy+tzut5hbY/teryLTDmWsiqZzabkWUVRlEwnM4pqzt3X3sAoyLSh1xllVWJMjsbj+wZvGy7Oz+n7njzL8d5T1zVXV9c8fvqUm9WKTdMBjtfunbLZ9PD4nE+e3GB9ZGJ1Rp5l5BrarsHbHtf3oNSgBORZTpYZnLUUmePq+gq96ei9oiinqPiMKa3Ji5wsL0EF1nWrsNkAWK0NlgSdU5YVp0eK3/LVL7OYzTg5WlCWVVQuHF2ncc5S5AXaBICkITxb3tLbwJpqDco/S1AExUGB93S9xeNR+YST2/dx7cub22VZArsERrr+pAAoxRXf+MY3+DN/5s8AMJvN+Of+uX9ur1VRJAVLwM6+OH6lYGsfWJXj+r4f2EHZk40xwzHCsgpGSbFCuuYIoEzZRu/9QAaVZUlVVQOBJu1IQZ2QZWk7BXcBO+TRPuAn/Z3ea/pX1sbxXpH27fg86Xjus2hLP8j9jufB+Nzj66TrzfPkhWBV0H86YWQAB/NQZBsFgAF87Wtf49/6t/6tYVOz1rJarTDGDABYPk/BlzR6TEtLJ6WTQyZTURQ7CF9Aq7y6rqMsy6FtSqmByhdQmzK0AvpWqxXvv/8+3/jGN1BKsVgsKMuStm05Pz/n+vp60AovLi548uQJp6enw8RdLpdsNpthYm02m0FrErNAKnJ/H374Ie+++y5HR0ecnZ1hjGG1WgGBIS7LkjzPhwc+AIh+GANRBGQxWCwWO8BS+lAmoLgkpP2aPhzpRB2PQ7pgjFnXfYvMQYKcHc/JcxMM4VrxP/nv/f1MK1m8NGdHM+6eHoU+1AJY1PC9gIcUcPpoqk8BKvDM87t9L4v51iVg13yzO77yedu2O5q4QpFngdEzRlNVEyaT2ZZVy3J0wth5InaCsNnjcUSWtA+sXdPUEag2WG8B/8wimUpqzpO5nW42ztlhE9m1qb6aoo0hL8qhs5zzgCbLCrzvscoOcyDLcvJM8/f9rt/On/s//x+CO4T3tG0XgaymrMphE+77btjctM6wPoDjPM9HwGLsEhJeWiucAgOYosRkGc6GPu4j++2spetbFFAUU7TSQ/vneRncQLynazu8c/TW0/cb6nZDvdlwc3XBL//SL3B+cUGRZRwvjtBGc7NqePz0krrtcd7QW8fDq547pw2LxRSnwCvF9fWKuvPgwOC5vrlivbymbWrwHpOZ4TnxeJRWVJnm6cUN9+/d4fTkiOOTU7o+KGPGZMyOjpkvjlBao+M0tNYGhrne0PctZTFlPjuiqqbkeUk1W2DwaGVQzsXh9OG5FzClwvvMBFDS9A7rPUqZqETugi/vvTjwBKXFO7w2eKMxOiPLiu/vZE1E9tQx0ykyZlbl/Q/90A/xr/1r/9ozbF4q6bo23mPkfCmwGjOq6blTRnF8jTGoTcmiMUMpQBK2VmHZP9O1SLBRas4PaxF7wWrKcEq7BEyPLZ2y96frX/qS649Ba7ovpO/TNT/t89TKK9+l7KqAevmbHpceP/7sO5EXglVh2tJGyUYgJnal1KAlCIiSySCmZPG1kM4SU7qcT96Pj0vfjxmisbaZdm7akQKIBci2bTucN30tl0tWqxWPHz9mtVqxXq957733ePLkCUopbt++zfHx1swqPqLityq+LW+//TZvv/02XddxdXXFxcXF4A+rlOLo6Ij1ej1oW7A1xeZ5YBEePXrEZDIZKP8HDx7gvY8+eNvJkz5cMgbjvkg1nRSoKqUGYL5erzk/P+f4+Jgvf/nLA5MBuwrL2B1A2r5vgTqA1SBnxzN+9GtvBf80E8bqH/pdP8DpyRyldheR8NwEs2wAoCoxw8dF2KcbmGbLrvLMMxJka+IPko4ROxp7uigCib/4s35NQNwcc4qiHNaFwBqUaB2VQ63xJJus94AwUg5nHTY+S3W94Xq55OIiPDfrTU3X28Cs7tHSVUDnOwumsB+yBvV9Pzwffd/hnOVVF600mY6bnnc4H8Yg+Dxm0Y9T4VWO1jnO1fRdT14UmLyAZE3NMlFoLZ21WNeEMfEO3zXc3CyxfcekmsTf55TVlLKowrWiiCLkY/uUji4oegY+mMWViuPkPb6zg+UqAOSWtt1gsiwqXhqjoek6lstrrq+e8vTpU9ZNy/nFDd/85gM2dU2RZ9y3JZPJhNYVtHrCVXMzgO61U9T2htud59133+b2rRNWy4Ynl9dc3axou5bprKIsc2xvB/CJkj0ElNFUecH5dU1RXXPraMZsWnBzveT64jFVOUF5j20a8rJAGxMArwNnLUYr8rKEySyyp2CyDJMblGuD9602eOdQzpGZjN52NG1D37V433Pn7IxidhzcM6wFTbAYJMrVwPA5S3TIRXx7xcrw8pxXGBjFFOykf8dAcMz8pceM9305TwrIUiCYkj9jVjUFqQIyBXymv5Hrp6ZyIXDSNqbnSK8lYDUlh2SfzvN8x+9Uzin7qgDV1C2h6wJLPo7FkX0Ytu5849+mJNK+1/i+9/WxYDM5LrWsyt+0Ten10vPtA6rpsZ8VtL4QrMpkGKNnGQSRPM8HB2PxixSwmbKnqRl8zOxdXl4OgUpiqhfTfardyM2NNam0bSn1LsBUOmy1Wg0spFD78hIweXJyQt/3nJyccHFxMZjku65jvV4PbbPWMp1OuXPnzsC8Hh0dUVUVt2/f5t69eyyXy4HhFSBwfX09BDSlD0dZlgMLPJlMmM1mw+YrPigCMlNTxVgbTbUkeSDl/mQc27bl6uqK1WoVTWxX9H3P/fv3aduWx48fk+c5Z2dnO6aDwfdwpOXKfPlOJt//P8h8klPlJm7knmmZ8ff90OvMpxMmZcXxfM6d05MI4gSwmgBCB1JT4V3wH1SK8F4HNnUAq2rLoHrvt35sw7qg0n/sSApUU2059dVKlbt9GrowbWEeGLRWaJ1R5MGnShsdAEhkUnclVWQiG+RDII5zPX0fgOrNcsX5+SVPLy5YrdZ01gZzJ9vFUvxchzOnC6Z3KII/Z2q9Cfer0drz7utHPLqqcX+PzFHnHCg1zBujNM47rAv36iAEcWjFNJr1ScxyYdwA4sasYFBYYqBOvV6Bs/Rdjslz+qahMTlFWZFFn1l0XG+NIcsKTJZFNwWNi6dSWqNjBJA2BUQTtjYZ1nXUm2uM0TgXztf3fTSfd+R5we2z22htuH274dbpLa6vlzjrKMuC9WYDTUdVlZSbBoXl9tktzk5POFpUlJlmPqk4mk24f3bKa3dP2GwaLJ6mDoFHbdeyXK2YTmfkebkDMKqqoshz8jxjPivJJhVZ3aNMTmc9Xd9S+gLfBwCxJQMU2uTRVSO4a3jvUd6D8hHUBzbVRxa1s5bVJvg2Xl5dcX5+zle//AXe+sI7LNc1y03HZDqjqiYorTFaXMpyVLSERNiAi9fTcVxf5qxOwep4/YBd03TK8I0V9ucBq/G+IkBQgpzlmJSoSfeu9DVu03gfS0m351kX0+tJe4RZTa2forSlQFUwTeqKJ0FjKVaQc4+ZWtlnU7CaAtXUNJ+2W9q8j+h7Hlsqx6UKQXrM83xX02Of13/fM7Ca3sh40IEdFkY6LAWIqX+mTKyU2Us7QY4XJO+co67rgTJPJ7YAYQGyL7p5+bzve9brNU3TMJ1Od2j8FPSmAyoOy+KXJ2C1aZoh8q8oCm7fvj3Q+nJeue/pdEpVVXgfAqCMMdy7d28wCaQPZRrkkPqXvv3220NAmbDDbdsOx0k/jIGrTGRhT5XaBpnJBJrP59y6dYu3336b2Ww29M1isdgB2bIgjFnV9H2qKX4WH5S/FyTFgmVu+MG3jmOwC2iV8frZnFuLCdY1WNvHMS9ZzCbMJxOmUSEBMX9vAae3gAZjUnN+BK1DVrn4nWdnjg9tS3CHH8zlyReQANLdcUmDE8P3z7IiAZhux7YsJxGwZBidhSjmPI/U7pb1TTcNdhbFxFJjLc522K5leXPNxdU1F5dXge1zNoBfFQC7ViqElHgBXc8yTt4zAFYlvqzJxuOcQ3m30zevpKignHg8OjMUJrpSEO7LOYvvgy+qs1ufu81mjTJZZE6fdf1JSQJ5TvM8nFs22jLL0Aq6doPBobIM7wPU1TE4zmU9WZajMxNcAWKbvY/nhjhfo099s2GzXuJtT1nO4jzRZKYIYHhg/8Ovrev5whdb6k1LUzdYF6xWm7pms6lZrza0TcPJ8ZyT4zlZFq6baQW2R+OY5BlFFtzOmqaJykkA0pPpDJPlMctAYD2zLEMrjTYZxmjwlvmx4e18Qte21Ksl1zdLtIIiyzFZWHezPAOThyHDx7/gXY/rozJme8CE951jtVlzeXNF31va3mKqOVYX1G3P1fU1T86vODq+xWIxBxgATlVNIyusIpsKgYKNxJL0/UsScckbA9ax//PzQGmKLfZ9lgKp8fcpgZJeC54N3JbnIWVEx78bM4FjUDsGkWOGFbagV4gzYYDTe5JzSVyL4BrBVmIhkX+nxJ2wr+LGmBINY1cCaWu696dYZzxeQnKN8ZTguJTYSK8rMl5nxoB0jNk+i7wQrErwlACilL2TG04DmYCh4wSFpz4MY01LmM1UuxJWMZjt+h3gll5LBmrssL2vMyCA1eVyiXNuYDGFJdwHuiD44Mzn8522C3gTDUhe4p+aAnV5iMTXtOu6YeKlDHVqohg/rABHR0dDX6buBzJR1+s1T548oa5rZrMZZVlirR0Cvh4/fszl5SW3bt3i3Xff5d69e9y6dWtIoZFu6NI3wuqmD4xM0s1mMwBvuUdZUMcPyN9LMisN8yofgJBS8MNvnZBlMc1MpihzFRlrh1YydzxGzN5K4x0odIhwNtnOnPJeHuDgr+q9bDqAl1RSSTBFpK20VijvGYx/yuM8Acwlsn3efMIqbp9ZYTVDW7aAJmUHhIkEKPIyWXwVZTUNrNpow0GpgQUdyz4WPsylbWBVU29oNpuQnsp7iiyPpLPGOkffK7wG5WwI9mLXp0oUqzzLonXCYOPzKGyHLPhjAP2qiVIKkxnQKrgEmGILOInEgVJ4a7E98TkMgUPKZCiTpgTbWlZko08jiX3QHoIbVl6wWByjtcJZG0CszoIrgt1qRc5Z+tZCC5l1EcQGdw9kvilRvhx1vWa9XJIZj8kyinISlZwspnLyKJ2SDhmTqoSFuMNIVHGH7TrarsF2LbZr6Jo1680Gk5eURfCZ7PqwZ2VKUU2mlNUkjn9Yf7UKyo/RGmVikFlmtn7hKLzKyErDcXQBaNZrrq+vaJsaZzvaPqRqY9Pjek+WF5E0CHvapqlZr9ZcXF6x2qw5PppzcrygnBxRzma8fnxKlhXovCDLcyaVoShyzvIJ0/ktwvMXGF15jvu2pafBe9BZHpQ5Y9BGRz8NB+7lzWtZ/1PXuxQIwRb0jYHqPgYw/S5ds9I9MjXRp79LQWm6t6agM81wNGZw9wGwtB1jUJgCwJT9FKySrpfp+dL9U1wm27Z9Zs8VUJiSfbKmpYB1n4Katk3akh43tq6NlYJ0nR27JKSW6VQpGSsZ+3DB+NyfOr9e9GXauWn0W9rRWushzZJE1KdajiyIacCTAB0xb6cbjjGG6XS6E1GXpq1IN1c5b9d1OxuiPNySYsI5x2q1YrlcAgwuB8IkTqfT4dypL0mqKclkF7/S1K/k448/pu97jo6OWCwWO+YJYUvlPALkZaDTKMQUOI/dH6R/Usq/73tWqxVPnjzh7/7dv8v5+fkAwq21A6gUID2fzwewKYC6KIqB5ZXFJr1nYDhfOimVUgNIF98aYW0l2vFVE61Vwjx4jqcFb92eReOZ43iScWteoU0OMWrdu2Biy4wij6xTpE4GvCNz0uhginIO6rqhKEqqYqzFkiwYYY9xzmNM/NIDyg+gFoLpUK7D6MEenkcYAFx4paa4XT+jgNUiONXBtBhILU+WiT93Bl7FnILb58EkAVM7G4lPvBqG/t71cQrHxva7kIKq3tTc3Cy5vFpxfbOm2TTgPUVZDn2F9zgV2hjM/c+aGvvINEoAolxfwPew+Xzn0+aliNIGo1Qw/Ucg5yJYBdBGhwh3VzBRUwyOrKhAaWKg+JY5dw6nQgqrxrZxHQpriGQcCBaBGWU5xePxmUUpg4mMHTbwdkpFRcmFoKqmXg9z0nqwzpKZjLwoUCoAt5vry8CsOsfT8wvKyZTpbM58viDPMqxzaLU1dyvlIyuex7XTUOQG53O8d/S2BOdZ3Vzz4PoSY0xwv5rO8QQgmuXBtzTL85ChoO/R0f/ZWUvbO4iR9NoEsArEa1UopVE+kMDOe7Ii49bZGbZvsdFtZbNecfHkKd/6jffRyjA7mpNnOevNhovra86fXnF+fonH8dV33+RL73yBs3LK0fSY6fyILKtQ4jYT8f1kmjOp5lGBsFgXc4k6B66jrRu6vkMZgwfyLCMriqDceGIGg5cjsq/Bsz7u6Rrwaa/0uJSdTIGN7NP7GFX5fQqYUrA6BsdyvIgoeOn6kgI42JrB0wj8sfl9fC/jc6btSVlXeS+ANc1wlALuFBcIwBUCLAWiqZKe9ktqBU7vb3yvab9Lu8cgOsUG+1w9xuztGLh+FoLrU8Fq+j6dNCIpMyg0toCetCPSzpbOT/0wYctkTiaTYfDTzh+bE8aaQGqql8AK+W3TNIOTs3RoGjGcRtWJK4KwyQIAx47Vcs/f/va3OTs746233ho0qdRUkQ6y1ttgqBTEi4O0aEmps7ZzjvV6PYBPrfXA+EpgmPjJSjov7/1O8n9xP/jiF7/IdDqlaZqBeVVKDQUDqqpisVgMee/k+tK+pmmG91KE4MmTJ1xdXQ3AX5jk3/N7fs+nTsDPU07nBVUZo5W94yuvLaiq4Efdd31IryQWAN+jUYGV8WpY9C0e78D3DpQjz+RB35pTrHVD8JRSGueg7XrapsNOAjW6BW4O8SOU9TEwfXFRA7FWPiPex0TpUdToO/HDDM/n/tyDwrqK6TXPiy2jpEmCDw2KlO2PaWIUIYAmue7AdqjoZzsEfcSbGUC9uD9YuqalXq+5vrrm8vqa1XpD1wbmS/xirdvdoJxzQxqrVGGU+ZgXBZNJSPemImgJwFZysnr63jMtDDd1/51Mpe+rKKUwSoOSRT96BvgtIeyUxumcUkHfelyzITMZ6MDIGpMlriRbq4y1lt5ammZNH7MvTGdTFvM5k2qG1gEkgQ/XFUVGfKghMP1e41wI9JL1q4tWHk8AfcZk4KFtG8rJdACmJsvJ8mA6ty6uu53F95a+b4N7gcnIs5AGKssCaA1ZyxRaGbz2XC/XvP/RJ/z2H/5t3HvtdTw6zBnnhkICIUbRoUxOYYrhoQug12Fth7UtTdPStuLKU2C0QfuY7H2zxmSGyWRG1zYoPJvNhouLcz75+GO+8a33Y6cEJanrezqv6HtoG8O0ypnOF0yrGX3dcP7kAVeXj1G6YDIL+VVNXsbCADlGmdDvSqG0QytwFpzrMCasR219w/X1NTc3N3ilKMuCoiypZnN+8PsyS5+VFAuk5uHQ31travpM72NU5VwpSST70DgoeWzCH3+XEkeyZ6fteR6jC/tBq0vWnjGbmIK99B5THJWeT66VkmJpaiwJ3E5JwtTNMmU5ZT9OwXl6vymolmulFnFp+9i8nzLZ4/tKgaqswQNxs8ftIlVc9rG4nyYvBKtjYDamjUWkk2VwU6fifeg6BZapH6bkIBP3gHTiyHnHgy4PxthRWfxKIeSLTYOZ0kGUdqUDKABaWGMBaSljIyyisMTHx8dDaqvU5Cbakfxun5k/NacLgK7reidDwc3NDZPJhLt373J2dsbx8TFZlnH37l2+8IUvDGA2zbm2XC55+vQpbdsyn8957bXXOD4+pigKptPpwIiGqi4rLi4uAAbAKqlIUt9dSb+VVt4QdvzNN9+kqirquubm5uZTJ9/nKb/l9Qm3T6bMJtWgBCgVjGsmzzBahUh05yKjk4WNs7eozobI6LhB2ugLSVw4zKAVB1Pdlk9Uw19PALHOPQ8w7ooafZ8unHu1Th82YhKlUBEZ2fDDYcMea9TpubOsGEBICJqKCpnWwZVhx4UhLjYDAN2iamFzB8AN8bwqBIHAYPZvmwBqrq+vub6+HoIQjTEDI+8jS5eyocJ0uz0LnFaK3IQKQUP/+QiwlEdrg49s+dk8f7XBKrtzZGwq284HF/s0KGNZnuPROEI1KfE3FimKLWkwnUywrqNpalzfUxU5mUk3cjHj71bSSzfZoBT4kNg+z8jLYIqvmw31ZkVZhgC8ybTEZHHzUuJmEpSjkPzf4DOP7VqyDrQJ1HC3WWK7hsyEdd36niwvKIoZ1jvqtmEynTM/PsVkJU2y9tomVFYLPjnbea1FoVIKr1RYC7IQGGiyjKYJRU2WdcPN9RWPHj6k7VrmizmTasLx8S2OFicUlWG2cNx7XVFMZ9je4xx0XU/TtFytam5Wa6ZzOF2UvP3WW7z11tsYNE3XcHF9wdOHH4QAKpNRVhOmi2PmRyfMJlN09E22/Ya+C6ROW9d0cb9crW+4vrrh6ZNznPfcunVMVWS0zvEP/nc+5wn6HJG9+EVs6fjvPjPw2C0u3SfH61gKLNPzpeyenHM8j8eAMW1TaglN9/Ox+TsFYKmlND3v+NkdE35jJjbFAqHwxvZ5SzMJCO6R96lb5BizDdYntu4AKfgHngGPY7fLMSP8PGZVzpVaauU+x+xq2q+fJp8KVtMbeV6np6BTzHBimk87TSac3IhE1QsYVEo9E8Qj10oHf98Ap0BZBlYqXAADcN765O1S2imATTMIyIRJ71X8avM85/j4mB/5kR8Z2OD0PDKQqT9JygSJqT4NlkrzwQrwfvPNNweXhcVisZN6Sx6S09PTZyK5JTXV2C9YzAVFUXD//n2UUsMY1nXN06dPef/99wcT/3q9HkB7mkkBGFwjpC0ScDabzT518n2ecvuopG8b+jzDmAznQn+gNGVV4T10ncXjUCqwUV5pnI8JvhUUOgTASQADSuGIG6wH5V2MwuWZB1mrZ9mF8bzeWdD17rwWGbOjRE8ARWDa0mO00gNe9oAyu4v1eAEHIlBPfZhitgJk4Y5gUUkVowCItQ6AJixm4vsVwbLeptRC3vmYi7Pv6DopTbhiE/MOGxPSIaWsjNZb5sQZR24yWt2j/G6lLE1I61SVJXnqrhQaju3tEKAYMo4AbL6D2fTyJF1ndzY4Qtqk9eqGrlmTEXwwLQrsLnuRgkwZ5yzLMV6jlaZrW7T2KEkwobZBgNt/P7uZ7CgxKqRc01WJVlCvQzCSQpLfmzg/t4FAQZ+IF9WQGY2uChQWrKVVirbr0Vi89diuC4xnblDkvP7627x2/01m80Vw1VQapcO4O2xgOLs+KJo+WXf76EK1XuF88GENa69BcvJmWU41P+bdW2dMpzMUQSFaLI4pirAu2KTEcNu2MbNBSO5/fXPDxdUFWZYzL3Pu3z6myDI0hrwsyIqS+XSBc5arq6tQdvv6mu6Db1PlJZkx0c1iQ1PXLJcrlqv1cA/rekPfO7yD6XzC3fv3OD2e0fYvTwnbB1Dl8/T7FwGTMdBMmTnZI/cxdinrt+/3YxwCPPO79DX+fXp8ykKOP0vd5J4HkMds8742jIk12WPFyptas9P4IGBwNZTPU0ArWEDIgZR9Ht9HCtJTcJq6hI6Z1TTrkOCnMTAfr2fjte158kKw+rwTjD9vmobVaoX3nvl8vrNISsPHkzRdCEWTkJvdRx0/b5KPaelUM9Jas1qt6Pt+J20E7PrTCcubDrb8XvxwZLNrmmZwVxCGNa3cIYMv7ZhOpzuTIPU3lZRdv/RLv0Se50PAU9d1zGYzXnvtNe7fv8/R0dHgOiCTeDzgqZuG9NdkMmE+nw+sqLRP7llcEiAA9MlkwmKxGNwBpFZxXdcDeJ7NZkPfzWYz7t+/z3w+jxtgAPFS//hlimRaCCZ60ayN2AVRyuAcIQWQ8WTKoA2xAk9H23WgpH53Yk71IRE+zgUm0wXmJqSdkr6H4IQW2MFUQ32eIub91h9RZKzxKxW4So3emu6fsykAYJ5dcFPt3Q9mZXmGZFFNn9cIUlVIl+Oco+8seEIkNMFMPVYehz4QsQ5ve/quGbJZWGujr6snM9HsrxNtO5qjxQVhYFbdVjGQ/ktLBQ+MqwJngym3a7shO8eyXX62SfSSxLOb+HtsupT3DnC2w9mOrJwEBazvwhzdycH7rIIfxl6hYonUTbPGO09VitK9Gz0czrHrn+J98C11fXwOCO4XuclQDtbLJdooyskMk4UN1sccsfL7bZoegrO3txjlQwlYbej6nrbvQhnXtmWhM2YoMIbZLK4xWuNQ6CwnU8HUXzrHzB8lwMLS95HZbxtWyxu++c1f4/GTx1TVNK5rAYCenp7y+htvcnp2N8QgROVLD4pcDHSzGSYvKKtZUOoEhDjPvTs9bdcEJa3fkGPx1tJjwRvKsqKsQo7ao5M7WNuxqjc8fvKEh588oK5rrq9vWK5qehtBEUL45JSzKbdmM7I8IzOQVROq2YzXT84+hxn52WTf/i6yo9i8QMbA8pn1LwGssDVfizU2BZkvYhn3AcUxcTUGxenxY5YwJaHkHCkOkd+mYHAf4B4D1tSXVeKCxKorhNOYbU3vIf0r+768l3aMK3dKv3q/y8buC9LcB24FZ4ik7pPjfvssIFXkU8HqPq0kBYUyUQSkZdm2rvy+yTbe1FKWTjRUqTC1D7Cmf8cTXNojHVWWJTc3NwOTCAwTSik11O9dr9c454YsBMDA/KYagjCLkk82DSJKzftjcLAPoEjRgNu3b/NjP/Zj3Lp1aydKN/29mPbFzWHcF2maq7Q9SoViBx9//DHX19csFgvu379PVVWDeWHcdlE4JH1G0zS88cYbA0MrwFwpxa1bt7h79+5w7L4H9GXJrkYXwKnWFq/UkGTeo0Jpwy74N2dGo2MwWdv2g3+w2XnYU5cOBdEsrTXDeeXh7/qezaYOQRDZ1tUjnQ86BnLoPXManmVa9y3eKQBNDgw+fnt+u6vdj+foFrhufxOTk3toNhve/41v0XYdr732BvPFMajJM/NfxHsJDGxpNmtWq1XIddw3eIIikWVZTPOzNa2F8RHQG5VKF4oIeJ/4XVm7N3chQN/ZwQ/dZIayCorl2THMqktW9fYZeJXE+1DKEwfG6MD+i1OFAiJrb3RQSHMNk7LCRyYu4D6PVt02gb9Kx0aDMiEC3wcAulyuqDc182k3lGXtbSjtGhTcuFYPitlWeVIqsNeDMq01ZV6wqZd4D32XE/yGLc6D9aHoSF03rNcbjNFMp7PAruPIi4IyLzDO4XSGB5q+YV3XNPYpi+NTsirHRXO+VmI9UEPAmDawLUO8NTd4D5t6BTi++MW3+IEf+ArzxcmgpFnbo6KvsPKWrq3pVSy/avKhoALe4ZUfciMrdPTvVSFLSKExzZqbm6dsNkuOpxVZnmNdT289GQZtQsaLMsvxlORlyDE+m0zoup7Hj59wfnET1iFjKGJWgzzPuX37Lq+99hp5bsB3FCZU4ZpOqu/7fBUZm5GfR069SJ4HVNPvUuuonHu8Du4DqSnJk+KFMZk2tkal+EKuJ6+xy1/qBpDGnaQ4SqzLKXBMXQrGwFyCzdM89HKvYslOg7LGYDXtJ7FAjxXhFNvJv9P+kd/IfacAd+zvug+IjhWFfYD/0+SFYDUdxH2aklws9bV0zg1+jCnNnEa2p47TqebeNA3OBSbk6OiIyWQymJ3HaZ32AWmt9eCHKf8W8CusijFmOKdEwsvnYtoXwJWmtpB767qOx48f7/iSpK90AFINLdV6+r7nk08+4b333uPo6IgvfelLHB8f72gn1toBvEshA2EuU1NAOvHSawt7e3l5OfRB3/fc3NzsAOB04okGJ4Fl3vuhOEGqMcnf+Xw+aHlp2dvUl/BlidY6lIJ0LkQIa01elCHIxgnzb9AK+t7ifU1V5hSRPRa/4fV6TZ/nTCfTOAfE3O0RJsnjw8buQPmQQH+rWW4j88ftgxCwZPYsrCLj+bVvUU6PTf6BUjEBjg+Aenze0CYLXj/zLO6ATu9RDup6zbe+8Xf5W3/rr9F0ltfvv8UP/7Yf4bU330apfATEo9nIWup6w3p1w3q9ZFNv6LqeMhZIALAOmq5+xrE/7TMnEdHxvpXeuk6YPI/5OuXe4jqhHcposiIs7kWeYZTiZD5hNileWbAKAZRa1+N8AFEhxZfFOY/zCusdznas1yvq9ZI7t47Qmw3XNzd0NmR8qOJa4VwsIuAZsn4U1QStDbYPeUBVLCjQtC1FWdI7x/XNNVpp8jyYxaXfvYsbaWbITI7SGSifVFYKriCbumW+mFIUJXk1waLpox93Vswoq5b5vA9ZM6pJnA8u5DrVGmfdcE1rHevFksuLR9iuoahmOCXPh8xzR5giW9caZUQ5C89AXdd885vf5PLiAV94/Q6v33+LYjqPwX0xw0vfU2/W2LZjWTd0fc/s+Jj54pg8k0qBCm2CjcPj8c4PaeZQnqZb89HD93j86BP6vua1u3e4d3aXSVng6h7nLLjoV65C5oNCa/R8QVWGvNynp2fUdU3XdiGwLM/prWNSVdy+dYf5fIrywWLhxK9evby1NwWrY1Ai8iJQso/UGe+jqavcPnY03Xv34QP5TeqWl5rlx23Yx4ymQGu8Zz8vqEyY3zFQFUlZyTGwFVJMApfTwGvBUuPA9n17iVxX3qd9khJeaT+k7KrsD6k7QLpej10j0jEdZx7Y9/o0+dRsACliFsa0aZoBDIlP5sXFBbdu3eL09HTwcbQ2VHiaz+eDCV1M8mI+l7RIfd8PwEc6s+s6bm5uBl+zNC/qWHtJUb+wvWKmTyMBBeyl2lU66VNTQKpNCVh2zvH06dPB1zTVzNI+komUTi75fL1e80u/9Evc3Nzw237bb9tJ1J8+mGneunFBgHTwU2bJuZCaar1eo7VmOp1y69atAbgL05TWE5ZzhTRF5pnxT/1a5K9odxKBmPrRvgrSdJYs0zE23aN1Rm4ytLU0XfQRzoJZz7oeazu6rsdE4F1V1aA49bH/xRXDuZj8WwV/zXDPIaWS9X4IrBo2zESRGC+ieo85X2QMUMMCFBldCcKJG3aA0AT+LdBgKJIcegp8wlDIvNdab8/xPPZDQV2v+IWv/03e+41fp+/W9J3l40/eJysy5scLTk7uDO4QnhC85vqWrm1Yr5ZcXV3RdcH3uyxKqioE+PWdZUO98+wOmrxSWFnEIqjPTKzSpBQusn6ZKLJRUfBKh3RNhLKX2aCA8sxG8ipK3CZQCvAO2/XRRPyY6+sb6rrherWk7YIr0aTI+R0/+FUW83nIYWpDPtPj42PyIqeOwabeOvBh/ro+VPFy3pGXGWfT18BrvLOozMS1QVF3DYV1lKWKGTKCm4z4yh3NjzHa4GMJ3TDvdcg7WpSEWvWePC8oi1m0TAT/cOWc+KGE+x6RED4TxS8yRErz5PHH1PUaU06p+x6ZqraXnNctHh+rUVUYk2F7S2d7emd5en7Of/X1n+f0ZMbknbcoY5qq4E/rUQaMKSiLHG8DW9a0DV1Xc3PZURQVeV4NIFpnYuIM7XC2o+1qNps11nru3HsDnMO5luv1GudK6rrGZAW5m5CZwHCbPPpsk1MQ67krw6SqEBODyoLvfVkWTMsS5T2ZAp/nWOfAKV4mTyBE0T4GMv18rDSLpMeNleYUqKaK9fg6QkSl5x+zh/tAnJwnnYPj9o7XqBSgpr6b43alZJ0cl55T2pCSPON7V0oNBZLSDEaCE9J80imjOsY5Y0CcXnfcprSfUneL8Xg+TzlJsRHsul6OQe33hFmVRov5+5NPPuHRo0copbi5uRki7lM/zpOTk6FhYi4XECUMoYiYl7MsG0zhqT/HbDYbOjvNmSjMoyD81Bk5pd+NMazX6+G6aa37FJymnfaiQZPvxbdU7sk5N7RHjhOwOk6PtVqtKMuSO3fucHx8jPd+p0LVPlZWfFNkXAT8C/sqE3ez2XB5ecliseCdd94ZxsJ7T1VVgxYkYFU0p5SNBXYAaqqByfEpEzuegK+CbDY1ZVlE1nI3+EmlikFmMGj6HkLpz36YP1WIxImLkqPvLXmeOpcnTF8EjMJw7LCCfut4L/P1eaausYy17BSs6gjaJHWp9z7mIXixuW1X+9ZDiqN97K1SCte3/NLP/22+8eu/zM31DZfXqxDJTUv2yYf86t/9BX7wa7+DW2d30ZkB6+jaEL1c1xuWy2V0CwqJz0M2illMtxLWFfH/9bCzIA5lUb3HeofSUMTIfu8jKyXPctz4nZf9XaNUsgn47XM5drt4lcQnbHzXdjw9v+TjB5/w69/6JpOq4vTWrZDLNC95/fU3OLt1wv17d6mqMjCdhEA5k5lQ937iWCx6fMxM4WxP1y5Zb5ahjOh0wWS6QJHj2AZFZEVB27SoGOjmInhztqfpOtZ1jWv7mBUAdOJfp0wo5rBcLelsQ1ZMmGRTjA5MpIvFDfD+GbAg78V9B4Ibg3c2pFozhrpesVyvcJ7gYhKDaX0wb4SNPSsxyoSgPufYNDXXN9e8du829+/epSgn9LbHrjvarg1J/nGBMVUmvIwO/epCedimXlNvVvRdhyOUU82yjDzLqFdrbpZXaKW4dXqXN15/C5MFRanra1zfopxFmxCo2HYNTetDNgAfKrYBgwIcntHQt7K+EvuotRbVO/LMkGUal6Sje1mS+jfCs/6dL9pX5d/7gKp8N7bIphbF9JWa1NPrjMHqGIyJ7GMl5ZgxOE1Ju7EbQLofyt8UrI4V5/R4uX66V6TxMbIHC1gVwCrkUrpfpyn+9l1D+ju1fo/7f8yaS7tTwLuPLd23D303rCp8xnKrdV3z+PFjHjx4wG/8xm/Q9z1f+tKXuH//PlmWcXJywtHREcfHx0wmk53OSoFOmvdTANNyuaSua2DLkqYOw2JiTjUEmRASqZ+yvWMm9OrqiqZpODk5GcBlyiCOO2sMTMcPRdM0g2lcwKiY2gSYpyzp+Boyad54442dUrICYq+uroBtgn3pk3355eRaWZYNbOpqtRrynUp70/sVsJ/6v6aTT4DvvkVDJqaMp7CNYuJ4Fcz/Is57+s6iiwDwBo1TB586ebgkEtho6LpdzTnLQjWkvuuxzkcQFOq0pw+nmHe0Dkyui0C26yxdbum6fpsLNLJ8W3l2YUg3ql3fq91o/sA2BXZV7kWhBqCzM5fZnePbq+/3q4aYU1Uruqbl5vopfbNhvV5hDKFYjnM8+PgRq5sV3nl+9Hf9BNV0hreOtt6w2WwGC4TWmqqaMplMKYoc0DRNG/qoszgXE7RrBT6Yfb1XWA+9c1gf7kA2rMAKbtl/ua8wJtt7FEVSWOyt+8WrC1bDGhFSw338yQPe/+Bj6k2NUYbTk1PunN5iMZtxfHzCyckJWZ5j8m1JauPVwJp6FMqYkLfVhxAdn8e0bDrDr65oNhuu3QVVNaOopqGqlPIok5NXZnAjcCi81pGxzEMZ1NUK20Ql3W0jtq2Hi6tLijLD5Ee0TU1m1mRFAToaz33QKlLiIN08RTFTytPbjr7bcHJ8TFlNcQQiRClF35eo42PyvAD0dvzFtzR8QNf33Dm7g9KGqigoszxa8Gqur69YLZch93JRgArprLIsCwxqXOvz3NJ1DbZ3dE1gUNumwVnLzdUF3nveeuuLzGPlLK80ToV0ed5Z6Hqy3OK9xfkuuGCg8M7T9U24Z7NdY2V9ktR5Npr9vdLorMBrQ+d8uNUYfvmypOu6Z1yT9rFo+0DqGDSOSaQxgBq7BKYs5pgtTF/jvT5t5xiEpQyltG0MWFOrc8qsynOwj50cp7wak0HSttREn+KAMRMq19rnwjhOu5X2QXq9tD/H+9C4j9Nrj9ud9qfc81hRGF//swLWF4JVMcF/+OGHfPTRR+R5zr1791gsFpyenlJV1QBUBfGLyE2kVPDzNKWqqliv1yyXS5qmGSJ7BWCl5RJloGTghP0SU7kEVKXBUAIupYTrsGHtGRTpVGF3U2duySsqOWXTKO+Ujt83mDI4cuxYK9lsNjx69Ii6rrl9+/bQVnGnEHcC8TmRa2zrRlfMZrOhOIC4UQirlbLP+17SFxIsJdcR046MYaotjUFtmiIrbefLEK2Df6m1ITJ6MCV6H8yWWbwnfAAxpsQojffbmszpAtF3wcTZ9xZvNHm2jYYkjd7eYZq3D7aJIFkArY5BSzpZFPeNyb65KeccFpHkMzzPHEe8XhpwJSwO6lkWYVjUQjoDPvno2zz+5GOePL0Eo5hOcrCwXocFer1c8fFHH/DlLz3htslp25qb6yvq6O8Hitl8zmJxQlmUKODm5prVasVms6brW8CRGY3z8kzEVCt9Tx9TDRkd/JABvPMYvdtm2IJvWagh+ksR8moG9tvxQ+/c5cH5DZ++RH7/ZbVa8t577/Hk6TkPHz3h9Ow2b7/5FvPpnOlsQpGHcqRVWTKbTvFK03tw0Vc1JKsIpXWJgT9ecuPKfMgKKqUpioqubdhs1tzcXKHXS8qqjG49Bq1yNBleWzSh2ADaIBkj8qyg61vqzYZ6uRz8itdNQ+8sR5MjZtMjtNZ03RqlPTorh/klQUlKhffiPqO1Dkw5Cuc6VqsLum5DnhU0bYf3sbKUMWRZGX1qDcTqWgpAFTEdsEehKYvoFiTVFTz0tuPm5pJHDx+Q5yXz+RHGmOj+U+N8MZARXddFl1RNkZfkWc6sqmJqqWuy4znz+RF5Zri5uaCzXSwtm2OUDoUcjIntBENJEZ9JZ3tc00a/5G0yellPtNKoDDKvcX2Hdx0Kh1JVsOZYG9wIXqIOJmtmCjyeB3L2rXfpcUIAiKQgNV2vZN9N2yB71lhSADiW1LQv+778ZkxMpGmaUsZRXABlnx/frwDVMYBNge2YlUyrWqX9IX0rImA13TekXWOckt7zeJ8eKxr7zpdigBTH7APBqWvj8+aFnPfT5IVg9Vvf+hZN0/Dw4UNee+017t27N6Q1EpCU+pGmFHjaiLSxKeiRGxXfVcnzeXNzw2q1GvwzBDQIaE03Iznver2maRq890PZV2CoiCUuCtKGzWYzMJtjUJC2LdX2m6YZmMq04tWY8k4dnqXIAexqLeNJ/sknn7BarXj99de5c+fOwBhJjldhmtO6wSnlnwL/s7OzAXClmpX42KbmlNTMIG0XVwzpa7nPfRNa7l+UBcmx+/DhQ370R3/0Uyfg5yVFWeKtG/qX6NUZaqhv2VXZ1JXS5HmJ9yH6WvpuV2GKD5fbBhaGubGtvw5gjJTsJZhQs1C7XSvQyse/u4vv8xbiMVBN36cAjQjE5LrD9yowr5IiSkRFk6Ek0RfZYTK0pm03/OovfZ2HDx4CmqosmJU5OItRCmipm5aL8ycsl1fMZsfUdQCh1oU0O0VRMJ8tqCZTtFJ0TR2tAEvaNrBSWhuyXGGdhx5AmPrtfQvLpJTC9z2o7QK43WBCXXuZl5mwiiowdF7ZOI4vV5l6kfRdy/XlOU294Qtvv8VX3n2XsphgJIVNZPqUUnQuZFHwPtk4hvkRmEWJuXF27IMHWueUk5yimtHUG9brK9armwhue/KsYjpdhJKgOuTl7SND65zFGEVT97RNg9J6KL5SzmYcc8rRYkFVTcMUdJa2q6FrKcs5Ji9DZazwoMS562KlKlH8PM46mtUS5SwoR9e3tF0X2XjwPgYqeciLDG1U2APyCqXM4KuNVtHqYcGH+bVaXvPxJx9T5CWvvfFWyG6Boutbun7rAmFjhS5QKK+ii4ABk1FkZSxIseDk9C5t09P0lq7vsFE5DineFMpIdhGNUnnMLazQWYHKqgA6+xbnQgYN5z3e2viMR195HL7v6H0oPNLZkCkjL3L8SyQJUmuiyKexZuP1LcUIY7eyfYAXdosIZFk24ID0+H0M7bidqdU3dW8bg+hxzIecdwwM0+ul+326Z8q1xi51++5v3N6UPBJLawp6x8SWXGccBJaSTS8ao3FfpXhp3LbxuI3nRooPvyfMqoCuL37xi7z77rtDjs20EyFMUjHlS0PGHT/O77XPZ0+AcF3XNE0zMIPWWqqqGljUNAmuBByl+VSrqtpxak5zlUnnWGuH3LACKMeM1hiwCjiX6k7CesrkFeY1BR+yeItmlKbkkon78ccfc3V1xVe/+lVOT093+i7VpqRfRYO7vr7GOcfJyclOxKD0d+qQLp+N/VNFG94HluQhEFZ7rDGlDt7y2dXVFR9++CFPnz791Mn3eUqRlXhjcVaYuS6AUk1gYZQhlEgFa0OJSa1j9Ry2zvBbs5SJ5v+tP6GMh1LsjKeCwLwqH8DCMB/UtoLOHnkRiyoyfvDHGm7IMBW/Sxa40Mb02dwqkCnbvxul6jh//DGffPA+s9mUcjphUhUcz+Y07ZoHDx+Ra+iApq55ev6Q6ewI23eYzJCbgrKYUk0qZrM5OstxfR9TfG0tLllWgIIMRWd3XRjkOGmvMDda6ZBndGRpSdl+rQO4Vj6WW7V9UGD6HtvuZ19eBSmLgjunp5yeOOZHxyxmU4pyglJm8IeWDbCVzZJdRgRidDi7uVXT9UxrPRyjtWYynVGV1QCUVtdPWN+cUy/PsS66u2Q5Ji+HAmZGZ9R1CJCbTKphw6yMAaUp8gqj8+hb7bDe0dQ11jkmakFelCiVBWVCK4xKXMgikNUulCHNdc58cYzXGU0bgKDte5q2HaxyWReCwOq6pihKjJZo6QJVllHRtOAdm/WaDz74kKIseedLX2E6WwxFCnJjBtcKvMeowOZ2XUdvW+i7kDUlK9BZziI3TKdT8smc3MLUgXcO6y3WtnRtS299KFNLsGxkeSig4F0olKCViumsQgovqxR924GzaO9CGV0FuBh9TQfO0bYdXd/T1JqHjx7ywz/23/7+TdZExuvSPhNvStiMlfT0uZfzpa8x+ZWKfJZGxcMWFI3B6T6wKmBt33o7TlGVxomkr3RflDbJmpWCM8EMssenrmRyXWlL2p4xgymSYowUeMoenjKv6W9Txji99ov6awxW9wHW9Nh98+DTvtsnLwSrR0chqbKYtlO/COmMtFP2NT5tSGp+HzsBp8dIeVQBwZKYXip9OOeG/GLyOjo62qGaZRMbXyfVwARgAgMbK+0fU+7AwKjKOcauDynTOna8FoZUovTlOldXVzx48IA33niDxWIxPBBpf40HUyb/5eUlfd8PuVPld1J2Va6R5/kO8yr9k5oz5G8KcqXvxhWz5F6BHYZ5uVxyfX1NlmV87Wtfe9HU+tzFZKFijrOBabS2x7oOjcJaQr3wCO7EB9W5sE0orXasBRBYpMBCiiU1bHqhEEC6QId643Vt0cqTZxn5ek0WQW04r0G77QL9fDcAtXPu8QIiIszqPoC7b1GWH40XxF1zV0/f9Xz7N34NY8SH2mG8wygoi4rX7t6jzC553F2xvl7ySz//dYzJuXvndaazGWU1oyxnFEUZmG6gi9Hiwbc23XwUvQ1uG9uNwWJ7Yfgl/UnIIRqdg4fFPnWteeYZVsRx8rF6UVAoitzQdK8ew2qynLysMM6iFaxWNxijKYrJkEN1V+nXOwz5sF5En14vgFWrZzdEJ/7MUTE3OZkpKLKK0uQ00xWr1RVXl09YLZd47ymnR0ymU6azGaC5devWAOq8DymiTCzdC8GmoaM7gtEFee7obct6c8VUHVHkM7TxWxcOnVRA8w5tDNVkDjawt1meoXQOKrrieMvi6DhExHtH30fWqw9ZPlzf0dQ1ahktCTrM9Y8++oj1asUX3v5BqqLC9haroisTCu2DW00A+RllaTC6o3aOx5ePOJ5PuHXnPqiSDIXSGav1Bosni/7meSQ4qioEEDrrgg+77WjaDUoFRVijB2uLI1gCsqwIbjE2+LjiHQ5Pb4N7TGYcxlgyLHW75vH5OQ8ePfl+TtUdSRXdMVhN9/f0mDFmSJUp2AIjAYzj38sxIvLcjwHXGAyNr5u+xoBwDJplzxNLoqR6HOcelfamQFtEcpiLpVNA9pg0G5vlnwdUU2wm95daUeX79J7G95xWw0qvOyZQ0rUnVVD2Ac59OPBF4PZF8kKwOp1OhwGRKlWLxWIH/KUdlk4kGZgxiyrf7wOD6c0AQ25Uuf75+fmQ31RrPVRzEDAG24jEfYg9dWyWydB1HZeXl0Pp1Mlk8sw9CKAoiiLkveu6nRKj42PGZnJ5tW3LJ598MtyDsKrSP9KONG/tPnOEMMqffPIJs9lsOF4Uh7TkrfchkE2qUKUAVHxsBVxvNhsuLi4GFwlhutMJLw+BPJzyG7mfk5MTjo+PX3oFK1Q00+cabRRdFwDrsJhgA8PpYjJxcRHxHu23C4DcbwC7UZNOgEHf99Fkuu1b53s8jq5r6bqCrs/j4mbYbDbBpcBnpE/APsAa2MQQaALPAk/5zI++2wdUn9GU5bfe4XwoZ+mdw9tQwrO3Dms3FLlnMi3omxblPNV8Sl5kZA7wltm0pFlMaM9vuHzylMunj7h//zWm0znzozOyfFsasOu6ITNCb8X/PD4/sa561/WhTGYfqoj1fYhiD0AngJgAxKQYw5bZH4C/dWRZdAnwHtw2wC2A1JyqLPnK66f84vuPv/s59jlJVpTMjm5h+wajoO8bNutlAKWm2JkjAlaFrR8Dg2ApCD6PshSm6xriJSLLpJfALI/FYoHOQdM6ZvMTFosj5oujSCQ0FJMSrWPAmwtgynmPciFVWMCwls4lTLbR4AIbv1nXTCcLFkcnMdg0tMV5QYmBhSyqGZvrmq5tUSaPKdIScJwXFFmGUQzBW1bAqnUsl9c8fvhAphvruuGDDz7g3t07NJsl15cKlWWYIlY5VNsyxOJqAAF0973l2x9+wA+++0Vm0wk9FcrpkDHEtljX0rngcmRMjtE5WZYHljfPyLMC5y2dbcK60ls27Ya+qcmNRuclRVmhI2ngTGiL8hbverLo0NO2a/r1mqZuuVlu8Bi+/KV3P7+J+SkyBmRjwDdWuNN1aszqjdnE1NczVfD3gTdZs9N2pAxrClDH7d/3Su9BXgJWvffDXp1ac1OwKvt/6oYov5dMSPK57DlpQHW674/7VtbWdA0cKwbyfXpPKZkl7U3HRN6/iDEdE5XjcXhe/3+njKrIC8Hq8fHxMCDisynsXErlpx2zT5NKnZXlc7nR8QRKO8J7P5j4V6vVkDLr/v37HB8fY4zh6dOnXFxc7PjOipaQ+oQINS5Ay/tgKhLTvXOOd999d4jST9uWDjowBFlJlgJ4Nn9jqimmTKUwQRKtn7LMm81mcKeQB06uKxqcTObLy0u6ruP+/fuDGaHrup2HRjQ9AcqizUkbdgKIYgEB0fYEvKZ5VNNiARDK7D59+pSnT5/yla98ZWBt5XwvU6ztcVqRGUURE9B3XTv4asI2xVSoEBS1WLVdWFNttW2JrgQeZRSZyQgBGi226+n7YIHI8hDkEFI7BZan7wMAs9ayXK3QWlOWFl9VTKspRu8uUJBqs8866qfHyF8//veO4pewVoC1DZgCvKauNwGw2lAust7UfPDR+yxXG9arx+R+Rde2TKuC27dPOTo+Jc8KrPVs1gbXN2zWGUZ5XGfZrG6wtg2bc5bvPJM+vqyzWGfx9HhCVLR1lt7uZk6w1sZE50k5YSX3pFARGMlztFWYNdE9M9xb7yKDpajygiIPlYOK4tUsuxpM8nNsX4Zyqn3Hpm5w7prZbEFWlIOPZ+iHMMYC3ghRdiEnrUo3kK0Li+Q7k+pP3toA7Fwfs6vU3Cwv2azX3Nws2azXnB6fcLQIPpvr9YbfeP89bp2eMokFM1AqjOMQCBsUO090wfAhYCisLTX1ZsPy5ob5fM7XvvZD3Do5QxuDC6FDYe1TwZShsoym73EbhylKvM5ChghRWpSJ9y2svQtZELQhL4KFpO86FvMZeZ5TTiry3FBVBX3fsFoHgCyFJpzbFicoipK8nJAXJc5ZLi/Pub5ZUhZTQmothcWj84xJNsfbuPfgIyhZSfeTZYYiLzBZAK15XtD3HfV6ycWTh2BbiknImpHnE3RRYPIyuF6oMJ66UBjlWa8u2Kyumc1PMeWCcjJnMp19/ybqSHZdiHaB09h8P1a45PMUkMk5UpN5Gqexz5oi62ga/DTGJCkwe1F797kgpCyv7HGpCT/P8wGEStvTrAFyvKSqHAdpyb48Bnb7/IFh1183BZD7jktLso4zFaRssPw73eufJ2k7932X9ut3Ck7H8kKwmoIdmTDi5ylVn/ZpS+kNDGyTc88MQNpw6WgBVWI6F18kAc3CGMq/Hz16xMOHD3njjTe4c+fOzuRPgWjKkqXahaQTkuwDUiY2DUJKO75pGi4uLnbyx441lH3v5RzSnrt37zKfz7l9+/YwsaV9fd8P7g+Xl5fc3NyQZRmz2YyzszOyLOPjjz/mzp07nJ2dDUqE9Pf4ARYFQ+45vXdxGTg/P+fx48e88847TCaTnfaI/7AEmHnvubm54eHDh3zwwQfkec4P/MAPDMUWpJ9epnjvQk1xC1meR9YlRBsDIUeii3MxVr0JY+3xandxVUpFJn37EBu9TQZu40bfW8tUlxR52KQlp2RvLZ13rOuGq8tzvvHNDdOq5N69O3z5y+9i8gXaZCgN+NRneHdB3bdYhZYn/1dq+PeOd6wNbgxt37Nu12jV45zn6dPHXF6es2lW9H3HerXmw48+5Op6ye2TnDtHFQrP2a1j7t25S15NmVQz6k2N7erYJx2FMdSdY7284frqgsXiCqUyjk9O8SooCjbm6ASHMgE8ZpkJjDch6c7g06ukfKZGaQn8C9kClAqMbIh2D7JlNUK6n+AXG10G8jwEgynItKbIQ6Cm0c9ad14FUYQCCJgsuLIoQ9tuqJsNKM+EGXlRgQ85JTwaoluLViowlxCAVwRz4NEERcG5kGbK4+l98K1s6jXNZh03q8BK0vUsqgnzsgr+z87ju1DdyVvLdDLhww8+4O0vvMV8fhRarg2dd6zWa+rNBpSKAUUhGAii77wNFblm8wWLo6PoJ7sh8zkqK7eBIpHjdcpzsVpSKpgvFnitQ8U4FQIX8Q5nQXuP9VLNSUWVJhTreHp9w2RS8vq9O6h8St128TkPa0JQllrW6xUX509ZXV+zXt1QTSru3L/PnXuv43vH+ZOH3Ltzm+PjE6yF3vX0DorCoFQWGdHgZ53nlr5r6Pt2iDXo+i76pwZf3Zurc64unjCtKpSugr+797TNBttsyPICZTJsVDBs13J9fcFHH73PrPD8jre+gqPE8eng4vOUFOzAFqSk4HDcvtQiO7bYpqSVnF/mRUrypHt+CoDFrC3nTONmUmV+rORLm1P/9zFeSQk2uY5S27gW8eOW66blyNPiPun5nXM7VagEGKegMe2LMYOaAs99pKF8l2Y4Go/V+BzpNccyZkzTvhlju32A+zudqy8Eq7umpnARSQclQU/7UiKlHfO8CZgmqJUbEXO1MITAkOsyvUnxGcmyjPv373NycsKtW7cGH1sIC6JUzpJJLUxo6iwtNLwUC3AuZApQSg1uBum11+s1m81mx7w/vu90UNK+s9Zyfn5O0zR8+ctfHqj7ce5N7z2z2YzZLLAAwsJWVcVisWCz2XB8fMytW7do25arq6uhnyRTg7Cg6bjIpJIgCHFlEBAKcPv2bbTWA8Mqkzt94Ky1XF9f8+TJE6y1fOUrXwnVcvJ8WKz2uXl8PyUAIINTweer98G3dFiY/DYI0OEHP0CtQyAK7FbgEK05gJyYfUEHQBrmrqVpWzabBkNFlge4KPk8XW/Z2J7L62s29ZJVrWnaG548ecgP/tAP8cZrb6J1gdZ5NNnu5vgNjRY/Pj+8FyZIAJ5SKpZ8DcDP+WDGdNbT2pbr5TUPnzxmuVxTb9asVjc8ePghdX2NJyQmb+sG1ztOj0+gq5lUGaent5hPF5BlOO8pxT0ERa6g0mCV58EHD8iKX+Di/JyynPPmF97l7r03hzkY/FB7cG4316kScM4AQkOfBzZVNoO+t/TW0fUB8ORFGZgqHdMSeU+WGTIfNiuHQuscHzcBzW6amVdTkgUd0CajKCdY29C24VkNCvaMoghlU01UtLTasvHOhcDCvuvDmVxQONuuAe8xmcFZG+3uPd724NSQIqxQYi1zKK3xLgS2aRSz6ZQvzN7m9NYtTs+OqcopnQ3zsul6Fot5ZCdNTC+1Lc2YMlSSCQbPoBCbvGEynWNMGdKNeY+3juvrG44nMW4AgnuI0ShlwsuHlGfhPxPdEOKa3nR8/PAJs0nFO18oUcZQljoGigVgWRKe/fn8mElZcVnktPMJWnkyZ7l+8pi6bnBdy5e++A5N21JfXpAXU0xWxPynATxLYQq0IS+qmBUjPJdd12JdcHNZrdc8+PB9JmXGa+98mdr6kI/VB5/4vglFc+rVDXUXAM63v/0+H3/4MU+vr/lv/K4fJs9KrKogzO7v71RNZGxNex5ggmexRer/mAI4OU722dRMLnvY2I9VgKzsReNzpQBa2jW2no4Z0fT3ct0xcytgVTBRF92YUquZuPBJNU9gBzxKG4StHV9/TPiN+3rM/qa4a1//jl/jPnoea/pp8iK29bs952eqYCUXFzO0tZb1es16vR4qV8kgpccLUJXBkQ6SqksCwNKOSf0r0sktGgawEzA0n8+HwCTxJU0nmiTXF7Ah5xprJmlKB2F327bl5ORkYAzTCSLgTv7Kopv6mqYg3lrL5eUlT58+5fbt20PuvlQrk4GUB6fve25ubjDGcO/evaFs6k00naWAvq5rlsvl4Is6mUyYTqdDu2QxkD4UwL9YLHYCy1L/17SPZIwkkOv1118f2PU333xzSNAt45yO3cuQsJk5nEojI5P5lGqlWoX62s5FtLSrOQuIFcZLBdtqiPo3OaoKaXbUesVms2G5XsO0JMsqIOa7VCGQa7XZsN5scNaxWtbcPXN8+71fY1aVnJzeodBjJSNJfk0Ap96zTfI/0miH+0w08LbvWd5cs1ytePDwY77xzV9ntbwKloyuQeueMvMYo7C242ieYZ1Ge0WmNWUeWOm+7cBafF5wenaPSTUhN5pmvWZzU2Oto3YO27c8evIhbeu4Wl6xWq+5d/c+RV6E6O3Nmr5rIXmexmtNeH4CSah0yLnZWUfvoLOetg9FAwRQCdB1btdUmC7+4lbQtcFScFxpJoVh075aQVbpxmF0MK9rE1Kg2b6lrjfcXF/RtS2LhaOqpqCzqJyEfvHeUdcbrq4uo/KvsbZns1mjgNm0JM+n2AhSNQ6jQj5Sb9NckBGgag1ZmI+hqlKYGydHxyGzQt6T6TBGLjLlVVmhgCzPMBGspkAhKBYxkLHrsHHttZsl3vUs5rdCBonoGBAS/AfCQBlNXdeByaqmZFlBnmUBvBozMPIBHHZ88vAxddMxnczRJg9uOT6kVouOE+gIekPBA8XlzYqzkyPunR4xmx2xWtfcLFcczRdMJxPW0eqndE5eTSgmE4qypCwrtClAB19TVKj+hdZkWtHbnsKUMfhwiu5biswxnUzwnaNtWrx3ITNCafDeYrKS0lk2mzV5VnJydMzdO3f52pe/ymw6o3YZtndDNoOXISl7mDJ0+1wA0r+pG8CYaRyL7KtpINCYlJHPZA8ThQW2wclyLWmH/GZMoKUvuZ6wp/BsqdYxaTU8x2ZbrEBY1XSfTAGt9IsAzjG4S9uZypjJTV9jt4R97Ou4z1O29tMkvf/0s3HbngdgP4t8agWrdCIIgJSJsl6vuboKm55E46eDIibky8vLIVBLaz34ZQoD6L0f2Mp0oo9N7PvcDuR4iUafzWaDy8K+B0TeCzBLRSZPCsolW4CA7uVyOVTmkeuIe4SYDSS3qzDPYpL49re/jfeet99+m7Isn/HDGd9X0zR84xvfwDnH2dkZRVEMRQ9S94o0XYcoA1dXVyyXy5Djcj4flIKU6U7HSyayMKmpi4P0Taqx3b17l5OTE7z3g9tA+vB/N5rT91LyLI8JyncjzgftGI31Lun7jKZp6fuQ3irPc4zOIuYLuR4DWxmiq5134E00LRumVRk2U2uxfRv9W3OyzFAVOUUWItlRsFq1OKuxE8vjJxdUmedXfuUXef2Nt3nn3d+C0SH/ooos1k5/CjBD7fR3+jd87vHOs9msubg859sffcj5xTkPHz/ko48+4niRobUF5anbkDfS4KhyE0qmto55aVhdd5weHYUE6LMp85NjqsUJ3kzo2poz1/D0/Al9Z+m6C7o+XDPXGat1Q/NxcDfQWObzI7ompBPzLpibFdvFyvtkA/GxYIIJQNXFoBsbGVUXmXJcZKLY5heVBV6eiTTbhXPb94tJQZm9emAVtpuXi30iDLlSOVp1LJcrVptVTD0Fk8mULirsfR/LUTcburamjNYWrxTVdA7eYrwPpVlzzaq+pFmvMFpR5BOUCoDPRw1gUKYVWO/B2cCMO40xoYrgxluyckrTWaxzGJ1t+WG1O1dTcCJAIjDIhqIssZ3HtjXN5pqsnNJby3oTqqfleDabKSrLWG8avK/RyxVt05IXObPZgmoyGar2aZ1xdXXFe7/xHvfOznjj/r3hms4rlPYoLSFLMa+rt5xfXvL1X/51vvSFN3nj3m2qqqJremZVuLbWGlNqCq2p25Z2fUO9iakQJxPK6ZxqOgs5ZrUCLAqNdURm3DAtp2id0VRTlN1gtKHMc7xPzPk+uLtkpcO7nryo+PK7P4Bta2ZVyd2z00CQWI3tX+6aK89dOr6wC2TSF+yuWfsssCmxlFq4YAtc07mVkj0pu7qPrR3/Jk0xlYJVaYdcU8CqEEppm8f4JY2bkfZI1c2ttWl7j0IWyef70mnJHj4m3dJ2C6ubWrFljFKAnSoG6b2nmRdetJeP7zmV8WdjBvc7xQif6gaQghvpHEn59PTp04FZTEHtuGRnGtWfagVpjXlhBsW9IA0mSjVw2E2onwJp0Vgkgj3V1mTQ0vsQoJYOSkrvS3DXbBbqmK9WK66vr4dqUcLayrklEGyz2QwmLWmjlKx96623uHv37nD/6QCmvikC9K0NpVHFpaFpmh3Xi3RiSR8JMJUiC9fX10PKLCmEkAaIjX1j2rYdXCHGpW/lODmXlHmVMUsXhJcpeVREAjkUH2a2VaXCPW1NT1qD1tB0HVhRyoJJXjZTvB/SAEEIohIiI1OK2aQE17OpXXAnwGO0pioKJmWJdZbOWhyB9TmeT1FYnl6s0DqjszXHxwtee+1djCkiYA3ptIZ5MtzUft+g7UIZ/A7rzYb33vt1Pnn4kI8ePeLqesXVdctimlNmhratWd4o+rpDzTSzSYU3MF1MmFYa4yfcvn3G0fEJ8+OTsLm2PflMU05n3Lv/Bv1mzS9cXKFVuG889NHE3jQ1n3zyAWVRYHTGbDpnOplFwB2KJEDMqakD+2xcAGnDRqICUxiYtQhyhz5g646Bp3fbjUHWorZtY/qfEEiWKqTiRvGqiUdhHWHONBvWmzXr1ZLlasXNcsnN9RVvvn4f62HT1OgsC7k8+1BgQZuM+fwIrY+H4CeS9cL3XQCiOsNrw3LT4GxPUVmm1YQi5L2K8z8oSD4qC84Hpc1pDVmoV79c3qCblqKSWIYIIqLZe3fNDqCQmO3COTcUPAiBfrCsV8FyN12w3jRcX13hnaeaTJkuFpi8ZLKI5tq25dpd0HU9N6trmq4hzzKs9RiT8ejhI1zf8u67X+VoPo+5UoNrg/MOg5iRPbiQeq5pW3oU1XRGWU1Yrpasmw1KZeiQzDisJUqHNF5K432wLPVtw7LZsLq+YL44IsslB3aJ1kVwU8lytCZm3ejIEdek4Ms67GtEC5GzeGtQOuP0do7rG1TXBMUkjklY6l7efE4ZyDGAFHkegEnfp3hjHCgt+7q4lYxBVnqNlFEVRjHNtiPHyHnHZvcxiINno+8HZWvU5pTRBHZAbSpp/6T7s7RXfqf2rPn77v15zKp8vy/wbNz+FFONx2jchu9E9gHV7+Q8LwSr6Y1vNhsuLy+5vLykrutBQ7h9+/ZOyVP5TRqgtON3l5xbwI3WetCEpXrVZDIZfCvTiZGCPDm3dELTNGw2G87OzphMJgMDKr9NARtsNRQxYaeaj0S0t23L8fExi8WCo6OjoRSqlD9Nta95XAjT+1+v14Nv3P3797l79y55ng+BTWnk4th3BYJ7geRRvbi4GIC79LcAVTEhyGQQdlQ0wHRySsCUPBTe+8EPWSIULy4udkrfeu+H86Vj4n1gxa+vr1FKsVqtKMuSo6OjzzwJPw/RSoWcjCaEWCiloq9jULY8fsedRPo71Uid8yFWJTKZxpiB6RTTszHbEpEyr1AhsY4xMaWahqLMyHTJ6fEJy1VDpg3WOmaTkszAoyeX5Dfg3X9Bu17y7rs/iimmoDyE2Oh4bsQBYIclGBaC+Pnm5oan50958OgBv/rrv8LVqubipubqukH1muV1j63AqhLvOo4XFWcnOSeLkuvVhtPFDINnOqk4OT7l+PgWKsvJyimT41OKyYR6ecPNuqZtOmxnwVqMV/Sbmkk1x9LT2Z6rmwt+8Vf+DpNyytH8iLt37nPn9j2KPKfvDZnRtK2PAVhihtoNHvA+sNvW2shyyxzPybOQjaCLz4LWeiciF+8DKPYheA6ln1nEXyUJrgo1zrmQBeXhAx48eID3jtOzW5yd3uKtt97iaL4YFHMgAD6Txcj47UYMgPhQEjNZxGA07z3zk9s4DA8/+YhmFUCiQpFlIcWXWFlCAfpQgS3LM/reUlYTvHesVhu8aTgrK7xTrDc3NE0b3A+cZbVahgIpSg85rsuqHBRmYwx91yNZAzZtT1lWLIqK+fyE46MT3njrC+RlRVmVaBWeH2ctzltmR8dDarQ8z4JLynqN7y1FnvPuO1/k7OwU6x2bpiE4PICix3sXXACQAD+PBk7mE9567Q6us1yeX5KX1VCG1nuHdx7vVcghqxS5MVTFHPA0TU3b9/SbFX29CXtN22DyiqwoMChcb/EuFA0oTajstmpbrtdt9EmeorMiBKmZDLTGZA6T5Vibse4aLq5vUOWE1iusdWhTjqfT901S8Lhvz4ex9WfX9JwCpnFcSQp05DNhQsem+vT8ch7BAvP5fNjvU5Ao+0DKPD6v7el+K+xqGsMipJK4Osr6le41qQufnFMKH+V5PsTupK4A8jyP01SNwee+fkz7enxM2nfDWjsCrf911smxEjEe/88qLwSrAvTatuXp06d89NFHeO+5c+cOt2/fZhLNLcKYCvM2BpepOVkkNRcoFapX3bt3bwDGaW7QPM8py3IHnAl4EqZXfEAkrVbqr1JV1U5lK0nmLwulAE8B1xK8JdefTqdMJpOhc8XtIJ1o4g6QalMCYLquG8B3VVVDe8VfNa37OzaTnJyc8MYbbwz3LfcuPqfOuR2GVyaegEpp89gsIyBTWPK6rncqYWmtWS6Xg4vDZrMZlArxgxVzTJZlXF9fD+xymqv2ZYm3Pd5rrNKYyN4rbbCuGxYYyWMo7L5SajDPECOidR4Cd0KeTxMjmwMjpCOIzY0O6XPQTKsZmc5pug2ZUTFReSj7eTSb86UvvM0HHz1kuaxRZR4AYRVS6KA8q5sNH334LU5P73Lv/ruB7vUJUxDZXQhMivKELAcK+ujWsLy+5P33vsmHH33A+dUlF9crrlcdl5ctbe85WZR0ztGvoe56JlXObFZRlYq+70Iic5PRNS1lOYnKaUdZTZjMZkynC64un3Bz8ZSnjz7hww8+oG9DwYVZoen6HtUTUkv1LRLD05ueTb3BOUtVFRiT0zT1AEIhglPv0drgcUjVsNQP3ceAGKMyikzjfShv2duQbkiAKkTXIaNRXoBv8LeXjaTMX72MAH3XslnfBOUw1xwvFmgU01nFrZNjJrM5eVHhPcNc9T5WNXJJ8F3CLAmVLUw1KgYiKUVZzSmnHcVkynwSAk27tgu5U1E0vWWzXsVNE/CWogixAWq1CqDROY5OTnHOYAnjbbKM6XSG0ooqpmMKuUfjZq80RVEFptHk0eUhbKanXUeW5cymR5RlFcZT6Ri4FFwYfPSnbZqavg9VnLzrUSYAp6qY4HqLMjld16Izw6ZtqDcRjOc5Js9QGLzqA3zVGd47jIE379/j9OiYvutjNTjJJrJVdMSaFSqtbVn/LCvI83Lod4hgoQ0g1nahIlbveprNislsGvaPpmazWnHVtlRViYsBh5PJlLKckWVF7L+csppxs6k5vzhnuV6zaRpOTs6+7/NVZLzXpyb5fftB6n6WYoV9rxSsjv1O95ms5dg0q9BqtRoy/4hVN3UZkFiNNKOBSLovpy4s43anQFUwggRLi1ugAFo5h/RZmtdc9vbUXSBlllOr8T7mM1UKxsAwBbLj2BT5fTqm4/OMj/lOZV+bPou8EKwKszafz4cyo8JEihaQXji98Z2Fkuf7raRahzCtR0dHOyylDKawkbANEEpN05PJhFu3bg1Mr0xMKRMr7RFAm0b6y0SC8BClSfUl0l5E2jy+h3SiywMo7WyaZqjK1bYtRVEMviQCcOWhkWtfXFwwn885PT3FOTdkBZDfyYQeB5WJmT9tRzoOsAXYq9WKDz/8kKZpuHXr1k41Dmnvlml0Q/+nD4v0TZZl3L59e+f7lyXOObq+I7MGE31Vs7wYHnbb2RjIsHXB2HG3aBt620Ovhj6BUI41z7LB3G3YjfQMylFJlisyA1WRURYhdVZZ5BzNZhRZzsb14A2ZNkyqgskkY7OuubmqKfInvPfeL1JN5ixO7sUgmwhSXWB9tg+7C4EcKLzrubh8wnvf+jXef/8bLNc31G3Hum65XnbUrSfPM9CeHkffeZbrHq8r1o0l1zArFd4rzi9X5N4yaXru3HPoLIt+eEfYvqevl9iupu82zCYVj7oQ3V+VGdbCcrUiq0IgiyeYpZumYVKW5HlGNamoqglN27LaNMPcN5nBt9HHSoeqPpaohHkXgtwi2JmUOZk2eKJyqNXOeO6kzXMeF33MZa1QSvEjX875j//Wt17GFH2u5FnOYrGgiOU+T46OguWj78i0RkemuHcO50LUvyTCV+gBlEJSYVDrbQ5RgrlYsjFoFQs2OEtVTSirKqR9E5yLoppO4hrT0zdtKChS5FxdXpFlhulsxvGtM0xeYJTB5DlZVjApZ3gd8q9mJvxGrD6e4Jc9mU63RQviptxF61aeV2RZjvdbf3HvQ9UnCPc5c8EXOdxreB/W4wBUJotjVqsbvGvxfUtWVLRNjXYO27Yxo4AmM8HPdrNZsVpe89qd21R5ju17ZvMF1sUAPhvyZMo6Ga7lABfdq8rglrKzwSuU8igd/N3rZUiLdX59yaTUlLfPKKczssmMYnZCXTd0XUvdrGialvVqSb1pKSI5lJkiDKTOWS7XWNujrKNvt2XPv9+SKpwpuzo2/6aYQfZu2ZtfxBK+CNCm+1J6HSn6I7EeKbiFXdIsfaWAO2VC5fpyj+nvgR3zv1KK2WzG6ekp8/l8sB47Fypzptl1gIFUk+umfTq+TuoymIrMScEQ8rt9/Tnu6/TevxMwmY7tp4HYfcD5s8oLwerZ2dlwAwJOJX+YAKaxT8cYxMlnn6VRKR09gIrEX6WqqmHwhMWcTqc7x4jZWxhVmTDCooqmsw8sp+1NHbnHAz7u+NQHV8z50m8CmL33nJyc0Pf9wOxIMNhYw3HOcX19zeXlJW+++eYw8cQ1IQXGaf5YYXKVCmVcxyms0ranfd11HbPZbOde0g0/BWtjLUzOs2/MX6ZMJxV129B0Ld4b+tWKoujIi5CODEWolNR1Mco+RDmXZUVZVJg6+AkGFs8h+RPDYhCSjeNCqqAwBqFoAMQAtbKiMIo8C3k980xjNJRliFp2vSfPFFkWUwUpz7TImJZHbNYbnj55xM/93F/lqz/wo7z2+jvDXAwSUuA451mtQmJ7YwxewccffsCv/vqvc7O8wrqG3nk2taPpPEWVU+Q5XedwymMd5IVmMfGs1y3ToiDPM1Y1HE8r6tWKk9Mjjk+OmC2CAqmUZbO8ZLm8JisL3njrLfq6ZTKt8HZDURlWNw1d4ylnFUYbeuvZbGoyHYouhDKyjrzIuH3nDjrL0caw2TQ0bUNDAKVZDK5SGvreUtjgm5f5EIwTTLIaa8OinCmF9WqnAMcQXNV32D6440wmk8EUreqXW7xin2RZzrSSCnAOhWcyqeg7Q9/WdG0dEs47YZTCK8xDTQgUCjIojaM9RGk9+EMqHJkGhWO9WqN0SMPgYi5brRWmKMlVUNC6PADJIs/ROgMUWZ6hswyPIysKClNQlFOmk6PASipFVVYU1TSmWROfzOBXigQMRuY3L6ax/ZH59p7oOR5YzAhsvQspnrou5i7VBrQmN4ZcKaopzI8ctu/o2prNaontazabFeDpu45QItmFe+sanjx9gsJz//YpxoOLrguuszgXgEjXdUOWGBd9SrPMbINzez9YZITpDuskIcVW31Cvr3n//d/gzTfuh9R6Jsc7yIucPJ/gfQw6jOPQ2y5mLRDQlrMwOfie3GSRMf+eT8fPLLI3C5iDXfZxzNKNzf/y232YQl4CNFNmMAVIsvfK+Zum4cmTJwPxJu1M96e0nHyWZc+k4ErN/2lbUkArvxWmXQiu09NTbt26NRB+0vY0F6vcs8ydMeiT/pBUk2mmE1G+05fEo6QB4OOKVSk4TdNrpcFdz2NV98mLgOr488+KB8fyqUUB0gtKZ0nS+tTvcvwa30Ta4DGdnvpLiPlZaz2AyrTjUuCV+o6IFiGDL+ysMYbFYjFkHRibw6Ut6YOzD9ilv5FrCJVvjNmpECXHCVhNq2uJ+Vx+L78TFln8W/M85/79+5ydne2k0pIHVt7LA1SWJXVd8/Wvf52PP/4Y7z1nZ2f87t/9uwewPNZO5aE9Ojritdde4+zsjDzPh4d1PHbjB1TuPW3HywapIpNJBRqUUeAVfdfTdj3oDmUysjyndw7rHMqGCHNjPZlRGK2oygLv7DNmmMwYjNIReIV+CGML2giTDUWeUWaGMjcURRbzYIZSn7PphLy8wSnP2e0zbi2mZKoH12N9T29L1qsN3lt+5Zf/Sy6eXvBbfvhHMCaW1FU+KnId77//Ldb1EqmO88GH3+ajTz6h6xx5oUDnNK2miIqew9E2jllp8PTcWhQcH2VcXizpFxlKZ3R9YI1MZijLgkk1ITOBvV+vL+jbmruvv81qs+aj975FZz3z+ZRm/TQAjUyje/A2+Lz265q6aVlbj+OCavJttO554423uXP/C8wXRxwdHfHgk8d89PGHuL4O2Qm0pigz6m473zKT4VVw4cm1CUUG/HYjMbEmuzxTMh8zk4UUXMbgIaYYq1ltXh4T9XxxOBfLSiuNViYoNSbD4ejbltXyGmv7YMo2GVleBVbTaLxKlvUsZIUIsmX5BnZehfy4mIyL6yWbTYNXIZBJ6QytTWS3PZ0NfqtKG7TReBWCpbxzMTG/BVMwPzohz0uqyYzJdBHLE4NSJniDiv+s2gYFyTgFV5dYGAKFjWVLh/KrPgQktW0XWU1HE6Or27hxexf2riwvKIsCbRRaZ5TVgqKY4lzHpNnQdzW265CSp9b29N2Gqqz44he+wGQyCcUvvEdlGd6HXLNhc5c5F9pcliX1ZsPDhw/pe8u9u68HH92oFEhgp4eQ2stbPHB0cotbd+6isxzrQ1CdRw3lhUPqq/DDIqbuUkqBd4NLkNLRzcVvR/hlSEpawK7pfB+zl0bqp+cYM34i+1jV1J9zTCpJhqDLy0u838amjIHYPgY4vYcxAbfPUmmMGcAwMFjpTk9POTo6GnKmAzttFvfFlDCTNonSLfhD8IMwtKnldseNKmI1wRgpoJd7TGOK5FxpViEZi+ft5+nn+/pjfOw+Eus7xQovBKtpJNqwGSQR9AK2pCECzAScfRa2bdz4m5sbrq+vga05XkDyWLtKWUPxnZ3NZkwmE+bz+VCfXhjadGKkvjRyrhTMjgHrvk4XICOFAiRwSUwBwJAJYTabDVWv5BySB3X8GwHqkg5LzApSzUsArfiOTiYTHj9+zM/+7M/y5MkTrq+vaZqGk5MT3n333R0GQP7WdT341kgbp9PpYFJJH+B9ztZjX6T03M9zrv9+inUhKrosKjwabfpYPcZSmGx4SK1z9NaiektmYlm/+PCWeQEjH0CjY5BV3FC2Pk+hDnjHtjygUZ4iDxtaazsKmzOtKn78x36E//g/+c+5vrjh0YNz7tw6pswy+naNxmC0Q/kC27ZkWvPNX/8Fpkdz7t9/Yxj7sDB6rm6e8K1v/RoQAPJytQGvqRuLQ3Gzsqwbi87AOx/rkHcsZjPu3ppifNj0FTlFVnJ106A9VFVGUwNoJpMSa8OmPpnMMMdnmKwkK4/I3snJvvQD/LL6L9ksH5Npj/Wa9WWNsh1C9mhtaDY1Xbekyh+QqZ6T42Nu247J0REmK1itO4qnD1kub7B9SzmbB7NpsmgKSMBbmqYlN1msghUDLtD0dlvAQmsdA2dCtHVI57Xh/PKSputpe8+kyNi0rw7Dam3Pen0TEvZH87iLlae6vgvKktIYpWnXG2rnMHmIgM+KkryqyEwAmkhlNGKsHltAM2zY1nOzrPnowRPun55Q5CvqpqMsK4qyDGye1mijURiKMifLQi7f4PtZkOUFi6NjTDHh5PRO8NfUobpW39WB2Y7p3ySJP0phsgC2t2uJkAUAge3ExzkU+6KzDtf3dNay3izZ1DVN19P1lqbrcC7A8bIomc+nzKeTgU0HUKZgtiixXRMY1+hOBYFdnszm9M2Gvm6wSrNp1jTL6xAU6Txd35DpANbzzOC6Db/0N36Jr//8r9Bi8Qa++tWv8uM//uNocqyPrmwAztF3NV3foLzn3tkp9+68xvHJXazTBCtOCiz6yJZKfmVivueQfk+ykzgXmOc0l/T3W6QfU3YwJaVgP6s63nNTxWUs+0CvvIS1lPP0fc/Tp0+5vr5Ga83t27eHz6Vd8rux21q6343N4uNri2+qxHNMp1P6vh/SRgomEYwh4FLIrjERlzKzKXAvimJwwZQ2CeaSfVswmtyTYIu0z4VFTa11qQV1nxKxDw99tzJWRD4rVnghWL26utrRdFITtDFmGADxyRTGVWjoNHJ8HOm+b/DX6zUPHz4EwsRfLpdDdSnYahbSsQKIJfpcTPyTifhX2Z2k+zJ4KdhLH6wUZKXahfxNvxMg7ZxjuVwO4K9pmiFbgkyK1Wo1FEIQl4SUmUyDt+QzMTOt1+vBNCH/Xi6XQ8aCsix5+vQpv/zLvwzAbDbj6upqSFv15MkT7t+/vwMsA0O2ZrVaBZ+uWGrW2lCZarPZDOO3r0JICljHi086pi9Tuj72f6Q8B1DtE/OHtajouhHYlQ6rVGCKdJxvZRn8wYiVsGxgVpV320AVFczyeZaRxWTl1vbRLSTfgtyozR7N5xwtZlw/vabeNDx68JDX751wcnzCdDahqZcslzc8Pb+g3TRMK/gbf+M/5623vkTbhupFt26dspgfsV5d431D07SsVh7vCPliLbjOc3nT4E3w0Q0ur2ExW9ctq5XmdJGxXna0Fi6vamZThXIhOMorR91alssL8mpKZkssGeVsgjI5ql1SlCUXDx+wXi45Wczou4Z1DLYq82CKapo1XSe+V4TKP/WGzeqaerPk6NY95osZd+60ZLnnm7/2azx98hRjYLNe07QxW4bellrUQFaFNEAmU3gHXe9ouv6ZqjE++jC6uCasN2ucs5RFTlllvHHW8Y1PLl7WVH1G2qbh8vxpBKc9m6aJc1CTZxknRyfMFwvqdY/2KjDMrqNrO7quZrO+wWhDVhTkkzl59NVWatfvTp7Tvu158OARTWvRWcjH2nY9fb9iuVrFNbagrMrA4mYahyIvShbHp5TTOaaomC+OyDODt5a+q3FeBRcPPA5L328iU2pCPle9zZepVVABPYFB9c7F9wBmUHpcZBeLomRTr7m5uabpOuq2Z910rJsO50N+1cy0LDc1J0dzjrqOyaQKPtsAKifL/n/M/emTZUl23Yv93P2Md4wxh8qaekAX0I8N8JHgeybxiU+S6V/QF0lm75+kBpPIDzSST4Q4oUmADTYaXdXdVZWZMd/xTD7og599wjO6utAASSTcLCwz4kbcewY/7muvvfbaJWVe46txE48RDdVsxn73QJcf0EWJqWeE7T1319fYvkfnGbP5nLwoMLbjT/75/8rrr64Ig+Nuc4tVjsV8xrHZM5uvILgYKIWA7XoOxy1939C0HYvlmiLL0Uqxbw74EFsQR0Y2ZoWUiscVQhi9dqPUIxKsj6ApXsv3t+4+9Rz9JgmADMERf5lk4JvY2d/ErqagM4ToN35/fz8V/QoQS0G0sJuCEX6b8RSoynsKcJzP5xNolK6Sglvk71IWNQXYcs6S4UyLz4RQEnAqIDktNE9JMpFOSnF0qncVZjU976cuA99GMv6m6/KXXcPfNBd+m2v/l7oByMUV6wc5weVyGdMko8F/2hdeQGvKIErr0qc3SYZEQYfDgWfPnk0XTkAX8I4VkwCp+XzOer3m/Pz8HRG0AOhUiCys5FMK/GnlfDoJ04chvbGpdkb+Fdp9t9tN7yMRkgBncQaQG5RGShJRyWQVUbYAVInU1uv1tDA0TcNPf/rTiVFdLpdTcZoci5yDTH65pnKNzs7OpmIzuQ7yuhSjpRZY8OudQ9JF4m8DWE0XMEJc4I0x6ORBrMbCsGY8V+fiBl7mUd+sCOQmIzeRRbIuVvFaFTv5xAydRqtRu6ohN4bgDN3Iprgk2s3zaLNUFoHVYgaoaJLvLbO64tWrD5lVBU2z4y6PRVNN05AVCn+/4V////4ItKcqC8qyoq5n7PcbjPFYO+BsiBXUdQYamt4DkWEOPqYTbT9QVzlFrtnuWj54doH3DWVlMIXicOyYlTMG22NMAcGxediSlStm6wt0UeHcQBg6glJ44NgcODk9oeXA7c0Vw9CTZ5oyy9i0sW+6sHMhxHRrCJ6H+xv22zuevfoeRTXn8oXm9PKUxWLF3fUVb9++4c31DUPfRW/XvIh6vRHQODeQ57GSfAgDduhx1pKZaM/kw2ht5C12GFDEQEKhOFmv0VkOOqO4b97jTP31kWc5i9kKCLjgMccdfd+jlaHIIjuf5zmd1mRFTgieYYgsjbUDzo/MCJpyFpsCFEWFKmLgFFPsY4qZwLHbc3t3zQcvXnB6dhY3ymHAjkxZZqLc4rDtsc5ig2c+X/Dpd77P6eVLqnqBkvXTDXTNAWsdJi/QePzQ0/fRUSLLyygt0Josz0YZgwHvJz9R5yzOjzUR7rFoBAEsHvT4TBqTMRwOBDS7Y8uhs3gMznZUZUE/WAYX6IaBtR3Isxzn3SjHmVNmBUoR2V0TNdVFOWepMqp6yWH7QNc2nOQlZVnTHPZY58nynLzt+NWP/wP2bk9R1dRozE4RlGK323DY75jPlyOTHV0s+qHhcNjTdg3d4Dg9f45G0/UN9w+3UZOdmRHglBhTTEFafBuPChG5p2ttmuF6X0NkN+mxpBm3NEOSHuc3AUgZ7wSdCRB+ClSffpZzbnKxkX04z/NJUidzSvZu+ax0PE35PyWrUnwgzKfs96kfbEr6pAb9MtJrku4VQkjJewkRlzKm8ruCR1IrSwHLeZ5P8sQ0kwyPMr5UKpAGB3JM3wYm/6oMqfxN+ne/DV74VrC6Wq0m1D+fzzkej9P3Am6kUAEe0wBpxCQpZ9Fzpl5jclFFUnB3d8fz58959erVFFkIwJIbLxGTsL7Sl74oislnNb3QT1ME8jCkzG8qyE61o6L3kHR/qj1N0whirWWMmVL1T9MSKQCWY4TYBUza1aaaVmBiqaX4qW3b6bNlcn399dccj8eJWZXrIbIEEZkLkBbmt2maScYh0ZoxhtlsNvnHypAUgwBeuRYhhG+MSN83UB0PAjc9aJHZMSZDKoUJYdRXZvhx7lhnsW6gyMX4O/qs5nkBIdD3YF3sbS9+kWoETopYoW2MosgNzkX9mXUugmAxQTeGzHjmswqtNPt9h+0t3vcc9ve4IcdoxdnpGbN6TtMcuL694fnpjDzL+fmvruhaCxwpyy0hOOaLCq2hs7FLTtMNhBD9S402zGY5TTvgfWA2K5nXGUUW6DpAO87PS+ZHRV4ovt40vDyrOPY9mSkIozYuM5rjboMpPKvTCpVXFCaD4Lh8/owZPa8PV7R9zzD0MQ1rDM5qfIhstXNuBJsZTddzc3vD6s0vuHzxEYvlOeVsRZ0ZlifP+PDjHb/84mcsfvUFP//iV1xd3+GsQmmD0rHQMM8LTGbo+pamafEuFrWURUy3BevBO8L4uX0fNY2r1YqsyCMT2w+/tnm876G1oShG/ZuCrIyFrX3bonl8HrMip2vbEbyPm6b3lFk+soQxkBqaPYftPU7rUW+aUeSxNaj3nofNPWena169/JC6rnBObPHiddNj9sANkRHfHvYoZTg9u6RenGCUoj1scENPTN1HFtsTUM6hg0d5yFSB1gVFUZPnJWYEoM55gu1GqUDU5g9W1mFHZvLIYk77RsxooRR5njGfzWgGj3OBw7GN56gL2q5HqRLnm+jha/0EfBSBbtlRVxVax3WgKIsIzId4/llRsVicolROPzSYzFDNZpHZ9Z7rf/uvefj6NT99/Zahrjk9O2OxmLM5bLB9R9+32H7AuvhMWGtpmz3D0MUubEozWyzJixKdlSwXq8hoO4tzYZyvflqPVYhOGJiY7pc96GmW8n2NFDwC7+yR36QxlWOGX69FeQqcngLHbwKqqa2l7HtSVyOkS1pnIhaVT20jn7K6cnzfpOGcshOJRl5AYgoaU3LnKauc4hXJWqe/L+8nWdk0K5LW7Mh1STWuT4usBbOlP0trVFJ5xm8zn34bVvQ3vf5XnavfClbTExRAczgcJvDTNM07dgzpzU1/Lt5iDw8P7+ghlXqs2G/blvl8zieffDJV+D+9ocAEugS4vXz58h2t5cPDA8656WYI0Dsej1hrOT09naKN9D1T1lFAt3i+it+sRDEpyE1B736/fwesH4/H6RqINnUYhumz5UE5HA4TSJWUgXiXplKK9XqNUmrqSGWtZbPZTHYXUnT15s2b6ZoLuAfeOa7r6+vJ23a1WqFUrCw8Ho90XTelL9JrLw9k2lWk7/t3otT3vWDKMEYTnJ/ANcaAs1F352KakXExrcoSrRSHMT1MkDRNrMJVY4rfaOj7uCBpor9pbmI6LpIyHhUCZaHxPgKyvm85HAN5bjgcO06WJ8zqih989j2++uoNN2/vORwtx0PH8Xjk5PRDTk/PMFqxub/G2o7LZ5d89eWXXJzOuLotubqJqVk7grP5XFHVFcH1EDRVndEPjixoTlczdBFlCE3fkZuMWVHi7IGqiExrNasYsDzcBfo2cHpWcXP7wHoB88U5J+s1ZZGzmNcUVWRdy3JG2xzZb7fR8qeoWKzPOL/Y0vYDunUMzY7vvnzB6z/doTJNlUFR5iwWc5SJ3pS2b6INlu3J6pK8iD6DeZbx4cefMq9nBDIIcPewi+DZxY5X9Szqdtu2mYqs1AiuBmvHwuhHpqKsoqE6AfbHlmbM/mT6/en8fvMYu3opRaENwWds75top6biOdVFjtMD3iu8zgFDZmI6z4eACw47RO/jXlwvTPQ3ddyTmQzrPVW14Pvf+2yyInTOkeVuksIopWLw5i1u6Dm7gMuXH7E6e4kyBj90DM2W3cN9ZCaLGrKcuqjoreV4PJBlBeuTS0xRxnsAQKyKt87hbY8dAx0fQrRraqO8RSuDyTLKoiQvogNELKDKKasZRVFzvLrGuQGNp+8snW0pyxpQDJmmHzr6ITJR0int0HXURRaLIYuMsiyYVRV+GDgeG4q6xihFUdeUs4quzWlich5zf09x2HJ92PDvP/+CZ88/4PzZBbPFnG5oUDjc0NP3DcHHorimObA7bDkejnSDZX3xnHo2R2uDQlPkJVleoXVSkU3svOZGb1aFIi9L8lFOobUeLdtiEdf7BqspkfJNQDWtg3kqKXsKGp8C1qfA/Clrm7KcsjeK8w48Arqn+5lYL6bFRumQz5Ai5xTQPT3/tGGR7InfVN+RMqBiYynPXgrYBZDWdT3J9WSfT6V4ktmUY0jPJz0OyVinIF1IOfnsFDj/tqn9NPj4bRjW9Nr9V5EBwGO6V05it9txc3PDs2fPWC6XzGazd6r/05sEjxNCQK5c2NRGwntPXdd8+OGH04IpGkpgmkBP0wunp6dcXl5OD7awodISdblcTtGOc466ricw+DQieurfKqBVipy01hNAFiAuUY4ASgGu8/l8qkKUjhRyDQUIpjYU0kK1LEuappmuzW63e8czVtwNnHNTe9qrqyvevHkDwOnpKWdnZ7x582YKKETgLbrZruvYbDaUZclnn33G5eXlBGzlukrhlcgoxFJD7q0IxSVwkHSFzJVveuD/psfg/aPFS4hVGkFrlI6bXCzWGO1lVOw+Q4g2OMG76DGpwbmAtQoVMvLMkNVlskg6vI86QoKitxZjA8Zocg0H27Hd7zk0hn3TgNJsFxtWyxW965nVGYt5TlEE9rs9lxfn5FnBrF5hbctgB8oyZ2gH8rJit9/zO5++YOi/4vqhI/Rxk2qOPc6DVobFfEZoWpyHospouo6u13RDLGzxzhLIyI2inlfYwXLcNRSlJusdXQu7Y4fJM/aN4+31HVVRkJc19fKEQkUtqlGQG8WiLjkcdpTzOU3bczw20aO30rgRFDiryHNFMaahvXfYwaGrMjJczYG+3ZPPlpgstsE1RcVifRG1jVlNNZvzxedfcH19G9OwRUGWaY7HqMdy41wUL2KtYi/7ssjJ84K8KAljWv2wbxj6mC2p65o/+OxTvnj7wL7p3uuclSF2aVoZlPJ0zZGv39zwH37yM2bzBf/d71ScrbJ3NmvgMSOiFIMd2O522L7nfrvn0A1Y5zhdr3jx7BnlfDECHcN8saSq6nfSkPEYRoaJkV0NhiIvKeo5l5evyE2BCwPeDVjb0TU7ju2RxfKUenlK10WjfrSmmi3J6+inSgDnLc72DEMXq9rtgHeOvougsu0Hjk2HCx6lHK7tyPOeIs/JMkNRlJTBj3uNoq5qyiJnFhT769gIY7WKQaYPit7HNb0qS7SJ/r1dltE0mirXVGVOnhm6WcfQNrRtQ9nPcdYxn89YL5bU1Yyh2aKaBn99y+Hmllk5Q2UF9XLO7f0dX71+Q1nn5GNGZxgavHVY2+Ntz939AwHFq1cfc/HyFVlRMHhH6A7sdw94H6jqFXlZxiAwK8cMVk5wFmsdoLB9bMWtTWwLrbSB0WP3fY0UbMnelgIz2WNTnWrKAj5lLp9qWb9pT3kKXmUfk+yrtCyXfU1IIni3gByYcEyKNwR8p5nWpyA1BYIp05seo5xzmhlNiTj5WWpJKecvTgMpbpFrOgU1CRss75HW6si+LAFFClZTaWYKzAV/pdf52+69fP43/e43/Tz9/r8YrHZdNwGTruv46quv+I//8T+y3+/5H//H/5Hz8/N3ogl4XDDlIm63W9q25Xg8cnV1RdM0zGYzPvvss6n1KDwa4srFTtP+T7U5xhjm8zmXl5dTVCJakKqq2O/3WGunaES0HMIOC0hNgan8fZr6b5rmHbAKTA+dpBGeFk2lbgghPGpnZUJJdFkkaS0B96KnlWK14/E4saaz2eydG9x13SQe//LLL2nblu9+97v8/u//PovFgj/6oz/CGMPJyQkXFxcTE15VFev1mvV6zcuXLyfdsZxjnkdD8tRSK33whP2VJgrpuaaSi/c9ur6P5uSjh6Pn0SpFodHZuz66YlfVdA2270eT9ZgC7/qGkGUolVMW5QjuhzFt6dC6JCjF0Hdjui52stk3B+4e7nFOU9YHTBY4Hjds93MICqMDzg7YQXN2uubZ5TkKT7AWbweK3HD6wUuubq75+s0tXd/z6oMzXj1fsznc0g6OMBiUz1A+YAowWWC5qOiHFpMb8kITfM6hHzjses5Oc7JCMXSK1bxkuz+QFzlVnfHlzZaQG05WC65uNzRti3UV3o9MiTEEYuq1bba0hw06aPrDgd3dG+zQobWJ4DCHXpkIRHzUYYIjhLhx12PK1Q49zWGDdw1KRespTEYIGbnOMHnNs6ygns85WZ/y+eefs9/teHt7w2G/w/lAkZX09khVFlRljnMejHgEx0XZWkfXD7R97IxnjGFWP2rAjHn/c1bGdr/ji1/9krqqcT7w+uqWP/6zn/Pm5oHf+/4nKGPIMsMwBv/pGuKcA2PYPBz4+u0b5lXN/W7HF796TdcPfPY73+PjTz5luTzB+RhYKR4rgB+fXz06QLgpBR2LXWecnL+gKGtCcGA7vG0xCsqqYHfcgIb5fInKakqlCFoxq5cobfAjO+uco+8ahvH/0Qc3rrtdb9k30VbMBxV9WoMmyxx5bsmzjHxw9NYyn88xOvrx1lVN7xpMpkcpQ0/bNZgsw/YdhdFYG/19Y0o4NlnojKLrM4xRtF1P1xzo2paqG/Cjjl2FQK7AW093/Ybw9kveXj/wxd0GYzJeffiSy8sThgA3t9dki5rV+XMWqzXb+2v6tufQHmm6nt/5/md8/we/S1bWDNYx2Ci3KPKKtm04Hm9RTQwSTDYbU8kZWW7GgC8SFq7rsC7anAXEWeH9dmSTfS7dJ2VfeFqgDe/KAJ7qGJ+m5WX8JmAj+5T3nt1uNxU6y5D9VY5NcEbaCTJld4Fpv061pk8DRDl+8VmVv0uLo57qcuV35HUBjymgByYJgBxbmnFOrUVTfJQST/IeabW/935iXOUc0poTOWfBcXI9nmZNf1tGNB3/JZnXbwWrf/ZnfzYxew8PD/z5n/85m82GZ8+evQO25GvqjT4e1Gaz4c2bNxP7KhMky7J3rKVSli6tzofHmy5fApZOTk7eSf/v93uapplS70qpd3rby8UWgCk3RdLe8r0wiqL5FNAok1napwodL9pdmQBiW2GtZb1e03XddEzS8zfVs6Y3Twx+5XikPZxco7IsJxAuBWnSKvXFixd8/PHHKKV4+fIlxhjatp0+8/PPP+fu7o7f+73f49WrV9PnHw6Hd6JFWTSUUhOjCo+Fbm3bTsclX2nLXXmP9z2cD/jgcD7EYog8x1qZTy2ZHYOXPEcryDMzsuOGtmkgxKIleWCj4X9MjeaZFLU0OKtwLqaZ9rsNw9hNqMg01jvs0LE/Og7dkeU8p84crRrAK0KwVFWBIvq37rf3rBYzskyjdMGz5y/pbc9qteb7H73iS6N5/fqa+dzw2ffO+cnPbmlc4Pah5/y8RBvPdtcwm89wztMemthn3sXiE6UU81mBHQug7NBB8LR9x83G8he/anl5McO7jNu7jjJXHI4Ds/mC1WqJBnSI3auUsxhn2dxv6I5HvNjWZDknp5F9vt0dudtsGQZL2ziMiR18hiFgB4V3lkwrVLAc7r6imq8oqgVZXmKUwRvwmaVSUceZmZzFfMHbN1/TdEfuNhuKPMcOPUrBcjEf16HY/EDmrnWOtu3pR6DqfXTNKOu4tg1JsP23YfgAu7bn4dDStj3XdzuCMnzy8Sd8+vGH1GV0WZDMDjyuk4N13N0/xGtTzZifnPDx6oSXH36MNjknJ2eszi8o8seKYun+JBv54wY0rsHWooIiLyrqxYr5ak0gzn/fNTT7e7rjgaaL3aE8mkPTcXJ2Sl4WsbkAHtu1DH0DKtB3Hc3xGNugKkXXDwzjGrNvOgYXaPuB/bHFZDlFUVPkHjNYMpNRDBbrPWG0VtNGs1wssB6WywWHtmdwlu1YmKp8oHUDsznMjCYMlkxrnDH0NkSPVgVdb3F9S9Mc6b20rs4pjMISmGlwhx27zT3X2yOv73ZcXl5weXnG7/7wB2wPDZ//8hdcXqyZrc/I6jn711/hleb08hnzk0uePXtJWc0YgsK5AQsYFb1ya5XhbDvphl2/jxIOH9BFDBaqaha78WUZuVIoxqYG6v3P4RTIpQU/qZZ0Cqp4BKUpO5iyjSkYegqU5O/T7wVHbLfbCbAJLpHXUgD5lGVNHYJSgJ2C7qfaXAGaqT5VMr3p8cn7PNXFyueLFFAApxyPuC6lYDW9vileeqqJTYOHtFlKCqzTTGhKOj09xt90H56+/leRAcjf/zbr77eC1efPn08p59lsxocffshHH33Es2fPpuIrSYvLRRQngM1mQ9u2rNdrTk5OKMuSjz76CKVicdZyuZwcBNLCnTTySMcU4SvFYrGYdJYCKGUySMeo9DNEj5kWCclX0zQT+yn6SwG18juiqT0ej5OPmthJpTdVmFuJhM7Ozuj7nuPxOLV7k0Kw1EfNPtks5T3l/YWZFZa7LEu++OILfvazn00uAWdnZ3zwwQfvPDSiB/7iiy+4v7+fZBBVVU3WYDJx01SETNj0AUhbukrg0TTNZC0m3Tnk/N83YM2yHDtY/GjXpJSmyAt6evpuwNk4d43W5HlGpgy5ycf/K/qhAUT/E8uj+mFABXC5xbqe436LVoEiz1AqcDg8MFhPkWWYqqQqc85XNYaGZrB4qwi2RxU6ti8tFetVyfbhwNXNPacnM3b7DevTExarZwRjyBgoyiWu8/SDpXOe+82W9apCI1pUR9tFID2bZTxs9gxWoXJDXhjuDw4XNFWRs5jV9F1gXsbMwMm6JtOezZ3l6DW/88kJu8ORfRPwDjwZIcB+tyPPKpzJ0KWmO+z51eefc/XmDYvZnNPTNTorePbiRewe1h7o3FsOdmBWGgbrKfMoxbDWsjt6FnVB3zUEP5CXc4zJ0VlOlpcopcFZQohdiczYyKGezTlZn/D8xYvopzpEW6DT9TnaGLzzzOpqyvBY77DWTZkCozOKWU5eFlMHs6cda973+F/+l/8bP/w7f4C1DjsMNMcIWrXR1AWUedRJa6PRWmGdpela9ocjnXXovODFBx+OuvM6psI9aJ1hJueTpAjGPLYLFp9T+bJ2wNqBqpxxennJ2dnzuEkOR3x/wLYHgusIQTFfrFlmOfPlKUV9gsliYO9sT3A2pvmHDmcdXdfSjbIkN0oX7OAmG6pucLgAgw883G+pqoHlYjFu2p6AB8UYYGb4ECv60XGtOrs4p2lbHu63DIeG5bwmOMUwWLwPcd7kUZKC8gwhTC1S/ejH7I8NXddSZBmFDhgCqyLj9qvX3N7t2HVxv/jOdz7m2eUlAc/5xRlKF2AKnHd8+eVX/Mmf/Yzz0xP+7u9/yny+xPvAbn/EJTl7p2IBZvAeQrQZK6oShUd1I3huG4auY7fZYLJI2szqGSY3sQOf+XW/0L/JkQJSAXSyX3xT2jvd758CuN/ErD4FRymgFQxwPB45Ho/T70o2VUZamJV+Rtu20/4ozKPs/6kWVM5NRgpA+75/h8GU7HR6jPI+dV2/49Uue7b8juz1s9lseg8Bwel7yfkIoE7ljU9rf+QepZmYp0FByrKm/6bjv0Zw/23v/03jW8Hq97///elEBYSmKX75eeoJlvp0Xl5eTn6oqU2EoPyUWZQJK2JoeNSCyE2Xi3x2dvYOqyCfLSnptLIemPSnAmxlorVtO6ULIKa4RVsroPZwOEyUuzFmYmKXy+U7GpL088qy5OTkBIDr62vm8/kkKxCgJ1HeU1F6qvORyT8MA7vdDohyicViwf39/WR2/OrVqwnAC7CVqGm327Hf7/noo484OTkhhMDt7e07ka0wUKJH/aYHWR6St2/fcn5+zrNnz94RZKeyComm3+dYLZY0bTsVlvigqIuSzOSocKQfIsumFeRqhlUBk0fD/6zIcEGjhzCyFg7bx+rofpQMuGAZ+gZNwDlNVWYsFxXHQxMBbKaoc02dl5Q5HNoOHxSEaKWUGUNV5dRFyWG74+72lsPzFWdnp7x+8zUXvuT04iXL5QmtumO5OmF32HF+uub2YUueFZysar58c6Dr4GEbq/fLwqNUTHvH22owRjGbRQPxNzdbnp8WFCawXEZpSds7us4xyxWFUeyaDuuhs/Dl2w31T77gD7MI6N3QYsyWrndkmebi4oT5vMb2j24LWmvWqyWfmozyfsfnX2+53nrG2h4CmkwbjFaUZcV8eUq9OCMv52gTNatPh1KMrW01eZGzXCxYLubc3z2wXCwox2cxrx6ZkRA8dnAM/YB3RKBaRNDbDj3HJspfnHX86DvP+Jd/8su/0Tn6m8Y/+p/+tzjnKIsYaC1mi2gmb1va4x5nHb0eQEE79OwORzbbHdVswcXFc2azOUo/WvIYY1BEgKq0gjA+24TYeQrppBNto4zJyPOCYejpu44sz5gvV1w+f0Weldi+wQ0Nrm8Zho6gc7Iqj3pjk1HNlxF82jYWTXUNg+0ZfNRb9k3LfrelbVq8UuRFwXZ/iOyqC/QWdocOF4hd1GbzaKW32bBYLCnLHAgEpckyy2wWi4uM1izmNf0QM211UdCVJU3TjqDbUtcVfdfjnSPTGu9cLLgaJVB9b3GDxTlo2gajoW33bB8GvnN5yS//yf+TH/+nn+Jc4GAU3//h9/iDf/DfU85LDk3LH/2bH1PXJf/wf/rf8PO/+Dn94Pj+93+X8/NTTFawPzRY6/BKYbLYHlfr6DMbCLEjmxq19M4QAvTWc2wbFrOCPC/pe4vykQE+eEtQiqKsqGYLQni/tQJPmdJUY5nuc/K7oqVM94v0dXmWZV9JgZ+MlJ3rum7KsgrYEwCYZiHgUSerVCz0lqyqSPuE7JHCqvT4UpY1LQ4TX3TpliXYQvZ9rfVUiC2FXbJfpxhA8ERd1xOukMxv3/cT/hFMI+ch11qytILR5PWndSXyeU8lfZJR/k3M9rfd+79s/DeRAciQCycn0vc9+/1+ArJiPLvbRT/As7OzyU4K3rWZkJ/JhU1RfBqVpR5iQt0LUBP5QAqORNMpn5VW2AmrIpZNaapA0gXANAEk4khtLgSASSMA8S2T65Omx8WH9nA4sNvtuLi4mCZzOonk2NLqSXk4ZHJJowF5SFNNrpj9fve73+X+/n4y+v/xj3/MdrudAKtIJsSRINWgphFf6qIg5yXHJA/Fbrfj7OyM+Xw+/Uz+Xq7N3wamaj1fUOYF+7ZhsDaCnDwn0yWZVrS9FJG1bJ2lKDN6O1BVY/9m57CuJ3iLcwN91+EZKz1ROG+pyowiMxQG8iw6AxS6QqOp62gnFVRgYXLyHAJmKugK3oJWlEVBNjoXlEVJkeV8+OF3Icsh7BlaRxh6jFbM6pLhbSzy220bzk9nfPV2T1BRm7lelDSdIytzVssKkyssGfvmgMprNtsdw6AwOufDFyvwlqF3NI2lbx2F0nStYz6vMKbl0PRkJqPvHU3Tst9t0Di06VC64PLZBSFYdtsHdrcbohrY8PWvvmLoGyyBUFbUlcbfP5q8GxN7pwfnqecrFqfPqZYnZGWNNrFgJlY2x3sZq+Jjf3mIRuiZMSxmM4zSeB/1ffmo2fMhMDgbuw31FmtH3SEqtss1BtdIMU906Aju/c9ZGWmqDzW64avYevRwbOi7I8v5jMpXbA9H2sGyPn/GyekZRVmieExrRslSRlkaIIzX9dHCCZjW4RD8uO44rI1yqSwfvZ1PT8mykuCjuX/fxXW0mi3waMIIdLOyxNkBPxY0ucHRtQ2H7ogLnq7r2W82o/8zOKK8wIUAOmPwjm5wBDVqC13c4E1R4J2j7Ttix9aA0oa26znsj+RFERsmFHP2+4bdfs/5xbNRi+wnqYj3Fhcc/Rh8asa0c1HEeeJjC9m26+m7lrIwHPaeWaZQzZZ923IIBqcCzz/8kM5AXuZstlt2+walDQFH0xzZd56XH37IyfoEZy33my2xcjPqcPUQAarJcoqywpixIxWi043Mbzd0fP3mNR88P+eTj84Z3GPlv/NyrxoiK/7+NKspwSHzSv5Nv9IhTF+qFU0Ln1K21Xs/sZ+p5jWVAIh7jxRW13U9SfMEW6TFRbLvpW3Qu65jNptNpFoKsFMCTQgtqdYXMN40zVR8LtlaeASbsgcPw8BsNpvsKwWbpIXMqa+qnL+sDUKAyWfI3pvuv2mGNi3YknMVsPrU3moYyZz0fb7p/7/N+KvqWn/T+EvbrabARm5s13U8PDxwPB45Pz+fFsWyLLm4uIii9xHgCZMplk1pNJEygCkLICcoN19A1Hq95uzs7B1NyFMrjJT6loks3qJSES8sq4A/AZ5yM8UWarI9Gq9FFOXHbhep56wURUnhVyrUlqhOtL8S8UmhmffRSkoaBaRpB4jM6PF45PT0lN1uR1mW3N/f8+bNG37yk59Q1zUff/wxIQT+5E/+ZHIDuLu746OPPsJay0cffTRNfikESxeWpykASfunaYPD4cDNzc0kr5BoLO2/nk7i982saq1ZzufUs4qmixow8JGVm68ZrGWz3XE8Hmi7I51V9Lan66PesWkPHPYbcjN6hA4deRmZPUJkU+dlTp4piiy2/1Q+GvZnJqMo89guUwcUGlXklFWN0Yqu6+n6aGKfVzPqKqfdH/nPP/kp11evOWwf+ODDTyhmc7Lc4JwnqDiXTlYLbh52NL3j+XLG73PBH/+ne+63lg9fZJQltNaDcpyuTtnso3/loe2xg+Xs7IxFXVCVmq6xaJOx3bagFKuZ4qR2XD1En9SMgPJRx3d3f89iVmPynLOLl5T1kuPuAWcDi8Wcthm4ub6h3e7Z3t/QHHYU84LV5SXr5QL99khwgaBBj9q6bvCYrCQvZ5CVBC0byCOAiktUQAVPZSvsMKOcH5kdZrTzBd6PAaCK9j/DENeDzlqOTcvx2DAMbpQSxM5GfT+w2x3GAjI76cr/tgzJInnvCVoxdD3N8cBht+PN66/wtue73/0UkxdUsxmVzinrGcrEtOUwBueyXpelwo2gT5pfpFr4x+dcT7KpCGg1ZVlxdvGc1ckFCo33PSo4ijzDak0Y2w/3Q4d3sTBwCBC8ou9aurbjcDhwbBt6N9B1DUpl5NWctrMopQkmBw/7psXaEFPwSnqfO7RR9H2UTh2bNsp6qMh0RtsNGN0wV5qqKmLHOjRlOScET10VqDCjbQ6oAF1zHNddy/HYUVezcd11Y4ssjyaw3e9pjnvOTtbYvuOkLtjc3/Jl4/jp1S2zMueHn3zE/eae27stymj+v//q3/Dl12+4OFsyn814/vwEVVaPtn5+tMyDaT5672Fs26yVRufFJE9CaY7HA10XAUpdVszqmkNr6foelMKYDGOihh4CPry/oCutUJfxVFKWFv7Ar6ec5f8pWJU9SP611v4abpC5vdvtpn0+lSV0XcdqtZqAXZrBFExTFMUke2ya5h3pW4ozUulfinFSck72dyG+5HlLCR5xBpK/S4vMRKOatlKVmhH53KZp2O/3DMNAURQTEBZgm0oC5P1/E7MqMj65f03TcHd39869+G21pU/HNwHdp//+NoD2t+pgJcBPmMLD4cDV1RVlWXJ6egowRQByg4U6T0GjUOFpsVUahaXIXm6g/F1VVZyfn0+sqjwAwqAKSN3v9xPIlYki1L5EJKJFkSIkrfVUUCXAOh3yd3KMaepetDFynGnUVpYlL168mCa/FHcZE71VRbMrzGlqfSEBgLDAaTcOkVvc39/jnOP29hatNT/96U8JIXB1dTXJLP7pP/2n/PCHP+R//p//5+mBEZY2nYhPFxmZuHKtQwg8PDzw7NmzKeBILa/SCDeVFryv0duBWZ5R6QyjS6zTeOspC0NVFhirabucYcjoBxW7H7mBTkcdYN8dY8q7lKJBj1E59biZ28EyjAFMAOxg0cpTFGP7z+CI9kMBR+wklRtFVZRkSlHmhu3uQNcfubhcc2MdXWcp8hi0HPYPaGMoijWLZ5f07ZGmOVKVJc/PVvz8yyseji3LWUVRaLqDGxmnjKxSuK5lVmdcPxyRvcG5uPkrAtoYmm6g6xyHDrJMs6w1q2XBl7cHqjKn6Vu6bmCzO7LZzwiMXoUKnB/ITKDIc0Lo6doD+/2W4/7AZtfQt451HjjuNnz88jk3Dw3XD/eREaKjrg1tP/Cw3dC3x3EORebLexf5JTX2WlIKT2QY1ejOowDGVL8eWajBjvqs4NlsdyMLGZ/zWRHvW9u0bHZ7drs9gxvwQTasvz2NAd68eUvTjuuFs2weHhi62I8+M5qLy2fM5gtUZgjWkmnAW2zvCT7QjZkoPT7Pw+jPaRKWKIQwdUFKszyR1Y5ANcsM8/mC5fqColrENLW3BAdG5bjQR0cC5zjsN1FS4z1K91g3WuB1wxgoqthpTDu0KTm0BzA5x6aDzmO9pxscoAnEZ8o5S1Aa7yOL6nwM/KzzHI4NBDUy9RqdD+gsI8dQFhUfPH8Ru0T5+BzbPpIJx0NLWcZmF1GPWqCyDBSMkl36ocf5QNfbOIeOe5a5wfYHfvFw4Ce//Ip5lfPx7/0Qq3L+zb/9MYvliuubBwbryPKcz3/xJT/6O2cs5nNMHgkCo7PHjTskrUFlXiuFUe+2DI3Sqyvms5r5bIYi2nG1Y0ATfy9+aR8w2fsjCdJinnRfT8Gp7BfwbnY1JWieApiUBZV9SfZp2Xe11lOnRwGEqbuQdK+UtudpFjA12hdgu91up7btAhTl9bRGRphgwRECgqUZgQSMacV9CnZTEJ1l2TvZ3BQLCIgWjWuKCSRznOIcIe7kmgouEZlkuj/Lfp12GBX2Oq0lSoec+9Ofpfftmxj2p/8+ZdC/bXwrWP3TP/1TttvtNCmk/eZ8Puejjz6KLM1iMb2W6jsEVKWWDPI7KbhLIxT5Sl0BxApqvV6zWCze6YsrN16Ar/d+mmAiHXha3Z/n+VRclOo5JPqQrhYyaQTIyWfJ5E+ZSfl7oeVlYtZ1TZZl3N3d8fDwMDHJh8NhigLFVeBwOLBcLt8BfWnxh0SLMqnevn07XcN/+2//7VTh/+WXX/L27VvqumY+n/P27Vt+9rOfcXp6yo9+9KMJqKaV/ilYTRnutNpQNCxyfUR7s9/vpwku7yER4vscTdNEK6M8Q6tolu60RyswWmGVwhiFMWB0oPcDbrAjoxT1fGWZYcxYuRoCzlmciwHF4Ab6bmAYDIQcgkcHS2wnGkGg946yLFAEbN9x8J58vSY3mqqoUEDb9tSLGeuTBe7QYEyBMnOq+Sn1Ysns5AJdnWAoWJ29wPuefuipijtu7hpePKtZLgzK5By7jq6DelHy6uUlZZXTdD15nlEpQ9s23D/seHZS0PaeoDV3d3uGvgcUy1nNQEtRam42LWhFZqDtPTf3R37xy68oM81D/iVZnuH8gNaKANS15rvf/ZivvnzD7tBw3HXMMGgiaC0ywIOzgaIyFLkh02BMTjlbkRc1xogeLaYzFbEhgw9JdD4u3HYYRh2xx/uY3rYerPU0bcP+cMC5gNKxsE706PcPW5q2gxDItQEyDIb1DFazju3x/Xut/t//yT/jsN9RFhnnZ0s+evGMjz56zmy+YrVaURYF2mR45xlsTwiWrosBsRu7NJVViQ3Rh9coDT7aLsVWneOaNbYPhoBzProzjN2/MlNEJv/8gqKsIgM6gvssL2i39wy2A63BDcyqInrddh1oQ99HQ/+maWna2Ga1s479ocW6nt55XAj0LhAIDL1D51FyAlE+I4Vf0WtVinRcTKErhQ2ewTm6waKadvQbzWKBXV5wc+952DhccJgs43jY0w89u/12XHc7DurAcrGAWLIV94wxEA2o6Mnbtlzf72mxXG127I4NWVnxk5//gvl8zna75fMvXvPm5pasyum7nn/yz/5X/vSnv+L/8n/9P7MuovbR5DlG6xFcqiiaMbFJgR91xEb0qyH6OEci5cjZyXOqosAoTfRvjXM/ln7G4iyjiG2V39N4mi4XkJXWPaTkV1o9L/tqCmBkPP0+rbgXL3DJ9m6323feP03Zy94lcj3J/qYpfPn3cDi80wBAmNc0/S/HIkAxrfcQcCwEmGRX5ZzluOW4hLgSkCn4J8VSaaZbWFVhVlOw+hQAVlX1a2y2fDY87v+SfRVAK0Sg/E56P/6647/kb78VrP6Lf/EvgNh29dWrV3z/+9+f+sgLEIMI4uRGilm9XHBhWrMs+7VUdxqppJV2MmHlAs9mM05PT9+h2eUCHw6HaWKmYDmNpuRGSwcuiVBSV4A8zzkej1Ox2FP9jeh1U3G2TCZ5KAQgC6iUh0G8S40xU3rh5uYGrTXb7Xaa0FJJ/1SDI+c6n895/vw5X3zxxQRWi6Lg4eGB/X5PnudT8VSe58xmM7qu4/r6mn/8j/8xi8WCTz/9dJo0qX1FKtB+mkIYhoE3b95wdXU1dbUSpl0YamHVU7H5+xyDtXRdz6LKMLmJ6eJI12AHaenYxw4xWELoY+EJsRgrMxrrAviod406Vqb77Z2nHwJtE6PnKtcEZ8mzntlcY+0QnQhaizGK3o46oz6CodVqxdnpipubBwKe5WpGYy15VjCv5yivUCrDZAVVPWNWFGh7YP9guL+7Qxsoq5ws18xnGUFprLe0ncL6I+2qwgPWwjA4nAXvAp2C1zdbyjwyV+v1HJNpHnYdx2ag6QtW88DrG8dx5zldGzya12/v0f7I84sFZQFlWVDWBVpprHXkmSYziuPxwOCi4f+x75nn6wgudKzq1yYWwhgCdZkxmy+YL0+iXZXJ0DobW6pq8CEBr+ON9SE69PiREfQCYqNbw37cZJTKCFh8CLFZwyj7MZlGG4Uh6mCVMuRZzqyqeb4f/laA1aFv+ejVC148u+DDF2e8fHZBXRagC3QW3RlixXjAZBkhOLTOCEHTty1939E2Rw5Nw2q15uTklMEOkX3LDL63EGyszPcRqIbg8dYybAbaviM3OZ/98L9jsRi1qiMm0gq6tsF5S1FXWB+lHW6Avu8YnKftjwx9h/WBfnDkZcX+eOTQtvSDZ7CK3gV668mKamwkkePt2MBD6ZEVjn7IKsT2rZCuuwPGaIxWqCGyyG3bxJ8ZjfGWIjcsliuUyWmODVlecH1zFdfdzSbqbp2lKDKKqkSHCP6c9xy7TuhOyvmSernieHfHm+sbMAZVFPynn/6MTz/5BKM1X3z1NXcPDyyWNS8uVtze7/mLX/57Ll884//0f/zfMR+Ln7K8GFP32Tj/oqYWRhZyvNB+bP283++4u7tnMSvRn3xEUIrt7oHdfjulbmX9zYx+nz0Bfo05k//L3pKm3dPfk302reVIZYDpPpyCsHTPl3qN1JpJaz1hDflMAZe3t7ex7XKW0bbtO/UqKSspzj2y9wueeJQpPeppRSqYsqb7/X66FgIABZ/IPiskoOCFlBFN60XkPoscQM45BeOSUZbrLmxpWluSfslnSF1Sap8lgF6Y15QRfnq//7I0/tPP++uA1m8Fqx988AEvX77k8vKS8/NzTk5O3tE6pHoRuclyQ4TNFNumk5OTqeJOwGUaEQgb+tRWqigK/uE//IeTV2saqcmNEuss8QKVFqQSvcj7iafoMAxsNpt3Cptk0oq2VPQraZMDOWf5/fThSwvDJM0gbgGLxWKagPIgrFard1IZYswPj+4GKfsslhqbzYY///M/5+3btxPLulwuJwCetlaTr2EY+PM//3P+1b/6V5yenk6VjjJxZKSsdwhhSqv0fc/XX389sc0ymYU9fqy+frdN3PscRZ7RDT2HRjOvS5TWmCxq045tw7E50jVH+i56qmpF7GWuMoInbrRtT55BVcauOVqnC6xGqwwXLF3rwI1WT8GSGU+e1/TOsjs2sWApK/DBMbiBEBxBzanK2EwioJgtKrLBcXl5yfz0gvNXn7A8O8X5noerX5CpwMP1lxy3G4aupTkeY6HV3vHyxZKffbHFDTnnJwUDmuttxwe55tWzJbvjHeW8ZjEv2R17Pnqxou8tV9cNHz6ryHNNrhS2C1zftPSdJlhFnRt29x1hrjldwsnpEnTg9uGOeT3n+ewSgouAIXjubu/ohxDtkYLGqYHBebSB5aLAfm3ROgPvyY2mLnPm8yV5tSArSnSeo3XSrU5rcFJcFb+UNlRlTVmVVEXB4Cz9EKUDeE/w4C0cDy29kwyNpxyzJdEtQ9wq1LTQxgLS/Nsn1d/Q+N//D3/A2dkJi/mM5ayirGuCMqAMhMg0hrHoCgxa5VSmpKwWuGGg744cjnvQmqLII4jsLYPzuODZ7w8cd1u6tqHtox6yLArmVU1R5Njg0PMFi8WaopwTgsG7AU0gDB22b3EoXG8xWQzS26Zht3nAFBVtHwsCB2sZnKM9brE+MAyOzXbP4CCQg8nRAY5tx8l6THFrgxszUC5Zd4P3KFl3ncO5CLKdj1/WOfrekufDuO7CYrGgGyv7FRmD7VkN/dR8IATo3ll3RyAC4zyEsqooqxyM4c3VFV9+/YbOOkxR0h9a7jZbijJn0xwhM+RlSTWb4x1s9wf+3//0n/Hy+QV/8KO/89hdyoPKFUrFYivxR3Uumlk55xhsh+07vv7qa+7ut5yulxgTLbq6oUPr2EFaa0WeZWQmG/X070/OkgLLVH+ZEiFPWb+njGua4XvKBqZ7cOo4I6BQCJvZbPaOx6lYKQoYLopiktRJFjXFFqkETkCqZECF+EqzrankMMU3+/1+qjMRmyrZLwULpRKc5XJJlmVTal/2fZEAlGVsSCPYKpUGCo54J3gZ7TH7vp+KsVOpYhoUiAVl2q1SgCswkXhpjQp8u9b0mzDAU2zw22hVZXwrWP37f//vs1wuJ9/StONP+sHp92IUL3KBpmlYLBbv6EIFxD48PHA4HB4PJstYr9ecnp5yenqKUorlcsnp6ek7LT6F8YPHSnyJrqQ4SqIp0ZXKzZfPTsGgtDkFpghGLrZMXGFNU2AmNxmiDZZ8L5M2LVAqy5Lj8ThFUFL9l6YRZOKJBkap2A5yu90CMSq8urriq6++IssyTk5OmM/nk01W27aT88But2O73U7Mc9/3/Lt/9+/4wz/8Q4Bp0j1Nx8h9kIn55ZdfcnNzw36/nyZ/et+FOU/1Mk8jsPcxZnUVK4Wbjoh7FEoF2q6laaNzRdvs8cGh1ditygaCD1jvsS4Cn2rsdhODE9EghbGXtyLP4rXsBkdw0PcDRdaxXuexMYEPKOLihLejjZan7VryrMQYjXXRosh6xy9+8XOsb+m2V6zOLlClZrVe0zYNfujQeFarOZ11DPcNb692PHtRkymNUhlOOa6vO4pc8/y0onOWWZ1xaB0GxbyEZ6ucL68GLk5ioYnRimfnNYPzdK1HqZxFHZjXBtvlLFcFy5lns235+ut7Xr04papq6noGyvHwsOP1mzccDke00Zgso90eWC5jZy+dGcpSUxUmNikYHP0QtYH3t19xeLhmfvaK2C4yrfxXaKPxFoJ3eDfgvaXvjjTHPc5HY/chQNN27I4N+2NL2w40XUumFSY3VEVMgx0OB5RWFMVjcKuUpqrq0abmvU7ZaXz64UvKsiIbu3y5oAljARnEpG8YLaciDxdGSypDliuyzJCXBVUdi0cPhx3OOu7v7/ny9Wve3jyQmYxXL57z7Pyc5WLO6ckJq+WSvMjBaGbzNeuTy5j+xxN8x+BavLUYAyjDYAeGY0t7PNAcD7EwSg+jXEZzODZ0g8V7OLaW/bFlsAGPifrSquJ4bAmjDlVrAyoJerV+1N8agycyj0obslwTUDRtj1KGIlNY5+n7YSxQMiORUZMde1SVYQbNYr6ka45kJqe3lnZcd9feY62b1t1ZHdP7OVBlBV9+/RU/+cl/Zvuwp57PqKs55rLC5BpHYLFa4b2Lz7OPTUmcddzcbPgX/+KP+PDVc1bL2LK1rhcoHca5DkqZSVcevGe33XJz85Zjc+D1m7c47zHakGcZyhiMyZnNYrYiWIvvO3xmUXb0jX1PQ/ZOAZopYE33g5SRTL/S30vBaoovUh1nKsuTvUf2ozTNLaltya5K4ZNkAtOCa9njn7oAyOel+1v62akVZwpArbW/Zp0lhJ8QZFJkPZvNJsC42+3Q+rHgUepoBC9IHYwUY8pr35TGl2yyXGOpOUmBuehUBZTK3l7XNcAE8AUn/VXGUzb26Xx4+ju/aXwrWL24uJjQfFpY9PQD0huaalbSynOJAqQDlFSsLxYLPvroo8gozecsFoupWEvA6nK5nN5fCo7SVEIIYdKLis+Z3FCZECKuTiettXbqJS6sagrihP5Pz0/OWaItOX8Bd+mDkdpUaa1jpD86D+R5PulgBOg9PDxwdnY2HY/YVgGTRODk5ITf/d3fZT6fA4+NCIqi4Pr6mouLC05PT/nqq68mKYZEV2/fvuWXv/wln3322RQ1iZRgNptNbWONMbx+/Xpih6uq4uzsDOccr169mgrZJAiQLlrSWjcNbN7XKHKDtRrvPE3bETtQefqhYX/Y03UtuAGlAjozqKDwjtjP3AWsC2Q56DybFqJhiO1XjfaYzJDn0Xan6xR9P0STb2c4NB7PEW0gBINzCq1ziqJCa8UwdDxsDjgHOhisDWy6gfmspu87nHd4FTi2R85Pn0emx4ztYHPDMPSUVYkxPXkO11d7CIr1esZX9zv2x4EPXsxAaa6uWjIzIwwtZV1yOispc8395sjf+90XfP36lrb1rM41i1KzbzVXV8dYALa1nJ3krOagsORFgQ8RyN/f31PNCpbrRfSnzTQn50t6H7h52FLVJW3vqHpP2/YUmacoAk1rWS4NJ6c181nJrC5H7Z0a2SwzgdXoS6siULU9Q9/iho6mOUzBp7WOrhvY7nbcbXfsmhaCZlHPKIucegwOD6O2WqssahKHYbSMWU5+iimT8z7HbLHEFBVogycWz+BV9KiVVPEIdABC8CgUQYEPDjv0tG3D3e0NTXOkyHOeX1xwsV6xnM/49KOO9WLO5ekpy/lybNMZwWHQAZ3lnJxcUNerCFSDw7uWvt9hiIxn17ZRJ+x62ubI8bBH5yXWetq2I8sKmrZnsJam61CmxtpAXtb0A9SzJR44dlvqak4/WLIsnkuejbUM6bpLBOnORz9fgiIoE/Wvg6PIHJmJgHMYHEqH6NOqM+aLJV0nWaGSoeso8pK+i8U29w8PnJ5dPFl3oz9zXlZURU1WVLSDZ75asVqfMFssWVU1gcBu/8DJ+TmzuuTq9VfcPmw4tnHd7nvPn/7Zz7i6uWE+q+naDq0ybPBjZ66cPCvIsoKyKmkOe/a7Bx7ub3n75g04z6KuWC0XscBxYuOgaTq644F29Ab33qIV/L3/w9/sfJUhgCpN56cgTV6TkQJV+T59TUZKDqU/k/cTVlQYw6ZpJnJImFOpnk/3JtkfBZQKw5oeW3q8gj3kPOVv+r6nqqp3HIMEBAsRJK8JeBVwLNJGIdtSX1XBEMKcPpVbppIEYOrWKdckhDC5CaVSgdRDNs2IS3Of7XY7gVW5pqkk8a8y/muSVt8KVqVT0286iKdALn1NgGPXdex2O5xzzOdzzs/POT8/5/LyMqafynKye0qrCL2P/q3L5XJKWaeFTHIBJbKQKEYWHJmkovkQewcBmSmrKN0jUvo/reyTkUZ1MvHSSSmTJ01ryHFLlJSywmlloUSEApbFeeHu7o5Xr15N0dJ8Pud73/seH374IVdXV9PkhwiALy8vybKMP/iDP+CLL77g7u7uHZeDP/7jP+Yf/aN/xIcffviOZUbq0LDb7bi5uZk2dGstn376Kev1egKnaUWkdMYSAF1V1W+cN39TI1OKPDO01nI89hwO25hac1H/kxmNGdm74Cf7Q5QBFQIGjdYwOEvuI2Bou9jWUClHUQaKPKbwYuQMXddTZDVBw9127Jde5igVW0r6qiQzBu8Vzit2+wNVUYLK6IaBzW7HxWyByUpcCFSziszk1LMZg/Ls7vbcXF2x3+3ZHHt2O0fXecpqRlE73tzsuLvrWKwqqqqg6yzWG8rC8OEHawjQtkd6C0FHpurDF2tu7xoOx456CKznikORkeUZfdOwf3DMspzL85zvf+eCl88u0OT0XYuzsbtXVVVcPL+kazp++fqG3nt66zCZwhNoup6b2x2Z0azXBWWpwQ+AIc8MOivJiwJlcpQeiyIYnYSIhT926LF9Fy2cxgLFYbB0/UDTtnT9gFKaeVWjdUZdVpTiGRwCeZZDDYfmSNseaZoIJrLsser29z685Oevbyd98fsaupyBjobwPkhq8vF1pUfmOYAKHhUg+IGub7i5vuGw31KVBYUxrE7PmBUlhTEErfjo8hylI/uaGQPBEka/U2zA41mev6KYnaDzDIIn+LGlY1CgFdZFp4sQHEPfj8VI0LQtOiujh6nK6LpYDJgVNYNTKJMRghqDrwgqMpODjp3YJP2u03X3HaIgvm6tw6i47mbGMAyWoXAUgUkWoFG4cX8qC1l3e9ToNWudIwTI84ww2n0F1Lju7rm7vePlhx9FIGkK1idn/OgP/5Dbr9+wPx7IZ3PysqQsC459w/OzNSfrJWcnKzabe8p6xmxwHPYH7jeOn/zkL/gHf/8fsFpHDbD3cc0vq4qqrMnyHO882/tbtIayKLg4XfH88hk6y1mul1HGMjQcDkfaJgLtfug57CNzvpjPyIr3RxKkYPWpDADebesJv24inwLE9LWnaeOUvczzfNKFpgXBqfZT/i9uPPJ7ovlNPyvN2KY1N/KVFjk9lS6mPvSSrpe0eiollIKnqf7BPxZen5ycTOSR+NbLNZBjSPdlOY/ZbDZ528vvHg6Hd9yK0i6eKX4T6yohsERCURQF8/kcay2bzebXMN5vAq7fBFC/Sev6Vx3fiijSQhk5OJmEaUpchtyA/X4/AanVajW1W01TBMLgyXukRUnyeev1eiroSYt+0omV0vje+0lbkqbwU8pfJltafZ+2L5PzS9MIaZV7yi6nP5PjSp0J5HhkSDo5pfSLomC32zEMA4fDgbOzM1ar1cTsyt+1bctisZgaDkhnDgHIDw8PE2iVQrHT09NJaiHV+59//jl//Md/PFX+yflKtLlcLvnVr3416fs2m81kXrxer99xNZC0RarvSefLex1aE6uc48Md0/87GI3PvcnIRg/VeH+hLDVFoRk89F0YI1hL8A6Nmsy4waNcBA2qZ+xypbEWjHYor+gH0DqgjIeuw/meputjz3o9tnZ0DqViWtVZR1UvePXqI1bLNVVVc7Jeo3WgOWzo9nd412E0PH92QfP6nqbZYIxmtaoZNh29DZyuK4o6Y7/rKHXBpx+eADGQ6RvH27s9rbOs5wWvb1s++3CG0SVte6A0nmZwnCxznO8ozwvqIuPFxYyL05zz0yVlYbi7faCuK4rCxEptHf2FY1vmgizzhDaw3w+UpWGz2xGMp57lFIUmyxTdMQLGkJWcPHs16lUfU1IqxCpxvMM7F++TiXO2HLMMwzBgh4Guj2xBUVZjG12Dd4Ghbx8LB3JD2x2nghWtc549e8Z8Ht1Muq4jN2aye3qvIwAhoInaaKUUWumx+CZKWrwPEBx4y/F44Pr6is3DPd45zk9PWc5rylEC4fqBYSwmCiGa0PsQaLse7wNaaYqyJCgPWpMXFVlREWDUAY/pWDTOO4ahj/KLYYgeoAHICuzQoKyNhWC6QOmMPDegcgIeG+C42zNfrQkE+sHKqaKNmZ5FO2o3lYktz7TWERCrx/RxlGeOnk3ElLt1Ay4orLcURkcgT3T/yI3GDi3g0ZkmLwp2O88w9Bx3R07OL1itTggeMpNFyzRtaI8N69mcPC+5+OAVF5fPuLm5HVm6imHoMHnJen1CCAMffvQBActy8cDxcGRWV/RDz4//40/41ddX/N7JC9AVeRZxuHOeh4c76qpi83DP/e0Vzg1st1v22w1/57MfcHrxjM2x4dg7nIe8qEHlzJex0cNjujs21HhfQ9Lvsh+maXT4ZoY0fQ0eQWJKXMlIQaXUqkjToMPhQF3XE5BMC4pSWVpqoC9D9nrBIoIrUtCdepfK+wkAlv+n3Z8k7V6W5ZRBFaCd6m2FiS2KYiqaWoxthdPPknMSu005xrquWS6XrNfrKWUvIFpqdFJJpPxfyCY5hhQLyLWbzWYsFgtub2+n8/w2gPpUFvrXSfV/2/hWsJqm+b8p2pGDk6Ki+/v7qRDn5OSEFy9evKPPSA37ZaSdJURPIb8vXbPk81KgKAxrKjgGpqhgNpvhnJvo7ru7u4kOl2NO6XkBa/J6GvE8vQlpal/eJ7WfeKpdkeNPdS4CKC8uLt5pA/vmzZt3QPt6vZ6qFeU+yDkLnX97eztFgRJlbrfbqdrx7OxsKpSy1vKv//W/5uzsbLpewthK6kQmqWhsz87OJpZdZBwCptM0RLrApPf4fYxj0xCrbC1dd6TvjyjlUMROQEF5HArbS6c0Q2YUZDr2mQoOOwS0NtFWR2uKIiPgY4GOAVSI9jvWR9lAFl8fhli9rrWOXZRs/N22P5LpjMW8osgU3kNvLXWlWCzmvLj8hNVyzS9/+QtO1nPyzKONQvmeTFuGrkHpQLANVa5ZLQru94Gm7WnagcJoPn21QmWOofHM5wXPnl9ye//AcnXGfntgUW7IM8Nm11CYwK++bpnVc3JludsH9p3Cu5Zl7Tk9qXl+tqTMoJ7l7PZHrt7ekmmFNoE3V29Y2WccO4saGrqup6oM6/WM3vfcPHRUrUcVmq5z0bZqUaCNx+Y5RT5jtjzDo3GDRxsLSBouMqth0qkF7Nj+0znLsTmy2+9xLrbQdD6mVYd+oB8G7NjSthytmI6itwph7LVdjp7N6rFBSF1H7ed7Ht71GGKfexUMCjU6I4xGoCGMLPOe7cM9t7fX7A971usTPnzxIbOqGsHpgB08RsX0/jBETaX30XYtygvAO0ffZlFbvFhSVLMYiBG11MENeGdxY5W63JduGDg2LUFp+sEBhnq2IHdQVjUoze3dPfumYwiRLR+se2RHR+1p9DiNa2WmNd5Gqyml1Fj0+HTdVVg7kBnNMPRURUnAvbPu+vBuhb1WCu88x+OBLM+4uDij7xqsbbHec/XmNUbHIiWlAifrFV3bUD67mJ7loprR+j2XL1+iMDTHI7c3bynrOnYWsi0qWE5P1zycbTgeG9rW4LeOt29v+Fd/9O8J5gSjC7SyhGCpq4xZGTW3b1+/Js9HS8DtjiwvmS8WzGdz9oPH+oA2mlLn5MU3dSH071WzmmpFn+pKZe9LsUQ85ncxhkgOnzrKpJIBea0sywk7pFX76d+kWlQ5tsPh8A67KcFqut8LeJViYtmfBQhCtI8S+UHKsorGtO/7qfhbCsTT6ySfk16TzWYzWXQKBhFga62dSL/UYUhYUTnOtOUsPBaByecKMyu4R1hUwTNCpolsMe2s9W0ygG8Cs39jMgChsVOgmk4yufG73Y7NZjMBpRcvXnBycjIxghKhiK5DLlR64+HRazXVSqbCa0mbA+8AV2CaGHLxF4vFRM3PZrNJHJxqXYVdFTbWWjvZa6VV9fDrutz0JoiuVCZRCr6FXU0jTdG0hhAm8bVzjtVqNbknWGv51a9+RdM0fPbZZ1RVxf39/cSICosqD50AbGCSDOz3+8kaS65hnud8/vnnvH79mtVqNelsr6+vqaqKFy9ecHl5SVmWzGYzzs7OpgVCdCxpuieNRL9Ju/y+xub+FqUC3dDSdQ3GeHKTEVwsvlWjTMBoNVnyEGLjgKAiW2pMoCgyulZsRwzFWHClFHR97DHuvEg5oqwgzjFJvSi8jybnxhiaLr7vkEU7nuBig8VZ7TEZdL7HBcfQt7z+1ReEMHB2uqKqcg7HHR5Llld8+WbD4GOV/f3ecbvpKPKMqsy42zQsq5xPPnrOYnGKHRwffPgRV29e8+q4iyxj75mVBfgWRQQHZW0YcKxnObMip20tVzdHnp0VhJCx2x2ZLyps3/Gw23NydsZffP6Gn//ylpN1wcmi5Fd3Hb96YykzT72IPrbKBVaLmm4YK0+N4fS0YjlfwNDT7e9ZnL4cNatjvjuMRRbOYm1P3+zZ3d9y2G3Y77bcPdxHHaLSFJnBh4zetnSjhixuOkx68GGw07M304aqXoxSoYGiyCmKqM0vsoymG37zxPobGPf3N2OtQE6WRekIMDZjcOx3O+7vbrB9R3CWeV1ycXbOfLGM7XHdQNd3aOWoqxXrxSo6Agx3DENP8B47Xg+joltC8A5QFEU1MneaIGultzjXo43G2fi7Xkfz/q4fKKuaLC8JyjFfrBisx2QZ9WzOoenYtwPWBXxQ+ACHpmG5yNFGY/sO69y07oYslWNFnW48iMg0R0YsAG5cdxXWKHJviA0lHgtxtckwBMLot5tlGc5aAp7ZYkkIHucDq/WK5nBgv9tM627XNHzvs/+Ouiy4v7+lKMrolDBEe7XFfBXZM2MwWWygkWvDYKM/sx061utYWNw2HVpn/PF/+DNefPL7KF0wtEfqUlNXoP0RjeXVixcsFtHz84MPPqCsMoqyQJvoFeyHgRD0JAl5KlFTKrbMfV8jZSefFlkB73yfZidlf5G9LZULyN+mMr3UTinVbTZNM1lqCnsoIFZ+Jkyn1rGJwHw+n45J8IgQV2nBWPr6U6ZVjlOKpeq6nj57t9uxWCzeAaQpJpDPkJ+Lw5EUqksNiLwnRJC+Xq9ZLpfvHLvIEWJR5eHXGNy0lbpIEFK7SQGrgpu8j7UJaRHXN2VPfxNI/U2/+9cd3wpW7+7upgmUspwCQq+urtjtdpPW4fLycnIOeJoSX6/XzOdz+r6fqvafUvHpiYjYNz3Bp5YVMkQk3bYt6/V6KiqS1qwCTK+urqZCq/SCPr2QEhnJzZRCqVR/IxMulQDIDX763qmEQo5X/lacAbbbbaxQH623vPcxFbTfT8VVu91uioKk8E0E0NNGPJuhVNReff3111Mafz6fs16vp6jrJz/5CZ999hlaR6/ay8tLTk9POTk5mcC4iK6lgCoyUo+aqKdRsfzsqTD9fYy7u7fkuYl2LsSKd28dhNE8mwhEPR47OIIPUwrNeUeRxzRgWRhmVYZShhAcmsC8jp6gZV7QNEesc5hcY+1Y/a8UWksXtQxn4//zUuEcbPYteaYgWFRQ5IUjeE1Z5OR5Rl5kbLb33N82rNYLLi4vWazPycqCL7/8OQ/7lod9z+ANFxcF9uFIP8BinnN3v+F+3/G9j5/x0YcfU9enDE7x/Nlzcu1R9oGHQ0PvAmcnc9b1ks32wLHtUaZkaI/M1jnn65IrF7jZDuRlTl31uMGCssxmFVqXbLcDX73esG0U98eeIuv54z+/JfOB7740vLyYo1RB8EO0WwqgVEnbDphZhnM2Mv5di1IhUqk6VkQHF9PP3lnc0HDc37HfXrPf7thuHwjeU+YFRVHhPdxutvRdPwVOxphYjDLKQJz34z3W5EXOYjEfNzA/sRMQ+B9+92P+P//2P7/PqYtWeiquNLqZ5hJKc319wy9/+QtO10vOT9fM5guq2YKynMW+9BqUMyijyTVU8wVea7SJ3rXNsRlZyZzYKWxkDXWBwlDUc3Rejun5KOZ2zuLdAGFM1RsdgWCWYb3HtR2r9Rlzk1OUM9Zni5jWD4HzY8vr6zv63tN0PUHFjIIf8/9KfcO6O26sU4e4iaEbvXeNwo+eqIpAlpnIKKonHpIhoIgerEGNJvHGjJmRWPD6sN2yP27pmiO77QbrHPvthv1uT1XkVGXJfrfBuejPW9YVBE1RFQSlcChMVqCNocw1KvRcXd9ye7ehbVqMyVA6Aqtf/upXfP6LX/Lig++gfBa157f3XJ7N+fDD55yenFAUOVVZx8xXiA0QIBbYtglJAI+EzSOwe79trp+mydP9Mh5feAd0wqP3aPqVvp4SMemXVK0LnpDPEWZ0u91OrGYIj+b6wrRKwZXspSlWkX1P3i/tEPXU11T2SqmLkQ6bUoQs2CiVRMgaldpmKaWmAqa0xkUq/mVvl2yxMVF6pZSafO1TbfB8Pp9ArxRjpZ7tcuwSYAiQlmK0+XzO/f391GThKUH3TeMvkwH+N5UBiBeoRBJilxBC4Ouvv+bq6oqPP/54KrBZLpdThTlEnZyAqjR9XBTFVEku0REwgWFpIJCm4CUKkRudUumiS5PPXa1W79g4QNRiCoCWCCzVnMrxyvGkn5s+OCnIlJGypSkTO0X4+l3ftvl8Pk2GVHsizK80DlAquiGIa8FqtZqKS5bL5UT9ixWHAPzUs1UsstJjK8uSq6srPvjgA05OTnj+/Dmr1WrSwF5fX0/nvt1uub6+5vd+7/cmsCr3UdjhFKSnusP3OYIfIhujM0yIVblD59A6thY1SqGUI8vM2Iscej8GJQoyY6irgiLXZPm4mBxjUZG3w9gH3WN0rDjOspK+t7Td8M61UMoQULjgcJ1DoVFYCIo8iy1Cj8eB3b6j7wdKk5MZzeriktWqJgSPzgswBXlZsVotud8PXFys2TUupsGrnMvTjFmlMUZRz2ZkRnF9dcUn33vOd77/g1gEdfkjhmbDYrbnw+dbfvFmy3//u6e0vedkucCGwD7Pcb5k8GAyzdANbDcHXpyd0A0W0/QM1rE7HlC64Pah4Yuv9xxbS2YURZbzwbOSzXaDDTlGw/bQcXaaj9XcgXaw+EMEKvvjnrZvcN6RAwSH9wHvBpztcban7xq6dk8/HDk2O5r2yKyuY3EOsR1nkWU0qsUYTTEW1AzwDvOymM9RJs7NvCxiRT0x3aa0omna2IHpPY+Ts0u886AUwTn2+w03N9cEFFdvr6iristn0T2lrirmiyV4RpsnQ15kkSHNciyeoe/QPlDXC/p+oO06lFc4GzMAJot6WFVUzE4v0VnsuhaCI7geZzv80KNNCUGDKXCj1VRe1NG1AcVytUKbgiJ/9KxdLlcopRmcpWn6cd01sX1qiG1Yp3W3H0Yhp4UQxm5N47qrDcGHKU0/endFeZm1E6jTEf3GgEfHLlhBRVg7n89ZzBfcPcTGKUprZvWMtmk4Okd72JHnBVrBarnE2YHZfMZqiBkvpQLGZFTVDGMyTBbnn8oyFrMVdmg57o5cX22wQ8B7RV5oVsslh8ORwfb8xZ//hCyfUecZ89zy8QfxOc+znKZtx7nq6broW+suTinKWSwQBBi7jQXvR3lCzAzBWISn3l9DlpRRTb9PWdSUzQOmDKowiWkmF3gHhAoeEMImdaKRPVgAlzjgiKZV2EfJ3KYFUQIIhX0UokpwhqwhQloJeBUcIBICIfUEV7Rty263YzabTcco55TiipS1Fd2pYCZpVgRMzCdEQCqerV3XTYBdtLwpsZd+lvwrAFSug+AacUUSdyK5LvI+Twm4b2NM/2tKAOAvAavL5fId6v7u7o67u7sp+vnkk0+4uLiIi+YIWKUw52kUJOAGmBwAUm+yVIsixUFpVC1AVdL48vvSfSql2mXSyaSSKGY2m00SBIkqpOdvOhHSSsGnD5tob1MwK3+TiqyfFoPJSPW4AjLleGaz2ZS6lzZ+4lEr0Y7obMTxwBjDcrnk5ORkSgWIflYKyFIBeV3XnJycTOn/V69eTUBVGCl5yMQLV4IOeWhvb28fmR9jmM1mE6CWxed9uwGUuR7Zy9i5qe0tRh6u4MjLHBUc3gbsYKMUIFP0YnrsPXWRRYmgC1E7iqMsMpSKf+OcZzarGfpogZVnGYPz+CFWLhs9Fnn5aM0UfKAsMjSKIlfUZUFDhx97nT9sNqwXC3xwZEXNyw9eoUc//OAHrPUEE5tDvDhTqPuWtnPMc4vLAoXJGDrLdu8oZwsIGYv1OfPFnMVqTd8eKas5OmjqTHO362h7UCrg7IALNupjs5o31xuyvGA+yzg/m3N9t0MpKCpDcIrbhwPWd9zc7+NzoxUeeH6Zs1prTDDsdj1t31Pmjv1ekeUZwYBzmtbGjWS33/H6Vz/l7Pkn5EWNLszI5vUEH9vfosZiSSXV8UQJhzFonbPb7yNbpmAxn+MD7A97mrbB9ZGpq6uK9cnJI9tjNC4EjM7wPtCNG99/7QX2rzOKfIbPPEZrnBt48+ZLNg8PvHzxgu9/51PyoqCezZnN5hRlEbWY7SEy/FqjiOAzsvyxSMuFqNHOyxpMhreevChGBjR6/5q8ZrZcg4qpf297XN9EhttH/Tc6dl3qbQfKMF+sUCqyh0ob8rxg6AecjRtlnhlms5pN61E6H+2mHG3bRccHraOrRIBgHVlRxPajLjYB0ACK+GwNNsoCvCe2KzU4F2198iwnBKKcwce/UwRUwrBmWU5R1MzrJVoZtM5QKmM+W9AUO/bbB2bzBbvNPfPFCdrA4Abm89m0BxVlhckM4FmtF9zfF5RFPnaLs3gy8rpmuT5hv9ti/YAyhrzIqec1ze6OYI+cnF7wweUZs9qT5QbrBq5uNnRdy2B7Hu7v2O/2/P3//u9xsu4xORx3GxzE9YqYfbSjPZcxjw013udIGdV0f5S9OSWwRFYmoEyyt7IfpjI6CWjSn0nbdAlGBU+IFC+1jhI2Mc0OS42JgNkQwhiUPHZskv0+7YQpmEGOUfZWwSDpud/c3HB+fj59BrzbLTK1wEzfM71WqRYWmM5XbKqEKBNtabpXC4YyxkySQUnrC1gVDCJkWZ7nvH37lt1uNx1rWpsi91P+Tdl9OY//FuNbEYXcdDmRr7/+eqpYPz8/n4CJTD4RFaeiYHhE8ZKul0kgF0DExDIRBfwC06QTXajc4PRma60nYC0bjhyPsIppv12h30W/IiymvH8awcm5pOLt1PpKJoLc9DS6/E0SAylokugshDDpUgDevn07gdE3b95M+hqx4hIQLf5uRVFwcnLCdrtlNpsBTNHq6enpZOh/f3/Ps2fP+OEPf8g//+f/fNLs5nnOfD6fIls5V7nu8mDIWK/X0XZmfPBFFygSAQH673MsFjG6bDpL2w6RLVnkGBOtfjJxA9AaHRTOeYoqG+eTou96nG3pvMZ7yHON0jG9b7TGKTfaUEV7q6Ft8cFgffS8NEajlRQVELvWaBNZXQJFnjGra+Z1jbMW63q+fPOWIs/58PkF+80tm+0Dy+UMQuDu5i197/jq7R2bh31MPxJY1AW9yVDasVyW/MWvNqwXM14+PyU3a04vnjGrKmarNddvWxaLNeV6wXpZ8rDr2W1blrMcrWJb1sWiYrDDqFnOKPOcL18/oLSjLnLOznI2u000rQ+aV88XzBeB6/sdhyHw+uqIZsbFesGs7NkdOpSK7WmjBVJGP3jc4KjKGPjUn/8nPvjod1idviDLCgghagtdx9AdaPZbNg93PNze03cu6jizkqKIBYFRK+ZYzGp6F9gcjmy2G9pjw7KOGYm6rtnv9zEonM/Ro36xHyxDP0wb0PsOsiB6gXpvcW7g7duv+eIXv+BktWRez5jNog+jKWbjdYXBDnFuhugrrHXc/KyP3cW0ynAq4HSGynKGbtSrlRVKGaI2VHF28ZKyXqJQY3FWQ9/s47McFM5ZILZ7NSYDH8Z1NxY0xutnGAY3rbvd0I8tYQMmz6LGtSzp+p7s6bqbZxNbGEZLriyLnqSaQD6l/2N72MzELllGR61mcC7OM/MoAxAHhWjXFdfdwfaxYUdQ5GXJrK5QwXP91tN2HXmW8fbN12j+Hu3xSNd3EMBaT9cNZFkxGaafnZ3RNk1sd2wt9XzFMPRgMkxZE0JkiXNT8OLFc9589RUFHa9enLCcZywWNVrHSv7Fch09a5sD2uQ8e/4B6/Vp1LaHNnqwNi3HpiXLzMgudqyWa8qyZj5bkBfle5q179Z1PNUsijSvruupWFdApABVAavp3iv7q2AE59zEZArZJNX0AmIF2AkbK6QKPO6LQtYIfpBsr2RdJeUumEY+U+w4nxZ+ax1bp9/e3k7HL85IUuz0NPMqrPFT1yEBqwLcU6Y0xSEik5RjkXOROhjR0Mo1FQZZyCy5L1IbJNfp4eGB6+vrCTOl9zQFpilQ/aaanv/abOu3rswSqbRty+eff87t7S0ffPABi8XindZcApy+qXo+BZQp+EvT6QJyBOGfnZ1NFzAVDacpe/kcAb0COCWNLjYWaeW93HQx4k8jQLn48nCkF/5p8VBapSc6K3jU7AgQfnqTZWgd9VLSKEG0NYfDgfl8zmq1mgqg+r7n+vqaTz/99B2NjTxgEgTM5/OpW9ViEe14RIAtUdb5+TkvX77kBz/4AV9++SWbzYbZbDax4ukElkks75V61Z6dnU3myAJq5d4DE+h9n6PMc9q+Rykoy1jtv1zkaByZKTDaoJRD54Y80xCgrkvcMKC1oesztIK2dbR2oOsCYNgPLbN5fM35wHDssM5SlvF8jdJ4fGQRnaUsC+q6ZH84xtTnmIoKPjKFRZ4xqIBSOcem5f7hnlfPzwgE/uKLn7Nc1fRDx+3thqEfqOolg1c8HAaKLAJubzTL05yu8dSm4vnzM/CB9bNTFqt1bMdYFFSzBeuTc3b3X1GXmk8/WFHnA6frGYd9T7tzqKwgkKF8S9dYrNUM7UA9N2hteNi2ZFncGJaLijwrWJ16vO9x2463NwObamBR5czLAusc3juyWQxordd437BcLlgulywWJUPf0h23BGdHCYDD2R4/dPTHPfvdPfvdDk/sNuWDIssq+t5GL88xUApBc9xtub255eHhnsvzC16+eImCqfXharWiLAuU1hyHjqZrYtHQ+FyfLmecLWfvde4qFXC+56uvf8EXX3zOxcUFr16+ZFbXQMChGLqOwcbq/izT6MzEVL567L5jvcNbwI9rkM5QRUnmPDgHo+TFGIXJcubLU0xWAgFve7xtwfVYNxIJwZPlJVpn9P0BpTV5Hhs5OO9p2pa6nk/r7uF4JBuL17xz5HmBCz2eeEzmm9bdEIGoUgGtQRNQYwGYGQNLdIZRMAx9bAHrHcE5hr4jFO+uuzFH/ugmMF8s2B3jupuXJZULNIc99WLJom15+/WXsfC0H7i9ueaT736Xtmkp8oKyKEfQHsgyRZYXLFfrqHse7cCcX1DNFxA8+90DhYE3b17z8Qev+Pt/7w/4J/+v/wfN9obVwpDnGWUZg48sH60EFXjvotzIOzQOHywGxbPLC5a9p+0HQvC0YwfEsszItMdoH9ey9zSeMqLw2NWyrmsWi8WUxZM9RvZwIV2eSgCeglWpN5G9Pi1WSgGS7F8yBJiKHFF+B5jA3Xa7nUCiDFmvhQgTz/L0GMWH9Pb2dvJsFyce7z37/X7CUfIzAcLyGUJ0CQCV6ynHI/K+EMKUqZbjlBohwTaLxWK6VoJTpLC9aZop8yksrEgoJft9dXX1TmfRb2LIU2z0FB+l/6Yjfe2vA1r/Uuuq7XbLF198wX6/5wc/+AEnJycTaykXQxB/2hJVqvvSFL5QyhJNLRaLCfDI5wmdnlbLPXUAkMki3RYkmgIm438xwxVd7Ha7paqqKWX9lNUVWwiZJOlnCcMsk1bYR/mZfJ9adnzTjZYhE7CqqkmwDY86lYuLC25vbycAe319PYnJBaTDowOCmPeu12v2+/1UjCWBwGKxmDSvoi3+0Y9+xL/8l/+SYRgmWUDa1UqOPb1ncs3E1UFeS4ONNGJ+nyN4ByH2zy7ritwoisyggqYssmhpRMD7gVBIMZXCqnjvT1ZzcpNBCDzs9hxay2HvcEOgbxzVzIAP6BAotKHMDMFrfKY4th39MFAWRSyYyg1VGTsnaRU3Yu8sTXPE2wI/OuCbrKAbPF9+9TUX5ysOuyObNzc4b3GDoihqqrrk7mFgfwiUM4vxmmVd8eXVnvWy5JOPCxaLwGIxiylzrSjqBSbPKasZly8/pq4LXj77Kbd395yvl6yXWQQEzLA+MJ9rujZjt+vZ7PY8e7ZivTQ0raIsC4bBE3xP1zUURYXrLYtlxdFBWdYsa4O3A/u+A6WYz2tiMY8aZSMVZVkBhr7rY8U2o/QuBJzrY8eqtuG43dDsN5HRNtlovxSXLWH+67rGK8Vu3/Dm7TV39/eE4Dm/uKAoS5pR5316ckJV12iliZ2O7OiRpdDje+aZZ1G/30Dr0Gz55S9/znb7wCeffMrJ+pTMZDhv6UegYn30ns3yDOvH1pBE9wUYiQYb8Daa32d5gdYK7zQzk+OGPmYDXI91gTrPyasaMLEtsBvwdgDFyNRm2L4Z17+CPI+BiB11rxEM+HHdfewGtN1sqOux9bZVDD7gAxRF/mvr7sQqKXDOUuQZIbj4jAZLZqTTmKO38TPzLFpdBR8ZzEAs1JtIAsb+CSFdd2v2h2Ms8oKxk1TG2cVz7m6uwbYcDnturt7ihmjzlZmCqipj0wplICh0njObLzgcjlhnmS+X9NZRzZcYrXjx4gN8GPjke7/DxckJLz54we/+nR/xiz//CUWRsVqvYqFmHQvaPKPGXhu0yYHA0O3o2p66zDhZrsg6R9FbULBcLGMAocEQYrYoe78ygJQxlFqMxSIGpvP5fKp7EKAq+4fsYylRlKb3031J9mVJyQv5lNavSJfKrusmJlf2JmFVvffvkGLiFrBarabzOIzdwYSwSaWCEIPgm5sb7u7uJsJG8IM4DUidyW63oyzLqaAr9TpN5YEyUrAqGEvkgimbLEA8lUCk7LK8z9PuoHKtJHstRfNXV1cTFvsmna1gM7l/8jP5vf9WtpXfClZvb2/5+c9/TpZlfP/7358ikLRTk/wrB5pqXEUsnTKiqR+YAFrRSoh1VOoCIO+ZalpT8bDQ9RK5CNMpYui0J+7xeJwWxlSAnT4071wcSV8lkZsch0gjZILIpHtqaZFS4vI5afQnD1D6ENV1zbNnz/jlL385RUVi8ZVaWaSTxhjDer1+R8+SRpGRxVpMqZaLiwt+8IMfTIuEdLdIF5IUtMqETBcQeU1el2smi8n7HPtjEz0iRxuqIi/RWqFDrEaOx6zoRi0rIWAHh7OOQIiFSnXO0LesFgVFYTD0zC6jB6Xzga4b0EqhVcCHaM9jVEZV5BybBq0cszowDB3WDQQfdYhZXqO8Y7AD3itCAOcG6qrk2Pbc3Q8sZpGdvr1/QGHoW0t+knP3sKVpe+a1wSvFV6+PvHqRo7xmVhmMslxdP/DRdsc6r9lublidvSAzmuXpGc72HHe3LOc1t3dbmkPg5MTQ9YqqyvE+cH11pJppylnOymhevDynPTzQNA0m1ww9BOWZLSogjzpCrVnMIdMhpt/XK4Lt8MGiQyxsU0bjg6IuM6rCkBUZu90DdXUSgUYIRJ/IQAjRCUBrzayeY/uBobMEr8jynODVOxtZ23W0bcOx7airmg9ePqcuS9w4p09OTuLczjJ6a9k3DX1vGWzsSqaJqeSmbUYA9v7Gj//DH7N9uOPjjz9mtTpBacMwgtEsL0YmERyMc8cTPGijp7XRGINWmqA8Pjw6qCg9+pc6jzJR96mA1dkz6sUqsprexSInQGX5COQNBRofPN4H6mpG23c439G2HShiJ6kh+qge2watDR7F4dBQFgUuOHxZ0vZDLGQClPLkWY4e/WMDmjzTiNQghNGpA8iNQuloBRW8I8/jcbkg7SgtIcT5E/fYgPKxaQXyPSG6DZgcU+UYnWGHuA/M6prLZ8/58pefo5XCWUvXx2YEg43WXloLyxzItaasKtbrEx4e7smLkqY7xADVaDKjOT17xnq9oCoMVV3w3e//gKs3X9OPfrPD0EVWtSxj3KR5Z8+L1zC6MhR5huljgVU8H4VW8f6VucFkmsD7s65KSQrZ/4VEWS6XUwbvqR1mlmWT7WS696TMqaTuBTQJIQVMQC5lU2VPVEpNxdTiRpQWcwm4k/1VMoxN00w/k+cpJdYEKL9582bq7pRK+dJCMHEGmM/n03VJ3QdkH0/lc+m1kc+XjK5kZeW19HflvaRtsDDDIsNIC84kQyt7v/jkp7KJMK3Lv14UJseZsqu/LWP6V/ldGd8KVv/ZP/tnlGXJJ5988o7uU6IUAa6C4p8CsrQq8KkAN60uk0leliUffPDBVBiUovQ0bQCPSF8mvkQ/qcRAujjIxBUwmE64p4BU3j9lCOVz04o6eWBksxRNrQDzb9KsptdGjkmiIulIBRHQX15e8vbtW7TWXF1dcX19zeXl5aRdrev6HUstuQ7z+XxK74vQWoBreg1nsxnf//73p4kjrVLT4CJ9WKRaUY5VdEap7laYcHj/TQHcCAy1iUUqTROY19EaylrLoRnGNH+Lc3pkrnry3FEUGX3XYHAYo1gva1YqUJewXizprWezOzy28yQQgibPKzob2B8tu0OHtQPOFQlDrWMRxNhSNIQIevs+brK6t5SlJ6tXceNrdhRFjlY5bdNx2Pd45cDAy8s1d/exen17GDg9KXh2nvNwb/jqdcPf+SGsFues1ufoLIuA0gaKMWW0Wp5xe/8lxXnB/bZjvoytMLvB8rDvKAYpnHM0XQsqGrjf3++Zz2coY7i9b6iKjl3T8ubOcnoy5/w8Y70wNIcjy/kcZ3ugJ88z6nqGNhn3D/sJlOyOPfNDy5/9+H9lefKMV9/7e9GCyMbOYbnJKPIipo1VhioMSmU0YwWsbAZN27F52HKyXvPi+TPqoiAET1XG1pZd36OMHtPVHU3b0XZDtEdSegRb/aR/fZ/j3/z7H/OD73xMf9hx/dazWCyZL+aYvEbpLNpNDS022bxl3UqrfeVZjI0OxDos6kF98Ogsp6jnXDx7yfmzj8nzcmx6MeDcgI+fNAJcQyapV+dRRo9g8um6G+j6lsPxSFAabXJ66yjyHBcMQVmsjesmPlb5E2JlOwpMnkedrdbx+VWaTuvYAlnFIkXvPHlmKPKcrmun8/bejYA1MvVAfO+QrGlAPnZCsy7Oj66qQXnyIufi2TPevn2DMhnXV9dcX99w8ex51EbagVlZIgVrJaAzw/okgvy+6TgfMfLaAAEAAElEQVRbLiiriuZ4oKxyFrOKWZFT5ia2Gz5Z86M/+LvU8yXVbIGzPSqAQcfmDSGgQ/RMjQ0RDAZD17XM6qin1VqNBZseiHNXGYMPLtrL/S0YwtrVdT2538ielBZRpfuggNWntR9pZg+YwJhkdq21E8hMpQXSOeopkKyq6p1UuOhSi6JgvV5PrGr6ecA7YLnrOq6vr6dW8iI7FG2rZCkFiEuxdEqIyd4pmOQpRkqJMXm+np6rgFWpv5Gald1ux5s3b6YiqdlsNskCm6aZWFYh93a7Ha9fv2a73QKPLgzftL7I/Unv9VMZwNOR/vyvA1Tht/BZ/c53vkPXddze3kbrj/EkUwAn7N/TE5AJJ2A2BUGpgFqsql6+fDmZ0AsYTKvQ5KKkkYlcUJkEqY2FMLbDMEx0v0wkSanDr/ueCusrr8kFfmr4Lw9dqt9IAfVvulnyfXrT0vTFZrNhu91yfn7OV199Rd/33N7ecnl5Od0XSRmk4Fgm2H6/nxYASUXIOaSBwXK5ZLvdkmUZl5eX03s9vd4yBPyKQFtkDDLSSPGbrsHf5JjPKuazGToz7A97jseG9bKkrkt2u4ZD01DkOYNVdF3sJhNbVeYUucHanv0h9h7XIbBYzFnNZxR5jtYWPy/oh4C1jrzIMKYgy3PywdP1lsU8murHAMmMnbMiKzUMkSWrqgxtYuGVtWE0To/zfrN9oOuOYwrXgA6EoHBorA+0rScozfokZxgCRV7w5m2LdZrzi+j1t1gtqeuYAtMq4M1YgVvkWK9ouoHFqmB3vOP8dM1m07JrB2arBcPgOLQWNww8bI6cr5fkOZS14/xswS9+ecex6whjMeSs7rh+6KlrxbI2LJc1uQks5jO8LyfG1HvREZccm4bVcgbBs93c03VHvItRv7c9uIHgeg6HPX3XI4VDXTdw2B9HrSQcm45uiG4UH5yekumMtm2YzWYxoBZrI6Vo+4626+mHCJq8A5MbfPDjGgYfn8/f48yFH3z/Bzw/W1LniuAH+naPCpZ6AUW1wGQ5hhKFHtmfqPOEx/QpPJqwA2OaFAKB4HyswFdwcnLO+uIVebmITQAUONvigyWgUCYDPcp8jI6p87Ftq0igANqujUVM2nBsW6zzdENPWRlQBucHyjKnG+IzpULsxmRMZIqNGbsBjsHf03U3JGtTZjK0Ud+y7obpn2halYyEPIAQZTJFjrU9282W7XbL2fk5b778kqHvuLuNYBXgeDxQVDUwmt/72PxAEQmGZrunms/ItGa5XFBVBZnRaB0bYWilqeqaFy9ecji2zI5HlvOaLN3svYCUCM46a+mtw9ueum0o6zVVWdANFusZi8ig7fuJnX7fI9WhCkiV1twC4tIUsqS6U8/wlM1LSR8BhOkXPLZpFQZR9kJgKqxLgbFkE9OMonjEC5ZJpQhCdgmeadt28jdNi8UlkynaWvmczWYzdY2UzKNoWOW8JFucXsenIFEwjNhzppnk09PTyepKAKgAdikOE4JOALIUrD08PHB/fz9dZ9nLZQ1J7w38uv5U7tXTeybP8VM3gb/O+Faw+g/+wT+Y0LdcPOlIJTqQ9OCfRiNy04WGTlP1coPkYojXZ5pCTvvRykRMGUoZwiIIEAYmUbZEFsJGSuW6VM2lzgIp6JWRTp5UuyrnlOpf06guBaJPpQDys7TSTwrIZPIeDgf2+z3n5+dT9CeTWWs9pTPSSSIP0RdffMFHH300RbJP9SdyHBKNff755wzDwAcffDC9l0xOKW4TLbFUNYo4W66l3Gc5r/cNVpeLmsW8xjpP3+f4MqbdnAPvDcc2MFhH8ArPaO8xBgDzqmSwmuOxxQ6O/WHsbFLkOGcpq5KqyCgyxd3Djq4LzGYVbmTp8sywnNfUNXS9mC97+l4cKaLuLijphR5Te533PGy2nC4ylJ4zq0sOx4btbsfrtx2FMejS0A0erVs8M7Kso208h0PH3W6gKhQvz2f0zUDb2dhqUsfe8ibLqOoZ67NLzi5OOT9bcH2zwbuO5vDAoVP851/c8/GH54Sg8RxQSrM/OC7OLEq1rOYz2sMGfM+zi5p6XtNZGIaGvvM0HdRZoMpyMuPRI8j23lPVFcdjw2y+xPtYpNN1Pb5znJwsIMTCquA9tm/p2z031695uL8Dol9m3w9sdwe6fiArirHoYWDoLevlisVszv3d3VRp3nZdvAZZNhbA+Ol+AHgRLvIYIK9n1W+cV38T4w//7u+jvcMOLd6PFcQBQt8SdDT8D8lGPwwWa4eJyZHiR3kG4/rYo81YHOFHO6csYz4/paqW4B3BDQQNQ9/gvEXpGITFan5GJm8EvCFaY8laML6AzqJ9lfN7XIBucJT1jKbf0PcdRkFdlXhnMcpEsOUdOh+3IjW+z9N11xjCuNYao7FuSNZdnay7cn6y7kb8pgSyjkCwKkusD/Rdm6y7YVp3z84vwNupsYT3nu12R1ZUE1njw+NeYO3A9dVbzi8uWJ+dMpvVRAsQHjMqSpFnsc3v3fVbbm9uqYpn6KKA8Cgbi5rsgPMWbTTz5Zqhy6K2WAVm1dgwwUS5hAueYKNbwtQB7j0OIZ+EUZW24CnbKKRJGmw81T6mKWe5zpL+3+/3EyAUsCnMrJA+aRpe3ktkcKlMTynF+fk58/l8yiCK9O6pC5EQc/v9fspcpDJHGbIfC/aQzKZIHCVLKZLIlABLcYOMNNUv5yvDucdGAdK4QJwHUk2u7OOr1WqSVXRdx2azmar/5f3k2UrZb7kOT8ksOf60ZicNRv5LQeo0r77txd/5nd+ZkHcabYinV4qq5aZISki0ECIdkJsjN1zAq9wIEV6noEcmjQBV+RsBpSmLIJ8nXaDEikkuetqOVSah+JzC48ORguKnDGH6IMlNlRsh0eLTh0DGN1HfaaQk10Y8aE9PT7m+vqYf20cKSywTUI4F3i2EEv9WSU+krMNTaYJS0c7iq6++IoTA8+fPp4dF7rMwpakvnoDn1AcunaDvG6hCZFa1DriuR6uA0Ybt5khRDHSNp2vh4HuKTGOUZ7msqYvYS74sCuq6wBjITTnKTFqa9ojSNbWuCToCJ2st1g8RfPoQW09qTVEoCmVQRjEMHmU9WVZE5gQQM3uInZUKmdsuUFaxGKYYtZmHds/pac1+7+lsTHdu9wPN0LHfdeTG0HQAgTc3PfPScLLa0x0O3F+9ZrE+h6JCociLiqJesFwuuDhZ8h/+5Au+9+mapnfse09rYbM7gM84tg3Pz+aEoNhtW8pckeewrCtWiznd0HK/23PzYNnverTO6ZojerHAO8/2uKeqMszY/90OFm8VVVmz2R7JizzqvUzsitQeDwx9ByHQ9y27zT3XV68xWRFbxLYNw+jwYMY0cEwpR2eEWV3jB0tmzFSE4JxFm+il2nQt/TAwWMdgHc5HmySjDX3fYQeLIRrFv89xfnaOcxY79NiuoW2O9EOLdmEEXwGPoR83Vu9ksy7GzSE6YGij6foeQrSFmrImAQhRI1fWcxRqbLdK7BhmW4ahpygr8qxE6SxaRo1roh06rBMNm2IY3LjudsznS0xRYp3HB7D9QFHW5HlB2+3puo5qtohuHATcWOUv6y4hTMBOAObEzgj4TrI/+Wh39bjuiuwhIQoey/eAEQireM7WOZzzlGXBbL4Y190r+mHAdi1tE4untI6dz2QE72MAMa69wwhWc6M5OVlT5hFwxmMPYzEngCYzOV038PrrL2mbLb/3u58RAiNJEINZayNQzvPYcCQEh+uOONtRljPKwqBc9DZ2NroFoBXh/WPVybFG0tWpPjSt0XgKWJ8SOelemhYkiSRR0vFCqqTSQ6Viy/UsyyamURjFNANorWU+n3N+fj4xoClYE/wiOEQkCMJSCn6QbG/KOAqYhXhvRa8rxw2PDKbIB+QzZKSAT/Zfef9vylpLoCrHJOyz/O1yuaQsy8lZ4HA4cHt7OwFceJQnpPu54KxU3veUBZdr/5QdTpnW/xJs8K1gdTabTRdZDHibppkmlvh+yuQRti1tmSZm82J9lIIguYmibRFAJRdHUvgy0VMRr1woudlyM7IsmyaTRMAyidJqetGypEysLIpy7Cn1LhNCJkr6r0QeclzphJPjfUqfy/sJeJbrKyn2Tz75hMPhwE9+8hOurq4mLYrIBeTayXvKNZC//Yu/+Itp0spETllvOY77+3uur685Oztjv99zeXk5HX86+YWhlWOWIEbuy+Fw+LXI+H2Ouhq78HgfgYkBkykGZ9keWprWMpvlrBYlmYZZnWN0oMg1eZ5RlBnODTjrKcoSVCDLDVkW00zFomCz2VEcOzLGhhKjX6tzERD40YZnGHqsD6A0NvgoC3ABoxXGBIyKvqvWOoJ3tJ3F2gIfHG9vd2R5bHd6eXHOTz6/xzrNsii42zU0VtMNjkw1FFXcIH0oObSexWrJbLaI7Sa9wxNiu0vbcX/3lsP+AVDc7gZ2xx6vc+zg2R89bXNgVgbAcmwUwzynLvXI0iqKQtE2Ad8HThYL2n6Pd4pFmZNrYucvKvLCUNXRCeF47PA+ozlG1u/h/iGCHRe4envFL372x3zw8Q/Iq3XMEnQ9OsswRnFsjhyPDSHo5Pljsmurq4rMGPp+4OzsHOsdt8KwonDe0TQtzseuYT5E4Ffkserau2h/JOnK9zp0TBmXWU5eFKgsQ3UZegSZBEtmpFtExgBkWT7JJOL/o4XaZC/oNG5M32utsV2LwVCUVXybEQj7vsPbDm8tujIxTa81KlhM0Hj/uGZpAl5BlmdkuaHdtOybjqqeYTJF3/lx3e1iEwcdu4tJhT6oZN31jxmAUa8a113Z/AIhGDIFrvfAqOUzJrp+aCnIEsADsaFE/FsVouWGsJx5ntH1PYMd2B/2DDbaSH346XfZHo787E//lKurG6rZMh5nlsV7Md6iwLuZwXpW8+z5M/a7zcgaK8xoJ2athSJaq0WaV7PZbHj99WvqItD3n1LVM3BRi2qtgxAoizyyrDoGmc47BmvJCkdV5AQLvXOYLCNTsQ2Cf48FVvCuI4yk9lMmNdVfPk0tp+MpK5dmbp/KPwRzpMxenudT5hQei5mFNJMMprCqKekiz0gKqOUzJYsrx1MUBavVih/84Af8+Mc/npoKyDkJdhGJATBpZIV8EzY3LZD6TUPY1TSbKfNQXJrk/LMs4+7ujhCineV6vWaxWEwEWNd13N3dTcRjev3S+yS4TI5Vzu/pvZHx9BxSaeF/yfhWsPpNmpLFYjExa/Kgpk0B5EAFpac6DplQ6QQVTYW4BMhFEy1JynjK+wn4Sq2yBFhJkdH19fX03mmbtDT9LjdHAGyq7UxTE2nkJ8cjYDpNKUhkJLqYdKSRihxzKlaW35c0u7CrYkvVdR37/X4Sh8uxiCwjFa1fXFzw9u3bqL86O/u1ArEUrIrDg3SlknMWjcvXX3892YPd3NwQQuDy8pLT01NOTk5Yr9ePG2LC3KZR5fsYeWbwg8PoDOc9RWY4WS3ZHg5sio5VlrNe1pwsZtR1Rdcd+f8z92ddliRZdib2ieisekcbffYYMiKHqkQVurrQWCC5SIJr8bH7hb+B/5Av6PcmGgUgs3KIiIzIGHy2+c46qwgf5B41NcvIyCiiqxyaK5d7uF3TqyoqKrLPPvvsU5c7PC06X9jYNUWZU1ZFr8GS56QUjLIRKJ+mc4bKXdvRWktTFLTWacm6zuybCYAx0LSGunFaN4sl8Tw8322GWmswThZQ14Yk8TDKZ7U1pOG+swAtRdXx7nKB8mK071HVBqPd+P/8o2MuL7ckaUY0GhNPpii9N023rqtPVeRsVkt81TKd+bx6uyTOYuo6J/Q9wEN7lpOTKVWZg1HsigbfUxRFzSRLiKIaz4fTkykWj8k4YlPUYCxx7CqhgzDl8GBMWTv/4PE4IM9btBdzfnlBWdbEcURdtZhOEccpm/WKuDWU2xVVtUNh2W43VFWH54U0jWjQU2fp1jmLmDiKaZuW2XRKayyL62va1uBHPsZAUVTkeUkUJ06rumcY1VALGQSkaXona/E+juFir72ANIjI1AGqNZTllqLc0nYlvh8RJjFt5NhG2USVkrTlbTtktya5PzFQex4HhyeEQQTGdTAzXYPpakzbgvLQnr9vY+rcAzS3EqIgCF2HsdZQ1U7ClGYp55dLir1Eo27dWtrs112lNFEcfs+6ewswtb4trJKfubVODdZdx0C6zITGSLW0Hqy7yqX+O0dZOjsrnOZW2HSLs/SyQFGUNK2bS/ODI4IoIkkz6soZu8dJymg8dmDSdCire52zA80+j5895svf/5ay2NJ1M7QfDAhdRWcNCgvWUFY5y+tLynnAZr0im8xRnnGyiLpis7iiynckSUrZ1Gg/IkliOtPiFTlxlKE8j2bboNnvI1jeJ1a9D3CGoPI+6TNkV4fsG9yt77ifzRXyRLDGkK2Vz4lETiR6Q5BclmUPXDebTV+HI9ljuR5xBIDbwir5c3i/vu/z6NEjptMpT5484auvvrqTjRTpQxzHPSFX7tvqyp4N7p0XQgpuda33D6VUXxw2lFnKni2t1qVOR845nU5J07THEXVds1qtenANd31th5ZXf+5ahozp/Tkg5xOcJNf+fYHJj2VcfxCsDjWisujJoIg2YjhpRIQ8TAsPtQzD7hQC8jzP6wGP0NpDW6zhgMFdGloiG5m8w8kkQmMBvhLVDCekyBPg1qZKjuHg3ddgCks7lDvcjxC/78EMafL7P+s6Z1gsdPx8Pufhw4d8/PHHRFHEdrtlsVgwHo9RSvWtV4cWYEMpwKNHj3j37l3fdGCoox0ysrPZjL//+7/vC6Vk8uV5zvn5OdZa3rx500dgbdvy9ddfc3JywtOnT+9YYgnr2jRNbyvyvo66ajCd20ibqiKJYpQC31cczjN8z8NXFmyDNZow0LS120xcalntKy5vrT20VqT7CNn1brdMJmO2eYNWbi7ZpsUqqMoazwtwLSIDl/Lsarq2o27AaEsWB46B8azzaYxDoiDE3/f3LsrKFZJgQEeUtSUIQvygxdiWTVGivTFNB+uiYhRqJmnE2+aGbDwhCCLCMB6k1Jx1T77bUuQ7RmnAA+2xK2FTurTtaBSitbPlOrva0tYVSeAzGmUs1x27Xc7pkc/zJxltW5AkHcvVPpXqG7CKURaRb0u09TCdJc1GFLVhPJ6SJB5FWdOZiiBQbNZbPO0RxjE3N8u9tdaS9fKK87O3LBY3eJ5Plk721kwNaeK0yGVVMR5NGGdus0nSGK19ri6uWK/XhLHzFGybjqqqXUpca/ouZHvtpVYuWFDqzy+o/5JHH5gDbdcBHr7vLMIS38eLAsp8S1M1YDs2RcVmn5XpOpfuNNY4dnRfWW/BVdt7ziM08AJmh0+cw4J1vrnWNHRdRdc2+FECXoDydJ/u7qzB85zVkx8ElEXtsgZt64oHcbZiu6KmNi110xGEjgF265SP0t73rLuGPm3vsDFAD1TluLvu7m2fPB+l9gDingzJaWtdi1537tv0pJDUXWdcJ7RdQ9OUzOeHPHj4mA9+8ilRFFNstywXN8yVk6r5YYg1hjIv8NFE+wydRjGZTl2Gar2iro7wAh/luWvt5Rf7OTdKIp4epfjVDdq4e1IAbc16ec3y6oLF2VvatuPt5TWVURwcHnByPOPJg2OOT07xkhGBr6lbJyUypqXZuyO8j+PO2A+yfUOQep9dvc/cyR4s/z3ED7KXD2tfhCEVjbYQUsP9blhbI6SDsIsPHjzo0/JDsKaUuvNdIvMTvah8h2Cfq6srZrPZnT3W81x7c9/3e49zkRHIPQrGElJqWN8ztMqSYygDHNbLiNyhKIr+XpMk4cGDBz0+KYqC7XZLnuf9Z4f3OyTa7gcRffA8YJkFKA+fvTxbGcvvK6waBjL/FGnAD4LVofZgqF+UKECijzzP2Ww23NzccHV11W/uw4Kp+y04ZUGOooiHDx/2/y4ATM4hhVwySCJwFlAkQE3AkUzC+w0J7us9JCr6vnT9/ShQ/hym0aUSdmjbJe1Ph3T6/fMP/y8PUv4u58+yrO9K8ezZs94dQIrFRBoBt61spcJR/u3w8JAvv/ySi4uL3gh4GIXJAjEajXjz5g3v3r3jo48+6heYuq7JsozPPvuMi4sLlstlH4Uq5fRAl5eXfP31131qZTKZ8ODBg54Rfp/Hrqhp6oY8ryhKg+katC6wGKajzGno6oLNek1jKrIk5fTklCBQlGWB73sEvk+axE7n2DRkaUrg+wR+yK4pnO6Hlk1eoYwjcFwqf+//GSa01qNpxFDaEoQRedVQ1UDbUaqOJNFobbEt2NBDjSPiJKUsd6QRKKPIi4bzRU3ZwGQckaQT/vhqwWq9RimPHMM0TfB8OJgnFPmaLz/7HbOjR0RJ1s91g+Xhs4959sGnBJ6meHFG6IHF0HYtHpCOErrOd92qNDR1h7+o8E3HdOIzmYSMM01ZjChLRRh0aK9hs+mIopAsiZmkKU3TYjCs1gUnD56hvZimMlxcnu83cEUUh8wnY5q6JolTtFIU+YY//vFzXrx6wXx+wHQ0J0sztnlFXVVEcUK+2zEaZcRxSBB4eJ5jETbbnLpyG1kYuKYOeZGzy3OKskCHPsqofSr69k+tnecoit4O6X0fCgumA6tQFvA0fhDjRxFhNKYstqwWV1xdX/Hu3dlem2b44IPnrn+9dcGV7/t7sOrW4t2uJPQTjo5OAddG1XYtTZ27oq6uQXu+01ij9mb1mrqq9u08nS7W9wO6fAtA1TTUdYvnB7RdTde2NF2LUe59sWLLtN/k766Lt+l+90z26y7DdVcN1t2QtjUo5d1dd1vXAc0BQ9sHHwK26dfavXvC/u9d64KsLBsRhTFKKx4//5DVcslmtWS7Xu0BD0ymB6AUpusolSYQ60PlAqCHjx/y5eefc3RyRBDH+0p/JwnCgFaO6X1wNOdp8oz1xXfQ1q6jmLVsFtdsVwvapubl2wvOL27Aj7G2Y3lzQ707pdxs+OLLr/GjmDDOSNIx09kUjaFpivcyV+VZDsHqMJ385wDrkLgRkDdMs8v+LfUrArDuYwkBdsMMq+CAIQ4R0mq32zGbzQB6ADfsxCg1IsLm3k+3y/dLgfLR0VFvnylAdthJ8uDgoJ/LUnA1BGzDxkIyFsM6ITnECksO+Zm4CwguEXwgZN56vWa1WvWFaXLuodRBNL3yu8NnAXcLzP/c8x8++yFQ/XOAdCgn+EvHP6kRtnyhTDCJLCSFv1qt+ocYxzGPHz/uo2hh9+RmNpsNFxcXRFHEyckJQF/xLhN0WCAkvyefG6arZXBFhyFmuEPNi1TbD0GnAN1hFbvc51C/+ucY0mE6X75bqg3vPwB5cHJN35f2kKhwGFWKhKFpGna7HUEQ9PpQ6QAmwcAwHRIEAfP5nPPzcx49etRXSA7vp2kabm5uePPmTf8y1nXd61uur69ZLBZorXn69Cld1zEajTg+PiYIAr788sv+u8R5Qfzkuq7jf/lf/pd/yvT6P/S4WW1dlXSjWG/Aqpai3BF6lm5iUFSU+w12Np0QhJrRZETb1BRVhTEdSRyitYcxtWOFlEdRlGx2pTOWLwu0DgmDmKauqdsWY1z7SotPWdZstwVKORcCjKuWVk58SN24DljWtqBxRTQjJ09xRUBQVjWjLCYMA/KmYrUtMUDZGdI0oW5q8rym9Tw2ZUNRVTx5NOX8aoVtm/0mcVdnrbXTec3nM168vASrqMqKsjVoD/yyBVwbTaUA49PWlvHEZzoJOZxNMV3D23dLtB+jlSEIFQezKZ1taBuXBk7TmLKuCMIEazUWn+XqkpvFNa9eXQGWjz46JYljis2OQHv42icIneXYaJQSRiHZeIRWDiw1Xev8LT2FZzVJHLugIk2pm4bNeo1WiuPjY5TS3KyWrFZLVuut88m0430Rj1s7fJFoYEDj2rza9ythGRaJCGhTyuI6nxmU1vh+wGg0dUx7Mubo5JS2LAhDjwcnxyjtkecFnu/tq8Yty+WGr77+jjdv3/LLn//StUbFVbIb5+pJZxrnUey7bk0uf25QKEzX0HQWbx+kO0BsqauKqnTMddPt7a46x2hWlSu8c04cNWL7dHfdvS2s8TzfdYbbM+B/Oi7CXLl5XNeuojnYtyy1e23qHupjjLODQzuvVqxrG9vLfy3UdbMvuNqvu62hahq059E0LbvdljCOaNuGOErRet9/3tIXEimlaLuW8WSCaRsuzs5IpzPnQmFc4wnluWIvV8xmePfuFauLMx7+woLt8D2fLEvp6gm///xzFkVF5wckccwoCRklEfPZmMVixTYv2OY7OmPJ0hGj0Yij4wPi6P2RBENZG/yplvHPyQDkkD3o/uclIBnWvcDdQmdhQgXYWmt7v3HZH8WbdLvd9sXBVVVRFEVvsh8EQV/zMgS/UrMh4E3WD2MMy+WSqqruZI7jOGY6nTKZTHqno/tAfIg3hK0dpvSHZNat/OYW1Mp55E8ppBqynkPGtK7rHqjCLf6RcwpQlesY/l8p1Xu7y9jIMbwXeR73r1swx/0//ynHD4LVP1k0B8hZ0s9au5ZqQeDaej5+/Lj3D5tOpz3rKedo25ZXr17x+eefs9lsePjwYT8R7lf/3afwh4dETUOAJzqQYZQxZDTvg99h4dD3DeRQfyOHnOe+iFio/SFzOfyd++M5nGDb7baPeKTtmbCXwtwWRcH5+Xmv+72+vu7TEwLYRRsjlY8PHz7kP/2n/0Se5/2EHG4S8l2SUnj79i1HR0d0XccXX3zBxcVF384OXFrBgQDFq1ev+vEWbYxYYch53+exzUs85ZOXHZvc0DSGrmmZjDXNuqUsAauYz2LiKCKOXDvL9XbLzcIxKZNRRtq5zjye57FaOYeFpjN4QQTWR6E5PTjEGNgVBa2xTNrWpebXJVXV0RrLKAvZbArKokSjUMbQGqd781REVbQUtaVuKuJYczQfkZc110vXa7qoNHkOiojdzlXaa8+nasDbG7SDbLgtvm4dW+Xd6gKNsXhYZ4KvfXbbnNEkwL51GlpTl4SRa6NZN65Uw1hL6FdEYUK9qzGjiOV1ThV3pGlIUdesVg2drXn0yLFZ61VHE1VMphlt01A0BWE8I4oTylrx+m1BnMR8+tEh82nGdlMQzw84PHlMFGVYUzBJMnbJiIPpEWk8oipqdruCbDTBYimKknE2Jo0ixqMRnu+zWq0Io5CjJKNqGvKiYLXecHOzYLneEKepkyYod53a2t7XUzofWWNdD/j3eNyVIO0LSU2H7e65c2hNEETMZgGTUUZT7Jx+E7tvZxpQt81+vVjz2ed/4OXrt8RxyPMPPyQIQ3r7fLvXhlqDVT7aCxFgyL5SPfA1VVkSx2MsLQrHGHamw/NDmq4irxoaY/bNC1yB419ad7VyFlMK5fxX+3UXHKW833M6N59dZzqDVZCXBUpBZzoQ2YBVGOv0BK7JQQdKoyzOocBYyrpjvS3YbjcUZenaqpYlKEU6GjkbOhRVUXB5dkYURezYAZrZZEZnDF3buGp9z9uDUosKfB4+esSLF694/MHH+GFH3TR4GtdtSjkLu5vrJTeLNcpL2Gy37DZrZtM5eV7x8vVbiqJGoXh4egyd4XA+YzoZ4ynFq1dvsNrj5PgUTymWyyW71ZJiu6GsKv5f/2Iz9e4xJEtkPx7aMt3HE0Nwe18uANwBW0OSZygJAPo9UsCYsLBd1zGdTtntdn0R1Xa7RQrBhejZbDZ3spXSAn0osxuSY/L3YVctqe6XLObBwQFZlnF0dMR8Pkfr2yJzwSvAHRA6HJ/7zZbgtn3tEIfJ54XYEuwkGWYZvyiKmE6nd8DmENgOx/a+LMNaS5qmzGazvg28XI9cxxCw3geqcvy3sqt/UQZw/0vv2zMMC4mE3ZOevIL04zim2necefXqFX/4wx+4ublhMpnw9OnTO8zpUNc5TBMMB1OiH4kChpHIECQJmBraVQx1KfKdQyb0/gt1f8CHE0cmu0wMkSwM72NI0w/pcwG9AuzyPO8B6MHBARcXF3ciLaUUi8WC6XTavyxN0/Q6FwGqUp0v4zQsVBvey1DnKxZep6enPRB99+4dxrjOF0rdWouJ1uzy8pLT01Ourq4AF6UdHh72L//7LlJpG4UfBRhbEvra2RgqRZQ4W6huWzpLKeWYp/EoQ2lNUdYUdYvfKdpu69LJvkdTt/3cmh0ckGYTms5SFRXTycTN+bqmaS27vKCqWyajMbPpmHcX1wS+JgoVm13DelOj8WmNoumgaS1l1aE98JCotiHQMMliND5XlzuaRrPdVlgfHp5OaVvL1areL64tkygmS0MCP0DZHVGauQppZ5zj5qJyusJsNGE6nXK5vMTaGoVon7Qr+LIdzc7pbw8nIVopTh9OefwwIUBxMM1QumOxqMBo8irAC2Lmk5CyrAmikJtlTlk1jGZHFGXMxeWCP371FYHX8D/+zQeczMZgFZPsgHhyyunTj+isZbdxwv84iJlkU6qqZbVaMxqNCcKIzdYV/GVpyijLSNK0z+pkWcpyvaGsGoqy5ObmhtV6DSjiMHZtNI2Ffdq5s5bQd8U5xnb4vkfoBz84t/65j2HW5baoqLuzJg0/q3F6zG3bsFqumKQxaWeJ0hF11fLm3Rm/++wrbhYL6rrkwcMj5odHrvCua8Ea54ZgDJ4OIAxRnrcvzBMwa/H9gLppnPm/7zpQiddoWdY4cKjoOovnuyKsrnNg0Rjvz6+7+5T8rSTjVvIlYFouQ2uPpq1v192mJkuSvRfscN01WG7HzioPTYe1rjlH0zSuk1lesLi+pipz5vMpZV1xoh9i9+suCpaLBdPZjCBK2K3XdHVDFLtGF2EYuKr9NNln/DTTgyO2n33GLt/hxzFBoDHWwxiFxZn8V1XtxrOo2Kxu0Lbl+uKCzz77nPVmRV23TCdTAj8giDzGoxFYw+9+/7lrzRr6lFXJbDzm6dMnFEVOVTV3dLn/0oekkodrv+w9Q+AzBKbD4/6eOySNRO8pnakEUAnOKMuS9XrdgzZJ3YuG8+joqAdvQ+/V3W7XkznicJPnOb7vs91u77CZtwWMDgCK01Ge50wmE+bzec/8ipTv+PiYNE17gHi/wFwy1JKdlS5bgi0E/Ftr+yKtIaMs5xiSdUMbKtG/An0Hq6urq966Sp6RvE8SCMNdueR8Pu/lB0M8Js/n+8Dp/Wc7/HN4/NDvDY8fBKsC8IYaR4kshuzgEBl3Xcfl5SVXV1ecnp6SZRmTyYT1es2XX37ZV8sBnJyc9FqOIT0uE0mExPeRt4A14I5JrjC+kvKXAZAHPgS+AvAE1A0Hf5iqkIdxH+wNx6iqqn4iDSvh5EEM9Rv30/9d50yOb25uWK/XfeQyfLEkotrtdn2aXSabTHRnjl71XmpD37chiLXW9o0RxL91ui8MSNOUd+/ecXV11b/ISZL0HbQmkwkHBwe8fv2ajz/+mPl8zrfffsvp6Snj8ZjtdttHnFJJ+b4OrRRRFLLdVWhtSVNFEms8b2+plgQY01FWNWXpirECrZmMR5R1R9u0JFFMU7fMJgcoBWHo9EsPTh9ycHBMWdUUZemCFM+jrkvapkZrCAKN7mA+G5OlEVGUcHF9xc1iS+jn+F5I01kW6y03q4o00cSRj68skywmDgOUaTmaz9kWBfPjEWPj09kl1lMczxMur1YkkUdVejR1RxgolFYoNAcHx3s3gg5jOlyhjcKi8aOUj37+r8E05MWa5QcFV786J0sjmsY1PRhHI/JNjqc6Tk/HeLbDmpI87ziejYmDjqLIMa0hiRXGKjarnNnIpzPw1R+vOT/foJXPhx9Nmc0b3r17RZpWfPrhCT/75BMiL6OuGrxkTDJ/gBdEFPmazeaGrus4PjpBoVmvNuyVjIDTSk4nIUHo4UcBZV1Rtw1xErNYLME694fSU2htmU7HoDXGtNRNie+HdEbeZSkEFV2WTxy9X2ZV1orhRjV0JhmyKO7zLZc3C371j7/FNBW//PQjfD/AqJIv//g1n33xFYvlhsk4o6kMB7Mpo/EEsNiuoWsLjKnpugbthQRhguffurO4Aj+n6/R04BhEFG3n2qhaa/siNq0CXMGTwvMCrO16dvjPrrvGQdL7665SYurvmPD7Y1RVFclg3VXcPse+KOzeumvt7XXkRc71zTWb1YrF9QWmLamadm/NFu3XiYR8n/nK8NjqnLrtSI2hM/bWlijYdxRU2kl69g0W7N4uSym3hzRtQ9XUdG3B0cEI08Z89NFP2O0q3r55x9XNAmMM0/khbd0QeB6z8YS66dju1sSjMQcHh/zDr3/NJx9/hFNGaEbjCZ3ZYPL3t+4O08oC8Iap6uG+N/xT/j7cY4WoglvT+yzLuLm5cd7C+8/mec5yuSTPc4wxffFUURT9Hnx4eHjn+8Ht6dvtluVy2V97WZZ3mgjdz/QqpfoOV0MHnCAIePToEeBAppB2H3zwAU+fPiXP814mIPcngFBklEMiDugLvobXK04lAoiH9yPSSCHA5PzDcSz3e9XDhw/7Ohghn+Q9EcA6dDMYjUaMx+O+YF2+5z5YHQYbf45V/T7i78dKAv4iWJVDBu7+oikPESDPc16+fMmvf/1rxuMxh4eHaK25vLzkd7/7HS9fvuwLd4QllEhBQKYAZKlKG5rtD9lPYR3hNjIY2mUNr0uuezhRRIci7ccEMN8f2PuDe3/Cy/VKC9eh8e/wXEOqXH4mE1XGTlq4Dbt8nZ6e9roaEYG3bctsNuvHaKhvHY6d53k8evSob5Ag1yvGx/Lfu92Oruv49a9/3duIzedzx7xdXmKM4cmTJ5RlyWq14vT0tNfp/N3f/R3X19dst1tGI9fmc7lcMp1Of9QE/Oc6sizF9z3G4xitKpSypJlPEPj7F86SpApLR1W3LFdrRklElqUcW41pW+azGZ6CKIpR2mM0mlHVDuxY6/R1URSTFyVlWdF2LVYpxrMZ8+kxUZTQGENT1Uymx2w2a969e8vr12/pTMuu2DHKFONR7OyUuhZtPdIkompailYxC0KmcUjnd7StTxJGXC8Lzt5ueXA6p+2W1EnItmtYbSqqBkYTxfH81LEsTrgHgFKOqVJaEUQRo9EU3w+dB2drMZ7BjxTWdnS1pS4LDmYpceRzMIoJlGacabJRSJaFRIFmu7t2naHaFj/IePVmS15Zvn6xZbEsSKKQn/3VIbvdFYG34PnzQ37y0QfMDx/TNh5+qonHc8JsSt1UeJ7B8xVmvxEliSaMfNI4Y7XZ0rWtM0Hvixwc8JDWqkkS03Qdpm6p64okifH8lrys9oyIds8JjVZii2T3rIQiCiPX3vY9HsM1RtY6AXv3U3dVXfPi9St+/bsvOLtY8MuffcRoMsEPfP7w5Zd88+0LyrJhNsmoywJtLCdHx3h+6OyumoKq2mC7mq4zhPEYP4zx/OAOqGgbZ0tmrbO50p5H27mWtV27l1sZaEyL2pf0u3fkR6y75pYhks5TSqm9Waqsu7fjo9XtuivZnjiOB5pVxMh1v+46n1VrPaw1eN7eq9q6dbcqC4rNinflBovGs3B0+pC6qsiLgiLP6epmX8AFbWswxjkJOC1lSRm4wpcgDJ3vcZiQjiYEYbTXvVvKqnAuJaalqku8LEFFIefrhrpZsitqssmE1XpN2bQ0dUPrGZqbBYdHh1QdjGcHzA4O+fDDj9B+SJKNXKtbBVGS4A3aX/9LHxJo3Nc/yv7cs9z21m5ymDH9PkJouBdHUUSSJJyfn7Pb7XpQKjUuo9GoJ7duA7mOxWLBzc1Nr1uVPW+z2fyJt6rso1IrMmRcBVQKAJTPTqdTxuMxFxcXaK05Ojri008/5cGDB322d0h4SbA07Oo1bIMqZJVcv+zncRx/b7eooVxBCKMh0ShF0TJWYRj2JOF6ve4lDHC3sEvcDMbjce8DLySinF8w2BC8yvP6cxKA4Vo2/N6/dPxFn9XhyYbM5FBbYoxhs9nw+eef8/nnn2OM4ac//WmfFn758iXn5+eAA1/X19fEcczR0VEfbQh1LwMlOlh5yPK9wigKWBWtikQE8m/DtJn8rkxMYWMlAmnb9q6GSt9WLw7B5v2HIfcuAFSiG/E2kwkoL6Jc05ApFmD48uVLLi8v+8pEkVIMGedhv19rLc+fP79TySfpCfm32WzWa1Dle8uyZLFY9J8vioKXL1/2ALnrOo6Pj3n69ClZlvHw4cN+rA4PD/u0y/HxMavVitevX/e2HLvdrge7FxcXf3Hy/XMek8mIXZ7jeXB6Okepjrop8XxXnauTaK+d06RxjDEtTWM4fXCEz4o835JEIWmWodAYIE6dnKWzms2uYL1Z07YtcRgThhFBnBKnIx48+pDjo0doL3DFJgbCZIJtGn7y0ZJ3716yXC8oi5w3r17y9uKcTZ5Tli1tA60NGU3n6Lzi3eWGSRayXZZs8obZZEIYGnzPx7YdR7OU8+tzjPGxxiViA99nNB3z/MOf4IcRWlK6xiCO7MrzGE2mjNIRke/spi5XBdk4YTpK8HUAnc8kC3n2+JQ6X0HXkY0yprMET1csFhuUtSwXFa/OO8q6Ypc3KOXRYRhnzplgOgtpS4/EG/H49CGz6REWhY5jojAjSiZOf6l9Npsti+sLdrsdWTamqkrm8xlta7EKyrKgKkvS2YwkSXqmDujnZr7LsUrTtg2+71HVjWPLYmdFVjc1nu+YM6Wdeb7na8LAww88p3F8j4fnOV9cpSwKd41K7fWX1nlpWgvbfMdX337Db7/4hnxX8uzxYz796EM8z2e9KdjllWu84HuYtqXY5hweHjCbHeL5rl9407kuWW1dorSHCTrQrp0rdu8iZQxNXYPpUGi80Hmn1pXTB2rPp20rtPIwndOHur1B7Te/GmPdvPy+dZfhuqtVf78w0L+B805VCqucr6ysu21T79fdBHDBiOcHWOPa6zqvY39vme80rUEYMj+Y8+qlx9XlBcV2RbndEkQxTVnRNQaDdDFq2W62aD9kPDsgzUb7OXebTQR6NjFJJzx9/hP8MEN7gQPXbcvNYonpnH1e1bS8utpRoCkvv8HXcDQbcTSfkk1mLBY3lEHJg5MT6Aw3NzfMDo+oq5pvX75kfjinKiu2ux2TyQStNe/O3hG8xwKrYYpcQKOQQAKmhsXDsq/D9xvHD7OTUhAlf65Wqz6bGIYhy+Wyl+IBPXkkhVnL5ZIkSZhOp9R13Tc4GhJbUoAl6XSgr8OI47hv2iNgUPbh6XTaM5pPnjzh5OSEw8PDPsM4zJAMj2EDJWttT1wJuB9mIJz3t+6zxkOsJCTVkMQTADqdTvssqeAa8aEVQmm1Wt1xCBCsJzpXcUdIkqQnpCTwkGcg7gnD44dS/z9Wpzo8fpR11TClPpxcguiFOT07O2M0GvHBBx/w/Plzrq6u2O12XF5e9qLlr776iq7r+Pjjj3vD+qFg+n77tOFN3U8pyISUiEGo8qHQeBhpSdQi9LZYSHwfiBxKDb4vjSEgetiJomkakiTpr0XGaKipHVLlwyIyue7VakVd1z2Laq3tFyPxYbXWsl6vefnyJT/5yU96hlaKp4Q1zbKMg4OD/n6Uco4NYRgSxzG/+c1v2G63hGHImzdv+sXh3bt3fPnllzx58qQvnprNZnzzzTc9GF2v10wmE8bjcZ9y0Vr3wcSLFy/+SRPx/+ij7VrKssAayBLD0cmczWbLNq/xPY9xmmJNg/I0VdWiQo32QseQGucn2VlX0KG1R1XktLnriFOUJX5gqRrXSSdOx0zGE+I0YTY/ZjJ5wGh8TJxm4Plo7eOFCcoq6mrH9OQRTV1RlwXPnr/iV//4v3N+fsZmnZMmKePYEnqKi21O0zYcHZ5wfJqx2KzxtaZ4dUkQGDzd0VSuJeMm7xglGRpLnMQcHZ8wPzzG8/YMpHWpW6dDdIDEjyL8MGQ8ihhnmtVWEfkhgTJURYG2FcWu4PrCJwwce7orYtI0QYcpYZSy3uZcXtVcXHesS0NRNhyOIx499Dk+jjk8OubByQhPBWTBA2aTEdpLQAekoxlemKGsoih3rFfXvHz5R5bLG8LQdXHKRs5XuGlrmn32JY4TJpPJPuC6ZT/KsuT6+sYV03gKjCEOQzQe2B1KuS5Obdu4QEK55c+YjiDwe42kp98zs4py4EprPDVoS60VXdvQmparxQ2ff/4Nf/zjK5Is5l//1c/4+IPnNHXJf/nVb7m4uGBXVlgF29WKYrcljUfMZjMm0xlKK0zTYowrxGv3AL7tWgJAnCBcUVeH2nu0uo1UUVclRbF1Y6ncWlO1O1AdXeeKX9Ea0Pi4or27625A17UOkCvVe+e7wGoPSK2hwzo/XOWK/bSnMY2hrmpca1JL07YkWvVtUVtj8K3dp96h6yxKdSjl02FpW2cjFfgBWZbQ1iXb5YKqblBFQds0YBWjyRgfjyCM2O52GFy3tacffEicJKAUQZigvQjt7e9Xe4xmB2TTNU1jGKXuftarnPUmJ44TdjeXbHclFzc5ry+uMSpAaxhnMc8fHnN0OGEyzphOY25uFnh+wGg6pSgLutYyGk+5uLgkDEImkzGX10sCz2MynfHZV398X9MWuJvaHbKIUsAkGdCh6bx8ZqjBHEo3hLWTAuE4jhmPx30auyiKPn0fhmH/vgytJUVCJ8BxvV73xcXGmB6cyueNMex2uzs+5aJ/FeZTHARmsxnL5ZLDw0MePHjQr01yL99XLyIpfaVUD4AFiwgQFftKAelCXgnJJOeVQjOR9wmgzbKsxwwCNsUVQECwtKWWcwl2EJ/32WyGMYbxeNzfk+h65TkOrb2Gz0/+/kM61X+KFOAvWlfdL3IaPoCqqnj16hW/+93vuLm54eHDh/zsZz9jPp/z7t07vvjiC25ubnoQo5TqU9JZlpFl2Z2HKYsh3E1/DVMJck0SoUv1nwBWiW7lHMPqvSEIln+77xgg9zcE6PIQ5Hwy2Lvdri/0ku+USaWU6qOQ4UQYTtphy7Ozs7M7WtLh9QgolqhIJuJ2u+X6+pqnT5+SJIlLC+7ZJWkaMJRRyD0fHx9zeXnJmzdvXCFLHPfeqDLeIjK/b+F1fX3da4POzs4IgqA3HhbQvdvtGI/Hf3Hy/XMeTV0iW6BrtVlRlA3LRQHWcHqkOD2ds93lrFc7NhuD9kLMzZKqronCgLwoadpub2FTs9ltycuS1miybMKzp88J/BAUXFxdE4QBBp8wmKL0CrQmGc0I4xQvTLB4qCjETzJs19G1LfFkjo4Svv3jF7z47lvqckfoNYSex2q9YzxOWC4XzA6hbUrK2kNZj5OTgCQMYN0RhRprKqJwD7z8mPn0AVE0Qvt7PZEF6erjulD6RNmMh88+oWpLNtsdN8uczWLL0ThhPAtZ6pYocNZQUegRZB6LmzVNrWiLCr/bcHVVsNrUTEc+VvtY2zEaKT54mvH44ZTTxx8znU85ODokUJa2rrDKI0zGaN8xCUW+ZbNdcHnxirYtCQOPUTbpBf3GGG6WC7Z5jjXuvZKiwHC/Ae52WxY3N8RRRLcPJufTCePWta/VymNb5Nh9IVGR5/iT4HZNURpvP9/vMwT/0oc1BuU7Vl4N0uKdaamainfn5/z6Hz/n4uKGB6en/OSDJzw4Oebq4oyvv3vN1fU1xrpuaYvrBQfjEdPRmK5ztk1Jmu1T9RYwWDq6tsEqjW/bgT7YMbldJwWaxtlcWWd31TRu3W1aSxCm+L47pzGGzrT4+0DJ8/T3rLu32bL7Ra13110HOO+uuzlVVWNMgO+3+05UAVVVg1KMMucPa/fV/11nMLbD6g6Loq4biqrh5vqKy3evaOuSqr5tZmOsxeACm6apHZhva9q2pq4r3rx+Q5pmpJMJXhChlEdVt5R1Rxj7BJHH7PDYMcTaFZ3t8pz5/AiU4Tf/8BnVboU3OiWMfVrj9rLziyuuzs/48NlDkshjksY8efyYd2/P2Gw3LttWNozHKfPZBGVhtd2RJiNCz2O723J9s30PM5b+eQ1T0wJAh38XsCqEjjzTIaAbSgXkT+m6JEXDAuoErAn7OvxvyR5KFX5d12w2G6y1ffHUUP85JHy2223PTsq/CSEjP2/btieDgiDg4cOHd+R2ksksiuJOi/RhHY7c7zAbK4TdUDfatm2/JwujOWSqhd2UfVgA7nDcfN+/0zjJWksURcxms97iCxwrfXh4yGw268dQMJcwqULSta0rPBa8NiT2hhnqv3T8N8sARN8wnFQCHNfrNV999RVffPEFnufxy1/+sq8m/+1vf8vV1RVFUaC17mlm6eYglXHygIZpbokc7kdZ8qDluoaTXSwrhK2Ua74PsOXzQ6a1T0Vxm84Z6nLvV/DLw5B2ZfKQmqZhPB73AuiyLO9Q5vJ7AsbBtVZdr9e8ffu2b6YAt904hoViMu7Sbk5Yzc1mw2634+joiIODg/6lBSeo3u12/USUMW+ahj/84Q+9R6C8eGEYcnx8zNHRUf/SzGYzZrMZq9WKIAh48uRJD5IFPH/zzTfEcczBwQHffvstnufx6aef/sXJ98957BrN0cG8t8IpipztOqfIO6qqo2s3oDrCUGEM3CycJ+V86u67SRybAjCeTKjrkl2+Q2lNFKbku4Krqxsm4wl1Xd8WvhUtmIDpdEvXVi69HSdo5VpnWqvRXgRYOtOhw4jnH0ckyYijkye8+PYz2u0ZWllGaYjnsrHUZUnsRxSdY5l2uwJtLbNZwk+UoSprrhY71puMq+srNotLjh4WhGnmdmzt0KosHJ7yCeKM+ekzmrbgd7/+LbQNURDx9OGMum6w1hB4miyNWa63hKHCCzJ+/92SsMl5Mu04PfI5PAiJs4RNDl9+uyBLPI7mEccHJzx58jEHDz8kzkZo04Jp2ew73zVNRdfuqMqC3eaGYrelrVsHpo1yUgSlePX6DS9evCLMRozSEdoqfO27QjbfpyxydpsVgedhPIMSFsYb07QtqMJpWpXzrbXW4vl/Wrgpkh3Ri72voy02hOkI5ftOsrHfBIoi55sXr/jH3/0e2wX84tNPefz4ENtZPvv8C87PrzDGFbtdXFy4tca4ubLb5dR1wyc//4goTZxBftfQtQ1NXdO0FaEXUNclI+26Tllj9kb6LmDr6mbPnHZIZ7eyLDHWo+5ywjBAexWq/THrbkMU3TYxUfzpuutS/077Kmb/dV2zXK6wFqwy+E3LZDzC83zKpnTrbjYBpWlaQ2egs2C7DlPXGDR5UbHcbHn77h2Xl5durqNdtzkFdVWj1W7vsqCwbUtVu+5zaTbBmpbLiwuej8ZuTwtDOmtpO5d5qZuWpmmJ44SmNehAE8YJ2WjM119/yXJT0rY+7SoniEKmownjLGGahOSbFZ6CURozSiLKoqQzllE2oSgr/Chmsd5yeX3N6dEhYeCxNlu09mjrktPTw/cyZ+U5SrZV9nIhmUQHKuzqkEmVY0hODbWj8p5KoZIxzttUinjDMOwlb8O6F6AncORahNQC+sJk2evEt1wkBUo5J6MhWSQpds/zerN/Aa2i55xMJoxGo559FXmBAFUJ3AR3SPvUoRY1y7JeCilgVECgMK8CIKuqYrPZ9NIBwWnCeIr2VN5JYUOHjZmEdR1aYA4zwmVZslwue+svkTgsFos7OGWIkeSZft8xBOs/Vg7wg2BVaO/hItK2Lcvlki+++IJvv/2W4+NjHj58yGQyYbPZ8PLlSzabTW+hsFwu+whBJq0xhgcPHvQ60WH0JZS4MIgy4eT/QwApD0KuUQDrUDMjgyf/PfQZhbtOAZKSGA78/bTGEKxXVdUbC4/H414wLZGG/K68dENQLgBbNKJC6y+Xyx4AyzhYa3tRswDe5XLZg/KhNZXcpywaInuQaC8Igr5j1Wg04urqqtfvDFP6P//5z/sX9eLion9uFxcXpGnaM6cCmsV668svv+TRo0d9leX7On7zXc7//G9ngKuEX67dYuMKcCqiJMQPAoJQEcWautnSGU1nLEVREUYhxnZ0FoKm4+DwiCRNXVcknVCWLv3pdJE+SZLS1h2tbtmsrtG2pqtKlOfjRzEJmijdB35KLIcUXhiTjDQPn/6U2eEjprM5f/zsf2N79ZL5NCUvKjablpOjiOkopewUVsPL11f4nuZomuDbhrejgPW6xlOWUZqQTaYEcYTVer/hDypwe7bOxw9ismzGdHpAHL1lPE+JdcfB0Yg4dHYxu6rh23c7tKcpqh2TzOeDxyGnE4XnG9oWDg5GlGWLaSPazpAlIUk65fD4Edl4TpCkaAWmKfGjjDzfkm+XlPmafLuiKXM0yhWVtAZNw8TzuVjc8I+/+wPbfMfTpwnj0Zj5bLZP3YfkeX7rQhEGznt2YNvS7pkcawx+EMB+0wn8oR7eMavWOj/epn2/TQGaYou1Bk9rrO/sn/Ii5+tvv+bLP35Hlk744NljpqMRq8WSd5dX3CxXWKvoqorV9RVxEOAnGXVdYenwtGY6P3CNWnxvb4rv1gtjXQFTWeaEWu/Z3H0a3nTYvbVV01TUVYHnhwRBiOfvzcbLlg4Dfoin900ozL6gdO/zG/yFdZfvWXedQ4D+k3W3rmvCKHbtdscjojghCCOKsqIzFoMD7E3bUrftvsbQ0DYtVd2RlxVt13FwfMrTjz4FY1gvbvZyB4VWTqO7wxJHsWOWu5a6aymLHUmaueYh+wr08WSyt4SL6ayiKlvKomI2nWOspawa4iRls9vx1ZdfEmVTdGtZL5ZYm1M1JVnkE/shx4+Ooev22vSQxd6OKYgi0kRzeXGBsoY0CtncXBP4HrPTR/zmd58zn2X8zV+/P5JAGDxhT4ct0GU/GrKlwz0d7jLrw71S8IMxhsVicQcHdJ1rVBPHMXEc9xXrQ7Aqe+ZwD5Z9Wj4vhM5iseD6+powDHubyD4o24NGsWkUeyrRd4pkTkCoFFYNC89kb59MJj0QHeqz27YljuO+KGrITsveLplbuZehDFKAuABSuLUUG7aoFfAubPEwoBRMJu/cbrfrCcf7DYDke4cZEbkuOfd9wHofU/3Y4wfBqoApoKeib25u+OKLL1itVjx79oyTkxN83+fVq1dcX1/3UcNqtaKqqr5zw7C6LssyTk5O7gzQ0AZCmgjIpBymF+RF2Gw2/QSRiTCcmLIRDW0Vhmko0akMB1ZSDEOtqgDi4aBL9CW2JQIm5bvkoQ4LryQykmsCJ34+PDzkyZMnfPDBB711lHhGCsAc2lXIBF4sFr1BsNhQ+L7fv0CyeMgkl4me5zlnZ2fM5/NedzKsNizLkqurK169esWjR496gXZVVczn8z6yfPr0ae93e3x8TNd1fPbZZxwcHFDXNf/xP/7HHz0J/zkOawwKg++rfaV9h/YUTVNStw1KOZuZJI5o6pYgcExS4EVMxq57ThTGeIEDX6v1jiyJOTg8YLkuUKrFWrMvBMqctqe1BJ7nuiB1HVWx5eLVH6nzLYcnj0gmx4TZFD+KUFZjO2cHpLTGC0ICL2I6PcHzU16fXWKpUVYRqoSqbKm9HV6QMckyjmYlcaCYTxJS3/Dy1YJ6qwg1xElMnI1QYXinKtpaZ9KujNl38zFozyOMU6YHx4QBxLQcTlOiOELrkE1u+OLlNS+vG1Z5g2k7/h9/e8SnH8yJvQ6rDNu8QAPHBxPSJOR6uSVNfaIkQCnwwwAwaO2hPE3XWcZj1+lnu7xmt17Qdq6IZb3dEUcR4+mU1WbFP/7u97x6e4kXaDytmU+nGAx6rzfdbDYAJElM18EuL6C99YMWiVBVVeggcCnhzuBphVYWpcH3PJR1VeNN3dA071cGUBYFunatQ70opmpavv7mO96dn/H00QOSxHkfn59f8u7tBWVdooHdbouyHePxCGsVddMSRTHa9wiDgCTyXcMDA2DRfoAqFVpFxFHMarXA8yK3Hu4ZVYuznsK6zkur60vS0QQ9maO1v19Da+ev2kgRjbOLwxi0Ug6Ieh7en6y7HcbYfUvICu0pUE5j2nZON660D7iAq2paFssVfhCQxCnWFq5Fb7/uVoRB2IPfumkoqwoLtJ3reIXSTGYTDv0jHj95yvMPPuAf45SrN2/YrJbOvF+7Jgye0TRtgx1kxW6urgjCCAO0tWvpXFQlvhfu5ThO4mAtrruYr+naCtC8fP2KoiyJ4pTLizNMU7siUHXAuzfnTPQRv/jg58xGGaZt+frFS8q65ejwkPPLK0Kt+fT5EwIUvoaHD4/Z7XL+4z9+xtm7d9A94D//77/h//2+5u1eAypYQdLvYuc0ZFSHYAbuNsoZSkOGaXE5rzjUAL27kFTKDwHpMAXdti3b7baXtgkIk8KjJEkoiqLPSAjrKGluadgjbj9S9yHzeTQacXR0dKdQe1g1P6yil/1WUvayp8t1CJaQexHMIzhgaIM1tOoUjDEej3s5oUgG5V7kGOqABZQKiz2UYUgTAakH8vfNV25ubu5IC7+PWLwfjMjP//89/iJYHZrLFkXBV199Rdu2PHv2rDfOXS6XLBaLnvqXSTsej/vJKalpEUkPwagMvDzA+xGZ3LRMIGMMq9WK8XhMFEVEUXRn8ovWRB64RPES2QyBJHDH8kke2FAnK0B1WMBU13UfHYnWU65/u90ynU7vvCjC+grFL9S/aErDMOTv//7v+fbbb3udr1yfgNZhBCMstFD06/W6f4Hy3HU9EtZ02KXqzZs3rFarnpEC1xtZnhXA9fU16/Was7Oz3oLs8PCQy8tLlFJ9NeZoNGI+n9O2Ld99913/uc8//7yXQLyvw1jDLt+RZTHGui4yVQVVDRhFVTZstxVxHLLd7hiN4j3gcbRSEDhxu+k6utawXK5ZeBqtAxRQ1xXGOKP05eqGumqwVjOfjNA6Jk4S0iQBFKYtqYsNdV2QFDPi0QyjXMcp8DAYTNvS1AVdU2LxuVq2XF4uUUYxinf4YcfBfEq5y1ltGrJsxCgFL/BJooCTaUS+rmjLHG1x+lvrzNHFAQBjnAG8cUbwSuOY3zDlF3/9r3jx9Tcsrs6gq9msK3ZFx/lNxXdvcq42LduqJY0TtkXHbHZAVxcY0zIZB2hlWW9zPN/n6GgCXoIfjvHjFGsds+lqsR1IttYjDAMCz7FuKO0Yr9aQzFI8T/Pi5bdstltnNRSFTEcjfK2wpqPtWtbX631hQrBfbCsHTqwDHNZCEsdMp2M6a2k6Q5amFKVLfUdRgO95eJ7GtB2mM7Rt995lAFWV40cxuvKodluubhYsF9c8e/QAazVFWbFcrthtc6q6odz3L/c8x5jWbYvnBfj7dQ5wbVqVpOUsUsluUQRhRF04baULbpQz6sdiun0RhVLY/VrjByFxZ241c9a9M3XdgPbxtKZpajwvQFmzr8w3/fXcrrsuQPA8jW1gf4G0XUtnDEpbtFJ40tSlg6pumEzGhKFP1/koxX7drdltN0ynE5QTZ+/X3YoOJ/VJs2C/7oYEgSvOi4KQv/s3/5bX33zF4uaCUFs666QHSjtm3tM+vuc62eX5jrIo8P2IzXLBenmD8jSz+eHercHpoeu63s93hfY0y8WK9XpDOp6yXK7wPU1euGDC9zRl0/Dt2xt2+T/yydMHPD6eE2tF5ymKtiUJI2hbojBkHIWEdISepooSdrsNn/7kY26WO759ff4eZqw7ZF+UrodDOcD36VG/j30bZjMFqEl71KH3+DDrC7fF4EO8IIBV9J5S0yIkz9DKqeu6Pv0vqfCmaSiKoiftxOlniGG01r0cQOpVBG/IfhrHcS8FGI6TFIMJmyrEmxBcQtSJh2wYhn3htYyvYJRhgbloWoXxFSZUcISMjWhgwzC8A85FkyqYSzzk27ZltVqxXC7vaH2Hzg/D5yfHjwGo/82aVUHs1rpiIvEqe/ToEeW+O8xisegHfLvd9qBwaFovk0qKF4aDM0Tf8jAkipIJKIMo6WxhTCRyE5p7GE1J+nuYEgB6QCo+pDLBJUL6PtG3/HwIej3P669VOhvJ5BOmV87VdV2vKRlWAQ5pcGsto9GIf/fv/h1v377tU+/DY5giE/p/Op32E0x0pB999BG73Y5f//rXfcQXBAHL5ZLf/va3d7S2V1dXKKX6oigRZz9//pyu6/jNb37T61hlgZAXL45jHj58yIsXL/jss8/49//+33N5edl3Enmfx2LXcbbIObYW39MoFWA6Q101+MqjKjpu2HF9s+FgNsIay2aX03UtRZGTZQlpGhHFMWEY4/sti8USrc6I48i1s9Q+SRQzGqWutedqQxL7HCVHvH77lul04iLltsHSUTc1STohTifgeSh8gnDUg4TNakFd5CigrBVVDgcTjyBQeBjasuLFmzXXG8N8FnN4oOgwPJxG/OSDE0KtiKOO7eKcxdkb0ukJWrvuTKJ/3CNXus6AMX0RWpqO+eVffcKbbyu0VWy2NZfLnJttQ4kBfLLY59HU59/9zTN8z9J5mrppiAIo8hrPcz62fhhjvIyTxx+ifZ+m2OCFEdb36dqOri5pqWjKDV3r3BmuFitMZzg8PCAMQ16/fkldFTx9eMSzx08xVjOdjFB7S6e6rlyq3Atompa6LvYLrHufwygAa51xfeSeI3ULqiMYdKzzPMcayrv2voEquAAkShLSNCPqHG6M44QwjFistlxdLen2IHLYKrKqKpq2IYoTbLdvKdvLmzrGkxGeHgIGi9Ku2h3tEaUjkmzUV9mbrqWpS/TeK9QCTfP96y7ebRbM833azmUXwM04/YPrbuBYTymK+jPrrud7eL5HUeQEnj9YdyOMsWjPx/P2AN26Ob7Zbmk6S7Lv5uZcDjTW7q25LIxGY/7N//n/wtnblyzO39A1d2UgQ4bOtC1VkTPKJpimptxtCKKQJE3YFQHGwqtvv6brOvIHJ/jTMU1d8s1XX3BxdtaDjaqsXMvg8di5GCjFtmox24rm3RW/+uJzfvLkMYfHp2w2N+RVR6RhtVwSzkZMD+csdzn/8I+/56/+6q8IszH/8T//V6bz9+dvLWlyqWxPkqSfKwLcBFwJZvi+Apz7tSZSEyD1GoJHpOX6sFh6KDWQ7xyCVmFD5Rrku0UKJ0BV/s0Y03fPEg2rdNFq27b3WC2KwjWO2Gc2BRynadqTWUA/9+VdGUoIhml8kQDKfUvVvkie5H4lOJCsqjQ2EP/WyWTSF6HLuyrv7rAofQiW5e+CyeSzy+WyH/fvk3IMscwd2dm9Zzs8vg/c/rnjB8HqbDbrxbdpmvaspKShRTcplWgyiILYJWISzcYQqdvBBiEPTYCtiIslcpfCoqFYf2jxIMBUtBhDRnVYMSeg2Vrbe6fJ9w7ZWBnEfoEyt+a3cg1auw4Yw/SDPESxjBg+DPF5kwkhx31AKt6m19fXfyKTGGpMJDIsy5KqqnqAeH5+znQ67bt9LJdLRqMRYRjy7bff8vXXX/fjIlGlXOvQBDhJEl68eMFoNKKqKl6+fMlut2M0GjGZTMiyjAcPHvDkyRN+9atf8fDhQ25ubvjuu++YTqfEcfyjJuA/13G1brm4KfBpSOKYuoHNtiAvWtI4JPA8PG37+V1VOzbbHHCbp7UghR2giJOEqVXESYw1LaYzYEu8JCXwAvJiQd02bHY5Z5eXfPnVd/hhwNMnj0hDnzj0qeuGNMuI4pTJ7IC2tfhB4pgg7VPVJRiFUpbHD2ccjywfPowd6GpqVFswjVtWO8U379YQ+VxtS6r6hJM04q9+eshuvSbwS86++y0nzz8hHk3cXN539jFWihVbTFNjO8cyGmN58OgRqrnij3884/OvrrB+R+15hLGCNWSBx7/5+Yyff3DAZr3gZrmkrnNOjiYoz0kbNpsc7dc8+OA50+PH+H5Ak6/ANng2om0aqjLHtC3lzpn8e8qShh4PjqdoHdIa+gIc5XlEYYwfxHh637t+3xZV64i2ceb/VVlQ1i27fF+pGjjrq7az5FVDWdWg3Hvn+77zed2/x7KGyAYn78P7Ok4fPMHzQ/B81ustN6stq82WtmlYLFdgPdcxbLOkqkus3af4FEwmU4qyIo5TfM9pqiV4DwKfpq2dwT8AFs8LsMZVyYdxQhDGWAuYDtu5BgzGd3IOhXPWEP1e07nn4Hs+VdfheQGmuu2l3v3odVehtcs0WDuwR7Tfs+4qzXa7Joli2ramaWrqusVaRZaNCaIEq5wvsrGWm+WaOMmYxymet89mWOWkHuIjiyUeTTl59Izl1QWR9vuOWp7n0TWOwVIotFLUZUXXNdRFTrXbYLoa09Yc/PWcqsr58ne/ZjaecDM/IAw9Ls/e8MXvf0NeVv0cXC2d13WR53jeiDCOSOOEjz/5hMurc94uCvLqLaOLLWXbkUQR09hnmkVMDuZ8/Ne/5L/++nesNht+Opnw9TffcXV+RvIe113psgj0YDVJkn5vFH2nsJdDRnVYYzKUAQgQHdolCeCSrKIxhiiKejArIGrI9Mk8EpA5tM4aakLhFnSLtZOcYzqd9kXZw/S3yPDm83nPojppS9OfW/Spci4BoCIrAPrsqbCeNzc3lGXZ14cI6JxOp/0YSIG4vFtSLxSGIePxuCeiZCyGWEiuCegxjLyXgtmc08qud0cYOjINn9XQ6WgIPoegdVhAdx/s/pjjB8Hq8fFxz0ReXl5ydnbWFxaJWHe73fYUs2gpJDUvfmKicxQQmWXZnWjrfuGTRDfDCEkGQw6huq21FEXR+6FJCmI4+YYvwTBd33c+GVg63P+sTF55kMNrEOCYZVkvaJbPDQFpGIa999owypJNUqKs1WrF2dkZjx494s2bN301n2w2w4BArlEi9aurq/6/v/jiCz7++GPCMOTFixeuHWAU8eLFC4qi6G2tRG8qL1aSJIRhyLt373j37l1fMOb7PpeXlz2gX6/XfUT43Xffsd1u+bu/+zv+8Ic/MJvN+Oijj7i+vv5RE/Cf83D2RobOeg4AdXshv6cxdMxnY8ajhMVyTde1gKYsO5q6YTL2yIucIIyYzxW7oqRtO6IgIM3cRtl1DXXXcLlccL3YsNnmLFcbzs6vWa52FHXDm/MrTg6nzCcZdVUT+QFpEqO0YlsUnJw8YDweUVc1dWMIgoTA9/G1ZTSNOJhPULamazwsHsk44MXVBd+9W/PgNKPRPv+f//gdk8Dw738542QcEPgeVbGiKXeO3dq7AVjXDghwekJrWupqL7qPEpLRnCDOOLsuubxp+B//7YycDjvyyHc5P30w4v/2989IY9jmPmE8om07tpuauuoAn+1myWQ6wdMeYZQQZXPCIGB9+RptOzpjqYodXdM42UNboTBEPnj4FFXFbldSVgWL9Ya67jg98jiIR/jacyDV8/D9gLZpadva6U/9AOoOhcXzFFeXl2zzAqt9fD+i2Us2XLclkSMFt6lJnIZSa3Xn3X0fR5qOaY3izdk5r9+csdps2e7ce66w1KULrDrTAYa8KF1xR+bYw6OjMV1n2G02aK2oypLRKCXwfRQOBLo1N6SlQ3WuI5jBoLSm6xo8Irq2Adu5FqLovf+rR1lVGNPR1DX5ft3N1zv8KHLn3vvUanVbxf+D627n0uXW3icJLObPrru3XerqqqZpG5TSaM8FIgbww5jxZIrnhYRBiFIeWKdh77oOlKKzhu1ywdnZJaePn3Lx+juaqsAM19286MGyIwlyqmKH6SZsVzdM7Jhlk/PiK5+Th09pqx2XN9eMoogggm+//pJXL74jjBLCKKGqSiajMWHoKrfj2DFrYRCwuLxhs9gwHh1htOLt1ZrVdkuWxowiD89/wN8++RATjfj65St+8YufsVytaZqWv/7ZT6mb95cZEHskYQDTNCVJEsqy7EGcPPPvy2AMazxk7xOtqGQyz87O+u6Jkt4viqLXgw4dBoZEmey7wmIKCysE07CwSECjyAulwl+IuCHgEiAnHSWHaXPgjvxPNKSe5/XXMST1hP3dbrfc3NyQ53lPNMn+L4ypNCgYyiyEYVXK2fslScJ6vabrXLcsMe4XUk/kEHIMMZCAcclgyxgJJhs+L/n3+8cw6BjKPIY/ExwzzKL/ueMHwapMkBcvXvQG/8OeuzJRlFI9+AzDsE91j0Yj8r1+RybxbDbrIxuhvCWykH+XmxBtxvCGh5GYgENJcc/n8zsDOlxgZCJKkZd8j9DgMiHuDyTcdmuQByhRjAz0wcFB7wogFYBD0BsEQd/NSyK5YWVsXdcsFgtev37ds5dPnz7tu1lVVcXl5WXPTA+jxtVqxcnJCWEYcnZ2xsHBAb7v8/r16z44WCwWfPnllxhj+OSTT1gul1xdXTEajfqxF8ZX2r5KukTavLpF1fVdlsYPf/jDH/jiiy8Yj8csFgvOz8/75yq+s+/z8P0A3zdstiV57qLhMPbxfY3WlmwUo5ShrGriJCLzEm6WOcWu4XCeEEYeeZ818KiqgvPiiskk4/BwRtG0vD67IK86zs5XBL5PGLhNtu3AWEVRdex2Fcv5hIPphF2es9kVRHGI1YoXr19zenxMlqR0rWW9vER5zhsyGTmWa5SOMV2NryP8NOLkVYH+bksUxYQRtEHJ//7lmu2m5f/5Px3xdNIxyXxU29E1DTZyDgDo/SJrbhcOhSKIXKYjiMZYb0KYTZgfKrA1f/fTKeOXO/wq5BfPJoR+x3qz49W7c/K8ZJy6QED7Hk3dUVQtsyBmcviEKJ2hggjPjvCjhKrKaeqaqsgxXYNpK6wpMF1D5PmUxZbNdkNZd44xa2o8LyQbjfZA0s359TanaTps17DZ7gijkDCKyLIRWZphrUH7iuLNGYvVlrbdEsUpabZPg3UtnbXEXYTaOzM4is3uta7vV8KyLXLevL3g/OKG5XpLUd6m3ZumpW5aPN/DNIaug8l0SpwkRPve9F3XURU5aRzRtg2j+YyyzAn8gK41FNstHFvQPko7wO57HtZA1zWO1UZhlQEMtrPOdm3fXarp2j6QWy9XTA6OsfuiJGvA8wbrLn953W3bru8s1RmLsWBwQLHtmn1jDo21UNX7Yi40BwdzgjihqGvKskB7HlY5oKos+GHI4eERXeuK+7q2o+N23W2alpvFDW9fvWK725GNRjx8+pxiu6bYbamrkqv9uusHAW3b4WlHMW83K8r5jLraYducJI25eqsJfNcR78Ufv2GSpehEc3b2jtHYVfcXeQGmI4n2vpdttwdxAW/evsXT5yRZRhjFWKWoW6f17Sxsqo5FBefbmi//4VcoP+DZ8w/4z7/+HdrzOT2as8vfX7tVoCepJB0tRIn4foq1kpBdskfKfi1AVYCTpKqHrJ8APKl1EYsoYSWHEoIhy6i16+QkmER0obKnAj2oFQZ3GGQJSSNtV+X3hSEdjUY9yznUdA6tqmQMhrpXIcOkmGm9XveFu5PJBKVUjzeyLOuLRpVSvbxQcJlSzmlAGG3BZEO7KyH+ho0Gvo/hHMophwz0fZZUPjsc9+GzlX+7D0iHYPbHsKs/iCgEQK1Wqx6oCj0ulDTcgszJ3m5DIhIZYKH/RZP69OnT/oEMjyGqH04W+ZnQ70NdqmgtJcKQ35XPxXHcM4IyCYUtlIckwHHIWA4pc4kuRMMxlAUAfRQl1zwsxJJrTZLkDlMsn/M8j81mw9nZGZvNBs/z+sp7+Z7NZtN/t4DhoW5mtVrx5MkTbm5uePfuXc92n5+fU1UVb9++pWkaHjx4wGaz4e3bt320KQBYgOpqteo1K2EYcnV11bd/lXH94IMPePbsGf/r//q/sl6vefPmDb///e97Cy+xs3rfR9sal8q3FqUsztZR01QNHrBe5xwfT3hwekRR1pRlxXQc0zUdVWWYzcf4YYjZp+HrpqEqGo6ODqjrhvUm5+Jqx/VNQdUqxiNNkiXk6y2eFxCFIVXjWj+u1jlZknEwn5PnG66Xa2aTCVmaUeQlcZgSxwnWwna3petamhpMF6LQZOmIJBoRpD4fPTlg9Jt3eDokThp+9njE+sry4rrhP/zDNf/3v5rz82jD5Zsv0cnEWTb5IxQeaO1wmfbRntOXauXGR3ctSXbCN6/+AT9MME1LuTX4xufffHrIX31wSl7vWGw7yiagamviVqOMoetKlqstSmnmR6eMDx+i/Ai6Bms6lPJoqmrvZWmdY0JbU9eOsTatoWpKLB1luSMInE9uEo8xnaFoSsbjKdZYtpsN16stZVGQ7ze9KApJo4gkikmTlGdPnzE/PObLr7/jm29fcHb2lsPjB8xnc+LYvaeo28Yc7N9Lb19w9T6PP3z5JTeLDReXC7wg7gshxaN6mJFJ05Q4SUjSBK0UXdtR79dorRTj8ZirqyuyLEFrzWK54OGjJ+6ZeD6mrWmbEmtaPO3YR89zBW9KeW4ethU6CHHperexbzYbDo5i6mafTfJ8mrZ1zgpKEUcRVe3IiL+47nr7IkPrgGpnnJ62rhvKusIqTRTGdMZpkJ3tliZORg4YtB2dAS/w6IzdyxM0WjlLOWOsa716f91drzk/O2OzWeN7irqqmR4cYq1buzfb/bobRVRlicVpfI1p2W7X1HXBdDzm8uKCg/kU21nOjWt84fkBi8WCzR9boumUh4+fcfH2FcVux2x+gOf5WKVJR+76rq9vXEvnOEZpj+V6xW67c4ywVtRVw+xwzqf/6l/zq999yVdffMbxfE7evuTbN1dkSUxenpPE70/CIvuS7FP3waqMu2Rbh+BS5oSAFyFRZP8tBkWESZL0eGJYcDxMRQP9d0mLVtmnRect828IloWVlKyppP1Fvzq02/R9n4ODA46Pjzk9Pe0lA0NiS5hUAc5DucPQGUHeaWGUhc2V+h8hkLTWLBaLnugriuKOq8FkMmEymfTnG0opgZ5RHma1h8ymAGfBXlJfJNhvOL7fpzf+PtB7X5JxXyZw/xx/7vhBsPrb3/62Z8zm8zm73a5nNIdgUuhsYVUF5MmEEdpdKsglVS96MVnABHCKjnJYnCXATQZVoqrNZsNoNOofqkR2EqXJ5JCXSV6MoU5E7kN+PrTW6LqOPM/v2DdItCfV/MPJNtSCCJiXKEZeSJk4Ih6/vLyk67p+jNfrde//JpWAWZb1YFYiJXm5b25umM1mxHHMZrPpTf7FqkOY3+12y9u3b8nznPF43F+36G63220/mUVeAPRAu2ka5vM5P/vZz3j9+jVlWfLs2TP+y3/5L/2Yy6Rer9c/agL+cx7/3z+s+J//hymRBj/x0URgGgLdEQY+VVlTFa7SU7O3omk6ktDD085AuqgrV9WsPLDQtR15XlA3lsVyQ5G3NA2MRhFeAJ1STA7GdJUr5PFDn64zeJ6mKnPy3Gc0npDFCWmScnx8RJZm5HmBUppRNsb3Pap8Q1kuQDng0DQdWhfQZfzdXz1mW+T8588ueBxkPD/uSP6HmN9/67FZVXz+esnp3BC9+Yzx8VPi0QQ/TmCfnrXGOLN5z0MZgzEdplNURc7LF2/4+vWCk3lMrDtWy5qDg5SHDxNeXay4Wu0oyobLiy0KQ5VEJH5HnCrWm4osGzM+eMxofuK0fE1OU+V0bUtVlVhj6NoG0zbUVU5ZOpa0KCuqpgYsaRKR6RDPj4nClKZVlFXbB8BFUbDLC9bb3b6Cv6ZdtrSNkzwczGf88hc/ZzqZ8OGzJ9R1xe8//yNlUdDuGS5ZR26rhG+re39MSuqf83h3fsnZ+TXbvGI6mfXrXp7nAD0hIIFmFEWoPevY7dclpRTeXqblMiie65gWpXRNRV3mJNkE05Q0xZpityFJ5yS+a1ihFARB5J5XVxNEMVr7eH6A2a+7k9kBgR/s/aZT6iZHKfbg1ett037MuqvtLXPTWUNrOnZFTp4XoD1MimuF3Brn8xqGGGNpmpbOWJTy8IOIzjjHAIuHsbctN62ytO3tBj1cd2fzOcVuw2a1oMy3mP36ZzpDlqVsNjssEIQhGnrd7/LmioNxirId52/fkGQrrq4uuTi/ZrPcsa5LTuIQP+u4vHjNxds3rprcE1ea0HnB1g2bzcb1f/c8V6C2L/Iy1mAaQ5ok/Ku/+VuiKOab716SjKd89tW31PUf0EAShxzNp0zeI0cgwEOYuKqqeovHYfU80H9mSPwMq9flZ+Dm02q16vd8IWmGskMpdB6CMKl/keZDURQxn8+B28wscKdRgezNUv0umETmalVVPc6Zz+d9i9XDw8Me50hwNiStJNMo5xF8MLx/2Y/FCmvoBSt4aKiPvby85OrqqretPDw8dAV7e5eAOI574Dms+5HvGJJ4Q42qjN2wNkbwyJA1ld/9vnkw/Pt9AvD+z+7/zp87fhCsCkMnthHDggRrbQ/WfN+/U81WFEX/syAIWK1WvUZCPEAFPEmnp7quewpcaGyJuoYyAZmYoisTxldeDumnK2heFnoZGNHMwN1FdJheH4JVYS5FlyupCWE/ZWyG9lfDMRq+OMPrkohFPFVlosuDkyo/YQLumyPL55Ry3qlSWCVp/67rODo64uHDhz2Dulgs+lSG6G0kXQFuAxHfWInmhtphude2bXnx4gU3NzdcX1/3NhwC9MUw+H0fVWNomwpPG7L95p7EIX6oMK0mjjxnG5PndMaQRBEeDX4QuvR621IUNagGzw8I/ZA2NhTljnk8IQp9pmMfz2/wAgjjgKYu8eOoLwQ6mB2Q51ssHWkWgrJ0nWGUjWmbhuvrBVXdMh2PCcOYsqgJgojJ7IBX31zy7nJJ16XkmyWz+YwPJhOSxOcXnzzgD9/e8N3Xa/6nf/OQw2nB8wfQzS2x73O9rTjIl9Tl1vWA7wzaMy7NjdMTtlZhlXIMq+dT7Na8+O412vcYpR6jzOPoOOQnT045v6n48sUVRdFQ1Q3jxMf3FVVTEwUem11J0xo8H9brK5p8g+8FNNWWsti5Qp3OoJXrioQyYDs8YFVsuV5uUNqjqgxJkuEHPlopB2ZbxXg8JwxC1usNZVlTFhVYjcJ5xzr9ZEnoeWAMV5dXbnMaT3h88oDzs2sanKWSLMzyjnmeK8bCow+M3+ex2+UEQUia+X0mSzYNoA/Mp9Op21T36UOLRSm3lqxWK4o8ZzoZ47opBb1M6fzdW+Ynj4mSMVWxpditWS9vsIQESYZvGkzXopSsZRXGdnjaI/ADPK0pqn3qfb/uptF436LVorXoSr0fte4qi0vTdx2dMXTGULcty/26q7SPMZaiKCmqmoP5DC8IKeuGptn70WoPdEDTWjrbAt3ddXf/vd+77rb7IldraeqKqsyd1Zbv0TWmJwgAp/F2H2a9uGE1HZElMW1dcXlxQVE3dK1lPDvi9NEzrFbkmw2X5+9wTQfcHLQap/E13Gmjme9bycq1CaCJ9h7PX3/9tZOKPTilaho64xon1NuStrNcLt/fujvMRspz3+12vdxD9i+gD7aMMf3PRIo39DmFW7ZvqDmN47jfY6bT6R1mVfZYAVJS0C1ga0j2SMAH7t0Xt4ohySWepcLQikWkSBrkfqQWZMje53l+B6zLPYtLgjDGokV1DWaSPshqmqbHNNJkSWSWZ2dnbLdbkiRhPp+TZVkP5uV8Xdfd0QiLrnXYNECe3RDTCdknBdwShAjmuM+QDgHs8Jz3zz/8/aFk478ZrAqTN2yVJuJpmWySipLFX3rWglsczs7OSJKE6XTaV5QJeDXG8PDhw95yoSiK/jul2EcAnKT3RXchkYawnhKtDAurhrpQOYZaF/n80MxYBl7uuSzL3o4pSZKepheqXthdiUQE3A1F4uJsICyxvJwSAAhTIhGkAObtdttHV2IgPNS3DHU+5+fnvY2YMYanT5/yySefMJlMWK/XNE3DxcWFe+j7F0lettVq1S8k2+32zvOTRUK87SQVcnV11U9kOdew1d1/D5pVNzcjTFuRxR5x4ix6iqJmVZTsmg5l3TNvmo7pdEIUR3SdcVXk+Y6qbZ3Po4E08p2dUOxhUfi+Jk4C4kTvuwIpqkaxywuSxBW05PmGOA4BTRR5WOsqUvOda7Xraec3ejCd8uzJUxRqDxRcUcvl1Q2h15HFIUbB2cUl6QcPeXSU8YuPZ/xv/+U1v/3NBT/9+SkfPvMoi5QX3+54dV7xwVGD2S/gpmnRQQCofc9yjbdfmLV2CxHKLWAns5j/6ZePOJp5aA+2ueH1uwXnFxuiOMAqxfW6QtuOSRbStDWTcYgfRiRxiNaW0Pdpq5xys6LI1yjjOs5jDRqDxuL7miDwnG9q21HVNVdXKw4ODjk9fYDSmtVmyXg0c+9eaambjrKq0FoRBj5NYwBF23SMk5TReIL1Aq4WG5JsxfHxAeNszNNHj7leb7Ha69mTtmno2tZZKymN9l3a24Gu93eUdUe77wAVhK6QbLvdgtJEkfPPzdIEi3Isf130xvXT6YzlcgHAk6ePKPKCIs+5vtqy1LDbpqSf/ISqLGDvedu1tavyr3LGtsWYBmMaFJogjPda49JJafab9TYvKYvSmfgbl8L3fO+2oO/O3mP/7Lqr9+uh3tu3tU1D0zpf6qvLK1brFXGSUdXN/r3sCOMEY2G92aKVRmnnKWsMVE0LNZjONYq4XXf19667oY5o65LNauHcJrpbX8+qyKmbur/urnNevN0edOZVzas375iMM5q6YbXdEUQJTz/8hIOTR1RFRRj5vH31groo8Lw92VFWBMbQGuts6/bOFF3X0bQOQIjc7FbjWWEVnL15y3a95fzdGXSWOMto9yA/LyvuDfy/6CEByTCtDPT72DBlP9RJyl4Kt4y77EEC5oZ7uTQWkmyjpM+HRdtyDQIKpYh46BYgBNXw3AKaZC+XYEewgTwnwQzSSGe32/WYZcieyh49vGcpOBc/U6D/DslSy7XI/i7sprSWFYnf6elpD7AFH1lre6mFgFUBv8PmP/L9YiEm76hc+32npfsa0x8CmsOffd/f7wPV/2awCvRpea11DyilikxSUDL4QpmL8e5ms+Hw8JAkSVitVndEykKdi1eeTILhhBdAKxN0qL0QqYAA4GHaXs4nQEsOGSBhSOVnbdv2hU3DBy9WEMJIyP13XddLD+R7ZXIAfapSrmNIqwtQlN+LoojDw0Pqumaz2ZCmaR9RCYCUiHJo2wHc0ePKiyhj++mnn/LkyZN+nP7rf/2vPeCVex7KJYYpA4mwZMxEwJ3nOQcHB1xcXPRVhqLtESA7XID++zg0WRKTJRF+ELIraoxRRKEGs99EPYXvR+RF6YpXdMBqtcP3NaNsRGMsV1dbqrglCD2KKtwX1Bun/dMdSRyjlIc1FaXyXO96pRhlKV3bEEY+2I6iKKmqjroyrLZbrFGMs5SicBZEh7MZk/GYJEpIsxHtrqYqG2bjmK6rWW52vD1fMk8DfvmTJ8ymI7765pI/fn5G7Wms8Th/u2MbAn+V4AcRyhraqnReq1GIUhqlQzQa5Sk8P0CHHcl4ymQ2Zj7a8JOPPmA2UVxdX3NzvsTzfcaThDgJubxas9m0jGKPpnN93XXREUchB/MjstEBaI+uKqiLnGK3JQ5it1l3Th/re2BaCDyfLIo5HHecLbYcHp4wmcxo6paqqQCPJB2jlUfT5jRtS9sZZ0fWtjhjeUMcJWTZGKU93l1ckxcVl4s1H3/0jMl4zOMHD0Bfsa0qyrbFMxY/iGiTlLbd34NSdFi698ysNq37/jgKMZ17t+MkcZZq3LJSm+12z/goir20pywLJpMJcRyx2mzYbrYUux11VZKmEZPRAzarDXVdgTUE/r7AMkmxWKqqBBUQhiO0F6J0gOf5dE2FVq5oMY5ifN8Buc46bOrcNNx6Z9rGyWZco9P9uuBYfWNuNWp121LmO0ajMUFg8bRP07r2pNvNjqosqYqSqqwpi4Kms/t1N6Kzls5KlyDncFFWFXnpGDO0Jhmuu57vwLQxGNsRxSGHR4dUdcV27fyvaSrOmw7thXhBAFoTRk4iZTqDqWvazm3saEVTWxarLZudkwloP+b585/w5MOfMppMyddrrq/PWS2XaOVswiQwNMawWa8Jo9h50NZNLwFw7Ktbm7VSbHdbDo6O8JRiuVjQ1DXK4JppiKzGdHRd815JAiGQgL7gWPbZIcAbSvqGTg8CioZyv6IoerAlYE2q/w8ODnrQNywUglugJ5nQ4b4nOEP2L/luKaQSbWaapv38ybKsl/gJqzrUoApRN5Q3DMGp7KFAD4LlO4XskX8fgtkhrhKgmuc5V1dXfS2QMLXD+hi5F7jFIBL8CLi/DzwFk8hzkesbujQM7Ubv7/P39b/Dcw+P+9KA72Nlv+/4ix2sJL0rCFyQvzCqZVn2epIhsGyahtPTU5qm6TsirVYroihiNpuRpilXV1f9hJaHJhGWgEJhJWXQh9ZQItyWc8Bd+wUBfDLxZXIO/cVEa3t9fd1PUHmgRVGwWCz66Ge1WrFYLPo2s/K58XjcM9AyTlVV9VoZeZDDBy/s49BGSuyjxJNVa91rmUT7I8UWojO9n7LMsoyf/vSnjEajvvhpuVxyc3NzZ1II6B2mC+S6JBCRa5UFRp7lf/gP/4HdbndHSC4vpkSIElS8z6OoDf/pqw3/p08SVKqJ44CmM5xdLZhNEgIdEQQ+7b49ar4rWW9c552yrEmzAL+paI129oy0NB1sVht8nTGbpfvGEAHWWMIoYJz6VLWhbWqSKMHsNxDf0w4EqX3K03T4YUy+Lrgul4Sh66aTJglHx8eEUcLB/JBcGzpTkleGxPNZbgtevfuW0/mUT56f8vPnx/z1B495c/GWf/j9GV9+u+DTjya8elHzn37zmtMnnzE7eoYXp45uMhbt+1jPtbDUvo8fhJhiQ75Z8OZizeOHhxyfHrLbLrlZbKmalijwOZ6Pubpa05QWT3mMRgFRoumampvljkcnUzwvZjQ+ousa8s2KpildJ6JAo6yHUZbWuO5EnoYg8MnS1HVe6hTaG9OYvTeg5zGfHZAmY5Tng1Z4gbvuOI7wWw9XvR6C8tnlFVeLFRdXN1RVzWq1pm4aPnj+nNPDA9I4pmlqkCr0riNLXYGL9jTGdlhjec9mAP07ut1uafdpaK1cIZJsUOv12mny0hRjWubzA7RSpNkY7XmcX16yXKxZLhaUuy0PH54Q+AHb3ZbV8oZPditM12C1h/YDl0b3PKxxVoCjqcHXe+N8FMY6qyelFX7gD9ZdB0mbunbjpjyapsXzQGnlvFm7FmNE379vxrBfd68WN3umeETgu0ChKEoWN27dVRjWyyVLa3n07ENOTh64+doZxqORK1RqOsqmpW1ayr1/JUjjth9ad53cqatrqiRhvbgmilNmc812sybLRiwX1wRBSNm42gHf8wnCiDzfopSlMx1d4+7n+Ycf8eFPf8Hp6RPqqmBLy4vvvsaYDu1LW03XwMIPQjwFmJbOdGjlOoShNdrf1040NXXRkm+3HB0c8Ntf/5rlcrFnGp2vrilb7P5/yvPp3h+x2mcNhRmdz+e9dZMUWAmoEjZTmG7xHRWABPSE1RDIdF3Xp8WlGPny8rLf94fXIiBwyGrKdw9ZXsE3koIXhnaYTjfG9DLGNE0ZjUZMp1Nms1nPugqQExZzmGkUwktkDwIIh4B9CFKF+bTWtSMejUaMx+O+YFpsO4euBgKih2BY9mLBDaKBBe5o94d1NENibQi+hTwTPCRY4fsA5w8VTQ3lkf+U4y+GYcNCm6G2RHQfw8p1WcCCIGA8HrPb7bi6umK5XPaDJSn/5XLZFxDJRBJafmiVINYL9w9ZhCRN/n0DJg0LJAKSCSHgV35HjPCHbUmttWy3W1arVf+CrVYrHj58yKefftpLFCSalBdARMpZlvXfObz+IfsrL9QwfTGbzXo7qsvLS6Io4s2bN724W8C2RJzDCMX3fR48eECWZfzud79jtVr1FZTycg71vrJISLeKYUpGAOgQsMqLPLQSkck+nNDDNM77PqwFz9dUTYPZWNbbmqY15EXFKI4Bt5C1naGqGrAe1mr8MCBJQ7zAUOUtWRowGoXsckvTVBRlzczG1HVLloUkSUTTdMRxxPHRlLOzK5raw3SaJNF0VrkiorqjKBqKvN0DMI/AC+i6msV6y8FhTddZRtmIw+NHeBq+/eYLbpZrDg/HeFHAxc2O8+uabb7j8emEBydHPH94gMbwcB7x+rxgGYFWFqt9lPbQ2ttLC251fMr3UF4ICqoixzYNWRrx4OSA7OAhu9ry5t2SKHFtM49nCQHOpzQII1B7Q/ZWk0QBp8eHjMdOP1blOVVZg4EkylwLznJH2+xo6xLT1Vg6lIY4DmnbmjRUtLYmSuYEobNZCoIIrKbt2LdjdQAzSROXrg1DvKrl+nrNxeWSsm44OT5GK9ht1+R50bdRDQJ/H+SKr7OrXrfenhHAYLllCd/XIcbebpPfa+OANEkw1mnP0zTtU/Jd6+QMk8kEi+Ly6orFcsVuVxIEIfNHjzCde9fLomCUxdTFjqYuQXl4foixBk87qylJPbs1A1zBlbqzbvm+T11WGIvLKABise/W3RrP12iPwbp7N70ZJxmj0YSiLPF0ReMZ1+xgm7Pc+3l7SrFeLTh9+Hi/7sZ0nSEMAwLfp+0MSis8q+m0YZSmeL6H4setu23XYnHr7nq15PjBKVfn5xxGAe9ev+rX3bqu8T0fqw1lKVkkHFJXmun8mA8/+JDd6obfvnnL2dlb2qak2fuLg6s3a7sOr+sw1q3LpuvoLLTtPt26B2paK3QQ9PKOxWLB1fX1HcDjBT6maVD7d1p7rojufR273W7vbe0a5hweHjIaje5k8aSYWrJxw9amQoYNwZyASSkQkiymBCDCNApRJPNW9KUC4GQ/k31OiCyZi1LAOB6P72RJpU5G5oHUzAhhB3B4eEiWZcBtI4lhcfgwKyv4RK5J/i97rlT3D4ubR6NRTwy+evWKm5ubO0XuQy22YCf5u5OQlD0Tutvtet2q4KdhNvQ+4znU/SaJW3NFbijH8HNwy+TeZ0vvF1f9EPv6fccPgtX1et1PDAF8UkwlxVHiXyaDmaYp4/G4vymxfJjP5z0QlIkznU57z7OhlZLcrLCL90GRRAHyUIaTD7gDHOUhSUR9v/pOziPV8ZJOUEr1bOdsNqOqKn7xi1/wN3/zN4xGo36CDyMTeSmHdP50Or3DPArwk++V9EhZlv2LN5lMKIqCJ0+e8PXXX/ftUWWcBKgKbS/nEuuMzz//vA8ChpES3HYEkehVotmhdkf0s/dT+vJsBBgPbcSGbPWwaOt9H85T1bFuTb2jrAym82kazabeAcZtqMppUJUO2OU140lCECi8AALfMho7bVhVF0zHIb6nWK03OPCnqeuG5WqHUh4HsymH88k+cIsIY+evt8td5W/TdmjfY73eOtBqNA8ezLFKUVUNu6KgaTqaqqJrIQwT1usF3c0Og0svjTLFu+slb6+u+eku59NnJ5wcTjiYj+mat1y+25KmY4Jk4rw00Wi1b70qi4vWaD9E2Y7WNOS7ig8eHfL8k4+YHT8lTg/ZrCvO332D8ixNXVPGNbOJQWnD1fWOXdHha48PPj7mw4+eEPoB12dvmR8+wPcDTGvxsNi2ocpX5LtLiny372gT0tYtQRDiWqdCU1W0bU4QxHjKd56bSrFcrojjhLKqmc2mziYpDGl3OVVZ0TYNjx6ekGQZ8b7V6mYzwvcDfE+z221RnryvzkvVWoM1Zu/raVFa43seTf1+waqQAdaC6Wy/8ZZ10wMC+bdmvyZMD2Z0puPs3Tmr9YqiKImjiMBXFLsVcRS7phB7YJNvV1TlzoHhJMEuAHvbeQhrcdl0fWdj8faOEn7gQ+nWSjznlNF2LWgf3/MojEVZ8z3rrktHKhSe9hiPJnTGUtYNbes6POVlSd0YJrMDmrrgp3/1S/7V3/wt6WiKUhqtPbxewtURdS7rEwUeSrn1f7Y3cf8x6+58PiPf7RhNJhRlzuNnz/juqy9Zr9dY01HXFVEY0rVOxmNMh2t2AKAJw5iT04fku5zvvv2GYpeDAmlgYe0tQFZ6r5n1bgkUrFufBRT1JIHpepJAAV3b7gu/biVaMrYCvoda0X/p4/Ly8k9kdFLPIoD/0aNHfTDUti3r9fqOP6mkqAXYSop92Gp1SGpJVf6wIFosq0ajUd+wZyj9GxY7y/+lHkcchaQQXL5T5I5DB4EhwBTbzqEFl3yfdJqU35FmCeJtPmR5ZY+HW+ALLqv77t07Li8v+yzn8H4Emw3nuLWunkZAvsgQJHst3ykMrLgcyRyS7wiCgKOjIzzP4+Li4s568H2g9P74wi2bKhhhCG6H5/uh4wfBqoAy+VLRqorudDKZ9JFR27a9TcR2u+X8/LzvayuMnGhN5AIl1b7b7ZhMJn2qQMCmADR5AYY3LQBLJsBwkgibKtGGgC2ZTEMd6ZBd9X3/jk3DaDQijmMODw+x1vb3K+BPXprhojF8GeRlG6YdZBLJy7rb7frfE1uKi4uLPpI7OzvrH7AECcMISB686IRFAywTeAiq79+zRLDDl18WTPmcsOdN4zqPDdP7EsTIcxluDKenp39x8v1LHJ2B7a4hCCLKqqCziryoqQrNfOITBhql9tF1oqiqjlEWEAU+VVEzCWNGI9eq1VqPum4Jg4CirAmCmCzLHMDc7mhbaEyL7RbMZyM6zzEi55cLwigmzxu0pynKgq516eY0CfB1gOe7JhrK83jx6g2e9lFdyzQLmU3nbDZriqIkGyUcz1OUbemMRgcR26rj7GZL4HXMxyFPH065vt6hlKaq3Qan9oUc1rpGACgF1rpOPVqTzk/54K//B+aHxyyWF2zXNxydPudf/9v/K1/8Lma9vgHTUVbfUdXQtDnPn5xys9wShYrT4ykWQ2cVUTrat1FtUaqlbRroatp6S1fXdFVDkTv7qbKsiKOYOAqIQp+q2lEWN+ggpak9wmRGXblCnmw04maxwPc92k66yimyNOHRw0copSlKp60s8oL5dEKSpHieZrlYko3d+7zb7SirkqIoadoWi8ZY12ZXKYt6j0Uq4FrhVpXB8wKSbEwYxezynKZpGY0n+3dWkxfF3uImoukM796dc3V9SVWUeJ4G5ZiU0R7cplmEpy1x4GObis3NNcnT54RRyngyZ7vbUhUbFjdXzObH6MNH/QbYda0z2t8DjcBTxFFIWXd75wtDXdVoH/xobz3UGVrawbrrodStzyTKMUdeEJAXJfmupOsM49GYLI45PDzA2I7xZLLvQOUAruf5+w5shtD3nXVVmoBy0gOvX3dNL59QWoGxzjO57djttvt1V7Ncrlivl5xfXrl3pqo4O3vn1m1lSeKEYpdTV9W+8YHp3ymlPdI0Y7tasVmtB/sLe69a7VjS/fobBD7aD4iTW5KgaU1faFbtgVrXdT1jDmCNRVtFsLcPU97evxPusID6PWa0RqNRD5CkCEqkbEVRkKZpb7M4Ho97gmMo6RP5noAkqZWRPXCYhZXfn0wmPcMoe22apn3bbwkAJDM5ZFNFhiB73rCIW4g5oDf0l4KlPM+JooiTk5O+0dEQiA1T9JI5TdOUk5MTRqPRHaIHuGPaL1IK+Z7VauXcPfbSyKFb0fc5LUhjA/GTNcb0pOHQ9UjG+v7eL3VDMtYPHjxgNpvx8uXLO3KB+4HskI0Vjax8Vn4+/G/5tx9LbP0gWJWqSYkGwjDsdacyKFKpN51O8X2fzWbDixcvWC6XAH3BkNa6bwEmD348HlPXNcvlstd+zOdzVqsVZVny7t07ptMpjx8/7h+IDJY8mGFUIczgUJs69BMTYDnUywB3/jtN0zuUvjwUAYhDPeewqnAICO8/IJn4Q6ZSLL7A6XNvbm562YHc56tXr2jbth9DSQ/cB6u+7xoyPH78mOVyeSvOv5f6lwk01P0Owaqcb2jbAfSpFwH+Wuve4gpui7vk/AcHB/zt3/7tj5qA/9zH6+ua08hwMG7xg5CDaQaqZLEsyOuA+cEE0xU0VU0QeiRpgkfA1fWaXe7S/VYryrqlaVyFfpaG+H5HlqV0rWG13GBMA4S01hAoMK0zJo+igOVmwy533o9xEjIej4gCH6zTbFqjyDJnRH15deXep/GEyIOmdUbsWZaxWi2IwgjTdoSBx3SSgOdTtfDupgDTcLMqmYQ+Jyc+f/hqzWe//hUffPI3RMmIII7BuO5YXhC5Smoshhbt+4wPTkiTmJP2KQbw4oQsTHj68S/49uvPqIqC2cEJdX1GVbds1jvGacDhwYjZbEwSjYnTA6J0StNUKE9huxK6Gk2HNTVK45hUChbLNeu8JI0aDqYZ4yzk8OCAou6oWkNdFhRbQ222jCZHPRPhQItCWQck5pM5k8kEwEkHfNcnfLVegVLku5ymqVFYtNK0XcNmt2a7yymqGmMdCMqSFE9Da95/caDvByRxhh9GlHUN2iNKpOrdsN3le2/HiLJsODs74/z8nK6tGWcZvnYa6clkTBIFhGFA11WMxxnjOKTarKh2C5R9hlIhSTqmMy11lVPkW/LdBj+ImE6P8PZG+AqL7zkdm8k7lHKODo1xwLNrW9rOFa75fkBZN1hECw9ta0EbfM/DAOzXXV97jNKUSTbar7EO7GmtaU2HsRYN+FrjaY3p2j0T7+QtfdoRQLugDGvxlcYO1rYOV4yUFzUWKIqchay7yyW+F2CagtcvX9DtyZeuqVyBWr2vi9gDc1yNFVESE+2bebBn58Vj1jH5t2upK+6yrpNY5zIJ1ux9c+PENTtQru2s0y1WmH1NRNO2TvO+L9DyAx9jLV3bOk1w56QBn3zyyXuZr+AysdPplDRN+9T8fD4nDEPevn3bg0GpYTk6OiLLsj7LN2QXZd8a1kYMiScBXgJMhXwRZlW8UCXYkr12WIUu+/JQeynfH0VRL5GTTMd0Ou0/J9jn+vqayWRCmqbsdjtWq1W/58u8HBYqieZV0vMCPqWJgrRRla5cu93ujgPRkGganltYXtHYFkXRn0vIt2FmW+p/hlhhOp320klhXKfTKaenp6zX675rlsznIVs9BJzDorn7xxCwyu8P//2Hjh8EqwJUpSPVer3uJ9ZoNOptjg4ODlBKsVgsODs7oyxLsizrq9WFkU2SpAeSo9GIpmn69mfDaEcYRK1dt4Yoijg9Pe0nqzCqUnAkE3TIbBb7ntXyQIdOAkO9ilDew5TAUNc5XGiGD2IoNRhGGUOXgfvaD5ErlGVJ27Z9lylxSRgaH19dXfH27dteI/Py5cs7qXm5nizLODg44KOPPiJJEm5ubvrrHk6sIaj2PK9nSUW2INIAGWMBtdKVCuhlBRJtfl9loAQj/724ASzyjqL1WW5y0jQiCDu61tC2Li2yWhqiUOFrRRhGrNY1bVWQRAEo7VL3zb6KxLRYfOqmIYqc2f/19XK/4cS0BmgcY6qBURqTxo7duVlW+65Risk4JUsStLJo5RH4IWEUs1ptWK9W1E2H0h6zcUbVWiIvIEvHVGXFZp073XfVkmUQKM3lJseMM9J4zJurLZOnEWlqwVsRT+YkyQg1iIJlI7AWt1tiUbYjjGKIY0xX0dYlXhiitc/p048YT6dsV0tef/sVdVny+vWK+XSM6VomWUaWZGTjE9LxEdrTWNvQtgVtuYa6pG4KtrsNq/XWgRarUCqkrAvWmxs225yHJzMePzwhimGXF3Rtx/Viw+XVjvnB8R35CbiMizIu41NVJXlREHgxm65gPMo4Ojogz3MWN4uejbQaOtM6M/ampSwrtkVJEiR4ykfr9+8GkCQpcZTieQF5UbjkvVKkaUaxb2JxdHREHCdsNmsuLq7YbrdMp1OyNHJ2Za1jzJWydE1Fvi05OZoReoo63zCJxph6jWl2DtwbTRREe/lAAlpxc3VGHKXO87ZrqTvJWEW0becaEHgerbVo5dwUdmVJGCf31t0G2BfHildjL8dw6XRrQe19buFP112l9b7LWLt/lv73rrvG7je+fWGYVhpjres+t++gtt3sOL84o2kqNusNq5VrlUzXsby64OzNG0eoeJpXLy/oKmnA0u51zWYfsMccnJzywUef8N0337gqfUB5tySB1l6/N7WdwbPOhioMYwLf3XfdtLS26BlZax2BEkYR0b4Q0FgIErcXt3u2rK5dcwKF25fmsylPnj97H1MWoPdUF9ApFmBxHPcNb6Ro6erqCmNcs5s8z5nP53eKqYTZ2+12/TsvDKtkD4f79Hw+ZzQa9V0xhwVCQnQJppB5OZQswO2eWZZlb1MpeESIL0n3izxB9u4oinomV8g2uO1qKTKD5XLZr8MyHnVds16v2Ww2vfRQAPsQjAv2Ge7jQ+AoAL2qqp78kqZCkhGWcRNiSYg+AfYCimXsnj9/3ss1hkHIEIMMiS4B6EMG+z5AFdw1bObwY44fBKuz2exPLKOEGl8ul8Rx3EcbZ2dnfVQxm816MDqZTPrIQDoqTafTfuORiCDP8545GXaw0tr1891ut714WzowSJHTUDhvrethL4M67CohAHPIAg7T2PLzodfbcHCHqXV5MPIQ5OHcf0DDhymRzHa77SeTCM5Xq1X/+Xfv3vH69eteFiHjKtcokyQMQx48eMBHH33E8fExv/rVr/4EgN8H45I+EfH5kMaXBUJeWjErlpdOAK2MmYyNuArISyGR5n8vx3jkk2hNXVvevFnjBQFB4ON7LU3dME5HeBo265J8V3N8OCYINCpvWG0aAj8kTkK0gvXGeZe2reJmuUZpzWgUEUch6/WOrrU0raWqDWmqSCKfo2mC7SCvnW1OWeRoOsajjMkopqpadtslWZqgmLPJnXavtYqqsXhKk6QZhwrOL845v1pyeDhhW7ZExm1SRdHgZT6zaUiYjdBBzCefjvhXf/d/QoUx2vP3urcG3/cckLEWazRaG0zlik3C0RjV+YDBKovywI8SsukRng5Z39zw9OkzDuaZSw1jiXyNNZogSgnjEV3rbLja1qWI26agKnfkxY68qFivC7T2KdvOjVVrMXnNOK/Z5TlZmroq6aakaytnuTQZ9cFc2zZ7bZezI1osV3z78iVXN0vSfXr1yaOHnB4dEoWRaz/YOC1Ya43TXVrXix401ty2+DTW0LxnJ4ujo2Oa2lDtN0uU4uDggDwvegYkCCLOzs65vr7uN9TRaIQ1NVmSYjpDXpSUeY6HZTYd4duOLEl4+ugpSegRB4rVxQtmp5/ihzHG1iSxc2awuO5QNzfnnD544lqiGtcoIAwilNJYY1HWMaNYSxSH7IqCuqmJkozWNHfW3bZtCPZsiuf7CFjtOvv96y63667veewbBf/ZdRcFg7IPsJbW7n2p25b1RtbdHUHgUbYN6+USDWhrOX/7hrevXxLvN9HNenFnozVmX3WvPOYHBxycuKKv9XLhpC78aQOY4f0EQUiWjbDoPUC3+/0uQu09WB0Irfrq+N61Zr9mu/t18gUB/cq6gC2M4jsZsX/po5cv7CV0UnshBcrC2Il7jpBUMg7SMlQKrmQ8pPhZ9ifpWin7m1Tqi3PQkC2U80m6fJhpFOJN5p7MJ5EnijfrsDYkCIK+uLFtWxaLBavVqpcRhmHI4eFhz+S2bcu7d+/6xg9SxyPfIdKEoih6+0cZS0nND9P8AljhbtGg7OdN07BcLvvvkbEdYgdhuJW6bbLQdV1fG5MkSd9GNggClstl7y4kWE6+e0jyyVjCnzKlIlWUIvwhOyyFcX/p+EGwOplM+gk2TPUXRdG396zrmm+++aYfNJkwok+VQRFNqwCko6MjPvjgg34Q3759y/Pnz3u9hDCM4OwWzs/P+fDDD+9oPgWZywsqD1Oo8bIs+/SgaEKGpv3gItjhpJWB7VNL9wZxyN4OC4/k94ZgdZhakGpGAaxSJPH27VuXvttX4V9eXvb+tMPJLOMi1ylMtUzON2/e9BKC4XV/333IRJOIVSJ/uU55OeWa5IWVArg8z3s9c57n/z/m/utJkizN8sR+9ypX4+Y8PCIzIjKSVmYXnWpOpnq6qkeazO7IzDZWFoBABC/4W/CAPwMvK7KQlRXBYrEz27PbQ7umSZGsysrM4B7u4cS4mXLViwe1T0PduzqrBsBU1BXxdM9wYmqqV/Wee75zzteY62R3d/fu3df60Lw5hj0fx+RslGa9iamqnJ2xR+DZZHFKkRVU2hCtC/KipKgyKGTXqVkuYhQ2+/sdOqHN1TRmsa51r4d7PRwHsiyp9aeOTZIUxElCJ7MIAx/tO2z8lDhJsS2N62iyLGGzysniNUEQUuQF06sJrheyXETMlhGdwN+2UAzZ7doMhgOUZbi8nLNcrclyn15PMQ46dMcjlK4YDg/o9PtURrN7fMTtN95DOV6jZTNlTpnXrmGlNVopUBpjKoosxspdnLBLVSSYOMaUFUZpLNcnHHvcdQN6/QEXp58znc9ZzK7Ii4KeE+AG9ca1LtMWKFNS5hHL9Ywk2rCKEuIELMcDpUnilEoplF1XQFZRwmy+wN4adpbLOdE6Y+fgAVVZslnPsCynThlQCtu22MQZz05fcnJ2QZaXGBSDQZ9VHLF5FjHsD+h3e+B7GAxFltHtdEmznKKoUNoCZVGVdY9533Mxzuudr1VVywCKssQLAtxtEw7P85vy5MnzF8TbDlLyDJtOJ3Q7HnkWo1E4jo83HNANfMpsQ+jZHBzscXD7mGSzJFrNKFdz/P4+yvHJ1nmjbbZsmyxOmE5eMhzvYGtxPxs8P6jNbkmKVgrHssnKCtuxsB2LNE3o9YcYo8lyee7WXajaz13bkaD1V9Kp9vPK1H6w+pyU2xbBX/DcrePlACUNYsRFnpPlNZsedrq4jsPp6QnnFy8x22fc1eU5q9Wc0c6oee6WZb2xKU22JWsMiprpGo92uffWA6qq4snjR9eMTTWIEsD6yghlWzae62GUxpg6Q9UYQxRHDXsuGk0x/MrvCjh1XRfj2JTb3M2qKjFboLW7t4v9U5JzflFjPp/X0omtrlPkY4vFoiGjbNtuUndkLkgFLwzDRvLWNjcL+ya603Y8loA6AT7AtbgsYSCFBGv/jswbIbDaIFA6a7Zd/W3ZgZA24teRDpxSzQUavLG3t9dEYwkwlHVWvoZXnbbaUkU5nra8sb2WCwMqeGc+nzOfz5t8eNkowvVGCbKhEAwhjZV836ff73N4eIjWmsVi0az7aZo2eKBd5YXr967MWznX7Ypsv99vMvflmH5erPAzc1ZlB7G3t8dms2E6nTY30mQy4erqqjkB0hkBatZPKGjJVhWdRxiGTdzDarVqdCnSMkzca7KbkMncLu0Djf5DGEp4laUqVL8YtOBVRy6ZDDd3YXLSm5LSDZq7bVKS8dPcbfK1/I2bN8J6vWY+n7NcLhvgJ6HCcvGWy2XDVPZ6veZctieqNBKQcou8t7YjsH0sbVG3xFfcjLuQzYCUQuTBI39b9K4yedv5dsYY9vb2tqaj9OeagL+IURlFJ/AwpqTouyhj8CxwtMHybeI4YTjoMB45nE9WVJUhKTLKXOHZFqaC9Tqj19W4ro3jKvI84GKxwdabOtKmyuh2Q9I8pyhyKmNRmbKWF2ibbuiidN2FSlkWVVWiqhLKkmi9Jgy77O/tkeYVI+WgtEOaFVTaxiiHSruUWBzs7RF4HtPphE63h7Y0vW20ye7eHraus4oH430q4+P4LtpyqAxYSmNRUZuItmVYoMor8njJ8vwpHXOHYdhB23WuaVmWaKc26yjbwel0CIY7uMs5t3p77OwdstnM8bwOXtgni1fkeYpWOcpkzOcXXLw8I8tKKjRJaigqcH0fy9Y4xiLLDYsooSoVnlvvwAfdHkcHh1j2irATcnF5QRynjEZj8kJhK0VRGYoyx5haJ93t9AkDH9ux6PW7XF1d8fjpc4729xkPBgSBR1HkGAy27dRNQPICtc3VdV0HbVuo4vXKAExVZ/p2uwGrdcTV5QW9Xp8g8InjpDZgGoPGUJUFjuuxXC7qBhZ5gTYVtuOgKNBosjTGpDH9w2N2D/bJ04QiTYijDUWZM335jJ3jtzCVYb2Y44chWlsEQRfLq8jSBCfsoVX9jLUdmyAMmc3naEuj0Ci1NXzYFlSaLM9xXQ8UrFYplrUFj1n93M3yDF/VemxJ1KifuzVYh221a8uuGqWoe5XdkAe0n7taYVAoVTPleV7rXQ2KsoLlesNyPme1WBBFa3qdTp1wEcc1W6kVy9VquzF36Fl9kjiiahbUrQ4RzXKx5NOPf0BZFhR5ttXOts0rAqJfkSBlWZKkCdp2awOlmK60ptyClCRJmgW+7Tw3GNKkjoXEmIYMEgNWt9vl9ht3tokPr2eIVLDX61GWJbPZjNFo1HhTpBIrXSy11tcYZNFLihlIKrOSOdqOfpKQfJGeAdfK5FVVXesGJUyqsKW+718Dhe35JFXdm6H94rVpezaEtJEqqJBTAuhEZjcajZp1WpIARBIoH3IsP62sLsfSlvVJxbss6whQMbKJtFJA4k02VjS5Ii+QCqrrunQ6HY6Ojq7JPrXWXF5eXvO2tM+ZnLf2hk3O401vj2ATub43Qe8XjS8Eq2Lu6XQ6PHv2DNd1OTo6wrZtXr58yWw2a06GUP7tnbEAVQE3MkGPj48Zj8eNZqMoCq6uriiKgg8//BDbtjk/P2/aj1mWRb/fbyaZTArLqh3UotMUtlCEwPIe5IS3kwgE/cuElQ4VbcGwvJe2sFkuRHvcvIg3WVU5jiRJGnF5lmUMh0OGwyGz2YzZbNYATzm+trZFwLX8e/vGECnFzWOT328iUnil5bEsqxGPC2CV3726usKyrCaCTMKIZQcoeWvtDlgCVG/fvk1Zlpydnf3MyfeLGv/iBzP+T7+zT5KldDvgWw6eXWHZCsvyyNKKsixAK8JA1052bVGWtet5Z+iidEWZFyRFxWJesk5N7TDG1HFKAw+lFZ7vYdsuoW9vEzAS+mGXQa+HUSmrKEJrzXgwwHUcdgZDyrIizQq07eI4PqVxSTNYbTasNyuMMZxeLBl0A5JQMx4M2RkPiJMY1wnYrDeEft02sjvewfUHDHfv4gQjHNclT3Ms26obALgeThCibJeyKqjKlDKacPH4L5mePeNBN8CoN1Cej0o2mLIAs+26phXKdumO9njD8VnOLrg4WxF2BxzeuoupTJOhalkVRbYmzxJcL8CYgrw0aF1gaUOWxwSBj++62DqjLArWaUp8PseyHVzbrg1EYYfnLyekhcfJi3PCbocsz7G2zOMmiuh0Qm4fH9MJujiWQ0WFturydFkoLq8mFHnB7eMjytJQFducStshTjPSvKAyr3I51WvWW7uuw3K1YDq/Ynd3n6PD91muNzx5+mQblA+9bp3jvIki/KDuDmZrjaU0jlb4gY8xJavZFaNuwIe/8j7jcY8qj9jEa5LVik9//Anni4jfHd+llyxZLyckyZq0yFFqTdjr4QVhzQaWtbbZctxmkVWWRVlBZWpddpqlUJo6u7a1+IshtyiLhvUsygKlFb4f1okUzWJno9T1mJuSkpK/SwhoSzel+foHty5kYyjLispoiqJkFUVMZ3NWixkYQ9jr0h/0uDx7weX5KUkckyZ1GHtVlmjLrhMDtrE/cixyjFVVkeU55XKJZettnNd1bZ61Pbb6622mpmPV7WKtilKqZM6WNd0+Wz0/wNKaoiwbMFsU21Kv65AlEVlaazc36wLHtuh0utx98Damqvjsk4//M83Knz2kxNuOX5Q1X8LkzVayIACrXamMoqhpryoAMYqiBsC2q7SSLiRrV7tUb4xpZGs3CTQhv+TvyxrWdthLpijQEHGykWhXZYWUEV2uXH95n7KOC6sKNMywGKHkmEQ7KwC07ZER4NwGehKzJV02RVLRbgDQNoa3y/9iJJcIMSES+/1+Q4xJipNt20wmk+bvAdd0voKTbsoNRZMqBncxhidJcq017s8LVOFngFXP85hMJpRlydHREYPBgCRJePr0KbPZrNkldDqdxgkoJ7mqquaAta7jK4qi4J133mkmgND6z58/56/+6q84Pj5mf3+/yW6Vh6JlWY1JS06yCJDbuxS5yG0qXUTS8KrNmSB60b8a8yrL8KaIuX0TtI1E8v6kHNDWsbZ3aW1AXJbltbgoaRV7eXnJy5cvm58RwbUxhk6n05R/2s0P5DjbbG/bgdieWPJe2vFewozKjne1WjXn15g6pkva4UpJpaqq5ncEPMu5Bzg8POTw8JDpdMqzZ89+rgn4ixhma2JwHMWw1yGPYhzb1MYR7VAVOaYqcT0bpV2SOK9Bo07wtcK1FXlusG2LOK2I46rWsjoWUDv+q6oiz3JWmwKUgzEVtioJPZ+Ob3Bti27gkWY5cZoxn6/odUIuiys8uzZzlVnGJJpQVjaokOM793j3nfcwVcHV1YTlbEJZJSxWOaZakyQrHMejGwYoYyjLnNlsQm/oYQcDejtHlFlCZWK0Y6MdB8sPUba3DYPXFJsLLj7/33j4g3/Nermm3x0RHj8A26aiQOkalJuqqtuzaotKO1RKEcVrovWK3b1DXDcgS2MqU6GMwlRFDao6fRwrYGGW5JuYwPexHIsoiWvdsO+wvzNmd5zw7OUF021HozQvKUtT51LmObNVhOM5lFWtKU3zkjQryPKMwXBIv9/D0y6OZZNXOfE2xP1gb4/zsqSiDmQvi5KyrGOqLAVJnjemHbmPZFF4XePhw4eMxgPu37+PUjYX51c8e3FCktZRVb1uzQjW7Fp97d2ttdzSdV5wEkfMJpfsDQJu7Y/RpkRXBXEcEa+X/Oj7H/PZTx4yiXJ6B3/LN32HvKizThUGYzTpLEMtFigs9vaOUNarkmgYhqzWK8rKYExFWRoKWYBURVWW29atCs/zKQpDkq2bsmlZlVi2jaleMWX1c5Ft6bz+u2KYqrbPxjbLJIyr2pb/TVUbsUxVUVZ1c4f6WV9QFhmWVuRZTrKOiNZLXjx7TLReAXWSwXKxJE0TOp0umLLu+FaWVNvNy80qlS1M143KXP2M1th2rYdW1PFZ2rK3BIGH53hYrkNWFjiOx2q9ZrPZcHCwQxRtYPsa8swNPJ+iyMiiDa5b5w8bDGHg8ytf+TLDvT1ePn3Cv/3zf/mLn7DbIUBvvV6zXq+vsY6SMyrreRtkSpvSdmqPALT1eo1SqskAFWZU1q9+v3/NKNxOKJK1WgCRAERZ09r5v21DsOu6Te6rrOWbzabR1UpEpJiJ2xhB5kab6BLW1LKsprGAgGFZc0U6KZsjOZ/y/+INEcwkQLXdGUt8QQJIxSwtwLKd5CMpDHIvi8RzNpshnTS11szn84b1lrxYOb9y/PLRJuyglS0scpctCG4bs2X8PFKALwSrz58/x/d97t27RxAEXF5e8vTp02bnNBgMyLKM6XTauOdEEypALo5jJpNJE6shHSLW6zWr1YpHjx7x6aefcnJywvn5OePxmF/5lV9p2ER5MEnWmPTHbRt+6lifBY7jXAPB8voC3gRcBUHQZMEJ6JWbSHYjZevhKENukPYur71Lull2b+9sJL9NLtb5+Tmbzaah7mVnKRdbtD3yXgTst+l8eU0ZbSdt+zhuUvJyfQS0yrmrqorVatXopk5OTq6BcCm5CFsNNMcnTK/cYD/vbukXMcpqGy+lDI4B1zI4DpRlQlkU5FlBr+vjuNSl4k7tgrd3Q5azCMuyieO07moVGNIyQlmGfsclziourjIGXY02ObaruJytmVaGYa/WqTmWje0oorQkjlLWUUqWrZi7S/p9j9CrXy8rSvK8oiw1Rbng5csr9g8OcV2Lg/19Dg9uUVUJVZmynmXkhcIPFH7gEQZ1Iwff9RiNdwl6A7TjUBUFlu1g+wGOH8LWsFMpUMYQTU558sO/5OXJC56dr0nSf4/d7XF4/wOqNMPyOlAWGKOoiqoGJ1VFmWfkWURlMjbRhnEFRZZT5Ak2OaaISeMIS7v18W42WE7Azt4xRZXjRmsUClPB7nhEp5Mymc25KArmiyUd12Y6XxJ2u1i2TZ5vcN1OXQqsDGUFURzj+R6WY7NYR4RuxbjfJ/B9HMdjNpvXDO14TJHXLXUt26KKtrnH1laza149yIXJeJ3j6NYRt24dkCQZj5884uT5GZZjM96pZVKTqyvc7ebaVHWDCVTd0EBVJfPphCJL2R11OT7YYTwa0OsFLKcTzl6c8Onnn/P4yQsm0w2zTcbqX/0HFlHCu2/fJV3PyEvoDUb0BmM20ZqL85f0emMcp+50BdDphDhWLSWJ4pyqKMmzFIymKgqSKML2fJTWeL6D57moLWOY5hmmqrCsDMfOGr1h/Wx6ZfCshQ71Ir3eVuHMduF0XBfXcdC23WhepUxfP9dU8ywq8oyyyJlNpyzmM+LNis1qAUX9vTzPUZXB9xyyJKYsckxZsF4tr/W3l+e453mNfrZNENwkDerUhBq4V1VFtXW3x1GMtups5bpBSO218FyXbiekKPJmTRCNY1VV2/axNZjCqruy9fo9Dg8PMEpx+fK0vgavach9I2X9+Xze+Er6/X4DPKXCKUBJStlCIglpJMBTQI0wonKN22ydYAVZFyXySRhUWQM9z2tAoRyb/H35WljMdNt9TEi4qqoaGaQcrzQ7EkNVm3Vs+2M2mw2dTqfx9MhcEdmeVIxFL91mKOWzYAghjNrspIBXWXsFG7S1vALQxYwplWtpAjSfz5EuYkCDOeS4pPtVG4e0sUbb6H7T/9IG2zJuYqufOb++6JvD4ZA33ngD27Z5+vQpT58+bUr+nU6Hy8tLgGuUuQAtpVTDHO7s7DAajZqys7QNe/r0KZ9//jmXl5eNE+1/+B/+B54/f87bb7+N53k8f/6cBw8eMB6PWa1WTCaTRvgsrxmGYcP0yq5LdhuO47BcLptSubC9ciPICZUyhYC6tm4WaMobRVE0+hBhHGVnJMBa2AMBzgJ8ZUJIC9eXL18250tCfyUcWSh6ibNol/9ll3bzow1ABTzKw1MApYQkK6WanVV7tyQgf7ltdyjzQKQEbZmDJBnIw2h/fx9jDJeXl9y9e/dnTr5f1KiMQrk+Pa/CFNs8Vc9BqToCZzTq1a52z8LxPPqDLkmaYWtNMuiSpQVnLy/YPehisOiENnvDjO6gz5OTOctVisLh4GCHrMhYRZuahaQgSyvOzif4vkbbPovFhiQtAQtTFthWiTYloCkMKGyiKCHNKvxgRBJvyHJDuPEJvID5YkaZJ2ij6PT3sJ2cojJsNgndfhdT1qHnZVkDywoNyiZPc5xAg7YwVFiWpjSazv5tRgf3efrkEReLiOzxU8b9f0l88Yw4g6O77zA6foBxBxgDeRKxXs6ZXZ6RREvW6xWj8RFVmZMlG8psQ1nUH0pVhJ0Bi0VE0N/n8PY9dg/eJI5WrOcTsjQmy1K0G9DRFnvDHmm2h60MtuMTpynKsrAsKE1FGieEQY5WDqjaxGI5HlfTGYtlDX5H/T639vYJPJ+dUW2WqYqcyt7qAy27Zu7KErbla4WhqkqMsTFV3Z/9dY6jo1us1ms+//wRq1VEt9uh1++BVjx79oxOGGC2oFErRVnkOLZNmWVE6yW+6xB0PcaDDqHvkyQx88kFk4tzXjx7ziefP2GyTlmsUubrhPN1xnSxRBvD7//ur/L97/2Q7/3N9/noK19n//CANEtZLhfs7O6CqcP2XddBK4VtaRzHIs1ysiShqCDoDllFa9yqBMumMopuz8UPAhbLJWVZURQZCo1jv6o01QzZNrLHssjLis0mIk3rhXk2n1EWJbZtbTsT1YDPcdxm85ymWc0Q5wVma+jaRBumkyuyNGF2dUG0XtEJPDbRhvVyXoMmP6CqDIHvkWYJ0XpNVebAq0QVAVCWZWHpVx0Vdevrttyqqiosx8ZybMqqQm+D/F3XYx3FFNsSdJzWZqJgd5dHjx6+qtg5NSPpui5VUVJWBt8PtuepIC8r8rJkk6zxbRtVJvS6ry+FJQiCZh3vduvcaAE4kqkqwF9YSqVUI8GTNVXOqWwUgGubhXY5ux1DKeuk+FrEyyIeG9u2m3bvq9XqmslY5qDIAtrSgHZnKpEuivekKIprcVYC0tprdCMd2ZbWBSO0JZMC9GR+iRxAsIgQXW1JoqzXURRdS0uQ8yNrvERvCTiV/5fXWSwWDQ6SVrMinZDMeQHQfx8DKhinzSiLLLQNUP9TDFU3xxeC1Tt37lCWJZ9++ilXV1cNq+k4DmdnZ1iW1dDlAtDglYnIcRzG4zFa192ugiDg9PSUFy9eMJlMePr0KVdXV8RxzGw2a4Jwd3d3+e3f/m12d3c5PT3lu9/9Lt/85jfZ29trdimyuxHAKJNcJo2YsobDYcNgdrtdyrJkOBzS7/e5urpqwG0URdcmrYi9ZfLKxZYdm2hfRIgsE19E3zLZRKvadgyKNqfT6TAcDjk5Obm2e5euUdJmTih+mRQCRts9lG/qadtaILgeM2XbdtOzWW5m0QZJaoMY5gTEi0xCjqVtaLMsq9mQPHr0iBcvXnB4ePj/1YT8zzHWacUnLxO+cd8hCFxcDGHg4rpOzRYBpizodUPGu7v0hwOiJEFVhiytdaeer+h3O5SmlhKkWckySkh2QlxlUKpkuVrhBwGDXof1Yk3o+xijqbDp9rpsNilFXuF5IWVp8F0b361lBFGUkKYFWRJjsMmTgii6YD6boC1NnqUcH9+m1+tSlSGr1ZLJco1WGcMeBIHGTXPIcybnp9y6tybo74Ln1/pBrcCykHbmdavRkqoqmc0mTBcx/Y6PaxsW6wiePeRquiDarPgg6BCMNXmp2KyX5GmMY9fB7mleoBQkmwVpvKQqMrIkBlPRH/Rxgz5BP2fn7jF7R/foDfbJ0g2LySmr+RVg8IOAeHHFvTc1u7v7dRe5eIO73VB0A59O4HBytsJxQ8KwW4dyotlsIlbLJZeTBa7nUpm6MUC3E3J8cIDneziRRZLkjRbQmIqqNJSlIstyqsrgWDaWAqhQr7kq8OTklM8/f0IcRezujtk/2Ge1WLKYzxj0+lhWnRnreR5lluF4Pmm8Id8sGfVCAt/G0hUH+2NMkfPos5/w7NkJl1czrqZLFlHMMkqYziOitCAsKz5699f43d/4B/R8lzsHu3zyve/zr//8f+Hbf/ynWK7FYjGh2w1xnLqxBFJGzQp81yVOMsCwWa1Q2kahuDw/J+j0KMIKg6bb6RJFMXleUJWGuEhqwLndQMjnPC8oywplu7heQBynRHGMbTtNKsB62/kPNJ7/qmRblnXwf5KkFFmthd7EG+IoIonWmKrg+PiIeL1inqVY2toy9VsNZVGSxhGmLKmKuluVUq8kVQ24aTGo8Er2Js9iy6q7rEGBbTv4gf9KomXbdHs9sjihyDIwJZYyLJdzinLroej2cL0ts1ZJebVm61AWcZrRH/R56+0HuK7Ds0cP6XcdwuD1pQEI0SIG4k6nw2g0Iooizs/Pm7zVoigYjUZIXJIxhl6v10RUtSuRQMOCCsMnYF4kBHLe2yVmIa7KsmxM4rZtN2BR1tk2+GvrYUWGIGBLZIkiTZTITlnXBQO1ZQXy+jI32vpMWcNl/gjAld9vl/KFqWz7WNoldBnttV/YZAGeci7l9drySKDBEwJKReIppJ5gnTYj3GZs5fjkvYh85acda5v0ah/3zxpfCFYvLi548uQJs9mM4XDYgMUXL140rdSETRRNSDsHTSjvfr+P7/s8efKER48ecX5+znw+r0siW6AaRREAH3zwAf/kn/wT9vf3G2fhxx9/zJ//+Z/zp3/6p43JSrSiAlIFHAqt7TgOq9WqCew9Pz9ntVoxHo/Jsoz9/f1mJyU3B7xyDbZZzPbOQNhEYSPbIE46UQnQhFct6CRHTSaM7HIuLy+b3bNMNAGzcsPKpBeWVJhhOQdys7ZLGu2JIQyxsA9yzkajEUEQNI0c5IaW4xPw3nZRykRvd7/Y2dnh/fff5/LyksePHzObzXjw4MHPNQF/USP0LG7v9Ql8hzxNcG0bS2t8z6HC0O306AYeu7v7hJ0uwwFE0QpT1sHxvmuRRBG+6xM4LpskYme0x9GuxacPn3Mxm7FaJ6w3+XZh9nBdh+m0ZvXzsjajWI5NnKRY2sVgcX6V04kMR/t9os0FrqMIfZ88MBQlLNcJ2lK8PH3BbDbh9p03GA13ODy+TbyJ2KynxOmK5SomXi0Zjno4lkOW1WYWYXOqCjQOpSm3geygq5wyi5hPL5kvY2zbYzzskqYZq2pB6GtmF0/5/l/+L9y+/yG9nUO0FRB2u5gqJ+h0GQzHFGVBlmxI4hWqMnhBlyAM8Xwf2wu5dXefoLdLMDrE6w7x9R7h+JD+ckKRxbiOw8Lr4m9mdKI5cRbz9PnTbQyRpkKRFSW255PkhnwT1e1r04yryZzLqzkou+7OVRk2WUYJ2JMJu4MhvufXrTGVpjIFeV5uzS4VaZph6VqLq626PWZVvV6w+sOPf4znerz11n3CMODi4oJyqyOryhKtQNk1E+m4HsvFHPKYcS/Ec2vQHXgui+mUq8sLHj58zMnZBfNlRJyURFnO1SIiinMC3+b3futr/LN/8vt0HLg6e06ymHL3YJcffv6cf/fn/xvf/J3f4jK+wvM9xuM9tLIpim1pMklxOz6BH+C5DpiS1WJKdzCmyFPOT5f0R7tEScbevkXohyyXa+Io2T6j17Dt0JaVJY7loizI0gxTZg2IBUUSx+RpQqXA9z1AUeQF0db9LDFZYRDg2A5FlrJZL2t9rKpwbY1jh0SbDdPppCElqrJiE8WkSUKRZlRFUQPdxhdQXxfX83A9D6uRH2zvo61uVYxeijqTVWsLbQswKgi7HWzXx7JtHMdlzQylIN3khN0eStVzMgiCJuvXtuvOAaYqAUWal2RpirY9RqM9RsMR87NTPv/hDzneCbDV60uyEPOUVAQl0abT6TTrn4CkxWLBaDS6Fi3pum4T7H9TGiCklOgphTCS3xMgKGu25IOKua9tWBIgJ63OpY2pkDnC8A6Hw8ZY1e/3m3L/dDrl8PCQ8XjcSAWEiWzL4STcf7VaNd9rj3aclRx/W7YopX35LHhAtKPCXoqhSqqdwriKp0c+xKx+M/1HzoE0c5JWuJ7nEUURk8mE09PTa8ax9jVvm9Xb/9ZmUX8aIG0D1p9nfCFY/fGPf0ye57z11luMx2Ourq6Yz+d1+7ct/S4TQYL41+s1/X6/0Y8Azc7q2bNnnJycMJ/PG22GRFcBvP/++/w3/81/w/HxcdN61Pd9jo6OePLkCf/m3/wbPvjggwY0HRwcNG9WXHBHR0dNNwa5aYTVnc/nnJ6eNjoTcbtPJpPG8S5RUnJRPM9rmFlhOUXKICUP2b21277JTmwymTSgvA3o8zxv6HfJOWuXCQSstssg8rkNJtumkPaEEDF6+/fbTkDZGcVx3DwABNSKZEB2W213pbwP2b0BHB0dcXV11UgWjDG/VE0BAEaDLgfjPnmR4dsBFgrPdRmNd7A8B0xFt+Phuz6u41NRkaq6NG/bFq5jkVu16zcvcrRS+I7F7nAAVcFo1GG+jpivYlabjLysIMvo94eslynPnk0ZDkJUpTF5yTyJ2aSKe3ffZH8cUmZLdkYjsixld2+fLMlI05pRiNOMJCuwLM1yMSdNCsrKcHhwSOg5lFUXR4HJZiRJxGqxoMryutOOqo03VWUwRbENHy/rBgFpzOzsIWm8qpksVZBnKbkuCR0P166bA6yunvEoXtEf7bFz6wHD4/cJemPiJCHs9Vmtl/ijPYqirIFSENAb7GA7Ptg+vfEd3O4IbAfLcbFsG8vxsFyXUjR2ymYzD2ognUUE4RRT1Jsh23FBadCK+XKN5/t0lEUUpVxeTSkKcFxDnqUk2+5Bju2wWG1wLIdBGOC4dYvLoiy31w+K8pVkRimN47qgtskQr3F4ns/xrQPC0Ofk+Ul9P/keirpMWJmq2eyu1ytsbdjbG1LmKVrX4aRXlxPm0yvOXr7kYjJnvoyJ05IoSpmvIpI8x/McvvOt3+Cf/ZPfZ9h1MGVGmaW4SqOqko7t8OTTTzGWjd8LSLKEtzDs7uwjBvz5fMrIcQmDEMexsSxFnKSsV0s6vk8SZ5yfv6Tbr58LeweHdIKQ5WKBUhqDIooSLHvbJjJN8T0P2zYsluumvFmDDJv5ZEmapc3GOgx7OI6La2kcyyVNKpJozeVqRbYFt47roBQUWZ0vWZUFZZ6RxRFRXG+WXNel0Jqsqq6RE23JlOu62D+FIFDbnyvrlgGAIi9LLFujTJ2ZW5k60zcIQnr9PleTKzZRjFZguy5K1x3lXNer5QhBWOurKzGrSbvXujtXEPi8/fZ91vMpL589Znp1yQd330Xx+sAq0FRRi60+V3wY7fUF6vVJZHCyZu7u7l4zJwnIa5uqhKFs+2NEriaMp6xRUu6X44JXjCbQgGIhatrMqiQbyGs6jsPu7i7L5ZLJZNJkpQs4BBqs0TYaCbN4swIqxyAsrswvYWqFMBOt6Gw2a6SFgg0ECwiwFw2uVLwF7MtxyNeyprdNUVrrptIr12qz2XB6esrZ2dm1c3QTsLZ1qTfJspsg9aaXpv3xs8YXglXf99nd3cV1XR49ekSWZXS7XYDGLWZZVlM2TpKkaXuWZRmDwYDpdMpPfvITJpMJ0+m0AadyEeI4xnEcvva1r/Fnf/Zn3L17t7moVVU1rGsQBHzyySdcXV1h2zbf+MY3sG272f04jsP5+XkzqURMXZYlq9WqKX1vNhsuLi5YLBY8ePCAnZ2d5jikHK71q8iLdnDxYrFowG07SNe27aa8r5RqdoDtJAN5uEppX8rulmU1vyvSAtGetPNZ2/rTm5lrMmQStUsFbaq/zcQKyJ7P56zXa46Pj68Ju2XiyXG0wbDcSFBrWtbrNQ8fPmQ4HDYg9f79+z9z8v0ih6UVvmsz7Hext3O21x8QBF2M0sTxGt+r3cmKkjLP8FwP1/EpyxytNLfffJs4Tlkt16zXK5SCsBNwfLTDaCfk5WRCdx7w5PmSq0lEFGWMuxadwMV1IUkyup0O7717m05/l25vxEcfvc/u3pjT0xPmVy9ZLed89JWvkqcpTx8/5uHnj0iSjCjOiLKUwhguLid88ukTgrDD17/2ZQbdgNPzS944cLDIGQ76+L5NWRiUo+umADqnLDMsy62NTUVOkZf0hkcc3rrNi7OXLNYlZVkzRNVWJqAsi/4gpDQlWbRAl3U5PSnBDXvkLyuSKCJyV5RVxWDYx3I0eamx3ICgt0+4c4R2O5SmZgW1U2fdYllYjo/JK+hplLJQysItUkbLhPXiHEwBRU5VGuaLNS8vVrx1702qso4/MsYQdjss5rP6/ikz4iSGqsIdjriazcjThOGgj7ZbmsE4wnKcV8aqbeVBWxDHr3fB39/bY71ec/L8BN+vN69KazT1whB2QiyrZqeWswk9T9ENB5SVw2jY5+T5CZ8/fMTl5YTVJmYVp2zinMUqJo5TyrLg9sGYP/z2b/OP/9Fv0++62K6PjUEZzcNHz7i4XKAszbAf8pMffcw8Tvnr7/+IP/j93+G3f/s3se26erXeLEmN4c6bDwhDv45XSgvSJEbbFYHvoiyLxWK+jezLObx1TJymXF5e0e97ZEXBar2m3+tTVhWrTdRUicSIO5tNSOMNabyhKuo2r5lWpJvaAOk4tdFqE20wBjqegypSXO0BhjiJSTZr4jjB0poyS1itlmCgyjNWqyV5llPmxTZKq74W7UVdtIYyZP0ri7odalHVWnCjdM2ulgZUhTI1mWOALM/qdWS5wttWARtDb1E2bG8bkAlYV6pOmbUsxf7umLOTJ+hig8lTbMvQ7dh0O/5rmLH1EHJE2EygWeeCICAMQ4bDYQPUJpNJw2JmWdbEHQZBwP7+Pp1OpyG2pAoqrKqUuIW9FHJM1k+pUEoZXNZLIWkEZIruVECWAGpjDLPZrEnEybKM3d1dgGZOCqiT3xFWVjptyrNFyvjwSuMsRJiYvIFGRyo/X2/GwgZbXV1dNRunNpM8HA4bc5QA1TYolHtJNMLSnUtePwxDgiCoc6e38221WnF6espkMvk75+hmGf+nlfPbpsOb3xccA6+kNT/P+MKfEgbu2bNnhGHY0NXy5iWHa7VaNV0qJLOr2+0SRRGPHz/m9PS0mXRJkjRMZVnWXRS+9a1v8Ud/9Efs7e3VB7UFVKenp5ycnDSgTinFp59+ymQy4fnz56Rpym/8xm80Iu2yrDthSaesNospILTX67FYLLi4uCCOY+7fv9/EbcRxHQ0jtLrs2GT3Jb1222BUAJ5lWQyHw2anIw822fnJ+5aWalKqaOtzhLltlywEwLY1uaLLbe/W2nqS9gSVG0MisaDWmYrRarPZMBgMrqUfiEFO4kTa8RPt3W2b7pc4DHEa3rlz5+eagL+o8RcfT/jO129x9+gYzwvoDXr4foBt+5hKkSQxlq4oivp6FqXC9To4XgjUHaf8zoCBshnGCcv5hCTeEAQdwrDPajOnMCWdABbLFA2gDL/xzQ8Y9HtUpmC1irG9Lr/ylW/S7x8Qdro4YQjaZrx/iMkzqiIj6PcwRca9+/f54IMPefLkCScvL4nijLOzU9brSzq+TZYZ/sN3P8bWYFng+XvcGdtMLp+zf/E5XreP7u2hLYssjcjjNUr3qe3vOWUcE83nJFFEVhiKqqq7OLkOvY6P69hskozpYsN0FnF0/Aau75MmEdoO0JZFkqxI0zXG9Oj2unjdIWHYQ9shfjAgGB1gh33QHpgCRYWynJoBUmDQYEqUCdE9hbJsqiJDK5uTx4rZ5ATf8zjaHXM+ibBtzWq9ptfv4rkOnU5AWVWMhgPUltEyCqJozWjQx3c9sjwjTmtmL0kz0ArbsUnzvM4IbbFkWkvs/Osb08kEbSl2d3e2/6JwbRutoD8YEkUb5vMZy/kMV1fsHR3U966l+eHHH3Py7ITz80tWm5hNnLOKEqI4Y71JMVTcubXH//n/8F/wza99QNf32Kw3rBa1nvPxw6dcXC3ZZDlRmtZMY55zdvqSzx6fsJxP6XQCvva1r+J5Lo5jM51e4QU9OmEHbWkC36VKC5I0pqoUrhvQ79q8ODurO68VBY7XwQ9CNlHMYDQiSTO0FQGKPK+7RaVx2lTrLK2xtKqd8sslpqrbjnb7g20HuFpK5dq1BjXLUvIkIdosWa3WtYGuzAGN7XlURUHZlFVrMyJQV1w89+/oBkUzeZMgqMvHUBm23dB0rQlXmtJUBG7d1Q5VR2nZlk0SR6yWCw6PblEZg2WphpHFbHM6gbJ65VMAcVnXFTNFyeXLExyVsdfrcDDu8tadfX7wSecXMEN/+miXlnu9XrO2tfWOtm03VUip3knyD9Awoqenp+zt7XF4eNjIB4TxbndyFENwnuf0ej02m00DjiRpR2I14RULKExjO5Nd1jQxfwmgEla7DYInk8nW5Gc3oFRK9NLCVDSx7QpnO21ESDYhrKTy2tauSlC/zEeRNrTXfNd16fV6LJdL8jxv8Be8AoYixxCWuN0eVo5BAP96vebi4oIkSZrKaxt0yvrfZlHb7Gi7+isYoi1jFHmCsMnyOj9rfCFYFZ3EeDxuAIu4NkUgLU7+LMt48OBBE0VxcnLCw4cPr7nf24yqpAr82Z/9Gd/61reaThWin2x/LTskrXXjxP/e977HbDZjMBjw/vvvNzrOq6srnj59ys7OTnNjCJ0ugbx7e3vM53MePnzIbDbj9u3bja5Gbrj5vHaJzmazpqQvpXo5LwJGRa9ycXHRnDfRwIhGpx09Aa92FMvlsskyk5vjpvBadm5yk7cfDm3mVEbbud92skopX27U6XTaaIBlUooIvc0mxHHMaDRCa908AOTm2tvba1rl+b7P7du3+eCDD67trn8ZxvkiZ+fgFgdHt3FsF7TBKENR5VjKxfNCijLFdixMVdCxXIo8pcxrfannOMTrGbYX4ngBO3sHFFmMbWks7RKGPYbDXaqy4K17x+QF2zihgixLSJMSp+8w2D1kZ++Y7mAH2/NBaZRlQ2Vq7VtVYvKEigLtdbh99x5v3jmisiwKt8fkcsJf/K//iun5S05erkmKWmdp2w6LOOJLoz18bXj+6IcopRgd3iMYHpHGCbgefnfrci3z2tk/vSDLSgwW6zirwc9gSC+0yLYbHGN7eL7FcNTDWBa27RLlBWkccXr6DBvDwcExYW/MaP9Nuv1dbC9AWQ466KBsp9bv1dwgoMFotKUwqgTLoCwL5dgo2607Atk+8XrJenVFXuR0woDxsM9kmdVrulHkRVHrTZXhYHcPx3KplCFJ07qVa1EQDga1PCBJyIuCcuvQ1mWBSVNcx202YLZlAaaWTrzG0e10UdrgOPUzV1uaqqjoDYes1msmV1csJpcErsX7X3oX16pbXZ6cvOD84pzlYsViuSFOUjZRyjot2MQpCnjv7Tf5Z3/6LT585w6+V0cCTk7PuLq4JMkNaVGRVEUNVAtDpTXz5RJbWwSO4uFnT/nv/tv/nqODXXb39un2+0yXa548esQHH3wJW1toX5MUFbZRzOYrAu0wHI5YbyIePXzEbDLhzt236I7GGK22Zpwui8UK13HZbNbb56bFarUiz1KKrA7Dt1QdCZVsI8yWiwWL+Ywiz7a/o0jTOhrLceq2wnmebyPKqjriLUmYTadkeVozqEqhtY1l2WilKcvimpu60+mgLatmt7frA2ybIVAnbCijqFvK1p20lNaoCqJog+t62LaFZdVgYLVaMRj0sWybaL1BYRrA4Hv+dn3J8XyveX7naVJXE4qCNKnAdLE0HO7tE5iED/7BR3z44E3+n3/+H1/bvBXwImuerL9yHsXvId2jRDYn62C7G6IkBnW7XY6Pj5uW3kJyyRonvyMEknT2yvO83uRs1/B2GpCAryax4UbVUCqlYvgSICWvK3Gd/X6/Oa42OxrHMYPBAK11gx/kPYv/RECugGMB6QI+paopgDYIgkZiIOlGwjgrpRgMBg2LDTVgHI1GDXvapFhY1rX32/5clnXXsclk0gDj6XR6jRwT5r8dYXXTyC0mRCGvJEWpDY6Hw2HTzUw2Jz9rfCFYFZHttRu0qq7lq0rnqQcPHjAYDFgul5ydnTVlf2Ej5USKnuTw8JA/+IM/4P79+2w2G2zb5uzsrH54TibNxRMgqLVmMplQVVWjL33+/Dn/4//4P3J0dHSt9H16etp0vBKRcBiGnJ2dkec5x8fHHB0dcX5+zmeffcZsNuPo6Ii9vT1Wq1UT17BYLOh2u01igWg21+t1IzaWCya7PdktyrEIoJVdk+ze5GaSG+HmxZbMWNmRtMtD7R1+e6d/k5aXG0x+TnZ0AlYl+00E5jLaXT3kvC6Xy4atlb8lHc0ePnwIwL1799jf36ff7zObzX7m5PtFj/q6lhR5hus5mKqkLHMMOWUJRZFQlTlVWYvTszQlSWogByWL+RWO5+MFfSzbQylNmqwJgx6uFxC4DpvNGqdK2KxWoB0+fTEhTlKKPKHf63N87+v0xodYdt1NSpzGNcFYABVVNKNazyCrF9MqnmMsRXj0Ft7RHt/6/d/nsx/9gPN/8a+IcoVWHpPphNEwwGiPXs9CKcP05BOqbM2+7VFkGnvbeABlKPOcdLNmMbtisY7ZRBVF7pLEBWHo0ut5rNYxVDDohbx1/y5euEu3t4dlexSVIlEeo8EuL148Ic0MvfEtwsEBbncHZTso26BsF5SNYavXUtue76asW77quoGAUQpUHequtMayffqjA3rDEZPLc4xReF6AZWlQbEPiaz1grxNw++gASzvkZUmSZSyXK6qiqDWBlkVeFCR5XS40VR1gXz+4beomAXUZWXSDr3NkWUqn22lYElNBrz9gvd5weXHOcjZh1PW5c+sQx9JcXV2xXC65uLjkajKvJSNJxnIdk+QVcVrguTYfvP0mf/yd36EbKKaXV1AaTp49B1NRaptlvGYyW1AUZZ3RW2ZcXk2xbZtBv8MmSrEtzWefPOTf/eu/5A/+8B9htlm5y8WC6XRKVVZYds0k2o6NUTCdTdC2zf7+PleXlzz+/CGL+YK942MOj4+xbJ/Vek0QdurMbt8HU3fSU0BZ5CyWi7rJQFlrinNTgakwZYVjaVxLoZxt5yyn7j5XFTme66KpK0tFZVjMZyRRRFGU20V2Wyq1LVyvzjSVrFKttzpmrZsmpk1pU0FF3bjAmAptOXWfWAMW284GxqCVrr8u60CO5XJWG2q9Iev1uu6Wt2UjtbZI0wyUoigrtFXiug7GuCgMq8WCIk/YHe0Q+i7reQplxt3be3zw4IB+1yV7jW2uoyhqHOUC7IREEj2ofAh5czM7tb0OGVNngCdJws7OzjXQBa8YTwH60h5Uqp+yzs7nc8bjMXC9UU9beyxfS7VTQK2AValCikRP5HwCPkXOsLe3d82sJE122sCtnf/ajoyUv/VqPryK0JSKahAEzc+KVFG0qsKuChAWL5AQa+0Kqazv8noiE5jP5yRJwuXlJZPJpJEzyJovKUKCDYAGr8i1aBvIRRJRFEUT8SkmeIBer8fe3h69Xu9nzq8vBKsSESW7BjHnCHM6nU6bXrK7u7ucnZ0Rx3Gjd5CcVXG3C+o/Pj7mO9/5Du+9916TEXZ+ft7kotm2zenpaQNiy7Lk6uqKJEmarhiC9L/3ve/x3e9+l69+9avNa0dRxOnpKdPplNu3b5MkSSMLqB/qF+zu7nL79m0WiwXPnj1jNpuxv7/P/n4dnTMcDjHGcH5+zv7+PrPZjJcvXzYMqJTR29004FWXK7nZ5EYQ556wxO1dZLt8LzdMO4mgvTOVXctNQ5W81k3RsjDSAnDbhgGZWDJp5WFxUxwuEoK28QtqbZFsVnzf5+DggP39/UZy8cs2yjwl2SxxbB9T5mRpglLbUp4yZGlaL4gUuK5DFKdkaUmelYBhE0esryYUxTP6nd42fHqF0oqw20Frh2iTkJclq03BJs15cb5GYWEpw0df/lXefOdDHD8AU9V9zo2hKlIspTB5SpnGFJsFanoOq0sqVaIwRJsFpkgJ3voa+7sHBF/1mS9i/l//4t+ySTNGwx6WVjx59Jw3vvEWSRrhKIPOl+SrS8rSrxd626k75yynzF484fLsnMUiQlkW6ITUKKywR2cY4gRd9o+OieOEtEjIkg3xZkWR2SRZRZasmV5N6XaG7B3eZ7j3Bl53hHbrMHhtbVlj7UBrrtbtNLfa6oqmC1FtotLb33XwuiMGo6Na3+caqnK2vQcsiqIOUR8MeuyNRwy7XarSUFS11t61bKLNuu5cZFnkBZiqqnvFb2Uxcr+0TR1QG+pe59CWJknSLbNap3/MplNenr6gKjKOdofsjHoEgcvLszNevjzn6uqKq8mM1SZlFW1I0pw0K4jTHNtS/No3vswf/cFvcrQ3wBQ5eVby7PHzesNdVazjjOUmIk7zuo2qgYurKaXZhtCbhNwq0VgUSvFv/+Lf8967b1OYivl8QRQnPHr4uC79bRfPzWpDrxOyWJxzeXnB0a073Ll9h+lkyumL5yyXUxbTS3YOb+OFfXplhWfbXFxcsLOzw97eHs+fPa3buFo2jutjK01lcjbriiIrMGVZd8GqKpQ4kE2FY1lgadK0rszlWU5R5JRFsQWR140dtu00m3lt26gt49YmHwQkXZcCtDv4gKVftcTWloW2rdazsAac2t62n90u+kBjaq2qVwRDHMfkWQ1es7SWcIS+z9037vLy7BlFltENHI4Oegx7HTarFcWWNHkdQ5hBAVlt048AR2E/pUIpnRPb66Gsn3IehejqdDpNxrusQQLihPQRnNHv95vjWC6XjW5V/r4QMgKaBKzKHJCYrHa4/WQyaUgkIa3ajvd2BXU+n18re0vXKt/3m6xWWXPlmAVIytfyIZpl8b6IVFFYWUkk6Ha7eJ7XEG5tA5hgNWGz23IIYXGlynt1ddVgMSEq8zxvsJdsEqTy6vv+NYmBsNVyHoR5bseOCVM8Ho9Zr9f/vzOr3W63ETXLyRJ63rIsjo+Pm4D+y8tLzs/Pubi4aJhIcQPKTqCqKt59913++T//57zxxhsNyLm8vGwudBRFLBaLa1meoncVMbo4/UWI/C//5b/kzp07RFHEyclJs3sT7akxhpcvXzblgaurK4wxHBwckCQJH3/8MYvFgs1mw2az4fDwkCRJuHXrFpZlMZ1OG6CeJMk1kbQIt0XTJDsx0bMKuJVJ1Y7iuKk7bU9Ox3EaLansVNoLalu83P73tlNPXkPOl/wtuUHbO1qZZDLaMVay8xKmW15TNhn9fp/Dw0N2dnbwPO+XroOVjP/r//27/N/+L79OXK7wvA5ZVjtWizwHS7HaJKRZSlmkDPpdVpuUvKhwLRsMxFnBIi6osowsrbWdaZow3hmSZTmT6SVxUpLmilUEWVlRlop+3+fBvXs8ePdLBJ0OqoxQZYUptmxCvKDEqjvqxCtYz3ErgzXYh9BFOzZBtiEvCrKrE6wdizBw+N3f/XXefOOQf/Wv/pLvf/KEVZLy4qwgLSreut1h3HFAVXjeY4zb4+JlzE7/DezAY7Gccfbp9zl99OO641GZ0e3Y/OZv/QNuvfEmvl0RUlLkKcvFCtcPCEcHJNiUeUK0XvD8yWOyrODenXc4uH0frzNCOQ5ohdIWyqrBJ1vGsmZWhV2twKhtRySz1fnVzKq2Laqywva6DEbHrGYzjAoY9GP2k5L5ag2mYtDtsr87ZDDoYZm6LasuK1SpCPwAU0nsnGqYjKIqiePk2nPEcdxr6SU/r+D/P9dwXQdLO/i+h+PWcTkvT0/YHXTZHewDhiiOubi8ZD6Zcf7yJZv1hijOasd/WrCOEsqsohPYfOt3v8l/+af/CEdXmLykKBXnkxmBU8tP1ss1SZLiObUBMc5yTicTjNa4jkeWpgSBy6DvkyQli2XMYj7j8cNH7BzscnU15fJqyaV7xc7uLus44e69t5hNpwSdHrZWLGZTlLIYjfd5+933iJMNVxfnnD9/wnK+4PDOPdIkYW/3gL29PZbLJShDv98jTddoU2Jv3fXaaHzHJskVbhjW3aaWG5LtczcXRt2uGfUsrfNWaxBYN5NQWkDkq015nucMh0OoKsotqy2kgDyn5bmPUiisrcz0upZPvrZsi6r1HHQcB8d2cLbrkPxdYa7qzzVALou83lypurtiniUoU2I5IWcvTojXcwYdn8Nxl9tHQ7SpqFoJPa9jtAEQXGf0ZP0RtlLet8RH3Vy3bn4tkZgCcKVdqDTpaWd7SlVW/oaASwFlbUZRwFt7IyJrWLuNqZi9x+PxNVDZNkjJuqq1bjSvwjDKOZHyuNpe17bDv91lUrJlZW2XCrMAPXmP0g1U9NWCGZbLJa7rsr+/38j6ZA2X42z/22w24/LyssFOsskQzCXHIudRMIBcW9HJinlcNgjG1Bm64/G4SRoQhrzT6bBcLnny5Anz+fxnzq8vfCqLvkDyucqyZDKp8+nu3LnT7JKkF/DZ2dnW8Zld2z2JK/4rX/kK/9V/9V81UUdBEDCdTpuTIwLldteJi4uLBjDLjvPOnTtYlsXFxQXr9ZrpdMpf/uVfkqYpJycnrNdr9vf3cRyH58+f895777FcLhtU3y5pHx8fE0URn376KZvNhpOTE+I45s6dO5yenhKGYdOsQGj6+XzelP3lBhRgKpR+W7fa1pDKTSU3iO/713bYAkIPDg7qBzavQGXbCPLTNCeyi2rrcG7u+uQGboNO+WgzraKdkWOT3ZHIEOS1hsMhu7u73L17F2PMNTfkL9u4mEYslhGVSekpmzTNWUf1LneTFDx8OkHbmtC3uJjELKKSooK9UYdks0Y5mrIqcLWNZbsYFGG3T4Umy3IMiqxULNaG56drhuM+UZxRFjE7Xx/THwygSMjjGTqT/siGZDHFqLoMSBHj5DG276M7Q0zYwe50wORYyyuSq6esVxeY4R10d487b73N2y8vsV2fq+WSF2fnPHqxYH8UcGu3S1GWrJczensBabJmMv8YW5VcXp6zOXtEh5idvg+Jw7tf/Spf//XfpuOEVPkaTEqxnrFzO8T2B2RWn7y0WK+XnL+sJTtv3HnAm/c+oDfcRdsOSm1NJnrrila6DtNRrQ8DRm8buiuALZtqLEpt0NhYdkXlunTHx+znOerlc9554BPnFXlZRznt7w052ttDGcjSLWumJaS9bCQ6VVW3qtS6lkFkedZo6Sz9yo1alQWWbWFbrxes1lWggDRLiZcRk8tzdoc9dkd9sjjm6bOnlKaufF28vKg7R+UFcZKySnLWSU6eG3aHPf7kD3+T7/z+r+M6iquLKVrZLFZrbMcjrwryLEfbNrZT4bj1Pb1YLrBszWg0YLFYo4B+v8fB3ph4E7MaxKzWGx5+9jmreMXp6RkvTicEgUeaFzw/PcMYRZZnTGdzwm6fLE1Yr1ZURtMf7vD2+x+Qpinzywuy5JQiz9g7vgtG0e3W5pwoXpMmMaYsiNdLkmiDNoqyrM1RWRJRlsX2+sfN4l8TBPLcU1vJSG3a0lrh+16LzduCzKpgb/8Q3/eYXl1d0/e1yYRXQ9V6c8V281UnaLQbCGitKbYkjWtvc7RNde2Z3AYxeV40z2jbcdBaUeQZRZ5T5jm2hjxPWSyu2B0EHO/3ubXfxzIVlq6wNLXk4DUNWQtlbZU1UtbGduvUm5/b5Ea74thmWQUkiYStnYgjrymbUFl/Ze0W4CleCyFnBDi2118BjO1jFHAoxuj2tRPAKiYwWetFuytzQd7nTVml/CzQsKFRFF2TOFiW1azZAiIFMHue14DQTqfTEGJRFHF5eUmv16PT6TRgWK7Ver1ugOp8Pm+y3uU1Bf+JRECY0TZ+kedrW0Ygx97tdhmPxxwdHSFmuMvLy6blvWweDg4Ofq6oy58ZXSVsoaDlNE25fft2oxkV1vHi4qLZ4QhAFX1GGIb8zu/8Dn/yJ3/CYDBgNps1mk0BRUJlC9shJeayLNnZ2SGKoma3Iuzg4eEhnudxcnLCxx9/3IT/z2YzptMpo227xfYOoN/vX2uDutlsuH//Pnme8/HHHzfShTzPuXPnTgOehe2VLh2z2azRhMiusa3Jad9w8lkuantnIR0/2oatN998s9HuCmMrk7vNxLZ3g20tirBIAlrlZm6zuSKNEMeh3BDtmAmZiG2GWoBq++FydHTE7du3mx2b7Ap/2UZWFEyXEa6nWZ5POb2YYlsKR8OLyzXPLmJWccbeOMS1FIVRVCVkmaETauxKE4ZDOq5DnmxwLIu8MsTrmKoqQdus44h1YoEdUFQOWV6AKfnhjz7j+M07vHFPoSnJoyX5dII2GmUsclXi+R2qMgNKjOui3Vr7V0QLqvUEE82JlxOqcECvN0D3hig34Pf+4Dv8Rpzx8fe+y//0P//PJBt4cTLhaBByfHsf2w/Qbpedw4DT7/0NVjwnoGDsW5Qm5PPTNQR9PvrG7zI6ehdlKrJ4RR7NCMdDiiyjMBaqVKSbJc+ePCHPc/r9EUUO3eEO2ra32ZsSsG9ttX6qZlhba2idRqkAq17o1dbUpAwGTVUVNY5tmFYXPxwSpoqdnX3KyqIb+OyN+4SuQ1FUZLpOAUjiBKWdprJRg9JXDE1eFLiOg+/5dTckQJmSqiwxVYmlba5hktcwut0OFxdX5EXGcj7BNiXdsM90NuWzTx+TJglVWbDebEiTdNuEJCfJUpZRRp6XHO2N+d//2Z/yza+9g03F9HLGeh2T5iVe4GNrizytCDohWZlTZiXd0OfyYoLr2Ax7XaI4xbMtciDPCmbzJRoYjwdUVcnJ81PmqzWTi0uevzjHsW0msyXKsfn+D35Av9cDy2WxjHD9kMuLc4ZlRZQkDHf3ePdLX+H73/1LZldnJMlL0ijBlDlpMiDo9FkvpmRpgmNb9Doh6+mEzXxJWW03emVR61fznLLIqcpXQAEUGgVGYco6/9f1fHzPo9vtkmYJSaIx2sYoi8Fwh26vz/PHD7H0qxxrlEahsZrn7tbUus2ItW2bsiqojEEKB1rXz1xTveok5Fj2lpUSnZ9D3Yms1kpXlaEsq61msqolSXFEts2U9RwHz7NRZUGvGzDsOdy9vcPBuEu0XGF1HWzLR7/GudvWqkqklDCd7dEGofL/Mtqsqqw1bSe+AEdZb6XxUDuBRzafbVO26FgFcAo5Jj8jBqw2yJY1G2os1O/3G8ZRMt2FeRQN7GazaZogtYmqtiZXjl8+RIsq5jDR+a7X6+bvChN/M1mhbZqWf+90Ok28l6zV0qhIZAqCgdr6Wnnvcjzy3kQS0O12Gz+RbPZFjiEEnmCsfr/PaDRiNBphjOHx48dcXl42uub33nuPZ8+esV6vm/jLnzW+EKyORqOm85NoT/f29qiqiocPH3J2doZSqgGpMjnbsU5BEPDtb3+bb3/724RhyOXlJev1ms1mc00DK3liIiaWkzkYDJo3IrEOEgMlkRVSIpCf8X2/CajvdDo8ffr0WrzDcDhsHG+dTgdjDLdv32a1WvHpp5820RRBEDAejxtWUTQw0m1LdKjt2I12RIUAWxlyc7TLCPKeu91u497r9/u8ePHi2s7+5g6/zVzK17Irb39fbpR2+zk5T20Q3Nattnd+Ar5F5yqaFag1q2+99RZvvPEGYRg2N1g7V+6XaaRpzuMXl7VIPcu5mkVoBaYseTndMFmWrOOcZTSjE7j4no+lbTZxhrOCMLAY5g7W2KcoNXmcEQQetlsvgnmeMxwpMlNxtVgwmc453Bvx27/1NW7fucX+0S0su27VaFmaJFqRpyW9nUOqPEGVGVQ5mIo0nmOquA7xpyKfnZEsplROQHd4hCo15BnYDt3BANM1vPulD/jksx/zF3/+HzFdi9OLDkHX47AzxCiNHfbov/EuT//mLwjLDXlccnG25smnU4Z3fJQKwOpjVImlNMayKdOcNI8ogUrVTS4crekNR1xNJuRxTlVklJRordDaQlk2yra33afMtSgoY7YhPdL3FZEGvNL9me335LO2bWzPJ8smVEVJx/cY9EI6fojn+VSkbJKY6XyObTmUpmATx1QKHM8lz2swobWF67h1uL7tUKq6CmKqbawK1PpH/XolLJOrS6LVkv29EXv9Y7QpSZI6BirfZpKmaUJVGeIkIUtzsjxjk+SUZcXdOwf81//0H/ONL79HUWQ8fXFGmuTERYkXBGR5jnKgP+yzXCygMnR8n816jW1pup2QbLlEmbotcd021LBcrihLw3Sx3rrsM85OTilLQz8MWKw3nL28ZDgaMM8yok2K7bgoy2Ew2iFKEpI0Y7S7S5zG7B3e5s233yGKI5azK9RiwuTMw7EsotWaNNmAMZS2RRpHUJVgSpI4qgGFMRiqbYyVQVM/1wLf36pPtiHvZQUojKmoipzNaklW5LhBj/54F8f1OTy6xaPPPgVjcFyn1ps2z9/tsxddt2fdbra0pTGmqg2BbDttGVBK2qrWCQJFUcA2eURvDX01nq3Bb92QQ22rAhWKiiTekBc5SkG4rb6lWY6rDLYx3D0Yc//WDl3XwnJCsjgi7AXXZAe/6CHMYpuYkXFzzbopZ2t7PeTfO50O3W63YWUlMUCG6D0lhgloNhnisRDwGscxBwcH13JtBfiJAczZ5i4LOyzAWanabT8ejzk4OODk5KQBcRLRJccj657v+w0B15bgCS6SCqZolYMgaCq0UuqX6rS8t7asQf7/ptZWMIIYoGWdl/fYfr+bzeZaNFZVVY2uVthjY0yDp4Q8lHMs50+Ased5TfcrrTXz+ZwwDJt0BCHl9vf3GzmmvJ/2df37xheC1bOzsyZQ/6tf/Sp5njf5W/IGpQuEAC854Xmes7Ozw5/+6Z/yW7/1W+R5zsnJSaMLlTeVJEnTAjXLMjqdTrP7GQwGDQiV3YZcdAGtQunLzkBuCLkYq9WquQir1aoBVJ7n8fjxY46OjlgsFhweHnJwcMB0Om3iuIBGoyGBujKJJepJJnSbSRUZg9D5svu46fCTjlWj0Yijo6Mmo/aHP/xhM6mEJW0bQWTIzk1et50cIMcj1L5McHHutUsZIuC+GawMNGUP+V77ZhyPx80OStyOknMnZY1fphFlhpNJxW6/ojKKyawgL0oW64SsqOq4HdfHsXVtNFI+UZrj2g7zZUqYVkTxgrIoGA+C2nmrcmxHURiD7bq8vIqYLwt63ZC7d27xja99yDvvv0/QCQk6IbalazOIldDtjXF3OpiqoEgyTAEYQ1HmlNGcMtYoS6Fth7QoSSqHMBxT5ori/AVWb4Yz3KUKBmjbZ2f3kG/9wXfYLFMe/vgzNoXP1TwG9ZSiNHRGd+kf3+eO4/Lv/vv/lmK6QumCX/lgF/vgFp3emKKSjN2AsoIyj1FWSRFtWM4mVHnGaDDg8bPnnLw444N3P6A3GNfMEzUTilYY3chTUVUJyuLvLKOqZr7Uq4hJXv13y7AocBwPbVtsohWbzZwwDPC9ujqx3qy5uJpwPpmxTnM818MYSPIM33O3eFiBBtdyamPNFj6LXKnOC5WsQYuytci+jjGfXBF6LvfuHKO14tHDz1FoLi6umM/mpFlGkqSkWUaWl2RZSZrWC8a79+/wf/yv/0vu3tnj9PSUJClI05w8LwkHA9AKS1X0+j3SZINSFb5rk0QbAtchcD3myzW23ualVobKlLiuT2VguY4oixI7CLB1nabgV3WUmFYwXW3YLNfkRUlV1d3SHC9gvlgyGA6ZTKbkaUbY65JlBd3hiL2jWxRZTLyac3V2BqVB2y5RvKYsi7rjmYIkismyV/KqqqrAvMog7QR+ExqfpjFIpUlriq10oKwqbNelMxgy3LvF4dFtPN/n5YsXRKsVjus1xirLstBKSIJXMYGWtramwC3QMgalVS09MPVkVkphWzZ5WVfZyqoCVTeksB23WcMEyIhEIc+yLUtcNuDb1nW1oSoLOr2AN+8c8uatXY52+ngayiIj2ZZUzWucuz8NoMrnv+9Dvt9mVOV7nuc13SYFNF1dXV3zRAgGETZQMkslzkpK300HMF7FOMprCSvb9ni0K4uimdVaN9JDz/O4urpq5IbwihgSt79I5QTYCQO8Wq2aNVrYaImlFMmCxH6tVqtrOlup2rbNbKLdFWOWgHOlVIND2pICYZIlqaC93rfft7wnIbmEGJTXa0seut0u3W63SRIwxrCzs8NyueTx48fs7+9zdHTEwcEBRVFwenp6TUN8XWLz08cXgtXFYsFqteL+/ftoXUdHXV5eUlUVn376Kev1umFRZVclk2I8HvPHf/zHfPTRR1xeXl7rVCEnUPJa5YRISVzrumVbFEXXdJ1tJ75kuwKN+UtcdsKiinZFADLQMKMiOn727Bmj0YjFYsHu7m4jExD9pVDr8vpysdr6FAF6MnEECIqkoB2TIbsREV/v7Ozgum7DpsZx3GS8tpnV9s3f3qndFKO3TVNtrWuSJM17bsdzAM3xynuV999OH5D3IzeiZdWdue7fv89wOLy2M5LX/GUbk1XKX35ywVfvjVFas0rr+KOk1KRFfb66oYdtaRwvJM0LVtEGS5coq16Hul2XOM3ZJB6eExAXGarQbGYFk8mcLE9598Gb3Lv3NoeHx9y+fZfeeIzjaCxbb13IJWiN5/nbNosFtikxVQZa1xmoeUZVKrBsVGnhd3fw7T5FXqKWCyzjkC8v2Dz7Mc5gB298iLX7Jnfuvs23vv07JOuYf/83jxl3Lf7hb71Jp98Dt4sVBHT39hi++TY/PPlrpvOScK/k29/+NYL+PmWZohXkeQ1yKCvyJOblyRM2qwWu6/Do2VM+e/SMThiyf3gLxwmoy/8KpUGpClUpoNwyqAZj1brUmjJ9dU2UUhg0hmqbd1nrXbW2ULrEKI3j+Ni2hedb2NrgWBqtNPFWb2xZFn4QUGqn7hUfRYChuzVPmKrEseocTc9xKauSPC+ulcqaWBdqvevrHIqKnVGfaLPm+z/8IS9fnmMquLqojatZnhMnWR2Qn+bkRYll2Xzp3Xv86bd/C5ecx49fECd53aHJFISdPmVlUAY6/Q5xGlNHdVUUWUrguTiuQxyneJ5LpxOSZQVFWaCUwbIc4jgj9GwqV0NlsLoB2nKYL5Y4Gvph3RI2zUuWm9pga2lNmhZo2yFLErygw4vnz9jZ2UFPJnTHe4ShT3fQB0ridcLVxUt8PyDL0+aZa2mrLo9vN/ryHNOqLqfXDQFeGVyrIkdrtSU4Cso8B6WwHIfeaBe302MwHDOfz4jWKyYXl6jt87OdttIGVW2mTelXJWKjwFZb9guD69QkQ5KmVJit9s/FCzRlRS2RMVtwswUwpshI0qRmbZXGdmy0UpiyIonjesNgWfRDi65veON4h9CxCD2fTVQni+R5+ktV0boJTH+aQbitOYXr2lW5xgK2+v0+VVU1DnP5ecEPMi96vV5DJskwps4njaKoyQ4VENo2VLark+3jWy6XnJycNI58Y0zTXXNnp27eIaBLjkWkeG0WVYghoAHMbXmgmJhEuyqAVn6u7W8RiWJbGphlWZPTKlFew+GwAfyCmdoSC2FV218LYJWK+mq1ao69bRC3LKvRpkIdXyaRp/v7+1xcXDQJTVJpluOQ9yHY42eNLwSrWZZx79499vb2+Pzzz/mrv/qrRo8qTGo7JF/Q/N27d/mjP/ojbt26xenpabODFBZUJpc0ApATLS1H5Q0JKLsJoCRFQKhz2WlIhqv8Tq/Xw3Xd5hhFryHvLQxD8jxnuVwShiGLxaI5odJjWFhemfhSvhewFgRBw4BKaUB2QwJS5YaT9yRl9sFgwHA45Pbt2zx69IiTk5OGSb350GxLAGSi3AStbfG0sLEiVRCmtn1+2jeI/D05XzdZWwG/It04ODjgq1/9Kjs7O83Oqx0H9Lod1X/fSIuK+aa+2Qqj0I6mY/t01JZZLgsUmsV6w2odYzsBWVGiTYXvOaw2BWlcMVtMCAKN0rBaxKw2BlNYfPTRbX7jN3+L3Z09grBP0B3jBD20gDiqmujzfbRnU62XOK5HZSmqPEWbkjRekm82OP1d8LrYYZ+sLNAGHKXRRY4bdNBeiLp6wuKTv2TV6dD/8Hfwjt5nZ2e3jj/KCh69iNj55JLRzj7GnmJ5Id3+Pu9945uEvR3+u//H/8Te3i1uP3iLrFxSRLXJyFQFlAWLq3Pmk5dMJmd0wg6np6ecX16BUhzfOsJUOUmywSt7dUnUVFDWer1mr6ytOhPTCIVqGk0qCBvV6AK23zA1a1bVkUPRek0Ubeh2OzjawtYK13VwXI9CxahNQlkk5FmKbSk6nS6e6xJHMa5du7BrwGNIs4r19tklJa/6MDV5Wbe9fJ3j/t03OTzY50c//oSHj54wm80p8/q4kjSlLCuSpCApUpI0J3Q9fvVrH/HH3/kdhv2Ax49OSHOD6/s1u217bNIUx3XwfJflckUnsMmyhDhK8T0fz7bqVriBIstz8tKDyuBaGstS5IXB9xw819o+Qw1xnJEkMUVRd3GizBiGDqlxKaqSxSahLE2d65sZ8qysnfra4cWzE8LAYbmY4wUdLEvT7Q2wdA1qV6s5ZZHXjOR2ali2he26hGGnMf4WWR2gP5/PWGdZbbhSGmfLksszsDZcaYLugO5wl4M7b5LHEU8ffoopC1y7Tt3Qlo213QwpreqcVK5rKRvN5XaCa+u6POvV2lXgbDWO2tIYNLZTx7hZUhZXemsGTFBVies4VFuttqUs0iymyDOUVriewyC0+PDBLfbHfTaLOT3Xr6Urqk6RaLeD/UWPNjt2E6D+NLDa/jn5WoCXgCf5ECO2yM2urq6a9ubwygS1WCyaeCdJBBIAJkYjYS4FS7Q3IcC1NVCOq6oqFotF41oXwLVardjb22vmhABAceo3m62tNEHWWGFdpRIgTLDneSyXS9brddMKVczdMtqMpoBDOVYBgZLBOp/PMcY0/hhJJRKjGXCN5W9rdouiaLDeTbmjrPG+7zedw6TiLg2EJIe/rakVsH3T0/PzjC9EFHfv3sWy6uiUTz75pNnRSAlbaOG2ePedd97hH/7Df8jdu3cbE5KcJDlgca7NZrMmykCiFmSnIBdeTooAvzYal5QA6WXbBqOdTqdhBIMgaE6+nGwp5QtrKoYv3697K7ejbNq7eTnBvu/zxhtvNBdsMpnUvbqXy2u6VXHVyd+Rv723t8fR0RFvvfUW0+mUly9fNt8TpvYmq9qeXO1JI6OdEgBcc/OLWc4Y06QzyPl1XbfRAAvglGNIkqTpifz8+XNc12U4HPLlL3+Z3d3d5pq4rttEbrUfQL9sYxOlrKIM266BCUoRBh4oQ5rVUVVxlJFkRW32yXNs26XIMpbLmEhBvxuggMUmZxMlhJ7i+HiHbq/L4fE+uwe3CDsjPL+DE4R1QL62UJQok9egNQwxs5xycVKDvKpCa5diMydfz9CWTbKaoSpFpe26wxMVlnZwnACnO0J1eviWR7mZs5g9Z/Pixzj9QwI/4M03j3n87JLn5yt+/DDDtZ/x4O2Iu8ZFGYXfHXL3vfv84z/8MoXRFMmKeGFDWZIrhaGizFPOz55z+fK0jgLq2FjaJk1yPMdFG0O0WlIkdcahoS4Zq6pmT41l1e9b2ddyVtn+dPPfbcB73d3qVdh7VZZU28YN8/mcOIlrU5QyBL6HsRzOL644u5yQZfVmybE1vh/QCTsoo6Cs8L1t7qvS26gsiOIYo6i7WW0XR1MZTFlRlMUvaDb+9DGfTlksF/zghz9kOp3XZEBeUhTbjyonyjKKwtAPQ37717/K13/lPaJN3YClQGO7FpWpKCsoshLfrwFrlMaMuh2SOCHdrOl1Ori2haOhKnIqIPBc0izHuA62ZZPlOWFok6YJRZHj2l5tvNzElJXBaE1W5Pi+i++6uCXEcUpWlCS5wRiF2rYkzZIUy66fSctVjI4iPH+9fVbaKDQaRZFvy4zUmagahbYs9g4P6feHeJ5bs2TnEfP5nCxL0FvdqqUVrluDzlqvDLbWhN0h+3fucXT3HuPRmL/4F/9vyqw2lChLo22NY2/nLLXT3xiRVF83AaFfbeAVirIosVzpUgVpnpGkGd3+oGHsi6LEQtcNQbYGqyiO6+D/TOPYGtu2qBTbGK0uZRJTaptO1+NwHPJ7v/4ljna6lHkKZms4qqotCH69+cA32ei/D4i2Af3NNU1alQqwkUreZrNhsVjQ6XQYDAZ0Op2GwGqzscaYJte9LW2TSqlksgopJtXGtqZTQFu7vN+uWMp7Era0qqrGrCw/3wZk0nxH/nabdPI875pxTBz4kqMqelMh4uQ8CwCWv98m+JKkbj0sPiDR+kqqk8gjhFC7Cdbl7wvzLOC1reOV6yiRW3J95vN5A56FVRb/DvB3QOp/SiXgC8GqBLW+fPmSFy9eNG1SBb0LTSwT6stf/jJ/8id/0oTyS6lbmNG2Y08mXlEUzGYzwjC81i1Ldj9iwJKfFQ2K7DzgFQiVCzoajZoLLgwr0GhZmsVpe0JlkgqD2mYa5X3Kzea6LqPRiPF4zGAw4PT0tNGxyA0ik05+RwC/XOThcMh7773HG2+8QZqmfPzxx83EFSlB2/3fvsjy929+ry3Clr8hOWbGmOYcSEtVcT9K6UAmqwi6Xdfl7bff5uTkhF/7tV/jyZMnnJ+fAzAYDDDGNI0TJHpMmgHcBNG/TENZHsoKqFSJocKxHGzHoywLiiqhMhCEAUW1IctLjKn7kadZUUfDOJr5so7TMWXJ7n6f9+7f4mtf/pBbt4/xw4DBzi1st4PjdepsSF23BNVbYabCgM7A5CTLSygKBkf3UH4fOwipPBfHdnj67CnL2ZL9Nx3CwQilKny/i3I6KNvCFCmW5+GEY5zlBen0jHJ1hXF6HB0fgtb4YZdnZ3MWq5yfnEz5B1/e8ODuS/YOboPR2FbO2aOH/HW65INf+QZpluMEXUpjiNZr5pMrlKnodno8ffKMRZQxX2x478E9up5PEHbp9HpYTp05WZm6zaZSCqOsmlVVpgGrjSzAmNoMYl4xqsZsQW5VA1VTVlBWZGnMYj5lPpvh2i7D0QjHC/jx50/40acPKQ3sjnfwfZfAcwi3G7M0zbFdB6MUtr1t92o0SufYdp13WJtXXgWSF0Xx2pnVj3/0Cav1mtl8TpJkVGVJlkt1R7FJMoq8YHfQ45/+8e/zza9/QBQnnL2c4Hk+tuuQFwVpWhKlGZ1OlyQryYuMXi9ktV6TbVbsjvrb+7TOEJNF2dIaz7WxbZfFKqI/rHM8qQpc28IY2MQxWm+bnUQbBv0+ge+SZxlRGtPrhJRGQZSQ5XWLXbUNzK/KstYkb893sTVlKqXA6O0zt/4ZSyk82yXsdRns7rJ3dMj0/JLFpO7alcZJre/UGlspXMfeVpGkA2CBBXh+yJ0H7/PW+x/iBR4/+Kv/SLReNRm7elvRqnFovbGpF+bqGiMoQ/EKgClVG6mMUbiuj1GK5XJGEPrbalbtGVAobF2bK5VlkSQRlhYSQuEFPo7nk6Up4/GY/b0d1vMpVanxHc0H7xwz7EC/E1DmGaHn1hsrY/B9ry5QvEb5lax5bTMwvCrttwkSWVsFFMmwbbshmmRNFT3qcrlkuVw2jKR0hGoDyLbeUkCkSATbhiXRkLZbi7d/X0iudrtYAXHthgcCjnu93rW1WdZF+b5krbYzdSWtRLw7QviJJnS5XNLv9wmCgNls1pjX5EMqqCJ1FDzU1uRKR684jul0Og0J1s5tl3+TayJafvloZ8PLNRJ81fbwtOUIQDMX2qV/GQJSf57yfzM3vuibP/rRjxowKRdIkLYIbKUv/G/+5m/ye7/3e/i+3zCwcgEl80uYO2FWpRWadF5os6dt0CPmKGH5ZOcgDC/QREbIA1eOUSa1ZVn0+30mk8m1E3VTI9O+udqgUE56r9fj/v37dDodHj58yPn5eTN5giBokgKklHBTwtDtdvnwww+5e/cuWZbxt3/7t00yQrv8396Jtkv8clxtQN2ewO0IqrKs28C1Q4TlZ9rlCWGopWRg2zZ3795lb2+P3d1ddnd3+fjjj3Ecp2mPJjpmuZ6u67JYLBoGV9jsX7bx6GLJyHfQusS2FY5TUm5bJipLURpDUW7ZGNvBth1AUxYFjm3hWOB7mn5nQOA63Doa8faDNzm6dczuwR0cP8T1h9iuh7XVrikMSpW1sUpZYCzU9hr2dm9BBaq7iwpG2GObwe4R2fQSSz3HlCVFWevvtFX3LXdIyZI5eVqb2ao8wXU6bK7OufrsP9B78A+4ffuAe/cP+Px//RHTeMXVWjNJeqzjR6TRhAeLS2zbJV7NcF1NsnrJ4x9/Fyvs4gZdHC8g2dS91oOwz/MXJ3h+wPpqzu3j2+wOByijCLtD/E4PW1tUqJbLny1jquo8AFNtDVXUxpctw1nLA7a/YF4B1tpRbQEa13HphCEojef7dHs9FquYH37yGfN1xN7OmCBw6QQenuth6VdaL9+rW9ralgVGU0lpsCjpduvyc1lCWRYYs+1m9netYL/QcXYxYbPtgV5VhqKoyIuCWDRvxuLurQP+4B9+gztHA+azCZfTNXFSYbDQjqYyiiQv8cMu6zjdBvs7TK4maFNwfLBLEHhoqm0Zm1aL54o4yXlxPmOx3HDfckniNZZWOLZDFEesVhFXkzmgOTo8oNhugpfLNbbtEHYDtLbo9zpMZys2SU7BdY39K6BcP4vrkvur71la4zkOnbDD0Rt3GO/vs1ytOXtxAmUJKDzPJU0rijTDCwOqqkRrq/EUaK3xPY83H7zHgw8+Iuz0+OxHP+DkyWO0tpDOVfUzt46oamdgtsvS8MptXVYVWgD2FsfKIl6aijwv2N3do6q2HYm0xvfqZ2Nl2FYPSjzfY7VcoiixXJevfv1rnDw/4d333sXShseff0ZVZuwMPFyVsbczoqoKTFFi21bNdpdFnWBh1cav1zVEUiayN1mfboJVeKW/lMpme81VSjUAR8BSt9sliqImx1Oa5khykOCTNliFmsCStbWdviOkjUQ1iRFKjlMSBmStlfcDr9zrAhhnsxkibZRzAK/K9e0OaO3fa3te2scq5/Li4qLx7ARB0LQ/lQ/5G2IgE9zUXtvlfLa/3z4eAfqCu+T8SbfNtvwR6vnfbvMquEEwxO7uLlrrRuMq56wd5ynXX8b/XzSrsrORVmbtyAf5t+FwyO/93u/x0UcfsV6vm92P5JjJgQo1LOYh2REdHBwwGAwaQAg0J1PMUE+ePGEymXBwcNDQ+QKEl8tl06hATrYYq2RnJCyuSBAkQkEmZvvktR+k8mCSYxuPxzx48ID5fM7p6SmTyaSZ6O3cNimft/WhsmP86KOPePDgAVdXV/zwhz/k8vLy2s6t0c+1tD7C/N48vpvH2gaxovNRShGGYaPvuXnztNvUidg8CALu3LnDZDLhww8/5OTkhMViwZ07dwiCgLt37zbzQcCxCNdv374N8HNFUbyOkeUlWQWutqmUwrIdkiwHZfBtjyyLAY0fBJgKoijZBsdbdEKXbmhzsN9n1O9x7/YdDg8PuHX7TQLfxw27eGEPy/XQVl36r/MYt+uZKuvPlaljeGwPHQ7q6ndZQJmhPB9rcIBCMR7vkk6nddi9UnUb1+QcVztUZUqZJhRxRBGvSaMVhecSBgGVKXFURb/r4Dg+hYmpdMUiKXh6kXLrTPPGbgffVezsH9HtDZnOz6ko2RsfkBcKS3ss0wgnCHn87ARLG7K8oMwy3rz7BqYylErTH41rw0groqqJq6qKLYu8zVttgVWMQWG25ulaT8hWJyjDVBVVZbbaqyX97piDvTGrdcTHnz5kneSMBn12hz1Cz6n7DZhX5UOtdJ0OUFXYlk2Rl2TbTWw37OA5Xr3wl1UTH/SfstP/zzU2UYwxClPVTSPyPCdOM9Isx9KKd9865n/3T7/N/s6Q9SpmHaXESUkQdNC2JopT0rzEclw2ccJ6E2NbFpeXEwLX4o3jAwI/2AJUG2VKtJb9hCZOU15ezdhkFQe3jgkCh/k8xyhFnKzJtrmunt8hLxKKrN5MpWmKtmx6vT6r5QrfrUv7ZV5SlBvy7FUqimpl39ZaZmqDnRJmpt5geKHP3bffwvE8nj95yny+wNI2Bos6p9QiijYorepNZinh7ltw5DjcuvcOX/rqr1Kh+P5ff5fnjx5iygpt2/WG0raxtK7jqBrZ1asq1s0y6XWwDbZlYdlS5ctYbdZbxtZpDMNsQUCWZVTGkG/WBJ5LtFpSZgm2a7Ozt8dgOMQAh0cH/O1f/0c83yawA95+c5937h5hbSs0WZpjVTCdzrEdTdANsOwOlv36SALJBG+bjNuEkKw58MqM9Erf+4pAElIFaKR9vV6P0WjUYALRhO7s7DRgbDKZNOuZvGZZlo25R+R4smbfXD9lCBhsZ6S211WZC0VRsFgsGjwkIFeC+UUmIjpbKfeLblQIP5lnYqQSZrosSy4vL7l169Y1wqmtS5ZGGPJe2+BUGNq2pA9oZBZt+cN0Or1mumonGLWll3Ic8rdFIyygemdnh9ls1lzrdorATRJQxk3S8O8bXwhWpYOSTKa2qUopxeHhIf/0n/5T3nrrrSbAdjabNeG50kRAULskAkhJ/PDwsGl3JidNJo8wpGVZsr+/j+d5vPvuuywWi0bDITuN3d1dLi8vG8OE9M7VWjdsn9Z1pMTOzg6WZTU6jvbkk9duf92OjQqCoMloFTZRQLXQ+O2J1jzMtmX3L33pS3z00Uc8evSI73//+w11fvNmaZecZBcmN01bPyPXRXar7d2sTBB533I80pCgLXR2HKe5yQE+/PBDyrLkzTffpCxL/uZv/qZhaEejEXfu3GnOmwDcLMvY3d3FsiwWi8XPNflexzBAXoLj1K0Q4yTDseuuNmmWY0y9gGtdb7Jc28GyFIHnYVsV99445iu/8gEHu/vsjHewPY/+aL9mZySf0XYAi8q8upaVsdA4VCahylPWL0/wsginKLDKCkhq9682GBVikoiyzAmGOziDHZTtgE7YxCtyy6YocrJoSRVtKNMItIU/3EHZPmVR50kO+iPiOAJTbk0wEZO85JMnhntHQ247HuNOSND36FoVo/EttNshSyJWsyuSOCJbJ6zXG968fYtnJ6fs7+3WJeZtGP1qMSWNb6EsC8tTDeBU2zJqVW5NV0bB1uBkyqrONoUanBrTsJmmgmpbfjVVSVUWzKYTkjhlNBiwWK753o9+wtnVjN2d4Raous2il+cFVWXI0oxup4tj13pZAaFJEm+ZihANJHG1zRGtM2K1qupkgtc4iqwu/edFzjqKiJOcylgErs1vfvVd/vg7v00n9NisI+K0ZLmO2BmPsB2Hi8mUKCvxgg6rdUSS5WhLE8UrfM/l4GAP27bIy6qe55ZGiRTDslC2wQ987t+7x9PTKbf2d3CsnFuHY4qq4vR8yp3dEbbn8cnDEyoTQVWxu7PL1WSKZTusNxuMKeiFIWmWMeh2sBwXM5mTZFBUptEOa6Vf6ZmVagBjXdY3WLbDYG+PeLUiTzOUUVhOAKYiTTaYJKYqCzzXadhxrRRaG1zH4+iNN/nKN38Do2z+6t/9a64uXqKMQtt2fU+htmxknfVrqLteybPVsl/FAKoWYFH6FfBqCgnGsFytSNKE4XCHzXrTzEurAUCaLM+hqrXZeRpjYXBsi/fef5/z83PeefddpldXPP70Jxwd7KHzJcd7PUZdhzJPUa6LrS1MWQMcP+yhtOJqPiUtXh9JIFU1Aattz4Uwdm3NI1zvTCX/L4Zg+T0Bve2GPpJCJISU9K2fTqcNEQav8s7DMCQMQxzHodvtNkRLm+mVIccia6Tgg3aZXd6PdNOShAHJSw/DsAFvApLbZJaYpsQ/IhtsyYcVQ/Tl5WVz7J7nNVGhwoq2S/CCXaSaLYBUcJQAZfl9pVTTfRSg1+s1f0MAfRtkikns5vmVNS5JEp4+ffp3NiVtfPX3kQFt/PP3jS8Eq5Lb1aaFhUp+6623+OM//mPeeOONxv0uBqXhcNjQ9cI4ir5BdBl7e3tNIL88GIR9bV8ICZMV975MMmEzb9++3fSoF63o4eEh0+n0mshaSvECZiXoVtyCckLls+ys5GLIxPO3fZ2BRqRdVVUD1kXqIEOYx3v37vHBBx9wdXXFxx9/fC0FoV3yb08AAaQyyeQ127u8tvZW/kZbFC1akXY0iJRCJBpMzo3WmvF4zHg85uLigjt37nB5edk8PAaDQdM6TY5zs9kQhmEz+Yui4OTkpGFYfxlHlmb0Qx8oUSgse9upRlmEgYfBkCZJzcx5DlrB0d6InWGPD7/0Hu+89Tb93hAvDNGOg98bobVdSwk0tVZTWfXXNFXC+joVBclqThavMfECK1pjoWv2UScoy8JUJSZOsGwfpVy042OUpjJmu3iC5dSsaawitOvh+iFVkZNEa8JxLaeJ4ojDAx+/Y7NalQwGNqOxz2q54S/+5oSdh2d88PaGg70+ytIUsxXDQYDSCs/38Hyfs8spruujKsWg08X1PbIiZ7nZ0O/28f0QSS6tS6Kq1s2prSSgrKhKszWsbKsBpqw1v1R1By+lX4FVAU7GoIwhzxIW8xkaRRxFPDs94+mLlyjbZdzv0vXr0P+iMlt9YAlGNbpHbWs0mqwsMabC0grPDfB8D7Mt0dbJBBrbdjFGUWXp65iWzUizDIxhHcUkaYUxELqK3/gHv8Kf/Rf/CFPEbKKEorRYrmOCThfbdZnNF0RpjuUFzJdr8rxelNIsxXd99nbG2Fb9zHI9C6hIswzXEiNKQRQnWJaDKTIsq+TW4ZB4tcC1LB4+O2G+WNG3NA9u3eJHnz2p24cazdHuLmWWsb6stXWdMKCoSrK8IAi6QIG122cdF8xWEUmWURm2OmKD0YDWWNquNw1a4dqa/mjEYLTLYjajNAalbTwvxJQZ0XpGkcW1jrYs6muv6vvVthSD4YgPv/Hr+H7Af/i3/5bp5SVa113hlK5D/pUwqZZuNk9Ka/Is2zbk2B6XtU0GUNsWmdR4U57vsHViV3VDjaqoG1HUUWhVA6ajTW1Qdh2H9XKBMiVGW9x/8ICqrLaZ1QF/9e9+zGI6o+dp7h92eef+bTp2SZ7V7mzXdjB5yWDQxfEcNnHM1bYc/bpGe90SOUDbbNNuQS4/L+evrTNtazMFZEl2ucRSSe95+dnZbNasUcLmCZaQKCWRJwgYlNeQ4xPfSvtrKV+3JXZyvWXIGivgU6qq+/v7DAaDZi0WoGmMYbPZNOekTTwJZmqzudIlVMzf8jfkWNtJPDdNYEqpa7FTgh+Koo74Eywgsgv5O22mu31t2nm1ck7kmvu+3+A6x3GYTCZcXFxc8wX9XRnQzz++EKwKFSwXQIDiO++8w5/92Z8xGo2aXq8Soi9iYDFIifhXvgYas49SqhH9SsSSUNQihnZdl+l0yptvvtlkqC4WC66urpjNZnzlK1/h4uKi0YNKW7T33nuPH/7wh41WRZjg5XLJO++805TwxWnYvonk2OTiep7HrVu3eO+997i6umpOumidhGluBwvL7zuOw507d/ja175GHMf8zd/8TeNGlBtWbqqb0gO5Bm0pQHun1C7p3zSFyc5IJpm8VnvH1da+lGVJGIb86q/+Ki9evEApxenpKS9fvmzMWoeHh3S73WaH2Z6s8tpPnjzhs88+4+jo6D9pIv4ix+kyodftY6FYJhF+ohkOO1iWYrPeYG0XdDAUeUmvE3L/zWPeeesu9x+8TX84xvEClG2hLXvr9tco6kVWKbuudMsLGoMxJVWZU8UbVpcXuI5PsSzI10t0VUNa7cXoZAlelyxKKJSFu41GK0pDkmSQFdgVeI6H7/UJ93qgDKqq202uppe4h/dwwjEfvXeH9XpCVhjKUhH4LnG25uylYrXMKVXB45OXnF9esjMesrdnM+iq2nFeKgoDi+WGW3u7pNvNIlSs4wS0za3j24TdHpZsoLalfkVtpGpw55ZFQiu0qbtUKarGRGO0iAhqRlZYWVTdUtNSGt/3WC035EXdf92xFJ5jgynJ8wxtu3UpHynN2niuh+d4ja69rF4ZM6qqIt1WH2qNnN9sNKW/++saRVk//+IkQRmHrufwrd/+Mt/+1m8SbRb15tUOmE7maNvFoDm7uML1Q7DrDlPGKKqy3kQHnkcQhsSbGFv5qK6PVtug/DxDey5KlSRJSoXC0jYvTk/Zu3WLs8spm9WG6WLF6cs5VPDuO+9wNa317WHgYwrDqBsweP9tpsu/pnQcSlMbiI5vHbJarti/c0iSFFxOl9iWZrKKyPKqrj6YWg5ilEJt2S7bshnujnnvV75CpW2StKKqNHp73aNsTVUWTTxVvRHRKAyerekMd/jw136DYX/MD77/fV6+PNtqTPU229i0nrXy7H3lUJZnsjzPre1ztizLpnJQbTdU0rFKKlkYyNKkvi8sGwNN9q+wv5t1gqVqKcx4b49799/i2ZMnvPfBe0wnV1AWWMpwvDfgjcM+qszB0oSez3K5wO24dRVHVeRlwQ8+fcpg1N/edK9n3JRJwHXGrM2yNud1e73bWtObmkvRrUoTnW6321R4V6tVAwjX63Xjgm/jFQGp4rRvSzvaYEzAqXy0QascvxBYYlBqs60yoijixYsXTdVRdLHy/yKtbFc0hfEUYkhkFGI0kxgr8QS1z5mU/WV+CiYQtlakgAJS1+t1k+okQzBNG/jelG+0O5S1mWZJaLh161ZTZRWCT/BFm129OWfESP+zxheCVdHYyAm0bZsvfelL/OEf/iFlWXJxccFwOOT8/LwRQQuKd12X+XzevDmJYhgM6iiPtkkLuFZWlxPf6XSYTqdAralcrVZMp1NmsxlpmvLlL3+Zqqo4Pz9vFppbt27x/Plz3nvvPdbrNY8fP2a1WvHBBx80rz8YDJoEAqCh14VhbO+iXNdlb2+PL3/5y7iuy8HBAZ999lljuBJgflOLIxdhf3+fr33tawD87d/+LfP5/JoeR17rIaoQEwAA6xdJREFUJlCWm6RdMpHXkJ1VO6qqzaoKWG3vZtoxHDKp5ffl8zvvvMP+/j5xHHN6etrk6na7XQ4ODrh7924zGSWjtt1ONk1Tvve972GM+bl6/b6uURrIKo1V5RhsLNtDKwdlcga9bh1VVRZs4g2mMHhObRTZ29vFD0KcoIPjB/UNrRRlkaO2jmJ4dU0qyRY1FZgCU2ZsZhPiTYTV76AsmzTLKFdLytLg+h6FKbA6PVJcoiwjS1I2aU442gUUaZxgSkPQcQnCLu5oB6fbp4pXRNNTyjRBabc2gCjodoI639F2KfIC31MMwh5Ka+bzGXGUcHzriOOjQ1w7YDZbkSQxTtDl8bMTyrygKkrSIsOxbDQlq/WKO3fu0x+OCDodlKW22tMtOt3mPjbRqVWFMbWRTbR9Ak6rqkLDNjVAoSyNVdoU2gLqclQQ+kwnJWlRcHJ2ie147I4GuK5DHG0waDzHJ02z7TWAbqeH5/rX2BFTVY37t84GrrX0tXnLoqpEn/Z6I4CiOKk7UqEY9x2+8w9/lW9+7Us8f/qkbhkZ9Hj+4oIKC8+pWTVle6yziovZkrrrlKHMMnqhR78b1ppqS2PpV0yQ1obhaAdlSpIowrIdxr0+L8+vsCyfz37ymOVqxWoTUVUltw72eeetN5kvpzw/v8SyHQJl0e90WKwW2L7PN772EX/9tz9mMl0x6nc4OtwnT1MO9vc4eX5K4Frs9Lu1XCBJ2UT1omnQYNlYttNsjt9+/3129vawHZ/TsAtc4HkuebJhMb2qm2wY2YzXemjb1nhhhy999Rvs3TrmJz/+hGePH9VbmG3W6qtuVLJYv2L12+kvbcAKXCMpDArLsq9VuKT0LcaSqjIoS36vTiiQCqLGJk8TXMfmK1/7KkmWEm3WfPbpJ2RpQpbGHO6N2Ok6HO0OCH0PR1f4jkXq+duWzQqF4eJqznd/8Ijf+eYHVK8xdu2n6XpvAp+2hK2tYRRJmYz2hkGkbIInJN5KmEjf9xkMBti23cj/JL9URltWIGC4zRC2gVq7zN8Gte31WK63gOA2iJP3J2bu9XpNt9ttSvkiG5T7UP6GaF9ljggglmQA8ZNIQ6R2tbQtZxTgCzTSB2lR325tKsfa9iKJthZoGGgBvW0dqzC9w+GQg4MDZrMZ0+mUbrfbMMdtlrk92phFjO/CGn/R+EKwKq1Cq6qOgPi1X/s1/uAP/oDJZEKe59y6dYuXL1+yWCwYDAbXSu1nZ2eN6DiOY/r9PgcHB+R53uyEZHcAcHh4iG3bzGYzyrJsoh5Ew/HXf/3XTQxDt9vl3XffxfM8njx50rymMLNFUfDixQsODg745JNPGA6HBEHA6ekpnU6Hs7OzBnx3u91mxyXC7Tatvb+/z5e//OUmP+zx48eNHEKCids3XdtR2Ov1+PrXv87V1RU/+clPrsVitSfLTc1qe5fZvrmBazuXm1pb2d3JzSMTog1a2/lqMuRcvPnmm41E4/PPPyeKomYi7e/vc3h42DwwZCMjZQWAFy9e8PHHH/POO+804cm/jKMocvJsQ7cfUESKOCmoipTD3R4GmyQp0KrEVhZux+HOnSNuHx8RhOEWZG1BjW3XXYG0jdIOStWxPlXVqNgaVtFUNUCzXJ/JZMHe8R1OL045vn2P7NOfoKqUNN7w8vwUqzvA3b9NFXTQls1qtUS7LlWakKzXeDog6PmoLKdc1SyaydZEiysK16NU1K0ly4rxeJc8LZjNF7iuR7fTJUliLi7PSbOUd995h363A0YxXSyI45TRcMjjpycURcWoN2S9ibBda8sSGDqdLrZdm9Asq2azjCkxZfmq3app5QJT61CrPK+ZKF33VEdBvdxSM7BizDKGqiwo8ox4s2G1XJKXBc9fnlMa2N8ZM+x3SNOMooIwDEiyjKwooCzpBjU4s1v6LJn7AlSrqk4nCIIA7TikaUZV1YvE6263GqcpGri1N+KPv/NNvv6ltzh7OaPbGxF2h8zmG+aLiN2DPeaLBX7YozSaJ0+fUaFxHZvFYsnhwS4fvPv/Ye/PYq3J0utAbMUcZx7u/E+Zfw6VxaKyilWUqKI5yOIgiA0LjZYAUVDLDwKkR1tugNCDAL/4yTbkh34zIPuNsNw2IEB+kK2B3ewmulRisVSsYiYzK+f8pzvfM5+YI/wQd+37nf3HOfdmsaruJRgLuLhniGHHjh1nr72+6Q3MJ+fodtvwXQezyRhJHKPRbeDe/h6AHBdnp8jyUpmMkwTdXhuWa8M+BPb2t+C7LhCHaHg2kmSB8+UMhWmi2WhgPpthZ2cbx6eHMOcBXn/lESynNLU/fvUBnj1/Bsfz8OLwGFGSwrYcNL0cjm3Bd8qUTLMgQlZYABw4roPOoIcv/+xX0Ot2cHb4HFGU4cWzJyiKFIvFAvPxCMgvA3QuiaZlWjBRwPUbeO1nv47OYAf/8+/9PmbTyaU7ro3cAExYiqyWiqgM9Lpyp+KYka5d/J0sf3OvBATpxiY/s2xLzAemcv0CSnps2zbuPXiAx2+8jpOTEzx6+BDf//53kcQBup6DVw+GePvNh9gdNBAFC/jtBoJgCduyLuMUcySZge+99wznkxBRnCCKwp/qWNUhiR0JnCRSJEDSMijJDOcwqXpyP5I613WV6LVcLpVVt91uK39QPu8sWEN1Viq5UuGVCxXdvU6+JyFlOieqnXrJVc7bVDFbrRaGwyEajYa69qIoq2ox+JvqMblRu91W1lD+jtEyNB6PFd+ixZp9FIahcnecTCa4uLhYyZYgY2mkuwXvGcmu67rwPG9FpQZK63m328Wrr76K7e1t/PCHP8TFxQU6nQ6KolDXMR6PVxRn6f7R6XQUh7iJvypwgwpWADAYDPDNb34Tv/RLv6TKlrLCE0uXkrG3Wi189tlnKiCHzLrf72M4HCJNU2xtbalktSwtxqApOhbz/yuvvILRaKSct+m3GoahCgBzXRdhGOLx48cqjcTnn3+uUmK9+eabWCwW6oZ1Oh3lrF3WBvfw8OFDJEmCo6MjjEYjAMDu7i7+8l/+y4jjGO+9995KyVgejymqOKBp3vc8Dz/7sz+LNE3xwQcfqAeXN0tC91kFVtOmcEDxAZA+Ptzftm3MZjOldHLAyx9etk0SXP4YbG1t4cmTJyodBa/LcRxsbW3h0aNHKIqrhMOywALHyre+9S2cnZ1hf39fOZXfRbQaLt58ZQdhHCOIMgRBhiwrMJ4nOB7N0PAc7Ax8IDeR5waOT0c4Pj2FZQLbeYE0z9CMYzTaHdhumRbNsJxy8gOA4qpkXVakMIocRZYAWYbz0zMESWlKXAYhItOC2+ohC+dYzgIEOVDEGewkx+DeLmDbyO0ZFvM5zKKsa54nCaLFGE6RwZyPYU08JNEck+kFmo/fRF4YSNIEy2WExWyB46MT9HoD9LsDTGZzHJ6OMZmEuH+wBwMmkrSsEnR8coJWq404z7EMQ9iWjcLIEWU57MJBmmVI86JMaG4aMMuZvsxzyQmnKFQ6qtI/tTTRFpd9YqQFYF0m5y9kJou8dAK8VGHzLEWWxVguylJ9YRIjjAJsDbtoNjxYJhCGMXy/jE5dhiFyAI5Z+qSZVhlAJ58hus/wB9RxbKXmpkmCOEthGIBl326OYMc08darB/gvfv0buLc3QBglaHW6mC9iHJ9eIIxSNNoNjKdjOF4TQZzi48+fA6YL27Awny7RbLbKksLzKba2+uh2OojDCN1OF8v5BHEY48WLF3AcC0aeodVsoigyuJc++FmWot0o8/2+9fpjjE5PcHR6jiCIYNs+2s0M0zTAoNuBbZqICxPhMsQP3v0hTMvGK/f34bsulkGCPI/RajfQaLWBHJjPFgASvHJ/D26rgaPzKQ6PxojiFJ1uF2/8zF/Co1ce4Hvf/jY+/+wpCsO8HM9zBMEcDatMk1bkOfIiv3S9yWBYFg4ePcbDx2/ij7/3PSwm0/K37lJRtc1LF5TyIV35zTVQLmKvAu1MtZhybKcsGGFcmV1NugJc+vF5nr9KwFDuSyWQ+VpRlEGARpHDNk1sb29hvlhguLWFk6dPEYdLbG/10XMt7A+aeLC/hSwNMZksMOg2y8wglz69RgacTWP8T9/5AHmeIkxTBGGwblj91EEroxRwOBfJ3J1SkSTk4oHzG1M4sfJUq9VSxJEBSyS0spwnyTEttnTvk5ZJSV71xYv8nm2WEfzMAyvnU7oIcJ/JZIIgCJQbHXPEStGOlmYSQ8kn6PIgCT/jZGhJpcsEudL5+bnyk5UuhMBVIDl5i7TMkrzrZLwoCrTbbdy/fx/NZhPb29uYTCY4Pj7G3t4eXnnlFcRxjPPzc4xGo5XUVbzPFAG3t7cVl6SKfB02klXDMLC9vY3f+I3fwCuvvIIkSbC/v4/T01OVssAwDBXI1Gg08NFHHynSOp2WPxYktiSgNGNT6WAOVZrdOahpnqey+8Ybb8AwDHz66afKuZrkjGkzWK+XDtitVgvNZhOffvqp6nAODql0MkqQq5V2u43Hjx/DMAy8//77KgUWVz5M6CtXDtKX46233sLBwQG+853vvFRoQPfdkP5TfPj4msfldlyJSMWV+3DVqJv4+ZluZuExLctSinOv18P+/r7KeGDbtvJFiS6TVXO1R8RxjHfffRfvv/8+8vwqZdZdRZoXaLZcdDsefNfB+TjF8XiBjw5nWIYJYNiYLFP0Wx66LQPOPMXxyQU6rSba3RCmM0ej2YBR5LCMUgU0DBO5uE95Vk6kBlKYRY4siVEkEZ4/ewHTdjC6GCEKU8RGjmgxQxxHmAUJIreJRm8bbquLJLdQRAnSKMJ8PEKSpGgZJrI4AuIl7AKwYSHLU0TBEnm3i6LdR4oyb2gSxXj+/Dksy4bjOkiSGFEYIYgSFIZTVqO6DE6aTBfw/TYsx8fHnz5BluXodpqIkxiu417mny11LNs00bl8rqRJTxHUPMeVqmyo/gAufRTzokzVVQCwbKVW51kG5BmyNEWepUjiCPP5rPSXimLs723Ddb0y8XwQoMBVblDLBAyYsAwDVoEyjVGawb/0Pc6LAmXOyxjLZaB+IJMsK30PS0M0Ms1kdRv4+b/0GL/yV9/E/nYLrXYbe/uv4LMnR4gnAZIwRhAlMEwTrU4bSVqomuVhlGG5nMO2bJiGiWAZYTSaIktCWLZZluq1TbTabRSXY7b0zy2rdnmuA9u2ECwjFHmGR4/uY397B+F8hnkQYrKMMJ8v4TkWWp02JsUCw/4WTk/PEEUpji8m8G0HRZrha195E58+OwQKC7ZV+hBbJhDFCWAApmXBtgwMOj6yLEe4iGG5DgZ793D/lVfwpz/4AYJFBNf1MJ3PkKUpkiiEdekTnVPFv9TmLdvEYHcPX/na1/H5J59gNhrBMMuUVPKOkqhevRfP7KUCWw4BU+0QRTEMAzDNMsMHSZVtWaUKbpcL1TTNSj9royS4fAayy5RaxuVzQEtDp9fFYjHDD999B2/9zFfg+eXYXkyneP3xPl69vwvkCfI0gWvbyLIUBnKYMJHlBYIowu9/5z08OR6j6dvIYcP37oZIIK2NJEOc/wCRJUUoltKnVQYdUfHk9jJfO/2E6SpAlVGqt7qLHQDlPyrJm952QqqsbBPnYMMwlJJJazC3k/EccRwrbtLpdJRZnamiWHyA2Q5M08RyucTW1tYKuSdx53ll1qGiKFQmpslkspIKq4qYS39dbierhlGVZvCV67p4/Pixsl5PJhOcnp4q9wTGGZFzyOxEzMpADsjAMrpv3AQbt/ryl7+Mv/pX/yoePHigItum06mqiMDO63Q6cF0Xn3/+uXIMnk6n8H1fEaw8z/H5559jb28Pw+EQjuNgNpsBKMlOt9tdyZ8GlG4IvGHD4RBJkuD09FSR0SAIsL+/r5x/nzx5ogYSVyk7Ozv49NNP1c05ODhAq9XCfD5X5nyuiuiHce/ePaUEf/TRRzg4OMCTJ0/UjWTifz4QklTato379+/jK1/5Ct59910sFgu1kpO+TzKHG7DqHyJXStJMIR9o3feHKqh0aAagVnh84LlQ4EM0HA4RBAGOjo7w1ltvwfd95bLQ7XYxGAyws7OjFiYyUwPbc35+jj/8wz9ULhH0L76rmCxCpLmJe9tt+G4D8+UIWVYgzC0ssxRFniEZhZjNUzS9AkcXS9gGysTz3Q5a7QayNEEUBoBhlBWwijKXZ14UyC/JV5GnKIoykCiLQiwnFzg7OsL9R/dxdHyCJC0QFgZGl4u1ODVQuF24fhem3ykjh9MY8SJEHkaYXJxiZjpouh7GWWkqbto+DKOA1WmhvXuA1GvBuCRr83CJIApx/9790mQWBDgfzzCfL7C3sw3bsQEYWC5DtBs+XNfHyfkISRxjazgsJ1ej9EeN4hRJmsP1SuWi4TEyNQFsG2aWIbdSIDdgGjmQlSmkyjyzBlCUqqVhmkp5BceRmcOwbBigGlPAtMrgFNdzkSYxkAOe68EwirJQQpLBdbwrs2JeII5T9Not+J6DMCjzCtutknBnWYGiAOaL4PKHsiQeaZYhCstE+I7jwMgzZLdcFOAf/J1fw/5OH+3OEIXp4ZPPnuPFi2MEUYysMNFoNrG9s4MgjnD+4hC9XheLIAayFFvDXlmqNCtV7YvRDI7Th2k56HTK0qrL+QJZEmM46OHk5BDL+Ry9ThvzxRxYAHEYYndnB77v4/TkGPPZAufTOc5GE+Rphq3hPhbLBabLAMv4BFEYw/FbSJMcYRrBd10cHp9gsVjAMG00Gj4ePnyEyWSMNJkDKFQd+yIHWq6L3e0OvFYb915/HU9ePIPb8DHY3cHh2QniNEG0XCKJI3iec7VQLgqYBmBYNtr9Ib7xC7+E8XiC508+K9NX8TcSV+RE/uaSrJAIqN/UPL9K4UGSeqlMsUKWCcYOAK7jAJck1rBKn+cymAtIoxBxnJYLoTRTv+0mysDD8XiMg3v3ES0XePbkM+R5hrZnYafvY9hvIY4DNDwPnmcDRY68KGAjR5Em+ODJCf7j9z9AnOUwogQX49mNJ/6fBNapk7pKKgmkJIlSYeX8KPeVRI5zGfer8t+UZFWeT7rVcTzo7nlV1ybnPenb6jgO4jheKd8q95PR+3St9H1fKcDAqgmfY5FWYCq4bLPnecq3lfvneY5Op6NIKSt/SnWYXEUSednv5C9MLcq5nBVBWVaV7iwku2wPySrvM8UM8h2Wf5V5eHnvZO7Yddg4sv/e3/t7ODg4QK/Xg+M4ODw8xA9/+EMVddftdtHtdpHnOc7Pz1WVifl8rqpLsJQnAOVYPJ1O0ev10O12sVgs0Ov1AJRFCFi2k9I185bRP3QymeD8/BzT6RR7e3swjDJqnZI6SRkVSCbDZ8UsHpt+Fax1z5JslmVhd3cXBwcH+MM//EOYpomTkxMcHh6qQUN/jipSuL29jW9+85sIwxDn5+crN4UDXP9BIQGU5dZ0ciofAD5cXL1JIinJOo/LP6ms0sTATA2O4+Dg4ADj8RgffPABDMPAq6++ir29PaVQ80dEtifPczx79gwfffSRGqRxHCs/oruKPMtgmRbiZInFYoHFYoFlcrnKNIAEZYBKkBvwYhPH5xFmyxAwyjKkMCykWQbDtJCVQiJc14dpWsiM8t7lhQHkQJ4kyOMI0XKJrCgwnU0x3N3Gi7MRdnfeQNHfxfzsGGGSIAsLxPMIaMQoAGRJhCwIUWQpPNvCMggxjRP02k3YfgOJ78PzW/B6HdiDXVh2aSoMowjj6QJbwz0YhoMoShGGKRZBWVmu1fBg2Q7iNIdjuzANq8zFmufYGW6VDvdxDNfzMJ7NgBzY39uD69uwTRPIMyxnI5goF3smhjCMUj0tTBNZHCJPcximBdt2LytWFTAKszRjFibyvMyQYBQFLMO8LAKQIU1KNSmJIiyXCyRJDAMm5rMRLNPCYh4gznK0Wt3SbzUtKwY5dplqLMtToEjh+81LxayAaRpYLAKEYaBISpZmiMIYs9ni0j/LRZEB1i2TVQsmGo0BGu0+fvDuB/jgg88QRgm2trewtbuHJM3w7MUL5AC6/R4uzsewDQPDfhdpkcFzfQAmoiiG7ViYL0J88MPP0Gq5GPY6cG0LnmPh6PgERVFge2cPs8kFgsUMzWYD2zvbaLUaePrkKfIsx/HZBIcn57BNYPf+AaazOUaTGaIoxXQRIYkTFNNy8kzjBI5t42Iyu/T/LZCmifKboym202mj2+sgTVMs5lMc7B9g+/4r+OzwAsfPn6Pd6eKjTz5FmmXI0hhxuIRjX6Z1y69S89iWBbfZxs9+7S9j//6r+B/+w79HWe3NLZ/FLFPlWHVlj2ocCQcnddNi+dTi0je09B0wxORq4MrKVZZmvSRIaQpbVTG6IkxlGrFy/4bvw0COJIrQ7/cwHA7x4bs/wMXJIZqejYd7fbxysIUomKAz7MCygTwrnxfTLMvhLsMY3/7+x3hxsUBWsAjMFFEUV46pnzZ0EkpIRa+KLPG9tDRyDuQcVmWZlHMbt5UBUlItlUqvFHyqiHMVcZVqJLkE3QwoeDE/O4mhTO3IFF7S4sr4D6rFdHVYLpcqowDFMgp9TCNFMYzWXvrANpvNcsFoXOWZlqZ/OYdLH20KZq1WC4PBAO12W7lakFPwmshB2Bb2aavVAnBVVID+tkxXSnIuVejrcG3qqs8++wy/8Au/gMPDQ7zzzjsq6f/+/j5M08STJ0+wXC6xu7urbhx9JoCywhUJnm3bmEwmmM1myk+VOTpN01TVKI6Pj1Vp0/39fZycnChCcXR0hDRN8ejRIyRJgpOTE2UG5w8Dnd1ppqcc3e124TiO2ha4cjJmFCHLi77zzjt49uwZXn31VTx//hxZlil3BQ5w6U9jWRZ6vR5+6Zd+CY7j4I/+6I8AQEWI8kdappqqenAl8dRXfHI7klIOYqkS0J2CP84k8HQ45355XlYLGQwGsG0b7777Lk5PT9VKp9frqfvTbrfVqpb32TTLogu///u/r2R9XsNdx+n5BP2miyDO0ekNsBWZMJchsjzHIgiRpRkMy0QGE1GW4cUowGcvJnjrjSXCxQKd5QzmmYlma4BOdwjDstAbDGFbHmDasB2nDPDJMqRRjGA2x9HhIcaTCfpbnTK9TZKhMEzEjo+s2UeGEFEQwcoNxHmBLE3gFkDDdtC02hg2Wlgul3hx+Bxz00K3N4Q16MNu92H5HRR2A8FyhrzIcHExxuhiglZ7C1la+rAulkv0e124jTKH6uzS77rTaCE2LgPmLAtRGCBJUriuhwIGzicz+I5bmkjTAtPFEmf2GYooQD6+QNHrwnQMGJZRJpg3TGRJhOKSrJZ+hRZM1wGs0k9UEY6CbhTGZfaAHGkSl6b+xRzz2RRBFGMRLMpQrALIihyNZgOLIMRyGcAwDbi2hXa7BaBAlmeXvy8e0jSBaRil2fTSXYnmuiRNkCQpkuRSIbNtpFmB56fTWx2bJ+cB7r/i4J33PsCz58fIDQvbewP0+j2cnF3g9OwcSZqiPxyUxD1MkKU5XM+Ab7twXBdpmiHPy4WvZVooCgNpXODk+AymkaPdbKDZ9OH7LpK0dIXoD/rwPA9bW9s4PzmB32jg9PQc56MxtoYDtBseLkYTpDng+i1kkwWyJEdeGCjyAqZhwWs55f0vDNiGiUajXASk6VUVm3JBbl9Wzcuws7cDr9fFPMzwve98Dw8ePsTR0+cI5kvEQYjldAqjKFOWFVkGXP4+WqYJv+HhZ7/2Dbz+1lfwve9+D/EyhGn7cJxLRR6Xiqd5VQddV97k5AuUZBVmmT2Y25rGVQ5Ly7LKwhYFc/tepQY0zatAV6moWZaF4vJYYbCE51pwXRv7+7v47KMPcXp0iDyN8PjBHvaHTRRZGeibZ0CW5TAN6zK7SIEkL/DB8wt8991PARiwrbJq3HwRQbkv3CIk0dMJp1Q0uW2V+V9a/6qIYxUJlceVJm59OzmHSoIszynbwvsuFzs8DkknM+NQGaXKapqm4jn0o2UwFccFyaYs1ENCu1gsVAwPiax0j+CYJtkFoNJhsc0kybrZn+OU94DnINEdDoewbRunp6dqviexZC5YYDVQS7pHSFcOxhuReLNfwjBEEASqutYmbCSrp6en+MpXvoKnT5/i448/hmEY2NnZQbfbVaZjBiixNCuJk/RZAMogKBIq+pmyYgPdAqiOUsXb399XMrdlWbi4uECr1UK/31crC9agb7VailACUESVRFaSOb6mwzaLGXz1q1+F4zj4+OOP8f3vfx+u6+Kjjz5S/q8kZHIQ87/v+/ja176GnZ0dfPe731WZEOgvyvJkANTglINNKqDriKp0QKdSy77xfV9lCeBnPL4kl9J0wfPR92U2mylzwt7eHgaDAfb391VAGos/yB/4999/H8+ePVMrNkmO7zLe/ewY97a3cHI2xrPjOWA56DV8TIMA7VYTyIE4ThAlGdIix9H5CP/hW2XljscPetgfumg1Guh15yiSCM1OF4FtotloIS+AKM9gWzayLEG4XOKTjz7AZ599hmW0xHA4wOnhESzTRJrliAsTiwQIE8ByGrDdBsI4KVNGzWfY8oBe04WFAo3Cwczz8Pxigshpwun0YBcmUsNEEgdYLmcocgPhMkCzUborwLQRpwkcz0Kn00KYZDg+H2EyGcO2LDiWB6MwsAgCbPW7SFCWno3iGOeTc7i2j729Xdi2dVl5B2WUfjiD6djwzHtIFh04fgOXIjOyOICRA7AcFJYF0/Vh2D5gGaXKapoozDL1V5oXSJOkJCN5jjRNEEcB5vMpprMp5osl8iJHo9FEXgAtGDBMC6cXI0RxBte20fC9ctWPrGyBwXrUgGnZAFIAOUzLAUzr0m0gwWi2xP/w/Y9gGgZs28IiTPDZ8Tn+u1scm61hH+998CmOz0bo9YdotMvgntOLC5ycTZFkOQALLw7PkMYJGp4H13PhOAayIkMUR7AMCw3Xg2lY8BseLDNHFC7RazfgOhYavo92p42z0xOMswjbgw6yrMDe3gEWywBBlGI6W2I8mePVh/fhui5GozEKmMiyUt1pdzpwogSLZYggCeE5Vrn4KC4LQSRAo9UqXWMyA77fQJpk8DwfSZoiT0K89uab2H/lNZxcLPD//Xd/gCgIcfjsGUbjMaIwxGI+g4Ey2t8oygpphVHAMAo4ton7j17BX/rq1/Dk+XMcvXgBGAacy8mdv59plsMwypLJJfi7e+XSBACGQd8+UxFVVtQqjKvJP0mSUq21LFh2mX7OsR2YKN1cCqO03GTpVaWgMhisKBeDcVz+TuQZPv3kI8xGF2g4NnzXRtszMey10Ok0sd3twbYdhPESMPPS8pFlCKIc/+Hbf4Lz8QLWpV9sbgBxnME0bi/tmk5ApTrKz4GrFIzrzPM6USXkHCP31wmk/rm+PY/D/9ItQJ5LvxY9sl0eV89PSjdEKqymaapqnbLUKs8v1VfpKsHsRCTEnFtlv9Edk/775Dicg8k72BYp7AFQJJdkmSmpyAmkmu04DhqNhjLly74g3+F5eEy2TQZ805JM94Y/c4BVGIb45JNPVITZzs4OptMpptMpzs7OlAllOp0q1wDKxsBVNgGSU+YdPTo6AitS9Ho9mGaZ4mGxWKiyad1uF0yIy3P2+31FVClX02zObALsLNbQZSdIP1oOCJ6r2Wzitddew8XFBabTKb71rW8pWVuudACsOCrz5nmehzfeeAP37t3Dt771LaVO6mZ4tkN3A+BDwAEr00FxMPB4HAAknCTC3E/6p8gVnAywKoorE5YcJHygGo0GOp0OHj9+rFZE0teVD/pyucQHH3yw4vDO4zNTw13FaBHhbLRAkZto+A0skxTtVgujxQLj6QyWZQNFqcgZBpABmCwifPv7n+LwtIe3Xx+i7VkYDBYI4wj+uIF+b4B2qwvX83F+dgjLMtFwfARBjA8//Ahn5xdwnBynp+f46NPPMRx0cHoxwnS2xGS2RBgmsE0LcTKDtwzLJPuzGYJ4grjtAjCQFjksw0CeZPhP//FPcP/8Ao8fv4bd/fuI8gRnp+MylZZhlWmq4gJBFMPzfViOiSeHJwiCGBlMFDnQ9FwgKwNsmg0XpmUiS8uynYvZDO1GC1uDIbb6AziWUU7CeYHFeAIrC+C1fES9JvxwB2m4BC5zfCbhEpZpwWuWuTNN14Ph2JdJyw2YRoHctGDYgBlf5kE1Ln3CUKaxyrKsJCdFDs/zARiIlqW5eTFfIE5i+F4DDdfFoN2Aa5e5LW3PAZAjTXMcXsxxPCrzCy6WAb730XM8P790Ubl0ESjLrd4dPHl6CORAtz9EECVAUWC+WGAynyKDgSAMkaUFgiBCr9NB+zKfqe2UJP7w6ALhsow491oO9ve3kMQBwgAwihwPHt5DURQ4fHGILMvQb3eQZzla7QbCMMJ0NsN4MoFhGLh//x4sw0QYRUjTTFlu0iKH49pIkhRAgYZSjnI0Gw2kaQLHdbG4dMMqF05lsIbne0jjAI9ffQWtdh8fffoc3/3euzg6PIZjWZhNZ2WAXRQiz1MYpgnbKituAYBlmnBcB9t7ZUDVDz/4EB9++AmKvIDtuCoAS6mi5tVvavkbWGYFKEsQF5e/pe4VWbjM2WqZDFK9JASmCeR5mQXDtuE3S3MrDKP0WXdsJEkM2yyDIJPL6mh5npdlXC/TZ6V5hiBM4Lgm0tkUuKy4tT/sYLvfwpffeAgrTzAc9rEMA1i5hTzNkKQZTACfvzjHux8+RW6izFKAMsVxkqbIitsby1Jdk2b2KsIq1Ty57zoFla+ryKpUUKv2k5/p/2XcCS2aVde0ziWARJWCkFqcFAWWy6W6RraHQhkzEVFEokldtkOa5OW5pVWW35mmqYjt9vY2XNdVMSS8piiKFFGuWiTQ+tpqtVTOV8k9aO0mH5CE1DTLAPtGo6GujxyEzx0DthljxGMw/+x12EhWLcvCdDpViV4vLi6UHwUDgGga9zwP29vb6Ha72N7eRqvVQhzH+OCDDzCfz2HbNrrdrlJnOaAfPXqEo6Mj5aBMudy2bVUAIM9z7O3tqdUITdj0HZUrJmYboN8IfTJJsugAzE4NwxC7u7t47733EIahynRAJZQVuKig8gbxNaPl33rrLXzyySc4Pz9XqjJwRRp506TJQw5AOWjXrfTkPjyWzGXH80lnZZUQXZgzuB9Tbvi+j8FggOPjYwDA1tYW+v2+UsNZLUSaE4qiwAcffIDz83OVhoPtAqDSUtxVFEWB8WiOXreNVqNAkCQ4PDlBnKQoLlPOmIYF07QAs0CRA3FR4PBiiek8QhanGHRstJpneH5yDNe00Gm10ev10em0cH5+Bt/x0fCbSLMcZ6MRzkZjAAWMdz7AaDTBx08P0e80YeQxLAC210CRxciSBZpNH7bjYuj38NnxEc4uLmBYDnKYCOIQzy7mCIwCJ4sl5h9+jP1RAMfzESQ5HNuBbTsw7TLdVBglWIxnWIRLmKaFdtNHmgFJEqHpuXAcC+2WD9txEKUZnr44BAwDW9s7aHo+PNtFEsVIjRz5ZXATwhDLaIFu0ylzXRYF0ihGcZkxIItCpHkB0/XgmMZlla9SeSuf15K3GgVg2jmQFMjzUhW1TANJFOLi4gRBuCgV18K8tNq4SIoISZbCbzRgwFaRtNN5gP/uv/++mLwMnI3nOJ3c3QIVVTAtD412G+PZAnFaBjomWYatrS3khgnjYozJeI779x7A9TwYSOH7LvZ2BzAtB4tZiPOTZ6XPfjjHMpji4GAXlmVjOOzBbzZwcnyC7DJXqWEapU+mYeHk5ATz+VxlUQkWc2RJgiiOEaeX/vC5WGBfBlgk2VUQBS1mMjNJEIaA56LRamGxXGC338HJ+Qx//MNDRHmOp0+ewTTt0mc5TbBYzpCm8WWKNBNFnsGyyna6l25Jb//cNxAEET755FMURQ7H9V8yeZaT/1Wu6SuCVKzMIaxaVlwm/SWxKE38l/58ar4p46/4O83FurTkGZeTf84FfpYjzxNYloF2qwXTwCWBLytdOWaK/a0uXn+0hyxcotvtIElixEl8WW0sgm0AQVLge3/6MfqDITJMMZpMgaIkOMsgRBjeXqngKrP9OqKnf66b4yUR1f1PpdWuioCuI5X6e+nKpyus69qvuwIAWHEF4KJIXoP0a6WLnWmaKjCJ45Xf849CEseY5DFyPue+QCkMep6n9mfQE8mh7EednNOvlPyA10mi2mw2VV56Kea5rot2u41Wq4VGo/GSasq+k2SefeZ5nsqdex2uJau9Xg9xHOP4+BitVktJ2+12G0FQRtY2m030er0yojmO4fu+yofq+z6m0ymKokyxkiSJ8ofs9/t4/vw5Xrx4oVI/sKTaaDRCEARK5ZvNZmoQMDiq1WopPw7gKrpTyuG+7yvzPytC0A+T+VufP3+u2n52dqZk7CiKVC4z3a+GRLXVamF3dxcffvghTk5O1ICRg0Km1wDw0vGkkz9XOtyOD4fM7yYfPkmgOTDkYOR/3QTAQU5ie3R0BNd14fs+Hjx4gIcPHyIMQ3S7XYzHY+Vuwf0uLi7wB3/wB3j+/LkanNJl4a67ARRFgVmYYrDloek4MOcRpsslMpRqc5KmyLICyNPL3KFl8vooA9Iwx/c+PIJl5hh2bLz5sI8vvXIPy3CMd97/CGmWodXqYjSaotvu4t7eFoI4LsuXzgMsk1NEYYDZfAHPdfDo3i4820DTdLEMFsjTAlZmIExjmLAQ+l0cH05guhb8TheG34I17GC32cBwZw9JGGEeFfAtwHZ9wChLpWaXaY6WywBZnqPdbMFzHLiWidwwYRoteK6DwgTOxhPMZ3NM53Ps7u6h2+mUrjmLBQqwJHEK0ygQRgmKqECUGPAmS/RmC8TzKUzXR577AArkMGH7Pmy/DctrAqYDoDThFsgBI79kBnJyKVNaZWmCMFwiWM7LxXEYYjKaY5EUOJpECOKoLEVqWvj2O58jCK/SqOXaRPLnEYOtPZydTzCaLWCYBk4+/Rz7uwN0Oi08e3GCKEjQ7fRhWTbGkxl810IcJlhMF0jSFLaZY2enhywrI9mLIsfR4SlaTQ9FgTKzQBCg6ft4cLCLPAlgwMB0UuZxvHdwH0WRYXRxgX63g2AxRzqZI8sLWJaNJEsuf4PTy4krQdtvYHHpxmWaJtrt9oqlyPNcNH0fk9kceQGMZgEOL+aw3DaePnuOvDDgug7C5QKL5QxRFJaBUqaB4pJUwyhgWyYc18XB/fs4G43x4vAUcZzA91swL12fgKsKSCUxMJSJlmMty3LEcQTHob+dqVyniDLrQBkg5jgO0qx0I4niGJZ9ZTWTmQQu3aqVmspj2nY5B8E0YBpAq9nAwf4unj35HE3Pwf1hC/2Whe2eBzNPkSUpzufzMhtGRrJm4IefHOG7736MzPSxvKwKaRgmYBil73GevTygfoqoUlPXgXOYTkb5nU5Y15n89ePpZPK68+vn010P1hFV2f51ZBWASnVJoYwWTc7JRVEoF0Nahmkx5nnKZ8hbIZxy/HG+zfNcWZiZ8Yjn1ftLEnESRql2A1CkWuZblaZ8x3HQ6XTQbrfR6XRU0LZ0i+B10kWUJJlEmb8Z12EjWX3w4AGeP3+O0WgEy7JwdnYGz/Pw4MEDTCYTHB0dASjJ2XQ6VUR0NBohTVO1Qn/06JGKLjs9PcV0OlWEkolu2+22yibAlcju7i5c18X5+flKMmCqh2Tu3J55V1k1wvd9dLtdZFmG4XCI5XKpOog+tpPJRMnQ4/FYEUSWCtNXItLUwUCyTz/9VA1o5iSThE26DuhmD95UOYA2mTlIWpkQWfq4AFhZfUnzBs/PPmw2m3j48CG63S4++ugj9ZA8ePAAOzs7yPNcmQNk6Vb285/+6Z/ixYsX6kHRH2S6TdxlzNMMxxfTUsGIM7i2g3kcI80yIC8jyIvCQJaXZRwtwwCKDKYBeI6DPI/huj76gx10+gOEywX6vQGafgPtbg+d1hiO4yHOUkwXIRZBjGUQYbYM4F66wSRJgmeHx9gZ9vH54TmG/R6aroc4zuG4DgzXQ+I0YGzdh+234bQ7Zd17ZLAdCwZMmL5zGbxhIorL5yNNUli2gxwGBltbZUDIpX+ba1kwHRuGaWE2m+P50QsEcYxWs43+cLt0rDcNFFkK0wSSIkWSGzBRoChyGCZQmCaSAshgIr00qaZZhsLKYVoW3EYbXrsPt9WFaZe5ToG8DMDKUxR5CmQRSqtlObm9ODrDbDZFsFzg9Pg5/i//8vdxejFFkqRI0wxxmmO8uPvj6s+KZ4fHWIYRDKtMM9VuNnBwsAeg/GFvNX0YpoMgjJHnBZIkw9HJKeaLGVzbgu97uLe/gzjN0OkO8P77HyDPDRSFhWAZYz4vf3Mb/RZsy0YU5ygMwHE9bA2HiKIAs+m4rDQYR8jyshRwp29gMVsizQrYVoYgjxEEEXyvgSAMlQWtc7nQofiQZRlcx8V8sbgc/zEubAd+b1gWV4nKILjyNzco06GhzNFrXAYMGWZZBcq2TTTbDZyenqG4mCGHBcfxYBom8uwqJQ/zq5a/Wy+nDKRyJMmJfH81+WcwzcsS4KaNJCvzu7LUqhQX1O/25XkdmVWgyIEig2v7GA4HiMMQn3/yCRqeA89K8frDe3jl/hbiMMD+/i7miwC2w/rv5bO1jAr8999+By/OpsiLGfK0dEG4spblyO6YS4sOSfCkWX+dmlr1/U1RpYJWtUdXV/VjrFOIpTBEDkKrqq6scj7mXE+CJmNgZPJ+mRGI7aK7n3RPZP9QPKNSycAlnajqyjGAlYBs6WbheZ7yUaWVlZyF7gEMJKP7oFR9Za539pV0DeC1MPj8Omwkq0+fPlV5sZjXa2trSymV9+7dg2EYqkCAaZqqksR4PEar1cK9e/cwGo3gui5ms5lSSykjsxQrVVsOlt3dXQCl4tfv95GmqSr1ee/ePcznc4xGo9LUdWmCJhkmUXVdF/P5XPlYMGfZYrFQ1bdarRa2trYQhiF2dnZwcXGhSDAHhfS/AaCS4H71q19V188gJQAvDUwOSBJlkkjePK6opETOc+lZC6gi0/wv87dygPMHmT4neZ5fpeu5PDcXHbzHzM7Q7XaxtbWlFhqMLNTx4sULNcjkjz3bvW6/u4ICwPFkjMliCaPI4Lke0vzyx8cAypKMpdm66QC+a6HX7cBGgW7Tx/29DrIkwlavje1hF3mSotloYm+4Dc91keQpTAM4H09wel4GAs2DEEVe+mH6nodhv1tG2OeXdZcNF+ejOZoHLXitDgwUmM0DtDp9dPrbWIYxgjiB75qwrLLyVFHkKLIctmUhjhKEUYy8KH2POs0WxrM5ijguffjS8joXaYLleHaZY3SJXreD/WYTvtcoF1t5jiTNYJsWbNfDZDZDsFjCsy34ngvbcmBaZVnV3CrJapLl8ArAcmw4XgNeqwO32YbllMnRkYuKZ3mKZ0+f4V/87r9CgVLVQl7g//n/+ff45MnzWx0XdwGzxRKe7+JidIE0SnBvd4jxaIzRZIrXHj+G67h4+vQYi0UIz7VgGSam8wDLMMLu9gB7vQGiKEScpHjy9HPkRY5Ws7SMxHGCNM3Q7XbRaXcwn83RatrotLvw/SZGZyfI8wzbOztYXsYRhHGC7Z0dDAsDn332DAUsTGZLRFGETqeF2TTEZDqFYZT+3wz4SJMEnuPC7XiYLeZYJBmmswUK28dw5z4imOi2+jg7HWMxnZWToFGUZXMBmKZRktRLM77rOPjyoz3cv3eA49Ecs6jAPC6VxSJPkRdlMQwUBQzTgmkwq4qFLKNLAC7Vxxyu6yhFNM/KhP0FUAaIXapG/M0OwwB+s7RaWKZ5eZzL7Wzn0o0CiNUi/bLCVVGU6RgXc3iui4ODPbz2+mv44//8PRRZBs/xsbvVwNaggU7LQ+mZa8C0y3YXAIqsQJYV+PTwHO9+/BxpYaLIC8C0rlRn00SUpuVC+5ZRpZBK4qgrg5zjqoiqfjwdNyGkN9lOnrPKz7ZKGNKFJRLWdde5ToTisYgq/1cSQ8kt6MZCgmuapnIroKhU1Q/AlbseVVWdLDJou9VqqWeArgjkEFyQUnWVgXOGcZXRiC6RbJPsaxn8fR02ktUXL14opk7y6bouPv74YzQaDWxvb2M6nSqSyaSvzO3V7XaVyjmfz3FxcYF+v6/IFKP5WX61KArl77pYLDCbzbC3tweZTJd+UTTP8+KHwyHG47FSd5kHlb4QdPgtikKZ/JvNJvb29vDgwQMsl0uV8YCKKgcMI+c5IJrNJn7pl34Jb7zxBiaTCbIsw9nZmSpvRuLKm0QZX3W6iL7jdwyOks7pHBh8T7IplVr6ojBwjAOb/aA//FSfLcvCs2fP8PTpU+XcvL+/r9JV9Ho95avLQc3+6/f7KnXFutXaXfdZBcqE8DFSuLaDZZwhzZMyoMo0YZsF+i0XLd/Cz7y6h51BG459mU8RGdpNGyZacE0LcbRAbpjoDbeAy6j6k9EFJrMFFkGpHnqOW5ZwBAAD6LSa2B5swfc8REmAKI6wv1euTF3bgneZfiiIElhpAdswEEQxZosFIjeFbZdm0cV8iVazWZICz0WWRyVpaDQRpyniJIHFkCUDiNIY8zCG69jotnzkLa/0ezTNstBBXpoSLcNGYQLT2bzM3+c6cG0LlnW5aLMAt9mA12rAuEyUjsuxZ7s+np+McDF5AcO2YJgWJvMF/pv//f/5khAUCMMIzw5PbvX+31WEwRLtlociSy8X8RnCaIleu4vR+QRxkmE2m6PZsLC7t400yXB2eo5Ot4s0zfHsxRHyvEAYxgijGO1WA8NBG3GSIAxCDIcDbG9vl6U5s1JRn80XWCzKDBJbgx6SLMF8OoVlmvA8HycnpxhPy9yqcZTCti3cv38P02lpsjcMA77vI8+LSwXURpwkyLMcYRIjTlMsgxh2owW3vYXth49h2Q6OX7yAaZhldbUoQpKXLh2u68FASR5hWnAs4GtfeoC//s2fRxgmODgocLFM8eJ0hNF0iWWQIk5SmDBhOw7SLBXqDVZSVqVpopQqRVCMsjxvueDPYZlXGVnKxX5pvUiT+FKBsi5NuW658sXl73VSLh6zIrskzeblVRTlM9fp4PjoCNPJBNv9Dmwjxf29Aba2BjCKDN1OG+Fl6jjDu/QnzIHCshFkFuIkh54G2DDK0sdRmiNObo+sVvmWyuCdderpOnP/dWqqdHPja939TAopOnTTv05Y9f04/1e1iSRS+npKi6NU8Kusp/yc38lKUsBqqVpZGEFaZ9M0VaIiTfryOjh/S3cYGdUvhTKqpZ7nqWBsujhQ/GJKLlYPpZgmg7GZ6UC2UcbZMAifhaA24dpyF/Q5YgGA4+Nj7OzsoChKH1Qmrd3d3cXW1hZmsxmm0ylarZYib0mSYD6fqw5ot9uYzcoyisPhUKmTzWYTZ2dn6hyvvvoqbNteqYkbBAE++ugjZWamiX82mymzKjuNpJX5RWWEPEnvgwcP0G638dFHH+GTTz5RKbHY2e12G41GA+PxGEC5Ivnyl7+Mr371qzg+vvT9ajbR6XTgeR7Oz89xdHS0Qih10wEHMtshE+3rwVVyRccHifvonxfFVQoIbsdEw3KQcwCzVBrJ597eHh49eqT6mv1Lub4oChWMJdNTyOvjw8dBeJfRcB0M203s9duYzCOcTheI0wyebePewMXDgyEOtnvwHKDhAU3fRpKliLMcSZLBLAoYdhkdvLM1hGWUGRJmywU6rSYGnS6yrCijeE0b+SWRTdMEtlWWuSzSFHZhwvab8NzLRNJFgShOEUYJGn6Z+mcyCzCdL3F6foYkitFqNjDcGqDZbJc/rpaDNM0RZzn6vS7SLEcURHBdH0meosjKpOSe5+Fgd4g4ThElCRZhgdF4Uk7sl8FNnuvBdizkWQLPtWA7DRgmEC6XSNMCjpUhChMYDReZ7WG8jPF//d1/B8tvwG00YDsevvW99/HOB5/e9i3+cwnTNNFwHXzpjccYj+Y4OTvDz375DfT7fXz82XNMJjNsbw9w/94WCqTwmw3sbHdwcTHDeDLHLCsLPYRBCN9z0Wo10O2UCcJNeOh0+6UfZ54gjhJ88ukztFseHr/6CN1OC1ESowxAKmt5LeZzjCZzFCizQRRFjm6ng/FsChQmBsPBpaJfPvtMbQOUi+k8K10VABu57WHn0WMM9+/hxWef4KP33sHo4hzL5QJZniEryjiHQb+P5WyCMM1hGMDusIPf+MWvwUCK+XwGu9FB0zHxYG+IVqOBp0cXpTuBbZWR/JYFw7zKl0nIiRcQv69AmX3DMJDngCkW3rKUNVNY0UffdV0UMC4Xl2npAwv+HgNpHCPLEviXpWwvLs4xm07Q9Gy0fRv72y0MOj56nRaMJLpcVuIykKvsj6RI0e5uo9uLy4IFOUlWvjJnpEmGNL09sqrPFZKkAleKm27GXucSQGxSRSUZrZo/+d2640hiyWuQgciSaOpKa5VSKiP3pYuBPo/rqDqWDMqiSslrlOeSOVB5LYzl0dVbmXmA/qi6Wkwf1UajoT53XXeFONM9gO6ZbIfMBUvyy7bKIC9eKwXIP3MFK6pzjx8/xng8xscff4zd3V3cv38fYRhiNpvB93186UtfgmmWCeL39vbQ6XRU4M10OlVMnamt+IPGhz1JEgwGAzx9+lRlCGg2mxiPxzAMQ0WWZVmG0WikVMblcolut4vJZKJypTILAQkXTeP0neL3lmXhq1/9KjzPw3vvvYfnz5+rzAZUO1VEbBAopfOtt97Cr/7qr2IymSiiDpQTTKfTQRRFODg4QBzHygeWfp1SQqe5QA5SDjS5apIPSRiGlSSYfrxUD+SxOdhJ3qlsc5XT6/VUUBUrlTFH7ZXf1tXgGg6HK+YJ+TDI938efFa7HR9/9e1XsdVvwYCFDz87wen5BJ2mg0f7HVgmkOcR4szBchZgsgxhWyZcx0HD99BwbbQbPhzLviyFWeZW7fd6MM2yPrh9mddzvgwxmk4vF0AtOKYBs8hgmAV8z4dhWQgv+ywtgOlkDtMw0Go2ESwDnJydI05jbG3vwLPsS3N86QpgWs6l6jqH5/ml71pSpg4yTAPxMoTv2TjY3YHjujg7O8fp+RhRUvp+7+0M4Do2Lsv1lDkkjbJijmeYGC0inIyXSNIUaRIhXIb4ve9/jjQryS0ATJZ3/37/eYHnOnj11Yc4Oz3DdDpGr99Hp92AYxdoNj3AsHD//h4cK8fR0RSmtcTO7hbybAzf9TFZBIiWAfq9DmyjwPZwgDBYoMgL7GxvA5cTVsP38MlHn6KAhW6vhySOcXq6LNOKFRmSOCkj8xchGo0mwiiGYZjY3h7gYjRGFMWIo7IAQwGU+UYdV6mWi8UccZLAdnw0ml2MgzEevfEzePjq63j62af47KMfYjI6RRDMkOWl2tJulbELZXWzHLYJPNzp4L/8zV+B63p4cXSG3LBhWDaAHL5rYdgrf6O3Bz2cj6ZYRCmyAkphKkV/mpyv3FFWf3NXXZkMQM09irigUL6qgMhfaTtIL4POiiJXlVqzJEGBDCZyOI4N0zAwn0xgIUO/10LDSvFor4fXHu3BtwHbaSDlbzfy0h3BNFDYLgZ792F9frYiDKyoliiQJLhcFNwOqJhxcSAz25BoSVK6yW8VqC57qn9WRWJ18YSfrSO8UvXke31e4zGqyLDcThJU6U8q5/HrUKU0M6aERJPbkVNQNaXiSc4h524AKws3Ck6yOICM/GcmICqodCUk4aWiyqArmvnl8WQ+WXIr2X+yoNF12EhWi6JAr1eWg/vggw+UykgiQuIDAJPJBMfHx4ookYgul0u0222lqDKoynVdvPHGG4pkPn/+HHEcY2dnB1mWYTKZqB8JKoLj8Vg5A0dRhO3tbSRJgmaziS9/+ct49uyZYvU0bUs/0maziYuLCxiGgddeew07Ozv4wQ9+gA8++ACnp6cqfRZdBHq9HmazWalIXJLRn//5n8d4PMbz589V2qzpdKpM6wDwla98Bc+fP1cEnqs1maSfyidJIY/FwUVCSFMVfxj5uXRL4M3mQOYfz0M3A8uy0O124fs+Dg8PVaqKVquF4XCIvb09FUlIokvkea6SBTOHKs/DB4Zt0h+Ku4qjswm+/Z/fR7fTwf2dDh4/2MLbb+7A9zw4FhAsA4RJCtNykCRlnrg0S+G5LoIoxunFCK5lYtDr4WI2R5Jk6Dab2OqVNdjzzAA8E8v5HOPpAmkB2I5T5l80gUGvg+ZlJabxeIwCBhzLwSIs/Q13+l14rg3DaGIHQwSX5fzMIkccxchtu8zdeNnvjl3mYo3iFEWawfPK6GTHtNFud2FdRmoen5yh3eli6DfgeQ7aDQfFZa7VIjfw7HyB3/vuB6Wyluc4mSxuvarTXyT8T//xO3jvg48wGo1K32HHxf/87T8sn7O8QJqhrFGfJQiCsiyvY9tIs7IcZ5ykgAH4ngujKOD7LsIgQHppheIzOp6MkURl+hjHLqtKFZcBRUVRXJYUTZBmGWzbQRwzKMRCnCT45je+ioYPRHGANEuVDyjAHNtGmXs0zTAZnWPn/iO8+ubP4PT4FJ+8+wM8f/45Fss5LPuqbONgMECapphMpzCzHK5r4mtfeoSDfhPvfPIMaWbCtB2MlheAaaM37OH45ARvf/l1XMyWKEzAmC4wnUdC5bvKqFL6r5a/iyuTdVFmTrBMs0zlVVylHaSvXiEUM7mYN2BgsVwAMJCnKfLLAGDz8jjD7W00mw3kSYxgPoNn2xj0mtjvN7A7aMK3UhiFCdO8mkPyS9/2rDDR6m3DcPxLUorLIKorwqLMzVlZs+O2UGZPuCKG7DfgSrGUZvF1vqnXmf95Du4j3+sgF7mOYMrXUjDSz6Grq7IdOlnlexlIdRNUqb+S+EprLDkEuQXndOm2B6yWiGX7dB9T8gSms6TAR1O/rvDK68+yTOVx5ThgPlWqqsx6BEC5FNyUwAOAsWlA1KhRo0aNGjVq1Khxm7j78leNGjVq1KhRo0aNv7CoyWqNGjVq1KhRo0aNO4uarNaoUaNGjRo1atS4s6jJao0aNWrUqFGjRo07i5qs1qhRo0aNGjVq1LizqMlqjRo1atSoUaNGjTuLmqzWqFGjRo0aNWrUuLOoyWqNGjVq1KhRo0aNO4uarNaoUaNGjRo1atS4s6jJao0aNWrUqFGjRo07i5qs1qhRo0aNGjVq1LizqMlqjRo1atSoUaNGjTuLmqzWqFGjRo0aNWrUuLOoyWqNGjVq1KhRo0aNO4uarNaoUaNGjRo1atS4s6jJao0aNWrUqFGjRo07i5qs1qhRo0aNGjVq1LizqMlqjRo1atSoUaNGjTuLmqzWqFGjRo0aNWrUuLOoyWqNGjVq1KhRo0aNO4uarNaoUaNGjRo1atS4s7gRWTUM41s/iZMbhvHfGIbxrmEY7xiG8S8Nw/B/Euep8RcTP8Fx+08ux+y7hmH8734S56hRo0aNGjVqlLgRWS2K4n/x4z6xYRj3AfxvAfzloij+EgALwN/7cZ+nxl9c/ITG7V8C8I8B/AKArwH4XxmG8eaP+zw1atSoUaNGjRI3VVbnl///l4Zh/I+GYfy/DMP4wDCM/6NhGP+1YRh/aBjGnxiG8frldq8bhvFtwzC+YxjG/4H7V8AG0DAMwwbQBPDix3FRNWoAP7Fx+zMAvl0UxbIoihTA/wjgv/rpXVWNGjVq1KjxFws/is/q1wD8EwBvA/hfA/hSURS/AOD/BuB/c7nNfwvgvy2K4q9gDQEtiuI5gH8O4AmAQwCToij+3Y/Qnho1boIfy7gF8A6AXzUMY8swjCaA/wLAw59oy2vUqFGjRo2/wPhRyOp3iqI4LIoiAvAxABLMPwHw6uXrXwTw/758/f+oOohhGAMA/yWAxwDuAWgZhvEPfoT21KhxE/xYxm1RFO8B+D8B+PcA/n8Avg8g/Qm1uUaNGjVq1PgLjx+FrEbidS7e5yjN+jfFbwD4tCiK06IoEgD/CsCP3cewRo1L/LjGLYqi+L8XRfGNoih+FcAFgA9/PE2sUaNGjRo1auj4SaWu+jaAv3P5el3Q1BMA3zQMo2kYhgHg1wG89xNqT40aN8FNxi0Mw9i9/P8IwN8G8C9/8k2rUaNGjRo1/mLCKIpi7Zd/82/+zaIoCvze7/0efuu3fgvz+RzvvfceXnvtNaRpivfeew/3799Hq9XCfD7H6ekpvvGNbyCOY7zzzjuwbRtvvfUWfvCDH+Cf/tN/CsMw4DgO0jTF8fEx/uAP/gAff/wxiqJAo9HAw4cPYRgGsiyDZVnodDrwPA9JkiBNU6RpijzP4bouGo0GbNtW723bRhiGuLi4gGVZ+JVf+RW89dZbGAwGmEwm+Pjjj/HkyRNMp1OcnJzg/PwceZ4DAGzbhm3bsCwLeZ4jyzIkSYI8z2EYBoqiUOdO0xRZliHLMgCAZVlot9vodDpwXRdJkmC5XCJNUxRFodrO4wKAYRgwTRO2bcM0TTiOA9M0URSFOnYcxyiKAkVRqG1d11XbmqaJJEnUsdgWx3FQFAVs20aWZarfJEzThOu6yPMcURQhiiL4vo/t7W0MBgNYloU0TTGZTNDv9/FzP/dzGAwGAIAkSdBoNNBut5EkCebzOTqdDnq9HvI8R5IkKIoCruvi7/ydv2P82EfsDfHP/tk/K/75P//n+J3f+R18/vnn+E//6T/ht3/7twEAv/u7v4tf//Vfx8HBAZ48eYJvf/vb+O3f/m1cXFzgX//rfw0AeOONN/C9730P/+Sf/BMAUPciyzL87u/+LoIggGVZ+Gt/7a/h1VdfxePHj/HKK68gTVO4rotut4ter4ckSRBFEfI8h23bmEwmMAxD3ZcoipAkifoDoO7t6ekpgiCAaZowDOOlv6IoVsZSnufqs3L9V4Kv5Wd8z+e/avtNr/le/+yLour3Z9Nv0qZjyGthP+jgM0/Ia5DH+Z3f+Z1bG7s1atSoUWMVG82fpmkiz3P86q/+KhaLBdrtNt566y1Mp1OYpok333wTeZ4jz3O0221sbW3B9330+338+q//OhzHwWg0wsHBgTqm53lwXRdFUeCb3/wmfvEXfxGz2QyHh4cIggBZlq1MNJxASBLzPMdyuURRFHAcRxEkTvAkexcXF1gsFoiiCKPRCMfHx1gul4jjGFmWqWsjiqJQZFSeyzAMRTR5rTpJsG0bjuPAsixFtNddhwSPIdvBc+gTrWmasCwLnucpkmvbNtI0VceoIr1pmsIwDFiWpUgSybhsG8lSHMcvbbdYLGDbNhaLBdI0xSuvvAIAiKIIYRjCcRxFzoIgQBRFsO0vZFn/ieB3fud3AACvvPKKajMA/IN/cOUaLb/rdDr4h//wH8IwDLz77rsr41bi7//9v6/GHwmmfn+56OJChYuIRqOhxhLvEYmwvB+2baPZbKpFiySpXJwA5QKFiyzZhirSWoV1BHbTvpLkboLcRh5LXmvV87HpmbkO64i5TmSrvltHcGvUqFGjxu1iI6OgIhSGIcIwxPn5uSI5JD8AlNJn2zY8z8NkMsEf/dEfIc9z+L6P3/zN38RsNkOv10Oj0UCapkq9cxxHET7f9xFFpSuhnDTyPFckk5N8GIYwDEOd07IspYCmaYqPPvpIqbMnJycYjUaK6FL9A64UM/6laarUULaDRFYnqySpVGUJfs/9dBJRFMXK9lJ15T6yD0gcLMtCo9FQarM8F7dlu8MwVH3DNhZFgeVyqdQ8Lhy4j23baDQasCwLs9kMURSpdoVhiOfPn8MwDLTbbfi+j0ajsaJOcxEilefbwk2Jh7w3h4eH+Lf/9t8CKBdVf+tv/a2N+/Ke8B7nea6IpCT8juMo1d3zPIRhCNM0Fdlnn0nFFICyWEhlXF4TFyf691WE7Dq1VCfE8nudXK4jhOv69ccJ/drWneeLfK4/Q3IxUKNGjRo1bh8byapU22jWlqSKJJXgBD0YDPAbv/EbyoRZFAVmsxm2traUCuh5njJ3Z1mGVqulTKhUkzzPU9tblqXaQ7XKNE2lTJE0xHEMABiPx3jnnXfgeZ4ydVMlJdHj5ETCJa+V5IETGQmlvG7LspTKyc+lOivbKgkNz6kru5IUVylbrusqFwjZfiqjcn/TNOF5HhqNhlL1sixTaiwJjmVZaLVaSJJEEc7hcIhOp4M8z9FqtZBlGYIgwHg8Rpqm6Ha72NnZwcHBgSLOjUYDruvCMAyEYYjRaPSjjMcfG3Tz9jpiJcnLw4cP8Y//8T9eu/0mkzmfA7lAoertOI5ygYnjGEmSIAgCNfb5bHHRxjHEBdxyuVTn4h+PKRdeOtlc919ve9W+VdutO/Z1xHSd+4Buvr/pMTYpr5J46mrtF9m+Ro0aNWrcHWwkqySTcRwrAkUlh5MrCRv/c7KNogiz2Wxl0pYkjD6VnGzpg5okCabTKcIwBHDlX0nSyXZJMsnX3N40TUV4oyhCURTqGkgqHMdR1ydNsrw2OTnSfxV4mZzwM6q+0v+QxyR54R+AFfIqP5ffS5WOZmf2te+XlWmjKFohPoTjOGg2m4pMs+89zwMALJdLGIYB3/fhui7CMIRlWcrfst/vK5IeRRHSNMV0OsVyucTe3h7CMEQQBGp73/dh27ZqaxAEX3Ao/nhxE6JSte267eU90rflc8HFGhcH8hnhvmEYqoUTnyW6TUjSSR/XRqOhxjD3cV0XAFYWXTrR1NXBKrL34zB5r+vXL3JsfVv5rN1UIdUJ7CY3APnZn8XloEaNGjVq/HSwkawul0sEQaBUHklGqCzSV5OqmlSLsixTE3Ov18N8PsdgMIBhGEolpLmZ5mpOxmEYKl9UoFQA5QQsfVlJFKTKSRcEmqZl8A+JtVRbpeoJvGwe5Tn076R7gB6AJRVVfbIkQZZEkufQg0CoMvu+r0gqlWTXdZVbBN02AKDdbsNxHDiOo0i+ZVnY3t6GYRh48eIFFouF6lf6/8ZxDNd10Ww2kaapMkNzUcAgtuVyqRTydruNdrutFhRUYu8K1vlO8rsfhXDJRYuukHMM0p+U9zQMQ8RxrIIM4zjGcrlUfs7y2Fx0ua6rLAjyPRdz3L5K/ay6hh+VqK5zD9C3ue6zm5DIqvZuapfETUz4utlftvHHQeBr1KhRo8aPFxt/2ZfLJcIwXPHf1H27+Fr6bVJZ4vdUGsMwxHg8XvE3JSnVCZ2MjpbgREMSIBVJqZDST5CTO4OepBsDr0EPdpHXqjrqkjxwMiRBkX6yPMa6YCzpNsBj6L6dsk/ZJ1IBpbmd5IUEhqqedGEwTROdTgfNZlMR8/39fbz22mt4/Pgxms3myrUkSYLJZKK2bbVaqi30My6KQhElz/PgeZ661+xz27bvDFmtUkjXbaer3zqRleNf3lNee9Wx5AKE45JZFIIgeElBlz7cXNTR5M/XDIK7idm/ajsdm76/yX5Vn69DFZmtItRVx9DvR9X9WXecTdeh71+rrDVq1Khxt3CtG4D84Sb5kpO0DKySyl+apoqUmqaJIAhwcXGBPM9XfFdJTGm2T9MUs9kM8/lckQBGlsvzkeTp5nn6t1LdkkoXQWJLAiv9USUkWdQnMqmM0kxLdwNeszQzsu08FkkKzb9Vk6lOdOneQF9YkkcquiQ0RKvVQr/fR6vVwnK5VGm2Wq0WHjx4gIuLC8xmM7U9SdTJyYkiUMvlUmVa4D2mj+xyuUSz2VzxHWa/3BWy+uPAOoKlu4vwvSRRvEfsH7rHAFeuKMzy4HmeWnRwweF5nlo00OKwiVSuUzflddxUXf2iKqx+/JuSPr0Pr9tm3Xu5yKhSgavU0x9Vaa5Ro0aNGj89bCSrMnejrgCReFHZcxwHvu+v+ISSKAKlb+XZ2Rls28bOzo4iPPTbG41GKvhnNpshSRJYlqVSI0nzvSSM+kQnA10IkjkZfMQJjCZueQxJOqrOIfuDhJUEg36KnucpU68k1LIPmU1ATu4knfIzmQKJr5nmyzAMleGApJYKd6PRUOb8TqeDIAhWVFDP83BxcQEAK3lkT05OAJQEezweqyArklW6A8znc/i+j3a7vdL+MAxfcmW4LWwyia/bTn5WRXIkKeJ//kl3FT1dWBzHys+XbgHNZhONRkP1nVTjea/6/T5M01Q+4LJtsq1cBP0o5O/HhZua1DcR2Sqy+0WIsNxmHXmv2r92BahRo0aNu4lrk2HKSHdJBEkc6RfJyZaKKdMjcRLNsgyz2QztdhtnZ2fo9XpoNptotVpYLBYYj8cr6iSJGI9B0sbz87h0P6AJnG0DoHxmpT+n9L+kH6tuipeEVH4mc5jqplMSEgCKtLMdeq5MSej5x/aw3Tppns1mK6om/R0dx1GuGlSg6ftL/1HTNNFoNDAej3F0dKT24fniOFZ+w0VR4OzsTPnETiYTZFkG3/dX8rienp5ie3sb0+kUhmEoX0wWRJBm8dvGOqVRf3+dEqgrdsAVIZVqOYCVRP3SDYZ5cqfTKdrttsqlOplMkCSJCoqjqwXV8MVisZZMfREl8yZE7CbbbHKn2HSMKpK9qR0/qkn+JupyFRmu2rdGjRo1atwuNpJVwzAU4ZK+d3KCIWnN81ypRlEUYTqdrgRISX+96XSq1CRO3sw6UKUoyvfSXM+IaT3VEwkvTebSPCrTSknzrE5EdKLKa5CZEORxqXpSWaP5V6q43E6Sff7pKq7ughDHMU5OTrBYLJS5mNco/YppTs7zHIvFQt0TkttPPvlELQbG47FaSOiT93Q6VZkGGHzFfrNtG6PRCM+ePQNQBnPJ3KFJkqy4I9wGqgJt5D2uMuPflMjp6qG0NABX45L3lIFrVNyjKFI5gA3DwHQ6VQsCPhc8B8cTn5OqnKo856brlddXde3r+uDHQW43uSbc5NjXkcfrjq+b+vVz1+S0Ro0aNe42NpJVGcQkFSO+p7IqE/UzUplVpmgqB65SYSVJgvPz85cmT53c8ZhsC1VFaXaVk7RUtngeeR0yB6pUwwCsBD7xWHJSl8QWeFmhWafGyu2pTvPYMuBKkh1CD7aibyyJP3Blvuc2PC4jzqmkXlxcIAgCzOdzzGYzWJal1FBeB1VYKrgsBjGfz5VLBq9RprKSJWLpT3uTqOw/L9AXMVzA8d7yHuoLJjkeWdCBfdTr9eA4Ds7OzmAYBjqdjnIJYSoyKvRZlq0E1vH4vNfrigZcd006ef+ix/hRcRN3jB+XSiwhn8U/C4GuUaNGjRo/XdzYDYCQpJIkkL54TGdEUglclYNkxPpoNEKapvA8T9WTJyFlmikJmVNVQpIBSUT16OuqY8mE/FSvOPFL9VgqoZJ4cj+ZckiqvUEQKHVTz9Eq3SlkJS+Z+qpKKdbPy+94jZLk0+yf57mKOmfaJLZJVrZiAJU8FtW85XKJ+Xy+0ldZlqlMC8y2QDeI2WyGLMtUpoHbwjrlUH6/bnuduFWZrUki8/yqzC37xjAMNcY5hljBKk1T+L6PbreL2WwG0zRXfH7DMMRisVBpwTjGeXyq5BxLvGc3UUn165Df64sv/Tu9b26qRv64/UB/nCqovhitUaNGjRp3Ezcq4C7Jlj5pJUmCKIpUmitp+gSuCA4/n0wmmEwm6Pf7yjwaBMGKeVVG6Ot5SmWbuA2LCcjgFN0HVGYH0P8kQSXpo8+mdEWo6hfpU8vzsWKWPIc8P/uFCi/JvU6w5faSnNIVQeaUZaBbq9VCt9tFq9XCZDJRxEn61HJbuhMAUKSZ/rCu66o+4PmoBgJQAVp0+2DKq+l0ivPz8zvls6qjinzq7zcpjVLVZD5fqSTr45U5fekW0+121b1m+VWmC1ssFojjWLkD8PxcTHARoiv/665PtncdAb0O68zn1x1LX2Tpx1u3/3WEeJMq+kVIdE1Qa9SoUePPB74wWZWuASQxDGKS5n4SKE4KNKHLcpOTyWTFt5EqpSSofM3zV01UkkxKsszXJKEScqKXpnz5nUw/VUUAZCovfqarsFWqqL4t+0wnpvqEKsm8/J6me6al4n+qvCS4PC6DpfQUX1Seuehg5SreG5bEBaAKBzA363K5xGg0wnw+x3Q6vXU3gC9CxoDqhVjVNvL4XITp/aiPR7pIGIahSuXSCiGLBVBZ5XNGBTzPcyyXS0RRpPxcgyBQ5PeLELR1aupN+kfus+l4N8W688rfm+sI6zrlu2o/uW0Vkf6iY6ZGjRo1avx0sJGsctIgKWNQEdVHEhsG+Gwyl1Phi6JITdxJkijiRHMygJdIojSL89iWZakcn5zseQ7Zdqmc6qgy9+oqaBVhltfGz68jrLwGGXhDJZPHlX/cT56L20lVjSb/wWCARqOh1FIqfrLUZ1EUKm+n7/srpEqq2CRSDAoyDEMF+FBJpb9tmqY4PT2FZVk4OjrCfD5XSvFdgLyv+gJF307+l68liZFjkIFUum+xHijH9/Q7ZfYFBrpJQkv3Afqs8l6SuLIwBBd+6xZTVdfI9ujXuU7ZXAe5/U0IXtUi7M9CCvV7WPW8bFKbN5HqmrDWqFGjxt3DRrLKSVQPCCIpZPS3zA/J/Qg9uIoTLP3taMbnMaWqKgmUPjGR4AJQk7s0/bMd+jXoZFISYhLuKpeE61QoSU4lUZZ9IpVKfcKUfokyV6dsJ7/TFWOSIFnJarFYKMWb7SbplOnGqHLLVFYk/wCUu4AkUFQE+frw8BDn5+eYTCYr+WbvAjaRlJsQVr5fR+Y4lrkIkeVUJWllZS+mseJY4PiiPzG3j+MYnucphbXT6awU3pCKrGzTdWSrajF0U7O8fp4vgiryfN0x5POjX9+m69xEWvVjXbd/jRo1atS4fVxLVmUaJqn8ZVmmAkYkmSPkJMEIfvpl8ju6FADl5CzTXN2k/Kk8DveTx9ddATZdo1SRSQJp0t10bfp365QuflcVLMbvpOsEyatsv0z4LwNr9Oule4X0hZRkmH3LICrDMFbcOPTrkPsx3yf7pdVqoSgKfPrppyqt1V1QpqruwU3Vx6pjrfucLha6TzLVUD0QEbjKVMHnh/B9H57nqQpXRXHlatDpdNBoNNQ2rBI2Go0qU4/pkM+RTubWqc2brr3q+Nct6Ljddd9vOs4mRbhqu3XPrlwE1qhRo0aNu41rfVZpntfVQhnkUTWByM9kwBWJE/OL8thMxyRN9uvSQFEFlcnvZYDSJpO8PB5wlSd2nel/U7S1/nnVedZtq4P7kXjICmH8Tk+PRDIv01cx2In3hoodj0FCSVN+t9uF7/sqm4O8f/LeLJdLlSPU8zxVDcu2bbTbbRUoZBiGSn11m9BJybrFg9xW33fdMfXP2MdyYUOy2mg0VLYF9mUQBKpgA8kiK1mxHCsXF1xQyKA413UxGAyQpqkKbFx3PesU13Uq8k0hSa9OMG9CSPW2VbV70z27CW6ybU1Ya9SoUePu49pyqyRyNFnqSfR1syIJTtUEJHNO0tStm9vlH4+pT4RUo0jk5vP5RtPzJhIpr1F3F7jO/F816VZtrytZm8i9PO91Jkz2RRiGKqCKJEia9SWBCoJAqX2maaLT6ag0SboKTaIuizlkWYbBYLCSagsAut0uer2eckGo8hH+aWLd/dZJmt7/6z6vOgZBdVWmXuN4NAxDLaYAKLVbprYCoEgo74VMcQZcpcqSuXCHwyHOz89XXAi+qGK4iShe5y6gf3cTZVduq7dVbiOJ8KZjr1OJ17VpnaWmRo0aNWrcXWwkqzJZPX1Oq1Q++j/yPSdPadLWCa2ueBXFVcJ/nWRJskViS1/LdROfJMHrJjomz5fR3HLSl8eRba3KPStfyzZQKa6a+KtMsFXn4jGoPktCSxIThqGqkOS6LiaTiSLxet8FQaB8LAeDQWWbuA9VWyakJ1GybRuz2UwRtEajgTRNVeL75XK5aWj9VFGlnLLv1m13nbqqkx36XtMvG4ByxeA4tW37JcJJ31RaCTzPQ7fbVao17zWVWVofWAFrZ2cH4/F4xXeV40daGK4jZteRwk3gsddlgNh03Ovate7ebSLQNzm33ie3bQmoUaNGjRrrca0bAAM8+McfdRI8SVpZ+lQnc/K9VA2lyV8m7C+KYiXISCqcumvAOt80kruqSYjtkefQVeIq5aWqDdeZm6Upv0qNlsfV1VUq0FwsyBRIbAMJN4/Z6XSUWiy3Z57OTqeD3d1dVZ+exHVToA4DsEzTVLlWLcvC2dmZKgLAKlc8hl6Q4a7hOtP/dcRV3kf68xIklp7nrTw3dKPgAo/Pi17SuNFoqJK1XPzRp5sWDt73brergt82EexNZKzqnhPXkcKbWBx06O5DX1QN3nTsHxU/KlGvUaNGjRo/edwoGwATxdOUqSs2VIGkCwD98apMcpysZFJ8qrHcluRXtoMgQeCxGahCYqgrPbpyKBVNOUmSVKwjoDrhlP2kKz48n3wtr6/KTC4VMWkeBkpfVBJweVxJ/k3TXFHoms2mMtezv7rdriI4hmHg9PQUQRCowCleG5VCniNJkpUFCt0PRqMRTk9PcXp6ildeeQWGYaxkIbgtXKfmbVqUyO3WvedrmUKN/QKUY2mxWKwsVqiK8z8XTFzg6W4nHMu893xmpB91s9lEu91W6caqoI/Pm1xv1XNLSB/2qnNV9Z1sx7qFmm5JkW3g5z8JQinbVRPWGjVq1Lh7uNYNgARJ5lGVqIq+l2l79GAnmpbTNH0pwAp42RStH0NOYFVFB3QSymhqXdXkZyQXJOXyfDIVlm561ydU3bVBKrbcn6hSYfV2kcjIADeZWotqHPvddV0VMc7qWfq18zxsH4ntYrFAGIYvqdn8LxcAANBut2GaJpbLJU5PT3FycoLFYoGjoyMMh0OcnZ0hiqJNQ+snjqr+rjL7ryNoVURV/55/NOPL89J/mN9L9ZTjiMFuXFDI7ADscy7idBcYuSjpdDq4uLhQi8l1Zu9179cpx+uIZ5UloOpz/fg/qum+qu3ryOW6NunfV3133ec1atSoUeN2cC1ZBfCSikLiJl/TD08mupdkSW4nFVU5eUvlTroX6CbDdaZ7TjJ6BP+6yZjbyuAuSYz1VFjy+vXPrgsoktkT9D7RFWFJimnST9NUReBblqUi7pk2iX6khmGoPJ9BEKwor0VRqNycTDgvA3n0Cb5KkWZ/OY6Ds7MznJ6eqkIAp6enODs7q0z3dZvQCWkVSa0aK5vGDZV/WZa3KAq4rovFYqHM/Lw/juMoVZz3XKrkfG648NCVWjnG6ZLB54VFHqRF46Zm9XXb6mRxE8lbR2yrttPPt4lwrmuvvs1Ntl9Hfm/SRzVq1KhR43ZxI2UVgAr2kGmSONEwqTknS52MAlD7ygATSYpoptZVPH6vT4JVyoquoEroqpgki5LQ6SRc319/zW1ln22CTlRlH8hsCTpRpw+qrnTq6azm8znSNMV8PldJ+plEPk1TTCYTOI6zsnDgPZHXRvIlFdyiKN095vP5iuony79W9cltoUrRu46ArvtO346vpatKFEVwXRfL5RJpmqLZbK4o9SSe0qoQRdFKkYaiKJTrB/1e5UInz3O1OLAsC57nodFoYDgcYjweY7FYqPZWWULWkdjryOZNya9ORPW+1PtznUq7CTXBrFGjRo2/WLi23KpUHCWR00kf30slUk4qekoq3T9VvpYKnlSQ5Dn13KE61qk/epvWmed187l+PetMm3pwWVW7qsz/cn+S1TzPVYQ/iSIDaXRzMj8virIowMXFhcqbKpPWs3rSycmJUmBZ/Uteh3TXYFvolmAYhkqRJStWrVts3BbkQqBqgSFTp8lFxjrlVb9G3arAPmRmBKnUywWBNOnHcbxSdIMR/7rLB90M+GwEQaA+s20bw+FQHZv3UxYckNdy3WvZd5ugk82buBas21Z/jtaptdddz00IdhWJriL2NWrUqFHjbmAjWaV/XBXxs21b1Z5nTk9OrFKtBFb9PdcpPbraSRVRV1yl2VQSX0mk5Xn0XJV6NgF5TfLzdYRSN/frJEf30dX7TU/LVTVxslABUKqs+/v7imgeHx+vkCsqnNPpFP1+X5X0JMnU+6QoipVCAdJkL9Vkec+kP26SJFgulzBNExcXFyuuBrLdd3Hi32RCriKnVa85DumiIUkqiWSj0VgpcyurvHExIrMEWJa1UnqVi5SqxSG/Y0EAEmXHcdDpdGAYBoIgwGw2U4R4073YRPY2Kc6yb9aZ8dd9V+VaI7f9Uc30m9wJqtoi91n3fY0aNWrUuH1sJKuMQtZN64yAZqANAOVHB1z5jAKrpEeSOX5XRVar/oBVssCJWMcmdWWd2irf6/uwbZIc6t9XmZl1VY9EWSqv6wJ+SPpo5t3b21Nm4ouLC6XIyVRGs9kMT548ge/7qnSqroYDq6qeJKpV/e+6LprNpor8J9Fl0v/RaKRyiMpzkDzdJtbdF/21/F91DH0/3kvXdZUCKhdL3NY0TYRhqFRW6cdNIipdLah+856yMADHD++JVHHDMFSLEran1+vBdV0AUG3QgyP1hVlVf11H3Kq2ryKv+oJJP7/+zK1bzOpY97m+jX6em2xbo0aNGjXuFjaSVZl7kxMniYjrui8lhOekWwXdR1UnfPL/OiVWToZVBOGLTkhUgfWJb53KI7+rmpg3mRJ1oi0/l31k27YKziFZ7ff7KtXUhx9+iMlkslJik4sHwzBwcXGhzPe8X7r7hU7iqiZ+0yyrW/V6PRX5T8U2jmNEUbRSOUknrNLX9bZQRYrk+6rxomdxkNtyIcHxb5plGVX+Z17c5XIJ13UVyaf6zeeDhFW6WPC5ovsFjy8XFFygkOTmea6sGiwuwPHD+8Z7Jp+5dYuldX23rj+ve0auO96681Y9Q+uILHAz1xv9eV23fU1aa9SoUePuYSNZlblLgStiRNVHKk00/1IdksSNxEUS0CqiWqWwym2IKtVSQieAvBb9GLy+dcouj6W3Q/eflW3SlUzpw6mTQt2/k/0oU0gxTZFt22g0Gtje3lY5b3lNzWYTg8FAuUycnZ2pz/f395FlGY6OjlQ6KT1Xq54NgNfKtvi+j06ngzRNcXFxgfF4rBQ7eV2yD6r8iG8L6xTSKgJ73XvLstBut1EUBYIgQJZlKrMCx1Mcx3BdF5ZlYbFYvBQkRf9iqbLatq0I6mKxQBRFsCxL3et2u72S5kpWt6KFgYSZRRsYuEWSW5XVYxOhl5/pixH9+yoLRtWzU4WbEttNx9ukBnNB8EWup0aNGjVq3B1c67MqCZVhlDkjfd9XeR5JQDkpAqu5JPkeqJ7EdNLL7daljCKkoqcTTr7mZJ1lmarHXnUs/RxVaqmcjKVCWkWueY1VhEi2TyfZehaAoigwHo8xm80wHA5VZL+MFmfEOFMXNRoNte/e3h4ePnyo2nV4eLhC0KkESkVPz1fLbehe0Gg0cHp6+lLpXS5QGOkeBEFl//60QFVZYhNJ1Qntuu/YXySIVDPZ5ySZ8/lcqafsX5JM5ld1XVflYDWMq0IMMktAmqaIogiNRkO5AZB4OY6jCGpRFErFZcldPgMkuSRtN1UPZT+sUzX1bTeRvarvqkhu1bmr2rzJdWDdOTZhE+GtUaNGjRq3h2srWMkfb8uy0Gg01OS7WCyUwlNFSNepLlVKpR6YxGPq+Uelr5+EnCy5D9UtEimpKEpFVAaE6WZt2Rc6QdbbKwker4sT4DqXhXUTOP8mkwnef/99vPnmm5jNZsq3kSocTfFcIPB68zxX9woAer0ezs/PVxYgkjTrCwUAKqk9yRDbK6PX5TGKolCBQ9flnf1Jo0oxrCKr64hq1UJIlr+l8uz7vjLX08zPBUGz2VzxH9X7izl02bdcVOnjlaRXPjskqWEYrqQ142dcNDiOA9/31b2sUiZ1YqgHDerPb9Vr/RhV/Sm/v+6e6Z+vI6SbiKi+eF13bv16asJao0aNGncLG8mqBMlPp9OBZVmYTqcrderpIqBPHroaqmMdKZQTs3ytJ7mX+8lj6YptFVGpUlDXHU9vcxVZZUL3fr+PKIpWKgrp17BJ5ZOBY3me48MPP1T14OmrSrJKNY+mZ+nPyIpcvDdVwW1ViwfepziOVVS5aZaFB6SypyvN/Oy2iSrbsY6UXqeyVRFYktV2uw3f95UVgb6pSZKo9FTsrzAMMRgMMBqNFOHkved7+n3zbzabodlsqvdSdaVyTVLMFFU0+/O8TGWm+8KSsG4iZOv6rGoRuq4f5cJn3Tby/FUKuP7sr2vzuudZJ6A3IaE6Ma9Ro0aNGncD1xYFoC8qAJWA3LZtLJdLxHGszMFUE+VkJitAVU0E8rXMw1qVk7IoihWTJo9NYqZPkPpkJwmW/pncVm9blcImoU/ejUYDr7/+OkajEZ4/f75CHtm2dWSV101VjH0aBAE++eQTtFqtl9pl2zaiKMKTJ08wHA5VUYCiKCtK7e/vw/M8BEGwonhKszDvtd5nPDZdBOhDKUupVpEXXZ27DVSRTV0x3LStfk0kfc1mU7nAOI6jgqnYt1S+gVKZlr6m0lpAtw053mn+B66KDfDYbIMksEmSKLcQuhsAWAmw8zxPuY1wcUnoquNNSewm6AufKiVXP6b+3OmLnevat+6cVURXP0ZNTGvUqFHj7mMjWSU55KRK/zqZU5WTK4kTlR1OOoyW5vYyAp+Tt1SWSNZkjlUen0RBBp5UmQN5LOn3RyVMVxR1Ez7PVUVQJeFZR25c18X9+/extbWF6XSKyWTyhW4I+0Dm8yyKQkWT83pIHrnddDrFcrlUxwCAi4sLvPvuu+j1ejg7O1N5OXXSLOvay3sj01xlWYbxeKzM/LIP9Pav++6niXULjKrXVeRUv+ckmLKkLSPzZ7OZyp0aRZEiokmSYDqdotlsKpcZPicssMB7SaWVJJN+4VRPXddVRSEArFgxeD+onk6nUxRFoRRamcmD21UtHNeZ2tfd500q9XWEcNP4uIkKKs+zboG6rk1V6ukXOWeNGjVq1PjpYiNZZbokKh1S6WMFI06UDBhhGh09mEk3FevkUipMMgiI38soZ6q7MsJZD8hi26RiqKtrOnRyw20lceR2ch/9ted5ePjwIYIgwPe+970VX9nrVFrZZ7KfqNp6noflcon5fI5Wq7VCRBj1zfvELAAnJyeqj3hfJHFhwA/PJytocUEg/YS54NDbygXJdf380wDbsIlQcbtN94bXxKAlEs0gCNSCYblcIggC1S8072dZhuVyiWazqZ4PSSylf3G73VYLDtm3XPjxjyQZuFrY2LaNMAwxn88xn89XLBTch8qrfGZ5fTzWuj5c9/26/rypcqmT4aq2cHzrFpqb4qbb12prjRo1atxdbCSr9KfjhEkiSaIq0/FIIsfAEcuyVpQ8fk9VSAaN6KU7dT/TTUrnJj8zncRyUpIK4rqJ+qY+dzqxZvT2m2++iadPn+LZs2cr7agiUFU5WNkPLLnabDZV3y2XS1WIQaaQokuEvhC4jkTwWmVJVamiSh/IKiWaJJlq4237rVa5pehYt2jQv7dtG81mE41GY4WE0287iiIEQaAC3/hcMLhqsVjA9/2V/mPfUq1l1SvP8xTJlO1iv8rFAK0aSZJgsVhgPB4jz3O0Wi1VxAGAysXKBYlceEgLh7xufRxKXEf+NhHEdYqnfN7kYmnd88nz6K/Xmfv1/eT3+usaNWrUqHG3sJGsNhoNAFD+jnEcYzQaYbFYACh/2JlzVZYH5YTN6kZyYqQrALDqpyoT11cRU5IumltJ0PRJvWqS1Umnvs115k59MpXb6+1MkgTn5+eYTqdoNBp49dVXVZ9J86ueY1W/VqnuclvdjMz+vS5/5iZyobeB95LnjKIIURS9RHSrFglsa1VOz9uAfm1Vpm99O31/EtBOp4NOp4OiKFQ508VioZ4FElASWqmymqaJZrO5kl9VjgWSWrnQk88DXXGSJFHPG10GkiRBEARK2R0MBmg0GphOp6qqFccwMwiwfTIgTPbRpj7htW4ih9cp2VULPZllQfqkV93LqnZUPZ9V+95EQa3dAWrUqFHjbuHabAAkniRKYRgiDENVwUpPXcUJlyZ7OamRqErzulRoqwgR96ffaRzHqkoTt+N/fRLVJyN9gl2nqFapjlVEVd+vKErf0sPDQxwcHKDb7WJnZwfb29sqil9XWPXrlW2Xf7I0pyRD+jXpqFLTqlRceQzZ9zJnrm5Wl8Rb3v9NauVPC1VtqOr3da4dcoHg+75KAyYreDHVFH1KZdUuEkp5r6ieUhFlKVsuwOgXznK5fLYYxe84jgqmIvmczWbqeex2u+j3+8pSwUpbMs8wfW8J+kfrC7B1z8g6olrVh/ox5DPKfuFn6wiqPJeu6Mtjb3qm142BKuJaE9UaNWrUuHvYSFapePi+ryZIGeGvB0zRTMkAE34vJygZtEWfUnk+SdTk53le1qLXA6vktteRMP08NwW33+QWILc7OzvDycmJInHb29s4Pj5eMe+uU1Vlm+UEnKYpZrMZtra2VDJ5EiJmTtAnXNd10W63lV/lcrlcuRdVE780C+tkgfeX11VFVuU13SbWESj9s6pt+EdVlWMWgOoDz/OwWCxUf8gk/Ox/vjaMsmpVo9FQVgEGY5mmqRL+cwFIBZbt4qKQx4uiSPktTyYTGIaBwWCAdrut3AgYoMU2yzRmtFDIhaPug6y//lHUyarnjm1iu3SLig4++/LeyIWj3pYqtVUee90Cdd211qhRo0aN28dGskqTpIxAl59JP0USVpbmdF0Xo9FoZeKn0uN53krlHZmqCnhZ2ePxdbMl8LIpcB3x09+vU942EUlJ5NaBxOTk5ATNZlP1o+d5L5nTN036PJcMiJrNZqr/XNeF7/uYTqcrfsGScDJtERU/RpavCzwikaGPo1Ri5XFleyVR5YJGErbbwnWE4zrCyvHK1FBhGCrCR7LKnMOyJC4j//M8R6/XQxAEyleVGR2osmdZhjAMVdS+zDTAeypTT1F9nc/nmM1mmM1mSJIEg8EA3W5XBXLxGIZhIAgCdQ4eYz6fo9/vKwIuF3836ScSyE0quvyMvxnyGqrIrL6vdCfRiecXIdE3eb3psxo1atSocbu4toIVTaGclBgoQrIqCZJpmopI0YxJolTlGiBLVTJd1TozIYnUOoVznWpWBT3CWU667XYbe3t7ePLkyUuKzyYCpk+a5+fnaLfbAEqSSPKw7hj6Nclz0nxLhUzWfq9SliTJlOZs5k2V/aCTZy4eZE5OuRiR/S8XE7w/JKzSJH5bWEdG1i1G5H+qpY1GA41GA2marqQGc10XrVZLfcciDYZhrFST6na7CIJAKbEkuzLPLSP1HcdBFEWKWMo8rcvlEmmaIggCTCYTXFxcIMsydLtdDIdDtFotdQwAKs0Vz8F7RBcAvqY6r4/fdSRwU9/q28liBVzsrttWjicAanF6E6y7z/pCdt211KhRo0aNu41rySrNlKzQQx9WkhGp/DEwh8SFBInfkbxyoubEaZomlsvlSjlLGXChk8oqkrVuUqqayCRZlQqR7/v4G3/jb+Ctt97Cv/gX/2IlR6pOBDe1DSgjwA8PD1WpSyqasm2y/fIYVWA7aU4GriLeq0y4Mk0V31f1SVV/yYle+lzqipgkQroCfhcVqnVEtao/mCKNuVBlf5KA0XyfpqnKAbxYLFQwVZqm2NragmmaKjgKgHqWmAc4iiJ1L0nw5vO5WuAwfyoV1cPDQ4RhiL29PWxtbaHf76PT6SjSqaeo8n1f3cN+v698bnkfZcnX68zk15nW+exyIcUsElXPi7wHJPq677reDn2xtGnxt87NRb+eGjVq1Khxt3FtBStOPHzPgBOphMqgH+CKBAJXEyGJqiQIuu8qg1ToF0hSICc4najqZGPT5MXt5b4kkLZt4+2338Zf/+t/HaZp4u2338bJyQmm0ynm87kKUNHPWUVWOemyVGlVkYOq9l13XUVRRqJ3Op0VE6menotgGVbf95WvpFTB103W8tokIabqKsmHfo+qfCBvA+uUd/l+ncIqVX2Zaoqv+b2s7kbFm0RRqpydTgfL5VIt3CzLwmKxUG4ZPBb9vYMgUM8Zie10OkUURXj69ClOTk6wtbWFra0tdLtd5b9MgsgFg7RGyGeUriHMycpnDsCKX3UV4ZNjQyd+MniL10bIbaXiL9V6XUmVi6Yqolt1b/U2ye/1zzctaGvUqFGjxt3BtQFWVIVIdjghhWGo/PE4aVNJoV+eYRhqYiSpAa4mK6boAaAirg3jqiKPbduVScx1X7ZNqHId0Ccp0zSxt7eH3/zN38TBwQEsy8I/+kf/CGEYYjqd4vT0FB9//DH+9E//FE+ePKksNypVSJqCOWHzOmTu2SpUKaxykmY6sOl0ilarpRYB9DGV29JtYDQarbgQVBHbdYRfkhwuLCQZktcuSQfbelewaYxU9QUDnQAoRZSBbMyL6rquCpBi2VWa8/k80M3Fsix0Oh11DqaXGo/HmEwmahHUbDbVs8FMAWEYYrlcYjQaqQDDRqOBXq+HZrOJwWCwUiiAY5Njg88j/0ikLcvCZDJBURTKN5dZB2S/VC2Y+DnHggxEk4siCam+8/kgob5O4ZSEtepz/TxVJFS3vsgxfpPFbo0aNWrUuD1cm7qKP+ycXBgsZBiGUhtl+pvlcqki9qkskfAwTQ9dAki0DMNAp9NRWQRIvhzHWfGDZHvk/x8V3N+2bezs7OBv/+2/ja9//etKNWbbXdfFcDjEG2+8gW984xv4oz/6I3zrW99SJS3lBM4cs0BJGkgO6ddIAlFl6tSJwLprZFCONBuzb/Xj8b9UwfnZuhRB+iJAJ+LchtdTFQBzlyb8deSrSi0EoNRN5kslMSeZI3HnQowLKdd1FWGlKX65XCq/UN2Vhi4B0+lU+aLKQDnDuAqOOj8/x4sXLxRpzfMc+/v7ijTLYgxssyRtvu/D9301duhe4Pu+IrMAVqprVZG4KrO7VFNZiEDvW56PvyH6Qmbds3wdgZXbrVOC1x2rarzepXFbo0aNGjWusJGsMr0OiSnVNKkU8nOpuvFPBldxAvU8b6USUBRFigBzO5ICmSaJ59bN5TrWmS3la/7v9Xr4lV/5Ffz8z/88fvZnf3YlCpvgBGsYBra2tvDrv/7rePPNN/Hhhx8qhdO2bQRBgLOzM1V6czQaqWpfrVZLqdFMLaSfZ5PaKUkxTdIAKtMPVSlQNyH2csLWFXD+SdVYElWdtMo2/XkATdgc20z7VBSFCpxK01QtpgAon1SOGd/3VTnV+XyuSC0XaCT3kvy3220MBgMEQaCOx36jEj4ajfDJJ5/g+PgYJycn6vw//OEP8corryglGIBaCE4mE/XskRg7jqNUdgZttdttLBYLpa7SGrDOCiHVVN7nRqOh8h+zHwEoxZnjZV3GgXUqqHxd5Q4g/3M7/Xmquo6boHYLqFGjRo27hY1kNcsyLBYLpRLKCYMTLgClJkkfOSo8MqKfSlCn04Ft25jP52qiJCmgnyVLvQJXCdZ1JbNqgltHVPXPDMPAq6++it/6rd/C7u7uCgmTZJJtZzSzaZr40pe+hK985Ssr5JAJ2ieTCcbjMU5PT/HixQscHx8rgsl+Ys3466BPzNK3T6agqiKG+uR8U8Kqk1CZ5qrK3UHfVxLbu4brFDwSTOmnDVwRRyquvAcyVRcJK1NULZdLdLtdNZZJWuX5iqJAt9tV1gSOMxbeCIIAL168wMXFBQ4PD1WRCS58Pv74Yzx8+FAFUAFXaah4D0hkqdJSBaXvKlPI0e9VKvDStUQnjNIVgim9eG20mkjXk5vcD900f1OCqbdRh74Q27SYq9XVGjVq1Lh72EhWZaUckhSZgkaSGkl0ZEYAaY6k8tNoNFR08ng8Vn6AJMc0TUrFUBJhosrvjOeUqCJug8EAv/Zrv4bhcLii3OrBKTwuI6i3t7dXyAG3dxwH3W4X3W4Xjx49Ut/N53McHR3hww8/xPvvv4/JZKIIjfTF1dsn+1UHiRIT0cttN5k7N51Hd/fQ+3OT8ivfS7/E28QmYlrVH1QoW63Wip8uxz4T89N8L/2wLctaURaLokzcP51O1QKMJDHLMjQaDWUON01TpZ2imwAXiOfn5zg+Psb5+TkMw0Cz2US73VZVqsIwxNnZmcr3CkAF1DEFFl1AmF2AmSRk6V75vNJSovs2y2eN/qnL5XJlOxJY5uqtuhdVi8p173XzvPxs3fY/ipJao0aNGjXuNjaSVabUIcnkBAlAqYmEVOR0/0kqilRPAayYEjlxss55URQrOSKrUibpKivBfdaRlaIoE63/2q/9Gr7+9a+vBHlJMixLVMZxjCAI0G631WQvJ9J1SfkBoNvtot1u4/79+3j48CH+5E/+BE+fPkUQBGvJqm7OrMr3ytRDunlVV7/lflUuArI/ZV/rk76uTlX1+7rj3waqSOm6/iDBZqARCSaT6TO3MHBVnpQKLMcrA6gMw1CJ/KMoUhkh+DnPTbUVuPIpTZJEBeUVRaFKqZ6dnSkSzQAu7nN8fIxHjx6p54pk0TAMLBaLlfHd6/VWMhhQTaX66fu+qsqlK+wESTuJKsm653kr47Jq4aTfB5146oRz3T4k1+vcAK4bh7pLgTzOXRm/NWrUqFHjCtcqq7JylFRWDcNQapJODqX5kOqRzNXJCU1WVCJB4L4yqKpKUZV/kphsIqqcoB49eoS/8lf+CjzPe+nY9NsLw3DFBSKOY+zu7q6Y9Kkg6gUN5PE4sTqOgzfeeEOpyozyZmaAquuTbdaJugxU+VEn2HXmT+kvLL+T6rk0++vH0/1xbxuSSOsLAX4mTeG8NhYCSNNUFQcg6QyCAEAZwR+GoQo0iuMYzWZzxZWE+VS5MOM9l6nc6MvMyHqOOWYMaDQayj+ai0ia8eM4VmSZpNFxHKWyLpdL9Pv9lbRYbI8MfASwkttVv4d016Gfq1ScmTFEQpJC+V4STvk574m+v3wv/19HSKu23USG79KYrVGjRo0aV7jWZ1VW2gHKH3U9oIqfE3JSonrK/Zj83zRNVZaSx+JkJ48rCdO6P/28ch/dJcC2bfzCL/wC9vf3XyJc0g8xiiIsFgsEQaCCa0jQwzBUpnJeC8mNTOuk+24WRYG9vT187WtfU9d9enq6km5ITq7rfFHlQoDb3nSy1QkEIVVG/bMq1Viq0Tr0ggS3iSqFuYqwOo6DZrO5YtKWuYGZgYFprViClX6Z3FZWtWJu1Xa7vZJ/FbgqDEAFllkISFapqj59+hQvXrzAaDTCYrHAN77xDezs7CgCbNs2FouFKj4gU4wNBgMAUOeh6whLyMqgMt57ZuAg2Fee58H3faUU0+TPZ6VqHGwakz8KMdTvm/7sX7dv1f7SZWWTslujRo0aNW4P15JVYNVMTNIJXKmG0myoq4t0I+DxGPlMHz1mAeB5pOmfxEk32emESbYRqPZx4/t2u40vf/nLK4UOSDSlGZZmYBLPfr//EkFjABnbQnLPdF6yGhcndwB4+PAh4jiGaZro9/v45JNPlDm5aqKsIuW8HukjWmUS5XabsMmEWtXP68ys8jh3QaVa10b5nSRpVMnpM02Vkv3LtE9UIpvNpiqlyntHQsrvHMdRPqlyIQNAHacoSvcaWe0tSRJcXFzg5OQEYRgijmN8+OGHCIIAv/iLv4i9vT0VMMX0b3SzYVuYZ1UGKwJQxFpWrmK7WMyAvrokpo1GA7PZTKWUo1+snnNYnkdPa6b/1++RbiGRz8MmNVWqwPrvxCaXgiqrQE1Ua9SoUePuYSNZlSRFmnYlQZLKBEkmcBXAwc8Nw1BqEkles9lUKtVsNlPbygAnOaFIn0pdydEJmjTnctLK8xxbW1vY3t5eIRcsCRnHMRaLBZIkUeZfqqo038rJXQamSFWXEybdJdI0xWKxUAEuhmHgzTffVCTDsix89tlnmE6nX+jmSfWWpEcnmlJJXTcR34SsVhUdkPvq5PS2J/0qRZX9pRP5RqOhEvJLUzbvn/xbLBZqzBZFoRTHPM/RbrcRBAEMw8D29jZarZYic8yzulwuVypNSVIpK1FZlqVy+ZK8pmmK58+f4z//5/+MX/mVX1GuB1T/WXJVptgCVtOvyVKo+iKTxQgajYZyf2GqK2avaLfbAKCsIl8EukIPrBJGfaGjj195L6vGnE5Yq1wIavW0Ro0aNf784dqiAMDVD31VoBM/B64ILUkgU+FwOwZySN88klp57KrJRKqpVdusUxP1CbXdbsN1XWRZhvl8vkIop9MplsulaidV1m63q3xqF4sFDOOqMtc6UkQiQKIQxzHOzs7UNbfbbdy7dw/z+RxJksB1Xfzwhz9UpH2dMlnlAkBXBL0tVZM//+sLAUkeriMN+r3RVbBN5t+fFqrcGfhafseE/c1mEwCUuV7uSz9rAIqQdjodtFotRei4CGs2m8oXmflNqaDy3CyYQQWeqijbY5qmSl/19ttvY3d3F//qX/0rRVifPn2Ko6MjRYDpfkLiy2N7nqeKBqRpivl8vqLe8vmU5wWAVqulFmvMKMCsBVEUvZQFQEKOE/m7wb6sekZ1kzz92+UiU1ftqywN8vz6b5S+kJWfSQJdk9gaNWrUuHu4EVkFVhVP/UedE7VU36RpXJpXgasJhX6BOuQkpk96OjHi8fR9dXMk1cdHjx6hKAr88Ic/xB//8R+j3+/jtddeQ5ZluLi4UD6rlmWt+BKyVOVkMsFiscDOzg7a7fZLuWTp9wpc+SWyDefn51gulypa3LZt7O/vYzabIU1TvPbaa/jggw9U8I7eJ1UmTiplJCSbVFRdJdT7b12f8nw6IZbbbTLT3gaqFhD8k1YBLpZ4fUVRpmaiWZ7pwVjmlouQs7Mz3Lt3D51OZ2WBxu9PTk6QZRkGg4EioySQJL4MtCuKQqWfossMx9LXv/51/PIv/zL+zb/5N5hMJjAMA9PpFJ988gkePHigxhpJKgmofM1rYzYCwzCUG4xOVum2MJvNVLvjOEar1cJ8Pl87NtnmKrO9JML6wkGqu/wjAec2koBWHV9vi05YbzJWqs5Ro0aNGjXuBjaS1SrCQuiBV+qAl+RTmutJ2iQhkGAksazyI88j/UGlvyzw8kS5SUnxPA8HBwc4Pz/Ht7/9bbzzzjvY3t5WPobj8ViRT8/zVGQ3zb9hGKrSmCylycmW55FR4NItgr6sn3zyCTqdDjqdDjzPQ6fTwWuvvYYPP/wQcRxjZ2cHz549qyScOnGnGZqVktZVCZL7V6mvumlW79frJn2dBJOE3Cb0XK/SdUXmUeUfv9PHFwDlv9npdNSYGI1Gyr+z0+msKI2WZaHb7WI2mynzvqzQZhiG8lmm0kpzP8kzx93HH3+s1H7eB7oDTCYTtFotZbpn2iqptMsgyWazueLfKRc90teVhTuosLqui/l8rrJ4ANXqOd9XVVaTCx7+RuilV6sUVHnsKtVWP/e699eR17tgDahRo0aNGtW4MVnVI4RpRpaf636MUlXUSRJNq67rIggCFXmvT178ryuK+uQlISc0+R3J5Ycffoj33ntP+YhOJpOVClo0q6Zpiq2tLRVsxXRTVF6LolAmUj1/rGwvj2XbNqbTKc7Pz9Hv97Gzs4MgCLC3t6cCZnZ3dzGbzZSypd8LnZxTsZPmXm6nRzrrpETvM/lf/26d2bVqW57nNqEH7Uk1lcFFJJv0O5WLK+DKL5Mmepr1mRbq9PQUvV4PzWZzRaG1bRutVkv5oMr0ZQzSoqmfBJOKO1XyRqMBx3FwcnKiyqQCV32/XC6VQtvv91eKGejuHbKSFV0PqgIY+Vw6joPBYICzszMURaGUf/35477AavUvPhfMEsDz8/eCgYv67wKAl0osV6Wtq8J11hWJ6wIza9SoUaPG3cK1AVZystcJq1RlOEnpZFIPPpIkl3XUGcwh3QyIqjr0kmxJIlKlpnAfwzBU4vV33nkHWZZhf38fpmliNputTKgs+co0RAy8Go/HKk1QURSYTqcqSIwTPftMBnjRB5YVkIIgwGQyQVEU6Pf7ODg4wM7OjkoL9ODBA3z22WeqMILsc3lveI1UC3XzqiQI0m9S9vE6pUqeT5/89Xt0Fyd5naxKEkTCSdM4S6gGQbBSclemgWo2mypLAFD6dbKsahiGaLfb6pxSYQeuxl8URYrU0m8agPKPTpJEBXp1u11sb29jMpng4cOHsG0bf/zHf4zJZAKgTPBP/+fhcKj2k/eTY5Ftpi8o3RWkjzn7SiqfRVG85J+qjxfDMJRqzLRuMshSlqBl8BmhB08CqxlIOIarSCtR5Q6wabtNqF0AatSoUeNu4lqyyolOki8AL006UpnRiaWuXEgFixH3nNyl+4BUfOR56QdbpaDoCoucgAaDAZrNJubzOYqiwHw+R6/Xw8nJCRaLBQaDgWpLu91Gt9tVPns0s9OUO5lMVurH8zWvl2UrkyRR5lNGW3NCn06nKmDL9310u12Mx2MMh0MEQYDnz59vNG9uIo26oih9F6XqLftR3rtN5+S2m76/bQJLUqi7JtAPVS5wqJzP53OVekqSvCRJ0G63FfGn2tput9W+vu8r070ke/Rh5r1gQn2OBS4k5EKNEfh7e3v49NNPURQFfu7nfg6vvvoqPv/8cxRFgYODA/R6Pezu7qLf76u2biJbvCbdpUbuxz6iQk+Tvsyby3vLAC7mlOUzy8UA3R30ohnyudTHDj+TGQyo2BJ6ZhLZJr2N+vVV/X7Jz79ohoMaNWrUqPGTx7UBVpKw6qRRJzpSfa0yGeqqKD+TyfhlIJduTtYnKN2EuM4lgMfa2dlR5l5ZRvbo6AjdbhfAlUm13++r3Ko0/zMP67Nnz9DpdBS5pd+h9NflNcnrAaBSVzFHJU2shmEolTZNUwwGA0wmE5UdoAokwoaxWkVLJ7HsM3lvdOiLik0mVJp59QWDJMiSCN0GaPbWXQCY1B+AckXh/WAEPNU8qq403zNFFcmqbdsqMIq5g6nYynNzgcN+CYJAKbzNZlOVRZV5T5vNJg4ODlR+062tLezt7eHhw4dwHEeZ2F9//XX0+/3KxVuVCwifM91fFLgy5XNxQ59V3VfVMAw1jkm+pVtFURQrJFUeX28TUaWM8jOpUsusCl9kYaQvXCWqXAhq1KhRo8bdwY2yAUjTcdUPPtUgqd7pSkrVMSXR1VVXbsPPqvaTRKTq+DR7AqXS9uabb8L3ffR6Pcznc4RhiOPjY2RZhjAMEQQBWq0WBoOBIiaTyQRHR0cq/dTnn3+Ozz//HMPhEK+++qpyX+j1espcTNM/CQXVM8MwlLk4SRJFgsfjsVLIDg4O8Nlnn8F1XQyHQywWi8pqUFSYl8slDMN4yd9XJ57XKVnsd3kvqvpVBrxJ9VEea11ao58mZFoxqazK5P/Sz5iuHwz24z1zXVfdU5I8y7JUvlWCixoASrkFsPK/KMqAOAArqaPa7bbyk2W/OY6DBw8eYDAYYD6fYz6fK3cFtoHkVarIVSq3ThD17dg+Pkt0P6EPrdyXinAcx2o7mYKOCzr92ZfpsqqeWZkNQDf7r7POrFtUrfuN4nXo+932WK1Ro0aNGptxLVmVBIR/Uu2UJnnp7wdcTdBVpjp9wqTfq/Tj04N05CTEibNKeZXnIDl5+PAhHj9+DADodrv46KOPsFgs0Gg0YNs2wjDExcUF3nnnHTx8+BC9Xg+vvPIKTNPE+fm5Otfp6SkGgwFeffVVBEGAFy9eYD6f4/79+wCgqnJJRYpKpO/7GA6HODo6wnQ6RZZlGI1GeP/991Xt+e3tbcRxjOfPn6PVaq2UuJTXzj7iOUiGpTmTQV2SXEpiyu2opOkqcFX/ct915FdXv28L0kUDuArcYb8URaGUQGZ5kBH3jNbneGQ+VRJUBudJk3qr1VLjVpqu2U8MgpMFM9j3XLzwfti2jQcPHuBLX/oSXrx4oXypSfharRbeeustDIfDlzIv6BYQYPVZ1IkeyaMsfMFrIBGlekqlN8sydT3Ald8tx5XruqocrP4bwv4HXi5IwXtFhZaQY066CunWgpuOu3VK6zr1tUaNGjVq3B6uJatyUuBEpgfqSHMfP9dTS8nvJDhJkkjoJm194l3nhlAFmg8fPXqEv/t3/y4GgwFmsxlc18VyuVTmV2YAcBwH0+kUh4eHyPMcvu/j3r17aDabODk5gWGUvqX7+/t4/fXX8fHHH+Pp06e4uLiAYRgYDAaq4AGDSaSKVBQFfN9XaYaAkgQ9ffoUjx49woMHD+B5HnZ2djCdTpVP7Xw+r/Slk/dE73Oqu1Wmf0lI5WdyQaIr2DpRlfdPV971890GpEkduLoGWZmJY44KPMee53mq3+I4xng8hud5qroZALXQkP6dvN+WZaHVaqn3wGqxBRloqGeRkOSy1+vhrbfewmw2U1kCHMeB67p4/PgxHj16pDIOAOvTNVU9d3LMyD+6RUi3CS74ms3mSjAi+4i+56xKR1ebOI6V73ZV8KTeHvYD27yOeOoWnioFWf+M/btJYb0rY7dGjRo1aqziRqmr9B92SUwkGaqaXKiE6D5pckLiZAiUqorMucpjrDP1y//6BGaaZXWiX/u1X8Pjx4+V+sjApvl8jna7jaIoMBqN0O124fs+RqMROp0OZrMZptMptre3MZvNMJ/PsbOzgzfeeEP5OJ6dnQGAUqBoIqVLAa/Rtm1V2YgEwDTLcpnL5RLHx8fY399XaYuYHSCKIvi+r4LC9H6UyraeFaFqMtYn8Srzf1X/cjtJPPSFSdV5bguSBAJX4zAMQ1X6luSMCiEXTtyf3zFrBe+vNHGz1CnJp+/7yr9V7xfeI3kfmdO32+2iKIoVddX3fbzxxht4/vw5Li4u4LouGo0GHj58iNdffx29Xu+l41U9o/KP10jlmNfruq5KhSUJc7PZRL/fVxWwZHQ+ANVH7XZb+e7SakBUjYWq55ljSV9grSOUsn+rfiP0hbJ+rirUymqNGjVq3D1cS1YlUdG/kxOgfF+lqvK9dBmQ0b6cpBioIY8pTf56toAqM7XEcDjEa6+9tqKskKwCUAEvYRiqYJo0TXFxcYFGowHf97Gzs4P9/X08efIEeZ7ju9/9LprNpqrdLidppj8CsHItVO9YY51kqd/vYz6fKyLL6/E8D+12G2EYYmtrS5HVqslUV5nlf53EyH0kdOWP/zdN3JK0yWOSRN8mZJ9IVZXplZgmKssyRbi4Hd0n6KcMQCnv9EcdjUbKpM+sEXL/xWKhMgjoyqZ+Xwyj9Pvk4ka60WxtbeHrX/86vvOd7yAMQ+zs7ODx48fY2dlZSa0lnzu+p1uDVOClz6hu/peptthO5iY+OztTVgi6R1iWheFwiCRJVHAan2nZFrmoWWcZqVr86qo9oRPyL0ouq4iqbhmoUaNGjRp3B9eS1U0kR59Y5MQhJxq5je4H6fu+mqTn8/nG3KLS306PMq5qr+M4ePPNN5XfJpUrTty+76vUQzQB0+/u7OxMVSdiHs1+v6/yXF5cXCCOYzQaDbRaLRwcHKjyq0wmT/Mw2800XVThaNYdDodK+eMfy15OJhMMh0McHh6qYCqpfPHvR51odaKpR7JLyAWDvMfyfvH7204BpBNtKoPsQ+AqRyiDpVhmFIBSVOnTyr6lCdy2bcznczSbTQBQ/sW8DxxTPFZVX+mLA9/3YRiGOh9J7KNHj1Qw4MOHD7G1tbVCjuXzR9CfWarmPL8MhOT5paoq20Xln/1BAtzr9ZAkCSaTiSL0BM9DMi8rauljVH8vxw3bSkuLDLyqOta6Y25CFdmtCWuNGjVq3C1sJKvSvCzVm3UKnlRr5J/uh8Y/mlW73a46x3Q6XfGBpdpaZebTSas0ZTuOg9dffx1vv/22isCOogiffvopDg8P0Wq1lIrKiTjLMsxmMzXBzmYzXFxcqEj/Xq+Hs7MzHBwcKFJxcXGhSlO2Wi01oUvzvOd5sCxLRezLgBgeF7gK4qFq1W63lQK7vb2NJ0+evKQmMQWXVDPXqanyOx3SZ1jeU/04VUqqfk/uAnQiT//JJEnguq4aEzTDM1Ct0+lguVwqUsogrOl0uqJIcoHFQC5mlGCeXABq8UNXF0Iu7ORzwXNyYcPv6A5ApZYkk0q8fn84FmSxDV6rtEiQDOsppth/juOocdzpdFShhDzPcXFxofxReV6SU9/31XUwa4Du967/Nuj9IhVg+sLymvW0WPr+16mtulqr91+NGjVq1Lhb2EhWqfRwQpMVfPQKP7p5T2IdqeUELSOVpXqjq4U3Jau+7+PLX/4yfvEXfxG7u7tqkj4/P8eTJ08QRdEKWZHpl4qiUD54jMS/uLiA7/sq8IZ+pb7vK99EphXipMx68L7vq4meRQKKolDuAJK8LhYLmKapFFiSV8MwsLe3h/Pz85fKsEpCxklY9yOuIp1V/SqPe92kXaW8yj68bdLKBQ5JOMvlFsVVVLskRK7rKr9l3meWYmVuVkbB9/t9NBoNlYaMCjkJKV0AwjBU3+vjjKi6lzK9FhdrrVYLDx8+VD7Muimc7ijy3lPlj+NYudpkWabcXeinq/uX6iSW1zcYDHB+fo6zszOVV5gR//Tl5didTCaKGJOEV6m/UjXViSavQZJbLnJ5PXxO1u2/bkGlW3zkvbjtsVujRo0aNVaxkazu7++jKMrckEVRlqPkpEOfT9M0V8osyvQ3cpIBriYGpsThhMwE+nqwSpVbwSbCSqL69ttv45d/+ZdVOVUqPBcXF2qildHYVK8Y6c1o7v39/RWCSRI6mUxUFDYJvTTl0j2g2+2i1WoposNjZFmmMhHkeY7ZbIZut6v6g23odDpoNBrqfPv7+yoJO0EyIH1y17lJ6P123et1hFVXzvWJX6q8twXeV5r/Z7MZTNNUixAuBCTpabfbyqRNkpmmKRqNBnZ3d9HtdtWCodfrrUTi85y8FxwDzArB82xSo3kveSySSxJsx3GUDymAl3LcynvOMcDcsXzOeG1UjYuiUBYGjiHP81bKHJNoj0YjJEmilFOp6s9mM7WY5WKAvwXS2iAtNOx/Lhy5ra62ykWY9CPmubi/dBWoChgkavW0Ro0aNf58YSNZ3dvbW8kLSUXStm3ll0myOp/Pld+bXn5R+jDS7MrJjr6daZoqHztpNpVmT6ki6uZPEuXHjx/j61//OnZ2dlbMjEEQYDqdYjqdqoT9nKxl3k3TNNVkzaAaOZkyjVWSJIosUKWS7fY8T7kHcALlJEmVlWrsYrFAq9UCgJWJ3DAMpVhlWYatrS0cHR2phYJUnvT3+nfAqnKkE1SddG6CJOdS2eN+JBW3CS5QmNEhyzJsb28r1VKSKI5BKnYkZABUGdaiKNQCJoqilWwP0p/Tsiz4vq+O32g01PiWhQokdHWVY0UGHrJvZY5W/R5Kv1A55oqiWEkvlaYpwjB8iTxz7LM/qC6zH3jfqaYmSYLpdIo4juG6rqoCx5yx0h1Gtlc+l/yMRJ/k0zCMl1RXYDW1Fa+Rfu5SweY1VI3pKlVVb1+NGjVq1Lg72EhWDw4OVkoockJn9DsANWnR3EiFdD6frxABVrWhT5skwJwYOYFyspf+a3Ji0c32nGR6vR5+7ud+Dvfu3QNwlVuR6loQBCrqnpOwNJ/SB5FpfGSFHhkwRfNqq9VSyfwlCfd9X6XJcl1X+apKtweW6iyKQpF0SSBkSiEew7Zt7OzsqCAxkkLdFUISAekHyD+pmhFVKqn+X5/Mq0gvz3/bEz4D4AAof0f2Ne8B7xEApRCSYDE7RJZlKs8tFyXNZnOlP8MwhOM4K8RJuiE0m011r3ieKtOzbkUAVoMK2b9ViwU9+FBm26C6CkCNHdu2sb29rXxLgatCCnxWmaaKPqesqjaZTHB8fKxU506nozIg8DxsG6EvOGXb5RhjW/mssJKcrIwlCa48jiT1JK3sR/ns6m2Tx7jtcVujRo0aNV7GRrL65ptvKiVF9yvjRM+k6EEQKHVpuVyqKGFuKxP90weORICElYErnHikMgJcKZL65M1J5t69eypROidsti0MQ0ynU0VWHMdR1aYYjAIAOzs7aLfbODs7U2SS55UBIpxQ6ZdKVU6SGF4/zcU05QJXxICuFfQRZE16PeCFxINpkoIgWCGHhG6Cl5NwlStF1QS9ToUCXvbr09UynUzdFmiSZvs4Ftg/vO9Jkqj2yvROJGkk8MzN2mw21X3k9dLXmr6kHCsy2FAuQnQfYx1ygaYrikSVMsl7QD9OLoCkMrlYLBCGIZrNphrzJIaWZakFEy0mHHeNRgNxHGOxWKgiBYPBQKnXMpsAnwWSe+DlfL66FUCSc/aRvE4ei0FjOsmVkM+EXCByPMjfIu5fZYGoUaNGjRp3AxvJ6oMHD1YCqjhJ6An7mSZH1rv3PE9NCiRhnPw4GZKghmGoiB1wNbFx/yqCqquKlmXh4cOHK1HDNMvS7HlycqLaTsJJUsF2GYah/ExJPmiOpFJKdwGqT3wvU/TwnIvFQimupmkq94dmswnP8xCGoVJopXmUOS25CGA7HMdBr9dTZJVEWneLkJD3qsoMvW4fSSR0RapKVeU57gJIVoMgAHB17XJBwQIUYRgqEzQXZlyEyfEzGo2Q5zlarRZM8yrdE4leEARKYS+KMn2V53lIkkT5Y9M/WrcWEFUmfr6vImWy3/ls0s2Fbjv0m10ul1gulypdGgA1pmgNoB81zf50gaFZ33EcbG1tIQgCnJ+fq2wadJuQbge0YlznjqIvqKRPLp8r3jtaOWj5kLlhqxZQ7BPgasHHY+vn57637cJSo0aNGjVWsZGsdrtdNVFItUZPdcNJXSpRzBRARYsKJ02KnJyoOsrUPlVqJnBFOKSZk3++72Nra0uZEllhitHTVJh4LL4mYZHmQk6MNCM7jqNyajYaDfT7/Ur/RpJofhfHMSaTCdrtdtnZl/54zDbAFEpMbSV9DqW/ISdlft7pdHBycvJS/7CP5H99MpbbVZmddX9C3hu2m58zSIyEjfeTithtk9YgCFbURrZN+mny/smKaf1+X5EaumfQtM1FiRzjfC5Iihi8xdcyNRrHPoDKCleE7hogVUbeG0kA5cKN18PiFHxm+X2apmi1Wsp0H0URhsOhCqRiqilG8NMsbxiGcn+YTqdYLpfodDqwbVu518ggqioSLgnpuoUVr4e/ObxmfkYy67ruihsN+5z9W+VeofebPBcXD5sCs2rUqFGjxu1gI1ll/k/6dOpppTj5kbDQr60oihWTKCdyBmaROAJYqfAkJzFJRDmhyDRXUrXN8xztdhudTke1k/5z0pdOqj/6JC4JIq+ZarBMlUNfU2mqjKIInU5nxXxMhW25XKoJkyqd67pKAZZ9wD6UfyTMnLxJ8FmnXZo8JRkgqtRUaZqWn0lSy8pMnU4HnU4HzWZTZXAgKRmPxzg8PFSZDtad7zYgg24I+gGzL6X/MABFwHkv8zxXJGwymWA+n6t7wEUO95cmeHkOEl6q8vP5XI11ZpLQoSv9wNUzqC+2+BlN9CSpjMRn+/lssogFg6MAKJ9rHpMLRxZQ4HPDNrVaLaRpitlshvF4vHLvqVjqqq/8X6W0rnM9qSLoVI5ZzIHXJV0wqvKwVo1RaZHQXW9q1KhRo8bdwI3yrFIlrYrupRmVKiFVDsMwlKrKCZUmcLoAcJLlZCpVPamechKhsgXgpQAjEkgGcy2XSzXZz+dz9Pt9peLSvE41CbiaMBkkxs9pEnVdF8BVupxWq4U8z1UwmMypyevm9Uyn05U8rAziIpEnWWW/so9lnk0ZGMPUWoxSl/cEwEskdBNhlQSXxMD3fTx48AAPHz5UCjAD7agYkwh1u1189tlnuLi4WFG/bhu8liiK1GJDqswco7wPVX1BX2QejwSdfc7vaSqnGsuAK44F9htV6uVyqdqkR/ezHTI4iN/JgCJJ/IByzMxmM4xGo5WiBnRhYCopVuriM8DnQeZC5YJUvzYZlEbiSncfvtfbJy0FuuJa5UqiX5v8PdBBVZWFF2QQl8xvK88vF6e6i0KtqNaoUaPG3cRGskpySD82aeLlJMRJu9lsvpTPUfp7MohpMBgodVVWFeJ/ElcAK6Y9kjqSB0loAazUVZfVf3gd3Nd1XSwWC9UmmQmAhILVjOjLRyLQbrdXzPacyLmNDEIjoSPZBbAy2fM1AEWiJVnnaxYgIAFh39OMLEk7j6sTV/1zXishJ2nP8/D666/jtddew/b2NhqNhtqGx2Cu106no4h2UZTVx+7KxC/r3XORxUUIzfJRFCkSxzRlLKWa5zmCIFCLmmazuaLWUbGk/6q8NzwfrQskzDLgTlZ10t0B5OJCJ3B6cJb0ceYC4vz8XF0HCbVpmipRv7Q+0MWF2/CPBS/4jJMUcjHH/fXUUjrx1hV7fqdD7ieVTklSq87B88jgOD2wTVqCdAuK3q67stiqUaNGjRpXuBFZJaGThEf6eJEESgWE20k/NpmiimSByupyuVRR+ySgNIPLZP2y8o6c7EnWJIElaSQplmUgOQnTlAtAJTO3rLLUahiGGA6HKxkKGEQjj0HTPidHToqcyLkNJ3+SRVmKk9tzf2ZLkJkCpM8eCa7uAiCVYjlpVymvusplGAYePXqEt99+G4PBYCV7gVTR6fbB3JoPHz5ElmV49uyZIqy3TVbb7bbKpUuCxfslc3oCZWor5g2W95NEjwnvSdpms5lyxQCgVFhaDVi9ipH1vL/AlfkeuJ7QV6mOwNUCRC4U6GKi33+ZH5VqMtVW9stgMFjJq8qMB/Qxl+Z4ef4qBZ9trSKp+jVVEVT5Xi58qsiuTup5L3h++RtF6AqvrvbWqFGjRo27h41kdZ2vl24ulWoG1Q0SuipTGwkBlVP69pFUysmFBAG4Sr4vfVepkkynUxweHq5U7NEVFRY0kJMfE5pblrVSapOT9Xw+V9fDoC2SOCbsZ/AMTY9ysmU79NRf3I4pgqiiUsnmPvJeSAWPSrEefMZJWvrU6kRCqqTys16vh9deew27u7sqIE4SaAbSkIQx24JMls/FwW2TVZkajPefriq+7yuix3FENVVaA6i6Uu0nuSWxi6JoRQ2na0hRFCo/aLvdVvdVkjv2k1S4qyCfPTlu5b2mi8rOzg6KosB4PFamfPZDmqZq/MdxjOPjYxiGgYODAwDAbDZT95KLx6pgI6lmbiJ8sp039QWtIqRVyqfEpvc6KZXtv+3xWaNGjRo1bo7NM+UlJOHTSSJf66Y3mW6Gx+B/7iNdBmS2AX0SJOGTEfMypZZhGDg7O8PJyYkiqzIQJYoijMdjZcZne5keKk1TDIdD9Ho9RcyoXFLpZWoiVqSSvpA0qy6XS0UwpQsFFSxdaeVxaY4lOSIR4j7y2mV/My0ScJVsnWRelvfUJ3Bur6utDx8+xN7eHvI8X6lIRgJH4kezK30+6S7R6/UwGo0A3H6wCom8JPFsLwClMnLxQbO3VCzZn/1+H61WS42tVquF8XisSgwDUD7JPAfVbyr1UomU45v9Kf095TZSNZSfVV3vcDiE53mYz+f4/PPP0W63VSoumfHi5OQEs9kMDx48QJqmGI/HKoiK95xYd/4qpV5HFTHUj7dONZW/OfLzqvOv6xPZBv0YVWS1yjWgRo0aNWrcPq5VVqVJTfqmSRO0boqTkxFJlPSrlPvze+ZP1I/B73WfTD2vaBRFioiQqFLxjKIIR0dH+MpXvoJ+v68IovSHlaZLYLXSD/1h6fvKawiCAM1mU5lgZeAWfVtpzqeyR5JOsz4VVG5HIi6V2EajgcFggOVyCeCKCDIllySlUnnWCam8V1Lpoyq4s7MDy7IwnU4xmUxULlcuGJjlgKZ15vGkimgYhiLQt52rkup0HMdKkSfpBq6URsMwVvL/MqCMuUnZn77vIwgCjEajlyq1LRYLNBoNpVzSjYB+oywgIIOpqsb7deZonaxKQsexYts2tra28NFHH63kiZWp2rjIYn5ZwzCU2wQXHzyPTty4AOO1UXmv8luV7V6nZlaZ+jcRWPl7JK0866ArwXob131fo0aNGjXuDjaSVUY107wtCaJUg6QaSrO/VEG5HcmhrsiSuMqKQ9K3jG2QBJbbcLLlJEuzo0xuHoYhPvvsM+zv76s2cpIlaTg/P1cqGBVVprtiwBUAVflIRvxLn0QZwc+AsSiKVEAVSR9JpuwrTpyyrCRJAYOsJDnxPA/tdvulSVhGRVepRVKZ4ututwvf9zGdTrFYLLBcLrFYLFQBA7YRgPLPZVAcUBJ3phKShP62wOC3TqejIv7pP0pVWgbusUADK4pJP2wAarx0u100m034vo/JZILlcqkKOhhGWelJ5mMFoBZR7D9mCJDR7ptM6lXfyUUWF4JxHGM8HiuCfnFxgd3dXeWyIck6+4TuHScnJ7h///5LBFBvC4l7r9dT20nVlvvItul+5D8KIVxHdNe5H1y3bZW1QRLXGjVq1Khxd7CRrI5GIziOs1LRSfqg6eRVKj2cwHSzPz9nWh9gNeqXxFCPlJZ5JmnapILJ7+n/mWWZ8icNggCNRgOmaeL4+BhxHMPzPJXYn21NkgTn5+cq8T8AlaOVKhxJBwmlaZoIgkCRNvpzkjzz+hjoQzcH7iPbzv6UEcu6P6PsT8O4ygggP9eJj3QdqFLJuE2z2VR5RqXiLFVYkhvTNNFoNJRyDUAFXjHa/rbdAOQ4lKq8nhWB1aZo4mdlpzAMVfARXQq4LyP9W60WRqORcneh4kqXAJkFQKY+k4uUTaZ9YD1Jk2oq+5ruKWdnZyrQbTgcKkWXftdpmiqXGI59kk8AK4udKnLJY3EBJhdzevS+/ifJsK6eblJWq1Rb6d7BfqhanK1Tb+VxruvzGjVq1Khxe7iWrJqmqcjW1taWmqyL4ioCmeZGRteTkNLvU5JVJi1n4IkksFmWYTqdKiJIFWhra0ulDoqiCK1WSx2Hx2ZgFkkTUwrR75CTcVEUuHfvnqrWMx6PVU5WlqZkknGSVpqCZeos+qlK5U2qkaz+Q8KkV8qSk7Y040uirgep6SpVo9FQCexJ5qVPqQw0k8FdJKgyJZk05fNzKosyIpwEnsqkdGcAoNRLktjbgp7KSLaP5K0oCqV0M/Uac5JyfNKFgBkZSIKprjYaDSz+/+2dW28kyVb9V5Vd16yb7XZ3T8+lOc3MQUeMQEICgXjhDT4UH4qPgeABENJBGgY4c+mL3S7X/V6u+j+YX9TK6LS7D3849kNsybJdlZUZERlZsWLttfeezQL7zbV9/JifaFlhI71dRcz3fUBVym/yuM+45h0Q8qwCLl3WMxwOP5AkMA9imYL/eOaE2Bvy25iDUM9sEY9JfCz/x+78+P2i6/mz5wA3WbJkyZI9TrsXrPb7fe33ew0GA93c3OjFixc5NyqlJZ11Wq/XWiwWGg6H6vV62u/3ms1m4Zyj0Ujb7VZPnz7NgV9Y0Xfv3oUk/CyIm81GvV5PkgIoHY/HOU3qfD7XdDrNpcoCJHC+yWSifr+fA2i4+QluokRqr9fLuXRhm4gAh23zCkWeh5NIethflww4u+d/O/DzBRfZgDNY2+1WL1680GeffRaYXAe2VChiTDxgS1IIwNrtdkGLy5gA2jgPYwoT7TlyHaw4C/7QAMBZUFhq9KPIWtj8eE7S5XKp+XweSov6hgTNJ2wsY8bfXuVMOmxgpAN77m58QLNrh2OQWsT6AbKdhXdZwHQ61dXVlU5PT8P85N6xCaI//DAH0LTGFeX8OvE8LWJJiyz2ANxnd4H4+HWXFRVd3wHpXeMaA9hkyZIlS/a47F6w+sMPP4Qv+tlsptevXyvLslB6k/yUkkJC9f3+1vX+448/6vT0VPv9XtfX12ExoOrS1dWVXr58qePj45AearFY6Keffgpud8DDZDLRyclJCPxot9t6//59yIM6mUw0Go1C8AsLKgCiVCopyzL95je/CVpRQBbtdt0oCc/3+32uipGnw2JRn0wmAbwD1He7QxJ5cqU6++wR4H5NZ0gJ/vGKXM6ibbdbffnll/rDP/zDAJ4512q10mq1CmB1Npvp+vpa4/E4l4VAug1Co/8s1oBjgJozZnFuT9oO6KFfH0vJ9H9tyC4AddvtNswFfjzvKJkeOIb7xXjyN5sUdK5IKLh3gHnpFgyyaWk2m7mARGe4eS22+1zlsJps6Fz28NNPP+n9+/d68uSJqtVqDgyj04b9ph/O6nO++LruCUAv7bKRuI30oQhk3sWa3vVafA7+Zh47q+qfi9neog0B/U5ANVmyZMkep92LKL7//vsAQG5ubvTu3TtVq1WdnJxIul0I5vN5Lk8pTAappFiw3e2639/mgiTwaDqdBuZwPp+H4CFcrBcXF0EjSLnI6+trLRYL9Xq9UFCgXq8HsMq1ALiwRc+ePdPR0ZEuLi4CcEWv6a506qIDKB3ouAuUIgE3NzcaDAYajUYql8s6Pz8P10djC+ProI6FEuMaHs0+nU5D7kyyBux2O33xxRf65S9/mXN3wyY7G7tcLjUcDgNYRVuJ7IL7gN4X4IymFtlBzASyuCPXAETQ54c02uLFGijK4PcXEAlbvNls1Ol0JCnonn1OoT+ltLBrVEulkhaLhfr9vgaDQZgb3W5XnU5H7XZbrVZL7XY7zFVY3bvc/jEbyfxh/sH0O9C8vLzMseVeXctZfApVECBWlD4rZiCdzd3v92GOoMPmc0Vz2pnL2O1/FzNaNCYOLDlHfC4HtncB5qKxTpYsWbJkj8/uBatU9ZEOi0G1Ws0FQUmHxWgwGAT2iYVcOkRS+yKyXq/1ww8/qFaraT6f585JZDMVrSSFOuWADgAZzCbHkGjdNZq8R2qmly9fqtfr6c2bN5pOpyHaPZYkLJfLHKNISiJS/gCuCZqi0lGj0chpc+kX4yDpA6DqCyptAVgCBNzlXiqV1O121e12cwsx+lgqLAFsut1uboxJSj+ZTHRxcaF+vx9YwFKpFICdM7GuhQUweNond3U/NFiFNQWwMa+c5XYGHo2ygxvy5nJPYt0wHgbmHZ6B//qv/wpSlfF4rEqloi+//FJffPGFzs7OdHNzo7Ozs7DRI/jqLrDkwIx7EmeaoI8A8FKplGODXQKAJny73SrLsiCB8dRase4TMEsbeL54TmD2CUwrYjBjgOngNQ7Iu8tNH583/lyss+VcMXi9a4yTJUuWLNnjs4/6auNACyLG0Tq6W3y1WgXg4iAMsBMvTrPZLKfF5FgWQ4CSa+WQEngE9MnJSWDGfFH1cprr9VrtdjuAiPV6HaQFgA/XftLnd+/ehUAmIvwpV0k5Sq5N25ERcDz9YcykQyUvd5d7lDjXmM1muWT8fK7RaORSMsGUxQngkTfEKZVw3XY6HW02G11dXQWA7ZWOXBtJ+wBJfr8cHEkK7ORDG2CdzAncH/SZMNVsIpxlrFarwc3N/WVcAXgUi9hut3r37p1++uknzWYz/fDDD1oul2o2m6HgRL/f13a7VafT0Xw+135/m0OXtrnF7J+DRC8wgbyB+yJJz58/1/v379VutwPIlm5L0LJhYuOFV8AlLjFgLXKlM47MD1hVJAXMj7gv/pz7ueK+x2yoeyJok7O1MaDlMzzLPr58tog59n4nS5YsWbLHYR8tChC771gw+Rv2NHa/YSyg7or0Bcfzlfq1uIYvQK6l4zhSTRFI4qxhkbYNl+5kMgmsZJZlIWDLA6m2221Ijr9cLnPavljXyXVguWAaAUu8x98AVfrteUwZt+VyGbS4nuCdcZlMJnr//r2Ojo6CFMKDuugzbJqknLbVsxCwGaBtXB8w7ffDg28AEQAoANjZ2dm9E+93YQB3gCm5VH3caTv3ltRjjIFXH+MzuNir1arG47EWi4Xevn2rn3/+Wf1+X9999512u52ePn2q58+fq9VqqdvtBrDr+YYdcBYB1iJ9pY+13zsYb1hb5CvuzWCOe5UuSTlWNQatvOa/YxkLzyZj6c8kxxcB8Piccd/9/7gNzOEYoBZZEaN6lxwgWbJkyZI9LrsXrMJIuKuNBRcgJOUDFFg8WXwBWc66eX5V167B9MDkADIAvDHDI90yeLBMaDNx6QJUuM7R0ZEmk4m2263G43Fww5JLdrFY6OTkRK9fv9ZoNNJ+v88FozgAhi32FFUshp7/NM7xycLu5wE8OPggSCpmVkkxVS6X9d1334W0SVSdkhTc2oBlZ9dgTUnuvt1uQyJ5XMaScq5++kWfHGTEye1hhpvN5m89Gf83jUwN6/U6x6p66jEfo8ViEdJxSQrsMX10BhydJ3rgy8tL/frXv9ZwONQPP/ygSqWi3//939ezZ8/UbDZVq9U0Ho91fn4u6ZA+S/owqt0B410Ajx9JQdaAfppCHlSkqtfrufYzB8l4wOueZo7rx4ykpA/ayFxiPruOvdFoBFmA9zX++y4rksjwv7czlhr495FvyopkBPH5kiVLlizZ47OPMqvSYdGI84GyWAG6ihYUj3CPFxnc4gCgs7Mz9Xq9oMPrdruqVCqhOhIsJqmg0IcSJOQspkd1A6hms1kIhCLCngUbxuny8lLX19cBqBJA4uMAM4YL1wsCEGjmgMIjlp3ZkhQizd2NTlooQDo5QKVDidX1eq3//M//1PX1tY6OjkKKKjYGzogCLtg4oE+EfZ1MJjl9Lm0HvLjL1NlAB6++oaGfD2m47XGFYw7CGCM0o7CuXnEq1qyWSrfBb8zJ+Xyun3/+WcPhUH//93+v/X6vP/3TP9Xv/d7vqdPp5Jh9TwuVZVmQIdxV8csBFJsBZ/D9mdrv94GJJ3iMAESKedCO2WymUqkUSsQyBkWuca4Rb1rZfMGoEjDGMwqryvldZhB7YYpYUQfEnt7tLsAZj1M8fncd/6mvJUuWLFmyh7N7wSqLEYs1C4dUXKfb9a0sbkVaMU/h5KCo2WyGikG73U7tdluSQiYAzsniixscVy3twSUKMJAUXOWTyUSbzUbtdjvob6fTacjBuVgsVKlUdH5+nks9RJ/pQ7VaVa/XU7lc1nw+D9WA0IUCkn2cPCG7ByAxFl5YwRlZrsd7tIWALs5NP93izYGkD8CnM09x2iLuj4MFxpp+el5bGE1Y3ocyovSr1ao2m02Qi3jOX4pdSFKWZYWykcViEdhVNgOSQmDdeDzW5eWl/vmf/1k///yzKpWK/vVf/1Wff/55yCPM/UfDClAsKklcZDG483vBmDM3BoOB5vN5LsDMmdXJZBKeLdoSnzMGzj5vigArcwJvCqw8mlaeXcbyLjDpYxWD2hgwO4h13XRsvFbklYlBbzwWyZIlS5bscdi9YJXIdwcmgDBfPDw9jkcMS/lk6LwO6wnwarfbwYUJIzObzQI7BlvqCeuPj4+DjrRarQZdJws14ANdKm7d+XweouABKq4fBdjQJsqiuvwB93+lUglJ5dGE0l93G/si7NpEFltc8x44Q1AUOkvGz9uBXCBmu2MGm2v5+4Bu3nNg7yweDCobCDI1cBwss+smJen6+vp/OCX/d4y+kRMVRhom2ytw+T3F9c/8cg0ysgnGZDqd6s2bN/rNb36jzWajP/mTP9FoNNKPP/6of/iHf1CWZXrx4kUu/ZsDRS+D6mC1iDl09z/thuH24L7VaqXpdBo2TZICYOdZyrJMrVYrxxy7tpU2OAAses/HmWv7881YTafTIEfwuSOpEKR/jO2M2d/fVqda9HwkKUCyZMmSPV77qAzAv/BdPwqTF07032CHBZ6F2QM4WBylQ4AGgSqnp6dBd4dbnzyV7p4mqAl3LS58FkVc5KSkQj87n88DkAXkkdXA2WJ0ju7+Rt8pKeQfpY+wVyy+sEgxw8lnY5YMVzCBYa5NZYzYNHA9B/7OdDkopj/OXMfBLg6iHEjznrOstJEsBUTR4/blbxi2hy63Ssldl4B47ljGn8AqmE/uAVWqAKqAdYDubDZTv9/XxcWFfv75Z/3N3/yN/vqv/1q//vWv9bd/+7f693//d/V6vZCYH6vVajo5OVGr1co9V7TpLqDmQNUDv96+fauLiws9f/48gGg2X2xouFewzZ1OJxzn3gAs9ogUMaFSfkNA2zinB7Hd3Nzk8jEzxlwjBpQxsxof+zFQWQSy/Rp3AdUiYJ4sWbJkyR7e7gWrLEKwfg7AiphDmBReczc/7mpn7QiKurm50ZdffhkWYjSp6DEBDIBNJAPdbldXV1eBLYXNcXc5+tdaraazs7OQDsoXfz5HBgBSHWVZlmNdAXMuNQDEHh8fq9Pp5Bgzzk2b4yh6GD2OgVElmpqIboBsLLfwlGB+H4rAKqBBOoBmN1zcbCgAFIAcWGiPjOee83mvwvXQBticTqeSbgPxAEouRfENh/fR7xFjVy6XlWVZ0DuPRiNdXFxovV7r8vJSf/d3f6eTkxOVSrc5h//pn/5Jv/rVr/Ty5UtJhznS7XYDgPXNBubuaAfMHEtVt/l8rn/8x3/MBYKVSrcZMuIAKnTKLkmhcly9Xg9z0UFqEQPpAJL55AFWMLxxrlWfR0gq4j7HulSf13cB2lij6hvsIsb1Y6ytj3+yZMmSJXsc9sk1MYu0bQAhQCbvA2akg64NDR3HwvosFgttNhv1+/2QLxUWazwe51hGZwB7vV54zasASQrgFfB5fHysVqulFy9eaLfb6e3bt4FhdVd3zC656z4O0gFUEjRDtSPX8XGeuxY/Dz7z4DFyfbLge/5Yxobffm7fHPg9AuTEATl+b9GaxmmovAiASzx4zcE+LF5RGqbfteHS3+126vV6Iceo622lw4bMAwSZr2xG6LfPWYpADIdDHR8f61/+5V/0+vXrnPeh3+/r+++/1+effx7u2dnZWSjP+jF20f8GEAIGh8OhptOpWq2WfvGLX6jX6+US8pO9wucvgWEEA1LY4K57FgfNxe85+17E8Mc/0mFTFOu53e5imP09B7LuMSgau6I+FAHUIvlFsmTJkiV7eLsXrLLYw7o4gHMwBijyWvGSgqs+LgrgwFa6XcAAkCyyaCMBD4AhQCnVhnDL1mq1XHaAq6srSQdgSTqn58+fB5kBBrBlQWfxo0xsvV4PKaNoNywUla0ABTBmri0FCADsAA8xq0pKJEDFer3WbDbLRYy7VIBxjxnr+MeBmd87X9yRRsSyC84Bsx4zaBwD8+gygoc05hhjR3L/OBuDR+hLCrpW2NaYrSa/7vX1dZhHjUZDrVZL19fX6vf7oQ273U79fj+47J8/f66nT5+GwhNF4Cr+P2ZXK5VKmOu73U6/+tWv9OLFC5XL5VAxazQaqVKp6OrqKpcdAxnHdDrVbDYLjCqZIZwF9Y2Qzzcpn7TfXf+8j8Qg7o9vbP0Z8n7GngEP7nPjON8w3Xecy2CKzPuYmNVkyZIle1x2L1h1l2kcEQ7oQpsIIOV9jMXPA63cVczCtl6vw0KPaxk9KmAONg/3ppcgzbJMx8fHmk6ngXlCqwegbTabarVa+vzzz/X27dsASJyFQmrAgorW0dkp+gWAJ2WVp4sCvHvddwcdjCngHvaXoC0CwuhvuVwOelrPW+uMZwwwaKe7bnmtSArg4NOBagyOi5gvT+3k6bIeynxsSeXEWFEmNQY53BdAHHOT/gAQV6tVKE+7Wq3UarXUbrf1i1/8QpPJJLcRIuCJYKtut3snAIsBl28q+Mxud5sN46uvvpIk9Xo9NRqNEEhGH6i+NZ1OQ65ZJDDz+Tx3j1xnWnRvi5hPvhfQoTrQi136/I7ZfOnD/LJ3XTO+fnzOIja0iOH1c9/H3iZLlixZssdjHy0K4NpEFidnKwAFXvKR11jEHMTx2Tg6XTowmQ700Gs6CAIYcRysqzNCpKUql8saDAY6OTkJ9e673a6yLAug9PXr17ncoURKA2a3260mk0kuPybAlvyuLLj00QEp5ouys8qlUikEAwFIAYVeO951w85kx679+Drx+zFwiHXGfl8cePNZzAE3mxJ3yz6kee5S3yCwuWBM2GzV6/Wg60TW4CVDmdc3NzehqhhVz87Pz9Xr9fTs2TNNp1N9//33urm5CSByOp3qm2++0cuXL3M5T7G7XM8xqAJIHx8fh2wXzpqjP+10OqEgwNu3bzUajYJ8od/va7VaBfc/zH6ctYPr3geqPcsCWu94U1Pkpud+xNcqsqJ5G5+v6DoxUxuD2iJQ7mA7WbJkyZI9HrsXrGZZFphG6VD1Z7FYBNAqKQBSz8nq0gE+CyiKk6B7FR7pltEltZAziCQuJ3iGzxKwwTVoC+0h3RWphwCmtPurr77S27dvdX19/YF7G3fxYrEIuVhxcTpbB7CmzZ7yiP77a86GAhxwMTvjxfU8+AuATvuLFllnTu8CAh4R7mDO2+vMVwyGHXDEgS4PrVmVFMYIZh1W2kEOc9HLlUqHogLMNcZ9s9no8vIy6D5JL0bxgb/8y79Uq9XSu3fvwtg9efJE3377rU5OTnJBcm5F8gza6CCPNvumhTnnKeUIUhyPx3rz5o2ePXsWnq9arRY8EcxdzlXkji8ywGqWZcG7wfixwYlB632MZgwe47lWxJByfu6Nn9/nI+Zt8Wt4+xKrmixZsmSPzz7KrBIIAUBzDatXMeI3X/a4zQEMDiJhamFEHdzC3hLkUuRa5Dzz+Twc3+/3P1hgHSwOBgPt9/uQCN3TYnW7Xb169UrPnj3Tu3fv9O7du5wEwllGksGz0Dsod0DqrKNbrOukShYR+NItgwY4BZQQdAUgXywWucIBjIuPF21ycE0bfMH2LAF8LgYtfo0weUzf64v9Y2CmlstlSMIPqwigA7witcCVzaaG+8umBpCH+388Huv09FR//Md/rOVyqaurq7CpefLkif7qr/5Kg8FA79+/1x/8wR/oz//8z/Xy5ctcNbSicboPLMVj68FuvM/rHHt8fKx2u63Ly0sNBoPweqPRCOOAHMI9ApwvngMxoD4+Ps6V/wXA+0bHz+X9jl/jvK7B9nlXBFTj3y6Ducvtf985kiVLlizZ47R7wSqR+bAorr8E4MD+ObBjQQJseionFjfclrCquP1jVs5diyxeuOMpG4mrfjwe53KDcvxms9FsNssF0hC8JR3cq1mW6dWrV3r69GkoW7larYKrnza4ftVBA2MAy8Oi7WwzffFcsV4FypPv++fcPc952Cx4ZSyM4zzfrYMEX7gdEMTgIAYWHsXuzCuffQxAVTq4xQlu2u12oYCEM5Cw9dxjQKqnPttsNiGx/mg0Ur1e1xdffKGvv/465PCdTCbq9/uaTqe6ubnR119/rT/7sz/TN998o6+//jqXz1W6W5NZBGCl4kIBbv6+exXq9bra7XYA5e12W41GI/QdAB/PnThALr62s7zIawCMgPuYlXcg7PIFjuXadwHKInaV8xWxtvEmzb0GReOXLFmyZMkep300dRULA8AsZlAdwLFI4nLFvVwqlQK4dMbKg5XQbmKx1pPfpVIp6AMlhSAXXNqUR3WwB3BEY5hlWQDTnhgfQINbnvrvFBvwBdzHgbFwsObaWXf97/e3OknPe4k20oEilcNIj0WgDFpK2GnPgQtoLWLhiphU/vfobZct+DG87/2lbxz/seT2v0tDPrFerwNTj/43jkCH0WYTwlgznwluGw6Hms1mqtVqevLkiXq9XnCpZ1mmk5OTUDSh0Wjo9PRUX331Va4AANf9n1j83MUZICR9kEWDDVH8fFFRCp25Pyucn2v6fCp6HcYYPTB/S/n55Bud+NmJ+8Rn/bUiLW2ssY6P9T7HrK2fJ0kAkiVLluzx2r1gNWbg+B+XqTOqLFQAT48OlxRchiymDuakg3vco5T9HLi0T09P9c0336hSqajb7Qb2qNvtajabaTgchjZKBxAFQAbcEuiy2+1yGQAIruJzMGLOAPsCGjOrRcwZx8PyOluKRhXwCjCq1Wp6/vy5ms2mJOn9+/d6//59KP06GAxysgrpwCQBOpzVpR0wht4PgC73uSh1kYN+frivMQv2GAKs0JrWarXALqIvlQ6R/5KCXtgzU3AvSSO2WCw0GAw0HA711VdfqdfrhXFotVrqdrsB3G42m5DOiqIRPjfcPhUkxUD1Lhe3F23w++dyHZ4HKrH5+WH13UsQM+b8TV9hV71ylQdJwrQWZRXxAL27pA1YUTCWM7ocw/+xV8DPEwd4uucmWbJkyZI9LvuoZlU6lIP0L3gWahY1z2HJYtdsNgMI5HzO6sH2+ELpUgLpsGDBen377bdqtVrBTY9Uodfr6fr6OuTVdBBH+2EkcfkSrb1arUIkPuyqJ0lHdkB1LQ8iKQokcZc4C7cno6dPgCL0gxzbarV0enqqRqORK28KUO10OkE7yz1y0B9rTuPF3K8Vu1a9T0WuVgcTdx3rjNVDWbPZDPcXhjF2R3s7mXdIAZBY8Bo5b5vNpp4/fx4+D7sNsC2Xy+p2u2GMXT6D+XU/BagWgVTMQSxA1WUjlBku0lIjDfDgQJ9T3ie/Xjy3GD/PB8xGTzp8jyA34PvBi4cUsbbe53iu+lyMv0NiZjX2eBSB1N/mfiRLlixZst+tfVQG4IuJL4RS3rUHCCI4BdciCwVgTcovvp5En/MBNAmCkaSzszP98pe/1IsXL8ICTL5IFlOKAwAmAdDValX1ej2AQykPYF2jOJ/P1Wg01G63Azhcr9cBeHukP+0E0NAWfrNoet9hpRlTj+zGZZ1lWXDTHh0dBTe1pACikFVI+oAN8gXZ2+n3LM4sgDlgcDDAsbEbOmbxYnD8UAZgJM8p6ZXYiMTAnHFwcIvkAga8XC7r6dOnyrIsjCGFLCgcgS4WHTTMamzxRuCu9zAHX84COttIND4SF6QLFC7gPjljGoM9ALiUD6bjGj7XmLf85jkjvRbtKJcPxQy8rwS9uffE06jFc83HQcrnM/ZxjBn+eOPrXhHfwLgHJFmyZMmSPR77pHKrgD/ch+769wXNWT4WEnRxuKwBep4bFWDqbnbpdpFpt9v65ptv9Pnnn6tarWo6nWo6nQaXI2ChXC4HgAc7RtlV6RBE5S5R2kWblsulptNpKKXZ7XaDixjwUuR+BRhzPndDAtoZB0lBBoF+0oEuBQAckDDGVNqCZXaQ6AAZcAmwpb2xfs/b6XpFZ6n4nzGN35M+1Lk+BmaVlEpomEneT7Um32jQH7wARMiTWB8JAAw+2mg2OrCIjUZDn332mY6Pj9VoNMJGzOfKXeMSM9Pxe0Vu7Rioegnh9Xqt+Xyu6XQaGFKXhjgr7LmRfRNz37WlQ/UvjqtUKmo2m6FsMhkryAvr40EbXXLDpsGfMU+DVTRGvEc2Bt+EcI4imY57cvjfAWuyZMmSJXs8di9Y9Uh1AjWozuOaUGfxeK1erwe3u6ScJhJ3JIujLyQO4rIs0x/90R+p3W5rv9+HMpEsdNIt+/Pu3btcRDNMTqvVCoUBbm5uAlgFFJfLt/koF4uFKpWKJpOJpNuFazKZaDKZ5HSOkgLDxnHuJva+ouVz6QCAiMXf2blS6TYfZ7vdDoyqB6Tg0iXfa5wPVsqzbgSPASbiIC9nkJwt51zOxnJu3nfAg/nnYwbuIQxWdbVahU0LOYJh+NwjwBxhHlUqlQC4hsNhYFWbzWaO7QYoOdjn2WD873Pdu8WMoDOnzn76edjwMYeoKrfZbDQej4OEhOAyNpxsgrgGz3XRvIqBnrfH3/fNFkCT545iGswNNpsxWGRz6Obg019jQ+aufpcy+HPqgDUGxLGsIUkBkiVLluxx2UcDrFhMpEO6p/vclp6g2/N+wpDAUAIAcX3zNwFFX331lV69eqVSqaTXr1+H9DiwnNVqVePxOLRzOBwG9zoAksAPZ4HddQhYhFUFeKC7W6/XgZnj887GsCgCDlg0CZJydysShPV6HQCRj2en01G32w3gOM6+AAMGWAd4OHD0dGKetsc3AjHDLSmMm6fNisGR55uN50WcXcDb8lAGgGPcPW2Vg02A63a7DfMwlm/c3Nyo2Wyq1+uF9x2gub7VNypFgD0Gm0WMoTOnsJ++yXC3Oe5+wB7zcbVa6fr6WtvtNswpMkvgandXOOd1z0nsivc+F30HMB8l5SQVeCg8gGo+n4egQkm5tvM/Y+TsqM9blw45uObzsTTF761vyuK5nSxZsmTJHpfdC1b5QmdxwG3nIMrZOgdlpVJJjUZDs9ksuMJ9QeXzDuak2wWaij+VSkUXFxfBNY8MoFKp6OTkRIvFIgC4yWQSXKGwNr1eT8PhMLQdd6d0WAQBaoBIgCOsmi/ak8lE0+k0LHaAQvrAbwA37wGaPPhrs9kEVijLMvV6vRDswrlhvwDngF0H24wlAMzZI+4hi70DHiqQcS2/rgMAv8+Yn991hs5WPbQrFSB3dHQUNgGtVitXLlf6MEWa5yj1sSWTBeMGyCKoqdPphI2R9CEz7cY9KXo/lmp4WwGTGMDYi3Ps9/tQEIGKXWhIHZgCLjnPzc1N8Bp4kKN7ARzMxYykj+fx8XGOYSV1F/OXNsc5lmHC/XsiZu9d/hKzoXexot4Pvzd8d/GeA9pkyZIlS/Z47F6wenR0FKLt/QveAZqDvzjKnIUgBolSfuEBIMHqdLvd4MIEkM7nc1WrVc3n8wAc0A6yMMfZBVarlbIs02KxyDG4MeOy3+8Dm4k7tNVqaTKZBFDiOlxAHYtgu93OsZkwbF79yLW6znJSqtNr0rt+lfM5UEAj6ZsEQAY/0gGgM970392g8X3xzA++GcHiv1164NpDD9p6KCuVSgGokR3AwYmUnwMeRc97y+VStVpN3W43aFmdoa/Vamq1WkGjytwoYk0/pb1cN5YCOEiUDsDV2VE8Dzwv0m1WBGQ13Bv3eNBeL0PsGxmfJzFo9R/vJ/OzVqvlsiEwP5Ai4C2hrw5U8SR4f73/tMnvoY+dbx7pm2+guI5bAqvJkiVL9jjto6mrWBTd9Rb/xn3OIrNYLNRsNgOAwyUfB125u5mF8OnTpzo5OdH79+91fX2tcrmsxWKh6XSqLMu0Xq+VZVkAs8vlMugzsywLKamk22jjVqsV3vdgIvrkTA0uV67RarUCm4vrHfaJRd/TWrHYeuCWlC+xChgCqDoLCbh1YAE4cAbNNwwY7ZMO7mVAAjIC30hwTY+k9r99saftHO9AyllZ1xwS8PJQVq1W1Wq1wjjBTNNGB2vOlDpDCEO/2+3CnPaAQTI38Lez80VMnwOtGBDFn/GAudh1LSl4EADZHAOLP5/Ptd/vg8bWZQ7MBV5nc8EzHevQPQewzwdnfeN2Hx8ff6DljeUlvqGlsAdz1eeuZwhwyQLm0gja4uPlGlpngb3dfq4kBUiWLFmyx2X3glVYOdc4kpvRFwgHNrj0nBFCKygdtG1+fo+gX61WevPmjdbrtZbLZXCjA9ao304pVC/tCFvjQRcAyG63q8ViERYnXPKAEhZqFk1AtXQbWb7f70Mg1s3NTWCOAKzucvXk6J5rloWSxZ5r0bfRaKRqtapOp6NqtRqAPuPJYs94oUckwAvGWTowcs6S+Tg7AEB+4HIBSeGzXJP3YModrLr2z5nbhzLmnLPttJlx8ApOHthHIN58PtdoNNJyudSTJ09yJVPJK4qVSqWQEeB/AnZchxq7qJ1F9XywHijIRgdWlcIEtJE54n1gTDabTdBmO5AFNMYyFx8DZ9UZB+kgB3DA7Rsi9wYw/l621RlRjgfk+rPEa4yFlA9UK9o4+OYbi2UPyZIlS5bs8dgn5VnlS9zZCl9UWSxYAHC9UrKSRYpFyYNXfMEpl8saDoeBoaIuu4Pb4+NjTSaTD3SRpCdCk8j50cICvFjouIaDTV8YnWVtNBo59lY6AGxfYEulUgCzgBfGxoGgu1MZR/rp+kJf8GGDY80eACWOGqfPHE9WApdccL8AJe7idpeou0ydlWasHNy4TOIhzTdS9MUBGu5oBygeJOdzFa0r9zRmObkemxIHhG4OmFw+4c8Y5ixhzAi6+5/7u91uQ5EMB6sODqXDvOW8zAfGAEY0DvCLJSEeTOXmx8b9d6mJzxt02Mg1XL4SA2sHsD5PfQyZn/6d5aDa71087g+9yUqWLFmyZB/aJ5VbZVHcbrc5pkY6JA53UOYLmrv/WZA4ty+20iFYZ7PZaDKZBOaLNsBsoiN0Rgn3rrvbOSeg0ZlHgKWzQ6Q18lKd5Mzs9/sB2PI+7CsL+2w2y70m3UoRuB5glfddS8e11+u1JpOJTk5OVCqVAljudDoBwMOGsjA7+0VfALYwTri+eR39JvfUASlj7pIJD9Di3gIWfEPhxzykwXQzRowPYIx5AMhmA+MAdrfbqdFoqNlsarvdBsDqsgfOvVqtgkzAXeUO9ovGJQZL0mED4Js613ezsfK8t7j/V6tV6AeaUTaKLoVx9zuZMACFnjUhZlNjzSoWB/T5e0WglbnFPTk6OlKr1QpFHObzefg+YQMVM7h3bRqY8/GG1uUDHqwWSxmKQHiyZMmSJXs4+6hmFZYCLZ6749wtyd++SAOSSFPlwMDTBEnKBTdRbYhFxwNfWIx2u52azWYAUa1WKwfWAIswXXyGRbVarQamEbc2VaEajUZOhwhgODk50Xg8DmCTBZQqRVzfNae0IV4IPX8tQJxzos+lz5VKRZ1OR51OR5PJJAAN3iPpOjllHViyOCOPcFbOXc8AGgcn3EOXSex2u5A+LHarurzgoRd8TzvFb+aMM3zMATI/kEuYYwj04T1n6vgh6K9ICxm7yaUPA6liYBezgHExBt/0SYdiEWwYeb5g6WMPhPcDj4SkUIHLA/WcIXWQ6ptSZ4djsEo/3CXv/WT+M/e9eAEZQEgDx/dR7AHw555xdc0vIN/ne/x8eNse2iuQLFmyZMny9kkyANgc2IpYQ4kbkvd8AWDxkW4jk31B5VjYTw/IAihxDQdErgn1gBnayCLrqYacRXTXuUff7/f7XOUhPj8YDMJCfnZ2Jkkh2MrZ3HK5HDSkLIyk8gJYcm76TJ+kW7BA9oOnT5+qVCppPB5rt9spyzJ9++236vf7uUwEBHyVy+Uwhs6WApTZDBDsxqLN+HoVI8ZIUpBDSPk0WMvlMswRxrFIN/hQxuYEAMV9aLVaOVBKarWYmfbXjo6OwsbIGWcHk55izBlXB0H89g2dv87f/lxwfdeuOrhbr9caj8ch7RPlYX2z4N4DniUYVdKdsXlzGYpLUDzgyb0h8QYWcwDr3wtFLnfXw/IclUolTSYTrddrzWaz3ObPWX3O40Ce11zWEzPY3mbfMDjoTZYsWbJkj8M+qSgAABJQxELoi4GUTxyO+fEwOPEi4VpX1zyyyPjCD7iMQagv8jCpnj4J9hA3vQd9ETDlOkXpFpACjIlyd5bY2WEPfvKSnRzroNQzKJRKJS2XS3W73RCMtVwuNRqNAjAk+OXs7Ex/8Rd/oX/7t38LVZW4N7BQrm/l2owdf0sK7KikD9ymADukCrFOFretL/K8z/h5poKHMOYaoGS5XObAk2tuAfZspNwt7gDOMwr4hgTXOaykA8MYtDtocsDqz4xrLV2WsN1uc5sfysmyISEjhQdJuX4bsHtzc6PBYBA2HGilm81m6INns4iZUn/d3/fxoH+cP+6nj5F/3j0izWZTy+UyjLszscPh8AP2NvZecA2vEsfxjEfRd1ayZMmSJXtcdq+vNg6SKNKqxcfGi7Nr3GCfOCZetNGLeoodUu/EgTIOwDgH54wZLemgqQN0ACZxo8OqsvBR/QoXOyyo98dZ1UqlokajEQK6AKIs/CSMdz0vx+Fmv76+DpV9drvbaHTAKsUPTk5O9OrVq9A2j7gGMMOaeWlXXN6uqwRwAYqcdQM0w1DCaAN8PLuDdMhDC7P70Is/wGy9Xgdg7gUBmAf1ej2AIUANkgCOkQ6A3iupMV7NZlNZloUk9z6eUl4SQNu4FhsXlyow5r4pJDuGb+KosOb3AJe5F5hwIO7sq/cJfXa1Wg16Zgf2RSDUfxfpRzGXDdwlLYhZ1kqlona7HTTDgGjaJinMQY53kIqVy+Ug5fFNAPOD1/1ZiDXEyZIlS5bsYe1eZjUGoM5yFrk2WWgwFlw+465TGC1f5Hid97z0qaercdDnbYwXfunAuuAad4ALuCNoi9ynLF4wObiEyePKjzNCgNHpdBrOLUntdju0ndfpH6CZEqoun5hMJiFwBwAMaEGju1gswhgDTGCB5/N5eJ33WJA5F8wpAWNEZbsmluMbjUZOasFx7hJ3Xetj0v3tdrsQpObsKHMSkMn4dDqdwDDPZrOwgSKdWKlUCnKPdrutLMtCAQfXd8fu/Rg4SgeWz58p33DRDgCms/TL5TKnPfXzAwbZdPAcMi9gMbMsC4Cd7AGwm96XWNbgkhDvozPx8UbyPg+MjwVMdb1eV7fbzTH1u91Oo9EopJPzoE+XtXBul1zwHm3wzbI/ew+90UqWLFmyZHn7KFhlgXH3PECEL3mXBzgD6q5+dwm6Fo5zu/uPABeAXQyY40XZA5pYaFhcHRzHicZ9EcV1D3gBuHEu0hEBXGHnGA9ec73nfr8PDBduaU+PxPUBOoCSZrMZgqUYK9zYs9lM9XpdjUYjl/OWPnn+WF+EfTy4D5JyeUFZ7GF76YvLQDzlmEsmHGhIevAKVvEc9E0CYwOwd9afzQr5Vff72xy9yEQ8HZikwLi7690BHW0ocj3z40UKYgaTKH+fw2wa2LjAvnt2Bub0arXSeDzOgbbFYhEYSzTa9Xo9x3g6Yy8dQJ9n/PA5wPjSbt9M+m8sZlSLpAaVSkWtVit8P9Tr9aAxJkMHz5eUr4DlXg3PS0zfPMiKNic5QLJkyZI9TrsXrLIIoA91N5oDnFijGLv5PXCiXC6H8/Eei4szltLBtcxC6udw1527S1kAPd+pL2AORGEVaSclWXkNwAZQjQEvbBX98SAzaqPjOo9TIvV6PUkKwIHPUzELbexsNgvsKy5qwCntcykBzCdjxLjitgZwel5V+uEgxKPC6UMcIANQID0X97NIDvK7thiE0AcHROiQfbPBnKKfbCRgzwG0eAVKpVKQVjhI49r+nMQgNWafHbD55pA5RZt2u10OmG23W02n07ARIk8pGws2PrDp3DcYYWdTJX3AQKJ7dW+Dg1cfL2fz4z7FffPz+8aT173oRrfb1Xq91mg0UqvV0mAw0Hg8DkC0aIz8O4B5HINUjuW3a8uTJUuWLNnjsE+SAUgK4Mj/j4NssFgiwPEwMc7I8p4zUbwGExKzkbj9PE0STIz0ITCQFFhCFnhnXEul0geVr5yRc1bMF0APOiOgC6DnEfmSwoLP4soCDXD28zYajRxghukDGJJuC5AFAKfvHmTlRRAIwPJNw3w+D2myfBFHIuBghbHmOrSbsfD7+9AMVQyY0Yg6k4fWETCL5pixYBNAn2Eg2SDAQrOxYNyLXND8MFd8o+WBSc6GY7FEwJluChEQ2c9n0R1zH8vlcnDzt9vtXMYMgBxtrlQqWiwWYXPHOBC8Rao2pAh4G5gP6Lc90I8xj4Grb6yYl4BqPu/BlY1GQ9PpVLPZTO12W/v9Puh0Ad2eOcQ3xR4o6B6f+LsnWbJkyZI9Lvto6ipnNL3MqjNIzsjFX/7ObPJ67Dp2uQBgjmM89ZXnRXW3HgueR7fHzImn32FB5n8WR/oLkPFALykfSOJgyNllgAWLqGsSXavqizJMFS5f3kc6sNvtgtayVLqNbCfQhJ9msxkWbb+eA5tYIuGsHUDaI+Pj9ECufeUYZ42dmXxosBoDECLpPYOFAxw0x4wv44pOmU0S9wGgCqiSlANDRRsw/vbxcyaRcXN2j3P5pon5eXR0FEAlx1CCGGlAlmWhmAG5iPFUIC8pl29zmgLE+/1+eN4pzgHYB9CzAQLMkyeYjZbLYpiPd/XNx4B74/OI59QzMvR6vZAFg3vBZtWzcTCnffPoWRJc2x5LW5IlS5Ys2eOwj4LVeBGFGZIOwM6BUAzo4nP5Qu0BDrHWjPPHDJADMF/8Y/DM4uauSxYjGFBAoYM7zkNhABY8mEyvx+5ufW+3M6/OJgEU3EXK/w4KYbE8sT3nBViWSiVlWRYAmOtb+Z+KXVT+8uhw+gRgce2ts85+L+mng1GYZGdV483CQ5hvJtg4UBUJiyUp0iE7AyyqM83O2MPKxmDVr19kMVCNNxBFn/Oxjl30/E+OXklBy8pmi0wFyElms1loO3MGwEkmiVjjyxjwHlkFkOns9/tcejC0vA7Y47nFOHIv4nnmG2XfINbrdT158kT7/V7j8TgcC3je7/fBa8Amw78/2NjFLLV7DZIlS5Ys2eOxTwKrzpICYHxBiYFqvCDddc7Y9Qm7KCnnXvZj3VXoQNrZPY9C9gh1Puvpc1zTRrtJ8wRw5FzeLukgP8AF74CZcXAgGoMR2okr14OfkD7QJi9AIB2Cvo6Pj8MizefQUxLl7nXWAWuwY4B3B1EOulyq4cy0bxZcLsE9dw3kQ5kzZSSY/+KLLz5wDXOPcOkjv+h0OkHrCyh3lt6ZdNdx+j12wBxvbDguZqIdmPnmj80SGwI2L7vdbQYDWMZ2u53bWHK99Xqt4XCoLMu0Wq20WCxC2i3y+kpSq9UKmyIkBp6Vg4At6VZTfXV1pVarpVqtlss84MF49Ms9JT634t/uqYmZWNJaIW/gGZjP55IUvA43Nzehrzz/rVYrPG+xhyQO0kyWLFmyZI/DPgmsOjso5V37DtB8QY2ZEj7ngIbX+GwMYv09frsm098DPOG+Z3F28OVBIH5ubxOve2ohT8XjoNb7BEMTp/rB/H1fJDmXA0rpVnPo7C2R6YAiZ7ddGwjL6f31ilVxAAqLvW8KuI+wjvE9wYUKIPaco/zA6j2UOQjZbre6urrSzc2Nvv76az179iwc52BVUk4GAeBZrVbqdrvhM74pYj66i97nVsxO+1z0uedzxa8TGxs69xjc3Nyo0WjkcpAeHR2F1FaSNJ/Pcy5vzkUu3evra0nS2dlZALFoVKVDKrbZbBYAMMwqzwc6VY7z+c51402nA1QfQweyPgfZLNRqNXW73cAYj0ajsNmo1WoaDAbhuPF4rJubmxAsx7MW30+/frJkyZIlezz2SfRXrKuLgaYHKzhD5+b6s1iTxiLkgRHOhMaR0c7yObtadF2YGIBFrDn1xdP1l84Ueh882MXBJMcDFr28pLuPndF00O4uU4+wdnATV+Tyhd2BZNwuB7DxdRgX11sCOGmjM2SuPfSNiKQAnOLNzUOYg6DNZqPLy0vN53NNJpNcm2NW3jc3XgDBdZ6e/zcGVv6sOGCO5xLHFIG2IjaR4/21WKLRbrc1n8+D7GM6nYZ7THng9XqtyWSiarWqTqcTMkXQDqQhlBiWpKurq1DhClkJ191sNnry5EkYn+VyGZjZ8Xgcsg14HlhnV/0++HjFzwbG9wEbUq4rHapebbdbzefzoMHleIAr5wHQ+2aj6DskWbJkyZI9rH203KovIg4KHajCusRf8v5/vHj7+w6g+Nt1ZA4ufEGJFxbXnBUBzlKpFBg/B4Ncx0tMSge3YAzQYxYMcOkR0Sz8uJQ9+AvzrAYO9O5ilwGYDnIYJ3crxy5k7xPXlBRYcOQKLo0ApMaVqhgXD06L7/Fd8o/ftTF+q9VK/X5f0+lUg8EgpAhzgC8dAvXQAddqtRAw5JW/PIDI75EDsBhsxRs+32DwWd+Y+fg5cOU3BQrIQgHo3Gw2ms/nKpVuA8X6/b7a7bY6nU5IfUagFHNxtVppOp2q3W6HSlm0AakJhSs8Ur/dbmsymWg+n4cxHA6H2m63evr0aShXHKdNi0F9zKbGoN7nlM/9OE8uLv+rq6uw6QCYNxoNzefzkNqt3W5rt9sF6UCpVArPQrJkyZIle1z2ScyqAx9foB0UuqveP3MXY8RrDhacleU8MIqAA0Ami7Rf08Eq7CDn5TqebcAXPWfUwuD8N4B0DS7t9uvC3nraHGdIY6bTAXg8fgSDxMEeHhzF5/y8DpQ4n4NfP7ffz1gWwPGMrQeV+fnpN0DZk9fHm5KHML9XgLb5fK53796FyPeYsfPf+/1tUFav11Oj0VC9Xs8xqb7Jcbc2n42ZQ79XRWAstvgZcKDmetLRaBSqUq1Wq3CP5/N5cIvDME6nU2VZFlJA3dzcaDQaaTweB8axUqmo0+lIOqS/ajabgXEl3+/p6WkAvoBS5qHrvHe7Q7ng/X4fNouMl7PKd/U/lgfwLPNsEgzZarWCdCHLMkm32mwql11fX+vo6LZka6VS0cXFRTiHew8eeu4mS5YsWbK83QtWY3DkAUD+vgeO8Hr8eQdfMHlFLGLMmjqr6Yu2A8HYHbvb7ULOSXfxFi1EzorSZtgfT23j4BDXsLvZPduAM6AsrB5s5cDVtaKwr4ylA3tn0lxyEesC3YXvANyZcIBFzNhxDmcNSb/lwUSer9RBbPz5hzTmBQnzr6+vtdls9PPPP2s0GqnT6RSmmnL2nSh6ouY9et4BqkssYjAazznXPMceCt+4eEYF19TCfM7nc43HYw0GA81ms1AuWFJwhXsKrk6no1LptmBAu93WdDoNc6FUKun58+fa7/fq9XpB2zkcDnOBfsy9druter0eAq/Q9bJhk6SLi4uQb1VS0M9SNcu9GC7F8O+O2KPjbLXPa99wkhf27OxM0+lUy+VSWZbp+vo6lJWt1+vq9/thczabzXKbtWTJkiVL9rjskwKs4r99kS1yxzsL4kxIfGwR2yopx5rAYjnbBwiLASj/F4FMXObuAua4UulQsQkQCRiNgQbn9YWTFFi0FyDojCnt8wAZ3OiMpVdBcvDvwLPITclnfKH16/NZB/rO3vJ5XnNgAIh28AeA4XpEV/u9idnD37W5jnEwGGgymej4+FiXl5d6+/ZtcFNLeWbT70Wz2Qx6Tlzf8eYolgL4OBdtAmIPBHPFg6Z8/Lj38/lcy+VS0m3Vs/V6rX6/H0Ag92Cz2QQ2lfRn2+1Wo9FIjUYjHI8LvF6vq9vtBjAKcIOp5f7XajWt12s1m80AXuk/GlbG6ebmRoPBQJJ0cnKiVqsVGFeuz3Pv6b/uYjQZk/g7JJYSsInk2eV5Go/HWq1WevLkiWq1WijTijbXgxPJLJAsWbJkyR6PfZRZ5XfMekh5bWQMytxNGkfRexCOs7KcL3anegJv/gfoxRIEZ2JiVypuak8B5SxmDCYAhuVyOad1dXMwzftc193l7vaPP8+xaFudDXYw4wDZxyvWnPoYeyCb3ytnpOK2kc0BJs0j5AFVrsF1hrYoqv0hzMHq+/fvA+h8/fq1vvvuO7169UpZluXYPWdX6YeX1+W8DlDvYuIcqLoUxjcykkJEPefmWSGQiVRkFxcXWi6Xarfb2mw2ms1mWq/XudK5tVpNvV4vROKfn5/r8vJS0+k0zHvuV6PR0NOnT9VoNDQcDkNfALnkY63Vajo9Pc3NQYpzUFENMAnL6unnNpuNptOpWq1W6PdkMgmfd116PJ4eQOaeDX/ddeWuQffnuFKphLEja8Dx8XHIkEDbkUbcBZqTJUuWLNnD2P8XWPX37mI5i9yl7rKPQa6/H4MrZxs5dxzJ7ddz7SagLY5+j122RXIBd+FzHH876AVQO+vrANJd7yzUtIegHu8X5+W3M7dFY+ufjQN8nMH141z+4P2iP4A1WLu4JC0gwkEqYPchjb6uVisNBoPg3l+v17q8vNR4PNaTJ08K88EWAVHfRBXNkxicOkjFuIe+OfHNE68vl0uNx2NNJhPt93tlWRaAFWCTezGfz0PKqtlsJkmq1+v6j//4D7VaLZ2dnWm73aper4dKVgBgNoHL5TJIBrrdbjjX+fl5yKvK+LHBYSOENKLdbqvZbGo2m2k0Guno6EhZloVStKVSKQRueUqseE7Gz118H/z4eOMV34tyuRwyGpyfn2s+n2u1WoXgMooGlMu3pWipeoV+N1myZMmSPQ77rQKsil6X7q7W4wuNu0ljIOrHxtHQRWypM3mu85QOgRvxoudubwKGAJXuZnStKcc78+V9ATjSJsCHB+u4O93bGQNLJA6uC3ZWD/ept8GZuCIXKe2uVCqBVY7BrY8T5/NcuZwHXSJjxbn9b8bW79FDGeM+Go0CK1mr1fT8+fMgDUDn6RkSfM7Gm7J4Y3PX33cBVcYVoOqsPC5yXP4XFxfhMwRSuRxhNBqF8w0Gg/D52WwWAsImk4mm02lgDMmDylxyqcxqtVKWZSG9FYFRk8kkAF3KzbZarQCsYadPTk7CfHbmFJ0oGwVc7J6j1p/DeD4WjWs8tjy38Zwul8tBEtDr9VSpVAJAHQwGOc9PlmXa7/ehSleyZMmSJXs89knMKn/HC7aUrzYTB+z4MVJe5xkHZTnT6ixiEaj1RStmaXmNRd11p/7b01o5W+Tu75j9jd3BzpR5m70tMfvo8oCYhS2VDjlhGVMWW87FZ1zXGAN9ByH0k/PE4+AgnzEAcDpgZpwcjDIWXgTCQe5DGm3t9/sB2M1mMw2HQ81mM/3444968eJF0CoXyRdiEFq0KbtroyYdnhnAvhd+wJVOGVgi7yuVikajUQic6vV6qlarudyopdKtTnS5XOr169eq1+tqNBpqNpva7/e6vLzU6empvvzySw0Gg1Bm1vOOttvtkO7KvQ7z+VzT6TQwkO12WycnJ7n7Sd5WT/lFvyqVik5PTzUej4N7vVarabFYqFwuh9yunrfW3fv+fMcb0KKxL9pY8B6fOT4+VqPRUKl0G0gmKWRM4PV4c5wsWbJkyR6PfTJYlYrdo9JBx1fkEo0tXnRivWr8OXfxAcbukhX4outsjes3HUQ6iynlUzL5ouWg2fvvrn/OA8Aj4t7ZG9rufeaz3m5vO9f37AOxq98XfMYg1vLGGl1ej7MlxKVXOTeaTwfSAEKXJyAdeGjtKmP7/v37kEuT4gBZlunFixcaDAY6PT0NrupPsSLWtOgY/+EeIyVBj+pAlUCoo6MjDYdDTafTEKxUqVRCLtRKpRK0ph6ESGDRcDjUbrfTmzdvQtom6fa+DwaDkLCfSHkC5mBiYZuzLFOr1QqlW5kbvpkCtG63W63X68BOUnrVjyUHqnSbrcAzaLABo50+vxy4+ubUN8b+d9GGOn5WCL6i3aXSbdaLZrOp+Xz+W82HZMmSJUv2f2/30l/OGsbsYgzmYvYjZkR5zd3DvvDH7CnmrN5dTFcMIv0zLKoezBG7950ZpT8AL9eMehUe2DLP98p1XA/rrlva6YAPF7AHjThwjIsAxGyyH18Eopw1dAAQbwzQzcIq+30C/DrbXXSu+HwPaaXSrTbz3bt3Qb6AVOPq6krfffed3r59G+rG+xz3c/jPfeybzyGfO75hYVypMsVvAqmIRAdAEZwkSa1WS9vtVuPxOMyXWq2mly9fql6vh7k8Go1CWirc8efn56rX6zmASHtms1nQdu73e3W7XXW7XZ2fn+fSTHHP/fOAVSp8VatVNZtN1et1dTqdXAAb1z4+Pg7VpNiA+eaqyCvj852xjuefPxvx/OU9rn1ycqInT57oyZMnOj09Df0k5ddDewWSJUuWLFne7mVW3S0nfcisxoA1DohwwBqDl/j/mI3yHxZ7BxW+QGFFwM1BiAd1xOCkSCrg14rd256dIAaSknKAtSibAddxNtfHOm4D5/Rr3jV+WOym9c/7+V17W5R6yY1jYzad4wkW+hj7+H9tpVJJ8/lcl5eXOZaZ9EwXFxf68ccf9fXXX6vdbudyw8abKLeiOSPlN3ZFbWHjARhdLpcBsKJVRU+6WCw0GAxCENhyudRgMNB0Og2sn7OCuLRhS/f726Cs8/NzSYfE+K6pXq1WKpdvA4sWi4VKpZJOTk4Ck5plWUhRtt/fVrKiAACuc/cCZFkWmGDftJERoFQq5apmFbn2fV67F8XH+q6gq9jz4f87uKXdu91O5+fnKpVKev/+fWCqU9qqZMmSJXt89slFAeL/nUlyto33/DOePsnfdzbzY9fD7gNBzqzG7ZD0AaBk4SoC31gMkF1CUPR5xoPIaV843V3poM9dlDE77H0jSCwGk870MtZF/Y3Hxu8l1zo6Ogosn+sSSV8VbwRi0FqtVgO4f0jb72+DaC4vLz/QUqMfffv2rd68eaPPPvtMtVottym7C5T6uMV66Hi8nTXcbDbB7U/ez+l0Glzv0qHwA4n7iUrf728DxXBXEyz17t27wKoyD8/OzpRlmU5PT3PM/nK5DCypdLjPnKvX66lcLqvVagV2FCBN9S4YSNrphT1qtVrYBHrWAOlQOQ2g7cUV3KNQNI5Fz3R8TJFWHlmQn9ufqUajofPz83DfKRzRarVCmrpkyZIlS/Y47JM1qw663BUOCPNAIWdkOS5mXPkdg0O3mG10l+Bd7sK73NJFrHDs4o0zEUh5jSfXpd9F7CLXcp2cV5QqajfHxVHRRcyTtzdewGPw722KAUCcAzYuvIB7lzHwPJp8TlLI8YmmFS3gQ7tSd7ud+v1+cInH95jysC5/8KwAUjGLGjOozqzHxyET8Uj9yWSiwWCg1Wql4XAYgp8AeMyFarWqZ8+ehXnR6XR0dXUVgGKlUlG321WWZYENXK/XIROAlxldLpdarVbBbc94VKvVoNVst9thPNikuJtfugV4lCqVPiyM4c8O84P5FBdVwOLvBPdMxBsq7K5gK79XRffOddTockul26peeD+oeJYsWbJkyR6Ple4Di8mSJUuWLFmyZMmSPaSlSIJkyZIlS5YsWbJkj9YSWE2WLFmyZMmSJUv2aC2B1WTJkiVLlixZsmSP1hJYTZYsWbJkyZIlS/ZoLYHVZMmSJUuWLFmyZI/WElhNlixZsmTJkiVL9mjt/wE2BfB/hfd+nAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images([img.numpy().transpose((2, 3, 1, 0))[:,:,:,0] for img in imgs]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Which leaves 52 images to process out of 61 = 31*2 (the folder contains 31 images)." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "52" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(list(img_seq))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Search among images\n", - "\n", - "We use the class ``SearchEnginePredictionImages``." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The idea of the search engine\n", - "\n", - "The deep network is able to classify images coming from a competition called [ImageNet](http://image-net.org/) which was trained to classify different images. But still, the network has 88 layers which slightly transform the images into classification results. We assume the last layers contains information which allows the network to classify into objects: it is less related to the images than the content of it. In particular, we would like that an image with a daark background does not necessarily return images with a dark background.\n", - "\n", - "We reshape an image into *(224x224)* which is the size the network ingests. We propagate the inputs until the layer just before the last one. Its output will be considered as the *featurized image*. We do that for a specific set of images called the *neighbors*. When a new image comes up, we apply the same process and find the closest images among the set of neighbors." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import torchvision.models as models\n", - "model = models.squeezenet1_0(pretrained=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model outputs the probability for each class." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([1, 1000])" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = model.forward(imgs[1])\n", - "res.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([5.7371173, 5.61982 , 4.685445 , 5.816555 , 5.151505 , 5.1619806,\n", - " 3.1080377, 4.0115213, 4.023687 , 2.8594074], dtype=float32)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res.detach().numpy().ravel()[:10]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAADSCAYAAAA2TdalAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADdeklEQVR4nOz9eZSc130eCD+39r26et8b3WhsbCwkAZmrKIqLLcqkLImSKWuciWNLtM/xSUYzk5k4TswoSkZJZjLnU75J8jmyJyM7FmlKpCzZ+kSboiQuokiQAEgQ+9YAekV3V3dtXfvyzh/V9+JXv75vVfUCEATf5xyc7nqX+97lbdynnt8mDMOABQsWLFiwYMGChZsLtve7AxYsWLBgwYIFCxY2HxbJs2DBggULFixYuAlhkTwLFixYsGDBgoWbEBbJs2DBggULFixYuAlhkTwLFixYsGDBgoWbEBbJs2DBggULFixYuAlhkTwLNyyEEPcIIc4JIZaFEJ9+v/tjwYIFCxYsfJBgkbybCEKI3xJCHBNCZIQQV4QQ/z8hRMsa7r8khHhoE/uz0fa+BuA/GoYRMAzj+5r27xVC/EIIkRBCLAkhXhdCfGQDz3vfIIR4WQiRE0IMkGMPCSEuNXn/V4UQf3HNOmjBggULFj5wsEjeTQIhxP8M4N8B+F8AhAHcCWAIwI+FEK73s28bwBCAE7oTQogQgB8C+L8AtALoA/AvAeSvW+82H2kAf/R+d8KCBQsWLNwcsEjeTYAVwvMvAfxDwzD+1jCMomEYlwD8OqpE6TdXrvuWEOJfk/vuF0JMrfz+3wAMAvibFfPo/yqE2CKEMIQQTwohZoQQsytkEutpz6TvXxZCnF9R4v5aCNG7cvwCgBFyv5vduh0ADMN4xjCMsmEYWcMwXjQM472V++1CiH8vhIgKIcaFEL+/MhbHyvkalZErYUKIO1dUwrgQ4qgQ4n5yLiyE+L9X5mNaCPGvhRD2lXNHV/or/xny3nptruD/C+A3hBCjJnPVK4R4XgixIIS4KIT4RyvHPwHgDwE8sfLMo7r7LViwYMHChwsWybs5cDcAD4Dv0YOGYSwDeAHAw40aMAzj7wGYAPDYinn0fyenPw5gG4BfBvAHzZhgG7QHABBCPADg36BKRnsAXAbwlyv3b2X3c4XuLICyEOLPhBCPCCEi7PyXATwK4DYABwB8rlGfSb/6APz/AfxrVFXCfwzgeSFEx8olfwagBGB0pf1fBvCllX7vW+lvAMD/BOAMgCNNtAkA0wD+BMBXNX2yAfgbAEdRVS0fBPAVIcSvGIbxtwC+DuDZlWfva3asFixYsGDh5oVF8m4OtAOIGoZR0pybXTm/EfxLwzDShmEcA/D/APiNDbYn8d8B+K+GYRxZIXH/FMBdQogtjW40DCMJ4F4ABqrEaGFFCexaueTXAXzDMIxJwzCWUCWTzeI3AfzIMIwfGYZRMQzjxwAOAfjkSvuPAPjKypzMA/j/APgCbUAIcS+qhO5TK301bZM9+98AeEwIMcaOfwRAh2EYXzMMo2AYxvjKuL8ACxYsWLBgQQOL5N0ciAJol6ZIhp6V8xvBJPn9MoDeDbYn0bvSHgClPC6iqlQ1hGEYpwzD+C3DMPoB7F5p7xukbd7vZjEE4PMrZtW4ECKOKqHsWTnnBDBLzv0XAJ3y5pXgie8A+PuGYZxtok06pgUA/xHVoBPep152/x8C6IIFCxYsWLCggY4UWPjg4Q1UAw4+iyq5AAAIIfyoqk5/uHIoDcBH7utm7Rgm7Q8AOL3y+yCAmQ22JzGDKnmh/W1D1Wy5JhiGcVoI8S0Av7tyaHal3xKD7JZ6fZ8E8N8Mw/gyf44QogfVuW7XKadCCC+A76OqIr7QTJsa/B8AxgG8xe6/aBjGNpN7Gs21BQsWLFj4kMFS8m4CGIaRQDXw4v8SQnxCCOFcMXl+F8AUgP+2cum7qJocW4UQ3QC+wpqaQzXYgeOPhBC+FRPiPwDw7Abbk3gawD8QQty6EljxdQAHV4JG6kIIsVMI8T8LIfpXPg+gakZ+c+WS7wD4R0KI/hV/vT9gTbwL4Asrc8V99v4CVZPpr6wEcHhWgkr6DcOYBfAigP9TCBESQtiEEFuFEB9bufe/Ajit8UE0bZOPzTCMOID/EwANVnkLQFII8U+EEN6VNnaLqylj5gBsWfHds2DBggULFiySd7NghVT8IYB/DyAJ4CCq6s+DJGjhv6HquH8JVaLyLGvm3wD45yvmwH9Mjr8C4DyAnwD494ZhvLjB9mSff4JqypDnUVXetqJ5H7MUgDsAHBRCpFEld8cByOjfPwHwdyv9OwIWlLLy3K0AYqgS5KdJvyYB/Bqq87mA6jz+L7j69/LfA3ABOLly/3O4anb9AoDPsAjbjzbRJsd/AFAmfSoDeAzArQAuomqC/1NU0+UAVUIPAItCiCMmbVqwYMGChQ8RhGFYVh4LeqyogRcBOE2COj4wuJnGYsGCBQsWLDQDS8mzYMGCBQsWLFi4CWGRPAsWLFiwYMGChZsQlrnWggULFixYsGDhJoSl5FmwYMGCBQsWLNyEsEieBQsWLFiwYMHCTYjrmgy5vb3d2LJly/V8pAULFixsCg4fPhw1DKOj8ZUWPgz467/+awMADMOAEAIAIISAEEIds9lssNmqWoo8ZhgGKpVKTVvyfgCw2+0QQqBSqag25P38WdLdit4vQZ8j+yXvkf8kKpVKzXPoPfJYuVxedV7+Lp8l+1uv3/QYAHUdHbt8ls1mq7lfzothGLDb7bDb7TVt0t/ltXIOaH/oHNNnAUCpVFr1DNp3eY7PIf9M10XOD/1ns9lgt9trzpXLZZTL5Zo5pvNO58IwDKRSKVy5cgWJRAL/+T//59UvAa4zyduyZQsOHTp0PR9pwYIFC5sCIcRaSuNZuMkhSQ0lIPQfvw7QEwEdaJsUlFjRY7xf8jgnWryvZiRRRxplO/XGIQlLPWKqa0d+lqTNZrPVkCndnHDSyiHHT8coP0siqus/JZ0Oh0P1SfZH9q9cLqu15XNKn8UJvbxf9kGSTXlc3sPHTsdF29G9JxRWWTMLFixYsGBhjdARI05mAGiJFCdZujY5edCRBd4WJwOyPXovJVq8nzrCQEkLVZn4/ZKgmLVhBtq3SqWilDPd/Oj6zOeCK5Gc9NI5EUIoEkcJmSRhdru9hijKc1xN5XMtr6GEjfaRK7zyeKP50q2xw+GAw2FO5SySZ8GCBQsWLKwROkKnOw+sNoGaqUjyJ1ebdKocfY6OENHzXNGiz5PHuNJH+0XbkOZDnRpIiZ7OpEnvMxs7VT753PH+0WdQMyy/T0dy6dh068EJMr+Gro+Zkqgjh3w8jdROCTNFUBJRM1gkz4IFCxYsWFgHdJurJA1yU5f+VmZEgpr8gKvEpVwuawkL/Uyv5zBrlyuOZkSMEq9yuazGys/Jn1Kd4mZGrr7R+6RZlo9Np+DRa8yIHlXR6Ph1vns6Eygn4ZR0cvOrmdmYq7GcePLxcaJK14grgbxvdrsdTqezZnwcFsmzYOFDhsOXY3hzfBF3jrRh/1Dk/e6OBQsfWJiZbCnRA2p9rfhGTX/y9iRp4aTAjJzpCAS9nxMhrtJRssTHWM+EKPvazNzI3+spj/XMu1S1o+AEU/ZJZxrVEUveZzPiR026Zn2lJJb678lz/LnUB5E+kxJ+eZ/dblfXSnOtpeR9SGFt5hY4Dl+O4b/70zdRKFXgctjw7S/dab0bFixsEGbqFjfD6VQk2gY9R0kFJWv1SFczx3RED9AHO1DyYNa2znysu66ReZuagSnMzJgyGpUSZ26i1fm90f7S+8z6R59LFVo+B7Q9+ix+De0fUBv1S1VI3iZtm5vfzeYUsEjeTQtrM7egw5vjiyiUKqgYQLFUwZvji9Z7YcHCOsAJEFdfuGpHCRTdlLmvHb+Pkwx5jCt8OrNhMyqcTsWShINfJ58rCRltm/ddRy45yZJzQpUpqoCaEWPDMLC8vIxMJoNKpQKfz4dMJoPl5WUEg0E4HA74/X643e6asdDoXTqPPNVKPUJLAzV05+k8SiKqI5FcPeUkkqZykQqeNP3q1tgMFsm7SWFt5hZ0uHOkDS6HDcVSBU6HDXeOtL3fXbJg4aYAJROUOFG/M3qtPM8VKHpeQqeo8Ws48WtkGqXtmCmRnPjVG3u9e2l/5HlqhiyXy8oMWS6X4XQ6a8hXPp+HYRhwOp0oFotIJBI4efIknE4nnE4nWlpasLCwgKWlJYRCIQSDQXR1dcHn88Hn88Hr9cLlcmnNsfR3HdnieevMSDcnuDoVjyp1EnKMZmTbTEGUpmCzdDASFsm7SWFt5hZ05vr9QxF8+0t3WmZ8CxY2ETripfO742qUTj2TCXJ1qhawOl8bfzY/Zqas8f7yvnLioCMu9YICKDmh/afXSEXQbrcjl8uhWCwinU7D4/HA6XSiUCjg8uXLuHDhAsrlMkKhEIrFIhYWFpBKpbBz5060tLTg3LlzcDqd6OnpweDgILxeL8rlMrLZLFKpFFpaWtDR0aHtBx+PnEN+nq6Hbn6p2bcZU6p8Hk3lYmb61pFLeY+VQuVDCmsz/3Cjnrl+/1DEeh8sWNgk6EiUzr9OR3LoP34d99Wi7XEVyUxl05kGKehzdf03iwrmJlqe7oX2kZ6T46hUKkin04jFYsjlcvB6vXC73Th79izm5uaQzWZRKpUwMzODRCKBTCYDIQSCwSBCoRAMw8C2bdswOjqKc+fOYWlpCaOjoxgeHkZ7eztsNhsWFxdRLpeRSCQAAJFIBE6ns6aPfB1058yu52OV4HnxaFULCaruUhJMzcaUVOrUQ3mv/GJgBovk3cT4MG/mN2vQSbPjssz1FixcH1AFh/9OCRCttgCsJoA6QlXPvKjz89IFTnAfMQkdqeO/655F1SpKROpVkZDtSHPswsICzpw5g9nZWfj9fvh8Pvj9fpRKJXR2dsLpdOLUqVPI5XIIhUKw2WxIp9NwOByIRCLI5/MYGBhAZ2cnrly5gkKhgFtvvRVdXV0IBoNwOp1YXl7G2bNnceXKFQSDQbS3t8Plcq2qNmE2F5wA60yxZuZ13h5VNOX9lPDS5/Ck0jxAhquptG0dGpI8IcR/BfAogHnDMHavHPs/ADwGoADgAoB/YBhGvFFbFixcD9ysQSdrGdeNaq6/Wcm3hQ8n5OZLU3XoynrJa6niQs1+dJPWkSwzgteMWVCCqkk6gqh7trzWDFSFomodJ5Py2clkEgsLCzh9+jTK5TKGhoYQDAaRTCZx8eJFTE1Nwe12Y8+ePRgdHUWhUMDu3bvxs5/9TEXStrW1oa+vD6VSCW63Gx0dHdi6dStaWlrwzjvvoKenB/v27cOdd96JfD6Pd955B5cuXcLAwADC4TCcTmdNapp6Kh41xVKizu8xU0TluGmdXW6mpb6HdF14NLX0WaTXynneqJL3LQD/EcCfk2M/BvBPDcMoCSH+HYB/CuCfNNGWBQvXHDerisXH9fyRKVPCdCOa629W8m3hwwkd+eI/qcLGkwXrSBpXZjjBqmeaNVPbzO6rR96ousjb5moWJ3rUv0wGLRiGgXQ6jcnJSaTTaezbtw+hUAherxeVSgW5XA7RaBTxeBwulwvRaBQDAwMIBAJoa2vD4OAgZmdn4XQ64ff7sbS0hHg8jr1792J4eBiRSAR2ux2BQABCCGQyGfh8PvzyL/8yotEo/uzP/gzz8/PYuXPnqiAYHlmrWz8diaYEn68jJ+J8/SVsNltNFC1dF6r0UZLJAzVsNhvcbrfpWjYkeYZhvCqE2MKOvUg+vgngc43asWDheuFGVbE2Cjouu03gucNTKJXNCZP8/Ob4Ys3n9ws3K/m28OGFTrUxI2/c5EfB/e90pjyd3xw9zmu06nzw+HGdyZL3mZMS2S+dusj7RpNAl0ol2O12dHd3Y2BgANlsFslkEj09PRgZGYHf74fT6UQ8HkdPTw/C4TBKpRJ+8YtfoK2tDfF4HE6nE8lkEkIIzMzMIJ/Po62tDX6/H4ZhYGBgAHNzc4jH4wiFQhBC4L777sP8/Dza29trxir7yxU0vracdOsipXX3c1JMTencb4/ez03uun7RZ9rtdrhcLphhM3zyfhvAs2YnhRBPAngSAAYHBzfhcRYs1MeNqGJtBui4ZuJZPPPWRF3CdKMpZzcr+bbw4YROGZOpQCgBk+e4DxU9ZkYSdGZcbkakFRX4c+mzZRs60smfa6ZacZWJ9536m1HlCQDi8bgKgpidnUU2m8Xg4CD8fj9ef/112Gw23HfffTCMag48AAgGg3j99ddx7733wufzweFwoFgsYsuWLTh9+jSEEOjp6UEgEEAikUAul0Mmk0E8HkdnZyd8Ph9aW1vx9/7e38P8/DxyuZzqDzV56uaMz7VuvHRuzOaDq7d0Lek6y+vK5bJSQHX+eHTN5TXXLLpWCPHPAJQAfNvsGsMwvgngmwBw4MABc33Ywqbiw+77xINOPsjzwfu+fyiCw5djeP7IVF3CpFPO5PH3Yx5uVvJtwQKgJwZczTE7T++nv1OyoEumTJUlrhTK32niYtkmN8XqTK7yGq7oUaJnFjRA/c3sdjuKxSImJycxOzuLYDAIl8uF2267DbfccgvOnDmDRCIBwzDQ29uLjo4OCCGQSqXQ2dmJcrkMn88Hj8eDxcVF2Gw2RCIR7N69G5lMBuVyGblcDvl8Hna7HaOjo8jn80gmk3C73Whra0MwGFTRutQfj6Yv4cRWjlVHhnWKIP1JSTC/j869nEeq4tGfZl8CuPp6TUieEOLvoxqQ8aBRz7hv4brjRlNw3m98kOfDrO/NECaunEV8rvd9Hj7MEd8Wbi7UM3WagW7YkgzY7fZVtUvp9fQ+bialJID7k+nMtfIcsLriAid4tB3d2CjBq1eTVxLNy5cv4/z58/B4PPjoRz+Ku+66SxGucDiMYDCIdDoNl8uFcDgMh8OBcDgMr9eL9vZ2LC0tIZ/Po6enBy6XC3v27EEymUQ6nUahUFA+eaFQCA6HQwV62O12hMPhVWMxK3nG17eeqiejheV88vuoSZg+l6p2undD+jTS/kno1L1NJ3lCiE+gGmjxMcMwMutpw8K1g+X7VIsP8nzU63sjwsSJ4Ad5HixYuNHA1RdduhJOeuTv1OxGEyDLdukmbqYKmfWHm4S5ciTblP2jBIT2UfeZ983MVEn7InPVJRIJzM7OYt++ffj0pz8Nt9uNXC6HQqGArVu3Ip/P48qVKygWi1heXlZm287OToTDYYTDYUxNTaFUKqFYLOL8+fNIpVIYGBjA1q1bVa69QqEAAPD7/Spqt6OjAwsLCzCMatUMXpqMK6J8PnTzLv0MqWppprDqiDQ3o9N1A6BM8Dzdi7ze4XDUrLMZzJOrXG3sGQBvANghhJgSQvwOqtG2QQA/FkK8K4T440btWLh+kAqOXcDyfcIHez422vf9QxH8/sdHsX8o8oGeBwsWbkSY+bXJc2aEoRlCwM2kVF3Tbfz0ufRZUhmi99B+876USiUtEeWElbZH2+UmXpn42OFwoKurCw8//DDsdjvS6TTm5+cBVAlZuVyGx+OBx+NR/SgUCkgkEjhz5gzC4bAy+wLA8ePHcfDgQUxOTipzayAQUNUzJBmcmZnB0aNH8fbbbysCSPvJ1UtOWnVkWzfHuvmn4PND51BHjnXP4GsmK15sKE+eYRi/oTn8fze6z8L7B8v3qRYf5PnYzL6vta0Psh+jBQvXAzwwQmcKlecAvWlQZ4Klv/MUGvR5Osh7KDkzIy6UONJn01x/Mj+bPE6fryM0Ov8xl8uFkZERjIyMIBQKYXl5GUIIZLNZRCIRJBIJLC8vI5VKAQB8Ph+EEMjlcpidncWxY8dw9913A4BKj2Kz2TA6Ogqfzwe73Q6fz6dUuuXlZaTTaRSLReTzeRw/fhzT09Pw+/3YsWOHKcHTjYsrcdxErltjnRqrWwOaQoUTZa4E03mlBJymgNHBqnhxk8LyfarFB3k+NrPvNHDjP/3svCmBa+THaBFACx92mJED7s/Gy35xwlCPHEjwTZ4e4wSBnqfP1uVio33X/aT9oscpUZRkhRMgrkxVKhWEQiFFSsbHxxEMBlGpVBCPxxGPx2EYBtxuNwKBAAzDwOjoKO644w6Mj49jenoaPT09SCaTqFQqaGlpwcc//nHk83kUCgUYhqF888LhMBKJBPL5PMLhMDKZDLLZLMbHx9Hd3Y1wOKwdp+4YVVrpWDiB4/NgNr/0fhoAIk3IlBBycy2dT/qsDSl5FixYuLGxVsLVTCBKPf+9D3IgiwULmwWdX5XchLnixcHNpbxdeh39yaHL2WYGneLEiaWZOshNitKkW6/vdD5KpRIuXbqEffv2YWlpCefOncP8/Dz27duHQCCAaDQKu92Ojo4OdHZ2wuFwoFQqweVy4dZbb4UQApOTkxgeHsbFixcRjUbR0tKCnp4eHDp0CLOzs/D5fMjn8xBCqAjeQqGAtrY2fPKTn8SxY8cwPT2N6elpuN1uZRbmfefEW/6kORAN42rQBFXVgKv+jrRtSsi48kZrz9I14r52fG04uTSDRfIsWGgCN6pytR7C1UwARr2cdtcygONGnWcLFjioymMYRk0aDq7syGOUUOkUMA4zP616plpuhtQROH6/GdnRfZbH6GepRPFnyHxuqVRKBU2Uy2WMj4+rdCnt7e2oVCro6OhAa2srbDYb5ufnUS6Xcfz4cbS2tmL//v04dOgQdu3aBcMwMDU1hf7+fkQiEZw+fRq7d+/Gli1bEI/HkUwm0dfXh0gkgtbWVpRKJbS3tyMQCOC9995DOp1GOp2G0+lUUalmBJcrcHS9KWmjfnE6Yk7X0cyUS0uW6a7Rqcb1iLmERfIs3JDYjM1+swjDjaxcrYdwNZOUuJ7/XqP71zvvN/I8W7DAUS6XVylcnFhJ6MygEtzESY8DtSRAp7yZqYmNyKHOrMhToegULW4Srjc2oKrizc7OYmlpSUW40vQoqVQKPT09GB4eVnnvHA4HvF6vuudzn/sc3nvvPUSjUaRSKZRKJbS1taGjo0NVu3A6nYjFYgAAp9Op1LpMJoNQKITOzk4IIXD69OmaMdFx0TnhBJuavOU5ngKFz5HZO8DJI1UCqT9kvXeJm4zNYJE8C9cNzW7+Tx+cwFM/OI6KYax7s99MwnAjpx5ZTxWJZgMwzHwB692/kXm/kefZggUd6AZNy5EB+vxxZm3Q3/mGTtOdcAIiqx7Q6+lP2r4Z0dP1g5+Tnykhpf2Q0NWFzWazmJ+fRz6fRzabhd1ux/DwsDKvBgIBOBwOuFwulMtl+P1+DAwMIJPJwGazYWZmBh6PB/39/VhYWECxWITL5YLH40EoFFJ+eoZhwOv1AqgGbrjdbhiGAY/Ho0hjT08P8vk8lpeXtX6EQK25lZMsbmLXXcPnR5p26XkazMLXmr5HundDF+lc7/2ySJ6F64JmN//Dl2N46gfHUapUX97COjf7zSQMN3I5rvVG3240mMPs/o3M+2bMs2XutXC9YKaEyXPcxKa7X6fE0fOAvkIGPUbRyK+OXqd7Xr0+y+fxIATaDx5VXC6XEYvFkEwm0dLSgpaWFnR0dKCrq0uVHevp6UFbWxtKpRLy+TwcDgecTid6enqwbds2XLhwAcvLy9i+fTvOnDmjTLAA4HK50NHRofrT2tqq2pAJkT0eD5xOJ4QQcDqdCIVCKpWKbp45OEmm/nN0znQkWc6XTJpMCRwnj5TEcXMwgBpzrsyrqDPxc1gkz8J1QbMltt4cX0S5QhxWhVjXZr+ZxOxGT8FyI0UOb2TeNzrPlrnXwvUE93Wjue5o/Vp5rTxnRg50pI2TMK4YAaghBfWUQx2ZMXuejkBwpYvPg+73SqWCaDQKwzDQ2dkJv9+PPXv2YGhoCC6XCwDQ29uL1tZW5HI5eL1eeL1eZDIZuFwuDA8Pw+12I51OY2hoCGfOnIHNZkMymVT+fSMjI4rUxeNxjI+PY25uDvv374ff71cBHJLwBQIBVQaNroMZkTbzlaSqms6sytdMp9LSudW1wcmcVAV1KW3MYJE8C9cFZiW28sUK7DaBr/3abnzxjkHcOdIGt9OGQrEC28rx9WzUm03Mmk098mHHRud9I4TVMvdauN7Qme4oqKlVol5lBV1+PanmcBLC762nAspjOjMfJx6UiJpV7aDXc8WJkt5yuYzFxUVkMhl4PB4MDQ0hEolgbGwMuVwO5XIZhUIB8Xgc6XQay8vLGBkZgdPphGEY2L17N3p7e5Uptru7W1W6KJVKSCQSaG1tRTgcxuzsLL7//e/jyJEjSKfTePDBB/Gbv/mbCIVCSCQScLvd8Hq9qq1sNrtqXLp0N/SnziRP54FH1Zq9H3xd5LrzyFxK/qgCSFW9RmqeRfLqwDL9bB50JbbyxQoMAKWKgad+cBw7uoObnvwXgFINN7qGHxalaKPv/fulLN7IZnULNx+4iU2n3ElQZ3oK7mPFlTSdvxi9V/cs3TO4gkirUuiulTDzPWvkR0jH7HQ6USqV0NLSglAopBId9/T0YGlpCeVyGcViEblcDq2trUilUqpcWUtLC0ZHRzE7O4u+vj60tLSgra0Nc3NzqmrGli1bcPnyZbz++usIBAL49Kc/jQsXLuD48eNIJBIIBoN47bXXkMvl8MlPflKNRZYFo3PJx0XHQk3SOiWTzi0PnNARdO53x/0A5THajqxcIlPY6OafwyJ5JviwbOjXE3zzt9uE8r2rGIZSXjaLJGz2GnKl6PkjU5v+JWAzv1isp60P8nt/o5vVLdxc0BE6XYUJ+ZObV2k7OqJEN3zpuE/9sWj7vF/cxMf/6Xz5qHmSftaphzJwgCp4tC0Kp9MJj8eDcDisatUmk0mlqiWTSYTDYQwODmJiYgJvvfUW0uk0Dhw4gG3btmHHjh24cOECzp07B5vNho6ODhiGgXA4DKfTCZvNhmPHjqk0Jtu3b8f27dvxV3/1VwgGg2htbcXAwABefPFFzM7Owul0ArhqCuWlxXSVJig4Qebl4nTkW86Zbo50Jl5d4AUnk2b947BIngks08+1xf6hCL72a7tromg3W3nZ7DWkSpHdJvDc4SmUyptHhjaTYK23revx3l9LhbzRFwRLnbewWeAkyMzfil+v+2ym1klQ9chMhQNQk6uOR+SaETzaX0radGSFHqOkg7dD+0iJ6fLyMgqFAhYXFzE5OYlUKoVEIoG+vj44nU4899xzmJycRKlUwi9+8QsMDQ3h05/+NHbu3Im3334bQlTr07a1tcHr9cLpdGJpaQlXrlzBtm3bcP78eRw9ehQHDhxAuVxW0bw7d+7EW2+9hR/+8Ie477770NLSogIhKNHjSYqpqZyrqGYkWM6DbFOm2jFLiKwz8dLnmK2XbK9e+hTAInmmsEw/1x5fvGMQO7qD12zT3ew1pErRTDyLZ96a2FQytJkEa71tXev3/v1UCj/IKqWFGw9mzvoSOtOqLsKSkyRu9uWVDTghoGY+eUw+nx6nTvzc947ex4khj6al0I1R9lOaYfP5PDweDwqFApaWlhAMBpHJZPDWW2/B4XDgox/9KKLRKH7605/i7NmzCAaDSCaT8Pv9iEaj+Mu//Ev8zu/8Dux2OxYWFtDT0wOv14tSqQSHw4GLFy8ilUqpyN10Oo2pqSkVyGEYBlpaWnDgwAF861vfwsjIiOqrx+NZNXadj6FOPeOmdLomdG7ou6Ejitz0S/Pl8bk2DEORRrmmVCHUwSJ5JrBMP9cH18p/Syo2Tz06hlimsGlrSAMwnj8ytYoMbUQpqkew1truesnatX7v30+F3FLnLVwLcILA/+kiICnh0pl0uUJDiQa/T6f0UKJgphJxxY8/w0zRo8oWJ0I6fz3ZF1k/NhqNYmZmBqlUCo899hjuvfdelEolzM/PY3FxEV6vV9Wx9Xq9OH/+PN577z10dHTg/PnzKJfLCIVCKrdeLBbDzMwMAGB4eBjlchmTk5Pw+Xyqbq3X60VfXx86Ozvx3nvvYXp6Gnv37oXL5aohY3x+KbHjQRlmxznh15nv+RxT8DXS3SPJOfUrNINF8urgRkpNYaF5rEexkSQq4nM1RQp1ZGijSpEZwTJrtx7xWw9Zo+39/sdHm+637n6z572fCrmlzlu4FuBqmC4IgxMlqqZxJY6nQaFmQdqGNAXSYxJUTeI1VuXvtL/1qmlw8DY4meHpPYQQKBQKyOVyMAwDsVgMk5OTcLvd6Orqgt/vRzgcxq/8yq9gYmICxWIR8Xhc+fDl83lMTk5i586dKiq2q6sLkUgEwWAQhUIBZ8+exdTUFLZs2YLFxUWcPn0ad911F7LZLMbHx9HX1wcAuO222/DKK6+gq6sLQG3VEr6eOjOsjpjLcXKlj6+Zbj15GTP6Dpi9O1TN5dfrYJE8Czcd1qrYSBIlo31tAopMyfbMiBQ9thlKke6LhVmOwd/4kzcVYXnmy6sJ5Vr80wBsiKA2S3DfT4XcUuctbCZ0Gzc9Z+aAT9Uf3pZOGaKfqeO9TiWk5IM+l/ua0Wt1fl06hY6PRbbFiQ9PAyPLi5VKJWQyGVy8eBFzc3PYvXu36kehUMC2bdswNjaGK1euKAJ44cIF5VvX0dGB7du3IxAIqCjbfD6vypq98MIL+KVf+iWcOnUKdrsdt956K9566y0kk0k4HA709vait7cXBw4cgN1uh8PhUNGqfF3pvNBUJfQnN+HKn2YqK22XJ83WzTWfTx1hBFCTN08Hi+RZuKGxHvPnWhUbSaLkdzkaPfu9I1NNE59rpRTp2pX9AqpVQb53ZGpDpOzx2/vXTVAPX47hGy+dbfr+91Mht9R5C5sFSrho2SozwsZVMU6kKInjapn05ZMEgZsWuWrYKL9dvQhfnUKnU5h0JIj2xWazKTIlr0smk4hGowCq5C+VSmF2dhY+nw+RSAR79uwBAPT09KjrC4UCEokESqUSOjs74Xa7kc/nYRjVQA4AePDBB9He3o5z585hcHAQd999N+bm5jAzM4PW1lZ0dHQgFAqho6MDHR0dGB8fV1G2VLXUKXhcZaWqJ1cAzfz06Jrw96JeUmxuMpbn6Zo1QkOSJ4T4rwAeBTBvGMbulWOtAJ4FsAXAJQC/bhhGrOHTLFw33AxRhOs1f65VsZEkqlCsoIKqkud02CCANROfz97eD7Hyk167kfXQjef5I1M11zT+U68FVwcNYM0EVfolPnd4SrUh584yhVq42cHJAN+czRQdHbnSKTg6/zZ+nJIzs/QtOtKiI55c2aNjoKROZ57WlTqz2+2qqkU0GsXU1BSSySQqlQq2bt2KYDCIixcvIp/PIxQKIRwOY2RkBFNTUzh58iSmp6dhs9mwe/dupFIpXLlyBblcTj07FouhVCqhVCphYGAATzzxhLru3LlzyOVyGBoawsjICLq6urC8vAyv14vl5WWUy2WUy2XVP9p3SqzoeACsUlTpOvLfuepJo3kleLJsM5KoM83TeebPomhGyfsWgP8I4M/JsT8A8BPDMP6tEOIPVj7/kybasnAdcLNEEW7E/LkWxYaSKOqTB0AbXKEDn/PP3t5vem4968HH8/jt/Xju0CSKZQNOu8Dj5HnNgKuDj9/ej8dv72+aiHITNwAIAPeMtuMrD23/QL5vFiysBfV85igpMlOFZJStVAG5imTWvgSvMEH7xf3s6PPpT3m9JDZmBINepxuPHAcljrIPHo8H6XQayWQSxWIR4XBYKXLSlCp98AKBAB544AGMjo5iYmICIyMjOH36NP7yL/8SJ0+eRLlcRnt7Ozo6OpBMJjE3NweHw4GpqSmcPn0aU1NTOH/+PAKBALZt24bR0VFEIhF4PB4V6Xv27FlVAcPj8awixpTY6siwbk15NQod6eLHzJTUeilyKHiCZjM0JHmGYbwqhNjCDv8agPtXfv8zAC/DInk3DG6WKMLr6ShvRgqbVQTrzfm1WI/9QxE88+Rdipg2U9WD++DpVEez+7kSyU3cQFVNfGR3z4Zy+33Q1WcLHx5w9YbXMTUzs/ENnCph3Kmekyp6XNcPCk4gefsSOlVQZ3o2M0HqynzR4z6fD8FgEP39/TXEqlwuIxKJwO/3qyoX0kTb19cHn88Hh8OBmZkZ5HI5vPPOO2hvb4fH40E2m4VhGEilUioi9/z581haWkKlUlFEUlbYcLvdWFpawunTp7G4uIiOjg54vd5ViYy5iVtH2HQKrs5HUqfyNmNe1YF/YaCqXqPSZuv1yesyDGMWAAzDmBVCdK6zHQvXADdLFOH76SivizTVkRB5LJUtwiYEAGPVnK93PTgp48+WP5tRCama6LAJQAiVyPmzDVRAfu/nDwxgrDcMl8NWo+TZBBDLFJoaW71nfJDVZwsfHtCNXecvBawuck+VIU6k+D3ynM7vS/cc/lOSMAn6nEapO/hnHUGhhI5fI8lkoVCAYRhoa2uDzWZDX18fIpEIpqen4XQ64ff74fV64fF4sLCwgFQqhUuXLuHs2bOoVCpwOp2YnJxEIBBQpt6hoSEIUU0fkkgkUCwWMTo6Co/Hg1AohOnpaRQKBdUPp9OJWCyG9957D5cuXYIQAi6XC06nc5UvHJ1D+rvOBKvzo6v3mR43Sz3DVVHds6lJWZpqJenT4ZoHXgghngTwJAAMDg5e68dZwM0VRfh+OMrrCAewmkzJY5LoCFRLtT316FhNn9ebzsSMlFEC1KxKWHNd2QBgwEBzyiK9t1A28O2DE3DZBb76qd04PpPAc4enUC5v7AvFzaI+W/jwwEzlMnOQ16lyFFxFo/dwtY2nWanXno5E8uvqgfZBFxWqU/+ov5jT6YTT6USlUkE6nUY4HFZ1Z10uFxwOB1KpFCKRCLZv345EIoFLly4hlUohHA7D7/djaGgIy8vLmJqaQqlUQrFYRCKRQCaTQUdHB3w+H1wuF1pbW9Ha2opoNKrUPbfbrZ65c+dO5HI5dHd3wzAM5PN5RahoUmFO5ui46Jzo1FmeW083X/y+RmRSXkt9+HTX6rBekjcnhOhZUfF6AMybXWgYxjcBfBMADhw4sD6t0sKacaNGEb4fJrm1PtMsZYnZMflSG6j+IerUrLWuRz1SRmvmNqsS8pJsEKJpYibvzRWvfvsvlA0cn0ng65/ZsyZfPh0OX47h3cl49T9CjRJqwcKNCqrMcKJHyRUlZvI+M7Klc+rXqUSVSkU589frG/1cD2Y+fDqli5t/qfmQXm+32+Hz+RAIBFAoFHD+/HksLCygr68PbW1tCIVCGB4eRiAQgMvlwuzsLOLxOOLxuBqfx+NBW1sbFhcXceHCBbz11luYmJhAPB6Hx+PBI488gkqlgiNHjmB0dBS33HILnE4nQqEQOjs7YRgG/H4/BgcHsby8jOnpafh8PiQSiRrFTKeQ0rnj60PXj5t1dUotXWP+jEZzzvtiRrB1WC/J+2sAfx/Av135+YN1tmPhGuFG9G96P0xy63mmGXGixyI+F352Zh4V8rclgKaqXzQyw/I+UFKmq5lbTyWkz6LXmT1XB6lEfu1vTuDoVKJmvPK8bI9+bgaHL8fwG998A4VydSJ1SqgFCzciuFIGoKZOaz0VTV6jM8HR63lpLHlM3itzpEkVihMWTgB1iqKZKZabAfl9uqTNOrNxpVKB2+1GMBjEwsIC8vk8HA4HvF4vwuEwent7kc1mcfToURiGge7uboTDYTidThUs0draih07duDYsWOq6kWxWMRtt92GW2+9Fe+88w76+/sxODgIr9eLLVu2wOVyIRAIqPFlMhnMzs4im80iEonUzB0nU3T+aJoY3dzWM/nKa3SJkum99eZQN5/8WRsKvBBCPINqkEW7EGIKwL9Aldx9RwjxOwAmAHy+UTsWrh9uVP+mjZrkGhFX3fn1PNPMvEojcL/2wxPIE2VLALh329XIUkleimUDdhvwxEcGle9bIzPs0wcn8MLxWfzWXVsQ9DprSJmuZu7vf3y0oR+ebP/OkbZ1VbXYPxTBU4+N1SRg/uzt/TVpVPg4mvmi8eb44opSWUWloldCLVi4EcFJnjzGz3Gyp7verG0e3GB2rS7qkxIAnXKkS31C+8TN0WaKkyRCVBmTyqD0vQuFQmhpaUE+n1dm0osXL8LlcqFSqaBUKmHnzp0oFArqublcDpVKBdFoFNu3b8eTTz6JP//zP0cikUB3dzc+//nPY2BgAFNTU/B4PBgaGkJXV5cibrJ/mUwGMzMzmJ+fRzgcBgAVlEKVOTMzqW4udOqd2e+cfNdTavm6ckWQ99XsXolmomt/w+TUg43utfD+4Eb1b9pIQEgj4mp2fiM1XM3UNx5ZKgC4nbaa1CHPH5lS6lSpAnz74ASePzJVm3RY4xt35koKf/hXxwAAr52L4uuf2VMTaGFWM1cH/h6sNbmzbk6e+XKtGsjTqFBTtjxntwl86d5hRVi5Yum0CzVXlqnWwgcJVNXhvnTyd5r0FsAqBYgqYmbJk+Vxbiqkbeo2f/qTEjqzYAlqeqYRvzy4REcqaJQwJU/UZNvS0oJ0Oq2iW3O5HObn57Fv3z5s27YN+Xwe0WgUQgiEw2Hs27cPbrcbi4uL6OzsxN69exGJRPCv/tW/QktLC7Zv3w673Y58Po+FhQUEg0F0d3fD4/HAMKqBH8lkEktLS8jlcsp/L5fLoVgs1tT4pXNFwYNU5Fo2MoXr1pafl/eaqYR0Heg68bQ7G1LyLHzwcKNG124kIKQRcTU7vxlBKJxAPvXoWI0p9fMHBlYlP9Z5v/CkwzrfuG+8dLbmnheOz+KLd1wNWFrLePh7ILD25M4clPz+p5+dX0V25TjeHF9U5K9UMfDHr47XlIujxPWZJ+/C80emtEmkLVi4UaHzk6PnaA1XnVmTkj8dkeAkjV5HiaWubd3mryNzXGXk5E1ea7fbVQJhM5VKiGrEa6lUqpkDm80Gv9+PQCCAYDAIwzBQKpUQCATQ2tqKYDAIp9OJQqGgImq3bNmC0dFRLC0t4Wc/+xkikQhCoRA8Hg8+8YlP4MSJE/D5fEqVu/POaiBcT08PAoEAHA6HIngyNUt3dzcKhQLK5TIWFxdRLBbh9XpXqZn1/OZ0Uaw6P0Z+nua+oyZgs/t0pFFeY7Z+ZrBI3hpwI/q56XAjR9c2E4Cgm2cz4iqVrWgqD5tNwCgbsNtEDbHdaBAKJ5CxTKHh/H729n589/DV0mOyEgRPOizbl+08srsHr52LqnYe2d2zqu1mx8PfA6BxcmdpKn5kd08NudSB+w1ysmu3CZSI06IZubxRg4QsWGgW9Zzo5WbscDi0Plec6HETIlX35OauM7Ny8yKgz4sn29Plt9ORR6payb5J0kIDLjgZlf2X0bUOhwMulwt2ux2ZTAbz8/MYGRlBe3s7CoUC4vE4Wlpa4HK5MD8/j8uXL8Pr9eIjH/kI+vv70dfXp3Ls3XbbbZibm0MsFoPX60WpVEIsFlNm2kAggHw+j/n5eZTLZfT09MDr9SKZTCIej+PcuXNwu93wer01/deppzryzhVVCe7DSH0ndfNE10unjlISp0vV04wp3yJ5TaIZP7frSQIbPeuDunHqcrJJX7bP3t6PaCqPjqBbXUud9hXqfKtZD+4caYPDJlb864Sa80aJg7/62BhimUJNFQ1d0mH6uyRWzRKtRuD9rEdOnz44UWMqpv0xa9usvf1DEXzt13bjqR8cR7liaEuefVC+NFmwoIOuPmy9xMCUmMnreHQsb4+TKp3plLYpVTLaP67ycBKp893T3UPb44EAMmdbuVyu8YeTKVQcjirVcDgcCIfDiEajKideIpFAe3s7vF4vWlpa4PV6VSoUl8uFWCyGWCwGp9MJn8+HcrmM2dlZLCwsKBMtAPT399eQS6niSRUwkUjg4sWLquzZwMAAWltbVd/ouHktXkqC+bzx+ajnH8dJO11b2T5fD0o0KcHnSrIZLJLXJBqZC69nsMNan3Ujb6ZmlRRkTranD07gu4cmASFq6qNK/7YiJ3gAyuVr4IcoBADDlEBSRfHlswvanHbN4ot3DG6Y3JmhHjl94fjsqs+N+iHbO3w5hv/0s/M179gX7xjEju7gqnJx8vobMTjIgoVmwc10QK2fnfxMj9NjtB2gVtnhlS+47xwnBvI8VegkWaDRo9x/UEcqed/kWGRQhXwGJToS8rj8KQmNrF7h9/tVEuJ4PK6SGTscDiwtLeHSpUvK5Do9PY1YLAa3242enh6VDmV2dhYvv/wyEokEBgYGcMstt8DhcCCbzaK1tRVOpxO5XA7RaBTDw8NobW1FIpHAzMwMstkspqamkM/nUSwWUSqV4HQ6V60t9W/UEXkzMkfXgQdN8DnlZJGelyopfTZXT+12O+x2uzaxNYVF8ppEIz+36xnssJZnbdZmei2I4tMHJ/DUD46jYhg10Z+0koKB2gAF4KrZbz6Vh00AlOdxtWgz8Ob4Ikrlan90BNJMUZTBDpvpb3YtCXszpmKzPpm9Y2ak8kYNDrJgoVnQzZmbRSlB0JFB3o6E9H+TJj6dIz437/LncJWItk1/cnAHf911XHGSY9cFhVDIlDFutxsOhwPlchmBQADpdBqBQADFYhHvvPMOyuUyurq6kEql4Pf7EYlE0NLSApvNhmw2i3Q6jVdffRWXLl1CpVLB3/7t32J2dhZjY2Po6uqCy+WCYRiIx+Ow2WwIhUIAgFwuh1wuh+PHj+PYsWPYu3cvPB7PKmWMplTRpZ+h80LXlZve+dzVM6ny90bnv6dbS6qevq8VL250NLtpNvJzu57BDs0+6/DlGL7x0tkNb6bXQnU5fDmGp35wXPlsFUg6kG9/6U48f2QK3zk0ifJKChKbzYZSqYIKqkTObhN45ewCKgZgF8CDu7pw/47OVWbRzYBuvnm0LVcUBap9/M6hSZRWzn338BSe+fL6546mZXHaBZ558i7V1kbIH73365/Zs2ZT8XoIW6M5tQifhQ8C+MarI3qUAFHo1DCu6nDHerOi9Pw8J3S8X/R3+uxGQRj0ftoP7rfGx2Wz2ZDJZAAALpcLPp8PPp8PAwMDWFhYwLvvvotAIIDdu3fjnXfewbZt29DW1oZKpYLFxUXkcjnEYjFMT09DCIEnnngCbrcbpVIJk5OTmJ6exrZt2xAOh5HNZmG32zEwMAAASKfTsNvtSCaTeO211+D1epFOp9HV1YXW1lbk8/lV49cROD7XujWTRJHPg1wXXbAMBT3HFTruf0cDOOrhQ03y1uNnZ7b5NBvssBkbWTPPkmOTithGFK5robq8Ob6IMnHKt4mrwRKy7ecOT6GM6reZrz42huMziRqfvGfemlDq3r6Blmtq4pTEUwA4cyWFr/3wRE20rd0uFJlz2AUe2NGJuWQO75HkwXTumnkP+DU0LUuhbOD5I1MbNn3q7l3rPK7nC44uKMQy31r4oIE6xHMzqFSJqK8bN9PJdBhUrdERJOrDp1MPuSJlptrVUxZ1JkV+jt7LCahOyZPjcDqdcLlcWFxcVDnzfD4f/H4/isUiurq6EIlEcOnSJdjtdthsNng8HpU4OZlM4uLFixgdHcXw8DBaWlrgdrtRLpeRTCYBAJ2dnUilUhBCYGBgoEYNjUajOHLkCBwOB4rFIpaXl5UpO5/Pw+VyaYNU+Jib8bmjZmo6l5yQmSmqdF7pNbTsmvQjpO+LGT7UJG+z/ezq5VZrdjNei7JY7zzN5WYDcM9oe00et7VgM1VKOb6IzwW304ZCsQLbSh41mV8NAL7x0tkaE+nxmURNjjeaxkRWoOA+YZsN+XybEKgYhnpvjs8kIL9f2QXwpXuG8a03LtXkjwNQo1g18x7wa/h/CfLzRkj4ZhD49UZz69KxbLb51lIHLVwr0IhXM9VHbsDyPA1KkD5X9BoeyWrmt8V9/Lj5Vv7U+f/plDraBj8u79OpRma+fPRYpVJBIpFAoVDA/Pw8IpEIAoEAPB4PMpkMOjs74fP54HQ6ceXKFdhsNkSjUUSjUVWezO12Y2xsDAMDA2hra1O1aO12Ozo7O9XzpFk4lUqpVCrFYhHvvfcejh07BrfbjcHBQYyMjKC/vx9utxuJREJV2KDzplNlzeZFjpOOu56aqiPfHNxkLL8QyN/llwae1objQ03yrqWfnW6Tvp7BG3xs6yV4wPo2cd3mqss3J6NPpTImq0DQIAtdjjeaxoTef61UILp2MAzYbAJipc6qAGpShZyYTdYQ7D39YezuC6so4WZM6DUBKMUKvvHSWTyyu6dmTWV7azHfN5uaZq3YaDT3tXB3sII7LFxL6MxvOiLGy47xKFhO2LjTPyV68hrZHk2HIgkO7yOgJ2E8OEAXLFCvLzp/NG5qFEKgVCohGo2iUqlgeXlZlSlbXFxUpce2b9+OZDKJSCSCmZkZhEIhnDlzBr29vQiHw+js7ITf74fNZkOhUECxWES5XIbP51OKXTweRzqdBgBEIhFVFm16eho/+clPkEwm0d7eDiEEtm7dqnz/isXiqvnR5TbkcyTPU3JM10P2S/fe6KAzj/PE2NwUTP02zfChJnnX0s9OR+jWQirzxYoyx12Lsa2nvY0QXB45K4na7398tFbFIUEWVIEEVud4k33aiArUbKm0iM9VkxPu/h2d6Ai6FdGifXtkdw/evrSkPj/12JhScmmARj0TunxXCsWqH+Lr56N4+9KSSsvC07E0a77nBJvXtN1MErQWFU03ho2qcFZwh4VrCb6B63zbANQQAEAfcSuhI4pmShDf3M0iXrmyx30F+T1m/ePmWF7lw8zHLJ1OY3l5WR1bWFjA2bNn0draqvzilpeXkUwm4fP54PF44Pf7MT8/j6WlJfj9frhcLvj9fjgcDkUcZTk0mfQ4m82qBMlerxeFQgHT09N4+eWXkU6n4fV6MTY2hltvvRXbt2+H2+3GwsIClpaWVEJmalLn68rHxX3kKMmlUa86BRBYXUlDpxZS5ZfPPzepm+FDTfKA+uRlI0RJR+iaIZUOW7XEk4GqT9rjG4jI3Ki6sl6Yba5mJJcn1YW4WgWCKpBmc0cJkRACEZ+rYR/r1Vw1O//Uo1W/wOcOT+GlU3NwETXts7f310TQytQhtK/Upw4A9vSFFQGk/ZL3fftLd+IbL53F6+ejivgfn0ng65/ZsyplSbPme6kM8qjmtdSxbQbrUdHoGMzuXwvxi/hcsAkBrCiuN0rlFws3B3j1CQ5KlqRplufWo8RKR6LkdfInJ47c/4477FMCp/PTq0dm6LNo+/x+/kzZ92qwXAmzs7OYm5tTbS0uLmJubg4DAwMIBAJYXl7G0tIS7HY7UqkU3G43lpeXkc1mFVGT421ra4PT6VSpT3K5HOLxOAqFAnp6euD3+9V8T09P4+/+7u/w4x//GFu3bsXw8DA++tGPYtu2bXA4HEin05icnMS5c+fgcDgwMjKiSCRdYz53cly6oAp5jfSRlCZkei8n1lwVrZd+hRI+3r4ZPvQkrxHWS5TMCF0jUvn5AwN4+uBE3XQdN7qPkRmZqzcn3AnfLMGu2Zg/uq0DPz09j4ph4Gs/PIEd3cG6AQ1mNVep7yQ/H8sU0NfiRamsrwfrsF39Y9T1lX/P3d0Xbmiu/8pD23FwfLGG+O/uDWvN05KYUrKpWxPBfAqvhcJlRvSbfX919wPNB2ccvhzD1354AuVKNYH1U4+O3bB/LxY+mOAbvBk540SKK0W8TTPfOKrA0fbrPUv+1JE8HgRCn8WDSMzap6SE3k+fH41GlSJXKpVQKBSU+ra4uIh4PA6v14vOzk4sLy/D5/OhWCzC4/GgVCphYWFBRci6XC6Uy2VkMhnYbDZVTaO9vV359UkT7bPPPosTJ07AMAwMDg7ioYcewrZt2+B0OpHJZDA+Po4TJ04gHo8jlUqhVCrVmLx1ZFaCEjq6rpSoU59L7mtJ/eh0z+FrQt8bSiLlOctc+z5hPQTxs7f3m5ae+qD4GPFoVH5O12d+fK2mYUrICsX6xIUGpQBX053MxLOKhJjVZAVQQ2Cpr6BM3vz8kSnt2shSZ9ynjveLEpvf//go7t/RiRdPVr8Jl8sVvHB8VkuAqCmYp2uhRFr6MK7FDWGtXy7MUqQ0+/7q7l+L+ZWuoWEYiGUKDftswcJawAkP32gpCaIkgee8421xQqEjWzozHr1WBx3p47Vtdf6FnMhwJZIm7aU+alJRKxQKKJVKKJfLighJs+ypU6cQDofR0dEBj8ejqlosLy8jFAohFArBMAwUCgVEo1Hlh9fa2gqPx4OOjg7VFgAUi0XMzMzg7/7u7/Dmm2/C4/HggQcewN13342tW7fC5XIhm81ienoaP/3pT/Hee+8hGAyqqhncHErXgxNAHbHix+gc88AMelzOl+4Zct7p/NEvAY1Km1kkb5OwWQpbPZPuB83HSCpcZqRnM8AJGQBUAKSyRdNoW24evn9HJ14+u4Bn3qoSNBq5q6vJqqsHS5M3m/lT7h+K4Jkvr80H9PDlGF4+M6+usdtX+/zdOdJWnWtiCm5UI1ZnTjaDjpzJuTfzn9O9x2a+k7q/HbO/g2Z9ZK9n3koLH07QDZmbTgG9gz2vPqFTwHTlw+j1VOWhqVe4ykfNw/WiZuUzOcmToM/jRFGSWNkmJXmyX3a7HblcDjabDQ6HQ5lcr1y5gkqlAofDgY6ODuTzeXR0dCh/OrfbDb/fj1wuh46ODnR2diKbzar0K6FQCB6PR9WfzWQymJubw4svvohXXnkFkUgEDz30EB544AFFFqPRKC5cuICXX34Z7733HiqVCnbu3InOzk6VuoWOU2dG56BrIedaEl8zss7nkgbn8OAKavrVrUU9FQ+wSN6mYLMVNjO164O0cTVDSJslxvWu4xUygKry9qc/v1jjc8bJDiUQb44v4qVTc9rIXd0z+frQ5M2lBv6UzfiAUgX0zfFFFbkrAHxuf39NuTD5Dnz30GRNW43ej2ZVZl1CbWqilr6KOvOx/Cf9B2nwipm6RwNCdOpusz6yG/GntWChWejUPB2BMvO54gSB+rfpfOS4KkTBlTZOMuQ99WrUUmLBx2f2mUaA0n+6ers7duzA5OQkjh8/jmw2CyEEFhcX0dLSoqpbZLNZVCoV+P1+BAIBVCoV9PX1IRKJKIXP7XarecxkMhBC4NKlS/jZz36GQ4cOoaenB4888ghuu+02RCIRLC0t4dy5c5iZmcHbb7+Nc+fOoVwu45ZbbsHdd98Nr9eLRCJhuq5cLeM+c/VMprqAG3pOKnj0CwAllpyg07VrhuhZJG8TUI/QbKYPXbMb143gt9eIkDZLjBtdR4nRc4enUC6v9jl7/shUQ99InnNPN39m8yrbEkBdf8pm8OMTV/CXb03AMLBKVXQ6bHh8xcRLCdQ3Xjpbk8JltDOAf/f4XgDYUO5As4Ta1ERdLOnNx2YBFJzEUXUvrwkIWQtJ1qmJFrmzcK3BFTAd4ZGbMK9HakYOqH+XzgePnpcKlC4xLiUgun+UuJiVxtL5qVHywU28lNyVSiVkMhm0traipaVF9dflcqFQKKBSqaBYLCIWi8Hv96NQKMButyMYDKKlpQXBYBB2ux1+v18dl6lnpG/fwsICzp07h3PnzuHs2bPYtm0bfv3Xfx2jo6NwOp2IRqN44YUX8Prrr8Nms+HKlSsoFovo7+/H2NgYRkZGkEgkkMlktGonJ150/ul6yLHp3g9dVRA5t7rADXqvWVJqmTfPzHQssSGSJ4T4HwF8CVUr1TEA/8AwjNxG2ryWuFbkx4zQXAsfukYb143it6cLpqCEo1nTczPXyTl5/Pb+VT5ndpswjaDV9dUs514z81rPn7IZPH1wAn/86rj6nCtWCRQnRhI6f0QAmFjKrKrKsZ734HvEDF0vnY00H+uim83S5khEfC5IfmoAKFeqSuh6qoPcCO+9hQ8PdIELushWAFpiRzd63T38evpM6nxP86lx6IIiJJmg5JFXZ5DXUR9Aeq0cJyeGVIkUQqgo1HA4jFgshkAgoCpWLC0tYWlpCalUCuVyGYuLi3jzzTfR2tqKvr4+tLS0wOl0IhgMwu12KzNoOp1WARnT09OYnJyEzWbDgQMHcN9996GlpQVtbW1YWlpCIpHA8ePH8ZOf/ATLy8vo6urC7bffjq6uLtx2223YsWOHSuHicDhMybkZuaMkjJrI6broSDYNnJDtS8JG15KTff78emsvsW6SJ4ToA/CPANxiGEZWCPEdAF8A8K31tnktcS03ATOF7XopfBQ3kt8eVZv43Ddrel6LiZrOuyRGM/EsnnlroqEfmPxn5jfW7FpSsigDIpqd/xeOz646JvPj6d5X6o8oAEX0zIIz1vIeHL4cw3cPTao2HU2ks5EqHI1ubrR+sUxB9V2gGgBjGMaagzVupPfewocLfIPlpIleJwMVzEym3NeOts9JB8/FxnO20espEdApVPT5nFTQKgu0ff5MmgBY3pPP57GwsAC/349gMIi+vj6EQiE4nU5ks1mVp07OycWLF3Hp0iWcOnUK586dw/DwMHbt2gW32w3DMOByuVTOPL/fj56eHvT29qK7uxujo6Ow2WyYnZ3F66+/jlOnTiEejyMajcLr9eKTn/wkbr31VnR3dyulULabzWaRzWbhdrtr5o+aTesReblePGpWrhP37dOZ5qmpXbde8ho5t5w4mmGj5loHAK8QogjAB2Bmg+1dM1zrTUCnsF1Pha+ZZ75fJlyzqNFmTM9r8a0yCxDg6lq9+W8ml1+jtbxzpG1d5ese2d2D185F1TUCqFsdZTqehcNuQ7m8Or+gLjijHmjS51imgKOT8ZXE1Fd9Ac2COIAqWdOlZam3fnIMTodN9bueObfe3+0HyV/Vws0FHVni56WyQ1UcStJ05jzeLjWJSvJAN3yd3xa/X0dcuElQ/k7NsVSx48oVbUPmmZMEsVKpIBaLAQC6uroQCATQ29uLUCgEr9eLTCaDWCymUqFcuXIFJ0+eRDweBwCUSiWVYqW1tRVOpxOFQgE2mw1tbW1wu91oa2tDLpfDxYsXcerUKZw4cQKzs7OIx+MwDAPBYBB33303Hn74YWzbtm1V8Es+n0c8Hq/JZSjBFT2q1tVbezkHtO6wNK/ycnbUR5PfQ98PSp4bETuKdZM8wzCmhRD/HsAEgCyAFw3DeHG97V1rXK9NgG/ea1X4NgrdM6+nKcusdJbDJlAsV3OW0bx5zfSj2esakUmprs3Es6bzb7Zma1lLAHXX12w9vnjHIICqojfWE8K33rjUMJWOwybwhV8arKm8IVCNnq1HrnTvhzTNUlUQQI0voBnq/X3p1o+OwSaA4XY/RjoCq/IbNvt3awVaWHi/oFPiuJ8VPSY3bmkClakxeLQuv09nsqN+cJy46Uie/EwJmlSfKPnh18nPXCHk19J/sq/JZBLxeBx+vx/5fB65XE6ZYNva2hAKhQAAPp8Pvb292LlzJxYXFxEMBtHZ2YlCoYB0Oo1MJoPl5WWUSiXYbDZkMhn4fD6kUilcvHgRb7zxBo4cOYJSqYS2tjZVnzYUCuG2225Db2+vqk9L+51KpRCNRuH3+1EsFmtUVq5i0nHLNaNrSq+jZI2uq45Y03t075S8npvn6/l1SmzEXBsB8GsAhgHEAXxXCPGbhmH8BbvuSQBPAsDg4OB6H7dhXI9N4PDlGH7jT95UG5KuBBWwOoWHzM8G6JMArxV8U71epqy6ZFKsUIcmv32s9bmSxJklYQZQQ4ykAqYjDmakci1q7VprIgNXCZo0iz481t0wlU65YqC3xavIGk9bwytZ6NaI+t4BtQRPp+LpsNa/LzqGigGcX0jj/EK6msrGJL9fMxG1FrmzcL0gN1xu7qSqGjW/8QS2nJjpojCpmkYrJzRL5HT503h7ZqRDgiuI3G+Qj1u2JX+WSiVMT08jn88jm80imUxifHwcy8vLGBoaQnt7OwqFAlpbW9HW1qYSI7vdbgSDQWQyGUxNTeHKlSuKCOfzeczNzaFUKiEWi2FhYQGnT59GJpPByMgIHnroIdx3330YHh6G2+2G1+tFIBBY1edKpYIrV65gcnISO3fuVOvKyRw1YUtwk7vOPM5JP5872SYNyOHX077yNdEpuBwbMdc+BOCiYRgLKw/9HoC7AdSQPMMwvgngmwBw4MCB+r25xrjWm4DcYIGqkvNHPzhe9SMghOfpgxN44fgsfuuuLUjmS3ju8BSeeWtC+T+VylV/JLrRSazF5EqvvV4qphmZfHN8EaVypW7UabM1ZM2CD8yiN3V9K1cMPPFLA+hr8V6zvIZcPTxzJaX6xdcj4nOZJjJei2myGTLPr3n+yBSeI753FDZRJau7e8NNRelSdZN+puCEnAeNNMrvZ8HCjQS6aVPipTPjUSd83WbP2+UbOTWZUjJB1SF+P++bBDf7SV8vTip0/dCRPNkWJTWGYcDj8WBgYADRaBRTU1NYWlpCS0sLvF4vnE4nzp49i87OTszMzGB0dBS33norgsEg2tvbYbPZkEqlkEgkMD4+rhIiVyoVxONxTExMqKCN5eVlLC8vo7+/H1/4whfwiU98Ap2dnfD5fNrABMMwkMvlsLi4iFdffVXl8OOKHI0U5uspwfPa0bmnpm/delAiT9dNrg9VePm7pvPf02EjJG8CwJ1CCB+q5toHARzaQHsfePDlL6+EDcqN68yVFP7wr44BAF47F8Uv39J1tUTWSn41oEoQv8eS6a7F5Kq79nqYstbqz9bM2GSpru8cmkS5bMBpF3jmybtMzaU8etOsbxupCUz7LeeUP5OqhzQFiWMluTIlo2+OLyr/N6Cx2mpGLJsh8/waAdSkXwGq6t1Dt3Th1oEW02hj3RzI8ZolTabzYbcJfOneYSTzJZVfEGic38+ChRsF3KSm+8x9r3QqHVeIuGrDN3iuwMnf6U8dOeH/uHqkIxLAVX8w2W9KTuSYKBGh1wUCAezatQuLi4s4efKkiowNh8MIh8MolUqYmppCLBZDOp3G0aNH4fV6sW3bNmzZsgU9PT3KnD0/P4/Tp08jn89jeXkZHo8HfX19cDgccDqdsNvtuO2223DvvfeitbUVXq9XjU/2X/4slUo4fvw4Tp48ibNnz2JoaEj1m5qv6TpzAldPuaNzKtdDp75RgkjPlUolLbnWEUVqFtZhIz55B4UQzwE4AqAE4B2sKHY3C9YarPD47f147tDkiu+Z/OO4qtZ889ULNdfPJXNqwwUAss+vIoxrMbma+aZdazVkrf5sjcYmyV+uePU/vELZqKkmsR6frfVEvnI0Q7pp9CuAmtJnbmftPU67UEpeM0SHqlv0PX3q0THl06cbI18LoJpImVbLcDps+L2PbW0Y+MDn4PHb++smTX789n5FeEsVA3/684t49nfvwuMrqWcEVtfcrTf/lv+dhfcTOv84qozV81ujpIAqf5T4yTZ15lxdUmS++VOTMK2MIZ9vZp7lZI0SUl5Rw0zFlOOTSt7WrVtVDdpisYhCoYBMJgO3263KlWWzWRSLReTzeZw5c0ZFzMokyJOTk5ienlb+dt3d3dixYwe2bt2q/Okk6ZN9KxaLyOVycDgcsNvtyOfziMViiMfjePXVVzE7O6sifwuFwqq10JnDOZGj9/A55OonXQf6O02jQ030DoejZr7rKXZm2FB0rWEY/wLAv9hIGzcq1hOssH8ogmeevKtmA6W51yhZAYCukAdPfGQQsUwBEZ8LX/3r4yiUDdgFsLs3XHPtWkyu72ek4Vr82YDVUaK0v9JXjIO+5mv12QL0Re7XShqaId1yHQrFCiq4GtBgYHUE6jNP3rVmogOsDsKAECiWKnjtXFSZW3UJpOnnzx8YUEmcuQ9evXeJz8F8Kg/biu+lLmmygWqKFKkcVgxjXV9ArJx4Fm4UULULqFXoKCmjZjseUasjCNzXT0JX0aIe8eDqnVlqF9m2mbmZXiOhy60HXA0kkQpfKBTCLbfcAqfTifPnzyOZTKJSqcDpdCIWiyGVSqkqF5KIyYCNmZkZeL1elEol5PN5DA8P48EHH8TWrVvR09ODgYEBRCIRFItFFItFZDIZeDwelEolRKNRuN1uuFwuuN1ulTQ6l8thbm4Ow8PDKnAjGAyqPHk6IssVTzl+biLncy+VQ3lOJnKm8yxN5ZKc0vmm88mDMsxM+Rw3bcWLjX7TX2+wAt9AqRoCVDfRrpAbi+kCXjo1h1fPLdRsUn/0g+MoVwx89W9O1EQamkXN6sZ4LYJMroVyYhYlKsf2XeYrJlBVmT5LIj11kaL1+mkW9LBW0mAWMUxB1yGVLeKN8UWcnE2iUjG05Hs9PoI14ylXKSRVDpt5d3kSZxpJW+9divhcitTZbQKvnF1AuVL9/alHx7CjO6jatdsEBIAv3TuMP/35RZQrBgSAo5NxHL4cW/+YrZx4Ft4ncKLEzXp006e+c9TMSa/nGzxth27oPDqX+2npTLQ0MpP2mV4HrC7BRZ9nptpRckjVQtqncDiMffv2obOzE+VyGZlMBjMzM7hy5Yq6Jp/Pq8hZ2V9JAH0+Hzo7O/HAAw/g4x//OPx+Pzo6OuD3+5W5dnl5GYFAAIFAAKlUCgAQDofh8XhqSG5rayt8Ph+GhoZUAuZisVijqPE1oeSPz1896Pz1OGnUtcdJHlV/dV8MzFRZ4CYleZvxTX+tapj0HdMpMbytB3d1aRP0nphJKD8+nV8eN9E1Kve1WeTuj1+5gJ+enodhmJebWg94MISBq077b47X1myVPmKUaOiCLqj/mC4IQ7eu6yYNKwQHdf7YdZG9lMzqxrGW+eWR2hACpVJVOZRlyJox/TabboUe/9oPTyhSd/+OTrx0aq6qVBoGYpmCaleWnHvmrQm4HDZ86d5h/Mlr4ygbwIsn51ZF1K5lzLr0MpYZ18L1gM6Ex33u6pnyKAGjvlU8AEJH3mjyXfk8rr5xcgjUkgFOGnWl0bhKR/tdLpdrfPG42iSPSRNsMBjErl274PP5UC6XceHCBaRSKczMzGBpaQmzs7NobW1FJpPBpUuX4Ha7VV3aO++8E/v27cPtt9+O3t5e2Gw2eL1eVTotn8+jXC6jtbVVkbVwOAyHw4FUKqVMx1It83g8EEIgl8shEAgoHzideir99KgZ2sx8y02y/J2g60LnWc6/jsTx62gaFf4u6nBTkrzN+Ka/FjXs8OWYaXSkri1gdYJeYLUfXr1QZJr24lqpGXxcQJV8btazOEGh5cdkzdZCsQKbTeDjOzpVHjkJvs60ykPBpA6q2bqu1bzdTMSwrp805YnZONY6v5+9vV99uThzJaV88oJeZ9NkR/eloB75pP6GhmGgPejWpgXaP3Q1ulqO78RsUpUyA5ofs66ySD3Sb5lxLVxL6NQvs0hIeZ7eSxUyXa48mSyZJk+W4OZTSuh0pladImWW9JebeuupexySoMoxLS8v4/z587h8+TLGxsYwPDwMj8cDt9uNrq4u5SMnc+nt3bsXV65cwenTp9HT04PJyUnEYjHce++96OnpQWdnpyKjqVRK5dgLBAIqXUu5XIbf71cl0BwOBzwej5o/6Q+YyWRUbV1J5Oj8U+iIG11Pql7SNdEFROhUWW4yp9dR/0lOKM36S3FTkrzN8klrVg1rJjqSt6XbpGjghtMuTBPQclOm3b55fnd0I+XjAgCb0Jsmzdow88PjmzUvPxbLFPDUo2PaUlkS1FzIqzwIIbQVGAB90IJZ6hUzbKaP5HrfV05qxnrDSsk0K4W2FtQjn7poZRlAIVU7mauPX/vI7h4cHF9cU6CJ/MJRJBHWPKL5zfFF9cWnULTMuBauLSgpkkoPL1DP/eF4EITOzMvvk595MXqze+U5AKpcWL3AAJ1PHvcn5P5nVNGiCp4kq4ZRDXqYnJzEu+++i0KhgP7+fhhGNXLUbrfD4XDA4XBgZGQEpVIJxWIRHR0d6OzsxLZt29DS0oJMJqOCIySpkeTM7/er1Cdy3rPZLJxOpzL/OhwOVaqsVCohnU5jdnYWsVgMQgg4nU4sLi4q30E+x1Rh5f6UdB7rmWXpfPK5k/dQZZYSbaoe0vvp+tPKJzrclCTvWvik1cOdI22w24AVt7ua8llmfaCKiPy8fyiCr35qN144PotHdvfUVYaoKfNj2zs2HC0K6M2fNOrTbhP42q/tbqhq1lNTdOd//+OjytxNi9yblcqS7VBz4VOPjuGLdwxiR3dQ+cD96c8vQhJAHYmglR7k2ADgD//qmGkABDXL64ihbs0bvY9rfV/lM3jlDrN6tes1YdLAEbkmjfrMVTsZWMGvlf56cp4BrMrFR/v9/JEp9R7yCGuJiM911R9x5bMFC9cKXKGj5lMJfo4WrZfHZdUEaqYFsGrDp4SNntP5j3FzsJkaRM2z1L9O9t1MndKpetTcW6lUy5kdPnwYCwsLaGlpwczMDHp6ejA0NAQhBBKJBHK5HLLZLEKhEFpaWhQBjEQiCAQCaGlpQTAYRCKRQDKZxNLSkqqe0dLSoszBktzZ7XZlnrXb7XC5XIp4zs3NIRqNKtPu0tKSIo80jx0lrdRULUke9z3kyhuff901/P2hbTqdzhoiyMuecZIvA0rMcNOQPLOC85vdrhlsNhtQqZKFrz42BqDWD+v+HZ0AgI6gW21qnFAdn0kok+Xbl5YAQKsuSQXLMAzYBPDT0/P48ck52G0C/+rXdq8yazYLXc45XdRnvTkxMyObERMaYcqVO2myrRfZSX3AgFofOEoAzYIwaEqPf/79Y7DZhMrZJs3u8loaAQ1UTbzULF+P4DZ6H5t9X3mwCo1K1tWrffrghNZs3cx7zdfkq399HCdmEur91d1vRgx1AUn15u3MlVRNv+/b1lHTN50XZCxTgE1UA05sAuqdsGDhWkCnpHDzG72Wq220De6vJcHVM6mEUR892j4PxuAEQv5u5vPFFUb6uzzH1S55X6lUUv8KhQKmpqZw4cIFFAoFZLNZLCws4ODBg4jFYti6dasyR8diMbjdbqRSKRUJWyqVFHGTalwgEEAymcTy8jJCoRDy+TxsNhtcLhey2SwKhYJKmdLW1oZgMAin06n663Q6EQwG0draCrvdrtKmZLNZBAKBVYRKgkdGU7VWt6bymN1uX1VfmBNxm82mrtM9n5JuHo1N1+SmD7y4Vr44zbYr1QsAwArhoISpUDbw4sk5df13D0/h8/v7V/mPyeADoHrsj35wXEViSjIhFSyp5FUDKld+rxj4ox8crzFrrkXF4T5yRyfjmIlnsbs3rDbMRomLqRlZrLTx5J8fwstnF1Aq1y8pxpW7WKZgqnA1k9qDE0DdeG3ian7CigFUmNmd5nqzCaECY+R5qi5ej6hP7t/HK3dIJVPOx1M/OK7elXyxgm+8dBaP7O6pm+CYgq6JzPH37NsTMFD9D0ZHZp96dAx/tPJcHiXeaExyzr/z9qTqd6FUqfH54xHWEu9n6iALH17Y7XZFJvimT1U7TrB0ZlCdiiYhFTzqeF/PLCjvoe3K53JzIVXqKMGQx2W+Nno/h1QrC4UClpaWcPr0aSSTSfh8PkXIHA4Hjhw5gqWlJbS3t6O1tRWRSEQRQ9kXmTZFPk+27/P50NbWhtbWVoRCIeVTt7y8jLNnz6JSqWBkZASBQAAOh0Pl3guHw+ju7lZ9zGaz8Pv9SkWkpFJHlOVa0rFSYqwj9XxN+bsgFVxqDpbXyzmWBJHWFaZk3uzLA8VNQfKu1ebabLt3jrTBYV8hR8Q/Tle2CbiaM4wmQqZVBwSqAZu6SFvZJzNUKsaqZMLNkl8aDfmdQ5M1xFTmXOMJbznJoeOoVGrJLVAt27anP4TdfeFVymAqW6xJyTETzwKAtoJFPRMnJ6s0CICT3gd3da0apxwCz/WGFeW0TM5TItEsyTBL+yJN1PUIeaPKHVQh+08/O19DSg0Ar5+P4o0Li1ozuO4LgXyefI+rqqdsTR+I0yhKvNGYBFDTb5sQyuev3heW6+2mYeHDDWrilJs1zYvGTajUv03neK/bqOmGz32zuP8efT6w2m+M38tNi9Sfjid6LhaLq1QoSQJlWzLStVgs4tKlSzh79izsdjvcbjdyuRxSqRTa2tqwvLyMixcvYmlpCeFwWJG9jo4OtLa2QgiBQqGAUqkEn88Ht9sNIaqRsH6/H5FIBC6XC5lMRvnWzc7OIhqNYnh4WOXNy+VySulzuVw1JFseczqdCIVCmJ2dxdLSEpxOp6qUQa+n6hkFJ9HyeknC6BzK63Vt0bmU8y/b4z58uveA+4JS3BQkbz3f4JvZWNfUrlxIw8CPT1zBidkkfuuuLbgQTePHjOhwR/XvHJpUzMFhF3jiwAAWUvka8iFfk1S2WNOWIOdk2zQR81rJrySSZRZwQRPams0JnS/BVC/VDoBj0wmcmUvhs7f31/jFGSvjsYnqmKjzvtmmXm+zf/7IFL57aBJPH5zAdw9P4auPja1SsO7f0YmfnJpDxahWnfjqp3bj+EyixleMRkJLs7rOZ68ZkqHze6QmYLMExmt5Bl0Pt7NqOoWovqKKrNoEBPFXNPtCQOfyucNT6h2Q0AXi8FWvH/tlHn0uI6ulr2QzY9YF1ViEz8K1ACVKVPXiah293izHHQUNYpDX6NQ+Dl2kpu6cjtxRgiefTQmOYRiK6FFFkZISSfASiYQqYSZJm0xULKtc5HI5VVd2ampKlTorl8twOp1IpVKIx+MIBoPw+XwIBoOw2+0oFArw+/3KR89ut8Pr9aJYLGLbtm0Ih8M4f/485ufn4XQ6cffdd0MIgcXFReRyOZTLZbS0tMDpdKqxA0AulwMAtLS0wO12r/I75CZvPsd0TqmPHDXV0vnnvo/c5MpJPTfl0n5w0znHB5bk8f/Am9n4KLH72g9P1NQUNcs110y73zsypWrPFssG/vjVcQBX69NSIravP4ynHrvqI/a9I1OKUAkAv35gAP/bZ/bg6YMTNeTj8dv78fTBCdU2AHz61l5s6woi4nNpicd6zVd3jrTVBFzIvlFy2igJM/dfo5Am6m+8dBaDrb6a0l/Gynk5J+uNktw/FFHrAlQVpWffntCW3aoY1aCSr35K78+4FnWokW8dJ97Pvj1RM0fNEPJm/ff4enzthye0ZFXXr+ePTNV8CeLRs6XSVQLG+9JslDhgXv+Xk761KNIyOIam5LHSqVi4VuDJf+kmLCE3aJ35lJM2npeOKjn8Odw3j7ZFiZo8x0kG7ztQqyrS+raS3Omur1QqKBQKSCQSePfddzE7O4v29nYEAgEVDVsoFFAoFODxeFRC4uXlZbS1tWFoaAihUAiGUa1363a7VbTr8vIycrmcqobhcrkQjUYhhFCJjyUZjEajeOmll3D27Fm0tbUpM2c0GlUq4MDAANrb25X5V86Jw+FAJpNRUbt0Lvh8y+NyPqg5W84rjaaWbcnPNIiDK6LUjEvfBfoO0bXURU9TfCBJXj3VoZl7bKKaXkP+OZhtrLz4Oo/+k9fUVGZg0tpcMgcnIVqU4PF7bTaB3b1h5Xcnycdv3zOMN8cX8fRbEzVjuhhN4xtfuM10zDqFRDcG3X3PPHmXSoJc0QQwNCIghy/H8LkDAzg/l8Khy7GavGgCVUXv9fNRHFzx0ZMJfAWbwkZRkk8fnFDRyJygcXrZGfLANZeqMQtS373jMwnt/GxWEA+wmnh3hTwAEuq8JNOb5U9G14Pm0wOgVM3nj0zVBLnInIVStaNfgr7+mT01JB9Y/U7J96eZL13NBKrUq59r1iZ1k7CqYli4FqBKEFV2uBmWm+coCeSEkBKsen5WPDefvJ4SN5qWQxIGGezAA0Xk73QcVF2iih6PApbPLhQKmJ6exttvv41CoYCenh44nU4kEglkMhmVvy4QCCizaDqdRjqdRiqVUqZTaaYNhULKj29hYQEejwepVAqpVAqLi4vo6OhAIpFQJdGy2SxOnjyJU6dOYXl5GXa7HT/4wQ/g9XpRqVQQDocxNDQEn8+HQCCAYDCoTMPSlDw/Pw+/368IJ51XqppxczUlwzqljRNoSr65KVYeo+tI3QK4aV/nE0jxgSR5OjOkPK7bVA5fjuEbL52t8a0SNqFMrLrKALqaoDpVgKczOTAUwduXYqqd4XY/jk+vbOLsD4P7sJUr1ahS6fdmoOrXJstA8T/5KkGoD7rJr9U/79aBFvyEVTFoBvxZD+3qwo9PVtuxARhs82FiKaOCBx7Y1YlcsYw2vws/fG+W+WOtjpKkPnxUNQVQQ/S4ovR7H9uK3/vYVm1SartN4DuHJlEmedg2mxTocvIBwMtnF1b8Oaum+rXUrm32uXQ9PrtC0ngkNc9ZaPYlqNE71ayZdC0+r5QYR3wu0y8rNOgG2HzSbMECBU0fYhaMIH9SFYae4/fJ49z8yq+T5I23RxU/nlqDB13IdqiSxM3P9PnUREvJrCR5CwsLSCaTiEQiKj9dOp1GJpNBpVJBOp1GV1eX6pfNZsPExASmpqbQ3d2NlpYWdHV1wePxYHR0FD09PXC73Whvb4fP50Mmk0EikYDD4VAEUPbD6XRi165dKJfLOHz4MILBIDweD8LhsKp+IYMt5ubmsLS0hGKxiGg0imw2C6/Xi9nZWUxOTmJ0dFT5AlIfOTkvVGWT80Lnm5vmuf8dbZPep7ufrosk6Xyd630h+ECSPN1/+tzPiW6i9Ju9TQAOm1Cqkd0GPPGRwVUba80GRGqCNkoK+5nb+tHic2E+mcNdI21VgrYy/yUSFAHUpkKhqgP1exNMdZSwCeB3P7a17jzRzbaZChl8c+bJhpvdKPnm3R50w+28OkdP3rdVmQ5lzdNSebXCKlbmwYx8c7xwfLaG5JkpSnTcktgcnYwrH0iZh02OZTN8uuqR7Ge+rK/esN5n83t1ZEpnyqfkTfrE1SuPZvZlq9kvE826E+jMzmbt86Cbz18D0mzBArA6j5xOsQFQ19wqyQI3ueqIHyeJAGpUNWri4/3ibchz0h+PtmMWACB/UpJD/8XjcVy+fBlCCPj9fpVOhT5naWkJvb29Kn+drFCxtLSECxcuwOPxwOv1wuVyYcuWLbjnnnuwc+dOuN1uuFwuVCoVLC0tKZNuMBgEAOTzeSSTSXR3d6OjowNtbW0qr14oFEJbWxsWFhYwOTmJubnq//Otra3K9FssFlEul+Hz+XD69GkEg0F0dXUpMkmJLVdi5ZzJtabXcFOtXDM6p2Y+dZQ80veAR9xSZVaHDyTJ42bImnQlrJwVVcVsAO4Zbcdgq08pFYaBVWWmAH1NUF3aj3ob0O6+8KooQXkvTYVSJZtVZZH7vak2ixVCTNeWlFiSWtkTXYUMszqwjXLN6WBWDYEnw6WqEQ8IMNug6VrzP4tHdves6ksjU6s8/8/+6ljN8WgqXzdVzFoJWD3VivdxIymBdPeaETozX0P+TjcKTKI58dYS7LOWIBI5R41Mt2tp04KFjYD7pPHNn+c1k9dKcPLHTYK69Cv82bzNemSEq0OGUQ2mkCRBnpO/U38yqupxs65U8c6cOYOJiQmVqBioRuVKBapcLiOVSqmgCOkTF4lEUKlUVA68TCaDoaEhOJ1OnDx5EplMBlu2bEFnZ6dSBD0eD0KhEJxOJ9LpNGZmZjA1NYXR0VF0dnbi/vvvh2EYOHHiBF599VW8++67Kg/f6Ogo9u3bh6GhIczNzaFUKsHpdMLlcqG7uxunT5/GyZMn1TM4ydOtDU2HozPb0hQpdP7pu8O/CHD/P53ZX6aZuSmTIfONkStfZtGgX3loOwB97VjePvdna7RxnJhJ1JDN49MJOB22Gid1oOpjNBPPIl9c+YMDAMNQhet1z6L1SOXGe/hyzLRfq5XIKgSAz+3vX0VYzKoncFNts0l0dRutzs9NqkY0IKBeGhFOWH7rri04MZvU+uTR/jZKT/LZ2/vx3cNX+9ERdJtWj1gPAVtLEEzNl5Ym/cnqJZvWVZwAzAlwsyR2/9DaElibtbGWPjQzj5vpQ2nBQiNwkx09xjdoHp3JAyHkMfqTqmjUCV+2J8HVNp3vH1V8JEmQRI8SQF15L95XSnTi8bjKU9fa2gqPx6Mibh0ORw1xTafTKhBD3u92u+H3++F0OtHV1YVPfOITGB4eRqFQwPj4OC5duoRkMolkMol8Pq8qY5TLZcRiMRw6dAjLy8vYsWMHWltb4fV6kcvl4HK5kEgkEI/H4fF4sHXrVoyNjWHLli3o7e1FZ2cnzp8/j5MnT6JYLKKzsxO7d+/G+fPnceXKFXi9XlUmzeFwoFgsriJUfG25OkvVNzqXnLjpfDSpvyUPvDBTdzk+sCSPQpKK549MIZrK4+WzC0p1M4sGbSbVhW5TPHw5VuMPpKtAIIMIjk0n4LAJ/MYdgxjrDeP4TAJf/ZsTKimwzXY1zYiBqqIIrK6EQeuR0s/1fAXrKZEy2pFWQ9hI9QTdfDW70dK1E0DDxLlmBJKvizzGTfVmxGz/UKTGbArovwiYKVWNiNFaFKaIz6UCVSpG4/Jc9apgyH43Wg8eed4siV1LAutm0Sggw2z9eWUWPjZL2bOwmRBCKCVFF4zAN3qq2PDISJ1fnWxDPks+B6itfkDNq5Rs0ghOSeioqVB+lqZKer8u4IInYKYq3sTEBObm5uByuWCz2bC8vAwhBNLptCojJq+VSYfn5+eRTqcBAE6nEwAQCATQ1dWFUCiEdDqNlpYW3Hnnnbh48SJmZmYwNzeHdDoNn8+HLVu2wGazYXJyEsvLy9i2bRvsdjvOnDmDlpYWpFIpXLlyBQCUCXhqagqxWAwLCwv46Ec/io6ODoTDYRV8EYlElHn44sWL6O7uVmZimRqFqpmUEHMVFYCqZKEj8DJohvvrScg14u8QV4MrlYp6D3X4wJI83X/c0u/MJoAHd3Xhdz+2Vasiyc+NIvR0DuX8ON30ZQWCE9MJHJ1KqGMGUJOyBZABB1342el5RZq46VkqarToek19UuYrKNNeUHOc3PjGVqpWUHJKqyGUKga+sIbqCYUm1K21bK6yqkS9vHhma2f2fO6E34iY8XZ1kckRn2uVktSsuqfrt25+YpmCijC2oXF5Lt07SNexEXSR583mVqzn27decPeLr/3NiZrk2br+/8Y331CpaGQ5uo0orxYsNILcvKV5k6e7oGpNPfMq/QnUqn2cOHLCwFU36iNHCQmNBJW/y+oUlPzJZ1CSZ5aiBaiSzmQyiQsXLiCVSsHn82FxcVGV6srn80in08onL51OIxgMolwuI5fLqdx75XIZXq8X7e3taGlpwZkzZ3D58mV0dXXhwQcfxJ49e9DW1oZUKoXx8XG0tLTgtttuU4rgzMwMFhYW8M477yCXy2H37t3YsmULPB4PbrvtNpw9exbRaBTRaBQXLlzAyZMnUSqV8PDDD6t5yWazKn9fe3s73nnnHcRiMQQCAdhsNpXGhatofF6kedpsLWmQBT1npszxY1wNboQNkTwhRAuAPwWwG9U96bcNw3hjI202AzOyJclQ2ajWc20UmCDb4hst32S+8dJZfOWh7U05sO/uDeO5Q5Oqfbu9NlUHcDXij0d7yufT9sZ6QipytAJgrCekFDaq0Mm0F1TVA66SJ11UMPUXFCv/zMx5vHoC9S9cjwM+nfe1+HGt5X7qM6bSs6z4jq1l8z9zJVWjbnGT8lpSfND+mz1fJjFu1uSpewfXUreVBuVQv8hmza3rUcWbGY9ct6NT1S9Nz7w1gSc/OoJvvXGpZt6+d2SqJtcgXQOz/H+Wqmdho+BmN26CA+oTNtmG2XFdIAVvm5JLSvrkeUrqaAAETf3BExvL5wNXlSiqENIxFotFxGIxLC4uKvKSz+dRqVRUtYpcLqfuz+fzWFxchMvlgmEYKqWK1+vFli1bFJlbWFhALpfD0aNH4fF48MUvfhHDw8MquEOmZKlUKlhYWEAqlcK2bduwdetWtLe3Y8uWLYhEIsjlckin0xgYGMDExAReffVVLC0toVKp4MqVK5ibm0MymUQgEECpVEI+n1dtB4NBTE9Po7u7W5Wt4z6OfL3k73TdZH1auSZ0Xuk6cUj1kLdL10JGWNcjfBtV8v4DgL81DONzQggXAN8G22sKZmTLbhNKaaoYRsPN1myj5ZvM6+ejylRaz4E94nPhheOzNSlVPre/v+rvdWjyalWDOjnn+Kb55vhiTdH1oNeJpx4dU7nhdAEMlGiZkQ9JJKpO89U+1aswQa/nSXDvHGmDwyZQLFcDJjjxyhermys3o1LStBY/rmbvp3OZyhbxpz+/qHzH6pVn48+g6la+WMHxmQS+/pk9NXOz1nJmjQIx1pqAuVH0qRnR4rkaHQ4bvvpYfb9I3Xh0ped0a1WP7PPxf+Ols+oLDlD9G/gvr41X8yyuzNsfv3IBPz21uqKMXAPutmAlSLawWZAmMh2B4ybYZggeV4WkGked9nX+ejpyR59Bo1ipbx5/PiWMPM+bmSqZTqdx/vx5LCwsIBQKIRgMKrIEQKUtWV5eRqFQQKVSQS6XU6XJQqEQ9uzZgz179qC7uxvBYBDLy8sIBAJKZYxGozh79iy2b98Ov9+Prq4ulTIlnU5jeXkZfX192LFjB7Zv34729na0tbUhHA4DALLZLHbs2IF8Po+enh48++yzmJ+fRyAQQDqdxuLioqpn63Q6FWn1+/2oVKpJnqVfoSRadM7kelDVtFAoKPMunWeq3kmip4uGNnsvqNmYkj6Xy9ylZ90kTwgRAnAfgN9a6UABQPPywQbA/+OWNU6/9mu7a3zGeOqNeoodzwMmN5nXz0cb+hvJnzr/L1lb9PMHBvD0wZWI3oqBF47Pmvqf0aCEdyfjAKqE0WG31Wzib19awre/dCd+/+OjarOmRAswL0FGiYGOIOrM23WJh1gxMK68kJL4FVYqgTx3eEopTDw4YK1+XHzd6t0v51IqkdLszQNy6qUHgWHIYamx0Jqx9ebGzNetEbFdq8mTjpOTa8BcVaVVQeSXEl0AC0ezSmg9MtvI9+4rD23HL85HQYumGEY1ulxGYMuqMBKjnQH8u8f3atfm6GRc5Wu0EiRb2CzwyEmuqlAVjpK0RuRPpwBypY2fp4ocVetocAU1L3OlT7ahK8dFU6fI41L5yufzaGlpQSQSQaFQQCwWQyaTUQELXq8Xy8vLNX6KLpcLkUgEkUhE3SurUvj9fkxOTiqi9cYbb6j+BoNBZLNZFItFFWxRLBbR29urnhMIBABUSWZra6uK3u3t7cXevXvx2muvIZPJYHFxEYVCAcViEQ6HA4VClcIUi0X4fD709vaq3HQyJx+dD742lCjTZNT0PdFFTdN/PCqbqnWU8NHKGLTiBsdGlLwRAAsA/h8hxD4AhwH8D4ZhpOlFQognATwJAIODjTcPHXS+U7SeJlWgnv3d1XnRGil2ZiToKw9tXxV8YLb5Uv8vmarlKw9tV9d+dqUklFQHf34uioPji6ZJd7mfEVBVJ2kEL1Xsnj8yRapuCDWGRuRpOp5FNJXXOutz1Bt7qVwde6l8NaKTEttSqbIqyKNUupp6gxLbRlU51uoHJsmy8s0DsLs3XLfgPX/Gfds6FEEol/WpO3gb9XzdmiW26zF1cnItgBq/TuqTSFU8GpTTCM2a2Ov9jTVqY/9QBP/q03vwz79/TBE5F1EaaW5DicuLNf/9qHYA4D+8dLZuGiELFtYCasoE9PnOuCJDzzfyvZLHOBHkEbPUh06SCum0T5U7HcGTCl+pVFpFTOhz5XFJFik5CYfD8Pl8qFQqSKVSipAUCgWV304GZBiGAbfbjWKxCKfTiWAwiP7+flVqzO12w+FwKBPpm2++iampKeRyOVy8eBGtra2w2WzI5/OYmpqCx+NBX18fMpkM7HY7MpkMgsEg3G437HY7XC4XhBDI5/O4fPkyXn31VZw4cQJzc3Po7OzEbbfdhtbWVqRSKQBVdVYGgzgcDrS1taFQKKyKdqV+kNS0Tsm5LgJaXiPXQkf8uaJLTef8/aK58sywEZLnAHA7gH9oGMZBIcR/APAHAP6IXmQYxjcBfBMADhw4sPprSwOYRXRKf5tSeXW6CL7Z1PPLqbfRrsVsxjezR3b3KAIm+/DUo2N49u0JHJ1KVDfcsoGv/c0JPPGRwVW1Z7mfEVCt58oVKJkImgZ1lEpX/QjNyA8nkQ67UClc1qpumEWDSmK7KrVN2cCBLS14ZyKuzKc7uqtJLZsNYGh2XWiErYSsolGPGNIvEgLVwJVXzy2sqQ4wVwO5rxtVlOUzdX1fS9CAVI2/fbBaAq9UqmA+la8huEcn44o8cteCZte+WRN1vbVqpo0v3jGIHd1BbeTsk39+aNX1pbLeTYOOFQA+tr3DUvEsbBjUXMdVHv67/MzJnplPH79GZ1qVJmNK3GRuOp1ax0mfNInK58q0JDJVCFXwpP+e7GuxWEQymVRpUrLZbI3SJ02I+XwehmHA5XIp/zwAyGQyCAQC6OjoQDQaxalTp+D1elEqlTAwMIAdO3ags7MTk5OTOH/+PBYXq/9P2mw2pFIpZLNZRCIRFXUrCV5vby8ymQz6+vrQ3t4Or7eataK3txcf+chHcPHiRRQKBSwtLSGbzarAj1gspuavXC5jbGwM7e3tiMViyOfzcDqdcDgcNWPgKpycQx70YmbOpyZ5M7LG3wP+LvHjHBsheVMApgzDOLjy+TlUSd6mgUeA8pxhfJMwK3dEKzfo/HLM/ImAjRWD16U5uW9bB2it0qpT+dVEvN89PIWvPjaG75LgDQWxWoHiEaQAavwIdcRAlnmj+fPKZUObFLoZ8GhQWgOWzslX//q4UpiOTMSrL3mTPoQcza4Lnx+B1VU06oEGrjTK4cfB3Qru39GJjqBbEZVGJG49ASlAlZBKyIAT6dcJAD8+OYdXzy2sMhk3q+IB60tkvN42zFTSl8/Mr7rW7P8BqnACwCtnF3D4cswiehbWDUmw+CbPSRrd0KniI0GVH0rm6kVe6lQ5+o+qeNRsK9uW+fG4bx416QKoIXycgBSLRSwuLmJubg7Ly8sAoJIcG4ahfpcBF5SYymCEfD6PI0eOIBaLYXBwEF1dXUgmk8o/btu2bejs7ER7ezuOHDmict+5XC6l1MXjcbz33nuIx+Po7u7GuXPnMDAwgJaWFrjdbthsNvh8PnR2duLAgQOIx+MqCbJco6WlJdVHua7d3d3wer0qCtlut6toXuoDx4NeuImbE22pvsnrqAmbvk/0Gm7ipddJc64Z1k3yDMO4IoSYFELsMAzjDIAHAZxcb3s68G/fNKITaN7hnFZuuH9HJ15a8eNZy8bZbBJg7hfF05y0B93VoI6SXl6VaVOKZQ0zN6qpWGQVAxlQIISAMAzY7QJjPSEcm06YRhPqCrgDG6vvSaNB65Hol8/MK/OaUdFHcTZbo3QtfVtvmSud71+9LwQc3K3gpVNzqnasrn3+LjarlnHEMoWaYB35zsk1l+/iRnPardVvcDPb4P83jHb4ccdIG8Z6wzVfsOh6U/cBncndgoW1QCpYQG09UjM1Tn7mih29jiuCZlGT1I+O+shxXzz6s55JTypQ8hpJ6gqFAsrlsiImlBCWSiWl3knzqFTiotFqwJTT6YTf769RqWTqFACYnp7GwsIC7r77buzatQulUgm5XA4OhwOpVEoRt56eHoyNjeG9995Tpl5JtBYWFlCpVLBnzx54PB5cvHgRp06dwtLSEiKRCFpbW7Fz50709PQgn8/D6/XC7XarPHrRaBQLCwswDAOBQACpVAq33HKLKmsWDoeRyWQAAKlUCoVCAR6PR80zJenUbE5JJCXnPL0KXRtK1qjJl+bKk8+TJdfqrSuw8ejafwjg26IaWTsO4B9ssL0a8CSwX7p3WGtSXUWsNCkUqhYz4yrJIqWYGkGaNotNFq/nxAKiNhHx4ytmzOcOT6nEyRLS1PvGhdpNDLi6OT9/ZKo27QXBEx8ZxJm5E6aES6f82W0CX31sTJHAegEE9czazx+ZwonpRA3JpP5fVHmhUZyyHBZV/lLZomni5bVgLYoTx3pJFn++zq0AqPpD1vOF3D8UqYmkbrbvVLl2ad45+rzNIGrAtU84zNvna/PvPrdv1f8DhbKBpw9e9del7gMb+VJjwQKAGjJFU1ro1DoJSXY4wePRszozICUEUm2TtWElQaPqHFf5OKHgz+NpVOQYaX8oMZFVJ6QPXKlUgtfrhWFUc87JwAsZaSsh064A1cjXnTt3YmpqCq+99hri8TiSySTsdju2b9+OT33qUxgbG1PRrV6vF/F4XPnfTU5OwuVy4bOf/SwcDgfOnDmDhx9+GEII/OhHP8Ls7CyCwSDi8ThGR0eRz+dx9OhRJBIJZLNZzMzMIBaLIZvNIpVKwW63w+FwYM+ePQiFQkq9k6TUbrejo6MDbrcbCwsLytQqyT5VL7kpVs4jfx8o+dMpdvRa+W7J3+V9kjjqsCGSZxjGuwAObKSNeuCKRNDr1F53+HKsZsOUEbeHL8dWbQaP396P3b3hmlJMjaosPE/842Tx+kbmqXqJiCUWUnnMJ3O4a6QNyXxplc8RDVSgRFEAq4gaUDW5UnVGFzUr54MSxErFwPGZxJqSQOvGT4knL2qv8//64h2DprVWn/gvb5ia6deK9RKZjRBECp1bAa1QYeYLKVVoGUnd6D2VVR+eOzxVU3MYqM6/WfUXs7aaHfdmJhzWPdesfR0B5u+3gatRxl//zB6rrq2FTQONsKQbss5Pj5IlvuFTAkeTKNNoV2C1mkOfxyNjKdGgz5LmSEkO6XFaPUESOGpSlO3IdjOZDGw2GzweD7xeL/L5PNxuNwCgs7NTESkAiiRJSHOyxKlTp3DhwoUaE3ShUIDP58PU1BQ6OjpUn2S/FhYW0NHRgX379kEIgVgshn379sHpdOLdd9+F1+tFLBbD3NwcYrEYTp48iVAohOXlZcRiMbjdbggh4Ha70dvbi2w2i+XlZezbtw+jo6Pw+/1wOBzI5/PI5XJqDex2u8qt5/V6FRHMZrOqVBs3x9dT3KhJlq4VJ3sy0EcSR5prz0zxBW7wihfNKCm8pNODu7rw8tmFmohbvhm8Ob5omtVft8nw6aOfnz44odrmqSfMEhEfvhzDE998A6UV4njqSkpl6JeQDueyLwBqfqeRuhJ2u8DRyThm4lllEuTKBSWg3zk0iRKLwqynhtYzcTeKLtaRbXofV7nMEi9vhmK0FrVys0ySPPchrVBh5gtJr6NJuc0CabgZ3jCq5J27MTQyOa+1gkmjNCncXcBs/egY7Cu5GL94x6DpO6IjwPXeb5n2xiJ3FjYLOrMsJXcAasqByY2ckifDMJSKA9Ru8txfTiqHNIGxzlxLz1GTLfUT4+ZGShpkW7JPNI2H7G+lUs1V5/V6kU6nkUwmEQwGEQ6Hkc/nMTg4iMuXLyORSCg1TwZ2yLq2hmFgbm4O8XhcmTflWGKxGH72s5/hF7/4Bdra2mC327F161YMDQ3BMKqpVNra2pDJZDAxMYGenh643W786Ec/wksvvYSlpSUAUJG/pVJJ1bWVn2U/3W433nrrLbS3t+Oee+5BT0+Pqr8LAMFgUK1RqVSC0+nEwMCAmrNcLoelpSUsLCzUKLtU9aTzzMH99CgxlISO18Sl19XDDU3y6ikpuoLspYqBbLFcYxqTpk26GdBkx9RkaxbJy4vXSwL19MEJ/OFfVYMmZNJWmpzYbOP73pEpRfCAKrHiG7gZ4ZDgG5lAVcmTPm+ytFO9wvRiZQzSR0lG7vJ5aYZs82s4GeH+k3KjNmtbl3j58OUYfuNP3lTXcmJcD/VqswK4aj7fxES5utQ/Es2Ygel72iiYRhdgQlXfekmf+ftBFdlmKpiYraEuabVu7in5lc8tVQz8s5W/LV37NQSYjUv+lOUFAcsHz8Lmo150o1kQBSV5Zr579D76kxI2aZalZICab3kgBfXdoyRRts2JAq9RW6lUlA+czCnncDgQiUSwdetW7Nq1C+l0Gn6/H0NDQ8jn8yiVSpidncVbb72FS5cuoVgsIpFIqHQlQJU8ylx18jNQTV/i8/lgs9nUfTLSNp1OY3BwEEIIpFIpLC0tweVywePx4NVXX8UPf/hDTE1NIRKJYGxsDDabDTMzM1haWsLMzAzC4TByuRwSiQSKxSL6+vqwvLyMcrmMSCSCXbt2we/31/ghSpOsnD9J+iSBczqdSt1MpVI1/ouclMk1M1Nt6Xsi55lWzaDvHU3pYoYbmuQBzeQfuxo1WDFqy37xTS5XrGbI/5P//gCeenSsxmQL1NZmzRPlBKiaF7k59YXjszX9evbtCZyZS9UtFA9glZkVqN3AgcapRPYPVdOslFfIIm9T1oH9+mf2mG5s3Eepnim7kZmr2Wt0Y9Pdpzsmyboc3/c0ZvN65r78SnUPw4DKGfe1vzmBU1dSKBKCtBmJchsl+tXVxdUlctYl5db1zSzABFit5tbrI4Ca3Hkyn1w9tU639jKCm9dh5jVpT11JKWL91KNjsAmo5McGgD/6wXF853fvWtX+mSspbdoevt7AVeVdpo6xiJ6FzQBX7Hi0JFfrdKkwdOZQeg1PwcF9AKkvICd4tD3uI0hzuFG1iQZr0P7ZbDY4nU7YbDaVdqWtrQ09PT249dZbEQ6HFdEJBoNwOp3I5XJIpVJoaWnBL37xCxSLRYyPjyObzdaQH5mMWMLtdmPnzp3YsWMH4vE45ufnUSwWlXlUmnVbWlrQ0dGBbDaLQCCA8+fP44c//CGmp6cBADt37sRv//ZvIxQK4Tvf+Q4mJycxNzenCJOM8nW73Sqhc39/Pzo6OtRY6fhpmhO+1pIESyLMyblU8KhiS9VRmj+Pmsll2hZKOOW5crkMh8OhTNtmuOFJHrDaJEo3HPoFyoaq3x7fQJ99e6ImfcTTBycQyxRqTLYvHJ+tMREaqBKvg+OLNSlQPkvSTDyyu6em7FJXyKOCDuoVit/dG4Z9ZTOTf/ZrTSXCE9nqwCszcOg2Z2rK5iZCMzOhmVqlA1VrqK+UPCf7pWuLj3U+VevQa0as6DPl+yJQTS/y3krOQgmpgG3UKb+RiVuOr5E6uX9In5Sbox7JNjtuZgY1y53Hq8xQwkTXi5uOpX/mI7t78PalJaVM0rmX0b4P7uqqSXBcqVTz3vH8lzxtD63VS9dbomwAL56cq7pyrEEBtmDBDDSSVmcy40EOnOgBtaoMJVz0Hp6YmAdScLWQqkNcLaRmRH4tT4TMfQWpAigrTLS2tqKlpQXt7e3w+XwqEtftdsMwDHR1dcHr9SpfuI6ODiSTSczPz6/yGwSuErwHH3wQ6XQauVwO7e3tKsdeLpeD0+nEuXPn0Nrair6+PkVw3333XZw7dw5OpxN9fX3Yu3cvBgYGMDo6CiEE3n33XSSTSczMzODYsWMq+GN+fh7T09Ow2+3Yt2+fUvGoWZXOl1wDAGquZMBGS0sL8vk8EomEmjf+RYBXsKDvBPU55H2w2Ww1qVukeivzIprhhid5OpNovehVGqkp/yPf0ubH+YWrmfCffXsCTz1WmyNMbkA0aa4uBQpNSSJ98GgdWZowlxMs6hhfMQCHTeBL9w7jW29cWrWBNzLn8RQSOjRjouJkijquy8oc9fLtrdXhPuJzXfUZQ1U12k3SXtRr5/Hb+/GdtyewIuatynVmZsK7c6S2rrEAMNTmw8RSRpF/AcBpbz7FSiPfwGYjc5tRJ5sNADEj2WbHzfooTcQ2m8DulZx71NeNV5lZi3/mju5gjTIJ1BLrO0fa8NMz88qdoZ57gEzbw6+h7xhQ++XAKmdmYTPBN2qu1vHjuuhKwFztM4t2pf57lGjqSCVVnzi5o/fyAAB5DVXZDMNAoVBAe3s7BgcH0d/fj1AoBI/Hs8qvUBKU3t5e3HXXXZibm0M4HMbs7CxefvnlGvIq+0Dr34bDYezduxft7e0olUp45ZVXcPjwYQSDQSwuLmJiYgLd3d3o6OhALpfDhQsXMDIygkceeQR33HEHhoaGEA6H4XA4cODAAbS2tmJiYgI2mw3nzp2Dw+FAuVzG7OwsYrEY2traMDIyosyjZutKwQNpfD6fqolLaxvTiGhqdqXzJc3BEvSLA61hLNeN+mVeq7Jm1wXcJPrC8Vl88Y7BVWpdvVx5Ix2BGpLXFfKYbpzUZCs3fkkidSlJvnjHYE3ART0fQp1jPFce65krKai/FojJWmK9itT+oWrU4j///rGrZs0GwRZryTlIFRigWqGAmvHqtbN/KIInPjJomuvMrPLG/qHIqrrGT963FV/74YlV5s1mNn8e7KO7t1lixmm6GW3fSMCAGSE1/Rtgrgw0qEGXDqae6Zj7Z1JlsrBiPn9wVxfu39Gp+vHsk3dpK1zQsUR8Lnz29tUuFEBtVL4AakzAVuoUC5sFSpI4QZKgJEEXccmJHP1M//HAChqAAWCVWVc+Q6cM8v5RwiefxVOySKVKpkkZHh7G3r17EYlE4HK54HQ6axIhUwXK7Xajv78fPp8Pfr8f9913H44dO4alpSXVH6ezmjnD5XJh+/btGBoaUkEWsg5tJpPBiRMnsLi4CJ/Ph4WFBWQyGWQyGZRKJTz88MN46KGHsHPnTni9XjidzppAkdHRURQKBUQiETVOGZyRzWYxPDyMrq6umiAIM5WWE+dcLoe5uTmk0+ma8VNTLW2Tml95uzR6lq8ZTXItgznqqXjAB4DkcZPoI7t7AKze9PYPmefK+92PbcXPzsyrPHe/+7Gt2jZimUKNyVYI4Kuf2g2gSi69TnvDRMpmm7GZY7yZmbPRpi7J2FM/OF7TZ6BaouyJNZAWjlimUGsGF7VJqOlGu9Y8cneOtMFpv1p5gKqojdo5fDkGY+Uena9jPRMej1aWqtJ6InVrFEOWi01nkq2Hx2/vx3OHJtW7uZaqE81gPWord2Wg73k9hZKSyUblAimRfPnMPF4+u1Dz5Uma8HVjoWZg7kKh6+NTj46tKhtowcJGwRMRUzUMqC0+Lzd1quTw4ArZpiRu3NzLj1FVh6t21AQr+0gVOergT02/lLBKEiFTjZTLZUXwhoeH4fF4lO+aBCUzlHS63W60tbXB6XTirrvuwuuvv453331X5ZoLh8MolUoYHR1VCuHIyAh8Pp9SuHbv3o1t27ahWCyiUCggmUwimUxiYGAABw4cwO7du+HxeGAYhorm9Xq9qu+yFm1raytcLhdKpRIWFxeRz+dRKBQwOjqKSCSyai4owdaZYCuVCrLZLHK5HGZmZhCNRhEIBNDa2lrzbOlbR+dItkOPUyVRPleun1xXno/xA22u5SZRnqYEWE06CismV+po/ZdP3tVwQ+dmPaBaokua1OoFUzSCmWN8s2bBiM+1Ktee3IwlqdnTH0ZXyFNTOms9kKYwHt0q+8MjJhuV+uJK0jMapaYR4eLqmS63HDfh8YoZui8GzfgZ6uZHV0FiPWZAOR/XKndbPbXVLJqcv6vU/85M/dORyXqpWmqIJHOJMIsAlhHr8q+znr+jlQ/PwrUGJTHcHEvJAN3Q6e88Fx0nbFS142ik3sg+6Xz2aK1abh7U+fIBV6M33W43YrEYDh8+rIhYOBxGKBRSZEzeRytoCFGtZRsMBtHX14eHHnoIy8vLSCaTAKppTnp6erBjxw709fVheHgYgUAAhmFgYWFBkaAtW7bg3Llz8Pl8yGQySKfTcDgcCIVCqtJGLpdTSZoDgQBCoRCKxaIKjpDt5vN5pFIpGIYBj8eDrVu3wuVy1QTO6BRY+lMqak6nE1u2bEEoFMLBgwcxPz8Pt9uNUCiklDtavUJG5sq26ZzLSiryywDNX0jb4O+TGW54kgdglUmUgm8uv3XXFvzJa+NaR+tG/9nrzHoCV4Mg6gVT6PrFNxkz81K9NnTKhW4zdjpseOIjg8pcbeYvZdY3Pg9mGzmNmCwUqwErZrnb6Bi4krRW5bKZ3HK032am+0ZopHzJuZPqEK8gsZa8cM2OXdfHZglMvfQmZnWhG/nf6fq7VtN9I79aSc7PXEnVJAV32G2qSgxPuL2RObVgYT3gVQqA1UXkdT5YvLIBjbik91OfLV1CYm7K5c/mkbn8GumXRn3GdD5+xWJR5cKLx+NIJBLweDzYtWsXent7sX37duzbtw9tbW2r/P3onLhcLoTDYdxxxx2Ynp7G+fPnkUgk4Ha7MTAwgG3btmFoaEj53c3OzioSJU3HsvSZjPSVKVbcbjdcLhc6Ozvh9XrhcrnUOSEErly5Ar/fj1AohLa2NpTLZWQyGfh8PrS2tsLv96/qN51LrpbKoIfl5WXY7XbVtsPhwMGDB5HL5RAOh2vy3Jn59nEfQBoBTE3D1F+SVuGohxue5DXa0PjmcmI2WeOftlaFRZeEmKcZaUZ9q5cfjJuXzMBNvHwD5WSMzoWMXOV9bdZ8xzdJWdpNmlkF0DB3Gx3DWmsFc3CyYlbXVvbbzHRPx9NsxGk9tYpWkADQMC/cRogHDdxpNp+fGWF/c3zRNOG0vK8Z/zuJZgJN+Jw38qt12ATKxtXE2KWKgQd3dWI+mYPbYcO2rqD6W9pojWMLFtYKrqJI8sXVHmpWo6lJaAUDrrjxZLqU2PE+AFDRrzplTpoMJYHj+dmoI79sQypJstKD3W5XQRNzc3MwDAOJRALxeBytra04d+4cCoUC7rnnHgSDQVMyI4SAz+fD4OAg7rnnHrzyyivqmVJRczqduHTpEmZnZxEOh7F9+3a0traq/HwXL17E5cuXlZl1eXkZ6XRa1c7NZDIwDANOpxM+nw/pdBpTU1N44403MDo6CofDgf7+fpWYuVgsKvOuTpnVmbLpnAUCgZp8db29vbjllltw5syZGlM99Q+kZnQ537Jth8NRY8alpFuuq/zMVUIdbmiS1wwh4YmNx3pCODi+WOPztZ7gA/qcevVDdWSBE4VmAws4eDJcnXLB++qwVf3dDOhTqNBEt5wI/tsfncLfnriCT4x14w8+uatmfEcn42pOAaAr5MZ8Kt9wTM1GmdYDVc9krdtG5Knec83MlI3u0xFAmtqDEst8sYJn355YN8HVKYI8cKfZNnWqVj2TfDNzqHtGPRNpM4ruKnK+8h5LCAA/PT2H8so+9+5UAmNNRmZbsHAtQDdqCe7LBazOV8fv4+SNki8eVEGJpa6ChllfqLO/JCi6aE2eYNflciGfzysVL5PJoL29Hfv370dbWxtOnz6NqakpvPTSS/B4PLjjjjvg8/nqqlbBYBA7duzA3r17kU6nYbPZsLS0hNOnT6vxDg0NKROoNNeOjY3hM5/5DMbHx/HWW28hkUigVCohkUjg5z//OS5cuIBSqYShoSH8yq/8CkZGRuD3+xEIBJBMJnH06FFs2bIFAwMDyvSbSqWUCsjz1tG55aqknBupqi0sLCCZTMLn86GzsxOLi4s17cmcdlxhpQRNEjp5XhcxLe+RwTD1SqYBNzjJa6SqyA2FOnF/641L+Oqndm+ao7WufqjsmxnZ4Jtjs4EFHHTjTGWLODGbrFuofv9QBJ8/MGAafcpz61Ei+OMTV/DHr44DgPr58Fh3TVJZisFWH5Yyxaq5zW4+po36R+lU0WZIcz2T8x+RYBVdtQRad5iiEem5c6SthmSfmE2uy4dTR4jqBe6sBc0GR9C5aHbt6vk48sTIzXwpkGbcUqlKRG8fbMFbl2Lq2kJpY0TagoXNACVSlNjQDR3Qb+aU8OkSIvP2ZcJjGYHJ2+MbPjUXU5Ow/EzNwzQvGw3cMAwD2WwWCwsLyOVyCAQC2L17N+644w5s27YNDzzwAC5duoSjR4/ie9/7HsrlMu677z5Vx1YHh8OB7u5uPPLII6qk2MWLF5FMJjE1NYWHH34Y4XAYdrsdhUIBhUIBdrtdVai45557cObMGTidTrjdbhw+fBivv/465ufnIYRAMBjE4cOH8eUvfxn79u1T9Wnfe+89VWt3x44dWFxcxPLysvIXlPMg148qadxcbhiGIm7Ly8u4fPkyLl68CMMw0NvbW2OepbnxKGmnSZblmgghVEALVVepYicJOyWRpnNteuYGQD1/IroJPn57f000YCxTwNc/s0dtaADW/R8/L/FEy6TZhNBGIeo2x2YiOeuVMpPjbVSonlexoGZNXW49SQS//+50zfG/PDSJVL60KqmsxKHL1c3WwOpvoRwb8Y+qiWQtVlQ0sYEq0bHbRF2CyZ/7vSNTLIJaf79cY+6L1ihqlJJso2Lgc036cJqNWb5X6w3coWgUHLEef8Jmn8kTIzf7pUDOx50jbXj+yFQNyQNqibQuSbMFC9cKMrCAmkB5sIMEN8vK+3gqDWrOlWZWSQSoOZarSroADV3AgM4MrCOVcnzyvEyPUiqV0NHRoRINu1wuRCIRbNmyBWNjYzh16hTS6TSWlpbQ2dmp9UOTz3a5XMq8Ozs7i4sXLyIej8MwDExOTqKlpQU+nw8AkEqlsLi4iGg0qkyk3d3dCIVCaGlpgc1mw/33349kMomlpSVMTk7i9ddfRyaTwcMPP4zBwUHMz88jHo+rOrhutxsOhwO5XA5+v18lQdalweEmeZ48GqjWt+3u7sb09DTeffdd9PT0oL29vSbQgqaioX529N2hpJ+XK5NEnCuu9fzybmiSV8+fiG6CBlYnD15P6ggOrnzZ7bWBGDAMCJuAMIxVapYkBYcvxxTJqhdtWK+/a/Frqxd88NSjYzXmX7EypojPhQVWPSKRKeK7hyZhs4lVKVqA2rx8pQpW+f9tBkEAaom+WCHVVImEiUnADHwkD+zsXFMQQSPCqisVt9bx677cbFQRbTSuZurMbuSZMgKcJkY2g86MK/Hcockat4Fy2cDHb+lER9BdN0nzZr2PFixIUDWOH5OgKhw9x/27JCSZ4+1znz1O4OR9upQrtF1KVuRzqFrF+24Y1WTIMjpVJixOJBJIJpPwer2KcPT396O/vx/5fB4OhwOFQgEul8uUgEjFbc+ePfjMZz6DmZkZjI+PY3Z2FqdOncLw8DAymQyi0Shee+01nD9/HvPz86hUKujr60NrayvGxsbwsY99rCZdSSwWw/Hjx/EXf/EXOHXqFM6dO4fR0VG4XC4sLCwgnU7D5/MhGo0iHA5jbm4OkUhE+dbRQAe+PkBtJKxcl3w+j3K5jHw+j3Q6jXK5jAsXLigSLIm6VFqpX6RcPxppLa8BoPz1qHpH/TOlmdkMNzTJA8z9iegm+Pjt/TUO8M043nPQTQCAStnASzzRTdxuE1B/UpoQ5rUQzXob8Fr92syCD2KZAr79pTvxx69cwEsn55RJl5Z9U8NB1eH9gV1d+OmpOZRXD68GlGptBsGmY+GklaqLay08z/PS/d5KzkSKjfgRrpWMmam3ZrVt5ReF9ZCWtfgbrtePtNEzGxG8etg/dDX9zncOTaK0YhZ/5ewCPr+/3zRIZDPfRwsWJMyIESdy1MeL+3lRcCVQkhbuzwfUKnc6xc4s+EOSA+oTSPtGTYpSbSqVSojH40ilUujs7MS9996LLVu2qJqvbrcbhUIBbrcbwWAQwWBQETtZ9cEsSTQAhEIh3H333Th8+DCSyaRSui5duoRYLIZjx47h5z//OVKpFPL5PPL5PEKhEPbv34+77roLw8PD6pnlchk9PT3YsmULurq68POf/xw/+MEP8Pbbb8Pr9SqzaldXF1KpFAKBgErA3NraWqO4UdDcg5TkyX9erxednZ0qcndpaUnV3JVzIEu90fmQ6qgkcvInVfSoaV7WqZXXStAciBw3PMnTwWwjpf+pT8ezsNkEjLJR16Qnr6c52AxUKzHY7aLGFCRfS+mzdWI6gWPTCUWI+Ea4FgWu3ga8XhWHB6XIChA/PTV3lSQZwNGpRM19TrtApWLA6bDh9z62FZ1BtzJB6sAjhrmJlda/XQ8o0d/RHVQRpma+bvUIkCQKm+mLVq+/9VCPfFAlmF8DYF2kpZ6f4nQ8W+M/uF4/Ul0tY0rSN+o+IdsUgHonS6UKjk8nTP0fm4k6t2BhreB+cdxHjppj6XEKThB1SYr5vVwF5ISAmvh0JBSoTf0iFUCqKOXzeaUU2e12eDwe+P1+hMNhBAIBBAIBRVrm5+eRzWZVHjtJlnSmWjOls62tDb/6q7+KRCKBI0eOYH5+Hq+88gqy2SwmJiYQj8dVX2Qljh07dqjqFjzHn2EY2LNnD4aGhiCEwHe+8x0sLy+rlCoy/QoAlSRZVt2gJJvPMVVLKUn2+XzweDwol8uqskcwGEQqlaq5j74ztJIINb1y1Y4SQg7ZF27WpdgwyRNC2AEcAjBtGMajG22vWdRz8uZRiNKkx9U66lyvi+grlQ388i2daGemoKceHavx1TPzM1prdGK9KF5quqWfG80RL1H1+O39dVU5G4DPH1jtRybVSyFEjU/cvdtWm994VHCjNCsSzeaUkxDAqhQaQGMC1AwJ24gfYbNohgzrvigAWLfKxt8jAKZJpnV+pPXWqFEE7WaqaVJRl+/YselE3STZjaLOLVhYK2hkKzerUh88XjdW3kNVHerUT6MqdaZgniqFq38yGICbHOXzpX8dVX+ob5iuPq7dbofP50N3d3dNcMbExARmZ2eRyWTg9XoBQAUNyMhTbprUweVyYd++fRgfH8fly5cxNzeHqakplEolpYRJH73l5WX09PTg7rvvRnt7O4Cqz558tmEYiEajiEajaG1txSOPPIKlpSX84he/wNTUFAyjWn9Xtu33+9HX12dK8ugxHuUs51i2abPZ4PV6EYlE4Ha7UalUlPm2VCopYkzfBzOzMA3akFUzqBosVUed7x7FZih5/wOAUwBCm9CWKZ4+OKGtesE3HR6FCFQ3xH/7wikcnUqsRINWJ08WQXfYRdX0ylI2AEB70I2+Fm+NKUiassz8jNYSwUjHwaN4uU/RejZJXqLKAOAiZcUAXC0FJqACWbhPFDeZ1jO/yetpIfpGZKSZ8fE8cQ6bwEIqX1MS6/Hb+9dtpm92099sf8N6ZNjsi8J6zcm6oCWzJNOc6DZao3rK9bVQd/k7Jr98vDm+iDNXUjWVWOpFnVuwsBHwjdrMZApAS6B4mTJ5nFaMoL52NCCCkidOoLjvFn2uJHic3MlqGPJaGgjS1taG3t5euFwupFIpLC8v49ixYzh79ixcLhd6enoQDocRiUTg8XhqonX5POjmUJJIn8+HcrkMv9+PQqEAr9eLYrGIUCiE9vZ2hEIhjI2NYceOHfB4PBBCIBaL4cqVKxgYGEAoFILf78e7776LpaUlDA4O4ld/9VfhdDrx4osvYnFxUZHBxcVFDA4Ooq2tbVVCYhpVS0210rwqj+fzeUxPT+Py5cvw+/1obW2F0+mEw+FAOBzG8vJyjQmWR9U6nc6aLwJ0zuj7QSOrdVG/ZtgQyRNC9AP4VQD/G4D/aSNt1cPTByfwh391DADw2rkoJhbT+INP7tJuOnzjlHibROWVmJRVKhvgbosCqKklSstYtfldpn5Gay3vJNHItLvepMI8KlMA+O17hvEnP7+IcsVQdW7HesOrypPpTG8AmooU3j/EC9FfNRevZ/w6hbZQNvDiyTl1jVkQjhnWQ5ybvadZVbIeGeb5AWlbjb48NJvseS3zxe99/shUzTPqKdcRnws2+R8dmlN3m6nMIt8x+X4/d3hKjYtWiOEBMevJ12jBAgU11+kCMOg13E+Pm3YleQBqqx9IHy3qI2cWeEEVPXncTD2jip70+6PEUipPMqgiGAwqpSuXyyGfz+P48eM4fvw47HY7tm/fjnvvvRft7e2q3uxaYbPZcMstt+COO+7AwsIC3G63Kg2WSqUQDoexZ88edHZ2Yu/eveju7lZ98vv9uHTpEqLRKMbGxhAIBODz+XDixAmUy2UMDw/jnnvuweTkJI4dOwaPx4NcLodSqYTe3l60t7ernHO6SGn5TyZPlv5/hUIB0WgUZ8+exVtvvYXl5WWEQiFs3boVe/bsUaZYShLpusiattJ0TNVBoDYaWhJuWQ5PrrPT6VTvjg4bVfK+AeB/BRA0u0AI8SSAJwFgcFBfmqwRXjg+W/P5v7w2jofHurW+Nl//zB7lM/e3x69gKV3QtinVKwnOhbkZ8rfu2oI/fnUchgF8/90Z/N59Iwh6nQ030fWQMV1Fh0bnzSCJBC1RZSP/SRgr6gclEY0qKzRrytSZi83SvzQybesUWgoBmAbhmGE9a9XMPfWIoI44f+Wh7Th4cakm52AjMllvDerd20zQkhnoFygA+O6hSZQrtQmlzXz+vvbDEyhXjKrnhGFed7aZMVDQZ87Es3jmrau+ozxptVXP1sJmQleKiisr9ByAVSSMtsUVHRphSaMwJRmjEbVS3dERCZ3apwvCoGZY6qcniU02m8XMzAzi8TjS6TTeeecdFItFPPDAA/jYxz6mVDjZF65I8THr0N3djY9//ON44YUXkEql4HA4UCwWEQ6H8dGPfhRDQ0NobW3F9u3ba8iNz+eD0+nEj370I2QyGdx///0YGhrCK6+8gjfeeAM9PT0YHR1FX18fjh49qkiox+PBL/3SL6GlpQUul0sd1xG8Uqmkgh6Aqol4YWEBmUwGxWIRXq8XiUQCly5dwuXLl1GpVDA6OlqTZFrWn5VRx5S8UXM8VXGBq3n25HrJaxqZwYENkDwhxKMA5g3DOCyEuN/sOsMwvgngmwBw4MCBBjGaejyyuwevnYuSNqt5zD57e7/W1waons+xJL52G1CuAHZR3Rx4zi0Jl8YMeWI2WXPNidkk/tvv3LHq3vVGZupMonyDW29dVmnGliZnwzBWVD1DqR+SzMnUGVQx0zmrS7JCkzTr6gtzc7HZpt4o2IErkvfv6MTLZxdUUAzPG7ceYt3MWvF+6PKymRHBusRFfjNf+dksAW2m4gpPAVMvaEkHXeLxcsVAeUUR5zkieVuUoAujmtvQMIxVc06fs9a0QUDVb9RhtyklTxJ/+Yzr4Wdp4cMDSYyoGY4f0ykyOl8sXuKMbtpyw+cRurI9Xj2Dkk0ajEEVQEroeCUMCUl4JElZWlpSipr0mxseHsbevXvR2tqKcrmsomM9Hk8NCdaZk3Ww2+0YHh7GyMgIpqensbi4iGKxiLGxMbS0tKCjowNbtmyB3+9HIpHA9PQ0PB6POp5KpfB3f/d36O/vR0dHB3w+H06dOoUzZ87gtttuw8DAgFLxnE4nenp6sG/fvhqlUs4r9cMrlUrIZrNKqcvn87h48SIymQwGBgYQCATQ19eHQqGASqWCyclJLC0tYXZ2VhH1QqFQ468o11MSP/oeUVJHTfjcN5CmZDHDRpS8ewB8SgjxSQAeACEhxF8YhvGbG2hTiy/eMYjvv1ObCHV+Ja/brp6Qig6VvjZA1Q+PwmkX+J17hvGnP7+IimHg3ck47CQHnACwtz+M3X1hjPWGVwU4cKL5yO4ebV8bkZV6kJuQWfqXRufrIeJzqTQpBoBH9/ZgW1dQqR86f0MJ7qwuyQol0XJuuCl3rcEnjUybtO2N+sbVU57qRedyZZTnZZOmSaCWyOgSa9NUPTRKu5l5MyONje5dC9kxSzwu3w9OpHTg/fmtu7asqt6iy9MnCZvM5WimXNN7bQKw2arR4XabwFOPjgGwatta2HzoyJo0wVF1hkdH0nQYEnQDp21R0kWVOk70uCooSR51yueqHq2XKhUk2V/qc0b7nUqlMDc3h/HxcTgcDmzZsgXd3d0oFotIJpOYmZlBqVTCwMAAent74ff74XQ6tf55ujEYhgG/34/bb78d58+fRzKZxNDQEHp7e5HP5+H1euH1elEulxGNRnH8+HG43W7ceuut8Pv9GBwcxNtvv4033ngDjz32GEZHR/H666/j+PHjGBwchMvlgtvtRiqVgtPpxD333IPR0VFF8KS5lhIpmbYkk8mo6huJRALz8/Po6upCIBBANptFT0+PSrC8c+dOJBIJnDt3DouLi6qaBjXRUiXW7XavIvhy7bj5WM4lNdFeE5JnGMY/BfBPVzp+P4B/fC0InsQ/eWQXnvgvv4Dkbj87M49Xzi6guHKAR7hSHzoAqFQMnJhNKlVJ5oD72el5VcP0qceqG4Ju45QqlS74g2OjikGjTbreeR1BOXw5tsrk/cP3ZvHs724BAHx3xY/Jbq9NnQFAReJSZ3WpsnA8+/YEzsylTBXIjW6yfF43Ms90nqjPZL26tvS5VBnlap00TUqSIY/TxNqCKKgOm1iV/qOZeTNTuzZzzuv58JlV3pBzG/G5lBuAToWmAUb8OcdnEkrVrFQq+OrfnNC6DvA+Vm+5Sph/dmZePc+xzkohFizooDOlcsWOB2LQXHfyXtoGV+Z4TjbZDiVkOkWIqoK0r0IIRQ64yib7K9uU0aeSWKRSKUSjUZVQuLe3Fx0dHTh06BBSqRTsdjui0ahKaRKPx9HZ2akiciXhawSHw4G9e/dibm5OJWLOZDJwOp1oaWlR5c1SqRRisRiKxSJGR0cRCoWwbds2vPnmm3jxxRexa9culbvuxIkTuO222xAMBhEKhVAoFNDX14e77767JlkxXReqmiUSCYyPj6O1tRXFYlGVVGtpaUG5XEYwGITL5VLpXTweD3w+HyqVCqanpxX5K5fLq2rkSqWQVlDh75VcX7mWPPk1j8ytmc+GM36DYP9QBE98ZPBqbqyyAelVJyNcH9ndUxPVyvOp8dxfv/exrfi9j22tSaVSL6fWF+8YrEvuNhOfvb1/Ve3dRlG79XKq8fqzFeOqYkRNhTu6g6aRtJJMSpLJS551hTw4Np0wVSBvFJgpYIcvx/DUD46rBNi8ri2FmdmWmiYNw0AsU/UJfXN8sSax9lhPSM1VuWLgCU35s0bz1ii34mbM+Vp9+HRlzGgAkpkKzZ8jAKJuAuXKVQWUrwlfiwqgEiX/9PR89T9qoxqo8/RBfUUMCxbWinolu+TmTIkDNeVSdU2XG49GWlYqFRUkIdUdnTlWptjgKiJNqaIjfdIsK/3GJBGk5l/pM5jNZpFKpWAYBlpbW3Hq1CksLCwgEomgv79f+b4NDQ1haWlJPRsA0ul0XaJHyc3g4CD6+/tRKpXg9XoVofL5fCr9SW9vL+69915cuHBBKW2tra0YGRnBO++8gzfeeAMPPPAAIpEITp48iTNnzqCrqwuRSPXv/t5778X27dvh8XiUsibXj6qY5XIZc3NzWFpags/nQzwex9TUFPbu3QuPx4NgMAi32w0hBIrFIvL5PDKZjApYkX12Op1qTilhk8ocJ//UHEvfOXmemtPrBbpsCskzDONlAC9vRlv1MNYbXhUwIVA1z4z1hFb5qX39M3tWbUjcnHj4cqymTulTj47V+Pk9+/YkdveGrxu54wRE5oFrJmrXLKcaJWO2lf+TXCukQJIPair8/Y+Pqg1QN1804pP65O3oDuLVcws3dATj4csxfOOls1qi8eb4Yk0JN5uoXxdXZ7aVpePMiLE8/sRHBnFm7kQNeVor6dhMxW6tzzB7Fg+Q4V+WzIgpfw6AmsoyEMI0+TW/93tHptSXwcpKsIf8f8OMKFqwsFZQFQ1YXR+Wqno653hqstSpfTSAQv6jRFESQUnqpPpGiaXMscafrwsIkYRMkkiqGEnyl0wmVa1XwzBw9uxZVCoVuFwutLa24o477kBXVxf+3/a+Nbau7Drv2/f9fvBevklRIiVrJGtG0kjyjDuOmyYunKR2pxjXdYImDYoiTou0TYoARRKgruFf/VEEToG0hZGkSVDXcWIbdlw4bfxCi7gzsmY0kmYkShqJFMnL132/37ynP8i1Z92tc8l7L0mJpPYHELyP89h7nyOdj99a61vBYBCDg4NtZtDNZhMbGxuSsHJwgtdqtWRv2lgsJsfo8/kghJC5eGTbcuHCBZRKJdRqNbhcLpw/fx6xWAypVAqGYWBwcBD1eh2Li4tSXZuYmMCFCxcQiUTaiiBUtFot1Go1VKtVRCIRmW9XrVYRCoXg9/ulXQwviEkmkyiXy9JWZnV1tY2009rztaXz8z8A6D0ndbRO/Jrut0/eE8FbCxl8/i/ffawKVohNVYpy7bpRkZazFXzjegzA48QoU67j05cn8eWriwA2ic/nvvVux6rQvZrbTgnn3SSimz1A760V2kjxZ3/i8argbvO3uql4PMgVjGYqk0rEnPbN6lGLReALr57rqaCFt44zI0VcIc2U66bWKL3iSaikvZzDzMJIzensdI+o5zEjfZ1St9V9uVEyDLTl6h3UP0A0DhfMCB6BF1MQuPpG2xCZooe8mg9G+5mdh5M9Ik782Jz80bHJ4w1AmyJIxydS2Gg0HstPq1QqqNVqklgS2aHii5dffhljY2PweDxwOBzweDxtJJXCi2aFAirJA4BIJILFxUWpKrrdbtRqNRkyJmVxbGwMVqsVmUwGpVIJg4ODmJqaQjgchs1mw9TUFKxWK+LxOAYGBmCxWHDlyhV88IMflKFlvs6crJNFChk753I5LC4uYnR0VHb94N1DiMj5fD6kUikkk8m23DkK19I5SNVsNBowDAPVahXr6+uyYwaFeHkHDAK/l7bDoSF5b8yl0FD87UiVam3GxmDZqhjtZDHy1kIGv/Cl16UR8F+8FcPnP2muvHz12pIMr1Fo0yzviLbvl9iYJZx3owSZPaTMHqBvzKVgEZtrZBGQBI8XlnRbfNAN0TwIodmdPOIMmJtY96OM9VpYAuxt54eDBr6GN5ey+C7rkdxr+F79A4Mr7tutG42B+w8C5p1cNDT6hVrtqubS0Tb0HYETO+D9sCoPpRLhUIsmOOGjUB7/jhM4XjlLYyDixsO3qorYarXaVCPyg+ME0G63o1AowOVy4cMf/jA+/vGPY2ZmRpImKupQcwkrlYrsc8vHxfPfaJyDg4Ow2+2oVqvSb65er2N5eRnxeBxnz57FyMgIlpeXEQgE5FhbrRaOHTsGu90Oh8OBkZERhEIhJBIJjI6O4qWXXsJHP/pRBIPBxwgeXQ/yCcxkMlhcXEQ4HEa9XsfS0hIajQZmZmZk2JeTLaqcHRgYAADE4/E2mxoihfw6lctllMtltFotzM/P4/vf/z5Onz6Nn/u5n5N9gXnYm8g6kUt+n5nh0JC8l6cjsLNODVaLwK985AT++PVH8gFLykgnixGVKKrKC/XWfHk6gi+8eq4tAV8tbuCtoCBEx6TwnWCmJO6kBG33kFIfoGb+etu1nlLnx7fhVaNCAH99ew1hj+OJhbK7QS8ecZ26dfRy/czCjP12hdgP7FV3jl6ORWv41kJmz8L3va7bpakwfvbcKF5/mAJVOetWZhp7CU7S6DcRJLUikodWSe0hcJLHw3B0XNVeRSV2ah4ZkSyqwFSLNHhIViWOVqsVdrtdkjl1XkQ6W60WyuUyotEopqenMTw83DZvM7VOCCFz54jAUaEC78xhGJst14gILi0tYXR0FK1WC/l8HrlcDolEAjdv3gQASeC8Xq80FvZ4PMhkMqhWqzAMA+Pj4/B4PAgGg3jppZcwMjLSRkT5taD5VatVJBIJVCoVuN1upNNpZLNZXLx4EadPn5aGyFzxpHUm5ZG89Wj9HA6HrDY2DAPFYhHpdBrxeBzLy8v48Y9/jPn5edRqNczMzOADH/iAzLVUcy/VCttOODQk79LUZmP5r1+PIVmoYdDvxN/94AiORbyPVbxul9zNiSKvZAQefzh/9VfNG9m3PXC2CkD6zfUxU4I6EY1+VDKVhHTzsOyU2ycNbQE0DeBmLIebsc1OJAeF6PXjEbcbqMRnJ3ubfn0Uuzm32fd7pRr2c6y9XO9e161TlbOGxl6Bh2IpgZ5IkJrjRa+5lQhXZtSCCNpHDdHxz83y+bgCR0SLF16QKqeqidxLD9j0dCNFi85FBQ9EVok8RiIRSeyocwOpVVytowrbQqGAVCqFSGTz33ChUJBkhUKZ6XRa5tNdu3YN4XAY2WwWt27dwre//W1kMhmcPXsWwWAQMzMzsgVaOByW6t+dO3cwPz+PUqmEQCCAkZERvPTSSzJ8qxa58GtCnn/5fB6GYaBUKiEejyMajeL8+fPSB5CraQDaeu02Gg34/X4ZovV4PPD7/QgGgwCARCKBtbU1zM/P4+rVq7h37x7y+bxU9L75zW/KUDid7+TJk7KIg98v24VtDwXJ4w+zT704IR82f/HmklTRuB3DdsndRBQF2itXzcgBL0DgY1nOVqTlxU5J4TvhSSXP03HvrRVMPdw4zNavrWpU2f6v3l194iSvE8HZS4+4bsbQqa3eduffzfXm9iQ7WYP0qxr2G6o3Q6/rTd1W1H+fva5bpypnDY29Bi8k4H1lzaxP1AIK+pwXR3ASp5I2gnp8/kOKHlcA+XekPBG55OROJQuNRuOx4g0e7h0dHcXQ0BAsFos0GOb2HlxlJH84l8uFtbU1OBwOeL1elEolpNNpRKNRSQaz2azM7SsWi3C5XMjlcpifn0c2m0U6ncaNGzcwMDCAyclJWK1WVCoVBAIBOJ1OOBwO5PN5XL16VaqMpIyppseqIttsNlEqlZBIJABAGi8XCgWcP38eXq9Xkliej0eqKSf6wGZXjUgkgvHxcfj9fgghUCwWsb6+jnfffRdvv/02ZmdnUS6X5ThyuRxmZ2cRj8dRq9UQiUSQy+UwOjoqCz2azSYcDsdj94aKA0/ytmuo3tgwQLasXHHi1Z87JXcTOhnYqmOhnD4LgI+dHcav/u0Zec7dmPI+CZVhO3VDfbCbPVCJvAgB6VcItBtD72V4cLt5dFKVdkOieh17pz8Mdjp/v9ebe/hZhJCFRp2sQfpRDfs1WN4LmOXMfuVXem+nB+zcJlBDY7foVHjBSQP98BZWKvmj7+k1T+Ln1a+8Wpc+4+/VilmVZNGxKUwKvJ+7R/up+Xuk/nGCVigU5GcnTpxAs9mU5sKUy0aKFSlzfAyBQABLS0u4d+8epqen4XK5pMEwETSaD/WJJfI2PT0tCVylUsHCwgJWV1fx3HPPyfGSr14oFILFYkEoFMLAwABOnz4Nj8fTFg7nhsdcjaSiCepuQZWy5PlH5JvnEdZqNRmaJaLn8/nwwgsvwO12y5zCRCKBpaUlXL9+HW+88QYePXqEUqkk50yEsVwuw2Kx4NGjR0in09Ib0G63o16vw+FwmNqsqDjwJK+TGSuv3gMgXfH7aR7fbWjn69dj8gHUAvDdO+tYz1fxmSvHHrMzOYjopG50erCr5JiTl3trhcfC5GZFJLutHt1uHp1UpX5IVD/hyO0U470mEqqHn2EYsj1YJ2sQs3zBnYjOdmv7E6cGEd+63/eDKJnlzPabs8jn3msbQA2NbmCWf2aWV6cqbWoxBNBunaJW5NJxaV/VIJmHbumYnFyq+Xe8sEIIAZfLJatnNzY2pGUIvSazXl4cQeSiXq8jHo/LfLN4PI5yuYwLFy7I0DTvs0tVpNFoFO+88w6cTqcsjCiXy9jY2EC1WoXVakUikcDCwgKi0SjcbrcMf05NTcFiscDpdOLu3bu4efOmrHZNpVLIZDJIp9MIBAKbz7lMBufPn5dqH696JiWT3jcaDZk3SPPO5XJYWVnBzMyMqdUKhcCJ5JElCxFcIvepVAoLCwtYWlrC7Owsrl69ipWVFVQqlTYCzvMoG40G0uk0kskkpqenpTk0J/RqmF7FgSd53JJBCIFzY0F86sUJfPF79/E37yVlj8p/eGkCmXK9r+bxvN3UdqEdNept4GDmpXVCJ1LSbSiOk5dLU5tdQN5ayEjiwI9TbbTw7771Lgzj8c4Ru1X79kNV6icc2a9q2M/8H/fwA37quSEAkD18twtPd0tizdZWVdhm127vi6VQp5zZfkFz53mSZn2YNTT6Aa9uVdU54P08NA4ezuX5VET21O9VYsYVKNqXwEO1RKiEEJJ8BINBBAIBSSIoV8/v98PtdiMWi+H27duIx+MoFouw2+1wu92oVCrIZrMyP43g9XrhcDhQq9XkNisrKzh+/Ljs/mCWt1iv12GxWOD3+zE/Pw/DMKRhcD6fh91uR61WQywWw4MHDzAwMNBmHuzz+eT6Tk5O4oc//CF+9KMf4aWXXkK1WkUmk4HVakU0GsXGxgbGx8dx4sQJVKtVqbTxteNFH1QoUSqVYLVakc/nkUqlUK1WATzehYLC2aVSSaqOdH3IcqZer6NSqeDu3bu4fv065ufnMTc3h0QiIYtbuIJH9xQR5EQiAYfDAbfbjWq1Kv+ooOut3mMqDjzJuzQVbmuK/rlvvYsvvHqurZesAeDcWBCnR/w7Pvz5w5zsGP6ctZuyWjs/WF57cQJffXNpq9tGO756bfHAk7xOpKRf0sR956wWgU+8MNpGhImUqG2/dlsMsB95jP2uQT85Z/3Mn3v4CbHp+fa92XU4bBZ8/pM7K6a9EHl1bX//hw86Kmx7GZ7fLmd2N3h5OtJmcM49+zQ0+gWpU5zgqflwnUKxKtFQE+g75dtxIsnDuhQupDBfoVBALpdDrVbD4OCgJEeBQACRSAROpxMA2goeyBKkUqkgkUhgZWUFgUAA4+PjsFgs0tBXiE1fPrvdLsO4rVYLxWIRXq8XU1NTcDqdUgkEILs92Gw2eDwelEol+Hw+3L59G8lkEmfOnIHL5UKtVsPa2hqazSYWFhakygUATqcThmHAbrfD6XTKjhof+chH8M4770hvuVQqhaGhzT+AA4EABgcHUalU5HUjIsWtTYgYl0ollEoluY65XA7ZbBZOpxPBYFBWxtK+9XodjUYD2WxWKnEbGxuyM0ipVML6+jpWVlYwOzuLmzdvIhaLSbKmgt8XrVYLpVIJhmEgGAzC5XLJ/YhQ0rU49IUXmXIdG1tdGZpbRO8zVybb/N8y5XpXD/+wxyF9s1oG8GC90EbafvIDgx3/8780FcZXtx5C/+deHMvZqvxuKODa0znvF8xIST9hPQD4xvUYqlvt0potA9+8sfLYNgLoSzXsZx67gdm906kIYDdo+yOj0cIXv3ff1Mplu/GtZCv4yo8X22x3dkoX6NXPTy1mMVPYOrXRO2j5qZemwvj05UnZBYN79mlo9AuqXOWFC7yjASdsPN+N59qphA1AWziUPjezWKHQJlWnJpNJSSCSySTi8bgMjUYiEZw+fRpOp1Mqd0T0iJA6nU5cvHgRQgj4/X6srq4iHo8DAKampmRYcmFhQfrm5fN5ZDIZ2Gw2xGIxjI2NScJEKhNv3UUKVTgcllYqi4uLSKfTCIfDaDQaSCaTKJVKyGQy0lMvFArJdXG73fD7/QCA9fV1uN1uHD9+HIVCAUIIBINB2Gw21Go1Gf5sNBqw2WzSroXURK6IkeJWrVZl4UU+n0c2m8XIyAgCgYDsukEFFtVqtU1dM4xNQ+NUKoVsNotsNotEIoGHDx9idnYWy8vLbcS1E9SQPRW0lMvltgIR9f4zw6EgeS9PR2C1iDZzYsrN6zUfKlOuyxZHFgC1Zjubjvqd246Fh7/+0X/9f9gwAKsA/vlWAcZhBc2LJ/fvlNf4F28u7XjcFyaC+Nwn389xfBIJ/Cq6Na7m985ORQD9Qu0I8aMHSVx7lO6KIPF7j1p+dbuGnf4A6kaJ66SwqXYxX78ek4bFBy337bUXJ3peMw2N7cBDrtySg1Qe8jMDzIsleEUmJxtcWSLFptlsyjw5IiKFQgG1Wg2PHj1CPB6H1WpFKpVCKpWSihJ1S/B6vahUKigWi1JFo+pdGjupchcuXIDb7cbo6Kg08/V4PJIwVSoVrK+vo9FooNlsYm1tDTabDXa7HZOTkxBCyLw6KjhQSYjdbkc0GsXw8DBmZ2dltW21WkU6nUYmk0E2m0Wz2UQkEoHL5UIymUSxWEStVkOhUEA0GsXQ0BBWV1fhdDqlsnr58mXUajXcvXsXzWZTfkemwrQuFLp1OBxybWq1mlTfEokECoWCbKGmhmjJyLhQKCCTycDhcEg1cn19HalUCs1mE6lUCg8fPsTi4qIkaWYFO9uBwshkbaPue+hJ3qWpcJs5sc0iIIAdE/vNHmAU9uI9RGdX30Vjw4DdKvCprV6x3cBqtaDVbMFq7ew2fZDQja8aT+6vb6O0vTGXktuZQQCwW0UbwQM6K2b7VZHbr3G1WgRAof29CEmq3Rh6JUj9hqvVP4B6CR2b/fGkEnYB7LnRcy/3xnbb0ppt1xpNQ6NXkBqkKnik9vD8KgIlz2ezWayvr2N9fV36o1Eum8fjkea+TqdT2mY0Gg2USiUUCgUsLi4iFoshk8lgY2MD0WgUNpsNk5OTsjAhn8/LQgCbzYZKpYJcLic96gi8wtbv9+O5555DJBLBsWPHUKlUUCqVpMfd2tqarG69f/8+hoeHUSqVcOLECVkp63Q6ZTiX1oRA6+HxePD8888jmUxibm4OyWRSkttsNotyuYzh4WG4XC5UKhWk02lZsUs9egcHB9vWxOl0YmpqCo1GA/Pz88jn83L9KKxMBJS6dng8HllgUalUkMlkMDc3J21TVldX8eKLL8q2ajxUm8lksLKygvv37yMQCMDr9criDaryffToERYWFlAsFndU8DqhVCqh1WphYGDgsRA/D/+b4VCQPGCzqOH0iL+tIfxOSlOnilH1AXl6xN9XInxzo3Vowj/dPNAfT+4XHRUPesBTuJZwfiKIz1w5ti35VhWz/Wzz1a9xtRqiBPrP5VLJx6WpMH7jYx/AtUfpngiS2XF2g92Gzs3C/Huplm13b5hVyHdzH3XbGk1DYycQsaNQJFeJSMWj0CypTLlcDmtra0gkEojFYojH48hkMsjn8ygUCtJ+w+FwyPy5aDSK0dFRRCIR+UAPBAIYHh6WSmAymUQ6ncbg4CAGBgYwNjYGh8OBcrmMTCYDl8vVFqqsVCrwer1t4V9uJ0KtuZxOp/Rvs1qtGB0dxejoKFZWVlAul5FKpSThs1gsqFQq0gaFiJ7awxd4n1Ta7XZMTExgZWUF2WxWWqmUy2XZrYKqZYvForRFIVWRQpZDQ0PweDxSPQsEArDZbFhfX0epVEIoFJK5a36/H5VKBXa7HblcTip01HKNiFu5XEatVpOE1DAM5PN5qbQWi0U8fPhQVvj6/X6Ew2FEo1EMDAzI/r4PHjxAOp1+rEVdtxBCIBAI4OzZs9JcmeeC7kQcDw3JA8wbwvMHE/+Pf6fOB6q61Ot/9k8j7LgbdPNA58n9FovAF149t6OaRIUrG1tKqKrc7cW4dqP08evUi3E1hSi/8O3buBnLAeiPzHf7xwawPUHaDRnu1zi6G6j/dvrJ7eyETveGqs5++vIkgJ1J8l7lg2poAGgjcMD7xRL0mqphqSgilUphdnYWN27cQCKRMCVYhmHI0CBVitI29XodQ0NDMvw5NjYGv9+PY8eOSXsOylkLBoMYGhqCEEKSJq/XKwsiSGkidYvIglkokXrAlstluFwuDAwMIBQKIZlMyupRi8Ui1Uje05W3QaP14sTEarXC7/ej2WziwYMHsNlsMp+N1M9msynXq1gsIpFISA89v9+PXC4nbWDW1tawuLiIM2fOwGq1olqtyuIPUjqpwpfWvFaryTAt5QSm02k5vhMnTsDpdEr7l2KxiHK5jLW1Nbz77rtSUbXb7bLIxTAMZLNZ3LlzB2tra7ITiHqfdINAIICPfexjOHXqVFuxCK0r76JihkNF8oDOpsVmHm37TcJee3FiT5Py9xPdPNB7DQPSA/5TW/lO/YTBdhrXbpU+MzLVy/w+98kP4h//wRt93UdvLWTwxe/d7/qPje3WfjfdK/bDOLoTeN7gbhXabix/yAjabhWyC00vnVw0NPoFbw7PlRXVBqXRaEj7jHQ6LckQVYpubGzIytFKpYJWqwWXywW32y1tWnjuHBE+wzAQCoUwODiI48eP4+TJk8hkMqjVapIs+v1+WZVptVrhcrmkKkX9YYk4cGNfCim3Wi2Z+0cWKtSey+/3S4uRUqmEWCyG6elpAO3dI0i5ornw0LDNZsPg4CBOnDghc/MymQxSqRTcbjdKpRJGR0eRy+VQr9exvLws/fScTqfsD0skrVqtYnV1FZOTkxgYGMD8/LxULsn/j9qzEWmjMHGtVkMmk8Hq6ioymQzC4TCcTidyuRwWFhYwNTWFVquFhYUFzM3NSRuUZDIpiW4ikYDT6cR7772HhYUFaWLcbaEFJ392ux0jIyP46Ec/ipdeeglut/uxnLwj09aM8NZCBp//9m00TUyL1Ydgplzv6QHWa+4Pf4C91kMe39NEN6S03zAgeQ1+9doSvvDqua7tZHYiGt2Sm53ysVTldifw4/XrhUf2MgY2K8B7rWrl6Jeg7Idx9F6ctxt0ujdoLaS3JTbtej7zoUmMh9zbpgnsdwtBjWcHnHSpIUlS5xqNBhKJBO7evYu5ubm2vrG0L+XbUZ4Y739qt9vh9Xrh8/kQDofhdrvh8Xhk1SrP96Mq1GQyKQszLBYLXC6XJKFE/kjBIyJaqVRk6FMIIUmR0+mEzWZDuVyWhMXlcsHr9cLlcqFUKiGfz6Ner+PMmTOYmpqCz+eTc+JKp1pgQvB4PJiZmcHJkyeRSCRkdStVxxqGgdXVVYTDYVn0QR55+Xwe5XJZ5i6Ojo6iVqshmUzKgotyuYx6vS6vESmaxWIRqVQKtVoNXq9Xmg7HYjGk02lJgNPptLSiMQwDc3NzuHv3LhYWFuS1slqtSKfTaDabWF1dlUTSTB01I3y88trtdmNsbAznzp3DmTNncPz4cVlNTNtQGJzfS53QN8kTQkwC+FMAI9hsAPElwzB+r9/jdQPKpwE2/1O/vZKT35k9BLt9gPWqOhy2sM9+k9I35lLygUsWN72Y5e5EbmwWgcbGJrE3Izd7nddnpgr3Ct5dxALglZPRrqxSzMayG7L5tNSrvTqv2b3BUwW+9lZMqnfd5EvuF6nVePagPlx5+JWQy+Vw9epV3Lp1C+l0Wqp3ZLlB1aekoFE+H1XRcrWQHu5er1cWe5BKRiFJqqSlbYhYUW4dhYJJeXI6nZLIUZcGKn6w2+1oNBqoVquSWFGoMBwO4/nnn5fFGadPn5Z9VQHI46rm0GT+S+tks9lkAcX09DTeeecd6ZNHa0GFHoFAAG63W4agbTZbW6cJYFM5TKfTuHPnjrRMqVQqWFlZgc/nw+joKILBIAYHB2W+otvtRqFQwK1bt9BoNDA3N4dKpYLV1VX4fD6k02ksLS0hm81ieHi4rTCDQtnULYSHqFXSz0PURH5pf7/fj8HBQUQiEVy4cAHHjx9HOByW15/3RyZSyRVS2s4Mu1HymgB+0zCM60IIP4C3hBDfNQzjzi6OuS1Ursrfd/tX+l40X++mz+1Bwn6TUjOLmz09x9Zao4Mkrc7v69dju1JrVC+7bixlVKgkp1+Cp5LXXtvn7ZV61Wte5E7n3W1FNU8V0MqcxtMAt1Ch3ChOhJrNJh4+fIgbN27IvCwqaiAiQMUE1K+V+sCS9Qn5vZVKJXg8HoRCIdmeq1gsSusSIgGVSgUDAwOyv2mlUoHP54PFYkGxWITP55PEis5J5wLeVydpjFQpSwULGxsb8Hg8OHXqFDKZjFTMQqEQALRVCdM51JZvFHKkcRDxHR4eht1ul7lxFosFpVIJt27dkkUYw8PDcDqdeOutt2RhR71eh8vlQiaTkVWoPp9P2rDMzs4iHo8jGAwin88jFApJ+xPK/Zubm8OtW7dgGAZSqZQk2bRdqVTC/fv3EY/HJfElMl4ul2VYulOVKym2FFoPBoNwu90IhULwer0YGhrC4OCg9DAksk2hXrq+FPKmlml0zfalrZlhGKsAVrdeF4QQswDGAewbyfvUixP42ptLHe1OdvorfS+ar3fb5/YgYb/VnEtT7RY3jl2cQ334d1PFrBZXfO2tWFc2KZ3AjyeEQMsweibIe0GuDopxdL9Kaafz7qXyqpU5jacFnntH4GHQVCqF119/He+99x4qlYp8cFP3BSJW1IiewnukeJHZLhEXMjym/qukhG1sbMhK2UqlAr/f3+blRmpWPp/H8PAwKpUK3G53mzpExIsrh5QbGAwGEQ6HUSwWpbcd9Y39zne+g8nJSZw8eRKBQKCtzRapcWSlQpW9FCKlsC4nel6vV45bCCE980ZGRhAMBiURdDqdiEajsFqtuHbtGk6dOtW2jn6/H6FQCM1mE3fv3pXVtJVKBQsLC7BarSgUCjJHb2VlBePj4xgbG5N2Kvfu3ZMhamCzEwiRTxof73ur3gukVjocDhw7dgwf/vCHcfHiRYyPj0uCyn0WeUcTIq+0nnRcUl2Bdu/FfQnXcgghjgO4CODqXhyvE6jisd8HZ6eHJg//7FQ8wMNwhtG5z+1BwpPIRSKLm92cw+zh32vBiNoNYre5YNTcvh+CvFsCclAKBfaKbBKBX8lWDlW6g4aGGUiJovw5oF3RKxaLWF1dlSoUtagyDKMtB4+IgMvlkgoNqTlU5FAsFgFAFlUEg0FZmUr7U3ECtRNLp9MyRFssFpHJZGSuHREVInpUvEDWLxR2pHBgIBBArVbD+Pg4XC4X8vm8JDjXrl1DrVbD9PQ0xsbGMDU1Bb/fL8lbsViUYWmqlI3FYggGg/D5fEgmk7KqdmlpSebQNRoNxGIxWCwWqWCSJ57L5UIoFJLWMNVqVa4bmUH7/X54vV65xvV6HeVyGQsLC2g0GvB6vRgdHcXU1BSmp6dlL15S8e7du4cf/OAHuHbtGlKp1GMFKsDjBIuKScjr8OzZs3jxxRdx4cIFTExMyHxAImhU3MJNtOkYpOTx/E3KxSOfQHU8pvfpbm90IYQPwNcB/IZhGHmT7z8L4LMAcOzY7nu79vrg5MrQTg/Nbjy0Xp6OwGbdUo226XN70PAkFI/tlJtuyJ8Zmfi1v3OyK4LKqzr3wquNz2W35LVf9ErO98tUei/Ipmp7slMlrIbGQQdVxPKODkT4Wq2WzPmq1WptOVn0EKfXRKgot4pIgtVqlUa+lOPWaDRko3pS74iwkV8dhRup+wUZFFM/21AohGq1KnPyqHigVquhUqnAZrPJeVDIlhQ2KiS5c+cO5ubmsLa2hkePHqFer+PGjRsYGxvD+fPnZfUr9akl5Y1CuPl8XvaevX37NuLxOIrFIubm5qRpcKvVQjweRyQSkXmMiUQCq6uriEajUgWk3MFQKASbzYaVlRUYhgG/3y+9/Qxjs23b8PAwJicnMTk5ienpafh8Pqk0ciXN7Xbj8uXLmJqawpUrV3Dv3j2srq7CbrfLYg9aeyJjVqsVkUgEw8PDKBaLOHnyJC5cuICBgQF4PB7pHUghbFI6+X1ApJEINs2bt4ej7Wlbbqlihl2RPCGEHZsE78uGYXzDbBvDML4E4EsAcPny5f7snvuEmTLU6aHJCUatsUN3A2LuO5RFa/QWmutEJnohqPtpC/I0sF/FQ72OYS9Dz91UwmpoHHTwilVO0Eh1KRQKyOfzkuTx0BwAuS11pKBwLbCZaE/2IPF4HNFoVFa/ptNpGcIj8mAYBnK5nFS6iEitr68jHA7LKlEiTURSyF+uWq1KcuX3+1Eul2WImDo4kHXI6uoq3nzzTayvryObzaJarWJ5eVma/66srCCVSkEIgdHRUWlFcuLECQSDQeRyOWSzWeRyuTb1bGlpCalUqs1yhKxcCoUC5ubmMDk5Ke1NKFcuHo/DZrPJvrt3796VNivr6+u4dOkSXnvtNRkO9ng8bSFPuh503bg/4OjoKIaGhvDKK6/IMDuppaSEUnidFFWr1YqNjQ2pzBJZp+IWUu3oGHydW61WW2EOEX5eWMHDwzSH/aquFQD+EMCsYRi/2+9x9hOdlKGOCp1ls8OBgc7dDaidF9k26FDT9ugl1LdXBO1ZzNPa7+KavQ4999M5REPjIIHCa0B7ZS0pMsFgEKFQSPZ/JQJBD31Sb4BNQkEYHh6GzWZDsViUD/58Po9SqSTJoNvtRiaTkUn3VqsV8XhceslFIhH5mrpXZLNZLC4uYmhoCA6HAz6fry0vMB6Pyw4U5XIZ5XIZjUYDuVwO+Xwe3/rWt+Dz+VCtVjE/P49kMinHVywWIYSQnSoymQzsdjvGxsYwNDSEaDQqw6xLS0tYWlpCtVqFx+ORlaxUcMKtXWi9UqkUVldXMTg4iEKhgGAwiMXFRTx48ACxWAyhUEh2BHE6nchms5ifn8f9+/cxPT2NaDQKh8PRts4A2lRYbtZM7+na0HqpxIoTRCJudF9wf0MKGXPllvImedUtbWNGPEn142Pj4+6E3Sh5rwD4JQDvCCFubH32O4ZhfGcXx9xT9BJmujQVxqcvT+J/XF3sOslfh5p2Rq/r9bQI2n72z30SOOj3pfao0zhq4OFXMyVlYGAAU1NTWFlZacvHI+WMlB9SgqrVKlwuF8rlssw/q1arMpRKClE+n4fP55OFF41GA9FoFKlUCvF4XBoKe71eSfymp6dl54toNIpqtSrDtg6HQ5oAk21Jo9HA2toaarUa4vE4SqUS5ubm0Gq1EAqFZN4cJ6kejweFQkGGhv1+P9bX12U+YDKZhNVqlcbKAFCtVuVa8oIGl8sFn88Hj8eDQCCAYrEo8w6LxSJarRbu3r2L119/HbFYDK+88krbdblx4waGhoZQLpdlWJ0IHP3wTh9UYcw7c/Bry8OjROToXKqRsbo/hWb553QeUup4j2OuJvJcO64C0rjp+30heYZh/A1wsHt99/pgeW2rc8NedoU4DNhPgnMY1mu/++c+CRyGdX4WFVaNo4tmsymVISII9OBttVoYGRnBJz7xCZRKJbz99tuyByxVsjocjjaft42NDUkGyAOO+qfyKksqpKjX69I+hRS09fV1JBIJGdIslUrI5XIyUT+VSuHhw4colUqywtZqtSKRSKBYLKJYLKJUKiEQCODevXvIZDJwOBzS7iOdTkvSyqt7ae6kQNntdmn9QpYoxWJRKlk0HwobVyoVlEolNJtNOJ1O2X+X8uyo68by8jJyuRwWFxeRSqUwPz8viyuWlpbg9XrRaDSwsrICq9WKM2fOYHBwUIZNCbyIAmhXxohMdTIt5qSeVDnVH5HUOF4Zy8klbU/3DQ/V89ZvKjFVz9MNDlXHi36wH/lcR+lh9SQIzkFfr6dlbr0due6HeB/0ddbQOEqgnrTA+4nz3AaFiN7HP/5xOBwO3Lx5U+aKURiPbDlIFSPSR4pRtVptMxAGIMO9dI6BgQFZzVmv16X6V6/XZfeEs2fPYnBwEABkQQQpTDabDQMDA7KNGOWSfehDH5LWL8lkEu+99x4sFgtisZjcz+FwoFarodlsIp/PSxJEoV6qJM1mszJvjdaLWr6Rhx8pkuFwGOPj45iYmIDb7YZhGMjn84jH48hms9jY2MDDhw9RrVbRarUwOjqKTCaDXC6H8fFxeDwenDlzBi+88ALOnj0rK33pmhE4WeOFDTyES1AVO5W4EfmieZEqSfvSZ6qax82T+Tn58bhVitr7l2/bCUee5PWKZ+1Bedi6d+wHnkaocztyfdCVxcMe2tbQ2AuQCkVqDeVZkQLXbDZRLpcRDAZx6dIl+Hw+LC8v4+HDh7KYgFQgXsRBRQ/A+w9wKhpwu91otVrwer04duyYzFUDNhvZOxwO2bf1xIkTOHnyJM6ePYvjx4/LLhicoPDKXh6OpPHQ97Ozs7BYLDLMTBWlPKeMxssLEYBNMkPdO0i54tXEkUgEp06dwsTEBE6ePIlgMIhAICBboxmG8Vjf2eXlZbl+J06ckIrmwMAALl68CKfTiUAg0FbFrObQ0W8qcCBLHE7caBtO8rhiy3MxeQcKysFTCRgP/XK1juch8vHxMKyah0dKoGrjokKTvGccBz2X60ngaYQ6tyPXB5l4H3QCqqHxpEBhVyI8tVoN5XIZlUoF1WpV5nkZhoFQKITp6Wk0m02USiVp80E+ddRSLBgMYnx8HG63G1NTUwiHwwgEAhgcHMTExISshhVCwOPxoFgsYmVlBQ6HQ1p0BAKBNrNdUv64omRseeMRoVPJGuX/0bbBYBAulwvZbFbmFwLtyhjwOBEhexZS/Mj7z+v1YmZmBleuXMFzzz0nj89JGSdbamHLhQsXHgsRE+lR1S/6jvL96HP6jle9cqidOtTXfK1UAkhEjz7jP1ylo9fq+hN4wY7ZGHgIuBM0yXvGcRhyuZ4EnrSCux25PsjE+yATUA2NJwnKSSMLkFwuh0KhAKvVKvPdgE0bEKqInZmZQSAQwMjICLxeL8bHx6Uv2+DgIMbGxjA2NgaPxyMrZ4mY8SpN/nPy5Elps6GqTgDkd0S4AEhi12w228KGnOhQ+JhUuXA4LMPHKpkzIyg0J5/Ph0gkgoGBAUxMTGBmZgYTExOIRqNyntwvTj02z53jyhavblZz5VRfQn5sXlzBixy2U8PomPRbzdtTf6t5dzwX0YwgdyKSZqFYrhxuR+4ImuRpPHMh6oOA7cj1QSbeB5mAdoIOL2vsB6gLA+VfURcG4PFKSJ6vR+SKvPC4YsS91ni4j9RCKsyg8CSBzHyJqHFiwP3YiGTw8DBXmWgc1DWDqmVrtRqmpqbgdrtRKBTaxsvJkRACgUAAL7zwAp5//nmcPn1a9mkNBAIyhEoqI68O5USN/9D6qFWnfFsaD4FXrHIiaKbEqSFX/t6sapXn3pl1nKAx8o4h/DdX+2hflZSq4+aqn0qCd4ImeRoaTwnbkeuDSrz7JaBPi2jp8LLGfsHlcrURDKpUVR/KnChQCJQe4pyMAI/bb6gEBEAbsVRDeeprHo5Vw5hq+BJ4X4Eql8vSroT2D4VCOH36NIQQsh8uEVaHw4FoNIpz587hypUreOGFFxAMBmWuG4WjeYWrGTmjcfP5qsSGq1sU3uWEk+bGQ50cnFiqShhfO64MqmNUVUAzMqiqqnytaV9OBNXzmamN3BiZF3ZsB03yNJ5ZaIWnP/TTWvBpES0dXtbYL3CyYbfb20gT91wD3idPqpJE77nyp1pvqASCEwTalwiCqh7Rex4SBdCW+2a1WmV1L1eQbDYbPB6PJEwDAwMYHh5GPp9HvV6XHS/y+Tyi0SjOnj2LmZkZhEIhWVVLIW1edMHXTbUIMSO76hqqRQr0Hf/htibqcfh51QIKvt5c8VT3V7GdTx0n6irMSKiq6Knz59t0IqEcmuRpPJPQCs+Tw9MkWocxvKxxOKCGzShnjvLeiKjxfDciDvwBzosFuAVHJwUIQJshr2oLQqFhVQnjypV6XmqxRseg86m5e3xs3N/ParXKwglS7oiImREtrniaKVm0rfqeEx2aOyd1nESahTbV9+qa0LrQ/Lnqx6+Hqr6qJE4NOZuNSQ13q6SSE0d1bmZ/MHSCJnkazyS0wvPk8DSJ1kHOb9Q43FDJC5Em7j9HYVWVwJiF44gU8XAtbUvnoG3UUCTPp+PfdVKpOJngRQ90HgJX/ID2NmCk1vH14OFTmqNaIcrJDp8/J06c+Ki5gqrtjBpyVb3uOqmn/Bp2UutUosnHxr9X9+f5j3zOZn59al6hSv7ocz42TmzNxs2hSZ7GMwmt8Dw5PG2idVDzGzUON/hDm8gG7+bAKyo7EQmeo0bfmSk89B0nFWZEgH7TDycaqmUHHzdX3cwUK05g1fPS/EjFI2sWdU4ATAms2Rz4fnxtea6dum50XDX30ExR4zBTEPlrM+Kpjtkst89MaeOEVT3Wduc1u7bdQpM8jWcST5t4PGvQREvjqEElIPwBTvlnANpy9biqRSRKLR7oRGBof/U1z1VTFTM6Px8vz7vjhEGt5gQez5mj7Xl1LvB+MQiFdenY/Dd/zVUodQxmOWoqGVJDnio5VitWzciaSqrUc6nEdDuyaDZX9Rz0vZntyXZzU1VNfp3MzqFCkzyNZxaaeGhoaPQLUqxUOw9OogBz81pVAVTDlyrh41W4dE6z6kqVGPBjqKFC9fg0Tt5FQc3/ormpeYCGYcj2a3RsPjZ1PlzpU1XBToRuOwKskiF1nfl4trs2/DOznEf1HGZj4e/Njm2GTkTNbHszcrodNMnT0NDQ0NDoEapixB/opHZxYmUW9lR/+P782Hx/Inidcul2Oq5KHMzeq0SQz4krXHxO6jnUghPa1kyh4uNXX6vvVcNkTkB5sYJ6PLNrpELdrtPvTmNTj2tGwswURTNSa7afme3LTtAkT0NDQ0NDow+YhWG5qsfDmlzh46qdmdpktj8nT5x4cSWRq3ZmZIifj+e40T5moUpOSFUSZaa0qUoYP78aOubfqYbC3ahU/Fjb5QyaWdiYvefbm8FMMTRT9bZT8DqR7E7hY/U7tSBnJ2iSp6GhoaGh0Qc4qeLETbX1IKjqHP8MMA8HctLEw7bkfWdGmFS1zYxAqGNXw8z0nUoWad9O5+T7coLLt9tOTVTJo3oerpB22kcNM6vhYdWKBXi8KEI9vtk4VXRS/MxIHj/mdurddp+ZkUAVmuRpaGhoaGj0CB6m5GRGJXH0AKZetPQ9+enxbTjRUIkLV6T4flzx40RTVdgI3PSYb8OPzY9DUH3bzKCO20w5M9tHXYdOqpZKxNSwNFfX1B91DGYkVb2O6li6QafjbzdvM6JnFpLu9P12EN1KfnsBIUQCwEIfu0YBJPd4OAcFR3luwNGen57b4UU/85syDGNwPwajoaGhsR94oiSvXwgh3jQM4/LTHsd+4CjPDTja89NzO7w46vPT0NDQAIDODdc0NDQ0NDQ0NDQOLTTJ09DQ0NDQ0NA4gjgsJO9LT3sA+4ijPDfgaM9Pz+3w4qjPT0NDQ+Nw5ORpaGhoaGhoaGj0hsOi5GloaGhoaGhoaPSAA03yhBA/I4S4J4R4IIT4rac9nl4hhJgUQvxQCDErhLgthPj1rc8HhBDfFUK8t/U7zPb57a353hNCfPzpjb47CCGsQoi3hRD/c+v9UZpbSAjxNSHE3a1r+OGjMj8hxL/ZuiffFUJ8RQjhOsxzE0L8kRAiLoR4l33W83yEEJeEEO9sffefRK8mWRoaGhoHCAeW5AkhrAB+H8DPAjgL4BeEEGef7qh6RhPAbxqGcQbAywB+bWsOvwXg+4ZhnALw/a332Pru5wF8EMDPAPjPW+twkPHrAGbZ+6M0t98D8L8Mw3gOwHlszvPQz08IMQ7gXwO4bBjGOQBWbI79MM/tj7E5No5+5vNfAHwWwKmtH/WYGhoaGocGB5bkAfgQgAeGYcwZhlEH8GcAXn3KY+oJhmGsGoZxfet1AZskYRyb8/iTrc3+BMA/2Hr9KoA/MwyjZhjGPIAH2FyHAwkhxASAvwfgD9jHR2VuAQAfBfCHAGAYRt0wjCyOyPyw2e3GLYSwAfAAWMEhnpthGP8XQFr5uKf5CCFGAQQMw3jd2ExW/lO2j4aGhsahw0EmeeMAltj72NZnhxJCiOMALgK4CmDYMIxVYJMIAhja2uywzfmLAP4tAN7w8KjMbRpAAsB/2wpH/4EQwosjMD/DMJYB/EcAiwBWAeQMw/hrHIG5Keh1PuNbr9XPNTQ0NA4lDjLJM8uFOZSlwEIIH4CvA/gNwzDy221q8tmBnLMQ4hMA4oZhvNXtLiafHci5bcEG4EUA/8UwjIsAStgK93XAoZnfVm7aqwBOABgD4BVC/OJ2u5h8diDn1iU6zeeozVNDQ+MZx0EmeTEAk+z9BDZDSocKQgg7Ngnelw3D+MbWx+tboSFs/Y5vfX6Y5vwKgL8vhHiEzVD6Twkh/juOxtyAzfHGDMO4uvX+a9gkfUdhfh8DMG8YRsIwjAaAbwD4Wzgac+PodT6xrdfq5xoaGhqHEgeZ5F0DcEoIcUII4cBmovRfPuUx9YStyrw/BDBrGMbvsq/+EsAvb73+ZQDfYp//vBDCKYQ4gc3E7x8/qfH2AsMwftswjAnDMI5j89r8wDCMX8QRmBsAGIaxBmBJCHF666OfBnAHR2N+iwBeFkJ4tu7Rn8ZmvuhRmBtHT/PZCukWhBAvb63LP2H7aGhoaBw62J72ADrBMIymEOJfAvjf2Kz++yPDMG4/5WH1ilcA/BKAd4QQN7Y++x0A/wHAnwsh/hk2H7ifBgDDMG4LIf4cm2SiCeDXDMPYeOKj3h2O0tz+FYAvb/2RMQfgn2LzD6NDPT/DMK4KIb4G4Do2x/o2NjtA+HBI5yaE+AqAnwQQFULEAPx79Hcv/gtsVuq6AfzV1o+GhobGoYTueKGhoaGhoaGhcQRxkMO1GhoaGhoaGhoafUKTPA0NDQ0NDQ2NIwhN8jQ0NDQ0NDQ0jiA0ydPQ0NDQ0NDQOILQJE9DQ0NDQ0ND4whCkzwNDQ0NDQ0NjSMITfI0NDQ0NDQ0NI4gNMnT0NDQ0NDQ0DiC+P+7U4pIz1aKOgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 2, figsize=(12,3))\n", - "ax[0].plot(res.detach().numpy().ravel(), '.')\n", - "ax[0].set_title(\"Output of SqueezeNet\")\n", - "ax[1].imshow(imgs[1].numpy().transpose((2, 3, 1, 0))[:,:,:,0])\n", - "ax[1].axis('off');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have features for one image. We build the neighbors, the output for each image in the training datasets." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "trans = transforms.Compose([transforms.Resize((224, 224)),\n", - " transforms.CenterCrop(224),\n", - " transforms.ToTensor()])\n", - "imgs = datasets.ImageFolder(\"simages\", trans)\n", - "dataloader = DataLoader(imgs, batch_size=1, shuffle=False, num_workers=1)\n", - "img_seq = iter(dataloader)\n", - "imgs = list(img[0] for img in img_seq)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "all_outputs = [model.forward(img).detach().numpy().ravel() for img in imgs]" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "NearestNeighbors()" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.neighbors import NearestNeighbors\n", - "knn = NearestNeighbors()\n", - "knn.fit(all_outputs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We extract the neighbors for a new image." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "one_output = model.forward(imgs[5]).detach().numpy().ravel()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([[24.470465, 59.278355, 69.84957 , 71.872154, 77.75205 ]],\n", - " dtype=float32),\n", - " array([[ 5, 1, 0, 9, 28]], dtype=int64))" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "score, index = knn.kneighbors([one_output])\n", - "score, index" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We need to retrieve images for indexes stored in *index*." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['simages/category\\\\cat-2603300__480.jpg',\n", - " 'simages/category\\\\cat-2603300__480.jpg',\n", - " 'simages/category\\\\cat-1192026__480.jpg',\n", - " 'simages/category\\\\cat-1151519__480.jpg',\n", - " 'simages/category\\\\cat-2922832__480.jpg',\n", - " 'simages/category\\\\shotlanskogo-2934720__480.jpg']" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import os\n", - "names = os.listdir(\"simages/category\")\n", - "names = [os.path.join(\"simages/category\", n) for n in names]\n", - "disp = [names[5]] + [names[i] for i in index.ravel()]\n", - "disp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We check the first one is exactly the same as the searched image." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAFcCAYAAAANuOy0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Z7BlaXaeiT2f2fbYa9NWZfl21QZoAiDABtigSA6HIY1jSDEylH5IoZhQcAYIjgwlRZCSYiZCo6AocWJGoZihRhIlWpEcCkENgxAEgISZBhpt0N3VZbp8pb95zXHbfkY/vn1u3rSV2VVZWV2934yT99jtzjp7rf2utd4lvPf06NGjR48ePXr06PFxhXzcG9CjR48ePXr06NGjx/3QB6w9evTo0aNHjx49PtboA9YePXr06NGjR48eH2v0AWuPHj169OjRo0ePjzX6gLVHjx49evTo0aPHxxp9wNqjR48ePXr06NHjY43HHrAKIX73ES33zwghXhVCvC6E+EuPYh09fnzxCO32PxNCXBdCfO9RLL9Hjx49evT4UYT4JOqwCiEU8Brwp4CLwNeB/6b3/vuPdcN69HgfCCF+AVgCf9N7/+Lj3p4ePXr06NHj44CPA8O67P5+VQjxz4UQf18I8ZoQ4n8rhPhvCyF+XwjxXSHEs937nhVCfE0I8XUhxP9m/fnb8NPA6977N733DfB3gX/1o9urHp90PCK7xXv/L4CDj3BXevTo0aNHj489HnvAehu+CPwS8HngzwMveO9/GvgbwL/dveevA3/de/9TwOV7LOcc8N6Jxxe753r0eBT4sOy2R48ePXr06HEXfNwC1q97769472vgDeBXu+e/CzzV3f9Z4P/V3f/b91iOuMtzn7zahx4fF3xYdtujR48ePXr0uAs+bgFrfeK+O/HYAfohlnMReOLE4/P0rFaPR4cPy2579OjRo0ePHnfBxy1gfRB8Dfhz3f1/8x7v+TrwvBDiaSFE3L3vVz6KjevR4x54ELvt0aNHjx49etwFP4oB6y8Df1EI8fvAGWB2+xu89wb4C8A/A14G/r73/qWPciN79LgNv8z72C2AEOLvAP8l8CkhxEUhxH//o9vEHj169OjR4+OJxyprdXpn6pVSaK1RSpGkKflwxGA0RSc5QiVEcUoUxUgpaOoSU1cARHHM1SuXufTeO/zMH/9FYh2hlQahMG1LvTzClAukbfHeY4yhbVvatkVphRYOKQRRmqPTHJ2lCCTegxQKITxZnpENp2T5CO8cy/mMcnGEWRzi6hVeebyQCAQ4i8CjpEAIjxASlWQkgzFRmqMijRAClEbrFERYl3MO7z3OO7zzOC9w3uO97x47PDefc87hnIPu9fX355zD4sP7EOEzeKQzCDzOecCz/rpvWb5z/LN/8v++W91vj7ugt9vebnv06NGjx0eLx1pfl6YpUsrjmxDBYVlroGmIE4U3DVYpjLU0TcPRwQ1e/f73EIDSmk999nOUswNapYh1inWetqmw1QJTrcA5BGCtpW1bnAdcBBictdRVg0oq1FIjBAghwvYA7VxQJddYRjHGOaq6oa1rRFMjfYuSHiEFCIFSCiUlwgtQESiNcRbZ1jgh0KREcYKWOjhmR3DyThD8uMB7sID1Hu9cCAy8P3byIUhwOHczCAiO33fPhX0Kzh84/jzHAYL3HoQ7DiDWy+nx4OjttrfbHj169Ojx0eKxBqyDwQApZWBNvAchMNbStg3OeUzTIJVGRMvg0Kwh0oLPvfh5hAPT1jSLIw4WhygtQSg8EpxFOYPwFpAnnKVDKY3yDolHAM4aXNt2Th+E8HgBUis0EREtwlq88+BbBC2OwEQJYVHSEUcxUunuJnEyRugYLwRKa5SSCCkRSiGkCtskBIjgoD0evAAPwjukD9064BDeE/5ZPMFRewJTJXzHWB0HBwasAW+RBKkEIyIcAgTHLJVz/kTwsGaxejwoervt7bZHjx49eny0eKwBa5IkeO+xxmKswXmHEw3eeZRq8Q6EFAilwHuk8ARaB4QRONvgTIPzBicBLREyRnbMTHB8IZ3oPSgVoSNNpAQSEYIJIZFaIXWEEIDwCOFRWiN0hJASqQRKCjSdM/UiBAN4vLeB3VIKFUVIHSGlCp8VEikVUgmE7BgwqUAqhBc4b7jp+j3Ce4TzSByuc/IOh/MOhA0Mk3AIH25h/SE9Kp07Do68M9AtV8oGgbgZXHXHRdguRbu+9Xhg9Hbb222PHj169Pho8VgDVi90xyJZTBucj5LgJXjpO3ZHIlHBIeNCKpObDtFLcE7gBSgvULhQc0dgewQhXRrSnxKtJFIBPjBkUgiUEnjhkUqiVDgkURShIo1XEicEeIfGo4RDKtctPbBOjfFE0iF1YMO0ilFKgZAgJFLIsB3eITDIsHqUcygs1q+DiBACOFyo5PMevEVYi1inQp3HOotzFpwH75BdraO3LbZtcNZCt99iXftHVzu4rhdcp2ZP1BP2eDD0dtvbbY8ePXr0+GjxWANW51xXo2dojQlOSuqO4RGIjlESIrAuokuHCgDhg0MWoJQIDlyKkB7tHLoQIqQwCYzXurEEf7PmT4j1cxbvXOf8VQgQZBBRWLNeEkK6VIoucAismXcO2xqsUp2zNSFVigQkzjmUcUgsEhtSrEgcHpwFZ7vav7Bta/bIOwfO4qzDGoO19viY3awLDDdjDM40tG2LXaeC4bgO8JYbhKDJr5tZesf/MOjttrfbHj169Ojx0eIxB6whFeicJeRRBd4ZvAtNHVIASgZnvnb8nRNGEBy5DA5WyeD81zfVOXUnunSiDMtTklCbJwTSi87ZOoTzCCQKRyQVSoRUrhDiuEHE++CQtRCISOK9hs4Rr7uXhQdvujSxB4TAIVAIvNK4SCOkBiQNDuMs3rqOeeK44cQ5Fxy+tTgfHLs1weEba/DOdYxTcPzWWKxtMWvHf5xKFceM1BqWOwOBHg+O3m57u+3Ro0ePHh8tHmvAaq0JzhSPkISCPe/AW7ACv85Bdqk/QajTk4TuZtmlIb2zgdmic+zHKcWQdvSA9A7ZsVWBgPIIAdY6vCPU6XnRNYQ4sBa77lB2DusczrQIZ7sgI7BhUipwIV3prA2MkbMIKTDGYp3HI1HCd+sOtYDeQ+09xjuEDTWOwvmbUkAuNNxYZ7FdcHF8czYcpmNJIXfMYNl1jV8H30kQOX/zOXcijcsxW9XjQdHbbW+3PXr06NHjo8XjrWH1IT0oJAi3TgE6jrtNfNes0vUee0FImUrRMVYOsW7+cA4hZHir7DqUXWgCoeteDl3TFicD++W9D47fe5QSaK1osFhTI4TCOggBQggqvLNgW4QQxJGmU7IMzpdQu2iEQXiPc2CsxbqQFBbYwLjJ0OdtnKftup2lB00IVjzcrNNbM1b4EEB0XePhuAi8F10XuAhanEIilEfKbkGhLxvpb6akPXSp4bWEUM9UPSx6u+3ttkePHj16fLR4vHPObdeA4W7qNYLAOYt04I3F+ia8t2sEsVKFphZv8abFdXV00gNCIbTEe4v3Xbp2TX4RnKNrDFauU6YcpxaNBKsVRrZIGV7DBTYr1mutynWq0+PaIAUkpUALgUTijcF6umLFEHwgw3YLH9K5yI6JEg6NQOquI1sKwj9/zEB5QmBgBcHxO3f8nO8E3H3XyOKsRyG6wCDsu/cOjzyWAjqGDPWRx+nXHg+H3m57u+3Ro0ePHh8pHmvAauqmSwXarn4NlOwaN6zEHjebeBAiaEEKhRQS5WyQwelSoarTi5ReBmnI7nnROTaJPO66dgIEknUrsgSkB+E8oIIoeucPpQiOWvrOo0t13ByjRKhBVIKuyQa88KAihIrQons/J5x6WGgXBISObLFutPFdLeFxajXU+1nfpXadu+ms/VqTEoyzWNMFS87hvQyNLz7UBDpxa/r0mJsS63rAj+gL/4Sgt9vebnv06NGjx0eLxxqw1mUdWJZ1c4UQoAK15K3oHLMLbJYIupZCKKRUxJ0jxbugQ4lHBLoq/BPBsa/r9aI4RUcxstOY1FJ0zSgG61yoyROgpDquPQyZVRdqB4POELJrlIkiHdKrUiHwSOeDyLlSeBkhZBTqC5VEipsyRYJQdyikxMuuG7xzvP44ZXpzlKVzDutMIPTsTcF04TuJJBeIp1b4m4EHnrWKu/c21EviTjBzN7us1+nVHg+O3m57u+3Ro0ePHh8tHi/D2ra3pPakkMjgvbo0Yqj1Cx3UwWELpVFCBeeJR6KPm1JUN9tdCBUkhpRGKIVKBgynO6TDjcB0udDV7UwDpqV1LdK3YGqEqRC2QXiH6ySD1ulLKTxaOnSUkuZDkixHKoWzFulCnSEyiLELLzoGLXSJr5tmBKJrsCHUKYqTzvjm39Ct7UKjyro5xdvjRhV8aIwxDrAeby3SuWPmTnSz1n23nDXrFeojb6aU6dbZ48HR221vt48aQojf9d7/3Ie8zCeAvwmcJlzX/Cfe+7/+Ya6jR48ePR4VHmvAqlTQiwypRdk5bXnMPIED4dEyOHGlwxhJIVTIcgqB6vQllVJhyo8Ijl/HKXE6gDgnHm6Qb55BZROcjILTMy3eVLi2wZsGbWpolsh6Ds0S2gppm6A1aYOT1lhipYiSjHw4JcpHOCGwbYMwBoFDKkEsBcK2WNMgrUE4g6QLXgDlJdqrrrXEH4ugu85pr5tU3LFupehYKx9SrN7hvMF6R5B2h9BDHYIEcEjhccJiPVhcN4XI40Som/TCH9cbfoL9/iNBb7e93T5qfNjBagcD/Lve+28KIUbAN4QQ/1/v/fcfwbp69OjR40PFYw1YdXxz9SENGSbwrCFY96wIlFZEOjqW2FmzUUrKjqkK94WUEKXo0RbxaAfiCSrJKVVC2ziEDiMpjXU4A84rEAlxHJPEKSrJEPUA2RaotsTWJbQFQoB0oHRCOpiiBztYndC2LU5qvGrBtCgHUml0lCBFifYrIucQthOHlw7lBNK7rlvcdX438EVOBAfthcMrjxOd7idghe8aaxTeeYyTIfvcpX2tAd819uDdTQ1QwK5brb1AOBEE2EXX1P5J9vyPAL3d9nb7qCGEWHrvh0KIrwL/a+Aa8CXgHwHfBX4JyIB/zXv/hhDiWeBvEcaY/VPgL3rvhyeX6b2/Alzp7i+EEC8D54A+YO3Ro8fHHo+XYY3i7l7XCy0l8oQTCgxW0KiMlEArgVIRSkdInYapPvgglg5oISHKkIMN/HALFw+wAmrT0BpLGxKbSB8m8JimxjmDEhIbx8gkCoFCPArO07TIegn1AmlLIm9QWkO+SS0TqtbRNgbhLLZtaasC4S15mjDMMiKVIFOJNwnS1GgMwrlO2H2dMg4s3Zoxcn7djR1GcDrpsE7ivEd5CNKXHu8EshN8RwHW4bs0byCrQpOOFV2tpOsklXw3+NOBlzdF2Hs8OHq77e32I8YXgc8AB8CbwN/w3v+0EOKXgH8b+GXgrwN/3Xv/d4QQ/9b7LVAI8RTwE8DvPaqN7tGjR48PE483YF07nLVOpQjPic75r5tQlJREKkJHKTqK0EmGToZEWiG8RXiHQqBlhMjG2HRC4SMWixLjWrzUCJ0g4yw0frQt3lnapsaaBiUVto4xbUqS5kRxhlIaKS2QIVVO7JvQCS4EKy+pyhbnw6x0YS1NXVNXFcJbLGHyehJLBnGMi2IGUiNtgcYjRagZFISO7bVUEX5d/eiPdSudF8h1WtUHtsyK0MwjhSeM0hQgHF5YrPA4G1LP7iaNBYBdd3MDIH/cnP6Hht5ue7v9iPH1jh1FCPEG8Kvd898FfrG7/7PAv9bd/9vAX73XwoQQQ+AfAr/svZ8/ig3u0aNHjw8bjzVgjTHhjhcI4ZBeHNe2hTk7IqQSVQQqBpVgZYQgCvqQBIeulAIVo7MxJDlV61jMF1RViZcCqROEE3gXGBpcC87hmgrbNDjAiBVNldAOW6Ik68ZQeoQzCOOJpCJB46yhqivAkmjQwoZZ6E2Nsy1agDUNReUoW0HdxoySFKETEA7tBVoYunJGlJTHXdAQZIaCpE+YZCR8CH6cBOk8tvvrg9JR1ygdFOydACkcFg/CY3GEJ7sD7h3HT51gqX7MnP8HRm+3vd1+xKhP3HcnHjse8hwuhIgIwerf8t7/ow9n83r06NHj0ePx1rCKm2MX14qPa2ZFdE5fSkVLRNV6BDbU1DUeUbaoOEbGGSrOGYyHyGwDLxVlMaNpCnAtkc6QUmKMxbvASknhsc6ANZ0m5s0JQ0KAN23QxuzmwXvnaKyn8BbfNpi2JhYWbRzW1WGuvGmRuE4KyNGaGm/AWxt0MpMIoSMi4UiUJFJh5rvsmKl1I0kgrAJj5YRDulAt6FyoCxTe42TQWKdTFvJInF2HTEHD0wsC06U8shsX6h3H4uvrzuv1Eno8OHq77e32Y4ivAX8O+HvAv3m3NwghBPB/AV723v+1j3DbevyY4BGpW6TAvwASQszyD7z3f+XDXEePHw083klXwgUhcgLrIjpnJVB4oTBCh5sXWOuQrkYp003M0VCVqLQlHUWkHtq6wrQtbbEEY0Ma0Rm8EYhutrv3BudbmrrBmCY0pegIR5AfQgictQhnwSmUkp0IO3jrcG2FqwsaV2O9wZoanEXgibRCpUkIGIzBGUNjTNexnaHThCSNySOLkgbFeqKRx6+n+BDqAQNUSI96CyKwTALChCV8cOZBPj7oDbUy1BX6BofBS4El1AM6p/Cikwnq6gxD27XvOrR7PDB6u+3t9lHCNn4wGIBt/G/82q/yV//a/wFs4wH++C/8An/1f/cffB1r+I1f+zX+6l/7a2CNf+3l7/Pf+e/+9/7sT//UT/3d/9Vf/sv8J3/jb4A1t0T0v/Wbv8HPf/UX+fznX+RLX/ziLwH8+//ev8ef/bP/cqjOEOJuW7PucLt5Pwjldgz3rRcNQUc4/CjWBTKsl3uzkobjC44PmyW/1z48EtwsW/lYQumPfOMekbpFDfwJ7/2yyxD8thDin3rvv/YI1tXjY4zHGrDKblLOyZv0EmSElZpWSEx3whPCY22YLAQghAMREUlFHCcYa5jNbtA2TUh1tm2oLRTgZEjUWtcGNgpH0zQ470niOKRmu9GZAM6akNLFY93NWT+im8BjrQmp1LbEmSawVAKyJEZLgVKy05IMJ3VjDIWv0VKQJQlDoXBSIjumLmhW3nQK1of0p/eh7s96je0YKkdobglSQR5HmPEe3utwVuOExFmD1bZLJTuwYRITbt28ciKt6j6hjv8Robfb3m4fNZazAwC++tU/zle/+sePn//NX/811kHSydfOnTvH1373dxBC8Hf/3t/jj3z5y3cs8ytf+QretOFB9535DxLSHA+PeMCgc6340OMTi0ekbuGBZfcw6m69Jf0Y4rEGrMLfvEZVMtS8SSK8jrEqCj3YHZMDHufMcd2aVh4lU+I4Q+mIuqlp6yLMTTdBXF3rGAlhao41GGtxLqQznV3XIXYako7uua7hQ8kgor7W2pSyk/eRaKWxSiGcQniFtwZjDJWvUDKclZWSx4yFMYamdTgPSisSnRJJTaJsV8Onuv1asxHimLG6KZS+dg7BaQsfphSFI+PR3Vx7jAGtwbRgTOfrXWiy6RptZNexLU+Isvd4cPR229vtxw3f+MY3+Qu/9O/gvWc6mfKf/Y3/9DFsxYno1/tHx3YeM7b+7s8/KE5+/iNlZn9s8KGpWwghFPAN4DngP/be9+oWP4Z4vAFrdzs5EcjLCK8j0BHKS7xxtL7B2hbvw5jGMNqyGzepYjwC6yyxjgND4w2RioijmOAL2zC33FnwAi9UVxgXnL0QHQPUOUDvPFZApBVaa1QUEWuNlBIrPRJD6xu8sKAFDZ7KGNq2pa4lUkIcx2itWY+rNMZTNxYvNFpHRFHCWCm0BPCs58WHvbs5xV36bpyl9zgfOqbpZq/jQmpO+LVTdxivcDiUl1gf6gOlD53XFnFce2iDambo7O4vVh8Kvd32dvvR4v2DqZ//+a/wh9/85qNZ/R2HWXRsqT/Bsv4wy/kQ0QecH0d8aOoW3nsLfEkIMQX+cyHEi9777z2i7e7xMcVjDljDvHJ1QtfRCokRYDxIVMeqrCfn+O48aTGtQ6YeoTRCKpQQaO8pmxYf/DvGWKy3NKY5HhkphAyi7sIHksparPdBuLxrXw5jJrtMpAXTBQFSJ8goAtsxad6CEChtieIY70Ja1RiL902oX5Rd97T1GO9ZVTXLOmXlEnI0Wod9R9xs3vEiZERll0aVzqI6x6/8el67DNvnHbbLoFoXtD2dCKlZ06WWlfBY1jeHcxZ1y8z3nql6GPR229vtR48POSATD7HUk6n890nrB1bd37se9o43fwD0QerHHR+ausUa3vsjIcRvAn8G6APWHzM81oDVCYnunJMAvBA42dW2OY/FYpyhtQZn22Nmy7YGJxKSOEcmOVJpXF1SNw1NU2NMHSrkTBuWReiiDmnWrtB/rc/jPcI5EB2rIxWK0I3shMQ4cMZAVeGcI9YxQmpUktMKiWtKEA1xkoKTyG7MZNM4rHVEUYTWGqlCFzQYrDXYFvASJRRKhlGV0suQOV1PDfIh2FHHTFXQtcQ6rO9qAZ3FWYe1FmMtqmPkrAsNONJZhDUI68D6wMyZFmFtkEhaz3jv8cDo7ba328eDe0V44p6v3iuke/D3evztUer64Vqf7EFrUz+sGtaHadS6X1DbB7wfBzyIusUO0HbBagb8SeA/+Og2scfHBY9Z1ipMA5JCgJR4qZBK03qBccGZNVWDMTXOOaSQYca4hXiQMRhPSdLsuJmkrWusabEmzCsX3odkotYIpcMoTCTYoA8pItFNKg8MjxChsk5K1Qmjhw5tKTzCWZxpMV2dXxxFIQghOE9vG5zxQX+y62BeM0HrJhElw9x56yzGGHCKyHsiH5YvvDye4iNcx0h5j7QeA7RCsKpbvHVkyiOtDc04ziLsrTesCR3n1nXPueP7ISUbbqK79Xhw9Hbb2+2jxfsFUicDto8g6BIOj7vZoeUl4BGdDYp7xY+317H+uFRw/Jji6v7C54MB1w6W/h/9yn/B/+k/+g/ZOyq8946f/WNf4S//lX//6+9dnfF3/sGv8J/+n/8j3r5y6H/jd/6AX/4L/8M/+6Wf+PLf/Yv/k7/E3/5//N+5cmMeBjT7cKH+z379d/iL/86/xWc++yIvfOoz/Ff/1X+dX/53/2dfubi3COc4uKMJ9nad5puqLjft0XeZgLu99kFwt+Wst8V7j3Geuljwq//47/MP//b/k9WiIJLQNjV5mgWiQEoGg4xRPghjvJ2jqZZcPzgi3djkv/U/+iV++o//GWIdRnzf3IfbVTvELet/v+299X3i+Nrw/TSv7/X6zf0OTbm3v3b7dwBweiO75xfxeEsCVJdGlAIvJagIi8Y4i7EO01qMaXBd00lwTxIvIpLhlHw0QUcR1tR424K3ocHFmc7prxGaT7JYMR7EKGGZrxoqK2h9HBo4MDc1ijwIJZHeoaRESxGcpGvDSdcp6JpgdJyBUjR1QesMuCBuLoTDmNDUAt2Po6sNxIOxYSwmkURhUYQ6R4NDeoe0XeOOD1ODSi9472jOsmoYZAnnhzHSNdA1peAc3tuQ7vUWcAhhMaKr9hMOLzy+6xjyIkhberrnejwwervt7fbR4n6O8332ef3RB2U877emtRMSApDhu3IWa4PSgNZxVw7yoCu82/pv24iHYU97fKwghOCt964B8Me+8gv8sa/8wrEN/ee/8l9gLVjr+KM/9xX+6M99BYDTp8/wj/8/v4aUkn/yj/8BX/jSl+5Y7mc+9yL/9P/323df50Nu38m/jwMhSLNceudNfus3fp3Z0ZxEK3wnMaiUQgjBeDwmjiPquiZLU5JYIY1iPEg5mM146wev8uWf/0U8KY/yonUd/K//frBl3d7n+PDb/VgDVit1SCVKBSrByZjWCqrWYKzBW48S4lgSByEBRZzmZMMpKs7wIpxIZWiX7pgXH5gYKZHHzSee87sjtF1hTcXmVkoy2OTS3oLrB0uslAgpu3nnDmlCCjOONFIF9XLjLbLVJEmKEIHNUlKhoig4UdPSNA5vwwjNk1d5SikaazAm1DU6a7FW4a0M9XreY4VHCYf0IBA4IWiFZ97C1UXJpUVNmiac2dpGNAuUkCc6gMDhkeurFu9D3WP3Gl4gpAsBizCoLggQ/uZAoR4Pht5ue7v9cYLvtMpMVVAXM6QwCKmR6QgVp9zyTdzOqvb4scG9ApDQwNkNGbmN9fzud77NX/lf/k/x3jOZTPjf/x//4/AaJy+Bbg+UbjKp6/6/99uOB33uw8TtQd76vNrUFd/71h9w9Z13EC6UlkVRhE4T8sGAJM3wzmFMy2g4JMsy7GoGtmGQRLQo3n3zTVbLGelmemJ98OHV3ayXded+nMT6+fdncj3dCf3WNZy4aH2Qr+PxDg7QSRjVKBUiTvFEtG1L0xiMbUKqaa1h6UImSkYRo+kmyWAYauVs281l72RufEh9Whvq56RUSC04f3aLoW64ceUAnGTVHmH8Rc4+eYHJaMzrFw+wVoNQocXDWXxrA/sUheYYj6NtLVIK0iQn0hqlVWjAkSBw6FJimgLTNkgZ6Poo0kilaEpDXRVUkabOElrXia3L0G2+Hq8uPSAltXUshOTt+YJ3947wcU5dBcmfSEch4BGiqzETSILxhwRxqGwPGkw32amgQOQQwofPdrceD4Hebnu7/bjiYXzVbZUFdzqbzvl5S1utmB9cRroK4SBOM2pnSBij4iF3OKOTgev7bdODMjcP1Mh1C4Xz/s/3+NBwr1R4SO13ded+XRMdrOtnfubn+Ge/9ttdAOoR8iZjvz5DrM8L689IAQiPvMfX+KDp7x8WD7OM4/IExPExuHbxXb7+td/lcH5EnqRIPFJIoigGJFVZkw9yxhtTNNBWFaaqaZsaj8Q3lsX+Da5fu8r2xunbtukBGx4fYN9uP4w/DMt6kqEVazHDOxbhbwlc74fHOzggStDCdxnNbpRj101sWoNzJjRW+KB3KZVkMJkw2NwiThOUMNDWmLqgbRukgCSO8d5T1zXWWrwNEuXPnDvFO69/j0ZokjRGRBGuKvjBD95kZ3eT504PefdqQdH4QIjhwl/pccLjhUN4iIQGYzGUSG+RKgEZoaOYWE0wsaauNWVR0NYVeHv8RYGjqUvKKGLR5qwMtAisEqyrwoQXeOFpvOfqquL7e4cUXjPc2MQS01Zl6NBuDPiQtnXBjOl0g8La1pJLwnXyS0EaSAqwqhOa9wIr5I+RPNCHg95ue7t9fHhEwZa/fdEOvAI8TTFnvncZTEllWoSXWAMqasE50qFARuOuD+uT/J30ge7DYM0oHjOs/vbQ87b3hw8dPw7BahfengzCTrCqtwREt9VC3ivAOvn8vYK796tDfZCg8BY2GR+m95mGl7/7Ld58/XWUlJi2RqoQhsVRjHCQDQfkwwGmDQNjfNtQ1SWrxZzBYMQoy9DWcemdd/j0pz6PPBHG3WuzPkw2+SSbevty73bMb3/u1utI/1DB9mMNWBMlUAKklHgpsXZt5GFWeNhHgZIKHUWkgxGj8ZQ4SYLAuXeUqyXFcokU4rizuW3b4xo8IYJOZdvUVFXN9s4OSZIxPzzEeUfdtMwP56jZkqfPnuPy/pLZ3IDQKC1RWh7/ELRSgSEiiJo3TYP1jih2pFGMUhqRpCDCj9MaQ1XWGGuJ4gjvPbK7LLTO0wIGBR6kd6GNQcSscFxtGr5/7YijwjHZHjGdTNDJkIO9vcBGeROuML1HyFBf6KXC+a5THBEE3FnXEwZH77zAOjASrA/BluWT2rzyaNDbbW+3jwf3P5k/VD3fift3DzEF4HBNwXzvEtgG56CtPdaUmNgQ2xjvDUpq4nEGQt25Dt/992E4zFtqau/z+oMs54fenj5ofVjcHkjeeXG0DlweYFnr2w/RLPUgwezdPvN+we37wXdZNOfh8MY1vv67v81yNkexbnTtAm4pUUmYYFgtV7i2JpLBXzRVSVEuieOYUT7G1TUHV69ibItS6oGD6A+KB70gOLnvt792t2a4B8VjDVhjb44ZFAfd2MVOZF3IrglEEKk4OP3NbQbjKTqKkFJQFSvm8xneGNIkDbPTXWga8d53sjwaIQS263xO0pQsGxBFEdNmwuzoiOtXrlCuVrgr73DmzHmUbzhaNkgZuvWUUkgpiZRGK3V8wI0xNHUFznWGpQKzJiRRnBClLU3bBCq/+6VFUYToNC69bZFOoZ1HCocRioWBy6Xhe5euc1A64mhAkg4YDsdInTIXglGWYcsDnAj1gtY7rBQYDxaBxQUGSjicFXgvw3EN8y5BylA3KXxopLA/bo7/g6G3295uP3EIUUC43xFhzjXMrl2kObqBiBKM7xK0zlIsSyqtw6AJJVHZAJ2MuDOgu0t00uMTiZMNeIFtv7UGMpw7wkU9dEEqoYH15mfXAU1XI8Td61Q/lO194ED35v3jbbvl9TuDtjVpcZOVFTjb8t1vf4PXXn45XLADeZ4TRZpIRygdEeWhflULQZTnWNMwPzykqQrqpsVYR57nxOkQs1pi2oYkTu9Y/50b9H47eXL/7n0MfugyARGGyaztYk1IrFf9oN/F45W18ha17rwQHW3eOSEpJUJ4lFRkWc54c5tsvInSEUoq2rZmtVxg2pY8CSdN5z1t01DXNUIIlJTQHVClFMPhgDiKybKcVmuWxhCnKeOtbZbLBYv5EWX5NmfOX8D6llXbTRDyAKGxxXiDEOI4IHCupW1qSqGI4wiEw7UGZy0ISZykGGOom4Yo0mgtwYNpW+q2pTYxpY5YiZhrZc2sNRwVhlnh0VHGcDIizTI2NjY5mq/QSoCzOBVSyFb6Toi9kxMSLkgeSY+3Ho8CwihNrAdhkdYivcDLkJKVn1h5oEeD3m57u/1E4gTz6IGmmHO0d5VhHNNYQZwkeN1StxVKALbFN5ZiqYiGE1SUgdShhluI22LV2wpmj/++D9v5kDVzN1ch7v74h11ej/fFyepTcVvQKuXNxrxb9ZP98Ydv+WrWwSp02Zj7BzX3SlM/bL3p7bjJ/K5Z1uN3d3/vfg4SJ/ZnnSlaHN7gd/75b7C/v49vDYPh4LifQMcxG5tbpPmQYjHHu5ZVWWHqkratqNsaa0EqTZLEtG3NjYsXqYqCwWD8APvk7xq0+ru+9y7v8w/ynnuXX6zLOkT3vlsuaLi1xON+eKwBqyJ0Ga8Pmzwx+9z70KGcxCmD4YR8MEZIhbEWY1qqpsFZR56lpHGEd56mbWmapkthqnCQnUWpwDgZY2nrlmQ7JcsD+7OcHyF1hExStEqoV0vefP1VXnjxRfZnLU0TRlNaK1BKgLfdeV0QaRW2yTiM82ihUDrCWUtVVngLUkXEcYJZ1d25WYSqcaWoZcJM5CwKw5WDG9Rxgow0Bwdz8JJEKSaTAbundhBCcnDjBhujIVKAi5NOkrJz/M7jRdNVygjo5tjLrnRd4ghVfwLh6KzEd5JBj8sCfjTR221vt584rIPLNYPkDKvDPZI4pnWCqqqQtu1KRhzeOFxTUTYVxgvScUkcV4g0RaAITVjdD0KcjFxvC1YfoDihx48+1il82U3mu717/s77JyK+Y7v84CnlDz9tvrbju69rXb9rrOEHL3+HV7//MoLQIGuMoQYSmRKnOSgdNLnbFtoW2xqqYsVqfoQ1NeCJooimqUl1gi9Llos5WzunP/Au3M6G33tfPxzc+6jdH481YPWiY6MEIEPNn5LR8VhIrWKSZECSj4nimNo0FGWJ8x6BIkuywNx4S9M2NHWDdz5M4REKZ4PGoxLrzmOJbwzL5QIVZTRNS13VNHVDsVwx3dqgzCKKKyWvvPQSP/ETP4mQA45WjhpN0xWOWyTOWpRwDIcjstGY4XDcjduUFMs5y6N96nJFUy6xaoWyESqSZMMRG5sbTDcm4D0XlysuX3yHJNFkWctqvwChyYcJk8mURKXkWUrTGpaLGU9vn8O7GqH0MbsnCHPZQ7DTpV5YO/5bXYTA49XN+wLfBQk9HhS93fZ2+8mGxzQlEkcURxTLrgnPdHqMOKq6AmvxBkxjWM2OUEIxiE/B+qLrfVO5DxCsnqSqjt/6AN/7vepdP4I6vx5wMsm/ZtHvEPanC1B9x0LCcapcdPrOgZUTJ762YFj3qyu9W93kXbfwfWzhFnbyzrXwvgHcieB7Mdvnt/75r3Pl0mViHRNFmjhOsMago4QoThBCUS0LvA3juQVg2gZ8i21r4nREFMUIoZBekqYR5Wp5z305QQzfseU3X7jL5+4btN6NRV0nZ+7FUN+2PCFuWetJhvX98HhVAkSQs5Ei6FZqJdGRRrca5y1CRegoRWuNx2PbFtM0SCWJo7hLUzrqqqaua7yHSGu0jhBCYWyLMZamtZR1gxAS0zbsX7lM6zzbO7s8/cQTzCYTHO9xeHjAmdOn0Erz9ttv873vvcTnXvw0YNjauICPx2STbQaTTaSU1OUS7xxVYyiqCmMcSZow2nmC6e4FEIKmaSnLkrZYkiqHrRZIW9IUBUU558rlS4xGAxCexWJFFCfESUaWDRgOJ2xubnL1+iHGtAjv2RgNUWWDQGKwGBe6yR2hNig0o4S/DocTFitc0MkUDoXF+jZMCfLraUb2cZrBjxx6u+3t9pOFm3V2EIIFUxVoAa3zYSJbXYEMMmltcYirSnxrqOoW0oz54QFaSNLpBiKJOenqg+M8mfr/oBca/vjPHWNj17i18PCmQ/zAAevt6+oD4IfBya5+vMd4R9u01GVJY6ogoO+CdJ2KIqIkI4pitNIIJQEZxlffI+3/ICnr+2mG3j3oAu4Imk/+vevKOl3t0Ifw1g++zw9efS38DJxFipDlkpEizYdIJOVsgfKQpgnEmmJxRKIkyJBjGg6mnaRiQt062sUhOHPLtt8s6Lljz0Jm6uTj99mFW4/L3Y7X+rE8UXFzf7b5xJp/qF/O4w1YCQdCEiRuhAClZKiz0zE6TomyDBkpBA4lII11uGBzBtdYWtNSVTVISRLHoelFKKRUOG+RCpwVlGVLmufYukUrRVmuWB0d8HZVkQ5GnDl7ntFoQlUVjKdbPPmUYm/vMq+8/F2efu553nvzezgxhDhntLFDlKTU5YokTWgai45jnBccNQ03hCaKE5CaLB8idASR5mB+g4Mrb6HNkmHsWSxm5HmG1orlckWaZmzvnMZYxyAf0hpH01pGkw0Orl/l7PYG2tbEnWvHWXAWa8PUIGFNEI93nci7s1hnEN4S8rAesHhnkc6EE4MNIzJ7PDh6u+3t9pMHD53IGM6CaZBC4QnawN556rpEWoMzDb41CGvxbU1xcJ1kssU+EI9HTHZjvMyQdw0mPzgrfjfC1bNm50MzpPcOISXd1OKusecDr/m2x32wejfcflRuKU09bkIKqfKmalgc3mB+uMdyvs/hwT5NVQVJJwQbW9tsbO6wvXuWydYOUZod6y/fT9Lqdjyofujt5Qm3LvPBE9mekB3zHqpizve+9U0Ort9ACEHTtmBDScDW1jbeOlaLJQqB8wZbL6nLEmlbhLFEQmN0SpKOiNMhXgiSNKa0LfYup0BxF7sMMfddshX3OGR3l6e6bZkn64xPfO6Odd+DDX/QC4aTeLyjWUXXPNGlCNdpQCECYxVnA+JsgIpuji6TztG2LU6AdUFmR2uNjhOEELiuC9Fai/cOqRVaJSxXFdM8oa5bPJJYR9R1SzJMGW/uUFYVSWtoW8Ph4QFZllFVNaZuuPT2JaZbO1y9dgnjNPXykDQfIfDEG5uY1qJFuBI03uDakrqe0xhLcRTRWottC8rFAZiSdnVEnWqmkyFxopkvFkym22xv7zJfLpFSEacZGxtbpGmGtTWpFmxHMbFZEZkC6wl6n51mJ87hnCFwDoGV8sIhhe8qAAMzGIItAUIihL2lfqXHg6G3295uP0lYu+E1W2maumOHulc9uKYF02DbGqc88XiCl5qkbljNDinrmmwyoSqWjJoKEWm8io97r4Bb6hAfGPesb1xTOg5vLW1dsFwegfAoCQhFko5Is2HHzPW28rFDIP1Yzg7Yu/Q23/v2d3nvnXcRLoyIFhJa69jdPcXuqV3OP/M8F557ga3T50izHE8owxL+1mDqrulx8f6B1V038ZaswP2D1duDPIfDOclbr7/KN7/+dd57913yPMc5h4wixpMJxhgkjkGWo4RA6RTX1OG8WFta40FrBoMzjKa7KCy+raiNJBoNUDIovEghQHaXiF3NuLht2x72J3Byf+5fInC/S5T3KzF4ODzmgFXcdqMrzNZIHZFmOXGS4GxNWzeYpqEsCnCeKNIgBEprlI7C9bVzXZ0ggETrCB0n4GPmq5rnn7rAfvMOTWtJ8gG7Z86zuXsWFcVIOadtWkZjQaQk88UhO9u7XLt0latXDkBJzp3d5dregqpcslouiZMk0PVCY6wnG0iMczStQUmJ8xasAWuoDvZQpqauV2RJws72LrPZNZbLBXE64NSpU7TOk6QpeZYz3dxkc2ubtm5YLg5pyyXj4RBtlijXgJcYZ0NKwIfRlYKbV5t2fcXZOXmEw6/P8+vjva4e6R3/Q6G3295uP3noJtF4izc1QopjWTRvDa4ucXWJb2ucdTRxS751inQ4RKUDksGEq9euoLQmSa8z2VZYBEJIhAwDIMJqbk0J31z9/b/Lk0Gvx+MttE0YFVssDpC+QSlPnCoSlSGjIc63OGtQOnkkR6zHB4dzhhtX3uN3f/O3eOft9xDCowXEkSJLU8qjGdeqmr3Ll3n1+y+zfWqXFz73eZ7//JfYPnuBbDBirSkiBcd60Sdxf11QuH8geu9a1buXFsib9fgGqrrge9/6JocHR2R5jjUteZqQDgZIrfCNwXlYFQVKCrSwmKpEdQoxUkiUThlOzxBHEdgqDJrJxqTTbVrXhLIqF6SinFyHqrcFrd7fPG8+TJbjAVjReykldAu4z6If/vz9WAPWoK4oEURdLzCdM4/RSUqSJHhvaas2NJgUBU3TBCkI5/EydB1WpgYEsQzi6EgZ+jGEQukUoRSt0niZMsoijkzFfFkTzRdIvc9oNMRbw6pYUq4WVKsjjg72yfMJMorxTc1suSJO50zGKftvvUvTWHZ2z2BWR0RpStMsacs5KkqoW8/m9jblokW4FtqSejWjLeZ40XDhyedomhWrVQFCkg0SlssF1rdMxxvkw4x0kFKUS0zZkMQRGs/maIhclXin6Eim8Ct1YazdOh0mvDw+vjcHYBJS0t39MPWyM+FeHeih0Nttb7efJJzkhHAtrqm70bkhsJTeIb3BNjXe1BgvyNIkzAlQgsFkl8Z4Nja3cMZydP0qw8EQGwuMhTiOj4PftUD6HW7v9i6tW97Qsb3e452lqgqK2R7l8oBYWSIpiZIh1ljaymPrhjhvSEZDVBRs6tGx8Sc3tL+Auhfu2gjVSUYdHOxz/dp1jg4PGQ4yVKQQkUIgmAxHVGXJfLGgKAtuXL3Cpbfe5qVvf4vP/sSXePEn/yjbp8+HjJYkXACfKA+4pWaWW+3g5jXUw35vd7K1t++fcx5jWo72r3Hj+jVmsxlt06JkCCxHwyFVWSIcqE6RReCpihXL2QzXNsSRQHkYjXaJohzTFChaZJwRJSk6jljNj2hsi4o0Sli8lye24v2D7YfYzQ/Ekt5rfQ+7zMcasAax8KDvGO4H1iROEuIsxTlLsWrxbUPTNLRtGz4oBBZCN3XdglRhIo+MQQicVDjnQWqcCFcpQiiOliXbky0OlhVRAgcHB1RVw+7OFiqCSHsO6yXG1GgtmM0O2NnZxuHIs4SDgyOkEGgdgpOymjObHbC7e5pVWbOqGtIsJx2MWd5oGOYp169eQQmPEoZklOIQXN+7ijUO4yWDwQSlNIf71xnkMaXSZFmOaBuyNOPaasbh/lV28xi8xViHkBrnJEgdWlW87bou23BSFz6wV11dWkj2CaRwCFRgOWSYIOQduHsNZe5xV/R229vtJxMOb2okLWtZqrZYUS0PqYoF0oWygLa2DHZOMdzeRcgILyWL2QEHN64xGuccXL9EnkSMzzzFfLEki4bkwzEqjcD5kD0Q8pYGkVALLo/jv/VrTvgwJdY66nLOYv8KTXFErC2JjnBeI2RC2zissV09a4POxwiVgYgefPfvqO97P/vqg9WTuNnSI078f+dhXSMElpKqqqiqCi0VWkiSOAHnacqKWGkiKRkmCc60mLriysUjbtzY45033+SVP/w2X/qZn+MLP/0Vpls7CKXuqGk9ZvPvEzT98Bc0tzOW3Sha6yhWS95941X2rl+lbVvatsUryXB3m9ViiW1bvBCMh2NaGzJOrbXUpqUuVsSRIk9yVDoIZEZTIXxLpKYkWY5QguWNa7SHewxOPRVqxrtMFISL+3vhoepH/Z2vfxgp/h9mGY83YBUKKyReKAwSgwAl0UqjlaZpWtrGIAhTgIQQJElClucY76jrFiEVSZoRxQkyShHdmEekIo4SIhWm47RecONwxpmnd3BSsDg8YDgcszEdMhpmNM2KG9ev8N677zAcZGSxZnswJE6GCKlYrBbU9YKmLomTBGMaFssFpg21eFEcI5zHlhbjLcVBw/Tppzi6fhmtJOPRkKap0JGgaRqydMAo22AwGNLUS6RrsJXj8sGM9959j898+tM899yzbG7klAuBEI7aGGQUUsVeSqzzOGuxwuKlw/sm1EyKoL9pCZrrXoZ+bC8coELa77hlqBNo7/HA6O22t9tPGjweYQXlqqCuVyR6gGsNtlxQzw/wdcF8/wb17BCFYnawx1lvOfv8Z1kt57hqzsHeNS5fKRkNIvaPrpNOJ1x+41Xa2rNYVZw5fw6tU9J8wHRjk+HGJiqO8TZcmITJrl0AK0KiV7QKUx6xv/cmTbkkjSXCFlgiQKCjmLa1CB+msTnnQOak+QSpQrAaWPpjr/sQB+XeQU6PO3FvPq97/S4BShQlDAfhHOOsw9kg55TEMUkcIz3gw1CR6WhEU9eMspzGWpaHB3znG0e88fqbvPbKq3z1X/qzPPXsCyRZDlIFNRfvQj5GyLtsD9xtStXd3nf/PQv5H9/JBzrnWK5WXHr7dY72ryO8p25rtFYIKanKiqTLNuA8xarAGouUgraqieKUpgqjsb1I0DqhrZe4piDJh6TDTaSAVWOZvfoNrp3dYnLmaWT4Fd8sBPigpnuyYqcLzI9HQtxHaeFR4jEHrBIjJBJB4zzGA1Kio6i7cOnaALxHSkme56RpShTHLOsaFUGeDVBKE8UxURIcPzIYBkhcU+PbCudg1hh45hSjYc61i29jteDN177HD6xne3sLbz15NmR7e4uNcU5ZlVy7doDzmraxTCfbzI4O8MBsdtRNAUqZbGxyeHhIkiTUdUUSxygcVy6+G2bBO4OzLXmWhAZc43GRJI1TJJ7d7Y0upVuwvblFXVWsDg947fsFBosQglTEGKnR8RAvJN6C7Tqtrba41oJPcdYgTYtTDd42of7MOpzt6mqkx9tQQ7gWEurlLB8Ovd32dvuJgw9NIlffehVZXufU058NF1veIp1nPlsw27tOdXgDYR2N96ysQ+Zjjm5c5Rtf+xrDjS2y6ZjBcExjDKZdUR5dB5lwcP0a9XKf4XDKbL4gGwzJRiOeevZ5pps7RHGKimKEDF1aUipsXXF49XUWs/cYDVKGccJ8sSBJcrRMQ4d0JEmSGGcM1gaVifH0NDoddizuraxfj0eL9wta1xBCIAnf886pswxHY4qjq0gRGkvTJCVOEpSQxFlGUawoFku8FwglENYySBKKpqFcLPjab/0LLr33Lr/wJ/4kP/mzv8B4c5tIK7wM47PF+rz8kCzrzaaj93+fdY7WOFaLI25cu8L1S++ynB8BkGcZgywnjmP2r13DJwl5kpJkCcZYitUqSADi0RJUFDHMtxgPN5DKQ7NCWRhPdsimG2hKhs2C6tp3mb/7JMLWoKLjg/9hlcCcXMrdYtP7s643We4fRqXhbni8gwO6fxaPcQ7r5XFHpzWBPVFKYowhSWKUDpN/2k7LIU5StA5X2kppEB7nDKYJ2pbOeWwdxps1xjLMIpyz1GVBJCWzgxssi5qmtRjTsHv6PD/zUz/N5saUd999k6Oja7SN6Qxe0tQG6xRHs0OWixIdRUwnGwzyAfP5HK01Td1gjSGKI8bjMauy5PDoEO8laZpjrCGOBdONHWzb0NY1kcwZjUaMhmPiJGa10NS14XB2jWyYUTU1kyefwOoUIVQYfyg8wlqkc0hjcY0BZ3CmxasWbIS3Md5UOGFw2MBsua7DWsGx9sZdrj573Bu93fZ2+2jxfif3D+6MfPffzaYMgbE1bXHAD/7pP2bnf/AkUiYYLFpH1I3HGImx3dQrIXD7B5hlQdvUpLFmOMyZbm4jRcQgG4PzPPHkkywXJd/65jcYDqY0qwXOWZIs4Q+/9rt87/d/j/NPP82FFz7N1sYWyWiIVhE3Lr/N2698k1O7Q5648CxNZSibljTfQEcpsYpprKGpWyLlcLbFe9BJSpyPCfPounTtySjqfqzp3WR/Hu6Ivg/6oPkOSMXuuQuMp1MWe0doIZEeYh2TpjlxmmCMQccxSZLijKU2Fct5GG89znMsUFvHm6++zPWrV3jz9df52V/4RZ7/zOdI8gFSaRT+eLDLgwRzt8tbhfNyUHrxPkycuj1Ya5qWw/09Dq+9x+rgOsujfWxTs1wtiXXEYDLm6OCAJAmDA8qq7NRhBGVZYq1FR5K2tUg8tTMY77DWorQmGwxQeU6Ux2S2Im+usGhLlPM4Y/Aq+JTb8WHIfa2X49fNW+LOz0spbztu996GH7YM47EGrBEWJURI/7hApXsZdtR5j5AC5wxSeJIk1PkZ53BOoGWElIrWGOIkxQlBWdXY1mBaE6bgOIdpa5w1eGfJNseoKKNuWurWsVxU1K1BRorReMR0MsA2JdeuFMyOVly9NkPJCOcMo+GY2WLJcDJlsZqTJAmbG9s899QzeNuys7FBWVU4a0nThLIsSbOM7e0dRpMp3tRkWcbB4REIhfOKVXGIxHDkW7a3t7jw1FMIKfnB629xdLDCiowbByukdDgUResY5gOiKMVhkM6hrQPp8MqCaXGqxekWbw3etKAihGwQokG2LVZ0XdmEK1zl+4FBD4vebnu7fbS43459mEFPF9A5S7k4YLl/idXREYuixNgGU9fQ1jSHBxSHBww3tnHOUbdBdmd29Qqvff132XnhWaY72yxWBZlxzK7voYSlKGeM8xRTrhhGnpdffpVPfepp6tURIp2gdcz3vvOHlOWKQZ5z6ZXvcfqZCyRRylsv/ZecPX2Ks2eeoDWGoiwZTnYR0QApJFZohAZlWqrlnOEgA6mJBmOkXjNNH7Ar76Ed6kf1vX1M8T4VFHeTllICNnZ3OffkBd58+TV093wSx6RpBlISR4pIxwwGY8pihVpJ9ERTlAVVVaGkJI4FxrbMDw/557/2q/zg1Zf5Y7/4i/zsz/8Jtk6dQcQJILtmQk4wf+uBAOJEgLVmVcO0Lesc1jqaqmQ5O8RaT5rlRFrjuspd352zr77zKvXskNXsgNnRIc6HMdNpmjIYDpgfHQGCtrUkOsabEATXTcN8tQAsG5MpWIcybajhFg7nDWowpTItq8WCODNsTAck6kmG+YTWWmLRpe0f4kL+ptyVP2G+92aab/0Ob+PT/a0VvfdSYLj9mvF+ge3teKwBqzY2zK2QHm891npQdFqUIZ3quqsZKSVNa6ibFhXFRFGEdS7UDWqNs5a2rnHG4Z3DGtOliRq8C1p9SkUslgXTrR3eeuNtHCC15MmnnuTC0xfI8yHFquCNN99ivlixMd3k0qWr7GyfRhCRxDloT54PiCMddDgFKK3Js4zGGEajEVGkmU5P8dSTT/LuxYu8+uprnDt7CiUkw8GYja0djLHMZytiLZAyom0d77z9HqfOnOLcubOUxZtcvrJHWa5IEsmNG9fIY4kzDXk+JkpiZFekLiRI67BKY1QE1uCsAWW6hp4aISokBdpZWrtO9VkUBufbx2kGP3Lo7ba3208EhMd7h2kqrr/xLeYHl7j4+htsXHiW5ewQX1Ssrlzn6muvYZwnOf8kZrVgfrSgLioqB4OD66TXU4RIKG3DjRuHfPqFZ/nud/+A7a0R25OcPBlw9vQGZWk4LCxvvv4eZaMYjDcYbm9y9fCQ+XKGLVfYqmD/2hXqYs5w8gLWeOqmQaAQKiJKUrzzIYAoCmgL0kQjtcYJTTKcgAoNeseu725O8F6SWidZ1r6G9aFwrOjxIA3oHVsnhSeKEz7/5S/zza/9HroxWGMpqwKnJZvbO+HC3vugWRpHZMOcuqxIyxJjLMa2LJczNkZj0rhlvlxx/fJlfvVXfoV333iTr3z1T/DCF3+KwXCIlAolb1USuLNxKvR+egd1XVGsVjRtRVOtaKqg+DI7hCiOgyShtUghaOqKw72rCGs5mi9YLAvKsiSJIzY2NyjrmnJVMBqOSKIYYR1lUTAdj5hKwWS1pLQVzng2JhvUZclyOWN1dJ1xGjPa2MTUK4qjCuUnuOc+z/mnJKnSmHoJgwGhWfL+OMmC3vJd3XkY7v390f08bl/2iYXca2DArcHqmml9sN/Z49VhtQYQOKWwXuK7QuSmaZCymxwkFVKCMS1tazDWInVH0zuHjAIN3dQ1rm076Ztg3NY0IdXoOxFyrbh244C2OKRuDU3TsH1qhy/+xJeI4pg3Xn+TK1eucuPGPtaBlAU7OzuURcXW5oQ0G1LWS8ajMUUxJ9ExbVOjlWJ7ZwfjPWVZkmcZZ06f4uDgBttbm9jnnmXv2mW0ihgONxnkY5q25PTpc5imZDwe8uabb+F9YC8+89nP8KWfeJGyWvLmmwsWi4L5fMFsmONMS9Ma8sGINM1RWqOVQiqFtBqhNK0xOGNBGISIEFJ3U2sAB9J6MCZcQVoDrnf8D4Pebnu7fbx4ECbvQTxPqK0wpuXo6kUWq2uslkue/crPINOc+mCf/cvv4KXnqS/+ETaf+zRL0/Ktf/EvODxaEOU5n5pMidIRNTHPn3+W61cvgfS0VvDu21dpT22xs52BSticDFguBN997V0m2ZB8vMG58+cZDcdoBNF4wmy24OjqNcaDDCUMdVOgkyFF2dBaRyQ1Wiu8qYmkp2kr4nyEVBKVZMgkxQt5f6bmXmnQR95A8mPOwN4DSmiefPZ5nn7+eW68/Q7CexazGXEcMT88JB4NSdIUb23oG2gdIEmTHD1NsaZlNBxSLFcsVivapmT/4JC6rHip/RZvv/UG/7X/+pIvffmnyYZjtNbHMmtShgBv/Re6elRrqVZLjvb3qFYLpIK2bcB72q50y7YNTVVimhqlFMvFgtnBIVVVcrC/x6qoOwlA2Njeonj3PYbDIcPBgGGW45xnvDEFoCgKtnZ2sFjevXiZS9f3kEIxziJyrRHpgLYxLA+uc3VxwGTnHNl4k+GLnyZPNM62YcLbD3OBdY/C4/uVC3zUzVZrPNaAFW9xKFpvKa2gUaCspW1bkiQJun2Asy3WhVqPJEkQ61oUGa6S2rbFuzCq0bsQ4ys8rWlDbROCNB+wublN25a8d+kK82XBdDzkxS9+AZTkjbfe4tKVKywWS5IsY7VaMZ7kSAFPPnmOsjChA9ULnLFoIfn0p57n+99/hXNnzzGZTLh6/TppmjGdTIi14rvffZV8MOTTn/ksly++jRIRk8kWprUslyvyLCUe5Rwc7uG9oygXvP7GDzia73PmzGk+/4XPce3aNa4vC9rW09SGhV1R1YayahgOG7LBkDhKkFqjpQgzigGQICS2SxPYtZixVwgH0oPsurUfJoXQg95ue7t9jHjYoOdewVk3lMF5bFshpMRUNacvnGbz9BNsbG6xdzTHlDVVVVFbS761yXOf/yLV/g1+6zd/C4lCjTepfcx09zRRFjGdDHn3rTd56vw5Xvn+9xlNNymNQ6kRg6kiKg9J0wFqOGEyHVGsCorVikWccHhln+kgw1Ul86N9zp4/jVeaZLjFOBlhrIG2QcgI3TYATKYbCCVojWOwOUXI6GSf9McIn/xg9YepSfQifG6yscPZC09wcPEibVWDa7n01jtsnD7NRCvaooDW0dYNQkWkeU6SpVjhUFJg2oZ0PCbKMpI8IU1TysYwWxxRmpp/8g//HvVyzgufexGdDIiimCRJSLMUpSPiNAvNfgKqsqAsFixm+9TlCltXCEQo9xISb0MZGM4HMsJ5ZvMj5keHIcidH7F/eEhQqnI4B21d09QNcRwzmYwZZln4zbUGiSQf5hhrWS1LPvPZF4N6jIw4unGNZrmgdZayXDC/dp2re9d4cTBiuX+FJS+SRylbMsX7rsD/fRqvbp1gxS3M6rpZ+KG+w3s8/yi0jx/v4ADvcF7QOEHjHFY4pLBorYjjCAE0bZhWEhR/wpQg58MVUaQ0UiqQAoHCtYLWtNg2NHHYtkVoSZoNePq5F5hubXPt8nuslgVH8yPSTBEnEbPZEVcuX6Ztw7x2gMl4hPcWFUkOjw4RIiYfTLHOUZYVZ05tsb29i2lf4uDwgGeef55z585x7eo16qog2d1gOZ8jhSJPEs6dPcu1qzMQGqUFzjuUDtqWWZZgXY0QijQdsLd3SNMarIPdU7ssFyXGCRob6k3K+ZLlqmC5WjEaTxgOhmTZIBwzIVFKEgkRJsx4B16H6j+hkSrBI1BSd6L3606WHg+K3m57u32kuHs77oN8kNv6eu/5TnFce+dpq4JVseSdN9/k3FPPoaOYxsLGmScxPuLa3g0OX3qJnc99Aac0w7On+Nk/9VXEqmE4mVAgaeqS1fKINFZMTu0Sxwkvfv7zTDYnHM4WTMenObhxlRc/f5bFquHq5feomyfY3NrizbfeYVWUjEY5+HCRsnXqPFVjGeqYsqgYb44xVYWtF1RVA9aQD4egNWVVoZIEHWfH8jsfShD4oKUEP4xk1o8pbhXuX0dWjiRO+OwXvshr3/pD2qbFWZBKcumdt9i7eqmborfNaGOTweY2cZyEC1nhGaYZXggq21KVBcPFgmw4Yb6Yo/auMVvM2N+7wbf/4Otsbk1J8pw4ikiSBK00XigG402QCoVjuTjEtBXlqgjpfiVpivJYNs2YoFJibUtrLGVVUxVLDvb3aOuaSxcv47xjPl8gvCTKcmazI1arFaPRiNVqifCGtm0ZDoYMJxssixJTNZx64jyrqgTjaKslCkexmJEMBmRZRpsOGO+cYnz6HMnGLso0mJUl0hFWetQJ83zgwPODCmncltR5OL3Wh1vp41UJ8JLWK1o0UkgiAUp6oigmUoq6boLxOhN01XB426LjFOtAR4ooCp3HVduAC+nUpq6CKC/gZczGeMq5C0+hI4nAMh7mmJ1NXvzC53jr7bcoi6oTp7bkWYo1jjRNOZzN0Qq2d09RlA11a2ksSATDfMBoMOLM2XMcHO0TZxnl9T0iHRHFmqP5nCTJePbpp9HCE0mNUil167HNkqeffpq6WGBtmKO+vXsqFJBrzXw+x1nLYr7i1KldQNI0lsJKdJIinGdVrViVBcvlksl4wmQ8JRsOSdLsuCtdIRBxhJcCLy1GBMkkEg9Cd2nXGKHKx2kGP3Lo7ba32x8Z3FMM36+7BLH1Ctuu2JxOODrYZznbJ84HGG/RWcL2mVOIjQlt05APcjZPn2YwGfH6N77D/ps/4MLnP89qeRQUArAcHO4jdUzTWnSVIXTKdHuXxjS0znFmZ5NqccRwssETTz+N9Z62rimrmr0b+ywXc55+4eeo2prWeIRvKVcrkjRFKYUapGgV452nLEqsc4x2NxFRvJ430eNjglvrJe8ucbSefnbq7JOcffJp3lm9xGQyZn5wg2YxozxoaKfbpMMpA6GpywqcRypFNprQGEtjWvJhRpYmDAc5o8mY+PoepjUUy4LlbM7FSxd55Xsv8ezzF47lBvM0xyOoF0dY74mThNa2VGWJay3GWAZ5TlmWgVUFmqZBKYV1hqoqqYqS1WLOfDajLGpWq9Dx77ynMQ3VyjGfzbHWslgsiLWiqWu2d3aIkpRFUTIcTXBiSduUjJOY2legM2xVopVic3MTbQTp5g5PJOdwgwnxdIvVjT2i0QgXK4T/gBdqoRuNB/kBHX+Xt4q1PnI8Zh1WjUV0bEkQFBedUdR1TdsGp6iUwgtJ2xqiJCGOI6SKiCONkpKqKiiLJaataNqaxoSGFZ1kDDd2OX/hGeJIU6+OKBaHSOk5d+4scZRydLgiS4dcv34ZITTLVcl0skHdtugoRUjJcJCzs73DtetL3ry+TxzHZFlENtBceOo8B384w3mJcZLhZIM0iREC6tYwmY4YjhJ2dja4dOWIw4MbbJ8aE0eafGOXunY0dcnB4RywxNpTLvfROuLyYkaWZXipkTqhqGryLGM62UQozWI5Z7ZYUZahVmY8mTIcjUIHY5KGefVK4bzHedAu+ChLhhDq5k3Gj9MMfuTQ221vtx857tUkdOcbH26x1mDqFUpa8J4kjsHVrGb7JBKsq0nSmOnp00wmE6SE5dGc/f3rlE1FYVo0HuFavICj2RzhHePJlHcvX8EdzWktnDp9hvm84MnzZ7is3+N7L3+ffGuT8089TZKmHOxdRUhNWVa88JnPce7Cc7zz+vexPrDu9XJJoiKsiJFRQu2hLueIumA83SAejPBiPYaVO1nPH4a1fuBj/mHgk1MycLc9ORms3s7ArRugNrZOce6pZ6iODpHeoaQCYzk63EcISbEo0NGMNC6ptCZOYorDORbPmacvgHCY1tC0LbPFEo9gkA8Y5UPmq+ssFkte+f4rKOHZ3d1hfjBnurlBnCQ4Y2hbg5AK2TGp1bIAwBmDkAJjDcWqQCqFryuE8BTLVVdCsMK0LctV0Z3/oa4bosEAXAhyoyhiPp8jhWBzcxOHpGgcUZRw/do1RoNQj9s0NV5JvIPNrS2O9q4znY7QVUUyGlNWcPX6AaPta5z/3BfIzz5BojLkAzYJ3m2U7Mnv4+T3dfK5eyyty2n4O7/4hzLbBztvPfaA1aCwPjh/Y0yY9tCGRhUpJHGcEEWK1lgQliRJiKKIOErwLow/Wy3n1FWJc4Gidx68VKAitk+f4ez585i24uhgn3K5ROuIU6dOcfnyFYTQXLu+Rz4YMBlPsVZweDAnSTMWhzcYDjXz+QxrDfP5DOctdVMy3RgjhGM4HLCxuYMj5tS5CxTLBRubW2gl2d7Z4fSZXQZZxGiU0TYrjJPkQ4EUuyRJxo0bBxzNDkI6TDhkDkmiWa0KNqZbNI3BOUuURkgdk4+npHmKihKkTljOZzR1yWwxp2kbyqIgHw4ZDEdkeY7SQYxbKYX2IS3tkQgvuptC8BDjC3v0dtvb7ccYD3bi9wBeUNcLqsU+MYpoMGXn7AXKVUXLAqMUW2fPUcyXaK3RkeCtV1/i7XfeoFgcQao5tX2O+WLJtWs3ODxckqQRxhmy4ZTpZMJyseIPvvEdtqdbHB4cUJdL5suCZ57/NNcvv8vyxh5bZ85gTMvFt95ic3vCdGtKOhziRchgWNOQjzZwErwzuMZjqpqYBmKBSBOEim/qnIkT03hOMny37PsJx/yYGkhu4pMTrN4O/z6E3c3xqZIkTXn+C5/m7Zf+kNgLsu2ULNKMRmOKyiGJmF2/ThWHMqI40Yy3t4iymIO9PcY7G0GI31nyNKMtSqqyYGNzispSDuYLru0fIF5+jaqqGeYpVVUEVrVuAEHrHKPJGKU05XJJkqRBPk1ryqph/2Cf8XhK21R4a1jMFxjraFpHWbfoSOGFJ45jmrYlUgllswRBIAySFBRsn9nFIZgd7NOWFdPphPmsZTjMcQIGaU5dt6go4qnnXmBjMqIeNMyWBSiBaxzWeOLxmJ1nPg1SdqJ/D4f7Ba8PtZzu7y1LeqDFPty6H28Nq4wwXnUz1AlSJCIEAM5aVKRJ0xQhPE1r0DpCa9WJ9hJ02IolVVlgOkFfhELHMVGckuVDNiZjJuMxh/sVRVWjogRhFUeHc5xzpKkiSSOSNMY4h9Yp2WBIkuRsbkqSOGIyHjEeDXnzzfdwrmIyGZDnGc550jRnY2Ob0XiLzTTF+4amqqmKFdundvHes1wWnDtzmo3piGs3VpgmYzwacePGPpONIZs7Y+I4Cl3mokFKj4zmlK0hTTNUFBFnOTJKaa1AxRlpkhNHKWmSUhYL6qrEmprlckHd1JRFST4ckg1GJGmKVBohQ52gR+CcwzmFUBqhPqBe4Y8Zervt7faR4v2YvXum+e+C+4qGgzENTVPTNC1PPfMCLhmxqiqqq1fZGA9xSQTDFJkYFntvc/kH3yVPI4bDM1y6co3DwwOSVcXu1gZXrl4izbZI44gfvPJ9dk/tkkQpf/RnfpLr168SRZLXvv+HnDlzgS9/+Sd46+3XufjOW1xIFFtbW1y/9C7DQUZdVzR1zfVrVzm9u8nW6bPoOOtGuIJtK5SrSPOEhpjKSfJQkAtIvAiNJ3dK7nAcxHp/QoCnY6buOFL3Eou833M9jnGcLr5FNexOdhUgNOkLzl94hrPPPM3snXeREpJT59g880JQADjcYzkL2qYei7GO/RvXGG5ssPvEE2ipKVcFbd2wmM+pygrvHVW5QnrJ5saEsjU0Tctbb73N7vYWXgriOCbREXVd0xjDqTOnSbOMpqyCikkjscZQFCU4z3w+C81ZxQpjDGspqTRNWSwWJElCHMcIFFGes1rNGQ6HxFGE9Y7zTz7BYDhifnjIfHbE2VOnsdaSDQYUZUmWZVjniNMEHcecPX2aSAia2Qx7cERR1qTjMV4IoigiH+R3bXC6X9PTB2mIOhnknqhIxq9FrU5kN45HuZ54/oOs+/EGrFGKc6E3GtsivMO5IMYupSJNkzARoixweKJIoXVEFGnqqgmCu3WNcy40sXiJVAqhE7J8xO6pUzz91NNk6YC5iplubDNKU4rZIWW5II5TRuMRWZ6RD3K2t0/R1Ja6tsxmKza3R8yXM5LBiM3NDbJMc+NgxWSUU7ctQihGowH5YMbGxoRTZ88yHKa8/oPXseMBi6NtFoslu9ubVEWJ1rCq5pw5/wV0JBmNc/YPDNKDN54sSdFxiveGNM2Zz2YMBgOMg7q1JHmYmqSkJo1jYh0dz6ivyoKmWtLWNW3bsmhnlFVBWhTkwxFpnodUsZAo4XFS4NYSTOoT2rzyiNDbbW+3HxkeYVpaCIKeadOQb55CD6a8d20f7wzDLOLgYI/xKOepL32e4SjD1Es2NzIal6CyEfOypliuKJZHjEcJF548j4piDg4P+cLnPsWbb7xOkuZ88ad/jvcuXaVcBAf95PknmAwUn//C55lfuoiv5ujhFkp6rlx8l+Fog8VixaIIF2vbUlK3hmE+xDUN1hlWxZwonhIPNyhsSL8ea1BKiVTBRm4yeDdLA9aBkvf+JtPKbVzP3QLYHvfF3TLC9ysPgNuCViHJ8jEvfvmP8Af7hwhrUHFOlm0zHE4Y5BmL4ZT5Yp+mqSibCqUk1lrqxtAuFiRaURUFTd3QtA1KaZI4YblYUjWQDAcYa1FGcu3aHtlwQNse0ZRhNPVkOqFYrmibBoFgNpvhZ6CEwFpHlmcsixLnDLZtMaZFqehYgzvPc6wNGbWqnLG5tcnVKxdJ4piqaTh34Ul0krIqCpbLBRvTMUmSoJQiSVPKoxKUxHhHMZ8z6gJTnSRkWU6WDimNCxOwXFCmmc9mpGl2m7bsw3xT98e9guG71SLfja1dB63vF1Q/CNP7WANWo5Mg0GvDFBvpDdaozumnpGkKAozrJGyEQCpJawzWrUXaVRh74z2RjEFpvNJILdk5fYrN7VOsyoqmMcRRQrFaUJYlcZJhrKSqW7RWbG7ssFysaI1DIHniiVNcvXaNnVNbtNZQLgtObUx55aXvcv7UhPFoTFmWKGU5fXqLNBWcPr1JnmWYuubdt98mjhPSNKZtK/CWrY0RT7aGC2dPIzFcuX4dJyWuKRhvZGxtT0nyhOVyyd7eHkkcU5clMgpMkzGWLEmJlAbvOz25IVGckmZj2npBXYV6mqooaOuauqkpilXHWg1JkgwlQye7VAqlXCe91ONB0dttb7ePBfeqw1xL1NzlI/fhWIDAClnjGG6cIhpM2d4C2xRcuXyRKBKMzp8niSNMsyCREbvnzzFftNw4WjEcjWiqgieffBLXXaxlacbZMwnFcsG507t845vf5oXPvMjnP/sZLl16jzQfcHBjn89+9gWGp5/k20f7vPXGD/jslzZ56umnePk7c8ajAW1dM55sonTMjf19Tp+9gPeg4witBphqwaWL73H+hTF1ueT1114GobDOkQ8GaB0xHI27AR4xSZqEKUfdsVprcR4fNEnHEImOnX2fUoH7Md+9WsAxusuFW5tzTr4uToxLFQKt4IlnX+D1c9/l4kuvsjmIqesrSC0Y5jFxtE2SxlRlwWJ5g/nRAa2taduS8qjAO4t3IETQeK6qCoElztPQRFW36EzhBRzMZvijI7TWRFFE3bZ4JTEeptMJSgp8U4MHUzc0pqU2LdtbO7Rti3OeoihJExdqXsuKOM2YTDep64p8FOQFy7JgOBhy+twZsuGQclViW4O3juFgyKooyEdDmnKFR9A0Bt2Nfl0ul5R1hVYiDFrRGocgiSOG+QDX1JSzferpFCXzNVX98F+SP/ngrgn+B1/c3YJZ7tKk9UPgsQasSkcI48P0Gh3hvQUCRZ/nOUqpjokCISVSqiApYUIXRhxHCJ/Q1BAphVIxrQOnNDrNGE03iFNNUTtULDGNZVEs0HHMzu4Oq9UCIRx1U2GcCfUjxlHXDd/61tfYO9oDFTFIc547f4GtyQbPXTjPKI2ZHx4yHE9wXjAcb3L69ClG4yFJFLG9vUVZLLl8MUPrIPkiMYwGKZ+6cJ7FfJ/XL7/LXAAioprNuXJjj1MHVzh79ixtG6QznBcYFJN8CDrBe8VgMCSKY4Szx7pwSkdIpdGRJEoy4iQnSpasFgvKckm5WtBUJdVqRZYPSLIhOkpCgbkA/cMY+Y8xerult9uPC37oaUwhfS5EhJQarTRRpFAKvPCcP3eOLE/J0gSNpWlrvIDBeIPxRk5RvU5dVjz19LNMNzcCq54PqFrD5tYubV1i24Z/5V//NyjrlkhLnjh/nueefpprly6RZRmTYcYzn/k0b78GR4c3cNagpGB2uEc6HHHh/JkgK6SDukbZFIyGQ6TSOCIGebCH62+8wh9++ztkozEWwdb2DrP5nOFoQlHW7OycAu9JswylFMPRkM3NbdIkQ0oV2NgugFVSoaQE4YMI+z0ObR+S3gXHJHZIDd9NLul2WatbmrCkBy/Ih0Oe+9znObh8lbasKVdznLAkaUaWDBlmMXmaEceKWMVUteXqe+8FljHS5OMBxXzG3tXLmLYlijRREuNbg7OO69evs7m5iYwUdVExGAwoioIsyyiKMD1rPB5hjcU5FxQBrKWqKiyeum5wzh0rB1RVhZSS6XQD61wYEiMVSRJjrOXsmTMkWcbOqVOsigKjGqJYIKcblMUqDIcRgqqomM1mbG1t4eG4+fTG/j7X9x2ntrYZ726STIc8/+xzPPnsU4w3pkgJVbEgjkMm66G+r7Vs67E6wPp225f6oIu8/Tvt8CBh6oOww493cIBUYZ64A6k8+Bgv1PFIS+ccrTH47io5TXNAYL1DCkGUppg4pk1qJGCtRwiFjxJGG5ucOneeycYUi+fwcI9VWWC9ZzSZEqcZRVnQNg1ta5gfHTKIUw4ODnjl9dcQgzHP/9RXcb6mro546b3X2TwaMt0aMR0O8KZldnRENpySDiw7O9tkWYKSMJ4MeOKJJ3jr9VeoVzOwnjjSnDl3houzA16eX8KeG/P0M+fZHE3YkGO+85u/T7N3RDVfUlRL5qsaqTOSbEjTGmKVkuUD0iRFdQXW3jtcJ2XhhQcVI4Um0QkqztDJgHhxyHIxp6oqlvMFdVESZSVplhMnKVLHj21qxY8servt7fYR4oH3a53uvqOe7P7vDysJ6zGt6XSFLaZakWqBHA9ROJTuyjDaBuEsQslwASY8Z0+fYjqeUJYVzrZsbW8jtUY2Dic0lRHgYxZFjROSZDhAKcXO7g7SVIzHQ9I05fTpM4wHObPDQ5QUNPMj3n7jB0y3d7lw4WlmR4cIF9L4o+GQtm3JspzBzmli6dBRxPe++XscXt9H+NOcv/AUUhpiZVkdXaVtDK9fvxiat7qLpXPnn+BKNmAy2cBLDVKysbXD5tYOWTZAxDHCgxAexF3q7u7Cat/y+keqLvDxwsP+Jm+ph+yOtRSaJ577NG+9+gpHb7+JLBzLoqAoa5Z2j8FoQpJvkKQxSm5jmoa9+T5ZmjHe3WTv2mUuvfEDmqpkvLHFaDyhKFeIqqE1DbHSFKsVKo0ZjkdUVdWNpg7qAEmSUKwK4ljjnKOuayKpiOKYVGu8d8dlXcPhgKosaNsW6zyT6ZQoivDekagY40EpxWg6wViLMwasIVIaF8dkUuKtxVlLliQUUUSapjRNg9aa8XiMlJKre9e5fmOfT336ebZ2tji9e5rhZEKcDYjiCOEa6qZC6wilVGePd+cz726R/i73798xdz8Bjrut03P/JX7sSwKsA+e6HZESpTRChhnrAMYYvHNEOiGJU6TUCCGItAqpWCFQQqCloCgKWmtIRwPS8SYXnnmOZ57/FJujIVIF2Yg4yphsbFJXFW+/9x6uqXGmQQrPvKnZL0riPEYmkl/8V/4l9MYWbbPi5Ze+w5kXXoCiYrF/wKl8g8lgzI3DBYvFgtF0iySJkRKEcESxYrox5uy5M3zr999hOhqQDEYcFjdYDhST7XO89eZ7PJNuceapJ0lNzWd+4lm++c9+jydObXH1ygrXCPYXMw6P5ozGm8RZzbPP7xBFMQpw6+YBF9IR3ntsFwAIpYmzGBVlxHEIAtR8FlKuTU1Zz1gVBUmSkaQZOvoxkgf6ENDbbW+3Hx3uQlMdv3TvUoA17hlIERxE2zYhA2Bb6sUKITxRkuJsg/eSprYoJREqolgdYZsjkuGUPE/QOmaQSZq6RkWefDygMVBWLYMk5cqlK8Rpwny1ZLq1w1NPX+Dc+XM08z2sbZGKULdXFIyGA/YPD0jThJ3NKUms2NrdwbQNSZajuvRonueAx7salGYxm1EuQlPLhQtPcuHpp2lawygfcOXyRZT07C9nFKsCYy0b0zGmOMRKg6slh7MZCMXqaI+jvQ2mu2cYjcZkWWBfw0ALhdbhN7yeYudv89a3cFK3H/Mfk6D1ZMBxMsN8+96HwLQLqPzJustORFdAlg/57E9+me+uZkgfLoJWq5pVuaIy+2yiiPOcSEPbCk6fO080GnC0v8/B5Wtk6YB8NCFOE6wzGNPinGXvxnXiKNTPS2fZ2dnhenGNAWE86ngcvnulNc476qYOtaujMBoWCdY7jDEoKUNtqzGsioLhaIjzFtntx6oqQ9Oo0uAgSRJc01JRILTCNy1JHDMej4i05ujwiLODnCeffJKL711EyFAmgRDsbu9greVodsSps7tEWYLrJv5ZZ2hNC1VBEme31G4/FG6hxeHmGKwH+Nwt12j3+Iw/LroJD+9y5nq/tT3ewQFuPXbRI6VAKI3qrhCMDaK81lriJAIczhqkUmgZYdomaE4qeUzDC6WJ4oR8MOCJJ55kZ2eXQawp6wYhNEk+xJqWojji8OAAU67A1GSxQqSa82d22T1/gfI1w8Z2hE0rrq/mLJZLJpMdvvyVn+Gl3/sdrty4ynSQk8cRJEPiJAchcc4CoBAgJcPRmI3JiOk4pwZWCJKtCflwzDsvvUk7A+FzkAVp5mjNktOntjh/dpO9oxXz0nG0rJgXlr2jFVIKtASBRHoQ3hGS0XQRVKgV8t6BkAgtibIRQxUhdYqO5hTLOWW5oFytKIog6RHH6eMzgh9B9Hbb2+2jxN2ZhnWq7tZT+vs5pnt25noP3lEVc6ypqSsRyiy0wDYFbbEkijXGNCTpADDcuH6Jgyv7VC7CC8VivkIgacoCqQUbo5xBtsFv/v4f8valq0xHQwapZO/GEX/rb8LP/1f+NH/+z/858tGQ4XQHpSKkbJA4los5vm3I84zTZz9HOpmio4SmWqLihCiKMaZBa4X3jixJqIoZv/3rv87B/g2++Ed+mtNnT6GTGOMNZbnEtQ3vvvM2l6/v49pgcYv5EWVxxPbmJofDaWDNIoX3NUerfZaHl8gGIyab20RJho5jkiQn1iOSLCdK4m7uvEeKm9+BCFd9x8f8UYyl/JGDOPH3LsIWN2P5294oPdILzjz5DPvPX+UH898jtxCnI+rxhOXiBstiRa5DMDjZ2UKmMXt7Vzm6dh0pJOnmBlGcIhVY13IwnzFfLBjnI9AS5x1YmM/n7Ozu4lqD9jrIUTUNWZbSGosHojgKQwCamiiJqZswFni5XIIP443zPCNJgmShl9DUNfkosLc7Ozs0bUMSxbg45uz5c6FeV0hWyyVVXbNcLknShCzLWC6XNG1DmqYsV0viOGaxWJCmKc9uP0WxKqjLCiE13jmsMVhjEU3dDXQJF/KeB7hWulMa4z6v3QW3lBS8P0t6sjr2Xs1398NjnnQlQspFuFAkLUK9n++Mo61rpJKYtsY6S5yk6DihbQWuacLVhVeUZYUXkmwwQkcxWkVsTKYkcUQUCQaDjDTPWMw0dWOYHc3Y3d5hY3iOSLRkkUJR8ZlPP8fhAnzrcKamMVCLiEpoppOMdiCYnN9ltprz+us/4NOf+hyFFcRxjmmDAxAopAudzF5qpLAMsohvf/tbnHnxGeKhonaW6ekdWrNkeXiNKLGUswIFRHGKjiSoGudr4iQmcZZsEErX23KB1BlCiWAjUuCRgEB4F9KDQgbpDw9eKKROyQcSLSO0jlGRYrlcUJQFi/kMqRaP0wx+5NDbbW+3jxJ3nvRvPr7Vwd/63gc54d+ybO/xzhInGtuUOO9oW4ttK1xTUy9D7aqQgnK+4JVXXuf3/vA1Vlaho5TRaMy506d5/sI5nnn+aSRw/swF3jss2Dq1wy/83JfJEsVr7x6yvXOGv/l/+7/yH87n/M//F/9jlE4Q0qKaI5oyZBm8NYzGY8YbW0y2T6OA4WDAZGMLlQxIdYSUImixesFivmB/7xpxosG3eGeo6xXeG8ajnCw+y439PeTeVabTMZeuXEOT8q3vvIR3jjgdEinJ7saQn/yJL/LcC5+hbRtiLfBthYojVoczrq9WVEVLkg/JhmOG4y3y4Zg4icjSLDTIWNeRYV3wepJZ/TEuETiJ0MV+0k5PNvjcfI/3HikkIkrYPn2Ka9MRV46OyHXCaDIhHUQUixWt8ygNdT3HlY7VwQ3a1QLjPeVK4b0gTYM+72RjEx1nHM3mLFaLY5WR5WzOMMsZTScI7zv905qmU6NYd//PqxrrHUIrrPEkUehXwIcGvtqEFP66gcsYg3DhfWkcM5pOGCUZwli2z5xitSqQzoMLtdXGGPI8Z7VasVqtyLIM4LjEzFrH9vY2q6IgTiJWyyVJkiEReB9GgUsd42you71dMeDD0lt9VBB3+63cBY+3hnV9QdWlWmRnvK0Jc3aFEGilsN6jpAwGoRTOu+OIvG3bcEWUD0JjRz4iTjPiKAp1WCoiz1KSOKIoVhwdHRBpRZYmbG1tsprtMxjl7GydJs0njISnKQ3NsiXKUxA1Z589hc4ErThkcyfh4PWIa9eu8pnPWLxpSdIY76FtLXQpI6QkjmPG4zFNXXE4P2JcLDh7/jyrpkU8c4btnTFbqUTX8Mq3X+GpJ8+Qj4eUVc3RfMlsWZOPJgxzTZKN0QgWsxkqboiSJNSuqCiIBnuPEP7YwCE4J3scAEhUHJOJEUIphE4ResZqOaOqisdmAj+S6O22t9tHiFsdy+1p/DtjnnuNvDz5+u2vrTMESZKEgRdlgbUtdblgfnRIpDSDYU5ZrrC25eI71/j+K1c49eSneOL8aT79wnMMhwM2N7cYDgdYLMPN0yTZhM/95DVef+nbTKZTTJzw3mKPf/m/8adJBhl/6S//B/z8H/td/sSf/lOhdlktUUoSpQOapsVLjVcJ8XACacrGk08iVYpHokUSMho+wjRLGgPjySbONCyP9rl68R22z5wlSlIGw5yVs5za3aIu5jSNJRtl/OCdi1y9doOmsQgPo1QQffpZzp6/wOnzT6KVRkehEc06zyBJGcQRV4q3+ebXfofX37xInG9y5vzTfOrFz/HkExcYj6ekacZgkBNFUcganAhaxa0H/hMbtN7v4umW4On4/5MNPje5NynAdufW0SDjyhvfY3Z0xKq27D71AkJnSBxECcJZLr7+Mm1r2Dh9HpPnRMaBjhkmGU1dMZsdsShKZBKze/YMmyY0NR3s72OboIOto4gkDgMEvPcMBwPKsqB2Hucc4/GYVVHgWts1ikbEUcRqucDjsc6hlSLWEUKElPx8Puf8E09g2pbxaAytYXt3FyUlsVYoIfGjIUmS4r2nKFYoJRmPRwzzAa0N/kQqyXQ6Jc9z0jRDCklZFizmR0gB+XhMLETI3tVlGHOtFLdnZO52nrijOeou55C7yVfdC/eTqbpj/Xc9Xd3/t/GYSwJc+P12uoqh0D3onVlrwQWNQKkj0jQhjhO8AGe74mwpjzv0EGHqUDIYs7l7hunGlCyJibXEJTHj4ZD9vesUywWDuNPEbBpWZcn165ew9gJKDTh15jQvPPM03/ntr/On/o0/yea5XeanRrS+IY08B63h4GBF68LM+CzLwFtAYo0nisAJcHjG4zFKSKpVSVNo3njpGuPRmFPnJ5x55v/P3p/EWral+X3YbzW7P+09t42+eX1mvsysyswiqxOLoinKpmTKFiwThmlCsAV44qkHhjUwrIk1kAeWLcOAAQOGrYk8ECEKFmmSVSxVFasqmZX9a+JFH3H75nS7X2t5sPa5ceN1+TIrX8bLZHwPgXebc0+z97f3+tb3/Zt1lAghz/nTf/ovmO0f8zf+9l+hsbB7eML+4QlOaCabCdYK+uMdlIHFwSOaYkEVRkRJho4TpI6w+ItE8KEFyoHp8IIWvIZllBILhVSaIIhYzM9eUAb8csbLvH2Zt59nuA/LdX1kmv/x9pbP/cmFTuzHLkLQEd88xMU6aI3j6OQMnPOLXpDRLGu+98N7PNg7Y/3mK7xydYON0QDtamIVsZzuk88VvX6C1BJ0zNtf+wZ7Dx7QEhIIxWubPdqzfa7dusnmzgb/t//z/4Vfe/sNRjs3kFLRNA1Kh/T6fZI4ZjDZpDfeAAv3f/Qj/tE/+C+5c+cBv/Gbv8m/8+/9XZKsjxQxGxs7XL95G1svmZ2dYoVgfXOTIl+glMZYQy/LGGR9DsszHjza5eDolLwyLPKaSEnW+inf/OY3uHr9BlHqiTdihbHGoMKAjAGj4QhtW+bHu5w+esiff/tP+Kf/bMytG7f51rd+k6//2jdxG5teUisIUO6Z5egK7/qvKkzgI/n5sTW7O38sziEESAHJYJ31QY+7f/7PCXWGHk6IswHt7IjCSeL+mCTpk/Q0g/E6/dGYRVEiVEBTl6gwJM4yrNbsH+yzzBds7+ygkoj+aEi5WJAvcpx19AdDDg/2KYsC28/AWE8UtY7Ts1O00kRRjI6Tc0xzGIbkZUGv10M4gRKS1hjCKCIylv39fdY31nFN23EcHLOzM8AxHA4pqgIdaYq8QEcBG8kEHMynM5ACHfjrQwcermCNwzhoTOu71ViaqkQgCbSXIrTGYAOF4uNVVH5SwfnTFKg/S6zu9z9Lx/eFFqxN22KFQ3SkFFY36q4YMKYF63CiEweuKiy+8xII6Z2FuvZ3XdfUrcVJzWC0Rn/QR+LxJca0aC3p9zJ64SVMVWDa1hNBghAhAx483KepI/rDHl//6pc4/G8O+a/+3/+Qr/7VrzFY7xMHcLh7xLf/+B3qBZSVoSgsG+OE/iDrPpE83zQ4gb95KYVTiqposE3OP/8H/4wbr2zTXxtQLBoef/AQu8z5N//G3ySUIT/40XvcffgQKQMm6yPiOCVKe4wnl+hLxf3jx0xnJzRFgCkXBEkfHWfoMAEVnCfXeZIJP3axCFrnaK31MhraYyOlDJD8q0Be+fnFy7x9mbefa1woWJ34+CnZ84uI4NlhWxWp4px1/fwI9tlrWGto2oa6yFlOjzAOrBMcHJ7x4zuPmc2WvHtvlwf7U7Y21lhfH7GYzdCmZnYmKRYDjG3JlzNGoyGD0T6TnQVb19/g67/1u5w8uUeWjvm1r36Fol5y59EjHh8ec3LvIf/kv/6H/A/+3t9HIYjjjKLM0YEgDATpyCsO7D66z2Cyxb/53/3b/PjH7/CdP/hn3P3yTW6+8mX6wxFJlpJmPXrDMa0zDAdDTg8OGa9PqE1NkvYIw5CsP0C99z6D9z4gkBJjGp9ZAibjHrdfuU0QxiilcMZ27ld4fKKzNLZiOj1hOZ+B8O5Cy+UJZVExSiIOH73Lj2TFcH2HKzdfYbS+TZykBEqjpehksv7VLFbhw93VjwG0fszjQKBoCJMet7/2W5zcucO8qlCB4uDhB5w+eURjWm688TXS/ojWGmxTEA+G2DBgejbl6OjIS0wpyXCyhtCKw8ND2rohiiKklOgoZi1OO2z8kqzfYzGdUtY1zlqEFERRRFWUZGmGEJ3cVBgglcI4i9be2dBaz/ZPexkuXxKomrysMHVLoyqkg+PTUxwOqQRHR0cIIaiqgvHagDzPmZ/O/KTOtGgVUFeeFLlcLMjSjCzLGAxGJFlMlKRYBCvFD+ssbdPStC2BCz2pyf3lCs6fVtj/p/nbnwWm8GI7rMprWArhsWzOgTUG5/zOBqX9eMBa6rrxvuRSI6XvUhnTEkURrXUIHdIfjBiMRqytT0jiGCmk71ZYi1aSLEuIejG0KYvZFCllB8wO2ds7oCgtZTPlxvVr/PZv/Tbv3HmPv/jDb1M2JVXdsJiVtKUkTvv0hmPyqgWRMF7fRge6GxMrpFY4IUiTjLS/xjRfMhlkVE2JbOHxd9+ncoLxYMCtSzvc+iu3QAb8yZ99h+PpMS0ClCCMPJA7TGLWNtdJREg8XKPIj2nKgqKuKMsSFRcESUYQZQTBihTgsYOuwwsKJxGu6+hZgzPWe7LriDB9qWf508TLvH2Zt59nPMe2dr5o/Ql/0U2aL2ogPhsHunO277MulrWWpq6YnR57JQppkTrg+OiMP/6z7/GDB0cEwpFEATe2+9y4OuHqzjr9fsr2+jqj4ZDpdMaTJ4/Z2t4hUJL7d+/y8N4druw9ZvPGm9x48y2ODo5ZLEoevX+ff/z7/5z1NGawMeL7f/4d/o1/6+8QJSFJGGBMQJIkJJ3Wbn56wvTpLg8PZnz9K2/ztaRP3LTcvHWbJ/ffY7K9w2A0Yj4/Aes3cVVVMRiNAclwsEbaG4BrWIRnXL9+hcmox51HkllpwEHoHJO1MXEUIZUEB2qFGbR+0+iL+pq2aRiN1xkOptz5wbtYIwiBd999l+Pjfb71zV/j17/xTU53A5QFvbVNmGYIoS+cpe6M/IrCAp4j+F2YRn8ShOV5SasPTQjwHVajAy5/5de586d/SGZaTlvF0yePme7tIWxNEihe/co3QAoiERJISSsVpq2J0/icwLRczGnaht54yGh9QlOU5NM5o7UJCIgCzeHBPpevXyft93B4NYA0zhBKEkcRxhjSJGUwGpKkCWcnxyRpSts0nV5wAGJl0W2Znc1o25bDgwPk+gZlUXi4WKhRyrsb1mVFvcg5WCyJwohimbMscpIsRUrlmxNKQU9c0PfuuBMqQOvI61tLr1ZQVyV1XROnCdKJz0ac+lB8UoH76dCjTys8xU/42wvP8kXGsMo4xjUNSopO8sATLwCEFEghAIu1LXXbEKqAKE4RzlLX5XmXygpJkvTojyZsbGyytjZGAMYYlPQHutfLyNIEUy1RgSLNUprWIITCGN8ZOz07YrE85e69h1y/fo1rl3d48+YVlvMF7997gL6q2ByPcDrh/sGU5XKJ1gmjyTZhGKIlmNb67kYQEAQx1155i9+/e58sTnn9xhavXRtjakOLQOuA0sDevOTH732fcr6krpZEvR5r6xOuXbtOL4lwYcBg1Gc43KIovkqoDbOTfU7PZsyLBa6qUMUSnXgmaxQlaB3gOizNihCkrMIJjWVl7eZHrkZ8ccHYX8R4mbcv8/bzjNVN23dNHPY50tVH7RcvFgAXi9ZVnj17zLNFo21b8sWMcnmGVpKqzGmLgidPHhNryTffuMVoPODy5pj18ZDD41OUCrhy+QqnJweczU6YTCZcu3GVO+++z6XLV3ntra8jaJkvc4pljgoyrl6/hYxCrtx+nb/6m78LZ7v8f//z/wdP9044273LaGPA4vQBUoWoaECkFco1LE/32FqLkdLQ2jm7Tx8gwoThzk2ipM/9ex+wXC55eP8+1eKMNM0YDIesra+jOhOEIFA0VY3SirYpSSJJLw1Q3WbSWUndNFR13UkB+WsP6LQsHXVbY41FBxrTtjx4eJ+qKsmLlhxJECp03GM4WmNtMCANFbOjpxjbsLlzhaRjpUvfBuvMCH5FbV/dBRrVhzr+5wXNxV9+QpyPjKWHVgw2LrHz+lscPXqItQHD4YA2Lzg4POSDx/u07be59cYbrG3vYLXAVg1N6wmD/UHG06e7hEmMVpIkDL0OahQynEwo8pwkiQmShLDDfia9lADIehlxHHN2ekoShRgDDslwOGKytU6xXHC4u0vW7xGpgKapEcpjl+uqJo4i5k3jFWIChWlbyrJiGA2oipK8yDGtIQg0vV6P1hrGa2MGZsB0OuX0+JQ4SSAQBNrrs0ZRRKAlkZZEOkAgaI1FC4tpakSn+iK6/37Z4id1g19owbrCCwkczrbnP/ebM8+2bJvWuwQZS2MskRAdVqPGCdFdBgInJI2xBIHH/QVadYWDv1EEOmAwGGAqxdp4wGI+oy4LoiTAuZZlPqephWcFNpb7D57y6OE+N65tc+vaZX79a18hlg7dNnzw+JC9J0+w1vKVb0RopZDSg8SVkN3790XM2tYVwuEOD/a+i1CWWzcvsbkzYVksuP/oCe/ce8L+2RylQxCSeDBmOB5z+dI2SagItUBnPdYmE/r9MeXWJZ5+8A5Caob9HoEumM3m1OWculpQFz2adEAY99Bh6l1chAB890xIULrDBnY6mF9k9uAXMV7m7cu8/Txj9fnA40w91vQTiBIXClhfsMrzn8sujVYNr9UzWOOFz0+PDzk72vfFmhKURU6apWxsASplsnUJJQ11C8vScpYf8/DxLov5AtM2BFrzpTdeYWdzg+VyQb27z2Rjh9H6hEBqlDUc7T5EJymj8QZxllFUMUEv5XjxgD//o3/CG6/v0BYz1javY3NDrQQyjLn7o++xdekqSgjuvfMOf/AH/5z/6f/sP6ARIUE25PLla0ynvlC1VYFSisGgR9NUVGVBEEWUxRwhnN/8YcjigCzUDNMI4xRNuSRLM3pZ1hX3EqlXRb/fwGmlveVyGKNDwa1bVymaliQ1bK6N2d5c5/qVy6z1+xin0FohhKWcn3CMY23rClHaRyvpc7rDFT5Ph+FXouP64U+w2kBd/GhSfHohdb7h8t8gARVFvPk7/wbv/cE/YqQExv4WB4+eEj16xKxYIvp9ZmXLlgrQSYrLS6I0oWobWguD8RoIzzfI85Lx2pisN0AFAePxiPlsRpqmSCFpyhKtgs4vwm/60izD1BVKhcRZj95gyMbWDhJIgpCjo0OqsmKl0wvQ7/eYTad4D2/LdDpFAEmScHp8ymIxp6xyFosFyjkCpYmzEcNBShDGnExn1G3LdDZjNBqdmwhEUURd1bRtS1mVxHFKU1U0TUOWZV5dYdXN/Jhz8vOI57qln/YCnwBl+jjS12e9l7/QgtWDiA1Y40dfeMKBMYZAe4s8KyVSBwRhRBBG6CBCa4luQg/OloLG+IW/NpYszRhkGUkcooWjNV5/L4oisjTjh3feYXYSc+PGNWwUgOtRLheMRiOPbzGOtqpIRMj6xgYP9844mxdsjHusr62BsTw4WrI/t2xfusb29ddRWmOMH9/GUXy+zazqBh1EvP2Nv8J3fniPs/qM/Trh5KDi6PCIH79zB6FCeoP1bkSqSbOUwaCPFnB2eopcWyONMsIowWIhjCFZg3CKNTMCbRj3e8xnpyyXZzTFElMsqdMhQdwjiBOCIEKowN8shC8ElFKdXIZ5kSnwSxkv8/Zl3n6esSrGz4vyi19fDPFs5LfyYkdIv2nyLDbkanMkfUcf6zoowAkHTx5QLmc4LEonDMcZk9JycHKHpW349nvfZhBHhMqxyHO0giuXd9jc3mZ7Y8Jk1KcfhyzPjsG0PL53F9u2VOXQy/uEAePJJnGSUCznmKbwBKtenzffvM3ljTGzx3fRVKjxkCiSVIt9ivkZri7YuPkq+8cz1Lzl7/0H/ys2tjaY7T+mmB8SRRlgqOsCK7zA+8nREUIKNja3KJdTwjhB6oAin9PWBf1eD4FfMOfznEEWeW1MY541/qToivvuuFkQ1lHXNWmSIZ3j2vYGadqjn0XsXLrM1es3sELw7T/7E4IwYm2ywajXJ0oS8uWSzWuvkKY9giBAKXcu7O4+plv+yxzPb6Q+9DtWufo8HOCTcY7ivGgNnGNw6Tq3/8pv8vjO+1x9PWJalMRlQTsPqGWESQYYFQES4xxBEJCkGdPplOFwTJylGGOwztIbDNja3mG+XJKGEcOBx4+apqGtSkAwny9IogCtFVEUMS9LNrc3GE3WuXz1KsPRmCQMaZYFAjg5OiIKQyywXC4RQhAFmrZVNFXJomlYWxtTlgXf/vNvc/fuB1hnyFLJKLTIFmpi1ta3Wd++Qosi7qWdI1zklWSCgLIsieKQoigRQhMEIUJ5GEvbtgQrR5uPOyc/KT6uZvyUP//sGNQPk7i6n/4M7/OFd1jbpsbU5rxzIqQi0Jo4iXGmBeHA+pFqmmbEcYqzrZe9QSCFH5P2JltMdnYYDEdoqTxgXrjzka3obtxKCPYeP8Y1FeuTNYRz9JIEt7WJkIqTk6mX+mkNx2enqDDhpJDkbclxteTy5cv0t2PWlylvvf11bt1+HSV9p0pJLwYvlcRZQyAcSLh65TL/zt/5O0xnB7z22g1+8P13KI6nkI4pigpTe+ZfEIRMJmO0hMO9XYbjCdlonfWty4RRhMXROkErU0w0QgiN1gUmPyNNW7Q9ZVksqeqCplygkgydDImSHmGcInSE6HCUq5um7KSFXsZnj5d5+zJvP+/4cNH6qV3lFbGiK1K9faoviOSqKLICixcYX87nHO/vsvf4PpQnxIEiyXokWQ8dp4zXJvzpH/8JJj/lnadLjBCsDUdc31lnY9Lj7bdusbO5SaC8hu76OKOsGpLeBtNlzloYe/KgVIRxj7a1IGuW9YLjvaeMxyNuXdrmn/7jf8RIl9zYSTHlEW2g6Q3XKcoKTEHdNGxdvszGZAPnBIe7jzh8eg/lGtYv3eDk5IQwDJGkTE+PuX//lKtXr7L39AFRkhBEEUqHBDrEWcF4bcJw1Cd4fEgU6E7twwDeAMRa86yzbS3WOlrTUOTz7pgGOCc5my+YLnPCYBulNVIIQqWQbc0ff/vbLOuG29dv8cqtG4xPzqialsvXXiHNeqgw8MV8xzL/VQ2fiuJ8vC/OCUCf/e8RsEK1BwLWr79G5ULae+/SG/SwrUE6gXDe7WmxmJGR0U9jqrJEOEEUxSzyOf1hShQGGGPQgaauS5Io8PdZY3GtJ0y1dcNsmWOtJQlDtA6pq4YgjMgGA67fvsX2pUvESYzp9wkCf883dUNe5jSNRUqvxSp0gFQhaRyjlKApc/7oj/+YH965R6FjZH+HXgrDScjNtZSelXz3nQdkvQk7N24jAgHC4GgxrqWxhraxLMuCyWQNWdeEbYNcdfal8IYIn4Ad/szHvYsv4t31hRasWocoVVG7irbD7SmtEd1CbZ3HsUkgimLCMMYBdV1hW+8LraS/2cZJTJIk9LKEONAI6DyyLQJLHIesTdYZra1TzafsPt1jMZ15D980IgxD1oYDsA6pIxbLHBklrG9fJRuMWV9bY2dnh1du3eLunTtsXz3gm9/8FlGokcr7xBssWDp2t/IfUjgCDb/2tdeR4hV0qBj2h4Sh4NKVS0xnc44Pj2iKBaN+RC+RYFtCPSTK+gwmmwyGI5QApSSjyZjx1haLxRTbyWjojvEa0aKFY1YULMszynqJKAqqtE+Y9QnjPjqIWTVjpJTe/u0nszpexoV4mbcv8/bzjg8XqquN0fMPAmfMs4XlvMkqkEL6buv5WFZgsTRVTVNVnB3vc/j0IfnZHlub60RphtIB2zvrKK25dfsqQgsOj6fkZY3SCanSzGdzHt+9x/7Dh2xsbHQybBInLddu7aCjAUGSUVeV7/7IkCBKMKZAK8fOzhZb45g/+8M/ZO9ois0iYhasbc0YigFRUiGsY5AEHD+8z9oV3+E0QtHLYkavvoZF0LSWIi8IgpAs0tx77x2MNWgB8/mMwXBInPbYvnQZnUn6vSFF1WKlIM76VPWccabopRFgadoK0YZoHZ0XkhZHWSyZnx1zdHTE44N9Pni8y3v3d6lbePfBPpc/eMRvfP3L3L5+BamgLguWi5K79+6xnJ/x5htvEichZTljY+caWzs30UqvTvIzx59fOSLWs8+yKlovxsXu6scRrzwsQJxPDqRzCBVw6doNgjBk0dTM8iXvv3uH+SJn0FoQgmVZYpxlli/QOmRjtEHTGpb5EiEFly5dQglBmefEUUzbeqeotvHQrjzPWS7mJFmPqqooi5LhcEhTl8RxzGAwIM3SC8L+gsXZlN3HTzBAHHuN7fl8jpSKLMsIo4jFfMqTu9/j6d4Dwo3L/K3/8d/nj3/4iMMnd3i3POb29iZvXdri6pVtZsk6k41bjAcJrW0oiuIcejUcDr3WL96woO7UDLIsQzjQSj87bheO/89y5j5LwfqpOq6f9LIrOPNn7tA+ixdasCqlAUnbSYnoIECHMaapMcaeSwFJodHSjwLruiBfLjBVAVIRBxFhHPsWfBgSBRolfYfKOofDIoQfEfQGQ4I4pTcYIqRARxFaK+Znp4SqwLY1k9GA2nhcYW0FSZrxpS9/mStXrjAZjUiThF6/z1d/ze8bizxHWhBa0hoF1noRdOOwCGrT0lpDlirCIMI5x3htwG/8xjc5OD7m4ZOnKK0ZxJosEGhZg4DaStLBOpev3iBLPWHHWUMchQxGA8Iso7ANrW1QYeqPn5DEKgA9Qy6XLMuKsjqmKZdUVUGY1sRxjyCKkGo1utYY++nn6WU8Hy/z9mXeft6xuplfLFat9cdy5ci9KnRc141fSds8K1KVh1JI/71xXrWizJcc7j9mNj9hPp1SV5V3IdMJOs7Y2r5Erz9ivPY+Z4f7CCWp6paiaFkUFSrI2NreIgg1jZFk8QAtDa2pacsZSEee50gh2di8hrWGJEk52X/IxtoAKwzXtga8emXCycEpD3aX1OoBbwUjnAqJ4hHCSW+ZaiwITT6bU5cLmqYkihPCOGU+PaPM5xxMT5lOZ2RZj4cPnlA1FXsHR3z5K29T5DlpmmKdxViDsIZlvqC1DVqHGGuYLXNaC0HXcXVOYU3rFS2KJQ8f3ON73/kL7j/d48neAUVlaKzE2Aq1f8r7d+5irS9oblzd5uDkhKIwnE6nPD3YJ+mlOFuznC8QBKxvbRMniVfGUH6DKOBC0frLWbiuitAVbvVih3UVn7V4+jC5cPW9DjSbly7jlGC6f8De7hFIzXB7iyDNKKqSqrVIrTidntA42N65xHq4gVTeHMU1NYFU1FVFWdYs5guy1EMGvL6qZLlcIruitKoqRqMh4KdrsjNXWRXT2zuXMFXDyckxh/v7FEVBkiTnj7PWcvT0Pid7d5BJgNMBW70Ye/8dzN49yiTm3bMTfvfLKb92fZv3T/vY4RajTNI0LcPBmMYY382XXhZx5cCltUZax6K1CAcqiDDWT/5Ul1s/9Xn8mf7q+XMHnwWX2mFgf4oXfLFOVx40hLPeaSJOUhAK03S/7S5epZTHFFlL09Y0TYVEEISht0UrK0QQE0YhcRx3Hu0WKZ8lvFKK4XDI1vY27fKUvMwpqoqeTtnc3kaYlipfEChFFMfIIGK4cZnXvvQ2N27dYm08IlQKIbzdm+j0NEOtKYuKQGpMZTk+OmBtbY0o8ULapjUorZBSnY8yhRBMJhP6wxGD8Rpra2s0+QJTzlnMjun1+/SDmP54nclkgtLqfPFq6oayLLGmBedopcaQ4KIQS4xUKZGKUeqUUEyZFQWLekHZ1FRFSZ0OiZMeUZwidYAUEi1fcBr80sXLvH2Zt59fXFxonocBeHSl62SXwCNPVi5hruvMP+tYSVauO85ZmqZmkS85fPKQw4MnHJyccHp4jHSO8cYOt/t9oiBAa8lw1Of1L73J4e6YJ48e0stAjgWHJwsODg4pq5Jbt26zfWmHbNjH2RbhWpqypM1zNJLFsuTJg3fpDwaIXsrDO+8SvvI6WRJw9bW3aIzgP/u//394dFIyOtqjGb3Jm0riggWTYcLaRkpNiwhihmtrLOYKt4ReP+Nwf58qn+PamuVsSqADTk/OqKqaKAnZ2d4miSOiMEDrADSkScyVrXXeu7/HMkqpTUOSZmxu7Xi8NB4K0FQlZbHgYPcxd979MX/xF3/B0dGUKBmxsQGLahdlHco5sjTh0s4WX3rrS0gEo/4hWZZwfHSK0zGT8ZjJcECIYHq4x7tlydH2NW7cfoPReEIQSpTqhgVCeLLPZ2DSf/HDdcRUnsNZfxxm9dM6rR/pugqJlNDrDbh04wZfKkuiKCSJQk4Oj5gXBXEvYyO7RJJkRHGMcA0ITZakFHlO07TUTU1d1x0sCsqywDqHEIokjmmaxt+TjfGFsg4YTyYIqc41XKWURFHEcDKhrGsINcY2lGVFmue01mGdoZzNOXp8l1HiaK6vs/fDKf/Zf/J/oi3n6Eij6pSDgz1cOGBnbcLDvUNM9HX6axnL2Zz5dI53T+mKUCkRzlGXFa2siYLQcxEKTc8YXNt6shc/fcH68ypWf7o/+uwv/GJ1WJ0nUzj8CFVJRWueMc/azupSEdA2Bm2tF32WvvWtpKRtvZ1fPwgYj8YMBgOvqydXu2V3Lu8SxzHXb9xEu5YwTmnqirZpUEqhMPQHA7QUJFmf8eYVZDxgbWOTMAxxpsU4v8vxY1+DdQYnOpeYVmKcBaEoq4plUZL2MsqqJu1l55i71UUplUQLwWg0wjqYnR6TTwVRkhKGETqMWFvfIIgiLyKPwVlHWVU0de27edZincChQQYQBSgdIVVAqAKUDHB6CnkBdUueT6mbgrrok/T6hHGGUBFO/mrqWX5e8TJvX+bt5xkXMboXR/rgNX8vyl7hnkkxrTCZzlrfpbe++rHWF6tFvqBua+bTA4rljEFvQKQDv8i2lvl8SppotOrRYknShJuvvEbW63G4+wBT5dy6vkU2eIN5XjJbLPjeD3/MtRs32d7eIs4GRElBuTwj1gGXrm6joj7FckldFgzWtzk6nlIMB9x89TVuqBTZ+2c8vfsAEfc53H3MTk/x4GjG3/rbfwuEJo4CbBBhnSQyDflixunRMVp6+1NnwdQ1aZoymy1IkoRLl7eo64LZ2Qlr4xHL5cK7zTnHoJeyPh7y8N2H7AxT+r0+WoeeHNi05PmcuphzuPuEH33/u3zv+99j9+iM03nL8fEjqrbFCBBKYYUgTgOiUJGEEVs7l5lsbPHKK69hrSXujwjDmKrIOT46wpka2y44ePyBZ7+/+gbZYEwUdVqb52wUfqnr1XPc6gqi8peEOnzc31vnGIxHvP3Vr3oS4dkJJ4eO/mhAlGaUy4Ik65ElEUGgcVLTVBWuNQgpKIoC5xxFXaA7fVOtA5IkZqWnXVUVSZLQNB7DKjoinlLqfAOvlSJNU9Y3N2lNi5aC+XxGVdXUdUPTVsyt4ez0iN+4GXLtW5vs1vvc+0OvH9yYBtfAVjpmKBVhImllQBhq4iTh9OSU1rSEOsS0/l4qhKDIC/I8P1cGCILgfApjmua57ubHOeF9/IH+S52mn/z0KwiAeL77KlZYJr7oOqxCdQu+7gSboW4ajDEYa3xHpjUgHMb4m661BiE4ZworB1opgiDAQUeAeXbDX+G+/C5J0+8PuXz1Nkk65OzkBNM2IEBJCITxu+umwSA9WSZJOUc0OYHpgPnGGL9QSEFpLId7TxFYmnLKsJeymC8Jo4jWWV557VXaJkCpZ7IXtrN9i4LAa6uFEcO1CYEOPVkhikiz5LmCwTkvbB0nie/COT82diuJJSmwKgalQGmEConDCMIlYrlEVAWLOqeoK+q6cxuKMlQYvagU+KWMl3n7Mm8/z1gVqM+OYZcf3bT4fDPD80zbFUnFCpDOeXxyNzrEWpRTVIuC08NjpsfH9LOYy1uX6Q+HpP0Jp6cnSBqC6Bpx1gcEbWvYuHKZJIuYHu0yn82YTadMNra5cesVrNDoICHJBkRp6hUHojHSNdRlTaIdoZQsy5I0TknjmCDtk1eQXXqL//V/+L/jP/rf/x/4J3/wR/xbv/YWN3euocctl199i6oo0coRJBqsIVQC6Vr2nz7GKkFlBHE29Bqurma8NmY2nbP75Amj0QAtFcv5jN5aRFmWlGWJ6bDeOEi08BhrqRDd5rMsCg53H/HDv/iX/MV3vsfh6SnTZcXZrCZvWprWi7b7qrWlqkuEcIRRRDwY0NtYx9YtpjGgI+K0x/zsmMOTI7YuXWJra4e6brDUPH74Hhs71xiONkjSFA046VUe+EmSQV/AuDiGvggJ8N//5A/zSZJHH/leCKQU9Ho9JOC6EXgURV6aqiNWOS2Z50v6WYqSgqY1zGcznLAEQUDTNLRNw3KxQGtvfSokpFmEDiQ4SZZ5LdYoDAk6wtxFhYPV/bnX6zEer+HaFh2EVGVFvlyQl4JcaeZFwytbks2bGS69xv/zzgmnTyzCaYJ+yJdubHM1G2DRHBeS65HANC0CgXWOvCjAQRzHXgGhgysY49ebKPIbsqapqWpvdKEDfV5Yf9FCXNycfdzPPyFebIcVi9Ke4ebwi7u1Fmsspm263QRYW1PXFTKKQSisdWAsUmkQ0BpL05qufe9YWerRdRmsMZjWgHNopen1BgghCcOIpq660S00VY7Il8RSEWcDkjT144Y4IopC2qambdrzDXBTNzx+cshsVvAnf/LH9LOYSAuWp6dY0yKUYjxZZ9jvE4dXSbIYY1fdEYPWgZdUsZZelqFFD3Cd0LB3w1iJrEgUTmrCUJEkMTqIQOZIAwjj/a+FwAqB0xFWKpwMESoikAtSNUMUM0TuyIuacjGlzBfIKEMnvReWA7+M8TJvX+bt5xpSgJCeROXANxMV1hmE7Ragbvy/uuFf7Lo6BzgvmYaw2LahaSoPS6kLrHAkvYxlPqVqCwbDdTY3dqgHfZqqoCotKmwJw5gk9bqQWTpkNFrn9PiQk6NjyiInqXv01/oEUYLSGmsaTOutKJWwhIGgKmY+Z9MeURYQJxlSezKWVAlXb9zm3//3/x5Pdp8yt/Awd/zuv/0/JF5fQ85OcbbBlDllWSGwBIFGBgF379zF1CVrV3ao25bJxoQkLwkCzcnJCXsHZyBDti9fQtiWpjWkSYKxcHJ8Ri+KqZuWs9kp0+kJ/bV1AqWhqWnynNlsxvrODrkR7J887jSRRSeP7DCmphVweLjk3Q8eM5m8j44SNrZ3CKOYJE0IohiBJFrfJklijo+OaNuKONQs8iV1XXC8K7EtuI0t4iQmwHXU+J9C9v2nlCP6vMK5zoFJXsCvfup4/+PhARd/d/H/58Wscwjr74mrAtlag9SaUX+Ak4KDg0OKZc5kNAZnMY3f1Pd7KVVRsn90xOzsiIeP7vPk6TGzZU4QBNy8eY2333yT8WQdqSSj0QAhNUEUdV3Ajyp1rIrW8doa1jpOT469PWockghB1bRMyZDBki9nGvlaBv/zr/MP/ov3ODkQvPXlS3zj1ho3drb59veOmZvLZHFI0+FrrXUURUEUekJgURSEoYeRlWWJc47lcolSiqauqOuSpm0JrevgZeKFdO0/rvj88Dl35+rlnw0T8GJBYML5hT8MvAZatygGQeA7L10R0LQlNAmx86LDbd2gTOsxP1VFbRxpnhNov1giTNeVMJ1tmu2kNTyukEiTkqADQVWWWGOpqhpICaLUXxxCYVeYYOeoal+IOOtdYnwHRLGcTvnDf/z/Yznbx2iHdg5nanQUEvWGCJugpCGKA4SUNHXtR7mdjVugNaFWCLe6+DqnFUknBeL8qtW1V2znAS6VIggirGgRVnRkHcHKHQcUTifIUAIBgQxABwilCcQMZWcsi5yyzKny+Qs5/b+08TJvX+bt5xhCSkRHgvOzY4d0EukkVlxgmjnnN0Hn37qP/Fsd+6osWc7nHBw85t7d95meHjEZZWgdcHpyTLH8Mza3t5hs7uC0xhmI4j5B3ENojcQSxAkEMXEWMz06pFguwSmSdE4QJaADlI6RMqKqa5CaOJAY6zg53sdYwXhdMxx7fd66WNI2FVcv7/DVL73BcdPy+l/9LdLJ5jmsRmt/7ew9fsS77/4Yay1hFHljgDInbwyvf+krHB/tk6YKLRVnZ2cUxZLpdMb9Bw+4evUqxgkQivn8jCSBfhKw1o947dXXGQyHmKamXMx48uQeD+/dZXa2YO/ggFGWcn1ngkOhoxClAqqqYu/gkKJuGWYZr79ym5s3bzFZ3/TwoLalNctuYqIRUpFmI4T0RU8gpd/KNSWBapkePyVOY5I46mDKq+7qZ60wPl7q7Bcf7pzg93EF68X4pOL1k4rV51/GG7YIIVFKI6QgimP6A4dBsFgs6Pd6REqhpWY2nfqOr2052D/k7OSU3QcfcLJ/nyd5w+5UE4zHGKfY+/F73Lv7Hr/1a9/ijbe/RpxkHnIVhVjnqKsSY1qcCz4C2dFa0+sPKIuctqkwGKwBHUTsvPob/PPDD/jdw7t84+oNLv36hG9c+QaP7h9xbV3zG29ssnu45E/vGb78jddQSnJ8fIoxFmMsURRju27qRYjW6tjUdY0xbad4UJ4b04gXVKx+1vjouf30x7/QgtUiUFoTRjFVRxpQShEo6ceUjZcNap0kUvq85d1UFW1Toq0lihL6/R5p4gHSTdNgQnHuCQ0r/3bzbMwmZdfajxE4qrImiiLSND0f20rl2+5xHNPr9fxzOef1NzvMmBCC27dvcLL7Kv/kv/oeoW65vL0GrqVRcHi2z6//9m+zdWkH6wBjOss/70y0EkHXWp8/n8/Dj6E/f2hEtBJRp/MV9rvOznLwnDkMVoe+QFIKqTVhEHrXFQzC1IiipFwWn+t5/lWLl3n7Mm8/z3hulCoF0nqCh3TynOxheAYN+HDH5zlrV9PStA11XVPmS06Od4kjhRqvMRxlpLGmKSqWTUFdTQiCmChOcCjKusbpigCLCryveW8whqYmF0ecnj5ieSbZunKTOI0RQeC76XFG0h9TlgsK12KcZXL1GnGUEKgIh6RsHW1VcnZyxvRsilaKv/F7/zrbG9tewggQcQIYlosCJwTXb9wgCkOOjw6pFqdkaYTDkvUGmKbl5PjAO8l111uSJEzWJtR1g9IBbdsQRDFBnNKYOVtb3gRBBwGmbZlPzzja3+e9d37M6dmUK5cvc+3qFYbjMUpr0tTLdR0fH2JxBHGPfm/M+mTMcG2NIEqQwr+2UqLraOd4tYZnMI/pbMp8foaUjigyTOc5VdMShgn9/gD1k7DZP4l9/RPZ2Z9PfJZC9ZP+7uMIV58UUsrncKRKeQ1sKSV106K1ZjabIayjWha0TeNVNNqaar7k3R9+n7Q9YNCX3K0jejtX+d/8x/8R/8n/8f/K4UNH/6bk4Mm/oDh7zOW/+78kSmLSLPO41rqmqirCC3CkZ+9ZEEUhWZbR1BVCBSi3II4SrgwSeON/wf/rB/85/738MTtXb3H52hbt7SuUS8d3frDgz+8GvPmN32Nre53ZYklZFR4y1hGswsDryK4UClaksKIoiOMYISR16aW4mqrCpdlnx6++gPilk7Wyzi/QQRR7bF/beNF1fEfItIa2NVip0GEIwtE2Fc4ahJQoHeCkRKqApu2wgyu9wo6QsIrVzWLlyy2kQAuNEglRGFFVFXmeU1XeYk2HlqTD+5VlSVV5okvb1ARd4gghkGHAl77xTXafPuZf/v4/YjJZRzQGnaYMJ5tcu/VlEJH/HB0zsW39RRXH8fmir7XGOYsx7mMu/E7axrXUtddlE9IDrf1usyNc4M6t/1YLmRECpzRCxr5zo0IkEDpHZi1Yh/hV1gf6HOJl3r7M2883xDnzX0qJVSCRSKcQyiGNQkiJbR3W+M71BXHDc9KtM9Yv1tZ6mR0GrE3GTE+OCAKNdYIgipken7C2NmFrc4coiIijEKED2rbGLBuSOME2fuPlbAuxpr+1Q5gOaBuDQdCi6SU9VBABCmcNpm2p8pys1wcjUCKgaR117btE5XLB04dPuXPnDlJqJltboCWmE0sv6wYp/efavnwVnGVxdsT9D97FVAsCHE0xp1SCOEooy5K1yRqL5ZK6NoxGQxaLBUmakoYhRb7g3oMn/PCdu8RBxMbmOsPxGISkbSuW0xPaugZnuHb9Em98+W1uv/IG/f6A2fyM3cdPUEpw7dplev0eUX9Crzfy1wh4o4G25uzkCKkVURRT1w2tcSzmU87OzljmOWdnU5qm5q233mBjPWB9PGTv4Al3ZcDVm68xXBsRBCHnsIAV3O9jFvfzUuRjNi2/6DLlYhH5sSH4KCH8Wdo+/8CLv+RDxayAlfoFziGcNy9JEkeYcA6VOTs5oaor6qqiriuEcTy+94Dl8SFf+fKIozCknU05PdjjP/7f/occ7x7SqpZr/9q3+Hvr13n/D97nT37/v+bf/rt/H4S/1wkk1vrJhpQX3+szYmQQhgRBBELTViVaB9zoV1QHP+Bs+N/hP/2jP+BacsjmRsWsVZzVQ7Zuf5Xf+ZtvMRj0OJ0tWc4WNHXNdDojz5eMBiMEgjiKMNZSFEXnhuiIwpAwjGibhrxtibMBbdOe30u/qAUrPDunFydCnxYvtGA1XZdFKY0OvF6ZbRvqpqboFtumaZCd/qIQflkTAmSQEqR9VJiiwpQwyUjTtFtIn4GzP4KZsK57jKOuKt95ag3GtASBAkI/2pWavChIq+q8U2W7RJlOpxhjSNMUJxxOOL71W/8aVdmw9/gu1bJiHIz4vd/+6xBElFVO4BSr8ZzW+jnw9uq9rVjhF/Nr9f6tcxhryfOcs7Mz6soLBkshcOcMU4cQzwoHr9Pi2eDWSKwMQAtMPMa1Dt1YohaM+dVkW39e8TJvX+bt5xmrhU9KL/YvvB4FwimEdQjpSX8gwPrC1GHOz8OKINc2DU1VYWyLc14ndWf7ConWHB/uk/aHrG+sc/3qVR7fu8d77/6I8WSD0WTEeG2dwWjidX2LEsLA467zOW3jzyEdQzrK+kgZUiyWJAno0CtlSCVIehllXSOkorU5i5mHAUSBxhmDbBveun2Lm9euEqQZAoVoHHVj0FGCaWpULNFIrGlRQURZG6qmQVpPLAm05vTkGKkUT3Z3KYqSLI05OT5EyglBFJPnOUW5ZD4v0DKgnyZcubSDkr7bXyxnHOw+ZHm2z1/7a7/F+uXrZOMJgY4wjUMKxWRzC6UkdZmjghipIoqi4PT4iLOzGVlvwGJ6xtnpiReRDzXvf3CPk3nOeDRmupgitaQsK4plTtm0KPlDvvTmVxhmKY/u/BAnFdf0bYaDYVf0dFJXHxfdNOK53Pn80vInxjPC1YfexSd86z7mdxd+86EfPXugsX6DbJ1DOkeoAxodIbIAJ2A+nyOA0XjMIlhg5xahBW0luf7GmwRM+epbMfebhv/mh/u4RnBw7wPaqkJECYt8zubOOr/2ty3/6X/5kMdPD3j9jWG32Q4RyA665Y0Dnu0V/LUXxQlRUkGRgxO01rB18w1CGRKuTQi+/D+BtkEIGCjJ2+sjsizDWMs8r5hPpzRNgxOSMArpZTFt1VJXFQJojSGMos4gpJOuco4VFszfPi/cT39J4rO81xfbYTUNVoCWEi0lDY6maaiKJWW+oK5rLIJABygpCAOBDTXWROgwQarAW/CFAXEUe5mepsWF8hzD4fCYMCU8l6G13tXCs2ct3XatW4x9i325XFLVOYPBkOnZidfyCyKauiYIg3M2ZFWWiG7N1HHCt377r/H7/7jiu092+fXf+zoyijidntLLYmTpCxdjWoQUJHGMw6KV4iImxRqDlAKpvOuRsxZYWS3KDoDtCRRaglQCh/TMYCG6pDUgVrQX4xe1TszeOIFVES7sY8MaIoOIfzUX/s8rXubty7z9POPDRJWL42SlFE4plFJopXHS0BqPT151VFYFq7OW1hiqqqSuCqrlDCEaojhgPB7hrAQLw81LbF6+yXI24/T4gKbMacucx/cOMLbGOcFoskVvMCQMFJGMyKuaqJcSRQkSx3J5SBIPMG1N05QEUUwcBjjnNSyDMMZYCDsN4rb1JMBsNKaXZYRpQlnWtG1D2whsp6xhTIu1jjhNyec53/6L7zErG07nJbaY8fp4grV+upGmKQCBCpmenhFFmtFoRNZLUTrk5OyMfFGSRQFh4HC0mKaiyhe4pmJxdsz6+oitKzcYbl0himLmx4fM53PCKGJ9ewsdhLjWUhYlRZ5zeHjI+++/z70Hj0iyjMl4xKOH9zme5UzWRhwen/LBg12cE2S9iCj2+NU0Sjk4OGY86LN3sEt4+Qq9JKY43Wd63CcOYqRQfoIhxDNNUz7cofxQZ/Vzy8qfHKsO6yqez+OPPl58ynfPxfNDJ2Q3pRECjL9ToKOQQErKsvRmK70ey+XST4QSb4/trKJ1LVvxnDdunNFv57zxZsofPz7G1t5mWIqGnQQGypGGjmvXt9mfWW5ULTowWNc+1/H+MJRBdkVt1ssAS5Qm9AYDsv6QMAyoTM3a5ga9rOcF/o3B2Zamrmlay3K5PIdu1aWX4aqamiiMCXRI0/hJVU/5zV0Uh5RFgRSStmno93vPFF1+CTqsP228YOVtg7OdRJBSOGeo64piuaAuC2pjkUGM1iFSOCSm6yalqCAmiCPv6942LPOcIi9oW+8BvcLCCdFhJYyjqatzgW1BN1aQijSKcdYv+G3bEkXegu307JQ4yZjP5yjtxwp1XVKVJaY1FHnhn18qHIq2abl05Sqttaggpq1rijzH4fU3pRQEgSZU2gt8W4Ptts+rTphWXtfTJ7IvSJBe89MY40fAizlVsUTGEVoHHUYK/1yiGx47QHSdKy92c37Re3FqhdExTZDSRL+qo9XPK17m7cu8/fziw5i+ixJXSjpsh2MVUniPeyl5Rmyz1HXt8catz0vn/DGUgWIwGBLHMXVVcrz3iKODJ+hAsH3lOnEv4drwJhLJbHqIlAYlJUqGaKmRKkRISZgmpGONtZa2rijzOVpFOFcznU6J4x5KCZx06CBCdmzuINLoIEBqjXUSHWjasiYKQ2SgiXuOMl9g2got8R2mMKVqDaenJzx5/BgnFHcfPGJrc50g9pCVtq0R0voxfRRThEvf/hKWqq6QeUGUSIqixhnDrRvbONegdEikNbPTI5JQs7kx4fKNG4y3r6HjHqI1KB2SDvokab/b/FXMzk6Zz6bcu/eA2TLndDrjdDbjR+++i5awsb6Osb7T1+v1uH79EuujPpe2t5iMR+R5xWA0JtSKMl/SmtbnvLScnjzFKEkSD5FaIyQoqZ8VbKuL5EIFt+qzvujC5GMLVPHz6foK8ewjSylRWnuL7CBAW4NQgqbb0K+k3FaSVA6HcS1pmFA0hvv3Q7JkxBvZgP/+X62YPq350Y/miCZk80rEN24nrClFs5hzLL6GmE+ZnpySZmmHmZXnn/fipOli0ZokKeA3kluXdlBhiJCKfLFEODBNg1T+ul0UFct8iTXmXF+1LJa41oGzaAlVWaIz77KVxDHCQVkUWGOoa89lyLKMIAi79eP5o/4F5l0Bnz13vxBWMa5jRrZtQ13mlEVOXVUewJ+GhFGEc54JJztGICpGqgCpQtLegCTrY9rWC5QnAVqsJB2gqWsvw9O93irRtNZEUURZFFRlcZ7kzjnm8wWDwRBroSxzlG6RUhLHsXftaUrf1TCtx5MZx+zszPsVX7lE0zScnZ3Rx/kdUhQTR2GnaRki1TOdyhWRxRc/PvmfyXVYEA4nobaGxXLK9GSfaj6DwYA0G6DD2C/+0p1/tmdj2o8HwTsBrZS0YYBz8S/wbP/qxMu8fZm3n1sIceG8e3cf54CuYDVSgVBYROeo487xfAIPBzBNi2tbrGs53HuKFjXDfka/PyLaSrh0+TIn+48p8iUn+7tEgcAGisY4lIQoTcgXFa11nJ0cYGwDOiJtW+IoBuc7oMaBDkKm0wPqyhComNzMCAKP8VZBhAy8lJs1FqkkYRSDtQRhiAojhDOYpiKUgAPTtDRtTdVUTGc59+4+4P6jezTW8pWvfI35yRHWGYqyJs0iBoMRQRiR5zmmqanbljxfUlY1ExGQ9oZUVc3WzhpZP2U2XyCsw7qWplzQT8bc/tJXGYy3iNM+CEHtStL+kGEUApAvF5wcPOXR/fu89/4dPni0xzRvKJcLXFty5dIl3nrrLdY3Nnjvzgfc/eAumdR842tf5eaVLW7euk0UxjRtS9taqqKgaQpOjo89+dI6xsOMxekejx+8j4pClBohg2f4SOBZ0foFi49CAX7+ZZLfyIMKA5yOkSpES4OxLRKIoqgrWi1hFNLWJXVV0tYGHYWsj3ucXn2TOwd/we9+a8JvRxPkv7vJ7397n/t7Fb/3O2v8zlpIH8k/vVsSjN5m0h7gGkNtLEIGyI5ER/fpBALR3bMtz3gHSZwihpKqrEFK6rruiFKtd9ta+olCUeQsFnPCIKReLqmWOf2sx9npCVIKprOlJ1t2Ba5zjrr2x+Pk5IQ0TbsNrAQlUIFGX3ApXL3Pjz2eH/rdF70F8IKNA7rRlXO0xlBXNWWR+06QtQRh0jnoBBjTUtctWZZ6RyAdosOYQAvv5tN4FmzdtiA1Slkklrr1yUvXoXIdkSEMQ6qq6trv7lw4eIU/HAyG3q1Iaz/urUrSNKWuPXklCAIW8zmz6RSsQTiDUprxZIxSEh1qrOgcjQT0+z2yLEVr1XWQOCdLCCFo29Yv/uc2i+6cEWytH/uVRcni7ITlyS759BRXDXFtQ9JbQ0cJqOcX+pUGm7XP/8xZB0ohA422CfZX1DHo84qXefsybz/X6EbAq06J7MwphHDnsACldKfnKzymrzVY40l71thOxqxhMZ+R5wtm8zlFfkbZNORlwXDYRwtLEodECpbLJXW5xNqApD/ucJOGje0tkrRHVS5ZLubURY2LDfly3sFLKtK0R10uaGtDEkbMzo5wriVNM4I4IUz6aD3BIhCBxDmDbWts6x2EjG1oy5y6WlAsZzjTkC+XlFXF3v4BVS1ROuJsNuP7P/gBX//S27x66waYAZNxymJ+TNbre3H3IKBtWpI04/j0FISibX2Oj4ZDrlzapmlbHjza57vff5evfulNbD2jyC2bV26R9cfnfu068LhdrXRXBDU0VcF0esZymXN6fMysaNmcjHj91ptcunqF1994k8Fojbe+/Da7u3u8/94dqqqkaVqEUMggpJf1CIOYuqx4+uQew+GItckaMtBUZclsesYPvvtHlG3Nl9/+dfRg+Jwgv3suVZ7Xa33RXdaPxkra7i8Rz7hWXnRErLCiMU0eYFSN1hp7wRwFus2R9LAkLRVJnJBlGVdfe50f/+kek7sz3nhli/VvfJVfu3lCUR+xs5ZwORvwF3/4bf7L7434ym9YrlyZ0CYxs+mM7Z2dc9fA1bsSq5PS3afO72UOkiRhPF7j9OyMLMv8VCKvvcB/VVIWeUfaNcyWp0jnGPT75HlOEPjXGY/HhKF3Q1sulzRNy3KRY4yh1+t1qhgNSeKVAoIg8MWq/KzHfUXUdB8lxX3B4oUWrEL6E+1F17vdetOAs6huFx6EESv/c+fsuZ5jrCBQDoWlXExpqoooipnNFmytTxBKYFuPfxLCy+MIB7IjrlRVdd4REkAcRSwWi3NSymKRk2U96rZGSEkUKIzx3SpnLWmSINbWCLWmKXPKfEaWJagoRSpJoBVOSqIkJU79aEIKcT7u9KNOn1CrTlXbtrAarV6Q+dEq8Dd74zD5kq1+yvu7H3C4PKFpKgZNQ2+4TpCkHcnn+R25bwT6NDTW0nZ+4xJFoEKk/aLd5L7Y8TJvX+btLySEOMcoXoQFrIpWrbXXoezgAG3b4jonNa84wbkrzjIPWSwds8WCSVUSZzv0hyO0klRlSdQvONp7AhIG4zWUdNS117stZjlNuQTjCKKUMPQEwaqq0IHGNJ4EqIXGNDlVPiVJY5bzfZhDnAyxdYHQKTKISeLYL8Y42iqiblpoS4p8zpMnjwi0xLTWSz0FCq1jGidZX99ikD3g5Gif03GfV1+9SRKFKB0w7MdUdYUtK4IwoqxrzqYzirIiSmKCMKQoSuIo4uT0jMPTJZgn5LMzNjZ6hFmPKIzPj60Pv0Fbyc4VRcHBwQFnp2eEYciNa5e4eftVkjji8s4lRpMJSgfkeU4YJ9y8eZObN29xcnTMw/vv8d3vfZcrV6+zfekycdInjAVRnFJXJXXTEAhBrz9gbW2NZVVy8OgD7iV9Xn3jLe/q1EE/nqXHx3/9RYjneqs/x0br6nNqrUmThCoMqMvV04tzHG0YBphOTcQaQ6g1VVGglGZnc8j09bf5J9/7Dj967x2+8fYVbm6MKQvB4nTGf/H793j/8DZf/92vc+v6JlY40rR/fj2tCvCVIsLH6cgqqXCdZvJgMEAHmqLTUG0b31k1bXsuPRdoiQu03yg6j/Vuheu0iDVJ4lUwFosFx0fHnJ5O2dnZeQ4CAX49CIIQpdUn5sQn91yf/81HKX3Px4vAx77YglXo80XJCYGQ2uN2dIAOY9KsRxRosBYtJFJrJJJ8scS1hihpSVPhHYZMS1OVXTIYGkEnvq1Q2lv74QSmbTvhX3euZ4ZWFPkSBPT6fWazKXESYbuRl5TSy1k4hxCdx7eSpL2MIAyoipQ4TfwiEsU45wgCRRTHhFGM0tpjGWWX5ADOefeajgjzTN/SW3gihNfAdGDbFoOkKgrcYkl7eshrN65y5+EjDnYfUhQldVMyGG4Rpxleb8NisTTOL/SN8yO2pqm9GHFXSPkdovqUs/QyPhwv8/Zl3n7useqyXuigSenP5XmXVWt04JUbig67uloEV7JiQRAQxyFKOUSzYDheYzRYI4kyhJMEOiYdDzDWkGQ92nKGsy3SaVxr6SeZx04nEY6A3vgS1taUZU4Ux5i2pi7mONsQRpJyWROHGmnBtTW2bWmcw8YBJ4dPybIRc9OgBERxBCr0lplnJ2gVkAYBUW+AlJrdJ495+Pg+cdJHJQPyvOTWrdu894Pv0M8irt+4TJJkjCZbNNUUhySIIurmlLKsyIvKS8g578J27949nNS4ICBKYwLZUJVnDCffYLC+Q5hGfiMoJcqfAmznLLbCC+Z5jhCCzc0NXnv9NmmSYpzjbHbGwydPSLMe08WSprWEYczNm7fY2drm0s5l9g4OKMuS2XxOGGVEQUCSZeSLmR8rC4EQkvWNHdIsw9qQxXLB/t4e6vJlkjRFnssnXciTD+XNFyLOgefi546fPMeKKkUQp8gix9UVCM43dcZ66IlUoTdYKSumZzPKpiGIIr70xmtcvbTFB+++wz/84X1s+ZS2rAiTIaPLb/K7v/Ua4/UtmrKmbCriJKHf69Pv95HCC/JL/IbyOTtZVvtM583qOqhOmqaEUeS1YusSZw1NFKKEow18U6Iqj3GdVF9VVUghCIIArST5csnh4TFnp2c0dcPG2hgtwJmWJB0gJBRlThCFnf21PwcfLqZXx+/TIAIXv/tJResvOl4sJEAGWGc6RjHeFUQFoCOCKCWKY5SSONv6xdsZpIAwjn1XpyxJkpRQK1CKQAkkzsu5CEnYdSFM2/rdfNOcd7tWgsMAy+UC6xxJmpLnOUprkjRhsVggpUDr1YLcjT27cehqLBEEIVGSdt00h1SCMNSEUYRSEiW95I88/9c5UHSx0lt0ziG1Oh97+PcnMa1jmuc83d1jenxELw45m8949dp17j56wsnxU+p6SVPVDMfrBEmCk+qZuLgztKalbivqtsa1HcbQOn+j1F8IKPMvTbzMWx8v8/ZzjgtF63mnVUr/uZ1DKJ8/Qvrj3TYtxjbnWGCAtm0IQ41BEPZGVJXh6PCAOI0Yr01ohSNQAq0UMunRVEvuf/ADiqJha+cSo2sbHcdHoMMeUsc0jSFO/XizqRUSi0jB2hbnaop5RdPmVEWObR2mWJJGEVk6pMlnzE/3SXoZKtim3x+RSEWYpDgn0TqgNYbDg32atmR7ewuhQw6OpsSBolyCjoc83XvI6eGrrI3XUCFIkVKXxxSLGc42xGnEbNFQuQWXrhrmyznD0Zi2EZydHFLmBWvrY6JQESQpUX90vgGSHRnRN6kNbVVweviExw/vo5XizTffJE5S6rrk3fff54/+/Htsbl/m2uUdpvMFZ6enjCdbPH2yz/37j7l06RJrwz7WGZRUzM+m1EVFlmWdR30KUhMEIYFWtK4hTmLieMRIaFpTsVwsUWFMFDzTOf1I0fGCi9WPiv+vRuV/uef9sMTfKjwjP0Kq8HwTvYIDrP6uqZvzzXocx7TGcHZ2ijEtSkpe//KX+NLXvoptjb9XSomU3hRGSoUUkiiJieP0XOFCCdnBE56XjjrvTFpfpErAWHcu4aeF6LgG9lxBJs9z8rLA1A1hGLGczc4nJFIr0jTBmpa93UMeP35KXdfedKXnYWKB1n66F0W4bn3wsIjWOwvKFTFMPAeBFheL7E/Ip49Ipn3CefhFxgvusAqkEN2NAcDL4sRxQpJlKB14Hce2xDmPRarrkvXJhDgKqevm2Uky/sZydLDPcNBHDnqISNOYFikEpm0Q7oKbTpdsy+USKRVxHFF39pMrB4kgCM71J43xkju2teeuP0qpzjdeEEZ+J9+23hd+hT9ZFQgrnckVvg+eJbwx5nzhB9Ut+ALn/ONr69g9OOHdO3dY7O0RmDlxoCnmM25d3cHef8DJyR5NlVOWZ8S9EVE2Ikx6HnuIxpmgGx2AFRbbmk4uheekSF7GT46Xefsybz/XuFCgrr5enZOLWqueiOE7gr7At+eWpsaY843IdFpydHzIo0d3ubSxzq3bNzk9PeLk6JAsy9jY2KA/GCKko2kqpFAU+Sm9wQBUiA5CrwEpHab1VsLGdoQ7KaisQWnf0TVNjWtamuUZbZ57aTWtvHPUa9eJti4RxDHCGYIwJQgSwigmihxFscC0DVWec3ZyTF7k9IcDZrMjzk5PkTrFWMNwbZ13vn+PH/7w21y5soGzA3ANZVkhkZyenPDBvfvM8or1NCCKvOf62ekJtQu59+iILBJ84+tvceXaNXSovRoGIa6bTijpSWKeFFMggKatyMsFCFgWS548fszdB48QzvHk4T2kbbhx8ya3br/CeG2TK1dvsrd/QFFVfO+9J2RRRFHkHtsbhEwmE9bX14mTmKoqMEZjjKIxLb3+CAhAKJRTnVScYbVkfyG7qh+Kz3tkrJQiSTLKeEm1XODl9+pzgtLK6ER6+D2ts4RK09YN+7u7hGFIEIboMCSIQk9UwmP0m6YhTcNz6E0cp/T7fcIwfO5evIoPK3s4PBTBGYNvtfqNxsqRClYbfY0KNLbxtqoKKMuSJEnQ2l9fjx/ucXR01JF3pdc+jjxeWylFWzeUecFg0F+9G3+/7Ap4DyF7pmywEpn4y56ZFwFDeeEtilXHZuV4g5DoMCKMYoRU1HWNaw1SeMKJMYb5YkEaxbStoSpypNLoMGQ5O+Nwf5fhcEikBIKEIFQdqdJ9ZNGvqqpL+piqKv0CHoZIKb3we4dRWbnOmM63e7XwCyHO9SyfJcQztvTzbGfOv169/qpD5d/eqgjwovT+Nf1OrWwMp/MFP3r3XdT0hOV0l6tbY9bHQ6qi5NXrV3nvvYLTswMOllPi/hqDyQ6DySb9/rjbFQqEkjRN6MfLrcddul9Zt6DPN17m7cu8/YXGhwrXcxzrSpO16zbbC10WT8SrMaYhjkJuXr1EJAUn+7ucHOwRRTFXrlzBNUPK+QwZgmlrHJLbb3zFK1iYFiUFzrZMpwWj0RrgiS1RFLEovCSb1n7BD8OIylTMTw/Z3N4mzgYEYYzQIXEYEEQJo7Utpoe7nB085eRgz8tLJSlFkTOdztCBZmt9DRFcom4ajBU4e8j3v/cdylYyy2sqmfLP/ts/YzCc8K1v/hZxopHCbxoH/T6Nhbz2naoirxiNhmxsrvNn37/D/t4Jv/3rN/mNv/pNxltX0WGMMQ06SnxR6CzOeWKhc3SbwYSNjW0ePHzKj358h5PjY0zT0BuucePaZSbjNW698ipXr98iHQzRMkDpkKppOT454cfv/JC9p0/Y293jxs2brK2teXMFKWmbCiEcOlAEYUAQxSgd40RnapCXlO0JYRwRKIUMguegIp+YLy8gPraIcd3+S1wokjp2z8e9y/Mx9Kd8htXrKCkJwxilFVor6tpfH0pKkjgB58iXS+874JyHJ3XP0TYtpjWkSKrWsOwIpHGaEklFVVWsTdZBSNbG484C21+H1leEnXi/8MPz7omd69aFjvyIdAiekVGzXtZ97e+v1rRYpekPBx5+pSWmNdDJxuEsk9GQYZZ5rHPgC22cI01ScA4tJQLhMd8SmqqgKLyMnJe60gjRmTt0x8J18BK3Okn4de1Cf/y5idrFlusnZZ+7eP4+5dz9rB3aF1qwepyHP2mm0xB0HYHAOu/oEoYRURJ7f/QoZj6fMZ1OacqSMIxomhppLa1pEXgXkiJfUNUjelniu0BCoITfdTj3vGxOHMeeEe2eLepN05yTGz68MCt1EZTvCTjWtH50Kr0my8UuyHm7XawS9Hk8yeqx/jGrLko3RrCORbHg8cEp3/3B97n/8BGLx48Z9iOq9oCoN2C938PWJW9cv8k7d97ldL5glhe0TY01Fa61pL0hIggIdIiQGqcaWqUwUtJU3nLzZXz2eJm3L/P2c4/VYu3cR27w55qsShHogEAHSKXOR5gruMpqw2KtRUnJYDCglySkacx4MqGqG3pZSlEsadqGsHWcHR+zvrnD9vXrKKlQAvLpAffvPeb2W19DhQH5comUIU1VdfhLKPO6c+SZomSLVC0yEAw3djBOUpUF+fwM3TRY4zBNw97jB952cm1CmvXYvHSdJEmw1jFdLKnmOQhFUznW1zbY2Z5xPC0wQjFc3+RP/uA+/+2ffIet7UvcfvV1v/mbLqDrQo2GPXq9HrP5ksViwa0b15n/8XeJI81X3nqF3mBEnE2QgcS5FkfTXdcaZx1NU2LbCq0FBwf7LIqKK1dv8sMfvktVNly/usPW5Wtcu3qNSzvbVK3j9PSU6SKnbS1Zf8j6xibjwZC3Xnmd9cGQg8N9j+82hjAIWC4WaO0oiwXW1ehgm+FwCCKibhrqpkIrRSugrCrCKD53m/toQSc+vgJ8QfGR4vUT2nof/RTiI/JKz3UvL14LWpKkKSoMsYtnHd2mbgh00DmuKS+TVncbXSkpq9JfP0FIawxt1cGiYn+PVFJ6bdNejyTr00/i89d2zmHaFpzo4AbW+55c6Lo65/xrrSBMUvqiWfhKPUk8bExKAcKxmC/QYadPHQGBv77z5YIoisHSqYNIGmNorSEOQoxpfXOgqojTlDAKCcPAE/lMSxBGpEnm5eO0IqBrXHTSaKIrXlfHdlV4fxrO9dNipWxyfgw+VJheXDN+lqL1xXdYha/jV+xWsHhphpgoShHCkQSaKPbteVUGGGcoigbrLDrX9AdDcIYiX3B6ckCym7K5MSEvQ+LQi1YL1bXpwY8FWo8vNLalaQ04SRgEVHVJ01Y46/zOTanzjtLKv3jV8gd/cTknEK6zSZN0Woiu++dlkKQQSOF3QaukdZ507QGCAM6PlrstGg7JdNnw4/fvcnZ8wsnhLmfHe2i1jpExcxswjoekQYQqptzc2UQ3DafLksXhHkW5pMxLRmsbpIMRKs4AiRMer+isQEjXdRNexk8TL/OWl3n7i4wLi79f9wRSererIPDe5VoH1A6wzhP52hatvYj5YJChadnYWPed/CT1xhGmRQiHaSuq6SHF9NSrTCxOCdM+Wmt2H77DZLCDQNLUJVpJWiRnT+8xmx0xWtugWM6xOTRNydr2FRQ1Z6cH9AabxP21LjdaFrMj4iijP17jsnyF5WJG01o2Ll1DhxEqVlSNgaLG1SVaQVVMWS5zLm3vsLUl+MF79ziczdCJt9G8f+fHbFy+BtWSti5xCL7+9lfJ+mNOjo947/4ugzTkW7/+dSZrG7TNQ1595Sb9/joq8PI/UspOBkkhhMLRIlxLtZyyWMxpTMWPf/wj4ijmb/3Nv461hvFoRBAlJOmAum4pyoL33v+A3f0DjJFcv/0K21tbrI/XSHsZ2+oSg+GAuqwQCKqy6q6zlqo4IwzG6CACoTpSj8eNL/MlKvaGCyv5OHUOh/kVhcV81hACqQOiuE8Qzr1jVNM8Uy/BH0Ot9Tm2e9lpVydJglSaPM9JkgSAJI4ZDAcgBGmaEscxvSxDCc5x4cIBxkNwcNZfmrabszuDtX4E75z10oFC4soasugcPyq6ydtwOMThcJ2msjEtxXIJzhFFMUEco8OAsih8we0cRVnQGoNtWrIk9dAxZ1FhQJD2COIYYxxlVVDkS8plTpQkREni4QRheE7yk92N/1mR+YXa83wkXnjB6qwHD3u8hQcK6yAkjn2yVGVOWZVYa1BaYZ0hikNsDU3TcHp6gjEtaZbhpMbMTpmd9Tk8OvAMWpH5roNwnnSyEtgVAucsTbfjVzI8x5l0tQjwDCd30SdZiAv+wedjAJ+8Hpu4Iqg8Yw2uul6rxLCrBPd/zKrJvvq99xUu2T04Yn//gLpYMOhFnMqGg6NdvnLtm1idYqIBkNC2LYOhZDJeIsUJ5AWnp8fsLpcs5yeMNy7RG2+howwru7GGtRjjHZZexk8XL/OWl3n7i4hVR8J9VDFAKYfRCh0GBJF3uKlrr6gghOwaboKiKAFDFnnxcoAwjEF7ljK2pVk0zMuatcmEtfEQrADTUNVzAh0QR1BMj0h6GcvlAhUETA/uYpoKlwZIs0SYkNHaBlF/wrgtCaOUdDBGRxlShyymp6yNR4RxhnWSdDjE2JbWuvPNU13XNHVFpCSjjQ2kDkizPkcnpyilePT4Kf1+n/cePaHXTxmPY4a9GC0d6XDEoimYns248+Apf/69H9EayyyvefP2FawDZQq++eVXuX37dbLxJtZBIGWnrexn184anG1QUmCahuXCW9aO+jHD0YjRsMdikXN8MmXnUh+k4PD4iHfffZfT6QzjYDYtmf/Fd/g+hvWNCdvbV7h54zr9Xoo1NdY6+llG0zQc7u9hmjmbW5so4UfM5xBmHDhDXebkiwX97Jn15odz5EXHxY7q893Vjxnxf+jS/bQr+eO6dM/hR6UkilOCMGJl22qaFoG//xkHssN7GmNwQAG0xuCahizrdY5YEMcxQRCQ9Xr0+wPSNEUp2RWZHSwKf//3GtnCd0+tVzCRApxpaWv/mSQOJxpM0aBTb7eLtb7YBZTSJGmGsY6maXHCEUQd9AOoywLPLQioypK6qiirgrb2mx6lJVIoelnKZHOdNMtQgSYIFUI1zBcLTo4PcQjiNGE8njAaj9HaHw/VdVmVUs+aGeeNjb98Xn0azvXDU7vPEi8cEuDb6c+3pH0b3WM4yrKgXC4QArJeShyHDAcDbNPQtt6Kra5r3+FRlkhIpmenvPfjH5LFMb04Osd3SQW6S1qtNVVV+t6VEEhFx6qTaBWAerborxbs1Q7rolfvajKz0tn0Xa3nGYQXMYXPfX6vUtl9dp8gHvTvOD2b8+DxLo+e7vHk0V329h4yHPUQEobjCRub2/T6Q1o0hdDYaA3dzhhfukbtcqxskHPHUbngeK+kLGvGZet1L9MMpTXWAFaCC34BZ/tXJ17m7cu8/YWHeF4x4BwWEGiCKCTJUnr9HtVyTlUVVFVJ3TY0bUMQ+G59r987d8WxtiWSAaqDtRjTEGZ9Jhtb6DDqOtiAs2zs3KCoz2iWe5RnNYtlTn9tDZo5wgqkM8hQ4AQkSYZ1gqg/QSRDonQIIiBMMxbzOaCRKkDpCNVt+CxgLNi28RuRtsE0FY1SYCxFVSOl9vbAUUjT1ARYbly7QX78lNk8597773D12g3m0ykIwcnZnONpTlHVWLw80CCNUCbnN3/jX2dtsoXSCoTfcAqtwfrr2omGpsmZTw949PAOZ2cz4jBl69Ymu3t7/PmffYfTsxnIiO/98B3e+NKbVIU37nhw/z61sQyGA7JkCGjm8zlldY/lYsrNG9f9RKTyuNUwDFkuZsyn+9y8dQM/pvV6q1JKr4O7XKCTgDgKn7HTnwOFfrE2bh9bpJy/z08eNf/0n0J0nUJLFEdEaY+iyEnqhnnp8wDhUN19rG1bP63qtKKbqiIOI4qiIE4ypBSoIAAEaZrRHwyJoui59yuEwDrrC1PberMOqRC2u/8DorWYpsZqiRGCpG4QbY2SCmnBXCgGpZTn5i9JktCUBSBoywopHaatoTOYmZ4es5jOvOay8Z9luYCsNyTr9+j1+6RxTKi1h1Dh9WDBUuU5dT6jmM+oy4Kk5x8f6ADdudCtcu7Z0f3LFa2fZez/08ICXnjBKqXosCQBSipM29DUluV85mV52oZ8ufAalKZB0ieKwnMGrNb62UlPUtbX1zk6PqbMl9wd9On3eh1+T6LFs65T2zYgvBuGkt4PXnQEE6WC80UbPnoBXiSg+MVjtfCvNpHP7zQvPtcqPO7RnvuB+8LAFx9V3XJ4csrDx094urvL4d4THt37gI31MV9++2usjTdY39hhOJpQVQ1GADIhjCVShmQbBU7ugZvT6oJpXrE4OaRtWspiSX+yRdYbwkqb81/xqdJPGy/z9mXefr7xMd2pC7+5WLRqpQjCkDBOiLMeQRITlrE/ZlWNbQ2NbakDwPVxzlHWJUEUEhoPU6nLAiscvfEEFQ2I4hTjSpASoTROOoZZTBsumB3v0osV2pSEUURrLGGcYBpLGKX+vVmDChIwJQiBDjRKRaytX/J2pMaipEHpENda4tDjNZf5gsXZMVGoGY4vEwYpjbUYeeoXUueIwoC1YcqtK1sQJvz4acO//NH7vFIYBqN1To+PqaqGo6MjAiXojQeESvLqtU36owFff/t1Xnv9TYKkj9Qa11Z+musESEtrDJiaw90H7D59wHQ6YzAcU+QVH7z3DocnZ9y7v09RO6bTx8xmU9559w63XnkFY1pu3byOxDIcjtnZucx4ssmT/QOWyyVrgz4Hu09JexmDwch3+5qCqlgQRxopPQ7cOm9I4vDEudnsDN0I1jrFj2fXpPtIfnwhYzX9gWfN1k987E/1tDj8fTEMQ+Kkh5BnGOd87opOEcV5Af629XbUcZagtKJYLFkulvSGA4SAMIqJ0x69QZ8oyQjD8Nl7cs/unw4LTY02hqZtcXgcKdZ1RCsvYxjUAjfdo53uo1/5Ek45j5Xuuuj+MwiiTp9VCkGVL3Ft060vkiAIMWGC0p48dRomFEVOGIX0B320DtCB37AGUeS1s71wNkEQkqYpZVnS1t5Rschz6mJJ2huyvrVN2huQ9XsY49ciKZ457Dn+8s37T+uw/izxgnVYJVIJpFK4KCIIAgRQVwXLxYIk9axNYS3SecmV6WmDDjS9rM9gMCCOPV4PqegNRgCsTyY0Tc3p8RGPHj7EuSusrY2QUncOQt00s7t4vMyP7cgtXhjds6V5zrnnYqyS11oDwuIdgPwi8tnhyivJoGcOHdKBtpowTkBKTk9PSMKIftpnOBjz1pffJgxT0nRAEIQ0bYs1BovDaI1xfZLJa1hi0E8x0zlKlUyXOfnimLJeUNQlo7VNkmyA0uFPYeH2MuBl3r7M2887Pvy5PuYcdo9aqQWEUUSSeYJIvlh6d5w4xtqG6eyEslqgtQVhGQyGCCe9dJM1tI0nGzksSjmcsEg0SsGsmBMnKWGU4cI+QRyTz5fYOicMNKaZgan8ZklFSBVhncQYb/vrnNe3xNVIrckGfYx1WAFKa5QSNG1DkS9pTMNgbY0o6aPCmLooOTk6Ip/NEVJ63J5peeXmNdZGYx7vHzMer6FMxcHRMe/fuYMrpsyXC4br6xwtGoq8YNku2bq0gxUBb7/9FdbWt/xkA3m+ycNZTGvBCo4P9zjcf0qWJAwHI87OZuztPeXRk31Ozs6IIsVscYpwFZvrA3q9jPnJAZtbm1y5fJnXX3+dKO0jlCLN+uxcvcLu0z3KxZzhoEecRCAEg36fg91HPH78kFdfvYmOIlrbUlYF+XzBcr6gqnKSNKIyDTg6uIB7vmj9eVQWn2P8vDqqn1b8SClJkoy012d2eoixhjiKqOvqHELkccp+AhYFIXKo6HXHzlpLnCQ4BLorDp8jrl54HbSiqmtk2yKswUmJsCAb20mPWXCG8tv/An70bYLf+T1cNsBikYBz8hwSYK2ltV6C7vT0lNlsxuHeLqPhgPWtLY83ddB005KtK1cplgu/8VupGiQxcZoSp6m3ZVWq4y1AFEWexOegyJeYpqJsK9qqIl8uGU422Ni55CUZE+H1tqVidY//LPGTzuMnDQE+rCbwWTqyL7ZgFV5cV2sFUUScpqS9AZYciyHPFzgcOtRIGXp8SeilS0ajMZtbm4yGA6Io8uy4KKGpvZRLVRRY6yjzKacnIVGokEoQx8l5l0sIf8NyTuDB6x0D0DrAoHzfv0tY/7U/+qvWjjt3H/IkFsB1Y5pO9gIpO/bgqtjoGCvWgK2RQqG1REuJVAFIgVAwmYy5dPkyT57uQutv1Jsb6wyyAUHkx3rONoRKYnC0xtKYlhyBjFPUaIcQQWYPQJ4hhEPmBfMi56x+SF0uGaxt0cvGxFH6As7+L2+8zNuXefui41kHRJyPFOM4IUpSgjhEVRJbt7TOILUmSlOMdVSd8LiWMD09JE0z0iylKn2R27Q1QvmOd1PMyJfH9AevIzsyUKQVMkhZnOwSxQFNYZG0oDN0mFAXJXHm/c11GHY4a0vd5CAkBCE6jLArap+zSGdpiznl2S69wRhqhTU1eVFwfHhAPs8ZjUcURe5JisuK08MjIh1w/dJlIg1N61nfs9ZRtI7pYs7ZfEFZ1AwGMdlghI4Sdq7e9jAFJ3BIhA69zrFtsG2LFIq2rn3xHwU8ffyIO3fuEYUxw8kG791/yFe/8iV+67f/Chub2wyHI8IoRDowxqLCGINE6oC2bZjNpt6//solptNTlrMpdVmSpTGHew+5c/cON27c5Oarb5Bkg85Ry5HP5zy6e5fR2hqNaThbNqydnLK+sfXxhcSKnX4xR34hmfjJ8Xwn+OPjL9sfFt0tUCIIooDhcEiVr9MpnWJMgzWGqi69xW5nJKB1QBiG9AcDr7ChQ1rTMs5SonMMqejY9M8Y736jHqCHfezpCbN79+DpE8avv4LJNhBl7rkNVQkPHhJ//ddpvvoNZJhA62idw+LvpSulB9VJIm5sbBDFIVmaUC4WKOVlqSQOrSWRDTGRl5PzHAbfhUdAkvYI4wypuymbBOkgCDRRFJP1POZ/enbIcnZGOTvDLWYUxZS2LpisX0aur6Fl0nFpxc99E/RJc6OfRq/3hRasq3a9EIooDhivCUKtWSzm3jPdOpTWhHHq2c9RynA4JI5jxmtjNja3mUzGJElMksR+ZwGYtvGyDmXlYSW2ZnZ6RBRqwo6E4mynOSm1lxgSKzyFQIqO7dx5lXfQYL9Dc5bV7mPlPvRsk+txXKKj2j2HAHEOa1tsW2NN47EpzqBljCBEraSIpEQoyWjQY2N9wvrGJvVyiXTrRFp7PFMQ0ZoGEXgvccDvqJyltpbcGMIwwSZjAmNIui2OchZtLdOyYH70lKosKYcFw8HkF3XKfyXiZd6+zNsXEqub+kXCSYcx1loTxQlpz3f26rbyHR3p3XbyvEIJhTMnNMWC2WnMYLTGcDRkmRcIJ0hVglIhQkgkMJseo4RFCu1zQyokGucsQRiggoi418NKRRSlBBLapsAajQ5TpEhoqsr/ayqvSiAVOpRIobHGslzOWE6PqYslWifIIKW2hnIxoyhqAq0I4ojFYsHp2QmHx8foIGBjMkSGKZvrIx4/vMd0OiUMQ2Z5SVsbbt+8TV5YpqdHrA0TttZH9PtDtFQIHXt9TKSHA5gG4UynQauREgbDIfOzE4rlkkBJqqpge2eT/9G/9+9y9eottneu4DoYTl1X3p3IGCw+p50FDNC2PL77AaP1DeIsoS5zjvb3sU3Eg4d3uXHrBpc2ton6fVorcG3DbDZjd3ePw+MDBqMh+XLO6cmcw4MDrl6/eW7ucZ4LH17sfwa5oBcan6FW+Th4EzyPuQ90QK8/oCzWMa2lKuYEznZGACVFUTCfzxEipK5qsiyjKArW1tfpxQlZr08QBP7fyv6aZ8XqueyfkKgwxE1G9N1lxOkj+OF3kbffxhkBbTdZeOsrmDdvY/sjEH7n7/kOXuFjxRFYPX8YhsRRTB4GqOEAHfjxvnArKIjv8MaxlzZbyRhGcUgUp+gwPJ94+Xu6QGtJEDh0EHTkzAQVltRV7U0KFkuOmgeY1iA7m2fwa5y8gLn6pIJSfMrpcx9+oDv/3yee259UuL7YgjXQmNZDkIMwRAcBURSS9geUZenF162l6W4IYZIgg4DheMy1G7e4dGmHfj8jWrlUKO27S9a35k3bYNuGsiq9iHYxY9YUhFHiF9owBOsTQkjldSSll/NZjVnhmZyF0s9O4upnnnDSga1XyXc+u332HM42tE1BUSzANWglzuWH1EpD0b+4x7WEIePRkI3JhNP9p8g2xjYVxTInSrKO8OOIwmcLv1YhTkLtDIW1EMSIbJ1AhiAUylq0rcEq5lXD4nSfslhSFNNfzAn/FYmXefsyb78IseqynsMC4oi016fXG3Oyv0u9zGmbhkBqiryirQtmrkZujBn0L5P1+5R5QVWWSBxZkuGE9Pi+/Jj54SMGG5exWKztcHd2Rd6TBGFCoASoAHDUTUmkQ6pihgxSTCecbqX3do91RKBCBF7yp60KmmoBNARa0xuOCGJP2hIiZjp9wmxecHq0x5NHDzFC0OsPmaxNuHXzFaxW3Lt/n5s3rrM+GbNz6SrL5Yw/+dM/5f17dxkNMrb7miiEXm9A2h8ShhFOOqwUCO27qaZYIFyNFaG3UA4Ui+WM1lqOj085OZ6xfmmT117/ChublxE6RqgAZ3IQGoOjbhvOTo6Jo4RA+wIi7Q/RWrCcn1CVBYEOEEgWVcW8Knnra99ge3OTfHaKaS1BpCnrOQcHuzx6+oSz2Zzh8QlVOcc6ODzaZ7pcEKUx4TkcRnxhCtSfpvD4tKIFPtR1+xSoruiIZx4D6hAiYm1jk9Z4d8EgwttXJz2kCFAyYD5f0jQNy+XS610HAf3hiKBzsZIr1Qjx/HtZER2N6XgDOiJav0b919cxD59SH89QyyWuNVgpMJMt5NoOCtlNufwTrvCrK9jWypGqKksWx6ecHhyxub1JEiecGxII56dNcmXS4icrWmvCKPCd2BU8q4MyCHybVSlFFEVUTUzaDrzGcFVSLnOwlqZqsOKJ/7i2ZTge+6mgCM6LZP98n3QO3Mf+rusjP/e3z00AfoYO7gvGsAagO+cFobzTRxCig5gwqr29YNNQljl1XSOkJIxTdq5c49Llq4zHI+I4QqkOS6cUgVbeHQcAg7UNbePHPda2VFVFWy79oq88Qxbp7Q21XCXU6sCKc2sz5xzCeqLJxRCC80SEzl+9Sxzwyd62LU09pyzmWNMQBZpABmil0fqZW40nsXhSRaAkSRQx6PfIkgRbLCjKFmsamqpEdLab3oLRa70JCQqJNtC4lsYJlEoRiUY7z8LVdU3aGn+Tcy2z5ZTjcvn5n+xfoXiZty/z9nONjytALt7bL3TXLhatgdYkScpotMZh1ufkaJ/FfM58uaQoS6RybE+GtNYShSGYlsWiRCLQkaaqCiIV0lQ1y+kxVgiUFBTzU+Ksj1UgbA0ClK2IohirerTVkrpe0pYluj/GKkFbl9RFDlIzmGxRBy3OWOqmxYqGujXURY5Smjgb+YJCSpxtKecL7n9whw8+uMfe3i6z02OyXo+NjU0G4zHXrlxBa0nelOxsbRDILc5mM4qqRThBkqYsHu3z6HiPS6OMX//SbYQV6A5jK3DnnvBNU9PWJaYp0ZEC7cfIpoWmgXsPHzLsj9m+dIVeb4wQkiqfAY7lYkpTVUznCx4/3eXBvftsbW3z6NEjfvO3foedS5eQAobjNc7O5symc5Is4tYrt7DWsjYac3ZywtHTRxyczVnf3GZvb48newc0TUsYRTzd20cpKA0EvZw8z70Ws/QM8E9a83/eZJefW3zGtyXgfBz/abF6yPl1oCRBGNIfDqmKJYvZCQCBjsibgjqvmU+nZIOeJ1tJTW80IO57slWSpOeE2NUm/5n99GrDv1LQcAhhUWEEl6+g7T51WSPKCpPGqMkaRgmw7Ue64KtitbsRI6UgCDTpYMDlOCIOuiaGFDg0tq0RrsFiEdKiAgEiRCiF0EEH43mm7OKPh0BYPJzABfTSDKy3jG2Ha0ipKXO/qS0WC47bh2BbjL3BeH39nBwsAo9t/VkyyqMLLmBTf8bnWcWLLVi1xhnvymKcQwnvBiF1gBYSaQwoRejAOOHb1tpj/qIo9ZZ/0hcOQmq0DlFaolZ2acJhXIgKW3AG2/qbgKlLf9KagrZpQGrCyBGGEeBwtqV7UlayQH4n5PzYlWdjgovYlmddKXvu1OGcpSor5rN9tGxJk4woiImCGKWD/z97fx5kWXbn92Gfs9zlbflyr72rqqv3Ri8AZrAPBhjPDGnuNDfZpGhbClmkRQYlRcgRohS2yLDCCtpyUAqLlknJC0VyhmJYXExyqJkhhwBngMHSAAaNRjca3dW1V2VWrm+9y1n8x7nvZdbS3VUAuqsaOJ+IrMp8y313Oe+e3/kt3x9K6aayb2ZU+PlFDQbNTLydsG/eBVmXmTCyL6AJMaBCmEt5wrakxBiHdRKZLkDHQOVIrCG3Am8lzniGjTZj5N6I4zaO2/ePQ7P223nSDqcFZBm9/iL9lTU2rl2iriqKYgwCJkXJ9Y2CTq7Y29nGlCXLa6ukWUrW7qDSDK0EdTkJBnB3GVTKaH8T56a0u328szhb4dMW7axFMRmyt7dHt7+KlZKyGOCVJE162HoScvfQZO0e1gSN2BtXLpIIz3Q6oNtbpLO4xrSqqKdD6qLi8qVLvP7693ntte+icZx77BzLy6tBosoYzr/5OhtbWyytrbK+vMJir4+SCWUxRakEaxyjSQk6p0Kxub/Pb3/9qxy7fp31tSMsLy2zuLQSckXHA4bbGyRa0RY5WqaUZYm1huvXbyBVgsPR6S5Qm5q93W1uXL+CkJJOt8+3vvZbDEdTxtOKG1ev0k4Vq4tdzr/5Xa5deYPewjIL/WVSqZlUJUKLEFXxkhvXrnLl8kXePH+Jb77yBgtLK4zHQ6TSrCwtceL4UUrjKIZjjFeIbJutrZscWV9HK9XcK5pUocMeyQdsrL5t+Pguj4e0+TvH9eEWoW/H7XmQM6QUtDsdllbXsKaiKqahlXW7TZqmLKyv0Wq36HS7wXGgNXVVhXtqKxQqzTyfs23PDczmkw9/nhfgMgXHlkEY3PkKr1Lo5NRFgZcJXoJoUslmDVdmygAzg855B1KQ5SmJDs1cbG3AWKT3SK1CwZZzgMBLHQzW27SyD9RdgiE8O6POgzHB+ZG3u5g6OA4QkroqKcqCvd3NkGfrHMvLa7Q74V4+K3H4oRZChxzmPygP1GBNshw/HeO8wdZgtW4qp+W88EMpTZponEsovKeoKvZHI6Z1RduGYhItVJPjIfG+cVDPEpqbgSLx+MTikgSfBi0/ZwyVaMSq6yIU0yg991LNJl1EaBUX5l6Pd019mwvV1saasNr1odLa47DOYqzDVgWjvZtU9YSl5SWyLEclGUInSBV+hNBzUfi5bLsX+KYdm1ahG4vWEikdxpZoq7E+lC5IleAJLTFnXhcpQvchoYOHzgmFzxcQi5LEg3FbJH5It1mxRe6dOG7juH1PkQd39ltKacTMhd5kGc/skyadQ0pJmia0Oh2WVo/Q7S/DtcvgLVvbu5RVxdGmqr2YTBDe4YRj7ehxOmmbtNUNKSCmROcLtDtdpDe0TIEtR9gsQ6skGMftRerxHm++8jtkWZvuggstTl2BsBJXVeg0IW23qU2NVq35RKVwvPzV3yRJ4MiJ05TTCbVzXLlwgQtvXWJrZ8BgOOT40TWePHeWlbUjbGztsn1tg9FoRFlXZHmbwXDI6995mUSlON3m+uYWR9ZWKaYlznr2dkcUQ8H+YMobF/dYXvwOSwtdjh07ypNPPcXJU4+AmyLNhFRpqlrTX1mhqgxbWzf43ve+y3A4JE0ThFB877XvsNhfpJVlfOfV1zj16ONBP9Ybuu2UT3/iI6ysLHP85Ekqa3nl5Ze5cP4NTj7yGBJJf3mFVrtNWU7Y2dth++ZNvv/mBb767TfZGky5OfE4U3N0dZnhpOTqja0g/WU9u4N9BqXk8cFoHhI+GABvL2X3vtMsUH8U/KBbmalmdBf61I3Ivq8toifRaUJZB+N0tL+HKXJanQ6dhcW50R8W1EH7Gg4MwIPok5hrV1tv8d7hjcXi8YsLiJM1blw1kleAAi9FWJcHPzBCBiWNWTvvmQNBSo8UEmOqUJAoJTKRWGOD40NKdJLihcQ125kpthzWzp6Nj4PfPVkWuh/WtcHUlqwdlAe8D7q/RTml2N7B1AatVCOZtYzSd+uWeOuC4vC4u2MBckhl4W0zWO4xreWBGqx5luKqKcYJrLNYY4JEUOMdcs6FXLkkwTXdUJy1bG1tsb22Q6vVopUlCFL8vPUaQZ/R+xDqkpLGs45A4aWExuXvtCFNkyDiXteUVQFSoXRCqDuU80GspQw5Ge5gcM1E1+u6wisd2pw5ATYM6PFkxGh/G1PssdDvkyYZSmmEanL+ZIKQmplQtBfhUyF8UZwLK6DQAi60e1Nazb1VM/kJ6YOkEULhOehuFIwfGn0/sF5C1kX1j5IIhREC5QfkD2n06GEljts4bt9bwgTTxNNunbkbY3beW/3wkyKkmGR5ykJ/kcW1Y6jzrzEpJhRFRaIT0izF1TVOKRCeJMmoTVhQqaxGeoOpKzrdJZRMwDhUexnrQoGHwyJURuIcw9GQs08/Q5p2mBZTUq0QooOpxoBBpy2UbmMpmIwq9nc2qKZTBvsjxtOC7csbfO3r32ZlZY3r129Q1DZMkkqxurTAc88+weqRE9zc2eerL7/OpUtXcVWJ1JIsSxmNxkwmJVXtKIzDacXG7ghMye7uPrlqs9DvsNDroqRgXDnExDC4cJ3zVzdZWV3m+aefZKnTYbC7QdbZYXF5h7XFDtJJeq0WVbtNu9Xm4oW3SLTE5W12BwPyVDMaDHjuhRcpRzskeRpkxIzFeqiKgl6vz/5gyt7uNqfPPUHWyqnKGuE82klwmrKS1E7TbnWx1tLr9NAqwTlBYQw3t7epS4PXbbwVTCcVUujQLvlwzmhz/R8k7/bxt0d0Dt535xvv11i9fRuqKU5aXjuKVJpWp81kb4+9vW0mowGmqoMxaB3WhFqAVqvdGE5ivgi4vfmKcy7UGLjQFto6izc2dL6oHWVZIZWi2Nkn6+T4fhuHR/rgXfWANz7oWIsmwiQkHtcYnRpvmi5rZYX1Dq8USZKjdZA9cwAiOEVEc6+c62Y32w1OBBluIzMjU0KrnYOY3ZODt9YZA17jfT7Xap0Md9ndykkzjU4UkIY24d7Pbs93vba3XJPbrqQ/9Pgd77/Hq/5gi66w5HnGxDuc9bjmoJMkdLBxTftLpGry6wTOGaaTETs7OywvLZLoHsoY6lrMVwEQtNKEBO8EXs4GIE0HCNBJhlNNL21pgvh2ZplMQ6GLlBpnwkp2VmAyO52zJGljDGVV4azDOAPW452j8mCqgt2dTSaTHbqdhCRNmolaImh00iB4UfxBIzTB4X2VTTW1o6yKJscxhHytsXg1m/BDerOH+Rft8KpQSolQ4JTF1A6bdZELklQmGJHAaP99vvIfbOK4JY7b95Db9QnvZgnMmj/c/tisNWWn02Ft/RiLq0e5tnkFkYzY2tunsgXdLOfkkRUKWzOpLEdEyPvzdcHuzRvUdU2FopW3aGdtpEoRSYLwBvAoqajqKVm7j6kmXLt+ibyzRL+7jNYtKnuZmpJMLmJMjcXhKnjjlW+xcXWD19+8xHg4ZLnfYbC/x3Q65fTZcyR5CyHhscfOsrKyxHA44duvfp9vvPwa33zlTZwNHvhRMZkXR+EsC70u68t9zpw9R1FWjIYD3rixjalha3efSVGwvNTn6Po6aZJg6hqdZNzc2uYbr7zG8089zbQwvPX6d6gqw2q/zaMnV7EiY2ntGKYqGQyGPPLI6WBAOEsqFQvdLq1WG+lrkjTBO8NoMMANJpROMq48w8Ix2tngjcvX6HQ77O/tsdDtsnljk83dAZvbe0zKYISkSYpMNBs7O7TaLY511hkVFeNxSZKnnDh7DKUTrDvUQECIW43VB2m03sNH33Nno3swfg9eeshwP3T8UkqyPGdheSXUAUwmSKnwlaOaVKHZSVGRZC3Wjh6l1cqwJjQY0DqZOx8O61m7pivcLJXB1HUQALAOZw3OGuppgfWW6e4+3tXoPENlOUIrvGwkp9ysiIugP0W4N2sRisdsXaFUkKZzLqioyCQjSVrYWfpAo/oilLolHWRWrxDu1Y2R2aiFSCmQoo0Uqum2WFIX0yAZhyfLEqx1jIcjkDdDUbHWdHsLCJGixEH77luuwV0WIvNFtRB3NUVvvcQfAA9rMRqQdxegrJnpRobBEnQFZ8UrYe4P+XLeenCW8XjMdFrQX+g1KyBPVYWLLKVGKoH3KtRoOEJotEm1Y9YFw4rQZ5igqZmkgiTLGQzHTCZTalujmyIRrUP40xPyQJxzlGVJWZQoqXAYTFlg6pq6nFJOhkxGOyjt0boFyCBV5MP07l3YZ+ssyjmEc4fCq4QVUJMb6HxoHxiOTeGFbjxQzXHIWY95DlUxHgwgpTUI17QehKr2kLSQnWUyLzBePZDr/0Eljts4bt837nV+byYFoRSJEPQXF3n03DmmdcHNnV22tscUdsh4ax/lz7O/t8X62horKyvkeUaaZUxtSTnaJ2v3GO9sIjKFaHdIWkEJw8sEVNqkmgiy7iJZ3WE63qPdX6TysvGSS+qyBrlLmi9grcdOazJlublxleV+Gzsd0G0rnnvup1hYWmH16DHSrEtVGXb3dnnzwjVeP3+JaxvbTAvDE+dOoYRAqZSNnW3KqUUKw9pSm2eefgIlFMILKt/ildE+e8MR0iSoRIT8wcGQSTFlbWWVRCpGkzGnTp3AeRhOJqFAUMD3L17mDRyvXeyRaMnJI6s8cvwIz7zwUVbXjzDYu0kqPdeuhMYCxbSgqhz7gx22Njd48/wl3ryyyf7UMhhNKCpDXbvw9YFGigis91g8/cU+IhVI5+n2e0yLgloItHNUxjKpasZFTS8VrB05wZEjR+bSQ3ctYHlIFAPeL94tBUJKSStvoVaOggj6uO28g2k6X5FK1taP0m538NZi6hJXJxglMZ5bq+6be5MU8lAUyc89rKaqKScFtTXIxTYyTZEInLE4UaBJQQUv6mxhMUsnQLgmHaduClkVdRXu46G7YJAXrOoCnWRopQ8VbR3ysB7+mbkSZvcGKRppLkmricIZYzDGMJlOGQ92SZq5YjweI4RgT+kwL0ndSBgmh9KSDrjdw3q/LVc/EDqsW5vXOdHpkqQZvgqTf1VVcy9B2shMeO/QwmONxpkSU1dMxmMmkzHOrTSD6sAr433TL50gqyCVaDxCQFPoIRpDQycp3kkEvin4UCz0eljr2N/dn0/6zjmU1vOJf5a8XFcGJ0OYYDoeMh6NmAy3cdWITAvytIsQCueCHIW1DmEsIJHKNxXToWUcbhYWmOWmSCaTMZPJCPDImVGThJZxM9FgmA1YGQpnZj2ND3mrvA8VlNoptCkpjMF7hcx6tBbe/2v/QSaO2zhuHx7EwaQ1TxKVJFKxtLLCJz7+Kc6eOcfXvvbb/Mqv/QpXL55H6po8b9HOcnqdFs4UvPHKN1He0evkLGPBjSlKCVWCmSbk3SXy7gpJmmKcRSmNrStsNaWVdSlGJfniIsYpktYKMMbVluF0G6UTnHF0+8v8zOc/Q5LmZO0e3U4f5wWXLl+kKmu2ti5y4fxbvPnmFUaV5/LmFuurK7zwoWfQiWZ3d5uVpUWsOUu/32d5qUuqEtK0zdbOFje3dtm4fJUrVzdRKIRWpFqAtUxGU+i22NnfJ8sylICt7V2OHlnnwsVLdLstvJDoLOXmzS32JyVZmrKzN+L85Wu8de0mTz7xFE898RhOQ9Luc3NvwPe+9xo3btxgPJlyfXOX4bRibzBmOC5QOkFIRVXVGFORt9p4VMgRTDRpopiMStIsoaqmrK4ssbe7hxCS6XTCxs0thNSsrp/kU5/8Wc6cOcOpE0fIEhVSQTxzQ1h8wAzVe5GsOrDGb5dNOpSzexdXrKdpiNLkbgohSfMWS6trpEnKtNfDmJpUa6QO7a+9bbRKlcR7i61LhNTzNCUhwFoT1FdsSAObpVZ5azFVTT0tEQKSdo5QbcRMR3VWV6DDmERIaDpROWdxpsY7g8CCqbDCo5IcJTXGGJI0wXlwQiKExzrTdKI7tGCf1wDIW1MCDp1v52cSVW4uddXtdqnrinppEWdKisk4tHvWCWUxYTxQ6KxF1u6QZtm8i9ZsmwfX4W2u750X54figRqsg43LoaBjcZ2ZZ9w1oubW2nleYClKbGVJlMRJia0Kxvs32djosri0RJpmjcSOblpTNu0qASRNaJWDMAq+WW2JULBgBd6HlmpKgkg0vXab0WDAdDoJBSdSo2xY6VhrmRYlZVkFr1VtmI4HDHZuUowGWDMhTSSpbuG8xNkgUO28w1iDMKF62plgqFjrkMohrAuDSof8xXarxeJCn5aWVEqBzHBSo7QIE4axOAfGWJRqQg2IIHkETb93wIfkcCEJx1yLUH2Ow0mB7i0+oBHwwSSO2zhu31PuclO/++1f3PXPWeorQqKThBMnTnD02B/ms5/9OV79zrf5wm/8Ey5ffI3pjW0ubWySSPA4Mul54alHOdU5RnftJO2FPnki0dKhVYpUGd5awOCsx1YlVTVmUo4xVY1KFROXkGcZyIS6NCATRqMxeSvh6MkT4DzleIRMEvJ2gkpynll+MRiQmze4ce06R9cWSdsLHDmyytXrN/jG17/Oh599gk9/9AXOX9vg17/4Nd48f5Fuqnn+idOcOrHO7v6YaWUxSHAlJ1bb9No5uRYY46itZlwFcf+qLMHD9vYexbTEOgMifD8mVQVSMhpPGY+n7FhHp5UhdY5xr1NUNceOrLG+tsriyhrtTp8333yDL/7ml7myuUtpJFoltNoJRVlSF8GI6fW6jEYTahuMBYclzbq4RjpItlrs7OzinWc6HJK1uliXsLRyhOde/Dif/OSnOXFsnYVeB60PBOdnhsrtQ+aBF1/dxl33x989nxFmiUIHRumdWp9vf3wzbdZZQxUvwCvIsxa+FxbAwUB02KoCQldCpVRobSrAO4PSCaYuEVLeopkqmpQv3+R/OtN0SVMCobIQRVJyXsEvmjC6F4BqWmB7h60rXF3hTQG+keyTGi8M3tQ4Hb6/xjm0ThpDN+T8A/NaifkCX8zSy27Lb27SBCRifgyzgq4Q2arw3qF0imVMXRS4JLwGOSYZ7bO7lZJlrcZITpEyRNOCWfzuVujbXef75YEarHY0YO/GNdY6CyQ6xxgXBmdzspVSaK3xzmG8Q/oMnKEqDPV0wM3rV+h0e2RphlpcROlGF00d6iQx11M7yKcQs1w7PMI3EhFO4KgBjxSCNE1ptVrs7+9T14YszdFpivUeYyzj8SSIxBcFg70dBjtb1NMhNHppphXkMrQJVXkz7UlrDc0CKOybVY1UTAgJlM6ik4yspWnlKceOHKG/vMze7hYpFu8M1qWkWYpSjqKosC6ICisRvtSySRK3xoQxLkLowXk3z4/TiUY6R1laqrmYfOReiOM2jtv3lHdP+Lo/RNDsXOwv85GPfoLllWX+2a/+Q371n/1jBrtbLPW6TKcjHju5Qu3OsD+paDeqEuWkQLYzVKeLkhlgwIwRzuCEpSxGZLmmGO1QDjyjEuivhTxRLen2V8jbHfb3Nrh68TyUU7avX6GuK049/jRHT56hvbCEyzusHTnKz/2u383rr7zMS1/7OkeW1zh98iiXr17nzctXee38JT732c/wb/7x38f3zl/gN3/rW7x2cZPdouLo8hJLy0usHznKqVPHMOWIViIZj4ZcvbHDtY1tFlyKRVF7UGkbh2ZqaqqqoqrqEDLFYb0IuaLWg3KMS8t3v/cWr795ga9989s8euY0n/nUJzl96jitNOfI2jqPP/YoW8MpVzb3GU5KtBJ0Oh3KMhiseZZhjMUVdUin0aFiW0rJYG9Aq93m5u4QrTSlk5STiiNH1vnYxz/L5z/3s5w5c5x+p0uSHISofxK4W672fW9DipAmKiV5liG8oS6n1FURFsccyMJBMHSzNMXaGqDRwm7KgmZ5rS60OvV4UAotJHiPE4fu1fJAxzX4GzyiUWixVYGrJghb4l1oF4sMDgKhNc6HSJtxHpUk2Fmk7NDi5EAJQM9VAg5X899utB54poNyCxA8rKZqImlQVQWDokAJQ6I13kExGaOUZtDu0GplQVc8abo9wo/GEr1HHqjB6idjhls36K6ssXT8NANTYuuQtyFEED+fCatLrZAiRQqHwGLLEeVkwI3LF2ilWVjBOBP6ADceLoHACXDCh/rlQxdNyrAyEMiQPyIAZ5pcD9m4zFOMMRTFhFbLkhhLbS3TyYThYJ/hYJ+97S0GuzcpJ2NMOaEupghh6XQ7rK6t45BIrUlbHZI0m69qQoWiwTqD8jp4yoQCDlq1aSVYX13i2JnHuHzxTex0h6y9SG271MaSJYpWq4U1bp4HOBukc+04Z+efOVslzkIJdR0qJYuieDAD4ANKHLdx3L6X3LVE4cDhdH/baiZ8LwDtSbKEkydO8amPf4bNa1f47a/8FoPJiOfPneJjzz/Nk0+/yPLx0+SZwjkYDSdMpkPW05S8k+JlghYthJ1S+hJTDanHBmE9ZVGTZ22srRBCBX1K4UNebZozLR2ToWHiWtzcm/K1v//PWV3q8tjjp3n+ox8lay+QdRZ49MmnSLKMX/+132B9bY2ffuFpdsYTvvvaef7JP/pnLC0u8MTTT/OLP/cx9vcHXL++xXA0RirNqRPHKKdt+u2EyXRCaSUfer7DG9//DqYq2bi5y43dEReuXad0KSLJEFJjLXjjcL7G2ZAzrVONkB5TGbQKvd6F8Gxs7/I3f+nv8sgjx/nkxz7KQp6ytLjAsbVl9oZTsOF7FHrWh1a2VV2S5TnGwXQaZINCrrtBICgqS5K3SNodnvroJ/jI8y/yzJNP8dyTT7G40EHr0MP+dgPhjsrsh8yzOuNwAc5dn3+H993LEd11jTe7p8z+ZpaTGu5XSul5h77ZvXtWPBvSNH2TbeNxtg4G6cxQnRnRovEAq1kuKYciYmLe1co3rVmdMdTVFG9KfDFCYPCzVCpkowoTumzNNL6N86R6ZrSqeQrQ/KDmRvJM4uogZD//f57TSjjmoMtCnud0er25o6CcDhkP9vEzpRulMGVJrScMd7fJslZIlRB5uD83NQjctktvd21+2NH5YD2s5YRysMNw6zqrR0/QznKGVTWf8CGcbJ0k1KZCSIFKEpIsA1shnKMY7nDz2iWUcFSrq/T7i7Ra7WYiBCkVznoQHoFCqMOaYgRPVYgBHNzcCW0ukyRFSslkMsE7sKMx48mYna1Ndrdvsre7w2B3C1dNcdZgTRXCA86yP9hnNB4zHE9YLwqEStFJOu+iUdd1I/VjGomMIDWRZAlS6jCgnKXbyjn76BOcf+07XPrOVfpCkaVdXJ1iRDIP+1p7UM14+OZgbUjWnmuoeX/L74eTyiP3Rhy3cdy+t7yd5/hdbvd3zNqzSTWMD+k9CIfUiuXlI5w6/QjXrrzJ8aU2z5w7yROPPUmr3WWwtc3NYsCxEyfpL60gJQh0sw3wSITSJEkOzrF1/QoqWaSztES706WuQ2V0lndQUlJbT9Zq8eyLL+Bqz7SYUhQlly9f5Rtff4mvfOO7vPzKm7zwkRc4sn6ExdUVHjl3js9U8IUvfImzj6U8+fgZPvShD3Px0jV+7Z//Jv/ff/TPWFrskSea06dPs7p+hLyVs7+7RUsbkrTDI8dO4YRmOh6Sp0/j6oLBYMiNmztU0zGXNsbsDKfoNKfdapEmCbWxKA3OWiSQqAzrLVVVc33jBp1Om4Veh7UjR9BpGgodhyMuXrrExvZu0LVUwaM2mYxod7pMphXTsiZLU6qqIkuSkGsoNcY5lpZXefKpZ/jkpz/DRz78IudOHqPTajd6yiFv8SAwfnBdH1bj9AflluH7Axzb2xpG3nMoVoWSCqVC6J/GO0kTUldNkaqzDpkk88p/KQW2rhHWIJqWw7P0W88hz6aUs1KnkIrgLDiL84CtcdUUbyuEMyDBuSaHvwn3OxGMQCmae6kPObjOCpQKMolBCav5PADh8cIj5MEZuCW/VMwC8rNiLI+VIDwI6bGuwtig6W2NJUsyJqMhUobz4bynKCbIoULplDRtkaVJk6YgwqKUWYnXwT7cnp78gU8J8FhMOWa4vclwe4uVY48GmYXGW3XQcaIpIDEWKTUZrdADuC5IJZSjXa5dqtnd2+HYseMsL6/R6RharRznHHmekTRJz7OQq5SH82J8WHU04u1SSFC+kSNyTCZjRsMxg8GA4WCHrY3rTEcDTDnF2TrcUKwNkg86VFV77xkOh0yKiv3hqOlKlJNlGWmaEpKgfSMaHJK3nbcIHy5J8KI5lJKcWD/Kcy98lJtXL7C3s8l6opG9dZyVTR5gMi+wmYWZZnppidBBK9QG3bjZa2b5L7PXR+6dOG7juH0g3Gto9HZ5mdlj/kCHFw9aJORph26nz/LaCdqLq3iVoLVgUkqKukbnDqU007JEpXloCek9zocca5W32Nwr6C7AcmcB44Pn//z3XiXVirXjJ+gsLKBlEnIHpSPLM6qqorfQ4emnn2R7c4evfPkr/Mo/+w3SRPP8cx/iZz7/OT70oRc4sn6Kv/23/y46TfnUZz7Bucce5YmnnuS1V7/Pr/+Lf0ll4dvfO8/xY0d44UNP4Zyj3e2j0zaD4YRur48zNRJPojSLnRaJXGF5ocuNvZp6MGJaVJRFQZalZFka0mryHGPC+EvT0P1qVki5s73NJMvYHyhGgyHddhtjHEXlgjEvYGcwxBpLVQ+xtUVJyXRUAooaSavT56mnn+Hjn/gkn/3Epzl96iS9TgstmwXpIWNjfjnFQVbn7fzYGK+3p2Xfb0rA7P1v85aZBzJ0bwoedN/IQ808irNCVeccsjEghQjKGM57hKsR1uKdDYoPBEdBuHB6fv289+E11oTmKM1iHm+COoBQTZ1CWLxwe+4pYl5AFo4pFLDOvM53867fPgoOPK63ZpGK2TFrTZa2aOU1S0srCBt0wK21WGcbBRuFc566KJmMh4xH+/SXFw9yeqUIx3aXz59fkx9RTeADNVgdIK2hHu6ydf0S/bVjtNod/HiM9wLnBVIlYEu0SoPMhACdtkBI6kIjhMfgMcWQoi6pq4rJaEqvt0Sn1Wah36O32KXT65K12qH/uvDzQSV8ENf1OIRPENY2oQOB1ilIwcbmdcb7Q8aDHUw1pppOUc6RJBKvFB6P1410BEkTwgSExJjQUeP61Wt0uj0WFxebEESC0ikIHY7VOZyxCOp5graXYWB2WorHHnuMC08+xzd+619w8/pFFquS1vJJvO40k4zD18GYkjIMc9cUyYQVmGu6ZRjqupwn6ws8Wv2ETfw/JHHcxnH7MPCu0jGz5+ce7FAUWNc15XTM8kKXT3/ykxxd7vHo2TMsLi7iXU2WadbXF8Ok2niDpABTDsEmIDXWCiqTYmWfxz/0CRaXjpBkCYP9HfYHe+zs7LO3dZMLFy7w3IsfZv3Y8VDD0XjGZx575+Dk6VMsr67w4Y9+lK98/SV+9Qtf5hsvv86nPv0xfuazn+b3/YGf5//3T36Vv/Z//+t8/GMf5U/88f8ZH/7wC/SXV/nCl77C9nDKqAgRgul0Qto+Tmk8ZVmwfuQEgiBFtLd9k2lpQeWsHjlKb9+gdiYorUmSpOkjL+fe/pmXyjlHmqYYZ6jrmlaWkec5e4M9nJdcuXGT6bSmbDQzrQ3dixASJwVpp0ur1eLM0SM89cwzvPj8izz1+JM8cuok3XabRIbxLgnfb3+LZ+zejNF3C7k/CG7fpx9m3+75nf7Qf29zTmSjE+2bYkPRKAnMDLOZ7J6UAu9FIxHYFDh5hbUyFMW68J2S3uO9AcBRH0SE8GANzlQhAK9CKkJwbYpgsBLkCb04KNC6M1ASqtNmkXdxOOR/l7Fyt99vPZmH8naVotXqUBUVYz9pzoZESEUxnTSOkxxnbUhPqErGw13Go5W5jKNqDOK3XVy8w23qfu3YB2uwNiXRdVmwt7XBzuZ11h95DGsMxjqKsiJNG6mGJknY2pokTWmEPRDekuhZV6CEcjzmRnGJnXQTrTSdhTaPnD3Lme7jCNkI7DYDZl6mCM3fIfwimmGUJCndTofx/i7j3S28KVHe0ko13vlGlywLQs7MQpl2vvJwHrQNOVz7eztcv3aNM2fOIqVCpylJkjUViD5UXEuHbPL3nJTBcyY8UjhWlpd44aM/zd72Tb73ra9Qbm6w6jWLRzLSTCOSjER4fGkpjW2qzUWoZmzO87wVnL3Vc6V+0jxVPyRx3MZx+55yP16ld3jdLf3OG01cay11WaKE4+knz7DQzki0B18wGV5GC4crBVammHKKryuEt0gBre4CXqXIpE2WdEhlytryMeR6CFk6ahb6HZQCxxP0llfZvHKRb730Ep/8mZxOfwFndaiglgocCOFx3pK3U849/ijrp07x6FPP8ttf+jp/87/7B3z31Tf5g3/g9/LH/8Qf43e+/V2++dI3+PVf/5d87hd+kROnTvGLv9jnzLkneP17ryOUptPtYLzkxPETfPMb3+LoiZre8jFavRWy7gqj0QitMz535DFc+ytcvP4FJpOKylXUdY3zll6vB0IwHo9x1s3zG3UiSbQiyzO63Q55nrG9N2A0ralrj1Ap3W6LhYUep06cpLvQ5+wTT/DMs89y9tgJlhYX6XW6wVhvDFQpQpoG87DwwbV/t45Qt1/5w46sh8ds/eGZBZvfzbx5t2M+MORk6Nrnm3uVD80wvA+Fn1LMCopmXlMJvkZojSB078PUwdA1oRAL53DONIsUjXAmOAT8QcGqFwIaT+rMGxlC+iJ8H4TACpoUBQ66VsFcMUbAvO02t/0+O8aDn5nH9u5nZuZ91VKSNDmyVV1S1VO8rUmlxNYGchBaUVuDKoNe6/bWBmmrTZKm8+2Fc3brdbqXcXhvWcqBB5sSIGXo/ICgnk7YvnaRpdV1Ou0uw3FJyDcRaJUCnjRNKMspznmyrEXoi1ugE4UUgkQkaFEznYyYDHcpywKvBZ2FLo8+8QSzaycaDTQBzbLl4KK7pnIZPFJL1lfXWF9Z4s0bF2llGiHSULXcrMC1Cjfg8N6DzhjWhp7szoU1XG0MxXQcBreQ+ObLMBs0s/cEr4MO+Wa+2Q8ciVacOHGS5z76cSpjufbWm+zv75IogcCQpcfI8gwpg05bXRlC9wxzRw5g0FGzt+xv5N6J4zaO24eG2z0otxg7hzv0WKx3OBtkeRJl8FXFjQvnAUeWCLZuXGMy2GNhocvJc49SFgU7N7fY3doizzTHT5+hvbwOFAz3z2PrinaeorRCqRQhHDrTaJVw/PgKx46tcebsCW5cvsyFN9/k3JNP0O4uhkYUQjRNMjxVGZpstNo5/V7OJ376p3n2mWd5+pmnufjmeV7/3vf5+Gc+wzMfeo7aeC5dusQbr3+fc08+DSiOHTnOF774Jb75O9f5hc9/moVjbfLFY/RWt/iv/+Yv8wu/+Hs5/chp+sefZDVJ2d7Z5atf+hLfu7SJSTKmVKE9p4BUSorKYVxFp9tlebnPqVOnqMqSnZ3debcgnXVwEh59/DSdXp9TJ09y+tQpzpw+w9raGosLPfIsC2FmGboXHRhMs0t364JLHLp+4fk74uN3vv4h4nbx+DsM7Lt4PMWh//1dDih4u5krir6dl/b2R9/J4yxlaFpiXchsVYfaHYt5WtJBMZH3gFQhuqOSoDjQRIAAnCHkqTqLUPLAazrbf0AKhTuc6ypu2zfB3MM6e/7guVu9qHc7zwc5/XckBdz53ubv2TmSIrSxXVlZQWqNVAk7KEa7O5TTISrRdJLevCGOrWsmw32mkzHtVh5aODcXyItbr+m94e/ZaH2gBitSBa0ypZC2oti9yc6Nqxw/9zQ0A0er4Kqv66AVJqXEOhuqmFWCtJayqsmSBJ9IdJrSptvkbDlKb0NiM8n8Jj5vL8nBPSCEM0UzQBu5HSlY6C/y1NPPcemN18DXtLKwEvEwL4SZ5fYZY+beoLquZ2M8lFCUFbauQ66jsRjnSTio6Jsx09abhfFmk44Q0G3nPPvshzh+/DhXL1zkpd/+Ilcvfp9ebVgD3MIKoElUjlMFxkzm2zzQkbNNSOQgD3DmtYrcI3HcxnH7XnO3ifmdPG6z5w4Z+YeL2YyxlHWFKQrKyR52ukc9HuC9w1QF00HN7vaQfqdLNa3Y37hOaRwewWBU8N1X3mI8LXnq+RYq69HtdNjfq7hx/SpCWKTMscbS7aYs9HskSU7W6tJptzj35BNsbWyyeeMmx0+1SfMWSidUtQMUOtEIITHOkqVtEtliOe/zqc/8DGnSYn//JlJnnDx1hNHEMio833z5dbpLxzly7CTIFs9++BMsb+2y63J2ypw3r4049uiLfOTTCt1eZ2JykjpDtxbIFlI+87nfw0c/+fMMJ6GRx+bNm0xGY4QLY7iqK5QU9Bd6c5H1TqeDVIqlpSUWF5fodBbptDLyRJMo1cjQNQbE4Xy+kKtzTzP424bN51bu7WOCubfuQXO/igXzp+fHcJfc69nr/O2P3snt69d3+nwhBaoxKwUHhZx37mNj8KHw0jdGa3NJPcHz6pnfnzjk2fTNzgshgsErdfj/UGrX/ABFU2AnDz5XiEOV/Rz2nB42dG+Xr+Lurzt0PD7kks2dAFL5uRRjooMWbdKk7IQ5rKauKyQhPcIYgynGDPd3abfbSMm8LfncDXxffFA8rEIESQchkd7jpiM2r1+mf+Qked5nNBoymYzROsWYmiTRJGmCcpogeKZI0xxTC4RSeB3c+jrTpMYjVUorSUjTLlIkzQV081XP7Ho65w+67ARX1txdr5Kc0+eeYv3Uo1x+/WUW7R+UHgABAABJREFU2t0gT2IPVlOzZO3ZAJFNpbixzeTtQiV1XZfs7u6wsn4cnbdJkjSkVfsDyR6lQjjCeY/wBzlNwnsyJVjpd1lc6LK+doy02+OL//JXuXH+dUT1PRZOPEbeWUHrHKUShJQYU+Gdn3ulrHWAm+fpzNp1Ru6dOG7juH0gvN0E7P2dzx3yTFtrKcspg92b7N64TjXeRJgRnU6H5SMnGe5tMWaPIyePMR3u08p6TCtBURmkUiRpxurKGu2sze7NXVaOd3HCN9JMsLC4AiiMKRkMtum2c0oLxbTGC0220GPl2HGqIoTdpU7QSYYQQVcydHdTJEmbJG0jZIrUmsXFZc498RQXLqaUxrPaXmD92Gk+pLo4BMfOPMra2jonk5THn/tpnFBBPk4IlAs5iI8/9Ww4D41XLGgYw7zVMAcqFRAWac75g1DrLSHWsBA7bCBKESrQg7d0ZtzcZdK+3aP2rpe68Yjddv1vN+mEIHS5EuJOi+0BcbsncHamm2e5/eQcnJZbH5e3GLSHv+t3O4+HvKLc7Vw31655TjCTh5o1K2m8vM7d4n08MFibYlYvUd6HXFYZjFc8SG+RNlT6e6lAaJRvNi99qGmYhegbw9YL0Yyd8I+8xdAUCMIcg1BzA3iWtxq6G86UAuT851aP6q3e1cOnYmYKeyGaugeJVARFBOFJEoVONUkdlC3qoiJv5Y2ucJD+Gu3v0u31ybMcPe8267n79Xkn7v09D9RgFc0Fk7jgUXYV5e4WG5cvcerpj5AmGm+mOBlamykl0UrjhKO2ddMKMw0V1EKgmwGotCBr5fgCvEpDdR+N5qPzWOlBCtSh77gQAi8lQgYxdiElwnu09Cwu9Xns6ed46/XvMRyNWVtfQyXJvFpaiNBuTUjdeKccSSZxVdXk2kHiJK6uuXr5Mgv9VWSS0c4yLBqhJNYBwuNQWEJujbCg8HjVVCrS5Kx4T9rOePLppxiOJvyLrV22r7+OlbCyDnrhaBjQicBXnrrpmxw8UsGDB6GC0Rozz2WM3Btx3MZx+55yN8PjPo2dZrqd2zF1VbO/tcnNS98nSxz95UXSdhvnLMurR2m3c4rpgFYnpZUl1MZw7fuhcGqws4m3NSdPHqfV6XDt/Juk7RbjyYSF7gLGarrdDp3uCuNBwu7ePnlrkd5Cl6IoGG7v0MrbdPt9hFcURYXzEp3keN98R3SCkhqt8zARy6Ddeur0WdaOnUKnGWQLnDq3yiOPa4RK54sXASSHJvkQRSAYEneJT/rZxOp98/zbV17PxIvCw2J+ToPxODMIGs/qYXPytsv1g/pAD79rFrE4tHOHn/yBtv+j5G4G+WyfD555+yzbO238mdF++7G9c9/6Oz29h19z2BCVt7hv522um23KW34H72/zwDYtVh2Ad0hlEELjtEI0ShyyiZhJpQ4ZrGHsCHFIBkuIJkVLzsd1MExF832Y5dM275m/Rh5aLN3qWT0Ys3c5TzODnCZFQgdN1larxTRvIZKEpHFw1KamKssmEiIoy5KimCLHI8bjEf3+IqlL5l+221MW3p0PiIdVuJBwPlu44kBUI3ZvXA7i1Z0ehTN470nTA1F2IQStdgshBM5acJ66rlBi1ltdkKQaRI5XGVJLjDW4pjsQIuTt+ZCRB4TAgA+JJMxyKoSUeFsjpOTI0eN0egvs3rhEmqUsLi+jpGhymkKYUohGgFgGkTMhFcbUocJQKqaTgo3r15FJTrvbo9/toZQOqx0Z+sH7+cA7yC+8fSCCR0tBL894+ulnOf/Geb63u8HWjQ2c16wIyHpLCBIEVRBC9h5jTOgm5B3GmOaLGDQvI/dOHLdx3L6nHArv3/HYPXLYI6NUkEUrioKyKHHGofd3scUetXV0esvs3NxiPNzHu4pjR1fQEqx1fO/8NXxV0G8ldPvL3Nze4du/810+9dnPsLO/zWhsOX32NNZ7autptXtcu3IDL7v40YTeQg9ZG6qqRqY29CPPBD7JUEKDl0idABKtE4TSIDVCJSSZJukqFsQslHq4i498m0nx1lD83cyiuQ0r7/Sk3e3VBwbAwWtuff1sgv7BjNK78bb52Xd5+PBD92cofDC43fC68/mZZ/XW3M/D953Gf3rLtQzfEXfwWn/gXZ3l50NQFZgZzbdIRImmJTVBLUA5C0LipUJIi3CNMSw0Quv5/om5kXloe4e8pge/gxAK3zw2y1Od5azeapy+jSLAHefpjryJeXpAkiR0en3q2lIUBXVVUtcVrXYbU9dzQ9SYGlOV1OWUcjKmrmu8z0OkQvzgi7N74cGW2XoLPvR3DgK9FaKeYIZbbF78PniD0ClVVVMUBbNe7RC63ajmAs7z3BBInZKkGXm7g05SkjRhMp5QluUdF1w27nApFVLp0AFjtmISMuhP5m2UTun2Fjh69BjeObZubjEejcjTlDRJ56FVYC7ZolTSaFfmjYRLyNWqqjK0xNzbZjKdzA0OT9B4MybIzoR2gRVlWVKWBVVVNZO1xXuHsBbpPcuLizzz3Iv0V45jjWfj+gVuXH+N/e1ryBrSJA05lTMZGX/QqWP28xMXWv1hieM2jtv3g0N5wbf8vN3Lb/vhkDGWpClJ1qYWmtoYRoMdhDVcvnCZ3Z1tpmXN177xCpOpx1jB9tYeS4sL3Li5w5uXNznz+FN0ekvsDUY8+swL9JaPYVAcPfUIadai1elSG8f+qGB/XNPtr5K0OlQOeitr6KxNVVQU01Eo/hMJTqTotINOO4ikhUi7yGwBlfdQWQ+Z9JBpF5G1UUmGUroxvt/OWH1nDuf23T7R3+/P/V3GW8ftjz2zzIlZ4DlkFwXtXt4pC/VtNnTP7zjwhh+Epw97yG979e1h/9vamt6yQEEhhQqGZhOVEkqjtG46Gmp0mqKSBK2DwL7UGtnIACqlw/1VJ/NxrHR4v0qS+e9SJbf9qCZKp+bzwGFj9aAl6/1/H/yh+8lsYZskCVme01vo0+n0SJKENA3RDGMMUiq881S1oSpLRoM9xqNhY7SC92LePvbtrtwhP89982BlraxFeNeEMQlHIAxussf+jbfYW1llYf0ESadNXVVhhxvNPGstw+EQIQR1VQWvlfMY59EepA8nzRoDgmaCl2gdtCKDnFBIu0aEL5OlceELgiGgE7RU5MDSyiqPP/Y442sXuHrtKlubN+m023QWFrCeW7ocWTfrxBNyvJQKfbmTJAWpGO3v8fp3v8PakRMsLK6QKN14qCTWOWwZROhnCCmQWqFkGFAhX1DirUVIwdr6Cmtra+xfy9gbDNi8eomqdKwdEaTthflgng262Rf18O+ReyeO2zhuHwRzI/Sdjv0uXlkhBIlOWFxeJWl12b12jYW2pCbl2PHT7O3tsHx0jeOnzzE2QJpTWM9wtMvKWg+RQGuxzdbuNgv9FU49/gxXL1zk2JGjHD95AlzohNPp9jB1zeqRk7R7ixhbIrXC6wSBZLSzRzHdp714lOX1JbJOD6HCJJ0kCUKlCKmb+IFAeRHkfMJRzI/tXRxu73Bq7i+t4ofdxg/znnvY6Hvox/rhOexvdodc3d7PKujfOWwsxL19v3+Y+8CsSNX72cKFubfxTiQ0KqVNjhOi0RUWSuHROBF0W4PHVQc9amlgng7QJMrOQvsiVOjPxKCkVE1eakjxYmaUNkbyzMs6TxeYRRoOjYT7Nl4bj+j8PIpwfKEbmAYvQv2ADzUOs/mqLGuULpiOBgwH+/QXF0nTFC8FbnY+4dY0meacI2bOjvtZvAQeAoNVzIKawWUtNcLW1MNdNi69SXdphSxvMas+lkI0VWvBe5XOqtOEwDqHFhrnBXVt8F5gbOg2pHUIL1rrQ9/fQxfVexqpldA/PWkKXawH64IIdLvd4czZR9l4/RjD4YDBcMjGjQ1O5S2SLMM2n5MkCXVtqY1DCEgTMV+ZCVkjjEFKx/7eLpubm/RXjtKRGolEKIfCIZsQcghLgFAeLcF7i/MmFMrIHJzBCVjoZmRakKUSLRMm05qtG9ewpqK3cpo07869c1opiroE/Nxz9eMYRnovieM2jtsHxu3HfPuE3fx9ON9RCEgSzdqRkzz+vOMNaoYbb4GAvJNh9hyT0ZCP/NSH2djYoN3pU684JpVFZ302drb4+stv8JlPfJjF5SU63T7D8YjHzp5BJxngMeMR2jq+9a1v85FPfIZ0YQmG28gkQTnJ/vYu33rpW1jghY+fIu2tkHQWkVJzUFV9e44g3Bbwvi08/M7T3d3Gx+yxexHav2sI9SHisBf9bnyQvx3hsN79Gv3wHE4jEHd8vWaPQzBGRbAsZ4pWOBEasEghEDKoasw0pL0HvApttBsj0/smFYXmIeS8S9bs/3m6gmxSrGbGX3MvDCkDs9cdpK2823m661j2BxGAA0WWEBFM0pROr4f3Du/dwWsBWzfdu5ynmE4py5I8z4PHV73L9Wq28TYn+x15wK1ZXShb8R58OOEOgfYOzITxzgaj7U3ajzzKaDhEK0WFxzZ9fI0NOVEiEU141pLJHKU0xbTA+9DPXevQbs85T+19EAtWQbRdeILG5Gy15WzosytkCGNYhyCEX9srR1g+foLj21cx5YSt/QHJzZucPHl8nqAtlUIjcK7CmCAOL1BAAh6scSRKYqzj/Pe/y9LaGio9QyIUCtsYN4c6YHiBcA7ZVEkaZxBSotOgCeeMJ1UJre4CmUpYWljEDSaMpmN2NjcwFSytn0BlXYRQKCGRSmKtCS0/vQxC+JF7Jo7bOG7fU97Ou3f7A4234o6H5689CEFLpcjbLU6fe5yjx46xdf0CphzinSHZLym9p9M/ypnuGteuXabVOUnaz1k+4fjw4pPU5ZDXLo15xJYcP5OEvNf9CQurGu89WXsRU1dsD2p2hpalYwt0V1o4UzEaFXz/yi4TvcLZJ57i1JM/Rau7cJD7LA5VQN92nOJuv4k7H3v3Uyre8e+7cS9G7QPjloXJ4UXswXfiIdxr4HBGaXN+b3n29r0+0EN9p1fBvVynuz0fNn57nnLwJB7ktB4Y0KGa39PknzofxrEQzDr1ee+be3NIJcC7W5tCzFeSzD2kQjR5q403+o40FH/o9eLQa7g1jeGdj/Xtz8rsOK21WOsw1mKdo6xqvBCoRB94lCFIHRYFrt2hLKeMJ2M6nQ46udOk9Ld92p1FdG/74jt4oAar9bJZhYQJ2HKwysB7XDXlxqW3WDn2CFke+rAjVOh1PRmjlUIAWZ5TFkXw7giJVCq00jM1KtEkOgGCK9tjUUJhaWITzmGNOZCXCAEMEA5rQ+HBbNWhkhYy69DK26wvLzPd2mV7c4NuO+fI0WM4H8K2ugmBWTvFeUjTtNHuDHkvVVWRKM/e3g5vvfkG3f4qPa1RshFxZ5bvGAZOlmSNYdJ05VAKLyqEIxQ71BbdWkBkHTKVktWe/eE+2Jrdm1coiimLTZhOSkmSJggTPH5RgP3+ieM2jtv3mnfznt35hjtfe8dDPuS8ZZ0Fjp99HqzBGsPa8edRWqEb+Zy1089jneFJJD/9syL0OcexvbMJpqa7vMhzC6uMBvvobp9Wqw3eIfH83j92ApW2aC0sk2cp3lRki45PnXqWNGujsxb6sCbpzFi9fVq7q/HxsJpgDwZ/m9H6oL8PcwP/Xa6Th7nA/K3X/U5jNbz+dlGsez3Og3SSW1UCZkbw7dsRt/x/a1pCY9ii5n+HRgPh3u/cob33QW1AOg8Eub87BAYOGcb+NuP09ufD7weGLc2eHP779u3eD7PFolKKtKmfkPqgPqIug5a4mkUnCE4X5x3GVphyxHg0olxaJnUudOoKO8OtV+vwVfzBeLAe1rSNtSWqGQwuBBgbKRyBsDXjvU0uv/U6Zx5/mr3hBISn087IMzvvvJBoPS/SKKsSZy2pThAiVPoVTfFHnUiENzivcVIGj5RzmLpGy1nP4NDTPLSepJkcQ1GJ94KiMDgH3VabY0uWzZ1tbly9SqfdYfXIMaraUJQ1CEnebs9Xaan2KOvmydllWWKs4+L5N1laWefsucchSxCyWcWIsIq5duUy60dP0G5354nXVV3ha5CJw3rN7t6YYQ1X90s2rl5kMh7ibEmeKlqpprY1la1YXD3G0up6ONfNhD+b/CP3Thy3cdy+l/h7OK57M05unSqCWHqjPqMAFbQW03YLj0M120xECwj51Ie3s7iy1ITzBMJb1mnSt5tog/CO7trpeQhz9s6MA9PjIJfRM1dJh/CKQ2kM98PbehgfRs/o23A3aaZ7uca3FAZ9EI73nnfxhz2WWRg/eBburI6nSdc6ONdiFrKfZ17dOq7unk4SfmZ1ALPngzE7f+Su1e2zXFTE2xueBwbrrQbq2xUOHrz/7c/M7ZGD2dw1K7xN05QkTef3V6U1zhictaG1t1KoRDdtniuqaUlVlkHD9vbPuvWo3vWyvttVf6AGa95fYbq7CcKAEDgREnaNCzqOwlaIcsjNS9/nyJGjpGkHYwzFZIzwHtdoNFptaHc6CBkKWeq6pipKWq0WVVUz2B8wGAzIU4XwJpxErbBNm0JrTEic9jXGVPPJ1xMEyk3T47wsxthqgncGIRz9bk5VtdgZDrlx7RqtzgJ5p4d2gsl0gk5CMQFC4GuDVAKdpBhjAAllSVlVvPw730RJyfHjJ0jzFjrRKOGxVQ027N/h3JLJZIKXgiz3TArLG29d4+LGHvuix57PMX5KqgXDsqAsDe2Wpyw3qMopSng6S0fmgvHOuWZ/IvdKHLdx3L6XvJvRde+etNsD6iFh42AuPuwLO/B6NhKm8+Dd7FUHk+6BsSlnmxWCuc6kPxT95PDkeS+z1TtPee8Htxsm7+dnvttjH3RuOab38PzOjcbbPJbza+p9M4zv7Ry//bU4kPI7vP3DCw7RpBEcjjbNt3dgHd/xebfu+4HBeqdxem+LltsXQbN81MNXQcrQATFJEvI8p91qMx0Pb3neOYcXoWDXNyltrjbYOjRzkf7+VTzu9bv2QA3W/upRisEuztQEMUuw0uG9RHiHtA6Jw452uPT9Vzn33Eep6oLJtEaIsKLx3jOdTsnynFlFXWVKhIfa1AghGI1HbGxssNBtBbF3pXAWvLPgXPBoaDUXKffWzSd+a20j56DZ3dpg9+YVcGWTgO1YXOhS1Y693V0uXbjEmccep9vvB4H2xj1e18GwkTJ4mpCC1Hu89dSmYLi/yzde+hrDvQFrx06y0F9E4ajLCd12DyUVVV0DwbO0s7NDd6HPtCjZ2h1x+eo1Si9prZ+m72Bw4y2q8Q4omJYVdlTSyTXjvV2ue8+SgV5/CWvcvJ1g5N6J4zaO2wfJe23IzET0D3tKgfljd77ullcc/HfozfdW7HR/aQDvNjnfLz+K8OpPMp1Mf4BOmHr3l/yEstxf4OTRIw96N+7KAzVY01aPfGGZYqck8RbhavASvMS5MEHiPbIYs79xkd21VZbWTjItJV7IMHF7x2Q8IsvS0KsXgXFNWK0ydFptTFWycf0G66trpFlCmgLegXeYusQag8OjZhV4qKY/sKMwBUVVkfmM7UsXMMNdZB16EAksufesdzJu7I3Y2b5B1uvw5MoqvX7OdDxqckMSRFWFj8QjkHQ7PdI0h+EQXdeYYspLX/0tahTrx45z4vgJVldWWF1Zo7AOOx2HROeyYDQZUhYFVy5f5ebOPrvDCZ1On4XeAk48ikUxvHEes38D6x1VVWG9pZ0n7O9sB0Pk6CO0e6sgk/ATuWfiuI3j9r3kQRtK9+phvJ+8yR/UW3m/uZkP+txFIpH3jgcra+VDH+rp3k2MtUgfQo5eSlyTU6GkwtkJUiVcu/QWC0tH8E37MusdrbxFWUwZDQdk7W4z0QpQCuc9ZVVQVzXbN29y5cpljp04TqfTRjgLzmDrCmPq0PVHBQ+Zd3aurwYpk+E+OzuXufT67yAmo/Be73AipINrAf1ui+1pzea1K7TaXR597Imwj9aSpintdncuqm6bUG2SprTabexohJISUydUkylvvPYdLr/1Ju12h8cfe4LFtSMkaYo1pulG47h88TxXr16l21+i3evjp55etoLRjiJLcK2cwQCKYoqpK+oKnMvJ04TxcI/r1rGybllcOYLwP56h1feKOG7juI1EfpTcT+7tOxnw0WCP/DjzQA3WyhjyTo+002e6t4nyDoRvQpJNazQftBxtNWU62GVvZ5uV42fYH+yjJAyHw0aKwZBmOWmWh/w9a9BKMx6Pmk5AnktvvUVZTNFakucJ3tVMRkOm4zGry6u08gxvLaPhgG6vg8raeJdw49I1Xv3Gv6TevkJWT/G+6fAjmywvAVmW0vGSUVVy5eIFOt0uKytrWOdxHpAKneZ4IUmsw1qHsw6QtFqdINcjFa12m267halrppMhL331t7BN8nhZFmSJppVloWI7yzDFBNlpo0WCne7Q9ZYr21cYbG8wGQVPWZKk4AzD8RTrHO08YTIeUl+/gPM1SysrD3IYfOCI4zaO2x9n7sWj+aDzOx+m7f0ouJ99ehj3PxJ5P3igBitCUjtPb2mV8f420tY4cdDH13uP8x7rFZgKW4y48tbrLK8do5XnDAb7pE1VW1VVDAcD0pUErSRFUWGqCqUkaaqpq4rxoOZbV69g6prHHjuLsxXj0YCqLMA48jwjVZrxaIg1lrwDZW248Nb3Ge7t0dEpJbKpnp1N6JLQ7zeh023ji4r98Yjvv/Ya6fM5rW6PsqoRKkFLDUKR551Q6WzqeWGMEIosa+G9J8/bWBvaWU6nE0aTEVVVkCcp3lkSbWm3eqgkRzRV5XhPKj1pqnj0xDq719/CN8UutkmM9s4GAXoLrbakmo7Y2riC8PaBDoMPHHHcxnEb+UDxk2LkfRB0WCORH5QHq8NqXaga7izQ6ixQ7hfIZrIPMik+aER6ifQeU46pJ/tcfev7HHv0SWi0HYOqimM6LRgO92m1WigZCk/KqgLv0EJRlmH7r738HYSp6C90SbREI7lx/QZKCnqdDs4apuMC73e5cuMtbm5eotPpkcsuQwvVdIwWHqlEEA1WKUKlaJXQb/UxYo/hYMClixc5evIR2t0FqspghKUsy9BFIknQStPpdBmPx4CgrqtQ9S2C3IwQHpWmdHpLOOuoqzJM3sZgPagkxSJwQiF1inWeYjKh18548bln+cZLL7GzMz6oBJSK2sFoFPah1U6pRMHG1esPchh84IjjNo7byL3zfhmLPw7yVj8sP0nHGvnJ44EarMJ7rJfkrR79I0e5PtpGOBNqVoTEo5EiiNdKPN44bDFm6/oFVk8cJ00zBqMpWjqUcGRZilJqLqOTpimJUZRVhUgIsjuJoqoLvvXNl0ikoNvp0G7lbG5ukKYJi4s9BoN9tm7exFQVnW4LrSR1nqN1Tmf1OLvb1zHOkCiNEhqhElAatMYLSX91jXJzE1NX7GzdRKU5adbGzATklcTUBiNE0xYzxVgb5IiqCvDgBVonZGkGhD7vlU5CzqSUVGWB1ApUipcJQiqqahrOq0pZXj3G8x/5GF/92pcZDfaQ3oIH5xWVs5hpaI+JUE2IN3KvxHEbx+17iUhbD9Tq+HEweX4cjiESidzKgzVYBSilqK0la3dpdftUw128UIDEi9AlwTk/LxQpJ2OEzrj4xuucPPsUxhgchnauKauK8XgcPFVKUVcVWiqUDLpgaZZhjEEJIDdMR/u8deMy1XRMXRVzfTNrHUor0jSh28lJdEJtLIiaVqpYXD3CcG8Xh0CoBK90EGwXgso6BqMxg+kUnaZYL0jSHVaPpDhAKklVVshGHN45T5rlUFXUtaGu66YiW1BXBpIgthuEvyXSMdc9tA6SVCF0QiMw0wirh+NYP3KUj/7Ux/j6V75EMRo0OnAeLz0Oz2g6wePodDoPagh8IInjNo7bSCQSiby/PNhOV8IjhcdZi5IJ/ZVjbE7Gt/SVDp1VLAaBcBYJmOmQvRtXOHbiFCsrS+zubFGV9VzTcualqqoKleVoHQ6zLEsEgkRpFhf6tDRk2uNNB2cK6sqS6IyqMgilmdQltXVIY4NguXVUVrHYX8F4xWg4oPKSqjKMxhN29gbs7OwyHA8RAkYrBWdOPsJof48sz2j3+1jnkEpjrWtCv4Y8zxBSk2atxjXgGU8mCCEoqhKtE9rtNkpLlAJrQ+cM41zIR2z6/yZJgmiOU2tNXdf0+4s8+6EX+M7vfJNqOkZ613Rk8o3x4bCmfhCX/wNLHLdx3EYikUjk/eUBqwTUKO/RUuKVJusukXV6TEdDNALhPZ5ZNyGJkBLhalwxROmUKxfe5PlPfJZiOkZYQ6I13ofiFyklSZJgrSXPQwW2UgqlGqF150haHZayDFNN6bYzyrKiKmusdQzHI3p5HvQtZej0o7UiyVtUTtFZXGdjd8DFSxcYTyusDU0KrVdonSEE7OyPSJNNskRzc/MGR7OUVqsTwpl16B+vktDeEBU60AirKasC1ey7cZ6qKDDOkaY5SmlkotFKIQFrDGVRAKBE6EKhlKKqqmDoCFhfP8YzH3K8+vI3qcsxidJkaSjyUYL3tOPIjyNx3MZxG4lEIpH3lwerEgCARytFVVu0SukuLDMZjfHO4RrpHeHBiZA76Ag90c1kxGh/h2tXL9HvrzAZDLDWhdw6nVDVFYlOEI0hMJMcmpYlaZ6hZIJqjIsk72G9Q7Uc3o/xtqabJDgT+rFLGfLyhBLIJMV4hXeKxdWjnL98DeuDtI8UKhTDCEFVlVjv2dzZYaHXYlktc+PaNc6ceyx44rRGInDGMGur7R1Ne8PQhSNNE5RKKKsSpGJaFmiVkuVtlA6V115YdGPwWGOhEdqWMnQCMpVBpyknHzlNpgVvvf4KwhhEiFmDv7P/b+ReiOM2jttIJBKJvF880P6G0oMSgul0Sl2XOOdIW0vkaRthK3AV1jucMwhXI1zop24RmHKKmOxz441XsbbGqIzKOibTgtoYnLEM9veAEGrMsiyIswuBtxZcEID3UlEZR2UsOs1pdXrk7QWEylFJi7zdQ+ocZIJSOdbJJmdQstBb5KknnyJLNVKCVAKpBEneJml1sR7q2nDxynUm4wJX1ty4co2qKLG1AR960AulUDppvFEtEp2jVYb3CikSsqzddFKa5SrW1FWFrU0obvGhjaZ1NuQNSoFQiqyVk3VynLcoKVk/coxzTz4LSuK9bfopC6yPU//9EMdtHLeRSCQSeX958A25PaE7jxA479HtNr2lFaxvPDfOzwXPPeCaicrimY6HmGLM5rWrdDotrLG0Wm2ECC0unTVMJhMmkwnj8XjuwSkmU5y1oYVlUQTjwnumRUG720WnKVIlIBRp1ibL21SVxSEx1mGcozI1Okk4e/YsTz/9BE5A7T21ENRIVNait7CIdYIbm9u89K1vsT8eMhgO2N68ST2ZoJquSNZa6romTVOElGStFv3FxRAKbiqskyxFpxlCSayzSCXJsgxTh24/SgbvljEmGAXW4JwDIdFJinUO42Bp9QhnHn0cKRNA4IXHi6hned/EcRvHbSQSiUTeNx6owSqEmIc8W60WQklEkpL3F1F5F4vE++CZcod+rJBYBJWpmYwGbFy5gHJVI5tT4azDOot1lmkxRipAeEbjIcZUeO+ZTqdzrT5jLAiJ0glVZZBSk7fbtHsLQa9SahaWV6ib3DwvBFmrhVAapTRPPvEUZ84+itCarNOlv7xCq91mWpYUVYXSmso5XnvjDYqyYDzcZ7i3w2QybMK2CmNqrDXUpvmxhna3S5pn6CxDKE2at0AqrIOqqrHWzivEQ+W2oywLBKEgqCwKTF3jnGUwGLC3t8uly5fY3RuStdp4AR4XJ/77JI7bOG4jkUgk8v7yYFUCGgF1Y0yoiPZBGEdnLXqrR9i6dgmFDzpCTThTSgFSYoVACyinI9ApV86/zvEzTzIcDSnLElzwSmVZgjEV4HDOYoxASj2f/JVSYZtCYqxHKo+Uik6rRVVVFEVBkic459BpDt5S1xbvp7TbHSSCPMt47kMvUNWOjZs3Ge3tMh2PcaZC4TCmYlLUjEcjUqV5+smn2N0tKK2hu7BIr9cN4vBKkmYtahOqz4UQqEST08aY4JHyCLwQ4D11XVPX9bxYxZoKBThjggesrtjb2Wc0GDAaDqirgrqqKKdjXFXSydIgwdTkHkbujThu47iNRCKRyPvLA+50FcTEtdbB44LAlBVpouktr7K3t40pxyF/T4Twq5cyVHpIEXLehKcuxmxcvcTC6jESnVCWNVmSYG3w5lRVFSqsraVWhsX+CuApirLZE8VkMiXLMrTWdDrt0GlIKIz14eNUghA1RTkN+4EKIU+dYq3EVpZHjp/g0hvfZ29vl7qucKYCWyOCkiV4waWLF+m0W5x65BR7ezvoLMU5E8TUm1CnTjRlFfIXffAlkaQJ06II7SxhPtmP5n3XE2pTU1UFVVWxu7vLdDKmLifUZUExnVJXBdYaKlORCImQAoGOKtv3SRy3cdxGIpFI5P3lgRqsSql5eLAsS6QQSAGOnKSzRH/lGDvX30LI0LMcGXICnZQIpbGC4MXyFlOMuf7W6zzxwoeZlAVFUZIIhZeQZTlFUZJlOXVdU5QTtE5AeOq6RMos5NUZgzGGwWCAlII0TcjSoAtZFlO8d2RphpCSuqqoREWeZQzGA4rphHI64amnnuBf/asvYm2Nd5YgyymaOpGQ7/i9771OnrVY7PfZunqV3tIS7YVFdLdNVRuSJAmV4dPQAcgL8ELjfCP9M6owtUFpjRBQFBN2dyeUgwHT8YiyKiiKKUU5xVRT6qrCeYdzLmiHConWKV6Fyy9jO7/7Io7bOG4jkUgk8v7yQA3WWbhwZgDIROOcQ7igl7O4vMxw9ybVLOeN4FSReKQzIcSKwlqPkJbB7jbXL1+iv7rOeDhCSk1VFHS7XeCgUGQ4HNLpdEjTFGsP9kVrjbUWay1aK1xTACKbUKY4tM9SSqQQFEWBkATjoCzBC1584UW+/tLXcP5QkrAPgvMWcNbw7Vdf4SMvPE+WZuzt7oZiGQ86zSiLkjQJRStKSSpjMPUEKSTOGxKlKIb77I2G7O3vMhoOKMop3hiqsqSqimB4+CDUbl0o1BHNuU6UJk1DO9BZLmHk3onjNo7bSCQSiby/PHAPK9BMtAfi6cbUKB2KRnpLq+xub4Zaa+8Bj/cOg8d5hRUqtIIcDTmy1mLjyhVWVldJWxl1bcjynOFwOJ/UZ58zGo1YXFwkz3PqOvSBnzGbDCeTcdMzPWmMBjMXOJ8ZKzO9y6qsQ2/12rCyus7p02d56/yb+EZ6x9Pse9PAclKMeeWVl3n26adJEsfOzQ2WllbQeQuVJJQmyP0IBEonYCxlNaUqp2xvbTHc22I0GlBVJePJKIRnm2Ig8AhvsdaEdpfOkycpOtFopefV7TPNyzjx3x9x3MZxG4lEIpH3lwdqsNZ1TZKEwpDQS9yDUiHc2fRr7/SXGe1tUdUV1jXFGzLB6Qyv28i0hUhrpoMdBsUUmSiuXbzAyXOPc3O619S9HFQjTyYT8qYVZlVVhwo/HHmekyQJZRk8RVmWBWHzxlPmm4IRpRR1XaO1bopuIE0zqqIgz1pYZ3jsscfZ29llb28HKcB6i/cGCQgEEoGvCrZuXOfkqdOUxYTdXU+3v0ySpCAEUgiUVgx29tnf22V3Z4vpZERRTJhOJlRViSfofULT414qnPV4B4nMSBJNkujgbWsm+MPeqTjp3z9x3MZxG4lEIpH3lwdqsAavSghTziqvAbQOIdYkTXE+I+kus7ezh9UpQmdB1zHJcCrHC02SGihLJraiXVdsbVyn1euj0py6KvHekejGQyPlLQZHURS02232dvdxPqUoC6QQGFPjfcjls81+zoyBeeWzDwUwQkissSRJGnQ0awde8MKLL/LV3/4yk8kYj0VJaKcZ/XaXbt4mTSQOz/bNTTqLS0ymDqkTFpeWGezvMhqNmE6nTEYDhoMBZTnG2SqkP3oVugO5Jk9S+Fk7d5RKaeVZ08UoeK5mzPxlt1+DyL0Tx20ct5FIJBJ5f3ngslYzPcvZ79ZakiQBZkXAnu7SUXZtiie0hVQCrBeIugIqrFTovMt4fwPKXY6trHDjyhUefepD7BcFri4RzlJ7T5K2aGVJECqvQ77cYLAPwlLXU0wjrZPnObUNv+NDPp33IdSZpillWYZil7puvGzhOIxzoBQqTVBK8OEPv8grL3+bdiLotnNSnYQQqLU4Z3HeU0wmeBHaZ0qhKKdj9nY3mYxGjIZjvKmwOKwQWOcRXiCwIXdQquChUir0WG+Mp1nuJL4pnJn1XfdNePdQH/bDv0fenThu47iNRCKRyPvLA89h9c4hpAzeIO9Drl4Tat3f36eV52SJotducXM4wXqJC3o9SBU0LpVWpGkPN91nf/sGmYBlL9jfukHe7TEsRhTO0mp38d5RliV1XYdJ0Hucs0gp5t6rNEnmk2FVVaRJince4yxpklDX9S3i8UJAXYeuPwAIgU5zbF2ysn6EFz78YTYvX0C6kEtofQgjhx7sIdBalTWdrIUzFVubWwwHO6Hnug16ns4HzU0voGlVT5roUIySJE2I1HPYKwXgnZ8bVb45Xn+LrypO/PdLHLfEcRuJRCKR95UH62G1DicExodQZdB2tPMCFmst+BRbVHRzxWDsmy5CwSOjdah4rooxRVng6gprDJsbN+h1WmxceYsnnn+RiZRIqaiaMGhdV2gdJk2JwM0mR2PnHYfSpmBFSsl0Mpn3dJ8VwMyMB++DwTKr5A45g4AAnaQo4VlbW6cY7LF7cyMU4DRi8iiBlAqhNAhJOS3QIvSbd6ZGSIlUGi8UzhiMtwihyLKERIVjP9wxKIRcD7xQzrmmReitP47opfphiOM2jttIJBKJvL882BxWa/GAbnQVi6JEKUCrpuDDUVdV8Ebh6aSSSWXwXmEnI6amxNYl3lR4YygnI1wZ5Hpubt1kTQg2rl+mv7TGZFKCc5hqikoSXKiEoSIYC0mqmYzHweioKrxzZGkaJmoPeI+1bi5Wnud56O9eTOcFLzNvkBQCnMe5msFkzP7OFsV4hHO+KUqRSKVASpASISTeh7y+0XhKWVusUBjjgRCutUIgVBKKX6RqJv2wLwcTvT2Y3GfFQM3+H/ZUudu9WXHyvy/iuI3jNhKJRCLvLw/UYJUiFJKE6KEAB1IohGc+8XpCtx7pDf1um60LV6hLgzAThDchXGlKTFUiHCghcc6zu7dPt7fA1csXaXcXmsnVgPMoGcKRdV0zHU9I0yR4zazDO0+SJJjaMK7qxiOmUVLivEM3eYreezqdzrzQZXFxkb29PcqyZDQaMB7sMRkNKCZDTFWiG0khpWQoOmnEORubAtHMvc57kqxF1YRJKzMTYPdBLqjxSgVnmJhP2mFSd7dO8M6Fc3nYS+UcPhZY/1DEcRvHbSQSiUTeX0T0UkQikUgkEolEHmbku78kEolEIpFIJBJ5cESDNRKJRCKRSCTyUBMN1kgkEolEIpHIQ000WCORSCQSiUQiDzXRYI1EIpFIJBKJPNREgzUSiUQikUgk8lATDdZIJBKJRCKRyENNNFgjkUgkEolEIg810WCNRCKRSCQSiTzURIM1EolEIpFIJPJQEw3WSCQSiUQikchDTTRYI5FIJBKJRCIPNdFgjUQikUgkEok81ESDNRKJRCKRSCTyUBMN1kgkEolEIpHIQ000WCORSCQSiUQiDzXRYI1EIpFIJBKJPNREgzUSiUQikUgk8lATDdZIJBKJRCKRyENNNFgjkUgkEolEIg810WCNRCKRSCQSiTzURIM1EolEIpFIJPJQEw3WSCQSiUQikchDTTRYI5FIJBKJRCIPNdFgjUQikUgkEok81ESDNRKJRCKRSCTyUBMN1kgkEolEIpHIQ000WCORSCQSiUQiDzXRYI1EIpFIJBKJPNREgzUSiUQikUgk8lATDdZIJBKJRCKRyENNNFgjkUgkEolEIg810WCNRCKRSCQSiTzURIM1EolEIpFIJPJQEw3WSCQSiUQikchDTTRYI5FIJBKJRCIPNdFgjUQikUgkEok81ESDNRKJRCKRSCTyUBMN1kgkEolEIpHIQ000WCORSCQSiUQiDzXRYI1EIpFIJBKJPNS8q8EqhPjSe/XhQgglhPimEOIfv1efEYlEIpFIJBL5YPOuBqv3/lPv4ef/BeDV93D7kUgkEolEIpEPOPfiYR01/39OCPEFIcR/L4R4XQjxnwkh/qQQ4qtCiJeFEOea150TQvy2EOJrQoi/PHv/XbZ7Evi9wH/zozygSCQSiUQikciPF/ebw/oCwSv6HPCvA0947z9GMDr/fPOa/wL4L7z3Pw1ce4dt/VXgfwe4+9yHSCQSiUQikchPEPdrsH7Ne3/de18CbwK/2jz+MnCm+f2TwN9rfv87d9uIEOL3AZve+5fu8/MjkUgkEolEIj9h3K/BWh763R362wH6PrbzaeAPCCEuAL8M/JwQ4m/d575EIpFIJBKJRH4CeC9krX4b+CPN7//a3V7gvf8Pvfcnvfdnmtf8C+/9n3oP9iXyE8x7pXAhhLjQ5G1/Swjx9ffiMyKRSCQSiRwgvPdv++RjH/7T/vy3f4lTz/0ZisklRje/zaln/ghUEy689g9ZfuRzpJ0j1KMN9je+znPPfo5P99/if/j6N0BInj97ki++/H3+y//oz1PvbWL3t1G2RtdTaueoa8drm0P+6Xcu8bM//SIblacrMuSFq1BVeCTKe1IhEdJjnEMJgfYCJQTCgfaeQlgSoEJSeQtA6sHh8RK0F5ReIAS0hEQDE29wSDwinAghaHkY+QqERsweb7ZVC8/UGXKhkB6UECgEKGg99zRnftfPs7S8jpRQjPeZ7m4ABp1ocA4hBAhNXVsEkGUJXmnSvI1GUZcTqrrECw/WotIO3eVztNt9jBVUxT6T0R5XLn+H3c3zTKoKqyuefOwzdPqPYK3j3LnHqKdTfufb3+DzP//7ee3VVxkXY9bWH2e0v82v/crf4tKli2xsXOPf/rP/Pr/wu38/xhXgJOffOs+v/tO/z9/67/4G3kryXKK1RghIM83S0iLTwrO9NcKakj/4R/8X/C//13+OYlLSbmcYr+n0Opx//XX+P//P/5r/+Z/6k1RVwX/6l/4iGzcuiPd0FL/PNJGBn/Lebz3ofYlEIpFI5CeBdwnjO04/96ewSLLuSTpLp/B4hBAcf/KP4WWCx5H3z5CvP81UbJI++TT/4S9+DucFX//aNzm5P2U/XUCttJD941gERlqU1KQ64WktOfr5Aa98+7u4YoxMFZ7G9es9EoFEgPMI7xGNKSnczCAV+PBSJCBF81oEQnhuMceFQAiBuN1Gn73XBwPVEwxY5xxChk9UQCoVEjl7RdgPIZFSBoMUAInysCAtpphQT0Eo1Xy8Q2Q9dJKjlUClKQKLrUqEq1De4ZXCZynCWMrJECcX6OaKCxsbHF1dZrG/Sj0dktiEj3/yc9y4eoWLr36N048/x+ryEpcvbpFmlsvXrpB3+nz5K1+iv3CNteVF/u0/8+eoreP/+lf+U1Z6XV55+buIJKPXXQVytrcGOOfxzmBtgtYeIcKxdTqL/Ad/8T/GuoT/11//r/iFn/+DfPGLX+ZnP/URvvXl3+DIiccY9FbZ29nlzMmj/OYXfo1PfOrT/MzP/NwPPDh/WIQQI+99VwjxOeAvARvAi8D/QMi7/gtAC/hD3vs3G6WLvw0o4FeAf997330Aux6JRCKRSOQQ72iwCiXBHjbwGoNPHPwNCoEgc9Bv5Qwn+/wf/8p/hXeOTqvFn/k3/zRLi8tYUyC8p9XqoLMWeIlXCmMtSm+ztLRJUYF0EttsOXyuR+CRAkz4c/64lweW58xTKr0IhqyY73Hz3IGxS2PGCmYGavPuxpgNZq4P/lcv5kav8qDEwXlAiGYjAikkQmqkkMiyYHrhVcTgJjiBSXJ0r8/E1MijZ8lWu8iiBGdRrRRcBaZGeM+kqHFWs5gtsLC4ypWbe+hej6Nrx1nsaG5crDj5yMcoHWzcmLCzc5WPf+pjPPbcZ3nzrUt87Su/zrWLr3Dz6gat7hptZbj85jf4yAt/jCTv00o0P/f5z/Lrv/IP+N2//0/gkj5bky1WVnLGowlCNMfrmZ/3RKX8oT/8J6msYjwu+djHf56tnSGLKwv0lzrc3LxIXdY8+tRHOXv6JP/vv/ES03JEUU75nW9/6/5G5HvHC8DTwA5wHvhvvPcfE0L8BYLCxb/LgcLFLwkh/sw7bMsDvyqE8MD/w3v/19/bXY9EIpFI5Cebd/awKg1u5nP04AVeEH4aNSopQhpsjSfPBU8fX+aTf+aPIfc2MNag/IjcTJlay7SYkgFSh3A4VYEb7mP3dyiHu4x2dmgtrIAPXlUhBMoHwzEBCuHxeKQPhqLHN4bVfA+RgBPhEQl4L3AInPBoPNL7uQkb7I1mm1IinUB4gRAhWSB4eR0oFby93iMPeW29gMSJ4IX0EgcoHN5YfFmQeIvzAAKR5CRCopMUp0BLqKcjMBJnBEJB2mpRFDVCaNYe+RAuXadbb1BODVU5RfqMxbWzdNo9JtUALbtsbwuKWnD54iZXz3+XarJLv99hZXmVpz78Wf7af/mf89nPfZ5zT72AQeNUzguf+D10Fh8h7bRI2y2Ma2GMpyiqcM6VRCmNQuOdQ+mMdmuZ73zjG3zrd77EH/6Df5jl1S7jyR7ffuVlzj7/EU4ee4Iv/sYX6PVzzj75HD/zmU/zjZe+xuXLb/4Ih+sPxde899cBhBC3K1x8vvn9k8Afan7/O8D/5W229Wnv/TUhxDrwa0KI17z3X3xvdjsSiUQikcg7Fl0J5NyomxFyXv0trwqPODAGdreQ21cQ00EwGMsp5d4Gvp4ivMebClNWuOmUem8bs3WNauMKbm8XUwWDSTb5oZrguZQEz6fwB2F7OcsDuD28L2ah+sbohTu8quF/MU83UAiUF6hm+9JJhFcgFUJKlPAoIdEqRagUrxRSSbR34fXz7QZT2EmNba9i2kuUWQ+xsMjEGyprMGWBrQwbO9vs728zvHEdSwWJZDgeYU2NVoKtrQtMJ1u02l0qOyHNNVc2tjBec3Nnk/3BPkLD2qmn0N1H2d4eUo0GHF17lK3dCcceeZSse5R/49/5jzn92EeoajBVwd7OFssrR+ivnOLmbkm3t4oTgt39IR/+yEfodrp0OjlZLpAtz5HHlzjz3BF+/bf+Lh//1Iv86T/1b3Fz4wY3r3+bhAnf/vrXmQ7G9BbavPjTn2D16GP8vj/yJ0k6fW7cuI6t6x9kXL4X/KgULvDeX2v+3wT+PvCxH8UORiKRSCQSuTvvPFF7gccCHu8Fc1tVCLxvAu3eh6IirxgXnt1hSbuTQLeL7C6DTpFIaiswzjEd7eEEOCepRkPqaUFV1dRVhcWCEkgp0UIiXMiXVQKk96hDRiaE/bgrQoSc1NlhhJTTQ8cVjN+5Z9aDFR4rRNg3JUEpvJQorbCphqyFTTKSNEUIRyIcZmcPPy2RSiCknO+Xa7cRJ89gJkuURUWlErx0wXju9Mg6HVbkcabjPerphEENqXKoJCPPOwihGOxfZzQq6XROkKqKwaii1Uq5cfFVtvcusrR0FAmcffJF9geeqqiZ1inPvvAJWsvn6PaP0GppxsNwBW9c28Mai7VDTLGLsQVL/XVuXNug0+9QTPf5xje+TLvTZjKa4GTFz/zun+bIkyssL63T1gskK2PyXovv/fOv82R3nWtvaNZXTyGqkpd++0ssHz1LO+/gbMlir83uzibOfqD6QswULv4ub6NwIYToANJ7P2x+/0XgL79/uxiJRCKRyE8e72iweg/CGRCuMcZm7sxQeCRQOO/wwmM9DH3CZOkE9lgXKcBJjRQCr1KSNCfBY4sJI+uRStFaO0qytMJAXWbgL4BKsNaivQcfKvxFE/Z3jbd0ZrwCqNn+iFCcFd42y0dtngLkbTmrauZzlcHw9s3R2UThvUS2MmQro73cZ+X4UdLFBUqRsl97jKnRAlrKs5DA6MY2RZY3+a4OISRagKinqEzTzjvNfpd46xFY5GSAs55+K8P2l3HC44d7aMBXBQhJ6jzVZJPB7gbCV5TqKKLd4sSJs2xuv8LVq99lONpjcfkYKjuKkhlnzn2I0mmOnzrCq699l8XtEi00UkrqVOHRSL9AVRQYA/v7e3S7GeOh48v/6jd4663X+LP/27/A9157nX/yT38ZkQqctLRbHfoLfS5tvsH2tWucfXSRRHU5+sRxymKCFzusrbxImuXs7w/4zre+yj/6h3+Hna0dvH8wButbf+sv+naW8Nbf+ov+l//in+Kv/8pXuPjL/4n3Aj7+9Gn+o3/9F7926e/9ZX7pP/lf8Tf+0Ze4+Pf+sv8Xf/Xf4d/7v/393/PCYyd++d/9o5/ll/75N7n49/4PXgiJkKFw7l/9tX+P/81f+SWeOXuMx0+t84d+5nn+3B/92V+5/A/+0zDKZoV9AN6Hwr3wB+GhZiweWmz5ppjQOwc+LNK89/NtzXDW4q07WCgS0lJm0QdnHSiBUGF/pfeHXicQs/FuDz4HAClQSRIWb85xWDlENPvgnAchUYme7fTByW4Ws1JKrKvx3jeFiCqkySgFzuOdwzkX7glN6gzO44REpQnhpuHCa5vtO2vwtrn/iIPzJRHNdsDakP/trcVZExakSiOkQniLrU0oxLQGV5twbxHgnEU430RqwnELIbDllOvXrrKxNeFf+7tf+7FSuIhEIpEPKu8SChVhIhA+FBUJ2VTjhzzP4IF1zVxsaWcZK0t9llYXEVpDM0EKoZr3elhYCPmgUuGcxTrHQl1x8uwZ6svXqeuaBDjIkg3G6sEeHThLpZ8F4Zvc1XlxVXilx88noZnNEIqKgntVumAUWK0gSxDLfRaXlshX+/RXF+mtLFDVFXXl8UVNN9FMKkUiJOtLLVb7KfbUKrvDGu8txjsSBNpMYfca0kxxuoXCQbGLKAsq1UL0VvCqjUwzxIqk3t9h+upLJMLjpEImKUbniFYfV46pxvuc/Mjvocw9+zvbpLJFa6GLkPDGa1/n1GMfpRpX7OzsU9YO6wRr66cwNeyPd+gvLqB1gtKOrc0NblwtyDs98qxDVTlarZR2u8Wjjz5Fki3yP/nF/ylf+u1fJUmhnhaM9obYyiGt4sv//Fv0dMrJ44rHTv8cI+nIWlBymZ2tC5jJMTY3trh69QLe2yal5P1HCMEr/+1/gPeeTz57lk89dy4U4gnBf/+X/g0AvPN86qkzfPrps3jvObba5x/+n/4tAP7Rb32H588dn20tGDnAmWOr/I9/9c8jpAxGH8GAOmxgSimD8XkY2RifjUt/Noa9CPsxMzyZLbpmRX2z7QOyUZuwxjZvBiHF3HjUOhiIvikG9IcNPzzSh5iDkIL519Z7hCVEAKSYR09mYQnfyG9IGSTg5gZwc3xSKkIRYmOES4m3LuyDliipEM7jcKBCxALvwbiQHq8lUum5GgeIg4JJKUAkIGdlk80+OYsXEi8lzjmcrRGiyUMXSXNeNB5w3uIESBmS72cp+d675n+CkdzcK2b3iCRJ0Enygw2+SCQSifzIeWeDVdzuEfLN5HzgeWkcoMFM9A7qCuUsxnqUSkjzLOShNsVZzh94UIrCoKQgSxRKCJypkVk29/x4PFYQjGbAen+L53RuhHKQ1+pDbRi3J7dKf+CRQRCKq5REdHJWz52ic/QodZbjs5QkT0gSeSBvJTxSeSSGRHi8ralKhZQp64stVvptBvUIVwh80sHZGpmk4B1JewFhS+xkh0RJZN5CdZcQeZdKOgoNtSlxRYnzHpEkeONJUo/zkqosyXXO9uXXSNbOMLU1WdZndf0oWTtnOtqDYo9qOGRSjMjax8FrtJCo3PLKy7/DuXPnKKYtpFDgJFIpnB2g2x2KSUE1HfHpz/w0z7/wApUTWC/oLHbw2YTJtOBGeZlOq8N3vvIab726RSvV/Mtff4nxqMfPfP53MdmvMHXC9uibVNU3SDo7HD+1xI3LY/wtqaPvHwKBkKopEGRurAohkEoipMQ2Hk3vgiH0nfM3+N//t/8E7z0LnZz/85/9g83WHOGlPhhmMvjo/cyobIy32XfFWtvYmq7x3IVfaRQ2go3UGK2NoSYI23KzcXvY0wrhM6QMnycFTTUfwvkDL7YMhp93Pngum4LC2Rm5BRUMS+kFQobvmnOzz1Z4DMI5hJTzlBohG2PShXuAw4O1CKUJv1q8lEiVILHh3tB81918D4KnF6nw1qNEY6Rah/MeqTTg8bbCO5o88uYMed8oejRGughKJjpNwVq89Egfzq0XjcfaNfeP5r4DjfEtBNaZ5rmwGAiLDxeiP3mKTkY/xAiMRCKRyI+Sdy82mU2y8wKnQxPgPEtAIHwSwp9JisyzoIHqmkIsrYOx2UyKQoVJUOgQik+0Am/RUqKVRimJFALrwXo3l5y6o76KxtuLn+ekzouqbnuxnHlc8Ughgij+YpfFZx5l/clH2J9UjAtHLiTOw2A4xTmHkorxZMp4WlI7cMbRSnOsEUxqx41uyUq/h/UGV5QYP6AyBqX6tNptbJYjrcCnLYTPoNWlAJypMLZG6x62tYhZPkJVlug8R+gUmeZQDpFrJ1h9+tN0V49w9XuvsfHmS2QLx+ktn6DV7bC7s8Ur3/xX7Gxv8eob3+fRJz/CI2cfZ/VIwmJ3nQ8//yxf/epXePZDL7I/LplMhmSdDj21QDmxDPf22Ls55LEnHwdarKwfw9iKZz70PBP7FbTPqKoalSxTFp7l5SUuXLhK6SyvfOeL1NU2aWuZ3iK8+sYXePP1TbzLeOGjj9PvX+XVl6/d/6j8kdAsqOSd42ZmBEoVFlHeOrxzfPyZR/gf//M/C4BrjNCDkLxvvHQON3PTHQrZ3/EZNEbSIW9q+OwDz6ZzDuHl3FuLD+Fz3zznZw0naIysxpM7S8kWgHAO74Ox570PoXAOGYfN8YrmWGfbc941RqXHmsaI1CF0H75MzT416TLOeZQTCOPx1uBlOAfOgciDMSm9RyWyWeQdeJNdcxyiWbR650GGhdP8/MzPZeNmlvKW8+ZmIXsag32WRkFj2M/yx2cr2GY7UkrwwTgXSqLQ4Ri9RUnZeLfD4kYIgfMGbwWJUigZswEikUjkYeFdDFYVcuEIE9BcxVRKvD3s5QyTW+Vh6jylCx4mV9VUOISzYdrzHuc9Kk3DG21NVVuKsqSYjIOjSiUIQOPwXuL9TLhfYDkUZj2kAjB/iEabtUlbsD54aGfaqUYAWqMSTevECstPP45tt9mf2nB83jItx4wmhrqyFEVNmmQIL7C1RKeKJFOkSpBnksrBxt6Erf0SqTQeQWUc1jmUkAgn6LYdi70u7aOP44WkNBZD8O6qpIXMO7S7PWSWMh2NSJKENM3wUmLKKSLvMBGKycAycILjT3yG1fUTWF+ze3MTb2B75xpbOzdxjPnN3/rH5N9q81Mfe56lhcd46twLbFx9g93tq3zkY59jsd9iWoypS4WzJVJMuXbjEmfOnmPr+lWSJOXStQ0+/olf4Auvfo3KFkDNcOJ45IlFrr46pCwrjq736XYUX/6t32JqLEdP5EymE65eKPCM2bz+Ep/6/OPs7PR/VGP1vggh7GBzOe9QSs2bQXgfOgOIxgs3NwT9gZEqZRMRaAxX58I2ODTmwvZvzfecf76QeOnxzs7DzMEgmnkJZxvx4NwtBu887D5LZxFNSsLM0JYSXEgL8C7kX4Z0Aof39s7FnWg+Z3b8ziGMwzuBtQ6tgNIgjA+pPBicE1RNVzYtFXU55vzmhPN7FS7PWFxeZvPmJuPdPY71cpZ7HY6tLpNnmm5qkXkCSfguq3njjHAs1hi8d42zWDZe3Nk1CCrMQjfd5qydv9c1qQpSBAk5T8hbtbUJi1ZxKIoCYbvOhGvoXbiXCYUzBlcFQ19IgdJJs4gOefk4FQo/b/dKRyKRSOSB8c4Gq9RIlQNJmCwar5WQkv8/e38WZFt2n3div7XWns588uR4b968c92a5wJYIAgQBBtsiYKpUEu01JLV7GhL4e4IR8thhyM63OGntiP84BfbHY5od4fUttWyWi2KkqiBM0CBIFGFqkIVaq66VXe+N+fMM+5pDX5Ye5/MAslCtySg8HA+BoK3cjh5zj47c3/7//8GxOkJlP/DXmrL0WhGlrY9vTQOCoMzE69tk/6CIjODERanS4y2jEYzikIThKHXvHHKICU8uZDVOrbG6a/xz4NPfNLnqdbKN4EVktBZykbAmWcfo3vlHHtpwWRW4KaWNJtRFiVSKoxzBEFInCQI4YgCGCwlrK92aTcCGgoEBuMEeWGYZhojAgojOJrk7B5MUWEbIRTD/QnH04DLFzfpLrWJnCHGoZxAlIYQQ5mlNJtdklYfYw1BEIAtcXEMCGx+QKM7wK5fwZSKtMwQ0hA3mgxHR9iwpL/eoreeEN6NmOaOOzs3uXh1i/F0hwc79/jFr/8S49EhYQiT6RGyB9/4zd8jCCR/7a/9CrMso9XpYaxlY32FBw+uY0ZtXPseUiWMsoKl/pCo3eH85gbnNpeYzlKOp0OyIuNS8zI3Pn5QkSpJWZa89Ac3+NJXn/g3PEX/9XCyBziVZlGdMDWxFAivhXRej41QOOt1tyJQFVkVlYHIr+Nd3Wp2ikjWE0SkDzhzzlY6aTGfItZrdSmE30zXk9J6Qlut3+GUJvY0cT31cYEnqsJanDH+Y7LKA+ZkDS+kRAZ+/S1QWGX9pFEXTKeWsY0h6ZBOJuzv7DI6GtFsN5hkGTdvbfPevQNUGNFMmqg45Nb9PT7/5RcRWvPd62+wutzj4sWLrGxtIZ3mxvAIszdh4AquXdogCIHTBRvu5DU4Ux0zVZnBrL8pqDOR62msf6P8TYI8JZEQzvpjUL0/c52vFAhrsdXU3FbHVajI/xtwVXubQFXyhJPzQwiFDELCMCRZaFgXWGCBBX5i8OkpAQiEiJEyAVsgnPDT1HoNX639hBA4IQgktIQjsA4RJwg7Rc6O0dkM3ej5/zlHIDRKSYSDWAloRXSXOhwWoyo/lXnmqhWuqlz15OMHMW/emstb5zqFT0AqaK90uPaF50gubPHRvQfkpcU6QVkalAyJWpFfPVrD2uoSS70mSaxQApJAkkSWSGpCSmIpUEGENoKs9LFdTsUMZwGJ0OwMp2ircFj2j0YIEfBcr4c1GlUW2NmUbLiPS6cYJWmeuUzU7lFYjUSiSoMrNZGAdDohWBZIFZCNt5mmJd1uG5vNkKT0+m1GwyHWwO79Q4Zjx5mtJjsP3md3skMcW95961Wuf3iXtJzRbEsO9jJwjr/+K3+D4aQgjBKmeY6ZTPn4w7f4+3/vvyFZynnkS4oyKFFRyKyc8eizz/D97/w+29sHXHvkGnkG58+vo3VJlur6XQEgTw2vvfLev/7Z+W8Ahyc4nhB60mLFyRrfmmryKZXXTYrqa4zAWe3PoNpYJZXXc9dOe/vJyadfO1e/L9IHr4H1j1MRz9MkVzqHtbVxyv2xs3X+2Pwx5an/eKV/rQk3OF//e1qiYK0nYuJEdypSwd5+yvdv3uOj/SGiOyDoNFFCcbA3YmWwzM72Pm+/d48ohAeHBUU5Y3094NJgmZVzEV/40ud47XtvIQLFl7/8RVpxwMrqOkYGvPTqa7zx8Qe4cc6/3+tyYU1AEFYvwv+e2iqhQFavxXLqZkJWf1/qG83a2FXfjZ7W9RpL/XsuAzU/Ug4H0pNYqzVKKPwtL15vSxVEICVK1oIi+wkTlkOACAjVYsK6wAILLPCTgk8lrHM5m6tHU9UatDZ6iMDzV0IQgkBIYmEIizGRjMh2P0bf/whpC+hfQHc32R+NWdk6R6vZokwzRFGSH+5yfPsew6OczmbLT03qaxg1UT3RCrr5vypi4k5dWKqL40l6gSAIA5Y2l3j4C48hlgfc3z+k1egSqIKd3R3CKCHPc5rNmPW1JQb9DkkI7UQhRa01NJR5Rl5OSQJBAWgz5ngyIwwimo0m7bZCxJbWpT7Lxyl39sYcTzWlEuwd7HF/u8PycgdlNGU6A2sIowgZNgilQNoC5QzYkqTfIQpj9m/dpCyOySd3aUbr5EVKoDO2b97l0tULDHoDsr0j+q0znN96iDu3hhzuf8xwV/HOGyk//ewlHrka8NGNWzz11JP8y9/958TNFkmn4Kd+6glW1loUWtMftFBKMU1Trn/4HunkkNIosqMlZL8ANSFUCavnIr76i1/k+pt3Obt5iWtXn+TcVsj3336LJN5nNptSsTecKDnY+bd1qv5PR01unPOkR1aTPimkNwjVK2alMHO9ok/wddV01BjjCZ+UnnDVxKpaPdfr7FpEPXf4fwpqjWr979PPd/68q//vuaY3DM3JqATnav2mJ9VOVmS5ItlS+vU/VRTW4fGEt+8ccBx3EOtbPPPks0gpOBpO+I3f/BYP7u6xubnCE89e45qLeezhC/zz3/wmk2lO0mrw6FOP8gf/6o8oipJrD13kheefpNNp8cE7b1EWBQ8/+Rxf/3N/gShe4r/8f/w3PNxVnP/KkxXx9xIYZ52/UbA+JcSdOk7zdAXn5jpeP3E+mTJ/IvFj/t568q9UgFIKi8U6sBhEoKC0lQykmsxSTb3DsPobJpAyAGuwhZ7rma1UNJP4X//kW2CBBRZY4N8qfkhxgEYKA9Tr/9OTTocVEU7GYL1EwBFhZImejHCpxIgQsbIBk32cCpAqQsmQfrtHlDRQ3WUEkqTbRbz5NgTeZQwVURXMJ0kIcJa6xqA2CYMEZcEJB85PwCwO7+uQKCWJezHP/vyzNDY3eeXdW/SXz5KmI4bDI1qNJkoGRErSbEUo4XWApXZMphntZoSwGuEsoRKkqSG3MC5LxuMJBA0Ca4kaAaWFMFL0mgmdJKQdSd67s4ckYDI13Lx1jzg4x3KnhRES48AJhZABpfOGNIdEBQlOhIggQkUxrmySHd4nnd1ge+cuaWFpdrok/efZvPIcd3Y/Jm71iHuXefrZr/Dx7UP+07/1n9Pqr/OP/+F/zS/83FfJbIuth56i971XaPVSvvwzmyC2+d3f+ydc2PoC3/y9f4Eucx5/8hm+/e1v4gToIuDB9YLzzwrKUhAGAuMMX/zqMzxy8RKN+CxLywN+9xv/hM+/8DXef/uAW7dPVbFaB3xWTVd1Lq8/T2xluoHqJkcpBKIy9XlCVUdM1DdF6pTxR1TJAtRu+poAVxpUf0Mn50YeXa28ZZ19Wq+wK6IlZW1msvPJqCentXRBgJKV5vS09MUT0/l8sY7FEJ7AGlcZnCrtOdaijeXjYcpwqce585dxeQGyZGvrMsvLGX/llzvc/OgOcawgTChMk//uf/hNPv/5J7h95wGzacZ4kvJge5+Pbzzgp198jn6vT55P2Dp/noPdPQ6373P2bMif/dKLnG1FhLsf+WPiDNaAdJ6MWmPniSFUz98TflklMFRRVZXMwtcr+2nraQmFlwlIhHRzOYH/eHUzbdx8gmur4+2MwWhd3Ykz1xE5IZjHSViLwCecJI3Gv+2TcoEFFlhggX9N/BDTVbUqw5xy+Qp8tqZf29XaPpzDWMtoPMattJGdDsp2yWdtcqNQ7QEkCdn+Ptv3HrBxbpNIhd6MrAJsGINKvQbt9OTl1FLUz74EEoeiIq9z1/WpC7gAhM93DLohl194iNbmCu/c3CVsLjOZDZkcH7G6soQuSmZZRq/TIssz8qJgPBoj0awtdwmVIg4dk0kKUpKVFqUkS4MVVlbX6Hba+IhJhQwCrJSU2qCznF5b8fTVdYYzuLN9zP39ITdv3yW8ehEThZS2ixCCRqOBDgKMlKgwwgjFJMsZZzNcFGOr6W5hU0ozI01nbFy6QpnNiLsrPPb8LzGbDmn2l1havsqf//N/lU6rx2h0zHPPf4GNrWv8wuY5xqOSv/gX/yM+vPn7CIbcujHhOy+/yUsvf0hZpiRRwvfffo2iHKOERWDYvZWikoitp5toUm7vfMj6w1dZu7TKvQ922X5wk9HRmGwKx8PxqXPHr1s/qxzWmrCCoGIt/qPKu9P9qtyHyQtnENYbC6XwK2GH9Lm+oqqdcALhKqNfRUKt9WUR9eTP4cmRwIIz/ndDVrIZp7y5qn4elbzgtC7TVs/Pf4HEKeXPY63xfWV8UmJQRVN5+WxtGhJ+7S4cTvoK4clozDde+wDRXebGjWOeefYpvvyVL/HB++/x+muvstzt8cUvvkDSbDDLcr7/zg329g5Y7ncptebevQeE0vJnf/HLHI8mJM0YoSTaCKQMOX/pCrNZxvD4mKX1Tb7wcz9PducM4+uvgKmOlzG+NEAFXoJx2swP3pxWSYuYc9JKzmDq6Shzk5wUCqTDWu1vJGqZhpTerBn4DYsIQmSVAOD/RmmEMfMbCet8g54DhFL+/dEFCItsLgjrAgsssMBPCj6VsCoZ43SOdfJkDVq5R+YXznpV7ywaRR60KRtLlFXTjWpGNBt9iBpYoVg7e5ZAKcpSU4zGaGPIZhNa/QGNaenJxGlV3w9IUgVeAuBlbn4V640UfFIPKCwqEnRX+5x55DK3t8doFyAVWA39XpfJ6JhGHDEYdJjOMrIsJQzb5EXOcr9DkjSYTkektmA8mZEWBb12k4sXzjHotokUOFsyTjWZCZimBm0to1FKUWRkZYbCX1zPrXcRFIynBcdHQ5aW+/TXNoiSBGVKrDUEQYRAUmpLYUqsLYgaCSaJsM7RdpIybhIdH3Dl8c+xe/s+Ws443L1Lt9mnGYWcv3iJ49E2gZKcO3sGnY/JUs2ZjQGDjmN96yJf+Xe+Rr8z42//nf8KGf0LdJ4CMJmMMTiEBOlChChohi3EuMcyFynlDjv793gveZn1wWOoRPDBy+/wzjvvc/vmMePxMdTGPAHtQczaVvPfwmn6Px2fcPlXk7ta2WKrTNPT59l8bSwEMlCIMEQphdZel/uJTNR6HV2ZhET9+epxhDPzn1+vtmszmqjTUSvttwzkPLKpNhHVGlaH8Ot/CVa7OTGtH9daW+lnT/59OsMYp8FK9nYO+YPv3UI29viP/oO/xJ/5d3+RbDZF5zlPPf4o6WTKg3t3abSahHFCoCxnNpbY3DxL6Sw7u7sESjFYWeaVV97lw/c/4srly3R7S0ShJ8XtuIFy8MGHb3Bm4yr6+BiFRcoQFSjqiC9E7SVzn9AC18e3ksWfvA5tvKvfWlRVMDDXDM/NabaSeEhU1ewGAlOWJ++N8+UMKvR6VldpiOWpbFspvAnLKsBIlP3hqX8LLLDAAgv8ePCpf5GlDDAUOKdxxNUF2flRJ1TTsxBHiXQW4xTWCPRoSLvfQzU7qCgilBIhA/I8J+yYKvfcEkUxJgiIpeP8ubNMsnxuKIGq6hRfw1hPt2Q1mpGnEgDmulUBBCGyEdIwGhk36J5fY6gFszIkjgMODvdptxoE0rC20qfdatBodjg4HiJwlEVB3Aj98y1KpIRJWkLUZqkdcH5jiZV+hzgQlEVGmhUcDlMmJiAtLUKGaBlDIyaIEkyeMR5NCEOIpOXsapcghL07tzHrJUvLa2THe+h0QtzuIoIErX2eZRgoXK7JsxxtLEEIrc6AsLnGcKgJgpj7N19nOLzDbh6TznJU1OSN11/iG7/3L2i12/zMF77Mnds3OHtmhYuXrrJ2fpXhYcroaMT+3oioFSMjMKnBySqAXVsEAc5CUeSUpeHRiz9L1A55/aPf5v7uLaxVbK0+wda1S7z06ttcuDRgNDnL7vYdFAGd9Yhnv3oOKw9/hKfvn456BzA3O6masFYrf2vxy4ETIqqE/xpbf74i3vNA/epxqetWpZinUfiVfm2UOtkK2KqcACmRwvmpaEUw52H64oTkgydiRpee3lYtUypQf6w2ta48nT+3U9FX1RPFWcH4eMgLW22uPvoYX3nuIdLjB+wfHNJtxCglmRwdoqIIXeTkeU6RFhwfjPjGN/6Qf+fP/Dzfe+0dPvzwFue2HN/6Vy+xdWaJp554gjBMaK+2GR4dMs1ygkBwf+cBb733MddffZ2/+PlLnFmN5jcDPrBfzp9f/T7U02H/e62YG65qTYdjXs0qK8mA4NTNMxYpHQ6DsSCrP2tSSZw+NQGX0ues1trlapvjqo1MLU1ARigXoMvi3/Q0XGCBBRZY4N8SPpWwClE15VRGFYedE8V6pydlgMPgjEEQYIuSdDQlkJLEehNEEQma3QFK+QmIMXre6FNMRhztPSAbT7wZxp4I9k4XAsxVb+KEjMy/0BuDKVUIl8/TvLhJkM0InaN3+RxDB0Gzwf07dwiVQDjN+toygfSRQ0VZEKgArQ1aa2JClJIkccRweIxDstTtsDFosdqJEE4zmZZMZilZXjLLDdO8YOfgCCkV7d4qrW6bKEqwUUy3v4wpLVGUsLd/D1VOWB4skcQBeT7DFAUum5KhCRsdtAZbBog4Ic2nFd+RHD64i2qtsPHw00RxmwdH+8xmGWe3nmc6EbQ6y/zqr/3/uP7he8xmI4JAcO/e+0ip+Mv/87/OmY0t3nv122TFIfvH9xnuf4DUJUGoCIMGiZFkaYbTBl1qyszfhJw9e55uZ4U8t1xd/yI39gPGw0OOots8+rln+VuX/jfYMuOP/rDB8e9vE8aCa8+dZWqHVAOtHz+qNiN/lrhTYfN40mqtzxKWoroNqupDhf+3FD4T1JMdWZ1rPs9TcrKC9vS0qvysMk4RpzYAUMkAHE74QgxryxNiWa30BQKnTtkLq5W1tJ5QOSm8UcnYSs/t5g1wlhOjUj29lQisUkgs2gl++tF12gNBMR7zxq0HLPfahMpx59Z9hqMhveVVOivryFABIT/1/OO8/vYHfO3nv0YriRAiIE8L/spf/jqrGz3G6YR2bxlrSpZ6XZwV7B1s0+8v8857r3LraMpvvH6bf+/zD9HqBT6wX3qxhde71xsbvEu/Mkla44s9avmEcfWNhTwxXAqBrdTsopqK11WsVCYs5zwRtlWigFBVBqtziCq9wVWJBL4nQcwn7IFSWG2QchFrtcACCyzwk4IfkhJQ4KyoInOkX78L4TV6QC0NEAIMXqNWFpoAgZsck87GlLMxSlvc6lkam1tErRhbKHRRYPIZ6fEB7aSBWUm4P5ySlqm/zlfTk7kkoLqo12YT63/8/MIvhfS6uk6TdKlFXAZcOrOMsJIkjDg8HhLHARfPnaHfaRI3Avb3j9jbO6Qwzk9DHURxgziMwBYEQcKZtXWSQLLUTGjFzpcdGMg0aBlTWIMMFBEwWOoThhHGOLLRIUkjAQRKQRgFREsddNlkOh4yHe7T7nTJy5Sw0SIfD3FZSSAKbF4wmY2I4hjjQBtDmmZMdu8yMx9wPJlw5vwTrCwNuK2abF19EumaXP/o+1x95Bq//Ff+Cn/vv/s7nDu7yvbufYLEcf/gXX7vDw2tuMtHH73Hyy+9QqNtuHJuk/3jEQfHKXk2QwqQoUQXGldpUIU0fO+t3+ehRx6hkfR4+vxf4Ci9wWy2zTjZpb92CZFdob90gz/3y58j7GqmJmU8K5BK/+Bp9WOBN1p54uLw0UfzgPo6N7UiTHPCSL3CF/NJXt12RkWw6nPSk6PK6U9t2nGfeAbOnUwWa6lE/RXzRIBTGaCncVJ8UJ/8p7TcQla/b35K6GxVRlBVmNZaViUV6JKb+1Neev8mD13I+O9//79iOM34+td+mqV+m1mWsXnhPIO1M0iVkKUz7ty+w7Urm1y4dJ5XX/kuzz7zDN/73muYMudv/s2/wf/n7/5der0Bg94S2/dvEkcxKytnWOr3yIucv/BL/zM+98J9Xn71u7xxY4cXr24gWvhWr5Od/1yLKyojm59226qIypvZRJUpi3TIKJofO68EqJJApECGwfw9x5xMomXgc52Nq0ocBD49oBKEiEpG4fxBB6oJuwAVLCQBCyywwAI/KfjUv8ha5zgXIlDzC7Rxjjqe0E+TrM+UdH5Ksn94TLbehrBBs9Mj7ixRjPY5TidMHtxFSom2FlMW4KoszKTP8fiILJ/4wO9TWlQpJFLKeVMWcDJldSdrVItDmBJ3+w6GjMHWOp0WHEws3WYXe3hEp9Mkm40oIsfu7pCDoxGOACcDhHWMRmOW+ks4a+n12vS6HQadNonLCV2JFQYX9ghlRJD5zNJZrnFCEqiQZhKTpilx3OTwcEg2PSIMQ0ba0mi2KPOU2fEB+SRFqphsNqK1tMZ4UuJ6ywRRQCEVJiqJO12CMCJSAQJLmBWQtHGl5dHnv0qzt8nhccpzP/OXwBaMx4dsnrnA08+9yOqZVdJSc/XyFsVsSl5OCJoJs6ygv3SZR5/6WcbjQ15/721m0z16jTbLm8vsD485OD6ixM4n4HEs2dzqcf7qOimHFNkeswNHKAKmqeL2x+/zyFM549330fkRTguWL7Vpy4QrzfN899Vv/1s/af/HwOmSmh4Kqbx7X5yYnLxx5yQ+yuPkv+euc2rhSS1UqXI/aye7cVX4fF1A8MnQfyml//x8G3BiugIQSpzSXvu7M1trw0+Zj4D5+t/UGa7+2XxSu3rqdwTnyKY5r31wl29/cMQrN8YoAS88cRUtBMeTCRfPX+LS1YfZP56w1O/R7vfZ+6Pv8d2XX+Y//z/8b/nb/99f4+DwkP2dPZ5++jHOnz/D+toGk8mMSAmGB4cMVldpNTtEUUQjaaOCkEuXHmJtdYVb33uZQjua1Ss8SUU4VZIgqkrayr1fFx9IKUG6+dR6/n64k1ayubbAWnxxgo+tqm9IvFPTJxBQ+rxaqUR1M1bfVPhHUsJPZI0xc13rAgsssMACPxn49OIAF3vNmUhw0gfqS+lAhlD6VZojry7UnlgFS2dYurxBFFfTEGcJ+j2cNpggJHYSJ3x9qfE+bErr0Lv7TI4nBCi0cVjhSbJU0o+hgED7znLlfAOW1/gpCqcxziINdA7HBM2Q/qMXyQtFo9FkNpkgnaCTSDrNgDTLuXN/SJwkyDBkMFhiNJzQbnVJGhHtdkKr2WF95SzNJMaWOa4coVSIiHukswnj0R5Hx0Om0xlJEmHLlCzPKAvD8dERUkUMlleR0ht3Sl2QFpr93SHpNGVpdY00LWh0NVIZnAqJkyZRHKGFI1CRd4BXnvUwdjTaXfoktLrrvpFJZ6QZjI4eoMscpSRBlNBsN3n8sRcRgcOWe+ztH/Do1tOIuEE60fze7/wD2q1lfuWv/C/Z23uPGx9d586DfQbdLku9Pjfv38fEFmsM/U6XzYubiEQSOknYDMj1mOnxiLsf79EfrPLO99/lzJU1SpXz7d99g893lhFhDsZSZOZPP8F+hBDSu+V9Kxv4fbPFSomQ3gRkRb1qrhukqmglIU/aourJqfSz/apz6cQoJD3hke5kglqvlv1qX57oZql413wQ6+ZJBCeQVWvVKYIr8M6rSjfrTDk/L6jkAKcx13bqgo9u3mOcp5wZNFkZdLl8foWL58/RbEZc2DrH2soqrswJcLRaDVbWz/Lscy/wG7/xu5TjY1545hqHo5JZXhInMWEgePKpx3hw/yYhks2zWxghiKOEuNlEZTPCqEUYNhksbWAff5bpnQ9pMqvkENWRcBYlfTXs/HhUelWBgCCoXredt3i5Svsu8H97KhcaaIPNdaUrVoggqHSxlcGtar9C+qmpBJyoyyP8eW6t9RKhU1FlLvis9CwLLLDAAgv8IH6I6SrGWOO1cxIciihSCAK0yKuv8hcgIUCqgEErIcmndBoJpQPtBOksYzoe0VxbpshLKDJEUDXNqJDQSZqmoJNEzFKNCPxFp44MslW25GnDicNPr4IoRGuH1qUn1woG68ssra5wMM1JWk22tx9QZBndRpdZarlzb5+8cIxnx5zZPEtelOzu7jOZTFlZG9Boten212j31/y0JhCYcplANQnCiNQ+oBAHDMfbzMbHCNqUZclkmiPCJlHUQqmA0dGwciMLilKTO8veKGN8PIQood0fMDw8Imq2MPmMo+MjWu02UauNDAskgjwvcA7ymUa7AtHqcbx7HWsDtIlIpyW4nAfbH1PonEY75IP3hpw5+zBFlvHxR9fJ00OO9g6Y5I4k6dJsdthzilZnlTv3PqAsSjoNyeFkn0i1ePTKVe7d22bP7XPpkcuIOAAVE8cJzmjaVqCyLs494Ph4h8HZFi/95pucO7vJ6labQqcEyjAd5xj9GV70hV/tG+GnkrV8RckAUeWCymr66clL1WrFSa2vkBX5tXWn/QmZBVGR35Nc4E/GSxlPtpSatzYhBAQ1QRUIe3rCW6MqA3B+he1NRn7659fYqlpvy3mbV12EcDJptZii5J33bxFHDZ651uba5XO8+NMvkrRaZGlKEsU0Qsn+g3sk3WUiAdnkgBeefZyHH7rEZHTI5559nN/51ncJBZSTCfv373J1c5XLG332d+7xG//k13n1zRt0ltf5lf/gL/LwQ5cp7QgRxCSNBkmrjW33MOmIEwmR9HIKd5Jzy1wGRKVJ9Wt7Ki0qVMfRnTRgzW9o8Tm71llv6KzTE+Y3AnUmq50XZPmSBUed3SycRGvtNbGmrrxdaFgXWGCBBX5S8OmxViLCCX3iopZhtVI9VQFZre6krwAi29thFB9h188QdgcErR6NpIHQGpwlTyeUoxEIMDiCuIFOU+689yaFlTgZI5VCKoW14Iz2K1lXL3i9ecVWcVZ1P7gQEqskYb/J2Ye2KJVglmtkbJiMx3RaTUajCUdHR+wdzkgaLcI4QqoQYx15qWl3e2jjQEb0V86Q9Fb9aw1Dmo2GL0hwlqCEqJcioz10scPezn2ECIEE4XKkKghlQKJStC0Yj6bkucYlXdbWz6Ct5Nad+wRBTHcwoLfkiIIAbIo1IZHqY4ocFTVotfqApakyDncOODjc5U7+PmHUI24uU5QOISxOzBhNxmhnabc7OCu4+fbb7N14izw9YLp3xPrFh2l2NwiDFmvrFymPhyRFiRBNbh/uE8cCU0zY3b7NhbMXOHNmlfOXzhLHDTqNLk5YJpMZ0/2UvTtDHuzc58KlAdv3cg7ujzg+PuLKs1toDpiOC8oswHw2Etb5BBQ84UQIVBW4f/rc/UQclHUVUfTFAqfX63OZgHDUMVJQl1NUX3uKfJ6Onz3dalUTLik92XQnZU7zr6n+Mf9vWWtn58+97n/z0g1RufA/0bLlHEoGGARhCBfP9Bk0BC2h2Tq7weHxkCJNwRa0uwlHkyFv/dZvs3XhEo898jBf/7kv8ODGR7SimAvrA86fWebsap/jwz0ef/Jp3vzOH/LyW99AiwZ/429+nV//J7/H919/m+efeYrX33yL3/idb/LXf+U/ZJzl9JsdZB5RE0eclz3M3fv1RNj5CapSstIQn5Dw+nVJKTHOzdf1TgqEUMgqRUFK5ae4StaqCJ9mYr18gkr3aqqbF6rCiEAJnJHYUiOM9Y9xShaywAILLLDAZ4tPlwRUa0frNFh/0dBl1TVlDUJahFBAiQg0igbFeAajIbM8wya7tNc2Ua0+UbONxoH2F3wpfP5kWRYEoWRtYxU9zRnNLEKJk0uyc8hq/edwPljdnrQHWQ2mCghyUhIut2mv99lOM/JS0xECY30BghOKrIBOb0Cr3aLUJQ4IwhgrBO2ef54XrjzC+tZlGo0WRVF6eUMYYa0hTwsImzS7S7S7fUTWJ8sDTOmwxhGEmmYUIO0UipRsNMVMpggjMGVBkSuSRosDu8v+waFfaUpJu9VAmIwsUyRFgR7uM0wzkkYTESpsobHphHI4RMuKsBeWvb0dSp2xc7TL7fuHPP/iF7l8+Rrj4ylnNwYsR4/z/bdf48nnP0/cX2M8zllfP8NzzzzC91/6FmUuePTaY+wc7bF7eEgYSEQAB8MHnN+4QDadoQLLe2+8zfHhMTsPdrnxwV0uXz1Hfy0hE/u0l7t0V5pEXcPBcA+wNNstclP4WtHPAK5aI9dmwXqdjuMT5O50TSryk6YoZwyuWu1LpaqHEXOZwZyIWuvd6M5WfNaTTBkoqJzqc82ltd7db7QvBuBk2loT4/lWoY6xqgoG4GSyW5cfcCpPdP7cnc849TpeQ78dMBsPOZaW2d4dfufGPXYPx4TCsn52nbc/OuR3vvEtstygLVw+u87XfvYZnn/8MX73d7/B4PwVnnzsEoPVHkm7xTTXfPObv8NXX1zlv/zVt3ju2Wd49MIKmdUIEfHss5/jrfdu8v/6r/82X/vFr9EWhiooeX7zwOm61OpmweFQ9bF1xk9Sq35oqXwSg63W/AhRyYX8jYQUAhmGlfrDVDpfh6sn53gZgAj8++jTGfy0XCiqJAeBDJX/OZyQ4gUWWGCBBT57yE/7pKMANJIS6QQ4Xf3PVH597V3JwhEFCik04yAgWzsHKxu4VoeZhVmRMtYFWikKJXBBCFFM0Gj5lqsogVaHrNC+EcdZKEusrnrH66GTqCZXPkbANxVZhzCACggGfbaefQSXBKSpZjaZMh4OCcKYKIk4PJ4wS7VfbVek5fjoiOl4Qp6lpOkMIUM6K2cJWn2IW4ik6Z8vUJSG6XTK5OiA4d49nJ5hbYFSIVGoaDcEcSiZjCZMj8cYo1he3uTKxbOcW+vRDiWiGDE8OECECYfHM/b29tnf22N0fEiZpowOD8i1JlzbonPmPKLVJjWaaZkzDWNMp0ezu4QKQybjI5TJKdMUDESh4vqH73KwfUCroVjaHDAxkrWth+mtrtFfWqHV7ZOXKdn4EFPOGCxvcu7sBZ56+Am2zl3CijbTQtBdbSHDkrs37vHaa9/j93/nX/HhWx+h9YQv/MKjrD/c5bmffYTGSkSudnjiC0tce2qdJFZkWQoU+C6yz+aiX0dBocTcgGPxIf5SyvkqGU4mrSLwk7p6Cijw5M8TX4WqWpOQolop++nqPEdVebLlSWtFYhG+3UkGnlSJyhRUfx+1s9/6hio8gZPVul9WZM4av6EQOKwpsaasYuc8ard7rQOVDmxRIIwmdoKD/REf3brHy6+/y3/7D36LWQlf+NkvsbRxjpdee5uGMliTszuaYRH83/7OP+Xd63fodlrcu3WPK+fP0Go3CBsNHuzu8uYHN1jq9fn555ZR+R1eev1drl65Rl5Msc7w5Z/9IsPxhG//wUu8/b1XcdXNoat0p/Ux+GTmrZgfS7A+h9l68m1MFX1Vkdf69QpA4W9iq8yryp/lqsQAf9zq6a5Syk9f51piiQoihAxqTQeEAWGrSRjHP45TdYEFFlhggf8R+PTcltqs4kcSOHQ1HQ0QQs3zE4UIsTamcBNcGNI7e5G4UenTwhghHJbKfNLp4JLWPMg9EgKdpyRJm2anR6kn85QA5xzzLiHhO8PrtqI6hiiwvkRA9tusP/8Y3bUl0rQgTlq025rZbIZzjjQtmE5TlgZ9+v0uTsDdu3fRWhOGAVGgCKSgkcQna0WoXqcknY3Z27nP9q2bHO3eY3J8H/SUUmus8+Hso8MjylLQTBJeeOoxVLPL8soGDbfHbO8ud771ChQBeZ4xyxzTyZBpOsM6QRQoRCxRYUg2HTFot31MFyFKthFJwnQ8YlY4EBKjC2w6Q+clhTaUumTvcJ/h8BhdWnZ3RuRFydr5h3l8fcDu3g65PiIdjTk+3CU9tgTtVa4+dYlsNmZlsEfYXOav/uWfZ3f3Dq+8/s9onFWII82ddx4QRI6gN+ORF55k88J59vYPuL//ERvnLHEjwboxQbCEjFa4fr2gKHKcUyA+mwnrJ1zzoppA1lmmVbSSUBKnzSe+tiZO9fS0nrR6nYBvfJv33FftWUJV+aq1fEX6ODBzaoIolfIJGJy0XImKRFNNbZ05CbmvEwxOv5Y/6bXVJLWeVtaNWRiDQ5CEijQvGeca7eB73/wA7QKeeuQCa2tLnL/2FP/xf6z4/X/6D3iw94CrLiSRB4zTgj/63tv8L37pi/zhK+8iXcnm5iVWBivc3j7me9eP+We/d4PnnzjLd1+6TtI5z/mtFf7lb/0zti5cYWVlgz/zCz/PH730EkG3i7XGy4aqPNzTr0UqHz1V7/CdtWDcvMbWVZFU0pxMoP0Uuoqzq4/fKUfb3HRVbYbqya4zVbqDFNVU3BNooXwuqxACifSE33w2hsEFFlhggQX+OH5I0GBFSHGeeAhTOakr1y6VPgxFiSXUCmUgUN78oIucbquBiCKc8RfkRruDKbW/WEi/gssxTEMfcj4eDWlUFwqpZCU5E/XwZD6vq00uSgh0JAk2l5kqC1KQ54YwalCW+xwdDRkORzTjiCBQJEnMdDqm0WojhCCOY8qiYDoe0ev1aCYxUgqKokApH4eUTcfc/Ogdbnz4Nof72+zdv48tcxpJSBxHbO8eUmYZRS44PJqw3IFXXn2T9soZWoOMlb4hzEqS3jKHu9vIAGazjFmuyUtDMxkjlaJsBaytLjEZ7rFbTEicJJQKh8blE2IHkZVkCgQGpSDTGmP85Mo4zRtvvczVi8+xPLiA0RA1AkY3boHNaDcLDndvcvfuu1zcusK1a09wfDxiOskIoxaPn79Kt9VErq8wPZ6SrQUsXW2Rv5UTyQ4rWwkra5vcu/cRs+IeQaIpnURnirLMsWafUrc4e+Yss9kUJTtcuXL5R3byfhqcc0ilvFbaWKRzXr4iPFGp81WFrPqm3Ce1qbVhC4EP63dVKH918nnSc5IwoKqfVRuu6kmfdRZMnQ7gySo1r6rIbjUUreKy3ElsUy1dqPJBK1HAnOzWpNlqv5XwsVACpSTWQRBGNJIYKwIOJ1M+2vM3Sp+/0mG0vcvt67dRvQlXH3uIvQdf4Oytl0nigN/6g9sYAR9vH9JaavPIExchDGl32hztb2OmM37x619h7dGneOn6+6w89CzPnF/nO3/0B5QOnniyz/LSKg9fsly+cI6jd76HCs3JzcupFAVZJRy46pgjBE6birBahJLVDYTDVasWV8kqvIOOSp5hqqiqE9OVFPJU2gBzWQB1dFhV8WqdL2OQQeAn6yLAav94CyywwAIL/GTghzRdQZ0CMM+ElCcXzmrhWV2eDS6Q6CjChJI4ahDKAH/hlhgJQoXIKECVeRX15MPpgzih0W4RCIHJC3+xcA4RKu+OLjQSOb+oyZMyLIpIEJ9bY9bpoIzBlpqidFhKdKlx1rC6PKDZSLwLWEimkzFBFFfNViUoSdJoIlVAFCeEYUjSaCGlpMyn3Pr4fd5/+zW279zyWaqzKVmWM5r4fvXhtGRn55jz58/x6NYVdu/fZ4ri4w/vELVHPPLIRV77ozd5+OIZpmlOjmB1uc3+hweEUczhcIxQktlUEDfbdALLvp2y3GoShCGBsZRlSYHABB0kkBUa4wQyCOhEMVb5CtsH23c4Hm9z5fKjzKYTgrAgifs4O6PIp8yKjEYrpNEN2N07IEtTcNBuL3E8GrG7/wb9lS4PPfYQOQfkoiBaDkgPctZXz3PrznscH98nzxytbkh3xSGDkCIXOO043j/gqSc+x5NPfJ4o7DOeDH8kJ+4Pg5CBjy7yO+Mqnk0ihEQ468mMj7agVmuLevKpJMYZbOWc8jmqJ0kVfhrovCymkqhYfaKDtfjINVlFMQmJX+lXJp96OwCVJvY0L6pzWa3zNaW2msHOJ67VtoGK8wqJCCSUeaVF8NtxEfn4pjBu8ubHO9wZljgHn7+6xkNnmnz44XvsjcbYVpuVs+d55qd+mr0Ll3j73et8/Zc/z9dmM/7O3/91vv3dt5lMhly9cpkyn/L2W7fo9FdQOuP5Zx+l05Z8dOs27v4Drj3yCBfOX2J9fYs0z4maMd9/+Ts00xTTViiEl/c4ixOV4c1JnFCfPLbSvweyYqMOh/Jj8uoY2+pF+vfXE1E3z3GFk+mzq3JqjTFzeYGobk5EpTXWxlRc2RNjK4xvaBWfqphaYIEFFljgx4hPTwlQAU5WxHTeme5QSmCKyhgCVN0wfl1PgNEGXAk6pximyCjBSYVUITII0AJEGBIGAaU2XseqApz7gckUqpoiqbnj19ajVvz813QbNLbOsFPmLDdidKnJMou12Xy9GEchjUaDg4MDWs02nU6Xg4ND7t69z8VL58hmM2azjJX1DZJGgygMKcuC0pbs37/JzQ/fZPf+DWbjY4zWZLMJaVFyeHjMZJbS7vTZ3n2P0ST1UVtS8vRTT/PUw5uESYCSjhs7xwRS4hCUJcTKoKSiKDTH1uGEoN1qsLM/RtuQMBK0cATjDFdMwBSUTlAGjiwIya1FqIBAKbK8pMhLpPPtTL/9zX/KcHTMM0/8NG6WMxNTBBOybEaj2WBNbnJm7SFu3rxFo9FAiZD1jSv87h/+Fvs723ztq/8eG8tPcOvBdynSIRMz5fKTW8zKlGmWMx6HpOOUslBEcUiUCMrcv54oibm7fYetC9e4cHYdydKP7OT9VFQa1VqDKpU/9j7kX1WkpZKY1EYq5yqCKapjaVCV2aqWAVTLeKhJ56n1Npxa39fmLvBVrpxKAKj0qac/Nk8XmH+c+XRVnP7eH4CxFjmP4RLzKa8DrC5ZXWqztdzmytmE86sRhRZYJ9hc6ZA0BXul5t13PmD/8JDB8hIbW+sIO+H6Bw+QUvFrv/4S586tcnZjjSKdMZmmvPXuH3Fxa403Xn+VWVYwm0y5fP4cly5cZLC6SdTscv32m7zy6h+RTaecPXeWIJqB0NQtVTVBPB1bVx2AKvWjMmd5Nlr9HQhwzqAN8wl4TVL936ZPHqc/VqaAmN9/+z81AiuEz20Vspqq1hriU9P2BRZYYIEFPnN8ejWrrYho5Y6uGaMTBVIYpDMIYSp3tMUJGI5m7B9FGBkQOoWyApPOKI1BG0sQRSRxQlTVLGrr0EVJlpdMpjM/ERN+bmu0d/cHUnkTjfWEwgpPRKwCsTpgxxYEkSRU/sIUNRLGRUlRFARBQLfbpSwL0nSGs1V4uBQ0m02E8Ov/RqNBq9kiSRLKosCUKTevv8NHb7/Gwe59dD7FuZLZbEoQKKTWdLpt7ty7T9IY0Wx1+PjGbb74xS/w5FNP0ev3abYaqMDhrEZIwf7BkEgZssKhjaORROQGrNYcDidkhaHUDq3hzKCJHjQxgzWMXcEWhizLyY3F2YJIKvJZhtY+I6EoNTgvkRiO7/HRzVd48XM/QzNeYTIc8b1Xv0OzGZB0eyRJl5de+k3CaJXbb97izMYy8YOA9Y0tCjvhrQ9eot9Zohms8O3X/ojNK302zm0RN7ocvfMycWxJhxqdJVA2yQqHszHaafZ3M6atCW+88Tr99ipLnTM/4lP4T4GSKASmKD9hxJ/fEEEVXK/9+rjKT7XO+glpzTutneuZ5+kCssqiqqarriK/QjCvfz2NWjZgq9ileenAKe0p+N83pdSJ3qU2G55KNKjzVuvnDBJnT9qaPkH8hKCTBKx1Yo7SElRMv9lib/eQlU5Eux8jdZvzl9eI223e/eAD7m4fsjbokxUpn3/iMgd7B7z78T0+9/lnePO9W9y8u0O71WBrc5WsFFx7+BEuXLhEqBzpbMZ7b7/B2voW6XjKYw8/xnA4YnNtDfbfw5rCH4MqSqpGPWCe3xCcJpqV7OIklaGqo6Uiq7Z6v06VJ5wmqp9sHRPYSkcrq4mtP8zVGFw4hBJ+uorzUpAFFlhggQV+IvBDy7Jr04oQwrf5YLCmAFciRIhw5Xxi4pwkimK6jRbt2okrJLGIsE7gZO3A9pEzUkjCMCSQkiRJiOOEKI5BZp6wWk+EvcCsugiJuRkYEUfIQZ+43aYhLIOlDkopZuMMp2KMtXTaHSaTKc1mg8FgmZs3buGAtMiZzXKKvE0YhggpaTSbCCEJw4CD3W3ef+s1DrfvUBQ5KgyJWx3SzJLNUpQMybMUh2R374BpWlIWGenkmNWVDlY6GnEITuMcrC0vs3vnLkloGeeOQa/DyqDNnZ0DnARjJFlpYZLRac9Y6UBetDk/2PRZtdmMIkuJhocMDw8Yj6eU2k+mgjCi0+pwZm2DXBc4NKFTfPDu66yeuchSb4lOf0C/22WSTpEuZjpOWTsrePzJh/n+m3/A3t49hsNjZnoGMiIKBCaXzIaa7ZtT2l9sEkQBgYuYHmZ02iFaS8pc0e0vEcYxtz7+ED02HB9M2Jd7HD1yQKe1/iM8ff90CO/I8UkB1U3X3NBTTeOEEL7JylST1UCeTCtddb5Zn9fpqpW8n8SKSlLgcErOV80Y7Vf/UvgIpYpk+oQkNdeiAvMcUilPpq9SCr8ur1bVVCUGrqo+pkoPcM761bq1iCDACq8PF64OonPeJykVrVix1ou5cZzx/mvbXNrosd5JODhKefiRx2mLJt//4CZhq0nDFfQCQRIorCk5d3bAxc0V3vjwd/l//rf/nNV2TLzU43//v/732d2+zzATDDYcl69epRUmLK+uI5SPltpYX+Pjm9dBKprtNvndjCioyKR1XnsKc91q7fq3VXh/XTBQ01onHMZppPSpCtgqrqr6GyOq43J6elub2pSoCLKtkgbmD1pvjzj5mJQ46TWxQnzyxmOBBRZYYIHPDp+uYXVemyqEnevElHRILEYarCgR0uK0rFZsjtV+QlNk2OMRThcEnQ5WBrjSoqMArKMsUlQYETeaOBGQT6ekwyOK8RBrSpQQlT6w+rlYZBCi8HWtWjoiC3LQZaq8Vm/jzDKNJKIocvKiRIUJs2lOWRiOjo5pNhu0WglhHFFqi5QlvV6bXm+J2SwjKzI0FhlFICU7d28z3N2myCdoYzFGMJ1O/WS202A69VWTk8mU/cMJeVaQBAGt0KGnBzSXVplOxkhhKbIUqy0PDqcgQYqSQa9JFCUoa5EqZlKklKVG0MDZkkApZqOMLJvSb7cRNsCWDlGkmGzK8PiY4WhGgCCMY5pRzNbSKtqWlEbz8BOf48rDT1GmhulwSn9pjTBs0KTJ6uoKUjxG3Gqj5YxZekizAaJoI2aOoBvS7CRMjzPKrI0oDK9/512iOKEZdXnisWdodiOSRpv+0hprG5sc7N0hDgQf771HuKJodCIOJ0dsFNmP4TT+k1GboeqppHMOYU+c3yoIq9B/n8mJrCOm3Dw/9vT075NB98w3zF7r6B+3/q66gWo+SfUPMs9L/ZPsPHOTT7XqFpzkxQqnwDiw3ow4TwOwPuVABAEmL5H174zzpQJJEnNm0OKhssRpTSQlVhi+99EdhrOMi+fO8OjZC6gk4f3RAWudhKgZ8ezTzzIZHfPi80/zpa/9Of6L/+t/za3r1/kv/rP/HT/zs8/zzd/4x6jAcu7MCluXriGdQjiL1imT8ZDd7R2ORkP6y15KIKyZm6Fqcl5L5Gsi7+OtmBvgECcTaC94qG48cPOsWVvfUEvrvx8q8npyo11/jxNVqoKsj9/83UIqX4hSSziEdJhFDusCCyywwE8MfsiE1SFlFaINOCcwpqqrrONkqumGdKYKRPcVhwqNNjmxaONEgTYluowRRpKnBQkKQoOQDuEKlNMkocDoElOlBMy1bIFCNCIowBXGX6hCRf/iWSaBJBKCUFgiCUb61eFsPGE8HrO+vk6j0eD+/XskSUSSNDDGYozXJ85mM8rSEMcxg+UBcZIwGh5x68aHjEfHTGdj6tqi2WxGoCKW+l0mwxHTyZhep83uwTFBYLl64Ry9bsLoaA+pEgyKyeSYdJZyeHTENM2QgaTdDNFOIrWl2WxhnEQVJXlRkuUFxjoyY7FFxu7uPVr9rtdVxhFa+Oato+GY+3e3EdoQSkWcNCmNRZcFSavF7GhKPs4wpWY606ysrFKkU6JGSLfbJ2oNmE0OePmPvoUZ5gRC0LIRUaOPxdChycpSj7MJ6DynTZON1fPc37/H2soGn/+Z51AqYpIWDEdTBII4bpOODXnoaFjJ8dEh49n+j/L8/VNxmmAGQYDDeb0ibj7FNAYQdbg/cKr1StSFA1QGKFU58usoKUBJhbHesOPA57hS6U4FmCoyS1aZrbYa/520s4m5PrWuEvWSArBO46yvCRNKgVRI67BFiXMnpNsXeEhAoUKB07qaDgqscIRxyNnlFoepJl+DtMxY63VY6XZZ6bc4M+iw0QvJypzNXpvu5gXKMOGN779Pr9ehu7LKQ09/nv/7pcf5v/yf/s/89HOPYlXME09/jqJ0rFy4TBQlCBkxOXzAwe598qJk/ewmrf6AIi+5f+M656p0g1oXas1pD/6pVjIhsJVmWNUbmeoYqZp81mJ265MUhHRgKsKrVNWSZf0kVuBjyWqNvaw3RWC0nj8nVZ8z1mJLjVRiroNeYIEFFljgs8cPSQmwlYmjnnwovw6VCpzFOIUQVQC487qv/eOcYZqw1JSYKCI1lgCFtgLjIAojAtqgxLzf3QqJxuGkJM8LyrI89RwqvZl1VS2sd2AHK126589w4842a40uUmp0NiWOE4qiYDZzTKdTrLVsbZ1jNhuzv39IEMQ0mjF5WRCGIWma0mi0iOIIgSAMAtLJiMP9bUajIVleMJmMaTQanmzogusffEgYRuRpztEopddp0203OXtmjSQO2bl/GykV09SSFzk7e/tMZym50UROAAkPdg5Z6ncYTacYC9oKSm1RyrJ/NEIFjnNnVhgPhxSZn0iPZxmjrOBoMuV4NEZrS2j9hKosfR6skgJXTLnzwWsMd+9z7srjXHroBT58/zUOtm9z5bEnGQ33ccB7b7/Exx++gc0zOnGTYlZQSkccBzSkIgwkKghAhUCMcoqrD1/jsWevImWEsVAWJWVZkuUZaTpjdW2FYCMmbEgm4ymHx58NYa2NPF5C4uZmmlpP4hzeOa4ESsh5XBScGKyQvu7TSTsnmeCzPJEn+Z4+VsrMs1OF8CRTOIfVxn9fldVaaWcq+euJJMBnghovtxXCNztVva110oBzVCkDrqotBYwPJ5ZK4JQvOBDWJx5IAUGzTRwERKFh0I3YOzZ8dHdKuqJwZox1D2j2l1lZ32DgApr9Li5u8pWffZEsy2i1u+jCoPSY1aZi76O3UfkmoihJggaTo2OSZAkZOu7dv89kdMzDjzyBLgpu3fiI2/cecOet7/NnnjzHej/GKUHoFFa4ubbXVTePnCKtQgqcM59oDnMVUTWVq38+6HZunpn6xypqazmFf+tOblyEqN4TLyUwxpwqX2AeEbbAAgsssMBPBn5INatFCOcbZ6qLpr/gSxABwkmkUFghsSLEOcPBxLA/zkmaMSIIcSi0DXBBgIgi8rIkt5YSQVHFCWVZwf44pbCSOE5AaS9FqJzYwjlErpHWIJxABZJweYmD6QycRQbQ6XdouoLcQJGXaA1b584xnUw4Ojyk2WyxvKwoywKtNb1uh8l0Rq8/qAwX3kUeRQnpeESRz9C6YDrNuHXzAb1e1xtdsATKMjweU2pDlmtmeUGkAsbDKZ2GIpAaU05RIuD+3TvcuP2AWZbhgCSJvNGrNEynqTfGdFps7x0Bfip3fDz2ZMuAI+L85ZQg8QY1GURoY1Bh4CN48E5nrQucEyRBCNYx2t9nvHeIVIqti4+Rjg4JpaXd7fDWq99i785HTPQxnZaEqMXK0grb9/cYjUdMpzNE6ggDRRQGRHFEczmmuZRw9emHaXQSrLW+NMFqyiKjNBpLQSGnSCUptEJPMg72Dn7U5/CfCGtdlfPvY6ZqE1I9eVNKeo00lZmnMmRB7Sqv3OzSR6ud8J9KPiAEpmpQ8it6r42UVSWss84brJQnYJ5kKZ86cIqYzVf+1fOop6Ouek5C+GkhxvgmLGuRgfA3ilRmKyHnrneqOC1hq616ENFp92jEx6wqQTOOORxn7B0OyW3ISDj2Xv4+L74gOHtmnYnR7G1v0xussLJ+lqTd4fBgj//33/uH/MtvvMJ0NuFrX/o85zbP0lxaYakXkBczdu48IGk2uPLQw4yOR9z4+EPe/eBjXnn9La6cW+NB6jizFGPIMZwm6/X635N5Oz+mypssjTk5PrhP6FNFdTPt8G1iTvi/J/MbDucLB2oI441UdQZr3SKG8fnSxhikClCNCGtPJtwLLLDAAgt89vj0CSsGKSwSKupowBmciEBEIGyl97IE1iEocU4RBJLeYAXpqukHDiqtqQwFxqi5qcEJSSvpEqrzpNOUnb1DLwFA++TVamqFtb67oBqS6SDi8GCILgzTdEaZNZCtkDLz6QBGS+7fu0ue5TSaTezQ89Ll5T5plhKHIVKFHB4ecXbzHP3BgDhpImVIXuSUukAJi9MpvW7CdHREq9UmaTVoNUL63Q67R2OO04x+0iKOFEmzQZYbWq2End0jDg9H3Ly9zWRW0mo1CI8mhGFAu9XkeDQhLwqarYQyL6o0BIEpc2ygKAqDUzGFAV0Yut0IyoJOpHhQpihpiRohgaVS9goiGRI40M5hKvf4ZDKropECVs9eRIUJ0kV0W0scPNhFBBZhFXd3dxlmKYW01WR0irOOKIrY3Fzluc89zKOfe5i43cQaS1Fk5EVOnqUYnTLLplhnSdY6WOEIpKQsCm58fP1HfhL/ieduFcBvjDcm1XFP/lTybnx5eoJWJWHU9Z016XG1sWf+wMyrWZ0ASlM1YFVtV3Oy5IP8haz0kXru9PlEQsAnNLF8MpZpvtqunoAU4qSli2p9LgRCKmyVjyylxJ3S7IIjCALG04JGq8Wgo+i2Ex576Dw3HhzxrVfe5MrVq8Qf7XDnYMyjDz3Eer+LdZbd+w+4/ocvo4XkkYub/B//s79FpDIO9w7I7DZfeeQpRBAxGh2xNBjQaXeZTVJKnbN9cMzf/wf/lHa3x8aZVVYfeZpitEvstNeGulOJBpxEcX1CtysFVp+8D1Va7tw8V2tVvcnMVuark8f2x6B6c/0PmR/T+ftg68KF6u1VEhcqhHFQLAjrAgsssMBPCj6VsEqn/QWkipKSzk+t/ICp6vquph/KpQinCSUwG5HfPiSQkiBuIeI2BCHWFhTpiNA5TJ6BLZEqIe4t0wkkZTHDmEq3hycQSogTKYB3uOCUxCUhsyLHojg8GjFd74ExaOsoC83hYUqeaza3tmi1mpTaok1Jls8YTWeMM83W5iYP7t4hz1KmkyllWWKdJ1urK6sE5ZjAZJxZbnBwOOHu3T2U0PTaAwZLHeJQkBUF1kKr1WGW5hwezkhi/9z3Dsbs7I0oypJ2r4UQjiCQxHGE1hpjHJ1ehLWWKI7Is9yTDqUojCbNCw6PRty5dYdeEiDSEaKYocuMKA5odmMaQUg2y8nSkiwrkKVFBpK0zGkmTdbOnedoOuPsxYdp9zrk0zGPPvQk3/zd93EhTEuDLXIMgvagg1CCRtLg4P4xhdWYSLD5xAWe+MLTNDoNjDUUZUFRFjjnfAFEmWPKkjLToCRO+BXrjZs30Z/RRb/Wos6lATA35Xi5qj1ZQcu6x97LBGRVHzrPAq3gqsSK02YqnPCERwlsJc9AVFpvVxmkYF7369wnSenp3FWftCTnZQHOujn5Oi1xqL5z/twcDmvqlAH/Oee8i96UmlmecTDK0SPN+bUmF86dxZmC1sU+yyt9hIrZvXuL7buC3tIKQZGyurqMTjVbgw4Xr1xl6exZwkYPFYdorbDOIYOA7Z0HtDptorCFEDFCZbzx1jv8vf/+1+j2+qytDTi/dZ726lmOj49oT2Yk3QQ3/79Tk+b5m+eTDmRFQOvXXOfhOuubwKSqpQ8CjPWfrwh8fYz88a2lFbVBy2uCnRCgHIHyk1cpQYYKZw2u1EizSAlYYIEFFvhJwacXB1S1laK6OColUFJVFZIabeqcVodxBiUc1gl0liOzvJo4Cd8wFURIwGYZeTnxF3onfUTWbIINYyKpCE5dbKT0F5vKmoKkmjCFAWUgmE5nIEKKwjKe5BzlE5IkZDyesbd3jAwgLzVr3Ta7ewekacr6+hrtbpc0Kzg4PCJIWhwejxCBoig8Cev0B5y79BCBzSlGx9XF07G00mMyK3jr/ZtcuXiebiNkfTBgPMtAKIbjGdNZxlK/STqbMck0BoXFMRzNiJOYMAyoVZVJo8nRcEQ6yxEqoCxLmkmCUpIoiciLksk04933rrPcTugkjslkxNFkxjjNSKKYTpKQJA26CIpJirQS4xxhnhIIxRuvfYdmZwnlLAfHivsfvc0gCdCzI5ywiMDRSRo4Z4ljSxRGrMcrLBFxlE0Jlxp8+d/9Ep21HqbQFFlOWuZeWlGWZFlGURRgLYoAg51PFXGOMv+Rnr9/KoTfzyNQc+e5q1bP8ymbO6WLVhJRN0sZjXCV01zVUVK+2tXzWk+UMNXvh5TIQOF0JS2op7e2rnKttNiVh+f0ZFGI0xmwBlWbsyrpjZSi0pBX8pgqp9VV1bC1kNMna1TtXcJg0Sgcw/GEG9sPUFHAH775gJm9wHG2w9lBxJn1NVbWuoyODjBLZzjIJO+89wHNOCZJEjbPrtPuLeGkQZYFpZgSxCugoCgyDrd3wQnCMCFptSh0wetvvcf/8I/+ObuHRzz5+CM8eu0hvvwzX6TbbvKukeSTgq125GPCqlxlISpK6ayfFM+PR5UQIL0eyWmNNV4rHESxv/EoS5z0pFaK0zcANdmsjnWtOqCKNAsiT1qdQymLzrK5jMCU/nw+6SNbYIEFFljgs8anT1gFIANCwElFoAQIhVSKQJToKr5HEoGMcFi0y7l/XHJ+pUuSJIRJi0D5C7otCqwMsSomihso5Q1SufZTuyzTFNpUkyafoYioNYEWIx2hEDgh0RbiOOH4aESn00IDKgowpSOdZoSRot1p0e91uXP7NkfDKQgYjccIAWfObLAz2iGMYtbW10nTlO3799FlQaPRZmn9PArNZHSEMRkyjminJeOpIWn1uX7zPpcvnCVLczrtFkJF7O0dIVXA0dDrW6dpBgoSFSJlhJCOwfIyH9+8g1QB2hiGo5kn8qUmUIpOq0GzEeKcZTadep2wg9def4PLFzZIreXB4YTDoyGrQYMy9M70bqfLchwhgoiljXNoIQjjgOPjCenRPabjI9IiJZ9NKEaOIgzRlH4qHgimRU6Z5kQzRcMmtOIAF7eQjZhYKHRZMpvO0KWmtBolvVEO4U0wRV6SZlOwGqVClApoNluk0+Mfw2n8x2F0ibAGJwWC4BNGnNq5b42fpDnhNa8i9BNKa91cjkI91a8SBGrUgfSnJ7PCMSefvl2rDrunrmijXkWfQMy/x1l7EqdVTXf92rqa4lYf93Lbk0lvrZGtJ5ZK+bgMV5S88taH3D1KKazhIJf86rc/4NygxS/81KOUIiWb7tDrdtk7vsfmtcfZ//B9ilaX19//gIPhAVceepilwQpFNkMgmA4PmeQ5uSnZ2LhA3OgBkt2Dbb7x+9/g7/7dX2V5ecAvff3P8ZUv/zQXtrZwxnH75kd854136BzdYr33GEESgXBV7a2b59Ii6tgreVLRbB1CWi+7CFTdQIvVfnovlfzE8bDG+ONYmadkVT5QH2fwU9l5yYNzVaRZlShgLELJk8KJBRZYYIEFPnN8eqxVIBAKlNCI0KGcxFqFcHK+WhOyNkf5nabVjnuHIybxOjRb5LJSwJYWrS0yahH1VymRZMZRyoK8mPHgwS5H6QRLFS2EQAqfaymcnyAFUhA4SQlgfeLAeDRGCrh3f4dHHtpidDAhzQ1JI6Hd7DCbppS5pdttsba2SqPRZDIZs7u7x1J/iXSW8eD+Dq1mQiAVeZ6RxJ6UN7srDFY3OXzwIe1mQru/RGNS4PaGZMWAw+Mh3WaMKSesdFdpR47MSnKtmGUlhTEkcUSZFywtLRPHigfbuzihaDRbHB4cYpwgSUKkkMRRSBSFWGfJs5IwjMmzjChUjLKSqRY0u33CMEYqRaPVIIoClPO6YB1IWklCWRZYKZEBHB3uM9UWm6UI5cAUBFFCqcBYQ14WpFJQCr/e1qUhLWYEzq+yY234xj/8lzz+tecxkSMMYgIZQaAqjWiJNgVGGLJsipA+V1apwCcMfEZTKoGrTDPSr4C9xmTuTMdV7UgOkHhiW2k+/WpdzKeaQJXX6v9rTn4rQiuF9HrL2uBTjVX/pFdu63xV/3SwzpxMUGvy5LxW06dv+Aa5k6mwf3VCME8KmH9vHYvl7UlYXXJv74jdaQ7GYbTBKck0bvG7b9xgsyW4sNFjpYTl5WVcnrLaiQi7TcazGddv36MMEpp7R6ysr+KCkKW1TTq9FZYGG4RRE20N77z7ff7Rr/0a3/7DV3nh88/z7DOP87Wv/jztRot0NuHNN17n137tV7n9YJ+ff3gLUxrCpCbzAqEqAZAQXkJRa3ariC9XHdJ51W1ttjK2moyLucxD4HzUWL2XcdZPZZVvBfMnh5hPU21d9oBPIKgLGKwxnrQusMACCyzwE4FPlwQEbYQUKKOxVQ2kEg4XKDAJSmjCwPpVnZDgJFJErC5vEMctgrDhg9utxeDQBlqtJq1mghCgdYl1DbpuiThoko9TJsMZYpKjqpBvgyMQXt+mKz2rCAKcgHa7TRCEFIUhnWmmqWH3aIZ2gnQyYXd7j3a7wcOPXGPr/AZZnmG0ZmNthdXBEvfv7zAdToniiLIs2N7ZZjyZ0GolWKPRBpZWzvHxe2+SNCPajQZiltNsxgSBQriQ0fCYR65dJFKGzfUe9w5GWKdIkgSNr32NGy1mac7xcUoUKDZWBoxG46pNytBuNui2m2zv7BKFAaWx5EWBJKMZJ+A0iA5p4ejJEGkMQsLU5GTWkIiQXtxCxCE2lKTFhFk6I4giTD6hTKuEhST0rmnpSMspmU2xzqEDP4Us0gJrLJGKCGRA4CxNqch2p7z1nbc4//R5gkZGM2pjCzCmpCxzLIZABjSIKEWJCpSP13KaIPyMCGsQUAfNO1uRDynmK3qcj4NyojJMKeX75CtSaKuJnKzd5vADk9GKKNYmIUslYQGMraKoTkxAtcPdV7TqKj9UVrKFihidCrO3ziHnecQ+MaL+OlsRb1l9VlaNWLaSOAgDwhjQhjgK2L43Y2Opy1NXzvDOzpS72wfsGMesH9Jb6jAIHCvrA6aTA1bWezQ6feKxYmvrEt3BCsPJlFa3g4wSGq0WMgjQpuTuzet8+6WX+c3f+AaD5R7/yf/qV/jKz36VKAx5cP8O7+3t8t3vvsq3/+Al8jzjC1/6PF984Xnk8bu4oEoIEBbnTv4MuVNkv1IeI5zwDn8q/amzGFNW0WKqmj5X8iSpECqYk89aEiCFwmExDp8ogEOU+TxJQDhfA10Hocj6DmeBBRZYYIGfCHwqYTX5EKUclAWBdLSjMXGSMy1aZLlDuZLHrq1jXcjNm0OOj8YEWAbdBGcseZr6FiCncV5NiEJhNKigKh1wvjwgbsbIJETgKE2Jnk/EPESlU9NKEvTb6DhE69I7oMdTkiTh7r09tneOKa2j1W6yvr7CxvoaWZ7x+ve+j9aabqdDHEesrC4zWOqiy4wbdx8wm2U0mi2f3WrWsMaircbETdYeeoYPvv8S6yoEC1lWcngwIpCSfq9H0u7QihSFNhyMhowmBUGQ0GwFTKcpw+MRRhtajYQLa30uDRqMQ41whmlWsNJtkJcFy4MBO/tH5IWf+HRaTQIlaTUilrodTFkwPtjDFLnXNsaSoN9AaHAYSgl5mpOEChUYsJJWu0GWH1NKRy4KwlhRxpAHFleAzi0FljDyTUkCEMaCNZhQYLDYICbdN2QPUqIzPhlCCj/9s9YghUQWknwvo3WmhQolgYL+UgNjoh/1Ofwn4vQ0tNZ5CqpcVucQ1uKcQAYSoytiKJmv5oXyvxr19LJe7dfr6h8kr1prnPOOfBn4dq3TSQNU5y/Kt1bVRi8npdel4uY5rj4V41SeqAARBhXhBSV9FauzutLJngTvW+tfm5SCYV5iEGxtrNBLEpLGlOFMY2YR09xwPLO8c2dM2OsT7x6z3A3oLK8wGKzS6XdYO7OODGNUEpOmM/LJjLvbB+wPJ3x88w6TWcr29h5f+7kv8Qu/8PM0GhGT0T6/9tvf4Ld++5s0GwnD40P6/T5fePEF/tyf/0U2mx2O37oP5Aiqmty6BrcuBPAv+cTBXxFYV6U7VKNpEF425BwoFXh6WUkMhLOg1FzK4XWwgiCQOCH9NFxrXH0TXCUwCAnWiioJYkFYF1hggQV+UvCphPXuO7+NkKWPARIRUhikNGgtsMZxZnOLRzY/R9Ju8OSVy/z+N77FO6+/gnvkCzjbQ4X+4Z2GIhtDFGJkB6kCpPQ5mK5afzonCMOIZrfNzsERB+SQa8oqN1M6gXWGZr/Dud45nLEUugBhGU8nxM0WZnuIc45z59bp9drkecb1G7fY3t4hn2VYZ7h4cYsoDvngxk2ODvZZW11h0OshUJSlY3g0Qm9qrLUYo8mLjKWVVS4//DjD/R2GR1O0npIoh1CGZqPBKC3pNkLy0uC0pd8MSZEkIsQt9bg5nhAmEUuDJbohXFpuMg1T8jxg0kxoNmNubk/IjSOOApIQBBFKelmE0QZlMjbaklYzYmW9D0VB0I4IGhKTW0azjEQLEqEY5xN6S33aSYfpeMpMBVhhEFKTF5ak30ZrRz61OO3QaY7Dv+ZQSbrtDrEK0a5EGosNBdI4yp2MpN9FNSBKYkpdYl2EKgscClkK7GRGZ7OPE5pOtwlu+cdxHv8xzKORKnOPcFVKgJJVxFVl0qnkJkYbUJW2sVqtc4qsevLiZQM/aOypiepccykEUilEHcMk6srWWjup5iYgJ/x011g/NZ8TNeEJbBAEFRm2qKqxC6FOXgd27qJXQeBX2dZLBo4nGYejKa1WTBhKnrl0ic8//Rjj3HHvYMje4YRcK4wK+darHzOeDLl6cZOrF8/x6LWztPMUW+TIMEIbRxAk6DQjTadcubTJU08+jbWCG3fu8U9//Z9x8+Y9dvd2mKUzXvz8Czz9zNOsra2xtrbK0mCVqNHg+PZN0jyn0woqnWkliahJt6tTAGppBHP9rhS+pKESGiOU9O1iUs2Ps8Mia43rqZxdHzEm/A2D/GTbmMNVX1NNZKWo2sUWhHWBBRZY4CcFn0pY/9rXfwqHwTlDXpQUViOEQ4oQnEDFHTrNgNxYSlvwhS9+jrPLIY1mwOFoTLOpCcMIo3NG4ynD8YzupKTX7tDptHH4xpqiyDk8OKS3tMRz6xvsXbhAOp6idYm2uqpgNBhtsQhEu8VkmhEGVQe5c0ymExqNBkVZMJ5M2dnd5/DgkOFwRBCEPPvcUzhrOTg44N7Ne2xsrPLwtYdJp1PSyZBmEmJcya2797l8+TKzmY+5EhIIYi5eeY69+E06quBgb8ZH6QwVNSk03Ly9TUutc/fBHnvDnCBukBnNbDLEaE9V+v0uays9lhqO5dU+Nj1gpRXRIkJFitV+k1RDEocstRoooZjOMiZphgoCjo4npOMRj15YRYfn+cM7NxnjsNOSydGYWAVooRgWOU5Yjg/3WOk5oiDAdmLSIiNuNXGTHBlFYGU1ta4SditziooCRBwg4xhpHcKAQRCHMQiJnJZ8fPMu55/YJIxjkjiiKBROCVwYsL+zz77OuPTwFs1mAz03G/34MTfhuDrNAkTVmGYrDarBIJ1AOofJS2QYepKqS1+HWzvxnZ+E+mxPU62n/aq5nqTKUM3LCJwAi08KkBUJqpMJvDi7JmUWW5FpazWycswbY3FS+jY4PGkz2vj3zPjnZqlzXG1VlKA82RYCIQO0hjdv7rO5ucpT11YYLA04c/YcneU1VByzv39I2OigpeJwOOHm7dtYa1hf3aDTiUg1KOVLO7KyJGkHnD93hvX1Ne4/uMev/qN/zHe/+xH3tu/R7ffo9bu0k4Sf/fKL/PJf+susnz3vDxLVwt44bt/7mDjNcEkEVIRUOF+TWk2uvR63IqrWfcKUNjdOyQARhoigKnaokkRsWZHgekKtFM5UDWLSN/MhJMIYrHAo4aDQOO1lI6Iy1rn6jmKBBRZYYIGfCHwqYb36xON4M4Rhb/8e08kBURSzsnyWdrtPYcG4lEZjmd07ezgHG+fOkagCh2FaprQiiQ41hXI4pWg0EmQkGc1GaJ1TasPh4THGGK5eucJSu8vZtQ0cjiCKsEpgTI4pc4RxZNOSGx/dYnQ0ptCOJE5YXVslbrRwQjDLco6OJ4xGY4RwrG6sc+3aQ1hdcv36de7fv8+LLz7P449eIlACXRYoB0GkOBhOGe3d5c6d20SRpcgnPvoobJJ0B1y69iQ3033G29tM8gKXSpw84v7uIY9c2iKIGqyeWeHjW3fZ2dllbaXvm7vwk7zJaMgXnn4eq3JU1CBpRdx/cEC72yHNHKNZwVQWBFawstzl/MVNnBMcDqccj1K+f+uYMtin0wy5PNjilXffJh3nEAnCRDIzmiAJiFoxzloeHO7TazWJei0agaLZlJSHlrAZILQljCWFEb55SFuUkxgJI50z0hmNhkIJRYgkiROSbgTZjMP7hxRyxOb5y2xdukyZlQwP7uPiAJNK0IJbH99hY3NAt9X6MZzGfxz1Ct8b+PyqnCpqC5jXpAolvdvcusqEY7zByVnvzq/lBE7Ma0LrGlCpqpirOkdU+tKB0y1V3vxlq3/XniqvP3XWT/aCQIA1PvAfPx0UziGdnwzjTsxFwrutcMbNVZb1Y9YtXloblHMI5ygL+O2X7/Lh7SGPXDliuf8R41nG2c3zbGyc4fDoiMeeeIzltQEvPPc4AkF/sEphDK+/8h2ODw+xTqGNZHvvkHu7R0zTkoOjKe99eItmM+LP/vyX+Pqf/yUefeJx2t0+QQiNpI0TqtIMO4zR7O/u8vLvf5OvnGthtZ4796lyVK218wKGKgvh5DVzMtEWwk9WqW4mnDP12/qJCa1PMAHjv2leFAAajPYTbmv8+18b3erzZUFYF1hggQV+ovCphHU4GwIKrXOOJxOK0uLCgONZSWYznBREjZSl1Zits2c4OhozPJrSXIrIsyGlLtGTFKtSmr0uKyvrpFnGaDzB4fWPRWFotlu0222iRsJEZ1hrCKRCWo1wDqMLdJnjcBgnyZ1hnGcc7e/RbLVZWVlhMksZT6YY48jyHCEcm+fOsLW1SZbNeP+9jwDL5z7/Ag8/8hBFljGcjRHO4XSBkDmrqyucGXTZ375Nq9vl6GCHyfCY85eu0bjUoBVeYPXCE+w+GIG6x2xWwGjKvQd7vPz6dZ576hovvfIm0/GYxx+5ytr6Oq+/8RbNZsLq+hobgwGXrlzjxhsvcXf7mFsHKaPCoUPDOJtRWEMzjLEKiCPiVpNQSpqJZGUp4WBY8NHdfUptGKz36TYHBEmGk4ZQCWxZ0uwkaGnQpaOUhkk5Yy1pkzQU2o4ImlAwhkDjhGaw0qfX63IwPiYdTdHOUhYZ2miIY4QJaStotWKSTsjx3j5OWpwRHO1OaDfHhGFC4AJkEiGbMYQRWT7jzs37PPbotR/LifyDON0m5ffvf9xCU6+ilVRYZwiCoEo+MBCc6FSF3y9jOakJdc6hyxKpmMdd1cYsa23l3jdgfVRS3abkSa+fqmJ9koF2xpNPVxuF8MQLhy29zrKe0Erpa19rB3zd7lRPgp2on4NjbbXJ1794mb/7zQ949/YRH26P6bZCNpY73NrJgA85Oj7km995ExUErG+sc/XSOS5fOoOQcPfeIbfu7HL9xm3y0jDLclbXVgiDgLNrAzZWlnjxC8/yS1//s6ydu0jY6FSk0ICz6HwKOKbTKd979VVee+N15M4u8YXLCDzxd5X5TNQmtFq6UZUg1O+HlHJ+nG31nop6Ym09+T9NbGtJgakKIizeSGVMgdDeyOXrje1cN+ucxTkfgcWpn7fAAgsssMBnj08lrGHUIc9TnAiIkx6t5jIry2s0Gh2EhKxMKa2gyAucM1zcWuelu+9StppAQRSAkobSlWANYRSSJJ2qvltjTIlQEqUU2hSk2RiJ8z/TCQIV40yO1hqtLWEYow1Mp1NaScI0irHWURQ5YRAQhhGTyZSiyBks9Ti7sc54OOL+/fuUecbjTzzGo489xGw6Yn9nm8FSm/F4QllkDAZNjo+PcXbI0upZZiNLNs0ZHg+xThCHDeJmg9ULj9F6MOTa4yXXP/wIqTPOrC7x4a1drl5YY2tzlSeeepSw0eD9D2/Q6XV58YsvsjRY5rFrV9m7+Q5HB8ccT3zuahQYtLEoJTiz1KcTB7QbEWuDDq1GBFLiGiGJMwzWQ7LUMRzPyGxJq5UQSkthS+I4QqmWL3CQiqQlCJsKrKQoCy+9wNIKWqQmBynp9ZY4s7LGZDpGBY7mcoNm3CKfaKQQGDFDyoh20qbZaRA3WgiV0ltOEEELJRrs3T9kPB0SxQEEEpREWB+8XxSC996/9WM6lT8JKeQ8m3S+2hcn2kWoNKTGT+ec1j5IXvnJq+SkzWqubXTah9RXRiBrLLjS1w4rhTsxpVfuczcnXVSRV3MSVI1HVZUb6lfRVZKq8xpNV6kRaj2ssV7v6ceJVe6oqxqjan2uE17/qgI6nR4//dhlUit47YNdPt4e4kRAlhu0y9k9OCTLSm7uzNBOMv3udWSguHBmQL/bJNeag70Rm6ttfu7Lz7K6MuCRRx/m0uWrBFFCkY4JVECjkWCKKUZrLIowjAijCHTJ3s421z+6zpuvv0ZWlDx+7gwChy5KZBj442NMdax9MoCsdMcV65+v5+dD1EpKQG3Sqo6zdRYlfL6uCLw5yxWl16OGYXWcvAyDSkfsqszVWh5Thdz6n1Nn6C6wwAILLPCZ41MJ62QyI89TwlDSanfpdvqEQYxQAUGgUMZQaF3VdWaUZYC1JcYYT26sQAoLOkGJFtYENJIYJ0M/haLWmhm0KSnLEl0WpOmURtxECoc2BusErXaPMEzQpUZrTafTRKkN7t57gJlMWBqsYkYz0jRlZWWFMFCMhhOyPGM4HLO2tkq/3+Po8Jg7d2+xsbbMnXs7SOc4u7nKeHzM/Xt32Dyzzsb6CklUkEbQ6PTwFzCvf2t2Bzz5wk/RXFplsL7O69/+NkvLA5as5JGnnyZMEoIwoTSO1TPnOH/+PM04wWnN9vU3Gd/9mOn+Lkng6PZbZE5xnGsQCRe2Vum1A5JI0u43aLQ7GBmAiNClX12ORjuk+T4Ogy5zwsAbTiIV02otU0rNJB1SznLQAa1mG2EhLWYYIZlahxWCAJA49o6OGE6GyFDSXWrSTpq4ckav12eYOxp2iaiUOCTORghbkEQRVnUIwwgpvet9NJpSlJowDMj1lCAIyGaGcZr9WE7kH0Rdw1oba+qPYW1tMK+c+n5i54z2g9gg9F9fTTpFlSNcPercwCOl8AH9VXySFXU28fxLqxWzmOeGWuu1pvNJaUXOThNjIVxFop3Pr8KH6ssqx76OcDIOlAxAVLFMeNmCqTTfFnDS58f+3FNXePLqFjMXkruAD27tcOvBPs1Yc3CccjDMabYaZDrDOsfte7vcumd4aGuN5544x3/4V3+ZKxfO0u516SytIFSIdY6pUjSaTZCKw/09VlfPkbSaGOu8CS9qsbF1mf7KBo8/+QzvvvcWs1d+B2yIrFq56vdpHoFwag3vqKptrfUrek6m2FXLKqbUJ+9xlQtcwz+Un7YGUnmiK/z7KYTE5qXP3g2q4oEqSUBU5QW1/nyBBRZYYIHPHp9KWLu9FlJ0CcMYIZTPL3T+YlgWBq1r2wQoGeKswlpBFLVoNrsEIkYJAD8htc5SFFOQsnI+G4RUGOMw2hFFHZqxoNPuE6gIaySljrFWowIBQmOsTy0YTXJarQZLgyWyvGCWzpBS0mw2KYqC6aQgCiL29w8oC83a2grWGl599TUajZhLF8+zu/cBDz90if39I3Ye7NLvraJ1wOHBAY+sLhHEHUrtwAnKUmONI1AJS0trPP54i0bS4K3X3+b+/Tv8+V/4Kk+/+BWSpIUxJXmegrCURYGeZezu7ZAe7ZEP9zi70eNglhEkTcKyBAwBAcJZ4laHdr9F0IjJXE6pZyRRiyCImE5ybJYSSYXWhhYxNpPovGStv8pK9wxRs0GhS/IiRwhBu92htAVHoz1GsyOmwwnORAhn6SRdJkVJ2O7T73UJowgrIFlp0uw0CAuHnbSIgwQRSrS2BKpk/8GMjYtbGGMIgog4iUnyiEJHOBMRBZZSlwQqnDvYf9w47eA3pSYIKme+Y26S8iNOTvio9WH0onKjO2P8dLOaqgqlfFqFNTjrHfxW+JWzkgpjS5ypEwrknHzVGtPTesx6zc18blg/Zz89VeJkJe5d7OaEeOM1rEZUrVbz11q1NDmHMJbp/oSX373LMB/z4gtPcX6wTNId8Pwzj1Fox8Fwws7eEUVpufb443zzW39Ap9dnOM64d+cGX//ql9nYWOLM1mWkDDAVcbTG+ESPVgekwFjDYLCMMRY7mxJEMTKwOKko8pwsm5LlfgtishSnW75VzNpqQnyiVT2pVD15X+osWyoJgJASYS3G+vfn1Jcy77913oBVR135LFtTGe4AJX1ebm0KdM4PXgUgA6QS8yatBRZYYIEFPnt8KmFttwdIAoyrtHtOVVNRi9ElRZ6i4obPnpReAxioiChIUEKiAofRpV+lOo0pcvJSEEYdnHVkZYkKIIpioqiBFCHWlEgUZWHROscajTEFRnsSJISk32txf7jPrVt3iBsRs+mUQsNgbYO9g30EEiUVaZ6T5hmNVovDgyFvv/0eRZHz4ouf58bN2ySNFk7GvPP+G1y9fBkJaCdoNjuoQNJLAjZWWpS6ZDqe0kxiVBAig4hmU/LQQ4/yn/ynf4sPP7rO1YsX6A3OoqQknR1T5hOKokA5QTods/Px28x272BlRIljsNyjNBAqizUKZyXH+yO0EJhE0O+EyChEltZPtQtJOplRZpZGb4UgCmg3mtV0c8zo8IDx7jbtZgOVNIhbHZqtJi7LkTiWG32C3LDc79BpD5imQ1yRUzYLXABJ2KAUjoICqxyhC4jiPpkJaTXbhFFMUeYc7I9RqkVZlDSaIWCR0hLGilgHSBWDFeRZQBgkGPfZXPS9DtK3dTltTq17oS4CwFmM9oYmVa30a+OTrNqxjPW5sw4/+RScGILKskQpWemxtf+qOvfVgas0mVBNYa0lCPwa3P/PVXrLk4zX+fObG4zqyaNvr/JTWarIM+HX8M7nk9Yk21lHPprw6//qZb794TYr3RZnNw7p95YRZUakQnSRcfnsKlcuXSTp9BFByLnzv0yz0yMIYoYH97CzCdk0Z3y0S56XNDs9uiurCBX4mCslKfMU5yxZMSMIm0SqgxQRR/u7HB7ssH+4S1rkZFmOsSG3diY8tj7whF0Lnydc3USoinyaujBBnaQDOOuQrjLL2epjWN/oBpVWlXkcGZVhTSgFSqG1lyWpMPRSASkqSYKf3crqBsMJ37YVBEGVj7vAAgsssMBPAj6VsGpdIoQFLKoaBikpsdahcQgVEcZNoriBdZIgUqgwIMs1jYYkVCGhkuhCIFWEVjEyCLA4ylmGMTnWauI4odVsI6WizFOKMkWXUwqdovCxPUrGjGYTkiRkY2OF4/1j7tyfMMug2+1hZwUIWFpaYng8otFoMJ6MyfKcpaUB4/EUrTWPP/4YS0sDhjfGpKnmww9vgQi5cOE80mnaSUgYCIZHE1Qg2VheZZRHjMcjOr0OrTAkkBJEhIgFFy9e5OrVKxRFgS5ysjKnyCbYUqOsYzoaceO9N3DZHmmRc5wWrAz6CGuIQ0EgI3IDWudoJaABWZAzNiPIA0IR0oubRM0G60GDtctXabTbBGGIEgqJIMtm7D+4i5mNsbqglIrO0jJKSdI0BWcp84xyVtDvLxMnXo9rjcZiyO0U5yzSCKSRaFciDMRBl6LISToRUdJAm4LxxLB+ZYuljWXS2RhjC2xdBWotSkqUCOn2egin0GX+4zmTfwCiWvsGQUShNc4ajKvMPAKfhUrVFqWtj/cSbs5p67pQtMY6H7+GFdXU1D+2xGJ1WWkjlddezsP+/ei21qQKZKXNBEy1wq97lZyfNFJNfr10wBNuURFQoZT/nLHz52OpdJcIr9e1BrIZelbwvffu8c9euU7YThDDMX/wvQ9479Y9nnvsGoNekzBSjKdT1reuMBsfEcYJUZTgsgwXGTqdJUocCsHu3h4WyerqOtnwmChOmM0m7B8eo7Wm0Wxw5twloqRFrnNsFiBlQLPT52JvyW88ZjNufHyLMmqQamgivXnKVjpcCdoYb0qrptxI5qYoUes4qBIRqCbeSmJL48mmFJ/4GqkkLgx8lm1ZniQ0iABXGqwzIOvMXOnreav30DiHcQtJwAILLLDATwo+lbBKHEZnKBWgS0BIysJU9YYJzW6TTrdHtzsgaRQ4Y1he36LTbhHGEbkusA6SoINSkkDVIemOIGxSZlOsK0iSkDhO0EbjsBRFhtYZSjmM8fFWcaPFapQghSGUjtX1Lm++M2M2K4ijBkkjJggCLl68yI2Pb2GtQWtNkiQkjYSZKbl8+RKb587y8ccf8/FHd9g8dwal4IUXnmd5ZZluqwFGM55M+PDmA9ZX+qhwQqY1hYtotRs04oCitJiyRCCIGw1KU2BNznQ6weQp5WzE7p1bvPfO99nfPWDQbbLcVqxvXSAaTxmPhvSaCa12TFnkjDNNp9+i221SNBShBKsNeZGh4hbKaoTJacQBQsWEUYhUIQ7l9Y2hpNFtEvUSijwlt4qo3UUgiaREFwVKWHqtJkmnhxGGvMwRQUAcN9CzFC1yut0+WSY53n+At15HuAJ/wXclTkniVotMZxwcbRMGvu4S4atdHQGJhEYUsdwfoCyE4jNqusLNw+hlEAAWYZjnnzrEJ6aYptKVGuPJD3X7lXOVx8nrSd2pSCmvr/QT0k+YuubxU+XJwr8K+rfWICvTlK9wrXJarUNa321fr/URdm4+ssYb4YTDtzhVMVYn8V0+l5XZjBvXt/n7v/8apQroBYad45JGq4M7nPLrv/cq66t9VpbbDAYD9ocpZ7fO0Wh1kEGEMZZGs0mj1SQQMMszBqsrBHGbqNnm8GAfJRyHB3t8fPMWFy5f5uy5s0ymM5QugYCl5WXCZkij00MYS5nnbCwritzyVtLi3b0xT4kmshvhUPhzzSEro9Q8a7WaVM8jwMRJJmv9tc7YkxIBUbWJOapJtsPVqQ3498kY38yGqW5ClPSypkrGIaTEuZNEhgUWWGCBBX4y8KmEtchT0nRKGLWQqgVRi6DZZHV1naVel363Q6fdRiDI8wJjLUnLT1SUlKhAMB6PGB7sc3C0R6+bEIZgjWY4OWBn/x5KCc6t///Z+69gW9P7vBP7veGLK+2898mpT58+3Q00utHIIMAEUMwayZohNR5PqaSZcdW45FC+8YV96ypfTsljqeyxrSqNZJGiKEKBQ4IBJAAiNBqhczin+8Sd04pfeoMv3m/v0yCllsoW0bhYD6oDdu+w9lrfPvv//d/n+T1XyfNFrDF4L+jkC2S+dxqIEW3SW1nDbHaETgRXrp5l5aVFtswxHkGWJaRpglKSp556ks2tTaxtSJOUpaVFkkiwtrbCbDZla2uTKFZ86ENPorRneWlAb7DIjSefYmlphaIoeHD3HtgC52YcbB5QF7s4W+Drgm6ng6lqlpeWaZrQQmSamqYqGB/ssfvOa7zz0ndQWGb7h+zec5w7v8qlyylJqojjBXwV6Ae1MVjv6S8vUmtPohRRIbC1oGkcTTllLA7QcU6adBFYZGVBxURJB5Qklgmy36OpJlQV9Lp9BivrSKk5HO8xGh9BZXEChvUh0/KY8XRMYyFPuiSJwicNo8MjrBVMXYHWnlxXyCgl6aRYWWOto/GGTuKJspDGdtaCUJw7ewG2t4iakkhapLYIL0jS9Ed1Lf+QvPMI3Vam0m4vnW/xR4C3p6xU33ojT7yU3p+838nxv3/EcvUuXI+0w5Kn3Y76MHyeQO69fa89FWwYvlqM6iMUlrM42lKANsAl2sfoTjavbejKuVD3Kk+GWOfC4xECaw2uqnj73iH/7OuvUiO5upExqSqOJmOinSMev9Anz0KrVlF7DvYP2VhZwNkGZxq6vR6T8YTZZMRodETSPsZZVbO0kvLO6y+RpClJmlJWNU88+RSTWc3/7R/8I+492OOnv/A5nnzyCb734vfRESRZzMVL18g7i5RVRJJkHNaOzThhZVhyOZHYRIQB0vkwwMN7UFfBxeFMu5FubyhCwUA72BoLJ1W5Ld4rtNSFba1EnD5Psh1OpZQQa8J2m0cFGi1SS0odvoaaD6xzzTXXXD8uet+BVScZqUqQusvqxmV6gyUWl5ZYWByw1O+w2M+JtaSpLLV1zMqK9fVVxpMJZVEwKWZ4KZEqYjge88rrr3HxwiLQUFWHNOYIHS2htaauq9Ojz/CLGYyxJEmKjqJ2i9VQlRWdNKGTdXjy+hUms9cx3rJ/sE+nrjh/+TJLG0ucu3yBrc1NptMxg0EfX61SFDM2NzfpDxZ59tnnuXr1Mo0pWV5d5bmPfoyr164hpaCuZjz2+A20VtR1xXdffIFvf+PPONwpSFTMLJZ044iZsJD1cN4ym40pixnOGqI0o7O8zMHWQ5b6CWsLkkhbysN9sl4HKwXHTc2sVkTdZZavXcU1FVFdEilFlEaIKCb3CU44hIxZXLpMr7fI8XiP8eE+TVXT6XSJk5Qs6xBFMbNCgoppmppydoT1UM8OsdWYqipBeKR2uPYYP81isiQGLynrAiccFkvTFCRJRtU0pNkSKtEkcUJT12iVYa0LtgF5AmKHg8Md6qIkTQR4S1EVCK0pxoc/iuv4L0h4i2uqMJAoiWsHwZPNKScYo9amGLKBrt24BT6qbzd20gm85SQ91SIGWk9sSFnhmhpcWxMqAjnpFJv0Ho4qgHfmtDXLNbYdeA0eibUOIdqwkLU4G4JgqPZLejB1sFl479ttawR2xnB3yP/7y9/n3eGE52+eQSvYPJhyNGnoZ46VpS7ae7r9hNFkygTNO7sjpiR0+w0bUYe8t8xCN6MuZxztbDHo99nd3aGsKorplE6acLS/T+McB6Mx3335Nt9/7V2KWcmXv/wVvv5n30JHmm4n5eLlszipOHdRo3XGtByxu7PPY1c/wkvvvkUmDSsbC3hF8JJaFzyqtJaO9vlzbVhKnGyv8cHGoWj7dVvO6imD1p2+qF48wl15IcMm2pnWtypOt+tCqtMSBtfSBdR7bzjmmmuuueb6QPW+A2ueddk73OPBg/ukvZw0BWFjEpHijGB3b4SpG6IoQStBURQUZYFtDKnSyESx+3CLrc0H3Hr1FfZ3N7lybhXvDZmPOd9fI0p7RELgfI2TAm9D+ELrCO0esSe1ijB4CtMwKj2DTsYTNy9Tm4KDo4KtrX2qWcnx3h5LCysMltfxq2uM8g4rq2tkcUynbV2aTaesrqwwGPSJk4inP/whlpaWwvGxEEhSKlERRRGdTo9PffonufPOHR7ee5eHD++inWOtm1IfH5AsrGKEp/QGiyfKMxbOnKNyBoVgvPMQnCFSEucMxgp81GHh3Dn0YBGlFYiaenKEsAkilNszWLxEr7/KrCwo6xlxFFOUY6azI5Jc0R8skiSdwKZFoNHEJg/+ViUoyjGzYkqcJKTJAM0C02LCzI1xaLTuk6U5sYxx3pPQxSuDs5Y8jkhija8zVjqrXL14jUG3x6wcs/n2Q2pZUFvTDhQWScQJWNQiWBqsYLVh5gpm9fhHcBn/RT1qNQKMC4+1BdJ753GEzRq8N+wUvh/kCWi+fdtJXus9YahHpIH3BKSMwbk6fKqT4+UWj+XFo4AR3uHMSdAqeE99XYcNo3FtMYMJj4XgG/eNDxvXNu1+8v1Zb1AG6qrm629s885xwfpyj1g0TGrJqDDMrGDzoGT3uGZ9MWI0qWmwbB0O+e6bmxS1R6eahW7K2fV1Pvr8M3zk2afpr54jTRTNw3vMRscsLa/RWeiTDBYoa8vxtOQLP/N5nn3uI7z21h3Gsxnj8YjVlRWODkPpwP7hN1kYvEF/0ONweMR4NqWwHrN6lt/45jf4teevsbTSQURJqFuV4ftzNGGDKkC2ATVrLCrWYUVN2HgLJSE62bAGvjNtsxjtACulRAoZblBOubjutJYYqdrgXDu4ivC8W+aUgLnmmmuuHxe978C6vfOQaTnmeLjHrduv8PBBSq87IMt64Dyj8YjD4xHdziKdLKEqp1TlBB1pNtbPk6cdxuMdmumQ2fgI01RMJlOyRBKpDC8aqqagOHxAp7eIxVGVRQudtwEkaRvSTJOlCzivcNYwKyzdjqKz0Ofa1fOUr94mjiWjyYhjUTNe6PPG0SELy6ssLy4hBOSdnIWFPml7pNnpdlldXSPLO3Q63XZYlaeQ8iiKWlYmJGnOU08/y3de+AZlWRLJiOyJx6kO9hDDIVGnQ9rvoZIEYx1Hk5JxLRnLhCrvstDrknS6kGTk/QWmVU3VVIwO7qOlRCuDjiPy3gJ4h3EF0/KQ48kBlsDSnM72QXqMqyHNmE7G2OE2eaeLEeH4uq4NcSTwZY2tPYPuEhsbV8nTDnEUYazBCktZlZRVGRBNjaMxFcNihBU1TT2j1BOMMzjf48qFS6wsLKFQiMSjZURpJ1gfbi5kC3sXQoHSeAUikRTVhGE5pK7rH8mF/Od1MkRKIcI2zrlHg6gKx72uDUSdSJykzJV8NJzaUBeKkj/srTxhiL7n1DhcOydfPxzxYx/Vhp6wRIWxbRuWx2PBGnxZBJqBDXxiXGu3UALbrmy99+2GkNOjbOctwmheuLXLP3vxLgv9hMsbfXTk8HWDVqpFNcG9zSOGM81k6oKvV8XoJGDjrI+4dP4SP/WTH8PheemlV1gY9FgZdNk/HqNcw5XFPmnWYe9oyHdefIV7D7f4uZ//Ak88/hhPPf0Rtvf3+P/8xj/ny3/wJ3gvOXtujfOXLvP0hz/E2uoa333xRbx4BYPk7JWr7O0d86WXb/OLN8+xsqwQMbgkwnqP9K3H+CQIJ8INhzdtQQI+PPfOIWzr3229qNK3z9d7t61wWqkrhAghtvbm5aSoQASTMb42p/aCueaaa665fjz0/pYA5ZDSBiYkISBiTn8RNNRNRd00lE2D1JKiqrDG4hBYH/yBUsiWMmMwWIxqcFGK1RFl01CbmkjDaFoSK01T1lgrSKI8DI0OcCXT0TZR1KOfdxBKomXKZDZmsLTK2pkhR+MJeR6RphHV9IDGSpytqJuS/tIqD+4fMDzq0h8MWFpZpbswQLbtWDqKAsao9TpKGfyZdVURxR4hIq7fuMmZc5f506/+Ee/eecCbt97hr/zs5zm/vEKadwJzsqyZTWd889svsLO7z3A0YWnQ5VJ/kZSMQa5xqcXbMWkMvUGf/YMhs6om1xGJ1KRpQj01CAuRjgLKR0XhWFMLOkkfawsa0RBFjqLcpRFQ1RZrLHkac+Pah7nx2PP0shUkEUmWBgZuY/AWrKkBc+rxQwCRQuuYYjrBmYralHzvpVfwzjIZHaN1hvMGIQRNUSM7OpAB2uCL8gQWqXccTPaYNUdYb2nKD6Y4QHkRMGhSYZv6EctThgFQnqT5W+SUCJT6lg0s2qasJlwSrZdUtEEt0fpbvXfhyN57tNItKjR4J/HgcOBM+zlEe3xvobE404C3OO9wdQlVgaubkxKrsEVsQ1mnXlsBXimEF6eeW+csBweO3/nOO+xMHNeXE3aOh0Qq5mhaM6mCn9M4xc5wRpwvcXtzn91xOBZPNMQq5vK5ATdubDCtxqi4wyc/9RnGwyPevvUaW/e2ONjZ49K1x+kseLa2dnjppVdZP3uJV15/i++/9BrXr13meDIh1TDo9yhq2Nw5ZPPffIU797b4lV/+eS6cv4iWms2tbRZXBnzis5/iwZvL/Okr3+FXej2iSIHxSNn+seQsDsfpSwenfmMU4GUgLZiTGw8fbi6kaNP/EqQKwTnn4YRl64PlA6WCZ1a8p8yhDdC9N9A211xzzTXXB6/3HVg9JVI5krhDHKVEKiGJUiIVYbxHqShwSRVoqYiVoLGaOM5CA5PwCC+pqpC8TrKc/dk+IxcDBucgdpKlboyzM4oJJMkKq8vroelKBg+hdzWzekrjauqqxgFEkk68gqLm0qWLOGMZjSd0Ox2K6YwHD7bY390jGyxjeIv9gyM2zp7h6Q9/iNo6lEpJophOnoWhwcvT9LUxFmNsy+80iEiT9/pcv/EUX/vqV2mKmp3tHX7jn/0WN5+4waVLl4iiiIOjYyZFxf2HmwyHYwaDAReuXMbaCq0tkRKoCJbWenjj2B8e43uebtIn0TkyEdSUuEiQ6gwhFVoqkAJjqzCoMqOqZgHMrzVVUZNnXSKtSGKFFobjh0eUSxNURyJkwmTkqeuSpqmwTcWjrnWB8wKpI+IkRemIpgncViEErgGjKkYjQ7crwTfMqpLD4YiNhSUgDFHWGaSoSaJQHGGlQ2hPJBR5vvAjuIz/olwburHGtEGndrtGwEMFb+kJDtW32/WTD243nyfDI+3AI0Jl68nzJ9779VzATzljUYjWxxoG03BaLYMv1jTBm2qa8P+tw5saW5XQWHBhQAZOA2JKBfPqSQNXqIANw3ZZl3zt9piXdkqSSLA7LDDG0e1aUi3D4Csko9JhXYEQR5SVYdCJWF1I2VjKufnYJZ584jG8r3jpxVfY3Cm59fY9/qu//b/g4pXz/OmX/5B3bt3jcFLRqyybe0e8c3+LpNtneTXn/JkzrG+sc7H7OBcuX+GTnxpx7/42f/wn3+Lll99hd3ufK5fO0+vm5FlK0zTMJhNiL9CdnDu15NXNIc9evwDTAq/cI8/ve7bTp6E2QMUSlMNah1QqVOPiHx3rSwkiDKDvrW+FR8PpIyxvQGCF10yEkrPW0jHXXHPNNdePh953YD2qNqkbgRUd9vbHNM0haXpMJ++iFKGSta7CZlFPKIshpm7QOuL4+Bjh4WB/m9F0TBxHLC4v4HXBqJzgfEMcJTROoRpLN0tprMHKKcLu09iUajYDJYmUZFxNqJ3BmopIx9iJ5NrFZ0ilIEtSvBUcjYfUZUVVVcRxhBeWo70d9o/GTEvDdDpDSsXRwSHlZIqzNUtLS+R5TuUdiVYtqcCfHgmXZUnkFU5FfPrTn+b3/vWX2Hr4EK0EWgoODw8ZDofkec7O7gEWxWBxmd3qiMWFBfI0QUeKbifCqYaZqUjjiMPJAWM7JU4zag2Nr5k2gqoqEB5qMUUTkUY5RVMxKcYIHLHTeCmoRU2soE48Vpfkuo/1GtMYynHB17/2TTq9jG6nTyfPSdLQbuXrGtMeSUNbU6o1OkpQWqGUJElSEJq6rvEIptMZWWeAEopeb4DdsyjfYppwKG1RwoTiB6cpraERFVJ6fOsH/FHrBD4vpWwrT8N4ouQjnNVpy5EQ2LBuDn5J604buh5t5FxY4mn1nkamH07liNPj6EAJcLYJla8tDgvnMFUB9mRYNQH231oHTmpfnbN4JMZ5hGhrRb15lJr3nH4/949q/vitbbBw81IPi+BwXFMUNUk3Y6WfcjwxHEwNVSOwQrG2MmB9Meczz13jY889zfrGKkZIaitxUtFU7zAd7fIvv/Q7fOYzn2FpacC5s2tIqTHGonB87rMf58knrrGxtkSSZqyeu0zSW2LjokZ6TzWbcePxx/lH/+Nv8dpbt6ibmjt3dimKgrROwMN4MubB1iZrj12j7nU4qGGBCGEsUobBE+ta765HqkBpsDYM9lLrgLeyBiLwSrTVqy0vGh9uGE4asoTE+3BNnL6GbbDOy5MQlgycViWR8fv+8TjXXHPNNdePUO/7J/KwOcLZmO7CGgu9DSbjkt3dHSaTIoRFvKMqCnCeKM5oqgmmMXTyLnGasDBYZGG5R+3HxCphNB7j0pJqMkZHnjRXOOdpIsPMVsSdhNoXSOmpmmOKeoQXgjzLGNuC4/EM2w4BG8sRlSlYXDoDSY4TCrX3kP3d3XYz4oi1xJsKaRu0rXCzIXffepXJ4Q7jwwOauubCxcvkeYcsTWiaJsDXCVsX59xpkthZR1039Hu9wGKtZiiVtY1dJVJKsjxlc3sPHUd8+MNPcfXSWSozIl/OERkUpqAWM8aVZeYLbORRkUdEntlsEo7/I2iMYewalFfUYoZxBisbvPGYUqKTmEZapDL4BCZmioXAsDUV651lItulFjCazRjPZmHbLTxplKCUPk1j60gHm2ZjUR6EE0xdw3Q6oqoqpIpYXFxEKo1SMB1PyaKc86vXOJ5MqH2Fo4JGUBQ1cZxjS4mXEpWAN+LffYH9JUorFdBGwZhKKJ16FJB6BJFvA1onH3jilTzJYZ20p77HEnDaTEX4nCF8ZsCEANUJRsnbBmdqsBZrDBKHbWqkbcKNkbM447HOU9cG40KLnNIK5xy1ccE+i8N5j5ISayzGO4QIzVZ1Y9lY7nDv2HJUgBQNRILp2BLHliyK6GWaYVGTRBEKKIqS8zfP8JEPXeXM2Yt4BHEsSfMFvvhLT3Dm/IvcevsWD+7d4VtK0U0l/W7OrbffIE8kj1/cYKmT4qqS4/09VtfWqSZD4ryHijQ4z87hPq+88gb3H2xy7+4Omw/3uHBxjay7jWks49GYcjrFGMuVy+dZXlrh+PgAgaMnPLKZga3CANmG5GjtRdKHxjGpFDiPNSbcJETqtGrXmAYInt/W+NI6BmTrH3Y4C0jVhrJOaAEaHUd42RYbzDXXXHPN9WOh9x1YbQPGNUhX8NRTT9LJFtjcfMjx8RGT8TGT0ZgkUkynQ4ajGZfPXkAKhZeKhcVlBgtLLC4ucTh6yGw2QgF75g46DV69xhR0swFppDBlBULR6fXbAbHBV+FotbAVThjSBKRIKGaOOIFJcQxcRMURWX+Fvmmoa0tVVswmE6aTMSsrHZT0VEXSHg/WjPa3SSPNwc4yt956g7X1NbSUqEQjlaSuytBR5D3GOZwp8UKT5CHspJVAJAm1cYymU8BTG4NUisXFJZaWlnnqqZtUxQF5pjBqxriZ0rgGlKEqpvS7i0ivKKoxs2LIZDYm0oos6RCrBOdDFa11jiTOibSisgUeS+MtOtYgPFoKFtIutWlQUpGmPWgCjD7RMTrRKKFwtkEIi440Qmq8qdCERqZIJ+T5IASL2uNV5yWFMXRUTpJ2qcqGAktZF4x2j7hy7sMsrZ5lWEw4Hu2zt/2QSTJDR5p4YpCxQEUe6z6YY1Xb1AF31A6TQkiEaj2op+Wq/hT8L7w8fSu0zAMhEEqGQcaHrZyQgZVkrW03dBLhbMBaNSYgk9qbOeEcrq7wpmktAxZvmtOP9T4MqnVjaZx/NCTbcNNSNwatIxrjMG09snMO1za+VqXhpQdj7h9PGNeGo9GUNFJM64Y4TWmsx9mGxhiUEFSmQcoutZtRAy+89C7ffOkeN29cQAjHUWG4ev0JnvnoJ/ns536We3dv8a1vf4eyBB3FlGVojXvr9df5yle/yXRacP7MCmVjeea5j/LkR54n7y0zWFrh4sVr/PW/sYJKInb/77/J7u4+129cZW//EOtEGNTrim6e8OSTTyGdpenmVFVJhOV48y4LKkP78JwhPQKNdT5URHuPsSa0YBmHtTXeyLB1TWO89IDDe9VyW0Og6uQm5uR1lFKBD9gy0ZIEvJQ0xsxDV3PNNddcP0Z634FVKEfdWBKlWFs9h20cg94g/OJ1Da6xaAXGRGgtiLRCSQ06IUoS8rxDnvfIOte49+AthrtHVFQY75BCUzUWKaY4WyKlIE1StPJUZYG3DbptB5oUBR5DpEDLhLgX452nbiqkcCgZvH466dFf9NSNpyxq4khjTMOgP2A8PMYjqK2lajxZp8fR/i7ff/EbPPbYNZILEcdHE6wzDLrdEDYaj9FKE2UZSsfEccyTT97kzVe/i7GWLOtRtAUASocO+l5vgeuP3yDvZjRC0QiDlxWVnYD3aDRpnFMWJc5YCjNi1pTUTYO1EZ1M0xhLJ8koTY3AIUyDsYYoTlBSMZ7N6HRjalMHhqcMdbe+tuRJB2c9VhislSgnQCmUEGgJrhwjlUZ6B0oTxwkq1lghw4bVe6T3DPoLPPHUc7z4ra+SZPvEcYJtGgYLXbo3n6CpCh7eu4uQElOVxD5mpReBdyTJOptH23jXYOwHs6WydY2Ko+ARtcH+AOqHfIniJHDW1pvyHuvAScXniY/yFF3lH1kKRJvePwHvU9dhOFahjcrWNZgm1LvaJniknT3d7gYLQFs+EOiiCKGxtm3ikorG+jDgSk4JAd4FH+ekhpnX5J2cPDEM+jmx1swOxhwfz0gjTRorvJB4BxWwfTgCCd/+/j0Ojyc8+aEn+JMX73J0NGY4qVh54T6//EuGj3z4Bll3wBNPfZi3X38F4wVRHDGZldzb2uGpZ59ldWmJ+w/u0O2vcPvBLl/+2t9nYXmR8xcu8PSHPkxZ1+wf7OK95eHDLd54/R0ePNgFFFGcUc+O+K/+1n/O6vIazhmKbEJdTJlWBbPeIp0kZbKzRVdnSGFBK7RzeOFwwuErg5CibbkK7FvhQt2utWE77azDtuUCJwPoSe2rJNAfBKGlTMjQiuaFQEiJ0nNLwFxzzTXXj4veP3SVNEQyRjhNnvUgkXgngt9RRUQ6oyqmCAm1ESRpBgg6g2UWllbpLyySdnKyJOHgcJfR+E18L4Qn4iyiqhpKM22rXiXNxBKXI3AeLXXrPxT08wGTckxZT1HUdDod4ixjaWmVPE2YDQ+oJgVV0eC9Ikn7LCyvk6Q5QgiOjg6JogwrIgSeMyvLPP7Ek3QSGI3GbN99m6XFhTAw6zT4cqsK78IvxrqssK5ERQmf/vSnubg24OVXXuaFH7xJsbNNXdcIB3GS8tiNx7l67TKT8giRgnUu8BylRPmwWYq0RsSSUXNMVZdEUpF1cprKUE6mpElKY2oaG8oUGl9TVWVoAEu7RFLjGvOoyrZpSEQM1tM0FYmUqBNIejsYKQRNNaU4eptYKxwCqTLqsQKV0Vu7jkoXT2sp4yRhpbeKV4JxPUJUjvtvvYPwgsef+RAikVRHI5YXF1js9fHLfapixvj4mEgPuLMDk3KEdR8UyzKkwp13KFTbXnUClG/h9EKcVrGKE/YT7ZDaDi2eR37RwD11pwGucH1aMAbZHufb1hog8LimwjehsjhUwrbvQ7AkWGOojcW6wG31/oQ+4DFNyGBpDUIFykBjbDtXOwSSg0lN2l9gYBWDiSTqZCz0UnqLC8yKmu29IXVVUZswiDsvmTUO46E0Q842q/yL3/kq28clSIUxIX3/6tu3uHbxDOfPrmGs5fyZVZSD2XjM7v4+z3z4Q4xGxzjX8BOf/zzf+PbLvPz2Jls7R7i7h3znB3f40r/+OivLS5RNyWRasLK+zHg64pmPPMWLL77K5tYWf+0Xf5JPfOxZ8rSDEjA+0tSRRqgBfm2dyfEByfKAjorQztJMDqn3dvDlNLwuJzYN1bZU4Tm9HfEegUS2ATjVbk9D4EqE1jIVXuNA4fCBiSwlaNUSBuYb1rnmmmuuHxe978A6KqZhY6Y9Sik6nT5RFJEkKXmeMRgssr+3w2yqmFU1UZKgZMzS8hqLK2vkeU6aJWRRzvLSOkpGKKUBS2WmeBmCEKWxpFFKbQ2FKYh0FDroG1A+DMbGGIpqRqygGVZ4m5Je6NLvLpB4hy0Fh7t7HB8f4z0k3QVE0sNZj5tUiEzijGdj0OE//U9+GZV0efPNlymd5OHmJk89Y5FSMB6NiROFUppIKZIkAaEo64ayLDja3+d4f5sv/NRP8Kt//df4v/73f48fvPoqXiZcuHSJz3z2MzhviZIICoOSAq1zpNE0TYMxNQKPcSVCKBZ6K3gviLREdqAuSzpZilIx1lZEKiYSMamMER4i78iynNrUhDWRIIoU0mpqDE56pAv+PikVUgZgvZaComiIlQo2PxkTJTHS1zhKPAHnFDJGHh0pHmzfRaeCsjbUswmT0QFKJhit2D465tzKOp00IdLQWIMzgkh7rIhRNiLVMXXzwYSuTo6BT4ZVRLs9FifMTkLqX+n2+w6p+/Cx4X2E9KdHyaflAs4hTxmqtNaVGl9Vp+QA5wzO1MEKYOqWlhaGY+c8xlkQEtMEy0Tj7AkdHyXD1tUTAkDWWqQK3lWtBGkcMatqfNTBZClnzlzkiY3zfNZAU9dcunSeWEnquuLOgy3+9Gvf5MHmHr1Zw4PdUWvHdRireP3WNrOyxiHwxpBKwWDQo5g2fPv7b/PdV25zdn2F1994l+XFLk89fgFjarZ3jplOxmxcuMw//edf5v/5T36XaWl47pkb3Lh+jbfefocH2zvcun2PweIiZV1z/+EOH/3UR+h0Onz9z15kdbnHX/vlX2Blca1tmXJtu9UiSocbgeW1s8Q6RtgaW8+wk2MKNOXWA5wpThm6whFeOykQscIrwlG/FJyicUW4eRNaY4VAKI2OE9AaIVUoamgxV1IqtBDYD+janWuuueaa6y/q38NhzZlNDcbXTIsRi4tLREmPKNFkeUYn79Hr9Xjw4B5FWZKkEd3uMmvr5+n1esRxOEaPo4iN9XMMFheoVYqpoS4KvPfEURSOQYlAElihXjCZzZBI0ihnNp3RmAoiQRSnJD5itb/BueXzRFGK6ywzWE+phWUyHbG3f4SMM/CKqiyxVlAbGM8mpKnk1bff5sqZdZ64+TRPZn2ODw9IpUMB3TwjjiSusUgzpSlLpEpJECg35fHVmGuDpyibhsOtNymKKYP+gMefuMmNm0+S5ynT2YzlwQYbK2c5mj5gb3IH40siHWokZ9UErSQdnSOsoLQl1iuUluSRZjFfQUgQVlI3FeDp9HKaugRVoaVn0sxovEcLzbSc4Z1AqZiosW0ZgUJIAmJJeoR0CF8jtUYLjVcZcZRjvSYWFmEqJKDwOKVQcd42Kjk6cYfp9iZ4w+r5q3QHyyysXmZxuY+bHgWOvnVIL4h0RO0VlbEM62MiFf1ILuQ/r8DUDP8uVDjyDSG6cPzuXKj8DHzPR6UAJ42rSsjgb3XutOUqeKvtKRoM7xHeh6G0xWAJLLjQGHa60SUMiScJdfwjXJNUCnky/AKNcVjnMdZhW/wSSISwRFISC8nYJ+yVsHr9Jmceu86HP/oxugtLCDxKxcRpjrPQmJpPffpT/NnX/5jj8Yzf/8qLvPbaPZRQWBeaqk74pf1OzM9+7qM8dvUsW9uH7B9OcErSNAbbGL738i32Do45f/4sopmSdzv89v/0x/zml17ACnjyxiX+1n/xq/zSL/4y3/3+a/zJn/4J+0dH7O2PeOmVEmMtSsU8uL9NWUz59Me/wNlz59FpihAagScVoX82DJgueKwRYCqEjvDWo1bWUFWB3d5CAS7UW4UblEhD61N21gV7kgyfwwmPkBHIUBqhkjisr6MoHP+bthmLgCPDeXxR/Sgu1bnmmmuuuf4D9L4DqykITUiypKqnNE1NmmZ0dZc0ycmyLt16QKc7YHFhieODXc6du8LSyjpJoomiiCiK0EqhNKyvr3F0qGkKi1YxcRJjraUqSkxl8YQq1k6ng9IRzkHlHM7VOF+R6IRutMDG4DLPPv05VpbWgkfRe4RUZPmAxdV1Do+PuX3rDeqa4AftJThVQGZolOXh0RBkhNwf0+8PuHb5Akv9DkLHSCmx0yPE8W32j48Y2pjGCJpyhmtKJpMhcaQpmobtwzF5t8/nn/4Il64+Rn+wiLWeNPakUUqaJmTpEywunGX3+DajcptZdYx3MVncoRtnVGWJQlJ5E5iwtWE4HlHh8C4cLZd1wUzUVEWBcJ486VC6Bust2khs7XHO0+1qmsoS5QlSCpSUYYMoBEIE1qhSEUqEX+7h1DOUM3hbc5J7Fz4Mqju7u6Q6o55NsbMJWZZw5tI1+ksXuXL5KrIYUoqQujamHf50hK9rsizHp8vEcfojuZD/XRJChEpOIVBa495TryqEOD3ud9aerOI4+fsJDqsdm3DWgbVIa9p504ehvmWE+pYMIHzwT7Yn+G3AKgyr1lmUUhhjw/+3PjRkhb4whJQ4a8IQFdoMqCsbvMAeamc5alIG129y85OfYm19g8HiCrqzCLRH5FIhY00iBnz005/n8pUr7O3e4/JjN/g//1/+AXu7R9Re4JEkCiIpuXBujSdunGVtdZkv/tzPsrC0jhWaf/pPf4s/+ZM/Y3lpnTdv3+PPXnydG5cWiQvDzs6U//rv/E1+4Rd+lgvnztNfXkQCn/vpL3D9yZu8ffs1vva1F3j19Vt459ne2uWtt26TpTFf+JmfIE0zvNYIEQMnx/aOwAQIwUHhwfkGIQRVUzMRCrW0jh1PoJwGb6sA6x3KOrwMNyiqDQ9aH/bpURTjUXgpUFGEkArnBUrodqYNODJrDMJajPMoPbcEzDXXXHP9uOj9KQFlQ5amIfEsBcYYqqoiSRLSLCaKNU0Tk+YZvW6X2fpZsjwnzXMirYnjGK11wPU0gjzLaaoaVznybkaiEipTU9qCOJEtqsfgG4OMIkQkkIRhLE+7ZGrA80/9LE9f+ShJnDEbj1FKUs4meCDvdFhcOUP6cJPd7S22tvfRacby6iLrF3sMuhlKeIbTEWfX1/DeMR4eEcXXiJIUIRSmrhHlkO13fsDtkWDmM2ScgynI0xTVHTCdDmksiHTARz/2CZZW1+j2F0jTnKKYsb+3xfTYsL5xhjTvM1i4wLm187x+90Xub/+ALMrYWL6AMxWzcsLSwjqzekxZjKnKEmNgYWmJWVlQW8usKWlqGyph4xynorB4ahyYsKWLE0lRzeiLDlolKCVRSqNkYFUqYdA6RhGjlcBJEMIgRQjKWWzLovd4U/HWqz/gaG+LPIXtzbtMpwX95TP0lzdI05xemjIa7WNMSF5PJzOcbYi0ophWmEog0oRpUfxoruQ/J+9MG7xpBzgVtneh3lSepvRlW89Je9Nz6ln1bQuWD0l7WpanbzenUp4Ep0wIUtkG35gQwvKuxYi5E37WiW0WKQWNOYHYu3DToVs7gvV4L1qrAig0ZWXwQpAkAJ4m6XLu5lOsXHuCs2cv0FtYROgIKSQySsOGUoj25s+h44zVC9dZWNlgZeUcD+5v8lu/83u8/e4ekVJsLHVQNPzsT3yEp596go888xyLS2cQSoDM+OVf+Tlu373D9t1d0jhma3ufa+eXePapJ/m1v/lf0ulmNM5glUDHijQd4BrHxupZqrpi4+I2jQdbel556XWOjsY8/cRVbly/1ib0HSjR8lCj9vlyrafY422w0DhTMzo+YHtnk3dvvU2vMTzZ6xApgbCg0hgZadASGemAMLPBoiG1RsgIqVTY1EqFUALhHMp7TN2E19GGdjEhJF4SfK5zzTXXXHP9WOh9B9ZuP0bGMc3Eo6TGWUdDjXOWOI2JdEQaJWQiw3ZS+r0uHo+OIxKdonWAIvq6YjIZs/ngAVmccP7MWazzzIopSgg6WYaOBcZavDckSYajpqpqEqWJoxgsLPbO89T1T9BPFphMDvDOMpyMKIqCpq44PD6kqh11bamrhsODfYhSdvb3ePNN8NIw6PX42Ic/wkefeAKtNErFpHkfjwapkdpwPBvyyuYxB3KZNPL0kxYqryUqSUmkQBvPWBgW84i80yXPO0RxTGNrHjy4y2I3J4pjViNFNXMM4nUun/kwx6NNZvUhVVHR6aUsLq0QiYTaTYnQJOkCVWFIpManmtlkimmPN71VmBqqcorQmlimCBxlXdJPetRNhU4ilNYoGXy4sg2eKKkQsvW1KgkyIopDejywLJuT8iSODg956bvfY3l9lb2dTUaTQ6yMOXflBl4LnClQLdBeCoHzjk6ng2lqnG1YWFhmeXqGW7ubOPHBHKs651Aq+FgdnA6oJ7B4CIO+D5hWvAsb0BOckZQSJXSLozpZwIUNtGyHqZNhlDZwFTb9AlwLo+dkUA1ebWPMaRHBaeCLRyB75x0udN22zVoepcJw3XjJcGaopOLBy7fZ/bOX6S8u89TTT3D+wnluPPFhzl+6hoxiPOGb0ifhMqnQ3UWWleQ///VfJ8m6/Hf//T+kLirWl3M+8ZGrfOb5m3zkI8+Qdbs8fPgu07JARhnG1Fy6eJ5337xD1ukzGk9wztBJJM1kj+EsfO44z7GlY1gcEEcRO9vb6CRjbW2DNE3Y3NnHK08nj/noR66TxRHW2nbbGUJTQsrWhhIqnbEGZxrqaspkeszixnnWz19i9cwFXv7aV9kajri8ugDaI5MYK0N4UyjZ+obtKV/XnxRGOIeOk9DOJmVbFOLQSuNES5NwDhFF7eZ7rrnmmmuuHwe978AqMwXCE0U6pPbbjnPrHJUX2GABI44lSRwhknC0J5VGa41wnrqqaaYzpuMxo/EI1ReUpgKpcNqihSB1EU5ajK3ReYSMJXUTjkWLugAzIybl0tnr9DoD6rJkPB6j2gGjqmvKsuBgd5vZrGR/d4eyqqmqhtm4xAuJFg6hFM3YcOUXzrO6OAitPWkHrTS2KlFpjjUND+/f47BJiTJFN0+JkhgdddFxghAKjSTzEwqmTMXglOkppSTPusRJTm08ZV1TlA114xDqkGzQQeseS7nCmQpBRZZoqmqM9Q1SJRRVw2RW0sgG6yekiSJN+kymBUIKOpFmMhsiXIQSOUhBv9djebBGr9MjcT0QINEBri4IOCtnEVGM8MHf6qVGCg/eYEXYCILDC83+/gGbD99lNNmjmAxxHpZWz3Dm3DniTp9elhIpRZwm1IVCC4lp2nYoIYkjgRIypPRd85d8Cf/bdXLc78NZ/KM6zrZrXhBwSIGB5DmJYukTlJFUWNeE/962ZZ0wXEHgnA1H9yf8VBdCP16AjBTOvsdOICXetwUUPmw+AZQKP18hCOXxDprG0pgQgEsihRc+BK5ERJR3eGt/zEv3j0nTjLK0HB5NqKqvc/Hyn/DLv/IrPP/Jn0CnHTwBZcZ7BnSV9rhw9XH+xn/2P+OFF7/H6y+/GR6PF4g459bdB8ymr7OyusHVa0/TWViiMYY47nK8f8S/+JdfwZiE4WjG7sERxF1GU4NlkytXr3HlWo8s6rC7t8fv/cGXWV5ZprO4wHPPP8XmvS8znXqErckigfAWEIg2oX/CwBVhdQ2A8zY8zyj6Sxt40zAZjVhd2+BTP/UF7n3jK+G1iTxet6+rkjgRqmy9DzclKo6xeJQKDVYWj9Y61PcKgfDh9UFHeBGqXGUcMTcEzDXXXHP9+Oh9B9ZO2mM4mpCKpK38CQpd7Bbjw2auriRKCeI4QuvolClZliXVrGRWTHDWYhqLMTYcP0uPEyB03Ca5KzLVwQmLFxDrGCU1IglQfGkFvU6fclYxGw95cO8djGlIkgxrPTvbOwyHEybjKbNZwd7+IUhJlunQ0iTCIJ0lUbAQ1CW9vIvudDBVSS2AuqKejdjZ2cKbGZoE34COPb04QccKYWp8ZChnFdZUWF9Rl1OUavE5KuLSxUvcvvUWcjSiqkoePtzkueeeZ5mz5Kxi6hlVNW29pxUeHWo6qXGuQShDVTnSOKOTZOAEcVfgpSMWkkiusLxwmeXFq5w/+xirK5fod1eIk4R333qDt77/XaQUYQiTijCOKaKki/cFQjpC/kuCSoEGj0IIjfeCo+MDmnrC9GgWSgV6Kzzx5LN4I2iGJVevX6DX7SFMRTU5pLH1qRdUSkkqNYM8Z6mXY046Tn/kkjgXEt9eiEfd8aeVnKG+1bvw3xDvqXAVIlShinAsLHyLQWorV0/T6ULivAUkQofqW3AIHxqTkMFTiQueTB2F9q1ESDwS68Lm3jSuPX4O15COFKG3zNFYE7y31rG5d8jmviNTns9+7HE+/blPs37xMXb2hty9v8m//O1/w727D/mFv/qrdAerYRBr7QGCgM5SccaFi9f4u//r/5Y/+L3f4/f/pz/gD77+Km/e2efTn3ian/78J1ldWUYKwWQ4wuNYXVrg13/9F3n79l3u39tGxhnf+sGbfOXv/yY720MEmoXFAX/1r/4Vfv0/+xv0F7osLy3x4ne+y9XHL/LsMze4+9YdXn/rNtOpZWNtDSEUMorCsO5MCEghOekQ886E8JoQxHkPW07Y33nAqy+/TDGZ0uv2WFxcRNRTnKhPQ21CaYwL/m8pwxBq24IML2R70iCwNgTjpBDIKMIJiYo0TtrAbw0Rth/5VTvXXHPNNde/Xe87sFZlQRxp8jjFNGFT9ohJaVu/nse0R6VVEcIOSiviKMIZg2nrTvNOxrnz57g3eUjjG3AeE/ZAJElGU5jTisyqrumkHZSQmEogncQ1FZsP3qUvVqimBd/65tdZWl5idXWd8ajg1Vdfo65Kjo6OuX37XZyXnL9wicGgT5qmKCmZVTXVbEKU9Zj4DuPjgqxRdHsOL2poRjSTfYbTIvhuvQMpqOuC0UgSxRYJ1N7gyGhSzeHuDlE8ZcEZ4jhGeM+Fixcw1vDdF77NbDrh/v37SCG4cGlMVZQ03hMlC0ipEFiauiIX60gpGChPE9U4UVOXJTFh2I5ljVee9ZVLXL/+Cc6efZxeZxEhwTpDZRzOSTrZCr3uIr4eIySgVeieV5ok6ZAsrJApcMZiJQgvwVc0LsJ5B14wmcxwVlLVlmQ551Of/1me/MjzDA+GSKGI0ozZbEbTNOEoVSnsaYjIIURMknRRUQJ8QGigk2NhWmLAydv//PwcLt3w31vLgFLq9DhYnFS5ijBMCinbggGJ9Q4hZdueFDaDUghwLQjAt5Wv4pElQSmJwGGsPX0w1hmUjLDOBu8rrbUAiOMI4zyVN9RSUNuKyxsrXL+4xkovI1eWp25c5pkPf4gvfvHnGBdTqtmMLJkhouy0KOE0JNZuNT/16c/y2LWrpHmP/8f/8I95/e1tvJdsrC7S7Q8Yjiv+9Fsv8O6d+2xu7jJY6LC+scZCN+Vnf/pzLCyv8qt//dcwTc3de/f4o698h3/yG1/iX/2rL/PY41fIujl33rkTblqrmqXFRfCeTh5x7uwZdBQjlcR7d1oTHF4IC94GXJg1SKkCmcHUuKZm0O0wOjjg5XfvkAvPpy+dZZDr4FFWoaVKtUUA3juk0qF+VUfhbfi2ccyitcJJAZFGSn36XLn246SaD6xzzTXXXD8uet+Bta5LhIyo/Zi6Kd/Twx4A3d65tpc7wOmFEO3wIvH2ZFsVGmNinSKkpnQNSZRR2CIcVduSupFYr6grSxxnCBSFM0hp0CIl8gnLg0u4qeQHL77I0cERL7/0OitLC4ynL2As3L17n7ouSdOMjY0NnlxeZmFhAaWCH9FYw2xWYJuajbNnyfoDYrmENRWT8TZVmaJdQ7l7mzhbZJAsEmVdot4CURwRnQRbVEQqPcIZJnu7YchxHrykaRwIT1nVrKxu8O6du2w+eADAvXv3ybsDOnkHJQT1bIJOk8DlrGoirZnVNUop6rrBGIiSPknSwTYGJeDM+jVuPvU83f4idek5KMYI4dthSiLx1GVFmiR41eA84ShURggcEo8QEV5FRGmGVroFsBukcTR1QVkb0BmonDSLuXbjQ1y59hhxlLJxphe8lx5MVdLUDQKBlhIT6EuAoDI1SqXYJmLSfDDFAQ7agcifopJOwkjAqT1AyLD1FOGNp9vT049pg1hSSbwIw6qzYf8mhcTJUExwcv23y9sw3LY3YLKt+wxYLRGOrn1ApyEEWp+UPIj2cYfSjKYxWONwHqpKcHA0Y6Hb4Rd/5tNceeI6cZzQFAWH1Ral2WRxbYO11XVU3DkdpOV7SAjh+2pJECpi/cxF/tbf/i8pigl/+OWvUBjLN7/3Nq/c3uHNt+7y/ZfeoG4cpgHra564ts7/4X//v+Tjn/4MSW8FoRQ0NR995qN8/vM/yRtv3+J3fuf3+e3f/jdYD1VZ8urLb7G0tIT3jjTNuXljgysXzqPiFtbPSWFD2Gp7b1rvahVqV2UUeLpKs7Byht5ghbPnr7K9u8PR9jaTakK/tiAcUsdY64l0azM4Cdm1SDPdUiJoX1epY4QK9b3C2uCp1QqPQgqw9RxrNddcc83146J/z8BaIaQjEjVa60ALEGHrcApS/3P/7t7DnpRStr/cJUJIJtMpxnq6nUU0PWxdgPNMJhVOCqSOqMwM4UEXKb10mfXuFZa6K2jXwTcCHRe4ATzzzHMUVUUyK4jimOs3niRS4Xi3rmvG4zHgybIMay3WW/rdLnjLoN9DeBtanbxlPBoSmRmJNxTFFC9iZBQj4wypE7SO8T5sZDwubH592ISZxmFsRVFUxFmNJ3zPcRTxzDPPcvnSFZIkIY5jxqMxZVkRaU0UaYZVFbaUOtSxOu8DPl0p4jY5XhYF1hh0nNBUDXVVsn9wcDqECBHS7dJLvKsZDUMlKiKFyFGXDVjI8hyLCTB7BdbIlg7gWw6pRwrF8eiYrNvnxpNPs9Dvs7S2jmkM5WxGFGWnYaGj432acko/C/gx4RVYjXeOpjFEUUKcZExnk/+Il+t/uGQbuJKiDTS1NajuhAbQ+k79oxqBR5s+Eby/J1xW6xwIidQxrqlPDthP25QctqUNQGB+AkiEUigR46wJhQPqUeBKCkhijbEO78Om0ROCYl6+B4WlAg82i2GQSx67uE6vm6GVwnrB66+9yZ2HmxhvuXDpPM88+wlWz1wj7vRajyycPNy/ICFZWz3L/+bv/u8YHgz53kuv8ft//B0m0xnOK7xpWF1ZINISaxy/+vM/zed/8tPEeYfZ6ABbG7qdDtbC5v275Frx3/ydv8nFs2f40pd+j1ffuMVkUhPHBbNyQifr8fQTV+l0s/Acnhzjn1TcOhsA/qbCmxovBFpE7UuiMQhq61lYXSfOOqwurTC6d4d6b5PUGUQUIRXQNpEhZWs7CDcOxoWNuBQSH4HxFqoT1q1v8bgxXmuaugb7QbW0zTXXXHPN9ef1vgNrUU6Iog5eg9bRaQf6aaDlhFP55/56LzYobF891lusdaTk1IVBRTELeYfh+IjaTJFExDqmmwxYyFY4079CRw6oixo/ASsCp1UozeLSCnmnB1KDINRPlgXTyRhjTKhujeMAh3eO2WyGw6G1Is+65HkeBmspQj1mMcEW21TVDJevo+IEmXTQSYZSAu8MWgqEd6FeUwiksAgcs1lBbcLYN5nN6HX71HXN/v4Bw+NjrLXU7eY00hotgsP3ZDtdtUNrkmY0xpxil5IkQUrJaDRiaXERpSPu3H6Lra2HfPgjn2D9zNlAcLAm+IhrC75hNDpANBO0igBJlqUMRxN2HxzR7w1YHWShXleAPk1Rt7Wl7Y2H1pp8eZk0y8jynNFwwnBU0u0voNpEuzE1DsekLCmnE5yp27BLYF2Ohw0Xzj7BpBr+pV/E/zadNF1JKfFSIGxorAru0HbrKNu/XLt3fS+Xta1ydcaEgJZou+ijcPOFaUKgTPqwjXOh1x4v8UTBP+kt3jRhm+sd1jRhmBICKf3pSUWkFNaHwThAGwTWBk+rNcHTrZTi7OoSFy+dAyx7+/u88Mo7fPfVt0izLh/7xPOcP3cFZz3eNuFxp+lp4OoEik/LfD2V1PSXV/i5X/p57m9tM5uWrK4ssrDQZTKacunsEtcfv8TF8+t84ee+SG9wBqFShKz4kz/5Musb57n5+A2WFpf5V7/7uyyvrPDTP/MZ1teX+If/+J/z2uv3SPKIw6EjljOef+YmcZIjVWAe+xNYvw+FC8I5fFPTlFOivIttakxZ8PDBPb7xwgu8885d+r0+l86e5akb1+murDHb2yFzLhAGvMd6AzpCRhqVpjRl+PnzIny9AAsweOdQQtA0FcKDkBpPhHAOLVX7Gsw111xzzfXjoPcPXXU7eKeRUrW1qqrdRtByK3+4//y9QytwOjCeWAayJKMrekzKI4w1TJyh9CW1LVjN1ri48jjnFi+gSCgLgzHglCaOE2aTEZ1Ou5kRgk63S1XXuKbBNyXYhjiOQ8imNQ669vg2jmOiJDTlWGuJkxilVIsVEjTVlKaYIpFERAEJFafESYZwIXwjhcTaBinDqaq1oXbz1lu3mNU1aZYxHI1J4hQhBINBn6KocC58fSEEsdbE3Q5aCqIoVEImSULTNJRVTWManHPUdUOapiRJSqfTpaobNu/eZTKdoLTi7TdeJoozLl19gqefeZazFy6QdjrYpmLfa/b2Nul3JFm2hI4sXd0w9SWvvnSXxsOZs2ucO3eelcVACvDWIPGolrWbZSngKJuGo+MR+wfHFLXh7LnzrG9s0O106PU3WjuEpewVjIYjEILheMbWwUOE73Dj7Me5svLYX+oF/O+SaPFdwa4hEFKBVKcNVSc98afX88nHCdl6Tu0jX2PrWfX4sGlVSQgHeR/oAO1mVLTtWUqFOlxrw1AkpMQbg9SACygl2doFtLdY62msQYoAy5etf7WuG05WpN57ppMxb9x+l3R3n62J4Fsv3eLCuTP82q/9p1y5cok0y1BJGh6jlHhvEShE6C/7oWKEE3mCTeELX/h57rx7j7/33/2/SCKNKWc8fnmZX/4rn+Pc+XWuXL3BwvplhqMh3u6SdxboDZb5e3//f+Dnv/hFfuEXv8j62jn+2T//5zgv+chzH+K5N9/ijTcfhnIKqfjMp57i4x/7GEl3GRGneKFaz68NIStrMHVBOT4iUgrRVNx/+IDpeEySRGws9nFnVpnNSl566QfsbD/gmRuPE7vAAqa0oEC0z4OQYOv2ubYWoQmsVRf4zh5/So9wJiC0VJIgTvgAcw/rXHPNNdePjd53YPUqQXiPbltjTniR0AZZ2oEUHoWxTobX00EWTyMdwnl0lGAawagaYQpD1u2w1LvA9YWP0xNLxDpiuj9FyoooTU7qhfCyIU4jqrrGNgapJHmek6YpRimqpiHWMdqFrx9IBYFgAFCUJZUxTMcT8lQRx2H7CAJrHbUR1HXglnZljPIibNCqWQCTyziEy4wjS3RIjqOJkNRlxaQwNC4i0hl53qHX7ZIkCQsDRRRFeB8wOkpJrDM0TUUk4tPj9aZpyNKE2EXEccxoNKIxgd15fDzk4cMHpxD8WVGwu7XJ0eERdfNvkEqxtLrG1auPcfOJJ7l+/QZXb36GbjcLg48tqcqCTn/G0tIyr7/9Lm+/9TZvvfUu/V6PlZVl1tZWSZKERCuMdaRJQhQpRuMJk+mYsm6YzWp29/ZRUUSaZ6wsrzEcHhPHCVGkWejmONvwYHvIg+1dzpw9y2Rasvnu3b+0i/f9JLRGKBW81B4cHhnp06HStZts59yjsoC2MQl/QgogMEKFbPeSoe7VQ9smleCtbY+gHQjX2glOSAQSGcWhQlSGI3brPUKr9tK2bcFD+PqmbWUyNhA0okjTWB9mLBcCcrfu7nBY7vP6vSFZN+Zzn/0Ey4tdDvY32d/f5+DwgPOXrnH+4lXyhSXyrI9SKTKJce0gJvwjwqhoUWRKR/zMz/wk3/zG19h5sMXGWpdLF1ZxtuHSpasMFpeph/t866t/ys7hkM//xOe5eukSZzbO8g//0W+R5ik3b95A6Q7/7Lf+NWtnNjh7doO8kzObFdy8fo7/1X/zP2d5+SI2yhAiQrU1tc5ZcI6mLhkf7jA52mNpYYmHm/e4c/cdrl+/ycJgmaXBEh97TpHECdbCaDLizluvM5wVbGQRrqqI8iS0Z0UR3jRQ1qgkxikRBlIR6nW9JwykIrxsEoHQGm8d1pkWkTUfWOeaa665flz0vgOrM5pURaRxRtP2p58GON5Tb3kKZIcf+udJEEV7icWhIs+sHOFEzfVzT3K2cwVfK3SUYBvP8PgIKRVpFofSGWtC8loKpIywStBf6LaBlIZiNsFaQ5plAFjTetdE2Kg1PrxNJzk6sdRlgWy5spHW4XRWSoraY2WGlIrEhxCMEx6Jo6ka8CAiTTGb0kkXgs9UCnq9Hk8++QQHkxoVJWgJSRIG0SSJAYFph+ZwDOnQOgyl3odhP0mS0+P/4XDIdDIhTVOayYx33nmHo6Mj4ihsfRvT8O677zI8OsJaE7ZKQjAaj3nn9i3++A//kF6vT68/oNPtsLS0yOr6Omtr66yurbK8tMRHn/0YP/HZLjpOA9FBCbTSpGmKtRUv/eBFrJFUVUEUKeqmxtQVTVMwK0qsU7h9wfh4wnQyYTAYYI1hUziEhLKCLNZI74gTzfLKyn/sa/Y/SEK3vfTtsCnbClklVQgMnvBJW9yVkhJnQ4jMe48ItCqECr7cEAAKCXTvLDJKQgBLNTgrWw6rRakY70K9p5QKb8WjoI8PP3DOhzS89x6vw4CsXCh4aJxBhQkaYz1NA7bxKOURSrB1UPDK1pSitHz6xllef/11vv3t77CxvsDiYp9zFy6yMFhga+shK41BLTqUilFNju4O2jQY4ZoGTs7knXdcPH+RX/35n+Jw/z6J1kQSrpw/R7efUc+GuAYuX3mcUfUmR8Mhg8GA5z/+IV5+7RZ//x/8j/yf/o//W5566nF+8zd/n699/QXOnV9jZW0JheVv//rPcfOJJ5BZglIxkkdw/8BbNcwmh7z04tdZW1lhOhrywne/y4effY5Ob5G0u0gvznHOUk+OME1B3unyxJNP85VXXqKMeqEoQYQgoXNNGM+j8LPsnENYcD40k0mtcXhCV0BgNHulwoYdhzMONS8OmGuuueb6sdH7DqyJTkl1gvcNR0c7LPSXT8HqvoWSP/Kphk3ryRHrybDavjNeQKQTHlu7yWL2GfAR3itqX1OVDuMdC4uryEihlCKOYuqqoiimFEXRfi7JcVXjvSdJQ/2oMb7dqmqiSGGMQSlF01jSWEOiGY1GHB8dcLR/yKVza8GPKkXYrAgZUthWIqwnr2uSPEep4EGMlAwMV+9ZHPRCbaRQp61F3W7OuHZESRRYRljiOMU5i22xPEGOJIlQSlNVNaZx9PqdU9vEZDKhrmuyLOPg8JC3b72LMYY0Tel1u2RpwsOHD+nmGXVZULSVp0JITJtaV8IwnR7hvaWpSmbjCQ/u3WmtDyEgJFXbhBWF4JfWqt3+ap566iZPP30THckQBHKeNI4oiiIQBpwHZ8ALpsNDpICza8vMpjO2tnfxKjRqxUoRt3mfsvxgktZSRY+KA9oZ7WSjKrR+RAM4kRAts7SttcK3FAF5Wt9qnWs3kiIA5gWhHU22m1wZYW0DWiN1hKka1GnFqMG4EuHbA/rWAuBbgL2KAo9UCE3tPaYxOOfDNe0aHJ44itg+mDGc1qRRxOGw5NafvsiVc2e4+dhlvvizX2D94iWS/jJepyivAIv3FldbhKlxUQSPDr1bP7VFOIN0ho8++zF+78tbdPKEVFrW1xYwVcG9W3fYOxyxuHqWz3zi45R1w8HREYNeh1/5pZ/iS//iy+zsHHDjieuk2Vf4zgvfx4pnSFPHL/3MT/CFn/4cvf5yQJ1JdVpUgXdga3w1Zm/zHmurK+AdL373ezRlzdmNMwyWV1FpL7ByrUGalOneJg/uPuTCuYsMFhY5PtynP4hRLkWhUE4gfGCpCgL9oa5r6gbSyBN7g6/BSYFO4rahjLCBF+HasGYeupprrrnm+nHR+w6s1tXUjUCrivH0sGWqulBpSTuw4tqh61FHe8DQqNNtq/EO6yGSCVot4gyU1RTvBTpKiDspvSTFVRYZBX/nZDSmqkrqqsQ5h3WWSOkwOBhDUyqqukFpTZZlIU3vGpQMwyTOURQz6rrm6OgIqSOSJGJxcRGl4tar6FCRxiOoqhKBp65iOnnKCb1SyjDEWOfB+vCUidD/bitHJ8vIM0NjQSuJVoK6LjFtxWcU0QauEhpjmE6nCCRpllEUBWVZUtd12O4mKXfv3OPuvXt4IciyjCtXLrPY72PqmiyJGa0s83Bzi4ODfUajUfg6SoUctPA0xnF8fMRYjcmzHKkjdBQRRzFaScCEYbquqOs2REc45r7+2GWcbXDWEGlFUxukgG6Wcu7MeY6OhxyPhiitSOOEuqooyxHeOZYGPUpnEXiSSJEl4chXqfe9xP7SJHUUOLqtx9Rae8pjlSdhLAKaLbzSPlTWnoxyPgyrJ1QBKT3SS6wLdAmhFEJx6mVVUWhXopEgQ8JfiwjhwVsboPW+PY73DmwT0E6NwfsaMAgfUFpKnFTLqmAhkFCXUJU1pXWUjSfSljffecCFM8v8F3/zP+FzP/V58uUNhNZh+yujlugRPLtKV4yPD+guLiFVAt7jWjuDd03w7LqGlZVFFpfXOd65z1pXk8QJw/0hr7z0BqLTYe3SDXZ29rA4KmsoJhPWlgY8efNx+oMunU7G9cev8Pobb7F5f4tf/+u/yi/89E+wtDBAyAQvNAiB8yYEpGyDKafce/NlpsMDkizm3v0H7Gzv8Fd+4ZdZXF6nfQURaIRQqChmceMMsVbs3N8C5/DOE8cxOs/asJmk8o6jwymTouRoNOL3vvoS9x/u8Xf/zl/lxqUlfBXoJ8badqz1ATUW/9v9zXPNNddcc31wen+sla1Jsy7jaUGUpmitQoWic8FX5x3em3a7KrBWtMfMP+z9Um0/t/cNZdWgpSJOuiRpTprnTCYTbN0ghKecVDTtMW2kNE6FlLctGypThbrR1hLQ7eRYaxkeHQafaBRCTHjH1tYWTV1jjCFOEo7HEx7ev8fHn/8IUmik0HhlkDYErMqiRHrDLM1YkgopwlGtdyDVCVzTB3akILQZCehmCXWxQ5R2iSMdNmwuEOuts0RRhLOOoimoaoMQEiE8dV1RFAVahxpbvOCtN9/i+HiIFILFxQWuP/44CwsLuMZglSKNY7IkJcsyVpYGVGWBAIqqYTSZMpkWzGYzeplDaUVRlzRVTTmz4EFHOgw/jaWsm9NjYSEEURSRpQnWNHgfPr6Td/BuQqQU3jVkWUIcLyGERKuYqirJO1m7WfZY6zHOhUE10Zim5vj4+C/nyv33yBNOAZzwITwlwvApIwWceFQDKeJEUupH/mvZguedDz304dw8hA0j2XYg+dPXWgkR8FYtXxTnQieuEOA10ii8jlAIvAs1xK6aQW2D39YLUBJhLcI6OgjKxlA0BiEU1lsaJ5k1DV46jIW6cqwvdHjyiaskaRy8tI0LlbFRRmiOEHgvUDI0QO08vMfa+lkkislwH1z4mYriiKYqGI0OuXT+PP/4q1/l2SvrDA92+PLXXuZf/+GL6CRlf+x5/vkPU9cWKWB5aZnRZEynk/Paa6+xvrbMxvoiWf8pPvOJ5/mZT3+KficP9AilUSehSGsAi69mHG7eY3/3AZES7N/f5vjgkF/65b/KhSuPIVT42RAOkBZrS4Rtwk2HiojjiKYqkXmOGiwSbayhdMJoNOT2zhav3d7mG9+7zUuv3mF3VAEC+U++zNOPrfH8zSt0NCx0cs6sLOClQsQa5eLgJ37PtTHXXHPNNdcHq/cfWAvD/mSPlDUGvRXiKAba9D++DS+c2AIA/A9hrSBsKex7/Kx5p0usg1+0rmsaM0IpQTGd0VQFSilEnLSMy/ZozlqSJGnbhNrHVtfMilk7qGqcsxRFwWg0Ct+YUjTAaDRia2uLg+MjunnG6vJy+LzOIlxorurkGbZpsK6hqaq2bUfivArBC/FoED8Jm7XnwaRpAniqusT7iKZuTu0CaZ7hvKQoCkxjyPM8fM9Ng7WWNE1xzoWwzP4Bs9mMOI64cvUSFy9coK4rTFO1W0JOCQydPKXfPR82cdZgHcyM58HDTfqxwNQFx5OCygQPb9V+TdEOcAeHxwghmM1Kyip4k1faooXQ2vTI5hHsAgodx+Qtz7SpQylBmnQCm9aHxDWyrRt1niTLKGaTkP7+INSWAERJuGGQSocbK0EI+oR3OiUJOO/wyBYcH/4nvMP50GIllMQbixKqxVc5nGlCGEsSeKoChFBtI9YJrskhfFtDrBTe+WC3wKF0ikkcSkT4ug7eaB0hrCWWAq0sTkrGZRNuhIQglgotPXUTfp4++ZiIrZkAAEGzSURBVNyTDLKIZnyMKWZhyI4Sot5yy04OA2ujYhYWFrj19jaj42Munb9IM5vw8MFt1jbW0UozmUxwtkSrgvHRmPWPPcn2w012H26hZMR0VvNvfvePWVxe5vHrFzg+OiKLO6RZTp7lfO/bL3Ht+jk6ieZTn/gMzz3zNFmkkG0TXvDM2nAdeo+tZ+xvvsuDu7cZ9HpMxiP2dvd46skPce7cBVSSIeIUZMtSbUpcMUQ0gU2spKXbi7hy8yor66vEvZymqTk82OKl117hD772Cl/9/l3u701wLvxpYpH80Qtv8J1X7/LqGw9YWlxkJZX8t3/tc0QqtJfJ9pq3bu5hnWuuueb6cdH7c1inFZHUqESTxd3TxLv3HtuGbKwN4Sjn/mL46iQF/0OBLOGpTYOgCmzK2jIpC7yzKAG2afBShq+FON3WGhOOqcuqoq5Dd32wh3qapmE6nVKWFVrrttnKcufOHba2tnDO0c1zPv3Jj9PvddAyDAxCeITwdLOcPM0YHxc0VYXkBCauQekfGuCAdmABpTRpmpDlCdPSUFYl5awmSRKyLMM4z2Q2JWqB5sfHxzR1AwKSJGE4HDIcDinLEoSn2+tw48YNer0upqqItaKpK4pZeeo69C21IYk13jR0+4scjqaYuuSZJx9H2hJjPaPJjCzr0jRN2PI6S5JmvH7rbZIk4fB4SFVWpz7PjTNnWF1ZJU4UzhmUFHjrHz3/TcXJ3YJWJ/gywvshsO0QmMShkjeNIybTGWkc/ce9Yv9DpfRpw5FQug1ghU2wO7lOhWhZvv7U0+mFaIsCWjSWDuxO6wO1IfhaRQhoKY3S4I09pQychhBbn4W0AqxFOAXOYeoGqWPiNMdQoXQnhMA6mkinVNOC2cEe08mESeWpJRw2BbPGMmkaUiUC/slqBh1FKkt27txiaWWDw9GQveNjbj7zUZYHK7iki1JRwFqZGlMXrK9v8OJ3v8lweMClc2fp9bsMj/bDz1cUM50MefWVH3DhzAJ5J8cLwdMffpwrN6+i0pyD45o//sOvkiY/w4Xzq+xuHXI4PKSpxzx25RxNU/Px557nzOoidjZGKIX0aSgJsE0o3JAG15TUsxF7O9t421DMKt65dQfnYG11Ayl1e+PrwFW4ZoqdjTBFgY7DCUgUWXo9Rbd7nrpqePPVV7n11i1ev73Fl7/xOu/ujJhWFosO3GEtMaahsYKytLx+dx95Z4svfvQG5awI2KtoAO0pzr+9bWGuueaaa64PQu87sApT01/MSWREFCWn3drhyNQjrAo1ktbgnQ14Gmg5kq7d7oTiANp9qbOGSMHu9jbGNCRJ2h7je6I4wZiGuqnbLvWAqPIOpPSMRmOkVMRxgnOOopyFIdJ70iTDWsdoNGJ/f5/DgwPKoiTPc65evcpj169z/cp50jgKx5+Nxbo2sKUUS8urVJNDvPPUlaETyRAs42RTFjZEgcfqwuOTgjiO6GY5x+M9qrqmm3WQEqazCY1pSNKU6XhEXdVkaUqkw7Hz/t4eZVVinQXv6fe7nDt7jiSOKGYzmrqiqWuqukYggze3CfaLvJMgpCTt9hlOpnihuXrpEopgu5BRxIKHoqiRSNIkpdfrUTc1Wa9PmrzB8Ps/AOdRePJOzic/8xniNAvoSRsolUKHggRvHdY21FVFkqZorZlOJujWbyxUjJCSSHvqukDJmLquaOoK9xcvqx+JVBSHo2JBW8fa9tZLifRh/SmVxnmBUuF9vLVhID25ORAedDvMmvCaCxmKEbxzqEgBDuMcOJCeljIAdVHgGkc5aTg+GHE0C2G+LIqJ19e5ePUxFheWUToBDxZQeQdjLQc/+B7f/+a3uLezxXg8Zn1jnWjB8eDoDjUqVARrzVIvJxYWX00phgfcevtdPvTJz9BbWsaYCl2OIOniowyiKDgUypJz5y7yjW98lTt3bvHE41cxVcn2wwcI27C9s81rr99mfW2RBpBC0e33WMwGFLUhikrszat8+Xe/zMc+/hzOOybDEec2lohUxMraKufPrCFsDVWFS2usNyinWr+sx7uGajZmNhsznU6oZ1N2djY5Ojrm0sULgWoQacDimxm2KmiKGZOjbTp5l8ZqXDNhdnRANT1me/MBDzeHfPnrr/PCW5vcPywpa4fHtgG60HBmG4uUIPFUDu7sTbi81iGOI6aTGdmggzQNri7xIvrhStu55pprrrk+UL3vwLqw0kNJxUJvmSTJELIlBDiHkB4tFc4Ffql35ofarYJO/r1twFKSw6NjXG3o5Dla69MwjBCCumlatrlkPJ2dNj6F1H9Dt9s9/fxHR6NTq0BVVRweHvBw8yH7+2FblCYJ165d49KlS/T7feI4ot8J2yznLEI6tFAIIiSSpY3z7O8+xApFVdVkHY9oh3ThG4SAKIpOvi3CQG7RStLNU+IoIk4znIVJUaK14nA4QgxHdPOMQS/H4yhmFZPJhAjH4qCPVJLVlRVWVnr0OnkYpK0D0QmbWSEDr1IEAKhoW5UAptOCXBvSfhfnAuYqy3skcU5Z1ix0BAaI4oSyLHHesLDQwfqG2hqsjMj7GX/9V3+RZz/8JNniUmhfakLYLdIRwnuausZWgqKe0bgaqIiUJkoVjZnSyRUkJUJWyKaDKcLAF2pxP5gtlZASFcehnUyK0FalVNvO1lZxConQ6vRGy0cq3Bw5B1bglQq+ZWdOu+mls0gfEuWmMhhrqauauqwxhWNr94it/SHTxvHGnQccN55x4RhOSrJelwvrS9y4YXiuu8SNxfMsLqwTJymp0iAFzjue+6l1Vq/e4NWXf8DWg4ccHuyystxn4+JZ8oU3+PoLr7N5WFJVNbsHE3a2t5FqjyzLGfRzXFPgmxqfDfAqRkVtmYCK6C8sI4Tn4oXLfOfb3yBNNAsLPY6Ojrn/7h2OhiMOhxOuX7/GwvIa+weH1I0n6kiWV9eIRhOaxiP8NQ4ODpFK8vyzz3H39htkWtLRAldNwFuM9JimoipnaGeJvMcjKCZDprMRs2LC5uYmx/v7bO8dMJ5Mefa55+n1ewjhMOUU35RU4yOK4TjcDJkGvONw9z4HW5tMJ1PubB3xxy/c4ttv7HAws1genfCEF9ad3nzi26CcKREoYp0grGR8PGF5qY+xNcpEoMSjqt655pprrrk+cL3vwBpFhkimWFuHHnQeNVk5Z5BStD45j/QBqO+9CxWTLZyd1tsaqttD05RWweNqrW2RS7wHixUGYGGDj9A6FwJYUUTT1MEOIAW9XpeiLNjf2+Ph5kOOjo6oqoooirh+/To3n3gCPCE5rDX9TkI3T06h7t7UbSglDKSuLsm0osGhkwwZ5+isg/cWU5anzVjC2RBqEQ6sQWBZGHToDzsMpzXWNvQ7Kbap6Mia9dUV1lZWWV1eptsNQ2inLRbI8vzUGyuiDNHWqWqlkTIcubsT/59s4fYtpsl78K79hdpSFKyxWBsegzHBS2uqGtM0FEVJUZTs7x9w/fw5ZkfH7Pf2+dQnP8bq+bOIJCdJYuIkwdouVV2FYAsCLSUCz/r5MBR755HC4/wE47Lg71QNziu0WiTRObZxlEWF0vFfzpX775EXBD/oSTubCwUC3hmsCZtqIQOGCydwtaGazDg6HPHg4S7vbB+xN5lijCNBoYSnN+jQ6WbkvZxBr0uapBxXNcYJtrb2eOfBDnce7nEwqllaCdD+Tjfj/NmUde+ZTGfobo7XMcPphP2DHQb9RUSS4oUM16MHpRMuXb7C6sqAw51NivGY8XhIWY7oxgpbzvj6929zOKx48Y27nFvpcu3iWR67fg3qGbbSxGkfHYebPYlrPeECpKLXW+ITH/8M5WzM3Tu3KWYDpmXFw50hB4eHLPY7DPo9DoczNrcPOHtug1ld44oZG+fOkmY5TVMxmsyIkg4f/fjH6EaS1178BmNqZN1HaEG0uEIxmwSPeV0xGx2Td7ocbj9gNJuwf3zIt7/zCqYxbO3u04kEC70uthpRz0J4sSombG0+5PXX32F7f5+NtUXSWOCrCu8aDo4r/vBbt/nmGzscli3x4fSG+WTg/HM3Td5jhcKSMBtNWU81qx2NtRUqTpFCBN/9n0efzTXXXHPN9YHpfQfWjfgqUdqnrHp4r8JReOsLhHZo8q49BhWtf4+WzypaMDiYts1JColSikRHp4D2TqeDtTagq2wAek9ms7aaNMaZhsl4Etqg8jSAvy0cHR1x//59hsMhTRPqUx9//HFu3LjBwsICdVWjlQpbMQGdLCaJ9Wmzj0BhTU3TTKmdx0VdButXGM7GDCvP4YNtLlzQWFOTRPIUU6Wcwdu6rbT0CG/JEgnO0IkUa+sDzm2s0e/m5L0+WXeRpDMgSnKidoBIkiQcLQv1noawk2c9JLsR7y1iaB2W7fucPM+CUMH5Q8Ns+7yHbicH3p6yXo0xNE3Jz9QVTTFjOp3SVDPKYkxtHV44LA0zJD5KcMIH1JIKLV3SO7QPDFHhGgwOZ2ToYXcC4WNAodMYG4Ukuy0+GA6r0BrnCNzPFg3ljAEZISMVbgispR5Oufdwn++99Cav3N3laGaZWhn8x0XFZFLgHEitSBJFJ09ZWehz4dwKG2sL7cZasHDxMk+srrNxZczh4ZgHD7aII8XFCytcu3aBfqfDdFJxeHhEp5uRKEc9HVFOjsjSqKUSKEQL0cdZEh2zsrhAqTV5LNjbrTi3ts7Nq2fY3D3kaLLPna0DjidTvLNsbz7kUqdHshCHtich8KbBiWBzcFIBEukhjlNuPH6T1199hQf3tyiLkvubezRlyXInoxwPefHeNjoOzWaFscTplDhJOBoOWVtbxgvF7TsP2dnbZmV5haaccfdgh063w+LKEnneYWV1jcloSKQU1lmktxzs7GCE5O6dLd56+z55lhArxePnV4lcwexok3I8YjIuuL+1zXdffYfvv3afzd0hZ1b6XL24zqWzyxyPRnzj+2/z8ruHHJY20C3wOAJr9uTn4ORHS7QbXghBsDO54b/+wsf4hY9eQdkRwqR4l5x4gJD6g0GyzTXXXHPN9Rf1vn8iL0aP47wgiWNsWWGSBqVCQ5TzP7zNeDRweZx1AXFkaoxpmFVTjg8P8M5hGkNtfbsxDS1QJ0ftWmucVKysrqEFHB8dUjcVUaxJswTnLNPpmHfeeZfDw0O8B2sdFy6c58YTN+n1FsBZbNOQJTFCapQS9FPNlQvrKK0BH+gASiJkjNIaXZX0IkEVLdObpuSdLjrqIKKEppF413BCNRIyIJ18U+BtjVKS5YUBP/vZT5B1+uR5H6ETorSDSjOiOEGq0EkvT3vqT6wSruXZgkDhXDh+FkKcFBC1yXYVMFrUAavZpqZF2+gVUFmPtt8nQ68QGic16FA9mQCpP+GM+naQDRvHpqkwTYGpZjTlhLIsGFU1Zd1gnaH20DgIgZQAy3fCgSsQ3qCjlFhnCJ8AkqqqaYw9vbn5UUvoJDRGtRgpINQLe2i8RTrHaOeY3/3Db/KdW1vMSJgYibGBmytjQT9JEEpTNw3OO9IsQScRXkp0EhMlCTrKyJMEay29fJHzG6sopZiVJePxmOHhPr4q6a6usry4wMpyD28a0iRi0OsHz3ZdkeiYpppimzJs772nnM1wdYHwlmI85Hhvh+l4zGK/x9nVHvd3x8ymlnfvDbl22SItJJ0+qBihYprGEgmPN22Dl5JtwYFCRjHnLlzlo899nN/+F/+Se3e32drepywMS92UKxfO8Mrb32FtbZXXXn+b4bThzNoynTSjqi2FqahLA1Ly6muv8Mxjj9Hp9dne2WdSeYTukGwdsDxYwdQNOonZ3n5Ip7/A4XjE4dGIH7z8Fg929rl64SyxrPn2997gsWsXOLuccvfdu3zr5bu8+u4e48IyHJckseKNu9tsHoz5g2+9yd7RlGkdXk8vPC1ADy9sS6FTOBIEYVCWUtJJ4Or6Es9eWOfnP36Dm1eW0cJTFw4vFDqKQbakkzmHda655prrx0bvO7AO+ougBJNZxSsvf58zFy+zMFhEqSjgK09wRh5sWyBgrcXUNVVVMB4PGQ6PGB0fUM4mHOztMOh1UXF2mqQXQpy2U8VxjBDQzMaMigJrDb1+H2stu7u73LnzLgcH+zSNAQRnzpzlxuM36Pa6jMcTJqMhnTwnSyJ0FCOUJpaQRYLFXheEojICJyQWj7E28C9rQ5ZG9Pp9Ot0ilBCY4KcVzmCaijiO21pLBW1BQZoNSLvLyKSLzvok3UV0nKOEQCLx0uOFf9S41D5XJ6B+f/o3aKw5Pbk8xS+1H9eUBZIGX4+R3uGSQRhKWtwWQp1CzqXkdDsbBljdliQ8Yo+eHpkKUDo8V0mWY1jAWBeed2NYKWdU5YiqHGGKKUVVM6oMk7qiVinCLxCriCRxKJVTV56qskyKgqYpOR4OEbb5j3vF/gdKyujRibCQwaKCxwuHFp6d+3v89m9/ha/d2mVnUqOTOgw9HpI0od/LkS2f1hqH9IJiWiIRRAOJlhBrSb/bo9MJjWUCg9ahuELnCTENy72zeOsw5QxhGhZ7Pfb2dolVlyQKxQHVrCCKc6SQGKHQaQ7eEzuPV5LJ8IBZYdjbOyBRgizJuPnYNdbPXKWzsMyV80s8/aEn0WlOLSL6SY+otwAqbTfvDttUUBYIazAyQsY5Kor48Ic+xN13b3PnnXsUJRwcFygpeOf2XXa29thY7LMy6PHOvbsMOgNcbZkMxxhTYaxCSrhz+13M8Ijj8ZjD4xnvPLhLlt7n4plVIidZWeiyW1bcf/iAhTPn+MOvfYtp4fnWiy8zmjW8XtxhaRBx686QW1u/yZOPnWE6rXjzzh6jaU2qJRLP0dhiveDh8fAUgQvghEZ6jxSOPNH0YkUeQS+LWUg0Z9YGnFlZ4NqZDa5fv8zGUo9UO7yt0UmO9R4ZaUQUIdMMRwjkCf0BES7mmmuuueb6C3rfgXU2K5DK443lm1//I2Z/1LC0tMLGxhmwliSOKYoCD+g4pm6a0HDlLFU1YzIZ0dQVnSyj2+lw/sxZADpZfoqJOvGYZlnG4eEhmw/u4wAdxaysrHJ0dMS7777L7u4uZVkGP2p/wNUrV7ly5Qrj8YRiVhIpTRJHp1WqwlTYpmLmPeWooqmmXH/sGt1uHyElVgic1TS1o4pT9vb3mJYzpNZ0+ivEWZco0kSuRNr0NDTm8UQ0pEkfmQ6Q8YCo00WnOTqO8c6Fv7zFeU5DRycD5Ymlwv+QPy74gwOjs327FKd1ojpJgQSRJHgPqn3/9+q0VcwEdNMpXsnb03KAgHaSrT9WtMGU92xn8SQhXYaLImyWENsl8gasKTHVmMXpEcXkmEk55Xg04uHRlAaJdBMaY6jrhtFoyN7uNkf7u6wsLf7/c33+/y6tW8uKD/it+KQUwFBsj/nHv/FHfOk7b1IYgYpT/KxoGaqS2bikKQu63Q7GWJy1TKcznDN4a5lkCeWsYTScEqlDqrLENg1pFjb4/X4fJSRFY7l85RIHBwdUswqspYkjdrZ26fd6NHVDr7dEEic4Y5EYfF0ikwgvJFEU44Uny3usrp/lzq23OL+xzOLaIp/sL/DdH9zin/yL3yfOPsqHtMKYAl8I8qqCqEBKEywROsI7Q3F8wPBwjyTPSbqLeC+QWM5trAKO0aSgtJbDacU//dLXOLO2wErHcfXJSxxMG7ppxsVz53j9tT/i/MXzvHX7Ll4rJmNP9/I5iv4CjbnPa7ce0u32GE8qIiyXz60wK2tGoxnlW/eZHI1YX1vmr3z8aUbHR7z2zn0O90umRjDaK9g5uo0WAmslXkiG5SNubghyghOEmw8FZzsxz149y2efvcYzT15jcaFHEiuiSCOFIk6iULWsQMYR3njMdIqSXU56zvJOGraqKkJgQ+Wumg+sc80111w/LnrfgTXNO2gVjuyjKGY0GVPMCg527iGcJz3FS5UkWRaQQVIy6PdZXl7ELPSI4yg01SCJk4S6DsfoAlBaE8cx1noODo44PDoiTjPiJGU0nnDvwUMe3H/3NCSztLTE1avXWF1dRSCoq4Y8D8GopmmQUpCmCVpKpDckShPnHQSeWTHmxZdfpZ4MWep3WF1eotvp0et00ToiW1+hrErSPMdaj9YqQPFFJ7RWWcd0OgY7pr+0hNU5orNM3FkgjhOE8Ji6QbhwJG/xOG85WZt6707LE07+KYVorQItab7FJTnv2lKlYBFoE1ZYPEKGX6KuDashQhXstCgBSbfTYX9vn6XlJXrdLko92uxCsHJY+8iWEAbp1n8gVAhaCY8UAiUkXgVUaUKO7+bY/gpZWdKZHtLtbtFNDO+8+4CHuzN0nhHHoM2EanRAL8/Y39/7S7hs//2Kkm64MbEW2XJ0m6YhVhm7R/f51lt3GU4NQmiKYgyAjgLKKI5jimlJGkfkeUYaRSgJUaTJs4TlpT51XTKeCMqm4frVSxTFmHNnr9A0DZ0sY2d7j6qaMjwaMZ7MeOu121y6sM50VvDg4S7n1teYDqb0F6AxBpV4TFlgjvcxvsHFKTQNWIsWgkRLzqyvsnFuBRcp3r71Lu/cf8CdBwfcuvP7fPuFlziz2ufJG4/xE5//LHm3QxKnDKdTBotLpElCMT3mtZdfYlJWdBf7vPHmHabTmu2tbe7e22NcVhgL33tzk5Vc8/zN8wglmA2nTI6OefZTNzm7voKSirKsSPOUTp7y9pvv8Etf/Bm88fQX7rC22CXRMYPs/9vemzXZlaXnec8a9nTGHJEAElMBqOqZHaxwd6ttk6JCVGigL6wISXd22DcOh69850v/Ev8GXTjCYTclW2SzSbNZ7m6yW82qQk2YMhOJnM6057WWL9Y6B+imWAxbLhWCXk8EogqZyMyTJzdw3v2t93vflL4XaF3wG197wN7eNjv7W6S5RiUaaR2mbXl5fMIf/Pjf8q/f+4Dj8xlNXQNQ1y1rR4lzjh5HogV3r+9TLpfcv7nPP/jO1/jawxvsHV4nHY9RozEySXCmxzQ1GIMSgr5rvKUn0aC9LQhrkfgaX5Vo//fOGkBiux77JZ0ORCKRSOSv8vmxVls79L3fDJ9MdplOfXtOmqYkiabruxC5JBCvtcLUdcXs6hJrLOWyxDrBzs4uzvnA/CJPw7G3oOsMTduTZAU7u/tcnJ3yyUePuLq6QmmFtZbxaMydO3e4efOm95JanzCghKZuKtqm8hu9WU5nHPlgwGg0xAVRVwwGJIMJ9WqJ0kMuygVPP/iM5ewS01SkWtH3hsl4jE4SrJA4FG3nUElKuZpRli11ecE/+73fRh7cwOQ7ZMOJ97Man2YAAr+4bzfB9JspH4T6Iz+pFQh/TN37iCqh5GsLWK8SGVxIBRAqIZEyCHyz+bk4Z0nyhHa+5LPHx6RJwvWDfR4/eY5ONHdu3yTREuGsX5xSiZ+CO4cxNizS+Z+bo3+VmxosCYTpqxQSIXwT1HA8IisG5KN9RuMXbI2n3L98ydXK4dSQ5+Iz3K3bVE3Hkyef/X9zpf4/JZRWAFgZ0gJUgpSS86ri8nLJvO7Rst/EF6VZRpqmOOfIkwztNHR+Yr49HeN/JnD68gKzPaWpO4pMc5JmmLbiYnjKYFCwajuOnh7R255Hj/4vdve3efTpCbOrObdvXeP46AUfjkYUwykqydnb3UGZFlctaS7OWF2cs3N4m3Ixx3YtbVPjmorz01N+8su/pKkqfvjj9/noeMb5oqaqWj47eYmzPbujP+P/+ONfkCrLvbcOmU4nXDvY56sP36asSp4cz3jy5IjRZMDF1Yr3P3jCh5885exiSWcMDsFyCSPZc3VxxY9+UvPut3JmZ1dIV3Ly/CkfPzpi8PKM/+z3/iFNveLP3/sFzlkeP33M/taE/+l//B/IM0UyzshyjVDGZ9dKhdB+odBJcKlGpJL9h/f4Fw/u8c//+T+ibRra0ARnnaA3znvbTY8xLUoJCiUxfYNONTpJkDpFF0NskuC09jYl00PX4axPLTFd4+thETgJSZ5jjS988MUXIctEgOitr9A1X1aKcCQSiUR+nc8VrM75piNfz6lD17p/u0QgHWjp/ZMGs8lUTZKUvf0DEIKmabDGkmW594HiUEqyWq1ou5ZEa0bDAuscTx9/ytOnjylXK7IsI89zDm/d5t69e+R5Ttu2m6/RdR1d1waBAf6o0FLXNXmeU1Y1NrzgLFal71nHkY22GO8eeLEtINGSuqpCxJWjbVv6tqXre8ZCo7Rm3JSs6pZrE8GtO/dAa1SaIFT2q0tFr23xA5vt/LVP9/X3CXxhgQ6byO7XP16ozfO/bldy1vturTWbabb/fI7DGzcAxYePPuajT1fs7e7S1S0/fu/PeXj/Hjev76KUxAFd120qV5NQt2uMoQk1revPa8WrLEsrQpTVejosIS8KdHYXWUzJiscMzo949PQYhGM8GfHpL37Jcjn/f3tt/nuxbljzVbodQhiEs/Sd4MbhPt//2j3OfvIRy97ROYeS0tfOhuemM47ewfzyip3tKVmS0PUdVV3TdB1V6a9d01VcXszp6pL51ZzBIPcVqJ8e8+zlBZ99dsw3v/4Wnz055xcfPuabs4aLi4oXf/xTnEy5fXrJ1daIa9Mxpq148eQxV7M53/4736euK06OnlNVFVcXJ/zoL37JH71/yp39KR8dLziZlfRh813JBGMFT8+XzH70C7YnE/7iwxdMxwOuX9/lR9Nf0vYtF5dL2sYyGGUYC2eXS5quw1rDQGq2CsV0lHIwTnh2fEk6HPHok6cgHB8/+ox/9W9+yu//6Cf8s3/69xhnCZlMsV3P7//gD/jJe3/OP/neuwymisE4h1TjpM9hxlm0FnR9j1zfMDlf1AACqzUu1aR5QuYcNpQMbG6mQlWzwSGsQ/a+gIAsQ0jtb7RM59vzjAHTgRI4HBaLyjQIjVQaJ3wWs6/VlRsfua+OXVtlBOi4dBWJRCJvCp8rWKWUm2zTtq2RUiGVDEH+Fi0VpjfUXY0Imaxd14V0JZ8pmRcDRsMcKQVt07Aqa1znI52SVFFXK65Ojnj8+DHLxQLnHGma8uDBAw5v3SJJslDFKtFaU9deVPV9j0wkiUrY2btOlqaUy0uqqkII4bfUO78EA2D6HiEknamo6pok0bTWUjoHoQLSOouzkmQ4oVku6due+cVLmrokGQxJkwRhO5TrcbbF9h3yV6KppPeu2lceUhmE0Pr53ExNN1v6oX1Jyc0Lud9QVpvnWwj/Qm+c3Sy5OffKXmCNoesNW9MRh7du8MGjT1lVzyiKgkGe87M//zmffTbm61/7Crs709eErhfSzrnNzUCWZXRd5wXya8kDArdJhkAQjlp7hErIxhOEeJteam51C/rnNUfPXzK7ukSpL+dF37U1UiuscUgl6Ms2LJwZtnYG/Hf/9e9x5/q/4X/+4Qc8uiwxtqfverRKfULCYsZsWWCalr41XOULut7SlC1l025yiHGWk5czhO15+uwlDx+8RdM8QRdDHn1yxNHZFWerkhSJxvLy9II7Nw7o2pbLsxmZEBw/ecxA+zphh2V2cUXzf77H1jDn9PycqmvZzg0jLbm2NeazkwteXPVInVIkkqpqaJsGJQQKgRCGy9lLljPF7DLnalaSFemmxEMKzdnlDBBczOYsV0u2cs3t7RHfvLvFjb2EDMWLRc/JVcXP/+0TpEx4/vSMT08vGY1SRlryp3/4Q67v75BJy8WLU/7xf/Kb/N3vf4t8qBEJWFrAX6NSQN8ahFIIqXyRQeLLEtYtuWBxSoY0DhDOhEpXG1qyQCoJSuKyBKze3ERJ4VM41pXLTgikVjhhwazb+dSra1r7U4P15bwpObGhHcu+VjwQiUQikS+dzxWsWgmslljj46zSVNP3xrcfmY6uB5zAOkiUxuLrTJu2AQSDwZDpdAtjWhaLBb0x9MYyKHL63nB09Jznz56xmM8x1pCkGdtb2zx48IDReETTtJSln5gKoTbLXVIKZOfjmNIkwZoeaxXZYMhoa5u+6/yxYtejlZ8kWvAvQtILx7btWS6WDEcjmmZJmnr/YpbnrJYrqrJitVxSLVcY21G2NbPBgKYpKdKZD8SXBaSDzVE/GCT+xXLdjOSnkXJTELBeuBLheNkvPfm0SOt8cYIDlFTe6yuCD9MJdJL6Y3xC9JXzx9V97+iMoaprUuG4tb/FsxcvubxquMThjOXi8oqnT59z+85N3n7nIdtbW9RVRde0nJ2dcXl5SZYPuXHjOkWRkyQarTQI649whfKJA0GAW+vjg6RbL4YpkulNtpdnlPNL/vjlM1ZViTH9F34R/7voZ8dY53BSQN9DtcJUM5rVAtfUiKbi996d8o29B/z00wv+6MMFn1wZLhdzOmfosKy6Hg3I+RK1EuR5wmiUs7M7ZDwesru7w7gosG3FzWs76Dznl+8/Qmc5k9GQ//Q73ybLU24e7HJrf8o779zm8M410vF2qIAVCOfDil1Tg/ACDet/WedLKpyzsJhxdPqC9z66wJB5n2vXIcNSnzHGTx8FNGWHdpI+l6zqjra/pBgOEM6hrGBY5Bze2OGtO9e4c+Nd7t++xsHelPEwY1AolLIIErq2pW57OqeYz1sur+aUdcm1vW1GRYJSmul0xN/5ztdJihGFFjgVbgBDMQObGyyfJyx1ikqSIFrF5lTBERr0nEM4C1bgjPNvC4UHToWJqJTIfBBSNgzSeJ+3cQ4hZYiK861hQmpwxn8O/MTVWYfQ6vUsPtbZHUKG1GP1egFBJBKJRL5sPlew1nVNUzeb+lNrfcaqED1I/+LQ94YkSZFKsSpXmL5lOBpSFAV9ZynLiqapaNvOC8Ks4PzsjMePHzObzfw0UcBkOuWte2+xvbODAKqqxlpLURTkubcTNG3LcBQmRaJmOBgAkKUpUkmaztDXPvtVBr/nOo2gb329qlIZxlqWC79oU66WWGc3ubBlWfnkgyA4q6YhyxJ6Y3n/wxPeubXLLWUopACnsa7HJTlOpT6UPrwGa/XKj6pCgcHr1bXro/W15UIIhX3tOH7dA2Ct9fmhWuD6FmlbegdSJWiVAl7IFgMY9j27O1vs7e8wGA15fvyCy9mC2XxGVzdoKfnkUcnjTz4hz1N+8913uf/WW+zs7LAqS45OTnj/g/dpmpbpdIvDmzeZbk1JEt/0JOk2L/I2VJ7iBBiHtQopFCqR7A40e6OE95sVQpov7OL9PHonEUqh04S+n7OaX2GrK2zfoVWCHk5oO8PWtYJvZXtMDuCDkwVVazm8e4jGMcxSbu7vcnhjn70b++RFRpFlyCwhSSRJnkKaA4SOeokxXhBJrXF0iBCVZfFaFKHAtLgwdTe2xnY1rm+xoflNvjZxpGswTYWtlzy8u8/yX/+Ss5n3Xfpih9e/a+GXiJRhMsy4dW2PcZFx89ouu1u7PHjrkDu3d7l+8xrX9ncY5grjDDbYSxBghP/i1kHmHCNnkdJx6LQXnqbzj0uEiaVzfitPKJyzSOE90c56P6g1fbg5E8Haon1NqnBerDs2iRivlKK3rojQRez98S7k/nqBb/sGlWQImSKSFGdNuBn0j8F3b1gEFiv6EMHnfwjOec/5r5x4EP6uiSCO15F9kUgkEnkj+FzBulhVDAYDmr73x3YGyrJmOBrSNRVlVWINaJ2wWs3J8pTBIA9Hr76NSkqNtYY0TVitVnz80Qmzq4vgdU1IspS7999iZ3cXFbypbbAhDAYDuq5juVxsakP7vqcoCra2tijLZiPoqqoiSdPgFfXb7suq2nwvg6yg73usdWidMJyMwu/txr9ojKFtW6SU1HXNcuknsHVTs1zWfPTBE54/fsR/+1/95xweCIqBBVPjkgEqn4IehDYhgXGvjtNfbeO/Yu1BVcpbFhD4Y03pY6c25QJC+Mpb4dAS3+Oj0xC46q0BIFDBqoFIyYuCnd09vvrOO1wuFpyennL8/DnPnjzl048+5vLqgtu3bvLwwQPKsiLPc8bjEV+ZPOD+/bc4P7/k8WeP+bOfvAcObty4yZ1bh0wnExKt/TIZFmfD9yclznUk3Zy2XeDakp1xjqBHfkk+wOHBXZzfdEMNd8l3DhGuA6VxIgEnkVJx6MBYw29hfSOUdUjvegzpDAYShdW+LEE6uVnO6U2LrFpQGpnldEJCIjeDO+m8XxKhfRuYqbF96SeoQRC5rvIVv6aHvkG6Hmt8sYFZzWkuTukWl4iu4t6o4/tvX+PsZ2foJKXqOpz1mi9NBId7U9595z5/9z/6Ft+4f5f9gwlZlpBmGjUqEFoDEqkExvV0Aqzzk3zn1jdYfsqplcCJNARI+Hg0ZwwohbMyFFe8eh99i7AWoRQWnzIRct1eFVrYDksb/NGEulgg+LS9oPSPRbAW/cqLe+uQmGA193512zcgpJ/8IxAi/F3yhV44K7BWQqL8Y3EGSRCmMiwSynVDnEOGaTfOhOciWgIikUjkTeFzBev/9oMfIKWkKAqyLCdLc7IsZ3dvlzQVtHVN11kGgwGL5RVDM8DantVqxdbWjm+wcoLVcsGjR08py2oTrC6lYG93j3sP7mOdb74qyxL9um9SQJ77rFcp/TF7lmVkWUZvvNdMSEVVNwipKEsvUPuuo8G/kutEkyQJwgmKYrDZHK/qGqUUW9vbNFXNarmiaRrquqZtW5IkYTgcsliWLFclf/Inf8Kjjz9BAeeziv/mv/wnfOWBIW9qpMoZDktUNsKmA0Q6wIjcv4giNi98Miyo+d8GP+HaTxqEqZ+8qvA+go0hvM9pRDIieU0EunUNbpgGWWPp2hbjDEiYTkdsb435ysP7dG3HarWiqlY0TY0QisvLS7TWZFmGShKSRLO3O2V355t8/WsPOTk+5fHjp/zwjx6T5DmHh4dcv36D6aQgSxKQwffXrrCLY0S7YL6asahKjPXe2y8Dp/ylLYRAS43TKcb2KKU303NjLM741jNrfeSRtA56i8WgEuUbyIQgSTPfPOZcSEzwS3BeAEqMNRjrJ/siCMA+JDAI0XlvJQ4pNYYu7PkIpMiwRqOyAtm1mK5FC390LfIRYjglaUroO4a15b9/+Nv8FyuDcXB6+pKrWUXVGW7fOuCtuzeZ7ozJ8zCllylo5X8J6U9HJBgpECL1rW1SetEXzuZFuD79vZLCGoOzXfhYFSLYbHh7WHByvW/QAn/8LgR24+te/3L+Y4yfcNqQlrH2i9qwm+UVqfAWAbnOGw6TVpFufr7SmeDntj5+yvl/LxDr6XT4ffBQO2ER/atFPKQK3nWHdT3C+Yirtc0m2gEikUjkzeLzLQHLGavVislkQlnX9NYxHk9Y/axiOh3Qdg1t01PXDYnWTLemaK0Zj0fcvHmDO7fucfz8iIvLC+qqQmlFK0BoyZ1bd8iyjLOLM7rWi5qqqhgPCqQQZFlO1zVBLGe+NCC1Qdj5F5Sm7qibhjzLaLuORGtvBUgSnLNkaQrCkmUpwkHXtrRtGyZkmjQrWCwrZrMZzvgXrfnVBauqZv/ggLppeXl+zp/+yY959uwJAktvLX/8019yen7O7/7Wu/z93/4ehzcOsG1FkeeofIBMx6h0BMkIdOatA0J6sYOfaK1jovyE1CGVQsngS8X6pRQEEusrIqX/eGMsfde99jHrjwvpDUqQZCk2bPzjnI/8cg6danYGuxizRd91PnWg6+j7nq5raerS2xS0JsszlEq4dfs2Nw5ucrWY8fToiOdHz3n08ccUecrezha3bhwwzRRpdYKoz2gWZ5xfXPL46TGdcSTpl9THHm4OcL71SimJsR296dFhkc12PXb9XAZPKRJEqlEy8QtBgJTaCxzBRtSsY7/8z5CQ6en9l2tRJpy30Kyn6w5vDbDu1XF0b7x1wd+dKHQyCNN2fzRuJ2Hi17X0aJKkZyo0ygm+anzjmyPcvKnMP1YM1kkvEp0Nm/Cvpvrev+AfO/jlurW/Uzgvyp11fiffGpzpcKYL01T8Dcp6Ac/6uDS0DsfwbOwOv3LcHpYb1zNLJV7dyPknxVtkkPbVQbzdqM/QbPXatNZ0G2G59ovLdf1xwH9pu0kRWf+7IaX0j9OEko1gHcA6nPGnMK9tgkUikUjkDeBz1UTTdezs7QEOmoY85Kd2XUdVVfSmo64bqrIiTTOYOax1zBcznh894+z0DK0S+hCbY1sfYzMebvHy5cXG25mm3j86Go1oWv9nkZKytqgkYZhlLK9muLIiTSv6vvfRVeUyJBlIRqMRjo5iMPLZomiU9g03XddQV1UQDj4eZ3F5wdVZT1X79IP1lHE03SEftKyWKz578pSf//yXXJyfIaXAWMtkNOTuvXsIKfiXP/gxv//Dn/P973yT3/reN3j41k3GwwF5ckmqEnQ2QqZDSAtkkuOkxqmUXudIlZIk2SbWxxlvu1gnBUCYwarEH506L5aU1qHW1U+3jO1xm61/NtNDrTV93//K28Efh3rPrEA4SJPEZ7paQ9XUNHXt7R7lyotmlaB0QlYMeefhQ75y/w7zy5c8/fhDnn38C04++wilNKMECl3TdzN+/smSJ+cVrWn5za9//4u5cv9G/JG/MRbTt/SdwTm/pe7w00bjLFLLVyUKyi+8+ecv32TSijBy3NTrChnsBvjptvWRWUJYb99wDmfNJt+1N+G4uu9wrscq7TNJhcB1rZ/QGue34IPgstJ/HSHxjzvTKCXRrsAJgbEGlA43QRKZ5MikwNkOZxzKgUMi19+EFGH/ySGsn4iG7yaIa//H1s1POEJpRRCnzvtmN8I2iHnEevNeYoPgJSSEWOetD0IEURz+nAgC0j9/4TGFaavAbp5ra9xrmtFt3r4exq4/wWahylqM41VnK4Qp7KvHIIJXF2c3E3Ocxdl+cx2EAe1rXyQSiUQiXzafK1hHkyk6TZnNZlgHaZoyny9RSpFlA7rljCTRNAoQhiTVNEHYaq2o6hWZzr2wMoYkSbDW8uGHH2yO38GXCaxzM/O8INEJ29vbDIYDRqMRiU5wzjGdTphMxlhrWa1WNHXN/rV9tNYsFkuyLEdQkuU+CsuUNUI6+r6lb1rKsmRvb4/VasVgNOLFixeMRmPmsxl5UZAPxwyV4vT4OY8fP+Wjjz6hbRo/kFKCrz78Ct/77ndxxnD0/BhrBBdXL/iX/8v/zv/6r37EN776kP/4e9/iN77+kIOdMcNsRpKk6DRDJwmpylDJEKkL0Bm91gidotICkeR+IQUvWqXrEQQ/X1hSCYZCPzESEqXDosxa4G4mTQIhknDs/eoY9PXsViEEMnyyJEkw1qASSaolfd3QNi1V09BWC5xtySUU2qFFy7ZZMtiu+OTP3uPkquTh13+DRZfyvJJIMaTY/yrffPeAs9Njdrb3vtgr+K/BtiVdt/YPr9vFvND3gfEggrgUQqCkrwGV60WiMH2UYRq5FkxSSKQTGNt7IWcsxvT0pgb7mv1BCHrhW8ysdSihwpG1QgvlBZ0x4etIlAutZvh4NaUUyOD1FH65TfSW3oWp5zo7VEi/cd/3WLNcjxWxeNEM68m7BoTPJg5Tff85/O+d8ULRsj7CFxvxLkSYygqxySr1LmYZHr9HCQGhFMNr0h5rTfCvWv+4wzW8zjv1/tR+I54Fr90YbC75oBzFWuayeWyvJrBh+rsWnGw+hLVXQKytD0Ekb97P+jaWkGywfntUrJFIJPKm8LmC9ebNW5yfnwGCw8PbNE3F1dWCra0Jg8GAvu8wtqWqSpTSJImmKAqE8F5T0/cY2WGs38IHx3w+Q2koVAb4iVTXeU/rerM/zwsur65YrlY8f36E0pqqKpmMxxjTo5ViuVxirGM8GjMYDJhOt9iaThmNRqRZGhq1ctquoSgy6qYhywtenJ5ireNytqDvDflAsrO7h1KSvu84Pj7hL3/xF1xdzTb5qYPhgL//u3+P7333O0ih6ZuKcVFw88YNjo73OTo54uLykp8/esKf/vQv2d7KeXj/kG9/422++vAeN/a3mQwz0kyTpTmJykl1RqJSZJIhdRYEiqbqHSrJyQcDlEpAKITyTU1CKITSoLTf0LZeeMlXr+f0xgbd5JDWEYbKGx+h6704ENZiTAemxXQdzvYo25GbDtu3ZLZm4FZAhbAltm2xpqMzDW1Xs1yV7F7b5uWq5MXJEfNKcnResmxaVCIYDsbcvH6ISr6cF32f4emnbzYsCUmp/JPh/LGvs84fA6vEex2FL8jwi2Re4K2XctaTSGv95/V5nd7r6pxBmjCtYx2ttNZJAqXDz229jBTEmtL+bdaEDXeBr+t1fglQGO/jFDosJa0316VC8kpMCin8dSJ9TJYxxntOjX01HSaI6bCwxEYUhgkjXqyJIEr/ioMzTEAt/tpx1k9FpfI+9Q1BUPuv4+tPncAf+a9tBC5YB4JflNdvuMKUdr1M6NaTzo0n9rWFxPVzsFa7/LseeLgeNhaOXz1xWJd0rL2y4q/5+EgkEol8uXyuYJ3N5sznS3Z398nzgouLS7a2tplOp7x8eYrWkqqs0ToJAtagdYJzAq00be39pXmWUVUVy+XSTw+l929qnWAt5HmGUnB5eYHWijzPWCyWjMYTmq4lTxOkGrEqSw6u7XtLwtkZxXBAWa9YrRaslguapuTxk5qmadBas1wufXj+YEDbtoxGI+bzOSBo257xaERT11w/2Gd3Z4s//MM/pK5rVquKpmkwfcd4POIf/MPf5eb16z4P1nlv6WRnl3xUI7VkPBmyWq24uLjg6bMjqrrmZz//lPd+9glKCnamA966d8iDOze5d+eAg4Mp2+MRo2JIkmiSRJGpDCE0z45PuH7jJqNhQZqkvk50PeUSCU5orPZZtKyFAfaVt8+FIPbXkgbcRhwYcB1KJX4FyHb0TUnftMGb2WG6Bmcb+r7BOu/ZNcbSdYa2tZRtz2xZ8vTojPcfPeXjp6dU/TF7BzcxvWSxvKJtV1w7OODt+/fYmuz+h7mSfx2VeQEGm611pRSu7+h9gLA/OhYgZOLtD67HdkHYhWzd9RRwLcmEkBgh8TdbHaLvvEhSEmWVz03tTdiidwhhgz91PSkHF46nw95VmGqKTWKEDQuF67sREZamhAuTWhemhM6th69eyJqQYyqEtzcoEY7lhReZLjSvhXmiC7FSArxfV74SdAK8mHchmD+MXtfH5U7iM3nDBHQ93cSss2MdAr+YtTmW55UwxXjx7YetIcB/bR3A4Zz3u/66gHw9Gm6NWHtOec3i8Jow/fWEjvXX2nxO8B7lNXad0PE3XWSRSCQS+Q/F3yBYZxweHpKmKaenp7Rty8OHD3HOsVoNqOuKruuQSjAej+m6jizLaNvGT1XThCRJWC5X1JXfvncCpjtbdF3PaDymXNUMh0Os7VHKJwjM53O2trZw1jEoRkgh2d3fp+8arq4uNssT29Mt//Xx2/HL5ZKu69jb2+Pq6moj4p4/f87W1hbL5YK2bTg7O0NKyXx+yenpMRfnB2RpyvHxMUVRhFgpH33z3e9+h52dHaqqomtrimLAixenm6rV4XhCkuZMpi1SJxjruLq6Cu+XVHXD6azi2Xsf8IM/+AmjYcp4lHLj2jbX93a4drDL3rUttidjJsOCYZ6ybGYkKiHPCpIkIU0TpPICX4jQgBUmq35Vx20mYwKHDd7V8NK/eYH3E+PeJ/zgfZDWOJoeWuMQStO0LaY3tG1D0/eUTc+8bDi/nPPi9Jzjk3NOTs85u1pQVjUg2N7ZYVC2tE1L03mv8L1799nZ2Wc0Gn+xV/Bfw+43/3GUG5FIJBKJ/C3hcwXr4eEhxhiOjo6Yz+fcvXsXIQTz+ZyiyKnrkuFoCDi01ptJZpr6ooFBllNVFWVZek9kVZHlWZh6KASCPPceV619LmtVVUwmU4qi4OXLM27cPOT8/ILFYkWeaUajESrkrpq+x1nLalXirGVnfw+lFMYY0jRlOp1ydnbGeDxie3vKixcvyPMMYzp0kiKkQSrFyYtj9nf3mUwmGGOoqpKyWjEYFJyevuBqdsViPsOajiRJqNuW6WSLNM3JspS6qkLcVs7Ozg6j0YjZbAbCMjFDJk3LfLHiSlnyNKeuLZ88vuKDj1/6hRopyAtFnqcMi5xBkTHMUvIiZVBk5EVGkijyNCXVCUolZFlKlmhSrUm12iywKaX8cPA135+fgK2rYKG3jt5YTN9jjaXpLE3jJ6d127MsGxaLitl8zmy+ZLEqqasGpSSDwSB4QsNxu7P0vWGxWAEOYztu377H9tYO1ljatvvir+JIJBKJRCJ/q/lcwfrxxx/TNA3D4ZC7d+8yHo+9+Ow6hsOB33IXiq2tKfP5jCwtsNYxHo+Yz2boJGG1WLBarl5tvjtw1pGlOUpnZNZxfnFO3fgoJ2t6pJQsVysObtzg/PKS6XTCixfHpGmCVsof8w/HjMZeYE7GU3SikUpyfn7Oqiy5f/8+T58+pet77r/1FmW5JE1TLi4uGY8njEZD+r6nrmucsSitUNrnaa7Kkq7r6DqNtR1NY2nbhrZt0V0TRPslbdP6reSwvGT6HgVkReEzK1UC0pAYR5HnmH6MlAI98F5K69ym0atrexbzJU+qM6xxSCX9VniiSBJNmvr/Jlpu3qfWx5pCBNuA9wFvjk2tw1ovLoEgWJ3PDDXh/ztH13X0vaEzvd9WD2GWUkKS+EioIsuZjMZI6WtA0yTF1Q1121BXLVqXpKlmMBjy4P5DsizzPe9d/cVdvZFIJBKJRP5/wd8YknlwcMBkMkEIwcuzMwAmkwkvTk7I8xytE6bT7WBfsyipKMuS4XDoq11Da1Vd1z4VQECR5/ShNWu9ud4Zw/bOLqvFjPliwd61AwajIS9OX9J2LZPxiK6pSZUg15IGG5qiNKvVilVVYW1PlmXs7u7yySef0Pc9Dx48wDnHbDZjPB4zn89DKoHPZ9zb22c+m2HD5nVdVQgkpvcb1nmes1gsN/5CgSQJE94sz7FhgWaxWFDkOc4Y+hAZJJSiaxtkEMNC+lYl21lGoyFp6oPQ11FhxWCAu7ikLGuMERjjqKoGaEC4jd/VWu9hVEr5zXJh0IlGAFqpzYZz13V0rUUIL3C9JeCVj9DHPpng+fOxRFonpFlKmnorQpZlDIdDssR7aZ1zlGWJkAndauUbwvoO57yo//a3v8Vkss3u7h6zqwvaOgrWSCQSiUQi/358rmCdTqekaeqFZ9syHo/RWnN0dMRgMKCuKm7evMnFxQXXD65zeXVBUQw4PnlGsrMVIqEky3rlp5GhprGqKrTOyLM8bPpPqaqKpu4YDkcsghf16mrG1vY2x8+fMRrkrBZzdrcmzGcdTVNzdXmFVIqrqyuKouD2bW9hePz4Mc453n77bbTWHB8fM5lMOT4+Ymtra5NR6jNcG/b396grn++KgK7rMKZna8t//2nqUwfSNKUuK7ROSRKH6S1V02z+jFIKg2M4HrE7GPDixQm7u7t0Xbfx+JZliQrB9XVdM51OWSwW1HWNUj5loWk6LGKTUgCCPPP1qTqR3iNserTWWOO3w/O8AHyigTUWpTXLxYKmqhkOBkipaJqaJPFLb3le0LYNfedtDnmekw2GjMYjlNJsb28jhCBJEkajEabr6dqW1ark5OSE2WLpo8OMCb7ligcPHnL9+k1GkylSaeqmYzAYfNHXcCQSiUQikb/lfK5gXS6XLJdLdnZ22JpOWa5WlGVJURRcXlxw9+5dLi8vwzS1RUpN1/WMxxNmsxmDvOBiNsMaQ9/3m2PqLMtI0oLeCF8NCXRdH/yOkvFoRFmWdL0hTTK+8s5XOHr+lP2D6yilGA5HVGXJ6ctTJpMJh4eHKCV58eIFl5eX3Lp1i2vXrrFYLFgsFoxGI06Oj5DSezB96UC5WRLrOl+pacLj7PveRwOFbeGtrS3q2k+Di8EA0/e+bCDJcOEYvu97sjyn6zuEklR1xfb2NkpKJpMJVV2RFxkO3wzksL4ONaQmjMfjICpbtNYY3Eawai3Z3Z2itAi97wYpFVmW4f3DkizLsNYynY7p+p40Tdnf3wHjSxaSRLNalb6VLPGpDljD1mTKeDLm9u3bjLd3cUBRFCyXS0DShhuVvu1ZzBccHR1xeXlFf3m1WX5zWAbDgt/5nd8hSwsmk23ariUvBkymky/2Co5EIpFIJPK3HhE7syORSCQSiUQibzJ/NaAwEolEIpFIJBJ5g4iCNRKJRCKRSCTyRhMFayQSiUQikUjkjSYK1kgkEolEIpHIG00UrJFIJBKJRCKRN5ooWCORSCQSiUQibzRRsEYikUgkEolE3miiYI1EIpFIJBKJvNFEwRqJRCKRSCQSeaOJgjUSiUQikUgk8kYTBWskEolEIpFI5I0mCtZIJBKJRCKRyBtNFKyRSCQSiUQikTeaKFgjkUgkEolEIm80UbBGIpFIJBKJRN5oomCNRCKRSCQSibzRRMEaiUQikUgkEnmjiYI1EolEIpFIJPJGEwVrJBKJRCKRSOSNJgrWSCQSiUQikcgbTRSskUgkEolEIpE3mihYI5FIJBKJRCJvNFGwRiKRSCQSiUTeaKJgjUQikUgkEom80UTBGolEIpFIJBJ5o4mCNRKJRCKRSCTyRvN/A4aBM/6TN60kAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_gallery_images(disp);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is possible to access intermediate layers output however it means rewriting the method forward to capture it: [Accessing intermediate layers of a pretrained network forward?](https://discuss.pytorch.org/t/accessing-intermediate-layers-of-a-pretrained-network-forward/12113/2)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Going further\n", - "\n", - "The original neural network has not been changed and was chosen to be small (88 layers). Other options are available for better performances. The imported model can be also be trained on a classification problem if there is such information to leverage. Even if the model was trained on millions of images, a couple of thousands are enough to train the last layers. The model can also be trained as long as there exists a way to compute a gradient. We could imagine to label the result of this search engine and train the model on pairs of images ranked in the other.\n", - "\n", - "We can use the [pairwise transform](http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/) (example of code: [ranking.py](https://gist.github.com/fabianp/2020955)). For every pair $(X_i, X_j)$, we tell if the search engine should have $X_i \\prec X_j$ ($Y_{ij} = 1$) or the order order ($Y_{ij} = 0$). $X_i$ is the features produced by the neural network : $X_i = f(\\Omega, img_i)$. We train a classifier on the database:\n", - "\n", - "$$(f(\\Omega, img_i) - f(\\Omega, img_j), Y_{ij})_{ij}$$\n", - "\n", - "A training algorithm based on a gradient will have to propagate the gradient : $\\frac{\\partial f}{\\partial \\Omega}(img_i) - \\frac{\\partial f}{\\partial \\Omega}(img_j)$." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/README.txt b/_doc/notebooks/sklearn/README.txt deleted file mode 100644 index 2af35be6..00000000 --- a/_doc/notebooks/sklearn/README.txt +++ /dev/null @@ -1,6 +0,0 @@ -Extensions to scikit-learn -========================== - -The following notebooks shows machine learning -object which follow :epkg:`scikit-learn` API -not implemented in :epkg:`scikit-learn`. diff --git a/_doc/notebooks/sklearn/decision_tree_logreg.ipynb b/_doc/notebooks/sklearn/decision_tree_logreg.ipynb deleted file mode 100644 index 5b50abec..00000000 --- a/_doc/notebooks/sklearn/decision_tree_logreg.ipynb +++ /dev/null @@ -1,883 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Decision Tree and Logistic Regression\n", - "\n", - "The notebook demonstrates the model *DecisionTreeLogisticRegression* which replaces the decision based on one variable by a logistic regression." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Iris dataset and logistic regression\n", - "\n", - "The following code shows the border defined by two machine learning models on the [Iris dataset](https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "import matplotlib.pyplot as plt\n", - "from sklearn.datasets import load_iris\n", - "from sklearn.model_selection import train_test_split\n", - "\n", - "\n", - "def plot_classifier_decision_zone(clf, X, y, title=None, ax=None):\n", - " \n", - " if ax is None:\n", - " ax = plt.gca()\n", - " \n", - " x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", - " y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", - " dhx = (x_max - x_min) / 100\n", - " dhy = (y_max - y_min) / 100\n", - " xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, dhx),\n", - " numpy.arange(y_min, y_max, dhy))\n", - "\n", - " Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])\n", - " Z = Z.reshape(xx.shape)\n", - "\n", - " ax.contourf(xx, yy, Z, alpha=0.5)\n", - " ax.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor='k', lw=0.5)\n", - " if title is not None:\n", - " ax.set_title(title)\n", - "\n", - " \n", - "iris = load_iris()\n", - "X = iris.data[:, [0, 2]]\n", - "y = iris.target\n", - "y = y % 2\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, shuffle=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAEICAYAAABLbGBgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABc/0lEQVR4nO3dd3hUVfrA8e+Zlt47CaH33osiKDYEG/a6YsG113V1dX/r2ta6lnXdXXtD7CIqKIoIFkTpvQUIKZDey9Tz+2MGSEggkzCTSXk/z8NjZubec987cU7eOVVprRFCCCGEEPUZAh2AEEIIIURbJEmSEEIIIUQjJEkSQgghhGiEJElCCCGEEI2QJEkIIYQQohGSJAkhhBBCNEKSpA5AKfVfpdRfW3BeulKqUill9EdcbUVL3x8hxLFTSi1USv3Bi+MqlVI9WyMmf1NKTVFKZfux/Hp1mlLqBqVUnuc9jOtI72WgKVknqfUppfYA12qtv2sP11VKTQG+B6oBDeQCj2ut3/BxiEKIAPHUD0mAA3ACm4G3gZe11q4AhuY1pdQmoJvnYQhgx30/AI9prR/z4bXGAg8CEwEXsBP4j9b6DU+d+a7WOs1X1ztKHGagHBivtV7n7+t1NtKSJLyVq7UOByKBO4BXlFL9fH0RpZTJ12UKIbx2ptY6Anei8TjwZ+C1wIbkPa31IK11uKeu+hG4+cDjugnSsdYzSqkJuL84LgV6A3HADcC0Yym3hZKAYGDTsRYk9W9DkiS1EUqpIKXUc0qpXM+/55RSQXVev0cptc/z2rVKKa2U6u157U2l1COen+OVUl8qpUqVUsVKqR+VUgal1DtAOvCFpyn2HqVUd085Js+5sUqpNzzXKFFKzTs8Tu22ACgGhnrOMyil7lVKZSilipRSHyqlYuvEfqVSKtPz2l+VUnuUUid7XntQKfWxUupdpVQ5cJVSKkop9ZrnfnOUUo8c6BJUSvVWSi1VSpUppQqVUh94nldKqWeVUvlKqXKl1Aal1ODD3x/P4+uUUjs97898pVSXOq9ppdQflVI7PO/hv5VSyje/ZSHaB611mdZ6PnAR8Ael1GBPHfW0Umqvp2vnv0qpkAPnKKXOVkqt9Xz+MpRSp3ue/0Epda3n50Y/v57X6tZpUUqpt5VSBZ664wGllMHz2lVKqZ88sZQopXYrpY6anNSp665RSu3FneCglLpaKbXFU843Sqludc7pr5T61lNPbFNKXVinyKeAt7TWT2itCz314iqt9YU0ok79WKGU2qyUOrfOay2u05RSfYFtnqJKlVIH7qvue3nE35vydAsqpf6slNoPSO/AYSRJajvuB8YDw4FhwFjgAQBPZXMncDLuby1TjlLOXUA2kID7G8ZfcOc2VwB7cX9TDNdaP9nIue8AocAgIBF49vADlDshOguIx928DHALcA4wGegClAD/9hw/EHgJuAxIAaKA1MOKPRv4GIgG5gBv4m4i7w2MAE4FrvUc+zCwCIgB0oB/eZ4/FTgB6Ou5xoVAUSPxnwT8w/N6CpAJvH/YYTOAMbiTwAuB0w4vR4jOQGv9G+76ZBLulqW+uOuo3rg/x/8HB7ue3gb+hPtzfAKwp5Eij/T5Pdy/cH+Oe+KuV64EZtV5fRzu5CAeeBJ4zcsvM5OBAcBpSqmzcdePM3HXlz8Ccz33EwZ8C7yHuy68GHhJKTVQKRUKTMBdZ3krA/d7GAX8HXhXKZXiea3FdZrWejvu+hogWmt9UiPXPuLvzSMZiMXdeji7GffUKUiS1HZcBjyktc7XWhfg/iBd4XntQuANrfUmrXU17n7wI7Hj/uPfTWtt11r/qL0YeOb5wE4D/qi1LvGcu7TOIV2UUqVADfAZcKfWeo3ntT8C92uts7XWVk985yt3C9X5wBda65+01jbcH87D41mutZ7nGfcQCZwB3K61rtJa5+NO1i6uc3/dgC5a61qt9U91no8A+uMea7dFa72vkVu9DHhda73aE+t9wASlVPc6xzyutS7VWu8FluCuXITorHJx/xGdDdyhtS7WWlcAj3Hoc3kN7s/Vt1prl9Y6R2u9tZGyjvT5PUi5W40vBu7TWldorfcAz3CoPgTI1Fq/orV2Am/hrvOSvLiXBz31Sg3ueusfnrrC4bmf4Z7WpBnAHq31G1prh6eu+wS4AHcyYwAaq18apbX+SGud63lvPgB24P4ifLT3xNs67Yg8iePRfm/gHk/1N6211fO+iDokSWo7uuBu1Tgg0/Pcgdey6rxW9+fDPYW7hWeRUmqXUupeL6/fFSjWWpcc4fVcrXU07iTmBaDuN5ZuwGee7qlSYAvugZ9Jh8fuSfIOb+Gpez/dADOwr055/8P9bQ7gHkABvymlNimlrvaU+z3wIu4WrHyl1MtKqchG7qPe+6y1rvTEU7d1a3+dn6uB8EbKEaKzSAVMuFuZV9X5XH6NuwUG3PVHhhdlNfr5PUw87jrg8Pqw0c+op04B7z6nh9c1z9e5n2JPbKme18YdeM3z+mW4W11KcCcWKXhJuYccrK1T1mDPfcKx12lHk8DRf28ABVrr2maW22lIktR25HJoVga4xw/len7eh7sZ9oCuRyrE883rLq11T+As4E6l1NQDLx/l+llArFIq+mhBelpf/gwMUUqdU+fcaVrr6Dr/grXWOYfH7ukLjzu82MPisALxdcqK1FoP8lx/v9b6Oq11F+B63E3gvT2vvaC1HgUMxN28/KdGbqHe++xpVo8Dco5230J0RkqpMbiThnm4W5EH1flcRnkGSIP7c9urqfKO9vmto5BDrSsHpOObz+jhdc31h9VbIVrrXzyvLT3stXCt9Q2epGw5cJ43F/S0TL0C3AzEeb5sbsSdGPmiTjuaQo7+ezv8PRGHkSQpcMxKqeAD/3D3hT+glEpQSsXj7pZ613Psh8AspdQAT3/4Edf8UUrN8AwEVEAZ7hadA9N383D38TfgacZdiPsDGqOUMiulTjjCsTbczd8H+rX/Czx6YNCj5x7O9rz2MXCmUmqiUsqCuyvuiGMHPHEsAp5RSkV6xkD1UkpN9pR9gVLqQNJVgvsD7lJKjVFKjVPu6bBVQG2d+65rLu73crhyD4x/DFjhadIXQgCez94M3OP13tXuqeWvAM8qpRI9x6QqpQ6M13sN9+dqquczm6qU6t9IuY1+fuse4+lC+xB3nRLhqVfu5FB96Cv/Be5TSg3yxBallLrA89qXQF+l1BWeutDsqWMGeF6/B/ckkz8ppeI85w9TSh0+vhEgzHOfBZ7jZuFuScLz+FjrtCPyDGE42u9NNEGSpMBZgDvDP/AvGFgJrAc2AKuBRwC01gtxd3Etwd2V9qunDGsj5fYBvgMqcX/beUlrvcTz2j9wJ2KlSqm7Gzn3Ctzf4LYC+cDtR4n/dSBdKXUm8DwwH3cXX4UnvnGe2DfhHtj9Pu5WpUpP2Y3FfsCVgAX3Oi0luBOtA03bY4AVSqlKzzVv01rvwt0N+Irn+EzcXWhPHV6wdq8R9Vfc4wv24f72e/HhxwnRSX3h+Qxn4Z5M8k8ODZj+M576R7lnon4H9IODA7xn4R4/WIZ7anw3GjrS5/dwt+BODHYBP+EeQP26L27wAK31Z8ATwPue+9mIZwq/Z+zOqbjrhlzc3XtPAEGe13/BPeTgJGCXUqoYeBl3vX74dTbj/lK5HPcX1SHAz3UOOaY6zQtH/L2Jpsliku2Q59vMRiDIM+Cw3VBKhQOlQB+t9e4AhyOEEEIckbQktRNKqXOVe72LGNzfaL5oLwmSUupMpVSoZ/zP07hbyvYENiohhBDi6CRJaj+ux91NlYF7nNENgQ2nWc7G3WSdi7s78GItTZhCCCHaOOluE0IIIYRohLQkCSGEEEI0wi+b2cXGhemu6bFNHyhEJ1NmKye/MgJLjZHYIEugw/GZ3dk7C7XWCU0f2fZFhEXphNjEpg8UQnQYR6rD/JIkdU2P5Zsld/ijaCHapYzKTawrzGFxTl8cC/tzQY/ugQ7Jp664e3pm00e1DwmxiTx0+/OBDkMI0YqOVIdJd5sQftbREyQhhOio/NKSJIRwW1bwM4VVVby6YjJdN0RJgiSEEO2IJElC+Mmygp/JK6/gjZUnMnldMqN6ebNJuRBCiLZCkiQh/OCr7MVUW+3MmT+dyQWRkiAJIUQ7JEmSED72VfZiFmT2Iue3Xtwc2ce9A5MQQoh2R5IkIXzk8AHaN8v4IyGEaNdkdpsQPiAz2IQQouORliQhjpHMYBNCiI5JkiQhjoHMYBNCiI5LkiQhWkhmsAkhRMcmSZIQLSAz2IQQouOTJEmIZsio3MTW0v0syOwlM9iEEKKDkyRJCC/JDDYhhOhcJEkSwgsyg00IITqfJtdJUkr1U0qtrfOvXCl1eyvEJkSbcGAG26srJjN5XbIkSO2I1F9CiGPRZEuS1nobMBxAKWUEcoDP/BuWEG2DzGBr36T+EkIci+Z2t00FMrTWmf4IRoi2RGawdThSfwkhmqW5SdLFwNzGXlBKzQZmA6SmxRxjWEIEjsxg67C8qr/iYhJaMyYhRBvm9d5tSikLcBbwUWOva61f1lqP1lqPjosP81V8QrSqAzPYDiRIMv6oY2hO/RUZFtW6wQkh2qzmtCRNA1ZrrfP8FYwQgSQz2Do0qb+EEM3WnCTpEo7QVC1Eeyd7sHV4Un8JIZrNqyRJKRUGnAJc799whGh9MoOtY5P6SwjRUl4lSVrrKiDOz7EI0epkBlvHJ/WXEKKlZMVt0Sm1tRlstbZanv/Po1SUlpOYksLN196DweD1vAohhAioT76cw5rVv2M0G/njNbeTktg10CH5hNTCotNpizPYHnr8T0RkxdOncjh6u5F//PP+QIckhBBe+WDeW2xZupk+FcNIL+rHM/98hPLKskCH5ROSJIlOZVnBz6wrzOHVFZPbTIJUa6vFUGkiTLn7+qJVPFWF1QGOSgghvLN+7Wq60hsAkzKT4ujO8jU/BDYoH5HuNtFptNUZbCaDCQeOes+5lDNA0QghRPMoAzi1E6MyAmCjlqjw6MAG5SPSkiQ6ha+yF5NXXuGewdaGEiQAk8lEer909rCNMl3MTjYwasLYQIclhBBeufzy69hqXEWZLmK/zqI6poyxwyYFOiyfkJYk0eG1hxlsN17zJ9Zu+Z2tOzZw+pBp9O0xMNAhCSGEV/r3HMzd9/wfS5d/S2xsPCeOP73DTDyRJEl0aBmVm1iSPwDHwp4Bn8HWlOEDxjB8wJhAhyGEEM2WGJfCBTOuDHQYPtcxUj0hhBBCCB+TJEl0aFtL92OzOZo+UAghhDiMdLeJDqnuYpE5v/Vo811tQggh2h5pSRIdzuGLRd4c2SfQIQkhhGiHpCVJdCjLCn6msKqKV1dMpuuGqDaxWKQQQoj2SZIk0WG09mKRO/dsZdGiL8GlGD5yJBPHnujX6wkhhK/UWmv44JO3qCqrJDo+hvPPuQKL2RLosNoc6W4THcKBBKm1FossKM7jkzlzCd0eS1hGLMu/Ws7ajSv9ek0hhPCV1956EdtqTdiuOMp/q+Gduf8LdEhtkiRJot2ru5r2zZF9WmU17Y1b1hJREodSCoC4qmTWrPvN79cVQohj5XK5qC6sxqKCAQghjLK8jrEhra9Jd5tot+rPYOvVqgO04+ISsFrWEmaPAMCqaoiPjG616wshREsZDAYw64OPtdb1HotDpCVJtEuBnsE2pN8I4oZEUxCWTWHwPmp7lHHm6ee3agxCCNFSJ59+BnmxmRRZ9pMfn8n0GTMDHVKbJC1Jot1pCzPYlFJcecn1FJbkY3fYSYpLxmAwtnocQgjREiOGjKVf70EUlRYQH5NISHBooENqkyRJEu1Ka89gOyBn/14+m/c+2q5JSe/CzDMvw2AwEB+TWO+4JT99w8a1a0HBpBNOYvgQ7/ZiK68sY+4Hr2OrshERF8HF519NcFCwH+5ECNHZ2B12PvjkDUrySjCFmLjwgiuJi04gNCSM0JCwg8fty8/m08/m4rK5SExN5oJzLvfqy5/WmvkLPyQrYw/aCNNnzKRnesdYn06620S70doz2A6otdby7tuvErYzjsi9ieQtL2L+wo8aHLd2w++sWbSayMxEIvcksuizBWTvy/TqGq+/+SKmLWFEZiViWwPvvv+yr29DCNFJzf3odSpX2ojMSiRoWxRvvPGSexxSHTa7jXfefoXQHbFE7k2kaEUpn34x16vyFy35gr0/ZROxN5GIXQl89N47VFSV++NWWp1XSZJSKlop9bFSaqtSaotSaoK/AxOirkDMYDsgrzAHS2koBuX+uIQ7o9iXld3guHUbVhFbfSiuyPI4Nm5Z22T5Docde5kTkzIDEKRCqCis8E3wQuov0emV5pcQgrvFyKiMqApjgySmsCQPU1nwwXouzBVJXs5+r8rP3L2LSHss4B6KEFQcTlbubh/eQeB42932PPC11vp8pZQFkM5LcUxcLheP/HkR21eXYrC4uOvRExg2Mq3BcYGcwXZAVEQMtZYqsLsfO7QdS2jDRdfiExLJNGQRpiMBqLVUkZKc2mT5RqMJl8V58LHWGiVruvmS1F/C59ZvWsmS779FuRQ9+/dhxmnnBTqkI1IWcGnXwQTIaqyp180GEBkejT3ICrXuxw7twBxi9qr80PAwarQViwoCwB5aS1xMgu9uIICabElSSkUBJwCvAWitbVrrUj/HJTq4Zx/5gXVva9Sabrh+7c7/zf6O8rKaescEegbbAcFBIVTqMnbqjWTrDLaxltDw8AbHnX7S2Rj6OymIyCY/MovEEfEMHTCqyfKVUpwx42z2x++mMCyX/ORMzjvvMn/cSqcj9Zfwh/yi/Xz96ZdE700mKjuJjGW7+HH54kCHdUQmi4mtrCFb72K7Xk+trsF42Fij8NAIJpx0PPtj9lAYnktJ2j4uOv9Kr8o/7+zLqOxRRGF4LvujMhl83FCS4rv441ZanTctST2AAuANpdQwYBVwm9a6yq+RiQ5t29oiQu3uliOlFM7sKDJ2FjBiVDrQNmawHbC/MJc4exeiicOBnVR6Uppf3OA4o9HI9bPuoLyyDJPRSFhohNfXGDJgJP37DKGisoyoiBiMRpkp5yNSfwmf256xmbCyaHCvJUu0LZ7tO7YwacLUgMZ1JPZKBwMYiZVazFgoce2noqqcyPCoesedMPFkxo0+nqqaSqIjYt3rKXkhJDiU22/8C2UVJQRZgjvUTDlvkiQTMBK4RWu9Qin1PHAv8Ne6BymlZgOzAVLTYnwdp+hgohMslNVpnjXEVpPSxf2B9dUMtgXffsqOTdtwKRfjJx7PhDGTvTqvqLiAuR++jqPaSUh0CGefeRGOECtGuwkjJuzaRnB4SKPnKqWIiohuUbxmk5nY6PgWnSuOqNn1V0fpJhD+k5KcxoqQ5YTXuuusGlVFUlycT6+xJzuDeZ99AA6ISY7jsguuxmRquvvL5XLx4WdvsX/vPjBqTjv9LIzBRly4CFbuessRZCMspGFrOECQJZggS/Nn1iqliI6MbfZ5bZ03aWI2kK21XuF5/DHuSqcerfXLWuvRWuvRcfFhh78sRD1/feo0zBOyKU/eQ1m37Zx/Wx+SU6J8NoNtxaqf2L50B9E5ycRmd+HnBcvIzN7l1blvvvNfQnfGEbMvBcPmEObN/4DxU49jf+xuCiJyqOhewIUzr2hRXKLVNbv+igyLOvxlIerpld6X3uN7kxedSX5kNrqflTNPv8Bn5VtttXzw3ltEZyYTk5tCzWo7H38+x6tzv1r0KcW/lxGTm0L03hS++Phjpk8/l6LUbAojctgfv5tTzzhTWqu91GRLktZ6v1IqSynVT2u9DZgKbPZ/aKIji4gM5p2vLqO0tIawMAsWi4mvshdTbbUfnMFGZMvL37JtA9G1CQebw8MrYti2YyPd0noe9Ty7w46rwoVRuSsQiwqiuLSIEyaezMSxk6m11RIWEn5wzzbRtkn9Jfzl7OkXYTvVisPhaDAI+lgVFudjLg85WM+EEEZRXqFX5+ZmZxPmdCf6SinMpaHU1FZz9+1/o7K6gtDgMEmQmsHb2W23AHM8M0N2AbP8F5LoLJRSxMSEumew5ft2BluXlDR2mjIOVhY1wZWkpXVv8jyT0YQOdqFLNUopXNqFMcTd4GoymQn3orlbtDlSfwm/sJiDsJiDfF5udFQsjlArWN2P7dpGSIR3XWCR0ZGUU0Mwnq61cCsJsckopYgIO4Zvnp2UV0mS1notMNq/oYjO6MAMtsU5fd0z2Hw0QPvkydPJyfkP+ZlZaOWiz9B+DOwztMnzlFKcM/Ni5n36PqrWiArTXHHhdT6JSQSG1F+ivQkLCWfK6aew5NtvMNhNmGNMXHfeLV6de97Zl/FK8fMU5BfiNDoZe/xE4mMTmz5RNEq2JREB488ZbAaDgVmX34TNbsNgMGAyev+/et+eA/jTXQ9itVllaxAhRECMHXkco4dPwO6wNWsgtcUcxE2z78Fqq8VsMsueksdIkiQREL7eg+3Vd14gY9MOlDYQlhjKfXc8isFgwGJu2aqMSilJkIQQrWLz9nW8+dZ/MTssOMx2br7pHrqmdMdgMLRophnQ4vNEfbJ3m2h1vt6DbfnqpeSu30d/50j6uYYTui+aV9553kfRCiGEf73x5n8ZYB1NX9dw+tWO4MWXngx0SMJDWpJEq/LlDLYD1q1fSYJOOTiTLVYlsiNr3bEXLIQQfuZwOLA4gg5uGWJUJow2mSDSVkiSJHzutX8tZ8GcnWiXYvBxMfz9n2ewq2qz3/ZgGzRwGEs3LSEU9wrXpbqIlJSm90wTQojD5eZl8/77b+Cs0ZjDTVx5+Wy/LvJqMpmwGa1o+4EZtU6cZrvfrieaR7rbhE+tXZ3F589lEbq9N2E7e7HxA3jm+c/9ugfbpLEnE903ii2GVWxTaymJ38cNs+7y6TWEEJ3D3LmvE5uVSmJRVyL3JDJn7qt+v+Yll17FJvPvbFfr2GxZyTXXeDeTTfiftCQJn1rzazbm4piDXV9htbH89utavk+52usZbC6Xq8GeQY09V9fN193T6HEulwullCz+KIRoksvlwlWtD9YXRmXEXuloVhlaa4B6dU5T9dfIIeMY+Y9xLar7hH9JkiR8auT4ND6L+wWK3fsClQcVkB81lHO8GKBdUlbEm+/8B3u5ExUM5513CQZl4OOP5+CqBXOEkSuvuJ646CPvrXWgMtFaM+ejV9m3KxeNZtDIoUw/dabvblQI0eEYDAYMoQpXsQuDMuDUDszh3o0P0lrz/qdvkL09C5Sm79CBnHHqubz+zouU7ytHmzTHT57CxHFTjnr9A9Zu+J1FX3+FsitC4kK45g83d6iNY9sLSU+FTw0b2ZWZd3WnsPd68rqtZ/9gC2fHTvdqBtt7779O1J4kkkrSScjtyscfzeGDD98hPrcrSSXpRGUmM/f9172KY8lPX1O6upLEonSSirqx9cetbMvYdKy3J4To4C699BpK0/dTEJ9FRY9CLr/0Wq/O+3nF9xSuLCGxOJ3Eom7s+mUXL7/9HGy2kFiSTlJBN35atJTi0qa3F6mpreabL78kKb8biSXpBO2I5INP3jy2GxMtIi1JwucSzqzk6lO7MWf+dO5pxvgje7WdcOX+X1Iphaox4MJZv+m7yrum771Zewh3RB3q9quJZHfmTvr1GtS8mxFCdCopianccev9zT5v156dRNjrDjWIJDdvFz04VOeYK4LJK8xtciB4cWkh5qpD6xxZVBCVZUXNjkkcO2lJEj6TUbmJr7IXsyCz16Ep/s0QHBmMXdsAcGkXhGmMYQb3z4BD2wmK9G6fpD69+lMeVHzwcVVYKX17DWhWPEII4a3+/QZTFnSolagirJS0tHSqDRUHn7NH1ZCSmNZkWXExCdgjag+Ob6qlmuj4aJ/HLJomLUnCJ3yxB9sVl1zHW3P+R3lpLYZgxWUXXotSig8+fAtXjZOgyGCuvPR6r8o6btyJ5OXvY8+2XaBg5Lgx9OzWt9kxCSGEN8aOOI59+3PI2LwdgGGjR3Li8afx7oevUJSTA0bNqafMIDoytsmygoNCOPeCi/hy/ifgUEQmRHLBuVf6+xZEI9SBTNWXho3oqr9ZcofPyxVtkz/3YBPtwxV3T1+lte4Qm8j27NpHP3S7rNguRGdypDpMWpLEMfH1HmxCCCFEWyFjkkSLSYIkhBCiI5OWJNEidfdguzOyD/QKdERCCCGEb0mSJJolo3KT3/ZgE0IIIdoS6W4TXjswg81fe7AJIYQQbYkkSeKIqqttrFi+i5LiapYV/My6whxe/nEi5R8kcG5602t9NMXlclFYkk9NbfVRj7PZrRQU5+FwyM7YQgjvuFwuMnN2kZOXVe+5otICqmuqfHKNyuoKissKOdoscV9fU7Qu6W4TjVr4xUYeuO5bIm0JVBhLGHKxhYzwiTB3HkWOUP757XwuuXQWXbt0b1H5ldUV/O/VZ1HFJhxmG8MmjOK0k85scNy6jSv55ssvMNUE4Qi3cvGlV5Ge2uMY704I0ZE5HDb++uidBFeGo3GhY53cfevfePX1F3AVKZwmB1XD00g44YSjlpNUZD7ikiYfzXuHPRt2Y3AZCUo2MfvqO7CYLfWOqa6p4n+vPnvwmoPHDeWMU8711W2KViBJkmjUgzd9xwDrOPeWIE5Y/d4KIiPX0r28NwC6SvPJp+9x+81/aVH5H336DlF7kzArd6Wy/qc1jBk5od5y/VprvlnwBUlF3Q9e89NP53L7LS27phCic3jpjWfoUtGLSBUNQGHRPp7998Ok5PfCotyr9uet38459xST0LXxTWOtDieLc/ry0UIaJEo7dm9h7+9ZJNq6AlC7s5ovFn7IeWddXu+4jz+fQ3hm/MFrbvp5A6NGjCcpPsWHdyv8yaskSSm1B6gAnICjoywaJ47MYDcf3DMNIESHEqIP7YatlELb3E3MFVVlVFZXkhCbhMnoXd5tra4liCiqdAVmLJiqLZSUF9VLkuwOO8pmbPSajSkuK8Rut5MQm1RvN23RuUn91fkUFRXSnYEHH4cTTUFFzsFkBcBcFkl/PZDh8elk7S0mMSmSqKiQg69nVG5iQ00Ea+IadvPnF+wnyBqClRqcOAkhjNLS0gbH1VRWE6yiDj42VQdRXFbYaJJUU1tNSXkRcdEJBFmCG7wuAqM5LUknaq2b3r5YtHsZlZvQMdVU76skVIXj0HaslmrMMbE4yuyYlJlaqomMj2Lhd/PYsHwdJrsFV4yN6669laiImCavEZ+SyG/bfyGWRGqpxmapoUti13rHWMwWzNFGHKV1rpkQ1aAsrTWLf/03/fttIzJK8+XSeKZNuh+zydzgWNFpSf3ViYwdNZE1i1bTFXfLd67aTe9+/SjfXEKkPQatNfaueZiMRi6ZMgdXXjhE1nDlPUM477LhTZbfr88gPrd8RLgtCjMWdhk2c1bf8xsc171nT7Zn7CDSEYvWGltcFekp3Rsct33PCgrL5zJ6hIOfV5jp2WU23brIXpNtgXS3iXoOzGAb8uyZ/D57CRYrYNbcfsP9RIZHMvfDN6iptBIZH82pp5zJOy+9SlJFOgCOagcff/ou1/zhliavU1ZSSj+GY1LuRGaf2kNVTSUhwfWbvq+ZdTNzP3yTmsoSIuOjufj8qxqUtW33amZM28zM6e6uu9NOKuQf/5zLlDGy15EQndH0U84jv2A/2zatQSsXo8dPYOb0S/ni64/YvGkHpdE2bnu8G/96+BdCt/XBoAxQBm/9cx1nXTgEs9l41PKLigtI1KkkqC4AxLqS2J+X0+C4U088E6v1I/Zm7AETXDzjKsJCIw6+viojj12GGow5c/j4PwbAxB8ucnH27Ff4zXqrL98S0ULeJkkaWKSU0sD/tNYvH36AUmo2MBsgNa3plgQROE6ni5078rFYTHTvEXewW+3wPdie/r9zGpw7e9btB3/ek70TU+2hgYomZaK61t00nVe4D4fDTkpiKgZDwwrHXmsjiGAqdClmggiyhlBWUUJ8TGK94yLCopg967aj3k9F1X4G9z/0uHtXI1ZbUVNvg+g8mlV/xcUktHJ4orlKyoooryojJSEVizmo0WNmXXpTg+fOmnYhqX3zWD62kG4Df8VZU+ZOkDwMNRYqKmpRSrFjexFWQ3SjZRcW5RNsD6WGKpw4CCWC8rLyBscppThr2oWNlrEqI4+lw/YzoFchkfOtQMjBcxLSa7HP3NXEuyB86t+NP+1tknS81jpHKZUIfKuU2qq1Xlb3AE/F8zK4N7g9hlCFH9XW2pl9wQeUrg8Gk4veU8w88+o5/Fj4S7O3GElJTMMWU40rz4VBGSg3FdOje3femPMSxduKUS4jxi6aG667q0FFlpiaTHnkN/zxUgvbd7hY+K2J1KT0Ft1T99RRvPz21zz1oEYpxSvvOunWZXyLyhIdUrPqr55d+0j91YYt/HYeG5evw2QNwh5Tw6yrbyQhtmVbInUbGM62deWEuCJxaDvBqXZ++WE3rzy0BmdBCGWxO7GcOBWG1V8Trn+fwfzW+13OPlcRH6948107Q/v9oVnXXp5QzrXjljIsPpVXPzBRWOQkPs7I3mw7FqOFa/uWtOieRMvMOcLzXiVJWuscz3/zlVKfAWOBZUc/S7RF/3p8GTU/JxNFGAAZC/J59r1P6To+rNl7sAVZgpk16wY+mfceLpumW89upKWls/OHncQ7UgGo3V3NF19/zHlnXlbv3PDoHN56NYqwUPe3uLAoGxVV5QQHhTS4TlMSYpOprL6eq2/5BIsFokInMHzAhGaXIzomqb86jrKKEjb+uo5ETxe/c7+TTz97j+uvuaNF5T34z2k8FvQtmVuyiI4x8rfnZnLdjE+I3NsXgOjsLmz97kcYdlq984pK93P3XWYuOsc9wHr66Q7uf3gncGKzrh9kMtIrfBB/+Wsvnv7XPJSrGlNwAvfedxYhITKmsi1oMklSSoUBBq11hefnU4GH/B6Z8Iv83AqCdCJ4Jq6ZakPJzMhiWf6FLdqDLTE+hfPOvZSKqnJSk7rxy29LsNhDDpYfpEMoLy/D6XSStW83RqOJtORuWCzWgwkSwIA+mo3rylr8jbBH2mB6pA1u0bmi42pJ/VVltbMqI69V4hPNU1ScAzWH/mwZlZGC8ppm/b52GWpIT3aPHzKbjdz+18ns3J5Pl9RoYmNDcdUcqpeUUhgdBlZl5FFWXkh1TRlxsans27+DmTMPzf5NTjRRWJ7frDhsww4tohsRGcyd91/s9bmi9XjTkpQEfOYZt2IC3tNaf+3XqITfnHnRIJ5espqoonS01uxPyKLaMZO7WrjFyGdfziVj5U6MtWbs8TWcc95F/B7zK6El4SilKArbx5QhU3nhP/9A5xrRBheRvcMZOnIgC75bzBknm6mtdfHpV6FMGdWy7jYhjqLZ9VdVmIPlY2UiXFvkshsp+KWCuCwHRmWi2FxE9aiYZv2+0pNzOC1tB6khyaxZmcXfrl+MKzsKFVfN+bf2JqGXmfK9tQSpYGpUBV2Hl/J59icYl+YRVh1MQWIp0VedwFPvwpsPa4xGxQvvWskd0ZuC/t7Hce3wpUQEhbXkbRCtSB1tOfWWGjaiq/5mScuaP4X/vfLOAr6ck0mRLZQuPU5l9sTmNREfUFiczxv/+i+Jle6p+07txDGoipNPmsY3i74AF4wcPZacfVkULC0hGPfMtVJjIRMumgDGfGrsG6mttTBqwFXExyb77B5F67ri7umrOsr6Q72GxOh/fHpSoMMQR1C0v4YPH9qFvUrRfXQIZ97cvd6abt44IeE4AK6c9h6uXw+dX9ZtB299fx6P/2UxRbm1pPUKZ8iVJl6+OIfEfPfsEJd2YZu8kXPuTmXDggzMRk38gCRGnNK8L3mpIdH0Ch/UrHOE/6TE3NVoHSZLAHQyywp+Jm6SCbvlagZtiDrikvveqKypwGg9NLvNqIxYbU66d+3N0JEjqLXVMGTQKLZu20iQPtQFZ3EEU1ZeyimTZwIzj+2GPLTW7MnZid1uo0fXvrJGkmixcFP4wT+iog1KgHM/8k1RLpuhXoJlsJoBxYXXDGXVb3s4/oS+mMxGgmsOzVwzKANRrhguO34GHO+bOAByskvI3F1I775JJCZF+q5gcUwkSepElhX83OwZbEfTJbErzvhanLnupu9SSyH9+/TjzXnXcc3lEBmueP6V9xg86CaW7PiOxMquaK0piylg+JDGp8W2hMvl4uufnmT6aZlERmje+SCaUyb8X4M1l4QQoq6+I6NZt7GUUHs0Nm0lvLuTV178gmDnTk48Lph5b/1EXPooLD2qcKxzL2pbGVLI+Em+bfX++suV5Gz9mbHDXXz4ioERk07huMkDmz5R+J3s3dBJ+DpBAveK2Nddeyt6SC21fUsZdNog7KqAe28zcMm5EUw/JZx3/h3Dpj0fccrMadT0LcU6oJyL//CHFg/QbsymnSu48pJMLpkZxPRTgnnh8Up+WXukCZ1CCOH2wBOnctzNQYSemE33i8v593szKcjaxiP3xjF1UhjPPRzPplUr+c9HM0k6p4jQE7OZ9qdYbrx7ks9i0Fqzdvmv3HdzEFOPD+Ghu4NY+o1MvmwrpCWpE/gqezHVVjtz5k9v0Qy2o4mOjK23wvbH3zxJarKJn3+rwWrTjBsRBLqG4UPGMHzImBZdY39BDgXFOaQm9Ty4t1tmTgYV1cV0T+1PrbWU9NRDTeYJcUacrspjuzEhRIdnMBi486+Hxp85HA5iogxk7LGxY5edQf0sREcq4hMieO6Nc1t0jfKyGtas2kNUdBjDRnRFKUXe/nI2bcima7c4evVOIDzUVe+csBDXEUoTrU2SpA4uo3ITS/IHsHNpV25u4Qy25hg1cCa33n8ft1wbRXiY4vKb8khPuaDF5a3cNJ/klEWceaad+QuDKCy9nJz8tUwYt5ZJvVy89X4IafHX8Ox/zbz4uMZkgn8876RP+lQf3pUQojMwmUys3eTgswWVTBwTwmvvlZOR2bxB4XVlZxXz2gvvcdF0Oznb4flFXTnhpBEsW/glM05ysXaJgVW/DqHCGsvurFJ6dDWxYasdbW64Aa4IDEmSOomkIjO0wljAiur93HdrHCdNci+yNnRAMPf8rbRFZblcLqyO77nnFhNgYuIYuPCaDxg/2srVl7oHjI8b6eK62+cztO9dXHf7+xiNLromTaVv96E+uiMhRGehtWbEsFjuvtFdv0wcE8LtD7V8Bvj7b33NM/cbCA52L5Jb+2EW897P5z+PWlBKMXEM3P/kRm686zrefes7qspLiYlP4JY/neqT+xHHTpKkVuRwOPlxyQ5qaxxMntqH0LDG9xxqKa01q37bTVFhOaPG9iI+IYKtpfux2SLqHVdrrWX77tWYTBb69RiB0Xj0zRyPxuVysez3hZRVZDNq8OlYbeV0ST401C02xoBLV7WobKfLSWSk5uC0OMBkdNAl+VBTtNmssFicJMenkxx/T4vvQwjRtG1b9rF5Qx4jx3alW/c4n5efnVXChrW7Se+exKAhqUc8bvXveyjIL2XkmF4kJEYc8ThvrPxtD999vZqBQ3ow4+xhRITXfz38GOZ/GHASHHyoPkxJAIvZiVKHZt/GRrvr7utvPbPlFxJ+IwO3W4nD4eS68z/gn5du46U/7OHKM+ZSWlrd9InN8K+nPqVy7+cMjP+Bl57+H68tm8eCzF7sXd7j4FT/quoKvv31r5x99ltMnvIqXy17GKfT2eJrzvnyVk488VPuuX0Nm/b8BafDzNMvWbDZNFprHnzKSb/upzVdUCPMJjN7s5LJ2OMAYPnvDoItA/h8YSQlpe6Y53ziJCqsQyzPI0Sb9vqLv3L3mUt58/pcbpn2NfM/2uDT8n/9eSufv/02Q5OXkfH7R7z7+reNHvefZ+dRkjGPQQk/8MYLr7NlU3aLr/nmy4tZ/Mm7XDFtL/a8Rdx72ytU2uPYsdu9UffqDXZUUMsnmQwZPZg3PrACUFHp4rNFFhK79uSHX2wAZOXaycgOJzpaZuK2VdKS1Eq+/HQjxT9FEu2KAwX29RE898gPPPj0GT4pf1dGAV1jsrjwTHez7rBBmhn35xES0Z+b66yF9Ov693nx8VriYt3HhYbkMe/zZYwY2PwFJTftWMvpJ1dyybnRALz2bBBnXzmXU8Y/wuw75mIwOOmRejrdugxo8X2dNvFunnjuXZyuPMKCezF1/PlU11Ry5wNvYTRUkRAzhhEDZOE/IfxJa838N7cTXdzH3bCbF8N7/17PWRcM8dk1flj4I8/c7+6GGjEE7n9yM7W1UwgOPtTqkpNdQrQlk0s8e6YNG6S554nvGPDQVS265sqflvPB/+I81wxmy/0FXHvTpXz00Y+Uf1JMYpdkbrqr5fXLKaeP4PtFBu57ZiPKYOG2+6cRFxfGJ3N/4ptn9hIcFsGf/z6txeUL/5MkqZWUl9ZidJoP7ZmGmZoqu8/Kr662ERdz6LHJpLCUhnHB0O71jnM6a4iKPNSAmBCncDhb1qJVUV3OkPhDXXUmkyIkGBLjunDqxLtaVObhTCYzU8bMqvdcWGgEp0y42SflCyGa5nJpcBzW8eBs+YDmxgQH6XoLO0ZFKOw2Z70kqbraRmz0oXOMRoXFQouFh6p614yNMWCtdXDtjb758gpw0qnDOOnUYfWeO/9S3y0hIPxLuttayRkzB+Hsk4tTO9FaU9olg0uvG+Wz8vv1T+aTpXYKi9zdUC++aWNAUsPWoYG9zuD+R524XJraWhf/eN5C3+4tW114+ICxvPG+lYJCd3fYK++WEWQa3uJ7EEK0TUajgW7DQ6gxVQBQHVzMgPExTZzVPNFJ3fl2mbsbKiPTzt78SCIig+sd06NnPD+tCiGvwF3nvDfPSq8B/Vt8TbshnoXfu8dM7sq0sWKNJrWrb+9LtG+yd1srys4q4bmHluKwu7jypjGMHNPVZ2UvK/iZPbklfPDfWtJKYXCPKQzo1fia+Xtzt7E18wvQRkYOuJT4mJb3uReXFvLF0r9jMtaSGDOOU467tsVlifarI+3dJvVX4xwOJy88vow920oYMiaZa2+Z0Ow9045Ga83nnywnY+seomKiufK6U7FYGnZ2VFVaefPlr6mtrmLo6AGccvqIFl/T5XLx6F/fJyczC0tIOI89ew3h4cFNnyg6nCPt3SZJUgdQd7HICQWRPllN29eqqivYnLEMgyGIof0my95qHYwkSaIj01qzdPFm8vOKGH/cQNK7xwc6JOFjssFtB5RRuYmtpftZkNmLnN96uReLbIP7IpZVlPLLuof4yx21VFZrnn5xCdOO/xsW8zEMJhBCiFby7GMfccLwXEaPNvLGO2s47vQZjBzjw60LRJslY5LaqYzKTawrzGFBZi8cC/u3ymraLfX7xvd58Qk7A/paGDM8iD/dUsyGbUsDHZYQQjQpa28xXeP3ccbUYHp2M/PQ3Ra++/LHQIclWom0JLVDBxKkxTl9cSzsf3ANpGORX5TDzr0/ERKcwLB+UzAYGs+ft+76naLSDNKShtEt1bup/S5tJ6TOgmrhoQqXth1zzEIIAWC1Ovjq89+orbZy8rRRJCY13qSelVnE0sVriY6NZNqZozAam24nsNudhIYceqyUwmj0/TAV0TZJS1I7s6zgZ9YV5vDqisk+S5Ayc7eQVfgE9931I2dO/5gFPz5BY2PVlq18g0FD3uSBe34iNPrfrNnyjVflD+t7Dnf+n8Zm05RXOHn0n8EM7HXCMccthBA2m4NH//I643ut5NzjNvK/Z94kO6u4wXGbN2bz4WvvcuGUzQxI+IVHH3gbl6vpjWS794jj940R7NrrwOXSvDzHypDRw5o8T3QM0pLUjiwr+Jm88greWHkik9cl+2yA9va9n/La8wqDwURqCmTsySIndy9pyd0OHuN0OgkNX8tF57gHXN82G66/6weg6dW0k+K7ormb2Xd8jkGZmTjsYsJCj20rASGEAFj6/WYuP7ua4YPcs9Ke+ouLv/9nMXfcV39j7QWf/cDj91owGBRpXSB7Xwkb1ucwbPjRZxkbDAbue/hK5ry+mJLiMiZOHsKE41u+QK5oXyRJaifqzmCbfIwz2ErLi9mw42uMBgsjB07HoKDuTN4gi3vftLo0GtNh/7eYmtHk7N5b7ZYWxyyEEABOp4uv5v1Ofl4Rx08ehsvpIqjOHBCTSaEbaSFSNFLPOZpuSQIICjJx9Q0t215JtG/S3dbGZVRu4qvsxSzI7MWc+dO5ObLPMSVIxaUFrNz6EH+79xfuuPl7Fi1/kKTYKTz6rAu7XbM9w87nCxPoWqcVCcBkNJGf35sff3XgdGrmfurAiO8WwxRCiKZorXny7+8xOOVX/njubn5e+DEWi4FXPrCwP99BTY2L+5+0MeO8hitaTz5lPI+9aMNm0+zOsrNgaThDhqUF4C5EeyItSW3Y4QO0b/bB+KNVmz/i30+5CA11/+rvu72ct96tJMJ5I7NvX0JIcBxnTJqJwWBscO4pE25m3vyvee2dDNKSRjB+WMtW6hZCiJbI3FPEoO5FjB8ZBMC9Nxm454lV3PPgLF579wdqa6yce+UEevZu+EVy9PjeBIeey0P/XUlkVAT3PTIFs7lhPSdEXV4nSUopI7ASyNFaz/BfSAJ8N4OtuqaKlZvm4XTWMqTvDDS6XpOzweD+dtaty4AGG9Fu372SvftXEh/dm2H9p6KUYtSg+psxOpwOft/4BdU1BfTtNoWuKX1bFKcQ/iT1V/uktWbRgjVs37KX4aP6kNYtqV79pZR777XIqBCuu6l+3bQ/t5QvPv0Fg9HAzItPICYmlMFD0xk8NL3ecSt+2cZvv2yhe88UZpw71qeriIv2rzndbbcBW/wViDjEVzPYaq01LP7t7/z1nuU8/chaNu1+jPTkSdz6F0VxiZPsXDuP/jOcwX0azjT7feN8uvV6k5ee3sxpp81j8a8vNTjG5XKx8MfHuO6q7/jXExup1f9i+55VLYpVCD+T+qsd+t8LX5Bk+on7r83FWfQdy5etZ93OGFZvsFFZ5eLp/1kZd8KYBuftyynl5Wff5obzdjNr+k7++dDrlJXVNDhu/ie/UrD9a/5yTS794lfwz8c+ao3bEu2IV0mSUioNmA686t9wxIEZbK+umMzkdcnHNMV/086fuPe2ClJTTERFGnnhMc3e/UsZ2vt+7n1wJI8+dRwnj3uQkODQBudaHcuZdYmJ4GADUyeZiE/Yjt1hr3dMbn4Wp0/dz9CBZkJDDfzf3Qay8ha2OF4h/EHqr/bJ5XJRW5bJqZMtBAcbuHBGEPv3buPev1/GrztH8sw7XRkx5RwmnTiowbmffrCUx+4xEhtjJDnRxN3Xufj6i98bHLdj4wauvjiIkBADx4+1EGnZT2VFbWvcnmgnvO1uew64BzjivG2l1GxgNkBqmuyi3BJHm8G2eefPZO1fRWxUL0YPPsPLJmGFy3VoBprLBQoDLpcDh9OKS7sazGKre+w3S6r4dVUtvbqbcTrDOfyKSimcrvrP+mErQCGO1XNI/RVQWXuL+PyjHzEajVxw+YnEx4d7dd7h9Yl2uZ+rqbZitdqwWx2NnqeUIjPLzlfflWEwwKRxIY0ukHt4+S4X0t0m6mmyJUkpNQPI11oftR9Fa/2y1nq01np0XHyYzwLsDJqawfbruo8ZNGQur7+YwfkzF7Dolxe8Kndwn+N54oVotmfY2Jfn4OZ7DXRLmcTWvY/z4pObeeLBtSxd9Xeqa6oanFtUHEFRsYsH7oilVzczm7a6MB22KW2XxK5890Mqv660UVjk5P5HXfRIPevY3gwhfEjqr8DL2lvEOy+9y59n5XLrxXt54bE3KCmpbvI8g8FAREIv5n1to7jEyVsfWUnrNZB//PVtpo/bzEM35bNj1Zd8v2hdg3OPmzKcJ18q55Zro7nu8iieeqmCCZMGNjhu8Kjh/PstK0XFThYttWJVaYSFB/nkvkXH4E1323HAWUqpPcD7wElKqXf9GlUn4s0ebA5WcclME0aj4rixZlKSMxp0fTUmyBLMqRMe5F//PZmHn5zIqP7/x559S3nuEQgNNRAXa+T+O6vZtHNZg3MTEiq49LwIjEbFhDEhDB9ibHBNpRRnTPozH31yFg88Mpa4sLvp1XVoy98MIXxP6q8A+/yjH3n0HjNhoQZioo3cfZ1m0VcrvTr32hvPwBF5Ev/9rAfxvc9gzMSBjBpYTv/eZkwmxS2zgljz6+oG5/34/Rr+80T8wWs+9bdofvphQ4PjTj9zDH3GnM3Ln/ekwHUCt/zp3GO+X9GxNNndprW+D7gPQCk1Bbhba325f8PqHLydweY8rEfMZldeNwlbbbVUVuehtZ2a2gqUMmF3QJDny1JtLRgMDf83OPyadnvjzdAGg5FRg0/3KhYhWpvUX4FnNBqx2TRhnqGPVpvGZPJu6r3L5WL/vmLKiivIzyshMSUGW51tH7XWDeoq9zUN2GwaPI2CVuuRrzl8ZHeGj+zejDsSnYksJhkgzZnBFh16Ev/8j4OcfQ4+mGenqnI4JmPTw8mqqiv4ed3DPP/4Zl55PoO9BU+TnnQcN95jZFemnfWbbTz5r2iG9G04uy069CSe8Vzzw8/tVJYP8+qaQghR1wWXn8h9T7rYudvGpm1WnnvTwrQzR3t17gtPfsrYXut4/K5iUkN+5bsFv7EjN5HFP1nJzrXz92etnDSt4cKRh1/z2TctnHFWw1lwQjRFNbaR6bEaNqKr/mbJHT4vt6NoyR5se3O3k7V/DfExvejXw7sKZtXGb7j6qnkM6uduNrLbNdfd3osJw/7App2LMRqCGNb/ZCzmxvvg9+ZuJztvDbFRvejf07tris7pirunr9Jad4j/SaT+8r2SkmoWfbUSk8nItDNHExrW9Lgfl8vFvx/7Nw/ffWgs5H1Pam7/6x/5duE6CvKKmTBpUKMLR7b0mqLzSom5q9E6TJoGWllL92BL79KX9C7NW6jRYLRQUXkoCa61apQyExEWxfhhM/1yTSGEOFxMTCgXXd6wxfpolFL1utYAHA7386eeMdwv1xTicJIktZKMyk1sLd3Pgsxe5PzWyz1AO9K/1xzc53ie+89ibr+hkKgIA489G8zEYRf796JCCOEDSimSewzgzQ83ccI4AwuWuBg4cnygwxKdjCRJrcAfe7B5w2wyc8akv/Hxpz/idFo5YeTxhIUecakYIYRoUy6bdTKrf+/FgpVZDD6+JwMHy4a0onVJkuRnvtqDraVMJjMjB55U77m9uVvYlvkVWhsZ2f8S4mOTWzUmIYTw1sgxPRg5psfBx5UVtbz58tdYa6oZOqo/p0wbGcDoREcns9v8yFd7sPlS9v6dlNa+xGsvZPHfZ3azZsc/KKsoDXRYQgjRJIfDyRN/e5ubLszmibvLMZT/yOcfLw90WKIDkyTJT3y5B5svbc5YwCP3GTAYFMHBBu67zc72PT8HOiwhhGjS7l2FHD+qhqQEdyfIJWcHsWvrtgBHJToy6W7zg+bMYNudvZ6M7K9xuQwM73cJiXGpfo3NYAihrNxFXKx7YbX8Qo3JGMqG7d9TUPI7TlcI44deRUSYn0eVCyHavbKyGt763wIcthr6D+nLGWeP9ev1QkMtFJUeeux0aqw299YnH779LeDk+JNGM25iP7/GIToPSZJ8qLkz2DJzt2DlFV57wYDdDjf9+Uks5r8RHRnrtxgnDL+Em/68nZuvraCqGt6Yk0JaYi0DB33FFReaKCt38se7H+H04x7FfNhebUIIcYDd7uTpv7/FP/7kJDbGyGcLl/PpBzZmXnS8366ZmhZDmb07cz7dTd+e8MGXBqZMP5k3/vUezzxgxGJRPPPyQowGI6PH9/ZbHKLzkO42H/FmD7bDbd29iL/dbUAphcWi+NPNdnZk+rd/PSwknFMnPMyXX/2BZUtnM2PyA5RVr+KKC935clSkkfPOrCBnf6Zf4xBCtG+7Mgo4YYyV2Bh3q/S504LI3LHT79e94fazSeh3LtuKT2TWrbMoyi/nuotdBAW569K7ZgexbLF3e8MJ0RRpSfKBls5gMxnCKC5xkhDv/jXk7teYzf7v5goOCmZovwkHH9vtJmw2jcXi3pstZ5+BkOBQv8chhGi/IiKCySs89Njh0Fht3u0peayGj+oGdHPHERnKvnwXwwa5Xysrd2G2yOrawjckSTpGywp+prCqildXTKbrhqhmDdCeOOJSbrlvJ9ddUUJ5peLDz9KYfsJE/wV7BMP7XckNf3qKP1xSzc5dRjZuGsqJY7u0ehxCiPajS2o0NaoXr7+/k97dNZ9+Y+SCq05r9TiOn9yPJx5cRXVNAdFR8MFXQdz519aPQ3RMsnfbMWjJHmyHs9ltZOzdhNFooXf6AAyGwPSAVlVXsDt7GxFhMXRL7RWQGET7JXu3dV6bN+ZSkF/GkOHpxMaGBSQGrTWrfttDba2dkWO6ExpqCUgcov2Svdt8rKV7sB0uY+9K9hUtweFUhAYHkZYcmMGGYaERDO7bIf7GCSFaSUF+BQvmLcWAjbycfC64/ASUap0ut7qUUowe16PpA4VoJkmSmsmXe7DtylpLZOx7PPx/JpxOze0PvEBI8APERSf6NmghhPAxm83BC4+/wzP3Q3iYge9+XMcH77i4+MoTAx2aED4js9uaoSUz2I5mx94fuOtG98wQo1Fx63UOdu5d4YtQhRDCr3ZnFHLiODvhYe4/IydPsrBv757ABiWEj0mS5CV/7MEWZI5mX57z0DX2aMKC44+5XCGE8LfomFAycw49tlpd2OzGwAUkhB9Id5sXjmUG29FMGH4xdz6wk5lnFlNZpViyrCfTJo33SdlCCOFPScmRmKIG8s9XNtO7m4uvl5m55pbpgQ5LCJ+SJKkJvpjBdiRBlmBmTP47Gdv3YDaamTapa0AGPQohREtccc0pZO0dRVFhJff8PYnQMFmfSHQskiQdha9msB2N0Wiku0y5F0K0U13TY+ma7r+tlIQIJEmSGuHLGWxCCCGEaJ9k4PZhfD2DTQghhBDtU5NJklIqWCn1m1JqnVJqk1Lq760RWCD4YwabECJwOlP9JYTwPW+626zASVrrSqWUGfhJKbVQa/2rn2NrVf6awSaECKhOUX8JIfyjySRJuzd3q/Q8NHv++X7DtwDy5ww2IUTgdIb6SwjhP16NSVJKGZVSa4F84FutdYNloZVSs5VSK5VSK4sKq3wcpv98lb2YvPIK9ww2SZCE6HA6cv0lhPAvr2a3aa2dwHClVDTwmVJqsNZ642HHvAy8DO5dtH0dqK/JDDYhOoeOWH8JIVpHs2a3aa1LgSXA6X6JppXIDDYhOp+OUn8JIVqPN7PbEjzfwFBKhQCnAFv9HJffyAw2ITqPjlZ/CSFalzfdbSnAW0opI+6k6kOt9Zf+Dcs/ZAabEJ1Oh6m/hBCtz5vZbeuBEa0QS6t4e+1UJq+LlwHaQnQCHa3+EkK0LllxWwghhBCiEZ0mSTrQ1WazOgIdihBCCCHagU6xwa0sFimEEEKI5urwSdJX2Yupttrdi0UWREqCJIQQQgivdOgk6avsxVTV2HjvyxmyWKQQQgghmqVDJkmNrqYthBBCCNEMHW7gtqymLYQQQghf6FAtSbJYpBBCCCF8pcMkSTKDTQjhC9UOK78X7Q50GEKINqBDJEkyg00I4Sv2ylgKf7ko0GEIIVrVi40+2+6TJJnBJoTwJYPDiTm/PNBhCCHagHabJMkMNiGEEEL4U7uc3SYz2IQQQgjhb+2uJUlmsAkhhBCiNbSrJElmsAkhhBCitbSbJElmsAkhhBCiNbWLJElmsAkhhBCitbXpJElmsAkhhBAiUNrs7DaZwSaEEEKIQGqTLUkyg00IIYQQgdZkS5JSqqtSaolSarNSapNS6jZ/BnRgBturKyYzeV2yJEhCiBZr7fpLCNGxeNOS5ADu0lqvVkpFAKuUUt9qrTf7OhiZwSaE8LFWq7+EEB1Pk0mS1nofsM/zc4VSaguQCvi0kpEZbEIIX2ut+ksI0TE1a0ySUqo7MAJY0chrs4HZAKlpMV6X2ZFnsFVWV1BVXUl8TCJGozHQ4QjRqXlbf8XFJLRuYG2U3WGnqCSfqIgYQoJDAx2OEAHhdZKklAoHPgFu11o32CJba/0y8DLAsBFdtTdlHpjBtjinr3sGWwcaf7Twu3lsWL4Ok92MK9bO7GtvJzI8KtBhCdEpNaf+6tm1j1f1V0eWs38v777zKuaKYOzBVqacejLjRk8KdFhCtDqvlgBQSplxVzBztNaf+uLCywp+Zl1hDq+umIxjYf8ONUC7uLSQjb+sJ6k8nbiaFGKyU/j4s3cCHZYQnZI/6q+O7pNP3yMxrxtxNSkkl3Tnh+++xel0BjosIVpdky1JSikFvAZs0Vr/0xcX7eh7sJVWlGCqsRx8bFJmqqsrAxiREJ2TP+qvzkDbNAZ16Du00W6m1lpNWGhEAKMSovV505J0HHAFcJJSaq3n3xktveCBBGnO/OkdMkEC6JKYhi22Bpd2AVBhKqFbz+6BDUqIzsmn9VdnEZscR7Vyf7FzaDuGKAgNCQ9wVEK0Pm9mt/0EKF9crLPMYAsOCuHKq2Yz77O5uOya9J7dmHbyuYEOS4hOx5f1V2dyyfmz+Mj0DsX5hVhCLVx7/q24G+WE6FxaZcXtjjyD7UhSElK5YfbdrX7dbbs2kV+8n2H9RzdroLjNbiV7/14iwiJJiO14rXtCCO+ZTGYuOf/qVr9uUUkBG3esoXtqb7ql9vT6PK01+wtysNqtpCV3w2Rsk5tJiHbI7/8ndeQZbG3NUy88SHVWDaE6nPmmj7j+j7fTu3v/Js8rKi3gtddexFwYgjPITu/RvTlnxiX+D1gIITx+/u175n/yKQnOZBarb0gf2o1rr7i1yfO01rw1978UbSnC4DRBioM/XnenLFsgfMKvG9x25Blsbc323ZupzqqhO/1JVGkMcIzmjbde8urcz+bNJX5fV2IdSSRUpbFj5Q4KivP8HLEQQhzyxeefMMA5kgSVSi8Gk7FhB7W22ibP27xjPSUbyoivTSXWnkR4ZhyfL/iwFSIWnYHfkqTOtgdbYUk+WzM2Ul5ZdvC5dVtW8u3PX1JSVnTE82prq/lhxTf8snoJLpd7oHdNbTXbdm8iNz+rGdfPI0QfGlhpVEZweDeGwGFzuI8/cK7VTEVVg6VkhBAdVK21hm27N5GTt/fgc/sKclj043y27z764uTrt63m25++oLi0EHC37GTmZLBjzxbsDrvXMRhcpnrjniw6hPKKkibPKy0txmwPOnSeCqa6SmYTC9/wS3dbpaPy0Ay2TrAH29Kfv+W373/BVBGMPaaaM88/n3lfvI9jnyZUR7Bo/ldcM/sm+vcaXO+80vJiHnn8PpJt6Thw8MUXn3DrH+/j7bf/h6UgDGewne6junP+2Zc3GcPQ/qP41PQB8Y5kjMpEoc4lpVuqV/H37tePTZmbiLYl4NQOHPG1pCZ1bdF7IYRoX4pKC3jt1Rcx54fiDLKTNjyNxKRkFs3/ikRXF35RP5I0IJkbrr6rwblPPf9/1GY7CNURfPvFAi6/6jp++/0nyrZVYHAacaZYuXH23YSGhDUZR0hsMOV5JUSqGGzaSnVwOfExTf/tGNR/GD/GLSGsKBKDMlAYmsvUEae16L0Q4nB+aUmyO5zMmT+dmyP7dPgEyeVy8euPP5FYnk6sTiSxqBsff/YOtn1O0ulDvEpmgHMU77z7coNzX3r1afrahpGgupCi0kmoSON/r/+TxDx3WQk1qexZs5v8ov1NxhEeGsmNN95JRuRGtoesJbi/hRuv9m7g+NQTzmDQKYOo7lOCc3AN11xzM0GW4Ga/F0KI9mfe5+8Tvz/NXefUppK9LpuvF8ynv2sEcSqZHgxk79Y9Dbq+9mTvpCq7pk49N5q33n2Jys01xNu6EOtMIioric8XfOBVHPfd8TC16WVsD15LVsx27r3rYQyGpv9ERUfGcvkfrsE6oJyaPiUcf9Zkhg8e3aL3QojD+aUlqbgsmsc68Ay2krIi9ubuJjkhlZioWAyOQx9kpRQ2m50IHXtw4rFRGcGpcDgc/LDiG2w2K5PHnUptTQ0WDiUjIYRSVGvHiZMSXYiFIIw2M9U1lWTm7GLNphX06TGAQX2GA5BXmMv+glzSu/QgJiqOnul9mX3tbZSXl9KzW1+vKpgDMU8YN5mk5BQiI6OJi5a9q4ToqOwOOzt2b8ZoNNGne38cdgfB6tCfAoPVjFEZD+v6CqaqqoLde7ezbdcmhg4YRUlZEcE67GA9Z1AGtEthdJgpowgnTiKJpaamhtraapb8+g0mk5kTx5+KyWShuqaKjMxtRERE0T21FyaThdmzbmdPdgaJ8SnN2kMvNSWdqVNPx2qtpU+PAT57r4TwS5KUaAxq+qB2asPm1Sz8bD5BJWHYwmsYeeIYQhJDsJbVEEQIlcZyevXux8Z1a4izJ2NSJvJ0Nmk90rn/4VuJr0rBiInvv/2G4yefxNrvVtJdD0CjyTRsJ7FLEtt3rKML3amglH32TNZtWMlvS34l0ZXKOrWWZf2/o2/vQaxe8juWyhCsMV8y7dyz2LRlPTlrcjBZLSyIn8eVV19PSkLTXW55Bft4843/EFwQgSPIRpcRXbjkvFmt8G4KIVpTrbWGf//vKYzZQWiDxtzjSwYPHsmaPauItSa5u9sTqwnTYZTtLyJKxWHVtdSEVPDZl3PJXp9NjE5g5Xe/MWTiMArN+0iwd8GkzBToXFJSU9mxZz1p9MKMhU38xknJp/HAQ3eQYuuOxsW3i77itpv/wpy3XsGSH4HTYidpaAKjR07g848+Irg4HHt4LYMnDeX0qWc3eU8ul4tX33qByu01GJxGFqZ8zg3X30W4rA4ufMCvs9s6osXfLSSxJJ1oFU9iVVdW/rKca668mfCxQdT2K6Xr5BSuvHA2t916H3uiN7M9dC2xQyOJjokhuaobiSqNOJVMP9twNm1cw8ipY9gRvo6d4es4/7LLyNq1hwGMIkYl0EV1J14n88MP39HHNZRoFU93+pO5bQ+//fQLiVVd3XGUpPP1wvlkr88i3tqFaOJJLOjG/C+8m+Hx+RcfkpjfjWjiibd2IWd9NnmFuX5+J4UQrW3Bd/MI3xtHjE4k1pmEK8OE2Wxi9Iwx1PYrg2FWZl93G/fe/giOnjVsD13Lvvhd3HvXo+zcuJ0eDCBaxdNHD2X1it+5644HyIzewvbQtYQPCiY8Mpxu9CVJpRGrEhnIaBZ+M48+tqHEq2QSVBdSq3vx75efID4vnRjiibelsH9jPvPmf0BScTeiVTwJVWmsW7Haq4HfG7etpmqrlThHMjE6gZicFOZ/5V0XnxBNkRW36qi11rJlx3rMZjMD+wzFYDA2PMip6jVDG10mjEYTl15wTb3DuqZ056Spp5FXsI/J40/m8wUfEUTIwdfNBGGttTLl+NOwu2wEBQUzfNAo5uo36u2ZFEwYShfWu6aZIKiz16RSCu107690gEEZ0A6Ny+Vk84712O12BvQZSnBQw7FGLoezwT5NNbXV3r1pQog2IyNzG8WlhfTtOYioiOgGr1dVVdbr4re4gqioLOf0k85m0vip9Y49a/oF/Lb6F/r06ktkeAQmba73ukmbSEnsysmnTCd3316OHz+VOR+/Shixh47BjNKq3jWDCcFus9efUWszYXM669etThN2u42C4v1k5+yle3ovEuOSG9xTZWUlZqflYLefCTO11hrv3jAhmiBJkkdVdQX//t/TBOWG41Iufui1iBuuvRujsX6iZAo3UqoLiVbxVOtKqk2VWMyWBuX9/fG7CSqMIJRwnvv5caacfgqLNy5kkB6LQrGTDQwaNISHHr2HNHsvnDhYtvQ2gqOCySnZTarqgUPbySaD2Ph4SvOLiFZxVOtKbKE1dOnShdpt1QQTSqWxlLSe6eRmZ2HPtmFWFoqD8hg+YDgvvfI09gwwaAPfdVnAjdff1WCTyoFDhrEq63dia5NwaDuOhFpSk7v59f0WQvjW3E/eIHd1LmZrMIvjvuHSK2eRntqj3jFjRk5gzqrX6eUc7O7iN23j3GHnNSjry0Ufs/zbn0jWXdn1y0J+6rmUClVKtauCUBVBmS6m1lTNw0/+GVN+MGFE8uIvTzHupIn8uGcJQ/Q4FAYy2ERyaioZuZvord3X3G3YwoTxJ7Dn10zialJwaDv2pGp69ehHQUkREY4YaqkmKNHM8t+WsWbJSoIqQ/kh8jtOPPMUxoyYWC/WIQNHsCzhe8IKIlAYKIjIZsZY2QZK+IYkSR5ffP0xsTldMCsLaCjbVcSq9csZO+L4esfZq+zUYKVI52HChNkZhMvlrNfqtGHbaoxFQaSodAAinNF8u+grEkljN+41R6JJ4JdflzLUMQGLco/hMlab2GXbTBQJZOhNKBSxJHLu2ReyZMk3bN+/ltDwUP7vxicxmy18/tX7lBSX0KNrd06fejZVNZV8Nn8u1ppyxg4eh9lkxrXLSKyOc8eeE8kXX3/MxTPrjzc6YcJUTEYjmzauwxIcxB/PvhOzqf63RiFE21VYkk/OhmwSbGmgILIohq8WfMoN19Wftr9pyzqinfHsYhMaiHEksn3HZpLiUuod99MPP9Bfj0QpRSSxbNu9FosrmAL24dB7CSIYl82Jq0DRRXUHINIVw49LvyeBNHazBVBEE0elrZgTzz6FJYu/Riu44NzLGDVkAiuSfmT9+tWYLRauP+sOIsOjWBT1BZl7dhMVFcm5Z17D888+TlJVN/c9VcTy4w/fN0iSIsKiuPqaG/liwce4nE5OHz+DAX2H+PHdFp2JJEke1tpaHDjJ1NswYCTOmUx1dVWD45Q2kKoO7SmUr7NwOJ1Y6iRJFdXlmHVQvVkfyqWIJOZg4qS1JtO5FTOHWqEsBIMLklQaSaQBkKezqKqu5PY/3t8glgvOubLe44iwSK685PqDj3/4+RtMTnO9ZmhrbeMr2E4cO4WJY6cc5R0SQrRVVmst2Azs1TuopYZkumJyNjyupqaaWJKIV+6kqEZXUVXdcOFFA/Vnt5m1BRdOuqm+B58rZD+WOvWcUgqDy0AEUXRR7pZorTWl9gKmHj+NqcdPq3eNcaMmMW7UpHrPnXbSWQd/drmcKGf9BXGVq/EFchPjk7nmypsbfU2IYyEDtz0GDhzKVtaQSBrRxLNTbWBQ/2ENjkvrmU6Fyb0KbI2qIjIlokF328gBYymw5GDTVgBy2E3v/n3YY9yKSzvRWrNTbWTosBHsYD1aa1zaSQab6NtvIDnsBsCmreRbchg5YGyL7mnksPFUJBTh9FwzL2ovk46b2vSJQoh2JTkhlWxXBkEE04VuZJOBJaLhMIATjjuZ/Ki9njrHRWlcHmNHHtfguJjkGIq0e2uial1JbWgVxkgDldq9En+pLiI6LoY8Q9bBem6fziQhNYlM4/aDdc4utZkpU05t0T0ZDEZi0mKoVu4krsJYSkr3Li0qS4iWkiTJY+GizxnMWCJVDLEqkZ56EN8s+aLBceeddRn9Tu2LfVAFiSfEcc0fbmlwTHBwKPf96RFyEzLYEbGOnhN7cMOsP3H17BvZFb2JnVHrOXnmaYSHRBNKOOv5lQ2sIJZERg8fR8+JPdgRsY7chAzu+9MjBLdwo8bI8CiuvvYm1AgbzqHVzLz8Inp269v0iUKIdmVn5lZinUkkqa6EqygGMIqd27Y1OC49tQcX/uEKnEOrYXgts669kdjo+AbH3XXz/xE62MKOiHWUpu7nb/c9zd/ufZqq9GJ2hK9F9XVww7V3kRicylZWs14vp4pKIoKjuP6G29gTs4mMqPVMOnNKgxak5ph12U10mZKIfXAlvU/pyUUzr2pxWUK0hHS3eTjsdox13g4LFmpqGuluU4pTTpzRZHlxMQn87c9P1Xuuf6/BPPzAswcfvzX3v3ShB2mqFwBVupya2louPncW+GjcYUJcErMuu9E3hQkh2qSq6krM2lK/60s3MjsX6JHeu8muKYPBwB+vurPB8/fc+veDP+fk7SVYhzBUTTgUh6uI3t3789D9zzY4tyWMRiNnn3GRT8oSoiWkJcnjjGnnslNtQGuNUzvYbdzKjNMv8Os1p0w6lfzovQevWZ5YyOjh4/16TSFExzO0/wiKg/OwavfU9xx202dgf79eMyUhFUMyB69ZFLKPocNH+vWaQrQ2SZI8xo88gekXnkNG9AYy47Zy/Y23e7Va9bHoltaTi/5wBXp4LabRLq6bfSsRYVF+vaYQouMxmSw88OfHKUjJYkfkOnpP6s1Vl9zg12saDEZuuO5OYo4Pxzm0ihPOO5Hjx5/k12sK0dqku62OiWOmMHHMlFa9ZveuvZl1ee9WvaYQouOJiojm/rv+0arXDLIEN5hlK0RHIi1JQgghhBCNkCRJCCGEEKIRTSZJSqnXlVL5SqmNrRGQEEL4ktRhQoiW8qYl6U3gdD/HIYQQ/vImUocJIVqgySRJa70MKG6FWIQQwuekDhNCtJTPxiQppWYrpVYqpVaWV5X5qlghhPA7qb+EEI3xWZKktX5Zaz1aaz06Utb6EUK0I1J/CSEaI7PbhBBCCCEaIUmSEEIIIUQjvFkCYC6wHOinlMpWSl3j/7CEEMI3pA4TQrRUk9uSaK0vaY1AhBDCH6QOE0K0lHS3CSGEEEI0QpIkIYQQQohGSJIkhBBCCNEISZKEEEIIIRohSZIQQgghRCMkSRJCCCGEaIQkSUIIIYQQjZAkSQghhBCiEZIkCSGEEEI0QpIkIYQQQohGSJIkhBBCCNEISZKEEEIIIRohSZIQQgghRCMkSRJCCCGEaIQkSUIIIYQQjVBaa98XqlQBkOnzgo8uHihs5Wv6ksQfeO39HgIZfzetdUKAru1TUn+1SHuPH9r/PUj8x6bROswvSVIgKKVWaq1HBzqOlpL4A6+930N7j78za++/u/YeP7T/e5D4/UO624QQQgghGiFJkhBCCCFEIzpSkvRyoAM4RhJ/4LX3e2jv8Xdm7f13197jh/Z/DxK/H3SYMUlCCCGEEL7UkVqShBBCCCF8RpIkIYQQQohGdIgkSSllVEqtUUp9GehYWkIptUcptUEptVYptTLQ8TSXUipaKfWxUmqrUmqLUmpCoGPyllKqn+d9P/CvXCl1e6Djag6l1B1KqU1KqY1KqblKqeBAxyS8J/VXYLXn+gukDvO3DjEmSSl1JzAaiNRazwh0PM2llNoDjNZat8uFwJRSbwE/aq1fVUpZgFCtdWmAw2o2pZQRyAHGaa1bezHBFlFKpQI/AQO11jVKqQ+BBVrrNwMbmfCW1F+B1VHqL5A6zB/afUuSUioNmA68GuhYOiOlVBRwAvAagNba1l4rGGAqkNFeKpc6TECIUsoEhAK5AY5HeEnqr8DqYPUXSB3mc+0+SQKeA+4BXAGO41hoYJFSapVSanagg2mmHkAB8Iany+BVpVRYoINqoYuBuYEOojm01jnA08BeYB9QprVeFNioRDM8h9RfgdSR6i+QOszn2nWSpJSaAeRrrVcFOpZjdLzWeiQwDbhJKXVCoANqBhMwEviP1noEUAXcG9iQms/TzH4W8FGgY2kOpVQMcDbuyr4LEKaUujywUQlvSP3VJnSI+gukDvOXdp0kAccBZ3n6xN8HTlJKvRvYkJrPk0mjtc4HPgPGBjaiZskGsrXWKzyPP8Zd6bQ304DVWuu8QAfSTCcDu7XWBVprO/ApMDHAMQnvSP0VeB2l/gKpw/yiXSdJWuv7tNZpWuvuuJsZv9dat5kM1BtKqTClVMSBn4FTgY2Bjcp7Wuv9QJZSqp/nqanA5gCG1FKX0M6aqT32AuOVUqFKKYX7/d8S4JiEF6T+CrwOVH+B1GF+YQp0AIIk4DP3/xuYgPe01l8HNqRmuwWY42nu3QXMCnA8zeKp3E8Brg90LM2ltV6hlPoYWA04gDW00eX9RYck9VcbIHWY/3SIJQCEEEIIIXytXXe3CSGEEEL4iyRJQgghhBCNkCRJCCGEEKIRkiQJIYQQQjRCkiQhhBBCiEZIkiSEEEII0QhJkoQQQgghGvH/vc/0+ZQ2wJEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn.linear_model import LogisticRegression\n", - "from sklearn.tree import DecisionTreeClassifier\n", - "\n", - "lr = LogisticRegression()\n", - "lr.fit(X_train, y_train)\n", - "\n", - "dt = DecisionTreeClassifier(criterion='entropy')\n", - "dt.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(10, 4))\n", - "plot_classifier_decision_zone(lr, X_test, y_test, ax=ax[0], title=\"LogisticRegression\")\n", - "plot_classifier_decision_zone(dt, X_test, y_test, ax=ax[1], title=\"DecisionTreeClassifier\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The logistic regression is not very stable on this sort of problem. No linear separator can work on this dataset. Let's dig into it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DecisionTreeLogisticRegression" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHxCAYAAAB58SixAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADKDklEQVR4nOzdd3yUVfb48c+ZTHpvBAgh9KJ0QcQCKDbEXtaKFdvq7rq663f9rru/7X3ddb/urrq69opdEBsiKCIKWOgl1ADpvc4kc39/PDNhkkzIJJnJpJy3r7zMzNPOM5m5nLnPee4VYwxKKaWUUqo5W6gDUEoppZTqiTRJUkoppZTyQZMkpZRSSikfNElSSimllPJBkySllFJKKR80SVJKKaWU8kGTpE4QkWUicp0f61WJyIjuiKknEpGrReT9Tm67WUTmBjainqUrr49SnaXtl3+0/Tq6/tJ+SV8eJ0lE9gIZQAPQCGwBngYeNca4Qhia30RkM5DtfhgNOLHOB+B3xpjfBeg4TwK5xpj7A7G/7jq2iBigBjBAOfAS8GNjTGNAg1Sqm2n71aHjPIm2XyoI7KEOoBucZ4z5UEQSgTnAg8BM4IbQhuUfY8yxnt9F5GPgWWPMYy3XExG7Maah5fP9xGRjzC4RGQWsBLYC/wnkAfr566tCR9uvvk/brx6s31xuM8aUG2PeAi4HrhORCSISKSJ/EZH9IpIvIg+LSLRnGxG5QES+FpEKEckRkbPdz38sIovcv48SkZUiUi4iRSLyktf2xv3GR0QSReRpESkUkX0icr+I2NzLrheRT92xlIrIHhGZf7TzEZFh7v3fJCL7gY/cz98oIlvd+3lPRLK9thknIh+ISImIbBeR7/jz2onIzSKyy73dWyIy2GvZme59lYvIv9yvhee1uV5EPnX/LiLyNxEpcL+eG91/g1uAq4F73d37b7vX3ysip7t/DxOR/3X/DSpFZL2IZPn4G+8CVgNTvOI71/03LBORz0RkkteyaSLylXufi0XkJRH5jXvZXBHJFZH/EZE84AkRsYnIT9xxFIvIyyKS4l4/SkSedT9fJiJfikiG1+uw232cPSJydcvXx/34RPd25e7/n+i17GMR+bWIrHbv530RSfPn76d6P22/tP0Sbb9CwxjTZ3+AvcDpPp7fD9wO/A14C0gB4oG3gd+71zkeq/vzDKxkMhMY5172MbDI/fsLwE/d60QBJ3sdxwCj3L8/DbzpPs4wYAdwk3vZ9Vjd0DcDYe7YDuG+HOq1P+/jDnPv/2kgFqsr+wJgFzAeq5fwfuAz9/qxwAGsb6B2YCpQBBzjXv4k8Bsfr9Vp7vWmAZHA/wGr3MvSgArgYvc+f+A+j0Ve5/Wp+/ezgPVAEiDuGAe1dWzvvx3wY2AjMNa97WQg1cdrPA44DPzQ/XgqUID1zTsMuM6930ggAtjnjjncfQ4OTxzAXKzLAn90rx/tXvdzYIj7uUeAF9zr34r1/olxH+s4IMH9ulcAY93rDQKO9fH6pAClwEL3a3ml+3Gq198+BxjjjuVj4A+h/ozpT/B+0PZL2y9tv0L+E/IAgnpybTcyn2M1DNXASK/nZwF73L8/Avytjf1+7PVBehp4FBjiYz0DjHK/6Ry4P9Beb8qPvd5su7yWxbi3HXiU4w5zrzPCa/ky3A2X+7EN63p3NtY30E9a7O8R4P+5f38S343M48CfvB7HYTUkw4BrgTVeywSrIfPVyJyG1bCeANhaHKPVsWneyGwHLmjjb2HcH+Jq9+8vAJHuZf8Gft1i/e1Yly1mAwfxasiBT2neyDiAKK/lW4F5Xo8HuV8LO3Aj8BkwqcXxYoEy4BIgusUy79dnIfBFi+VrgOu9/vb3ey37LvBuqD9j+hO8H7T90vZL26+Q//Sby20tZGK9MWKA9e7uxTLgXSDdvU4WVubbnnuxPlxfiHVHw40+1knDyvb3eT23zx2HR57nF2NMjfvXOD+Of8Dr92zgQa/zKXHHluleNtOzzL38amBgO/sf7B23MaYKKHbvc7D38Y317s/1tRNjzEfAQ8A/gQIReVREEvw4P2j/bzEN67W6HOtbV6z7+WzgnhbnnOWOezBw0B2zh/drCVBojKnzepwNvO61r61YBbUZwDPAe8CLInJIRP4kIuHGmGp3XLcBh0VkqYiM83EOzV5ntzbfI1j/ePjz/lB9j7Zf2n5p+9VN+l2SJCIzsP5wbwC1WF2HSe6fRGOM5w93ABjZ3v6MMXnGmJuNMYOxvl39S9zX8b0UYWXs2V7PDcX6JtBVLT8kt3qdT5IxJtoY85l72coWy+KMMbe3s/9D3nGLSCyQ6o79MFbXrWeZeD9uFagx/zDGHAccg9Xt+mMf5+BLu38LY3kZ69vLz722+22Lc44xxrzgjj3THbNHyzqBlnEdAOa32F+UMeagMcZpjPmlMeYY4ETgXKxvqhhj3jPGnIH1zW0bvosym73OboF6j6g+Qtsvbb+0/epe/SZJEpEEETkXeBHrDotvsP7YfxORAe51MkXkLPcmjwM3iMg8d8Fbpq8MWkQuExHPB6sU643Z7PZcY93O+TLwWxGJF6sY8W7g2QCf5sPAfSJyrDu2RBG5zL1sCTBGRBaKSLj7Z4aIjPfaPsxdwOf5icDq/r1BRKaISCTwO2CtMWYvsBSYKCIXiogduIM2vtm5jzVTRMKxupbrOPI65QNHG4/lMeDXIjJaLJNEJLWNdf8A3CwiA7H+vre5jysiEisiC0QkHqsxagTuFBG7iFyAVcdxNA9j/Q2z3eeU7t4OETlVRCaKSBhW97kTcIlIhlgFtLFAPVBFi/eH2ztYf5+r3PFcjtUYL2knJtUPaPul7Ze2X6HRH5Kkt0WkEiuL/inwAEdun/0frELBz0WkAvgQq7gOY8wX7vX+hlUAuZLWmTLADGCtiFRhFVH+wBiz28d638P6cO3Gunb8PPDfQJyghzHmdaxCvRfd57MJmO9eVgmcCVyBlfXncaSoz+MnWN9OPT8fGWM+BH4GvIr17WWkex8YY4qAy4A/YXVhHwOsw/owtZSA9aEvxeqGLQb+7F72OHCMWN3Ab/jY9gGsRvp9rA/w41jFf75eg43AKqyxRtZhFZM+5D7uLqzr6BhjHFjFjjdhXXO/BusD7St2jwex/sbvu99Tn2N1j4PVuL7ijm8r1vvlGazP2N1Yr3kJVj1Bq2+/xphirG9v97hfm3uBc92vseq/tP1C2y+0/QqZPj2YpOpeYt0SnAtcbYxZEep4OkpE1gIPG2OeCHUsSqnupe2X8qU/9CSpIBKRs0Qkyd2V/b9YhZafhzgsv4jIHBEZ6O4evg6YhFX8qpTqB7T9Uu3pDyNuq+CahdX1HoE1bcKFxpja0Ibkt7FY3eCxWJcRLjXGHA5tSEqpbqTtlzoqvdymlFJKKeWDXm5TSimllPJBk6ReQkSeFPe8PEHY9y9EJNC38/YIYg2QNzfUcSjVn2n71TlizQd3tOEFVJBpktTPiHviwyDt+04RWSci9SLyZBf35ZkAs0t1c8aYY40xH3dlH0qpniHI7dfHIlLnTkyqRGR7F/YVkDjdA2b6GpJBdRNNklQgHQJ+Q4DHT2lLVxMopZRq4U53YhJnjBkbzANp+9U7aJLUQ4nIVBHZICKVIvIS1gzd3svPFZGv3QOYfSYik7yW7RWR+0Rki4iUisgT7hFoY7EmkRzs9W1psHuzCBF52n28zSIyvaMxG2NeM8a8gTWYWFetcv+/zB3nLBG5XkRWi8jfRKQY+IWIjBSRj0SkWESKROQ5EUny7MT9Wpzu/v0XIvJyV89TKXV0vbH9CpS24nS3P6+IyLNiDZZ5vYgcLyJr3K/DYRF5SKyRwj37MuKeJsZ9yfKfYs2fVikia0Wk3alnVNdoktQDuT8kb2CNeJoCLMaahdmzfCpWb82tWPMQPQK8JdZYHx5XA2dhjTA7BmsG5mqsEWwPeX1bOuRe/3ysKQ+SsEZlfcjreEvEa5LFFj/BGnZ+tvv/njma1rgfz8S63TUD+C3WuCa/x5pgcTzW/EW/OMp+2zxPpVTX9fL26/fuL1urpZO1jO3EeQHWyNZJwHNYU4v8EGsS4VnAPOC7R9n9FcAvgWSsEbh/25kYlf80SeqZTsCadfvv7okHXwG+9Fp+C/CIMWatMabRGPMU1nD0J3it85Ax5oAxpgTrg3RlO8f81BjzjnuepmeAyZ4FxphzW0yK6P1zbgDOtyMOGWP+zxjTYIypNcbsMsZ8YIypN8YUYk0BMOco27d5nkqpgOit7df/YM3Blgk8ijUlTKB7atYYY94wxrjc7dd6Y8zn7vZsL1bCeLT263VjzBfGmAasJGtKgONTLWiS1DMNBg6a5oNY7fP6PRu4x/sbEVYPymCvdQ602NZ7mS95Xr/XAFHBvGbu7hL3dEWf0oFNvc8LsSZgfFFEDrq7sJ/F+lbWlm49T6X6oV7ZfrmTtkr3F66ngNXAOb7W9Wq7qkRkaAcO07L9GuPu6cpzt1+/o2PtV1wHjq06QZOknukwkCki4vWc9wfxAPDbFt+IYowxL3itk9ViW093b4dHDxWRZS0aBe+fZR3dHzTddebpiv7E1yptbdri8e/cz000xiRgTfQorbZSSnWXvtJ+GdpoS7zarjhjzP42tm1rn97+DWwDRrvbL8/UKKqH0CSpZ1oDNADfF5FwEbkYON5r+X+A20RkplhiRWSBiMR7rXOHiAwRkRSs2cNfcj+fD6SKSKK/wRhj5rdoFLx/5nvWE2sOoSggDAhzF1t2tpemEHBhdX8fTTxQBZSLSCbw404eTykVGL2u/RJr/razPG2WiFyNVRfZ2bnQ/I0zHqgAqkRkHHB7J4+ngkSTpB7IGOMALgauB0qAy4HXvJavA27GKk4sxSrgu77Fbp4H3scqcs7BujUfY8w24AVgt7uru71u7I64H6gFfoLVo1Prfq7DjDE1WLUIq91xntDGqr8EpgHlwFK8XielVPfrpe1XuPsYhUAR8D2sedx2dGZnHYjzR8BVQCVW8vhSG+upENG52/ogEdkLLDLGfBjqWJRSqiO0/VI9ifYkKaWUUkr5oEmSUkoppZQPerlNKaWUUsoH7UlSSimllPJBkySllFJKKR+CMtJwSmqsyRqaEoxdK9WvlDsqcBlDUXUC8bV2YiPDQx2ST3tydxUZY9JDHUcgxMcmmvSUAaEOQynVjdpqw4KSJGUNTeG9FT8Mxq6V6hdyqjazrSyPd/aN5OAXI/ldwuhQh3RUC3+0YF/7a/UO6SkD+NVdD4Y6DKVUN2qrDdM5q5TqIZbmLm/6vb6hkeUHx9CwbBx3Dh8WuqCUUqof0yRJqRDLqdrMN0UHWX5wDAe/ODLp+KzCBI4bmRHCyJRSqn/TJEmpEFpVuJqi6moeWzuHrI2JzXuNEkIWllJKKTRJUipkluYup6beyRPrTmXONwO110gppXoYTZKU6maeouzqWgfPLzmXuxNGw8j2t1NKKdW9NElSqht51x9pUbZSSvVsmiQpFUSeXiMPvbymlFK9hyZJSgWJd1F2xKEYADKKw5njitYESSmlegFNkpQKglWFq8mvqGzda6R3rCmlVMg9VLHTr/U0SVIqgLQoWymleq71OfmsnJzHDXNXEOM1zdPaX/leX5MkpQJEi7KVUqrnWrxnLwcml7No5krSYuOZnX6S19J3fG6jSZJSAeB9eS1rYyKXaYKklFI9xuI9e7HP38aizB1MTstkZNyxfm2nSZJSnbCqcDWV9XXUNzQC0Njo4rm3FjBHpxJRSqkeY31OPmvSK7jquiXERkewYMiZHdpekySlOqhlr5HHncOHaWG2Ukr1EE31R9NXkJGQ0OLymn80SVLKTz6LsoeHOiqllFJwpNfII3NBDosyd/ioP/Jfu0mSiIwFXvJ6agTwc2PM3zt1RKV6IS3K7p20/VKqf/AUZd8wvflda+OS/K8/8qXdJMkYsx2YAiAiYcBB4PVOH1GpXkaLsnsvbb+U6vuaF2VndSkpaqmjl9vmATnGmH0Bi0CpHmxp7nJq6p1alN03aPulVB/S1aJsf3Q0SboCeCHgUSjVQ3imEvFYfnAMB78YyZ0JowNSlO1w1pOzbwdRUVEMyxyFiHR9p8pf2n4p1UUHDu+lsqqc4VmjiY6KCVkcgSjK9offSZKIRADnA/e1sfwW4BaAzCHJAQlOqe7Ssig7o/jINe1A1R9V11Tyr0f/iv1QNC57I4nj4rhp4fc0UeoGHWm/UpPTuzEypXqPF199ktyvc7HXR1Cf/io33ngH6and37u+eM9e7Au2dbko2x8d6UmaD2wwxuT7WmiMeRR4FGDy1CwTgNiU6hY+i7KDcCv/G0teIjl3EOESAU4o2VLA5h1fM2Hs1MAfTLXkd/s1Imu0tl9KtZBXeJDcb3JJr8sEoDE/hTfefombr/9+0I+9eM9e8lOdTY8z5+dwTnZOl4uy/dGRJOlKtKta9THdWZRdV1eHnSPd0+ENEVRVVRxlCxVA2n4p1QU1tdWEOY6kDGEShtPZGPTjeoqyr83cQaQ9rOn5BUPmBf3Y4GeSJCKxwBnArcENR6nu091F2TOPP5l3dy8hvToTl3FRnV7KseOmBPWYStsvpQJhyKBhNAyoo+GQE7uEUxpVwLQJxwX1mA9V7Gwqyu6OXiNf/EqSjDHVQGqQY1GqW3jqj97ZNzKgRdntmTBuCg2XOPniy8+whdm4YcHtxMcmtr+h6hJtv5TquojwCG65+S5ef+t56utrmXHs8Zw089SgHKupKHtucIuy/aEjbqt+YWnu8qZ51oCQDQo5ZeIMpkyc0a3HVEqpQEiMT+L6q78b1GN0Z1G2PzRJUn1ay6JsjxGuaB3zSCmlepCHKnaSOT+HeZk7mJwWmstrLWmSpPqsUI+UXVldwatvPEt9TT3DR43ijLnn6u3+SqlewRjDu8vfZP+ePUTFxXDphVcTGx0X0GO0vGvt6vOXEhMZHpRBITtLkyTVJ3mKsp9YdypzvhnY7b1GjY2NPPLY30k+MJAoiWbbnh00NrzJ/DMu7NY4lFKqM95852UOfJpLQkMKDlPPo0V/5wd3/C82my0g+/cuyvaIjwz95bWWNElSfUrLouy7E0bDyO6Po6AkD1tROHaxBqVMdKawZ9cu6x4rpZTq4XL37COhwRpYNUIicRULZZUlpCSmdWm/Pako2x+aJKk+wzOlSKiKsr3FRMXSGOGAOuuxy7gQu15qU0r1EmHWJTdPiUBjuJPoyK5NQ9LTirL9oUmS6rU8RdkejY2ukF1eaykxPomx049hx9pthNVE4EivYeH5N4c0JqWU8tf551/GC88+SURxDA0x9Uw6YWqX5mrriUXZ/tAkSfVKnl6jx9bOIWvjkbGG5vSgu9bOn38Z+TMOU15ZStagYX43MLmH9/HeB29jjOH00+YzLGtUkCNVSqnmhmYO587v/5jcvH0kJ6QyIHWgX9s5nA7eXPoiZaVlDBsxkuTM4/h8QGWPLMr2hyZJqtcJdVF2R2SkDSIjbZDf6xcU5fHsE4+TUZKNILx44GkWLlpE5sChQYxSKaVai42OY+zwjvX4PPrE37HviCVa4tm0YyuFc3fx40WGjITecXmtJU2SVK/RU4qyg+nzL1eRUjIIm1h3kKSXZfHpmo+4/KLrQxuYUkq147OteyksqGKEWAXfKQ2pyOFvmZZxcq+5vNZSYO7lUyrIPPVH7+wbaRVlJ4wOdUhBERsbh1McTY8dUkdsbGDHJlFKqUBbvGcvn00pJjq2suk5YwxJ0fG9NkECTZJUL7CqcDUb8g/w2No5DF06tdsHhexOs088g4bh1ZRIAaVSSO3QMs6Ye26ow1JKqTY9VLET+/xt3HLyauZemUZZ8j7KTTEVWTnc+pOZoQ6vS/Rym+pxPEXZHg3ORp5fci5zChN6dP1RIITbw7nj1nvZnrMJlzGMGzmBcHt4qMNSSqlW1ufksya9ollR9sU/hR2X5rN7ZyGTp53CoMG9exJvTZJUj+JdlO1919qdw4dBQuji6k72MDvHjpkS6jCUUqpNTYNCTl/Rqih7zNgMxoztG19oNUlSPYKnKLu61sHzS861irKHhzoqpZRScKTXyCNzQQ6LMncwOS2rV9cctUeTJBVynqLsnjBStlJKqeYW79nLgcnlLJq5kkh7WNPz45J6z6CQneVXkiQiScBjwATAADcaY9YEMS7VT6wqXE1+RWWvGPNI9U7afinVeZ6Rshf1spGyA8XfnqQHgXeNMZeKSATQtQlclOJI/dFzby3oF0XZKmS0/VKqgzyX1646dwmx0RG9bqTsQGk3SRKRRGA2cD2AMcYBOI62jVK+tLxrbfnBMRz8YqQ15lE/KcpW3UvbL6U6rnlRdkKvHCk7UPzpSRoOFAJPiMhkYD3wA2NM9dE3U8rSsig7o/jILe1af6SCTNsvpTpg8Z692Bds6xdF2f7wJ0myA9OA7xlj1orIg8BPgJ95ryQitwC3AGQOSQ50nKqX8lmUrb1Gqvt0uP1KTU7v9iCVCpXFe/aSn+psepw5P4dzsnP6RVG2P/xJknKBXGPMWvfjV7AamWaMMY8CjwJMnpplAhah6rW8i7KzNib26ZGyVY/V4fZrRNZobb9Uv7B4z17s87dxbeaOZnetLRgyL4RR9SztJknGmDwROSAiY40x24F5wJbgh6Z6s64UZZdXlrHik/ew2YTTZs8nLia+1Tp19XWs+GQZNbU1zD7xdNJTA1f0XVldzker3gPgtNlnER/bu0eM7c+0/VLdzeVysfqLFeTlH2TKpBmMHj7e53obvv2cnN07GD1qPFMmzAjY8Y0xrP5iBYcP5zJp4nGMHdm6N6ipKPu6/l2U7Q9/7277HvCc+86Q3cANwQtJ9Wbel9c6U5RdXlnKv//9ACkFgzEY/rX5z9xx+4+J9UqUHE4H/3zkT8TsT8ZOOI9vfIhrb7qVwRlDuhx/ZXU5//rXX0jOHwTAvzb9le9+9x5NlHo3bb9Ut3nyuX9RvclBTGMcb371KqecN4eZx53SbJ03lrzA3jX7ia9P5uN1H3Hg5H2cd/alATn+Uy88TOW3NcQ0xLPk69cpOqeAk44/tWm5FmV3jF8T3BpjvjbGTDfGTDLGXGiMKQ12YKp3yKnazNLc5by2931e2/t+8/qjhNEd3t8HK5aSWpBJpEQRJdEkHB7Aqs8+bLbON1vWYT8QTYzEESGRZJQM4/0P3w7I+Xy06j2S8wcRKdFESjTJ+QObepVU76Ttl+ouFVXllOwpJcGVjF3CSa/O5MvPWw/JtXPzDpIdA7BLOMn1A9ixcWtAjl9dW0VhTiEJjSnYJZy06kzWr13btHzxnr3sX/AVi2aubDWViPJNR9xWndayKNtjhCu6R4x5tHXHRt5Z+gY0QMKARK676jYiwiNCHZZSSrWrtq6GJ5/9NzUlNUgkXHzxlQzLGtXp/XkGhdSi7I7xqydJqZZWFa5mQ/4BHls7h4Zl47hs+LCmn64kSGecuoDiAQepN3XUmRrKBxYw+8TTm60z+ZjpNGTVUmOqcJh68lP2ctYZ5zVbp6a2mrdefYXUg5mkFQyhcZONV954pt3jnzb7LEoz8qg3tdSbWkoz8jht9lmdPh+lVP+REJdIyvBkKsJKaDBOCmMPMuOEE1utN3rCWEojC2gwTkojCxgzsXXd0nMvPY59WyxphUNIOZDJyy8+jcvVeNTjx0bHkT4yven4B2L2Uz5pOA/EfcPV5y/lnOwcFgyZpwlSB2hPkuqwrhRl79q7jXfef534hASuvvhmIiIiePPdl9i9ZyfHTz+Jk2acyu2339NUuH317Gub1SMBRIRHcMtNP+SZlx6moq6U75y7kEEDmtcjFZbmE1EVjYgAEE0sZcUl7cYXH5vId797T9MltitnX631SEopABwOB8+//hjl5eXMP/NCxgwbz5ad3/D+R0tITUnjyotu4vqrv9tUuD170iU+C7cvXHAFb9lfZtv2TRx7zGQWnH5Jq3VqyqpJFKttFRHCaiKoqConKSHlqDFOOP4i3slcQVLsF1x4VhqjpxcBnxIfqZfXOkOTJOW3rhZlf7X5C1586imGu8ZTQS33b/4BCYmJROTFkkgqH+5+j927d7Dw8lu58JzL29xPQ2MDjz/5D+x7Y4g1Kbz8/DPcdMudpKccSdbSktJxxtY1ja1cb2qJS4rzK8742EQumP8d/09MKdXnNTQ4uP83PyCzZgSRxPPfXf/k2JkT2bp2M9musRRRzv2bf8Dvfv5/nHLC0W+hX/bB6+z8dBeJtQPZXrSd8LC3OfPU5r3hUfFRNBgndgnHGENDtKPdL2zrc/JZNSWf7y3KJyNhgiZFAaCX25RfVhWu7nJR9quvPsc41zSiJZYkSWVAbSaleSVkyBCiJJphjGXLNxvb3c83W75E9kUQTxLREsuAomzeeff1ZuvExsRz5nkLKMjYT0HKfhrG1vCdi67rcMxKKQXw8doPSK/JJEnSiJZYxrqm8uWaNYxxTSFKYkiRdBKr0li/qf25kzd99S1pdYOIkmhSawexcf3Xrda58vIbqR5ZQkHKfgoHHeCiS68gLCys9c7ctCg7OLQnSfnk6TXyaGx08cS6U5nzzcAu1RwJ0vS7DTvSIk9v+diXxgYX4rLh2ZUNGy6Xq9V6UybOYMrEGRhjmi67KaVUZzQ0NGDjSJIi7v+82QjD2ehsuWlrpkV75GP40vjYBL5/+0/8ar+0KDt4NElSrbQcKdvj7uHDYGTn93vaafP56M33GGkm4KCeQxF7iIyOpLy8mARSyOcAg4ZntrufScccx8rMD3AcjMFOOPnJ+7nq1LaHvtEESSnVVbNnnsGH771DnCOBCKLYLZsZNmoUe3dtJduMo44aiqIOMv3Y1oXaLQ0dk01BeSHxjhQqIksYNnZ4m+serf3yDAp59flLiYkM15Gyg0CTJNVMV4qyWzLGsGn7V5SVlTJh/BROO/lsoqOiee/Dt4iKjub+G35PXEwC/3nm7+zO28iEY6fxnfMXtrvfqMgo7rjtx7zzwevU19ex8JRFZA4c6vP4m3d8Q3FJIRPHTyUlKa3T56KU6n/yCg+yfecWBg/OYvSwcfzsvj/y7yf+Sl1NDfPnnc+JM+by0afvsvLTD4iPi+cXN/6ViIj2hxn5zoXXsnrQR+Ts2cn0kdM58fi5PtfLLzrMth2bGDQwkzEjjgGsXiMPx+Qa96CQenktWMSYwE9TNHlqlnlvxQ8Dvl8VPDlVm9lWlsc7+0YeKcruAmMMTz7/b8o2VRDhjKIypYSrrruBoZltf2MKtKdfeITijaVEOKKoTC7h8oXXMnxo58cZUW1b+KMF640x00MdRyCMyBptfnXXg6EOQ4XYVxu/4IM3lhFXnkRdVDUjZo3gwgVXdNvxN27ZwLJX3yK2PJn6yGqixqZR992Z3DB9BTGR4U3rjUsaqJfXAmBQ8j0+2zAt3FZNRdnv7BvZ6aLslvIKD1KyrYSUhgziJJGBJcN4Z9kbXQ/WTwXFeRRsKyTF6T5+6TDefffNbju+Uqp3W/XxcjIqhhIrCaTWD2LH19twOB3ddvwVH73PgPKhxEkCqY5BFB7azTUTl5OREM+CIfOafjRBCi693NbPedcfdbUo25vDWY80ehU5ivgsTty9fwf/efwfiNOGPTaMe3/4S+JiOjCuQBucTge2FscPQqepUqqPElfLxzYaGxvAa9T+hoYG/vyP/0dlURUuWwMXXPgdZk2fE5jjG2lWjxQtMC4+g2npxwVk/8o/miT1M6sKV1NUXd302DPmUVfrj1rKHJgNgxqo31dHBJEUxx7mlOPmNlvH5XLx738/wHjndMIkjLrSGv74wP/j1/f/rcvHHzQgE9sgF/V7aokgiuLYPGZNndXl/Sql+ocR48awu2A3iY40aqSK+Mw4oqNimq3z4MO/JfZQMoNlFMYY3lj8MmNGHkNqcrpfx/DUF83y0f7GZAwhP28/GY6B1NoqGTYliqlDpgXm5JTfNEnqRzxF2S3vWrtz+LAODQrpD3uYne/e8iPefOdlqqurOGPa2Uw6pvk3oNLyYmIa4gkTq8cnSmJorG7E2eBkW84mbCKMGznR59ggLpeLHXu2UFdfy7iRE4iKjG623GYL4/ab7+GtZYuprKjgtCmnM3Xi8YE9SaVUn3XuWZfwadJH7Nixhcy0DBac2XpU7JKCEsaIddOIiJDeOJiNOzYwcuhYCovyGJE9xucI2etz8lkRtpu4pG8484Qy3sidz+6NtVw2fBhgjXlUfuMEph3eQu4Xmzhh7Ah+8L+X6Z26IaBJUj/Qsij77oTR0A3101GR0Vx+lAEcE+OTqbVVg7tb22VcNIY18H///gO2A5GA4cNh73DHLT/Gbj9SqOhyuXj0yb9Tu8O6pPb+oCXcfus9xMc2z/QiI6K47IL275ZTSilfTp55GifPPK3N5faoMBw19URIJAAVUsqe3btYt+RLImqjeCPhbWIvnkvs0GHNtis9sB7Xyq1EVMbzXGoFGZfkkz8wpqlnKXN+DosydzA5bRoj79Kao1DSJKmP81xeaxop2/1NpSew2+2cOGc2a1Z+Qqwrngp7KeOOmUDDBiFaYgGo2lPOyjUfMu+U+U3bbdq+gbrtTlJcVvd0w6FE3lz6Etd85+aQnIdSqn+687b/4U9//X/EOZKolxoGj86kMKeIjLqhIJBQkULZxre5+Z6xzbZ78LkdZFRNAYHEklT2fPAh972V3WwdHRSyZ9AkqQ/rbFH2mnWr2PDlWgBmzz2dieOntlpnT+5GduW+RkQ4JMScwNTxZ3UqxgvPuYKzT7+QwuI8BqUP4ZW3nqGGhqbl4SaS6uqqZtvU1FQT1hjeNOJ2GHYc9bWt9l1QlMerrz+Hy+Eic9hQzp9/GTab3tCpVF9WXFrI4teeobHexcAhg7jo3Cuw2Zpfsq+tq+HTDQ8TFV1OfV0as6ffQkR4ZIePlZ6SwR9//S8OFRxgZWkl+Ql1OB59p2m5iJAWnsq4pIFsK8ujvqHRWuBsHk8szla38jc0NPKrH7/Lns3lxCSF8Yu/n0X6gOaTfavg8+tfDBHZKyIbReRrEVkX7KBU1y3NXU5eWYU1KGQHEqQt27/ls7dXEbc7jdicVJa98ha5h/c1W6ewJI+y2v/w33+U8MgDpYwb/zZbcz7rdKxREVFkDRqG3W7nlBPnUZB0AGMMLuOiJOUQs2bMbrb+hPHTqB5QSqNpxBhDQfwBZp3QfB2Hs54nn/w3UduTiNubRu4nB1ny/qudjlH1Xtp+9R8NjQ08/sRDRGxNIG5PKnmrC3l9yYut1lv+xZ/5y6/38O+/lPPrn27no7WdHxfLZrPxRoyDmIty+e4NnxM7voB6Y31pq4otYOTJYU1DrLz32Pm899j5lMYPoNJWAUB1WBlTZg5q1Wv0qx+9xzdPCA2fD6VkWQZ3XvEawRjXUB1dR3qSTjXGFAUtEtUlS3OXH/mWAs0vr7VTlF1UUkBxWQGZA7NZ99UaUqoHgVjfghLL0/hm03qGDDrSFbz34AZuvakBEetW2BuvCuP6Oz9n/Mj2h+NvT+bAoVxx3bV8+NEyROCaMxaRnto8wYuLiWfRzd/j7XdeocHZyLmzLmL86InN1skrPER4aTQ2sb4HxDcmk7t3f5fjU72Wtl99VG1dDQcO7yUhLhERwV4W1XQzSJwrkcMHDjVb3+VykTmwlNQUa53MQXZSUgraPY5nCpCWHINruGHuCve0IKdz2hun8Keff0RRXikjpjsZd34Sj62d0/RldfGevaTdcRbpXz5H1X7DnGmjufN/WvfE79lUQYzLanftYqfiUCRFhVXam9TN9HJbL9eyKDuj+EiB82V+1B99+PFSvlq5nvDqSOpTasgcmUmVrZpYY30Q68JrGJA+sNk2CbGD2LQVxrnHnNyzv5HI8MBN+TEsaxSLrvveUddJSx7ADVd/t83lCXGJNEQ5wD32W6NpIDxK3+5K9SUFRXk8+cS/CC+MpTHaQdaULBoi68F99b3RNBIW2fzSls1mo7g0DLC+VBpjKCsP52gW79mLfcE2rs3cQaS9+f7iI6OAI9OCxMRG8ou/zvc5xdPiPXuxz9/GzZk7mHzerKPWHNljDQ7javqiZ6LrSUiMbnN9FRz+/qthgPdFxACPGGMeDWJMyk85VZv5puhgh3qNvDmcDtZ/9gUDq4YBYIoMxXH5hI+xU3SgEiMu0sakMX1y8/GFxgyfwrIPJrBrz1YSEgyrVqcz/5QrA3diAZCUkMLkk6fy9eoN2B3hNCY7uPni74c6LBUa2n71Ua+/9QLp+UOxSRjUwP5v9zP+hAlsXbcJe30EDUkObryk9Zep7IFX8N17n+O4yQ18vi6csdnXNlu+eM9e8lOdTY8z5+dwTnaOX8XUnnZ5Y+1xVOZMAvJYk17BmooKrrpuCbHREX7t5/6/nM6PrluK63AcJNay8O5JREbqF71A8PyNPD4rmdDmuv6+4icbYw6KyADgAxHZZoxZ5b2CiNwC3AKQOSS5w0GrjgnESNn1jjrCGo68BUQEaRRuv+lHFJcWYguzkZLYuodIRJh3wncpqyjBWeXk3DnpfhdEr/rsQ7Zs+hYJE84/7zIGDRjS4bj9dfxxJ9Fg34jdXkNc9GQS4/V92U91qP3ydyBAFXoup8tKkNzsjggmTZzGabPPprKqnLTkAc2GD/EYnT2DrIETKC0s4aTJac2Ktj29Pd69RvGRUcxOn8eenCK+u+gVGhyG2ecM45pFM5rt13M38WNr5xBxKIZRc77k5ilbm5bHRyb4PRHt8JGpnLcwg7zcXOwRsZxx3tj2N1LtannHd3v8SpKMMQfd/y8QkdeB44FVLdZ5FHgUrAluOxq48t/S3OVU1zp4fsm5XRopOy4mHntaGI6KOiIkisqwMgYPy7TuyEgZ0O72vgZJO5o1X65k/bJ1pNRl4DIuni56lDu/92NiYwJ/jd3Z4GT117/nP3+rJybGxvsrVrJkGZww+bKAH0v1bB1tv0Zkjdb2q5cYPW4cm/dvJsmRToNx0pBWx+ABWYTbw4mNjmtzu6b6okigdn/T5TmgqbdnwZAzm21TXl7LXVe9TdyOMdjExisbDlDmymfwmRFePRHDsZmJRBwq46pzPfuZ16lze+yfS5k/cy/H3RBOaVkp9/36WX75l5t1QEk/eep0W/YSORxZ7NqX0apz4a029tNukiQisYDNGFPp/v1M4FedD111Rk7VZoCmy2sHvxhpTUTbhZGyRYRbb7yLV998luqKMoYNHco5Z1zkc93auhoKSvJISx5w1MbnaDZv+oaUOutNaRMbUUXx7Nq3ncnjAzN5vMNZT17hIRLiEqmsrmDBmTXExFjfIs881c6rb29tZw+qr9H2q287fc4CbLYwdm7fSnhkBLdceBfhPnqOXK5GDhccJDw8gpUVdRyYXM4N01eQkeDrC5rv3p6v1x+gcVfqkZtBKgaxfMnX1Cfe2DSDQX6qE4YXcPNlH3eo1wis2qh9e4txOhsZOSqd2vJ8jptknUtyUhjHjKyjuKiKtHQt3G6L59/Jtup0Pe4ePgxG+rdPf3qSMoDX3dmrHXjeGPOuf7tXXeEpyvbOhrfsHEXWxsSADQoZHRXDNZffctR1dh/4msMlTzL7RAeffRlOcsxVjBk2s8PHioiKxGEchLvvimuIdJCUEJhLYEUleazb+hfmn17Ltp028g/PxCFHLgHW1bmoqz96cabqk7T96uNOO+VsTjvl7DaXf75tP1/n/oNr5ldRXAYV+UncdPwgpqRndWiwxvQBcUh8HbhvcGswTg6WZXKJ111rmcfnMC9zR4cHgjTG8Odfv8jYzHwiI4XnHosnLMzQ2GgIC7N6jg4XQFx8lN/77E9a9hrV1sZ2qk7Xl3aTJGPMbmBy1w6jOqplUbbHHFd0QCei9SuWgy/w338YRCK4/EK46QeLO5UkXXzBVTyc/wBhBZE0hDsZMmkI2Zl+pvPtWL/1cf7zNweRkVYi9NPffsH+/cfxu7+vY8zIRt5cFsOMY24MyLFU76HtV/+2eM9eymyP89If6hiUYSUYY94ppjAnk5HDOzaa9TETBjP6Aieb394JtTEUJlfzs0vvIz42gYcqdnaoKLulD9/7lrNnFXD6KVaMJ06v5j+vZfLDXx3ktFmNbN4pDD92OlFR/fuLnqenyJuvfydHBPDfSS2V74ECUZQdSIkJjc2ugycmNGCM6fC18biYeM6cP4dtez8kzBbFqTPODViM0dFOIiOP9ByNHO4iJfYMIsIXsGNLOafNGEJkRBRbcz7jUNEqGhvtTBu3kLSU0L62Sqmue6hiJ47BNa2eHz7/MIOXFjYlSABjR9gp3Z3Yat32rCpczYSr4zhQW42jtJzUscfyn4w9AO5xkjpff1SYX8rJJx5pv4Zn2bGJi7vuv5mcnELOPyGRjIEJFORX8Oxj74BpYMK08Zx5znFH2Wvf4Sm2bl1f1MCufXPI2pjo15A3naFJUg/ja2yNUCsuGcDeA/sZlmXncH4D+QWDkHEdLx7cmvMp2cNf4Q+/slNbW8Gt9/yeOcf9huiomC7HaGMUn679nJNn2qmucfHhymjOPikDe5id1CTrbqVte9aSPugFfv3zMOrqXNz24z9w0qRfBaVwXCkVfOtz8lk5OY8b5rZVXwTiOJ0nXlrODZdH4nIZnn4Vrr7dvzvFPD0XB2vLyC0oZ9Wj+3j3z3aio2088sKnHLTtZ9LcTLzHSeqME085hsee+4Zf/cj68vmvpx2ccuoU4uKjmDwlC4Ca6nr++adn+MtPhdgYG8++tpp3lxjOPjcwNZ09ga+eom1leU03KvmqLwr21RVNknoI78trgSjKDqR5M+/iN39+nDB7IQ3OFObNXNSp/RwsXM2vf2695aKjbSxaWM27725hwpiuf8hPmno1Lyy28cxLu6ivi+TkKTdjD2v+9s7NX8Wv7rdu6Y2KsnH7DbW8/vpGJo3r+kjhSqng89yV1tRrNBkWzVxJWuxRkpRT4d0lddz3l004ncKC75zLoMFH70lq3XORTP4HUdx7xXaio62ayluvjOMnf3Ew+7LOJ0cew0YM4OT55/HjP6wiLAymnjCL6SeMarbOpm8PcsHpDmJjrAElr7k4gvv+uq1PJEmef/98jVcUyPqiztAkKYS8v6V4xtYIZFF2oESER3DazNu7vB+XK5KqahdxsVa38v5cGzHRHe/29kVEOGnqVUddx5hoyisaSUwIcx8foqMCc3ylVHA19Rq1uCstM7r9GqCzz53udzLh3Zvv6bnIT3WSkr2OA3lHpn6qqnaBBK5GaOr0EUydPqLN5YlJMezcfqQHv7bWRaMJa3P9ns773z9PeYnnLsGWgnUpzR+aJIVAy6zZ4Yj3OW5DXzNz4nXccvdvuP7Kag4eFlZ9Oo7TZ41qf8MAOWHSQm7/8W+47opKCgqFD1eM4cyTjum24yul2tdmfdGCwyzK3MHktI7dleavtnrzH6rYSebxOcwfWsz6p5KwLa5kUAa8+m44d/7P/IDH0Zax4wfywdJsnnh5L1mDrOPfdnf3HT9QWvbS1dbGcvCLkT2mvKQlCcaswpOnZpn3Vvww4PvtC7yLsr2z5lBlys4GJ6s3PEujq4iUhAlMPSZwH7qa2mrWfPM0hmoyB5zA+BEnU1dfx97cHURHxZKdOZKGBierv3oeZ0MBSQnjOO6Yc4M6WFq9o449B3YQFRVL9uAROjBbgCz80YL1xpje3++PNZjkr+7q/KzwqnM8l9I8gzBac6I1lxmd1CpB+uj9b/j6y81ERsVw7c1nE5/g/23yLXvzPXdJXTZ8GOt25bGCt5gg64lMjOYXP1xERISdzRsPUV5ew+QpWcTGRbJy+UbWf76R8Ihorr3lbBKDPL/a1s2HKS2tZtLkIT16SIC26otq6p095t8/b221YdqT1I16YlH2u5/+gd/en8+IbDvLPtzHkndL271s5Y+GBicffv5r/vmnalJTwvjPsy/y7fZ6Jo2dx7iRk5rWe2/1n/nlfYcYNdzOBx/v49U3S5k9/dqj7LlrIiOimh1fKRU6zXqNJuO+lOb/IIzL3voSqfiMP9wTSWFRCT/9xVP8vz8uIjz86JehWtfAJGMzEynbVk/pxGIe4BtM7XJ+P387Z8+JZvf+Bv74i+f42e+u49iJg5v288GyDTgKPuEP90RSUlrKT375JD//w81ERATvn9bxxw4K2r4Dob36ooNfjOTuhNEwPATBdYImSd0glEXZDQ1O6p31PkfJrq6pZML4QkZkW2+D+afbWfL+loAcNzd/PxefV0FqilXkePM1dm6+aw0wj5raasLDI2hsbGTUyDxGDbeOf8ZcO28u2+Zzf8YYqmuriImKbZonzuF00NjYEJC745RS3cf7rrSYyPCmXqPM6OaX0owxlJXVkpAQRVhY6/kht367hT/8yJp3LT3Nzumz6ti1o+CoiYSv3vymkbLP+rgplpVbtnH2HKttGTHUzpC0cior6oiMslNX6yQhMZqN6zc1HT8lOYxzZtexdcvhpjvSvFVV1hFmDyM62qpjcrlclJfXkZgY5ffclz2V7x453/VVPa3mtj2aJAVZy8n0uvMNsmHr2zgaPyQj3bDx8yTOmPWTZglFeHgEpeVH1jfGUFsXmGNHRURRUHTkUlZDg6HeIbz98a84dlwRxaVCo+MkbOFH1rGO3/ry1+HCfXy9/f84ZpyDz761MybrRg4WfENUzFoS4mHHzoGcdfK9re5mU0qF1uI9ezkwsbz1Aj/uStu3p5DH/m8xY4c3sOeAcPZFZzFj1phm6zidQkODwW632o3iUhgeG9FmPL56871Hyo6PjG2K57PGLRjT0HRJvrzS8Parn5G/byMpScLew3GER9hxOg3h7nasqATSj2l+/IaGRv786xcZEF9EXb0QlTKKmSdN4JWn32JUtotd+2xcccNFjDs2078XtQfpD/W1+q9KgHlfh/Wu2u/uN01xWSGJye/zs3vCAKGgqISf/OK/nD7rzqZ1IsIjqa85gX898Skzp7l46Y0Ihg26JCDHH5ieyQdrxvP8q5sZPdLwn6cjqauL4q+/3kNWpvW2e+Dfq/jq68k89PjXzJreyKtvh5M14IJW+/pmx6M8+ZCTsDAbxjRywcJ/c95ZcPNC6xvZjpxDPPDQC8yevjAgsSuluu6hip1kzs/hjuycNuqLjn5X2rOPvcVDvxTCw62k486fv8f0E0Y3qyO86MrT+fFvF3P1BYZd++BQ+VCyh6W22pdniqf3ckezf83w5kXZ83M4Jzun1UjZc84+mV888D7nn27YsAnscSOQmm/5/U+sc8k9XMMDT6Vyz2+cLLzIxd5cw+6CLM4f07ydf+Gpj7np4hImjLV6nF58cwfPPLyd//41ChE7Lpfh+798m5//8bYOvLrdy1d9UVt3pXVkXrTeQJOkAGqrav/uhNHd/qYpLi1k5iwHYBURDkizE2Zv/Y1u1pSr2HdoJi8tPkjWoPFNAy8Gwukn3MGu7Vv5+utipo2dxJeb/92UIAHMPM5J/sGJrP3C8MGKPQzJmMlJ045vtZ+UZEfT/EUiQlRUHSdMP/JtbcxIO3XO/IDFrZTquJa9Rp5LaZ0dhTouuqGphwYgc4ChtsZBTGxk03Njxg3m5rtvZMOXOaQOT+R7l7cudPG0yxtrj6N4czaOwVbNUXsxzjp5PFnZA9n87T5Gz0wnqaCSDFtO0/Ihg+xE2BuZMW8uDz2zhriEOH7009azCBQcLuLYMUfavemTbHy+vr4p2bPZhMS4hk68QsHna/5QD4cjnv1rhveY+tpg0SQpQHyNrQGhu/46OCOLt9+L5uzTrBFcv9jQQITdd6Vc9uCRZA8OfBYnIozKPnKLfXz0WFZ8msupJ9sxxvDq21EcylvOfT88zKRjwnh96YesWFnPrCmXN9tPcUkyxSWHSU0Jo7rGRX1dCi++XsfE8dbyJe83kJ40MeDxK6Xa13RX2nUt70rr2ijUDlc8+YUlZKTbqatzse9wRLMEySMtPZ4zz5nS9Lhlb75nDLqIQzHcfNmbVmR+xjgkK5khWdYk3IUFlTz7rzBOmWm1qZ9+6aDeaadw1wqe/EsEeQWl/OLnT/PzP97UrHB80nFjeOPdVVw034r9tXcNlXVxVFQ2khAfRll5I1V1sZ19mQLCV08R+J4XzVuoBnjsTjoEQBf5LMruIfYf2sq2fc8TF+fCUTuc2dNvxGaz0djYiM1ma9Zt3dDYEPSaHmMMn6x/GnvEDmpqhSHpF2LsT/Pr+44ULd5xbwwnTf5ds+1qaqv5ZMM/iY8vo6IyhlmT7iC/eCcHCt4iOtJgXBM5aeoVQY1dHZ0OAdD3tVlfBE0DPHYlKWqpuqqef//9NeymkhpHBDfcdiGDMpMwxtDY6MJuP5KIOJ2N2O02Pin6rNUcX9NjLubpb1YGJMYNX+bw3lsfERMJscmDKS8p5o8/PjKm02vv1JEw8lImTR7SbLsXn17B4X07cTqF42efwMSpw/nPP14jyl6LwxXDLT+4hKSk0NyAcvR50TKCOi9aT6JDAARBKIuy/TF08HiGDv5102OH08EHn/yFrKx8ysptJEafTXzsQHblPs3AjAb258ZxytQfkRifHJR4RITZ069reuxscPJtTvNC7XpH6+1iomM566R7mz2XGH88Y4a1vjSnlAq8xXv2Yp+/jUWZO0iL9dXrEdgECSA2LpIf3X9ls+dee+lTcjZ9RWyMoaIuldvuuoj/+9NLpCVUcqC4hrhJg/g08ormd63NeY07TtpKfGTXY5w2YyTTZhzpdf/TL56hsdE0lQNUVEG6j9v/r7j2VODUZs/95JfBG+rkaLx7jUI9L1pvoElSJ3nfRtpbKvk/3fAUv/3ZIYZl2QHDr/6yhG+3Gl56LAwRobqmktvv+Sdnn3x/t8QTbg+ntvo4nnrpc06cAS+9EUZGcu8bQVapvqZlr9H1131EbHREq+Lm7pSzq5C6onX8+afWpbKde0q474eP8s9f28lIjwAiuPXn5dw8ZBjxwxObRso+dUAO45IGBiXu8y87jfv+8AqLrhD25rrYuGcA8xf23H8LluYub1ZfFOp50XoDTZL81Fb2HYqi7E6TQneCZDl5poPcww08/5ph7/4GTp4ZRUJCLcVlBXyz/S1sEsZxx15CfGzwPj0nT7uWXTlT+WrDXoYMnMSIUdlBO5ZSqn2eO76a9xr5P8BjsOzJyWPW1COPRw8Px9lQSu6hBB5/roL0tDDmTolkyfKtbAvbyNiMrxhdNogFJ10WtJjGHZtJwq3X8tHqrSSnJHDvz48N+Sj+bdUXbSvL4519Izn4xchmvUb94VJaV2iS5IejZt+9SIQ9mw0bDzJtYjjGGN75MIptO4u56epYLjsvnudfr2DLjnLq6n/LA791UV9vuOv+Tcw97hfExsS3f4BOGpU9EdDCa6W6i2cwR1+O3PF1ZjdHdXTjjhnC0ueFmdOsx2s21FFeC8s/reGe25PI2efkzp+VUJ34Gv+5vZIJYyL4zwuH+ODdrzjj7KlH33kXDB6SzMWXnxi0/XdEW/VFoL1GneV3kiQiYcA64KAxpvV9jn2Q5/bHvpJ9nzjlCh56tJz4+H1UVdvISD6XOSc+z8xp1nldf3kiL75Wwd9/G0dcbBjEwy/ureX/Hv6IEya3Hr9Iqd6iP7ZfbVm8Zy8HJpe7B3PsnvqiQKhPPkTyxNHc8avt2MIbKLNFYU/I4t476gE4Zkwk80+NwR5RzLQJ1pe6O66L5N4/BjdJCqWWVzh8zYvmMULrizqlIz1JPwC20k9yUJ9F2b3szLfu/pS8kjeJj2uksHAQZ8y6i9NP+G7T8rr6WnLyXmqxlTWCrYfTaRBpf8j82roaVnzxVwZklFJaamf0kIUMG6K9Q6rH6Fftl7eWvUbD5x9mUeYOJqeFrr7IH0WFlfzrry+RGFvLvuJaRp03kt0DZ8GlUwCQQzOILP0ZxpimS1xhEgaNR+56M8bgcvl3vOeeWE7e3m3YbIb4tOEsumNBoE8poI46Ll8vmRetN/ArSRKRIcAC4LfA3UGNqAfojUXZLZVVlOA0L/Ofv1kJTs7effzxb08x9/hFTetERUaTd3g8S97fxPHThKdfEsYMvYjv/+9H/Pon9dQ7DL/6Szxnzjq93eN9+tXD/P13BaSlhmFMPbfe818GZ/yRiPC2pwhQqjv0t/bL2+I9e7EvaH1X2uz0nnUpzZdH//Eqf/ixg7jYcFwuOwtuzydyyHBEhPxUJ6PmfMn0M1L52QP7uHNhFDn7GtlXmEFkZDgrPsvnmNFhPPFyIyedNqfdY33+2Q7SIzfxw/ussYzeXZHDe0s3cNaCacE+zaM6Wn2Rr7vSelsJSG/gb0/S34F7gTYLU0TkFuAWgMwhwbmFvDsszV3e9ObrzSOJFhTnMfdkB2DdCTJymB1srUelPm3mbXy2ejVL391P9qDpnDBlDJXVp/DnB9/HZgvnzFlnERUZ3e7xomPKSEu1vsGJCNMmOSmrKGFA6sCAnpdSnfB3OtB+pSYHbtT57uAZzNExuKbVsp5wV1pnhYeXERdrtV82m3D8CENpVRjrBtdz9flLrbqpaZexa3Qez7y3kdT0JO771XGICO+/8xVfLivipPnHMvaY9udE27ZpL9fNP9IDdfop4fz8n3tCmiS1nBfNm6fXqDsnS++v2k2SRORcoMAYs15E5ra1njHmUeBRsAaTDFSAweadqXuPLtobL695y0gbxEefRHL2adbjnbsbENM6YRERJow5udlz8bGJnDi1Y3eE1FYnUVhUQnqaNZr2+m/COWlySqfjVyoQOtN+jcga3WvaL8+lNM9Aia2F/q60zlhVuJrcikYqq1zEx9lwuQwbdgiHzivhxhkfNxsUctSYgYwa07xt62hyM37icN5ftZWFl1j/JL6/0skxE7vnmlVH5kXzpr1G3cOfnqSTgPNF5BysbokEEXnWGHNNcEMLLk9R9ooCa24La3TROX1mdNHE+GSiCq9g0V2vER/vorhoCKefELzBy06edht33/830tKKKS0LZ8zQhXqpTfUEfar9alVftOCw+1Jazyy27gzP3cQTL3mUBf/zI0ak1nGoxE74eTO4+YRVTE7LCniv2MxZo3lx5yT+5/dbsNkgYcBobro9uL1IOi9a79ChaUnc38R+1N7dIT19WpKWRdkeWv2vVOf0hmlJ/G2/euq0JJ4BHlv2GmVGJ/W6S2neWt6h5bmbeNScA5w6YKvXPGt961zbmxetL3xZ7010WhK3vlCUrZTqux6q2OmzvujIXWmB70kJBV89KTYzm7Jt9QydtYUTU7b1yloqX/r6lYu+rENJkjHmY+DjoETSDfpKUba/XC4Xm3aupra+hFFDZ5GaNCDUISkVMj29/WqqL3IP5ujdg+LRG+5K84f3xODePSn5qWXcfNn7ACwYcibbNh/ipQ0rGTZqMDNn9ZzJw9vSVn3RkSsXI5qe13nReod+0ZPU8gPZ24uy/WGM4d1P/8z1V+9j+FD428PLGea4i8EDRrS/sVKqWzTrNZpMQGaq7+l89eZ7X0r0TET7/jvrKdz9KReeaePzDV/zxDdjueG2s0Mdfptazszg4XDEs2tfhl656KX6ZJLknc17svjH1vavrs39h/dw5rx9nD7bKp5+8LeGm77/EoMH3BfiyJRS3r1GzeuL+salNG++RoV+7q0FTb35i/fsxT5/W6tLid+sXcef3eMWDR8K//vH7TQ0nIHdHubzON2trVoq73GLPLTXqPfqc0lSy7El+msW39jQQHzskaJ8mw3CwnrNnc1K9QmeHpKW+uJdab60nkssGQ7NwDF4NysH17CSvDbHcrK3+NcpKlJobDStng+Fo87n2cevUvQ3PeDtFjje3bjeY0vcPXwYjAxdXKEwNHMEL72ewvHTyhmUEcYf/+EiK+OMUIelVL/xUMVOrrpuCbHRET7rizKj+0ZRsi+eQuWWo0J7Rsq+o9lda77HchowZBRvvb+Z884I5+vNDVQ1ZBAZ2X3/ZLU12rWvWiq9M7rv6jNJUn8rym6PPczOWSf9jF/+4UUcDRWMHnoqY4bpXGpKBUvLu9KsS2m9czDHrvBVA7q+0BoV/KpzraRxwZB57e7n6hvm8cGyFO57YCeDh2Zw9/+e0g3RW1r3gB2xZeeoflW60d/1+iTJ+wOpw7Q3FxkRxdzjrw91GEr1aZ5pQTxTZRzpIenbl9J8admbf9nwYS1GBe9Y0njG/KmcMX9qUGLt6LxoHlpf1L/06iTJk+17irJ1mHalVLC0VV/UX+5Ka8/S3OW+i7IXtC7KDjWdF035q1clSb7uktBBIZVSwfZQxU4y5+e4i61jWy3vi3eltadle/xe7mj2rxnelFx412SFelDIlnc867xoyl+9JklqeY3Yk+3fnTC63xVlK6WCq2WvkWeAxwVD+sZgjl3ha6Ts+OiBRBRNwjF4Nw/wDeB5zfyrPwqmlv926LxoqiN6RZLk3Y3rfY24N2b7NbXV7MndTlxMItmZmt0p1dMUNNZjn7+NO7Jz+nV9kS+7Kjfx1sotrD0wiLi9c7C7J7Helerk5sue5lQI2WvW1mjXvnqN9FZ95a8enST1taLsopI8Nmz/E9dfWc3ufWF89PlETpt5e6jDUkp5SUkq45zsnJD3gPQ0Kws+5ZU/fcG5xwmnjzzIfz/fQVLqbXwxs6rZSNndzZ/6orsTRsPwbg9N9QE9Nknqi0XZG7Y9zSMPNBAZGc3ck6CubhOHCg4weEBWqENTSrmFh4VpgtTC0tzlbPwsn8tOFC49JxqAGVPquOiP/2HRzMHdWpTta0aFlvOieesL/3ao0OmRSZKvuX36gnB7A5GRtqbHQzIb+TqvOoQRKaVairPHhTqEHsO7N3/nynSuWljQtCwh3saQqDImp83o1gRJZ1RQ3alHJEkt75LwjFHR14qyUxKP58kX3+D6K+xUVrl48bV4zpylfcBKqZ6hZS9NZX1d06CQ3x2Xyl8f/pQn/u4iKsrGXx6r4tJzzmNk3Lij7LHrcXjHozMqqO4W8iTpqHPg9DGTx57Oxq1hLPrBFzQ2RjJ72g1EhEeGOiyllPJR25OMzUykbFs9pROLeZRyHDMv5qY/vUi03caCeQs44aTAJ0gt/03w0LvSVCiELElqWZTtfddaXx7ufeKYU4FTQx2GUko18TXvZX6qE4YXcPNZHzebey4z+owuX17ryLxo3vSuNNXd2k2SRCQKWAVEutd/xRjz/7pyUE9RtvfcPvrGV0oFWjDar76mrZGyM4/PYV7mDuIjYwN611pb86I5HA3s2jdH50VTPYo/PUn1wGnGmCoRCQc+FZFlxpjPO3PAvlqUHUjb96wlt3A5jQ1w7MjLyczQC+5KdVJA26++xDMopK+RsjPn53BOdk6nRsouKqriqYeXYBMHQ4YNY+r5KYgIoPOiqd6n3STJGGOAKvfDcPeP6eiBPB/IvlqUHSh7czcSFf8Mj99vp7HRcNdPHyQq8n5SkwaEOjSlep1AtV99jac3Z2PtcW2MlB3eqWEQnM5G/v7bp/nrTyE+zsa7H6/nycdjqZt9LtCi5lSvHqhewK+aJBEJA9YDo4B/GmPW+rOd93Vn72vNfbEoO1B27PuI/z4UBkBYmHDXbU7+8e81pCZdEOLIlOqdOtt+9VU5VZubxqCLOBTT5ZGyvdv5vTvLOGVGHfFxMQCcPTeah96IILzoyBhGeilN9SZ+JUnGmEZgiogkAa+LyARjzCbvdUTkFuAWgIzMWF7b+77XWBZ6rdlf4eGJHMprYMhgqyt69z6IjkwLcVRK9V4dbb8yhyR3f5DdaGTcsWwry+OG6SsAujRSdqs5NUsiGL3/yHKHw5DqjOcsbfdVL9Whu9uMMWUisgI4G9jUYtmjwKMA2cckmpYjoOq1Zv+cOOUKfvTzXVx2YTGVlcKHHw/j7JNnhTospXo9f9uvyVOz+vzluAVD5rGqcDVAp3uNtpXlUVPvbDVu0dp9B/j1gxuZPM7w+pIYpo27IXCBK9XN/Lm7LR1wuhuYaOAM4I9H26awOp6hS6dqUtQJkRFRnDP7F2zdtAd7mJ35pwxrKnpUSnVMZ9qv/qKjvUeteo3amhdt+HcpKM7j6/VlnDxlKNFRMQGMWqnu5U9P0iDgKfd1fRvwsjFmydE2iK+1a4LUBfYwOyOyRoc6DKX6gg63X/1ZW+MXeXqNnntrQbO70tqqLx2QOpABqQODEaJS3cqfu9u+BaZ2ZKexka1v7VRKqe7Wmfarv2o94vYRnl4jzzABSvUXIZ+WRCmlVPfpyLxo3vSuZNUfaZKklFL9gGesOp0XTSn/aZKklFJ9VFtj1fmiAzwq1ZomSUop1cd4eo1WFIwHdKw6pTpLkySllOql2qovOjKBuI5Vp1RXaJKklFK90NLc5W3WF+3al6ETiCsVAJokKaVUL9BytOt39o3k4Bcjm41b5KG9RkoFhiZJSinVw7XsNaqtjT0yWbgWWysVNJokKaVUD+UZ4HH5wTHNeo1GaE+RUt1CkySllOqBPHOlPbbWuitNe42U6n6aJCmlVA+zNHc5NfVOnlh3qhZgKxVCmiQppVQP4RnfqLrWwfNLzuXuhNEwMtRRKdV/aZKklFIh1Nao2DpXmlKhp0mSUkqFgKco23PHmmdUbL28plTPoUmSUkp1s5ZF2R46vpFSPYsmSUop1Y20KFup3qPdJElEsoCngQzAAI8aYx4MdmBKKdVVPan90qJspXoff3qSGoB7jDEbRCQeWC8iHxhjtgQ5NqWU6qoe0X55DwqpRdlK9R7tJknGmMPAYffvlSKyFcgENElSSvVooWq/vO9YO1hbRn5FpV5eU6oX6lBNkogMA6YCa4MSjVJKBUl3tV+eouwjd63Fs3/NcOYUJmiCpFQv43eSJCJxwKvAXcaYCh/LbwFuAUhNTg9YgP3RW+8uZveWnRib4fhZJ3LSzFNDHZJSvVpH2q/MIcmdPs6qwtVNvUbed631pylFdu/bwVtvLsY4haSBSSy8/Gbs9vBQh6VUp/iVJIlIOFYD85wx5jVf6xhjHgUeBRiRNdoELMJ+Zs2XK9nzyV6SHYOsx8tWMyQzm+whI0IcmVK9U0fbr8lTszrcfvksyh7epbB7pbr6Oha/+CwZhcMQEWrzqlkc+QxXXnpjqENTqlP8ubtNgMeBrcaYB4IfUv+2fecWEutTQazHcVVJbN+5WZMkpTqhO9ovLco+oqg0n4iKaKyXHaKJpbSwOMRRKdV5Nj/WOQlYCJwmIl+7f84Jclz9VubgIVSHHbkaUBtdydCsYaELSKneLajt16rC1WzIP8Bja+fQsGwcl/XjBAkgOTEVR2x902OHqSc6PjqEESnVNf7c3fYpTf0aKtjmzV7AwUOPULB3P0ZcjJ18LONGTQx1WEr1SoFuv7zvWttWlkdNvZPn3lqgRdlusdFxnDb/TD764D1sThuRKZEsuuR7oQ5LqU7TEbd7GJvNxuBBQygrLEVEyMzMCnVISila37VWWxvLwS9GcmfC6H5TlO2PQQMziY6LxuVwkZY+gMiIqFCHpFSnaZLUw6z7eg2bl28hpd4q3F7x5gcMTB/MkMHZIY5Mqf6pZVF2RvGRO7X6c/2RLw5nPc898zgZBVbhdtmhSl6zP89lFy4MdWhKdYomST3AvoM5FBTlMWrYODZt+ZrkuvSmCwTxFSls2fGtJklKhYDPomztNWqmvLKMHbs3k5oygIjwCCLKjxRux5p4Cg/nhzhCpTpPk6QQe3PpS+z6fCfhtdF8lPw+g0YNpiqsilhXPAC1kVUMHqiX3JTqbi3HPOrvRdm+7MvdzYvPPEl0cSLOyHoGTk7HGVMPDmt5g3ESERMZ2iCV6gJNkkKotq6G7V9tJaMuGwQSSpMpKyoganwUBQcOYMTF8AkjmDBuSqhDVapfWZq7XIuy/fDOO6+TUWxdWsMBh7YeYPLsaXz9+TrszggkyXDzpd8PdZhKdZomSSHkcNYjDUdGYRARxCXccv1d1NRWY7OFERXpX9FjY2Mji998hqLDBdij7Fx+6XUkJ6YGK3Sl+qxyRwXv7BupRdl+cDWapktrADZnGJOOnca8U+ZTW19LXEx8s+VHs+HbtaxZvQpjDMfPOonjp54UrLCV8ps/4ySpIImLSSDfcZBaUw1AkTlMdWMVADHRsX4nSAAvv/4UJZ9XEL83nYit8Tz+34dwuVxBiVupvqzcEWXVHyWMDnUoPV6DOMgzBwBwmDoONe4jKSEVuz2c+NgEvxOk3ft3svz194jbnUb8nnRWvbmCnbu3BjN0pfyiSVInuVwudu/fwY49W2hobOjUPiqqysiIyCSfXHLMZhpoIDYszue6peXFbNn1DaXlvkevLTpUSKyx6pjCxI6Uh1FeWdqpuJTqzyLKo/tF/VFRSQFbdn1DRVV5p/cRbiKwEUaO2cxB9jLQlkVJWWGr9RzOerbv3sy+gzkY03rWl6+++YLkyiOXNJOrMlj/tc6jrkJPL7d1gsvVyMOPP0DdngbEJZDVyB23/IiI8I4VKMbGxGEiGxlWPdbar3FRE1HSar0vvlrNx0s/JKI8GkdiLacuOIMZU09sto4t0obLuLCJlfc2RDiJjfGdcCml2hYb2fcnY/340/f48qO1hFdF4Uiq5rxLL2X8mI4PWmuPCieVRAbIYAAKoveTEJ/YbJ3qmkr+9ehfsR+OxmVvIHl8Ejdc/d1mvUwZAwZxKOwrwl0pANSGVTF8wPgunKFSgaE9SZ2wZt0qGnfZSHUOJKUxg+i9iSz78I0O7yciPJKTTptLXvI+iqMPUzjoAJddck2r9VYtX05G+VCSSSejfCgrP/qw1TqXXXINhYMOUBx9mLzkfZw8b26HkzalVN/ncjWy9pPVDKjMItmkM6Akm/fee7tT+/rOJQspzjxIUcxh8hL3cdzs44mPbZ4kvb7kRZJzB5HiGkCaYzBlmyvYumtjs3VOnDGXmGMjKIzLpTA2l8jxNuaeeGanz1GpQNGeJD/UO+pY/PozVJRWkJyWTHxCAhGNUU1jGUWaaCorynnt7efJO3iYqLgoLr/4WmJj4tvd90kzT2Xa5JlUVpeTkpSOPczHn6SxxWMfV/fSUjIYNXYMB/bsJT4+mUkTjqOgKI/X33oBl9MwauxYzpi7oOMnr5Tq9VZ99iGbN36LhMHZZ52PrfFIOyMi0CBs3LKBTz9dAcDs2adz7LjJ7e43KSGFu7//M4rLComLiScmOrbVOvV19YTLkefDnZFUVVU0W8dmszFr5hw+rHoHMMw8/hSMMSx+4xkK8wqISYjh8ouvIzoqppOvgFKdo0mSH/779L8I2xZFrKRQkVNDyZhiKpMrGVg6DICChAMk1yZSsaGWWFcKTuPg0dIHuevOn/pVuBgdFXPUD3/yoGRqiquIMXHUSBXJg5JbrfPqW89R8HkxSY2DaDBOHil7gEaHiwEFQ7FJGFv3byHMZuO02fM7/ToopXqfNetWsX7ZOlLqMnAZFy8VP01EaiR15bVEEU1VWDlRyZEsW/w2AyqtMdmW5r9B/I0JDM0c3u7+w8LCGJA6sM3lM447gfdz3iW9JhOXaaQ6vYzxYyY1W2f/wT0sefl1BpRbx3+38G0+HbIc2R5JrEnBYer5T/mDfP/2+7rwSijVcXq5rR3GGKoKK4kUaybrKGKoK6vjyuuux3FsJfXjKzj/ykuoK68n1mXdKxwuEbhKoaqm0q9jlFWUsO9gDnX1dT6XX3f17aSflEzd2HIGnJzMdVff3mqdvAOHiGu0urntEo6rRJAiOzYJAyDRkcbO7dv8isflcnEwbz+HCw/6LLJUSvUemzd9Q0qdVRRtExtRhQmcNGsOCTOjqBtbTtbcTJITU0itHGwNQyJCSvlA1n21xq/9O5z17DuY0+ZNJZOOnc7ci+dRP66Cxgk13HjT7cTHNh9XYd1Xa0gpH9h0/NTKweTu30+M+2aUCImkvthJvcN3G9mSp031d32l2qI9Se0QEcSrjtMYA3ZD9pAR3HLDD5qe/8C+FGOOjBnSEO4kOjK63f1/9Mm7rPt4LeG1kTiSarnm2pvIHDi02Tr2MDuXXtC6VqlZnOHSrHC7MdxJGHaotZY3GCfhUe0XpDobnDz82F9x5rowYkgYFcdNC7+Hzab5tFK9UXRMNDWmngixahQbIutJS83g+CknN63zwcolFNl2EWesL1p1YTWkprTfi1RYnM8TT/yL8JJoGqIcTJg1iflnXNhqvemTZzF98qw295OaksahsHzCXRHW8W3VhIXbm7WpLnsD4faIdmN676O3+Xb1Buy1kThTarn2ulsZmD643e2U8kX/5fPDaWeebRVXh+eTn7qPs8+5oNU6F1zwHfIH7KUkPJ/8xP2cMOdk7PajJyV19XV8+cnnZFQMJcWZwYCCobz+xoudivGiC6+gYMA+6/gJ+5k592RGHz+WgtgDlETkU5J5iEsuvLrd/by3/E3sObGk1g8irW4wtVucfPHV6k7FpJQKvQvPu4LyrHxKIvIojM1l8LTBjMhqPgbUaSfPh9FOiiIPUxR1mLAxLk45YV67+37tjedJz8uy2q/KLDZ9/i3llWUdjvGUE+YRNsZFUdRhiiIPw2gnC6++hfx0d5uatI9TTpvX7pe1qppKvvlsPQPcbWp63lBee+P5DsejlEe/70mqrq3i1Tefo666luzhIznz1HNb1RFNmzSTMaOOoai0gPSUDGKjW99anz1kBD/4wX3kFx0iKSGVxPikdo9dV1+D3XkkkbKJDePs3OWtzIFD+cEP/pf8ooMkJaSQGG/VLRWfXEh1TRWDBgwhvJ2kDaC0rIQoE3OkKL0xmpLSok7FpJQKLmMMH658hz05O4mMiebSC65qdcNIbHQcd935Uw4X5BIVGU16SuspVsLCwrj9pns4XJiLiDAofYhf9ZSNTlfTJX2AsPpwqmoq/Gr/vNlsYdx2490cLszFGMOg9CHYbDa+/4OfkF98mNSktFZ3zflSXVOF3XGkt8kmNoxDSwZU5/XrniSXq5FHHvsbjnUQuS2RHR/uYOn7r/pcNy4mnmGZI30mSB5RkdFkZ470u4FIiEuC5EYajBOAqrByBg3tfLdwVGSU+/hHCrtTk9IZOni4XwkSwPHTT6Io/iBgNcBlSQVMnTSj0zEppYJn2Yevs/X9rURuS8S5Hh557O+4XC1vh7Uu2WcNGuYzQfKw2WxkZgxl8IAsv0fKHjp8GBXh1thujaaBxpR6MlIHdepcRITBA7LIzBja1GMUHRXDsMyRfiVIAGnJA3ClOGkw1i3AlWFlZA4b2s5WSrWt3SRJRP4rIgUisqk7AupOJWXFmKIwwsX65pHgTGHvrt1+b19WUUJJWVGni5ttNhu33HQXMtlBzcgSMk8ZxMXntX9JLJjGjjyWeRedRc3oEmrHlHLRlZczaMCQkMakVFf05TZsz84cEp3WHI3hEgFFYRSVFvi1bV19LflFh3E2ODt9/AVnXszIU4dTM6qExgm13Lzo++2WGQRTWFgYN9/0A8zEOmpGljB07hAuOOc7IYtH9X7+XG57EngIeDq4oXS/6KhoGsOPNBDGGLx6jttkjOGpFx6maGcRYoSYrGhuuf4uwsL82LiF+NgEblx4Z4e3C6Zpk2YybdLMUIehVKA8SR9twySM5iPthzv9Gkto/Tefs/ydZVZxc3w9V151vV+3+7c6vgjnnHFxh7cLpsT4JBZd971Qh6H6iHZ7kowxq4DWc2X0AbEx8RwzYwKFsbmUSAH56Xs5//z2v3Ws++YzyjdWkV41hLTqTMx2Ox98vKQbIlZKdVRfbsPOP/87FKTvp0QKKIzN5ZgZx7Z7acrlcvHhu8vIKBlGau0gMvKzO33DiFJ9XcAKt0XkFuAWgNTk9EDtNujOPesSZhw3i5LyYoYOGubXKNkFhflEOWObipujXXEUFuUHOVKlVLD01vZryKBs7vz+j9l/aA8pialkpLVf0+hscGBzHOn1FhEtblaqDQEr3DbGPGqMmW6MmZ7gZ5FdT5GRNpjxIyf6lSABTD72OMoTCptqkUpi85k2WS9PKdVb9eb2KzY6jvEjJ/qVIAFERkRhT7Y13TBSSzVJA5KCGKFSvVe/vruts4YMzubsS86lemQxVcOLmLXgRL/mOVJKqZ5g0Q3fwzWhjsphhcTPiOLqy28OdUhK9Uj9fpykzpp07HFMOva4UIehlFIdFh+byM3Xfz/UYSjV4/kzBMALwBpgrIjkishNwQ9LKaUCQ9swpVRntduTZIy5sjsCUUqpYNA2TCnVWVqTpJRSSinlgyZJSimllFI+aJKklFJKKeWDJklKKaWUUj5okqSUUkop5YMmSUoppZRSPmiSpJRSSinlgyZJSimllFI+aJKklFJKKeWDJklKKaWUUj5okqSUUkop5YMmSUoppZRSPmiSpJRSSinlgyZJSimllFI+aJKklFJKKeWDJklKKaWUUj74lSSJyNkisl1EdonIT4IdlFJKBYq2X0qpzmo3SRKRMOCfwHzgGOBKETkm2IEppVRXafullOoKf3qSjgd2GWN2G2McwIvABcENSymlAkLbL6VUp/mTJGUCB7we57qfU0qpnk7bL6VUp9kDtSMRuQW4xf2wauGPFmwP1L47IQ0oCuHxO6M3xgwad3frqXFnhzqArtD2KyB6Y9y9MWbQuIPBZxvmT5J0EMjyejzE/VwzxphHgUc7FVqAicg6Y8z0UMfREb0xZtC4u1tvjTuEtP3qJr0x7t4YM2jc3cmfy21fAqNFZLiIRABXAG8FNyyllAoIbb+UUp3Wbk+SMaZBRO4E3gPCgP8aYzYHPTKllOoibb+UUl3hV02SMeYd4J0gxxJIPaLbvIN6Y8ygcXe33hp3yGj71W16Y9y9MWbQuLuNGGNCHYNSSimlVI+j05IopZRSSvnQ55IkEQkTka9EZEmoY/GXiOwVkY0i8rWIrAt1PP4SkSQReUVEtonIVhGZFeqYjkZExrpfY89PhYjcFeq4/CEiPxSRzSKySUReEJGoUMekAk/br+7T29ov6L1tWG9uv/pckgT8ANgazAOIyDIRuc6P9apEZISfuz3VGDOll90e+SDwrjFmHDCZFq+7iFwtIu93ZsfuD9TcLkfoxRiz3f0aTwGOA2qA1wN5jI7w9/URkUzg+8B0Y8wErALkK4IdnwoJbb+6T69qv6BntWH9pf3qU0mSiAwBFgCPuR/vFZFaEakUkTIR+UxEbhORLp23MWa+MeYpP9aLM8bs7sqx3B+2KvdPo4jUeT3+367su8VxnhSR33Rg/URgNvA4gDHGYYwp817HGPOcMebMzhzbGHOsMeZjP7Y1IlLtfj0OisgD7vm62jMPyDHG7PNj3aDw9/VxswPRImIHYoBDwYtMhYK2X106Tn9rvyDEbVh/ab/6VJIE/B24F3B5PXeeMSYeazTNPwD/g/uD0YMY4H0RWS/WyL9HFlgftjhjTBzwCXCn57Ex5nee9dxvvu40HCgEnnBfHnhMRGK7OQaPye7XZw5wOXCjH9tcAbzg7wFC8Po2McYcBP4C7AcOA+XGmE59w1U92t/R9qu79Pb2CzrQhmn71Xl9JkkSkXOBAmPMel/LjTHlxpi3sN6E14nIBBGJFJG/iMh+EckXkYdFJNprnxd4XffNEZGz3c9/LCKL3L+PEpGVIlIuIkUi8pLX9kZERrl/TxSRp0WkUET2icj9Xt8IH8TqNv0c+JeIHBKR+e2c7zD3/m8Skf3AR+7nbxTr+nqpiLwnItle24wTkQ9EpEREtovId/x8bW8WkV3u7d4SkcFY3wymAeuxvhksBFa6XwvPa3O9iHzq/l1E5G8iUuB+PTe6/wa3AFcD97q/Tb3tXn+viJzu/j1MRP7X/TeodDfGWS3jNMbsAlYDU7xiP9f9N/R8E58k1qCC5wPb3A1kpYgsFpGXPN8IRWSuiOSKyP+ISB5WY2oTkZ+44ygWkZdFJMW9fpSIPOt+vkxEvhSRDK/XYbf7OHtE5OqWr4/78Ynu7crd/z/R/Xwy8AvgEWAn8B3365fmz99P9Xzafmn75W/75X4+ArgIuFXbryAzxvSJH+D3WJNX7gXysD60VcDpPtbdD9wO/A1r9N0UIB54G/i9e53jgXLgDKxkMhMY5172MbDI/fsLwE/d60QBJ3sdxwCj3L8/DbzpPs4wYAdwk3vZ9YATuBn4JfAqVnektIjb+7jD3Pt/GogForFmN98FjMdqBO4HPnOvH4s10ecN7mVTsebQOca9/EngNz5eq9Pc600DIoH/A1YBA92vYwVwMTAX2Ow+j0Ve5/Wp+/ezsBqkJEDcMQ5q69juv+Pp7t9/DGwExrq3nQyk+niNx2F9U/mh+/FUoACYiXUd/Dr3fi8BPgD2YdWAhLvPweGJw30+DcAf3ecd7V73c6ypLSKxPvQvuNe/Fev9E+M+1nFAgvt1rwDGutcbBBzr4/VJAUqxGms7cKX7cSpwmfu8coAxwE1YU2v8IdSfO/3R9gttv1odm+C2X5FYbVgt2n4F/7MZ6gCCclLWG2SJ9xu1xfLPsRqGamCk1/OzgD3u3x8B/tbG/j/2+iA9jTVA1hAf6xlglPtN58D9gfZ6U37sfhPehtU4xAKfYTUWBhh4lOMOc68zwmv5MtwNl/uxDauxzcb6BvpJi/09Avw/9+9P4ruReRz4k9fjOKyGZBiwHfjK/fwvgD9jNWS+GpnTsBrWEwBbi2O0OjbNG5ntwAVt/C0M1oe42v37C0Cke9m/gV+3WH87sBzrH6WDeDXkwKc0b2QcQJTX8q3APK/Hg9yvhR2ri/wzYFKL48UCZViNWnSLZd6vz0LgixbL17jXmek+v19iNbJPAS9hFZ2G/POmP4H9Qdsvz2Ntv3y3X3Ow2rBStP0K+k+fudzWQZlYb4wYYL27e7EMeBdId6+ThZX5tuderD/8F2IVKfq6npyGle17F9jtc8eRAfwv1jebL4Clxpg33evE+XH8A16/ZwMPep1PiTu2TPeymZ5l7uVXu497NIO94zbGVAHF7n2+C2SLyLdYXcS/w/o23Iox5iPgIeCfQIGIPCoiCX6cH7T/t5iG9VpdjvWB9NQWZAP3tDjnLKxv2TuAg8b9aXbzfi0BCo0xdV6Ps4HXvfa1FWjE+hs+gzX1xYvuyw1/EpFwY0y1O67bgMMislRExvk4h2avs9s+INMYsxarfuIWrG+kNqyeMH/eH6rv0farf7dfw7HasN3afgVfn0ySjDEfG2PO9bVMRGZgfUDewOquPNYYk+T+STRWAR1Yb7iRfhwrzxhzszFmMNa3q3+J+zq+lyKsjD3b67mhWP9I7wZ+DnxtrCLH3/p/plYIXr8fAG71Op8kY0y0MeYz97KVLZbFGWNub2f/h7zjFqu4MRWrF2YDsM0YM8kYcyHWN44hbQZqzD+MMccBx2B1u/7Yxzn40u7fwlhexvr28nOv7X7b4pxjjFUIuxvIFBHx2k3LOoGWcR0A5rfYX5Qx5qAxxmmM+aUx5hjgROBc4Fp3bO8ZY87A+ua2DfiPj1No9jq7DeXIjPV7gZ8ZYyYYYxZidaWrPkjbL22/vLbz1X49idW+DNT2K/j6ZJLki4gkiFUc+SLwrDHmG6w/9t9EZIB7nUwROcu9yePADSIyz13wlukrgxaRy8S6dRes7k9D87tTMMY0Ai8DvxWReLGKEe8Gng3waT4M3Ccix7pjSxSRy9zLlgBjRGShiIS7f2aIyHiv7cPcBXyenwis7t8bRGSKiERifdtaa4zZCywFJorIhWLdPXEHbXyzcx9rpoiEY3W91nHkdcoHjjYey2PAr0VktFgmiUhqG+v+AbhZRAZi/X1vcx9XRCRWRBaISDxWY9QI3CkidhG5AOvb2dE8jPU3zHafU7p7O0TkVBGZKNbtuxVY/6i4RCRDrALaWKAeq87E5WPf72D9fa5yx3M5VmPcawYVVMGj7Ze2X9p+hUZ/SJLeFpFKrCz6p8ADWMV/YN1Ouwv4XEQqgA+xiuswxnzhXu9vWAWQK2mdKQPMANaKSBVWEeUPjO+xRb6H9eHajXXt+Hngv4E4QQ9jzOtYhXovus9nEzDfvawSOBPrttFDWMWhnqI+j59gfTv1/HxkjPkQ+BlWMeZhrG9EV7j3WYRVlPcnrC7sY4B1WB+mlhKwPvSlWN2wxVg1AGA16MeI1Q38ho9tH8BqpN/H+gA/jlWI6Os12IhVmPljY8w6rGLSh9zH3YV1jRxjjAOr2PEmrG+Q12B9oH3F7vEg1t/4ffd76nOs7nGwGtdX3PFtxXq/PIP1Gbsb6zUvwaonaPXt1xhTjPXt7R73a3MvcK77NVb9l7ZfaPuFtl8hoxPcqoAR65bgXOBqY8yKUMfTUSKyFnjYGPNEqGNRSnUvbb+UL/2hJ0kFkYicJdYcSJFYBZyC9Q2lxxOROSIy0N09fB0wCauYUynVD2j7pdoTslE4VZ8xC6vrPQLYAlxojKkNbUh+G4vVDR6LdRnhUmPM4dCGpJTqRtp+qaPSy21KKaWUUj7o5TallFJKKR80SeplpIOzXXdw378QkUDf1quUUk20DVO9iSZJ/ZS4J0AM0r7vFJF1IlIvIk92cV+eiTC7XD8XzMZZKdW9gtyGfSwidWJNWlslItu7sK+AxSlekxOr7qFJkgqGQ8BvCPA4Kkop1Y3udI/qHWeMGRvqYFRoaJLUw4nIVBHZICKVIvIS1kzd3svPFZGv3QOZfSYik7yW7RWR+0Rki4iUisgT7pFoY7Emkxzs9U1psHuzCBF52n28zSIyvaMxG2NeM8a8gTWoWFetcv+/zB3nLPe53SgiW93n9Z7XKLIiIn8TkQIRqRCRjSIyQURuwZrr6V73ft4OQGxKqXb0xjYsUNqKU6xR0H8iIjkiUiwiL4tIinubKBF51v18mYh8KdbI178FTgEecu/noVCdV3+iSVIPJtaw+m9gjXyaAizGmo3Zs3wqVm/NrVjzET0CvOUe88PjauAsrJFmxwD3G2vSwvnAIa9vSofc65+PNfVBEtborE0fRBFZIl6TLbb4Cdbw87Pd//fM1bRGrKH0/xdrxNl04BOs6QfAGpV3tvtcE4HvAMXGmEeB57BmBI8zxpwXpHiVUm69vA37vYgUichqEZnbmfM/SpzfAy7EGsF6MNaI2v90b3YdVtuV5X5NbgNqjTE/xWrrPD1cd3YmJtUxmiT1bCdgzb79d/cEhK8AX3otvwV4xBiz1hjTaIx5CmtY+hO81nnIGHPAGFMC/Ba4sp1jfmqMecc9X9MzwGTPAmPMuS0mR/T+8TkhZ5DcBvzeGLPVGNOANR/TFHdvkhOIB8ZhDXGxVccOUSpkemsb9j9Y87FlAo9iTQ/T7oTBHXAb8FNjTK4xph74BXCpu/bSiZUcjXK/JuuNMRUBPLbqAE2SerbBWDNtew9mtc/r92zgHu9vQ1jfPgZ7rXOgxbbey3zJ8/q9BoiSABRNt8XdHe7phj7Fz82ygQe9zrkEa6TcTGPMR1jfHP8JFIjIoyKSEJTglVLt6ZVtmDtpqzTG1LsTt9XAOb7W9Wq/qkRkqJ+HyAZe9zrnrVgT1mZgJXbvYc1hd0hE/iTWxLoqBDRJ6tkOA5kiIl7PeX8IDwC/bfFtKMYY84LXOlkttvV0SXd4FFERWdaiQfD+WdbR/QEYY4716ob+xNcqPp47ANza4ryjjTGfuff5D2PMcVgTVo4BfnyUfSmlgqevtGEG64tY6wVH2q84Y8z+NrZt6QAwv8V5RxljDrp73H5pjDkGOBFr4thrj7IvFUSaJPVsa4AG4PsiEi4iFwPHey3/D3CbiMwUS6yILBCReK917hCRIe6iwJ8CL7mfzwdSRSTR32CMMfNbNAjeP/M964k1l1AUEAaEuQsRO9sbVQi4sLq+PR4G7hORY93HSxSRy9y/z3C/HuFYs5bXubf3nLP3fpRSwdXr2jCx5nI7y9NuicjVWHWOnZ0XzVecDwO/lSM3nKS7ay0RkVNFZKKIhAEVWJfftA0LEU2SejBjjAOrOPl6rEtKlwOveS1fB9yMdXmpFNjlXtfb88D7WHP75GDdmo8xZhtWsfNud5dve13YHXE/UAv8BLjG/fv9ndmRMaYGqw5htTvOE4wxrwN/xOqOrgA2YRVHAiRgNbylWF3zxcCf3cseB45x7+eNzsSjlPJfL23Dwt3HKASKcBdZG2N2dGZnbcT5IFZR+fsiUok1qe5M9yYDgVewEqStwEqsS3C4t7tUrDv9/tGZeFTH6NxtfZiI7AUWGWM+DHUsSinVUdqGqVDTniSllFJKKR80SVJKKaWU8kEvtymllFJK+aA9SUoppZRSPmiSpJRSSinlQ1BGUk5JjTVZQ1OCsWul+rz6xlrqGp1Nj13GUFSdQHytndjInjnw7p7cXUXGmPRQxxEI8bGJJj1lQKjDUEp1o7basKAkSVlDU3hvxQ+DsWul+rRVhaspqq5m+cExHPziyFRRlxQmcNzIjBBGdnQLf7RgX/tr9Q7pKQP41V0PhjoMpVQ3aqsNC9qcXEqpjllVuJr8ikqeWHcqc74ZyEXeSZHOPqeUUt1OkySleoClucuprnXw/JJzmdPDe42UUqq/0CRJqRDKqdrMN0UHWX5wDA3LxnHn8GHaa6SUUj2EJklKhYin/uixtXPI2pjIZcOHhTokpZRSXjRJUqqb5FRtZltZXtPjmnpnU/2RXl5TSqmeR5MkpbqBd1F2xKGYpufvThgNI4+yoVJKqZDRJEmpINOibKWU6p00SVIqSLyLsg9+MZI7E0ZrUbZSSvUimiQpFQQti7Lv1KJspZTqcdbn5LPbVtvmcp27TakAW5q7nPyKSh5bO4c53wzUu9aUUqoHWp+Tz8rJeZx+wxttrqM9SUp10arC1VTW1zU99tQfaVG2Ukr1TIv37MW+YBuLMncwOS2rzfXaTZJEZCzwktdTI4CfG2P+3uUolerlluYup6beyXNvLWh6LqM4XC+v9RDafimlWnqoYidXXbeE2OgIxiVlMjLu2DbXbTdJMsZsB6YAiEgYcBB4PUCxKtUr+SzK9tDi7B5D2y+l1OI9e5t+PzCxnBvmriAmMoIFQ+a1u21HL7fNA3KMMX1mxm+lOkqLsnstbb+U6kfW5+SzJr2Cq65bgj08DIBIexjxkfHMTj/Jr310NEm6Anihg9so1Wd4DwqpI2X3Otp+KdVPeIqyb5i+goyEBL+Topb8TpJEJAI4H7ivjeW3ALcAZA5J7lQwSvVUnilFtCi7d+pI+5WanN6NkSmlAq1lUfbRao7a05GepPnABmNMvq+FxphHgUcBJk/NMp2OSKkeYmnu8qbf6xsaWX5wDA3Lxunltd7J7/ZrRNZobb+U6qUeqthJ5vwczsnOabco2x8dSZKuRLuqVT/QsijbI6M4XMc86r20/VKqD2u6vDZ3BTGR4X4VZfvDryRJRGKBM4BbA3JUpXooT1G2z14jvWutV9L2S6m+xzNSdn6qEwDH5BoWzVxJWqz/Rdn+8CtJMsZUA6kBO6pSPZAWZfdN2n4p1bd4F2XHRIY3PR+Iy2st6Yjbqt/rKUXZq7/8iK07NjF9yglMOfb47g9AKaU6KTdvHx98vISU5FTOO+M72GzBmfXMuyg70L1GvmiSpPo17/qjUBZl//3fv6Mqp5pkBvDG14vZdPy3XHPZopDEopRSHbFx21c888RjZDeOpoTd3L/2B/zm/gcDnigFuijbH5okqX7F02vkUVPv5Il1p5K1MTFkRdkNDQ3k7znMOJkGQBzHsGnDergsJOEopVSHvPjyk4xvnIZNbMSRiLPCyZqvPuak404LyP6DVZTtD02SVL/hXZTtfdfanMKEkNYfNbgaCGvxUbSZsBBFo5RSHeQCmxzpNQonnOra6oDsevGevRyYXO4eFDL4l9da0iRJ9Qsti7Iv8k6KQnzXWlREFMQ3UlleRrwkUWzySRgYH9qglFLKT8fPnMXXH31FthmLEweHw/dx27Tvd2pfnqlEPDLn5wRkUMjO0iRJ9Wkti7JD3WvUll/c9xf+8egf2Vm8j6HZw1h0zb2hDkkppfxywfwriIiI4rM1KwmPCOe+m39DbExch/fjKcq+NnMHkfYjvekLhpwZyHA7RJMk1Wf5LMruoWMd2e0R3P3dn4U6DKWU6pT58y5k/rwLO719KIqy/aFJkuqTvC+vhbIoWymlVNs8l9euPn9ptxdl+0OTJNUnrCpcTWV9XdNjz11rOiikUkr1TKEuyvaHJkmq1/PuNYo4FNP0fKgGhVRKKXV0i/fsxT5/W0iLsv2hSZLq1ZbmLu/xRdlKKdXfLd6zt2meNYCrrltCbHREj6o/8kWTJNUr9YSi7PLKMpa8+wpOp5PT5pzN0Mzh3RuAUkp1ksvl4sOVS8k9uJ8Rw0cz58QzEJGgHMtTlO1911p8ZEKPvLzWkiZJqtfpCUXZ1bVVPPzIA6TlDcFGBM/vfoIrr7+e7CEjuj0WpZTqqGdf/g+VX9US50pk45aNFBblc9kFCwN6jNZF2aG7lb+zgjMDnVJBsjR3ebNBIUN119qGb9cSl5eCXcKxiY2BZcNYseq9kMSilFId4XK5yN+TR5wrEYAEZwoHdu4L6DEW79nLysl5XH3+UjIS4nvcXWv+0p4k1aO1vGvtnX0jOfjFyJAXZUdERNBoawBjPW6kgSi7fpyUUj2fiGBspvmTAewy6S1F2f7QVl31WN5F2R4ZxeFW/VGIHTdpFp+v+YTyvcWEuexUZZRw2/wfhjospZRql4gw6bipbF61ieiaeGriyjn+hFkB2fdDFTt7TVG2PzRJUj2Oz6JsjxCOmF1ZXUF1TSVpKRnYw+zcceu9rP92DY56B9MmHU9sTDzGGApL8rHb7aQkpnVo/7V1NZRVlJCanE5EeGSQzkIp1R85nA6KSwtIjE8mJjqWs0+/gNGjx7N3fw6jRowlO9Oqp6yqqaSyuoL05AHY7eHt7vehip0AGFcjVRGHuPrkdQxMSu0VRdn+0CRJ9SirCldTVF3NY2vn9KiRst9d/ibfrvkauyMCV7KDRTd9j6SEFGZOPaVpnYYGJw//92/UH3RixJA+JpVrr7zNrztGNny7lg+XvoO9JhJnfB3fuWIhw4eODuYpKaX6iUN5B3j22cewl0fSEO3g5NNP5cTj5zAyewwjs8c0rffhx0vZ8Ok67PURNCbXc+ONd5CalO5zn95F2aYO/nv7TiL2p/JSVD1nXhXP7J9319kFl19XIUUkSUReEZFtIrJVRALTL6eUF09R9mNr54S0KLulsooSNq7+mozyoaTWDiTl4GBeee3ZVustW/4mYbuiSasZTHp1JqUbK/lq4xft7t8YwwfvvkNGyTBS6waRUTCMN994ORin0i9p+6X6u1dff570vKFW+1KazSfLP6KhwdlsncrqCjZ8ss5q5+oGknpoiM92DloXZa//PwdJGyeRVjGcAQXj+PipfHJ2FXbHqQWdvz1JDwLvGmMuFZEIIKa9DZRqz5aNh3njxY2Ep1cz9sI43js4ukcUZbdUXlmKve7I5a8wsVNf72y1XklxEdGuWHB3HEU5Yygqzm93/42NDdicR2a8FhFM692rztP2SwVcXX0dKz5ZRk1tDbNPPJ301J47kK1xGGxypE8kzBlObX0N8fbEpucqq8uxOyKOrCNh1NY1ttqXr6LsF0tfIVyObGvKojh8qIyRo3z3QvUm7fYkiUgiMBt4HMAY4zDGlAU5LtXH/e3VV/jBZUvZ+K8oPvttJH+46QDOd8ZwZ0LPu8SUkTaYfA7gMi4ASk0hUXGta4amTZ1JcexhwOodqkgqYuKx09rdv90eTkRyOE7jAKCWahIzkgJ3Av2Ytl8qGBxOB/965M/sfTeXkpWVPP7IPzlckBvqsNrUEOakypRbvxsnxQ15xMU0L/BMTxlIQ1I9jcZKjKpsZWRmD2m2zkMVO5l33euck53D5LQjRdnHzx1CVUwBAC7jwj6ijAmTMoN9Wt3Cn8ttw4FC4AkR+UpEHhOR2CDHpfqonKrNvLb3fV77dzUZ+cdgl3DiGpOJ35jICVHBGe21q0rKi0gghd1sJsdspopyaqvqWq03cfxUZi04ieoRxVSPKua871zCoAFDfOyxtUU3fA+Z5KRqeDHxM6K45vKbA30a/ZW2XyrgvtmyjrAD0cRIHBESSUZJNu9+8Faow2qTrdFGMXnkmM3sZTsJYcnU1dc2WyfcHs6NN34Xx/gKqoYXkXnKQM6f/x3Aqj96IO4brj5/KbHRESwYMq/ZXWvX3TaTM3+YQsSJB4g5NZc/Pj2fpKS+0WHrz+U2OzAN+J4xZq2IPAj8BPiZ90oicgtwC0DmkORAx6n6AO+ibFO4pNmyMFvgE6TPvviYr9Z/CQKnnXY248dM9Gu76ppKXnr1KWoraklKT+GUk08lMiyKTLHu/jDGUCulPrc98fi5nHj83A7HGhsdx03X3tnh7VS7Otx+pSb3/ksEqvcrLMnn1deeo9HRSGZ2FufP/w42W/v9GsYY3l3+Jrt37ELscP55l2ETG9kytmmdAtsBn9umJQ/gtpvubirK/ldVDgCOyTUsmrmStNh4n3etiQi333MK3NPJk+3B/EmScoFcY8xa9+NXsBqZZowxjwKPAkyemmVaLlf929Lc5dTUO5tGyo4553zeeuFVUssHUW+rJSI7jCEDswN2vI1bNrBmyWrSagdjjOHtoldJuiXZr56dx558iNjdKcRJLJV7q/nQsYzo7EiqdpYT1RhDccJhzjnlgoDFqoKqw+3XiKzR2n6po5p8zHRWZX1Izf5I7IRTnHKQa0+/NWD7dzY4eeKJf5F2OIswCSN332HeYjEXLri83W2Xf7KMnSt2kehIxWVcPPf040yfdQJfF39FUnU6NeGVDBg1gOgo3z0963PyWTk5jxumryAm8sgQAH1hzKPOaDdJMsbkicgBERlrjNkOzAO2BD801RfkVG1mW1le06CQR4qyM4i9MY4v1q8mOSmLuSed5de3JH9t+HotqTWDQKxvOQllaWzc8lW7SZKzwYmj1EGSuwgxmlhK8g/x/bt+wsrP3qektJh5065h2JAeVFmu2qTtlwqGiPAI7rj1XlZ8sozaulounHVRQAu3C4oPYy+NIkzck8G6kji433fvT0s5O3aQ6EgFwCY2IopjGTx4CEMWZvPt5vWMHzSGWTPm+Nx28Z692Bf0jZGyA8Xfu9u+BzznvjNkN3BD8EJSfcVRB4UEhmYOZ2jm8KAcOzkllUNSQDRW+UldeDXpae03YvYwO67wI3d0GGOQCAgLC+O0U+YHJVYVdNp+qYCLioxi/ukXBWXfCXGJNEY5oN563GgasUf69891VGw0TuNoutusIdpBUmIqg9IzGTuq7aSnr42UHSh+verGmK+B6cENRfV2nl4jD+/La8eN7N7bY885/SIe3vcAxYcqcImL9LFpTDl2RrvbiQinn3UOy99Zhr0myhrY8YJruiFiFSzafqneJj42kaknT2fDp19id0TSmFTPjRff4de2l15wFQ8X/g0pstNgb2Ds9LEMSm/7TrOmy2tzVxATGdFrJ6INFh1xWwWEd1F2xKEj17rnFCZ0S4JUV1fDq+88R31dPeeedQkDUgdxxy33UliShz0snJQk/6cIOW7yCRwzdhKlFcWkJQ/QKUKUUkG38vMP2LptI1Mnz2Dm1FM4fe4CZs44haqaSr+nCAGIjYnnrjt+SmFJHtFRsSTGJ7W57uI9ezkwufyoRdn9nSZJqstWFa4mv6LSd69RN8y1Vueo42e/uZshdSOxE86fv/0lP7jrPoYMzGZA6qBO7TM6KqbNwkallAqkfzzyByp3VZFsBvDu5qVs3vwNN15zJ/GxCcTHdrwRDQsLY+BReo/AuryWOT/HXX+kl9faokmS6rS2i7K716tLnmFI3UiSxOotGtcwjcef+j/+3//8pfuDUUqpDnC5XBzefZBxTAOBWMaybfOGoB3Pc3v/VecucY95dGbQjtUXaJKkOuVoRdkH8/bzzrI3MC4XJ8yazaRj2h91uivq6+qxc6Qr2kYYjQ2th9NXSqn2OBucvPb285QVl5IxaCDnz78Mmy2s/Q07yeVyYTPN9y8mcHf6gtVr5OGYXMMN01eQkZCgl9f8oEmS6jDvy2tZGxObTURbVlHCM088RkZxNoLwXu7bRFwdybij3FXRVeeedQl//uaXjGucho0wdsq3XHDOZUE7nlKq7/rv0w/B1giiSOTQzgKerXyMa68I3BhILdntduxJNspLSkiUFIpNPvEZcQHZd/OibO8xj/T2fn9pkqQ6xDMo5HNvLfBZlP3Vxi9JKE5rmkwxvTKLz9euDGqSNCB1EN+/6yf89+mHaGxo5IJzLmPm1JODdjylVN/kcrmoyKtgAEMBiHXFU5x7KOjH/dm9f+LfT/6FnXnfkJ09nLuuvrfL+9Si7MDQJEn5xfvy2sEvRloT0fqoJ0yIT8QZVg+ueAAc1JMU699UWeWVZTz5zL9xVDiwRQmXXnoNNpuNl19+Bledi4j4cK5beBtJCSmtts0aNKxZDZIxhpdee5LcXQcwYpg0fSpnnXZ+505eKdUviAjG7mr2XMvHbTHG8Mpbz7Bv214Qw/gpEznrtPN48vl/U3aoDOyG2aedzvHTWicrdrud7y1qPhD8pq1f8+47b4JTiE2L5YaFdxAVGeVXLIv37MU+f5sWZQeAJknKp5ZjHtU3NLY5KKS3qROOZ924NRTvPIw0huHKrGfh2T/y65jPvfgYcbvTsIvdSnJeegqAAYezEREaixp49oXHuPPW9r9lrfzsAwrXl5DuzAJg08cbGTF8DKOHj/MrFqVU/yMinDhnLmve/4TwiigcSTWcdfq5fm27Zt1KDq0taGpztn+ynQOH9sCWSNKN9dzH73zA6JHjSE5MPeq+autqWPrGa2QUD0NEqC+q46XXnuK6K49+2a+pKPs6LcoOFE2SVCste408Zvkx5pHNZuOW6+9i78FdOJ1OhmeNJtzP8T0cVQ5ixXpLighSE0YjDYhYk9+GiR1nldOvfe3dl0O8Ixnc8+bG1iSSs2e7JklKqaM6eeapjB87gfyiQwwekOWz59qXXTnbSXSkNLU5cbVJHDqcw3BzpBcnvCKavMKD7SZJJWVFhFdHN7V9kRJFVWnxUbfxnnNNi7IDR5Mk1UzLouxmvUZ+DtchIgwfMrrDx46Mi6TBOLFLOMYYTEwjNgRTbhARGkwDEXERfu1rxLDRfLPpGxKcVgNXHVvOqBGndzgmpVT/k5qUTmpSeoe2GT1qHF9u/IJEhzUUSVVMKYMHZ1JTWkWMsQqxnQm1fk2ynZKUhjOuDlNntX31ppaElOYNsKfXyCNzgTXmkdYfBZYmSapJe0XZwXbNVYt48umHqa+oR6KEKy+7wV2T9DSNtS4iEiK47qrb/NrXKbPmkVdwiP079oEYJs84jlHDtBdJKRUcs6bP4dChXPZu3w0Yjp02mdPnLuDpFx6h6NABTBicdvpZfvVMRUfFcN7Fl7BsyRsYJ8Slx/Odi29sWu4pyr5hesu71rT+KNDEGBPwnU6emmXeW/HDgO9XBYfPomylOmDhjxasN8b0ifnRRmSNNr+668FQh6H6qcV79pKf6myzvMFTlD1Pi7IDalDyPT7bMO1J6uc8c675U5StlFIqeDwJ0NUDt/HEulPZvbG2aRw6LcoODU2S+pmWd63V1Dt9z7mmlFIqqDy9Rk1SYWpKfKv1tCg7dDRJ6ke8i7IjDh2ZvDUU9UdKKdWfeSaYvTZzB5F2a1qSdZVT2PFZNl9VDGhqlxfv2Yt9wTYtyg4RTZL6CU9Rts9eo45PMq2UUqodLe9A83b1+UuJiQxnwZAzW/XwA6xJr2BNRQWZ83M4JztHi7JDRJOkPs7z4Xtn30gOfjGSuxNGw8j2twNrBOwde7eQPXg4A1IHAVBdU0lJeTHpKQP9Hv21LQ0NTvKLDhMbE3fUOz4CeUylVP/Q0NDA1pxvsdvDGTv8WGw2Gw2NDeQXHmq3zfFXUWkBDmc9A9MGt5oEt+kOtGkrKDtcT0ycnaQBR9qv+EirV8i7LvTgFwOYevY+psd/3WxfC4bM63KsqnM0SerDulKU/dkXH/PGqy+T0phBha2ECTMmMmrkeD5+9wPs1ZE4E2q57IprGJE9plOxlVeW8uhjDxJWHEljhJPxxx/DuWdf2mq9L75azcfLjhzz0iuuYWQnj6mU6h/qHHX8/Dc/JLEmDSMu6hIq+fFdv+Q/j/8ftqJwGsOdjJ4+lgsXXN6p/RtjeH7xYxzekoetMQzbQMMJ8xaybnB90zqZ83O4InYTz96cC3vSMNHVnHJ5FBf/eCDbyvKorK9jae5yAF7buYCqTS6uOtcqyh6XNFB7jXoIv5IkEdkLVAKNQENfudW3L/OuP+pMUfabb77MMY3TEREGmaF8/eWX7M/Zz6DS4QCYQsNbby3mru/9tFPxvfL6s6QczMQudqiHrZ9v4YTjC0hLGdC0jjGGFe+/x0CvY7795mLu+n7njqn6J22/+p9///cvZNeMJU4SASguz+eBh37D0OKx2CUc6mHnFzvIO/4gA9MzO7z/7bs3k/91EelOa2DI+j21rMh7kjvuSGqqLwL4+FeNxHxzjHXMSlj+9C7iTqvg7bxzmtWFxk2Amy97n/hILcruaTrSk3SqMaYoaJGoLllVuJrK+rqmx9W1Dp5fcm6ni7LtrvCmIfEBIkwUNqet6bGIgFNoaGzgo1XLKCktZub0kxg+1L8xlpz1DTRQRbHJI5xIImujqKgqa5YkNTQ2YHMeeYuKCKbB9/5q62pYt+l1GhrrmDh6AWkpAzt4xqqP0/arHykrK2UYg5oex5JAYW2ulay42WsjKKsspbi4iG83rydz8FBOOWFes3avLe9u30qYw84BcmikgQFkkuYoYXLasc16gJaWv9LsmGEVcbywajwLagceKcqev43TBm8nZ3UZttwomLqJ2adNCNArobrK1v4qqqdbmruc/IpK/rn6ZP6z+Ez+s/hMlj91EXcmjO70XWv2eDvVxio4dBoH9RE1RKZF4jQOAGqpJjEjiUcef4Cdy3ZT85mTxU8+z8atG/zaf0xCNIUcIotRJJDCobC9/7+9uw6Pq0ofOP49I5nYxF3r7l6gFCkF2uIORYo7xWFxh12WZZGFX2HRxV2Kt4UWq1FvU0klaZomjXvGzu+PiUyskSaZyPt5nn2WTO7ce+4kPXnvOe95DzGRdcv1m01mLOE+2HRlzTVDoxvmEVRUlvPT8gf5222/849H1rJx1+Nk5+5r030LIbq/w6ceRZraDrhHpNMNOxg6YgSFPu442aVd2CJKSU/bxXfvLaT8Dxfrv1jPm++93Oy5XyjaTvh5TtLMKUQQQwL9SFNbmXHEiAZTZJOOTqTIP7PmmllhhdwWehzj+0fzQtH2mqKQqZ9kckRQFndfmoErbxHvvL6onT8R0VYtHUnSwA9KKQ38n9Z6QQe2SbRQo0nZ1SvVDnHF2t23PMLTLzxMRsFOlEVxx3UP4e8XwIefvElJcTHhURFMmTKNT1/6gHAdCQqiihL5ddkSRg4d1+z5y4rK6MtQlFJYCSZOJ3Mgfz/Jfv3qHHf5JTfwwSdvUlKcS1hUOGedMrfBuTbv+J07bywmMd4CwPNPuLjq5o+ZefiNh/YhiJ5C+q9eZub0k8jLy2H9X2vQaKYfPYPjjz6ZHyK+InXbdgwmxUUnX8lH7/+PiLJYUGB1hpKdmkZ5RRmbM4qbXJV2/pyvSVmaT75jKH4qAIBBeiwp6w80OPaICwJYn1XMumUVFBWaiZh5Eq/Z94G9dnXbiXEzeK7sRU442r0v5dlzLNz55FZAkrW7gpYGSUdorTOUUlHAj0qpFK31Us8DlFJXAlcCxCeEtnMzRX2HkpS99I+f2LBmDVppjj76eIYPGd3gGF9ff+697ckGr8+be13Nf2fsT6OxTW22bNvAokXforRixOgxTD/8uAbHaKAsOoXo/kUUFYF9RwSKhsPc/n4BzJt77UHvRylwOD3OrateFMKtVf1XeGjrNjYVnSs7J5NPPnsXp81FXFI8p84+F4Oh4aTIuafN49zT5tV57fhjToZjPF+p14Mp+GjbVjZtXEicK4egRMUZ9/XF4lebZ2S1BBEQnsDvPuswDN2Bry9kbwtHUbcIZHVeaMqQc4lJCOeW478A1nqcx726TWtNw93BpP/qKloUJGmtM6r+P1sp9RkwCVha75gFwAJw793Wzu0UHg4lKXvtxpWs+nYl4eUxaK35Ouczwq+KICaq9cmLcdGJ+Pe1ULwtH4vTn/zg/Rw+/ii++vATogqSUEqxev8qrNYgxo2aXOe9if0tXHpRITOm++FwaM66NL3Vu25XGz7wCJ5+4UcevqsIa6CBe58wMW7o2W06l+h5Wtt/9UscKP1XF2Wz23jjjZeJ3J+EQRnITMvmS8OHnDr73Dadb/yUKSzLXkZERTRF5kLy+wRSvPY9Bq7vj1nFU7G2nCU6n+ffPqPO+3aNymHCGV/xf0+HopTi9Xf3s7ZC16xWq/b5z2dCYC6nHvVxTVBUn1KKoKj+fP7dDo6cbOTrRQ6SBoxp0/2Ilqv/s2pKs0GSUioAMGiti6v+eybw8KE1T7TVwr2LDikpe+36VYSVRYOq+sdZGM6GzWvaFCQppbhq3nx+/v1HcnL2c8LES9i2cwvWgrCa5MewsmjWbVjNuFGTKa8ow2AwYPHxJdCaz4zpfgCYTIqLz/Vnw7oM+icNbnU7fMwWZk59kOdf/ganq4Jxg2YSGhzR6vOInkf6r54lOzcTc4EvBuUeOQp0BbMvbW+bz7cvsi8RD+7GZ806Jo6yMn52FC/MdmJW7qkvX+VHVqo7p8hmc1BSUkloqD+b1u/m+ssCavq5eedbueChXF787Zw6q9YGTN/G+VFbmgyQql12zSyWLt7Iy5+lMWrsQE6YKpuMd5T6G7rX+qbR41sykhQNfFb1y2AC3tVaf3fILRUt4hntVjqcdafX2pB3FBYWzj5DNn7aPZde4VNGZFTbV4It+3MxK5f9jtHuQ8be/zHtyGOp9CnH3+4eeq5QZUSHhPPKG/+mIL0QrVz0HdGfkCh/CoucBAe5h7E3bTUdUnE3X4svU8ec3ub3ix5L+q8eJCgwBIevDarKETm1A5Ov+aDvOVjV65Bxa8j7xyp88kMoXGXniOQEAq21iz601hj9NR+9vYa3/7UeVW7BP8HGFXdOYPN2zahh7uPS9trZljmYWwaMhqCqLUcmpXJY2LYWV8o+8pgRsqqtA9SvZl7pcPLq8ukkbgiuk6ayvIn3Nxskaa13Ag2TVkSHqp+UXS0611yzK3RbzJpxGi+n/YucjAJcBhexQ2MZPXR8m85VUJTH8sW/E1PormNkL7KxIeQvosZGkLE5HYM2YokzYTbHYN8CUa5EAPauzCD57GlcfWs2Rx5WQlqGgfLi6fQdJbkgon1J/9WzBAUGM3baRFYvW4HJ7oMrxMYVZzS9QMNzY1h/S8NgasEVW4lMGYtBGSEbXnhwOTc8NJnn71sB+f6oyFJu/tvh/HP+nwTvdRexdey388XbKcSNDGHr89kEWk0s/DGU6467viYg89xyRHhPU6NGrZmFkYrbXZDnD7ZBUvYhrlozmcxcd8Xt5BXmYDKaCLa2Pck+vygXc6ml5muz8qGstIRzzpzHF37/weEs47jD5vHdj1/g77TW5CL6VQZSkJ/H7CMfIyf/AP2iAwjo23Dn69awO+xs2LoUp6uCof2PJND/0M4nhOiaZkyfxWGTplNSVkx4SCRGY21Sdf1Ro/jZqQfdGPbdymx3gFStxJdxU5I4/ZosVv6RwjHHjyUm1goFtVNoJmVmb1YuMx/rx5vLz6V4gw2fw4NZUL4H2+gy5k1YQnRQ6zei/WvlLranpDF8dD9GjEps1Xt7u/p1AqtV71daf9SoNX9HJUjqYg61UnZLKKXanCTtKSYiHltIGfqARilFqaGIiOhIPvj2Kh67x5+gQCN3P3ob0bFnk+K7lbBKd6HI4qA8hg06CYPBSFT4oRd9dDjsfLvsIW6+Npdgq+LxZxcxZcS97bI3kxCi6/H3C8DfL6DOazV7pdUbNTrYdFdMPz/S1pThq/xxaSfmqAqefOAdpo3N56k7/fnsm8V8sC4JQ6wdva2qnzMWYu2jeeWjmQSOMHD95XVnb4eEJLZ6S5F331hEiGEjc6YY+GbJWnZun8zJZ0xp1Tl6o+oZl+o83ca0taByNQmSupBDTcrubH6+/pxzwcV8+cVH4ICohGjMAcU8eqM/k8a6k7LfejGCM+b9xLBjjmfrhk1og+boaceREJfcbu3YuP03bro6h8nj3JtH/ufvDm64432OO+zgpQOEEN3PC0XbG309/kT3qNHoiJYHKY8+P5t7Wcj+ndn4Bikef3YOrzz9Eped736IvOXqUC68YQezHh/DV0+sRVca0f0isIy7CVtwAacP/AWrJeCQthLRWpO5czPz/+Yelb/uYrj98TUgQVKjDpqn25hDnX05tLeL9lB/3vR6z6KQXVyfhP7ceN1dNV9/+sMz7M92cu8TORgMisMn+aKUieOPOYnjjzmp1eevtFXw65rXMRjyMBoSOWLsBRSXFrF8w2uYzRUE+Y8CfAkMqK0r4mtRaG1vj9sTQnQR9fN9GtPSJOlqfn5m/vnqqTVfOxwOjEZ46vk8yso1YSEGTCb4Zv3pGGd7XGfaXiZY17boegs/X87WjVtxaRPnzzuRmLhg3nl9EQcyMzGa/Zl39SxM9W7HZJQqFPV1VJ5ucyRI8oKWZtt3RyMHn8gnX6/g9X9HYzQqHnkml/iIE9t8vh//+Dv/eOgA8bFG1mzYx7MvFWB3prPgmUoCAwx8/u33/LRoOk89588LT9oI8Ddw2wMuRg48tf1uSgjhFZ6jRoeS79NSJpOJrTuc3H1DMEkJPmzaWsn7X7m4YcLAmiDt/DlfE+Dnw+yE5itif/PFCvxsy3nyNh/Ky13c8ug7RMUlMuuwPUy+wIcDOUXc98g7hEXE8udfmUwea+LHpXaConpvCYCm8ouaHDXq4AEFCZI62Y7ijazLyWDxvsFtzrZvjta62U0adVWJ15Zs5tgSLpcLg8FAQdFO7r05DKPRfd57bw5j3nXZbTqn3WGnT3Iu8bHuxMqxI83YHDs4bbaDwAB3HZNTTzTx7Y9bmTb2fm65531c2sbIAScTG9V+03lCiFot6V8O9fx/7cx2r0o7qn5+Ue1UWnu2o7r/crlcTJgSQFKCu38ZPtjC5FHWOqvkooOCWhykbd24jSdudZ/Lz8/AqcdVsnBJGpPHul+LjDAxKLmcWRecz+Lv/+LzJZkMGdGXy66Z2C731d0s3LuoJtnas95UtaleSEORIKkT3fnIO6z+tJjisgCiwgzceNnxtf/I2yEaTtn5G/tyPyU4yEVWdiQzptyKj9lS5xitNYv+fIngkO3Y7QqDnsqU0We1+ZqL/niNMvtiwsMU21LNDO93AbvSNIOq4r+sA05MpratNDMajOTlG6jeOkBrjcPlw640V80xlZUuKitNWAOCmTH1qjbfhxDi4NL37ebDD9/CVaYxWY1cNPeqQ97C5aNdu8kKd0+N20tLCEx5lwGxZewtMDArKJLooPgGAclvSzfz8zdLsAa6KC63Mv/u8wgItDR2+mZt25rFk/e+Qr8k2JflInpaIrai2v5Fa01qoQ3feWtane8E4NImSstcBPi7i1+m71NU2o24XBqDwd33Z+VoAgIsnHnetDbdQ3dTfybFU6P7kHryQhqKBEmd5LmFn7D+VUVs8WhigZK8AhYv+5Zjj5zVLucvLi2k1P4hrz7r/oe3d98+Hnjivxw7pW7y8qqNXzNv7mamTTEBmgVv/cKuvSPomzC01dfMPJCBn3Ux/30iouqadq64+TNyPujL/uzdBAW6+OCzMGYedkGb7slgMBDsP4sHnvyKKRMr+XaRH6MHXMTuXWv418srGdjfwcdfBDBuyCVtOr8QouU++OBNIjISUUrhzHPy7vv/5YZr7mr+jU14oWg751/snroCWPTcel561oI10IzWmivuSePa48+s856iwnL+/Okn/v2gD2Ak60AJz73wJTfd1bYHvX88+BrvvRSGNdCA1pozrkgjLXQ285/6neMnOfjhDzujT0qmf3Jqq/OdAC68Yha3PfY2c46pICMTMkv6cvbFY7j9sS847ggn61MM9Bs2Hould/wprt5z9NXl0xsdKYrONXe5lJPe8ZPxouqk7O+X+OJfFFRTKyjAEUxa+u52u86BvGyOmGwD3E9UCXEmjKbcBsflFe3giMm1dUFmTNc8++LWNgVJO9O2cuyxtU9wCXFmrNYiTjjidtLTdpPusDNrWl9M9bMSW2H04OPIKxzL8j+yGd4nHmtAMP0SR5GVcxyrVxRy5Lg++Fr82nx+IUTznE4nuqx2et6ojDhKnc28q646+UVxZVVTabW5PdutqVgD3aM4SimG9fWhoKCcsLDapf77MgoYN6J2pCc60oTLUdLq+6kezQgNtmMNNNRcc9xwM2X9jMT260taSQBX3DiJiIjAVp+/WlR0EHc+cgVbNmUyYpAfpw50l0FJTL6c7VuzmHFmCAmJPXdD+PqjRtVTaU2Wt+mCC5YkSOpAnlGztbCQooCl+Je5/8EV++Qzqu+odrtWVHgMS3714dRZ7nn6HbvsaFfDX8Ko0GH8+HMqM492/+i//kERGzGsTdcc2Gco3y2u5LRZgSil2LnHRkmJFaUUSXF9D+l+PIUFRxBWby+26Ig4oiPi2u0aQoimGY1GDAEKV74LgzLg0A7M1pY9/NRPeK5Wfz+zSqc/efmFhIUacTo123cbCAmp+wCUkBjK5+8YOPskdz+3Z68dkyWqVffiuZo4a99K8vKdhIW6p8BWra/kjPNyOKVP61fiNsXf34fxE+vmSIaE+DNxcvv1kV2RZ80/z1GjW4IGQv+DvLGLkSCpHR00ap4ymiWOcv5avgJciqRByRw5dUa7XTvQ30pE0EVceuMHBAe5yMtL4Ngp8xocN2boTD75IoOvftiM3a4I8DmW8cMHtemaUeGxpOw+ibMu+4rwMMWuPb6cfcLTh3orQogu6IILLuf9D97AWebEx2rmovOvrvN9z/wiT7Wr0g6e8Hz1zWfw0D8+INBSSmGJkfMvPx2DwVDnmECrLzNPmcVND/2INcBJpSuMG+5oeUDj+Yc7cUMwZ0x7irOvuIM+fZ1kH7Az8tRhnNLnuBafr7c7WH5Rd6r5dzCqepVTexo9NlF/v+Tmdj9vV9ZU1Hx9UO9dyukpPXM7W3Z9BdrI+OHnER7Suqc/0bVdeNvs1VrrCd5uR3volzhQPzz/395uRrfy0a7dmE5M4dj4bVhMxgbft1p8O2zZfktVr5x658vZNaukPNs9OqLpnKOy0kreWPA95aWljJk0lGNnjuncxndBTe2L5qk7/f1rqg+TkaR24PmPr7tHzR0hIyuVA8XP8drzBiorNdfe8TiThj9IsDXE200TQrRB/VGj6gTsrriha/Vox6riMWz7PRko54/IIv4oKiL+xFRmNZOU7XS6eOK+N3nwJhux0Sb+9+kvfPlJRa/bNqSpmZKeUN/vYCRIOgTduVJ2Z9q0YyGv/NuAwaDw81PcPd/GfxYsY9Ko9pv3F0J0jheKthN/YipXJKfWvGa1tLx2UGeqzgt199FRjD1hDxOsa+sc01xRyF07czhsbBmx0e5tj+aebuHup1OA3hMk1f0cO6a+X1clQVIbef7SHHTfmG7A6XSyeMWLWK0ZFBcbGZh4Hn0SRjY47kBeJqs2vURYaAV5BcEcOf4mAvyaX/lhNPpRVOwiPMw9DJ+brzGZApp5lxDCW6qTreurXZVmblHF6c7y0/drWbXsT5SpgiI/X6aeP6BmJd6n22dTstHFuSd+xer3d7LdaKSs3MCMk45m0tTm8zH9/X3IL6otWulyaWy2DrsVr/LcF82TZ37taZ5BUS8YFJAgqQ0884+aXMrYjfy65i1uu2Erwwe765Ncf9d/iQx7hAD/ukUgl298ljeer8DHR5GXv5/5f3uOE474W7PnnzLqXK6/cxs3X1tMSQkseDOaWUce2VG3I4Q4BB/t2o1pdgoXNZlf1HHbgrRF6vZs9m7+hWfutQC+fLvUxn2PB+Az6AgAAkfAFWf9wF8fZXLLyS5GDzOhtYt7/v4d/QbEEhF58GK3cfEh5Fck8cGXexjcT/HuFzDn7MZ3nO+umtoXzVN3W5XWXiRIaoH6e8lUZ+13118al8tJZnYGJpOJqPBYUBkMH+xezquUYubRlaxfs4/+SYNr3mOzV9K/Tzk+Pu7VJmGhRkJCClt0vQB/K8dNfZiPP12FUfkw+8gJGI0NO18hROern18Uf2Jqs4nM3rY/s5DcnFL6DYhk04bdzDq69nsnHunDhx/mUZBrrknKtloCCCzzYfQw930qpTh6qoPt27KaDZIArrv1NFb+uZO1+/KZe+0AYmKDO+rWOlSr90UTEiQ1xzMpu1pXrAraUja7jW9/fZRZx+VQWqr44bf+GAzB7M/eT0yU+9fhz1VmkiLqrj4zm3xI22tGawdKKSorXeQX+Lb4ur4WP8YM6R1l94XoLqpXd9UfNeqKCdjV3n9rMeU5G+ifpHnndSfBE2MpXeFkxBD39zdscbARX/qcmFInKXuT/wHS9xWQGOd+IFy9wcjx54S3+LoTp/TriNvpNF1xX7TuoMVBklLKCKwCMrTWPWussRH1hx/rLGXsxvOwv699n6ceyKNPoruoW5+kHSxZci633JtPclIuuXkGwq2nEGytWwVWKcXQPpdzyfX/JT7Ozp40fyaPvMYbtyBEq/W2/stTU/lFULsqrS1bbnjDgexicjNX8dBN7k54zgwXZz1azq/F41i9cQMB/pq/csK56A4bgf6pdfKmLrl6Nv945F0iggopKFaMnDiF+ISeW+26/qhRV9wXrTtozUjSTcAWesFH2ZOSskvLilmx8RNcLhsjB86h0pZHUnztE+PgAfD9j/nMmX4/DocdYx9TTcJjys4/Sdv/F+FBfRk3/ASS4oaSFPc0DoedEX3cT2MOh50VGz6ntDyHwX2OIimu9dubCNEJek3/5clz93p/S8MK2V11VVo1rTULv1hJ6ra9RA+1kONfSZ+E2vvw9TVgKDNz9X1OXK6huJyaSWYDVosvAyqH8dKzX2E0Gjjj/OmEhwdy7+MXY7M5MJuNNf3c78u2sPKPLST2ieHUM6c0KGDZHS3cu6gmLaRad54B8aYWBUlKqQRgNvAYcEuHtsjLelJSdnlFGUtWPcwzj5QTGGDg9gc3EhFyEs8t2MH8q024XJoXXjXRL2EyQJ091las/5Rx4xZz311G/li1mdf/t4PjDruhznEul4tvlj3O/Xdk0z/ZyNP/2cy23RcyqM+kzr9ZIZrQm/qv+qNG8bNT27R7fVfx0r++4MjRaVx4jZlPfyjj9UXDiMvy5dwTXfj7G/jhVxsR/RoWq8xIz+e/z7/FY7ebsNngnkd3cesDlxIS4o+PT+2fvc8++g3filU8eI0Pqzfs5ZnH07nt3nO8caut1lS16ybzi3rV40H7aelI0rPAHUDzGW7dVPUvXE8ppQ6wecev3HVTCTFR7k1o//2Y5qqbU/DNOocr5v+M3aEYnHQGkWExDd5r0yu56Bz3r8eRU0188+N27A47Zo9AKiMrjVkzsxg2yD1197f5mivm/yBBkuhqnqWH91/gzi9KH13I5ZN/qZNf1F2m0upzuVzYS9M55nB3/3LO7AB++CmdcRPv55RrnyMwoYDIeF9OuGhYg9Gwzz9ayuN3mGs2r739Shvffr2Kc+bWXVW7a8tmnrzD3T9OGefD4t/3U1JcQaC15fmW3tDUDg/VonPNnCWjRu2i2SBJKTUHyNZar1ZKHXWQ464ErgS6zTyvZ02IBtF3F4q6bfZKlq5agK9fNiWl/kwddU2LqlUrZcTmsZWSw6HRGKi0FWM0OnC5NJX2xnfQrqx08egzudgdYLdrCouDUfWOMRgM2Gx1X3W6EKLLaEv/FR4a2TmNa6MXirY3+nr8idWjRl0vKFr4+XJS1m/E6YSpR01h2tHNt29n6WaKK8uA2pVkPkYTrxekEBFZQLRfGVYdyRHhhzV4r8Fg4LNvitm+047TCQP7mTFYGk6jOZ11v3Y4wGCo39N5X1MrrJt8mO9Cf7+6u5aMJB0OnKyUmgX4AkFKqf9pred6HqS1XgAsAPfebe3e0nbUVE2Irhp9/7zyRR66ayfJiSaKSwq56pZ/MGf6Y82+b8SgI/jH8z9x/+2FBAUq7n/STGjQAIYN/4pLzzehtea+J94iKyeW6IiEOu/NydXcf5uV5EQfiktcnHtlGdPG1M1piItKZOHSBIYMTGdAXwP/elkxIOHU9rx1IQ5Vq/uvfokDu2T/VZNfdFTj+UXQNVel/fFrCq78P3mqasTmyRd/IiomlMFD45p8T3Ve6Cb68PYnWRw/3cCHX2pWVg5nSMECXn88BLM5gL82FPDGgu+47JpZdd7ff1Ai+Ts388hdEQDc+2Qe005KaHCdUZPG8dxrv3LOSUZWr3fiMCXhH2Bpx7s/dE2tSpMdHjpHs0GS1vpu4G6Aqiex2+p3MN3JQZOyu+gvnNWaTXKi+0dlDTQwoF8JlbYKLD4HHxL2MVs44fAHeOH/vsbprGDisFms2PAW885zD8Urpbj0AhfPvri6QZCUlGAguWoFnDXQwITR/lRUVuBrqb2mUopZ0+7giy+XUFpxgAFJhxMTkdSety7EIenO/Vf9/CLb6DIun/wLEQFdq5hjc/78dSOP3uBT8/WFpxv5YMmWOkFSY/k1n26fTXm4i2dWbORf36ViH9aPU87azJBcC2aze7Rn3EgfPvo+q8E1N29I5eHrajv0ay8J4r1FqYwd36fOccfPHs+GdZG8+W0KSX1iuO7WhjsNdIam8ougXl2+Lvo3qifrVXWSumtSdmGRGaezHKPR3TFk7DcwOKFlTzt/rvsfEVHrCfCH39akY/VPJmX7DoYOcv/o16zXhFjjG72mw1GOyVR1zUwjg+IbXtNgMDJ22Iy23poQohFNrUrrjvlFMXERbNqWyaih7vtYv8VJXEJtHbbqB9dXl0+vM1ISOAKOG/Qe6ek7GT7FyJqtG0kyT2DnnoyaY0pKXTh1bQBW95oZjB7mU3vNxManUUeOTmLkaO893DV1/9VkVZp3tSpI0lr/DPzcIS3pYJ5LIrtbUvbogZcz78bnmDzOxqYUIwkR59QsXz2YbbvXcvT0NZx7mrtz2rItg2dfSubhv8cwYVwWpWWKPWkjOXbyhIbXHHQ5l95Ue834Fl5TiK6qK/Zf9atdV6teldbdRo0ac/YFR/LkA+n0i82j0gaFtgRuvGMEUHcqqfrBtbrA5bHx21jx/B7++1gwSimcTs3Nj+5k5PiJ3PP3VSTFa/7a5MONd53c4JpnnT+Npx5Mp+8fudjskF8Rz013emeUqL76o0b1778BGT3yqh4/kpRasol1ORldNim7JWKjkokMf4qCwjwmDQ/Gx9yyUaSCojQmjKlNrxgy0EilLYs5R91DYXE+gUEmBkxu/MOIjUwmMuwpCopad00hRPOqp9Kqizk2pjuOGjXGaDTwt0fmciC7GKPJQHh4YIO80Ootnl4o2l6zLcqI0Fgyw1JqHs6MRoXV38EpZx5Gacl4CgrKOPmSYIzGhgnZRqOBux++oM41u4KmVqV11y2ueoMeFyQ1FaUnbgjukknZLWUymogIi2r+QA9JcWN5+8MfeehO99fvfeokPmoCSilCgsJads3Q1l1TCNE4z1VpttFlzJuwhOigrl3Msb0opYiKdj+QNfbgWh00XnDyQvwt5poE9HcL/6S4xI410EB2joMKZwgAAYEWAgIP/uDmec3OdLD8ouotrrrbbEZv1qOCJM+kbM9Va731FzImIpGCnXO5/KavMfuAxTSeSSNk/zQhOlP9AKCa1dL9p9Jaq7G80Or6Tu6gse5ncv0d5/HgC59hMVbgVCFcd+up3mt8C3gGgJ5/gzzJqrTupccESfX/8Z3mGRT14l/IIf0mM6Tf5Dqvpez8g305i3E4FcP6nk1CzAAvtU6InqOp/KLaUaPeGRQdrL5Pdf5RU1XBIyICufPBC+u8diC7mDcXfI0BGwnJyZw1d3qn50vWv69qnjMXkmzdM/SIIKk7J2V3tp3p6wkMeYdX7zO5EyHvew5fyz1EhMpnJkRbVefSXBS/rU6162pDQrrntiCHorn6Pi8UbW/1Brs2m4Pnnnybf94DgQEGflq2nvffcnHexcd05K3U0di+aJ7kb1DP0q2DpJ6QlA3u8vtKqU55GtqRtoTXXnB34kaj4sYr7Dz/8p9EhJ6Cy+XqEZs7CtHR6o8a1c+l6W08+476Wzzd4hEUgfv/bXFlzDuq9TlZu3bmMH2SncCqgo8zpvmw6Ok9gHszXK11u/dhB92ZoTHd8G+QaFq3DZI8a0t016Rsl8vFT3++SFhYKja7wuCawpTRHbu5oo85hIxMJ4nx7h996m6N2RjMwl8eIy4um4JCI1EhpzB8wPQObYcQ3ZXnCEi13phfBLB08QaW/fALwVYXecVWTps/lu0V2QdNyq7Wls8sNNSf3/fVfl1Z6cJmN/LRO7+wK2U9fhawEc38u89sdNVba3S3nRlEx+iWQVJjtTW6o5Ubv+KqS7YydaIJ0Lzy9lJ2pY+kb+KwDrvm1DHncNv92zn9pDxKShVLlvXDx7SJpx7MJCHOBLi48+FPKCwe3aL94YTo6eqsSmvjCEhPVFhYzqqlS/j3g+5gMTunlJuf/5mto65pUVJ2W0RFB2EOGcYzr2xmQLKL75eZOeK4cRSlLeLpe9yjS+s2Z/Hem0uYe+mxLTpnU/lFTY4ayUhRr9KtgqSmamt0VwXFO5kyoTZ/4dgj4dkXt3dokGTx8WXO9IdI3bYbs9HMiUck8svqR6sCJLfDJtlZvyZLgiTRq8mqtIPbt7eAccNr67BFRZgozAlsUBSyqaTstpp76XGkp40nN6eE2x+M5qfv13G4Rz3c0cPMvPtNdovO1VTeVLWpkl/U63X5IKnV88HdSFToML5fksoJx7h/DJ9/o4iP6vjkTqPRSJ/42uhS6Vi27shi8AD3preLfvFhRL+mN58UoifLdla682Z68aq05iw98BsHTCWsXVXBWXN8UEqRusdBjO7D+P7RbUrKbo3EpDASk9y13oaNSOb77/5gxBD395atsNNnQGKT7fYcNarzwN3YCJGMGvV6XTZIaqreRE+K7McMncnnX2XyzQ+bsdnB6nc8Y4d2/nL8w8ddwhP/ep7g4H0UFxvpG3cugf7WTm+HEF1BRGghV5z1A9A7V6UdTJ2k7G/mYGMws6/9nqgAjausD6GRc3gmcB3zjlqCv8WH2Qktm/I6FAMGRZO6/XBueXQlvj7gG5zMVTc2DGobW5Um+6KJ5nTJIKl+UnZPnQ9WSpEcN5lte3LQ2siwPuO80g6T0cTMw272yrWF6GqCfYI65Y97d9PYauI/MsyscK2jtLSMsqAE9LhcLp/8S6fvOXf87AkcP3tCbUpGxuI636+ehchY0d9dgqBaD/p7IjpGlwuSekpSdkukZ26nqOJFXnveSGWl5to7n2Di0AclF0gI0aV4FuutXk28cvs+1mY/y1ePO4iKMPH2Z4v4q2QtoyMmemX0ral90arJqJFoiy4TJDVaW6MbJ2W3xOad3/Da80aUUvj6Ku68wcZLr/zGpFGzvd00IYQAah9cPfcc+2jXbsrG/M6lI0qIinBvHnvhaQFsfppOC5Dq5xc1uy+ajBqJNugSQVKjRSF7AaPBn4JCF+Fh7hVu2bkufMxdY7dqIUTvVj8vtH6l7IoCJ/nLawvgOp2aSlvnbA/S1KiR7Ism2ptXgqT6uyT3lum1+qaOPpfr7tzG9ZcXU1IKb7wby+wjj/B2s4QQvVD9frn+auLVqVn8Mnp/TVL22QOP5aVfHbzz6W4G9YP3vzJw6vkzOqw9nupX8xaio3R6kOSZlO35BNAb97sJ8Lcyc+ojLPxmDUaDhTnTR2MwNNz3SQghOlJzq4mri0LWT8q+5uZTWbt6D9uyC7j0pn5ERrXPqtjqvxP121NN8otEZ+nUIMlziLTBqFEvfRrwtfgyctBUbzdDCNFL1U/K9txK5I/IIv4oKiL+xNSqopANax6NGZ8MJLfp2p518Dx5zi6cJvlFwouaDZKUUr7AUsBSdfzHWusHWnOR3piULYTwvvbov3qyppKyTbNTuCh+GxZT7ch2e27e29S+aJ7k74ToCloyklQJHKO1LlFKmYFflVLfaq3/bMkFemtSthCiSzik/qunOlhSdvyJqcxKTm33Stk9efcE0XM1GyRprTVQUvWluep/uul31GqstoYQQnSWQ+m/eqrGHlzrJmWb27WYZm/YPUH0XC3KSVJKGYHVwADgRa318oMdX2granQYVwghOltr+6+epnpqy2rxbVAFOyvcXrNP3aFWyq5ft6hadX5RT949QfRcLQqStNZOYIxSKgT4TCk1Qmu90fMYpdSVwJUAPsGhvPLRzNoVCPKPQQjhJa3tv+ITQju/kR3EczXxJeMWs7ByEbMTjqV/4HAspkWQnFpz7KFMrzW2L5oneVAW3VWrVrdprQuUUkuAE4CN9b63AFgA0C9xoJaiXkKIrqSl/dfosYk9Zjou3i+EnNJS+iZkogx1Cz0eypRaY/lFDfZF8yR/C0Q31ZLVbZGAvaqD8QOOA57q8JYJIcQh6u39V/XIkMWUitVy6JvO1l+pXE3qFomeqiUjSbHAm1Xz+gbgQ6311x3bLCGEaBe9vv/qHzi81dNoTeUXNbkqTUaKRA/VktVt64GxndAWIYRoV9J/tV71opv6+6JVk1VpojfpEhvcCiGE8I76o0bN7osmo0aiF5EgSQgheinPUi3VJL9IiFoSJAkhRA9WnWxdX5Or0mSkSIgaEiQJIUQP5bnrQWP5RTJqJMTBSZAkhBDdnGfdIk/N7nogo0ZCHJQESUII0U01tS9aNdn1QIhDI0GSEEJ0E/Xzi5rcF62aBEdCHBIJkoQQohuo3oetuphjtekuP6lbJEQHkSBJCCG6oOpRo0qHEwCn08Xrq45m+roYCYqE6CQSJAkhRBdTPWr06vLpJG4IrnldRo2E6FwSJAkhRBfiuS2IjBoJ4V0SJAkhRBdQPb32zZ7+ZKzo794WpOGCNSFEJzJ4uwFCCNHbVS/l/2ZPfxzfDqlbAVsI4TUykiSEEF7kWRVbpteE6FokSBJCiE5UnZRdzWF38u7Xc5quii2E8BoJkoQQopN4JmV7rlqTqthCdE0SJAkhRAerTsouLbfx7tdz3EnZfb3dKiFEcyRIEkKIDuS5v5rj2yGNbx8ihOiSml3dppRKVEotUUptVkptUkrd1BkNE0KIQ+Xt/mvpgd/4KyudV5dPJ2nhWM6SAEmIbqUlI0kO4Fat9V9KKSuwWin1o9Z6cwe3TQghDpXX+q+FexfVTK9JUrYQ3VOzQZLWOhPIrPrvYqXUFiAekCBJCNGldWb/tXDvopp91gAWZQwiY0V/d80jScoWoltqVU6SUqoPMBZY3iGtEUKIDtJR/Vf9pOzoXHPN9yT/SIjurcVBklIqEPgEmK+1Lmrk+1cCVwKEh0a2WwO7q917U/nyy4/ADtFJsZx1ylwMBqO3myVEr9Sa/is+IbTF5200KbsHjBrZ7JW8++F/KcopwuRn5JyzLpF+XfRKLdqWRCllxt3BvKO1/rSxY7TWC7TWE7TWE4ICghs7pNcoryjjg3feJGhnFMF7o8lZns+X337s7WYJ0Su1tv8Kjwho0Xl7clL2Ox/8l8o1muC90fhuC+X1N/6D1trbzRKi0zU7kqSUUsB/gS1a62c6vkndX2b2XnwK/HF/dBDoDCZzb4aXWyVE79NR/Vd1Uch3vpzdI5Oyi3IKCVExABiVEYoNlJWXEOBv9XLLhOhcLZluOxy4ENiglFpb9drftNbfdFirurmwkAgc/jaoGtS3axt+gb7ebZQQvVO79l+e02s9OSnb6GvApV0YlHuywWmx4+fr7+VWCdH5WrK67VdAdUJbeoyQoDAmHj2Z5Ut/x+QwYwiDK0+f7+1mCdHrHGr/VZ2U7blq7dXl00ncENyjk7LPPvNi3nzrZQwlJhwWGyfMPllyKkWvJBW3O8hRRxzP4VOOoaKyjED/oJqpt47kcNh484P/IzcvhxlHz2LciMktfu++/ems+Ot3QkPDmDb5GOkQRa9XPym72nSXX4+bXqsvKiKGW+ffT0lZMQF+gRiNndMf/Pz7dyxf+RvJyf04++SLMRhalDaLzV7JL7//SEVFOYdNPorwEEkyF+1DgqQOZDaZMZs6J4nd5XJx76M3E1vSl1Bi+fStD8iZnc3M6Sc1+95tqZv57L0PCSuIYa8xg82b13HVvFta3EEJ0dMsPfAbWUXFNRvR9qSk7JYyGAwEBXbeIpw333+JtNXpxOgkMtIzeXTrndx/5z+afZ/dYeeFl/+Ob1oQJm3mlb+e59IrriEqIrYTWi16Ovkr2EOs3byS4JJwQlQ4PsrCANcIfl70Q4veu3jxd0QXJOGjLFhdoZTttJGRldbBLRaiayq0FZFVVOxOyl4X0ysDJG9IWb+ZJAbioyxEqFhsuU4Kiwuafd/aTSsxpfkRQBAW5Ud0bhLf/PB5h7dX9A4yktQOyspL+eCTNykvLiM8OpIzTrmAHbtTeOvt/0M5DUTFR3PDlXc1OjLzv49fZfO6DWjl4rgTZnP01OP57qcv2JWaitFs4PRTzycyvPmhfad20jD1oqVTfKrBV7LcV/RWhTZf3vlydo9Nyq5Pa80PS74mdds2DGbFaSefR2hwOE+/8BCleSUoi+KGa+4kupGRmR27U3jtjf+gnIrwmHDmX3Mvu/em8t13X4BWjBozjiMmH93CltTthwwotHY1336XBq083q5Aui/RTiRIagevvP4c/jtDCVDh5O0q4o3S/7B102aGOSZgUEZyd+znhVf/zo1X3lXnfV99/xG7l+9iMGPQWrPos+/IyEijYE0RQfZwXNrJ6/n/4aYb78bic/DVcWOHTuIjv7exlofiTyC7VQpTj5jWovZPm3Y0CzO/IKIojgpDOeYkAwkxSW3+PIToznShrztA6iUWLfuWlEUphNgicGkXb+S+RLmzlIjcROLVAOwVNp7+10M89ch/6jzolVWU8fLL/2KYYyJGZSRv1wGeev5+DKUGovP6oJRiRcaf+Pv5M25U8/mRfQf3Y+/GncTqZIrIgxAXIUFhzb5v9PDxLE34iYq9vpgwcyB0Lxcee/khfSZCVJPptjay2SvRWmOzV2LLs+OjLAD460B270klyhGPQbmTHcNVDFl7M93vs9moqCgDYOWq30nQ/QFQSpGg+5OycRNB9nCc2onCgDnXj33Z6QCUlBXhctU+WVVfH8BkMvHwff/COaiMtKgUZp55IifNPKtF9zJ8yBjOuuR8fCZD3+OTuOayWyVxW/RaYRYfbzehwzkcdpxO94q91K1bCbFFAGBQBnxy/KkotGFV7nwks/LB3xZEbsEBXC4XJWXu2iabtq8lwhHrrqMEhKlIDmTuJzDPHdi4tJPw8hjWrlsJQEVFGTabrU47bHZbTZ925cXzGX3caNIiUwgYbeHBu//Zonux+Phy3dW3E31MOH5TTVxy5dXEy0OeaCcyktRKB3KzePPt/0OXgLY4OPm0s3GZHTXf11rja/GjVJXUvObUDjDB088/RF56LgaMqCBNgDWQ8vxS/AkEoJQiDBZFSukaLPhix4bTaedAThYvvvhP/J0BlKtSTphzMonxffn80/dRFUZUIFx84VVsT02hIr+SALuVNWtWMn701BbVNqmoLGfht59SfqCCDFM61sDgVgyRCyG6C601b73/f2TtzEIrzYARA/Hx88Gh7ZiUe885p58dl92BduiaVbmVqowNW9by7Vef4ecKoNxYyuyTTqOsTj/nBJOBDMcujBgxYMSubYz0G80Dj9+Cs0DjwkVQrJWbr7uXV994jrLsclwmJ1OOnMbIYWPZumUzAfYg8vbnkrJjI8MGjWrRfS1e+h1b121BuQx8VfIRl869vtNW5ImeTXVE7km/xIH64fn/bvfzdgXPv/QkgakRGJQRrTXZ0bs58qgZLP1hMeYyC7agCs469wI+//oDCncX4acDyDFnMuGwKez6ZTdxqg8ARTofR/8y9mXsJawiCodyYAspo6SkmGH2Cfgo9/TaVr2WCp8yRtom11xzk3El4eERxGT3RSmFSzsp6JOFvcBOdGEyADZdgWW8gYvOu6rZe3r7/QWUr3JiqbpmVnAaV910I8HWlu9hJXq3C2+bvVprPcHb7WgPPbn/WrzsWzYv3ILV6f63nWfJ4rAzjmDpzz9hyrHg8LEzcMJgYmJj+fSD9wl3RlNsKGDA2EFsWree4Y6JVX2OixTLauISE8lNzcVfW8k1ZTJw1GCy/zpAonJPVxbrAraa1jLAMYIQ5R6t2q/TsceVEZmZhC9+AGRZ0zGHK4J3uUemtNZkRe3m9tseaHZUe1f6dj5d8AERFfEAlBlKSDgmhpOOb9lIuhDQdB8mI0keyivKWLdpNWYfE6OHTcRkbPjxOMtdNdNoSilUpYmxoycxYvhY8gpyiAqPwdfix/xr7uH9L18jI3MvV55wEz8uWUgIETXnsRJCal46d9z8IP/7/FV8fYKZd8793HvvjTUBEkAokeyz765zTT+XP7qi9inPoIzYSmz4lPrVvM9H+VJalIfD6WDd5pXYbQ5GDx/f6MhSSWEJ/qo2IDKXWMjJz5YgSYhuRGvNlh0byMvPYfjg0YQGhzc4Jn3vHgIdITVJzv4VVnJysrn5hnvYn7MPf78AwoKrpt6MRn7+9XsmDZrKCdNP5eE1d3r0OQaMTjM3XHknHyx8k73pu7nkuGv58psPCCWq5npWFYJ2aIKpbUsIEWzPX0sig2teM5dYKLXkE+bRzxkrzJSWl5Kbf4D0vbvp33cQcdGJDe5pb0YavuWBtffkCiQ7K+uQPkshqkmQVKW4tIiXXv4nfpnBuAxOfuv7M9deeXuDQKlSlWPTlfgoCy7tpMiVj8XHF4uPL4Ee+xo9+MStWPPD8COY1176DyMmj2Ib2+jPcACyySA0Mpyn/vEAyY7BVGDn/m3zcRgdFNsLsapg99MUezH7mbCVVV/TRZm5lKCgIFxF7m0DbLqSoAgrRRShc9zBU6kqJiIqkv+88g/0ThMGl5GlsT9xzdW3Yg2ou2QnKjaarNRcArTVnecUUk5MZHzHf+hCiHbzzoevkr0uF4vNl1/DfuacuRfRN2lAnWP69x/E72t+JVq7g41sQwZH9z8ak8lMQkxyzXGffv0ea35ZRYxOZOOujWxL2UyJLsSpnRiVexqtjBIe+fud+OZYCSSU/73yCn1G9SU9PY2BjAQgR2di9jWSVbGXGKquqfaSlNSH0h1FBLiC0FpjDysnPCKSygMVWJQvLu3CFejg9z9/ZuMvG/AtC+BP628cMWs6UydOr3NPA/oN5s+g3wgsdudQFZnzGdl/eId9zqJ3kcTtKl9/+zFhmXEEqVBCdATsMrNq7R8NjjNqE2lsI1VvYgcb3YGLy1nnmHVbVuFT4E+USsCqQhjiGsdfK1dgxMR2vYFUvZEKytiVup0hjnEEqVDCVBTx5f1xOp0cIINUvYntrMcXP046+Sx2BW5iq3EtKb6rufzy67n4wqsp6X+AvNh9uIaVc/EF13D62edRkJRJfmwm1nG+JCQkw04fQnSE+xqZcXz97ccN7unU2ecSNN6P/NhMCpIyOe3scwjwC+ywz1oI0b4O5GWxf8t+wu3RBKpgYvL68O13nzc4bn9mBhWucnbojezQG9AuTWZWw823V/z+GwMYQaAKJl71JS+9AKM2kcpGUvUmdpOCdjlRuUZiVCKBKpjBrrFs3bgZM2a26/Wk6k2UUITVPxTfASa2mtaQYlpN/Jg4rr/sTkImBJIf5+5zTjrjDObNvRY1wkZ+bCbF/bKZO/cK1q5cTUR5HIEqmKiSRP5YtqxBW2OjEjjq5Bnkxe8jPy6ThMNimX7YzI74mEUvJCNJVWw2G/tJJ09nAxChY2tWoXkyKTMD1Miar7MN6Thdrjrz5qUVJZi1pWb4VymF0gYiiSVAuUdxXNpFtisDo8ePwIwPBhT91LCa1/brdMxGE48/+HyDttxwTd2SAgP7DWX+jffUfP3zb99jcplq2mHCjM1ed3UJgNFoZO45VzT52QghujabrRK73cE6/QcK8COAOFdCg+MqbZUk0r9m+r5cl1JRUd7gOEO952eTNuHEh0FqdM1ra/kNUyP9XDgxWFUI4J4CTHVt4Kar/9bgGuefdVmD16645Kaa/3a5nBhcdduhdOO13yaOOYyJYw5r9HtCHAoZSaoSEBRIJRWMYiojmUIe2UTHxDU4LnlgX4rMeYA7QTAkIRizyVznmHHDp3DAkoFNVwCQzg6GDB/GLmMKTu1Aa80OtYGhw4azjXVorXFqBzvYyKAhQ0lnB+BOvj5gyWDM8JbvweZp/JipFEfl1lwzK2QPR02TJywheprQkHD229IYxnhGqakEEUp+WU6D446aNpOs0LSqPsdJQWQ2UyY0rKcWER/BAb0PgFJdhD2gHHOIiWJdAEC+PkBYZDj7VRqV2h1k7dU7CY4MZo9xK46afm4jM2fMbtM9GQxGIpIjKTW4Sw4Um/NJ6N8wJ0mIjiRBUpX161bTn+EopTAoA/0YxrLffmpw3Kmzz2Xk7BE4R5WScEwMl869vsExvj6+3HvnE+yP2c32oHUMmz6CKy6az1XXzmdPeAqpIRuYffapBFqCCCGC9fzBRlYQTRJDB45m2PQRbA9ax/6Y3dxzx+P4NlNIsinWgCCuvOomTBNc6DEVnHPxhSQn9GvTuYQQXdeWHeuJ1cmYlbvGU7RKpCy/4Uh4fEwSF8y7FD22AuN4B5ddcV2jCzRuue5+wsYGsyNoPSXJeTzwt3/y4F1/x96/lB1B67AMN3HJ3GtIMPdhK+tYp3/HgY2IwBhuuOkO0qv6uZmnn8i0KTPafF8Xn3cVyTMScYwsZegJQznzlAvbfC4h2kKm26r4+FqwY8MHd1HISsoJC45qcJxSiqMOP56jDj/+oOcLCQrjvtueqvPagOTBPORRIG1vxh7CiCRGuZ+OCgw5BFqtHDPtBE6fc96h3hIAocHhXHRu82UAhBDdV7A1lEpVO23m0i5chsa39EiM68O8C65t9pyXXtDwAfDma+6t+e+8ghyUxcAo+5Saa1YYC0iK69fiQpDNMRiMzD7u9HY5lxBtISNJVa697Da2mv8iV+8nW+9lf8Aezpx9QYde86QTzqIwMZs8lU2ucT/mgYoJo6Z06DWFED3PgOQh+MSa2KtTydPZbDGu5qyz5nboNcNCIug7pi8HfDPI5wDZkXs4+SSpTSR6FhlJqhIWEsFD9z3DL8t/wGLxZfqkmZhMHfvx+Pn6c+O1d7N99xbMJjMDkoc0ugmuEEI05+5bHmPl+t/IzMrg/LEXNbohbXs785S5pE/aTUFhHn2TBtYpgyJETyBBkocA/0BmHd25Q7s+Zh+GDxzd/IFCCNGMiaMO7/RrJsb2ITG2T6dfV4jO0OywhVLqNaVUtlJqY2c0SAgh2pP0YUKItmrJ3M4bwAkd3A4hhOgobyB9mBCiDZoNkrTWS4G8TmiLEEK0O+nDhBBtJVnCQgghhBCNaLcgSSl1pVJqlVJqVVFpYXudVgghOpz0X0KIxrRbkKS1XqC1nqC1nhAUENxepxVCiA4n/ZcQojEy3SaEEEII0YiWlAB4D/gDGKyU2quUarh1sxBCdFHShwkh2qrZYpJa6/bZREwIIbxA+jAhRFvJdJsQQgghRCMkSBJCCCGEaIQESUIIIYQQjZAgSQghhBCiERIkCSGEEEI0QoIkIYQQQohGSJAkhBBCCNEICZKEEEIIIRohQZIQQgghRCMkSBJCCCGEaIQESUIIIYQQjZAgSQghhBCiERIkCSGEEEI0QoIkIYQQQohGKK11+59UqQPAnnY/8cFFADmdfM32JO33vu5+D95sf7LWOtJL125X0n+1SXdvP3T/e5D2H5pG+7AOCZK8QSm1Sms9wdvtaCtpv/d193vo7u3vzbr7z667tx+6/z1I+zuGTLcJIYQQQjRCgiQhhBBCiEb0pCBpgbcbcIik/d7X3e+hu7e/N+vuP7vu3n7o/vcg7e8APSYnSQghhBCiPfWkkSQhhBBCiHbTI4IkpZRRKbVGKfW1t9vSFkqp3UqpDUqptUqpVd5uT2sppUKUUh8rpVKUUluUUlO93aaWUkoNrvrcq/9XpJSa7+12tYZS6mal1Cal1Eal1HtKKV9vt0m0nPRf3tWd+y+QPqyj9YjpNqXULcAEIEhrPcfb7WktpdRuYILWulvWuFBKvQks01q/qpTyAfy11gVeblarKaWMQAYwWWvd2XVy2kQpFQ/8CgzTWpcrpT4EvtFav+HdlomWkv7Lu3pK/wXSh3WEbj+SpJRKAGYDr3q7Lb2RUioYOBL4L4DW2tZdOxjgWCC1u3QuHkyAn1LKBPgD+7zcHtFC0n95Vw/rv0D6sHbX7YMk4FngDsDl5XYcCg38oJRarZS60tuNaaW+wAHg9aopg1eVUgHeblQbnQu85+1GtIbWOgN4GkgDMoFCrfUP3m2VaIVnkf7Lm3pS/wXSh7W7bh0kKaXmANla69XebsshOkJrPQ44EbhOKXWktxvUCiZgHPCS1nosUArc5d0mtV7VMPvJwEfebktrKKVCgVNwd/ZxQIBSaq53WyVaQvqvLqFH9F8gfVhH6dZBEnA4cHLVnPj7wDFKqf95t0mtVxVJo7XOBj4DJnm3Ra2yF9irtV5e9fXHuDud7uZE4C+tdZa3G9JKM4BdWusDWms78ClwmJfbJFpG+i/v6yn9F0gf1iG6dZCktb5ba52gte6De5hxsda6y0SgLaGUClBKWav/G5gJbPRuq1pOa70fSFdKDa566Vhgsxeb1Fbn0c2GqaukAVOUUv5KKYX789/i5TaJFpD+y/t6UP8F0od1CJO3GyCIBj5z/25gAt7VWn/n3Sa12g3AO1XDvTuBeV5uT6tUde7HAVd5uy2tpbVerpT6GPgLcABr6KKVa0WPJP1XFyB9WMfpESUAhBBCCCHaW7eebhNCCCGE6CgSJAkhhBBCNEKCJCGEEEKIRkiQJIQQQgjRCAmShBBCCCEaIUGSEEIIIUQjJEgSQgghhGiEBElCCCGEEI34f4IBMt6CmJEiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from mlinsights.mlmodel import DecisionTreeLogisticRegression\n", - "\n", - "dtlr = DecisionTreeLogisticRegression(\n", - " estimator=LogisticRegression(solver='liblinear'),\n", - " min_samples_leaf=10, min_samples_split=10, max_depth=1,\n", - " fit_improve_algo='none')\n", - "dtlr.fit(X_train, y_train)\n", - "dtlr2 = DecisionTreeLogisticRegression(\n", - " estimator=LogisticRegression(solver='liblinear'),\n", - " min_samples_leaf=4, min_samples_split=4, max_depth=10,\n", - " fit_improve_algo='intercept_sort_always')\n", - "dtlr2.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(2, 2, figsize=(10, 8))\n", - "plot_classifier_decision_zone(\n", - " dtlr, X_train, y_train, ax=ax[0, 0],\n", - " title=\"DecisionTreeLogisticRegression\\ndepth=%d - train\" % dtlr.tree_depth_)\n", - "plot_classifier_decision_zone(\n", - " dtlr2, X_train, y_train, ax=ax[0, 1],\n", - " title=\"DecisionTreeLogisticRegression\\ndepth=%d - train\" % dtlr2.tree_depth_)\n", - "plot_classifier_decision_zone(\n", - " dtlr, X_test, y_test, ax=ax[1, 0],\n", - " title=\"DecisionTreeLogisticRegression\\ndepth=%d - test\" % dtlr.tree_depth_)\n", - "plot_classifier_decision_zone(\n", - " dtlr2, X_test, y_test, ax=ax[1, 1],\n", - " title=\"DecisionTreeLogisticRegression\\ndepth=%d - test\" % dtlr2.tree_depth_)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
namescore
0LogisticRegression0.644444
1DecisionTreeClassifier0.933333
2DecisionTreeLogisticRegression - depth=10.700000
3DecisionTreeLogisticRegression - depth=50.855556
\n", - "
" - ], - "text/plain": [ - " name score\n", - "0 LogisticRegression 0.644444\n", - "1 DecisionTreeClassifier 0.933333\n", - "2 DecisionTreeLogisticRegression - depth=1 0.700000\n", - "3 DecisionTreeLogisticRegression - depth=5 0.855556" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pandas import DataFrame\n", - "\n", - "rows = []\n", - "for model in [lr, dt, dtlr, dtlr2]:\n", - " val = (\" - depth=%d\" % model.tree_depth_) if hasattr(model, 'tree_depth_') else \"\"\n", - " obs = dict(name=\"%s%s\" % (model.__class__.__name__, val),\n", - " score=model.score(X_test, y_test))\n", - " rows.append(obs)\n", - "\n", - "DataFrame(rows)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A first example" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAEXCAYAAACat4H7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgVx9eA37kedyEhQgju7lBcW6RQ2lIopUCpu7e/ustXd29paQuluEtxd5dAhLjb9TvfHxsiJECUQHvf57kP3Luzs7Ob3bNnzhwRUkqcOHHixIkTJ06c1A2q+h6AEydOnDhx4sTJvxmnsuXEiRMnTpw4cVKHOJUtJ06cOHHixImTOsSpbDlx4sSJEydOnNQhTmXLiRMnTpw4ceKkDnEqW06cOHHixIkTJ3WIU9mqJ4QQy4QQt1eiXb4QIupKjMkJCCHOCiEG1VHf64UQ0+uibydO6hqnzLo6ccqsawOnsnUJim5ioxAiTwiRLYTYIoSYJYSo8XWTUg6XUv5YiXbuUsqYmhxLCHG4SADmCyHsQghTqe/P1KRvJxUjhHhRCPFLHfTrL4TYLITIKLontwohetX2cZxcmzhllpPqUlcyq6jvr4QQx4UQDiHE1Aq2PyyESBZC5AohvhNC6OtiHPWJU9m6PNdLKT2ACOBN4Eng2/odUtWQUrYqEoDuwEbgvvPfpZSvn28nhNDU3yidVJJ8YBoQAPgAbwGLnH87J6VwyiwnVxv7gXuAPRduEEIMBZ4CBqLcs1HAS1d0dFcAp7JVSaSUOVLKhcBE4HYhRGsAIYReCPGuECJOCJEihPhCCOFyfj8hxGghxL4ijf20EGJY0e/F5lkhRLQQ4h8hRI4QIl0I8Xup/aUQIrro/15CiJ+EEGlCiFghxHPnZ6xCiKlCiE1FY8kSQpwRQgy/1DkJISKL+r9TCBEHrC36fZoQ4mhRPyuEEBGl9mkuhFglhMgsmqncVN1rWjST+lMI8UvRTPygEKKpEOJpIUSqECJeCDGkVPs7isaVJ4SIEULcVWrbk0KI7eeFrxDi7qLZseEyY5hcdC0zhBDPXrBNJYR4qujvliGE+EMI4XvBtZsphEgUQiQJIR4r2jYMeAaYWDQT31+q24giy1SeEGKlEMK/KtdMSmmSUh6XUjoAAdhRlC7fqvTj5N+PU2YV7+OUWdSfzAKQUn4qpVwDmCrYfDvwrZTysJQyC3gFmFrVY1z1SCmdn4t8gLPAoAp+jwPuLvr//wELUV52HsAi4I2ibV2BHGAwimIbCjQv2rYemF70/9+AZ4vaGIDepY4lgeii//8ELCg6TiRwArizaNtUwArMANTA3UAiIC4Ye+njRhb1/xPgBrgAo4FTQAtAAzwHbClq7wbEA3cUbesApAMtq3l9X0R5+IYW9fcTcKboWmiLzuVMqfYjgcYoSkY/oBDoWLRNBWwo6rMJkAV0uMzxW6JYivoCeuB9wHb+bw48CGwDGhZt/xL47YJr91vRdWkDpJXa90Xglwqu/WmgadG1Xg+8WWp79iU+T13Q1wHAUjSGr+v7WXF+ro4PTpnllFlXqcwqar8JmHrBb/uBiaW++xeN06++n6dafTbrewBX84eLC65tRQ+XAAqAxqW29Tj/sBXd6P93kb7XUyJAfgK+AhpW0E4C0SjCyFJaSAB3AeuL/j8VOFVqm2vRvsGXOO75hy+q1PZlFAnDou+qIgERgTJD3nhBf18CL1Tz+r4IrCr1/XoUQaIu+u5RND7vi+z/N/Bgqe+RQCZwFHi6Esf/HzCn1He3omt8XvgcBQaW2t4A5eWgKXXtmpfa/jbKDO38uVUkuJ4r9f0eYHkN7k8DcAtwe30/K87P1fFxyiynzLrKZVZFytZpYFip79qicUZe6eenLj/OZcTqEYrygASgCIjdQnFGzQaWF/0OEIZyI12OJ1CE4I4iM/K0Ctr4o9yEsaV+iy0ay3mSz/9HSllY9F/3Shw/vtT/I4APS51PZtHYQou2dTu/rWj7JCD4wg6FEH1EiUPr4UscO6XU/41AupTSXup78TkIIYYLIbYVLQdkAyNQrsv5cz4LrEMRKp9W4rxDSp+7lLIAyCi1PQKYX+pcj6Is2wWValP62sUW9Xkpkkv9v5DK/X0qRCpLir8BTwkh2lW3Hyf/CZwyyymzzlNvMusi5AOepb6f/39eLR+nXnEqW1VECNEF5SHehGKONgKtpJTeRR8vqTh1gnJTN75cn1LKZCnlDCllCMrM77PzPg+lSEeZoUSU+i0cOFezM1KGUOr/8cBdpc7HW0rpIqXcUrTtnwu2uUsp767gnDbKEofWVjUdoFCiU+YB7wJBUkpvYCmKUD3fZiTKLH0N8E4luk1Cebmc398V8Cu1PR4YfsH5GqSUpa95WKn/h6Msg0DZa1opSgn6ij6XisDSojiVOnFSDqfMcsqsq1BmleYwUHqy2A5IkVJmXKT9NYlT2aokQghPIcQoYA6KqfWgVJyUvwb+TwgRWNQuVCjRFaBEAN0hhBhY5LgYKoRoXkHfE4QQDYu+ZqHc9I7SbYpmTn8ArwkhPITiAPoIUNuhul8ATwshWhWNzUsIMaFo22KgaZGDprbo00UI0aKWx1AROhQfhDTAJhRH2tKOqP7AN8B0FIfL64UQIy7T51xglBCitxBCB7xM2WfiC5TrHVF0jAAhxOgL+nheCOFadL3uAM47CqcAkaIKIfelBH1Fn9eLxtD9/HiFEC5CiCdRZq3bK3scJ/8NnDILcMqsepdZRePQCcXxXwBaIYSh1HF+Au4UQrQUQnij+Nz9UNkxXCs4la3Ls0gIkYcyY3gWxSHxjlLbn0RxztwmhMgFVgPNAKSUO4ra/h+K0+k/lJ3lnacLsF0IkY/iuPqgrDhPzf0o/hYxKLPUX4HvanqCpZFSzkdJJzCn6HwOAcOLtuWhCIubUWZDyUVt6zwnStGxH0AR3lnArSjX6jxfAQuklEuLZkR3At8IIfzKdVbS52HgXpTrmFTUb0KpJh8WHWNl0T2wDeh2QTf/oPz91wDvSilXFv3+Z9G/GUKIcuHONUCPstyQgWIhGAGMlFImXnIvJ/8lnDLLKbOuJpkFsBLFotoT5byNKE7+SCmXo/iOrUMJ5IgFXqjl49c7QsoqWw6dOPnPI4SIRIlC0kopbfU8HCdOnDi5JE6ZVb84LVtOnDhx4sSJEyd1iFPZcvKvRggx6SLOm5eKNnLixImTesEps/6dOJcRnThx4sSJEydO6hCnZcuJEydOnDhx4qQOcSpbTpw4ceLEiRMndYhT2XJSrwghbhVKUdUCIcTfoqho6kXaXi+EOFTkv7BFCNHyIu3WCKXgqqbuRu7EiZP/OrUlv4TCq0KIc0Ip7r3+fN4wJ/8OnMqWk3qjSJh8CUxGScxZCHx2kbZNgNnALMAbpXjuwgsVKiHEJJSM6k6cOHFSZ9Sy/JoATAP6oBQI3wr8XIfDd3KFcSpbTgAQQjwlhDgthMgTQhwRQowttW2GEOJoqW0di34PE0L8JYRIE0JkCCE+qeJhJwGLpJQbpJT5wPPAOCGERwVth6IUlN1UlCPmLZQSJP1KjdMLJRneE1UchxMnTq5h/gXyqxGwSUoZU5R5/xegQsu9k2sTp7Ll5DynUWZVXsBLwC9CiAZCKXvxIjAFpUDoDSgZhtUopTBiUYqohqKUBaGolET2JT69i47ZCth/fgBSytMoFeybXmSM4oL/C6B1qd9eBz6nbOFUJ06c/Pu51uXXHKCxEKKpEEKLUr5nefUvh5OrDadPixMApJR/lvr6uxDiaaArSt2ut6WUO4u2nQIQQvRAqRb/eKlsxJuK+tqEYiq/HO4oJUFKkwNUNDNcDbwlhLgO2IJSckQHuBaNpzPQC3gQaFjB/k6cOPmXcq3LL5TSO5uA44AdpdTSgEqMwck1gtOy5QQAIcQUIcS+87M3lBmXP0qF+NMV7BIGxNaw7EM+ymyzNJ5A3oUNpZTHUGZ7n6AIJn/gCJAglIKmn6HUZ3OWoXDi5D/GtSy/ipr8D6XeZBhgQLHOrRVCuF7Yl5NrE6ey5QShVIj/GrgP8JNSeqMUcxUoM6zGFewWD4RXFPEnhOhzkQzI5z99ipoeBtqV2i8KpUDsiYrGKaWcK6VsLaX0Q/HNigR2ogi4zigz2uSi30BRxPpU1JcTJ07+HfwL5BdAe+B3KWWClNImpfwB8MHpt/WvwalsOQFwAySQBiCEuIMSX4JvgMeEEJ2KwpOji4TbDpQZ2ptCCDchhEEI0QtASrlRSul+ic/Gor5nA9cXCTc34GXgLylluZlh0bg6CSHUQogAlMrxC4tmjDkoSwLtiz4jinbpBGyvtavkxImTq5FrXX6BonRNEEIECSFUQojJKFHVp2r3UjmpL5zKlhOklEeA91DCjVOANsDmom1/Aq8Bv6KYx/8GfIsiZq4HooE4FHP4xCoe9zBKKPRsIBXF1+Ge89uFEMuEEM+U2uVDIBvFryELmFHUj5RSJp//UCR0gRQppaUqY3LixMm1xbUuv4p4C8XZfl9Rm4eBG6WU2VUZk5OrF2dtRCdOnDhx4sSJkzrEadly4sSJEydOnDipQy6rbAkhvhNCpAohDl1kuxBCfCSEOCWEOHA+YZwTJ06cOHHixImTylm2fgCGXWL7cKBJ0WcmSlJJJ06cOHHixIkTJ1RC2ZJSbgAyL9FkNPBTkZPyNsBbCNGgtgboxIkTJ06cOHFyLVMbGeRDUXKWnCeh6LekCxsKIWaiWL/Q6wydQgKdib6vJaw2KyaTEY1Gi4vBpcI2NrudtLQU1DY1Egl6CPQPRogKm/9rkRKycjKxWa2o1Cp8vf1QqWruImm2mDFbzOh1evQ6fS2M9MpyJuFUupQyoL7HUR1Kyy9XN12n6CaB9TyiymO2G8mzGzDZtGBVobKAm1aLscCEm/6/UbfdISWFxgKQElcXtwqfRwmkZ6TiMDoQqLCrbfj6+V2Tz1pNKTQWkJ+fD4CnpxcGvaHGfdoddgqNhaiEClcXt2vuvVAT+XVFy/VIKb9CyS9CVFgT+fJDH9bp8YymQnYd+hur3Ujr6OEE+oXU6fH+zRw/fZi/5/yBR7YvZp2RoMYB3DrhznLtfprzJdFJ7VAX5QrMtqbTd3A/OrTuWq3jWm1W9h7cjs1up2Obrhj0FSt5Vxs/z/mKvCQTbtIDszRhDsnh/llP1ajPtRuXsWf1blwLPDG65dKhRycG9BleSyOuGzKy09h/cDfe3j50aN2VKY+Piq3vMVWX0vKrXYcwuWLdw3V+zFXL93Hs0Flat2tM/8Ftqt3P6fzDrMtuxomUIBxJBlwToEdoKAe2nqRT46BaHPHVicVq4dMv3yEw0YBKqih0yebemY/h5lq2ss655DjmfPoz/kJ5V0i7xOyXy113PlTtY5+OPU7CuViaNG5JSNC1YWA4dvowi36ZRxtLGFJKkq2xTLtzFoH+1V+0yshO4+uvPiIkKxqb2oraX3LP9EdRqdS1OPLaxW63s2v/FozGQjq17849L9xabflVG8rWOZQSA+dpWPRbvWK2mFi17SXeeTEfL08VT72yHykfJ8g/7PI7F2GxWtiw60tcXFPJz3ehe9u78fLwqcNRX72sXrWUoKwIhBC4WT05dySe7NxMvD19y7SzWW2oKFGIVA41ZrO5WsdUBOTbqGNdEFKweeM67pn1GG4u7jU6lytBRmI6PlIRTHphICc9FavNilZTfSvCnm07CSgMAwFuhR7s2bbzqla24s6d4dcfv8cz0x+LxsTuFtvqe0jXFN98uoT2kad5drqGZeti+fHrJG6fMaRKfSxdsIOj+w9SaC3A0sYK/wHFqiK27vwHbawrHniDAH2iC0tXzWfC6Cll2lltFoS9xOIlhABH9dMjLVr+Jyc2n8TF6MYOz21cd8MgurTvWe3+rhQ7dm4iIK8hCOUaeGcHsOfADoYNGF3tPhctnUtgagRqoQYHZJ1K5dDxfbRt0akWR1572O12Pvv6HWSMBo1Dy7bNm2rUX22kflgITCmKSuwO5Egpyy0hXmmOnt7BI/fkEBaqxdNDzYevCfafmFelPtbv/JQXnjzOp2/n8ek7yWzc804djfbiSCkpKMzD4XBc8WOXwVEkeIpQOdRYbdZyza7rO5hkr1iklNikFWODbNq1qt7DtHnHOrSxbnjhi6fwwftcEMtW/V3dM6gWVpuVvxb/ync/f8K23Rsvv0MRUiMpncPOobWjUddwbnPhLeC4um3wy5b/TXBmJG7CAx97ALknC+p7SNcMUkry0s8wYqAOg0HF2OF6MhOrlkx8+5bj2DO38tYTVj5+Vkdo/Hpyz155w6LJbMRird/cwmazCbUsef7UaLBYyo+pYYNIaGDDLE1IKUlzO0enLt2rdUy73c6RPYfwNzXATXgSmBfG5n/WV/MMqs+u/Vv57udP+HPBz1islZv4enl5YxKFxd8tahO+Pn41GofdZkdVSuVQOdSYKzme+uDgsd3YY1R4ST/l75caUaP+KpP64TeUzLzNhBAJQog7hRCzhBCziposBWJQygp8TakMuvWJEAK7veS72eygoMBcpYfewyOViDDlAXV3U9E0ugCT2VjbQ70oiSkJvPP+i3z+7ge8896LHD91+Iod+0Jat29PpksyUkqMFKBtoMbPu/zSdVREUybefhuygwlDNxV3z3oUF0P1aqmazSY0ssQSpEaLpQpWsr0Ht/P7/B/ZvX9rtY4vpeTL794n7Z8s1Afc2DZ/C6vWLa7UviNHjSXFP5ZMTQopXnH07T+wjLJaHUKiQslXZwOQr8kmJOrqXhaXFyrodmdav6pQOt+0lJK8fBuZmZVXWLduPMTtE3TF32eM11B4ZH9tDvGSOBx2vv7xIz5++x0+ePt15i2cfcWOfSHdOvchJyAVu7ThkA5SfeLo37d8kL1GreGemY/h09sN2cHE0Ikj6dy+R7WOaXfYEY6y97yowgQpLSOFeYtms2TVPExmU7XGsGHLajbMW4/6gBuZm/L4/Ov3KjVxHz5oLJaoPDJ0yaQbknBpoaVzu5pZ5Pr1HUSKV1zxRNzUII/WTdvXqM+6xGq1onKULHGqamibuuxUW0p5y2W2S+DeGo2iBhQU5rFx7yd4eeSSk+tOj3b34uXhTYvG3fjgi6V4P5FLRpaV//syn349HWw79ATBvpNoGtHlsn3n5Gqx2QrRaJQHJCFRRXSDK+co+cefPxGQFI5KqJC5kgV//8kTj7W6YseXUha/LPv1HIy7mwcHDu4mwMuH64fNvKjDd6PwJjSa1KTGx+/RpS/7dv4furRwBIJUnzim9J1ZqX0XLZ/LqU2n8DT5sWnXRmLjzjDu+lurdPycvCzMSVY8UJRFH3Mgxw8fYXD/UZfdt2lUS+578HFS0hLx8wnEy8O7SseuiFvGT2NN4FLi4s7SLLwpA/uOuPxO9Ui37r1Yc24F/vmhWDBBqA3O1veorj5+/nYV6YlnsFigR/+e9B3QGiEEviFNmLv4GH26qnn4hQzatnRlwQ/fUOAI495Hx15WeW8QGsDBY+fo0FpRuPYcsaOugc9NVVmxdiHWI5JAh+K6Ebs9jiPN99OyabvL7Fk7lJZfXh7ezLjrAZYsn4/DYWHygOkX9Z8y6F2YMGZKhduqgk6rwyfMh8K8PFwdHuToMohsXlFN7PIkpSbw4zdf4p/ZECuZfHLkLR645yl02qq9fw7t34efMRgAAy4UJGeTlplMkP+lJ2o6rY777nqChOQ41Co1IUFhNZ4sRkc2Z8KUW/ln02pcdDruHlH9ifiVoHXzDqwLWYlrojsatKR4xSpVeKvJFXWQL02B2cru0yk17ufkqY/58aMcfLzV5BcUMOmeN4lurDiuBofcwzNvrsdi2sDCnwNQq5WbZdI9P5NrvfzNo3MZyy2zfqBHZwvb9kgccjB7z6Rdcp/apCDXio9QFBohBJYCBztPJtaaQ+HFHGMTUxL47bfvcBRK1O4qJt06nSD/BnRq151O7apnUq8OXh4+TJ95H0tXzMdhd3DbgDvLCciCwjz2HdqFwcVAh1Zdi6/NiYNH8TcrPgfelgBOHzmJHCWrJDC0Gi0OVcksUEqJVFXef8PNxZ2o8KaVbn85hBAM6jey1vqrazoUBTRs37UJXzcPpgybxoxnb6zvYV1VLF2wg+bBRxk5SVGIXv9kDWERQTRqHMDUmUPZtD6MR97YyFP3+9C2pdJmyZp4Nqw9TL+BrS/VNeNv6c3bL8ezfls62bkWjqXrCJvqjslqohADWxPOkaIyQi3I4Yo4evoMvnZvKHrkXMzunEuMr3Nly+Gw88Psz8lIyECqJV179eS6XkPw8w5gys2Vm6zVFndOvpelq+aTmppCh+gO9OkxsMx2KSWHju0hOyebNi07FPvArli1kKDMSFRChRYd1gQz+w7tomuHXlUbgKqs0ulQ29FqdZfZqWhXlZrwkEZVO95liIpoSlRE7cnEusTF4Mrddz3K4uVzsZjNTOwzmUMf7qp2f/WmbDl0agrCa67VBpsK8PFWXrDubipCI4zkh7kU3VyuBEWNwXLsAGp1iX9RSJgky1+L5jI3nYZovCzPs3Tz+wzpmUNBwVp2nY6nYec7aqzln8dus6HWVPxnEIGuWDLN6IQeu7Rh91FjjPSosG1VSUnIgNMpFSpcc+Z8j29CKCqhwpHp4Lc53/PQfc9U0Evd4+8TyJSb76pwW1ZOBl999SFuKT7YVTa2Rm+s1egWN1cPIts0In5nPHqzKwXe2YwaNK5W+v6v0KJpG1o0rX4U3b+dowdjmPpYiRwaMxg2742hUWNlib73dS3ZseUwrZunF7dp21zFvI2Xn/Sp1SqeevFWZn+/FnvmQQa2sfPPNz8SPm06SQ2iidHnIrV6CqzVl8Pnl6QqsnL7d2hLSuxOAq2KZaXAI4sWTW+o9rEqy6IV8zAfchDoCAdg5+ptNGvaigYBoXV+7AtRqdSMGjq+wm1SSr6f/Rm5h/LR2vRs8fuHSVPvpGGDCC7MiSChWGmtCkOGjmJe+m+4Z/lg1hkJaRmCr5d/1Tv6j+Lh5sktN06rlb7qUdmCwlqIgs3eo8NuN6FWC6SUJOVo8Agre1em7PclITGBhiFa8vIdHDrnRkAXHZXx3kr6ZzGfPJ9L82jFd2ju0uN8d2of/i071GjchZkZGDd8RtNQI7EpGhytb8UzsnmZNm0emcL+L3/BkZEOHhrazpxGoTdYjYUc/X0B1vxCQvt2I7htyQxXSkl2QjwOmw2fsHBUF1Hk8rUaYs4YK1S47IUOVEUWNZVQYS+01ehc64qFS/8kICVMSTMhIetUGgeP76Vdi840b9eKExtO4GnyJc+QRZPWzaqlIE8YM5kTbY+QkppE86atCfD9b0ZzOakb/AL9OHYqnebRynO684AkomVwmTbderfip7mrmHqTsoQ0+28HvUc2L9dXRWRkFJCfeohXn1ByJE0a7eDxD+bQdOYM3FxzOEkwhdXwUZZSkrLye6LdT2OzwxlHG4Kuu7lMm8CG3YjPPceZPWfRIRg8ZBANQyKQUrJhy2pOxxwnMDCYEYPHlpkgZedmkpaZQnBAKB5unlUeW1pKMq6OkkmpPs+N+MSz9aJsXYpzKXFkHcvB394ABLhmeLB02XxmTnuIoYNv4MfYL/DLCMWGBVt4Ie1bXd715UKiI5sz4977OXx8P36+AbRs0rYOzsRJZag3ZQutA1WD6jn9lelm+ERufPwn2jSycfisGjFgQrl+AyZPYfoXs/FTZZJldsXrlkmovCt3bOFIplnjEkHQoSU4TiSgatCiRuMuXPE1894x4eKiRkoH4x/7BdH92TIKgR4VXd8q6ztgt+Sx85EvCDsWghZPzh1fiXwon9De7ZEOB7te/hHtHgtqu5oTTcx0e3M6GkP5dX6hN5OPMqs9v5x7XunSuKtxZNhRCTV2aUfrfnUmPVSiW0qsAiqHGrNJeXOMHDKOhqG7OHnqKB2j2tGhTbdqH6dpVEuaRrWs8XidOLmQ26YN4O2XUgjyyqDACF5BLRjeqWzUU6++LVmUnstT7xzGZoOe/fvQtHnlfK8y0vJpWmolyM1VhZdOT3/v45zTZwNQUFh1hSZ14z88MeY4g3opz9/sRXuZk9IIv/ZllwhDp/VGDhqI+xkbKoeSEmbB0t+J23wOL6sv8apEvkv5lOlTHgCUFA0bV6xHm2fA6l3IyHHjaNWsasuOIaFhnDkWi7vdCwCzZwGRDaOqfI51jcVqQdhLBZAIFbIozUSDgFCm33U/m7auQW9wYUCfmegqufx3Ib7e/vTpNvDyDZ3UKfWmbBk0VpoG1cxXwGF3cHDJcvz8JEfjVIQMG0BIB3eggn4fKO1MbCz6XB6XnlF89Ucsd03UI6Xkq3kOWvVvgF8Nx673KcDFpcQfq1WkGdzjMLhfOktv3L5YvGNc0QlFgWqYE07W2m30v7EBR1cdwX0H+FiVGZzHISPJf85jwGPlH7Sys1rXMsuKkyfNZPZv32IvsKFx1zJ5Unk/h4TkOM7EniQyLIqwWl7Xryx9+wxk3pk5BOWGY8eGqUEubVqUWBzbtepMu1ad62VsVzNSSo7FHMJoLKRFdJur2kn1386WDUdRyQIycnR4+ocx5SJ5tK4f1x3GVd1fMqKRH799q2bccIlOJ9i134q3fySN3VsBh+nvf4wTZq8q95ufcZTrupVMwgZ2U7Hkz0M0DSprlTsvZ/LRF1vSz56IwceqKIuuDg9S4+Ox2ayo1Ro2rl1LUE4kADJDsnLZoiorW8MGjua3rO9IiT2HVEv69utPoF9Z5bTAmM+Bw7sxGFxo17JTvSTWDC9KM2GJM6FFT7p7Itd1LpHV/r6BjBl5yfi0/ywp6UnEJcQQFhpJ8FVmsbwY9aZseahN9Pc+XqM+Fv6wj6dGZNChtQ4p4dHXF9GxfX+8fKpeVsBmdWA22XDzuGD2MFTNugVh3P9aAnaHoMPAlrRum8n5cpG5WWYWfrsTnbDg0LkydkZn9IbLX9afpCQj04GfrxqrVZKQaGd66NnLLnWdDMhgt84CRS5oDunA35BPf+/jZOWc5qzFvXhtX48Bj7z4Cq9z6VltIYZyy4oTb7qdeX/NxmFxsGLNIiaMnoxarQikDVvXsGPlFlzyPNjuvoWOA7swoM+lapXXDrEJMWzetg53d0+GDrie6Mjm3DjlFjZuXoNBq2XWiEecisNlkFLy9Y8fUnDMhMqmYXXwUmbOfLBcclondU9cbAZHd67h/ef0gGD9lhjm/76ZcTf3rnJfUkpycox4ehrK+E8ZDFruuHcij721CDeDxMMvnGmzFIWusXsrpDzEgflzyUtMw2gR9L+pHeHRl78XPLq58deKBG4aqVir/l5pYXA3Pc0vkDXn5UxphavAYqV0amipsqNSqXA4HOUTitqrvvSvUqmYeONU/pz/E+lJaezevZ2oyKYE+CmW+5y8LL788gNckr2wq2xsjl5/RTKZm8wmVqxdQEFBAb179Cc8tBF3z3yUhcv+oLCggKGdRpaZLDqpmC07/2HzsvXoc91Z77GWbkN60LfHoPoe1mWpN2VLr3Ypml1VH5m9uzisWQjBkJ5qrAk+NA6rmsl4/u+biDm8Bz8fOJvkxhMv3Iarm2LJ+vKjRVhyE/DSgcY9nBv6Dy6jEL3w0te8/qgNH28tZ+IL+eKLYzz63MTLHvPRx6J47f25GDT55BdquPuByUR4XL7kUlRXybIBfxGzIgWN2YA9Kpn3Xh5JY/dAbrkxhA3fL8AlrilCCHIDY7lnSh8au1d0PQ5zW1gy67K9OEEQDfDC1QrEFWK1Wfnpxy8JSFbSTmQm5PCXanZxOPTOLVsIyFci/dwLvNi9dXudK1snYo4yf/bvBOQ0JFek8Nmpd7l/1pNERzYjOrJZnR7738SxmEMUHDPhaw8CAfZkLxYs/oPbb511+Z2d1CqHD8QyakBJdOt1PXUsezeuyv2cjUnlu0/+pEmknTPxgpHjh9Gpm5J6ZefWEyybv5JAXzvJGS7cdlefMsrY/sVZ9I5IZcgUHTab5NFX99Lx6Rl4eV26LFbjUa349Qc9T719ErsdmrbpzsjeFeVhUqxnUKJwhQ3oTcKiDXgV+mJyyadlx7bFio5bgCumLKOSpkDk4RtSvUSaf/79M9k78vGUgTikne9//JxHH3wetVrNwqV/4pfcEE0pX8/9R3fToVX1SopVBqvNymdfvYNbrC9a9Px29AcmTJmk5CUcO7XOjvtvZOuGDQTmhStGhXxftm/c7FS26hqdwYOklFwaBCmnsfewiuG3VG2GHh+XSV7ybt56RlmWS0418tnnS7nvsbGsWbmfLk3OMHyAsm3lP7GsWraXISM6AmA22wjxN+LjrSh8jcK0qGVmpY7r6eXCUy9NrtJYQVEqP/hhHOtWnyA9OZ/+Q3sREKg4gzYM8+H1Hwfz2RtbkA7B5Knt6dmvYsWzsXsrTudXnCQ1PSsVTa6h2EnezeFJamKpZVN72fZVSdRXXdb/s5KgnHCEELjghjG+gFOxx2je2BnpVhWMxkJUNk2x9VOFGqu15r6TTqpOZFQwO7ZAh6Jb+ESMFR+/qlsYZ3+zkI9fUqHVqpFScv8LK+jYNRq73cHy+cv55GUdoKGg0MbzH8znqZdL/EBjT5/l7rGK/NJoBKMG2Dly6Bw9ekVf9ri3Th0IXNoXqPRyJUCBb1McQV3xDmnI6T17aeHXjaCgRsV+ox37TGSHaiE5eSm4+/nRsvPIS6YIulj6moykNDyK6gWrhBp1jpasnAz8fQOxWq2oS5UUUzs0mE11m6z6RMxhRLwOg1As70E5Eaxdt5yoqddGGoSrigtysl6J909tcNUoWzabnTMx6Xh4GNAbtPz89TKsFjPderej93UVW8Cm3T2C1175lUDvXDKyoV23boSEelfpuPFxmbRvWfLXCw7UYDEplc5jTiRw/8SSS9Szs4ZJD6xj4ND2qNUqdDo1aZklf2iHQ1JgrPu1fyEEAwZXbM1p0z6Uz3+fUKP+Pd29sOnNxW5tdmlDayjxz2gQFUpWZg7udi8K1LkERgTW6HiVodzyqpBXdQHTmmKzWVmy6i8yMzNo16YTHdtW38G/NC2i27A6eCn2ZC9UqEnzSGB4t7oPx/8vkJyUQ16eichGfvz9xxbiziTg4+fL5OmD0WrL36stWoVwYE87nnjtAHqdJM/ix+P/G1zl47q5WNFqledDCEGQnwOz2UZ+nokmkaXauarITInjbEwqkVHKM6vWGMjKzi1On3M8RtB5cNV9uC7Fhf5hJwgis4cG79DeuFu9KJsT35X2jW8v/nYpFehS6Ws0Bg12aVfq8AE2vQX3osjGvr0HMi/mvK+nncKgbNq0rNv6fEKlUiY4RYZMiSyX3uHfxt6DO9h3YBc+Pr6MGnIjmhrUhS1NYHgQuRm5uNs9KVTl4Rd2baSyqFdlKzkxm1++W4rDZubE8TQmjNJzLtnBzr0mvn3PE28vNV/8vJp1Vjv9B5cPWXV10xMaEUReai4+nnDiaByO0V0vmtm8Ipq1COb7D9QM7K0kftuxz0pgiOJM2a5TU+YtPcm0m5VZ0MIV+YwZLJjz03om3TEAIQR9h17Hk6+vo1VTyc4DKsbffn3tXJx6xM3FnZ4D+7Bl7QbUVh3Sy8b08fcXb7/lxjtY5beY+PhYGoVGMLR/3b+shw6+nl8Tv8c3MxizyoS2kSA64t+5fKiUCfo/1CddMUhX1h9fS15eLv16Vf1FfCEuBldmznyQBYv/wGo1MbzbDbRu3r7mg/4PYrc7+OnrlWSlpxATk0XbZpKIhipef7aQJ+91494bdRw/ncG7r6Tz9Mu3VdhHs5YRHNt/GG8vO2nZ+SQnZRMWXrWlM7Pdg9T0bAL9NRiNDhLT9BgMWnQ6NUdPq7HZJBqNICXNRlgD+PmrBTz/5gwAbp81kidf/oke7c0kpYLepxVRjS/vzlBVzitcoS6KT1dN0k6c51LpayaMn8z333+GyNFg01voO3AABr3iy6v4et7Mhk1r0Gq0zBr5cJ0Xt2/WqBVrGi0lLyYbrUNPlm8Sk4fOqNNj1icbtq5m17Kd+BYGkSzS+Tz+fe6b+USt5KecNGE6y3z+JikxgdDgBowacm3kPhSli+VeSdq0ayh7dtbz/nMCFxcVi1fmk53roFG4luxcOyMHldz8T73rziPPlRdWWzYew5aygvGjlGW+7Xut7I3ryLiJVcuyu293DEvnr8HNIDF4NmDGfSOLFbYXn/oZV85i0AuaNNZx+02ePPmuN48+V5JTJj/PREpKHqENvTEYrs40CQBbNx1l0+ptCAGde3UmrLuKddnNOJEShCPJgGsCuMUVFgsus8VEgTEfbw/fKimwdUVqejI7dm/Gw9OTXl3717yw81VKZnY633/wBf4FJVE2+Y3Sufeex+txVLXD5MdG7pZSXvMhou06hMkxNzRidN842rfSkZZu49UPMvnw1UCefSOd154umW2//IGFaY/cg05X9n6VUvLyE5/yyctqpUKERfL4Wzqefe3OKo0lP8/EFx/8hYY8Ci16pt09huAQbwBOHk/ig1e/omUTDTab5OkHfXnjM8mDz5dUWLPZ7CTEZ+HhacDPr26VDoDT+Yc5Z8xmXXpzCgorv4xmzskne8lsPDVGcjRB2HoPQyS60tjqVUZuncfhsJOdm4W7m0eVy9zUBTa7jc3b15JfkE/Xjr2KHfb/jXz62Tu4nyl5BtJdE7n9wRn4+9b9KkhdUhP5VW9vK7PJyvB+KlxclNnGqCHuvPB2Bm1a6Dl1piTbu9nswCEr1obPnEpkQr8SJaBLOw3z1yVWeSztO0XRvlPFvk23Th3M9pW/8+hM5WFdtcFC05ZlUx24exhw96h6BGRlSDqXzdcf/YmXu4nsPB1T7hpLo8ZVv2GPHznH4W0reftJneL39e1aCgxt4BLO5XqdAb2ubs6rOgT6BzNq6L+/3ItarSlfJkjUz6TIycWxFKTSvpXi7xTgryE8VEtunh3bBTmA8wpAoyk/WTGZbIQEOhBCEcM6ncDdxVqu3eVw9zDw2PMV1/1s0qwBAcENePoBGwaDitw8O/mmshG7Go2ayEZ1sxQjpeSz9xdgLUjAYoXoVu2Loi2rlnZCSsmuH75lzvN2vDzVHD15nMfnpGO57vbi9DV/njlLlMOlWOlSqdT4el89S0watYZ+PStO7fFvQwpZpkyQVDnQXCTB9n+Fejt7tUbF2YQSJcpodOBwSFo21fLsmzm4uWuJCBX8OE/F1HuHVthHu05NmL/iIPffoXyfv8xK+87KTElKSczpdKwWG02aBaFWV88y07R5MGdjevPY6zvRacEroClT76q7qJUL+eaTubz7tBWDQYvN5uCBl+bx4jt3V7mfLRsOMeNmdfHNf9etWp7+MpbAyPJtk1ITKDDmEx7S6KqYEdYWdrudFesWkpaWQvu2V18OroTEWLbu2sCxY4cotBaAUOHu8CTPO5NRA64NU/l/iQKTCintxc9UaroNVxcVnp5annsrj3HDtWzbC5HNOlRoGXZx0RKfrMVsdqDXq0jPsGOylSgfGRn5nEvIJjLSD8/LRAdeirseuokn3/kLdxcLBWY3Zj1ScfmYumDenE0M6RZHr86KUvrlL7s5dCCC1m3LLitejrwcM5rGBXh5ugHQoomWKG0y9obJ5dLXGA+fJtDNTIBPED5e1YtmvFo5fGwfu/Zuw9fXn+EDR9eaH1RtYDIb2bLzH3bu3owpz0SKOpkQeyNMukIatAj+z6eXqTdlS6fTYFQ15aPvThDZ0MGcBVZ8/QN48h0DT70yhuwsIyey8rnv6Wh8fd0q7KN12zDiz/bk8Tf2oFZDg4g23HJjO6SUvPPKHFqEpeLqAr9+58Yzr95e4RJfdnYhmRkFNAzzKWfmP8+QEZ0YMqJuHSgvhpebBYNBEdQajcDf24LD4ajysl5AsC/HY+wE+CvneDzGhk9g+SWD02d+Jar3KZq0tDPnLw/6dHgWLw/vGp9HfXM+v5TjmBpXhwdrjq4ie2hWrfhB1QZ7Dmxnzd/L8cj1w4A7DhQn2qyQZO6cfD9BAZXLGF4XZGSnkZWTQWhQuDOPWSmunzCYR19dQP/udvYegrPJHjz/gYGwqNYM692KQwdiadMnmGYtL/63m/nQRJ54+2/cDBbMdi/uflix3K5ZsZejOzfQoZXk8z9UDB03qkLru8ViIyE+C18/N7y9K/7bNAj15tnXaqe+W1WJPZ3IPWNLchf27yFYeyiO1m3DqpT6x2awsyJtU/F3u11iNmkYXMrpXujNpMfF4Gv7my5dbfyzVcOmgwMJaVCxW8nFIhmvVrbu2sCWRRvxK2hAgiqJL2Lf557pj18VLh5GUyGffP42rue8ccePbE4TQiPi3U4wbtwtdGrbo97GZjIbSUiOxcvDp17LrdWrXe+OWcOJi+1KZkYBr38cjKtr1csRDL+hC8NvKFszau2qgwztnsrgvopVpnsnI79+v5Zpd5e1kC2Yu4WE4zuJCocf92mY+dCthIb5cDWRW6jHaDTj4qLCZpOkZ+uq9XCNuKETb798gkPH09Fo4MApHyY83pyN+SVtMpJiGXbdcWbdbgC09O9l5oEnv2dwz4dr74TqiZy8LPLjCwmQoSDAzxjMgb176kTZstvtxQlgK8umDeuKc8e44MYZeRQ/gihQZ9arorVq/RL2bdiNplCHxaeQW267g/DQ+qkYcLXRpl0E4ZEziDmVxpjOXsxqUHZJLCz88jP5hmG+5RQhKSXb12/igxcU+TVmmOShl1fRvlPZguzxcRl88+Ecure3cToWIlp25fpx9fdSq4jI6FA27UyhdxdFtq/ZImnePeIye5VHo1HToVcvnntnMy2iJdv2qblt6ng0LlllnO7jM5bxzTsahNAycjBMfvgf8sMGlXPMvlQk49XK3l078C8MUeooSnfSE3JJz0oplx2/ptjtSpLZqjizr92wDI9z/rgIxTASIZuRQTIB1lAC/INqxTG+OqSkJfHjD5+jzXDD5mKmWdcW3DC8ZtH61aXeF1HDI/wIj6hdU296ajbdu5YoJOEhGrKzcsu0yc0xEntkBzeNEui0gptGwXMfLOLJl6Zc2N0VJT4uk/17YmgYHkD7jhFMv+9GHn9rLl5uJrLztEy9e2y1+lWpVDz5wq0kxGfhcEiun+pLTMGRMm0shbk0iSrxDfJwV6FS1yBc6CpCrdYgxYUJWmr3GPGJZ5kz5wekUaByg9smzSA4IASL1cKKtQvJzc2mR9e+REWUdwoWF/glqlBjw4rWrf6WCUxmE3s27yA4LxIAmSZZsPAP7r/7yXob09WGl5cLHTqF12qfVqsdX6+S51AIgZuro1y72d8s5rHpdrJzJRNG6njjs53kDeqAh2f9+VmaTFY2/aPk1OrdrznjJvbis//LYOk6xWerSZvOtGrTsFp9DxnRiW69WpKSnEvvMb64uGiBkKKthzmnz2aFt6XYBw7Ax99BZogD1QWTn0tFMl6tSMr7QalrMUjIZrfx3c+fkpOYjVQ56NyrOwP6DAcUy/uho/toGBpB/15DyylPVpsVNSXXWI0GBw6sbiZ8vWs/urWy/LXgNwJSIpSckflwfNcRsntl1suSZr2nfli/Zj9u7q4MG9Wxwlw01aFnn1Z8/cMeXn1cg0ol+PRHC30HlC2DkHgum+Mnszl+2o2CQsnseRa06pr7J8XHZrBn5ylCGvrTpXvjKu27Y+sJdq5dxrhhsPeQZO+OZtwxazj/e3N6jccFitC+1GzbL7QxX/1soFcXBwaDip9+txHgXXm/pk3b1rJv9y4kkl59rqu13FC1gYebJyHNQ0nbl4aLxY0cz3SGXjeyVo/xx+8/EpCoJF51ZDmY8/sP3H/3k3z+9bvoznhgkK7MPfIbIyeOptUF6RZatmvDgdT9+BiDyCeHPG0WHiFu3HHTPbU6xqpgMheisZZYm4UQYLvEDv8x7HYHK5bsJSc7jz7929IwrHYEuE6nITXbndT0QgL9NRw/bUWqyysE5+JSWbTSRqMILT/+kUtYQzeysgpqpGyZTFb+WXMYh8NBvwGtcHWrvEwsLLTw+nPfM2WMEZC8+swWnnn1Du59ZHS1x3MhXl4uFWa3P59aQmpVHDxuoU0zHfGJNo5l+hLS0EpxfbMihN5cpl5jp8ZBpGWk8Oe8n3FYHASEBDK+VImyq4EBA4axKG0enjn+mLWF+Df1x68WFZmFy/7EfkRFoFQmD7vX7KRF87YcOLiHI+sO420M4MjeI8TFnWHqrWX9hvv2HMRXBz4kMF3Z96TqAJ5eXvQbNggPt6oXOq8tpNVRnJwbQGPRUVCY/99StixmG998+CMP36kiLdPBq88c4Pk3pqLR1PzmDovwY8DosTz25jrOnE6hYaie0/Fr0ejUtO+oLIGsX72b917wI7yhYjlYtjafv9bUzIqwc+tJtq9Zys3Xw8Hjkq92Nmbm/ZXPu7V22Qbee1qJFmzXCl547wSFBQOqJPBqgs7gitprJrMeXYJOZ8PHvQvtmleuDMKhY/vYvmyrYuYG1mSswN8v8Kpacrp1wjT2t9pFcnIirVuOomGDqi9nXAwpJQ5jSfJVlVBhL7QTlxSDPUGFK0rNysC8MDZuWldO2RrYdwQ+3n4cOLSHqMAIpveZhUFffafoCykw5nPw6B5c9C60adGxUglhPd29UflJrPkWtEJHnjqbkIjqWSX+dUh4/fmfmTgsi7AWaj75aj/X3zye5q1qpyjuo89N4qNPF5EQl4TNUkjDsCy+/2I5U+9SrAopybm0iHbw0F2K28PQ61yZMDODSfd7V/uYRqOV1579jmnjjWhU8Ppz23nypTsqrbz99ftmnphhJrqR0j44wMz83zcx6Y4B1R5TVWjs3orbH3TwxbfbyflTi1XnTq+HR6A1lM9Af2GBbPuJc6xf9DUBSQ1RCTUZcTnM5Rcmjru9giPVDy2atsH7Lh/2H9pNgH8gHdtUvTD5pchIS8NVehR/1+e7kpgcz7GDh/A1BYMAD7sPKTFxWKwWdNqSiZivtz/T77qfFasXAvDIdc8R5N+g1pYPpZQcOXmAnJwsWjVvX2k/4kbR0ZyMP4WX1Q+btGL3tRDkXz9uGfWmbGVl5vLusyHodIJG4ZCdk8vWTSfpc13zWum/bfsI9mwPZsroXNq30iGlnSdeX0xk1J14e7tSmFdAWGjJ6UdH6mjfqWqWqAtZU0pZatkM3vgkhqysQnx8KudUrNfKMjenlyeYzLYrpmwBeHr406n9E5VqeybhIKfiliPREHtahW9BcPHSnFeuPwcO7b6iylaBMZ/ktHP4eQdUOHMRQtC+VReoWUnOChFCoPXUYM9UslbbpA29p06ZVV2wfHkx+dOxbbc6sQZm52by5Zf/h2uKD3aVjU1N1nP3nY9e1vdPpVIxc/pD/PnXTxgLsoiMiGDE4OotY//bMBot9O2YSe+uikL85lOSp95bR/NWFScvrSpu7nrG3Nyf5b//wnMPeAGSNZtOsGCeF2PG9yArs4DmTUvkgsGgokmz4BpNVhf9tY2Hpppp2bRIWQq08svsf8r5ul4Mk9GIj1fJ8X281BiNV7YUVDPvNtx2V+n7OqbCduf02ZjzTRxfshNHgYWdeWGQpUFVlHHeTXqSlnTxMkF1gcNhJz45FrVKTWhQeIWKSoPAhjQYUDcTnoZh4cQcP4O73RsAk1c+EQ2j2Mjasg2FRFXB2Px9Apk0oXZWYUojpeT72Z+RczgPrVXPBv+1TJk6g5DgsMvuO2zQaFTqxZw5fQqdQcuMMQ/WWwRnvSlbNpud0mk3DHrIspX3S6gJWekleXCEEPTvbuP0yTQ6dYmg94AOfPrjMu6bqsfhkHz7u2Ti9Jq9hXXasmVlPD0EFnPl112CwhqzePUhRg3SERNnI+acV6UVtStNbOJRzHzFd5+oMJslA24wYlG1wl0qTsJGbT7Bwe2r3K/dbmfB0t9JT03FL8Cf0SNvrlTy0hMxR5j/x+/osl2wupvpObgvvbv1r/Lxa8Lk22by62/fYi2woffQMfnWu/B098IlSk/uiUx0dheyfVKYMGjSFR3XgiV/EJASjrqo8G7mqTQOn9hH8+g2/PDLZ+Qk54BGct3AIXTuUNbB2s3FnamT6m8p82rFZnOgUZcUCVWqsdRuLrSD+85wfanSgwN761j13lmgB40aBzD7Gx3XD3Lg5qpizSYLEdE1qxNqMprx9ixRVLw81ZjNlkrvP3RUN1775CRvPa308donNibddeVdCSoT5WizHiTjx4X8/YwDP181H/6QyCebPcCsWCbt0o7GUL3X496DO9i5cysqtYobRo4nsBKWFIvVwudfv4vjnMAhJB6NXZl++wNXNNJw2MDR/J7zA0lnE0EtGdh/GP4+gXTu1oPtWZvxyPelUJ9Ho1ZRV1RhOZcSR9axbPxtSnCAW7oni5f+xcxpD/LP5lXs2LwFIQUBYYFMvnlmmWsmhGDogOvhyhhXL0n9+WxJGy+/l8kzD/qSmW3n0x/tvP1Zk1o9hFrrRkpaLkEBymnuP6piRAdvALr2aEpBvokn39mL3S4YNeH6GkciRkQ35Y/Fe7hplJ6YOBtHzngwPsjj8jsWcevUASxd4M6T757Gy8eLp14eUm9RHJfj+NnlfPexErFiMAi++EDN5KkpGLPzkUIS1DSwWuG+P/32BaYDDlylF6nHs/gx+3PunHL/Zfdbung+QekRyvXKgc3r1tGzS786EVYOh539R3ZjNBbSrnXn4lIfft4B3H/3U+Xa33XHQ2zdtYHsnCxGtx9DcEBIuTZ1ic1qQ02JyV9tV2M0Gflr4a84DmsIQJkhrl26kujGzf7z+XAqQ2Z6NivXudKpjZ6QYA3/ezubfsMrt+ReWSIaBbNzl6Rdke5QulC1Xq/hvidu46XPFqPCSmhEc26e0q9GxxsyojNvfHCYd55RoVYLXvw/KzdPr/wzHBbux03Tbub5j9YDcNO06wir5eCn2iL2VDbj+5jx81WseA9ONTBnno3Y46dxky44vKxMu/Hey/RSnoNH97Jm3goCChrikA6+S/6ce+97FA+3SydvXb7mb3RnPBR3AyD7WAY79m6me6c+VT+5ShCXeIazcaeJimhS7E4hhODmG+8o17Z39/40aBDK0WMHaBjalfatr2x+QrPFhMpWYjFVCRUOu4NzKXHsWLWVwALFT6wgK5dl/n8z8iot31NvylaQv5oJN7jzzqdZuLoIQsLCi6JLLo/JZGXrppOo1Sp69G5yUcf6O+8ZxcuvzKZhQD4Z2dCyUzcahJTc9P0Ht62w5mJ1ufGWPqxa7s6T7x7Hy9eLp18eXGVlacTorowYfeWSplYXlXAhJ9dRXMA2PQOGDxtFeIMWqNXqywqXi5GZmIG/VF7+rtKdtKT4yu1oE2Wutcqmxma3olPV7hKsw2Hns2/ew3YKpEPy999zCAtpRFhkJDcMn1ChcqdSqenV9cpa2UrTp/dA5p/9vajwrg1jcA5tmndgz84duOBd3E6bYyA1I9mpbFUCg17y3osBfDM7h9w8B2nZBrr0qPxk8eD+BJITM2jboRFBwRU7ELdu25ADe9rw1JuH8XCDtFwfHv9fiUIXFOzJY89VnDm+OgSHeDP13tt46fO1ICUT7uhHRBUzy0dFB/HIsxNrbUx1hYublrOZJfLCZpMEhPnSpf1UooMM+Hr5VavQ/c5dW/DPV9LLqIQKtzRvDh/bR/dOl1aEc3KyMUjXYjcMg92FrKz0Kh+/MqzduIw9a3ZhyHdnpW4xbt7uBAQGcuPYSRdNAts4oimNK4iivhJEhERhb2DGEm9GJ/SkuZ6jX5cBxCecwZDvXnzN3OyeJCWdq5cxVoZ6U7YKjQ5aNdPTqpmeYyctLNxSuaiK/DwTT93/CfdOUWO1witPb+LZ16ai15c/Fa1OTbc+HcjNLWTctPb4XCQ5am0yeFgHBg/rcPmG1zg92k3inide5p5peWTnwm9zGzKiT/dqCajSyAt3V1duacY/NIDc5FzcpCdmacLgr69W9vsjxw+wetVShEMQ1bxJuVnSwaN7sJ0Cb4c/x9lHU3MHtGd1nItPYq71F4YMGAWAl4fPVWOVbBrVgrG3TWTT5rXodFpmjXgEF4MrfgF+ZJzMxUUqz4XVy0iQ/5W1ul2rSAkuLoIHZvjgcEhmPFl5d4F3XvmdxkFxdGqr5ZfP1jNo7GjadYissG3LNo3R6nQ0bRFBuw61m2KiIsIi/Hj46frJQ3QlCQn34M/0MH6cl0DzRg4+nqPDPWo82kI9/j7Vr9+nN+gxYkVbZEm2aSy4u19+4tmtSx8WHPuTgDzFHyvLO5Ux7apuoSkw5vPr799izDFi8DQwaeKduLmWXV3ZvW0HgQXhnOMMfpZgfNOCsKfa+CbzY2bNfASjuQBfL/+rJju9RqPlnpmP8feS3zEZCxjScRhtW3UmKe0cGzz+wTNfWZHKV+cQFRpZv4O9BPWmbNnt8OI7Gbi5CtZtlXz928DL7wQ8du8XfPiCnrBQ5Ubw8y1gyd87GDexZ5l2ZrON1575ntvHFeAWInj/lb089NzUK1JotaYUFlrYtvkkOp2G7r2iayVC82LYbXZsJjMqqhYu7ubqweDur7Bs2QE0Gj0j+rSplSW76wYMZu2SlehyXLB4GenXv3L3xS3jp/G3yxxSk1Jw83JnytgHq3zsjOw0Fv05j6BsZTnyVMpp/nFfRb+eJYlPTRYTaocaKxZc8UArFKHqbvfi4J69xO2PRSDwjPTgzsn31/iabN+9kQMH9qIz6Bh3w63VDqNuGtWCplEtyvw2dtQt/Jj3BelJCUi1ZNDg4f+KagFXAm9PFQ8+l0bjCC1bd1m4ZeYtldpv1fL96KynmDVFsSB0bid55PU1tOtQvvj0rz+swUscZHBnFUvW7SHpXC+Gjbq6SkxdjP1740lJzqRDpygCAivvSlFVpJQU5Jtxc9dXeXLT9o4bOHbMjd/2HcezRxt8czwhrrBG4xkzciKfnXsPTaILDo0Nr+YetGra7rL7NY1qwZDxI9i6ZQMImDDo1molM/7h58/Qn/DCS3hilRa+//lz7rurbMCTsCvXyUQhoUIJYFILDSJVw/v/9woeNh9sHmYmT55Bg6CaOeOnZ6WycMmf2K12unfvQ5sW1TNEuLq4cev4ssl/GwSE0nNob7Zt2oSQgqCIYIYOuKFG461L6q8QtVWFl7c7B4+rePndWyqVY6sg34xa5uHnU2LqDPJXU7DfWK7tqmX7uHNCIV3aK0rEW0/Zef+HNdz3aO3lfKkLcnOMvP3CD9w2xoTJBK8+48mzr02t8PpkZRXy3acLUQsT7j6B3HHXsCrVgFz5+yGSY1bTwFXNvrOBRLa7vG9UaQx6A62b1u6SZ+cOPYiKakJSyjkaBIZWupCsWq3mxhtq5nh+8vRRXLO9ioW2t8WfUyePlVG22jTvyD/Bq9Enu2Km5L6TUmIttBIgFOGUdySH9VtWMqD3sCqNQUpJ7LnTmCwmUpOT2b18J77GYGzSyhfJ7/Pgfc+UCbmuCRqNljsnV+1v7kQhM0dFVCMvzsTb6TeiDz16V26JZfOaHbRrUvIsCyGQ9vJO6A6Hg6SYIzz0jCK/mjaGx17fdU0oW19+tIgIn9O0aALff7SeUTffSMvW5V/aUkrm/LSOlIQ4rHYNk6aNJKRh5f1mTx5P4pev/iIy1M7ZcypunjaaFq0uH6FWmog2LUjycceRZICcKu1aIW6uHjx479PExJ3EoDcQEdq40kpgu1Y1r9dqzDLhLpRVIq3QkZ1VPho0qFEwudk5SJsDu1SipwHyHDmE5DTCIFxwFDiY+9fsaiUwzsxOJyntHF4e3sz+6VsCUsPRomJ53CLUN6tp2az2XHd6dx9A7+5Xgfd7Jag/n62QAAbfdAc3+7tXWkEQAkJDXHjjo0xefNwPhwOeezOL+5/tWK6txWzBw63kJnd1UWGzWsu1uxrIyMhn/544goK92bRuL688aicoQAkp9/TIY8WSvYwa0xmHw8HaVYfIysihe++WfP3hXN560oaXp5oDR0/z1ceLuPuhyimTx48l42dL4IXnlSWkU2dTePD9P/H0r39l1NfLH1+vqvmKVIf4xLP8Nf83pEXiFehN7579sbgYwaQIfBOF+PmUFf6uLm7cddfDLFz6J+7nXEnMjcFgdiNDk0KwsWSZx9XuRmpqUpXGI6Xk258+JvdEPsKmJkUTRwuLInw1QosmxUBC0lmiwuvHd8JJCSFhAQy+aRruHoZK+5oCuLlpOXLcQmKyjZBgDfOX5uPlXz7djcMh0evLLqHrro5VnXLY7Q52bo/BarERHhmAi4xhygRFSezUVvL4m6tp2XoqAMePJLJv90kiGodw5mQCbcMO0X+iDpPJwSOv/sqTr8ys9PX87buFfPKyCrVajcMhuf/Fxbzw9t2X37GO0Wn1NG/cus6PY7VZmf37N2SnZiG0grFjb0boKM4yL6VEVOBJMWnCdFYFLEbE2Dh77gg+5kCsOjNWiwWDVXnvqIQKaal6dO32XRv5Z/ladDkupLskElQYXqzMBeQ1ZOv2DbWqbF1L1JuyJYQgMKhqSyKubnrc/RoR7hfDs2+kE5coad+tZ4VRhNcNbsdHr+/mnWcc6HWC5981c8Ok3rU1/Frj+NFE/vp5LhOG2zm+V7B/D/jeUfKEBPqp2RlTiJSSt1/+jZG90+jWUcUHH+8kOkzg5ak8HG1baJmz+NJ5Yc7FZ7Fg7kbUajX+wf50a1cyw46O1KJx1I1D5tWI1Wblt9nfE5iiLBkaEwvYrtlEdPdoju89itqhQR+kZfSImeX29fLwZvLEGYCSwyorNwOTycTi2fOhqNZkkjYW/zxf0rNSK+0Dcuj4XvKPGvGzK8sH6eZkHJRkQHbobM5C0FcR1Vke6z+sN1tXLeLb2TmkZthJyvTi0+/LVzLQaNSYZTB7D6XQobWW1RstePrXbrR2bWCz2Xn9uZ8Y1jsbHxf45G0N3dqXpPBRqQQ6nfLSXrV8LyknNzB2qIqd+/exZ6uNBycqkz2DQcWA7iZiTqXRqk3FfoM2m515v20iOSmDXn3b4uVuLS5Xo1IJfDytZcrZXIrzGefXZRclONUHI7V63FU2OF23+bVqqzzQH3/9iHmfAx8aIKXkt19/YOyNE5k/73c0hTpsrmZuHFPe2q9SqZTltgFKpF9SagLubp78+NMX2ONtqIWGQvLJMmWw79BO2rfuUsHRK2bDurUE5SiTTlkoi6z/yvvZjg2d/srljLzaqPfaiFXl/sfHsWrZPjxNSUwd24L2nSpOmunr68Y9j9/OG9+sxm6zcf2tvWnSLPgKj/byzP9tJe8+q0Wt1tGzC6SmF/LEa4W89z9XbDb44DvJzEfac/xoMh2i0xjYW5kxvvOshgeeywIUZctulxSaL74Uey4+i+8+/onXHtdgtcKDL54kPsxavMy6erMV6RJd5+d7tZCVk44mr8TPwwU3stPSuG3iDEyDjFhtFtxdPS8ruL09fYuj9wrHFLB54zrOJSbgbfFHfdCNbxI/5s6Z9xHgd3kBm5eXi8amK46uaUgUJ/T7CLaEY9NZCG4dTINAZTmm0FjA34vnYCwspH37LnRqV7vZpJ3UDZ27R+PpPZGN6/bTppkPz4ztetF77OFnxvP7z/8wZ3kqTVtGcsesqy9KefXyA9w8Iqc4uWvrZjZuf8jEjcO1BAVomLfEQkS0YuXZt3Un7zytvGwbhcPv83MwGl1wcVEmE2cSBE16VhzEJKXkrRd/Zdq4LFqO0fLNnCWcTYCcXIGXp5r8AgdZeS5V8ts6r3Cd02cDFGeUL7DW3YSmNgtgZ6Vl4oGyZCiEQJtnwMvTm8ce+R95BTl4uHldttyQXmcgsqEi96dPu585f/xAbEIC1gIbUWmtWPf7GpKSzzF80JhKjem8PxiADwEc0e1EJVWobBosIfncPepRQPl7rtu0gjMxJ/Hx8+eGYeOvGof8uuKaU7aEEAwZ0QG4vKNdYJAnDzxxdebcOI9eJ1GrS27QkCA1QU368dT7RxGomHL3QAKDPElOzsWtlAwwGFTkW9x5+QMLLaIdbNypYcLU4Rc9zt9/buD1J7R4uCuC7aVH7Lz1ixe3/U+iUmtIsbQksuUwiC/v//ZvxNPdB5uLhfNuVzZpRe+uvAgMepdqlcrp1K47efk5qM+64C6UCKTAjAhWrlnIpJtmXHb/1i06sMF/DW7pnqiEigL3bG4ceytarRZPTy8aNVQsGzablc+/eg/P+EB0wp31MWuxWq1071w3OXmc1C5Nm4fQtPnloz5VKhW33F5/KUMqQ35eAcGNS9xA/HzUtG4XxWd/GjAVFtCqfVPG3Vi0FK4puyzVuLE7D73sYGBPK2cTQOfTukxqntIkJebQNCyTdi2VZ/TuyXqOxqh46RMDBm0hhRZX7n3sxiqP/7zC1d9fKZ59kmAKzVXuptLUZgFsvZsem7SiEYqSYnMx4+Xhg1qtrlb6Fi8PH2bc8QDvvvkqQTIcBPiagjh24HCllS3vBt4YMwtwkW4YVfk0a9GKPr0HYDabaNKoJQa9MrlfsPQP4jfH42n1I1Vk8HXKR9x956NVHvO1xDWnbG3ddJQt6/ejMxiYMmNohUVJa4LFYuP4sWRcXfU0jq77auURTZowf9luxg7Xk55hZ9NuAy+83YYR17cv065lqwa8/JMrXdqbCQ3W8OF3FsbfOojmrSNITc7lkeF+lyzro1arsVpLhJ3VCg2jfdEMGsOJlCCCkgyIhLo6y6sPg97AoJHDWbVsKSqrGq23mjsn3FfjfoVKhSyTSbxyyxoAnu5e3H7nLJYsmYfV7mBg16G0b92FX//8lqQziUiVpGO3rkRFRaNK1qErcsjwL2zAvr276l3ZsljNJKUm4OnufdF8Pf910tPzmf3tCmxWK/2HdqFjl5qVCKuIuNgMsrIKadY8GIOhbq0FfQe05eP/28M7z0i0WnjtYzPDR/egddvyaSqCw5vy9/KDjB6qZf8RGw5tA559YzxnTqfTvLcrwQ0uniJBrVZhvSC7hl6v4fEXp9T4HC5UuAoK665w8vkC2AVWV3YXLVdWV+m6ecIdfJv/MdYsOw6djUFDR9RSPdULfLWqEOQ59bZ7+HvxHDLS0gkKCmT0iIkcPLqX1SuWsMK6GI9AD+6YfA+xJ2PwtiorTS7SjbSkTExmY63Wg60qUkpS0hOx2W2EBDascRqjCxFS1m6JicrSINggb53UhvsfH19pgfDPmoOknFzDfVMNZGTaefptFQNH9WLPlj1IKeg7pAdde1TfeTg3x8jbL/3I0F4mMrIgNqMhDzxxY53nS1q2cCfHDp5Ao3Ph9pnD8byIAllYaGH292vIy8nnukEd6di18oI6PS2Pj974gSdngcUiee9bLROf6sF2a2tOpAThSDLgmgBucYW15lNwLSClxGI1o9dVLfXFxTCZTXzy+Vu4JfigRkNmQBIz7noAP+/qKe6r1i/ixPLTuNuVF1Ga6zn6je/Phj/W4W9SSos4pANLi1xuuH4CNruN0CAlIuvvpX+QnJCI3kXHhBun4FmJfD/VJS0jhe+//wxtpgs2g4XWPdoyfPCYcu0mPzZyt5Ty6g+puwwNgg3yxjGRjJ88stLFp/PzTLz1v29491kV7m6CNz8106jdQPZuP4RamPHyC+b2mUNqlC7km8+W4M4pwkMkyzfouO/J26rsG1tVzsakMu/XtYCDAcO606Fz1EXbrlq+l4O7T9IgLJCJt/Wt0rm+9+rvDO6WTKuman6ca6dZ58H06teyFs5A4XT+Yc4ZszlhrrsSQ+fycjiZEEywORDXBGVZMcrhUiOZa7aY0GmrnvriYsxd8DPndiThavYkzzWTdoPaM7DviGr1lV+Yx2cfvEdQlpKl3kQhHl0NpCal4BNfktoi2SeWmffeT3ZeJoF+DXBzcefQsX1s+Gc1AkGv3tfRtlWnWjm/ipBS8v0vn5J1MgdhV6EOldw947Fykd81kV/1pmx1bmeQf3zTgO8XNuTeRytX3Pa9V37mrccLir8vXlXIsnU2PnlNcVR95KUCrCIY/0BPbr59IL5VTGL6ybvzeeCWRPz9FI32z8VGXBuOpkv3KDIzCzh2OJEGoT40iiofKbd/7xkWzlmOp7udfJM79z8x8aJKU32RmVnA8kU70WhUjBzdjWROsS672X9a2aoLTGYj/2xeidVqpU/PgXh5VL8M1Hc/f4r6QMn6cYHMpeXY5sTGnSHjYBZai458v2w8/Nwxx9sQDoE6FAKDgsnckYu7wwubtJIdlszD9z9XZ7XWvvj2ffRHPYsL+aZ6xjPzofvLnfu/Rdnq3M4gty0L4/4X7Dzz+t2VSl2zZuUhIl1X0aOzIheklFx/eya/fuqNp4earbssfPijmkZRQfQd0J5O3armQxlzOo09q2dzz+3KxKGg0MHLn/ny6HM3Y7c72Lc7Dikl7TuFl8vdV1hg5sO3/sBVm0NegYqhowfRpQYT17pASsmqZftIOpdO914tadayckpuVTidf7jW+yzNOWM269KbU1DYFEeSgaSUHNzP2GqscNU2ew5s52xcDC2at6ZFDWpunk04xfzP5uJrLTm3wsaZ9OrTj+V/LcYlxxOzayEeUW7knMtBW2DA4mmkR7/ebF21maBcxUKa5pHAjVNvJqqOstjvPrCNTb9uwNuuTIqNFBB4nR/jRpbNn1cT+VWvy4iRYVosxqxKt3dIgdUq0WoVDT413cGUG7UIIThx2oJGGHnzqVwKCnN4+pXvefzFO6uk8JhNpmJFCyAqTHAkPZdDB+JY8vvfjOhvZ9sywQ7PdkycXOJLYbHYWPDrYj5+WYMQGjIyC3j+9Tk8+uwteHjWjsWkNvD1dePW268r+SG/5L/J+tQy0ThX04N/rWHQuzB0wOVTaNjsNk7HHkcIQXREswrN1uHhkRw/cgJ3mzcAhe65NIpsQr+eQzjR7Qg5OVmYrWb2/LUHf7viB2Q6U8jhtP00cbQHlLQRZKnJzc+us1I8DoujWNECUJu15Bfk1UjRvNpRqQRtmtlJS80jJNT7su1dXPRklsrlZDRKvNzteHooqQt+/zuHVx72Iioijc9+WkJubv8qlRPLzCggsmHJ5NnNVYXAgsVi47Vnf2RY71yEgJef8ihXdeObTxbx+LQcQoI1SCl56MUl+Ph7E92k+tnUa5sSf926ozJFrGuGslx5wuzFCYKKlxVry4+rtujYthsd217ewpeUmkBGdhoRoY0rTLgc4BuE1cMEmcp3IwV4+XnTtlVnQhqEc+rMcYKDQvhj9k8EZUcCINMlq1cuJSyvWbG1zi+vATv3bKkzZSsrKwOdzaWkXJJ0JTcnu1aPUa/KVlq6DVSVF8YTbhvCo6/OYdoESVyigxWbdHRsqwiXOX/n8foz/mi1Ar0e7ptiZv2ag9wwrisF+WZyc00EBXtccmbfsXsrvvhpFbOmuGGzSX7+WzDzkcZ89eEfvP+sFpVKx8De8Pw7ByjI74lbkUN1elo+bZo7Sm4MXzWYE/jqva/o3Pc6+g28OvOKnPdVgKLw56JonPMPvpO6w2azsHLRN7iluiCFxNzAxqAR04pD2c/jHdoJe5OzpKcnIFWSTt27ERGqLNM0i1JeDKv/WYLOZigWFHrpgkPacciStBE2nbVO00aERzXiTPxZPK2+2KUNu6+ZQP+qZ8C+lpBScvSUYFRA5apSdO/VmNef90OjziTAF776TYWfv7LvidNWOrfX0yRKWba4/w49T76zh/6D22Kz2UlJzsXP3/2SLhctWjbg1adhQC8HBoOKv5ebiWreloXztjHrlgLatVQmntGRhcybs6nMxMthyyMkWLn3hBB0am1l8eyfkLpwHnp6wlVTeupap7F7Kxq7Q2j+xeXu1aJwXY5Fy//k+NZjqAt1WPwKmThpMpFhZa2xbq4eDB99AyuWLwYreAV5MX7MZAD8fQPx9w3EZrchbGUT/WqFAZO6EJ1DeccaVQWE+9Zd6pN2rTuze9N2XLLcEEKQ7p7I8I7X1+ox6k3ZSkyRvPypKw89XfkkmpFRgcx6fBo7thzH28eD97+I4o3//ULnw9mcOmvHbCmxehWaJBqNmvm/byL+xG5CgwX7jup4+LnJF11ejD+bgjnTygtvZ5Cb5yAj3x8/f3dc9BKVqkTYBAUICgrMxcqWp5eBpasKyMzIZ8RAd8JCNPj7qHj5SR0PvPAPfQe0uWqFVX2EP/+bOL1rM0n79oOApoOGEBhRuaWfg6tX45/ijyvuICE3MZv9Kbtp1r189FmD/iMvuczQrk1ndm/aUUpQnGP4sDFs2bgRXbYLVhcz3fr2qDW/tIoYOWQc862/cS42HoObCzPGPYD2XxzKnZgiuf8FO8PHDkOnq5wYValUPPPKbWxcf5zkFCOPvNCc9av28upHu/B2t2C3l+SnklJit0HsmTS+++QP2re0ceqsiq7X9bvo5C0tNQeN2s4r72eiUsHxGBVPvtKMlUt30DC45GUWFqIhd11+mX1TUu08+0Y6bVvqmXC9G0eOW3j2IV827Uhi/epD9B9c/aUkJ+W5mNy90gpXWmYKf83/FbvFTnhUI0YOGVepd1WBMZ+jO48QVFiUUytdsnjxX9x39xPl2rZp2ZE2LcsnHj+PRq3BxV+POcuEXhgoFPk0bByG2Wwi/WwiIHAJ19G/itU4qkKAXxCjb5rAipWL0aq19Os+gFbNL19mqSpUSkoIIYYBHwJq4Bsp5ZsXbA8HfgS8i9o8JaVceqk+A4IDef6NaZdqUiH+/u6MuKHEUe6516Zw+lQafk0Lefz1RTw6HXLzJd/96cqMByNZ9ecvvPq4ohRl59h58/NFPPLszRX2nZl0ltcf9y7+/t5XFrKzjXgHNOSfrSfo10NHarqNQ6dcmFCU0NDhcPDeK7/y2tPuNA7X8Mr/ZZJwzsrHbyjmd38ficVir7BQ9pXGZLKyYO42CvMLGTSiM2HhSsTYlQ5//reQuHsfqSt2EVoQipSSQ9l/0fqZO3APuLwzfL4jjwBZYrbWOwzkizwKKyhFdrlw8QDfICbcNomVKxcjpeS6roPo3L4HXTv2JiU9CS8Pn1qteWgym/h7yRzyc3Np2qwVvbv15/vZn5EVo7gEuHq64ulee8e7GgkIDuR/b1c9elWlUtFvQEmNyjETepGW2paU5FwWzV3P6o3pNIlU8c0cB4OvH8rsbxfx0YsqtEVF1R96aT29+rWqsF7qyiU7eetpF7y9FGtZeoadrxfupP/gjrz39XFefVyxcr79uYVhN5XI0Pl/bqZPp3xuvsGXbbtNjJ6SxJP3++LhrqJFExULtmZU+Tzrii0bj3HkQAzNW0XS+7rac46vDyqSu7UVqVgZLFYz33/3Gf7JYRiEmjPxZ1kq5jNyyOXTJZnMRtT2kneaEALs1R/L9KkP8Mf8nynIycQvKIBx19+KWqUmOT0RpCQ4ILRWDRabtq/j2NGDuHl4MHbUzew/uIv1q1ajMekwe+YR0bDi/J014bIagBBCDXwKDAYSgJ1CiIVSyiOlmj0H/CGl/FwI0RJYCkReuuPqDrksKpWKJk2VGzK6yTRWrNiLTqfj2dc7cvxYMi2iS3wYvL3UIC+uRRSaKZOBOCtbotdrmHrXUP78xcCyd+PR6t144oURxW2OHUmmT8dcWjdTrAavPe3HYy+m4+WpJivbTnKm61WhaFksSmHuB243EuCn5s3PjjJ+6s1EN1XCb69k+PO/hZT9O2mQHwKiqCJCuj9pZ/bi2bbvZfeNnNiVY4fmE5GmPNTnghJoO/ZWVA3K1zKrTLh4VERTZs14pMxvep2B8JDaFRoOh4Mvv30flxhv9MKDvSd3c+TYPqzHBAEORVPMPZzF5h3r6NO9ckXEr0lq0VAdEOhBQKAHrdrcyuoVBzi8NYvrJ7UiMiqADctXF1vrAcJDIC/PjI9Pecuzq5sLaZl2Rc4BaZl2XN1ciIoOYuCYsTz57kaEgMGjhtOkWckSb8yRw7z1pCK/ruvlysr1Rjq20SOl5Me5DobddHUoNbO/X02w62HuvlHDmk0n+fHrBG6fMaS+h1UjLj7Rda3VBKgVkZR2Dk2mobicjqfVl7gzZyu1r4+nHyp/sOSb0Qk9OdoMoppcPAr1chj0Lky5uXy1jgYBtR8EsWr9Eo6sPoy3OYA8aeKzpHex5FpokKWM31Hg4M95v3DvXY/X6nErowV0BU5JKWMAhBBzgNFAaWVLAuffzl5AYm0OsrL4+bkz4daSXEPR0YG8/6uaUYMkGo1g+14LfkEXvyEGjezH/95dxujBkr2HwSe0Fa6uig/FTZOvq3AflUpgv0CjT0jV8/Q7OhzClYeeuTqqkG/ZeJKJIwto1Uzx23j7GTXPfrCeR58rsfKVfvBPmOsuTcC/hYRwNWZhxIDy4jO5FNKmhYomQWX93axmK0lHE9G56AhqGqwo6kE6At/owqpnV2Ez2vAMcKdRQDq+QeWjg8/7dVwpIXwpsnIzsKVK9EK5j7wtAZyJP0yYvWmxAuJqcyc55VzxPharhYSks7i6VC06+L+GEILBwy5YutD4EBOXTFS4lsJCB8fPaJnkXXHQz7ibe/P6cye5dVQhDgm/L3Hj2dd7AtCmXQRt2kVUuN+FAekOdDz/gR4hVPQfNohGja8OJ/nks8d5uCgD/fhRap584wRwbStbUPFEtxBDrSZArQhPNy/sBisUlQy2SxsafcVRtYmp8eQX5BEe0giD3gWVSsWs6Q/z+bfvkZacis6go51H7S671RUnjhzB26ysPuiFgdwUgaOUK7dKqLCbyr7Uk1ITMJprlvC7MspWKBBf6nsCcGGYwovASiHE/YAbMKiijoQQM4GZAKFVqO5eXdzc9dx853gef2sZBp0DD98wpt1d4dAA6NqjKQ3DAzm0/yxNugXQsvXltepmLYL58xcfohtl0yhMzac/2pl27/hL5pqpD6SUlI4NuJhF9vyDH+pyvMLtDockM82Im4cWF9d/r09OZej5bDAvnthO1hEvpMZGZH87M0bZEaLk2uVmm3lh2g4cRwORBisNBxh5/OPOCCHYv2oP4WlNcZHuOA452PjYfN5b2qtcYfbzfh1XSghfCr3OgENdkl1SSomrhxtZjlQCCpTnJcs9lX7txgOQk5fNl1//H9pUF+w6W4V9XitcafkFMOvhsXz54QLs5izMVh33Pj76ossprq46nn/jTrZsPIEQguffbFIpf7KWHdrz2U9buWmkhp37bei9m/DIo2Nq+UxqzoXnXd1VpdwcIxaLDT9/96vGl/bCie6ViFT08fKjdY+2HNx6AK1Fi83XzPSx95dr9/tfP5KwLx6VSYs1sJA7p9+Hn3cACUmxONIEzU0dwQS7Vuwg0D+YFk2vcv8+ddkVLKl1INwk9oKSupC+wSVJmWf/8TXJh1JQWWu2QlVb61u3AD9IKd8TQvQAfhZCtJZSOko3klJ+BXwF0K5D2BVJ8NWkWQOefqXyvmEhod6EhLavdHshBM+8MpnF83ewfn8OQye0K16aqwlSSv6cvZH4s+cICQtm4uR+NcqR1LNPU155eiPhoRb8fVW8+pGV62+teLnrYuHPmZkF/N+rP9O2mYXEFIho0YkxE3pVe0zXPO7w26I2nIlJR6/XEBZePq3Cc88uxvVAC7RCB/mQuCKJ1H0u9OzTmJyYg7hIxb9GJVSo0n3wKAivoGTJYUI9vDhRCJ2jw9gFuFqBuMI6P8ULcXf1oHH7JpzZfgatyYDRN4cbx95KZmYGO7ZuBqBP9+uIjmwOwF8Lf8UvMVRJP3GNV4KqD/ml12t44InKl6HR6zX0H1S1Zb8Ro7uyb3cA3yw8TkTjEO55pHZelgf3x7Jy0TbUGjW33jGkxslV/UKjmb/sKMOu07J6kxWvoKqnAfjq40VgjMHdDU6f8+bJFydVOsChrqlMpGJNqEhZGz54DD279yOvIJcg/5ByQS1JqQnE74snwKhMpOzJduYvmMP02+/nwKE9eOcHFFu0fQoC2X9o11WvbI0YPpY/Mn/CJcMLq8FEo3ZRDOg3jD/m/YTNaMM3yI+bxiqVCU7HnSB5fyr+lpovZ1bmLjsHhJX63rDot9LcCQwDkFJuFUIYAH8gtcYjvAZQq1WMHl+7hYA/+7+FDO0ay33jdew5mM6Hb6Xz8NMTqt2fXq/hmVfvYO6vGyksMHLj1K5VXh74/rNFvPWkHW8vZWn1tY93kZrSps4zVFeWwwcTyckppH2HsEuWLqpN1GrVJXMR5WVbFEWrCJXJQHqqkpjX4CnIl/ZinwncTfj4Xv1RoOOuv5UzHU6RnpFCk0YtlNxdkdC1Y3nF22qyFi85Orl6ad+pEe071Z5/38H9sWxcMp83HtFTaJQ89tqPPPrC9BqVV7t9xhDWr27AG9/F0KJNJHfeXbVlq53bThMdeJqbRyv+aafO5vLLt2uYdvfQao+pNklNyeXEsWQio0Lo73O81iPEL+bvqQTQVGypzS/MQ20pURPUQo3VolioQ0PCOKfdgZdNsQIVaHKJbnB1pjkqTaPwaO669yFOnjmKv28gjcKUlBKz7nykXNvc3Gw0Zl2t+GhWRtnaCTQRQjRCUbJuBm69oE0cMBD4QQjRAjAAaTUf3n8Xa/452rfU8NHXWeTmOchKtZQxfVYHV1cdU6ZX32lZhanY+RagZbQkOTn3qlC2PnxrLs1CEmgQJHnrfzrufWIygUGeLF+0kyP7j+FAw6Q7htOgEskna5PrJ7bko8378coMxyEdyMYp9LpOsSi++OFQHpy0gIJkPbiZmfFMpzqtZSelZPmaBcSdPYOLuxvjR0+qth9Vo4bRNGp4+TQXLVu1ZeeZ7fiag3DIGoQrObmmWLV4G68/rGfZ2kJ27TPROFSwcd1hRo2pWfGA6wa14bpB1bOcnEtIo0+LktWB6EgtWRmVT6pdl2zecIQ9/6xiQC87q/5UE9S4B80GetPKtIu4VYlYLToSgvvg27pHDY5SdX/P8JBGWAOM2JOUJbZMfSqdisrmdOvYh5OnjpF8QvEy8o/yp0/3i7vp1Aanzx5n9ZplAPS/bghNG1cveMPb05cu7S6/KtM0qgUrAxbjSPMtzllYXS6rbEkpbUKI+4AVKGkdvpNSHhZCvAzsklIuBB4FvhZCPIziLD9V1lcdoH8JhUbJE69k8MS9PgQHanj+rUz27IyhUxXqIdY2PoEN2LnvOF3a67DZJOu2aXh4cN0X674cBw8k0Dw0nsnjlVlzz84OXvl8GS3bNUZTsIU3H9NjNDp45NVfeOKlGcX50a4Eg0Y0x2yyseT3Y6i1gldfuh4/P2XpMCTUmz/WTSEjPR8vb9dKlXy5FEZTISazEW9P3wqV8gVLfydhUyIeNh/M0syX6f/HQ/c+W6d+K72798fhsHPk8EHUWhUcqrNDObmKUGk0fPJdNhENtTz3sC+bdxr5Yf7+GitbNaFDp2j+mLOd/zVRJq1zl1ho27lZvY2nNP8s38AH/1PkUv+e8PDL2+nRdxr7Zi9j7vOu6PVmPvx5AWuS7Ph2rN41rI6/p15nYOaMB5n396+YLAV0atWZvj2UCbsQgskTZ2I0FSq+mzUMgLHZbeTkZeHp7l1hjr7ElAT+/OVXgrOVQI/5ib9zy7SphIfWfpqG87i5ejBl2l0sWjwXh80BFbsyV4pKLVYX5cxaesFv/yv1/yPAf9h5p/Zx84ukRzMj4Q2Vm+7N53x56r2t9apsTZk+mG8/szJ/dTJGs4qJ04ZfUcXlYuRmFxJaKlm5UqbExpF9R3nzMWV8Li4qxg4xc/BAAt171uwaWiw23nt5HYmxuXToHsId93S/pMIyclxrRo5rXeE2IQT+AR41Gg/A4hXzOLLzIGqbFnWAYNb0hzHoyy7ZxMfE4mlTljx1Qo8jXZCTl1VnJXzO07fnIPr2VGa8Gx5bWafHcnJ1cNu0Ibz93BEemK4sT/Xt7srKjQXY7Y5yASBXiohG/nToO4zH3tiETisJa9yK8TfWbfmfyuLmIim9VuXlIdm57TR3jFGj1yvX68HJWra+uoWmw8Mu0sulOeeaQ7JeWZLcunI765YfJzjAm7GjbsbN9eIyyNvTlzunXDynXG1UpohNiGHObz+gKdBjczEzavQ4WjVvX6bNjl0b8ctuUCxr/XMasnXHBsLH1p2yBUr6iZl3PAjA5sdWV7ufq8Mz0Ek5+vRrRUH8ieLvDgdIWb+RMyqVihn3jbqix8zLNaE3aC7pxNquQzjvvKilewcHrq4qvv/DTJvO3dm/8xgFhQ7cXBVhlZAkaBJe8/QD90+eR8ZqX1xkCIvXZJCWsoYnX65b8/mlSEpN4NiWowQVKjM+S76JeQt/ZdKEO8u0ExpRZinaprGUU8icOKkN/AM88AvwK/ObzV79CMLaonuvZnTvdeWsWRaLDYvZhrvHpas3CH0g+4+co11LHWfibWQVeOPv70n8WTi/cJiTayfQxUh/7+qZV877gG1Zn4R10zFCjaGYzlj4PPF9HrzvmXqt+DB//m8EpUQqsqkAliz+u5yy5enpQ4IqGZ1UJtAWYcTL6+pIS1IZ/pXKVk6OEYNBe1UkE60u7TuF8+o8b0KCcmkYrOKjHxzccGv5Ui6VITfHyE9fL8dsMtK2cwsGD7s6ZnOXorDAzNsv/UJkgwIysqBRyw6Mu7lPhW3dPQzc/ehtvPTZcgQ22nTuxqCh7WnTLopHX/2JMYPNJCQJErIjGNWiZpGihQVmkg/b8CyKInQz+XFg09ka9VlT0rPS0BSWOOHrhIHCvNxy7UZdfyO///Ij+kw3rK5m2vXo6FS2rkLMZhtmkxXPGjiTXw00b9+eL3/ZyaiBajbvsuPboFm1IqqllPw9dwtnTpzFzcOT22cOq1Pfxtpizk9rSYo5iLenICHNkydevO2i76R7Hx3Lz9+u4relqbh5evPY88PR6dR8sCqUwj8SCfST/L1azyPP34Kve3UnjEpUs3nnJsKKogu1QodI1hGfeIao8Lop8lwZHOay/sjCLLDb7ajVJa4VfXsO4siR/WTEJoMETTgM7DuiPoZbLa5dbeQC4mIz2LXtBGtW7KJbO0l6piSsaXsmTOpXr+MymaycjUnHP8C9SstFKpWKZ16dwvLFe9h+Mp9bZrajYVjVl3usVjvvvPQjrz9mx89Xza9/b2DxfAujxnYr3m4stFwxwf733C3EHDsNQsuUu0bh5qZn7coDSCkZMLhNcRTh918s4/l7jTQIUpSI977aQ1xsS8Ij/CrsNzjEu0yCVoCgYE+eemUGhw6co1kjV25oHoyUkm1bTpGanEXnbk2qnC9Jq9MgNSWO3lJKUDkusUfdE9kwCrNvATLDHyEEudoMWkS1qKBdY+574HESkmPx8fIn0K/mKUqc1A5Go5VN/xxl8z+HcNekEuCn4mySB0++dFu9KhZSSuJiM7HZHDSK8quSsjR6fE/27QlhztrTNG7WkKkTqmdR+vnb1bSPOMpdj+qIO5fJ2y/+wvNvTEUIxVKbk2PEw8NwRZYnT51IZv6c1aiEpFufjvS+rhU7t50mPjaF9p2iiYpWLC3HjyWjNR3gjacUi9bZ+Hx+/Go5M++veGVArVYxdWb5qMiHnp7AsSPJ5OebePb1hri4aImPzWDPrtOENvSnc7eq53MUWlG2SL3ahl5fd3VTK4O7nzvmZCN64YJNWtH56MooWqDUULxnxmOcTTiNRBIZGl2uzdXMv0LZ2rzhCAe3rGLMENAXmjBZJI897c37X+/j7JlWRDbyr5dxxcdm8O3Hv9Gvq42NsQLfhh248ZbLl3I5j0ajZtSYLpdsY7PZ2bb5NHa7nW49o8sJ5tMnUxnQ3YSfr/Iw3TpGz1PvHoWx3Vi6YAeHdm4jyB9OJxh49PnJ1Q7NttsdbN10EovFTvde0cWZ90vz3KPfMbRnJjMfcycv38Ejr/6IQwpm3WJBo4bXn93Bky9Pw8PTgNmYR4OgktuzfUsHCXGZF1W2Loarm56uPUoE0qfv/U37qFh6Rgt++WYrA0aPpl2HyEr3p9WqGXZbI5Z9Hocq0x0ZmsWDj136b1TXeLh5MeHWSSxZMh/hEEQ0jmRgv4pnfG6uHjSLqth/zEn9UJBv5o3/fc/UsUbChkr+WJDPfY/4k5qRzw9fLmfWg9fXy7iklLzzyhyahKSi18EvX3vy9CuTq5SXqn3HSNp3jLxkm+PHkok7m0qrNuGEVBAtnJl0lkG3KfIkPFRLVGge2dlGjAVmPn9/Dk0jrcSeE/QfOZBefatfWujE8RTOnk6mReuwCnPmbdlwnL9n/8E37/mj0Qje/2ol61bto0frNAa0VTH3750kdBxI3wGtiTubSqdSQZORYRrycnKqPCYhBC1alTik7tx6gp3rlnHTSDhwTPL1zugqu3Y0mz6c4/Hz8Ij3wKwzo4v0IDQovMpjq02m3DqLOXO/IzczFb27nmk33VthO5VKXa8WuJrwr1C2Nq3azHvPKhaRti31vPB2BmazgxaN7cSeSa83ZWv2t4v5v+dVxbOGl/5vL1lZnSusa1YdLBYbrz7zA2MH5aHTwavPuPD0y3eUcVp3c9eTllmyj80msdlUpKflEXtkK+8+p7TNzLLyzqcLefiZiVUeh81m57Vnf+SG/jkEuMDrz67niRfvKGMt27blBJjPceNIJXrRw13FdV3y8fKALu2VJbnn7rMyZ85Gps4cTFBoCNv2HKF7Ry1SSlZuUHP7Aw0qPH5lSTyXjZ9LHONGFNWxfELy+JvraNfhjgrbXyzVxj2P9WHgyGROHE2lQ5eeNAy7MtnEL4bDYScqoin33/Nkpdpn5qRz4vRRgvyDaRTepI5H5+Ry/PnrBp67x0p4Q+V58fdR8/vCfG670YPcrOx6G9fq5fsZ3jOVgb0VGdEzJp85P61nyvTa80/84+d1qAoP0Lmt5K/vBZ2uG0KP3mWtskZL+Zq1BoOWz9//gw//JzEYFEXswRdX061nswqLdF+Oeb9txJa9mx4dYNkcQbNOA+g3sERbklLy3WfzeesZLzQaZRwPzzBw452nufV5xZr1zH3w6Gtb6DugNa3ahDPvO0GX9sq412+xENm45grN2mUbefdpHUIIWjaD1z4+TU6OscJJ8sXkl2d4MLd9/RKrlqyhgcWLRqL26w9WBSklOq2WqZPuqVR7m83KoeN7kVLSqlkHdNryE/urkXpXtux2Bz99vZLsjBRUalem3XM9Hp5VM2nqdWWzTLi5Ch75XxoeHhrM9uXkZmdx/bia5CepHgadvTiSBCAiFLKzCmtN2VqyYCczJxbQsY3yoEVHWJn98/oySfrCwn1ZVBjJL/PO0KSR4LdFKiZMHUJSUg5tmpVcN18fNTiql+J75dJ93HZDHj06KeNo1tjGFz+sYdaDJTOuYwfP4OkOFotEp1MEwOmzVkYOLhESnh4qLGalUPgtt/fn608KWbgmiQKTYMTYofj7u1drfOcxm214llrJVakEugqe0707T7Poz+V4ezrIznflgaduwdu77N+sWYtgmtXQ/6ummC1GPv7iLUyZJqTWweBhI+nQpusl9zl2+jAL5vyBa5YXFoORRt0aMe76C9PmlSUtI4XZc77FXmBH46Zh8qQZ+HrXzwTmamT7luNsWr0dh4RBI3tXuVSXsdCEj3eJguDro2bzDiP7D5kxuOTx+vM/8/j/bq1xapCqkpaSRd8+JfIrKlxD5sLsWuvfarUTf+ogbxXVO+zSXvLoaxvLKVuDR/bn+XeWcMNgyb7D4BPaGhcXLa46CwZDqfGFQXa2scpywuFwEHNkH+88q7x3OreHR17dXEbZyss1ERIkSEiy0qKpIjTSMuzotGWXLs/Lk5BQb7oOHMajr23AoJd4+Ddh2qzeVRpXRei0ZcsWebqD2WSFUspWQb6ZD974DQ+XPHLzVfQf0b+cxc/Ny4uGXbvgmgCiHipRnGfR8rkc3XcIIQUNokKYdNP0S0Z2W6wWPv3qHUSsDiFhXdhK7rnrcQyXWAZ1OBz8OvdbUmOTkSro2bcvPbpcefeiele2vvxoEaP7xNKhtY70jHyef+UXXnpnepX68G3QiBXrjzL0Oh0nYywsW2vi188Di5eh3vhkB4nnWlRooq5LvPxD2LbnJN07aikodLBtv5bBt9SeFaQgr5Ag/xIB7O+rpqCgvMJ0zyNj2LcnjtNpOcx8tBH+/u7k55n48Fc1Y4ZJVCrBwWNWPHyrN/MqyDeyJ6GQ5WvysVolt03wwGQ0lWnTvHUkOushHn85jRED3Th+ysqZFH9+mFtIq6YOVCrBi/9nY/I9ilKsUqm464HaXT6JiPTlh8/dGdS7kLAQLT/NNdOkVdlgAYvFxpK5S/n4JQ1CqMnOMfH6x/N57PlJtTqW2mDrP3/hecoLT6HMrFctXkrzJq0vGYq9asVigrIiFIFm9uHUvhMUDiq4ZI6cX379Gu/YBkqB1lQ7P8/+mgfvfbrWz+da5PDBOA5tWcabjysKw4vvL8LDc2KVSnYNv6EbL38YwxtP6nA44PGXMmkcqeXFx5WlrBMx2fz8zSqm3T2sTs7hYvTo04pv5hzgxUcUC8kXv1jo0799rfVvtdjwKjX5EUJg0JdPz9i5ezSh4VM5dCCWZj0CipfVpNqLhMRUGoZosVgkR05rmFiNCgx2u8RqsfDMazlotYKmjbUY9GUTNXt4GkDtytpN2aRl2PFwV/HlzybCoxpy9GQezaM1LFhhJTi8REHr1rMZ3XrWbuRjWOOmzF2yl/EjdcTE2Tge68lNgWV9gb/5ZCHPzMonKEBxKXnyjdW0bR8F9ZNx46IcO3WQk5tPEGRSoqhzcrJZF7KcAX2GX3Sff7asRHfWHXeUv48xroBV6xdz/dDxF91n2eq/ydlTiJ+9IQCblv1D46imBPrVbKWkqtS7smXJT6FDa2U64O+nJiq08KJm0YsxZfpgFv3lwZPvnsHHz4fO3bxoEFSidLRrbuWvP7Zy38MX/yPWBbfPHMJP3wgWrE3E5tBy7+M31OrsdMCQjrz32SHeelqNWg2vfmxh+E0VWzbadyyrSLl7GBg3eSwPv7YcN4MDrWsYdz1YvbIVAnB1U/PSNB9sNsmdj6Rx49SyPkPdezVj++ajxCUe4cNvzbRo04S3PppAfFwGL32+DpBMuqs/YeFV88mqCiqViqdensKP36wkLyePTt1blctGnZFeQIvoEvO7t5caraidon6HDyTy8aubkXYYeXNzbphQsxpitkITOlGivGsK9GTmpBNquLjSLByizMxR7dBgsZovqWzZ8u3FzrRqocaWf20XlK5N1q3cy9N36oqv6b23q/l+8f4qKVuRUYGMuW0iz334D0II2vZsyaC2e4u3N43SsuP1A0yZMbhaS2TVpVHjQLoPHsXjb25ErZa0796dTt0uXzWgsri66UnO8uZMfC6NwjRs2GbB3bfiHHgNQrxoEFK2FMysh8fx6f/9hcqRQ4FJw8wHR1cr2rGw0EJqmpEfP/RDqxXMW5zHudSy11kIwZhbR/LZe3M5cMyCzuDB6x9Nxz/Ag9nfr+OHBRm07tCEW27vWOXjV4Xxt/Zh1TJ3nnrvOJ4+Xjz18uByliCHLZ+ggJJXe4eWDs4lZKGt4SqmxWpm7t+/kJuVg4+/L+NumFSjdBFn42JwNXoWpxdzs3kRF3/2kvsYCwvRypLyOVp0GI2XtswlJZ7D3V6iPOtz3YiNj/nvKVsFJoHDoVhXAFIzqNC5+nJcP647jFPqE/7w5Qr2HDxGxzZ6pJRs2m5CpT1KfFy3Ch0f6wqVquIIk9oipKEPN027mec+XIfEwfCxfWjaPKTS+7do1ZBnX7u0FXH71lOkJGXSuVvTi1oGY2Nieesx5WbWaAQzb/MgvsBaps2m9YdxU8XyzvPu7DssOZakmH3Dwv14+OmLz0pqGxcXLTPvH3nR7f4B7hw6oSq+J9PSbdjwrvFxU5Jzefr2lXiebUoheby6eR0/fLmVibd3ZNzNHaqlhBs8PTAmFeCCG1JKrB4m/LwvnXcmunlTjiedwNsSgIlCtEEavDx8WLV+CccPH0YKyaBBI8oUk1W7qnBkKNFLDulA7XbtRADVNb7+XpyJj6Vl0dLSmXg7vv4XFhK/PE2aBfPIs4q/ZHxcJgt+2UOHoj/BP1sK6dXJzs/frOKOWVfWutWpa+M6TaT8+P9u5aevV5CbnU14ozDuvKfi9C4V4eKivayPaXxcJnt3nSK0oT+dula8vHtofwLTJ7mh1SrvoBtHebDjWNnJfn6eib9mr+DlR/UIoefTX3S4uxvQaNTcPuPK5tgbPLwDg4dfPH2PRu9F3LlzhIcq/q47Dqi4f6QvyWRedJ/K8N1PnyKO6dFJT46dOMrzBx+iS5de9OsxCH+fque7atq4BYfcD+JSoEz0cvQZdGlyaTeIHl378e3eTwnKVKxhaT7xjOh5FwlJsSxY8DvSBiERDRkz8uZixTsgKIjEo8m4OhQLoNm9gLDQyCqPt6bUu7I1euJQHn11AQN62Dh4XEWLjt1qbP2ZPH0w90w5QLvm+RQUOhh/vQdWq+T0yRROnzjHjg3b0GolIZFNmTj5uir1nZ9nYsWS3UgpGTKiU6VTJphMVr74v/lgy6LApGHSndcTGVXzhGxR0UHlUh7UFp+8O5+2kbF0jxb88tVWBo8bQ5t2EeXaabQGMrOyFb8v4HSsILRdWTP8lrVbefcZZakluhG88mEM+Xmmyyb7uxzJSTmcS8imcZOAcn5V1UGrVTN+yg08+PJSPN3sFFo9uf/xMTXud93Kk6jPBpNHFmkkEWVuh2l3IW/t3sKyP4/zzV83V9lq0b3PWA7p5pOReg6hhRtvuOWSvgsAwwaNwc1tDcdPHMHXy4vRI2ewbfdGDq8+hI85ECklC/+YS8A9Qfj7KvfnLTffwW9zvsde6EDjpmbsmJv57Jv3MOeY0LiquWXitOK2/zXG39Kb15+LoW+nXOx22H7Yl6dfvvQL43KEhfsi3Jpz71M78PfV4Out4pFZ3jz9XjppqXl888lfuGjNWKUbsx66sco+rhvXHSHubDIduzalRauGld5v6YIdHNm7DyGgcavWjBnfs6qnVg69XsOM+y4++akJO7eeYPuaZdw0Cg4clXyzM5rp95aP3PMP8ODYFsGAohoo2Tl21OqylTHm/7GZp++20Shc+f2Ze6zM/X1TjYMFCgstHD+ajLePK42iascPcvp91/PR23+gV2WTV6Bm5I0jlaCp/Or3KaUkLzUPf+nJCfYTRhN0eXp2r93OoV17uePOe6pcNicqoildhnRj97btIAVRzaPpeRlfqgC/IKbcOZPlqxaAlEwaeCfenr589NGbBKZGoBIqEhOSWaL9i+uHKZP464feyA8ZX5CaEA8qSddePdmxazMxR08iBXTp0ZPe3auXw7Iq1Luy1bptOOER0zlyJIlWfpJWrSpvmSnN8kU7Obz/JAZXN6bOHEb3Pm3oFHWUtRsLWLq6gBNnJDferiJm79ril/5fSw+warlXpZN85uWaeOuF73j4DhsqFbzz4n4ee3FapZY8v/xwATPGp9AoTIvVauGBF//k+bdmXdFlgaqQeC4bX5c4xo9SBPnrT0qeeGsdbdpNLdd26qwRPPXSjwzqYSY5DbIsjRjWtqwQ12jL+mK4ugistprlp1ry93YST26jfUsHXy/UMHjsKNp3rHnphlZtwmn15qyLbpdSkptrwsNDX+lliwahHthd4kgzptOYVggh0KIjQIYQt8XEP2tPMnBI8yqNU6PRcueU+6u0D0CfHgPp06OkIPnRowfwMSvKkhAC92wfjp44SJ/uSpsGQQ155MHni6ObPvv6XfTHPXETvjiknZ9++ZJHHni+yuP4N6DTaXj+jakcO5pEakout/cOKrbSV4XYM2nMnb0GkAy5viejxnZj2ZzjuOqMZGY7eODZNLwaNOCzd3/j7adsuLmqSM/I5vX3/uSplyZX+jiff7CADlFnmdBPxR9LDpJ4rh8Dh7S/7H57d52hMGUrbz9VlAfvj51s3+JX6z5JtcmaZRt5ryhyr3VzePWjiiP3mrUIZsOaaD749jShQbBqs45Hni/rBmG1WHF3Lfm7uruqsFjKWu+rSnJSDp+/+wsjrrOwe5eKNfZopt9Tc8XTxUXLEy9c2sfUbDRit1qByi0DCiFAC1mkEUhD3IRiJWoi2xKTe4TlKxYwc9pDVR5rv56D6ddzcJX2CQlqyLTbSlJDxMSdQJflWuzq4GH3ISE2rni7SqVm2m33FsuvLTvWcXZTHD4WRdfYtmIzYQ0jiGhY9ZxlVeGqcJlLTMhk5V9LyDu7mO8++Jo1K/dVaf95v23Ew7aFtx7L5Z4J8bz1wo+Mn9SPL34q5H+P+vLSE348OsuDhXP/4cbhJQ/M2OFaDuw6cYmey7Jg7haevttOi6Y6mkXr+N8Dkr9+21CpfaUlm0Zhyo2t1QratbCTmpJXpfO8kphMVrwviNzTaiuuLe7l5cILb80gqOVN9Bo1mbsfGl2uTVhUM35fZEZKydGTVuJSfWoUlWm3Ozi8azvP3q9n5EAX3n5Gw9K5q6rdX2U5eTyJFx79lAU/fM3LT3zKwf1nK7Vf3wFNaDICrJoK/L/sKiym+vOD8vL2wUSJ34NJX0hQYHl/hvO+IeYcMxqh3MsqocaW58But5dr/1/B4ZDM+3/2zjo8iuv7w++s78aFKAkegru7Q/HiBYoVKxWKW5HiLbTfutMWCpTiWtzdLXiAkJAQ9/Xd+f2xNCEQF0j76/s8fZ4umblzd3bm3nPPPedzVu8nKWQvp3atYtmCdTax21wSGZHI79+vZf578SyekMDhbZtJTdYREulI66Zq5k1x4+MP3YkKf4y7sz6t/JS7mxS1LPdjiDbVgKB/SLf2Skr6yJkwUsnFE+dyde6Fszfp3zV9bd6/q5xzp27l+tqvAoU8o/SBk4Ngy9zLhJHvdKF5tzcpEdiH2UtH4uqaMYaxU7eGfPSFBZ3Oil5v5aMvLLzWrWGB+vf7TztZPlOgazs1bw9R4iK7x/3g6AK1mRMWs4XHv31L4u6xOJ2dQ/iVdbk+t1W79sTbRWX6N9Ga++e9sHF2csWsNqZ9NolGVHYv1uz9+1m4c/cmjob0cCK7ZCfu3LtR5P0sFsbWxtW7+HyujEGvK1k0VcHpg0exWnPv9XgUfI+enWw317OEjAbVdVy68IhuHe3TUoPr1lAiseo5fzX9obh+24ynT4lcX8dstqBSpr+8KqWQq0kmNcVAYooUrTb9O917CK5uBa/TV1SUKu3G6at2hEXYjIBVGw1UqJK1YKBcLqVSFe8sY+L6DGyO1akF0z91ZeeZSkydm73cQE4Y9CZcndM/C4KARl30L/wfv2zj6/lSJo1W8PV8GZtX78r5JGz9W/ZjD2Z905wI55uYRCPJYgKxROJSzUCLNq9O76pbp76YyqcQYxdOlOMj/OuVJKBs1r+1RG2L3YKnCvoq8R+l5FzY/Ln6KGP6JzHyDSXvDFXSsVEk+/66kuvzD+2/zPjhAgqFgEQi8OH7SvbsPI27s5WaVW2eZbVaQv3qFp5Ek2bImc0iydrcb05YLCIKeUavW25+NrPZgoubC2cupS8Izl81U6pM8a5A4FemApt22aRk7j8ycyvEgRIeWVfxKOnnQuWqPpmKtnr7OjP0nUHM/96Dj77zYMi4gfjksfrE80gEMxpN+hTs7ysSH1e0Mgw3Nx3m07ciWfABfDNHSrf6F4mMupurc+vWaMSECbPQeSWSKiZhEo3c4zoKjYJGjXIv1l3YuDq5U7NZLSKdQ4ixCyfRP5LePbP29vr4+KGVpZcz06mT8S9Zusj7+cq3EQHs1Bak0vRBwMsddFpTBnHO7DAYyRBkHx0HFRs5s/dk+jE6nRUHZ0dWro/gyvVkNGqBY2dFvl3VJNf97NyjIQs/vsniaVYEAeZ8ZmHUB9nHLfzw5XYsKfcpWcJKz+HJtGnhRHiUQNN2rYp1fS+p1Ja5t+LHvaQmp1CnYRU6tC1Y9lyb9jVztWWRGzR2Sh5H2xMVo8XDXcbVmybkGr9CaTs7HO3MaYaFIAi4OJqwWq252k4UBIEefWoSWMWLH/93kvt3Y+lcpzQTPmydVqboVSCXyRk3agoJSXHI5QrsNdmXlerfbyirfv8BMQVEtUjvPsVPFuNlEh0ZR8Wy6UNppfJSLh+IzfX5dvYaouOslHmaLRaXYEGlVhOXkozBYEzT6rv/SESQOTNs/EOqVpRz+qKRDj1yXxvOwVFFdEoJLl6LoWYVGWu3GilVIfvsuYtn77Fj/V8ElBFZsSOFvw6ZKOGuQGv1Zvy0gsWmFTV9BrVgz057pi67i5OrE9MzydzLC37+boyfVnjJPOUCy7Nl93l6dFSg01nZeUjGlHlFa8CaYuOoFpA+7zStC38deJzr812c3Jj0/hz2HtrOtRuX8XPyo2XzDgSWq1IU3c017Vp1pWmjNmj1qbg4Zl9Wqm2LzoRHfE/kgxCQiATWrELF8kVfVaNYGFvI3Lj74AkVyshJSLQQ8kSVa0MLoGuftkxdvJnenazcugcmeXnKB3hyvUJdZi87Txl/OHtFjpuXC98vTcbNRYrZAj1eM7Fr61n6DsxdBkwJDwdGTRzCspWHEUWRt95vgZePc5bHnz55l4re9+nTxfZduraTMHFuCgs+G02p0sVfFFKjUWQQJi1uTPpwIF98swOLKRVnNw/GjG9f5NdMMdgRn5CKi7OUVK2VuGR1ntPNAyt7sfyH14uoh/lDEARcnHInu+Hp7s2k8XMwm03IMkn9vn3vOg8eBRNQrhJlS/0zS2vkhWYta/D96p28M9SW/bziTwutuud+8unYpTYLZ14lLj4JtQp+36Zi+ketiY9LZfxHf1C/hoHgEPApXxv7iItMm+dBfIKVCWMEJi25RvfeuTd6Js3qx4a1x1m/P4q6DSvRrlX2/dyxYQ9ffiRDEATGDXGlz8goKtVpSK/+BRfofBl06FyHDp3rvOpuZEr33o3ZsgGmL7+HxSpj9AevFfmiK6AKbNxroFd723VWbhFwdsxbrKhCrqRL+950af/ysshzg1qlyVZj8G8kEglD3xiLxWJBEIQXxu+4hBguXD6Nvb0DDWo3RSIpHK99sTC23p7Yk5++2oFBG4cFNR/MfDHmJzuqVPPDw3MYly8+oGQNVzrVsAVn9+jThMTE2sTFptJ+gAs/frUTZycparXt5ro6SdHrDHm6lpe3E+Mm5K5/oQ8j6Vg7fSVVJUBB/Roiq3/ewYz5Q/N03eJM0LVw4mKTqVHL/6UVtAZbKaL3pvR6adcDeGdyPxb+byMKSSo6kx3jJhUvo+llkpmhtX33Bu6euING50iQ3TXqtK9PyyZFbwS/Suo0KE9cfHOmfnwZiwWat29NhYq591DI5VJmLRrK6RPBJJktzFpUHrVajr2DipmLR/M4LIFm3e3Qao0c23YJiUTAzdU2ASjz6ByXSiX0G5S7LR+z2YK7swVBkD49V6BaoIzohxeIia6Be4nsPaD/FKIik7gZFI5/afdCywjMLbaMzoJndeaGcvZV6NIN/vj1LNvm60hMkRNj14aq1ctyITgyx/PrlPN8Cb18eWQW+hD+JJSVv/yAU6wHJqmRi5fOMHbEpHzptz1PsTC2FAoZb0/oUaA2Sng40K5j9Rf+3clJnZZ90rlHI0ZPXUH96lZqVVWyYY+Mt96vW6DrZketuuX5Y8s5Zr5n+7xpZwqN6qk5calgWSzFiW8/24K/2wPKlIT/LZAxdNwA/P8BXrv84uSkZsqcQa+6G8USURS5efm6TRFaALXWjotnzv7rjS2Adh1r5TqrOTNkMilNW7zoBVQoZGkGgIOjijNXFSR+HkdpPxkSiRK/Ity+kcmkRCWoSUk1YW8nISrGjNEkUqeySOST5H+FsXX+9F2O79lFpxZWTv0l4YJLTXq/8fJLubwsytlXof9QeKxL4FBMINowL7QGgOw9QpFhsRAc+a8zuJ5n154teMaWtmU2WiE2+An3Qm4RUCb/Bc7/plgYWy+Lg3su0KODkpaNZKzfocO7dOUstwH3/XWJaxfvUrKUF73faJovy7Z8gBdhddrQd9RWAsoIVCinoHYNBSeuv9rCxYXF/eBoPO0eMqyvzZhtVMfKrM93M3n2f8bI/0dEUUQQn4uJef7zf+SbO7ci8HDRM6y/I48jzSz7Hj77IfOY05AH0WxZfxSJREq/wa3x8HTM9LiceGdyf4ZN/J5S3jo0KglT33Fh9qciEzoVXaWHl8m+7Yf4dJZNHqJZQ5i66Apmc9NiK8lTGJSzrwIE0cr9Fr4OTtyJ1KMle622FLmMVJMmzQP2bzW6RKuIQPqYJbFKMZkLxzlSLLIRXwaiKBL/5C59uqoo4S7j7aEOxD95kOmxq385gL3xGIsnxNKwwhU+W7Qh39dt2aY60xaOI8VaktshLvy0yZsx43vku73iRFKSHu9n3jmlUoJMWjDtLFEUuXwhhONH7pCakrct3v94tUgkErzL+ZAiTUAURRIVMZQNLDr18f9vbN9wiKXTlXh7yqhbXcXAHlbOn334wnEhD6JZ++MaPhwVyeQhj/lq6W/ExuZP0dK9hANf/DwBR68amCUezP1SRd9hr7/ShI7CRK3KKA/h4gSGAsqwPA6L5/CBm4Q+Kphie1FSzr4KvmpnWjnfJsAzEodyV5F467P8T/A3oC0Jqf4a7kt0udp2/CfSrFlrIh0fYRWtGEQ9lpL6QvFqQTH3bKUk6wl5GIdPSecCaTKBbRJ/3jklZGFqRoXd44MBtvIbdWvI2XHgCUajOdOU4NxQ0s/1lcRoPQiOYs2K7dipzFgEZ96e+DpqdeFlQAZW8mLhKgWtGltwdJCydquBgCq530oJfRSHTmeibDl3ZDIpoiiybME66gVGUMINls5W8N70N/8V2xX/RgxGPVeCLiCRSqhRuS5ymZyBfd7ikPduHoU+pG6F+jkqQv+bsVisBN+LRqGQUqq0W4Ey4QAQ4Nkm5DIwZCKRs23jCRZOlqNSSVCpYPIoC7v+upjrWK3nkUoljHm/W357nW9MJgvffrYF0RhDik7C6290ypPifW7QOPty6sIDGtWRExpuIizaIdfJWUmJOsJC4/Hzd01T8T+49wr3Lh+mZQMr+zdI8K7QmI5d6xVqnwsLm4cLIIjHygTuGLIuM2WnSSRV64gWFSlyGfcf6P4V24p3H9wkKvoJgQFVcXMuQWD5qiiGKDh+6jAOGgcGtx9SoPqPz1Jsja3LFx/w14YdNKlt4eBWCZXrNy+QbIBEIkFu78+B4yE0qy9n+z4jzh4VWTx7JRp5Ckmpcga+1ZWy5b0wP7ewMZrEfKlCv0rMZgu/frOeL+ZKkMsFHj2O4vvPt/D+tD6Fdg2VSs74mW+y5Ie/sFoMVK5Zl85dchcD9+Unm/CwD8XFSeT3HzRM+2gIQdfCaVj5Cb0627Yl69WwsvCH3XwwvfD6/E/g/r1oPpl1GIsBmncuTaP+BVtoXLp2lpPHDyMIEpo0a0mNKgWPU9TptXz93ScowuwQBThW6gDjRk9BIVfQutnLLfheHNHrTSz+cCWNa6ag14tsiPBi4sx+BTK42nVuwpzlW5jxjoLwKAub99lRofIDTu7fB6JA6YpV6DWgGTKZFJ1eRP00VyVFKyLP50LxVbLi250Mei2cwPJyrFYz4+dtZsKc0fmqnZsVI9/pzLpVh9l66DFqe0cmz8nds3vq+E1O7t1H3eoiu9YJNH+tA/UbVeTMkZN89qHNWGvaACbMP1tsja2/+Xtb0Vd9O8tj/jbG7uCJoDSQgjJLg8tsNrFx2xriomNwcHagd483cywjlh2JyQn8ueE3jDoTnr6e9OzyRqHo+q3fvJLQ82EoDGqOuxyhe/8+BJarQtlSAUWSRV1s38Adf+7l8zkyBEFO7y4wft4xWrerUaDB6u0PuvHX9vN89F0o1WtXIPb6FWaOTsbdTYrZbOad2RuZt/xtqtWrw+c/n6B7ewmnL1px8qxY4D38qCeJfPe/9TjZ6UlMkfPm6J6FUhsxK6KjUqgeaEmrM+nvK0c0JRT6ddzc7BmfR2Po3OlgqpcJoU8X22zQtqmR73/cS0DlMpTySBcmtbeTYLX8e5IJckNCgpYJb+zE7m4FJIKEDZdCSUSBsmP+yqJcv3WZrb9voIy1EgA7H2/BaZQzpf3KF6ifuw9sxTGsBErB9humhCRy/PSB/wytp6z55SCTR2op+7SW3t4jTzi07zqt2+dfq65GrdKoVH1ZvOIcDo52NG/rjkJ7hEmDnpbQWXeR82e86Tu4FTMW/sr4YUZ0BpFv16iYubBgE74oinz/xXb0iaGYTALlq9WgZ9/caxTmB11yLIHln1YqkAg0rm0hNCSOipUKT4tKEAT6v5n3ungHdhzii7k2o693Z5H35x2gfqOKaFQiPBPzo1ZZ08rEFGfSvVxZEcQdAzQs6cdpQrEaVGhMwKMXRVhXrfsRwxUrGtEVrajj56QvGTdycr76ZbVa+fjTOZRNroq9ICPyQQzrzSvp32tYvtr7m+TUJB5ef4CH0R8EsI93Yv+enQS+XYQJJ0XWcgGxt7Nm3Et3FDGbrXkqUm21Wvnyk81gjMBgFAisWZtuvRpBN9vAc/nUSdzdbO3JZALlS1lITNTRsUtdbgZ5se10MGXK+zCsX8HVvX/4YiNLpxix08gwm628N28jcz8Zm+mxJpMFmUxSoBfU1c2OO8+EpKVqrehNNg+J1Wplz85LREfG07h5VXQ6MxGPY6hWswzePlm7kguLqMh4apdJ38P18pChS02hXoNyfDr/MLWqWlGrJXz9m4GGzWoWeX+KiqgnifzwxUYc1HqStAreeqc33r7O2Z5z+UIolmDX9DpfSd6c33ubJh3z14f1m1bib6mUNv576PzYe3gHpUqWxb9kGSpVyHryF0URs8WcqRtdr9cje6aumkyUo9NnUoro/ykJ8YmULpk+vFYoI2XH2fg8t3PkwDVOHjiGRm1Fb3Fh/PR+vDPRJj3z+cebmTMm3cvTpY2Un7cHU7dBeSbOGcGB3ZeQymTMXFirwOEDWzeepkX1h7RoZLved6vOc/2qP1WrvygkbLVasVrFAi9QLaKa+AQtLs62doLuSqjdwRbof+N6GOdO3aRkKU+q1SjN5Qv38fB0oWadUgW6Zm5xsLPwd8izIAg42tu2c62yEly9+YTqleTcDjZjEN2LvaGVFaIo8sOXO9AlhpGs16MPTMW1fc5e8YSIeFxFW91BpaAmMToaq9WSL72q0xePokrRIBNs75I9zty5eZODx3Yjl8tpUKcZCnnWnk6T2YRMKnvhNzCZjEgs6e+nIAhQxAVIiq2xZZW4cvdBFBXKyImOMROdaJ8nQwtg3aojvN4qnDrVbQPNFyvOcudWGQICbSsjrVGJVqtFo5EgiiIPwiQ4Pt17r1SlZKHGBzio02uayWQCJZyNWCxWTCYLny9dj0oST3SciE4nUqG0SEy8hJadWtG0Zf4sbaVSRvMObXhvzkF8PUUePFbwzpQeiKLIxx+tpUfLGDrUkDJ+zmnaNFNTu4qUdT8eoUXnrtSqWzgFOQ/svcyVs0FIZQoGjeyEm5s9AHUbBLDy6xNUq2Tbnl25wUCt+pVxdFIz+oNBzPtmNwIW6jZuRpMWhROc+Cr4/vMNLJlswE4jQa83MuDtb6hcyQmdXqBu80a07fBifFsJDwdw0MPTahIm0YiDY/7zWARRgpZkHLFlwIbxAPlNGdYrMoJUQdxpfJPur/V94bxT545y9OB+JGYpajcVbw17D5UyXUOtZbN2/HbrBzzjSwEi8e5P6FOvX777+W+jWauafLvqL8YNsQmd/vyHlR5v5u1ZjolO5uqpQ3w2WwFIeBAaz4pvd6bVHq0Q6Mexs6G0aWqbbI6fs1Ah0Gb8ODmpeb1f4ek3Bd96xKhJ6ZNau2YCuy+GULW6H9s2nuLW5Uso5HA/1EppXytyGVjlvrw35fV8Gxsj3unG9AW/U9pbT2Qs1G3WBGdnDQf2Xibi9hEGd5ey5a8rfLHdyKiBGm7fhu+Oly20+LLwsHj++G0vomimccvaNGpaKe1vqUYnwp8k4eMlIzTchNZke7/em9KLVT/vZ+2uaBxdXZkw458re7L5zxO0qP6A5g0VgJp5nx9l/+wLuLgLhCSUpHSVkZmeJ8rEDN48UWbNtzBoZFQEBlGftljUi1oSkuK5tfU2FsHCuXMneWfM1BcMrvjEWFb89jXWJBFRaaFL995UDkiXhnJxckPhJUUfrEWFhnhlNFWrFq0KfrE1tt6Z3IsV3+5CnxKHILVjwsyuaX87cfQGp49eQaFUMnhkR5ydM49pCQ99Qp1+6Su6lg3h/K2wNGNrxLjXmbT4Dzxc9ETHS+je/7VCES/LjGSdEr3egEolwWIRiYqXI5VK+O5/W3nnjVjK+Mn5cGkME6a6pK3kPpi3j1p1y6cFbAZdCycxIZXqNf2wd8h5D7xJiyo0alYJbaox7fiHD2Ko5BdN84YqEhItVKsoMPINW43G2tVFJiw6VCjG1r6/LmKMPsaSSUqSki1MXriSGQtHolbL8fRypEv/XkxZegC5XCSgam1atasB2GqQTZjZv8DXfxXExKRw4nAQ9o52tGpbGUeNDjuN7RVTqSQElrOyYJLNY7nwy6OEVS5NSb+MMiBVqvlQt7cj57eGIOgUqCokMXJOdS4AVouFrYu+IPzaI0SrSJ067SCHANUyZctz68INksUERESShXiqmxradLAMdty+EoS1Y8ZyQ0kpiRzbexCvhDIAGOP1/LlpJW8OGJ12jLdHSQYNH8G+gzsRBIHh7cfh6vzv1VfLK/UaBZCUrGXqJ5exWgTadeuUpj8XE53M6hV7MZuMtGhbj7oNM9/SDXkYR8Na6bVXy/jJ0KUkpH3u1LUO334WxoGTj7BawdGjAm/1LJrFSenyJTlxPpImdW2T2qGTIgG1/LhxPQxd1FmWzVRy5KSW8EgLA3raElqOnQlj07qT9Opv226Mikzi9s0ISpVxx79UztIRzs4aPlo2itQUAyq1bbwEuHTyPB9Ps42JIWF6vlvqhkQiULcmfPrjAyLCEwvsoU9M1PHD/35n+UwpKpXA5yv2IpFIaNDYtp0/fnp/vvlqOxZjEnKVB+9Ps81PUqmEoaP+mQaW1Wrl8IEbJCem0qRFZR7cDWVM93QjpndHOYG3UujX3YGrNx8y4/uNVHTt/EI7nV7rzrZNG1AkqjHZ62nZLv1+nL98iuNHDiGIAmUqlqNbpxcXes9SNbAml46f577xBhrsCech1a2NkAm2eT3pEZy5cIxmDdtkOG/tn7/g8sgbqSBDFEW2b9lA4KQqaUafIAiMHjGB7X/9SWJiAg0qNaRR3aKt71hsjS2FQpbpCuXIgWtEBx9k6SQl8QkWps77lZmLRmbqJvf19+bc5Rjq1bT97eApqNc23e3t6eXI3E9GYTZbilxXZcS4XkxavB4nez0JyXLeHN0DAKMukTJ+tv5JJUKaoQVQuZyB77/cxYTpPfnyk01U8HqEr7fIsnlyRo3PXSFUiUSSwTCzWETkT4vR6vQirs9cTxAE4qJiiI/XFjj789qFIJZMsg2Ijg5SurfREXTtMXXrlwaeeg7nDUk7PujaI7b8sRc7lYjG2Zu3xhWd4fs3CQlafvtuJxazntLly9CzX5N8r8JDQ2L59evVjBko8iRaZPHsi5hNckwmK3K5gMUiotWlb423bGDl7u2IF4wtgDnLOvLo3ViSkwyUD/AgzHQbEiDoh+2od+nwt/oiiiIXErfTuk71bEtUDOg9jJXG74l5Eo0gBw+jFzxbts8qpBU2/pvYhCjkKenPjEJQkZr04hZYSe9SDBv4dt5u1P8jMqsFmpKs54vFv/HJDAn2dgLLvt+JKHaiXqMXA3JLlXFjzW4pnZ/OI8EhJjQOPml/FwSBtyf0wGKx1Wotyvfl9X6N+Xp5FDsPPsZkgtKBtahRqxSb1p2gQ3PbM33rnoku7ezSzmlST8HCQUfo1LUuVy8/4OzBPbRtYuHwFilOvvXo3jt3nrfnswOfzSJXyIUMyUt2SiOnT9ymZ5+C1W08e+ouQ3tZ0uaV94crmLb8YpqxpdEoMlSv0GqNfLpwHRJrIlqjguFje2Rbyq0wEEWRDWuOEfogBKlczbAxnfNdwUMURZbMWU3nZrFUqyDw3bIzOHuU4cqNaGpUthlcR07oaNLA1n71SjLk5vBM26oUUA3/98sQFRuBu4sHDnY2wzc8MoxD2/bhkWybgx9Gh3DM+QDNGrXJtB2ACmUr0eq19pw7fQqzxYiHzAtJRPoDIBVlGE3GF84zpZqwe7r1KAgCMr2CVF1KWl8AFHIFvbq9PE3IV2Zsxcel8Nn8FRhN0LFna2rUKp2r8y6cupI2ibs4S3m9vY5rl0Op3+hFb0zfQc35alkcW/ZFoDdAlToNqVDxRU/AyxCw8/Z1ZvbSF92uMqUD4U9S8PGSoZALPAw1UtpPgdUqcvOOEbcSIRw/cpeyHo94s49tAmxcx8qcr3czadaAPPejTFk3Vv/kSL3byZQvLWPfUT2d25nw95Wz60Aqdatb+XT+SuZ+MiptJZkfrKIEg8GaVkQ3MkagfNmM3rgb18PY8sceFDIzt2/HsOknF6RSCecu3+f3FQd48612+b5+TlgsVpZ/tJLFky24ukjZc/gia38z8sbQ1vlq789V+1g2U4ZSKaFKRUhJjSXW2oL35p2hhLOBW/d0DO1jn3b8sXMS2vXJOtA3w8r/aY6A/kEs7lbb8ysIAnap9kTGhFO6ZNbB7gq5kreGvJf2edvu9Tw89hBHgxupskQ8y3i9kNnj6eaD0UmHGGPbCtAKKbh7lsjL7fjXY9CbWDL7F1QKEVcvPwaPaJsrQ/3s6WAG9zThYG+btCaNVjBt+flMjS13d3tqN2vD+/OOYK+xYhDdGD/txcLTBXlPc4sgCLwzqecL/14h0I8jp88RUA7q1lCyYUcy74+0LSB27EtlUE8Zq1YcIO5JaJp4aMvGMGnBeayvN8yXgRhQtSq/rDvDoNcVaDQSVq5P5s0+DkRGm7l+U4eX9wmuXfGkWo38x2/Z2at5Ep2+CElJFZE+F7uo1Rr5/n+bESxJ3LgZy9wJampWVaLTaflgwR98tHxMvq+fG35fsZ+apW4yrpeCmNgkZs5bybxlI/N1Ty+dD6FpjRjaNbc9l8tmisz4XzKrd3my8a9I4pIMxCVYeXv4012WO2aM0qzHLzu1PWVKZox1vht8A7skp7QtQSejO3eDb2VrbAG0atqBVk07ABARFcZvP/2AZ5w/Vqwke8bQoM6LwfJ2LvYYwvQoBRVW0YrFzoS9Jn/CvoXFKzO25IKWxZONiKLIjKVb8fQaipd3zq5fqyhgNIooFLZfLDZewLtk5rooEomE96YU79p1I8Z1Zemitdgrk0hIdGDc9ATqVpeQkmplSD9Hbt6D8PAEKnimv/hqtQQJ+RPek0gkTJ//Jn+uPsraPfEMHdeW8XM2Ub2ihaqVFLw7woUVfxgJf5yAn79rvr9XvyEdmTB/Df27GggNh+BIfzo/k0WUkKBly+pNfPqhHIlE4NgZNSvWJjNykBP1airYdCAix2vodCYEwSZBkVdCH8XRsKYBVxfbs9OhpYI1719gwJBW+fJuiVjSnkkARwewSO2Yt2wsFostI+mzxes5eSkGrU6gVuMmeb6/UlcVRtGAQrD1Wa/S4eKUt627bh37cMr9CLfv3CDAN4A2mWQPatR29Ozbn507NoFZwM3bjZ5d827Y/5uJi4nn4ykOyGQCh0/eZP3vcvoObpnjeRo7JXHPeBZ1OhGJJOthuGnLKvmO23wZVKvhz63rtZm08CoKuYwLl6WEhEZjpxHw9ZYxarATMz5LeUE81MkBTKb0xVhe6Pp6Q06fcGHut0H4+lXj1OX7BN0MwdVFyuJZ7ijkAh99d6FAxlajJuVZMtcDkykKd1dYs03O+zMzZql88+lG3nsjhpI+clK1jkxfGMMXCz1QqyWU8TWSkqzPNtzDYrE+DfFQ5mvMiQl/RJuBNq+Tu5uUwFIJXLvymBq1XkxayAm9wYTjM3KGcjnIJCITZvXDYrHyQHuDv3ZeZ9jsGJQKKfdj/ShdvTc8NnAhl3pbvj7+nFefw05vM3q0khT8SnjnqZ/eHiUZ8tYo9h/6C5lMxpj2E7DXvKjDOLDfCFZZfyAuLg6JSsLg3iNfeaLCKzO2XJxsX1wQBPq8JnL5wn06dslZELPv4A5MmL+GYb2thEbA5WAv2g7wyfG8ouTEkRucPnYFhVLF4JEdsowhywyNRsHMBUPSAgrXrTpMRY+rtG+hICXVyjerYeKHlfl0/lma1LNibydh5QYDVWrlP5VbLpcycGh6uvPhPZ7M+kCPTGb7TR5HijR1zL8uCoCfvxvjP3yLS+cf4l7RjvcG+Gf4+51bkXRsbkEisQ0WzRpo2H/ENgvFxFqQyrK+h38bLhpJBBaLgMSuVFrQcG6xd1DxIMQI2AwXs1lELtWxf88V2nWsmae2AFq2rc+Sr3cybZyS+AQra7crmbHQFvP0t+dh8ocFi0Wr+u7r3I5bh/bhEyyChYCqdXFycM5zO43qtqBR3ezFRgPKViLgvZk5tvXo8QPOXzqNq6sbzRu2yXcg7D8NJwcx7X1p2VjB7mWPcnVe/YZlWTLHHYkkFg83WLFeytiJrzbGJzoqmdUr9mC1mGjRth51GuRNFqTPwOZAc0RRJOJxAqu/X8ncyQqkUoHPfzbQvE1tzp68zoWrodSpLickzERUohNKZf6nn4ZNKtKwiW1LT6VWUqlEPI3q2N7l4BATjs4FE0IWBIFpc9/gwtmHRGsNTJtf5oXtTJmYSEkf20LPTiPBx1OGVmtFo5EQ9kRAY5d1ltzh/Vc5sf8wvp5wP0zBe9MG5lm8Wau3hYVIpbbnMCXVzOa1+6hRa3gevy3UrluaBdNU1K5qwc1VwiffGWncypZ5KJVKKO9Qlde6CDxuY6up6KMNQB8hRSLVpNVNzI465TwpXzqQCo0DuHkpCIlVwNnPmdfavegtzQlvj5IM7pd5cP7fqFUaRg0bn2NbeoOewyf2YNDradq4NW7ORefBF56P13hZVK+sFC8ftK08fl6TxLELdjRrU4eurzd84Viz2cLtm5HIFVIqBHgQH6/l3Km7ODrb07BxuVdmsR45cJ3dO85Ss0IC7w7X2GLIlkqYtfitfHlb4Nl9+IeIKHhzVGdKeDgQFZnE7z/9hYCZqrUr0a5T7UL7HndvR/DnLxvo2NzMrfsCEodqDBiSvWu3oIQ+iuPQ5pVMGm0z6mJiLbw1MZYWTZ25/VDN5NmD01SZn2fLhlNU8TxHk3q2wWzHfgOpyta0apc3DaP3Rn5Fs1opBFZQsGt/Kn272XPgSkXeevvFrZrccOn8fQ7tOYdCpWLwW+3TCqBnxq8/7CE+8iFGI9Rv3jAtQSAzglOCOJRQkTuRntS2q8Dp63exj1LgEKZ/pQrON+5cZfsfm3BN8sIg1SINEBkzfEK27+PgSZ0viKJYdNXfXxJ+vkox5IJt/EpItDBsQhJVagTw1jtdMxXdDAuNJyYmhYAAD1RqOaeO3yU1RUeDJhWzfU6KkkcPY9i64SR3g27y0zIH7DQCn3xnpGqjzlkG7eeGW0GP2b7hIBKJSL0mtWneuipWq5U1vx4kKjwCjYMTQ0d3yvcY+TwWi5VFH66iac14FHKRPSccmLFgSKG1nxULZ/zE8hmmNKO7/5goGtZ14kGYhDZd29GwSWCm52m1Rr5e/B2fzLQ9JympVuZ+5cCUOYPzdP3jR27x159/0r+HPbfuGpHLBR4+sS1y80NSoo5VP+/FoNPTqn1datV7sdRWcEoQj3UJHLvkxaOdR9EoTTyK96JSzVFIshEatXuqx1WnnCdmixmr1YJC/mpLPhlNBr74ZgmaUBdkyIlzD2f4W+PwcM96e7Qg49crM7ZKlFCL86aUIDw8FSdHgYljXVm92YDUrSWt26dPPDqdicWzfqV1w1RSdXD9gQdTZg945S7B337cS3n3m5y/nMzC6elbOTsP6JB4vE6dei9H76WwSErUcevmE7y8HTPNFLJYrEgkQqHe9/WrjxBx/zJeJQSu31XxztQByGQSXFw02V7ni483MXtMZNq2XVSMmV93VmDo6A7ZXk+nM7Hqp70kJyZTu0FlNHZKgk5up1FtCdUrK1m/04x/9S7UzmSQKUx2bD6Dr/oMHVraBtslXxto2X0AZctnLnL7vLF1/l4omjDbAPYqja1vf1iO+o5L2m8Vo4qg/zuD8PX0z/Kcf42x5e8kvjXQGRcHA9du6Fg80x2dXuTT35yZOjdj0O2aXw9gTrxOhdIie4/LGP7OAPxykY1XlATfjWTjb39Qr6qRUn4yGtaxGXyiKDL9U2cmzPxnbRtbrVaCrodjMVupWt33hThcURSxWKyFGp8bfDeSVd+vp2qAhbsPJTTv0JqKVUrh7KzO9jqhj+K4fGAVIwakGxszlskZP2tEjtfct/sSV8/fxsnViQFDWjN/6ve80c1EqZJyFAqBHzd6897U3oXy/bLiSvgltn5xgC/n2CEIAldvmpjyew08WmX9zGjCIDIslrJWdbEp8XPq/BHOrTuPE7ZwDotoQVbXzJv9s461K8j49cq2EX183UmW1KJ1swu0bGzbMhrYU8m05TczGFurfznA9LF6SpW0eTn2HY3m4L5rtGlfPdN2Xxaxj+8yebCSi1eSM8aQxQmUKl145SReFo5Oauo3LPPCv5vNFpYvXIe9PJZUHZSvUpPX+zcrlGv2GdgCbWpDUlIM9PFwyLUhV6dBIOu2hzK4l22w2rDLQq362SusW61WlsxeyYyxWvx85Py+6TBRyfVxKdWIXceC2HkUKlavk6mhdebkbQ7tPoZCLuJbugL9chGbkx23gx4w/BnNom5t4cTlB1kaW89yev02Lm47hsQIFQJqUatMR0TRSoo2BQc7h1e6jSeIFLkwYHHB1c2RfqNH8vmC7/hmqUfaVo5KmpjhuOioZHQx15n+ju1Z7djSyoxPdzJ13psvvc/PsvXPwyyZpuD4WQtxCen1FbU5xJAVVyQSCdWqZ66LuHv7OS6dOo2Tg0h8qjMTZw0oFK9XuQqefLj0baKjkunmZpfr2rle3k5cCJIyxGzbir7/yIRUmfO7v3HtMdzll1g6ScGD0BiWzX/CqPH9WPvLDuxUZqwSZ96e+GI4RXy8lp++3Ixc0GLGjlHv9cx31iKAGOlOu0bpQqHVK8mxl4Yh8dZnec7fNRWvXgxhz6c/Yi+V4eZdgn69hiAgoDNokcvkKBUFC1/JC6IoIohCWsC+gEBR+p5e3VslQKXKJYl+fCntnx4/MaOxt89wWFJCEn4+6d0s6y9w52LGAe1VMrS/I9MWxDCwlwOhERAU4k2HQYVXTiIzYqKTMZuteHo5FrmH7/ef9zOyV1xa2YwvVlzgzu0AAjLJ6swPGjslGru8uZObtKjMxrWxTPv4JlYrVKndOMds1kchcdSvmoKfj+1ag15XMH3ZTT6YNQzIuuxI6KM4zh/azfLptkyqrXuusnu7PR27Zr640elMrP31IEmJybTqUDfTfrl7uhN0O5oqFW339MwVkVJVc35mwk9dI/ans5RK9kEURc4/3s6dU0fR6lORSqU4uDjSp99gyvoXvOJBbmjarBV/RWzHPdkHnSQVZSk53h6FWyi4OOPsrEEqU6YZWqIokpyaMeA7Pl6Lv2/6CK5USlDILRQHRBGaN1QzbUEMIFLCTcaK9VLenpy9h7igaLVGYqKT8fJ2yrWBkl8iwhMJu32Sz2bb3vtHjxP55btdeY7xzAqpVJKrxK5nkculDB7dh4mLbUYSMk/GTshZiDXk3h3GTrYt0sr4yahcJhmNnYqZC7P3iH25dC0LPtDj7CQlJjae+Z/8ycwFQ7I8/uDeK1w+f4dSZX3o2bfRC9mNvr7ObNgt0P3pYxIdY0aikhHgmXXc1h08EaWp3F22hYAn5ZAIEh6FPmTOtUkIJgGDqMPFvgRV6lTLVGS5KKhdvSEnTxxBH6ZEiowYtzCGtS06KZtXuoSp36gcXy8vRdhPj3BxhNNX7Zj2kS1YdPf2c9y8epv4OAOLv9Ix8z0NVqvIj2tF+ox49ariJfwC2LDjJu2aS6lW2Y7v/nSla6/GTJhZdDFkoijy+dKNuKofo1LCnVAXps0bWKTSFbHRsQSWT39MGteGm/ciCs3Yyg2iKKLTmTLEwvQa0AzIvYdNqZSTkJyxTeOL8iwvcOn8PXq/Rtpv2r2DgmnL72VqbJlMFhbP+oXpYw34eslY/sNW9LqOado8fzNwWCs+mR+Jq8bmLSzhV4XOtbPedhZFmyLzk2PX8EwqAQJEEIKfpTxOWpsLPNzyEHWkA5s3rWXi+Nm5uCMFp1ql2tgPc+DshRP4uZSndbNORa6NVtxo27UNkxfuo1YVKxeuS+jU05ax9uhhDH/+vg+sZu4HW+je3pbccuikkRI+BatLWRj06NeSaUv+YPrbMoYNcGTqEgs9+zZjwuzKRRpDdvxwEKcOHKRSOSu/BEnpP/x1KlYqugSnkIex1K2W7rnz95WjT00qsutlhU5nQqmUpr0f5Sp45mgkPY/RRAZl9qRkEWUuPHROdlqcnWzHubtJsVemZHns2t8O4edwlUXjFZy78oT/LXnMhBkZjZ8SHg6UqdqYDz46RQlXuBsBoyZVwM4h60LWoihijntIZIoGiSDBJBrRkUKA3raLZRD1PE68z91Td3hYPZjSJYs2lANApVQxbsxk9h3eidFooHuTdyjhVnTzWq6MLUEQOgKfA1LgJ1EUl2RyTF9gLraNhCuiKL6Rm7bHTexJRHgiOp2RDgPdkEol7Nh8Bo3pDIsnKkhKtjBmusjERUoEiZTXenXBz//VxjsADB7RjuOHffhy3QMqVS3DvEGBbFl/iotnbtCsdY0CpR1nxeH912le4zEdW9lWaddvJ7Lu96MZMgtzS26Lo/qV8uXUhVga1bG9rHuPC7Tvk/fU4vxy6fx9tq3bha+nlZBwOaM/6EdJv7xLUnj7OBGv92fDjhACywus2QodeuRcNNnP34MrN0SqPa3Ucf+RGSfXzFeyQdce07FZKqVKqlmzKYnEBCObVm7k0f0m9BmUnv0nk0mZPm8ger0JmUySpbEsiiKLZ+zj5N5QtNZLGFwVaOUi9mYndKTiI5ROO9YZdxKIRW54OcZOUkoi8UmxeHv60a/nUACCQ+6wfdt6MAm4eLkysO8IZJnUVfw30bBJIFWrl+bx4wQadXHBzl5JbGwKv32zhuWzbHE0n/0gZdxcKd6eKnz8KzJwWMtX3W3KlvfkjdGD+GnbOVQaFV/82Jib10NZvWIfvn4edH29fqEbzqIocvivg3wxz/ZMDLGITFi4k5mLss8sy6qt3Ixf5SuUYPW3Uto1tx1//bYJJ9eXV+lAqzWy7KPVeLkmE58IVerWp0vPF5PAckObTs2Z++ku+naBa7dEzIpyuRKfTkqRpt0vq1UkKTXrxfmTR3d4f7KSew+M/LklkRRtAotnr+K9KX0zZGN27FqP9p3roNebM00I+ZuTR+7z6azjaFOuYXI3o9VYIRX0aLHHOe04paBCFEWUOg1PIsOL3NgymoxExoRjr3GgW8c+gC0z8affviA5NhmJQqBP78H4eBXeXJejsSUIghT4GmgHhAHnBEHYJorijWeOqQBMB5qIohgvCELOG9DP8HxphTtBt1nyNKbF0UFK/25SVCXbULN21oG3r4K/NXBEUWTBzFUM65lAxQ4yvln5gMT4toWujxPxOIbGzdIHwErlZazeFZvNGS9y7cpDNq/ehYujmdgkNe9M7p9tynGfQc357vNEth98jE4PDVq0zFWpjcJAFEW2rdvFVx9JEQQZBoOVKR9vznZFaLFYsxR5fGdST86cusfp+3H0GVEB31wo8NeqW5qfzwXw0f/u4uggEBzmyNR5L4qtWq1WpDIJBqPAyXM6DEaRRTNsg/rvmy5z4mgJmjTP6JHNKW5k87ornFulw0VbGRcgKjqCpMAU4sMSMepMxBojcRNtK7FYnmCPMzLnog+aOnbqAKcOHEemVWBy1jFg4DA83L3Y8MfveEaXtgmhPklho2oN/V7Pervi34K9g4qKgenbwGdO3GZE3/Q4zvEjlUxb7sSEWcWrDJWfvxvDx9o8cbu3nyP1yUkmD5Fz5cZDli98WGCpkufR682UcEn3MkmlAnbqvG2p6nQmPlu0FntlIimpEhq1bpptJq97CQcatGnPB/MPY6cWEeXevFvE26TP8su3O5k5NhVvT9t8tuirM4Q/DsQni4L02SUi1WtUAS+fQZw8H4xvaXdG98tdWbWu/Trx7uwdVK4gEnRXQu83X9yy/Nt7bjbb/v9/PyTwv/klkMkEIqMTWf7ZRiZ9mNF/IpFIsjW09HoTSycdxeFeAGpBwPjQQFLAI+5zH7lWQrIuFg+LL4IgoBNTkSBF65xIhXKZZ3EWFnEJMfy84itksUrMShOVGlShS4derF2/Aus1Ga6CD1bRyu+rf2LSB7MLLQ42N56t+sA9URTvAwiC8AfQHbjxzDEjga9FUYwHEEUxqiCdslgzqo+HR0LNKpm7toOuhfLXliMAtO3clJq1Sxfk0vni4YNYalaIp3Y1m+U/eYySKUvPFbqxZTBa+GFVEh9NdUUQBH5YraVR89zLHVitVjau2sHX86UIgoKUVBMffr6J6R9lPSEKgsDY8bkv7Lplw0mCbwRhtUD1+rXp0LlOrs99Hp3WSElPK8LTsgtKpQQ7lSnTY4PvPmHVD5vxcDERGSdn6NhelCn3os3foFHet3BGjH2N5CQ9BqMZNze7DANhYqKO/y1ag5tjKnGJAonJCjydYpk5Pt371quTnMUr7r5gbOXEhZOhaFLd0wI4nVNdsa/lhd24hqgjBO5u2Ub0k1DiE2NRqBRofOUM7Je3rYm8YjabOHn4KF6JpQEQo0S2bv2Trt17I4lXpN0bjWhPbGQ0ACFh99m4cTVW/f+P6HlHJ3seR4rUrGr7nJBoRaHMPC5Rm2rgl+/+wqBLxqukb75FdQtK0MUrLJ1q62PjugpOnI8slLJdz5KaoufUuQSSkt1xdJDyMNSEWcibrtGKb3YwcVgifk/1rWYvP0K1WuVwd7fP8pyGTQKzlGF4nof3o1izYgcapRlB4crYD3oUKK7MoEvG2zP9/NpVrIQ+invB2DKbLXy66E/sZDHZJiL5lXLLcyZrzdplqFLtbWJjUuhRwv4FT/qvP+wh9vEdpFKIilGw9BsdZUvJ0yQtPEvIkJH11mNWREclQ3z6eKkQlKhkdtRe+jaye6kYrj0g+NIRkuKS0ItaPEp4075dlyLVugLYuGUNbuG+SAUZGOHm6SAaN2hBVHgkXk93CySCBGmKnKSUROw0Dvy6+lsSnyQU6Lq5eYp8gdBnPocBDZ47JgBAEIQT2LYa54qiuPv5hgRBGAWMArL1KvQf0okJC9bQq6OBkDCByNQylC334g/w8H4UezduYskUBYIAc5ZvQa3uW6QxAJkhCGTIYvh7lVDYRD26Q5dWamYuikUqhTshcr4clX0W3rMkJekp559uvNjbSVDLs84gySunjt9CoT3H0im2Qfvzn49z7UoJqtXIn0dSY6ckJEKelu0ZE2vBYMl8C+/3H7fw5VyQShWYzSLj529m9tLRmR6bHxwcVWTm//vpy63MH6/H1cW2wpvwkQFRXZkjp0Po0dE2UZ28YKZcQN4Dxxu0KE3QlmAcUmzeqziHWKrWaUeinR1KFTRo3O2FNGqr1cLZyyfQpqZQq3qDXIuems0m7jy4gVQqo0LpwCxXczqDDpkp3SMnCAKiSWTfgR0kmuPwEHwBMIoGNI4aRFFk3R+/4fGk1NNB90ye70NxIbfjV5PmASydd55UbRQuTrD+LyWT5mTuTfl43u98OE6Ht6eMk+ev89PXWka+06VI+p8dzw9XVqttXCtMVq/YyzeLXfn4q3ikUoGoWAvNO+ctBMKgS0oztADqVrMQGhKXrbGVW0wmC798/SdfzJUilwvcfRDBj19uZ9zEvAtv/o1rCU8uB92mZhUFoihy6JSUoe+/uAj8fcUBRvSMoVIF23f76tcL3L5VIYPHtCDI5dJMA/lPnbiNv/MtprxpG7MPnzRw6EogN29eTdt61GqtaI15zxL08HREcE1FjLW1YxD1yDzUSGUy1PZOuPsG0K35iwblw9Bggh/cpnSp8pQr9WIZq6wIexJCXHwMZfzLZ6iB+DxmgxmFkG76yAwKLgWdJTY2ihJiSZsRBpiUBuztHNmw5Xes16WUwI+CjF+FFSAvAyoALYGSwFFBEKqJopjw7EGiKP4A/ABQo5ZfltaIXyk3Ppj1FteuhFKungOdK2cu6X9o7yUmvCVNK0Q69W0Fn/x2noqVcu+JyQydzoRKJcv1CrNUaTfWPnTj9MVYAsrI+H61maZtsx5EwsPiWbfqAKLVQueeTalY2TfHa5jNFlRKkVZNNLRqYpvEZ36St5I9Tk5q7oVI01SH4xOyNl7yw7mTN5gzNt2t3L+blN/+upVvYwtg5Pt9mbx0C3YqEwaLE29PyFxDxtnBhFRqG6hkMgEn+8w9YAUlPl7LL99sA1GPawlvJGIqri7phkn1QKjUtAV7d5zi3McPkEhAUPkxbmLeRWi79arG3aBojuy4QaqowL5ZZSrUr8P5e6GZHm+1Wvj2p+VYgiXILHJOHz/OiLdyDvrUG/R8/f3HSMOUWCUiijI7GPvWpBdqJgLYaxyQuIApyYhcUJAqSaKErwdhd0NxwZ074hXkKEhVJDHv9eVodSlItPJXrotXGOR2/BIEgalz3uDK5TC0WgMzF5VKK2j8LImJOsr6pm8xNa6rYOfhnMtU5YTJZNuak8tzv/1Ro0EdvvzlKIN6yrh8w0y83jvLShgWi5U1vx4iKiKacoGl6N6rYY6/r9VqxWS0aXoteKpLeOGKnqDovL2nGgcX7j1MonxpOaIocvKilKFNCyes4UlEInWrWpDLbdNihTJyTLq4ArU5+K12fPuZlj93RaLVSejYozNubi8ahnHR6YYW2BKRrt+LKDRj629EUWTdqsOEP3qEVZSjsnNkbK/056RZAzl7zmjpN6wX787Zg6eblfBoJW/nw+BUKmV8+GUrPp52lNQUBVZvkeoThkM2YgKHju/hwr5z2KU6cdnuEtVaVKd96645XmvLjrXcOxuMTKdA77qVAYOHUqpk5tuspcuV5V5IMI4mVyyiBZObnru3blPOUo27XEMpqtCRSrM6LZFJZSTExqEm55CTnMiNsfUYeDZKrOTTf3uWMOCMKIom4IEgCHewGV/n8tohURTZtO4ED++F4ePnSaOmWZcVcXS2J+yJhRLutq8RFmEpUJmGmOhkvly6lpKeeiJjJLTu0obGzSrleJ4gCEyZ8wY7Np/l4OV4mnaqTmCVzA2omJgUfvhsFctnyVAoBGZ9sh6hf18CAjP3xsXEpPDl0jV4uui5fz+FlevlvNnHgSs3jJgleXsRBUFg4MiejJ+/HUc7MykGO8ZNKrzakSVLe3HxehgNatkmjwtXLfiVLthg4efvlqusncQUFTqdCbVaglZrJTG18PVaRFHk0/mrWDrVjLOTlPNX7rDkGzOPI+T4essQRZGLQRJa93Vi9HtdMZstiGLeJr3nmTi7NT0mpIuaZsfNe9cxBIu4Wd1AAHW0Hdv/2sDwQeOyPe+v/Zuxf+SGStCABZKC4zh14QhN679YlFsQBEaOeJ8/N64kNTUFTx8venTux/JlC3AXvHETvbBiJcH9CRq1HddvXiLWFIm76POvMLhyQ9C1UPZsO4lUJmPA0HaZGlpgi9mLjku32URRJFWf/3skiiLffb4Nc0qIzSul9GPcxB65uu/tOtXiyiUXvt14A19/Tz6YnvXiYPnCdQzpFkO1QDkHT0Tz87fx2VZd+P6L7WjjH2AxmHnj7VTWfOOOTify059SPvgw9555gOFjX+OLjzcgF2NJ0Upo06U9rq52eWojK9zc7LjzIP1epWqtGMwF00yUSiWZFvB+npL+zyUiHRNo06vwY5TX/naQ6n5BvNdXQao2lbEzItm6V2DMYNscuvOAiWq1y1O3YQXqNCiPwWAukCZZnQalWHdoMFf0fpyLecCdSDXWbIyti6fPUkJbEgTQaO25cv5CjsZWUkoidy7exVNnM1PEWHd27NzIuNGTMz2+Y5vu7Ba38iA4GJlSxvAeb7Ntx58IKAgUamERLcTLoggoX4WklERiEqMoISpt42MByI2xdQ6oIAhCGWxGVn/g+UzDLcAA4BdBENyxbSvez0+Hvv9iO61qhTC2h5xL16P535IYJszok+mx3Xo1ZOHM27QPS0QqhZ1HHJi5MP+Cmz9/vYVPppuxf1rT6oOP9lOnfoVc1fCSSiV0751zlsnhfZf5YIStmDTAvAlK5n17ioDAXpn36avNfDzVjIO9AlF0YdgHSVx74ICXryfjp704GeZEQKAPHy4pvO21Z+nRuyGfLgrl4IknmC0CJqk/4ybmrYROfhk9vi/Tlm3EQW0gWadizPjM72dBiIlOoVqAAWcn2/NRt4ac8uWU/G+VPUpJIkkpErq/0S1tcMpOkuPS+fsc2H0KROjWp1WWxnZeMJmNSK3pyQECEiwWazZn2EhNTUFBunGqsKpITs46Pd5e48DwwRkNuJr16nDt8FVUWnu0Dkk0adqME2cPcXrnSXx0ZbjFRWRyOeRCbuOfzI3rYRzaupFFE5To9CKTFq7kgw+HZ+olUipllKpYk09/vEzNylb2HJHyWs/8B28f3HeNehUe8lob25bQwROh/LX9Aq91y53gdY1apXPUqzOZLNjJoqkWaHsHWjeRs/9k1nUh9++5TO1y9+ncRgko2LlPwqDxIv6l3Bk7KW91ZAEUChmTiijRQGOnpGbT5kyYfxQ/b7h1X847UwpHjysn/k5E2nEoHJ0e6jVvQanShZ+IFPU4lNb9bb+dnUbCa60EbkZUZOqShwgCuPkEMmRkTcC2sMrK0EpK1PHr97swG3WUqViGHr0bZ2vU25t3A+mGdbA8EXuJGZ4vYi0+14ZVkmPmqd6gRWpJn6MFQYBs8i4EQaBTux62lL+ndOnUmxXh32Af7YJZasK+ohqvEr58++1yPCL9CeEOomAtkGhzjlaEKIpmQRDeAfZgi8daIYpikCAIHwHnRVHc9vRv7QVBuIHta04WRTFvaXJPMSSF0ay+7QeuVVXOxt1PsrzZcrmUDxcP5fLFUESrldlL/AukOaWU6rG3S5+sAsqIxMakZJk5kq9rqJQkJKX/YimpVuSKrFcOKpkeB3tbnwRBoG5NNS17dsXD07HQ+lQQjEYzP365HaM2FoNJwdAx3bCzVyGRCC8Ubi1KPL2dmLkw7wVY84K9g4rwyPTfzmIRMZhkTJ+fK5WTNG5cD+P0vm0snajEYoGpi9czaMyb+PoVzFVdqXw19vnsxPTYERlyIh0f0bNZvxzPa9q4Netur8Iz0R8RkXjXSHrVznyBkxXtW3clIKAyIaH3KV+mIr5e/nz19ce4a31AAEfqEK14TMi/3Njas+0kCycobc+/RmDsQBPHDgXRtWfmheN7v9GCkIdVCXsUx5D3vAsUe/Tgbhhje6UP6Q1ryTj8y2Og8KojSaUC+ufCPA3Z/KbBt8N4f0B6n5o3UnDhvj9j3n/5cWlZsX/PZS6fvoAoQq1GdZg4dxxJSTrecLV7ad7YvCYi5RejWYpeb0Wlss0pIY8F+gxsgodnzjI4f2OxWPlk3koWTjTj7iblr4MXWLfKSP83s4+/C1CeAc8G3METQWkgBSX3H+gyGFx+FfyJio/BweRCijQBn7I5e8TdXTyQuFsxhhhQCEoSFNFUrJg3j6mHuxfj3pnI1RsXsbdzoFpgbfYc2oZTpAdKQU0ANTBbTYQSnKd2nyVXMVuiKO4Cdj33b7Of+X8RmPD0vwJhNGW8sQZD9jdaKpUUXh1CmROPI6Lw9ZZhNotcuy2h+7CstyVNJgu//bCbpPg47J1cGDq6Y46ZKx0612LB9MvoDanYqeH7tXImzG6b5fFmHIiMjsGzhAyLReTGPQm9CiEYtLD4/vNtDO78mICycrRaIx8sWMtHy8f8K7eM1Go5pSvXZdFX56lcXuTgKSl9huZ95btv11nmjFMiCAIyGbw/TMKKDSewmE0olHL6Dm6drywwpULF22Mmsf2v9ej1eno3eSNXAaalS5aj58B+HDmyD0GAwR3fwt0lT+otae1k0Md57hEQhZy9bP90pDIZqVoRB3vbl09IElGps9+KKlXarVC8GDXrBrB5912G97ctODftNlM7hzJWRw9e59yJS4hI6D2wHaXLZv+7SyQSfMpV5ac112hUB3YdgtpNmmd5fPXa5dm6N5jBT+OCtu0zUaPOqxd1/ZvLFx8SE3yEj6f+ndRzhBsezjl6+P6pDBj2GhMWrKVdEyPBjwSUrlXzvHAPC42nQXU97m62e9aptYIjH99n5U8W4mISaN6m1gtlz8rZVwGC8FXbhE/tNIncxesFg6tP98Eccd/Lg4f3qOgXQJvmWW9P/41EImXMyAls2raG1JQkqgfUoFXTvHuIHeycaFIv3WCUSqRYSR+znv3//FCsimClphgw4sqoycGMGqTmwjUJZSrVemkT96j3e/D5pxuRk0iKVs6gUT2y9ZR9vnQ9I3pGU7GcnDv3E/hs8Z9MnZO9l0OhkDFr8TCOHLyBKdHE1I+qYO+QdXzRmPE9+XjZelTSZJK1UgaO7JGljtSrwKKPJaCszTOn0UioUt5IbExKttpd/2R69GlC5JNqPHmSyPg2JbL97bLC3kFDZLQZP1/bfXscaSHo0lVWfu5MSqqVWR/9wpR5I3BwzHvbdmp7+r8+LM/nBZStREDZnOMT80KTZi3ZF/0Xzskl0MlT8ahQAi4W6iWKHQFVyvLGuNuMHCDD0VHOn7sdmbWo6ku5dt0G5dn8qC5TllxHEET8y9ekfbOsJQ9OHrvJkzsHWDpZidEoMnHBH7w9dXimAdzPMmBIa65dqcDJu+E07VyGchWyNtAaNQ1k/cNIpi61KQX5la1Ju6ZFq6OUF84cv57B8za0j4wv113/1xpbfv5uTPloFPfuRtGmnl2utAafx85eyZOY9M8Wi8itG09Y2ktLuVIyvvptB0mJrWnZNmMIic3gAgjisTIBIFODq2XTDrTMo7GkVmkY2PetPH+X7GjWqA1XLn8Mj0UEJCR5RkPWFYlypNgYW0mJOj6e+wvjBpkwmzUs/cbM0HE9qFv/xeLIRYVGo2DSrNxXu5eLsVQsZ5swA8rKUUlyl7miUMho1zF3hbTt7JVMnTso13162eiMMoxGc5qA46NwClTk9J+Ap5cjnl7538Yd8GYr5n8YwuvttBiN8MNqPeu/d0atlqBWSxg32MCh/Vfp9nr9Quz1y6dWtfq4uZbg6vULeHp6U7dGY/Zf3PGqu1VkfPvZFqr6P+TTOXb8ut6AwiWQWYvaFWk5refp2acJ9Mm61ueznDpyhaWTbN4JhUJgeB8rZ0/eoVPXnDNnq9Xwo1qN3Klr26onZJ3o9Crx9i3B9dv3aVzX9htdu2XBu2Tevbr/JDQaBdVr5L+Gqbu7PXLHQL5beZNKFUTW74RGdRVpc+H4EUqmfnzhBWPrb/72crVyvwVkbnAVB9QqDe++PZXjpw9itphp2nAoY2fnP16w2BhbG9YcZe77Vny8bC//gilGdl989FKNrbyi1dkMjMQkC48jzCQmFR+P08ti4IiuvD9vHXWqWrj7AGo3a1bkxWX/6WjslMxeMoIL5x4ik0qpVvsCz+oA6wziS52gixJ/3zL4+xbfd7iwiI/XIreE0KuzzRu5YIqcSYsfF+vfUaFUEhdvwdFBQvBDE1dumnEuU3xCFF4GXXrWY9mC+5y5bHv/wuM9mTiz8GLc/q0MGdWBO7dr8iQ8nq4DNIRd3Zz2N1EUseRQGCAzg8vB04PUMLgQbHMfFQejS6VU07ZF50Jpq9jMiiaTCTtN+nahvZ2EM8eDeL1fk2I7eTdq3ZSRk/7CXmOkRhUlBr3AlUsPqFHr3z+5/I1/aXc+XDqGiPBE2rrbZ1u+Ia+YzRYiwhNxcdHka7vub5KT9ISHJ1CypMtLDdrPDoVCRqMmttgVP38XJi1cyeTRAkkpVlasVzNrcdYlSP6j+GE2WbB/ZvwSBIGoJ9E8vB+VYxzUq+LNUR35YPrPWPSRtG6m4dFjK6rUezRulnshyX86EomEKbMH2NTOsRVZLkxiopMxm614ejnmOxzGYrHy8EEsdnaKTIVJXxUBFT0JqOiJKIrs3VGCQyejqVBawg9rrLTt0j7H8583uFK1jmhRARoiw2KLlZerMCg2VsxrPRox97NglkwTsFrh46/iGTfYnuUL/mD6R8VzG61Fm2oc3n2Izz6yvQBD+oq8P28vNWoVjbRCcUUmk+Ln/2JxaKvVyupfDhId8QRHFxeGjOqYa82piMcJfLN8DfWrmXgQBmWq1Kfr643y3LdTx29yYs8+alUR2bxKoH33ztSuX/QV5fOCl48z70wfzva/LqBUKZi5qG6u5Eb+o/jgXsKeu2FO3A5OIqCsjD+3JtO2iYTfv/+DUROGFpvs4WdxclLjXdKDKcOENGHe71fd4fat2oUuplncycrIunDmHof3nQEk9B7YllJlcldKRhRFPl+6EVf1Y1RKuBPqwrR5A/Ps6UxJ1rN0zkqa1NYRHQc6oSyj3s1Z5PNlIggCkz/sz/7dV7l8JI7OA6pmWiotM9IC5x2cuKOFuuX9OE8onrjBI23RdvwlU2xGdD9/N94YNZB+Y76nbjWYONYZP185e47GZ1tc+FVisVjxcM24mnWw+/dnXOWWr5dvoWfLx9QeKOfug3iWL/iDafMG5urclT9u57NZoNHYPFGzl50loXWNPOvyHNxxkM/n2rxt/bvbjOHa9cfm7Yvkk2cFev1K+9BnYLMsV7fu7vb0H1w841r+I2cEQWDavEG8N+IrqpaPpXE9NR1a2dHwnpFDR67zet/Gr7qLmWM1ZqiAEFBOJDoy6f+dsZUZly8+4PKxHSyZqMRkgkkL1zJ64rBceb8O779Os+qP6dTaNn5dv53IH6uOMmhY3soT/fr9X8yfYMTD3dbOyvXBXL0cSvWauYuXKyhB1x6xZ9spZHI5bwxvn6U0iUQiof1rNV9Kn/6pFBtjC6BUGXfKlHVj1jMCEsmppJXjyY7bNx6zae0eVAorju6+DB/TscBZjCaThZ+/2YkuORZR0PDWO90yBH/LZFJikuyJidXh7iblQagJUx4Kq1osVlb+uJf4mCcIEjXD3u6aZ2OiOGPVR1K7mi1oskIZOfaK2FwbzgqpCY0m/bhypSA2JjVP90cURRzsrdjk4WwToqN94RvDMdHJfLN8HU52OhKS5fQf2pWKlX359n/baFMnhLE9FJy5FM2Xn8Tw3pTCU+wvLmz760+Cb95FRKROwwa0aNwu55P+hcjlUqrXLsvbvUPSqlpERFlxcMhZ4VyvN/HD51uxGhPQmxQMH9ejULxhh/df48LJC1gs0Pq1ptRtkFF2oXyl8mzfd4au7ZSYzSJb9koZNy33wdNnTt7m2L7TALTs0IS6DYuPrENBObT7HAvH2yRaFAp4exAcOXKdnn1y9rBHPI6hcbP08atSeRm/74zJ5ozMMei1eLinT9MVy0FwZAIZi7oUDFEU+fGrnaTGPcRiAd9ylZ9mnIZwdMdmFn2gJCXVyuSFvzJ57oh/XQJUcMgdtm39E4zg6OHE4AGjUcgLLxzmb4qdu6hp26bM+8zA8TM6ln2vp3LtujkaTUmJOjas3MSyaQYWTzbTsvo91vx6oMB9+ebTzfRrG8LiSQamDI/h04WrXzjmgxlvsPw3d6YvU/DL1pK8Oznz2n2Z8cOX22lX5w5LJumZPCyGT+f/XiQFrHNCqzVy/dpjIp9krRqer3afEz9M0Qq5MpwBHFw9uRxkU0s0GKycuSLDzz9vacqCIJCscyAy2lZDMjTchM5c+Ns5P3yxkSWTjSycLOfLuSJrV2xBFEWMyWE0q297aRvUkmPVhxf6tV81p84f4cHxEFwjfHCL8OXc3jPcD7nzqrv1yhg0vB0zP5Wy/5iObXt0bNzvQuv2OVdR+Gb5Jkb2imDRZDPzx6fw1cdrCtyXC2eDibh9kKVT9HwyTcfZAzu5fy9j7nq3Xg15lFSL6cuUTPlYQ99hfXO9oLkZFMbVE7tZOkXL0ilazh/ewe2bL/8ZF0WR4HvR3L71BKu18BZTSrWKuPj09iKirdg75O7e1GtUiZWbrGnj+W/rjTRqnvdqGlVqVmTDDts4aLGIrN8loWbt0nluJzv+2n6eBhXvs3iqjI9nyHCVXePc6Xvs3X6KOR/YBHodHaSM6m/m5LFbhXrtV43eoGfDH6txeeSDa6QvpmsC6zevLJJrFSvPFkCzVlUpF1CS2zfDadHdM1dif3fvRNG+mSWtEHGjOnK2Hnq+fGM+MKVLO7i6SCnpoUWrNWYIAndwVPHBjJxVujPDkBxJ7WqKtPYDy+qJi0vNUeemMAl5EMOv3/xB64Zmzu4VcPSuSe83Cmc7q3Hrpnz0v4O0aWzl1CUJVerUz7W3cdiYTvz8zU7W7YpCb5Iy4t2u+UqUGD99AF98tQ2rORmpogTvTS1cleZ7dyJIiXuMvZ3tOZVIBPy8zOi0RozP1dh9/vO/gdt3buBkcEsTMLVPceZO8E3KPiOmGp8Yy/2Qu3h6ZF5Q/t+Eg6OKWYve4sLZBygc5MxcUAqJJOc1rVRMoFRJ21hjp5FQxtdISrK+QIkhxw5dZt7btvFFEATe6i9h/ZEgypbPGHTcZ2BzIGth0qw4sv8SHwxLLzL+7lA53268TMVKBS89lVusVisff7SWqqVjUChE/vjFkenz3yyUpKpBw9sxY+6v9OusIzUV9p1xZcb83BlMFSp6EdWgHZMWn0Img8DqtWmUD32xjl3qsmmdnunL7mI0CnQf0K1QNQyNRjOb/zjC5p/Sva9tmkhZeyAEqUyGTi+mJa4lpoBCWfgen1dJbEIUihRV2jOsxo6EmIweSLPZxM3g689rNOeZYmdsAfj4OuepRI6XtyP7Twh0bmP7HBdvQSItuKszRStgtVrTvDFRsaBSFc4ti4lJ4caNKCwWN6RSW/sRkWBvX/gFlLNj7S87+exDadrg9NH/LhMfXy9fCubP06JNNSoE+uXJcP4bqVSSZSBoTHQysbGplC7jnmMguZ29kven5a30TG4xGs2s/nEjrk5WklOsONhLsFhEHkXIUGsUVKxRi69+PUe7pgKHT4uUr/KiflFsbAq3b0Tg6+daJLXQihq/kqW4dfU29hZnAHTqZEr5lU37+82719j25wbU8Y4YNbpX1MuXi0olp0nzvGX0pehkmM1GZDLbWPA4UkBjV7CJzc3dmeCQcALL24y4uw+tlPB8MZElP4iiyJ3b4dx9YKR2NduYFRxiwbWEc6G0n1v2/XWFbs1jaNnYFtNUv2Yqf6w8zJtvZV2VI7c4OqmZuegtLp57gMI+94bz3zRpXpkmzSu/8O86nYlHIbGU8HDIVRHt1/s1BZrmpeu55qevtvNaSzP7j2pp39LWl71HLVSqWhq/UvWYuOA3xg02EZcgsmGPI7MWZTQYzWYLVy6GIkgEatTyK5ax1dnh6uSOSaOHp7swRtGAxjF97jOaDHz9/ScIjxSIBSmMSDE1tvKKb0kX7DxqMuuTy3h7CFy9rWTi7ILX3uoxoCMffLSVJnWsXLstUK950zy9bNnx4xcbmfGeHZPnxdCikYoT54wE1G390rPQVApLmiApgJ8PJCZoC8XYgrwbzjmxfvUREsIvU9YP1vwoY/QHb+CTDxXkzNi/5zLXLt6jXEBJur7eIEcv3JOIROpUsdC1rQtzP4nF3k7C9dtWPvhwBIIg0L13Y24GleJQUAgVG/hTsZI3er0prbjrlUsP2btpGx1bWDi+Q8JZl5r0GfjPCpJv3awTj8PDiLz/CFEQCaxZmUoV0lf/e/fswDO+lO1e/v+wtfLFgGFdeHfOBqoHWrj7EFp2alPgsabf4BYsmhVC/apJGI1w+7EHkz/MnZhyTuzddYkBr+n5fX0yt+4aMRjgwBk7Pvm6YaG0n1tiouJp1SL9PpX1lxG3PbHQ2ler8244Z8f9e5Gs+n49zepaOHhfwC+wPl16Fs49C3kQzbaNJ1AoZLku+WXUxjNqrBOf/5DAsdM6YuNFvMrW5rUGtoztDz4cwbFD11FrVMxcWBmjwYxUKkEQBAwGMwtn/sprzZKxijD/T0dmLBiSL69igPIMjzWBXEwFeHkOB7VKQ9vOr7F/9y4EkwSlq5K3er2b9vcDR3ahCnFEQ8G9if8KYwtsBV1TUxqSkmKgl4d9oRhFVar5U3rWKEIexjKorXOhGSAAarme+rXUVKqg5E6wEavVgKd37oPrCwvnEr6cPH+bxnUVpKRaOX1ZToc3Csd4KWxiopNJCL/MzHdtq9geHax8+MUOpswZXOC2V/28j3JuN1nwnpwT58L5alk4707OPpjd3d2e2/cFhrvLWD6vBMkpVuZ97UhAYPo2SqUqvlSq4suqn/exb9Mm1CpI0LszaVZ/dm7cz2cz5QiCgjZNYcbSy+j1jdOMseKK0WQkPjEWZ0cXlAoVb/YfhdVqAYQX3jvBKvwr62QWNmXLe/Lh0jFER6XQ2VVTKM+AQiFj9pKh3A+OQSaT0L20W6H9FreCQpgzRkGn1u7cuGMkPsHCnhPiS/dsNG5elR/WXGPeRBFBEPjqNyPNW9d8qX3IC+t+28X/ZkuRy21T7/QlZ9F2qF1gfcIHwVGs+3kNCyYpSNVamfXRilwFs5tFJckpOsaPto3505YYGTS8TdrfXVw0dHu9PkHXHrFw+nf4eVl4FCFjyNjenDl5i/fe1FI5wHaNMv6pbN1wmj5v5M0L96ze1qEYuKv0QpQrKefvVCQCp6IoEpcYg0wqx8nBmdrVG1CrWn0sVgsyaUaTKDU1BYWoeqHOa3741xhbYNsyKmzRSjt7JZWrFn4MQky8lIREA85OUmpWVfLrH0kc3n2SBo1ebjbPkFHt+X2FhO2HH2MRFbw3rWuxVb2OjUmlnH/6Z7VaglxqLpS2ox/fY+JA24DXvKGCPcfCcsyc1NgpqdO8JePnHcG7hMjDcCXvTn2xMPXlCw9xVwQxcaptxRZ0O5Y1vx5CoxQzTH4l3AS0WmOxNrbuh9xh/brVyFOUmDQGOnfvSdVKNZFIMn9mSpUvw6MnoTia3NDz79LNKWxkMinePoUrWimRSCifTe3C/FK1Zlm27A6mbzd7qgYqWb0xCXuVGYPB/FK982XKedCkY1emLD2GRCJSt0mTF4ogFyfUCgtyefo7X9LbJrpcUGNr6/qjLJmmRKEQ0GgkvDvEwMF9V+jRO3uv2bC3uzN18RpK++iJiIaGrVpkGie4cdUOvp4vRRBkmM0iHyzYioePDyW90997P28piaeT89X/zBTltQYobIFTk9nE9ys+wxBuxCqxUrJySQb0Ho4gCC8YWgBNGrXit+s/4BVf+r9txH8qr/VqyXszV1PGX0ZyipWxQ534bWvmP+buHee5cuYcSjmonHwZ/V7XQluhCoLA4BH/jFT90mXdWfOTjB4drKhUEk6cM+LmVTgDq/W58hJmM+TmFrdsW53mrauiTTVmGcz84H4ELWqmG21VKspZuT0aJzdfTp6/R+O6CiKjzdx+qOGNQvSeFgVbt/yJZ1T6tuCunVuoWqlmlsd369SXQ/a7CQ6+i6uLMxx/aV39jyKkTfsavP3mbq7diMFqhXJl5JQppcZitsBzxlZ4WDw/f70RR42RZJ2KUe/1wsOr8IzKWnXLUqtu2ZwPLAaoHD24cuMhNSorSE6xcvW2gl4eBU+IkkgkGE1iWkiI3iAilea8aHZzs2feslGkJOvR2Cky3RESRREXRzOCYDMIZTIBRzsTrTvUYdn395g7wXbO8h/NdH0j57qaWZGVonyKXFZodRN37NmA/K4dDth2kZ5cjORG9StUDsi8Yoe3R0kGDBnKvgM7bfPB1fxf+z9j6xVRv0EZdm/yZsRAAyW9ZXzxi5F6Teu8cNy9O5FEBR9n+UzbRH7sbAib1p2gV/+iCZgsziiVMkaO78/Mz3ahVJhx8ShbKIGwAOWr1eDHNefo3FrK8XMW3Hwq5norWiKRZJs1Vq1GWbbvOktgBdvnPYeNBFYty2vd6/HHysNsOxyGQmXP1LmvFemWm9Vq4VbwdSxWKxXLVsmXloxoJGMfjX8nkWR+rwRBoHXzTrRu3gmAbcfX5avv/1H8aNamPn4OV+nZScHVmyZWbndHY/fizsKPX6xn+QwzKpUErVbP1E828OHiEa+gx6+eke904edvdrHur2jMVgXvT+9WKCEv/d5sy5RFvzJ5tEByqpUf1qmZtahmrs/PbvwSBIG4JBVarRmNRkJikoUUgx0VKnqj7dyDacttK6gO3Zu9kOmaV/42uAb5PeFQghN38ERQGtIKVcdfuIKLQkcZv/K4Orvnuf2E+DiUojptW1BpVBMZ9SRLYwugVMmyvDXEFsd1eNLu/Hwt4D9jK9/8rZ+S38lRJpMybf5QVv1ygOTEZFq0qU2dBi9uId64HkLHFunXaFZfzo5lofnr9D+cX7/fTVzEHTRysMp8efOtdoVmnPTo3ZjLF7xZe+A+5SqWZGifink632q18sOXOzAkP0GrE2jfvTV1npYFKh/gScjDFkxadBaFXMTFK5AhI+sDMGBI3hSl84vFYuGbnz7BdF9AIgrs8d3GuNGTUavy5kmzd7fHEKlDKagxiUbUrra0aa0uFbVK81981j8IURQL9HsNGNKKfbudmf7pXbxKejBpVubyEc4OhrStcY1GguP/k6zU57l6+SGbV+/Ew9VCfLyC0eN7FJqMg6eXY1rJL4VSzsyF9fIcjnDq+E2O7D6GSili7+bHiLGd0p6PMR/0Y/qnm7BXGdGZHHh7ok1Pskat0tSoVbpQvsPf2AwugCAClGc4pAnkLl7cPXwa64G7OOrsOeC8m/Y9ulCzat6KhlerVptjdw7jqvNCFEWSneOoUqk6BqMeqUSKTFZ0IRz/GVv54Lcf9hDz+A6CAPZuZRj1bv4yHzUaBSPHdcr2mPIBPhw/JVL1acbtlRsmvHz/PcU5c8upE7cp5XKbKUNsK+cT5x6zZcMpevYpeBmUpEQd+/66iCAIvN6vab7i/tb8epCODR5Sv6YCURSZvnQnpcoOTytv0aZ9Tdq0r1ngvuaX0xeOIgbLcRNtqf+GUB279m2mV9fclU8COH3+GNpkLZF2wTioHPH09aJT8+588ulcJFoZVpWJXn0GUa70/59Cxv9Erl5+yJY1u3BxNBObpOadKQOyLMOSE+061qJdx1rZHhOfJMNiEZFKBUwmkcSUf5dWU24QRZFNv/8d9yRFr7cy5ePNzFo0vFDaPnowiPCwaOo0CCQgMO96duGPE7h4ZC/LZyoQBIGjp++xce1xer/RDABPbydmLhhW4L7mhWe3FUWryL3zQVTQVwABnBLdOHRgT56MrdiEaM6ePUGiMpZ4STTuHh50bt2Trdv/JCEsEatgoWLNSvTo3L9Ivs8/SxSjGHD88A3KuN5i6XQ5S6bJqVMumL27LhbZ9SpXLYlFU5tJC03MWmZizS5PBgxpWWTXex6TycLvKw7yv6UbuXg2+KVd93mCb4fRtF56DEKjOnIe3C24cG1CgpaP56ygVZULNAs8x+IPfyYlWZ/zic8RFR5B/ZrpApLtmlq4c+tJgftXWKSmpqCwphuRcpRotbkPWA9+eIvjO47gEupNoLY2Sr0djRu2ZMf2jXhElKJEUkk8IkuzaVPBlc//o+iwWq1s+n07X84TmD9JwdIpJn78YmORXnPwqJ68OxdmLzfy/kcCQ8b0LNLrPc+p4zf5bMkG1q06gsXyamrX6vVmfD2taZ4ilUqCvdpYKG1/vXwLKu0Beja5zvGdf3LsUFCe2wi69ojOrdM9nc0bKgi5/6hQ+lcQytlXwVftjJfaHoWY0eskWHPvlRVFkV9+/QbVbWfKJFTBJ7UsTs5OPAy5h/mmgEeiH14JpQk+dZ87928U9tcA/vNsATaRuVPH7yCVSmjcLAC5POvAwts3QxjVPf22tWosZ8GPj2j/Wv4DA3Oiz8DmiGIzRFEsNJ2vZ4mP1/Ltp39ir9SRlCpj8KgelCpTAqvVyqIPV/LOGylUKCvjixVbSUhoQ+v2We9vFxXVa5dn2/7rjB1su/fb9pqoXqdCgdvdtPYYc8eL+HjZDKWpo41s3XiKgUMzbu8d3n+NC6dv4OjiyJtvtXsh40qpdiD8SSI+XrZ/vxQkoVXPwhGQLAzq1mrExdNnUcaWRkAgyukR/Zq8mevzr1y/iFOKe1qsg0tqCa5cP49Fnz6BCIIA+uxjuP6jaLh6OZQn4bFUr1UGL++sg88TE/WUL5U+qTrYS1DLDUXat3IVvJj7ydgifS5++3EvcRHBWCy2+MsevW0e7+2bTiMkn2H+Owqu3HjM0rmhzJg/qEj6kB1qtZzQJ3JMJhG5XCAu3oK+EEqHxcdrUfOIru1sC6lp42DS4lM0a1Ulw3HhYfH8+fsBRKuVrr2bUz4gY6Fx/9IenD8C9Z86KR+EmnF0di5w/woLmUKGUFaNNioFDfYkSuLxLu2b6/NTtMmQJEEq2OZ2NXYkRD3BYrWisaZv5ar1doRHhBJQ9kUx2oLy/35ETE0xsHDmz/jI9+Jq3c386b9gMGQtJ1ClRjl2HUr/+1+HTFSvVfSpxoLwooZRYfHdZxuY+04qCyYJLJ9h5uev1gPw8EEsNcrHUSlAjkwmMGGUhr82F7zmZH6oXrMUCrcGTF4M0z6G4NhKtO1Qs8DtWiwWVMr0FZJaJbFlVD3D9k2nMUQeZMnEOAa2D2bxhytfqME2bOxrLPxWw5KvjUxZaMTBuy5+/nk3tqxWKwf3XWfrhtNER+UvjTozXJ3dGTJiNNbqOsxVU+g1eAClS+b+ufX28kUnT0n7rJUl4+1VErWzLXYLwCKakTvK/jO0XjI/fbOTsKsbCXQ9zNrvf+XKpYdZHuvkpOLuQykWiy3mND7BgtH6cjJgi+q52LvrIpW8b7F4isDH0wVIPMeVSyEA3Lh8leH9lMhkAnWqK3FWhvIkovBET/PCW+/2YeJiOTM/EZn/rQNjJ+S+jm5WWCxWVM/Ftsuec6HERCfz0/9W8eHoKOa/F8vmVet4EByV4ZiKgV5YNTWZutjI4q+MfPqLA2+O7JCvPt2+GcGmP09y+eLDfJ2fFXVnDyG1gx0RgfHY1fGkb4/cLxY1KjvMivR6aVbRilQlJTCgMomK9PI8qY6JBJSvklkTBeb/vWdr3arDfDjOhJ+vTZjNzUXLzq1neb1v5rFADRsHsC44nKmLbyAI4F6yMm/2zHuB0eKEWq7F2clm8cvlAn5eJnQ6EzKZhNTUdMNSFEW0ySkFDqzNDcH3orkV9IjyAT5UrGSLQej6ekO6vl64CtVdejZm9qd3WTpdwGqFBV9aGTe1QYZj7gbdYMlk28qxtJ+MWoHJPA5LyGBMaTQK5iwdjjbVgEIpy5dWmSiKLJmzms7NYqleQeD7T8/yxsj+UEghet4eJRnx5jv5OrdhnebcvXuTJ3dDEQC3sm40a9iGujUb8vsfP5GaGIvcXsGw/m8XTmf/I1fExaWC9h5Dh9tm3Do1RCYuPkiNWpnHAkkkEt54qyfj52/H0c5Mit6Od6b0epldLnSuXw5m0fj0LabXWklYfySYGrVKERmeAKR7kKRSK0cPBdH3jYLHemZHcpKeU8dvo1QpaNqiIlKpBP/S7sxa9FahXsfNzY6QSFeu3UqgSoCMVRtNlK9cM8Mx+3dfZOIoAbXaZux+NEHOop9O8O7kjNu5fQe3xGxuhtFgzjSrNDfs3nGemAcn6NxK4OQFKzevVWfAkNb5aut5pHIZVQf2QRMGdo+0eZqDpFIp7V/rzL5dO5EZFFgcTAztPRYPdy/i4uMIvnUHURBp1bwdPp4lC6W/z/P/3tjSanW4uaRPjCVcJWivZJ8t029wS6BlkfbrZZKqV6DX61GpJIiiyONICSqVDD9/Vw6dNFGzqpaAsgp+WZuIq5sKi8VapMKnu7efI+r+Sdo1haOHRW5cq0fPvk2K5Frevs6MeO9NFv98GEEQGDOpFSU8MmYImUwZM7cSk8lSuDG/gxTAlUuhNKkRQ7vmNsN/2UyRmZ/vp+f4l79t+zyCIPDmgDGk6lJAFLHT2O6RncaB0cM/eMW9+/+LTmvE1Tn9syAIKHNIqKpYyYcPl4wu0n69TMoGlOTE+Qia1beFAhw7Z6V8oB8AUpUzn34XQ/8ejlwJMpCcbKWEtGDilDkRE5PC5wt/ZURfM4nJIgtmnGbWoiFFoq4vCAJT5rzBut+PsnpXDA2aVKFJi4xbYEqVgsTkdE98Sqo1y4LSMpm0QGP7lTPnWT7TNgZWLA9TFwVhtbYsFt7u2tUbUL1ybVK0yTjaO6UJMXfp0Avy58TLE//vja2OXRsw/4t1LJisxGqFZT9YGDKu6OKviiPD336diYvW4e5kIDZRRu83uyEIAomJOly9fPhzaxg1qiioUVVNosWnyBXmr5w5x/JZthe2RhWYuOASFJGxBeDr58J7k7MO2m3bpQWzl+1gYA+BoDtWkkyl8PBMXy3fDApj97bTKFVKBg5vi1MOJTKyQq834fhMUphMBhJeTUBvVtipCy7A+B+Fh7ePE1du2/P4iQ5fLxlb9xgpWabSq+7WS6V7r4Z8tSyC3UfCMJsFSvhV4s1GFRBFkfqNq/PX5r1YrUlUKKMg2eBEi7ZFu3hZs2Ivn8wQcHyqXSWTJXL4QBBt2hfNDohMJn0hxvRZOnWty8IZ1xjaS4taKfDN7zImzU0/Xptq4PdfDpCSlEqr9nUKJBCreM6GU6nAahUpBrYWADKZHGfHVxNL+//e2Cof4E3HPr2Z8dlxBAEGjGyNT0kXjEYzP365HaM2DrOoZNjY7riXcCA+XsuPX2xCIdFhEjWMev/1PE2uOZWAeRV4+zoz5+PRGfr2JCKR75av4t03zETG2PPNb0Zatq/OhBmF4xLOjucXXSqliCja/vvxq53oEiNI1Uvo3q89Vav7Zzj27u0INq3eg0Ih4luqDH0Htyxwf+rUL4eH1yCOnLmDl4877/RKD8y/diWEI9s3M3+8koREKzPm/MKMhSPy5eGqWdufhTPU1Klmwc1VwvIfDDRq2Qqw5Hjuf/z/RCKRMHXeYH7+cTfalBQqVatAn0H1ANj31yWunruE1QoNWzSgWasqiKLI7yv2Exsegs4I7bu0zFTfLyssFisSSfGqdykIAu9Ofh2r1ZasIQgCoiiyfOE6mlR7wvwpjnz2Yyr3ozwZO6kbbm5Fu2Awm0zY26WP8W7OAvdDbBnOJ4/d5Oie4yiVIu4+ZV6o3qHXm/jpq+2YdAlYBQ1vvds934u3v1Gp5MxaPJxD+65hNluYNr9qmoipyWRh8Ye/MftdI14eUj79cTt6fQcaNQ3M17Uc3Uux/9hd2jZTcDnIhN7qWWzLv71sXqmxlZpi4Lcf96BL1VKvcVWat676SvpRqUpJKlXJqK3xzaebGd7jCeVLy0lOMTB58WrmLRvNVx//wfzxOpydpMTGJfDRJ+uYuWBojte4cyuc1T9twcPFTFS8nBHv9MG/dN4VcAE2rDnGo+A7GE3QvmvLQqsF9qwR+Meve1k2Q4JGY3spRQRMjqVeiqEot/Ph9MVQGtaWc+WGEbPghSAIrPxpH50aPKRuDTlWq4WJC7bgV2pk2mCUkKDlz1/Ws3yWLaB/14GrbNmgSMtMKgh+/m74+Td64d/3bj/J4glKJBIBdzcpQ3rpOHXiLm3a5/1ZVqnkTJ4zhC9/3odBp6Nlu7rUrl+O4JS8p3L/x8th19az3LwWjLObC4NHtEWhePlDqkajYMz73TL824WzwSQ8OsrSKTaj/+Nv9+Pu4cSdm6FU9b1Jh4E2PbhZn+zEx29ojjUZTSYLyxf+gb08lhStQKVadeiez/fq7u0INvy+G5XCiotHSYaMal8oxtuzW1U3gyKoVjqC7h1sY8PPy5XM/J8k20zNwqJdl4bM/3wzs8cr0elEvl0tYfysKoQ+iuPK8XQtq78O3mT7JocMcahfLdvI2H7RlPGTExunY/aiNcxZWnC1faVSRscuL+qhXbsSRueWqfh62+7TpNEKpn5yNt/G1vAxHdm+yYWpyx7i4+fJBzNaFKjf/yZembEliiJLZv/GRx8Y8Swh45d1B9i9Q0/HLnlThC0yTHGUL20LfnCwl1DOz8iZk3eJfBzGZ99LcXGS8P4oZ+yVKTk0ZGPNz1v5ap6AVKrAZBKZsHAzHy4Zmedu7d5xHk/lJd6ebBssZ368Ay+fIfj4Oue5reywWMyo1ekDoJszPEjNu/5Ufnh7Qnf+/P0omw+G4+HtwfjpNpd3bGQEdWvYfhOJRKBtEwv37kRRp14pAIKuPqZ7Owsymc019lobBdOX3weKLhhWECSYTCLKpxmNqVqQF2DCdXRSM25Ct5wP/I9XzupfDhDgEcTQSQruPYxh6dxIPlw05FV3C4ATR67y4aj04K2hfaR8v+kKF05fp2YlM4eOi4wf5UyP9iLXrzzE2yf7rbWVP+1lTN84Asra3q1PfzzHg/sBlCmbtwVjcpKedSs28OmHMmQygaNnbrP2NxlvDG2T9y+ZDVqtEVeX9M9yuYBEeDlb8tVqlMJq7cG05aeRSKWMndQeFxcNJ47coGeH9KojnVormLrsATxjbMnFeMr42X43N1cpHs6pmEyWbOWICoJcISVBlz7OW60gFkCkQBAEuvVqCBRuItO/gVdmbBn0Zlo31OJZwuY5GdZPybRlQcXG2ErVyzCbjchktgfxXoiFJ9G7+eO7EkgkAqfO6/jx90QSU5xzbEsURdycTEiltoFKLhdwtMufoF3Q5bssnZQuntm3M1w6H4yP74t1FQtCy3b1+PjbnUwZqyAlVeTXjXImzy24rlVuEASBfoNfXBHJ5HbExKbg7mYbeK7dktCxZvpK1cPLkWuHBVo/De+Ki7cQG2dkz87L1G8cgEsmRZ5jopP59bttyCQmHFw9GDqqY568d30Gt2XigtW8PwyiYiz8ukHGsm9fzn36j1dLdNh9PhhgexfLl5bj75FAYqKuwNs+hYG3bwmC7oRSu5qtf0F3LNy5+ZDvltjh5SEjVWtlxqIYqlZypEKDnA2mxNg4AsqmG2+Na1u5f+9Jno2tO7cj6dDcklYWpXkDBbuOheWpjdxQrUZJ5k9T0ai2BVcXKd+uMlC7YdHFfT5PZmVs/Et7cOGKSPWn8ev3HppwdnPOcExyquSpHplt3omMEdm76xLlA3zTsrKfRRRFVv28n9gnYZgsMga/1RXvPCy8q1bzZfF6NzzdY/H3lbDsOx09BmVf1eQ/8scrM7YkEoH4Z+ROLBYRkynr4182/YZ05r25G6hXzcKtYAGvUpVpVuUGEolt8GpUV82y71J4Z+prObYlCAKxiUoMBgtKpYSUVCvJuvwNyA5ODjx6HIO/r22wun7bik9Ft1yff/nCff7achC1QsTRvSTDxnTM1IVfp0F5BKEL0z89h1Qm573p7XFwzLpY6ctg2NguzPpoFRX8dUTFQLlqdTN49CoEeHLiUCBLv7mNtwes357MGz31VHA7zBcLjzHi/YGU9EsPjrRarXy++HeWzRBxsJdw8do9fv5mJ6Pe7ZrrPvn5u1GveRPmfbqHZvUl9O0s8N3/tvHOpJenkp2qS+HU5d8QhBTcnWtTI7Bdzif9R4ExGDNmqSanUGQeiLzyer/GLJ37kJMXYjFbIDzeC3/feLw8bH+300hQKaXEGCvSvWrO4pCevt6cvxKX5lnef0LCawNyLyqZ1o6XIwdPCnR+6siKT7AgSHI/rqQk6/nu883IxGT0JhVvvdsz0/qCSqWMyXOH8r8fd2M06GnQrAZNmhe+UGVeqF7Tn0vnKjPrk5s42guERjsxdW7Gd7XHG5344KOt1Ktu5ewlI4LVSi3fExw/IhJ0pQ6v92+W4fiVP+2jSaVbNB6kQKvVMXHhamYuHp3r7WxBEHhvSm/eH/k1jWsZ6NNZxbrVOylTfhjOzi9Hf00URTb9cZyQ4BCUGgeGje5YoKzu4sorM7YUShmPYkuyaVcY5UsLrNwE3QcUn+2T8gFezFg0hojwRFr2sic2NoWj227R9umzHhltplL1ylSp5p99Q08Z+V5fJi/dhIPaQIpezZgP8ido9+bIDiz+cCXVA1JJSBSxqirQvm7pXJ0bE53Mga07+HSG3Fb/6sw9Nqw+Sp9Bme+r165fjtr1i16wNTfodCbOnLpLyw6NqFazFE5O6kwHlKGjOxId1YTTJ4MZ+PpB+ne3DRhVA63M+WovE2elx+Y9iUiiVmUTDvY2A7p2NQXrd0fmuW/Xzl9m1ZcuaZPunW8fERubUuSBuABmi5n9pxfyzccpuLlK+XPrVk6f1lG3as7v0q0Hpwh7chxRVNGwxps42BV9PMu/iWbtmzL/87307AAXr4vYlwhEoykedf+kUgnTPxrIk4gkJBIBTy9HFs74CbPZlOatTzY4MmFMx1y1N2BIS779LIkt+yJI1UGjVq0o6eeS84nPUdLPBZVrdeZ+ehUfL4EL1xVM+DD3i5uvlq1n2shEPNxlpKSmMHXpH8z5OPNwDCcn9Utd9OTE5QsheHi506LtQFxd7XDMxANatbo/ZcuP5nFYPKcub+DrxTbjvWZVmLjgMqLYNMPiOD7qMY0H2545jUZCkzoGQh7GUiEg9+J8u7ad45OZCgIr2MarKoFmflp9JMe6vYXFyp/2UbvMLcb2VBARmcC8OauY98mIHOP4EpLiOHt9JYJgorRPKyqUKh67YlnxSgPk35/aizOngjn/KIEh7wTg6VXw8gWFiUIho1Rpm9fIzl6Jyq0m05dcxsNd4PZDDVPn5r4Ata+fC7MWFTzQUaWSM/fj4USEJ6JSy3F1tcv1uTeuP+a1VhYEwfZyNm8gZ9ex0AL3qahJSdazZPYvDHldj9EEXy6xZ9birIuilvBwwMVFg7M5/WVVKgWE57L6nJ3VPHqcrrljMonojXn3TMhkZBgYNGoBkzHzDEKLxcrP3+wkNSEKo1nOm6O65cnt/zyR0eG81i4ZN1fbq9y3u4wDRy4D2RtbN4OP4+nzBx/NkpGYZGHs5AW0azgfpeLVei//STRuVomS/h6cvXgfvyoedKpd6lV3KQOCIGQIfB8wvCvvztlApXIW7j6E13p1yHVgukQiYdzEHoXSr76DW5GU2JCkJD1dhzjladteLUvGw932rNvbSXB30hXLDO/n+fGrHZRyuUv1AIF1vwq07t6dmrVLZ3qsRqOgQoAnzg4Zv5Od2iajIJWm/2YGkwy9XodKZTv2YRjUbp/7OQHAZDSjUT87fkkwm7KuonL8cBCnDp9BIoHq9WrRrlP2hchzIu7JI9o8NRi9PWVULqslNiYlU4/l3xiMOk5e/Zjvl5vQqAU+/upX7oZQrA2uV2psCYJAw8a5TzvOLaIocul8CAkJqdSpX7bQYih6v9ECvb4xWq2RN1w0ryz9WRCEfAXEl/R34+weCS2eJtVFRJpRaXLnfRFFkfh4LQ4OqkLdKtHpTHz76SakYiKpehmDR3XHzz/jtugfqw4z930LPl6239HZUcvOrefo2efF7MC/qV23FItmKahTzYKjg4TPVxhp0DzjoKCxU1K2aj3mfXaOwHIiR8/JGDw6523h56lQpQq/rT/L4F5y7ty3cPuRE32yWDj89PVOujd7SPVKcnQ6A+Pnr2HOx6PznR6tVmmIeJL+HJrNInp9zm2Fxxxn/mzb6+/kKOXNfsmcOnGXimX/2dUQXjb+pdzwL5X7bfzcEhYaz60bYZQu60n5Ch6F0mbZ8p7M+WQscbGp9HbRvNKUfEcndaaenZxISpVhsViQSm3yDrGJ0lwbWtpUA1armCZ7UFhs23iau9evAgKBNarTuUfGChSxsSnIjMEM6mX7vjWr2lT+a9bOXOX/b+T2vpw8/5DGdRVcv21Ca3F/4bsOHNGZD+avpUV9PcGPBFx8a+LunjePeocu9Viy5Dofz7Aik8Ls5SYGjc08qehW0GPuXtzPJ9Ns23zfrDzKhbOO1CnADojOkHE7PiZORK3O3kMcFXWb90akYvc0W37KO1JGvHvoP2PrZSKKIp8tWk/tgMf4e8Fn82W89VysDtgKeEY8TsC/lGueXj6VSo5KlYNEczGlbLkSnHOozoylV3F3hbuP7Jk6N2dXcWREIl99sobAsiYehUPDVi1o1a5whAG/+2wT4/pH4ecrx2g08O7cdcxbNiZDGrdOq8fFKf2zu4sE3fXsMyM1dko+mDWEj3/ag9lkpEmrWjRs8mI6c7dejYmNrU50ZDJTurqjVuf9t+36ekOOH3Zgxv+CcPdwZdq8Vlka4rqkKKpXsl1DrZZQr5qBiPDEfNVRBFvNw2vna/L9ygtUDrCy6k8V1SvkXGjXYpGh11vTVsRPogRUypcTo/Ef2XPs0HWCzhygQ3ORU3vh6oUXY3WMRjMPgmNwcFTlaeElkUiy9RgUd/oP68o7szcSWNbCvRAJXXrnPH6JoshXyzajsIYhlUKi3osJM/sUymL53Km7CElnWDrVZnz8sPo0F8+5Z5Dj0WlNuDqnXys3Kv8AY8d3Zf3qY2w9HIa7pzsTZ7Z94ZiSfq5MXziKkAexVGtl90L1i9zgXsKBMZOGsGTFQRBFBo1p8cKC929OnwhiaJ90I31EPzkLfrhaIGPrtdfbMG3Jdrq1sXD1loCLb1Xs7LOP2ZJKNUTFpN9TrU7EKhbveblYGVuiKLL2t4NEhoViskgZOLwLvnmICxBFkaDr4VQt/Zi+XW2riNrVrMz+ag+TZg1IO+7A3ssEnTmKvVrH5xcMePh4M+itzlSs5JOhvVU/7yMm/AEGg0DzDk1p3Oyfr8zcb3Ar9PqmaLVGXHLpnfv1u618NktMi0eZvPAIDZtWzpdh8jyCJRG/p8H+CoVA5XIm4uK0GVZnr3VvxEef/8GCyQosFvjkBytvvZ+z69rNzZ73p+Zc983Nzb7A8VVNW1ahacucC5jqjFIMBgNKpc3Iuf8I2uRyK1i0Wjn121IcxJtokwXiUxpSp1w/WtQdwaPw1vx1P4Y6gRVxsMt5O7524GDGTF7CmKFaHj6ScOhoAO0b5185+j9sXL0cwu7Nh5DKoFqdarR/LfdZwn+v7k8cOMGnTysoNKgNkxZcyhCrExeXymcLVlK/mo59R1KQyu1p1rY+Pfs2yfA+X7/6iK3r9mKnsqJy9GLUu12KRdmUglChojdzPnmbuNhU+uTSO7d/zxWaVgulQ0vbPT1x7gnbNp6he++CyxOcO32TyUPSx8G+XWR8vf52BmPLx9eJH2/aERaho6S3jE27jPiVy3msEASBvoOa53icSiWnYiWv/H2Bp3h5O2VbRSPtOB93bty9iWcJm+lw854ZT5/ce3YP77/KqYPHsNOI6C0ujJ/ej5q1y+BbchjXr4ZSrYUbARVzjjfz9qrA5u1lgAd4eYh8u0JDo+q5L0z9KnhlxpbJZCE5SZ8hw23tbwep6R9Ey/4KdDorExasYfrCUTl6ks6cvMXerQdwdrBw4x6MEvU4DAAAwJtJREFUfkafVKWSIHkmVic1Rc+GlXvo0MIW5L5pRQksFjPTlqznjdGD0zxg2zedprL3TTo9Ff+b99le/Ep55tkDcen8fQ7tvYCjswMDh7UpFAOloOTVO6eQGdFo0gfp8qVF4mJT8C2Z9wDZ59EaFej12jQPy/1QWyzVs5Sr4EmnPr2Z8dkxW42+sW3w8nEu8LVfBYPe6sr4j/6gfg0DwSEQULNhlqu4xEQd16+EobWLB0+I3LuLBT2vUbe6DBBZ+L8jhEc1wsfDH3+fMkCZXPfD3dWTJtU/YsvW66iVTrRvXKlYqYIXdywWK08iEvH0cky7b2GhcRzYsoWPpyqQSAR+WnucE0fVOWbBJSbq+GLJWpztUkhIliIVTED6uOhgB2azNW37funcP2hbP4n9x3R8vagEbq5Sdh28wB8rTQwY0iqtze1/bOGzWXIkEoHzV0JY9fN+hoxsn6fvmZCgZe2vBzDoDXTq3viFBemrIK/euUcPIujYPX2qq1NNxu4zTwqlL/5lvDl/5SEtGtkWouevmvEvk9HwkUgkTPvoTVb8sJvU5BSq1KxA79eL73ZXdnToXIvlC+9y9eYT5HK4/ciVafOaZnqsKIpcvhiKXm+kVp1SJCfpuX76EJ/Nto139x/F88t3fzH6va6U8HCgVdvcZ4sKgkDHppO5cuk6Z42ptKxbHbWqeHvmX5mxlZIQy6qvvsfJuwoDh9nco5FhobTsb3to1WoJrRvpuX8vmspVs37BtakGDu3cy5fzFICU0Mcm3p+tpWEdBY4OUn5cY6BmfVtsT2KijqWzVzBhlJxUrcj1WwYsFpDJBN4bKmHzwStpg9WdGw8Y8YyeVc8OcPHSgzwZWyeO3OD+lX0sfF9BWMQTFs8KZfbS4f+48gUylSvBIY8pV0qOySRy+YaMrkMKJ5lh6OjuvP/RWgJKGwl5DK1ea5Pp/Qms4kvgcyr/WfHs/n9xw8/fjVlLxvA4LJ7mPeyzlNN4eD+KVd+to2cHM5GXrFyLiUMSb6RWFSnf/ppAZLQFo0kkJvk2Ph65y4h9HjuNA9UrZh339h9ZExcVw7Ftv3HtroZp8wajsVNy9tQthvYW0jSSRvRXMP3TazkaWz9+uYW57+pwc7Ut7HoMT+HUBSmN6si5+8BEgs41zdD69n9baV47lsAKSk6c0xMeacbNVcprrZXMWPYAsI1fd29H0q6JJU2qpm4NORv2ReTpO6amGFg271cWTRJxcpQw97P1WHv1olKVknm8W6+Wug0rsXbbHd4ZaruHa7eaqN+4cHYpOnevy+dLQzh69jGiCEZJSd6d/KLXXa2WM+b93GVdiqItaac4jmGCIDBpVj+eRCRisVjp5eucaT+tVitL5qymaY1YHOxFFsxQ0a5LaxrVtnLstI59R7QARP8fe2cZWMXxdvHfXo27EcGCS5DgGlyLU9wpFHd390LdaIsUintxd3eXJCQhIe5ydd8PFxJC3JC+//Mp2bs7Oysz+8wj58Tm7J18vy+li30+OabZMrYEQWgJfAtIgbWiKC7NYL/OwA6guiiK1zNr08FWYO54JT+uu8/zZx6UKOmAVi8jMVGPsfHbEItA6bqZh1iCg2PxKJ1SUebmIsetiB1L/7BBr9PgWasiDZsYHsimP4+zdDLY2RosYDNTgX1H4unUxoxXwXrMLVNCSZY2Vjz3DUtmkb95X8StUs4SVS+fvc6ySQYrvoirnGZ14nn4IAiPSgU7WXk/D2bv9rNIpBK+7NUkT9VuAENGt+OXNXvQJYXz5GkkzoWMWTrzd9p0aZ4n0VIAZ1dr5q8aRnR0IubmRnmqKgoOiuaX1VuxsUgiIlpOt/7tKFM+51xABQ25XErRYpmTQW5df5hvZsmQy+U0rgtRv3lzWO7B+DmPGdzLnIpllTx9oWLGwotUr/A/Xq0PDWdHgRH9FLwOSeKXXw8xfHwH7B2seearp/Sbmp+AIC1mlll7YKRiArY2BkNAEATatzDj6PXi7D0VhYWNNRNntQAg8FUUFjJfBnQ3LHQqV1Ayc2k4S2Yo0elEktQpHz1nFysOn5PQ+g2fVWiYFoksZyv/C2cfMfhLNXa2hgXB/AkKZqw5n0baLL+hUmn5+8/jRIVHU612ueT5O7eoVKUoQa/qMnnpLSIjYomN1VD85Qnu3X7BoGGt8mTUCILA2KldSIhXgSDkifpDFEV+Xr0XdZw/Wq1AoWJlkh0Rnxqykj06feIhbRuE07S+4d2pWkHLyg33iAzWUqaYlnmTbdBo4KuJ4YSFxn7WeYTZRZbGliAIUuBHoBkQAFwTBGGfKIoP39vPHBgDXMlJByqUFgkMiKBESQd6D2rL+IWbaFRLhY8/GNlWyPKhOhWyZNMDCf3eeDMCX2sxs3BkzNSuafZVJamweifR2t5Wxr4jMQgSKSevWjNtQdXk3/oObsayuSG42UcTGydiVagcbSq75eTS0OvfKp4bBnNCItgXMOmhr3cIO9ZtYckUgyzQpEUbGDF1QJ5eZqVSxpgpXfhu+U6+W6DGzVmOKIpMWPgvpcsOyTMBnSAI+UKg98ePu1g5TYuxsQK9XmTErD3MWzUiz+1+DMjleuTylI9AUScdjkWciDqqoGJZw/0u5a6ksFvkG8bpzzsX53OFk4MMVWI8APUaluHbpfcJCArEzBTO3zRl2oKsDWFBZk5QcAiFHGWG0MsjKRPnNU8T6k9IUPMu4bhUKvA6WMepCwnsPS6jc9/2yb85u1hhW6Q6UxZfx8EOnvkZM2l29vmsAGRyOQmJqalRJJKCnb8MMm4bmTAonmJuUv7edZJ9O+PfSMDkHi3bVqOQiz0+N/cwpJdhrjl29jmH9l2ndfvqee53fpBw7tt5mcZV/WhQy2Cwbdz5gGuXi1K9Vv5X7Bc0YqLjqFTqnaImWymCqEOHJeOG6hAEAYUCJo8w4cLZR7TvXCNb7b5WhiDKlZhJtPAiGE/37POJfWxkx7NVA3guiqI3gCAIW4D2wMP39lsALAMmZffker3IgZNSBo41eHoKuVgxffFQvJ+HUra+abZ4t4yN5XzRvS2j5x3B0kxPotaKUZPbp7tvy3a1mL9mB3PHK1GrRb79U6Rmkw4Y2Zkzo71bqg+WQiFj1uJ+xEQnolDKclWB2LpTI6Yv28XQXhJ8A3TcfGpH8155S2TMCvt3XWT+eDlyuYBcLjDpa4G9h27Qo69XntvWqaNxczbcB0EQ8Kygx98/ktJlCvaasgtTI1WyV1QiEXBx1JGUpPksq0eLlS7J7kPX6dhKSVS0jkMXBDpODmfv2dT5bGGRIrd8Qj9SLyE2NoLb148jijoqVmmEtfWn8S4UNN6aIEfPqClaqijwxssxrSt+L8NJStLSpJt9tjy1Q0a3Z+WK7RhJo4mNl9KuxxfpvrPFitux4RdjWjQ06Mn+s1dFycq1iJQVY9hk1zRyVO271EHdrgYJCWosLY1z7MGp71WGBdMuYWISj42lwJo/YNCYgvW0vAqIomLJGIoXNhgvfTormbriIeTR2AJ4eM+HDg1SnkfT+nKmrPLJF2MrP/DiaQCD26Q8d69aEnae8/8sja26DcrzyzdXWTlDRCaDFb+oaNS8GhfO3iciMiDZkxsYLGJukfVCu5HVEwBMTaJ5hhNxKPH2SYQXOSehfhdVitlx+OQ+goODKFOqPLWrF5xwdnaMLRfgXebLACAVkYggCFUBN1EU/xUEIUNjSxCEIcAQAAtzGROWKPiia5tUlWBKpYyy5dNqQGWGSlWKUanK11nuV7a8K1ptR6Z9cxFBkDBgdNMMS1zfIjdcMG9RvqIbFpa92X/mPja2lkyZ61HgcXilUk58gj45oT0mTo/SKH9YrQWpGSFhIcmkgncfSajd1ipf2s4ptFod638/QnR4KHKlOYOGtyFeZURMbDwW5lK0WpGA4NwZyRlBrdbyx48HSIqPQI8Jg0e1LzAdvI5d63Jgt4ypK58hkSqZNqc1kQpfytZzYsKKADrUh8OX5MSYN8e48MdJDE2Mi+bCjr8pGloUAQnnQ7fjOaAflnb/TYPr3fnL3EzOtBVy7JxL0Htgak6inPJumZgqmTI3a7oOqVTClHn9+Om3wyQlxOPhWYbB3apmeoxCIcu2dMv7kMulzFzcnyP/3iLJW8XwKZUKPNxjZCQjLj7lf1HMPxm3UmXcOHXpDv3fBCjOX9PgXvrj5Z9dOPOQy2evo9cLtO7kRdmKxTh6JogWXob5+shZPeUqZb/oJTs4fuQ2d67cQqeDxq3qU62ADDl7B3N6ftWdGWuOIwh66jZqTJXq7riXcmba3HV82TqRmFg4c9OWafMzz2l0N3tbufmAV8oogGSDK16Tt7lv1a/fYOKjwFRvztWHVwmPCKNti6wr2HMD4W0yXoY7CEIXoKUoioPf/N8HqCmK4sg3/0uAk0B/URR9BUE4DUzMKmerUhU38cipcVl2MCIink1/HEWjVtOsbS0qVirC7RsveenzmkpVi1O0uH12rvP/DaKiElg57y9G9Nai0ois3WbMjEUD86UKMi42iTVLtmBhEktMnITGbRp/NDqM75bvpEeLQMqXlvM6RMuin00ZPrErv3yzHXPjRKLjZPT+qgPF3POHEBJg9eJtDOoUTImiciIidcxcrWTu8sH51n528CLuAXd9Ajl00xKZXTVMxJTQdlyQP7EPTiMozLCr1QaZouCkY9QJCdz6awPKy/E4URhBENCJWsKaiHj075HhcZv6dL8hiuLnWYr1DrI7f4miyI5/zuPn/YrCxV3o0qMeIcGxXLn4GFs7S+rUL/VJJkJ/TPywcjdV3F9SvpSETXtEajZpk29GwT/rTxLw/AFyOchMXBkxocNHuf+3rntz/+J+JgxRoteLzFiupsvA3hz99yqxoT5odVC8nAeduqVf6ZcbXLv0lJf3DjG8r/JNhb2all92p3iJDxuKS0zUcOuGL0ZKOZU9CydHlJKSNOzYfI6Y6DiatqpGqTJpC+NexD3gVWIUp8LK8CzACSdV7uZ3URQJunePpz9uxz2hDArB4EmNcnnNmLHTMjyuz8Q2uZ6/srPkeQW8m6zk+mbbW5gDFYDTb15aJ2CfIAjtsjK43odWq+P75TuR6sOJjReo3ag2pw6dZ/k0MDeTsODb3RzcUwiP4kHU9RDYvfMyZao1oX6jCjk5zX8aVlYmTJ0/iJPH7iKTSZm52CPfvDtm5kbMXNz/k6j2E9WhlC9tuC4nBxn2lrGYmxsxY1HGMj55haCLSC6YsLGW4myXkOswZUx0It8v34q5cRzRsVLa92iFR+WiWR7nblYeioFHMTgVpedpsIHcNfqFN84vN7BhlpTXoTpGrnmAff+xSOV5LzgWRZGAszdJDI6iUN2KyEyUXJ/1J/a+tmhQ8Iy7lBQ90KJFaiNDUihzwtn/Mo4dusmNC1cwVoLczBm9Xk+rWgGM6CTn0o1QFs18iUIIp38X8PYTWb34NuOmf/nRx9OnhJETO3Lx3BNO3g/ni16lKFw082KSnKBHv8aIoqFi82Pe89PHbrJwtGExJJEIDO0lYd+Z+wwaVnB6hOdP300+pyAIDPxSwu4LD3NtbG384xih/k8RBLB2cqf/0OzpbBoby6lTr2SqbRqNjsUz1jFhcCLOjjKW/eRDUtsOeFROLYFl8HI9oJHdYwDiE7JXFR/p7U/IlcdYuDvjVL0ct5ZuQnYuERd1YXx4hKvojqlgjihk7nzKC7IzE18DSgqCUAyDkdUd6Pn2R1EUo4Hk0ZBdz1Z6WPfbEfp+EUzZkoYE7F4jDzFmkBGWb8rjZ49V0nnwE1ZNMViz5UrDhEUXk42tRw+CCAqMxKNK4RxLFnzKeB0Yxfrf9qOQqjEyt+OrkW0zpY8wMzeiXafsJRzmBp/ChyE+QUAU9cl9iYwR8lVGKD3EJUjQ63XJBQ+hEQJKZe6Mmd++283sEfHY2hiSokfP2U/Z8sOzdQ3vutVLKa/wVFWT2zv38/1MGRKJQAlTCeM6RLEj6ArFqufNIyCKIvsn7kN/Wo6R2oTH+/9G7i6lqG8xZMKbaxcFXuGNWFpD5zGdMbbMWx7F5wof7zACHp1LJiS9dMOPzbuSqO1pCL3V9pSzfqsfq5dYI5UKVCgDoeFBvHgeSomSDoSFxnL3tj+FnK1znErxKUOv1/PnL4eJi3hNolpCr4FtszSg6tQvXWD9+RTmLwsrM/wDgyjqZlio+frrsbEtWCF4W3srnvsGUdrdcM4n3nrsnXKnXHHh7CNcLR4y4Y1sz94jTzl1zIVGzXJXOXrz+kvaNY6jZDFDWsbc8QqmfnM+jbEFqQ2up6qs79mjww/wWfYAqzAHwk18ifG6gOyaDgeNGwhgJlryjLsYG1tRqlTBfTez/FKIoqgVBGEkcAQD9cOfoig+EARhPnBdFMV9+dWZmIgwypZMScD2KCMSFaNP/j0sXIdAastT+SZSsu7Xw9jIH1OupMifa6S07d6JchU+Lz6Y9KDT6flx5WZWzzSouj944sfv3+9n2LgOH+T8oiiydeNpgvx8UWuk9BjQOl9XmrlFyw5NmbrkIA1qarn1QEqVOrULfBLt2LMl4+bvpVZlPfeeCNRu3DDX55QRn6rcv3wpkdCQ2BxJr7yddFyMn+BLDKL4jkaiRkclEz8qKFVcOPICrUZPzabFsLTOmS6cn3c0uqtqbDTOIIBLUEm8tVdwIIXyQ4GSYj2i+HpWZUzNP31h84LCo/svafEO4XdtTzm/bYxN/l+rFYmL16cSErY0N4RPHt4P4MCWXXRqoePhFYEr58tk21PwqWPdr0do7vmCapXkqNUiY+dvYerCoR+scOXh/QD2bzuOXC5SumK5NNqFHwM9+zdhyUx/mtWJJzEJbjyxY8pcjwI9Z/e+Xiyd7Y9n2RgSVeAb4sSEGbk756N7PgzrnGI+NG8gY8mf3rk2tiSCgFqdQj4uihATZeDiunzxKd5PX1GxijsVKxk4Bd+d+7LCkS3XKRReDgQwTjTl9dUHyFQpHjGJIEHrrMC6exskSQ7cKKAqx2wty0VRPAgcfG/b7Az29cptZ4xMLPB7FU3hN/ItSRpjth8xRSaNY+eBGMxMZTjay1i4OoKZ42w4eEKNrXM5wsPj0MU+YfBIw4eklqfIxKXHKFeh4EJKHwohwbFULqtN5m8pX1rO3/vCPtj5d2w+R1mne4z+UoFaLTJy1iaMza0xNoJylcrS8ouPU8lTtYY7xUoOwvt5KO09rbNVuZpXlK9YmGKzh+LvF0G1VpZ5So7XYkpEZCQ21lKDzNRTgS/65Tz5+K2XSyHcZtpCbyYMtyY4VMf2A3HUaGTO5iWXGd4rCVNjgW/WBDFySv8c6adpZEFI9SnEg4Ig4OpiQ7TUG8vXxdGjQygTzJIl3QusWOBzgXtJZ86fEan8Jqvh/hMNUhMnftoQC7oE7j7UULSwgi+/es3vq+xJUokcu2jM7PZOrFqwgZXT5UgkCupUh8U/PCEioj422ZRy+pQRHf6aapVSJLnqeWp56Rv+QaqYXwdFc3DrTlZMM7D6b9hxmVkTH2FtJcHIxIIBw9p8FFUPY2M5s5cN5NHDIOxlUpr1dCrwxaJCIWPm4n689I1AJpPQ2c061+csW6EYx84948svDAvGY+e0lPfIfTK/g5MFS7+Lo6ibHGcnKat/jUSdZMe6Xw9T2OoJnetL2Hf8Li+9a9G2o8FYTvHwZw4j4V6q/43lxsjLxKO+o0IhKAmx9KdUn0a4li+LSQDgl5Dr68gMn5Q24sDhbVi18B8sjaOIiZNQrX59hraowvwZmxk9SErZUgaD4/e/4+g/SYZX06r0GVQDv5fhOLxTACSRCCjlBRd7/ZCwtDLGNyDlf7VaJEn94R5bgK8vIzob7rtCIdDKS4O9TRj1aprw966LHDskpVmrzCuiCgrW1iZ4Vk/rZi5ImJgo8uUj8dXojsx7J2erXY+2ySHErRtP88r3OWoNNGnVgOq1S2XZnoW5kgHtLNl5IA5zMwkTvrbm522+fN0jkcrlDYuQZVN1rFh/glETO2S7nyVLO2JVMZHEi/EoRRNi7P0YOtoTW3tTtv5xG4WRlAlzO/+/N7QASpctxIO71Ziw8BYmxpCos2PBim5cuvCMq8f38csKg7xVWLiO/uMSqFStNFPnt0Aul6KUp/DxATjYGhjc/wvGllYvJz4hEdM3FdLPXwpUaf5h0jxuXH1G744k39u+XZTcuuPP0on2+AdGs3LRZmYs7PdB+vI+ZDIpFT0+bPRFIpFQrHjeIxN1G5Zlw9oApi59CoC1UykGfG3wkj15+Iqdmw9jrBQxt3Vm4Ncts+QB1Gh0tGluxf3HKi5c1fNVbyt+3WpERNBTJvczhCpH9INJS24lG1vZhVe7Iux/FoRZtBNJ8lgKeypZ/EMnVsw5yeuwl3g09USoWB197snss4VPytgyMpIzY2HfNCSNFmayZEMLoE51OVh70Lq9Ib7q6mbN2vvGfBGmxsFOxoHjapyLlvng/S8ImJgoKF+9NtOXXaRkUbh6V8bg0TkjJ8wL9KKCuPg4zEwNz+OFj5oqFQyekd6dlExb9eijGVvZgVar4+8/TxIeEk7p8sVyNFD9X4azbeNRBPTUbVyNmnXyL4/E0tKYGYv6p9l+eP81ClvcZdQkg3TLnFWHKORqj2sWguyt2tdh3fbtzJ9giUolMnGRlhIVnDAxSuHgUioE9HpdJq2kQKXSsunPE0RFRDN4QhWu1XhNcGAow7pXp66XQWS3Vj3DSvbp42BWzD6FTC4walqDHIVC/2vo1K0e4pd1EUUxeQ4zMzehtmeK98TOVkqZcg4MH9cueZtz0eL8e+IubZooCA7Vcu2eMW37WX3o7hcI+g5px/iFf1PTQ41vgIhr6Wp5Fn7PLuwdrHnircfjDbtAULAWZyfDosbNWY6VScwnTwp86fwjLp6+g5GJMf2+aoGZefZSATQaHRvWHiUmIgJre3v6DGqaJ4WO99F3cDMMXOcpiI1JYseGnXwzS45UKnD55gs2/XWCPoMyJ/ctVtyODb+aMWtkEi5OMtZvV1GqQllePrqaaj9ZDiyW08fvcfPKI+wcbRi8qiRnjr7AvbQtX41phlQqYcGaNryIe8CxEHf2Ld9L0st4ChevRFnLgqmw/6SMrbd4/8UvU6E4h09dpmUjg8G17xg07lgs1f6T5/blh18PoU5KoERZd7r1yTsJXnYREhyDXi+mEqXNT7RsW516DSsSHh5P855WBZ4I/i76DmnDhEUb8aqhwvuljsDX+uSkzphYHYKkYF3woigSGZmAublRrq57xYItDOkSQdmSco6cvsK636LoP6RFlseFhcWx7sdNrJopRy6Hlb8eRi6TUbWGe24uI9t4cOc5y97R5OzSGq7feIGrW+bVxqXLOiN27sKMNeeRSKUMHd8UY1MF38x/wJLJOoyNBGas0NBtUP0s+6DX61k8cz2ThyRSxEXK2n+O41G9Ac1aNUmz7/OnoYzvdghLv5KI6Bl2dTd//Nvl/4X8RkYQBCHVPODubs8P26V80czgvbr7SIOFTWo9y259vNi304ipK1+gMDJh6vzWH8wASIhXERoaRyFny1xzcmUGRycL5iwfSuCrKBpYmeSJuzCnqFHbnR9WFiXoTz+sLeGfXdFs+y0lDBITJxT4fU6IV6HXi9k2kt7FqWN3CfM+xdIJCsLCw5gxZx2zlw7O1nNavWQbX3UOp7S7jLuPIvh+RQxjp3bJzSVkG8+eBtOsng6p1DCH1aoqZ8/JwCyPk0rfiHWvPUp8bByetcrTsElF1iwN4NKNIGpWkXHguAY75+wZQru2XcBCf50l4xU8ehbMr9sCWf5LnzTfZ71eZNfwnVhcc8RGb07g3YuInuF4uuc/19YnaWy9jzYdarBhbTRnV/igUkMtr8YUc0/Nr2VmbsTIiR0/aL9EUWTVom04W79GKgHvIFsmz+mZr6uHtzAzN8rVYM0r7B3MmbV0CD4vwqjgZcKOTSf4fdNLnBxEDpxSMnZG63w/Z3h4HPdu+yOXyzi85zhlimvwC4SaXg0pUsyJ7RsPopTrsbJ3of/QFhkauImJGmxNwylb0jDwW3gpOLPCN1t9uHj2EUN6iCgUhrYnDlUw7ZvrBW5sWVpb4uMfTjE3w9C881DEtVz2uOQMYt3dUm0bM6M/3244iVajpdugehQtnjUvjY93ODUrxlLMzfC+DemlZOqK2zRrlVZgd/2PV7DwK4FEkAASZM9c2f3PXb4aXTdbff7/AHMLI77o3p5xi45gaqRHbuLG12PTJr8bJGk+3CIR4OTRO9w6f4Yy7iJ/3ZPSZ2hX3EsWQHKwTJpjstf8wsiJHQnwjyQxUc1XbuEs+uE4DaqruXbXkKqS39Dp9Fy/6otWo+XqhbuYSF4hlUJ0UiFGTOzI2h/2o0mMRKNXMHB4h0wXJjcv307W17W3k9GmYRIP7wdSuWrm4vOiKGIkCUuuPPQoK2frgZD8u8gM4OhkwdGzEtq+ERqIiNQhSLJnXJuYKBg6um2qbWOmdGb3tovsPRNIxSol6DMo7RyUHnyfPGLpm/tWrpScok5RhIfHp2EpCH4Vh/BUjrFoCgI4Jhbi1YvH2TpHTvFZGFvw1mX5aeHwgZu0rvMarzqGh3rjbgS7t12kS4/8I6L7FKBQyChd1pCnNGJCR54/CyE2JokZiwuh1+lZtXALUjGGBJWc/l93wNk185BXZnhbldWhmY6bd9WUKaJn3GBDe2PmnOK8XsKaOXJkMoEL156yeZ2cXgPSelwAZDIJ8Qmpc/dU6uz1w9zChKAQkYpvFlKRUXrkyrzrn2WFPoObs3TORkq5xRAdCwrLUrSomvO8NL1ez7OnIUgkAsPGfpEjj6tCISUxKWV/URTRatM/3shUjg4tUgxeR72gxcT085NHKmhU8ChMBY+vPnY3UkGr1XH51BnWzDEsRvp0Fpmw5AAzFg36yD3Lf7wNw5cs5UiZ8oXxfh5KpwG2ODhasGvreXweP0SvF6hYvQot2+aec1ej0bFoxnpaN4jGRCbi/yyGX1c6YGoi4cK118wc/ztzxuhwLyInLl7FxMWbmLdyaIbjU6cX0GpFZLI3FDfRYF0y6/ElCAIJianbTEgq2AR8ABdXaywKVWXG8lsUcoD7z4wYP6tt1gemg5DgGIKDY2jRphqmZjmbe99XHUhIFNONjCiUUnRSbfL/oihCAd2mz8bY+hTx+lUYrdumPMDypWTsOfvhKgU/FkqUTPGOrFz4D2N7h+PsJCMpKZEx87cwf9XXuQ6n7tt2LLkqq15NY5Z9H0F4hA5bGykmRmpqe8qRyQwfh7rVFew/E5BhW3K5FFvXsvy19SE1KgvsOwY1GzbOVj8aNi7L0jk3iYsPw9ICtv6rZOKc5rm6poxw85oPzx77Uc6jWHJJs1IpY/aS/oSHxaFUyjG3yLk3U6PRsWTWBmpWjEGnE9m2wYap83pn2+PqVtiGbSGFOHQyiFLFBf7aJtK8Xfqh1xGT6zPo3DZU9x0RJTpMq0XQuVfB6uf9D/mD+Hg1ru/UeshkAqZG2cvp+5xha2uWnDN24exDjNU3WDbF8DH/7s8L3L1tny6/U3ZwcN8N+neKpUZlgzenXEk5f26OYdRgKzwrylBsjcW9iIEbysxUQnFXNbExSRmGVjt2b8akRVsZ+CX4Buh56FeIVn2yV6BTqWYNlv98iTpV9Zy+IqGWl1eurikjhATHcO7UPUzNTGja0iOZ+7Fzj/okxNcgNlZFFwezXIVpd2+7QLjfdcoUF1m1UUrPr7pSolT2C5PqNq7N4h+O0/0LCbcf6NHKi6ZbxGPrYIJVAzNCD77GJMmUMKswKnsWjGPnf8ZWHlCzXnnW73zMxKGG2/jnNg11G+aOZ+RzhUyMwdnJcP1GRhLc3TKfPLLC+1VZNtZS4uL1WJhLeOIjxVipoV1zQ9tR0ToQMl/x9B3cnNs3S3PxeTCNOxZLE37OCBKJhGnze3Pz2ktiktTMWFwsX0vE/1l/EkvhHm1rSThy9jbez6rTvotBY08QhDzlPO3aeoEh3eLwKGu4N2VuRvLvnmu065z94oDxM7py5sRDDt+MoEPfshlyq1lZmbDu3+4c2vcAuVxK6w4tUSplPH0STFRkAhUqOqM0kuPvF/FRwuD/Q8awsDDiuZ+CuHg9ZqYSnvtqEBT/HTLV7OD65cfMHZZSfNXtCynrDz7JtbEVFxNHocopxoWDnZTYOANX5MZdaiKjSeWpehVMpl6bkqWdGDR2AFcuPsHaxoIJM7Iv79SqXQ38/Urw4lkwbXo64ZKHiMP7eOkTyt+//sPIvhAcpmfJrDtMX9g3eUFnYqrExDR3kYCEeBX+T66z8E0YsF1zkYlLDzJ94cBst1HPqzxOzrYcvPYUFzcHhnXKuGCuxdxWnKsZQeyDKKo6tqFQnBkxcdEEhfhjZ+OIrZU90bFRJKkSc3U9b/H/ytjSaAyrtvxKMC9XwZXQ4MZMWnrVQMJavQZVq2ee0/PKP5It648goKN63UqfvdRQfJIMtVqdnNvkHyRgZp77cFuhIsU4dPIerRorCAnTsu+4Hu9ABUEhOtycBKzMdcxcEoadrZyHPhaMn5V1ZWblqkWonItQnCAIeNYommZ7XquXRFEk4PkDxsww3Keve8PkJXegS50sjswewkIiKdE65R0vUUTG6TuROWpDEAS8mmaPx8bcwogve3sm/z93wiEubIpArjYm1Ggv1i5yjMMd0BtlM4b7P6QLURRJTNQkc+7lFYIgMHpqL+b+sAe5RI3CxJFh4zIfTzqdno1rjxERGoqlrS19Bzf/oAU7+Q23ok7cuBdAraqGe3r9ro7CxXJP7eLVtAprfrnHsmkiEgnMXhlPeLQ5k5ZK8PUV6dlexqjpIZQrbcQLfwV1mjTO0uPs4GjBFx1zx2foVtgGt8KpWeLf6iHnpZhrx6YTrJguR6EQKFkcomIiuXbFh1p18p7TGhOThItTSt9kMgFjpT6TI9JHiVJO2fKGCYKAk2c5HJyNMAmAgEe3OPT3IYxjLYiRRqCzUGOhtUGmy9ti+/+FsSWKIj+v3osuwQ9BAMGoMMPHt8+XysGGTSrSsEn2vFnR0Yms/W4Tq2ZIMDKS8OP6E1yQSKjbMHPV808ZfYd0YNTcrZQupsHHH5p3aJ4nQ6R730bs3aFk2iof5EoTvv29FWbmRqxcuJnFY6ORyUyIjtGx+1ACLTs2+aA8RMFB0fyyeis2FklERMvo2u8LylVwy/rAdCB/b9zKpPnHC9ewaRW+X+fL5Dcr9p82amjcoWDZqd/i6ZNgLm6OwEltYJi3SrTn3vMrlMP+jdjrzQ/Sj/8arlx8zNE9xyjkIOIXpGDEpJ75QuRrZ2/O5Dl9sr3/98t30rP1ayqUlvPkRRSrl2xj8uyMhcc/dXToUotvFvtz4kIwWq2IqCzCsHG5j064uFnTuV83pq85CYg069SKSlWKcu2yD7rgPbRrYcoXzU3wD9Tww2YrGjWrlH8XkwVEUeSnb/aiifdHpwOHwmWypGTIsC10qeYwUxOIUGsyPiAHcHA05/YjBdExOiwtpFy7rcbM+sPxkd25fIzCsSUNEQa9E48jb6JHxFbIm9f3/4WxdfzwbWqX86OFl+Hjc+zsS44evEWLNh+WH+r6lef06aDByMgQBhvRT8nUVbdzbGyJosiL56Fo1DpKlXHM9+rH40duc/fafRBk9BrUOtNJ3a2ILfNXDSMqKhELC6Mc9yXwVRT3bvviWtie8hVdAN6E09J6ed7acJYWUlydZcSm2aNg8cePu1g5TYuxsYEDa8SsvcxZMSLHRrsgCEiMXLh4PYDannJOnNdgZpc3DcN3UcGjMDHRLZiy/AqiCDZOJdi/4wwKpRF9h7QsUALSqMgEpKqU9qWCDCPRmDiisSHrSsj/IS20Wh3H9h7j+/mGr1tCgp6Za3Yzdf6HJ+MUtCFUeCMAX9pdhpEkPFfthIXF8SogkqLF7PL9fQwMiOSfdUcQ0FKlZsVMDRqJRMLEmd2Ij1MhSIQcew1VKi2Xzj8DoE79kigUMkqUcmLizJ6p9tPp9cnGiUIhULyIHLn8w3J77d91hUZV/PCqY7jGzXsecuVSUWrWLpnFkWnRtFVtFn63n+kjFYRH6vjngBEzFuVPpbZEImHczD4s/mk/EpJQmDijSkpg1cJ/8GpeA88CrgjXqTSp5nQlxsQRk+d2P10mt3yE97NX1PZMcXXXqirH+9mrNPuJosid2/6cP/OU+DhVvvfD3NyEwHc0emNidUikORvcoiiyYsEWHl/YTND9rcyb8ieJifmzogCDoaV6fYalE+OYPSyCH5dvIC42KdNjBEHA2tokx4bWtUtP2fHHesrZnebFte1sWHs0w31bfFGXOatUJCXpeemvYfshE6rVLJ7h/gUBUyMVxsaGaxQEAVcnfa7v/ahJHbn7ypNp39jiH1+LQcNa5WdXqVO/DBPn9KNK7UrYKx+ybGI043oHsmLuOlQqbdYN5BIVKjoTYxmATjScI1j0R4+IESbJ4Yv/IWeIikygRJGUe2diIsFYkX5INigwmjMnH+PvF1EgfUl8r6Lt/Yq37OD44Vts/fVP4n138tvKtdy89iK/ukdMdCK/rdnE3BERLJ0YR4z/aU4fv5flcaZmyhwbWgkJahZM+wMH4TD2wmEWTM14Lq5arQh7jpvi468hKUnPvNUqmrbOn7SB7OL5E38a1EpxRzWsKeXZI79ctVXZszh1W3Vk5nd2/LKzKFPmDsjXnFYbG1MmzOzOoFHdCA54yayvw1g6IYrbZ/dz82r+vS/pwdTemhjRkHaRJCaSRCJy8n5t/y88W1Wrl2bnoRcM+NJgcO06pKVqjdQSKKIosnrxNjyKB+LkAMtmyxk5pS8OjvmnuVe9VnFWLHBCrQnG3lZk+0EFo6fnTGz21LH7tKgVQrMGb3Qgqyayed0JBg3LH9Hau9fus3SiIZfIxERC19Yq7tzyo26DrCVj0sO2jWd45fsclQaatmlItZopHpzjB8/wzXSFITeqEsxa8YiEBK90J72KlYqgUHzJorVXMTMzYdpCL5TKD/v6JqiNiY6Jw9JCilYr4hcky3X+jCAIdOpW8FxUd6/dTX6eNtZS2jZK5NGDrHl6cgsTUyUbj/Wgd8tNaGIlGJlKqFTZClSRSBQRcLpATvufho2tKY9eSJMTq4OCtegEqzT7nT15nwdXTtC4tp7jOyQ4utdOVtnIL1RvWIcF357Bq6ae89clVKmTs3dYFEWunjmfTDfRvoXI2PnHs8x1zS5uXvelxxcajI0N3rKveiqZsvIuXk1zFxp88iiQXW+kZyxsnRnwdctkr8eurReYOFhFqeKGcxVySGL3tgv07OeVph2FQsa0hf3ZtvEMsbHxNGtfnTLlXXJ3kblEhcruHDwZRNumhnt/+LSOCpVyv2A10JkUzDzyFpcvPGHQlzpMTQzGztQRSqZ9c61A+Q4bNevL2aO/89D/OYIgwdrBGhMjU+LEcPDOfbufnbEliiJhoXGYmiqyXe1QvXZJdgdUY/LS+wgCFCtdNY30yp2bflQuEUT39oaBU6OynkW/Hmbc9C/zre+CIDBpVnfu3A4gJjaRqQuK5LhiIzwsihqeKR6kwi4yoiPz7uJ8CxEZ8Qn6ZB2zoGAoVNEkV20d3n8NN4s7jHwjPTN75b8UcumbXBVjrEidpGltJZCUlHECcOmyzpQu2yFXfckPfD2uK7NXbcNMGU9MvJwBwz9sXwIDItmx+RQiIp26eeGWDZJInV6CRiMilxvuc3ikQIlS+ZNgnRGKl7DnwrMxRETEY2KiTLXiLWR9NZMj/38gLjaJJJUWW1vTbIWgJRIJ/Yd3ZcLifZiZ6NCINgwfn5bA+cKJc6yeZZhP6teCcfOv5rux1aR5ZcqUK8Lzp8E0/9IhTfJ1VtBq9VhbpHjpBEHAzDT/PJ6WliYEvvNBjIvXI8mlykVMdCI71u/km1kypFKBi9ef8c96BT37G3j9EuMTsbdJiZjY20hJiM+4Ys3EREH/oR+PL7J566qs+zWUC8teoNMLFC/nSWXP3ItH5xQ6nZ4tG04THBiKR7XSNG1ROctjTEyNCYtIeT/iE0Qk0oI1WyQSCRNGzEalTkKtUWNmYp48Ti9PPJXrdj8rYys2JokV8zdQ3j2J4DCRQsUr07VXw2wd27FrXeia8SosOjqBQg4pD9XMVIKoz7/w3FsIgkDlKrlLqgaoVa8cv/95k0WTDRQJP6xT06Bx9lh1s4Peg1szYeEGurZWEfgaHr9yo3mv3CUnPrz7nKUTUqRnOreC2ze9cXE1VK7ZFCrKkdOPaOGlwNdfy4sAc6yts2fYiaLIv3uu8eThS8qUL0Lr9tULRCrpXVhbmzBjYf8CPUdGCAmOYe23G1k+TYZEAlOW/E2/kX1wdcv8Y9elV3MmLNxC3456Xr6Cp6+caZMPQtpZQRCED6Z/9zlhw+9HiAt9jLUlPPWzYMq83hgZZW0MFHN3YMbiwZnuY2Ik8i4jo7mpWCC6fy6u1rmmEZDLpYTFmBMcGo+jvYwnLzToJfnHWF/ZszCrj7ig3RWIo73IjkMKRk3NXYj+2dMQmtfXIpUank+dagr2n0lJP2nepjqLf3zGkimG+7vkJy3dB2e/avDJo0AO77+EkZERPfo1/iAyRv2HZi1VVlBYseAfBnSIoEJ3GbsPnWXrxii69fHK9Jg69UuyaKYtohiOnY3An9tljJr6Ya5BqTBCqcg/uprPytj68+cDLBynwc7W8AFf9dtt/P0q5nh1lR6qVivGlJEajp2Ox9hIgqm5MZ618y/Mo9fr2bD2GBEhr5HKTBg4/It0CSs1Gh1PHr/GyEieijz0LdwK29K0YwcmLz+DgI7oWAXBEac5euAs3fq1zbPUhqOTBVPmf8WdW364VDKhRe/cu7rNLCx4GRBGEVfDZHXvsYhzuRS+pj6DmrJvpxlTVvpgbmnBlHkZS++8j9++P0Cdcj70Hyfn5IUgfv8hhCGjcsdUnBfExSbx46odKKWxxCfK6TW4XbYkcXKKw/uvMn2EBJM3Hsd542V8v/ViGnmL91HM3YFhkwdy48oLrJzNGNvpw+a5/Q8puH83ABv5IyaON4z7lwFxbPj9SL69t7EqS8bMfIGVhZSK5RTEqZ3z1dC6dukpp49eBqBpm3pUqZb+u+TvF0FERDylSjulm8czfkZPvvtxP3pNHGGRSixMo/lmwe8UKVGGzj3yJp8jCALjpnfl/r1XxMYkMnVB4VzzPTk6WXDigoQ2bwQqIqN0CJKUObtIMXva9+rKjDVnAejYxytDPrr38fB+AEd37mDuOCWR0Tpmzf2L6YsG5xutR06wdeNpXvk8RhTBvbwHHfKJguZdxMepsDcLo2IZw7Po1FrBtBVPAa9Mj5NIJMxY2JtL55/xLFrFpLmlckX0/CngszK2dJoE7GxT3LYVSukJfBWVL8bWuVN3addCQd/OFkRE6hg+U8XKIfmn/v3rd/tpW8cPTw85YeFxzJy/kXkrBqcyLuLjVCydvY5mdRKJihHYv70QY6d1TWOAVKxUhIqV+vL7Dwfo19GHCqXlaLVaxs7fzqR5Q/OcqGhqpqRO/ZxXqLyPvl81Z9mcvylbLJaoGBGpeWrpGUEQaN+lNlA7x20nRvnRpJ5hYmpaX8HJSy/z3N+38HsZTmKiBvcS9smsyBnh59U7mTo4Cns7GRqNhlFzdzBv5bB897LJFYbw7lvEJ4jI3+ePyAC2tmY0b/3hSszfR3R0IosmHyUmLP89xZ8TAvxCqfTOlFLEVU5sdP6kAERExKNLCmfVTDuUSoHZy2No0jL/QoiPHgRw+/whlk82jLk5q/ZhbtE9DY/Rul8Po9A+oaiLyNKNcoZN6IWTs1WqfUzNlIyZ0oWnj4O4cHAbU4YbPsD/7L3J6eNWuc6vegtBEKjokXeqAFc3a0zsKzNrxW2cnQTuPFamkZ4pVcaZCTO757jtQ3vOs2SSEolEwNFeRv/OiVw894SmLfJOih0dnUiAXyRuha2z9JadO/UAe+VdRr15rmv/ucbNa05UrZ6/izKJVELSezVnGUmApTlWIqFug9JZ71hAEEWRY6cP4PP8eZ7a+ayMLSdXVy5cu0/d6gr0epHDZ6UMm5y9kEhYWBx/rz2MTquhXuO0OVuP7z1i6USDxWxjLaVrawlPnwRToWL+JDGqYoPx9DB8HO1spZRwSyQ6OhErq5Sw2frfjzB/nAZHe0M/9hwO5NKFZ9Spl35yelxUShm2TCZQu4oWf78ISpXOfyHZ3MDISM7spf0JDYlFaSTP1xJvrTbz/zOD94tQfL1DKVvehULOlsnbRVHku+U7cbZ6hZWFyKbfTZg6v1+mK2O5EIe9nWEYyeUCJQpriIlJyvdy9nadarNk9iOG91QhlcL3G+RMmtsgX89REBBFkWFf7kB/tTBy4cOv2j8leFQpxo4/zlLVQ0QQBA6eUFOqXPY+aqIosu3vMwS8DMTO0Z7eA5ukqv69ePYRQ3uKGBkZts2fbMG0b25SPRdl/enh5JEbTBkkT15EjOov44/9d1IZW/5+ESi0Txg7yDBemjfQM/fHg0yc1TPdNm9ee8qXbVOuoXs7BVO/eZRnYys/0bVXQ+JiaxIXp6LjIPN88xQKgoBGI6JUGu5nYhLIZNn7HMdEJ3Lzui/WNmZUei8l5cKZB1w5dYJqFfQc2iahYeuWVK+dcXHTrWtPmP11yqKtfTMpfx54lu/GlrGxHKVVCbbtf45nRYFdh0Wq1fPK13MUFA6f2Muzky+w1OTNqfNZGVs9+jXiz1+S+Pd0IAkqgQ49v0hlrKSHVwGRvHgewpHdR1k1U4K5mYQ1fxxCp9NTp37KMlOrlaSSUQiNALccil9mhvgkCXq9LlmKJiRMTOMyToxPwNE+5ZEULyxw3S/jla9OVBIbl4S5mWECePJCoHqr3Mu8pGpbp2f9b0eICg9FYWTOwGGtc+WOFwQhXys638KtZHn+2naHZvUkHDuvp3DJ7Hludm09T2LodWpWEtn1l4TK9ZtRt4GB5+zyxed4lgygU2uDsdu4jprffj/KsLEZs2onqJUkJiZgbCxBFEV8XwmY54FBPyOYmimZvmAgx4/cQdSLTJ1f6bOQvwkNiSXeV4HF/3NDC8DZxYq6LdowfvFpjBTg4FqSXgNqZXpMfJyKRw+DOH7wMt1ahDKqq5z7T8JZvSScie94VEzNjAkJT8k5jYnVI1fk3z23trXEx/8l5Usb2vQN0GNtl3pch4fHU8w1NUWFRMjYm+lWxJHbD/QUe1PQdv+JFifn7IXhsoNL5x9z4eRV9HqBtl0aUa5C7rxdZuZG+T7WuvZuyoSFfzPhKwlhEXq2HzZn1pKsK74D/CNY++0murfVEvAYvj3qxpgpXZJ/P33oNN/ONTyjzm1Exsw7kamxVbykKxevByRzb128ocO9VMFUSQ4e0YbLF59x6EYQtVuWpFSZz0Mayud53g0t+MyMLUEQqFGnPAd3BmOkFHn22D/TAbR763miA2+g0yTQq50SC3ODYTZ2kJKpq26mMrY692rOhIVb6fGFDm8/gaCYIhQtln8Dv3235kxYuJcmdbTcfSyhZKXqKBSpb3/NehX5ffNxvuqpRKcTWb8TBozOeKD0H9aeSUv+ppy7moAgKF+9dpbGZ3bx0zd76Nr0FR5l5QS+jmHxgs3MXjogX9rOD3Tr48WNq25sP/OSshWKZmslptfreXH/FitmGCbOOtVh3IJzycZWaHAkNYsJqFR6FAqBQo4yEuLiM21z4LAOTFi8lUJ2KoLDJXzRtXWuVr+RkQn4+0VQuIhNhs/QxFRJu075W11W0DAzUyIa5T9n3eeKMuXdOH/KEr02lvCQSBLiVRkuYvxfhvPnD//Q2kuDOjqOmlUMup4VSstR7A9NlfzesHFZFs28TpIqAktz+HuvknEz8084vUuPeiye6U3DajHo9XDhjhXTF6R+F0uVdmTZ33KaN9BjbCzh4Ak1hYtnLPlUt0EZfvn2Kfe/9cFICYERtkye45Uv/b1904fHVw+zbJISvR6mL9uJuXnvbFXwfgi4FbHl64kDOHD0Fsamxsxa4pkt2aMt6w7zzUxpclHFX9sCePQgiLLlCyGKImamerRawzshkwmYm2YuLN6mQ3V+WBnAyUsB6HRgYuPOVyNzLiGn0eh49iQYE1NFpt/NWnVKUqtO/nhbCwrekkR4EYynuyFCJJEL6EU9EiFvXs3Pyth6HRTN0Z17WDFVgUQisHnPVY4fMU63hDQpScPLxzdYPEXJpet6Xodo3/lNRBBSv9juJR0ZNnkQt677YFfKnKY9cidEmhEqeBTGrchgnj8NoU1Vq1Thq7eo51WeY4lqpq68h0YDHXq3z9QrZGdnxryVQwkPj8fc3Chfead0SSF4lDUMaGcnGU42sSQladKtnNq87gTB/s/RaqGCZ1VatUtbkfPvnis8uf8chZEJ/Ya0ypckR88a7jliE9Zo9Ji/V2ZubJTyv3tJV2YsjKJmFRmhYXosLBVUr1sv0zadnK2Yu2IoKpUWhUKarVyt2Jgk/vrlX7TqRIqWKIpjIRuunDpOzUp6/twtoXbTZtSuV5b7d/3Yt+0oJkoRU+tCDB7RpsArLvMbJqZKOnxVkr0/+aCPMIb/53bXmqVbmDYkFicHGYGvX7Ni2TamzU9fLuefdQf5ZqYEpdKYc5dSG/1JqtS0KYZE4j5cueRNYKKaaQvcc50Ynh4UChmzlvTn0cMgJILAzC+d0iwqTEwUDB3Xk9nfH0Qq0VK4eHk698h8/Hw9ph3xcSo0Wl2+LRQBTh+9wfyRSgRBQCqF4X0k7Dlzjx59vdLs++hBALs2HcTUWI8otWb4hM5p5lLv58Hs3mKQ4GnSug6VqxbNcx8dHC3o1id71fRvIRF0yaFigEL2IrExKXQT9x4mMmeFGplUQKcTSSTzfgqCwKhJndBqdW/uVdYGhSiK7N52Ad9nvsgUxnTp2Zifv9lGk9pJhEeKHIgpzMiJnUiIV/Hz6t1IxRgSNUoGDuuAY6G0372PjVLKK+BYk6c4koARcXIZ3j4pBlen9j1YF/EL8nBjyAMf9GdlbN24+oye7UkOxfXsoGTKykfpGlvx8Soc7Qz71fI0YvricEDA1VnGXzukDBmbtnzUxsaUJs1zLwwtiiK///AvCZH+aLRQ3tMzFc+NpaUxntUzN+KatapCs1bZp3IQBAE7u/RL7F/6huPzIoTSZZ3TNe7AUBVzYMcpJBKR2g2rJUsHBYdquXpLQ/nSSkxNJEREg0KRduV1/MhtiljeZ2x3w8T+w7qL3L/rRAWPlFyCHZvP4WJ6i6UTFYSGRTJz7nrmrvgq32WGsoJSKSM8zgpvvxiKF5Zx5ZYGpXnK89i/4zibf7LHzNTQr8ETYxhSL2O1+PfbzgharY6//zhOeGg4rkVcuHfzEYsn6rCzlXLk9E02bU5iw7cGo7pjKxg99xRlyhfh4LY9fDNdjkQicPmmD5vXnaTXgCZ5uAMfBwNH1qZlx7K8DoqmTbPzH7s7HxVmyhicHFIWMSby6Az3Vch0KJWGd7FOdSMWfBNBm6YmnL8uULJitTSGt0QioXbdvMk+Xb/8jCN7T2Bmokcj2DB6cpdkD7xUKskyh9XZ1ZpJs3vl6JymGaRrxMUmcevGSyysTPCo5JruQiMhXsWfP/+LOikWS1t7+n3VAplMitLImIMn4vH0MMKlkIyXr/RY26SdAxMTNexYv5tv58qQSAS8/UL548f9qXjMXgdGsfWPLSyfrkAmg3mr96BQdMl1WDIvqFitAn9tPcuAbkpi4/TsOaZk6kJDP04cvcPQ3kraNDHMJf8eTyBEl73E8qwKgS6ee8SlM7eRyRWYmpvhWfwJX09UEBYeTZ/RP7PhWwvs7QzPces+P25c9eHUkUuM6xthiBAkxDNh8RbmrRyah6vPf7iblQce4GL8BIBXJtG8VjoRh/Idg6sQo0dP5VWwHze/O5frc302xlZUVAKJiXoePhOp9MYzHfhai4lZ+oaGjY0pj3yMCQtXY2crpX0rC/7YZY1XEw/GziyZr6uot9iz4xL1ynsnx7+//eMSTx66Urqcc57aTUzU8Nu3e9BrotHojRg0skOWHEb7dl4i0v8qtavo2b1OgkedptTzSu3S9/cL5/D2nSyfokAQYNVvRzExNeLsyTu42sfg/0rOqp+jcHUzx6NGg3TDY3dvPGPx2JTckPbNJOw89zyVseXv/ZzhEw372NvJqF05Cb+XERQrnn9h2uxi0uyerP/tCHHRUTi5OvP1GK/k34xkqmRDC6CqhxER4fE45XE1tmrRVgZ1DKdcKTkXroVx83w0draGkFALLwX7DqdWeVQnRPLL8t+JiYoiJtYOK0sptarK2XMyrcTU5wJnFyucXaw+djc+GjQaHd7PQ4mIMizKBEFAFEVi4zP+yLkULc6hk7dp1VhB43ombN4vp1BAXao2cSuQIpjo6ERO/XuINbPlCIKEFy9D+eOnfxk2tn2e2z6w+wpP7t1Hp4O6TWonh+4zQtCrKH5etZFubbUEPYJvD7kyZmqXNAbXqoWbmf51PIUcZTx48oIfV+2hSasaPL13mwquSn5aF0VkFMjNCzNtftq8zlcBkdSopE9ewBcvLEMVH5lqnzMn7zJ6gCSZGHjGKCVzf7ryUYytZi2rcOKowLRVDxAkCkZPb5Wc++v99BWjuqV80r3qGLFifVCez3nu1AMCHx9n2UQl0TE6+o+JYGx3QzjWzlaKvbU2uUgIoEQRWPnrDkRdEt4vzSjkKMPERIKro4rERE2+yvrkBwwGF8ADXimjAHjG+waXI+6F81YR+VkYW2dP3uPGuVNULS/y945Y/AN12NvJuHLHhKkL0ic4EwSBSbP7sPrnA+i1Cdg5ubNgeZN8J/h7F95P/Bg6McXwaNlQ4NR93zwbWz+u2sHonmG4OsuJiY1mytLNzFsxJMP9RVHk4c3rfPOGTbpeTUNu0vvG1oUz9/m6tyR5ohk3WMmIeRewVvoxb4ZhMH3R3Ixeo+KZsihtrlBcbBIxMWqu3FRRu5ohLHj5lp5iJVNfr0oNOp2IVPqmOCAcqpl+nIRphULGVyPbpPubXmJB4OtQnJ1k6HQi955I6DgobwUHWq0OM7nB0AKoW13Bxu0pv+t0Ii8DBfxeaSjsIsfXX42lmZ5ls5VERNqx/IdIFs+wIyRMi1Se/wuE/6HgER2dyMp56/GqocJYkcSQSXq86ppw475Aq44ZE2526Vmf3VslTF3pjYiCWYvbYO+QPwUw6eGlbzh1quqTDRr3InKS4iKzOCprXDj7ECH2MssmKxFFkcU/HMPRySYNbcS72PyXITfJ5I1My987A7h/71UqSge1Wou9ZSyFHA1zSfnSctgfyo/LN7H1FxtkMoHObc0YMS2MMVO+THfu93nxmqu3VPTpbJgro6J16ITUlcRm5ia8Dk1J5A+L0GFs8vGKU5o0r0yT5pXTbK9crRS7Dz+nf7IsnYYq1XMns/Yurl24lSz5ZWkhZVh/U67cTKJRPcN8ZGSsYN22JPp/aYRWK7J+WwzfzrPB3taMGYvDKe2uwM5WSlCIgJHRp2tyvPVyNbJ7DKRvcOUFn+6Vv4NzR88kV1h0aWPH4Mk6GnboTsteNpmGoswtjFJVauQE+3dd5sndO0gk4FKsdJZMtwDOhZ24cTc0meLh3FWRElXzvvqR6aNwdTa0aWEupZBtIiqVNsPQlU6XeW7SW9jaWeLjr6Oom6HtgCAtUTFaatVOWXkoFAJKedqKoujoRFbM/YsRvdX8uTmGLXviMTY1w8qpFAO7pF4BdOjWnMmLd9KphY4n3gJaZUnsHcz5d89Vnj72o2KVEtmSbihofD22A6tX7UAuxBCXIKP3kA5IpRKOHrzB/ZuPkcoU9BnSGhsb02y3KZVKSHhPwSNJreTnDUmUKSGy77iUMVN7snb3LZLiI3npHcr6bw2Gro21lNAIkdVr1TzxNWbynA9P2vo/5B3rfvmXpZN1WFsp6dFByY/r4tFZNGHUtJIZhtDgjX5m93pA5nlP6cHPN4wNv+3FzFiDWm/G8PFdsqyoc3Wz5u99Et7af0HBWqSKvBt3l8/dZ8m4FCWJXh0k7L30OFNjS0CbTOALUMgRYqNTDyS5XEpkTIqnSxRF4hMkmJvqkqvKAUoUlfH6dTQl3rv+n1fvwaPoS6p5iPQbHUJhV1PC4ywZOz21J69FmyosmnGPiKgojI1gy7/GTJ3XhCePAjly4ApmZiZ07+uVrzlyuUGN2iXZ6VuVyUsfIAhQuEQVWtQrg79fONs2HENER71G1ahVN2ceGj1SkpL0ybli4ZGw/7gOQZLIo+cCpTyqIFjZMHXlQ54+CmTRFCsc3ni66tU0YsGaOESJCS06Nvvkc04zMrjiNSbceBGcp7Y/urGl0+nx8Q7D2FiergSETqfHyiKFzFEQBJwcJAUagrp90xdN+BWWT30Tg95/l7Mn7WjQOPN8rm69G7BmaSi7jrxGpYaipSrhUTn3Qp13b/uyZ/NBQoJC0ekckj1DoRGSdPOn3kImkxKTZMOLl5G4F5Fz464GmXFao69JCw+Wzb3Pq6AwjI3g2EVTRoxtxbcLf6FzGzPMzSScuhCPRp/WuNj1z1nmjNbjUsiIbxcZ8eCJiiM3K9J7QOM0+5Yp74LduIHcu+1H8WpWtK3gzE+r99LA4yV9Rso5eDKQdb8F03/Ix5OSAEMy9/v5Jgf3XkWReImlb1zokxasZ9bSIdkuRhAEgeLlKvPDuhvUqQpHzgq06NScIsWceR0YxdCJLtjYmFKpalFEUWT+5B+TuXeSkvQYWTjTqmd3elqbfPIT1f9XhATHEBWVSNFitmkqjAF0miSsrd4hYy4tIRRZpoZWXiCKIr9/t43v5wooFAKhYVEsX70zy1wqGxtTPGp7MWbuWSzN9UQnWDJueu4N/MREDd8s2szrgFc8fGpKhTfs4fef6HFxtc/02Mo1KvLHP6cZ1ENJXLye7QflTJmfei4VBIEqtWux4NtLeFbQceaKlBbtW/PLml1cvpFILU9joqJ1nDinotuI1FWIUVEJKHQv6dhKCSjp00XPuIVy5i5PK4kkk0mZubgf1654E6XRMXNxcZ4+DuTsgd3MGqUgJEzHglm+zFoyKF+LlHIDAwN/Cgt/REQ8f32/mVUzpSgUAqt+O4RMKqFarexXBHbv14IJCzfRv4uawGCRG08LMXt5Ox7ee4WHlyUlSxk8Pq3aVeenb/Zgbh6QfOytR3I69O1B6bJOWeaFfSpIz+BKUAHkLbLwUd+MhHgVS2dvoHbleKJiBCKSCjNiQmqBValUQkSsOSFh8TjYyfD206IRCjbX5/b1p/RrlfJidGopZ+7PT7M0tiQSCeOnd0WvN7ji8/JxFEWRXX8f4McFUh49tWLsrFBKFjfCN8iIxm2bZtn2hJndWf/bEWKjInFwdmL4+LRGkEQiYeq8Xjx++Bq1Rsvs9s7IZFJqNKhH39EXsTIXCI9WsvKXYWmOVas1mJq8IyJtKUWnzbjM2M7OjEZNyyVfmyrGj8Z1Davdds0VXFyWBzn1DJCUpEEul+YpEf/xvcepXOitGybx+FEQlSpnX9+yc4/6PHlUgvsvXtO0S2GKFDVM/O/LMQmCQIeebRg5+18cbfUEhSkYOrZTpp60u7f98fMNplLV4hkqKYSHx/HXz/uRosLS1pF+Q1p88OKE/yo2/nEMTdRD3JxFNv6qYMy0PtjZp/YGla5Qkt2HLtOxlRKtVmTXESnDp+R+EZYV4mJVuLtpUShS8iTlQly2jvVq6oFXU4980VT886cDTBoUi5O9NdMWhWFnK0MUjInTuTFqUuY5W42bV+LkUZi68j4IMkZOaZWucdryi+oEVy+Nv18EA8c5YG1tICJePOtPbK3iCI+ELwe0S0MYqlHrMHknWiiRSDA2znhOlUol1KqTUnxw9MAFlo43MMC7uUj4slUC1y57U69h3sN2b6HT6dFodNnSzswIl849ZnA3PUqloY0JQ5RMXXUjR8aWq5sNo2cM4vrlZ5jbmzJpljuCIKR7rQOGtWHFws3YmkcTGSNQuVZtymdSVBEaEsu1y0+xsbOkZm33dL9roiiy6a8ThAUFoNHJ6DO4bRpVgvxGcuK8uSXxNhZUNXXjOv55avOjGlvrfz/KnNEqCjka3Lvb9r/k2mVvqtdKzZk0bnoPvv1xP3ptHEoTR0ZNyphkMj/gXtKVSzce0aGl4fZcvqWhmHv2867yIy8sLlZFURc9giCjXGklq+baM26+jskLsifHk1lu0rsQBIGy5VOTy/Uf0pQvezcgIV6FrZ1ZugOgbce6zF39gqVTBfR6WPyDnq8n1cz29en17/+fNsyZW6hUWlbM34y9RRQxceBevgqdumdfcy0hQc36346QEBfH66BY1GoJCoXhHrwOhcoVc56vUbpsIUqXzZrEr1KVYlSqMhK1Wpuul+RdbFh7FFv5Q6pVFNiz+QIedZun4o4DA7fYmkV/s3yqDksLKTfvPeOPn7QMGVWwY+j/A/z9IpAkPmTqCIMR0K6ZnoW//JtGvqVNh5rs2qJh2srnqNQC3Qa2yLbgem5gZq7kZaCQnIiflKQnQZUzRYP8mMNUiTG4FjK8w8tn27FxZzwKp5Y0bpq9Ct/GzSvRuHnWZMWOThY4OqVQ5LiXdOTXTVMID4vDytok3XFkZ2/Gi0BrHj+PobS7lM171BQrkxPmesO89/Y2qdUgNcm/Bcyured5cf8mluYQHGXJpNk9c2R0HT5wnQe3nxEWrsGpmZ7Kb7ZHx+SO7Nba2oRmrbJ+FsbGcmYs6odarUUuz5wK5+njQHZt2EHfTiLefiLfLnNh7NSuafb7+8/jVHd/RIOeChIS9IxfuIkZS4Z+dC9iTvFRe5sYH0chx5QulC4ucDMgbUKmmbkRY948hNeBUayYtwFz4yRiE40YMrozDk75y91Rv1E5fv/Bm+srvJFKQCtzYfTk7BsS+QEzcyU+AdJkVvu4eD1GZlYfrJLDxESRqSiqi5s1fYb1ZsFvpwGBwWMbZZspXhAE7FxLs2XvIxrWknLolI6ipavmT8eBdb8eYnz/GIq6Gfq/eu1NfLzLZiv0rNPpWTp7PbNHqnB2krHm9ySGTNYxoJscX394HVuM4u6Zh0DyA1kZWklJGqKCHjFxksHwq1hWZOLi82mMrZDgWDxKq7G0MNyLqhUV7Dict9yD/8GA0JBYShZNWTWYm0kQUKe779vcK1EU+eXb/RzY+orEJKjZsE62DIqcQBAE2n3ZipGzD+PiqMf/tYKhYzvk6zmyA3MrWx4/96VMCcO7/PC5gv6ts+8RzgukUkmm85EgCEyZ24vN606xbm8EVWuWpWMOZII6fNmIyYu3Mn6whKAQPftPWzB7af5I3Ph4h5EQcoMVMwxGvK9/LOt/O8zQ0dlbIG3/+wwuZndYNlGBj5+a4dMSSUgEayvYckDJhNkt86WfmSGr+Qtgz5YTLJ8uRyYTqFwBwiNf8eJ5KO4lUs+vYUEBNOhlmL9MTCQ0rKHC1yeM0mWyJ9X3qeCjGluVq5fj712n6d1JiV4vsnmvQK9hmfPE/PbtdlZM1WBsLCEhIYkpK3Ywa8mgfO/bVyPbotXq0OvFbL04+Q1BEOg3rAvjF+3F3ERLvNqMERM7f/B+ZAa3IraMmZy7PvX7qjmXLxTh76N+VKzsnq9aXPEx0RR1S3lm1Svq8fUOyZax9dI3nFoeCTg7GSa6sV+ZMm6hjBCxLthqqVTUiMjIhAw9E1qtjoP7bhAdGYtX08oFxlitUeswfye6KAgCSkVa76CFpTGvXqds12pFElT/CyHmB0qXcWLlVjnNG4goFALHz6lxK5q5eP32v8/SvPpLansaFk1LfjjNy1KuyaHl/EKV6iWoXG0EiYmaTBdNBYn+Q1vxw4qdSHRhxCVIaNauZY6KSwoacrmUfl81zdWxJUo50WdYX7Yfv4WZuQkzF1fPt9D8S59QanikGPFF3WTEx2TMx/Y+AnyeM2KS4ZkXK6ygdVNTkkyb4p+oo1FrGeFhcZl6Vm/f9OXOjWe4l3Shnlfm4d68QCrVpypksLaExMS0ixWNTkZSUmJygr5PAHg0/nTeo+zioxpbjZtX4sDuJKatfIRGA226ts2S08jSLCnZu2NiIsHCJDHT/fOCD5HQJ4oiP6zcjS4xEI1GwL1CJTp1M1QfFS/hyMwlGVM8fO6oVbd0jitjsoNCbi5cvnmfWlXliKLIkbMSug7Ont6XsbGCyHfkKPV6EYlEip+3P8a6h7iVEPl5uZTOfTpTulzqNvV6PUtmbaTXF9G4VZHy3R/3ad2tM2XL5z8fj7mFEa/CrXnuG02JonKOnFZjUyjth97EREHxCtVZ8O11yrrrOX1VSs/BHdNp8X/IKUzNlPQf3p1pqw6ikOtwcitN976Zi4P7v3zFyK4p3unm9UUePvDPd2MLDAb4hzC0zp9+wNkjpzEzFYlXWzJ2WneMjeXI5VLGTf+ywM//seDiZk2vdAqC8ooy5ZzZvlZC3RqGMPCVWxqcXLOfxqLSpHC5AUTHQnEbI47t/pd2TXXcPinh0tly9BnULM2x+3ddRhtxhT4tpFy8/pC1P/kweHjW6Si5QUXPCvzxz3kG9VASEqbl6EVj5rRP663qObAN4xf+Q6NaKl68BDOHigVKgVJQ+OhBz7Yda0LH7IfoomLlyZxNWq1IdNynRZCWU2z7+yxf1H9FjcqG6/h5ww0e3i/6UQjzPiYunHnI+ePnUSrAzqU4vQfmbsUJ0L2vF79+F8u+E0EkJAo0btMi28SkhZwtidEWZcteH8q4C/yzD+o3a8yDy4eZMMoQsmtYS2TSsqNMnZ9aK/Lu7QAaekZRq6phv8VTpExddZqy5Xtn69xHD97g1qVrKBUiptaFGTyidaY5D5Pn9GTjH8eICo+iVLli9B2cvqhxu851CAutSPDrWCa2sv3oJer/JRQpZseUeX2zvb+tvS2PnoVTtqRhvF+6BZUbfR6CvOkhIiKe62dOsGaOwajzexXFHz8dSFPo9F9HeHgcv3+7CyN5IiqdCUPHds41cbZTIUtqNGnB+IVnMTYSUZoX4esxjbJ9fLO2XsxacYCubeDeYxGJWUmO7z/DqplypFIFjevCgm8fEhlZN42H6/Gd26yYZpgfOrWWMX3ZC3Q6fba8dkGvovjjx52YG6uISzJi6NiuaYpF3kXz1p6cPalkysp7GJmYMHVei3T1IV3dbJiyYAg+L0IpU88sVX7e54SPbmzlFL2/6sCoubtxsFYTEimn39ef7qC+dukZ1688pkjxQrT6wjPdD2fAyyBGvbPSbVRb4MyjzAW2/2t46RPG/UvHWPUmR+HgyQf8u8eCNh1yJ7osCAJfj2mX6/4MG9ueG1d9uB0YQa9hJVCrtUS8SPldKhUwSidkp9OJKN7ZLpGAQPqJ/6Io8uhBEAkJaipWcsX/ZTivn51/cw8Ezlx6we7tl+j0ZZ0M+6lQyBg0LGNSzHdhZ2+e6cRXUBBFkVcBUYiiiKtbWmqX/2/oPagpqxaFYyYPJz4RSpT3LBA2+PxAaEgs+3deRCIR6NCtXrrGg79fBDUqpYS8CrvIUSdmP+T1X8GPK7ayZKIKczMJUdExzFmxlRmLBmR9YAaoWacMNetkr5DgfXjWcMfJuS83b3jjUsaO5p5FWL3gj2TqIIBCDgZS6veNLcM+KXOWTGbw7kvTCfIEv47BxzuM4u52ODha8Nu321g1XYuRkYT4hCSmrdzOzMUDM+1rg8YVsqzyB0PifbkKeSMHzy3UcQmEhL1Ep86DMCKfobHlXtKJuSuGodXqPmnejn07LyOJvcKEPnKu3fHh+xUvGZ1OflMRdxcu3gilzpscjuMXRCrWz11ZeFioQfYltx9Vf78IHt7zo6i70wdNPrx1/Tkd38nZbN1YyZgFj3NtbOUHPGsUA4oBhqT5tfeMaN9ci62NlKNn1Di4pi179qjsyoItZpQvnYSrk5Tlv2jwalE7zX6iKLJy4VYqFQ/C2kpg4TQjylepQCuvlH0a1lZwcKUfkLGx9alDr9czpv9uXl7SgCjgWuN/uWIymZQpc3qi0xkkYj5V7rSQ4Bh+Wr6OOWMl6HQwf/5Txs8emMbgKlzElr/2SOjwZvz6+mtRmljl6pwJ8SrCw+Mp5GyZq7k9IUHNpfNPUShk1K5X8oN+H2T6cMzNDB4XK0spojr8g507Pbi4WuPi6pn8v4NrUY6dfUCzBgrCwnVcv29M235WaY4rVKQU2w/co2NLOZduatBKndP1Np04eptnN89Qq4qe7WulVKjVCCvzJIyMDB5OUxMJ5sYFl+LzoXBvzx1u/vCYJwmmRFvEZ31AJvjsjK23+JQNLYBn9++ybIrBU9OojoJzVwPS1YXq3L0eP62O4N+TAajVAqUqVads+ezlF72FXq9n5cKtuNiEIIoQFOXIxJndcjSRnz5+j4dXj/FFEwnnj+u5d9OTLj1zpkifW4SHJ3ElNimZ9PDpCxUBAUkf5NzZgVQqYeLsvnzzy7/oNIkULVGBHv3qptlPLpcybWF/tm48TUxULE1aV6N8xbSG88VzT2lQOYgvmhnK8WtV0THnB1+MVCLl36Sw3X2kwdG54KseCxLbNtwk4IgRlhrDivT18bxLv/xX8KnznO3Zdo6FE6XYWBvm2Slfa9i79yo9+3ml2s/a2oTaTZsxZt4pzE1FErXWjJma8xyf44dvcefiOUoUhRv3pXw1pnuOiktiohNZOutP+ndWE58osmCaJTMX90/XUCgIvApKQhTNEQQBvV4kMCjhg5w3u+jZvzG7tig4sdIXqdyEibNbp0vv0aNfI04ft2P2j08p5u7CmCnpp/hcPX2B1bMN83XzhjB2/jnUmtQpPjHxn3eKj1aj5+5v9ygaYpiUbWL1+HAz1+1ly9gSBKEl8C0gBdaKorj0vd/HA4MBLRAKDBRF8WVmbQYHRfDtgp+IjZfS9svmVK5aLFcX8LlAzIBGShAERozPntBrbEwSSUka7OxTc1/t33WVzk1Cqe1pePnPXQnh373Xaduherb7d3TPMdauNKxaPSvB11Mu06l7/QLVknwLt8JWPLqiYc7ycMzNJASHainu7l7g580JLCyNsyX9ZGwsp/+QtImn7yIqMpYqLin31dZGipmpDLWyMpMW3cPYSMT7lQIX51DW/nSIPoOaoVTKePQgiJDgKDyqFCkwnqZ7d15y7MBl5EolvQc1z9N5fF9EolSbwZtXVan5/JJaM0J0ZDwrZv+MTAZWDsUY8HXBl9N/aLw7Z2U0fwHUrleW2vUyr8IEgxh3WGgcdvZmqYwglUrLrQvnWDHD4BXpq9IzdeU+pi3Ifhjuj58PsWSyiL2dYQFjYRrLof03aNfpw3jHrW1MGTMzFPcicp77aj5KyD4zCIKQhl0+I3g1rYhXFjQYJsZ6DOaAAWYmIi27dGDknD042mh44QfWtuasXryNdl0b4l7SkbDQWB7cC8DZ1SaZdT6/ERebxMY/jpEYn0CDJp5Uq5U5u0FmiI9TI0tKyW+VCBIyyArJFrL8kgqCIAV+BFoB5YAegiC8Xw96C6gmiqIHsANYnlW79tZaFk2S8O0cPYd2HCA+TpXz3n/CKFnBg7X/qIiO0XH8nAqN1C1PHFl//nyQzT//xvHtf7Jg2jpUqpT4cWBAKBXLpNjNFctICQoIzdkJxNQrMRMjDVqtPoOd8xd1G5QlNMaaIX0sGNjDAoWxOW06ZV7V9TmjZp3S/LVDQKMxjNwf1qmo3bASX/bxYuL8kTiX9KR1AxXLJkbRs9kLls7eyNof/+X51S04Sg7z8/K1PHvyOt/7dfumDxcP72HxuAgm9HnFqvnr8jQuW3cqS4LTq+T/4x0CMtn784JeG8+K6QJLJgtULvqUg3uvfewu5Ss6dmvAzFU6goK1+L/SsOwXgTYdcs81ePumD0tn/MTFf9ezZMZP3LuTshaPjkqgyDvOfKVSgrEiZ/kxj+/7YmWZ8vF3sJdw52b+q1JkhEJFStCpjSW9u5jTsY0VLsVy/5H/HJCos+HFS4Nm7pMXGtTYUqqMM/NWDqdj/75YmsOyiTHMHxXOzvX/cOTfW6z//i8KSQ9z9/Q/bPrreL73Sa3WsmzOeoZ1ecmS8RE8vfEvF848zHV7FlZK9E5qtKLhOuOF2Dz1LzuerRrAc1EUvQEEQdgCtAeSr0IUxVPv7H8ZyLL8SvmGkVsQBGpV1hHgH0npsoY8oYR4Fdev+mBiosSzRtFPNq8hM7TrXIvrV+z4futjChcrxKhJuSPtjIpK4IeVe4kJfcascVa4F1Xi4x/PxrVHGTyiNQC165dn3XZvRvY3WOHrdmipWa98js4TGSXh4rVE6lQ35ukLNS9e6pHJPkyow9RMycQ5A/j9r+OoVWpadamdhlYB4OzJ+9y6/pRi7s580almgbwXoihy4ewTQoIjqFG7DK5uqSVwtmw4RaDvU3Q6KFelcq4+QHb25vT8qjvTVx9FIohUq1M32TMgCAK+Tx6zdJLhWRZ1k+HmEIFUHcWgQYZVe51qIpOXH2Hq/H55vNrUOHHwMksnKBAEAStLKf07JXL54jMaNS3H7z/8S2L0axJUAh17tMwWnYVHFVdGrarKP7/cARGGDfbgWv/r+drnjwXLdxwXzRvKmfaND63bp3iS794JICIslsqeRXJdlfYxYe9gzqipA9i46yKCRMqEOXWwtMwZCz0YxtO/e66y4+9jDOtnxBfNzRBFkVFzD1KxkkEGzM7ejHtPZSQm6jE2lvDkhQaZsUMWLaeGg5M1i9a8YvYEWzQakVU/R1K8kkeO+5tbDB/Xjr07L3P4L39KlCnMkFFp54UA/wj27TiPTCalSy+vAuMc83kRyq3rz3At7EiN2qkjBE8evmLH3wcxNdahl1gzYmLnXDGxj5/ejb9+OUR8TCQW1raMmZLi2T119BaThggYGxu+H/PHKxgw/ihbfrZAEBTUqwlzVj0gPq5+vuqD3rvziraNEnB4490cO0jJ1JU3qNuwHJcvPObM4XMoFODo5k7P/llTdgiCQLsf2rNn+jlM42Vo7MwgDzZidu6yC6QSBQoAMvvCDAIOpfeDIAhDgCEAroVSViG3HkrwbGEozY+IiOebBevp8YWKqEBYMtuOqfN6pQpn+bwIYfMf+zA11qDSmTNyYtcCE3XNC6rVLEG1mrlf4cTFJrFy3l8snCBibmrHvFURDOxhQSl3BdGRKRU/lT2LExragCnLbiIClWvVwqNykRydq3LNihw+eY8jpxLQaqFkuVIfJIT4FlZWJgwfl3EF4daNp3EwusvcYXIu3wrgu+WvGDMl/0le1yzdQZ0Kr2hUTsJfa6/RtGOH5Ht56thdnE3uMXqyIdzx4/rL3L3tlON7DVDM3YFJs9Nfk2g0QiqenPAIEY9yKYalTCagVOS/11EikaJSiRgZGc4VEwdGpnI2rD1Gq5q+VKskR68XGb9gNy5TB2ORjY9vs9ZlaNY6d1VVnxrenb9srVPmr6u3tRQunkLf8OOq3ZRw9KWoG3y3SEa/4T0oUiyFUFej0fHjql0I2nDi4gXadGlGZc/8I/XNL9jZm9N/aN7E4X9es4+GlV6yf4Mth07G89NfUQwfYIWlWYrnSiKRMHxCT2au2YdCpkZp6sjQHFYT9xrQnE2/bmLO8nD0IsQkmvNFxw9XYCMIAh261AbSFsQA+PuFs+GnTSycKEOlEpm58K90Cw7yigtnH3L/0jG+bCNw+6Ge32+U4KuRBjHxpCQNW9ft4ts5MqRSAR//EH7/fh8jJ3bK8XkUClmGjPZKIwXRcSnzU2y8HlNTSarFsZ2NQEKCOl+/20ojGVHxKefQakX0ooDfy3BunT3CyumGheT+Y/c5uNeM1u2zfj9MbcyoPq8/VU1Lcv25P3eP78l1//I1QV4QhN5ANSDdzGpRFH8DfgNwcDAW53yjJjJGQsMWjZMn7r/XHmHFNBFLC8P/RspwLpx9Sn2vMm/bYN1P2/l+ngSZTCA4NIpVa3YxcWaP/LyUTwKnT9xnWE8NDnYG3qYFU2xZ/G0ElSuaU75SaiOuWcsqNGtZJdfnGjKqLXt22OL9xA+lpRn66DDWLPwTK3sX+g1pnmMvUkKCmjVLtmCmjCEmTkLTLxpTq27KR1en0/Pv3uuEBUdSr1FFSpXJvKz3lc8TRr0xcurXULDvyAs0Gl2+JsD6+0XgZhvIF83e8mSJTF52Co/K/QGDQPnC0Smh4A7NpWw5+TxXxlZmaNKmAXNW/UuPdgIPnuoxsXHn/I1g2jTWYWMtZc9hNYXdc+a5zA6+7NOMiQs3MqyPSGi4yIEzVsxYVJIrZy9TrZLhuiUSgSZ1tLx4HkoVz4ITU/4U8e785eZmKU5epEGuEBHlzoyZYiAifvE8FBfLl/TpYpi/alYRmbHmcCrDet2vh+jb9jVlSsgRRT2TFh2geImvsmW8fk4QRRF1rB+N6hjGbdtmZsxaGkZYuI64JLNU+xZyscoRX9n7KFPehV5De3Fwz3mQSHAtKrDuh3/Q6JUMGNY+VySYOzafxefRPeRykJu5Mnxcu1Tz4N3bL7l26SFuRZxo1qpypnPknm3nWDxZZqjSM4Pxg9T8u/sKvQZknz8rOzh//CIrpxmMitIlYP6aF8TFJmFmbkRQYDTVKuiTKSCKucnRJkXl6/kB2nSowaLp9+nfOQGlXOCXzXLcy5XnxPnnNKmn4HWIlgcvTPjS3izrxnKA8hWc2b/DHhurUAo7S/h9C3Tp35TbN17QuRXJz+eLZgqmrHyRLWMrP5EdY+sV8K6gleubbakgCEJTYAbQUBTFLBM9CrnY8fWUkWmqcrQaNRbmKduc7OHu65R8osjIBEoVS6F9cLSXIRPzFkv9VCGTSVFpUv7XakVuPhCwKeJBtz7ZT37PDgRBoGPXOiQkVGPFnN9YPUuKQiFw6cZTNv4hoe/gzJO+38faH/YzeVAMzk6GV2zwhB2cOWSHnUsRBgxtwdI5m+jWMoKSNaT8/Pcjohu2oXrtjJXoVSod76YY6rVqjh26Set2+XcfkpI0qSRwJBIB2TsjpIi7M1dvByVLrVy+qaN4yZxVjmYH1WqWwNGpN+euPcPJ2Y4RXUoQHZ3IN78eRKdJolT5EnTukf9anS5u1oyYNpDzpx5gYmbEjEUVkUolSKTGhEfEYWtjGHP3n0ho7Zm/eqSfG2zsLJgwfySiKKbyAMfGJuH4ThGpQiEgk6b2QsZFhVGmhOEdEgSBetX0+PiEUanyh9EN/JDQ6VL/H/Aalv9pzajJ+c+PWKa8C2XKd+OHlbvo2fIVZUrIiYtXMXHxJuatHJqjBeOdWy+RJ95kxQzDwuvkBW/GDlqJk6sDX43qxI2rT4l8eZ4hHWTcvP+U75Z7Z+ppl0gMFXpvodGKnD15O9+NLbmcVNdpZgpqjeEhODiYs+t5ym/RMTq0olG+nh/AyEjOzCWDOH38HlqtjmkLK2JiqmDXlvMcX+WH0tiUqfNa5XsaiCAITJ3bk9MnHvLyaSwDRpfD0cmCuFgVN+6JVHiz1n/uq8HK9sNz/mXH2LoGlBQEoRgGI6s70PPdHQRBqAL8CrQURTEkuydPr/y5QRNPvvn9IOO/UqBSiazdKmXU9BRJF0tLY7z9UsIsCQl6EtT5/8J8TNy9/ZJjBy4hIuHUawXGRioszSWs/FVk3ophOLsW3Ivi8yKMRjW1yXqQtT3l7DuVxrbOEjp1iqEF0KKhkjIlVURGP+PnNXoqlwynTjXDc5s1RsrkZRcyNbYkCnt+XveCTm3MuHIzCddCUh7dfZYrY+vY4Vvcu3YHrRaafdGAKtUMIZzi7vZs/M2UhrUScXOW8ccWNeWqVEs+rmPX2qxZ+orDp4PQ6sDUrgSDO2c/RBYaEsuhfVeQK2S061Q7Uxe6WxHbVKXvlpbG6fK05Tdsbc1o3yW1ITdg+BfMmL+RMsWTCAoRca9QjULOlgS+iiIkOIYSJR0wM/9vjcHsQBDS8mSVLVeIhRsVeNXWYWkh5e9dKspU9Ey1j1RuRkhYHA52hvFx+6GEL+v9dwhf42KTWP/7EVSJiSTpbdi8JwyvN4LzNRo2fFMVV3DQJYUnG7NmphLKFjfwd9nZZd+T8vSRH63qpXjNG9Ux4syFCCaNiGfysi2YmcDyqYbx26yBlKt3AoiNScLcIv1x8GXvxgyZ+A3LZtmgUon89Fc0JYpZ5er6gl5FsXHtfuRSLbZOrvQZ1DT5PXQrXoqd/96mU2s5z3y0+ARZJ1cUm5opqdbQi9FzzuBoJxIQYsyYadmrhAcDxdDBfTcICYqgToMKlMmEokiplNGiTepIS0E/dzCMyUZNU3v9K3sW4fb1MsxZ9QQLcwGfIAumzmtKfJyKZ0+DsbM3/yCEy1kaW6IoagVBGAkcwVDr+acoig8EQZgPXBdFcR+wAjADtr956H6iKOaKwrtarZJodS2Zuuo6IGXQmObJiYR6vUE2oHXnloyacwRHWz2BoUqG5yLm/Kni3p2XXDi0hyXjFSQmiYydp+Hk3UpIJDB8imdySXFcbBKb/jpBQnwCTVvXoGKl/All2dmbcflIygckLl6PTsy5vppMaUlAUCCuhWSIosjNeypaNDKhYlkpG/cGUfw9CqnMFjnPn4VQpERhwv292XkgjlLuCrp1MOf3PTkPDVy5+IQY/7MsnaREFEVmrdiPrV0vChe1QyqVMG1BPzb8cYy46Fhq1qtI3YYphbeCIDBuWlfUau0br1f2Q5ivg6L5ZeV6po8QSEwSWTLzEdMXDfzo0jlRUQkEBkRRuIhNhgaTpaUx81Z+RXh4PGZmSoyM5OzYfIbY17cpW0Jk9RYpPQZ3oUSpz1d2Jr+gVMoYN7Mfy347hF6roqJnDVq1MhTH6PV6BEFg4PC2zF+0GQerOCKiBao3qJsjQ+BThkajY+mc9Swcr8HBTsYf/6h4EuRO4HEjKlQqnkpw/tC+azy650MRd2c6daubb56O+CQpWq02WeQ44LWARQZGUEYoU74Ix8/fZMibafXc5STKlFRgZirBzjKRJE3qkK9UYgibpofw8Dh8fcIwMbfi+Jl4ZHIJS2faMmNlzq9Xrdby86pNrJ5lSEA/f/URG9aK9PuqOQBdezXg2GFzpq56iq29NVPnNUl1Xxs28aBB44okJWlzVB0viiIrFmyhg1co7arL+P2fx0RENKdO/awpPwoSGo0O7+ehmFsY4exileF+/Ye2JCG+ESq1DisrY/x8w1j301Za1Ndy8pyAwroi3fvmv87lu8hWzpYoigeBg+9tm/3O37kXsksH7wsU+3qH8NdPO7G31hAaKafv0I7MWjYCtVqXq0qK3ECl0vL9ih3IxQhi4yW07tSMqjXynwvq2IHLLB6nQCIRMDURGNkXbgaY0aZ9iodFpdKybM465o3VYm8rZelPe1Cr2uKZTn82/nGMsEBvEhN1hITpKOJmiqmVPQOHtU7XWHB0ssDSuTLz19zGzRmu3FEwakr6iZCZYfDIL1g4awOiKoioaA0mRgJ6PfgHanB2K8T1hzKqPIqlZFEpP6zXUNsrfQLVn77ZjYvlS4o5iPx6U0f9Wib4BUrYcdSIqfNznrx74fQdFo81GI+CIDCwm4SDFx5SuKiBasLYWM6Qka0zbeOt1y8n2L7pFMumyTA3M3hzR/VTceTgTTp2TT+h9kPg7Ml73Dh3iqrlRfb9I9CiY9tkL9/7EAQh2SCIjUnitfdt5k80GIqtG4tMWnY4R7xI/2XY2JgydmoKJ5tOp2f1ku0oCSZRJVC8bCVmLx2ISqVFoZB+sGrrf/dc4eHNm8hlYGrjxuARbfL93E8ev6ZZncTkPNNBPZRMXRnOiHGpK2f/+uUwlYo8pe94OVduBfPd8uB0w3D37/qxd8thzEz0PPNOomgRM3R6BT0HtcGtcPqkp937t2HMvO1Ur6jjma9Apdp1czxmK1YqzOMHVRg47gJSiZqQUC0Th1sjiiLhUVI863jwxz+X6dVRzs37WiISndLNubty8QkXjh6hYQ0dJkot1+5JqVtdwZzVelp1zDk3m69POA1qaDE2Noy9ejUU/Hs2deQhq/xdQRByTEMU4B9JCedQ6tc0nHfqCAmTl13+qMZWdHQiK+atx6uGiuAwSMA9uRggPZiYKjF5kybyz18H36TKGN6LRd/fIzy8Bra2Bbfo+SwY5Df8uofv54JMpkCnExk9bw9zln/9wQwtgD9/OsDQrgbSOlEUmbz4ICVKZ68iCwx0FhfOPUEmk1Lfq0yGXhGpXEZ8goi5mWESjIgWMTJOvSq7cc2HLi0TcXIwnHv6SAVTVl1OY2wd+fcGpR0fMaGXApDw3dpoGtXVI0ji+f37/Qwb1yHdPnTp2ZDIyOpERyXQoqd1rtj6jYxkoE/ixyW2yGQCEZE6hkwKx87JlSnzWiOTSdi55Tw7TkbRsGnldD1z9++9orj9S/p2fSsArWDmGiuadG5J677WuaqWtLaxwjcghOKFDe/OU28d9g4fIIQjirwbNZdJBZISNTy4F4iDo/lHUbE/d/QM3841GJ5d2oiMnX+MKtWGZnlcTEwiLu84sWQyAaMCqI78r2DzulP0bhOCR1nDvf55w00ePShB2fIfTuvt8YNAYl5dZsV0w8fy1EUf9u28TPsu2Tf2b1z1Ifh1BJ41SmYoBmxiouDFO9KIOp2IVpt2nEaF+NCyv+F+1KoqZ/+JV+j1+lRjOiFexZ5Ne1kzR4ZEIvDMW2DPoRBGD7Zi7Px/mLZoKEZGaY2G4iUcmbrwawJfRVG/g1mGob2sEB0Zy+QR5pQpYfDOj5oexrqdErr1b0dlz+JcvWTNorUPcSvqyPjp6edQnjhwitWz5AiCglaNYeQsNSVqdqdBR8tcebVtbE058w43QFKSHrW24L+Doijy7mfAYKSLPH8WgiiKlCjp8MEpmtb9cpClk3TYWBvu459bnvPwfmC2NBSVCh0KRUp/XZ0gKjLxf8aWpZka2ZtMZalUwMpck8UR+Y+k+Cjci6QktdauouPly3DcSzjw27d7EHQxJGmVDBrRIQ17cHR0Iivm/sWgrmriE2HBtMsZSkn0GtCcSYvXM6S7msgYkd3HrZixKDWHrFwmI+Ed2SmtFlQqPT7eYbi4WiVb6w9uv2DJ+JTJ6IvmZpy+mMCA7pZs3pc56am1tUme2MPjYlUUd0spZLCxllKsuD0T5qYIk3bvk7kcUGR4HEVcU1zzFuZSTIxFCudAxuN99BzQmCWz/KlZMZbEJPAJLsT4GVkLoeYVHbo1YMrSv1kwQUZiksj8b7VYW93GxeQm5w9KKFSiGu06fzgdRL1ej6V5ioEkCALmptkzmJwKWXLzgZKoaB1WllIu3dBgYVeEC2cfcv7YBRQKA8lj9775m/z7uSIkKASPsinjsF51gatPX31QY+vhfR9aeaV8XBrVkXNklR9Qm307L/P84X20WqjtVZv6jdJWuv68eg+lnX2p7C7w908XaNGlIxU80ib0F3e3Z+82F3YfeoV7EYH1OwU69G6SZj/te5ylqiSD18bG1jSZDsHfL5I6VXVIJIZ7V7K4krj4OJRKCV411fh6h1GmXPqha6VSRrHidun+ll3ERIZRpoRhLhUEgdZNzdDbtkum6ahRuxQ1aqfVSH0XZiZiKiPE1lqgWHG7XMs12dmZYVWoMot/uI17YZEzV+V8NSZjb05+wa2wDRteWHPrfhRl3GX8tFFNYKCWJ5f+QUBkyzprps3v/UFl9HSaxGQ5KYASRUWCQ6KBrMeVXSE3Tl98hFcdBbFxei7clFO1mZJlczeilCaiEU1pPvh97va84bMwtqLjjUhIUGNiIiEpSU903IdPxpXIzXgdEoeTg+GW3XwgoU8jG35ctZOxvcNxKSQjLl7N5KX/MHfFkFTHbv7rOIsnitjZGvptahLLkX9v0bZDtTTnsbM3Z+KcQVw89xilkYIZi8qmGZieNYqwcIY11pZRODtKmLksniKFE3l8YRPr78gYOLIbhYva4VLYkZv3gvH0eFM9dyOJ0u4KNBqRBFXBDgozcyW+rySpChmStDkz3ipVKczqhTJqVdWjVEr4e5eKClXzVn2oVMqYvXQA3i/CUCikdCxs80FWZG6FbRk4qi/fb72ATC7D1t6fNTNT8kqmLb1GQqtqmJjkPD8uN5BIJETGmRMcGo+jvQxvPy1qsvdxkkoljJvZh6U/7wdRhX0hdxo1q8Sxnf+waoZhlbn3yD2O/GtBizaeWbT230eR4q6cvxZKveqGZ3vkLNRtnb90IVnBvZQr565ep9Qb5/eNuxpcCjtx4cxDZPFXkkl0l/10HMdCNpQqk2LEvA6Kxlz2ku7tDfOXRzmRSUtPUMGjf7rnGju1C5cvPueGfzQDRpfCwTGtF6xM5Sr8uP4KbRpL2HtEjV+AlscXNuMbAM4lPOnwZT2cnC05tE2g+5sc7ohIXXJu5/OXAhW8CjbPTWlsQUBQLK6FDHP+9XtSOg3ImQGnl9rx6NlrypaU4x+oITLeIs+6mF17NyQ0pCoR4fFMbWebrncvvyEIAlPn9WL3tkvsPhMOgpTRA15Qs4rhval0P5rd2y7RtWe9Au/LW5SpWIpdBy/RqbUSrVZk52Epw6dkb1z1HtiULRtkHF7phx4FY6e35ceVW1kyUYWFuZTwiCim/3CRIsMzly3KCT4LY2vomK5MXbkTC5MkYhKUfDW64Kuy3sdXI79g8aJ/sDKNITpWQr1mXlhbm6AQonF5MxjNTCU42xv0C98dAKokFZYW72jhWUlI8s1YaNnC0piWbTOOuUskEmYs7Mvxw3e4cSWawm63WTbdMBH2aC8yecUBpi/oT9de9Vm9OJj9x18TGaXidYiats0UbNqno8/QnIvF5gSCINCxVxtGzTmErZWGsCgjvh7XkRtXfQgJjqRq9RIZhiLewsLSmIGjejLru8NIBB1lPTxp1TrvH2+JREKJkjljqH4fT58EExOdSLkKzjy858eNK48p6u5M89ZVMjTeXNysGTrasApds+D3ZEMLwLWQQGxM0gcztgDGTe/Bdz/uR6+NQ2niyKhJ2c/Ns7ExZfyM7sn/79lxmS6tUq6nfQsFU1Y++5+xBXTuUY9fv4vk0OlXJKmhSu16uOfx/cspKlUpwuP7lZi06B5KJeikToyZUp81S3cm5zAC9GwvYee5x6mMrYQENTbvMH1IJAIKRcYicYIgULtuxpXFAF90qsX9uy7su+zNveePWb9Gl8I4vuYG4eGVsbU1o2LthoyZew4bSx1XrsfQroU5C75VYeNaucBD7wOHt2X5ws1Ym8YQHQvVG9RDq9VzaP9NnF3tqVQla6qOkZM6se63w6zfG4aRiRMTZubPvGvvkLfUg/DwOJ4/DaFwEVvkcgkHdl1EIpXSrkudDIlWZTJpsjG19seDlCyaYj6ULCZj3/kPKzTfun0Ndm1VM23lc9QaCd0GZl/LVRAEevRL8byLooiNeQIW5oaxYGsjxdIoMaPDc4XPwthyLGTJzMUDM/z9dWAUh/dfQa6Q06Fr3QJhkzcxVTJzcX8C/MM5fvA6ga8iSUhQE5cgRafTJhPFBYcJaXLJWrWrzbzV25k/UYlaLbLmTxg2qVKe+iOVSmjRpgqBr6K4rL2TvF2hEJJ1xSQSCRNmfolarUUqlRAXpyI0JJaGna0/yGqoUpViVKoyHJ3OUEX68+o9lCrkg4e7wMYfz9Hqy06Ur2iYsLb/fYYAn6doNFC9fk0aNTNIbbgVtmXirF4F3tec4OfVe3C28MXFSWTaKC3VPaSM6ank6u0X/LDSl1GTsq6ONbZ04uY9H6pWVBAdo+PuEwWdHT5sRZqZuRFjpnbN1bGvA6P48+c9mCrVaDCnVoOq3Lyvp+ybqMpTbw02dv8dOoO8QBAEvs6EEV2n03Ng91VCgyOo51Up05L6vKBbHy80mnrs33WVyIhoXjwLxtHZjvtPXieHOe880uNaOLUhWKSoLet+MqFFQxWFHGX8s1dF8TJ5m78AKni4UcHDjaCX3hgbp1AzuheB8LB4bG3NaNK8Mo2bVUKl0jJIIuDvF4m1jUmBSd28C2NjOTMX9UOn0yORCNy85s32P9bTpZXInXtw43JpBg5rBcDTx4Fs33gIM2M9UiM7vh7bDplMikwmZfDwgl3Y5hTXLj3l7OHDNK6tY99Ggdv3k/hxkRkajcjCeU+YOHdgltJM9RtV4qeNz5gxymAg/7heQ4NmeX8ncopO3eoBOfem6fV61v54kISoQBJUEtp0bkJkjCw5EqPXi0TFCljlY18/C2MrM7zyj+SP7zYyc5SE+AQ9S2Y9YfrCgimp9/MN4+9fNjFthJSoGD1LZj6mW//WjJqzF48yOp54S2jarmkaz0bpci7oOnVh2jfnkUgkDBzdNFurkhtXnnP25G2sbSzo0b9xugUBjk4W3HooJyFBj4mJhHuPNRiZp85jeJvDZWlpnCt9s3cRHh6XTHrZuFnFbLnEpVIJQYHRWMh96dHBcP5K5Q2hiPIV+3Pi6G0cjO4wYpJhVbH851M8dbNPtbr+VPDk0WvcrH0Z2P1N0n5tPSt+jMTC3ISm9aWcv+afxrOZHgaPaMOG34+y/chrdCgZO+OLDyqPlFf8/M1Wvplh8EYEh4az8q/rWNuVZO43zzEzFXgZbMXUeflapPyfhCiKLJu7ie6tIihdT8bPfz8jMrIFtevlv8SRKIosnbOJvu2iKV5fyg/rn+Lp1Yo/d72iiGM4SUmQJBRm+PjUuSpSqYSp8/vy2+9HSIiLx6NaGdpnQ60iIiKeLetPoNFoaNuxHu4lHdPdz9LWiWu3n1G9sgKVSs+FGzIadErJyxQEIXk8uZewT7eN7EIURU6feEhUZAx16pfP0rsOKXyQxw6cZtUbdvYqFWHBt0+JifZCJpey5Y+dfDvXIIPz4EkAf/58kCGjcl7F/SFwbH9K0n4LLxg/OxZHe0NV7OShag7svUKPvl6ZtlG6nAtRUS2ZvOwSggB1GjeifMXPR1Hin/WnaFbNh5pV5IiijimL99OwVVNGzT5BqWIij70leHWvim8+nvOzN7Z2/HOSFdNlyS7o4b1UHDt8h/adc0fFL4oiJ47e5aV3IJ41ylDZs1jybzs3n2TZNDlKpQRHe+jfOYEXAeHMXDqMkOBY2tiZZVghWa6CK+UqdE/3t/Rw6thdQp6fYuFoBT7+QSye6c+cZQPSfJClUgkjJ/dm9vd7UUg1mFi68FUW1AW5RWBAJL+t3siIviJhESILp99k5uJ+2TK4MgtF3Ln2NFUif9c2Ev699uyTNLYiIuJwc04JoZiapL727OZ/SaUSBnyd89Lvj42d/5zD58lDEmJCOHTSmE5tzHC0lyEXYhk8vBcJ8SrUGt1nKb78MeDrE07F4hHUqmpYHE57U1KfF2Pr+dPXnDt5B2s7S9p2qJ6ctPzk0Wtqlo+kemXDQmH2WAmTl19i2vy+hIfHI5NJMnxuJqZKho3NPnViTHQiqxf8xZLJBgqbmSv/oWOf7pQo5ZRm3/5DW7DuV9h9PAiVRsag0W0KpNJcFEWWzdtMi1qheJSW8Pt3V+nc70tKls7ePKOQp052t7YUSErSEBkYTb1qOqRSwxxWvrScTQfC8r3/+QXT95L2rSwlaDSgUGR//gKoWac0NeuUznrHTwjPnwaxdf1B4iJDiA3UU7mcNUqlhGb1dcTLFUxfMpzIiAS62prim/gI36j8O/fns5TOBO++HxIJkAG5XHbw0zd7sdGfYUh7b7xv7ePfPVeSfzNIc6ScTCIREEVDLNvZxSpfJ4ibl24yaoASqVSgRFE5dSrH8vxZ+hWEjk4WTJ7Th7EzBzJk1BcFVhHy9x+HWTVTRvnSShrWNqKdVyQXzz3N1rFFi9ly6bYJr0MMIU5DKMLwQTGEMlLKk27c1eNWNP1V8MeGRyU3dh+Vk5hoqNzbsCOBmHgJsXF6Tl5Qo5G6fJAQ7cfA+dMPMBdvsnyqyPrv7HkdouXm3SQ0GpH4RMO7b2Kq/J+hlQMYwhapt+WlXuPWdW+ObN/KwLbPqOx6hSWz/0av178515v58d1zkcKhlp/P7fSJe4zoY9DyVColLJ6sZN+Os+nuK5FIGDisFWNnDmTKvL4Z8mflFQ/vB+FRLIgWXkaULaVg+XQFe7aeyPbxzkXc2XdUDcDLAA0Pvc2wdzDHwcmCh88KXgYnvyAo7Ln32FDRHxCo5dINLZHROgICNSz7RaBVuw+rGfihoFZr+fu3nayapuaPb6zp1dmcb36JAuDOIwluhW2QyaTYO5jnuYghPXz2nq1O3b2YvORv5o6VEZ+g54eNcqYtqJyrthITNQiql7RsZFhlft1byuSld2jTwcCh0qGbF1OWbGHOWBlR0Xr+2K5k+sL8LQ99C52O5PgxQFIS+Sq6nBu8eOqPkVFK+NPSQiA4MuNE/3dhCEX045ffjpAYnzoU0b2vF8vnB+FoEU6SSkRu4c5XXT78ikkURcLD4rCwNM6QBNHUTMmQsb2Y88MhJIKOMhWr0qS9Nas3PaZIcWdGTar6gXv94XD9ymPmj0hJpu7UxowpC6MxNpMzcGSuBCP+36NYcTs2/2nNzXtRlCou4+eNGRP8ZgfH/z3P8smGUJe9nYznPpE8eRRM2fKFKF3WkW0bLKlQJpbihWV895eG+s0KhjVbLpeRqEpZ9Ko1ItIPSAuQHq5ffU5Jm5T/ZTKByPDojA94D937NuLgXlOmrHyBuaU5U+e3QBAErK1NKFG5DhMXXsLZEZ76Khk74+OMh7jYJHR6MdN0kRETOrLh96NsOhCC0tiC+d/04M8DV5FKpIyfXe8/u1gKCoymekVdMo2Ue1EFz1/qmLJYRbFyVXErbJNFC3nDZ29suRW2ZcDIvvy88xJyhZwp8+rnOkHeQKqXetu7q8ziJRzpNbQ33225hNJIybT5DQqseqx5uwbMWrGPr3pIeear58krR9oVK5gVX3ZhZ2/MotURTB9rQ0ysnuU/RmFpfZYnt84RHW/M8IndM5UdMTFVMnxc2klIKpUwbV4vYmOSkMokH7Qi7y1CQ2L5bukmypdQ4x8ElWrXpXkGlY/OrtZMnJVKHjRTXcf/CgoXK8S1O4HJQtzX7ujwatOC1u08Pzih4X8Fb0vq92y/xP4LkdRvXIkKHrnLfTHIxaT26kuloNcbtkkkEqYv7MuurRfYdToKr5ZVKVfBNa+XkC4aN/dg4bTryGWJWJgJrFoLwyflTMw+v5GUEMvBW/HUrmaEg52U736PwsdHx7cLfiA+QaBOk/p4NfXItI3W7WvQun1az0/LttVp0qIqcXEqelkZf/DxIIoiP6/ei0z7EoVcIDjGjkmzuqebB5peCsOgN4n+/2XY25vx+EXKc4mN02NmU5hRM3vlShUkp/gkjC1RFAkJjkUqFdIQgmYHLm7WafKU3upUZeelj4iI5/tl/2BrkcCNW7GcvihSs4qCbQe0FCub+oPrVsQ2uXy/IFHZszjWNr3Zc+4+dg7WTJrl8dE/aNa2ttSrqWHBNxHIZaDRCPyxQo5EIhAXr2bmmh1MX9A/1+3nluk5P/DXz3tYNUOPmanB0Ju+7AK165X/qH361NCxa21WLw7g+PnXaDQiUrOiDBublivu/yPi41RERMRTyNkyx2F8mUxKlx5pK6reZ1TPDGt/Okhs6AvCQpKYuUzPjNHm+PhrOXPdgtldUvKk5HIp3Xo3yFH/cgOlUsaMxQM48u8t1Co1o6dXLlB27uygQqXiuFo+ZcO2GOITRB4/1/DbClvcixg+g7NXnqK8R7FcUyrI5dI8EUHnBWdPPqBaqZe0bWpwNNy4G86Of87zZa+Cf9afC0xMlVSt35Axc8/g4gjeAQpGT+30QQwt+ASMLZ1Oz7K5m3B3juB1iJYHzwQ8a5Tiyz6Ns/3iarU6flmzF21iCPGJElQaJTbmMei04FSsLL0GZF4Vtfb73SyeoMLSQoFeb0PXoTEcv1GEGnXK0apuzsNZoiiy/e8zvPLzQy8q6Pd121wJzRYpZkeRYl45Pq6g8NXojny/bAvmxnICgwVqVFMn57CZmUowUWQvpPgpQi5RY2aa8mErVUwkLCzuf8bWOxAEgfEzviQhwfDc/6u5aTnFwb1XeXbnMoWd9ew/mkTJskVo0bYGVatnXzv19PG7XDlzCYUC4pJMQRuJlblIVLwZY6f1zPQ9PH38HuVdntF+oBKQ88v6WEbOV1KpajmmL6yXqyrXB/f8ObjrNP/X3nlGRXF2AfiZWXaBBQRBUVAQu4IIlth7jxp7jbHElhhT1Ng1tqixxWiiMcWWxERji9FYYouxd1HsYAMUQXrfOt+PIRRBXZCm3z7ncM4u+87svTszd+687y2iKNGgWd1MDdlNxcpKmetEpfygcbPq/Hw7hIi4WwgCKK00aV1BABrWNnL/XkShtM56WYLuh9G/dbqT7+tlwdZD4YUoUdGkZVsfmrXyJjFBY3Krvbyi0J2tLb8d493u0RSzFVm5NokNy51ITr7P9DlrmTBrmEk/yE8/7qd3m4d4V5PTOD+ZFsSEkY4Ud1Dwy7ZrnDvtwRsNKj1ze5WYjH0x+UQVRZE2zdQ06tQKF1f7Z27zPDb+dBjvstf4sLeK+IQExs//hRkLRxZ6zNXLYm9vzfT5crNhSZKY+elKjEY5aSAu3kCyLu+eXI1GI+u+30dcxGM0OgUDhnempHMxVi3djmCIITFZQd8hnahUJW8yFq3sSnAjIIjqlZXodBJnryho3dchT/b9ulEYy7xFlfi4FAKvnGLuBBXjZ0WwYKodVSrE8N2Gv4iJbkGrdi+uPXTvzhPu+P2TVn1/z6Ew4uKN9Otmx5OIJJau+JOxU/s+c/uAm8GM7p1uygf1tiF0fYkXpu8/i+CgSPZt2c7CySpEUWDpjwewVlvmyHksqgwa3haQlzO/W76TwPsPqOQhO1wnLyro/97LtfjJyNlTtzmy7zgKBVT3qUHHrvXYveMMN/z8EAQoV9mTXm83zZPvqtugKpt2XWXcCPk8+PUPLfUa5U888auOQiEWuKMFRcDZevwoAq/uShZ+E83cyU5YWYnY2oh8MkTDwb8v0aPPi/vFxUaG410tvW9h2xbW3L6ro35tBc3ri2w/HvxcZ8sg2BH2JIJSJS0wGiWu3hbp+m7uHYewkCDG9JNvSHa2Ik3qaLh/L4LKVQonw+7MqUD27z6Hm3tJ+g9ukSdZk4IgMGBEDz6atRMHOz1xSWo+GJ93lf1/+mE/bWoFptXeGTNnEw4lnBnZO5zybkr0eh0fzdxKaTd3UhLjsLUvzpD33sy1Qzt8dGe+X/4n+h0RJGksGDyqc4E2OjfzahIVlUhFd7j7QEeN6ipqVJNnoD4easmkRRdNcrb8L9/jrQyT7x1b2zBzUSQAJUtYgCHxudt716rIroMBDOwpn/u7Dunxqf1se/ciTh69xvvviGmz1p8MVTFt+cVCc7aioxJZ9/0BJMlAj75NKV8xb6rvDx3VkWULNmMpRJGQJNKsXatchbFkx93AMC4c2cviyXKywtpNp/h1fRJWusssmiw71Ru2X2TVsjiSE6IwSiK932lHufK5qyNW3assoQ9bMOGLs4gKqFC9Lh1yMRtpJv8o9LtJw6Y1WLd5H6IIekP6/7V6uBvwmKXzNmJprWbwiPbY2mU/la5Q2hD2JJ5SJWV1zl7S8MEQeey+f4141a7wXBne+6QbC5dswdoinrhEBX2HdHmp8gkarYhWK6V1FQ8JhdqFlOGxavke4kMv8sUER4IehjNt7C0WfP1+npSHqFrdlZmL3s8DKbMSGxnKG76yw2ppKdKkbgr/nn1CeTfZqbawEKhePhkfr7s0b2hNwL0Yli3YzITP+ufq+5RKBR+Of3Hl99eVOwFhXDofgJtHKer/HwT75xWuZRxYe8WCxnX0aLXp/5ckieQUPV99sQWjwUDbzg2p6Zt937byFV04c1GiRmpprWu3NDiXkJf+gh/pUFg+/wbcoHFVfr8byqQFNwAJFw8v3u6dtZm0qTg6FeNesIHy7vK1FhKqp5hD4SytBd2P4LNxK1n5hSMlHEWmfrGWvsMHUtXz5avsq1QWTJzx9osH5oJzp24yqKeYFmc7pI+Kvh9cZuXcdLvbp7OKoWMvsGGlM1qtxPh5Gxk1cWiuY9tatfMxybl/HUlM0HBo/2UEQaB1e588m32vYnmGh+pqXEwEeLmQkkJ3tuo3qsreiDhCbl5g2LgnLJrugP8NDV/9mELLxneYPsaO8IhIps/8iZkLh2c7czHsg87MmfsbriUSiIiGhBQXvl4vp8BW9KqLT63nN6e0tbNi8uyBeaZTvyFvMm7uZjo00xFwX8TKyatQ4gC0Wj1Xzp5n6+qSCIKAZxVLurRM4IpfCLXrFmwj3Jyi1VuQlJSMOrVo6J0HAkpLaxISk9Niqy5eTqJ2DbkCdOXySiyFqEKTN7fo9QYO7/cnISGJpi28C+U8OXr4KgEXD9G7k8AFfyOrL1Zm+Oii1WKkqKJUKhgxpj+rftjJnYBEKpVPxrW0yIIVSYSEGtm5Tou1tcicZX8gCN3x9sl63Xn7uOF/yZtJX1zDVg33HlmjtlQxbbERjdGRjya+uIxA34EtgBZ5olPr9jVZOOsqD0MjUFvDgZM2TJnbOk/2nVOWzNvMxNG2VEiNrVr+uT3jvjjEtLmDCkUeUyntWoLrAekOa+B9PaVcS3DWL4LObeTb7slzyRSzlZAk+cF8cA8j508H0r6TbyFKnnOuXgnmxtX7VK7mhm9tjwL//vi4FBbOWMsH7+iQJIl5084z9fOhL922r6KtF3CNliVu8k8EBFhmLcibEwrd2QJ4s8sbvNnlDSIiEpi3YCuVXFNYNN2WQ8eS2H0wkU5tbGjTMJmAW2F41nDNsr2tnRUzFw4lOVmHpaUiX9uenDx2g8O7/8HOxkCSzoExU/phbZ05UNijgjOfzhjB7VthNKtpm+/1O55FYqIWS5VczPC/REajMWdVgguLQSPeYuzc32jgq+F+MJSpXIdeLX0YPvEHPCumEBtr5O2eduw9nEQFDxWupS1ITCr6emXEYDAyb9rP9OsYi7O7yIol5xkyegBu5Qq2xMfpI6dYMlU2TJXKw8wvA0lK0ppjs0ykrJsjUz4fgiRJbPzlGGs2neSTYdY8CtMxf3k0c6c4MWOMJVO/Op2tswXw9pDW6PUt0OuN+Zp4EB2dxIpFmyimTiQ2XkH3AR3x9vHINEYURSbPHsCtG4/R6gzM6OqSb4WSX4RCNCBJ6de1JIFGo3/OFkWDZq08Wb7wBrfvPURtDf4B9kz5vB+rvtrJ/iPXcHYSMBqhdxdb1m2KY2h/e4IeSdiXKtyMzZyyY8sJjDHn6dBU4MipiwRc96X3O7mvE5cbtm06xvQPDbiXlW3YpJFadmw9yYAhLV+w5YvJ6HABmF4CNytFwtn6DycnG+ys4pn4gfx0X8fHikmfR9CpjQ3RsQLlXmD8n3Z68pqYmCROHTzA17NUgEhIaCzfr9iVbeNhG1tLatUp3F5RDg7WGBT2TF8Qybj3ihP0UMeGPwx8/2v+1NbJS0q7OjBj4Xs8DImmcXF1WqG9cuVdGDsyBhu1gCgKODooWLMxDiO2NGzVonCFziGnTwTSuXkMTevLwZpLphmZ8c1BPp3+7GDo3CBJEqGP5OKNLq72WZxt5VOXjY1aQK8zYCZnCIJAaNAj1iwplto+zAqDQQ5rqF5ZicXTP/RT/Ne4OD/58evtfD4mGQd7JZIk8eGMv/Cs8UGWitmCIFDNs/DbZdVt4MXa345SqqSCkk4KJs+NZuDodwtbrBciCAJjJvci7HEcWq2ebkOLIwgC9Zv6IETco01TK6ys5N98885wLCxSuPbAlXHdXq0khAD/yyxOfVCr6AET5vkDee9sxcelEBGRQJmyDllKNei0Ouxs089fO1sRnUb79C5yTUaH67uX2E+RcrYkScLGWsryv227UwiKLEv3CnmXKZIbQoKjqVfTmPa+rIsFek1cIUr0fARBYPiHPVj37S5GTkrA1r44K9aPzpdWBPmBUqnAo3zmY25jZ0dsfBR2tvKp639LwrZMK9q298S51IubyhYltFo9ThlC+eQYP+Mzx+cGo9HIojkbqVBa7tV293EJJs7on2n2t2z5Kmzf40f3N1XcCNATGu1YKNk6rwMChrQ+rQBOxUUuXE5h7RYLxkxvV4iSyajEJBzsZYdOEASqVTASFZlYZMsddOxWn5DgKD5bfA8JkREfvYOXd9F/WPyPpxtdu7jac/yigs6pjlZUtAFJ5U652u1p/07pV2LVISPKpzwIpTJz55O8YP+eC9w4f4Iq5SV+uqxg8Kg+mZIkOnZtyOxlASyYLLfPm/uNgRFj6ufZ90O6w/UyFClnSxRFkgwluX47As8qSk5f1PIkoTQq11Z83OP5Qe4FgZu7I39vEenRUT6Zgh7qUFoVzR5+AGtX7cFOuM2ArhK7/1Ez/JOeuV6i0Gr16LSGl14Hf1kGj+zAvBk/41M1kagYCcGmKsNGNShUmXJL/UaVmD/tCF5VDDjYi8z7RkPrjg3z9Dt2bT9L77aRNKwjH7fTFyPZtf0sXXvJv9nD4GgQFZwN8ODM9WRKli7BhBkvP/3+/0r9prX4eu0BPnpXRXyCkTW/C7Ts0JqJA7yLRM02rVFNVHQsjsUVGI0SN+4I9HKyKWyxsuWK3wP2bvmTNo0NXLZR4ehel7r1y+dqX5IkEReXQrFiVoXq0LiXc0K082b2V/64lBK4cNWS8TP7Pre9TlFGXdyNIyfv0byhkpMXdFio3fL099Vo9Fw+dYLF0+RVrbe7SUxctJspn8uzmzqdgcuX7uLsXp3JSyNR26h496OWlHZ1yDMZ/kN2uHJPkXK2AMZN7cOGtYf4aWcEZcu5smB58yLj7dvbW9O4fTs+mX0YOxsDKYbifDwp/6vJ54bgoCisjQGMHiYb+NaNjXz29R4mzHjnqXGRbFq/F4VopGqNqml9IDPyy5oDRD28ga1a4nFMcSbOHFBoNcOsrZXMWjSU0EexWKtVhVax+T8MBiNrvt1NYkw4KToFA4Z2xt3DtBlYtVrFhFnv8s3aA2hSNLTtVD/XrVqeRVhoBH2apR8rz8oKDpyXZ7luXnvIrk1beX+AwH1nI38dLcHAYa2fe70lJmhY991udJpESrq48PaQVvkaI/mq0bi5JydFgclf+qGwUDJ1fodcFTTOL0Z+0oPZi3/H1iqR2AQLeg/uWmRnundt2c9X05SIooo3W8Gk+RfQdq2faRlJrzew/vt9xEVHoLIqxtAPOmWJNbx+NZjf1/1JRXcjd4JE3h7WPU+yGXNLv0GtiIttSFxcCl2G2Bf69XPi6HVOHDqFQgFVvWvQubvps0IjPuzMzm2n2bc0CI9KZRj9aeM8lS0+Lhm3DKvZSqWA2lKO2dPrDcydup5B3eJpVFHk63XQe8RAyrgVf+4+d247zZ2bAUgoGTSyU56V+3gRRc7ZsrBQMGRk4U23JyVq+G7ZHyikeJK1lgz7sHumKfYGjavRoHG1QpPPVKKjk3B3TV+StbISUYiZ43DiYpNZ8/VvfPWZAktLkd92nGbfXwo6dE5vweJ/OZjiimt8OlF22gLuxfLL6oMMHdW+YBTJBkEQcC3jUGjfn5F13++lc6N7+Hqp0Gq1jJmziSnz3je5Rpe9vXW2/SLziobNvFnz+x3GjZAdrjW/62nYzBuAXVsPs2CyCoVCoKIHhIY94eb1x1T3yhyrEx+Xwo/f7ECUkrh6NZwfF9tSqqQFZ/1u8OOKZN77+K18k/9VpFHT6jRqWr3Qvn/778e5f/smBj3Ua1af5q290z5zcFAzbV7Rj3kCsLUmrdYXQEknSE7WZXK2vlm8nYGdHuNZRUlIaDyL5v7G9PlDMu1n6y9/sfJzBaIo11H8ePYuZizMn5I1plLM3rpILNUH3n7M9TMH0uqBrdt8mhNH7WjczLQaXYIg0LVXQyBvZ+T/w6mELdcClSQmGbFRi9wI0GFhLa8mHf/3Fr07xNOwjnxvWjLdyOxvDzB2ap8s+9ny61FC7t3hTmAM/boIDP/UioREI5/O+4Vp80cUSDeMIudsFTRhobF8v3wL9jYaYhOUaPUK5nySTGlnCxISE5i4YCOzFo8sbDFzTJWqpZj/k4p2zeWTdNcBDR6VamQac8UvmN4d9Vhayifa290smbzkZiZn68G9MOrWTDd4lcsrid726pVYyC/io8Lw9ZKfpFUqgYa1DAQHRVGpct4UXnxZvH3KEfmkFRMXngOgVoMGePvIs2eiKKFQpB9bGzVotFkzvb6a/xuzP05GoYAffjGm1bOr56tkx4HQAtDCzLOQJIlVy3aijX+IVgcK61L4VAhhwQR52Xjht4dxKVOCKtUKP9g9p1jaleL85QfU9VESHqHnTog6y3KbqJdDTkCOoXW0i0OvN2RKNLC31SOK8hhRFLC3LfrZjAXFudM3eadbej2wwb1UTF12zWRnK78RBIGPJ7/DzG92oBS1WNqWZlhqWRqtVodNhiYvKpWA0Zg15nXnttOUs/dj9HgVMxYm0qOjvPJgayPSoWkKt2+FUdMn/+MA/++drR++3sqiiVrUagU6nYG+7z+mtLN8o7S1ESntlIJWqy+wZpV5hZWVkg8nvcOcb/cgCjo8KnvTo1/mKV5HJ1vuXUi/2cbFGxDEzFPwNWuVZ+fvJ6iZeu3t/1dL5eq5i5vIa/buPMd1vytIRonajd7I84J+Wq0eCwvxudP8OoOSpKSUtHpggfcF6ncqOstGAC3aeNOslRfLFmzjxvmj+J04hksFTxo0q8vSHw8wZpiK0DAD+47ZMKNz5tIqBoMRp2IJODmq0GolYmLTjZkkSSSmFI0l/v9X/th8gtZ1HtC0nnzdLlwRSI0q6XGVfd8S2Xn69ivpbI38qDMb1h5i64FQFEo1E2ZkDdlISBIyBWTHxAlZlkVjE9XEJ2iwsxWJjTMQn1y4oQf/ERwUyYbVu7BS6rG0KcGIj97K0/AMo9GIXm987r3LtUwJ/G8ZKecmv78ZqMe5dMGWnnkRJZ3tmDhzIP8cuMzJQ0dZu3QVkfF2vDemJ18vOEElDwP2xURmLdXQvlvWZczAG4EMHy9fH0YjaDRGLC1TiwaHCjSqXTAzjK+WB/EM9vx5lhv+AVhZ2zB4ZIdnVprPjmLqFNRq+QRXKgVcSynQ6YwolfLBCI8SX9mehs6livHp9H7P/Nyzhiv/HvDg+1/u41JK4q9/VIyZ1jHTGPdyTnjVb8un845jqYLipasxeETeBaTHxSazYe1BUpJTaNOx3jOrbD/NuVO30UWeZOFE+cby1eojXHNxxMvb7aVl0mr1LPl8I4420cQnClSqUYvufZtkO3bwe10ZO3cDdWtouR8CFWq8kVamoiix+ddj9G7zmDo1ZaOzbvNVbGwrUr1+Z6Yuu4BtMVumzG2T5VxXKESi4+RrQaUS8KqmYsaiaJrUt+LAcQWdenYocF1eN+7fDWfbb4cBI207Nzb5GgC4FxDC+13TH5C6trfmrwOJ1PSUbeClq0bKuheNWdacIopiai/DZ9O+a2smL9hLs3pGLvgL1G3aJEvM4egJfZm5fDtWymRS9MUYPSHv2opJksRff5zl9vX7lKvoSs9+Wb8/O/R6A6uXb2LZDAFLS5GbgcGsXrGLUWO75YlcO7ed5MalC9jbSkTEOzD+s/7ZLpU1a+XFN4tvcT0gBGsrCAgpzuTZBVsnyxSio5O4cupfls+Sz/XwiESWr/ub8TOH8PXag2g1Gt7s2YhqXllj8SxU1kRGxeLkqGDEO/YMH/eEAb3suB8skiBVwr2A6hq+8s7Wto3HcLG+xMLxKsIjopkx62dmLhpuctBnbKIKjUaHpaVI4D0tdx5Az5FxtG5izZ0gkQ7d2xWZAP38YNTYbtwJfEJcbDLT5rtkW6usdr3KVKxShpLOdnkaTJucrGPRzPXMG2/AsbiCL1b+gU77FnXqvbjWzKnj1/hsZLqsA7opWL/7ep44Wz//uJ8PB8RQyUO+sJetucDdO1WpUDFr25RSpYsxc9F7PA6No7WDdY4c/YLk4YPH1Omd/ns1qStw8MpDevZr/MLfu+WbLZk47xA1q0uc87fmjebNSLGzZdjY0jg6Fs1MtleFx49i+O3HTSyeqkShgNlf7UCp7El1L9OWNcqWc+Gs3xPq+SrRaiWW/ZjA3WCRqLgk1GoFBpUHo7oXXvxYflO3QWUqVHHlbuATerzrmG35l+LF1QwZ1ZVi9tZ5Xqh3zaq91KscyNBPlZy5FM7Xi8L5ZNKLnbnHoXHUqWHA0lKWp1olJZodkXkiU9CDSKKDz/HldPlB9H5wLOu/38v7n2SNDRUEgY8n9iQyMgGd1kCf0sWK5P3uUUgMtTzTZ9WdS1hg1Cfg4KBm9Ljnx7wOea8jU2f/TEPfFMIioJJ3bXQOXtSsZFug4R6vvLMVdCeQUalThM4lLKjvk0xwUFSW+kzPYtjoXoybtwWDNh7JkMy6rxx4FGZg5QZrZi58t0AC5/KToPsRbFy3B5XSQGk3D/oNapHlYqpY6dm91w7uu4TfiWOUdwe/GxaMGtcf17LPz/YwlQtn79G3cwolS8jTuNM+smTSl6dNcrbKuDnjfzOEuj6y83flhoEyGZ7gQx/G8Nu6fQjoqVXfm5ZtTV9ijIuOppJH+nFv4Gvk3p2wbJ0tkJM6yr4gA6awqeLpwcFjYbRpKl8re49I+DY3bTm4cXMvfGpXJDQ0libdipsry+ch/x66zCfvCiiV8jU5/WMVs1adMdnZ6j2gKd8sjmD7vkf4X41i7mQHXJwVLP5OT/O3ulKrjkc+Sp//6HQG1ny7m+T4SIxYM3R0lywZyI6ONjjWy97pfxIez9cLNuBTTUvQI4GqvvXo1C3vZuYTIh7QZqh8PTSorWTXoUcYjcYXZhg6OqoJfJD+PjnZSIo2/XZsMBjZsPYgkWHh2Dk4MHhkB5NDWR7ci+CNmunJUB5uSpLiY5+7TW77MRYU7uUc2bVJpGcnecn4zgMdVjamtc8pZm/NzEXDCQ6K5g1by0KrKffKO1taLRiNUlrWypNIsLHJWgtKkiT2/HmOm9fuU7maO2/1qI8gCJRxK87MRSNZ8vmvfDEuDoVCoLSzBV1bJ+LvF8IbDYpGfFJuSErUsHbFRpbNsEClEjh03J8tGwT6DGxh2vZJWvxOHGXRNPn3TEkxMnXpTibPGZwn8ilVFiRmsAE6HQiYtmTbvU9DFs15wNGzT9DrIUZThk8m+QJy9tx3Szfw5TQRtVpk9cYj/HNAoGXbmibt28XNldMXr9Kgtuxw/X1UpOugwi2kKEkSWq3B5CzHp+ncvR5rv4vi0Kn76PTgXbcR1byytr56FrZ2VlQuorN2rzI2dmrCI42UT634ERFlwFqdfQzJ7ZuP2LvzFJaWlvQf0hp7e2tEUeSTST05dTyA5vX+olaN1MD4qQqmLjv5yjtbq77awYA3H1G9spKY2CQmz9vAnCWmJyyt/+5PvpwmYZt6T5j55VliWtTMs6V+3VOx9lqtae3Q1DaW1KjXmEnzT+DhBpdvWvB+hqzkFUv+oE/bh/h4qgi8H82XczcxZc47z9ljOlWru7DpBwXNG8qOyYUrOkq6vFxfv7xAo9GjUilyNXNmV8yK9t07M2bOAWzVRgyiMx9OML3skoWFgvKFXBT9lXe2uvRty6QvttOjvYGbdwX0qkrZeq6rV+6mXpW7DBmn5N9Tj/lueTijxmSYfhTS+wcCWCjAIElZ9hP8IJJD+85jY2dDl54Ncn3zKwhu3QzjzeZ6VCrZaWjdRMWBJQ9esFU6MdFJVMgQPmJlJWKp1OWZfG/U92DutOLY28Xg4iyy4mcY+L5pDW9FUWTyrLeJjExAFMVMT7uXLtynbycd6tSb1vD+lkxe4m+ys9VvUAtWLYvn9133CA2Nw1qt5vef9vPhhJ6ZYpoSEzSsWrYdCymOJI2KIe93y7NZP5Bjx75d+gfJsY+4/yAWtzJqdJIdo8b1zVHRvqQkLVf8gqnfpCZeNToUyWWC/1fad6rNvGn+REXHYm0Fv/1lzeTZrbKMu3ntIfu2bmHWWEvi4o1MnbWOKZ8PSysyLElgkcEUPWtiRavVs2v7GeJiEmjZrhYeFYp2PJdRE0H1yrL9crBXUKFMCvFxKSYXiLUQtWmN6wGqVJAID4vPM2erqo8vK9af4c0WIkfPSpSt5G3y9dWuYx2atqxJTHQS3YY+FaKhDcPHU54xq+ShxM4y2qQZM5Bjdd9o2Y6PZx0hOSGKqBiJMm53uRv4mAqVMjtd2zYe40HADQwGqFmvDu071TFdeRPYv+cCF0+eI+pJFFqdhHOpYtRp0pD2neq+eOMMXL/6iBSNkbHTh6DOZjLlVaBoVrPLAdW9yvLux+9yP6kt5Xx7MXx09t5uYlQQbZvJtURaNFKhiQsi4HYYZ07dJSE+hbadGjNrqYakJCOB97XsPGxD7bqZA1Vv33zExh83MKRTAM08LzJv2np0RbiHXImStgTcTz/E8QlGjJLpS0ClShfD77oSjUZeK791R4dKnXfBhKIoMm3uIIKTW3D4al1GjhtCufLPXtLMDicn2yzLCsXs1YSGp79PSDQiiKY7xYIg0H9IG1RKgY2rSrBuqQ2Du4Sx/vu9mcZ9u3Qr4wZFMn+CxILxyXz31e85kv1FrPl2N0O6POarmZZsW10SCyGZueN0rF21w+R9RDyJ54tpP2IVv5OHlzezfMFWpGweIswUDkqlgs++GILGrjMRwptMmzcs27i/PTuO8/l4S1QqgRJOCkb01fL3bj9OnQgkOCiKuvXLs3WfDXce6EhKMjJjiYYOXZpm2ofBYGT+9J9pUOk8QzsH8MfPG7nmH1xQquaKxGQRgyH9fA0NB7WN6TbMrngprtyQHxB1OomTFxW4l3PMM/m69GyIV+Oe7L3gi6tnF/oPzuooPw9rayUurvZZYmGTnsryTUgScvSQ1LBJdSzVdiycZs/2NU58Nd3I+m+3Zbr2jx+5RjEusmCikcVTjETdP87VK3l3Pty89ojwO8dZOh3WL3ekX1dLWjfUcPfKSZ6Ex5u8n68XbeP+xc1YJ+xiwWc/Eh5WdFvkPY+iOy2TA0qUtKN1u/QaUikpOp6Ex1PaxT5tJkKvz3yDuXU7lnL/bsTDTWLJbAuGfzKAtj37sHD9OYrZ2zJ1XrMsmVk7t/7LgskqLCwEnEtAj7bxnDl5hybNq+S/krnAzd0RbDyZueQSHmVgz+FkbOxFEhM0JrXdUShERo7tx+Qvd6JW6bGwLsWIj94i7HEcgkCe9CJUKETadfQ1aezh/ZfxO38bj0pl6N674TONj08tN77aWwbj9keUdpbYskfJh5PezJFc9+48oWk9A4KQHsAa/1QAq1KIp7SzfAlZWYmUc9GQlKjJ8uSVlKTl1PHbWFgoaNS0isnZrZrEKKpUSK8PVL+OFWFPDKhVGpP1+OXHvSyZJmBnK8/ybdwRwuWLQfjWMT3jzUz+olCINGpaOe290WjkcWgcdnZWaTM4oiii06XXRfO7quHqzWNULC5yeLsCO5c6TJ33Lps3/EtCfCJv9q1H5aqZyz1cOv+ADo1jqVVDPhfmTVQw+ct/8fI2bXmqMOg5oCOjp2+mga+Oy9e0PAxXcuncHeo2qPzijYF333+TH1f8xabd4SRrFAwe1QmD3kjQg0hcXB3yJNPcy9vNpMSc4AeR7NhyDIVCpM/AVs/tLNCkTVNmLT1Eq4ZGTl0SqVnv2fbuWajERJwcZf0sLAQquuuJi0tJq1V27vQN5n6U7rj27qRg46Hb1KiZVRe/i0GEhUbhW6dCln6Pz+LyxQC6t093It9qZ8PsJVHU8VUQEhxtUuzUVf+HVHUNYmAvWebGbxj5fNVexk3ra5IMRYnXwtnKyMljNzi67wCeleDiNYH+w3pStborHtW8WbPxEu2aiWz6U0ujuireGygbsuYN0lvZVK3e9Tl7lzItNYoiSNKzGwdHPInn8H4/rNVWtO9Uq1BqdTVtVZs9G/2pX1vBgJ52RMfqWfndHj4c392k7cu6OTJlzhDgv6bGmyhX8gkS8DCqFJ9O61Mg7SZ+W38Y92L+zB+j4sylxyxb8JCxU3pnO1YQBMZO7Y3/lYfExyUzaY57jns6linrwIpf9Dg7pVDb25KwCAMqq8zGISFZiVarTW0gDVdvJGI0Znbq4+NSWDhjHYN6pKDRwudTTjB9/hCTzgWDZE10TBLFHWSDef2Wlto1VOgk04NZjUYddrYZmk67CITGJJm8fXbs2n6a2/6XEQRwr+RJr7ebvngjMyYRH5fC4tk/41s9hcfhEsXL1KD/4Nb0fqcN4+f9wthhEBUjsfcfHdtWy5ljbZvBxHkXsOjRkMEj2jxz35IEYg58C6PRyMF9V4iKjKVx8xq4uRd8/aVqXmUQFGpq10imSzsbijuIfDTzb+rUr2SS86FQiJmy8PbvucC2nzZSxQPWXLVg+Mf9cCuA1P+g+xH8+v2vzJugRKOVmDJ/HeNmDHvmcmbTljWoVNWNgFuhtOnlLD8455CwSIH9RxKoU9MKx+Ii9x8qKJZh+dXdw4UL/o+o5ys7XCfPpyAJWW35D9/solzxQDwrC2z49l/a9eyGt8+LH9bKVyrD6Yt+afGIl69pcS9jwdGzFoz41LT4qdjoRMpkeGawUYsgvVwoS9D9CH758U9srHToJDs+GNerQHr+vlbOliRJHNp1kG/myCePwSAxdu5fTP9iJL3ebobfBXe2HbuHVSlr3GxOp233dCubuNhkrKyVWW6Inbo3Y/rirfR/S2DNb7GERynwbfCA+o0q8fWiraiIJClZoG6zhlT39GDN8l8YMwyiYiXmTvHjswVDC7xm18PgKJq8IeBZVT6ZSpW0QJuSkKt97dx+hr7tI6hfS97XsTPh7Nl5gc7d3jBp+8P7L3P++BmUSijtXpn+g01vePw4KIAxqTW1GtZRsu9I6HOLzQqC8NyqwAaDkbWr9pAQHYZGp6DfkI5p8St6vYEflv9Bq8YiQSE65n4VS5lyZWnQrByrv91DrbpVqVOvIoNGdmXAh6up620kNMxAv67WLJq9gdmLh6XdCDb+fJg54wyUdpafzOztEtm78wJde724/9iwD7swdd6vuDglEHgnEcHCiu+2ODH6054kJWnZtvEYiQlJtOtUjwqVsm+IXrt+DdZsPMKw/pYkJxvZuEvBuM88XvjdGX+nI4eukRCfTJMWnjy4G44h+gwLJ8nH4tc/LnLiqFORqTj9qrN21V/MHaejhJNsw5av8efeXR/KVyjBBxPfZe/+S1irrala9SKCkO7Yl3AUSEnWoVQq0Gj0aDX6LHFNteq6M2eyHeXKJrJzXwK37xixtLMgIiKB86dvcvn0GawsJQyiMx9P6sniORvp0iKCJg0UfLfGj/a9euRJaZWcUtzeSE2vdF2cHY3odIYcP7ympOjwP32ChVPlc3egVmLS4l1M+XyISduHh8WxesV21CoNWqMN74/paXLLnT+3HGPeBCVqtYhaDZ8ON7B/z0V6v519/T4AF1d7XFztn/n5qeM3Obr/BEolVKzumdo2R2bHlhNUcU8CBKbOjyIuRU37Li1Y991+HJzs6NKjPt37NGTOlEC2/xWC2hqsLAViEi9zJ8CTipVlexLxJB6V/m7azFItb4nxCw7j7fPilk/1GlZi3eWqTFl4C11KMrfv6fHwKEHHnm1xcFBz5KA/Vy/fpVqNcrRp75vtPnxqubN4lpIGtYyo1SLrNmvwrmt670aQlzOvX7tPlWpueHmX5cevN7NitpwBHPYkmi+XbWf89P452mdueK2cLa3WgLNTugFSKARs1elOlG8dD3zreJCSomP+tIu0aWrE1kbkj70aKlSrSWKChkWzN1ChTAIRUQIVvGpnKmZZ3assBkNPFizfwPqvSqJSCRw9fYuPR96mjGM01g4KSjkIBFz8lzPHr7FkugVWVvKTQlJSAkf/uZFpubMgqOrpwrplClo1ljNTTpzT4upeNVf7Cg2J4O2W6adMjaoKjm17YtK2t2+GEnz9CEtSDd0fe69wYJ8DbTvUMml7w1OhcTp95r5pOeWnH/6mQ7171Kkpz06N/XwzE+e8h7W1kt07zjGoaxxv+Mrp5DW9rJi9PIWS4nHe6m7B9n0BhATVo2uvhlSq5MjIgTqK2YkoFAJ3g5OIjExMWyJISUqhuH3602JJR5GkW8kmyejgoGb24hEkJWqwslamzSBqNHrmTlnDpPe0lHAUmb/iDh379M62oF/Ltj4c2i8xeclVjCgY8UkHk28QRqOR+Z/9Qo820ThXEli54Ay2jmUZP8gCSZJ4GKqnVSORlZtvmZ2tPMKgS6aEU/oDmVcVidBHMZSvUIISJe3oM6AZAN8HP+as3z3q+ap4HK7n3iMb7IpZ8eu6gzwJuoa9HQQ/sWfSrHfSkngsLBRMnTuYyR9/z4yP7KhWWUVcvJaRk9YiGmOpXF4kJUWiZRMtX36xg9pVImjZSHZy5k+SmLjoH7y8BxX4b6I12vE4PIbSzhYkJhl5HGmVq1WC2Jhk3DNcIiqVgLXK9NY93y7ZxJIpetRqkYjIWOZ9uYUpc0z7PUSFAq1O4r95rGSNhMIi9w/edwPDuHx8H0umWCIIAj9vPcvRw3Y0a1UDnc5A4JULLJomH7u2za0ZNE5HoN8xxgxT8uChgfnTbzF9/mDKuJVkcMc4nIorsLYWiYk1sHLLBSpWlotbJyVpcXLIoIcoYKkyPebz3fc7oNO1xWAwZiqj9PPqA1RwvM6UoUoOnXjA6pUPGZ7ahicjtnZWvD/uHWZ/K5fx8a5T3+R7BsCu7adICjtLu6YC/545h98Fb6p46FEqVcTGGdBoJBTG55fFyCteK2fL0tKCRxFWxMXrKGanIOSRDh1ZpyutrJR8NGkgc7/bDZKOyp6+dOvVgG8Wb2fWx8mUKik7BIu/u0BwkGemKVyDEfq8ZZ22dNSorpJFKx6zZHkpuRJwgJZVP8UQr7NJq50DoLYW0EcVfE8uJydb2vXsyth5B1BbStg6VWLYqBa52lfDpl6s23yXj96Vf5/1W/XUb+pl0rZ+FwLo+Wa609Gtg4opS2+bfOF41vJlxfpTdGun4NRFI3bOlTP1P8spsZGPqVNTvvhVKoGmdfUE3Y+kavXSREfF41YvXdbSJURK2sfTsbUDAMP7K5i44Ar0akiyVsTBPr23WHiklKkOVYcuDZizfAufj1eh18OXqyVGjDHdWABZYsBOnwigX+ckKpT7L/ZGZMpXR6nmlf3TWet2vrRu55uj7wQ4ffIOHRpH0bKR/D1LphkZ9Vk4/57WcvRUPJ5VLAl7oics0twrM69w83Dnn5OXadlIhcEgsfsfBe9PyFqiY8SHnfht/WG2HwxFZWXLpFkduXHtETaGq4ydJN9k7wUn8POP+xnxYXpXCCsrJR5uKqpVlsMfitkpSIh9wrwpDvh4WaHVSoyf/YTYlAisM9RCFQRQiIWTWDH60958tewPFFIcyTprRk/okav9lHS25cotC5KS5FmSm4E6VDbZzwg/jV5vwLl4Stq1XcJJgVpp+gpB34EtmfzFesaPMJCcIvHNzyqmzct95t+Fs7cZkKGn4cCeKqYsvU6zVjXQpOhwypAULQgCyfFxzPnSCVGUEyzuBsVw1f8RdvY2xMZLlHWV7V3IYwN29uk1y8q6FWf1NRs6hqXgUsqCbbu1uFc0zeb/h1KpyLKiE/kwgPHvyHatcxsVxxfcy9R2KSMuZRye2wnledy4dIklqaWLqlaCCfOuk5wir0yFPtZTylmBv7+e2NjkLH038xqTnC1BEDoAywEFsFqSpAVPfW4J/AzUASKBvpIk3c9bUU3j48lvM2fFDpRiCqLSidGfZh+DVdLZjnHTMh9AnSYhrckugE91Iw9DYjI5WyVL2uF3JP2EuHVHS+um1mm9lqpVVhGfINCpXxM+W/J3Wqr26t+VTJlbOJWca/qWo6bv8Jfej2+dCkRENGfiwgtIEtRt3MiktXuAchVcOHf5IhXKyQ6O/009pVxNzzzs1K0+/pdd2HwkgAqVyzCsV7Vc6fAfBklFQmJyWlr47XsCPm3k2agWbXxYvvY68yYqEAT48kdtlkKe/4WpderZhknzd/JmSz1XboiULu+TaWyVaq7oe/RkytLjCILAoFGtKeXy7KUBUxAEAUMGv/15yYX7dp3j+uUbGIwifQa2z1G2pyZFR8Zah5aWAs6l7Nj0VwpLPyuOm6t8LNdvjueKXzA1fQt+iel1o9eAZvy8WsP+E8GkaAW6DXgrS7YtyAHz7wzNHJ8VdD+cOt7p78u7WRAXE5Nl28QUBQaDIS3Y3s5WxCd1mU6lEqhT0wr/4JIcPB1JXZ8U3FwtWLZGS4PmhdPGxcbWMtc324yIosjo8W/z2fKdqCx0WNm5MOIj02o1WVgoiIhRpDkEer1EXKLpcxUlStox9rNh7NtzHgsLC6bNq/tSxYFdypTA/6aRih7y+9t39Tg5y/cpWzsrgsJseRyeRGlnC875aVEorTLHGwtyT8nufRozb1oAnZrL2YG7/7Vj2rz0/oKiKDJ5ziB++GEfyYkJePlWpWfPly8P8bTNepYNCw6K5Pef9iEKBqp4VaVz95wtIaqeqkmuUkFV3waE3j7I9HFyrF7PTga+XPUXn0zOPgY4r3jh2SIIggJYCbQFQoBzgiDslCTpeoZhw4BoSZIqCYLQD1gIFEq6gJOTLRNn5i67xtnVlbN+N6jnq0SSJA4eVzB0bOYnH9cyDlg51WTu11dwc4F/z1pQwiE9niA52YhBLE7TFtUpVdqe2d+dQqVSMX5W6wIJwstv2rT3feb6+vOo37Aya/yq8NniAKytBSISSjDhsxY52oe3jzvePu45/u7sGPxeFz6dt4E6NbQEPZQoV/2NtCrKHhWcadujB5OWHEEAWrRvy8l/L3Pk5EPq17Jg6x4d7pVqA+BTy4MybkO5ee0RDd50zLZwnmeNsnjWePmbxX80bFKZzycfo7RzMs5OIou+M9BjUNb4t4N/+0HsSRaMt0Srlfh07iY+mvrsoNynqd+wIvOnW1Kjqtzo9YuVWlq2rw9/n8HNNT39ukYVuPEw0uxs5QGCIDB4RLtcbVvDpxw7fhKoXVN2CA4d11KhataHoT6DOvLJ7G3Uq2ng1l0BSxsnEpOMcvAxcPGqgVFT2mNtreK39YeIi0mgeZta1H7jxZ0dijqlXR2YNDt3S6Fd+r7JhzP2UL6skcAHCgaPytkMW/Hi6rRl4JelcbNqfLv0Jre+DcJGLXAryJ7Js9NtwIQZA/h21W60KQmUdKnIoPc8+Hz5bj4dqeJBiJ6Dp+2Y0a0MCoXIjAXvcul8EAAzFrhnWTFQq1WZa1LmAS7lq/HbDn86NLfgn5N6nMpUyzKrFR+XwtpvNrJ0uoilpcimnWfYt0ukw1umxQgDWBYry9EzD2hWX8lZPx2oXCnl6oSbTfo927G4AoPetNCOl0F4Uc0dQRAaArMkSWqf+n4KgCRJX2QY83fqmFOCIFgAj4GS0nN27lPLTfr7n7F5oELeYTQaWb1yN8mxj0lMEejYow2+tT2yHRsVlUhMdBJu7o78c8AP/9NyJeC8bmnzupGSosOgNxYJx9NgMBL6KBYHE3oaSpLE7j/Pcy/wIXXqV6NR05ebWXtZNBo9O7edJjE+kdYd6mabUfXl3F9ZOD69ns3xs8mEaNrTqq3p8VXR0UlsWLMfnUZDqzfr4Vu7PHt3nsNBOkXX9iokSWLqQi393xtCaRNm7FyKf3pBkqScVTQsghRF+wVw5uQtjuw9iqVKwsG5HINHZt/bNSVFR0hwNM7OdqSk6Fix6Fd8qul48BCq1WpAx671CkH6oo/RaEwrn1AUigP/19OwlAk9DW9ee8jh/RdwcCxGr/5NCiU7PiOnjt/k2uW7VPPyoEmLrDbpxNEA7HV/0apx+vLe5CW2jJtu+mSKJEn8sfkE9wJCKFvOhT7vNCMuLoWVC1bz5XQLFAqBf09puRJSk74mdFZ5GftlirPVC+ggSdLw1PcDgfqSJH2YYczV1DEhqe/vpI6JeGpfI4H/ei3UAK7mRugiSAkg4oWjXg1eF11eFz3g9dKlqiRJhdOc7CUx269XArMuRY/XRQ94CftVoK6tJEk/AD8ACIJw/nV4wgWzLkWR10UPeP10KWwZcovZfhV9zLoUPV4XPeDl7Jcp1SgfAhmDMcqm/i/bManLiPbIgfJmzJgxY8aMGTP/15jibJ0DKguCUF6Qe5f0A3Y+NWYnMDj1dS/g8PPitcyYMWPGjBkzZv5feOEyoiRJekEQPgT+Ri79sFaSpGuCIMwBzkuStBNYA/wiCEIgEIXskL2IH15C7qKGWZeix+uiB5h1KYq8LnqAWZeiyuuiy+uiB7yELi8MkDdjxowZM2bMmDGTe/K/g7AZM2bMmDFjxsz/MWZny4wZM2bMmDFjJh/Jd2dLEIQOgiDcEgQhUBCEydl8bikIwu+pn58RBMEjv2XKDSboMU4QhOuCIFwRBOGQIAim9bEpBF6kS4ZxPQVBkARBKLJpu6boIghCn9Rjc00QhN8KWkZTMeEccxcE4R9BEC6lnmcds9tPYSMIwlpBEMJT6+9l97kgCMLXqXpeEQShdkHLaCqvi/0Csw0rSPlMxWy/ih75Zr8kScq3P+SA+jtABUAFXAY8nxrzAfBd6ut+wO/5KVM+6tESUKe+HlUU9TBVl9RxdsBR4DRQt7DlfonjUhm4BBRPfe9c2HK/hC4/AKNSX3sC9wtb7mfo0gyoDVx9xucdgb2AADQAzhS2zC9xTIq8/cqBLmYbVsT0MNuvQtElX+xXfs9s1QMCJUm6K0mSFtgEPN0ZuivwU+rrrUBrQSgCfRAy80I9JEn6R5KkpNS3p5HrkRVFTDkmAJ8j97hMKUjhcogpuowAVkqSFA0gSVJ4ActoKqboIgHFUl/bA48KUD6TkSTpKHJW8rPoCvwsyZwGHARBcCkY6XLE62K/wGzDiiJm+1UEyS/7ld/OVhkgOMP7kNT/ZTtGkiQ9EAtkbfRWuJiiR0aGIXu+RZEX6pI6LeomSdLughQsF5hyXKoAVQRBOCEIwmlBEDoUmHQ5wxRdZgHvCIIQAuwBPioY0fKcnF5PhcXrYr/AbMOKImb79WqSK/tVuJ0oX0MEQXgHqAs0L2xZcoMgCCKwFBhSyKLkFRbIU/EtkJ/UjwqC4C1JUkxhCpVL+gPrJUn6UpAbxP8iCEINSZKMhS2YmdcHsw0rUpjt12tCfs9svS6tfkzRA0EQ2gDTgC6SJGkKSLac8iJd7JCb7B4RBOE+8pr0ziIaYGrKcQkBdkqSpJMk6R5wG9l4FTVM0WUYsBlAkqRTgBVyk9dXDZOupyLA62K/wGzDiqINM9uv/yf7lc+BZhbAXaA86UFzXk+NGU3mANPNBRkMl4d61EIOEKxc2PK+rC5PjT9CEQwuzcFx6QD8lPq6BPL0r1Nhy55LXfYCQ1JfV0eOeRAKW/Zn6OPBswNMO5E5wPRsYcv7EsekyNuvHOhitmFFTA+z/So0ffLcfhWE0B2RvfE7wLTU/81BfnIC2bvdAgQCZ4EKhf1D51KPg0AY4Jf6t7OwZc6tLk+NLZKGKgfHRUBeUrgO+AP9Clvml9DFEziRasj8gHaFLfMz9NgIhAI65CfzYcD7wPsZjsnKVD39X/Hz65WwXybqYrZhRUwPs/0qFD3yxX6Z2/WYMWPGjBkzZszkI+YK8mbMmDFjxowZM/mI2dkyY8aMGTNmzJjJR8zOlhkzZsyYMWPGTD5idrbMmDFjxowZM2byEbOzZcaMGTNmzJgxk4+YnS0zZsyYMWPGjJl8xOxsmTFjxowZM2bM5CP/A7tI/LYIIagxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy\n", - "from scipy.spatial.distance import cdist\n", - "\n", - "\n", - "def random_set_simple(n):\n", - " X = numpy.random.rand(n, 2)\n", - " y = ((X[:, 0] ** 2 + X[:, 1] ** 2) <= 1).astype(numpy.int32).ravel()\n", - " return X, y\n", - "\n", - "X, y = random_set_simple(2000)\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y)\n", - "dt = DecisionTreeClassifier(max_depth=3)\n", - "dt.fit(X_train, y_train)\n", - "dt8 = DecisionTreeClassifier(max_depth=10)\n", - "dt8.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True)\n", - "plot_classifier_decision_zone(dt, X_test, y_test, ax=ax[0],\n", - " title=\"DecisionTree - max_depth=%d\\nacc=%1.2f\" % (\n", - " dt.max_depth, dt.score(X_test, y_test)))\n", - "plot_classifier_decision_zone(dt8, X_test, y_test, ax=ax[1],\n", - " title=\"DecisionTree - max_depth=%d\\nacc=%1.2f\" % (\n", - " dt8.max_depth, dt8.score(X_test, y_test)))\n", - "ax[0].set_xlim([0, 1])\n", - "ax[1].set_xlim([0, 1])\n", - "ax[0].set_ylim([0, 1]);" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[DTLR ] trained acc 0.96 N=1500\n", - "[DTLRI] change intercept 11.677031 --> 10.877451 in [0.278070, 16.549686]\n", - "[DTLR*] above: n_class=2 N=1500 - 1106/1500\n", - "[DTLR ] trained acc 0.99 N=1106\n", - "[DTLRI] change intercept 6.021739 --> 1.840312 in [0.063825, 2.640076]\n", - "[DTLR*] above: n_class=1 N=1106 - 743/1500\n", - "[DTLR*] below: n_class=2 N=1106 - 363/1500\n", - "[DTLR ] trained acc 0.96 N=363\n", - "[DTLRI] change intercept 3.970377 --> 0.770538 in [0.461779, 0.985259]\n", - "[DTLR*] below: n_class=2 N=1500 - 394/1500\n", - "[DTLR ] trained acc 0.80 N=394\n", - "[DTLRI] change intercept 4.763873 --> 5.983343 in [5.225083, 8.055335]\n", - "[DTLR*] above: n_class=2 N=394 - 162/1500\n", - "[DTLR ] trained acc 0.54 N=162\n", - "[DTLRI] change intercept 1.289949 --> 1.351619 in [1.036507, 1.533679]\n", - "[DTLR*] below: n_class=1 N=394 - 232/1500\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAEXCAYAAACat4H7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgU1xbAf3c97m4kQJDg7m5toaVCS0tLKQWq1N1f3V/djba0QIVS3Cnu7hAkCcQ9m/W9748JERKII337+758X3bnzp07szNnzj33iJBS4sKFCxcuXLhw4aJxUF3sAbhw4cKFCxcuXPybcSlbLly4cOHChQsXjYhL2XLhwoULFy5cuGhEXMqWCxcuXLhw4cJFI+JStly4cOHChQsXLhoRl7LlwoULFy5cuHDRiLiUrUZGCLFQCHF7DdoVCSHiLsSYXNQOIcQAIURKI/XdRAghhRCaxujfhYva4pJZlz8umXXp4VK2ACHECSGESQhRKITIE0KsF0LcLYSo9/WRUl4hpZxWg3aeUspj9TmWEGJfiQAsEkI4hBDmcp+fqU/fZx3nByHEqw3VX0mfE0rGXCSEKBBC7BJCjGzIY1wKlNxrQxqh37FCiENCiHwhRIYQYpoQwruhj+Pi0sAls2p9HJfMqiONKLPaCCEWCyGyhBCVEn4KIfyFELOFEEYhxEkhxC0NPYYLiUvZKmOUlNILiAHeBJ4Evr24Q6odUsqEEgHoCawB7j/zWUr5+pl2l/CMZEPJ2H2Bz4AZQgjfizqiy4d1QG8ppQ8QB2iABn25uLjkcMmsi49LZtUdGzALuPMc2z8FrEAIMA74XAiRcIHG1uC4lK2zkFLmSyn/Bm4CbhdCtAEQQuiFEO8KIZKEEOlCiC+EEG5n9hNCXCOE2Fkyw0kUQowo+X6VEGJSyf/NhBD/lFgfsoQQM8vtL4UQzUr+9xFC/CiEyCzR6J87M2MtmU2tLRlLrhDiuBDiivOdUzmz751CiCRgRcn3E4UQB0r6WSyEiCm3T0shxFIhRE6JxeTGmlw/IcRkIcTRkv3+FkKEl9s2rJz15bOSazGpit/ACfwEeADNa3j9nxBCpAohTgshJpW/nrVFCOFWMhPOFULsB7qetT1cCPFHye9zXAjxQLltLwkhfhdCzCyxOmwXQrQv2fYTEA3MLZkNP1Gu23El55YlhHi2tmOWUiZLKbPKfeUA6nT+Li4vXDKrdB+XzLq8ZNYhKeW3wL4qzscDuB54XkpZJKVcC/wN3Fbb41wquJStcyCl3AykAH1LvnoTiAc6oLzEIoAXAIQQ3YAfgcdRZjj9gBNVdPsKsATwAyKBj89x+I+BMxaK/sB44I5y27sDh4BA4G3gWyGEqMFp9QdaAcOFENcAzwDXAUEos8pfS87HA1gK/AIEA2OBz4QQrc/XuRBiEPAGcCMQBpwEZpRsCwR+B54GAkrG3+sc/ahLztdW0gec//qPAB4BhpRsG1CDa3E+XgSalvwNB0r9V0peIHOBXSVjGAw8JIQYXm7/a4DfAH+Ua/iXEEIrpbwNSEKxSHhKKd8ut08foEVJfy8IIVqVHO8WoSwTnesvutzY+ggh8oFCFEH1QT2vg4vLCJfMcsksLjOZdR7iAbuU8nC573YBl61lCynl//0fipAZUsX3G4FnAQEYgabltvUEjpf8/yXw33P0vQqYVPL/j8BXQGQV7STKQ6dGMZ22LrftLmBVyf8TgKPltrmX7Bt6nuM2KWkTV277QuDOcp9VQDHKksRNwJqz+vsSeLHk/x+AV6s4h2+Bt8t99kQRPk1QhO+GctsEkFxujBMAO5BXso8JuLFc2/Nd/++AN8pta3bmetbxfjgGjCj3eQqQUvJ/dyDprPZPA9+X/P8SsPGs65oK9K3qXiv320SW+24zMLYe93NEyTjiL/az5fprnL+z76Ny37tkVtl2l8ySl77MOnPuZ33XF0g767vJZ+6py/HPZdk6PxFADsosyh3YdkY7BxaVfA8QBSTWoL8nUB7CzUJxDJ1YRZtAQEvZ7IiS/yPKfU4784+UsrjkX88aHD+53P8xwIflzienZGwRJdu6l5+NoKyZh1bTf3j5cUspi4Dskj7Dyx9fKk/P2dEyG6WUviiz6L8pm6FXd/0r9H3W/xUQQvQVZQ64lczX5+iv/G8RA4SfdW2eQfErqHR8qSwvpJT0eT7Syv1fTM1+zyqRUp5CuT4z6tqHi8sWl8xyySy4zGRWFRQBZwf4eKNY7S9LLlWnw4uOEKIrygO3FshCmbUklLzIziYZxXx7XqSUaSjaOUKIPsAyIcRqKeXRcs2yUGZJMcD+ku+igaqOW1vKR3wkA69JKaef3UgofhD/SCmH1rL/0yjjPtOPB4r5/RTKTCmy3DZR/nOFQUpZJIS4BzgmhPgOxXx8vutfoW+UF0mVSCnXUL1QSC3p44xgK2/2TkaZnTY/z/6lxy8x4UeiXBuo+BtUixBiHMoM/Vy0llImVfG9hhrcky7+PbhklktmcXnLrPIcBjRCiOZSyiMl37WnCv+uywWXZesshBDeQgnfnQH8LKXcU6Lpfw38VwgRXNIuotya97fAHUKIwUIIVcm2llX0PUYIceYBy0W5iZ3l20gpHSgRGq8JIbxKhMgjwM8NfKpfAE+LkugOoTi4jinZNg+IF0LcJoTQlvx1PbMmX4JaCGEo96dD8Z+4QwjRQQihB14HNkkpTwDzgbZCiNFCiSy6j/PMOqWUOcA3wAs1uP6zSo7bSgjhDjxfz2szq+Ta+JX8XlPLbdsMFAohnhSKU6paKCHM5R1SOwshris5z4cAC8ryDkA6il9LjZBSTpdl0VlV/SWBIuDO+EKU3DOvAcvreP4uLiNcMgtwyazLUWYJIYQB0JV8NpT8BkgpjcCfwMtCCA8hRG8Uv7Kfan9pLg1cylYZc4UQhSizgGeB96no4PkkcBTYKIQoAJahOAciFcfUO4D/AvnAP5SbLZWjK7BJCFGEYnJ+UFadp2Yqynr/MZRZ6i8oa/wNhpRyNvAWSqhyAbAXuKJkWyEwDMXJ9DSKufgtQF+ui6dQZm5n/lZIKZehCI0/UGZaTUv6QCqRcmNQnGOzgdbAVpSH+lx8AFwphGjH+a//QuAjYOWZNiX7n6/v8/EfFDP8cRTn4NIHvOTFMhLF6fU4yqz+GxTn4DPMQfEhyUWJnrlOSmkr2fYG8JxQzPmP1XF8VdEaWC+EMKKkgThEiUXCxb8Wl8xyyawzXI4yKwbldzhjrTKhyK0z3Au4ARkoSvE9UsrL1rIllGVoFy4uLCWm6hRgnJRyZQP33QpFEOullPaG7LsGx34Jxcn11gt5XBcuXDQuLpnloj64LFsuLhhCiOFCCN8SU/EzKM6tG6vZraZ9XyuUvDZ+KDPauRdaaLlw4eLfhUtmuWgoXMqWiwtJT5QIqCxgFDBaSmlqoL7vQjE3J6Ik9Lyngfp14cLF/y8umeWiQXAtI7pw4cKFCxcuXDQiLsuWCxcuXLhw4cJFI+JStly4cOHChQsXLhoRl7Ll4qIilDpaJ4UQRiHEX0II//O0HSSUIqkFQohjQogp52j3nahHUVcXLly4qCm1lGGjhBB7hZINfr0oV7uxxFn+v0IpTJ0rlMLX2gtzFi4aG5ey5eKiUZKc8EuUvC4hKCUfPjtHWy0wu6S9D0pOmPdFSXX6cu364Mqc7sKFiwtALWVYc2A6cDdK8e+5wN8liURByQPWBWiDUoi5E/BcIw7fxQXEpWy5AEAI8ZQQIlEIUSiE2C+EuLbctslCiAPltnUq+T5KCPGnECJTCJEthPiklocdhxLuvLqkJtnzwHVCCK8q2vqj1Mb6SSpsAQ6gJBo8M04N8DEVsye7cOHi/4DLQIYNRymWvbYkxcNbKOWV+pdsHwV8JKXMkVJmoiQ9raoWpYvLEJey5eIMiShFVH1QshH/LIQIE0o5jJeA8SjKztVAthBCjVIi4yRKFfgISgofCyH6iHJFT6v461NyzASUGmIASCkTASvKrK4CUsp0ykprqIUQPVEyEK8t1+xhYLWUcnfDXBIXLlxcRlzSMqwEcdb/AsWSda7tkUKI8pneXVymuApRuwBASvlbuY8zhRBPA92AScDbJZYkUEpLUKLshAOPl0vEt7akr7UoZvLq8EQpFVKefKCqWSEoytY3wIcln++RUiaXjCcKJW9N5xoc14ULF/8yLgMZtgx4SwgxAFiPUs5HB7iXbF8EPCiEWAmogQdKvnev4hguLjNcli0XAAghxgshdp6ZuaHMtgJRqsEnVrFLFHCynhmPi1BmmuXxBgqrGF9LlFnneBQBlQA8IYS4qqTJB8DLUkqXUHLh4v+QS12GSSkPArcDn6DUYQwE9qOUAAKlePwOYCeKMvYXYEMpBO3iMselbLlACBGDUqH+fiBASumLUqdLoBS5rcrhPBmILufcWb6/viXRNuf661vSdB/Qvtx+cSiFYw9Xcbw2wGEp5WIppVNKeQiYT0khWmAw8I4QIk0IkVby3QYhxC21uhguXLi47LhMZBhSyt+llG2klAHAiyjLl1tKtpmklPdLKSOklHEoxa+3SSmdtb8iLi41XMqWCwAPQAKZAEKIOyjzI/gGeEwI0VkoNCsRbJtRZmdvCiE8hBAGIURvACnlGiml53n+1pT0PR0YVSLYPICXgT+llJVmhSgzvuZCSf8ghBBNUSrZn/HPikcReh1K/kBxOJ3dMJfIhQsXlzCXgwyjZAxqIUQQ8BXwd4nFCyFEhBAivGSMPVCc7V9s+Evl4mLgUrZcIKXcD7wHbEAxWbcF1pVs+w3FvP0Limn8L8BfSulAUWaaAUkopvCbanncfShh0NNRaoR5Afee2S6EWCiEeKakbSJKZM5HQAHwD/AHiiBFSpkhpUw781fSRVYD1jFz4cLFJcrlIMNK+BDIAw4BucDkctuaoiwfGoFpwFNSyiW1GY+LSxdXbUQXLly4cOHChYtGxGXZcuHChQsXLly4aESqVbaEUvokQwix9xzbhRDiIyHEUSHEblGSLM6FCxcuXLhw4cJFzSxbPwAjzrP9CqB5yd8U4PP6D8uFCxcuXLhw4eLfQbXKlpRyNZBznibXAD+WlFDZCPgKIcIaaoAuXLhw4cKFCxeXMw2RQT4CJV/JGVJKvks9u6EQYgqK9Qt3D13nZs2DG+DwDYfFYcImHRTaDZitWrAKVBbQI/DQu4qv2+w2zGYTGo0WN4NblW3sDgeZmemo7WokEvQQHBiKEFU2/9ciJeTm52C32VCpVfj7BqBS1d9F0mK1YLFa0Ov06HX6BhjpheV4ytEsKWXQxR5HXbjU5Vd1nE++Vce/Qf45paTYZAQpcXfzqPJ5lEBWdgZOkxOBCofajn9AwGX5rNWXYpORoqIiALy9fTDoDfXu0+F0UGwqRiVUuLt5XHbvhfrIrwtarkdK+RVKbhHad4ySi1c+3KjHKyo08/svqzGbrVx5TQ+imwRWu09i0T5OmfJYmdWSIymhyCQ9TW0+eCQVA9C5aUijjvlS5VDiPv6aMQuvPH8sOhMhTYO4Zcydldr9OONLmqW2R12SJzDPlkW/of3p2KZbnY5rs9vYsWcTdoeDTm27YdBXreRdavw04ysKU814SC8s0owlPJ+pdz9Vrz5XrFnI9mXbcDd6Y/IooGPPzgzqe0X1O15EsvMy2bVnG76+fnRs043xj488ebHHVFcutPwCWLpoJwf3nqBN+6YMHNq23v2dS76dj/SUbOKcbpe17LParHz65TsEnzagkiqK3fK4b8pjeLhXrKpzKi2JGZ/+RKAIB0A6JJaAAu6686E6Hzvx5CFSTp2kedPWhIdE1uc0LhgHE/cx9+c/aGuNQkpJmu0kE++8m+DAui9aZedl8vVXHxGe2wy72oY6UHLvpEdRqdQNOPKGxeFwsHXXekymYjp36MG9L95SZ/nVEMrWKZSyB2eILPnuolJcbOXNF77n+fvt+Hir+M8HiYy5Yyxxzc4vMJp6JgD7GBh4ELvFzsF56yjUFJGS44bD7xpI/P9UuJYtXUBIbgxCCDxs3pzan0xeQQ6+3v4V2tltdlSUKUQqpxqLxVKnYyoC8m3UJ90QUrBuzUruvfsxPNw863UuF4Ls01n4SUUw6YWB/KwMbHYbWk3dLQTbN24hqDgKBHgUe7F945ZLWtlKOnWcX6Z9j3dOIFaNmW2tNl7sIV1WfPPpfDo0SeTZSRoWrjzJtK9TuX3ysFr1sWDOZg7s2oPTCV37dGPAkLackW8ARwiluJrHs0ir4dhxEySmX7ayb8OWf9CedMcLXxCgP+3GgqWzGXPN+ArtbHYrwlFm8RJCgLPu6ZHmLvqNw+uO4GbyYLP3RgZcPYSuHXrVub8LxeYtawkqjAShXAPfvCC2797MiEHX1LnPuQt+JzgjBrVQgxNyj2aw99BO2rW6NMvZOhwOPvv6HeQxDRqnlo3r1tarv4ZI/fA3ML5c1tt8KWWlJcQLzZqV+5l0o4WoCC3eXmrefErHnFn/1Gjfpp4JRLj5Yv/zN368/xTTXytmxruZ2LJ+5JjKxLbEC1eqSkqJsbgQp/MiV2xwlgieElRONTa7rVKzAf2GkuZzEikldmnDFJZH+4S6PUzrNq9Ee9IDH/zxFn74ngph4dK/6noGdcJmt/HnvF/47qdP2LhtTfU7lCA1kvI57JxaBxp1Pec2Z98CzkvbBr9w0V+E5jTBQ3jh5wii4IjxYg/pskFKSWHWca4crMNgUHHtFXpyTh+tVR+b1h/CkbOBt56w8c5TNk7uXcHBfadK5dvAwIM0j0xDFWY+75+ItlAUq6mz7DNbTFht1lrv15BYLGbUsuz5U6PBaq08psiwJhBmxyLNSCnJ9DhF56496nRMh8PB/u17CTSH4SG8CS6MYt0/q+p4BnVn664NfPfTJ/w25yestppNfH18fDGL4tLPVrUZf7+Aeo3DYXegKqdyqJxqLDUcz8Vgz8FtOI6p8JEByu+XEVOv/qqV/kKIX4EBQKAQIgWlfIAWQEr5BbAAuBKlknoxcEe9RtRAqFQCR7kZicXipKDAgtlsw2Co3rrQ1DMBX/VSYqKUdWpPDxUdWxaz1dfOsdMXZpZ3Oj2Fn3/+GpVRg8PNxuhrb6JFs4RGPea5aNOhA9vTtuJXHIJZFKMNUxPgW3npOi4mnptuv5VVa5Zi0Om458pHcTO4V9Fj9VgsZjRSyxmXEjVarLWwku3Ys4nDRw/SLC6ezu171vr4Ukq+/O59tEc8MeDBxkPrKSzIZ+jAkdXue9XIa5k9aya6fDdsHhb6DRxcQVmtC+FxEeTm5uHp8KVIk0d4XHi9+mts5NkKusOV1q82lM83LaWksMhOTo4Rf3+PGu2/Yc1eXr5PV/r51mvVTF96gJYJEaUW/Fuj0liZd/5lRA/3fI4QildIMMYU+O34iRotKzqdDr796VPykvKQKidN2zbn+qvH1WjsDU33Ln3Zvnkz+kwDAhUZfkmM7zelUjuNWsO9Ux5j7sLfKDIWMbzTVbRt1bFOx3Q4HQhnxXte1GKClJmdzur1yzAYDAzud1WdfKZWr1/G1kVbCDCFkkMhn596j6l3P1Wt/+gVQ67lixPvUZxSiFRJvJt60KV9/Sxy/fsN4Y+TMwjJj8aBHXNYIW3iO9Srz8bEZrOhcqpL3z+qetqmqlW2pJQ3V7NdAvfVaxT1IC+vmC8/+AO9uhiTzcDkqdcRGORF34GtefWZjfh6W8jOsfPB14UM7mfjg1c+p9+IofTq26ravu0WT+x2GxqNcrVPZzrRdJYU6S+MWX3Wbz8SlBqNSqiQBZI5f/3GE49dOGVLSln6suzfayieHl7s3rONIB8/Ro2Ycs4HNja6ObHjmtf7+D279mPnlv+iy4xGIM4pIKti7qLfObr2KN7mANZuXcPJpONcN6p2NanzC3OxpNrwQlEW/SzBHNq3v0bKVnxca+5/8HHSM08T4BeMj5dvrY5dFTffMJHlwQtISjpBi+h4Bve7st59Nibde/Rm+anFBBZFYMUMEXY4cbFHdenx07dLyTp9HKsVeg7sRb9BbRBC4B/enN/nHaRvNzUPv5hNu9buzPnhG4zOKO579NpqlfewiCD2HDxFxzaKwrX7gIPwqLIJkqJwgVJL+dyc0ucBYCz2phhDjZcVF6/4G9t+SbBT8TI5uSmJ/S130Tq+/Tn3aUjKyy8fL18m3/UA8xfNxum0ctugSef0nzLo3RgzenyV22qDTqvDL8qP4sJC3J1e5OuyadKyqnrYlUnNSGHaN18SmBOJjRw+2f8WD9z7FDpt7Rz19+7aSYApFAADbhjT8sjMSSMk8PwTNZ1Wx/13PUFKWhJqlZrwkKh6TxabNWnJmPG38M/aZbjVcyJ+IWjTsiMrw5fgftoTDVrSfU5Cft37u6AO8o3Bp+/M4qWpRvx81RQZjTz1zkxeeHMSBoOWZ1+byJzf17N+5WZmfhmMWq3cLA+8uJyefVpWe/OMvWMUD7z0GwktLGzZo0XXsScRgb44bQbcbUBS8Xn3ry9OsxOVUBQaIQTCInA4HKjVjetQeDo9hV9//Q5nsUTtqWLcLZMICQyjc/sedG5fN5N6XfDx8mPSlPtZsHg2ToeTWwfdWUlAGosL2bl3KwY3Ax0TupU6Wx7ec4BAi+Jz4GsNInH/EeRIWSuBodVocarK1u6klEhVzf03PNw8iYuOr3H76hBCMKT/VQ3WX2PTsSSgYdPWtfh7eDF+xEQmP3v9xR7WJcWCOZtpGXqAq8YpCtHrnywnKiaE2KZBTJgynLWronjkjTU8NdWPdq2VNvOXJ7N6xT76D25zvq654eY+vP1yMqs2ZlFY6CS9IJhnXq48WStTus6F4uN12OLDYUIQegtF6EsVrnNxIPE4/g7fUsuAm8WTU6eTG13Zcjod/DD9c7JTspFqSbfevRjQexgBvkGMH1uzyVpDcedt97Fg6WwyMtLp2KwjfXsOrrBdSsneg9vJy8+jbeuOpT6wi5f+TUhOE1RChRYdthQLO/dupVvH3rUbgKqi0ulUO9BqddXsVLKrSk10eGztjlcNcTHxxMU0nExsTNwM7txz16PMW/Q7VouFm/rext4Pt9a5v8te2fI0KIoWKEt9vp6m0pvLzU3L2Nv6k3biAOX1k5BAJxaLvdrlxKbNQ3jylSk88+RndGstyM/dwLpZWQT3mQw1CJeuCYrlrOpxuPt5YE2zoBN6HNKOxlvd6IoWwIwZ3+OfEoFKqHDmOPl1xvc8dP8z1e/YCAT6BTN+7F1VbsvNz+arrz7EI90Ph8rOhmZrGjS6xcPdiyZtY0nekoze4o7RN4+RQ65rkL7/X2gV35ZW8fWPovu3cmDPMSY8VvbyGz0U1u04RmxTxQLVZ0BrNq/fR5uWWaVt2rVU8ceazGr7VqtVPPXSLUz/fgXWnD10bpHNy09+xdQnbyU4xLvGYzyz5BjhdggoW1YsQk+hRVnaqsrKHdixHekntxBsUywrRq9cWsVfXePj1pW5i//AstdJsDMagC3LNtIiPoGwoIhGP/bZqFRqRg6/ocptUkq+n/4ZBXuL0Nr1rA/4h3ET7iQyLIazcyJIqNMrZ9jwkfyR9SueuX5YdCbCW4fj71N9VL4LBS8Pb26+fmKD9HXZK1v5RRocDidqtUBKSV6BupL1woYPKaeziAzXUljk5FSGoUZ+WwAzf/qHF+9SEd9UC2j5fdFRvjuwEw/vuq3jnyEnP5P1u94nJqqY06kaWsZMJCai4gzz9nF38fOMr8nLy0XroeWOm5Ri8iZzMXMWzKTYWEy3rr1p07JD6T5SSlLSTmJ32IgKi62TU7ajuMyiphIqHMX2up9oI/L3gt8ISo9S0kxIyD2ayZ5DO2jfqgst2ydwePVhvM3+FBpyad6mRZ3M4GNG38bhdvtJz0ilZXwbgvwvz2gsF5cmAcEBHDyaRctmynO6ZbckpnVohTbd+yTw4+9LmXCjsoQ0/S8nfa5qWaP+s7ONFGXs5dUnFKXopqudvPTJXB5/oXa+U+WXHE/p85BSsmf+WjRup7E74LizLSEDxlbYJziyO8kFpzi+/QQ6BEOHDSEyPAYpJavXLyPx2CGCg0O5cui1FSZIeQU5ZOakExoUgZdHzZXCM2Smp+HuLEvpoC/0IPn0iYuibJ2PU+lJ5B7MJ9ARBgLcs71YsHA2UyY+xPChVzPt5BcEZEdgx4o9upgOCV1rfYxmTVoy+b6p7Du0iwD/IFo3b9cIZ+KiJlz2ytbYO0Zx/wuzaRrt4FiyiutvG1Wpzf2P3cDnH/6F05aPzann/ievrXH/OZm5NI8rU8w6thQ4tqRB7WVABTbt+YxvPzDi5qZCSjsT7v+W6PD3KigEbgZ3Jk94sMJ+NruNz756F++kYLS4sShxLrbrrXRs2w2n08m3P35MwdEihFOFiHBy7+RH0etq51ip8VTjzHagEmoc0oHW89JMaKhEt5RZBVRONRaz4kB/1bDriIzYypGjB+gU156ObbvX+Tjxca2Jj2td7/G6cHE2t04cxNv/SSfEJxujCXxCWnFF54pRT737tWZuVgFPvbMPux16DexLfMua5TvKziwivtxKkIe7Co2q7pGBZ6xc3luX8NLVmQzuVaIAzt3BjPRYAjpUXCKMmNgHOWQwnsftqJxKSpg5C2aStO4UPjZ/klWn+S79UyaNfwBQUjSsWbwKbaEBm28xV113HQktarfsGB4RxfGDJ/F0KI7/Fm8jTSLj6nzOjYXVZkU4ygWQCBWyJKgrLCiCSXdNZe2G5egNbgzqOwVdDZf/zsbfN5C+3QdX39BFo3JZK1sOh5Ol8zfj66PiaJKKq8cMpW37yuGZbm5aHnxqTJ2O0a13At//tpiJN7ojpeSzWQKPuPZQOetBrfD1MeHmVuaPFdfEjtliqtZh8ETKUVSndeiEIuSCjJFs2byejm27sWPPJooPWgh0KM6P5uMm5i3+g+tH1W4We9u4KUz/9VscRjsaTy23javs55CSlsTxk0doEhVHVAOv69eUfn0H88fxGYQUnIluKagQOdQ+oQvtE7pclLFdykgpOXhsLyZTMa2atb2knVT/7axffQCVNJKdr8M7MIrx58ijNeq6HnBd7f0lY2ID+PVbNdddIdHpBFt32fANbFKvMTf1TKAoaSP9ryt7+Q/urmL+b3uJD6lolSu/5HjGx+vE4WP42RRl0d3pRUZyMna7DbVaw5oVKwjJV8YnsyVLFs6ttbI1YvA1/Jr7HeknTyHVkn79BxIcUFE5NZqK2L1vGwaDG+1bd74oiTWjS9JMWJPMaNGT5XmaAV3KlKJA/2BGX3Xe+LT/W9KzUklKOUZURBNCLzGL5bm4rJWtn75ZyrUDkuiQoENKyVNvLCAu/s4ah0aXx2ZzYDbZ8PKuaAXqMyCBb6Yf4t7XjeRZrBQnXIu3f7hSlAgoKi5k/c4vcXMrxGIJpl/nyTWagRQU+JKdc4oAfzU2m+RwooFmYdVnR9dpdTjVTnAon53SCSpldpSXn4PO7la6tq/HQFFhQc0vQgmB/sHcdOPt/PHndJxWJ4uXz2XMNbeV+out3rCczUvW41boxSbP9XQa3JVBfc9Xq7xhOJlyjHUbV+Lp6c3wQaNo1qQl14+/mTXrlmPQarn7ykdcikM1SCn5etqHGA+aUdk1LAtdwJQpD1ZKTuui8Uk6mc2BLct5/zk9IFi1/hizZ67jurF9at2XlJL8fBPe3oYK/lMGg5Y77ruJx96ai4dB4hUQzcS7h1XY79dpK0hPOYnFKrh+3Aiat6jeatavRzf+XLyMG69SZNZfS6wM7a6npe+hCu3ORDKWV7iMVht+5ceucqBSqXA6nZUTijpqv/SvUqm46foJ/Db7R7JSM9m2bRNxTeIJClBcAPILc/nyyw9wS/PBobKzrtmqC5LJ3Gwxs3jFHIxGI316DiQ6IpZ7pjzK3wtnUWw0Mrxz3dNM/D+xfss/rFu4Cn2BJ6u8VtB9WE/69RxysYdVLZe1spWTmU6HBEWxEUIwsKeDI4fS6d6zdibj2TPXcmzfdgL84ESqB0+8eCvuHnolz9JHczHmHcdLDdmecfi0bo1Mg0RtPp4qO4dXv8+PHxfj56vmeFI2L731CcN7PVLtMft2msrDz36En28uOXl6uiXcUyOfoujwOHxaeJK7PwOtXU9hYA7jr1QsT+3bdmXL2k245XgghCDTK4WRXWu+ZHoGm93Gj9O+JChNSTuRk5LPn6rppeHQW9avJ6hIifTzNPqwbcOmRle2Dh87wOzpMwnKj6RApPPZ0XeZeveTNGvSgmZNWjTqsf9NHDy2F+NBM/6OEBDgSPNhzrxZ3H7L3Rd7aP937Nt9kpGDyqJbB/TSsfDdpFr3c+JYBt998hvNmzg4niy46oYRdO6upF7ZsuEwC2cvIdjfQVq2G7fe1beCMvbnjLW0DtvHQ2N12O2SR1/9jfufnoyPz/knfgOGtOWXHzJ46u0jOBwQ37YHV/WpKg9TxWz1ReiJGtSHlLmr8Sn2x+xWROtO7UoVHY8gd8y5JiVNgSjEP7xuiTR/++sn8jYX4S2DcUoH30/7nEcffB61Ws3fC34jIC0STTlfz10HttExoW4lxWqC4v7xDh4n/dGi59cDPzBm/DglL+G1ExrtuP9GNqxeTXBhtGJUKPJn05p1LmWrsdEZvEhNLyAsRDmNHftUXHFz7WboyUk5FKZt461nlGW5tAwTn32+gPsfu5blS3bRtflxrhikWMoWrjrBHweXYG81HKG3UGBX0dZRhJ+v4tMUG63Bx7tmGZbd3TwY0efpWo0VFKXyztumsvfgdvIL82nbqiM+Xso8MdAvmLHjb2fR4r/BCUN7jqBV89pHgmXlZqApMJQ6yXs4vck4Xe68HGeN6QJkMl/1zxJC8qOVKFM8MCUbOXryIC2buiLdaoPJVIzKrimXqE+NzWa+uIP6P6VJXCib10PHklv48DEbfgG1tzBO/+ZvPv6PCq1WjZSSqS8uplO3ZjgcThbNXsQnL+sADcZiO89/MJunXi7LIXUy8QT3XKtMWDUawchBDvbvPUXP3s2qPe4tEwYD5/cFKl/+DMDoH48zpBu+4ZEkbt9Bq4DuhITElmam79T3Jjar/ia/MB3PgABad7mqTlnrTx4/TZhU3ClUQo3MUbN6z0G8vQLJyCkkoJxtTe3UYDGban2M2nD42D5Esg6DUCzvIfkxrFi5iLgJl0cahEuKsyppXIj3T0NwyShbdruD48ey8PIyoDdo+enrhdisFrr3aU+fAVXngZl4z5W89sovBPsWkJ0H7bt3JzzCt1bHTU7KoUPrsl8vNFiD1axUOj92OIWpN5Vdor5d9Xxy/xJ69m2Hh3shh2UIKTvKZolOpyS/oPEvqRCCtueoJ9Uksil331m/Arnenj7Y9RYokT8OaUdbLnozLC6C3Jx8PB0+GNUFBMcE1+t4NaGS1U/IS7qAaX2x223MX/onOTnZtG/bmU7t6u7gX55WzdqyLHQBjjQfVKjJ9Erhiu6NH47//0Baaj6FhWaaxAbw16z1JB1PwS/An9smDUWrrXyvtkoIZ/f29jzx2m70OkmhNYDHXxha6+N6uNnQapXnQwhBSICS2qao0EzzJuXauavISU/ixLEMmsQpz6xaYyA3r6A0fc6hY4IuQ8+fUb62lFe4zuTqyumpwTeiD542HyoWcXKnQ9PbSz/VVQVy+mhxpDmUOnyA2d2Ks3kwRp2BmKGD2Jf2BzHGOBw4KA7Jo23rxq3PJ1QqZYJTYsiUyErpHf5t7NizmZ27t+Ln58/IYdefM8VRbQmODqEguwBPhzfFqkICoi6PVBYXVdlKO53Hz98twGm3cPhQJmNG6jmV5mTLDjPfvueNr4+aL35axkqbg4FDK4esunvoiYgJoTCjAD9vOHwgCec13aotRVCeFq1C+f4DNYP7KLm5Nu+0ERyu+Cy07xzPHwuOMHGsYlL/e3ERNwzXcmzRnwy8TsmKvKfFQG5/egU9WztZvV5Dh2aXRLWieuHh5kmvwX1Zv2I1apsO6WNn0g1TS7fffP0dLA2YR3LySWIjYhg+sPFf1sOHjuKX09/jnxOKRWVGGytoFvPvXD5UygT9F/URdwzSnVWHVlBYWED/3rV/EZ+Nm8GdKVMeZM68WdhsZq7ofnWF1CEuao7D4eTHr5eQm5XOsWO5tGshiYlU8fqzxTx5nwf3Xa/jUGI2776SxdMv31plHy1ax3Bw1z58fRxk5hWRlppHVHTtls4sDi8ysvIIDtRgMjk5nanHYNCi06k5kKjGbpdoNIL0TDtRYfDTV3N4/s3JANx+91U8+fKP9OxgITUD9H4JxDWtXIarvpwrV1d1RbDrSot7bmTnf7/DPVeH2WAh4po+2OIM2ADPyGb4aoaTvnobOougZ49bG724fYvYBJbHLqDwWB5ap55c/1RuGz65UY95MVm9YRlbF27BvziENJHF58nvc/+UJ+qdhR5g3JhJLPT7i9TTKUSEhjFy2OWR+1CUL5Z7IWnbPlL26qLn/ecEbm4q5i0pIq/ASWy0lrwCB1cNKbv5n3rXk0eeqyys1q85iD19MTeMVJYAN+2wsSOpE9fdVLssuzu3HWPB7OV4GCQG7zAm339VqcL20lM/4c4JDHpB86Y6br/Rmyff9WX0Q205ZcpjZVZLDhzxxbLfTCuPJvik2hu9ZmJdOXJyK0np8xECQv2H0Lrp+a+TxWrGaCrC18u/VgpsY5GRlcbmbevw8vamd7eB9S/sfImSk5fF9x98QaCxLMqmKDaL++59/CKOqmG47bGrtkkpL/sQ0fYdo+Toq2O5pp8SoJOZZefVD3L48NVgnn0ji9eeLpttv/yBlYmP3ItOV/F+lVLy8hOf8snLSm5Aq1Xy+Fs6nn3tzlqNpajQzBcf/ImGQoqteibeM5rQcF8AjhxK5YNXv6J1cw12u+TpB/154zPJg8+XVViz2x2kJOfi5W0gIKBxlQ6AxKJ9pbLTWFzzZTRLfhF586fjrTGRrwkh+OoxqDTnlgFOhxNTTh56b080+opBS6dzCgi1BOOeAukp2TWq9Vhf7A476zatoMhYRLdOvUsd9v+NfPrZO3geL3sGstxPc/uDkwn0b/xVkMakPvLror2tLGYbV/RX4eamRP+NHObJi29n07aVnqPHy/IqWCxOnLJqbfj40dOM6V+mBHRtr2H2ytO1HkuHznF06Fy1U/0tE4ayaclMHp2iKHRLV1uJbx17li9CS464hWK16DBqdTUu1FoTcvIz2bj7Q4KDjGRkGejc6l5CAqJq3c/pjGM41dP45gMVQgje/ngGJ0750iTi3KU69DpDrXN0NSbBgaGMHP7vL/eiVmsqlwkSF2dS5OLcWI0ZpQE6QYEaoiO0FBQ6sJ+VA7jQCBpN5cmK2WwnPNiJEIoY1ukEnm61zynj6WXgseerrvvZvEUYQaFhPP2AHYNBRUGhgyJzxYhdjUZNk9jGWYqRUvLZ+3OwGVOw2qBZQoeSaMuyZcWa9rP1h2+Z8bwDH281B44c4qU/v6X9naPPv2M4QG6lrz3c82td67G+aNQa+veqOrXHvw0pZIUyQVLlRHMexfj/gYt29mqNihMpZUqUyeTE6ZS0jtfy7Jv5eHhqiYkQTPtDxYT7hlfZR/vOzZm9eA9TS1buZi+00aGLMlOSUnIsMQub1U7zFiGo1XWzzMS3DOXEsT489voWdFrwCYpnwl1K1Eol589GeHg37v6Ybz4owGBQYbcXM2Hqp1zZ581a95OYtJ6Xny27+adOEtz3+Noqla3UjBSMpiKiw2NrXfj0UsbhcLB45d9kZqbTod2ll4Mr5fRJNmxdzcGDeym2GUGo8HR6U+ibw8hBl4ep/P8Jo1mFlI7SZyojy467mwpvby3PvVXIdVdo2bgDmrToWKVl2M1NS3KaFovFiV6vIivbgdlepnxkZxdxKiWPJk0C8K4mOvB83PXQjTz5zp94ulkxWjy4+5Gqy8c0Bn/MWMuw7kn07qIopV/+vI29u2No067ismJ1FOZb0DQ14uOtBCu1aq4lSpxioG/l/fNzzSQl5hMW6UVgaNWpYE7p885Z6/FSXZkA2HdwJ1t3bMTfP5ArBl/TYH5QDYHZYmL9ln/Ysm0d5kIz6eo0wh2xmHXFhLUK/b9PL3PRlC2dToNJFc9H3x2mSaSTGXNs+AcG8eQ7Bp56ZTR5uSYO5xZx/9PNzpk3q027KJJP9OLxN7ajVkNYTFtuvr49UkreeWUGraIycHeDX77z4JlXb6+yRE9eXjE52UYio/wqmfnPMOzKzgy7smoHyqqcPxvy4Q0MNGEwKIJaoxGEhZhwOp21XtbzdA/lwBFJUMkE9sBRB57uoZXardz8BR3a7aF5awcz/vSib8dn8fHyrfP4LxXO5JdyHlTj7vRi+YGl5A3PbRA/qIZg++5NLP9rEV4FARjwxIniRJsbnsadt00lJKhmGcMbg+y8THLzs4kIiXblMSvHqDFDefTVOQzs4WDHXjiR5sXzHxiIimvDiD4J7N19krZ9Q2nR+ty/3ZSHbuKJt//Cw2DF4vDhnocVy+3yxTs4sGU1HRMkn89SMfy6kVVa361WOynJufgHeODrW/VvExbhy7OvNUx9t9pyMvE0915btoQ3sKdgxd4k2rSLqkEB7DLsBgeLM9eWfnY4JDaLR6U+tmw4zOpFyxnQ3cHWP1TEJPRmxMjKk6qmnhBRtA+oOvHqpahwbdi6mvVz1xBgDCNFlcoXJ9/n3kmPXxIuHiZzMZ98/jbup3zxJIA8EgknlmSPw1x33c10btfzoo3NbDGRknYSHy+/i1pu7aLa9e64+wqSTnYjJ9vI6x+H4u5e+3IEV1zdlSuurlgzasXSPQzvkcHQfopVpkdnE798v4KJ91S0kM35fT0ph7YQFw3TdmqY8tAtRET5UVvOV6i1vg9vdrY7JlMubm4q7HZJarobHZvX/uFq33IQX03bwc69J9FoYO2GCK7oM7JCm6TTx+nWZTeTb9MBWgb2tvDAk98ztFf9ohsvBfILcylKLiZIRoCAAFMou3dsbxRly+Fw1Lpg+NrVK0tzx7jhwXF5gABCMKpzLqqitXTVfHau3oamWIfVr5ibb72D6IiLUzHgUqNt+xiim0zm2NFMRnfx4e6wiktiUdHVz+Qjo/wrKUJSSjatWssHLyrya/QIyUMvL6VD54oF2ZOTsvnmwxn06GAn8STEtO7GqOsu3kutKpo0i2DtlnT6dFVk+/L1kpY9Klf5qA6NRk3H3r157p11tGom2bhTzY0TrqnUbuncFfz3eS1C6LhiEDz0nw0Mv6pzlY7ZZ+R2VYlXL0WFa8fWzQQWhyt1FKUnWSkFZOWmV8qOX18cDiXJbG2c2VesXojXqUDchGIYiZEtyCaNIFsEQYEhDeIYXxfSM1OZ9sPnaLM9sLtZaNGtFVdfUbdqMvXloi+iRscEEB1Tt8R15yIrI48e3coUkuhwDXm5FTOpF+SbOLl/MzeOFOi0ghtHwnMfzOXJ/4w/u7sacXahVqjbw5uVk0FS6h78fCKJjWxBj7ZTmfzwRwQFFpGZZaBL63vrND6VSsUVfR4jKzcDq3RyVb/QSg9AUXE+3ZqU+Qp5eapQqRspXOgCo1ZrkOLsBC0Ne4zk0yeYMeMHpEmg8oBbx00mNCgcq83K4hV/U1CQR89u/YiLqewULM7yS1Shxo4NrcfFWyYwW8xsX7eZ0MImAMhMyZy/ZzH1nicv2pguNXx83OjYObpB+7TZHPj7lPnoCSHwcHdWajf9m3k8NslBXoFkzFU63vhsC4VDOlaqgnEhMZttrP1Hcavo078l193Um8/+m82ClYrPVvO2XUhoG1mnvodd2ZnuvVuTnlZAn9H+uLlVfjY83CumifH1kjgcTjSaqic/Z7uCnJHZRpt7aX6vS0XpklT2g1I3YJCQ3WHnu58+Jf90HlLlpEvvHgzqewWgWN73HthJZEQMA3sPr/TusNltqCm7xmo0OHFi8zDj79vw0a015c85vxKUHqPkjCyCQ1v3k9c756IsaV701A+rlu/Cw9OdESM7VZmLpi706pvA1z9s59XHNahUgk+nWek3qGIZhNOn8jh0JI9DiR4YiyXT/7CiVdffP0mXHcrhtYeJCMyE6L61eniPJu3AaPue28bZ2LpTxdrt3enTaTxX9n253uMCRQidz4waGxnPjzPd6dVVcab9caadIN+a+zWt3biCndu2IpH07jugwXJDNQReHt6Et4wgc2cmblYP8r2zGD7gqgY9xqyZ0wg6rSRedeY6mTHzB6be8ySff/0uuuNeGKQ7v+//latuuoaEs9IttG7flt0Zu/AzhVBEPoXaXLzCPbjjxrop1w2B2VKMxlZmbRZCgP08O/yf4XA4WTx/B/l5hfQd2I7IqIYR4Dqdhow8TzKyigkO1HAo0YZUV35uTyVlMHeJndgYLdNmFRAV6UFurrFeypbZbOOf5ftwOp30H5SAu0fNZWJxsZXXn/ue8aNNgOTVZ9bzzKt3cN8jlS1QdcXHx+382e21gew7lEpCCy0pqXZyirzPqWid4YzClWDazj/vpWPK05EVFUbXAWPITM27ZKxcgwaNYG7mH3jnB2LRFhMYH0hAAyoyfy/8Dcd+FcFSmTxsW76FVi3bsXvPdvav3IevKYj9O/aTlHScCbfcU2Hffr2G8NXuDwnOUvY9otqNt48P/UcMwcvDu8HGWFukzVmanBtAY9VhLC76/1K2rBY733w4jYfvVJGZ4+TVZ3bz/BsTqn0wakJUTACDrrmWx95cyfHEdCIj9CQmr0CjU9Ohk7IEsmrZNt57MYDoSGV2tHBFEX8ur58VYcuGI2xavoCxo2DXQQfJOzNofvX15fLJuJOekn3Oh/dk6p9886FACD3tE+Bw4lbMlhsx6C/MTNXN4E6nlk9y96PT0Ons+Hl2pX3LmpVB2HtwJ5sWblDM3MDy7MUEBgRfUktOt4yZyK6EraSlnaZN65FEhtV+OeNcSClxmspm1SqhwlHsICn1GI4UFe54goDgwijWrF1ZSdka3O9K/HwD2L13O3HBMUzqezcGfd2dos/GaCpiz4HtuOndaNuqU40Swnp7+qIKkNiKrGiFjkJ1HuExdbNK/OuQ8PrzP3HTiFyiWqn55KtdjBp7Ay0TGqYo7qPPjeOjT+eSkpSK3VpMZFQu33+xiAl3KVaF9LQCWjVz8tBditvD8AHujJmSzbipvnU+pslk47Vnv2PiDSY0Knj9uU08+Z87aqy8/TlzHU9MttAsVmkfGmRh9sy1jLtjUJ3HVFvue/Rapn29mJ/mZqF38+LR50dWvxMQrW/Jg/evIexAG1RCTdHRArbwO4EjRlwyy4qt4tvie5cfu/ZuIygwmE5ta1+Y/HxkZ2biLr1KP+uL3DmdlszBPXvxN4eCAC+HH+nHkrDarBVqAPv7BjLprqksXvY3AI8MeI6QwLAGWz6UUrL/yG7y83NJaNmhxn7Esc2acST5KD62AOzShsPfSkjgxXHLuGjKVm5OAe8+G45OJ4iNhrz8AjasPULfAS0bpP92HWLYvimU8dcUlBSqdvDE6/NoEncnvr7uFBcaiYooO/1mTXR06Ny0XsdcvnA17z2tQwhB6xZw9ONCojS7IbJmkYp6vaxoAveR2OzWC6ZsAQT6hTCs1xM1ans8ZQ9HkxYh0XAyUYW/MbR0ac6nIJDde7ddUGXLaCoiLfMUAb5BVc5chBB0SOgKNffLrTFCCLTeGhw5StZqu7Sj99Yps6qzli/PJX86teveKNbAvIIcvvzyv7in++FQ2VnbfBX33PlotY61KpWKKZMe4rc/f8RkzKVJTAxXDq19rc1/IyaTlX6dcujTTVGI33xK8tR7K2mZUHXy0tri4aln9NiBLJr5M8894ANIlq89zJw/fBh9Q09yc4y0jC+zOhkMKpq3CK3XZHXunxt5aIKF1vElylKwjZ+n/1PJ1/VcmE0m/HzKju/no8ZkurCloDQaNXfec2WN2hbkm5j21UKsFjOhUZGo0wNQlWSc93R6k5t2GhF94SIVnU4HyWknUavURIREV6mohAVHEjaocSY8kVHRHDt0HE+HLwBmnyJiIuNYw4qKDYVEVcXYAv2CGTdmUoOPS0rJ99M/I39fIVqbntWBKxg/YTLhodWnQBox5BpU6nkcTzyKzqBl8ugHL1oE50VTtux2B+XTbhj0kGuv7JdQH3KzMioWqu5hJ/FIJp27xtBnUEc+nbaQ+yfocTol386U3DSpfm9hnbaiv4C/t5YAlWeFSMUwfHC3AUnFlfZX046/Fq5m9BUaEk/Y2bU3hFH9vSq1uxQ4efoAFr7iu09UWCySQVebsKoS8JSKk7BJW0RoaIda9+twOJizYCZZGRkEBAVyzVVja5S89PCx/cyeNRNdnhs2Twu9hvajT/eBtT5+fbjt1in88uu32Ix29F46brvlLrw9fXCL01NwOAedw408v3TGDBl3Qcc1Z/4sgtKjUZcU3s05msm+wztp2awtP/z8Gflp+aCRDBg8jC4dKzpYe7h5MmHcxVvKvFSx251o1GVFQpVqLA2bC23PzuOMKld6cHAfHUvfOwH0JLZpENO/0TFqiBMPdxXL11qJaVa/OqFmkwVf7zIF3MdbjcVirfH+w0d257VPjvDW00ofr31iZ9xdl44rQXlsNgfv/Gcarz/mIMBfzTe/bMMoPPFGUWQc0kFwYBbNI9Nq7Xu7Y89mtmzZgEqt4uqrbiC4BpYUq83K51+/i/OUwCkkXk3dmXT7Axc00nDE4GuYmf8DqSdOg1oyeOAIAv2C6dK9J5ty1+FV5E+xvpDYhLgLqrCcSk8i92AegXYlOMAjy5t5C/5kysQH+WfdUjavW4+QgqCoYG4bO6XCNRNCMHzQKLhwxtVzcvF8tqSdl9/L4ZkH/cnJc/DpNAdvf9a8QQ+h1nqQnllASJBymrsOqLiyoy8A3XrGYywy8+Q7O3A4BCPHjKpTJGJ5YprFM2vedm4cqedYkp39x724Ia4Lx4z7OVwDP/OeHW5kw3o/5szfhVYdyJV9xl20KI7qOHRiEd99rESsGAyCLz5Qc9uEdEx5RUghCYkPrlO474+/foF5txN36UPGoVym5X3OneOnVrvfgnmzCcmKUa5XPqxbuZJeXfs3irByOh3s2r8Nk6mY9m26lJb6CPANYuo9T1Vqf9cdD7Fh62ry8nO5psNoQoPCG3xM58Nus6OmzOSvdqgxmU38+fcvOPdpCEKZIa5YsIRmTVv83+fDqQk5WXksWelO57Z6wkM1vPB2Hv2vqNmSe02JiQ1ly1ZJ+5I5YPlC1Xq9hvufuJX/fDYPFTYiYloydnz/eh1v2JVdeOODfbzzjAq1WvDSf22MnVTzZzgqOoAbJ47l+Y9WAXDjxAFENXDwU0Nx9HAGg3taCPBXrIOTbnHj70UWMg4fQRgNaMOLefTtDth8KzrOn1G4zkXSyX0cXLmWcHMUTunku7TPue/+R/HyOH/y1kXL/0J33EtxNwDyDmazecc6enTu20BnfNY4Tx/nRFIicTHNS90phBCMvb5yubk+PQYSFhbBgYO7iYzoRoc2FzY/ocVqRmUvs5iqhAqnw8mp9CQ2L91AsFHxEzPmFrAw8C+uukTL91w0ZSskUM2Yqz1559Nc3N0E4VHRVUaXVIXZbGPD2iOo1Sp69ml+Tsf6O+8dycuvTCcyqIjsPGjduTth4WU3/cCh7aqsuVhXrr+5L0sXefLku4fw8ffh6ZeH1lpZat9yKHBp5H46HyrhRn6Bs7SAbVY2XDFiJNFhrVCr1dUKl3ORczqbQKm8/N2lJ5mpyTXb0S4qXGuVXY3dYUOnatikrE6ng8++eQ/7UZBOyV9/zSAqPJaoJk24+ooxVSp3KpWa3t0urJWtPH37DGb2iZmEFETjwI4pNJ+2LTuyfctm3PAtbafNN5CRneZStmqAQS9576UgvpmeT0Ghk8w8A1171nyyuGdXCmmns2nXMZaQ0KodiNu0i2T39rY89eY+vDwgs8CPx18oU+hCQr157LmqM8fXhdBwXybcdyv/+XwFSMmYO/oTU8vM8nHNQnjk2ZsabEyNhYenjsycss92uyS+tQ8ffX8jOTnFhIX7oFarSCyqOlLxXBxeu5swUyQIRSnwyPRl38Gd9Oh8fkU4Pz8Pg3QvdcMwONzIzc2q93lWxYo1C9m+fCuGIk+W6Obh4etJUHAw1187Dj+fqpXjpjHxNK0iivpCEBMehyPMgjXZgk7oyXQ/Rf+ug0hOOY6hyLP0mnk4vElNPXVRxlgTLpqyVWxyktBCT0ILPQePWPl7fc2iKooKzTw19RPuG6/GZoNXnl7Ls69NQK+vfCpanZrufTtSUFDMdRM74HeO5KgNydARHRk6omP1DS9zerYfx71PvMy9EwvJK4Bff4/kyr49auR4fT7k2bura7Y0ExgRREFaAR7SG4s0YwjU1yn7/f5Du1m2dAHCKYhr2bzSLGnPge3Yj4KvM5BD7CTe0hHtCR2nklP53fYzwwYpDrk+Xn6XjFUyPq4V1956E2vXrUCn03L3lY/gZnAnICiA7CMFuEnlubD5mAgJvLBWt8sVKcHNTfDAZD+cTsnkJ2sepvnOKzNpGpJE53Zafv5sFUOuvYb2HZtU2bZ126ZodTriW8XQvmPDppioiqiYAB5++uLkIbqQRMcEML84hul/nqBZE/h1roob7xiKu4e+QgRmVakhzls8O0CvpGwpsSTbNVY8PaufeHbv2pc5B38jqFBZxsz1zWB0+9pbaIymIn6Z+S2mfBMGbwPjbroTD/eKrijbNm4m2BjNKY4TYA3FPzMER4adb3I+5u4pj2CyGPH3CbxkstNrNFrunfIYf82fidlkZFinEbRL6EJq5ilWe/2Dd5GyIlWkzicuosnFHex5uGjKlsMBL72TjYe7YOUGyde/Dq5+J+Cx+77gwxf1REUoN0KAv5H5f23mupt6VWhnsdh57Znvuf06Ix7hgvdf2cFDz024IIVW64vFaubw8V2o1VpaxLavdYLM2uBwOLA7bLWugejh7sXQHq+wcOFuNBo9V/Zt2yBLdgMGDWXF/CXo8t2w+pjoP7Bm98XNN0zkL7cZZKSm4+HjyfhrH6z1sbPzMpn72x+E5CnLkUfTE/nHcyn9e5VZGs1WM2qnGhtW3PFCKxSh6unwYc/2HSTtOolA4N3Eiztvm1rva7Jp2xp2796BzqDjuqtvqXMYdXxcK+LjWlX47tqRNzOt8AuyUlOQasmQoVf8K6oFXAh8vVU8+FwmTWO0bNhq5eYpN9dov6WLdqGzHeXu8YoFoUt7ySOvL6d9x8rFp3/5YTk+Yg9Du6iYv3I7qaeqzoZ+KbJrRzLpaTl07BxHUHDj+Z1KKTEWWfDw1Nd6cnPPw6PZue0kiVkF3PVY7DnfDVWVZTsXrR+8gnUnvyTopA8OjQMRqSMhvn21Y4mPa8WwG65kw/rVIGDMkFvqlMz4h58+Q3/YBx/hjU1a+f6nz7n/rooBT8KhXCczxUQIJYBJLTSIDA3v//cVvOx+2L0s3HbbZMJC6ueMn5Wbwd/zf8Nhc9CjR1/atqqbIcLdzYNbbqiY/DcsKIJew/uwce1ahBSExIQyfNDV9RpvY3LxClHbVPj4erLnkIqX3725Rjm2jEUW1LKQAL8yU2dIoBrjLlOltksX7uTOMcV07aAoEW895eD9H5Zz/6MNl/OlMSg2GVm28WXunZSHyST4fnooV/Z7rkon8aLiQtbv/AqDwQjOaPp0uq1WlqXNu3/HqVqDj7ck8XgoI3o/XqvZjEFvoE18txq3rwldOvYkLq45qemnCAuOwN+3ZssYarWa66+un+P5kcQDuOf5lAptX2sgR48crKBstW3ZiX9Cl6FPc8dC2X0npcRWbCNIKMKpcH8+q9YvYVCfEbUag5SSk6cSMVvNZKSlsW3RFvxNodiljS/S3ufB+5+pEHJdHzQaLXfeVr0/nIvK5OSriIv14Xiyg/5X9qVnn5otsaxbvpn2zcueUSEE0lHZCd3pdJJ6bD8PPaPIr/im8NjrWy8LZevLj+YS45dIq+bw/UerGDn2elq3qfzSllIy48eVpKckYXNoGDfxKsIja+43e+RQKj9/9SdNIhycOKVi7MRraJVQfYRaeTp0rln6lzMK161RaazMO4+lKgS8vxvOjn8shKnDiFA34fcTJ4lzulXrWN8+of71Wk25ZjyFskqkFTrycitHg4bEhlKQl4+0O3FIJXoaoNCZT3h+LAbhhtPo5Pc/p9cpgXFOXhapmafw8fJl+o/fEpQRjRYVi5Lmoh6rpnWLhnPd6dNjEH16XALe7zXg4vlshQcx9MY7GBvoWeMi0UJARLgbb3yUw0uPB+B0wnNv5jL12U6V2lotVrw8ymY67m4q7DZbg42/ISk05nMi5RDeXoEkJq/iwzeMhAQpIeXeXun88ec/dEoYjNPpZO+RDZgsWcRFdmfD7o/48r1CfLzV7NybzqdfWxnYbUqNjnkqLYnYpqt4cIoGEBw9fop3PpxO/64TGus0a4y/TyD+PrXzFakLyadP8OfsX5FWiU+wL316DcTqZgKzIvDNFBPgV1H4u7t5cNddD/P3gt/wPOXO6YJjGCweZGvSCTWVLfO4OzzIyEit1XiklHz748cUHC5C2NWka5JoZVWEr0Zo0aQbSEk9QVz0xfGdcFFGeFQQQ2+ciKeXoca+pgAeHlr2H7JyOs1OeKiG2QuK8AmsnO7G6ZTo9RWX0HWXxqpOJRwOJ1s2HcNmtRPdJAg3eYzxYxQlsXM7yeNvLqN1mwkAHNp/mp3bjhDTNJzjR1JoF7WXgTfpMJudPPLqLzz5ypQaX89fv/ubT15WoVarcTolU1+ax4tv31P9jnWkfJWQ83FKn4dmWEuMxWGYUgVFunOn+6kPNruN6TO/IS8jF6EVXHvtWISO0izzUkpEFZ4U48ZMYmnQPMQxOydO7cfPEoxNZ8FmtWKwKe8dlVAhrbWPrt20dQ3/LFqBLt+NLLfThBRHlypzQYWRbNi0ukGVrcuJi6ZsCSEIDqndkoi7hx7PgFiiA47x7BtZJJ2WdOjeq8oowgFD2/PR69t45xknep3g+XctXD2uT0MNv9bE6zdxyr0lR/ShSK2eptE+bEtMJzcvGZ34mfFjTew/pGH1NjX+vmUz35AgFVZ7IVJKFq97l/E3nyAuBt78cAntEyQ+3oqVo0MbLXr9yfOOITsvg50H56ASatz0kdw22M6ZW6BZrBa7M7PRzv9Sw2a38ev07wlOV5YMTaeNbNKspVmPZhzacQC1U4M+RMs1V1ZWXn28fLntpsmAksMqtyAbs9nMvOmzoUhpk6o9SWChP1m5GQT6BddoTHsP7aDogIkAh7J8kGVJw0lZBmSnzu4qBH0JUZflsYEj+rBh6Vy+nZ5PRraD1BwfPv2+ciUDjUaNRYayY286HdtoWbbGindgw0ZrNwR2u4PXn/uREX3y8HODT97W0L1DWQoflUqg0ykv7aWLdpB+ZDXXDlexZddOtm+w8+BNir+gwaBiUA8zx45mktC2ar9Bu93BH7+uJS01m9792uHjaSstV6NSCfy8bRXK2TQW1RfQ3lch3Y/QN06urll/TsOy04kfYUgp+fWXH7j2+puY/cdMNMU67O4Wrh9d2dqvUqmU5bZBistKakYKnh7eTPvxCxzJdtRCQzFF5Jqz2bl3Cx3adK3i6FWzeuUKQvKVSacsliXWf+X97MCOTt+wAUuXExe9NmJtmfr4dSxduBNvcyoTrm1Fh85VJ8309/fg3sdv541vluGw2xl1Sx+atwi9wKNVqLTm7x9PcSqAO6dPzGb+1xK12o1eXSEtw8KDz8Inb+qw2+GNDzR0jO9HStpJBvU/wdD+inL18RtO7nsqH0ocMR0OSaHx3D9ndl4Gu468xn9fd2KzwaSHd/L73xq6dlC2r1xrx8v9/8dikpufhaawzM/DDQ/yMjO59abJmIeYsNmteLp7Vyu4fb39S6P3ikcbWbdmJadOp+BrDUS9x4NvTn/MnVPuJyigegFbWFiAxq4rja6JJI7D+p2EWqOx66yEtgklLFhZjik2Gflr3gxMxcV06NCVzu0bNpu0i8ahS49mePvexJqVu2jbwo9nru12znvs4WduYOZP/zBjUQbxrZtwx90Nu2TfECxbtJuxV+aXJndt08LO7Q+Zuf4KLSFBGv6YbyWmWRsAdm7YwjtPKy/b2GiYOTsfk8kNNzdlMnE8RdC8V9VBTFJK3nrpFyZel0vr0Vq+mTGfEymQXyDw8VZTZHSSW+h2SQSlnJH3EW6HAPBwz2+UIte5mTl4oSwZCiHQFhrw8fblsUdeoNCYj5eHT7X+vnqdgSaRzQCYNHEqM2b9wMmUFGxGO3GZCaycuZzUtFNcMWR0jcZ0xh8MwI8g9uu2oJIqVHYN1vAi7hn5KKD8nivXLub4sSP4BQRy9YgbLhmH/MbislO2hBAMu7IjUL2jXXCINw88cWnk3CivcJ2Z8RzTF2DYDWp12Q0aEaYiN3MsE6duQqKiY4ux+Hr7k1eQg6dHmVnXYFCRle3L069K2ifYWLrKQNumE855/J0H/+KDNyRensrD9+5/rDz3agvufDAdd4PEaomnX5dL17mwofH29MPuZuWM25Vd2tB7Ki8Cg96tTqVyOrfvQWFRPuoTbngKxa8jODuGJcv/ZtyNk6vdv02rjqwOXI5HljcqocLomcf1196CVqvF29uH2EjFsmG32/j8q/fwTg5GJzxZdWwFNpuNHl0aJyePi4YlvmU48S2rj/pUqVTcfPvFSxlSE4oKjYQ2LXMDCfBT06Z9HJ/9ZsBcbCShQzzXXV+yFK6puCzVtKknD73sZHAvGydSQOfXpkJqnvKkns4nPiqH9q2VZ/Se2/QcOKbiP58YMGiLKba6c99j1zfSWdae8kuOp/R5QOVcXfVVuPQeeuzShkYoSordzYKPlx9qtbpO6Vt8vPyYfMcDvPvmq4TIaBDgbw7h4O59NVa2fMN8MeUYcZMemFRFtGiVQN8+g7BYzDSPbV1aDWXOglkkr0vG2xZAhsjm6/SPuOfOR2s95suJy07Z2rD2AOtX7UJnMDB+8vDzFyWtA1arnUMH03B319O0WcNWK69qxrMrtBnT/97CuKt1ZGU7WLzch6v69UKtrvjijAqL5Y+/A+jROY+IMDXvfOqgffxthAe15MTRHHq3DztvWR8h1NhsZcLOZoPggDi6t6t91N6/AYPewJCrrmDpwgWobGq0vmruHHN/vfsVKhWyQibxmi9reHv6cPuddzN//h/YHE4GdxtOhzZd+eW3b0k9fhqpknTq3o24uGao0nToShwyAovD2Llj60VXtqw2C6kZKXh7+p4zX8//O1lZRUz/djF2m42Bw7vSqWv9SoRVRdLJbHJzi2nRMhSDoXGtBf0GtePj/27nnWckWi289rGFK67pSZt2ldNUhEbH89eiPVwzXMuu/Xac2jCefeMGjidm0bKPO6Fh53Y8V6tV2M7KrqHXa3j8pfENfUoNSlWpI87k6tpWkhy1rkrX2DF38G3Rx9hyHTh1doYMv7KB6qme5atVC2PhhFvv5a95M8jOzCIkJJhrrryJPQd2sGzxfBbb5uEV7MUdt93LySPH8LUpK01u0oPM1BzMFlOD1oOtLVJK0rNOY3fYCQ+OrHcao7MRUjZsiYmaEhZqkLeMa8vUx2+osUD4Z/ke0o8s5/4JBrJzHDz9torBI3uzff12pBT0G9aTbj3rvhRWkG/i7f9MY3hvM9m5cDI7kgeeuL5RTNOJRfs4ZcpjZVZLds05gduxo9gLDCRE3Eiv1lUvjVqsZjbsnInFlkd8zEBiI2vuaJhfmMf6XS/z8tMWrFbJi295MaznSxf15r4UkFJitVlqnfriXJgtZj75/C08UvxQoyEnKJXJdz1AgG/dFPelq+ZyeFEing7lRZTpfor+Nwxk9ayVBJqVosdO6cTaqoCrR43B7rATEaJEZP21YBZpKafRu+kYc/14vGuQ76euZGan8/33n6HNccNusNKmZzuuGDq6UrvbHrtqm5Ty0g+pq4awUIO8fnQTbrjtqhoXny4qNPPWC9/w7rMqPD0Eb35qIbb9YHZs2otaWPAJCOX2KcPqlS7km8/m48lRosMli1bruP/JW2vtG1tbThzL4I9fVgBOBo3oQccucedsu3TRDvZsO0JYVDA33dqvVuf63qszGdo9jYR4NdN+d9Ciy1B692/dAGfQ+JSX90dSQgm1BOOeAukp2TWKVDwfFqsZnbb2qS/Oxe9zfuLU5lTcLd4UuufQfkgHBverWb3JsykqLuSzD94jJFeJ+jRTjFc3Axmp6fgll6W2SPM7yZT7ppJXmENwQBgebp7sPbiT1f8sQyDo3WcA7RI6N8j5VYWUku9//pTcI/kIhwp1hOSeyY9Vivyuj/y6aMpWl/YGOeubML7/O5L7Hq1Zcdv3XvmJtx43ln6et7SYhSvtfPKa4qj6yH+M2EQogcHejL19MP61TGL6ybuzeeDm0wQGKBrtb/NMuEdeQ9ceceTkGDm47zRhEX7ExlWOlNu14zh/z1iEt6eDIrMnU5+4Ce9qrG5nP4AySY/ncXu9H75zUWgsYM+RJaiElg4th/3fK1qNhdli4p91S7DZbPTtNRgfr7qXgfrup09R7y5zijfKAlpf25KTScfJ3pOL1qqjKCAPrwBPLMl2hFOgjoDgkFByNhfg6fTBLm3kRaXx8NTnGq3W2hffvo/+gHdpId8M72SmPDS10rn/W5StLu0NcuPCKKa+6OCZ1++pUeqa5Uv20sR9KT27KM+dlJJRt+fwy6e+eHup2bDVyofT1MTGhdBvUAc6d29WqzEdS8xk+7Lp3Hu7MnEwFjt5+TN/Hn1uLA6Hk53bkpBS0qFzdKWC1cVGCx++NQt3bT6FRhXDrxlC13pMXBsDKSVLF+4k9VQWPXq3pkXrmim5lwrl5b2xOB5nqoHU9PxGlfl1ZfvuTZxIOkarlm1oVY+amydSjjL7s9/xt5WdW3HTHHr37c+iP+fhlu+Nxb0YrzgP8k/lozUasHqb6Nm/DxuWriOkQLGQZnqlcP2EscQ1Uhb7bbs3svaX1fg6lEmxCSPBAwK47qqK+fPqI78u6jJikygtVlNujds7pcBmk2i1igafkeVk/PVahBAcTrSiESbefKoAY3E+T7/yPY+/dGe1Ck95LGZzqaIFEBcl2J9VwN7dScyf+RdXDnSwcaFgs3d7brqtzJfCarUz55d5fPyyBiE0ZOcYef71GTz67M14eZ/bYtKYJuaq8PLwpleHGxqsPxdVY9C7MXxQ9fnc7A47iScPIYSgWUyLKs3W0dFNOLT/MJ52XwCKPQuIbdKc/r2Gcbj7fvLzc7HYLGz/czuBDsUPyHy8mH2Zu2ju7AAoaSPIVVNQlNdopXicVmepogWgtmgpMhbWS9G81FGpBG1bOMjMKCQ8wrfa9m5uenLyyz6bTBIfTwfeXkrqgpl/5fPKwz7ExWTy2Y/zKSgYWKtyYjnZRppElk2ePdxVCKxYrXZee3YaI/oUIAS8/JRXpaob33wyl8cn5hMeqkFKyUMvzccv0JdmzWsWSXshKPPXvTypym+3sSIV60undt3p1K76IuKpGSlk52USE9G0yoTLQf4h2LzMUFIayYQRnwBf2iV0ITwsmqPHDxEaEs6s6T8SktcEAJklWbZkAVGFLUqtdQGFYWzZvr7RlK3c3Gx0dreycknSnYL8vAY9xoUrKV4FmVl2UNXc+jTm1mE8+qqNnXst/L3ExOK1OvQG5RRm/FXI688Eoter8PdTc/94B6uW7wGUZKipp/NxOp3n655OPRL44kfFcma3S376S9C5W1P+nrWUd57VMriPGw/eaSDjxG6MRWU1G7Iyi2jb0ll2Y/irwZLCV+99xT/Ld5/3mE09E4hw82Vg4EGaR6YR0UFPcSQYo905pjKVKl3/FrYlpv/rzqkuWG0WPv7iLeZ/OY/5X/7NZ1+/i91RueTL4H5X4t/Zh6ygFDJDkuk8pBsxEXEIIWgRl0C3jn2wmMzo7GVKvV664ZQOnLLsfrfrbI2aNiI6LpYCrSJRHdKOw99CcGDtM2BfTkgpOXBUEBhUs6oUPXo3ZfH6ABavMrN9t5lHXrETEKjsezjRRpcOeprH6VCrBVPv0LN943ZASXlwKiUXs/n8eQJbtQ7jj0VgNiu/+1+LLMS1bMbff2zk7puNXDPcjauHufHA+GL+mLG2wr5OeyHhoYryJYSgcxsb86b/yH9fn8XFWv34N9LUM4F+Qb0Z6HuI+JB0mkemIaItFMVqLjt5P3fRb0z/9HuWfr2Ezz5+jxPJRyu18XD34oprriYzLJnMwGTUCQ5uGH0bAIH+wfTo3JfIsBiEvWKiX60wYFYXl35nUhkJ8G9YH+rytG/ThQK/zNJ7PcvzNF079apmr9px0Sxbp9MlL3/qzkNP1zyje5O4YO5+fCKb1x/C18+L97+I440XfqbLvjyOnnBgsZZZvYrNEo1GzeyZa0k+vI2IUMHOAzoefu62cy4vJp9Ix5Jj48W3sykodJJdFEhAoCdueolKVbYeHhIkMBqVEhEA3j4GFiw1kpNdxJWDPYkK1xDop+LlJ3U88OI/9BvU9rzr6eeKVJTaS2/GUx+2JaZjjHYnPSX7X3NO6zevYuf2baCSDBs2kmZNKieorIrFK+ZiOOGNO8rLtjAxj7UblzOg9/AK7YQQ3HxWmYqzad+2C9vWbsYt1wMhBFmep7hixGjWr1mDLs8Nm5uF7v16NphfWlVcNew6Ztt+5dTJZAwebky+7gG0/+JQ7tPpkqkvOrji2hHodDUToyqVimdeuZU1qw6Rlm7ikRdbsmrpDl79aCu+nlYcjjLlWEqJww4nj2fy3Sez6NDaztETKroN6E//wVVbuzIz8tGoHbzyfg4qFRw6puLJV1qwZMFmIkPLXmZR4RoKVhZV2Dc9w8Gzb2TRrrWeMaM82H/IyrMP+bN2cyqrlu1l4NC6LyW5qMwZmd9YkYo1JTMnnT9n/4LD6iA6Lparhl1XI98vo6mIA1v2E1JcklMrSzJv3p/cf88Tldq2bd2Jtq0rJx4/g0atwS1QjyXXjF4YKBZFRDaNwmIxk3XiNCBwi9YxsJbVOGpDUEAI19w4hsVL5qFVa+nfYxAJLasvs1QbaiQlhBAjgA8BNfCNlPLNs7ZHA9MA35I2T0kpF5yvz6DQYJ5/4/wvkaoIDPTkyqvLHOWee208iUczCYgv5vHX5/LoJCgoknz3mzuTH2zC0t9+5tXHFaUoL9/Bm5/P5ZFnx1bZd07qCV5/3Lf083tfWcnLM+EbFMk/Gw7Tv6eOjCw7e4+6MaYkoaHT6eS9V37htac9aRqt4ZX/5pByysbHbyjm90A/idXqqLJQdnkuRG4Wq83K9v0LsNmKaBU3hED/C5N3bFtiOsdUJkKiAyiOhCJt42RUvtDs3LuVDfPXE1isJBX8I/MXJt5zH0H+NcuppZdlZmud00BhUUGdxhHkH8KYW8exZMk8pJQM6DaELh160q1TH9KzUvHx8mvQmodmi5m/5s+gqKCA+BYJ9Ok+kO+nf0buMcUlwN3bHW/PhjvepUhQaDAvvF376FWVSkX/QWU1KkeP6U1mRjvS0wqY+/sqlq3JonkTFd/McDJ01HCmfzuXj15SoS0pqv7Qf1bRu39CJZ8rgCXzt/DW0274+igKfFa2g6//3sLAoZ147+tDvPq4sgrw9udWRtxYJkNn/7aOvp2LGHu1Pxu3mblmfCpPTvXHy1NFq+Yq5mzIrvV5Nhbr1xxk/+5jtExoQp8Bl4dz/Lm40G4kZ2O1Wfj+u88ITIvCINQcTz7BAjGbq4ZVny7JbDGhdpS904QQ4Kj7WCZNeIBZs3/CmJ9DQEgQ1426BbVKTVrWaZCS0KCIBg1UW7tpJQcP7MHDy4trR45l156trFq6DI1Zh8W7kJjIqoPU6kO1ypYQQg18CgwFUoAtQoi/pZT7yzV7DpglpfxcCNEaWAA0OX/HdR1yRVQqFc3jlRuyWfOJLF68A51Ox7Ovd+LQwTRaNSszgfv6qEGeu2R7sYUKGYhz8yR6vYYJdw3nt58NLHw3Ga3egydevLK0zcH9afTtVECbForV4LWnA3jspSx8vNXk5jlIy3GvVtE6Q2PmZrHbbSxc8x9eeCKXoAAVL761mWaORwkLqlltsLpyRtEqitXgFQKqMHOpn8KFEiqNxY5dmwkwhoJQhI1XbgD7DuysZJ2qij49B/LrgR8IyVeuf45fKqM7j67zWOJi4rl78iMVvtPrDESHN6zQcDqdfPnt+7gd80UvvNhxZBv7D+7EdlAQ5FQSrhbsy2Xd5pX07VGzIuKXJQ0YoBwU7EVQsBcJbW9h2eLd7NuQy6hxCTSJC2L1omWl1nqA6HAoLLTg51d5Sdjdw43MHIci54DMHAfuHm7ENQth8OhrefLdNQgBQ0deQfMWZUu8x/bv460nFfk1oLc7S1aZ6NRWj5SSab87GXHjpaHUTP9+GaHu+7jneg3L1x5h2tcp3D552MUeVr2oSuEqtgA0/gpAauYpNDmG0nI63jZ/ko6fqNG+ft4BqALBWmRBJ/Tka7OJa37uKNTqMOjdGD+2crWOsKCGD4JYumo++5ftw9cSRKE081nqu1gLrITlKuN3Gp389sfP3HfX4w163JpoAd2Ao1LKYwBCiBnANUB5ZUsCZ7zjfIDTDTnImhIQ4MmYW8pyDTVrFsz7v6gZOUSi0Qg27bASEHLuG2LIVf154d2FXDNUsmMf+EUk4O6uhH7eeNuAKvdRqQSOszT6lAw9T7+jwynceeiZ2icKPdeMpz4K18HjO7lrQjYJJUrhx29IJj34O2FBjZdIrryiJaItqPzNxIekl1rtLpRQaSy8vX3IEnkYUF58Fp0Z/4DKfgVWm5WTpxLR6wxEhTVBCEF0RCxXj72BX2d+h81iw88zgAZ9gzcSuQXZ2DMkeqEEnvhagzievI8oR3zp8N3tnqSlnyrdx2qzkpJ6Ane32kUH/78hhGDoiLOWLjR+HEtKIy5aS3Gxk0PHtYzzrTro57qxfXj9uSPcMrIYp4SZ8z149nXF76Rt+xjatq96YnW2S5YTHc9/oEcIFQNHDCG26aXhJJ924hAPl2Sgv2GkmiffOAxc3soWVFFhpNibYgyNvgLg7eGDw2CDEldAh7Sj0VcdVXs6I5kiYyHR4bEY9G6oVCrunvQwn3/7HplpGegMOtp7NeyyW2NxeP9+fC2KnNYLAwXpAmc573WVUOEwV3ypp2akYLKY6nXcmihbEUByuc8pwNlhCi8BS4QQUwEPYEhVHQkhpgBTACJqUd29rnh46hl75w08/tZCDDonXv5RTLynyqEB0K1nPJHRwezddYLm3YNo3aZ6rbpFq1B++9mPZrF5xEap+XSag4n33XDeXDM1oSqFyyskGGMKdbMGSYlKVSZV62qRdTqdFBTlYdC7nzeJ6tmKVri/N/Eh6Qz0PVRqtbtQQqWxGDXiBr5IeR/j6QKcajvBLYJp26JitJSxuJDPv3ofdaoBp9aOfys/JtxyD0IItm3fSHh+U9zwwJnsZNqPX/DoQ883eDK9hkSvM+BUlznySylx9/Ig15lBkFF5XnI9M+jfXol6zS/M48uv/4s2ww2HrnIAwOXEhZZfAHc/fC1ffjgHhyUXi03HfY9fc87lFHd3Hc+/cSfr1xxGCMHzbzavkT9Z644d+OzHDdx4lYYtu+zofZvzyKOjG/hM6s/Z511XGVaQb8JqVYITLoXyPnBxIhX9fAJo07MdezbsRmvVYve3MOnaqZXazfxzGik7k1GZtdiCi7lz0v0E+AaRknoSZ6agpbkTmGHr4s0EB4bSKv4S9+9TV1zBklonwkPiMJbVhfQPLUvKPH3W16TtTUdlq5+Le0M5yN8M/CClfE8I0RP4SQjRRkpZIfxPSvkV8BVA+45RFyTEpXmLMJ5+pea+YeERvoRHdKhxeyEEz7xyG/Nmb2bVrnyGj2lPs/j6+0JJKdn2VzYHjx6gwN9MWM8bkCWBKu16Nmf3hiO16q9FXEc+/96f6MgCAv1VPPe6oE3T2pUyKjQWsHLLG3TvXMTR4ypUcgidWo2qdr9QSzBg5lRhfqmidYYuzaLYCqSSXypUquNSUch0Wj333/UE6VmpaDU6Av0rWwD+mjcT35RQtEIHFsjZm87BxL20ataW3PQcvFH2UQkVqkIteYW5+PtUzuN2qeDp7kXTDs05vuk4WrMBk38+1197Czk52WzesA6Avj0GlAYK/Pn3LwScjlDST9RvYnjRuRjyS6/X8MATNS9Do9drGDikdst+V17TjZ3bgvjm70PENA3n3kca5mW5Z9dJlszdiFqj5pY7htU7uWpARDNmLzzAiAFalq214RNS+zQAX308F0zH8PSAxFO+PPnSuBoHODQ2TT0TaOoJEUX7gMarqVieK4aOpleP/hQaCwgJDK8U1JKakULyzmSCTMpEypHmYPacGUy6fSq7927Htyio1KLtZwxm196tl7yydeUV1zIr50fcsn2wGczEto9jUP8RzPrjR+wmO/4hAdx4rVKZIDHpMGm7Mgi01n85syZ32SkgqtznyJLvynMnMAJASrlBCGEAAoGMeo/wMkCtVnHNDQ1bCPiz//7N8G4nuf8GHVt27+fZWdMI7X9PnfvTarSM6P0i7344B6u9iIRmwwkJiKxVHxt2fc0X7xaV+oS88OZS8gp6V5m7qXPTEEhM59hxE+42KMbAEX2ZEmosjqeTh1Lrr7zCZbSdPz3B+ZYcT54+RrGpkNjIFue1ujUkKpW6tDh0VZjNZrSibPlMY9NRWKgkW1K7aXBIR6nPhF2nFL++1Llu1C0c73iUrOx0mse2Un7/JtCtU+9KbW1mW+mSo4tLlw6dY+nQueH8+/bsOsma+bN54xE9xSbJY69N49EXJ9WrvNrtk4exalkYb3x3jFZtm3DnPbVbttqyMZFmwYmMvUaRDUdPFPDzt8uZeE/1PpYXgoz0Ag4fTKNJXDgD/Q5dsEhFJYCmakttUXEhamuZmqAWamxWxUIdER7FKe1mfOyKFcioKaBZWM3zwl0sYqObcdd9D3Hk+AEC/YOJjVLeQ3ff+UiltgUFeWgsugbx8KiJsrUFaC6EiEVRssYCt5zVJgkYDPwghGgFGIDM+g/v/xdb0Sk6tNbw0de5FBQ68TMmluQAqfuvrtcZ6NP5pnrsX1yqaAG0S7BxeH/OORNlnlG4SCoG3JFaPUcIJdzfu1TROsMZhau4yp7KONeS49INn9C3136iwh38ONOLnu2ewdfbn12HlpGdvxm7XUeXhNvx92m8XC1V0blTD5YlLiKoOAKndGIMzCud+d00Zjzff/8ZokCNXW9l0PARlcpDNCRSShYtn0PSieO4eXpwwzXj6uxHFRvZjNjI6jOct05ox5bjm/C3hOCU9QhXcnFZsXTeRl5/WM/CFcVs3WmmaYRgzcp9jBxdv+IBA4a0ZcCQullOTqVk0rdVmXNOsyZacrNrnlS7MVm3ej/b/1nKoN4Olv6mJqRpT1oM9iXBvJWkpaexWXVkunUmJGbwBQ0qig6PxRZkwpGqLLHl6DPoXFI2p3unvhw5epC0w4qXUWBcIH17nNtNpyFIPHGIZcsXAjBwwDDim9YteMPX25+u7StPDs8mPq4VS4Lm4cz0RyXql5a0WmVLSmkXQtwPLEZJ6/CdlHKfEOJlYKuU8m/gUeBrIcTDKM7yE6QrE169KDZJnnglmyfu8yM0WMMzb+Zw+NgBPPQXLzJIo4pj07Z0unfWYLdLFi5zo3f785tXzwiEbYnpeKrsFKHHaTFAFe/pLs2i2G48//JoVX4MJ04l0q/3Pu64WXGe7dXNyn2PTyM0oC0JCXMYf5Mak8nJlEffZGCXVy9omaIObbpgt9vYvm0TQq1iwlV34+Wh1CgM8A3i0YdeoKAoHw93TzTq+i1nmMzFmC0mfL39q/RFmbNgJilrT+Nl98MiLXyZ9V8euu/ZRvVb6dNjIE6ng/379qDWqmBvox3KxSWESqPhk+/yiInU8tzD/qzbYuKH2bvqrWzVh46dmzFrxiZeaK746/w+30q7Li0u2njK88+i1XzwgiK/BvaCh1/eRM9+E9k5fSG/P++OXm/hgx+XsDzPi4jobhcsqEivMzBl8oP88dcvmK1GOid0oV9PJcpYCMFtN03BZC5WfDfrGQBjd9jJL8zF29O3yhx9p9NT+O3nXwjNUwI9Zp+eyc0TJxAd0fBpGs7g4e7F+Il3MXfe7zjtTjhU975qJN1LcmYtOOu7F8r9vx+oXk10UWM8AprQs4WJ6EjlpnvneX9GPb4U2lw8Zatnh5v57icLP848TpFRTbtmd9RYcSm/rJhKPltRlKvybDcewcP9MBFe5y6YXJUfgzuFxJxVpkSjsZKVv4XxNymWODc3FbeOMbJ+7VFaxNXPp8ButzFn4Sxys7OJjW3KoH5Xnldh6dKhJ1069KxymxCiQXJgzVv8B/u37EFt16IOEtw96eFKv03ysZN42xUfMZ3Q48wS5BfmNloJnzP06zWEfr2UGe/qx5Y06rFcXBrcOnEYbz+3nwcmKctT/Xq4s2SNEYfDiVp9cQqXxMQG0rHfCB57Yy06rSSqaQI3XH9plP/xcKu4auHjJdmyMZE7RqvR65Xr9dB4Hcue30Bx6271DiraumsDO3duxeBm4NqRY/Fw9zpnW19vf+4cf+6ccg1RmeJkyjFm/PoDGqMeu5uFkddcR0LLDhXabN66hoC8sFJZG5gfyYbNq4m+tvGULVDST0y540EA1j22rM79XBqegS4q0bd/Asbkw6WfnU5wOi9u5IxKpaJ/19onoj3DuRSuM9as+JB04vUHiXDzLd3HWGhFp1ej1SlKU1V+DJFmX77/1Z0ene24u6v46ic7IX49OJW5FWOxEw93RVidSFbh0QA+UV9P+whxUI8bXuw/fIj8gnyuG3X2yvqFIzUjhYPrDxBSrMz4rEVm/vj7F8aNubNCO6ERFaJw7Bqrqxi5i0YhMMiLgKCACt/ZHXWPIGwoevRuQY/eF86aZbXasVrseHqd34dU6IPZtf8U7VvrOJ5sJ9foS2CgN8kn4Mw0Lb/Agbu7rJCrsC4K14atq9nw91oCTGGYpZXPT7/Pg/c/c1ErPsye/Ssh6UpaHIwwf95flZQtb28/UlRp6KRiAbQKEz4+l0Zakprwr1S28vNNGAzaGicTvRTp0DmaV//wJSw4n6gwNf/5yk5h174kOvPhlJJfo6YUm4xs2PUjUhYSGtiNNs0HNNawq6UqhUsVBh7uh0sVraaeCRQbLbz9n59pEmYkOxdiW3fkurF9qSodhi0F3A9M5uZ7/iTIR0Wwf0/aNO9PREhb7nrkNcaNKeJEsppt29sxqHv9kriaLWaKUo0Eo1iDvG1+JCeerOdVqR9ZuZloist8vXTCQHFh5Wz0I0ddz8yfp6HP8cDmbqF9z04uZesSxGKxYzHb8K6HM/mlQMsOHfjy5y2MHKxm3VYH/mEtUKlqb9WSUvLX7+s5fvgEHl7e3D5lBAbDpV8KasaPK0g9tgdfb0FKpjdPvHTrOd9J9z16LT99u5RfF2Tg4e3LY89fgU6n5oOlERTPOk1wgOSvZXomPhLHdpEOhOC0GHC3AUnFbKuFwrVrxzYCTEpSW63QoU7Xk3z6OHHRjVPkuSY4LbLC6oCwCBwOB2p1mY9wv15D2L9/F9kn00CCJlqpHXu5cPlqI2eRdDKbrRsPs3zxVrq3l2TlSKLiOzBmXP+LOi6z2caJY1kEBnkSGHRuU+3ZqFQqnnl1PIvmbWfh/kS63OKPXqfmSIqFxKR8PFX2Gs1o7A47yza9yqdvFRHgr+bHmb+zY4+Fjq2Gl263Wi0XLOHktv3zyS/ahTMPtKZR6IrdSN62hXxNPrYr4hgWdQzYx6Ivj/D8fSbCQhQl4r2vtpN0sjVNY6pOAJiq9cLTaxw+TjcslOUi8w96kB9/P4le70FAYARSSg6f2E2RMY0mkZ0I8K2dw7xGo8GpKnP0llIiVRfXPbFJZBwWfyMyOxAhBAXabFrFtaqiXVPuf+BxUtJO4ucTSHDAhSnX5KJ6TCYba/85wLp/9uKpySAoQMWJVC+e/M+tF1WxkFKSdDIHu91JbFxArZSla27oxc7t4cxYkUjTFpFMGFM3i9JP3y6jQ8wB7npUR9KpHN5+6Weef2MCQiiW2vx8E15ehguyPHn0cBqzZyxDJSTd+3aiz4AEtmxMJPlkOh06NyOumWJpOXQwDa15N288pVi0TiQXMe2rRUyZOrLKftVqFROmVI6KfOjpMRzcn0ZRkZlnX4/ktOMwufuySVt3CI0qCndDqxqlAirvVK/SqHBKZ6nDt1NjR3+BorfPhWeAJ5Y0E3rhhl3a0PnpKihaoNRQvHfyY5xISUQiaRLRrFKbS5l/hbK1bvV+9qxfyuhhoC82Y7ZKHnval/e/3smJ4wk0ib04eYuST2bz7ce/0r+bnTUnBf6RHbn+5n413l+jUTNydFegK4lF+wg0Va6hteXIaU6nHqRpqDfxse0qRbOlZqQwang+Af7K9+Nv0jBl42ZgOLsOLabQvIDwUMneTd4M7v4UHm6edTpXp9PBwWO7cDjsxMe2q7Lo8R9LXuaWMclcP9KDwiInt973LadPCF553IxWLXniUz2L77mG4THHyS08TVhI2e3ZobWTlKQcomMCzpsAsHLqCHd8mip+I0Zg1rL3uXn0Udq2gq9/mk9R8T3EhFdWTM6FRq2hXbeO7Fu9F32xGybfQkYMqT7XWGPi5eHDmFvGMX/+bIRTENO0CYP7Vz3j83D3okVcmws8Qhfnw1hk4Y0XvmfCtSaihktmzSni/kcCycgu4ocvF3H3gxfn/pJS8s4rM2genoFeBz9/7c3Tr9xWq7xUHTo1oUOnJudtc+hgGkknMkhoG014hG+l7TmpJxhyqyK/oiO0xEUUkpdnwmS08Pn7M4hvYuPkKcHAqwbTu1/dfVoPH0rnRGIardpEERVd2Y9x/epD/DV9Ft+8F4hGI3j/qyWsXLqTnm0yGdROxe9/bSGl02D6DWpD0okMOpdzDW0SpaEwP7/WYxJC0CqhrLTS3pWnkWuX8v7Vgs174fd/2kHEk+ftY1tiOsboskodo666nh8zvsIt0we7zkpQQhARIdG1HltDMv6Wu5nx+3cU5GSg99Qz8cb7qmynUqkvqgWuPvwrlK21S9fx3rPKOm671npefDsbi8VJq6YOTh7PumjK1vRv5/Hf51Wls4b//HcHubldqqxrVh1VZZQvNNo5vvpTHhyXjUEv+fIHf4b3eqHC0pBB70ZGZtmMz26X2Gwq8gvzUOnm89nLKkCQk5vPo89/zdCeD9d6bA6Hg/lrXmXCzal4uMNn3/owuPsLFaxlR07swD/gENePVCxJXp4qxow04usj6dZBUfC+fdrG2G8PoBvfAW3QYTZsK6BnZ6VG25LVam5/oEzonKtwd/G5S19SnJNNty7HGDtauVfef1ly5wO/ERP+QpXty/s3leeKIaNp26Yjp9NSiItpTqDfxfUbcDodxMXEM/Xe8wvdM+TkZ3E48QAhgaHERjevfgcXjcpvv6zmuXttREcqz22gn5qZfxdx6/VeFOTmXbRxLVu0iyt6ZTC4T0mU77EiZvy4ivGTGi68f9ZPK1EV76ZLO8mf3ws6DxhGzz4VJz8ma+WatQaDls/fn8WHL0gMBkURe/ClZXTv1aLKIt3V8ceva7DnbaNnR1g4Q9Ci8yD6Dy7TlqSUfPfZbN56xgeNRhnHw5MNXH9nIrc8rzz/z9wPj762nn6D2pDQNpo/vhN07aCMe9V6K02a1l+h2bnsAJ88p0cIQesWcODIPoqNhVW23Xo0jeNqMyHRARRHlkubU+jGvfc/xsHEvfh6+ZUmIL5YSCnRabVMGHdvjdrb7Tb2HtqBlJKEFh0bNV1OQ3LRlS2Hw8mPXy8hLzsdldqdifeOwsu7diZNva7iMo6Hu+CRFzLx8tJgcSyiIC+XUddVHQ3WmBh0jtJIEoCYCMjLLa6TsgWVFa7EBdt4/aEcOrdTrlfz2AJefecP+ne9tXSfIP8QVmxqww8zdtEqXvLtdANtmt5KbkE2ndrZAEWQ+vup0emqfmirY/fhf3hgShq9uirjaNHMyDMvz2BQ9zIH7bTs/fh4g9Uq0ekUYXX0hJVRw8sUQ28vFSLHwZGUUJoNGMWHc9bx+7IT2K3uXHntcAIDK1rdqircbSw+twO801mEr63ss0ol0FXxnJ5I2cPh5GkE+NtJS/dhQJfHKkXrRIbGEBnauEW8q8NkLuabHz7GnGNGap0MHXEVHdt2O+8+BxP3MWfGLNxzfbAaTMR2j63WuT8zO53pM77FYXSg8dBw27jJ+PteulnuLzSb1h9i7bJNOCUMuapPrUt1mYrN+PmWKQj+fmrWbTaxa68Fg1shrz//E4+/cAta7YVdMslMz6Vf3zL5FRetIefvvAbr32ZzkHx0D2+V1Dvs2kHy6GtrKilbQ68ayPPvzOfqoZKd+8Avog1ublrcdVYMhnLji4K8PFMlOVEdTqeTY/t38s6zivzq0gEeeXVdBWWrsMBMeIggJdVGq3hFaGRmO9BpKy5dnpEn4RG+dBs8gkdfW41BL/EKbM7Eu/vUalxVodOJChNAXy+w2awV2pgtJmavfJ2IqFwoUnPa7zr8w1pXsP4fTiqma7te9R5PfZm76HcO7NyLkIKwuHDG3TjpvJHdVpuVT796B3FSh5CwMmoJ9971+HmTWDudTn75/VsyTqYhVdCrXz96dr3w7kUXXdn68qO5XNP3JB3b6MjKLuL5V37mP+9MqlUf/mGxLF51gOEDdBw5ZmXhCjO/fB5cugz1xiebOX2qVZUm6sbEJzCcjduP0KOTFmOxk427tAy9uX411c4oXLdGpfGJOp3QoDIBHOiv5nRO5aT9g7rfzbEThzm4L4tO8Ql4e/pgMhezZKWB60c6UakEu/bZEbJuMy+rrZAde4pZvLIIm01y6xgv7I6K6UlDA1vh6buax1/O5MrBHhw8amPHrhhSTuXzyZvKGB563omXoTeOJD1HCSN8+EQCQtKJ12/C2+3ctV7OXlY8F84gJ/Pe0jJqgI3oCC1f/GQlz1hRsNvtNo6lfsf3HzsRQpCXn8NDz3zOsF5P1OnaNCYzfv8Bw1EfvIUys146bwEtm7c5byj20sXzCMmNUQSaxY+jOw9TPMR4Xp+9n3/5Gt+TYUqB1gwHP03/mgfve7rBz+dyZN+eJPauX8ibjysKw0vvz8XL+6Zaley64uruvPzhMd54UofTCY//J4emTbS89LiylHX4WB4/fbOUifeMaJRzOBc9+ybwzYzdvPSIYp354mcrfQd2aLD+bVY7PuXmMEIIDPrK/o9dejQjInoCe3efpEXPoNJlNan2IeV0BpHhWqxWyf5EDTf5134i63BIbFYrz7yWj1YriG+qxaCvOGnz8jaA2p0Va/PIzHbg5aniy5/MRMdFcuBIIS2baZiz2EZodJmC1r1XC7r3atjIR/+YUH6Zl8otI3UknrSzansAN9/kD+SUtpnzz0d8834uIUHK+2/SS78T7nE7Hu6WctZ/d347foI4p9tFK3928Ogejqw7TIhZmbTm5+exMnwRg/pecc59/lm/BN0JTzxRfh9TkpGlq+YxavgN59xn4bK/yN9eTIBDqfSxduE/NI2LJzgg7Jz7NAYXXdmyFqXTsY0yHQgMUBMXUUx+vqlWZR3GTxrK3D+9ePLd4/gF+NGluw9hIWUv5/Ytbfw5awP3P3zuH7ExuH3KMH78RjBnxWnsTi33PX51g8xOz1h0bryqiFe/MPLRc96o1fDwG3Yswd2rjEyJi4oHyta63QzuNI+8jzumTsPL04GpOIoBXW+r03ikVOHhruE/T3hht0smPpRJbFhF37TmMZ1YtKYz2YUbeecTO4G+nbjpigfIyknn7kdmAZIOLW8gOU/NseOm0uSnhwnhlHvLEmvevnLWrKquSdmy4rmIe6o193yXSVGWA4dXB4Ki2lW4XgXGfNq2tiNKSuj4+qjx8Kybxe9skk4dZ8HCv0BCp87dqixvUxuKC4x4ijILk8aoJyc/iwjDuZVm4aw4M1Y7NVht5w+QsBc5Sp1p1UKNvejyLijdkKxcsoOn79SVXtP7blfz/bxdtVK2msQFM/rWm3juw38QQtCuV2uGtNtRuj0+Tsvm13czfvLQOi2R1ZXYpsH0GDqSx99cg1ot6dCjB527V181oKa4e+hJy/XleHIBsVEaVm+04unftMq2YeE+hIVXLAVz98PX8el//0TlzMdo1jDlwWvqFO1YXGwlI9PEtA8D0GoFf8wr5FRGxesshGD0LVfx2Xu/s/ugFZ3Bi9c/mkRgkBfTv1/JD3OyadOxOTff3qnWx68NQ25ozXdzYvnpuSTsziCa9LyhwvO8LTEdjWdeqaIF0K+9DXXRTvQxSrszQUUhBHCsFslRrTYLv//1MwW5+fgF+nPd1ePqlS7iRNIx3E3epenFPOw+JCWfOO8+puJitLKsfI4WHSbT+euOpJ4+haejTHnWF3hwMvnY/5+yZTQLnE6JSqVcvYxspXp9bRl1XQ+4TqlP+MOXi9m+5yCd2ir+Pms3mVFpD5Cc1L1Kx8fGQqWqOsKkoejZvDuWW+3c9c52Ms1e5MWPxiBiapx7JTK0GZGhr5y3zeHjeygsTiM2ouM5l46KTAeYMFaZomo0grvGezFvXkXnqYPHNxEbu4cXbjSwdadg5T/KDDTQP4RhvcsqzQcHcM6aijVTuKpjH3fcq2ZlVkuOpIRSlKSpUADb4bCTmiaYWnJPZmbZSUkzsM2jftma8wpy+PXH7wnJbkIxhcxO/JUVaxbSu8cgenbpV6fs8b6BfhQeN+KGB1JKbF5mAnzP7z/WrGU8h1IP42sNwkwx2hANPl5+LF01n0P79iGFZMiQKysUk1W7q3BmK9FLTulE7XH5RAA1Nv6BPhxPPknrkqWl48kO/APPbV09F81bhPLIs0opreSkHOb8vJ2OJT/BP+uL6d3ZwU/fLOWOuy+sdatzt6Z07la1AtQQPP7CLfz49WIK8vKIjo3iznv71nhfNzctDz9z/vJjyUk57Nh6lIjIQDp3q3p5d++uFCaN80CrVd5B14/0YvPBipP9okIzf05fzMuP6hFCz6c/6/D0NKDRqLl9cuOWqDmb4cMsrOzUH2NxPJZUDT+n7y+NTj+mMpGt8uNkSgExkVqklGzZbeeRUV1J4ygRXj4cLj5THi2ZEAJKyqlVz3c/foo4qEcnvTl4+ADP73mIrl1707/nkDr5rcY3bcVezz24GZWJXr4+m67Nz+8G0bNbf77d8SkhOYo1LNMvmSt73UVK6knmzJmJtEN4TCSjrxpbqngHhYRw+kAa7k7lHWXxNBIV0aTW460vF13Zuuam4Tz66hwG9bSz55CKVp2619v6c9ukodw7fjftWxZhLHZywygvbDZJ4pF0Eg+fYvPqjWi1kvAm8dx024Ba9V1UaGbx/G1IKRl2Zeca58Ixm2188d/ZYM/FaNYw7s5RNImrv2P1gLa9iYr15ZQpj5VZOo6klK3L17eG1vKNnzFs8F4SWkq+/nEuYcX3ER1e2Swune7k5Drw91N+t0NH1Xh5VkxoeDpzHt98qAbUNIuFPQd2YzIXV7nkda6ailBZ4UpLzedUSh5Nmwfh61v9EkJVgQZnRzEK9zu44f5fCfS1cSo7mJBekzmWWVyv8hh79u/AM9ufQnLJJJWm9raYk4uZm/w7O7Zv4r4pT9Q6jHnMteP5yfwl2RmnEFq4/uqbqy3APWLIaDw8lnPo8H78fXy45qrJbNy2hn3L9uJnCUZKyd+zfifo3hAC/ZX78+axd/DrjO9xFDvReKi5dvRYPvvmPSz5ZjTuam6+aWJp2/83bri5D68/d4x+nQtwOGDTPn+efvn8L4zqiIr2R3i05L6nNhPor8HfV8Ujd/vy9HtZZGYU8s0nf+KmtWCTHtz90PW19nFds3I/SSfS6NQtnlYJNS9Gv2DOZvbv2IkQ0DShDaNvqL/Pj16vYfL9V9W7n6rYsuEwm5Yv5MaRsPuA5JstzZh0X+XUC4FBXhxcLxhUYmjOy3egVusrtJk9ax1P32MnNlr5/pl7bfw+c229gwWKi60cOpCGr587sXHV+0FWF4ldpLWh7TmKez//gXivbIqL1Vw35lo8PPVQVPdxSikpzCgkUHpzmF1E0RxdoZ5tKzaxd+sO7rjz3lqXzYmLiafrsO5s27gJpCCuZTN6VeNLFRQQwvg7p7Bo6RyQknGD78TX25+PPnqT4IwYVELF6ZQ05mv/ZNQIZWlx1PDr+SH7CzJSkkEl6da7F5u3ruPYgSNIAV179qJPj4F1vjY15aIrW23aRRMdM4n9+1NJCJAkJITXqZ9Fc7ewb9cRDO4eTJgygh5929I57gAr1hhZsMzI4eOS629XcWzHCt59Rnlg/lywm6WLfBg6omYlGwoLzLz14nc8fIcdlQreeWkXj700sUZLnl9+OIfJN6QTG6XFZrPywEu/8fxbdzfIskBVCsSZdfm61tDKycuiRfx+bhqtzNj/+6rkzgdmER3+fKW2vTpO+B97Zx0dxfW+8c+sZ+OeEIEQEtzd3YoXL6VYS0u9FCjWFqfQUnejLQWKthR3KO4aJBAgIe66vju/PxYSQmxjQPv7PudwDklm7tyd2bn3ue993+fh5WkL6N8ri9gEgevXG9H5odXwwwUj9mowW4o2Ji7MU/FhwnVtTzaxN47TqI6FH/6W0X1QXxo1KfmFL/p+WaHwr4Gi6bvoAHfABGQ7GHIjYE2qe6HR5WCnVNu8beHq6oZBrifVmEgwdREEATkKPMUqZN3K4XL4ORrWLp1vnEKuYMJzr5V84ENo37or7e/5mwFcvXoRV72VLAmCgEO6K1fDL9G+lfUYX29/Jr/xbm5F2Nc/fITyuhP2ghsW0cxvv3/H5NcLfi/+P0ChkPHu4rFcuxpHYkImY9p550bpS4PI20msX7kXEOnRrw19B7Vk+x/XUSu0pKZbeH1WEs6+vnz90WqWTjdhr5aQnJLOomXrmD7X9u3/bz7dROPqdxjaUcLarZeIjelI1x6NSjzv3OnbaBKOsXS6dexcvvYUJ466V3hOUkVi7/ZDLJth3eKtVwsWfB5RaIpKzdo+/LO3Bp/+FIGfN+w+omDyu/mlU4wGIw7qvOfqoJZgMBgpD+LjMvjmo995qpOBM6cl7DXX4PmXSyaexVViC0o9tfxT6dwiNFcgujDotVrMRiNg2zagIAgghzSS8MIfe8EaJQoRG3Ar8wo7dm5i4vg3bWrrQXRs052ObbqX6pwq3v6MfzZPGuJWVDiKNHVuqoOj2ZXoyKjcv0skUsY/+0ru+HX05H7uHI7C1WDlGsd3HiHAvypV/UtX2FJaPHayBRAbncqujVtp1djCz7sF6rfuYNMAcB8bVh/CR3WWJVOUJCSl8v77vzJ1zmjemXSG3790Q6WScPqCns9XHOT9V/NemEG95UxfFm4z2dq0/igzJpkJCrQyh/deN/H76n8Y91LJW4WiIZ2gAOsXWy4XaFjbTGJCVoUl7T9MIO7vy5fVQ8tg1OPmkZesaq3cK1y8097OgafaL+Du7WhUSjs6tyh4HaW0KSs37OGZp6VcvWHi8hV/+nYsWeT1QcX5BwmXr9qRpJOf89l71sqjp7qIvDV/N42aTLTp8z14v/wcnQlP0BV7/P3VY2xsCnf2LaJ+bTO37yioEzSRAN+SS6frhjbiVL1jxF+IAstDbYsSTMbHlwfl7OJKMumosEb3dEoN3l4F8xnu54boM/TYC9bvskSQYsqyFFB7/v8Ei0Vkw8o9NAxJ59gNiEzyZsrs4TYbfCfEZfD7d6v5cKYcmQzeX/Yn3Z8eSmSCE6+MhEb1VGi1Ft6YF4Ovpxl7dV6Oq53M9nxCTY4eQXeH/j2shGnyCzB18SmbxtozJ6/y0qC86WJEPzmLf772RJMthTy/dIuzo4BeZ4RCFscvvNqX6LtpZGZoea+/VwEtsd79WzHvs+ssnSFBEGDe52bGv9aqXP37/cetLJsloFZb+/PNbze5FZFE9eCShZaLqsQOUcdbx7QiiJbZZCbm12/w903FOdNMdHpDQlxt03Hr3L0HmzauxS2nYD6iaHl8ws4uzm6Y7Axw71UwigZU9soCx93/LoTfuIqT3i0vVyzLmfCbV/5/kK0NK7fx2RwZUqn1078x5x86d2tgc9QgKuImk6ZYb663p4yWDbScOxNF/14OuaXBzRoqkfyq4/RFkeBq1vMuXzfhXcV2BXGTyYxKmffyqpRWS4GSkJOtJyNbikZjQH3Pp+/mHXjKvWJV2x+sVNyfnj/EXFrC5eXuw5YDbvTqkoZ/FRnLV5twUrcs8niZVEaAb7Ui/96i/kDCLrszbt9p1CpfercbavPnKoxwpdspqeqUtyoTBAG1XeleeFuT6iFv9Zhz8lf+/AGkUhmiaGbsqz8R4PthiecLgsDYZyZxotYhdv21jSraIHRoSCEBtypu1K3ZqFR9r0j07z2M72I/JjsuHYvURLX6QYRWL1ocUmKXp0AtiiKoxP+3RAtg7cp/eGlEJvVqWsegvYcT2L39Aj2eamTT+fv3nOfN8UKuJMq7byiZ++1xPFwsNKpn3SK0s5PQooGBUxfzNKdMJpEsje1DuNksopDnJ4C2PDaTyYyruysnzt2gdxfrCacvmqga9GQ7EAQEhbBx23mefkrJrSgT1yIdGeZV9ALPP8AVAgqvFvf1c2Hsq88y/7v9AIx5pTNV/MtXWS4RTLnzAUCgn0haqgZKkSL38Lbig5ZnheHqxgN8/HwC9UPlgJQfV5/lwJFaYMO80Kxha4KrhfLND8vIiVehQMVtrqFSq2jd2nax7oqGm7MHjdo35tzRM0iNcnAzM3HQm0UeX6VKADcvRWBvtuZWau2yCPSvVun9fCLIlr2dOZdoAfh4gFZjtO4z2wC9gXxJ9kmpULO1C7uO5h2j1VpwdHHit3VxXLichdpO4NBJkW9W2F4R1mdgKxYuvcri6RYEAd7/xMzEt4rPW/j+i82Ys2/h72lh0PgsunZ0JjZRoF33zpViw/HgiidUeYL96lr5TJttJVwSiZSebWcx54OVmMzp+Hu3onHt8lXP1a3Rnro1bE+AfRAPEy6ptzNnotxITM7Ay0PGhSsG5OrSS1c8eL+Kw/3Vo8FDn/tdFQQBJ2cdFovFpoWBIAi0atoB/ypV2bV/C1mJyTQMaEL/p4aWmGtVmZDL5LwycRrpmanI5Qoc1MVHHEcMH8uK379HzAbRTmTI0FGPqKdPJpISUqlZPW8orV1Dyvm9KTafb++gJinVQtC9r29quhmVnR2p2Vno9YZcrb5bUSKCzIVxb96hXk05x88a6DnQdm84RycVSdmenL2UTKO6MlZvMlA1pPjqubMnb7Jl3XZCg0R+3pLN9v1GPD0UaCy+vDm9fLlplY2hz3Zk51YH3vnoBs5uzsyY193maGNhCAh0583pRUsMlBbBtWrw147TDOylQKu1sHW/jGlzS09gH1w0BjsUP0YbU1LvES0r2jWD7XtjbL6Wq7M7U954n137N3PpynkCnAPo1KEntYJtKU6qPHTv3I92rbui0eXg6lS8rVS3jn2IjfuOhNuRIBGp1aguNWtUvquGIIqPJ/zXsHGAuHO/Va3808XrGDcwnpAgOekZZqZ/KGfeR7ZtBwGEXbrLtrV/MqS3hWs3ITqzBi+82pe/1h0h+vppggLh5AU57j5+vDQ4CndXKSYzRMYYOXC5CcNG2U4A4uMy2LD6AKIo8vTwjsWubo4fvYE+dhtD+1pJ4+Xret6ek82CT16karXKF4WMyA5jf3pNwhO8scSpUEdDQnTKY9VWKS/O3Ku48fZ3J8NDR8zhH/GxS8XLS2TE+JaEOtcvuZEyICI7jBhtOn8sCeeHKRpcXaTkaCw8/bKSetWn/GvvZ3lgMhmRFVL6ff3mZW5HRRAaXJvqVfNba4ye0ueMKIqlS057AvHg+HXmxE0izm3l1bHW6ueFXxjoPGA4ITVtmziNRjMLZ/1C/86Z2Kng979VzJg3jrTUHH78/A9aNDQREQk+1ZuQGXeW6S8rSEu34OoiMOUDJdPnTSj5IvdgNltYv/owsXcTadaqNu07Fz9Jzpv2FV/MlSAIAmazyNAXEunevyuDR5RfoPN/wGqwff0mZouMUeOfwrcStSAjssPY8vdFmjgkMvjeVvLMD40kxE2ka9OGlXbdJxVmsxlBEAoQs9T0ZM6cP46DgyMtm7RDIskL/5Zn/HoiIlsvvz2IH7/cgl6Tihk73po1oFTn160fgJf3OM6fvY1/Qzd6N7RW2Awc2paMjCakpuTQY6QrP3y5FRdnKXZ21pvr5ixFpy3G36UQ+Pg688pk2/p3904CvZrkraTqhipo0VBk5U9bmDl/bKmuW16UpdTXVkTG3iI7J50g/5qVbmj9cKVicv3RpAfq8fSPJ95wDWl20dIQ5UGwQ12CHcDpLTsmf34YBIhKc8TU6lluJedJR5TY9/8QCiNam3es58aRcNRaJ8LsL9G0Rws6te3xGHr36NC0ZQ1S0zrwztLzmM3QoUcXm4kWgFwuZfaisRw/EkGmyczsRTWws5Pj4Khi1uIXiYlOp/0AezQaA4f+PodEIuDuZp0AlKUMjkulEoY/a9uWj8lkxsPFnKs5J5UK1K8lI+nOGZKTGuLhWXLO5b8BiQmZXA2LJbCah00VgRUJa0Xno1FyD3aoS9/+8McvJ/l7vpaMbDnJ9l2p16B6uSvX/40oLPUhNv4uvy3/HucUL4xSA2fPnWDShCll0m97GE8E2VIoZLw8eWC52vD0cqR7rwYFfu/sbJdbfdJnYGtefOdnWjSw0LiekvU7ZTz/RuUtshs3q8Eff51i1uvWnzduzaZ1czuOnCtfFcuThP0nv6Vl84u0DjLz6x9qGoZMxcu9bBWltsKWSsXKIFwAjfya4DhTeU9qoxY3opVkR8kKMcDOj7JWhf6bIIoiV89ftipCC2CnsefsiZP/ebIF0L1XY5sLbQqDTCalXceCBrsKhSyXADg6qThxUUHGZ6lUC5AhkSgJqMTtG5lMSmK6Hdk5RhzsJSQmmzAYRZrWEUmIz/pPkK3Tx29weOc2ene0cGy7hDOujRjyzKO3cnlUCHaoy4ix5I5fmujyV67/l7Bt5194p1SzVjZaICUinpuR1wgNKrvB+X08EWTrUWHfzjMM7KmkU2sZ67Zo8a1WB58qLoUeu3v7OS6dvYF/VR+GPNOuTMy2RqgP0U27MmziJkKDBEKCFTRpqODI5fIlVj4piE+KoX69Szz/rLU6qnUzMy9OXkGPNrYZIpcXRVUq+jk6cz8Hq7KiXMVJRxSGslaF/psgiiKC+FBOzMM//w9lRvi1OLxcdYwb4URMgomPvoNPvi88RyfydhJ/rfsHiUTK8NFd8PIu2jO0OLw6dQTj3v6Oqr5a1CoJ77zqynsfi0zu7V7yyf8C7N68n49nW+Uh2reCdxZdwGRq90iV+h81CqvELk/l+n8JokVEIG/MklikGE0VExwpf2zsXwJRFEmLv8HQfio8PWS8PNaRtPjbhR67cvleHAyHWDw5hVYhF/hk0foyX7dT1wZMX/gK2RZ/rke68uNGX156c2CZ23uSoNFpCKiSp2OgVEpQKMonYSCKIreirnPl5ll0+qL9EO+jabA31S12ONw2IUYpuRHtQ3iCN/vTaxKjTSciu/jE97Ii2KEufnYudPa4Roh/PBJfXbH/hEA92UEybkm0uSH7/xokEgm+wVXIlqYjiiIZimSq16o89fH/b9i8fj9LZijx9ZbRrIGKUQMtnD55p8BxkbeTWP3DKt6dmMDUMTF8ueRXUlLKpmjp4enI5z9NxsmnISaJF3O+UDFs3NOoCymt/zfCTpVfHsLVGfS68o1hMdFpHNh7lbtRqSUf/JiQO365XCfUOwHH4Iv/L8aoktC+fRcSnKKwiBb0og6zv65ColrwhEe2srN0RN5JpYq/C66upTcYfRCiKPJwcEoogmomRt/krZHWaE2zhnK27I3HYDAV0F6xFf4Bbo88Rwsg+nYG53/9BTu5wFFLVSQtRwKlt0IqCv4+VVn3tyNdO2hxcpSyYp0JF3vbt2WTUxPRG3X4ePghlUoRRZGdRz6md4+b+HiK/Pi7A+0azcbZ0aXYdh6OcJXGU7E8sNUAG/KkIx5U9/+3rx71Bh0Xws4gkUpoWKcZcpmcUUOfZ7/vDqLu3qFZSIsSFaH/yzCbLUTcTEKhkFK1mnu5KuEAEODBJuQy0FssBQ77e8MRFk6Vo1JJUKlg6kQz27aftTlX62FIpRJeeqN/WXtdZhiNZr755C9EQzLZWglPP9O7VIr3tkDt4sexM7dp3VTO3Vgj0UmONlfBZ2Zoib6bRkCgW66K/75dF7h5/gCdWlrYs16Cb0gbevVrXqF9rigUptVVlsr1fzNu3L5KYlI8tULr4e7iSa0a9VCMUXD42AEc1Y6M7jGmXP6PD+KJJVvnz95m+/ottG1iZt8mCXValE7o9GFIJBLkDoHsPRxJ+xZyNu824OJVk8Xv/YZank1mjpxRz/ejeg0fTA8tbAxGsUyq0I8TJpOZ7T8fY+U8NXK5QFT0NV749Bec6tle5VkSFHIFHZvO4o3pvyCRavF0aU6j2l1LPhHYc/wr6ta5ipenyNY9rvRoM5uouAj69rrJsAHWwa55YwOvTfuN7m1eL7G9BwlXaT0VywNbtboeHMzu50isu32n0MrQuKQY/v57LRaTSJ169ehYzpync5dOcvTwAQRBQtv2nWhYt/x5ilqdhq++/RBFtD2iAIeq7uWVF6ehkCvo0v7RGr4/idDpjCx+9zfaNMpGpxNZH+fD27NsFzotDN37tOX9ZX8x81UFsYlm/txtT0id2xzdsxtEgWo16zJ4ZHtkMilanYjdPe3ObI2IvIwLxceJn7/ZyrNPxVKrhhyLxcSbc/9k8vsvlsk7tyi88Gof1qw4wKb9Mdg5ODH1fdu+u8cOX+Xort00ayCybY1Ah6d60qJ1TU4cPMon71rHr3YtYfL8k08s2bqPoizMykq4TCYjG/5eRWpSMo4ujgwZ+Fy5pG0ystJZu/5XDFoj3n7eDOr7TIXo+q378zfuno5GobfjsOtBBowYSq3gulSvGlqgiroi8MS+gVvW7uKz92UIgpwhfeHNuYfo0r1huQarl9/qz/bNp5n37V0aNAkh5fIFZr2YhYe7FJPJxKvvbWDuspep37wpn/10hAE9JBw/a8HZu2a59/AT4zP49tN1ONvryMiW89yLgyrEG7EoJCVm06S2kGuuGugvw1kVR4Q8I9e0tCJWLY72znRv80apzrlx5zI9ulxmxCDroNSzSzqzF/yOh0s9/B/YlnSwlyAItleLNg32pincC4EX76lYkbDVALs4df/70Olz2LPxJwLTqyMRJJyOPINMLqdti7J5d12+dp5Nv68nyFIbgK0xf+E80YVqATXK1N597Ni7CadoT5SCdUbPjszg8PG9/yNa97Bq+T6mvqCh+j0vvV0H49m/+zJdepRdmqRh42qoVMNY/PMpHJ3s6dDNA4XmIFOevWehs+Ysp0/4Mmx0Z2Yu/IU3xxnQ6kW+WaVi1sLyTfiiKPLd55vRZdzFaBSoUb8hg4aVT3evJGizUqhV455TgUSgTRMzdyNTqVm74sRUBUFgxHOlf7f2btnP53OspG9IH5E35u6lReuaqFUiPJDzY6ey5IrQPskozjO2tJWKK9b8gP6CBbXohkbU8lPmF7zywtQy9ctisbD04/epnlUPB0FGwu1k1pl+Y8TgcWVq7z6ycjK5c/k2XoZAEMAhzZk9O7dS6+VKLDiptJbLCQd7S/69dCcRk8lSKpNqi8XCFx/+CYY49AaBWo2a0H9wa+hvHXjOHzuKh7u1PZlMoEZVMxkZWnr1bcbVMB/+Ph5BUI0qjBseUu7P8/3nG1gyzYC9WobJZOH1uRuY8+GkQo81Gs3IZJJyvaBu7vZE3Ml7vDkaC1oRhEA9WRY5Z48c5NadTNo16I7eYCQ9K45A39q4OVd+6XO2JoHaDywcfLxkmC0Z1Aisz3e/2NO4ngk7OwmffmsiwLf0Wx9Ng70fS6Xiw0iMz+D7zzfgaKcjU6Og+/j6RRrI3kf09Rs4Zzjn+nx5GH04euIUKvc6ZSLH6zb+RqC5du7476UNYNeBLVT1r06gfxC1Q4qe/EVRxGQ2FRpG1+l0yB7wVZOJcrS6knPs/r8gPS2Dav55719IkJQtJ9NK3c7BvZc4uvcQajsLOrMrb84YzqtvW6VnPlv6J++/lBfl6dtVyk+bI2jWsgZvvz+BvTvOIZXJmLWwMXZ25dsK2bThOB0b3KFja+v1vl1xmssXA6nXIKDAsRaLBYtFLPcC1SzakZZu1bQDCLshoUlPa6L/lcvRnDp2Ff+q3tRvWI3zZ27h5e1Ko6ZVy3VNW+Fob+Z+yrMgCDg5WBeJFpknF6/G06C2nOsRJvSixxNPtO7jYcIVLnpza/tmAsQIsrLNxMZ1oF+7QSW2kx6XhptorUhXCnZkJCVhsZjz6VXZiuNn/0GVrUYmWN8lB1wIv3qVfYd2IJfLadm0PYqHjXcfgNFkRCaVFXgGRqMBiTnv/RQEASpZcvSJJVsWiRs3bicSEiQnKdlEUoZDqYgWwJoVB3m6cyxNG1gHms9/Pkn4tSBCa1knX41BiUajQa222o7cjpbgdG/vvXZd/wrND3C002F/z5pBJhPwdDFgNlswGs18tmQdKkkaSakiWq1ISDWR5DQJnXp3pl2nshEDpVJGh55def39ffh5i1yLMjNgYk3OEseljbuZOzqJOiESXpl+kO4d1fTsKfD7egUZWRMJ8q8YNd2wm4eISz6KKNrRqsEYHO2teU1B/o35YcUmPl9k3Z79aaUJf6+WqO3saV53Bi9PWYFUaqSKV0dqBRVtEVQcHlel4oP47rP1fDBVj71agk5nYOTLe6lRU4VGdwJl/Q6ENA4qUMkomF3Q2RngHm8xigZwU3NLUraQviBK0JCFE9YK2GhuI78qw3JBRpgqjPA2Vxnw1LAC5x079Q//7NuDxCTFzl3F8+NeR6XM85Tr1L47v177Hu+0qoBImkc8Q5sPL/U9+q+ifedGfLNiO6+MsQqd/vSHhYHPlS7RNjkpi4vH9vPJewpAwu27afz8zVYmvWklWyG1Ajh08i5d21knm8OnzITUspIfZ2c7nh5ecfpNEdeimDglb1Lr3l5gx9lI6jUI4O8Nx7h2/hwKOdy6a6GanwW5DCxyP16f9nSZycaEV/szY8HvVPPVkZACzdq3xcVFzd5d54m7fpDRA6T8tf0Cn282MHGUmuvX4dvD1Sssvyw2Oo0/ft2FKJpo06kJrdvVzv1bjsGZ2PhMqvjIuBtrRGO0vl+vTxvMip/2sHpbEk5ubkye+e+SPXmQcGX/E8bofpfp1sY6f767dBt/7NxN9QA70tMC6db61UIJlCgT80XzRJmlTEQLICExDr2oy10s6kQN6ZlpXNt0HbNg5tSpo7z60jsFCFdaRgo///oVlkwRUWmm74Ah1AnNk4ZydXZH4SNFF6FBhZo0ZRL16lXufPDEkq1Xpw7m52+2octORZDaM3lWnlnmkX+ucPyfCyiUSka/0AsXl8KT52PvxtN0eN6KrlMrOH0tOpdsTXjlaaYs/gMvVx1JaRIGjHiqQsTLCkOWVolOp0elkmA2iySmyZFKJXz76SZefSaFoAA57y5JZvI7rrkrubfm7qZxsxq5CZthl2LJSM+hQaMAHBxL3gNv27EurdvXRpNjwMFRRUR2GLrrZ6jZOJ4ube1IzzDTpAG8NMY6iTZpIDLutbUVQrYu3zhAteD1LHxfRmaWmZemLKBH6wUo5EpcnNwI9Hyd8a//gVJhwVndika1rYrUbs6edG8zudzXh8IJV46bdWUcqjxBRUe5kpOzOXIgDAcnezp3q4OTWou92vqKqVQSagVbWDTNDkEQmPv5AbzrpoF/E3I0eWX57r7exHRzJ+ZgFHKDgqyAHAJeG0Z2qoybEdkc+nEtZGWDTKRf/yEEl5BbEFS9BtfOXCFLTEdEJEtIo4GxlVUHS2/P9QthWHrltxvKzM7g0K59+KQHAWBI07F24288N/LF3GN8vfx5dvwEdu/biiAIjO/xCm4uj1YQ8klG89ahZGZpeOfD81jMAt379ybwnmtEclIWK3/ehclooGO35jRrVfiWbuSdVFo1zvNeDQqQoc1Oz/25d7+mfPNJNHuPRmGxgJNXCM8PqpjKqYdRrYY/R04n0LaZdVLbf1QktHEAVy5Ho008yUezlBw8qiE2wczIQVb9rUMnotm45iiDR1i3GxMTMrl+NY6qQR4EVi1ZOsLFRc28jyaSk61HZWcdLwHOHT3N0unWMTEyWse3S9yRSASaNYKPf7hNXGwGvlWKL1gpCRkZWr7/9HeWzZKiUgl89vMuJBJJrvH2mzNG8PWXmzEbMpGrvHhjunV+kkoljJ347yJY92GxWDiw9wpZGTn4NVPiGHeGbmPy5s8RA2TUq6ln+AAFF6/c4JufVtO+ybMF2un91AD+3rgeRYYdRgcdnbrn3Y/T549x+OB+BFEgqGYw/XsXXOg9iHq1GnHu8GluGa6gxoFY7tDA0hqZYO1XZhScOHOI9q3y5wqvXrsc1yhfpIIMURTZ/Nd6ak2pm0v6BEHgxQmT2bx9LRkZ6bSs3YrWzSrX3/GJJVsKhazQFcrBvZdIitjHkilK0tLNvDP3F2YteqHQMLlfoC+nzifTvJH1b/uOQfNueWFvbx8n5nw4EZPJXOm6KhNeGcyUxetwdtCRniXnuRcHAmDQZhAUYO2fVCLkEi2AOsF6vvtiG5NnDOKLDzcS4hOFn6/IR3PlTHxzlE1GqBKJJJeYBTvUJUqeQZbSOoBrdSJuD1xPEAT0xliyNVkl+uOVhMS0oywabf16OTlKeWZIFmdO3iKkmnV16O9TA3+f2bnH340L58rt33GwN2PUB9Oh2dgKIb7FVSo2l19k1R/HsEdJtRpBDBretsyr8LuRKfzy1UpeGiUSnySy+L2zmIxyjEYLcrnV6kSjzdsa79ZKyum7Zjq3LFjJGLqwPWnRqehydHgGeZGgz+JGtD3XNu3CI9yCg+iDKIqsX/07r785HTtV0ZW6I4eM4zfDdyTHJyHIwcvgAw/a9lkEHrbsSklPRJ6dR+YVgoqczIJbYP6+VRk36uUy3K3/H+jao1GBop7sLB2fL/6VD2dKcLAX+Oi7rYhib5q3Lkiaqwa5s2qHlD735pGISCNqxzzBYEEQeHnyQMxmq1drZS0UAZ4e3oavliWydV8MRiNUq9WYho2rsnHNEXp2sH6nr9000rd7noNE2+YKFj57kN79mnHx/G1O7ttJt7ZmDvwlxdmvOQOG2BZ5e7g68MEqcoVcyFe8ZK80cPzIdQYNLZ9v48ljNxg72Jw7r7wxXsH0ZWdzyZZareD1aYNzj9doDHy8cA0SSwYag4LxkwYWqeFYURBFkfWrDnH3diRSuR3jXuqDk7NdyScW0dYH76+kT/sU6ocIfPeNgJtXEOfDbtOorpVgHzyipW1La/sN6sgwGKMLbat2aH0C3wgiMSUOD1ev3B2N2IRo9v+9G68s6xx8JymSQy57ad+66KKqkOq16fxUD04dP4bJbMBL5oMkLu8LIBVlGIyGAucZc4zY39t6FAQBmU5BjjY7ty9gLfAa3L8gWawsPDaylZaazSfzf8ZghF6DutCwcTWbzjtz7AIfTLG+fK4uUp7uoeXS+bu0aF29wLHDnu3Alx+l8tfuOHR6qNu0FSE1C27DPAoBO18/F95b8kLBaysdiY3PpoqPDIVc4M5dA9UCFFgsIlfDDbh7RnL44A2qe0Xx3FDrBNimqYX3v9rBlNkjS92PjvVaMXPFWVo10hNSTc6Og3r6dDMS6C9n294c2rQwsu/4Ivp2WFDm0C+AySRDr7fkmujGxkkLkILo+JtcubUClcrI3fgY/v7NGalUwokzZ/lttYq2jZ8p8/UfRGGViuFyL+78FcaK9wTcXE3sPHCW1b8aeGZslzJdY+2K3Xw0S4ZSKaFuTcjOSSHF0pHX557A00XPtZtaxg51yD3+0CkJ3Ye2wGAXV3glo8v9/2QRo00H4FZ6Cg6iH2AdQBSZahKSY6nmX3Syu0Ku5PkxedWcf+9Yx51Dd3DSu5Mjy8A7yKdAZY+3exUMzlrEZOtWgEbIxsPbsyy35T8Lvc7IB+8tR6UQcfMJYPSEbjYR9ZPHIxg9yIijg3XSmvKigunLThdKtjw8HGjSvitvzD2Ig9qCXnTnzekFjafvR3wqE4Ig8OqUgvk6IbUCOHj8FKHB0KyhkvVbsnjjBesicMvuHJ4dJGPFz3tJjb+bKx7aqQ1MWXAay9OtykQQQ+vVY/maEzz7tAK1WsJv67J4bqgjCUkmLl/V4uN7hEsXvKnfsOz5W/YOdsQn5S1CsnNEpA/lLmo0Br779E8EcyZXrqYwZ7Idjeop0Wo1vLXgD+Yte6nM17cFv/+8h0ZVr/LKYAXJKZnMmvsbcz96oUz39NzpSNo1TKZ7B+v38qNZIjM/zWLVdm/WbIsmLctERpqZl8ff22UJN5GaVXT00N7OgSD//LnONyKuYJ/pnLsl6Gzw4EbEtWLJFkDndj3p3K4nAHGJ0fz64/d4pwZiwUKWdzItmxZMlrd3dUAfrUMpqLCIFsz2RhzUZRP2rSg8NrIlFzQsnmpAFEVmLtmEt89YfHxLDv1aRAGDQUShsD6xlDQBX//CdVEkEgmvT3u6Qvtd0ZjwSj+WLFqNgzKT9AxHXpmRTrMGErJzLIwZ7sTVmxAbm06Id96Lb2cnQULZhPckEgnzF03i2+XriN2Uht+IYYybtYX29TKpV1vBaxNcEcgkJT0ZT7eyVys2qfUcL05ZwoRRWu5ECRw/WZdurfMGvxxNFjdjv+TnL6x5W4dOKPl5dRYvPOtMy6Yyfvq9cMHZB2Ew6gGh2ATJ+3i4UlGTkU3/ZhbcXK3n9uykYNUbZxg5pnOZolsi5tzvJICTI5il9sz9aBJms7Ui6ZPF6zh6LhmNVqBxm7YEBLoBbja0bs2hOFZFxHBJj0Kwft81Cg2upSxo6N9rKMc8DnI9/AqhfqF0LaR6UG1nz6BhI9i6ZSOYBNx93RnUr/TE/r+M1OQ0lk5zRCYTOHD0Kut+lzNsdKcSz1PbK0l9ILKo1YpIJEUPw+061S1z3uajQP2GgVy73IQpCy+ikMs4c15K5N0k7NUCfr4yJo52ZuYn2QXEQ50dwWjMW4yVBv2ebsXxI67M+SYMv4D6HDt/i7Crkbi5Slk82wOFXGDet2fKRbZat63BB3O8MBoT8XCDVX/LeWNWr3zHfP3xBl5/Jhn/KnJyNE7MWJjM5wu9sLOTEORnIDtLV2y6h9lsuZfioSzTmJMcG0XXUdbxy8NdSq2q6Vy6EEPDxgWLFkqCTm/E6YHNDLkcZBKRybOHYzZbuK25wvatl3l2diIquZTr8T7UbjeyVJWKflUCOW13CnudlfRoJNkEePqWqp++Xv6MeX4ie/ZvRyaT8VKPyYXuwowaPoEVlu9JTU1FopIwesgLj71Q4bGRLVdn6wcXBIGhT4mcP3OLXn1L9hYbNronk+evYtwQC3fj4HyED91GVq4XX0k4cvAKxw9dQKFUMfqFnkXmkBUGtVrBrAVjchMK16w4QE2vi/ToqCA7x8LXK+Htd+vw8fyTtG1uwcFewm/r9dRtXPZSbrlcymsTR9xTV7fw6RF3Zr+lRyazPpOIGBGDPoeotOJVhIt7wTzcfGjbcD7bd1xFrXKm20Mr95iEuwx6SotEYl1JtW+pZs9B6yyUnGLGZCx6FSKKIruPfk4Vv1uYzSKpKfXo3MI2/bD7lYrOehl3sg3cF3k1mURkUg17dl6ge69GNrX1IDp1a8EHX21l+itK0tItrN6sZOZCa87T/cjD1HdHlLpdyEtafXOxkcWJdzBHKTAKZmp0aM/NRD0kli5xvnWzjrRuVrzYaGj12oS+PqvEtqJibnP63HHc3Nzp0KpruaKh/yY4O4q570unNgp2fBRl03ktWlXng/c9kEhS8HKHn9dJmfT2483xSUrMYuXPO7GYjXTs1pymLUsnCzJ0VAegA6IoEheTzsrvfmPOVAVSqcBnP+np0LUJJ49e5szFuzRtICcy2khihjNKZdmnn1Zta9KqrXVLT2WnpLZnGq2bWhchEZFGnFzKlwYhCALT5zzDmZN3SNLomT4/qMB2pkzMwL+KNdplr5ZQxVuGRmNBrZYQHS+gti96EXhgz0WO7DmAnzfcilbw+vRRpfaa1OjAbBaRSq3fw+wcE3+u3k3DxuNL+WmhSbNqLJiuokk9M+5uEj781kCbzlY9PqlUQg3HejzVVyCmq9VTMVgTii5OikRqu6dijWq1CGkTytVzYUgsAi4BLjzVveTqxofh6+XP6OEFd4kehJ1KzcRxb5bYlk6v48CRneh1Otq16YK7S+VF8IWH8zUeFRrUUYrn91lXHj+tyuTQGXvad21Kv6dbFTjWZDJz/WoCcoWUkFAv0tI0nDp2AycXB1q1CX5sjPXg3svs2HKSRiHpvDZebc0hWyJh9uLnUanKVmqdtw9/BxEFz03sg6eXI4kJmfz+43YETNRrUpvuvZtU2OfYf/4Qe1ceY0AnOaevSdgb1YQ6tYsnBgnRKYUKctqKpNQEcszzmfmmdcBNTjEz7o102rZw5fwlZ7q3mlFkLtKZsO0M7L+F9q2s93jTdiMnT46ibg3bq6/ORCRw7MICRvXJolaIgm17chjW34ENpzwY9HyTMiXOnzt9i/07T6FQqRj9fI9cA/TC8Mv3O0lLuIPBAC06tKJz94Ylth+RHUaMNp1dd6ujM9WBRDXq6PI/i7LiSvhFNv+xEbdMH/RSDdJQkZfGTy72fRw9pc8ZURQrz/39ESHATylGnrGOX+kZZsZNzqRuw1Cef7VfoaKb0XfTSE7OJjTUC5WdnGOHb5CTraVl25rFfk8qE1F3ktm0/ig3wq7y40eO2KsFPvzWQL3WfYpM2rcF18Ji2Lx+HxKJSPO2TejQpR4Wi4VVv+wjMTYOtaMzY1/sXeYx8mGYzRYWvbuCdo3SUMhFdh5xZOaCMRXWflFYOPNHls005pLuES8l0qqZM7ejJXTt151WbWsVep5GY+Crxd/y4Szr9yQ7x8KcLx2Z9v7oUl3/8MFrbF+7lhEDHbh2w4BcLnAn3p03332+TJ8nM0PLip92odfq6NyjGY2bF7Tauj8GHTrnQ9TWf1ArjUSl+eDmOZgaONg0BpnMJiwWMwr547V8Mhj1fP71B6jvuiJDTqpHLOOffwUvj6J13Mozfj02suXpaSfOneZJbGwOzk4Cb09yY+WfeqTunejSI2/i0WqNLJ79C11a5ZCjhcu3vZj23sjHHhL89Ydd1PC4yunzWSyckbeVs3WvFonX0zRt/mj0XioKF2LPceLiXa7L65JgqYWPPr/gqsViTe6+f9/jEjJwuG0q1yR/6vJGJPID+PnCyTOOdGg2BalEioPasdjnu/vo13z3yfXcbbvEZBPvL2xN+2ajir2ewajnyLlVGE2p+Hu1IjJZR/Wqf9CljUCDOkqWb7JwK6AXnZon4mfnUmnSEFv+PIGf3Ql6drIOth98pafTgJFUr1GyyO39wS5c35LwBG9iUzMRo5TlfhZlwTffL8Mu3DX3WSWr4hjx6rP4eQcWec5/hmwFOovPj3LB1VHPpStaFs/yQKsT+fhXF96Zkz/pdtUvezFlXCakmsiuwzLGvzqSABuq8SoTETcS2PDrHzSvZ6BqgIxWTa2ETxRFZnzswuRZ/65tY4vFQtjlWMwmC/Ua+BXIwxVFEbPZUqH5uRE3Eljx3TrqhZq5cUdCh55dqFm3Ki4udsVe525UKuf3rmDCyDyyMfMjOW/OnlDiNXfvOMfF09dxdnNm5JguzH/nO57pb6SqvxyFQuCHDb68/s6QCvl8ReFC7Dk2fb6XL963RxAELl418vL3tfB07/dYFn1lxbHTBzm15jTO91I5zKIZWTMTz40oOteuPOPXY9tGrOLnQZakMV3an6FTG2sEY9QgJdOXXc1HtlYu38uMSTqq+lv3vnf/k8S+3Zfo2qNBoe0+KqTE3GDqaCVnL2TlzyFLFahareLsJB4VGlZpjIOTglraePYnu+TKEVjMZuJX/URN53iyNAJJ3q3w7Nw9V5CzPB5azes9jU7/FDq9hn6dXG0m0IG+zVi54QrjRlq/vqs3QKBv8ZE+i8XCjsOL+HBuCgF+Mn754zZ6Q1+uhnfhWuRpTAoBrVc7vJq1Yn9yeD4B1BNHr7N/xyEUchG/aiEMtyE3pzhcD7vN+Ac0i/p3gyPnb9tEto6symHzmusgXCNgWFNqtPUn3OxFapYJMdHyWP3MBJFKFwZ8UuDm7sTwF1/gswXf8vUSr9ytHJU0I99xSYlZaJMvM+NV68Taq5OFmR9v5Z25zz3yPj+ITWsP8MF0BYdPmklNz3Nt0JSQQ/akQiKRUL9B4bqIOzaf4tyx4zg7iqTluPD27JEVEvUKDvHm3SUvk5SYRX93e5u9c318nTkTJmWMyboVfSvKiFRZ8ru/YfUhPOTnWDJFwe27yXw0P56Jbw5n9fIt2KtMWCQuvHxP8PZBpKVp+PGLP5ELGkzYM/H1QWWuWgQQEzzo3jpPKLRBbTkuqjiriXUJ80FcYjQbNq7Eohdx9/Vk+OAxCAho9RrkMjlKRdltfUr9OUQRQRRyE/YFBCoz9vT43ioBatfxJynmXO6vYuJNqB0c8h2WmZ5JQJW8blYPFAg/m39Ae5wYO8KJ6QuSGTXYkbtxEBbpS89nK85OojAkJ2VhMlnw9nGq0AhfYcbKl//YzacTYqkTYh2clv74D7E53tj7qyrEtFSlVJXaN6tmUAtOXYzn5bPHMVsEXOw70bBm7WLPSUpNoEsHK9ECGDtCxksnTzCw4/uciejCLYmWQG93NHHk81SMu3ucC/tPsGyGtZJq086L7NjsQK9+hS9utFojq3/ZR2ZGFp17Niu0ytbD24Ow60nUrWm9pycuiFStV/J3Zu+O62z4IAqn9NqIosjBy/txsLcjO9OIKJUidXEgo701ifdREK527TuzPW4zHllV0EpyUFaV4+tVsUbBTzJcXNRIZcpcoiWKIlk5+RO+09I0BPrljeBKpQSF3MyTAFGEDq3smL4gGRDxdJfx8zopL0/tWanX1WgMJCdl4ePrbDNBKSviYjOIvn6UT96zkt2omAyWf7stVxi2vJBKJTYVdj0IuVzK6BeH8vZiK0lC5s2kySULsUbeDGfSVOsiLShARp2gLNT2KmYtLD4i9sWS1Sx4S4eLs5TklDTmf7iWWQvGFHn8vl0XOH86nKrVqzBoWOsC1Y1+fi6s3yEw4N7XJCnZBCoJQmDxC3CTyciK337AMz4QiSAh6u4d3r80BcEooBe1uDp4Urdp/UJFlisDTRq04uiRg+iilUiRkewezbhulSdl81iXMC1aB/PVsqpE/xiFqxMcv2jP9HnWZNEdm09x9eJ10lL1LP5Sy6zX1VgsIj+sFhk6oXKE+0oDz4BQ1m+5SvcOUurXsefbtW70G9yGybMqL4dMFEU+W7IBN7sYVEoIv+vK9LmjKjQ0/rCxcmx2ZC7RAujSDA7EnKVabWvotTweWrZCFEUMRn2+VU/zev0B25Wi5XI5aQ9wdFEU0Rusz+nBSsWEaC1iUJ7ivMOpnTz7FLnPdEBPBdOX3SyUbBmNZhbPXs6MSXr8fGQs+34TOm2vXG2e+xg1rjMfzk/ATZ1CjhY8A+rSp0nR2873t/p3b76OQ5ovCBBHJH76UJwN1ucQa7qDfYIjt4/vxmVA4COJcNWv3QSHcY6cPHOEANcadGnfu1K1np5EdOvXlakLd9O4roUzlyX0HmQlu1F3kln7+26wmLgVYWZAD2txy/6jBjyrlM+XsiIwcHgnpn/wBzNeljFupBPvfGBm0LD2TH6vTqXmkB0+EMaxvfuoHWxheZiUEeOfpmbtyitwiryTQrP6eZG7QD85upzMSrteUdBqjSiV0tz3IzjEu0SS9DAMRvIps2dmiShtiNA522twcbYe5+EuxUGZXeSxq3/dT4DjRRa9qeDUhXg+/SCGyTPzkx9PL0eC6rXhrXnH8HSDG3Ew7FV/Tujii5wPRFEkJT0JWaYSiSDBKBrQkk2ozrqLpRd1xGTc4saxcO40iKCaf8F8sYqGSqnilZemsvvAVgwGPQPavoqne+WNmTaRLUEQegGfAVLgR1EUPyjkmGHAHKwbCRdEUbRJJOmVtwcRF5uBVmug5yh3pFIJW/48gdp4gsVvK6zq4zNE3l6kRJBIeWpwXwICH2++A8DoCd05fKAKX6y5Te16Qcx9thZ/rTvG2RNXaN+lYbnKjovCgT2X6dAwhl6drau0y9czWPP7P4waW3oj1eLMUR/MVaoVnMyxMxdp3dT6su46LNBjaBuMdvF5xspuoWjiAGyvTLEVd2IuEx61nEB/EzdvqWjV4C08XEsfOXRz9uDc8Tqs+esydWuJ/LRSTmhg/tyGwhTnXezrciZsD/VrW+/5rSgTzm6Fr2TDLsXQq30OVf3tWLUxk4x0Axt/20DUrbYMfTav+k8mkzJj7ih0OiMymaRIsiyKIotn7ub0Huug5egHOoUctdEFLTlUEarlHuuCB+mkIDVDdpCsUskvWFXm0zJT8PUOYPigsQBERIaz+e91YBRw9XFj1LAJyArxVfwvoVXbWtRrUI2YmHRa93XF3kFJSko2v369imWzrXk0n3wv5ZU5Uny9VVQJrMmocZ0ed7epXsObZ158lh//PoVKreLzH9pw9fJdVv68G78AL/o93aLCibMoihzYvo/P51q/E2PMIpMXbmXWouIry4pqy5ZFbY0QT1Z+I6V7B+vxl68bcXZ7dE4HGo2Bj+atxMcti7QMqNusBX0HFSwCswVde3dgzsfbGNYXLl0TMSmCcXUtufI9M1uae78sFpHMnKIX5/FR4bwxVcnN2wbW/pVBtiadxe+t4PVpw/JVY/bq15wefZqi05lQqxVEZIeh1hacD64eO8HWtV+iRobcRYFOoQEt6NDgkCcmiFJQIYoiSq2a+ITYSidbBqOBhORYHNSO9O81FLBWJv746+dkpWQhUQgMHTKaKj6ll9EoCiWSLUEQpMBXQHcgGjglCMLfoiheeeCYEGAG0FYUxTRBEEregH4AD1srhIdd54N7OS1OjlJG9Jei8u9KoyZFJ94+DtzXwBFFkQWzVjBuUDo1e8r4+rfbZKR1q3B9nLiYZNq0zxsAa9eQsXJbSjFnFMSlC3f4c+U2XJ1MpGTa8erUEcWWHA99tgPffpbB5n0xaHXQsmOne1Yb7jy45RiON7eUmYjy8m0rPghRFAmP+pnlX5it6vZ6LS+8+S292s0p8pziDE+7tnqZa2EXOXkygep+jQot832YcKUHNmPj1ZtcWRaNt5OJsLtK5i3oXsh1LUhlEvQGgaOntOgNIotmWgf13zee58g/nrTtkD8iW1LeyJ9rLnBqhRYHjTUSkpEUh6pxPJlRaUg0etJy4nE1W4lnCvE44ILZLw2/Rko0cRAhN+Jw21ThUa5Dx/ZybO9hZBoFRhctI0eNw8vDh/V//I53UjWrEGp8NhtUqxj+dNHbFf8VODiqqFkrbwFw4sh1JgzLy+N88wUl05c5M3l22aQ/KgsBge6Mn2SNxO3YfIqc+KNMHSPnwpU7LFt4p8xSJUVBpzPh6ZoXZZJKBeztSrelqtUa+WTRahyUGWTnSGjdpV2xlbweno607NqDt+YfwN5ORJT78lolb5M+iOXfbGXWpBx8va3z2aIvTxAbU4sqfi6FHm82W5BIhEKJZPPWIfhUeZajpyPwq+bBi8MLCnkXhn7De/Pae1uoEyISdkPCkOcK7giIotXP0GSy/v/T79P5dL4nMplAQlIGyz7ZwJR388dPJBJJbuXtwyko4XhzQ0gh8uN9hKbUQBAEDCl69P464qV3QC+QrkvBy+SHIAhoxRwkSNG4ZBASXHgVZ0UhNT2Zn37+ElmKEpPSSO2WdenbczCr1/2M5ZIMN6EKFtHC7yt/ZMpb71WYnI0tka0WwE1RFG8BCILwBzAAuPLAMS8AX4mimAYgimJieTpltkjyq48nQKO6hYe2wy7dZftfBwHo1qcdjZpUK8+ly4Q7t1NoFJJGk/pW5j/1JSXTlpyqcLKlN5j5fkUm895xQxAEvl+poXWH+jafb7FY2LBiC1/NlyIICrJzjLz72UZmzCt6QhQEgUlvFr5d9/CWo706gwsnbuKUHsYdjYWYuHb0bzewNB8xH/QGPVUDTAj3/DmUSgkuLtpCj41PjuLcta+o4qsjJlZF0zqv4u1ecFUSUq3kwoqHCZeu5QiilXLkLrH09rnMXcN1ghXWZ5uRoeXTRatwd8ohNUMgI0uBt3MKs97MEysd3FvO4p9vFCBbJeHM0buoczxyEziVGW40b+PC82taIxHgq6WHObUngvi4DNTOUjxqm3h5YTViVQmE410hRQwPw2QycvTAP/hkVANATBTZtGkt/QYMQZKmyJ0k1KIDKQlJAERG32LDhpVYdP8/suednB2ISRBpdM9iND3DgkJZeJm7JkfP8m+3o9dm4ePvV2ZR3fIi7OwFlrxj7WObZgqOnE4gLU1jU+TEVuRk6zh2Kp3MLA+cHKXcuWvEJJRO1+jnr7fw9rgMAu7pW7237CD1Gwfj4eFQ5Dmt2tYqUobhYdy5lciqn7egVpoQFG5MemtgufLK9NosfL3zzm9S18LdqNQCZMtkMvPxorXYy5LJ0UKNuo14ekT7Au0FVHUvdSVroyZB1K3/MinJ2Qz0dCgQSf/l+52kxIQjlUJisoIlX2upXlWeK2nh7SlDRtFbj/fx8HxgzogkQW+X+31WCErUUjUvTZ1MjjaHuIRotm/9i8zUTHSiBi9PX3p071upWlcAG/5ahXusH1JBBga4ejyMNi07khibgM+93QKJIEGaLSczOwN7tSO/rPyGjPj0cl3Xlm+RH3D3gZ+jgZYPHRMKIAjCEaxbjXNEUdzxcEOCIEwEJgL4FePrN2JMbyYvWMXgXnoiowUScoKoHlzwAdy5lciuDRv5YJoCQYD3l/2Fnd2wSs0BKAyCQL4qhvurhIpGYlQ4fTvbMWtRClIphEfK+WJizZJPvIfMTB3BgRaEe55RDvYS7OS6cvUpb8sxjH0XrlPPP4pJU6y5VfM/28nOU970bN66TG2rlCpu3LLDYNChUAgkp5hJTy/8e3Pu2jf88qUOqVTAZNIx7rVv6N1uUZmuCwUJl8zbmRh7O9JTzHQW8ioVf/xiE/Pf1OUq0U+ep0e0q8PB45EM7GWdqI6eMREcWvrE8ZYdqxH2VwSO2VaSpHNJpkX7Rrk5NdMXdIcF+c8Jz7hE7NZdZMW64d+6CtGBwTYRLpPJSPjtK0ilMkKq1SpyNafVa5EZ8yJygiAgGkV2791ChikVL8FqJ2QQ9aid1IiiyJo/fsUrvuq9QfdEqe/DkwJbx6+2HUJZMvc0OZpEXJ1h3XYlU94vPJqydO7vvPuKFl9vGUdPX+bHrzS88GrfSul/cXh4uLJYrONaRWLlz7v4erEbS79MQyoVSEwx06FP6VIg9NrMXKIF0Ky+mbuRqcWSLVthNJpZ/tVaPp8jRS4XuHE7jh++2Mwrb5deePM+3Dy9OR92nUZ1FYiiyP5jUsa+UXDj5/ef9zJhUDK17+XHfvnLGa5fC8kXMS0P5HJpoYn8x45cJ9DlGtOesxLtA0f17L9Qi6tXL+ZuPWo0FjQG24qYHpwPgmqmcMI1EzHT2o5e1KGXy5DJ5Dg7uuDs6EKtN+oVaOPO3Qgibl+nWtUaBFctaGNVFKLjI0lNSyYosEY+D8SHYdKbUAh51EemV3Au7CQpKYl4iv5WEgYYlXoc7J1Y/9fvWC5L8SSA8oxfFZUgLwNCgE6AP/CPIAj1RVFMf/AgURS/B74HaNg4oEg2ElDVnbdmP8+lC3cJbu5InzqFS/rv33WOyc9Lc41I33lZwYe/nqZmbdsTpwuDVmtEpZLZvMKsWs2d1XfcOX42hdAgGd+tNNGuW9GDSGx0GmtW7EW0mOkzqB016/iVeA2TyYxKKdK5rZrOba2T+KwPS2fZ4+xsx81Iaa7qcFq6Gb25dJU0RSHYoS6rzx9n2ut5K/iJz0gZ/s45zkRUL3NUpVW9t3j+jW9wcdGRnu5Kx2avF3qcp4cutypMJhPwcC8fiYQ8wkUE5NzzVLxidCTyeAT+ylRcvc4jEXW4ueYRkwa1oHa7juzacoxTS28jkYCgCuCVt0svQtt/cH1uhCVxbFsESKDX4Kq071x0crXZbGHp+Msk/eOA1JTBzWpnafBRTxICaxVLuHR6HV99txRptBKLREQRtIVJz08p4JkI4KB2ROIKxkwDckFBjiQTTz8vom/cxRUPwsULyFGQo8hk7tPL0GizkWjkj10XryJg6/glCALvvP8MF85Ho9HombWoaq6h8YPIyNBS3S9vi6lNMwVbD8SVu59Go3VrTi63ffujYcumfLH8H54dJOP8FRNpOt8inTDMZgurftlPYlwSwbWqMmBwqxKfr8ViwWiwanotuKdLeOaCjrAko819BFA7unLzTiY1qskRRZGjZ6WMbVcxObzxcRk0q2dGLrdOiyFBcoza1HK1Ofr57nzziYa12xLQaCX0GtgHd/eCxDA1KY9oAbRpApdvxlUY2boPURRZs+IAsVFRWEQ5KnsnJg3O+560byln5wkNw8cN5rX3d+LtbiE2ScnLpSSc96Nc45Zk8suc65gyFVicVNRrP5gzxSz69h/eyZndp7DPcea8/Tnqd2xAjy79SrzeX1tWc/NkBDKtAp3bJkaOHktV/8K3WasFV+dmZARORjfMohmju44b164TbK7PDS6hFFVoyaF9007IpDLSU1Kxo+jFla2whWzFAA/ux/jf+92DiAZOiKJoBG4LghCOlXydKm2HRFFk45oj3LkZTZUAb1q3K9pWxMnFgeh4M54e1o8RHWcul01DclIWXyxZjb+3joRkCV36dqVN++IlBcA6uE57/xm2/HmSfefTaNe7AbXqFk6gkpOz+f6TFSybLUOhEJj94TqEEcMIrVV4NC45OZsvlqzC21XHrVvZ/LZOznNDHblwxYBJUroXURAERr0wiDfnb8bJ3kS23p5XplScd2SdkNqcuXSKVk2shOvoeTP6AD9yAsuerO3h5kOvdnNLPC4xyQGtNgM7OwkajYXE5IoxHb3f3zMRCcTf1SBE/srvywy4OKs4dSGZ+V9qiYlzwM9XhiiKnA2T0GWYMy++3g+TyYwolm7Sexhvv9cF3rPt2KOHI0g4pMLFbN16tLvTgITl+wiZ5VKsTMf2PX/iEOWOSlCDGTIjUjl25iDtWhQ05RYEgRcmvMHaDb+Rk5ONdxUfBvYZzrKPFuAh+OIu+mDBQrpHPGo7ey5fPUeKMQEPscp/gnDZgrBLd9n591GkMhkjx3YvlGiBNWcvKTWPs4miSI6u7PdIFEW+/exvTNmR1qiUMoBX3h5o033v3rsxF8658s2GK/gFevPWjKIXB8sWrmFM/2Tq15Kz70gSP32TxvMvFzTIvo/vPt+MJu02Zr2JZ17OYdXXHmi1Ij+ulfLWu7ZH5gHGT3qKz5euRy6mkK2R0LVvD9zc7EvVRlFwd7cn/HbevcrRWNCbyqeZKJVKCjXwfhj+gX4cO5OSV4h0SKDr4IrPUV796z4aBITx+jAFOZocJs1MYNMugZdGW+fQrXuN1G9Sg2atQmjasgZ6vanMmmTBDnWhLYT87cr+5FrciPZBF1V85frZ4yfx1PiDAGqNAxdOnymRbGVmZxB+9gbeWitNEVM82LJ1A6+8OLXQ43t1HcAOcRO3IyKQKWWMH/gyf29Zi4CCWkJjzKKZNFkioTXqkpmdQXJGIp6i0jo+lgO2kK1TQIggCEFYSdYI4OFKw7+AkcByQRA8sG4r3ipLh777fDOdG0cyaaCcc5eT+PSDZCbPHFrosf0Ht2LhrOv0iM5AKoWtBx2ZtbDgPret+Omrv/hwhgmHe55Wb83bQ9MWITZ5eEmlEgYMKbnK5MDu87w1wWomDTB3spK53xwjtNbgwvv05Z8sfceEo4MCUXRl3FuZXLrtiI+fN29OLzgZloTQWlV494MXS32eLRg4pBUfL7rL7iPR6E1mzucEEDq0NZr4ykvWvo82Dd9k4uQvcHfTkJJqT9uGr1Vo+02Dvcm5FE6LhrrcMurmDZUEBJlZsFyGu0IkM1vCgGf65w5OxUlynDt9i707joEI/Yd2LpJslwZ6rQlMed9VAQlKizy3avQGPjh6e5ETTb7BLicnGwV52wQKi4qsrKLL4x3Ujowf/Uq+3zVq3pRLBy6i0jigccykbbv2HDm5n+Nbj1JFG8Q1ziKTy8FQ7o/5ROPK5Wj2b9rAoslKtDqRKQt/4613xxcaJVIqZVSt2YiPfzhPozoWdh6U8tSgsidv79t9ieYhd3iqq3Wxs+/IXbZvPsNT/W0TvG7YuFqhunAPwmg0Yy9Lon4t6xjZpa2cPUeL9oXcs/M8TYJv0aerElCwdbeEZ98UCazqwaQppfORBVAoZEyppEIDtb2SRu06MHn+PwT4wrVbcl6dVjF6XCXhfiHSlv2xaHXQvENHqlar+Kr7xJi7dBlhfXb2aglPdRa4GleTdz64gyCAe5VajHmhEWBdWBVFtDIztPzy3TZMBi1BNYMYOKRNoaT+wcR5yKtULHI+EB9qwyIpsfJUp9cgNT8w7gkCFFN3IQgCvbsPtJb83UPf3kP4OfZrHJJcMUmNONS0w8fTj2++WYZXQiCRhCMKlnKJNpfIIkRRNAmC8CqwE2s+1s+iKIYJgjAPOC2K4t/3/tZDEIQrWD/mVFEUS1cmdw/6zGjat7A+4Mb15GzYEV/kzZbLpby7eCznz95FtFh474PAcmlOKaU6HOzzqv1Cg0RSkrOLrBwp0zVUStIz855Ydo4FuaLolYNKpsPRwdonQRBo1siOToP64eVdMZGb8sJgMPHDF5sxaFLQGxWMfak/9g4q7miv0UiSQ7g+kXChYLJ2SSgtIXNxcqd3MVWKFYFWtapy8lre99BsFonNtqf55Al0drEmhQY7lCz5ceVyNMd3/82St5WYzfDO4nU8+9Jz+AWUL1TdpkMw3zY4gfGCEzLkpPtG8N6rnXC3y8kb7DROaFDlG+zatenCmusr8M4IREQkzS2BwU0KX+AUhR5d+hEaWofIu7eoEVQTP59AvvxqKR6aKiCAE01JUsQQ+R8nWzv/PsrCyUokEgF7tcCkUUYO7Q+j36DCjeOHPNORyDv1iI5KZczrvuXKPbp9I5pJg/OG9FaNZRxYHgNUnDuSVCqge2iHXl/MM424Hs0bI/P61KG1gjO3AnnpjUefl1YU9uw8z/njZxBFaNy6KW/PeYXMTC3PuNk/smhscYVIFQmDSYpOZ0Glss4pkTECQ0e1xcu7t81tmM0WPpz7GwvfNuHhLmX7vjOsWWFgxHOFp84UVqlYVPFOQEggiWnJOBpdyZamU6V6yRFxD1cvJB4WDJF6FIKSdEUSNWuWLmLq5eHDK6++zcUrZ3Gwd6R+rSbs3P83zgleKAU7QmmIyWLkLhGlavdB2JSzJYriNmDbQ79774H/i8Dke//KBYMx/43V64u/0VKppOJ8CGXOxMQl4ucrw2QSuXRdwoBxRW9LGo1mfv1+B5lpqTg4uzL2xV4lVq707NOYBTPOo9PnYG8H362WM/m9bkUeb8KRhKRkvD1lmM0iV25KGFwByaAVhe8++5vRfWIIrS5HozHw1oLVzFv2EvWdGhGRnb9S8UHBu+JQ0VpdFQWFXIla1pMZC3fQuL6ZtfvkJLccTHiCtZ+hyhPcT5wvDru3neT9V5QIgoBMBm+Mk/Dz+iOYTUYUSjnDRncpUxWYWq3gp03D+WT+fnKyjEye0JEmLe5vRRQz2OkdGDRqOAcP7kYQYHSv5/FwLZV6CwDV/IPz6+M89OqKgoX/OqQyGTkaEUcH64dPzxRR2RW/FVW1mnuFRDEaNQvlzx03GD/CuuDcuMNEkxbFTzr/7LvMqSPnEJEwZFR3qlUv/rlLJBKqBNfjx1WXaN0Utu2HJm07FHl8gyY12LQrgtH38oL+3m2kYdPHL+p6H+fP3iE54iBL71VifvbTQa54uZQY4fu3YuS4p5i8YDXd2xqIiBJQutUr9cI9+m4aLRvo8HC33rPeXRQcXHqL3340k5qcToeujWnykIl1YZXrhaU2DB0wmoMeu7h95yY1A0Lp2qHo7en7kEikvPTCZDb+vYqc7EwahDakc7vSR4gd7Z1p2zyPMEolUizkjVkP/r8seKJMsHKy9RhwY+LUCCY+a8eZSxKCajd+ZKuLiW8M5LOPNyAng2yNnGcnDiw2UvbZknVMGJREzWA54bfS+WTxWt55v3gtV4VCxuzF4zi47wrGDCPvzKuLg2PRlR4vvTmIpR+tQyXNIksjZdQLA5FKnxyVbrMuhdDq1sicWi2hbg0DKcnZeHg65qtMiVGmA9atLI2++Daz5SV7bD0uNKndj/TMtvy9+wZ6V2dUFgcscSrC8SZGXSufp2JRcHBUk5BkIsDPet9iEsyEnbvIb5+5kJ1jYfa85UybOwFHp9L7hDk72zHno4IDVEmDXXWLGy+MK7z4oKxo274Tu5O245LliVaeg1eIJ5yt0Es8cQitW51nXrnOCyNlODnJWbvDidmLClZcVQaatazBn1HNmPbBZQRBJLBGI3q0L1ry4Oihq8SH72XJVCUGg8jbC/7g5XfGF5rA/SBGjunCpQshHL0RS7s+QQSHFE3QWrerxbo7CbyzxKoUFFC9Ed3bVa6OUmlw4vDlfJG3sUNlfLHm8n+WbAUEujNt3kRu3kika3P7Yqtqi4K9g5L45LyfzWaRa1fiWTJYQ3BVGV/+uoXMjC506pZflqio+eBhwtWpXU86lZIs2anUjBr2fKk/S3Fo37orF84vhRgRAQmZ3klQ8qZMkXhiyFZmhpalc5bzyrNGTCY1S742MfaVgTRrEfTI+qBWK5gy23a3e7mYQs1g64QZWl2OSmJb5YpCIaN7L9uMtO0dlLwz51mb+/SooTXIMBhMuQKOUbEUMDktsG+vKX4lVRn6UBUJFyc3nmrV0pr3dK9SMSJBjxCY56lYHOEa+Vxn5r8bydPdNRgM8P1KHeu+c8HOToKdnYRXRuvZv+ci/Z9uUaH9tnWwqyg0rt8CdzdPLl4+g7e3L80atmHP2S0V1v6Thm8++Yt6gXf4+H17flmnR+Fai9mLuleonVZJGDS0LQxta9Oxxw5eYMkUa3RCoRAYP9TCyaPh9O5XcuVs/YYB1G9om7q21T2h6EKnxwlfP08uX79Fm2bWZ3Tpmhlf/9JHdf9NUKsVNGhYdg9TDw8H5E61+Pa3q9QOEVm3FVo3U+TOhW9OUPLO0jMFyNZ9PDwfVOYYVB7YqdS89vI7HD6+D5PZRLtWY5n0XtnzBZ8YsrV+1T/MecNCFR/ry79gmoEdZ6MeKdkqLTRaK8HIyDQTE2ciI/PJiTg9Koya0I835q6haT0zN25Dk/btC91KLczkuigUFWJ+0vBgpaKDxJRr8QPFEy61vZL3PpjAmVN3kEml1G9yhgd1gLV6sVIn6Ec52AX6BRHo9+S+wxWFtDQNcnMkg/tYo5ELpsmZsjjmkRKt0kKhVJKaZsbJUULEHSMXrppwCXpyUhQeBfoOas5HC25x4rz1/YtN8+btWRWX4/ZfxZiJPQm/3oj42DT6jVQTffHP3L+Jooi5BGOAwsagwop3HjdUSju6dexTIW09MWTLaDRir87bLnSwl3DicBhPD29b6c7wZUXrLu14Ycp2HNQGGtZVotcJXDh3m4aN//uTy30EVvPg3SUvERebQTcPh1z7hsLw8FZWUbgfdblu9iQpVYMpSQcRZX/5tDoNqenJuLt6olJWvMluYZ6KUDzhUihktG5rzV0JCHRlysLfmPqiQGa2hZ/X2TF7cdEWJBWB4ga7dbfvUN1i90QMdv8WmIxmHB4YvwRBIDE+iTu3EkvMg3pceG5iL96a8RNmXQJd2quJirGgyrlJm/a2C0n+2yGRSJj23kiSErMAq8lyRSI5KQuTyYK3j1OZ02HMZgt3bqdgb68oVJj0cSG0pjehNa0m07u2eLL/aBIh1SR8v8pCt749Sjy/sB0PDSoqw2P3ScATw2KeGtiaOZ9E8MF0AYsFln6ZxiujHVi24A9mzHsyt9E6dq3PgR37+WSe9QUYM0zkjbm7aNi4cqQVnlTIZFICAt0K/N5isbBy+T6S4uJxcnVlzMReJSaPWxFGQ9NZov++St9GcDVJ4Ja2G0S0AUpHum5EniIpYyUtmho5elJOgOd4gvxt28ItDYoiXH6OzkAYQJGf3aeKC6/OGM/m7WdQqhTMWtTMJrmR8qKowe5Jzpl7UuHh6cCNaGeuR2QSWl3G2k1ZdGsr4ffv/mDi5LFPTPXwg3B2tsPX34tp44RcYd7vVoRz/VqTChfTfNJRFMk6c+ImB3afACQMGdWNqkG2WcmIoshnSzbgZheDSgnhd12ZPndUqSOd2Vk6lrz/G22baElKBa1QnYmvlSzy+SghCAJT3x3Bnh0XOX8wlT4j6xEUbNsCI3cB7uhMuAaa1QjgNHfxxh2iNJXb8UeMJ4ZsBQS688zEUQx/6Tua1Ye3J7kQ4Cdn5z9pmM2WJyop/D7MZgtebvlXs472//2KK1vx1bK/GNQphiaj5Ny4ncayBX8wfe6oEs8LdqjLr2sOsnqBDLXa+txfm7+PVI9WpKfoS0UCIhPW8PNnAHJGDxUZ//rKSiFbUJBwhYve3LpwinPp1wgINDLkGZEajoUnS3t4ODBi9KPPaylNWfb/UDQEQWD63Gd5fcKX1KuRQpvmdvTsbE+rmwb2H7zM08PaPO4uFg6LIZ8DQmiwSFJC5v87slUYzp+9zflDW/jgbSVGI0xZuJoX3x5nU/TrwJ7LtG8QQ+8u1rSYy9cz+GPFPzw7rnT2RL98t535kw14eVjb+W1dBBfP36VBI9vy5cqLsEtR7Pz7GDK5nGfG9yhSmkQikdDjqUaPpE//VjwxZAugapAHQdXdmf2AgERWDrl2PMXh+pUYNq7eiUphwcnDj/Ev9Sp3FaPRaOanr7eizUpBFNQ8/2r/fMnfMpmU5EwHklO0eLhLuX3XiLEUxqpms4XffthFWnI8gsSOcS/3K7XI35MMiy6BJvWtSZMhQXIcFCk2E2dXpQq1Ok/Ap06ImZ3GTHKc7G0mAaIo4uqclzwgCAIuziUkE5QBGVnpHD73Md5eWSSlKHBVDQE80R/bwdRR1+jcWsbhMwZ+/uQQEyYLNkb3Hh1sLcsuCn9vX0vE1RuIiDRt1ZKObboXeex/GXK5lAZNqvPykMhcV4u4RAuOjiUrnOt0Rr7/bBMWQzo6o4LxrwyskGjYgT2XOHP0DGYzdHmqHc1a5pddqFG7Bpt3n6BfdyUmk8hfu6S8Mt325OkTR69zaPdxADr1bEuzVk+OrEN5sX/HKRa+aZVoUSjg5Wfh4MHLDBpastdrXEwybdrnjXO1a8j4fWtyMWcUDr1Og5dH3jRdMxgiEtLJb+pSPoiiyA9fbiUn9Q5mM/gF17lXcRrJP1v+ZNFbSrJzLExd+AtT50woUAD1b0dEZDh/b1oLBnDycmb0yBdRyMvnHFAYnrhwUbtu7Zj7iZ7DJ7R89J2OOk2alUiaMjO0rP9tIx9N17N4qolODW6y6pe95e7L1x//yfBukSyeomfa+GQ+XriywDFvzXyGZb96MOMjBcs3+fPa1CE2t//9F5vp3jScD6bomDoumY/n/14pBtYlQaMxcPlSDAnxRauGl6ndh8QPszWCTcQZwNHNm/NhVrKl11s4cE6CT8sEhEA92UEybkm0uYmURUEQBOIT3EhIsnpI3o0xkZxS8Y7yxy58yXcfp/PxfJFfv9Rh1K0hyKzCX3WTzq2tA2W7pgqkBgMx2nQissMqvA/lRbBDXYId6tLZ5TqdPa4R4h9v070+dvogtw9H4hZXBfc4P07tOsGtyPBH3PsnB8+O786sj6XsOaTl751aNuxxpUuPwquyHsTXyzbywuA4Fk01Mf/NbL5cuqrcfTlzMoK46/tYMk3Hh9O1nNy7lVs38z/H/oNbEZXZmBkfKZm2VM2wccNsXvBdDYvm4pEdLJmmYck0DacPbOH61dhy97u0EEWRiJtJXL8Wj8VScTsLSjsVqWl57cUlWXBwtO3eNG9dm982WnLH81/XGWjdoeTvwcOo26gm67dYx0GzWWTdNgmNmlQrdTvFYfvm07SseYvF78hYOlOGm+wSp47fZNfmY7z/llWg18lRysQRJo4eulah137c0Ol1rP9jJa5RVXBL8MN4SWDdn79VyrWeqMgWQPvO9QgO9ef61Vg6DvC2SezvRngiPdqbkUqtUZTWTeVs2v+wfWMZYMyTdnBzleLvpUGjMeRLAnd0UvHWzOFlal6flUCT+orc9mtV15GamlOizk1FIvJ2Mr98/QddWpk4uUvAybcRQ56pmO2sNl3aMe/TfXRtY+HYOQl1m7awOdo47qXe/PT1VtZsS0RnlDL8pZpYPG6wXy4tVdSla8spzJj7PQplGga9B11bvlAhn+0+4pIikcpv4GBv1auRSASqVzVQ1dOFk2EyIM8sPCtHxv5k27S4HheKqlS872f28L2+Hn4FZ717roCpQ7YL4RFXqV41L8k6LSOFW5E38PYq3FD+vwRHJxWzFz3PmZO3UTjKmbWgKhJJyWtaqZhOVX/rWGOvlhDkZyA7S1esBl9JOLT/PHNfto4vgiDw/AgJ6w6GUb1G/mc4dFQHoGhh0qJwcM853hqXZzL+2lg532w4T83a5beeshUWi4Wl81ZTr1oyCoXIH8udmDH/uQopqnp2fHdmzvmF4X205OTA7hNuzJxvG2EKqelDYsvuTFl8DJkMajVoQusy6Iv16tuMjWt0zPjoBgaDwICR/fHwrLgkfoPBxJ9/HOTPH/Oir13bSlm9NxKpTIZWJ+YWrmVkg0JZ8RGfx4mU9EQU2arc77Ad9qQn549AmkxGrkZcflijudR44sgWQBU/l1JZ5Pj4OrHniECfrtafU9PMSKTlD3VmawQsFktuNCYxBVSqirllycnZXLmSiNnsjlRqbT8uARwcyj64lgWrl2/lk3eluYPTvE/Pk5bWvEwK5g+jY9f6hNQKKBVxvg+pVFIgETQi20oCtKk5XJOosQT4cetu8YRLpbSjW+s3yvU5ioLJZOTizc/x9jKRlW3B0UGC2SwScUdBqJ8SB1VnPv5mO326W9i8V+Su0Jrk6PyVii76qly/EodfgFuleKGVBYURLqsQrbpApWKAf1WuXbyOg9kFAK1dFlUDque2dfXGJf5eux67NCcMau2j/SCPCSqVnLYdSlfRl62VYTIZkMmsY0FMgoDavnwTm7uHCxGRsdSqYSVxN+5Y8PQuWMhSFoiiSPj1WG7cNtCkvnXMiog04+bpUiHt24rd2y/Qv0MyndpYc5paNMrhj98O8NzzRbty2AonZztmLXqes6duo3CwnTjfR9sOdWjboU6B32u1RqIiU/D0crTJRPvp4e2AdqXpus348cvNPNXJxJ5/NPToZO3Lrn/M1K5XjYCqzXl7wa+8MtpIarrI+p1OzF6UnzCaTGYunL2LIBFo2DjgicytLg5uzh4Y1Tq4twtjEPWonfLmPoNRz1fffYgQpUAsjzEiTyjZKi38/F2x92rE7A/P4+slcPG6krffK7/31sCRvXhr3ibaNrVw6bpA8w7tSvWyFYcfPt/AzNftmTo3mY6tVRw5ZSC0WZdHUoX2IFQKc64gKUBAFchI11QI2YLSE+fiEOxQlz3r1uKfeJT2ATLWHVOSXPN5vO3dK0SbJezGP8QkXsDDNYTGtXuWGIVLzUihdTM9g/u6MufDFBzsJVwIg/aN5yEIAk3q9CE6vjbf/niVNK0nbu7uZEVIcisVZVHpCP98S79OEg5vkXLStRFDRz0Z4o+2Vip2ad+bmNhoEm5FIQoitRrVoXZI3up/184teKdVtd7L/x9cq0wYOa4vr72/nga1zNy4A516dy33WDN8dEcWzY6kRb1MDAa4HuPF1Hcrpjhk17ZzjHxKx+/rsrh2w4BeD3tP2PPhV60qpH1bkZyYRueOefepeqCM1M0ZFda+nV3piXNxuHUzgRXfraN9MzP7bgkE1GpB30EVc88ibyfx94YjKBQymy2/DJo0Jk5y5rPv0zl0XEtKmohP9SY81dJqt/PWuxM4tP8ydmoVsxbWwaA3IZVKEAQBvd7Ewlm/8FT7LCwizF/rxMwFY8oUVQxVniBGXYuzOQCPLuBgp1LTrc9T7NmxDcEoQemm5PnBr+X+fe/BbaginVBT/mjif4JsgdXQNSe7FdnZegZ7OVQIKapbP5BqsycSeSeFZ7u5VBgBAbCT62jR2I7aIUrCIwxYLHq8fSs+n6gkuHj6cfT0ddo0U5CdY+H4eTk9nymfIXJlITkpC0lyHPPesH7xR/S20Gf2OjS9p/GgNktxKIqMHT23mk4djjCvj5R/jl1jxZpbdGv1crFtOTm4cO66jJfGwrK5nmRlW3h1WhV8PfN01vx9quPvU52j51ehzvkNRaTImePehI8cif22Lfz5gdXstmt7mLnkPDpdG1Sqoo3JHyWKqlTMMEq4FBaF8ZqeVrUCeW7ERCwWMyAUeO8Ei/DI7Lb+zahew5t3l7xEUmI2fdzUFfIdUChkvPfBWG5FJCOTSRhQzb3CnsW1sEjef0lB7y4eXAk3kJZuZucR8ZFHNtp0qMf3qy4x920RQRD48lcDHbo0eqR9KA3W/LqNT9+TIpdbp94ZH5xE07NJsfqEtuB2RCJrflrFgikKcjQWZs/72aZkdpOoJCtby5svWsf86R8YeHZ819y/u7qq6f90C8IuRbFwxrcE+JiJipMxZtIQThy9xuvPaagTar1GUGAOm9YfZ+gzpYvCPTjO7E+GG0ofRLmS4EDnShE4FUWR1IxkZFI5zo4uNGnQksb1W2C2mJFJ81OinJxsFKKqgM9rWfCfIVtgtbaxd1BWeJt16lV8DkJympT0DD0uzlIa1VPyyx+ZHNhxlJatH201z5iJPfj9ZwmbD8RgFhW8Pr3fE6t6nZKcQ3Bg3s92dhIC3PQIvrrcqEtJJtdFvrzScwzpb30dOreTs3lnOBaLGYmk6HuhUqpwUQ9h4uQN+PmauX7DgfZNXipw3K2712jc6AgTRlkn0ItXEpnxwzHs1eSb/FzdzGg0hieGbEHBSsWc29c49eUZHNLsiZBriGvbnUFdOhd5n6rWCCIq/i5ORnd0/Ld0cyoaMpkU3yoVK1opkUioUYx3YVlRr1F1/toRwbD+DtSrpWTlhkwcVCb0etMjjc4HBXvRtlc/pi05hEQi0qxt2wImyE8S7BRm5PK8d97fF7IydeUmW5vW/cMH05UoFAJqtYTXxujZt/sCA4cUHzUb9/IA3lm8impVdMQlQavOHQvNE9ywYgtfzZciCDJMJpG3FmzCq0oV/H3z3vsAXykZx7PK1P/iUhcqUuDUaDLy3c+foI81YJFY8K/jz8gh4xEEoQDRAmjbujO/Xv4en7Rq/9tG/LfiqcGdeH3WSoICZWRlW5g01plfNxX+MHdsOc2FE6dQykHl7MeLr/ersBWqIAiMnvDvKNWvVt2DVT/KGNjTgkol4fBJPf6+Tth7JxCjziBeWbLJdVEvr8mc/36azGDLcqZ29XbUtLRBb9AR0rFwopeSfoshg/OebYM6MqSp0aSbgzhw4jydWipISDJx9qZIW/lt3Hg0xsW24kFPxb++OERoTMPcbcHTx3cTWLVOkQNh/97D2O+wg4iIG7i5usDhR9bt/6ES0bVHQ15+bgeXriRjsUBwkJygqnaYTWZ4iGzFRqfx01cbcFIbyNKqmPj6YLx8Ko5UNm5WncbNqpd84BMAlZMXF67coWEdBVnZFi5eVzDYq/wFURKJBINRzE0J0elFpNKSF83u7g7M/Wgi2Vk61PaKQneERFHE1cmEIFgJoUwm4GRvpEvPpnz03U3mTLaes+wHE/2eKdlXsyg8CpHlLTvXI79hjyPWXaT4swlcaXCBOqGFO3b4evkzcsxYdu/diiAAF8t+7f+RrceEFi2D2LHRlwmj9Pj7yvh8uYHm7ZoWOO5meAKJEYdZNsu62jh0MpKNa44weETlJEw+yVAqZbzw5ghmfbINpcKEq1d1Xp/UnVs5V3ItfkoyuS7q5bVXduCrn3YwqI/I/iMiJn0rm7eiJRIJdqqiI2r+3vVYv3l7rn7c1t1magU0wyRvwLwf4YNVMeSo1dR+rgWxulsIQuVUKprNFo4fuYXRaKZV2+qljqAFO9RFqjuRj+hLkZLtryoyYigIAl069KZLh94A/H14TTk/xf/wpKB91xYEOF5kUG8FF68a+W2zB2r7gjsLP3y+jmUzTahUEjQaHe98uJ53F094DD1+/Hjh1b789PU21mxPwmRR8MaM/hWS8jL8uW5MW/QLU18UyMqx8P0aO2YvamTz+cVVvQqCQGqmCo3GhFotISPTTLbenpCavmj6DGT6MusKqueA9gUqXUuL+4Tr2YB49qcXFFlOO3MBV4WWoIAauLl4lLr99LRUlKJd7jpaabAjITG+SLIFUNW/Os+PseZxHZiyoywfC/gf2Soz7uunlDXCJJNJmT5/LCuW7yUrI4uOXZvQtGXBLcQrlyPp1THvGu1byNny0d2ydfpfjl++20FqXDhqOVhkfjz3fHcEQSiVyXVRCulN6/ThdnQQCz+8iKdrKO2alG6FZrFYOHj6J1R2t8nOEQj2G071AGsysq9XIGE3hzHxre0oFSIWU33aNrF6hwnCAG5JtJiDZNxJ1bNfragUaQiTycwLQ9aQfNQOzBLUjY7z01/DSy0tEFDDicRwLUrBDqNowFRFgiZAwGiA1CTN/xTn/0UQRbFcEfKRYzqze4cLMz6+gY+/F1NmFy4f4eKozyX2arUEp/8nVakP4+L5O/y5citebmbS0hS8+ObACpNx8PZxyrX8UijlzFrYvNSLqWOHr3JwxyFUShEH9wAmTOqd+/146a3hzPh4Iw4qA1qjIy+/bdWTbNi4Gg0bV6uQz3AfD0bSQ5Un2K+uxQ18uHHgOJa9N3DSOrDXZQc9BvalUb3SmYbXr9+EQ+EHcNP6IIoiWS6p1K3dAL1Bh1QiRSarvBSO/5GtMuDX73eSHBOOIICDexATXytb5aNareCFV3oXe0yN0CocPiZS717F7YUrRnz8/v9NZseOXKeq63WmjbGunI+ciuGv9ccYNNRqg2KryTUUVEjXX7mNzHQZkNC07oAymVUfv7CWCaMv0KqZDFEUeXP2T3hkz8PJwUr+6tZoD7QvcF55PBVLgz//uEDaYWdcLNbSf/1ZR75c+g/T55dsGPtgG+mJemLcL2HvoMCztpRmg1pxdM4SlGkKchR6Mtr2yPtc/8MTiYvn7/DXqm24OplIybTj1Wkji7RhKQndezWme6/GxR6TlinDbBaRSgWMRpGM7P+WVpMtEEWRjb/fz3uSotNZmLb0T2YvGl8hbf+zL4zY6CSatqxFaK3S69nFxqRz9uAuls1SIAgC/xy/yYbVhxnyjHXM8vZ1ZtaCceXua2nw4CJatIjcPB1GiC4EBHDOcGf/3p2lIlsp6UmcPHmEDGUKaZIkPLy86NNlEJs2ryU9OgOLYKZmo9oM7DOiUj7P/8hWKXH4wBWC3K4x9TnrpL99XwS7tp2lx1Nl36suDnXq+RN2oQlTFl5ApQQj3rw1s1OlXKswGI1m1qw4SHJSGh06N6JJi8eTfBpxPZrhnfNyEFo3lbP50/zCtbaaXN/fcryBD2kaE7ojX/HJLBNmi8jMhXsJDHwdhaIg4SqOQOiMt2jVzPo6CYJA/55aDhyIxMmh5FL7hwlXlr4B4b5W4ZdQ5QkqIsqVnqpFZlbmhs/lKMlMy7H5/DMnolj+3lWck6tTnepkCncZ+Jw7vy09QvAtaw6XKIpcP74bl0HV/hfhekJhsVjY+PtmvpovQxAUZGUbee/zDcyYN6bSrjl64iBem/MnHi4GktMVjHt5UKVdqzAcO3yV44fDqOLnyZBn2j8WLSidzoSftwVBsI4RKpUEBztDCWfZhq+W/UXzmlEMaith1aaLJMR1o33n0o0XYZei6NMlL9LZoZWCrR9FVUj/yoP7hKu9yxUOPPQ3rdZcqNByYRBFkeW/fI1btB9BgjtacrBzkXIn8iamqwJeFqv9UcSxW4TXvkJo9YL6aOXF/8gWVpG5Y4fDkUoltGkfilxedGLh9auRTByQd9s6t5Gz4IeoSiNbYFV4FsX2iKJYYTpfDyItTcM3H6/FQaklM0fG6IkDqRrkicViYdG7v/HqM9mEVJfx+c+bSE/vSpceRe9vVxYaNKnB33suM2m09d7/vctIg6YhpW7n4STMc3vOsuoDC1V8rKvtj+fpeP2zowTUyC+oevP0Xm7cvIKPqx9tmzyD/KFws2hxJTY+lio+1v4dP6PAw9V2svEg4VIbrbllB1LtiPGvGMX5vkPq8vcvf6K8HYqAQIbvLUY+38Xm8/dsvY5dkk8uWbNP9iVsbxaSHGXuAC0IAnKTQFZVCbci/2di/Shx8fxd4mNTaNA4CB/forfSMzJ01KiaN6k6Okiwk5dYVVIuBIf4MOfDSfcEoiuH6Pz6wy5S4yIwm6FG/YYMHGKNeG/eeBwh6wTzX1Vw4UoMS+bcZeb8ZyulD8XBzk7O3Xg5RqOIXC6QmmZGZyq/92VamgY7oujX3br4n/4KTFl8rADZio1OY+3vexEtFvoN6UCN0PxG44HVvDh9EFrcC1LevmvCycWl3P2rCNwfs71qX0GTmI1adCBDloZdDV9uSWwbZ7I1WZApQSpY53Y77ElPjMdssaC25G3l2unsiY27Wylk698l91oJyMnWs3DWT1SR78LNsoP5M5aj15uKPL5uw2C27c/7+/b9Rho0rvxojyAU1DCqKHz7yXrmvJrDgikCy2aa+OnLdQDcuZ1Cwxqp1A6VI5MJTJ6oZvuf5fecLAsaNKqKwr0lUxfD9KUQkVKbbj0blamtYIe6+Nm50NnjGm7qTFTKvLwVO5UEk6MRjT+5/6IS9jKk7S42/ZrAjLdPsf3QogIebO2ajGPyu57MWSry6nSR1OQeeLqVjmg0DfYmyKwk7dgR0nbtQx+m50a0D/uTa5XbU9G3igufrumL54AE3PrGMXd5B+o38rP5/JA6nuhVed6ZOmUWIbU98QpQYxTvebeJJmQ+RiTVjDb7V/4P5cePX28l+uIGarkdYPV3v3Dh3J0ij3V2VnHjjhSz2ZpzmpZuxmCpOP3A4lBZ49eubWep7XuNxdMEls4QIOMUF85FAnDl/EXGD1cikwk0baDERXmX+LiKEz0tDZ5/bShvL5Yz60OR+d84Mmmy7T66RcFstqB6KO1S9lAIJTkpix8/XcG7LyYy//UU/lyxhtsRifmOqVnLB4u6Ee8sNrD4SwMfL3fkuRd6lqlP16/GsXHtUc6fvVOm8wtDsENd5v3YBp/nYohvF4kw2odaLw+3eZxRq+wxKYy5P1tEC1KVlFqhdchQ5Nnz5DhlEFqjcmzU/t9HttasOMC7rxgJ8LNuG7m7ati66SRPD2tT6PGt2oSyJiKWdxZfQRDAw78Ozw0qvcHokwQ7uQYXZyvjl8sFAnyMaLVGZDIJOTl5xFIURTRZ2eVOrLUFETeTuBYWRY3QKtSsbc1B6Pd0K/o9XTFqy/dXS/2f1vDqkih+eE+JxQJvfCTgMrAtEtc8F22HnFO8NNIa+QoKlNG6ZSKp6cl4uOXpFykVKvp3eh+dXkewj9ymsuuHIYoiCTG/Mn5kJAFVYP6Xu4g2jMvN4ypvhCs4xJNPf3m6TOcOGt6QEwejuHrwFgICwa3tGDmuKX0G12XmpK2kx5kQXDRMWVyNc8QX8FSE/+VxVQZSU3NAc5Ox460zbtOGIm8v3kfDxoXnAkkkEp55fhBvzt+Mk72JbJ09r04b/Ci7XOG4fD6CRW/mRZqf6ixh3cEIGjauSkJsOpAXQZJKLfyzP4xhzxQ+vlcUsjJ1HDt8HaVKQbuONZFKJQRW82D2oucr9Dru7vZEJrhx6Vo6dUNlrNhgpEadRvmO2bPjLG9PFLCzs5LdeZPlLPrxCK9Nzb+dO2x0J0ym9hj0pkKrSm3Bji2nSb59hD6dBY6esXD1UgNGjrE9gl4cark1YPJ867i6P70mMVmXSFDZ5pMrlUrp8VQfdm/bikyvwOxoZOyQSXh5+JCalkrEtXBEQaRzh+5U8favkP4+jP/3ZEuj0eLumjcxerpJ0Fwovlpm+OhOQKdK7dejRI5OgU6nQ6WSIIoiMQkSVCoZAYFu7D9qpFE9DaHVFSxfnYGbuwqz2VKpwqc7Np8i8dZRureDfw6IXLnUnEHD2lb4dYId6kIQeL3syJjPY62VjeM74uSlI9csC7gkGPIRzLRsOJEYR500scDLrVKW3Wri9t0b9OsdSc/O1oHut49Fnpq4FdF9QoURrrJCEASWfNOfjAwtoiji4mKNhri4qPl69dDc4yKyw3DRFi1M+D9ULLQaA24ueT8LgoCyhIKqmrWr8O4HL1Zqvx4lqof6c+R0HO1bWBdEh05ZqFHLmoMjVbnw8bfJjBjoxIUwPVlZFjyl5ROnLAnJydl8tvAXJgwzkZElsmDmcWYvGlMpuWKCIDDt/WdY8/s/rNyWTMu2dWnbMf8WmFKlICMrLxKfnWMp0lBaJpOWa2y/cOI0y2ZZx6+aNeCdRWFYLJ0qLKr5YKXig7m3thCuJg1a0qBOE7I1WTg5OOcKMfftORjKFsQrFf7fk61e/Voy//M1LJhqjWx89L2ZMa9UXv7Vk4jxLz/N24vW4OGsJyVDxpDn+iMIAhkZWtx8qrB2UzQN6ypoWM+ODHOVSleYv3DiFMtmW1/YhnXh7QXnoBLIFlhf3uBQ8J5yf4su7t6/PHj3qca0pWeY8LSKc9dEjsbVRmzonvtye9tncSViG1KpmlYNR2BvV7bKLqNJj4tz3kQgk4GzRMB821SplYqlgXMJ9h8lChP+DxUK3yrOXLjuQEy8Fj8fGZt2GvAPqv24u/VIMWBwK778KI4dB6MxmQQ8A2rzXOsQRFGkRZsGbP9zFxZLJiFBCrL0znTsVrk5p6t+3sWHMwWc7smqyGQZHNgbRtcelbMDIpNJGTW2c5F/792vGQtnXmLsYA12SoGvf5cxZU7e8ZocPb8v30t2Zg6dezQtl0Cs4iEOp1KBxSJS0TvIhSnO20K4ZDI5Lk4VY8ZeWvy/J1s1Qn3pNXQIMz85jCDAyBe6UMXfFYPBxA9fbMagScUkKhk3aQAeno6kpWn44fONKCRajKKaiW88XeIE9CDMZssT54zu6+fC+0tfzNe3+LgMvl22gteeMZGQ7MDXvxro1KMBk2dWTEi4ODy86FIpRUTR+u+HL7eizYgjRydhwPAe1GsQmO/YG9fj2LhyJwqFiF/VIIaN7mTTNYsjLcEd6uLmZc+PR2+S7daMKmPaEpuaSTZKLp2+isW0lh8/l5OeYeHV6eH0aD2vTBGuoICa/LrahWYNc3B3k7D4MzP1qvchy2xXqZWKFY2iPBWzqVgrrf/Bui34ztzR/PTDDjTZ2dSuH8LQZ5sDsHv7OS6eOofFAq06tqR957qIosjvP+8hJTYSrQF69O1UqL5fUTCbLUgkT5bfpSAIvDb1aSwWC4Ig5FbGLlu4hrb145k/zYlPfsjhVqI3k6b0x929/IrtxcFkNOJgnzfGu7sI3Iq0vrNHD13ln52HUSpFPKoEFXDv0OmM/PjlZozadCyCmudfG1Cq+aUwqFRyZi8ez/7dlzCZzEyfXy9XX89oNLP43V957zUDPl5SPv5hMzpdT1q3q1Wmazl5VGXPoRt0a6/gfJgRncW70hbnuXI/js7kuDkRS6ZNhOtx4bGSrZxsPb/+sBNtjobmberRocvjsSmpXdef2nXza2t8/fGfjB8YT41qcrKy9UxdvJK5H73Il0v/YP6bWlycpaSkpjPvwzXMWjC2xGuEX4tl5Y9/4eVqIjFNzoRXhxJYrfQKuADrVx0iKiIcgxF69OtUYV5gD5LAP37ZxUczJajV1pdSRMDoVPWREEW5fRWOn71LqyZyLlwxYBJ8EASB337cTe+Wd2jWUI7FYubtBX8RUPWF3MEoPV3D2uXrWDbbmtC/be9F/lqvyK1MKg/a1mqFj78jYGZ/ekKuVpfh2CGWzZEjkQh4uEt57YVMNm85R4OarUt9DYVcQdeW7zLt/VVYxGxCArsSWu2edEQlVipWBoId6hLsAH73kvrv36//GrZtOsnVSxG4uLsyekI3FIpHP6Sq1QpeeqN/vt+dORlBetQ/LJlmJbhLv9mDh5cz4VfvUs/vKj1HKRBFkdkfbqVKwNgSPRmNRjPLFv6BgzyFbI1A7cZNGVDG9+rG9TjW/74DlcKCq5c/Yyb2qBDy9uBW1dWwOOpXi2NAT+vY8NMyJbM+lRRbqVlR6N63FfM/+5P33lSi1Yp8s1LCm7PrcjcqlQuH87Sstu+7yuaNjvnyUL/8aAOThicRFCAnJVXLe4tW8f6S8qvtK5UyevUtqId26UI0fTrl4OdrvU9TXlTwzocny0y2xr/Ui80bXXnnoztUCfDmrZkdy9Xv4hCRHUaMNp2YrAxiU+0Qo5Q43DZR3WL3xBEteIxkSxRFPnjvV+a9ZcDbU8byNXvZsUVHr76lU4StNBhTqVHNmvzg6CAhOMDAiaM3SIiJ5pPvpLg6S3hjogsOymybmlv10ya+nCsglSowGkUmL/yTdz94odTd2rHlNN7Kc7w81TpYzlq6BZ8qY6ji51LqtoqD2WzCzi5vAHR3gds5uqJPqEC8PHkAa3//hz/3xeLl68WbM6wh75SEOJo1tD4TiUSgW1szN8MTadq8KgBhF2MY0N2MTGYNjT3VVcGMZbeAikmGLSxf4JIdGI0iynsVjdk5IJWUXbRRbWdPt9YFvxf3pSGI0gBqRLnysedx2YL7q8/79+vx1LJWDlYu30uoVxhjpyi4eSeZJXMSeHdR5elVlQZHDl7k3Yl5yVtjh0r5buMFzhy/TKPaJvYfFnlzogsDe4hcvnAH3yrFb6399uMuXhqWSmj1exIpP5zi9q1QgqqXbsGYlaljzc/r+fhdGTKZwD8nrrP6VxnPjO1a+g9ZDDQaA26ueT/L5QISwVL0CRWI+g2rYrEMZPqy40ikUiZN6YGrq5ojB68wqGee60jvLgre+eg2PEC25GIaQQHW5+buJsXLJQej0VysHFF5IFdISdfmjfMWC4jlECkQBIH+g1sBFVPIVBjuV2Vbk+QzuBHt88QTLXiMZEuvM9GllQZvT2vkZNxwJdM/CntiyFaOTobJZEAms34Rb0aaiU/awR/feiKRCBw7reWH3zPIyHYpsS1RFHF3NiKVWgcquVzAyb5sgnZh52+wZIq1HUEQGNYHzp2OoIpfQV/F8qBT9+Ys/WYr0yYpyM4R+WWDnKlzSq9rVRYIgsDw0QVXRDK5Pckp2Xi4WweeS9ck9GqUt1L18nHi0gGBLvfSu1LTzKSkGti59Twt2oTi6lqwxD05KYtfvv0bmcSIo5sXYyf2KjF69+A2WfagJoyauY3Fr5hISLbw4dcKxvSrnJyQ+4PImYgEHCT587j+DYSrs8c1vn3cnalAJEXf4q17Vao1qskJ9EonI0Nb7m2fioCvnydh4XdpUt/av7BwM+FX7/DtB/b4eMnI0ViYuSiZerWdCGlZMmHKSEkltHoeeWvTxMKtm/GlJlvh1xPo2cGca4vSoaWCbYeiS9WGLajf0J/501W0bmLGzVXKNyv0NGlVOXmfhaEwG5vAal6cuSDS4F7++s07RlzcXfIdk5UjuadHZp13EpJFdm07R41Qv9yq7AchiiIrftpDSnw0RrOM0c/3w7cUC+969f1YvM4db48UAv0kfPStloHPFu9q8jhxP5oVrm9JeIL3vyKidR+PjWxJJAJpD8idmM0iRmPRxz9qDB/Th9fnrKd5fTPXIgR8qtahfd0rSO5FLVo3s+Ojb7N59Z2nSmxLEARSMpTo9WaUSgnZORaytGUbkB2dHYmKSSbQzzpYXb5uoUpNd5vPP3/mFtv/2oedQsTJw59xL/UqNITftGUNBKEvMz4+hVQm5/UZPXB0KnulXUVg3KS+zJ63gpBALYnJEFy/Wb6IXkioN0f212LJ19fx9YJ1m7N4ZpCOEPcDfL7wEBPeGIV/QF5ypMVi4bPFv/PRTBFHBwlnL93kp6+3MvG1fgUv/hDuE4h+9eNZEd6Id5YeomcbCRPHCHy7/mMaVx9TaS/+w4rzV3KcuPN7JFWkZwipd4OxwwZWynXLg/v3678EvSG/v2BWNpUWgSgtnh7ehiVz7nD0TAomM8Sm+RDol4bPPbUSe7UElVJKsqEmA+qVrLfm7efL6QupuZHlPUckPDXSdp223HZ8nNh3VKDPvUBWWroZQWL7uJKdpePbz/5EJmahM6p4/rVBhfoLKpUyps4Zy6c/7MCg19GyfUPadqh4ocrSoEGjQM6dqsPsD6/i5CBwN8mZd+bkz9ka+Exv3pq3ieYNLJw8Z0CwWGjsd4TDB0XCLjTl6RH5Lb9++3E3bWtfo82zCjQaLW8vXMmsxS/avJ0tCAKvTxvCGy98RZvGeob2UbFm5VaCaozLrTiubIiiyMY/DhMZEYlS7ci4F3sVKj1xn2jtT67FjWg7fPQqqkerSIhOeeKJFoBw31D5UaNh4wCxd88AmoVGU6OawG8bof/IIdSqW/oXuLJgMJiIi83Aw8OBlJRs/vn7dya/YP0SJCSZ+GK1L6/bqFETczeN5d9sxNFOT7bOjhffHFImE1Kdzsjid3+jQWgO6RkiFlUwL7xqmzdjclIWv36xnA9myK3+VyeMXLrbgKHPVt6+ekVBqzVy5J9rSCQC9RtVxdnZrsgBJSkxi+NHI7DX72PEAOuAodNZeP9LN96enZebFxuTzvHtv/HSs3nbfjM+lPHWu7Zr4URkh/Hzol18/64qd9KduczA+dSXqa30rNQB4ExEAjfFbLLvfs3apQbc3aT8sVXPzRw/uj5du8Qo16H9lzl55CJSmYLRL/Sq9MRhAF/Xt8+IovhkhK/LgYaNA8T35/Xi4pFdDOoJZy+LJGhqMfbFXo+7a7kQRZH4uEwkEgFvHycWzvyRZTONudH6l2cbef/DV23Kl7JYLHzzyd+YtXHkaKF157Z06layFVVhWLtiP8l3L1LFR+DMZQWT332u0KhzYfjg/RVMfyEDLw8Z2TkW3lki5/2lpU/HeBw4fyaSuNgUatcLxM3NHqciIqAajYGY6DRW/bier+blkfe3FxiZNj//8/p04XIWvZ3nAPD7Rj1BzUYQEmr7uLN25T90a3CeWiHWcTAhycSPfweX6NtbUfj1h100CbpG13YK4hJMzP1CxdwPJ+T7nPmJtYeTHAAAy/VJREFUlnXb0DdVJP3USqRSI41CehNStfKHldFT+pR5/HqsCfJvvDOYE8ciOB2VzphXQ/H2Kb99QUVCoZBRtZo1amTvoETl3ogZH5zHy0Pg+h0178yx3YDaL8CV2YvKn+ioUsmZs3Q8cbEZqOzkuLnZ23zulcsxPNXZjCBYX6oOLeVsO3S33H2qbGRn6fjgveWMeVqHwQhffODA7MVFm6J6ejni6qrGxZT3siqVAgLmfMe5uNgRFZO32DAaRXSG0kUmgh3qYq/Yl29gcHCEbDu4lVqwKsZiMXPozHIksrtotEqa130BN2fPUl3zPpoGe5NyKoZ+XTW4u1kXASP6KBk+N41a2nSK21bcv/sCGVEHWDJFSUammakLfmXmwhdQq///mQSXFW3a18Y/0IuTZ28RUNeL3k2qPu4u5YMgCPkS30eO78dr76+ndrCZG3fgqcE9bU5Ml0gkvPL2wArp17DRncnMaEVmpo5+Y5xLVXRjJ8vCy8M6bTnYS/Bw1j6RFd4P44cvt1DV9QYNQgXW/CLQZcAAGjWpVuixarWCkFBvXBzzfyZ7O6uMglSa98z0Rhk6nRaVynrsnWho0sP2OQHAaDChfiA/V20nwWQs2kXl8IEwjh04gUQCDZo3pnvv4o3IS0JqfBRdR1vHHV9vGXWqa0hJzs4NRhRGtJTXs8iJ+ZbV34qo7QSWfvkLNyJ5JISrrHisZEsQBFq1sb3s2FaIosi505Gkp+fQtEX1CsuhGPJMR3S6Nmg0Bp5xVT+28mdBEMqUEO8f6M7JnRI63iuUi0swoVLbFs0QRZG0NA2OjqoK3SrRao188/FGpGIGOToZoycOICAw/7boHysOMOcNM1V8rM/RxUnD1k2nGDS06Iq/Js2qsmi2gqb1zTg5SvjsZwMtO+QfFNT2SqrXa87cT05RK1jkn1MyRr9Y8rbww6jfoDnL1x1lzGA7rkWY+OemGmVfFdl3ZbllyPcRcXsNc96+TqN6crRaCyMnLSKo2lSah1Qp9XUBmoUEEheXNyibTCIpmUr2JxdfqXjuxCU+mGIlaM5OUgb31HLx/F1atXk8RuP/VgRWdSewqu3b+LYi+m4a165EU626NzVCvEo+wQZUr+HN+x9OIjUlhyGu6krXyysOTs52RUZ2ikNmjgyz2YxUapV3SMmQ2ky0NDl6LBYxV/agovD3huPcuHwREKjVsAF9BrbM9/eUlGxkhgieHWz9vI3qWVX+GzUpXOX/PuQOfhw9fYc2zRRcvm5EY/Yo8FlHTejDW/NX07GFjogoAVe/Rnh4lC5C3bNvcz744DJLZ1qQSeG9ZUaenVR4UdG1sBhunN3Dh9OtY8fXv/3DmZNONG1R9nFDq8+/HZ+cKmJnl3/RF65vSY7GGx+9CrURUuPDeH2iHvt71fLTXpUy4bX9/yNbjxKiKPLJonU0CY0h0Ac+mS/j+YdydcBq4BkXk05gVbdSvXwqlRyVqgSJ5icU1YM9OeXYgJlLLuLhBjeiHHhnTsmh4oS4DL78cBW1qhuJioVWnTvSuXvFJIF/+8lGXhmRSICfHINBz2tz1jD3o5fylXFrNTpcnfN+9nCVoL1cfGWk2l7JW7PHsPTHnZiMBtp2bkyrtgXLmfsPbkNKSgOSErKY1s8DO7vSP9t+T7fi8AFHZn4ahtTFzNjp/hzKSOCGkGdZcx8OmQk0qme9hp2dhM4djGy7FockQlqmLUc3Fw8u/R97Zx0dxfl38c+sJht3x0Jwd3eH4hR3CqVAcXf3UndBWqTF3d3dnQSihLivz/vHQoS4Ae3vvef0nJIdeWZ255n7fOXeq9X4fu1VKpQx8svfStRenXkSaCIAmREuI1LUamPyijgsAtw93m9N3v/DhDMn7nLv0jFaNxK5cBhuX0tfq6PV6vF7Fo6VtVmuFl4SiSRP5QsfCnoN/ojRc7ZRpoSBpy8kdOie/fwliiLfrtqBwhiIVAoxalcmzOxRIIvlKxeeIMReYvlUE/n4+a+LXL/imEaOJylRh71tyrlyovIPMHLcR/zz1xl2nQzE0cWRiTNbpNvG08ue6YuH88IvgopNLXByzv136+hkxaeTBrLs9+MgivT7tHG6Be8bXDx3j0E9Ukj60J5yFv18O19kq13X5kxbtoeOzQ3cfihg51EBC8usNfmkUhWvwlPuaWKSiFH8sN/LHxTZEkWRTeuOExoYgM4gpe+QDnh42WW/Y6r9790NpkKxID7+yLSKqFbRyJxvDzFpVu/k7Y4dvsm9S6exNE/iq2sanN3d6DesPaXLpo0ubPjtCOHBfmg0Ao1aN6Bew3+/MnPP/k1RqxuQmKjFLofRubU/7mLNLDE5xTR58SnqNCiXJ2LyNgRDDF6vi/0VCoFy3joiIxPTrM7adarLgq82s2iyAoMBVv5sZNjY7EPXDg6WjJ2afU2dg4NlvuuVGjQpT4MmJkLzLP4eMvnbljUmRN6So9EYUSpNJOfBCwFtGRt8g7MX4jMajRy7+B22dn6o1RIszZpTtWxbGtcYin9wMw4+D8fKzB6nBCnx/rIsOxV7DmjFxEUb6d9FQ0AI3PFzp2WfvEXX/h8puH3zBQd3nEAqg4rVK9KqXc67hN+s7s8dO8cXrx0UaleDSYtuIIoNkp/VyMgE1ixaT62KSRw5FY9UbknDFrXo8nH9NM/z3dv+7NpyGAszI2bWrgwf06HQzKDfFXxKuzF35WdERiTQI4fRuaOHbtGgYgCtm5ju6bkrL9m97RKduudfnuDKxQdMHpgyD37cQcZ3/zxKQ7bcPWz45YEFgSFJeLrJ2L5fi5d39l3DgiDwcb9G2W5nZiandNn8adi5utnw+VteiRlu5+7I/ScPcHEyUYcHT/W4uOc8snvy6G0uHD+DhUpEbbBj3PSeVKlWHA/Pwdy9HUDFxg6UKp39otPN1Ycde4oDfrg6i/zwu4q6lQbkeBzvA++NbOl0BuJi1Wk63DatO06VIvdo0ktBUpKRCYs2Mn3x8GwjSZfOP+TwrmPYWhm4/xRGpNInNTOTIElVq5MQr2br+kO0bmwqBNz+uxMGg55py/6hz4j+yRGwPdsvUs7tAW1fi//NX3MYr6IueBXJndT/jau+nDh8DWtbK/oObl4gBCW/yG10TiHTolKlTNIli4lERsTj4ZlzIpwZErUK1OrE5AiLb4Cplio1vH1caNujOzPWnEEQBAaMbI6ru22+z11YyMiy5g0sPvqYntN/pmUNHfd8BYI8myD3EYhXytIpHyckxfMi6CnWlnZ4uhbl4q2tjBr+iBqVZYCRFd/sI/hVedydi1DEvThQHDAVzr/pVMyMcHkVcWDsrKFcu+yLjZcFE7oV+6BUwT90GAxGXobE4OJqnXzfAgMiObZzJyumKpBIBH7ddJZzp82z7YKLiUni62WbsLWIJzpOilTQASnzopUF6PXG5PT98nmbaVErlqNnkvhuiRMO9lL2H7/G5vU6eg9smnzMPZt3smaWSXD36q0XbPjtKAM/aZWr64yOTmTT2mNo1BradqqXbkH6PpDb6Jy/XwhtOqW86qpXlHHw0ssCGUuR4m5cvfWcxnVNC9Grt/UUKZ6W+EgkEqYtGMDvPx8kIS6e8lV86N71w013ZYXW7auyevETbj94iVwOj/ztmTa/QYbbiqLIzesBqNVaqlYvSlysmrsXT7Bmjon0+vpH8cePBxjx+Uc4OVvRtEXOu0UFQaBNg8ncunGXy9oEmtSohLnZu+mezCveG9mKj45gw7c/YeNWnr6DTeHR0MAAmvQy/WjNzSU0q6vG92kY5Spk/oAnJmg4se8w38xXAFICgnSMnZNIneoKrK2k/LJRQ5VaptqemJgkls/5nQnD5SQkitx9qMFgAJlM4PNBEnYcv5U8WT2+78fQVHpWXVrD9Rt+uSJb507dx/fWERaPVRAY8pKlswKYs3zIe62VyAtkZvY8exGEd1E5Op3IzfsyPhpYMM0Mg0Z0YuyCTZQqpuVFEDRt1zzD+1OmvAdl3lL5zwyp8//vC29b1iTDBQxlB+P3MhrHehZ4WpoRFPcynbeXl62eO89W0bd7Eg+fSDl1tRpaXSRVK0j5YW00oWEGtDqRpLhHuDuntSx6WxriCa4kJJailEsoqT0VbW1VNG/1flwb/u2IfBXOmd3ruPNExbT5/VFZKLl84SGDugvJGklDeymY/sWdbMnWL9/sZN6YJBzsTQu7zkPiuXBNSt3qcp746YhOsk8mWj98uYtG1SIo46Pk3BU1waF6HOyltGumZMYqP8A0fz15FErL+oZkqZoaleVsPRKS2RAyREK8hlXz17JkkoiNtYR5a/7B2K0bZct75vJuvV/UqFOWTbsfM3qQ6R5u2qWjVr2CyVK071SDr5a/4PTlIEQRtBJPxkxOH3U3N5fz6djsJWXANH8B730OywiCIDBpVk9ehsRgMBjp5mGb4TiNRiPL5v5Fg8oRWFmKLJphRssOzahbzciZi0kcOZUIQFhc7n6Tb4+ldPHC8ZssDOSIbAmC0Ab4CpACv4qiuCyT7boBW4GaoihezeqYzg4C8yYo+W7tXZ4+qURJH2f0RhlJSUbMzV9HOfwFStfPurMiNDSOSqVTOsq8POR4FXVk2W/2GA06qtepSOPmpi/kr9+PsmwKODqYGLClhcDuQwl0bW9JUKgRK5uUVJKNvS1Pn4cnq8hfvyviVTl3haoXT19l+WQTiy/qKadlvQTu3wuhUuXCnax8n4ay65/TSKQSPu7bPFcidxlh+Ocd+fHLnRjUETx6HIW7mznLZv1C++6t8mVaCuDuaceC1SOJiUnCysosX11FoSEx/LhmC/bWaiJj5PQc1PG9Sokke3eZP0r/oRNAOEA69/oEnYqTJ1fxzy9G5HIzmjWEFd/c4MHDGkyYc4th/ayoWFbJ42caZi46T80KLdMd/m3CZdSY8RgXguJiPmgB1H8L3F0ERg1U8PKVmh9/OsBnEzrj5GzHk+dGSr/u+QkM0WNpk30ERiom4mBvIgKCINCptSWHr5Zg14lorO3tmDS7NWCSKrGWPWdwL9NCp0oFJbOWRbB0phKDQUStTXnpuXvYcvCMhHav9azCwvVIZLlb+Z87/YBhH2txdDBF2RZMVDDzy7PprM0KGhqNnj9/P0p0RAw16pZLnr/zispVixESVJ8py24QFRlHXJyOEi+OcefmM4aObJsvUiMIAuOmdScxQQOCkK9uXlEU+WHNLrTxAej1Am7FyyQHIj40ZGd7dPLYfTo0iqBFQ9Nvp1oFPavW3yEqVE+Z4nrmT7FHp4NPJkUQHhb3r64jzCmyJVuCIEiB74CWQCBwRRCE3aIo3n9rOytgLHApNwOoUFokODCSkj7O9BvagQmL/qJpHQ1+AWDmUCHbL9XVzYa/7kkY+DqaEfxSj6W1C2On9Ui3rUatwTZVobWTg4zdh2IRJFKOX7Zj+sJqyZ8NGNaS5fNe4eUUQ1y8iK1bOdpX8crNpWE0vnE8Nz3MiUngVMiih899X7F17WaWTjXZAk1evJ5R0wbn68esVMoYO7U7X6/YxtcLtXi5yxFFkYmL9lG67PAMBehyA0EQCkRA77fvtrNquh5zcwVGo8io2TuZv3pUvo+bH+SM0KRKOdqXIjEEFLYCcnnKS8DLQ0Sf1BDf4DNULGu636W8lRTxinqtOJ2epKYmXG88FZ8oP3zF+X8TXJ1laJISAGjQuAxfLbtLYEgwlhZw9roF0xemJ8JvQ5BZERL6CjcXmSn18kDKpPmt0qX6ExO1pBYcl0oFXoYaOHEukV1HZXQb0Cn5M3cPWxyK1mTqkqs4O8ITf3Mmz8lZZOUNZHI5iUlppVEkksKdv0w2bhuYODSB4l5S/tx+nN3bEl5bwOQdbTrUwM3DCb/rOxne1zTXHDn9lAO7r9KuU818jzu/cyCYuhqbVfOnUR0TYduw7R5XLhajZp2C79gvbMTGxFO5VKqmJgcpgmjAgA3jRxgQBAGFAqaMUnHu9AM6dauVo+O+VL5ClCuxlOg/SLPprJCTyFYt4Kkoir4AgiBsBjoB99/abiGwHJic05MbjSJ7j0sZMs4U6XHzsGXGkhH4Pg2jbEOLHOlumZvL+ahXBz6ffwgbSyNJelvGTOmU4bZtOtZhwZdbmTdBiVYr8tXvIrWbd8bM0YqZnbzSvLAUChmzlwwkNiYJhVKWpw7Edl2bMmP5dkb0lfA80MD1x4606lu4Zrx7tp9nwQQ5crnpZT35U4FdB67Re0CTfB/boI3By910HwRBoHoFIwEBUZQu82EYDFuYaZKjohKJgIeLAbVa98F3j76dcnyMC8Eexfhr92X6dlQQHWNg9wFL2jYogl+wI5BScR+fIM2y6LmwPRWDg6L5bvlZDHojn4yvi7dP3jTD/m14Q0EOn9JSrFQx4HWUY3oP/F9EoFbrad7TKUeR2uGfd2LVyn8wk8YQlyClY++PMvzNFi/hyPofzWnd2OQnu2mXBp8qdYiSFWfkFM90wqCdutdD27EWiYlabGzMcx3BadikDAunX0ClSsDeRuDL32Do2MKNtAQFRlPRJ5YSRUzkpX83JdNW3od8ki2A+3f86Nwo5fto0VDO1NV+BUK2CgLPHgcyrH3K996kjoRtZwL+lWSrfqPy/PjFZVbNFJHJYOWPGpq2qsG503eJjApMjuQGh4pYWWe/0G5qa8oOvDG0T11ykR/CZTQaOHh8N6GhIZQpVZ66NQtP4DsnZMsDSK18GQikERIRBKEa4CWK4j5BEDIlW4IgDAeGA1hbyZi4VMFHPdqn6QRTKmWULZ/eAyorVK5anMpVP812u7LlPdHruzD9i/MIgoTBn7fItMX1DfKiBfMG5St6YW3Tjz2n7mLvYMPUeZUKPQ+vVMpJSDQmF7THxhtRmhWMUKUgteRV+KtkUcHbDyTU7WBbIMfOLfR6A+t+OURMRBhypRVDP2tPgsaM2LgErK2k6PUigaF5I8mZQavV89t3e1EnRGJExbAxnQpMw+3tlKNFdx9+3CFj3edP0cfIKePRC5lMjptDR2Ys3kLb5hpOnFVgq8peF6ywPBXDw+IY2WUHFk9KIiBh3Pl9fL29Q6798v4tSD1/WVnKmb5SjqN7SfoNSatJlFvdLZWFkqnz+mW7nVQqYer8gXz/80HUiQlUql6GYT2rZbmPQiHLsXXL25DLpcxaMohD+26g9tXw2dTKhZ7uMTOTEZ+Q8m9RLDgbt1JlvDhx4RaDXicozl7R4V36/dWfnTt1n4unr2I0CrTr2oSyFYtz+FQIrZuY5utDp42Uq1y8QM959NBNbl26gcEAzdo2pEYhETknZyv6fNKLmV8eRRCM1G/ajKo1vfEu5c70eWv5uF0SsXFw6roD0xdkXdOYMjfdS1dykV/C9cef36O5Z0RlsOLy/ctERIbToXXOXGFyi2ztegRB6A60EUVx2Ot/9wdqi6I4+vW/JcBxYJAois8FQTgJTMquZqtyVS/x0Inx2Q4wMjKBv347jE6rpWWHOlSsXJSb117wwu8llauVoFiJ/42VdE4RHZ3Iqvl/MKqfHo1O5Ne/zZm5eEiBdEHGx6n5culmrFVxxMZLaNa+2XuTw/h6xTZ6tw6mfGk5L1/pWfyDBZ9N6sGPX/yDlXkSMfEy+n3SmeLeBSMICbBmyd8M7RpKyWJyIqMMzFqjZN6KnFv75BQZKSanNlqNjA4n+NVzXBy9cLJPmWRCwl7wwPcICrkVtSp2RiFPn9q49iwUX0kS8cVlCEU0+Hi+xMPKhqa2j3JFuGJjkpg1YQ/3txtxpQiCIGAQ9ZQaEse81ZkTwP+SXU9O5i9RFNm66Sz+vkEUKeFB994NeBUax6XzD3FwtKFew1IfZCH0+8S3q3ZQ1fsF5UtJ+GunSO3m7QuMFGxad5zAp/eQy0Gm8mTUxM7v5f7fuOrL3fN7mDhcidEoMnOFlu5D+nF432XiwvzQG6BEuUp07Zlxp19ecOXCY17cOcBnA5SvO+y1tPm4FyVKvttUXFKSjhvXnmOmlFOlepHkyLxarWPrxjPExsTTom0NSpVJ3xiX3dyYU4iiyN1HN/h743qKJJZBIZjmymiPl4wdNz3T/QrbricISF2s5Pn6b29gBVQATr7+0boCuwVB6Jgd4Xober2Bb1ZsQ2qMIC5BoG7Tupw4cJYV08HKUsLCr3awf6cblUqEUL+SwI5tFylTozkNm/5/R9Ub2NqqmLZgKMeP3EYmkzJrSaUCi+5YWpkxa8mgD6LbT9SGUb606bpcnWU42cRhZWXGzMWZ2/jkF4IhMrlhwt5OirtjYp7TlLExSXyzYgtW5vHExEnp1LstlaoUA9JLR2S0irO3TRs98g95TFjsN3y5VCA0zMDMRbdp13AeMlnasWXYqWhvStcHJZ3Dw9w2HekSRZH9O+8SHBhHyw6lsLBQMrzzVgwPnJGj4Qm38REroUePmeqDku575zhy4DrXzl3CXAlyS3eMRiNt6wQyqqucC9fCWDzrBQohgkHdwddfZM2Sm4yf8fF7f54+JIye1IXzZx5x/G4EH/UtRZFiBRcp7T2wGaJo6th8n/f85JHrLPrcFMGSSARG9JWw+9Rdho4sPD/CsydvJ59TEASGfCxhx7n7eSZbG347QljAYwQB7Fy9c+wLam4up14DnzR/0+kMLJm5lonDknB3kbH8ez/UHTpTqUpaC6yM5kYrF2cSAk0LSSBD0hUQ/Jx7D2/h4eZFhTJVWbfpRyLuROOsK4IfD/AUvbEQrBCFwvOKzsnMeAXwEQShOCaS1Qvo8+ZDURRjgOSnIaeRrYyw9udDDPgolLI+pgLsvqMPMHaoGTavtbjmjFPSbdgjVk81RSvKlYaJi88nk60H90IICY6iUtUiubYs+JDxMjiadT/vQSHVYmblyCejO2QpH2FpZUbHrjkrOMwLPoQXQ0KigCgak8cSFSsUqI1QRohPlGA0GpIbHsIiBZTKvJGLn7/ewZxRCTjYm4qiP5+7h7LlP0u+htxOKo+e7+S3ryVIJAKWFhIG943g7Jl7lPWuku7cmXYqqtJb/IiiyLgh23l+UI5crWL3L/txKS3F7EFJZMLraxcFgvDFvqKeTyd+nKf78V+An284gQ/OJAuSXrjmz8btaupWN6Xe6laXs26LP2uW2iGVClQoA2ERITx7GkZJH2fCw+K4fTMAN3e7XJdSfMgwGo38/uNB4iNfkqSV0HdIh2wJVL2GpQttPB/C/GVta0lAcAjFvEyLoecBRuwdsm4Gyy8cnGx5+jyE0t6mcz7yNeLkmjvdyDc4d/oBntb3mfjatmfXocecOOJB05Z56xy9fvUFHZvF41PcVJYxb4KCaV+cTUe2IGMdw0TMeCbXYemXvnD+6s0LnNh1BKs4ex4qH3K13AUiH0bjqHcHASxFG55wG3tLBxo1bJ6n8ecE2b4pRFHUC4IwGjiESfrhd1EU7wmCsAC4Kori7oIaTGxkOGV9UgqwK5URiY41Jn8eHmFAIC3zVL4uR1r700Hs5Q8p5yPy+5dSOvTqSrkK/y49mIxgMBj5btVG1swClUrCvUf+/PLNHkaO7/xOzi+KIls2nCTE/zlanZTeg9sV6Eozr2jTuQXTlu6nUW09N+5JqVqvbqFPol36tGH8gl3UqWLkziOBus0a5/mcMhLStPuXLyUS9ioujfVKbiYVnU5P6ooAnd6AKIpodRpuPzqBwaihnHdTrCxMUaycdir6PgvH75QBG41pYjILKMljzTWKkFJLokBJ5f4wc1HbNCLF/2t4cPcFrVMJftetLufnDXHJ/9brReITjGmMhG2sTOmT+3cD2bt5O11bG7h/SeDS2TI5jhR86Fj70yFaVX9GjcpytFqRcQs2M23RiHfWuHL/biB7/j6KXC5SumK5dN6F7wN9BjVn6awAWtZLIEkN1x45MnVepUI9Z68BTVg2J4DqZWNJ0sDzV65MnJm3cz6448fIbin0oVUjGUt/980z2ZIIAlptivi4KEJstEmL6+L5x/g+DqJiVW8qVjZpCmbUVCQoNRnWcZ0/cwrneC8QwFxrQdCTZyh05qnOLcHSyYJe/Qfi6VZ4ZvI5WpaLorgf2P/W3+Zksm2TvA7GTGWNf1AMRV7bt6h15vxzyAKZNJ5te2OxtJDh4iRj0ZpIZo23Z/8xLQ7u5YiIiMcQ94hho00TfZ3qIpOWHaFchcJLKb0rvAqNo0pZfbJ+S/nScv7cHf7Ozr914xnKut7h848VaLUio2f/hbmVHeZmUK5yWdp89H46earV8qa4z1B8n4bRqbpdjjpX84vyFYtQfM4IAvwjqdHWJl/F8XosiIyKwt5OarKZeizw0cD0xcc5mVQAQiINTF8UzsTP7AgNM7B1TxxRsY+5+eQvFk1LxEIFC1adol6l2dhYmZT/c9KpqNPagyElYigIAq7u1sRIfLF5WQIjBoQyoUxf2Ot/mmgBePu4c/aUSJXXVQ13H+mQqlz5fn0cGBK5fV9HsSIKPv7kJb+sdkKtETly3pw5nVxZvXA9q2bIkUgU1KsJS759RGRkQ+zts9YZ/DcgJuIlNSqnWHI1qK7nxfOId9LF/DIkhv1btrFyuknVf/3Wi8ye9AA7WwlmKmsGj2z/Xlw9zM3lzFk+hAf3Q3CSSWnZx7XQF4sKhYxZSwby4nkkMpmEbl52eT5n2QrFOXLmCR9/ZJobjpzRU75S3ov5nV2tWfZ1PMW85Li7SlnzUxRatSNrfzpIEdtHdGsoYffR27zwrUOHLiaynK6pKLNOxbcyg3KJAqOLBm2QBoWgJFwVTPPm7QqVaMEH5o045LP2rF60CRvzaGLjJdRo2JARrauyYOZGPh8qpWwpE+H45c94Bk2W0aRFNfoPrYX/iwicUzUASSQCSnnh5V7fJWxszXkemPJvrVZErX13X1vg8+eM6ma67wqFQNsmOpzsw2lQW8Wf289z5ICUlm2z7ogqLNjZqahes3AfkLehUikK5CXxyeddmJ+qZqtj7w7JKcQtG04S9PwpWh00b9uImnUzn1TemFwrQiz4pL8N2/bGY2UpYeJIOz5b7MuXU+KpUsFEgr5brmPc9C20qJvSuZtdp6KrhxHbikkknU9AKaqIdfJnxOfVcXCyYMtvN1GYSZk4r1uBdWX+m1G6rBv3btdg4qIbqMwhyeDIwpU9uXDuCZeP7ubHlSaSGx5hYND4RCrXKM20Ba2Ry6Uo5Sl6fADODiYF9/8C2dIb5SQkJmHxukP66QuBqq3eTZnHtctP6NeF5Hs7oLuSG7cCWDbJiYDgGFYt3sjMRQPfyVjehkwmpWKld5t9kUgkBdItXL9xWdb/Gsi0ZY8BsHMtxeBPTVGyR/eD2LbxIOZKESsHd4Z82iZbT06dzkD7Vrbcfajh3GUjn/Sz5actZkSGPGbKQFOqctRAmLz0RjLZgpx1KpatVJF7YXewTXImURqHbREb+vYcxs69m1EnJdCsakuqViy8sps3+KDIlpmZnJmLBqQTabS2lCUTLYB6NeVgV4l2nUw3yNPLjl/vmvNRuBZnRxl7j2pxL1bmnY+/MKBSKShfsy4zlp/Hpxhcvi1j2Oe5EyfMD4yigviEeCwtTN/HMz8tVSuYIjD9uiqZvvrBeyNbOYFeb+DP348T8SqC0uWLp3lQs0PAiwj+3nAYASP1m9Wgdr2CqyOxsTFn5uJB6f5+cM8ViljfZsxkk3XL3NUHcPN0wtsr40nljcm1maQVazb48s0sGzQakQEzBBQlimJhnqLaolQIiKKBjPB2HdcjnQPPt4VhnhRAh88cCKglEBocxsheNanfxGSyW6eBaSX7+GEoK+ecQCYXGDO9UZpU6P8auvZsgPhxfURRTJ7DLK1U1K2eEj1xdJBSppwzn43vmPw392Il2HfsNu2bKwgN03PljjkdBtq+6+EXCgYM78iERX9Su5KW54EinqVr5Nv4Padwcrbjka+RSq/VBUJC9bi7mhY1Xu5ybFWxmYoCfyi4cPYB50/ewkxlzsBPWmNplbMIsk5nYP2vh4mNjMTOyYn+Q1vky6HjbQwY1hKT1nkK4mLVbF2/jS9my5FKBS5ef8Zffxyj/9CsxX2Ll3Bk/U+WzB6txsNVxrp/NJSqUJYXDy6n2U6WCWPJqMY17Nk91MGPUertqN+lIfce3qaESzFaNe2ARCKlT4+hAOj0Orbv20RMVCSVK9WgWqXCSTN/UGTrDd7+4ZepUIKDJy7SpqmJcO0+As26FE+z/ZR5A/j2pwNo1YmULOtNz/75F8HLKV6FxmI0imlMaQsSbTrUpEHjikREJNCqj22hF4KnxoDh7Zm4eANNamnwfWEg+KUxuagzNs6AICncELwoikRFJWJlZZan6165cDPDu0dS1kfOoZOXWPtzNIOGt852v/DweNZ+9xerZ8mRy2HVTweRy2RUq+Wdl8vIMe7desryVJ6c3dvB1WvP8PQydRtnZnJt4+bCS4dBtJ97BKMgw7ZLR5yVSiZ+c4E/FxgwNxMYNd1A5dKdMz33G8L1zDeByBNr+WlOPMU9pXzzZyiK0q6MmFABb8u01//0cRgTeh7Axt8HESMjL+/gt33d/yfsNzKDIAhp5gFvbye+/UfKRy1N0avbD3RY26f1s+zZvwm7t5kxbdUzFGYqpi1o984IQGKChrCweNzcbfKsyZUVXFytmbtiBMFB0TSyVeVLuzC3qFXXm29XFSPkd3/sbGDT9hj+/jklDRIbLxT6fU5M0GA0ijkmSalx4shtwn1PsGyigvCIcGbOXcucZcNy9D2tWfo3n3SLoLS3jNsPIvlmZSzjpnXPyyXkGE8eh9KygQGp1DSH1akmZ+fx4Gz3k0pfm3X/epiEuHiq1ylP4+YV+XJZIBeuhVC7qoy9R3U4umcuNZR6bgw+eo2Pyz5k6Gw59x77MWbhc6rWGkWNkmmzEkajkR9/W43iqRVK0ZyTj48TFx9L43rZOz/kFh8k2Xob7TvXYv2vMZxe6YdGC3WaNKO4d1p9LUsrM0ZP6vJOxyWKIqsX/4273UukEvANcWDK3D4Funp4A0srszw9rPmFk7MVs5cNx+9ZOBWaqNj61zF++esFrs4ie08oGTcze1HN3CIiIp47NwOQy2Uc3HmUMiV0+AdD7SaNKVrclX827EcpN2Lr5MGgEa0zJbhJSTocLCIo62N68Fs3UXBq5fMcjeH86QcM7y2iUJiOPWmEgulfXC10smVjZ4NfQATFvUyP5q37Ip7l0v7WMze5NoPab6KeOkDH08Ed6bDiFsSIWFk0wjZalibl/jaqe7sQde0WrRrF4P1axXvsACUfz4uhcrNo3hZAXffdJaz9SyIRJIAE2RNPdmy6zSef18/vrfjPwMrajI96dWL84kNYmBmRq7z4dFz64neTJc27WyQCHD98ixtnT1HGW+SPO1L6j+iBt0/B6y7JZNJci70WFEZP6kJgQBRJSVo+8Ypg8bdHaVRTy5XbplKVgobBYOTq5efodXoun7uNShKEVAoxajdGTerCr9/uQZcUhc6oYMhnnbNcmFy/eDPZX9fJUUb7xmru3w2mSrUime4DpneTmSQ8ufOwUlk5W/a+KriLzAQurtYcPi2hw2ujgcgoA4IkZ+RapVIw4vMOaf42dmo3dvx9nl2ngqlYtST9h6Y3+U6NN3OjW9hlhn1iOm+F0nIa1YrkSmgYwjMhTadiRHQY2mAD1qhAAIckV+7evPm/S7bgTcjyw8LBvddpV+8lTeqZHoZrtyPZ8fd5uvcuOCG6DwEKhYzSZU0rglETu/D0ySviYtXMXOKG0WBk9aLNSMVYEjVyBn3aGXdPuzyf601XVueWBq7f1lKmqJHxw0zHGzv3BGeNEr6cK0cmEzh35TEb18rpOzjjdl2ZTEJCYtraPY02Z+OwslYR8kqk4uuFVFS0Ebky//5n2aH/sFYsm7uBUl6xxMSBwqYUratl3v6cock1JiusF0+jsRDiMRtWh6dBbhj8c6a4XLm4K0kJKQRWFEViEpScCE8vDWFmIceAHimmqKNR0KOy+LDtkd4HKlQqQoVKn7zvYaSBXm/g4olTfDnXtBjp301k4tK9zFw89D2PrODh6WWaQ3xKuVCmfBF8n4bRdbADzi7WbN9yFr+H9zEaBSrWrEqbDnnX3NXpDCyeuY52jWJQyUQCnsTy0ypnLFQSzl15yawJvzB3rAHvonLiEzRMWvIX81eNyHTBaDAK6PUiMtlriZsYsPPJ/vkSBIHEpLTHTFQXvuSFh6cd1m7VmLniBm7OcPeJGRNmd8h+xwzwKjSW0NBYWrevgYVlzudeb8vyCIZjaf4WrxFJLK7E92Xa+U8uk2OUpO6CFKGQAp3/GrL1IeJlUDjtOqSktsqXkrHz9LvrFHxfKOmTosq+atEmxvWLwN1VhlqdxNgFm1mw+tM8p1N3/30kuSurQW1zln8TSUSkAQd7KSozLXWry5HJTC+H+jUV7DkVmOmx5HIpDp5l+WPLfWpVEdh9BGo3bpajcTRuVpZlc68TnxCOjTVs2adk0txWebqmzHD9ih9PHvpTrlLx5JZmpVLGnKWDiAiPR6mUZ9nhl5niu05nYOns9dSuGIu1wUDs3Ud4D+jDM9yTi+qzEgB0snfh0Dkfdh96TPnSAl/+LsGsVFcSEotxIjytNMSoKQ0ZeuZvNHddECUGLGpE0q1v4frn/T8KBgkJWjxTZVVkMgELs4xr+v5LcHCwTK4ZO3f6PubaayyfanqZf/37OW7fdMpQ3ykn2L/7GoO6xlGriimqUs5Hzu8bYxkzzJbqFWUotsThXdQUjba0kFDCU0tcrDrT1GqXXi2ZvHgLQz6G54FG7vu70bZ/zhp0KteuxYofLlCvmpGTlyTUadIkT9eUGV6FxnLmxB0sLFW0aFMpWfuxW++GJCbUIi5OQ3dnyzylaXf8fY4I/6uUKSGyeoOUPp/0oGSpnDcmNW/ZnAVfH6BfJyVX7hq5py5DkWJuqGSAfyLXXhMuW2t73Mu68+pmKEqtijjbCDq16JHr8eYE/0+28oHaDcqzbttDJo0w3cbf/9ZRv3HedEb+rZCJsbi7mq7fzEyCt1fWk0d2eLsry95OSnyCEWsrCY/8pJgrdXRsZTp2dIwBhKxXPAOGteLm9dKcfxpKsy7F06WfM4NEImH6gn5cv/KCWLWWmUuKF2iL+KZ1x7ER7tChjoRDp2/i+6QmnbqbPPYEQchXzdP2LecY3jOeSmVN96aMt5qd1w7jU6tNqqJ6FaGBEcnSEW/DwaU3a3ZextJCjaJaVZrXM0l8XE8gLeGyLc/afb04sPsecrmUdp3boFTKePwolOioRCpUdEdpJifAP/K9pMH/H5nD2tqMp/4K4hOMWFpIePpch6D474ip5gRXLz5k3siU5queH0lZt/9RnslWfGw8blVSyIWzo5S4eJNW5IbtWqJiSBOpCgoly6iNT2lXho4bzKXzj7Czt2bizJzbO7XtWIsA/5I8exJK+z6ueOQj4/A2XviF8edPmxg9AELDjSydfYsZiwYkl9CoLJSoLPKWCUhM0BDw6CqLXqdPO7YSmbRsPzMWDcnxMRo0KY+ruwMbzp4h2LY8rl0bYgwxfVaprg+3LzxJ3rZPj6Hcr3yLV+GhlC9TGWcHV2LjYwh5FYCjvQsOtk7ExEWj1iTl6Xre4H+KbOl0plVbQRWYl6vgSVhoMyYvu2wSYa1Zi2o1s67pCQqIYvO6QwgYqFm/8r/eaihBLUOr1SbXNgWECFha5T3d5la0OAeO36FtMwWvwvXsPmrEN1hByCsDXq4CtlYGZi0Nx9FBzn0/aybMzr4zs0q1olTJIBWXHQRBoHqtYun+nt/uJVEUCXx6j7EzTffp034wZekt6F4vmz1zhvBXUZRsl/Ib9ykmR7gm0tTxIR5WNjwOVZOIGfFyWbJ0REaQlayGnYsNNUqmuHVVs/BJJlweVjbAPZDAx/2qJ28zb+IBzv0ViVxrTpjZLuw85JhHOGM0y2EO9/+RIURRJClJl6y5l18IgsDn0/oy79udyCVaFCoXRo7P+nkyGIxs+PUIkWFh2Dg4MGBYq3fasFPQ8CrmyrU7gdSpZrqnV28bKFI879IuTVpU5csf77B8uohEAnNWJRARY8XkZRKePxfp00nGmBmvKFfajGcBCuo1b5Ztja+zizUfdcmbnqFXEXu8iqRViX/jh5yfZq6tfx1j5Qw5CoWATwmIjo3iyiU/6tTLf01rbKwaD9eUsclkAuZKYxZ7ZIySpVwR3MtxIroUjzNeUwKvRaVLV6H862bzB4/vsG3TRszjrImVRmKw1mKtt0dmyN9i+3+CbImiyA9rdmFI9EcQQDArwmcTOhVI52Dj5hVp3Dxn0ayYmCR+/fovVs+UYGYm4bt1xzgnkVC/cdau5x8yBgzvzJh5WyhdXIdfALTq3CpfRKTXgKbs2qpk+mo/5EoVX/3SFksrM1Yt2siScTHIZCpiYg3sOJBImy7N36kOUWhIDD+u2YK9tZrIGBk9Bn5EuQpe2e+YAeRvPbcyacHpwjVuUZVv1j5nyusV+/cbdHTo3AypeVRyjVeQKoaXyhTpiIzgRlqi9QZvCNdjk8AzpZSXeJNWfPwolPMbI3HVlgDANsmJO08vUQ6n12av1wvsOv+XcOn8Qw7vPIKbs4h/iIJRk/sUiJCvo5MVU+b2z/H236zYRp92L6lQWs6jZ9GsWfo3U+b0zvc43hc6d6/DF0sCOHYuFL1eRFQWZeT4vGcnPLzs6DawJzO+PA6ItOzalspVi3Hloh+G0J10bG3BR61UBATr+HajLU1bVi64i8kGoijy/Re70CUEYDCAc5Ey2UoyZHosDGnmMAsVRGp1BTJOZxcrbj5QEBNrwMZaypWbWizt3p0e2b692/GM8zFlGIyuPIy6jhERByF/Ud//CbJ19OBN6pbzp3UT08vnyOkXHN5/g9bt360+1NVLT+nfWYeZmSkNNmqgkmmrb+aabImiyLOnYei0BkqVcSnw7sejh25y+8pdEGT0Hdouy0ndq6gDC1aPJDo6CWtrs1yPJTgomjs3n+NZxInyFT0AXqfT0kd53nA4G2spnu4y4tJtUbj47bvtrJqux9zcpIE1avYu5q4clWvSLggCEjMPzl8NpG51OcfO6rB0LFlg46xQqQixMa2ZuuISogj2riXZs/UUCqUZA4a3oanto2StrjfSEbnB1acBgCkl+LanYnSUCqkmJYUsFWSYiebEE4M9zhkf8P+RJfR6A0d2HeGbBaa3W2KikVlf7mDagncvxinoX1HhtQF8aW8ZZpKIPB0nPDyeoMAoihV3LHBB3ODAKDatPYSAnqq1K2ZJaCQSCZNm9SQhXoMgEXIdNdRo9Fw4a0pJ1Wvog0Iho2QpVybN6pNmO4PRmExOFAqBEkXlyOXvVttrz/ZLNK3qT5N6pmvcuPM+ly4Uo3Zdn2z2TI8Wbeuy6Os9zBitICLKwKa9ZsxcXDCd2hKJhPGz+rPk+z1IUKNQuaNRJ7J60SaatKpF9ULuCNcmadPM6UrMiSc238f9cJXcChC+T4KoWz0l1F2nmhzfJ0HpthNFkVs3Azh76jEJ8Vks+fMIKysVwanCmbFxBiTS3D3coiiycuFmHp7bSMjdLcyf+jtJSQWzogAT0dK8PMWySfHMGRnJdyvWEx+nznIfQRCws1PlmmhdufCYrb+to5zjSZ5d+Yf1vx7OdNvWH9Vn7moNarWRFwE6/jmgokbtErk6X35hYabB3Nx0jYIg4OlqzPO9HzO5C7eDqjP9CwcCEuowdGTbghwq9RqWYdLcgVStWxkn5X2WT4phfL9gVs5bi6e8NB7mtjR1fEgpl9As/7ue8ITrCSn1DVefBhASGoMqEFSBYAwx40mgKyfCyxCUFI2qRAyxNoEYRD0AoWIARkTMUCWnL/4fuUN0VCIli6bcO5VKgrki45RsSHAMp44/JMA/slDGkvRWR9vbHW85wdGDN9jy0+8kPN/Gz6t+5fqVZwU1PGJjkvj5y7+YNyqSZZPiiQ04ycmjd7Ldz8JSmWuilZioZeH033AWDuIkHGThtMzn4mo1irLzqAV+ATrUaiPz12ho0a5gygZyiqePAmhUJyUc1bi2lCcP/PN0rCrVS1C/bRdmfe3Ij9uKMXXe4AKtabW3t2DirF4MHdOT0MAXzP40nGUTo7l5eg/XLxfc7yUjOHk5EytGAaAWk1CThJz8X9v/RGSrWs3SbDvwjMEfmwjX9gN6qtUqlWYbURRZs+RvKpUIxtUZls+RM3rqAJxdCs5zr2adEqxc6IpWF4qTg8g/+xV8PiN3ZrMnjtyldZ1XtGz02geyWhIb1x5j6MiCMa29feUuyyaZaolUKgk92mm4dcOf+o1KZbNnxvh7wymCnj9Fo4MW7RtTo3ZKBOfo/lN8MUNhqo2qDLNXPiAxsUmGk17FykVRKD5m8a+XsbRUMX1RE5TKd/vzTdSaExMbj421FL1exD9Eluf6GUEQ6Nqz8LWobl+5nfx92ttJ6dA0iQf3gqlSLWvpiNQIiovheoKJWIWExmDpp8fC+DqHmIGn4uJdNZjR9TK6OAlmFhIqV7EFTRQSRSScLJTL/E/D3sGCB8+kyYXVIaF6DIJtuu1OH7/LvUvHaFbXyNGtEly86ya7bBQUajaux8KvTtGktpGzVyVUrZe737Aoilw+dTZZbqJTa5FxC45mW+uaU1y/+pzeH+kwNzdFyz7po2Tqqts0aZG31OCjB8Fsf209Y+3gzuBP2yRHPbZvOcekYRpKlTCdy81ZzY6/z9FnYJN0x1EoZExfNIi/N5wiLi6Blp1qUqa8R94uMo+oUMWb/cdD6NDCdO8PnjRQoXLeF6wmOZOs9b7yi4vnHjH0YwMWKhPZmTZKyfQvrhSq3uHQfqNZ88Ni7gc8RRAk2DnboTKzIF6MAN+8H/dfR7ZEUSQ8LB4LC0WOux1q1vVhR2ANpiy7iyBA8dLV0lmv3LruT5WSIfTqZHpwalUxsving4yf8XGBjV0QBCbP7sWtm4HExiUxbWHRXHdsRIRHU6t6SgSpiIeMmKj8hzjfQERGQqIx2ccsJBTcKmZeRJ0VDu65gpf1LUa/tp6Zs2ofbh4DkrtizBVpizTtbAXU6swLgEuXdad02c55GktB4NPxPZiz+m8slQnEJsgZ/Nm7HUtwYBRbN55ARKRrzyZ45UAk0mCUoNOJyOWm+xwRJVDytfVVZtIRaWGyBzoRDk+UrkDGv1dXjTMJidamTkW3h6y/0QI7bTFUKmWaFa+b3eUM9/9fQnycGrVGj4ODRY5S0BKJhEGf9WDikt1YqgzoRHs+m5BewPncsTOsmW36fhrWgfELLhc42WreqgplyhXl6eNQWn3snK74Ojvo9UbsrFOidIIgYGlRcBFPGxsVwaleiPEJRiR5dLmIjUli67ptfDFbhlQqcP7qEzatU9BnkEnXLykhCSf7lIyJk72UxITMO9ZUKgWDRrw/vchW7aqx9qcwzi1/hsEoUKJcdapUz7t5dG5hMBjZvP4kocFhVKpRmhatq2S7j8rCnPDIlN9HQqKIRJo72lJKeYkgVRmeKF1x9XTmQmAQoZLM9QYlEikTR81Bo1Wj1WmxVFklP6cXJ53I1blT419FtuJi1axcsJ7y3mpCw0XcSlShR9/GOdq3S4/60CPzVVhMTCJuzilfqqWFBNFYcOm5NxAEgSpV81ZUDVCnQTl++f06i6eYJBK+XaulUbOsVXVzg37D2jFx0Xp6tNMQ/BIeBnnRqm/eihPv337Ksokp1jPd2sLN6754eJo61+zdinHo5ANaN1HwPEDPs0Ar7OxyRuxEUWTfzis8uv+CMuWL0q5TzUKxSkoNOzsVMxcNKtRzZIZXobH8+tUGVkyXIZHA1KV/MnB0fzy9sn7Zde/biomLNjOgi5EXQfA4yJ32uTDSzshzLLUBdqJn2kL61J2KTW0fEW0Ab3JC6v43sP6XQ8SHPcTOBh77WzN1fj/MzLInA8W9nZm5ZFiW26jMRCDlGbCyEAvF98/D0y7PMgJyuZTwWCtCwxJwcZLx6JkOo6TgFOurVC/CmkMe6LcH4+IksvWAgjHT8paif/L4Fa0a6pFKTd9PvRoK9pxKKT9p1b4mS757wtKppvu79Hs9vYblvGvw0YNgDu65gJmZGb0HNnsnNkaDRmRvVVZYWLlwE4M7R1Khl4wdB06zZUM0Pfs3yXKfeg19WDzLAVGMwNFe4Pd/ZIyZlvNryMje7E0ndnYCz0qFGUpFwcnVCO+rjqJyVS/x0Inxudrnq+VbGd8vFEcH02pi9c8amnTun+vVVUaIi1UzdfTXlCmuxdxMgoWVOR5lW+S40zA7GI1G1v96hMhXL5HKVAz57KMMBSt1OgOPHr7EzEyeRjw0Ne7cesGBHacQMBATJ+JkZyBBLaHnwA4FYrWREG9KHVrbqqhQMe+h7p+/2Uf/tr4U9TRNVhu2qnEp1yVZhkEURXZvu8jTh35Y2Vgz4JPWOXrxAPz09R7qlfOjaT05x8/puPiwBMPH5E2pOD+Ij1Pz3eqtKKVxJCTJ6TusI8VKFHwh+Ppfj9KnxcNkTbPoGAPfbCmazt4iI0RExHPt0jNs7SypWadEnkjps/h7BCVFcyK8DE8CXXHVmK4xo27FNzVepVxCKaW8hIe5bXIUzc1u4jVRFPMu0f2BIC/z193bgTy/vpUhvUzP/YtAHRsOFC+w3+2iWX8hqJ9hay2lYjkF5++4M21+3wI5NphqLE8evghAi/YNqFoj4xRUgH8kkZEJlCrtmmEdT0K8hl+/24NRF094lIi1hR65HIqWLEO33vm3zxFFkbt3goiLTaJK1SJ51nsKDIji2Lb1TP7UtH9UtIGVfzgxbnpKtuPxw2D2bD0NQMceTfApnbOFzP27gRzetpV545VExRiY/YWEGYuHFZisR26wZcNJgvweIorgXb4SnQtIgiY1EuI1bP7xR6aPTvkupq+UMH728Gz3NRqNXDj7hMREDXXqlcpS6DkzPIu/B8CJ6NIExcXwJNAV0V+JpZ+eEkbzLB01UqP/pPZ5nr/+VZEtgy4xmWgBVChlJDgoukDI1pkTt+nYWsGAbtZERhn4bJaGVcMzN73MLX76eg8d6vlTvZKc8Ih4Zi3YwPyVw9K8+BLiNSybs5aW9ZKIjhXY848b46b3SPdyrFi5KBUrD+CXb/cysIsfFUrL0ev1jFvwD5Pnj8h3oaKFpZJ6DXPfofI2BnzSiuVz/6Rs8TiiY0WkVmmtZwRBoFP3ukDdXB87Kdqf5g1ME1OLhgqOX3iR7/G+gf+LCJKSdHiXdEpWRc4MP6zZxrRh0Tg5ytDpdIyZt5X5q0YWeJRNrjCld98gIVFE/rZ+RCZwcLCkVbv8tZhntEKsZpHxb6SahQ9XnwYkdyrWUtxm1dhriNF5S0f/VxDoH0blVFNKUU85cTEFUwIQGZmAQR3B6lmOKJUCc1bE0rxNwaUQH9wL5ObZA6yYYnrm5q7ejZV1r3Sq3mt/OohC/4hiHiLLNsgZObEvru62abaxsFQydmp3Hj8M4dz+v5n6mekFvGnXdU4etc1zfdUbCIJAxUr5lwrw9LJD5VSF2Stv4u4qcOuhMp31TKky7kyc1SvXxz6w8yxLJyuRSARcnGQM6pbE+TOPaNE6/4v7mJgkAv2j8Cpil2207MyJezgpbzPm9ff666YrXL/iSrWaBdt8JJFKUL/Vc6bX52yOlEgk1G9UOvsNs0BKycS95E7sN1H67CJcoihy5ORe/J4+zdcY/lVky9XTk3NX7lK/pgKjUeTgaSkjp+RsJREeHs+fvx7EoNfRoFn6mq2Hdx6wbJKJMdvbSenRTsLjR6H5iuykhiYulOqVTC9HRwcpJb2SiIlJwtY25QW07pdDLBivw8XJNI6dB4O5cO4J9RpkXJweH53Shi2TCdStqifAP5JSpQveSDYvMDOTM2fZIMJexaE0kxdoi7den/W/s4LvszCe+4ZRtrwHbu4pRs6iKPL1im242wZhay3y1y8qpi0YmOXKWC7E4+RoeozkcoGSRXTExqoLvJ29Y9e6LJ3zgM/6aJBK4Zv1cibPa1Sg58gObwhXP6+XnIi24frrztrUpMskC2HqVEzEjMcKF44u8sPjjjdy4d2v2j8kVKpanK2/naZaJRFBENh/TEupcjl7qYmiyN9/niLwRTCOLk70G9I8Tffv+dMPGNFHxMzM9LcFU6yZ/sV1auahrT8jHD90jalD5cmLiDGDZPy251YashXgH4lC/4hxQ03PS6tGRuZ9t59Js/tkeMzrVx7zcYeUa+jVUcG0Lx7km2wVJHr0bUx8XG3i4zV0GWpVYClZQRDQ6USUStP9TFKDTJaz13FsTBLXrz7Hzt6Sym+VpJw7dY9LJ45Ro4KRA39LaNyuDTXrZt7cdOPKI+Z8mrJo69RSyu97nxQ42TI3l6O0Lcnfe55SvaLA9oMiNRo0KdBz5ASZlUVkRbgOHtvFk+PPsNHlL6jzryJbvQc25fcf1ew7GUyiRqBzn4/SkJWMEBQYxbOnrzi04zCrZ0mwspTw5W8HMBiM1GuYsszU6yVpbBTCIsErF+aX2SFBLcFoNCRb0bwKF9OFjJMSEnFxSvlKShQRuOqf+crXICqJi1djZWmaAB49E6jZNu82L2mObTCy7udDREeEoTCzYsjIdnkKxwuCUKAdnW/g5VOeP/6+RcsGEo6cNVLEJ2eRm+1bzpIUdpXalUW2/yGhSsOW1G9k0jm7eP4p1X0C6drORHab1dPy8y+HGTkuc1XtRK2SpKREzM0liKLI8yABq3wo6GcGC0slMxYO4eihW4hGkWkLKr8X+5vUK8RSykucCC/D9YSUaFZIaAzeOhss/BMBFZokDdIAi/95ogXg7mFL/dbtmbDkJGYKcPb0oe/gOlnukxCv4cH9EI7uv0jP1mGM6SHn7qMI1iyNYFKqiIqFpTmvIlJKQmLjjMgVBXfP7Rxs8At4QfnSpmM+DzRi55j2uY6ISKC4Z1qJComQed2rV1EXbt4zUvx1Q9vdR3pc3R0LbMwXzj7k3PHLGI0CHbo3pVyFvEW7LK3MCvxZ69GvBRMX/cnETySERxr556AVs5dm3/EdGBDJr1/9Ra8OegIfwleHvRg7tXvy5ycPnOSreabvqFt7kbHzj2VJtkr4eHL+amCy9tb5awa8SxVOl+SwUe25eP4JB66FULeND6XKvB9rqKzqUDPyjPV7mn+iBf8ysiUIArXqlWf/tlDMlCJPHgZk+QDt2HKWmOBrGHSJ9O2oxNrKRMzGDVUybfX1NGSrW99WTFy0hd4fGfD1FwiJLUqx4gX34Hfq2YqJi3bRvJ6e2w8l+FSuiUKR9vbXblCRXzYe5ZM+SgwGkXXbYPDnmT8og0Z2YvLSPynnrSUwBMrXrJst+cwpvv9iJz1aBFGprJzgl7EsWbiROcsGF8ixCwI9+zfh2mUv/jn1grIViuVoJWY0Gnl29wYrZ5omzno1YfzCM8lkKyw0itrFBTQaIwqFgJuLjMT4hCyPOWRkZyYu2YKbo4bQCAkf9WiXp9VvVFQiAf6RFClqn+l3qLJQ0rFrwXaX5RWpJ6wT4abCeDBLJlrVvV249iwUH1dnQmX/fXPjnKJMeS/OnrDBqI8j4lUUiQmaTBcxAS8i+P3bTbRrokMbE0/tqiZfzwql5Sj2hKUpfm/crCyLZ11FrYnExgr+3KVk/KyCM07v3rsBS2b50rhGLEYjnLtly4yFaX+LpUq7sPxPOa0aGTE3l7D/mJYiJTJvjqjfqAw/fvWYu1/5YaaE4EgHpsxtUiDjvXndj4eXD7J8shKjEWYs34aVVb8cdfC+C3gVdeDTSYPZe/gG5hbmzF5aPUe2R5vXHuSLWdLk2tY//g7kwb0QypZ3QxRFLC2M6PWm34RMJmBlkfWz175zTb5dFcjxC4EYDKCy9+aT0bm3kNPpDDx5FIrKQpHle7NOPR/q1CuYaGt+kBHhetsz9g3hksgFjKIRiZC/qOa/imy9DInh8LadrJymQCIR2LjzMkcPmWfYQqpW63jx8BpLpiq5cNXIy1f6VJ+JCELaH7a3jwsjpwzlxlU/HEtZ0aJ33oxIM0OFSkXwKjqMp49f0b6abZr01Rs0aFKeI0lapq26g04Hnft1yjIq5OhoyfxVI4iISMDKyqxAdacM6ldUKmt6oN1dZbjax6FW6zIsYN+49hihAU/R66FC9Wq07Zi+I2ffzks8uvsUhZmKgcPb5qnI8W1Ur+WdKzVhnc6I1Vtt5uZmKf/29vFk5qJoaleVERZuxNpGQc36DbI8pqu7LfNWjkCj0aNQSHNUqxUXq+aPH/eh1yZRrGQxXNzsuXTiKLUrG/l9h4S6LVpSt0FZ7t72Z/ffh1EpRSzs3Bg2qn2hd1zmBm8TridKV0S5Eu8iNlx7FkpCERX+8hgUbUsSeOAxqlhz+B+3R/xy2WamD4/D1VlG8MuXrFz+N9MXZGyXs2ntfr6YJUGpNOfMhbSkX61JK5sikUiYuag/ly74EpykZfpC7zwXhmcEhULG7KWDeHA/BIkgMOtj13SLCpVKwYjxfZjzzX6kEj1FSpSnW++sn59Px3YkIV6DTm8osIUiwMnD11gwWokgCEil8Fl/CTtP3aH3gCbptn1wL5Dtf+3HwtyIKLXjs4nd0s2lvk9D2bHZZMHTvF09qlQrlu8xOrtY07N/zrrp30AiGJJTxQBuTiJxsSlyE3fuJzF3pRaZVMBgEEki63EKgsCYyV3R6w2v71X2hEIURXb8fY7nT54jU5jTvU8zfvjib5rXVRMRJbI3tgijJ3UlMUHDD2t2IBVjSdIpGTKyMy5u6d977wup56+3PWPfpBUBfKq25OzLzVjGWkE+1o3/KrJ17fIT+nQiORXXp7OSqaseZEi2EhI0uDiatqtT3YwZSyIAAU93GX9slTJ8XPr2UXt7C5q3yrsxtCiK/PLtPhKjAtDpoXz16ml0bmxszKleM2sS17JtVVq2zbmUgyAIODpaZvjZi+cR+D17Remy7hmSOzB1xezdegKJRKRu4xrJ1kGhYXou39BRvrQSC5WEyBhQKNKvvI4euklRm7uM62Wa2L9de567t12pUCmllmDrxjN4WNxg2SQFYeFRzJq3jnkrPylwm6HsoFTKiIi3xdc/lhJFZFy6oUNplfJ97Nl6lI3fO2FpYRrXsEmxDG9QJsfHzgx6vYE/fztKRFgEnkU9uHP9AUsmGXB0kHLo5HX+2qhm/VcmUt2lLXw+7wRlyhdl/987+WKGHIlE4OJ1PzauPU7fwc3zcQcKHlmtEBM9QVBqaFTPm0qfxCCNljGi4/sc7fuHpTIWV+eURYxKHpPptgqZAaXS9FusV9OMhV9E0r6FirNXBXwq1khHvCUSCXXr58/26erFJxzadQxLlRGdYM/nU7onR+ClUkm2NazunnZMnpO7DkiLTMo14uPU3Lj2AmtbFZUqe2a40EhM0PD7D/vQquOwcXBi4CetkcmkKM3M2X8sgeqVzPBwk/EiyIidffo5MClJx9Z1O/hqngyJRMDXP4zfvtuTRsfsZXA0W37bzIoZCmQymL9mJwpF9zynJfODijUq8MeW0wzuqSQu3sjOI0qmLTKN49jhW4zop6R9c9Ncsu9oIq8MOSssz64R6PyZB1w4dROZXIGFlSXVSzzi00kKwiNi6P/5D6z/yhonR9P3uGW3P9cu+3Hi0AXGD4g0ZQgSE5i4ZDPzV43Ix9UXPN7MX297xqaWt5FTjAalxhH1KpCb35/J87n+NWQrOjqRpCQj95+IVH4dmQ5+qUdlmTHRsLe34IGfOeERWhwdpHRqa81v2+1o0rwS42b5FOgq6g12br1Ag/K+yfnvr367wKP7npQu556v4yYl6fj5q50YdTHojGYMHd0ZB4eMr/sNdm+7QFTAZepWNbJjrYRK9VrQoEnakH6AfwQH/9nGiqkKBAFW/3wYlYUZp4/fwtMploAgOat/iMbTy4pKtRplmB67fe0JS8al1IZ0ailh25mnachWgO9TPptk2sbJUUbdKmr8X0RSvETBpWlzislz+rDu50PEx0Tj6unOp2ObJH9mJtMkEy2AapXMiIxIwDWfq7HVi7cwtEsE5UrJOXclnOtnY3B0MKWEWjdRsPtgWpdHbWIUP674hdjoaGLjHLG1kVKnmpydx9NbTH0IyEzLRuKmxkf10rRyNHfH27I8I9j7fgf7nqDTGfB9GkZktGlRJggCoigSl5D5S86jWAkOHL9J22YKmjVQsXGPHLfA+lRr7lUoTTAxMUmc2HeAL+fIEQQJz16E8dv3+xg5rlO+j713xyUe3bmLwQD1m9dNTt1nhpCgaH5YvYGeHfSEPICvDngydlr3dIRr9aKNzPg0ATcXGfcePeO71Ttp3rYWj+/cpIKnku/XRhMVDXKrIkxfkL6uMygwilqVjckL+BJFZGgSotJsc+r4bT4fLEkWBp45Rsm87y+9F7LVsk1Vjh0WmL76HoJEwecz2ibX/vo+DmJMz5RXepN6ZqxcF5Lvc545cY/gh0dZPklJTKyBQWMjGdfLlI51dJDiZKdPbhICKFkUVv20FdGgxveFJW4uMlQqCZ4uGpKSdAVq61MQyKxTMTFN96QZlt4l4fu8n+dfQbZOH7/DtTMnqFZe5M+tcQQEG3BylHHploppCzMWOBMEgclz+rPmh70Y9Yk4unqzcEXzAhf4Sw3fR/6MmJRCPNo0Fjhx93m+ydZ3q7fyeZ9wPN3lxMbFMHXZRuavzFyfRBRF7l+/yhev1aQb1DbVJr1Nts6dusun/STJE834YUpGzT+HndKf+TNND9NHrSzpOyaBqYvT1wrFx6mJjdVy6bqGujVMacGLN4wU90l7vRotGAwiUunr5oAIqGHxfgqmFQoZn4xun+FnRok1wS/DcHeVYTCI3HkkocvQ/DUc6PUGLOUmogVQv6aCDf+kfG4wiLwIFvAP0lHEQ87zAC02lkaWz1ESGeXIim+jWDLTkVfheqTyD1c64e1OxSBVzGth05eAbQ7V6v+biIlJYtX8dTSppcFcoWb4ZCNN6qu4dlegbZfMBTe792nIji0Spq3yRUTB7CXtcXIumAaYjPDieQT1qhmTCY13UTnq+Khs9soe507fR4i7yPIpSkRRZMm3R3BxtU8nG5EaG/8w1SapXtu0/LktkLt3gtJIOmi1epxs4nBzMc0l5UvLYU8Y3634iy0/2iOTCXTrYMmo6eGMnfpxhnO/37OXXL6hoX8301wZHWPAIKTtJLa0UvEyLKWQPzzSgLnq3TenvEHzVlVo3qpKur9XqVGKHQefMijZlk5H1Zp5s1lLjSvnbiRbftlYSxk5yIJL19U0bWCaj8zMFaz9W82gj83Q60XW/R3LV/PtcXKwZOaSCEp7K3B0kBLySsDM7MOlHBktGgsSH+6Vp8KZw6eSOyy6t3dk2BQDjTv3ok1f+yxTUVbWZmk6NXKDPdsv8uj2LSQS8CheOlulWwD3Iq5cux2WLPFw5rJIyWr5X/3IjNF4upuOaW0lxc0hCY1Gn2nqymDIujbpDRwcbfALMFDMy3TswBA90bF66tRNWXkoFAJKefqOopiYJFbO+4NR/bT8vjGWzTsTMLewxNa1FEO6pw1dd+7ZiilLttG1tYFHvgJ6pQ9Ozlbs23mZxw/9qVi1ZI6sGwobn47rzJrVW5ELscQnyug3vDNSqYTD+69x9/pDpDIF/Ye3w97eIsfHlEolJL7l4KHWKvlhvZoyJUV2H5Uydlofft1xA3VCFC98w1j3lYno2ttJCYsUWfOrlkfPzZky992LtuYGb68QU4uZ/i9j7Y/7WDbFgJ2tkt6dlXy3NgGDdXPGTPfJNIUGr/0zezUAsq57ygj+z8NZ//MuLM11aI2WfDahe7YddZ5edvy5W8Ib/hcSqkeqyD+5u3jmLkvHpzhJ9O0sYdeFh1mSLQE9KlWq2iQXiItJ+yDJ5VKiYlMiXaIokpAowcrCkNxVDlCymIyXL2Mo+db1/7BmJ5WKvaBGJZGBn7+iiKcFEfE2jJuRNpLXun1VFs+8Q2R0NOZmsHmfOdPmN+fRg2AO7b2EpaWKXgOaFGiNXF5Qq64P255XY8qyewgCFClZldYNyhDgH8Hf648gYqBB0xrUqZ87zSojUtRqY3KtWEQU7DlqQJAk8eCpQKlKVRFs7Zm26j6PHwSzeKotzq8jXQ1qm7Hwy3hEiYrWXVp+UDWnGSE14XqsKdj6svdOtgwGI36+4ZibyzO0gDAYjNhap4g5CoKAq7OkUFNQN68/RxdxiRXTXueg99zm9HFHGjXLup6rZ79GfLksjO2HXqLRQrFSlalUJe9GnbdvPmfnxv28CgnDYHBOjgyFRUoyrJ96A5lMSqzanmcvovAuKufabR0y8/Skr3nrSiyfd5egkHDMzeDIeQtGjWvLV4t+pFt7S6wsJZw4l4DOmJ5cbN90mrmfG/FwM+OrxWbce6Th0PWK9BvcLN22Zcp74Dh+CHdu+lOihi0dKrjz/ZpdNKr0gv6j5ew/Hszan0MZNPz9WUmAqdvv7XqT/bsuo0i6wLLXIfTJC9cxe9nwHDcjCIJAiXJV+HbtNepVg0OnBVp3bUXR4u68DI5mxCQP7O0tqFytGKIosmDKd8naO2q1ETNrd9r26UUfO9UHP1G9wZsJ63+FaL0KjSU6OolixR3SdRgDGHRq7GxTiTGXlhCGLEuilR+IosgvX//NN/MEFAqBsPBoVqzZlm0tlb29BZXqNmHsvNPYWBmJSbRh/Iy8E/ykJB1fLN7Iy8Ag7j+2oEIZ0/XefWTEw9Mpy32r1KrIb5tOMrS3kvgEI//slzN1Qdq5VBAEqtatw8KvLlC9goFTl6S07tSOH7/czsVrSdSpbk50jIFjZzT0HJW2CzE6OhGF4QVd2ioBJf27Gxm/SM68FektkWQyKbOWDOTKJV+idQZmLSnB44fBnN67g9ljFLwKN7Bw9nNmLx1aoE1KeYFJgT9FhT8yMoE/vtnI6llSFAqB1T8fQCaVUKNOzjsCew1szcRFfzGou5bgUJFrj92Ys6Ij9+8EUamJDT6lTCntth1r8v0XO7GyCkze98YDOZ0H9KZ0Wdds68I+FLxdx1VQeK+/jMQEDcvmrKdulQSiYwUi1UUYNTGtwapUKiEyzopX4Qk4O8rw9dejEwq31ufm1ccMbJvyw+jaRs68Hx5nS7YkEgkTZvTAaDSF4vPzchRFke1/7uW7hVIePLZl3OwwfEqY8TzEjGYdWmR77ImzerHu50PERUfh7O7KZxPSkyCJRMK0+X15eP8lWp2eOZ3ckcmk1GrUgAGfn8fWSiAiRsmqH0em21er1WGhSmUibSPFoM+8VcPR0ZKmLcolX5sm1p9m9U2r3Y6tFJxfng879UygVuuQy6X5KsR/eOdhmhB6u8ZqHj4IoXKVnPtbduvdkEcPSnL32UtadC9C0WKmif9tOyZBEOjcpz2j5+zDxcFISLiCEeO6ZhlJu30zAP/noVSuViJTJ4WIiHj++GEPUjTYOLgwcHjrQm9O+F8hWht+O4Iu+j5e7iIbflIwdnp/HJ3SRoNKV/Bhx4GLdGmrRK8X2X5IymdT874Iyw7xcRq8vfQoFCl1knIhPkf7NmlRiSYtKhWIp+Lv3+9l8tA4XJ3smL44HEcHGaJgTrzBizGTs67ZataqMscPw7RVd0GQMXpq2wzJaZuPahJaszQB/pEMGe+MnZ1JiHjJ7N9xsI0nIgo+HtwxnWCoTmtAlSpbKJFIMDfPfE6VSiXUqZfSfHB47zmWTTApwHt5SPi4bSJXLvrSoHH+03ZvYDAY0ekMObYwywgXzjxkWE8jSqXpGBOHK5m2+lquyJanlz2fzxzK1YtPsHKyYPJsbwRByPBaB49sz8pFG3GwiiEqVqBKnbqUz6KpIuxVHFcuPsbe0Ybadb0zfK+JoshffxwjPCQQnUFG/2Ed0rkSFDQKY/56r2Rr3S+Hmfu5BjcXU3j37z0vuHLRl5p10momjZ/Rm6++24NRH49S5cKYyZmLTBYEvH08uXDtAZ3bmG7PxRs6invnvO6qIOrC4uM0FPMwIggyypVWsnqeE+MXGJiyMGd2PFnVJqWGIAiULZ9WXG7Q8BZ83K8RiQkaHBwtM3wAOnSpz7w1z1g2TcBohCXfGvl0cu0cX5/R+Pa/C86jU6PRs3LBRpyso4mNB+/yVenaK+eea4mJWtb9fIjE+HhehsSh1UpQKEz34GUYVKmY+3qN0mXdKF02exG/ylWLU7nqaLRafYZRktRY/+thHOT3qVFRYOfGc1Sq3yqNdhyYtMW+XPwnK6YZsLGWcv3OE377Xs/wMYX7DP0vIMA/EknSfaaNMpGAji2NLPpxXzr7lvada7N9s47pq56i0Qr0HNI6x4breYGllZIXwUJyIb5abSRRkztHg4KYwzRJsXi6mX7DK+Y4smFbAgrXNjRrkbMO32atKtOsVfZixS6u1ri4ptTXePu48NNfU4kIj8fWTpXhc+ToZMmzYDsePo2ltLeUjTu1FC+TG+V607z35jZptSBVFdwCZvuWszy7ex0bKwiNtmHynD65Il0H917l3s0nhEfocG1ppMrrv8fE5k3s1s5ORcu22X8X5uZyZi4eiFarRy7PWgrn8cNgtq/fyoCuIr7+Il8t92DctB7ptvvz96PU9H5Aoz4KEhONTFj0FzOXjnjvUcTc4r2ONikhHjeXlCGULiFwPTB9QaallRljX38JL4OjWTl/PVbmauKSzBj+eTecXQs2t9qwaTl++daXqyt9kUpAL/Pg8yk5JxIFAUsrJX6B0mRV+/gEI2aWtu+sk0OlUmRpiurhZUf/kf1Y+PNJQGDYuKY5VooXBAFHz9Js3vWAxnWkHDhhoFjpagUzcGDtTweYMCiWYl6m8a/59Tp+vmVzlHo2GIwsm7OOOaM1uLvK+PIXNcOnGBjcU87zAHgZV5wS3lmnQAoC2REttVpHdMgDJk02Eb+KZUUmLTmbjmy9Co2jUmktNtame1GtooKtB0MLZ9D/Ywh7FYdPsZRVg5WlBCETIbE3tVeiKPLjV3vYuyWIJDXUblwvR4QiNxAEgY4ft2X0nIN4uBgJeKlgxLjOBXqOnMDK1oGHT59TpqTpt3z/qYJB7XIeEc4PpFJJlvORIAhMndeXjWtPsHZXJNVql6VLLmyCOn/clClLtjBhmISQV0b2nLRmzrKCsbjx8w0n8dU1Vs40kfjnAXGs+/kgIz7P2QLpnz9P4WF5i+WTFPj5a/lsehKJSWBnC5v3Kpk4p02BjDMrZDd/AezcfIwVM+TIZAJVKkBEVBDPnobhXTLt/BoeEkijvqb5S6WS0LiWhud+4ZQukzOrvoLCGzPrvOK9kq0qNcvx5/aT9OuqxGgU2bhLoO/IrHVifv7qH1ZO02FuLiExUc3UlVuZvXRogY/tk9Ed0OsNGI1ijn44BQ1BEBg4sjsTFu/CSqUnQWvJqEnd3vk4soJXUQfGTsnbmAZ+0oqL54ry52F/KlbxLlAvroTYGIp5pXxnNSsaee77Kkdk68XzCOpUSsTd1TTRjfvEgvGLZLwS64ODnsrFzIiKSsw0MqHXG9i/+xoxUXE0aVGl0BSrdVoDVqmyi4IgoFSkjw5a25gT9DLl73q9SKLm3eqb/VdRuowrq7bIadVIRKEQOHpGi1exrM3r//nzNK1qvqBuddOiaem3J3lRyjM5tVxQqFqzJFVqjCIpSZfloqkwMWhEW75duQ2JIZz4RAktO7bJVXNJYUMulzLwkxZ52rdkKVf6jxzAP0dvYGmlYtaSmgWWmn/hF0atSikkvpiXjITYzPXY3kag31NGTTZ958WLKGjXwgK1RQsCkgw0bScjIjw+y8jqzevPuXXtCd4+HjRoknW6Nz+QSo1pGhnsbCApKf1iRWeQoVYnJRfo+wVCpWbv9nf0LP4eQUnR+TrGeyVbzVpVZu8ONdNXPUCng/Y9OmSraWRjqU6O7qhUEqxVSVlunx+8i4I+URT5dtUODEnB6HQC3hUq07WnqfuoREkXZi3NXOLh34469UvnujMmJ3Dz8uDi9bvUqSZHFEUOnZbQY1jO/L7MzRVEpbKjNBpFJBIp/r4BmBvu41VS5IcVUrr170bpcmmPaTQaWTp7A30/isGrqpSvf7tLu57dKFu+4PV4rKzNCIqw4+nzGEoWk3PopBZ7t/QvepVKQYkKNVn41VXKehs5eVlKn2FdMjji/yO3sLBUMuizXkxfvR+F3ICrV2l6DcjaHDzgRRCje6REp1s1FLl/L6DAyRaYCPi7IFpnT97j9KGTWFqIJGhtGDe9F+bmcuRyKeNnfFzo539f8PCyo28GDUH5RZly7vzzq4T6tUxp4Es3dLh65ryMRaNL0XIDiImDEvZmHNmxj44tDNw8LuHC6XL0H9oy3b57tl9EH3mJ/q2lnL96n1+/92PYZ9mXo+QFFatX4LdNZxnaW8mrcD2Hz5szt1P6aFWfIe2ZsGgTTetoePYCLJ0rFqoEytt4Q7ROhOcs/Z0Z3nvSs0OX2tAl5ym66Dh5smaTXi8SE/9hCaTlFn//eZqPGgZRq4rpOn5Yf437d4u9F8G894lzp+5z9uhZlApw9ChBvyF5W3EC9BrQhJ++jmP3sRASkwSatW+dY2FSN3cbYvXF2LzLjzLeApt2Q8OWzbh38SATx5hSdo3riExefphpC9J6Rd6+GUjj6tHUqWbabslUKdNWn6Rs+X45Ovfh/de4ceEKSoWIhV0Rho1ql2XNw5S5fdjw2xGiI6IpVa44A4ZlbGrcsVs9wsMqEvoyjkltHd57i/p/CUWLOzJ1/oAcb+/g5MCDJxGU9TE97xduQJWm78eQtyAQGZnA1VPH+HKuidT5B0Xz2/d70zU6/dcRERHPL19tx0yehMagYsS4bnkWznZ1s6FW89ZMWHQaczMRpVVRPh3bNMf7t+zQhNkr99KjPdx5KCKx9OHonlOsniVHKlXQrD4s/Oo+UVH100W4Ht66ycrppvmhazsZM5Y/w2Aw5ihqFxIUzW/fbcPKXEO82owR43qkaxZJjVbtqnP6uJKpq+5gplIxbX7rDP0hPb3smbpwOH7PwijTwDJNfV5hIzXRehKYv7TleydbuUW/TzozZt4OnO20vIqSM/DTD/ehvnLhCVcvPaRoCTfaflQ9wxdn4IsQxqRa6TatK3DqQdYG2/81vPAL5+6FI6x+XaOw//g99u20pn3nvJkuC4LAp2Pz7gszclwnrl3242ZwJH1HlkSr1RP5LOVzqVTALIOUncEgokj1d4kEBDIu/BdFkQf3QkhM1FKxsicBLyJ4+eTs63sgcOrCM3b8c4GuH9fLdJwKhYyhIzMXxUwNRyerLCe+woIoigQFRiOKIp5e6aVd/tfQb2gLVi+OwFIeQUISlCxfvVDU4AsCYa/i2LPtPBKJQOeeDTIkDwH+kdSqnJLyKuIhR5uU85TXfwXfrdzC0kkarCwlRMfEMnflFmYuHpz9jpmgdr0y1K6Xt0hK9VreuLoP4Po1XzzKONKqelHWLPwtWToIwM3ZJEr9NtkybZMyZ8lkpui+NIMkT+jLWPx8wynh7YizizU/f/U3q2foMTOTkJCoZvqqf5i1ZEiWY23UrEK2Xf5gKrwvVyF/4uC5xRuidfB5MR7cF1Am/Q8ZUQN4+7gyb+VI9HrDB63bsXvbRSRxl5jYX86VW358s/IFn2dQ31TU24Pz18Ko97qG4+g5kYoN89YWHh5msn3J60s1wD+S+3f8Kebt+k6LD29cfUqXVDWb7ZopGbvwYZ7JVkGgeq3iQHHAVDT/6x0zOrXS42Av5fApLc6e6dueK1XxZOFmS8qXVuPpKmXFjzqatK6bbjtRFFm1aAuVS4RgZyuwaLoZ5atWoG2TlG0a11Wwf5U/kDnZ+tBhNBoZO2gHLy7oQBTwrPX/tWIymZSpc/tgMJgsYj5U7bRXobF8v2Itc8dJMBhgwYLHTJgzJB3hKlLUgT92Suj8+vl9HqBHqbLN0zkTEzRERCTg5m6Tp7k9MVHLhbOPUShk1G3g807fDzJjBFaWpoiLrY0UURvxzs6dETw87fDwrJ78b2fPYhw5fY+WjRSERxi4etecDgNt0+3nVrQU/+y9Q5c2ci5c16GXumcYbTp2+CZPrp+iTlUj//wqpUKdpthaqTEzM0U4LVQSrMwLr8SnMPGmEP5EdGlOb7rIk1+OYxFvTrB5QjZ7Zo1/Hdl6gw+ZaAE8uXub5VNNkZqm9RScuRyYoS9Ut14N+H5NJPuOB6LVCpSqXJOy5XNWX/QGRqORVYu24GH/ClGEkGgXJs3qmauJ/OTRO9y/fISPmks4e9TInevV6d4nd470eUVEhJpLcepk0cPHzzQEBqrfyblzAqlUwqQ5A/jix30YdEkUK1mB3gPrp9tOLpcyfdEgtmw4SWx0HM3b1aB8xfTE+fyZxzSqEsJHLU3t+HWqGpj77XPMNCLlX5ew3X6gw8W98LseCxN/r79O4CEzbHSmFenLo/m3fvmv4F2bsOcWO/8+w6JJUuztTPPs1E917Np1mT4Dm6TZzs5ORd0WLRk7/wRWFiJJejvGTst9jc/Rgze4df4MJYvBtbtSPhnbK1fNJbExSSyb/TuDumlJSBJZON2GWUsGZUgUCgNBIWpE0QpBEDAaRYJDEt/JeXOKPoOasX2zgmOrniOVq5g0p12G8h69Bzbl5FFH5nz3mOLeHoydmnGJz+WT51gzxzRft2oM4xacQatLW+ITm/DvK/F5E816rKnNwyAHHv32jFLhpoW1S5IRf27n+dg5IluCILQBvgKkwK+iKC576/MJwDBAD4QBQ0RRfJHVMUNDIvlq4ffEJUjp8HErqlQrnqcL+LdAzERGShAERk3ImdFrXKwatVqHo1Na7as92y/TrXkYdaubfvxnLr1i366rdOhcM8fjO7zzCL+uMq1aq1eGT6depGuvhoXqJfkGXkVseXBJx9wVEVhZSggN01PC27vQz5sbWNuY58j6ydxczqDh6QtPUyM6Ko6qHin31cFeiqWFDK2yCpMX38HcTMQ3SIGHexi/fn+A/kNbolTKeHAvhFeh0VSqWrTQdJru3HrBkb0XkSuV9BvaKl/nef4sCqXWEl7/VJW6d5/GLCzERCWwcs4PyGRg61ycwZ8Wfjv9u0bqOSuz+QugboOy1G2QdRcmmMy4w8PicXSyTEOCNBo9N86dYeVMU1RkgMbItFW7mb4w52m43344wNIpIk6OpgWMtUUcB/Zco2PXdxMdt7O3YOysMLyLynn6XPdeUvZZQRCEdOrymaFJi4o0yUYGQ2VuxEQHTLBUibTp3pnRc3fiYq/jmT/YOVixZsnfdOzRGG8fF8LD4rh3JxB3T/tk1fmCRnycmg2/HSEpIZFGzatTo07W6gapkbo+KyHRBY2vDmVSiqaiRJCQSVVIjpDtm1QQBCnwHdAWKAf0FgTh7X7QG0ANURQrAVuBFdkd18lOz+LJEr6aa+TA1r0kxGuy2+VfBZ8Klfh1k4aYWANHz2jQSb3ypZH1+w/72fjDzxz953cWTl+LRqNP/iw4MIyKZVJ4c8UyUkICw3J3AjHtSkxlpkOvN2ayccGifqOyhMXaMby/NUN6W6Mwt6J916y7uv7NqF2vNH9sFdDpTE/ut2s11G1cmY/7N2HSgtG4+1SnXSMNyydF06flM5bN2cCv3+3j6eXNuEgO8sOKX3ny6GWBj+vmdT/OH9zJkvGRTOwfxOoFa/P1XLbrWpZE16Dkfyc4B2ax9b8LRn0CK2cILJ0iUKXYY/bvuvK+h1Sg6NKzEbNWGwgJ1RMQpGP5jwLtO+dda/DmdT+Wzfye8/vWsXTm99y5lbIWj4lOpGiqYL5SKcFcoc/gKJnj4d3n2NqkvPydnSTcul7wrhSZwa1oSbq2t6Ffdyu6tLfFo3jOX/L/RiQZ7Hn2wuSZ++iZDi0OlCrjzvxVn9Fl0ABsrGD5pFgWjIlg27pNHNp3g3Xf/IGb9CC3T27irz+OFviYtFo9y+euY2T3FyydEMnja/s4d+p+jvZ9uxA+6KYG22hLMDOgF03XmSjE5Wt8OYls1QKeiqLoCyAIwmagE5B8FaIonki1/UUg2/Yr5WtFbkEQqFPFQGBAFKXLmuqEEhM0XL3sh0qlpHqtYh9sXUNW6NitDlcvOfLNlocUKe7GmMl5E+2Mjk7k21W7iA17wuzxtngXU+IXkMCGXw8zbFQ7AOo2LM/af3wZPcgU2Vq7VU/tBrmzG4iKlnD+ShL1aprz+JmWZy+MyGTvJtVhYalk0tzB/PLHUbQaLW27100nqwBw+vhdblx9THFvdz7qWrtQfheiKHLu9CNehUZSq24ZPL3SWuBsXn+C4OePMRigXNUqeXoBOTpZ0eeTXsxYcxiJIFKjXv3kyIAgCDx/9JBlk03fZTEvGV7OkUi10Qwdalq116shMmXFIaYtGJjPq02LY/svsmyiAkEQsLWRMqhrEhfPP6Fpi3L88u0+kmJekqgR6NK7TY7kLCpV9WTM6mps+vEWiDByWCWuDLpaoGN+X7BJFbho1VjO9C/8aNcpJZJ8+1YgkeFxVKleNM9dae8TTs5WjJk2mA3bzyNIpEycWw8bm9yp0IPpedq38zJb/zzCyIFmfNTKElEUGTNvPxUrm2zAHJ0sufNYRlKSEXNzCY+e6ZCZO2dz5LRwdrVj8ZdBzJnogE4nsvqHKEpUrpTr8eYVn43vyK5tFzn4RwAlyxRh+Jj080JgQCS7t55FJpPSvW+TQtMc83sWxo2rT/As4kKtumkzBI/uB7H1z/1YmBswSuwYNalbnpTYJ8zoyR8/HiAhNgprOwfGTk2J7J44fIPJwwXMzU3vjwUTFAyecJjNP1gjCAoa1Ia5q++REN+wQP1B79wKokPTRJxfRzfHDVUybdU16jcux8VzDzl18AwKBbh4edNnUIpkx9tES/RXYumnx9KYxLjPJrJl6zriE2NwdHWG83kfX07usgcQkOrfgUBWb5ihwIGMPhAEYTgwHMDTLWUVcuO+hOqtTa35kZEJfLFwHb0/0hAdDEvnODJtft806Sy/Z6/Y+NtuLMx1aAxWjJ7Uo9BMXfODGrVLUqN23lc48XFqVs3/g0UTRawsHJm/OpIhva0p5a0gJiql46dK9RKEhTVi6vLriECVOnWoVKVors5VpXZFDh6/w6ETiej14FOu1DtJIb6Bra2Kz8Zn3kG4ZcNJnM1uM2+knIs3Avl6RRBjpxa8yOuXy7ZSr0IQTctJ+OPXK7To0jn5Xp44cht31R0+n2JKd3y37iK3b7rm+l4DFPd2ZvKcjNckOp2QRicnIlKkUrkUYimTCSgVBR91lEikaDQiZmamc8XGg5mFnPW/HqFt7efUqCzHaBSZsHAHHtOGYZ2Dl2/LdmVo2S5/+jQfClLPXw52KfPX5Zt6ipRIkW/4bvUOSro8p5gXfL1YxsDPelO0eIqgrk5n4LvV2xH0EcQnCLTv3pIq1QtO1Leg4OhkxaAR+TOH/+HL3TSu/II96x04cDyB7/+I5rPBtthYpkSuJBIJn03sw6wvd6OQaVFauDAil93EfQe34q+f/mLuigiMIsQmWfFRl3fXYCMIAp271wXSN8QABPhHsP77v1g0SYZGIzJr0R8ZNhzkF+dO3+fuhSN83F7g5n0jv1wrySejTWbiarWOLWu389VcGVKpgF/AK375ZjejJ3XN9XkUClmmivZKMwUx8SnzU1yCEQsLSZrFsaO9QGKitkDf20ozGdEJKefQ60WMooD/iwhunD7EqhmmheSeI3fZv8uSdp1qZUq0ShjNqe5tSnV+Mujz5GPuPf93nsdXoAXygiD0A2oAGVZWi6L4M/AzgLOzuTj3Cy1RsRIat26WPHH/+eshVk4XsbE2/dtMGcG5049p2KTMm2Ow9vt/+Ga+BJlMIDQsmtVfbmfSrN4FeSkfBE4eu8vIPjqcHU1544VTHVjyVSRVKlpRvnJaEteyTVVatqma53MNH9OBnVsd8H3kj9LGEmNMOF8u+h1bJw8GDm+V6yhSYqKWL5duxlIZS2y8hBYfNaNO/ZSXrsFgZN+uq4SHRtGgaUVKlcm6rTfI7xFjXpOchrUU7D70DJ3OUKAFsAH+kXg5BPNRyzc6WSJTlp+gUpVBgMmgfNHnKangzq2kbD7+NE9kKys0b9+Iuav30bujwL3HRlT23py9Fkr7Zgbs7aTsPKiliHfBG6V+3L8lkxZtYGR/kbAIkb2nbJm52IdLpy9So7LpuiUSgeb19Dx7GkbV6oVnpvwhIvX85eVlI05ZrEOuEBHl7oydahIifvY0DA+bF/Tvbpq/alcVmfnlwTTEeu1PBxjQ4SVlSsoRRSOTF++lRMlPckRe/00QRRFtnD9N65me2w4tLZm9LJzwCAPxass027p52OZKr+xtlCnvQd8Rfdm/8yxIJHgWE1j77SZ0RiWDR3bKkwjm1o2n8XtwB7kc5JaefDa+Y5p58PbNF1y5cB+voq60bFslyzly599nWDJFZurSs4QJQ7Xs23GJvoNzrp+VE5w9ep5V002konRJWPDlM+Lj1FhamRESHEONCsZkCYjiXnL06ugCPT9A+861WDzjLoO6JaKUC/y4UY53ufIcO/uU5g0UvHyl594zFR87WWZ/sFygfAV39mx1wt42jCLuEn7ZDN0HteDmtWd0a0vy9/NRSwVTVz2jXad32+2eE7IVBKQ2tPJ8/bc0EAShBTATaCyKYraFHm4ejnw6dXS6rhy9Tou1VcrfXJ3g9suUeqKoqERKFU+RfXBxkiET85dL/VAhk0nR6FL+rdeLXL8nYF+0Ej3757z4PScQBIEuPeqRmFiDlXN/Zs1sKQqFwIVrj9nwm4QBw7Iu+n4bv367hylDY3F3Nf3Ehk3cyqkDjjh6FGXwiNYsm/sXPdtE4lNLyg9/PiCmcXtq1s3ciV6jMZC6xNCo13LkwHXadSy4+6BW69JY4EgkArJUT0hRb3cu3wxJtlq5eN1ACZ/cdY7mBDVql8TFtR9nrjzB1d2RUd1LEhOTxBc/7cegU1OqfEm69S54r04PLztGTR/C2RP3UFmaMXNxRaRSCRKpORGR8TjYm565u48ktKtesH6k/zbYO1ozccFoRFFMEwGOi1PjkqqJVKEQkEnTRiHjo8MpU9L0GxIEgQY1jPj5hVO5yrvxDXyXMBjS/jvwJaz43Y4xUwpeH7FMeQ/KlO/Jt6u206dNEGVKyolP0DBpyV/MXzUiVwvGWzdeIE+6zsqZpoXX8XO+jBu6CldPZz4Z05Vrlx8T9eIswzvLuH73MV+v8M0y0i6RmDr03kCnFzl9/GaBky25nDTXaWkBWp3pS3B2tmL705TPYmIN6EWzdMfIL8zM5MxaOpSTR++g1xuYvqgiKgsF2zef5ehqf5TmFkyb37bAy0AEQWDavD6cPHafF4/jGPx5OVxcrYmP03DtjkiF12v9p8912DqYNP+8LcsD92jq+BCAJ7gSj5IEnYprz0KTo1sFgZyQrSuAjyAIxTGRrF5An9QbCIJQFfgJaCOK4qucnjyj9udGzavzxS/7mfCJAo1G5NctUsbMSLF0sbExx9c/Jc2SmGgkUVvwP5j3ids3X3Bk7wVEJJx4qcDcTIONlYRVP4nMXzkSd8/CE4f0exZO09r6ZD/IutXl7D6RjltnC4M2hWgBtG6spIyPhqiYJ/zwpZEqPhHUq2H63maPlTJl+bksyZZE4cQPa5/Rtb0ll66r8XST8uD2kzyRrSMHb3Dnyi30emj5USOq1jClcEp4O7HhZwsa10nCy13Gb5u1lKtaI3m/Lj3q8uWyIA6eDEFvAAvHkgzrlvMUWdirOA7svoRcIaNj17pZhtC9ijqkaX23sTHPUKetoOHgYEmn7mmJ3ODPPmLmgg2UKaEm5JWId4UauLnbEBwUzavQWEr6OGNp9d96BnMCQUivk1W2nBuLNihoUteAjbWUP7drKFOxepptpHJLXoXH4+xoej5u3pfwcYP/juBrfJyadb8cQpOUhNpoz8ad4TR5bThfq3Hj111xhQeDOiKZzFpaSChbwqTf5eiY80jK4wf+tG2QEjVvWs+MU+cimTwqgSnLN2OpghXTTM9vy0ZSLt8KJC5WjZV1xs/Bx/2aMXzSFyyfbY9GI/L9HzGULG6bp+sLCYpmw697kEv1OLh60n9oi+TfoVeJUmzbd5Ou7eQ88dPjF2KX3FFsYamkRuMmfD73FC6OIoGvzBk7PWed8GCSGNq/+xqvQiKp16gCZbKQKFIqZbRunzbTUtjfO5ieyaYt0kb9q1Qvys2rZZi7+hHWVgJ+IdZMm9+ChHgNTx6H4ujkjocdaQhXogZAxT9+z9OkFPODbMmWKIp6QRBGA4cw9Xr+LoriPUEQFgBXRVHcDawELIF/Xn/p/qIo5knCu0YdH/SGNkxbfRWQMnRsq+RCQqPRZBvQrlsbxsw9hIuDkeAwJZ/lIef8oeLOrRecO7CTpRMUJKlFxs3Xcfx2ZSQS+Gxq9eSW4vg4NX/9cYzEhERatKtFxcoFk8pydLLk4qGUF0h8ghGDmHt/NZnShsCQYDzdZIiiyPU7Glo3VVGxrJQNu0Io8ZaEVFaLnKdPXlG0ZBEiAnzZtjeeUt4Kena24peduU8NXDr/iNiA0yybrEQURWav3IODY1+KFHNEKpUwfeFA1v92hPiYOGo3qEj9ximNt4IgMH56D7Ra/euoV85TmC9DYvhx1TpmjBJIUossnfWAGYuHvHfrnOjoRIIDoylS1D5TwmRjY878VZ8QEZGApaUSMzM5WzeeIu7lTcqWFFmzWUrvYd0pWerfaztTUFAqZYyfNZDlPx/AqNdQsXot2rY1NccYjUYEQWDIZx1YsHgjzrbxRMYI1GxUP1dE4EOGTmdg2dx1LJqgw9lRxm+bNDwK8Sb4qBkVKpdIYzh/YPcVHtzxo6i3O1171i+wSEeCWoper082OQ58KWCdCQnKDGXKF+Xo2esMfz2tnrmopoyPAksLCY42Sah1aVO+UokpbZoRIiLiee4XjsrKlqOnEpDJJSyb5cDMVbm/Xq1Wzw+r/2LNbFMB+tnLD1j/q8jAT1oB0KNvI44ctGLa6sc4ONkxbX7zNPe1cfNKNGpWEbVan6vueFEUWblwM52bhNGxpoxfNj0kMrIV9RpmL/lRmNDpDPg+DcPK2gx3D9tMtxs0og2JCU3RaA3Y2prj/zyctd9voXVDPcfPCCjsKlKzq0sy4UpItCYRM+LlMnz9kqAAolw5qtkSRXE/sP+tv81J9f95N7LLAG8bFD/3fcUf32/DyU5HWJScASO6MHv5KLRaQ546KfICjUbPNyu3IhcjiUuQ0K5rS6rVKngtqCN7L7JkvAKJRMBCJTB6AFwPtKR9p5QIi0ajZ/nctcwfp8fJQcqy73ei1XSgegbj2fDbEcKDfUlKMvAq3EBRLwssbJ0YMrJdhmTBxdUaG/cqLPjyJl7ucOmWgjFTMy6EzArDRn/EotnrETUhRMfoUJkJGI0QEKzD3cuNq/dlVH0Qh08xKd+u01G3ScYCqt9/sQMPmxcUdxb56bqBhnVU+AdL2HrYjGkLcl+8e+7kLZaMM5FHQRAY0lPC/nP3KVLMJDVhbi5n+Oh2WR7jTdQvN/jnrxMsny7DytIUzR0zUMOh/dfp0iPjgtp3gdPH73DtzAmqlRfZvUmgdZcOyVG+tyEIQjIhiItV89L3JgsmmYhiu2Yik5cfzJUu0n8Z9vYWjJuWoslmMBhZs/QflISSpBEoUbYyc5YNQaPRo1BI31m39b6dl7h//TpyGVjYezFsVPsCP/ejhy9pWS8puc50aG8l01ZFMGp82s7ZP348SOWijxkwQc6lG6F8vSI0wzTc3dv+7Np8EEuVkSe+aooVtcRgVNBnaHu8imQsetprUHvGzv+HmhUNPHkuULlu/Vw/sxUrF+HhvaoMGX8OqUTLqzA9kz6zQxRFIqKlVK9Xid82XaRvFznX7+qJTHLNsObu0vlHnDt8iMa1DKiUeq7ckVK/poK5a4y07ZJ7bbbnfhE0qqXH3Nz07DWopWDf6bSZh+zqdwVByLUMUWBAFCXdw2hY23TeaaMkTFl+8b2SrZiYJFbOX0eTWhpCwyER7+RmgIygslCiel0msumP/a9LZUy/i8Xf3MFWUwvMTRGuxxobHuOCoNQQjzKZcOUH/woF+fU/7eSbeSCTKTAYRD6fv5O5Kz59Z0QL4Pfv9zKih0m0ThRFpizZT8nSOevIApOcxbkzj5DJpDRsUibTqIhULiMhUcTK0jQJRsaImJmnXZVdu+JH9zZJuDqbzj1jtIKpqy+mI1uH9l2jtMsDJvZVABK+/jWGpvWNCJIEfvlmDyPHd85wDN37NCYqqiYx0Ym07mOXJ7V+MzMZGNV8t9QBmUwgMsrA8MkROLp6MnV+O2QyCds2n2Xr8Wgat6iSYWTu7p0gSji9YECPNwbQCmZ9aUvzbm1oN8AuT92Sdva2PA98RYkipt/OY18DTs7vIIUjiqTOmsukAuokHffuBOPsYvVOXezf4MzhU3w1z0Q8u7cXGbfgCFVrjMh2v9jYJDxSBbFkMgGzQuiO/K9g49oT9Gv/ikplTff6h/XXeXCvJGXLvzuvt4f3gokNusjKGaaX5YnzfuzedpFO3XNO9q9d9iP0ZSTVa/lkagasUil4lsoa0WAQ0evTP6fRr/xoM8h0P+pUk7PnWBBGozHNM52YoGHnX7v4cq4MiUTgia/AzgOv+HyYLeMWbGL64hGYmaUnDSVKujBt0acEB0XTsLNlpqm97BATFceUUVaUKWmKzo+ZEc7abRJ6DupIleoluHzBjsW/3sermAsTZmRcQ3ls7wnWzJYjCAraNoPRs7WUrN2LRl1s8hTVtnew4FQqbQC12ohWX/jvQVEUSf0aMJF0kadPXiGKIiV9nN+5RNPaH/ezbLIBezvTffx981Pu3w3OkYeiUmFAoUgZr6crREcl4V3SVMPlYf4IAAtVTHIdl69f/uyH/hVky8ZSi+x1pbJUKmBrpctmj4KHOiEa76IpRa11qxp48SIC75LO/PzVTgRDLGq9kqGjOqdTD46JSWLlvD8Y2kNLQhIsnH4xUyuJvoNbMXnJOob30hIVK7LjqC0zF6fVkJXLZCSm+t71etBojPj5huPhaZvM1u/dfMbSCSmT0UetLDl5PpHBvWzYuDtr0VM7O1W+1MPj4zSU8EppZLC3k1K8hBMT56UYk/bqn7UdUFREPEU9U0Lz1lZSVOYiRXJh4/E2+gxuxtLZAdSuGEeSGvxC3ZgwM3sj1Pyic89GTF32JwsnykhSiyz4So+d7U08VNc5u1+CW8kadOz27nwQjUYjNlYpBEkQBKwsckaYXN1suH5PSXSMAVsbKReu6bB2LMq50/c5e+QcCoVJ5LHXgIIt/v234lXIKyqVTXkOG9QUuPw46J2Srft3/WjbJOXl0rSenEOr/YG67N52kaf376LXQ90mdWnYNH2n6w9rdlLa/TlVvAX+/P4crbt3oUKl9AX9Jbyd2PW3BzsOBOFdVGDdNoHO/Zqn207/lmapRm2K2tg7WCTLIQT4R1GvmgGJxHTvfEooiU+IR6mU0KS2lue+4ZQpl3HqWqmUUbyEY4af5RSxUeGUKWmaSwVBoF0LS4wOHZNlOmrVLUWtuuk9UlPDUiWmISEOdgLFSzjm2a7J0dESW7cqLPn2Jt5FRE5dlvPJ2MyjOQUFryL2rH9mx4270ZTxlvH9Bi3BwXoeXdiEgMjmtXZMX9DvndroGXRJyXZSACWLiYS+igGyf64c3bw4ef4BTeopiIs3cu66nGotlSyftwGlNAmdaEGrYVpKOZqa894QrvzgX0G2YhLMSEzUolJJUKuNxMS/+2JcidySl6/icXU23bLr9yT0b2rPd6u3Ma5fBB5uMuITtExZtol5K4en2XfjH0dZMknE0cE0bgtVHIf23aBD5xrpzuPoZMWkuUM5f+YhSjMFMxeXTfdgVq9VlEUz7bCzicbdRcKs5QkULZLEw3N/se6WjCGje1KkmCMeRVy4fieU6pVed89dU1PaW4FOJ5KoKdyHwtJKyfMgSZpGBrU+d+StctUirFkko041I0qlhD+3a6hQLX/dh0qljDnLBuP7LByFQkqXIvbvZEXmVcSBIWMG8M2Wc8jkMhycAvhyVkpdyfRlV0hsWwOVKvf1cXmBRCIhKt6K0LAEXJxk+Prr0ZKzl5NUKmH8rP4s+2EPiBqc3Lxp2rIyR7ZtYvVM04S069AdDu2zpnX76tkc7b+PoiU8OXsljAY1Td/todNQv13ByoVkB+9Snpy5fJVSr4Pf127r8CjiyrlT95ElXEoW0V3+/VFc3OwpVSaFxLwMicFK9oJenUzzV6VyIpOXHaNCpUEZnmvctO5cPP+UawExDP68FM4u6aNgZapU5bt1l2jfTMKuQ1r8A/U8PLeR54HgXrI6nT9ugKu7DQf+Fuj1uoY7MsqQXNv59IVAhSaFW+emNLcmMCQOTzfTnH/1jpSug3NH4IxSRx48eUlZHzkBwTqiEqzz7YvZo19jwl5VIzIigWkdHTKM7hU0BEFg2vy+7Pj7AjtORYAg5fPBz6hd1fS7qXw3hh1/X6BHnwaFPpY3KFOxFNv3X6BrOyV6vci2g1I+m5qz56rfkBZsXi/j4Cp/jCgYN6MD363awtJJGqytpERERrPox9t8PKVGmsL5/OBfQbZGjO3BtFXbsFapiU1U8snnhd+V9TY+Gf0RSxZvwtYilpg4CQ1aNsHOToVCiMHj9cNoaSHB3cnkX5j6AdCoNdhYp/LCs5Wgfp650bK1jTltOmSec5dIJMxcNICjB29x7VIMRbxusnyGaSLs3Ulkysq9zFg4iB59G7JmSSh7jr4kKlrDy1daOrRU8NduA/1H5N4sNjcQBIEufdszZu4BHGx1hEeb8en4Lly77Mer0Ciq1SyZaSriDaxtzBkypg+zvz6IRDBQtlJ12rbL/8tbIpFQ0id3CtVv4/GjUGJjkihXwZ37d/y5dukhxbzdadWuaqbkzcPLjhGfm1ahXy78JZloAXi6CcTFqt8Z2QIYP6M3X3+3B6M+HqXKhTGTc16bZ29vwYSZvZL/vXPrRbq3TbmeTq0VTF315P/JFtCtdwN++jqKAyeDUGuhat0GeOfz95dbVK5alId3KzN58R2USjBIXRk7tSFfLtuWXMMI0KeThG1nHqYhW4mJWuxTKX1IJAIKReYmcYIgULd+5p3FAB91rcPd2x7svujLnacPWfelIUVx/MtrRERUwcHBkop1GzN23hnsbQxcuhpLx9ZWLPxKg71nlUJPvQ/5rAMrFm3EziKWmDio2agBer2RA3uu4+7pROWq2Ut1jJ7clbU/H2TdrnDMVK5MnFUw866Tc/5KDyIi4nn6+BVFijogl0vYu/08EqmUjt3rZSq0KpNJk8nUr9/tx6dYCn3wKS5j99l3azTfrlMttm/RMn3VU7Q6CT2H5NzLVRAEeg9MibyLooi9VSLWVqZnwcFeioUiIZ00xLF8jPdfQbZc3GyYtWRIpp+/DI7m4J5LyBVyOveoXyhq8ioLJbOWDCIwIIKj+68SHBRFYqKW+EQpBoM+WSguNFxIV0vWtmNd5q/5hwWTlGi1Il/+DiMnV87XeKRSCa3bVyU4KJqL+lvJf1cohGRfMYlEwsRZH6PV6pFKJcTHawh7FUfjbnbvZDVUuWpxKlf9DIPB1EX6w5qdlHLzo5K3wIbvztD2466Ur2iasP758xSBfo/R6aBmw9o0bWmy2vAq4sCk2X0Lfay5wQ9rduJu/RwPV5HpY/TUrCRlbB8ll28+49tVzxkzOfvuWHMbV67f8aNaRQUxsQZuP1LQzfnddqRZWpkxdlqPPO37Mjia33/YiYVSiw4r6jSqxvW7Rsq+zqo89tVh7/jfkTPIDwRB4NMsFNENBiN7d1wmLDSSBk0qZ9lSnx/07N8Ena4Be7ZfJioyhmdPQnFxd+Tuo5fJac5bD4x4FklLBIsWc2Dt9ypaN9bg5iJj0y4NJcrkb/4CqFDJiwqVvAh54Yu5eYo0o3dRiAhPwMHBkuatqtCsZWU0Gj1DJQIB/lHY2asKzeomNczN5cxaPBCDwYhEInD9ii///LaO7m1Fbt2BaxdLM2RkWwAePwzmnw0HsDQ3IjVz5NNxHZHJpMhkUoZ9VrgL29ziyoXHnD54kGZ1DezeIHDzrprvFlui04ksmv+ISfOGZGvN1LBpZb7f8ISZY0wE+bt1Ohq1zP9vIrfo2rMBkPtomtFo5Nfv9pMYHUyiRkL7bs2JipUlZ2KMRpGYeFP2JzXh+jEfY/1XkK2sEBQQxW9fb2DWGAkJiUaWzn7EjEWF01Lv/zycP3/8i+mjpETHGlk66yE9B7VjzNxdVCpj4JGvhBYdW6SLbJQu54Gha3emf3EWiUTCkM9b5GhVcu3SU04fv4mdvTW9BzXLsCHAxdWaG/flJCYaUakk3Hmow8wqbR3DmxouGxvzPPmbpUZERHyy6GWzlhVzFBKXSiWEBMdgLX9O786m81cub0pFlK84iGOHb+JsdotRk02rihU/nOCxl1Oa1fWHgkcPXuJl95whvV4X7dc1svK7KKytVLRoKOXslYB0kc2MMGxUe9b/cph/Dr3EgJJxMz96p/ZI+cUPX2zhi5mmaERoWASr/riKnaMP8754iqWFwItQW6bNL9Am5f8kRFFk+by/6NU2ktINZPzw5xOiolpTt0HBWxyJosiyuX8xoGMMJRpK+XbdY6o3aft/7Z1ndBRlF4CfmS3ppAcSSAgdEiChSO9dQHoVKYKgCCogHaSDdERRLDQVBUFQQYo06b13SGgJEBLS6/b5fkxMCAmwCWnw7XNOzsnuzsy+d2fmzn3f21i1+QEli0ah0YBG8OHDURljRBUKkfEz+vH9D/+QnJhE1ZoV6WhGt4ro6CTW/7gXvV5P+84NKFMu69R5R9dinDofxBuBarRaE0fOKGnUJT0uUxCEtPupTFn3LI9hLpIksX/vVWJj4qnX0P+Fq+uQXg9y99/7WZRanb1aFZi59CbxcU1QqhSsX7mJpdPkNjhXbtxn1fLtDPko+1nc+cHurelB+62bwKgpCRR1l7Nix76v4++/TtC7X5PnHqOCX3FiY9swdt4xBAHqNWuKf5VXp6PEuh//pWXNO9SupkKSjIybs5XGb7bgoyl7KV9K4vptkV7vpk+Q/jO4XoZX3tj6fd0+FkxUpi1Bf9hHy+6dF+jYNWel+CVJYu+ui9y7/ZAatSoSWKNU2mebft3HvAkqrKxEirrDgK7J3LofxeS5Q4kIT6Cdm/0zMyT9KpfAr3KvLD/Lin93XyQi+F9mfazmTmgYcyaHMnXeu5keyAqFyPCx7zDlq79QK/TYOhZn8AtKF+SUh/dj+H7JzwzrJxEZLTFr4lkmz+lvlsH1PFfEhVM3MwTyd28nsu1UUKE0tqKjE/H2Sneh2NlmlN3c+C+FQuTdD7Kf+l3QbFp3iDs3rpIcH8GOfTZ0aWdPUXclKiGB9z7sQ3KSFp3e+Eo2Xy4I7t6JokrpaOpUlyeHE1JT6l/G2Aq++YhD+y7g7OZI+05vpAUt37j2iNr+MbwRKE8UpowQGTv/GBNm9CMqKgmlUnzmebO1s2LoCPNLJ8bHpbBk5mo+HyuXsJm8cB2d+/aibPnMcS8D3m/Nmu/gjz1haPVKBn3cLk8yzSVJYt70X2ld5zFVK4j88OVJuvbvQbkK5ukZtSpjsLuzo4BGoyfmYRwNahpRKGQd5l9BxS9/R+b6+HMLu6eC9p0cRfR6UKvN118AtetVoHa9Ci/esBARfDOM337cTmJMBAkPTQT6OWNlJdKyoZEklZqJn39ITHQy3V3tMj3XZIMr57w6U+nn8OT1IYrAM4rLmcM3i//CxXSAIR1vc/vcFrb9eSLtM7k1R/qXiaKAJMm+bK/iTrmqIM4eO8tH71qhUAiU9VVRLzCB4KCsMwiLFivC2Kl9GTF5IEM+eivPMkLWrtzJoslK/CtY0biuNR2axHD00E2z9vUt5cqx87Y8ipBdnLIrQn6gyK6M9PSkMxdNePvmXpuE3KRqgDd/7FKRkiJn7v30ezLxSSIJiSb2HdGhVxTPFxdtQXB4/xUcpLPMHy/x45fuPIowcPaiBr1eIilFvvZt7awshlY2kN0WGd97mXyNc6dv88/G3xjYPojAEif4fMpaTCZT6nel6scnv4v0Gmq5ed72773EsL5yL08rK5E5Y63Y8vvBLLcVRZGBQ99kxOSBjJve75n1s16Wq5fDqFoqjNZNrKlUXs38iWr+/M38KByvkmXYsksHwL37eq7etsfdwwGPYkW4GpT3bXByC0HtzqXrckb//YcGjp0xEBNn5P5DPfO+FXizQ/72DMwvdDoDa7/fxKIJOlYudqZPVwcWfxsLwIVrIt4+LiiVCtw9HF46iSErXvmVrS69mjD287VMG6EkKdnEsp9VTJgZmKNjpaToEbT3aNNUnmV+8I6CsXMv0K6TXEOlU88mjPt8PVNHKImNM7FyoxUTZ/k975A5xmgkzX8MoNGQq02Xc8Ktm6FYW6e7Px2LCITHPDvQ/0lkV0R/vv3+H1KSMroievVrwvwZYRQtEoVGK6EqUobB3fJ/xiRJElGRiRRxtHlmEUQ7eyuGjOjD1GU7EAUjFatUp3lHZ5b8cp2Spb34aEz1fB51/nH6xHVmDEsPpu7Szp5xs+KwsVcxcHiOGkb831OqtBu/rnLm7KVYypdWsvznZxf4NYc92w4zf6zs6nJ3UxJ8J4Yb18Kp5O9JhUpF2fCTI5UrJlDaR8mXq/U0bNksF6VJR6VSkqJNn/Tq9BKKfCwLkBWnTwZTziX9tVIpEBMV9+wdnqJXv6Zs/8uOcQtv4eDowPgZrREEAWdnW8oG1mP0rGN4FYWbd60YMalg7ofEBA1Gk/TccJFhn3bmpx928cvfEVjZFGHG4t6s+vskClHBqCkNXtvJUtjDON6oYkwrI1XGV03wPSPj5mgp5Vcdbx+XFxzh5XjljS1vH1feHd6P5ZuOoVKrGDe9YY4D5OWiehnfe3KWWbpsUfq8/w5frj+GlbUVE2Y0yrPssVYdGvHZgi0M7q0g6K6JGw+K0qFU3sz4zMXN3YbZS6KZOMKF+AQT87+OxdH5IDfOHSIuyYYPR/d6btsRWzsrPhyZWQkpFCITpvchIV6DQinma0befzyOSODLub/gX1ZHaBgE1K1Pq2dkPnqVcGb0Zxnagz63r+Prgk8pT05deJjWiPvUBSNN2rWmbYca+V7Q8HXhv5T6PzceY+uRGBo2C6By1ZzFvsjtYjKu6isUYDLJ74miyMRZ/dj82xE274+lSZvq+FUu8bIiZEmzVlWZNeE0KmUKRewFFq2AD8dkr5l9bqNJTmD7uSTq1rTGw03Blz/EcueOkaUzl5GULFCveUOatKj63GO07ViLth0zr/y0af8GzVtXJzFRSx8nm3y/HyRJYvmSv1Aa7qFWCYTHuzHms15ZxoFmFcIwKDXQ/3XG3d2e67fSz0tCogl7Fx8+mtwnR11BsovwrH5OeU1ANW/pn39HAvKFEhGegEIhZCoImlP+k8uciz46Oomv5q3DtUgyZ87FM+ZDe2pXU7PhbwMpVjXo0qN+rowpu9y7E8nRQ5dx83CmReuqBf5AWzjzV9rWe8SBYymolHDsjJ6/fiyKKAokJpmY/IUtE2cOKNAx5pT5039m2vAE7O1k5TRxno5BI4fkuPr064gkSSyZsxE75SP0egmFvS9DR5jfyBbA0/nTM5IkZS4w94rxpP4CSErUEh2dhKeXY6658Z+uqP48VnyznYTHt3gUocHL3cSkjx24E2rg61/smTJ3QIEkX2g0ev7Zdg6dVkez1nIph4LkyMFrxN7dSeTjFJKSJa4H65k90TWtWPWUhVp6DhlYIN0cXpYDey9jk7KX9i3khYYzF/UcCwqgR59GBTyywsW/uy9wdO8BiheF2/fVfDy+T7ZsjpfRXwW+smU0mpg37RfKeEXzKMLAlSCBGrXK06NvM7NrZhgMRr794i8MKREkpYho9Va4OMRjNECxUpXo8+7zs6JWfPUHcz7V4lhEjcnkQvf349lzpiS16vnxZv3su7MkSWLj2gM8CAnBJKnp/0H7HDWaLVnKjZKlmmR7v7xi8Med+WreehxsVDwMF6hVU5cWw2ZvJ2KrNs+lWBhRibo0QwugfCmJyMhEi7H1BIIgMGpSD5KT5fP+usamZZftf50k6MJxfLxMbN2loVylkrRuX4vqb5jfO3X/noucOHAMtRoSNXZgiMHJQSI2yZ4RE95+7nW4f88l/IsH0XGgFaDi2x8TGD7DioDqfkyc1SBHhtaVS6Fs37wfUZSo06hmhobs5mJtrcpxolJeUL9RJX66eZ/I+BsIAqistWmGFkDd6ibu3ol8JY2tkLvh9G6ebuQH+iv5fW9EAY6ocNK0ZQCNmlUhKVFrdqu93KLAja2Nvx7i3c4xFLEX+XpVMmuXupKScpfJM1YxZtogs36QH3/YRfcWD6hSUU7j/GRSCGOGuODspODnTVc4ddyXN+qUfeb+ajEFxyLyhSqKIi0a2VKvXTM8vRyfuc/zWPfjPqqUuMLw7moSEhMZPednpswbUuAxVy+Lo6MNk+fIzYYlSWLqp19jMslJA/EJRlL0uTdzNZlMrP5uJ/GRj9DqFfR5rz3uHkVYvngzgjGWpBQFPQe0o2z53MlYtHZw41pQCJXKqdDrJU5eVNC8p1OuHPt1oyDcvIWVhHgNwRePMWuMmtHTIpk70YHypWP5du3fxMY0oVmrF9ceunPrMbfO/5tWfX/73nDiE0z06uTA48hkFi/7i5ETez5z/6DroQzrnq7K+3W3I2yN2wvT959FaEgUOzduZt54NaIosPiH3djYWmXLeCys9HuvJSC7M79duoXgu/co6ysbXEfPKuj9/su1+HmSk8dusn/nYRQKqBRQmbYda7HtzxNcO38eQYCS5fzo9nbDXPmumnUqsH7rZUYNlq+DX/7QUate3sQTv+ooFGK+G1pQCIytRw8j8e+sYt5XMcwa74q1tYi9ncgnA7Ts+eccXXq8uF9cXFQEVSqm9y1s2cSGm7f11K6uoHFtkc2HQ59rbBkFB8IfR1LUXYnJJHH5pkjHd3NuOITfD2FEL/mB5GAv0qCGlrt3IilXvmAy7E4cC2bXtlN4+7jTu3+TXMmaFASBPoO78NG0LTg5GIhPtuXD0blX2f/H73fRolpwWu2dETPW4+TmwZDuEZTyVmEw6Plo6u8U8/ZBkxSPvaMzA95/M8cG7XvD2vPd0r8w/BlJslZJ/6Ht87XRuYVXk+joJMr4wO17eipXUlO5orwC9fFAK8bNP2uWsXXpwh3eemLxvW1zO6bOjwLA3U0JxqTn7l+lWhm27gmib1f52t+610BA9Wfruxdx9OAVPnhHTFu1/mSgmklLzxaYsRUTncTq73YjSUa69GxIqTK5U31/4NC2fDF3A1ZCNInJIo1aNcu1MJbbweGc2b+DBePlZIVV64/xy5pkrPUXmD9eNqrXbj7L8i/iSUmMxiSJdH+nFSVL5ayOWCX/EoQ9aMKYz08iKqB0pZq0ycFqpIW8o8CfJnUbVmb1hp2IIhiM6e/rDHA76BGLZ6/DysaW/oNbY++Q9VK6QmVH+OMEirrL4pw8p+XDAfK2Ow+Y8K9e+rljeP+TTsxbuBEbZQLxSQp6DujwUnEXWp2ITieldRW/HwbVCyjDY/nS7SSEneXzMS6EPIhg0sgbzP3yg1yJK6lQyYup8z/IhVFmJi4qjDcCZYPVykqkQU0NB04+ppS3bFQrlQKVSqUQ4H+bxnVtCLoTyxdzNzDms945+j6VSsHw0S+u/P66cisonHOng/D2LUrt/4Ng/9zCq7gTqy4qqV/DgE6X/r4kSaRoDCz5fCMmo5GW7etSNTDrvm2lynhy4qxE5dTSWlduaPFwk11/oQ/1KKye/wCuU78Cv90OY9zca4CEp68/b3fPeU0gF9ci3Ak1UspHvtfuhxko4lQwrrWQu5F8Nuprvv7cBTcXkYmfr6Lne32p4PfyVfbVaiVjp7z94g1zwKlj1+nXVUyLsx3QQ03PDy/w9ax0vdujvZqBI8+w9msPdDqJ0bPXMXTswBzHtjVrFWCWcf86kpSoZe+uCwiCQPPWAYVy9b3Aja3a9SqwIzKe+9fPMGjUY+ZPduLSNS1LftDQtP4tJo9wICIyislTf2TqvPeyXLkY9GF7Zsz6FS+3RCJjIFHjyZdr5BTYMv41Caj2/OaU9g7WjJ/eN9dk6jXgTUbN2kCbRnqC7opYu/oXSByATmfg4snT/L7CHUEQ8CtvRYemiVw8f5/qNfO3EW520RmUJCenYJtaNPTWPQGVlQ2JSSlpsVVnLyRTvbJcAbpcKRVWQnSBjTenGAxG9u26RGJiMg2bVCmQ6+TgvssEnd1L93YCZy6ZWHG2HO8NK1wtRgorKpWCwSN6s/z7LdwKSqJsqRS8ionMXZbM/TATW1brsLERmfHFHwhCZ6oEZL7vqgR4c+lcFcZ9fgV7W7jz0AZbKzWTFpjQmlz4aOyLywj07NsEaJIrMjVvXZV50y7zICwSWxvYfdSOCbOa58qxs8vC2RsYO8ye0qmxVUtnOjLq871MmtWvQMZjLsW83LgalG6wBt81UNTLjZPnI2nfQn7sHj2VQhF7CUmSJ+b9u5g4fTyY1u0CC3Dk2efyxVCuXb5LuYreBFb3zffvT4jXMG/KKj58R48kScyedJqJMwfmSdu+l6HAjS2ANzu8wZsd3iAyMpHZc3+nrJeG+ZPt2XsomW17kmjXwo4WdVMIuhGOX2WvTPvbO1gzdd5AUlL0WFkp8jTz5uiha+zb9i8OdkaS9U6MmNALG5uMgcK+pT34dMpgbt4Ip1FV+zyv3/EskpJ0WKnlYob/JTKaTNmrElxQ9Bv8FiNn/UqdQC13Q6F4uRp0axrAe2O/x6+Mhrg4E293dWDHvmRK+6rxKqYkKbnwy/UkRqOJ2ZN+olfbODx8RJYtPM2AYX3wLpm/JT6O7z/GwomyYipbCqYuCiY5WVcoZ4eFkRLeLkyYOQBJklj38yFWrj/KJ4NseBiuZ87SGGZNcGXKCCsmLjmepbEF8PaA5hgMTTAYTHmaeBATk8yy+espYptEXIKCzn3aUiXAN8M2oigyfnofblx7hE5vZEpHzzwrlPwiFKIRSUq/ryUJtFrDc/YoHDRq5sfSede4eecBtjZwKciRCTN7sXzJFnbtv4KHq4DJBN072LN6fTwDezsS8lDCsWjBZmxmlz83HsEUe5o2DQX2HztL0NVAur+T8zpxOWHT+kNMHm7Ep4Ssw8YN0fHn70fpM6DpC/bMXwqFsfUfrq52OFgnMPZDeXZfI8CacTMjadfCjpg4gZIvUP5PGz25TWxsMsf27ObLaWpA5H5YHN8t25pl42E7eyuq1SjYXlFOTjYYFY5MnhvFqPedCXmgZ+0fRr77JW9q6+QmxbycmDLvfR7cj6G+s21aob2SpTwZOSQWO1sBURRwcVKwcl08Juyp26xJwQ46mxw/Ekz7xrE0rC0Hay6cZGLKV3v4dPKzg6FzgiRJhD2Uizd6ejlmMrZVT902drYCBr0RC9lDEATCQh6ycmGR1PZh1hiNclhDpXIqlE//0E/xX+PivOSHLzczc0QKTo4qJEli+JS/8av8YaaK2YIgUNGv4Ntl1azjz6pfD1LUXYG7q4Lxs2LoO+zdgh7WCxEEgRHjuxH+KB6dzkCngc4IgkDthgEIkXdo0dAaa2v5N9+wJQKlUsOVe16M6vRqJSEEXbrAgtSJWhlfGDP7EpD7xlZCvIbIyESKl3DKVBNLr9PjYJ9+/TrYi+i1uqcPUeAUKmNLkiTsbKRM723apiEkqgSdS+depkhOuB8aQ62qprTXJTyVGLTxBTii5yMIAu8N78Lqb7YyZFwi9o7OLFszLE9aEeQFKpUC31IZz7mdgwNxCdE42MuX7qUbEvbFm9GytR8eRV/cVLYwodMZcH0ilE+O8TM9c/ucYDKZmD9jHaWLyb3abj9yY+yU3hlWf0uUKs/m7efp/Kaaa0EGwmJcCiRb53VAwJjWpxXA1VnkzAUNqzYqGTG5VQGOTEYtJuPkKBt0giBQsbSJ6KikQlvuoG2n2twPjeazBXeQEBn80Tv4Vyn8k8X/eLrRtaeXI4fPKmifamhFxxiR1D6UrN6a1u8UeyW8Dk+iesqCUKkydj7JDXZtP8O100coX0rixwsK+g/tkSFJom3Hukz/Ioi54+X2ebO+MjJ4RO1c+/7colAZW6Iokmx05+rNSPzKqzh+VsfjxGKovZrxcZfnB7nnB94+LvyzUaRLW/liCnmgR2VdOHv4Aaxavh0H4SZ9Okps+9eW9z7pmmMXhU5nQK8zFrgfvP+QNsye8hMBFZKIjpUQ7CowaGidAh1TTqldryxzJu3Hv7wRJ0eR2V9pad62bq5+x9bNJ+neMoq6NeTzdvxsFFs3n6RjN/k3exAaA6KCk0G+nLiagnsxN8ZMKVzL768StRtW48tVu/noXTUJiSZW/ibQtE1zxvapUihqtulMtkTHxOHirMBkkrh2S6Cbq11BDytLLp6/x46Nf9GivpELdmpcfGpSs3apHB1LkiTi4zUUKWJdoAaNT0lXRIcqTF9yCc+iAmcuWzF6as/nttcpzNg6e7P/6B0a11Vx9Iwepa13rv6+Wq2BC8eOsGCS7NV6u5PE2PnbmDBTXt3U641cOHcbD59KjF8cha2dmnc/akoxL6dcG0NuUaiMLYBRE3uwdtVeftwSSYmSXsxd2rjQWPuOjjbUb92KT6bvw8HOiMbozMfj2hf0sLIkNCQaG1MQwwbJCr55fROffbmdMVPeeWq7KNav2YFCNFGhcoW0PpBP8vPK3UQ/uIa9rcSjWGfGTu1TYDXDbGxUTJs/kLCHcdjYqs0ufJtXGI0mVn6zjaTYCDR6BX0GtsfH17wVWFtbNWOmvctXq3aj1Whp2a52jlu1PIvwsEh6NEo/V37lFOw+La9yXb/ygK3rf+eDPgJ3PUz8fdCNvoOaP/d+S0rUsvrbbei1Sbh7evL2gGYFUp28sFK/sR9HRYHxi86jUKqYOKdNjgoa5xVDPunC9AW/YW+dRFyiku79Oxbale6tG3exZJIKUVTzZjMYN+cMuo61M7iRDAYja77bSXxMJGrrIgz8sF2mWMOrl0P5bfVflPExcStE5O1BnXMlmzGn9OrXjPi4usTHa+gwwLHA758jB69yZO8xFAqoUKUy7Tubvyo0eHh7tmw6zs7FIfiWLc6wT3O320pCfAreT3izVSoBWys5Zs9gMDJr4hr6dUqgXhmRL1dD98F9Ke7t/Nxjbtl0nFvXg5BQ0W9Iu1wr9/EiCp2xpVQqGDCk4Jbbk5O0fPvFHyikBFJ0Vgwa3jnDEnud+hWpU79igY3PXGJikvHxSnfJWluLKMSMcTjxcSms/PJXlnymwMpK5Nc/j7PzbwVt2qd3I7h0IRRnxRU+HSsbbUF34vh5xR4GDm2dP4JkgSAIeBV3KrDvf5LV3+2gfb07BPqr0el0jJixngmzPzC7Rpejo02W/SJzi7qNqrDyt1uMGiwbXCt/M1C3URUAtv6+j7nj1SgUAmV8ISz8MdevPqKSf8ZYnYR4DT989SeilMzlyxH8sMCeou5KTp6/xg/LUnj/47fybPyvIvUaVqJew0oF9v2bfzvM3ZvXMRqgVqPaNG5eJe0zJydbJs0u/DFPAPY2pNX6AnB3hZQUfQZj66sFm+nb7hF+5VXcD0tg/qxfmTxnQIbj/P7z33w9U4EoynUUP56+lSnz8qZkjbkUcbQpFK764JuPuHpid1o9sNUbjnPkoAP1G5lXo0sQBDp2qwvk7or8f7i62XMlWEVSsgk7W5FrQXqUNrI36fCBG3Rvk0DdGvKzaeFkE9O/2c3IiT0yHWfjLwe5f+cWt4Jj6dVB4L1PrUlMMvHp7J+ZNGdwvnTDKHTGVn4THhbHd0s34minJS5Rhc6gYMYnKRTzUJKYlMjYueuYtmBIQQ8z25SvUJQ5P6pp1Vi+SLfu1uJbtnKGbS6eD6V7WwNWVvKF9nYnK8YvvJ7B2Lp3J5yaVdMVXrlSKmI2vXolFvKKhOhwAv3lmbRaLVC3mpHQkGjKlsudwosvS5WAkkQ9bsbYeacAqFanDlUC5NUzUZRQKNLPrZ0taHWZM72WzPmV6R+noFDA9z+b0urZ1QpU8efusHyQwsKzkCSJ5V9sQZfwAJ0eFDZFCSh9n7ljZLfxvG/24VncjfIVCz7YPbtYORTl9IV71AxQERFp4NZ920zuNtEgh5yAHEPr4hCPwWDMkGjgaG9AFOVtRFHA0b7wZzPmF6eOX+edTun1wPp3UzPxiytmG1t5jSAIfDz+HaZ+9ScqUYeVfTEGpZal0en02D3R5EWtFjCZMse8btl0nJKO5xk2Ws2UeUl0aSt7HuztRNo01HDzRjhVA/I+DvD/3tj6/svfmT9Wh62tAr3eSM8PHlHMQ35Q2tuJFHPVoNMZ8qUreG5iba1i+Lh3mPHNdkRBj2+5KnTplXGJ18XVnjtn0h+28QlGBDHjEnzVaqXY8tsRqqbee7sO6ChXKWdxE7nNji2nuHr+IpJJonq9N3K9oJ9OZ0CpFJ+7zK83qkhO1qTVAwu+K1C7XeFxGwE0aVGFRs38+WLuJq6dPsj5I4fwLO1HnUY1WfzDbkYMUhMWbmTnITumtM9YWsVoNOFaJBFXFzU6nURsXLoykySJJE3hcPH/v/LHhiM0r3GPhrXk+3besmAql0+Pq+z5lsiW4zdfSWNryEftWbtqL7/vDkOhsmXMlMwhG4nJQoaA7Nh4IZNbNC7JloRELQ72InHxRhJSCjb04D9CQ6JYu2Ir1ioDVnZuDP7orVwNzzCZTBgMpuc+u7yKu3HphomS3vLr68EGPIrlb+mZF+Hu4cDYqX1Tm0gfZNXi5UQlOPD+iK58OfcIZX2NOBYRmbZYS+tOmd2YwdeCeW+0fH+YTKDVmrCySi0aHCZQr3r+rDC+WhbEM9j+10muXQrC2saO/kPaPLPSfFYUsdVgaytf4CqVgFdRBXq9CZVKPhkR0eIr29PQo2gRPp3c65mf+1X24sBuX777+S6eRSX+/lfNiEltM2zjU9IV/9ot+XT2YazU4FysIv0H515AenxcCmtX7UGToqFF21rPrLL9NKeO3UQfdZR5Y+UHy5IV+7ni6YJ/Fe+XHpNOZ2DhzHW42MWQkCRQtnI1OvdskOW2/d/vyMhZa6lZWcfd+1C68htpZSoKExt+OUT3Fo+oUVVWOqs3XMbOvgyVardn4hdnsC9iz4RZLTJd6wqFSEy8fC+o1QL+FdVMmR9Dg9rW7D6soF3XNvkuy+vG3dsRbPp1H2CiZfv6Zt8DAHeC7vNBx/QJUsfWNvy9O4mqfrIOPHfZRAmfwrHKml1EUUztZfhsWndszvi5O2hUy8SZSwI1GzbIFHM4bExPpi7djLUqBY2hCMPG5F5bMUmS+PuPk9y8epeSZbzo2ivz92eFwWBkxdL1fDFFwMpK5HpwKCuWbWXoyE65Mq4tm45y7dwZHO0lIhOcGP1Z7yxdZY2a+fPVghtcDbqPjTUE3Xdm/PT8rZNlDjExyVw8doCl0+RrPSIyiaWr/2H01AF8uWoPOq2WN7vWo6J/5lg8pdqGqOg4XF0UDH7HkfdGPaZPNwfuhookSmXxyae6hq+8sbVp3SE8bc4xb7SaiMgYpkz7ianz3zM76DMuSY1Wq8fKSiT4jo5b96DrkHiaN7DhVohIm86tCk2Afl4wdGQnbgU/Jj4uhUlzPLOsVVa9VjnKlC+Ou4dDrgbTpqTomT91DbNHG3FxVvD513+g171FjVovrjVz7PAVPhuSPtY+nRSs2XY1V4ytn37YxfA+sZT1lW/sL1ae4fatCpQuk7ltStFiRZg6/30ehcXT3MkmW4Z+fvLg3iNqdE//vRrUFNhz8QFde9V/4e/d9M2mjJ29l6qVJE5dsuGNxo3QONgzaGQxXFwKZybbq8Kjh7H8+sN6FkxUoVDA9CV/olJ1pZK/eW6NEiU9OXn+MbUCVeh0El/8kMjtUJHo+GRsbRUY1b4M7Vxw8WN5Tc065Shd3ovbwY/p8q5LluVfnJ1tGTC0I0UcbXK9UO/K5TuoVS6YgZ+qOHEugi/nR/DJuBcbc4/C4qlR2YiVlTyeimVVaP+MypUxhdyLIib0FIsmyxPRu6FxrPluBx98kjk2VBAEPh7blaioRPQ6Iz2KFSmUz7uH92Op5pe+qu7hpsRkSMTJyZZho54f8zrg/bZMnP4TdQM1hEdC2SrV0Tv5U7Wsfb6Ge7zyxlbIrWCGpi4RergpqR2QQmhIdKb6TM9i0LBujJq9EaMuAcmYwuolTjwMN/L1Whumzns3XwLn8pKQu5GsW70dtcpIMW9fevVrkulmKlP22b3X9uw8x/kjhyjlA+evKRk6qjdeJZ6f7WEuZ07eoWd7De5u8jLupI+sGLfouFnGVnFvDy5dv0/NANn4u3jNSPEnZvBhD2L5dfVOBAxUq12Fpi3NdzHGx8RQ1jf9vNcJNHHnVniWxhbISR0lXpABU9CU9/Nlz6FwWjSU75Ud+yUCG5vnDq7f2J+A6mUIC4ujQSdnS2X5XOTA3gt88q6ASiXfk5M/VjNt+Qmzja3ufRry1YJINu98yKXL0cwa74Snh4IF3xpo/FZHqtXwzcPR5z16vZGV32wjJSEKEzYMHNYhUwayi4sdLrWyNvofRyTw5dy1BFTUEfJQoEJgLdp1yr2V+cTIe7QYKN8Pdaqr2Lr3ISaT6YUZhi4utgTfS3+dkmJCo0t/HBuNJtau2kNUeAQOTk70H9LG7FCWe3cieaNqejKUr7eK5IS45+6T036M+YVPSRe2rhfp2k52Gd+6p8farphZ+xZxtGHq/PcIDYnhDXurAqsp98obWzodmExSWtbK4yiws8tcC0qSJLb/dYrrV+5SrqIPb3WpjSAIFPd2Zur8ISyc+Qufj4pHoRAo5qGkY/MkLp2/zxt1Ckd8Uk5ITtKyatk6vpiiRK0W2Hv4EhvXCvTo28S8/ZN1nD9ykPmT5N9TozExcfEWxs/onyvjU6mVJD2hA/R6EDDPZdu5R13mz7jHwZOPMRggVlucT8YFAnL23LeL17JokoitrciKdfv5d7dA05ZVzTq2p7cXx89epk512eD656BIx34FW0hRkiR0OqPZWY5P075zLVZ9G83eY3fRG6BKzXpU9M/c+upZ2DtYU66Qrtq9ytg52BIRZaJUasWPyGgjNrZZx5DcvP6QHVuOYWVlRe8BzXF0tEEURT4Z15Vjh4NoXOtvqlVODYyfqGDiF0dfeWNr+ZI/6fPmQyqVUxEbl8z42WuZsdD8hKU13/7FokkS9qnPhKmLThLbpGquufr1T8Xa63TmtUOztbOicq36jJtzBF9vuHBdyQdPZCUvW/gHPVo+IMBPTfDdGBbNWs+EGe8854jpVKjkyfrvFTSuKxsmZy7qcfc0zzDJS7RaA2q1IkcrZw5FrGnduT0jZuzG3taEUfRg+Bjzyy4plQpKFXBR9Ffe2OrQsyXjPt9Ml9ZGrt8WMKjLZmm5rvh6G7XK32bAKBUHjj3i26URDB3xxPKjkN4/EECpAKMkZTpO6L0o9u48jZ2DHR261snxwy8/uHE9nDcbG1CrZaOheQM1uxfee8Fe6cTGJFP6ifARa2sRK5U+18b3Rm1fZk1yxtEhFk8PkWU/Qd8PzGt4K4oi46e9TVRUIqIoZpjtnjtzl57t9NimPrTe623F+IWXzDa2evVrwvIvEvht6x3CwuKxsbXltx93MXxM1wwxTUmJWpZ/sRmlFE+yVs2ADzrl2qofyLFj3yz+g5S4h9y9F4d3cVv0kgNDR/XMVtG+5GQdF8+HUrtBVfwrtymUboL/V1q3q87sSZeIjonDxhp+/duG8dObZdru+pUH7Px9I9NGWhGfYGLitNVMmDkorciwJIHyCVX0rIUVnc7A1s0niI9NpGmraviWLtzxXCZtJJXKyfrLyVFB6eIaEuI1ZheIVYq6tMb1AOVLS0SEJ+SasVUhIJBla07wZhORgyclSpStYvb91aptDRo2rUpsTDKdBj4VoqELJ8BPXjEr66vCwSrGrBUzkGN132jaio+n7SclMZroWIni3re5HfyI0mUzGl2b1h3iXtA1jEaoWqsGrdvVMF94M9i1/Qxnj54i+nE0Or2ER9Ei1GhQl9btar545ye4evkhGq2JkZMHYJvFYsqrQOGsZpcNKvmX4N2P3+VucktKBnbjvWFZW7tJ0SG0bCTXEmlST402PoSgm+GcOHabxAQNLdvVZ9piLcnJJoLv6tiyz47qNTMGqt68/pB1P6xlQLsgGvmdZfakNegLcQ85N3d7gu6mn+KERBMmyXwXUNFiRTh/VYVWK/vKb9zSo7bNvWBCURSZNKsfoSlN2He5JkNGDaBkqWe7NLPC1dU+k1uhiKMtYRHprxOTTAii+UaxIAj0HtACtUpg3XI3Vi+2o3+HcNZ8tyPDdt8s/p1R/aKYM0Zi7ugUvl3yW7bG/iJWfrONAR0esWSqFZtWuKMUUpg1Ss+q5X+afYzIxwl8PukHrBO28ODCBpbO/R0pi0mEhYJBpVLw2ecD0Dq0J1J4k0mzB2UZ97f9z8PMHG2FWi3g5qpgcE8d/2w7z7EjwYSGRFOzdil+32nHrXt6kpNNTFmopU2HhhmOYTSamDP5J+qUPc3A9kH88dM6rlwKzS9Rc0RSiojRmH69hkWArZ35OszBuSgXr8kTRL1e4uhZBT4lXXJtfB261sW/fld2nAnEy68DvftnNpSfh42NCk8vx0yxsMlPZfkmJgvZmiTVbVAJK1sH5k1yZPNKV5ZMNrHmm00Z7v3D+69QhLPMHWtiwQQT0XcPc/li7l0P1688JOLWYRZPhjVLXejV0YrmdbXcvniUxxEJZh/ny/mbuHt2AzaJW5n72Q9EhBfeFnnPo/Auy2QDN3cHmrdKryGl0eh5HJFAMU/HtJUIgyHjA+bGzThKHliHr7fEwulK3vukDy279mDemlMUcbRn4uxGmTKztvx+gLnj1SiVAh5u0KVlAieO3qJB4/J5L2QO8PZxATs/pi48h29x2L4vBTtHkaRErVltdxQKkSEjezF+0RZs1QaUNkUZ/NFbhD+KRxDIlV6ECoVIq7aBZm27b9cFzp++iW/Z4nTuXveZyiegmjdLdhTHtPkhxTwkNm5XMXzcm9ka151bj2lYy4ggpAewJjwVwKoSEijmId9C1tYiJT21JCdpM828kpN1HDt8E6VSQb2G5c3ObtUmRVO+dHp9oNo1rAl/bMRWrTVbjp9/2MHCSQIO9vIq37o/73PhbAiBNczPeLOQtygUIvUalkt7bTKZeBQWj4ODddoKjiiK6PXpddHOX9Zy+fohyjiL7NuswMGzBhNnv8uGtQdITEjizZ61KFchY7mHc6fv0aZ+HNUqy9fC7LEKxi86gH8V89xTBUHXPm0ZNnkDdQL1XLii40GEinOnblGzTrkX7wy8+8Gb/LDsb9ZviyBFq6D/0HYYDSZC7kXh6eWUK5nm/lW8zUrMCb0XxZ8bD6FQiPTo2+y5nQUatGjItMV7aVbXxLFzIlVrPVvfPQu1mISriyyfUilQxsdAfLwmrVbZqePXmPVRuuHavZ2CdXtvUrlqZlnOnw0hPCyawBqlM/V7fBYXzgbRuXW6EflWKzumL4ymRqCC+6ExZsVOXb70gApeIfTtJo+5/hsmZi7fwahJPc0aQ2HitTC2nuTooWsc3Lkbv7Jw9opA70FdqVDJC9+KVVi57hytGoms/0tHvZpq3u8rK7LGddJb2VSo1PE5R5cyuBpFESTp2Y2DIx8nsG/XeWxsrWndrlqB1Opq2Kw629ddonZ1BX26OhATZ+Drb7czfHRns/Yv4e3ChBkDgP+aGq+npPtjJOBBdFE+ndQjX9pN/LpmHz5FLjFnhJoT5x7xxdwHjJzQPcttBUFg5MTuXLr4gIT4FMbN8Ml2T8fiJZxY9rMBD1cN1atYER5pRG2dUTkkpqjQ6XSpDaTh8rUkTKaMRn1CvIZ5U1bTr4sGrQ5mTjjC5DkDzLoWjJINMbHJODvJCvPqDR3VK6vRS+YHs5pMehzsn2g67SkQFpts9v5ZsXXzcW5euoAggE9ZP7q93fDFO1kwi4R4DQum/0RgJQ2PIiSci1emd//mdH+nBaNn/8zIQRAdK7HjXz2bVsiZYy0bwdjZZ1B2qUv/wS2eeWxJAjEbtoXJZGLPzotER8VRv3FlvH3yv/5SRf/iCApbqldOoUMrO5ydRD6a+g81apc1y/hQKMQMWXi7tp9h04/rKO8LKy8ree/jXnjnQ+p/yN1IfvnuF2aPUaHVSUyYs5pRUwY9053ZsGllylbwJuhGGC26ecgT52wSHiWwa38iNapa4+IscveBgiJPuF99fD05c+khtQJlg+voaQ2SkFmXf//VVko6B+NXTmDtNwdo1bUTVQJePFkrVbY4x8+eT4tHvHBFh09xJQdPKhn8qXnxU3ExSRR/Ys5gZyuC9HKhLCF3I/n5h7+ws9ajlxz4cFS3fOn5+1oZW5IksXfrHr6aIV88RqPEyFl/M/nzIXR7uxHnz/iw6dAdrIva4G13PG2/p1vZxMelYG2jyvRAbNe5EZMX/E7vtwRW/hpHRLSCwDr3qF2vLF/O/x01USSnCNRsVJdKfr6sXPozIwZBdJzErAnn+WzuwHyv2fUgNJoGbwj4VZAvpqLuSnSaxBwda8vmE/RsHUntavKxDp2IYPuWM7Tv9IZZ++/bdYHTh0+gUkExn3L07m9+w+NHIUGMSK2pVbeGip37w55bbFYQhOdWBTYaTaxavp3EmHC0egW9BrRNi18xGIx8v/QPmtUXCbmvZ9aSOIqXLEGdRiVZ8c12qtWsQI1aZeg3pCN9hq+gZhUTYeFGenW0Yf70tUxfMCjtQbDup33MGGWkmIc8M3N0SGLHljN07Pbi/mODhndg4uxf8HRNJPhWEoLSmm83ujLs064kJ+vYtO4QSYnJtGpXi9Jls26IXr12ZVau28+g3lakpJhYt1XBqM98X/jdT/5O+/deITEhhQZN/Lh3OwJjzAnmjZPPxS9/nOXIQddCU3H6VWfV8r+ZNUqPm6usw5auvMSd2wGUKu3Gh2PfZceuc9jY2lChwlkEId2wd3MR0KToUakUaLUGdFpDprimajV9mDHegZIlktiyM5Gbt0xYOSiJjEzk9PHrXDh+AmsrCaPowcfjurJgxjo6NImkQR0F3648T+tuXXKltEp2cXY0UdU/XRYPFxN6vTHbk1eNRs+l40eYN1G+dvvqJMYt2MqEmQPM2j8iPJ4VyzZjq9aiM9nxwYiuZrfc+WvjIWaPUWFrK2JrC5++Z2TX9rN0fzvr+n0Anl6OeHo5PvPzY4evc3DXEVQqKFPJL7VtjsyfG49Q3icZEJg4J5p4jS2tOzRh9be7cHJ1oEOX2nTuUZcZE4LZ/Pd9bG3A2kogNukCt4L8KFNO1ieRjxNQG26nrSxVqyIxeu4+qgS8uOVTrbplWX2hAhPm3UCvSeHmHQO+vm607doSJydb9u+5xOULt6lYuSQtWgdmeYyAaj4smKaiTjUTtrYiqzdoqVLT/N6NILszr165S/mK3vhXKcEPX25g2XQ5Azj8cQyLvtjM6Mm9s3XMnPBaGVs6nREP13QFpFAI2NumG1GBNXwJrOGLRqNnzqSztGhowt5O5I8dWkpXrEpSopb509dSungikdECpf2rZyhmWcm/BEZjV+YuXcuaJe6o1QIHj9/g4yE3Ke4Sg42TgqJOAkFnD3Di8BUWTlZibS3PFJKTEzn477UM7s78oIKfJ6u/UNCsvpyZcuSUDi+fCjk6Vtj9SN5umn7JVK6g4NCmx2bte/N6GKFX97MwVdH9seMiu3c60bJNNbP2Nz4VGqc3ZOybll1+/P4f2tS6Q42q8urUyJkbGDvjfWxsVGz78xT9OsbzRqCcTl7V35rpSzW4i4d5q7OSzTuDuB9Si47d6lK2rAtD+uop4iCiUAjcDk0mKiopzUWgSdbg7Jg+W3R3EUm+kWLWGJ2cbJm+YDDJSVqsbVRpK4harYFZE1Yy7n0dbi4ic5bdom2P7lkW9GvaMoC9uyTGL7yMCQWDP2lj9gPCZDIx57Of6dIiBo+yAl/PPYG9SwlG91MiSRIPwgw0qyfy9YYbFmMrlzDqU3BzTZ+Q+ZeXCHsYS6nSbri5O9CjTyMAvgt9xMnzd6gVqOZRhIE7D+1wKGLNL6v38DjkCo4OEPrYkXHT3klL4lEqFUyc1Z/xH3/HlI8cqFhOTXyCjiHjViGa4ihXSkSjkWjaQMeiz/+kevlImtaTjZw54yTGzv8X/yr98v030ZkceBQRSzEPJUnJJh5FWefISxAXm4LPE7eIWi1goza/dc83C9ezcIIBW1uRyKg4Zi/ayIQZ5v0eokKBTi/x3zpWilZCocz5xPt2cDgXDu9k4QQrBEHgp99PcnCfA42aVUavNxJ88QzzJ8nnrmVjG/qN0hN8/hAjBqm498DInMk3mDynP8W93enfNh5XZwU2NiKxcUa+3niGMuXk4tbJyTpcnZ6QQxSwUpsf8/nuB23Q61tiNJoylFH6acVuSrtcZcJAFXuP3GPF1w94L7UNz5PYO1jzwah3mP6NXManSo3aZj8zALZuPkZy+ElaNRQ4cOIU589UobyvAZVKTVy8Ea1WQmF6flmM3OK1MrasrJQ8jLQmPkFPEQcF9x/q0ZN5udLaWsVH4/oy69ttIOkp5xdIp251+GrBZqZ9nEJRd9kgWPDtGUJD/DIs4RpN0OMtmzTXUb2aKuYve8TCpUXlSsBBOpb/GEuC3i6tdg6ArY2AITr/e3K5utrTqmtHRs7eja2VhL1rWQYNbZKjY9Vt6M/qDbf56F3591nzu4HaDf3N2vf8mSC6vpludHRqo2bC4ptm3zh+1QJZtuYYnVopOHbWhINHuQz9z7JLXNQjalSVb361WqBhTQMhd6OoUKkYMdEJeNdKH2sxNxF3xwTaNncC4L3eCsbOvQjd6pKiE3FyTO8tFhElZahD1aZDHWYs3cjM0WoMBli0QmLwCPOVBZApBuz4kSB6tU+mdMn/Ym9EJiw5SEX/rGdnzVsF0rxVYLa+E+D40Vu0qR9N03ry9yycZGLoZxEcOK7j4LEE/MpbEf7YQHiUpVdmbuHt68O/Ry/QtJ4ao1Fi278KPhiTuUTH4OHt+HXNPjbvCUNtbc+4aW25duUhdsbLjBwnP2TvhCby0w+7GDw8vSuEtbUKX281FcvJ4Q9FHBQkxj1m9gQnAvyt0ekkRk9/TJwmEpsnaqEKAijEgkmsGPZpd5Z88QcKKZ4UvQ3DxnTJ0XHcPey5eENJcrK8SnI9WI/aLusV4acxGIx4OGvS7m03VwW2KvM9BD37NmX852sYPdhIikbiq5/UTJqd88y/Mydv0ueJnoZ9u6qZsPgqjZpVRqvR4/pEUrQgCKQkxDNjkSuiKCdY3A6J5fKlhzg42hGXIFHCS9Z39x8ZcXBMr1lWwtuZFVfsaBuuwbOokk3bdPiUMU/n/4dKpcjk0Yl6EMTod2S91r6FmsNz72Rou/QknsWdntsJ5XlcO3eOhamliyqUhTGzr5KikT1TYY8MFPVQcOmSgbi4lEx9N3Mbs4wtQRDaAEsBBbBCkqS5T31uBfwE1ACigJ6SJN3N3aGax8fj32bGsj9RiRpElSvDPs06Bsvdw4FRkzKeQL02Ma3JLkBAJRMP7sdmMLbc3R04vz/9grhxS0fzhjZpvZYqllOTkCjQrlcDPlv4T1qq9orfVEyYVTCVnKsGlqRq4HsvfZzAGqWJjGzM2HlnkCSoWb+eWb57gJKlPTl14SylS8oGzqXrBop6mZ952K5TbS5d8GTD/iBKlyvOoG4VcyTDfxglNYlJKWlp4TfvCAS0kFejmrQIYOmqq8weq0AQYNEPukyFPP8LU2vXtQXj5mzhzaYGLl4TKVYqIMO25St6YejSlQmLDyMIAv2GNqeo57NdA+YgCALGJ+z25yUX7tx6iqsXrmE0ifTo2zpb2Z5ajZ4nax1aWQl4FHVg/d8aFn/mjLeXfC7XbEjg4vlQqgbmv4vpdaNbn0b8tELLriOhaHQCnfq8lSnbFuSA+XcGZozPCrkbQY0q6a9LeSuJj43NtG+SRoHRaEwLtnewFwlIddOp1QI1qlpzKdSdPcejqBmgwdtLyRcrddRpXDBtXOzsrXL8sH0SURQZNvptPlu6BbVSj7WDJ4M/Mq9Wk1KpIDJWkWYQGAwS8Unmr1W4uTsw8rNB7Nx+GqVSyaTZNV+qOLBncTcuXTdRxld+ffO2AVcP+Tll72BNSLg9jyKSKeah5NR5HQqVdcZ4Y0HuKdm5R31mTwqiXWM5O3DbAQcmzU7vLyiKIuNn9OP773eSkpSIf2AFunZ9+fIQT+usZ+mw0JAofvtxJ6JgpLx/Bdp3zp4LUf1UTXK1GioE1iHs5h4mj5Jj9bq2M7Jo+d98Mj7rGODc4oVXiyAICuBroCVwHzglCMIWSZKuPrHZICBGkqSygiD0AuYBBZIu4Opqz9ipOcuu8fDy4uT5a9QKVCFJEnsOKxg4MuPMx6u4E9auVZn15UW8PeHASSVuTunxBCkpJoyiMw2bVKJoMUemf3sMtVrN6GnN8yUIL69p0Trwmf7151G7bjlWni/PZwuCsLERiEx0Y8xnTbJ1jCoBPlQJ8Mn2d2dF//c78OnstdSorCPkgUTJSm+kVVH2Le1Byy5dGLdwPwLQpHVLjh64wP6jD6hdTcnv2/X4lK0OQEA1X4p7D+T6lYfUedMly8J5fpVL4Ff55R8W/1G3QTlmjj9EMY8UPFxF5n9rpEu/zPFve/45D3FHmTvaCp1O4tNZ6/lo4rODcp+mdt0yzJlsReUKcqPXz7/W0bR1bfjnBN5e6enXlcvDtQdRFmMrFxAEgf6DW+Vo38oBJfnzR4HqVWWDYO9hHaUrZJ4M9ejXlk+mb6JWVSM3bgtY2bmSlGySg4+Bs5eNDJ3QGhsbNb+u2Ut8bCKNW1Sj+hsv7uxQ2Cnm5cS46TlzhXbo+SbDp2ynVAkTwfcU9B+avRU2Z2fbNDfwy1K/UUW+WXydG9+EYGcrcCPEkfHT03XAmCl9+Gb5NnSaRNw9y9DvfV9mLt3Gp0PU3LtvYM9xB6Z0Ko5CITJl7rucOx0CwJS5Ppk8Bra26ow1KXMBz1IV+fXPS7RprOTfowZci1fMtKqVEK9h1VfrWDxZxMpKZP2WE+zcKtLmLfNihAGsipTg4Il7NKqt4uR5Pai9KOrlirdd+jPbxVmB0WBeaMfLILyo5o4gCHWBaZIktU59PQFAkqTPn9jmn9RtjgmCoAQeAe7Scw4eUM1b+uffkbkgQu5hMplY8fU2UuIekaQRaNulBYHVfbPcNjo6idiYZLx9XPh393kuHZcrAed2S5vXDY1Gj9FgKhSGp9FoIuxhHE5m9DSUJIltf53mTvADatSuSL2GL7ey9rJotQa2bDpOUkISzdvUzDKjatGsX5g3Or2ezeGTKdzXtqZZS/Pjq2Jiklm7chd6rZZmb9YisHopdmw5hZN0jI6t1UiSxMR5Onq/P4BiZqzYeTp/ekaSpOxVNCyEFEb9BXDi6A327ziIlVrCyaMk/Ydk3dtVo9FzPzQGDw8HNBo9y+b/QkBFPfceQMVqdWjbsVYBjL7wYzKZ0sonFIbiwP/1NCxqRk/D61cesG/XGZxcitCtd4MCyY5/kmOHr3Plwm0q+vvSoElmnXTkYBCO+r9pVj/dvTd+oT2jJpu/mCJJEn9sOMKdoPuUKOlJj3caER+v4eu5K1g0WYlCIXDgmI6L96vS04zOKi+jv8wxtroBbSRJei/1dV+gtiRJw5/Y5nLqNvdTX99K3SbyqWMNAf7rtVAZuJyTQRdC3IDIF271avC6yPK6yAGvlywVJEkqmOZkL4lFf70SWGQpfLwucsBL6K98NW0lSfoe+B5AEITTr8MMFyyyFEZeFzng9ZOloMeQUyz6q/BjkaXw8brIAS+nv8ypRvkAeDIYo0Tqe1luk+pGdEQOlLdgwYIFCxYsWPi/xhxj6xRQThCEUoLcu6QXsOWpbbYA/VP/7wbse168lgULFixYsGDBwv8LL3QjSpJkEARhOPAPcumHVZIkXREEYQZwWpKkLcBK4GdBEIKBaGSD7EV8/xLjLmxYZCl8vC5ygEWWwsjrIgdYZCmsvC6yvC5ywEvI8sIAeQsWLFiwYMGCBQs5J+87CFuwYMGCBQsWLPwfYzG2LFiwYMGCBQsW8pA8N7YEQWgjCMINQRCCBUEYn8XnVoIg/Jb6+QlBEHzzekw5wQw5RgmCcFUQhIuCIOwVBMG8PjYFwItkeWK7roIgSIIgFNq0XXNkEQShR+q5uSIIwq/5PUZzMeMa8xEE4V9BEM6lXmdtszpOQSMIwipBECJS6+9l9bkgCMKXqXJeFAShen6P0VxeF/0FFh2Wn+MzF4v+Knzkmf6SJCnP/pAD6m8BpQE1cAHwe2qbD4FvU//vBfyWl2PKQzmaArap/w8tjHKYK0vqdg7AQeA4ULOgx/0S56UccA5wTn3tUdDjfglZvgeGpv7vB9wt6HE/Q5ZGQHXg8jM+bwvsAASgDnCioMf8Euek0OuvbMhi0WGFTA6L/ioQWfJEf+X1ylYtIFiSpNuSJOmA9cDTnaE7Aj+m/v870FwQCkEfhIy8UA5Jkv6VJCk59eVx5HpkhRFzzgnATOQel5r8HFw2MUeWwcDXkiTFAEiSFJHPYzQXc2SRgCKp/zsCD/NxfGYjSdJB5KzkZ9ER+EmSOQ44CYLgmT+jyxavi/4Ciw4rjFj0VyEkr/RXXhtbxYHQJ17fT30vy20kSTIAcUDmRm8FizlyPMkgZMu3MPJCWVKXRb0lSdqWnwPLAeacl/JAeUEQjgiCcFwQhDb5NrrsYY4s04B3BEG4D2wHPsqfoeU62b2fCorXRX+BRYcVRiz669UkR/qrYDtRvoYIgvAOUBNoXNBjyQmCIIjAYmBAAQ8lt1AiL8U3QZ6pHxQEoYokSbEFOagc0htYI0nSIkFuEP+zIAiVJUkyFfTALLw+WHRYocKiv14T8npl63Vp9WOOHAiC0AKYBHSQJEmbT2PLLi+SxQG5ye5+QRDuIvuktxTSAFNzzst9YIskSXpJku4AN5GVV2HDHFkGARsAJEk6BlgjN3l91TDrfioEvC76Cyw6rDDqMIv++n/SX3kcaKYEbgOlSA+a839qm2FkDDDdkJ/BcLkoRzXkAMFyBT3el5Xlqe33UwiDS7NxXtoAP6b+74a8/Ota0GPPoSw7gAGp/1dCjnkQCnrsz5DHl2cHmLYjY4DpyYIe70uck0Kvv7Ihi0WHFTI5LPqrwOTJdf2VH4Nui2yN3wImpb43A3nmBLJ1uxEIBk4CpQv6h86hHHuAcOB86t+Wgh5zTmV5attCqaiycV4EZJfCVeAS0Kugx/wSsvgBR1IV2XmgVUGP+RlyrAPCAD3yzHwQ8AHwwRPn5OtUOS+94tfXK6G/zJTFosMKmRwW/VUgcuSJ/rK067FgwYIFCxYsWMhDLBXkLViwYMGCBQsW8hCLsWXBggULFixYsJCHWIwtCxYsWLBgwYKFPMRibFmwYMGCBQsWLOQhFmPLggULFixYsGAhD7EYWxYsWLBgwYIFC3mIxdiyYMGCBQsWLFjIQ/4H6WIECtP9wRsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "dtlr = DecisionTreeLogisticRegression(\n", - " max_depth=3, fit_improve_algo='intercept_sort_always', verbose=1)\n", - "dtlr.fit(X_train, y_train)\n", - "dtlr8 = DecisionTreeLogisticRegression(\n", - " max_depth=10, min_samples_split=4, fit_improve_algo='intercept_sort_always')\n", - "dtlr8.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True)\n", - "plot_classifier_decision_zone(dtlr, X_test, y_test, ax=ax[0],\n", - " title=\"DecisionTreeLogReg - depth=%d\\nacc=%1.2f\" % (\n", - " dtlr.tree_depth_, dtlr.score(X_test, y_test)))\n", - "plot_classifier_decision_zone(dtlr8, X_test, y_test, ax=ax[1],\n", - " title=\"DecisionTreeLogReg - depth=%d\\nacc=%1.2f\" % (\n", - " dtlr8.tree_depth_, dtlr8.score(X_test, y_test)))\n", - "ax[0].set_xlim([0, 1])\n", - "ax[1].set_xlim([0, 1])\n", - "ax[0].set_ylim([0, 1]);" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAEICAYAAACES8HPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5wl13mfiT+nqm6OnXOYPNODCRhMQA5EIAiCBEmRIimRihQl2/LaXoe117uWdu31b71rOchrS5ZEiiJpkqIYIRAkABJxAAxmMDn1dM7p9s353qo6vz+qp8N093TPTE/C1PP5DHD71rlVp+reqnPe877v9xVSSmxsbGxsbGxsbGxsbG4nlJvdARsbGxsbGxsbGxsbmyvFNmRsbGxsbGxsbGxsbG47bEPGxsbGxsbGxsbGxua2wzZkbGxsbGxsbGxsbGxuO2xDxsbGxsbGxsbGxsbmtsM2ZGxsbGxsbGxsbGxsbjtsQ8bG5ioRQvyqEOLlm90PGxsbG5sPNkKInwohfn0V7TJCiPU3ok82NrcCwq4jY2OzPEKIAeBLUsqf3+y+2NjY2Njc2syMGXWADhjAOeDrwJ9JKc2b2LVVI4Q4C7TN/OkByljnA/BvpZT/9qZ0zMZmCbSb3QEbm9sRIYQmpdRXbmljY2Njc4fxMSnlz4UQIeAR4D8DB4DfvLndWh1Syu0XXwshXge+KaX8i0vb2eOgza2AHVpmY7MKhBC/IYR4WwjxH4UQUeAPZ947OLNdzGybEkKkhBCnhRB33eRu29jY2NjcJKSUSSnl88BngV8XQtwlhHAJIf69EGJICDEphPhTIYTn4meEEM8JIU7MjCO9QoinZ95/XQjxpZnXG4UQbwghkkKIaSHEX8/7vBRCbJx5HRJCfF0IERFCDAoh/jchhDKz7TeEEAdn+hIXQvQLIT5yufMRQrTP7P+3hRBDwKsz7/+WEOL8zH5eEkK0zfvMViHEK0KImBDighDil9fsAtvYYBsyNjZXwgGgDyts4P+6ZNtTwMPAZiAE/DIQvaG9s7GxsbG55ZBSHgZGgIeA/xtrnNgNbASagH8FIITYjxWG9k+BMNaYMrDELv818DJQATQD/2WZQ/8XrPFoPZZn6NdY6BU6AFwAqoH/B/iKEEKs4pQeAbYBHxZCPAf8r8CngBrgLeDbM+fjA14BvgXUAp8D/psQomMVx7CxWRW2IWNjs3rGpJT/RUqpSynzl2wrAwFgK1bu2Xkp5fiN76KNjY2NzS3IGFAJfBn4R1LKmJQyDfxbrAk+wG8DX5VSviKlNKWUo1LKziX2VcbKYWmUUhaklAcvbSCEUGf2+y+klGkp5QDwR8AX5zUblFL+uZTSAP4KaMBaqFuJP5RSZmfGwd8D/n8zY54+cz67Z7wyzwIDUsq/nBk3jwPfBz6zimPY2KwK25CxsVk9w8ttkFK+Cvx/wH8FpoQQfyaECN6wntnY2NjY3Mo0YeUle4GjQoiEECIB/AzLkwHQAvSuYl//DBDAYSHEWSHEby3RphpwAIPz3huc6cdFJi6+kFLmZl76V3H8+WNhG/Cf551PbKZvTTPbDlzcNrP9V4H6VRzDxmZV2IaMjc3quazEn5Tyj6WU9wAdWKED//SG9MrGxsbG5pZFCLEPa2L/IyAPbJdShmf+haSUF42HYWDDSvuTUk5IKX9HStkI/C5WuNbGS5pNM+e5uUgrMHptZ2N1Yd7rYeB3551PWErpkVK+M7PtjUu2+aWUf2cN+mBjA9iGjI3NmiCE2CeEOCCEcABZoADcFlKbNjY2NjZrjxAiKIR4FvgOlvLXSeDPgf8ohKidadMkhPjwzEe+AvymEOJxIYQys23rEvv9jBCieebPOJZhsWC8mQkX+y7wfwkhAjOhXv8z8M01Ps0/Bf6FEGL7TN9CQoiLoWMvAJuFEF8UQjhm/u0TQmxb4z7Y3MHYhoyNzdoQxBqg4lju+yjw/97UHtnY2NjY3Az+VgiRxvJI/EvgPzCXZP+/AD3AISFECvg5sAVmRQF+E/iPQBJ4g4UelYvsA94TQmSA54F/IKXsW6Ld38daWOsDDmIl3X91LU7wIlLKHwL/DvjOzPmcAT4ysy2NJYTzOawcoYmZtq617IPNnY1dENPGxsbGxsbGxsbG5rbD9sjY2NjY2NjY2NjY2Nx22IaMjY2NjY2NjY2Njc1th23I2NjY2NjY2NjY2NjcdtiGjI2NjY2NjY2NjY3NbYd2sw6sekNSC9XerMPb2NjY2ACliZ5pKWXNyi3vPLxerwyHwze7GzZ3EJFA+IraNzkd16cjNja3EINnTi07Tt00Q0YL1dLw6//pZh3exsbGxgYY/HfPDq7c6s4kHA7z5S9/+WZ3w+YO4k8f+cQVtf+DZntB2OaDz29tblp2nLJDy2xsbGxsbGxsbGxsbjtsQ8bGxsbGxsbGxsbG5rbDNmRsbGxsbGxsbGxsbG47bEPGxsbGxsbGxsbGxua2wzZkbGxsbGxsbGxsbGxuO2xDxsbGxsbGxsbGxsbmtsM2ZGxsbGxsbGxsbGxsbjtsQ8bGxsbGxsbGxsbG5rbDNmRsbGxsbGxsbGxsbG47bEPGxsbGxsbGxsbGxua2Y0VDRgjxVSHElBDizDLbhRDij4UQPUKIU0KIPWvfTRsbGxsbm6WxxykbGxubO5PVeGS+Bjx9me0fATbN/Psy8CfX3i0bGxsbG5tV8zXsccrG5ppITEcpFfI35FgXzg9w5nQvUsobcjybDy7aSg2klG8KIdov0+Q54OvS+jUeEkKEhRANUsrxteqkjc2tgJQSIcTN7oaNjc0l3OnjVMntw9PcRn5kEGche7O7YwPEMnkcqkLA47qhx11pnJqeinLs7BgN1R527Ng4+/5bb5/hF2cyBBw6BzZ7SeQUdmyupa29cc37eOT9C/zkeBqEQiR+msce3rlku3KxSDwao6ah3h57bZZlRUNmFTQBw/P+Hpl5b9EAIYT4MtZqGGqwZg0ObWNzdZjFHFIvofrCK7ct5THzKVA0kBItWH39O/gBQU9HQUoUTwDFcX0GdCOfBkD1BK7L/m0+EFzVOBUKhW5I55ZC13XKuo7H7b5su3yxROuzn8UbCpHbuoPh738dt+vGTJ4Nw0BRlBs2yZzIGBwu1OKWOg8Eo/hc1z6FmcwYvJFvRCJYb44ypDZRKZM8VJFB09QFbaWUvB91EBEhtjkirAsuHdRyOiY46rwXrZTnQ/o5GgNX10+ZzWGm0ij1tSte42KhwLd/9D6jMZ17t4V5/LHdS7b7zk9OETXDiO4YAd8I7eubATg3kEJoHjLSxUtHJtGCdXQOdvGPv9Sw5t/vdLKIUKxrG02Xl2yTTWf5qx8dZ6roYXfDMJ/46P417cN8uruGmJjOsKujmWA4eF2OkYonKBaK1DTUXdN+YtE4L7/VjVAETz+8hdC8/paLBTSn644z+tbCkFk1Uso/A/4MwNWw6Y7yJ0pp0uQrIqVkLOe5435otxJGPoUQCorbh56KoK1gVJvFLFrIevjo6eia90fPxBAIVH/Fmu/7ZqJnYqjeEELV0FNTKI7aNT+GkYkjnJ7Z42n+yjU/xo3GLBUwi1kUpwfF5b3Z3bnjmD9ONTY23pRxqiSh6tGn8VbX0f/S8yjlIkqpgFOZmziXDBPD4cQ0C+jFAhBCL+ZRrnFsKWguFKcDLZNCUZaPPi96/NTc+wildJLkkYO4Zg6r6zoloeLCRFXVZT9/OUzTpFzWcbmcC94/Vawi5l8PwIXscfa49BX3VS7rJPNFqgLeJcfd7lKQXKAVgHNJFelvJE0LrZlDbAgvbDuaKnPGtxchFFJpF+sYW/KYY7ICNCe65mQi76WREgCpXAGBIOBd2dA040kch8bR8FKo6oL9Wy7bvr9/jMGsD1zwfleSxx9b3Ka7e4jJRAktCKaiUiiWZrdtbQswcS6PRxTIalb/pJzz8AwOjFLIF9m8dd1VzV9eefUEp/pSbGx088DeDUxMX6BsSO7btWm2TTKe5PlfnKekm2xt8hAp+RACzg+n+MQVH3F1DA+O8e03xpGKk57hs+zeXE0kUWDvzmYqq9ZmTB4cGONbPx+kbKo8tSvGvQe2XfW+3jrcT+e0hllIEzjSyzNP3g3A9//2PU4PFdlQo/D5Tx5AczgAGB2Z5K33hwj7NZ58dAeqtjbT/kIuR3fvGA11FVTXVq3JPq+WtTijUaBl3t/NM+/ZzGNLlc7nPnEfAN/+4WG6484VPnF5NlYU2bWlhs7eKGcjjrXo4h2D1MuogZkbT6ycJiY0F0Yhg+LyIY2lV4+uFj0VQfVXgpToqekPlrdHmgj14iPm+ggkSmmgOq0Va7OYuS7HuJFI08AspNGCNRjZOKaioDguvyJvsypuq3FKqaimss2asAc6dtK8dTvRgT5ib/wMp6ZR0g2qHn2ayrZ1DB56i8lXXyRW20B5ahyn8+rHlqLby8bnPoeqafS+8hOUqeUvkX/dZioam4Amsn1dEJtC13W89zxA6+atjJ88Rn6wl1DHLrJjw6gTw6uaAKcLOi+lG8k4K9md6WJ3lTm7LUDOemGUCYoih6ZdRESYbWqEjeHF+86XyryYaiHla2J95DSP1JYWbB/PGCSKJkZ5EtVXgU9PkaERtZgi5DSBhYaYRwO1nMN0+nHL4rLnsE6NMpmrxGnmafHmAI3epMnbYg8geTh1lvZ53hxdNxjNSipdc3azmErhUCwvsxYzMVa4bg31VQSUcdKml7aahb+Bi8bIeCSN0Fzo6WlCjiJbts5pXjzy4A52bI7g8fk4d2GEwfEMOzdvQFEUzpzp4/vvRJCKxiORzLKhYMuRS6d5+0IW4QxwfEyyL5/nNz97/4L+9XUPcrZ7kr6kZUS5I0VqnWUm8y46Wn1XdLwrIZnKYwoHAphO5PjxkQRC1RiLdPIbv3zfmhyjdyhG0VCRRonukTT3Hrj6fXldCnpiFC1QzYWeCT78mE65WOT0cBnhDtCXhvGRCVrWWY+7l97uYzjjhihUn+xl7z3LG8R6uczbhy5Q1E0e2LsBX2D56/7t548xlPXhZoovP7eViuqbt4i4FobM88DvCyG+AxwAkh+UuOO1pDI054WpCLkhbq7wieUxS3k+9tg2ghUVbNvSRtdfHKTsuHkhEPMxi1nMUuGWXk0WDhd6OopwuKwlpxVQPQHMYhYjE5v1zKxdZ8Ssi51byEsnTQM9FUGoGkKoV+UtUr0h9NQUoCAc12a4L4dQNIxsYuY63lAH83VBlvIobmvyonhDGNmEbcisDbfVOGXGp4mPDOEOhfGFrXuvsm0dU0LBCeiqSmXbOgC8dU2UpiYwy2VEqQjq5RcNysFKvK3tZPu6cebSC7ZpvuDsiq0zEMK8jCGTHRmgvH0nhWQSPTGNCqTLOsFQBflMBmd1Hbg91HfsQG67iwvf+goeVh73RvMqmUAbAH3lGnYzObvtQEWByuR7uBUTVRic9x1ACMGRjIuNS9ilU3lB2t+CAIZFLVZEIWSLZQazKkcK9ZjBJmQqQlvsCPfVwWDuMJVOg2rv4gXCKp+Tx9NniOTdtPuzGIa6pNdpc1jQXjqPpqkoM8+lUSOI6bUmhiO5IO3MLbz8IhZmPLgVVy6CmUihhIPIhjClvkHUshO9xclKo0OoIsTvfGonU1OxBXktx4518crhUUI+jRpPCYdZxuHS+Oijdy0yLCtrreiEe/Zs5p55749PZ0G1+jAZX2gMAmSSSXTdIFy1cDIrpSSdTDMxHqHWaxDRIewoEL5k0vvSL05waEAi09MIfx0IhZqQm899fC+pWJxwTTWD/SOYhmTdxpYF+//F6ycZmCxw9+ZK7tmzeYWrtJiO7evYN36CqWSRhoCPQyPW91ksX/0c7VKqAw7MfArhcOMWhWva157tDbzdXURoTpKyjsmxSRpaGllXBX3xIkEjitPVMNve7bCeB9I08LgvP0YePtrN613WYm0238knn7ln2baTyTJoUMBDZDp5axsyQohvA48C1UKIEeAPAAeAlPJPgReBZ4AeIAf85vXq7K1OQMnhdcJEzjU3OZ3heH+O4HvnADjZl2Bns59CQefCtLqo7UoIzcnEZJxgRQWTE1F0cWOTCZfDLBWQho4WqEJPTSMci6/DrYDq9iMdbqSho67SA6K4fCiutV8VEpoTPRWxXs+ESF0pZqmAWUgBCkJzoHqv3ag1snG0UB1CCPTU9FXtQ6gOtODah5PNR/WFkbo1sArt+hhLNxLF7aecmMAsata9tNaG8weUD9o45RQw/fO/RTdMtPomjI6dpAb78CjWxNNlGvS/9SqBlnamu8+z7eOfAWDgjZ/DSN+y+82VSmx88lkcbjeZlnWM//jbCzw45tQYw4feQnG5yXSdwVlThxAKcmoM7ZIJuzMVo/tbf4EmwDVj/HjDldS0WGFa+UQcUbQmbdlYFMU0QFl5sabBbeDOT5F3VdHMwmePoihsqQBQiOVMtFIGwxXApWd4N+qihIPdvjght2WE1HkgnOgj7m1m3YxBJKXkhalK0u5qTDMLqQjOykYGaaQye5RdlSaXmxo1BVS8+RwvZ1rI573cq/azJby4ndO50BBq01IM5mMIJG0O63l9kWlhPbOL3hpIpCEcRAkGMJ7ahl7Io/j8K143gEAoQCC0MFfw/c5pCo4whRKMTEdwBOvQSyk2bWxa1T6llLiUEgEjTtmA4ZEyP3zhMM89sxdFUejpHua7r49gSPj4vTXs2rmRWDTOd35yhmS2hNSLlL0NNKoF6rUSJemkf2CS7dvXzR5jOJJHCA8i2Ei7Okp1TZjHH7kXVdOoqK3h+PFunj8SRyL4cDTNfQc6rM8NjHKwR0coLqbeG+PuXRtQrjCcUVEUPvrUntlzdbxxiulUmft3b7ii/VyOZN6YjQJJ64sNQYDR4QnGplJ0bG66rCekZAjU3BRGoIk6LUlNvWWQfv4T+/jv33yLmKOR//FSL1/+lA9/KMDHHu/gyMlBwgEf27df/pwMU857fflzemhnLYfPx2iucrJxU+vlG19nVqNa9vkVtkvg761Zj25TKh15fuuTu/EFfLzw0vscHVm4vYiLl89YrugD68M8/fguAL71w/fojl2hIaOofO/gJE1npplIGkjt1lixlaU8itdKPFNcXmS5gLgOk//VYpaLVpI+oHrDCG1uYBGqNi/s6eaheoKwCvtFmgZSL6EsYeyYxcyswaCnr87ouBShOpDlIsLpBrl2K1PXgw+CATMfR7j+ZnfhtuODOE45HQ6cDiAxTfadV60gp5kVdFVVYaiH7FAPzoq5xRhFU7mcj9mQCsVCHofbTT6dXuRNcKgKZu95TMBV28D6p58DoO/nL8LkyKL9+RwLn6GikCU+PESoqZlMTydyYpie0UHMTArXKowYgJBH4zmlm2ypk+rq5R+OlV4nT6TPMJ13kVcMzvn2AaBnL/C423ruu50aH6+OMJUcIKN5yZdMnKpCWguhBaoxXH60aC8Sy4NRQgOWnmjOZzDvmc2r6cmm2cLKz922oMIvF88jhFhg5Oi6QbAwTtSEOhlloHEuuUWoKmKVRsxytFS7GBuSOGQR1SEwgICLFXMlzp0bYGg8jV5I8/64G5RKlGIU6a3n5ITkru5BNm1ZR/dQgrJizUE6BxJsWpfm7IVxImU/OEEvRtGAkUgepdK6Zq8dHV1gyOzbVstLh4bRjBwDjhr6xx243jrLE49Z86TR6SyoVvjXeHQupC8Q8OISJUp4CHoE4jI5XfPJprO8+Pp5CiWDJx/YQH29dQ8JIXj80V2rvLKrZ31rNe+e7yFvaGxuXixKE5mc5r//9ftIzcXr71zgn/79jy27ryOnxzD8DRiZGHUbQzhmFiIURSFe0MANKcNDNBpnMpKkZyjO1vVVq1KfO7BnI9nceYplk0fu3bhgWzaT5ccvnyaVM3jiQCsP3LedB9Ym8u6aufkzuQ8IlQHHrBXdWBPk6MjyEpgObe5mU1cIA1iOsnAzEi/w5O4QXo+LXxydIqHfXING9VegJydn1L2M674avxJmPjWbyL+apP5bFbOUxyxkUJwe9NTU4usqFKRetgw1c22MDnUmrEkvZlA810fFxcbGZjGGYaC7vYhSAedqwk2nJ+n/+YsoLjelga4FggDzKbncVO/dSyYRJ5dMkI/FFhkypmlC+yaCreuJDc55dsQqxymnEEy/+gLjEryaSlF1UE4mCGzchquikvTZYzhnvDSGYWAYxpI5PR6Xk9WoFjcENBowOBubywNRL8kmKZR13pTbyXnrMCNDeB0ChzCQgKJq3O+LMJLtRMXgroCVzwIwkS6TNwTtIXVRCFaDs8DpQgJd8+Errn7x6FLxAoAzKSfRGssj4MvGEE4ncnwaZTCOGXQiOtpWvf+lePrJPWzpHSIY9JMvlBgcjbNt447L5itNTUT4/sEJTNWFmsuAx20ZYEKnCHgoUFVleZE2t1dwsn8I3YSx4Tj/zzeLbKoo4jA9lISTsJanUEqwZX2IzlgRQ3FRFdDIZ7N8529PMJko8fDuOv6X33uMV988w1vd5QUhbLlsFr1YwJmZwusPsXe7JQ5QLhbJpLN8/rEWxqazbN3QtmoRgsPH+zk3pQIqr7/Xz+eeu/rcVEPXVzQKm5pr+XufcZPL5pdULRvsGwJfFZrTTVYvExmboKZx6QWtmrAThnRUX5i6qjlDX3M4eKAjzPHeFOtqXYRCfv7khxcoCTcnevv4h18I4/JcPtzf6Xbx9BO7l9x28swg3XHrpnz9/SHWr2+8Yu/X9eKmGTIN1V7+4LfvvlmHX3OKuRzRsVGEItjQWsEfXCZWs5DNEpsYAyn51NM7cTivLjQsPjFORb0VC9lU7Z19vdYkI1OYhoFpmniDITz+K18hklJy6PB50jmDA3e3LZAMvEg8GmdyKs6GDc2zqwzXwk9ePs77M4KrD99dzzu9K6VL3pqYxeysEWaWFyeYav5KjEwcac65r9eC1UhT29h8kKmWQb5UePyGHvO1DUX0RzsoTce558fD1LMKr/bgxRfLT3pfuktB2WKtgk8dP8P9XRodl5xbv4zT89BeAJwOD56XTiNUlV/pb8WvbGJEy3Gy1cTEZNegoNVYWvJcSsmPG6I4H93NeH8vgYpK9FKJlvUH+NhxjQg5Dj0cRlb6aH91GI8OXbvDOOM5Hjgj8apXNiaaHpM/zQ7Q2+Tm3rt28/BZgzppXbez6Sn+2u9CANITIu/0sjsRoSKdokNKfiX48Xk7gv8x2ssPiwkmqluQLhefn0rw+6G56zpdynKhmKY7PcGFoGTMv4MHYxpbvVeXI/BX+ggnZl5vNZo5B6jHJ3CqFZixMoXgBErz1XtphRCs3zjX/5bWlecJuq5jzoS+aQ6NdRVFDCl45EN3EUsUaGxooXImJ2LDhmb+p9ow3Z19/OiUBwEMJsp8+VObSaeztK27mzOne3E6NXYLyXvHB2muDtPZNcpQ1gsOL4fPR7n/Xti9vYm+0fPkigYHdrYD8PKbFzg56UL6mnn0LjetbY2USyW+9r0jjBV8tPiy/MZn7ltyUn3yVA/jkTx3dzRQ1zBnrPi9GlIWEULB77n6afBPXz7Gke4UbdUan39uH073wt+tXiqBEGgOB75gEF9w6UXBnbu38dLRg+i4ccss/tDyi4f37t9GOGAtMmzdtn7Btscf2z2rVheLTFOWAgSUTAWjbKwq+mM5qit8YKRBdTI4EuU//uXbfO7prTQ139wFa7A9MmuGoipoTieh6pVX/d0+H27fGoRcCUG5VERzODGM6zdJN01z1kiKT4xflSFz8mQ3L50uIIQgmuzk859YqAkfm47xlec7yUkPm89P8flP3XvN/X7s/s0o73ajqIKH7t3MO73nr3mfNwPF6cHIJVE8gWVV0z5o0s02NncquXo/TsBZXUHMM0j9GhVad09lKAGlZJqHTupLGiHVpofzPaM4NjbhG4zz4MjMCu6MQ+b9HRpmex2BykqOT04T+uEYIcfisWzIiFPY2YzP5cIXDFFRZ03Ek53vAdWM1Qjcm6yk7clNSQwVnNtmEvzHTnFX8soMGUUo7NjbTtPOOgqZNAedKZ54P09I8dDhr+FjyQHeUEwSehnF5eMRZ4BfDszliByryDDeESbfO8l/SRgQqEBzuhFA77yQuFQ5z++XY4wEQiglB4ovTBGYKubZekU9nuOzvloKqUkymORKBZTXL4BhWIJpgov/uaE0NjfwkbuTDExk2L15I5u3zOVALGUqewN+Nm7dQNX5E0yXPGxscFNdW0V1bRWvvnGSN7sNkCaNWoxxs4buC5IH2hJ40MlJN81V1sJlZVUFX/r8/Qv2XdIlIBBCUCxZEQfRyQijeS9CwFDKSTIWo6Jm4dxrcGCUHx2Kgeqgf6yTv/PFB2e37b1nC5rWTaFgsPfuhcbAapFScqwniXSHGcjA0NA4Gze3z27v7Bzkh28MIjC4Z52X1tY6tmxtX3JfTo+Hv/v5vfQPRmhva8fjW95zIoRgW8fyuS7TU1G+97IVHra3SSNZNuhYX4c3ePk6a+lkmtcPdaOpCo89uBX3JfWrNm9p4wuqwouvniUaaiAjNM73TdmGzAeFfCZDMZfFX1HJ9Mgw1c0tK39oDaioqyc5HcHUdSoblo9/zMRjSAmByqtbMTLKZaSUFHM5VMfVST2X9blqw+Ul1EAmJuPkpLVcMBpbXtbySvD6fXzkyd2MjYyTiqeWbadnYjN5IAJtDT0aa4Xi8mGW8hjZhJ38fQOwxBNmimxekltlY3O9aT8Vp18B91SWdRnXpQrAq0ZKyaBMEJBOqlQfu3vhxcBxHBub6W1WaB1c/JmA6ubBV+NMvTVBc9m76NilQgH3xZh8v4e8UVzSkAnjQUsViDFKPpmExibyo5M81OcCDWqjktGJKCLsp7Y/RTaoMTE5SWJslMZUGVbjhboE/0SWkXVpqhuboKGJzsmzHBi1Jn7/PLyOfw505mKU8gY7g3NGjGEaDB6owd/UiGNLK0rXz8DppZycolZKPuuYWyQaLqQY9gcRgOEOUDfRR52icqD6as0YcKtOfjfYwl9GLvA3ThVlukDRTCL1EiJXRn3DxGicQq6rRBvNYlY4ER3tV3281bJ/31aupASlL+DjS5++m+mpKI2tc9c3ltYRQgGhkisBmvWdONxefue5Rqank2y4TLL4E/evRznUh9uhcN8+K2+jtrGeTaEBuiMm2xo0wtWLQ8PKZR0pFATW/CORSPGLg91omuDJh7Zw9+7lo2YmxiP88JULlE3Jc49uWDK/RAhBe62TniRUaFka6jct2H6mZ5qSFkBPTvL2UIi3ByI8Vyhz9+5Ni/YFUFFVQcUV1K0pFgq8drCTsmHy6L2bZkUeTnSOM1m07p9ESedXPrF3Vft77d1ujo8KQOJy9vChh+9a1GbDxhb2RtO8fDKDQxZZ13hrhOvbhswaUMikZz0WVzvRv5RysUA6ZhVfDFRVLwo/08tlkpEphLC2L1e4LDE1iccfQCiC+OTE7MrYlVDV1ExicgLN6SJYdXWxpPfcvZFE6gypvM6D92xctH3DhibWn5tiLFbk3h1rZ+EfOdLJi8dTKMLEyOUWeS7MYhbF4UZxeedyUdzXllx5tZjlAmYuCTNKb1pgXhKv07Nkor/N2nOxjgvwwavtY3PLsz3tZ/tbZcB5VUZMlBxH9niZljlqdu9BjyS4+8URCo4y1fdacqqJbWXMgSzKvDpa/VqajF9hQ1Rjoxle8tgdZ/K8VzGI2+tDFkt4hZv3a3MYDoXtwwK/Yo1TIc3D+iPTjFcIKlNFSj2HuHtMo06znr8NphfPj8fImSUanWH64glie5y03LWDE84eWt7OE1Sv7Hl3dyLA1IlxaGyylLayi4tlLhX+pSoqrvE0NEF5NMJHC0UO60n2m/C/Vm1ekHexzV/Dk8lBDqvQmk1zun49U0LwtdQkvxtsmc3TuVLezEzytVAYmYnjCDUiMxJF8aBW+5GmQXFoAHW6bCmOTSXRh0+C34PcuTrlsbWkXCrxvReOMTxdZP+2Sh59aMfsNrfXS3P7Qm/CfbtbiL/Vg0MVPLhrI8cuxHC7FO7duwG3x7OibG9lVQWf/uhCGWBFVfmVT99PqVDA5Vn6d7JxUxuPT2UYjxXYv2MDr7/bw5lJ6/fuPdzLk48tXwvn2NkxpsqWMXDkzMSyifKffW4/I0Pj1NRtxudfaHxvaA5xbiyKEJbRg6oRTa7NIi3AO4e7eW/Q8lYZ73TziY9YeVaNVV5EZwRT0WioXL1nU5nnebzcT/i+Ax2sb57A6XLeVMnl+diGzBrgCQSJT4wTqKyyYiLXgHQsSmWD9ZCKjY/Ovr5IMjJFVePy2y8iTROX13qwZJPJq+qLEOKa828UVeXJDy2vBuJyu/niZ9ZeAqN/IgOqAxOQcomCiUIBcyYsT5qrKpB5vTAL2VmPi56O3rR+2NjY3L70Nquod2/AOTmBoig46yqJhkbZMO2h81gPys52wuenUcTcxGtQTXP+05tx+LxEDp7nQxeW3vddah362TTxNp2G3gI9jRD/mDUhPPHqOR7st9r1a2kmP72LTDxKRX0jTiHoe7OTlu65fYU1L2GssWm6WsNXYRk5WlWYmBwheBUB/R8aDXD+eydRdUlHxr/qqKyHjxsMdZ2gLq/y0dody7ZThMIfhq08oz+WI5yZmfGNmjq/k+xjRBH8HVx8PLCyQtR8TkgdXfOiuKxz1nzV5DODeN1+yolxnDVtmNkEAGY5j5t6yEChawK2rbvMnq+Ovt4Rfv7eIH63xnNP3rVADnigf4yuuAtUF++ejfLoQ5ffV3V1kAPba6mtDlHfWMPGLUuHcg0PTdA9OM3mtmqaW1decBVCLGvEXOShB7bPvj7XPQUzmn5Ox+VXCBqqvNAXRwqFhqrlj6E5HLS2N/GDF48yFi1yoKOaA/u3AXD37o001weZmgrx9tkobk1l386rC2NbivkG8/x17I7t6/mtgJt8vsTGzQsDAaWU9PUM4fN5qG9cuGD8oQc243ivB4eq8OCBy9fjqWu6tZQ1bUNmhmRkCrc/gMvjoZDNkk+nQIhVeTDcPh+qQyOdiM9q6K8pS5jH898q5PILEv/nozqdxGcGtJWUNT6I7N5Sy8B4H5oqSCwRInQx/0RPRxGKelMT3IXmnPUILZcLc6ci9TJG3jLEVX/VVa16rhbFE5ypnSNtwQObW4rJUgKPcBJ0eMkZRTrrDRx5nbvSgdl7wh8tESsUMU2DxPAonliB5qiCV3Xx1FGdybeP0eCumF/GhIxL4piJyy8GXVyc8Ekp6XKnkAi2FKxj7E4G4BSAj2Pe3NxO5s2m8i7Q3O7ZgSoyPITW7ObodIJ74otj9dumBW/29COCPpynh2lTr26l16Fo7EzOeNSv4BHhV1x05K8sL+fz7gqmUtPoCNoMg1errInhD9MJPr7CZwGGiikOlTLsdfh4QvPyRiZBtJAipxiY1Q54ZA/ZsSm4IHEoCqZiUvAkkIoCpvXdSOf1WXj7+bv9jBf9kIe33j3P00/NhSfV1lbgF2NkpIe6gMILr5zApSk8ct+WRcnuAN99/n360j5kcZwPbR/m4Uf2LGqTS2f41iu9FPBypKuX/+mzATx+H5lUmkwqTX3zlRmGS/H4Q1vxHulFU+HefZefqN999yYqQiPohsHGTZdXjevpHuLslANw8MbxSRQhEAL27NlMTX0tNfW1bF/e+XPVPHBgM9K8QMmQPLR/Yc5Mc+vS1+sXr5/kYK+BJst89tECm+aF9Hl9Pj68xGJzLBrn7fcH8Hs1Hrm/45ZRKpvPnTeznSE5HcE0DIxyGdM0qWpsIpOIYxo6uVSKqsYm9FKJZGSKUM3KoU6JyUlcXi+R4SEq6urRrlF1yxeuJDZuVSoOVC7O2/BXVDLW04Xb76eqoZFsKrHkfoKVVRi6jpQSbY3C3m4nNm9u5Z9sbEYIwf/51RNLtlmLApJrgeoJYBYy6Onp21Yq+nph5OJowVqkaWCko9c13EtxuFAct0aRWZs7mxEtR/dWD654AVemxNRHO5DxLHe/NE7PBo3CozswTRPlr0+yPWcpHXXkA/i+fZ6SYrC+FEBVVJip83GqqsDgvW24JtM8dKRAQLXe35T2Mv3qWYqVHraczXAxR+VERYapT+4GIPejU+yZMULOhDIMd4RxDxn4f3Ia3Brb+0x63AWSDoNNCQexl88QCjlIHOqi6uMPoygKI8EoHd+bxHPJ/VUnffzS6zq6GcOpVt3w/PZToQzJeg8tfXnay4tDi6WUdLtSuHSFNtO6BjVOH//GaV2nznycvynmSDs97FypkiBQMsr8w3KCqUCYynyab6hhvuduRwYk+5+2xiMFYEMbcn0r+ZEJ8K9HqQhhdA6SP9aNEBqy5vrkTOazOdD8SL3MxFR69n0pJcV8ji88tY54qsDp7iJHhyRg4HL28PA8D8hFRqMFcPoQLj/vnRpZ0pApF4sUDBVUKOoqpUKBdCbP11/sImM4eXDjFE88tvuazsnldvPoQ4v7Nx8pJT/9+XFGpovs3VrNnruXzmeZT1VVELccpyA8KGaBF0/lkVKSL5zjoQcX55msBaZp8rNXTzEWLRF2lTh0VHD//o24V/BQjUZLCOHAEC5GJ9NsWvn0+NmbXXTHnEhZxu/uZt++q88Hu17csYaMoZeprG/ENE1GLpxH1TRC1TXEJ8YRM7GCqsOBYSyOs70UKSWa02nlj1SxrHfkSnB5PLg8y8e/Ot0eQjW1CEXB5fXO5tMsxY32xOilEulYFLc/cFUKZ8sxPTKMqmmUSyVqWlpXvSq/XP7QrYji9t+0HJ1bmpmQP6HceqtBNjbXi7O7vCi7N6ADUye68Hk84PEwUTWB7rae64qiUHKrZJN5dGkScvqsybbJAq8LwPi2MP7GOmisY/jCCTqyliHjVDUe6degXzI/0b5Q4Z59fuYr3BC33u+5pwrfumbK21pp/cujbJBeujwpej/TgeZy8fzpc3zskElI0UgZ1RwcnUZpqUUdT+JaRjxDEQrOq6yrdjUYpkG/I01OLzL67D1obhcnawZoP7hYAfRIXZbEs3djFIvkf9DJ1vxCr9IWd5j/kBonV8yjtVXx/G4nvrE0D3YquNTF55sp55meyXuNO90kC0VCTh9iCQtOCAHN9ch4HGNqGsf7wyjOIEKomD0J9FLpmhdOL2X31jpeOTaJECqbds7NZX72ynHeGzSpcBT59efu4lz/tJVn6vItm1exZ2OQt85EkKZB2zrL03bk/QscOjtFY6WLTz5zD6HqKj6yZ5rOwSTb2ioIVVdx+P0ustKDUKB7NMcTa3qGc7z97jm6htN0tAepCrk5PAhCuHn50NCsITM2NIrP7yVUuTgZv6qmit98djNjE3F6Boucnba+s3Rh5bkjcFV5VV0XBjg6oiCEh5FIFi2pkyt28uxTly9psn97LZG3B/G5VHZsWV19ovm/yesYCHFN3LGGjDQt13m5aCVfFfN5cskEbn8AvVQiPjGOoetUNq6cTCeEmN1PMjKFN3hjVvh9oTCZRJz45ATBJVQ7bhbxyQlqWlpJxaKQYU2MmXKxgNvnw19RiZSSxNTkVQkX3GlIowyKaqnG3IaYpTxmMYc0zZlwLxPFc2t40GxsrjeOnI6BtTgU6I+TX5+BWIrGaZOm6QLnzC4cOR1vssxrn2xHqgpbXh5ic37pZ25gMEFhayvlkSnqsisvCmzq1zn2fg8I2NxXBqxJuTuah3VQnooRNpygQM6normsybmzpoLRwCShLARVDwdenmIyMEFTSkERaytaEtezZCnTrIVXbNvvyjC8wUdwLEsyqFB8Yg+x7j6Chg64UAy55Ody1T6EEGhuN5mwA+ZJYg+acd5bZ+B9YC+l986hNlfh3diCuREGB4+xubT4eVXpDvJ3U2l+UYzzoFRoDS6vdCqlRLxxFnfOT1HEAQXHTC5lKTV6VQJD5ZJVQ2W5KI2HH95FdZVVq6Rj+1xex4XRLELxkzC8nO8cYiySA+GgXkS4d++jS+7rqSf3s6Njkmgsw9atVijT68cnyClBYlOw/vh5du7eyj27N7B/79yUdOO6GsKnJ4gXFO7aen3KC0QnI7xyOo1QnQwfi3Nfq45ZFKhuP2bZynd+7c1TvHGhhEuU+cJT7UvW4fEHPMiJBHdtqqFkTKMoggfu2bLi8Y+f6OGlQ8MEPSqfe3YHlatQLXvp50c5P5BApgqIUONsEeySvrIncNu2drZta1+x3Xw+8shmAu8PEPBo7JlXH7GQz9PTN0ZjfeWq+n09uWMNGU8gMJs70rptO5lEnEBV9VWHX1U1NhGfGMcbCi9KQEvFohilEoauU1HfsKYeEn/41qsfcvEaBiurrrruzKJ9Ol0kIxH8FZWkY1G8gctXm58eHUFVVSSSyvprj6+9HbmY9yMNHeF0o94mnh4pJXpyEhQNM5/CWbsOM59CaE5buc3mjmLfGZ3u2Bk8yTLbCtUkvtmLW3Xi1iyvSe15AJX32hRcdVYI8lTrNJuXSdZ/aMTHwF8cpdJ0E9K8FI0y724yydd4qDoTIbOuEi1XYm8XuBSNtChw7zFmFMTm1KgePF5mqO8UVRmoUqy+bI5oHH/vfTwtDRTiSSqScnaGUYWHqjSLQsZOhTJkqj2s6y/SYF6+6vhSjClZjn+iCaUiwNhPzhLISTRDsKm89Phw6kAF3k2tjJdKTL53As/kOJlynkJvH/684L6zBrD4ObmhO8fpQD9q0WD9mJw9j3O+NAPPbcenCLLxON4DHaROdOLd2EJ5IkpV0bFkmFzJ0NnSHiLoKqI2VHFkMM2+6DLFRbMZnGk3wunATS2ZcB9O00AoKma5xN/8+DCf+ugeLnSNcK4/xqbWELt3LlYGvcjZc/38+K1hNAU+++TGZaWFt9+1uFbJ9rYAB7sKVLvLqEoFUSOI4oR4qcBfff99KgMaH3tq96KC1g1NdTQ0zYXBVQdUhrJgFjK89E6aFw+N4nC5+fTjG1i/vhkpJZVVFfz+Fy1lsotziFw2y8nTQ1RX+Rbkd1wJ01NRXnmnF00VPHxPC17VIA94HSaeQBCklTPbVG2NNf3jOYTiooTKwEh8gSHz+luneP9CnHImSdHXiFsp86WPbaa6dnVlHI51Rig6wkR0ON89wQPzDIKlPDVdZ7t4t99EKJXgSPDIeoNoKkgiOU2Vv4ZysYjDtbZh0eHKMM8+tXvR+9/60VGGcz58TPA7n7qLUMXNW2C8Yw0ZbyC4YDJ8rQaBqmnLhpPppeLsZDo2MXbZiXV8cgKkxNB1wrV1a+4yvhEYhkF8Yhy9XL7mELuLCCEIVlcTnxi3RBm8yw96yemIde0cDjLxGKVCHqf7zpwAX0xW19NRuE0MGTOXQAvWWEaYL4yZT6F4AhjZxC1ryFjS2amZhOdbsx6Rze1HQHWzZxIuluQOu5a+h2snikxPx0HTaB3OsdRkHKzn6Doxl+jf6y9Qfmw3GjDgFVSsb8cALiRPkwia6B/ay7neUR54NU5Ymbv3Ip4yA9tDjKVLeE9ZuTZe1UW4Noi/sQkam8gePmqFty1Dn5Jk7LkdqA4HJ6r6aTh8+RXlvFGis05HLersSFnCA5EqBeeMAdfbrFC1dyfSNCl8/zQ70osNA7VkhY3JYhmv4qCivpGKugbiE2ME6xsxj70PSwy5LWUfLe9ZtcaY51FK1nlwzCxcZoBkZJLagkbrN49RVdCoEkvXwzneWGL6ic2U8nmr/tz2EmNfPU2jI7yorfD50f2DKEU3JS2J+tgB8kOTqEcGcYVbOB/VOHv6Ai8cSaBrPjrHp2ltCFNZs3SUxpmeKGUtQBk43xtdVlp4KZ780G7274ziCwXJZvO8e/40cd2Nmc8w6qhgNAftZwYWrNwvxUcf3sgff+soiidIwVuPkYmhe4K88c4F3nrnAiMpqPA7+dxH71qw2v+jl07THXeBkeLXFIX6+goGB6dobKwiGL784uZF3jgyQFfUWmwNd03xqx/eSN9wlE3tzVRVhUgWzpLO6jx6oB2AXZsqGTs0ht8t2LJhLsfGNE0Ono5huEJIfwAjE6MYqCIaTa7akGmt9TDcZ+CkREuDZeilk2m+/cIJYmmdx/c2sG/vXE5KPJ3HLBVQ3X5kucDDjzxC5/kB/uYdlZFuSSJzmueeWb5uzEXp7NFYkQPbqheoul0JUkrG4yVw+cjiZXo6YRsyH3Rmw9hKRdQViusVMmncPj+VjU0kpybXzBC4Hhi6TnJ6yqovM0+QoLqp+bocz+n24KxfeSLrdLsp5rJooTClYuGGhfrdckgDaZSRehmh3phbvZyYQKgOpFFGC9UtWFEysnGkaaA4vSiu5Q1RxeW3in8GqqxwMiEwS/lbuhioWcighSxRED09fZN7Y/NBYlzJMdCqEZoq0pFbetV+XdFPxd8MYQKVztUvWIQKgv5EGmc4gEzkSE5H0EslGnNlUrvq8ALODU1MvT1JuDz37L3Q4cWxvR0J9E6cZvdMiqZ/NG2FnA1OUF22inlGZY7RCkld0krqn4+UF9XRTE4GU+SDTrYMQ4VYWFUc4Ph6SfaJHdZn/uYkO9MBwpMFzpw5j+EQhMpW9XehquQqnDCTo26aJt2uFE6psveQwvDoeSoiJUbavJSxjLt8Nkega2TWu7QcOaPIuJajQffiVV20DhY5dr4fXUhywyPUVtXTMShpMkKXFSwwPRqaw0kmYSUdyViagWpJZzu0phIMBcOzbYUQmA9vIxeZRqnahHA4ERtbYDiNKGm4yVNbU4Mq4uiAirxsXujG5iCdY9OoqmB985XXoQlVW2N9KOzgy5+5m3g0zuvvl+iOA0aJcGhloZraxnoe3N3ImYE0Fc4YI14/ZmqKIW8Fej6JFqgmUoaXfnGKz376odnzSeZm8pdUJ/Fkjldm1NUqtDG+9Om78foWjitSSt56+yxj0QL77qpnw4ZmvC5ldlt31wiPP7SdpuZa6+8LA1T7BF63Z/a3ec+ezey6q51SqcShYwM4e6e4/8AWFFWlIawykgenkcbjkbTWltl0ieRxNBLjey+fI180eebBdjZvnvMkPfHYLja1DRMI+KiaMX46u8cYL/jBAUc6o+ybZ5fctX0j7xx/k2g8zT0bAyiKQjxVAMWaVyaWqJ00n97eEUs6W7h450yEhx5Y8ataEiEED+6s4UhnjNYaF+vWX58532q5Iw0ZKSXxiTGEUPAEgrh9V15F+ErwhytmRAQUHC7Xssl52WQCf0Ul/opKJvr7CFSsfdhYqZAnk4gjTUllQ+M1ydjGJ8apbm6hmM+TnI4Qqr41lLY8/sBs7pDb579quUAjn0aWCwAoLi+K6/r+TtYaLViLkY0jVMcNUWYzckm0QNWMIaNj5pKzHiEjl0Q4PagON3oqcllDRmgOFJcPPT2N6gujOBdPam41hObELOas8zIXJwvb2FwN570ZTuxyoVVX0JfP0VlW2HQsvqS3IXwFBsxFmqQf80d9pLwQzueIdKxHdTqZEgNUn5xkyqXhHo7TXHDPFshMmHmmXSp1QCmXJZCe+70/fE4w3H2Uat1FWPWgmzrvPBTEvbWNkbFpHnx+nKDDuvfXmyEyPzpHpsYNYzEmPn8viqJw7FAXD54qc66miDDhrpgbTdEoe6zpihDCEjpIw8BmP7V3bUVKift7R8gd70XVJRsHDRDwTm2arvUOGjv2YBRLtP3wPPuGnYCTys48b6qnybWEqaqrp/75Trza8rLPhmnwxl4H2p69dJ0d4LGDeZrw0fTORU9SEwzBfLGE5ejoNzil9WCWsoTencQVyTH2a3vR3C4+HZnij9IlxLw5glBV1PqFCznmfevJjUzz+bpaXnx7CLdSpj2UZs+OdsJVy5+H06mimQU8CoSCXmLROO8eGyTsd3D/vR1XNCfw+Lx4fF4+WRXm5NlhqiqqWL9hdZPap5+4m6dnXk+NT9HfP8pPz5lIQ0dKE1kqcC5r8va752c9B0/sb+XNYyNUBjS2bKjj+UOTCBfEyh5iUzG6U2OkskX27mrH4/PR2z3Iq+cLCEVl8s0+/sGGZh5/qINDJ36GqXqY9NfS3zfChk1tvHnwDK9dKIGuYxSmOd4V4x/8eiWqpqE5nbz42hmOj1jXRlEucP+9HfzKc3voG5igob592TyRk51jTBSs38ThM5MLDBkhBO0bFobINdaHEUcmMR1+tHJ2wTZfwMc/+PJT5NJp/OEwAHfvbGN44gyZgsGj+9ove83raivwigly0kNjpZN0Ms1rh7pxKAqPPbhlRdWz+Tzy4A4eeXDVza8rd6QhE58cJ1zXgKIoxMZHr7sh4/J6cXm9RMdG8QSCZBJxXF4vHv/CwahUKMwmsDvdbvwVa181NROPUdnQhGmaxCfHryl/5GKuj8vjIZdMrFEP14arCRWU0gTTnPVeSL04V+E9PX3bGTIAqu/G5VApLu+MMVONkUuieuZc/dLQUTwXf+8rD5SK033DDBiplzFyCeu47sBVHVf1BDHyacv4Ctw6whs2ty+DSpqBT26l2u1muPMcLVs7ABgqw453VqeItBpaDD+k4XCzA4fbbS0APXMXSqrAPT8do5XgrBEDEHEWqdm6m9jEGIn+Ybaac1EGLtXBRjM8G7pW1MvIGusZqtSEyDBIcF6uzc50ANJw1ushMzOBlprKieYSqWesmhYnfnySvdN+tneWOEMXWlFn64QCKkjV+owQgqDq5uFjYIV/eTGlycSeOrwqM4n6LrIVTpgpfRMwHVSYCr5mK9Fer/bByPLXKVHKILdb34Ha0cbgawfZolnj56jIkFF1NpWDKEsIqxytypBs9NPanWFjwU9IeHioB8BaYIpJldF0DtwukoUizIxBlZkU97o0xgsFjvkrEEJYngJdR7jdiI3N9HdNMJL1gPDQ6DLYvOXyuSMnLsTQXRWkgXO9k4xMpOlLupCyQMDbw85dllLX6PAYHreLypqVw6Q8Ph/37r96Wd7ahlpq6mvI6aeZiFcTnxhjQobRfGFyxTlDedPmFjZtnhNGuHeTj5N9SdoqFd4/leXoYBnNV8Fk9Byf/tg+nC4HAhNQcWrW9+J0uWhtrGQk78cn8tTUhAEYjxcRQgWHEwqSXBlMQ5+d55R0ycWxq1SWs+e9ffviXKL5NNb4EZ2TmEKjoXLlVAGjXEI3JLIYZaSUZ3RolKbWJkzD4NU3T5MuGDy8b/1s8KjX5+NznzywiqsMFVUV/PbHtzIxGWfDhm387PVznBgVgMR5uJvHH7kOBW9uAHekIZNPZ6iom5lM3UA9OUVRZmSVPTNJ8AsNGW8gOJukflECes0RF1cUrl3FStE0S93NMJasdXM74abAJx+sJRTw8sLBQUYyLjDNWeOGpcVsrhgpJUYmiuJwX7XMshW6JEAINP/aG7tXi1DnPCmKy4eYF0ap+isxUhFQFMQtVlDLyCXnDNbU9AJDRkoTIx0FBKovhFhCSvUiqicALB36Y2NzpURElmQsijcYQika5CNRPDVVeMfTsELV+7xRYlzLUa978KqrS/5dP6Lz/vFeTD946uohFCJSH6F1Yq7NWClBuKgg3uuiEDRp37+X7r0muR+dY0dq8fPM5/TQ+vowU5tTVPYnaXSEOR1Mk6rz0tZXIOmRjG8KEB4QhF84TSnkYnNPiZ72uamJMSMzXY2HRzsB1FnDalenzjm9Ey2n0zHtmn1fSklRL+MbiJPrqCc6MEBwusT6Uct7ciqYofeBemQsjXnsPH7FyfqRy3tSK11B9DfPkN7RhF4qouyqZksXDDoynP3EBrSAj+mfnuKB8YXXYYAEkWd3oWoaZ6qG2PBaaZHXo1LzsfPFYaaqx/g3mzwIr/WdPe1xsqOtFSklsaPHcGoO9gZ8NAaD/CQSpTNYSW2FB3oTSKFSE1p5otxe76E3mscpdFrraxgav1gnRmDMhMEffOcsL783iqbBFz/aQVt7I2dO9+J2O9i8pX3FYwCcO9fPqe4o7Q0+7p2pdn85hBA89rA1kY5Ox3n5YA+qYnD/PcsLFzz95B6eBr75vXc5Oe1G0XIY+TTZgnUdWtua+KX7ioxFsuzeNmdo/cpze+jtn8DnDJFMpAmGQ+y/q56pN/vJRCOEXIJH7l2HwzU3Fjx+3wbEu724HAr37ru88WIaxmwkyNat7fyW10U+X2Tj5stLHseicZ5/9TwCB1JKlHA9X31pmF+6v0g6W+TtPgko5N7q5lc/uX/2c1JKTpzsJpUps3dXO77A3KJrIp7khy+fo1Ay+chD62hvb6Sy2po3aPPmmUsZ4LcLd5whMzHQT7C6mujYKOVikWDVjZuAG7qOXi6TSyVxLeEFuui5uRpd8dXi9vqITYyBlASqrm3l+FYJJVsL1tU62bzVejjt3Jhm5EQWNViDkYmCUNasAKOenEQL1SGLWYx8embyu3qMfMqqNeNwYxazc+FMNxCzmAXEksdVnJ4lE/KFELM5JLcecpnXYKSnUQM1VjhLKmIXKrW5IXSZUUae2URVQy1TPb2sO5eh48gocecg64q+RfVh5mOYBq/vUdH23kPXuUEeeStLXC1R0EzW6cHZsSUuC4xUmlQnocH0Uo2Pp49ZSmIjjTnI5KmLzCXgH6nKMP3MDuR0int+NoZ3vYu8qoKqkql0Qmrp/uxO+OGwpQY2JFKMfKwDze3iWHUfZoUfX0Mtke0ldn3tDI1TPkDD2VfglOMCwjDpGGSBR2g+FcLNA70Ajtk2pjT5xYYC2V1NeI8Ns/MHfdQanpnin9azaXxLcLaeTv0PTrMj7mS+KttSCCFYH9MYq6u3PCORXgASIRVHcEZVq95PbqTIifVgago7enQ8UkNmCxDyo+X0Zcf2Zt1H8wRkd80ZQrmZOnbJWJRPtrXhNPXZqI39hQKdWFXo/b5BymWdbR3rl9r1Ah564C7Wt4zidrupqq0iGPBw8OgAYZ+DXbsso+HIyUEUXw2GUebI8T66B6Z58/gEQlGpf6uLL3/xkSXVsZKJFG++14tTkxzrTlFyhLgwlaalYYymFqtuX2QqxksHe3E6BB99dBuB0OIxsKq6gs9/Yt+K53KR6ZR1nRSXlypzkifu20ImkcSUJnfdtZ5Ly1J6fD5CQS/ffHmAonTwyOYYjz2ykwcSOV446iKBQj5fmm1fyGYJV4T4pY/es2JfXnn1BIc64zRXOviVT+zF5XbTvIRk81Kc6RwnSg1SZHCSxVSdmMDQZJbqoGN2bjjjiJz9+/TpXn58JGWF0MXO88sfn0usOXZ6mKGMZZC9fXwUaUpePzpMhU/j8fs34XQOoimCB++9vEDDrcwdZcjk0ikwTfzhCgIVlUTHR/GFwle9v1R0GiEUApWrWxWvbm4hOR3B7fMvkmiez/UyYgC8wdCdm/x+GcZiJWLROIGAj56hOOC0Jt9rHCYkVIeVkOr2W0piV/p5RQVDB4cVriUcNzZ/xMjEEQ4nSJNSdGTGe3F7q3Spvgr0VAQQKJ5LlW+UeffjLVoNzOYDhSlN3tvtoHYm+dddESb5TDWnXzqLvq2ReH+CA5HlF0BS5RzG9i1ogLKtlYOHfkHpM/eh+TxEXjjFgUgAKSVv73fj2rmBocko9/14lErVWlzbmfRT//VO3MJB0DG34BZfH7JyOxurmayYYEN/iZMVvRTzeap745hK/YqrukLCxcUCIUFN5qEBZCqLZ950JCzcPNw188cVOnDHiwnMR+7BpyjojwQI/NkpAu6Fz8nQYIrkdgMjkqAmcVFwYOUFxC0pD+mfnaEQcrH1QhHw0j4Fk0e6KQVdbO3McLZFI/uEldNxVp7n/j4P257vJVqp0johWclgms+LhsJgVw+xaJQv799LIZshOT1NoLKSc6kMhCxj4tIE85Voap1L8q+pq+KTzyx8fru8XoSuIVQNl1snmtIRqoYWqGIa6OsbZcu2xUbTywe7OTepIKXEUS5Z45Re5r9/6x0cTjfC6SOoFYhrljFWeOEwhuplfZOfxx7acUXnMJ/H7mngrZMT1IUdfOLpD/E3P3yLzikVRdV4ZKuLnOGgJuRi/zzP0MBInJJwIwT0T+Z5DBiP5kFxIICJmJUf+6MX3uP4UIl1lYJf/eS+FeWN3+9KYLrCDGVhoH9syeu0HA21fpSzKaTLy6YanZFkCk2FHZu20tBUQ754nkzB4P57NvDq6yd593yM5ionG5qCs8Wi88WFYac1FW4wc0ihURN08MqhAcbzXoZS0Nw7wZOPrhxOlkllePvQeQYm0gSDfj7y8GbCleFVn9f15o4yZIyyTriujumRYRRVxdCvPs54uPM89evWY5oGialJwrWXV1QyDYNEZBKw8l9sbi2Supv/9v1zaFKnqK1OxvHqkFZomGnOyxlZPYrLh5FLoqenrVAux7VrxkvTwEhPg6KtGK4mpYE6kysk8mm0QDVSL1k5Md4QRjYOQrkh4gJrhVC1ZT0tisc/Z+TcYM+XzZ2JYZr46+uIjo2iahq5dJrGjZsY2VlFw9Z2Eh0Gw39xnBZt6fy3sNNP4I0uoturyZzvQ3tiMzUzoSaZhgADyQwTNSrFygpcgFZTQUr0U4kPKSXnfWmMgEJHcuGzpbY7yVBLAiWSoikmqcKL53Cedx6vJPI723nz52d4dOjy90gLQdI/vkCy1k3HYBGHAT3njyJLOmWx8rNMSkm3M4Vg+VoxNY4g8lgv7N2EON5HlXPxc/bApI/hrxwngIuQ4uG19izxjVVUnZ/m4VHfsgaNQ9G4b0yDMbhokIQUD0+dAigDfo765xK0lbLl0Wov+WmfuHRvK1PyeDkmJaIlyHcvdNER8HMkEmVsfIpsuOq6La08sq+NF94axO0U3LtnO8VSmZ7+CUzAR4b6+vWYpsmrrx7lRFcEt9vNxz60FbNUwixJFKeHSmeRsfQ0RiGL6g5hziwKJnNRpCrRUxEGsirC52a4s8iW9lEaW5ZXUZNS8vPXTtI3kWf3xgoOzMvJ2bVr46w3yTRNOofzqBXWvg6eHKGs+kFVCQU9bNnazsToJCEPVIgU6aJk9yar7d67GhmZ7MIwJft2bEQvlzk5mEdxhxjMwujoJO3rF+cgFfJ5/vaVM8RTBcrZBIRDKPkoDQ2XD0G7lE2bWvltj5NMJs+mLXuAhQvb8+WSD1+IoTvDDKThHr+DPU1lUnmdx/YvNJx27NiI1zPMyOAY27avI5ruZzwPGGVCgdXNRX/48mm6RjJogWomouB/v5+PPXX3FZ3b9eSOMmQClZXEJsbQHA6EolDVeOXSgwDJyBS+UHDWMs8lkyt+JjYxTnWTVegpNj521ce+FUlMTSKlxOl2r9rDVS4WUB3Oa87VyWcyFLIZvIHgZWvLrAZD9XK99aa0QPU1hw6utZFgZOOowVorfGoF6WAhVMxiDpBz+WVCgDTRU9OovhDSNNHT0evipbkox4yp3xA5ZsXhRrnBXi+bOxuHqtHxVoSx9T6U8UmoC+M5e5LSZuu+NyIJAiw/6RdC8Mion7HhKd58uh1vRZjo2CiiqLPlfIRzH9uGoyJE/vRZ/LESoaEUbSIMwKlQmslP70YIQe4npzgwMeeR2Z3ws/Gvh3GrTjTFetZOeko41lsJ76n1FTBUXPH8OjJ+q+jKzPTjUFMJz/5tvDUdofGVXu5KB7jQDI5smZ1J/4Jn5YmKDFOf3A1SkvvBKXalFhszTlXj0WMlJo4eoUEEUGcS5wccGSL1ThrGyzTrPlpVyxAcLsUoP76XgBCkaytIfK2LCpdl/BT1EpqioiqL3UJFo8y4TNMgArjm5c7tnHRx+kenkJpCx5iVz5Mxi4z4S9RmNSrF6pShRKnIs0aRdr+XV+NJTgarOAlQa13v6+kf3t6xjo5t7Quu/T//u08yMDBOXd16guEQ7x0+x8EBFeFqIJmM8MqbnUwXNIQUbAokaahrZarHnIkc8GBmYij+SjY3eUmnpxnxV0Iuhlku4HWA37+8mM7gwBgvvHaB8XgR1Rti6v0J7rl7w5IFzBVFoTGsMlbIIBQF8mmU6nqMYo6pySiGKfn+25OYqDy5o4Y9O9tJxRNIKalvqOH3vrBwUWtjrYOeFNS4ctTVb1myf8dO9nMuoqGni6jBZsqT/aBqvPZ2Jx97+p4rUk5tbK5fVbvWGhfdcQgoOVpa13PXruXnBZPTaV7vExzs7+O5/ZW01RtUhsKr9uRl8iZIc1aS2utS+fGLRxiKFNi7tYr7DnSsaj/XizvKkAHWpMq7YehoThexiTHKxRK+4Mor+IpqTdiFENcvkf8mkIpF8QaDON0eYqsM1YuOjeLyeCjmo/hC4atWjSvm85QKeSrq6omOjeJwua5aavlGcj1DB1fCLBcwC1lLFeyiZ0VzIkt5hMtrCRtcBtVfMZcj4/RY4XFSogWrZ71EQgWzkL7sflaDlHJOIGDGoBCqiuqrQJoGeiZ2S4kd2NisFVvyfracBaiEGECQ2Ls5Ri6cpjYhCWsrPzPLikRzu8ilUkjDZP/BON6ck3G3lQgdqKrm0b+N4dL8s7Piot85+3wq+RcbS37HwsWilpyb3vcvUGqrouHMNFcqdmFKk2JjEM9Mf4bahinqKuWHLUnlc399ku3ZuX3mqjyzi1/ZSveyeTlu1Uk7c8+GWDnD2edacVZXMD48QdWLMTyadX7Vig/j/BBaRxvq+dFZeehzgSxdDzegJnPcezBFzbyQMMM0eG23QN2/j873u/nQMR3njMHkUDTapkv0NwmG/EU25xy8eY8Dx54O+gYnePClaYLqysZMbSHL/R2W1+EBKTl7+UfzmnPpOOVwudg0L9FfN+baSEA3TYpqAKGC4jaoCLhoc41R1VHN+qYgwYCXsm7Qvn4nf/SVtyx10EAtO8Ip7t2/hWBFeHbfxUKBC10j1NaEqG+o4Y33h5k2wzhClthNRdg5qyZ2kXKpxHtHu0HCr3/uIQb6hglXBPjhqwYRXUPzBlFcboYnM5iK9d0PjGc41XOcibyL7TVDfPq5Axw7doF8yWDf3Rtwud189hP7+elPDxMtKPT0jbPjrsVelshkDD2VBaHgKkyhe/w4gjUcH5dsvjDAto4r88yshs88u5fBgTFqazesWAy0fzwLigMdmIiXeOKRS7OG4NjxLpLZEvt2tuMPLhSseOr+Nn5+8AJjU8MYqpuhQYXBUhVC+Hn92CT37t92U+c1d5whsxaEa+uJjY2iqCreQGBVMslun382yd47r9jV7YRpmkRHR2Zr4FTU1WPqOsrFYotL/JCT0xEMvYw05azRoijKTL0cqxbNag0ZvVQiHY8RqKxCczjIp1MEZwQHvMEQhVwWb+B6hoXd/pi5JFqoDiOXnBUKUD3B2XC1xTkii1lOhlqoDstjggShWFLE/krEVaqhGJkoarAaIRQrvMvlQxpl6zxK+TUJq7OxuV2oFB4q46tv30aI6FtjJOt9tPRmWV8KgAOaX7hAtNnPtv6sZcTMY8uo5NjbFzA0ha09JVaaInhVFx85ISkdjeDSljZietwZBjf78Y+l2R9Z6GFRhEL1kVGmFND1Mm0RKNXOLfqlNJ1Ob5rmjBO/4mJjX5HjoV6EhE0DOrC0Stfhmgzx9SHqLiTZnfCjYyA81vNCuJ0Y82o9eTQXGw9NccYo4RQQU4rU4GVsgw9ffQ3Uw3DXGWqm5vY/XUoj77ZyC8SeDUTeO0qTas0DDNPg4B4N7z3biBQKKN84TbG5HQegtdYRl8MEV1CdA4hpLoYjEVpqauhKpeEWW7SRRomwPonDobB7bw01dVX8zZuj6FLBTYkfHQWhVBAwDLbvXOjJ8Olxkuk8TsXkoWf2Utuw0Lv+gxdP0BV34ZQRfvOjEPJpkAQMnd1tLh57eMeiifOb717gYI+VLlAo9fHEozuRUhJwXGA8NoVXM9i0bj+6btI50ElJN6n3uzk/mEP1Oukcy3PkyHlePFVACEEseY6PP72H8dEpjk66EIrK+MFhtnesWxBJMjwwwokpJ1rQh7MwzT/8jUf4xg+OMF4CTZYIBa9OnXQlHE4nGze3r6rt7k1VDB0cwu1U6Ni4WCb79Olenn9/Riwgep7PPbdQaGHDhmby+SLffy+FAkwXknjUAgU8VAe1m2rEgG3IXBWKolDd3LJyw3l4A8HbfpKdnJqkurkFIQTxiXEAwrVWLLeiqmiOxYOKqeuzXrCLRoteLmOaJtlEYkn1tqXQy2USkSmqm5qJDA9R1dhEqKaWyPAQDpcLo1y+4u/kTkOaBkK1viPFE7RkoGfyPtYiXE31hizXs1HGyKVQA1XoiXEcFVfrBRUg5exqsRACxWWJJAjNuaR8tZFNIE3dqgdjGzo2dzh74gGIAwQwTIPTlXkMp8b+0yW86uL7JyQ8PNZ58a+lQ3WllBSNEu4Zj4YQApe2vOzv2f0VeDe1kjBN+r92nPUyvGD7Y7EqYi9ESYkSbSLM9HSe8/oFzHSO6bvryGxo4ey7p9jWV6Q15+LpY5fv32g5Tuwju1AdDoaaEmz8zjC1zhBtP+km2uKjdSCL/5LioeNbQvh3WPVT+qbPUTMMlUMZJu8qIVNZaqML3SG1rhDOtzrJ7mnBc2KEBtfcOb26qUS+sQIvoDid4FRofmeUyY4CWvcEnfdUcM4p2HE8Q7O+/PhX9vr474kMgYkI8WD4hkmNSCmtcdXpRC+XqWlZnBMy2D/CL86XQasjJFPc/5CVL/H7NUEKuRzvH+uZbZspLAzYfve9c4wV/TjC1Uigdyi+yJCZTJQBFyXhJhJJ8czjO2g81U/Q52LLtvZF/SkV8uQLZS4OFsWSdczuCwP05sJoQQWfkqa2zsrT+Qe/WYuh63ztu++g+qvQk5N0rAuSL8+Ffedm+u31unFSpoyK16UsmrSr86JAvF4nHp+PX3luL2cujFJfXUtj8+IQ6NHhCUYmEmzb1LiiN2U1ZNMZ8tkc1fW1lEslhgbGqKuvnvWsbL9rPdu2tSGUxf0HKBTKs2IBhXl1e0qFPKrmQNU01q+rp/HkGOMJg3u2V7B9axNj43E2b7z5ame2IWOzapweD4VsBo8/gGHM/dgvl+9j6DpSSkqFAsqMK7i6uYXE1CQef2DV3ph0LDp7nHBdHZlkgmBlFbWtV6bWcicjFBVpltHTUaRRvi5yyEII9Hx6Vq5acXiQ0rwqr4wWqJrJiWHW4FJcXhSX16r8fEmukZFLIhxuVKcbPTmFcsvKPdvY3HhOV+aJ/NJMkcmfn+P+wYXbDdPgWF2BgkfFGc1QW3SxTr+kaLOh80pHidK2RvyHB2lNqIxt8FExnLVklpfAkbO8qEYmh0cuPeWoVH1UYo0FNXip6YIBXafrI81MDvSjtlRwolnSP5nnoycvf54BXBiTCdTmGpTJBO4ZI2t72g/nABb30zuVI2+amKUygVgJcLEn5mfsa2dwo1J5iedKCMHj/V5yXaN4NPfsc0g3dTJbanC4rBpr4fcG2ViuRkQFvFXiSKOXxN6NKEBvppvm85c/F8PjI+Hx3VC9xGRkiurmFhRFoZjLkYpGcHkXKq0qioKQEgmo6lzvPF4P3/3ZGUayfjzFcerrKnn8wMLk84lYASGt+YMsF6ipXKwM+tDuOt46MUldhYMtm5txOJ3s27s4P2V0ZJJv/u1pMvkyLllgQ1stHrebh/ZbRqnT6UAxDaSq4HIuDDtPRGMMZzwI1SoN8Mj+eoIVYaKJTgolg8futfpdVVvF5x5rYWgiybaNHYsMgcaWBj5xIMvIZI5dW60+plMZWuuDNDTXLxqnopEoX3+pj5LwcPLCSb78hYdW/E4ux8R4hG/8tJucofHYtimGJ1L0JD2E1DF++5M7ZuWtLw27TyZSvH9yiJBPozrkZFddkpyu8MjedQCcONnDT94dw+2Azz+9lcamWn7nVx/C0OeKhNbV3xrFn8XF5J0bTfuOXfIPfvDTG3rMYi5HuVhYVSjY5UhMTSJncgkq6lenD36tJCNTGIZOuKbupuaBpGMx9FIRTyC4KiPENE2SU5OoTifBayiaaRoG06PDBCqrSUUj1La233R3ps3SFAsFvvGDIwynHOxqEnzqY6urOrxaOjsH+fEb/bg0wWc+vI2mZstgOXGiix8ftRSDqhxZfv/XHgTg//jK8TU9/lphFnNWiNy8fKWbweC/e/aolHLvyi3vPFwNm2TDr/+nG3pMqZdQjALSdW0rtRWOPHdvDDM8kaY77qSjzuQzz1p1MF598wxvdpWodedQhGA856LVm+G3fuURK6xmfBRvuJI//95xYqW5CaynPM0/+70nAUhFo6RSaZrXtVMqFPmjrx/G7VQJehRGUgooViK2UxbYWO9kIlYkVl4+pEqaBpuqDDRNoXNCIhWNz+1RqK6rprqpGdM06T9/jm+8U5hdPV4Oj8jTENIYSRiUWFmsQ0pJlSOHYULSXPle3FRRoqU+wIneFLHSQs/vvmaDR+/fwumzQ/zsdHb2OgA0evL8+qfuweFy8r3nD3NuerEnS0qT9eEyXreDc2M6Ul25yOVaIvUCX3y8mQ0bWzh5+CQVNVX4/R5+8Go3o0mF/euceNwO3j4+RMF0WN5xpwcUBSMTmy1ZYJby1uKSomGW86ieEKo3iJFPz9RAyyKcHpyr9NgbmbhVoBo5e4z5ojIXhWouLZnwha0hRhI5Omp9bGhfPxsWZpomX3nlbc6kFLYFTH7nyfsXeFeuhOlohKA/gNPl5v3Obr51JoKez+DVJJqq8YUDm9jaZnm2LvT38ycnphFC4EiN8Q8/vJ/Guno+efIHV3Xsr4wW+dcly3DbXRqlp+wg47PGxG/4z/NQzdK/59/qlryqtc3km8bZ7Db4m9Y01R7r9/brPYI3VCvK5fF8J/+kSWFb6OYJ34jf+7vLjlN3jEcmk4gjTYnLayWlVzZcnWpYuWh5FoKVVZSLBVKxKIGKyllXbLlUpKalbU0n2fHJCQIVlagOB9GxUaqbmq9qP9lkglI+b+WYOK/u4bjamjkXURRlTYw9RVWpaWkjn0nbRswtjsvt5rc+ez+ZZJJAxdISsdfC8QsRClqIAnC2Z2rWkNne0U7v8AmmUzoP3W3dI5lUxhrgJKiBKoQQluBBLgmKCpI1K3Z6JUjTwCzm0ILVVr5SqTBTk8fmTsZhFvjlDzXS3t7I8y8d5/TkYlWmyxFQ8jRWORmIlPnI/no2bV2Poev88dff5dyYk3ffOkZzfQBRzrEuqPPFX7oPoSicO36SptYdCxQ13R4PIbcgNlcXkFIZYhNjVNY3konHKZnWxC+Xy+PTyvz2L+3BF/Dxi9dPcrDXWuwrCTfnJoEV8kK21ph87hMHyGfSVLx9mkODkrQRpGpmsTWTiJPOlGgL6QylLz/hzEsPfQmAedfPKOETRTLSYyWaz0MIQewyYV7zCYg0n/34/aiaRn1lH996e061dEtliY6N9bxzqJO3+kFRF35/Y3kPf/LX7+NQJFNF71JppawLlfjiL92LEIKXXj3Jof4bm+UvNDffeW2EqsPD1IUcfHK/9Sy9a/00/tEUH3lyt9VOSF6/YHn4TVNHGgZoDsqJCVRfhSXFrzpACFRvGFkuYBQyqJ7AFReCljOFQbVA1QK5fwCzXISZ57rqXrhfs5ChN6rQMzTMq8PVbO0c48sffgBVVVEUhS899SDJZIxgsOKqFVRffO8ELw/nqFDL/L1Hd9I7nUZqTiQmRU81ReD9wcisIbO5vZ0HR6c5OzxJylvBvz84wMfWTTE6WsSrmPxGowtFUSiUdf5On+CE7uW3Awl+v9W6f346nuXfT7nwofNv2uCRIPzF8CRTaoD71QQTGQdpU2GfkmBf8/Lh1emZexehIJD0O+s4nYry2Iwh84g7x1v5ElIv8rJs4MgE/K0ySds8yeavjRR4v+Tml4N5Hq5enRrf9eCOMWTKhcLshHql1ZzLIRTVumEBvayjqiq5VJJQTS0ujwcpJRN9PbNSwE6355o9QEg5a3hcumJQyGbJpRIA+EIVy0oQZ5MJhBBU1DcQGR5aMu71VkcIcdvnGd0pKKpK8AqN3tWyrt5H11QaFUlbw9wxHE4nv/Sx/QvavvDaOUvy2jQwMlG0QDVmITsr3byS3PT1QpaLc+Fybj9GLmkbMjbU+mHjJitctmNdJf0TY+RMJ6a6cr6Xouf54ic2U1NXTVdnL4WZwnilYhEDAaqT5uZqWta10LIJXnv18Kx3v7GxjnB1Fb2dPZy8cJSw30V//zjPPLiO7oEIL5/Og+pA91Tx1pF+NjRM0DlSoD8GG3sTDEfyBAJefAEfyekIbbUuLozEiRRnftNmmQPrXXhcGu9cSC3pJXG5VArZLOVSiac+fD+VR87x8okEm0ZiOI/08OD929h9YA/rNyf4D985i3Begdy+XuSXH6plW8d63jp4itfO5ziwwYOqCN7ryaGvoobNRUwUSsUiHk2bzcUAy6vz8D3NNLY20b6hjVNfeZM0AYRZYlezg5JucnZckpjJ7bloxDgpsKnexUSsQLTkweVUZxfqPC4NKF3ahWWRUhJWs5RNQQ7fgvetY4rZvztqyjTXhzjaFSdWWvh96IqbyTwUSnmikSg+n4euwQSmORfSW5xXeFH1WQtWenoaLVSLWcighRswUhEkEs0TAE/Aet4ukdu4IkLMeGOsRSBmQpW1QBVGNoGRT6H5KxflTZqlPO9G/EhXPWY2wQWtkvHJcZobm2evRzi8cqSIlJKfHD7BVLbEo1tbWd84tzh7cjKF0LwkcNI9PsW+dfWcn+wkZxTQ9QJSqGyomhunhBB8+sF9ON47yevjVtjlG91jPO/ahNQl5lgXX2r28E68yGvObeCEr6bh9ylyMpLkd+NtKMEgRiHL/z40xo93unhtY4Z0Oc4fRzxMVK4HKdkgMrgdyxtn/6oux3+dHmQolaPTWc89+QH2Nc3dB7/V7OHBRA+f7vOQqlhHUkoG8qO0zdiKx6JZ/o/CRqTq4MjkOIeqSjdtgfmOMWQcbjepWBSXxzt7Q1wNmsOBomrEJydQVJVQdQ2mYRCbGMfV1EwyMoXD7Zn1+MQnr6IK1iW4fH7G+3rRHA7cvoU3ai6dnD1WbGJsWUOmVChQUWfpkyuqSmx8FABv8Orlj21s1oJUIsWPXjlLpmDy4fvb2LDh8h7Hew9so6VhFKfLRU3d5b0pxZJ1r4sZ7wtYctNmIYNw+WZX+m40isuLnpzCLOWQho4jvLraATYfbKYyVoJye3sD+Uyaf/ylh+ntGeJbr46taMw4KBOusBZ6KkJ+vvJ8J/2TOcan82Sl9YwfGI3Tsq6F4aFx4vEssfFR9LJOWTcIGQYnumOcmXIAZb70RD3VDda/IxfeIm44EEJwYsrLiSm46GE5NWa9juWLvPHKQe6+ZxsbO7ZS05DkP/31aXD46KhXefpxKz/HNE/zZvfi++70iI7n9WN8+BkrJLStqZL7Czoup4M3T0xw38x0JZnMWCv983BRZEerh0g8x2B6sZHkVYps67ByHjo21TMd7+fDH7L6Y5inONRvGSROPY2Ohqktv7qclT6+/uNTNFS56RwpwIxRJoRgcDROY2sTw0Pj5AwHqLBvnYuPPLHbOvfnj9AZWbi/Z/ZWsWvXZrLpLP/1r09wYdLBi68cx+N2cKgrPbv/1dBRq/PpZx8gn83zlz86SbTkYVMgzSP7W8nny4xOJimaGhf643z6Y4+iKApVwV6+887SOtZhv4owygxcGCaZSBGlkm98/zAel8a5cR1Up1VfxCgj9bIlvy8U1Bn1SzVYTSkyhOkJglnGLBctdUynB8XlQ+pljEIa1Re+bB6lUFSMfMp6XpZLOOvWzW5TfWFUX3jFayOlZJ2zQF3NledOHu/q5pWhPGYuwZnRKF88kOPuzZak8s66ID8fyVOh6mxq2EB1RQV/8CnL0BmfmsKQJi1LRKXsaqnl/eHzlAxwmyWiKWtRbdRj/RY3+1Rq4zGmnJXs1jKAg+/HlFkjDiQhVQdcuJ0O3E4HbbE8smwCgja1xOV+OzvCbv40DOCjUI7h0jSEWHhfbQ77+Wd1eb6WGmOPI8tD1XPzS7eqoEoDHQduYd768stCiKeB/wyowF9IKf/vS7a3An8FhGfa/HMp5Ytr29Vrwx+uoFTIUyoUrrmWzKXhVYqqEqyqIj45gTcYIpuMo5dKC1YRwEp8j41bBTmlNFcd3pZLJqhft55SoUAhm1m4cX6O0zL5TlJK9HKJgTOnCFZVk0sladlqFTCKTYzZhozNVXPkSCdTySL77mqi9ioT/46fHaY/ZT1w3z4+sqIhA9DUurp756kHNvDfvnsCpInqs+5b1RPAKGQwM9HrIniwWhRPEOFwXrU8tc1CPgjjVFlx8z9en0KUB/idj1tx7xs2tuJ/a5CUeXlDpqgF+f5PjrO5rYITPTGKWpDjw5L5k5lfnCtwovcgqZJKhceFOxDG7fXw3e8fZOCVYUzVSa27TGNQUsg4gWZ6e4ZJlR1wyc/UR5qyqVKaKY65uQb2HdiBOa8WlcBaP8gXy7Mr+fnS0osHUnHSNV3G+fLbtLU3Mjoa4dEPWfl1+aLBN1/sorVmkP6pIuKSOixP7Aqzd+9WDF3nT751iGh54ZiWlV7eeuskHZsbeOfoICVzbtJVKOmAYHNliU9/9F4S8RTfeLGLtLm0MSOlSXOVk9amAPlUiljRZLLgQQjBy6ezHO95m3hRwVCt666qcxdOWWKy53Nbk0ePz4NTMcmbElNCuWxgSnFFlS/bGkIoioIv4KOh0kVuPMtTD6yfDUevqpygoq6euncOUSoUcHu9s+pcS7G1LYzD6aR143p+r2Mb3/3JCXriM2HpM7k7WrAGIxtHqI5F6pdCKLhq2zGyCUy9hOarsBZxUlOgaJiF9Kxq2OUWc6Sho/kqUH1hTNPAyMRXVXBZOD3sqxQUsxlMn4eHt7XhWEJddSU8DidmNo4WrkMCL3WOzhoyHz2wm/3rp/AH/HjcF71t1pfWWLd80eb2xgb+8JO1mKbBX752mMmc9XsxpKWx3uxz88PmaS5kJri/2dq2O6ghpwqUSwW2FEb5DzsX/s5/u9lN/WQXhpR8vH71Hkv3EoVFL/LJapXPN5RQlYXPn46whz8uDnI07+ATjWVWCh29nqxoyAghVOC/Ak8CI8ARIcTzUspz85r9b8B3pZR/IoToAF4E2q9Df68Jp9uD0319Lvb8fbs8HpIRS3R+vtGUmo7MhnRdlC9eDapm6XS7PB5yycSCbcHq2tn6NKGapW8aK+65marGZhKT43iD1sNGSrms8XMrks9kKGTSCEUhXHv9q7rbXJ4LnQP85ETG0tePdPGlz1+dIVNb4UUYWUxFoypwZTkBK9HQWLMo+RNAdfuvLsThCrkY0gbKrOIagJ6cRHH5MFIpFG8QxWGHlV0LH6RxSmgO0EIcOjnKA6qge2CaZNmFWEVE9IWYkwuxLGBNOi5VDBSqg5huGSWRIvy37x7HoUjiuh9VFPmNp9ppabXCjysbGhnt7eGbPxsCz8Jct82VRT7z7H3ksnm+/rdniJY8NNb68QZDJKcjnDx6hncvZJAOa6LVl3Dw9e+9Z63kT8zJwM+nwZPnNz61D4fLyY9ePEqmMBfGlEgVSJsezi6Ta6Np1sURioK6hLEgVI1Xu0x+cX4QoWpI0+BbPzyMqgo6JySoDja3V+JwOqmpq6apamCR5+QilVqOZ556kPjEGNs/9SBCUfjOj96jK+YC1cl0HrbUq6QyecbyHg735DHMk5TKBufGTbgkPPzl9yeIpksMjSZImD7uajB59ilLzliIU7zdU6LJXyJfgrh++fnL0a44lcF+coUyXeMlHEJimiZ6qUS5XEZRFKSUtKxr4ScvH0Vx+ekcLYBY+vlzrj9BW7WThnWWB2RzWwU98eyidhdDyy7iokhbtcrkdJZNrRXEkh66RgzERUl8YXlYHMGamT8di9S9FqComOUCMjkJioYsFy0PkHb58UJ1+3loUyP/8e0iUnMycqSHf9XScsXeg23r2/nIxAQ/H80jHR5qvQuPW3OFXp7+0TFOj0TY2lDF5tZmmkJ+zmXLgCRkFrh4/zb53LyeLPCbA04e92T5UrOHGsc0WV3y4brwovMQQvBsvZfDsTwf69KoFDr/b3OJOu/lF0GklPzZcIE+3cVvVpfYGrR+D385UuBfp+qQpRx71BR/vkml0j137z5T5+EZ4GYHd63m6PuBHillH4AQ4jvAc8wIGc4ggYvJCyFgbC07eTsSWuKH7fL5yCYT+EJhDH31IS2KZkk5mqaJLxResE1zOFb0MCmKMpvIJoRCqKbGMn6Aimv0Tt1I8jNhdOVigVR0mmDVrSH9d6dimsZsoLd5DQbxto51fMGpEZmK0rFEjYDbGSMTQwtazwI9FZk1ZFA0FLcfxe23Qi1sQ+Za+cCNU6enHJz66ThCKAh16QmbmwL3bw2SyZc53FcC1UGzr0BbQ4BSNsneXeu40D/NL84VltxHVvpg5jb2KCWaW6xVcdVhhZHFsxLpCi5yCqxrrkBzOAiGHTRWuolOwPHeDDXhXsq6wUsn0hTmeYKEUBhIzdSdWUYZqjrkxum22mxr9fODQ3G+8p130TSFgYTG5RyXPz8+TSxVZCqaZbLomc0/8Yk8fqdkIm8VNLyY5C8Ule7YTD9m/neqO0ZbwxTxRIaBSInlVphzuko8GkcIZTbHqKbCR1fMGtMf2urjsYfvwtB1/vw77zFZ9HJ4wAr3uTQkDiBScPOzkznAiRCgG3MeLd0w2duq8OyH76dYKPDV7x9jqrC8MRMpuPjWwYT1h3BTAl46PEpzeIzzA0m2t4fYvrVEWTjpjarkZ9otx3DayTde6uPTj0M45OdUT4yLk2wAzDL3tGp43A4O92Qo4UaaBr/0UC2btq4nHpnG7XHh8vr4s2+/y+hk1BJZEQLNE0JPTqL6KpD65fMrhBCWgEAuhWNWpSy6Kq+MacrZcepaVHqfuf9eOsbGGRyfYFvr1desKxbyfOVQN1nVxzsjAzwzHeXMZIKKiT6mPHX8hbedx+Jj7Knw8N3BBP8ytw7cAd7Ll3gs2c1D1SsLJfxJzMsZpxW18J1oD/9gBefMS5M5/q2+BSEUuseH+UHQuk4/zPkxPSHwhHgv7eCFWIxfuwWnjKsxZJqA4Xl/jwCX6qn+IfCyEOLvAz7giaV2JIT4MvBluHztkQ8q3kCQXCpJfHKCUE3Nqj8Xql5926VwejyzOTFunx9V0645vO6mMPMw0pwu9HLsJnfGZuu29TweP0skWeLAzk2XbZtKpHnzcC9uh+CRB7bhuEQ1L1so8cqZPL84c5ZffqyVjZs+OMVNl1pplIYVamPmEihLJC2bxSxmKQ9SogaqbZW+lbku45QavLZn77WyUtjh/R1BHrpvOwDxH7zD0HiSX/38AzjdbuKTE1Q1NFLb1MiRrjdJy8uvXmfw8/LPj7OpvZL3z4ySKAyAofPJ/Q2MTaV5b8CYFco50RWnoXKQbF6ne6IIuEnpLr733sVci1UY5oU00jGnIHZ+rMiZE+dorA/T3FzLfVt13uyykqFXir7Mmm7e6i5z0RgACJDk84+14vK4OXxiiPdGL+/SGko7+f9+PACqihDLGwtF4eGrf3uBOq/OtvVxFFXleF9m9px9boWpoQEcThebalUmh5fd1ZJ0RhS+8+PDOB0qp0cNnt5tRVC43G6qfDBVuLL99SXcMwputbzWL3mvt5cSTgx1ddEpeUclX389CqVh6kIqmiygzxg/W2oEz354DwCqcoY3usrUOrPU1VgeHH8oSC6ZwO3zoyhiNpTXyMYx8imkKTHyabRV5AgqDhfGTP0ZI5uwJJ9XQVtTIx9pGefd/ggNIS/5Qh6vZ+mZfS6f46UTF0DCh3dvwXtJznGxXOZnAxn+tr+bz92VYu/W5ce9fD7PZCRCc0MD2rzQLd0wKBiACiUUXu2bJqmFoGEnSnqavDPAqZzCFm+J/z3VgIGOCviMHEHH6jwf65QCr0qJYpbZ6NWBy4fTKYLZ4tPzb7XHXBlOlnXMUh5Nz3M4JYnqRf5uo4ZLU5nIFfnTKYVKYfD3WpyoV6n8dq2slT/o88DXpJR/JIS4D/iGEOIueUlWvZTyz4A/A6uOzBod+7bCGwzNhnbdKHyh8CJPzvUgn0lTyGYJ19Zdl4mX5nASnxhHL5epukoJ6vnEJsasxERNs707V4EQgoceuGtVbV852MWZSQWQuF3dPHj/9gXbOwcSGKobA+gajH1gDBnVX4mRjgDKAkUdLVSHkYmhuHxLqpVZ0sw1SGnOqq3ZXDNXPE65Gjbd0uNUIW95AaSU3LetgkfvbkBKiaIopOJJqhoa6ekeIqM7Zz0PyyGEwqEhODQUhxllrc/dH2TLtg3sAga/+TaTRev9yYKLv3wtOvOcv3Jv4o46nWef2Edf/zjfOxjBUJzoipsTvWnu2m3lb5ZKQ1e83wXHaHbTsM5K8N/cnuG9USskShhFfEqJtPQuUjCt9hl86O4q0tkir5xMYczkBWhmgZDLIFpwguoga7rpy0DfqeLMJ+euwXsnR9i370mEENyjOXmzrxvFsXpVNKGoXJie6Zei0N09SmNI4PZ6eGxfKw0XRninXy7weF2k1l2gNuzkwniJ8hKeFiEEefXyyp8OPQtCUlbnhd4KhWf3V7N3XweDA6N8/eUhTNVNqWzMLtSUywaUcvzqp3ahF3NMj47wxqEewtXVRBMDjGVds0amNI15tWCmVz1f0II1lgfb5Vu1IQMQLULcVU28AK+e7uHZ/TuXbPfyyQu8OTmTM3TiAp+8/+4F28+NxynMGICnxxPs3br08fL5PP/l50cYN7xsdQ/yu0/PFb30+fx8dmcTJ0ejdNRVcXpsmmQOHMUMgXKaDYUcT9eBpgh8qiAnHCiJMf5D3TQ13vCqzvdftjvYOdlJpUPwcPXKuTJP1nr5w3IPvWUnv95Q5uLv+R+1uXli+hynMyavCy8vuLaAAc7xLv5ei8q/GXPwgtoOEoJjnfxG8xUoCa4hqzFkRoH5s4rmmffm89vA0wBSyneFEG6gGphai07a3PpkkwmklIRqapkeGb4u8s5raWykotMEKqtwOF2zYXtXqyN/oynmcgDLKtTd+iwetLa2h7kwNoWqSDa3fTCMGLAmJRdDyxa8L8SqwiKAWbU1m8tyR45T7/QUiGfep9pd5rEnrdoj7771PrF0ma7hNPLdCBnTiZyneLYuVGJdU5DTfQkihbnJbluoxN6t1fQMxjgxbkkARxPW8n8mlSFTWhyPf7Xs2lyD0+1h67b11BybYGLGy9ATU/nWD9/D7dQ4M6rPJpRfDaPxOYGB0ckMIFDNIl94opn29c384rXjHOxb+JkD2yrZtKmZdHQas1Tk5+eLKEh+7cNW7tDb75zm5+cvHxYeM4P0946wfmMLvYNTCO0aClqWcjz+oXZcbtesOFApm6GkFGfr9FzEL7L85if34PZ6OXq0kxdO5K/4cHWeIl94djeKKvj2C6cZycz8bqRJe7MlltLa1ohb9JLDTV/Swbd+eBiPW+PMaBkJ6LpBVX0jEyNjnB7VEYky4FhYM8e0jAWztHTI40WklBjpKACqv8J6nl7Foo6mXJSdAE29TAjb/LFpiWYdDZUcHh1Al4IdjXNeJCkl2Wwany+AEILxqQjjhjU+X0iUKZdLC0QG9m3dyL6tGwHYvaGZnx0+xeTgGNtCGv+2tYzPaV33/14f5eWMkweqSzxaE171+aqKwicaVi/iJITgN5svGoYLjfsd1WF2VMOJvjlRCEPOhOrNa2deiSrFGrMaQ+YIsEkIsQ5rYPgc8CuXtBkCHge+JoTYhmXOLZMqZ/NBpJTPE6qtIzE5TiGbwdB1VO3WVfcWQsGciUWWXCbJ8BYjFZ22DC4hKOSyC8IOM4k45WIRpFyTIqRryVMPbcZzpBe3Q+XA3o2Ltu+4awNtzVWoiooveGXF0tYKKU2M1DSIhYn5NwPF6Zkp5GmiBm5ueNNtwh05TknFgcdh0NRSw0h3D5UNjUzFCzz5obu5v1Tmmz85jyy52FxZorU+yLnucT737AM43S7a6of46i8iCKEgpclT+60aKB0d6+j56kGyBPj5mTS9Y4eJpnWycu2Ecs70RGhf30x//xjTeWV20rgwd+XaKtoPZHz81d8cwut2cH7CANVJyFmmfb3lzd+2roqD3RML8lbGp1Ksn56mqrGJ+xqaSBZPcmEoRUur9TxtawjD+RVqT2kuvv36KOF3B4nmHUsKG6wWKQSaw0k+kyExNYleLiGRNIY1qlwposU5Q9SlSlwe6zvyeR3AlRsyG2sF5XwGt8/HukY/I7OhfSq/ODzI/u1FLvRPkxU+BNY4OqtiprgQTvjWz7rYVCvY2dHC//xr+/jey+cZTs8Z0i5RZN+OOiKTUXqyKtplpJON9PRMIWMFPTl1VSqTY5Epqr0qD1bp+DwePrRzy7Jtn9q1GehCSslTuxe329LWwr+sDGMYOqGwJXBgmiZffeUdziRMtocFv/3kAzQ31rPh7AA9aZO9tZ7LKqV5PT6GsgaDwc10AXunu/hio/Wb3FfpYV8lXJqv9Y2RHBfKLr5QVZ5NzF8tmUIRn8t5xXOef9Jg4Jrsw4PJl+qtRd9/0VAmPNVHpdD5Yv213a/XwoozTSmlLoT4feAlLFPtq1LKs0KI/xN4X0r5PPCPgT8XQvwjLCPtN+S1ZFXZ3HZ4AkGGO8/Tuq2DyoYmomOjt3QeVKCyksTUJLlUEqfLfdsYMka5THDGSLm0RlGpkKeyvpFyqUhyOnLNuVVrSSAU4JmZWgrLEQyHr8uxjUzcqi69Qq0BIx1FDdYghFiYmH8TuCgEYLM6PmjjlJSSe5oM7tpcx8nOCU5OLL1qHSDDs08/hBCCscER/ugbR3lsdzVevw8v0F7vRR9O8dmP34+iqtRXOikWSzjdLorFMhctCCEUIrEMja0QjcQomhqoIBUXvdH/P3v/HR7XfZ95w5/TZs70AmDQQYBg70WF6pJlRcWO3GM7Ts+m7GazffNueXff5Nlny/tstqRnndixEzuWi2xZsmXJVi/svYEECYLo03s5M3PK88dBJQASIEEVi/d16boozMyZ0+b8vu2+b53dXSp+r4MD5/NUrmOUDECxNB7cEkAQ4LVTGie/+CaG5EaQlzZ2JRg17l6n4nE5ePtslpJ59f0QBMH2lCkwrRSWrjo5dvAEPd0tOGSBu9c42Ts409k4OiogW0M8Mbl2WZZFpq7y2usn6OkMse/EOHPI7otAF5wka85rjvNdC4Li4uW957hzSxuxc/14/F7Wbd+BIAhYygDf3j/j/5Kse3j6B4dpj/g43J9huSN/HqHMXXt24PF6GB+8xNnLeWYH0OeSDs69ngbE6e6KbGo8vC2Ix6XwyrEEWV0lXVMp6SZtnfY53Lw6xMiJ8vR2Ht4W5PbbNmCaJv/n7/cRr3IVCNM8MaNehUISS68jB1uWtGab1RJ/+uZ5KqKLDqnMv7zvjqu+3+Vy87E9OxZ93TAMBiZiNAb8TBEEEokYp0sKglPiTMkgkYjR3NzK7zx+H1qljMt97c6IaNg8M0Gv0em9us/h6/ES/6G6FkSZk+OjPOufeb9lWZxMl4ioMq2e+df/Pwxo/F2tldtJ8ZVeHY9j7nPlxYk8f5V08JBb43d6g3Nei7gc/Kfuudvr8Dj5zz3wflAtY1Jr//kr/vYfZ/37LHDPyu7aLbyfoHo8eEMzcoCC+N5PDN6PEs6iJFEpFhEEYdEHuSCIN01WW6/XefaFY8Ryde7Z3sK2rb035XtWCnv3n0V0+8E0lqxyY+O9f//ewlz8NK1Tci3PRx69H1EUaWtr5PjfHEFwzk9sNVMmEUsRaWkkmipiOX2cvZxn89oUWrXGxbESdVNEq2i4vR4qNYu/ffY0nc1u+sfKCII6Od4j84NDaU4MHCSW09FnEcFXh01+9rHbAXAoffz49DLZ5pPYvsrF3Xts/kuxdIK9g+qyfmUbWiQ+/OCUieVZXj571Qh4YUgKfeM1tu9uRJQkfGNFYOZ4BFHi4KhM5QeHUWSR4yN1BMnB6xdNXr+YYilJzPWgxV3l0TtaKZSq/OBgitosfsvWjd30bFpDq6bxN0+9RdfaMi6Ph0Jp7vELgsCZuMyZeIXr4S05JRO3xy7elKqQql27A7ehzcGeOzcCUKzUp++N4USNeCyJ3+fm/OUMc87bVIwgCFwrTBBVD3o+jqUbyKoPyRu0O+elDLI3vOjnLMtCz8UAyGsiSsBFvDzD57lePPXmYQ5nJRxGjN++y6CnrZXGhiZ6nBe4XHfT46zS2GAXEEeicfZfGqMr6GHP5sW7QH2DQ1wqShj1JEYly0WXQCCr8bWMk42Kxj/omHsdDMCaHIK7cpzr/7lc5c/N9YT0Il9ribElMHMfWJbF05UgltvDQcvN0ew57ovMJDLVep3fTjRj+Zo4qBXZOHaRD7Uvfo7fS3jvzv7cwvsOHn9wRh3Nu3LjQXqtRiGTxhdumKP+8X5HPp3CqNeRFAV/eGkBdqApQjmfw7SseYmY4lDJRCeWZba6XJw/P8ypuAIovHJo/D2fyIwlyzahV5S4Ftlkmpg/OVp2C7fwbkGXVAYujrJ2XRcXL46DsnBQqUsuvvJ8P03eAcZygOggWnHyR9/pRxBFBNkFAnz1+ydpDaucH9fQUEmOmIDKKn+Nj39oPZlskW+/Pspg1v5tz0a1bkxzCLWqgV/S+Mge+9nzw/0x8sbSguZsXpuWv+1tUTg3liNdW3rAnS/VpvfjyiB+ObgQN3nljdP4PHZn58qgX5AUTscm/0dc+riMZRo4jCJ10b2gzPJiEI0qd28M0t27CoC+oSP0zWJtyfKkWqckoVkqX/7uSRoDChdiOswyKezwVtnSG6L/coZLueUnXKm6h+/94BAdrQEOnUszrcImVljf7mEkXiYxOcrmsCqsbXFSKeapaVUUp4NosshUSJk3VP7ie/1I6BjK3Fjg1eNpcoXTJDJFJiourpZXiA4XosM16cdlK5UaxTSS6+qCSUYxjRyI2GOTpTSNFLl3Y+sNT16MFW1Z7prkZDydo6etFUmW+YeP3MlELEZLc/P0SP3XD/QRx8v+WJpIYITVHZ3U6zVOXhqi0edlVZs9WZEslhFcXmSXFwQ4XivxrahCv7MNq2qwLtHP/U0zXZ28IbA6P0BAkfhPHQaz79+3ah4Eh0TWEeBwMc6WWadJEAS26nHeKgjIWKSueKRUdQNDdtqqZZKDeG1xo9T3Gm4lMisMy7LQSkVESaKUtUdaXF4/Lu9P/5iI6vGgepZOMFsK9HqdbCJOY3sHiZFhGto73pOk/FIuS03TcPv80yR80zQpZbN4Q6F5D9BKsYgkSfjDDRSzGbRSacnnbjHVO1944epJtWLPSk/NT98IwiEvshlHF1UafO/9x8fuTS2cvNAHWAjXULlZjJh/C7fwTkOQnXzz9XHCB0dJlUUEafHAtGK5GC4wRzf1SiW8uKYSH4epoMeyLKxahQ1dQXStTNCjsDps0ReroKBTlWeCz7GSyt9+5wB+r4Mzo3X2rPexboOtBnZ5osS+S0vzRLuQcfDGqwfYuqmL7g0b2BA7w94lfhZgtKTypaf241JlBpIsKVlo91TZ1B3g/HCW4cLkOZEcvH3JxO7ErJx/0/1rRB568AHOnL7E0/uSS+L4WJbFk3eEaG10YxoGhUKJiUyV2SNdLxyMM56qMBorkjc9UINkgsnijA2zXuXjD/bS0NzEji0af/iVg+hXJBCWadAbqOCWLfpSMobomt4HqgVweDgVVzgVLzP7PnnyrmbWbeilmC/yJ988QU1089E7mti6bS35bJ6//sabSA4XExV1blKiuFgoFK6g8vZAHXDOeb+l18HSERZI2gVRoqdZJeQuEFccROtXv/aiw4VZLSOpXlq9Cr/35AMrMj7+UG8Lz58dpdGtYNQU/uaVQ2xrD7F7/RpWXSFwZE7KGVuWgGHaCfw33zrGkZyEbMT57TtNejvauW1NN6eGDzCYyNNolvmFgMl/itvXVrQMlFm7Xa7W+DfZFrRgEEmv4ebinO/8OW+RC9kUHUKFh5vmF+42BVwcwO4Y/aSi8fFZr/ldKr8hD/OdfJBtQo7Prn3/KGW+9yOR9xEMXSc1Poov3Ejs8iCdGzYhCALp6Ph7OpFJT4whiBJ6rUaopfUd6XpMdVm8wSCKc/HFpJBOTXNtgs3NlLLZOQH7lISyXqvR2LF8x96rIZdMIMky3mDoqu+bGLiANxQm1NxCcnQEp9uNXq+TiU4QbG4mPnyZSFf3nH0zDR1p0pVYkhVMY+kL+rKPYXI+XCsVb5g309rezC89ahJN5Nm8Yd1K7OJNxerVHcj+9zWf+xY+oNAtibimIEgrX7i5s9Pggbu3cfFMH43tthT66vYkD9zVSjDk5+nnj3M+ZT+f5nJNnIzEilQ1e4RoJF5iqeNWgiBwcbzKprUGqYlxYvEM4MMydDZEACzOxVlUxarLX+fBnW3EUmUuJQvXFPOzamU+/fGNBBvC7Nha4n/+3ZF53QGfWCHoERnJCgsmHpZp4KFExXLOUX5b6H3bNnQgCAJbtvbywoExSrO8O1rdVe7e2sRYLM++SwYCJg9uUOmI+HAItp1AJhblW9/bj+kIMzuRyeoqb5y3A/+FoBhFsAwKxQoNzVAsVjAWIOfc1a5xx6411Gs1NiQyfPtIDUFSuKfH4sH79nDs2ADPnygiSAotripbVge4OJLDOcmjcDgUJGw+hm/S2d7r86CZTgqa+6qdlWvBK2p89rEuvF4XT7/UP6OWNgm5XuDnv3AHqqqSTqT4o6f7r2oiLDrdGFoRvZDiN5/cc11xwVg0iigItDbPTD7cvnEtt29cSzqT4r+8fA5DdnImHWVdWxM+X4B6rYooyUiSxM/fuYG9F8foCgVY22UnORMlu6OjS06imQK9HeByufhHH3mQT5z4LlN+L/9DKfON9CCb3FXuapwpcCqyhM+qoQEuq4pLnnudf7Hdxeda8siiiLCA/PbdHp2/z5bRBZm73BWuFBH4D+v8/AdM4N0R3Lle3EpkVhD5VJKmzlUIgkBz92rK+RyeQBC9Vps0wYy8J7sJgiASaralBDOx6PS/bxZM0yQTi9LU2UV6YgxfQyOKY+GHdKCxicTIEP6GJvKpBE2dq2a2YxiIokQw0oxpmmTjsRXb93R0HH+4Eb1evypxvlouYwHekJ1cCZKIZVkU0qlpCWp/QyNaqTQnmfUEgmRiUSrFAsBNO+emrk/v+5XiAAuhXMjjdLmvqjjX2dU6reLzXkU5b59X93UooBlaEauu2YT7qyyWi8Ey6leVFL2FW7gW2j1Vfva+VeQLZZ7ZG6dsrVznwDLq7NnZg9vno6O7Y0Z63rKQ0RFFkXWrQpxPFRf8/EjByZ98/TAtXoN1XRHMyznGy3Of325B48O7GsCy6LsUp70lzOnBPJGmAE2dtkp2V2eegb4qW9tEPvXR3QB894dHODXrMRWUNW5bHySaKLBhdSOr13azei2cGz5gd6GuBlGmVNYINkClXMW8Irj3iBV+/eObCYQCvPnWKV45bxeTBKOKV6qRN1TuXSPz4Q89wMULI3zj1VFMaeHrEHbWiUWT6FqZoViFkqXOodk9uLOZdRt62LIFLk28DYLAA/fZXibDA4MMXBgiMTbKr//aEyAIfPOZgwwUrt2hb3FV+YWf3YUgwtPPHeJM/zj9EzUsZf5zb+umDkItrZimSTGbAb2KaRrcuWsDisPJup4G/D4HYxNZtm7sJtLWwu4dGl/++zfZGisxOJqjItpr2AsHouzK1rg8liFnurjRsKan2UnHqhlxgNGT5TmvG0iUCmVUVaVQrIBRxxKlqz5nJdULqpdQYP4Eg2VZDI+NEgwECPjm++rsP3Oeb51LI2Lyha1Fdq6bO0ItyzKyYGIACiaSJLPvzHmePj2OX4HfuG8LPW2t9LTNXSc/vL6d588M0+hW2LlmI5VKiXq9jt8fnPO+DX6VP/DDlJ/TFBRJ4kttGV7MF+iVS7yZd3KPUKXD45zznsXwSMTFC+oImmnS63VeN2foDy5pfKcc5H4lz/2eOmd1lc+G62xapoLaSuEDncgYuk4mOoEkywiieMPkb18oTHpinIa2dnKJOKIkUsxmkGSFYKSZxMgQka7uldn5FYRetyUWC+n0io+GLYRKIU+gyQ6uQy1tV01AREmiqXMVlWJhOkmcgiCK0/teKeRXdN8FBERZRnU4qBTyi75PkmVUj5fEyDCSIlOvagiCgC8UJjU+Rri1bTKpWTXvszc7YQT7HGmlkk2svMZqkxwbxRMIkkvG39fjkOfPD/Gd10cB+PQDyzNONTU7eJN9jei5OGJgeQ/memYC0emeNrScci2/hVtYDrb2hmhub6UZ6L6YRRF01nSHOXomSjhoV1GPXq5jLdBF8EsVNnZ5GYqWiVbmF4gESeFE3xgPNDUyGi/z/dfeJuBz0eqpE4w0Mz4wwPFzca4MomajXLP4xOO78fi9bNuQ5X8/dQYcM+/f3uNl54515FNJNm1chVNVWds+zBsHL6FpGg5FYTRWABw4HTPPJadjLpft4V1NbNm6Bq1U4q3XD7F5cy/pZJpU6drz+4Ls4JsvD9HbEmcwVsFS5h6PzwGBkB3kRhrcQB7BqPK5B1tZt24Vb719ku42uxu/Zm0ngb1DZBZpnD92R4R1G3qp1+v8/St7QZwbHCczZdYBuUyOYk3AtAQSsSRNzY1cGsvz+gWTX7g7guK0r9eaDh/DJ9LURA+CvHiw3tPqweOz1727t7fRu3Ed7cfO88zhwjyzz3ROow27+HbkXBLBaSeaR08O8cD9QUqlMhs2rWHtOp2JEZvrqpU10nUXr5zVmN0RimlOfnSiRE8QfvuxVmKJPD84kps2EF0uhuIaqUQaj0edLw4AWIqbv/vhObqaVLRKiX/x+a1ks0W++eoIFZY3Mq3rdb758tscKrvxM8Q/um8DLY1zx6guJAtYkoIBXEzk2XnF8IHfF+BXb1vF2Yk0m9tW43Z7ODySxnD6yACnR2K0Ns0vfu5cu5qda+2xzMGxcf56/wWqpsinN0X4xBL3f1vQRberxuODrYw5m+gemuAn67WrJjCz0eN38T8vV/jz8RCra0maXQqSKPD7rTW6vde+fpVaja9qLZgePz+wmng2HkUKtbJ/bIwX/e8Or+YDvcrmkwkaO+zqUCY6ccPbkx0OAo1NZGJRwq1tyIoyp8PhUF0U0il8SyR2v1MINjeTiU7g9HhwrSBJfzG4/QHiw5dx+fxoxQKN7Vc3QBQEAfcCVRNBEPAGQ2RiURyquqL7XsxlASgXCniuIgssOxw4VFu+WVYcNEyS7GWHg0BThGw8RmP7yo68LQfBSDPFbAZBEAg0XZ3/IckyLq8Xl9dLJjpx0xIZ0zCIjk7Q1NI0vXCvJPoupdElO2g5dzmzvH2ra0jeyd/nMsuMllFHdLiQ3AEkd2CZKmm3cAszuDiSZee2GsViiWQ8xW/9yocRRZHmkIuG5mZEScJ84SjHrrD8tCyTj93Txuq13ZQKJf74G8eoSfMLPK/16+zre52a6AbJi5yI8eRvP4wgCLSuXk32x/2oTtvN3a0q/OjgxBzzTASJilbF4/eiaTVMQZxN0SGWLmIaBli2QaITUJ0SP/vEbXz5a6/QFPQQK9oB+vGhGo5XTyAIAscuV0F0YFkWzc4KetVBOjqOQ3WxdkMPX/zbV8jUVDRhacFrwVA5PmaxEBdmoqTw0qvHaYv4eOtkAnDiFmusW2cXnTasjvDagUE+5FG5cClGpuqYI6dsSw8HcKsKZt3OcIx6fV7nB+Anp4qcH91PpmhSnvTj+fIPLhB2nqGn3c/dqyVOnxslGPBQr9eplov8299+kNOnBvjxwRFcqoO4pk5LEU8hn8mQGBvFssDvs7e7ZXMP39+7D9S5a+ZzhzKcGznKRFojXbefS4Ig8Fq/zttnXuOuTSHae6BYKPHsG5doP59hKF7CkGfuH8koI1kGtUkO1Z5NDbR2ttPa2c6xi0voki2CvOHiz57uQ8SYN/43hZzh4lQUntjRTCAcIhAO0XMmxtkF7GyNSh6rXgUs4qkUkQb7eNPZLH/+6nESdQmzkqQQiDAYT81LZG5bFeF87AKmZbCpZb7vGcD6VV2sXzXDi9nQ5OXS5RIuQWdNS9s1j/nsWJKy5EEvxvjWsRK6WuW/9ypLmtqJljRGlR4EYEgKkqkMEfEuXaDm26UAujvEqWKes4IHLJOGiSr/Y+21P6sqCruFNIfw01qZYNxtFwNq73FDzJ9aKE4nlWIRl9eLYaxMJik7HHMq7d5QiOToCMFIMzWtgjcYopzPLUrYfjegOJzvqIGiIAg0r+pBr9WWrNa1GJYjMLDUNqplWXgDQUItrYRaWq86klUpFqhVyiAI8ySnZUV5R7ou18K1OD5TMOp1TMOgmMvivEmdOcuy+Mb39nMh66JFvcwnH+whFGlCVpQVS/bWrQpxZtQuTKztbOX46NKTGckbRs/F7JGFK4bwzWoZs1ZBVJwLerwIkmInQoBeSN3ygbmF68bFjIP/+dX96Egg+EjG00RaGsllCzS22s9qcxGSiDrJDpZlEdGswQKJjCBK1MSZNcjjcZEaH6WhtZ3o5Uv88se2M3h5nM1b7chmR6rCT87MyBRbiouvv3CenhYPgxPleSOYAxknf/H1/VhYyJLMz+wMEmmN4HK5uHvnKnbs3kw+m+cvnj6FJrrZd8nmXrglg7WtYFULfOzJ+6gU8kTHY/RubMMbDBE4nWAisbTKs2WZOPQCNUFd0KtGkGTevmTBpTxTHYCi6eKNN0+wYXUT+46PcialcvqZQft5cMUYky09bMtJv/X6UZ778XHGkxolFnh2Sg6Gr2jsa6h0d3jYs6OTerXKoRNF/uq5C2iGyO9+aoOtMrVtDR6rSLitjdcODXFiQqTLV+OOTY1cHs+ypqOdhtY2sCwOvrEf3RQ4enYCy+mbE1YKZpX7NvkI+lWi2Stkm0UJ3RnkzQs1Lk3sI1exKFpBGrQqn324h6HxLD86ViDgMPilj2/C63Hz7R8eYzCp45a9WJZFPpUmka+DcAPmn4p7QXGAK3F+KMu2zRq5XJGRpM05mbctvYbstzsiey+M8vHJROb8eIyU4EV0gKkVaKbAxvb5XM+N3V1sHhxjf0bgu6dGKWRTeHwBNq9Zs2ii8cjurWxsG8fjchFawpq7sa2RNwdtno3lCfIdq4GfT59hd+P8ou2VWBf289u5i7xS9fNRV2FOEpOp1ngxbbLJZbEtOPfcvJyo8FLRwWozw7jVjCJJiH47icsU4ixF/EIQBL7Sq3M4e5YtLQ6+nypwsqbyCy3VJX3+ZuADnch4Q2Hy6RRatIC/4eZUThWHk3BrG2MX+ulYvwGAbCw6nchUKxVKuQxYFsFIC+IS24MLwbIscok4Trf7ursTpmmSiU4giAJuX+CmjprJjnfGCbacz9neK6KAJMnX7EwIgkC9VgNssvxC3aApaMXitNTxSnT1FkO9VkVWlu/Guxw0dnSSS8RRPd5p5bWVRr2qcSFuggNGJ7L8+Q/HMPJHaQi6+cWP76Sh6cZ16zdt6qajxf59+cMh2Lf0REYQRJTg/OTTskzMahHZH8Go5DGr5QUlmmVf43QSIyp2cKQX02BZCJKM5H7vFDBu4b2NqjTzDP/KD/tpDgwwmqyyeaiEZVmcGjXmBNdbI3W2rG0im4jjcjnBsnC7FLQl6IhkTS9H+lKszWQINjXR0N4OgkUxV0B1q1weTbE5YgcpZ6ImiArZuotjkzLO82BUyRTrGM4A1GHf6RgbC1X6hs+wZ3sH+VQSUZJwy+b0/lmWxcfvaWbthl6KuTzlfA5vMMT4sX46e6pkcwVG03Wm2iJdXo1I2M2p4TLVBfbhrm74mYcfoP/8EN96I4p5FbL+FARJ5tV+k1fOTyAIk2IHi/AwkrnatPRwomhwMiqwXJ+ZSkWnVikTbm3nzttkmhvjNIR8XDhzDkMrMzE6zqbbb0MA2kMjnJiAh25rpXt1F5s2W7zwwzdYt3E16USSbbu3ICgOBhPDCMLc0K63QeLee7YAUKubPHesBHoVl56jKHiRnG4QFcbKM8d6x5YWmtvbaG5v4/D5vTSHVMINk6N2XUEuJ+I0tNmj4cVCibLpAOogSvM6RyuJgYzCf/+bg5iCjLWILDmmaauxmQYt/pn1e01LE4HzMXKWkw+vbmJTVzN9oxPsUh04rxAd6ktpiLKPidgwT+kd6KULKK8f5Z9+5AG621oxDIO9Z84jiQJ7Nq1HFEU6Wq/diZnC6o42/t3jHv7i5UNEgc56kp4ljHZN4d/2uPi31Lny9/c7lxXe1INI9Qr/1Jfgn/faa06iXOF30+2UHV7cSpavOo/zdY+PnwDoVXa4Df7NZYuH3BqPRq7e8fQ4FB6Y9KD5tenp7XcniYEPeCID4A83oNfrFNIpZMVxQ4kEQDGTpl6rIcky/gY70xUlCZffx1j/OSRZwTcraSpl04Rb220H4ej4Dfl/JEdHaGhrp1IsUMxmllyJn41s3B6LEwSB9MTYO8KZudmolsvTymdLTTbCrW1kohO4/YGrBvUWFnq9jiTLK9bVuxLJsVGcLjfVchxfuOGmJRnANZM80zSpa9p174NDdbG5Xebk5SySJ4ggK8jhDlKFFH0Xoty7AokMTCYwKwnDmK7qiqoXo5RdMJERJHnOOJlRziE6PYiKE72QxDKNebPrt3AL10IFF4MZA8UyOD6iT3YIZoJFsZrjycfuQVYUaloL1XKF8XiebFVZ0F3eaZXYtcrJWKLEcCWAIIgcGoOheJFHd8rIssKly1FePj2AIgmsbvXyiSd2ASA9f4STV3mMOiyNn3+0i7a2Jr7/wnEmsnU+8+QeHKqTinmW0+fGeeLR29AqGtbsgNcycbvs35jD6eTooRPILj9vD5i8ce4AhiBjyXaAFZLL/OIn77BH4Q6d4I3+Cjl9bvC1qTeCIAis39BNYP8IGWNpQWKDo8Ladi8Xx0skq4sHZ9GKyl9+6wiqbDFeVgGL3e0GG1Y3cqwvTl/q2oW6Y6M6W1ZrhFuhVq6wfZfd4XG7JMItbcRTRZTJgl+lbvOHkuki3ashk8pwfFzkzJfe4N5NfnbuWE8pl6E3bJGcmDt9kCnVqZRKuDwe4mk7ifnCA02s2bCH4XPneHp/mrwx9/xduJyku7eLkeEJMppAMaox0H8Zv1fl1EAWXfHxzR+eorfDz9nLOVaFBD56bw/pbJHv7U1Q5epk8i6fxubVYc5fxfdGMKr45To53TFHVc5wXL1QK/oaqWfGEB1u9mzaM/33pnCY33t0N/lCnkJV5y8PDWNKTvpjx/nlD+2Zs41dbX5eG7UlnAXZgRJophorc3w4TndbKz86fIqXJ3Qsy6JcO8OHd2296j4tBL8/wO8+ehcXxqL8ZvICYfXGR60v1RUsowaBFv5YD/NwZoBtIQ+mZU1qzgFIbA25+V9NAt9L9tOgVPjXxVWUpCDPZIq86h6ldRmjau82PvCJjF6rkU3EaWhrJzEyNI9QvhwYuk69ViPU3EKlWKSUy+IJBAEQRZH2dRum5ZhhbqC1EpV2WVEQJclWxLqB7sD0vrxLvI6VhqQoVMtlZIcD0zSv/QEmx8KWMG4XnhQrME1jOllaaUiyjC8cxhcOk4lFb2oiczVopRKlXBaX10tybJTG9uUR6afw6Sf38Ggmw/dfOstA3kLPx3F53KzqWOHkYwUhyApWuWonI4aOHLgxYZBbuIXlwLIsHlwn88D9D3L8xAWePZid040xJJXh4RirezsYGorxzZ9cQHf4F/Wf+bl7m1m9YS01rcKXn9pHzLB/e1UdujZsRFYUfKkSVUmiCsjyzBybLF19XWgJiKzqnlSgWtNA9kQMx2SA5nEpiM1hFKcTxemks9FFetxie4vO2p4GDh4bpDla5NJojoGsA6gATlDmHockWoiSRHp8jF137WbT9jJ//fTxOW70R/smaGgIcu7CKJm6c47PzqLnuVbm809uoKGpgTvSWf7km2ewHIs/bzN1F9TtpdJZz/HRx2y/kkijnzPfvjDdlV0UosKz++Nsi1eITaT48AMuGiMNGJOcm0y+wtnTA4DFoYEKoPKjo3lODx4gWTSoSV5qwMGLGo2BYdZs3sBjT7Qy9tQ+xsoz5yJVc/F/vn0cr1NktKjglWqs2WArcQUaG+iJFDlxRciwd9Di5JfeoGI6MCUVHfi715NgmdP31VDByVCfPVL05EYvTa3NNLU2s6o/g6lXuW97M7F0hR+dyGPNEgKwamU+9chm/KEg2zZX+MOvHsJQfFhGDVkvozsCYNb5uXub2LiplyNH+njuWHlep2dzU42tayOcvJAglqmhWwK5msJHd3jYuP5+Xt3bP++Uu90e3G4Pl06fn+7SJcv1ee/7+N27+VAuyzffPsqZqomRT6DICr2To1/5ScNIQRCm/309cLs9bF/bS1v5xHVvYzb+ZSjP78UDWICIhTQ5ZNjscfO/Q2O8VHTySLhKg9u+P36xTSGvCTAlUigI15Q2ByjV6vTnNTYH3Tjkd7c494FPZAqZ9HRA5m9oolIsXHWU6GqwTHO6oyM7FCqFmZliAWGmOmHNvk0EJi5dxNB1mlf1XPdxgN0dyCUT1KvV6QRqqZgKxn2hBlLjY4ii+I4Q/98J+BsaKWbSVIqFm5Js3Kja3bVQr1ZtSefMO6Mqtxhmn79quXyNdy8OQRDwh8N84VN3EZ+IUqmECIYChBpXphtzs3A9ZplTpH9TKyCI8q1uzC1cFyy9xs7NaxEEgZ071vGTg69RYWZMUZCdPPXqCM2HR4nlLQxX41Wpt6pqJ0Gy4iDsEYlN8jcMBAzDQFYUdH2m6HP6cpG2A8ep1U2OXdZAXnz0ZCJncrH/Mu3tEU72JxktOnjuhSM0htwcOJfF7RBY1TpGuVLjYlTDbdX52BP3IYoiTSE3f/HDMQRx4W5GUK7gd4kMZRS++f1D3LEhTCOgut2EvAqp9Mx7j08oHP3aCQSHC0Fcmhy6AEiTHAhRELCExUM6t6CxscPFWFIjWnFSE5yMDE/QtaqNoZEkgry00emcrvJmfx3wM/hsPyoaa7uC+C4XODBgoA1MkWvs7pApOUmXNDZ2eBiOl4lrKpm6Srxgsgb7+epQ5j9ncoabXBkEEYqGiyP7T7B2bTuFdAqVKpbpnPN8EkSJEn6QoCdQ5f4drYzGC7x0urTgcVwYSrN1S51MOsdYSuOTd4YJhv04FWjxZJmozHqzqJDLl/CHguRzJUxkJLPKZx9spbe3gx+8eITTwxU2bLQVvjZv6OLZA0cRnDO8Q0HL8+Sjd+JwqgRdFk1d3ei1Ot/67lvcfscdAOze3LZoV2jXmlWcjx0nVanz2Kauea8D+ANB/sHjDzERHUerNuH2eGmZVCN7ZHMPxSP9SCJ8aOPyPNXiiTiSLNEQujql4Y1khf+d8tAl1fivq8ClXDtk/0y7mzWeAt/NVrnNp7E5NJOIPxZx8VgEruQV+VUnf9IQ44VClocCVdqu0Y0p1+p89pLKaWcv9yUH+Nv14rsmaAS3Ehn8DY3Eh4cIRiLkkvEbkkeWHQ6sSY6JhUV4lnJFsLmFTHQcBAHXnETJonX1GkzTJJeI3xA5PNzSNj3mtJybKhOdwNfQiKwojPafwxcKX3PE6P2GKZ+X9yOaOrvIxmO4vL53NZFRPR7y6RTeYGiaQ3QjECWJlo6b08V6L+GWctkt3ChExcmB44M8eK+bo8cHKOOel6jUBZXRIkvqPLxyYIj76zrJRJZzaed0JFC0PPzd947R1uTmzPCMw/tdG8PsvtPmWPRP7Ofy4or01AWVr70WB30EwelFEOHoGDCmASo5Hb744oQtkCK4kCyBRDxNc0sj8WTBjrQXQFCu8Buf3o7b4+HYwRMcGSjx/OEkD+ki2YLGQNIAcW5IIzqX+bx0uPnGC+dZ1+nlwmgRFA9SLYcuOhHkuWNmT9zexOata9DKZf70G0cpyR6+9pMhGj1DxArCot2wq6Euuqjj4ugoQI0pzo1lWXT5NLwuB2cndD52Xwu963rmKNO9eSaPVjtNvljlUlpEuErNRJBkfnDG5JHqRXbs2sRj6zYw+o29c7o4s3HPtha616yiew2cGdxLVJv/nr6Ugz/88l7qKMiWzurN9picrCgks4PgnNm2ICs89ZPLbO8aZThWxlKCNKoV1k4qxm1ZG+HoeIqfvHyULetaOHp2HMEx91qast2FXLN2FVXdQhRFHKoTT8BL39lLbNjYw9mLMTZtXzhJUVWVL9y7g3yxQGPD4kbRgiDQtsDIf1M4zG8+smeBT1wdtkdNCgWLX9rVweae+dYMU/ifKS/HHe0cBe5I9PPzbUsL2XcGVXYG4WoS6lfiQ00uPtQEC4knXIm34jlOO+2O3ptWhFI1incFxuKuFx/4REaSZRo7Oinnc/Pc168Hi1XnBUG4Nv/FWkpD7+qQlesz4pv6nMcfwOXzUUin8YXfv8H/jeB6TaJuFgRBeE+on7m8PoRSiVwiPm32eQs3Dj0XB1HCMuq298ytrs0tLIC9l0X2nj8ETs+yDVc9YoVt3T7GEyWKmk5Jl/ny6zl2tJr8ys90cLo/xsERu6o6VlYZG5pL4p/9OBQEEOpl7umVCTYE2Hc2S6o6N4hZSOVrzuuz7nFDUvnqD/tpCQ4wmjYRxIV5KQG3hHuykNPdFWHLjgb+/BsH+c6BnP28vk4PkysR15zEL9QBJ1sjdT72+L2MjkT5+ssj1Ge5pTsUO+GSFQVxchinLqhMlJnHS7rRNaXTq/Ern9mDKIr8+JXjKJMdF0mRpr9bw8mbF+qAiCAtjWxvKj7cPj81rUrlKqIQQ+NZetdBPJYkW4HF2n1V2S7S1gyZU6cusnXrGk6eGqTmCM77yMZOFz/zM7uoaVW+9PQRkmWJs2cGWNPbxonzcQRBYd8Q7L0cQxBkBAHEemlyvz22T9Dr47QcnaBUrnB/Oo9hmPSN65wYjaO+MYQm+fj09oX3NZXJ8GevnySjO3i4c5SP3rlzSefsRtEXz2FJDmrA+VjmqolMu1jlOCDqVTp9Nx4f3gj+dqzCn2SDbJBKHC8H0aoXER1u7iaOV313Y8UPfCIDNn/leojxKwG9Xme47zRuf/CmcSyuBZfPT2p8DKNex+33I0oyprEEqZufQqSj4wiCiFGv33Ri/fsRy5G7voVrw7JMBElB8oawLAujmEL2NV77g7fwgYMgCKBe37jvY7dF2LJ1DfGRYcItrUiyzLefeZvHHtyJ6vHQ2d3Bsb98Dd0RXPDzh/uSWPXDJAsGlxI6n77Tz5ZdtjO96hjgOweu0qKZBQca928OYFoWb54pUBfs5KOCi8EsV+0mDWUEXn39JGs6PPgDfkrZDJ++v4tStc4zb8cWN0aslxAAS1n+c2vTmkYkWWZVTwfNvlG74zWJ5w/G2JGqMBorUmBxqfVef5FH9vRQKJb41hsx6vLyr6HbOeMv4nE72HuwH6taIpvOYYrXH8a9errAePIw6UKVdG3xte6N/jpnh9+iUBOpLcXDR1J4el+KF/aPUbJcCybejWH7+xyqk7DXQVyT+NbbaYTXxubc51MJYLOrys9/ahvlfJYzF+KcHquRrbsYLUK3H7bdth1BEBiIH6IvqVDFuWC+VchnECWJCxMJMnhAhpPRPB9d4L2madI/cIELqTIRn5s7N6+/9rFfAzs7G+lLDqMIFts7rj6S9v9fZbEncZ4uL9zXuDzjz5XGX+WDJNzNxI069foozuZeu/CRuf4x85XCrUTmXUQumSDQ1ExT5ypSY6PXrNhMKZsJgog7EMTpWpkbeyo4zSUT1Gs1asn4DamnvZ8hCOJ09+PdJNbfwgcDgiBi6lUkwJxUOLuFW1hpCEyKdWQzNLZ32IT0piD9F8fYtn0d/f1D1EXXgoGfW6jwq5/YRrgxzIsvHUUVynR0tlDTKjhUF5lskXUNdSRRpC9mSzO3uio0hVT6xqpzuhi7V3u4Z489clQoneDQ0NLEVwCQFN64aHBsMM7utRphF2zdtRmAdZfznJg0B5WtKg9t8eNSZU6cHefjn9iBIAh84/k+YtryujYn+xOs6mxmeCROLG/NSbSydZXXztWAq3Nh7t3RRnNnB83AHaNZ3h5e1i4A0J+weOGlY3jcDvady/OpuzpZtWE9kWKRC9FjnFme7+80TMlJXwKuNYIkSDKpurxoJ2bhzzgo41j0IwfOZnApFyiUa/THdJAkBEkGaeFEb0271+Z2mR4efvg2diTS/NnTfViKm3DAOZ3oNYbckJxP3geI56KYETeWYRDxy4Qoka6CKJX5u9cO8fiOtTTOMsD+6st7OTKeRwlEsMazOJUBdqzrXfpJWAA71qxmY0croiShKFe/d7wOhV9sv74pm5XGdqnICM2E9DJuPcUY3QC0ut79NOLd34MPMExdn05GpCWMhGWi4wSbWxFFkfTEGE7XyiYbgcbF50TfDdS0CrVK5R3lt0wR60vZDA515XXR86kkRr2O0+O5blGJW/jpguwN294zDhei492tut3C+w+WaSDVCuiKB0UvocteOyCchZcOjdIYdtO9ZRunDh6lKjg4cqFIqS7wxom3yGjygqaRAA1ekfCkEEdXW5B9ly0OnxyjJ+JgJFEgljX4/CfvAeCZHx1lOF7mVz55Gw7VScehczx/coblnS1otr8HkM1rXCsJWAgFw04geoNV1m+qUtGqjCYqTM32b2xVuHsyWXKJJsFwELAD4djAwgHuYuhLOjj7t0dBVhGk+euBZRo4ahlqhgDu8ILFyGg0zao1qynncySy13fMSAoHhsDmzajTksyqx0NhAcWtG4VX1OhsVBhK1ChbV38mOfU8uqBgSMt7dmV1lWeOTLa4lsAnOjeSZ0NnlOCkl43L7USwTCzg1LBG44GzKJLIkYsFFvM0qcsmHu9ksShQ4fceu4Pn9h1lb66JWBYqB0/ymz9zPwCGYXAmpU0rpQmiRLk291wf6x/gxyf7ESUHu7vChLxeNvV04XRc/Xic6vU95/9gQOP7WpAPOXL89zU311fuSvyv1SIfS/WxplGie30T/9f5U+RkN/+402K5/kkrjVuJzFWQjcewLAuHqi5bBWwpUL1eUuNjtlGjPJPI5JIJTMMgGGmed6NOu8q+hzgcNwPlfI56rYZr8hy9U2N3jR2dZGPRG0o00hNjtqiD14/LOzNyUMxmcKgu1IZGkmOjtxKZJcLQdeLjURpbItML+Ipuv1IALCTXzbsell7HKGcBAVH1zElYBNlxSxDgFq4Llmnwka0Ku+94gHPHTrBu+32cOjnAs4dzczgqTtVBc3sbpVyWto4WBMXJyYFzNPgU0kXxqmaRo1nYv/8MzY1e9p1OIAgO3r4Mxy5nUWWTrshMNV91SCgiKM7JQNs5N8Q4GxP5yrf3Y5owUnTc0DI2kHXyv//uIAYiNXFmH1L5GvVaDVlRGJrI0tSSQhCgkMtw//oQJwYK5PSlF6lmK2VNwSNq7O71EVYFtt/xCMmxUd48MszJhAu/pNHdrDIYrVAwXbxw1mQ4+gqVushg2b8iS/ePDkS5t1RjZCLLUMW/mD4CACoVGr0iY3nmSCA3uyq0hl2cG9PQZgf+9Qpf+NhaWlqbGLk8ypdeHEeQFy60bmis86kn7iaXLfDVH5yjYN68Qkyq6uKvfhyl3TfKpt5G+odzmA772tQFlR+frk6+0z4WyzLnyTUrdZFKoYBZ13FZCqrqYvJWRbGqeD01UukEmUKF7rZWdkTcHBgr4ChMsHtVhDvWz3RjyuUSf7e/D9MdxqrWGOnPILkMNgwe4Lceu3/Fj/9cMsNf55qQQhG+bTXxK+kzbGlY2TXLME3+13CNMdPJP2yssc4/c78ossQjzR4sy+K/DFZ5iyY+4Siw2vvuGWFO4VYiswgK6TRuvx+H6iI9MXZTEhmX1zdP4jgTi+INhZAkmdT42ByvDn9D07Q0suq+OSMopmGQjUft72uMXLd4wI2iWqlMj3hNJ2/vAERRXJJ/zGLIxKIEIy22x8HE2JxEpl6t4vbbkqniEsmYH3SYpsnXvrOfwaKbLs8gv/yZu5DklXts1dLjSJ4QCKAX08jem9P9M8o5ZL/d8dTzyVudl1tYFEFFY1uPj5FYkcFFjAKnIJfj7L7jMURRZP32rWRjUXbuWs9LR16nzMyzO14SOXK4j5aQQnvvGgAe3BGhd+M68tk8X/zuaUqLVN4tycmLZ2pAmqluQlCu8Ksf24ov4OP7P9jLi6+cQBIFjgxWqOPi6ecO0tLo4/DFPGGHRU+Lm4vjZXK6ynDBJqovJ6BvcVV5cGeEeLrEK2fKWKJCh0fD61I5n5hLgh4vq3zxqUM4FIHRvMTeS+cIyhq/+yv3IysKLeEBvrVvaZyexfDgthCb1rVNB8qN7R2sGY9xcrzCFz66jkhzI+OjUf7PDwYRFZW+fHjOMVu6XdlfLEG4FqIVle8cKgOOOUnMKn+N1e0+Tg/mSGgqilnhV5+09+fQobM8f9IO9j1CiV/5+C5Ut5vuE/08c3hGUllCJxSy45JQ2I9gXIYF9jOiVtmzqYlsLEpDewdtYQfnk9d1OPMgW1Ue3OzHoYi8djJD2bKDZVFRmdBg4ozGYl0Ay7K4u9ti+8ZWjp+dmCO0EAm2UEznEEUVt99em+/btI7apfNs3bSK5o42Th89y3eOamw5P8KvP3I3H8mm8PtDSFeYpUuiiCwKVE0Ds16dLkb1JUqUSkU8nsV5U8vFs6M5/lm8EVMQsPJJ1qkGq25CAvF0VONPzPUIgkA8OsLX/fMFBs5kinzR2oDglPjDkpdf0t5dxTJYklDjBxOmoc90SVao+1EpFklHx0lPjKEvJl9rWSgOJ6IkzfvhyA4HDW3thFpapwPilUYmFiXU0ka4tZ1cIn5TvmMpcLpc5FNJ6rUqhjHfbKpSLJCJRafHFMr5HNVKZd773mlY1oyX0JX3TTDSTHpinEwsivgBUqZKR+1jLuWyy/5sLpliMG+30IdLbhITsZXdOctEcrqQHC6sur3Im7UKejE9fW+t0Bct8u9buIW5eOLOZh66bwuf++hOPCzs2TEFS3EzdrEfQ9cZv3gB3TQ4eOgs5SuI7xG3xUiiwjNvDJFKpKlqGlXNfl76g358s+IQwaxy+yqB21cJCKb9m7Asi9VBjTt6JJxoNAUU/EE/giCwqiPC/kGTtwcMdMGJIAicSTh4ua9KvmzwhSc28NFHtvO5R1Zj1hfQ7V3s2Gb9/u7c4CcScrFtfQtdIYt2j8avfXYPn/v47dy9dn5Al6y7MS2R33q8g194qAWHJEyvI4Y+n5fjEipsbSjS6yuAce1Rrbpu4vL6yCViaKUS0cuXuBitIZg6Pq997n0+N2K9hNvMY5kGAVlje0udLkeKf/jRLn7ziQ5CytLPx7XgMIp87me3c//dm/jYvV1YpoFbMmiK2AF2S+NM0VQRLRxO+6KrjrmFIUPx8e0fnuDwkQs8/eJZWIS39+HdEVat7aWhvYOTB49yeRFeyvVgS4eTe+7axO23bWD3muUlBFI1x4cf2kFzexsffmg7uczc7KpUL5MxcmTy9t9DoSZ2NYSJtNsFzI6uZjDqXMhok683zovFwB4P+60Hd7DFU8fSClTjl9ALKQxLYDiWuJ7DXhT/Le3DDLUj+yN01hJ8q6sAwMlkfskm30uBU7CYWp8K9TrPRUvztt/qUmjRcwCstnK4HO8+h+dWR2YRBJoidvdDkpCvQchaKiqF3DSJPh0dn+MzMwWn2z09miRfY87yZkAQhenqhSDODcQtyyI5OmJ3aQQBWXFQr2lYpoUnEFxRNSu3P0BNq6AVS/Mc5Mv5HKZpEmiKTO+Py+enWilT124upyafTmHU60iKgj88fxwo2NRMcmwUSZJwuuYSKAVBmHcsP+3IxmP4G5qQFWWS1+Umm4gjSRKSw7HgOZyNQGMD68L99KegN1Qj0rayMtSWoWMUM1hYWIaOWS1hGTqSJ4iei6EEr/59RjGDZRlgmkie0KIVVskbRs/HAQHxJo6w3cL7H4ZhBxKmaVwz5TWdAbJFA382Q/u69Xzre29zLj3XANJDiV/6+E7cHg8nT1zgz57uQxYMGnwKhjzARKLARHmmsr+zy8kTH95h78uPj3F0BCJqhS984i5EUaTx0DlePJ7l0KE+Qn6VA30pFquOC5aJc3Ic1OlQEKylBV07W+vcsa2dvoEEr/fryJZOqKWVmlZhfYNJxZgx4POoCjC32LUmVOXuzY20dbVTzuf48B06/ecGGYkWOTOuM5tDYRl1PnZXkO7ebpxuN6+8epQ3L119/149mSOeOU4qV+ZydAhJErDUAIJT5Zs/Os36rgB9AzF+4fH1rO7t4CcvHWbn1l6aWiLEhi/T3G4/V9Z3pNg/uHSFUMXSaPJAtCDMGwe0EKlX66iqSiGbYWenxEhc4oWfHKWnM8yB0zGmrlNG9/Ct5w7T3uzn6IUsV3JKBrIOBo4XuRr3IV+yi7GlQpEXT1WoCte3/luWyc42i44WPwf6UiQ0lUxewzRN0hPjbOoJ4XHmeOFEEaRrx2KG4uXU6QG2b1/HqVMD3Nc2owyWySYQ2n14XC6yY+MEJ7s1oWATscFLdvwVTyBUCzy6LcioNo5alWhaZB3o7Wint6OdL/34LY6NZ5FcPtoVje7WlTXJ9k5NcAgiD3lriIKDTwx6uODo5WPpAf543dXPy/60xv8d9xAWdf6wo0bEvfB1fbLFTXqsn9dz8IrQyj8u++kbvsjvdc+8v8Gl8lR7ikOFBPc2i0grJHt+I7iVyFwFV+NlFLMZ6pqGYRg0tLUvn3S1SLXX7Q/ctG7LUuDxB+1ECnD55u5HNh6job3DFhuIjlOvadPJ2NiF87StWTfnPFTLZcqF/HVzjByqC8cCpLjZY2dTSdWU8lomFl329ywVlWIRSZLwhxsoZjNUy+V5qmaiJC2YrExVF99L/jQrjWq5TDmfQ5TlOcIRs485n05On590dPya2xRFkc9/6m7yqTS+cGjemGG9VuN7PzpGPFvjnu2t7NyxZln7LHuCdpXYMnE0dqIXUtMjAkvx6rAsY1ouWS8kF5VOFkQJ2f/TZTJ7CzcHPzgQZ3C8xEiiTJlrB4d9I0U2bVtPNpNjoiDP8WhRLI3tHQLqpHCJyylhKW7qQLQC3z1oj1jN/oxuzKxNum4BwhzlKVESMEQnz5/UgMVHfABMh5ennj/F2k4/54byCI5rq0Ca9SoP3LGWQGMDLR3tHDz3OoZkJ/8O1cXGTT0EIs385Edv4wmH2deXYw4vopTk0194gGI6Rb1aJZ/OsH7LegrpNPFElpKhzBnHsuplfO7w9LM80uCBS1eXlK2LKsdGLdo8Ap0RlbGSc/o5N5RzMHSqQoMs0bumE4ANvRHcbnstEywoF0sYhsnIWAKv6OJDO8JUayavnMpNS1JfCcHQ+IVHV9G1qo0Tx8/zvcOlOc/WuuTmb587TUdQYMuaBj722BYKuQJ/+q2THBzJMvs6CYLA+ZSD8ymNK5OYpXrevHA0w4XRw8RzNSrXmcQANChlnnz8XgRBwOce5BtvZ7mcd/JX39jHY3vaWNXbQ0tnB0cv7iW+hAaWIMk8cyDDy4ffoGA4efBTc8PcqUObPelh+/y14XC5EEz41w+HcW2y47rs2DjXkkH6lYfv4kPjo6iSRKS5dV4Hx7IsvvXGQS5mKuxZ1cDDO7cu5dRM43+0a/xlcpAuQeP3NgR5I1nmorMXAXi15sf+HS6OP0+5Oe2049m/GD3N73WLC3ZSBEHgVzvcJM06rxl2/HfRmH8/9nid9Kzc5NwN4wOZyFSKRcCax09ZDmqVMuHWdkzTJBuLLolX4QmG7eDNsghG3n2Dw4XgdLsXlRx2qCrVchmX14tlWlimiWVZ6LXatBfN7CC+kEnT2N5BKZelXMivGLnd5fWRHBvFoaqYpokgCmjlMrVKhXIhj6HrN6XzYRr6dHdOVhwY+uKtdEPXyaeS+BsaqRQL1CplEAQkSSbQ9O4FtOmJMQRBpF6r0dTZtaKJVTGboaGtnZpWmT52e5zO/k6Hy41Rr1OvVVEcTkxjadVZQRAINC7cuTl/foS+pANw8PrRiWUnMpInOMe7TnS60fNxO+Ay5480zsPke8xaZdkmhbdwCwuhZKocHDKwdAvBKMIVZHNJLyFYJrpir199SdtRXUdCl+Y+u+/d6Oe+uzeRGh9jNJrjzbMFrqUwdHJUx3juMIIAp8dNkBRimounnjlIU9jDsUtFFlOFWgijRSejfdVrfi/A6mCNh2/rYOLyINVKiXiqiIaTN06lMOnHK9XpXr+GSqnCiQmB8kR1Zl+MGh/b7Wfd2rsYvzRIz6aNnDtxiuPn0zzu9eB0uXn4kbvQXzrG/qGZ73x4RwOyIjPaf466IfLm6cyC+2oZOjs7JXxuBwcvFukKC3z+E3cB8M1nDnA+PfczqarCwQNnWNMT4dCZGBgj3Luri2IuR0mrIxo1vvDJOzlzZpCdO21/kmj6GCcWqe8EhAJeJxQzaVZ1NMKBLMhzK/E5TeAjmzvwu+xMzel0ILH4c9ayTJRanrrkwSEafPTOBsI+Fy/uG2Tdqgb8HgevnUyRrc8/H7qoTnJibozvVzVESoUSXr+XXNEOyDt8Ne7e0kImmWVVL4yNRMmUhQXJEL3BGjvXN3J+MMXJmGyvaZKDggGPbvNyuTqKswytoQ5CwSbO9p/E1dyA5HSQyEwQCbcRDDQSG5+gJOXwm04kj0ilVEb1eqBuXvN2lySJns6FjS2PX7zED04OEs1XkP1NvHA+zoNb9SVzPS3LQtPr/LtWaJ+cetkVcLAzeZnjQiOfUDNc6xr0ShpvANRr/JXWwt5Ldb7RXSasLrxmfS5scGR8mKIp8Vst85Pd9xo+cIlMPpVEkmUEUSSXiN94UGlZS+bQOF2uFfN+eTfgCQTJp1NosSJuvx+ny83o+bP4G5oIt7SSiU5Mv9eyrOmqhNsfIBuLrlgio3o8ON1uDF2fFiMYv9hPMNJM+5p1VIoFKsXCDSWqC8ETCJKJTlDO50AQprtCV8I0DFLjYzR1dpEaG4VZI2U3s2N0Lej1OpLiINDYhGmaRAcHaF29vMD/apgaRXSoLorZGWODKz2Jcok4pmHgb7hxpa6GBh+yFUcXVBr9N/44Ex0uBMWJVa8hBa79bJA8YfRC0ja1dL97ndRb+OmCR6zw80/0EAj6+M4Lp7mctwPJsEPjFz+5FVV18M0fnJj+uzbpvSGaVW7rUbEsi8OXa5imgiAINLS184O3R0jXlhCQSApnpuiR0hQxX+BCxsmFzNyxrJXGHZsjeL0qTS1bUJwqQ9GzIDtJ1+DZIyUclsa64TNE01XKV3ifdLqKrGrvpFLIgyjx1LOHGU7WKJs+nG+d4xMfvw+A1ogPhgrTn4uEPUS6ugG4fK6fZMFcMDLqbTT52OO3A+BQzlLQ9OlCUINPtrUQZkNy8PypKpwYnCxyKJx6doB/8pnNhJsjmKZJLhHHqtdsM1xdp8Gp8ak7I7x9KkG0PJM8WHqNTz66iXBLG7lkkudfPoMgz19Pwy6T7p4Ocok4owMDvHY8SUVcvHR+dzc88vCDnD1ziePnomzbto5KsciDW7P0brU9eqq6yY9OzO1Q9QZrrFsV4tRAmtHijY0WlSw3f/PMSRoDDi4ldBCcPLizheZGP/Wqi69/7XkGKyEMcQH5a73OE/etJhxpYuPGbvr/+k2qsv0cbvUa7NljH0NubCY28QVC+CbX7kph5u/NwbnFaCOeQIsXiSg3tk798PQIKTGAEgyg55O0B5wzPNpFYFkWA9kCHR4X/23E4G+ETYRTeX7XOcwIHj4S0PnuBpmiNo5vMqYcKWo8mxHZrBo82DQ3zvz/dstsi/Xx75IOKo29nAeO5/uIpw2OVJ38XEDj9vDMZzq9Kk+tA3tk872dxMAHMJEx6nX8Dfb4R6Z0dSLl1aB6fWSiE1hYC3Jd3kuYGvHyBoMozhu7Ka/kNDR2dFHO50lHx+dwegRBwMIiE4ui12o0dnTe0PdeCUEQ5iiqNbR1TJNXK4U8gaaVnVGdwlI6b8VshnBrm92ubmtn9MJ5qpUKkixjLaXKP4maVplOCDyB0A0nwZIsUy0VobGJci67wmR2u0uViU5g6Drh1sV/EyvZkWpti/Crj1nEEnk2bdiwItsUBBHBsbTfiSAri46TLQRTs30TRPU91Je/hfccVjU6aeu0nzWbVoe5fNxeq7a0S1i1CpVqmTUdAS6fnTtSsnOVk8en+C0vHOPt80UK5WMUyjUu5225Y8s08AolyqYTawn+HVeDva0yZdNxw9vCqHF5YBi/owPf5DrjcTuB6vRbaoLK6SgsFFxtWd86vRaff+0A5xMOwIUgwKm4g6a9p2kMudh7Osnsjkt//wght4ih67R2daAI41QXqHDX68b02FVN1zk+WCJy8DTtzT5u29bFWOYSQ/m558DuDsyqeqsBxiaShJsj5JJJEokMey9WODa0F59U4/OffQgAWRL45t7czHaMOqGwnbg4PR4G0sKCdjTxssiRw2dZ1dHA26eSDGQX505YlsWWdS0IgsDmLb28eeQy6WQaq16hoTky3TlPpucmMUo9z899ZA8O1cnqjjh/+t0L7Ohx4VFlDg2UFx2NuxrSdRfpJCDYAf74WIKWSIBwaxsPPyTxF89dYkHxUkkiGssRjjQRi6WozzopmTLEJhI0tzZhlevTt4zP8lAYHsfSLZrdiw+NhQNXHygrloqMxZN0t7de1Tem0S2TLIOoV3m0N8j92zZfcxLi3wzUeErYyPpYDNMCQRVIGiL/udqL4XDzw/EY+wIVfK6Z38Hvjro47uxEyVb4rjLM1uDMPSyJIp9o9XC4pPE1o86mehzZpfPvyr2YkoP9E+O8GZ7haqUqGuW6Qaf//WHQ/IFLZCRFoVzIIwgitao23UW4VoCq12rTviYAbp//Pe0DYug6+WQCC7vtGWpuITEyTGNH54qOEy0kIT2FdzLBc7rdGIZOJhbF7Q+uqETvcuENhUmODhNqaSUTjdKxZh3lfA5N1+d1J66GYjYzfQ5XwgDVTi4FUhNjuDxeXB7vkuehl4KpAsFyMNU9s0yLYKT5uq5bW0czbR03J3FdSRjFDILinP635A29y3t0C+9VDCdrRMfi+ANuxodGeLA3wMBQirvuug/V5aZcyHPiXB8w9x7SZyly6YaJLjg5Ogow49ny4HqFB+9/gIGLI/z9K2NX9ZC5Fu5bI/HwQ/czeGmUr788irFM4q9p6NzeVsPpchL2e9h9+50kx0c5d+QIBdPF/nN5lloRzhZs8rler3NqtM7sSN+SHLzcVwfqzE5iglKRj370XkRJYuzSJZ596TRVaeHO6nDBydee3o/P4+TUSA1TUhnL6uy+wx4p2tQZZ+jM1ZW71jfU6ers4sKZszy3P0be8iMIbrI6FASBfDaPP+gncUXygNPD0y+eZfPqBvoupzAdC6+5lujkueMaHB1GuAYxXhAEjp0dp6m5gVNnLhOrevnL752jQS7z2Y/fTimb5dCRCxwccc4xWDUEmVKxiEN1Ui6VWNcq8/HHdwGgSkd55cJVv3ZJeP1Mnttut/ff63UjWAsXAAVB5Jn9CQ6dTxPL6ZjyTPCuCS6+9IOL/KsHTDqDXdN/D/rCBFmeIJCmlUjWMgiWRaPaiG4Y/PHLx0iYLtb0DfM7TyzuG/OL9+7g6MAILcEW1nQubeT9Bc2P4JHod7bxee0k4yWZ5mqKIf9qAKqCOK8QmTTta1STVJLVhc/X/93r5Lfz/bR43ZzJyQiTm5idIx7OVPgHsRaKopPfLwzxC+3v/SmiD1wiM8VZsEwDxeEg1NKKXqtddcyslMui12ooqkomOnFDPiPvFNIT4zR1djF+6SKtPbaJkycQoFour6i62HsJS0ku61UNBAHlJirCiaJIY0cXpWyWxo5ORFG8PiW1G+yYaKUS5UIOy7SmO0TNq7pJjo1SLZcRJeldFx+oFPLXVPL7aYFlmUhOexxGr737UuG38N5F0VT5y+cGWO2v8pEHN9DQ1s7t+TzFfAnV5SaVyhOveRFmreCyVWVNe4DY5cucuxTj5LjAlWVsy7JY120XHHrXdOJ9bYD8Dbhyr+22Oyc9qzsIvDlIWl/etu7vrvPwz9xDtVymPmlJ0NDajiTJ7H3tMpn60icI9g3UiGYPUKoYxKtLW+MMS6Rer+OUJFIFg7OJxXlugiByKadCjmkn+ovjFUYHh/H73fSuCrFmfISLmcXPwYZVPoxalYaGIM3+DIX8zPUpWi7++pnThNwiQykdS5ARFSdtbo1ISOXMcJ1wssCqVh/RXH7aW2X+fgogLS20OzQqceivD4DDgyA5bBEI08VfPn0GVTTImh4Eae4aYaBQSKXAqOP1umCWpPbG1U2MpsbpT19bXUw0q9zWrWJZBqVSlToy/UkRQZQwXWG+9fwpNvSE6BvMIDgWv551UeVyDmD+tauLKpGGG19TktU03tX2dpKXJqhkDRKT5p+X8jq6XkeWFc5dHuZcNMPWjkZ6O+x1ze32cO/W5U0LuKtZsmoYo5jiw80i/7m5jCh6eGp8iLc0Jx9v0pClmQTjj4YqCLUaXcYQT3irPBixz5dlWRS1Kl7VFqMQBIHOgJ0E7wh7+P3iBd4uKfxGq8UUz+b1gkzWaSfzX4kL/JexGrLDyb9qKPBLne/NSYIPXCIDTHcQtLLdrhdlGXMBr5Ip1CqV6eSlegPjaO8kpsauWrpXM9Z/Dk8wRL1aJdK1MCHtg4BcMoEgimBZVITiNaV/bwSiKOIL35gMtK+hcVpBzncd3Y5yPjstSJGJTUwnCUsVQrBJ+ylESbzpIgWWZV134vbSq8c5NZhnTauLjz52G4loAl03qFTrKPJ7x69HEEWMydEy4R00eb2F9ycERcUTcExzz9x+P9//0avIHh+X4zUEeW6ltMVrsWX7RgCyFRMG7dGkoFKhJejgYryOLqjsPzHG/bKIXq3w6B2tfO9gBv06xoEADp6O4lYdDAylSFedsMyfW8hv83mcbjcXzvQRjkSolvIkCthO9ILFxsY6HS22TPBVOT6SwmB2ed9fMN387TPHaW1QOTtcZrnE9YKhcuR8kic+tBm/o5HOliwXMzMecVd2vDPpPDt3bQKgLRLjYv7K7bkQyhq//ngPLreTH718is9+4m4cqpOu/UfZuWcX9VoVq3yYVweNOWpzQVnjge2N5PMVXjsxgelqnOdsD6Ci8dhtDThkiRcPxcgJ84t/VcFFdTH6ryhiyCqh5hbSqQwXUyKvvbSfbVu68IUbWN1Rpv/KjtIC2LXKyeOP7ADsiYNwazvf+N5B+tP2MQ0VnAydLHMtkQjL0LlvnUJXa4C9J2PTvLGVxOzTIFgW3W1tbDw3woW0xp7OALKskM6k+PKRYeqSyqGxi/zHxjDOWaqrr504wxuXEnT5nfzC/beRzecplEtYgoiuGzwTLXNEU/l0sErQ7WVUKyF5G0lbuWm1zs+1qXwOmH2fDuQK/K/6Wgg4EGtl7nZe4K/HBB4OWPzhuMDzVhsfEqL81VoZada6Ey1X+VK5kUFnEw2ZAXZPhisf8ul8PZqiIDqZqFmUGlYhSAp/UMjxyWoCr3Nl7EhWEh/IRGYKDqfdYZmSUJ4Ny7LQSkVUjxfF6aSYzeB0u7GWqIP/rkMQpo8tsqp7QRnjdwrVSoVSLoOA8K52s0xdn/7+2cIE71UoDueyRtHmYXIVulKyeKkoZbMzIgVLPF+WZZEaG0WaTKQXE0SYgtsfJB0dxzKta753IZQLBd7qKyI4fRwZMwm9cZRX++uYpki9lEbxhtDLhWlJ5XcTkieEOdmJucWRuYWl4Ox4naBzjPZ4lotjRc7nfQhFialAxrIsrFoFweEiVoShwVE6u1o5O5AEFFTK/OqTW/EH/Rw7eo5nj1U4FVfYmC6xccsaWoC9ffsZKy5/31pcGuGAj2+/NEC85p7LBVki9vaX8ainMJF4/miRiizOBP+ik6BY5DM/ezeiJBEJXuLv385de6PLgGVZjGZMxksWmDJrGutUazrDBXXJ3erz4xqrzw3jUCSOXbBH4RSrwsdu8+P3ODl2Ls7RmAtBEIgWZrZZM0RYQFGst1Wls9t+7ve0uFEmA0dBgKpWoZTNcP/Dd8ObJ3m135jezz0bQ2zbuprk2Ch337WRvfvO8kq/Pi+Z2dTpZvt221slkdN4tW8Rc+5FIIgST78xSm9/iuG4huXwcnCoQnNbBW/F4PiFNEsZB6xp5XmTMA7H8gtPjWqVhx+0RRgUSeTy61eqLiyM8dQwhltCqpi0ha/O4W1UG0kOjCMAjZ4IlWqJn7mni0dkAZ9mXx9dNzEmh7TqpoBxhZHkS/0xSoqfTAE6jhznJ+NVSsU8ijuEoRWQ1B6QnbwxNs5/jBT4o5RJj5XkZ5vm/q7ytTq/MygyoLv4Z+EcjwQVIkaRuBQmYuT5x9kO8q4Gvjw0ypjSiOhUednq5ULmNBsaZsYmj+Z1LjubEYCXKz5+LpNjrGrwaMTNm+4MFcPgX9d0Xq5XESSFkFnB+R4qDM7GkhIZQRAeA/4Iu97y15Zl/bcF3vNzwO9j24KesCzr51dwP28KFhv30Ws1MrEo3lCYxMgQka5uKsUilULhxgLLdxALBYWmYVDTtHd8tKyYSdPQ1o5er5OJRa8rYF0JCKJItVLBMk3Ed5FDcyVyyQSmrqM4nStq5qm6PWSiE5imSTCyfA6J5HCglUqoHg96fWmuzdl4jHBbO6IoMnFpgHR0AqfLtaiP0JT/z1JRKpQ4dPIyAbfCjh1rUT0eIh6ThA4BWSNddmKKThBBEOVJA7WVFTW4EYiOuQWFKUNNyRVY1EzzFpaGn8Z1yhSdvDUEDFWBK/xPLJP7ewX23LaNg8cGeO28wt+8OIJiXqTu8CMI4BQNvH47aQ74VMBOpPsG06zboDM0FCVWsOaWnJcAoVbk85/ahj8YYEcyzR9/u29JHjEz+26xu91gw+oOjvTFOJ9ywLQKl4VZrdhS6JaApmm4PR4qi8z9XzeMOh/Z4WXj+l5eebsfUVL46KM7sSyLv/3OfkayIts6FQrlGhfSyoLdDYCK5eK7h6YyQTuA39PrZPOOLfZfVCdHn70Mqo/+pMRT3z+I6pA5OVoHcX51eyiukU1nUVUH/QmT8ecO0dro5fCFKif63+CXf/FRAHZu6eSVs+dRZIFtnU5qpRyZeGxaVv/uPRt59dQ+UOd2XCZSZTRNw6EojMWuLcc9hYBUYU2bm8FYhXTNxcnxmeOt4JoUJ7AQhGsnMT6xwn171uMO+Hn9pX1oODFPJzg9bswbh7wWCjWRRCxJU3MjY/H8tT8A5HMp5M4wbpeLfDLB5egFgp4wwUUKXk6ni3bnTLKTqiQJ9tixYHEkBkCkqYnPbMzQF8uxOdLE3nODOGWRe7ZsQBRFWr0KF6vgNjWKdYWaqCIIJZBtLzxr0q9JRyCtw6DupGIKxKsVupSZeOXFpM6bjvXggC9mLX6utc7XWhPsLaRod5T4jYqt1JYUvdxRH+awYx27ayOsDswtnt0ZdLAhM8o5sYFdVoLPJHqpKW4+f+kC/3WNEw/wfzYafPHyRU4XBHo8Crmag0bXey+ZuWY0JwiCBPwZ8AgwChwSBOFZy7LOznrPWuDfAvdYlpURBOF97fxWSKdo6rTJYbVKGdMwcHm900T/9yOmSNWq20NqfOyqZp8rjakwUlaUG+5omYZBOjqBKImoHu+yBBeCkWaKmTSCKM4xbHw3UcxmcLrcqB4P6eg4pmledwflStyouao/3EAhnaZcyF1VhWw2nC4XWqmI4nTidLkIt7RSzKSnE6IbxQ9ePcu5hIxlVpClS2zd1ssvfWIXly5H6erooVjUuDh2Dq1m4JI0vEqRqPLuyUdaeg2jlAVRRBBlJE9w+jWjmEFUvQiygp6LIy9B7vkWFsYHcZ0SqgXuv/ceZEXh/nu38dap1zHUILKpo1CmYijcs7WBkf7zVHSR107OVMpPxRXOfvFNdMmFIC//92EJMxVnwzBhkSB/MbiMAh997H4EQaAx7OXcdy8hyAqCUePJ2wKsW7OWH79xjpMxD1995iQtYSfnx2ssNehedL8ti6BUom4KKA6L2++4A4DbNrdy7nJq2u/M63ZwT7OTh+7fgmVZfOXb+xguLH2qoVA2pr9vdGQCJpM8QZQ4n5wMBBdIYgDSNZU/+fYZREx02QsF6EvYfjk5Q2bvvtPs2tbD/qOXEBWVe9YpPHifvZ/PPPM6na0Jdt2xlf2HzmE5vfNy1Imyyp9/4wiSYJLRPUtyjzDrVX7+8R4iba1k0xn++FtnsZS5iavdGZq7MaGax5RUhCv8btoaHDRG7HFpb0Mjrx21vf0Ql1/MqQkuvvyDfkKufsaL0jVFDsCexskXijhcLrRSicjm1Wj5Avl0Br/v2iIsiqlQLZWRnQ6o6Ewpge/ZtI49m+Dpt4/wVsKyffaMMzy0cyu/9uBufnL4BMcHY5zRPfj0OmXTwl1N43ApfFzvJ2P5+GyLxv9nRCQjimQMB9+J5fgX3pn7fpNHwFvIU3T42SKXAAfr/C7W+QGc/POhS7yhefh4oMRnmx30ZU+xvsOD44ribYOq8MP1OpnKEM9mHDxftw/ibU1lKmpzyBIPNrr403gHL4geXrowyO80lXiy2bViccpKYCll6TuAi5ZlXQIQBOEp4GPA2Vnv+Q3gzyzLygBYlhWft5X3ETxB2y8k2NxCtVImIF17vStm0tRrNURJes8EybOhlUrTHIlq5Z0jGpdyWXRNIzEyTE3TaF7VfUPbyyZiNLTZjrvpibFlK8ctt+Oh1+vkEnFEUcTp8ay4Up1pGEhu+2coitI1eSKWZZEcHUF2OMCybvqo3rV4PvWqRi6ZRJIkJIdjOvnJxKLT95vq8VIu5FckkdGqBmC7l5c1u0vk9XvZts32wwmG4Z//ejOWZU0/aP/gS8du+HuvF0YlP52g6IXknNf0ch7nlHLZAouCno/bcqSWhexfPkfqA4YP3DplObwcOdrPnXdu5ujRc+gOH+1ujS88uQtRknjuhwe4/Y47ARgcGCZWUXGisbFdZSJdIUZwuY2YaQiYnD92ku41XRw9PYagLO+3XRUcjA5P0LmqjeHR5DQ5vUHV2bnLJkbv2tTCyViKuKYSH4cbTWIANjXW+fST96CVK3z1e0c41zfI+g3dnOobpmdVM4IgcuCtQ5wZN3hos53gCYKAfA3fjysxGCsz1HcGh9MJsmO5eR6m7MbElrfuDtjPucs5BUGS+fGZKi8eO4rgsJMQaZKMLwgCLY1eXj9b4IUjr6M7fHM4NLNRMCcTq8kbYHWwyn072xgZz/LKWW3emKBcy+F22+dDVZ0I1eK8ROZKPLhK4+779jAxNsHXXonOkWUeStQ53zdAOOjl5IU0C2pJLwMaLiYq0+rN82AYBqO5EQSXjLuq0Bhsxl+oUR6IIjvtY3V4PWgTiSUlMo3BCLl4ikxuArfHi6HbBpeaViJfylGo1gHbnLNUt9d0l8vN3ksxNG+7rQJXmeALd27ktg1rAfjEie9Obt1FZYxpWf+8nprz3ZsDKk8zwWBllIcb5yfX/3SVi3+KydT46fbGhYuZ57NFgopMs8eNL5Whno0hiBJ5vcrs6/FSokJFdmOWspwuwz8preXyyCX+2Sr7fnhqXOO7RQ8PqCV+p+vdKRouJZFpB0Zm/f8ocOcV71kHIAjC29ht/d+3LOuFKzckCMJvAr8JvKMdgeXCoboQQgLZeIzG9mv7n5iGQb1aJdTSilYqUcplFx2lebfgdLkoZtK4fH6MJY4JrQRqlQotq23VtEx0wg7A30fIpxLT92o6Or7iiYy/oZF0dBwBAVGWr2mUlY3HpiW0M9GJFZVPvh4UMul5PBpfOIwvHCY1PoZWLGCa5or93j9812peP3QZn0tm1/aeBd8zpc5yJYxSBss0EJ1exCX6xMyGWdcwtRKC7EByLc1sVRAlLL1mVyRnzUwbxQyKvwk9F8c0dSTn3EDQKGWRPCEEScGoFDBr2nXt8wcIN2WdkvzvvaLUFARR4kcnyrxy7DWqohtBUuhqduCeLBgEAm6GLo/RtaqN/ktJQODx2xrYvn0dWrnMnz11lKK1/OKCZdT47L0tbNiyjvjwZTZt6ORQdGm8hOltSCpf+8kQTd5hogUBYbI7kanKXLwwTO+aTs5ejLNs9YBroLPVjyiKuL0emhu8PPVGDOfrl4kEnTz6mL1OBRoasMQcb/Xl0WqnKJZqDKTERYPkecdmGjSpZdp616I4HOjmALDwyJNlWbSoFVSHxOWcPC/x2BQx+bmP3QXAt549SF9Csn2unDPTIW/15aF+lI1rItxx1w48/kG+d7i4rCT1nu2tdK/uont1F6cvv028OjeRMZ1+4hNx6ppGIp7CcIWuun2xlmfr5rUoTiddq7uJ7B1krDqTyGiofOPtLJipBTsoglmlxWuRKtneQbKp8aFtAVSnzKvHUxSM+c/CgKzx4V1NVKo6PzmenZM4JbNRAuvsWC43NkEj4PeF8BMilhknPzoBZZ3OhqWLIVkCOFdHcPh9jF4YocXTTMzKEFjXyrZSCuNCCack8eDm1dOfkUUBJqdS6iZ8+8QwO9eunjYPBziSqdBqWYxrJVRR4JHG+Vnw+oCL9YsMW5Rrdf70cokUDn4hIrI1OP9c/cWwxv9TW4vfKPPV5hib/Cq+igfN4WVTbUbQqi9b4c+NNdRSl3CEO3A2B9FzMYb89rmt1uv8/7JNVF0hDtbqPJjuZ3N4ZY3Il4KVIgrIwFrgQaADeEMQhK2WZWVnv8myrC8CXwTo3rr9vTO4vgAUp7pkLodpmtMBqKTI1LSV7XhYlkU2Fp2ueF8P3P4AWqlEMZNesjmlVipRzmcBcPn8i/rFXIkpDxtFVVGcTkq5LA6Xa0WEEkLNrWSi4wiCiNsfvOHtXROWNZMsrLCB5BSWIznsdLmoFAu4fX4Mw3hHk5hyIY9WLIAg4HCqeENhJEmmXtVQnCrGFcp/N6NY0d4R4ec7lj8RZJRzCA4XkqKi5+LXl8iU7e6KqRUxteKSCPuSJ2QnUJU8kmem0meZBpLqRlTd6PkkknvuqiTIDqxJkqWlVxGdS+cf3MKiWPY65Wxd+55epwRJpiYFpoPKs8Mles9fQhRF+sZ1DlwaxiVcpCh4EQQB5ySZ2uF0IgvWddHH3Ghs2GKTxV1eP/v3nmOq+huUSlgI5Aw3slXlvo0+RFHgzbM5alcQwGuCyliJOSYWhujga6+M4Xz5ElXZv6SxJ4wa96xV8bgdvH02S8lc/Ld99EKWxsAlKlWD8+NVwk6dqqEQKwrTQgl9k0IJWNA/nCehOeb4qFwLd64SuHPbzungtFBZnNvT6a3yq5/ZgyhJPPujIxwbn/u61zMT5PvcThYSB6ihcuxymT13RZBkmVp9+Vyi4bEMq9esIjqeIKsJcybEbBNnkaf3pWkL5RlJ6wjS1Z+fhuAgk8ria2ggG08QK8rz1JEFQQRp4VbVR3YF2L17I2OjMf7m+Uts7HBy15222lupfJaX+6rzPnPH+iBbttqdeQcnUVweXj1mN11Vh0qlWEL1eqBmzNEiaA5Nrr/L1EOqGjVcfnstEtwKhUIWZ2eATHQCf8THZwLt+ANzJxp+68N38vTeowwkNURPCI9szRnRulyo8EuJdkp+L+35If5Pl8b20PJ27Hf6q7ws9yI6Pbw4FuWQr4JyRYH0dc2NpSjkpAB7iwn+UYeDr1tj9FUEnmgVmerIJGoGVYcHyR2Y9kALUOc3G+1RR1mSiFBhhBABo0zY+e7wPJfy6xwDZke+HZN/m41R4IBlWXVgUBCEfuwF49CK7OU7iGImTa2qgWXZHIwlcAympI4zsSiWZa64F8YUp6Ve1a7qd3MtLJdYbXMjZroRS01kpjxsyoU8pq4jSjKVYnFFhBIEQXhHBRdCLW2kJ8YRRAFP4N03MHT7AxQz9uiWN/jO7k+1VJo+91Pdl0BThFwijmGkCTRdX/W6mM0gyfKS76/rgaXXZ5KF5c55TGFywRGcHoxiasnKY7MTmJm/BdFzcZs7M4vkb1kWei5md2K0IlK9iqCoi46I3MI0PlDrlIrGo7sbUGSJHx9JkJ/0b8kbKl97Mwtgk64lKKFOx6UvHoqTyFQZi+XJGEvjR1yJMm7e3nuS7ZtX8faBPo5GXQiCPZ708x/bg2GYfP2ZIzQGVe6/xyYeV6qn2DugY1kW7R4NhywymJ3fgQAQZJXarH2+FtZHRD780HYATOssL52ZH+ROIVlVp5XPtjZLfOKjeygXy3z5mRN85ccjyOZFdEcAJxq/9tG1RFoaefW147wxsPSMr7M9SLilldT4GBeHUrx9vsRiKl4Br2O6CBoKqDA+V0Hs+GUN71tnADh2uQKzugw+SeOBbQ2UyjVe75P46tOHiYTdnBmpwBII97Px2vk6p4feIl+VqIszgbNH1Pj0g+14PCrPvHqJi2kZkBHMKrd12/ty+HIV6wojVEFR+c6BHJFjbzFeUtCVpT/bLdOgo9mefGhrj3B3z0UGEyXqtRqyopDIlFmoUxdNFLAsi1q1SldnhFBzy7RARMDXgBFPoMWKNKvLG9OtVEqk6mlqtRp+3DQ22uPcATVAbHAUnBKqJhEON3N+5Dyt69dR0yrURudbdXS2tvDPPvUE/cOjDCSybO+MzClGJqo6RcmFAJQlF9uCy9pVAC7VZIRJpbuC4EKrF+YlMh/3FjmazdKExocb7HO0O+RidwheipdJpnU+GXFyX5OHf1i6wEFZplIsgOLk33eW2Oh38SfDFX5Q9nOPkKRbKXNXyKDV8+6o4y4lkTkErBUEoQd7YfgccKXSyzPA54G/EQShEbuFf2kF9/MdQ71anU5EMtGJJZOlb6bHhiTbs5YO1UUpm71p33MlLHOmG2GZS3+QT42PuX1+MtEJvKEwLt4/Qgl2YK7jCzegOJzvuTHIlVQ2Wy70eh1RkuZ0X27k3p/6jRmGTj6VxH8dfjlLgeQNoediIEoIy5x3n4Zl81wsQ79hYr4gyQtuwyimkQMRe3xEFBFV37KqwR9g/PSuU9UCpuhAVGaCxc2dLnbsmJTQzWq8fn5uALxYpzZbV3mlrwo45yQxfknjQzsaKWt1XjmdX9RXxrJM9nQLtDb5ee7FY/QXAtPbaWvyIskykgwtTR7S2fL0+pEvVgGJnkCNX/r0XQiCwDPPH+bEAqruIUVjc7ePyxNFRouL82Kmtl2o1DENA1GSKJZqiGaVR7f7iTR4eOXIBCOFhbfR2RZEEAQ8Pg8tQQfpmoQ+mXAEnSaRFvtZ1NUWhIHMovtxJfafTuB2SCQyZV48XcYlWawJ6YxkDKpX8Hz6xuu88dYZ/G64NJTEMj1zkru64OTVyWtr4UCoZLGcNvflvo1edu+y74Fo+jB9CYmxsrXsJAbs51GyJuEVCliGhT5ptri62Ul3ry18tGV1mvHT9rTJzi4HTzyyEwDjxaMcHZ2/TQ2V4ZoKCqwL11jbFebkQJqRwtXHywVR4uVDozyo68giPPjwXWR/dJy/fOoQThnGy+qCCfjJmETsa3txilU+93F7qjSaKMDktFg4cH2FtlQ9g7fHjgnjQ0OY2SiRYAuq6maVOrnxycvq9tgJm0N1oVmLS4Wv6+pgXdd8P7fbGrz848JFDtS9fL6hiCAsPzH4N+0W/350CCQH/7KhhE+dX7z+XJubJxuSvJDS+eOkm8cqGh9tVvmt0wV+aDRjmTonyjn+6xoX/6Zn9v2kAy4SpTL/s9KF5XRz3mziJ57zrA2+8yNlU7jmCmlZli4Iwj8GXsROg79sWdYZQRD+L+CwZVnPTr72M4IgnAUM4F9blpVafKvvXZimiWkYVzXIfKchyfK014bbv3SOhl6vk08lJknhbcseQwq1tJKJ2SvNcuV7pzxs/A3vvn/HcpBLxHH7/ShOleTY6JLNIz8ICLW0ko3HMM35vks3AqfbHpvKxKKAbcRZymZxut03pLo2G4IoIQeWL0E9G+8E4V50uDC1IpLLj6XX4VYnZkn4aV2n1oZqfPKx24jFMzz18jDaZKAdTVeoaVVkRWY8UWRqFGRDQ417d7QxOJbh5TPzSdtTsCxzjpzwHRsCbN9hk44r5UOcG6+QqM4PotxmgUcfeQBBEAgFvZyfVBsDOH6pQHPoIqZpcfpyiZLp4G++tQ9JFBjM2tLRAa9zeh0K+FSYqGNZJp3eGpIIg1mZn72/lZ613WiVCn/09cNowkwRrMun0d3mI5fKcMfO1YyMZ/nRiSpf+uYB3C6ZiwnoCsIdd9hjSHs0nZH9C/NTDvalCHoHKZZr9Mfqc5jisbLCW2+fpKMlwNsnYyyHjD5WdPJ3b9iJj2Ca/MJH1tDaFuHCuUt8/c30dKLS4tLYsMpPMp7m7o/uYfvOTXzvh4c5FVt4u3d3W3zogXs5eWqAnxyO0RGxG5D1Wo18vgwsLZDsCdR4aHcbE4kCL5zIT3dTdrbqPPnE/SRiKb76/AXKlspIoko6lcHtcXFhJDd9HvRZ4ZF+jVDJqRf49Ef2oDgcrGqL8WfPDSFcw3PoQtqBpy/Jxx7fjWkYZItV0nU31OeadFpGDYdRpibbyV285gbc/OW3juNxwETZyRduW9JpWRTCrCKu7JCpC/Z4X61eJVtI4VRUAj67uOirO8kPT0DdpNW/ODXBsiwO9fWj6QZ3bVyDokx5BQn86x4XpZrGfxiWebpf4F9GKuxegOeyGB5vdvH49FI3P4kZKWmMVnS6HAL/pthFTfHwk2yRPd5RXrIi0+vcqczij8ag6qTLyDGEm9Z6lojr3eU+L6nUZ1nW88DzV/ztP876twX8i8n/3rfIJeIgQCYeQ1aUd9W8cTaut0qdS8RpaGvHsizSE+PLDj5FUbyuMbl3yydmJWAaBorTfmiIi8zvfpBxPX40V4MgitMjiPLkwzyXSNDU2UUxm6FSLNzUkbP3GkSnG0MroheSiC7fuyrk8H7DT9M6ZVkW6xvq3L4+gKnXaYmE2N42TF9Mw8LCsgT+7OsHkGSRdN09Hdzdvb2N9u5O2rs7OXbxLdL63IDRMup8eLPKuu5m3j42ysmY/XoibXdP9HqdnZs6uH2XyuClcbw+Dy8dnmCibD8TNUtlaHCM7tUdDA4nptXGAIqGytMHC5P/Z1fNR4p2MjSVM50erRF66zQOReJgfwFQWRvW+flP7EEQBJ7+wSHMSS6iaZpY1gxfQzWKfP7J21FVlcTICA3trbR1tXPk4l7GKy7bIkeCZLFCMp6ioSnM0FiWOSScWUhWVf7+raz9P1d2MSSFl88ZcO7GFLVkq05jYxCApqYglh5DcEhYdY1PP7mOhqYGYkND0+PpTWE3xOYbVFqmwa7NHciKwq5dGzhycojG9g4y0QkKuQyFZXha7tkSobOnk84eODk4Y4a6prsBQRCItDTS5L/EUA6yusqffecsEgZ1eeY5fHJUx/zBYQBOj5sgKQRljbXtHi5Fi6RmJcF1ZPK5Ig1NYbK50pKLM8dGLTLf2odWN4lWXPO7MEaNz9zdyKbNq3n1teO8Oau3WjDdFLSlTRFblkUyHcWhOAj45xdem9xNDJ++QMEs4ws34qzb+z9enCC4tpNyvgDpFIrkICeWERQJV01GkRe/b94+1cd3BooIgkiyeIqf2bae0XyJDr+deHw7bvBdaR1IYMZGeSp4bX7xaEnjfFHn7rCKS1k4tD+f1/jsRDMZxc8ntdM4JIMa4LR0HJLELqnAIZqQign+aevi36lIEl/rKvBWvsCeJoGAeuOKgjeCWzMLk8jEovhCYSRFITU2SmCJvhnvZUyRyARBQBBvBURLgTccJjk2iiRJ04H1Ldw8BCPNVIoFFNWF0+XCsqzpRd0TCJKNRT9QiQyApHphifybW/jpRKurwuc+fjeCIJAYHaGqVXns8bu4O2sLbkQ62vnxK8fZN2jNCfAGhtN09nQyPDROvibNi+EDQoFNvXaXede6ECeiBQRB4PgYxL+xl+2dTu687zYy0Qm27bL5LXeUdL5/xE5QLNnJ118eIbR3mERJpMNvEvA56RurYhjWNUUpDNHBa+frQJ0p3ojfM6tL41V5bl+UjaNFhmJFquJMRdkURIy6TdSu1nUEQWBkeHweOb1sufjrZ8/jlg3S+kyS5xaqPLg9hK4bvHoqR30yeZHMGru6nVTrJifH9OvyMpkNFxV8TotYWaGu+Pne88dYv7qBExdSCJJMp1ejVK5Sq02qh0oy+/adQnU5OdifZyE+jSBKHDs7zsPNEU6evMiY5uPQvuOs7m5mZLxAznBPB+2WaSDVCxjKwvLLAyNp1q7vJh5NkirOBKtH+hKEfCoTsTRBF0SCAkcHqxiTUtBzICmcnuocSRKWXuczj3bT1tFKNpPjT755CnNSktuUXfztD8/T3uBgMF5d8riUIEoMFez9X6ie4xU1mkNOsrEoa9pcvDFQWtS0NJ9L4fb4kSe7h+VykbiZAkVCS+WIbFpLpaJhxBPzRtAcDhXFqbKqt5diNI7bYR+X4LLDZ5ffhxaPUTGrhFbbv63CWPSqx5bV9Ol9HUtl+K8/PsbvGz38x8IQv9zuolUxQauDpNAi17mWet9YSeNTIw3EnA08lB3kb9Yv/L7jJYuswxYHOSM28ucNE7xaTPJIk45fVfnKmjr7s31sbJZpc199GqLTq/L598gydSuRmYJlTXM7BEmcnrl9P8Pp8ZAcH6Wcz+F0udHr9ekg8RYWhuJw3hone4cxO1ERBAHTNMnEoui12nuOn3QLt/BOwLJmOCCDYzlCATv48wV8GJpNIm5u8GBdzM7hUL12vsbxwTcp1mSMWcpSKhqtQYmg0zXdZZ8YPzmdQAiixETFTWlAQ3Sdo5DJstvpxh/0MzyRYXaooIsqiSo0e8v82s/ZilsXT5+lrauTH7/Zx4no3DWmwVFh19oQYxNp2sMKfr+bl4+myGKPSZ8c0fC/dRqfEzLpHLmqwv5BnSsD+pro5mvPnaQr4qFvpACvjlA2lDnHOYWq4KJqzA2Ad6/xcvtuO8JL5Y5zZMTu/Nzeq/Loh2yxgPqzh+hLLO0aLQQXFX79yQ00NIV55bUTvDlg0pdy0JcqAA7u7IHHH7mdmlblm8/sJ9wQZzBWIlVVsfkHi48QvT1osf/c6xiKF0Fx8ZOLwEW7YzQ7iXl0i8qdd+5i777TvNRXnxfcH7hscfHLr9Db5mFts4OT4zqCJDOYc/LFH0fZ0GTyuY/ZRqHKqyfZe2n+7FjYodEadnAxWqOKimUZOCa7AIosE1GrPHpfJ7mCxg8Pp8kbKvm4fYZWCrJoEW5pRZQkcrkScjWP7gzM62KPpodwdDSQTkWJ1IK43T7ytRzByYQ+XqsiShKq10MlXljoq8AjI4oi/rYWihdiuN1eVE0iNzaBVTVo8zRTrpao5PI4fV4o6wteymq1Qr6Q4Y6eZurWBRAEaiWVSzkVRHix7OGXMXm02c1fMsC4LvGZJpFrJTL9RZ2Y0+4mHdM9gDbn9cv5Eh5Z5OGgRPOZ84zLIeqU2e2Xub/RFnAA8DgUHo68/2LEW4nMJFSvj9T4mO0JU6uSSyaQFOW65Y7fC3D7/GjFAp3rNyEIwrT62S3cGKY4HP7GJiT5+n9CmegECAKy4rim8eRSkY3HsCblwG+mAMXNxK179BY+6IhqLv7+ewdpCLg4MVQh5CpSrlqMRdO43Q5aUkVUNH7r8Ta+/8YIMc0e7RAkmZzhnRP3CLrGL35kNW0dzfQdPzn994FYDZCwLMuW+FZU8obK8ycqgJNDQ2dQJWNRdTOXQ5ou9oUbg7j9PnZvauVEdK7x66N3tLJ2fQ+mYZCaGKOpowuvZ4CvvmlzV3TByfnhPP/gs3ey63aJl18/yVsXFyZeRCsq0SGDaSv1BeI7yzS4c5VId0eQ/WfiDOftc5OcFB+wTJNUrsJUpDlbVX8ZmjYLIuiChib7Wd7ZGpgnEhAO2oG8Q3WiuDwcHjam9wOjxu09DhyKzMGLpTk+KGDLFZvq1U1M5VqBPXt2IwgCe+7YyN5jL1JxROZwpQRRYvOaCB96YCsA2vcOciE98x1YM+fesiwiqsaadh/9owWSVRWnVeGXf3YL/qCfM6cu8p2DBURF5TsvDbBxVZwLYwVu295Fd69NhO8bOsz5ubcEDU6NTV0+Bq8h6HA1mIJCvV7HKUnIssC/+4cP8MJLxzg0MvcMGR4Zh8uFo8NF4WIMt9uHU3RSyRdQfV6MXInM2DiCbtEgL9yFEIo61XKFSjJNs8uOCZuDk9SDycvncKhI2SxaLElHuGveNmo1jQk9QXB9OyMnT/HQE7Y/0PjJi5w6EKOqCzzuLTGV7D3WvHTJ/bsbXHw4d4mjdS+/7ssyO4v66liFPyivxm9qfCkSRXQFkNwRBonwRuYcjzcvL3EZKWocLZrcE5BpfJe5MVO4lchMwuX14vJ6ycSiNHXaN+GUxOz7GrPMAW+Nl904alqFcj5PqKWV+PAQka6lG2jNRj6VxBsKoThV0hNjK2JsWcxmUD1eVI+HUi6LViotS277ZqGcz1Etl/E1NN7qCN7CLSwBgiAwkHUykDUBJ9EKPHO4gG3GYbGzs8yTP2N3Ebb05Igt4KsxBdmq0txiB18t7a383bfewuF0ci5mYWHy6FYXmzf08Mb+ixwZnwkJNMGFZi481gMwmJH4wYvHCPkUAm6BUHPrpInl3A5ARbNHqKqatui4rludMQP2qAq2FsPyYJkGq/x1xHqRxx75MIIg4FZlvvKqTVo+G5f4q2/swzAtYpqLRmeF1a0eLo5kefbFo9RqJudii7vDLwUTRZk33z5FW5OPN09E4QqVsn1nMyhyP8VihdFoBksITBPfN7fJ00pgDe7j+IJBDp+NcS4hsafbTswOnokzmFs88NcdPvbuO8WeOzYxcPYc/+ofPcGJ4xf4/uH8nM6dNctAyLwiezsXF/jOc4dxOiSOD2T4J5/fTSAUYFc8xZ88fQ7FYeD12euKx61Mr10xzUnsfA1wEh7NsHO7SSFXIJqdOxplmQZP3tNOV08XWrnM//r6UWri8tepvOnm7545TneTxN23r0MURbatbebQyNyWmljSMXSdcjJDaNJINORvJJ/OUI0l2NC+FUEQKJcLFLUCDtmB0zm3c9TV0E0+mqbR03bV4qXPG8TnDS68v/kMgXV2N1QNzIg2+f0e/v3ju/nQ0e/R4r0+vzCnLPHX68DuxMxtBb1U9mDKTrI4ebOYYIdSYgJoqGXY1LS8mz2tVfncaJgxZyMb0yM8v9F8T/A4byUyC6CmVbBMC0FcPtnbNE0y0QlEUVxR1aUrkU8lMSalcK9WefcEQqQnbDsF1w240uv1OvlkHAQBXyg8TYj/oKGUy02LGThdrhsbQVzhB4AoiliT5UXLNK/r/r0emIZBemLcll5VlDniFOV8DsuyCLW0khgZni4SfJCh5xP2tRdEZO+7J6V9C+8PLFTkGI6VyGXzOFUHA2N5rgyYZ6OuBPje80fZsLqBE+cTXCp4oACrw1VafSZ33WVX5u/c3sHh0bElexYJksyRUYA6ll7l2f2v2+pRs3bVI2qMTtSIJw7RP1GjKwTNjXHePldguqsCDCThhZeO4fM62deXw7KcbGqq09zo5ciF/IJO7ldiZ4fAk4/tYfxiPxODlwg3txBLFmf2VxCZqNgBqqiX+cInNhFqCBGfiPNnzwwgOtQlJTFesYxbgVjFOf9cSQqvnNPhXIaFrklOV3n2YJZP7gnxr37rEfbvP80Lp6sIgjjHyLKro4mGtnbCQQ/RZ0/z6IcfnE7MBl9ZXE1KECV+cqbGS/uf59/+zqOIosj2HWv54b7XMaTg9Pv29VcoV49R0XQupiVcYpU71noplGocHYEz8cnjEmcSz6nrWsTHt587TE9HkKP9GYQFpLpPxmQuf+UtaqZM9UpOjCBMJ0+GcX2mrFMYKzkZz9eINMbYuFHl2LkJrgxrO8OryAzGaXT5SGlJ0uRRazKR4Iwo0XDsEkaDk1BnC8MXLrHWuXbed11pbrlchEIRhi8OoTT4sApVipfGsESRBvn/Ze8/oyy5zzNP8Bf2en/T2/K+CgWg4A1BEqAFKTqJsi3T3btnZvrM2Z7ZPWumd3Z2Zvd0z07bkVpsiaIoURQd6GAJwgMFoLz3Vend9d6H2w+ReTOz0pYvEPl8ASpv3BtxI+LG/zXP+zxBXC7PdScxK+GLnjIfFkuEzBqf7DD4rzpUvpE+x8YWmV7v0r+rn05VebHs5pOuCn/YZV/D8VKdcTWCAFwUglQacTyOO9+VWUtkrkKorZ1CJo0oCNel0JRLxAh32FLHmamJW5LIaHWb/xhq76BWLlPO5/AEgotu63C5cLhunKpTSCVmzTGnJm6rKeVqMFP1v1G610rwhSMkRkdwer3Uq1UC15nE+CPRZsdPcbhuSlXD7Q+QTyWplYpIioLDdXvMqXLJONFuWwo0E5tvTV2vVJrqf2vdGDDKOSRP0Da8LGWxDH3NJ2YNS2JdoMEn7+8klirxyrE8pmQHjemGiz//8WlETBrSyhO3Z5MKZ5OzCU9ALPO7X34Q09CZHB6hs7+Ps5fjCKKEYNTp9FmkKxa1Vc40CLIDDccC2tMXHmxl2/YN1KpVjn//KEfjHojPoYbNQFI4OAI+Kc/udT5yqRTf+NK0zLP3Mj8/UmIlRAIusvEpOjduRhAEjhw8xa9OVUBcJMmzTJTp55GqKggLx9ltR3tBnPdsDilV/uwr9+D2unn518c4soh/ynKQzRphtcjWrbsB2LOzn18dOwEOD5dSIt//2UGcssXe7e1EgLGJNGXTQTKRprUtSiy58nkQRAnL3807753l/t09HD87ju7wz7s2hqhybAxAZn2owWM7w6zfanvS5J77kMGcZH9vxcM/vnyeTV1eLk0UEVT7ul1Iq1xIV5i5nySzQdilk6nKGKJKSK2zozfMcKzExFW+kIIg8sv9k2wZyTMSr9CQlu/GWJZFp7uKgMBExTnvegSkCn6fxM8+TCPsn7I9dhZZSkPhVhKpSdybOhFFkezE5LwCQd4o0t1qF9kUvxvDMJBWsbZXKiVM08DrXTnOyxbTOGQHasqgu2PbitvfLPxOpwv/xCAnGrbRpipLfLJt+WdGvlrj/5bvoOHw8265xuOFIfr9HnZFfPxB/grv1Hx81Z3H47g9McZKWFtBF8HdPhdjmlZzgE8QRSxzZWm+G4FlWVRLC11q7xaU8zmA21L1lxWF1t4+9Ebjhu+TWyHvHYhen+nX9SITm6RcyOMJBHG43AuMU73hMKnxMSRZnkdn+NhCkrF0DUFS7EBpia6ZUS3Y24kSkid4e49xDXcNHtjeSnd/D939cHLgAONz4lhduv4KroWAaZioTheJVJG/f/UtaqKtcvXZe/w88MB24lNJvv3iFXTx+rvverVMo1ZFFER7IH2FR8DnHrATn9TEBLqmoagqDX1169uBi3mUWpptqgN/OIKGssBx3rIsNoUatEVC/OyVY/R1RbgwNhugz6DPV+dzj/aSypT55cFUU+Es4lPwTNOqOlv9zL0gLqqEPSITBQGkhVVq0ajxB0/30Leum4unztDa3sbBkyMwvW9BlLiStYPni29N0XJ4ilhRwJRcfPfFS0Q8l5koCosnZldBpU4gEGR4NMmJkRrCEiaZZqPGl57agtmwjS7zqSSfvK+TRzWT5z+IUTCcJGoOEgOzKnNXwzI0vvZolG07NnDh/CA/eCfBl5/soH9jP5Vymf/4j8cXUMdyupODQwbLdRJnsCms8XtfeQSAH/3iIBcz9nuCcpV/+tV78Pg8vPH2SfYPOBedH7Isi0tjZ2i4RSIlF26/H0G3EJyzW/sVH8mxEWRFxUiVkFYxp5kpJKkFRQRZopKIzevwXI18IYPe5sTtjZAdmyByE6jkq8VYqcJ/V15PRfHyy4kY7/trSFetOydzVf4vU15E4N92lVnvlPBbDVKAx2rgkmYVcP8/GxxAA3AxUKzx85zMbofGM613LqlZS2RuMkJtHWSmJhFF8YaoXMvB4XJRKxXJxmMI19k5uhakJ8aJdncTHxnGskyCLbd2f9eKRq3WpHvdrqr/jMLdrYDeaNhGpoKALxxBUW+tRvuNzOcICPRs3kY+mSA1vtBAVFEdzW7NcqhXKpQLObAs/JGWW3p+7yQkpxejkkcvphEUx6JyoZahYxk6si+CWa9g1kqIa3LMH0sMjGfYsq2fZDxNumxiGbo993iDRqkF080/PH+czoiHM6Ml6vLsEHlHi60i2NoexSNfIH+ddbIeX53+DdvIZ3K88cElytbK6+HMMfgjUX788w/wBYOcHZ8dzJ+BZVlsDDUI+BycHqmhiU5avAJ7H3kAyzJ47+2DiKLEHz4R5c1jMSamB8qjapnf/a1HECWJEycu8cujZRYLpvduidLW1UlbF5y4kuNKBlocVSzdYv97x4lG/Hx4LtU8LtWq8ifPbqalLcqHH57l1bN1fEIJQzfYtTFMraYzNFmjb539fAyGQ/yHnw0gKo5mB8ErlHGpkKi50EQnkxWaoyVVXIyXAdH+7lIjjyG5EZbwKtne5eSBfXbVv6Gf4VdntcXPt6yQSuXp6Wlj9NIVEtky9z9oz149lsrx0jlz0WcU2B2rTREdh1ll02Z7tmfTpl7EN4abPLR6tYJXqJA2HAiSbK819QKW4ll1JzoctBkLlmURCrghY1PwAm6pmVS2hD0wsLjiWDwzidIRpK29k0ImTeLcZTp98+01eiL9pLIxHIaTQOfS61W9XiVVTYEoYJoGvpB9PcvZyrLfwTB0ZGXaU0mWbspM7GpR0U1qgn2fFAQVw6wsSGS+l3Fw0Wknb/+YGeZ/6Rf5m440rxcLPObXaPMsTFIOZar8/ogHLdiNXK3yc2WEXaFbQ49bCWuJzE2GIAi3RXXpdipSSbKMw+Wmra+fsQvnUW8TZWm18AaDv1FV/0I6eVtofKZhkJoYR3E40Or16xIu0DUNy7JQHA4CLS043Ms/yJZSaivns7PfOTZ5XUasHxVIK+jzY5nNQFWQ5Ga1dA0fPxwehYvfeY+qqRB2C/zBpztpNHR+tn9yVXMjyyFXsehuEQi5BcpzOj1vHZ3kobrB0HiGnO5alangYtixLoQvGMAXDKC6pyC/+Hbbow0e3N3B5eE0h44Nkc0WuTBeYbQUgJLFYp2Abk+N3//qw3Yh7/2zvHmhQW+Hl3I+C5ZFxO9k885tyKpKtWHw3AFbIc2yhNk5QmvpteLySIZdOw3SqSxTOY1Wh8Y//e37UVSVX79xgh99ON/vxasYtLTZs4EdrV52pip89QuPERsZpnPdegD+8acf8sZbx9nUH+XAqUlEZTaBiqhV/vSre3G53Tz/ylFOLKMztLfD4IufeZzBwQl+/O4U+iIzKpl0Hq3RsBkEXgHL0JqiAnMhiBLP7Y/TE04xmdWIekV231PDMi02buigdfAKyfri1K91QZ3f+8qDABz98BiR1iinLyewnEGbOjaYZNv6Vv7FP32Gd989yVuXTe7vNvjspx7l/Plhfn4gg7VI5+pqHB8s0eU9Tmd3K4pVx7JEBEFkOK1x5ugpgiEfJ85PAkv4jQlg6AaGrqMoKh5nBK97flItiiKtkU7iuSly9XEa5SqKJeKVfEiiSN1sEHQGSNcyeDbYa1P8zEXkfAFBklC05X8k4VArk6Nj1JwS3oaMGLx9Zttbgl7+VWmIN8pOyo0q/82wi/97e51+7+x9s1WugaYjWBY73HXAxZ6giz1BWCpN+IuMm6roRAY0SaWwys7prcBaIrOGFWEBqYlxBEEg3NlJPhG/JbSo64XicK6q6v+RwW2q1ORTyWbyUspm0Oq1axZxiHb3kIvHcLjdeIOhZbe9WqltSSwTYHyUYOkNjHLO5tlL8qopYoKsYtVK6MW07W/lj678pjX8RkIQRIr4QIQd61Q6e+1kf/NgtumDcr344kNtbN66nlqtxp9//whl7IB1KK8y9H4WuLHOz4WRHLu3lymWqowk6iyWkFiWyeP3ddPebatYZWKThNo6GP7FwdltTAOhUcJy+JtV7LnjC9I07eX0YJHtvX7aensJtXcwcOoE3Rs3MzaZZ6bXk9E9fO9nh2mLejg9VAacWKbBA30iHa0+DpxLkag6OZOQGfzOfhqWgiG56PDoKNNd4qDfCcwvLqQbLn79xnH6OoN8eDrG7k0tiKKIc67juSixfxD2D6aA+QF8S0DFPa0w2dHq48TU0hX+nZtbkWSZTZv76Ds+jMMtM5DQqc/pLE2VZdKTU6hOBdnrB5b+vDoO244GmdEiHP7wJHv2bMLh9VHTll6LFFlqXo+y6eCldzKAjCDY1LHzo0U++7RN897YH+XNS3H2bGlHVhR27d7E28f3k9Ht82BZJl6rTNWUMeX5hdJGw2TT9k24vF6e6ujkwH95B00J0BeW2Xnf9KxRQWfo6OLzQ63BDozcOPGzFwkqQSJtS1PPaw6DQKcd22RjU2RqRXzhCC5/iPjQOMocRT6v24c+kKZSL9Hft4QD5Rx0hqdjlDm1vmQuRsWlYzUMsppGaAlGyUSlzp/HJQKiyf+pS8Ihr+53aVkW/9NQnQOan0g9y/HAdvvYE8P8u+kmv2GafCcpoqsFPPUcT3QunWSZpsm/GWlwyXCh1goIkg+9kOC35ASPrL9zxtVricwaVkS4vYPU+BiRrm5K2QxO7/I0F9M0SU+MI6vqbaG+/abBG5xWmhMEPMFbp2rl9gfIJeIEW9uoFIt4VkhEFoMgCNeW1C6RpHmC4WZy449+NP1vroZRKSAH7O+iF1MrbD0fa2pma7gagxMlHqhWqdc1RhIL6VbXCuGq/95MRNQqEb+bv/rBQXK6E5TFu/iCIDI0lqW9u4vY+ATBUNB+pvhdkDGxjAZfui/A7t17eOOdUxwYsY92JK/ys5eOEPC6OHwxi2kpZHFyYSRHW28vlWKBtt4+jh2/yOHBKp+/L0wk4OL1IzFGik5GirZ/y7YWjQ2tEvc9dC8ALofEjz7IIwgCVWG2an8lafLmO6fweR28fzbL1edeECU+HIYPh3OAE/1iipagSiqd58OTU1Q0uJQUllRFuxLXOHT4HD6Pg0MXMgs+fy5OXUrQ09vGhTOXePaZPQRCQc6ducJPDs5Sq3TZwy8/mGJdp5eLY0WERUxDl8LbVyzGC4Mk8w2K5tId9ktJi+dfOYbbpXD4ShkEBxG1yoYuLwOTZVIVJ+/tP8Xm/ggHTk4gCAqnLsbo6u3k/IVhsg25qdT9QK/F555+nImxGN/79TCNuTM9qouz50e5f992zp8foiHaQ+vFqkmtWsXpcpEpLN21FkWRrnAvXYt4u4BNF4vXklgOkXI6g7+rnUqxgOJwUC4WcPmnA3SHRFSIkrgygSAIGDWdalSgrXcX48Oj9AgdqOq1/SbnJk7nx/w8oi3+Pf71pMILUj+YEJ66zD/vWV0icyRd4m/ZjqAKyHUJ0zQQRYmwaDBz8t9IVhmRW1C8YereMGeLF+ha4rL/KlHhW9Y2BElgizTBvwvEaFXgyZZbM0axWqwlMmtYFXyRKNl4DIfLNc+JfTHkE7aKlSAIvxlePLcReqNBOZ+3Z2NuscT1jKpZNh4j1N5+Uzi79WoVxeFAXGSIvanUJgjIV323m6WudyMwqsWmMeDNmEkRJAlTq9sUklssyLGG33yMFFT+/feOYCLe0KD/DF46GGdnvMJYvNTsxsxAtuo8sNGN1jA48RAOeQAA+xNJREFUPKKBuPrZQ1Er84df3UUgFGB0aJzvvDa1bLL069MVjlx6j3Uhk/vvWU/szEWOD9sdHJ9Y5977tgKwd3sHHw5PIQgigihxJg6BdJE/+twGFEXip28O8fZ5kWz6XT79iV14gyEEOcb6Fp1999vzIg9W9Gk/HnDoBb76uUeoFAtNz61sfomAWFJ574qB3dlY+bk8UXbwN2+kpp+pMzTRpbfXRSevnKoDi3eu5uJUTObUtw/iVgz+u3t2AOD1qAvmLmJVB7FlhvSXPBbBwYUksIxinWUaeIQqJ8YcWJKAhYpQTPB7v38/4ZYI6WSaP3/uAm9eVHjjQgxBsO+fw+MSp771Bg/vaueJrV4+uFhCExxs6Y8iCALdvR1E3ENMzbkMgiDy4vEi751+j6KuIEwr92V1F3/93HECbomhNIsKLCyFWq2CojiQJIlcJYt/o732GJpO8th5qkYDf187Hn+AifPn8fqCOGsSashJt2onRJdjFwi22DMy4b4eCpeSRKPXxlSxqjY1u16u0Fotg7x4N0QWZruvuVqVv5mAfR6T3cHlaf6dLoVwukBWDbBFrvG7jsvUEfn9ttnQv9cpoWgV9GIav1bk4a6lf+thWUQyNExZJSQZfKPzzszEXI21ROY3ELdCBMAONFc3G6M4HNQrFZweD4Zx7cZmH1dYlkUmNkVrbx/Z2FSThnUrcS3XdSWkxsdw+XwUM2l8ofCi8zJ3EyVxLuw5FAvZF0UvZRCW4JSv+vO0OpZpYNVKmNUiksfudlmWiVHMgACyb40ytoZrw4zUsqU3QFJuqPiQ1528f0VjsWH3Bza6efoTNm2n+tJRzsQWvl+26jy40YNhWhwcqGJNe46IgoWi2qGF06mAtXgS7xMrqJJJyvKQr1T4/B8+gSiKhFuj/OLIYQSnk5Lp4NKZC2zcvplSNouDBo05gfnmLjddvfbMwra+FImLDU4kBKSDQwR8kxy8UEQWTfLZPP6gn5HJHDOJhS6oZDJ5WtuinD5ygpMjdQYz1qpUwVaDWzrM7fRTAZ574QjrekIcv5TBLZqEXAITRRFhOqiPOmps7vZxZbJIoiyxo11ElkVOjuvXlJxejUfWCXzyyUe4cOocPz+Y4bHtQfZuvwdZtc+tJEnN7vtcsQBBENiztY1PPDF9b9VPcmjE5NDZOD6vg/GpHLGyeLWnKoKkUrDUub6aAGQaLjINEKjzzA6V9qiXN49NMVZc+hpOZScwwip6JU3E9KOICvVyBYfHTcPSaLt3G/FTF3C6PDi8HqS8Rq+re0Fe53cESE+M4Q4EqSdzbIxuvubz2B3sZejERURVotUyWfDFp/H/6DSIJAYIoPNzLcxgo5tAKc8rSpxOz9IxQpfHyT+2xzlRjvNUm0D7VWtyTdOpag1+2KdzuVHlCxEJ3zSF8tVYmYoJX253NQuTD0Xd/IUxxMWGxDfaLFajOnc7sJbI/IYhMzVBoKVtOii+M0PT3lCYQiZNtVRccW7idsI0TRrV6l3hdr8YauVycwA+1N5hd0ralpZ0vBFkpiYQBBFD12/afJGkKHgCQTyBoN29W2Hw/26CpdURnfZ9ISpOLL1x3YmMqdUxayVkXxQtO4USmk3ejEIKyd8CloleSCL7b69c9ho++rivU+exfRs5c3GC18/Wb4kPkdaYLUBp2iwNZS7uX+/m05+wzTRr9WOcmLaQ0mUvP3zpNJu7PXglnX/yqTZ+fShGrDob9LS7avyTr96Hqqo89+IRzsVcXLk8xuYtfVy+PNGUJEZSqZsihVSS/m3b6Dh/mJE5ogFDsQr5XAFFlhiYKAK2OtaxcbAlYh1gwLd+dga3bJLW3E12qyE5+fuXL9MZGmIkpdt0pts3g70kLMvCalQR1JX9xc6lFHLVFD7F5Lc+sYnWjjb2f3CaN87rWFqVbz67hUhrhAeyeV55/QRff/ZJAORfH+fo2PUf45b1LWSmJth53x4U5yV6ejtw+3xkYlO8dWyQi1ONJemE5XKj+f+lagOQuZRRufjStBnrnESyw13jwe0tjE3lODIuLKmg1hWAhx6yu1MPNwzGPlxCWQLQXdjrbBjKg3HaA51k4knixRGi2zYgCAKeSAhPxqIeS9ETXlwEpy3Uga/sxapaeNpWX6DLFdPUrDoeyYNp6ng2deH0enjJyPG7qcWNiaIulf+hDzRD5D9fsM9rTvaSqk/QuUg4M1Kq81+PO8mYMv9zS5WH/CLfTYrscFR4tt3+bRmmyR9dkTjk3Mne+ig/2migTs/e/GCyyv+1uhkEkaGxy/zLvtlk6XNtLj636m97e7CWyNzFaNSqKA7nNVV2BEFsGkIKt4T9vDrcCS+ebDwGloXqci0wCK1XKhQyadw+H4nRketS6LrVcHo8JEaH0RoNaqUikc7uld90HdAadWSHE384gmkY5JOJZVXwcok4kqzMUxlb9HPrdSzLophJ4/R8tOSCJU8QvZCw+R+WeUMJhlkrNrstomIPEzeHpsVpgz1Bum2iDmv4zYFl6Dx8bx/BaITHohEOnHuHMqvjp3d7arRH3JwdrVBdgW50eESj+tJRNM3gQlJcVLms3tAB26C5WteYO8A+VnTgTtb55pfvB+D+QoMXj896kbUGHTid9jF0tfg4n6zx43enCB+eIF0Rm/QhgHODWTZv6mFkcIKpnDlvqCdVd/KffngKEQtdWfqZU8NNTV/4kyubTi6nAWH1oZCDOk/fE0SSJF4/nqJsXlvXPOKosq7NzeXJKnn9qveaGp/d5WLX9o28/f4FjkwuX0zp99f5o68/hCiKpCftGcPOFh+czwLz559EcfZfkiiwoqnPMjh4aoJnHrHV2Lbs2My7r+3n8U8/ypWxLO9cMRGW6WqdjQtUf3IAgMGc3Ly3FhOW+NR97WzYvI7duy2G/34/aX3xa5wpm2SSacItEUan7CRGqBcwF6GbCWUDQ9Opl0p4pj2SwoEWnIqTxFQSQRHx1BX8qyjCuj3XNuBeKuWpBgVcwTZSYxM4awIur11sLnv9sMIopSJJ/KtQmp+U6jzmKLE7vPj5+HlW4IzDLlD+TbZBMSly2tWDWKzTrg6xL+xmoljmoLIFATimdjNcPMfmkP0sGdKU5vUYNu6OrstyWEtk7lIkx0Zx+XwUUin80Siqc5W0LqfTdle3LBzuu7PzcCtQSKfwBoNNRayrE5lKsUDLdOehUixel0LXrYYgCLT1rUPXtFuaCEqyglarAVAtFZeV005NjBNu70BrNFZMeFp6eskl4rh9/pvWjamWStRKRXyR6C33CJL9N0dkQHIH0HIxRKcXU68jzVmgBcWJXkgBFqLj4/P7XMPNgSDJnL00xRNtrZw7N0jZdKzYRbAMnZCZ4PeffQqnx01X0z9lGYjKNJ1s8SQG4PiojuvVD7j/3k3s2RRlMJVoGkcCxHIN8rkCXp+HSi7DF+4Jc/RihljVwYWpOseOXcTpkDlyOQ84MEQHyToL6EMX0ir/+m8PYUlOBHnhM9tUPNysCbSAXOMLD7aBIPDSgdjCRAPY3efivum5nUyhznuXF/doWQxz54fGRyb49qsT8zq/XqHGQw89AMAj9/aiNa6we0cPpy7GOTElLyhq+jxqk/aTSOZJFxq8fyoOOBAUFz/49SW2dPu4MlEiXnbwwq+PIUsSR4ZqN0ShO5924j46whMPyJy5OMmbAxLvXXkbTfKu2CEURImhwvTc0Ar3biZfZQNQyBUo60sPGUU8Alg6idFRxpMVNoVlvvbZB0gksxRLOQRRpKiXcFgK3ZFe0sNxAg4Xnjlef263j/4ZCedrPDW1WplCOU/AG8KxjNt9vVFDnVavlJwOQqKfxOVxcMt8YujCqpQ3fq/Tye+hM1ER+OYlyJgy/6+WEo9EZu/VPU4dJVelITl4vyCArCC4wJAUSrqdwPb4vXw+NsSvtHaeFuJsDMwmRX8Y0Tk3OUrVEvnn7SvPbd1prCUydylkRcEbDOENhsjGY6tOZGwq191D57pdMA0DcZkHqMPtIRuPEWhpxTJNStnsHZvXsCyLXNwmnQfbFg7Z3+qAXRRF3H7/9H3lXFa8QZIkREnC4XJRKSzdrodpBbObSIWrlkrojQah9o67tou2GARJQQ60Yel1lKvcniWnF9bMLddwA3jzgsaB829TtZwgrxBxGRpfut/P3r33Ex8epH3dBpRVSreuCEmhoytCqKWFUEsLRy5kGMzNvpzXXXzruTMExSL/7I+fRhRFooFh/u6dLA2cvHB8RhJ4FVGjw39b+AU7er1s2mp3GnbEynxwZWGSkshUMHQdQRSJp0vMHL+iF7EQ0eWlCxRz54dUVV4gNV8yVKaGhulY10+lkOeLn3sAWVXp6+/i1H/Zj+Wc70F1bkIj/O4ZnA6J/WcLVKw6c89nqu4kNTA9ByXBsTEAc9VJTEiu4FRgsuJcQOs6Oqlw+CeXEWTVLtDgXPEaecQaT+4KUasbvHOuhDE9V4WhsaPD/vyzUyZMJ3e/Ol7gwthhUgWd2jLiA92tXsLTM8G9QwXaQk4cLhc9vS7Kg3Fq6ATXdVErlckn00TCs/PDmUKSqqgha9AWunYqfq1WISnm8W1uY3JojD6ld1GxG4BIuI3xoVEst4SjJuAMueh12uvaHuHgou9ZCs+lBQ4otvDAX2XHeCRi30vVhsYuj8DPlVH+1YjJsfBWzGqBdcURvhao8YkWu8goCAJ/ucVBpRHHpcyft+vxOvmHzQAmd3sSA2uJzF0LrfHRpencCQRb20hPTiCK4gJFLMDm706OY1kWsqrivqpjczuRmZpsJlGZqcnbYqB6NVxe34rqcwCiLDc7fLf7PqyVis3zNOPh8FGBIAgIyt2/AKzhowdBlKgSoNNdI+K3OD9ZRxcXv9ecZol777Ur/O5AkNffOsbp0QZoFpJVx1BXMGddARcG02zf1k88niaW17k6pKgJLnImFAslAkE/hTnzEbcLlmmwtxtaw14OXsgu2mWZwWi8RK1aBUFgNDabpIAtKb13Y4jRWJ2//P6HiJJAombP3PT563zzi/uo1zW+98IZ0o3Fg257fugMG7q8nB8uIlydiMoO3j8xziedClVd4srAGFu3bWDgyhim7F6QKJiSg3cva8Diog03gg53jT/+6j4UVeEXLx/l1CKCD3NNPZeCYtboDIkk8gYPbAmw7367m5XMH+X0tKjp7m6Zr3zelsCWXj7Gqem/m5KDwSysFKqeGS7Se24AURQ4M1QkmS6zeWMniXiGdVKAmmwr1aluF3Vt1m/GsiwKao1gVydavcaFi2fxunx0BruXTEauRrGYw7vF7uY7o0Gq2RIez2ynp1aroKrO5ud1R6ZloFeoTb8jOTi7bivBdIKvJMdwyfPPwVZVh3wOTW9wQTC5UmxQMy3+ZDJMVnTxP/km+GaryOliHaci8v9tr/FYZOFOr1QM3i1afMJvsTPw0Vyz1hKZuxTR7qVpOvVqlUohjz8Sbc7DzKBaKlErl/CFI7e8sn+3YamEIJ9KYhoGTp9tqDZDQbtTEEWx+VBb7GE5Q6fyhsMo6tILRaNWpZxf/D64WQhEl58VsSyL5NgoiqpiYd1UcQlvOExybBRZVdfU79awhjmIqBX++Gv7UFSVDw+e49dn6otuJwo2TTnY1kYuHmf/xRoOWeBPPtdHV1crv3zlGKcT179OnE0qXPn2fjSUBUaGGA28QpkHtgTJJ6Y4dfw87w2YIDgRzDoBRSPXUK9JNvd60Omp86XPPmIPcTsv8/MjixsnBuUauzeGePuto5wa16lK85O8zz7QwcYt63jYMPiPf/cBBd3TnLnZ0OXH6XLhdLnoa/OQHlua7DZWVBm7MC1EMAd+uc69G31MJur8559fQpecyKJA9FiMVEVamPTcYkT9DlSHfW1awx6I1ea9Lph1QqpGtqFgLdHhsSyLLz8YYcfuzUyNxzlw5DJgMyhyRdtBHkCWZlM0Wb723lvRdPGjDwvT/3JSyML/+t0jGKLKf/xGH/VcnfGz53B6PDiuCnst0+5kmKaJu7sFTyhM/PIkHZHZGVXLsmjUazgWYcZEIu2MXB5G8DkQig08kXXN18bTo9DiRiskaZeiuFyrpxNf6NuEq7efem8/l389ye6rXv9Mm5vPZJK86tlEDPir5BA9iknSac9nvlx28/1NJg96hnBJEm2ehceerdb443grGTXE302meMeZw+34aBUN4WOcyJimST6ZwOX13ZUqVqIoLkrTqVcq1MolQm3tC+g2TSrOIq+tFlq9RjGbAcsi0NJ20wJkvdGgmEkjqeptFQIwTRNT1wm1d6A16lSLxTs+G+Nwu5vmj1d3OWrlMo1alVB7B8mxUVp6ljDxqlapFgs3dK1vBnLxGC09vbZnUDyGaZqrrmStBEV1LPn917CGjwMsy8JlFmlY8xMFVRaahSqnQ8b2H1mIquCmoVvUSvZMzFNbVKbSZXr7piWLN0Q5nVieMiqZdT65y4/TIfP2yTRFY/7zsy77cVBnR7dAPFtlouzEMjS+8mCIPXseJDU+RrijE9kZ442BOOh1vvlEO1u29XP0yDleOFFdUo3qarS56nxmXzvFcp3zAwlkp5szE/qyyVBNF9DqDVSng3Jt6XmWx3dHuHfvZvRGg+CB42iygwMX8lQs+/vWppXcatUaujX/eM8OFdjUO0mtrnF5cnVeM1fj6fta2LlzA8Vshg+PDHA5ppNqOIjXuCNqauenGnx48Bxuh8KhS/Yc0wwsQ+drD0XYuXsTZ84M8NwH6UVVHi2tTleHPZva1tnChYmT/O2PP6CuWcSqrmYieHy0gfTacQQETow0QLzxYNpy+JqnTbZE2jasQ3G60OsNcmNJgqEW26ZCd1MeipGvZOjcsR3TNJHm3I/VapkpPYnq90AqQXdk/loriiLrIjYdkenQJpVPUFYb6G6LSCgEoRCFK4lrSmTCqTil/g2YsQk6LIPFwvV9XpNfaSYg0CtrPO6z+E48R1508WlXGXDR7196n0XNICfahfKs6Kakp9YSmY8SUuNjtPT0UsxmsCxzVTSbuwGV6eAVbL+WGROsWrncNKy0LOu6qTjFTJpwh93ZyExNNP//RpGbNsmcUQ+7XcmMIAhY0z4Gpm7ctCD7RuD2B3D7F6d0VIuFWTqVw7FkYlDJ55rbqU7nTU0grgUOj4dKIY8nEMTQ9bvi/K5hDb8p2Nmq8dUvPEYqleXvX75E2bSTmcmSyi9fOUo05ObQxTxLBc6W5ODEhRiP7FVx+Xw8uW07pUKR00dPsWHzek5dSjJXbWwxbO9UeOSh7QBUaud449zCpOkz94bYu3cLjVqd//zDI5RqDXbtshXLgq1tlPI5Lg4kEIw628NVNm+1g8Ftm3t4/tApBMfqxEHu2xJm3aZ+AHo6AoTa2nGsICVcqgu88MpBLEHkQlJeMB9iWSZSvUChaD+7svEYDz3xIACKdJ5Xz9idiJcOJRmYKDGZrlJh/vHGaw6+9fIECALCEjS/lWDLXNvFymee3scjhRJ//qOT1MU7I2OvC47pTt/8uRsAoVFi67Z7ANi2tQ/xnTEsaeGaJho19HqNbDxGo15DQ2a0aN/Dc0dDLVHl8CiA1UxiHNRo8QpMFcC4AWEC0zSJ15IoOT/hdhfVXIEW12y8F/JHCQFB2U9+KAa6RUdoNu4pVPOEN9nJWL66eMHgapTVBoFue7bTNE0q6SzBaxR3eTY9yeWXn6NDhKi6eNf0z7qdtMUuYWDx5XY3giDwuiNBSTPoWyaBmUGv38P/UBjmtaqHz3vLtHo+OpYJc/GxTWQUhwNBEPCHI2TjsY9MIuMLhUmMjuBwudAbjeaAVqWQo3PDRizLYuzCedy+6/w+c58uN1Eedqaz43C7Vxwav5kQBAHV6SIbjyGK4rKqW3cD/NEWEqMjKA4HhqYtmRj4whESoyM4vV4atRqiKJJLxBElCX9keaPFSrFAvVzGMAzCHZ03lHy4fX5KuSzx4UEsy6a7rVaYYg1rWMPy2NwfQZQkWtuidASHuJKx/y6IEiengKmVFYWOjAkUauM8sssuHrm9Hl4/nuG5g3lEx8pzb5lCA13TkBUFvVJkscRHUeznu6wqyIKJ7vDzxlsnuGdbJ8fPjHF+OMszj6zjTzrddG/aRHJsBFOQOXR6CnGVSQzAyGiC+/ZupF4uN9cUVZGAxamnlmnwtcda2bJtAyND45x9dWxBd+Px9fDUk09w9PBpjnxwhLawp1kYqtb15nY1nJyYsFjqfN+on8+rx9KMJY6zd1MQAIdTRRJuUI/NaLAuAulCndagk0ZDZ6S40NJBsers2+ihWtU4vgqzTMsZ4OVXPmBbf5TLU1XMJcQYLGeAExeT3LerhzNXMpiOAF6hjIRFwVr63hP1Kr/7qS58XoV4LMWPDlXxyAabOl2MJapktNWvMYVcmsiW9TRqVTJTk5QGJwl1byORnsShOgj47N+Fx+3Dw8K4yeP0kkuk8LREoKytrtlWs+9HXyhC7vhl2lt7cbtXP2P6kiFydut9CPU6z146sWQiIwgCz3bM//1EXE4WGYVZEn/a7eJPMZmh+Y2U6pwvGzweUvAssd+7DR/bRMbQdQrpFI1qFd8Kgd/dBFlVae3tm1bpmqM+03TRFfAGA9fdSXH7As3hbt9N7JqIkkQ2NoVhGARart+jo5TL0qhVwbJw+fyrSkC9oeX9T+4mSLK8KprYzH2gNxr4wxHSkxMEW9swDX1FI81aqUi4owvLssjGp254rkWUJDzTCnvL0eFuNyrFArVyift64OiIdkNO1mtYw53AsYsp2qNeUpkSI2n9mvxOmpAULmUgezDO/TmNkck8efyIjtUVqsYLIhMDg/iCPh54cAfvXz6Grsx/7r52aIJCvsRovExK8yAIAh8Mw/uD4wiizNb2MNt2biITm0QURVp7+/nZS0c5HZNRrBpdQYlY3qC2QpR4Ka6TnpxAVmSqpTIHTo5xeLAOwsKKvWVZRKU8fqe9jnX3tKPq5wh6TTI1CV1wYBka9+5ajyhJ7HvoHv7zd37NI3v9TH5wlLGMybm4dV0yxSo1Pr07hKIs9JqZYVFcjTpOjo/DeCrGnmSd4YkcFWHx4Fc06nx2r59wwMWbx+JkyxbdEZnxjEbVmo1iP7XDw2OP7mRqaJCOdeuxLIvvPXeQocL87/TwZg9PPWGbm1Z+cZiL6YX7tEyDJzbJ9HUGOX1hgqeevBfFofD+hRMIi5x/sOOR94dh/8AQgqTQ5anzh1+5H0kU+dELxxnILd4NVNHwemTC7Z2E2zvZOnSA+7a1s2nrevK5An/x49No0uoSYF8gzOj4GKF1PRQSSboevIeRy5fp3LqVarmCkUgSDiwdk3jdfqSqRPlSkt5I/5LbZQspqtRxoiLrAsnREdskOhhaNompVsuktQwv+qI8kYnhV2Qu92+ipc+etTmYS7K1ZFcwTNMkX68TdF6bv+BqMVqq8dXxKGlHmCdyQ/z9lpu+i1uCj20iE+3qRtc0fOHILbkhbjXmJTHYsxaZ2CSWaRFsbVviXSvD6fHckpmhm9UJ0Wq1ZuCdjU19ZDppK8GyLLKxSQRBxOHx4PatzuROnqYQiqJthCrJCyU9bzXq5TLB6cTpWgQmdE2jlM3gj7bcEkparVwi3N7JF9s7Kfz8EJcz1/Z+r1Tjqd1hqnWdt84Ub4jesIY1XCssy2IkUeMvnh+2JW6FG5vtSxRMXj5eRBCVZZvtEUeNp+9ro1TRePVYhoYgI6huwu2dZNJZTGH+2mOZBp+4r429927Be/IyF1LZpnzujKneZEYjk86iOt0c/vA4iSKcnjSwLJNvPNnOpi3rGB+d4m9eGYZFvGJmoCkB3jgyxea+MKeupBkpqAuSGNWq89R2F26xwc4HngLL4tyxk5yfqPGlJ9ezY9dGTh85yQuHM2hqkKOnRnjqySAnTlwmqQf55bEyzdDoOh9LO3tc7Ntnq3NlS3XevWjP5myLNnhsbzfDExleO11tnifFqrGhVSGWa5CsuXj9TJXlVMj6IxL79tl0v3JVJxh009vXxfjoJN9+ZaTptxMO2kmNw2X/WxAEPG4FCvM/Tzdn1wxNt+cx3EKNLzzQgqpIvHIohmUafPITjwHgc8v4Aj5Mw+C+DS4e9fo5eCaxZGIyMz/TGXU3jVB72rwM5BZXsatKPkZGE0SmC7KWBW63fT5cTgeSYLBa9x5Jkuh2dzJ6+Dzhnf1IsowraAv/OL0eavHisu83DINquUgo2LJkrFirlSn7LbyRdqq5PLXJGi29GwCojMSX/fy0lsW7rpPkuk4OHniHpys5XKk41sYt6JpGbz4LElR0nZ90bqDSv5Gekwf5Yt0WrYhrOm92rccCPjE5ROcNyKtfLuukHXbh94zuZqnZu7sNH9tEBm69X8fthNvnX3Xw+1GGYRhYloVpGFg34Ex8u1DIpNEbdYItbQuSz7nIJeIEW9sRJYnM1MQ1X0tZdazaCNXl85ONTWGaJuGOG1cZC7S0khofQ1bV5jzSStAadQqpFKH2DlLjo7T29t/wcSzAdEJnWda0C/m1/d4f2Bzg3nvtklQ8c4zTi8iPrmENtwqP9Jt88slHOXnyCi8eK4KkYJkGllZdFSVsLrZENL74yV2MTyT52f4E2vQch0es8dC2AKVSnYODGkgK+7aE2LLNHl4enDrKubjIT94ZZ8PFFCOJKqY8vxIuNMrs2mlrKu3ctYFf7n8HUwrO26ZgOPnLn51HQaMqTj/bRAWrXibglrAsi/aOKLJ5EX2FrszFtMLF9OIUN4B961UeemQP2dhUs0AymhM4NdbgC5/sIDUxzvZ7dtCzvsTfvXCO/UNO3r+wH0v1Ljqwvhg2hho8sqeD4bEM71zSFtDKUtkquqYhyTKZVIGv7ovidasY1TKdvV109nZx9NJ+Mrq9vy/cH2bPPVso5Ar85+dOUxeW7zYkCxr5bB5/0M/oeIrNm/YA0NISYnPwIpcLEogKbx9PoOkWsVgK92CWhmZwdlJb0GU6eTmLoB0iWTQYyCoIImzpdrN950YA7snUePdMjthknPbONoxGnfjICLlMnl332ft2qjIDby5vTX9urEL/6SsoisiJwSJXJ2sbQ3X2bGnhwkCal06ZTGSPU2sYXExJFPaPsXtDgYHxAjXx2gqYiqyyft0OxsZGqHoV6skcOUMA3aTNsTQjxzRNRgojBDf1MDoyTq+7e1EBJF3XkaZpWKKqohoiqZER6rUqLtVNtpAi5F98P8KcJFLW7fTsn5UzvPLyTwli8ajLvs+HLAFz5z04gdHejXD5BADHQm3Udu61/79WobOw/DVYDo9HXHwuP8hx3cOf+nOspBH9/xuq8r7m4+ueIn/Qdeco5R/rROZ2IBuPgWVh6DrB1rZmBX0N14dIZxfZ+BSCIF4XJapaKlEt5rEs8Ecit1TBLJ9K4vR48YcjpMbHiHb3LLmtZZk3NJPkC6+ePrdaD5nVQpSka6aTlbLZply20+PF0PWbLiHtDYXJxCZ54b3RaV74tb0/k7MN+3RNI1u8+92N1/CbA8vQuW9XH7KicN/923jr+DvUp+c9eru38uKbZzmfWv1acs/mFrx+P1v9fjpOpxidLkI/uj3Iww9uA6Dr6EkKDZnRsSTrO+xiSKVYAvyUTCcnJ2GxwMZy+Hj9nVPs3d7JyfNTGEvMS+iiC33O+y3L5KkdXgLRFgbOnuPY5Tz6DfraAFSnB7IVp5OJgSsk8ganhsqIDi8vv3WOh3bYcvXBcJDOsINcQgBnoHnMolnnnl6VhmZxetJcdPblib2d9KzrYd2GXs6MvEdGn59YjpacfOsHB5FFgXDAwa7dmwG4cu4SACPDExQaUrPj4/fYAb3X78UhGjT0BvvWO5AlkUMDFfSruk5F08W3fnoWl2yQ0d3kXznFvZtDRENufu93nuL1t07y/qBJsu7kF0dmEobp7sdVSYyLKn/6lV2Eo2Heee8Ul7IGgl4nOVWgVCjidDkZncyji05+9PIZfveZOtGuLgYHxnjuUIE/bUvQ0dnKZOKqNs8iqFhOnjs00wGZfxxmo8qzT23DHwqxbUsfl769n2MTDkBCkCBWlYmdqbGSOMVSEARhlhrWvTrqfbGQwdfbjiiKBPu7OXfqDEF3iK5gzzwWgdcboJyYopgtozYEejo3MpUeJ7rFpokXRieXtClv8bSSujLJronTPNQogyQhiiJfcM1vB/ZgcXjwMua6jbRNjMzuu1LCNE0EQcBXWVxafLVQZYm/3Ax2J2b2t5quVJEEgaBrdg08lSnx5+YWBEXiYi7N77QXUJYp1t5KrCUyc6A3GhQyKbAs/JGWm5N0WFZTXSobm1rUTX6uF8eMopfT68PlXbzqVspm0BoNLNO4aapiHxUIgnBDMx3VUmFWlS02eVN9T66Gqes4XPbDYKUgPdTWQWbK5o+v1FH5TYA3FCI1MU6orZ1qqbiiQMFyyExN2PKtgjBvNkh1ugi3uxguxK8rRzw+AckffEBdh9QSBndrWMOtgCDJnDg7zlMtUU6eukLZctHtN9i6bQOmabKz14Uka5yd0LFW4cNybiDJ5i29jI/HiRVMZqL2ctUObk3DoLurlVB7B8/99B0iHZ2IksRD9zQYej9HWK5Q0SXWRSX27WxnZCROqiwymNSoCU4OjkocGLELTDO/NSd17l3vIVOocj4pLZBYFupFHnvkUWRFYf32bfzwnXfgJgiFHJ2QkV95n6BH5ehwnbTmYaYIcToukyrG+RwyxVKdgUSDqwsUD2xw8ZlP2l0G7ZeHuLhIgXt0KkfPuh4mx+MUGvKiFDR7v6DlahTzRTxeN8cuZXj+w3ep6xZP7WnB61J462SaXx+e4r6CxshklrzpZU83fO7T9wBgWic5MLSw010TXNQMu/51JedAuJLn975id5DdLoW5tCDLMtnXA+t6Qhw8E2cqpyMIAg3RQ8AJ4ahdCOto8SFfiPH7T/fQt66LN18/zInROjVL5XPbDNrb1nHy7CjSSIFTg0V02cPfvTJA2D3AVFG8IU8gQVaZimXwh0LEYukFydudgM8fZnh0mEB/F4mhQTp3bEOUJFJXYrSGZ2OHSqVIVdZAFJCnu52yKKPXG8gOFcu0iGcnaagmUt2iMzxb1FQVB52hHp4YPQzLJAJ+Rea3L58kduYI/W4nVxo6MvCYw8L75ouYlsW9onVTRZoAXo7X+JfZTmQM/jIa5/Go/RuNOmRCeomcGqCDKvIdVCz92CUy+WQC1eVeNEkopJPNIDc9OXHNjuvVUpFqsQCCgKw68IcjGLo+/VoJxbHwh6nVa8RHR/CHIiBAx/oNqE4X6cmJJROZRt2eEzF0nXwyccPzJ9VSkVqptCAQ/I3E3PmRWzxL4vYHSE2MI0kS4gqJjCAI13y/fZShqA5Cbe2UctlV08pm1Na8oVCzk1ZIp5pFh2Img1av3bQumyBKTFTWEpg13H4oepEPLgl8cOEdDNmmPMVLBiND43gUi2337GL7XgHfGyf4cHjl59ipuMyFv3oPTbSHhJ/ZpRINu3nj0BjpXx4m6mzwyWceoVapkKvoNBoNnC4XtYbBA73wzFMPMTEwAEDfxj7WbeglF48RS5X50YECgiAsSFSe3BngoQe3YVkW3/7hh0xe9VuyVC9Hjl7iwQe3c+TIBXTVt2gnZwaiWWd7p0KhXGeksPSwsyDJHJqced4ufO5OVRz8zRvJ6fdPPysMjU/tcNLbGWJqMjm7z0X8baxGhddOiZwc3E+uKqGvILecaTj5i5+cQhVMCpYHQXCwvdNoSlqX6wavnipzbiiN26kgmhqaPrvfumbAsmfGxuUk/Or1E3i9Kh+emy/JHRQrfP6Zx2ylVpdEuCUKAnz/hdNMFmXefucEHa0B9p+KE3Qa9K+3zSA3bGhn/2iaPdEie/c9iKI6cDll0oUGgmnwzsU6dcnJVAW4wWK8IEr89P0EXWfTxPIG1jKzUlfDsix2tGh0dwQ4djlLqnZz1gBRFOkP9JMfSuGQnEiyTKNaRb5KOCavFQiut9fv3PAERmYSnytAcSxHVTTxm25KIQtfJIxeb5AdSxIKXbvokVtRWK8o7BdVLjzxKSxd44EP3mCvOPMMuPnz3q+WHdQcNoPj/ziWpysp8e86y+wMOPleW4zD5QSfbmFJwYfbgVUlMoIgfBb4j9i36rcty/rXS2z3NeA5YJ9lWUdu2lHeJMwYc1WKBcr5HJ5AcP4Gcx6M15PU1kqlZiKUjU0BEGhtJRubQlYdi9J/8skk3Zu2UMrnyCcTTaUwQVzmAGa4/+YNSjNOo1IoEOnsQm80bkpidDfDF440Z0nc/gDZeIxAS+stGTZ3uN043LdGl93QdQqpJC6f/640dF0NJFkmEF3dw7xaKjaNTecqo8mqSrVcop6sYOg6hq4RbF2jgH0c8ZuyTq0LNPidLz5AuVzley+dJ6fZy7QmOPnbV8fY3qrz21+1K7qqKsMqxp4FQUCbpm31BRo8/PAOAGoNk58dKmCZAoM/+JBywyJvhPm7n5+gPeLi/HiVZx9qJReP0bd1K9VymXwqOT0o7cNX1QGLxQKouTOM1vSaJZs1Oj011ve2MJ5o8KvTVd44/jaa5F1RvvixLV6eemInpmnyi1++x6WMSn0RuuemUIPeDh8nB/Kk6ks8CyyTLVETRTTJFhqAzmOPPgCAqNfIxCYZG41zPm6COBuhb4s2+MJTuxgZTfLzA0n0VQqA1AU3dWbjinRRo1GrozhUkukS/X6NP/zaQwiCwGtvneL9y3V++ItDSJLEubEaDkmjJniWP0eSwsERC7sTM/97VwyJVCJNS1uUSrlC9zp7zVjX4WWyrPHOFQuu5AAHGAJHDp9jfV8LR85MASo1XbDNpCMOLAu2bt/IVuDS+AfEakvPFVmWhZciNVPBkFYuCmmCk+E8XOs8Y0gq87VnH0UURaL+Qf7x/RuzeMgX09T0OiFPGFV1Egq34qiUyA/GUEyZcGi+oJJiytQrVVSXk3KtQHDrNmIj4/T6u5EkyS4612OkxscQBBG1phPi+tVbU8EokqqCqhL3hbBKaQzTRL4F1K5PuWv8qlBGMwwKSoCyM8hPskPsDMCuoItdwZu+y2vGiomMIAgS8BfA08A4cFgQhOctyzp31XY+4L8FDt6KA70ZkBQFUZLwBkNkY1MLEhlPINR0XPcEr12yVxBFtHoNWXU0OzGK6liUTtY8pulKvTcQJD05Tnx4CIfLhaws3aJVXW6ysSksrJtCjZp5uEqKgmksrsd/O2CaJqnxMbtzNYeSdzOhOJyE2zupVyrUyiWCrW0kx0ZuzbD5LUR6coLW3j4K6ZTt/r1E9+43BbVyudktnCvS4fb5mRi4TNeGTYBNF1zDxw+/SevUpt4gDqcTh9NJb9RJbsoOCLu9dfxuhQuTOi/++jguh8zByyW4RjWzdNEgl8lhaTXGRuOAC0GUmKzagaZl6ExVVGJV2zPlwJkkn9tnB10uj4f97xwlXRXY0N/G8UuZJSuxb5/Jky2eIJOvMVlxoVDjn3x2HW7ZpkTrmsZ/+t5BimJwVXVkp8MO0kRR5BMPb+KBhsB3XhnCkmcDZB8lfvvZh5AVhY7IEP/wXm7Rz9raYvDN37JNLzNTExTLjeYgO5aOgEA46MGiMO/Y7tnShsfvpzWY53cejXL4QppLmWunU8WrTr71oyM4FZgsO9jSIjc7TA5FQpBkLqbBMjS+/HALe/du5oMPTvHrc9qCztdqoIkuvvvSJaK+KxSLdVS3BwE4N1JgwdyTpPLiyRocH0KYpopdyLowXj9L2Kfg9bpo7eklFU+Qq1rLNgHu7TR49nNPkIyn+buXL1OxrrpXtRoKdRqy/4bUYzVLoFqu4vF5KFdXq2e2OPLFDJWwhMvfxsSVMdap/QC43V7cLL7ORkNtZGJJUplh2vfa81CuSIhqqojXF0SSZaxYmfCu9YiiSF6YuqFj3J6a5O3BK4iGRlc6xt/1baYUjrL70mmeMFavNGZZFv/jYJ0XawE+reb5NxsdC67Dl9pd7POO8Vyszr9VtiPqDXZ5GqwkBHA7sZqOzAPAFcuyBgEEQfgh8GXg3FXb/c/AvwH+zzf1CG8iLNOglM1Qr1Zx+xeqQjlcLhyu66f3BFvbKKRTGFqWSFf36t4kCLa/iq7TtXHLqpTUvMGlxsauD4rD1TyGVR/3LUA+Eaelpxdh+pzcSlSKhWZgrKh3not7rZihKfoj0WlD19/sRMYfiZIcG0VWVcyrOpHeQBCtUUdRHVjm3a1kZ+kNjGoRyRu6roBkDUviN2adOj2QZWNPnFKlzkDcrq63u6r86TceQpQk3nr3NO9e1gEdyxTxiUUUycLlVJgoqU3J46VQNF0cPHKRZ55+gHv2wKnYULOz0emp86XH+yiWavz8/RgVy8l4ycH+45M87XZjmiZtHVE+OFbn4okyy0kEt3qgI+KhUrHncAKKTndPe7NY2Gg0MK7h57r/bJ5G4zQbO1y09fURlCQULtKYE1DplkC91kBWFGr1pYtydidrGoJA74Z+/vdvv07ABb/320+iqCqZbGnBuTw3kKAl5CTQ2ka0W6Wju53X3zzKpo3dHDqbZKS48loiNkpYiGRxgw6CCJcSGi/++jgel8LBSyVmzqtqVrjnnn0A3HfPRl49cRThGhXrZlCxXIwWABx8942E/dXFxYNRQRCa0tD2dhJXSn4oAYZGNvceD9+/kc8/0MLzB9NL0us29IURBIHW9igtvkFG5ugBKGaNbz7dQ/+6Tl5+9ShHJ69/0qFsefjuL07RGxYYTZSwrPA1JUZT2XF0p4BQMVAFGZff7riIrtUfkyRI+P0h8hdHkEJuhKKGd47vTNgfpVqp4vR6sDRzuZ/OorAsi9ccHnLBKLunRvnnw2cBOOJ0Y+3YgwcYqJZ5Yvj8qj9zPF/kb3IhBEXi+yU/f5ZNsSXsp67pXC5U2BLwoMgSHV43/2Kjm/uTl1FEkfsjt4Zpcr1YzVXqAsbm/HsceHDuBoIg3Av0WJb1kiAISy4QgiD8c+CfA3dkHiDc0UWjVsUdCN4SKhFwzUPLd8NMyrUoXt1KONxuqsUCbn8A4xZ3hrzBIMmxUTyBAFpjcS37uwH1apVKPod4FQ3L0DRyiThavU6w7fp9g1YLy7LIxWNYWPhC4Vuq9rYYJFleUhktEG0hl4hjmsai5qf/45/tvdWHtyqUi2W++/MTJKUwu1o1vvalB1d+023An/6bO30ENwW3ZJ2S/NdP/7heTFUc/MXzwyBKCNMBotshN+XbPS4FO4kx+NJ9Ae69byupiXGCLa288uZpjk2svI/+nlYEQaCzu52oe4gJW6CPXRuCtHV10Aasv5LhzLTk+HhBRHJ6CAX9nLyUXPJzZ2BZJp95qJvu/h727DYY/s77pBtO3tt/io6QwvnLU5wZ16iwelpsxXLw9iWdiWSavQ2Ri0Mp6tJ8hbSq4OHvnz9FR9jJpckqS1WNT4/ruF47Qchj4fM4OHhqiowQxtTrzUJJtqwveN+JKZlzPznJHz67k56+LmKTcT7/uYdRVBWvS+Zv31rerKrbW+ebn7+XarXG91+5RE6ffo5KCkfHwKYJzka4DcnLu/tPcd+uPj44fAVBvQk0YqPBk1ucBAMu3j2VJqdd47NcUtiwIUJLZwctnR0cvXSQkYzGurBFqWaQrM+e86PnU4R8TpKZEhN5c173JuyxWL/BLpxu29jKkYk0u9oNNvaEOHYxxegqksK5UCSLpz+1F1VRePPNQ3w4JGBKK39GpVLCavXg8/vRGxrmlTT5gXFwSjhr0qrEKu0ujoAr0E71yhh9ahdc5Sce8EcwEkmqiSJRJbjgM/7LZxZXHCskwWwomGaDtrYvIwgCL0QdvNNz3D7+vIGUHccb7CLuGF7ycxbDpbNVlOxOAIxigl9/xeB1Mc/3f+RlorSDPq7wu98sXxUvmxzlxtTRbjZueNhfsMuK/w7445W2tSzrr4C/AujfteeOlE7V61BFySXiWKaJOxBsqlCV8zka1Sr+aMtNl439uMLtD1DKZcnGY/gWCUhvJhSHk2h3D41qldbevlu6rxtBMZMm2tVNvVptKtoBRLt7ME3zliXkVyMbn7J9bkTxuoQwbjWWM4GdSQYlVW2ev9sJ0zS5cmmEbCpLSnMjCEwHWWu4XbjedcrRsemOrFOCPJ+uNJgRefm14/h9Dg6czwEuhEaZ3bts/5ZwRyeDJ4/T46ux6xPdXBxK8+GwhUKDoMMgVVXnVdiPnE8QDDiZnMoxVRSag9oDY3nu3VWnVK4wlppV9Cqabv7652cIOAUmSrZHyQrfgFyhRjeQyxVoIIOo8OZFAzCwd3h9fP502WR4qsR4RkcQrjoOU2N7r4euVh/ZYq0pM70Aksqh0ZlLWwdstbWSJnHi+EU8LoV3TyRB8GNZJg/3C2zqC3P4bJwL6Va+//oo7f4JktkyfxwM0NIWJZ6urHjsW/oCeHwePD4P/e0uTowvf3sJosRbFw3ePHMOQblxN3fLMvncdpnOFhVRgkc2O3n57LV/zuXhNNu2rSMeS5EoGDy8wc0zn7qHRq3Ot587QrJuV+yH8ip/9evYtKrk/KQiWRI5deoS6/vaOH4+jtuq8pXPPYYoSbRFXHzrlakVu4tz0R2Cai6LHI5w365+3L4sr51dmWalqg60ch78fnJTk6iWhc/yo9V03PLq4sWaUccVsGeLhWW6OOHA0oURvW5QSnmQlAa+VjuZLiQk/O5nUYMehi+8RCNYweH0ALXm+9wBiWrhdRJpCPXJXMvAf1uHgpM0NSL0tOaYGNUpZitMlHYiCALD6V7Sk8cwLIm2bs9dax6/mgh8AphrgNE9/bcZ+ICdwNvTX7IdeF4QhC/djYOUy6Gcz1GvlEEQUB1OvKEw+WQCbzCErKqkJydwuLoo5bKIorhg8HgNN46bTZtbDoIg3LJh/JsFaboK63C5KOez8167XUnM1ftbVojiOjBDIzR0HV8k2iwW3CzMJIO1cplSNrNo1+Zm4fKlUSaTRXZv7SQUse/ll187xpExEcWqEzQyZKwwO/s/mgINdzF+o9cpQZI5PApQRzYFPn+Pk4AvwDtvH2Hnjj4mrgyw7b691KtVgi2t9K3v5exfvc43PreTloif82cuMpEss3tHL4NjWd6+IHL5pQk7UJxTtb6SVfm3f38IAxFDmv9sLJkuShWWdLu3LAtLbyAqNs/++UMpTg/lmco00JagMK0apsbuLolapcynH99OS1uUTCrD//7cBVBmP7vNpfHk4w9MnzSB77+XXeIDF8fObpUHH7allxOFM7x3WcNHmWc+9TiCIOBxq5x/eZK66LRpUlLQnj3xDjCes+ady8VwfrjArs1ZKtUGQ7Eqqyn3C4KAoLqwLIu9nTob+iIcOZtguLC6jsWuVo3dW1o5dTHBpckK27btxOX1ojicWOIg1pncNQeoJ6ZkLv71e2iCiiG5CAXta6A6HQTcKsk5+YMgiLiFGs/cF0EUBH59NEXJdGJKDn52qIi1P4nocLM9qpGJxbBMg1S2anPuVomgUuWpJ/bg8ngYv3SeQLQNn1tlNc70sqwQLnlInR3A1RHC0xdm8vJF2tdvIp/Okpi6hBJw08iWkCMe0C0iQgCfZ9bzKOgKMjU4juCQcFbF67IcK8V7ae34BI1GlfToc8hCF42KA8thXxtfqINi5UWKxQBqMMHcQoDLr+C6Bg/t0aEGo+MqmzfAH399jNjUGPG4wA9evwfBrBJVLpKs99MfvMRzr/aTbbRxT895Pv/Fa/9etwOrSWQOA5sEQViHvTB8E/i9mRcty8oDTT6VIAhvA//9R2FxuBqNWm1WdSxu99QNQ2/6ycwEcFqt1hxEX2ymZcYE0+HxXLND+28KUuNjSLKM1mgQ7epe1tX+dqJeqSDJ8kfGmFSU5eb80q0QP1gtfKEw6ckJBFHA4br5yV/Taykeu+mJzAycHg+Z4o2p2SyHibEYP3xnElN0cGn4HP/s9x+1/57WEAQnuuDkwT3r2bm5A0/gxo3/1jAPH5t1akOrwr59tolloWzwl6/EeHydi3q1Sr1qdwWy8RgbwgY9vR2kJyfY++C99MWmCLd30LuulxOD76HIMj0tMpcnq5TM2cirIXmRzDqf3eUg5Hfx+tEYyZqTHl+DneuDXBjJMZSb//y0DJ1PbXewZ3s/7x8Z5NCYhCY4uZSC5YaCLcsiLJep6iK1Zdzs9/UpfP6ZvVRLRTTNpnzJsgzWfApyvi6QSqSJtkYYj638W18fqPP4vZ1MxAq8ezJGQJSxLAtBECiUaoBExVQYH4vR09vB6ERuQZegUjMZboiIyvKJhWWZTJRk/v2PzmEJEqLiJKrW6Ag7uDhVpzFHtMHU6nYCM6cz56PEs5+1E6qgW+GvX0+umIAItQJf+szDyKpK/7ouvvP9t6mUytSrVbzBIA39+opSgiBQk2djm/fPZBC4SKFU50rKXNBs29nvYc8eewg+ka2z/4o9kB+QG2xf72NoNMEXPv0Qbp8X0zD4zguvIzhWr57a4ShTKxYQBQGnx8eJU4McG9GYyShimQlM0SLsDON0LrzPfN4g1VoFJWQXnxxeL+nJCUxdp2X7OkRRJCWMEeyyxZVKQ3F8zD7DHQ4X/Y5pZscqkxjLshjJDIHPAYU6usPRVFTVS910bHoKgPHLR3H6HIiuy/iiOpDmRrSuc+kaP/7VBjQhwInzk/xX/zRDKCpy6oIt+oHoZdMmi9/be4bRMYlfftBhexWNhYFrKwzcLqyYyFiWpQuC8N8Ar2Kfve9YlnVWEIT/N3DEsqznb/VB3jZYFnqjgShJTfUuf6SF1PgYoixRq1TIxqYQZakZqF+NfCpp+1yoDjJTEx/LRMbQdRSnk0C0xZ6tSMTvilmgbDyG6nRSLRWRVRVvMEQhnUKS5YVS3HcJVitPfKuhOJy3jE6maxqWZVEtFVFuQYJZLRXIxqbQNW1e171SyFOrlMGy8ARCN9ydK5YqGIKKgO0NMYMHtrfw2qFxQl6Z7Zs34A1+/J4Jtxofp3UqVWhQLpZxe92Mx/MIgoRl6vhCYYrpNOc+3I8nEGTfvZt4481jbF9vB2f69Czg6Mgk9ZrOn/3uPfgCPq5cHOIf3svOC4rXt0g8+IDtc1Kq6PzyYJKvfHILoWiE3Ttr/G9/ewhD9TW3d1llHn/MHkp/9D6LA4OXVwzsAfZ2mnzpc49RyBf521+cJm8s/huUZLs67/L6eOvlD3D7A1wcLYI6f/C9hosfv3wSvwOuFD1N1a2l8PDudvrX99K/HjZ2+whEo4xfOo8oKRwbrCK5vJiSk+/9epiQc5BERZ5n+tjrq/ONr++mUCjzg9eH5yWEc+GXqnz50U5ESeSF9yfINBy4KfMnX9mL2+vh5MlL/OJIGYAWZ41vfGEDumHykzeGyGpOZL2MYdbJJNNEWqPojSqy1cBYwbvDlF0MDU+xaXMfQ4MT7N3ZQ3ufHXAffP8YBwYaN8X/I687eenENLVukXMeT1XQGg0kSWIyZYsZWJbFsw+3s3HLOkqFAmNjMbZs38jY6BRV0b9qgpSLKp/9zIP4g36mBgfIF2u8cclCkOxrkchMoq5vQZQkEkMT9DoXZ9BEw+2MXRlFc4EoS7R09zDwwUECkVacPg9mQ8M0TbRaHcW88XGCTCaOf2MPoiiiReoUhgcI99uJUuHixdkN5TgWQYxqP9X8JVwB+7eQm3QiG7splyZRXW4kyY3oOo03uvx8ca1solluEKBSc2DqJqIqct+uAom3J3GqOrt21PGG3PRKGpEjoyTLLWzbnGbJduwdxqquhmVZLwMvX/W3/+cS237ixg/rziDU3kE+lcQ0jGbQJisK0e4eCukULV32kHN6coJod8+in2HqOpI83aW5S/mEtxozplFg03rupmRuJmHJxqbIxCbxhSPoDY18KnnXJA0fN0Q6u8jFY6gu16K0r2w8hmWZ+MKR61KY8wSChNo7sCyL7Bx55nql0pQvz8ambjiR2bJ1HY9MnmQqW+ehXbNzV3vv2cjeezbe0GevYWV8XNapdMPFt390kLDbZKDoBUlkx9ZuJFkm3NFBpLMLt9/PxOAg7w5YnJmI82CyTiyWZezNEQqagiTKqA57nXI6FLBMEGarvKm8RqlQwuPzMJEoIIgyxWKVUBRKhTKmML8iXBVcnDk9QHebl/HxJEGnSWEVei29nUEEQSAQ9NMaVMmnF25jWRb5fIXzpy8wNpnl8LgEUoPFZJ+6vXX+8MuPIisyP/jlEa6sUEAencyxcTNkkil8wSBOtwdvMMxYLI84p3KvCU4SdRYUwrevC+IN+PEG/OzuHCbU4uHiUIYrufnHtq3Xy/pN/QDsmCjw3iUNRbRwuu1uldshz9nWT0u73Y3Y3J1geKrCHzx7D6IkMHzxCqKl09bVRXcwO08FbDEIssKP35mk9cgEibLAljaJ+0yTUqHEgYEaOe32SOiOFB38xT8eQhQgq8/SasVplousKLz43ij7TyWJl0BQVs/NcssmvoCdVDdMkZ8fLjSTGABDsFCnGSHL0aJFUaQv3M9Iegj/pg5KiRRbenbSSNappkq0Sy3UB1I4ZIVgcGG3KJVLoKMRdAZxOlemDvt8Qaam4gS6OihPpXD4Zo9NdRdJxl8GBBSHQkv7I/Y+Eg1cgVEAJGM74fZNCDFvk9GQileBixiagWVZyOrCEL+1y8nD608wkWtl5+Ycsmo/BzZuVfgXW3MzRwCA16/wZ3+Up5xP4L/LlMrmYm1K/SosFcwamoY8HUQt92MItrWTnpxAkiQU9eNrzBecNgJ1en13zRyKZRpojTpazfb60bUGiupAUR3UyneXCsf1opTLotVqN2SUqdVrFLMZBEG8LZ00UZKWpM1lY1NNQY3UxDjR65AHd3q8ZGKTmIZJuGPWd2lGncg0TSzr+sxl9UaDYibdFBJ45lP3rPieRCzFyESaTevbCYbWKGZruDbIVo1vfHYHnd1t7H//FG9cMDh5foq2znamhofo27bDZhSICgIWuYaDV0/NzGM4QQQd+NGLJ1nX6ePMcL6pjjaDrO7iW8+dxKVYJOsuOyB+e5R15+KMJOtYyvxnuiCpPL9/lP/2D/axcYsXv3eCVNni7ZMZisbS6+ChcykCHplsvspQUgdxYUgSlMp8/UuPIEoSsjLIh+NLU8bawy5Up71Od7Z4uJLVwGiwISqQK+ukG/MD93cv65wdeQ8Jg88/2o8xleL9Y6OMFF0IkgPJbPDARheGYXJ4qIZ1lQHmxZEcu7eXScXTPLhvC/5wmN3b6/yv3z2Iocx2rEZiFcrFMpIkMDRpdyRyhofnXjhMT7vtRj/DSbo8XmBfoYRhmgxOllnf6cXrtztPtYZBsLWNVCJNsrg6ZU9ddDJZBUQ4k7AY/e5+GoZEXZy9hn6pStgrMZIBa4Uu1lx4xCpfeLANRRJ5+WCMrObEK9b4woOtiCK8fDBBflqZLW/MrkcO6nQEBX71wTBbpkqMxEqU5BClMqueVbdMg3VBnUYDXnz1KD3tQQ6eS86j6AFEvFFiVyYQFBGftfiaOJkZQ3MLWFWdLn8X+UtJIh4/LvfV2wcXfX8ml6QelWjUNPLpMbY4t654/KrqpK0WonA5Qbs7SjLyBsn4W1iWRrArjzztm5Qd9zbpjoY5q16hGTFgG/VakUYtgOJwYZhJSikJsfEYCCJV+QN8LTqmaVKYUtGNOoq1myce2Uwu8y7h/qVFO3LpBgMDIn29JtH2uyOGWwpricwqEWxrJz0xbs9XLGNWKQjCdQVbtwq6plHMpJt0t9sFxeG8ozMdiyHc0UUhnUJWVXxhW8ghn0xgGkbTl+V2wzQMCukUvnDkhtXvKsVCU4QiNTF+3YlMIZ0m0tmFoetk47E7TgucOS+idH1tbbfPv2hXMNDS2jTQDF2nsWwuESfa3WOryqVTK8qvl/IF/u7lS1QsF+HTJ/iv/+jx2y7asIaPNvyKQWe3rdLX1xmCCykOjIoc+ta7WILMvYP7efCBLdTrDTxSg4plB+/bWjT2bmnl3JUkx6ckhvIqQ/mFLvAzKFtuKoUCyAbIImXTNS3H7GoGkZZlMZxXEETbxFGSRCqFHL2bN9MLWPoZBmM1Lkzpi0rhxqoOvvduFssycRg12p0NnE4HQ1mp6WKvWyK1Wg23x0N1GW8YgLOjFbpOXEIRBWKxNBFVZk+/h8cfv4dGvcZ3f/whU41gc3tBlMjodpLw3bdt6WRBCDY7L/etc/LMU7YynOftw3j8Hs4MZJqD9kN5B//b3x/FMCz++PMb8IfD5HJFzOnQymxUEWSVWNXBf/rhcQQs6qJ3ej8C51Mq51Pzh/6nKk7+wz8ex0LAVDxo42W2D40hiSIfXK7x9tn3qJoy+ioEFCzLxGOVqFoOLMkWYShavnkMIY9Q5c9+ayf+oJ/97x7jyGCJfFXi8W1uejqC7D8ZY6SgItfz6IoHYY763fYeL9u2bwBgd7LMOxc1dvU52Dr9t/FklfcuzTeoNLU633ymm/713QwPjvPd1yYQ5Gtff/d0CnzlCw9hWRb/8NODHDtaZLF7WVUc9IaWF2RqeASCndNzmpfitEavbT3QTI1KoU5LTy85BCqVEm73yn4/Tqen2b1xeCQcHns90mqQnwhiWQa+1iyJxHOARKCzzMzFC3SOkUj+EEe0QaEmYhYlgj0Gxckewq02IyCd7AJGyI9HaW3/LKmJUVq67ddUeTPw4aLHZRomP/hZhJzRg+d4ij/73XE8/rt3rngtkVklBEFYkk52t8KyLDJTk7T29jVpVB9F88ebibmBZqClFV3TEEVxnhiB3migNRq3xGTSNAxyCVtIwt/SRmZynJaePtIT44TaO5BkmVIuS2N6aNfp9a2amlcvlwlOJx2SJDWrONeKmY6jJMtg3VmDSU8w2BQZuB7p9OUgK0qTWna9mEmyHC4XlXxuxe3zuSJlQ0UQIVsR0Bv1m/691vCbjXTdwdvvnKC/J8wHJ2OAgiAIWM4gAJFOF61dXbQCGwfznJoEq17mi5/Yg9vvY8OmXs7+l3fR1OW7gbvbNJ595mEGByf4yf44+pxZip3tFl9/1g4if/z8YS6kJBqSl++/cIrNbSIPR1qQFYWeVi/37dvJe++f5c0LS/t1PdwP9+/YTKi1HVGSePHXx6d9VeyE6u9+YXvDXJisYRuE1vnsgx3ky3VePJhGm+4oVXHyy6NlHuyH3/3GkzRqdSaGbSqO6nCyvcfD1MDix7DYs7KhzyZOW9a10NbXz6b+LP/uR+cQVLtKbao+BOAnb4/ReybOeKaBpbjYGmnw+Se3MTqe4hcH0zTE1ReWDGV27clpDr7zetw+xpnkRbQ7Emg1BMfSn/tIv8DTn3qCkaEJvv/G2KLGlV7Vwh/006hV2bSuhceeuJcTR07R0xVBEAQe3RmlfSzLZ55+kvPnh/jp+yksSUWlRnckYM8QKyqjU3anKeqy0Bp1sCARSwPz1y/JqNPRaa/DHR0RRGMAS772IDngnWbICAJ+rwNuQMfFqtrJViWbw7cKWtjVCPuilC17XQ+2tVG6FF9VIrMUyskOWtufBiARf5FQt/3lGlWLSqobASeK/zLBzhkpcwATEECKU6sUQBCxRPuYJNG+lv5wC8mJK0Q61lNvDLDUETZqOrlqAFQoGSGKuaG1RGYNdwa1cqlpdhlu7yQbm7rruiR3GlerzpXzObR6HdXpJBObvOFA92pk47EmvWnyymVa+/oQBIFIVzf5ZIJgaxvaXPW82NSqE5lgWzup8TFkVcXi+pIYsBf8TGwSy7TwR26/78q8Y3G6brrIQCGdwtA0FIfjhqWYm6pyhkEgurIZbmdvJw+vTzAwWWH3tuhaErOGZdHvr9PV4uXkULE5SC5IMu9csXjnShpYSA0ZHM9z/5461VqdiVQNcIHiZHg0wfadPkaHJ9FWMeC9e0sbsqqyees6osdixOZYH3nd00qegjD9/3bBY7zkYLwEp0YP0eEz+K0v2cp9HrcCNLBMA6FexHIG5j2ftq5vQRRmC0pdQYFN3R6y6RwTeYGzkyKJGsxU3O/bEqFvg11ZPj98hAtXeXRGArNywFcGJwgEPRi6Me2Ns5IHzixOjOo0XjiKqdd5fN86ADK50jxPnhlULOf0cdjHeM+WFnyhEDtCIQ6cTTFent3Wskz6/Q0cisyllLWiL8/VSmmyVecrD7fQ39vKi2+d53xq8fdvXh9FEAT613cTen+E5CK5ZKzq4NXXjxNy6ux79H4ANm7sQVJUW8547AS7t9geYjt2bOD1w5PkDJUd3U5277UFId5//yRD010qdzBItVjENE1S1YXdZsvp5xe/OsmOjVHODqSxHNc3Q3v4Sgmn4xyabnJ6rA7i9RdpO13t5C/H8alufN5rp/sqioqatsgxBWWNrsCNrVmCoFLKZtDqdapFqUloq6ajtLY/CUAyZkBgaMF7/e0apcxPAQF/u31fiO4rpGJOoI7gOUUq+zbhdU6W4vE5PSpP7B3h3JUQ67tytPfe3XYBa4nMbzCcHi+J0WFMw6CczxHpvHsob3crGtVqM9mrV2++aaEois0F3OXzkpmaJNLZTTY2RbijE8uy0DVbHcUyTSxW3xERBOGmeBrdSp+VxZCZsv0sDE275V3PSiGP4nDij0TJJeLomraohPpqca0CEYIg8JlP7b3u/a3h44OAWOb3f+tBZEWhPXKFnx5ayt1xPgZyKv/+ewcxLAlJEujzN5jImfzswyTvn0mSLFmwimHq05fi9PV3MjQ0SaoizIt5jg9V8bx/FsO0ODFSW2B2mNLcJFMGymsniYZcHLiQB0PkS/f52bPnHl5/6wQHRmeD86NnYzx5fxeTly8hKDIyOi0hN1u2bwLA8/pxDo7Mfv7QRJZ795oU80Vq5TJfe7CbRKrIe5cbICp8cDaLJF2iUKrz/piTy5khJAGmqu5r0+CRFM4lAFyMvTZMd2SC0VQDQVpGUto06AtojA6X2bi5j8mJBIkS887fxpDG73/1IQRBmNd9Wi3avBbbd9r0rXu2tHIuniSg1ChpMuacQffDp6fweZwMjaZIVuVFVXsFUeLACFimQFE7wbb1LQwOTfLYJ2w/nnxDZuxCjLbONs6eHybXUEGCZMZWIpMVhYlUnZkE8bUjCfZt0ZiMF0g1PIue7wtplQvpAqtJKi1DB0FYkMzVcMwaXt5AEgO2fHKrY/miUjw3Rd1pYlU0eoK9CyjB3ZFpgZeb0LiQPYPUi+uIdPTi8Dio5J/HHVAwqc5hWtSWfL83rF71bwvCp6f/tbrZ7Ucfl3j08QJ3q1LZXKwlMr/BEASBtr511KtVWnr6rqlCb1kW2fjUbRv4vlugOByU8zkcLrfdur/JcHq9ZKZsnz6XL0Cw1U0plyXS1Y1Wq1HMpFEcDsYunCMQbbnpHaG7DfVKBafHi9sfwNB18skEgZbV+wdcK3Rdx+WxFz1Rlqev8fUnMjcLr791gmMXUwQdJr/71YeJJ3O8c3SCsE/mi5/efUtkqddwl0MQsKapndY1Ujxrog9Rr/LHn9lAZ3cbZ09f4icHS0yWhVUPU5+MKZz6q/cxZdeCGYaG4Jilii3R3RFEiWMTwEQNcOARC9x7nx0c37ujiw+HJ2j36Ny3JczweJZv/eIy6zs9xLI6+zb76JqzXimKBMw+j88mZMb+dj8NS+azu/10Rl3s2LGeodgBxssKOd3JC8fsFoggO5oGjatdAi1DY0uLgG4aDGRkBFGibDq5mITlfHEAdrabfP3Zh7Esix8+9w6XMg6Q5wePbpfSXI/dTgVTKyHICsIqTSATJRgZGqent4NzA0k+tU3l8cf3ER+f4Ff7Bxgu20ID51IqZ385AqK0ohS1IErsH4T3BhJIlokmnsHlkDhwsUTZVDny1x9iqR5A4OmtElvWb+DVX33IaF4mUXc1z22m4eTV01VsyuOqvs6SaHPW+fITPdTqOj/bP0lpGeGIW42ayyDQaatfpi7HaI3cvLV5IjNK3diJzhDBrjKqS8Ro2OG5rDqo1uzff7CrSnLypwiouFtyXI+fjKEZFFIa3pCM4ry2FODghwbvH3DgdZl85SsVtIbIm/sDuBw6n3u6gtt3Z9bStUTmDsCyrCYFaK7U863C9RgMpicniHR2YRrGLaFY3a3whsJUS0UqxUKT3nUz4fL6cHl98/7mD9v0rUoh3+xIWKZJsLXtpu//elGvVillM4iieFMoWTNQHA7KhRxuf4BKoYB6C8w258IfjpCNTQG2WpriuPPKgtlkiv2XGghKhIqm8dPnP6QueojV3IyXoPfMEPfdu+VOH+YabjPyhpvv/+IYnS1eTg4VWCmAvhqK1aC90+4YdraHwciBfG2BxuYuF3s2t3BuIMWZxOrf2+Ks88SeFtK5Cm+fq4CkUjKdnDh+kd27N3Li3BSCKPGZfVHWbernvr0m/+G7+7mUkgGZ18+UOTuYobd1All1cPhyGebMdwiCQBEfff46u+7dhShJTA4Okq/dnJm+e7olfuvz9wHww18e4mJq9QFjwOdqHqMvGITCwmM6M6Hhe/sUDkUikcjyL7++nfGpDL84kFp0juVqaIKT7746hmJdoS77+D/stJ/Hbd1dfP5Rk795ZZi6NC0qIF1bmCcIAqbg4N3LGqABDjshcdreLj4qPPqonZDet9cg+cEIXXKNibJz1cXSPn+DBzZ7SacLvHnRQJAUtrRJFCqNeZ+zc32Ajh57Hd40kOX4+PLX1zJ0Htmg0Brx8v6ZJKn6zXu+Ww07ka4VinjU+b/FYjlPxsqDKBAw3AR9q6dkZ7NJHL0teBxdVEp9VAs/w+V3UM2/TyreiylOEuycpXIGu+rUy2Uqyc0IOBE95/Cucjm2LIvc6Ho6eh8jFTsBLadQnKu7ty3L4s13vVieLuqoPPeLIUIhi7G8TblsO36Wx55Y9de+qVhLZO4Acok4ka5uRFGkkE6hNxp3ndO8JEkIgnDDSlpzkU8mAG5pxX0Ghq6TS8QRRAGn24Pbv3re62LJxrVipqMFEGrrWNUD3uHxUMpm8ARDaI2lB2PvBMr5bDPhnkkEbgZEScLl9ZGNTaG6XLdEYOFqzJ0TK+dzNKpVTNOWZr7euaIbgcfvxWmVqBPCrJYw3E78bplYDTAaBH0rz96s4TcTI0UHI0WNa01iAGqyn1++fIQt66Mcv5Cc5xK/Glj1Ms9+6h48Pi+bN/dy4a/3o68gEADgE6t86p4WtuywqU8j8YMM5WyJ5l8cLvD8B+9iOvx2MlKxn3OlQomGKTW7RYKkEqurxMYAjHlJzFxEQ87mGjU4WaRo3PjMmUeo4JVoUnjmerysBkcHynic5zAMi1PD1UWP3RIdfDBgYFk6/+SJTgLRCIFohIPn04ytjkEIihMNJyLwwclJnlJFDE1HcnkwrNU/x6JqFYcM4yV1AX1rMZQMlcuXRtm0uZfYZJI/+Z1HsCyL7//sIAO51VG8Htzio6enne17duDznyZThk8+uQvTMPj2jw4yVbWv48B4nvtrNeq1BqOJCjO/gy2RBo/s6WBoLMtbF+pNJbVuv84zn7KNWRVF4LkDs0Y79XqV4ewwokMiaPhoiV7bvHCbHCU/EMclOfDPSVRM06RolAiss9fH/NAE9VwDp6QSWEVC41CdZMtlZIdKvZLC0WJfA39bA7gCQK1oUs/3YFpV/O1JarlWWtofBiAZa0D4yqq+Q73cwB/aCUC0/R7iqaOEOlaXyJQLOmKjgOG3KXS1uoRZt42aLNPA59W4Kby668BaInMH4PR4qRTyeIMhGtUqvvDyN3suEceyLJwezw0H2KuFMj3sjmXhugmGlpnYJP5IS/P/b3WHJ59KNAPvzNTENSUyq0Epm8Hhdi9Z0c9MTTZnXuw5mJW7O26fn2qpRC4euymzLjcTAkJznsQwbi7l7mYkjteLeqVMuKML0zTJxWN3RAxDdTj5p1/dzQuvHkdsUXn6ya0Egx5OnhklEgyzYdNHSy1xDbcODi2DatUoKCsXRwRB4FRc4VQ8z3UFGLKDZDyBx+elmM3gkiyWi7HDao3ugMmTj2zFrNvzheVSmWx59nkhSDKWFGyy2148lObC6BFimQZ14dq7sadHq7QePo+iSBy4PBvogu1VsqVDJZatk6itrjIfVWv8yVfvwelycfjDoxQaDk6ONebNYHS6awQ8CmPJMjvXhZlIlRkrzr5enze7sfx+o2oFtzNsP3+SSRLF6+sonU2qDL0ywqYOF2OpSXR5eji7UcYSpHkGk7Ykc5mapdDutfjjr9+Poqo8//JBVIeCYZgcGdGWFCCwJAc/eHsS97vD7F5nxwaCIBDwOCC3+PG1OGts7/NzZaLIRMlBPJ5l665t9mvRIDXDvrNEScLllGB6PHW44ODf//1hTER0afb+eHRPJz3reuhd18vJof1kdftYizWLcrGMx+chnavMO4bh5CBte2x/l8TAAC1c27Pe5fLgcs0OvTcaNSbKkwheJ7VCFrUeRlRkiqUcgV07qBSKkM4Q8C/fLnF7fGgFjYTxAoo31zSxLCYkrPouTLOIaeq0dz9mH3v8FyAW0bQGiqJimKuXa3N4VDKJYwjCfRSyZwn0LN1lrVd1krE67V1OZFXi5dc8GNEN6LkYLqVMSYhSK7azvfUYGzcL7Nh95xRx1xKZOwCX105ksvEY3lB42QWpkE7hCQRQHE4yUxO3LeDzBkNA6KZ9noDQHKoWVkvSvhFY1nXLD6+E9OQE/kiESrGI0mgsqio2M9QvCMKyBqpXw+X13pauxLUi1N5BNh7Dsu4uyhuA1qjfuKz4HZaZjrZG+ZM/fHre3x5+cNsdOpo13I3oUPN8/fPbCLa1s/+tQ7w1fGsDB0GSSabLBHwxHG43HW0+iqn52+xs1Xh4dyfnL45y/74dmI0qgXAI0/Bz5fQZXjiap2DY84ZPbpbZ3BfhwOlJziTsxEoTnZyfHqa/HjRw8sqpmaHn+Z/xufvD7NmzmWqlwl/88Dhla+VEqT2s4p723zJlL++fr85LYlodFf70Gw8iyTIjlwbo27yBRq3OX/zgMAXz2pWdDFMg2NJOIZXk8mCM+jKD2Jahs60NEOBCfKHSWcVycXISZoa5e30NvvGZPZQrNf7x1SsUpudLHuqDz3z6ccZGpzh8fLg5f7exy8f2PbYKmfrrA2zZGCaTr/LSkewCupslOSjj4PhwDd/B8+i6yanx+qLzUpau8bVPrKOtq50HSmX+/feP8faAjCQfprOrhQOn40wVLQzrHIVincG0MG++vCEtXA+HJ7L0rOthbHSKYkNqbl8wXHz7ZycJe2UG0xbMmQsyLbMZE5g3oRiXK2YIbba7EznLQhgvohs63rAdN7n8PurxeHP75dapgC9Mvf2qwfrGFqLtOwCYHDoI2F1CC4tQp0Zu6qdYpkKgs8JqZ2UEQSC8bpJ6aYjQOgeCsPB9l8/XyedMTpwPk2zsps93iQ39VS5dCSIFBZRQBwFpAN0IAhBscbJj96p2f8uwlshcB/LJhO0KblnXXcF1+wOr6hIYmoY0Y8B5B2gvNwuK09kccr8dkrOh9k6ysUkQBDyBm5eQAdNzIk4CDueS8sgOj6f5fZ03kHyahkE+lcQTCNxxqd67TfTB0HXSk+O4vH4yxUna+tZd82c4p2ltlmVetynmGtZwK6BYNT69J4iqyLxxPMW6NkdTun3Txk7eGk4v+/6gUmPvhgCjsSIDudmAzrJMOj11NN0k1Vg++D49UqGrXWcyEWM4qcGcwMcyDR6/t5vWrk48HgculxMl6Gfo3DmKuoMj54sUDDt58AkVnnrSJtA/rsqcfmliRRqTqdWbRpvXA9c0JczhdKKI5lytAAA63DU6oy6SiSw5TaVguLk42eD4sYt43ApHL2W5WuHJ7ZCaVLYZ6zFBFBBWKIRYhsbeHgm3S+XIlTKN6YA/Z7j53i+P0xZycXbcFkVYCjs7BL7+rC2P/POXj3FqBYbv1j4/3oAPb8BHf+tYc/vN62xJ5t6+Tn713mU+OHAOl1NmaipHb5/tYbZzUxsd6/roBc4MHWIgCxgaT2xxEgm5ee90klTNSQ0H75xKIwomomEiCBaWdFUyJoA+7cej6QYWAoLi5M1BYDDX/M6vN7tYK89ivXGuxomB/RQa0oIkK6e7yOVYENtvaN/MlVPnEBSJFuXGbQW8Lj+ZeApvWxTKDSIhm3URz01RmIhhVTS6/F22aWx6EDnqR8sW6fP1roqyrxt21aBWLYF6mWS8hEWVQEcJEAl0mEB94RddAYIg4PQtnjCfPdng+fd3gqig5+PIARhKdZArJsHhQy+k6G+N8+ijdd58fwynQ+OeXQ3uFKVsBmuJzDVCq9cQJZlAS5hGrUoxk2l6tdwKeEIhxi+eR5Qk/Nco9Xo9sCyrmQCsxkBT1zRMQ18xyPYGQxC0EwrTMJomh25f4Lod6JeDIAi3ZFgfbE6sVq9RLZVwuBev8i3lJn+tSE2M09LTSz6ZwDKtJfd3p6BrGoVUAoRbdy2XQiGdorW3HwBREqlXq9csbHGzrtMa1nCzsbPHxQP77K6cXq8yNJJkYmCASHs7J85NsJKM6ucfaGPT1vUkRkc4fTnJkWGNGk52thl87YsPY5kmf/fTg4wWl/7NjBVV/uq1OCAgCPP3J4gSl0dStHZ1ksrVuPDBGTo6Wzl8qUCs6px3fGVTZeDKGBs29nBlOLViErMjUuLTj22lUq7xgzfHKJkLj7HNWSXsV7k4pWNKC9epVw/HSeXqjMcKZBpOMGqIqn1MXqHMH33lfpzTBTZ3IMRf//QEmYaL54/blCTLcrAuUKMl5ObUSJU6DoayEi+9dpyQz8nJS3E2j1cZT5TIW4t30S3LQtUL9IYVvvw5e0Belc/y9sXZGciJspOJssVySQyAQ5Xm/L8IK0jznx/Js3tbiVKlynCizsz1OHImht/rZGQ8TaziYOpsHaiDIdESGmXfQ3tIjY/ZsUAmR6JgKzv2hSyeenK29P7zw0VanTX+6Et7KabjtPb2Mzke5x9eG6E+57sIksJzb4+yqTvF8FQFQ77xNUKQFDK6smplYNM0SRbj+ANhAqIPn+fGqeZutxcqUL6UoMs/G2u0BaeL29O3f6VSwtkZweXzQSRM9mKC6CrmcwLdMRLxHyOpDaL9AhCbfuXWySFn80ozkXQpFer1Ijt6RnE6ITfixeXSeOYZjbZOJ+s3zRBN7/x891oic40QBBFzWpbX0A1E6dZqbBeSSXq37UCr16gUCiu/4QaRjU0SbOtAFMWmctlSKOWytlCBolDO51ddsc8lYs3B6szUxG0Nfm8GIp1dFDJpnB7PLe+SKKpqK5W0tpGNTd2yRKZaKlErlwi2tl0THa+QTjYTxkxs8rZeS28w2DR5Lefzd91c0Y3ixIkrDE4W2L2phY1rczIfO6RyVXRNQ5Jl+jqD3P/gbl545QhHfjWB6Fy+y6tYNco5k9TkBOGOTj7V20fo2EWeP1Ym7LOfKYIkEQm4GF1huHw5SeDXz9Y4fOk9+kMiv/XlpzANg+NXDi3YzpIc/OObE/j3D5NrOJqGkn3+Ous7/ZwaypOeVpiyLItH9nQRjLYQjML9PeO8NajP68yElQp/+rX7UZ0O3vvgLG+eXyiOkmk4ee1sDcUy+f0nWmhrCfLiO5e5klURBQtlpiouCDjdbiI+hcycJleLWuUPv/oQoiTReuQCL52sIkgyR0bB9vAIkLhiq3othfu7DT7/zBNMjIxTKRZx+3xo+vXRmk6M1lHfPIkoChwbqoO4fAA5VnTwb79/HFOQEJTZdep8WuXc86PTksxzjl1SOTlcZdc9Nfwtrfzwh28wXHLREO01J18xqJTLuD0eUhlb2ro76sLj89AouxBFke7eDlq8I4yX5h9LTndyeNhkJrrv8dV56t4OYskSr50uYS0hDW1ZFhtDDcIBFyeHqzRM8AgNSrhXJUwwg0R2CvcmO+bIjk7iY2EiE89OUnWb0DBolSJ2orICRFGkpNQpW0mUjEFXeOEa5HJ5iMeHcPl85Men6PBHSeeT1GQNsWHREVo8xhIlkWCnxqr10gHTMMmNt6FILaBewteqN1+r5k0a+e0IgoLkPYMntDAR3rNHZzw2SK0m8dQzOdra8jg9KpZlsX3gKIGwTOAqj5qL5zQuDrjZ2Fdh++41+eWPBGRVRRQlsvEYoiRdsyHeDPKpJKZhYJnGsp0DUbZ/rIrDiWlkr2tf1wRBaBo9rTTbodVqTWrdNSlZTc+OfJThX0Gg4WZB1zTK+RyVQoFg6/Wpvc3MtizVYasUCxiaTrC1jeTYKK29fav/8LmUits8Z6I4nHhDIbLx2B1THLtViE/Gef5QGktSuTI+yH+/vrPper6GjwfGSk6+9YNDrAtbfP4LjwLg8TgRV5BLVcwaf/L59XR0tXF0//uEp5/Rllbnq/s8dLb6Ofr+IRqylzNji881zCAg13hyhw+nZDIQb3BkXJif2IgKeUMh0jLtzSRJhHyOeS72MzAlBznD0WTCOM0Sv/vsPhxOJ70do3z3zSSCYM8WplMFoh12Irf33s00xDE+GJp9vrhVEdVp79PnVpGtIg9v8mBYFgcuVeZ1aLpDMpu3rgdgz+Yolw/kyVVFfvjLI2zo8uKSTc4P5RhIGDAnWRIFmnRu8RrmHOdi+8ZWRFGkZ10vv/zFu+DwcmqsAYt0kFaCKTo4MGROH9zKVXDLsugJS3hdKhdijXnJwlJ0vYmygz///hFEAYpWZF7xP6e7+OvnTuJ3CozmJZAULkxU2HRuAFGv0NA0CvkSQafFWMFYNtF4ZGcb6zb2sW4jnBs9wHgJwkqVsE9hIGVgTc8ldbqr/P5XH0EQBEIfniEc9rJlSz/vvHuSSyMZOsJOzsRYdrYI7FSgOTO7xDpVc5oEO+3fSmEgvqpEplDJEZouMqUnxknl4kSDszOkmXyShqnRokapXUrQ7o2gKA6KVopgZwd6vUFmLEE4dHOUXAtxhbaOpxEEgVTMARxvvtYoddDSYUuKpxIlCA0teL8voPDN356ZOZvTVRMEejcuLKJWSw1eeGsdmhTgwliZrs4LBKK3nwK/lshcB3zhMKVcdoGz60qYCfZVlwtD1wi3d6Jr2rImgLLqIBubwjAMAi23nlrmDYbs2Q7Bli1eDpKqUi0VkVX1mhzoA9HWJrXM5bu5amJXQ6vXyCeTTU7qnVCluhG09PRSr1aJdvdcV6CejcfwhSPIikJqYpxoV/eCberlcvO8KI5rW2ADLW3N+8UTvHUUy6WgOJx33ezOzYAgijbfnOlY6jcoSVvD6pHW3GSmGqjvnMahSBy8XGQlSlnAYdLRZQdTHn+An/70bfZs68BqVNj9oE0NMjSdv/n1OJqw8LOiao3eVhcXJ6t8am8Lu3ZvxLIs2uJTXJq4QpGF3aCDF/M4HRep1XXOTWqrCrRNRHTNwOEEXdOZW3l+8WSVkbH3+OSnH8QfjtAWzcLQbOtorKjw5huH2NAdJBefYF+Pi08+uQuAau0YxydAtmqEnCaxtM7keJzWtjDnB1M80i/x6AO7OH56mF+drk0H3MaC5CJed/HDXx6mLezh2P+fvf8OriO/072xz6/D6ZMjDnJgjkPOcKKkmdEoZ2m1K23W7r13b3DZ167y63KVy3aVy+Uql133db3vTbtXd+9mrfKuwmiCRhpNDhzmTJAgiXiAk3Pu5D8aOABIAARJkMOR8PwFEo0+3X26+/d9vuF5rq5+3d00iHhgriovGy4HOHkxRU93hKtXE5ybaaC73MurIPOwLZOntslsH4ly+OycY6J5BwgrTR7Z7mbfjq1Ee/s4f/QkszWFSzPVTuVrNdTwrdq1VjQ8FKs4ZNTUGel1cXw0y+WsxKf2C55+8gF27Lep/NN7TJZXJzKTc0X27INcJk++ZhGQ6vzrrz2E1+fjncMXOqpv0lJTVMlm9+4tAPR423zo60+gebzsOjfKd99rrHlO3dF+5q5MY6kSUSW84jaiYWDbNs1SGQ2VYiFDKNxFppSi5Tax6zqD4eFlcZ9H81HIZAl0xTBNk4aqd36XL2bQ+zy4vVHy1xIMx5xqjW3b2KZDSE3DQJnfX6Nk0qrLBGImsuv2klayy6DVrOH2+LGt5WUxmyK63kZRVExr7fm69cJZm5xzEVjz7P/eY5PI3AaK6RQefwDLsihlM+uqypSyGSegdLmcIH7++zbnWwdWw73K/C/A5fase7YkGI1RL5doVKu3JKcsK8pdNwFdQLVQ6JhMrrdq1KhWaFaruDwefKHwmttW8nmEJOZV3u4ObsfQdAG2bXXU4lZrgxSSRGLsEkJIt9y6JivKHc0i1Stl2o1GRwltgdgLSdwgy7zgzSNJ8n2nnLbR6O6N89UPlxmfrXJgx/ZbTpps4tcHtuTinasmzrT6zWWEwz7BtdExmpUi/du2Ew0H6R4epl4uddYhSdh0+wWJ6yonLqvOn37lIIFQgAcuXUWaD1JMXadUqtGwVp5LqFluXjg1L3e7DhID0Ja8fOsnxxnqDXJppo4Qi++5tnBzPCsRPDNFV8TL22ezLMsQSzKxrhAej4uPffbjTI1e6Pyu0TaRLZM//ewWhob7OPLeBf7quasoXKRlqfxfvrEPbzDAU08e5M2zr9KWwisenxCCsbyLsbzOatfdZTf4sy/vIt7TxdvvnOXli8ay3ydLJsV8kbAH/q//u09z/swlXnovQVWEllVFQlKdT33SEUPwuSUO5BscHc0xVVn9+5bMFiMxQbZsUlkyQ2RbJl/96CAjW4c6RsaxeJCh7WEO7Gjzzeen1u0p5LarSAjq4sak5qNbVL74mUMAfOfHR7CXEFHbttbc77vXTMYSb1Jty7SEh16t0VGLCwc0nCF2mKlp/PBnR4kGvZy8lEURJ4kE3WTzdXbNWx/4/G46es2rQAhBf2zt1uOhyAiZsTlckkJJrhMY7GV8/BqyXyPU34dt26QvJeiND2HbNon8NGgyzck8jWqZ2MAgzYkM+CCdnyNfydCzzVGBs12LD40QgojpozGRQjVlwuEeKrUSkvwpurv6mR57E0/XNMHuldlkfjKES9pLS58kMpJYtq4HugSV9M+oVP24u/IsDfHDAy1KqR9imRLhQZOVWtYaJZ1mXRDuldeVOHX7XHz1k1OMXcuybaROKPr+GExvEpnbgG1ZnYCvWV2fe5VlmkjzhEVIAs3jddrTJOmeGER2jsOyKCTnNmzQfqP9WRZgWRaWaXaC8LXQqFZo1mpoHs8Nx6O63dQrZbyBIKZhrLKH5Z9bL5eJ9Q9QLRZoVKuryiEXUkn84TCWaa1ZVXs/EYhEO9Uv1yqeN5ZpMLBzN3qrRb28fk36W0Wr0aBeLnX8kKqFvCNiEevqVIvKS/1/krPLiMzCzJZpGJ3ZmF9nHHhgOwceeL+PYhMfJCh6hd/94hO43BrJ8XHCsSjZZt3xIfMHuPzOW/T0D5Cv2aSq3BDLSFhomhPk+n0a3mCAzPQUx05e4WzWjSGtP6li2zYP95vsH/GjW3BhssKZpNIJkAb9Lb76sb0USzUuTN8YiG6J2FSbFu8cziwbHl9AIpFl5zZHnrZ/2w5mLo8ynapyMSUIiDZDw877Yag/hHW2gS48CNvmxNlxnnryIKdOjdESvjsyA/CrBpGIIxYy0BOEi/llv9/e76N/ZIhSJo0kSRx4aC9Rn8S1VItXLi3OytQtlVRijp6BPrAsHji4i3Bwmr96ObNqQPmZBwM88cR+ioUS//2fz9NcQgQXQlvbtkhOjBPp68fj85FLOsIN60Gft8k3vvIwiqzwnZ+dZLK8/DvQXMqSn2Xeulih2jhFudJisqytWUQWkkxO93cOZa7u4vlfnKCvK8A7FzIsSGkLIXExI0FG55l9XTz0+AEsy+KV40kip84SDvl57VgCVqgSCrPNo1tdzJSm6dKiuN1rxzpCCLpj/cylpojsc5KfaixIu+DMJjeqVUrNAr0Mkc7P4pufubGERcj00p4oMhAdIplPoG7polvuInHmPIFYDF/btUwdPByIEV7y2Y1WjUDYSQb7AjsI+B6jOPcsoT6dpbBMC7d6iHB8ANveRjr9D0T6lmcWAt0WUGal8D7YA2BRK1q0GxDulTr3V61goZqfIx7tJj35C6Jb1le12bFbZcduHXh/5mNgk8jcEhZMECVZplYqYlsWsmt9mY1wdw+52QSyLKO63PhCYTZAOOOWUUzN3ZNB+0a1SqNaxjItIj2965IbXECtVKTVqCPLCpZlrdk6ZJkmjWqFaG8/1UJ+GfGYvTqG5vHSrFUpZ7OdysxaMPV2Z4DfGwhSyefW9HVZMMSsV+6+EMPtQNXcN69+zb/IFJcL07w52bsd2LZNJed8B5V8nmatht5qdcjI0vtjaS9zKZN2ZslsC1l2skTrIbeb2MRvIkyhMDedoHegl1K1AYkUmuZh7PQJunr7mKv7+MlLSVA0hHQjOWhKfr733Cm2DgSR2xU+8szjtA2bsxk3jVv1emlV+dwnHqNaLBDt7Wf3Azaz33qbnO6sOQd3RIj1xIn1xNlyKcuF9OKfdqn1Gwbtr8d70zLeIxc4uH8L5UIBxevj+GQeIXmoWF5efuUkO0ZivHd2DiGcdVoIwcsX2rx59lVawockWTw8BKZpc2pav6E1bAFBuclnHu3GME1+fixHEzeK3eLjD/VQLhRIz6V4b6yObMFnHgoS9Lt55USaq7M2pXyBermMPxKllEnjj0TZIkrYF4sISWbIU+ZTj/ZRzafITV6hb/tOALKF2ppZ8a6Ik0wNhYP4XCbN+ZhXSDI/eWuGfdMlUokkg70hdhxy3rOZioVQlr8/hdnmmb1eAn6NN87kKBnOmjYY99KqVmjZNkPdPibLy9eGI2NVQq7jRMJBcrkyW+MBxucaZNvuW+6EFZLMsWlguspqnkLueeIkSRKSy8M/nbSw7RJCrCx88dCwiy982qkYZcfniFo21VaFoCe4JqmpiSa1xAzRvn7qqSwey0UhlURRXXi7nQ4ZISQsw0RWFWzbxhI2TbdFojCFkGXcqnOsgUAYtQWmtfa66nX5mLj6Dm7PAJJQUF1usILAcjIhyRKtVgIYoFKYxHMbzg7VHLilLxCOxUhNvUR0xPkMoxkg0uXEWi516IbPvp+xSWTWiWUmiJqGJCsISVp3248QYsX5hNuBZVl31GpyL4aiG5XSoprVXOKW2o/ajUanVe1m7WB6q9WZ5fEEglQL+Q7xcC0J4mcuj940AF4ImvVWC0NvY+r6muRHkuWOp5Civv8ShLcL1eX44ZiGQWyD7tHrYZkmqnte+jQSoZhO4fb7ySZmnO9lfgAz3NPXkf/2BEI0qxUivX0Yuk5mcoJ8chZsG8+mZPImNnEDBiMSse445XKVXx1Pk2qWEbaJWxV4OUep5UK4nQyaVzTYP+wjkakzW1+s1o6XXIyXmmDaXEweplC3b53EALbq5sLFSYZ6nGir2WjQNhfXnsuTRR7c36JSqTGT01nqh7F0LkyWV16vJEXl9Ql47eo0YINdQSjzmXxJ5u1xeHs8x/XysEKSaUthBPDosOALn34IAPP545xNsiIe2hFg/wPbAZhJn+bYlEV/SPDAg7sBSOZqTJRNdsVNHn/MaSeqNQyeO1njP33/AnvjOg/X6mzdvx9Jlnnr7XOI+Za2jz8ywPAuZw5p5tJFrlyZ5uIb40yXxIpCDEG5QXdI5fXj09RbFlNzRbItD0s1GPJtN9Vakz/8g08yOznFxNUJNJfK8StVrldZ29kt88zTznyRYYzy4hmHNNYqFUJdTkm4dPgqsDz496kGj374Qwgh8HpV+rdsodlo8M3vn6Rk3vx+6fW22D0UYGymwmxt5Zkgl93kC4/F8GoKrxy5RkCzMA2DTNlRi1srljHMxfY2vd4gG5EI7uhhcuwq25VtKKskV9WgF193F+VshpAcIByKMFdLY/kl5KoJGnRH+0hOJGgpEJVD5KUyoaF+bNumfG6c0mQCBNQbNfr278Zo62SmksQjNyZlK9UiCT2F1zdCuZTAF9TIJmfRwilWCtH9faNkslfR/Dpu//pC+FrRxqz3gJzHNr14413Oucp9LBAWLVAmM3sKRYlRLV8D9qLbCSKD92eSdik2icw6IcnyMhPE96utJZuYQVYUjHabUDx+y/K/oXjPkkH7jQ8G65UyrVoNy3ICU/s2lKwWRARUze0Yj64BzeslP5egVa9jGsYy4tGoVbFtm3q5hHITP5xSNoM3GETV3ORmE+saIA91xTF03ckQLVGUKmUzWIaBbVt3zctmI7GaD1I5n8NstzFNk3C8G2Wd1ceVICsKeqtFITmH3m7TNTiEJEm4fX4s0+xUZCRJ6lwz27ZpVJxWN1PXCXR13dVZpE1s4oMI27bY320SCXoIerWOCWJf9wyZOSfQC2hN/viLT6AqCt95/hyzNRdffKKHffu306zX+a/fO0HNvi5LLbtukNGVrRZ9QchU7TWVogb9LT73xAD5Yo0fvnCGrp4ZUkWLirU4gzeRtzn89gl8Pu8NM8Lplofv//QI3VE/J66WWS1LD6srcK0FxWoSdJnYS2dL1liqZtNVLNPE0A2SuTrgJl22mJtN09PbxeXxHKCQLbepVWp4/V5m02VABs3HxTJURhs0pUnGJ2YpGj78cpOq6aZWb89/vo1pmZxNmExX3Ct2gLntBn/2W/sJRUKcPHGJHx1x3OBXUsjeOhBGCMHAlhG+9cN3uVpQlgkNBOUmj+wKUikUaTWaaB43+dJi5SsYCnXWNX8oBLnlVYWWKVMtVwmEAvNiDeD2ePC6bEprj6xgt+v83m/tJdIV5dFylf/l2ydxSTYmEsYSn5nd/W4efHAXAMVCkf0POa2ELUZ5Yb5K55OaPHMgQqNh8PrFakex7uysifnsMb64vx83Ltx9Tut3oDfOxLXL7Bjct+KxaXVBLZ2FhkE01IdL1djq3oppGMixxXutN7q4tuerzjpltNv4PSFifuezppgGQHGpNO2VZbcLdpneHTucfwiBrvyCSJ/KauG56pbnzTDXLwhQmdlNIDRIq1bH1F4nM3cKSQSwlCudbdx+Gbf/PIZhYNvPEO3egmEcoJD+DqHu+5sq3N9Hd5exkE1XXS78kbUVlyzTRG+3aFQq76spoawonSC7kEreMpG5m4P2tVIRcJTBEmOXyCdnsS37llWlFkQEaqXiuo51NbIQinczNXoel6rRt2PnmvswDb3TJnYr1a7rqzy2bWMZhlNFaLfXLQZxP8JotzqVsXxy9pYEHVbCShVJIcSqbYdCCDSv746lzm8GvdWkWix21N02sYn7CWGlyY5+H+Op2oqKU4O+Fl//8ocRQnDsnRPUylVqjSbj6SYLBGBrr5dwxKnE7Bz0MXtJZ17Z3+kuWEfCybZtvvxomAcP7eHqxTG+/coMtju84raP7OliYMsQA8CZ8Qrn0zc+47t7VT76SUcOti2N8ouzi9GvEILLeY3LeZ21SMztQDKbfOPTQ4xsHeTNN47z7M9PYJo252ZNWEUQZSzv4r/+47tYlqA0T8aauPmrn13BxUUacgAhIK97+OY/ncKj2KRbnmUtVjNVjZkjZb58KM6XH95DPpvnv//4Is8eb2K2jhH0qrRQmCvZq3oearJJMOwkICMhN1Bf9TyPXswS8qnkinWmijcSvk89EufAgR1YlsW3v/catiSzd3ucrz6i8qtTWU5PQPfJSwCcHq9xfSWngYe//elZesIusvkqj5dN0pkqszXtBmJlWyYH+yHod3P0SoWWJKHPk592u82WYIs//PrTtJpN/vGnp0npThUvmW9Sr9VwezwkM1WHTCgKtcYiqXpid4jHHt0DQKZ8nHMd30iVCxn4t2FnOP/ChfN4uyIY7Tbe4OpJ3A5Bue5RW22dMgwdq94iffkqWktipH9H53dBy0tlKgltk/7gyuvnvJ4Gtm1TzI7Sd2DlL99sm1TyJr6whOq+tdDd440T6e3Dsiwmx98mvud853eNskWrGsCycgS6ZBRNwTQdFZB2s8I6dSHeV/zGEplqsYDb50fzeikk527arnUvTRDXgt5qYds21ULhvnN5bzebHdLiDYbuSBZ3I0QEgtHYulXfgrE42ZlpZEVBvsNgdkGxxTRN5Hvg/VFIzoEQqJp2RxULyzQpZdK4/QE8fj/WfGleb7eQbyPruRG4nVmyfHIWgUBvt4kPDa/ZfqC3mlQKeaK9/aSnJm+6/SY2cS9h6S1+//Pb6O3voZAr8F9+eB5bXV45sWy7M1fWltwrmiCOzdZJzqZwqQqjU0570YvvpUlkG0ynalS5uWcGlslAb5h8cpaB4X7+7Vf8fPvlCWrWjeTq2nSegwcsCrkiilXnKw/3c+FajitFDdu2ONBr0e23aTWbuDSNVLbCvQpHfLLOyFYnqbJzWy/f/HkKISQkdJ7epTiD6+dL1O3F8xJCUDBunKuwFA9NPMuKJ1XLS7W9qJiumRUMZEzZWa+7ws73EolFCCt1Pv7ENqJ+FbffRzAaI3DyLQqrjFQUTR8/feEYIwNhjl7MsUAu3KLFw1u95IoNRnMqQghmqhp/99q8+IB043ek606FwGjr5NsaW3q9PDbfFleqt3n1YptnTywQpZU7Ggq6h0IGIDSvWrdydWhbxOR3vvgEAEHtLC+eN/jeL6+yo3+Oa8k6z+zvR9U0VE3jib0hfnWuTn9EYSon+Ivvn0QVNgXTT/IHRwh4VRLpEgoeDNlLseL4nlimSbHS5noGUqhkqUgNXLJCPZNHU91EfLeXFCtWclREHduw6fX14FI1MpUUkb2OT1FlYnkrfGeof4WRnEwxSV0zMA2dyqVp6uEjDDzUQIgbYwbbtinP7KBn6CPkUueg6wTqTfyklsKynfYwo90kEFv8gizLQi8+QnffPsr5HNVEBlf0OGr4ONnsFCh5gvH7nybc/0d4l2BZVke2TkgStmXBTTLxS4PihdkNWVUJxrru3oFeh67BIYqpZCfYvJ/gC4U6ZOBm8ov3GxRVXZcYwM0ghMB1DxXpSpl0R9Y7P5eAOyAy2cQM8aFhKoU8VG1CXV3kk7PIsnJfKrKtBNu2EQgivY5cZjGdWpNQVwuFTqXJH4nQbjTuuwTBJn5zIbBwzQ8Ou1wuhH2jY9ds3cM//ugI0ZCbM5NNbJe/E1j3eFrsGvRzeabFf3t2HIGNUJ1Ar2i4eeOSzvUzJKsei6zw0rsTfPTBONHefvp8Pj7/UI7Dl6vMVJcHumeSCtf+9i1ajRb/0796Eq/Py97dA/yHvztKX0Tld77oVJDee/MIqUILtz+ImwbNVQLmjUTZ8vLKa6fYORLj8JnZjhDA/gEXH5ufFdGN87w62r7jz9oVbfP1L36IcqnKPzx/ibLp5pdHZnmsqjMxU2B4MM6efc7szey1q5y5OEu+5WKFWBZw1pfTSYXTyeWzLh8/EOLxx/Zi2zb/47vvMNe4+TvspRN5ptMnyRSaFE0v2WITvd1GUVVSmSrrvS/WA7td75Dtvpgb2ypR0N0cnbQAN2OTGYYGUliWSSpV4E8//wDdvV1cHr3Kd94sICQZIWC24eFgyOB/+jefIJfJ8/cvXOb4pEruh4dptk1SzRvPuyI1CA4vdhb4QxGacw28npXjp2azRrFZQpNcRILLY7uyVO/sK3clSV9kANtaIlBzC356dbdBaMAZUWiNpdAGmzQrFq2qD5evjie4GI+2am38YYdkxnoeIJ07Qrh3/UTG3XWaTDqJkIsEexdpt9E20dwOqfOHwliGgV6PEhrIQyi/2u7uO/zGEplgNNbJ3EqKckuqWuVcFn80iurSnPapzk189yFJ0vsuO7va+brcng0hAx903PM5jg2691SXCyEEwWiMQipJpKe3Y9paSM6tmzxXiwX0ZhNPIHjXVPFWgxCiI7PdqJRvSkqCXXFSk+P4giFq5RI9I1vvxWFuYhPrglA9/PCXl9kzEmRspoLluvH5E0IwXtIYL9nLh8PbNf7gtx8gHA3zcL7If/r+eXDdGkl32S0+ssePZdq8fbnOlYKGeTLD13t6MdstRrb0E+1q8N9/PrfMyV0IQY0AluIily3g9XnJ5cpYkgvDtLAtCyHLWDZ86UtPIkkSsaOjvHDmJsMVt4DV1ikhybx51ebNq1mWBuvlWqvTmVGqtFivTPFa2DkcRXW5iMWjDMRclNMwU3Mzc9SpQPV5G9RrNRRZ4eXjGcbLGkK+9Y6ApTOp6x1LbQs3pxKwUMGYqbn55veOokiQano2alkBYLoskZwYR/O40S2BbegIqw5up4XsTDZA6ZXL+L1urs7ofOqzThm+KxoEKwtL7q0dwxEkSSLe00VPaJxaQWGy7CRPQ1KVhqmgL61A6c4F0VstJElGdbupNTKU6gUsy6Yn0offu9hqlmxlCG8folGuUsrlCQWjlMo5TNME2dmX0dZR5tlmb6Sf5JUZbFkipq689rdaDcq1IgHvEsW0tpPsbVZraIqLRttALz6BS47SSBVolo4SGXK+BNWjkLp2HKvnQarVi4SHbx6vFmd8yKIP1AkktYYWnKFdD1BN7EG3ZokMlXG5VYrZt2lM78Ky3PjDXizxwSEwC/iNJTLA7ff8C+FUcGDtCcFfQ6SnJlA1N3qrSdfA0LIh902sDkPX15wHuV2E4t3k5xIIId1xy6NpmhTTKfRWi1B8sfReSM4RHxqmnM9BlTXJTL1ccgy/evvIzkzfEZFpNRpYpnnLlUd/JEohlVxXq52sKPSMbEVvNW86J7eJTbwfSDbcJEfbrNbesyqE1FmnTHPlQeOb4ZHtXp55ylGuqjZPcmIGxksa//Hv3uZffWUffcODTCWusGI/ESCpGt/71RRDsTmmczpCdZNpwT/881GiIY1Uus4TTznbmkaLj2yTMUyLo9da2KtIIa8He2Jtnn54kMlEgZfO1hDr2NdEWeOvvvcubpfCtbx0WyIC1+PM1TzDvXMUK3XG04ttTxotvvRYDL8vyvd+dIR8W6W2Uv/ROvHquRL56mnyxQZzDYeERNQmuwf9XJurkW6u797JtTSwbcQqSnG3C1MN8tzhFNv6A1yayPIHzwyxfVs/z718lrMppxVuquaHGqB18aPnT7BzS5QzYzmEsvzYj41miYU85ApVpnMGSM739PgwfP7TT5FJ5/i75y/TsJ31sNfXQ+FKilq9givip3olQUO00XpCRLriZBKzuNouXC7nuxHz8yeeoJ9WKkW2mMbs9SArCmK8RvNqEsmW6I44CWVdbxFUg/gDYcqlPK1WA01bXIsty2KunSa8c5D0bJLupsDt9tKrxSleSeGSVCKhOMWagRAB3D4/oXg3hZQbo/0aikuhPBdhZM8n0FtN6u08srp23FVOG0Qin0N1ucnOxnFrccxWjWYuzeDOg1jmQ+RS3yHUIxEerAEnqeaaWC4Jf2DxWSnOqgg8eKN5FE3mymgLl0swsv3uV05vBb/RROZ2EYzGKKZT1EolVM3zG9NT32428AZD+MMRp20nlXzfq0MfBJQyjkHCgkzzaipht4uNUkbrGhhccVZsQa0sGI1RSM6tSSxa9Trh+VYup8Xw9qqV5XwOgUBWFYrpFOHunnX/rdvnu2UCpa5iFrqJTdwPGPC1eerBOPl0Bn84yrVEkVOzN3HfVj1856VL7Ojzc2W2esvVGIDqEkWtWnPR9E73xPnur6bojyYZz+gIsfrzU7fdXMrCUpWlyYrGZAVsO8h3f3KUeMSLsAw+vTD8/+IJTs3e8uF28KGDfQQDHvZskzkxViSr35zICCGclqwGq7Z2rQbZajEQEmTzZWr4O+170xUXf/H8DEjSsmu0vUflgYOOAM0DhSYvnl59aH89aOPm6ISFI0kMtqHz9c+O0D/YT6VU4T997zSmsvY7MSg3+e2P9aO5FH78xhSZ5sa+E2frbmav6PS6Xeydb6d7cHcPZ1M3VgAu5lxczN0oFQ0wVdb4y18kEUJaNvuzbTDqmFr2dBHzXeko7rlUjZ5IPyzktLxwLnmW6PwcrjcapjlX6xAZd0OmNDOHaJoMhAZJ1ZJ4fc5YgeTV6PUtJsDLlQJFdxNXl4/pq2eJ7txKqVIiXG0R8IcBqNcruLucDw/09VC9nMHt9qJpHnqWEB5fxE0icRhv4HMACFnu5MllEXTa1t0eJBEErpMTxHlGS3Mq2CC7dUyjjepyYxoWwpbwBXsoZlIAtJoVZHV5Et4fW/59F2cVopHfRlFU0sk3OHdtgjcuPIRkG3zpyQt0xyGTgR27JDTP+0slNonMbeJWAqv7FZZpkptNoLhcjlTwTSpUquamlMngD0coZdL4wuF7c6AfcLSaDbqHRgDITE9tOJHZSKwkeGEaRkc2OXoT4hru6SU7M+3cU9ycxBjtNuVcBiEkNJ8P77wkuKnrndmWVv3OFvkPGvK5Am8fnyTokXn6yf135Bm1iV8PPLHbT8yvEA8NEusf4IEDFlf/5i2qSxzNZbOBWxhUhb/z3GWbbrLjBjdIMM1Do8XjO/xU6i1OTls3VCHOJGzqPzqCaVo0Wjo7ojCWsRGyi4rlcQjKrUb9S2EZjCcbjOUVHh5cfFe0dJOF8MS2bQ72GOzfEef0pTQXczcnJdeuzdDz4QfxBkN0B64Stlt8+EAv4zMF3rxiLmuDu1PYts2XH4vw4EO7qRTypNMF/vntVKcisFJlZy7folQsEwj4GE8U2ch5lPmjQp6vkkmStK7Okd39LrZsd9apB7cWePmifpO/WBmq3aQ/JDFXsmivQHCzdcHY5Um2bx/k3OU014ehHruOLKw1BSjEChXA986n8HkUktkqsyXWVCfudXeTHLuCy+uh3WwQUAL4zDCyLNMTnl/j5jmGT3jITk7TaFTwKF6KVp5wwFnDa1adYK+zTqkRP5rXg+b1ULuWIuCM+ePzBcnNTtAMVLArLUaiW1Y9roEHmpSTL1Kt9iDUBO1cAMXeRbM6TcZ8D4TAFZphJVm7YsJPPP4VhBCk0z+jqr5IuRKhXvXgD8dJjF0A70ky6VkktUige+1nQNhulHnzVAkfcxkPQkjYwsW1cZXnX4/TbkpE3sjyv/l3bVTt/aMT6/pkIcTngP+Ec2v8lW3b/9/rfv9/Av4NYAAZ4M9s257c4GPdxAajlEnTNTjkKLLcxHgSnIxVuKeHQiqJNxjaEPW2WqlIq1HHtmyCXV2oN/F7uRnSU5NIioJlGHQPj9zx8W0E2vU6equJZVq0mh+8oPxWjFyFEMSHhte9fTmfXTROTc52iIysKNQr5fdNLe39xItvjHElr2LbOn7fGI88vPv9PqQPBH6d16latU780H6yiRkA8tkCTVvpjHF4aPAvv7KLeE+MZ188xqm5tZ8bS28hFJWnHgjy1Ifmlar+6V3GUzVsLdghQkJWuFqAPk+Df/sHH0ZWFH7xyineHd+Almqzze88EeXAwcd4+ZWTvHPVoPWzY5imyWha6vAjtV3mq194GkmWGRro4sI/nkZoa1cXcg1Xpyo7MtRFf8zH4NZBtu3cwrmJNylat9au6rJbPLk3gGFYvHO5joXNwyMapmVzaqJNb7cT/PpCYaLtNgNhlSuF1fcX9Ulk5tIcO5LjQkpiA3kVAEJx8U+vjrN3JMuVmSqmevPzlcw2zVoNWZERRpNb8SlZgG3o/P4n+tm+c4TJiQR/+9IUQllOZgzJzT++Mofy8jVMVwiwwdQRiosed5OvfqQfQ29SKdcZS+mcSoh1tRlOlDX+5pWs8w957TiiK9xDFz1MtGfo3roV27bJjaXojt2YzA0FojSydaK79yKEoDw9SxiHyHglD9VsHlfAh16oonc3aVZqhKTF2EgIwUhsfvZyHSKqwd4WMOVUQWeeINq7lUh8P5n8t+YH/FdObMki1El6ySJCsKdCKTXJyJ5/jSRJaB4vxdo7BOPrm4Hxxkqk515FEgEa9RkeHNlLJjOHS6vSFanTviyhBLuo0MXhw+d4+pl17fau4KZRgnC04P4c+DQwAxwVQjxr2/aFJZudBB61bbsuhPjfAv8B+P27ccB3inq5RLNew7ZsQl3xOzL5+6BD83ppVMp4g6HOgPTNoLq0W5JVNnR9TW+OVqO+YV4lpWyGcHc3LrfHqSKkU0Tug8qZJxCkUa06bvW+wM3/4DcJS6Rjl2YNg7Eu6pUyertFpKeXQnIOG5tQV3dnzsg0DEd4Ixy+p61hpmFQyqYRQrojifF14TdsBu928eu2Tql2iw/t8mOaFoev1Hnzks7O3Vm8wRCv/+o9jk5ZGEuCpZ6QTHevo7C0YyTKqbnV3bh3Rlt88emdJOYKZApOi4pt2+zvV/mj33qUV14/w7uTyyupfq/aee6Cfjdw50P5AbnFwQed9qoH9/bx9vgsF9ISIC8r8hiSxvR0kpEtA0wl0qDe/Fm/ktY5d/YKPo/C8UsFjG06g1sHmZ1JUTWUG2JB2zTWnIl5dIeXjz7pmDFWGydQJMEXPnMIAPP54/zy3Sk+cqCOW4amrTJTMFgtvLJtm08/PkDP0BDb92znzF+/SpmNF4jJtty8eVlnvbNVyQq0W01oQapye58pzBYDA858ZX9fF7J1BWuFaqCkalhoCLPNF/YJ+vtiHD6XRnV7EcKxXxjctZe9gHjpBMenTB4bstgxFGI2WeadcRND3Pmcht2cF4Yplghoy1svK9UiecoIBELXUQ0TWVXAWnwnhwJR1HqVdrHG3sEDTI5eQtJUtNBi54JpmlyaPocr7MPVFAz3br/pcbXrBvXcCHq1QrNWwzRruDxrrwWqf4Zs8hggoQQnsW0wmn6Sk6fo3/ow+fRJgkPrXydVt0x42OnvlBIPM7RtLw889ADpzI/wRjWOni5Qx3nnjF6UeOQRA6///Uk8rudTHweu2LZ9DUAI8T3gt4DOAmHb9qtLtj8MfGMjD3Ij0azXNtTk74MMbzBErVSkkEoS2GAJadu2SU9N4PEHaFQrxIdGVmyRsedfCpZ153LN7WYT09CJ9nqo5LLrJmd3G5Ge3k5varTvg32/bbRCX6S3n/zcLEIS+MLLW+4WqjP55GyHwGQTM3QNDDoZtNkZuoe3UEjO4Y9E7hmZKaSSzjyRad6Vd8jnP7qTt49NEPAqHDq0a0P3/WuMX6t16tHtXj7xUWfIvt46wamExjd/ehmPZFC2/cueQdu2mU5WOX3iIt3xIMcvZlgreD20O06oK0aoK8bfffdNCi+eoFUt83tffwYhBI8cGOKda5PLAvuxtMXLr54m4HPx9vkiq7WqAaA3eGTYplDRuVpZrO7Ypu6oT9k2T22T2TbYz+iZC2zfs50T5xIr+mcAoLr5zq+m6AnMMFeyEPNzEbZtg22t2CbWws0/H1mIxjV+cbbG6avvUGwKjOs8VR7s1Xn60S1cvpZyTDlXUA2r1fXOZ9aaBkHvkm1MnatFjatvlrFbVZC1G6oQy2BbmO2Ws99SEWGZNxQ/ImqDkW4P15JNyubivjw0eeZAGNOyee1cGX0DgvkFTJQ1vvviJVRFMFVWV9NvcE7BttgXN4iFvZy4Wl303NH8/PSX5ziwI8b5qzks1+rGkwBbAzUOPfE0iqrymGnxvTfSPDSsorqXnJeAQb/OFz/3YQDisVlaZHhvYvWY4WbrVKvVINXMYBo6hbNXiQXiBALhZdtMVabxxqPorRaaS6BPZGkpEFWWb+f1+vF6/eSKabx7BlHdblLXEgxrTmfChelTDBw6iCRJZBMzVKrFzvzMamjk++nu/RgAM+Nv4+0axx9aO1z3hCQ8oUvz/xIUZvz09n0Fo93myvnv0b+3hbQCWS/MeFGkHoQ2iT+28jVt6xNY1m5qpVlcvhout8K/+Zd1/v5bl8nVwmR8O3nvyBgf/8Sah3jXsB4iMwBML/n3DPDEGtv/a+DFOzmouwp7UaZwNZSyGSzTRPN6O8HUSjDabSqFPKGu+AdWvet2DAfXwoKbvd5u4QuGCERj+CNRytnMinNFgWiUfNJh/ZGeOxMOiPb2kZq4Rj45S71Uon/H/REESrK8rmC31WhQKzplX38kek+NV8vzxG8tMYLM9BSKy4XeahLrH9wQBTYhBLH+m4sVLHzWgsGo0W51ns1Ib19HLvpeYOEYJFlGXCfRWs5lMfQ22DZuf2DN98dqiMYifPmz91jC+4OPX6t1qt5cTMI0mgagYkgeKiyqrQflJsNxjaDU4GOffIoTJ6/wzRemka5TebItE5dZpS15EbLK6LUcu/dsZS6RJllXmKwLML2cPj3GwYM7OHV+5sbqhOzi7WsW0GRNEgN89REvDz72EJZl8Z0fvMHVWohBf4uvPL2FYrnOC2+M8clPfAYhBNm5JP/vb74F3siacr9t3ExX6FRSJLPFlx4JMdgX4ZfvTTKWX7uzQsgu0ksUlW3bYn+3SVfEy5a4j1hPNx/u6ea90TcpWTcSmVMzFrUfH8EwTKbyNh/f5+LqufN4PC4eeWCAS6/M0BZuhHbzFi4hyZy7ksPt8zIxlaXE8neE0Gt846v7icYiJKYS/I+fJzqSzI/uDPDE43sByJdPcXx64yq2QgiSzfm5nrXG8kydJ4d1PvXZjyCEIOQb5fnTixW6yymT6cwMpi2xLQozBXPFWRkASdE6HRttw6YhfJy6UmDvQJ3sXJKJTJuTE4Kw26bdbNFu1GjWanitMp/a18W58SJzVcVRWpuf59gZbfOxhweYmivx0pkbh+IB8vUcwR3OulOZmiXou/F964kumnrPHTvHyNYH17x+hm2guefPU128gIrfQ7tex+13EhCNdr0zP7MabHvRw8jlqeGPLk9cFBNeJAJooTncgZVjzwWBAFXTCHX1oWgznd/VCmBWH8IywKV1EYn3kJ2LQOzEivuKjOTIpv4et0/gDTjX2RdU2b7dpDTRjW3baC6T22lH3AhsaB1ICPEN4FFgxW45IcS/A/4dsK7g5W7AH5kPnG2byArBZbWQx+31oXm95OcSqwYiertFJZcl0ttPZnqS+NDIb4x62Voo5zKd73b22hUC0RjF1BzBrpUNFV1uD9HejQnYZUWhe2QrlXyOvu07YX72ZyPNQ+vlEq16/a54pNSK+c68SHpygu6RLRu6/9VQr5RRXC6CsS4q+TztZuMGEmW022g+X8cU9l4SB18w7Jh9zqu2gCM8kU/OISSJWql0TytdqtvdeYd4g+FlvzN1vUNaC6nkbRGZTdxd3Mo6JQdvzwH8TnF6xqD5k6OYlsVYTgZh0+9t4HWrXM2CsA2+8aVdxHu6KCTnEAieeGI/r59+jcaSaoxt23xij8rTTz3DqVNj/PRIkdNJhdG/fANdaNgLlQNZ5SdHSjz39usYS2ZkbgfBgPNelCSJrpDG1Roc3BEl3t9LvB96LyS5dnWG7TuGuDadmycxt/Z5vQGbQ484Af1j+5qMvbXGQMoK6Pe1+PqXHVPOKxdGyc0mKJWrNNs2tmzz6KDJ/h3dnLyY4mxaRcgKV/IAKnv6TJ56+iHAkabv7+0j9t4Mc7cw/vjOtMLRq5fQZR9CceE2y+gomLIXGQuP2yFmHo8b2zI7RCZXrM97xdjkyw2uJ5W2ZTrvSXR6g5Aq26uSCNlqs7VLIlfWKRhrr8G2afDEVoV4zMfMTJpHHtzmKFgGAhjmIplSrSZ//OkhhrcMMDk6ypa9e7l6eYJvvZZZsXXvakHlF786QTTg4o3zJcDLiZSX49N1hMuDEBrIUNDhr354hN96apBAOMKHPjqES3OzY3iWer2Fx+vmR69OkGm5+fCBXvpHBukfGeTklXdWPndkxwvGpYKxMhkUdSeZUJydY7h725rXByDii5K8mgCXhN9YfAYDko/E1StomobUshjs3kU6N4ssKcQiK8dFgd4c6dSzCCHj786xlCCU5lTi8a8iSRKZ5GHcgasr7kMNJMgmjwACV3CKpf2UVmOQrl6nVTI3u0BwVq9wCSEI996YLPjYMzp+33kU2eSxJ94/UZr1EJkEsNTlcHD+/5ZBCPEp4P8OPGPbdmulHdm2/ZfAXwJsOfDg+9L8fbPAWW+38c7L8q2VIqrmF4NOf3jTEXwBtr1Y1lVdLgrJOQKxrjXnZDYSiqp2AuzM9BRdg0PUigXqlfIdB5WNahXLshyPlMRMp5XN4w90SI1lmmQTM6guF5Zl3TZhN3SdZq12TwwlLcPotGXJioxp3Og5IasqzWqVYDRGKZNefEbuATSvd8Vnq2dkK61Gg/jQ8D1NIjjeNCtXTEzTxDJNDL29mdi4t7gr65TWt/P9GVKSVC7lnB+FBAPeBn/2ex9CkmVefPkkx8eaBEJOckbRNPR2m7Pnx2mw/Dmx9SYPH9yPEIJDh3bx0nuv0RIh2uqNz6+QFUw5fMc2kK8dnwXboFGtg6yi2i3GJts8+ECbSrnKbBm++2qC0NuT5Fvqujxerke2BjNTcwwM9XJ5IsutZoIN06ZWLNBqNPB5NVRNY9ueAZ5It3n3fI4vfOajSJJET0+M0986iaT52duls3MkytVrczSbTTRNo1woci1RJFkVq81grwghJAzNudZ74zpf/+JTFPIl/v75S1QI8L0XzrJzMMiFiTLSkpmg82mZ8vcPY1oWs/XlppX9vhZffmqYcqVBq9HgwMMPMDU5y/d/fpm+bh/TOaNDamzb5rcf87H/oQeoV2v8tx+comqvHr8MBnQ+/+nHAAhqzvrUNThEKZfj7bMpEM79FHZbjGx1xGGCkTAAvb1RMBOw0gySrPLuBIAO8/euEAJFVegP6mQqNs15spZuekByISsKRlvHpbkx2m1Gtg0jyTL7tuR4/ZLO1ak8W3eMMDOdpNBY+W7ujvSRnpqjgUmPb2UyMRgYpDiWptsdxuu7eSLU5XIz7LpR6GYwOkLc241LcyOEYCY3hXdHH6auk5qeoydyYyeKrMqEB53WSMtyzqFRsmhX+6kVasS75sU4WD2u8gQFnuDY/L+W35wmWfR2E4SgWjsJmTHkwK3rnWsehSefhvdbAHk9n34U2CmE2IqzMPwB8EdLNxBCHAL+O/A527bTG36U9xDh7h5yswlkWV5TMSkQ6yI9NUmoK06lkKd7eMu9O8j7DAtO7v5IhEhPb2fmIRiLo3nuXXvU9VBUx2jLH4lSSM7dMZFp1WsEu5wMrappCEkQ6eklm5jpEI5SJt1RSysk525ppiQQ6yJx+RKegJ/u4REq+dyGEJlmrUajUkZI0ortfQsGkvVK2cm8rLCNY3LpDN17g6E7+l6btRqNaoVgrOuO29Pez/trJcT6ByimU8iquuw62raNqeu/0eIidxm/1utUwOvqtC8H/BqmC3743Cl2jUQ4dzVHMt9CV3w3uMIL1c27R6/w9If3cOL0VZqSbwP86tfGVDPIW+dL/MnXP8Q+wP3mOV6/rPO//N1hdGQsxQsS5A1tRf4R05o8tjtCIlXhTHJlr5y2cPO3L47jlsaoCf+6XOg1msR9MFsWpJsejp26xsc+/ihAR7XTtqEtaVy7OsOOncNcHZ9FqB7cZpmvffFJZEWhL+7lv33nKF5NYraqICkukG5/VmXnUARJlonFo/SFVSo5xytl6kKL62edhJCYqc0bN153zge3R+gd7KcXSE1OADAw0M1Xnyyx84G9jI1e49tv5hGSjNwu09vjCC14fF481KnOEwmf1KQvrDCZM9DniU+9Dc1GA7fHQ6rQQlFluiWJSDxONOSmOq8tkWmqHD1yni2DMc6dH6crU3NMLdfjYWS22dUtUa23eWxPlIce3svcbJq/fu4qpuxGSDI/fXOKLz0RR7INWvUwh49f4eOBIK1KkSuTeSDAW1dNzk68Sc1UMKXV2yC7lxCIdrtJupHBlgRhKUDANy+AZIOyZI2q1svkrRLChpgcwetdm+A0GjXSRg4hCwIVD5FgF2gykiQhaRp1eXkVxLIsynMuhGQR6rMozARQeQhdT2KZBn0jHyEaNRgffY5gLIoSHIebPNGWZdEot/CG3J1nKdzfpJT+ITbQt08CFsVBjLaB4lKoFW2Mhh/NX8IduL/VQ296dLZtG0KI/z3wEs5r529s2z4vhPh/Acds234W+J8BP/DD+Qs1Zdv2V+7icd81CCFWlZu1LAshxHzGQKVrcIhmtUL38Jbf2OxrtVhAVhT8807uXYNDa1YhFmYx3D4fHv/dVfCyLItSJo3eam2ImEEo3u14pKgqtVKRgV17AJDkxWyH2++nWsjjj0QxdH1d90WtVMRotwnFu9G8XmTVRT45R6RnYxTXaqUisf4B9HaLUiZNKH5jBmo9bWKqS7tjA9RmrUa72SDS00t6avK+kcheDbZtU0yn1k3ehBA3XEu91aSYTqN5vbQbDboGh1b5603cLn7d16nRlMnLr53G73Fx+GIJcHOtpHHtTB3FlugOa2RqJjpqZ/5zYa16ewLeunwC4fLe1K3eJzV5aFuAuUyVa6XbD86XjqAu/NyU/RzqN9k5EuT4aIZrxZX3/6mHu9mzbzuVfJ7Ej4+TZ+V3t6V4qHOzMM6BbDb50y9so3+wh1MnLvKTEw1GZ3Uer9Vwu92cOD1O40ySU5NthOLmuTeusn10itGkiZCC6KZKIV+iqztGoVinZPkoN8WCqfwd4dRYnr7uWQqFOhNZ/bZ9ea5OFzl0sE21WuPdU1PsrpmMjs3y5S98CIDueBjbTCEkGVP2kEoVkIREOpUl1Q4gqY4X0b+Yb1m8cO4KPzjsJLcKhoe/+f5hoh6LSyUv21I1An4fs6mi49my8CVIKi+cbWOfnkFIHpiqAC5kq8XOHoVMqU2uvfJ79CM73Hz6Ew9i6Dr5tJNn6O2Lo4mL1OerMpmWmxOX83zlc48wPTXHpaKP7vPjfOTJB3l8Z4nXzpcoEKJs+2+pQpapZWh6LGRFIZGdYaviImXnCe3qIzE+zYgyjCRJFM0ywS1O63BxPIl3Da8bgGK7SGjbwixOkgjgszVK07Ng2UTl5ZXR0kyU7t4vOB5/iZ+ispdozzAwzOSo0yYnyTL+WI3gQJmld3853UJx2TSLI7jUPkzpIr5ojcrsHgLBvSTPn8MbslGD43hDgmD3dVUaw6Q4uQWffzfp9FG6+h4l0tVLZvYUmv/cfR3jrusxtG37BeCF6/7v/7Hk509t8HHddyimU9iWhWVZePx+vEFHs/tettishnazQTmb7WS37zTYvBXozSb++c+7WXa9WsijeZw2odxs4qZEppzPYbRbYNsYhoGiqlimRTjeva7Mdqx/ANMwnKHsDXgIhRAEu+JUclk8wSDTF88TiHUtM+fy+APUK2UKqSSh+M3768v5HKrLhS8cITeboGtwCNMwCHVtXG++kJxzV10apvn+Krk1KuXO/alqG6e4c7eQmZ4iPjRMOZfFtqzbqpBVi8WOt04hldzoQ9zEPH6t1ynZxdtXbxy2t02Drz3dzZ6927h2ZZrn3xrny08NY5gWP3s3Rdl0srDrGUIH+OzDXRx4cCemYfDn336PvO4hLNdomTJNsf7q57Wiwg+ePYrPo3JqsglCw2uU+PLnnkGSJLqjXv7rc4kVFccq9bZT+Q2F+MMvHeIffz5GyVg9sy6sNgcHVdq6yYXkygaUmtDpG3ASOP29YbBrpJpu/vx7J1GE7QS+AJILyWjwx189QLyniz2Xxvn2GzlM2cM/vHCZ7TGBokjE3SbZlnNMPqnBZx9x9v3GyQSP7++h3tB5Y7SGtY5KzVTFxTdfmAUhIVaZZ1kP8nVHWW4sUaVg+gmHKzy0f5jXXz1GvDfO6cvZTpuaUFz85L08X3pM0NUVYWe8xtUiqOjE5l3ouyI+sIsgZNw0+eqn9tE30M3Pfn6Mk7MKf/78zPwx33iO13+vn3koyOOP7aNeq/HNH5yiYt1YofHNK8Epqsqps1MMlZqMTeSpmm6E2UCozv13ak7hwl++6cx4STIP7B2mkEpy8PFD7D7Y5G/++YTThnYLKJcK9GzdgyTLZFptKpUiwV1OQsrbHaOeKeMPhBGGU0GxbRv0G1uwr4dsSRitNormwm6Z4INIoGtVsW1ZDiOEQFYUBEHa+hS2vYNKYQYtcpVMysKyC4QHDZaSmPxkiK7uz5KavET/NqeVNJ/UqOTfomfwCfLJWUZ2fwSATFKB0JUbPruSNegb/igA1dJuvAHnnlaUGLZlI+QPOJHZBNjzsxFAxxDyfkGtVOpkeVcKlBrVKu1mY13BcT45i0Dg8njwhcI33T4Q6yI7M72uFiG91cIXdh7hheB6LZjtdmdwOnHlEt1Diy1b6yVrG6GstRT1UrFzraVVfES8geC629hMXe8M0C+0jmz0MSsujUJyDtMw3nf5Z380SnpqElXTMHVH0rRVr1Mvl1ZtfXs/obpcjjJPV5xCKnlbRMbjD1DOZQlEY+it5WMZ1aIzpOwPb6qUbeI2YDTZMuK8g7Zs7efATIYtO7YAsHeqyHtTt7a7hUKKZVnYwKF+i698/inKxTJ/89MLy6SA14KQZC5m5vc4H+hqskG9XOrMlNrXaf7ZRhPVavKLExoeBR7o7UPzeBmOT3H2Or/mXk+TkV4fF6eq7Bnx8vlPPQTA935ypDNbtBQ14ef5l46za0uMoxdSiHmCUce3eNLzUDAIhecVEUM+sNIgyZRbEo8fGqZvsI9iocR//v5ZbNXHg1sCHDi4AwDZarHvIadSn84f4fxcE7EO35uVCN2tQDZqfON3DhCOhJgcn+bZ167ysWc+BoAkCf7u1RzXt6l1h10cfNgZ+H68rnP17SINKcCPnj/GjpEYpy5lO9cpHhD0Dzrv5l0jXZycLd7SMQe8zn48Xi8eBSrtG7d552IJmwvUam3emZIQiTI+yeDffG4Yv9/Nj341xkxVQwiB7nLiLwG8c2KCx/Y7x6a53UT8LtLNdR8aAD2hXkdm2etFtiWatClfHMUTCSPKbbpjW2m3m9imRerURQKeEL3RmxtFRwIxLl08jxLyoeg3H7eTvRNkk17AQAsncfkgnfoWHr9NNKAAC/69y+MnVR5BUVRCsQHqlQK+YBTTyuPyWCQnL6CqISzLmrfAWDmZ6QvL5FLniPU8gCRnSM9dwaUOo9uXEVUDU4dA1/IE8ug5ncsTPnZtrbFn/72Zg14Jm0RmnbAsC9MwaDebyPdocH29UDWtM8xutJe/IWqlIrZl4QuFyc0m1mz7KmXSBGNxFFUlP5dYF5FZaLFbD8I9veQSM8iKgiwrGLpOOZsGIfCFIje07piGgW3bGO0Wpu48fHqribTBgf6tQNU0GtUKHn9gQ3xqNI+H/FxiRX33jcICUbofoLo0uodHlrxUnWA+1j/Qke7eyGrUncLQdeqVMvVymcBtXke3z4cQguK8/8wCiulUpypZTKfuOxK3ifsfQvPz/K/OcXBXnPNXMjTqTdqtJrZlE/FY3OoQ/EvHs8zmGiRzdYqGl+F+RzI2FAnRHVQo35o4GABBpcVju4K0Kl6K2Rx6s8n4dA5pSV+WYlT4089sYWBkkOd/fowjl8sMbylRrdSZSLdYWoVymTW+8eVD+AI+do9NMDZd7PxOXsGrDJxq+vGEzPFEkZsZRLaVAP/8wkl2jUQ4fSUPsosd4RYBt0B1OcesKgoSNiYwl6thzCdlUtky+3BEXx7e4eOTH+nln14eY65+Z9Xn4WCL/VsjXBwvMFFeoQJiW7g1Jy7xaCrlpsTcbJq+/m6m54or7jNbtZmbTdPbF+fKlKOMJYTgfMbF+UyFpddptgSnT47S3xPm+MUU6zXZXMCvTqapNg3m0hVSLfeKM001y83L551Ez4IAxLZujaEtTsyyf1uWmTM3SsMdSyiMzU7wiUdaVOptxlIG3KIdRjTSTWYuSV0qo1TbePYO41cGyU9Os7XLUSxLNdIEdg/htSzaV9Mr+uLpRptUNYktS4SEj1azweBDBwGoFgq06g20NWwVfBEgsmB95ex/BS2AZTB1k3I2j6YVqFeyGPK71FoBvPEKjfwAsT6nTXPy0mv4o208sTQrvRdUtwJdx0nnjhEcFCiaAuSpZAUu68soHh/FxEto/grtWoiGnuZnb+zCkAKMTpYZHLiCP3zvjKmXYpPIrBOx/gFKmbQjU3sfBYbgZHNrpSKF5NwNGfd2o9GpXtzM68a27cWH8y70QwohlpGe/Fyio/yWn0ugeZaTrNjAIMVUEllV6du2nUJyDklR3tdA1x+JUi0WbrjWRruNpCgrvtzWgjcYwhMIYpnmhldi7hXq5RKGYdzSc7H0Oi1U5xSXC9PQN/z47gTxoWEa1SrRvv5b/m6XYiXlNdu2O/9Xr6zuxL6JTayFbNWiUnNaTQpNiUalgiTJhGJRoHRL+6rbbt4bN1kIVI9dzBEJuCiUmkzkTRC3/o765EMxDj64E9u2SU1cA+DybJul4cfjIzJDW532y0N7e/jrV/L8r985iyUpy1S7ABAgz7e5SLLEkSs1bE7T0k0uJK1bDmJXwuW8i8v5GqAx4GvwR7/jSDW/++Yxzl/OMJYoY6pOO9p4SePPv/0eAIW2xtQPD9Prt/js551Wnn1b08ydv8USwRLY7Rq/+5kH8YcCHNhb4//3DyewXMtbBQ01wPeeP8v2wSAXJkoYrgB/98JVQu4xMnW1Y/JpmwYIgZBkWrj56+ev4rXOIrtUhKlhr6IgZ0oaPz5eB6uCkG+dlOVabl44VcchS2tvG5j3R5pIt5jM2GTTOfwBL5cni9i2CqaOUJYfZ8kO8ONj854xqxxfvVah0aoTiy4mjMqVAnmpArLALzT6g71kzRS2aZFNzSCpEhOFcQYCAzA/CytJEpa0cnUlW8ngn/enKU3O0hOMMzc9S2ioHz1XwRXe+NixkrPZuv8ZWvU6istDoBdkxbnW9Xwb1aUR7e3D4DyhweVSztdDdSuEr2sysdsxvHFnTs3Wu7GqDxDv3sHsxEVsMgBI2NzB8njH+GBGTu8TVhqSXgq91aRaKKD5fPfcP8IXCuNyuynnssuMPDWfr9MSY1tr93SGu3vIzzl9y6575JK+FhylrMV0xL2c/VkL17cBFZJzyKqKobdxe303tB1WiwX0VgvbMjvEbSkWemI/CKgWC7TqdYRwWtaYF77w+Hy37XKvuDTyyVksw7xvvuOl2AgPomI65SQKZLlDxGVFoZTNdH7exCZuB596pIftu7ZyyLb5z3/7Bm8em6KvO8DhCzmWVjKE2eahERVDN0nmGlQMhSZrzxLM1jX+/rX8/A6cANErmgzGFKZzOg3b+fsHew0e3dfLxWsZ3r5mLWs7arSc5ISh67h9fpq6jWm0cNuiM3djSi5ys04XwPhEEnCB5ltxXrst+fjOc2fZ0ufj/EQFU/ZyeNzCYTgb2y0RURsMh5cErS4vr527UU2saDotp0KGibJCqdHgsVwBt9vF2FTphu3XC69ocWCXj3RiBl9wD5VKA2uVKfbJsovJC83OZ7VMmXRT68w2dGlNfvuZYXTD4sdvzFAy3Bi2zKc/MsKBAzs4d/oSM5k6lbrB+ZS4oXVMCLGyhPJGQm/wjS/uoru3i5mpWf7qxWn+4kejyJhYQuVrj7sZHhrhtXdGOZVZXQlNtZp8/pEIkaCbVGEOj+Km4jfQekPMTEwyGHPa1Kt2nfCwsyZXp1MAdEV6SE3PIvlEZ70ujqUJuXyUJufAtOj2rJxMlW2BZZpO0th2JJnjRoTp987RHR9Y16xufjKMS95DW58gPDJ70wSaqhnMXDmD1xej1Z7Eryx+b4GeAunUTxEo+OKrkxijZVBNjdCqaqhuG9mTINTndPfIniyF9DVkxUdLv0Yg5LQjxge28ZlDb5IohNm1tYY3+P7FjJur5waimE4THxqmWsh32o/e78/3BoK43B70VnPFIPp6rGeb1VDO5zDbbRSXtqo7/FIEY3HH6BDwhe79jECjWqFZq6F5PHc28yQEwXlVtJXmp9rNBtHefizTvKdGkncDeqvVaU8sJOecc5+vxFzvcr9e3G8Vzo1GtZDHEwiieTyUshn0dgvVpRGMdaG3nVYK1XX/Cx9s4v5EqercQ5VShaatcDwhQaLG9WaJD29x8aXPHOoIWBRyBf762YvULA9YOlFXi3JbwVhDstbWm/zhF7cyONTL9MQMV8bTtHSTjzyyjWAsxsCWQU5ceZ2mtPgO/NXpEonsCbKlFtW6zsERD//mTz5BPpvnr58dpW57ODXRpCecoXVpktcvmaCuLeYyXXExXdFvOMf1wCsa7OzzMJNtrKqgBaCadf7F7zxAIBRg9NQZpouCE9fqLBAFxWoyGJFIly3q9hIBBtsi31T4rz+8gISJqd5+HPCpQxEOHdqNZZq8+OwrjOY9sA4p431xnU99eBvjUxmeO1HGllzs3xKgf8h5d+8cy5IpNjHrJfbvewSAvfu3Exy7RO/WPVR/epKp6r2Xtpdsg0DA+dxwyI8wdWzNhyY1+eJDPvYe2gfAU49tYfSFCZqsfC22dqscetiZVarMJLHbDXxdTiXG9C4G8y5ToVVvOFYNTWPByoaeSD/jhXEAqpkcUc2P1xcguOqYvoN4pI/UtVksySbujlIsZZktzdL/xAPUC0WkYp5QcPXYqN3U8XmeIBDpwra3kU79LZG+tdcGvbqNwR0HsW2b5OxhAOolA71pE+pRCQ/OV6rWqMRUsz6isY9QU0uEuuI0GxWquR/ij2n4ImD638I0LHp7VIozr9GobcWwJ3nowz4eQgfeX1uBTSKzgVhQ0lrw5dhIIrPgKG/bFpHe/hWZ/YLp5IJvysLnK6p61w0pG9UqsiwT7O2jWsjTajRuKleruFx3RJzuBKZhUK+UifUNUM7l7sh80jQMDF2n3WygrLQAz+uPLsh3f5AhhKDdbCDJCrZt4dKc4FxWlLvSjvhBhW3bZKanUF0u6pUSsf6hhV8sI3ybBGYTd4oXTxQZnTpGuqSvGtgtxcJaEIlFiPpkahX45D43Tz35ONNTc/zDSxOrkhnZ1ol3OSSlKx4lEvbhC4UZPXORYCzG6LnLPLAlQKWhM5qREJKMLrk5O4ej2qR6Gex3ArloV5SoT6JehQNbAxx6/CEAsvopjk/ffDDatm0GfE00VeZaXrqptPTC3/zWkz3s2rOdUrHMn//gLLq88jVThInX50GSJAKRGO8cT3UUumzb5iuPRznw4G5SySz/49nLmLIH1W7y1Q/F6YkHef6tccaLG2eSvW/PEKffyKwpK2xbJgFR58EdvUTiXUTiXbx38R3SLbiaqPKheh1dN0Fv8C9+98PYts3ht44xPNSL2aoxvGcf2ZlprPfHBhbLFeCHL55jz5YI58fzoDlr8q5+D1t2bqWYThGKd2PqOm7JornUhsXSeWKbStjv5vSlJKVCiUAoAA0DnxYmn5hDDfhQGzYLhciuSA/FZBbDrDIQXW5mOeDro3g5RdQTwOtbXywnhKA36sQ0qeIcoj9AtHdrZwaymUuxVspU1RRK9SkCkS7K+XE0r03qWh1NeQBEA3/3DIp2XaVsnlg7tiBuqrkmmvgCwVCUzNTPiQwX1zzmwnQA2d5PcuJap9vEMk2qOReWCcFux6BTVp3PdYjR2XVdj3uFTSKzgVjIuBvt9oarQzVrVaJ9A1imSTGdWjGrb1kWheQcert9247ytwvT0Bfd4dWFWYf7y6xwKUrZTIfoeYNBasXCbROZroFBStkMqrZyJUrz+hxzTOzbar26nxDu7qGcz2Gbi21yRruNaRibyltLUCsVifT0oGpuQt09zFweJRCJIqvqpinmJjYUhtC4nLXpUk1CUp3SCtK2ACcm2lgvncAjWmwrN0nl6kwXARm29DvP7tBwH0Fxlqpp0JZvbKm0XAH++edn2L81QiWT5IlnngDgyGiOt079kv3bYnzxs49g2zb/8E/vMVF2gp99XW2++ImHmJxO8c6paVyqRDJTZaYkQIZWe7Ht2fn55g33W4It/vTrH0KSJJ79+QlOJtZztWy87nkFLbeGIixWm8prSAH+6fmTbBsMc2qssFxm2Lbo7nLWj3h3FE3o1PEwFFHY94CjYPbw7grj7608+xZVG0R8Ctdy9qpzKQAvH0vRHZTxeD0M79yB950U7YXg3dLxiQY1yw3z+/jYLpWPPfNRZienaVSrpNJFx91egpmqxv/yj8exkXhkR6DjM1TUNY68Osn/8c+eBsCwYLqq3dW81IJR9JZgk8HuAKfHK1TmFfHGSy7GTzvzSQuYzjQwTKiWS1y9PM5kUaJg+pYd49aIzec+eQhwZqj+2z+fR5NN/p9ffgYhBF7DR6vYwBtdLk4UDq3sU+RyuemO3f56bSo23vlkbjE5R7Haps+7tqCLEAJvzznSmcvIrhpW8WH6evaTT87SPbyFTPqnhAaqy/7GFbxKJgmW1cA0wGzsRQ3ISLKMIg0AxcVjMkyEJJa1q6kcINq3Ffrg0skf0TajNKs6Qzv+GF1vUk4+S7D3/bVtuBk2icwG4p6QByGWu43d689fBf5whEJyjnrZGS6939unhBA0KhVa9TrVQoGhPXtpVKs0qxVYwdTwZlhLgMAXCq9LAe79QDmfw5w37lyvatb1rWCKy7UZnF8Hjz9AKZMi2jdAOZuhb+u2DtHfxCY2GnvjOr/75Y+gt9v8/Y9PMle/8V6zZRcnZwDcvLOg9DUfAL99epYPYzM+PsuffO1xvB4P33/+FNeKNz7X17I2Tz3s58GHPsqZ42c4cbWGZcv8i9//KOVsmmqxQLvZ4NCOIInjZXSh8eDubrwBP3v3+XnrTIZvvVFY9vlnEhbtnxwBYDQtEPLNiUzQ7+oEZKGABqyg6XsdhJB47u0ZDqaqXJsp0ZDWnn9zhv4X28k6+5FkXnp3mof3NBibyFETAQSQLBkkZzN090S5NJ4DbuyECMp1/vXXHsLr8/HG22d5dXT1IFEIG6/PB0IwffkSeV1Dps2eXpmRsM3jT3+Us6dHefbNKQxPnJ1bnHdz/8gQf/HXL5E1QtjK4r2gz5PTk9fq+D0XsC2bU+MN2raHX/7qBNuGYxw+M7eiN8xG4aFenUf393Hl2hwf+vBDaB4P/fGr/ODdlUmfy27gpsU7hy+SLTa4Ug3OX5vl29WaJoauo6gq1bpOS3hoWXS6IGRFwavcu3Z/zVQpJZ3ZyG4RIRpcn0iRyyPj8pgU5lR6+h1ipmpuTNPEpnXD9p6QhCc0TjGh0Nf3ewghSE1exTCqWPK1znbllIpsPI1ttcH3Hv75nGvbSAJbKeen6NtbwR1oUJ7ZjRACl8uDbQaB/J1ejruKTSJzH6OQSjqkRYhOVt+yrPfdC2Q13I+D2qvBGwxRyWVR3B48AeflVi+X7lsZ4LsBy7Iw220ivX20mw0q+fy6Zps2cXPIioIv7LSYegPBTRKzibuK/ngASZLQ3G56Im7mblSp7cA2dVSjhq4GOgPdozkXo6/kONjvIhwJA7B9MMS1YuOGv/fKbYZHnDUo3h1Dv1Dg04/2kBy/QrS3j/Rcim179xDt7edq8gRnZuHC1QzbdwwxfnGUTz/ay7GLac6nF4N8ISsd/5f1Gtufn9GJvnkOzSXz3miZ9c7LpJoavzzX4E77+sdLrvmKi9oJquu2m//xszFU2rSUlZuI/JpwyAkQDXmB1RULG4ZCKpWjf7CP0ckSkqzx5A6ZTz5zEMuySE9OMNQb5v/273fz0ssnOHxmlqdkwZWpHBkzAsrKLeVtofGrC/NBsXCqL+9MwDsTeW5ZmECvIWwb23VzURRLb/Lxj+whGInQPzJIemqKnpERLHMxOWu3qtiSiqRquOwG/+qLO+nti5OdmSbU3cOff/sIJevG7ol0y8Nf//AYQZ/K5ZTZIcnVagmP23fPBVVioThhw3A0KIK3/tm+MGSTZ4l276dcvIIu3iLU3+Z6D5kFSKqJobdQXW4kLYen9xLS0oSAPkykx2mfy6THgTQAgb4xMtkJXD4dT8A5Tsl9hWzSDTTRIhlWm6+plHSee9FPtaHxqadzbN3x/liT/MYTmfxcAiEk9HYbR5RDIdzTd9tSq6VsBsswME2TWP8A2ZlpFJcL27Zuqa2oWizgDQTRvF4a1Qq2bW84UVgwv9S83vvK4PNeQPN4cA0MYujtTvC+IAMsq+p9JwO8iQ8eNI/npnNim9jEetDrafGpR3solpu8d3aWmE8wXlBozWeYS7kcqclJavUWF6bqsMrcB6bOVx4NcujQY1w8eYbR2RZnkjK7YgYHd3Zx6fIMVy+P4/NqnL1aZKWgtmx6+dWrp9ixJcZ7pxN85Zlt9AwPYbTbnDlyhERZZuseG0PXyRabgIdTcwpjf/EC/+f/w5cRQhCNhbj8/TM8uD1EOt9gqro6Cen1NBnu8TE6XVtmyGnJGqfHy4x0exzpV2vVXWwIfFKTmE9iusia7WCW4qG1pK06LNeRJZts24sQgkRF5aWXT9Id8/PO+SxrEbA9A252H9yPobfxh4Iw08KjzQebkkQhk2bPY05734Fdvfz1rzKc/XkSIaQ1FdyE1WZ/v0K92eZqweVsfxuIa03+6LcfQJIkvvvCBZKNtUmQUDRGx2Z5/PEIly9N8uaJKYauljk7WQE8bAm1+dpnHqJUqvKdX47jUS16++ZVHlXVqa4IUOwWh7a4aTQNzs7anfmoZMNNskFHgntvV5tqTJAtzGJmmygRL6JqMBzbcsvnmi2m0SWDkBLA611fZedOyJPLIyN1nyBXPEzPPvd8TLp6v1+w26Y49yxYQbRw6gZvOkvM0W43MPUWtWITYe2jWk7gCym4Iyk03+L2/i4TOL1wFqt+5pkzChPF7QC8c8xg6441Mih3Eb/xREYIiUhvH7nZBJHePoQQ5GYTy4zrbgWmoXcUqqYvXWRw1x4kSaKUSS/K8q0DsqJ0gmlT1zc8o1tMp5aZX/6mERlwSs5Lh61Vl5tCcg7TMIje5TY927Ydc9CFwdv5Vjaj3aaYTiEryl13upckCVlVO+pj93s74CY28ZuKx/fF2L5rq5PQcrXYeuBBKoUCf/mTUaqmiyce2UG830l0ud5Ortpk5bYbPPzw4wAMbxtm2x6N1Pfe4rc//SQev4/dOwf5//z1O1iKf1W/ECHJnJxo0BdvsX9HF7qxKK986lqTqXaE2e+8Q9uEvO4QKiEEO7bEKGUzhOPdTIzP8ZlHe3j00T0Yus5/++6RzrZL4bJqfPWpEVwuha1xme8daXVahSSjzp98dR/RWISJq1P83SvpVd3mA1Idl7xIJm4VbrvBv/7KXiKxCO8ePs8vzq/exhaQGmzp8TCRbhJwC/7FVx9F1Vz88NkjXMy6EFikSzqXEhkKxtqJjmKlhaHrqC6NXLEBSLx9oYRpnadSb3P0UpOvqpfYt28Lpy7OAcq6SMmHd3r49Mccpau//+FhJiurxxc7Im32b49x/mqOKwWHwNm2xWPDsHcoQjgadrYb8JO8spgA7PW02D7oZ3SqQq7l7F8IwYunarxz4U3KuootBUiMGyzM0+7bGsEfDOAPBtgST3B+zuK110+xZSBEIpHjSnqckunj6Z0Kn3jmAADNH73HlSVGrQGpjiRsSqaPB3d14/b7aNarRPZuRZIk2o0G5bk8wdD6ug8q1SKZ3By+PYN4vF7Skwm2cG9a1BRNIdSz/jA91KcDOZaG9s2KQavcjZDKlOvfo140GN7+ZxQzKYZ3PIgkSWSSb6P5Jm75+GJRHawWSBqx4PtDYmCTyHQceY12q1OFke/EUGt+fkVvtXD7/TQqZXyhsFPxuYUqj8cfoJzPUZg3hLzeTO9OYS9xVr+fkZmeRtdbyJJEtK//rrbo3Mu2qmI6RbR/wMmqzbcMSpJEJZ/rmIbmk7MAlHNZDL2Nbdn4I9ENzfIvyEZvYhObuH8xPVfkoQdt5sYnCMe7EUIQjEbp8rSp1T1cGs8Q7+9j7PIUNcu1ahK1ITwcPnyORx7eOS9I0U/LdjGXzLFth49kMocluW+qAHZwi78z1P7Ky4eZniuRSJaZakcRQpBs3rhebRvpwe11fM3OXCnwwC4n0y7JMpJYee7TJ5qEumK4vV7qtTosmRGQcVTFAHw+N1gmrEBketxN/uXvPIzmdvOj549xLnUbbT4uk0jMEUTY0usncnmWgr64FvnsMh/dH6LWNNgxMsDQthGSiTRvH7uKa15coDfu52K2zcf2eXnmqQPUazX+8oenKJmrr+2zDQ9/+f1juFXBdEVFSE772isX54mUO8iPj1b4ydvvYWv+dQ/oa/MKVEIINNfq10O0Knztc4/i9nrZs7Of//B3R7G1IAFqfOHTT1POZSnnchgWTM3l+eojfbR0g1ePJfjG730YX8DHAzNzfPP5acRCm5usUjLVFfUcLk4UOLCvQbFQZSqrI2Q3r1+xef1KEeemvvH7XToyPOhr8idffRRZkXnx54dRCJCemkCyJSrJFKH+PuqZPDHf+rpjipUcjYhEeGgHucQMce8wyBuvgtDWWxRnNWRXi8AGL8mtwl7ifY/Tbjco135EsFvQqDszL4sx4O21hO3Z7+IPXReoVGH/QZX1iHTcDfzGE5lIbx+F5Byq5u54mrh9Tq9nZnoKRVXR2226BofWFfi7ff6OA3334HDHBd4XCt9yJuhu+muEe3rJzzlmSy7PxpKkjUK9Usa2Lfq3OQtmdjZB1/soaLCR0DwemrUq3kAQ0zQ795aqaTSqVTx+P81KlbqvjKnrnbbEQnJus13pfYBlmuTnZpEVBdnl+rX3vtnE/YUTCYmJv3+LRqPN1z4SRwhBpVxhqqSwPd5msKeXd946wcvnatjq6rMKQlb5+bkWLx9/kz0jYbJvz1EixPdfSzBwOslc0USoN08WzWRqtJstZwi9ABOTAME1A+nD57P4PTKFcoOJkkzyZI585RzpXI1My7vi3wpV67zvmgbL1lBdCfCD506zYyjEuWtFhLK8guQVTT77SBcBdxCj2cDt8dAf93Mu1bzp+dmmwTO7VbYORnj39CyDXX4SY5dRNRdut8anH+nmB4fL89vqfO2jPWzd4/iWJCcnAPD7PVxO1Dh+/BIul8zxsQqgEQs5663X5yPglijV1j6WbNsDbVit0CIkGdyBW3Lxenu0jGGeo9HUuZy2VyW+pqSSzRYZHPaSzRaxZBcCaNgqqbks3b0x3n31bd683ObDB3t58KGdACQSWewF2wHbXqsjahnGiy7+5787iiUUUBfXOWG2+eQDfmIRN6+fzPDuWJtG+xT1psGVvNy5Nn1dvg5xfPiBIfq3jGDbNrXzU0RDYapjKbrdUXLlNBY28VDvmonrptnEE+qdPwabyvQc/rZ2S4KsCwpta2GumqR7x9dp1suUMz9jnboAK35WYSqMKvdhq9cI9rQRwrnfVNWNpSt4u6Ga/wU6fmYn3bg8AdTgVW6XhGzZ+f5bCPzGExlFVZfNnpTzOZr1GrViEUmRifT2Yds2xVRyXTMq3mBoWZvWvZSkNQ2DYjqFkAS+UGTNgFcI8b6qnK0HemuxSmbbNrZp3uQvPjjwBkNU8nkKqSS+0JL7JRKlWsgzcf4sAzt30arXqZXLnYF86dfYAT6bmEFWFPRWi/jQ8H3luVPMpIgNDCKE6FTKNrGJewUhJAqmH1zw3SN1+twXeXBXF59/NEY87GHLjhG27Bjh5PhbZG8i3iWEhOmOcT4FCxFZW7gZL8J6M7PTFY3/+t1jCGzKKwxeA8hWm8e2uzFNi6MTOsmGxj++WcS2bbZFbCIBN4cvVdHF6lK/Od3Hj58/xlBfkCMX81w/TzJecjFearDSLM/+YR8HH3QC6ysXLqHPFjh6qXjDPlZCRG3y8WceA0CVYGCr4wRfymbwhcJcmbmyuLFloLkWr9vFy7NMpJpcnCjS1mI8d2qh5cY5xtdPp9FNk0yuznRZWbe4wQKirgZhryPdzBqzOqshIDXYPd/ylWm515ylkVQ333l5gsFogpm8jlCc+8WU3Pz9i1d4fOQaH/vkU+w7VOK1N89g285sVL6p8O3nzrK1z8+lmSpCXn8nheW6sW1rJApPfsRxlG/rNj8+WuHYlA3Iywjeuakqg6fHUGSJVrNJ/xZoVaoE/RG8Xj9er5+53Aza9m4kWWZ2LMHQdf4xSxF0BUlNziBcMgHDTU+gn7nWDJPtBHZNZyDQj6qs/h3M5CYxAgp2vc2Atw+Xa5Xr4HZuArc3SLnmBW6vTauUsuju+TySLJNLhoHDyN5zZFMNDDNHeKgNSI5iWbQKVIEs71clZaPw6xsV3SbMdruT/Z4ePU+sf5ByLvuBmCEpZVIdcpKfS6B57m+icjOEuuIkx6+RGLuEZZkM7Nj9fh/ShmK1VjZ/JIrectzfVZdGq14nn5xFUV2/tkpqrXodbyCANxhyEgereCXdDViWBba95vyarKgY7Raq5sZ+v9ziNrEJwJI0to34eeyJBwA4c8wZyp2bTVNuyevOfgPsj+s89kAvl8ezvH3NWnXGZCVUVvGrWcBj29189hMPAtB64Thn5pz/7/M0+MbvfBhJkogdvsAvz98oKbsAIQRnUwpnU3XWq0q2gLmsUzWSFZnDFwtcLWrr3odXMUnNzNIz2I+MydVLV9m+ezujl6aZKU4xOtuGedNQoXp46cgcD2crZEoN3p5QwC4RVnUkC4Ium4d3hUmkyoxmVbItN88ed8ow6zHxXIqI2uDffv0Qbo+H1948y+uXb83fw7YtfufpAbbsGKFSqvBfvn9mVUPQBTRsD2M5uD5cbOImGnf8aCLRMFXTwze//Q6GtTgblbxmcKvf20rIVU3KxTLBcJC5TGXNY/3xMcdnRTJbnJl4j3/x6G6CgcUKuq2KxXe9unYA7/UG2ErAqapEnAer5ROE+5y1qXA5tabXjBGQO9sWx9J0R1dOhvvaLnKp85hmAV9PmZVCc9u2sUwLWVn9GVU1m2ajjNcfwbKde8wXM4HL81t8sAnLatgkMtfBnM/66+0WHn+AQiqJxx/Y8BmVu4Klaa37KJt9u6jk87h9vrs68H6/YsHc1DQMQt3dv/YO8KrbTWUujzcYchIHgeA9+dxKPo/RdlpkZEVZdWYo1BWnmE5hW4X71hNoE785SOVq6O021UKeo6NF3rzwNqWWhC6tP2i0TYOPPT5CV28Pw1uHOHXtDeps3HOnG+aSny0WgihZEp1qq8tq8LsfjjAxnefItLht9ayVMFNz8+ffPYaYH/xeL3rcdf7s958iMzVBIZUkNjDA+PHL/PNfvkZd+B2yt+Q6a3aDYs3ix2cshHBjC4svHfLy6KN7uTQ6gW2Z7Nm3Hcuy+C//8DZF8+Yyxash4Ba45zstwkEPUEExqggEurKOc7Rt1PlAWHUpiDuUejt6MUvQp5AvNpjMmZjS3YmTGk2Dv/rBUbw+N8m6ti7CbckaEyUIB5a3AYeVENnJWRAQFuv7LpZ2B9h1Z666li8QdN/kmtecbauZHFFt9c/qCnVj9f58/l83huX1koVRehRZ9mNI7xHqW5n8+yIKlcyL1DIhXKEcaymObQRMw1yTWN0rbBKZ6xCdn5mRFIWuwdVLjvcjAtGYM+cjBN7A/V9BWgulTBq3P4CiBsnNJjasDa5eKdOq1Qh2xe+5rvyt4H5v+1sK27YxDQNFvX0NeUmSCESiFJJzuO9h4sBotzoto4Xk3A2/77RrCuf52vSD2cT9gEsZuHh2jP0P7makf5a3x8WtJ1slmWtTWbp6e5gcT9Cw7yxZYps6+3odknJhzuL4hE3r+eMYpsXF5KI/zExN459+dpRY2Mv2wS5Gto2wd+9Wxv7uLYrW7Qf5K6F8k6rR9XDT5JmDMUrZNLKqUqvWabZNzk/WaMihG4pdAanBv/zKXiLRMM++cIxTSQW73WTvLqelbdfuEc6eughAu93GMME22og12pEAZKtFyGWQb7mWtX5NlWR++copYhEvb53NMeAT/NGXHsa24R9/dvYG+WOpXcUScmfeREgyP3lrmgcSJa7NVmjLN15v1WoS8Vik68qqrWu2bRNTaxRqEv/w+rxkmHR3km1bQ21+70uPU681+NZzox0SY9s2ttFGUtf3ubZtY5oGXq+fYfw3/C6Rn8J2y3gMF12h7lX3M+DtpTiWIujyEvCvHWcNBgbJX0oR9Qbx+m7/3jZqcbr69gKQT2cA554yDZNavo0v5qI850fCOy+lXORukph2w6Se2ofL1UfLPEFkaHUvpHuB+zeSe58gyfJ9a+xYzueQhMAfWbklSXVpRPs+OAHwWrAsqzPjczORhQUvIEPXCff0rFq9qJdLWJZFpLePzPQU8aEPFlG9H9GoVqiVSqiahqm37+j+07zee175lGSZVqOBJIkVq5jXt2ve7PxMw6CczeCPRmk3GrTqTnnf5fas+txuYhO3Ci8NDj7i+Ic8enCEt8auLqpCrROOFG6VI6NvUWor2KvILd8MMa3Btl4f6BZf+PyHAHju+Xc5nnRzLgkgLZsDEULifFrQXSoR9cLINshl8tTNW2uLuxniWpM9IwHGZqok6+s7twMjXvYecIb2L529yM+OFagaLsQqQXp3WCW6oGY2GOFUsoKkefnV25d4eG8vF66kOTHRZDx1EqtW4E8+vQPTNHjx3WmmGytXvySzxTc+NciWbYMcPnyOl84v8TSTVN4Zt2G8Brh5YKuK1+9UBQ5tcaMLjRNXiuTbbraGWvzu5x+mUm3w7Z9foWw455BtuXlttM1Kc0WK1eRffn4b/YM9HD58npdWkZk+2Gvy2198inq1zt/8+DR5/S4I0Jg6H93jZltfDLfbjdvtZrjbjZlsEPPa7Brys3/3Tt44eo3jibVD2WazzlwrhRz0IuWaDMZGlv0+k5/Du6MfSZIoJmZZSzjM5XLTHV2f6pmiqHR33bmBuXDlqVezqFoQ3Z4BwGiZVOf20dV7iPHTr7J1/yfWLaVsWRbldBtvSMHUBe3iAYTwILRTBLpvPotcL2h0DzwKQD5ZB47c6SneETaJzH2KheywPxJB1Rx/E380imValDJpQvHVMwa/DtA8nk51Sb7JAr3gBQRQSCVXna1o1eud7RTXnbk6b8JBs1breC4VUsn3+WhuHaF4N9VCHsu2V75vbqFd07ZtcrMzdA9vIT+XwAZi88RnpWrPJjZxu2jg5fixixw6tIvjZyZvmcR0ILvI6a7bJhBR8vzplx4hGA4zPTbW+f8nHhwkV08wUV6ZAOzr0vnd3/oI9XKZnz77JuNpHSx1w5LItt7gD76ym2g8xqPFMv/xu6eXOc+H1Sb7hgNMzFWZXUJykrk6eruNrCgcHytTszyrqoUBTOZMTp68RDTo5tholgVycHJW4eTs/BC18HIqAX/44SG6h53k2SPZKtNnVg4YPVKLLducd+q24Rj22cSqrVQXJivsGk6AZbJ7Zz+heDfxyFW++3aZ3VsieHw+PD4fB/uu4I94OT9eYLqyOqnzyQb9g04r91BfCPtcekXRlaG+IEIIfAEf3WEX+czq1+h2MRKx+fhHD1JIJSlmM5TKTWbmivyrrx6CdqOzlj9xsM2x6dWvEUC5XiSy07n2Jf3Gdcqlumg1W2heD5i3PgNp2zaZ/ByKrBINb/wca6DLpl56nnrVJjLoPOuVvEnPPJnw+EaWJHxvHtsUJ/vpGfgExewVGo1R+ocPAZBLVYFLN/17zd+inJ8kEBmmbUzd1jltJDaJzH2IQnKu0/rUaataYt5YL5fe5yO8+7he/W0tLHgBVYuFNZXa/JFIR1Lbtu+yDfQGYkElyxcM33ezWi63m1qpiMcfwNT1m//BfQh/JIpt245qmiyjuLSOEIM/HOkQao9/7fmBZq1GIOrk8qJ9A0yPXiQUiyMk6QN1v23iAwBZ5Wcna7xw5A1sWaPLa5FvKFi3WVW5HQSkOn/42T1omvOZLo+Xo++cYPvWHoKxLrYOlJkoOxn93dE2D+/tYXQ8w4mETHeXDyEE3mCQsBt+9+MjRHp7+f4LZ5lahfwsxYC/xccP9ZAt1HnpTAV7hYqJtUT+114SjFtGm9/9RD/9W0eoV2v8p++epC05VY3pqpu/+M4RZAFZfWVJ6KUwhMazJ+o4KlNrH/e1qRw79+6gUa0yNl2EVUwVq7aPX71ygp1buzhyNomQViepuZabv3ppFp9U59//oRPUtlrOu+b8tQJ7d5RIzSR46qMPobnd7Nqa4z/+8BKSa+V1smh6+NWrp9g6GObwuRRCLAbFca3JcI+XS4k6R0ebhH3XqNTbXE3pIMl0u5v0hF2MzrXRxZ234BbrJrVKjUhPL7/4xRHemZSIKgrhSAi9pZGcmqJ3eJgLV1Y3Ql2A3x0gn87ii8eg2obriuPhYBfZuTQNqUxMXow7DENntjyL0GT8lpvIKiYvifw03h19mO02mUSSeHj9QjULJKgs2wTjq99w3pATrhcTXmT6EIyTThyjq/cQFhOkkuPIkh81eI1ySkO0H8Ky67jCZ/AEl7Nxl7rNEWmI76R05TjNRhXN7UM30+s6Zk9Qpim9RjpnEx6Reb9FBDaJzAailM1gGQaa13tHKmc2dmd+Q0jOjS0rCoXkHDY26moSfr+hiPT2UUglneu+xpC4qrnvaTtZo1qlWauiqK7bNtsspJKEurqRFcVRoruLRMYyTXKzCWfWRYh1qYb5QmEa1QrlXJbYfGXmg4hiKkm0z2ktWCqv7HJ71t0u5/b5SE9NAFDJZ+nfsZNqsYBtWb82LZ+buH8gJBlT8fH7T8XYu287oxfH+d4bGQKayUiXi4lMm5p141oRlJuMxDUmMi0q5vrXkpDcIBZQGM9b2JKGR4VYXz+lTJrZyWleOp6npttEYm2qzQxnr5UBN5be4vMf3UkoFmPHrmHO/+UbHL+iEfGPYTbKPP2pJxFCkJtNsK0/wFR5sZ1JmG0+tt9LJODh9TOZjkP8hx6Is33XVrYDF6ffY/K63J5QPTz7yzNs6QsxOtcGdXEoe08cPB7X/DW88TyL88IAS0mMZ14BqiHWLxpwPQ7PqFz5m1/RNiwqShzbttgZ1fF5XJydaWPNkzEhybw1Dm+N51iPHLaQFeoE+fufnKU/5mY00QDcTFc0/tfvnAWrzb/v7kFzu6lUGjcopQmrxfaYTKGmk2t7eOuazVvXCizN7O8J1/jEh7agKAp7hhv845sFvvP2/EWX3PhFjX/12w/j9no5ceISPztZZ1e0zd5tMc5eyXGteOsdECXDw1/+8ymCbomZioyQZPKml5/9/BjbulU0j5/XfvAaoyX/TYmM1xuAuqA+lmEoMrLiNl3hxS6XqdwEVkChksow9NBBADITE1SrDUL4CfqX22rYbhlJkpDcbhrSrSWaF0hQ0Pga5eRzBHsX73/btslPdOFSRjDEZWRXgXD4c7hcHvLJOFr/m+SLJ+na6Z6vyGQAQaWyjVivM6eVyczgCRaXfWbbGKVejVItXaVrS5ta7ceUaxKRYZv1lmfdfgX3xo603TY2icwGoVrIo3m8uH0+8nOJOyIygWiM3GwCIQkEi74VoXgPkiTdV/4a9wMUVV1X0N2q16mXS/ds0L9WKtI1MEijWqFaLNyWp5BtW4vHepe/91Im3SF6t+KV4vEH8PhXzi5+UCApCpZhILlcy62ibwFCCLqHt9CsVYkPjSCE+LWVy97E/QGh19m502kL2blzCPHSJf74Sw/TO9DN7EyS//7cONK8waVGkyd3qDywbyeReNcNv18JXtFkV7+HTLbAH3zlMfxBP++8e55fXmiTarr52c+P0xsP8N75NJGAhlez+NbrWYQkIeaz8kJRmUrkOBCLkZhOoguNtunmJ8erPDQg8fB8S0yj3uTcuEN+FrC9S+KjTx4AoG1YPHfSIRTTiRL799kU80Vy5RtbtHZE2vzhbz2Drutc+/HJ5ddMkpBdLgqpJGcvTNGWfNiWuWowPOhv8cdfeQSAbz97mpnq7VW9hJDIEetEXVuCbf7otz+EEILA62d468r8eRgt/HKbqrW2x8v1SDc10gmbZXLHmg9hqrz06ln8fi+XUwZCXl6N+fg+P08/+QCNWo2f/fwYF3JuxJIhf5dR4be/9CFcmotyLouMBbbF0sEnTbY73RBet4LcLvO1z38Il1tjx5Y4p85cYSprMJa/NUJTNr2Ua3QS/kJIXJiu8KXPfhRJkojGgoz+dAKQEVaLz+zT6I26cXl8vHV6jovZxc9b8JG5GdqtJlKXj2A0CrLkWCFoGpJLJdDfT3kySZDla7nPcFGcmUVYNlF55djPNE3qtTKB4HVxgOaQIJfLg22GgcWqSDGp0zvwWYQQFLMhdH6OZejg8mDbOoqqEOy+8R7RzSSWZdFqlJHUGwfxo1vyNCv/RHDYhSTJLBboPpix5SaR2SAYuo5noRogxLrcXFeD6tI6A8YLrWWWZVFMJzseN78J0FtNSpmME8ivs0KwGpq1Gu2m01ebnpqke3jlrMxGYsExWPP6KKVTt7WPYCxONjGDJEu43Cu3AyxUAk3TJBzvvu35H9XtplGt4PEHsIxfH/PR9SDUFe/MsbjvgJQJIT7wpG4THxzYWpDnf3mSB3f3cPZyGlQPobBTNQiF/EjWos/II9t9HDo4iDr/HgkEvAh79efctm2+8pFudu/dzuy1a/iDThAYC7uBNkJInJwFZus80OPha19yWpu+/9MjjGYXSx1CSPz0vTxHLrxLugq2shhon5tp0fXuBVyKxGtnstRZXvEo1HSa9Tpur5dMvtb5//cmLa5+6y1qbZmmuPG9ONjtR5JlNFmmr8tLYmqxtXM0Deo7E2gumZMTJk/tUHhw7yDHzs5weOrGROFQj78jeTzS42emuryFNkCZB/oktu0Y4r1zKa4U1vf+VVW581mqLAMmtt7mD5+Osnv/Lo4fu8DPTtZvydtnJXzuwQCPP/EEmVSWCz+7fEOsGgk55+bx+fjUkzuJXczw1rXF62WgUClXicWjVMpVnn9vDiEt/56yuo9/fu4oA90Bjl0uYQqVXL5EX383zXqVDz1xgH3FAvtmcpTrFq9drK7YDrge6LaLVDJLX383yXQRJCeM3RYy2L19pDM785SQuPDL9bVKLYXq0tCLcxCNIpmC9rU0eaNOcOt8VX2FtTEail/frbYM5XKBpJ0j1NdD5tplfJofn+bH7w3itVyUZmbRlTSuYJKlbVoev6BaTBCIDNJupQmNuKikX6Ra60LyzyGEwLIsSjNRZCmC7JvAF7GJDBfIpr6N4rIJxFe+f9wB5zksp1wIsw9bThDsuTVfovsFm0RmgxDu7iE3m0CSJGRZuSmJqVfKNKuOsZPm9a3qTbHQWnYz5a5fR1QLBboGh4A7H5ZuVMqdF5yq3Zs+ciFJFFJJjHa7cx63CkVVO8P0q8E09A7BzSdnb5vs+sMRKvk8+eQspmlQSCUJd/esei/btk0xlUR2uQhGYytus9Fo1mo0qhVMw0CWZVS3+7YqXSvhflUr3MQmQkqTg9sCTCerywbohRCcmlM5NZcHFHAH+eGLZ9m7NcqF8QIs8a4olBr4whHyyVkuj5Y4OlZGuNZqlbKRMcjNJlA1F6+89Cax3j7ePbc41L4Av3cxK+z13JghNiWNmRo3BNGG0Hj5woInxo3Hkmt7+OYPTxHQBNNlpdMWJSSZnO5fNYF88mqZ7shVDNPi/HQNWCQ7QlY4l3LOTzGafOLjTlXkk9EwqX96i4nm8nfZhWs5+n0nUDxezk2Ul+1rJNDij77yISRJUM5neebhfsZeztx0/e/1NAn7NH723Dt4/AGOXq0CboY9BXbtexyAgwe28bP3joD7zhIjPXHnHujqjuGTTdrXjeu9diqNZBl0xxzPtnCogm3XiKl1LFtQxMu3XrjEQExlPN2mYd/4PQkhOJ9WOZ9uAhqo8I8/v8JAdJKHRjx09Q3QbjR56OF9AMzmjnEpe3vnYykevvXiFXZ0XSbuFzwSNziW9lGrNbGBci5LMNbFtelc53vIFpxEYlfk5p50Qgj63b2UxtLEPUE83T5s2yY9N0dDVOn233wfzWadUqOEbZjYLkEiNcWODzvfayWsoQ30kJ9LozQVokGHBKV7X+X6WRN3QKVuvUI648MTryKEMk82kizc/OU5F929X0AIQTbpg8g5hBCEe2+eSK+XWnhdX8Drj1ArZ2lWnsUduDE+ajdMGvkotqgT7r//ZmE3icwG4la8P1q1WqdvvpCcW5XIuL0+8slZbMsmGFs7WMzOTCOrKnqrRdfg0Aee/Kia1qkQGHc4SB6IxshMT83LBN+bB/FeGXlaprMytRoNFPXO1NgC0Si52QTxeQ+l/Nzsqvd1bjZBtK8fU29TTKfu+vkaut4hpPm5WfyRCK16nVa9ftuzQ5V8Hr3d7Dxfmz4xm7gf8YUnutm1ZzvtZov//J2j1FYIJhcwXtIYP1XjevWiCxmFv/7eu9g2JOpuhFg7oSOExOWJIl/4/G4AvLNVfnKswkpD7cevNdDUc9iWzenJNkirv4e2h9t89OF+puZK/Opc/abtUyXDQ8lY1sl0U5QMNz84vNBSs7oAjC77uHJ+lJ0P7CWXSPDUwR6uvV3reJPYZptPPznI/v3bOXr0AkVDW9bhO9Djx+Wen21BkEiVb0pi3FaNP/nKIbx+H5cuXuV77yy20wUiMTLTk7jcHibHZ5cR0dvFqyfm+FDLYHKmSN64UYUt13Lzw8MlntzVJJKq89a5Aruigj/4rQ9j6Abf+skJZmpuSilYuJa2aSDpdSwtsOr51m0PYzmYyf3/27vTGMeuK7Hj//se9yKLrH3vRd1qSa3VkkaLZckWZHsUIWPFieOxE8Pj2MkAM5h8SIIBAgRIBpMvmQQJkiATOI6teDTBeFc8bUszliUvsrqlVrfUm9SbqrtrZxVZRbKKRRaXx3fz4bHYtRe7dladH9AAWXxN3stH8tzz7pbmg6HTNAQ07fv3U8jlKWTTQGTNdZrBz9H9Lg4fvQPT7Ua9fJzTow2cfPc67RGD3uGzfJCo40ibweWhCzTfdRhQRAeG6WhYuZ2WSMYwTZPWxpsXtpRStM1ZcjmWiKK1TWtj55L1jxZiNBzuIdbfT+v+/XQ2Bxjp/ZD22w5RzDuJe6CpgZn+KXy+lWNXIGyi9Qz5xN3kEgW8Db34gje/DMosYVlF3G4PsLhtk89Y5BKHATfu+isEwjc/ANPjbkw7jtcXchakWe5cjh+ktf1JLKtIYuQlIp07q+dGEplNttwQM61t7FIJyl2DWmvig/24vT6sQqEyV6Ha1busQgFPIEB9Y5NzpTw2tq6hWDtBsKGRdDJB3/sXCEYiJEeja75q7vJ4aOnZh23b8xK89QwB3AzJsVHnasotJAXh5maSo1FMt3vZnelvhWEYGOVhcSslw6ZZnuDo9aHt5KrPO51yjllrD0puOk2wwfm/kdY20okJ/KEQhZmZNScyxUKu0oO1ns+XEJvJLl9Ft9GwtilcKGUwnC1vjLjgJ2+538H+RIl8LofH62VsfBowube1yEN3t3PpWpyT1wt0h2Eio/n11XIjaoUkBuCj97ez72AP+w72cP76ceL5tW+kuxQveZ48Wk+ppPnN5TTWMgnb/lCeh4+2gDVN3wcXCEYaOHTbIT41eY7XLpdQSuGxZzh69DYA7j26n5dPnQHvzSTywo003S3XwLa5cW2Arv09HGmc5uoKc0EMQ+Mqz3sM+gz2h3L0p51E5tJYiaYbabzuDMcv5yrzjNYSp9x2jpDHoi/pp//EJKCWH6Zmujl+zQYygJf7WtwYponHNGlvCjCUudmNY5TyfP6JJg7dfj+vvHaOM9GVm5Ez+LgYc5KfdPo3PPnwQb70+af4zl+fojfpRZcs7ulQeN0mZwfzlUUPVqcqw6ibmiKosSLvjAaczgp8HGkr8I8++yjJ0WjluPwqLd6RxCBWo5fCzDTFlEVzZHEcHk0M4z7QjDINRq4N0tU4fwEhrTXK50JrjcvrfLZ9dXUUJ6cZPnOBoD/E5MgoRsbCb/gYyA6hcxbeFhvDXDreljIHaW53hm7GYxl8wZtD5sLtmuTwMRRhPOH5Q9MAcsk2WtqfcP7vWBHCfQCkRty0d34Wl8vN0Idv42/uIxR03qepUQ/KbgP3CKGWEgZOfHW53KA9gCQye8bsKmPa1gTqw/iDN6+uNHZ0OftuaE1jRyep2FhlgvDMdJqZ6el5x6/GdLvJZzLQ2MTUxPiSq3ctbMSDcxU/O5nC7fXuyA37rEKBfXcdxTBNUrEx7FKp0shei7n1nxgZxjBNrEKBcEvLsnNQtsrEyDANbe3OSiW3METM7fVtWAO8mM8xk82Qu96L1+/HG1j+yq/pdjMRHcYq5ClZJfyZDL66pY9PxcYqc0fWug9SsKGx0uuYTiYIhiNMp5Lrmjc225tlFQqoTejBTCcSzvuzzvlLYm97+WSMvtEMw7EMmSWGYK1HszfHc491kC+UOPbWGDNzejBiOT9f/+57+NyaaNaLLuV55qPOCmT7DvbQ+PY5Hnn8AcZjE3zz2BXyS8xXWah/KMlth/cTHYkxmTMWDQ/T2kYt7Dawi3SHSkzlbKZKK1+0ePhQHU887gxhmsyc5b0hTZA0RdskbwQqr/HpR7vp3N9NbKCPYrFYGcL74H238fPz51HeAAVXiNd/eYZ7j7Rx+v0R8Mx/7XTJx/ffmoL8NH/85ccIBOu4884c//GFd7C9Sw8JyxLkuz89yxN3N9DS2siXPtvN//yrkyStOrTh5Te9s41EJ4npCeX59CNdJFJZfnIqgWWs3mvsJcdX/u5h2jtaeP1XZ3nzmpP9KiuPhxw5s37FxOjMtTQtkV6KJZv3B7Lokos7WzWmaWBlM9xxt7Px6UN3tXEmOrFqecAZ0uepq6e523mfu1qD9CaL3NUOn/sdp5Hufv0sJ/tWz9R1yeLX741hKwXKxcmraeYtcgD4PE7z1u3zEe/rcy4AZC3SKkUoGAGgUMgRz8ZBQZO3ialimnpPEH8oyMTVviUTGdsFptt5bu1e3BZRSuFJ20zpMZIjI5RmCqhMkfv2PzT/PfdCf26IcFeHcyF71E2ka+k5ayXbmYZg2za2Ti96PNKVx1kkYHEMs8lW2n7ZyTSKQ5QYw8DtJCaAy6/Q+UOMXkzj9TWhdJhQYzOF/G0U869jBq8QH7XROk2wbYqdljrsrNLsQpWrvWOjixKTuT0mdeEwU+Nxwi2tZCYnaeyY3zibmhhHa73sKkjOVfxW4oMDlEoWtmWRy2Yqx8eHBjFNk5JlEWltrQyhSScm1r2y1mbyBgLkMtME6sNYxeKGNjYNw6icg+TY6JoTmdn9R4rluTBrHdI3tydEbcLqIXOHUdWFI4uSDqcnL0bnbYdJxcYI1Nfj8fnJpqfIZzJo9Lykob6pmUR0mNZ9B1FKkYgOL5vIaK0rvSbZ9OJVVKo1O9doqd5G27ZJjkZRhrPnSzUXAsItLSRGRzAMc11D40qWxWTcGYdd39zqLGENWIV8Jclcz/wlsbelLTfJyRyRkIehqQKYG5cQ338ozMHDBwC4Mpjm7ND8hmSq5IdSealiZXCtL8aDTU3cuDZEa6sTL5pbm6hzl6CYxWOUmLKDyzaUf321yIW+X3OozcfvPN7KqQ/iDJQ3aTxQn+dTj/YQG5/ipyfHwbawvGE+dtjDJ59+gEw6wzdfOkfKWv63emo6Bzi/OZPTeX6ro8Szv/0EuewM3/rRGRKlIEoZjCczdO4H7Q7w/Vfe5ZGRaR64/xDH37mK8sz2XBkcvwFvXh9FKdeyC0dq00MsluRAsI54LEnJcK/4C35j0sP9BTjU1OyMzFjBw3c2032gh27g/I1TXEuseDgAEb+mvcOJ/Qe6GnjzWoKDoWl++/EDGGjeOjfMmbHlE6J0yceP3pltMPt48mCOB+87iFUocOlqrrLXXTw2zq2sdPXBYJaecx/iMg3OXnOSj7mfE6UUATXDMw80ojW8djaBUvDI7SFS6Rxnh535UZ+4w80nPv4sgwMjvPhqP5byYdoF7u12k8kVuTrh4v1hC/9rZ/nY4Ta8aU3w6D4M0yTRP0yoPKwtPjNO3SHnN3ni+ghu5a5cBPbULZ0wh8wgiX5nVdnwMhcVOpv2MZ4YJXj/A5huF6nB4Xn1HEkMkS1kyBsWRUoEww24fNay72V9R4zY2I+AEpGuwi2955GuLOMjPwJc1IWO0tx2B1axyMjQi8SiJzCUj2I+R3v3x0lyc1RCcjTK7BZGdQ0aGq6Wn3HnpQ1VlUgp9Szw33D23f2m1vo/LHjcC7wIPARMAL+rte7b2KLWHqtYxLbtyl4iK/H4/NglpyFW39Q0rzGcHI0SbGhAKWPFxpDb68PldleGpc1OkJ8d0mOYJqbLxXQqVWkIzq6s5Q+GduTu44FQPdPJRGUe0UYOAysWCmitmU4m1zw0yS6VcLndRFrbKpPf19o74vb5nM0XYcWekLWyCvl5w6gWJh2FmRnqws4wxnBLK6nYGB6fn9x0msaOLkqWteRcmGrOiWGaTE2Mg1KbtvR1aixKY0dnJamqJpFxe7wbklykYmOLVhoEyktgzjCVGKeQzUJtj/bc0XZznLq9yeKLn3WuggdeO8s7/WscX7aE/pEpHi0UKOSLDMedPUiWo5Tip+9O8dbFN0nlXXSG4fGCTf9wCo3iDz93L8FQHT98+V0uxZceMqZMFyXb4LlnH0EpRX3Azf/5xQRunedTD7fTua+Lzn1duPQ5jn7kXl59/QwtDc5vVV2ojkidSWqJrToa3DO0RjxcGs7z7e+/RcmGwWkvX72/GcM0CYSC3Nnp4cSgc/xPTiU4d+0UY1NFMu52fn5F8+qFCyiPf9Fv2qIeooV1cnn43i8H6T4bZThpoVZY0nrWz9+bIJa4QHQiQ9JacFFpznLQvQNJ7rnHJjmRYixlUU2zbWza5PiJ9+lur+f4+VHAw5MPdNHW41wIun08xZmxlRMoj85xf4eN2+vl7tu7Km2GU+9dobd/HHV9iDc/tFjp87LQjPbx/05Pl++Vh9ON2vz4b97DbWqi8QwP9nh48EFnXlZs8jwNQTePPXIXAKkfvE3/lMnBfc584Z59nYQ915kowhN3BHj6qXvRWvMXPzhJf9rLO/2aL36km1hxZPXtC5Siyd/IZHQM0+shYC89xC1UFyaEEye11oyPRwkG6/H55p9DpQz07JjQOV/XWCKK92ALubhNV4ezIm3ifC/1v7V8+UyXSaQrN/vMK9djUbVUOfkpkLzmnHO7ZKGL3USO3HDuD7ZRLORJJ5NE2tqxCnnS6UvUtcTwe3de4rLQqiVUSpnAnwOfAoaAU0qpY1rri3MO+xqQ1FofVkp9Afgz4Hc3o8C1pLm7h1RsDK/fX9WGiL66umWvaM/2oKz2g2p6PJXJz6XylZ5iLkdL+Up2bKCvsvt4+QlJjkaxisVbWqxgK23WkLfmrm5SY6P4gqFbGsY3l2Galcl708nkupbuDUYaYBN7xEqWhdbaWexgiR91byBAbKCffDZLsZCnuXv+2F/DNLHt+cEv3NJGIjqMUgb+0PJzucLNLRTzzg/xZk6ov5VE1yoWSU+M4w/VL/u9q/p1DbXk7dnFEzpuO0yxkF/zsDqxst0ep9yum0NYPG6TWxmjrktFOuosJnPMGzY2qzfl5b++eJKSNipDr5bS5p+hMeThSlQzXqgDBQNTMHAiBcDRNj/1Eedq9oHOCJfimWWfK2ebTMQTNLc2MV5eVrmnwcC2cuWLSwkOHNqHYRjcd6SNl94YwDAUE5NZbiQWT/wPqBm++vfuI1gf5PL5Sxw7lWQGP0pB30CcYNCPVbS4NJRldhEEy/BxPQWzzSClFMq79g2Hc/joTd58vtVkbB8nrlvMXTxBa81HD9g8cLSLsxdHONGnOD9qcuOFN8lrF0WjylEDpofXLhXh0gSz9e0fmeTgEefC5gc3JoHlY562cnz57/TQta+bVGyMZDwOOPvlpYseTr0/m1BtQCPXcHNuBB7o0PzTf/wUhXyeRHSESGsb8USWOo8TU23bplB04s9b50YwFfQNJ5nIecAEszy/RCmFyzW/ndTS0EG0dxDtMWlQN2N0i7+Z+LURMBRNnkZ8vgB1xQKlmSK+yOrzTQcSfdQf6SE+Nk5TVs/bp6apoZWxwRHypqbRmNMuWDjfSWvqy0PdlmLbNpNjGl9A4w+v7/0uWB+SHGtEKYVh+pgavAtbF3CFLjI6cJLuOz7GxMgw6cwJuu7eeauTLaead+URoFdrfR1AKfVd4HlgboB4HviT8u0fAv9DKaW0XuPOcruEWufeJ7PcXq9zpV4p3J6VG4H15Tky2alJws3OF9Fwucim07g9Hmzbntdor/UFAdbDMM0NmVsSbmkhOTaKNxBYc0K0FRo7OkmORTFN17Lnfan9dTz+AInREeySvSjZNV2uqnet3+wVwSKt7ZWNZP1LzBFbKBEdoXXffqYSE2it13XuAqFwpTctUB+p/N3j8+Mr9665PV5KpZ01SXIX2dVx6uKozcuvnsHrcfFObwZWWXFsro8f8fD0Jx4hOZHkm399iaxe3BjOquWXMgZocmf56t9/GI/Py5tvXeT1ypLJN/WOFrhw/kOCfjfvXUmw1OpmswrKz7dfvkJLyGQwqcHwMjppUSg6w3xN02RqIokvUMeZS1EmCn5eOuUMdVJLDKvzmSXqQs73rLU1zPMf9fCd45MopfhFr8Hl0RtM5SCjIyu/WdvMyE/yyaefwjBNnmlt4a2v/wb8EaYJrXuvwl9dLXJp6E2msjY5c+ULbmYpT2u7c8HFH6qn9+IVIqNRvHV1FNXm/I63Njnnz+P18vbZPm7EbxAv+BlIpkmk3yOVzjOSdZLTKxMerrxeXr+5vOrd8ctTFIoXmM4W6B1X85JdpRSdTfsWviQej48uz/ytEdxuT3kFsCqEPM6Gpu0tTPfGFm242dawuLe/pbGD6LVBbCtHMt2PV3nobOyesw3mfKmBDto6nyEzNUYm9Rp1kbV/EBr3p8jGL4H24fF5aG5/EIB4bAp/yIdhGDR3daNjdUBqza+z1apJZLqAwTn3h4BHlztGa20ppSaBJmDeSuFKqd8Hfh9ubanive5WeyQWrlwVbm5hOpUkm87RfuC2jSyawGmsbvdCAdUwTHNNw6iceVM7a+7UUgzTvKXfldn9hOobm0iORteVyKzUm+ryeEmORp0J/1u0JPcetClxyqxfek7iVlOmh9ODANYtJTEAnW1OUt/Q1EDEB9mZW399n1tVlhkO+t3A4kSmoHy8dGp22NDqZczYfjKTVOYnZ7Wf//vGBPd3xGltb+bU5QmSrw6jvaFVRwVNFOt4+eUTPP7QAVwuN+GQH3QSlIky3URnNnZltM1iu4OcP9/LAx+5g3Pne526b9BzK9NNLO92Bl6uVg5vmB//7VkeuL2RsViSEx9qBrNRcgWL3oS5aAnnjXDycpI634dMzxR5b8igZDhLXZeUl3Mj4MynWf7/F/Bx/JoFGKhlVv/aaCpdJBfKkJtI0e6vbi+15ZKq5XjcXSilCIbbiY8HILKGL3CZ2+ci3DMCQHLAWeG2VLLQTOEKxomPKiCHv3mCqj4oO8SWDn7TWn8D+AbAgXvv3/FXwXaTnTaJX4jtVrKsyrDKzeyZrGZYqdg55sYpb8ftNR+n3jw3hlKKaDzNyLRrTe2ToWkPP/nb0zQ3Bjl5OUU1icpaaHeAs+PAeA6oA191HRFKKd4dC5B+e4hDPRHO9yZRa9w5fjsp08WPT6V4/d03SNveJXuftsrFuJuL8TTgAqOe81EA96YkMeDs/VOZP1Mj525f0wGmJyZp8XdV5htvNIvLJEZ9WKUJ/C3l87EBwl1x4qM/RBkWka7yXJ7I7IT+2klioLp3ZBiY2/fWXf7bUscMKaVcQBhnMqUQQuxIzV3dO24fIbFmEqeWMZTx8Z3jKefOKptPLkcZJu8NA8MzbFYSsxGuJjxcTWTZyWVcjTI9TOO5pQ1AxfYJBlff5289Il1ZtD5ejlMb1/dgmEZ5EYDaV01ufQq4XSl1UCnlAb4AHFtwzDHg98q3Pwf8ohbGHQsh9jZJYnYNiVNCiF1J4tTKVk3vymOJ/wj4GU5/0wta6w+UUn8KnNZaHwO+BfylUqoXSOAEESGEEGLTSZwSQoi9qap+Kq31K8ArC/72b+fczgH/cGOLJoQQQlRH4pQQQuw9W7O0gxBCCCGEEEJsIElkhBBCCCGEEDVHEhkhhBBCCCFEzZFERgghhBBCCFFzJJERQgghhBBC1BxJZIQQQgghhBA1RxIZIYQQQgghRM2RREYIIYQQQghRcySREUIIIYQQQtQcSWSEEEIIIYQQNUcSGSGEEEIIIUTNkURGCCGEEEIIUXMkkRFCCCGEEELUHKW13p4XVioO9G/DSzcD49vwuttF6ru77bX6wt6r82bXd7/WumUTn79mSZzaMlLf3W+v1Vnqu7GWjVPblshsF6XUaa31w9tdjq0i9d3d9lp9Ye/Vea/VV+y9cy713f32Wp2lvltHhpYJIYQQQgghao4kMkIIIYQQQoiasxcTmW9sdwG2mNR3d9tr9YW9V+e9Vl+x98651Hf322t1lvpukT03R0YIIYQQQghR+/Zij4wQQgghhBCixkkiI4QQQgghhKg5uzaRUUo9q5S6opTqVUr96yUe9yqlvld+/KRS6sA2FHPDVFHff6mUuqiUOq+Uel0ptX87yrlRVqvvnOP+gVJKK6VqehnEauqrlPp8+Rx/oJT6q60u40aq4vO8Tyn1S6XUmfJn+rntKOdGUUq9oJSKKaXeX+ZxpZT67+X347xS6sGtLqPYeBKnFj0ucaqG7bU4BXsrVu3YOKW13nX/ABO4BtwGeIBzwNEFx/wh8PXy7S8A39vucm9yfZ8GAuXbf7Db61s+LgS8AbwNPLzd5d7k83s7cAZoKN9v3e5yb3J9vwH8Qfn2UaBvu8u9zjo/BTwIvL/M488BfwMo4DHg5HaXWf6t+5xLnJI4JXFqB5R9k+u8a2LVTo1Tu7VH5hGgV2t9XWtdAL4LPL/gmOeBvyjf/iHwjFJKbWEZN9Kq9dVa/1JrnS3ffRvo3uIybqRqzi/Avwf+DMhtZeE2QTX1/WfAn2utkwBa69gWl3EjVVNfDdSXb4eBkS0s34bTWr8BJFY45HngRe14G4gopTq2pnRik0ickjgFEqdq2Z6KVTs1Tu3WRKYLGJxzf6j8tyWP0VpbwCTQtCWl23jV1Heur+FkzbVq1fqWuzR7tNYvb2XBNkk15/cIcEQpdVwp9bZS6tktK93Gq6a+fwJ8SSk1BLwC/POtKdq2udXvuNj5JE5JnJI4VdskVs23LXHKtdkvIHYWpdSXgIeBj293WTaLUsoA/gvwlW0uylZy4XTbfwLnKuYbSql7tdap7SzUJvoi8G2t9X9WSj0O/KVS6h6ttb3dBRNCrI/EqV1rr8UpkFi16XZrj8ww0DPnfnf5b0seo5Ry4XT5TWxJ6TZeNfVFKfVJ4N8An9Fa57eobJthtfqGgHuAXyml+nDGah6r4YmU1ZzfIeCY1rqotb4BXMUJGLWomvp+Dfg+gNb6LcAHNG9J6bZHVd9xUVMkTkmckjhVu3EKJFYttC1xarcmMqeA25VSB5VSHpxJkscWHHMM+L3y7c8Bv9Dl2Uo1aNX6KqU+AvwvnOBQ6+NSV6yv1npSa92stT6gtT6AM9b6M1rr09tT3HWr5vP8Y5yrXCilmnG68K9vYRk3UjX1HQCeAVBK3YUTHOJbWsqtdQz4cnlVmMeASa11dLsLJdZF4pTEKYlTtRunQGLVQtsSp3bl0DKttaWU+iPgZzirSrygtf5AKfWnwGmt9THgWzhdfL04k5e+sH0lXp8q6/ufgCDwg/Jc0QGt9We2rdDrUGV9d40q6/sz4NNKqYtACfhjrXVNXrmtsr7/CvjfSql/gTOZ8is13MBDKfUdnADfXB5L/e8AN4DW+us4Y6ufA3qBLPBPtqekYqNInJI4tb0l3Fh7LU7B3otVOzVOqRp9P4UQQgghhBB72G4dWiaEEEIIIYTYxSSREUIIIYQQQtQcSWSEEEIIIYQQNUcSGSGEEEIIIUTNkURGCCGEEEIIUXMkkRFCCCGEEELUHElkhBBCCCGEEDXn/wOE99FnSGy4UQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from mlinsights.mltree import predict_leaves\n", - "\n", - "\n", - "def draw_border(clr, X, y, fct=None, incx=0.1, incy=0.1,\n", - " figsize=None, border=True, ax=None,\n", - " s=10., linewidths=0.1):\n", - "\n", - " _unused_ = [\"Red\", \"Green\", \"Yellow\", \"Blue\", \"Orange\", \"Purple\", \"Cyan\",\n", - " \"Magenta\", \"Lime\", \"Pink\", \"Teal\", \"Lavender\", \"Brown\", \"Beige\",\n", - " \"Maroon\", \"Mint\", \"Olive\", \"Coral\", \"Navy\", \"Grey\", \"White\", \"Black\"]\n", - "\n", - " h = .02\n", - " x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx\n", - " y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy\n", - " xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, h), \n", - " numpy.arange(y_min, y_max, h))\n", - " if fct is None:\n", - " Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()])\n", - " else:\n", - " Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()])\n", - "\n", - " # Put the result into a color plot\n", - " cmap = plt.cm.tab20\n", - " Z = Z.reshape(xx.shape)\n", - " if ax is None:\n", - " fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3))\n", - " ax.pcolormesh(xx, yy, Z, cmap=cmap)\n", - "\n", - " # Plot also the training points\n", - " ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k',\n", - " cmap=cmap, s=s, linewidths=linewidths)\n", - "\n", - " ax.set_xlim(xx.min(), xx.max())\n", - " ax.set_ylim(yy.min(), yy.max())\n", - " return ax\n", - "\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", - "draw_border(dt, X_test, y_test, border=False, ax=ax[0])\n", - "ax[0].set_title(\"Iris\")\n", - "draw_border(dt, X, y, border=False, ax=ax[1],\n", - " fct=lambda m, x: predict_leaves(m, x))\n", - "ax[1].set_title(\"DecisionTree\");" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "6it [00:02, 2.92it/s]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAOHCAYAAADCMk6MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5gdV3beC/92hZNz54icIwkmMIFxyOHknDVREyT5OsiyfW1fS75X9mf783cly5IlzXhGoxlNECeTMySHYZhAECSInGPneHI+p05V7e+POt3oBrqBBgESIOe8z9MPcCrs2lW19qq1117rXUJKSQMNNNBAAw000EADDfw2QrnaHWiggQYaaKCBBhpooIGrhYYx3EADDTTQQAMNNNDAby0axnADDTTQQAMNNNBAA7+1aBjDDTTQQAMNNNBAAw381qJhDDfQQAMNNNBAAw008FuLhjHcQAMNNNBAAw000MBvLd4SxrAQol8Icd/V7sfrhRDi20KIP73a/WiggQYaWAgaOreBBhr4bcIlG8N1JVkWQuSFEBkhxA4hxFeFEFfEsH6jlJgQwiWE+HG9/1IIcdeVvsa1ACHEeiHEr4UQCSHE24ZEWgjhFkJ8SwiRE0KMCyH+xUWO/TMhxKgQIi2E+F9CCH3G/ueEEBUhRKH+d/zNuYvp619wDAkhHp/Rt5oQwpjx+2+EEHcJIYbnafvbM45PCSGeEkKsvkBf/kQI8Q9v1L02cPlo6NxrG0KIjwshjgshskKISSHE3wshQle7X5eLS9S5Qgjxp0KIkfpzeE4IsW7G/o/W5bYkhHjuTbmBS8Dl6uQ52vucEGL7m38nDbxevF5l+h4pZRBYBPwX4F8D37xivXrjsB34NDB+tTvyBqIGPAx88Wp3RAihXcHm/gRYgSNzdwP/Sgjx4DzH/hvgBmA9sBK4Hvj35xzzB1LKQP1v1RXs50Ix7xiSUr5zqm/A94D/NqOvX11A2/+tfm4XMMJbY2w2cGE0dO61i5eA26SUYWApoAFXxSt9FXXuR4AvAHcAMeBl4Lsz9qeAP8eR3WsVb6RObuAax2V5FqSUWSnlI8DHgM8KIdbD9IzyvwshBoUQE3Vvlre+7y4hxLAQ4t/WvZf9QohP1fd9GfgUzqArCCEenXG5zUKIA/VZ5z8KITyX2FdDSvnnUsrtgHWx4+sz2/9HCPFSfbb4pBCiecb+9wohDtdnkc8JIdbM2HedEGJP/bx/BDzntP1uIcS+GTPQjTP2/ev67Dpf9zbce4n3eVxK+U3g8ALuUQjHgzpZn/0fnPEOvUKI/58QYqD+zLfPeIcXuvf++j0cAIpCCE0IcUv9PjNCiP2v00P0WeD/kVKmpZRHgW8An5vn2PcAfyGlTEkp48Bf4Cjqaw7zjaEr1HYZZ2K0+fWcf6H3JoT4vBDiaF1OzwghvjJj31EhxLtn/NaEEHEhxPULaPdz9fbyQoi+Kd0wR98yMzwzReF4HhfX9/2uEOKUcDzjjwghOmecJ4Xj8TlZb+OvhBBixv4v1PufFs4Ky6L69nnHypuJhs69JnXukJQyMWOTBSyf5x7nlSPx1ta5S4DtUsozUkoL+Adg7Yxn9LSU8mFg9HX0403FG6mTAYQQq4WzYpeqy9tHZ+x7lxBib102hoQQfzJj3+NCiD84p639QogPLqDdh4QQR+oyPiKE+Jfz9G2/OKtXC2LGis4CZPBfzqcv3sjxd8UgpbykP6AfuG+O7YPA1+r//zPgEZwZYhB4FPj/1PfdBZjA/wu4gW1AEVhV3/9t4E/nuOarQGe9zaPAV+v7eoHMBf4+OUdfh4G7LnKfzwGncTyL3vrv/1Lft7Le5/sBHfhXwCnAVf8bAP55fd+Hcby1f1o/9zpgErgZUHEUTn/9WawChoDO+rGLgWX1/3/yIvfZe07/lzuv94L3+ACwG4gAAlgDdNT3/VX9nrvq/by13sd5733Gu9oH9NSfWxeQBB7CmXzdX//dUj/+f13gng7Uj4kCEmib0fcPAwfnua/XgI/O+P2p+vnhGe82DiRwvDoXlIUr/ccCxtCMbd/m/PFwFzA8T9vTxwN+HO/M/gv05U+Af5hj+8Xe27uAZXW52QaUgOvr+/4D8L0Zbb0LOHqxduv9zXFWF3QA6xbwPP8z8EJdHu+pv9fr6/L6P4EXZhwrgV/iyHxvXQ4erO97H44sr8Hx7v17YMfFxsq1IC80dO5V1bnA7UAWR76KwDvmuce3q85dVL+vlfU+/jfg53Mc9yXguTdj3FzpMTZj27c5Z7zMcd7ncCYH52731+Xt8zg65jocfbV2xljdUH9vG4EJ4P31fb8DvDSjrbX1d+ZeQLtjwB0z3u31C3gmXwaOAaEFyuB8+uJ1jb83XQauoNDsBP4dzgAvzrwhYCvQN+Nlm4B/xv6Hgf9rPkGrX/PTM37/N+BvLkPwF6qY//2M378HPFH///8FPDxjn4KzHH0XcCfO7FfM2L+Ds4r5r3Fm2zOvdRznA7W8LjT3AfplvdiFGcP3ACeAWwDlnPspA5vmOGfee5/xrr4wY/+/Br57Thu/Bj57CffSg6OYPTO23Q/0z3P8n+IYuS1AO/BK/fypj87NOAaDuz4w82/mALzYGDpn21zj4S4ubAxXcJSkDfQBGy/Qlz9hbmP4kt4b8HPgn86QvTzgq//+HvAfLtYujkLPAB8CvAt8lh+rP8+pD/03cZYwp/YHcAyjxfXfErh9xv6HgX9T///jwBfPke0Szod+zrFyLcgLDZ17Tejcertd9TG1cp79b1ed6wL+R/0cE0fvLJnjuLeaMbwgnTzHeZ9jbmP4Y8CL52z7W+CP52nnz4E/q/8/iDPOF9V//yfgWwtpF8eo/woQWuDzuL0+LlZeggzOqS/ezPF3OX9Xkk2iCycuqAXwAbvrLvEM8ER9+xTSUsrijN8DODOKC2FmzFkJ5yP3RmO+a3bi9BkAKaWNM7vpqu8bkfU3XsfAjP8vAv5w6tnUn08PzszoFPDPcJTppBDih2LGEu+VhpTyN8Bf4ngkJoUQXxdO4kczzjLj6TlOu9C9T2Foxv8XAR85535vx/H6LRSF+r8zk1JCOAbXXPhPwF4cb8kOHEOthjPLRkr5ipQyL6WsSin/HsdwfugS+vNGYWoMXS7+u5QygjPLLuPMvi8VF3xvQoh3CiF21pfkMjjPrxmgLsdHgfcIIXzAe4HvX6zduk74GPBVYEwI8Stx4eS/63Dk9wPSCYeB8+WzgOMVmymf843rRcD/mNGvFI6h2XWBsXI10dC515jOlVKO4Dz7H86z/+2qc/8DcCPOc/UA/xH4TX38v5VxpXTyFBYBN5/zbj6F47RBCHGzEOJZ4YSVZXF04ZRezQO/Aj5eb+sTOI6Gi7aL42B4CBgQQjwvhNg6XweFED04k+XPSilP1DcvRAYvpFevCZvnQrhS2cg34jyU7Tiu+TLO8mak/heWTuD5FKJCCP+M372cjSWaqdAWcu3ec2Jczv2bM+bwMjGK84Kn+iBwXu4IznJEV33bFHpn/H8I+E8znk1ESumTUv4AQEr5fSnl7fX2JfBf69f41EXuc+Y1Fgwp5V9IKbfgLLmsBP4I5x1WcJbBL+Xep5s9536/e879+qWU/6V+/t9c4J4O1/uYxnmum2a0u4l54qKllGUp5R9IKbuklEtxjKHd9QE85yk4Rs9Vwzlj6IpASjkI/FMcA897iafP+96EEG7gJ8B/x1lGjQCPMfsZ/gBHWb8POFJXehdst97nX0sp78f5cB/DiVM8D0KIVpxJzu9LKffO2HWufPqBJmbL54Xu+Svn9M0rpdxR79tcY+WqoKFzr2mdqzG37qR+vbedzsXJS/hHKeWwlNKUUn4bZzl+7TzHX/N4I3Qyzrt5/px3E5BSfq2+//s44U490knI/Bvm0Kt1Y9YDPLuQdqWUu6SU7wOm9ObD89yzt77/z6WUj8/YtRAZvNA9X/L4e7NxWcawECIknESZH+IstR6sGxzfAP6s/sFCCNElhHjgnNP/o3Cod+4A3g38qL59Aicjd0GQUg7Ks1mdc/1NzZymkkymgrpdQgjPOQp0oXgYeJcQ4l7hUHb9IVDF8UK+jLNM9H8IIXThBLffNOPcbwBfrc8AhRDCL5yg+aAQYpUQ4p66sVHB+cDZ9fv83kXuc7B+j6J+j676b0+9vfMghLix3g8dZ/mlAtj1d/gt4P8VQnQKIVQhxNZ6Oxe697nwDzgewgfq7XiEk9DTXb+vr17gntbNaOc7wL8XQkSF4y38XZzlqrnuq6vebyGEuAVnieeP6/si9b54hJNo8imcZdYn5un/G4q5xtAlnOs55+88WZZSPoWjyL58gaaUc9pxc+H35sIJMYkDphDincA7zmnzh/VtX+OsV5gLtSuEaBNCvK9utFVxvFPnTWCEkzH/Y5znda5S/wHweSHE5vp9/GfgFSll/wXufwp/A/yfok4JJYQICyE+Uv//nGNlAW1eUTR07jWpcz8l6oaxcBIu/xPwzFw38XbVucAuHG90mxBCEUJ8Bie29FT9vtW6HGic1Tf6PG1dVVyOTj6/qdk6GidfYaUQ4jN1WdXrMjGVjBYEUlLKihDiJpy49Zl4DMdo/L9xJh9TOmjedutj/lNCiLCUsoaTlzGf7voWcExK+d/O2X6pMjgTr2v8vemQry+2poyzXJLFUUS/D6gzjvHgfITO4Dz4o8D/Ud93F0782L/DmQ0PAp+Zce4KnOXtDPUAfM6J52GeOMcF9l2e87d4nmOfA7404/fnmBEDBHwAOFJ/Bs8zI9EHh9Zrb/0Z/WP9709n7H8QR3lkcGbfP8IZBBtxgtDzOEszv6QeWH4J97h4jnvsn+fYe4EDOEZHAmfJJVDf58WJVxqp3+ML1OM4L3Lvs95VfdvN9eNSOAbUrzgn4W8B9+XGGag5nI/3v5ixr7d+D73133fW+1HCiU361IxjW+rPPl9//juB+y9Vli7njwWMoRnHfpu5Y4bPfccSJ/5qruM/Vn+P7jna/5M52hm+2Hur93ei/gy/i/PhOPe6z+AYKe0LkQccb/Dz9WeSwRmDay8g48X6e5/6m+rbV3GWm6fGUPeMcyWwfL7nC3wGOFiXsyHOxuTNO1auBXmhoXOvps79T/XnW6z/+3WgaZ5j364614MT+jFWP34P9cTUGe/yXDn49psxfq7UGJtx7LdZWMzwXDpawwlb+1X9vSSB3wCb6+d9GCccIV+Xxb/knHGHkxchgRvP2T5nuzjOiyeAdP3d7GJG3sQ5bUic7+ZMvTqVeLdgGeQcfcEbOP6u1J+od/RNg3BoOv5BStn9pl64gQYaaOC3EA2d20ADDTRwYbwlyjE30EADDTTQQAMNNNDAG4GGMdxAAw000EADDTTQwG8t3vQwiQYaaKCBBhpooIEGGrhW0PAMN9BAAw000EADDTTwW4uGMdxAAw000EADDTTQwG8ttKt58WAsJpu6eq5mF87DWKJ0tbvQwCXAGD+VkFK2XPzIKwfVF5ZauPXNvGQDb0M0ZLeBtyquhuxei/ZCA28tDBw6MK/cXlVjuKmrhz/+6eMXP/BNxH/85t6r3YUGLgED//XdAxc/6spCC7fS8dk/f7Mv28DbDA3ZbeCtiqshu9eivdDAWwtfWNk1r9w2wiTOwR9/8Tr++IvXXe1uNNBAAw000EADDTTwJqBhDDfQQAMNNNBAAw008FuLqxomcS1jpne4ETrRQAMNNNBAAw008PbEgjzDQohvCSEmhRCH5tkvhBB/IYQ4JYQ4IIS4/sp2s4EGXh8astvAWxENuW3grYqG7DbwVsRCwyS+DTx4gf3vBFbU/74M/PXldevaQiOO+C2Nb/NbLLsNvGXxbRpy28BbE9+mIbsNvMWwIGNYSvkCkLrAIe8DviMd7AQiQoiOK9HB3zZIKTHzSaRlXu2uvC1wrcru0nCVlbEqb1QFSNsoYxuVCx5jFlKYhSTSqgEgpY1tlM+2US1iFdILv2atilU8e7xVSGPm4pilLLXsJMZkP1Y5d+E2KgXMXJxaZny6T2Y+gTSNBffjciFtC7tWfdOuN2cfrlG5fbvCqhSwqw1azSuBa1V2C+kUqfFRyoXCG9K+bVmk44kLHpNKpBgbGiGXzkxvK+Xz09+BmmFw+NBpquXyPC3MhpSSwTPDGBVHXyUTaZ55/hCpRIrv/2QHf/utX/PKq8cu2s73f/wSf/7N58hnHf08PDjO5PiF7+VK4416LwvFlYoZ7gKGZvwerm8bO/dAIcSXcWaDNHV2XaHLz41C2hmPgWjsirQ3l3f4cuKJ7WoRu1pGKCpqIAqAlU+iBmNY+QRaaH4+UKucQygqitv/uq8/Z7vFDNI2QShogfmfm22UsStFEAIt2HTFrm8bFaRRnn4ebwIWJLsz5VYNXRq9ZrO7wtpuD4dOJUkSw2sXufuGRURiEY5/7yC4fLOOl1LS7CqSrujYqhuAFTEDr0th37CNlwpVLXTedaRtYRtlFM3tGLWWidDdCCEA59kiLRS3HzOfAATC7cMqpNDCbZjZSRRPAKuURfWFsaslVH8EMxdHaC5UX3j6WmYhBbaN4vahuJ3+2+Usqj+KVUijePzYpoEWasZIDOFq6cXKJ7CNKtJMoPrCCFWf1X+rlMUsZtACMWS16PwupNFjXVilDNpFnruZnUBKkGYNPdKG0PQ5j5uScUX3oHgC5+2vpcdB2ghVQ2g6isvrPDshLjgm3qgxOQ9el869VNm9VChWlainRsLwT8vdtQQpJWZ2AgA90g7gGMFSYhuFaVmeC3atgqxeed1k16rYpSzSttCjF7YJzewkIFGDzQhFvSLXl1JiFZKo3vC8Y+YK4w23F6rlMsVMilIuR0vvYmzLopjL0bZoManxUbyB88d9IZ1CSgjGnDGeT6WoGRU8/gBmrYbX70d3e847Lx1PEG6K8cun9rJ30OIT24qsXLUIANu2mRwbp72rE9Mw+MZPD1LM5/GHY3ztQ2sZm8jyj88Nc9NyHw/edx07d53kN8cMbpksct3qVmItTWi6805SyTS/fuEU65bH2LhhGQD795/k57tybOmd5D0PXM9PfrWHMTNGMXeUgaSklLcZ3TVJe5MXfzBAc+vsb3WpWOS5l0+Rzpap2h6y6RzPv3yc105kCHg0/uWX777gcz59ephfvdjHopjg5htX0d4xt34p5Ar88tmjLO0KcdMNq87b//IrR3hsez/vuLGDZFGyqCNEe2uYUwOT3Hzdclwe95ztFvNFJidTLFl2+fzTbzqbhJTy61LKG6SUNwRiV86IOhc1o4pt29QMA9uyzttv2zYT/WeY6D+Dbduv6xoTo2OX5dmzqyW0UDPSPts/oelY+RQo889TrEoBoWjY1eLruq60TMxcYk5PiLRqqIEYXMQzbVeKqMEmuMKeTbuSR/EGHGPrGsJMuZ1pFC4EK7r8bFzZyu9/4R6W+dL808/cwMCZQR7+5T7ElCFs1ej2VxCWQaevzO9/5nZuX33WqLp1YzsP3r2OG1ryfPFdS/nwJpt1rbVZ1zFzcYSiYlXyyFoVq1rEzCWwihkA7HLO+fAVM9TSExipYczM5Oz7rBt9U7CKaWyjgtA9WMU0ZnYSMzuJtCzUYNM5MiQcQ1NaGOkxbLNCNd6P3tyLmZlAWjZ2rYwaaJr2IM8cP3atgrtlEVYpg1B1rEoJd+tiaokhpFlzPNf1e5JyrjErUHwhVK9j0M8Hq5QHCWZx7mNkrYIWbsUq5VBcPmq5BEJ3g5TT17XKecxcYlpO7csck28kLkd2LxW3rfLz+5+5nU7/3KsSq5pqfPauGGHtwqsW88GuFrFrr+9cp4H6JEhzT+tdobmwq0XkHN+JWaeWcyje4OvWTVYxPT0WZ++ooXj8CzNuhUDxha+onFn5hDMmSwtfBXqz8HrthVI2g6JqtC1eSiGdopTLIqVN/+GDBGc4x7LxSQrpFLZtY1QduTIqjlfWNKrE2jtJjgxTLRYYPHqEycF+TOPsKtWhg6f5Hz89xdPPHSDgc+G1i/zsyYM89tQeAJ574SB/89gou3YfZ/uLeymn46jlFGG3ie5yoWkquqzi1p13v6g7xqKQgTDL/PWvBnnimQOcOjXETx/bzZEj/RxPqhzrO/uemmIh2jxV2pp87HzlCMlEEjM7yaLOCF987yru29LGfev9fO+ZYb7zyMGpZzp9/pEj/ewasAmF/Hz+3cv51W+OsntEI6DbLO3wUC2XMGs19uw9QSp5vnyk0wVSNS+7TuR59LmT876PocExDp1O8ure/jn3p9NZFG+EvYdH2Dtk8eq+AZ57tZ/fHDE4dMShBrYtix/+9GV++uir0+c9+sxh/v43Exw/2jfvtReKK+UZHgFmmubd9W1vKizTJDM5ge52E4w1USkWKRXy2JZFqLkZ3TVjdiElmsuNECBtG5RLmxfseu0Yv9pbYNsqF3ffufGSPMR2rQK2hRqIYeYSKJ6zRs9CPlaK7sYqpOY0xKVtYebiIOW8XgarmEELNTvXPscTogabsQop1FDzBfugBpuw8skLelJeL6xi5s3yrsGbILu7Tpco5bIsXVwiXVHZv+cIm7ZsJDQwztAu56O2od3ig+/dyi8ff41Do5KXXz6EYlVYGrU5k3bxyEsj6Ooot63toKW7h0I2i9d1fuiAXSkgXF60QMzxgKkKVrUEQjge/2oRs5xHaC48HWuopcfRwm0AaOE2aqlRhFVDcfunPbFmdhK7nAfNBYoNiorC2VWMKUwfn0vgblmEkRxGqAqKoqBEO5CmQTUxRC01grRq2OYoiubCNsoIzYVZTCNNE6E5hifSpjJ6AtUbRPWFsHJxEKoje4UkWvCsjFrlHEJzOTKpexCu8z04UxC6Cy3UTC0bR1o1jOQwiu5Gj3bWD3AMF6mo2GYNoWhYxbTTrnD0hKxVnLGSjyNtC6tSANuCK+StWwCuCZ0L0O6rEvLA8aSLvvES3u37WNMdoNRXIlub7dHxuhRa25rRlUvvql0tIqVElnIo4fnf71yQUmKXMqj+qDPZE2La+BSqNu0lvjCEIwdz6Dwz5ywpK665VxvsWgUUFWkaSGlPyxHgrMZUCije4MV7oLuvuHda6B6sQvKCDpgrjDdcdiNt7Yz3naJWraBqGpZpIW2bzuUrKOXzhN0eMpMT+MJhsvE4gWgMq2aST43iD0cINzfjDYZIjY+iCEFLzyIqxRIuj3fWRNzjceGjjN8b4rata1mxeJRv/eo0R06M43EfIBzyElIyDPZl2X26iOqJ4fWH+cqn70AIwbLlPu6MZ9l5OMGi7mGWLuvmc4s6GOgf5cjwKaLhZvYcGuVo0sWDLV4+eKNKb+/ZFeOe3na+9pl2hvuH+d9PT2CKMF4qbNqyDoCWtmZOHzmOsneYgil58YU9vHo8R3dYkCjZjE9m0LCwPE0Mj+UYLuq4jX7ecc8aXtg7yl9+7zVuXx/licMma4ZzfPQ9N0xfu1Qs0tYc4DN3aOw9YdHbGZn3fSiqih5uQ9HzAOzYvp+xyTQfeP+dKIpCJOBFVMdp6Qqg5jMkqh42xAQBr2TVCmdFwKhWORO30EUFKSVDg6PEfNATNGhuvvxJ/pXyDD8C/E49S/QWICulPG/J441GLhGnqbMLq1ZDCEFr7yJCsRjRtnYK6dmzGkVVUXUdy7KnwykuBKNSnnVcMOAlKIqEApemlAFnSUxKxwMVakZxeS/pfKHqaOG2Gct8RSc2M+fEVipuP0JV5/VaK24vZi6BUM//cIt62MNMZT1nH4Rw+n6FjWEt1IIWanlDjOx58IbKrpSSZq/FyaTKz14rkJZhHj9U4+CRIfpG6p5Jq8aSVjfDx48iTYOaDdgWa5a3cePqZqS0SRkeJisenj2Y42ePvsyru47iFRV0K09Q5FFqBfRAFC3Uglr/GKuhFuxKCVesE1kro+heJAJsCy3SSi09itB0zFwcu1IAJEJREKo2K2ZdC7eihZoRSKRlYGbGkZaJ0F1zyoni9lJLjwI2qu9sOIdZSKEFoqAojuFp1RAuL3algFaffOmxDmS1iLRr2GYNT+dKzFKOWnYSu2ZgVfKYmfFZk6WplRJpGbiautFCzdPPAJwVmJmxyqrHCRNRvUGM5DCuWBfIs95wx/iOoHkDYFbBrDqG9wyPuTNpTKL6oliFJHqkHWlZCzSqrgiuCZ0LcNfmNj72vpvwmDmGCy6G0hZ33LGRZe3nL23uGYEnf7OPrph+0VU1KSWuWvas8aGoddm49HwKKxdH8QQxc06IzuvxkJ/VTY7s1TLjTmiOZQI2aiA6b6y50NxIowy2NeeYUT2BBX0HVG/oiodpqN4gWrD5giFAVxhvuOwWM2k8vgAtPYuIdXTR0tOLy+OlkEri8jjPOZdMkBgaJJ+qT2RUFc3lIhiLkU+lcHm9xNo7ae5dTGJ0hHR8jPEzpylkMmQmJyhm0rS3BPhXX7mb27auBaCnt5NP39VKUW9i/4kkq1d0IiyTAycTuGKdaEaG5d0BBgfGOHrE8WamMwUKtpfx8bP2xaLFnfyzL9zJbVvXEk9lITdKLp2lWKkRiZ4vu529ndy+VGVZk2DrlsXT25978SDffTFDrmxhR3qYSBSo2irH+yZIllWEoiM9UUaTZfafjNOh57Aiizl8OkmpUEAx8ujCZrE/y/rlsx1kv3jyEN96ahSp6Hz4vTfPCn8wazX6Tg1Mj/Fly3vYtlLnHbcuAeCpXSMciHvZ98p+AGpShWArnR1NtLeEcEmDp/enyRer+IPOePP4fHzhvav43Ps2kJiI8+0nhzjcn+d3PrCFppbLl90FTQWFED8A7gKahRDDwB8DOoCU8m+Ax4CHgFNACfj8ZffsdSAQa2L4xHFCTWeXU1weL5n4BNG2872ktmXS0t1Danz0om3nkkmCUWeQBGMxVq9exOrVTlzQU7/ZR1Bm+dgDa1B1lb/6wV5Q5o+5lbYF1SLiCi1Z2kYFNRDDKiRRXF6sch7F5Zs3Zk9x+99Mz+tVxdWW3aAo8Lsfv42DB8/w891OgoDQ3Dx5xGBq+LmpsG7zzQz3D3FwQsGn1Ljxpus5dvgUL+yb5LNbm7GFyj9sz5LBw33dGs0bbyAQjeHSj3HrthsZOXOG0ZTBEwfPfoyFUPCEwtyz3MDvbuUn2ydQg01Io4yVT7FpdTtHj5yC9vWY2QlErYpllFG9QexyHkWfbcwIRQWhgG07ntXMOKr3/NjleeXLtpBGGVmrYFdL6M291BIDuDpXUR49hhqIUh05hnD70cNtyOQwZi6OFoyhh1qojp/C3b4cMxdHcTkGt1A0hO7BrhWnFa+se5WnPH92tYDidrxv0ihjlfNowSYUl8fxhmcmgLOGmeIJIs0qeqTd8fjWqo7x7J5hYJdzIJ2wJqG5MdJjKG4vVjHteB8vE1dbbi8Fz+3q57XDY1S0EAI4OmHz9z/ayWAaUM+RIeCWLUtQEOwbGQJ1/hjVJeEqn/nQnfzkl69xJK444Q11j7BVyiLNGmCjBlum44C1cNvcek9RsIqZKxZnC0zHh9u1Coo3jFXKzps/IYSYXoF5u+NakF2jWiHc3Eo2Pkm4xfGknhtz7I9EiLa2M3r6ZL3f0NLdw0R/H6ZRwzJNLNOkfclSxvvSRFra6Vm1hpN7drFs0/VMDPQTbWuftgmmsGzNKt4Z30lTcxsTA30ULBeWK8hST5r7PrCZvQf6+cZP9qMHYnzcrnJyMEc1mWcit2jOe2mNhShVMuw4XgClwvUbS7i9s51FiqJw3z2bzzvX53HhlXHWLo+xdrmX1es2cOLYaX70skaPt4g35md4PEe1UmEg387a9laWh1WMikbZ30NPpMSjB6o0uVTWrlnMvv2nePKVYR7c2kNnS4B8KUM06qxoWKaJqjnftGe3H+Gl0xbvSBTp7ojywiunWdUTZPlyZ0FgbW+AsXSOleu2AnDHrWvp7Rhm0ZJuLMvil7/ezZFTcbyuszZSPpunbzDBxrW9aJpClBwTeZtnXjzCg/ddPtvXgoxhKeUnLrJfAr9/2b25TGTjk7QvWUo+eTYLMhCJAmc/TvlUClXX8AVDeHwBho4fpbnLeUG5ZAKzZhCIRKdnj9OQkkImjS90vgGbL9coSA+VqkE2Ua6HEMyfial6Q04yhmUiNYmZcSbFWqT9oh7ZmbDKeWe5NhDDKmVR6oaJuoDltjcDU0uHwuWZ5al7M3G1ZbdguXn6+YOMpaqAa9Y+1TbY3GGC5mX/rj20dbZjmha2ovDX332JgvSg4sLr9+EPR4jWjpOmk8HhDEqtxGQ8w4lxg8D+E1CI41J0pKXMSkyTqpvOtihLVq9k56mXGB5PIDwB/B6Nj7zvZv5iPEU8PTZtPGq+MFalgDaHDCmeALX0GKg6leGjSGzsmgF2DT3aeVHPlh47+zEy8wnsUgY92oVVTKGHWlH9ESzbdsIOCmn0ph6EcOKQzdwkqj+KmU8gNOc5CkVFuDxYhQyK24cedjwXZmYMoblQXF4Utx9p29iVPKo/Ri2XQIt0YNeTBFW3D/WcVQihu7GKGScuU3Xhau5xjOEZHjlp1lAD0bq3O4Y0q/VzL32laC5cbbldKHyU+MR7t7DvUD+nsvWYW0WnPwfU7U7VNvCpNfLSD0LwyJOHKEoPQg2iWFWuX+Lh1FiZTG32sysYcPJ4P9nSHB5k21l1sIoZJw5YcyNxJkGI8w1e1R/FyieR9RWAad2ku+ac0M0HaRpOLLnbi+LyOjkWdafGuZPHqwHnm+DIonaRULc3CteK7KYnxom0nJ+EPnbmFEJRKGQySFviCwapGVXMmkm5UKBn9VpO79tDU2cXp/buJtTUhNcfIDE6zNiZU3iDIbKJSfKpBFbNQNVds4xhgPbmIL1r1xIfGuD3P9RO/+AEa9cto5RN09rVDn2DhM0JKkaEtOXF7a7gZu4VjztvXsa+bz3nOCp8Ef7znz1KW3OAB+5az7KVcxvQU7j5ptXcfNNqAEZHJnl1zyluun45nwtMEouF+MaP9lBWQ9i+IPcus9lywwb8QT/ZTA5tTx9rlixC2T9Cc8QZI8VSlRI+fvPCEVpao/zuJ29DCMHefaf45Y4h3nFDBzfftJqOliBtw2O0tbRy+OQkx0dKnMp6iDQNsGLlIj7yoTtn9VNRVSaSJX69cydblvnZP+GmrbmJD7z7puljXt7Tx8tnLIqVPu7btp733L+eX7/UT1fblXEqvmUr0Nm2Ta1axe09+wFWVIVcMo6mu+Y8p5BO4fJ4HKM2GKJcyNO2aDHZRAJvIIBZM4i1d5IeH8PVPvvD3tw9f7bi+x64jrszWaLNTUgp8Xn66O1Zxf/3H0/M3XejMh2zi8uLUF1OzLJtgbpwY1jWqmihFsxc4k1TfFJKZ6lPXYjo2Kh+x1DnKhnDVx2qi5f7JDMNYWnWQAjW9ejcel0P0bYOnnn8BfRsBewqX/3gJkZHE/xsdwlDSp7Z2U9HSPB7X34Xjz97kJZgiK7lSzh97DSDRR8Dr6T5w4+uwzSqeA4do0rk7LVUN7/claL7zB4mSvp0XKwhJd/96asI3Y2iOR9O26hg5idxNfdiTPYhbXMWo4m0LaQQuNuXUkuOYFeLCF3HFel14s8vYAzbtYpjjNg2qj+M4gk6cb62iRZ0rl2b7AOhojd1gm1jFZIIVUf1R+ZsU/VHqWXG0Zu6sPLJGXuE48Gue4pVX9ihbMsnER6/s2TuuoDhYlkougdpWwiX27m3elKeNA0nwVRMxUw3YRXSqMGWa5I94UrDSaY8y1BiSoWRkUky+SrzfU7uXh/kpi3L+avvvUpTUOPTH7qfxx5/hdfGoDssedf9m3nhpcM8e2x2DHyi4uGHO7KcO4kEUANRh/Uk2OR4e1UVAfN6fq1iZvpdASDts78vIUrNKuemdfebaWxKq3Ye+8qcx5lV59kUkhc99u2MWHvnrN9SSoxymXIhj8vrpamji9HTp1BUBVXTycbjRFpbqRSdFaZYZxen9rxGU1cXlWIBRdNo7V2MFKCZFrH2TmrlCm1LljJ07PB5129bsrTOWhEkEI0Ra3XyKWrlMsu7gvzO/V2s2LAegEQiyYsDHRw4NcnY917gsx/dOs0gIaXk8IkxFF8EvXUJlfHT4PYxXvLwg6f7+DeLO9Bcc9s7AI/9ehf9Y3k+/f4beGZnH2cyLmT1ILdv2wLAyjaFaqXK3XddR6yliWefP4DbrXPb1rU8eM8mABYt6Z5u79Zb1rK0a4jvPFFhPGMipUQIgbRtpFSw6yFN69cvZXA0w3OvDvLOW3tIJ1NUZZWWlsi8fR1LFBkvu/H4Azy4waC1uZVivsir+/pYt6Kd9Ss7KJSHWLeijVw6Q2tLhK986taLicKC8ZYyhnOpJOVcFlvaWEaNSFs71XKJUD3LVHd5qBmVeWPR3H4/2XjcSZgDyoUc0rYxDWcm7fJ4SY2PEmq6NPohVdOINjt9EEKwes3Ss/sspz+2NsNo9wQw8wkUT6C+1ObsW4iymwmhqpi5+OuKf3u9MDPjzsdQc13U26v6ItiV/BWlXnurYnnUoD1g0dzahC5rGLbCU/syhPRh4ttPYyse/DWJIlQGhyZJZspc12mxaWUrj7yQY+miZvbvPohZSJM1FeLDw2zeegMHRnbSn/Pwi6cP4VJsqlrkvGunDDepMWYvSdsmIZ+Lci2IprjxUKE5KhmgBSPejx7tRCuOY9s1UHSscg5pGghFw5jsQ/E3oSgqRnocWS1h10Mn5oOZT6EGYtiFNCgatdQwCBWBROhuzOwk7o4VGIkhpFHGNmvo4VaMerKdEOp5sZJCc+Fq7nWM0UAMu1bBrpahPlGbSmSSpoHwBLELcYRl42rpveC7krbp8M4aZVwtvaghx0tuVgrO5DOfmE7eM3NxZ2UmF0cLz0+F+JaFZXDjEhdBtYpl2Vx3/WqeefkUByccWaraKhPJIk4AxNwYGC+g7z9NyVQRJRjr72fL2g72DA4xmHXxw5/vYihlApfmVZ+p92Z6d6Vt4baLGDPoB9VADCufnKYOmzKmL9WgnaIlfJMoyAAn1l4IBWkZF6TbBNCCzc548L1p1JTXLPKpFPlUEt3roZzN0dTVNW0UDx8/hnuKXq1uLxQyaWrVKlathlmrEWlro5DJYts2Vs3AMmss3XgdmUknJMfl9zN04iixzu7zru32emc56qZgmU4+0/L167BMk1wyztat6+nqjvPL5yZJ5WvkEkliHU7uwbd/8DzpomRzr0pHh4um22/i8LFhjp4YRrF0DMO4oDG8/0SSih7hwL5jdIYhFR/nqUMBmlv7aG8J8dqojl2usCmRwjSqvHi0gIsKx/vTxEI673/XTbPaE0LQ0dvLVz4URCgCpCSbSDA0kefe65vYevPa6WNH4iVGcgrf/Ol+vvTRG+nounCYkM8liRmj+P3tbNi4HIDtLx/mhRM1soVB3v/O6/lgVwu5dIa//ukRQrrJ137nzgu2eSl4SxnDplGlbfFSEiPD1CoGRqWMPiNrvFYtE+voIjU2d2Kq7nLT3HVWcJs6uykX8rg1Z5n03JCKi2Fy0KH8aO7uQZmDjeL/+vwmMhNjKKrGn/9sYFqBKi4Pyox+v9743YvFJkrbQtYqVyw+2KoUsGsVVG3+wTcTQnMt+Ni3O+64rgO3YhPt6OTwa/sxbZvrlwfYcbyErQZ4cIOH6zcvY+eRFI/uqwCCm3sVgqEAHVGdrVvX86tHX+Td776D5Ngoj7zQT9Y8RbLOsHQmP3dojG7mqQnPtCGsywrLmyUdAZvb772N/ftP8YvdBbatj3DzTav56++9hOoNsjiU4q6H3smLLx/jpTMSpESoOorLM50kZuYtVN2FFm6fjtmcCWmZSLOK4vajh1swEkOIehKUGmqt077lUIMtKP4QRmIA2yijRdqwcoPOkre0HNqnXHzeZ6sGotjVkrOEXUjhbl9GdeL0WR5kb4jKqLM0qs7gCbVrVexyDqFo04a2lBIjMYQeanH4hSsFlHrog1Dqk88Znmqhao53UVHebJ7hNwXNnhoP3X8zo31nyOeK5HNFTOuss0G1DbZsWsPo6CR7R+cuqHIypXMyVQHFQ6YGrx1NEA56sBQXQtU5noSFfoo6fVU2r4zy/IEURXtu4/mGXoUH7t7Kt368m/Fy/d3VE36nIFT9dSWMKS7vRcOB7EoB4fZdUsjbvG1ZNaxiFtW/cIfHm8jRfk2jZlTwBoMEY00YxRLZRBxV1fCHI4SamkmNjRBt6yA9PjptF2QmJ3B5veSHBmlbsgzNlaZWqRJtb2fgyGHyqQSq5qw+RFvbiLaeb+BVikVsy5wOqbRtm8zEGMVsFrfPT3N3D9n4JFLaxNo7SY2P0tEW5p1bokSbW3B5XFSKRTx+P6YtkELhgfs3EwiFiE8mSRVNSrYXRQsx1DfCqg2zeXsziSThphhCCG5e18yxMwlM0cqL/eApl9CkgdezhEhzE0sCRfJU+OmLoyjS5J2bW1HVEL/eX6Bcnb/wR6TJkbGHf7GTQyfjKKF29JPD9I8VWbe8ic0bl/PQ7Yv5xa9eIetrQsyYLO985SjZQoX77940bTcdO3qGl/YOgzfGky8c56vLnPexYU0PuVI/m1adfc66y0XYZRL2qRTzRRLxNIuWnj8huVS8pYxhjz9AcmwEadt0LFuGprtmLU1GWttJj48RbGomPTGOlDaqqk0H0GfjkyAE4WbH8+sNBPEGXl98rW3baC7d8UafE64xBSEEtWoVhDFN3dYdqHLvlg5+/erotKJ+o2DlE85ydDEz71LzQmHmJkEoKO4A0rbQXmfYgxMPmkLo7kuK1Xur45GXhtFtk2x1kJII8NCmIPfcsIqj/dtJmm6e3p9hx+FXuX6pn542P4lkjkQRvv+rQyQqOu5HX+TwcI3Vx4/j9ngYyeuM7S2gWIKHrvMwPFnkwLijpKWU+GUeTVX48sc3cepkH0eGDU4kda5f4mPbzctIDg9xZv9eDh8vAEEOnMlSKB+kUjL4vU/fSnJ4iImhYRJZA9Bpjni4b50X1dXJj3YksVSPQ98X68YqZbFrVWrJIVC0aUq/KcYGq5xH9QZxtzkrJmYugZWdxN22lFp6DCs36SQX+SLUsnGHg1gIzEIK1Reilh5B0R0GFISC6gvOWkUx8w7vsF0pIC2TWmYSUKbp/+xcHM0fwjYraNGzy6d2OV+nR0s6RUiEgl0t4W5f5rBXlAuzaLJEnZtW2vZ0WOrUhNSqFBBCqSfrvX2M4XjVw3d+/AqpTImSdGOIGkKcneDaup+//ckBTKmgWvC+W5oYnsjz6qCj7zxU6QgLzqSU6dCqvWMajJmXvBIG0NPq5YbrV3Lw1MsU5ylYlSrUOH16iHKdhlu1KnxwawuDYxleGXpjqe+sQtqJY8/FLzthzirnHdpB3Y2sVS9akOOCbRUzSMu8anHEVwPeQJBKoUBmYozWxYvJp5LTxidApK2DzMQ4lmmSHB2hXHBov9RCge7Vaxk7cxpFEZQLeTzBIN5giFiHk/eQGB5CKAqBSBS3z3GmFTJpVE2jmM1iGVXy6TSR1jZK2QzR9k5yyQTFbJpMfIIV199IpVggNT6Kprsc6s11Gxg7fRJN14h1dFEzqjxwfRO+UJhauQShEKf7JxmpRlBJYJezPPNSgWf3J/jgfatobW9m796T/OLVJHet9XPXHRu4554buOceGBuN0zdxmnEjgqUG+Nlj+/jy52J87tP3YZkm//WvniBXtfn5C2dY3+Ph7vWdLO5exA9//iqLO4NsXN2NL3TWVkon03zv0YNYlTw+n5d8apCwV3Iy1YrWn6ZcOsITr45iW0E+fl8X7V1nVzReOhinID10xY6SLsPN1y/np0+fQG1ajDZxED3aS6lYxOf3EwwFiAV0TPMsB7jX7+Orn3E8wj/42Sscjyt8cpvJylWLL0te3lLGsMvjRQgxrwGrqCrRdkdh2JZFpLWNbNzxWJULBYq5HFLaBGNNc3pyp2BUyqiaPp0Zee6+QiaNy+1xkuyknNMQBscYblvsGAB/8rsOpcj3fvoK3Ys68ewdhXMmXlOVgBRPYNobdXkQ2NUSYp4Y6nPh0GEJZ8m5lAVFPRviIAFVwy6n0S9DyTvxlY4Bcimxem91WNUqa3s9HBupULYEzx7IsO/kDhI1P0KAqXjI2RDwuQlHQpRTk9z0jtvZ+epRTvQleM977iD0wgFSBRuvZbE4JnG7DAaTBmvX9BJwD2DbBfYP1VjarPA7H76DR3/+LKMDQ/R0teH2lajuH8Qua7z4wl7uvvcmJgb6KZgO0fxYyY06USLo1zh+tB/VLPHyaYPRsqPo28Mqra0xjGqVBzaH+M3BPCWXx4khVRQUt8+JH5sxrmyjjF0toHqCSJdn2vjRQs2owRhGYgDVHQQ5g8YtGHMqwNkmqi+MK9aFkRxyqnOFW6lO9tXjImMOZ2utillM4W5bRrWUdxgdKjlUXwRj8gyKO3CWQ1xKQDpJgFKihtuw8gmkbaN4AthGCcUfw4j3YxsVPJ0rZxVJmCqSY8QH0MJts1d3LsD9/VaGUFTOTJTAHUYoYs5giKJ0ZMQlSnR3t1KqmIATenb7Co01Kzr4ybP9jJbn/9xIaTu0kPPovUVBp71XTgtODm8nWfMxX4h2X8ZF344cU2EXqrBp74iRK1aB87m5rXIekFdmcq4o05U5FwIzn3RWXTTdYRmyTVR/dHqsCFVFVoqIS/AMzwVpmfVY4vRvlec4m4ijaCqRtg5CTS2kx8fwBesJj4pCtL2DxMgw/kiUQjaDLxgi0tJCNhHHGwig6TqKpmGbJpqukR4fwxsMIRQFfyTK5PAA4SYnX0DVdQqZDMVsBqRN79oNDB8/CggqpSIun59oazuDxw5P2zGWaWJUypiWRXJkCAm09i4GnLBQt9+P2++nmM2Qnhhny+Zl6Fo/Hn0jP90+TrYwScWyyOaKtLY3I4SFkh/HNjrIZTKEIhEAOjpb+PxHW+jvG+Gnv9pD1dPkFA/x+1A1jXtuXc4Lrw2RHRvkRHETJ18Z472awrGEyuDoIE/uSfKJbZ30Lunkl08dQLFrJMoqrhp88J7F/GbHcTasbAchGZiskkyaCEWj2VWivb2JHTuPsOd4ivffs5z3bVtCqVxlz/E4fTkPAe8gvS1uBseHCbV3MVQOMDmRYvFSP2dODvDEwTJtxyf5iEejuX12mFBPW4BiJUtT7PLH7ptege5ykB4fw7YsCpmLV8qJdXQy3ncaKaGUy1LKZ+lYuswR7gsYwqV8jnKhQHJ0eM79xUyGWHsnRrVCIBK95FLPJ1M6//nrL9Gfm630/TKPlZtADTQ5BQ5eB6S0Z1Wzm+KHXYiSl1IiVA3F7cPMJ52iGzM+7GqoBdXtw9265KIcwNI0HO/fHFXAVF8IK5+4ohRH1zpUq8Sn37OODau7+OyHbkQYBSq4GSufT3/36J4CJ06NEuto55XndrD9UJqmkJuJ/jMY+SS/Omzxo10F7rull/fft5aSAf/zOy/jdatsWR7ijz65lpDb4uiRPhTdw4qN6zl8cpxnX+3jPdtW8tC772AgabN7+ys0d3VTKDuGqKzk+eS7N/Ku2xbz+J40O04bjJS86HaFrUtVxlJVfvDkSY4PZrnhxrW0eSvctjZMMOAmEvIhVB29qRtpnjVsVU8QNdCEcAewCimsQtqhKsOhfXO3LHay+QNNTkiFlAhFxdXUhbttKdI0pkMrhO52jGRVx8wnMPNJh8kh1OywP+QTKLoLPdaF5osghBNT6uz3ogWbcLcsdpI/dQ9Cc9eXzltQgs0YqZF62EYa1RvG3bYUq5xH1JfE7VoFaZsYiUFnslieHRJwLvf32wU9gQr/+nM3sDJWu+ixhuLjmz/eg9ulsjjsGJ1trVHHA5e7cMW0O5Yq/MEHluM910OAkzz27jsW8+47FiNRSJmBSwpBMBQff/njIzxxYLYrWbcruKwC0jQc2j/z4vc4F2Zyck/J3MVie2ecjBqIOte2bcdRUNebqjeI6gmhty5eUEiHmU9g5ibnnpDVEz6VyzSq30pIjTkJbL2r19UT63Wi7R14/LNXbpo6u4gP9ROKxihlMyRGR8C2qVXKTA4NEmlpJdzcgsvjIdreQTGXwRMIMnLyGM2dPZg1g2IuSzGToVLI0drTSzDWTHrCYYnqXbMWRdMoZtNUCrlZoZrlQsFJ9pMSfzhC1/KVSCnroaAV3D4/8cF+WnsXY5sm2fgkSzuDdLdHeed1IaqRpSyJwYo6q0SmYCGji3jtWIr/9ZOjnD5+ZlZ1tsVLuvi9L9zL731kHYFwCKuur2+5cTX/6mv388CDNyOTfZioGFLlo1sjrOjyIzNj/MOjB/jBw89xeEwykLQIWGlsl58nXzxBXO3kpX3D1ISb0zk/utfHv/vdW/inX32IppYY8XSZRNVNJldk+YoeNm5cTrWYpRLvp+9UHy2tMT780GY++q5NfOy2KIuX9iClxKMr3LxYQbUt/tcjffSfmW2X3X7rOr70iVvfPJ7hawH5VJJCNoNtW4SaLr7UI4TA4w8QaW0jl4gTbmohPT6Kx3/h5X0hFEzDmE6yOxf+SITU+Oj51GsLhBAC6ZmtkJpdRb7y8a386olXee1U0smEnwdmLg5IFG9olhdFSomZHkOoGqo/tuAED7tacsIfXB5nebdeuW5msslUv1lg/O/MjOup5TmEk9whNNd0pbLfFnR6y1SLeeJjE0yeSGBrXgTgosJd68McO50gXlIo2zot3hqvHC+zbEk77T2deIdHaY76MEzJtvtuY9ffvUxND/HYy6NEtD6+/NASKoUC2XyVw2fS3OULUKjp/PiVHNLSSTz8MqNpi/XdQU6dHGD/0VGW9oS44bb1PPbYDvLS8UzjDnDyyAm6e1q5c4XOLXfeyI9/8jxC1XjH3RvRnj/Ei6dqbD9Z5eDAdrpbA9y6uZsVrRqLVq/ib7/9NKO5FNo5H1u7nEPoHmS1hNBtrNwkpu5BCHA1L0LRPRjJEYfbuFoE3YUiVFRfGHfrEqxCGolE84XBF6aWS+DqXkstO4lVKVDLTuKKdGCkRxGqi/LIMTRfCKG4QEiHoq2+NGzmE2DbTgKo7p6ekMliEgG4u1ZjpIYd7296zIlzsy1snHEiVB3bqDiT1bc/cQQASyIGuWSCWs1gLlaHcxHwudm4YTmJ9CH6szbP7U+w90SSotZ0wUdWNW2K+aIz/z7nQKHqPPJif/3/r4++TOr+Wc1KKfnonW0EQwH+53dfQaoaii8y57lWOYesGXXdOvsYMzvp6Em58FhdaVvYlYJD7Vdn21GDTdiVfJ2hZEZs86Uk6kknadnKp5B2DWxrms5wZrXG3wYUM2mkbZFNxrGlPasEc3xoENu2ncT3tnZyyQShWDPFbIae1WuJDw9hWRblQoHlm68nNT5KrL0Tjz9AfGgQyzIpZDK09i5m7MxJgjHHcdTS4yTmZuOT6G63s+KkKJw+sA+328PSDdcx0X+GyIw441q5RGp8FKtWI9rewfDJY+guN75QGNMwCDU1E25uITMxjmmaNHV00ndoH4vXb6aztcCS8CRrl5xtb8XiZsYSQ5TzbkqWwU8e30vO9hP45U4CkShf+ew9eHw+zhw+w1PbX8ZS3Xx0Ww/HR8usXtrKnbeuZ+3yDo6fmWDzxiW4PR7WrlvGcOo5klaQcvYkH7xzEU0tTZhGlSdfPEHE66MwOsaapU2sWRzC6y6wYU0vutvD2GicHXsHuWFNKzeuU+jsdeQxOZlgKGmieQIcnFCRqSoj8WFu39TKr3eOkMkbVKo1nj9usDaSx+sWRKji879xoaVvGWM4E5+kc9kK0hNjc4ZJjJw8jqrrtC1aMu1tU3WdxPAQbYudEIWpeJ8LwRsI4PH756VJcnm8xNpf//r+H3/xLDn0VAnnoqFw6HA/uZq2oJgu1R91KoZdYiiFNGsOH7HH7yQHGRWkVXM8tW4/qi9cryomLiu2TPWFnQp3ugtZM5zlufxvL9XPzeua6Vi8lEo+j+rTcZ3JUUMl4rLZsLqLzrCgubuX7c/t4h3v2sZ3fryT7z56GAMP160IcfMt63ns0eeZSOQJeDXSJoyX3EivJBILM5BMkkjkOZkPceKpSSem06wikAzmPQgrx4P33sDw4BhPvJhhadTg8OF+ilVJk8ckZagIIdh+okzH5BiJrEnhiZf48Ie2cfxoH9/72S6GUhbgxlbdpC03uRED1/YjbN2yhL6TZygqIbTQbHl0ZGiKdSGB4g1ilrK4m3uoZSYwJgewrSqavwlwKjKqXoc7VkoLRXNPGxh2nd1B9YWdGN9CCk/HCozJfoRQEPVYZVkro8e6MCbOOL/rKyVWOYddM9AjbU4M/QwmAicx0EstPeYwZKRGUFTduV6g3SkUYlvY5Tzu9mWz2CSkbVGLDyDcPhTdfUUKblwr8Fh51q9bSiAaYzw/cJ6RGlOyrFsUYueZqpOkCYwVNf7yfz9FWkRBdTFScDFSuHjUwK4hhVcHUwgxt24dyl9ZDl8hBGeG0rhdebRoxwVXqmZSWM7TGjOLtpwLs5BCKOq0zE1x0NcyJYTucLALIZwVvMsJHVOUOgeyD2nrSKNyGY29tZGeHKe5exHZxARGuUKtcvZZqLpGZnSE5dfdQP+h/fTUPceBaIzJwX5cXh+Rllaq5SJDx4+gqk61RF8whO5ykU+nsE2TzOQ4zZ3dBOvOOduyKGQz0zlKqfFRulauJj0xhtvrI5uYRApBuVBwQi2EINbZTTmfwx8Okx4fw+3x0dzdw9CxI4SbW6ZXsaPtHUgpmRzsc7zOYyO43C4++5FbZt13V3cbn+g+axz/2defRhNhClmLimhh1449ZAo1Xu0zqeVyCJefv/3lGSyjwkv7R7lhdTMPvWMLza1N1KpVdr12nBXL2rl1UxfHjvZzLB/j4afPsKI7wZpFIQbLIWp2HsPbymgyy98+Psq2NT4CoQClYpFHn9jNmGzDpYzznnfeON0vj89Ld1uYciHHkt4WIiEfR08M88NfJbCD7aRzFdqbA3gqgxyJR9Ax+Ldfu2PaLnvuN6/x4sEEaxaH+PD7rgy92lvGGI60tDE51I8vcP6SfzYRxxsM4g2EKOWy+MMRjErZMepcrmkuvIXiYsdm45NYZg1/JDYdL1wuFCgXcoSbW+eMNU6PjyGR5/EfApTx8ovdBRbieVHcPqeC1jnLZkIItGiHE382H9dmnUpoihNWqCpmsYRw+RAu7/Ty3HxLvdPUVVYNKe15jxOqftaY9tbjhH+LEjfOxb6+MrnUC6i6zvL1a1BeywAwUfWy86XdbN64guTIIJs3LObYoePYRpV/8vltPP3CYXadLjM0sQOBykPv2UxFHuGZI0785ETZw3///iFuWaJw97YbkM++SpEAe0Ykn7qzBd2l8/fPjIM7xLd+vIeqCRvaNAwTnnptlD/84jaOHDnD069NoAiIV7zUklWCbsFLwx5Kj+8mlSkSjgTx6hbVGavIy1oEK5Z38MPHjxC3wgj1whMzLdSMVUyjR9oxJgeQAtzNvVQn+7HNqhOSoGrIagmkk6R21pDNY1XyKJobu5xDDbUgiimsQgqkjZmPo0W7qI4cRQSaMDMT4PJRS41OJzFZ+TRWtYisOQlJM6H6o7OMWLtarK+YCMdA90eQloHi8WMkhx3e4lrF8RRXS0hVQws2Y4yfQpq1tw3FWgUPew6PksqdpiLOX15/8KZWVqxby2T6JY5nnG23Lndx9213840f7SZxfnjuBXEhvavLCjevCHB0qECy6sialDZdvirJskKV841lv1phWZuLQ8M1bOX8/S8PKIB90ZAt1R+tl3E+/9ujhVsvyAFslfMobh92eWaIhsA2KujNPVTHTyFCIExjVrLmFKSUWMW0U/5ciHp1x7nD1GZ+E+xqEXGNFF+6Goi0tDHedwbDqNK+aBFG5WxlTqNSwRsIkhwbxbYdT7HudmNi4Pb6CMSayMYnibS2Y5RKuH0+qqUSHr8f3e0hGI1hGjVisU7G+k5hmjU8Pj+lXI5wayvpiXGibe14fH7S46MIVaNaLk3HKkfbOpjoP4PL6yXU1IIvHKGYTeMNhqgUC0wO9OENhrDOCdspZjPobg/lXJ5QRwe+4MXDHz/7oS0kE1myWS+FUpWnDuQwKhV0Xcej2RQreVyBKJpVxijbZIvONW3L4hvffY7RjMWWyQIfeGgLzSGV4z/dj1k1OHqqwnDaIiKLrFvSyd1NfgplH0+8eAZMxy54dvsR+oYzCK3AgDHbtvEH/Hz503fM2jY6mSVvGrzvthDLVi8nHk8hXQGaRZZbtqxA2jbVahWPz8epoTQ1Pcixk+N864c7+OhDGwmELq+WwVsmZjgYi9Gzcs15JRXB8daWclniQwP4wxEAVE2nWipiGtUrRoafnhgnOTpCpVQk2t5JMZsmG58kNT5KIe1kqmYTk7POyadS5JIJEAK31xlUU/jjL143y1O8EChu/7zxY46H7HzFXsuMY+biSGk7HlttKjlDxxXtQPUGkbWqQ3tlOKVy54JdyiEtA1HnR14o1ED0itAMvVVxKuPhyYEQjx3X+J8/OkxVOB8zIQSnUm5GxxJs3zvCZNbkuQMZ0jU3Z84MkcoZ2Kqb0bKXkaKLH/xsFzuPOROWpRGDDW010D3YtlMdcXFvMw/es542JUE8mWcyngGhIG2LnhYPrX6bB+5czW2bOilIPy89v4uJ0QQfvLObzzy0CtuocN/1LXzuI7fgp0RPs84dG5v50Lu2sLlbQVpnlXPYr7NkSTfC7V8wK4DbpaF6/LjblqDqbieRzTZR/RGEEAhVwzTKoGhYxQyKx4+ZncDMJ9AjHQ7NmSeAlZvE3dSDVS44pZMt2/n4ay5kxTE+hGngal+ONCtY5RxqqBmhKLhal6JcJNxHcftRg024mntneZAV3e20LQTSqGBmJ51qj1Iiy3lnCf3tFD6h6uwcdnEiN3ec6bG+NHt27uX45NmQslS+xukzw5TnLqZ1yfBS4a5VLpZHaty7bQNre4Losso9a1ysjeT50ie2cue62f1TrCoxtcD1S4N84J1bWBK7PN0jVGfFTswjN3PJv1XMOFUWjbKTjMzZZ6SFW51QtELSMZRNA6t4fn4FgJV3eOSlWXVWBGsL8/Yqbv9FKeDezghEYyxev4GV198AiFl2Q6SlDSmhkE4Sbm5G03WaOruoVSr15HmNaHsH/lAYRVWplst4/H4K6RTp8TFqhoHqcpHPZkBSZ6gYwzIN8qkkar1ghlH3RldLRWLtnZTyWSqFIhP9Z6jVasTaO8kl45SyTh5SOZ+jlM0SbHI8wrrbQ3xoYLrfVq1GMBrD7fcvyBAGpxxzV2eMG25az403rMIrS7isIvgiWMJFV7OXf/O7t4IAXRp88MFNPP7UXv7sm88Tz9vousq6ZS0M9I/wnadH2bymi2DAha7ZaIpNNp3niVfGePj5UU6eHodgE4cHnfyAwbECejCGO9JKVb24ofrxD97Gv/jSNlasW4WiOquVAmhrbeKGLSv5wc928mf/sJvEZJJ7ty4Fo0JNuBjOK+Rz81DLXALeMp7hC8EbCNC9cs2sbWq9YsyVhJQ20XZnVpeeGCPS2k5mcpxoWwejp45PV5yZQq1aQSKxajVsaVMtl6aN9Tcbits/q3TorH2egFMIpJBEj3VhlTJzeh+kbSEU1eHRrC/f1NJjIIQTD7ygqnS/vRCqPrvwBTBR9fHTvSbv3NhGJpNnouzCrxjsOTjMSE4B4WJVtEzEY5Op6hRrCqhw28Y2uns6OPStnewaC7Fn4CQBr8627F7efVsvx88k2DEWcpZnjRzv2HYLAwOjfOfRw5g2gM7SJZ243C6e2XESt8eF0N28ciTBqcEMIS90tQYplqo88vPnue/+G7CUk7x42lkOfrXfYu/pVzD1hXmfonqZL3/qJn7zzG5eHREI1YUebcZIDVNLDNZLJ/uglMfV3EMt5SSxCJcXpc6yokc7qWUnsKslFGkjNA1XUxc1XUfaNu725VRGjzseZVV1KtgpOkLRHMozTwBj8gxaqO2s9xc5d7KTbWEWEtjVojM+3AHH2LZMjPQIqtuPNKuYuThCrTMBSBvF89uToLRnwseeCcB19kN3Iqlz4uUcV4oqpjumse32dTz+9B7+/kc7Gc1JYh6b27eu5fnn9/Lci4c4NVqEGZ7h21b5ufvO9fz9D57nZ4/voS9lv+luH2lb0yE/c1GsCU1HCzY7uR65SbRw69wUmIrDYy0Uzal6F25xGChweL/fzIJLb1Wcm2Pk8fvpWbWa5OgIQhG4fD6sWs2hRrQthBCkJyeoFPJYpkWk1dEPtWqVaHsHqfFRmto7KRfy6C4XA0cOOe+xWiUYa57BL2wRbe9krO80qfFRws2twCSx9k5GTp4gNZXDJCWp8VF0lxvbtigXchSzGYyqh1CsiVI+hy8YItzSSi6VnBVzfDEUMmlUVaNaKjMwlqMcWMSynhrNrjI7Cxoer4eTp8aQ3hi27sa2LIrlGiV8vOeOVnp62jGMGj/4xR6sioVVi1AN9BAUBT75wAq+/pgfbyWJqkhcHg9dSMJ+Z+x3tPiRSpXNi110tDkr4j/75avkShafeO/mOfOudu0+wbGT41iKzk3rO/ijL96OUBQO7j9JIZtDx8Pe/Weo2grbNjWhKZIVS9vp6L78xGVxNamAFm/YJP/4p49f9DgpJamx0WkqlHORjU9iWSa2ZaOqKt5g6LyM0ZlIjY8ibUmoqQndPXt51zJNqqXitEDPRDGboVouEW3rmPY2V4pFSvkskdb281gqpJTEhwYBaO29cA3xKUzFEV9JSMt0imVchBvYrlXqWfLigkluZi7ueDSM8rTBYhtlVE/AobuyaqjB5gV75KeKH0wZ1ZeCgf/67t1Syhsu6aTLhLtjhez47J8v6FjVNtjU4+LEeIWCNVvWdLPI+k6F9mY/nR0xquUSY6kqAcqs3LiWgZOn+cc9Nl97RzPR1haKmQxHT4wykLRIFCzcqmSs7CiUnqDB6i43ainBzfffR/+RQ/zd9jJKfYLS6ilTqQmyNR2EQAiFoFpGADnLacMnKjx0UysHTyVJZCpsXRVgb3+ZZEnw/lvbOHw6xcEJjTZPlZvWxHj+YIqcubBYTi9lHtjgY8mKxRw72kcoEuSxZ48ST5VwtS7BzE4ibRNp1pziGL4wWrDJCUOwLaRRcpJahYIWaqY60Y8WbqaWHEb1hlB9IedcTZ+u7DgFu1qq/xVB1VB0L9KsIDQPdrUAQkULt2CXMgjNjW2UMfNpPJ3LnXLP0U6sYhoteLYMbzU1grBM9OZeapkxVE/QmSga5QVXXLwasrtQnQsOtZNpVAlGY+fpyUqxSCGTxrYsNJeOprsumNhczGYwymU0l5tg7PyVrUI6hT8SPU9n1IwqhVRqlk63bZvM5DjeQAhv4HydNsUx7/H559TjbxbS8QSR5qaL6sHfvHCAsUSJDz6wAe883634RIJv/OIoi5pUYiEvrwzYvGO1Sm9PC8FwkH2Hhti8vodwZOEUUy/tPEI8VeKhezbg8lxaTPYXVnZd03p3SbiKLWEgd859WVXaPUW23biYidEEt9y6geef3UXQq7N2wwrMmsHDT/ezZbmPm7ZeR3p8jL6+MTKGzivHMvS2ejgdt5GqC11WuGd9iMn+Pu6672ZM0+RHvz7EuOmMAy8Voj7JcMGNkLaTgGkbtPotRouuaR11+xKJ163y1IEi96xWyZdMXh3zcsdSiEV8/GJXBlXAvRtDDI7nOZ5ceCGrO5dCb6uHUHMzA31DDIzm2HMig9DdaKEWysNHUTTNYdgRCq7mXic/wigjjRIgsMsFXG1LMOKD6M09VEaPIYSGHmlD1iogcFiDZuhcKSVWPo5dKSNcHhSPH2lUkJaBlNLhzY60TRdmQvNi5eMoHkf+tVArZi6OHm512K38Ecx6WJzDNR+mlhjB1epUIFW8QRT94jJ8IZ27oPmyEOJBIcRxIcQpIcS/mWN/rxDiWSHEXiHEASHEQwtpd6EoZtIEojHkPEkKZq1GpLWdUj5HMNZEcmyEiYG+OY+dQqS1jUImQ3xokPjQ4DQdTWpsFIRg5NSJ887xhyPE2jtnKTeP30+svXNOujYhBK29ixZsCL9REKp2UUMYQNE9aKHWWYawlLaz3Fc7G3OFEI4hLJRpflbV48euOkUP1GCTE8+5QNiVAmogdqEclNeNqy27vTF4x7bV3LHSjYuzS5wuu8QffGwj65fHWL1mCfHJFF6Xwu23baR3WQ+nDh7EHwqyvs1k76EBXtuxmxdfOcGq5R1sXROhZhhsWBalJ+gEZnaGJetX9+ALhTny2m6aO7tYFrOQ0kZUc0xWvGSr8Mnbo7x3o8oDG7zYiGlDGMCr2axY3k1TyMXN61vZsvV6NGmwdXWYR16Oc3zc4talKotikuuuW0HzOSLlklXWt9totTwdapJAdYx71rhYFq1Rxstj+wok4wlkrcrKVUsIBtx4OldSSw1jlTK4WxahuLy4WpdMG5RTYQliaqVCCIz4AHpTF7JWwdO1GhRlOk5d9YWdcB/LoUGrjp/CqhadGHYhkDUDaRlOqXCjVFf+JsbEadRgi+N19gTQAhGMxDC2UaWWHEbxOB5woekYyWGEZaIGmzEm+9C8IWStil0tnlXaVwBXW3ZNo0qsvZN8+vz7MY0qgUjU4XNvaSObmCQ1NuJwrM6BarlEtL2DmlEhMzlBanyUUt6hp0tPjKN7vIycPEatOjsMQHe5z6PDUhSFWHvnnIYwQLStnVh751U1hAGiLQtzCNxz50Y+9cFbZhnCo8MTjI+erbqoqgpuYeFSFe7bto7P39PCQLzKN58c4fEn9/DccYNX9vZfUv/2Hk+xf0SSiF/55OarKbt2rcL7717BneuCtLhnU/U9sCnEp99/E52tEUzTIjM5we13XM/K1YvIZXNMjk5w85owe48l2ffya7yytw+hqmxaEWNx1CLogZuW6EhpE3KZLO30c+9Dd7D/1T1IaXPd2h7nQkaBkq0zWvJyQ7fNVx/q5K6lNRY3CcbK3rNMNlLS3R5i6eJ2FkdM7rj7ZjyBILcuVRhK1fjFnhJr2wVrmw1u2LyMZd2zZVpKybJIlWZ3hahMEiPJuuYqdy53wtpeOAOjkwUyiSRLl3TT1hzC1bLIoa2MD+CKdqKF29HD7biaHTYMoah1x5aJ4g2B7qE62Y9we7DySTydq9ACYaRp1OlbW6fvp5aLUx0/5VBQ+mMItxdplJxcIyGQto0e7UToHsxcHNs0UIMtGPF+XC2LMDOTWOU8Zj45TXWoeALU0mPIanGa0ccqZVB9Qaw6vea5VJevBxdd1xZCqMBfAfcDw8AuIcQjUsojMw7798DDUsq/FkKsBR4DFl927+oIRGOkxkdR5olTjbZ3kJ2ccPgChwcJxZqolp3iGLVK5TxvRD6VJJdI0LZoMUbdiLVqjkeqlMtRKRYIt7SRHh+b0xP9RmIqhviN8BDPB6uURZo1VF/ovLg4K5+qV/JKoOiOkTy1vDel6IWqYxWdggNC07DyCdTAwrxjUjo0cUZ84IpXR7oWZLc/BS+/fJC77rmJTPUgL59xgilNqXD6zCjD41kOvZigKaixOJXHtiz6ByYolAxWbm4nPJDlpT6Vdm+FQkmyNplk+YYNLDs+wS03raZqHGYoX2Pv6Tw9sX68bg2puth3dJTxrGRTh82Dd9/I3/9sP+P1sCqPJrj++tWk4ttZvDjEr3dNkrM8ZA2V557eQcEQnBrVmUztpSnq587b1jEa30XNtrn/7o0899xunnz8JQaTAmYMyXXdbt774HXs27mLzbfcycipE7QvXopn3ylOp8s0BQRBnxvam/jvX3+GvOkGM1FnfbCpTp5B0dwYk2dQvWGEy8m0d6rLFTELGbw9a6CeoCYrBYzUKLJaRInNziWYiiHWm7qppcccj26wyQkXqsuuBlTGTqI3dWOmxzFzDl0btsQ2iujNPdilHHYlz1QwsOoLOzGc9TbsWoTq5BncHauwy/l60ZzLJ4C/FmTX5faQGh8lFDt/XAaiMQrpFOHWNlLjTsn5YFMz2USCcqGAELPjNE3DYOjYETyBAKiSaHsn6YkxfMEQ5UKefCqJLxgil0zOmRfydkOpWOSlXWdYvbSFnt7ZS7y1aoW/++VxNGHzR1+6A0VViTXH+Bdf2jatcxct7WVgLE+ulOG69T34h/NsXruw5zYlu1vXhrGloLPn/KTuy8HVll1F9/CPv9rLZz58K+/2xPm7Z89O5iaTRU6dGeXJHQOYrgCGmmFROIltmZwYKbJlfQ/RQIix13L85piBIiQuO87mGzeyfHGG1qYAwVCAl08dJy69HDk2QG9nnjWb1nGqL86RkQpBxeJ3P7mZnbtPsWOGT27TukW4T42xcZmf44MZjkxqCCHYc3iYmMciWVJ44pn9DA0n+OKn7+LAwTP07ZjknXeuJZct8MSvdzKWF8DZ0DSfneNTH9zGqSMn6V26iUI6TbVSIdrWzo6ju6kpGh0tPsKRAD//9V4GiwGsSnFajxnJYccBoLucEuIos77DtcwYiubG1eq8GqtSoJYexy7n0aLnhybY5TyutmWOg6OYRqgaeuuSaZmT0qaWHnW++5obIVRq6VGE7ppecZ5aEZzK7VB0N64mh5tZSonqC1MZOYYabEZ1+5w8qCsQormQFm4CTkkpzwAIIX4IvA+YKdgSmPoChIHRy+7ZOZiLhWEKM8Mn/KHwNKNEuZCbVX5xCr5g2InVEcr0MrLmcpEaH2XRuvWM95/GrFVxey9cXGIhmBzsR1FUwi0t5y01XiuQVm2aZeJcg1S4PJjZuLM8MXP7DI+H0PTXVXq0lnYybe1qBVfrEody6MrmfFx12ZWKi5fPVCnLAxwZKgIevFRY1KbxzJ5JVrUJ1nZ72TviVIHbMzDOllVRHnzfJgaPHObAmQydfje/+4lb2bHjAOGmZrY/+zJ7x90MffclMlUNFDc3rWtn3Y0b2PGb7ZSxefGMQAgP5arBxOgkVVMS1i2+//wkQkDbkZfobvGyevVith+YIFeCZq/Fli0raero4ns/2s6iNh/Hz0zydw+/zGBGRSD43s9epTkguP+BrTTvOkiyYPLygGMRHx2pojy1D6uQo+n4MaSUvPzsDl4Y0EF4mCxqJNJ5epYsQrgmaA+q6KqLkFfl5tUtDA7ZPHPYwJ6qllXMgCeA4vJhFdJ4ulbOojVTvAGnVK3b63jAZyRpqr4wVilLdfwUesRJEp2CEGI6bEJaToEYKW1ktYweaccqZtCbe1B0D1KvonmD2KU0Sl3G7WrJKf1smyDB1baCWmoUd9uSKyk6V112L1ZQaGq/1++nZlQp5XK4PB68fv953mRF1WhfuoxCKoUvFCYzMU6k1fmYevx+vG0dpMZGFpwYdCGkJ8adCoO6viBO+quBw8eG2XHaJJkd4uPnGMOq7mJlu45Vq6GoZ2eb53qZ77xtHXfe5vx/1dqFXffAwdP8cvsgNyzz8XI/9IQsbrzpcu5kTlx12R0xYvziqUNUDBtwyqivbLY4PW5QKle4YV0bu8+UeHUAdlsGMb3C1z53D+P9Z9i1rw80Dx/Z1kwg6OfY8X76jh3n2b2TCD2LKiSKy0ezq8i2++/k2P4jjCbKvHi8TNH24KXMxHicYtnEI2scGpbsHhql2V0F2+BLH19FJl/lyGQNKSXXr4iwctMmYq8eIZ2vsGl1K9/43ovkTBeK28f3HjuKT1T4zCfu5sBr+xEuP7/enaAkPZSUID96dBeVYgnMEqoiAMHXv/8ypu5we58cSPHA2jWEY2O4ayaLO2KMJcu8e2sQYS7mh0/1Ua5U0fwx7OLZcWubVfRYN1Z+xgqFJ4CsVXDFVs1JNah6glTjfQh1dj2BKdk1s5P1IjcmthRIpeLwwNs2its3zVAlzSqKxzedNA0OEYBQVKxKHk/3WozJPtRIG1wh1pSFGMNdwNCM38PAzecc8yfAk0KIfwL4gfvma0wI8WXgy8Ab5gGYWh7TXS7S42MEIrO5P8MtLVimdd4ymz8UqSfBhQg3X7gwhG1ZzixlDhq1mVBUDW8ggFmrzWkMl3JZaoZx3vXm4iN+oyBUvU4dVOfBLOeRtSqIenKd7nJigS+Rou7iF1acSmBGrV7kw3U2thOuRHGOKya7M+VWvcR+GcLNq/0WU+Vhb1wR5O4713Nsz15aOloJN7dy5Fs7MJQQVS3MieESnu0HsIsZHrylh0deGmH7ziMcGyzz9IFTSNWD0DSSNZ02f5Wov8bAUMpJwvAHeeqQPc3rejLt4uTzaVaFDN5xx0oOHhnk2VMK4xU3Y/0myR88Q8EMIq0ao1l4cvsp2lsTJLIVYgGVzaua+e5LRacsLHAqBUOpKqmf7+TeW5bQUS1zqH+QvIhQsQSH+/NUlBj7tpcJKQWKphtLcegNTVQe3p7ihsEUzUGde2/soKW1mf7jJ+ha0o2uC144dAxb1TEm+3C3L3eevaqhePxOItGMuDBF91BNjyE0D4pRQdS9BOBM4hS3Hz3SgVVMgTeIlDZWLgGKOh1brNk2WqiZ8sAhlHCLE/LjO1vQRqgadiU/u6qXdAp3yKqFtKqY2QlQVIzUMIrmQWhXJLHpDZHdN0rn6i73tA7LxidxnaPrmjq7yKdT004Lt++so0HakmImTefylRfVL6ZhoLkuHDNpmSax9g4yk+PztpFLOYUWLtbWG4X1q7vJ5s+wepnj5JFS8vDPXsaW8LEP3ILu0jkSVzl5cpAVK3qv2HVrNQsDF7pLpzdcpafVCc149InXSOcMPvae66bpQi8DV13vCiE4ljibrNzqqfLJD9zGqcNHiDU54Y7p4h4OjoGleknWFH7z/AHMYpqNqxczkZ/gtSPj6JrCrgETRaZAjziTX1nh+m7BkUGbvmPHaW+P8Te/OI6hOWO+jJfvbc9ilyt8+cEOKpUy33m5QsLwIBQ/3/rBDnRdQ8ogGCWe2GMxltnLyXGDrcvddPW0sOtIgpJ03sNExYu0XXz/Z6/SG4Otm9dx5sRp9mXdgGBgokxR+uh7TeKmjCZsioqzMitti1fG/KR+8AzhpgjXL/HxwD2beOGpF1i6YhGTgwMsX9TEodNJjInT06ESAHqonkdxTtK3XTMcw7Q+Vqc44EE4vPCKcBh26gn3U9SAqs9hDVJ0D3q0g1puErOYm67uObNSrlOYpohyjqErdDdUS9RSo0hpYySHpmOFF1z1cR5cqRzbTwDfllJ2Aw8B3xXzcGlJKb8upbxBSnlDILawpfTXC83lItrecV7WosvjnTPezO3zEWvvvKgh7JBf9xMfHjovxu1cBOpJIXMVCgGoFAv4gkFyqcuP22r3lAmqTn9ENTd3Wc45MF22tk65Js2qI9TS4eC0a05xjks1hJ3iCfP3QQu1IDQ3enPXdLynrFXrGdVvWmLngmR3ptxerqGz/0yWQ7v24HZrnDx6mr/73vOE9BoPrPcQ0assbXNhWRJPOEZraxRbdfGbIwajJTe4ArOWhLZtauGj772RRF6yY/84e8+cX84WwJIKkZY2bMvia+/q4cYei7BW4b33b+R9N8V41wadzz/Yy/GkixdO2aSJEk+XKFXPfw9V3AxNlMhPjhMIhblrqY2UknvWBfinn7mRkOJQ8+XsAJbiGBv3LLP41O0RAmqZB995K9etauL5PaM89uQeIk1N7N/xKn/360EMqaO7XdOeXCltzKxDV+iUFp89jlSPHy0Ym0H7ZjvlbWsVhKo53NlCwcwnnWS7YJPjNfSG6omlZaqTfSjBaH2VSEFx+7HqMWiK248Wap3Fqa14AgjNjRZuxdWyGNXjw9XcgzSdeHlpVnmTcMmy+0brXIBwS+t5XmUhBKF5rt3U2UVzd89F9UtiZJhcKklmcuKCx8U6OsklE/MWWcol49O0VpeLQibtJGRLSbmQp1qee/ydC6/fz313baC7x1ltkLbNQMJgIFHDMmuEAi5CagWf59KM9Xw2S7k4NzUmwJbrV/JHn9rA3Xddz+c/tpX77t4EwOBEicGsQrEw/7lXGG+q3o2XNbb/5mVcGgycPMOjj7zAqb44ty6yWdNcoz0kaI74yFU1OrrbceuSAxM6u0dUFM0N+lkbYnWHi/c8sJm1PUGeP5jhud0jVJXz7QmhgC8cRtHdvHO9i0/fGYNahTuua+eD9y7nlrYs//LTG/F4XDx/WjBadHN8pIJpg9Tc57SlcirtwicqFNIp1q9oJWyn6PZX+MMv3sGWXuebUMVDUToTzcWBMl++v4XugMF1m5fy4L2bOdkf58lnD6C6/AwePczPnz7MsbQbTdYcisu64WsV0/UiR5HznFKKpjtc6lPGcK3q5Pxgg6I4jjPTwKqWMHMJZ6WvXmZc9UdBgjHRh1lIowdj9aq3nXV7wVmB1qOdaOHWWfSAWqgFoeq4Wxahun24mxfVwzsjr1suZt3XAo4ZAXpm/O6ub5uJLwIPA0gpX8ZxgV2b61NXCOVCHo/fTz45X1UiBx7/hTOapYRcMjlvFjEsjI/YbWX54kdv5MEbW+n2V/g/v3gLa1svTvbpFNKYrQC1KcH1RRGqjh5pny7rOR+sYnq6aAc4pW8Vjx8rN/8HRygqimu2B0kNROtLI5e/XMo1Irshrco71nuI6s5EJepXWXfDdRTLJrfccyfXrYrypU/cypplzfQ06azsjbJhbTeP7xxlxyvHiPnnNhJWxgwGBsb5/k93UtJj7B4WjJXcaLLKrcs0WjxnjbJT+SD/5RsvsnvARhU2K9rdZCuC0bEUS9esxCiXyOeK06XAhVD42V6Dn7xWmpUlrFoVXHaJonRRyGZJjY+yedtddPrKjCdLHDs2SNmarVZcdok1qzrRpEHe9vHNH+7k6T1xPLqC2+tl5/4hbrz7TjYtjXD39W38i8/eQiTijAermHEMTMucNoqnUEsMYVXK1NKj055Y1RdxissEm88qUmnXqyt6sQopRH3pWfUGEULB3bbMqQAWakEPtziUbKoLq5TFKmawynkAh/M45yzz2eU8RmIIq5RD9Ucd6rdYV72c7hUpN35NyO61hHI+j1AUCnMk9M2EoigXpJ/S3B7S42NoVyBszaiUibS2M95/BtOoXfR7AI4zJTE222utqCpf/MAGvvSB9eguN/fcuZF//oU76eqZnzIqncqwb98JbMspTlPM5fmbHx/iWz/adcHr+0Pn69ZPvmcjX3znEmItV2SydNVlV1o1blsqWNNSnyRbJus3raZULLHptltZsbSdP/zKvWxYEWP9shgdMRcbNy2naKp89x9fwKOJOR05EVeVsFvy6GO7ODRSYTDv5sC4ilBUVjcZrGk2ps8T7gB/9bMT/MPzSbyaTcjn6OTTgymaOrtoaomRTmWwZkQgHoy7+atHB0kaZ41AaVt4rSxSSrKFGiMnj7NozTq2rGkhbygcOdJHInd+hZt1PR68HheKVeaJXZN88+Fd4PLjdau8emSc7lVruW/bBjr9Nf7tP3sX1y+PTDtapGU5CcKJwbrX14FZymGWc1RHT0znBWnBprq9EHFqHWhux6Nbq6IGY9jVssOXHYgiNJeTCxJpRfOEUP1R9HCr8813+7FyCexqCTOfqBeccfi6rVIWaZnUMuMYqVHHTqgW0KOd9aTny7cXFmIM7wJWCCGWCCFcwMeBR845ZhC4F0AIsQZHsC9/2n2NQgiBPxx1PEyu+ek8jIqTxHchNHV20dTZdUnxxC4qdPrK07MogAp+nnz2EK8dTVAxYWR4nHLVvkArDuxSFmmb5xvEgdi0p/iibdQqoGjIemU6cAzdKa/cpUL1R88zkl8nrgnZ7YppbL15Db0tjqwki5J9+06x51SOp547SP94kRMnhvnRY/vRhMmug0P8718cp6XJx/veezu3ro5w02IFxZrtcbxtYxvbtm1mZLIwy6vWHpDcf9cG1i+e7UWt6WGKIsCpvgksxQOqziO7s3zjBzt46ozHMXzrSQuqWUTY5jl0OTYf3hrlqx9ci8cqsuGOO6mYgiNH+ikYCrmyxc4jqenSvNPnISiWapweLRH1Cko1EEg29nq5+9ZVnB6rOHyx4xXy5RpjY5OYtnNdLRDDSI04cjRDlqxSFiXYhKJpqO6zE0mhuaaL0lilHFqoGQnT1eqkaWBXiliVAlY5h0Rg5ZPISsmhAqqWsKolrFIGu1pG6B6HPgiwjDLStjGLGWyzirt1cd24djhjFc1htLhCoUTXhOxeS4i0toGUuC6QyyGlrFOrzb+yFIo1EW3vmNdTPRdsyyI1Pkq5kJ+1XQiF9PgYoaZmqqXieVXD5sJzLxzkLx8dZPee47O2N7U00dy68D49+eIpfrG7yIGDpwHQXRoB3SLovXSdG41F6Oi+9LyPeXDVZVe3K9x+yyo2Lq+HC2hu9hwc4MRYjcee3s/eo+OcODHAC7uH2HVoBF2x+YtvPkN/zs1dt6zg/e+8jutbCzS5Z+vc1R1u7rn3BjRhYnBWz0nb4s4t3dx/23InJrYOS/Vhqx4OD1awURC6m32TXr7+gx08dbDEN59OEJ+qqGgZ6GbxvLCE69pr/NHvbmNpxCDS0cuSjZs5cbyP0ZSBLSWHTiUZyJz/zrMVyOSrJIuCkFsykZesbZPcetMqmltiPPncIV49HMewHPaSknm2DaG7MCb7nSTiGbaBrBbQQy0I1TXr2+DYCy6sYtqhuawZIBzd6jgfFKxi2mGmMqtgmZilNGY+Oc1WZRbTSGk5rDyBGFYhiVXJgwSzmKKWGsbdejYvY8pOUP2RK2IvXDRmWEppCiH+APg1Tu74t6SUh4UQ/zfwmpTyEeAPgW8IIf45zvr25+RVIjAupFNkE3F0lxtvMDQnp+VCIKUkPT6K5vbMqTRbexdh1mpo+lnBNWs1VE2b/hjmkkn84bDDx2nb2KZ5QY+FlBLLNKfbNCoVJgf70Fxu3B4v/+RdbdMJgdG2Dv72+zuYqNSrmakau4ZgqqTz3z+XQloq6zssxrO16RKm513TMsEoIy5jqUFobqxixqHAqhssM8vbXi1cK7J7dNzm69/fwVhBBdVF3vLwyJ4CEKLvtAkEOZwqssirsmmxH1sG8A4U2Tdo8g8/eYUlrRrvvHcLQxMvMTZjFfbQkQHWmyUWt/kYSuXISz9CURnN2Pz68R0cGnXaBifO7T03t3B8IM0TRxUUYxxF0THwOG3a5rRXwGWX+NpH1nPy9Ci/2l+hJ1AhVTTZ0KUS9IYYHRyi4oryg5/vomjAWMnELlf5yoduIJVI863fJFjsSbJlRZgdR3K0dEb42QtDaJh85J4l2EJzKjA1RfjfD++kqDXx/Ika4GHfKOwbzeEVgs2dkkMjBiLaxs09FrmyyZH63FIoqpMAZ9to0dmeWClth/9ad2OkRx3ea7cfzRd2kvKkjV0toHpCTiKHUXayqVUdu1pED7dhGyUUXwS7cDZ8SdE96JF2J+FO1ajGB+cs0XslcK3I7kJQq1ZIjY1i1gzcvgDNXd2vu618KoVRKRPr6DxvUhGMxaZ17BRs2wYppxPN0uOjRFrbSY2N4g9HKOWzc/Ikz8S5enz09EkUVUV3uRGK4/goZtPTundmyFu07azn1l9fAczGJzFrtTnvASDgdxMQafy+yzM+1y2LASkW9Tqxki6Pl6/9zp2X1eaVwLUgu6Ye5OsP76FiCsChMnMKBk3JQZATL+cIqjr3rlLp6m3DI8vsGzN4/NUxOg8P8sEPbOPFHYf5zdGzxu3hM0nWHDlMS1jHM1zERMVUPCAUXnjlJIYlUPSzOmHrIpumiI9Hd1c5/sshdFFD6B7GSl6kNGdVrHxgQ4B1a3r46x8fwK2reDQJVpX1i5sY7T9Drmjy0uEUZ0ZyHBqToKjcv8bDbbdt4Ovff4mJvMF7NuqMJ0qMlX0MJ212nxnm5mU+tt17Ey8+v5s7tm3hkUde5HTKjcgKpuyF7zyfQtoKa9tqJPI2cUKsbRdE/TVeG/Ezc43ZrpTQwuevfkmrhuIJYuYdI1Z1+9AiHcjsBIrHTy09jqt1MXZqBLOYARymCFmrouiuaR53hMNipbh9SMtyHBo5G9UdoBrvv6Tqt5eCBfFRSCkfw6E+mbntP8z4/xHgtivbtblRzGaQtj1vprNRrdC1YhUjp05QnZzAGwzOUnQLRWZinEjb/EkYwKx2c8kE0rYxKhVaepwgdNuyKGazBCLRaaWcT6XmNdDjQwO4PF40l4tAJMrEwBnaFi0hm4g75QlVlZpRRVU1nt9+hGRZvWD515irwoffcwd79p7g0T1OUlpArRDQJeMVZxnmYuEPF4NDrp1A8QTO4zI28wlniTrYMuujMFUEQQ3G3vAyzdeC7G7oEKxf3sZTO/rIVgQ1LQj1qmVKrYR0B5Fmjffet55auYDL6+cWv4+x1CinMy5G00UUdtMU1BgtSW5fIol6bQzDRe+qtfSNvMJHPnArP3p0F2XDYsuyCMtWLKLy4gn21XO03arNsqUdJLNlxHCeL79vNZPxFC8fSbMoYnHdpqU8/Ew/qZqXkG6RicdJJTLEVIsvfOx29r6yj+tvuY4Tu/ewbPUqbhrbz2tj9SQzs8Jn7l9E/7ETHB8uAX7uuL6bxatWkss+y4YtSxjp72fl5s0cPXCM40MFEAK/OoKpemdWqj37zBb7eOe9m6g++honx6rcdNNazhw/zVCuQt7yTFdNdN5hvcy47kb1hjAz485SncuLorlQw20YCaesqbRtVH9k2kuhuLyOJ7nOTaxoLszMGLZpIBRtFkuK6glQjQ84tGzBJpTIWY+0WUghLcerofkj51cSex24FmQXnMIX+VRyVrGhmSik07QtXkp8aJBSLkspGHzdHL+mUSXW0UlmYnxOWsuZOldKyeRAH4qqEWvvQHO5UDWdTHwCVdMo5bPTBux8bESZyQmEomAaBk2dXRSzGXS3h+auboaOHaF3zTrS42N4A0FS46OoC6Bwsi2LaFs72fgkkdY2jEqZYiaDLxzB7fVy4w2ruPGGVa/r+UxhoN8pHPWx982uHzA2Gmf/sVG2Xr9kVgEO27LYd+A0Sxa1Eo1FLuvaC8HVlt2wVuFdWzvZdWCQoVSViq1j6854FdUctu44Dm5YEaKrN0ysvYOl+RymbrD9tCRR0vA8toNoLIRmV+iOKly3yEOlFqWpu5uKnOBrH1lJ/8A4T+xOcte6ACsWryKeKXPmpbPhgu3NAbq7W1B3p9i62s+tN23k2w+/SmeTm+vXtbPveJK9YxpYBj5NYfB0HzWp8sGb2+juaqWQz2NVy2guFw9sifH9V6qkJkGocGOPxbJFMV58ajtjWcHa5iqbt97O0LGjrFZdeDSBYUpaOtt56tc76Ysb8MIeknkLlPPlOKwU+eh7t3Fg/0l+9lqBns4YK3qjjKeP01dyI4RAj54dR1Yxg7TMaSYqoWrO76CzqmxXCpg5h4lK2hZaIOI4EmwLLRBDbVnkxCV7g1jFDMZEP+gaerTrLG2r5nLoM2sVBArulsXT17eNsrO6V3GqhGrhayOB7k2BlJJqqQhCUCkW5zxGd3mIjwwjbZue1WuIDw7MedzFEGpuITU2emnG2jkfitbeRTR3dTuE8VKSjcfxRyLznl7K5ynlc9QMZyYabeug78A+p5yzZWEZhpO13dLKXXes49996ZYLdidleHj4kV28dOhsjN0DN7TypY/dhNfOX+BMB2YhdV74xLmwCknUYPP0UvIsSCeG81xCbMcQbsLKX5niBNc6Qn6doFvlK5/ZxhfetYx71zne/FsWwb/87BYiagmh6Tzy3Gl++fxpipk0mtvNqg6NDW01KobNxs2r2bSyBWyLpd1hlq9czMpVveze8SoD43kOHTpNMlthfadGR1uEfbv2c2Ls7BJf3vbxZ/+wm2ePlJCKysh4kkSqyHtu6+G2rWsxK86xTe4Kt6+PsHjVCjKGTqbm4qlnD7DvTJ7nn9tDKpunkM2wrMPHda0FXLKCWkrgcwtCAQ/XbXC8gi/sGWX/rn08f8Jmx6vHWLRyJYf3HmbfyQRnEhZ9Qwnu3HYdH7x9bh7vA/0lfv74Hk5OmJiqj2/94ytsunETD97oKDyrUsDMObFkRnwAadtYJUempe0oX2lb0/Hviu514oZVFUV3o0faUVzOe6ilnEI7iu4ofKG5cLcsdqjTZkLVHa+EIqhlzknisky0UBOqx+estryNkE8miLZ1kD6HonIKgWiU1Pgo+XSS3jXryKeSC07ePRdCUUiNjRK8BEq0mQZ6uKWVWHsnkdY2dJfDk+zxzZ+PUcplqZZL0+EP3kCQzMQ4fQf2EWlrJzU+ij8SwRsIOsnVLRf/4CqqSnpifPrYQiZNtL2D0jwFSWZiciLBQP+54bXn4+fPnuInO1OMj4zN2v7q/iFe6bM5cGRo1vZ9B07z6J4iT20/ddG23w5wa5Ke3k62buzm9z5+PZ9/RxeaVSKml/ijz97AjT3ODPy1kzme3zPKjqefo2f1WvRygvvXudEVm0gsws03rSXssmiLuOnqaubGrddzYt8BDp8Y48jxYfpHcyyN1ljcGSI+meCFPbPf3c9fTfHXPzmCrfnIFmsMDY6zblmM97/3VuxaFaEIhGVwa4/J2k1rsFQfluLhlcNxnn7pOM+8fIYTp4aolssIy+CeZSYxvYSolYi4TXRVsH7jMloCcDrrZu8re3hh7whP7hzAHQxTKhZ4eedhdpyuYkoFv8/N5z65jSbtfPspa/v5x1+8yosHnbj3pw4VGU/k+czH7yIkCkjbcvImspNYxQy2UQEhnCJDwnFK2GYVoeqOLtWcROipIh6qP+pUF/UGsMp5rEphOq9D9UdQvAH0SAd23WsMdSYhzYUQIG0nZngK0jJR3AGE7nES9+TFw0IvhMtnKn4TIYTArJmYtdy8S3HBWIwgMUZPnajXHlemSybPR6VTLZepVSuzKNhUTaO5q5tSLktqbIRIW8ecVeamEGpqxjSMeXktZ2Y2Symdvp1DTB+MxvBHotQqjmFZKRRYtnmLQ0k0YzluLshqAeGe7ZkVqsbROMx8zXuOJxkaz1HmwjE2ZiGFUFRquQRIC1fLojknBoon6PAQzjHTRFGwSrk6oXaiXm65ydmed5afzVzCCax/g5Y+rgVsP1njtWOnuf+GEh6lRjpfwydMuiIapUyasFYlY/kYyLuxaxLDqJEf6GPr1s2cPHqKsbTJN366n5oFQvXyo2f66AlVWdvjZ8X6jRhihOf3x3nvbb3U8ilCzS2YZ9J49RwuWSZT89LqrbBhaTMvHc5SwcMv91UAhZH0MKqAEwkFoXq5ebHC2g0r+cUvXuTouAuhuXi5zwaCrFIsFi3qZnRwmIDXxU0bOukITXDdrQ8yOTSABRw+Pgz42bKhm+amMPKVcXaeqnJoeA93bmrmAw9tYfTMAMFIL7n4JLlkGmlUEK7ZcaAVPOwfBYQTZ53XYjz1/CHiGQNwIY3KtEdCcfkQLjdWKoWUHQ5FXymHXS1Ry06iBaJOpcRKcXa5b1UDaaGGmp0+1Kvcqb4IZi6O0FzU0mNOKXO3H9s0qOUTeHvWY8T7neS+ugdYDbU4XhAEqufy+cmvJSiqRnpi7DxWninobg+x9k78oQijp0/hDQZJj4+BALfXh///z95/Rkd2X2e+8O+kyhFAIYdGo3POZHczZ5GicrDyWHIaj8fjufPOvXO/vLPu++lOuHfsGctjyZYty6SoQEoUJZKSmNk5J3Q30MixCpVzOPH9cAA00EAnkrJIep61uEgWqk6dqvqfffZ/72c/TzC05DWWZc1235oXJbOhxiZ0TSOfSlzXbnkOtsPniutKXF7bgcunkuiaOqszbyfILp/Prh5H7SSmmMvOJ/Q34xRXSyVkh2NJ5/HahNnp9pCJRVGcN7eL/f4vekllitS5TvLFz+ynqXn5+8me9RHS+QoNjYv/vnd7Jz5PjK3r23n62cM4ZJHPfuJOVnRGWD+RZ21ngOMn+ujpbqK+4bdPZftNIV5185/+/hjbVrhZUSigWzKGabGmTqOYSdPot+83BcNFbxyCLQrx8TF6VnVS19zC5OQp3jyncWbgMEnNQ/pKnr6+Ye7d2ojH5+a+dR389x+c48m9rTSFguiaTlNHJ6lDcdrDFSYKDmQM7t7gZzhaYjwPvTMyvTN5gnKVknqW00MFdMlLSKnw4KP7OXnkNK/3qYCboawDstDiNHhgdxeJ2AySKNBW76Q1KOJv7aKUSeLyeOg9dZ542cHGFpFN2zdx8sphUrka33q+n46AwRc/exd+1xl27dvOxeMnbPfHbBrL513sFyBK9CUlwF7PguTg1ECOaOo8ecOJqZZs6lilgGWoyKEmqhMXbUMOXcOoVbAMjcpkH446Ow5bpjGrNGFDcgfQslEcDZ12TrCgmyyIkj3bITupzYyCYCG5/Bi1IogKksuLno5iBSJ2gu3228PNooggyu+6y/yBqgyDHeBkh0K1VFz275mZGOnYNL5wHeV8HtM0KGTTtpROevlJ30I6hSQry04pV8slws2tN6RLzEF2OG5peEarVXF5PEiyPD8JDOD2+VAr5fkgLkri7Lldf8/yH7+xnX/9eCP/x1d30B28uaTTSFbh+BggKmBqbG4x5+XYFkJ0uNGLaZyRTkSnB7OyfCVZVJy2hbNvKfVD9tXZfJ/ZqVIsY9HjwKx1842HDD/oECSZmqOOEwN5+qIap8YtNnV52LxnF9GZDPGanWQ8tErjyS0Onn9riEBDI2eOnsEX8PONz2ynUNIpW27CSoV/87t3sXVTNz2btyLJCm5FpN2r0drRRrpo8XffP8gbZxN8/sEuPr2/iXpnjVWtXu66cwPNgcXrs94v0x7xMMe3OTlc5XvPn8XtdfPV+xtRzKsk5SuTJURRYsudd+AJBGjqWolqCkyOT3Py7CgORaaz0YdlGqTSJSaGxvi3X7+Hrz/SRsF0MREvcenyBJdGM5y6NM3b5xLULIk/+fRa1gTyhJQalmnw6AaZ+3osTNNEMqvsXSlR5zI4PgalmkFYyBL0imyoKyI5nUhuP2a1hLNtnc01kxWQFRyRLrtz4fZjadUl1AXZG7L1hA0d0Xk1gRUkGTkQQfIEMdUyzsZuTMPmVLsau2076FAzlqlfnRyf3ejJgYZFx/owINAQwTTM+Y7VtagUC/YNNp/DNA30Wo1CNk24qYVaZfnOUjo6TbCxidT00ironPRZpXhzi1VRkm6q9T4HXVOpa26lXLjaxg7UNZCOTROM2HQYSZIo5W4ej8r5HLpaIx29uVeENxgi3NwyT+3LxKL2ZmEZdNWB5GsgpbnpH76+hNzeO9fzxCM7liTijc0NPHjvJhxOhfGMyXiiimVZ1NWH+dzHdqHqFi+fr/D6keGbnvcHHabDT++UwVgKXrtQwKcYPPLEfVSrKn0x+1602l/gy/t9XIpqTI9PoWo6Bw+e5XOfuY+VTS6Sqp0wfubuFj5631q23bUfxeXB4fIQcWu0tzdS0U3ePD3Ft57rZd/WJj5+Vwd3ttUIOlTu3reBDV2L5wo8DoH2iBefy54vyhpevv3MES6Pl/nqQ510B69eZ1N5kapq0dzRTtvKVfjq6hBdbmZiKUYm84z3D9CxsoOAolNSLSbHo9y7LcKf/Yv91CllUlWZSxeHGZ0pc+xEHyeGKxw/PcKf/t5DbIuUWRGw18faeo0v7A/iE6uYpsm6Bo01dSrjeQfnxyp0+TUkU2NTk0HIIyD56lHjI7ja12OpFQSHG7OSw9m4YtYso2zrBhvaooFAYVaWba4IthCSL4wciNgcYrcP2d+AqZZRQs0IWBilPM7WNRilq9en6PLZsfo9oKV9oCrDYFdL53hgy/HSLNO4avUZCOD2+0lOThBTh647hWxze7P4r+Ehp2PT5BIJLNNaYtzxbuBwuSnn87YA9QKHoWs/z/V0Mq+FIEokEylU4+bPXYiOgMGnHt+zZEgA7GTYUdducyQlBSn4zjUeJX8DRjG9ZKhOEKVZvvF74yDzfsf+TQ1s2tzD2N+9zblRg9IvTtEX1TFEF5ZlsWZlCy6vl7fORKlva2dkpsbY2AwzM2l02Y0IqAaMj0UZn86SyFUJ+d2kM0U+8cl7ePVXhzg44UKwfGzrkbh4to/7Hn+Q1WNFjg1UGJk+xHTJuUjgY1VHmEhjHW/2XsKSZFoCFu0RN5Kl4vG6ERboPY9XAvzPF4bZ3D5JfcjFC2+/zlReZGc1QRE/FV2kc2UXwslLvDXkQTJ0mpqnqZVKuEWVCzEvmWKW/VtaeOXkDGnVRdBjkE+nuXdnK8lUkZ+cVmlvraNYLPOZkIFWEdixdwvKwV4OnE/xhY+txwLSiTQ9G9ZR+NFRJgpORK1qTy7PWTibFtWJiyiRFbPBc/EmwNRqmJUCotNjD2pYlm2eYVnIoavVSslXj5qaQnJ5bStn08DZtBIjHweEq8LztTJGrQSGtohX92FAPpmgrrmFXCK+7N+rxSKhSBPZeAy310e4uYVK/2Wiw4PXpUvIikI2HkO5plNXzGZQKxWmBgfwh9/byqXL411iLy07HIv4xN5gaNlK9rUQRIlqoXDbrVnTMBBEEVlRUKuVJdX2T37yPjpPXCQaN9iz7Z07Gro8Hn7/4+uRRGFRgWb1yiY2x4fYtOrd8Ss/KOhplPnoI9uQXj3HsVEH3//pMdIlSKt2lX5dV5CVa1exemgG0V9PuKWZqZMT9F24TCxdZs4kL54q4hQNokcuoZWLFNRpHr1rFZZe46lXpxA8YTqDNdLTU7g2drBhbRtHp9N86+kjZGsiLFDYaQ452LxlFWeuJMnlwS2orO0MEoul8Pk9SAvis+j08nevxmh0V9jQ7mE6XWM8ZVEXcNDd6mM0Xeax3Suo988wmnPwvbfSPNyj4vfFCbohWnDx/JE4H93TyMhUjvFyAI0ayUSK9e0ugvV1fOelUYLeMJ0rWtkwOMX6dc04RAvJ5ab/xSnu2hJidZsPVVVpXdnD4aOXeeVi1XbrLKYBAdHhwtmyiupUn00n87gxSmlE9+K8QS8k7VmM2WKYXkiBZc3HbbD15NXEGOgqcl07Vq2Eo6HTnvPI25Ktc9AyUXv4WXEtmVm6XQi/JdEHAFZs3mr9x5+8fFuvmaM8XK+FVqtUKOeyhJqaqZZKmIZOrVK+6SDFtTBNk+xMDMXlopBK0bpq9W2d5+1CU2uUstkbqk3cCO/EpU4wVDZ3yIzGNfL6zVt4v0nYLjZVu/3hu/Wb4Nh/+ugpy7J23fyZ7x2cLautlq/9+W2/rs5Ro84DAxllUUvHK1ZZEwG9lKU+6GKy7GEyqVK1FL7xaBsup0LvxVFGUwZjxQXOXZaFpZZwOBTuXO1lYKrETMVJi7vMH3xxP7GRId4+MsCVUnje/OJaKGaVDr/K9o1tvHI6yT2b69ixfTV/8XdvkdFcCKKI28hRUeqXdD26gzUe2hGhvrWNqfFpfvR2DBGLinD1HPf1SDx072a+84MjTJXdbGrS+eTjO/nes8cYK9g3iHq5yO9/bhcHD1/g4KjCXR0Vgh6ZhpZmUuk8lyfKJDNldEGiKySwvsNFNlsmoXu5MKFjSY6rQVVxLHIyuh7mbJ3n/m0Z+rzRhuQO3JbXvV5MU4uPIvvrMKsl3B0bb+l1v421+05i7pyyjqQ4ljUksiyLbHwGjz+A7HCQTyYwLdN2+ZqJ3nLMBUhHp6hraWOi7zKtq1bfctX3nSKXiOMJBG5L2vLdIhOLYmHd1vfym4BlWfz8lycRBIGPPrrztiQBv76m7QMRdyVTZV2LzMCMulgKzdDY3AJ6MUO9TwBXiKNDNSRJZNfqAA/ft5lXXnobS3FzZNSyO6lzr1XLIDvZ0GgiS4KtMywIfP2BOiJNEX71/MsMVSIUWL7IYxka9WKO/Ts7GZzIoRnwpU/u4Vevn+NwfxnR4cKlpqmKHpAXr0vZqPAvHltBpZinZ/1a/vK7b2IikTG88/eUeqXIH395P4eP9fHapRoeSvzx57Zz/uIov75oF70sy+SrdwdxOhS+/esoK0IG+9b5iKZrbN3cwwu/vkDJkDBNAVkR2dZiEfC7GIhWGU2LZHXXArdY65bc34xS1vYemNWBB9DzcbtYVkjPJ8i3ArNWRsvGMTX7+5L8EeRbsGW+Ucz9wFWGXV7vPN9rOTjd7nk7yblkOZ9KMT14hfrWqzzjfDqFZZrXdZsTRZFqpUwpl33Hk9G3g1wiQbipmcxM7Kb84OXwTuybLcnB+WmA324iDPZkqH1RvHsnvvcr0qqTtLpkzpLtK/2saoS2VbvIzMTwzZQZzJSRzBrjEzPUsknuffxhOgeG+NnROF6HQKoi0lUn8omHt/PMS70cHNSZ+x2jJYU3Xz9GR4ObJz9+N998+gQrGkWCskZOl7kYvxrYNdFFuM7Fho0rOdob541zKc70J8laAURF4KHVBnv3P8Bzzx/kUnZxkqmbgORk6OwpJMVJ1ZCXaFMfGSjTN3aQlOZBEOBCVGDgb96mKgXmv4eU7uM///0JDMWDIIIv6Ke5pZ7vvNCP5fAiSAqf3VFHJBLm9UNX6OjZQDhf4tVXEwiSg82NGmK9g5OjKkY+iSA70dJTs1Vf7xLXOpilAc0qUIBNjbjazrvNAoFpIsoKzsgKasnx23vtBwCCINywSyUIwqKYFW5uIROfIT4xtmjOYq6QEWxovG6S63B7GLvciyiICDeY0XgvkJmJ4a+rJxufeVdycLeL5VQyfhswNI0Lo2UELD6yQNLzwwRDdHBxBrhmRqbeWWPvxmaCDWtJxhI0d7ZzcuQENdFDMZ/n4KtvsW1LD/WtrUw//SopzY1Dliip8I1PreVy/xRvDMxq6s/GsTeOjbFr5Qwf+8Kn+NnLp4nnarT6TfyhAAf7iujCXKxR0EU3G9d3UaoM8XpviX949hiTWQvR4aJBzPD7X9/PwKUBnj29eBjXEgTK5SqlTIqJ/kt4ZJNJNbTonpJUvfzl9w5R0BUQnJTx8hfPnEbDAZJj9pxF/vHNBIJlISpuHIpKe3c3By718kZfP6IjyI522LM2SDJbIV222LBrE0d+cISs7iLiqrFplYeDF8sUc0VEVxUtG7P1fi0LJbx0jYuegG3CtaAQJHlCGMU0oieIZZm3zPs1a2VEpwvR5Z4fkn63+MAlwwtRzGYQJQmP/8aVIKfbhTcYplIsYFkWDrfbVmZwuahVKtf1Ym9dueodn1s+lUSr1QhGGm8pyIiSSC4ZX3ZIpVIsYGgavnAdiYlxLMsi0tH5Xon73xYsy7ql953zJb8ZbGMOYVZdIjUvl/VhhqhXubPLQtUMzsdlxiZy7Nywkf5z5zlwcoy01AyiG4+ks2v3dk6f6uXwG0dYtaqdz97XQWtnB4eP9zE0WSCdzKAb1yRvosJbI7CpXCOnT+KWDT7z5G4Sk5OkUhmG4gWqXF1nJ0c1Ln/nICXBR52YY0OrF0e0wEwBslmBxOQE5WXoohMFJ9/6xTB/9rkNFHM5kLKA/dtLWhnT6cclaGRrCg5R5b6NQfrHC4wXgmBZrKtXqekwknNgOv3zRIaXz1WxzowjukPzj41MZlm5todQfYhfHRzEMCwEwYFlWezZ3ILX5+H80EHMYANmYhDRU4fkDWPVytRisxP0kgNHuAVBVhCdNu1hISS3Hy2fsNUgTOOGlQrLMm1+ssuH6PIiuPxUJy/fVlfjgwi1WqFSKNxUVcEydJo6V5CanqKYzczLS96sQ+cLhd8xJW0u2b7e0N61cLhc5JNxRHFpPNM1200u2NhEIZXEMHRcnhu7if6msJCXfiOYhrGIdnc9FHIFJifjrNuwkq88vhoBPpSJ8LVYHSgQ8ZqM5FxM5RQ0QyAxNcWRk8PMHJygJoUAWNPdRHtbPSdPXCQ8OslXv/QQA+d7aevu5i+eOkY2k6ei6lw7cjVS8pPpq2J5hknkNR7Y0cTKVZ3MjI0yOhZjtHq16JQ3vfzFP56gajmQBYNGp0pbh4Pjo3kMQSc5PU2+UGZOB3gOhuji6YMZHt/gpWXlajh5lbokqgUM2YOCRkUT0EUnW5t13E6ZIyO21nKDs8qKJjenRmtYsmt+2z+YcfCfn7pgFxBm33IiWWXLSh8NjQ289es+KrXzRAsiiLC6zcs9925mbOwlhqRWfGqMtGUieevQs1HU1BSWVgNRRPaFbSUfQVwkVQm2dJro8NhUNkO7udNtJW+bnfnr0PMptGwMo5LH2fTOc7U5fGCT4UqxgCiKVAqF6ybDhq5TymVxeX3UqhXUahVZUTBNA0PX0QuFmwbNbHwG09Dx1zeg3MBt7lromq1beavUjBs9p5zP4wkEKGTSyIqC7HCi1arXne6eqxK/E+qEffKzA3XXtGjmdAWxzBtq+tVmRhDdXgRRQb5BcmBqtjSLpangEm6rTfJBgWjWuHudj7GZMqM5+4aztVnn4cfuZqK/j5pUYiRmkJyJs3HXTppbm/n5wXHGMxVKiPyPfzyMpZX53c/cwfjQGCMJlbqJAtViAZ9T4m9fSyBc4/i2u90gHHAyFS/TO5wloQf48c+OotTSPPyRe/m4EuOHR/JYho4lCIiSQhkFh17g8w9309S1goZTp1i1bRsvv3aev3o5SlCGiKtCorZ4zYkuP3/9fD8GIp1BkdXtPvLZPA/et4unnjvCVz67n9NnhzkzkObOPeswzMuMX1aJSDke2LWKfLbIyLHFA5x2lVae/ywel8ybVzyc+d4pdNGNICmsDKl88a4QLx2N8cPXhpFNjfVtDp54YgcH3hZ46+yMvfENt6IVkkjeELK/Hi05gSPStexvZVbL9qS0rs5bjV4Ptu1yA0YhiRyIILt8yI0r7AnpDzEK6TTBSCPZ+Mx1KV35dApPIEgmFsU0DBSnLXEmyYotdea98Ya3UixQLRZRnM7r6skv+7pCfj7ZvpVk+Eb84FwiTl1Lqy0nJwi2tNxM9DeWDJuGQTGXXaJgYZom3/rem1gW/NFX771usnvk8Dl+dSLOtm4fn/jY3hu+18tv9XEpLvEpfZAtW3+z9L/fFtY1aIR9Dg4PqXYltpzno5/YiK6qNM/kee5kmcG+UR588iE8Xh9D0wV+daGCwyjxwrEqinqFvds6qI+4OHToAjOJPKOx89y5qYkfH5xZ4rLZ4qmxf1M95y4XGI8WmC6IvHZ6hkuXx+hsC/Plz9/H/3jqCFndO6tnrlAR7evg3lUGO3duIRuPsXmjh1K5xl+/kkBWS3Q2moxnxfmKLthV3Zd7a7x58RiG4OKhTU7GJxJ88ondvHm4n9bGACs6m/kfPzzPltVtNDTWceTKeQTZwcPbQtTXBZhKjC0ycALmB39bvTV2ravjzXM1vvtaEkFIYMkBCkNFPr2/icvDaY4P1hgZ/hXlmsWX7g7i8TTzzWdOoKWncUQ6UBNjCE4XjnArtZkhJM/1rxs1PWXrEteqKDe43C3TwDJ0e1No2tx7d+dGjEL6PSkMfmCTYWXWX35u17zc7jkzEyMUaaSYzRBqbKKSz1Etl/GFwjS0dyx73GthLhjIE0WJSjGP7HThmNX7vR5kh5PU9BShxibi46PUKhXcPj+SLN+UBlEtlagU8rh8ftw+n53UZ7MEGxupWmBhXTcRfrewTIMv39eMKFgMTxa4PFWZHzYAu41j84Rsrdc5TcGFEARAVDCKKSytihxstB3D1CpmtQCCiOyvn7VvzM6+5p++yv1PAZ+scc++9Zw6O8joWXuyPpoqkZyeolAsc3laY0+3B4/Xy1uvHaExEqKkWnz+7ka8XjfDIzE2b97G1NgEsYLFhYQLK17jDx7pxO1xcf7ZgflWf6u3xrZVIcIOlUA4SL2zhuSrZ/itFO11CmtXbWN6bJRLg2kkQ+KLdwVRFCfffT2OKbvRBBe9V+KMjca4Ml2kbF2mp8XNynqThsY2ApEI/+Xbb6K7GuaT1bBSQRQEUqqL1R0Otq5p4uypFBNjUUqqRO/FUSbjJeI1D3/11GFyqgyCk5bGAJH2Do6dOwwsXcsrQyoBj0xXxEl9vZ/x6AQjpavV44BbomtFG65TMTb01LFlYyc/+dlByoU89QGF+3av4NiogQlI7iBqcgKzZgu82573GVv3csG6M6oFHI0rqM2MABZ6PoEcsGlURjmHpWuIjlnDD4cbLRMFXcUQbXqIbeLxT8c9/W1AEAXyyfh8QnttpyiXTODx+8klkzS0tZOJRSnnsoiidF1K2rWoFAvzSW25kKdaKlIpFHC43DS0d1w3VniCoXld4Wx8BkPTqFZKKA4njZ0rbvie1/KiZUUhMxNFcbpxuN1kZqKEIu+ZXfESpKPTBCIRxi714guFr0puWhaqjl00sCx7JqZYJhxZnDSPTKYxJQeDI1G++b2DPHnvSjq77ALLmwcukC/VeOKhbUiyzKqOEFU1TWvLO3Nn/SBg65p6VnS3cWLgOLpky3LFp6YI1dVx4PQEzW4vu/Zt48DrRwn4XaRzBtvbBB5/aC8/f/EoTz7xEKeOnKaiunnrchlD8nFXvcyD925mMn6U0VmhE9ms8uCWEGapREvEh1GQWbdjLUPRUyh6lfvv20l8copTx85T0hUeXKmybm07Lx0YZrRk07dGUybOc5eJxQsE6sL4FZ0v3unF6/DTsW49P3juEFcSBpYya5Rl1WgNwWjWSZtPZ+fmLjxCjZHBUfIlDW06T6msoSPz3MEokjCN4PThNIt09nQxOjTBdFFBuGZf5ZeqbFvpp1qs0F7vYt8qBy9fNGwJSkCRLDo7moklijQXy3z1k/fx01+eRTBUTF1k/8Z6RktuklUJR6SL8tBpLE3FmlXMMqtFkGRbwWcBRJcXJdiEGhtEy8aQ/fb9xdSqtorVbL6AIGJVi5imjqFWUWaLEUs+yDvEByoZLqTTeAIBJFlGVpR5pzddVUnHpjF0nebunvlgKYoC+XQSx+xwRNOKlbf9ng6ny7b4nHWjc7g91Le0ER0eRJRk1GoFyzSXJNcLd/iiJNtTyy2tRAev4A/XLat3PIeF7US3z0djZxe5ZIJcfAYQqGu9NZWJuQpxPpXklSMjXJjmuoNBLqp89I5GegcTxJN5PIrFA/dtgQOXODSoAbbFsqlWkAKNGJWCneCWs4jXtD5Eb9i2u/UE7fczDRAlzGpxES9YEESU0O3zoz9IyBle/uf3D1MqVUFpQDbKzBgeLgykGUvo+B0mPc0OTNPi6KhFdbQKuIkmCrhyFQpVg1g0xfOnShjirOObIPKTt8YQEOYDi2JW2dEh0xSARKpGfaMCsouXjsXY2KDRUldPNpkkXFdHwJ2nzlHBIdfh9nttQXPLZEXIIFUwaF7TQnzE4pVzWf74c9uJj4+RTcQZGxjg3379Hg4fH+DwiIVp6nxkq49AOMxfvTTJ8Yt5VjS6uPvhu/lvf3eAAkF+fqqArOW5Y0091aKBV5MZL8D5KYPpfzhAUnWzHE3szo0Rurrb+fmPX+KTX3iSnq4yI5dq+KQqPU1Ozo3XSP/4bSLhIGatRCmbwkAhW1ARFScP37WdoacOE1dBCTUiury2LbMngJoYQXIHMQqJRYMfkr8edWYEJBnZF14k4WPpGnKggVp8GIfitBPiWhnRV4dZKyJ7Ppz0iFq5jGka8xbECztYyckJJFlGcjjm450kyxQWSFS+E36sP1w3G/sCVIp5Qo3NmIaJ0+UmOTWBIIgIgoA3GFo0P7JwXqRSLOIJhlCcLqrlEoVMeola0EJk4zOLHEeDkUYqxQLlnC2h5vL6bomCMIdbpWzEx0cRRQnDNMinUrj9fkRRnN9kiJLEv/zKPsD+br//0xOMZ+EbT/TQ3Hp17X78I3voOjdAPOPkXEwmnSnROdsAOX0lTcFwsT+Vpr6pkR3bV7Nj+zIn8yHCz4/M4DkyiiYGEPQaimBwctgklEgSV/18dI1ArVRmPGMxOGIBIt1BldGRKUo1mByf5mIMJgcLINkx9thAkcn4UUYyIoJkb6A2RlSavRozVRHZ4aCtu4vnf34YCxd3bm4kMT5KsD6CJZawtAJhjwtvIIAs2TlKWKli1Ko4fe1UkhanB+HJbT7au1oYu3SBwXNn2LEmxL13NvDtnw+BYmvB797Rw/OvDzCcdXL+1AX23HMnL71ylstJu/sojSTpCss0eAw0yc2FKZWq5OOvfnCGqiEiSEs37atbXDxwzyZ+8eJhKhWVjZtX86tzZ7BwsblNYjIl8q1njrC+O4yol0jH44RdBtGcSUir8ugTd3PwWD9v9WsIooRn5Xb0YgY50oWWnsayDARRRryGT2yZFmp62vYbUNxYumonw9Uikr8eLWNTISR3ANEbQhBEuxAnK7c0uHer+MAkw7lkArfPR2YmtmTYwcJalvN0q9JkC1EpFhepVCxs0zlcbqrFAmOXegk12hXnupbWZfWJF8IXCqNrKhN9l2hbtYZ8OnlDWsSc9edc9WVu0COWTtK8oodiJr3I3COXiONwu+dvWNeiVqnw6Y/upvj0a4xWl78huGSTnlVtJDJlXunTwdQ4P3GCqYw1b3wAzDvGCLPJ7XJqJLI3BN6QXUG2LATZTvznecHOxZXAW+UhfxAhCALt9W4+8tk9fPcHb/L4fasYi+Z5tV9nb5fExjYHgfoIb58co6LLINnfxVuDADqgcHKqAKILa4FmY0pd/B22+E3a2+tp7Ozmp4fe5sTgFWo4yFUsPnNXO4ah88Krg3ztyz1EGktkilEa2jvpO3MeQ3ITJM/XPnsPfWd7WbOui4t9k1zOBfiLZ06jV4r8hz+8j8TkBKlojO6IRK5UJVvUWLVlF2dPXkCQnfg9Jv6An1NHzpA37WG4fasU7rlzL9GhARraN1MpVfjmS1N8ZLObUtGiL1YlUXEu2aS9eGwG77EhPvHgTsav9HPgfBzkIDt7/Nx39ybyzx1j36YeVqxs54UXDnB3Zxc4Yzx9MItbqHFu7CgzVVtGztJVRKfHNu0pJHFEutFzM/PrEmxFCKOcQ/KGbHONTBTR4bGlgGQHosuHGh9Bcvln5YEURH+Dbb/s//DRe+ZQSKdwerxUS6Ulg8tz8xe6ps0/ZvN9b29jUKtUUByO+WRzzsQDQHbYEmyFTAq5qQVJkrAsW29+uXOaQ3hWCq5cyBFubKZaXt6xdA7BSCPp6PT8fURTa9TKZQxdJ9xi68wvpOOVC3l7JuQ61e5CJk2kvYPpoYEbJsOSrNj3G0HA4w+QS8QRRHFRPHQsULoI+hQCpRJO1+JiitfvZf9d29BUlV3TcTpWXL1HfvbhNZQrKvVNVxOHD3PMBRAx+dpn7uDY6UE8EqzoauUffjVBpGby2bsa0Es5EtmybTYk2vMtIzkHIwezgJ/htzKA06YFirZahCa4GM0vKEQaOhs7/azYtIWhN07zrecu0BhyMpIL8bFNAk2N9Rw+eokuw8madSvwvD3GivXbmBkdYWa2svzI7iaawm48oRCWWuFSXOUXp3LIp1I8ssXPxq3buHLmNJVcmse3uvnFuSob13aiqTqTaRVEhYZImMmhIS6M5kAM0OCo8HtfuoPRvj6CQT/N3T1kfnQUj0Nl+9oW3jg+SkYD9Rqqx7lxlexzx1jdqOB2O/jVr45iORtodJb51BN7OH6ij5mMm488vI1fvHiUQF0dTl+W1/t0LEOle+QU03kLcNnfmyCgBGevD0lGCbRQm+6fH64zayW0bALJX4dZyWHWqoiijKVV7GKaP4IaH0YONGIUkrZpUqgJs1aZ79i9l/jAJMOSJFFIp6gU8osUF/LpFKZuc3rnKgbvBMVsZl4GKBOLLlvRmBvu8BaLaGqNlpU9FNLpm/LT7IDtxTIt8qkEgYYb72bcPv+ixFZWHBRSSQTR/g4WnlsuEccbDM06Ni1Ohk3DoFouoZZLpKanePyeVfzVr5dP3LO6h//2vROoOEFSQFQYycL6iEbAC0eH9UUJy5w+641w7YCSICzlBeu5OAgigqzckFf0QUaxanDl3Dn2rQ/T3tNDLHEGy7LoaQ8QrAvzP35wnqY6N//6Ez28enSUvuTSjd26Bo0H7+jix68NE68uDmI7m8usbvWgON2cPHiEnO7EMO0NjEMo4w6GGRqYIKF08lc/PINqStzZE6KczzKdqgFO8qabF399hnh0hubWCNs3tnLpYA5N8lFfL3PlzBmmEiX6U06+/qntuKb7SeZqvP3WCfonKghCgOmyi+//coB0VUIQ7ffPlTTGx2Nc6o+zTZa5OJQGU2FlRz3FjMCDD2/i5y8e5nRsQSjSaxSrZTKSn1iywPqNq3EeSVGz4ORggXThFKMpyB2P4T4dZbIY4MrfHqAm2+unYrmYyNe4Z62D8YkUw2kBS8vaa9YbwigkEBXnIt1rO2H2opdzuJpWoufjmHoNR12bLRDvDiD5G9ALKRwNHeiFJEZmGqNaxJAUHE0rP5TJha6pqOkqgiQSaetAdjiolcuU8zmCkQiWad0SP3fZY6sqM2PD+ML15BKlZakMisNp2ytHmsgl4gQjTeiqSrVcvq7bJ9hqQOGmZrzBIMVsBud1NOYXPn9hkUUUJdRqBV3TyMxEl1SVq8UC/rp68ss41ZXzOcAiMT4GN5Eu9QZDmIY+n2gHI40U0mnSsWkcLveSYcKPfeTGamaKw7EoEQbo6Fx8L5sYj/L9l/rY2hPksYd33PB4H1TolsjwlUFC5NmwYye5ZBLdEmkLwvoNK/mHHx1mNF3hC/c2UyxV+MV5bcn166bCVz7Sxbm+GMfGF/8tIue5a6OH1pXdXDl1kivTKmUxaCfLAqimiOz2cDHh4Fwqj+v0adweD4auUaqZlAwFJDhyIUHYJ7GiLsqGbet58+xBslIDqiFhVEuceONNXu2HJ/d6aGisxzLGOHp6CMEyUcUAgiDw06MpBCyqor2GarqtRX9pLM/aDpiJn2YiJ/LAGon6gIPf/fxeRgbG+cHRwvyQu2VZCFqRoZgDlyBwx10duINJyEO8ovDjF04yndUpqlB8/gSDCbjw9GnUWYUKQZIZzcusrdcI+ywOno1jWRairx5BAFFWMAoJnK1rrv5G5TxKKIKankKp78CqFrF0DckXxihlEQQBR30HejmL4PIhSgp6JgoIqMlRHA0rkFzXVxa7XdySjoUgCI8JgtAvCMKgIAj/4TrP+ZwgCJcEQbgoCML337MznIUvXIcoybStWbdI6FxXa3iDQSrF4ruaiFWrFXzBMNVy6aaSPm6fbz4A+uvqbij1thD+ujrqWtqQFcV2bYpOzduA3ux14eYW2latWZKku3x+8qnEsq+bs3z2hsKIokhodgNhWRbbWnS2teiLKrs10YulL3ax2762gfv2r0MyFrPtLdNAy8ZQk+OoqUm03PLncHNYs3Is785X/Hp4P6zdwYwDxeWle90aLp7p5ehglbBUoqWtiStXxuhuduNXVCxDp7ve/m6vhWlamIa5pBJvWRa7N7YRCAZQKxVGpkvsWeXBI9hDaaro4b//sJefn7N/vzJedNHFSKLGwHiOC4nZCpOocGpSYFxvYnwsSlNjmKCQx1lL4hPKrN62jUhThIzp5+mfnaI5IPIvPrKSDWva2bPaNqNYHzHoDF5dUyuCKk11Hn50IM65XAPfPVjh5IwPQZIp5PKYlkFyepJV7Ys3QR/Z5ufffnkXT26WeeF4lr98+hh5y+6SqAZEQi5a/BZp1cVU2Z6SruLG0q6uUZ+kct/+jWxa1YDbzKNXizZVp5BCdHiwDAM1PUVtZhg1NYk+K80jOj1omWlM00RUnNSig2jljL2+LRPZX48aH7N5cJKMoDhxNHWjpibeg5WyGO+Htdvc3YPb56OpcwWlXBaAUj5LuLnFTjI979xtz97Yt1Irl69rzjEHUZIIN7cgyTJOj+emVslzcLjctlX0bMKemBgnOTmBpt7YrVOSZRo7V9C6ajX1LW1LZjQsy5bsdF8T+3OJOKIkIyDg9PkWzZXkEvF5HvQcXF4vCAKGflVCS1Or1DW3olavmXACzp4b5JmfHufQgVO89eZpyqUbV7yXg6EbqIKDmnabLk23iPfDuq3ipn8sy9Z9dxIdGeHAuRkMycWKjjqSk5OUSlVWhAwkdEJugcAyLqwAhmktK7S4e7Wfju4OKqUShapOY1Cm0391Tf3yQo2/+EEvNTmAITop4SWnSlwaTHByRMOU7GLBeMHBuajEWKJCIZ1m7coISi0FWoX2jmbWbt2MZsk8fyROIlngd/aH2bGhhb07VxIRs4SVKts7Hcim/d5uocreDXW8emqG80k/Pzql89MLgKhQ1kQsLCauDNFQ56XecXV9rQqr/J9/eB+/92gLUzmLb/7jIU6MznZ8RAVJtFjZKKPh4EpKxhSds/nCYpmhrWvquf+ujXitAoJRwyxlMKtFBIcXyzTR0tOoyQlqMyOY1QJGrWwXzXQVS9cAE7OcR8vFUZPjGOUssj+CWcmjF5MgSui1Iq7mNbOGH+8dbloZFgRBAr4JPAxMAicEQXjBsqxLC56zGvg/gf2WZWUEQfiN2NuEGpvIxKZxuD2UclnUSoVSPo+pG9S1vDsBc4fLjVqt4PL4lujA3gjlfI5qqYhpWrelVVkrlwk0NF7X1elmKKTTGLpGqLEJp3t5OoggCFSKBRxO1zzd4z9+Yzu6plHKZanWdM5MTs4T5Dc16jxwxxpefOMiQ8UQgiDwwpEZHCdimI6rVWejnMOolZC9YfR8Ekd9O1p2Zn4o6XYgBRqx1AqIst2mfg+rw++ntfvr0ym6JzKcnpZpD4l0tPh460g/sViWr335Qfr7RkhlivSs6YELfeBYYK6hV9m6qp4rQ9Elag5eUeVS3wS5ssaZmMLWrjCP3L+FqnqWM5Ozw6UO3yL/NcuyqPOK5NJpPrm/hUOnJiiZCinVjSAIHBqoMhgfYd9aL+vWr+TFX51iaHCS4bgKKLQ2BVi7dgWJeBw9m2Xbnbu4Mn2I9RGBdbv2Ejp+mdf6TdZ2BNizey1nBw6RMZwIooRlWbR6a7x0vEDNVOiK1ChUTea1rg0VlygSGx2hXNPQJTe5BffsBo/JXXs3YFmXmO67Gog/vsuP3y3yk4NRKlKIvOnjr585SpNf4D/86ZM89cO36J8uYFaKmJqGo6Gd2swQgtOLI9SMmp7ErJVQwm02D94dsLWKRQlX4wr0QsreKAoicrgZo5gCU8AydGqxAUTne+ui+H5au4rTSTYxQyjSRHJqErVSIROL4vK8u6qMr67OpmF4vYiCeFut+zmubaCh4baGiSVZwhMIUSuXb0sdCOyYXcpn8dfVXx1wuwaCKFIu5BBEcUnCbhj6VffU2UpwIZ1GlCUm+i7R0rMap9uuBmdiUfwLXp/L5hkdneHiUJLL40X6U3UYhRQqwzx83+bb+hwrVrbz774YAgEu9g6xbl3Xe2Zu8n5at31pFy//8hgjaYuKoXDvWi8X+2M4vT7u3tnOlq1refGFN/nIR++h7vJxCoXFr1/XqmDoBr0TNRYO+VqmwWSsSLVS5Y1LVWSzyn/4k0cZGhzn+wez9meUFSwWF+fq3ALFfJHda4MERhLkahJjWQlBUrg4IyFeiFNIJfnXv7OTK/0jXBpJU5euYYoyXllj69Yehvv6ScXibNqzi31bihTyBVavCLJn1xr+2zPnaaqX2XvHOgrl88SHr8qb+qQqw9Mqg9ESgiDS3qCSrjlhlvIRdJpMDA5QKpYxkUhp7vm/WZbF7g1N+AJeTo5cQZgdEl7foPHI/nW8/NoFrszmC784OoP/+Aj/6g+eoH9ggudfH0IvlRA1Fcntw1RrgO04J/vrqUxeRAk0YRkacqgJNTWBIFu4GldgVIuAAJaJ5AliVOb+X6CWHMcyNN5L3MoVsAcYtCxrGEAQhB8AHwcuLXjO7wPftCwrA2BZ1jvL8G6CheLvc5JlC518TNMkF58h0BC57Yt7juuWmBjHGwrNa2PeDIVMhlCjLTW0HEq5LLVKGSxrEYc51Gi3/a59j3I+N69PfCNoanVJmy6XtKuzczy26ylmyIqCIIp8/5VhBMmDZRp0BjR03aRcLPKlz93HN//xMGndS9F0wYLNn63BaiI53PZ0qCCgpqfB0BD9tzedrGVjCKKI6PRi1kqILr99AZiGfQHcZmK9DN43azdt+knPABJsW+1l29ZV/PjZt+hsdjMzOsLlvglGkzqamERwLK62CZZJwOdEV2vYPOKr2NDh4v6H7+RHPz3IH39yLSNDE/zg+RMMJY1FXO85eIQaO1Y62djdSDaZIOQWeWRfF95AgP/2oz5Eh5tE1UWiCu3eEunoNBUdfny8BLPB/fSYztDURaqaTsDjIKf109XsYdPebZx8+zBjaQVQeKM3y6krh0GU6fRUGMu7aBRT/N7vPMjApSv84FiFSwmwtBp3rawxnNDIli3WbdnO5b5R3hhZWpOZLrv49vcPk6pIIDhRrCotfkjG8qzav5XP3OfgHw/kEASBRM2DJNbovzRMQZWxzBKOppXo+QSV8QsIihs9E8OsVUCvIfnr0XMziIoTq1rAEW7G1Gq2TTMgBSIgiFSnr+CIdGEUkkieAKLLj5aZtqvLuobodC+hCL0DvG/W7txGOp9KEoxEllC1ipk0kqJcd2bhepijQKRj03jCdaSmp26poGCaJqZh4gkE0VV12WR4ZmwEQRCpb21bdC9w+fxotRr+uquxSldV8ukk/rr6GybIpXx2iU5ypVigUiwQqLcVKG5E3fD4g6Rj0/OqFPlUknIuj1or07VxM5nYNE63XYV2NC/+TK8cGuBiTOS+VU5WtXroHc5SwWRt9+3x1S9dGuEXB0a5f2crE9MZLiScPFK8wsZ17QyOxNi8ccUSi+zbxPtm3Zqik9MJ+/dcVadx310bef3N02g1lTpfgNNHz9AXVen/zlsUxNCSIphfMQgEvUgsrqD7KPKJT95Lb+8Qd0tFdmzt5ukfHySrObjW3APs5Hl7m0BrSGFFRwTTNNGb3Wy9w3biHMmBJjg5PQkrXBKZ2DSVUoHDY0GghiA7KeLkL79/Ek1VMZEoSYOUCzkeeXQfF0+c4spkCUN0MJIV+dbTh0kXddY1uxlMGOiCk8/d1UhzRzv/5TsH0Jz1JKZgdaiKz61yesZNV0eElq5O/vwfj1ERF1/HgiDw47cnEbFnhizLpN1bQ1d1ipksX/j8/fz104eJ1zyULTdVVeTK4CTTsRxSsAnKWSSHm8rMIKLTB9UigsuHnk+iBFswqwVkX51dTJtV6jHVim1m5A4giBKC5EAQRSRvCEzDrtYLHmozo8j+sJ2TvEuN91uhSbQBC3uAk7OPLcQaYI0gCIcEQTgqCMJj1zuYIAh/IAjCSUEQThbT79xtzB+uIxOL4g2E5h/LxKKEmpqvm5jeCizLolosLJocNnR9kYzbQjicTtRKFfE6zilqtUqgPrIsdSwYaVzSZqyWiniCQfKpG+uVWqZFLh7HN9v+09SaXVWxrEUtt+shUFfPv/nKnfzpE820uIp8/fN7aWsO8frZJEeP91FQrzM5LUqYeg1TqyH5G3DUt+Ooa0Vp6MQoZpbVWTW1Kno+OW93u+hwTu+sla6JkU8gKC4s3R4UM2vlm36Om+A9W7sL1+27dbt5/WyKv/3hUfbs6GbT2nYMQaG92c8ff2U/krCULtITrOH1OBFN+3e1DB2vlceyLM6PV3j2F6cYmDFIJjOUNehPyfNuR5JRxWle/R5XRBQevH87vYMJJG+ISGcXh04M8MbRIYQFkjeWoeP3e+nauBm/xz5WUK6yu1NAFk28Lon//ffuobPJw0vnyvSP50hOTiC4Awym7aRZxUVS9fLIrka+9pk7cRl5qqZMfHyMZOrqWlgVLPLQI3fy8K4WKqKfb/3wBL88mcKyLFaFVdpdeT62w8PqOhVBEPG6FZ7cXUejlGHvWj+/+/m9jOclDp8aoXdocUyJ5i08Xif3bA7zu0+sxqfaA0qi248j0oXs8uIINyMqTlspxRtCDjYiByKITrsNaOkagiiDIKKnp5DdfvTsjK3TrKkYxTSyrx4tNYnkr7eT63eP38jafTcxN1DfQCmbRVkgH1fMZpAUB+X80mv7ViFJMsVMBukatYZ8OkWtvDQG5GY1jnPJxLK6v5ZlISsO3D7/ouE+AI8/sCgRBsinEtQ1t1K4ScxVHLZe8kL+8ZwM3PWoagvh8nqpa26lmMtSzGbQNZVAQz2+cL0t3XkDC/D1K+pYU6ezcX0Xd+zdyje+dC9/8nuPUq3pvPTqWSrL0CWOHe/j+Im+RY9VqxplPBTLVfqGE5j5KM0RL68fGeTnp0ucOjt0089xE/zG8oV3E3cHE/DdZ49Rrercdec6LETKNZ1/94ePsKojuKQjIZlV1q1qppLNIAr2zdttlhCNGkXBz9M/OcabZxMUqzqJeIqpkoO0al8XlmngNXPzdE5ZL/GRBzZR11DHhYEZmrpWMJPVefPgxdmBs6vwKhqtq9fS0DhbDDNUtrdbRFw1CprCVx5fx+fv7+DVS1VOT4oMXOqjpb2VY1cKCJKCIErEqm7Wd/r5/Md3s6nN3tikUzliY+Nolh2bLcviob3dfPSJfSiVJC+fTPKtH52kIvqpd1bZENHZ3a5z/1rJtqo3BR7cHmFzfZEmpcA3fmcvK7sivHo2zdHjfWRrV/MfU3IST1W4/+6NfHSjxfomAaOcR3J6cTZ0IXqCtnya4sBUywiyE2n2MdnfgCVIGOUClqkjOj3o+TiWoWHUihjFDJZpXB1ctgw7Pjvdy+YXt4P3aoBOBlYD9wHtwNuCIGy2LCt77RMty/o28G2AFZu33qbvqQ3TNMnG4wiCsCiZVFwusjOxG8qWAcyMDiPJCv76hiXuc41zejQLkI3PUNfSSjo6vag9NjM6jAWotQqB+uUrueGmZnLJBIGGW9vBWxbkk8mbPv/aNp2sOFCrNu/pVqvi2XiMcHMrHY1TvP52L1emisyUnYxkazAr4+WwKjhEk6JlV7oEQVhWDs2s5JG8oWUXpFkpIgca0AuLbzayvx5Lq9lOYVrNToDLWYxqHkuvIS9j6fgbwC2t3YXr1tmy+h2tW7Al7PauD3JhOM+LR6ZxygJTJSebmkykS2PULBlRt3f5c8oRpqggSgpDk1m+sK+TdDLNHXfdw1M/PojicNEX1TGUAD8+VgQW2z1/7I56VnQ189fPHKUqBbgcFXj6x2+xe1M7oxNJTvROs21DNyNTuUU3hEZPjZaODiYHhxkv2mthS7efB+7ZRPK5Y6SKIv39o6TyKiHFor05SP9YhslUDa5pDx7uTXJpJI2Gwv1b6njr9DSZMmxuEjkfhdGCm2MHTtE/mcMy/KSxr2mHnuMLn7iHod5eVqzrJl/sZyCt01znZP2GbloiXl58a4A3DvQyU5KYHJ37OSGo1NjcJnPiSolspkA+nWb9+pXct7WBF/vsAF+LDqCEmjCrJRyN3Wi5mSXWzZZWxRFZgZqetLuGggCihKiIGOUcgsuHpdcwTQNBUuZtoP+JcNtr953GXLhqQORcQI9wut3kkkks88ac/3RsGrAT32u7Xst1wfKpJC6vl0I6vSjGZ2JRTMskMTFG4DpKDoIg4AkEsEzzuu6iC6E43WRitqbwjXBtEg123J2TgbsVlHJZFIeTSiGHaVqU83nq29oXXXtzleq5ajPAxo3dbNzYveR4xy5EGc4qdDTG2LylZ9ExfnkihoDFjm0988fZsWMN3e0Jgg31TMcL6AY4XS7iMynaXS5Wdt6a/v67xDvKF95p3LUsix0dIpZpcW7SIPv6AANxg5AbQr3DxLMalg6iZWAps2vNMLAEiVgqw8Z2N/U+kw1bd3D2wiiXx7KkSwIZzUV6Ck5NZhcZH21oMvnsk/fy9I8PMJEVUR0B/v65U2xoVWgI+3juZ0fwuyUaAg503ZqnIwBsXt9JLj7D6csxIEyDW+Njj97BiVP9vHi6wPBYAk03wNDYsdrN0HiGaFqnYjoWHedKtMqvXj9Hf7TG1haFou7gpVfH2L02wqWJMiXTxbGzY7gvjVEVfci4qM7uG/dvrGP79rWM9F0hFInw5oVLeNwW6zesoKXBzfHz07z+di/D0RLTJSfjvVXABYbKrk6RRLpMRfWQTKTxuWQeumstwy+OYEiNVCYuogTqEUQJR6gZo1axNYQXwMgnUEKNGNXZWQILkGVkbx16MYPkcCNKCkYxaTuBVgt2vvAuZVpvpTI8BSy8QtpnH1uISeAFy7I0y7JGgCvYi/03gmqpiC8cRpQXVxICdfWEm1tuKu4uyQourxfTWFxBzcZn5odEFj9ftgXYXa5rHlfwBUME6hsXybFdi2BD5Kb8tHwqSTpmS/vUt7bdNp9NEAQa2tpvi7fscLnJzsTYv6OTB+7ZxB994U7+4ze2z+sTA3zsjkb+5ee349FTuKzrV2ptTk9+WQtm0T0rR3WN2LYgKYguH5LbjxxosOVSLHA0dCEorlv2Kb8B3jdrd32Dxs42k0afxf47N9DT6qElrOBy2AooF+MyLxxL4RQN/uwLW3lsg4yl2tWenRuaKJUrDMzoNLdEMAyT3t4hGvwKv/OJ3WxoFWlyFPnIBosnNsmYpk6Xr8jezhrJRJbzZ/v54y/t49FtASzJQawo09rWhOxyM5GTaGuLEPIv/m0SZQdvnpzibH+Mh3fUI+slolMxLpw8g1syyOtOfnoozopmH/estHjgvu3MJPL0L1DCWBFU2dJskCpqtEX8tPlqbNvSTXdHHfu3NPHJJ3YSEEsYkodXLqs8eNc6Htt89TxUOcCRAydpbGnm2ecP8tblMpJR5tDlPD/6yQEGJnJMFp28fUVb4gi1Y4WTBx/cxWM76njldJLDgwZVHTJVe00poWYc9W0IkmxrD6cnbYH4awZCRJcfNT6G5PSDaWBoKogSRiWHs2UVllHD2bQSyRPE2dSNqLiQfe+JmcH7Zu3OYc6AqFK8uuFVnC4a2trnNd+v+1rDxF9Xj3FNzC3PqgNdC4fLTSGdXtKNMwyDYEMj3lDohnHe7fPf1C1OrVZITk1SKRYIN7csm+zeDIH6BuqaW28Y/xfC5fVRymYwDdOO18uYiMxVqjOx6et2JOfwwB1dPLTRybp1i5NY2eHgyb2tfHRv25LB8nBjBFEU+dJn7uJrn7+LobEkUaOB5kY/jc3vWibwfbNu6xw1HljvxGUW2Le9k92bWgi6DMIBB4IAWc3Js4fiTBVlntwV5I8/uQZPLYFlmaxvd1LfWM/ZkSLhsI/GlkYuXhplJpbma5+5k0d2NxGSymyqK/CNByOE5CohpcqOhiI+WeNi7xCbe+r5V5/bgsMsE6u68QZ8NLdGuBSzCAa9tLbWL+kEHriU4+2TY2zd2Emnv4ZpwdE3D6NXCgiWzutXTNJFnXu7ajx47yZ6OsK80a/NO9R5xQr7eiR7c2qarG2WWdkeYNuWHnoaZR5/aCsbOu2E/3TcC4qXP/vsWjxcvbefvzRFcmqSaDLPt396GUtSyJYt/uf33mRoMstk1uTgoM50aXGOEnFrPPHYbp64t4fRqRw/fnOKeBGqun2vFyQZV+taBNmF6PRgVEuY1YJtxLUASqgJLRe39YYFASQFo5gB07QLZJKMEulECbUge8M4Il0IinPZ3ON2cCslxBPAakEQurEX9e8AX7zmOc8DXwD+XhCEBuw2yPC7OrMboFYqUS2XbyqXcz0EGhowdH0Rxy2fSuINhSikkkukgq5nO+qvb8A09FsOhDeCVqvNV5//qXArVqf9YxmSuQof3dtGU0sj/+PZxcNdC3E9vVVRcS5xqbseBIcLo5hB8t/atPhN8L5Yu20+lb3rQ4DJ6ESZF372Nhcmavx/fu9uopMxht/KsMKT5+H723nt2BjJWJy2Bjd/+ul2fvH2MNG4RS5XxEDmz585hym5EKQCHgHE1y9gqjX+6Ct3M3D+IioyYSnD1z53D5mZKP1jOV47l8UXnCKWKuOXNLyKwP/71CkCTpOq5eW///ACpuiwJfXmICmcHy1w/7Y61q5u59SpPh5/YA9uf4CSMcqlVI0Gr8m9d21k5NJFZsbHyOVKWJZ3/ua+b1OE7p4Onv7Bm+zasYpcMslfPnWEiuUm4LQ4N5BkbZsbr1vg7csGhXyZau1qsiQIAm9dMRhMjDCa9SFaGl97oImZVJ4XLwoM9F7tYLR5qzT5LKqmzMW4zPH+DPXuU0xMxvnTrzzI+bP9eNwKiZwKOLEsE8vQMDUVo1ZGECSUhhb0fHJe/s8oZcGykEONiA43ei6O7A3aUoCijJ5PIsxOhUveEHohhaC8K77lQrwv1u4cSrkshqYzPXSFlpW3n7fUt7ZRSKeW6KtXS0WCs4PECyvELq93WZWe+tY28qkb67TfKrRaDW8wNCuF9k8DSZZv6n4qO5ykY9PUyhUa1nSSiU1fVzO/rb2Jtvbl7087dqxZ9vFrsWdHD27nGOtW374u/zJ4X6xbxazy2I46XJJBcHuA02f6uThtsm9LE3fsXsfo9CGS5TJfvjvMdLxINlOgtc7JFx5awWi8zJVpndHRKHq1ys9PZpCsNJbDg2W6MF8+QzZX4A8/t4fYZJRA0IcoWjy6u5mVPR2kotP89S9G2bHSiylEMXSDFRGVnx/P4zkxiUP28vK5Ir86cwlLWbzGp9IGpk/n4+u7uTIUY9/6eupCPlyBEG9eOkfNcnDHphZCIS8zo8NkUhnANT98urbVzcP3bSGXO8KdO7uZHh3nxePTcCJO1XTz7C9OkcuV+PjOFt44l0LVZHK5AqYlMDdlPVIJ8fzb42SrAlXBzT2rddZ1d/D91yf5Za/G3LCzV6yyMqzjD/o5MVQhXnVx5PVDCAI8vr+L1vZGpkbGicXSGJLddTGrRQSXFzU1BYKFs7HbplbONmVsl9oisjeE5A3P8oi9GOUcSApmMQ0C84Uy0eHCKKTfk3zhpsmwZVm6IAh/AvwKuxD/d5ZlXRQE4f8HnLQs64XZvz0iCMIlwAD+vWVZ75ycdrNzwqKpawXTI0PUcfut9OUGLtx+P7GRYURRolYu35Jk0K204G4VdS2tZBfoJ98IuqrOVsevn8yW8zkkWXnH0kcLq8P/13fOsLtDZSYziSU7EW7wuncLyeUD17vfXMD7Z+02BhR8oRDeQAi3L0A2X6E3nuAffnIa1YCwIrBjdZCW7pX4z0/z0yNx7l6j0B0IYVlwaFTgsc1O/s1X19J79jIvntfY3GqxuklB01UuDuv0nr3IwEiKc3EXgmBrBhvVEldSCobk4rUzCWqGxCf2NbJmTSff/+GbfOVLD/HL185xfGypJGGnv8oXv7iLZ186y8CzR/nKFx/l/OlLnBu6SKJgYilhpktO/uaZw6TzZQKKQcEM8LV7w1wYTHFmWuL1kxNsjicp4uHFl47xsY/dRf6nh+iNmbQ0ydQ0i7XdDTQ0BKn3T/Ork3GyuhtZzaEpfgRBRBNdjObsX0/RCjR1tGGaJm5SiKLFp+9q5eS5ER5/eCflQh5PIMjFp85RV+9h4+6dJEunONc7QjSep6UpjDFbiGn1qjTXi5SqDvpL9aipCfR8EtF9de1Zhm7Te/JJLLWKVkwje0NYanVZXeFr233vBu+XtTuHWqVMpKOTqcErN9XOXQ6CICw7XFarVJgZHcHpubVYKgjCLds63wzeoD0ofas6yflU0pb4vI70pq6qVIrFd1RhXoi570kUJbIzsdtSy3gncLpc7Nq59j051vtl3Tolg46VHcQnptiwbTUd6RTjiV4O9GboHz1Kogy7Wmp0r1+HbvTxzNESujHDhtXNWBZMFBwc7Y3z+197iJFLl/n12TyGVeWeDQFkVN5Ompw42YcsGPzjr8cw3WEO9yYYGYszktDBGeD8RJXBaIINXV4+9fhOnn/xOPfs2UQ2m+d7b2WwpMUbZ0Er8wcfW83kVIL//K03+fyjq5AskzePDTGa1NAFu9Dw3FsTiFg4jAJxzc/966Ghzs+PDyU5N24ReuMYlmHwdz86wR98cS+PSU5+emiG+oCJzy3jEBxs3boKSSsyGDf43lsZRN1CEKpYsgtBEJgqX11zLQ0+GlpbiSiXKapeHlgNwYCbYsXBuu4wdc2tzGSOM5gW6F69ApfbxYHjgyQyJYI+BW22G+QVq6xoFwj4LE5NNVHK5+yCgnz1/mPWrlIqzVoJvZxDKBfsqrAvhBBcfO2LLh/ie5Qv3BK51LKsl4CXrnns/7vgvy3gf5v95zcOy7KIj4/i8fmWleN5J+46isOJNxicN914N/qZ7wSCIMxPaKvVCvlkEtM0r8th9tc3LCv4Dnbr0bKsWfeoW/scuqZh6DpOt3t+eG/hzevEhAiY77oVsRzm3Gp+I8d+H6zd0xMGV6b6cDlkWpwlHn1kF3euqXJg1ub6kU0uOrvqOXPyIqKicMcaPy/1FrF6J+crj1PxEs2TUzQ2NiAwxaaeRjo7m6lVyrx++gRtbU1EGkKcfXESQXJwahLAvj66nCk+/6m9DA5OcbIvyfBYgro6H8ePnGMiUWVe1mwBVF1gJppANUTyppux0Ukm4kVM2cW//4M7uHDmAsPTZQIBH1MFiarlwCeVCdcFWd9eIpEv4VBc7LtnD/nXztE3XuDo4XPctaeHtfEMq9Z0kYgnefq1STZEpnji8Ts51n8Cn7PK1766nxd+dZYLM4uTjpro48ypPlZ1N7J/o8HxvjQNjXW4nJM8/8oFHFYN0dJxOPxM5CR+9MJJxtMaJaMMeDgViyMITsxakS9+egtqpYwlSlz8xxM4wi3zHO05iE73bILsx6qVEZ1u5EAEo5Cajy+WrmKJMkY2CoKAHGi8ruX57eL9sHbn4K+rZ6LvIpHObrKJmSWV2blW/u3GXafbPa/Q8NvAQjWf5NQkoijg8vkXuc3BrAtouI709NR1K7vZRNxW+Eklb6gqsRDlQh6PP0ClWKRSzBNsaJyf+bheR/K9gGVZ6Jp623S8Wzz2b33dFi0v//2p0yAYhI+M8fCeVp54YD3fejlKKS/RGa5x/wN7GLjYz7mBFB/f08Th3hRHxlN250cQyFVgqH+QUCiAQ87REHSyecdG0tEpNuRNLNnJ3n0buTR1mImiyVjOwVgOwElArvHQlgBr16/ib585yJsHL1ItV+k9P0BekxCEZWKEIJJMZSiUalQdIaajWRRB4/IM/P4nNqOWipy+FCXSVM+pgTwzRhMo4HHJROq97OmIc3zMYtv2jaRTWXpfmebE2WF8ss6/++pOzp66xL57tvKtf3ybb/39K3zp03vJqKMwUeD3P7qKdDrHsyeWDmKeHizgdY7x5KM7+ItnB/D76gkGPbxx4jLpdAG1fJF0XkQQ6vj5wXFEASZLLohaWJatfywIAvvWh1i3oou65lYmv/cqo06PXfxaAGlWrlV0uDBrFZRA4+ygcnU+Ps/lC7bOsPCeGXZ9YBzoFiLc1EJ6egrTMJcE31wygaFrWKZ1XS1IsIfw4mMjADR2dSOKIi6Pl3R0almHuGImjVqrznO93gnyqSROj/emFWWtVsMbCt1wQruUTS8aZFkISVYopJJL+Hk3QnJqAk8giFqtzN/YdE1DVpT5KvH/9Z0zt3y8W8VcW8TSayh170mb7n0HQZJpCTtRZJH+uI/IpSj9UwXmZHiOXM4yHivhkgx2b2gk1NTEyYuHKOFHm71EL8zInJ/OIJgGfqeAqVZ49eUDpFQXRWczP/zlZdp8Nf7o8fUcOTfNhRn7dS4zz+P39FBMpxgbn2Ek60MSNb70yT288uYFomUnVq0EDg8bGw26Wnz8+myOWMXJ37+RBpy2rubkDB//2H6e+uFbTIyM09XRjN9foquni9ODR6jgoGh6eO7ls3zt83dzYews56fhb54+wKZWiU/e1co//nKAjzgdFAoVDv/sHKpu4hQMLscM8s8eYLIYoN6lMTo8Oas9bEM2q/gVnbTl5WhflmxJYyhhkDc8fPPpo3z9U9u4dCVKtWjx6Efu59TxC7zYa3A5ASAhaGVMUUaYrcQIksLBw72UqxrRkhMlvHzLXXR65yXS1GwMdA29mLEHP03DHqATJUy1aifAkvKOqqYfBCgOJ4H6COV8dsmwmK6qpKJTmIZBc3fPDRPi1PQUgiggO5wE6uoJ1DXY1vPXiWWxkSFESaauueWmg9HLoVIsoqvqLVdrfeE6KsUiXKMSJ8ky+XQSUbrxHMON4vK1iI+P4gvXz28ErpVt+03i5788yfmxCl97fPUSh7oPC5xOmQ0dAY4PljgzXMKySrYqDDCeFfj5631k80Ue3BahZ9MahseOUFOrFGaHxTOai6cOFhBr05hOP6uadI689hbjSY0rOS8OSSUVP8COlX72KE6eO1GYT9juXuuiucFP37le0rqPN89n+N+/vJ1UOsN3Xk1i6TUEQSTkMrh/W4Rjl5JEyy6eO1EGBARB4Mpoki988k7y1SuMjcbobPKyqaeO1Zs3kM6d4cwsE/vFE2l+vyVMZ2cjx2NF/v5nF+n0lvhXT27gl2/14/H7CU7McGa4xGD8KOmKAJab5395mqmcAIKLqWiKQrHKHFfCskwalAppVWY0aaFcmEJwZMHh4fkTeR5aX+bzT2zj6Rd7+doTG3C43Pw/P+xjepbvYBkaolEDx9Vkd2g0TjGbYaYwwng1gORa2pEURGmepmZqNVt+VXIgB+qxLAtLVzHLOVtjWJRsSbZq8T1ZL+96Qum3AVEUaWjvWD4ptSxcHu9Np5st00RxulCcrvnnegLBeYe4a5FNJuatM98JcskEbp+PYubmrineYAhD16/bvmto76CupQ1vMEQpl13CeXO63TS0d9DUtXT6eDmkY9PomkqlkEdWHGjVKlq1Ol+hKKTTFLOZWzrWbUNgkfucWS2i55O23NqHBJZlcc+OVh6/bx2qZvFGn0q8cnXgq2C46EtKKA4ZUZZ56pk3+cbn9/GJvYtbQoLkAMVNQFEJh/xY7iCjFVsWyOd1cu8923A5FcTZXMRtlTFMgdh0AkwTVTdwWSXWt7t5+82TnBsp0uyu8u+/vJX19TWa/TpbN3fjocJdqyTaPFVcRoGdrRr3PbiXU0fPMJFX+O6vxnn2jRF+emiab//gOGXhasBzuVwMXuhlKl5GkGRESaanpxVZ0PjdJ9fzi+Mp3hoSiJadhJQqf/a7d/Hknghf/Ow9NLtKpFUXTx/MMpq7mvjcvznIn3xlH81igj/60l4aI0ESVRcYGo9tC2CpFdRqlVjeZKx/gP7x7Oz3blJvJfjjT63l8e1Xs5tNbQqPPb4f0R0gqS7VBV0OotOLo9mmRpi1EkYpg1nOY5kGgiAgeoK2tGAhYetvfwgRjDQuOyxmYUuZ3YqKjWWa+EJhzFn5R9nhoK65ddlht3LB9rZ1uFwYxjtzSyvncyhO5y3F3WBDA9VyeVkaxtygXF1LG2q1QmYmtmSwraGtfT4u3/S8Cnm0Wo1yPocoSkiyMqtKYa/TWrl80+G5dwNBEBC5Gneff/E4z75wDPMm980PEjZ0enn4/i101Uucj8nzBQIAJAeXExKq5SDc2MjPf/YmzREff/LF3QTEq9VRQRCwXAEEQyMSclHf2MjlrB9TclFRTR66bzMNQSeSPMthNWr4hRLT0QymYVCsaIiCyb41bi6cvcSvj0xg6Spfe6iFT+7xUyeXWb+uneaQgzV1KjvbTMxylmYxwec/eSdT45OMJFR+fS7Hs4fi/OxYku/84Ahnxq663bncCoV0muGRKABpzcWWda1o5SKfemIHhWKF7x/KkTSCTCZr/IuPrOQrj3TyxU/vZ88aP4Ks8OL5Gm8PX93Edvpr/Kuv7ufOHjeP767nycfvYChWRRAE9rRrrGj2Uink0QyJ2HSci72D8wPyHqHCQ+sd/NkXts4P5il6gc9/4k46u5oYznuWdOGWhWXhbFqJ6HDZMxuZaYxyFkO1fRukQAQ1M42pVtCy71xOdw4fyMrwjRCMNFIpFqm/SfVWkuV5zu2tBHGn202tXKFavH37S7B5yvlU6paD260YfqjVCoZhoKs1XD7/dblsYOthlvN5TMNYMvktIOD1B7EsC7fPh9vnIxufIRObRpIVFJeLarFwnSO/cxilDILissnvs4R4U60i+W13pQ8LBEHghYNTdAXH+cqDbbxwOEbeWJqEDcZquKQ4OQKcuTBKOldlkV7OLFZ1RWjq6iJ9zC4N9IRU7lhfx1D/CAcu5UkTRtSK/NEXthCdjhPyKeiazmMPbOeHzx9j89Y9HDjSB0YFQ7dIpzK0hCT23rWd7//4IIpD5oF7NtN/5jwNTQ2UikV6LwxyZFBl/3o/2zZ18e2fXKQi+PFLNX7voQZeOTzKWNlHa0ika81qVs2c5/g0TBYkDvYmWRsRaWrx0Bk0GK9Ai7vCxx/dxuiVYS6PZZHFPh7Y0YxlmgzHyhwfv7qWk/E00YkJFFlgbHCEXCoLuBBNlfqGCKZpcXLMRBP9nB7McuemZhqGopiizL137yU2FSWbqzC39x9Pqhw8comReI16RSevKmizusxmtQiSsmTg06wWMapFBFFEMJx2JVgQkDxBBFGyJQVFCTnUgpaN4niPeGwfBCgOJ4GGBoTZitaNUNfaRjmXvSUKQDGTIdzUwmR/Hz3b3hllwDQMitkMgfqb87nniiM3QyGdJtzUTGYmetMqbnx8DEmW8QZDiwYCBUHE5fWh1arzRZ1yIU+1WESr1dDVGqGmFnuOpPm9q9xmUhlKpQpPPraLJwwDUZIwTZP+iRK6IKPVqu94MP39hpNDRTKZQ+xcXY9rtMDF+NL7fKoicez0EEnVRSleQbkwTFmXlpQJm7w667dt4dixiwiyA7dQ4aN3NTLQ28dEWuPMjBtBUrhvvYM7d63m7OHjKC4nLfVudprQ3eonFA7w6sULuAQoFMoUMxk++4k7OXH8MqcndL58byN+j8SONSHCjU0MXhljYLqEYJn8H1+/g5/96jyXkx5KuRqf3V/PTDzHW0PgoEx79wZESeR0QkMQBN68VKDdXWKnz8emLh/jl2394y8+3EWtmGdwMs/4RJxtG7oQtUGaWxt59lACQ7LXfzqvMj4wiIMa+XSFsUGdmm6BA+oCTjyBAK8cHKCmBHntUpWP7mnkES1GVneweVUzarXM9HQC3RJBAFVw8/qhS2QKGm50FMkib9jrzNI1TK2C5L5GntACNTGOZZmITg+mWkN0K8j+BrtjZ+iYlSKujg1o6XdPs/rQJcPALas73M4AXK1cQRQlPMGrFYxcIo6ha3gCoWUnn689p/dCdWIhZIeTajwOWDdMhAEMTZsfGLkW4eYWTNNcdIw5GaV0dHpev/jaobp3A6OUQXT6MMoZ5MBVWorkr8cophCv0Xv9oCNZc9HlsGjraMYhRWGZQtfqVi8PPLiV2E+P83qfhmXO7xHmYZkGmUyOX7x0mLGsBBLUBxys6OkiOSUQmapw/7ogB8+UOHthjEqpRFujj1VrV3LhxGk2rGvnr7/3Fh31En/6lf0cPzXId15LsjJk0jQ4SUZzkdGc/M0zR1jTrCDLaUZmKhwakxAEF6WyRjyewphtp8kSKILJJx5ezxvHRzk3ZeE6O8BIevbERYULUYhlqmzScsQrdsU3XxMZHk/TOxDF7/eTzpUJhfzUhYPI0TwbGkU2rAjzi+MJioZMS0cHXvcYnT0rKNTGYKyCqXj5/tsJNFPAkDx0B1XWtrpoaong9ziob2vn7dcO0toUoq3OgTVcQZAUCoaL1y7VqJN1/vjL+zl2oo9f99bsZFcQMMs5xODVNWmUssjhFnvzJkoY1QKOunaMammeJmHTIyxqsUEcTT38c8Otck9FUbwlFRuwnTKzMzFcvquxtVoqUS7Yw8G3Mkh3M8m3dwJRFMkmZm4paRQlyXbK01Tg6udw+3w4PZ5Fm4dqqThPlRBEiWw8hsv73t4zfvBSL4mKwh9+VKKptWn+83z1YxuxTOtDkwiDbfoTzVX46MoOJhID2IK1i+GXazz6yF2cPWebjvQlSiAsHRK3LItXf3WE3qgFuHFJFj2r20lOWuSNEg83OMgWqkzMlPBeGGQ6VWVXUwuFbBY3BU5eLFIsj/PlBzsINzby58+cw+GQCUWixHI6gqTw8yMx2vwae9ZHGBqc4Fdnc5RMFw1Ondh0nKo2y8vHxOd14WnRaQjDc8c0jhzvp1CzmJv/mCg4mcqCMpBmNKYBDhBEroykEASLdEWkXKmiqRoup4TXo+AXKzy6t5Hjl5NMpRWCkUY8OQ1Fkelc2YbzaIoq8EqfwYH+AcpCAK9UZf9aHw31fpySzr7Vazl28CSyWaO5w4tf1kgZLgRJ5tgogMIX99fT2tbM//vUaUyHz84F3AGMcm4x91cwkYKNWLUStdQESrAZs1ZGdNqDhHopg6NlDdWJSyh1755a9IGkSbzXsCyLTCyKVqte9zmtq1YjiAJ1LVe/dMPQqWtpo1z4p5PmWYhCKonsUG6piuwL16FrKsHrmHlo1Srp6BS5hO2M6fJ47cpHSyuRjs7bvqno+QR6PnndlrFlWfMmHHohZdsvYldRZX8DonJr7esPEk6Om/ynvzlEorz8ZXdqpMrf/fAIA0lYFVb5lx9pocllr8l6Z5V2b5WwXOaTH9tHe0s9luRAMFQujWQ4e+wUnkAdgqmyadNKVjUr9I7lefjhPUzHsgz1DYDDw513bCAc9HLH9pWkpqeYnCkgCAIjOSc/OJwlq9vTxNGKmzeHJZ46rnJ4XJmXsjk5JfHMoTyqYG8kJ4tOfvjqMLWqimSqlDQ4PVJFMGp0BWow6x+fqLp447JGdZYn3RMRmR4dY3N3iI8/tp3JnMgPj5c5fGaM3TtX0RqS6VnVhlOyuJJy8H9/+wB9OT/ffOYUlwbjrKtXbbdIwUvII3HPaoUNHS7WbdnIhSNHUVWVH//0ICcmZOrqwrR1tCBc42Wf1xQOHTjF0KjtHiaIMka5gFkro2UWVBokBaOctXUvHW4s07LbcpZlywJJkh2kFSeultU33Zj+L9go5bLL6rrPoa7Fpk/UL5AVKxdy1DW3ztMs/qlRLZWwLNPupt0CHSJQX49p6MvGaFEUSUenSU5OYJomgfoImVgUjz9IuKnZpo9cM8h3I0yOx/jm9w5y9NjlZf9uGgaNXovusEVNVZkYu7rGW1obab2ORNsHGVnDzX/9h5McurT8PTpv+vj2M0d47UwKFxW+/lAje7vspFO2aqyt15FMlQd3t/LAw3dQrlbte5du8JPn3qShvYPpqRm2bGxnw4oA/UmRoN/F3v1bePWlN6hqAjt2rGFNdwNruiN43A4G+kewJCc1XDx7vEDvLH0jb7i4nPXz3UMlnjtVpWTasTJZc/HdN1KMzFLHLNnN3748Rqao22tL1jg5bpErWzQ5CnhF+55hSk7eHtAZL9iva3TXcEsG5eQMn3tyF90rWvifL0c5PKji8/nY2O5g1epO6n0KqujhL390gZdP53n5RIp/ePY4W1cGcFg1TNFJxXKyb6XEhkaLXXdsZnzQ3mwcefskr1w2cHq8tHR2EnAupd2c74ty9PAZdHFuA22hZaOYWhWjYnegLcvCMgzMUgZTq6EEm9ALCSy9YlPUamUQBKxKHkfjivdE2/1DWRm+XWRmooQam8nORK+r5yiK4pKWmMvrIx2dItR4a84n1VIJtVohUN9AuZCnVirh8vnfccXY0DXCza1kZqI3FZi3B1Gk+UEV0zRRK5X5inYpn50/Ftj86Rsd86ZDdZaF5AthVArL77gM22rRrJWQg/UYxTSi4zcrIfRbhyDw6fs6cDkdPPVW4up0rGUREIoULCcTRReIIAoqDqdz3k3usd3NdPd08H9/6y1e+/VR1q1soMNfo7vJy7137eKNVw4zNDpDuiLMW8YWaiXOnh8iVnZw+IyJaOqcGjlErOQge8C+EabUBd+5qbGyzmI8Y6ELztmqlX0CbquMhoguuGhy1fC7BQbSCoIgkDYDnL88ye5NLbQ1FljV045aq9LQ0sIPfnaKgWXomltWeFi5YRcT/Zc5dfQsV2Z0BMGJIcgUC2VODBR4+/JJZFniK3eHODdgcGFGoGh5+eyeeiKNDVz67kkEl5917V7uv2cTz/z4bcLePpq6e3juYIysGQQB/v6lAXRLAkdo/v1bPTU2rvCyqrOO1uYaQwdziA4XCGEstYJl2Mm2pVawtApmrYzk9mNWcjgbOmwNYkGwOxmFJMo/jVvihwa6pqHValiWhdOjLTunAUtd34INjfbA3S1WTE3TJDerviNKEplYFNnheMfybJVCfpa+EL3pc9PRKVthZIH2dKVYxOW9qsUtiAK+cAPlfA5fKPyuKBGZXIlEzUU8s7wd+K/fPM+FlIeP7Qrwk9eHKehO/uSTTsKR904S8P2ITZ1uHr13A9974QLx6tUii9Oyv6eZql0Nd1kVHA5lPuZu6XDy5KPbee7FU7x9ehJJr7B3XYjLkxX+6Av7OXbkPGOjUbJWkOjYJOH6MIIWY2AsjdOR59B0gEPRCvWnL1LUJBBgZLrAaFZaxJltclVQDchodiyeU1USjRpuSaeEF8WqsqHNxaWpKprgQnJ6OTtS4p5NIX7/kxvo7Zti//6tJKenGJ8p8fPTS+mc3WHYc8cmYqPDjF2+zNvnMgiiBwSJYtF2pfuvf3eYquDhvrUy4UADPz2eRRNdrOz08Mj9W0n99ASDaQg7NB66bzMnTlzmwBvH2LlrCz976ThXcj6QHPzkZJFXTvyavONqbqRYNe7ZFEDWDfbs28Hlpw6T0hTkYBPk4ki+OuYst/VsDEF2YFZLiC4P6KrtWFfOIbkDGKWMbdL1HuKfVTJczueolooY+mLerNPtIRuP3ba0l8cfuK2deymXJVBvS++U8zmau3uYvNJH+5p1t/W+c9Jx3mCY7EyMUOTGO3rLsgdcFKcT07T788nJCTyBAPl0lUBdPaFIE5nYNC7f9ekJ+XQKrVqlrqX1ptxAyRuyxbOvs2OzDM3mArn88xIpH34IFIoV1Jq2iP+wMZznkXs3cvxClMPD9u9zJe2g/ydDCLIdvC9emcTtEKkLupnMwSpdY/eaIL2DSc6eH+LklEx1qoplhXjujVFSFREV12xQtB2XLMnBTNWBIEFKlRGMGp/Y42E6UeT4uMjaiMDvfGIPL796juNjC9QctCJ/9DtbGR+f4bkTRR7bHaFr9UrOHjnO2wMm2ZLO3ju2UcgkGYtXGY0PoQg6wZEsE2mdhWFmbu0eu5xBUEY5dTnNYMaBPsvZHZqp0RebQBd8CHoBl0OkqaUR/1QesDC1GqVcltTkBL/3xArOXpggm7H47o8OM5awmEjHQXZRWSAHUJbrWBmska9VSdXs73NVq5e9d27iwOtHydbk+XMUFSeGrmIUi1iGjui2bX0t00Ty1aGmp+cDtiDKtszah7CL8V4iPj6KKMn4QuH5zbcky6jVyvx/3yokWb4ttYXsTHSe7mXqOg0dncTHx95RMmxZFqGmZrIzMdy3EPdNwyQYiVDMZgGbVqc4naSmJufl2WTFYSfY1+FQz9FC3L7ATYsmmzf3EA5M0XQdF7n6oIewPEMw0MyaDj/5koYv8OHnttc0i1Qihb6gSOmlzCf2BHH6g3znlRiCJFMV3Pz1LyZAkhAEGJzMMXZlCL9i0FeU0RFoq3eRSFc4e36IgRmNX/fnABcvnckjCTkEp49j4wDWfD6R1r3zt7exAmxvN1jV4ednxxIYqsbvfmkP0xMxvvf2Ygrjg1sC7Ny2km9+/yQbOl089vB2Nl7o5fxYhd4ZmdWdAbrXreHYgZOcH6tR0c6h16pEcwBXN2BzMffMhEr34Dhj0wX6Zywyur0JKOkiP3h1hLLoB0MERSDkdxGJhBAsu5KhlkoMX7jAnjUBWqfTqGKA7/3wADMFAU2tcWbsLGk9jCDNqlEoXiRFosdbYzBjdxZDToP9d6znzIlejp/sJ69K89+L5A2jJsftRLdSACwwDURPAEuvgWlg1kqILh9G6TeTL/yzSoYN3cDtD1K6hjfrDYZuWXj93cCyLPKpFN5giEImQ2JyHOE2W6qFdBqtVrEl3to7bklHWBAE/PUNWKY5L+AuCAJqtYJjdmCkXMgTqI/cUL7IUNWr5iCzFYzr8YgF2YEkX/9Yi2TUPmT84OtBEAR+fVFlXZNGQNEpGBJKNc0nnryb5PQkqVQOhyXNUxCEBd9fRVdobG3G5ZhmNO/kymSJhx7cyYn+I7MJr2v2PUSileXXhF+qsnmFl9NDZao4kSydzo5GdN3EMZYj7BE5cPAc0USOz+9r59D5OJNFJ5rooPfyBMlsGZAZHpvBqhbZcscuzkwcI6v7+Nufnkc3BcrWXKVZgRl1/rwA1jVo7NvczE8PTjJY8DN4KA/4bUchU6UnrPLI/tUkkkX6RtM8/uBuvvv8Wf6fp89gyW4EUbKNOCwFHZn6ujBb1+t43Q6++exFfv/TW6nkc7x2LkNlgXO428jz5U/fQ3/fCD86lMIvVjnUr9A3fpiZmm37HZBr7N8Y5kRfmoTpAVGy26G5OAggekKosSEczavmpX1Eb+i2dXX/OUIUJTx+/yIlHkEQaOxc8Rt/b8VpW87LioIjEGDyymUs07ptLfro8CCSLBNubrnl6m1daxvFbOaqkZIgUC2XmCs9qtUKssNxw4LKHC0kE4veUgexvev68pS7d61l9y7bXKOn553Jg34QcSXtIH80is8B6Vm39cd319GzeR2v/vw1grKTvGV/twsNIGqmQqChHm+ygi5p/PJojD/5F/eQLF2ZjblXn5vTl98QW4bGri6ZWFZjqmjH8/qAQldXE8qxKD3NCocPnWMypfHYpjC5QpUjY3ZOMDFTxHFxlKohMTqdY+JKPw1NEZqLKXpnarx9IcfZ/sMkNQ+CoBAfMlmYBIOt7PCZe1u5cCXBmWiAH56osDAmt7grbGxzsPuO7fz9Dw/xhU/v5MTZEZ4/kUOwMqDY8VxFwRAkfMEATapK18oOfv7aZbb1uLnnzp288top0lEDFmis37ctwubNPfz53x1ARyRZlvirpw6Rq0poogvLlLh7jUiuqHJhRkGQFSzLQE9PI/pC6NUiomkg17UjCGBWSwiy8z3RFF4OHyhym6Hr85zWdwJ/XR2moRNqbKKQTpOOTZNPp8gl4mRi0WX5a8Vshkzsxi2xciE/b1RxIzS0tVPf2oauqXh8PtRKmdae27M2NU0Dl8+PZVlUigXSs/71AFqtSmp6ym7PXQOn271oyC/S0Um4qQVfuI58OoWsOMjGbyxPIkoSqempRbap/wu3BlGvIBllWrw6n//YbvZusDmEpiCRmp4kE43yyF2reXLPgoqVobG5xSTkqNGXcvDnf38ATTdZFSizqsVN77Hj1Psk9nXbg3VzsCyLdfUqWyMlfNJVHvy6dg8P37eF7ogdsNa3OSkkY0xNTNMZsnj0kT1UNAFRUlizdgVhn13ZECQHr1xSOTMtszKssqqrgWMXZ/ivf3uA8YIdWPOGZ0EivDwUSSDcEEISBFo8NZ7Y7p3nt+1sF/jSZ+4mOjHF0FSWimYRiybQDAEcvvkqiyAr/ORUhRf7Ff7TU2c5d2mSQEOElno30ckZvG6Zu7ZE8IpV7lmj4BOrVEQfz/3iJIfPRvnIBpl/+/W7aQ9BXPXMc6GbgyJ7dq2lo8GFIEqIsoKjrg0EUIJNCKaKo9nW0LVM3W7plX5DcoPvM+TTqRvOU9wMwUhkViLNTXJqktT0FJVikXR0atnYqtWqZGJRapXl2/1g0ywysSi6pl33OWDH/HBzC8FII/lkArcvQKix8bYSYcuykGR5XoYzOTlBcnJi/r3T0SlS01Pzle45iKK4yBQp2BAh3NQyrx6RTyaxTPOGdtAur8+mPf0Tm0B9GGCZBg49h2VZPL63jd/56Fasmj3DYtRKTF7px+cW+Fdf3IOPq7Mtbb4aPSGVquDmvz9zlr6xLEEhx+N3tjI1cIXx0Wme2ObFJy6+JhqcNfZ1m7Q4cvOqUX6xyhOPbOeODQ2z/1+mpyPMmcPHEYwaH3t0K6tWtjKSEujpbqa96erGqC+p8OLZCoJg8cjebkbG4vztTy7w6gWbV6uJLlK694ZrWRIswuEAToeEbNV4ZJOTVXX2upWrKX73M7vo6qjjwsVRippAfCZFqaIhyM75RBhsnfunj1b51i9GeflYFNOCtkY32YJKOh7nvrs24rPy7Gq36A7ZO47DvUl++tIpmn0qf/qlXTy8LUhS9aKJ9j1DMqrcuXMVG3vs7rEgKciBRkS3HyXQiKS4UBo6kJxuzGoJOdDwG5Wt/EAlw5mZGL5w3btyK/IGQ8gOB1qtQl1zK8VsmkqpgGma1BaWk2ahVisEI403TBSrxQJOj5dC+uZalgBYFuJscL3dylKwIYIgCNS3tVMtFglFmrBmdXrL+TzBhgiWZXPTrr6dRWYmRrW0mEc0996yLFPKZlBvcsMLRhppaGtHlJank/zHb2xfVCn+X7iKT++L8IcfX0s0o/LCL09zos9OpAxnkP5Lw6zdfQfZbI6+sasJVpNX41OP72T/ugCCIHDfrg5+/wv7WN2i0L56NcVCkT2bmtizvRv0q7+dpVZ44v613LNnJR/ZdTW5zuWKHDl0mr5oFbdQpdlnoDgcfOyTD6JqBs88f4JTwyVG807+y98c4Pz00rUpAk6nk899/iGcDmnZ9SsYVRxqBsm0z0mxaoSkEudjEv/1qfMkVRftDU62blpBw+z+TNV00rFpBifynBozGcw4+Ic30/gUg7vbyzi0q8cTBFvCS3B46W71k4nPUC0VeeG8yq9PxnntdJyeJgf3372Jlc1OBFHiUkLB6XSwZnUbo1eGyFxzqRcLJV598XVOjs627j0h9HwS2WcbbCihlvnEGQSbHiErizYhH0bkkgncXi+55M03+9eD4nTNu6wFGxoQRIHU1ASGbixJIAEKmTTh5hZKuetvNvLJOOHmFvLJ2yiOCAKyotySfNril9nuoN5gEIfLjSjZihjV0tUYG4w0kr5GF7iUy5JPp5Ycaw6GoVPMZhBv4Fjo8Qeuq8P8v3BjbG2F/+P37qbTX+XVE1P85FfnwWEHnPMjZSRFYefdd3H40CnKxtUq78O7W/jcR7ci1PKsbHbzjS/cxd51IVZvWkc2k2f7+kZ27lhNxL849u1c5ePhB3byqQdXExBn14Ykc+r4BY6cm8IyDVaETaqFLHc/9iB3b23iqRfO8fNDk1gOD996vo+fHFnmOrMsBKPGPQ/fzebVEZCWdlwty0SuJHEatlGXZRo0OEoUNJk//9FljoyYeCWd7Zu66Gm1O7GCpJCcniSTyvHz40mKQoinD+boj+rc363SIKRwW1fXuCAICIqL7mZbarVWyHFpWuPZt6M8/3o/OiKPPrCZ3evtxH+m4uTchMaD+9aSmp5mPLZYnlUQRE4eO8evDw4CIAcbMQopJKcHo5hCCbfMD9KLDhd6IYkgybZ6z28AHyiahCRJ5JMJFMe75+jNTe46XB6C9Q2kpidpXMakQkAgMxMjcB0VBgDTtK2Pl1NqKKTT6GoNQRTneWG+cB2aWrtly85rMSfM7vB4SE1PzR9nLmkvF/K4/f55u+ZsfIZgQ2RWqmepBJwnEKSczxOKNFLKZW+bMlLMpNFqNSSHY4k9tGJWUUSTMv+8KxvRRIF8qYaleDgzJbCwVfXmhA/z8CUmExWGs3ag8wkVSoUCsbERvLKdcA2PJTDUMm9cLNM/foDH71uHw+3mtTdOsbO7jjPjKpbkQHR66Ls4QEPQxcUrGcCPvzbNzlUraG5vIhq/iMvrZt99Ozn59hFGp7JMFmXMss2dFQSoygHWNWis7fTz8okZIn6ZaFFkICWjHhlnxWievK6ACDvaDDqbvEzE8lyKmjyyw8uKrlUkkjmePpTnoa1BdmxbxTe/dwBn0ElnRKen0cVoXx+lkk3xOB+Tif2yn0fvWklPocxPT1UQBIE714dZt2UDHefOost+fnRscUAtVEzc6RRf++ydnO6d4K0BO6RlpmoUnjvOWNoE0UmTu0ZbWCQVT9A/lpvXuFxVp9HR6KW7qZP2npWM/t2LKMEIoxmFgMtNxZAxxMWyYbK/HqOURRAk9HwCJXRrA7QfRChOJ4X0e6P57a+rI5dM4HR7sExrli62tIDgdHtIx6ZvGOdlp4t0bBp5mcR2rmpsWdYiO/tIeyemYbwjJ7s56ThdVTF0HbVWnY91Lq+P2Mgw9a1ti/jAtXIJbzBMMZtZVk1CcTgI1EfIpxI3leZc8hlVlWwibhdGrnFa1TWNQipJMNJ43cLFPwdkSwYDV8Yo1gQymv37ze1FBgt+xHNJImMFDg3Z7pGSqRJyasxETbxOibBPZiZT4+zJXk5fyXB6+BD3rHPR3t3F8beOEPI4CFVqZNVZObOpDG1X+phJlSnoTkSjwM6VsKq7iWpVg+E0n/z4Q/Sdv8iFUxc42Z8lqV+lvuiSB79U5aHtPk71pylUDTRDoGC5+dGbMfZnTIaiZcBFxFXlwR1NDI9EiRZlgh6Re7auJdjYzN/88AR+t8RXP3sXL/36DKMzGg65wr1bm4mNjRGbjILhR1MC/PitKGubZf6339nI379wiazuZkWgxr6799PZOkTrim7+5w9PktWv3r8rphNdN1m7spEt2+v5mxcGyGgekF1850cnKOsi4EQxq+xe52NsZAx/IMDlqImggE+ssn9TGK1Q4e4H9hE82cux/jxFVaDq9+EUDUpWaNFvKbp8iC4fWjaGiIWJ9Z4P3H+gkuHbmbStlcuYpjGfOF4L2eGYP14uESfU2LysJNKtvOeN7Jm1WmV+gGMhFIcTy7IwZ4XPb4ZyIU+1ZFeCRUmilMvOVxkWttBCjU1otRrVYmGeH+zy+sjGY1cjwTIwTYNKsbioAjFnbX0zTU+1Vp3Xx4TFShOf2NdIR3sjf/HMWQzlwz+ssRxCSo3GhgYOnY8RViwyurhoWLM1COGghzPDRTY1alSKRR7YtxpV0zg3kCFf1gGFzetaWLe+m7d732a46OOtU5NkMkVWtfvZvbuHmUwvU7MVz1cv63jlHGndT4OY5fMf30pDWztnj57k7l3dDI/F+MmLp7kcFdAFEUQnmBr3rnMznawwkFZoa/Cycf0KhGqOlWt7eOvEGB0RF7Lk48dHcwiSAwFoafDQs7KNnhVNBM4Nk8hU8ThmmEhUEQSJ6WgawbzMhq4ADz24k6GLl2npbCWXSPKNL+znL753kqrkY6bmpZAvUaqoCILAxojKxGQWzRDI5zUKWo6FzSxBEHjtco2PbffgSGep1PT5v29qkeho8jI6kwSnk22rgty5Zz2Xjx8nEnLBlAaSwrrOIFu3rOTFXxwgFs9T//9n77+DI7uvfE/wc016n/AeKJT33pMseitSorx33Wr3Xr+3/d7uTMRGzMTObmxMz+zr6eme7tdPrZaXKIqSSFESvSmW9yiHqgIK3mQm0vvMm9ftHwmgCgVUFYostqie+UYwopi4uHlx85fnnt853/P91gb5xDM7+NWLB3jy8e2cuzDEq+evuT3NQhQxlMKcSp+WT1aHPhzeeaYdf6i4kyFhwzCmiwI3jxUzPxNEkYpSpm46cbwei5nhuHHTfT0q5RIun29OdwyqNC9RktA1bVFDe7qmkYlHcbg9s8+RdHQKdyCIfh09o6ojrFLKZ+fEWF3TySUTNx2Ok2QLuWRiTmW4Ui6RTSTANGeT6oVQyufx1tQsqBtfrZo3k4qEbqqO9G8dpq6ytMXJ4FiSiqpjMcqz7XmoyqZ1t/oYCeVocBt01BoIaoUHH97Bb393jDIZshWZ1S0WNm5dy3iihzMTcHxI4eLwaXJFlU8/sYmagQRvXapWKnsTdpInE0QKMkhWPr1JYvnmTUwOj7C03U9na4Dnf3mQeNkyPchbfR4ur1FpDDo4cKWI12mydl03ppKnvs5HoSJwtj/G/dvX8NPXr5JQbAgi+OwCy1d2EfRYKJYq7D89QTKZIZFVKKgCuq5w4ewlUskUf/al+zl7/AxLVy1l6PxZPv7JBzF+d5oLEUhpTgqqSiqZQTeg1l4m4LXTe+4K0XiGdFmkqIpz5tUGUlYC/XGWNVgoqGnM6ZgbtCrsXl/P4Z5Jstho9os8vG8dV85ewGK14LMkyWKn0S+xc9tKfvub9zh3+iI9lyb44y8+TG/vMJgmS5Y0878/dwZVWiBfMHQMVUGyVnMeQylgKCUE2fKBucSLSoYFQXgM+N+p2mF9xzTN//kmx30S+AWwzTTNUx/oym4BtaKQSyZwef3zuFSmWR2OyCUT2JwuyoUCdpeLZCRELpmktqUVl8+PVqmQTcaxu9wfKgc20FgdOFvoAREdHcZit88JtjfD9YLswcZmREmmkEnPUiSuR11b+5wBkcUYfiw0zKJND8zdmMjPIDntUOcN1pKKhPEsIKY/MJ4ikS7Nq679a+GjsHYDjmqAy6TSbN60jLffO8fpKffs59MYsLJhfTenzw7y1MP3kU8lSExFcfuD9F4NsbSjnhXeLEfOFbkyksIQLXT54XxYRDJsfGbzSiKTU0zm5FnDOgU7yvS8UlETyGUyhCYivHc+wZeWdOD2+Th/Jc/WZpHVS/28cCCMKGjs3r6Ry5dHuZrM8+6lHJHIUT79yX2cOnwCuySilgroosA3Hm5kYCTOoWGBV85kefv0SZ7aXs+2rSv5h5+dZjhu4LUZSOUi9+7cQDaZRpZEjh88gVbKU8xlCaV0XOEy5emhD0G28OKZquWnaRrsWt+My+3kf3uhvyp7tgB0yc6L5w1gbqLc1uhm3ep2fDaT545kGBjJk0sdJVjjZevu1YxH36M/ZeeNnjJHLsZIagHOJsEri+w/eIFwLMeZswOMTxW5flBmBpLDC45qMNZy8Vk9f8lTWzWNuQvJ8Edh7V6PTCyKKMnz5M6gmggnwyH89Q2kImECjU3k0ymy8TiSxUJDR+fsOYAPNeY6PV7y6RQOz/yYmoyEkCQZQ9dvW+jIxKOzMXcmPhuGQTGbnXdub03tvKG822mzL3QPKqUSbn/gpvrL+VRymrrXQD6dWtAkQ7JYq0ODd0gHuZv4fa9dQVdYu2o5Y1eH2btjDUNXhvjtBWX2OWQXVDas68I0h+hAYMf2VfSdPk0umaCi6oxMJNnQJDIYLvHa2+e4PFGk0ysylYVxAjy0yoLT5+di/0WgWvUXJJlI+VoMzqswcO4s711MsWVFLavXL2fqUBgJnW/cX8OBs2EGUlZWd/lZtaKDk30nmCi4+Lt/fpOvf2Y7qViCkdEoHtlE0zQ2dVhpbavnJ29PcjVl46//23tsbJfZvWMltTU5fnUqz5oWFUkrsG5lA2s3rCIZz3DuxFmmppKcfvdd0opESu8nlLo23HxhysL5SAJBcLC+Reahfev44S+OMZxxwWQBhPnr6OS4yMlxHSjAtGtdwAlr13ZT6xb53fEo0azK4YNnCIVTfPozD7ItXuTihMLVmMQ//fgwU0U7p6MqGEHeePc88UQap91CtqiimgtLLVqCLZimgZ6NoRsGSDIWb11V7/0D4rbJsCAIEvAPwMPABHBSEISXTdO8dMNxHuA/AMc/8FUtgEwsiqaq+OrqySUTs0HqxmQ4OjaCxWpFKRcxTRO720UmHiOfTlPT3EIxm8Xl85NNxmendBeqfKhKeZYnd6vK7+0wwze7xRGL8oOf8a53eqq7n5sluGpFwWK1cadc5IUwYzk6Ow1NdZhGr1SolEs4vb4qhaSmdsG/8Xr+8DtXPphj3fvBR2HtmqaBwybx3M/fI1Wx0NYU58kn9zL0g8Okjernd2ZMY/hf3ubJvUs5ceAYwdoAlYqJG4GP72nFG6xBkETePhXmQkTigdV+7tm9hm//+ADFQolzF4dI5jSY1q70yWXuXRfk+IUwUc1H0XTwek+aSMGKINXzj7+8hFvIc++yOrqbPQRqfYhMEvRYefmVYwwmLYAdU7TRm5CI/fgwNW6Zz358K0cOnkQUrRgVbTppNUGyUcbG4SsF+iavkDddfGxjkGUrOomMjvLe4V7sVonHntjL2eNnWL12I0qxyNV4mON9KkjW6qbO0Gf1NwVB5BcHxpEE5rXD9nQZ+L1Ofns6Ux30uAGCWuS1UzkKyQT1TfWAwPb1rSxd1s7Lv3qTqXCS+3evxH1+jKNjFpLX+TdkNRuTsQJ//sdP8IvfnOJyfOGgPANDKSF7a6kkJwETcomqvfgHxEdh7ZbyOUr5HDaHE0M3cHq9C9IaUlOR6vG5LJIkIVkslAsFcqkkhqFT19hOJh6bpQoIojgbp27EzPCvyxf4QENjtzIiEkQRvVK57Tkcbu/shn8G19MuZqBVKoiyfFfMVtyBILlkck6HrlIukU8lESW5SkezyMTGx2jsWrLgOd6vhvLdwkdh7TZ4LRw+3sf54TwPGwbbdm1hqnieY8NVylkeN3//01OsbRRZ0u7n6P4jWG0ytYhsWRHA4XLhCQZp6B3k1X6DJgd89dO7OHz0MofOhYnGbJw9P0RCdYJQrUTvW2Unk87RM1VVqDk6oFBQJRRqCJ2vsL/nAD4HPLyzk7qGGhzyJC6pzFhI5cCZECXRhwBk5Hq++9IlKsU8/7c/uo/Rq0NMTOVA15FEEUwdQRRQLD56wmWMnkkujZdY1Wzn6cc2EQ9NcvriOG+9c5b1qzoxdIPm5iB6RUVOFnnpVAZhOoE1NRVBtszmCyeu5hmbOspYRka4rmHd5qlwz4Z6Xj8ZJqHMpyeYusrglMJzz7/N3m3d6AasbPWw556NnD56hp+/8A73bltCvTfDT0/pTCnO2U0DooVTgwX+/Wc2Mzo+xYsnC7BAXJ99r0oZwebCVIoYSgktF0e0fXAa5mK+vduBAdM0h0zTrAA/A55Z4Lj/N/DXwIfCbq66vTWTS8RnOWXyAsFUEAQk2UKgvpG6tnYsVhu6ptK+cjVTI0NIlmr+7/T4qoHuJmLvpUIBb00NonjnSWV0bJTY+NhtJ53r2jurRPRCfl5L70b4ausINjbfkluWioQp5wsfaMDweoiSNF2Fvvat0CsVAo1NyDYbxWyG1hWrbqtC8XvE733tWrUcn3xyC9s2tBNwyVwZmuLdgxfJqNftQ0ULOaMqLC7ZHPzitMKZUYWfv9mHv64eyWrl4sUhJqeztgtXE7zx6hFWNgj85R8/jEWW6Qld+4zqvRKbN6/gE/s68YhFNndY+dMv7mFFXbV8uaHLw3/8kydo9YlYHTbG+y6Rq4g8uCHAvVs66PYr2KZvhSDJxBQnV2Pwy9+dxuF0sXnTCn59YICutiB7uq4NDIWLNi5MSQiixNtnpnjvnePEMyqXEzaOhxz800+O8HpPmos9l9E1DZd0jX5wzxKRbz3Wgs0s4RLLdPkqpBTrXFOQaTTUeuhoq0M0bxheM1S8eow/f3Ylj26u5b1xFz8/ngeLnTdPRei/cJHHnrqP84NxnF4f3e3zk1bT0CkVCly6OMCyBok9nfM3qsrUEMrUMEaljOTyo0QHEQQJ0epE9tbeLbm13/vaLeVzBBubUUpFXD4fmVgM05hvaYtpYrFacfl8BBqbpk2FMjR1VW2pU1MRnF4vkiyjVipUyuU5RhQ3wltbP2c4bTGYUQTKL5CsX49gYzNKoYBssdxWJcjhdhNsbL5lclnK58ilksTGR+/oem8FTzA4p9BRSFcNkUzDoFKuDn5L1ltv0n7P+L2v3R1rgjz52HYavALpgsHBwxe4GirMHXA0XVgsIlZZ5EBfhSMDGt//zSU0U6Rl6TL6zl9kcLrgOJWXeP2Vg4yPhfjGU8t45MGNvHoiijqtjy7pCls3dLFncwcbm01c5PnTz23j0S3VLopbqvAXX9vHE3uX4vb6GLt8kWJJZfMSDzvXNnLPugBe4xrlJWs4Kdvr+emve7g0lGLzpuUkK1auXJ3kC/e3IuvVwdMKdk6OGhRNO5cnFV597QThqTSTaTgyAj95Y4ifvjXM8bNjZDJZbJKJoFc3gs3OMn/5iS6W+hUwVLoDKpIoMJ6v2idfD49doHtpO27r/NjmJscDK638x89vZCLv4LvvpoiUbFwcL3Pk4GnWrF+BYfEQTxdYtmE9NZb5hiCyoXKlf5xSJs1nd3lnnz8z0NJTKFODaNlq4qsXMhhqGVG2VB1r/5WS4RZg/Lr/n5h+bRaCIGwG2kzT/N3tTiYIwrcEQTglCMKp/B0MZlisdlKREL76Blw+P8HG5gV5Y7Wt7Ti93jk7a4fbQzISomvdxlnBdrvLVT3HTYbYvMGaKsXiNvSFhSDJMi6/f8FJ6eshiiKSxTLNGVvgIbNIZOKxamAXhDlanrdDNpkgEZpcVGV6Bvbpe+mtqcVqd5CKhHH5bs/VuZnShF5IoWXjH5ZM1V1bu9ev2xnThcWgInv54S9P8PqJCPdsbmL3ztWkogm+8WADuxpSCHo1IdQkB1aXi01b1tLlKvLNz+5iRVc9V4dCKIrCsdFq1RJg/bIa9t2/hVK5wsTAIAPjc+9df1zkd795j2SmjKoLjEwVeO+dY4Qy1eQxkqow2j9AIl/BMMFT14wkmRzpGcVf38jerR18cs+1Fq5TKPHMjhoKZY1Xz2T4h+dOUhLc2OxWZGnhEBIr2xmIKESiaQxTQBAloooTxRrkzREXubLBvge20mGN45HKGKaBqumYpsneNQG+/Mnt7GqtsKp2fgXv7OUwqakwHb65a33vMjt/8rmdJKJxMtlryhMAS+otiFYn3/v5McquNt4+eJlTV+bGH49UZk+7yje/9AAnz0/Q0tlO0D8/yIo2J7K/ETU5gZ5PYvG3IHtr7ool6HX4UNbuncRcly8wSxEQJYna1rZ5w1pQnauw2B1z+Kn+ugaSkRA1zS3Ut3fMVoFrW1qpbWm96YZhRgf+TmkUmqrib2i8bcwFkKyWmzreLRalfJ5UJEylrFS7Gubi4rdSKpGMhCjlc7c/eBr+hkZSkRBWh4NAQ2O1I2p//8NDhXyBf3nuML99/UNj1Pze4+575xL85FcnaG0O8vBD24jGsjy9s55PbzRwq9da6rrsoHPlStpqJL75iQ08u6+L0/1pEuFJRjJ2+pPVddLsNXj4sT001vnIpTNcONuHIV/7DAyrm5++dJJ4IkOurFPUrby3/zS9V6uForIhc/XKEPlCmUt9o7SuWE1RMTjfFyZXVFm6rJNvPruBoFxNFE3TZG+XQWeDgzMRC3//g0P0jGlY7XasVsuCnhMVwUbPmEIkmkHRqusxZzjJmy7ORN1cjZqs2ryBze0iLc4ShimgaRoG0OEz+NKz29m7VGbvUhnZnDsnMThV4cKpM3QE5sp41tkK/Mev7sZlMYhE4uiIs9/tGie0NNfy5js99EUNTvbn2X/wImnl2ndPMCos9WT591/aDoJICTutrQ1YhLk5ia6WsDV0o2ajaNk4ks2JNdCMfBeHlz/wAJ1Q1Rv6G+BrizneNM1vA98G6Fy3YdEZ4PU8tVI+TymfRVdVJIsFtVzGYqsG22BTC+INXKnFcHIXwmLUHrRKZd50ssPjwdA03AtwaG9EXWs7uq4t2DJcLAxNwxOsoZirUkAW6+ikVZR5Jho3opBJo5SK2F1unB7vHHrG9b8z0960u9y3lQEyynkMtaqwoSslRLur6jLzr4w7WbvXr1tb07JFr1tBEBid1uJ9+eAkQfsIqzv85GJT7N67ifaxEOl0nlLF5PSFcRQjTKRk4+DhXq6GCmTKItbLo5SF6j03lTwTUSvOSyOcnnJydCqHIMyly7hlFbvdimy1YgoCzUEbe+/dxOAvT5LPVyu43z+YRaxo/HG3nfBUjE/trqO+fgV/9939bFoemJ4Irlab3VaTVas6iCQKDKcNVAMQ4du/m6AzoNHpFRnJXlu/Xlmhu15iccGlrQABAABJREFUdbMPX00t0UQfg8W56/v0lQTjE3G+9Ll9nL84zMun84zGJuiut3CmP0Escoit65opFRUuxcpzkqd17Xa8Xhebu1VGLlw752S8xMjAMKahI6g5NtVJaKKN82EBr9tObUMtGTWGIEqcHAewYFRKPLjWRaWYp7HOTUN9kCu9V8kZDv7ri30YgjjrAgig51MYlSJ6KY9otWEYBkYhiez0z7FY/bDxftfuncRcm8OBzeGYOQeJ0CSiJKIqCqJYHUSrWhvXzh43g5mu0p1iMfMNWqWCZLHMWRO+2rrpOHb79ww2NlMplxYVn2+Gcj5HoLGJVCSMv65h0eZJxUx6Hg/5RmiqSjo6VTX5aGhEEIQ5G42Z+JpPJWflMG93r1VF4dKVcZrqvfzmncuMRvLoxu9Hru1fI+5mNDuZNIynSyR+eZgmn4RZKeHzuviLL6/i+JEeDF2nWLLyyptnGEmKvHPoCoVShf6Mk/DvBsibLgQRTLVEpqBz8cIgQ3Gd/UPVAd851VNDJeCWsTtdYOZxSCo7d27k7IURBrMqmmDjl6cVTF3lnm6ZcrlCrQc+/sUH+NHzB7HIYyztaiSnzriymSxpr8Fms7L/yjgp3Q0SvNuncap/mLWtTs5PKBgzszi6yoY2mVpZZ9nyNupCUX59ae49GYqqHDxyie4WL088uoK//udDfP/VIda2u7g0muGNd89TazNZtaSG4VB+dhgboNNfobm1E28qzYWJFKlpil9eETl/5gJ+n5N4JML6ZhAljYuTOjYZmlsbOXw+ApKVsRyM5TRMJJb6FdZ0eskkCqxfv4LJ0XEmowXOh0wO9fbMGbY3lAKYUI4MIshWBKsDvZDExLyrBYjFfIMngevHWlunX5uBB1gL7BcEYQTYCbwsCMLWu3WRN6I8074rFnEHgmQScVz+IKZZTd6SkdAsj+3DRCI0STGXnUcTcHq8tw20akUhGQlRyGQQ79AG+kaYmKRjUdyB4J1Zm0oyyXAIzy2S/kqpNNtavBWUYglPsLZapZ6KLDjlDNUKcUtQRHL50fJJrMFm9FwKyfP+ZOZug4/U2o1X7Cxb0siG7ZtQdJ1EaJJyPERznZt9D+5gRVcN3W1+TKB/PMtn7u9gR7vB07ubcQol2txl/ruvbsEw4Dc9RVShqlO9okZlTV1ltgX46JY61q1oorEhiIRBpqAyNDBK4boi6yOrZL7+aAvldALBUInEcoyMTpHHRUaRGI5WKT6maeK0SXz/ufco5AvsWSLgpMCGZhPBVHhybxdP7+vGUK+dfEOnm/t3dBNsaERVFLILuDP1JSwcHBJ4/d2LnLqSRBAE7tvYyKee2oJVK9DZ7KWpq5vJZGVO0mMxy9TXB9ENg+Pnxrl3qci6xmqFeDhjxWJ30LViKUvbgzz15C72bW3FbuR580KRv3+hF0W4lrTV28v82ZOtdNZZWbmkjhVrVnDl0jDPH4jitBgsr9XxX3fpeiGNaHch2T3ILh+iw4OpKVj8TRjKfI3yD4iP1NotpFN4a6qdONlixTANSvksnmANpXyB6Ngo0bGROW3oDwP5dIpCJj2PljCjDnQ7ikpqKkIyPIkkWz7QtVrsdlKRMDaXC1FaWG97IdjdVRMN6y0qu7lEnGBT84LD0XOOSyXx1zVQzGYpZNK3pH0cOz3AS6dy7D/az0TRQXOdi88/tWFR1/w+8JFZuxXs6Mjc/9BOxkdDGLrB2OWLtDf72LBxGY8/uh2vrNISlOkZVdiyuoEHulSe3tvGiloDUSvxraeWcN+GGl48lWc8Z63OAVnK7OmWsZjVzciqRpGH9iynubUBu0VANSRGRyanXTur6PZX+PfPdNDkVikXsuRLJgNXR8kZNoqmg6tjGSpUk9uAVeX42VF+++4VntoWwE2BNfU6QZvK1mUennl8M0sC1zpjtfYKH398M/W1XixWC8nsfOZJWrXxzmWFE1fzvPz6WSqym1WtTp54eCNLG+14rDrLVy+lUtEZz83NI1a1ujF1nUgkjt8l8PAaG7KpUMLBaExlyaoV1PjsPPnEHnZsaGF5s43RnI3/73eO0p+4ViQwVIUv3BNkc4dEjQv2PbKXidFx3joTYTShs9JfpMkvzfluGkoJa20bgiRja1hCJTqIJdgKd9DRXgwWkzmdBJYJgtBFdUF/DvjCzA9N08wAs5mMIAj7gf/8YU41u/z+qqpCcwvR0RGWbd7G5NU+appbKeWz+OsbSU/dmg92t2C+zw9kZghwanioSm0QhPc9+LBQVeBWdqOGXm1zLKYV6fBUh0hcXj/FbIZysYDd6ZpX/RVEkXw6haoo1LV1kE3EmJmyvRFrugL4pvL0Kg1ouTiW2tbrDA3uKj5ya/f0pQi5dJr25hqcHjdNS5bw3usHGRxPY4oy+x7YxqkrRxEFEbvDjsdto2tJC7ZTU1RUg9DQEDVyjqu6Z3rwzOSejU24PS4u/LwPZAv5bIZ8ssIbF4fB4Wd1wKS5uQFDj1SrpqKEaRrYLDL2gJ8TV4YYSpgoskCDV+DJB1YzNjRKz2CWqxNFvvzsPQwPjoNpUNdQg6Fe4ZFHNtN++AT5RAxfXS0usURpWhXi1GCOVPIS2ze2c6E/TlRxAvPXo8ei0R9S0U0Bn1zijVNlXOenqKsPsnzNMt568zhnxnXgWuJQa9doWrKUsyfOEtb8fGHLUsbHI1yIZBEMhaOnIuzUFAZHk5wbOkaiCGXJS4tbpdbj4FxIn5W1M00wTBPZ5qRcKnH6ZC/3PHIvafUoeza3429o4nLvIMcvJxhPi1htMs3OLCN5FcHuxdQ1ZE9tVSjeffOBrfeJj9TadQeCpCJhJElGR8cTCCIgoBQLuP0BdE1FlCQ0tfKBulyLwZ3Qum6EaRo4vX4iI0NYrLYFB+IWg5sN6N0q7mqquqgu5QwtQrbZMXSdZCQ8WyW+Hnani1Q0gsVmRykV8dVWdeYXknJb0lbLaHiUTWs72CpCIODG7f3QpC4/Umt3KKbx3rsn0SQ3br+f1hWrOPnuQSKJMuEjl3nmmX1oRy4znsxhtVqRRejsbGFwPIMRNUhEppDUMi6jTEGsDtuvbnfz0L51hBMnGEqDVikRjaZ47aUzpKRGgjaNzq4WRsL5azEXwDRo6uxifGSC8ZzM8IEoSHa+uiuI0yrQMZLknctl9m4KsGXzCt5+8wRbNi1jfCzCJz62lcvnr2AxqlQbj91aFdEBYmUbz710gq46GTFT5tCQgGmZvxZFXUGp6JxP6DR54PyIQfk3pxmP5Hnswd1cONNLz5iKKF2rAhiGTk1jAzanm7f7DR7aEmT71hWcuHKEtGZlJJzj+LuHAIG+106TL5YZSErYBNi4MsDFsSIFwz7zWaNqGiBT29LG26/u5577d2H1TqBUTFrrHQQamvjBj98irnkoGDZafAaZYhTDE0TPJbE2r6xSJex3ps19O9w2GTZNUxME4d8Br1Ptm37XNM1eQRD+J+CUaZov39UrWgSsdgfBxuoDUlNVUlNh3P4ADrcbu8tFetqp7k5RyKTRNW3RZhhVa2X1ffHPPMEakpEQFUXB4fXeUZXCNE3S0Skcbg+maSAI4pzBulI+TzGbQasoNHQumfe70bERREkm2NR822u3u1yz556RdUtGQvOS4WBTE4VMhsYl3aSjU4gLcEnz6RSVUpHlLW727FwNQLlY5P/zX99DN3QswburiflRXLuru2u5Z/dqfvXiAdoCMRrLCn1xkbXLfYyG0/zdDw6T1qsWm9998RwF3crb546wpNlNOJ7H6Xby8FMPEDh+nrd6y6iCjRcPjhMQs6yud3ElXGLd+u1MRWLY+ieo6AolRSQejbGj3WTJ8iaee6OfN6/4ODc8jmAa+Nw2/rtvbef4odMc7jf4zSsn+NiTO8iWh5mMlfnZS8cpahKJnI4shjEFkcIrp2n2ChQVg9PHxygK7lkamyiYjGZELrwVxTQlPr7ZSiWfI5LWEG02hqdKJFQXj292Ut/cTGJqipauLv7Lj3uQfRa2rWngpd+e4HLGiyBcoyB5pBJP3dfFG68e5NSkBcPq5Z9eOItqCICDXUudPLRvB999/hgThWsKMYIAe1bYaWisJTx1mZhZrXDGFDvffiOGXajglRUa/VYOHr5If7iMenKcGncITJNvfGYnr716hFVL6ulYsYLnXjxJf1JGL6QwKyXAmKMbfTfwUVy7M7QoVSmTicUAczZWWmy26UG6O0uE1YpCPpnEU1O7qDhaTby1920mIQgiydAknmAQpXhn1fxCJo2u6zg9Xoq57LyZlejYCLLFgs3pmqeTHJ+cmL1HtytCXE+LSE1FqlS26PxOZ6CxidRUhEBDkEI6TTo6NVu9vx5TI0PYZAuffnztrELHq2+c5vxwhi89sZqWtrtrGvNRW7tNXrjv/m0cP9bL6VNXWL48R7JiIZc38XgC/N33DpA3HRiSnZ+8MYQswf6+YwTcEq0+iVQZ1i/v5IvNCr98b4yE6uLEQJ6pqfewCRXcopuOlhqWrVnBW6dC2NQimi4SjcRwGVn+3VMrOdUzwvGwnW+/PEh7rcRYuMS/+8IWwhOTnOjL8frxMPeu9bN120pOXznEyd4yY5E850ZVLocOEytZ0H9zCotRYsu6Zs5dDnNlSmdG9lEUdNJ5nVejAoKQYm2Ljc1LXZzpHaOhpZmLfVGSmp3NHSL3793IqRPn2Xv/Ln7yy6NcClX4zJ4Ozpzs5e0rGoY0t5P3xFoL6USaF94ZRrcFeOd8hhNXjpLR3dRY8vzFl/Zx9GQfb/XOUB2rChura4tsX1OHW5rg7cHqTwTZygvH86Cr+M4ep6XOzYHDF4hmNPIljUSDjHZ+jC9+5l7Onr2CQ9JZs+Vhzp0f4OXTBUyLHS0bA8NAsN7dbvKieuqmab4CvHLDa//DTY7d98Eva/G4MSDdXsrs5lCKhVlpm4W0NBfC+x3EsFhtBBubCTQ0oakVlGJxtn12K1mgRGgSXVVxeDykoxGcXh+Vchmb0zm7CzRNA4utqqJxNzGjwDEj73Y9rHbH7ECdw+1eUDTfNEzsLjeFTGbOa4JsxVQ/HM7wR2XtNjtKFFSB0wMKycwZLsZtWJwWtnZ303h2nHv3rMZ5up9Xz5cQBPBLef7iK/dw/NRVLgym+MIntnP85BV+e3iMfcUKy5Y0MhEf5eJEngrw6OPrqG1u4eDr+3nh10cpqiJ/+cWdnD0/wpuXKuxYI9HU4Mdmt1LjhHRBIFapbnIkRWF8aITVqzqIFiY4GxIYf+4UTV74j9+4hxd/d5qrSYMmN0RyMqZk5XwYzk2agEZXQGDXEpljgxVMUeZT9zTjD3j5259frhpzqGU27dpEKhxCVVUe3LuKV984Q/eqnfScOEtLcw3R8TEM2YEsqnj8XjRpYatyURRRBAeaWA1dOePagNtIpMjJU30ki/N/L5Kq0L0qiC7Z4bq5O0GUUHCwdZWHpR01/OLVc3zlqS2cvzTJ/mEIWMoIR3opVkwcTifHj55jPFmtbJimiWhzYpQXPwx1J/iorN0bYbHZ5xlC3Cpm3QrXy2QulmN8J1SwGxFoaCTQ0IhaUXB4vMQnJxBF4ZbmFDPc3EI6TV1bB7HxMWpbWsjEojcktgJWu+N9dwsXQlW3eWHlpJm/Z4aSttBwI1TXuNXpxLhu8ElRDSrY0LTFD1zfCT4Ka9ctlvE7TMYzEi+9eobRWAVVtXLfw13E8rDUZaWtvZFTA6cwpu/vs/e20NRUx98+d44nd7fR1NrAf/nOAWStyJKOeh7a2sQL+8epWL1s6LKydvsW+s+e4/xghH/4YYy9G1pY0tXEP7xwkasTOVZ1N2K1WqgP2iAMFcnFQApEi8DI0CSNNXZ2rLHxsyNZXjyRwnF0jG9+dicT41FeOJEj6BIo6yKixU5vFEzTRc+bCdxWnR0rvPQM5cioNnZ0O3j0gQ384IWjjGTtyJKJ223n2WcfYLzvMp27GhhP6LQ2eUlEo2DqJCOhqjuuacXttpMv2DGk+TmDIIDF6SKjlRBkUEU7qellk6vIHD/Vz+Bknhv12ENpDZc/QFEL33A+EWQbdQGRh3e203NxnM5GJx2tNXz31VEMQUI82kdoKsWje1Zw8cx5zg4pgBXMqo20yd1ft8KHzfG6FTrXbTD/x1+9+nt7/xsRn5wAwF9XP2corjzNl71Ty8w7wfVV11s9FOKTE3hra5kaHsQwQbbIiKJM05LuOcdVyiUk2bLgg2OGJrGY6koiNIkgCsgW620r5unoFJ5gzaxY/UKY0S29/r2VUhFJkrl0eYSfvXIJye5CtNoR7bdv443+9VOnTdP80PjpC8HWtMxs+urfLvp4q5rh//7NPQwMjPP8kesmonWVNmeO7s46hscSREoOlGnOmGyWeXiDn/7xHINxk80dFsbiCvGyHTtKdYjMAevXLuGnvzrC3rU1uBw2nF4vss3BP73Uz5M766GQIq9ZGImr2EyFdAkmS845wx8OI4uii3TWWxmJmxiSDfQKD6+24bELHOovEXBKfO7j2/jN61Unpuvxia1ulnTUcvbcABdGizTXOLFZJY6NmgiCiFkpsnuplRVtbgxBJp7XGR+aZPPGLg5fiCEKoGgmo9NDeIZSnJXKMU2D5UGNVMkgXrZj6hqIi+NoPrAMPB47L53IgiAi6yV069wWtWRUaPIYtPgFHntsJy//9gjrVjZzZTjBibFr3Q3TNKFSAKtzDqXHUIogW9GSIRCqShOSw4cg336T/PtYux+1mDujW26x2eZ08wxdJ59OvW/L+sUgE49VNecTsVvG3Bkt9dDgVWRZpqKquDxe7E7nvGtWK5V5w4QzWGwXcaaDpmv6bY07oPrs8NXW39TtbsZC+nrdZsMwKOcLlCoax09cZkl7HaYos2p1123fD+Aby1s+8nH36S0uNm5Yxt9+7xBZ89qzxGtmWNPuIJVTiBZlktfJN25q1vC5bLx7pUxnwMBhEaa1xk3W1OtIusLHntzBb187jV8u09VZh6FpLFm/ke89f5R6v5WuBjumoXCkN0tHi5/xyTgxxYVynXmFbJQRTIM6t0BRFUhPz1WsCJTZ0O2lfzzLhQmV//yVrYyPRfjp4blKGqvqdD711GaOvXecaEYjXJTZ1O3n0KU0BcOOaZp0eYpsXe6jo7ONc2evEEqUWdERIFvS6RlV6Ky3c2a0UqXbaRUQxNnnQq29jN8hcjU5/ZwwzUV1v5b4Fe7b1MRvjoSIK3akSg5Ncsx53pimSZOjhJLL8GffeIjBq2NEYlma6708fzA6R6XDrBQxJQuCKF8r9mkVQKgqUZULyE4PgsWO9AHzhQ+FqPlRQmoqQjISuq3+JFyT/bk+EdY1jWIuQzGXQb9Lu+h8KomqzCW4u/1VGaNbcdEAfHV1lAsF2lauwRsI0rJ0BTbn/OBrtTtuWkGZsSVNhCZJhCZv2S40DQOXLzCbQN8KLp+PdHQKXVVvOkA3I9N0PWaS41++N4bk8mHqKkblQ5Gr/r1Akdy8+vZ5TlyKzf2BZKG2NsB9e9fj9HhmE2EATbATTxXpqLdjInBmQphOBlX2rHSCqZHKa4QmInz84TV4a+t57lievqEpDpwcRpVdHOiZYvWWDdQHrAykrFzKeAlVvHMCU52tyF99bTc7l3sZSlmriTDgFBW2bluNLjuIlmxMpjROHrvI8gaZ5cG5cmdvnImx/71z7L1vG49vb6AnLHF8TLiWNFocHB2T+dGBFD95L87vjkV5/PGdWC0SmCb9SetsIuwWS3xqu4vt9Rl2dol4jSSf/8R27ttQj50yQVsFDJUHV1rY2FRdk7ZyDBZQI/F67NQEvWAabO8UeWhTzTzVkm3ddr75uV3kiioHj/QyFCnz4v5Rmup9tLiu/Z2CINBWY+FPH22k3XNtbYo2J1p6CtHhQZAsSO4gdyIB9W8RpXyOZLgaW24Hb7CGQGPTPFpbctoM6W5pmCul0jxXN19tHblkAustnNpM06xWX1NJmpYsxe5y07FyNZIkzbtmUZJumghDtYuYSyZJRkKzTnwLwTAMHAt0326F1FQErXJtiHbO+1qt8wxMRFHE6fXwq1fPcjLs4Ke/6eHnh2NEQx/+4Pm/Fs70pXjt7XNktLlqT6opcv++Taxe1jwnEQaIpHWCficBu8Fo1saVRHVgbkVQZWmbj2heY3w0RHPQwr7H9/HqqSTnh3IcOXKeSB5Ojgs4HFaaW1soVkyODptMVGrmJMKmafD5+xr52uNdTOak2UQYYFV3Dd0rltIX1tAkJ/uPXCGfjPPoSmHOQOXliM73f/w2W3dv4p4dS8AweP1ieZabCzCSd/GLUyX+/oULvDVko7WtgfXbNqCUy2TKYrWoMW149OAyeHylxtZWnTq7wn0b6vnCJ7bjNtI0OcoIps6KGpXH19uRTQWpkkNS0vPuuc0iUt9Yh0WCJqfCJ+5pocYxt9rslwv88ed3sWNzO+8c7OX0pQgHL+cIxfJsXTK3AyKJAl++r5Z9y64VPwTZCpKMrhSx1rZhGgbmXcgX/s0nw4au469vnJWgmZEIyiYWZ98niCKVUgm1XL6pfE5sfIxkeJJi9vYPwWwygcXumHW3m0GVB908O2VcyKTJJasJfDGXJRUJTbvr2WapIZLFQjI8iWcBveVF/W0CeGtqUEo3T4ZrWlpRlfKCFYcbYbHZqWluQRBEJNmyqA3IDERJoitgoufiGJpSvbh/IxBEiTOTIqMxjWWuJKZ67Yt7dkzlX54/xuXw/Nbqmi4/G9e2YVFzmLqKW09wb1uBTes6WNrq4+J4mZ8fiXOyd4pTvVOoooN3h6ycj1YdCFUsjI6EODuYxykorGk0EIxrCZ6pldm7JsDQpStEUmX8FoV1wRxr6jUKhoN/+tlJXjtd1aXNG3YisRRdK5fSfMNzumA4OB2xcWj/Cc72x/GJeSSjgoMSy9wZvvVwHfd0lAnYypgIYHPzy9fOoSolHt7VgalrmKbJ8mCFdluK1RvXsnnDEh59YANej5Nf/OYUh87FeHxrLX/62a149DQb13XS3eqj1ZbmP/3RfTyzeX5C8+KJLN95ZYSd3VaW1MmsWtHMs1sdyMa1+381VOLgkUuEUjq6UuCrH9/II1tq2bC+m8bg3IeoiInDaUecqVAYelUju5RBL1Ql1yqx0ZtaR/+fBZVSCW/N3GHgWU3zRWyqAURRIJuMI95kQ59NxElFwos2GMolE4iSNC8hDjQ0zia1qlImGQnNDuhFx0ZIRUIUc1l8dfXIFgtOb5UqNiPleaeolEvT1LibU9i8wRpMQyfYtDjaSLCxeZrq0byoDcj1WNtdg6UQprPRw8ZWiWDdB3dP/KhgIm/l+IhBuzOH20zPvl4SPfzz8yd57VRs3u901QqsXddNp79a+LJpOZa5k9yzroa1a7pQKibP75/g/LjGoSOXSFWsnEu4efOyTmXa3ng8kmNgKEJSdbCiRsVvmbsBX9+oYxEN+vpGEQWdVTUltrTouMQyr51K8E/Pn6IkuhFEibODOVrbm2hv8c/VspasjKu1/PbVk/QNRCiWK7iEIugVmixpPrvTzWMrdLq912QpT/al6Tlxlnvv20yLv3quGluZzS2wpKOWHffuYteGZtZ3ezl0LsYvfnOKtno3f/LFPWxos9DZ5GbjuiU4RI2vP9rKX352PWZxbtHrUlTmr793ClkSuWeNj862Gh7b6KHde+0eZCtW3j14kd7hHEpFZ+0SD//h85vobvGyvD0wb0Nns9mwXDeDpBfSVGJjgICWjqDlqzJrHxQfWGf4o4ByoUApl8Xp88/bmXtra8lEpwg0VHnEM5q6mUVWHERRpLGr+5bHCIKA0+tHVW7Pe7VYrRTSyVuKtJumiVIsYHO6KOXzmIaBbLOjqXMr0zMtxFI+j6ooC9pK3woOj49iLndLFQtBEBasVufTKdRyGavDMY8fbBgGxWzmtnrDN+JrX3549t//r3/517dv/rBg6irrWyRa3AI77nuQd948xsGx6s98tqpgvyFYCEp58poFbdrVaCyUwma1INtsbGyT2bl+FYamk47F2H90gL/83L1cvDzKaxcUZr0tlSym1YMgCOQNOz89nAXs7Omues7/5MUTDMQqdPkqxJM56huXEgnHGUpbeWarh7Z6BzVNLYS+f5CUVm07NTlKVAyBqaKFy+cvc36iAlgR9TKf2FlDKJrj6KidtwchKFf4y6/s5sjxPuqDdtrbG8nEo7QFZHbt2M6lvnHODWUxEXj9eARBHUSgDio5Pvn4dkITU/zipUOUKyDaw0zkrEwWZUCmdzhFIl0kL/n5ry+cRTUkPLJAPBwikysDcxMUQbaCJrBxdTOaqnH65EXWrltBx2AfgQCcHFZJKFW5oS6fg53b1zA5PslEvMyb3z1IVrfPWlwDjOXt/M0L/YgWO3opi1EuVK1MLXZAQPY3YpZzi6L3/KHDNE1SkRAWm2PefIWvrr5qv3xd5XRG0zw1FV4UN/hWHF4AXVXxBGtI36LCej0MXaeQydyycJBLJgg0NpOKhKbfX0C22edwgG1OJzanE0PXb6rccCtUh97Ct1UOWih2aqpKJhZFFMV5czGSxUo6NnXHfOpdu9eza/f6O/qdPxQ0OxUa7UUefnQXsVCE776XBarUKL/HRjKmYxdLyKJJfnr2YDxeIRkJoZgWfFKRLzzSidVmQ61UePW1o+zd2Myy7mb+4YULvHOlAoIN1BKmIM/aGr87AGBQ51T53Mfv4cyZfn7TU6DOksdKBa8rSLChkZ6DEZbXW3l4ZyuBxiZs+y9wZFCjrIFLLFPvFhhLSoxOJBmfyiKI1biypUWnu83Pi0diXEi4uZCAz+9pp7Gpjv2HL/H0k/czdPkSDUEHrY1e/A0tfPeF47TX+XmnJ8nlq/uZyNjAZmPrcj87t6/iJ8+9iePiFLmyQbQgUzRtTJWrmvHHjl9mLF7h4kSFwxdPkMdNKpmhXCpjStY5/h+CIIDdQ0eDxMp1K3n5hdd56NHdOPvOcu9yNz2DOXLYOTSgY1RMnn1oCclwiInxKV49Ok5FtCNcJ39pyA7+5fVJmC5EqslJQKjS0KaTfIs7gOT54Ju4fxPJcCmXnRVAvzEZtlhtcwKHxeFganQYQ9cJcPtBu1QkPCvHY3e50FSVbDyKbLPPVmj99Q0kwpNYbDYy8dgtA91ipHUEQUBTNbRMhtqWVkRJQimVcC8wlAbVKrLN4aw65t2G13w9b21G4D6fTlEplxBY/PDhjC1oMhKalwy/X7miGYRDUfRSFslxZ8n9RxVBq8KzT97DyJXLjPRf5epUhZnEbW+3TEdnI6fODvLI4/dw9EQfb12qbqreuaJx8MoYquwinqsQiSTRNZU3zsQpiwH6r04QjhfwiRXKhsjaBoNHHtrOb393nPNJN3u6JQplnXNhiXPDebTKaVyywdpG+OTT9zA1Nsp3X+yhu9HJ4+uDHD8XYrJGJq9OkFQdIJis9Od5YHsHRRV+sD/J5AWAalAWMWhurqWkaED1mnOqxOmeq4xM5YmmioxHchw4n+CrDzeTz6QIR1I8vK2N2voaLp05y7ptOzh89AoHhiz8+NdnqVR0vG4XU2WNUsmKIIGDErph0he10p8wQLJSxAoiBHwSsYzGiRET0zRZ4quQKUOyUr2/gmzhhTf6aKu1cS4kc2BogE/vbWbVqk7Gvv8WGXwo2BhKivzo5XNM5UV00QZ4QKoO4dhlk3jFQaOjjGKBlAqmWkH2N1CJj1cF+C12MHRMQcKolP/NV4fT0Sn8DU0LqhwAc2KgaZoUs1nyqTRN3Utve+4Zox9JkmcH1DKxKJqqEmxqnh2Sjk9OYJom8YnxeQN9N2IxMUmUZFJTYayOamJU29J6Uw5wMhKedYO7XXKvaxqCKCJO/xdsbJ5V9TFNk/r2zkVx4POpJP76BjLx+RuA9yvLOYNiocDYaITlK7sQF2kg8lHH/ZsbWLK0nQtHjxIryszE3JX1BvdubCCWKiII0N7Vzt/8pAfT6mas4OLbv76KInuwYRBJFDFKIa5OFOnN+BGseSCEYGj4LAUqSoU/+eR6JsYn+EWPSYevwoo2D+9eyJBQbLz4u1PIpkIdBf7oM/eRTyd469go33n+KA9t6+BE7xSHesYQGOdyWAfs1NjK3Lfaxco1y/nOC6f5Xa/BTMwF8HlsNLfUIwtTzPQXrowkCcXyjMarHPBD52Ns6HCwcVUTEyPjrOoM8tADGzn47klWLmvkUauDf/hVH0culRkJnSSr2ckXBCKlav4gGgpuSSWj2Hn94nShQYQ8NpxCGdNax5ErCUSbi4ClTMApMJi2zq7jQ5ez5DOHGSr6+F9+co71HS7uv2cthfxJBqcKpHUXotXBD357Bd2EnO4AqVp0E/QKLV6DiayIy2JQGxAYyUqga4h2D6ZaRq8UkOw+BKlKtTNKOSTnBzOR+Tex6q2OqorBjbworVIhPjE+hzNcKRVp6uq+rcvRDExM/PWNs/aZVUH0FvTKtXazbLVisVoJNjajVSo3O9UsDMOo7j5vwdWtb++gvr1jll9rczhuOvCmayqlfG6eE56uaSRCk7O8u3R0ikImPa+VppbL+Osa7ki/c8aq9f1Okd8MhmHww5d7sckC//0XVixo4fyHhqTq4I3XjhCsq+fSSJ6IUt0MNdjLtLTV4QoE6Gr2MnzpEldHq7QEs1JkU5PKZ/YEqbPmGMlYSRRF1m3dhNfjQhdtvNxT5PJEmT/93Gae2l6HRRbIxONsWt2IUEqzY3M3q5qtPL7egSQJIFt45qkdOChx4fR5rg5Hqcg+utprWL+mk2xF5FTEUeXJiRJCJcezT21DM+Dg2epEsGQoBOU8pmmiSU7+j19c4nc919QUKhWTaCiCpGS5MGlyeMhEcgd59Uyalw9NcHrKwevHQ7zw6nkSWZWxvqu47WDqFcbzdmw2iS98YhvbO63s6BSxV5J86xOr+eK+Rr6w3cLH1grYjWvv1xi0sXp1Jy6LgcvM8eVP7eCBTXWIuoLLzAOwodvPxz+2i90dBg1egeGxGN//ydt884v7eGJrdUMrSDKhomM6Eb6GJ3fW88ef3oKtFObrz27myZ1VGSrJU4OeT2ENNmOr78IaaMLUFGRP8ENTl/gowROsIRUJz9MHn5F9jE9OzLpS6pqGJxDEV1e3kIvsPCjFAoGGpjlqOLquEWhonMMhtjudeIM1C8o4LoRcMjlLPVsI/voGgo3NszHtVhxgSZLIxKMLqjyko1NV1R9NQykWycSmiI2NzDlG1zQsNjtWu2PR1JGZRPhWHOf3izcO9PGzIxnOnOm/6+f+feGtY6OEh4dx1zVzeLz6OZmayuZVDSiKgt9jxeexcepoD4ZUHc716TE+c18TO5rLVAQ7R3sTbNi5g4bmBgRB4MykxG/Plnh4awN/8YXteKQSxVyWoN9Di6vM0iYXm9Z1cP9KGyvqTEYiBT721B62r6rl+NEeJsajRPNQE/Cwbv1SanwOzoSsnA5ZKJrVz3XrMj/rNq/nwP7TxIpVA4oauYA0TXF7+2KJv/vZeUrCtXwnGomhFgskcxVeu1AmL3g5MaLz1qkIPz+WpmekzIuvnGFgMkd0MkQ2EcdnN8jpdq7EBD754FKe3dfJ2jqFVrfCfas9/OVXdvGFrRJPr9ZY5s3PvpfTorNqVQdNNdXrvX9jHV/65A7c5PCQA12lzi3wzNN7+fjOGqwS2GV47oUDNARs/NnntuGYjs1pzVFNhK/D+jYL3/zcLtY0y9y3LsBXP72DWmup6j4nW5CcXuwNS7H46qoOdKaBIMlVp7oPgH8TlWHTNDExUYrFOe2lZCSMpmk0t3bPcsv8dQ03lQdbCA63l0w8NtsO89TUkgxPIt8QkPz11SrBYtpm6WiEQEO1XTaTwGuqSjYRm2NokU3EEUXxtprJDR0LTwBn47FZu2WoDraYpjnP8S7Q2EQ6OrVgdSEdnUK2WCgXi0iyjCdYQzYRw+H2vC+71dtBFEVWtLnQdBPLhxD0fx8QRIkj41b6py6TUCwgVTctPluFXCpJIZXCF/Rjd7lJHZ3CLor80adWkotGaF66hLq+KWIVOHQpy6WRI0RKduxampJhRZEsnD51mVCiQm/chsMWxu31YNo89J+/SF2NhxUbV1LMHKW12cVvX3yLJ595gAsXhnh7QAcJXu/J8N65MxQFF6ZW5tkdAZKZEu8NeDmy/xgtjX5qLGUGdZH7VjvZu2cd+984yHujDrC4sKPQ4q8wlBR4fKOTdevWEh0bpTFc5OC0UVhCsSOXFRodRSZyNprdKnsf2czkRJhNW7vY33uEIlYmMwKvvnUOQdd57NEtlEonOHthBJ9Fweexs3nHBhLpYxyZqH7vD/eVOXP1KCXRg4nOr357gmafwLPbXCxbtZz/9uMDaGUXoaEBTNNkV7edtZvX8g8/OsjRk/1MRdN8dmcTkUiC9wYFTFFiW5uJrpv0hGV6riQYmcxSttTwyjsXyJV1wIpNUPDW2Ikp10KoaHWi55L/pvjuN4Mky+iaiqZW5hhNJMNVzq2/rp5csjoXIVss1QoOzNuwL4SqaVIEl/9a3BNFaVZzdwbuQJBsMoFjEfQwtaJgGDqmYaBr2iydIBOLYprmbNwu5fOU8lkCDbd2s7tVB800jNm4a7HbKeay6DdQ3GSLZTbRvpHaUMxmqJTL0x1CFV9d/SzX+cOIuQBdrT5S2SgtzbeusP8hYUrz8bODU2jTOuQAVqFCKZOkIhjYbFbaVqzm6nAcQZJ5ZLXMiiUbsTvsVJQKJ8Ia4ZKd//bTIySLIrJpoqsKpt3P4FgCpawQN2t488Q4e7e0U1ZNJkJRauQsW7dtIdA/zLbV9bz1xlHaWmvZuKyT//K9o5QlD/Gywd9+7yAZzYEgiWxo0ljXXcMvD0XoH87il/IE3DIWFAJ2jT/54h4Gei/x8sksedmOboh0ectEc1Drhi99/CHSUxHa66K8cLqILjlRRTtX4gaNjgqpssS5MYWvP7KcbDJG16qVLBktcWay+nx689gYQjnL5z73IFf7hjl5OUHgQh9aOsmGfQ9QUzvM1QNVmklMcfA33z9KyazSyI72xknGk+xb6WDLnm288eZJUnno6+nB5nSypRXu3b2MQ6dGGIyUKZ26yqYOO60NNn53PEpBrA4rr+r0cOBihpGYwMEjvYzFKyRzKsnseZJlC6ag0+IXiRYlri/bmYaOXsohez9Yd+QPvjJs6DrpWHTBymbVkAKmRobxBqv8WlGSCDY235ROoGsaUyNDRIYHMU0Th9s96w8P1SAWbGrBG6yhUi7NVnhnzivJctVqOTw5xxI6E4uSjFR3ZNl4jKHzZ+dUVWbkfcrF6u6mkEljsdlnB//eD/wNjSTDIaTpB5DN6aS5exlWx/wk01/fMPug0jWN2PgYE32XcfsDxEMTBJua0VSV8NAAvtp6yvn8vHPcLXz8ye186ukds+26//Gbm/7gK8SCKJHQXLOJMEBnkw+Hy4U74CcVneLY8Utk8GAgkEmmkG0yx987Sm+yWklWRTtTZSfNzjJff6yDP/tYB02OIrv2bMTjtuOTK7S11TM4mUeQreQrAo3dS7l84jiKDk0tjQykLLy1/wKXBiK0ukqYpoku2rBZZTa3mviEAjVeC06hxLZ2gRqvnc7Va9i4uoVlrix+qcDAmVNs2boam1kCYOdyD1/+5A7afTqJvEY8HMbl9eHzVKsxXT6FZpfCzk4Ln36wi2aXQqWiERkf4+rlQb77s8MUhWpCo4s2TowanB43+PnLp7gUMXj3ikJzRytOX5D33j7KiWEV0zT42HqZJzfYENGrCZkoMRzKs37jCmRTJZ+Ks67DyQOP7KZvcAq3y8bGHZvY/8YhkhUH+/s1xtIm7e2NrF3RTHdtVbZn56ZONq1qxDQN+pMWjo9W+ccXJjS6mz0sC6o8uD7An31xNwH5WjVCtDmRvbXIH461+EcKmVgM2WrDanfMUdkRRRFZlpkaHcHuuk7OKlgzTxP+esQnJ6rxcXrQLdDYNKcq669vmB7OFUhFwmSTidnzztDOUpEwidDk7HCaUiwSn5wgPjFOamqKdHSKTDw222EzTRND17Ha7bPymaVcBn99I6kP4GAqWa0kwyH8DY2o5TKty1fhXkC33un13VC8CZGMhEjHorgDQSrlMsGmZsYu91Iu5ME0bzl490GwYV03X//sLpqaP1hC8VFD3nBSvs7BsiUg4vE4qW9tQ5AsnD54lLMT1byhWFJRigUmrvbz4oFqV0MQRKbKTiqGxOd2+/mrL26k1ZFn75ZOWpsDaKbE0lYfyWSeeNlKsgAdq9YxfuUSF6+M0dreRNGwcPxykjfe7qE5KCObCoIgktesbO2U8Ul52mtk7JLJqgZo8okEamtYsW4lDy6TaHOV6Tt5jNq6Gjrrq8+PRofCVz+9i71r/CiqQGRsnGw8hr+uDt0U8VsU1tTr1MlZPvNQF7u6rSAIZGJRMskUz71wgJ7xazNOAykr/cUafviL47x5OspAUiaeNdh4/4McfecQb5+o6mmuqlX51iON+Kwq4nRKGipYqAs6aWzwEQ9N0hKw8Omnd2AIFi5djfDQwzsYHhjj0lCSvoSFd/tUGoM22jua2bO6GveXtbrZvWMVNU6DjGrjncsVcrqdcNFGrlDh3lUOurwKf/LFPexYOpcBYPE3YvE3fmDjoz/4ZDgZDtHQ0cnE1T68tXMfQg0dXTR1ddPQ2TWvIpFLJkmGJ+fJpZmmicVuR7babusKl5qaItjYTCGbnvN6PpnE39A0RwpFU1UCDU3kU0l8tfXUtbbh9FSDeLlQQCkWCQ8NIE3rk9pdbvKpJIamU8rnprnLdzYxKQgCNc0tsw8hi9U+zfENkIqEbyp/ppSKuPx+HG4PmXgMTyBIeipMpVikbcUqJq9eQXqfZiP/F6pwC3lqAw6Q7Dz/2/OEcjKRvMTHtwdxWAR+eDDLKyfiHB53IGmlqr7uNLw2k2w6S6lYJqtAf+9Vkuk8smRS31CLw1r9Wu8fsfJ33z3Ar3pUjo7K/M2Pz5DFx5EhjVVL6/n6Z3biFaubmq3LfXzs0c1sXOqjZUk3KjaeeHgjoymT/jM9IEp4rRXW7dqFy+/n16+cpiJ7qLOXsVHmnf09hLICwxEFX7CGVLbIqaEyXi3GU/d08Mj2ZpxOCX99I4JRQRAFlqxZw849G1i3/JpxgWnoPLBcZOcSK5emQNcMvryvjqnRMaKRGAf7KzQHZAS9gtViwesQ+E9/tI+NddVkJuBzYmg6I5E8/RM5LoQMnnthPzt2rKejvZ6ek+fZu287Kxuq1bjdy+xkohGuXBllImUgWuz84JV+fr5/fM5mtcOV48HuMls2LmFZq5fLoxl6z15i37oAFuODy/r8ISETj+H0eihmMtgcjjnauYHGJgKNTbQuXzFvCGymeLCg6o5p4vIFMG9DGYhNjOMO1qBV5g8rVyltDRSm41qlXK7aRosihqbSsXot4nUa1YnQJNlkgkI6PduhE0SJ9FQYm8NZLXSUSnd0b6CaoM8k7i6/f1p9wk4+nSIVuXmSbRomvtp61IpCJhZFtshM9F+mc+16DN1AVZT3bfL0fwFkU6HBbdDY2c1vXj/LxYE4vWGNXat8rKpTOTQs8Nz+CG/0VqjYfAjatc/ea9PIpFIU8wU0RAaGQoyOREAQCPidBIMeMA1ieoC//ekZfnkkxsVMLX/93eOcGYfhtJVsUeXLn9rN5s5qct7iM3nqkU1saJHYuHU9oXCMp57cRWt7E+fOXkFVysRTWXbtXEPL0hWcOnqG3kkNyaiwstXBkYNnODuYIVKyUqqYyHYnx89HkEXY3iHwyae2UGtT8dc34rCJCLINdzDIrgfuZd/WdgTtGqVzaVDlUzu8xHI68bKN7e0Gze4Kw5cu0xuBkmnBLZWRRTCVIl/7zC4+taOav5iaisfrJpXKcf5qnEshlR/96hRFFZ546j6OHTxJc1MN922pdjVarGka6/1cvXCR3onq5u7QlRz/9cdHCBWvFepsZonHlmusbrGzY3M3iWyZUyd7aQ8IdPhuT0e94/Vx18/4IaJcKFDMZZBky2xLXxDF6hRwfeMdWYGqlTLBppZ5AxCyxYLL6wdBuOUgQTI8iWy1EB4awHMDjcHfUK0szMikQVXCJzUVpqGrm8mrfQC0r6xaEhdzGRo6l5CORmb/LkmWZwXXk+HJauswOjXPn34hZBNx3IHgvOufmfpOR6fw1tZND2LM5/w6PV7yqSQOj2fOAy1rjZMMT9K0ZOkshcE0TVJTYTyB4OxrpXyecj63oLrHB8H11eE/NLWJWnuZVW0ejvfnUVWVb31hI9GxESajCk1tzTz44DZOHDnDhg1LOT+QIJMRCJeceMQif/TMUi5fGeHtIRFByfHJp3YxOR7muXcn8EomK9YuJ6eYXD1X4v/3ox5MqxNBqFY1irZqoikAhlSt1D282orPavL6m6cw1AqmqHPkcprR8AmuRipMpE4wES8Typymf0rkzGiZbz5lo2tJC/1nTpPNZBkoBhBl6G5ysuueDfzwF8cxVYU8ImOhNOcHMkRSKn/1xV1ERkdQBSvpbJEzZ6+SVOyUdYlfv3KCOo9E/7St6FJfmTq3ydKuFrRykQ0rHbz0xgWgEafPT21zM+tjl3n6yZ28+Mppfnkyz6ZgkmBtDV63DeIwnrfxLy/1ktFsmKECbgwGkjL9fSOMRzKMpGWK+iiTaRVR17Fg4K2r5+KhURSqwyBum8BYzjaH7bB9ZQ2rNqzm1794k4Rqoy1oIVOosHHDcqznzqH+/ryLPnQkQpOYhkFNSyuCICBJEvl0al58uB0K6fTN7dybWyhmM7e0Ki5k0lhtdkID/Qs6hFqsdrLx2CyFwROs0ihmjDXG+y7jvy5+ilJVKUgtl2YT5Jn4OmuCFJ7E5ri9TXwpn0cUxXlzK1XJTMfsOX219TdVoai6nyboWLV29jWHx0c6GsHtD8z5m/OpJIIozg4v30rd4/+sEHWFXcudDEeKhAo29q3xsqLdS2giRKYs8qUn9tB3vpfu1UsQhGEux8rkDAcY8PRmmYDHys/2h6lYfOxZHWTz9pV874dvEC75eLi5htb2FvZfPsrzh9WqM5ql+vxTLV5UqjHXtHkRgE6vwkM7uzhx9BzDEwkkw8l4RuL5X59kLAEDPz9OtgyXI8fIKhAvNyCfH+WBJ/Zx9uBhvF4X/WkHpmTFLeW5956tnO65SixXRhQURsNZ7FaJM2GJh9Z62LFjJacPHaetvZ6TJy9xJVR1cHv3TIQlo2Eqgh1dduKVyuxa7qFSMVixoh2PpDAayZNXBax2Fx0rV+C5EOJTz+5k4Oo4zx/N0Dd8la88bmK3CJiGjmix8dN3QpiAIkjYDBUdkfpYjlNHe3i7T6NiiTEZK2GaFrzWqhJMpn+SybwV2VRYUiczGBXmyNd2uEts37uLK+d6+c7zx1m/xMfocIhnPrGP3vG7//z/g0qGi7nMbDCdQU1zC7qmVVtg8+wxbw7ZYiUZnpynhwnMC2gLQhAQqFZwb+T0CoIwj9s1Q6OAa0nwDGb4wzdTmRAEcdp62X/by0pNRfAEgiRDkwtOWEfHRjF0HaVUwmK7OX9vIZ7yQm5QqUiIQGMzyXBo1g60nM8RaGwiGQnd1WT4Dxmr2zzcf+9aRiNHGU3bOXFmkFxJpS+ss6ZZ4sXfHudKWOFI3yHSejWZNU0DtaJRKhbZe/9OppL7uZj28cLvetiyxMmXHmxFNwz6zpwhHqtgGhYEm/u2Q0plRUMVXBRKOv/pWw/ys5dO0J+005cALBaG0oBsoXfK4P7ldgxVZjyUxCWZLNu6mbNHTswGrRODJUbCh9ENg//H13fy2v6L/OpkDrBiWiSOnh6kUsjwyCO7iKUr/K6nCNhBgrNhIAwzDapda+toW9LOd3/wBqs6PKxY3s4T962kdzDG8b4cT+8BGZ2Dh3sZjlbwWXQef2ofU2PDTMRKgAXB0KgJWimlDNr9Kl949l5++5sDbNi6luLxK5yJlnmrVwEc3L/awuadK/nej97E4vBjqgaPbmtg2fIO/vqfD1KxVBM209A5cilBoXyBSwkbn9nXSveKJbzz2gH+9qc96JZ/u1Jq1RkDEZvHQ7mQx+H2zMaGTCxKIjRJoKFxUW6WDo931nL+RoiieNthXEEU0dQKdpdrQe7sQkngTFdsIVqc1WanXMgvOCthczhJRcKznbpbQVXKKMUCmqpidTjmcY0zsSi6rlHM5jANc14H89p7OubFS7vLNe/alWIR04RKsYDT60MQhGnJ0OYPRO/4t4Yah86D963j+IkrhC6WGQrlEUV451yKZY0BXv7dUSIFmVfOnqKsyzA9PGuoZZQCdG3bxRO5Er/uUTjZr4B2hi98ei8nT1zCaiqcP3Mem81CidvPtmgGKBWd3qEEX3l2O1cHJ3n5TJErcQCZmVn6fBaWBCo8sMlP3+AUEyOTrNm6mWwqhdE3BTqkNRf/+JOjZEsmX3moA1XT+MmBJIIoIIgSAxN5ROEKtbV11NYF+PsXLoG1uoYm8jYmphmOgiixol5l1+61HNl/jO//8HU+/cwOmioVZHeAH785ypbR46xc2sTb750nkTcQBAvP7FtKoLGJYwdPIIjV75zXIaAbJlqxwJ99Zh3j41GcDgsNjXW80nOag1ersxbNziKf+vRDvPPOSSaSYDEV1rTaeOaxTbz46mnOXycbPpi2cur4RS4Mxmlp9PHQg1uYGh3hf/7HN9FcDXd9NOMPKhn21daTjITmcNGAqv1v050Fgvdj85mJx9A1FZfXPyuPsxhJnNthoeT5esxUOlSljFIq3TLBlGR5WmB+4aq2KEl4gkFyqSQCwhwpuNRUBNM0sNrsCybD2WQCt88/58FndThJTYXnDIFY7HZSkfC8z+luYqZK/I2//tDe4q7iaH+OkfBRRjMygiRzaMgEZDY2Szz1+GZeerWHimilYlybv9rVKbB57Spee6uHx2wW1ixroPeUwtWUjdq4ipxKYrdJNNd4uae7lsI7F7gYn2t9CdWEZnWtim6a9CdtHBoWMIcy1Dvg4oVBkoWbqIgYBp1t9ZiGwXPvTLJnqYWTx3t557KBIFY3UoZoI1IGv1xmdDRENl+m0yczkTbRRBtHh03Ay6XvvENJ8oLl5mv3XF+YXDLO2jXtHLmc5srkVZ56cA2SJCFbLXR2tlCqmPSP59i1yseBszH6Lg/iccC2pW42CBLnhkp8+dndHD58FofNwrlTF5jISHz7+2+RKgG2WlbXazQGHIxEsjjODrCm08fyle0cPnGVXMrk5NE4ilTdVJiGzrNbnVgEK6VCma883s3v3r3MVCRBf8qK12FQVLIUihUkd81diQcfJQiCgGSxoJbL8woNhq7PDootRpJxocTudpjpBs7YwTvcnrt2j281mOzy+XH5/JimSSGTnicfeT0EUaJSLt1UFUJTVQKNTWgVtTrjMjU12/Ur5XOUcllMk9liwvWY4TJff99mJDyB2XtRHewO3bHO8L9lRBU7333+GPG8CYKDobSFobSCzazwqY/tor9vmPNHqkNhM4TRenuJLzyzgjcOXqb/4mU6u1rw914hobjpnajgcIeIphXqfHY2bt1AqXKOY0MKRXN+V7rGVmZ5i4uTg0Um8jb++a0YouGk98oY4XiRWW34G1DrsbJsWRvv9UTQL4fozpboGclX5S6pfuYJ1YUp6oSnUuiGSb1dQTVF0qqd0ayF0V4FqRJHYhSsN99k9oUrdJ46DYDNX8/3f3OZLd1uOv0yoiRTW+une2krB395kl0bWigqaQbGFFw2A5/Twjf2+XjhrQG+8PhW8tkCgxMprl4ZYCoH/SMpZPEqhuwjYFHYszbImUs5es4OUCxWeHx7C8l0nt7hDFd7LzMSygHVAsS6epW9W7oZGRzjqXu7efXwCO+9e4JEpoLk9OO3FommVQSL467JWC6KMywIwmOCIPQJgjAgCMJ/v8DP/0oQhEuCIJwXBOFtQRA+mNDsTSDJMsHG5nnmEv766qCYbLn9pPJiUcxmSEZCczjFuqbO4Qj/az74ZpzzcskE6gJ8uRl4a2oJNDbdVLTeE6zB0HVkWSbQ2ISuXuPezLr1la9xpYq5LKmpCOnoFA6Xi+QNnDe3P0CwsXlO28/tDxBobLpjExCAUqFA3+WhO+ZH3wwflbVrGLC5TeBPHqllWbA6gW9qKr2TFX75u9Ncmqx+ph6xiIPq/dd1g0wqSawo86uDk7x+9hrX8uioyMEhgTcvG/zmRIzBwUk+9ey9tHo06mxlamzXcR11ld1rg+xe7WeJJ48NBUEQiJXt/OpkjrgyN5gELGWe3mCh21fiR2+O8+O3J+mss3Dv/dtIFfU51qIzSGt2fnoojShZ+OqndrCl61rS6xEL/NkXd7J76cLfT1ErYmoK5+NuxrI29uxeT0e9k5Bewz/9ZpADgwaK6OL/eP48r/VkWdrqYcfWFdhtIr86o/DLwwlq6mvpWtJKJJbjzf0XKOZLdHfWc2k4RWeji6fvW8JffeNemhwllrf72Lalm1BS55VzJUbjKg63F4tg0NRUg9vnRxAl7JR5cI0DQylhQae+3k8+lydWcfPWoIVUTuVbn91Ci9tEcteghPpQ4mPve43ciI/K2vXW1C7Ycas6YIbmUA8+CDRVrXKKc9nZ12a6gdp0nPrX3mxEhoeQZAvx8M2d3WSLhfr2Thq7uhe8vmBTM5lYFJfPhzsQRJKvJUGVUgnPDYUZXdNIRkKU8nmK2TTFXGbukKIkzUpvXn8NNc0td2wCMoPBq6PkMndHEvCjsm4FQaTJpfLZ3V4eXaHPxtyS6OUnvzrO26eres2yUaZmWi7SMAXyhRKaUuLXJ1L88u2rJLVpQ46clRdP5rgQd/KLUwXeeusE9+zbxs6VHmwodPmUObMd61qtbFtVx9pggXp7VR3ElGy8dkHhXPiGRFiv8MByuKejwvGBIv/le0eJZjU+9tg2gjVexnPzY64gSrxx2eDt8zm+9uwmPr537jP/mZ01fOWJ5ZjqArx3XUVS8+Tw8srZPDv2bmXT8hoyppc3e0t85/VJNMnJq2dz/P3PL+BxO9i6ZQXt9Q56pmx870Aeh89H65Iu2oISbxwa4PjZETavbUNVdQbCZb70xAq+8dmd7Ftpo9EvsXXzcmqDLn7bU+BiBFQDTN2k2W+hpbMdQZQxTZNNzTp1bpNKPkdrU5BsKo0u2tg/ZOFCwsXDm2t4fFc7os2FlomihAcwtA/OIb5tMiwIggT8A/A4sBr4vCAIq284rAfYaprmeuAXwP/yga9sAcwIr98IURSrg2Lvo9p7M5SLBYKNzXMEzu1O1yzvayEUMmlSkfBNfeeziQRTo8OEhwfv+HpM06RSVlDLZSrFOx/qmIFt2jHOX99IKhKe48jkq60jE4sSuK5KXc7n8NbUUshmyKWSgPm+E9XF6Bi/dqCP5w6n6en54HqXH5m1q6vY9Dz+gIdgQwMOUWNDk86/e6YTt8XgYkSkYso0ywm+9ckNfGpvAzXWEicnJLJFk29+eiuJvEFGmx8QJb3Mo1vqyRdKvPr2OUIplc8/tpxP7euYHeAUZCuFikDbsuU8dd8yti2dX53r8Ko8ssbKtpYK29oFNm1dy641NeiSA11yYKhlhq700zd0axvz8aTBuwcv0jd5TUPbL1eoFAvUeeZXQmStwJ8/u4qPbalWBM6OK3z3+SMkEhl21yX4+n1+Hu4s4lBjYKog23jnfIa//9ERUlr178jj5tCpQURBYPXSBg5fVbg8FMfqcLJlXSv5skYmW2BidBxFF3j9eIjv/OQw5WkOdV/Wy//67f1s3rgUTYcXj1aVCpp8IvfsXkMoXqB7w0ZKmsTPjhXQpWluoGjn0JHL+B061mIEwepAdvnRyx9M7xI+Omu3mMvOSU6vh7emdnZQ7G4gl4gTbGxGKVy7f96augW7gTOomleMEh0bvel5J69eYXKgf96w9GKgqgrFXIZy7v0nioIgEGhoxOXzo1aUWVMPqLr1FbPZOVXqTDw6XXTJoCrVmP9+SwOGYdw2XvdfGeZH+2P85u1L7/NdruGjsm4BbFqW5noXvmAN9bVevHKRv/hYO1taTYYyduKKnYClxCPr3fz5l/ew2pchVrLw3ukJPvfZh2gJSIznHfO0tAG2tEssW9rMq68d49xQlt0rPXzlUztp815bY6mCRqCxie2bOnlmb9u8z8FOmcfWOVhXU+ChNTa2bFjCxrVtNHpAkb3YLBJjQyNcvDRyy7/TtDp5fX8vR87dUKiymkiooM73M7h/tZ2//NwGnBQoCl7++WfHOXh6jC7rFF/Z5eAru504tBQeLYUqOhjN2fiHHx3m+EA19xBEiZcOTBIdH2PT+iVcilkYiItc7R9nx54tOCmTSGSITkbI5BQuhXT++fuvcX6ien9Uyc133owSSxXYtmczP/3FMTKGC1Mtc+/2JXR2NJIsQvPS5bx8Is547loh5fJImqmJEDVSDkMtY23sphK/+fd/sVhMZXg7MGCa5pBpmhXgZ8Az1x9gmua7pmnO3PFjQOsHvrIbkIqEcQeCc0TXP0xIsoVkeLI6TDcNp9c3K58GUMrlSISuicsrxQL+hkZ0feGgm45GqGluve3E9EIQRRGn14vFZsPpm+YymuYdGWXMOZ8k4QnWUMhcqzbKVuscGTkABIF0dIraljYcbm9VamZkiOjYKPHJiUVPW89wupPhSQxdn6ZkzA/SXc1e2t0KTY13ZQjkI7F29yyz8h++fi/HL0Z4/leH6ZmyYqWCpqqY07e6zaPyjS/uY6h/AKuo8ey97ZimQThRZHA4jDbdUpPVPLvbKli1HG4zx9r6CsGAG0G2cWLEwLC6eevwAO+dmsCOMqt08OrJGD98/hDHL05xcSRPjbXA05vd+K3VivSSZhfrVjZz766VtLTV89KLB3jr7DWDgrWdXjqXddMclJCMCusaTeyCQqu7wq4lIoJe3ZmXsXGgXyWtXkvcQ2UX564mOTl0raMRtBbZ1GKiGyaTkzES6epHYIg2JEPh80+uo7nOgbemhg3b1vEnn9rEVx9pAyWLJtrJqTJWozTzGSJKVi5fGaM/VGJTQ5nPPrmOKxf6uDiY5FJU5r1LBRxOB7UOgy8+2MpXP7UFW+Xa33fPtg789XWcOT82m+wOJUW+89xRDEQGL17kQM8EklGhw5FieVDBFGQO95fYun0tT9zThVkpoRfSd8t04/e+drVKhUqpRLmQX7QxxAfBDKf4eqUa2WKZ0w2cSX4ToUkq5RKqUsbudmOxWheMhYZhVIfKAsFZrd47gX+68HG9vvH7jblQ5TAbuo56nWSmr7ZuDvXNandUudU2Gw2dSxBEiVw8RmR4sFpsmaZI3A5KsUgyHGJqZAioKihd3/WbQW2dn06fSmfzrZ1RF4nf+7oFqLMW+auv7WIqWebAiSGeezeEzVTRdB2mnzumofOZBzpo8Fu5evEKH3t8G60elWypukHIlsyZ62VtIEe7M4fdLNFiz9NRZ8Pr83B+wiCh2Lk4Uu1IRdIqzmlDiQshk5+8eIIDZ0K8e3oSQSvzwEoLa+qr+UHAYbB92wpWdvrYvXsDr712lHeODhEpVtd/s6tC59IlLO2o0hg7vAqNDgUbCveusBCcjt2CIHI+ItOfnNt5OzFQ5OTlBDimTWS0clU+Uy6TzilMTkRRjepzJVKy8dSuJjZ3OfDW1NK9bh2PrbHxp1/eQ4cthiCIxMs27Cizz+1ArY/xiQTHL4SwKEm++nArNqHCkRN9TFVc/OxoDkUXqPNbeXI1/NFXH2V707VnQKNLZ/e9W+k9d4lIZdrV1Orgh7+7wptHh/HYTN596xgZw41fj7K1XcBiKgylrRRMB9/47C6skoGaDCFKH1xlZTEEoxZg/Lr/nwB23OL4bwKv3uyHgiB8C/gWLMyRuhmqPKnoLBc2OjaCKFVNIGwORzW5MnRcvsDiBuBug9vZWxazGYq5HKqiYJvW7fU3NFXF4n0Lc3Tq2joIDfQhShaKuexNaQQzBhy+2nokudo6ME2T2pa5MWNqeAjJYsHl9y+KkpBNJtAqCqZhUtPcQiYeu62l6PWvl/I5JFlGU0UkWcbp9aEq5UUNyZmmicVmqwboSLjK8Y6E5tE5Nm5YysYNt7dsXSTu2tq9ft1KdyjuHctUuDowQawgoRkiX9ztJeC1c+5qlJRiZXuHSbGoc/BoH5fHStT7VHQjgyBYODUOjJdAqnLS7lvtYO+9W6k7dpr12zcRHh3FNA1e70kj2qt8yktxK6Za4s8/voxMOsdPDqXJaHYymp3REYN2r8ATO9oo53O0OQosb3ZwrDfBxESUR+9dAZUSoxmBtH6tGnfwcoZo8jgjUY3uOoNnn9zMG+9eIOi1smXzci6PHCKlCsh6EYdNJm9Wq7YesYBmihwc0AAbGCrrGgxWt9po615CKHqWfEGhOSjTnVUYTFnIV2QM3WAiViGRusBIzGDXxmbsNitffbCZ81djLOuooaYuyD++2A+mwSMPbSE2FSfXa+B2GdS3dXCkZ4KLcdf05wcOhx1Z1KmUiuSS4JErlHUNQZKJp8sMDIToT1nY3KKzvCPArw5PMVl00F5n4q2tJ1nO8fT2IEu7GqkoZa6+cAXT7uWffzOIIQjIvnowjHmc7feJD2Xt3knMFWUZpVQE00QQRdLRKUzDQJRlfLV1FLMZysXCHHWfD4LFcIpn4v6MEZA3WINSLGGx2RZU/xFFkUq5TDGbxV9/6+HqTDyG1W6fHWQ2dH1et3FG4lLXNepa22/7NxmGMes+V9feSS4Rx+nzkY3Hb/pZVAcJ5z5DJKsVI5+f1Y5fDEzTnDVHySYT2BxOsonEvOdIsCbA1z6za1HnXAQ+tHzhTuJuURO4enWcZEEgXTbZ1OVk4/JaysU8Z8ZN2gMVlrW4OXJmDESZcFpjRXKYqbyAJtj42ZEMM/bNznKITzzzOLHJSWSHi3R0iq6VK/j+zw5SFqqFqVjZRmxQY+8qP/ftXsV/e+4EcdXJQBLAgqSX+NL99YhKAQcgiQaxjMjf/8s7fOyeNsYu9eIMNlQ1zacbaGMFF+++e5rRaBmppPGFL95DJBTlwNkp7t+7FlU9z5FBDbOcpcYtkazYECQLsl7CZ9O5HHNVreIFaHUrrKlTWbGmC1//FOGkgq4U2LnEwoGh6ka3UNaRnX5OnuxF7unHYpHxjo3yzMMbuNw3Tjqv8vjj9/D9F44znrezoTvI1p2rOPWTwzisEjXNzSTTBd4+r4BoQ9BLWK0yFouEZBgkwiGMShGLYUEV7RQ1kYGBcS6MKfgdOk/uDHDw7BTDGQdWSSBYV8fJ/gxr6k0+9fTDpCJhcoUQfQk4PKByrO8MBDoQyzkwP3jMvatse0EQvgRsBe672TGmaX4b+DZA57oNi+7+3DjsIEoyTq8XraJgczgwDR1/QxOZWPSuJMO3gqaq5DNpbHYHSiGPw1PlaYmieMtBEofbTfPSFeSSCZRCAZvDueDAQzYeJdjUUjW9CARRSkUsNht2l3tO0qtWKtjdblJTkZsmw6V8HkPXcPn8GNO2qJlYbPZ6M7Gb23uqShnZaputFDvcHmRrdZClUi6jVZTbuuPNINDQiFIq4fYHpjnIkQWtTH9fuN3avX7d2pqW3VHXsj9hoS+W4o8fWYqulPDXNxALhZhIVBC0Cvft3MTUVJwfHUgBdqK3kK3tGSxQ5+5BMwzOne3nfH+URElCtHvwSCVEATKaAyQrV/pDlCvanDafoJYQSnksljYqksSyrnrWbVkHlSOsXtZGIpYgnauQU61z+kYJ1UN/tMRffu0e3jt8kd+83kNfqIxpwtn+o6R0F89ssdPW1IpstXD2wjCneuP82dfuJRGN8i9vxZFNheaAzLNP72Liah+6blAslNi+fRXpWJSGdJzBlEFcc/N3L49j00U2La3D4tMZjiqs73aDKHD/7pUcPnSeZK4CkhVBkvnBS+eoVFQa7BIH+3R6R94lqTpp9ZWI5CXCRTv/2y/6EUU7JSWORdD58z96jJdeOcO5sEH/ZJFcyWBtg87yVhc+nxNZMKkAR0ZMDg8MI1ochGM5BEPnxOUYpt2LrGRQrV4EQUB2/34cE+9k7d5JzBVFcY67pa5p0xKRVTOhciE/K0/5r4Fs4pqjXamQp7FzCbCwisT1aF2+gvjkBO5AkFQkvGCMziYTONxuUlNh8qkUoiwhSTKGoc8pCBTzObzBWvK3GNbWNY1sIo6/vgHTMLDYp2UoDQOLzUZu2jDkZr9rmuYcPeHa1jZ0tYLbHyB9gwvfrWB3uZAsMqJYjdf5VHK2KvpRwJ3mC3cSdwuGg18cz7K728Pn7lvLxZ5LuANBLhztBcnOinYHu3es4h9/fJh4xQ7IxAc1EOY/kwqWek4ePEZdYy0TAxFyJY3Xe44RLbmRqVDv0ggVbAiiRDhRprd3hIJ6rbtqGjpCpYCoV/DU1qKbMbbs3sC5071YrDUUc3lESWY4qjCTgAPoopUjEyZf2NuI22XnZy+dQBVsTGREvv/CMSbTJqvqRD724FaUYp6RkTBnRyvsWuFn+bqV/POP9pMsy5Sx8bF7OrBZZOweN5HIJdaubGPZ8jZsV4dgIIcgW3n+ZBlJL9MV9NBY46V3OMXqNc6qJnxbgEvDSa5cHianVP+2Q71p+saOUqoYaKKVv//BQYqGnYANdBOyOPjhu1EQRBqsKkfOHuErX36U7skYPz+WpVDSeOVoiKX1Mhs63XicFhzW6rmnynb+5hf9CLKNZleFwb5hrgxOcTU23YUUJAyrG5FqNfluYDHJ8CRwvUZX6/RrcyAIwkPA/xO4zzTNm0943SV4AkE0tVKlM0RCWOyOWZvjO4FWqZBNxufo5N4O6akIvpo6CtkMTUuXo2sqyfBktUIyPWiiVSrkkgl0XcdbUzMrJyRK1cljTPOmckSy1UZo8CoWpxPDqO7apBuqTenoFIIAark8h/d7I4rZDA63m1I+h7++gWwyMRtMb5W4Z+IxRFGiHI3OTj4Ds1rOdpcLFjEZPmNv6gkEZyvIM1qeuWSSZCQ0W6n+EPCRWbuCKHH6UhhJFDn31igr29wopTIBp5V/efE8qgEzlqFeWWHbci8n+7NktbnBOWl4ERxeulr9vP3eWTYub+K3pzOYgsnHd9ZhkeB7b4TA7uXdqwamVkEwzaqKg1rijz/WTXg8RLagksspnL4Sp1BWyRdVWjvb+MmvjjGZk3CLCgYKWdM9uxkqqjAwOEE8q9OfFGFaUqhYrFZeU8kMTklHU1V271rH0MRhIiPDpNJ57l3pYueWNfzTT49w4N2TKMU8/nqdrBjgv/70OGq5RGOtm2VBkatJKz5LhS8+sZRAXT2DgxP88mCYBm+aQqFMS2OZdEXk+GVttgobLdtZ6dd5eE8Xg1fH6F6xincOXuJTn7yP1985z7FhHdFiZ2lQ5YufeIC33zrB+XMDTGVU1jZIPLp3PYIoUszl8dbU8I8/PITd6WZTg4LL48IhgsNp542zGY6PKayosfPpVSIr1u/ll787w+X4XTdD+Mis3RkEm5qrWufTsokWu4NUJDyHSrZYZOKxqqb7LVQarkdqKoI7EKBcLOIOBGaTcl3TCDY2zcbSTDyGqlawO5xzpNpESSSbiN104293VqXU8pkMTV1LqpVUn4NK+RrlrZjNIIoC+VTylvrKM7bRM50vp6d67Ew37Wa/a5om8clxRLHqwDeTEIuiiDh93YtR7ZjRHLbaHbPFCofbjcPtxjRNIsODCKJIbUvbh6E+8ZFat0PhAsdO9HHwXJz6S1Mgy7S4FPafK3Jh4AgxZVrGUlfZ1W0hmVXpT879LouyhWhZZtvyZZw4f4CNq5sJZaIIosSObitbV9bxxsGrXMl6GExZGDiVRayoYKvG8z3dMru37ebkiYssd3k40xdnPHqUcDTPY49sZWCgzCs9FersGk69SElwYk7LvAmCwGQ4jdUqMZRzVV3WJBjNAiIolSLhsXGK+TxLujspmTESyTSTV/uRjSL/+euP8No7Fzh04ioei0H7kjZiioPfnojhOlldazuX+jk1VEIXbXx8Rz0Nfju1ra1cGDrE6XPjNAZtBINeXDK8cCQxK0FXws5YLMsfPdpCOpGgvmMtR08Nsm/vatLJNN99J4EgWTCVPF/93BbCE2HO9Y6Szik4UfiTz28gMjHJ8rWrSEZCHD4zRv+UyYb6Cks6G4iG8nS1eTk7pPDTI1mcAnxii5Pm1mbGJ+O8dOb9z04thMVwhk8CywRB6BIEwQp8Dnj5+gMEQdgE/DfgadM0F54eu8uwOZ24fP7ZaWNVKRNsbL7jYY5ssjq0kUslUUpVh6QZTtiMgsP1tsozrxcyKWwOB6Iokk8mCTQ2z+EKZxPT4u+mSS55jZs4U21p6Fxy02s1TbPagjMMHG4vdW0dOH2+2epvpVyqPkj8AWpa225pc6prKoVMZjaJ9QZrFqUJKggCuqbOsZx+Pyjnc7P3d6Fr8wSCmIZBLpmsVi7uLj5Sa7cnJHNqQqSlzs2zH9vJx+/r4uvPrCFZ0Mkb13a3HXUW9u5aza4lEp/a7ka+weHshUNRvv3ry2xe2cCq1V0EpBxOoUwkHKNt2TI2LPEgGRU2NBl8Zqefrz3ajqEqmIJIZCpJtgzffzfOL88a1DfWsXPPZjRDou9CLxuX1fDY5iB/8aVdfP1jK+h2XeOUF00HLxzLzj4sTNPAUKvPMVErsWJlJ4Yp0L16BW+9dZqxsp+C6WDtti0kogmGh8PUeGzce/827P56XjmvIMg2kpqLrODjkT1LeHhHB6auUdZFwokSr712jGg0wfoOO7/ulZiIl2lfuZKdG+draFc0jUBDEw6riFqpUFYqnD5xgYFQdSDLNHQi8TxXey+TypV56XSeqZKNvGIQjWV4c/8FXjsywj88d5qcXMsT2xvYsLqFdWs6cVthxbpVtNdWeXkeh0xdQw3jw+OglhB1Bb2YQcvGMO/CZDMfsbU7/X4EGhrJRKcINDShKuWqbfIdduJyySQOtxulVJw27YnMSohBtUqbDE/OUc2ZkYyUZWk2lpmmQbCxabZiPFPd1SvVIevSdZbxwcZmgo3NN+1kWe0OLDYb7StXk4pO0di5BKvDMYfGpRSLNC1Zht3lmkc1uB6SLFc7X9MJ7J1IypmGgWHoJMOhWcvpO8WM5nBFmd9iqtLV7FjtDkr5XLUYcXerxR+pdRsp2njjYokiDj728Foe3trMH39+N101IlOKc/YZbDPL3L9nNevabXzpHj9tnrnf4dNjGn/z3YM4LRor1ixjQ4cD9AqR0RE8NbVsXlddJ11ehT3tKv/d17fT6Kje/1yhQig0xYkRjW+/McV41sq+h3axbt0SDh+9yPKlLWxoUPiLL+/la48v5eHVdtCvvf+BIYG3rhizdsOGWp79zJpqndQ0NtDY2sTwwBj7L2YI5a20rVhJU1M9Q4MTJHMKe7Z2s3X7Wn76Xoy4YqeMg4QZYM3SWh57cAMtvur5JqZyDI7F+c2v97N3fR3nolb29xs4nA523redGuvc+2JINqwOBx6fr6pMZRpcONvH6d5wVT3DNDFFC+d7LpGMp3m7t8yZSQnVEJmYiDI4luTl187wo99e4cykyIZ2K/ds62L9hmUE3QKt3V2sXVqlx9gkk9aOFpKxOOlUDrdQwlDLaNk4emnhId87wW23haZpaoIg/DvgdarCeN81TbNXEIT/CThlmubLwP8KuIEXphfXmGmaT3/gq1sEZirD71fT1mqrauLKVhuFdDWpndnR55IJfLV1ZJNzJ+ivr5QC+OobSEVClPN5kuYkFpsDi81BbHyMSrmI4w4lxhxuN9lEHIvVWlUEMM057noWm51cMokgcEuXPID69s5b/nxmwjqfTuH2B2YrBd6aWgxdxzSMawYa74N+YrHZbvr5zFSq3YHANO2iqsO5mGR9Mfiort3RhMbB/Sfx2XSaRAGXReP6rcaFCY3Uz46yusNDa2s9ElE0qg9/dB1NtvPAMhNfwMfl02eIKza+9UR1I/jWuz1cjSh01cp8/Ikt9J4+RzyeQRBFBMnCyz3VAD0TWM+OlMi8dIL2Ggm71cpkosxkSsNQ+/A6JJ5+aC0/eKVvVrnheuzpEtiwuovvvzJICZF0OkcmVyZ3eYL+hARqifMDBhNjIXpjVnozOSTDxitvnWUgVILrxOoFycIv3xma/redCjIvn0jSaNPZu6ebyFSKM8NTXMoG+NEvjlLSZExNAAQsZhlNtBEMePnZT1/h4X0byKQybFjVxJoNq3mz5wAmEp/bE6BSttC1fCnhlEFvshrYRzNWRt5LgOCafTialSKy6WRqMsapd6/w7JObOPj2Ec6OSyBZOTlmcmZoiHqvxLe+cC8XTp7j3fN50kIdWjaO7P1gyjYf1bUL1UG3VCQ0u4bu+PfdbtKxaNUsIjqFr7aOdDQymzDqlco8d9CFlIJmOmhOr5f45AS+ujoysRjlaTe4xdIJrkeV3lCPUizOi3eS1Vq1s79NJfx2LqGmaaJVlGllJAGHuxobBUGgvqOL1FSYYGNVv/n9wB0M3lRzWJx2rTNNk1IuM2vUcSud+zvBR3XdCpKFA8f6qHdoONxO/G4ZrnMFr8ge/vmF0wTtGp/5xBpOXbqWoxuqgmixUec1uHfvaq6ePsXl4QxPrA2yadvjHD1wiuGUgKlofPLR9UTGxghPTk13++BC1MKFaAZwIoiQM9384IVj+O0aa7uCpFIZommN06cuIRtllnc1kFXiHBueP6jZ4Cjz+WeW8/qhAS4nrJQrOslEmpGxKPGiiKoajMcVDrx3iqFQgZOTFsDBWycmqvmCZW6n8XhflsnYCcbS1Yrz8VGBOluRdW1eNqzr5vCZ90hTw/PvTtIQiBErWxAEDYtRQhUddNcKHDk9RIPfSneXE4dYYc++Pfz61TMAbGox2LNpCVOhMC2dHXDxIkgyqmjn58cyYNoQRAGEAAjglCqoqsoPvv9b7tu1ksnBQV46nADZR0pz8vc/70UTbfzRI810thTpuRLlXLwWLXdrlaPFYFE9EtM0XwFeueG1/+G6fz/0ga/kfeL6wQ3TNElMToAg3HLnfj3cgSDJ8CSVUglRFElNhbE5p4d/gjWkIiHEBQZiyoUCqqLgCQanA28LsfExnF4/SqmIr7ZuUbaYM0Ya17f0rHYHNc0tZBPxqsD2tMvTjClGfXvnXaEVaKpKMhxCqyjUtraTmorMuW+iJGF1OD7QZuNWnOJiNoOmlFHLJXRNn33Pu4mP4tpt9Ircs28bPacvceRijLxm4/4VKkGvg4NX8kSzBuN5B+MXCrx17gIrm63UegxkU6V7Wfv/n73/jo/juhJ88e+t6pzQjZwB5pxJUaIoiYpWsuQcx7Y8nnGY8U7and15vzf7xvvexnnzdnaS7fWMPXKSbEm2ck4UMwnmAIIAiBwajc45VFf9/qhGIgEQJCGRlPr7+fQHja6qW7eq7j117rnnnsNPX+9B0ywkE0lU2UJ9SZJ4JEIul2dPp4qQLHT5Mzz7yhE6vVmSmgUxabWtRYuTVY2ospmcMJPNJWleWEcsnuXts2kM5DnnN7DYk2JZRiaek7kwrV25Jc3iujICQ0O6G6LBzDOHEpSaFCpcUercgm9+eiMvvrCLex6+h8aTpzl4PktfzERLrwbTZG3ypqb+tmWhlfvvvplfP7OTJdVm/vTzK/jJb0/SEy/BY0zx3UcX09M9wOoNN/HUs/t46L67ONjSRkfPKLfcuoGXX9lH++AR0pIDVJV8Pk86q/HaK3vxJ2X09zG45BRf/FgTB04McsKr3yej0MjlVSIp6InbeOm9LgZDEsgm5HyaT2yyYXfU8tL+AQ61tFHucrBjs4Vn3uxELplbFsxLcT22XbjY0jmWjMjqcI0rdrNhMJmw2GzkMhlUTSPs805kmkFXcqfLDqrm8+NZRiVZxlVahpbPY7E7iAUDGE1myuvq5yT7I6M+nGXlU4wJY1ZgX18vZpsNTdNIRsMgBBabfdYZuMshMDiAyWolFvBjdbkwWSzjiqskSbgrqggMDU7xG74cjCbzrO+HaECPDjD2vrPYLi8RyqW4Xtvt5rVNlFeU8dbO45zzSywtzbG6wUjnUIrjQzKjigF/1sp/+9EeXA4zH1ttxjc4zG23rePlXedRVFByChlFo6rCRSIaw9ffx6n+FKN5D8Js5pnXW8mpMBjPMVnGSfkMJilHWuhuZ/4EbFrkpLa5mZ88d5JIXOPF4ykccoa7TQkG/Wnggrjs+Sw3LbEzOtCPUjDmHx2UOd7nY1W9CZ8/wh9/bj37D5yhobaM5YtqOHKim0NeO52h6WO8p7DQEWQ8/4dbTvCdL23j6LFzvPL8W3z7d3aw870THByyE/JrfHKzGaGkWL7uJt7de5aljR7qG2r45ZNvsfW2m6gYTfDq2yc4N5QBLKiqRi6X48TZYXq8CYRBr4emaTy02oDNbuHpfRFEIdOjQYZYLMlwysqrLT5kWZA26G5Fm2uSrFtWx4FTI5xo81LpFNx39wY6f/YeUePl5zS4kDkl3bhRyKZSWJ1OZFmeNfzNmK/qeKgdISipqMBgMlFaXTvuxyaEoLRm+kDmiUgYk8UyZWpfTw2du6yV1YGhIWTZMMWVYgxJkkjFogghyGbS2EtK5pQedK7o0xh6HMpo0I8kXey2YS9xT5vo5GqJ+EdJRKNo6Na9C4PIf5gZjss89+pRdrVGOT4kIQmVRQ0e1m5ew5pamT/7wko21KoI2YRqtLN2SRm33rKSmhIjiVCADY1G3jmT5OApLyvWrmD9snKqmxdidLgnptIkM8OhHCsbrONhzwAsapzvfn4jD2x0j/+2tNFDaXk5rx3o5761Lv7o82tpsIS5dW01xzoj5IRFn+5SJ8JrlVsUmpctQVE10kJ38bCQZsdKG5++fw0il2Tg/Hnuv3czw93dlFd4aHLPLSSVlleQczG6vCn2HmglmYbyMhfZVBKXRaPSmuaO1R5i4SCJZIbe7iFGkmZ+9vQBdp8OsbMtzZPPtnB40MDpEQNCkhEGI0+3JFCUHLdsWcK6xRPXL9CQZQNuQ4r7V2g45TQOi8aCZUsQuRTfebiJdE4dzzK1oV7gshspK/ewst7G68ejPLl7lJcPBTCU1k0ZeHwUGEtGlIrPPFWZy6R1l7NC0p5swcVCQldCJ1smnaWllNbUYTBNfYGHRry4Jy3gAz1Oby6bofQyjAPeni4cnlJ8hSgPF6LmFd04Iktomh7reK4hJOdKXlHIZTOF80w1AMgGA+V19VecQGMmMqmUHg4zmcJeUoLV5dJl+yz+zx8m3mwZ4jevn+LoiI1E3kKNx0xDYy23bl7A52528YXtpWh5hby5hOZKCzdvXcmmNQ3EQgFWNNgIxDWeevs8ktnKXTvWg8FIdfMCVGmiv/eHoa7cits41UXlgY0lfPfzG7EUwq6V22Hl+jW8tfM4dpPgL765nVXlGe7fVM6oPzYeV3eyzDVqOZYvX4Cr1MNQMDe+fWujyn23NLNygZtR7yjrVjeSi4VQ0kmWN3vm7AYjZ6NEszK797XS2htjSVMpiUiIUoeMlM9w3yoLQkmhqoLe7kHCsSyvHBzmp88epTdfzc+eOcg7J8Mc6lHHU1Sf9Bp4Y38v99+9nls2NGMXE/dFkgRaJsU9SxSWePR3VFV1ORaLiU9tr2Zlo43hpF5OuSXN0joHnopyltRYOD+a55Wz8I9PHCFuqkG2XH222w+VMmy22VCyWWSjcUb3AU3TyGZSenD3lD45bTCZiYdCl5W0Q83niYWCGC0Tvp6SLM95QcgYuWyGRDSCb6D3omQdDo/+Uiivb8DmdKGqKlbnlcWC1BdnDEyJ0ywbDFQ0NFGzaAnltfUzZq17P1CyWcpq60jFIrjK5sficsMgmzBJKg9srsCkpcFo5xdvD/GzX+/mVH+S0eFh1ix0s7hUF3gHTwzQ297BaDSJ0SDYvKqWm5o0Pvnxrex+9yDvHA+y7/B5TnVOHVBtXFLCQ/eup9I24cue1Yy0tvXRPzIRC/fdkxF+9MwxIqKUQCRFf/8IJlmivqkWq1EXpNuaNb5+dyVmTVcKhkaTdJ86gSTBHQtyPLw8y62LTazZtJZd7x3jdNDJy8eTDI1GOdkxSloRnPVeOlbtioocn91i5Y8/vwZFyfPWmQzJnMLQcIg3drXSl3ZRX2Zm3cYV7D0dYmePhV/ti5DERnfUTEK1kMVCe9AA0lSlVAgJTTKSSOfYeWLCHzOSt/GT509z+z3bWbqwhiqXRDjv4Ke/2snm224hl06iKlnuXm5kdZVCebkLV3kVZ8/2cPc9N1FfopKXLORkG/l4aL59MK97LHbHrMmIQPfn9VRVoxXSR9icJQS9Qzg8M6eKvRCDyUR4xHuRkuxwey7pLjYZJZsl4veRjOhZRpXsVD/I6gWLqGhoxGTR41wnwqFLuj7MRDTgJzA0OCVZVHl9AyXlFTSvXjdj1rr3g1zBoGK2WlFVdd4NHNc76azGbetrWFCi+6Lvak/z9Gun+fVb50kkM5CNc/cKI5qa52RPjNMtRxj1h4hFIjTVullbnuD3PruFfDbDj586SE/IwP5DbUQyEzPH9W544O51rFsw9d72j8RpPddHVtVlUk/UxA9+sZ/jw0ZSiqD7fD/JtEJ1dRnuEl2nqLam+c4DNSwuKIo5g53O06fJ5bLUGQN8YlWeLWUB7rt/G4NDfo72pPnl/hjn+4IMBjIkFYlzA4lLti+3McMnNlj4zieWsGmBhZ3tCv1BlZFgmpaDZ3jzrILVoLB5wyIUg4Pnz8CT+6KcC5gIZCwMJS0IIdETNRPLT5MpT0hoQrDzQCdxJlyCXjyRBYOFbTtuZmGFXsfn9o6QyihU11aTSyVYXp7jvlVmHHKORWvWsOvtA6zbupEtS10ISSYlu9CySdTcLCGY5sgNl8g8MuojHolgsdmmnQoyms2kEnG83V2YbbaLhJivtxsNgbena/z46aa/QiNeDEbTjK4OF/oNXymOEjeRgJ+GpcuJh0Oz7+u++MWhadqchGnYN1JYDT7VD+1yXiLzSWmN7hNXt2T5B55i9VqgaSqrq1SysSDDcZkqVznV1aVI6JYys8XEqoVO2ju9tPcEueeemygfjNEZ1Nv0wpUrMXecIxmL0rxyNZzq53xbJ9tu38LIy4do6ZJRhBnyWZo9Gn0h2HcqxqjXjzdhQBR6uiqbeeVkmsldPydZCGdzeExxjvRbOToYR9Oc/Ncf7cVgMmEVSWTJislkGPeWkK0W7CVuRrqHuOPOW/AP9JNT8rzyxhGO9QmEbCCS0dh30sdwzMBhbxCYOh27piqHQRIcHZLH28DyJg+LlzXQduos1S5Y6tTYuGIFJqOBYPo8TXKGIz0SPT/djdlo4LYFCllV5lhPluwFYZHccoqsqi/8G+PNtjy0jiLkqdawlOTk1TePkkml6QhYERL4MzbOdfRzpjPIaFzw5fUL6Ovq5+S5YXYe8WK0WhmIHKE/KoMEStSP7PCQj47qMYc/JKTiMeLhENl0msrGpinrFwDMVhvpeAz/wABGsxFnWfmUfYJeffZrsKNtfMA93aKyRCRMJpnAM8NC6PmIZQy6T282lcJZWkZpde2scdaNZgslFVNf8GODnbnIrXwuR1lt3UXnmG93sLngcHuIh0OUVFS+7+FHrxeqLBnq3Br9Az5cDjc1dZXYT+vBLVQkFtS5kbQcZ3oj3Lm5noVlFt5uHcBgMFC3aBHhoQHy2TTOsjKaFzexe2cLd957C8OhFs6OKLx1JgOShQpzimxe0BOUeO653fQG8sCEjDnpNXDSmx6PFy+ERECx4zImCadkfrknDDj5/m/bUDUNj0UFzYDJbB6XuZqmIptspJIZPvaxraRjUVZsWM2unYc5PaiQUC0IAcd7kih52NUXBaYaBCrMKdYsLGHf2RjpQhi3arfMuo0r6Dh1hnQiyV0rStFSaW6/ewdnDh/BpygMRgTff+IQmbzK9sUuNEWhy5/Hm5wqC4xamhJTntHsxOLE7qiZf3iuF2FwTvaGQkgyLe1hfIEj7O9Mg8FIWljp9SbxRwbZ3WPg45tdrFnVjG9ggO//+A0CqpvES0foD+QAM2omoc9aJqNIJVcX2vKGswzn8woWmw1nWdm0mXjSyQRlNXXIRsOMMRXNFgsl5ZUXCfUxIqM+nKVlKNmri/gy3NVJaJZ4lKCHymlauVpfEHehY+YM+Af6CQ4PMtLbTWhkGG9P1yUjPrgrqwh5hy8K0XatEELgqa75SCjCAMZcjEfuXcNdtyzhO1/Ygsmgks/lyGR0a2lDmYlNW1azbX01Dz60nZ3vHOZAl25NGgjmaW05jM1VQjon+MlTBzjclcVskon4vHzqoc1sXqgrfOurFR65rYmbGjWWN7r4+CO3sbRSf+Zl5jR3LDVi5uJ2vb7RwB89dhuryjOoSpaF5hHuXe/h0U0OvvXp1SQSKVpODIxPf+U1E4ksDEUEr7x5jBNn+jjTFeJQr6Yr5cDicvjGF25hy6JCnFUlx8fXW9ixGJaXZrh9Yx23bVlAs3mUT252sKAky8stfn7w5GGeOwmrllRz9+2r2XfgLKfO9FBR4eaxz95ChTnNkjonm5pkVi0s5/57NrKgYmq7XuKM8dnbq/nEtqlTzUJIFyXFkDIRkAwcHjRwKugYdzVJYeW3h2K0+Q1sWuTg3TcP4LBKfPYzd7JuaRmxvIXTXmncAi1kmXw8BFe4sOx6JRWPIcsydYuXEgtcvFAlUoiLDtr4wuMpFMJIOtyls86cZVLJ8cRFV0rYN8LQ+Y5ZrfP2ErceBcNuJ+gdwjmHWOnRYICgd4jA0CDe7vP4+nrwD/RfMuKDbDIRGBqc1Wr+QeJwz09SqhuFzSs8rFtYwne++QgLPSrpZJKsqvd/o5ritltXsXxhGZ97aAOaovCvr/YgDCYywsqpo63klSzuqmp+/qv3eOmgH2EwEhgeYv2yKj65XR/YSakAn7mtjgfXO3AZsjzy8W3ctlEf+Ag1y7ZFMvWOiyPM2IjzB1/cxMObdCuyR/OztSHPA6vN/NFjt1HlUDnT4aU/NNaWBZG0Riil8fKuLlpO9XPiVA+HunOMpgsRVjJxvv7oGj5124ShcFWlwpe3uymTwjy0pYzbtq1iZZXC9maF2xdB67DK93+xhycOJMBk5bZtK8nkZVoOnOT8YJyvfmYrW5c4KXWZ2FKvsaRS5p57NrN15dSZ9BJjhk9ucfHYJ9ZQbpyakl5c4N4pckk0JUNfzMzuHgOKYWLGe1+P4M2zeZpLNdLJJId37eNjD9zKI3ctA4OZMyPSRMhRSUbLJNDUy0+1fiHXh2Z0GRhNFkI+L/FwCCWbJZ2IU1HfOD7SNpkt41Nf0ym7FY3NqPn8lMUJeUUhFY+NW17tbg9h38h4trsrYeh8hx5SLHjpVY5CiMteEGcv8RAYGhhPUV1R30jEP3PCkSs5xxipeIxMMnnFPmzRgB8ll8VossxpUeGHEcVUws+fOcgdq11k0mkQMvtaOtEsuiBsHc7z/HO7SKRzHOnO0jUiJpQsIahoaGT/sR4OD5sQgIkkvb4sycgwtsEk5waSgAVN6IlfFK2XLm+aPftbGQorlJkVHrm5EpfLQZ8vQXdYr5eUT/PxLaVo8VFGerpZWG2hzJ7hrvseIDA8SG/fKMdOdLFlfTMGWeboQB8YjETzlvEkIZqaR0iFTG+TFMHB0STvvHOYjqHCYhJNoarSjdEQJZRQiAYDBPwhHrl3De6KKkYCSbojKtmCa/GrLT7eOz5CKG3nwUUeRoYDvPHuSbKKwta1NTjcHjrPnmP3b/dQ4rJh8WfGrR3bNzfhqSxn/0u7seAiXYjhLKtZKh15huImhCTT5EzzO1+9lWdePsq5wMWLTFZW5Kj2mFi+qIp4wsO+E70sCGbpHE4xOUA+gGyf+5T/jYTD7cHX30eqs318QdnkvuwsLELWNE1XLi+YaSutqSOXzVwkj2PBIHa3e3x2SgiJkHf4qmREKh6nesEivF3nqVk0eybLy1kQl8/lcJaWER4ZQUgSkpCQZPmSBpMrXXSXVxSi/lEcHs+c499PJptOEQ0ErkrufxjYfSrE9sYsFkc/qqrQ3T3IOW8WYTKiGJ38/DcHqC+1MHp4hKxmIG+YeH8abXY0s4N//G0HwlaNQYnT7xe4vTGGvX7iihkwIckGSioriCWzxPMmdu45w4A/jZbX+Ph6K3VVTtwOMwMnJoxVG2oVFla48PX1UGqTKMv289gXbyOdSJDKKBw/1kGp2872batp799Pf1x/D7zZpgEKmmpCSFaOB6dG5dGMVt546zB5g50xq7DTZqC2rhKz3A2axvE9+7jnjnWEAkGQjbx3boDRjB0kOD2UI/rUAfrDgk1NWWpqynj9zcO0exXu2VhBhduMu6qa3z7zNmabnVq7xFBCl5srG+ysWLeKQ7sPIrQJ5VTTNKosKSIZmQxmRC7Jdz65jIGBUV44frF7g9uU4dZVHlLRPNtuXc+TT72HdKSV/mCeC2WuZLRctUV4jBtOGXaWliIkgWwwEgsGMNts5JXcuDJ8qYxokiRd5BoQHNYFeDTgx1VWjsFonHM0ihnr6SnFP9iHmp9//0F3VTXpeIzaxUsZOt9O8+p19Le1UnYFoYTmQioWxVVeOb6S+1Jk0ylSsdikBCQZPVTS8EWx1z9SDGRc7G5L8MjtlVQvKMMXOwcUND/ZyHGfxo4VHob8aRLqRAdPaFZ++MoASBYkSbC+RuWhe2/jX57YywO3LyXoGyWY0BAmOD4sM/zzvfhSRpCNvN2qr+qtNKepX7iAt988SHdQHp8TKpGTLFm0ipAXjDYH5/r7UBH0tXdw/GQX/qREdW0FT73RiSobEYap2X5WV+a4ZV0dz+zsJZSbuu3+m6rweJzsau9HGEEYrfz45W40IUDJ8OBdqzHZfRw8PcKZrjbi2BHyhEKaUC0kMuCQEqxY1kAyleOt1iwapTz1xjkWVFkYiWq47HYeuGcDmVePcaKQDO3FfUOYtS6+9Knb6Onx8vQBfXHX1iVW7t2xlp8+fYCeqEwqJ+jvHSJZMNyYtRSqBjlJv5alTW6WLW3gR7/cTVo4SOGiNaxP0X1UMFms1C9ZRnB4kOrmhYR9I1OUQKPZcsn1BhcqwmHfCDaXi+DQIOX1eszoK/XLnUw2ncLb3YXT477qsibjqaomGvBTVlePf6APd1UVowP9c44ffLlERkfGZeZc1nJomkbYN6IrzyYz6USCkvLyWbPdfRSIKmZebsvz3RVmFi5dhMHmRDCxXmIwXYIjk6OhpoT3zibHoyoAvN6qgBZC2Nw4RIJvf3kjh4934Q2mue3WdfzrMwdBqkAxlfCDXx8nkwdNtrK7Mw8YkdQEzYuW4hsaYedJ3XAAeoKPxTVWFixeQDoR58zZPqI4GejpJxiI0D6UoryynD5vjLMDexlOmpmURBSnlOIL9zRy+Mwwx4anqnCrq1QevGcrP3v+BGPK8P6uPIfaj6CaPAxH8ty8fRvvvXOAUz0pYnkTYtIAAMlIXwyQoaHaTlNjFf/w1CnyBjuvtfhoKlFwuPx0+jX+/FtbaT/Xw6/36THqDp+P4w8fornSwrd/ZxP/8PMDRFQ7pYYE3/rSrbQcbue1Uyk0SWZoOEAwkgIE5LPYpQwJoVuHq0tkNm9cxrMvHuSffr6XQK6Ezg7B+62u3nDKMIDFpucHz+dyGM3mKxo5T0YIQTIaxmSdv+mjbDqN1eGaopwrudwUi3QsGNR9MucQjmgyBqNxvFyHu5TwyDB1i5detLDkckjFY5ht9hl9iCOjvjmnXo4Fg5RUVOrC2e0hr+QZ7umiom5qooS8oiDJ8kfGVQIglMjjD0TYuec0p8MemBR5wCZnueWmDbSe7aU9GJ9ynJCNaJpGjTVJIq7Qdb6fVF5iZNhHc1MVn7UlePpgHCEb8WWNU4Q6QFfEzN/8yy6SYsINQNNUtq10M3juLI6KSn749AmyRid3rrRx6FyYTeuXYTMJKhsaGfr5WwzmXIXjNBzEiGt6XF6DLFjfaMYXUzjjMyDnYiiShWi84KkkZCQ1g0VSSBp15UEWGs+9fJh43kh/zAyyZ0YnoYoSIy0tbexsjaHlQViceDNOvH2FJALeENmXDtMxmGJFjZW+QA5/xgKqzMHD5wnGMoyJuo7BBJb9Z/AW3oe+tJmfvRcETKi5NF9/ZBHxeIKfvTOCXaRoORni7SM+YmKqv6puDZ90k/M5tiwwMhzMMBD/kCrKQhSyvuWmpGm+EiSDgXg4hJjHNQuxYBBXaRmy0YizVJ/CzSuKbsktnCeTSpFJJi5rsfQYY8eUlFcSCwVxlZVPu45jruSyGTRVHc9OOhmTRQ9pKRvnJtNDI8O4K6oIjXgpq61DU1X8AwOUVE41XuhRYdRr4rN8zTCY6WjvRWgKb7UOgGnqIvSVCzwsX9bIobZDpCaFMxNCAgEOOU2JQaG3Z5hAOIWqCfyDg3zry9v552eOE8xZieQvfoaa0c4Pf9OKKmTy0oSOstyTxCJMJGNRXnnnNF3pCpbW2AmmDYSyJh69dzGe6hr27j7Om23KuJwxqUnySCCD0WzCZVa4c7mNXa1x8qqG0PJkcgZGhkfJ5jU0TcNJnDgWVJMTTc1zun2E4UCKkwMCZPeMjrJ2KU0iZeJXLx1HUQ2QV4hi4VQQCGqompWfP3OAWFZQYxMIAUMJPUybqmXQWtqJKwaQIJI1smtvK93DCcAEspnnjiQZi9d561ILO27dyI9+dQh/OEkkauYHj7/DSNaBkB3jfsaamgchTdEXmkqylDkMHOlTL3J/u1xuSGXYYDKNWxMuh7HRs9FsJptOYbbqWeyupKxLIQQ4y8pJxWKYrXraUslgGA9DFA8FMZrNJCLhy1aGJ3MlQv1CIv5RTBbLFCvNZC43yoSQBNHAKBabnWjQT0VDI0Hv0PhAIBrwEw2MYi/xoGSz87YY8UZACMGSVctJKAZOH53qV5XEwQ9/1UJSkbnQ8mhUYtyzwsTm7bdw/mwHv9zlR8hOTvYk8LgiBANJhJj5BbfIk2P9knpeO+wjq0rYZIVkOsfGrbcz2NPLz17tJmcpw5SPc9OG1ZzvGuZo2yhWSaFh2Men7lvN02+04c25WejO8JVP386zrxzh5LDMmefO8udfv4XAyAjujlFu2baRg/tPsLddJYPuL3b3KjOb1y/in55sIaraeWRrBQsX1PD3Tx4Hw8zKY7U1wz0bK6lubMKQ2836m2/i1y+foDemv1zW1eS577bNPP78GWo8Bj73yGZ27T3Du21ZkIzs6swDBtRcBiE0RtMW3mnNXnR/QR9wtHV6yWQVHt7kpqGihqqmJv7hp3ugEAhjsSdDhTXPunULeebtHvxZvR5OOc39d2/m1MnzDByJX1T2h4ErTcyQiIQRQiIZiyLLeqrh+YrZO5lcJjVlBioVj5OOx8imU1Q1LwQgHgriKqw3udIFeWab7ar9bvWUyV6MZr0dXqgQz9XwMIbJYiU8OqJnRA2HsNgd5PPKeMSITDJJIhomFY1icThxeEoxWy9W4D6MCEnGXe5h0cJ63m07yIUxbV457GfncR8p6eL38E21KVYvraK6oYHv//Q9wlI5ZjI0l6UQA8NklJlnfq2kuH9rJae6QnQEVErlJMGciWWLqlm4bjk/e/xFupQ6hIDF9S7Wr13Iz369h9OdfjKHz7L5plWQ7+Gt8zIiG+fbn1/D8JCfpw/G+Kfnu3lgg5stm5ZiF8cQsoHSUhcv7u7l8Z1BwEqjM8XXP3cbr7x5nMP9sLJK5bMfv5NfP38I5JkHWULJ8MAWG6s2rsKQb2HR0gW0dQzz5lnd9cEpp/jGF1Zx4GgP3d15/uChOgwGA3//bDfCYOR8yMj5UAZNmCATRzU7eK89x0VxkwsMB9KcOdNDqUXhs59aQUVdPW/uPIXvvH4+jzHN0mojy5rcnO2N0NI/oQxvXVHOsuXNnPnxHjJcXXSUG24B3aXIplPjWdUuJOQdKlgsvVNCq70fWJ0ukpHIjMqqyWolHg6h5i8dbgp04TnTvhH/KMHhwTnFwsxl0hel4JQkmVQ8NstRl8fYSzOd0DNB6YrwREdQcllKyqvm1Sp0oxBRHfzzL3bT2+/HJlJTUveq2RQhxUZmkqKmaRqaprJ9iYlV61fS19ZGWZmLBfYon7nZxaZlHsrKPVSXSDQ702j5HB45jimf5FObHayq1Bfh1ZRaWLGiCbtJ45NbXHz3S1uwmCR+9ptDvLB/hIxJt3DlZAc/eOo4Lx3yc3rEQMuwhVQOVE0ll8mgKRnCSWg900UgpiCEQLWU8uNfHUCSZMrKHJxvPceOu27mng16mZqap9cb59SZHlLpDDfXJhkZ8XOqtZdFFbDEk8VBbEoK0jFMsobFauetV96luakOb083uUndIKtoBPwh8prGQFjw0hvHaO8eZWtdhjsWKkiKnvL3s7d4+OpdNWhKbkr55eY0S0uzaJqKAYUj7UGEJKOmY4yOhnjnrYPcvbGKNVUKajbFI3ctZ92qRmRJmrIyOqo5+NenDvDW8avPhHSjoarqjLInWYiTHg9NDa32flBSoS8Sdk6SudOdLxYMTGuNnY6Z3iXpRIKgd+4pkyOjvikpp/Wyc+QyaaR5WHDpcHvGr0nJ5YgFA6j5ibjeyWiE0upaVDQ949dHLPzfKwd9PP/yASrdJj01feH6NSVLWjUSUqYObjRNpdaWYsvaRgwS+Af6WNJYwkPrLNzUqLJy9WKEkmbrAt2e6BAJjGqarY15HlhrRlMy2I0aK1Y0UVNqYW15kn/z2HZubjaw63SYJ549RFduYgH5m8fDfP+JFgayHt45pzAYM6ABmWxeVyglM23nBukZ0l0ShMHEO6fCHNjVwrLVywmFYhhk+OaXbsGoxPTBVkLl5MnzeEMZljtDuAwZTp3sRMlmuWWhjDUfHQ+VORmBiqu0lJbdB/E4LYQG+4jFJ/bLqxAKRkjn9Nmx1/f18vrudpaXpnhonZkKEQZgbZXCv//qRqqsU/2CjVqGdbVgJoOmqYRiWY63+1jU6GFk2EfLwdMY8yk+vt4C+Qwbl5Rw/32b0fJZLkyF8PphHz9+6iAZ+erDBN6QluGZSMai5DIZMsnEtGmIDWYL/oE+NFVj8Hw7ZdXv38ICq8NJLpMZd43wVNdMcZMQkoQkSzgr5madGOnpwmjWw1ld6KeWV3Lj6UvNVivJaAST1TZtBqNYMDAl5TTwvi1qK6moIhYMXGRRMlmsZNMprE7XvIVLulEQQmC1mfnkIzdz/OAxahtq+NmrnayrE9y8dQUvvNNOZ1hXhqssGdY2yNTWVnDkVD+nj55kOJAkogSxu0pYuXIhv3pmF6VOC4vWrmN/6zusqy/jkw/exNO/eY8lS+oIxtLgU0BJc+zgMXxxsBjAPzQI6QQ9mhPyWR7eZCEcSbG3RxDNmTCqKSik7nylTUY71ctX715OJpvlhQM+3jkyTHBSima/5uFfX+9HQcZAlkz+FGcHkliA37m3gd4+Ly8djXD3Sjdbb1nD4QPHef1YmH/3pTUM9/axaNVmTh9v5c1Dw8RNE22iL27h739zDs1YwqIlUF5bT2rPXr5wcz3nB2O0DNtoe1e3hCBDS1eaP/rUanKpGK7ScsyGc7x+DqKxFNlsDoRAyyt4jGlCipXb11WwevUi/uePd3PLmnJWLlyAxeGkr8/LE7uDOCSF79xcRzCWRRox8NTrbSh5jaGohGS0THmuA4mPhqXtQvwD/bq8S6cusmgazWbCIyOk4nGGOtvntObgSpENBiwO5/jiaavDgclimTLolg0GjGbznGbjgsODyAbdPenCxcOpWHQ8LBvoLg9KNovVcXEc+MioD7vbQ9TvG5fdQghqFs6+wO9yyaZT43W6cIbPUVpK0DuEu7wSq9N1xdntblRiWYl7bltJJOCnpLyctw90EwwneeRjS+gb8PPqGX3gYCLN+lqN9aub2He4h4GBUYaGfaQlJ90jae7YtorTZxQOtZxlx903E4kdxaYl+O6XN3OmtRejDHV1FchHQ1gtMu2nWjnXE2NpnYXwiJdMLEwkYyecM7K6WmHlQhcv7h8hLazE0zE0KYeQjfQknfzdc31sbjTz776yjJ/89iinunMMxw3jVt0sFt5sz/Bex3Eykp1MfhhrT4issHD3UkFTbS1Pv9uH1WLkq5/fTnB4iP/9Ui93baxg29blrGjsxWK18MKbJ+nPeMaTBakGKz9+rR8kAzc3J/nYvTex7+m9PLRcw2K18cIRwU/fCzHmi9cVMbNjmYnVC92U1tRSV27h528Okc4Z8fv85ArWczsJMprM0hoTn3hgA6+8dQJvIMHXP7ed9jPnWLJyKf/w072EFJVHN7loaqxEPhzgwLkog74WWgcyCLNtihEioliIXH0gCeBDpgwLIaFks1OsnplUikQkhMlswVUIl1bZ2FxIMawLJlVV0VR12lzuV8qYv2zYNzK+GG+qv3DgkjEup16bmNGf12y1ERwexF1ZTTwURDYaCY94p3V5kGQD/sH+KVaDVDxOLpuZ89RlNOAnEQnhrqyZ8aVisTuIBvzTLorR/ew+nCvvZ0LTNBocGaIZQW8IXnjtKBaRo7xKgVyK9auXk0mlyGsTPX3HGid2kwCh0hGQKa8o4ROf3s7jTx/ktFfQ8+NdxPJmgod82I956UmVUUmGo8faGUqY+dtfHCGLCWQTZaUu6uoqkE6f44WWMCtrJf70O/fz7HN7OeOTKHfKyBiR1QSfvtlFmbuSZ94bGI8XaTWqhEa8ZCULn9teScOCJv7n4/tIG9zj9c3JunVlfZOVLbeso+v5FgQ5LGYDi5sr6fb20T8qqGjvoaUjiTCV8IuXW5HUDBjO47HL/JvfvZ0nnj9Ob2zCOi4sTgRwtjtEfTjKyipoXrIYh3OYM0PDZDQDeakQv9NgZv+xHpRkjMoyPyOxwirscxqalsEjImxokNh+7x20HjtFy+khznYFiWk2uobiSEJwpPUsaUXjK3c0MzQS4X89cZScMCFkEwNxM7cv1Nix3sVTu32oBisuOYmqCuLaR1MZBshl05gnrbkYUxJLq2spr28gPGLEbLNNSW2vZLNXtc7hQlRVJRmNIBsMGEwmjCbzFJkeDfhxuD1Eg/45JUfSNF1eKrmLZyycpWVT0tSHR/QFgYlI+KKyTVYbYZ+XVDyGu7IaSZZR83nCoyO4K6rm5L+bSSYJDg9id3tmnG10lVUQ8g5jL7lYthpN5it2c7mRcRkyuMwa/XEzL+7qwipluO0mF6qqsbKpBIPQIJ9jTLFbU2tg7RI3Ip8lg5GDnUm+9eWPceDgWU6NpvnHXx8lk5cxoOJLtNA+kkPFwJHjXQyOJmgbVpDxoxps2IxZlq5ZyaHzhznQk2dotJXPfuIWFrR28dujaTwWjcoyGyZZY211hk2rmjjWNsKB/on6G9Q0g719rKiEex64lVdfP8ShgUkXaDCTxYxTi3H/A9s5daoL0R3DYtRwOm1sXergxPkIHed66OgeRbO42NcaoWuwhRqnyooFHj7z8c2cbhvmrbMTs2bCqMuy3kCGsyfPYs34aW7aRGltHbtOvkdCyZMUE8aQ9oE4aDkSLecoq64ko8l0hEx0vBvEoqosMg3w0AM3kYjG2HtimBdeP8bZgTSyJDh6rIMTbaO8dczP0jora5ZW88TrHeRa/OQNdhJ5SGQy/P5Djbx2YIjBhBmjmsZjURnJWOdtzdGHap7a6nBQWlM7ZXFHIhLSQ5yF9RTMRpMees0waXXzaF8PkdGReU25aTAaCflGSMen9x8cq4fRNLfFfxUNTTjLyqdYhXPZDMlYVE+ZXFOHJMtIBgPJaHTGdNTuyipkWaakvGI8yUcyGsFssU5JCT3T8fFQEJPFgtFsJRWLTLuPr69X95X+CMWzvBQOLc7XP7eVezdVoEpmjg0K9g+Y+Jc3vSSM5Ty9s5+fv9FLd2RCOUhmNBqWr2T34W4q7CrHzw7z0hvH6A9rCElGk4x856FGFlaZ6I3rSuto2sKLRxOEc2aysgNkE5qmcvD0MP/y7Ak0o41w1oicjjLU2c7qJjsei0JtUxOBqIJVyrFo2SJSqRSoE8LxznXlbNq+lRPtAZRMmuGeHlLq9IpMW0+Ad3edptevkMLKz1/t4GjbKPdtX8y6FTU8eSBOmUumzpZkJGVhOFPCk3uDnDwfYnTIS7lNwaKlsFwwhZdOJlm9cQ0NC5s4uKeF0yc7+Ddf2sADGyeC21das8iSzCm/lTc7DORVjfU1eTRNY5Enx+88vILbPnYnva2naWiuw2VSOe/Xp/u6RlXsVpnlTU6SqhlZlpGEQDE4uH2JkUc3WLBrURqqbBilPEYtgyMf5BuPruLTd9R95DLPjVHZ2ISnqmZcCVSyWQxGPeSUr6+XeCiEhkYqHh+XX4GhQZKx6JSMmFeLEIJMKkk8HCKfy1203ep0Eh71oalze05ltXVYHPaLBvTRYACDyTQlTb2mqaTi8SnK/vh5HQ4kSaJ+6YrxpEehEd1Vb3Jqad0lavq6JSIhyusbScVjJGMXp72O+EeJBvS4+x8VX+C5cM/Gcr7+ua04tDjdEROtISc/fHWYs34T+zrSPLerj5dbJ/YPRlLULV5C92AISQgCoTjPv3qYwx36uy4tHNyz2s4X7qqnbShHXrKiSWbePJOh1WdAlS3jRoGhsMIPH3+HvpgVRZiJJ7L4urspLzFTLoLU13pQ8oJIRtBUX4qzrJxMZOIdvLA0z/0P3sqwP42CEf/gAIHw9DpKLAOvvnmUo+d0t51XTqXZe6wfSYLf//JtvHHYR29QZW1FhlRepjtiYt+AhdcODOP3BbDLOeRcjBIpPqUNeoMZKsqcPPSpe9m/9xhvvPAGD9xcxx9+ccN4amlZzdJQbuZkT5oWv4fDHTHuWO3CQgaRjfOlO6v50lceIhWNYjIaaKotoc+XIo2FhGphcCTC9o21xLIykiQhGyQwmKnxGPjK7R7KTQmWVclIag5Zy1NqiLNtqY1v/842qi3zp7PNSRkWQtwvhDgnhOgUQvzFNNvNQohfF7YfFEI0z1sNLxMhBPFwaDxAutOjTw9JQqK0upZcNk1pde0UK6imacRCITLJpL64KxggEQkT8g6TmkGZvRQOTymyQaZ64aJpk4M4S0vH/ZaDw4MkIuGL9lHzeT2ZRiF//YVTW+GRETRVnXKszemirLaOysam8d9iweD4PulEgkQ0SnB4ECWbRVVVsmndjzidSozvH/GN4B/o50LMNhsR/yipeBQhyWSSyYt84SRJwuYqQZ3B3y6TSqFpGr6+Xnx9vTMq3vPB9dJ245qFF145yMGTU8PLja0UHs1YieatLPZk+eKtblxymp1nYjz14mHWrajnke2NfOcrtzHkT6FKEwO5bDqDSEdR8zlqrEkMapo6e5ZlpRN+cTXWNN/66p1sW2plXUWSenuK9ZtXIckGlm7cgAmF9s4BRqM54jj48RPvUVFTw/b1E25Ebee9+AcH2Li8nKcO6tEWHtxYwu2Lpl7nQneGb39uC339PhaXZpHVNBHNycEelbZuP53tfdxaPsJnHtrEQ7dMhC/UJDMtvRquUg9rltXxpbvr+er9zZRoIcglMCoJgtE8Pe2dnO4K8U6HYNHShYRHRlBTMSxqjB3LTGxfYuLmtTUsdOltbOvqGnbcvAgtmyKYAO/QKJ2nWnlhbz/PPLuHO29dxvaVukIjyFNdVYq7xIZqsPL42yO82aa34TK3DY9dYscKO02LF5CIRPnKfU189aFl7NpzkmNtvnmPinK9tN25IIRgpKcLX18PCEFeUYj4fVQ0NI7L3Avj3aZiURKRMKl4nODwINlMhuDw4LTycq51sNjt1C9dPq3CaDSZKa+rx2jRDRFj1usLiQYDxEPB8WMmExwexOpwXBQmsrKxmfK6+vGZskwySWjEO67gJmMxBjvaUVWNTCqF0WzG19dDMhod76cjPV16JsfM9KllA0MD5DIZTFbbRb7KqqLgKi0nP8O6EiWXQ8lmCftGCHqHLpnt9Gq5Xtpuy5lRnn9hL3FtkkvTeFIdC4NJK3Y5y+e3uVhZkaM7auGpFw8TCKd58PaF/NFXbqHEYSKQmbqOIxkNY9AylMhJSuQkVtJsahSYmHh2n769ni8/upGN5VHsaoQH71hMLpuhdvESli6qZmAkxvkeH0hGnj8Y4Oypdh78xN1YVX39zlAEzp89x8ollRzvzfDPL3Vhslr5/C0ubGJCCTTm9bi9LpsBqxanVI6CbOXIoIG+gMqJE50sLc9x/3oHn3zkZuptE+/rwZyb4ZDC+q0b2LHCzh8/tp2F9hhmNYkpF0EyGOnrHeLs6XaOjNrRHFU4HFaGunvxWFRWVuS4pT7B1tVV3LZUv0dL6+3cvm0VtW4JVTbT0x+g52wbB0/08vgr7ZhyYX7ngWVoGb0eLruJ6uoKDEJlfw/871cGSGHFYRJ4SqzcusLFksU1pDNZbltdwhfuaiKXSbP3wFmC6fmz517SL0DoS9T/CbgXGABahBAvaJo2aTzFN4CQpmmLhRBfAP4H8Pl5q+VlomSzOEvLiIyO6jEwq2vHFWSL3YGvr7eQEcmDxW7HZLVRVtfAUEc7VqeDTCqFvaRk3I3haqI9hH0jsyer0DQcnrKLFEr9WO+4f6/ZerF/85g1YrYpv2Q0gsFkJFWwIKdiURqWraD/3FmsTj3Op9lmneL/pqFhNJtRprGuGM2Wccu7qqp6lAxJwmA0jk95llRWkk1d7D8IugVDNhiIjPrIK1kEEolIBKdn/t0mrqu2KyRWLCxFCMETe0JTw3JNosRupLm5FsvhYXwZK2d9EE+FaHIHqAvGuG1NGd1DMVoGZJKalWMdQR55eAfyq+9x74M76GptxWCyUL+gif/2v3ejGG14bIL3dh6hqa6MHcuX8cQTb3KyM0TvoB/jiQDDuRJ+c3Aidacv52bP4W6GgxnGVgD3xix0DMQYHM2iITCSob6unHAoBucnBoxKHkLBMFtWlrN83Wpsr+3j4DAgG2ntCrJ9qZ1VW+/k7MEDeKMqMGHFEmY7P3/xDLm8xrJqE25Thm98ej0D/V7qGuvpbO9i0aoVtHe/x59/ZTM//c0hVjY52HHXTXR7d3L7rSs5tu8QksFIOGNECMFvdg1gFRlKrEbCOTMJ1cKK1UtxnhjmwdtXYS8pobfvHFCCarDxg2fPoQoZYTBPCdXz3KEQX7m9lLWbV/PCr19k86bl1C5YwLEDxzgybIZ5zux4XbXdOaBpGrLRhMliQc0reKqqdVeC4aHx/q7m8whJwl1ZRVltHYHBAdyV1Xi7u7CVlNDf1srCteuvKgOdyWwh5B2edYFcPpvFVVYx7XkyySSSJJFNp6ZNdS8kmVgwMGP/HUN3I6seP0ft4qUEBgeQZIlYMIC7sgo1n9d9nHO6j7OQJGSjAXUay/XkiD7+gX5KKiunvFs81TVE/KPTJthQVZXg8CCSJJPPKxiMpnE3vveD66ntlrmM3HvbGoaeO4k/O72ftFmC5qYaBkfiMKpy1gc2ITC2dLKwsRyryPDpLW6eP+hHkSzsPxfj33x5C3dlz7GkuQIhBP39XtZtWU/25SOc8kKNLc3ps324zRoff/QOFhw/Q8vZEJqS4Uj/Ybp8SmGhdB4hG8hi4PRgltHEmfEsnxnMHOuMUFOeJyPM2OUsbruR5gW1mFu8JAu2JlVIRKIJtFSEz3/uLnrOtfOzvXpwgE5vjjJ6uf/j99Hffo5zx08zFJenZGne2xqlo28/qqZh3n+UW1aUgJBZtGYVu3e2sOnWrbz19mH+/LGbeXvnKV57r40vf/FuhmMaDZUOTFIFmpAZjeYAI4c6k/R595BKKYCd7oDKbXeu5LxP4WP1CivXr+LIoRNg0vvozrYMu86cQDMVwqgVfJdb/UZsB9p4+JE72P/ObgyyyqoNG/CP+Gj3qfj7MyDmJ+EGzM1n+CagU9O0LgAhxK+AR4HJDftR4HuF788A/yiEENo1mjd0V1YRDfinKKGT/VST0Sj2khLyhZXlVoeTWGAUIfR0oqP9vVjsDt3/yuW+4nrMxUfLXVlFKh6f1g/MbLMTGhlGNkzfiadbJDhdGcHhCQvIWApSs81GIqLH+Swprywo/friD1dpmT4guISwFEKMB98f83tLxeOkYhGEkKZV0oUQ5NJpJElCkw1UNS0oKOHvi2C+rtpuJJooxN2deMFqmsa2Zg2BYG8PHO5TOfGvB1BMurVyU32exupSXjgYQO4N8wefWU00lYcB/b57QzmOn+gkl07h7T5PibuEtvYhdh7zkTO5WOTJ8blPbuPcqVaOnBkinszSHTPT0ZEDSiDJlIDuAMhG9ndrTA6FoxamAsHAQxsdrFi2hn/6xT7SkgMMEwKpL2bmn98aZYk7iSSfo807MaB68NZGbBYTvt4eukfztIxc7EYzmtEFZIc3zne/up3ejvMMj8TIaV4On4vQ7TuMmjczMuInpVnY15Wnc2Qf/TEb4Sf34U8KMqfakQrxjCOKhfturqS5uZq//cVR3jmZ4ci5/SRyNqKROOmMynAhg1K1LcPGJWW8dypE4sLJCoOFE+0+0tEQj3zu4wz29OEf6OeVo2GwfPjb7qUQQuBwe9C0ibi5BqNxXDkLDA3iqaq+yC0gFgpidTpxejxoap6QdwjDVcSNn0tIsjHFsXSaJEVGi4WIfxQhxLSW/rkmBhFCIjw6gsXuwGJ3EBweQpJlcuk0amF9iiTLaKo6bn0ur2tAU9VL+lELSVeoJ7v6+Qf6xyMOTbf2Ja8oaLIeY7i0ppbQyPCcruMKuW7abiabZ9QXIHdBf250Zlm/1MPbxwKE81b+v58dJidZELKRCkua+zZX8+4xHwcGoty3ykZDQyXyQR8KkFaNHD/ZzbAvRo3bABpUVpby2xcPcHYE1JzKFz+9gkwiybNvt+E+fprj54KcjzuZ0EIvHkx1h010h7XxzKMAZ3xGzvgyLCoXfPlTt/PMCwf5m5+2kDdOLNTMSxae2BPGKgyUnzxLe28Q0OXfTYtM3H7rHXh7uklnFH51JA/GqYs805jpK9gzbi8toXlhPW+98i6a2UH3aIb4m8fpHYyzqGmUdF7ifNLDT359gNGkwHwugkGCQFJCGIwIAYowU+o08skvbOLXL7RwdsTAPz+xj5GEzB2LNEaHh+gezSOEEYOW4c61LrqG4PwFkxVCCM75YMHBQyxdsYSh/kHyisKh0yP4M/PvgjkXZbgOmDxfPgBsnWkfTdMUIUQEKAMuijMkhPgm8E3gfU0TOVv8XVdZGblMZlxZszocBX/jOsK+ETxVNVjs9nF/sPcTg8k0YzQHe4l7Tgs9ZkM2GKbE8bU5XdNe14WK+1z8zoQQ4/E7x0jHY7iragjPIGxdZeWoqjoeD3OyEv4+MG9td3K7lV2XHwFDSPL4imUxWftU86xcVIOQBHu7hhCyYVwRBqjw2GhqrEI+NEpWsvEPT51CEcbxTG3elJkXjsRRFTfqmWFGI2n6Ek6QzQgB/SGNzjNnsZjNnPGZOBNWwHB197t/JA70kZGdaPI08XqFoDNip7MlDbjHf99zbIiGUpmhcJ5OvzSrk1YwY+L1d07S70sxlDRDXwJwMTwCYKB1VwiwgoDBJEgyDKeMIKa8SwBo6w4yEkigCDMKRnyF5GlPtihAlDHrdGOFhc2blnGm6wCJaSINnvQ7CKTS2Mq9HD07Ql4yoZhLZkwWcpW8L233/ZS5s2VjK62pJTLqm6KAji3wTUYjZDOZOQ3u54uZothIkjTFxexK8VTXTPl/uoymF76j5rqAe7pnKMkSNpebVDx2kcVXkiSqF+j+TPlcjuDw0PsdTeK6kbtnAybOFuLuTjl5mZl1axfT0jpKIgWK0Tnejx0mwcLFjRw562MoAa+fjPP2iVOFFMeQl8y8dioN2ImmRimxSJwdCZA1OEGAMGocPdzGqhUNSCYbzxzJAVcnc8MpPZxlMMkURXgMIQRpbDx9OMOYIgxwaiCH50Q7fYNBvBkrk1M3T8eBM6O0doU4NlrGoUAYcNIb14ASfvZeCDAiJBhM6vczmwfyF8vcwVCWliPn8IbzCMnMUMoKErzTDe90h8frYZdzbN28FOlIO+dDF6c2jwsXzx5P8il7nOFghsFj/XQG35+EMR94NAlN034E/Aigec26a2I5NlmsM06jzerSUOSSuKv0qUHbLBb1sagYN1JUicnt1lyzZN7arZAN/OLtPgQg5Ivb5GvHorx1LIgyJogN9mmVL8lg4cgIgH2K0SEnzDy5N4xAA9P8jKZPeg2c9KZhGkV4NtrDNtrDYxW+xM6yiYM9KvOR9vjUiAFG8lOy/U1HS1eG84N78WctF1vLCwwmLPx054Tl5UZInng9yFwhxIyy1eYqmfb3InPHbLOTTadmNAKNWbkNJtP7OiCab94vubv/fIbTPXuIao6L+nBXxMR/+9EucsYShAAhm8jPkDCiJ1ECCaZoUkII3u02su/8ebKG+TGoBTJmnjkY5XLlYVy18kqrxlzfs11hE4SnmS28TAIZC68cT3Kp+kZUB//4i/0kcgaQplfU8wYbTx+MoQ9o5uedMB1zUYYHgckxuuoLv023z4AQwgCUAB/tpOgfUYQQF1lFriE3RNvNiFms8AYzylV2flWeP7+qDzOabCKgmK76RTBP3BBtt8j1wdXOIM4z13/blU3EME07mBVCoJjcVzXjIySZrPT+zyx/GAjnHddFXLO5VKEFWCKEWCCEMAFfAF64YJ8XgK8Vvn8GeOda+QsXKTKJYtstcqNSbLtFblSKbbfIDcclLcMFf57vAq+jT8D+RNO0M0KI/xs4rGnaC8CPgZ8LITqBIHrjL1LkmlJsu0VuVIptt8iNSrHtFrkRmZPPsKZprwCvXPDb/zXpexr47PxWrUiRq6fYdovcqBTbbpEblWLbLXKjcR14ahQpUqRIkSJFihQpcm0oKsNFihQpUqRIkSJFPrIUleEiRYoUKVKkSJEiH1mKynCRIkWKFClSpEiRjyxFZbhIkSJFihQpUqTIRxZxLUP7CSFGgd5rVoEiHwaaNE27/DydV0Gx3RaZJ4ptt8iNSrHtFrkRmbHdXlNluEiRIkWKFClSpEiRa0nRTaJIkSJFihQpUqTIR5aiMlykSJEiRYoUKVLkI0tRGS5SpEiRIkWKFCnykaWoDBcpUqRIkSJFihT5yFJUhosUKVKkSJEiRYp8ZCkqw0WKFClSpEiRIkU+shSV4SJFihQpUqRIkSIfWW4IZVgI0SOEuOda1+NKEUI8LoT4z9e6HkWKFCkyF4oyt0iRIh8lLlsZLgjJlBAiJoQICyH2CSG+LYSYF8X6/RJiQoibhRBvCiGCQohRIcTTQoia+T7PtUYI8QUhxDkhREQI4RNC/FQI4brW9bpahBBmIcRPhBBRIYRXCPFns+z7QyFEfNInI4SITdr+XSHE4cLvj38gFzC1frP2ISHEq5PqnhNCZCf9/0MhxA4hxMAMZT8+af9goc0vn6Uu3xNC/OL9utYiV09R5l7fXEre3Khcpsw1CyH+VggxJIQICSG+L4QwTtp+TWXupbhamTxNeY8JIfZ88FdS5Eq5UmH6cU3TnEAT8N+B/wD8eN5q9f7gAX4ENKPXOwb867Ws0PvEXuBWTdNKgIWAAbgmFhIhhGEei/sesAT92d0J/HshxP3T7ahp2rc1TXOMfYAngacn7TKEfk9+Mo/1u1xm7EOapj0wqe6/BP560vV8ew5l/3Xh2DpgkOu/bxa5NEWZe50yB3nzgXGtZC7wF8BmYDWwFNgI/OWk7deDzL0U76dMLnKdc1WWBU3TIpqmvQB8HviaEGI1jI8S/0YI0SeEGCmMnK2FbTuEEANCiP+fEMJfGJF9ubDtm8CX0TtdXAjx4qTTrRdCnCxYPH8thLBcZl1f1TTtaU3TopqmJYF/BG6daX8hxE4hxP8jhNhbGC2+IYQon7T9ESHEmcIocqcQYsWkbRuEEEcLx/0asFxQ9sNCiOOTRqBrJ237D0KIwcKx54QQd1/mdfZrmuaf9FMeWDzDNYrCaN5XGP2fmvQMrUKI/08I0Vu453smPcPZrr2ncA0ngYQQwlCwEO0r7H9CCLHjcq6pwNeA/0fTtJCmaWeBfwYeu9RBQgg78Gngp2O/aZr2W03TngMCV1CPeWWmPjRPZaeAp4D1V3L8bM9NCPF1IcTZQjvtEkJ8a9K2s0KIhyf9bxC6ZXDjHMp9rFBeTAjRPSYbpqlbeJJlJiGE0IQQzYVtvy+E6BS6RfIFIUTtpOM0oVt8Ogpl/JMQQkza/ruF+oeEEK8LIZoKv8/YVz5IijL3+pO5F5znInlzwfYZ25G4sWXux4G/1zQtqGnaKPD3wO+ObbyeZO6leD9lMoAQYrmYmDE5J4T43KRtDwkhjhXaRr8Q4nuTtr0qhPjuBWWdEEJ8ag7lPiiEaC208UEhxL+boW4nxNRZDm2s7cyhDf67meTFB9X/rgpN0y7rA/QA90zzex/wncL3vwVeAEoBJ/Ai8N8K23YACvA/ATNwB5AAlhW2Pw7852nOeQioLZR5Fvh2YVsjEJ7l86UZruNPgAOzXOdO4Dz6KNda+P+/F7YtLdT5XsAI/HugEzAVPr3Anxa2fQbIjV0TsAHwAVsBGV3g9BTuxTKgH6gt7NsMLCp8/9IlrrNxUt23AxFAK9Tzvhmu8WPAEcANCGAFUFPY9k+Fa64r1HNboY4zXvukZ3UcaCjctzp0Afgg+uDr3sL/FYX9vz/LNZ0s7OMpXEvVpLp/Bjg1h/b6VaALENNs+8/A45fbB672wxz60KTfHufi/rADGJih7PH9ATvwc+DELHX5HvCLaX6/1HN7CFhUaDd3AElgY2Hb/wX8clJZDwFnL1Vuob5RJmRBDbBqDvfzvwK7Cu3xLsCPbpkyA/8A7Jq0rwa8hN7mG4FR4P7CtkcLbXkF+ozKXwL7LtVXrof2QlHmXlOZO+kaZpQ3l2pH3MAyFzgMfG7S/18uHF9ywX7XRObORx+b9NvjXNBfpjnuMWDPNL/bC+3t6+gyZgO6vFo5qa+uKTy3tcAI8IlJbWvvpLJWFp6ZeQ7lDgO3TXq2G+dwT74JtAGuObbBmeTFFfW/D7wNzGOjOQD8n+gdPDH5goBbgO5JD1sB7JO2PwX8x5kaWuGcvzPp/78GfngVDX8tEBxrHDPssxP4y0n//wHwWuH7fwSemrRNQp+O3gHcjj4lJCZt38eEYP4B+mh78rnOob+gFhcazT2A8aofri4UvwcsnWH7XUA7cDMgXXA9KWDdNMfMeO2TntXvTtr+H4CfX1DG68DXLuM6GtAFq2XSb/cCPXM49m3gezNsu96U4QPA/3nBb9P1hx3Mrgyn0YWkCnQDa2epy/eYXhm+rOcGPAf8ceH7YvQpcVvh/18C/9elykUX6GF0y5p1jvfy84X7Ofai/zH6FObYdge6YtRc+F8Dtk/a/hTwF4XvrwLfuKBtJ9GnTaftK9dDe6Eoc68nmTujvCls/1DKXHRZuhd9UFsNHCwcXzPNfo+/n/3lCp/brH3sgt8u6i/THPcY0yvDnwd2X/Db/wb+aoZy/hfwt4XvTvR+3lT4/78AP5lLuehK/bcA1xzvx/ZCv1h6GW1wWnnxQfa/q/nMZzSJOnRhVwHYgCMFk3gYeK3w+xghTdMSk/7vRR9RzIZ30vck+kvushFCLEZ/6f2xpmm7r/Ccteh1BkDTNBV9dFNX2DaoFZ54gd5J35uAfzt2bwr3pwF9ZNSJbj35HuATQvxKTJrivVw0TRtEv/e/mmH7O+hTl/9UON+PhL7Yrhx9mvH8NIfNdu1j9E/63gR89oLr3Y5u9Zsr8cLfyQsBXegK14wIIRrRX5Y/u4xzXUvG+tDV8jeaprnRR9kp9NH35TLrcxNCPCCEOFCYkgujW6HKAQrt+CzwcSGEDXgEeOJS5RZkwueBbwPDQoiXxeyL/zagt99PavrULFzcPuPoVrHJ7XOmft0E/N2kegXRFc26WfrKtaQoc68jmTsXefMhlrn/BTiGbqHehz44zqFbNm9k5ksmj9EEbL3g2XwZfQCBEGKrEOJdobuVRdBl4ZhcjQEvA18olPVFdEPDJctFNzA8CPQKId4TQtwyUwWFEA3og+WvaZrWXvh5Lm1wNrn6geg8V8N8rUbegn5T9qCb5lPo05vuwqdE0x3Px/AI3bdqjEb0kT3oo8nLOXfjBT4uF36+PGnfJuAt9FHKz6/gUscYQn/AY+UK9Ic7iD4dUVf4bYzGSd/7gf8y6d64NU2zaZr2JICmaU9omra9UL4G/I/COb58ieucfI7JGNCns6dF07S/1zRtE/qUy1Lgz9GfYXqG42a79vFiL7jen19wvXZN0/574fgLV2JP/pwp1DFUuK/rJpW7Djgz03UV+Ar6tFLXJfa75lzQh+YFTdP6gD9GV/Csl3n4jM9NCGEGfgP8Dfo0qht4BV1xHONJdGH9KNBaEHqzlluo8+uapt2L/uJuQ/dTvAghRCX6C/cPNU07NmnThe3TDpQxtX3Ods3fuqBuVk3T9hXqNl1fuSYUZe51KXPnJG8+jDJX07SUpmnf1TStTtO0hegD0CMFpemG5P2QyejP5r0Lno1D07TvFLY/ge7u1KDpi+B/yDRytaDMWoB351KupmktmqY9CozJzadmuGZrYfv/0jTt1Umb5tIGZ7vmy+5/HzRXpQwLIVxCXyjzK/Sp1lOFxv/PwN8WXlgIIeqEEB+74PD/JIQwCSFuAx5mYvXtCHoUhDmhaVqfNmkl7zSfX47VAXgH+EdN0y4KhXKZPAU8JIS4W+jhY/4tkEEfEe9Hn5L8IyGEUejO7TdNOvafgW8XRoBCCGEXutO8UwixTAhxV0HZSKO/4NTCdf7yEtfZV7jOL48J6cKL6L+gT91dhBBiS6EeRvTplzSgFp7hT4D/KYSoFULIQohbCvWa7dqn4xfoFsKPFcqxCH1BT33hur49yzWtmlTOz4C/FEJ4hG4t/H306arZ+Op0+wh9gYkF3X9prE7zuQp7zkzXhy7jWMsFH3HhPpqmvYkuyL45S1HSBeWYmf25mdD9vUYBRQjxAHDfBWX+qvDbd5iwCjNbuUKIKiHEowWlLYNunbroZVp4Vs+g368LhfqTwNeFEOsL1/FfgYOapvXMcv1j/BD4P4QQqwrnKRFCfLbwfdq+Mocy55WizL3+ZO4kppU3k/mwytxCe6st3N+b0afV/2rS9utG5l6Kq5HJFxc1VUajr1dYKoT4SqGtGgttYmwxmhMIapqWFkLchO63PplX0JXG/xv49aTBxozlFvr8l4UQJZqm5dDXZcwku34CtGma9tcX/H65bXAyV9T/PnC0K/OtSaFPl0TQBdEfAvKkfSzoL6Eu9Bt/FvijwrYdwAC6r5sf3ZflK5OOXYI+1RIGnpt0znsm7fM9pvFzvES9/wp91BGf/Jll/53A7036/zEm+QABnwRaC/fgPSYt9EEPMXOscI9+Xfj850nb7wdaCtc4jP5ScqL71R0qHBdEb+C1l3md/6VwfxOFvz8CymbY927gZOFe+NGnXByFbVZ0f6XBwjXuouDHeYlrn/KsCr9tLewXRFegXmaaxSeXuC4zekeNor+8/2zStsbCNUxeRHhL4R44pynre4W2MPnzvcvtC1f6YQ59aNK+jzO9z/CF9dfQ/a+m2//zhedonuO9GLjUcyvUd6TQhn+O/uK48Lxvoysp1XNpD+jW4PcK9ySM3gdXTlPnZiYWh07uz2N1+zb6dPNYH6qfdKwGLJ7p/qJb904V2lk/Ez55M/aV66G9UJS510zmFsqfUd5csN+HUuai+233oE+PnwO+PAc584HJ3PnoY5P2fZy5+QxPJ6MN6G5rLxeeSwB9wLi+cNxn0N0RYoW2+I9c0O/Q10VowJYLfp+2XHTjxWtAqPAsW5i0buKCMrTCM5zcZ8cW3s25DXKBvOB97n/z8RGFin5gCD1Mxy80Tav/QE9cpEiRIh9BijK3SJEiRWbnhkjHXKRIkSJFihQpUqTI+0FRGS5SpEiRIkWKFCnykeUDd5MoUqRIkSJFihQpUuR6oWgZLlKkSJEiRYoUKfKRpagMFylSpEiRIkWKFPnIck3j/DlLS7WyuoYP9JzD/uSs22vKbR/YuYpcPVlvp1/TtIpL7zl/yLYSzVBS+UGe8pLMZ7st8sHQe/rkB952r4XMvZ4oyuT54VrIXbfbrdXUXE4SvQ8XKYPpWlfhhmc2mXtNleGyugb+6revXnrHeeQ//fjYrNv/6hsbPrBzFbl6ev/Hw72X3mt+MZRUUvO1//VBn3ZW5rPdFvlg+N2ldR94270WMvd6oiiT54drIXdramr413/91w/6tNcNZ8tmSjJbZK7MJnOvywww15IxYTkfysXkMopCuMj7yeT2VVSMixQpUqRIkblT9BkuUqRIkSJFihQp8pHlI2cZnqu1dr4tbWNlFC3ERd5v5nN2o0iRIkWKFPmwMyfLsBDiJ0IInxDi9AzbhRDi74UQnUKIk0KIjfNbzSJFroxi2y1yI1Jst0VuVIptt8iNyFzdJB4H7p9l+wPAksLnm8APrq5aHwx/9Y0Nc7Ke/acfH5s3i+7YOYtWuw+Mx/kQtt25MNZui7MRNySP8xFtt0VueB6n2HaL3GDMSRnWNG0XEJxll0eBn2k6BwC3EOKjGwPlKsknIxQzA84P12vbrbFlqHdk3rfyNU27ZBuKBgLkstkZ90tE43iHRuZ8TiWXI+IPjP/f3TXA6dPn8Xr9/OyZ/Tz7/B5GvP5ZywgFQvzg57t54+3j49cx2DuIksvNuR4fBq7XdvthRc2mUHPvX3/8KHG9tt1gPEl7OE4qnX7fzqGq6qzbk6kUiWSSfD4/7XZN02jr9c64fTpCo/7x88YiMQ60tJGMx3n+lRZ+8eS7nDnddckynnv5EP/8xB6S8YRepj9INByZcx0+DMyXz3Ad0D/p/4HCb8MX7iiE+Cb6aJCy2rp5Ov30JGNRAGxO17yUN52F7WosvH/y6UW8d6CTwx1RZFsJAEosgGx1ko+OMlssWzWTACEjmSxXfP7pyCcjaEoOIcvIds/M589lUFOxS+53uWhKDjWXQrbOzzObA3Nqu5Pbrey6vPCaLkOGpTUmTnWMkrFUQibGg3c34yl18//+8hTCdHGMYEs+RhoLyEYAGpxZzLJGe9CIyKUQZvu059I0DVQFJeoHTcXgqUUIwX/68TE0NQ+ahpAN5OMh0PLIssS6hU4+8dBNvPbWMU53R/jSAyuora/iqVdP0R8VfOP+PJVVZRhN5vHztLf3c67bz523LMHhcgDw3KvHOOtV+eq9KWrrKvnFS63kLW62LwjQHbGgRP2ktW7uvkmhvLoSSZo6Fh8aHOVQyzlGUyYcoRSDAyPsPdDKmaCdWxb6uP+e2fvarr1n6BoIs3aBk/WbViHJ8rT79fQMcaJthNtvWoCn1H3R9id/s5fRaJYHtjVzfiDKLZsWMDoaQZYFCxbWz3j+aCiMbDBgdzpmrec8cV3KXCWbJREJU1JxfcXhnowS9QFgcOl1VLNptFwGTckglVTNeJyWz6FmkuOyer7Q8jnycV13NMxyfmC8X8uuCoQQ81aHfCKEZHUhpOn7zDxzRW23urp6zifIZLN0JXNo8QiLqypQVZX+nIZp8UoGO8+w2HLxezOaTKKqKm6H3n+D8QSjqkStEYSqYrVYkKeRKZqmIYTgl/u7eatP4c+3uVnZMPGOyGazmEwmFEXh37/Sjz8cpbTExX+/v47+YJK/OxDm/oUmPrW5iVdP9PPTbhuf9PbzqQ21GI3G8ecci8R4d38nKxaWs2SpHiu89UwXT+8dZevCfu6/ZwPPvHyEvlQJAd8JTg5ANpmlMzhApceK3eXEdoFsyqYzHDjSSb83TlS1EgqGOHS4nT2n/TisRv7kGztmvc/9fV7e2NfNggoDmzYupcQzfd9Ip1K8tbuNBbVuVq1ecNH2Y8c7eeNgH/dtqSMQSdNQ56GizElv/yjr1iyaUZbnMhki4SjlVVcf8voDjyahadqPNE3brGnaZkdp2ft2HiWbJZtKkU7EUacZZWmaxkhvN76+niu2wmp55arq2N4xxLFBgaZMWL2EJJNPRkHM/GjUTBJNVVFT0Ss6r6apKDH/tJYQTclicJVf8trUVEzfT537CHYu5BMhhMFEPhGe13Kvlsnt9nJfhmuaHWxdVcmf/d4OGs0h/vRL6+nu7OXZ10+OK8KamsctxdDyChXmJH/22M1sWzyhfN69qZrPPrSO1Q4f37y/ho+vyrO4dKq1NBf2ko8FyKfiCElGU/MoUT/5QjtRwl7yyTD5TBIlEUIJDaJqE88vmcqR0sxks3q51aUWamx59h7q4K9/cpD+vmFaDp/jUEsbh88Mc3QAOrsm3l92qxG7lEZVFd577yjpdAY57uX229Zy/yoD6xbYcZvzfP+lft569+RF92nX4V5OBOxsXyjYurqKJ18+RWu4BFtqhHKPrvzHo3E6z03fZ7sGo/REjDy7b5QDLedmfB77j3Rx+Kyfk6d6pt0+MBhgNKywc89ZDvaoHD3awZNv9/Kr1zvGLTAjXj9PPHuItjY9bGU8EuEHv2nlX39zZMbzXis+KJkLEB714fCUEvJepNcAEPIOE/QOEQ/NZjicmbyiXNL6NhuakkMYzAjJOC67hCSj5tKXlHn5eAhhNF+xbMqnouRTsYt+V7MpJGvJrDJ/MrLdc8WyfzqUmB/J4iQfC1x65w+YyW3X7XbP+biRaJyop5LMotWcTWQ5nYGQZCB28ghV5gkb4GgkSiShK8FnhZUOaymZjP5eHNFk1AXLaA/FaVGMvNE3wtFQAkWZaCdHu3x8/dcdPHukl2xeJasZ+N/7BnjmsC4XXjzWz2O/HWBP2zAtHcOEwmHUVAyEQNMglVOISTZiGb1N17qtNEhh8tk0X//tAE8e6KFzOMQvD/Zx6kwXxwbhSKt3/PwWswkbKexWI6fPnMfn9ZOL+qnw2PnKvU3ctNjOtsVm/vXV8/zL04cvuk+tbX2825bFaTPy2L31vLnrHO+dB6OWo8ptHHsGtLd1k4glLjp+YDhIf9zMu8f9/OaNMzM+j+6uQQ6c9vHuwc5ptw8OjBBL5tl1oI29XSq7jgzw5p7zvHAkwYlT5wHd6v7ia4d5/e0Jo+Tzb5zkn57v4nxn/7TlXg7zZRkeBCanNaov/PaBomkaIe8QJosVW4mbbDpFMhZFzat4qqqRDROXq+bzmMwWEIK//NoaDEb9wc/Vv1KJBRBC4j/+7RsYXBWXZSHWNA1NVVm7pplcvoslCzdSUVk29/NLMlo6Nq0iqmkqSsSHEGJGK0M+FkB2lpOP+ZGMU0dUsqMUJeZHtrtnrYLs8KBERxEm66Xre5moqRjS+1DuDLzvbfdIZxwtHWPRQoV0XtDX1c3q9Suw9Y5y/rg+Zbe8LMMXPnU7z750kE6foO1sD0JJUmsTDCXNvHZwGLNhiE3LG6lduIhc5gyVyRydwalKoTCaQNOQrB606CiSyawPrihYkTSNXGAATVMx1yxHiYzw6IP3AvCJBzeR/s0e9h3vo7G5lgfu1dv0i68dRozqg8rXDw6RFxK/++AiFnhjrFrZNH7uB+7dwAPAWztPsbfPjKaqLGl0Y7JY2HrzGrYC775zBCk5Slunisth4FBriPUL7RxuDxH2jWBzuXG5F9By1k8omqHCNshDH1vJs+/1EookCcSytPkkPqfkWblq0fi5Y5EID2xv5szZfrp8VuqqZ56tkGUDBlc5qpBQVZW33zpIU0MVS1csBMBpMxBPG1lQa8V33sfQqJVNC+0YDI5xa3ZPn5+OoBF7d4Blyxrx+0ZxmxWc1g8sQM91IXMBosEASjZDaXUtkizh6+tGSDLJaASba+rAMZ/P46mqJuofvezzxKMxfvTUEdw2we9+6Y7LPl7N5xEGI1o6j0CMW0GFwYjRPTero5qKTSvzlHgQVBXJbEMyXzzTo+YyoGloShbNYkdMUnxlq4t8MjInmSdkmXwqgsFZPqf6zgUhG8knw3NWxueB973t1nlKCPZ3kXKX4VLz5PN5NAyYFy4j7evBiZVAJMJg5QJS/hFuFgJjMk4s4Oe81cwSWaZa5BntakXLZKhes5iBbBbNU04uHcJQ0CVy+TwZYSajqDx260LWdQzw1ycqeeecD6dJQgASKqd6RnizJ4tkc1JitfF3jzRjNBrZ7LTzpWAne73QPhRkfXMF65srON7t442hKJKQebktzP6Ii3s9MveuMrKoeeLWLVxcz58vrmdoYIgfvTKIgh0rCbbccg9CCJoX1jM64uNo2yFi+TxHWs7Qci5ErdtAMJ6lr28USYDRUcZIMEVXUMak9PGxHUs50jrCPz3+LjevruLF42nWVAf59MObxs+dy2ZZ2lyOxTDK8XY7C2qdMz4PIQkMrgqEIQ7AqRPtjI6GuOuerQCUemzIhiylHieG+AiBkIE1zQ6EyNLcqM/gZJJJjvekMZLlvrs0Qv4gNpOKx5jBbr/6GfL5ktwvAN8VQvwK2ApENE2b3jTwPhIe8eKpriU84kWSJCobmwl6h/BU1RAaGaa0unZ8X9lgAAG5dJpkLIrrEhYTTc2jKbmpbglXOE31+K92E06o/P7nNrHt5pWXfbxkNE+ZzlOzKdR0AiQJyWhBtjpRM6nx6ZsLESarbgWYZkpMSPKcBK2QZAyX6S4wF65BmuP3ve2aJIVD/TL7BkKAm9+2pPiEFCAYSgECTc2zqMLAwLk2jCJPUpHx+sJsWtNEYyTNk3sjeFO6lThzNsZw8Cje8+dxVVYicgYk8ijCguwqB0UZb6MGVwXZ4BDmiiZyER/CZEXNZfU6uavJx4NIJivn23upqCrF6XLQH1DIaRq5TBqzVX+pf/z+zTyoKPj9IdR0jHI79A5HWLygCqPp4hShKxZV0j/cTqLCxprlE1mTHn9yF93DMfKaRFCqpG8gQDDvYO/h82RKFqGIMBlbDcdaBzGbLZRYIWyu4/TpLuKxDImUHaecpckpU1U5oezGIhG+/8wZSkwK3/7K7dx1QX3SySS5XA5nia6Y3byhCVPrMGtXNnB4/zF2d+Q50NrGfywow4rRCRloqC+nZUDgj8ToDyk8cvvE9N6mDYswm3tZ1FzF3v2tvNWa5pYGMx/72NaraiuXwXUhcwHy2SzuiirCvhFKq2sJeocora4l5B2+SBl2V1Qy3NWJ1THzi3MyqXgcq2NsaldDQ7eoXS77D7by1uERlFweg/PKrOMXyiYl4gM0ZGc5qCqys4x8LDCtMiwMRvKJkP59GqVzrrNN8+mSdrnnnkfe97YbS2eosluocRgA3eXudDBKKuTHUJhy7w5FCeX6UdNphLOMEkkjaraiNC/G291KQ3kpHiBmlOjtacfsHybkHyFUW0kyk8FusbChqYx/qc1hs9kQQrBxaQN/kGzn++dreb49wt881Mi+3m529yUxViyC8AANbgvecIJkRmFZfTnDSUG34qJjOMzS2lIA1i+o5McNpRgMBv7yN8cwxMKouTpKSj1UVV/8fq6oLGd9/SD9AxrNjfXj7/39B1t589Ag6VQOc0Uz7d2jjCYs+IcHyDtrUGQbstFMlzeJwRSkwhghaG+kvS/CqD+CMFowiDy1pjDNtVPTuD//2vGCW1w9X//iqinbNE0j4B2hvEYfZC5YUMfm/iiNNbqb1m/ebke1lFJWcpJ1W9aSUoxgtFBT40DyxwgHVN473M/SBRXjrmxWh4Mv39uMwSAR8gf5wfPtlMgpvvu1HRe53F0Jc1KGhRBPAjuAciHEAPBXgLFw0T8EXgEeBDqBJPD1q67ZFeAoLcU/0I/RPDG9bDCaCA4P4am+2D9f0zQqm3SFeYyZ4gHfuczIiiWN/OTlTjLCisFZhpbPIWQjSnSU//i3b+gjeyGxqsHM2iUVLF/exHSoqkYewXRS/UriEavpxBRBnE+EEQbjjD5lssUBlg/Er/Gac63bro0Ef/jFLZw608NLx5MAaAYzzx5JMmattWoJNm3bzkBPL2e8Aqchw913b6f9TDs7jw3z+Q0e8prE00dSeFNmbnJorL5rPY7SUtxH29m2fTP9HZ30B3O81znRpYVsxOQo4aaqKI4mG6+fjGN0V5FVsuRiQRY1ldPf3csvdpWSi7QiGy2YlChpLPT2jrB0+YTyJxsMoIHR4SKR9PN2a5YBXzdfePRiwVzXUMXXv3jxrEQmp2Kx2lhaqbJyuZtlyzfwxK/eoUNtZqXDT9jgIhQ8T8hsJ5kt5aYFgpwMIwErkrsMNRWmJezmjqUGyipKeen1w4yGsnziriW4jApOy/QC8fHfHCaSMfAHn1lFZ88ow0Mj3LVtDS63C7QmbMePUF0xITM++7EVxGJJFi9p5KuuQV599wyBmCCTnZgeDfgjOGwmnCVOPG4bcnKQfa0qa1Z5qa2fu2/jTFzrdns55PN5AsNDlBZkrN3lJugdmlbhFZKE01OKkCSUbBbDNIOpMULeYcx2O4GhQcpq63C4XPzx17YhyTJDgz5eeLeDDcvKuGnzMt589wQCuPeu9dMXpoGKBMyjW5eQkKxO1ExCl7uxAPIMirYQ0pytzzc610PbPY8JY30ThsFOKty6sr+6dGwdiu5yJSpqqGtYQPLYPqCMkMVBeVUdiRMthCSZLlOOhnSEhZXlZPsGSXoqqV6wiBOnjlO3bgPBrk5sZeUsUUPYJ71rb1+/lPOZdhylHtoGhujJ2smYNBarw3z+zhoO9Ab405cGMDrc/NWWAdp9UXKhMANlpVOuYcz6bLFaMWQ03j4RATnJssW1mCxTZxGMJhOfeHDLRfchm8ujGWwsrM6zbKHGxo1bOH38LC+fqqXGGKek1sCIP0oml6MtWMPiygrqrCpyXiXjbGSpK86LRxOUW4xs2riEtrZe3mkZ4O6b6nHYjDikCOZJ+tYYO3ef4r22NA9vitBQV8bBo10sb3azdKU+m9dUYcUXjdG4cAUA27cuptIzyNKldUiSxKuvHeBYl0wqM9FfM+k08USaZUvrUZQ81nwMbyjHu7tOcfeOdZfROqZnTsqwpmlfvMR2DfjDq67NVRL1+zFZLFP8CV1lU1/WyWgE2WDEbLNhsTsY6GijtEoX4vFQkGwmjav04hd8JqsQjyVQNTE+4ywKi5tAQ7aXkk9GQNM467MhCf+MyvAn7lvN4RO95PIqmqbxwistaMCjD265rEURaiaBmkkhOUqnWCQu5eLwQaHEAvqU/QxThx8E17rtplUDLcc6GfAlKLwPJsjnWOJOgWzk0J6DlLgcZHIaScz8y6/2E80I0IyUVZRid3uwvvcmKVcTkWgKh0kllVEYCin09gyQDAewI9BU65RFMLLRzOplldQvXsTJ4T0MDvYhGa1YS0z87he387c/jBGKjqIpOTTZSNbkwapEsVouVlKqaipYWaWy/0QWOdHOib40Q0MBljc6uOuuTViss0/zfuML28jnFcxWGx3tvQwMjPDowzfT2T2Mpth54XgaVeRxS/DwBjsb169DkmWOn+ikdyjKgpo6hk6OUlWuWxcGRtOMJmV+/dIxtm1ZxLo1uqB9/pUWBkdT/M6j63C5S3BaZFRNQTYaeWNPOwnhpGOwhT/+/bspqyjnL/7wY1PqWVlVxoGj3Zw970M2GBnMV7BtWZ4N65eM7/P0G2cJZsx8y2Zi1coFdPcH6BpOYpnmvl0J17rdzpV4OIRsMJDLpMfd0Mw2G2bbRH/PZTOk4wmcpaXIBgPRgB+HpxSDyUQukyYWCmK22rCXuKeULSSJTCKBkCZk4pg7WyAYw5syM+RLkM/lONgWRhJw52258X0mc/PWFWQzGd4+oVtnx90aTBakyzAMaHmFfCKMZLHrLheZJLJDt9ZeKxk3mbF3ApKEwVF66QPeB66HtmvPJEkP9+O0XKyonff6iMtG0rE4oVSaxU4XmqZRkwij9MRYvaCeN4ZD1DcvpOvgHiodNiwmI+lkkqjfR7mskfH7SMZjpPIqHi2N54KFaYtqS6hYv4lURyt/dXOcU0MG7l7VTI9kQk7b0XoHcKa8DEbK6KMSk8GLVUwfzeT3tlbzh786hZLPI5mt/I+/e57mhnLuuWM1NXWzD7Buv3U1m9fGsLtcBPwhOjoH2XzLBmyubqqrlvLjZ0+SkkrRjDlurkmx9aYVlJV78PsC5Fp6WL2ghtTJEcpLdNnuHY3iy1h5a+cZ6urL+dPf2wHAmdZuXt/fz12ba1m/bjFOhwU7QWzWSg6fGqClLcTRfo2vmQdYsKier3/l7in1NFss5NF46uUTrGqwcNTnoNyt8flHJxT83Qc62Hte4bZwJ3fdvpqHdyznxd09uBzzE0TgQ5eBTkgS2gxhSZJRPVRILBTEbLORjEQoq6knnYhhc5WQzaTHp/cuZH+vxL6eEEK6+MbLNre+oMxZhpbXV/Kfytj4zAx1PHpmkAO9AiH3cc/tq2jtT6Jqgody2fEV+9P5IF9oLVYzKd0iHA9gcM2fD9m8oam6b3J8+qnDjwKqZOat1iwXKcLA6jqZOzctwVNVw5639mCyOxGKn999cAnekRCvterteO/BNspdJv70Ow/w0tunMRlNVDY00Xqqg46og3M7ffy7z60ml81gbTtLWpqYSlUNVl497GfBYIpg2oi5Qh+g5TSV375yBJvFQCilYa5oRM0kUWJBlPIGnn7lOLduibF1y/IpdW7vjWGpW44SHkYgEUwLDg1bybzTyicf2sRMZNJpfvPiYSpLbWxZ38ST7w5jFSn+7TduZ8P6paQSCU6f3cOiRR5Wrl2KyWTinT1nWb2smvXrFrO+MPBfu37ZeJlfengNh1rOsqe3nO6BCOvW6L8HozlCWSPpdBYX8MkH1/P8G6c5cqKb+7Yt4N1D/dRVzhytRMlmONWXQkblsY+vBIa4acMivMOjDI+EWL9uCasXuhkNp3CXuVFyOR7+2OZZWsGHm0sN4COjo7jKyogG/Ci5LLWLlzLS242nqppYKDjuWnGhMuyurJrR1WvNmkWU2Pupqq3AYDLxhXsXIhDTKsIAAz0DvNuhTrwb1PzEuonLUIbziTAGVzlK1H9dylw1kxy/ro8yy0un79+joTCDJVVU1DcgtZ3GVVaOiPg4GYqTK6+nMaqHkmzIZzh/YA/OyhpaVQm30UJJhQ1JSFQ7rDRYBfvKyvAsWsboySMsueA8G8qc9Pa0Uy1DbWM1yxp1pTURjrK1LE/14jwP3bweIQRdo2d4y9DEnoFhRt/s4E/uWjglasXu7hjCWYnFWUY2OEgaaB9R6X+hjX//e2UztnmAPXtP0T0Y4TMPb+S13R10BAxIdI7L0Y3NVlKJBBs2LaexuZ5DLW30DwRYv34xn3lIn+VYvnLxeHm3b1tJTWknT++yER/QFx5KkkQ0liKq2ojEUgBs3riUeCLDyXYft21qYGjQR0pL4ZhFce3oDXM+ZGRVs4nti3PUVDSiKApHj59n6eIaFjeVMhwYZFFjNXlFYfGSev7tssYZy7tcbihlOB4OkQiH0NCjRdicTkxWGw63/vK32O2k4vFxX8cLkY0mYsEAamHVcDqVQAOyqSSeqhoMJjNB7xBOTyngvej4mYS+MJiQHbpFSBQW54yhZLNoaFPCUm1YWYeiDrJxVR2SLPO1h1egqlP3mRNCFIT53Pzv5oNc2IuQJCSzHWmG8F5jSBYH+XgA2fH+rmC/EaizZ6iyK5SVe5DzaXKaxOHuHO2dw/iP9OKLSmQMUTRJJpPJklXyrKzIsXJBKa8djFFSbqfzXCe5eJiUZCAwPMTW27fSOnKIgYSFt/acxSxrpGQ3F7bS4aSZ4fMKSFPbVzqrkjW6MXrMGLQMTpuKX/OQ8XWjemro7Blly6alSJKEz+vn16+dpbbKRTYbYNPdi2g91080FMEbU8iWzG4V7jvfS3vISMfACNu2LmWJJ03XQIQf/HQn33nsTt7ZdYrubCXeVi9btzs4eKSDvZ05hrxtqMLArevrxsMJjeFyl3DX3TdRf66HxkbdLWN0JEB5iYnb13uorNZ92v2+EO1+ifbeXlY0e/izb983a11zSp5mdx6hZSktc/HgPbqv6I9/tZ/+uBm7pYcdt+ma98mTnTy/p597NlZxyxX4/1/vKNksEf8oiUgEDQ2nx4OmauMh2mxOF/7BfiR59ldJPBTEYnegaRpB7xCSLJOMRbGXeAh6hzDOECJyNkW7ceFEe1iyZOKlqGkamWQSi31CPtU11bFjWZh3jupKhmR1zurWMBOS2YoS8yMucb3zST4RGl8sfan1HGPGkctR8D+sBBNJeuIpsNrJxKLIZZXUqiqWaJDQ2RA1KMRiYcyShMir5LNpwskkfSYnbpuVBSYTI4kYmbyCN50kbkpSv2IVw6k4DUBNLsnw2VMsnmbRrNNmY/U0dZKEwGGUeeTWNWiaxkAwwhe3LWbB+QBPHs9zIiARikQoL9Wt+v/zzXN44yobS9JYal2YG930jqQZHgljyJr0SFmzKcPHh8mYSjl2pI0al2DUN8qz7/mw222Ul9rY26OhplS2bpWJBoO8cjiAiTTnegJ4XGbuu8DtSJJllq1axu+WuBGSQJIk1HyeZDLL3Us1tt86cdVtPRG8SSP9zx3hsc/dTEXV7G23ssSAf6iXqqqb2bhJl+d7D7Ty1pkMw/5OHrl/I80L6khEY/zd43soscA3fmfHrGVeDjeUMpxNp6hqXkhgeBAlk8Fe4iGTSo5vz6SSlNfVT/EBnozZasVcNxEntLSqhnQygcWuC47Ji+gmW2Zn8t9dVZlDFnDCa5hWaH/vX47w6c02jEYDi5c2j4/gyivLeOCuiXPV1s8eW3KmOl3pQpArRVNyaHkF2VqKlr90EgTJZP0go0Jc13xsax0WA5TX19N+4jSZnMKCShOvteYQsoWHNtjYuH4Jp3v38sTeMCDYsczCosV1LOoa4c4dm3j15T186pO3ExwZ4ZW9veQMfST09XCcHNUHgBc2QzWXRhhM44t2JDVDnT1Lg1vjngdu58SJTp4/EueOVS623bSM7/9iHxljCY32Ue7ZcSuBwQEqGhpJJNKEsiaqPCa+/AV9kZjJauW5F/eTlQ2c7Q5Pe91jlr3GhY24d3firjDx/JtnaPOBlNdIFYK8r15Wy8mO05RY8/zXH+1hXb2BWxaWkEnIHB0xUzMQvEgZBpAkieUrFhKPxvj7n+wkHo2QczYy6u/idHeEu7YtoXFBPXcv6uetE3nCiQm/31wmw+4D7TTVe1i0aEIuvPnmEdpHBVpe4uiJHm7ZqlvHNywrp3Q4SkPDxEIqDVA1gYYeZ9hgNGJzzD5IvJGIBv2U1daRV3Jk0mnsJW5igYkQXIlIBE91DfHgzKHSyifJXABfXw8GowmD0YjJYsV8CfeaKfUpWJctdseM8eMDgwNYnU4io77xeMeSJLHjtjW8167LcsloQTJe/vTqXIwA842SiGIsq0ONXzocnRDSvEaauJEZViVSpVV4qmpItJ9FMlsZjsk022QqnQ46QzGMC5YS7DnH2jIHqqrQb7JgqazBf2oI28p12AN+lGwGV/16pJY9qH4fTqG7YS6oKOPiiLmgKApKPo+l4EuraRp9oQj+ZJa0pxx3cyMjHSdICpn00rVEe9q5aYGHjJbCXFlGt92DI53CYrEwlBQENTt/saOekYWriISjDL9xnFhGQ8bI+Y4eVqyZOns3eTZlVbOTtu4R8tSyq0tgS8TIKwZUTcNVWkqVHCEuUjz5yhlk8nxsQwPZdJL32vOUhKLMZDYY01lefO0wx0/3kncvwJwO4k8eY+XCMpYta+LjOxby2+f2EjY3kMlkx489eeo8sXiabTevHK/nwICXt/d3odnLefmt03zzMb38pQurGPL3sGrJhI6kjS2kFRq5bJZoKELZPMQZvqGUYZPFin9oECWbpbSmjlw2M8Un2FlaRsg7jL3EQ8Q/Sl7JYTCaxveJBgMIBM7CqMvmKrlotfNc0TSVW9bUYHfYOP50O2Jay4Ygncqi5PLjD326er1fKJEREDLCaLrqJBZKzK/H4RQy+XgQY9nMyQdmQ9O0gn+z9QN/qVxL3mwZwqiliWZ6GU0IHtrs4dH7VzLwsz34cybeOR7kaNt+ltfZaKyw4AslGRlN8i+/2k8wZ8Xw8j5O96VZ3HYWg2ygJyzRty8MeYk7VhgY9qdoD06yEGSiOCwGvvroYjo7emnzKvTFTGxqtnD39nUMnW+n69RxWjtigJOuoTjy4XNkswrf+vxmAkMDZJJx5IK/ZkWZna9ss2Gx2cikUpitVvadGCJpqUaWJNR0mJ8++R4V5U4evHcjAL954QDd3hSPfWIt5ZVl/Mm3HwLg7fdOMjgwSqK0mVRihF17z7DjtjX8H3/UyOlTHTz1Th+HznipLBll/epmHqow4HTZefbVI9xx00JKy6auqD9zuptdR/uJxlNIqkou6idqydKfFTT1jHC67QjtAwlKbEa+8okJV472jgF2dyr0jvSTV/IYjDJkkhwbMUM2gFPOkMtMZKtatrgWgTa+sAVg3drFrFreSCqV4vtPn8FhVPjDr90+z63n2uEqLSfoHSKvqrjLK8ml05ROStzhLC0lMurDYDKTSaWIBfV1AuX1+sAlnUiQjEVwV1aPr/iubGy+4voouey4W8WMyZSEIJtKIReMD5lkklgoOO2C5flmLGkRmnrVkXHUTEIPuWY0kfP1YKpedOmDZqpXKoqWV66ZH/G1oEbkkRJh5DNDrHXa6Pf2Iq/ejK+ng0qg0WFhsPM0uWyOA5KJbCKOS0nDmaNsqqukteMMdjRGsnnyRhN2i5lNdhnsTjpCMZKSzDKLPK70xhMJDLLMyVSehCoojYVZ7rLhjyWIL1qNr/U0+UCA1KiXFY3VhJNp+vq7KNVynEhB1cbNjPb1kk+nwSLIKQqPbHAhSkpJofsTt54bpDPmxGAMImQD+w+f53B7hId2LKW0zMPp0128sLuHOzdWc8vWlTzy8DYeAXp7hijvPk/E7EZyuHhn92kaGyr4g99/ACWb5b//4C1SGYXXd51ly/Iy7lvtpqa6hhdfP8qCOjerVy+ccm+j4Si/ef0M0VAIzVFNzt+LzZTn5FAlmYyPRDLLS7u7UfIlfPJmG/WNE5G83jg4QFyzU+FqJ54VrF+7iF88dxyprBl55DSm0kZymQxGs5nyilJWNodxTAqd5nC5+JPHbkVIEr95+TBnvRpfuSvDgkVXppOM8YEn3bgaHG4PZTW1VDcvwOZyjbtHjGE0mfFU12C2WlGyWTxVNeQKAbTTySSJUFB3k7iKoO2oORZ5clhFjmd29fOLV8/NmAVOCMHLZ/I8fyI7vrjkwnpdyFD/0IzbrgTJbIM5Xm8u7CUX9qKqCkrUNx4KCBj3sdNyyataoJePB5Cdpfoij48QwUQej9NEMpNDmGzsaY3yxLMHGc3obSelWRhO2aivclHfVEOFJcPnP7WdzatqqHPkeOjBW9iyogxFtiPZ3VTb8tTb01hFhm03LWPD4hIWlujtps6e5i++fhPNzhThkWFWrVrErWsrKBVh0rEwB/cfp2nlGuwuF6m83i67w0aOtIcxGyVGhnyk0xleP9BLRYM+/ZxNp3CV6ouewiNeUvE499zczH2bKllTpaFaSzg/FOdsz0QygGg8QTKRJDcpSD3A3Xes5Y+/dR/rKhLkMDA0OjG7s2LFAmpcKrIk8MVldnYKTnX6ae0OcXJI4p9/vouf/HInoCe++M3LRzh6opORrIPmMpmb19awwK3wwI7lrC1L4PdHCad0l50Kl4zFZuW3Lx3iuZcPsWRxHbctNrBluYdfvTvIr18/h7uiDBEbxkGMpL2Bk93x8bq9e6CDF44m2HeobUoiH4PJhNFoxG1WcNs/kAxeHxgGkwlPVQ01zQtxlpbi8JReFMaopKISZ2kpmVQSZ2kZYtL2wFA/IAj7LnY7uxzCvhHCvhGsDhch7zCuspktQeV19birqseNDdl0+qJ6TUbNJPWMnvNBIdawPmdwafLxkJ4YJx0nnwijRH3jLhFaXkGyefTZOIf7qjLOabksssV53SUzej9xmE0ouRypbAaX3c7i0hIMXa3UCl0emYxGFnhcqCYTzvomkkgk3FVIy9cSCoVJlNWQrG6k0mHDU1GFzWyiI6Knc46ZbUh1Czg+GiKRShNPJDhnLeVkVhCNJ8hksxiXruG818dQLEHq/DnsDgcNK1fp4S8liVKHjWZy5PMapnyO6OgoUiLGTU4jFrOZUDSGVlaFvbKanpxuSFu3upEdy008dGsjwmRhOJCic1RjZESfNchksiRjcVKJ1BQ9p6m5lu9+7TY+eeciLKlhAqqHVFJ/BxtMJratr8ViNpGKxzg0ZOWNlhGCoRhH+uG13ef5f3+0k/6+YVRV5bW3jrF732n6whKpnOBz28tYUGHk9q2L2b5AxaBlGBwOoFpLsUlpautrOXqsg8efOsCI1899W+u5d7WVlnMhXjgS5/TpLspsQGQIV3k1PUkXfb36uq2ern6e3h/ihXfOTTFMyAYDkiThtpsoMWSwWi/TxXQaxJVmX5sPmtes0/7qt6/OeX9fXw+ywYjV6bxkiuW8oujxLO0ObCVuUvEo7spqRvt6qGpeOONx6USCeDhEXslR1TR1EuQ//fgYTa4sj312Kzt3n+G99uwMpczMX35tDVH/KCWVVVNeKrFgkO5+P789GGFDveDRB+e2IGe2EGyapqJl03NavDZmsRVGM/lUFKOnlnxsYmGepuZRk9HxldOzllVYcS2MZmTrVH9mNZtG/f+z959hkt3XeS/626ly7K7OOU7OAQMMciIAggRztiiJkizZlm2d4+Pr8zz3uT6+93nOtY6vg2xLspijSIIEARBEzjOYweSZ7p7OOVXsyjnsve+H3WF6uicRoAjQ5/00U7W7alfVf6+9/mu9630LhgPP+9HOm/3Lx8/ruv4POr1kbujRG776X276eLGS56v312E2CVgcHv7Lz4ZA2bwqLqkFHtwm09Lgxh+I8e60TodP4MiuBi72T/PuvBl0jT98tIXqKi9/+cNLVNt0PnG0EVHQUUUT5/vnOLCrlaGxBR599CinTvYxOBXj4/f1UNPUzN/94Bj7mgW279/F3/2sn4zgRC9m+Fdf2Ut8Kcr3Xg/gkFWSmh1BK7KzSWHKn+PLDzSCDg2dXQRnpjBZLJitRqX4pePjjMetPLBN5s67DDrP13/0DguxIjYZeprsHD3Qgc1uweVZ68YszC5S5fNgs6//PpLRKN9+8hTRjIYoifyTz+9nbCrCu0NLFOMhTHYP3c1OBmN2OqxxxkJlOmvNzGXtqNkER/fUMbGQYqlk4/O3WWlorMNTXUW5VOQ/fOc0gq7x//jjuxAlCU3T+P/8x2epFPL8wedvYz6U59C+doZHF6jyOujobEbTNCbGZzl5cZ5wskKVQ+KPvnzrxg9X4g97m/7B1+6txtxEOISuaejo63Tar4XI/BwAitmMp7aOyPwcnrp6YkE/ddepCEfm55BkyaA/XNWtq5RKZJeHn+1uz3UHhq6FVCyKyWzhL38ytvZguWBYlxcLIIpIVucVCkG/PrRiFsFk3VRP+GpUUkvLsphLgLAqkbkSd9V8ClGxIsg3Pi81E0fX1U3jaiUVBt0wVXo/+M6/jbi7bds2/Tvf+c5NH3/Sv0TWbKWpZyumict0V23eBVZVlXOzi6it3aSCfhplqJYFxkxuCokY99W5yWZzBBUrYnsvysQg1YrI5VQOZ/d2MoEFzKU8utlKKZnA2tlLKZPGl4kzV1Rp3LWX3OQombAfqb0XTzbBTq9xX7yULmJq60a4fBaH2UyN3YrFYmE6njIob6rKfDSO7/Z7iQYWQTeSV0mS6O+f5NVRnWZbhj/88n0IgsDxE4O8MVLCWVwEk4MvfmQLGjpNLWvXbiKWoFQsUduwvnOhaRovvPAupwcCYHHx2B3NSILA2HSQsfksZqFMV7OT0ZQLh1CglElQUpxUiTmiSgOW9DwH93VyYrLCoVbYv62W+uZlXeFfnWcgKPCJg072LqvyfPv7rzDhz3LXjiqc1T6aGz2IgkAonOLgwS0IgkAqEefl45PElmIsFS189bEemls3yuTeLK4Xcz80NIl8Jk0hm8VTU4d+E5VOSZaxOZ146xuJhwI4PF7iwcAGfb6roWmqMYiX3mibCbCY1HnlzX5GF3LAre9GJFneoHmcjISxuVyI5Tw+c5Gaqmu3ss6dH8MfyfCRe7djvspfvRxbBEE0nF4kGUEQEW6QCOuaCoJgHKuYQNdQvA2o6ci6G4MgSjeVCAOoubWJaxUdvVxalfoRTZZrVtJ/V1GtZFDkemKhJeILaXTRhABIWpEjPTbG5xJEciKaaMZEiUvTJbZsbadJsaFOzuK0WckXytx57yHO/uA8FZOTN8/5scuzfPHeBkrZFMFwkoVwlo8+cohSX4DvvhVDUGXSz51jOlSivcrE7PQC07MR2mqt7Dq8nWPH+sjoFkMq0GRjZnyKuroq7u0WOHLnbfzwyeOYTTKfeuwIbxy7TENHF/lMmljQjyTLWGx2IgvzNHR101FnJZYr0tGxJifY2ehAL+dYKpjJZHL8zY/PYRaL2CwW9u9o4J579tHYXM+J45c4N5lmV6eH3dubmZ1fYt+eLv7izz7K2XMjqKpOfVMD9U0NNNVO8oO37GSyCRp8dpoaLGzbeoAL50YJJUrUpRaICwrdTQ7am9wsRTNs3bkVQRAYHJxmKZbl9x7tQZLEVb/7s+dGKeTymBt7eea1cdLmOkymeVRN462zc3jcdp5+uZ9oWmVvm4WlVAXx1y/SfagQC/ip7+wy6A83AUmRDZOj5bkNSZZIRsJUNzTd4C/B6nRTKW0sMBgSbEbX49dJhIENpkq6rvO5O304HFb+7smLRtX4Gh0vrZBBKxU2pZtVUoZqgyDJqx2zG9G/dF0HXUMQpXWDfFouiZqOrBs4vhV6m66piFYnlWwcvWx8XyvaxrLrH9zM6LeKTC5HVpAo5QvEpyfoktc6NqOxFCpQo1fwVXmJpdK0e52MJ+O07t6HMnKRuGiikozTvu8gcxOD9FZ50dIZwhPDRDWB+XQRq8dHtv8ctq6tqGk47DKDq46Z8DyiACZFQsoXCVy+hLecx7vvCPGpCepsa+dSTifJhgJUNBG9ZzfB4Yt4EynijZ2ohQKH5RItHhdz4wOUJCs1re1M91+kZesOmhvc+GbD9LTXrnYNmho8NM3NUcREVpP4+2feJVG2Ui2fwOX18PtffgBPlYfZ6QW++b3XUCUTX/n4XgZH/XS21fD440fZszvI8GSY3dvbsDvtHDzQy3/7zpvE1RqS2SWeOOTF6bAi6BWOn53CYbaSmvOztd3DgT2twBz7djZT7fMSXYpzrn+eQzvq2NFVYsuydn0iGmc+nEMy2Tg7W0ELZGlbSPPwHR1cmoghK5MUiiVePR9hf5uC1SIjFrX3xVzjWvjQJMOR+Vnq2jqJzM3SvHXbhucD0xPIkkJN69rNWLFYWFqYx9fcgiAIqxPQ14PN6SKfSeOp23yorSKYeXdK5ddJhGF9JXdlIE6SZdLxGPUN1fyzg9cXjz4/EiGQt7BrMUxHV+vqa/wf37yAICkIsgldUzfd/euaipqJI9lcxnGVEmo2jppPI1ocyO7a1WrGewmeosVJJWVMXOvlApKzBjV96/arvyu4Z189DR2d5FJJZE1AFjRUoNaucs/tW2ivGqW6sZnjxy7x+Cfu5TtPnuY7zw6CpLCz3cW99+7i9ZePE4oksSgCGWA6aabRptG7pYPZsTEqOZ2BmMjAd86gm5yAhi7KDIdFxFKRT3/sTuZnFvn+sTjbfDqLC2ECsQJ22UJWUxAEkTOTBZqTMUJLKvrxC3zp00cZH5/j2ZcuMhEocHzcWLv/9mv7yGfSLC3MYXd7SEYi7NjZye13r084HrxvLw9iDLYuzi4ynYlTCE9RdrVzanCJatcg0/NRzkyVEM123jw5zvGLfirlCscvLPKZj2zn0EFjOCQZTxIJx2lubWRrbYTQfIqXz0vY9SRms8xSTmQsaafGlKVsquX1d0ZIq1Z+/xO7EQSBaCTGc29NUDBX09Fcprl1TX3AZFKwutw49SRbu7zkiiVOXgih6ZCVq4lGDepHIZfh5KKXXY2mVRk5TdP40U/eIpjU+Owj22jvuHGM+bAgFYviqvZRKZWw2DYmePFwkFIuj6e2blVX2F1TR3h2ZnVwreomkmAAb30DpXxudZ7jalw9hPdeIQgC0ViGXK6I4qm/brVUKxWMzf1mcmW6iuSoNuyMrwE1lwRRMsyOMGY5tErJUB6yularwO+Hu5yWSyKYbYiy6f2jfnwIMRxJULtjL/FAgGI2RcmyloAmHB7CgSDqrj1M9J3BvnM/WnCBHXqR2MhFZKDcvR3r6CCRoT7cWhlwUuN04CgUGDR7kNJpTG4PjaU0jtwSstlYP6qq0u41NjB9uQp1e7ZjG+vD5nAzHY3g0srkrpg973E7WCjmMCsCuYUZKlYXxdYOhL4z1LmciMuv1VHlJudtJjg9hauqhnR0CYvFzD/9vTvXfe7OziY6O5vQVJVKucRffecdJGs1kbhGolhN35lL5IsVXh3MU05nESwi/9+/fR1dVLBbZrljbyP33rWLltZ6NE1jeHCS9vZ69m1rYGRkhoWoytOvXGbfzmY6GlzM5L3UFOOUnY0EU0n+9icXuG9/HdU+L+VSiedePMdsyUe5FOLxR9bmNSRZwul2U86laK2vxu1WCPgjfP9npyg6W6gLpqjxWlCLOc7NOjALAv/6j+9cpZueOTXAG+cX2dvt45H3SdbyQ5MMe2rrCc1NY94kKKdjMcwWKzaXh2wygd3toVwqUsoX0PVb5wffyCq0ylSkuUqhf1GF5eqpoBXxKGViFfum3C6fuYAkQKiwsSrq8N78UMPj93QTWUrS3rl+sl4QBESr0zC5UDZP1NVMDNlVQyUVQXbVoOs6OobMkGiyUY4tIEimazol6bqGXimh5VIgXDthFhXz6jnoumbwhG3vv43ohwXDs2kq+dNUdJXtu3fx9mAfOcz4s2befvUddu/uJpeIcWBPC9NjUwh6kT/85G7ePDXJuckMS4kz5AoCf/SRAxSFIV4fMqo+/pyVv/zmcbbW6hw91MOBqjFSup3RqM7H9yjIsszT53NoZg8/euYchTJ0eUQyRZ2nj8/xv/z+3QwNzfDCmTCiCPNpK0uZLDZZ540JgQLDRBIFKppgmM1cgUImg9XpolwsUNXQdF1FALPVRufWHj5dmsSkVHNhYB633cbPT2coRYOYrVYK4SCixYlgcSIWg8SyFiJLSVrbGggHl/j2z8+Rrcj83mMCX/jkEZ78eZ4lP8TjRV587RKSo4pWS4HbD/dQKAsMTbgILaSplA1+4I+f6yMRjSLIKSJLJlqvYEDt29vN3j1dq9dtOBhh5LkJGqx5PnN7PR1dLUSTecLxPHW2NLu3dqwNxEZjjCzmULyNPPviBfbvSXDX0R0bvoMPI8xWG6lolGwySduOjUJRuVSKpu5eQjNTq9SzeMCPw+ulVMivkza7EWRFQVauPcxczOfJJuOYzJbVeKnrOolwCJvTtc7kYwX5TJp8Jo2zqnpT2co3xgHKN6QNSDYXldTmesSS04eWT12T8qUVMgiSYiSmV/y9IEiYvI0Ug5NI1hyixXFNOpteKaHm06BriBbnNTtrV0p6qvkUoul/Tm13gBavi4HRYUqFPLW928gurXkHuJf8JB1OkkthEiiU/IvUVAqMKlawWtlv1pmbuEyvWWTK4qNis5NNBbHbbFgtFrozS0SSSUKKQl8yR5vXRZOgMhNNkXRV0ZyO0eRxUa8WSE4MIokiMU1gt1Bk0O0l3dDCzMgFJJOZJq+bnkoFf8nEFrHMolomNzeB12JGviqNKGQzWOw2cukUHnftdfMGUZIwSVa+8sReAsEYsXgN2VyBX51Kki+WMJtk5EqKQjKPuaYNPT5HTrcxHzJmJHRd5zs/eJ3ppQqHdiR54pH9dDV7+NufXUKrVDhzaY6peRdVWpH9u5ux2u1k0iKvXFgimzFmQI6dGGZ0IY1AhnlVBtaSYafbxV/80b3rcqXvPXkSze7g8V0SO3f3ksvmOT0YRlHTbN/SvJoIA5wf8pOXPJwfWiRZ0Pj4gzuw3kK82QwfmmTYVe27pvqC0YpLko7FV4O2gEClXEKrvH/2m//yiWYqpRJjszFuv30XwR+cQBU0ehqtyIKZ+++9jW/8+CSB/FoQktUcmq7zyYc6sNut/Kcn1wbuVqrEmxlsXAtNzXU0bSLFdj0puEoqDAjour5asQUjaRUc1aj5NGo+jeyoppKJo5ULm8oOVRJBtHIRxduIlt+cRnI1/m+pHxiM2hiMgqgWeW3oEgXRuCkKosRc2kRHMsPAWJA9u7t4qy9Ipmwinc5QUXXKgoXxGAiaznMvXWQqXATMNNiKWE06k3EXLkcRm8POtu4a2rZu5b9+4xVkuQNFkUDX0XUdiyJSLhX41MMHiEXjfOuVAKdOXCCbr/D5exuxO2z892cmefSOWrZsaeW/fP80JgF2NCnsue0Ax9/p5/WRCoIg8O++dZGjnSL337OLRDh409JYW3obUcwWtmzr4sK5IYSxWaxmBc1Rh6WUY2+nBcVU4J2UQpu9xI7tbXz3yZMUsxmK1jqchSC1NR7ePj7ATBQONRQ5U3KjiDmyop3x+TDB1CiKzcn2JjOarYqx6QiyIhPL6SiihlzXiT9WviIsG7gyKNfW1/Dnn5Gx2myr1u6ZbJGCUs2eLW58VU7+6ttv0eyz8OmPH2FXq5VBf5SILjE8m+Cuo+/Hqvntw2y10tzTe83nK+USi+OjOK+iIJTyeaTr2CzfCvKZDPlMikI2S2NXD7GgfzUxzqXSNHZ1G2vwimS4UiqRTSbQVHXVROlqatqtQJBN1zTYEERp04qumkuiq2WDEqGp69aX7K5DK2SopJcQzVYEs81QjdgkGa6klhBkZTnuNhhKPDdBM3uv6kEfdtS7HNS7DF1rf2iG2ivmFBrcThYzZcqBBWp9PuRSnq1eJ6cTxkCZZLOs8ovT8Th6Jo69ykU8kyWsQqNJQjEpmOwO0ooJvWMrwwPnsUoComJanZ1UNdAEgZAmY+vcRnC8H7FYJJ7LkVHB1bOb6fEBNEmm0rOL2alh1GKBrKeWjMmG2eXBFpigutq4vorZLG5fLbqm33QBrbbWS43PjWwyUSoUGJ54kVKlgF7Vg6yVaLGqPH5/Nd/8+SySVuCJB3fw1vHLjEzHCMQ1JFmmvdGFfzHMj18Z52CPh8ujixQ1iYJgI5WM86vTQVw2hS0NFmw2C5P+HA8C4zNhZEFAdNeS0jaKAlxdNPziE/sp5Au4PB4AYtEkGdVCh9fMfXfv5he/OsNcOMdXP7GXB4508IOXpiiqMBKGo0sJmv9nSYavh80k0mSTaVXC571M4V4JtVKmqqGRwVdHmI+cI5RXeGCng7vu2M4zv3yHcxfGSBTWOC16pcxXH2mnVCrz9vl5JFFEuEbV9jcNyeZGK2Y3BG5BkpEdXsBLOe43jsunNtfg1HWkZSMN8YqWn67rBk9Z/N2apH+/oUlmClfRa+ZzDn5wKs+9PdWMzSyxkDGjaAWee2OMaNkGskKLLYNdVgnGKsSLZgQRHjpYT0t7E//n19/h2IyLSxNncTjt3JY6z6fubuHSeIBLEZfBZSwl+czjdzI7vcCTL16mrIIuyHR1NWA2m3nn1CgWmxVBNjEwGSUczWI3aWztqkXVBF5+4R327ekknfVzdsH4jU+MF+iffoe/+IO7buqzp2JRREEgEQ5T29rG2EIWXPXc1wt9l2cImD246hoYG/djrmlDFWMUcnkWUwJO0cQTBxx0ddzJ4PAMJ8+OUrQ1kkNA8brZ2qghVHKcl7YgpafJ6jYEQcWq57FaPQgCWBSBrp4mOptg1+4ekvEkz70xQk+rh9sObdlwvg6Xi9feHiCfyaDJNh462sOu3izuKg+Xzg2SVRVS6SKvvNlHW2sNurlIg1tgx/b297xOPixo27axWuxrbrmma9yvg0ImTVV9I5GFOWJBP2arjVwyQVV9I6XcBIlwcMOgWiISxlNbR2hmCh0dq+MfPjHUK6XVwTj5qk6bIAjLg8VO9EqZcmwR2VOHmk9tTGKF5bkOXV3lFq+YcAjyxgHl/xvrIQgCTb71mzW33c4DdpiMiyQlkXaTEdNqyjkUTUWS7ETTGWZyJSzlIk1eI7cIahJ09hKcGqanrhY5OEWNCP7LF0mJJqRSkf2JAL7l48OyBXNrJ6ZLp5Anh2hw2MiabPjauskMnKM4P029WUHTwT87SS0alwUTvqpqcqMDpJJxJt3VWHI57DYb3voGEuHQLXWSlxbnUcxm7G4Pw6OLFF3tbGkrU6VkOJ0QweomVRTRbdVgMiNLAoGlLKGihQf32Whta8DhsPKjp06SLlnJFqDi7cStp/nUPfX84E0Bcy5KUfKQLRaxK2BfpqS4nDZSZYU7tyg0LudiL79+kXS2zBOP7EW5asNsMlsYHfMz/tYgFUFh//YG/uknerC77ExPzhu0JtVK/8AUKiKHtvkQtApbumtpbnvv9LQPjZpEPBhAlKRVLtqVWBFiFwQBdLB7PNcdlEuEQ6iVCu6a2k0HMq4VzFOxKOVCAW9d/erwzf/1rXdp9EpMLLFhElnXNe7vlaioGscmby4pv5Uq8Y2wUiHWygX0UuGGkmhaKW8oPeg6sntj9Xll8EPNxkE3qiK6VkE029GKWUSrC71SRK+Ub8kQRFfLhvqEKN/0kN4KPvBqEmqJ3hqR2ZhK8apEWC8X2FYHNW6ZndtayWUyjM4k8JqK7Dq4h/HBEX7RL/BnH6mhqraWbDLBuUtTzCVEVFXHaoKJuAlBEKi1FtjW4sRRiXDwvvuYGbzMd04WVwcO2pwFcmWIXEHTqbUUEAQI5Y3HTHqBB/Z4GZpJkkrnuKPXxuX5PEt5hS892M7F4QDnFiS8SoG9XS5Oj6bJ6de2D78SqViUTCyGYjZTzGURTRbO9s+jV4pcilehZEPIgsb2NicT/iwP39nDjl09hIMRREHn9VPTuGwmLo4tUTJX02Py8+BDh/jlC2fY1tuEt8rL62cXePBwM3XVdqrr1uJELpPlfN80fn+UgekkHreVBw408vSpJbxyjs88vI2m9laGhqap8jrRykVmJud4bcqMkAmhOxv43O1utu/o4sXXLnF6RkMLT/CROzt5bVzCWlriDz+9H6vNQjKRorH55qqQH3Q1iWwyQTGXxeXbGCdLhTypaNRI7GQZWVGue5POpVMUsoY76NW2y3DtmLtSBb7SZKNSLpOKRrDY7JvqxK+YLpks1g3ym/9Q0HWduel5GpvrN9z0r8avXj6PfynHFx/fi9O9MbnVVJVkPMl3n+2ntdaKyaxwYV7gga0Sr1yMI8hmtHzaoLvdQrGlkomBWkFyVt9yIeODHnfrrQV0XSBUuCrmaioeMc2d+xrJZ7IcPbqH5597G5tZ5PBtuylkM/z0zXkOdVm57eh+YkE/45MBQimBkcUsW5odXF4oUhHMSFqRo1scpMOL3HPvfrRKhSdfGiKoGteBWy5Q55IYXRJXv18zRVqqJCYi+irF8kBjBbNJ4vh4iQe7K+SyBU5FvDy8TaLW5+JHb4VAEDnaY2EhWmA2efNdl4e3CfjsIphsBENx5kJpBqeMLoTsqiE/04dgsiIqJgQETLXtaOUieim3bF2uo+bTmOs6KQYnUWraKAbGESUTsqcWvZRH1w05QdFkW0c5KqeWjLxANoEoIkiK0S1RK2jlEv/7v0qSSOjEotDZLXL5Qpr+yRYWQjYUVw3bG8d54uNl5qYL/Oj5nZSSIe46EOLyTCMZrY67e85y9EEn85M5GlstyKYbr+E/7fjX701NQhCER4C/AiTgm7qu//urnm8Fvgd4lo/5N7quv3Azr30zyCTi2Nwessn4ps+vCLEvjA7T0NVDYGoCs9W2qpF6NTRNpaqhkUQoiLqsF7oyoBGem0WSZSrl0gZptasnkgHyWJiMg7DJ7yAIIm+O64CwwRnsHxKiYoGbcFu6lmOcmokjWp3GQhck0DUkmwc1lzKk2HIJRIsDLZcAQUKye1Cz8ZseCFGzSSSnDzV9cxPrt4Lf9trtqILPfnQPp05e4q3xEqpoBDJFzfG1j3eTjkVp7upgqG+Y2io7H3noALGgn+nBy9gdbnqqU4yOL+KcnWcpXeG2Q9vpCEf4+YkIB3q8pIsZwnkL3XUKOzvczE7GGb/UR11LE22uceYzFnRdZzZtQa+U+NgBM4VcjoJu4exEcV2C7rZoHDzQS64whLXNzYFDW7j4wzfZ3mLnOy9NoyKxu1nAIgrcfXQHi+GzjF1hirWSuNhcbqO9qGnIsoQoyXhq69A1HQTIpZM0tbdjHw/yzpyDbe4k85kcWUcXkWyav/izx1Zfs7a+hlhkibGgjl2Mc//Bei4PB3n0o0d58+Q4i+Va5s8E+Dd/0sM/37F2vWqqyvMvnUcWSthcXt4aLeMTSoiiQEmw0tZWT/f4EtO5ev7Hk5fY0znBUNJDlTTHUhbUfIY7d1Zxqj8L6gJdncYgX2uDm0sjY2C30d3dzODUAAsVhf6RAIvhNFNxid9/SKOt/X2oVPyW124xn6OqoYlY0L9BVq2Qy+H2+YiHgrh9NQSmJykV8lidrk1nLorZ7CplQa1UqJRLWB0urA4HyUgYVa1QyGSoa+9cxw00Wzc61MmKcl2Zt5uRgPtNQxAE2jo3v/9cjcc/cjVpx5i2F0QBt9eDKEmUKyp5zUS+qPLo/TvpmAowMhVFkEyU4wHMte0Gr/lWOo+6huTyoWbi77ub6W9z7WrlAl/4RC/RYIhnzsZIq2vt8/u2KOzcsgOzWeHMmSGCs9M89PARssk4qUScdCLJvg4bwzNxvI5+QvECbqeVox1VJBKj5AtlttZLDAR1qi0qO9qdVFp7GekboL27k51b6gkOldB1nWTFQjIGO+sr7Op2MT0TZiEpMhGTjU+MsWna3u3D43ExH+jn7gfv49U3+9gtl+mfyRMcqtBeJaDoee6/5xB9/RPMnl8/GNlgzZEtS5RKFdRykZZaGx6HifPzOi8PiTy6Taet1UKtrx2TJcB42kNpaZ5iaAqlugVBEpHMjlX5PlExg2KmnAgiu2pQy0VKS3OIZitaLom5vgstm0AvFzcYy6iZOJVsDEGxoLhrqegaWiGLUmVQK7VSEZOvhXI8wDe/Y8XisBLONSI+24/qOUy9cJE6u4lgUqOqNwnY8FZJVClzLAkiTq+JvdI8b12QuTzXhPVslJfPH+BgxzAPP/Le1s0Nk2FBECTgr4GHgAXgrCAIv9R1feiKw/6fwJO6rv+tIAjbgReA9vd2amuwuz1E/YuI19AzWnFJclb7CM5MUdXQSCGTJpdOUcxmUSyWdRWCdDxOOhajtrWdUsHgCVVKJSRFIZtM4PBUoZjN6+w8/6Hw6/CIr4WbsZQGUAsZo3Ls8G6oEFTSS0h2r6F9ubzwJWeNMTSyzKMTZDNaLoGuVhBkCTUbu6XJaNHhobw0+75MU1+JD8LaXYhrnHq3nzvvPUxG7eP0jDHQqSGQSmWZC2X55dkL+FwKnfk4CKMEgjH8gRgf/eR+5peGeGNMxSVkyZc12hsD9OzZxfapGA/euwvzyUHeGC5xYSROu8+Mt9pLsawxNR8jnoet1SXu3NvI08fniZZ0mhp85DNJOrb0kEufoL7eytsDcbKahUhW4sXn3iKWLlMxucgXB2mqcfLYQ3vJ/PIcpYrGJx87wNtvXeClF08yHlJBMegy/+5bF9nbqPPEo/uZ6r9Ex649zA0P0bptO4mQYbigVkoUc3kkWSE8O0NbWyPJ8hL3HdlLpVziuVcuE17K88Mfv4FusvPYPb1U+7xIkoSai1HWMhy57X6O3LYLgGqPFXlqkUavjtWxfrgpGl7izMgSkqOax/ao7G3UObhzNzW1bsrFMnaXkwfv3sbTL14gZPeSSOXY3QhSSSQcyyKqJe64fSclXaFSUVHMxmZyx44OduzoWK1kfuxBjfMXJzi0pw3twiT5YgaX6707K34Q1q6smIgF/djdG69LV1U1yaUIFoeTRCSMrCh46hqIBQNkk0kkSVrH0y2XiiyOj6JYbauaxfFgAKvDQSaZQDYZ9szxUPB9V474IKJUKHL+0hTdHbXU1K1PRMulIn/31ACyoPEXX7sbURQNHvtnFSw2G4rJxM5d3SyG02iFJUTFQiW9ZEhj3gK0chk9EdpA43iv+G2vXUE289yrl/jUR2/jU2Yb33t7rYhWLFWIxzO8+u4UWdWMYsuTSQyj6zp9E3GO7O+krtXLawNZAmcziMD++jC7D+xie0+Kep8Dl8dJ/4+HCOpmRkdm6N3WSXNHK8FojvlQFptQ4fP3NdE3GuaCX8bjUGhprafO52R8MsQOQWJyMcNkXEEQBE6cn8EplYgXLBw/OciiP8pXv3QfAwOTPPVOiM88vJNEPMkvn3mbYEYE1qg0FjXF1z53lImRSVpa68kkk1QqFXyNzQx8511KshOXXUIt5HjqzUH8GQtqsYhsdSI5vBTDM+iVEhUpgWSxL9MmlwdU1TKlyDyS1bFO91pNR1HzSRTPxk1nJZtAqW6lHFtEzcQRBBFzXQdqLons8iGpFcqxRXRNI52zcfhgglC4wEDcgppP0NxdpqnTyqWhLN3dRlfT6Vb4x/+4tBxzZTTNTiE3SucWO4oi4jMvUler8l5Zvzfz14eBCV3XpwAEQfgJ8ARw5cLWWfuF3ID/PZ3VVRAE4boBUjaZVqsBbl+NIbButVHMZvHWNxAPBtYd73B7sDqdq04/K68RDwZo37mbxfFRbIprXYXi18WBJhWn3cSbw8X3Rez8NwF9RTootbRhUESQFCqZOFeWtgVBQLKttSdFxYy4Ca3iRignggiiiFYqoFS3oGY2r/y/B/zW125ZtHBysoCuDDHuzwMGJ7jOJfDk24u0e1XqPVbGojJTcZ2q2TBbmu18/LOPMTc8SN/YErUWC3/6xTt4550+fI31nD91gQsLAtGfnSKUAjCzb3st3bt3cur1t9GtHl4ZziAIFmSpjMNpRxQEZMp8/dkRZFGn9XKcGreVgwe2cHnyXbIZaHTp3H54C976Rn7w0+PYLBLBSJEnnzvHaKgCOjz74gVsUoWHP3IE1/ELRLIVLgWMdT0RKvLmO5dptWuEZqcQRIHJi+dp6OoGDJWWUrFAXVMHuVQSm0umttqGVi6gFXLsbLPyUtFBKBEnrXhYXFyi2ufFYrNik1WySgsjIzNs3doOwJEDXbx9OYE/X97QZq9pqGNnm42FaIqW1g4OH1nb1JrMFlKJFC+/M4FZKCNXdMxWhVIuy8xShY8cqmXHzi7cXje3H+jk289e5hfPneEzTxwBIJvK8PfPXaLWY2JyIUGybMFyZpAHHzryfi6d3/ravZFdvNu35gJXzOVIhkPIsozDW0Uqul5KUZIVfM2tJEIBrA4nsaB/1UXOaq0TINgAAQAASURBVLdjsTuIhYJYbzGh2wwrlWbFZLmmVNtvG/2DM7wyWGAuNM3nn1ifDEuSTL1bRGA9tc65PFi0go88sI9TM9cucmyGFb6xVi4gO6rR8un3jd99BX6ra1cQBCYyHl4/MUq+qAIKuq7TaMtzYQZmA9M01XsY9Jd5Y7SCjQJOucAff/k+QjNTnD43hm6y8fm7vdgdNhbmAyxOTnKyP4CgWJEEo4taJWc5+uBdDF3ow+ry8OZAkmTFgkMoY3fYUWQRsZLnxHCFUyPnaKxSKBcK/PFX7gHGmIwX0HWdw1ur6Nm9i9OnBwkn8nS2+vjRz98llhcQzTaeemUYi1Dgc5++l75z/WRVhWODSUpYyGPjpTcHyKZS2E06aqWCput89yfHKCvVCEBwKcO2vbvxTWZYLJZo85qIZlQe3mtG1rt46vgCpULJqAJfIR+oqxVkTz1aZq39J1ld6OUSlsatqxrb6757s5VKOoxgMq+rGq/kC2omiq5VQFNRhAqUMoxOV7NnZ5jt2xbo6DWu14GhEk8+X8/vfyGE22t0O157BWYDdho9ES7572Bkaoh//hcSf9KV5v0Yf7uZV2gC5q/4/wJw21XH/B/AK4Ig/DlgBx681osJgvAnwJ8AN6X7++tghc5QzOeJBf0bBihsLhdqpbKBT2ZxOIiHAtjdHrx1N7dbXqm+Xqvy2tvupa7Ox1uX+0HaKM0jqgVkQaMkrp8k3kyP+L3geucpSNI66SCtmEUr5UEQkSxOtFIUNPV9HYwBg0YiWpyopbyxi5Sk99uh7n1bu1euW8l1bSvYzZDXLbwxbKhAANzW6+CBe3YxcOY8Ta0NeGrr+cuvH6OkuImrDuaWSvRdHCURiXH7ngbevhSmb2CSmUiZU8+MUNAVUKzMpsCjFKkx5wkGC8SDfiSHmxcH136ngZBM/5MjdHpKfP4TPZzvm+PdRQuTCZiKlggFXydYsIIA/ozEyfMz1NUmyOQrtFQpuBQXPzlXRhCNc7/kB4eokn/xLHcd7qI9m2FwdoayyU26rHCsP45usqGX/PyLT3ZiaWpe5XpaHU7DGXJyHHdtHeVSAavDRXRxnsaeLYiixGNSiBNDEru9KXbtNtas2WLhtr3tnB2JYrWsJUtmq5U2R4FkAfLZPHannUv9E1yeiPHoXd3s39PJ+GtTDI76aWisRdd1zpwdweO2YbMozKVk9JwZbB6mpkdRLVVIdi+NjXVUVRuxwZAfFLhytCKXzxPOSUAJhwliyQQDEzJO12XGF7Pcd7iDpub33FH6jazd31TMNdtsq4oOsaAf+aqk1lNbRzIcwlvfiCAI66gUmqqRTSZp7OxencV4L6iUjUHnWGDz/ErTNBLhIJ7a+t+oiP/10NPVwN7wBNu71ooIv3r5PJqm87FHDlBbZePiRIrZGf/7ql2tq2VDDi7mRyukV6VHK8kwoCM5qt+Pos1vPe4KgsiFRQDj9/UpOf74i0cZ7R+its5LVX0j2osX6fNDDhvlksi582PkkzFam+uYii4xPhfDpCQ5MZJBErOURC+UDFWgnlqV+YjO/PgktXU+vvXiDKXl+3tGt/FfnxpH11W+dr+PYrHE358tM58RAStf/8FbqLoIGBbbxwbiZEuDjPtzHGg3U1dfzaWxJeIYMWgmZUZXRZ596SJ1Trjj6G4Wp19jOGdBkGTOjafQTU6GXo/isoBJFohW1jZYb0+bCPzkTURF5mCHk0cf3MtbL73F3v3biMzPsbUlRf9ElFJgHLl6ba3Jzmr0YhbhqqKgXilRivlX7c0NO/McCAKKq4ZKMgSahq5rCIJoKKtUSkiOKsPgSzFj8jSQTy1x4myZguwlmV6io3ctZmi6gK6vvzYjMTPRbA3tvgBaJkS2LHHi7SLBqIPmhgK33f7eYsf7Var8IvBdXdf/oyAItwM/EARhp76JyK+u618Hvg7GMMf79P6bYjO+GVxbR9jqcN5QY3gFoZkpBFGiqr4B+ToDEk+9E0IiCKaNiTDARw946e5q5K9/NrAhIb5VJCNhFLMZm8uNpt28W8vV9AStmFvm8C4BOoIgonPrEnW6pl53MEO0udArJcy+NaOUysrEdDp2zb97n3FTa/fKdWtu6HlP63ZkPkPTpX4cdjOTI+OMvT2GiMrRLplL02mqHQqLkRxNtbV0djTy+sUYvzyfBUwgrl9rDx2oYeu2Dv7j19+gbzzKfKQMXOEcKAgIJis2syEz5Rhb5EtH3QxMRJkOFXn8oZ2EQ1GCkTSeKjfPnEkhhEromot8RcBsd4EWAWltLWU0C0OzMbbXz1DT3s5DPSovzMJd3TKH9u3hG78YIGN2rDNcCM/NIEoyaqVCy7YdJEJBtIpKPOjH7nIxeuY0tW1tWL0+4jq0WyUEwZADPH1mhLoaF//qrl3rPrsgCGiKnXheIRKJY3faGZuJMxGTmV+MYreZVxPZ2ekFcukUL/blcIth/uJr9/C1j8DFvhKDUwGO3L6FWE7DIqp09bSgqSqiJFHXUMP/9ge3I10xQFZTV8M/fkLAarVgdzp49sXzXPKLDIyGWSx7aZ9bej+S4ZvBLa/d33TMhc05u5s5b67A19yy6eNXIxb0IyAgKcp1q9ZuXw2JUPCa7xcPBlaT5fe6Ochn0hRzOTy1dWiaZlxvN1EwcHtcPPHo/tX/a6pK/3QaDZFHS0U0HTRB5FZ/LOOnv/Y5SM4a1EwMpapxvQqHICLZXIbi0BVdv98g/kHjbrwoc/bkBRpr7MxNTHOhf4ahqRx7OjwksxWyJQFVF4jmRO7Z0U3/RJxTsyKG/7F93d1vR7PCpx47wC9fusi7w3GqXCZKwnqutmiyoBdSVDfUk4zGuLszgddt4dlzSY7sq6ep1sWJU2Ps39/NcycLPDdQAUz4wiV6dvhQzLNwhRqZICn0+eGxjhjxUIB9W7zMnU/isJv4gy8d5vnXBhgI20hrwLKJY7OjyL376nnlXID9u1vZsq2Tb3z/dd45NYTF4WJ26DKvnBhnUW9CNFkQrA5j2A3WJbBX38MFWTGS3uXKsJEvVF9RVRZAMB6nUkbX1GV/gyVEswMtE6MUmaW9PsKuPQqjo2M89lENTRURl+8zX/xiGa0SRr5CH/yTH8+STg5T2+iircvPz97cx8DgCDE6Sefmue323K+7PICbS4YXgSujVfPyY1fia8AjALquvysIggXwAeH3dHYfUOi6TjGfx+pyk1yKUN3YdE1+bkm4vgbrYiSDpi9S1q+dNN4MjzgVXcLmcpGORSkVjPaLrqkbHKCuPk9DTURfFxiNhW3IpwmyCWl5uOJ6QV7Np5YrycuSa5kY6Dro6nXMOTYO9kmOKkO6zXxz2rU3wAdi7dqEIvu7HFycSpPVLFhk6N21g8ELfRy69x4qb5/h8Ye6EdDJ5mfZ01tNtc/Lf/neKXomA1jNFkqVja/b4iwyPRNgfDZBVvJwbNxoCQpqid0tCtPhEqmKEUwGYzYC33uHiqryTw7VoRazDMwXiUaTbN29g+y7Z6nyOkFPAIZSyA/fDBlxTV77LfRKGfQKZV0ml8uSDIXYffR2zoX6yBYVwqElKssGHSvrVtYK/NHD9ZTyOVzVPmIBP4rFgo6OyWojl86w7cjtxAKL1Dpl/vzxZmTFCE3BBT8v9WeRCwvcn8hyx5Htq+cyMT5HIpHmcKuD9k6DRvWRu7ewfT7M9h2dqJUKn7wjh9tl4zuvLlJlLnBPrxfPsppBc2sjg6MBio5WUiWVT33sMADPPH+GkYUsX318O5IkYjIpeKo8HDsxSDRZ4PEHdlLIF3nj2GU++vB+HrxzK+2TfjraO5meCbN9+9rm7j3gA7F2P0jIJpPYnC4ykch1k2HZZLqurrBsMhEPBX5ta+crkU+ncPlqiczPIogSlVKR+o6uG/7d1cUKUZL4R49tQdd1FLOFxx7ax0fK5esWWnKZrDHT4ag2NoblAlouia5WUKo2T/IFQdh0WE5QzGiF7C2r+VwDv/W1q2sq+5ogmVeZTpjQVJW2zk7ii/PsOHyI0eFJ/sWRnWQSMRJZlWl/hjuObOP7P3uXb3//tWXN543rwy4VMAnw+puXGAsUyGoWiOogKrS6iogYlVwAweLib38+iIrIJw97qW/wUdUXIBBU2bt/B+3tCWrqalCktQ7GmQWRC985hWpa62brug7FDILFSb6gEVlYoHXrdvYmRhheLBMIRMiXN+4TtjWIuO0yVqHI6xfCnBuOkNZsZLJlhsaC/Onv3cOd2HjzYphPPrqDt8/OMJYwPrNeKSO7agwFierm1cFMrVxCLRdQ/WOYatuBK/IFsx1BlBBkk+FwW8oj2b2U4wEqqQiS3YMgKYiVIqLJRqwgsf9wiv2HYXy4xNd/UMuR3SEOHtKIRio0t1uZny5z6oKT2w+maGiWOP2SRmdXhu177Hyy0k9tnUAk3IevRgTeG8XqZpLhs0CPIAgdGAv6C8CXrjpmDngA+K4gCNsAC/A7678rCAImixWPr4ZM4to8V13XQFVXpzQ3w4VFCRYLIN38FHAxlzNcaGrrVhNUq8NBcmlptZqmmEwUcjfeKVXifgRZQbS4VsXcBUFcxx2+keyOVi4a5g7lArrZtppYC7KCXr61irLw/tAjVvCBWLuddQoP3LOTXP4iFxYhW4KJ8VmG5zJktGHi2TLRaIJTF+cRJZkT56ZZyi9S5bXxhc/cycULw0z4cwz51xwPAR462EBtQw3/6dsnESxrN7hmt8YnHt3P8eXhOjB+07hqbFSG+kbw1deiCxmePR2jYfQMY4EyQt88wvLmRK+U0WXzBg3Xj++zUN9Yy3ef7mPbbfcxeqkPbTFCSYW5SImpYJAC6zcyIhrOqmpSUaNyYLbZEEWRdGyJmuZW4pWy0Vo3W6iUM5isFgSMdV3f3MiBhhnOjGucGYpyxzItN+iP8OOXRikWVaQrzArcHhduj3EjOXZ6jLfHyhxpy9FTo1PtdLIYShGIpOnprEOtVBifWaKcEeiPJQhG83z54/uIx9OUVZlUMslTJ6LYpSL/4g/v5fSlWVJFkf1bAjzz+jgJyUf5+XN8+Yv3s2dvDwB79r5vVbUPxNr9IMHhrcLqcKJr13cVLRXy15XWvJLrfLPQdZ1EKIjN7dnQbUxGwphtDtRyCfUmqsInTw3xxoUwn7i7lZ07O1cfb2ldS+AFQbhuIgzwwptDq8UD2ekzWLiiBNqtd/HeZ73i3/raNakZPvrQUaanFph+J4EuKczMhkkmywRPj5KIp3C7HPQPLhJOVXA7TXz9h8fx5yx89f5eWtub+NkvjuHPWUmrawWb3a12Hr5/N796/l0jEV6Grqk8dkcrZrOZ//zz8dXkMYcRm/onozQ01WC1WjmzIBF/+iwLsQrPnDmPYDbisq5roGnrEmGALd4cn3jkID9+vh9bXSs1TS6CiyHSeZ1sSeC10wssZM0bFKsExYZosRFIatjMFSayJm5v0Xj4/t3EYllOn58klioiCmC1WZGuoDYJkkQxMovia0HLpVY/TyUZRJTN6IqGsFxFFgRhbcAul0S02FdNudRsHCQJEFCLOQRNQ1dLaJpOMpXgr7/u4f47YmTTKmXNREWF51+yMR5q47P3X2ZyUmZk0oWJJJ6RDAPhIwzPzLNjb4Ztu4xzqn6fmnA3TIZ1Xa8IgvDPgJcxBEG+rev6oCAI/2/gnK7rvwT+V+AbgiD8BcYl+fv6b0nAOJdKEgsGsNjsWJ3OTTUtbxbxUBCTxbLpa9S2tpFJxK/LLb6vV6K7rZ7vvjKLIoIs6qS1m6dCaJrG/tosiZJMriTyP350ilDBzL1bFO66fdu6VqBitqwbMlypXMcCi5istk31Nv/t1/bx9R8kSRdF/vRzO7G7nNdVnbgWBFlZ1h5eqzDLjiq0chHR8tsThf+grN0hf5nC02eZXtJANBEvW/jxiSTgZDhRAGyc8SeolSo8fnsN5XKF02M5xsLw9AsXqHPqfPbxA3zjxyfx59aS4dHxBShl6Gy0M+pPopldCILAfFzl1VdOMbBQwaDjgaIVuH+3h8nFFM/163BpBhQbWU1kIgaiee11ZTXHVx9pZ2o2wpvjOl45S6oIW30Var0N5NIpyrKD51/rJ5XTmB6IoRcr/Kuv7CUaifHdt2LUiFEOddk5OZanqtrO3/zoLJqq8Yef2IooSmiahrPKR9S/SENn9+p7Ozxe1HKJSrlCLOjH4fHyyEMHqHb2Y7eunaOua0gmMz1VIg/es54+sYKWRg+105OMTxe467Yutm9t4T999zQSKt/5+Tlympk9TQ5Sk2lMZjeRvExsaYm5jAWTlqGjs5Xmy0s4lrmwXq+TXN5BLF1i71YfZwbDHLyje9P3fq/4oKzdm0GlXGZpcR6tUsHicLwnabNsMkEpn9+0suutrSMdi+GpvfawbjwYQDaZySTiOL1VpOMx3L7aWxqGDs1MAQJmux1NreCsqiYdi+KprScRCmC2rlVdr+y8VUolBFEkFYuilkrXrE6rqoaKiHaDpP5GaGtw0Tcxt1rEEE0WBEkC4ebocb8pfBDWbllxG9d4GcCCICm8NFjGmNuoADYuvR7BIkg8vEWitaOJc5cmSZUrvHE+QMPoPJ//7H288+7QakEBYGQ6xPbxUeq9MsJ8Dk2QEGQzgijx9qkJKhqIyto9b0+Ditdl5s3LEiM/7kdVHAiSzHgMQOZKdsXdXSJbexr4/kszCAKYJB0qJQ50eUnHopQrOhfH40Tiec5MFUEy8eAOO3fcto2/+9FJghmBB7sqhNIVgjkrl8YzvHExxKEuGw8+dBtvv3mOe+8/yksvnGAirjCeWlFgkPkvPx8HSaHdnSeRF0nZvXRUgc2UZUxwsLJSBUlGkCQEcXPFHNFko5KJoRUziGa74VewXBUuLc1gqumgEltEoIzbWSGpNhKPx1kMedBEC9XeMiYTpLNBPF6RKm8F2eUjrya4a69K//gkre1p4BYkBG8SNxUhlvX/Xrjqsf/XFf8eAv5BTEgL2Syapq4O5Wx4PpeluXcrwZkpoosLWJ2uX2tIIhkJL1ezIpsmw6IkrWvVZeIxSsWCoaW6DFXVKBZL6Dp86s566htq+U8/uoh+Df7wvoYKPa1enjkVoSRYaDVFefSRu4kEgsgmM7Ik8d+emWE2VGJXJITFvvnrgMGXjgX9eOsbiYcCsEzGz6VTlAuFVcm4P/rSXWiqesMqxPWgZuJIVtcGO1G9lEMrZDa05bRSweCmOap+E5PM68/hA7B2u2tEtra58AfnyAo2kK2rn3tlyAC1zOc/tgutVMDrcPKAO0nq2CL9AQF3pICuncUqGxWq/U0qVWYVTRdp2bqDmrkTfPpPjvLTX54nV4Z97Q527dlC5q0h+pc7cDZZ5eD+bnTGGQ8n+dK9jcTiGU6NZ2lzVdi5rZlfnQqRUi04pDJqIUulmMctVvinX76dC6cucejOg4xfvIjb52NXI/QFJECCSoEnbvMxOTTCTKQMWPnI4UbaentQSyfYdWgLM2NT9OzaQWR+dtniWDe4m1clDKIoIpotpOP+Vfkt2WTmwOFdhGenyaVT2JwuGprq+N9+342kGKYjly9PUlvjprbOx8+fPUU4WeYfPbGXwzvqeO5ijjMXZzjZH+LRQzW0ttbz4ltDJNN56urq+dcPHaZYLFHI5fH6qjjQFmFpSSQSSfJ7n7tj9dwePtrNpYFZzJKFQ/t7uefuNcrR2Ng8b5yZwWnSuOu2Xlrbfn373xV8ENYuGHzWdCx6TZnJVDRCfXsnS/5F0rHoqn7wr4NiPofbV3tNWcsr1SF0XV+e3RDxNbUYCa8gGAZMCKRjUUMnObC4gS62du6GYRMYXOdcOoUoK9Q0tzA/PEjLth3El4sriXDwul2ylRiqlkq4fDWrn2HFJMRZVY1iMnPX0Z3cduD61esbIRxcwue1b1D/0StltFIO0bLegEPX9VXn0E3dRd9n/LbXrkMscNt2H+cuL5LKVVBFy+pg4ErMFQSB27c4ae/y4K1vZHs6jclZ4fi4ymJSQHrlFCazGUErUe+AXS0KhaILl6+GbEngzz5ZxcxchNf6khzpVtizpYdQPMf4u6nV89jS7qWluY7jly+yt8vJwZ2N/OSVMapsAgd31DM4nWQoYphReKwy2XgMHXji9jqaG6vJZrJQKVHIZTnSbeaZAQF/VgfJxK66Cg0eByffPsVSXmCbN8MdDzzIwtgImmTBJOkUSiq++jpOvXOR+aUCF85cZm6phC6tT2ZFxYyTNL//2bvo75vgmfMZdmxpoLfDR+JXfQSXq+Oyuw40zSiA5dPoahnZUbVMi9RAEI1CmGI27iGpMOg6Wj6NZPMag/K6huyq5l/+8ySB2XM0tNkZGsiSS0+SzegcvVvi6F0ZwITDWSaZHsCqZNB0hT//ZyVWEuF8tswzzzko5XJs365z6Mh7G4H77W4hbxG6rpNJxKmUShTz+U2PkWSFyMIc5Xyelm07lnf5tw6b200iHLrp4yvlMs6qanRd599+bR//9mv7ODYJ3387iipZGZiIcur8BJp87QBY7wa3TUTSywCkcDFwboDj5+Z44/Qcr747gyArTCdM/LfnQ/yHJyeve05ObxXxoB/xigBeyKSxud2rLWtRktYlwivnDmsk+ut+7kwMye4xyPJXQVdVRIsDNZdc97hWSBnGHJn332Tjg4hmn42WWgd//tWj/OH9Po62G4/vrivxRw/U4JIKICm8/u40b7w7QSwYRFFMNLg0ur0lUpkyB2/bxdG9jaCp7NviY/eeHnZsb+PSmQsEonnmZxfJFirsazPR0VrDxdMXmA2v/XZJzc5//8EpXu9PGZJNokGn+cw9LTxw9w7qaj2YJQ2nVODOXVW0beklWlTIVBROnR1jLJDj9KnLRGMpnF4vvY0WelxJRLWIUM7R1lJDbW0VO7cYSeD5kSWmR8Z5d6LAhYtjdGztZnZymuP9Yb7xsp9vPjdOTXMrhVx24xeGIX8WC/ox2+04q6qILs5T195BIWO036JLcV58c5jAYoSnnz3OT14e59lXDeWmeKZEPC9SKpbYt6+Xz9/hps7nIlSwUKiAp9rLFz99lLbman5xbIHv//gtbHYb1bU+RFGkq62KmWI1r5yaXndODfVeLk3G+dELo/z377yx7rn5QJxQ0cHIYoEzA++rwtlvHbFgAIe3aoNE5QpsTjexoJ9EKEDrtp0kl94b7TMRDmFz3ZyFsmwyY7EZFVwAb109bl8N3voGpGWd5Oslnel4FF3XyaWNdWW22sgmE8xcHsBRXW2oETld2Fxuquobb1plKB4K4lxWNUothamqbyQdW4t31zqndDLNUnijZNXV+OnLQ3z/9cWNsbWYQ3b6VtvUK1DTUSRHFVo+xf8McFl0du7q4t4DjfyzT2/ji7fbESt53HKeP3molp01RmwcmElx9nKAd199k6aeLahxP7d3GmmRx+vh3nv24bOodDXa2NLdwH0P3Mb08AjD435CoRiJVI4ub4ldPXWEgyEuDq9f+8+cDPF3P+9DVRwYszkCezvd/N4X7qHKacLjMIFaZn9tjr2H91LEQkmwMjQV4+ylGc5cnGN0dBqn243HaeVwYxG7YLi+tVTLNLQ0snVLGx6TxnzWzuTQKBeHwxw7O4OrugatVGTg8jSvXM4TSuuUVY2vfekuvPLGuJtWLTz/6iXOjhjr9NW+JLNzEf7gC3dhJ2tsqNJR1FzS0BvOp0DTUbMJ0CpIdi9aqWDQQgUB0JDtXgRRRHJ4kZedDkWLi0o6RjxaobHdgSAI7Ngtkyx6eXNgN5HFtXOz2BQyBTOvHq/jb7/TwOTwWp6RSlaYjTYyG/bx1un699xp+WAK314DgiCglksU1MqmNpywxgfzT00Q9Ruc/XKxQDoeu6aUjuGIVF7HBVNMZnxNzRSyWeLBAJ66+utWMT21daSiS+uCpSAIq9Z0/UEZ0FcrC63OApousJBZ2717q6vwNTZRUhdAhEa3QHNHM6emZlgq3XrlVjFbNlREdB1SS0s31N9Us3EQREqxBQRBRPG1bfr5RZNtOandfF+l5ZIIJiuV1BKCJBnKFYJoaAoLrBsA+V3Fm0MZLo6GePhIK4pWMQbH9BKd1SJutwOPUiClWhiOmtDLKkcECM5O89hHDjM2NE4wWeG7v7hISQVBsvDkG/N0u3P0trrYunMPOXWaZ08EeOxQHWIpTVVDI/p8ElVNYCFPASsepci2FjfnJnOoioUfHYuBILArFkASYGAuh2Z2c0enxI4dXbz68imGAwK6aOa1oSLgpK1cpKe7lctnz1Ht83Dv/mY6ZsN09m4lm4xRKhQZnUsDVlob3OiymXjJxKsjGoMLA+xsd/CR+3YQml/E7mggnYhSyhc2/c6utvataWklFV1LJgZH/VxcBEHws5gAyebEIyUAaPCamJyY5r99N8TDt7fR0d7EnYfd7ErlaO9cm+vpaPFy6nKY+ayNbCqFw23ElI6ORg4tpOhoqefs2VHOXJri4w/t5tTFWbRkCKVxN9noNP6FEI3NRsv+7tu3UuOeIJKoZ8fW34x82W8LoiSSXFo/2X0lLHY7Frsdq8NJaHYKxWQhGQmj6zpmm/2aVeJ8Jr1BvaeqvnFV+szu9m6qBrQCQRBweLzourZqimKcrxFjr+YGZxJxSoU8Tm/V6vFWh5Oq+kaWlu8V+XQKt6+GcrGIt/bXM6O4mh6hmK2rHY4b4fvPXCQUSdLsEfjcZ+7G49l8U7Ct1U0sVWAouL4bJygmw4DDZKGcMMxuFE89osmCmo6hI6zKaK7QK34XsZi18J+//Q57O2yolYpRENJ1Oh15nA4bLdUSlyMQLVqIzsH97RYSoSDbtndQ29pGYPE4xwbKjMyeJlwwEx3JMDvt5+juIDabjfvu6uWv/r6f+/Z4uW17DZVyhdbeHp46cQqvo0KsYkfQK+xpszK3VCSTh3MLEufm5qmxqYgnBjk1ECAnuqkyFXn843fTd+YSb40alc/LIRlCOo2WCkfu6mJucgqTSWFLs4WuOg3B5kbLJilk0kyOTBIvyHTVirirPAQyUQIZkW88PUCtTeNzTxxGr1zijrtuZ+jceRKRMOVCHuSrqA6Swvl5WKm8VgQzw3MZ0oUJcpq8XMTyouaT6OUipqom8nODmOsME6JCwNCWLyyOoPhakawutGIO0bq2hgWzFTUZweRrYXw8wW1XNDaO7o+STMXRBYlvfxM6W7J4a01MTSnIJgVsXob6p+jcanRW6xqtfOWxYeZmVZxeBVF8bwN0H6rKMICnth7FZKZS2rximVyKGFxDt5tcOoWmVkguLeGtayAR2ryyEfUvUMznyKWSG57LpRK4a2pXXbSuB1e176a4aVq5yCfv7+XxO1vXGX/86lSYbz11HnWZcyQAsiTd0Mo5HgoSDwaI38Q5Vjc2Ud3YhMlipVI2Bpdy6Y3VAkE2oWYTmGs7EUw2w2p5E4gmC7KrdkO7DkB2+ZDdtYZto8u37HUOstNnHK/rqwMgv8vQJTNxqnj5fJR3hpOcmNbZ02Fl95FDzE1OEysZN6U7Worc3yvxq7fHcXiruPjuaSxWK3/yqd2EkhViJQsuKc8/erSH1rZ6mnu2kMtkMAkVmh1FerZ1k6tI/P2Tb/HWxRBffrCVz99RjVMqsKvdwcP37abZaywmQZQMeoYgYDYry5ULOD+d49nXhylqIp847EXW1pLVuUAGWTFx6L57sTqcNHZ1IykSZouFkdEFrFYLdVUWw6teFCjns/zFF3bylTvsBPNmUrkyoUCU+UCKyfkYomhcK0uLC/gnx8kmE2iqSnhulvDcDGAMQ8WCfkqFAtWNTShmM+l4jO2d1Ty6VeP2fc189iPb6PaWGczU0dc3QXOTD8VqR6ju4JU3+/nGSzP84tVROrpa1226tm5p48uPbeUzdzWsJsIAFquVjz68j+3b2jl9cZKIUMeLx8cIJsoo9b0cqc8iuWr54fNDrNAcFZOJ3Xu388C9e6ivf98GQD8Q8NYtJ3fXoHQWcznjN8rnqZRKVEolktElnFXV5NMbYyoYMmm6rhMLXC0yAIlwEG9dA9nEjeUVV5Lwm0GpkDcqtPG117W7vcSDAdzVa1QuI5m+Pn01n0kT9S8Smp2+7nFgUDu89Q2r+vfJpQjJyObVc69SQHTWMpc2cWlwftNjAB68bw+fe+K2DcPZktWF7PQtV+AcCKKMruuIFsNFTMCY/tcK6c1f+HcEgiCQEZycnKpwYSrHz08uYVdUPvapB4iGw0xFjHtRkyXNp/abODOeYWFqmlKhyPG3zvLVrzxEo1dhJmXwgR/Z6+DQjhp69uxBR0CtaDilHLt2tiMoJk73L/DNp/o4uqeWLz7Qxp7qLNWmEo8+tJcDW7yr5yRICgggS4KhviDJxCo2fvT0GfpmMnz0tjqaHGu5zWJCRxdlmjvbae7qxlVdY2h6m0wkChBaXKS5rRGzpBoqcLLM0a02/uIz3VgokqooLM4HiGfKDA5Nc3mhSN/lOT7/8FZ6PRlqzUaHvcNT4mP77Vgx4n2rs0iLs8hoVOHYYIoqcwVMVtrsaeyKhmTzUAxPY27oRitkEBUzAhUsDd1GNzgbR1DMIAjraDmiYkF2VlNJLbF37/pr7MBhifsfFFhcFFmI1XByuJfggkbB0sX+7WF8lkUGYncy2Lf2/TR3WLjjXju79rx3s54PVWUYjAE5b30DsaAfi30jiVutlKmqb1wevvFgd3kIzkyiVirLXMWN0HWdUj6P4l5fbU6EQ2SXE2Sr8/3TXhQVM8++OY6ms2pmAJBSLaSuGAQeWlIYemYGQb72Dv7ffesiHa4in3tsF7lr3HiuhVQ0svpdXc3B/nf/5E6y6SzPvXyegWgR8RaNJq6E5PAa1QjrVRUiQViVZPmfAffv9bFzVxf/+dvHGZpTEN/o5+JMiRIWdF1n344WLHYb50dCNHX14E/Agn+JWCyFJlkQMG7Rmq4TT+UZHlugymMnny/xyU/cxZuvvsuxGRlw0FNTYWpihjvuv5NdwX7OjGcIRM8wHRWMkZZl7Ov1UVdfw5mJi2By4DTpKJJAlctCe1s98pkwK6puYykn/ueG2d02j8el8Na5Y0wlFMYClynqVnqR2Lqjl+cuXuSFASuKmuVr1S5kQUPR8pyddzC7tMThrT6ODcR4e3KJB7ZK7PZZKOSyxIIBalvNhlNdIU94bpZCNkvrtu3Eg4HVxDObTKBWKhw+eoB4MICvoYHernqSwxG8nkZa2xqR9DKvvzPC3Y/s59JUlkbf+gpauVhkcHiO3p5GbHY7uq7z0msXQdd55KH9q0nzRx/YycvHJzi8u5XOthrKpQpen5f8C+cwKbbV49LJND/85SXqvWY++fjh3+g6+odGMhLGU1N3zQQul0rirWsgHgpgc7qoamhifuQy4flZdHXz1qUgiBSymQ1qJbl0ilI+T3huBrP1vemuX40V6s2Vw8RXa9E7vFVUSqUbuu/pmobZakWtbKJ5eB1oqoquaciKsqnqxZe+9DBvvnWeQNjEvh03p7+8GUSTFTWXRJCVdRtA0WRFTUcN1Yn/CbClTuZzHz/IC69d4sxUiV++dIFQokwgZ9x3D23xsmvfDgKhJCZvHfXt9Ry7dJzxoTGiqSIrcl26roMg09c/QT5TQrRm+OhdnWQScX7wyhwVs4daS4FYKIRzfycH9+r0vRbhBz8/TSSjY4hlGOiosXDHke1M+08zEQeFMl6nhWS8QHdvG33jSyxmjGMFi5NvvThLi73I1nYX/kiW6YSCqIdp9llJ5+HB/V009UUZjymMPT3N4zsESvkCbnOF8ZyZH7wR5IHdVQxOxRhNOMhXCtzu87KvLYS72su3X5qjqbqavbu7WJwP0tnuw+PwoFgs/M3zi9yzy013o41UPEnPnts4cWqI1waLKK6aVdqNaLah1HRQ8I8BhuOclk8hWtbnFWrGUJeQXT7M1jDDl8tcHnVw/11pqmuN73rPAZnhYT9Wu8T9HxHZvnCe5g4bfRfyjExO09i8FjNeel5nNujk85+I4an+zUurfaBgttuNRNi2eQJldbiIBf24fbWGIHo+h7OqenUYZzPUtXVscFfTNA1NVfHU1pOOxa45gPHrYkWLcAW6piKUc2Beq3IIggDXkWVbwXTKjKZWbnmKe4Xrd7Vb1ArsTjtf+MzdjP4aChNXQhClzSvHV0iorbjYCJKMZPe8p/f7oOLdwSUmF5KkVCsCMqdnNMCCWSjS6tY4fmKAKrcZt6+Ov/7RKdIliT94uAWbzcy+0CCBrIlQ0cr/eGERRDOCoKHrKcyomOxjzCYkBEmhwZrjy58+ytzoGD//+WtMJB0UMTMRY10iDPD0iSC11lkeOVDHscsJ7thZzb69vfzXb73Bm5dTlCUrQjENZieCIJCVq3l3EViEJoeJT+630Lv7IAuzizz1jh9ZDK5KBVVEF5cn4tx7904ah88xl4amahP79/UwPH2GVAJeGyrR5ovQ1N1LcHoKs9VKaHqScrFEXUcHgiAYVURNXx3k0lSNfCa1vIkzNqlOhwWPw4TZbKzlXXu3sWvvNgD2b5Kbnjo/wRvDJQ4vTfDog3tQKxUuTBjVsofuXdN37ehq5U+7Wjf8/ZUJ78jILC++eIqlspV4pMwn+d1Khl2+GmIB/zW7Xu7aOuKhABa7A8Vk8HQtTg81Tc3Egpvzp7119Zs6WhayGeo7upi53E9Ny/ui17yKq6k3YFAnbE7XOue7mxkmtrncFHM5qm6yKr0CUZJWaXn2TRR+AO6798Atvea1sJl5hmhxrDqN6rqOmjLUzK60zv1dwmSkzEuv9zE0n0OQrFzyA5jRNZUOd5m+wSjpRJxcUeSXJ/yYzgTZ09VMz/ZeRsYXaaLAQFjhhcuaoZYkaoCMPprgQLOGSS5SNrkQgMfvaKSmrobnf/48IbEZQbQwndq46Tg3W8T/o7fpbfWi6QVkUeLxh/fyypv9/PuvH6MkOxFKGXTFiiBKlEUrU3krU8MgqQqfut2HIqj07NzK337vDWZ+fJKFtIwgGcpOp6ey7NxfTUdnC+OXC1ilMgf3dmEanGZ0Kc9cxsJffu8cf/zRdmSTiRIWJhcS+M73UeV10NXbwrPPvUtONWHVKozNqdi0NE6HhTfeOMtosAJYYLmzxzL1VDJZkBp7r/lbqLkkgtlm8NmX94Cjk3YmIl10z/atSqSJosiXfm8l4RVp6TRyoL0HZPYeKAAK6USJl1+RuDwoI5gkCjkNNspn3xI+dMmwzem6ppIEGHq7Kxy1lQpAYHKChbGRdU5H2WQCXdNWA+TVQVkURfLplLF7v0ZF+Ua4lhHHZjjYInD/nQf41tN9xEq3PmX8H362Nih4s/bNK1y/G+FGltPvB7RiDtnlo5K+8fDIhxWBnJlADgRpfTXsUJeDbS1m6tuPEAsGcIdzPHs+g6CXmJhapJKK8vFPPMr06Dg/e2cJk1who5po9Qjcf6CRF95d4KWBAitVjGBG4uy7F/A5ZR5+4CCTT12mzaXjViqkNRPTibWbfUazsLPWzuFDWxmeOcWx/iijM2eIaS4EWeLu9hJH7zjIU786y3hq/XVnkQW6dm5l9NwZBEkhVVI2WLmemS4wHz3HbMII1hdnK8x+7x2iZSuCaGyUvv1OAfvxE2Q1M/+2G2xuDzaXi1wquawt62BhfAxNrVBZ7vzYPW68dQ1GshxYJBIIMbpYwHl6iMcePcL3fvw22bLIlz++F1/txijZ2epjNjhLT7tBAZAVhS890g26fsvKKheGQ4QSJSwtPVRSG9v+H3aIorhOtnGz56/ciFfVNxIPhwhNTyJekUCXiwUy8fjq/MVmcwKSrOCfGMNksRp6wr9Bu+TkUgSLzU4s4L9pF7wrsWI/fav4TVli3zK0iqEVq+voauX9sGH+wKGEZbnosP6eWq3kefRIC+7avQTnFjjS0c7Id06Q0hxEwnFOvHGCIwe68TU1E/nWS8R1F5IAFU3kM3fVMb0Q59SskeiudDdOX5pnX3ecxz/3OM++3I+qF6mxlXC5XJybKaAvd4F10Uy2XObOO3ZgPj/GK31Jnnr+PBPBEmXFTRUJ/ugfHWRkcILnBtd/HgGN2roqQjOTzI8MIegaiznrymgSAJGSlR/9sp+lLICFLA7++sdnyakSCMsyfFY3P3jdj4DRLfC4JHYd3MsPnjzBseGzlCQPu+pUPnpHE3OLCZIVib27dvLGj08SzttwK0V6GgUuTJvIJ6JIVhflRBhEEUGSUTbZXIkWx7JL3dp1f//dWTqnL7Fzz62tvalJGJr0IdrE5Zmj9x53P9SrP59JI4rSDYOS2W4z+GuZDGarbdlBLodsMl9XoL2pdyu5dOqmOWlXIhOPUVzWy7wZabdcUSUUiFBRN94g9EoBER1dtrLVV0YSdC6Hld+JoTOtkAFBQLK7l+0a39/W6AcSapltVRkQZMZiZmYXkuzp7mHwzDnOjqx40ltwyiXuvOco509dpO/UOaprvHzh3nqa21t5591hFiM5fDVVyNL6QKBLZp4f1DjYkKNHjOIUC3z1sw8Q9fuJRePMnUqjSmttu9OTOSYXTxIumLGoabw+hUZLhWBaQFcVMon4qgnGlZiIK/z7v3mD//UP7yAdT4CwtpFZseKulCvMJsxIqBzpsjAZKBLKORBEaHUUKKkCwbyZrOBcrVo7PF7UShlf01qCUikWqG/vQPMvUMhkVpMpXTeGUg8e2MKpgeNcDNZSc/wsM1EV2elhaSnFC69eZMafYkd3LU88fhuyotDUXMdXmtfr1XZ0NDE0NMP/7xtvcf/BJvbv67nuzzg/s0BdfQ0P3t6Jz1amf3iGu39DusMfFFTKZfLp9A0HcHVNpa6ja5UbLAiG1Jm3vpF40H/NTpvbV4PNacTbW9EGhrVBaavDeVMxWxQlssk4mw1l6LpOKrqE21ezqhtscTh+rXvBBw16pYxWyBhuc8vUo9/FRPhq1CtJfDaVxZyNaE4incqRjA1zcThC4kyIomRU0vfsaKS5wcflvmECC0H+6PcfYqx/gMa2dv72p+eprnITjKSB9RSgwZid0PkEH7WGyJfh0cN1tHU0kQgHCQRGWSivFdXiFTt//cOTpMoyOgLldIzeajN9fg1NLpJNJhDQ4aq4W5Fs/M1TIzy2x8z2LduwXQzCssDCSsxFLbOY0NAVG71VJcyKSH/QoHQ5pQLNVQrDIY2SuJb3DIUl/q+vv01BdiNIxnvGsiqqqtPd28rPX7qMcnqYaN7IZXa3O7j/7p0kfvgi46YObMUgCbWIqbqDcnSBciKAWsgiiCKyqxbJ4jA6xO71MdflVehRSnz7e3Y8zgKf+ez1ufrxpSK6Djt2yZQqES6+m8FhX6Sm8b3nDR/aK6CQzVIplSnmEtdMhnVdp1wsoJgsZBMJirkspXweh8e7POhR3tSM4kpUymXiQT/umrpbCs6lYoGqBkPjt6q+8YbV1eElheFjca7kFq3gk4e91NVX8/VnRrhrbwc2u5WBn4+tuoVdjZuxb74eViRKrk7i//ChBp5+Y5yDW6t5dbC42Z8CUIzMICpmRLMdyXrtKr5WLqKrFXS1hGSybUql+NBDLXOgXcEfLa7y1HbXFfnkE/czPzqCPJllPmIin8ux68hhvNXjvHQ+SjqtktDMfP3vT5LLF3n8aCvRaIpgokI4USKdSlFRRf7y+xdWaQkr2FlXweMwsRDKsngpQqTi5MVXL1JOBrnngdt54rYwvzi3JlGji2YiJVC0LL/3cBuNnZ2MXbhA69atvPDGZf766QlMJgW7mCWrr3USBEEAVwNf/8Ugqi5QaxPorJfJpjPccaCDZ18f5UtfPMjF/hlG5tM8dO8uHKeHeeVyAZce5/E7ukmmMvzo1NpaunrtLi0ugK7Tun0nqaUI3rp6TBYr8VBwVTZLEAQK2Sx7Ox3s3FVH/8A0uxslWpoltm7v4KfP91GRnQxEbTSducyRo5tfF4Vcjl88f55sSSWduX7PbWBgkqdOxdnXFOSJxw6iDiyQdXZQ0n63uZiJcAhXdTXJpcg1ndzKxQI2l4d4MIBaKpMIBRFEEVGSiYcCmG7ABdZUjVwqidlmu6Zq0GbIxOOrMxA3k7ReL6GP+hfx1NYRC/oREPDWNxAPBn6jybBaqWy4x+i6zg+efAeAr3z26DULK+VkEHQjITJdw4p59X2ycSRHFZV0dFNr5t8FtLlKuG0SfX6j+6Tm03zhEztRSyUWw2meOpshshTntnvuwO6aZnQuiX9CR6+UeP5UGIvkZ2uzHY9Jou/SOMFQjlB0lB0dXv7mZ/2oJuc6zelqc4HDW7wMjKc5O7TEdExEuBxmYnKB2io7X/7sUf7mJxdXTbcEQSBWcYAA93SWuO3w7SSXIuzfJZDLl/ibX06jCxLVNo1oybruvXSTjZeHipyaeIdE0crt3RKL/jiP3N3N6QE/zbVu2lpq+LtnRzm6pxlfrY/+718A2cxH9jtpaKgi8cYMgfwaBVMQRIqKB2H5s+zpcnFquMB3XgsiCn6KgpPw5SQP7/MyPp/i7HiRUPQ08ZzOJ/aAxdzM9341Qik8jVLVTDm2gGhxYPLUUwxPI1murTv+7FMVFuc1il6Nq5P/K6FWVL73ZD26LvLP/yRMXU2ZJeUQJmkRUbyx2+6N8KFTk1iBpMgUshnUSvmax0QXFyjm8miaalgXixImqxVd16htbae2te2GVdtKqUhVQxPJpTCp6BLB6UkiiwukYtdXQJAkmVjAj7OqmqWFeRZHR1laXKDWurmU1JUQ1BIdnjKiZiQJsUSOUDCKJsr84tgcf//S2G9MOF1TVSJzM4Smp1hanF9nN51MZ4mXLUTixgSqrlZWh5rWnb8gItmrKMeDlBNBw2YS0CslKqmIoUuIUY3QSnmjRfc7UOXeDF6lyEcf2suhrWs3nVg8R2Rhnkw6y3iwTEetiWy2wJmTF9AFAU3TeGKvhS/dVUVnjcyn7+vEZpFJFCVOLyg8fynLoT3tfPy+XnRxLaBVmwvc06uwu9XMrk4Pd2518tChenRRwSqWuevOPUTmF5hbjCKqBT63X+RLt1kQKsY6qwgys/4El89dYHAmxvz0HF31Nj6+18JXH2zgzz67F6GwXnnESh5NF8jpVvZ1e7jzQBtVphKyLKPqAgF/hGTW2Ah898lTHL+cAKCzyUNNSyvTi5tPtSfCIaL+RcrFApqmEZ6dwVNbt9rF0VQVb10DpUKeUiGPIAp0tbhxu134vDa2dtdy8NB2AD79YDflhJ9yPIDLbSQzlfLGuDEzOUfF24Esy8wEM5w9P7b63MJ8iF+9colEzDj/Kq8Dh5ZkaDzI5OQCXW3VdHhKtLf8Dm7orkImHkOSNk/6U7Eo+WyWdHRpWetXxuJwrsbgqvrGGxYgsqkE3voGCrkshWyWWNC/TirzWrA4nMSCfhSThVR0iSX/AovjYywtXFuV4UrEQ0HSMUNpQpIkUtEIkqxgcTiIBf2rusG/CSwtzJOJx1gYHV4326KpKqGUSihlcOZ1Xd907WqFPLKzGq2QoZJaQi1kVp+rpKNUkuG1WC0IqNmEMe3/O4qju2r42MN7MFWM70EwWVlaXKRUKnK6bwGfpURNXQ2n3zlPJptD02B7TYV/+elump0lPn1/Jy6ziqe+npcuxjkXtIHZwccfPUBbnW01ORW1Ike7ZPY06PS0uDnYJvHJR/dQYy2STWe5/bbt2M0CwwOjFFWRO5ry/MkDXhrMa3EvkoGpkXGGRuaILKXIp5N8bL+Tf3TUzp9/9S56q9XVeygY+YFbqbBUstHogvvu6GVnuw1NVRGBRDJHMBhF0yWePeHne8/2I5gdWIUCW3ZuIZ7IEchsvH4tQpH9zQJdNRI72j3c1iFSQqEoGAm8TVLZvbOTllo7HqvOvQebcXk9uB1mvF43+7rd1DQ1IypmTNUtlJfmKUUXVlWkdG3951jBfKwepbYTs5TnmadFtOWh22K+wquvCAwPGutdlER8jjildJq33hTw1cj01M3Q2/H+KKN8qCrDmqquDjooJjM1LcZgi1qpEPUvousadW0da3+w7Ea0stuuamhELZdvieslKyZigUXcNXWkliKYrFaq6hsJTk8iKzL5dAZBYEPb70r3JFESUSyGbvHetggvD6nXdTLa0STz6Y8e4NkXL3DJD8emBHQ1RYMTbGaByfhGH/LNsFJlc8lFvvpwC566a1M28pk0+UwaXdUQRBFdVamqb1w3Qb5zRxfVLgu+uhruTmf55lN9JBNZFO/6wT3RZKUUnUdyVCHKCnqljKCYUXMpZFcNlZTRThdECcX73p26PsiIqTa+97NTRDM6YEUrFwmoDqb8Gab9Koqos73FSm1TE796epDMoAaChUpFpVyqIMkSisnEd58fMwYrliXRnjsxb/C9lm9oglbiYKtAW5OFVLqAze0mHkty7FyQTnuO7uZ60okkXp8X0Z/GI+epqqrH4a1CPhmjDPisFUYXymzvqmEiUWTyVIR//uXDRObnyCVi+Kdn+KPHuzk3FOKiX0LTVD5+wIbH5+NvX1jg5ECKpioT9zxyL//5G2+Rkb38+GQSvVxmZ5OJUqGEw6yQL0LfQonYT99lLiluGOoDWIrn6Oxu5Rc/fo5Pf/mJZRdFQ22gkM1gdTlZGB3G6nRRyucxWa3IskI+k8HnNtOxaw+xoOFit3PfTv68ykM2k6NnexdPPfUWfTMZHr+7m8OHtq6+Z8/2Hg7NvotQ5+NMyIR5Psmh5Vmmc4N++hYhFDzLH3z5fpqa69jV7efdaY1YLMOhQ1vp7f31p/8/qNA0Y3BoJe5eyR2OBRZBEDBZrKsJroCw6ugGRlzMpVO3NNxrc7qJBwOYrTZy6SSe2nriwQAmq5WofxFBMLr7zqqqdRS3K+dFYoFF7C4PVpudfDZLNpXEfp0qc3Ipsuo4CoZWsFqpkE+nKGQy2JzuW+KSlwp5Mon4DSkbK4m6qqmYRBFlWdlihVoiyTJ/8pm9gMFr/8nT7zIbLvG1T+5cx4VXPHWUluYRLU4kZ7XBzVytxhkSllougWT3Ir8HZaAPC148E8J2MUBJcYGmgqYysFCiOp1lIW/n4S3Q2NLExfE4L40UQBDZ6oNi0SgMmC1mRvxlnh+YQlCM3+T8ZJpo6jwzVwwib/EW6K61E4mKuGtqaSyXefHFd8mX4KFdHuKBRWob6gmF45QrWZqqLdS3teG9ME+gCDYhz1KsSKrOyULWyvSiyqcOeejpbmR+eIjxSxfY0SSxf4ubnxyPICgWDrfq3HlkBz97eZjZpMyFUxe57Z7b+dVL57nglwz62GSSeqeOx1SiLFgIZcvkJSff+OkZsmUBpI3U0B3NZh5/eC/P/eoE2XyRw7ft4u3hc6iKjU5PhXBW4n/88DiNPitmvYDdZqHeCZFUEVdF55OfupeTZyd4a6SEIJuwtu2mkghirm2jnAyhFbIIsglT9fr5g4ePLhIKBxieayLmd5FLj+LwWJmdKnN2chcDI/NUV8WpbVC49+4iP3y+g3DMj81Z5LOfKbPpDeTXwIcmGU7HYlTKhoblShK8ArVSxmK3Uy4W100o+5qa1yXQsqIgKzdWZ7gSV0rsSCYThXSK+dFhXNU1xIMh6traScWuP/RlsTsoinnmRgbZv28L5ycuEK1ce3BtKlTkzeOXmQwVAQs+c4HPPdBJYilMx9at/J9fP4FuWQvsJi1LWVfQpc2D9QN7vHjrG1kcH6O5d8umxxSyWTw1dSTCQarrminm8yQj4Q0bh4aWlaQ/e00lTtlVg+yqMRxqdH01YVuRWPtdrkhcDUEQsZlEHnm4madfG+bBQ/XMLxV4aaDA3kaRQ+0CDa2tvP5WH1ndzorS1PODKpAFRI5PLCKYPOsaSIuZ9d9hmxd6ultw+Wp48jtv4huJkNWsBFM6X3ugFQGdV98e5CtfeZTW5gL5YgiTxcLQhUuUJRdO0vzZl44yPjhC764tTM0cZzTl5G9+fJZicom/+NOPYJ6bxWIx0dtgJlPIkc6p9O7ZR//5fgRZwePQcbrsXL54mYxg3Ij3N2kc2d1OIZ3AW9dJLpvnb15Y5O4eC8ViiUgyR07fyH9//XyI0xdneeie/cyPDOKqNm7ghWxmVRnG7vHgqaljbjCKzelCq1RwVvuwLCvOuKrWrt2mNiMAz07NMRB3ogvrOzTjY/O8e3aUibBGg1fh/m6dGp+Xn/3qPHcdaOXOA20Mj55kWjfzrR+/w6HdTTxw9062dwZpbr/2cNmHHeHZaWTFhLPat8EAQ9N0PDU167pHzqqqdTEXuO7A82a4crBXVkwkwsFVO2hBNDJhd00t2UT8mvMeruoa0rEo6WQCb00dxVz2usmww+MlHgoiisY6NOhxAUqFPI3dvctqGWsxu5jLUS4WNlWoAEjFYvgamwhMTlw3GRYlEZvLQ6VcwmyzGRuJq4YL3V7Pur/RN4m8otmGua4TrVxAzUSRrqA/CKKEmk38btLQroFiRefTd7fRNxrEIpboaK3hx2+H8SZUHtvvxm3SmJmYYiAgIMrGWh2NKoy8GEAQXQz9fAJRsSJckS5kNQuDIWD5PqtXyty+q56mnl7GXj/H//jua9TWVnE5aOXxnRLNzXWcPTdKu26ie1sPrndfp6VnO8OnThgJtQAfva0On1PB19SETR5h6mKRX51ZQjnj5/6dTvYf2M/UQD8Wm8y9vSJvjpfYuaWBfDbHUroCopm6eg+BmWnGFjIIgguvnOeLj3UR9ftxe2tp6OziWz89hSyV2NlZw9vn5xEQVwf6VjAwX6D8wgXqXAomUeD550+gmX3UmnL83mePcvrMCJGElccf3ssLL55GUhScXg8v9OdATbFz/jIzSyVWqJ6iYsZUs6YIY6ptp+gfXf1/Kl7mnWMqfTPd2ImytTNIT+8ix044qKsps++AmZYzl5kttPHMsxmamuCxx038wSeGcHlk4NZyuRvhQ5MM6xjViXw2s46vtqI5KptMKGbLRlWIa7TzroYhor6AzeVGkuR1ld0VuKqqcVVVk00mKBUKNPX0GgnjDThwNpcbm8uNKBkDG//4CwdRzJZr8odzupVjY2VWFpWOjqZrTM5nOD12Hs3sWk2MbGT5J1/YR//gDK8Mbm5EMr8YpanWz4WJFM3XUD7x1NaRCIewu71IsozN6cTmNNqOuVSKqsamdVVlb7WX/+UPjiLJ8up3fvXnuZovvJnE2mqVWDFdl1/8YYYgCmTjUQ61m+jetYPUqQsA7O7yUl3r46++dwKH08FX7vJwYiDMdMK0/J0u/8qySIenxNFdtTx/KkC8vD4B2OrNsLVeoZjPM3xpgKzoIpEx1o5ZzOKpb2B6YpZ52vj6T86Sq4jsbJJRKyqxtKGTmlHNvH1iiMDsIjW1XvZtrWXkdI6kZsflERm5NEAsWWBwYZ4/+vLdzMeGWYznuHBuiIHpLIJgZz4l89zxWQJJHaSVQKuj6TA4FmC/1cbgWAA02LujiWQowKMfOcRTz5xgMLaWaOi6RiAtguTkQCLHlp07+K/ffYd/8Qd1yCbzqqRaIZshFgzQ2NtLNpFY7XwoVWbKpSLJpQiRpSS/Oh3m6K46jty2lcbmeg61Ran1tnPo4FpV+Ok3xkhlK0hakbBaQ6+gMDYXYyik4JsMcd+dO/nsR/fQ1z/FQMyJezbB4GiITDbDfdkMvTu3/WYWz28ZK0OKUf8i9R2diKK4Oqjm9FaRS6fw1K4firnZmKupKsGZSRSTZZW6djXMNhtmmzEAnY5FV+c90rHoda2RZZMJb30DFoeTfCaFcgO3NUmWNyhmGNqyhrSf3eVZ91wmEcfu9pCJxzZNiDVVJbI4j6arG55b//nslIqFVUOOqvpGMon4so6+Y8NG4vOfOGLc765R1BEVywYKnWRfT0tRCxn0UgHQkF2/m5JqAjqVYp5qMcX2Q/vIJhLogkiHT+bwoW386Ml3mIpqfOxAFbl8iTcn1syIwEjkzBT4xO21jMzE6QusX9NOUtyxVcFksTB56RILMY0ItUTChumsaDJjc3sYCAj0ReI4Lp1GtDgp5vLospWyXgIB+saj+FwmagMRendswXX+XdKSj6KmkMvl6Xv3NG8MZHj0djNbtrTxxugUQ5MhqJTJYlgZP382igCkBdfKh0fVVGaCabY5bYwPDBJICdy3zUx3q5et3Q1Mjs/yi4uldflSoSzQHxDYV1vmjvYOHJMJSMFSXubF1y4xEy6QyoP+8kUGFjXGnuonq8qGV4JoZTAELU6BTmuJ88MRBAHk5a6xIMpUkhFMdV2r73f8hMLF6S7ILJLxdjATCdPb6+fSbC+1ET8HDqf5xKfK9F2a5VRfDYkZM9XvTHNhyMf2pimOPlyNYnr/UtibeiVBEB4B/gqjHv1NXdf//SbHfA74PzB8Afp0Xf/S+3aWGIloeG6G5t6tJMJrTmvFXBa723vdXfrNwLAGdeHweNdVOjaD3e3Bvlxk2CxpvhauHDgp5nLc06swHcgyl75++y1atPK3zy8iiEaQuzLfL2kS4xMLBKM5rv459zao7O6p5qm30kRy8ywkBD6+8prL/LsVmR9BEFa1P6+Gp66edHRp3WfVdZ233hnEJOm47QqeKs9NfgtXQdcMF7rcrRmG3Cw+CGt3MCyzu11iy+6dTA6Pcn6mjFsoU+Vt5nL/OB6PE7tcprWtkUgowlRc22BG4LRItLQ1YTkXgCsog7quc+/BNkTBqKidvjTD1iYvI/4CZcFCUbTz1z+5SEmXQTSvdiSi2TLBWIGBJWMjp0smjo1X0DUfu/0RmprqcAlh0gWd6iqN9p5eiiMzLOHkuz99h+1tLj52wIXL7aSUTTE7pdPu1ZArafIVJ4IMDbYiimzm7341A0oV556fMQZPJJ3kkrEJigb8bG93MxhbMy+4r1tge28Tw8OzPHe2xPGBd4mrxnmbLVYqpSKlQn5dEmaqt65bu+lYlKqGRrK5Apmiytx8iGOXghzY4uXogQ7ePj1F34VhNLVCIlOinImB4OSLj/SSK4k019v59jN+xEKOQqKKv3/6DPccauPokW34nztHS1Uj7w5niIbT/P07SR5N9XHbHXvez2XzgVi7NS1txAJ+Gjq7SISCeOsblr/bJmKBxfekv56IhHBW+RAEgXz6+rw/xWRepVqYLNabHqy7kjoBLNPpdLx19dcdiJYVxUiOBWFTapmmqmQScZxX3XNS0SWDmidJSLK8rlCSikWplIrYnO7VKrPd7dkQc8uFwmr34+pkeHR0jvHZGN0NVooV9deSRNMrJSSbGzV7/fvcr4sPwrrN6jbO9s/yxBN3szg5yeXZDBXRQoPPTGBmimAsj9ci0djgpVzIYZ2IkL9Kfk0RNJqb6whGsxBYv6m5a7uLrvZaHN4qorEEsqhRay0Qzhv36Bcupnjt0kXysgeAQgks5Aks5RlcVCkv38vHogpjUZ0DDSWakgm2dlRzZiKLpkFrkw+rw0nq0gxPnQxydGuej+8x47IrOJw+BhdmUUULrV6BoYU8yBZMepHtrS5++to0iYqTMwtRdF0AxUKuoJFPpykUo9TVOPBK8yQ049pocRT41AM9RPxBfnm2wnefPMViChDM6JKJWKpIlU0glFO4sAAIFpKaUai7svx4dFctPb1tDI38grxuoRxdQJAkJGcNWjaOmolSUVV0dMJiHr1cYPe2Elu3DmJRivSPuFBTYRzWeX72UzdtbSJH7xZZnPOjIxDPWAgFK8QKtzH2nVn+5B9fX33iVnDDq0gQBAn4a+AhYAE4KwjCL3VdH7rimB7gfweO6roeFwThN7Ld9DW3Eg8GUMxm8pkMhUyafDqDpmp4rlMluBnIismoJkUit6Q5mc9kDMtRQbglXlwuleSeO3ewOxTgvz0fuuHxV3OMzRRQBI2MaOPZCxsTYQCLSaSq2oOoBJhNmUE0qre6WuGffawFRZGolMurVYaof9GgopTLNHUbJWRZMa0Ow6wgEloiFYvzzlge0kvgaURN9vNPv7Cf+qb6W9IjlhxVaIW04YxUyFx36vRW8UFZu4Ig8Hb/EttiOY6NlfHaBdrrTAyMBpgLpPjjz9/J2Ng8owODbNvZy8sDl+EKVz5dLdFU4+DYsYsE8usDtpkSI8MzFEoVTo3n2bW1nk89doDnXr7EhQUjUOQF+4YhXQGN8akg9++t5VSfn5ymkNWNwZAzEwUaYwEOtols29rGy28Pk0plCSU1QKK12cee3c0Ui0WS4TBH7r2dyaUT7G2W6N17BydPjXBsCvb1eDl4oJcJ/zvEKqCZ3QiAS8zw0tkMmiDT1aCSyJZZaXnpahmXRSKbiGOzmslqArm8gCAYa7fJXuCPvnD7BgOd4LJRh7O6Gk9N7TLP1I+sq/ybP7yd6bFJxmJpQv4w/TJc8gtcvDxKBROytx6bzU2tDTp7Onj25T5ePBvGrZSJFwVO+a3o+TTNtUs4rTJLejXv9gfZs6WGoXKKcPz/z95/R8mRXWe+6C8i0vvM8r4KBRS890DDtTdsQ9vNJkVSIkVRZjTu6s6bZ0aj+9Z972pGGkkjT4mkaJrNNmy29xbeF1x577Ky0vvMyAzz/sgyKKAAFNBoscl531pcRGdFRkZG7jhnn32+/X0TmEwL048+Rsx8KmJXlCSMFgvRST/e6hoi/gnkXLbE4b0GRWGxsLu9ZBIxCrkcZbU3RzUJjY0iCAKeyqqb4vIKooDLW0YmmZitxl4LV1a4iwWZVDSCp6LqKqreDHRNw+pwkYnHrqqYKwV5Vu1iJhnOJEoqR/FQiMYVqzCYTFidrlIi7PbMvjefyzExNsXpjil6xzOcGSlMNyILN80BNjh8qJk4otWFkgpP67TengbmT0vcAvTG7Rw9eJa+qQLBnIktTSaGx6NE0y7u2t7IunVLef3l97jnvjuocUcYvKIe01huYnR4ghNdCZDm5iVd1xkajSLqKu8+cxJFtPKf/+BeBvpG+OnhOACqaCbHfBqCxSgyOBKmpcaJrsaIpHXCRRuCINIRELA54sTDUX7/kRX09/sZD2YoVw0gitiMAnvvWMtIbx+5dApvVSu716RJxFOsaavijm0e/vrnPTRUGLl7/xr48CJHBhR0Q+kZNel5Okdy+ONFlEKRljo3CcU4K6FQZlVJRcOYTAYMBiMjKfPsnKHrOvs31eLyOOl8uhPBVDrnErfM7nVlvH9shAml9Cy9dWqKo2dH+J2vHaC3b5w3TkyiKzJqKoposaEX80BpgTmpbMAjnqdtqYqmGfnpm6uotQ9jtWr0x9egBfOk5TybNycYi9cjpzOssObZvNLPhT4JizUN3D732sUsKbcB/bquDwIIgvAz4FGg87Jjfhv4W13XYwC6ri/s2/kxIYribCVzpjlGR5+XhCbCIVxl5Tf9cM9wg4Ojw8RmtqgWUX1IhkOU1dVf091upuFHEMR523qequpZ1yaYS4YlTcaAgixe/0f+7K5K6uqq+Iun2tFMpQfVJpRUHrJ6KViPDWkc6+tEMM2ncQiSgec/GOKJu5dgMBrRdZ34VICCLCOKAhUNjSRCQdwVlVfZkqqKwvdevIQOPLq1Gn9AoGMkiqfMiNt7czQHJTFVqrxYnKjZBKLZjiZnSpUSXbsdtIlPTexOyi4mBwDJwM7VdjasX8ZTP/sAj01iYnCAvoEwAwEZ6VJ+XiIMIKoKrc1VhKYMMDpfQmZdk4V99+zgmRcO8+UHmpiYCPHKW+10jsvA1dxsky6zulZk5/p64lNTeKvsVOxrxmp38Nc/70M0WRhLmRhLwaOrLajFIoqq8c/vhhCmlStOD+SYCPYyPhmjttpN0TDEslobq7aup+tsO5E0gIGPLkboGDxOXhEpN2YJF214ifG7X72D3q5+nj8tExkFTRNZV5ZkPCFQ1HTWb9tDx8V+Xr2YRbjCgXE8aeAnL5zkc3eXkk85lyslVHIeT2U1ciZTumeiiK+mjlhgkkwiRk1tJQ9tEnj5nAkpkseWmiBZKGIQclRiIJiMk8y76LzYh8kgYBQUvvDwNoZGwoxMxmmpqWTDhlaMJhORwGEOj/s42RnmS/et50fvT/LeiTEaGmtIJjNUVvpwuD72ou5TE7szO1qJUBBPZamR+PLFcTaVxGA03nRyPGOFHA9OkY5F0XVtUZVmXdfRNA1XWTn5bAbHAslwaGwUgLK6+nmVXZPZQjaZnLfLpWka8WAAT2X1ddWFUpHwVRVxOZcjm4jPGom4KyrJppKULWBSYrHN57Kn4zHS8TiaqtK8ei3RwCTldfULmiG98WEX5yd09rcaqHY56RxNIRuVWamuxULNJtCVIogiWiaGwVOFmgqXKsW5JJLDd9Wu1E3iUxO3RdHChyMAZtrKFR66Zz3vfXCWWDxFrQsunL3IubEiE784y2TGPM+4AqDaa6B1WQPmMyHyl4kgOEjxxS/dxaVLA6xdCStby3nhpaNE8wYWGnN1XafNV6Cl0khrYzkCAlYhz9qtm/iX544xmrKS180c6iuyxCYgiSKimuONPieQQDBYSGhm/uHp48QSOXRN5zOGcVKpLHfft4uuM+1kIzKaIDEQgZ+8cJKxSJ56p5HxlASikcf3lFNTX8v/+NEJFJOX8X6FGouM3VSgP+2ktaWauqVL+PN/fIesaf7aRBAEXjo8jiSWmuN1XcdnyGDUNWwmia89sZfvPnOKSNFGrGghKUMkHCeTV5DsPtRsrNRUHxpBMJhQ5SySxY7XECBWrOPU2RA7digYyLF0mcA9LSEOn5CpdMVYuUZCMpr48iMTPP2Cj57gMh7bmWQipjORbeP4Rz0sW2FCljVqGz+ewtZior4OuFybZnz6tcvRBrQJgnBEEITj09skC0IQhG8LgnBaEITT6RvIk10PdpfnKj3JaMCP3e0hOrmwBejiIGA0W2e1dmFOgH0hmCwW0rEoqrowNyyfSeOtqkHX5v9dmK4kX7kN9tAWL7/3xXWY1Mx1r7J7OMbpcwOo09xMXS3yG/e18JW7m2Y/SxClqxLhGUzlLPzlyxP8X//4IRH/OO7KKkxmE5qmkY5FMVoWDixRkmitMtNaZWbDxuU89OAO/vffvYdvf+MeLnWO0XFpiD/+5sZ5Gse6UkRJhksGG/NvwnR1IoSuFFDTUZCM6IUcIKAVcte9B4vAbYvdy+P241I6Dl6M8tNfnGT35ma2bmikqqGJSo+Zbz2+jYJy9bZPvUtGL+aRs6WtZF3XEeSSxFnXeI433zvPSFjBbrdgsds4Ow55ZuKigFCYS6Dbaow88uA2OvumwOrCV1VN+7kBzl4YRbjMllvXNdBUymrrsFktCKKEVcizskJFE0SKGvzRb++l3GXi2eNJRqZyhP0TpBUDHcHSGjujWRlJWXhoexW//fhWzGoKHZ3YVIBcZq6BrdUW43Of3cvDO2tIC05+8OwJ3j0XRTAYqbWVeH93rjDR6CwgSAYKis75znH+/LvvkYlH8VbVYDJbyaYSaFc8Z3aPB00pbWk7rCJVxhRNNS5SRRNSVRs+r51vPLEbi9WKJEpUVJXx6EPb+KNv76e6poLKciu5TJbaGh9mi4Wf/vwo/aEiemoKq0Hj3KVRipEJ4lmVN98+xY8+CPLK+53cBnwisftxxlx3RSWJ0NS8imk2lUTXNJKRWz+vrmmY7XauZGhlkwmUwtV9EKXeBjeRifEFZdp0XUcySNhcJaWRy+Hw+q6itsUCk3iram44b0hG06y29Qwy8WipsHGZ7bTN6VqwGGNzufFV1yLnsmRTKQq5LA6PB1EQiAUD15SrA2isclJnl1m+vJG779nKH37zTv7oDx4CUURJhtHVq+XWlHQUJR2df2+UApKzDF0tohWypYIEAmo2geQoQ03d+u84jU8sX/g4425/SOW5V8+gFBTu3bOS6sZ65ILGf/rOPficpquoJqKap7HKXlpUzRiTFNLoapG0ZuPF189y7FIYk0HC6bQzGBVndeR1XYf83LUaC0meeHQr1VU+eofCVDQ2EkoonD7TSyQzP06MuoLD68Xh9ZViSNNoKyviNhYIZow8fncrj+1r5MUzGdondIZ7+vFVlvPe+RiCwQySkYGYkbZaO998Yifr6koxlc9kiQen0DRh9hof3dfCl7+wG2MuyDtnw/zg2RNkjBU4pDxNzjxrKotsbypJoiXysK7VQ7MtTrkhzR/8xi7qast5/5Sfnp5Rssrc91BFC13DMZa3VHD3Mp0Gt46WSyMYzZhrlmFweDB6qqkqLyCIIuVlKm0rTfxv/ybM7r0SFZUiyEkkg0hVrYlTJxRefKsSqxhDTYdJpSEwIaMUihw74+BnL5bz1KvLSEY+Xr5wu9jHBmAZsB+oBw4KgrBW1/X4lQfquv5d4LsAzWvX3xLhQ9d1UrEooijMS4YlyUAyErphA0dwdARRFHFXVmI0zV/JldfVUywU5nVOR/wTuCsqZqvRl59HVUtC6a5rCLh7q2qITwWwu6+vrTmD8ak0ijJB8QY/zTm/BGgI0nTlTDRwtsNfenAXubJvcuX5+hf2MjU8RDwYQJQM1LTMr2jI2SzFgjwnnSQIfPGxnVedKxYK89qZODYhx+o1LfP+pmYTs1bL4mU0CNHiQi/KSFZ3qVqha+j5DFo+haAUMXiqrvyYTwKLit3L49Zcs+yWiUpGLc/KegfdY2nebw9iknQGpsbYvMTK5EQQRRfRdRUEcXZCNVss+KprONU+wCObqklEY+y+Ywc/euEUCBInBvIgufnu62MIkmEepeahDU6amyr5h+fPo5rcdE8qvPDSUVoavAyOhunoC1NXX8PoVAZBmIu5clOOhuYWQpN+JtKlGNuy1Mmde9fwo5+fIJGFSDiKXNSwi3nsNhMTwQyBuMqVUjfn+qKMTaUoaCLbl1fy7olhwmlY4jYxEDcykbHQcfYSvaMJBMHOeKa0EDMWE/zmF3YzcPESbRtXIZ7oYrRDprXWzo7tq2iptpHPZolNTeIqK5u3k5NNJkhGwhjN1tKCNR7H6/Xy4DadplWrMFPkvSO9rN+2knOXRpAd9Sz3ZKlrnG74mL73r73fQ0yq5K1DvXyzsYZISkHWzHzjM82MjAXIqSYkg4jJbMIg6XhJ0HwTdKmPiZuO3Vsdc6HEh0UQpnezSpAkA6lk9Lp671BKYHVNQzKZrqIneKtryKXT82yK07EoktFIPDg1j7aWCAXRNZXYVOCaesWCIGCy2tBUDbv7xtuoBpOJ+FQAo/n6KjcLmYzMGIlcfk+uh1y6tKDNJhPoWonDWdncMq8irWkaieDUbLUZYPOmZWzedLUjoq4UZsdWg3NuF09Xi6UK7xVWy5KzvKQ24SgDpQi6XqrWpaPomopovn3bztfBLeULtzru6rpOW4WAUlS4ENSQT4xwYTCOx2GkotJPVtZmdyNnxk4JFXd5BVMTk7RUGih3KqxZt47zl0a4OJymf6q0A+sf0jjU249omssXlnkLfOkzO/nJL04yEpcomlw89YuT1HskbA4Lb717BqWo49DUUhJ52XS9flUdyUiE3uEI4KbCKvPlx+7g1JkeXjuTJJnMIBcVdFWhtcZE/0gUX7m7ZPZz2bA7Gi5y6FgHw6EibWUi4zGJV44PsrzRw8CUTEEw09kzjm10CtnkpagYSSqlfqQD63xs3NjG2MAgvsoqTvS143OJ7Ni2grZ6J0fOjnLqTC9DgTRDSTt9p1KAFV1VWFFeJJzIYza68Xhd5OJhPnNgOd9/a5yiw0t+9AKireR8OBBfgcmY5r6HSjdgJtbbT2TpC6+jbzLNHQdCJOISCaWKu7cGUHI9iKIZi82AapCoq8oQTUCjL4PNuXi61EJYTDI8AVxOoq2ffu1yjAMndF0vAkOCIPRSCvZTH+vqroFcKonD4yWXmm8AsNhmNslgwOZyUczn5yXDqWi0xNlyzB/YJEkiFY0gXbF6lAwGHN7SD3stSoUgCPO2FBfCH39zY0k6riDz1LsjnJ3IX9aNvzgIgsCpsemO2EUyRFJ56O0Z5ujFMGOzTXyTs9cEkIpFS1UY/wQ2l+uaMkGe8jLuXDOJ3To3Qc2cIxFPcvDEAKuWruQnH4Zm/y6aLDDd5T0jiaekwhgrWlDTketqMS8Sn5rYbXHLmA0C+aLAvQfWYjh4ifGpNLmigGBxctYPZ/0pLKLOt+6sortvnMMjRgRRoq3eSfe5S3T4ixy4q5GLZ9OMj01S4xF58IGdPP/qaYYn42xd4UYXBD7o1agwpqn1GcllFCZGxvnOF9bR1ePngz6JkWiGh+5rIXdukAuXotx3VxMwyqWpuWptVDZwpjtMPpNm+0ov711IMDoS4eJpFUkrEi3Y+Zd3/WxuttBWlmPz3m08/4sjdETndiKqrTJ2M4xEdKp9NmqsefbdsZP28wOsNYisWdvKX3z/ICnJxQtn0nx+ZxWecIpDg6UALkgOzp2+xJLmKl566RCdYRO6JnKoM0sqepDGphpeOxWhIMzfcZh5nqpbWhnt6sDh8eD0eUsL0ukdn03b19O0pB5dB5PJSCDUic0oUSwUMF627b53azNHzo5yYFspEblzvY/32iO88NYFkoZKGuxx/ut/eJjJsQn++d0QbjHDzh23RVniUxO7M1CLxdnGrhnJxRm1hxu+V1Hw1dReVX2Vs1nkXPYqOpZoMJBNJuft0JXOU8RbXYuuc101iRsZewAohQLxUBBBEOYl4jeDK3nBN0Ip8Z66pnoGQHTST1ltHeGJcUxm83XnNUEyoiRDSDb3Va/ramH633PzliAIs0mzWFaPruuo6QimyuYSf9j6sR32PjVx65DyrGq0c7Ynxr27V1OQZZ5+dxhZ0VCNdiJFIz8+GAPM3LVcoLbSzTPvj1E0uWmpMCKnEnx4LsTO9TVUlTkI+INk0xl++0tb6Osb45XjARrcKptW1/H6ySCqqlPvKOAwSkyMB1jT7OShplr++dV+BhNWNrY5aGio5K+fvchD2ypoW1rP++fbKVxGrTg7mMETSFNbV0EwnyKZ0Th+8CQFtUThfeVCkRZPgW2VKR544E76u/p4+ngWpNI8aiLPiloTnWMaoUiWapfAhrYyWpfUE4se5UsPb+H1985zaljj4KiVTXUqv7GvjJ8fCpAXSgl9T/8kTdUOJvwRXjgyhW60408V+OFPP2TzqkqiskT7xTwwP/mstMo88bk7CI6N8s+v9HK69wwPbKuh0uVBkibRJCuW+lWo2SSi1cn+NRfw+1WiIZGK6rm5ftV6K529g9TUFBEEM1s3Z5j0d3L2ootQshmhkOI//99SaMooTz9fRVRo4MCasxhMH6+HYTHJ8ClgmSAILZSC+gngys7PF4EvAz8QBKGc0jbI4Me6suugkM+TjsewuW6NU2pzuVAVZd6AmYpGpytIsauS4Wsls1anE01RPpaKxQyKcg5fTR11Pj+RhenHtx2xopVnjia4Mqgvh6aqZBKJkrGBxUo+k7mKzwalQXbv7rULnsPtcfHwfdO0icuS4SvfD6VBXE2FkJzlCx53k/hUxG6FJc/+9T4ETaOjx89rrx/l4nCG//jNvUyMB/jhh1FqLWn2rHRyvFvGbJJY0exhxTIrb54MIBcELCYjGVngf/7kDHkM6N0x3EYR97Eu9EKG//it/Qx2dCGYbbj7R/i937iDeDBA73iK18/F+KIrRa6gYKYICPzPp06hFfLkDF7+5mftyFpJbWIGumjm6KDK/Wu9bN3cRkfXWzxyzyZcZeUUhAH6z+WocWg8dM8GRrq7CPsnyCSTwFxidOfmKlqXNvLUMx9wYO8O8skI//DTo6QKBrw2gf6xBA1lRqxWlbNDKmVlbrK5AjA9iYsS73fmGYlO0hkygabx5Z1OgpE07w/aOBPKgFCaBLzGHBVWhaIwE8sCIx2XyKYSVLcsITwxTj47Prv41TSN7//iAnJOZu+mGuSiwMWgiYpLQ2zeVOIjj45MEkoU+M0ndmGz23nn/XMcap9EdPrwmnII+QxNyzxIBgN1zY08tCGH+/ZJVX0qYncGuXSKQj7PRH/vfGOjRcJTWUV8KoCvZn7VPB2P4fT5SEbC8xJim9O1oD6xq7xywfPcCnLpNK6yshuqB91OXG4Wde1jTMSmJqc1tUs20Neag65Mgi/HYmTTBEFAtDhQkmFE883xj6+BT0XciqrM/ZtduGwSPqOV4yc6GYoJ7FpTybYty/n7nxwhnFF4eJ2ZYLKAJJhxOy18abePoZBCIK6jYkAtyrx8PIxBCCGLNtAkpCNdRGIpfvfza4lMBalvacB6dor9W6pYuqyOZDjM3740wK7lDtyxJJqqUG7J8OLRFBZhBAQ7r5+O8s6ZEIUreoP6okaaFZkH71tFOHaWpevLKHNZcJSVc6TvNLJu4K7Ntbi9TgJD/WQScS6fv9c0WHj43o1oLx3jvr0rmBgd5dWjY5hPB0gWLbzx7nn8U3HuWlXBsa4kdouF8gofojCXdPQkHAgnJ5hKaSQUK9vr86xs9vLsEY0XzhZmP89EnlqrjMvjpGNCIZgzcubICXRN5aGdddTWVjDQ1cvZ0zGKUul7qpkYotVNITSCpsj0xrZRPDjIE18qFWLy2SKnThu5864ijS1mJkZknnp1JeSjiBYHohLD55ZLai2SxIHdMSYm4ixb+fG9C26YDOu6rgiC8AfAW5QK8d/Xdb1DEIT/Azit6/rL03+7VxCETkAF/kjX9Y9NProWNE2lbtlyJgf7b+n9C1U3TVYrobERdE3DVV5+FX1iIdysmPz14CqvJBaY5DN3r+GzJvN1FRmu3NJZ8BhVAVG85WaIyz//j7+5kanhwWn5uY/XGHQ5l3ih73i9wf1m8WmJ3eZKC06XG3dFJXa3m2g8x+mxEM+82k6+CHZRZ/MSK23r19Izepin3urnzjUOVm9ahu3cFO/2aNy5XOXf/8ZmLrT38m6fzjJvgaVlOoV8gskk9HX1cbEnSFfEjC6YOXTkEsV8lo6AQFG08MxHfjTBwGe3l7GsrZ6fPn+Yb3zjTl55+xzn/ParugdqbHke3FnHhydH6Or/iM8/tI2h/jH6DvUwENLQTR78aQNPv3iKWCyBxxrAX3Dy+e0OuoZjdIaMHDozzpQ/SChn4vXXjvDAQ3t47uUTBMMmqg0FwimFe7bWUV7hpczez1OvdpDSS4PmTONcDguXAoBoxqxEaGhZi9k0gWEgjkHQeXBrBee7xnjk3o3ImTR2l5v/+neHaSyT+K3Hd+Lv7yMdj6EpClXNLbOSbslImA11OlMJkQ96NXbUaawxa7S2zFUbj7aP0xMx4HWOU1nuJDAxiSDobCjP8NBDd2EwmeYWcYLA1svc7D4uPi2xO4NcOkVVcwv+gf7rSpJdC5LBsGBCV5DzBEdHrmtMcTkMRuMNd9oWi5kk/EY68TNQFeW6371klVxY1NxxPcxUggUEkuEQ0k0aRd0sFtImvlV8WuLWbiiwYs1yJkdG2HbHVmJTkwy/0cnxrhjjU2cIpmBNRYbVm7dg6+7nqaNx8tlhNm1aTrIY4uiwQOHYGN98ci/9HT2835nFrMlsbzVhkQp0Dsr09o6iyDmeeX+UgtnHxYEI8ViCvokMmF0c7Zc52TfJ8lobX3xkC8+/dJzdm9tIJtM8fTSJcsUWrqDmeXx3BVOhJH/zLwc5sLESQS1y8nyAHn8vMiUu+qtHxxE0BY9ZYSAqsbPVgNdt5bWzSTrGdLwfnSafL/Kjn5/kiUc2cdcWiV+cSuMxFcnkFWrK7NyxcxU24SzdEzn+8plLpZ1ooeSMK4gSPZG53KKl1k1NUyPeo0PkdCs7mzScdjOKbmJVi4eymjqyvzhJX0SirrEai9XC6XODqKpGTUMt0UQOJvIY9TyNXgWXM0unVIM/XGR1XR/LWnLMpKK9PXC8bxXB6BBeX5LBnjzFZBCPPc1XvxzG5TXP4+M3NBtpaL49MbOoUU3X9deB16947b9c9m8d+A/T//vEoSkqkwN9mG22eY5zHwdmqxWbyzW7DXi7BtzF4vJBvliQ2bdMJJ4uXiX2DbCtQWP9ihp++t7IrHLE5RCKOX7jrlqmggne7r7aC/xGsOglIvrMtglAVfOSmz7PpwGfhtg9PVRgJNCPyTBAlS3Pnt3r2NmW5thg6be5d42FlmYvPZd6KGJgVZOdF87JvHz6EIrJjSAIpLMF0rEorUtr+aBnmB1r6mhsqiWbSnKi4yQVFT7ucDu4+LofQZT4sE9jxrSlQojw5Bc3MzAYoGc0TjiWxGU303G+i1hGYaGdAYMIHq8bJBPpvIScLzAWyhIvmvnDL6/g0qV+BiZlrCYbPUU3Ic2A25Bl6bI6TEKRcDqJ2WrhjgNbyQkX6RlP0Xmhi83Ly2kqT7Jx83qmAmGe/3Cc1dUT3Hv/Tnr8x7ErKl+8q5W3jw7RG51/XQWDg76eEWoqnexdqdLeH2d5WwOhSIoPj/dj1HIkEllEo5uJRKmh1uHz4fKV4auuJRWNUlZbsgc2mkxs2bwS0Wjko+OD7N2zDusVOx53bG6kYjDIymW1/NVTZ5DTRQRvPSaXcBW/9JkXjlJUNZ783M5Fm07cCJ+G2J2B3e1lvKcLb03trN7w7YDZasXX0ko04L/xwZ8ALq9GRwP+acqb56rdrxlb+mKhcJU5xwxCY6OYbTZEUcJ5jR6Sa6GQz00bx8zxhP+156DbhU9D3KZ0J3/31HEEVMrPjLJ1VSUP7Wvj++8FiQVEGsokHrhvO2ODQ1zoD3H3+nLO9KU4/Hw3mmBAMJiRVQhNBqipq8AzNILPbWHXHRuIBvzkFJG8KrFn7za6A8cZTUF32Eh3GMCBBZm71ltZsWoNT714itNnesll8wz1j5BfwHETQNB1HA4riVSOiGJHUVSUosrxIY2v3bMENZ/lVHeYigovF0cyTMoOMEBthY3GhgrGx0KcD4hs2rSWpnCU773tZ2BoEuQM376vlqHhSXbv3cx3f/wRP/nZB3z+oa0UhFF6wwme3OMjnkjzRsfV+ULnWAanfZJH7lnL3786QmNNNeUVHn7xdgdqPkfyRC+TQR3B4OXdk+OIAvTFTDBSgGICXZQQJBN7VrtY1dxIWU0dyR+/x9ZNWZpbjVyehi5fIRBLdLCkWeH9D61cHFyCwQG6yYTbN58We/aUwplLXh44EKW++eMvGH9lHOguh6+mloh/AlVRrwqqVDRKsVAquV9P91fXdYKjwwBUNjYjCAJGk4Xo5ATOBfQnM4k4ci57w/NeD+l4DIvNfkNdzHw6w9aNSxkdDXB+MnnV3wVRwGC4zoQrCKiahraAgca1sHeJTlW5k+cPB/jqg0tAgH9603/Tgu43C60ol8TfNRWj79YF/D/N0CUTJpOOQYSuiI3q0ShjwTnO1Zm+OJGETDab4471tZTX1nGu5wPykns2vk+NS7SPTiEJOhaTRCqe5IPuPjK6jbSlmpc+6MUtZXlyTwtnu8P0RErnNqtpPntXC/lknFAwQkfQTmuxyFc/t5d3PrzASGIuFpd4itRXWDnUnWUsbeG/P3UJ0VxacLZf6OfB+3fyzAuHyaTStLXWUl2Vp2lpC/3fO0QGFwnNxvMvHefxz+6i3t/J2VGFp39xgmp7gbs2VPPC4QkeP9CEZDTy7GsXKKiQyRc5Oawz+ZN3Gcp7qbEpqIoy33BWkbEIRfKSg7fPTLF9ZYH+QJGYYuNvfniIh/e10D8aQ5FVvvTEPZw8dp63uueeU01VEURxNkExmi1MDQ+gFBXcZeU88tC2BX+3+oYq6huq0HWd5TUGcmkTWza7aWkpxelA/zi/+KCfXWsqGQvLKBgoFuRFVxp/lWC2WrG7PcjZDBbb/ERRVRQi/nF0Tbvhonkm6TWZLTi8Phweb0mhwbxwZbI0Rpc4vbdSkS7KeYqFwuJ28XQdd0UVqWhkYSqYJM0qC1wLmqpeVxXicsQCkyVnVVFCUxW81bXEpiZveX65GSiJYMn22Wi5HTzhTyVkTaK1ysql8QLegIyu52abyyfi8MHxQSanEuxZW8by9asJR0/RmSuiG0oL3VDewj+/G8ZBhrTgpMqV49j7h0jm4ey4gMVcJBE/zvIqiZX1Em92FGZ3a+9cbaGh2sloXy9h2cKrJ4L80Vc3E43E+N574dm+HruYZ9dKD2f740Sw8k9vjCKIBgTJwNHzE/zmE7vZGekil83icxrZubaC1lWrKLzdztlpzY5fHB7ntx+xsWZ1AxdiCZ565QJlphzfuLOFD84FqXBINBkkOkcyTL1+hskkIJn42YsnCGRLcnCapnMFPR+rliSrW7k0oUFhHKvdCUYLzx8JsnNJhD0ba3nl8AjfeKiNPWYLf/l8PwPxuR4gdA3BaJ2VuB8aDYOcIXJmnLGcYzoRng+z1cC+/QBGkoksQf8QWzenqW+yASbUosoPf2LFbFTwlZkI5WqJRCLUN3/8ePmVTIZFSbom70opyLjLK4lNBRb8+wxURZmVyJmxt7zeaj4eDFLZ1EwieGODjIUw05x3ZXf0QnD6fPz59w9T1CVmqnuX48SIwInBUQSDFUEpyZDphrnjdIOFpw5G5ykSXA+1NpnWWi8WlwuEIJf6AggIMP1g/5/fPYKOyP/z21erSHwc/PE3N5JJJvnTH7VPy6mBJmfR5GzJtcZ+4yaYXwXous5922vx+bz8t6cu8Fp7lsursRHZQmRM545WG2ablZ899wHf+tJWRseCvHR2Ti5GES0oQK0xTl1tPVPxIhfGpOmBVeDAnrVYXW4Gx5MQAVHJISs6oWCIhpYm4pkiBi1Hc7mFY0fO0TGSo8yk88juOg62T7K01sq2bas42/0hS+u8TEQkopk8yys07rlnBx3nLuHPWvnHN8ZpqzQQS+SwnQuSFpyzA15RMNPVfon+8RSIHlL5HPdsa0HOZvjsjnJ+/O4YgsmGIJqpNkT4T7+5h44LnWzYuoF/+MlRpvI2/u51P4I4d38OrHawfctS/vmnh/n6l3fQ0T3KWEpAVxV2t5mprvIyGUwwnhAIjAzjD2UAO3/yvXascpAv3N2G3aTPJmqpSIj6tpVE/BOLqr4JgkCmaGAo52O30UQikeaZn53Ea1HJYCeVlfnm59Zz8mQXP3vpDI/cuxbvrToyfopxrXulKkXMNjtKoXDDnTpN1fBWVZMMl3oHTBYrvuqFG1/y05rRVoeDoizfUjKcCIWwOp1kk4kb6sZbnW6SkfCCjXnuikqKBRmn14eqKAuadlQ0NJaS4UVcZz6TIRmNUNW8hGwyjiBKxKYmZxdSxYJc0kNeQMHi9kBHtLpmx10lEQR0JFflbTPg+GVjQ4uDu/evJfuLkxwfEQBpNgnVJDOnR3UqzUbqW5r44J1juG0m/t2Tm/j759rJzNC1RIkMLnRVobHShsVu5833QohGC3I2y66tyylkUhR0I1ycQNc1jLrM5GSBphoPqZyGhsCGJjMXznUxGFJBlXh0q5NMVmZwosiObcuJpS5gi+Wxm0Q6p3TcxSBPfmkbk8NjhDI6x0/nqbcnKBSLlPWdZjBYhGkXO4PZxuREkEF/CnAzkbVwYK0Lu9XIfVureengCKdfGUUwuPCPpPjavU3omkJTazMHj3ZxsE/hZ0fjpcXR9GKhxprlW4/fwRvvX6DSY2b5snr+9rmLCKKNVRUqbQ0erJ4SbSMRjZHOKbPUNknNsa3FwMqlNfz0vTHyghWjkuHzD25heHiS9wdSVwoOLYh8XiDEWgKRHjZs0/j58wLxpJ1ExojVZOSLX4hT6zlK+8UKRIPM2vUfrzr8sdS1P43wVteQjkWv22kMJVqC2WrFbLNd0+f9cpisVjLxGKl4/JauSzJIJTmdRVZr07odeYFEGEqTs2AwoitFvnFvI0/srSzpwl5+jCjNG9REVeb+tWZWVypXng6LUaeirpY3PuxEN9o4PiLSPyWzqQH0fIJvPbyML+y+/YNyOBjGYDQiiAbEaa6wJmcxuMrRr6Hb/KsIQRB4++QkHxy6wOd2Vc6ao1yJ9v4Ex072M5GxMjwaJBhZWGt6aXMFFfUNBGIyAA3OApuWuhgZnOBfnvqQ44MKQjHLdx5r4/O7y6ltrCedTPDoA1uptWTYvWcjRYykcwoGQaWispwGt86qFY389LmDWCxmHr1/E/uWm/nmfTVsWuZhfHSSYwMy6xuMfO3OakYiRUKqk0wRntjtptZeanpbUmFk9ZYNLK8qjXbBtMjpzgDZXIH6hmoa3AqCKFFhzvGFe1cx5fcTCOfobr/A9jYHD683sa5m/jOSiMUJTvgxiipBvx85U5KnktQczUvqyWcyHOlK05d08UF7kGWNXlZ7oqzxpfjOE1uwWYzzJFYMZgvRgB+j2UwyEqaQv2zBUShcpWAAUO4AixyhbyhAMpEikjeii0Z+/+Em7jmwHpPJyJHOKMMZB72944sNjV8LmCxWjGYzNtfC+rqXw1NRSSoaWdQiJBWL4PD6CI2NLlipXQxUVSGXTiMuYofL6nBcd94wmkp8xdhUAKvDQfyKwoggCFclwuGJ8WnXvvnPvKYqlNfVMzU0iK+6Fm9VNTanm0IuRzoWJREKYXO5rvqMjwutmC85fTrKSrKWdm9p7hBFBJMNXZFv6+f9MnFuKM0rb5xiRZ2Vpb6Fpf+msgbefu8M3QGVRFZnZGSSonZ1plZtK7Biw3pCURnRaMFEngc3exnq6ef0hRF++PYogsHEvuVm/v1XN1FVVnomanwWNrdY2LCiklVrltE3mYdCGo/HgdWg8sD+lRw5eJozw3kObKrhru31fG23jW89vpXQVJjuiQyZvMbv3FuF1SwRVlx0BxTu3uBmR1NpnLLqGVZvWMX65dNcc0HgVH+GjgvdlFVVsnGJvZQvaCpf3leDUMwRCMY5e+IcS2odbK/N8PBGO6I2d48yOYXR/gGsgkwunSbo96Mopc9rqLJSVlfHhx+2k5G8vHgmjWS2srs+y0pvjq/sr6a12orBOHcfC4KRsxeG6B2NIWl5zPrc86DrOkX56rzE4y7iUIeZ9CtkUkUmJs1Esj6eeHicrz8Zw2CSOHXWjD+3nCMnPr4k4K9kZfhGWKzE2mL97QHkbBpRdOH0zL0nGY2gyHkcXt8N3ZdsLvdNfd6NGs0AEEX8UzGKBYWr/HavgEVUWL+2BYM0Qkdw/sA8EDfz3354Bt3sns0Ztq0oY8vmNkYnDzI4PEU2V+SZ4/Ob6j4O/OMBvvf6MM0+nT/5vd2zr//Xfzp9OzubPzUYS5mor7CwZs0Sjl0Kks1ffczaJR7uu3Md6RdP8Up7joXWqrquMxWI8PbbJ0ruQgI0VlpZu3EVwdFh7CNp7mtxcqpjitHxEPFoCqMksKRtCe2Hj9LYUMl3f/QBXovGv//qTk6eHeBPf3SW5TVGlibSxItmwrKJn/7iJEtrzLjyeQKxPO905xBEC20GHYfTjjBNZHCaBGoq3dy/VeTIxRAXx2TcZy4wMS3Vp4pmTozC6FSM9VmNRLH0nMiKQDSR5/SlCTTJQp0uUVntwW61IBenyMoZljU4ee9CHBkzDa1LKLs4QWNrC2lZgME0msnJ0++OoKgKBUMZNTaZtQ1mli1vprLMTlltHWePnsJqMZJTJf7+7Qj/9be3zFb0EqEgdreHRDhEWW0diVic7z53nkqXyNef2DN7zycnpjgzplOQ4dJolkBoEK0okUrkKa+uQs5l+Ydn2zHoRaqYZOPGu25z9Hz6sdhmYoPJtHg5MkEkk4jPS4QL+RzpeAyjybIoXu6tKF/c8LIEgVQ0ck1qx+UQRQGH10c+m52nXW9zucmmktQuXTr7WjaVmO1ZEcXSZ9xuyo2WTSJaHGiF3GyzsiCICKIBNAXR+OtDmchoFoaDGe6/az0puZf+6NUJsceY57HH9nH+wgAvnU5xIZCaVai5HIWCyvtvH6MnDGDBaVTZsnk54YlxsiTYbtdIZgtEUwIjQ34icRlvdQ2xYAiTmubQmSQ5WeMrB2rwlJfzd89dwGo28HhFlkReQBfNvHHcT4OryI6NzQSnYrx6IkxStVBjK+J02ZlhRoq6wpKmShLBAC6rylsXbZw5eZF4VmPGAa83amJAs2M4cYmxGIAEgshUJI0oCPT4C1TYNNZvriUcjLC0tRZn+yR7N/po74sRTkpU1tcRz+pIkkTT0kZMh4PkgXe7Cpy8dISgUIlVktm51ExzUxU+h0Td0jbOHj+Dms+hSyaMgkIeECQT73cXAQNf3OGlpq6cTLwbu8fML14QGZys4mufG6Oydq4X48hpH2m1gkTCx9mj54nnahGKcWqaSovu116FoLoSa+Y8++9XuFzJ6Fbwa5kM3wqSkTB2t+eaW1zVza0ko2Fc5XMDuVKQS/acAf81t/o+SZRZFNJ5M6f6ZQTh+h3MWcHO3/z0DLJugCuOFQQBjFY21MFoKE+saOHQpSg9IycIF2283XnjZPtKnDzdQ/dwnM8caMNXdjXdwWiU8Bjz+JxOAuOTeMs8mK1WBFHC4LotsmqfOhzrk7kweIQMC084Z4cyJF4+TW9IpcmjsXttBW+emiJasGAX81gkDUVVefwLe2k/14cylkFXFU5ciuDQj9C8tBmjpLBz2wrSiSRHO2P89hc28sF7x7FajFjcPrZtWU/wF8e4Y3016UiYWDKHYHbQG4Wed0MIghVBhL6oRG9QRtBTYLTP+rgcGtQ52DuAaCwNPIMJE8+82s7XHt+Ds2eKnryR9zrz6GqRMpNCWC65103KTiY75pr6qlwi7RdHWNbgY8uO9Tz74nG6TyVZXa2xaXUdoqCxdXMbJ7uOcWnSwMQPDhFTrEw9cxKLoNDoNDGaspDAjdOUZ1MN1PvsrN2yhpNvv0VdSwuvv3mC7imNbz7QhNnh4I1zF+fdb6PFwtToEMI8C16VqakkL795mkfu3wKAzWahzKpgt5vZv3sZA/1jDAcjtDaUMT4yQWVVGVaDiqfGx299Zd+vzTbzJ41cuqQPfS2Fmoq6ehKh4LxEOxOPzyaMvwwU8jkEoWQ2shhJTavTTT6bvYpSAaUFRCwwiaZp+GpqcXp9sxrON1M4mYGWT6MV8iCKGBxXX5uu6+hKoeQEKhlKFeJpEyTJ7rnpz/tVQFSx85c/OkFWM4F0da9OXLXzkxeOE02DUYNHd5TTP5bg3KSEoBaodapMpAzcv6eO1qWNnPj+UTBYiGVUnn3mXe45sJbxUT+PPbqHqYkAP/gozuoWgdVrWjn+4VEamuvZ2dRI31CIVKaAy2EmFAiC0UpOtPCDDyKzZkch2UIoZKH95UE0swthOimfzFr4s591IRgtCALoRjv/8EInTxyop6IcDHqc93okvGYFl1ggqxpRBAuqaOW9gbnv6jUVyGQlEuEQv/nkA1y80M+f/uA4dqOOtyzMqjojmzYuIxK/wETaxN89c46CKmKU4MSFCVprHXRNyhREC2HK2FAnYNBUdu/ZwcXjx3G5HbSfPM/bHUU+u8VL68o2ai4FSKXm3/PBsRDhUJjN+0rfWxR0ipkkr7/j4jMPpCivLP1OZZ482WyYDStCLF1u5fj5GG5fgZBfxukxYDVL2KQUn/+STkPzx180/v+TYSA2FSgNRFOBa3YKG0ymqxobTObphruyxSVvRTmPnMvh8HiRs1myyQR2j+eGVeWZKuyVFeJVjXbu2rcWf+QEQ/Hrf/auJh2L2cl73cUFTTmq7QqPPbCdYye7eftijqRiJhm7tpndzLVcq0I8MJZgMG5gaiq6YDL83OuXKGoirfUu/vH1UZZXjPLEZ7df87v+OkAXDdyx0o3ZZOCl9tw8aTypmEKWbHSFJBAlXFaFltYGrO0BKMDDO6pobqnlz753mMMH26nyGqm2yTRVmtm/+w5OHjlLIpUnmiwSDfixWIzIisroyCRJ1c4P3glgkODC6EkGIhLZU1PowET6soWRplJlKzCVNYBkmuaAlShEQjGDLkgIBgteK9hMOfxZK4Ig4C/6ePPN42xcVYPPk2VZaz2KnKeyvo6nXjjJYGIBRZRlNqob2giNj3GpvYOhCOhGKyaLRnVtJa8fHeFY1zHymsTntnvoHIoRj0iEZBu/dWc55ZVl/OkPzyCYHWxYUnLG+/kvDuF1dFHZ3MKbp0OMZ20IgsCz7/RQ0AQwe2bjqtyc54t7a7HaHWhaqcrt9nr4/Se28Bc/PU/3SIqHdZ1sOsNPXzmPQZexur2kU2mO9RdYu7Qc3Wjkn9+e5OHNaX7vGwc+sbj5dYSqKOTSpeZgk8VyzSLElbt8Dq/3KkvkGyERCuIsK5+mOEzONu/dCtLx2Gyj240QmwqArmO4jtSajo7T5yMTj+Hw+j6WgoRWyCM5y1BT4QX/riZDiHYPulIAVUEwmtHy6XmuoL+OqC8zccf6Gl48MkG0MFf1FZQcAjAYL8WSXcrQ1FRDNCnDZJH1DUYefWA7z71yhpMXJ9HlDOsbLQyEc/z2V7Zz5mQHckEjLXoYHxjCW+ZFKGaZCotYLAbe6AKhc5TGMpFYTkDXIRDN0zmpwHSPjyAIuKQsRVUgR+k6dIsbAdCVIgZdRjU6MBhElvhUBiMqmmhGNTp599QEd6x08TuPLaerb5I9e7YRHh9jeCrL6+evpuKtqISdW5cQGjUw1tfLyc4ImsmFKOWoqq2mZzTBX//wMPGCie0tBlx2N29fzFIUjWyos3PPgXU8/eJpeiNQbi3w2Qe3ceZMF6eOnmXFymV8eLiLCwEJRbTwwokw1RfeY0T2zuYboiqzfZkNCyI7dm4gmRzEaNF59LM62gsq3cGlBPznKK+Et9+E4XEHXmcSh9vEy6/bMbscHNgzwvdfXEdz+QRPPF7gznviwMeTMpzB/1LJcC6dnuXtXp70GowmktEwonhzFZ2bHVAT4TAOj5dUNEomEaO6pZWJvh7qli2/qfPM4GR/monwCYaiwnXZ37qu01zvwe128F7HAIgS66uLrFtWwfOHJslhJZA18szLp/DHVK4VXHYxj8OkMZW/8SrsoQMr2DQZpm3FwtuURgkUXcXlslFhmaLC++uzPXdt6DhsZixWM+gZZroImi0xHvnMao6em+D0NN30QkCk+3tHKBpLFaK+AT8mUcNptzAaKbJ6RS2bsjrD/gSjw35OjkB6KAmajzePjeNPqGQ0C08fSQBGMBtRgIEYIMJ4GlAL3L3GSDCW40LAQFuFxpOf3c2rb5/lzNjcVYtKlt/93EpGx4K8ci7PwzsqaWpt4sThUxwbgnSuyP33biMRDhNNJjl1fhSToDAeyhFML8yRvzgYx+Hx0jGcoisokp+uGJ8dytLedwzdVoau6/iMOVYsbySWzNMTUdCVIuHAFIGRYZ7YX8uFzgkCkzrPvXqGzoDIeLzkXBhT7LODcFD1UmnO4lDypNXS56xpdlHZ2MRI56V5lUmby8XXHmzl0LEuXnr9FHu3txLNi+QTOSaVcspsCQwoGAxWKrx2fMYpvO7r9yf8r47Q2CiCKOIqK5tNYgVRpJjPz/57sTCaLTelthAN+HGXVxKd9M+6gYbGR285GfZUVBEL+DHbbsxR1FQVb3UN8enEORkJoxQL6Jo+63gnihLpeOya36ko56ddQL3zaBYLoZQIRxCvpQ4hgF7MIwgSmqai5dO/Nk3K14PZIOAr92IQ57j8Ri3LY1tsWFxefvRBCEEykNHt/NVP21FEM0hGRiaTDHT1YJMK9CcE7i7z0SIkiKaijA77GY+pvNMbRBDMvHsxjVFMIZgdfNgPoMxaNI9dZpDZGYQV1SLN1RbeOZ9AU4p8+6ubmPRP8dThxLzrPrDKyub1q/jH58+zosHIQ/dvpevsec6OyPRHjaxfVs6azStpP36GQX8W04lOCnKe8ajKTBHjclwcy7NqWQJ/tEBXV57JbOn64gUDf/GDQyjWchDsCJJAc62Tyiof71zoBIxkkwl62s+yst6C25Qkq5p49sWj+BMCmZzChdFexlKW2QJPQXIRLuaoteVniyaVdpV7D6zj4tkOevrGaGhVgVKT/713Z3EcPM2F7jKqqlLEkzbicjnRjAvJFMEoKRjEIna7SLktRIU3z+1ueftfKhku5HO4yspIRubre9+sJuStQtc0Mol4yQFPU6dlhm4uAbcJeR7cWsHFgSg9EUupInyDmBAEgWcPBhAFHWF6e9tqMVJRVY5B9IMGOiJdQXF2y2Yh3L+lghUrmvgf/3KUnFjaurzSnGMGLo8Ll+faPMJv/cb+2Wv7va9dLam2KM70rxgEQeS5Y1EaXApWyUQekPJxnnhyB5HJSdLpLIJqQJfMCII4mwgDyFhobmvFdylMX9RI1cUR7r57O53PHZ9OeK2l5E8y0BeFhQZDCzJttUY6J4ooghkjBTasXcPgoJ9L/gh2g8bpU52Ewike3FDN6Z4YwZwZDYkJf5hIvKRcMhWMYdRktu3eQn/oDGnNyQ9+cQ5FEy6rvJhgNMPlaigt7gJbV5bz5ukQF8IOzr8VRBBK8airRWotGT5zTxvBcJKukSR7N9byi0Nj/OWPT5LTS9ucuq7hq6olGQmyfOUS7BaRqtoa/r/f/Ygv37MUOZ3iw+75VRGzmuS3H99Fb+8ozx6LYygkOdZjZSRwgsGoyH/99hqyyQRyNovRbKa2tpJ+fzuqlkdQC3i1CH7JQr0hxL59B1i2LEQ6k2fVqiVs3tR2GyPk1xOiJGF3e2ZdLAFEUfxX0S6XDMaScYUkYbJamRoeRCkUb1qffmpkCEEQ8dXU4qtZnASku7yCRCiI9zKJP7vbSypSqtzquo6rrPy6utSpWBRfdS3RgP+GybAgCNelmBlcpUZrQRAX08z/a4MLUwbGnj2F0TI3Fn1ms5cV65dz6J2DmHSRIqW5SjHOLYzzmoHqhnqiGY3CZJ7n3+rkD755D0m5Z7bIMLvgzi9cQNI1lRUVKpGMRjhf+vyWGgfr17Zw+NJpfA6Rc+09BOJF7mg1k8kptPtLv04sJTM2PkVBEwhFswSGBqhpqGWZGqY/mudwR4Ke0eMMxw0IooORjgKlZGAuIbCQ56FtFXQORekKufneB3EEYY4u4pFyrG2W2L5tDz947gQP72vlUl+I54+GMAhBMJYWfUarDW95JdUOB1bzBMtWreC5V8+ypBJ2bmjh/SPdIMynodyzqYJ161r5yx8cJlsUmCwa+OFzxwmmIKsX+E/rITZagSDm8NSnSReM9I84EN6KoEoWSA1jMhq4c28am12ipyuHr9LEt34zzSeh/fArpSah6/osz+xW4C6vIJdO4/D6yCTixAKTpOMxkpEwscAkuXTqqvfk0ikS4YUthGcgZ7PTtojXR0VDI2W1dei6jsVqJ5NIUNV8cw0eFoPGsmUNlLtNiKrMHUsNs538ulpkcwM0OgtXvU+RrBTEuYrusUGV//HUOVKaDQs5fuvuSrY3Xt+go703yrsfXZrdzvk4EAThfylupa4W0ZUCNS6db31lL3esLg2+oqCTCIWITwU4sGMJD2+Zq9TomkqLu4BdzHNxEv7in98jnCjQaM/RUGbiwonTGEWV9TXqVWoijc48rY4kJn2uU29ts5XPPrCZZVWlBc+SSjNDnZ1cujRAa5nAow/vIpZWMJotbN28nPry6cHNYObFM1mODgs0OAt4XDY+PDHEPz59gsF46VzBvHXeFuRCKHObWNbWiM2gUWaWObDSjIVS9/qGGpVvf+0AsakAkXgOgwhOtwODKJATHbN8P9Fo5gdvj/L8GZn/9t2PONcxQTwcodJtRlOLlPsc3LWpEjMlNRQzMnmsvPPhJc50BtjfrPCfvrWbcrvOUMI0q6Odz2bwVtfMSng117kRPbVc6IsSFqt48kAdX3tiHwajkRffH+C5I2GmJq4v3/jrgnwms6DCxmJhc7lRCjI2l5vwxDixwCRyLkd0cmJBtQRVUYgFJlEKV49jM9B1ndhU4IbqPO7yCrzVNXira8gk4kiSAWeZ76bGHl3XkQxGrA4narFIxD9BeHwMbVrxJjYVIOKfuOp6DSYT3stMNDyVVRTzOXzTVeHgyBDxYOC6c5rJYr2uDvPN4lYdSX8Voet6SaZTEHjsQCvfeHQduly616KWJzA8iKDm+bdPbsEuzCn3lJnz1Njy5AQ7f/P0GU5c8GNRU+zdUMNoVwd9/WPsW27CIsxX3nBKedZVyrj0+NxrQobHH93GvnUluo9NyOEyKXz01ofIuTxPPLKRxoYKLk0U2LphCauWzBXmzk9KPHssiaoLbF5Vw/mLQ/zLi+d553zp/FndzEjSfF0nWouksXRZPRUeC8J0vtAwnR9IcoLvPL6BZY3ljI0FUDWwO+0YDSKqaEG+zHTr5IjO378yxN8+18Gbx8YJjI1TZtdBBwGNBw6swaGnWFlWoMZWui/n+qK8++EFvAaZf/fkBg6stjOcNJPVSwuHdFTGV7YXSV8JQEt9BqO7kqlkBWOZ5ezcJvPtb2aoqLJw4riJt85s4MTJT65++yv1ZEQmxtF17WPJzbjKyjFbrci5bEmGLR4jPZ3ILpgMp5LYXC6SkYV5WFBavYuStGiPe6VYxOHxYnU4FyXrNoM//uZG/s3XdpNLJznSV8BnUbhz7xrWtpQSK7uQ58G717Nl5dXNGiY1ja7ODdaCKIG5tAoWALPJhHQDmshg3MiJEUBc+Jr/5Hvtn0gV94+/ufFjq1f8svHIJjvfuKeWcELhvY8ucmm4xJcsmr0MDwyzdOMmMskk/tDcxFhllfnaF7azd7UbQZTYua6W3//qDtY1mlm2fj3JSIQ7t9Rz754VUMjOvk+Ts3zp/lU8uG8Zn9kyN7iGQ0mOHjxNnz+PUZepd6lU1Vbx5a/cT16WeeWtds4Pp+mPSvzNjw5zZvjq7muHWaCi3MXjT9yNrLDgQKxrKpqcRitOTxZqAbOW5tSQwp99/yiBvJW2Ohv7dq+m1luKOYOoEw34GQkVODwk0BEy8uc/60LQNdZ5E2i5xKzsk2C0Ihot5CQX9WVmzFYzgiTy9JEERzoiHLkQYkWtiYfv3cjKOjOCZOTkKCAaWbemgakJP7nLvtqffK+dH7/axesvvoN1ulnrvr0r2L/cxJOPrOMrd9axauOaWde5jct9bKiT8Jb/+m8xp6JRVKVIZOLW5eKsDgcOr49ULDqrJBEcHUZVNYqFq6W8EqEpvNU1JCPXLkJEJ/24K0r0h8VClAw4fL6btksWBGG6uVrCbLMhiALuigoyidK2tq5reKtrSMWi896Xz2SuKpI4vD7EGVqIIEw/P9dO6B0eL77q2lumdfyvjJXlRf7oq2upseU5dnGKtw91galUEOoZyyCKElv27aHzQhcFdW4c+8zOWr7+2AYEOUmV28jv/+ad7F3lYP2WtWQyeTavqGD/Haup985Pn3aucPLZh3fwlXuX4KA0jhcxcPJoO8cvjKHrOnV2GafDwj2P3Me+jZW88OYF3jk1ASYH//SLi/z88NULbCMqPqeBex++i6VNZSgLqF3ouo5ayM0m+7quY1WTxIpm/uJHp/ioO4fHVOSufWtZ2+oBQEIlEQqRzmR45liSuODlr3/ex+nhPFuqM9iVOEKhdL6ZfKEo2ajymrFazViMAmf9Ej9/b4h3jw9TLKp84ZGt7NtQSvxHkiaO9OZ48M7lZGJh4sn5Ekomq8jgpbfIyEcBWLvRwt7VF3no7jAPbW9n734D3vLSs7psaYGlFQMsbS0uWp72ZvErRZMQRBE5k0G8BfH1K+HweIkFJhEQqG5eQmh0ZJbHdTl0HZLh8HUHI01VySQSOBc4JpOIU8jlkIzGWetPl6+MdCyKu+LWtHvd5RUgjROUBf7p6aPEchJgJiM4+P4zx6lx6Xxtbx3PH/KT1a24pRzfeXILx0/38VHv1fq9Oaxc6BhmSWMFJ4eCqOLNVSFsgszmpQ7ODaZIqfPfK2ezqErxlrqjf52QyxdJpzIokpnD/QqX87Lf7gbBPshwIENnqLTQMGg5EvEkk8NDWMTSImZiMoZF7OVQT5qhyYMc2LUGk8XC+++fZnmNnd5wEUQjotlGb0cvPo+V4fEEYEPMx9iyqZzmpS0MTpzA6/Oya/9G2g8eYjKUJJAxMpYFKKlJRIp2WnwFltSY+KgjgcOgEFcsdIYkOD5IU0OKnGYAAVZXKtT4zIwHMwxEBA6sMNDa0kIwnOL50znuWetg07pm/vanpxBEkbYqhSoHdJw+y1QwAcYK2v0i0cwQ65Z6uNtV5N0eEExW7lglsXL9apafPkPB6OSl9vkDqmSxERob5aEd9XQMxTgxWpqgQhkZ7bWzdE8WQDDjMcl4LSrhYIjekRTRQmn7r95RoLbMzMqGRhpaWxjr7sRdXkFZWTmbzSJmmw3jFVW5PbtWMzEW4C//5QhrWzw8cO+mTyRmPg0QRAE5u7De9c3CXV5BLDCJwVTSJHb6yogtkMwazaVqqGS8tlOnwWgkHgwsWEzQVHU2Sb7c4MjpK0MtFrC7PTd97TO8cl3XEQ1GMonEbGJvMlvw9/didTqJ+Cdm55F0PIbtOoYfBqMJpVgkn05jddxcz4SmqkQDkyzxFBiMz79Puq5jKiYpGG+s+/zrjKIKiWgCVYOeyHQj8PTtuBixI12YpKoqx9sdCkgWUItYyBMKaFgNOk6rRDhZpON8NxeHk/RPnWRDnU7r8jbOHT+DoCrYxVJvBkBgKsFEXw/heJacZkLXCmxs0Fi5opFcYQh5MMKXv3Q3F48dJ5sv0jkUx5+f+93Tmg2rkOeeVRYuDCVIZlQUXSQv2nn+wxH2JhX8ERkojWd7VvsYHA4wlTXis4vcsboMb3Ut3//FRRwW+MYX9/DKm+30+cFtKrBrTTm9Fy7R1z2GrldRMPt46cgEdW6Rr++r5oVDflImK23eFPfctZUV/YNUNTbx3Z+fJ6XN7SpLJisgUOU28OROB88ekQnIErrJy1O/OEkqrwMWBE1mQ5OZ4f4RLDY77eM6gqFE19u6zEGot47lm+5jfOAEiWAfJjNs3axTLBiwe+bHdEOzkYZmmR//2EomZ+YbX01gsX18C+bL8SuVDM9QDBbzgGuaBrp+TT6WyWLFVG2d3m6bxOnzLWiTvFCCfCUqG5uu+Tc5ly1xviYn5r1+syv9GfWJGe/6P/pSK/l0inPdAQ4NlhIAQRCYyFppqABfuQdJ9IMKeVWgv2+cUFzmWj+5xWrFarfO6scCeAx5tq/0cKI7Qbx47WpKS6WRO/euIZNr5+z4fKWJVCyKzeValAPUjfCryiO2i3lEo4cPzkcwagWKumleDHudZmRNYCik0uJWyeULPLR3KYW8zOBEmni61GiworWK5csbebs9Sk/MjLvDTzKdw+uwcM/u1fzopXP4s6UB4oMeBbclyVjaSpkY40ufWUJVUzMXjp/m3t3L6B3w886HHbQPmZEpgmBBV4tsaTYSjBcYS5loa3CyfesKjMXjrF63hnePDVLpNiBJHt44n0EQp1ftjW5WtDWwNpvh1LkhVL3UrJpIZQGBcCRBX98oaxos3HvPVob7B6itryM6FeDbTyzlb5+7QEG0MxCV2etxIQppdD3HEk8RfyCP1T5MXpVI5kqc5RkIgsDLJ8N8cVcZTrcLiykFlLbzm8tEfC4jxYkiSLBjhZftW5czfOkS5R4zekBFECU2L/exfv1S3n39IJlcga6hBF9Ys47x7i4qGptIhMMLKswoioKMBbk4Jxbf2zvG8ESU/TtXYLLcng7nXzYcHi+627PopEpVlOs6sM2oJaRjUbKJxIK84cX0cFxPSz6XTmH3eGfVKmZgtlrhBrzby6HrOvGpADaXG7OtlAyExkYwmEzzLKkdXh9KsYjF7iB9WXVYU5WSi9w1ih6iKGKx25Fzc7s6xYJMIhRCEITrzj0zVfada4oMHo7P+9vKCoUvfmYPP37hFMPJX484vFnomkq528Sxi5NE0iogg2HuXoh6AbfXSd9EGo8Faj0KNqPKfXfv5LXXjyFZHeRUibZqK2s2rGRgMsc5v4BRKjAeOU8gmuMLD23hQs8U73aWFugXgkYyaoKRqIYqmvncGplVW3YwOTrK8iYvjTUuXn71GMGMhD8jw7TEZqOzQIXbxOkRhUqPwK4dK7EK7VSWu0jl4WxvmB1rlvDy0UkSSinxrnZLbNrURmOVjVRG5mj7BEpRIRaKoGiQzir0dw+Qy2b4t1/bwaX2S2zYtJLhjot8+ckHeO7lU3SFRfxZK7VlGmUVPiTRj0uUMRl0RgZHCU4l0I0hFG3+s98RMuJpH2TlEh8GuxOBIAAug8yyBg+neuIANHkFPvvAJvo7OjEaDNiYIIeJpjKJO/euYbBjlMBwB7I8TKX98ySjPRQ0FburmUzsZezeq/MxuWBE1qxoamkXPhUvcOykhdUr89Q1XHvxvBgsKhkWBOF+4K8otb//s67r/9c1jvs88DywVdf10x/ryq59LWiqSjw0hdNXds0tr+DIEAaTebaDOREKkoxGqKhvxGK3o2ka8WAAm9P9iXrBu8sriQb82D1XD/DB0WFEyYDT65sdbK+FTDKOp7J6zrte15GMJowGAzMJwAyODakc672IME2DkLHw81Nprvdzv9dd5L3OMQTD3GRR5zOyY9tK/KEzxBegR1aYc8iKQOekyI9fOMFIBBDnB+TMhOBcQGfzXwOfhtit9Ujs3L4SJXeSzZvW8spbp+lOzm2xL6m2cseOVfT3v8uTj+wlFgoS9k9idbl4/9QorY0+aowZ2ntl/KE0ii7gsyocHbEgKiK/v3spY0OjBNLiLPEppVpIZUqVEFUTKObz9J2/wPGuCF9esZTqWoWnDidZXSmxrNHOaycjmMQiD969hc6OIcZOJvngYoLw1GE+8/AeOk6fw0QBj92CwWjgC9stDE8mOTMu8dqpCIfOTnDv5kq2b17K3z93gTNDMg4TaNkCOzetJBVP4HZZOH/qPNFgEC2bZjyUwVVeRNGn9SaNZv7l7fGSnp9k4O6tdTicNv78mR5E08K7FarRxdPHMuhqF4LROkvbWNXiYfWqZhzSeV69mKd7IEUyGsHndbBjz1YG/e8xmHTw3rkwZ7pDjKWdCIEC5WYDp8/2UmZSSMejpa2hBdDUUs9/+LKLgqLx2jvnWdtWyeH2CcbSZhqrJlix6uM3h30aYnf6/EDJZMhgMFxzURvxT2AwGtF1HU9lFdlUkkQ4hNFknl1QpKJRdPQFdXdvF+xuD8lIeEGebTw4haapiKJ0Q/OP2NQk3qqaafWIufHZYDRdtVXrqawik4jP8oEBKhubr3t+b3UNcjY7r1KdS6dxV1SQikYWfE82mSjx26tqiE8FeO14AK5wKk3lNQb7R8kUPpnt5MXglx27YjHLnu2bGekf5K5dy+i+2M3bvYXZ3gOnVGDf7q20n+9HVXW2bV3BxeNHCU1MkMgUmeiYotmlMz5V4NDRTgaDMhUmlYGQhCI62LfUgcFspmtgCph+HkRjSa1nOncUJCPjPd0cuTjF+hU1rFq3gtdPBFEFkS/ucHG8I8RYyszWVeWsWtVC1/cOMZyw80//8i5PPLqFZDzOxPgEZRaB+oYa1tdNUV5p56XjEboCBv7mh4dYUQ2bNyzD5XHyk8MJllZmyWRkdq0tZ+mKVoaGJ+k638H4+BQm/TjhaIq8aCOWncsZTo3Cqf7zCGYHe5YZuXPvDn7y85MMxK0wHIcreoQEQeDIuIlDAyFEKTrblF/rldixbSVVzi7ePJvAHylw6MPTBENxPv/Fu9k+maZ9OEdPyMCPf36CRx8KYXHGcORU4qFz5LITiIIdBAlL2cKL769/NY2qJDhzxoDRpKBrEmcGV5DL91HXsLDL4GIh3Ih/IQiCBPQC9wDjwCngy7qud15xnBN4DTABf7CYwG5eu17/4xfeWNSFJqMRivn8rFSNt7qWWMB/VWdvcHQEUZIo5POYrVYcXh9yLkt00k95bR2ZZIKqphaikxOzepELJcNKsUg8OIUoiZ9YshweH8PmdqNr2g237krNIhpWh3N2S60o5/k/f3TpugT6jwW1SLW9SCBjBKlUcbSLeZbXWbnUH+b3ntjI2OAYPz9/40H3k+L8/lZb3Rld17cs9LdPKnbNNcv0mq//5aKuT9d1mh05LKJCSjFw/9Yqqpsa+ZufnCCplxYroiZTayuwoc1HJh6hob4SuaBS01BHaHgAX00NOvD2iQl6I0b2Lzexd/cq/unpo8QTee7eWkM0kePIcCkTtot5ti130d4bJ67a0DUVhxojJXoQJQNWPQ35DGvaylnVYKeqsZG/e6Ydi0mk0lpkPG0mqZQWmYJaoLlMwCxpPP7YDg6+fxxVl1i7uom+4RBvd8zx0Fs8Bao9Zo4NFHh8TzltbU2M9vXRPRjGYhTZf88uzp04S+uyZtLJOB+0l5QxroVqq4wkXaGFDGyqU3HZTXzQlUeQrn6/rmuYkbl7hYHapka+99ogT+yvYWlbEy888xbeci+b1rdw7Mwwp/xXVxOaXTJffng9z71+nv6Y+bqxe/R4F+905BFSfg5srEU3mNi1rW1RvQC/jNi9mTFXzmbJJOOlxjFFwWA0kU3GrxpzE6EgqqqQTSZwlVWgqSo2l4vw+Di6plJW30gxn8fmcpGKRhBEEZvLtWAhIzYVKMXrIlw9bwUR/wTeqmpiU4Eb7vrNJJ6CIM7aNGuahlKQP5Frm0EiFMRgMs3OCUqhQDISwmAyU5DzpYJQUaGisemXtkM28qef+VSPux6jTKNLZSCY5571XtZt28jr75zj9LRkpK7rVFqyNHigocqBoKkYJJ2VGzfS096Ow1FysGw/28m7A2aqzFl+5yu7OHy0k486k6ythmVLKnn5eBAZC7qmsrVRJJkt0BstxbVFSyEXdHSLC1GVcepxTGYrd21ws2ztWl596zQdkxptZRqxjMp4zjG78Kyy5silM/zeb9zBSN8gU0kFIworVrXyDy90zja3zY71fUmaKs089sAmAsNDnOsK4HI7aFtSiaapJbMVRWVoPMbbPQv3egBYydNcYaQroM4zKamyyGxfXcbB82HiysKcZV2R2VJdYP++dTz7VjcVXiuP3LeB44dOE0rIbFlTSzya4Nn2Ur7wn78zFw65RBGxcB/Z9Djelt7r/raZRI6/+uEKtHyadUsn8ZSZWNFWpLLmxmPud1r+92vG7WIa6LYB/bquD+q6XgB+Bjy6wHH/b+BPgQWMZj8+Sm5vtSSCU5gsVmJTkwtyymZkfBxuN57KKsxWK0pBpnn1WoJjI7Me9RaHs3SOa3jWZxJxPIu0db4S4fGxed3G14KzrJzQ2Ci5dBo5m73usd6qanzVtfO4ZUazZV5QV1vzfH2fjzrHbfKXl4wE8rbZRBhgwxInD9+7gcZqB5PjU7StXYlTuD2cwk8Av/TYNSlJvvbFHWxe14AoinT0BznTPkBWm7unmmgmmJWornBittn4l4/ivHUqwI+eP4Kvtg7JYGKgb4xwqrSa7xmJ8eH7J1jiUfh3v7WbTK44mwgDNJYZ2btrNZ/dWYGVHOtq4T/+zt0s9ZW29JdUWfj3376T1jJw+bwMnDtDIi/yma2V7NnSiM+YRVRLt0KXTAzFjQxGdN56/yJen4d9+zfx05dOYjHobKqbi/GhuIljwzpIRo5eDHLq2FkUXeK8X+SjYQM/+vkJProQpa+zB5vDic8yl0hvqVP50g4nBi2PSZepNGWZzJquSoQB2pq8bFzbjKjOj3NdUzHkQvzGHi87l1p4rUPnn18bRDdaOXh+isFLHTz82H7OdkxisthY2rSwS5ecyzE5McXSSmne95vBy68c4Xs/fpd8LseGtY3UG8MoBgd2p529u1ffVFPsdfBLj91MsuT2lkunZikAqnL1/VCKRTwVVVjsTqxOJ57KKtLxGLVLl6ELAslwCJPVOlukkLNZDNfgA+u6hqeqhkw8flPXOqMIdCNVH19NLeO93QiCQCIUvO6xNldp13AmEYYSteHyRFjOZglPjDM1MnRT13s9uCsq5xVHUtEIvpo61GKRXCqJr7r2Oi13nwr80mN37zofjz26C5cZRsJ52tt7GA/PjReCIBCS7XicVirKnLzRnuS1s2n+7O/ewGC20LBiJT0XLjCVLs2v0bzIB+8eY3IyxDfvrmL/ruU8f9CPPF2Vl5QMd+9bxd1b6lhRXsRGhj98cjMPbCvlEBZJ5VtP7OLBbeW0rl5Nz+njxJM5ti11sn9bM6ub7BgL8dnrm8pZSYhlvPzORYb9SfbcsZ5IBg4eOs+DW8uRtNJ3yWgWPugqEFcs9E3KHDrYTjYrE8mJvNOl8Oy7gzz33hAdPZPIcpFyt6VkugJUWPJ8bZ+PRpeMrqlUW7IUNKFk/HSFW19NmYkN65dS5rg6ZRQLKXY2qfzWPbV0hAz8j59eZDxjoXs8x9mTF1i3oY2saiIaz7J0zSrc0tX5gpwrkE+HyKcLJMdWkkvOH2f6uvL83d9oDPQWsLut7F7ZiYBGTnGwdx+LSoRvhMUkw3XAZRL8jE+/NgtBEDYBDbquv3ajkwmC8G1BEE4LgnA6fY2toIUgGYxEJ/24yitweH34qmtLjWRXwFVWhqoUcZVXzHLXzFYb0YCfhhWrqJhuqLA5XaVzXCPhdZdXkIpFb0nSRjRIOH1lC6pTXA6z1Yrd7cHmcqEUry0jdD388Tc38h8/14TXmMNiFGhorsNqXBy/zybkqTJfPwm/EmcHUvz8tTMMRuDcUIb28wNk1Ruzba6lNDEwMM4PnzvO0NDEAu/62LhtsXt53KrZxPUOnYeCwcnzr57ho3NT3Lejjj2719A/6OfLuz1sKk+ga6WHviDaUBSN1WuW0+zI8YffvIvm5lpGRwIUZJkPe4tEC9Mc3XonW7euwSBCbGqKYGS+NFN3QOOj946BoaSDGUoUOXe2k9j0T53Jq4T9fnJ5FTmbo7xxCYIkcfriCJUNTdy7awmf2zm3jW1GZv8aD2OhLG+ejfHdnx0nK7hpXdpIuWfhCtlYyszx3gzne0PkNQlEI0NxE3GxjFd6LExOxblj13oqhBBmZNwuM7W1FRgEjb1rXHznq7tYX5Gm2X31c3Hs3DhDvX1U2ufTg7Y3i/zelzZgsZiQDBKCwQTG0vWVOSSyqsTPXjpFxlrHmfNDdI/E573fTJ4NFVm+/sUdvHtkgJVrltNS674qds/2JxlNmnnt9RO89PZFnvjsTv7gs21sur2aw59I7N7MmGt1OEv2wFYbBqOR8voGKhoarzrOV1NLIhyirLZuttrr8pUTDfjxVFRS2dhUsloXBCobm6hsbLomB9lstREPBvBcloAuBkqxUKId5K4/ns0oQ3gqq1CKt76tKudy0xJxGWxO5zWLKleiWJCJBvzIuasdwq4FV3kF0ckJDCYz3mmq3I00h68HXSmgJIIoyesvBj4Gfunj7vHOCC++0U5TnZdHHtrF4EiE/eu8PLYGDHJ89rhMUaRuSSt1XgPf+dJGHrtnFef74iVlm7iRi1Ol37XMBnfs2UyZ24KuaQwPj6OJcwt1zeTiuRePk5dlBHRkzcD58/2MTk6rBmkiwckpREni+EdHWLFtF0VN5NJAhGy+wKbNK/n2o214DHNxsalOw24WOToi8v1njnF2pEh1bQVNjVVI+lyvwgyyuoUPunOc6wnNFk5CsoVwwcahUQvnBxO0rV/DmmodnzGLxQD1jTXYjSXJzN/5ym7uaJXYWKcjqPPH3Y7RNKePnMRjLMyjCPlMOf7oG1updElYLObSc20pFexsZrDabRw83ElfUOP8UJr28wNklLkCniIrTHbr2I2fQyWJzWPA7VtFIT9/fDh0xExcWs0H7yg89bSVhmYTv/uNSR57+Obyl+vhYzfQCSXhwv8BfGMxx+u6/l3gu1Daslvs51ye+Mq5HNlEHE3XEYRSZcJgMCCIEt6q6qu2sOxuzy11EHtvckCegdFkIZ/NLJisXwmnrwylIN/S9c2gIOf51ufX82c/PM3/57uHUE3uBS2Xr8S9m8pZu3YJf/GDI6SFhbuZTeRpqzbRPVkyasjpFi4FANFMTxh6wjKIZprcRdrqnXx4KUFRuH7TRjKeJJlMl/iWH3QTls00jsVoaVmcmP3tws3E7uVxa65Ztui4FQSRrrAIGHnrhB+HYZTVLR60bIrd25bRMBokmi6QTOU535VG7I8SUyy0t/czES7QMaZj6x4mJ8x1sycyRSYmpjg+KvLR0PisXNAMDIJKIqsRScoUNAGXVaSlqZqTPSkownDSzD++E0YoyjzhLhCOhvnMRhtlvmr+/gfvsanNS7YoMLNW9llVdmxbQV6+xME+hWwekOCvn7mAz6ZRZTEylZ9bNFrI0+gV2LbMh8vtJnNkgKHs/EpDz2iCWCzNN5/cw4WOUV47neB8zxmqXFa6R5LkksfZvq6Ooqzyg8PpecnT2gYLNdXl3AH8/OLcOVNZhSn/JJm0TCycZplTQpPM9MdMNFQ5aF3ayBtnIggGIx/0qoABXdfY2SQg57M0lFuprS1jyj9FQbLz989fQNEluExdZXJ8ipZKE4FwhN5JCzm1iPD2OR66e/1iQ+K24FZj92bG3MspWQCxwORsdXf6zAjT3Nsrx8qF7OsXg1sdq+3ukk2zq+zGY66vppZEKIiv5tbpb5lEbNYMw2Ay4yq/ttnF5UhFIzc00dA0jVhgEqPZjKusHMlgWNDoI5tMcN9aCxcHEviz1x9zdV1DTUcRTTaUdARBMlJiM/zr419j3A3mLARzJV3f/OuncBpVHBYRsyDxe19cw6lT3eTzebJpCwePdOBPCpw5N0Q6r3ApbCb83hBTGQNI07tFCoyN+vEn4fCbE+hm57Rd/fR1aipFVSeZ00nldYyCRktTFemcH0JQFC386HAKXSmwvcnKaP8gdknhC49t4BdvXcBjG6OttRZZmfneGptWVGGxWTgxNMBY2gISvHE2ycH2AI0VDvqn1YNmPn9ZmUq9vcDq1a2MjkzwSvf8ezIR12hv72NVk5OHV7Xx5/9ykj/7p49obfASSeU5fLwThxk2rKkjlBgquZROo9FZoLllCZXlSfojERJaaT4qKAKD3X1YzEY6LvbS5NIwmAX6QgJeq8CKVa10DsVQxZIZVF80D4KFBmeB2HAryXCQ8uqtpGMRkPJYfAMkMj24K+diM50s0lJfINbRS1qwMxWuIfO+zJ37ZHyVt08DYjGV4Qmg4bL/rp9+bQZOYA3woSAIw8AO4GVBEBbkZdwOZBPxkoh6PIanoopkJIy7shpd18ilU0QD/hsaZdwORAP+BT/L6fPdMBFWFYVowH/LUj+XQ1M1srEo/49v7+b/9XsHFt35fX4gynsHL5HWrj2Qrm208vmHNrOy5vqdmmsbrOzYthyfMYtDyGDQF975+pPvtfPff3CMf3p9lBOn+4gJZayp1rlj+7JFXfNN4lMVu+NpM63NlWzcsZlsPk8+m0XIRWmtdfDYY/tY1lSJ02FBVkROdke4a1Mlqyo1dq0px4xMtVXmt++uIJFV+dnRJLLkAJONRqdMi2tuC/CBrWXsWF/PyuWNWEQVTdPJ5fLzesH2tIo8vsuLx2XB7bBSkBXkvEywYKUvoNA+OlcZUDSdH/70A4KhOBtqVYx6llZvkaIu8fm7lvKle1rRlbkq29alTh4+0IbVYUdDL1WGr8A5v8S7XTLHTg3QORRHMBi5d2czX/v8NoqZJG6nidqWVvyR7Lx4FlWZqkoP6BpnOibYVKex1Fu61q6wEZPVwepNa1jbWs4XH93BZ/YuwaomeeNsgr95pp28MOcw5TPleWKblVVNNja2lbN2yzq6Owf4/tsTqKqK11TEIM7dtP/yNx/xD68M0B9UsLh85HUz1U7oidvpHVi83u0i8amK3XQsit3jQVUVJIOEZDSSSSbxVFSSTSZmqWGflAboDLLJBBH/BKGx0Xmvm61WfNW1N6SoJMIh4sEpPJVVH0t2zGAyEwtMYrJYsTldi+YQz+xSGq/REAoQDwbw1dTecLcwEQmzfesK1jSYMWp5nOK1q2RqKoLkKKOYCGH01ZWUlkyfGO/5UxO7Wd1KMqdx32f2MjI4jCQZiAf8rGwpY/fOVTz2yG7kZByf08Chnjz1lQ52NhTYtqqCJi8ISp4v7XCyvsnCTw7FGYybweLCKclsqCv1ewCsqNB49M42Vq5upcJVmivzeRlVm3seGl1FvnFnJU0eHW+5DwSBTCpLXrcwnjJy5GJo1tDKLhZ4/3g/L7x1kTvXOrHoWZqceewmnS0ryvnKZ7fN2zWrMOf5yue2U+G1omkq+QVCJ5S38PLZNJfG8hw80k1RtLJmaTlfemQLy2qs5FNplq9eiiwXGIvPfzbWNLkQgOBUFLsZdi2RENQCac3CYFBh5Ya1NFbZeeJL+7lzexOrG8z0xYz8+fcOcnFy7ly6WuShtUa2N0nIKSfL1j9CdGoY1Xgai2+S2IQBXZuf4L78uoPjA+tpbiySNS+jXL9ARF/BmYvXdri9FSwmrT4FLBMEoYVSQD8BPDnzR13XE8DsslgQhA+B/+2TUpOAEt83GvDjra5hoq+HxhWr8Pf1UFZbRy6dml15f9LQVA1PZdV1xeGvhUQ4iK+6lsDwAPlsBqPJcsu20AtJPy0GQ3ETQ3HtKn7Q5egYzaG/3U5PQMaoC7RVG+kNFK+q/ibSMvFgACNFfu/x7fT0jvPS2WsMzjpouQT7d61j2VSKtatXzhoa3GZ86mL3bNckyWiElsYqJIOBZZu2cObYKYKRLLKis2//NnrHjmI1ibQuayKVSLFhwzJOdBxHEgRErYCXGENaOYIooes69+9swO6wlUwqjGbS0RgDcZVDb/STM/iwmhUKhSK54tzAXOaxUttYSTIcpmc4wvmAAdGkU+WELz+6kf6ufk71ZxgL5fnWV7YzMjyB0ShRWVWO+eAF7n9wG8c+Ok4qHMLpdmMVcuSnLaAvDKeQM93s2b2Ws+09TOYXHrQMgsbxnpLDkkXIcfC8zLneMI31FaxZu4xjR9o50Z/n8m75WpdOfdtyLp29wGjOyZf3r2FkeIL+Iwl0tcihEz3caxYZDSQZDp5nKq6Qk5yUWwp4rAb6Y3PSjGZJp2lJE6l4nHwmzflTF9n3wF3EXj7KHZsbcZdX0N09wgftU0SLVkRRxEeMKUXnc3etJ5XKUVbmpH84yNpVzbc7VD5VsWv3eIn4JxAlEU3TMVlK8mKpWBRXWTmaqiIaDCjFwk2bWtwMFEXB7vYs2uDoSqhKEZvTzXhvFxa785bHzltVw1hM5dtTUUXEP4HRVFKtiE76MZhMVxVYjCYT0YCfvKJx/2Yfq1c18Vc/OTW7i3Q5BIMJNR1BsjpRU1FEqxPRcvVxtwmfqtgdiSh88N5xFN2Kw+PF7vFw7shxLCmZ02f7ufv+Ozh6opupizGaGitRcyk2rF9KNHGRsWgGs6TiMsiIsoxmLo1lG5Y4uGvfWlIvnGQgBoqcZ2oqzs/fvMBEsRy3CUAnky/JYgLYTdC4pJGozchwVzedYRNdb/kRJTNf3+fDZhI41zPFsSGd/Zt9bNnUxocfnGHf7tXEI4d55OEdXDrfhaRkSxQkqwTTTMxQ3sjLb52lucKBYLLzXlceFppT1SIT4TydAXBJeTrHDRjePc9EMMnvfm0/F89e5OKYjHCZDJ2u61TV1WCx23m/M8+dWxvYsrmNrpHDxFQTHX1hmsvOUCwoHDx0jnQ6R6dfwAg0VzvomypQmDYA1zWVqmof+USU8roGBi5+QN3SraQSDpSkit1SgctZwXjX05TVC1icEg2ePKo8yq7tOVqmOmlbZqCj8yJNTSql3svbgxsmw7quK4Ig/AHwFiWZlO/rut4hCML/AZzWdf3l23Y1i4TV4ZgVQdcUhXQ8ht3jmdaDtBMN+LE6bn7VkEunUZWSO9xi4Kupnd32ulnYXR6iAT/FfIHy2oar3ItuhGQ0gtXhQBQlBFGcczUCBFXmM5vdTEWznBydX/zXdZ27losYDSJvXircUIkij4WzYwAWNtTpPPrAJl58o53zV6w1jg8W6QsMEci7OHthmMlwlivDy6TneWhrOT0jRTpDRr77VgBdKXKhN4jdLPL453bd1D24ET6NsbuipZy9u1fz8ksf0egVkeUiZ0ZhWZOByXCarqePMpE2gSDyZ3//JnnJxQeXDuG0mgjHc4iSgQceuRP34XN81F/q+H396BhmJUW9y4Q/lmfbzp1M+oPkOsfQRRWDJOD2ONlYPULzkkqe/2icl07laeiaxGwQUEULf/TkCk6d6uHUkMY7b53k/gd3UWSQ0cAYb35wiVROIZTSMIoTqLqA9MEFqlwOBKPEmd4I+cusOzMFODehc/rp8yhI3LPGSCGbYjKmYjCZGZzKIRvcfH5XOR6vh8jUFDWN9fzVsx2UKxL3LCvjtbfPcilsRZDmEmGbkGP3mnLeeeso7eMCmtnD935+BlkRAAvbWozcd+BevvvjD5lSZyx3S7zpA6vsVNeU8dPXu4hSSmQmc1b++49O47BKWMUiHpuE2N7LRFzjTIefMleYXF7m33z9Dl595TArWspYtnYPP/75cb7/ziRqNkG5U2LHmsrbriv8aYtdQRBmE0c5lyMVCSMIc1QyUZLQNe2mE2FNVUmEgrP66TeCy1dGOh67ZcMidJ3wxBgVDU2kojc35uYzGTRVwep0TatrzK9Ch8fHEEQRq9OJzTl//olOToAglCgVN0ikRUmavdexwGRJQSl4tbalr6aO7z59jGhOYmllgnxhEFkzwhVD+vZGDZ+7ktfbk7NJjpIMohRyCCYr0m1Oij9tsVthhwN37eDE8Ut0XOqlsaGSUM5AOCpjN1v43s+OEclLqAY7f/9sO5oucKj7MAjgtRmYjMisXtrE1yuzPHtokoxup30wTSJ5gnwqgUl3srS5ghXrV/D+uTCCWkASSmOuVxrit/Y3cfrSJOdDVv7qe++xrNFH52CC7zy6nqB/ihP9eQ6eC7BrjY8792/gQv/7tHfJxJJ5TvVmGQkfZzQCpvfOIxazbN+ylN6BKQajlz8vAr1jac4MyUjEWVpjZW2LiTMXxqipr+Vif5gMdjY3Sdx/504Ovn+CA/fu4YfPHePEQI6HNtVy+OBZjg1pyMx/hvcvhfHxAGcO5smbyvjwQpTzfceIKna8xizf+dZejhzt4GCfgGAoGW4ArKvMsm9LIxWd43w43V8qGi384PVhRK3AN8suYnKKxMLnEQxJJEOBbDRNNjNAVdVjxPyXiMg6e/dsY330Eq6GLiprVX72jAODpLJ91+2l+SyKcKHr+uvA61e89l+ucez+j39Zi8eVDXCSwXDLUmglYwgXmUR8UdQFURQXxQteCGabDbPNhru8knQ8htlW2j6z2B1XDaSXIxaYpCDnsDqchCfGMRpNKMUCVc1LZicTSVdoaa4GYQpGr2zU0Kkqd2I2m+DCJNyELFu3v4D09jm6/SUXnMtRFC0E8uAwZvjwUhJlARc7s6TR1lZPPJWnM1QiR+lqkWBGxJa79WaW6+HTErseQ5a8InBpWKZQvMjFkBmDzcKGtjaaOiZ56N6NnD7Ty2vnMggiuMQsv/tbBzh2up+u0SS//eWdHD/ZzXsnhtmzSWHtyjoiuUku+FViaYWv37ucioZG3n75PX763GFkXeIPH9/I+UsjfNinsXwiQGtLJZUNtdS5R+lNWRib5vk2OGWyqQwb1zaR1qY4Na4z+rPjeMwa//fv7OO5V07TFzXgFjOEZCuCZODooIqgZBDQqXSJrKkxcHFSBUHkS3uqcLsd/N1LAwiCRIXLQOOGDcSmShP6Q2VlvPr2ecp8tQz0DVFT6SYRnEIXTThMKkuXt3C+L4JwRVOSWYLmJfWMBrPkpvvpg/m5JDycLNDdPUJOsF+VWCWyKisrq5GMg3BZqOlmFykNdq00sazJw89eu8Q9u5fSOxLjtQ6dKpuOvb0P0WCkvKqMi+c6CaVKn60rRaJFB+HY7WviuByflti9EmarFXN9w7zXZtw1bxaxqRIlYCGZzGthscWKheCrqcNXU9I7dpWVE54YRzIYrtsfkknEkXNZ0vE45bV1TA72Y3d7EERxfmIrCCUpzwUc+2Z2EW+26OGurCpVhhegf4iiyFTehkHPMxYu0BWSQbp6MVJX5aSurgLpbBRtZtzWQbJ70PLpq46/Hfg0xK5Jz+MwqoSyRt758CIDExmyeYFddy4nkpNYYTPS2FzHn/7zEVRzyUTl0TsaqK4u4+9e6OI37qqnuraCv/3xEZxGhfIyJw9uq+bZY3EyWFhSXuSzn7mHrvbznOkcpWs4xpYVPpqbq/mnl3s5dKyX9a2V1DQ20BpLciGskzJUctYPkslNNp2hutLFAZeLp48kCB4L4Tg2wtc/t5mJiRAvteexGiT8CR3dZOfkiI6umTg93IVgNLG+yUrnWJ6sbmZLk5EH79nCD549znjGhs8JNeUunnx8P1PDg6ysqWYoVKTKY2Ssrx+zQS+5PKoyom5kSXM1/skw8tDVsVvhc+D1uXjt4iCCsdSol82WNOxzikhv7zihlDqPQw2l8dhTUQWGqfm/t9GKihWDIY7dfAfJ5DkkLEA9nuYzCIJAJmqhqExRVrWH0Fg3BkfJDl4pagQTXgyijK4nbqvD4g11hj9J3Izm5b8GZjSK3eXl8yxYNa3UmXl59fV2Y6YCMPP/10J0cgJPZTVjPV3omo7FYUfXdKpb5pLhP/leOwY1i6pL6IarB0dByQM6uuHGnLEmd4GtK8p5+3SQpHptnhuAVcvwh1/dTFf3KC9fgyJhVtPImOZRM/7No00YjQYikQSZdBqLzU55uQe358bV/etptX5SuBm9SwCTmubf/8YWBgb8PH9izhVL0gq0uGU8TjOpTJGJtER6+h5byPPw9gq6hmN0TWrsbrMxMJllImPCKeXZssyFksuwtLWaF9/p4v5tVdhsViSDhGi28v3XBvjivnrSsSjhDCRzOmY9Syqr0ZOwzbv/gpxCkkRWNdro9ssUKLnR7W0VqCu3crg7jcUAT35uOy++fpYLgfnPwee3u2htruKjg+10+lXWNDuxmA28311EECUkOcld6100VJRk+lKyRselYfbfsZoPTo1iNknkZZWuSGlb2KwkkQ1OBEFE13Xq7HlSskBKtSAWUqiS9apEeSHsbFKx20y8cymPgI5Tkkkxv1FUVwv4jAXaagzcf/9OXnz5MPvvWMO5SyN81DenVqFrKlYtQ05yzhuAf/ueSiqqK7h4rpvycjdZWaWtremazpeX45cRu5+2MTcRCqKp6jy7+hncyM3u4yI2FcBdUVni6F6ngBIN+PFW1eDv60EympCzGdwVlYgGw7xkuCjnyWeyC9LdNFUlFYsuqniSTSXJp1Po+o0dUP/ke+08stHGypWN/NVPTpMXr67yimoeCY2iNNdoqytFNDmDYLRQTEwh2TwIAki2xbmEXk9n+JPCzY67D22wsmFdK//zR8dJMdeAXG3OUOsRyRY0MkUD45m5eW1Xk4bHbeO1swlWVQnYLAZOj+mg62xvMSDnMuzcvIT3jg9Tb5dZ2lpHLpNmyfqNfO9nx2ipstBc4ySezNLeF2NFs4+J8UnGs3bS+pxroV7Mo2sqbVUGkjIEc6V5utGeZsdyN6OhHCcHi/zbJ9YxMR7k2RPzlalWVWp84TOb+OjdY4yEZFSDja0rynj3bIikakFXFdZWFdiwrIyahjo6z11iJFxgdWsF+YLGyd4kS+tdHO1Jo4rmUr6AiD69E+eU8jjNOhMZC4JaQERDW0S+0OAssGN1Oe+cCREvmnGSIq2a0a+gYrrEDJ/b1011zZeJhwdByGFzNKCa3sLmnkuqU+EiZruIyTo3nsYjMoIIqYROPJzH4bHg8Yp4ym5MmbiezvCvlB3zrSARDqEqRSw2+w3tgBeyVdZUldB4qVmjor5xUZPcjSDnchjN5nnJtdXpWhS9w+bykAiHaFq1hlhgEmdZOfHQ1LwJesYk4FqC7LqhFPCtniI15RYO9+Znu1KvRLnTyMqVzRy5OEXyBgWwPAbOnh9iIphGV4UFExZZunqw/uuXRtA1FSUdRRQNaMU8y5p8fP2LO67/gb8iKGDm2MleQgkZmLvPqmjC5Tbx0H0b+flrZ0gn5uIhj4Xu4Rh2s4SCwMF+BTCh///Y++8gSc4ryxP9uXtoHZGRWmfJLK11oaAVIShAEgRVd7PJVtMzOzM2Nrtvzd7aPntmO/t21HYPe5psNsgm2SShCK1laZklsjIrtVahtXQPd39/RMpSSKCKbwDyHTOYFTIjwyM8vrjf/e499xxNZX2LhXA8h8tqwGiQ+NK9q8gXSvzz++Pcs9lLPBujKDp45dgEf/zIGmyBIL86qyIIs2tr0RL2mfL86ZPbef9oLx1TZboBgEPMc+ddB+nuGmYyo+AxFujq7Ke1UiKVLzKaXAg8H14IMzMxzYMPH2T1lR5+fiKPIGjzFBzV7OKdXrD1RtARyBVV/t23dhMOBknmdaYi0vyLsosyhzY4GJ+JI9i8DE8m+N7X7qS7e4SXT0cwGUVyGuxpgXhapi9qgmIW3WSlPKS+gOY6LxV+D+9d6mVjowm33cXRAXmJUcfOFhMP37eL5397hAsX+xmPwY+eOceBLbVUWtKEC7PmI6KE227mK9u9fHA+yMzs9P4/vBtCiV8CyYiojSO4ankgWWDfnnW3sGI+3yjmcmST8bJZxU0O9nBjW+XI1CRGkwkE4VN33xZDLZXQ1NKSIodnrupquvkmOuf2VtnUTCYRp7qltUy1uMrBzmi2LHn+xSgXWSrnq8w3o0sohQLOCj/J8PJmUYamkuTlEQol4boUSk2yXOVRCoLBiGTwIEcnMfmbKE71YKpuQ80ll50Qf9bRO5YiV+gnqxnnpQIEQSBd0HjkC/vpuTKypDgB0B+U2ea04TDr9ETnvvvQ5JJx2ExMBlIYjUZWVBnZuW83P/zJ27S3+Mhd6iWeF5gchoaKPA21bk5eifN+nwosXeO6rvH1A5WYLUZ+/kFwaTzaUMea9hZee/oYqmDlUvcYNqHAwVaJI8MLbpB9gRK/ee4jvvrF/WyMhvnNu6P89myaufgtSAa6IgauBBO4TGHiJTv3bXCzev0aXn/9GDMZCzMDCohmdF1nWyOYRYWYLDER07h3WyXr17Xyn54+iigJpHU7rW6ZpiobR/uyaJoAaAiGpeu9wiGxtr2V011BDGKBnWuqOH4lQWqREpxLzPJXT+0iGhBIxjvRxBgWzzSpcByDuRqbe6F7YrJCPrSRjBbD11ruLHoqyq/5h39vRbPXQSFFU32O73zz1jp0v7tS52cEaknBV1NHYVHrKh6YWeIhf6uITk8Rm5kin/n4llMmEUfO54lMTiz5ucVunzXVKCeL+UyGXLr8RS1ks/MT1Ba7fb6lJ4giqUgIp/fTDXNsWOHlzv3rcIg31jw/N6byH58+xkzu40+Fumjm3e4iFU4D37uvBqO2fC1NBBEtn0aSk9T7DKxouL7U2+cSkpEjgxpXZjQqStNo2oKg+OWJIs+8co6e6Wt1I3eu83PH3tVIcgJd1yAfZ3tFnDv2rGbr6gqO9+X47y8PMzCeYmgyRcFUwes9IifGjQiCgCgZUEo6vRM5THqRZlcRtAWOgF5S2L3SztTwMDlZxSYUaLElaHYWSOt2fvrsKd67EAEgoVgYHgmyaftGVlwlZxOTzZyZELl4+gJD43FMagZUBUkr0GBK8I19LrZVZaFULGtSm2y8ffgKolbi8Tua0dXye29wFGk0R9i6cyMHd63iK1/Yjs9l5q0POjnXF+Hh7R7+6utbcahR7tzfzpY1fmqMCf7dtzbxcPu1Ha7njof40Ys9bGw0sa7exL5dq3iwXZgXrAeYiha5cGGQmRTMzMT40qEm7tnsZf/e9ayoXSpZ5zBD26pmnLPxX9d1SukIpXwarZBCkwu4lAANtZ++jf/7gFwqiae6Fn2RNUQmEScWmF6+2oSuI9ykE5eOxYgHZkiEgjd8zGJEpyfJpdPzMRXKiUVFXf18sq2WSkueLzwxTnR6imIuh7emFpPFWtZeDpa1lz8Nivkcvpo6SvKNjZHclVXk02lcFcuL690hIz1jKf7Fl1cvUZVZLpT4DDoCWi6FaPp07+uziKG4kQ97ZZykMcgLn3tWcPLz50/z3vlrdZbXVBvZu7udVRXl44MuZ2kwxbl3i4/9e9vJlzT+5tlu+oJaWWPf4OX4pJnfdhTI6eXAkCnoxFMFwkUr9bY8NmHp/rrWr2IxagQDIdBUmmwZ1ngLmCjw7rkQTz97mqxQlm471hWnpaWODaurYNG+oYom+lJu3nv/HBPjYXIFGUnNld0blQiPbDZzqEWh2qaQKEgIgkDXcIqey73cd88OmmdDlEMqsNpbZMvaWu66/yB372xg1xoX53ojvPVBJ/UeI//me3ewoUZnfauHQwfW4zIofOegi798pAmtsPQwcWEK/uNPjlIoCRxod7KxvYEHN9uotS2sy5xq4PzFQURzFF0MI2dc6Jn7MJnWYBBWL4kRJUXH5mxAEhdiajhQpO9SClUpoeViGOQgLXVLX8enwe9FZVgu5MkmEjh8vmsGOOYG1dz+8uksGQ7h8leSjCxPcLw8zNA4/+8bwemrIJdOzyezN4IgCMjFHNzEQ0jXdbLJBGarjWIuN69DfPUEtWe2MlFSFBS5eM17X2wje70q8TvnI5zoCpLhxomnIBnIc2212kyRDY0WLk/kkbm2GqJ9QvqNIAiYq9sACOlwYO/6T/T3n2XoukabW6HVI3Pg3od5683jnJkpt8yMok44UUQVbZjVDAVMCLMtpZlADKvZiNlsZmWNxv6NK5AMEtlEnMMn+/nrr+6ku2+KD/tU5iqrur6glpBUbfzd6xMgmtm/0sB9d23iFy+cZiimUmFIkZaLrFqzl8B0hJ5wice2e2iqLh/K/vZnx5jMlteyx5CnpAkkFBND3VfoGssBDlCLPLDZRTCW4+K0jZe7wC3Bv/nOTk6e6afKZ6OpsRJ0DTEf5+DetVzpn+H8cJpwWuD980G04hiIfiim+NZTu5iZDPD+B+fJFBSkKxEmMyYmcwBmPDNpSqUxcpKHf3i2g4Iq4BR1cpk0uqZx9eSQKlrQNZk7djRTKilcOHeZDZvX0T1+AadT5EpQZCZn5tULGVZ6bdx5YA2JaJyMDD/+1fGy+9QiDuZg3MR/+NERZKMLvZihlEshGs0ICAgGKwZPFYl0lKbmm1dDf1+QCAUxms3XzFd4qmtIBANLNIrlQh5PVfnnH1ctBqiob0BVlBtWbZViHm9NHbGZ5akG6ZpGSZZvKoEWDwbwVtcQC0zjq6lDEEXsbk85cbWXv69z2su6rlPM5TDbPlnyOGdGYnff/MB0PQ72nP6wwWi8pqKuU+5iflLSo6liVk3D9+k1lz+r8JkKVBkzPPqFPQSnZvj58dmCmKYgqzqJgoREAXERhSQYz5clTzHgFHN8/cE6zGYzRrOJj947yY41flavrOPHL/UykswCliUxVxAEXu1UAIUKi8z3njzAuY5+3riUw04WQclR76+jvrmZl0+cZXW1mYf2tuCtqeXdjzo5MaSSypX1/b0mjZgqEQ7FGZ1OIEjlNbihukRzrZO3zic4PW2FaZ0n9tZTVeXjyOkBvvzovUwNDlHt9rCiQcXmreRnr3ThsNp550KUxoEQYxEJTCb2r/OwZ1c7Lz7/Ps7BKKl8ifE4JEsWxlNQYZboujxEOK0ydDHG2SsnSah2SoqMnM8jXLXgBFEij4vdzSY2b1/PO6++z533H6Br+Ax1FRa6JwoUBDNvdxX515vDSMpXkBOTgE5RPYbNIS7pcts9JrKJ17BWiui6xIsvaFwZ8CFJAoLdhYSM1VXBgUO3Xtz8vUiGM4kFAfSruV9zg2pzkIwmAqPDoGuwjEG7RCiIppZweH1IBgOappEIBTBZrPODHA6vj+j0NCarhXQsdlOJtLLjnPumxG9BEFBLCvlMGquzbNGbicduWCmITk9iNJtxeLzL1rsEyOsW8kWwCEUOrXdzeSTJdHZ50+Dr6s08cv8WlDc76LxqPzoyBEcGQwjip9Ox1Io5EtE4norfjwqbz5Dj208cYLS3h8DYGKHUQtPyvi1u6vwOTnYM8sCDezl1boDD/eUKwHvdMpa+MfKCg4Iik0lnyOVkProYICV4iEYS5PIKJq1ASRdZX1Xi4M423js5TF/CxpY6jXxRpz8m0DuZw3TkEgZNYa1f48kv3c308BBPP3eOGq+Zg6vcXOgJkI6ZSV8OEFNMCBI0mhM8fHAF2UKJXx5LMnJGQZiVbjKisKG9CevwFBenyy2qogrDQ1OEk0XyBYVURuZwxyhP3NlCqVggm8ny2P4GKisruHS6g3VbdnDs7BBnJp289M5l8rKKXNKJZIwoogiiiFjKowsCnQELnYHykFB0tsDts0t0901zfFAG0UiVOUdWEchq5bUnGEw8+9YV/E6RnpDI4b5OvniggbXtbfzNj98mpXvKxhwRjZff62M0IlMUrAiCDSQwagVMokoWOx5DAVkwoSCgygWM3lrk6ASCJKAXUmg5CwgixUIBs+WTO1d+npAMh3B4faSi4WuSYUEQrkl4s8kkmXic2rYVH/vc+UyafCa9hEqQikVRZXn+eb01deXumq4TnZ76WG5tdUvbkqTlepAkiWQkhGG2qOD0VaAU8ji818bz6PQUVoeDfCg9X5RYDubMSHRdn9dK9jc0LmsQKBkKlocNgzPX/G4qY+aHr00iXGeAbjnQ1RJqPoXB8enkPT+LeGhXDa0rGunvOEe8UDY+AthQZ+DuHY2MjoeRJIn6xlp++NseMNoZSFiJvT1ETDZjFQXy+RLxSJz+0QidcR/72mSikQS6VsJMBl1V+fb9TQSCUV7vMVBrK9JWa+Nkf46EbOLdjzrJpVK4tSLf/8ZeCqkEbx0f5tKvjrJzXR1dgxEu9swg9gXoHivLSDqkAneuMbNp+wZ+9Jsz/OacjCAs8I0bq+1sWNfMhxcj5GYHImdCabKFEpG0SnfXEEc6JlnXYGLd6joyiSSb29zce/dWPnjvFO2tlewWjTz99iQd/QXCiQuMJUXIKiRL5bipqwpGrUAU5yz9onydglx26gymbPRdnkSwurGLBRwmjWBhIc861pMgGj5Cf8TMhZ+dZGWDk0fu3wJvnaNrIktRtGNxWkjOvIulUsPqL+IwzNLqZJV0RMRZqSHnBZScGZtbQ84rDM40IxplXOYwslrkobsiOF0GElEDvspbU/T5vUiGjSZLWQD9OnytTCKOXMjPc4aVQp76lauXrUOsaxremjoSwQCmGivJUHCeQzYHs9WKyWpZtr6xIAgkQkEcHu8NKx/Vza1L/v96AXkOmqqiKqVrAuqcRuWchm+FOc/Du+s4fDHAeGph4VRYNXbvWku2cJnpwaWe4DdC12SB0hsd9E4rcJXmsCAI8CndjXRdQytm+M+/vIBosSMYTEsq3J9HxGUzx4+cZ+O6Rk5dDjCaLVfMKswF7JKIt6aG1Y0hxnv7CEULzAWelRUq7U1O3u9KMxCz05iGg3u3cmroBLGchV+fSGFS8/zV1zYxNDJDIhbH5nSwtc1O37Eo9x/ax+TQCNV+6BgokJPhG189wGsvvs9Ady/pdJ6c4GDdah8b17dy/p9O8uFIeT0Kkqlcrf3mHqLBMBcHooABNAULRQqSE0Vy8HfPXkLRxXmXtpxm4nLfDImMwhXFgyDIYK3jo640DnOa3qiJUDaASQpQYzcQD8zgswOaSm/ESINd5Qff2Mf773cQz2v0j6f53pfWk0nGScXTpPIljg2qlKRy0F5RZ+eO/evpmT5BKpfi+1/fR0/vGC+ciGHQi6hGB+0tHu66cwuvv3GcgbBIT/80l7on+JMn99M3MMXrl/IgmeiPAaKBxd+ix3b7aW2t42//6Sg/+OODTE4E+PXxFJLDi5qOYnRVIc4aKKiZOJLNzf/77w5jcFd97tftzWBzuUiGQ9d1uizJMolwCEmS8NbUUlIUXBV+BEG4htd9PVxPK74kF3FVVJIMh3BXVpU7STYbVqeT9DItpvOzFIkbzY5cncCbrdYbusQJgoCcz1+3W5iKRlCKxfJ7l4ukIhFUtbQkpquKgslqBV2/rkzb9eCprrkpx3k5Q6U3gpqJITkrKKUiGFyfThnks4ajHePYjTpWXzXPHkkA5aR/da2VfCZHfY2HXDZHX1c/umhEABxCnjs3eRkcS9AZtfPRpSh/+o29JEs9CKkCJ8fg5FiK+7f42byxhX/69WHsdis1lU6qR+JsbHWzY+sKJPUSYzGdruEk//pPDnL2eAdXOntx2U1kS0b8Pgv796wjlrzAkeG5V1yOI/vbPWzf3c6xj06TLEoIooBVS5PXLSAZeftCisOXOsgtSpB7J3LUuDJMZyy8cCYNuDkzViCtxbk8XsBmEtA/vEw4oVCfiGGy2rFLCpGii/CYyp8/vAYRgbeOD5OWRdbW29i/ewMDXT0kUnl6AxrTxfK+5bVoHDiwCZVupvoV7t/mZ8OGNv7zT49TUHRKBjtus86XvniQwSt9/PpoFK0k8+IrJ6j1WfnrJ7fy354pd6rdtXPuIAvfo1TQT3XNwwSDryLq1firdhAN/gZ3jYknHxlFEqG+2UxZFsjN3/3YSUF18GdPjWB3f/oixO9FMiwZJBRZv8ZrPjg6jCLLNKxeSzwwg83lxumrmJcwWw5MVivxwDSe6nKgdHi9xAPTiFcFnrnndd4kaZ1DPDCDu7KKeDAwX9GYqzhbHa55qkUmEUcyGJa0G6+HmtZyteXqZDgxK1s0l7i7JBmnVcJmWNrbmMya+btfHCdWMFwjzWPRM8iagSYvZIoQLpioNOWJFQ1cnhGvSYRvHQJ6SUEXSoi22+sw8z8MkpH3+xQGQ8NMJZm/Zx6TgsEgMtJ5iYqqKix2BxNnL2ASNb56oBpRFmlZv4GBiaNcjsHJnhSjM6eZShuhlAGTHQUD/f1jzEQLnJ8UsUrd+GtrwVyk69xFqvxu7j64AaF4Cr/fwjuvf8j9Dx2g68oor3YDkpl3OqKc6AyTFZzoJYUHNtlIpgucGndy/PBZanw2lEwCXfdxcLWJO/Zt5Z23jnM25CIv2JD0ItXmHIG8mTtbS2xa30YmHqNrNM25mXIyMZU1Q1rBJWYYiDqoshTZvaGeYqHI7gPrOdZ3hCwuQlk4eqIbTdN44pGd/PbV04xPhLCQw+u0sHXvdmTlFCfKSjsc7clweeg4EcWGoJd4/3AXNknm8S1mVq9bx49+fZpSzkBofAybUeDAKiPb9uzmv/30Q/oGJpmcjvHIZi8zgTjnZswgiKyrVFA16I+ZGJhIEE+Xk//jpwdI5RTAgEgJu8tCbjFFyGBEzSXh44t8n3sYTGbU0qw84qKKazxQNpVpXNNOIlzm3xqMRtB1dF3/2GE1WKASXD1MnAgF8S1KWF0VfhKh4LK6YSVZRi4U0DQVs80+r1KRjsXQdW2elqAUC+VK3g0G++ZQUVePpmnXVRhSFWU+7pqsVuRicV6RaA4GkwlxdsD06kS4kM0iFwsICCjFPJ7qWrKJxPx1fycQRNRM/Bp5rM8zxvMufns8SEnTYdbZTVILmEQDiXAKu9NB87oNjE6dRpBMHGjVWdVQTWVdHWZpjM6ozGTawC9+e5pAQkdTynusYDAxE0ph7R0jpnt590gPdx9chyDEGR2dxkWcQ3fuYaB3iKIChz84Q3WVh9aVTfzXX5yjKDmYySj8+NcnCKQlkEys9SusbfHw5rkYA6NpPIY8ajGPphmptGb5wdf30nupm9cuFShKZrK6iSpTlkTRQKVd58t3limGq4ZHebVbQ5Us5Gc9AhyCQqpg5nh/li/v8pMtZFmzfR3tUxc5N66DIHLywiR6IcW3nribgb5ROgejTI5NouWTHLjnLpoHh/npkfJhMlCw8sOfHychG0A0c3EwRiaVYXeLgT137OCNd84TT2sMd3djs9nYWJnn4fv2cfj0IDPJIsb+CdbXGQn3r8Ds7cFVaSIdMqDJNZg9YxjMaaLBSxgtWUryNNHQaczeErou4rIacFzVMK7yZsgXCpgst5bO/l4M0GVTKbzVtWjq0iEkQZQw2+0ER4exezzAQpvqRlq+mqYRHBshODaCruvY3R58tfXzQc9otuCrrcdTVU1JlsvGGcUCRpMZX00dRrMFtVQiOj21xKY5FYsSC0yTicdIRMKMXL60JJAmQgG81bXk00mgLK8jiiK51McTw8sVl2t3YHdlFbGZaURJ4n/73lYeuWs1lQ2NpAvaVX8vElHsaLOJsK5r7GjQ2FyZ4198fRv3rIJvf2U3922vYr03xZ9/cy97V9mvud7tgCAIGH31GL1182oE//s/XrihMsbnBpKRsZSZ0qLDw5rWSpweD+5KP/HADJ0XeskJDkR0fD4PZquFjqMn6QyXA3letzAcN1FlU/j+/dV8a58dvynPpk2r0QURm1TC7qvi5OUAgsGCKpiobW1j8OIFEATWtLfSHxI4c36QwZEQPkOZQ1fAQkETWVOhYNWSNNXYqHTorKvSqHIbWbN9G3fsaqXFEselJxjrvswdBzdjLpXlfvattvNn39xHg0MGgxk0MFls1HrLiWKNtYDPVGBvq8SfPLqGGmseAyomUaPvyhA/f+74PG9dxsIHPTId4yqvv3uRgZDO65fyVNbWYbbZ6Th1ngsTRXRd565VAofWmIhllPL6l4xc7I+yc/cGbEaVQjrJliYD9z18iMtXxpEkie17t/Ph24eJley8fqnAcERj48Y29m5rodVTQleKPHBgFYe21aPrGp2BWYk4k40Tg0WcdhNNTpl7Nrj4V9/chUtcGMyVLA4MLj8GVzmRmlu3n/u1ex3IhQImiwWz1TqfFEM5flY1tTA10LvEcthdWXXTBHPO2j6TiM/H6MXzF76aOvz1DYiSRDIcmp+f8FRVz9PVkuEQkanJ+cRTLuSJTE3Ox+LI9CSZeHy+mqvrOopcQJQkirkyzScVjWJ3e5Y1mHcjqU1RkohOT+HyV1LM56hbsfK6FWanz7eEUpcIBefvg9lqo5DL4q2pY/RyJ/lMGrWkXFPwuV0or1v/742SxBwisoVEaeHet1abqaisoK6tDV2Ay6dO0z1TLg7ZrEZcPi8T/b28eqzsEiFIBobjJrIliSf32PjLh+uoNmfZuq4Oh8OCrBuo8Hvo7p9mJmskXYSVm7cydqWLwf5xNmxaSUE30z2a4tSZXjwWDdQypWsmbWBNtYiNLG2VEnUVNlZ4ilS7RSqq/Ow+uJM720r4pSSDF85R11DFmtryYaXSlOMvvrWfO9a7EAUwGC3Eg0Gq6ssUHJtQoNlZwCel+ZNHVrN/lRF0DZtZQM5l+e3LJ7k0Vh7sEwSBzqCRzoSX5189x5GLIa6EDIyHZDYeOMT5Y6c40Vmm5qzwyDx1wINSLFLSy+t/OG7E4zSxckUNyXCItkoj3/7qPhRV4PT5IR774l0M9g1zZSROZ8DAaxfzrGxw4avcQD5cTuK1YhOV1YcoJG04q0o4G7pw+FU8dVkQQxRidcQnzPi93yITWkpvfeKrOt/+toLR/AeeDEcmJ5AMBqYG+q4ZSvDV1OLyVlDd0nZN9SCbTBCbmbpmunlOhs1oNs8O5dwYqWgYX03dNW26ZCRERV09amkhcJXk4uxjI3gqq6hsbMLmKifkxXyeYi5LaGx0vuJsMlvIJpOoJQW5kF+SWC8XoiSVp6VnNyHJYOT9w5cJZUScYg6jfgMVCTnHoT2r2bKuniu94wSzIi++0UEyluSJL9/JmeMdjASuFef+/2P5MJSymCgSi6V4+d3LjEQ1Lk+XuGuDC0kS+ZvnuvngYpSjoxII0pJ16pBkVFXDU+FFUXWmxifJ5QrYTdDe3kyNr8zdertX5+fPn+SlcymODsH//YvTRDU37/fIrGyt4i+e2o2DsgLKvnYPT35xF7vWeqlvbUPWRL722A7G4zoDF85jddjxWxR23HknVqeTd987T9HgwmMsYtCLnDrdTSQn0jmapSjL5GWNSxMK5kKIr9+3gkf31eEwlznzBr08wFLd3MKevRtprfPMH+Z0XWNPs876egPnxnUKJZ3HtzsITEwQCCV49XwWq0GEkkx9jZtar4n/5fv7WeMpJ+Y1lQ6KuRwzkTwzsQJDUZFXXjvBrj2baGutofviFfYe2M4Kf/l+bm0yEBwZZmhgnHBGRzRZ+NVb/fz26PiSln6NKcP+2hT3HtrI5lVeJsNZhgZG2LvKhkH/5BP8n2ekYzHy6RSpSARRMiypbFbU1aNrKo1r118zOzFXPChkr40duqbj9lehFG6sbDN3bZvLhVy4VqlGU1V8tXUkw+Xh6Hwmg6eyCkEoV3xXbtm+pHAQD86QjsXIpVIYZzneglCO60azmXgwQEmWr7nOx8FdWYW/vgHJYMDmdBMLTGMym8ln0jeN45qm4q2uRS4UyMRjCILA9EAfTevWo8hF5ELhd6q7/HsPVcYu5EGUePv9i3QPxDjZn2Ndk4NWj8Lblwv84tXLHO1XSJvqygo+s7CKRYqZNJ6qSkwGgVAwRiQcA0GgtdHHyrYa0FRmShX88FdneLsjypmwm//y9DFOD8t0hwxMx2T+/DuH2N5S/r40ulW+/vhOdjQI7Ni7jYmxKb7ypYM0NtYwcGWAYi6HXNK5584t1K1YRff5Lq5MK6DKtFYa6DjTxcBEmomMmeGhCSSTla7+MJpoYG+ryB99bS+V5mLZndcIgtEKoontB/awY33VkoNVk1PmoU02hiMa0zkzG6tLVJhyDPf1c25UZipZNjHxOIz4PTa+//WdPL6l3OXRS0V8XifxcJTBySQjMZ0X3jhPVtb50lfu5fzxs1RVutm/sZyHVBtSuBwmxrrPY3EnADC5hgiFXsRZuSCPVkirTHVWomRa8PrvQJazRKa7KCRdpAK33/L9c/XNkgt5Mok4RpNlSaA1mEw4fRXXTPYaTKYbtuWK+RzemvIwwuKhO6PJjNFsxihYbqoeEQ/MUMhmCY6OYHUtrTLPe8svGqKZo1H4G1uYHuwHoHndBgCyyTi1bavKfuOzwxgGk4nKxiaA2SqDf54v93HQVPW6r93tr+SeQ5Xs3BDB6nTSdWWMVzqu3ZgEs4OnX7qMqguzRhvle5jIymSOdXO8T0cVFxajUUkiS475Sq6gytS5NKZSEki3r+22uML2eeNjugxFVtaYuTheRFNL/PlX2kmHQ+RUEW9VDQ8+tItzpy6xY886xgNnGNAsDKfALub57kEXfUMBTs04EOU0X3tqNxPDY/zs2cu4rSLNK1sJxIv0dRX5zz87Oc8tEyQj04qv3LaXIDf7Oe5v0bEKBU6c6iaXK6Bb7XQMJIkkztM1liee72B0JkOicInOaZGL41m+as1QVeNjpLuLeCTKpbgLURJY12Tnjjs38s+/PUtBFTEIAoWSwPmBOOPREv/iqzsIzcyQVwRSmSJDw5MkFDO5ksAHH12gwi4yHZEBIw2OIl5ziZ2b28ln02xZpfHq4TAN9avIJSUq6+vYHLzElx7fx/OvnuNXH86wxZ/G6/dS67XQl4CRhIHn3h0kkDGgTqSgoDKVlqjtHSYUzTGZlFCFILGsgK4quG0S1S2tvHP2OFmtApuQR1V1osrSWHJgg5e1G9fyxkvvM50z4bPqJLNWtu5Yx/H+c2T0mwfnubX7eVu3UI51uq7NO8Tp6IiShNXpvO6w8I04ualYZJ4LbLEv7Sy5/H7SsehNlSbymbI0WiIcvC51TDTMctBry/Hc7a8kEQpisTso5gtMDfQtUWkQEKhbuYp8JjNf5Z17j+VYXEM8MLMsasKNjJksdvv8e43NTJX1gyPh62onz8m2NbWvn3+efCZNKhrG6fUtee25dOoa/nWlKUdGEcjrn25w+fcOqsyWRiPjEZmYbOZQu5W1TVWIkpFoVuCJr+6nr7OL9i3rudg5xEgiS0zzEsvCPas1PFZ48VwK3eTi0MYKNu1cw3//0cuEjc0cqHDR0FjDe10d/PrDaQQBhFlTijRu0mrZ3DWDEySos8vsXO3k0vluxmdS6KqVqZTAa+9cYDAgMP3iGeJZhZF4B7GMxnTaSVYYZNu29Yxc6cHpsNAZNFISzHhNGR568AAdF/oZSxYBjawsoGU1jo/Cne1Wdu1czdkjp6isdDHYP8ZYRAFMnOkJE4tEKWJCE81YKbCtzY7VaGHXzrX4jBcZDRcxWGxU1TiobW3jwpUg3/7yVoaHpnn+dJLevjN86/GNeB0mdC2HaLTwzOFJNA1SqoygyGiCiFVIop+8wLtXitxrTTM2kwGMeEwFqhqbkOVp3PUZlEKJYtaGvSKFZFpISaNjVhpX3sX0cCfBmecRdT/JZA8r132NUDAJLE8RbLn4XCXDi1Uj5lBR34AiF0lHo6Ri0Y/1fZ+DIIjEA9PYPcsP5ouhaRr+hkYyifg115yryC7GHI0CFpLgOXgqq4nNTGG23Zh6kI5GsHwMdxjKJiO6plFSlHl/+8WITE0iFwoUczkGx5PcaAnES9cG1MmMicl+BcSFA0adNc8ffXsfb7x3mYuzQ85bm008+sBWnnn5HL2Rj33JfxDYusLJnQfWE3v+NCNRIwNDARLJLOfGFNZUCrz9XgfdY1kujp5kMiXNzx8KOpjNBu5/cD/R548ykHby9kfdrKo28M37WynkcvRfuEAklEPX7eTFj18jdpsJf10NF4/18r/8+Z386qUORlJmopOA5ODyDICL06Mqu5uNqAoUShoOm4Xm9nUULl1GmPU0PjuYIRg7QyJV4K8eXcNHZ8f4xZE4YESXoHdwmnwyzt0PHCBzupdnTqQAC4hwbBjKolDlA9PdWyppXtXK0z99kw0rvKzbtJoH9zZzumOQztE0927LY5A0Os73M5MoYTfp3P3AAUKjIwwHC/PPU9I0dF2i2Vngm9/ay+tvnGDnnn2cPtPDuUCBlzoygJmDq0TWbVnFL37zEVmhfN8e2V3NihUN/Kd/Oo1sWLiXl4YSSIYhrsSsfGl/LSvWtPLemx/yt79KkNV/N5ShzwLmOhJWp6usbuNw4vJVoMzq5Eanp/DV1i1LDcFidxALTM+rNSyG0WT+WFUGTVVxeDzkUuJ1Y9v1Esy557xeTJeMRjLx+HWtmE1mC4lQYFmuo+WK9wyaWqK6pe2ae5GKRSnJRfLZLLp+42HoOdm2j/uZXMiX29SyPM/XtulpfvDkXq5cGeXFc78bi+XPG6ptJR5/aDenz/Ty1uU8oVgBr9PCa6d6qPM6eeuds4SzIod7TpIuSrCI/28RFDbs2E1ePs8b3Qqdw0VMXOY7X7+TMx19GEt5us93IQoiivTxhw+TpNPU1sKzL53iyS9sYWBohre6ZDomAKwk4wAmosGy3vrDW90EQwmKhQJt7asoKQpi/yQUIFay8U/PnSKS1vjKTh9qSeWli0UEoWwoNBPN09M3RkVNFe01Vfynf74ApjLlaCBmYiAGZcMMIxvqNO67axPHPjrFr375Bk88cRfQR14089PXB9jUMkNNlYuOC4OEEjKCaODeAyuxOVxc7hxGEMtrWdXKAl2CkuPPHl/N5HSECo+N2vpq3rhwmjc7y4ZTVeY8X/7SnXz0YQfrN4wi53Xy0Rqqqh8gHHwTd8OCRJq7Nkd0phfJOonJ7KOy+kGCY0NMjv+UikYDV0tp3io+V8nwXHV1MeVBEASy8fgNJWduhJt50d8ImXgMuVjA6fXhq60jE4/f1MZzuRAlab4icT3MJdb67BDKTTceXUcyGG/Y3hNFAX99PfFQkEqfFW8iTVwpB4Fqa5EtK9wc7U7MC4gvfWrtmmpEVhEYGZ4kmSs7pAGMhIocP9XDZEzhdi/YOXzeeJjnBlKE4x2MxgUEg5G3u8vV0C2NBh5/aBsvvXmBNE7S2QUhji11Kutaqzl8sp/7TCa2ra1i8FyRC1M6PruOIZ/AbrPidLq5587VxF45w0jec92J/WZnEQ2YSJt5+3KOdy72Ue81MjE6Rf5GNERNZcvaOnQd/vGNEfa2SqiX+3mrI4EglZMLRbAwFIcKU6m8PjUVv1EmUjAiSCbe6ymh6w56f3mclGy86cBl33CAUj5Nc0s1RwfSDI2f5tHHDuJLlDBMldi0eRU9veN09MVpb7TRMRAjMDmNw+Vge0uOtapG37TMH31tPx99dAGTUWBkYIhI3sTPXzhFKKkCNlrdMpVuE9FknuGRGdY0OWlvb+X9EwMkYyU6UymKggWBsg3z/euMWEQrsUiML+yu4sSFMbLpFJNpK6qqIek55EIRyf7xUoCft3UrCAKCKFLIZJZUbY0mMxklNj8othztYJvTdcNZjRthrhtoMltweH3k0qlPFbuvh+tp+c5hccL6sTGXckVY167/mFKxgK+2nsjUBLqmkYnHMFvLMb2QzZJLJW7o1jd3GFl8fclgpJjLomva/M9zmpnDx3uYiS0cCv/QEcgZeeblc0wnSoCZnoiRnkgWs6Dz3a/uob9vhI4TKebUe6CsTfzI3lpOXxyjoq+fNasbOT3Yx0zOwZXJAh5fkmJJB1Fk+/6dJHOnODNRRLlOXHNKBVqqTFyeLDGaMvMfnj6LZLQyMxMhkSpwI5Zqc7WNHdvX8JPfnOS944NsX1/Dpf4woUL5UCQIImNpC7qmQtkpGqeYQ9Ul8ljpjxrpj2axCXkMwvR8Inw9DAeLjPf1oSkKGcnHz585xrZ1NbStrEYwR6ivr6R9bSN/94vjbG2voSKRJhJTqPZZqPRaeWqFjRc/GuePv7qNdDpD92CE4OQkyYzOyStxTOIEmtmJQyqyc6WT3uEUIyNTyHIJUTlAdDCMYJomMNqNYI3M35PEpAuhtJp0agK7fQXFQjcTgyfRtBSeRpFcCkpaHofbeMuDc3NYFmdYEIQHBUHoEwRhUBCE//k6v/83giBcEQShUxCE9wVBuNbX+DZgrro6NzAxB2eFvzwoJt6+xKuQzV7jmCQXC2Xe7yyf62Z6wrcbuq4zNdBHYGjwpkMU7soqLHYbFdepnABYHE4K2SxGk4k7D2xgdf1CO7il2sqe3e1ULvruCFoRi5bBa8zzg/trWFe59NrJkoVfH08yssieNy6bea+7QEb75DInuqaiZuMf/8Bl4rOydnOKQLOrwHcPemh2LxxU+maKvPVBJ/3TZa6kScth0Mr/dloN+P0eJtMG3jw5weHu1Nxr5oMBeKdX4Lcded7uiDA0OM53nrqbWmsBp5jDISxwKvWSzH3b/Ny90UW1KYVB0MBkYypr4udH4gTySwO5QypwzyqdWmuOX747xi/fHWNVjZl7H9jLdEwhJ15bZYvKVv7utQmKJYG/+s4BdrQsrAeHWODRffWsr71+sqBrKrqucWrKSl9Q5b57dtBa62JQqeNvnunkncsZ8qKdH/66gzfOxdi0ws09hzZiM0n88niGX73eTV1zPVs2ryEUTXHydA+6qrBpXRNneyJUuE0cWOPk2w+0UGkusH2tn/vu3MBISOa5UykiKQ23vwq3SWNFWz1OjwtBMmLUCuxplah0GfE6jTQ3VuB125nImHn5MgSSGn/x1U00O4sIZgeFqV6U2NSnXCHX4rOydj1V1ddN1ARRJDYzjes22CVDudsWC0zPD7PBQjdQLpa/Ezana1mKFLcLwbERotNTJMI3bskaTCY81TX4G5qumzS7/FWzvGErzgo/grjwmHw6haeqZgk/Vdd14oEZ5EKB0NgIwdFhNHVB8lIyGKhqaqG6pW3hIpKJY0MqQ/FPlwiruSR66fYM531W1q0gGTHqeb6wycLBFmV+Ly+IDl58o4PjnbP8bU3BqpXpgiYJ6uqrEYFXz8Z56+QYUblcfBtKmPjFkThnpy385kSCIx+c5p7793Kg3YmkyVSasks+x20tZu7aVke7J4NTyoPFhSpZeP5MllPjS1MvXVXY1aCwtSrH8d4Uf/tPx5iOyTz5lb04HDYGUtd2/ARR4oVzWV4+G+P7X97EE3csLcztX2ni/m0V6KVrZxp0XUdXS8RUF89+OMHBew9wYHMV02olr17I8cPnupBFG290RPnhrzvw+5zcdXADaxscHB8z8g9vzWB1OFm1bg0tlQInL4xypXeSuw+2kytqXBor8NA2D48ebGZ3s05rpZFDB9ZTU+nkNyeSdAc0DCYjksFKKe+gsmENokEsr/0JJ7m4HYPRg9lYjyQ5MVlMVLcPU7s+gpxYRypykH94vp1/+oWZV55LX6PW8mnwscmwIAgS8EPgIWAd8A1BENZd9bALwA5d1zcBzwP/n1t+ZddBLpW8rp2nwWikoq7+E4mff/y1Enira5dUm01my03l0/KZdFlaKHp9bkAunWJmZIjw+Ngnfj26riNJBoxWK4XszdtgRrPlhpUMm9OFq8I/X2W/c8/K+d+dHc7z3395nNHkQkC9f5OLf/nUNqzksVjNSL/jkUs1HUW0OCmlb51f8VlZu7quYZDTVFd6aFq1gko7rKlQ+OYBDwZB5/SISk4341XD/NmX2nlirw+bkOdIv0Jv3wTffmQj4zGNYP7a6oOoyWxf7SEay3Ls5BWiaZVvP7SKJ+9pmg/MgsFEXhFoXtvO1+5bxe5V17pm1diK7F8h0e7Ls6sJDtyxjXu2+cnpVvJYyeey9F7qonfkxpqugmQglNY5c66P8chCAPaZcvirKmitvvb1S2qBP7q7knvWGBAEgcsTCs++co6pYIJtriBP7raypzaDlouTzOuURAsfXY7zj785Oc/rTZnqOHW2D0UusLa1mrcv5znbNYMmiGxeU4MkChiMEkajEUGAN09N8JN/PkpBKm8wl6JO/uPfv83WbWtJZ/K8dKKsJNBYIfLgvVsZngjT3L6evCLyk9dHUWfdqhQMdPeOYxVLSPkoSGYEkw1NvvkQ2HLwWVm75Zb89d+Pp6qairr62zbUNaeok00l5n/m8HhnE8nrH6x1XScyOUFkavKGzzs10Mf0QP+n2jCLuRw2l5v0DWL6HAxG4w3vg8FoxFdTh8vvJ59OLaGJeKrLE/jWRRXzspRnDclIGEEUr5HxvN1QM3FEk/W2FCE+K+sWQC9mWVFnp7qhjlWtldjFPE/td7G+WqMraGAyY8ZKnnvWmvifvr2TZnOMmZyZ37x4ikfu34bHAr1hw/wszGK01xmpqPRy+HAHveNp9q+x8Rff2k+dfSHupXMK3ppa9m1t4quHGq/JXYxagYMrjaxwZjjQJnDXwQ0c3NlGtUMgrjqQDEb6LvfR2TVyw/coiBIYbZw+P8LlwaVrtKHaQV21Fwrpa/5uX4vO9x+ow6LnyRh8/OKFUxztmKLOEObrW+BLWy0YlDSlXJaMbmc4JvCzZ09xZrB8aNCNNl47Pk5gdITN65o4OyFyZlynq7OfrTvW4xDzZec+gwFREOiaVHj65+/SOVkuBOUEJwb3+6hqiOa1dzE+/Cyuap1ipojDfgcuTxuF3BQNq9eSzr2Jp2HhgKwJEYqpSeykCczodIV38OGb177HT4rlpDa7gEFd14d1XZeB3wCPL36Arusf6ro+92pPAdcvS94CEqEggigRvUnQu50QRIl4cGYJX8vh9c3Lp0F5Qjk6PUU8UE6Y85n0rMj89SkKkckJalraKF0lAbcciKI4bwG6HE7zx6HM0atZ8lo10UyoaFvy5Z8KZ+ntnyRUtPE3z16hpdbJ3maNDdUlDq2WQF1eNaHCXOCp/W6anGWem1bMXf+BgoiaTSDcnsG7z8Ta3dkI/+Jbu7jUF+K1Vz7i7ISO26LR0FyDaVbzuc6W58+/ewehqWmsRp2v39UAokiuqJFKZdDnvqpKnnXeFIKSRSwmWenOsWpFLS6Piw96ZGSDgzOdE3RcCSCWiqCUE5l3zof47csn6R6KMTCVxW0ocHe7GYdY/v2GVhd7tjTy6H2baWmp5cP3TnH88kLiu2NtBWs2rafBIyCoCq1uGYNepNJSZFOthj67DjKahTcv5QgtStwDBTvnzw9wcWQhqXJKBVb7SuhqabbVNyuHJZhJp1J86+G1tDU6qaip4447d/LXX1nDn95XhVDKk9ctTKbKihKznyG5ksTIWJDxSIF1ngzffXwjE0PjjAfSnJ8SeelEiGgsjcVQ4on91Xz94fUYigub/+Y1NZgtZnr6pyjMapIORwV+/dI5sgWdga4rnOqaQZNMVEgpGhxFMJh550KCe+7ZwVfvWYGgK2j5FGoucTuWzf/wtVtSFNKxGMlweEll8ncFi91BPDizpMNnsljL3cBFBYhYYJrI1CQlWUYpFrDY7fPuoFdD0zRMNhvuqqplm3MshqvCXx6yrr09dsWeqmoMBsO8HN2cW9/ifcZotpIIBjCaTPhq69HRSYQChCbGiAfKChjLga7KPLzJwoHWcozR5EK5tX415vSxbw/+h69bAK8xz799aiNTwTQXLg3x3PujWChS31iDy1beW3RN5Zv3NNFQaWZqdJyvPrqdOluekmQlHktQWrScmiwJfGISoZTHI6Rob7DT1tbI2aECMzkzQ9M5Tp7uJZrREeVyYnZ5WuflN89zoT/E2e4AglZib4tAm7cct6qdcPehDexa5+fee3fy4TsnOHNpjGCufPhpcuRZv20ja9rKRb4qSwGvMY9BL7K9SZiP3YIocWJE5+L00qT9fH+Ms5dGwTbbSVdl1vpL2ISllWJBEBhOmLh/u49drSb89fWs37WDhzeI/Ntvb6PBFEeQjIymTCjFhXxBsruZCiTpGoohFhJ8775azMhc6R0nLNv4h7enGJmIYhB17lqh8K2vH2R9xcK1lYIZf+02pgbO4WtUEQQBi9NCrvguucJZFFlgavgYNatsxKdyJKe9yDkVb2OcilqRv/7ju1jZmKGUCjEyeetzG8s5ctYDE4v+fxLYfZPHfw9480a/FAThB8AP4JMJiIuSRD6TQpgdaIhMToAg4Pb7MZotJMMh1JKC01cxn6zeCj6Ol1ae8o2UOXWzbTtXReV1xeLnUFHfwHhPN6LBUNYmvsHr1DSNZCiIp7pmSYW3buWqJY8LjY/OX/fq6ezrYc6NT6AcgGMz0zh9FfyrR+vmq+pXcxq7gga6gjkQLUgGjabGKkQxTIPRQEtrLcevnKe0DI6a3aizYlUzlwairDHKPHrPRn7zejdTuaX34Da7H922tbt43UquT9YWLpY04tEEo3HIKxKPb3dS47PwzttniRQdrK9SKMkqly6PcXkoQ53PhKJmEASJYyOgDycRpPJ9unONkUN37aPjxDk2bt9IZCZAPp3k1RPTYPMiCALnJgQ0pcCfPtRMKpXludMZwgUL4QIQVaizCzy6pwpBlQnOFNHNJk5ejjA9GWL3hmq0ksKliRJJbWGDPt0bJ5s5y0BYZUWlzje/spu33r9Etc/G1q2rmPjZUeKqEdQiRlSU2eqpScuhIvLBkARI6GqJNleBXasdtLav5ennTtM/EsZrE2hwlJjMmCjpIk5fBZ3nusgX+pgI5dm8rgFRgK/sdHJ5OE57mx+vz8XTb02AqvD4wzsJBaJEizKbGs1Ut7Rxtvs4HQEbggAOm5EVq1q4MhBA1DXkfA6rliKll2XdZBUSiQw9EQPrq0q01bt4syNGf9TInWsqaGhr47WOCzy4ycLq1kYkg8T//Zsr6BYXP3qpF1UXkOasbJfhsrYM/E7W7ieKuaJISS5rOiMIpKIRVEVBMplw+SrIZzLkM6lr1H0+LZbDKQ6Nj6FpKg6Pl2wqidtfST6dRpSk6w67iaJILpkim0jMq/PcCJlEHKPZskQT2FNVvaTjmAyHUBQFSbw+x/dqlG2Xx9B1naqmFtLxGEaTmXhgBn9D43X/5up7KUkG7B4fsZkpqhqbl+2eKqolWpoqCQZjWIYj/MmXV9HVO8WRwaUVSsniAMvyTKiWgd9ZvvBJ4q6qQSyaIKeZ6RmVaamxsWONl6HuHk4MKlQ7oaXKSmffNKJoYDImsz5ZIpaXKGLmH94LI8zygC35Gb71rXuIzMygGyxkkzGaV7Ty7EunyOEBYCprYqq7wK4WG4f2reYnz18kXrJxcRrAhqgW+PJON16bgN+uIehF4hmNf/znI+xtdzDa1UnJ5OL8pHF+zGYiZ+PUkbMMTOfRsiW+++Q+QjMhjl8O8ch9W7B81MXxoTL9w1xKUjS4yvMiqoxVlLkUKn+mgggVpjwbq2R27d/O2YujjARyuCen2dAgcXZSA13HaLHhrq6l59IVBvpGUEoKkekpHtjXzJWhMOmcwhfu38HPX77ETM7C7vYKtu9up+NXx3GZNera2sgXS7xwMguCBUnSaW6pIRSMoWZk0rEoVqEAJTMYzAiiTiEXx+yJoCoGUhMbwNiPu7ZAYtqEr2ED0fAHZCIuHNa7KOay5OPnMdmS2CqHSKaHePBRiejzKhVVRsrD2J8et7X/IgjCt4AdwKEbPUbX9R8DPwZo2bh52a/+6mEHQRRxeLwUc7my0YVamrdNXk6QulXIhQKuikriwRnsbg+w0A67EewuN5bVduKBGZLhML7auutKoMVmpvHV1jHR14OnsopCNotkMGB3e5YkvWpJxV1ZSXRmivqVq697TaVYQFM1zDYbciGPp7Ka+KwjnSgK5JIJpGVYgQJoBht//2IPKgbMBh3T2SAlw/KC6HjGyn/4h6PIBidtXo1ELEFJ/+xYdX3c2l28bs21qz7Rt+5ywEDnTIQ/unsFpVyGxpVthCamyGoWBDnNY/ftIjAT5mcfRgEzExlYPHi4+EDUN5Wj9uJFZFlhfGSSi1emCOcNYPNi1vMIQEGwIogSwWCCfEFe8ve6rmERilgtJnKpAquavGzeuZnXXj/BimY/ggSpdIGcKi1xUpvKO8mN5PnLr2/n+Ok+PjjSRe9kjr6pPH1jcWKKlXvWQFO1D7vbw7mLQ1wcTPCX39xDPBzlp0eS6CWZZi985+sHmejrIZ2IU8wXuO/eQ8SDM2S1GJP9CgHZzf/59GlKJRMbm62ksDIWVtiw0o/HYqF1VTOnjp1Hp2z7LVgs/Pq1ToqKjl2XOdIrMRw6xWhcwmtMk1AsTGQs/IcfH6Uo2YhHJ7CYBf6nv3iU5187R0/ExIUJnfHwJM1ulQ3NbuoaKjFfDFPS4aMreY51n6dkcFAolIjF0pztmkYzO6GkUDRYQQCD89YP4Z8Gn2TtfpKYK0rSEl5qSS7iq60nOl3mReczqWVb0N8OzElGOrw+4jPT1K9eA/CxcpPN69YTmZxAFMUbylNm4jEko2nevt5gNJYH1ERxSTKcTSaoaV3BRO+VG+4zuq6TTSZweLyopdJ80UMtlRBFkXzm442UFsNdWUkhk6WyoYl4YAZXxfKSQt1k4+9f6kcXRIwipJJpZFnls2Iv8EnzhU8Sd1OqlZ99FGNXs5l//eguerv6qG6oZ2Q0hCBZ2LbKwZ5da/n7Xx4nWDQCZia7CswN0y2OmTmDh66O8zgcLuKZGNmszMney4yk7ICCSyqQ1B0IgkAmrzA9GULRlt5jUSvhcRgxGCUc5gLf/PJuOi9coaCAJChogoFQemlnoyRaeWdQ58vbXey3WXjjvYvImsRQROe51zoYCcq0ekTu2V6DzVrHlb4JOidl9q+2075xCz/69QnCeQtIBr56dwtmkwG5KBOYCbFrfQurVjUxMTjEmdEEotHMT98NoJcUqt0Wav0OJkIp2ttd+GrrMEjQPxonGIggq+WP4VRvkongWWLpEiXByk9+fZJEQcCKjqZD0WjlRy/1oSPiNuSxdZ7ki1+6k7qZKC915LD0o4dDAAEAAElEQVR5FArZo8hhO3K2FbenlrwyAxTw1MnEQ7/AXW8kFXSQz8bIpofwNsVRFR2DScBVJQIS/+LPP9n36UZYTjI8BSw+wjbM/mwJBEG4F/hfgUO6/rtXobc6nRQLeaz2cnJpNFvKXKuqTzZpPFeFdVdW3VRXeDFC42MYTSZSkfCsuLqR2MwUBrNlXmZt7nlFgxG72z0vTC8IwgI14Qa8XqPJRHhiDJvTRUmRESUJm8s9+3flZDgVjVDIZdECpWsGChcjEQphttnQdR1vdS3JcAiXv3ywuJmChUsq8OjeGjp6w/RGFpJl1VC+fhEoLoOCJ2hFauwq0xkTitGNAIwkTPzkvQh2UeeL2x1cGoozkvidTEB/htauwOBIBEkSeOnkCardBkIpDYvZyM9fukhRXbAMtQoFNrfY6RzNkbtKv3am6MLo8LChtY3fvnaGFc1+enoK6ILOV/b5kSjx8w8jCBYnr1+Wl0yj66UCTx6oJBIsIpmtyFqa7sEIBeUiSklj7fpV/Oa3pxiICRg1GUmTUU0LlTpVF0jEk+QUgTMDCnNSRIloufrgsJux2O1EZ6a58+AmAuETpCIhUvEUe5oldmxexS9e6uTIB6dByeGvk0jobv7xNyehVEAyGGlwGJnMmLGZjXzt3krq29oYHBjjxcMT1HkEIpE4lZU+xmICR6cL8/axYykzbfY0T3xhJT1XRqltrMZ8cYwnv3qIN969yLkJUExuVriLfOeJB3nvnZOMDE2QKcIqr8yhzZU4fV4K2SwVNTX86GcfoIsOtlTmsNut2I1gsUp82J3lo0GdVo+FL24UaGxp5q1jIwwmbrsI/Gdo7ZYxNwjmra4p2yCbrcQDM8u2tl+MueRzscvczZAMh9A0jZJc1umuX72GZCRMSZaXSLtlEnE0VcVoNi+VJBME8pk0BuP1h+8MJjOpaIRcJk1tZSWpSJiqphZigYWZkXwmg6brjPV037SCHZ2ewumrIB6YwVtTO19pNhiNs7H6+vFa13WCo8MIooi/vnGeg2w0mTH6yutruYWeCmOWjCKVD2qADPziSAIQ2N+iYzAIHB68Vh3oNuAztW4DcZmurmE+PBfE2TlDXjXgkXIc7ZIZmDhNIG9GEMuUiU11OomsxkR66RoRjVYCOZGH9q3n2d8eo7XeQzqQBMnGrmaBvZuaeeW9K4zkPVwJG7kSTqDr5vntfWudyvZ1rUxOhlm3YQXnLo4xFT1FIJzi0S/sZ2BwkpdOZLDrBcRSEdVgXUITzOWLqFqZ5yxIRhDhShDAglmS8fn9jPX3s35tE5I1jiJnCE9NYtXz/JuvbuK9U8OcPDeIy6iyur2NuGLj7bMhzlyaJCtrbGxw0T2joButPLzNTVO1g6qmJv7mZ8e40jOGd2wCi9OFKhf56fshBLG8plIlM+npLH98dy2xSBRbRQ0Xr8xwz/41xBNJfnEkgWawQTHLH31tG4GpIBNTEWKJHBa9QCF0iFwmTmPbFmKBaZKpS7hqpgj02rHamskkQuSCNRhsE/jbjmNI6aSnV2IyVVJSQ1SsvDGX+tNgOd+Es8AqQRBaBUEwAU8Cryx+gCAIW4EfAY/pun57lZBvAJvThctXQSoaxV1VjVLIl22Tl5nQziEemMFTXVN2G1KUefeixb+/3kCcZDRic7kxWawkIyF8tfWU5OKSv/NU11DIZpZYe85VW6pb2m5i52nAXVm2e7bY7LgqKtDUhaRXLuQRBBGPv5KatpU3rYxoaoliLocoiQiCgKeqGuN1dD6vhlHSaGiqwWYo0egolC0kPwV2tFj4wVP7WeW/2gJawGEqW+HW+cwYtDwG9VpXqVvEZ2btCoLA8VGBI0Pg99j49tfu4Mm7m/j+Y2uZSmhEiwut2dW1Zh64exP72kQe2mRGVJfuFS8cneYnL17mju3N7Nu7Eb+UxqAViQQjtK1bx6ZmG6gyK7wyD6+Dr+ywlifFdTCZDJjtDv7b8z388lgST5Wf3fu2kFd0zh07RWOliQc3u/hXT23nLx5fRa1xgVebUi08/UGUrtB1Di6lIiajxMTYNA0rWjl69BJjeTfRjMaKDetQ8mly2RwVLok77t6NZqvi2dMZBKOFqZyVybyDR+9azeN3tKCrJUoaFFWRD987yfh4kLZaG786XSCYhLb167lr97Utb7NRoKK2ngqPlfrGatRSia5LvUxFF+5fLCUz2NNPPKvyy6Px+Y3PZLVy6nQvxzrG+dFvThPCz2N7qti/rYk79q+jym1k685NrK6zIggCdRUWmpqq0FQNSSuCqqDm05RS4evzMj85PjNrdw5zna9UNILTV4FcyOGtqf3EcmmZRBzJaCKXKvNUU9HIkiG9OXfQq3nKRpMJg8k8HwfVUnlAaS6+ZhJxJIORXDqFIstLVCn89Q14q2tvKKdmsdsRJYn6FauIBwNUt7SRikaW0ErymRQNq9bgqqigurnlhu9PFAWyyQXbZ5vLvaw5D13XMZotmCxWYoGZecvpTwonaf7ym3u5b+tS/fvygUFnVYuP9pU1IOexqLc+eHQVPlPrdjxl4sWzaeIlG4/du57H9lbzr/74IJU2jeGEaX4+xqxm+OKD29i10sqXdjiotiyNuWdH8vz9L49jM6js3L2BnSus6JpKaGIcm8vF7i3l/L/ammdrVY4f3FeF31xe05IIJrOJYz1J/uuvO+mPStx5zx42rF/Bex+cw2nWWe/L8e++f4jvPdjIoZXSfAwRBIG3rmi8fKF43Tkaq1lkZiqA0+tlbHSKY11x+gMKdW0rqKnyks3mKSkldm1pY9O29fzD2zME8haSJQujORfrV1TxxCPbafaU9+dstkggFOP1Vw+zeYWbo6MG3u9T8Pm93HnfPipMS/doVROxOZ34Krw0NFThtBvo7xuhbziy4CpqtNDfM0QykeaVjgzHRxaKgHIxQnjmKDn5CN6GKYrJehy2/VTW7qZU9FHXthmTtA5BEFByBtwV7ei6gKpo5JIlivkSJ45qhGduXQnlYyvDuq6XBEH4F8DblHu3T+u63i0Iwv8LOKfr+ivA/wU4gOdmb8C4ruuP3fKrWwZESSIRCmCyXjshvxwYzWYSwQAGo5FEKIi3umb+RJ+KRXH4fNcMXlQ2NlGSi/PtL1dFJbGZKfKZDDG9bJ5hMJmITk9RkovXTBl/nGal0Wwmm4hjmE24gSXaykazhVSknKBLH5P8L5HfuQnkQn4Jhzkq2/i/fnaWzS12/uTr23n21XP0fIqwNRLMc+LUFWaS15aRQ0Ub/+Wnx0nLIn/6hVYUWeGfPopcd3r30+CzunanYiWOfnQGnxUMBhGbVCTPwvrtmpQpvHSW1Q0O2tub+ejSBfKLtDCzmpW9TSWMokbP6dNEikb++P5qEHROnepmMl5ipV/iqS/tYLC7B8FoBlIIRgs//zAEgohgtCMA3WN51HcuUGnVqW+oJRjNMh7K4RyZwGzU+eLdq/jVu+MktfLrW7x2t9aVWNvq47fHgiiA1+tCkWXGJiIMRAWQjAxPZ4lHLnN+2khHKIwJE0eOd9M3mZ7n5EFZBumNYyPoOgiSmQIG/vloFLeW4c++dZDJiSDdoQSXYhK8fpqUYgRM5cq3qoAgoElGXnj+PQ7sXEH/pU42tdexdt0KXj99El2Q+MJmK5piY8XaVQSTJa7EyhveQNxE/2uT87xsoFyp1ooEpmO8c7SPBw6t4/SR01wcA0QTJwYKdA4NYTHBn31jHxfOXOTI5SIZayWlVOSWue+f1bULYLbZSIaDN+xsfezfW60kIxF0TSMZDmFzu0mGw/NGGnK+XNiIBabnaWfuyirkQh77oi6YKErMDA1gcZTNPOxuL+lYlGI2iyhK2K4yq/hYY5BZeoO/rmG+cLAYkmQgFpj+2OT/Zh23xZiTyJzrGoqz1L9EJIy/rp5kJMSNqsg3Q0YzceTEFcZDOea03+cgCCK//mgaAdi3xsHdd6znH545S2jRYfxW8Fldt4Jk5PipfiptJewuJ1UuibFF5qtFg4t/ev40HovOFx/byOBEkuAiERVdNGMwFNm2sY7+c2cYGE1x7yoXu3bfx/lz3UzEdPRikW99dROBsXHsThvS7HI7OyFydnQEweAGI6Q0lRdeO4dBL7K2xYe/uorsxSD9vcNQyLBuRQUZOcr52Xr64nVbYS7wyN46jl4KMBw3YTUb8Pl99HQPEs4KZDUL0VyBc6cvMxIucvbdIIJgwXh5BkkUEAxL18P5oTTJzHkmEoAIh4cF7GTZt8bDnn0b6Bw+Tlz18NKHQ9RUhogWTQhSWa4TyUidR+Sjk/001djRtTHUbII999/Pi290ANBeqbBtTSVqMUdDSzNvdl4As4OCYMVSdZi6OnHR+5OIDOmYTXkGup7DbF3LZH831srLgIS7ViMZfBmTX0WM7yc77aVvbJKjo1UEo4N86YufrmA3h2VxhnVdfwN446qf/T8X/fveW3oVt4CrB91iM1MgCMs2wyhPC5erwoIokIyE5mV8HB4vsekpxKv0xOaFztOpsu6l0Tgrqj6Jy1+eWl6uMLyu66il0nxAhAULz0w8RiwwjVZS8dXWEZspc/P8DY03HL74JNBUlfDEGEqxiMtfRSoSmbeL/d//8QKayclwuMjRE92MRz6dgUakaOHd7iKL3X3mYNSL7N3gp3csydBoGFXTbtfw0Tw+i2vX7xA4eOcuLp3v5vJwkpxmYXdTEY/dyOlhmWTJQl8UBsMpPrh0gRqvEbeliFlSaW6o5oWTYSq8bmxuN6FQnAoblIo5VFXnrc4CgmQmUyzw3keX6R5JklDM80FQkIygZNE1E4LBSE43MxPK8vhdK0gl0rx4NoEoGbk4U2B9VYn1bWbk65gJuI1F1jZ6cFgNGESNomDnx6+PYjfI+BxpPDaJR/dV8P6xHh740gF8ngFODhYI5Cx82CuzWOh+DiPJpT/b3mTgC/c/wHPPf0SDR+T7dzfyq/fGuBz14BTzfPOAh5mZEO1rW3n9g8s8+cV7OHO2h4mZJDv27OHdt08yHeumIJSrONVVHjKZHK+9coRAWgDKyZJdLPD4/mrO90XmKUGirqLrAumCzmDaiaMzwEiobEMuqEUe2mDEbnfywfkwvb1jVFVXcLfFzgsfjCA5l+eC+XH4LK5duNYVLR2LocgFHB7vkkP7jWA0W7A5nRRzOdRSiXQsumTDFw0GYjNT17iDGs0W0rEoTl/FfLKqaxrOCj+JUBCz1Yq5vuG67nRXoyTL1+gVz8XUwMgQksGIu7KSbDKJrmtYHa6P5SYvF9HpKRAgG49jcTjw1zfOV5HNNhu+mnKn8up9Z7nQRTOH+xdMkK7G2lojNrOBYDxPb+8Y2dsjL7xw/c/out26qYkKv4/TZ68wEBFocsqsrzPQP51jKO1gPGNlLK0x+vQRNAzsX+EkNDnD3j1r+PB8ALMBqhsbSUTC2OxWRF0lEQ7RNZxiSvGCSeKNj3qRFZWBY32IpvKeJwhCeb5ByYLRjiBKDIaKPLzZRVv7Gn78z8eIKE7GT6RwGwp8YbeTZO463G5NYVuzBYukYjOVf3d8SOX4lUu01VgJxfN8564WLnZPYrebefyOZjq6Z7gUsnI5aJh9LUufMlUyc2EKEMux1ynm+Ktv7ODixUFeeeFdvnZ3O6cuTHAp4mZqUufedjMGvcjK1a0c7xhj0+oaGlvqeeaZd9n5rYeJFwSOnuhmNKwAZpxWAw2N1bz86nF6R6PoRtv8KEpstBlJtOBu6kMyzuYWukRJyeJtyKMpg6AJeBrKvwv2OZGEFcjZXkR9GlW1s337XiLpd9myMcutms18Npj0twnFXA6zzY6AcFNNyWwyQSwwTT5TbhHpuoa7sgqDwbhExkcURfwNjdc96SfDYdD1+VYfMBs8E5/IIWl6qJ9UJEw2mbjmd5qmYbE70HWdfCaNw+tDNNw+YxFNVTFZrJistrK96nUqJ0nFzAc9MtlPYaBxM3iNBR7d4Wb9ykpWN7r5aFDn6LCwLFvXzzvCOQPvfnSZk71pjg9piLrKljXV7D24nW3NBr57yEu7X0EVzWSxs29DFQ/ft40VNVacVlhfpfPy6QivvX2Bjbu2sndjDe7qekqiBWFWk1QRLHSN56jzW5cMwpm0HH/9xDru37RQid661o/DYeed0xMcWmPl+w/UU2tKsqbZy4cXQ+S5NsFpdOus3rCW8Ex43o7YaBC4d4OT73x5B3ZyGAWNhw61k4wE8brMrF7mMHhZEF5hJq7QeWmQvAJNzVW4fV6qHeAxFtm31oHPY8MoishFmVjRyG9f7+B0b5IPr+R49a0LnJkQOD1aPgCIRjM/e3uc4EyYPdvb2LVuIWE1G3QaW+qoshQ50FLCSgGfXWflhnY0ucBTd/iZickklPKGsb5apdbvoLmljrYqA8+fjPHM4QAfdsYx+uoQjbedP/yZRkku4qupI5tI3PgxikJ0emqehlbMlSkWwmzhYjEdwe2vxFdbv0TVAcqDxTana74oAGUObTYRx125fKWB8OQ42WSC0MT19d5FScJksaCpGrqm4qmq+cRDbzeDrmk4vT5UVS1TQa6KeUaTGX99w21xN11yXVXmrjUGNjZZ2bdzJUOhEi+cSZPVbk9V+LOO45cCvH2klyMjRhKKmVX1NlavbuChO1bxQLvAwxsk0HVSuFjTaOPeOzdxx+4WfB4H6+pNTMR0/vbp98Fg4/FH95IryHiqashqs4UGQaAnCGaziatnae/baONfPrEOs16mGdR5BNZtWssH75/DZLXxL7/Uykp3nj1r3fSMRK9rnmLUCmzfuRZRlBgMzNI4BJFtjSJPPNDOtpUunA4r29ZWI5UyoBTY0Oy4rjfD9aCrCnlFoLNrhNFgjlVNHtw+H41VZlBl9rWJVNhFfF4nclFG1eH9jgDPvNLBQNbPC691cOxKgg96ZFKlcgw8Parxq9+e4dCe1RzauxaHMKtTrOuYjH7Q3Uxe9pGcKe9HTm8TNo+fXGA1asGFp6H8+ExUREnX4q9dgZyqweqfwreil6L8Go99OUfLilufOfq9SobNNhtyPl8WKr+Jp7ycz+OrqZtPhiXJQCpy/SnjG0HTVHLp9BJBdKPJjPsTujFpJQ0EgfDYGKmr6BiuCj+CIFBR34Dd7UEu5G8oPr8cxALTS/jPBpMJi8OJq8KPt6p6SUXlf/ve1vn/fheo8RjYuKWd42cGONx92zQuPxdQRRPpTIFdaz0YtAK6ycEzH47z8msn6Z/K4rBb2NzmpMlZbvucvDjBUFc38VQepVDg0K5mtjdofOub93P4g9Mc6QxzpW+K4emlG/a+djdfe2wHNfaF0o+KSDAYI5VZ4MR91Bnn129cIaxVoOmgaiouq8CGjSvwO8qHr611Jb6y0zHvjjc2HWespwujBNuqctyzQmb/CgNb92zj1PELXAhZeeb9IWQVrvTN4KmpZSj08W2sVo/MF9p1vn9/DemCyksdGaIZleGhad568xTDGTurai3s2buJd48N8FafwI/fCZDSnFwOiMRkMzndyvkpKF1lkaobrXj8PiSzleOdC5yfmGzlvz19mH2HdrJ1fT1NFQYisp1/fuYjNu/cgtMmYRUV9rQIrPAqtDX5cVdW0XNliIe/sJ9Gl0oeK2nNVtZN/gOD0VI2I3LcRF4tHY3gq61Dnb0/Zru9TDn4BJrpksFAOha9Zi7EXVm1rDmIORRyWRCEhc7bVYUTb00tFocTi92O1emeNwP5NMjEY2X+86Jr+GrrKORyNK/fSFVz6033qtsJk15kx9Y2ZEz85MVOBPNtk1P7XCCU1ljT4qPBUY6HR3qyvH24lxc/HMLjduCxwt6WcnGsczRF55nzxGIpRgcGWdlSxeaqLD/45gF0XeWXL5wiXLDQ0ztOXl1Yjy0eja8+sp2dq5ZSaVLZIoFgbF5BaSQm8MuXz3N+SkTXBUqlEqKusqG9iZa68ndiTpu/0VmO1YrBycDFS5QUhRoxygOrSqyzBXj0sYNMTcxweULmb1/oJ5IsEE0UsXoqmI7JH1tgsosF7l0r8r27fLTXGXnjUoG+kMbYdIIj7xzmve4iTqnIvXduoiiY+PXxBD9+J8DloIGprJnBhBnBYKQrKBIpLM1PBFHCardQ1dDAybMDZJiVexMEzP6zaFqOltX3kY2U8ybBdo58OojT14Imm0hM20lMNJBPmGndtIOBi+/Sun4/SmoVJquEp14v+xbcBge63621ze8AqViUbDyOze2+buJpdbrIpZNEpiYwWazXDEyExkdRZBllXJ5Pfq+XBCcjYYwm0w2DdVVTy62/GcqqGMlwmLpVq65bHV7cjrzR8MdykAgF8VRWkwgHl/x8udPctxtXAvC3PztKVF6oZv4+Q9d1Wt1FCpk04ZyRtppK1qxp5P3zEUpAUTfhclgIRrMcOdbJl564j+lYF+PpEja7lTVbtzByuRMll8G3fgMWywR9nV1s3dbO8FuXeK8rC5IJXVOpNBeIFEyc7skQmjnMTMaEOHuLVdHCs6fSLD4H53QL2ayGuZTi2LCT48MhwM5//sejZBQJUVSocHtobq7BeCZICZDMdnQkEukCjzyyn9D4GIVikSPHLnNiWEcwmInrRn774ShxxcyRoW5E81IO50qvjCjo9EVN8wF7+xo/a9c2M9LbQ5VNockscnDrGkxmI8fOjeBXinSMaASfPUkmp7O9vkSxJNITLKGJSxMis55D1UVK4kKAfuVsAvFsDM3gWfLYrMHDqTO9yPk8fSERQTIQzFsIh+Nc7J5gOqnyjS+vY2RwjGNnB/ng3DRmq4Vo/hIzaQFEKKWjCIKIrpUwfEIt6s8yirkcmWScYi5HTUvbNcmo3e1BzudIhkOIooi7snrJnEQ8GEDVVKYGenH5y7H2eprC+UyaYi53QyfR2+Uw6vFXU8xlcXh88y6ji6uwixNrq8NxSzFSKRbx1tQtuYYoSfOqQ/+/hGJw8t+fuYCsScjCp5ux+bzBYyxS5VAZm4hRWeehfV0rQ2MRprIgY8RkgUpd4f0zQzx+51q2Vlo4MTSCKEmsWLeG8MQ4+UQct7+SVauydJzpYuvW1QxMXKEvrNIfywAWHEKWki4ynhB57dVjDEVUYGF9nxkXOTOehrlYJBoZS4FJzxLIGPm716cQRAc/fPYiiiZgVBWsdhNtK5u4NBCFdHkPkXWRZCLNww/uoJhJsXlbO2dOXqJ7skhCMSNazLzfmUTTBd7qGUIwGJcwDz2GAmsabHSM5OeLBS2VJvbv38xEfz+iWmBXswujpnHPffdzpeM8Q9kCkZyRn/zmJJm8ytYWG6osM54USchLY66gFbEKCjlh4TvTFzXxf/zoKIrJtSQxtziM5K2ThKaKWCuGAAOOCp1CLEcxP4O9to9Sage+yo30XPgVivJz6jdqhIMfIprLxYxsSubpf67Ebcvwne/e2uDy564yXJKLGC0WzFbbdZ14cukkvpo6dE1DVa4lQ4mSAW9VNQ6P55o23BxSsShWh+NjbY8/DpGpyesmuIvhr2+gef0G0tEoura8dkZsZorYzBThqQligWnCE+PEAtM3tE2FciIdC8wg8NmgIQiSgZjq+INIhAGMcopvfnEHjxxo5q+/tgGDXiSfSpIrlitlK2tM3HXnVu7fWcOXnriPD949xbH+cotocKZAx+EjVDW3oEsmnnnlHB2jCiaDhJLP8o1Ht7GjpdyqW+/P89T9K9hWX6Klys4jj93Bytl91ykV2N4IhusoGa2vUvn3P7iDle4cOgKeUoDNK5w8vt3Gn39xDRPTYd58/yK52UE/QTLi9lcRKxg5fKyLkdEAU5EiH1wpUJzlA7e4ZP7lHx9kZ6sJ0Vyumt69RmJ3k0qru8CDexr4wh2rqCLEfevN1NmKvH0uxE+eOc0vTxTYvqGBLz+6i4sX+xkenqLG7+Ivv7Ufj1HGZTOye4WJ3RtqeOKxXayqWrqO6s1JvnlnDV/ed1VSarCU5X4WQddUkEx8NKBzYtICUvleZjQLPz8c51LYzpoGO2+/cQSrqPDH33mQNc0eokULp0Y01MVJ+O8hzSebSoAOtW0r5zXKFyMenMFbU4eqKPhq5wa/FqCWSviqa+cVgG6EfDqFw+tbor7zSZFLpQh/jEup0+fD39CI2Wot68S7PB/7vHNV5HgwQHB0mND46LIUH0RJmjc3+iwgo9uRhf8xetj/I3Bgg5f97R7+7Z/fT4NDJhkKkp0Nf6ZSmsce2sHODTV858u7KeZy/NPrA4hGM0XRzomj5ynJRRrXreOFFz7infMxCrJKMZ9jx/oqnjhYpkOKxSRP3VXHY9vsWMUS9923g30bZg9uqsKmWp1Ky7Ux16Jn+esnN/Pw5rLrq7EYZZVP5cAKif/5BwdxGkp88NFF+mYWOmoGixPR4uTwmVH6h8OMjgU4OZBfkIMrZvn+F9fxxB21iCYLgiix0qfwxe0O3CR5ZKeXB+/ZzDq/wtYame0NKt1TCj9/4TQ//SCMbrLx0L2bkQxGei/3MjqV4i++tY+9a+wgSLRXKGxptvLFR/dyaNPS4pxNKPLoZit/8cQmPNLCdKIgCJTM7qV695palnttTFO5Zhhv3UL89q8aw7fyCqWCm3w2Sl/H+zSvehSrcRc2jwl3wzTOqoUOnC4I3I605nOXiUgGI9lEmHw6hSwr5DNp/A2N860mg9FEdGaKYr5wXa94p68CVZGvqfjquj7/YVkdjjIn+BYQHB/F4fGSicfmTTluhDlu8nKh62Ve3fTwELWtbUwP9tHYvoFEcOaGk8yiJC1rsOR6ELQiJkoUxU9neegyFNm+0snZ/hSZ28w9/rxAMbl47qUT7FtfQTaZICernDo/jG52IQBXphS8750kkynQH+ykJyDMVzpNBpF1O7Zx5PA5To0BJieaKhLJ6kyGprC5C0xEioAZm8VcbvOaJhmOyFy6NEQ0Wx54+8KOCqqrfSQzIwzO7uGCKnP3BgdmOU1kcpy19Rb89jwPPPQw8cAM04EoY2MB7tq7GoPBwJWXRsFgJF6y8l+f70cwmhGEEuWBOHXJ4Saa1ek43z8rbWZGUGXWrWkjGkmgkyKbTDAzE+KrD67HX99AUe7myIBCWgVBgvc6QpzpDjEet3NXpZVUNM7J072gKdy3twWzzcZwzwBnuk5iEkUMemm+2vHAvlYqq/10vHYUSfMsJKzqUpH8OnuRx+9o5q0T44wkrx04avXIVDoE9u1oI5nIcrlviozSz/Tse1oMg7MCXVVul5X4ZwZWh4vo9BSBkWGyiTiCKGC22ubjmt3lIR6YRlXV6w6+VdTVkwyH8F7FgV0cc+eQDIduqpv+cYgHZ6hqbiU4NnpT+TP4eLOOxZALeTzVZddOyWhCMhhQSwpyPgc3eb2fduhO13USoSCuCv9197GPhaawu9VIKCkzkrj+IN0fAk73xDnQqmOPRUDXGB4NMhQpgVTWvX/+pZPU+i1EL4fJqRI5YWGPq6qtxOqx8zc/O4LiaERTivhsApFYlplQklQBwICEWo5fygQFrcDFzhHGAhl0VefetRJr2yoZC+V57cJCgtjuV2j2mUmGAlS7JbzKON/92i6K+TyqLjDUP0pjnZu9+zYz/fxpRpPlpPK3ZzOAjjDr8MlUmsXD6brRwvnLY+SLJebSu3q/lXXrmrnQNYbdZubiseM8eM9mUokUosHIudHR8hoxmrgyVaT06jkGgiqrs2kqPR5OnLjMyEyOO7ZUUuGsx+n18fabx8krUGGWiBbL19/SZmfrro1cOt2BKhdBWriXDjLkVCOaZEYo5fnmnTXEhlqoWHktbz8bh1KmlUKmROPKOxhWXiAe6kcyX3vwtLtM/NX3ogiSwK3Wdj93ybDbX4nRVJZUysRjWB1OSnJxfop5nkpwA4qX2WqFqyrC4YlxJKNh3lZ0boDhVmC2lP3lS9epTt8qHF4f2VSSprXtjPd2U7dyzU0dkW4Vf/WFRhxeH3/zqw5yfHxCrGsqUimPZiq3StqqTNyxfz2heAfdn77o87mGIAj0p1ykz4V4ZF8jO/bu4NjJHoRA+dSvSWaOjijsaPEwFS7MD2sBpDQb//mXHZREK4LZSHulwgP71vLL17u5Y3Ml6UyOQM6EIEDHpEbshTOMxjQ00czLHeVgudqnsGrdao4f7mAoqs3HDQcZdm7dSHTGgtXlYSw4BggEx8fo6hphIFjCX+XjbN8QiAYEw0LgFU3l593e7ue1U0HS6tKDzp5VVsySxnRKQDAAJhv/8HIfqi5QKua5c99uBLOdnuE4Vz4YJFK0zk81A8RkCzEZ3MYse3eu5tz5Ad66XEDX3Lz6YS9ttQ6mYjJGo4UvP7yVl968wKXZ2ap3zs5gEUZ55P69tI0FeLGjrDm7q83Eg/fs5OlnTjKZtSKgYzAYEGatPAUlX578Npbfy/Y1ftasaeLpXx6mINmIK1bOzuS4nhoG8HuXCEO5ONCweg2RqUma1q0nl05TzGXnk2GzzYbZduO2+/VkypKRMFqphKqq87F2uZJkN4MiF4lOT2K23F4agLemjkQoiLuykvDkOB5XNYlgENMNuou3inhgGk91LfHAzLIttMViGtVYrjJa9AL3HtpKX984I6dv3/Df5w3hgpkXLmb4rjfD6vWrsDg9qOe75oWRepMOcnqRSpeFgbESwiIG0Eun4ghE0R2N2IQ83318BRe6p7gymmRHezXPfTQOGFDMPp5+7hz5koAqWnjrcgEwIKkZtm7dRmg6wLHLUeaSVl3X2NjiYMXaNvLpNIP9YxSwEAuFScRTdAylcLg9hOM5hgJnGI0L8/FakAxYyfPY3go6B6L0RJbGm9V+lTWtVbxyfIq59O5wT46zfafJCRWMBbLs2r+P00fPcmUyR6JoRFjUKSsJZq6EAEFiXZuLttZa/tMvOigZHLzfEWKlX8fuSnF5LMe//bN76e8b5ZkT5ZmfSyMZ8oXzuC3wl9/exw9/3UFGt+MWs/zlU7s5e36A966U97uyJGz5IKyWVPJJGUdF+btUyvqorNnH9PjbhELPU7cujygN3PAznleiuEV87pJhKOvwJsNhSqVyorkcOZ+Pg8lsQVvm1OVyoGsaZpudqptMOefSKYwm0xJ93+XAbLXOUzxcPj/pWISa1hU3pH3cKuYOHrImLevwtX+FgX07t/EPL1wkUbIwNpPgp78+ynjaNN+C/kNFVjWQycm89uL7dMZcIC7cD4dQ4KF7dtDdPcL4maUbmGp0IgBuMYtW1Mhm82iqhtEg0lBp52GxwBtXVBDNDCe45nPqi4j88OfHiBQWPgNd19m71s14TzcObwU/fvYsaTzsajPwXkeIPetb2LhBoKallX/8zQkms4vWaSGJbnbhthtpaqxh/ViIYFpmJGlCVxUQDdgsZuwOG5BAVxUktUjR5AABNIPOOx90kiuJ9MdMgOeGa8tuNfDRRxc4NZRHlxxlaaKkncGkDhixUuDN9zvpncrR6BQJpGEyY4ES9A1MEYnnmNv9pqNFLl0aJJEvB+KprIW/eXEEwWBGL8n80QNNZLN5njmZwqAVOHouytGLAYJaBdxkRkPXVNZX64RSJSLF38/uhyAIpGIx5HyOmtYVt/Zkuo7JaiWfvn2mD9lkAndFJQaT6Ya0hJKiLEnklwtBEOZVgrxVNRQyGRw+3++M+2swW0iEAsuuClea8/zJUzt593A356fKncCf/vooKdXK9WQt/5AgGMxEY2mC00GOj0zAVYODO9srWdfeQs9Pj5FbLM9ltKADJr2ATShQyBdQVQ2DJKArOZ68t4VnPhgnpVoJFK7dezWTg79/7gIlXaSwSJGn1Z7GoEMyEuHoqQE6426afQ4GAgqFvMiX79+Ar6aOk6d7eKersJAIK3k0QcRi0WlpqSUUiOC0C5wZLqKLBtB1DCK4PS4koVwVEItJVJOTnFAuIHYOhEgVNE71a2jSjYdXTRQIhOF4xziKVHaOjRQtRKaAKRnd4OO3r3eQyGp4jSqCIBCTLVyYgnWVJXr7JihqUllCUJXovDzMeLAsf6YbrPzTByH+578YBkRSU3V4fHtJhV7B5pWRSyFmpp7HVZvFZDNws6QjFTShymbc9clbHkT93HGGoaw36W9opH7lGpw3mWC+HnKpZNkcY5G0WkV9A8ZFVsq3Azo6vpraebmhZDhEPDAzz4fLpZKzovO3RsfwVFVfV4bokyAdK/PhIjfg2vnrG6ioq+d//f7eZSlMpHIK09NBFE2gza3w1398N5UV9vkkzCEVaPdmeHKfi/VVt79y/lmGCKzauI6mFS2o4tKDQRoHTz9zinc7rnU3EUt57mjM8pdP7WTjaj8/enuamO7m3TNT6IIByXBz0lSDS2XbmgrMkoauyhhKGUxKit37t2Lz+Hnuw1Eykh+Lnue+O9azo93PwHicvuEQl06d5eHdNfjFcgWg0VHg//Gne2mvLHFmTOW//uRD7r5rG/dur2ZbTYG/+EIjO6pTvHYuzs/fDyAYLBxaa+HffGsbDrFcoX10h5f9u1czFLr55++3FHhoVxV337OD/U0qP7jXT519gX+3pkLhybvqGJjKUOkQ+ZOv72XfmtlBPYOZNy8XOTspleXadJ3JjImXOzJL6Dpzls4IIuFwgmgsw12rBL57VyXfe+oOCqWFQ3K9vcCmigxPHfDgMS5w9N1Snq8+tpODG2/NbOOzjIq6evx19dStWPWJNp5iPo9cLCyRVnNXViEZjFTcYgdu6XXKcm3KrBNoMZcjMjVJaHx0/jGJYADJYLzuvMlyYXU48dbU3tJ+oes6gZEhQuOjlORrVVZcvgp8NXXLHhoslmBqIkAmr6LLWb7/pfXctbtlfp0LqsJaf4m72ko8srl88PtDgSAZcfkq2H3XART12iGrdzvC/OOzp8nivOZ37d4cTx708ydf382z7w1wdlKic0JhJpTCbDbdlKpq1AvsXeej0lk+iJuUZNn2eW0NKzdv4/CRTjqjZbrWltVe7r1zI8lkmpGJOB+9fZi2WhsHGsrxUijl+cGjK/niTjfxko3/+PNz2FxuHrxnM/es0rlvlcrXdlkYmcnyH3/VTSBvptaa599/bx9b6srxa5VX5k++cQeBSA5NurH6il4q8tBGC3ffuZVNbU7+6A43+1sWYqBNyPPdu/wYJYHJtMTX7m7myXvbyi6nwJWwkZc7siiCBV3XKQkWXr+Upz+6cNAQJMNCDBEKZBJTZGMGon07qKv7DpLkm02EIZsQCA+6iA2uJzZ2Vb4nr6eq+lGSwVvPIz6XyfCnRTwwgygZiEyNL5FWE0Xxpm2+TwOTxUoiHJwPZmpJweWvRC2Vid+iZCCfycxLDd0K0rGyfI8iX0vSvxqaql5jOa1pKlaHC/02yJMAdAUNHL4QZn2DlUha4eLFQaaiC8F3f7uHB+5YS1NTDV7HH5Yma1y188vnT9I3NI2JpQOPgiAwlbNeQzcA2N+isXf/VkJjY9RUummypXlwk40DW2pwuW0YlBQNjiK6rmFSkhi0AvdvMLPCWw4SK+sc7Nm1Fp9V5fGtNv71N7dhMkq88HoHb58LEdfLvMeiwclPnj3Lm2dCnJ0Q+WjEhGi04KmswiCUhx6KJZiaDJCXdQRRouio4xfPHsNglFjR6COTiHHffXu4f1vFvNlHMlNkYiJAsaiwzpMiFYszMxOh3qnQ6JQR5fR1bYzdFgG3x8Ox946yelU9JpOEcVHUMhsFKvw+DKJAMAMfHe1icDzK+oocW6sLaKUCuq7z4DqRx7eYr5E+cxmK1Nvys1qcGu+cjxLNqFhFBVlWOHemm33tXlZXKGhynq8/2M6+7S00t9RhNSxsEEnVym9eOsORy9dat/8ho5DNUshmiExO4q2uWRLvLHb7bdUVd3p9ZSe62YE4taRgczoRFzla6rpOLpVAukW9drmQJxaYXrZlctmYZGl8FiUDJosV7TbYd6dUK88dDVLps+O2wIXLY/SOLCT8TV6drz++k6Z6D/X1lQj6bbEM/9zg3Y4Av33xGA7rtTSmVMnMdM56zVqssRa4e3cLNrNEMhRkXbOTO1cb2NkEG7e0ExobZd2spYCxlIVSkU01JQ6tEtFVBa9FY+/udlbVO1jtyvDvv3+QrXUlTvckeOWtC3Sn/fMzFu9fiPKT35xkKOfltU6ZmRRU1NZhsxjK0mEIhMJx4smyTrFqdPLR5TjnT51nx+7N6CUFt8PKXz21C5NU3scLJZgYmyadV6k3RnEZFcZGJkGT2VirQTGFoCy1VwaQ9BJ1DbV0nbtIpceCQVcwmxaCriTo+Co8WEwigihx/MIUR8+OUGdJcWiVAVupvO5W+2S+d4//GgtnQZVZ6S1RyJTXoGgOoUoXkahGEAVCk5cppFUSY60ohRKldBv1zY8i4ELQl1b1BXMXodAreGpuveP8uaRJ3AiFbJZMIo6mlq4rfSZKEtlEnJIsMzM8+Ik1gT8JHB4vcsEyPyTirakjFQnjqy0PkZgsFkRJxFfTtKznC46NIEkGXH7/NbQQRS4ssS+93mDKHGKBmSWW01DmYefSqdtapdmx1sfmzSvp++kxXjmfYTHH8txAgnCiQOdgHMXo+L3kWd4IgiCiIfL1rxzi3InzuH0uXjweZG2lyraNTbx7dobxdPleuQ0FNtSJVFd7GRnNMnC5m8HxOKrVS4XXxe6da3jhpaP4XWY27tnLlfEPWFfp5olH7+C55w+zc9sOYICheJFMKsnJw2eYTMH9dolMLIKcSXJFqEdXFe5ql0hmZC5MSwQLVvSSjDj7sbxwLod47BiP7m9EUUq8fRme/XCC/KJhk4mil1+8M0ZRldCUAo/kdUanM5h0nS/u9TM1GeE3x+McWmVl375NXDzXzQsnIvy7b25nZmyMhlWb6Dzfw/tXCkum3QfjJv77853kNDM1dTpGh4loNMnjWyoYmMlzacbGpV9eLGumCvBhd4a/eGQ1girjrqzEfbKTD0fAbjNjtVpAz5YF35UUstHFvVv9rN/Qxn95+hg72r20t9Tira5hfHSaX3wUxm0s8ldPrUdjkL5IgVc/7KdUUpmIDFMyLUgnCaJEX1TiVl2QPo8IT4wjGSQsdsc1g8mCKKIUChSzWSYH+n6nkmJGswVXxUJMt7nc5NIpnIskKc12O0aTeVlyafHADDp62Y3uqr0im0jgq6kjFpgGvPPGBteLu6loBLPNvsRyuky7qEbT9NtC8wNo8Ru499AGSmonRwZVFjuGTibg9XcvMjCRJCWHwPiHIa02h0hW5Bv3rSUdj6FJZk51hYjECzy8p4aJYJojw+V7JWkyaytkNq+r43x3mngswdDgBJrNz+Bkhj//5ha6Lg9w4Xwv+w/tQjvfiWUyzV8+uZnu3gk8TjONjTUcu3IeQTRw8dR5LvWn2dBsL0sPKjkCGQfBvMDKSljdaOXdi3GymoV0qlierQD6Uy7+j797j7WtXr53t5/nj0zwXkeAlFZ2sAPIahbe7ipwpLeDpGpljxzEHcxSwsjeZo36Sg/PfDiGw2rkB0/sIxkO8vevjXLv9ir27lrL5v4hLBYzrxwZJaQsVMU1o51/fH2Iki6ysxHuv38X75w/zl3NEkaLhfeuSPzXX3ehG8tqFV0hI/tXiBza0UhFXT0r64f45QcBTAYjvgoPklj2lZZKWVQMrK0z8LVHdxAOpSikovi8XyMy2Ud923pmZn6Bt1kiOb4Jp6eVXK4fyTpKOJhFtw7jrDCzeF07qxRA4XbISfxeJcOaWsLqcCzhoSlykXQsisVmx11ZRSwwTevGLZ9Y8P2TIhWNIIoiqUgEf0MjgiAsmSyOBwPzFsvLGZCQJANWp5OSolwTPI0mC7GZKZwVfrLJBMVclpKi3OBAIBIPBdEWVWjkQh50fdmtz1wq+f9l7z3D7DiuA+23um/OcyfnQc45EkxgzqICZSpYWZZlW2vvrr3r3W+9Dhu9Xmdb6yTJyhRJBYoUcwJIAETOM5jB5JxuzqlvfT/6YgImYEAABCje93nug0FXd3V19+nTp06dOoUtFyChOJmwmC7ijZM+TrSNE87bZ2Sb8qct+AcAS8kNkujtvcFrTJDIKgyFBa/vPYNJwKraKgy5Dm7avBp3eTkW4/DE/vducOIwCZwVpbx4eBxniY2P/Mp2vvXkO/SHFUa+v5+RhIXg0TE8ZwZpjZVQL3J0nO/Bl7Hw9z84SDxnBGFmUUM5dXUVvN56hpdPhmksCfJ7v3EPTz97iE6fYOWiWgKhBCf7Azy8wUyFt5SfHRgnmLMiDCYUix1DPoXBauNXdhqoX9zE3/7wGGl1UonGpB0U2LzEwsata2npP4RJ0WhsqKbcY6XP38F4xMDY8AinemIIk5sfv9yMms9wm22Y6lILX7y/gmffHmAooXcIhBAkVTdChb6RCKlUirWVWdZsXkvl8AitLw2gGSa9AsJg5FznKLlYkIpyP8m8ESEEPzkURcowpmyUzfV57n34Lk4cOsHJ1mH6RqLEpIWxYJJSj5Xn336HaEbw4W0VjPkVvv7DwyQ0A0KYaQ8Y2d6gsnaxh+eOhUE1Y5ZJ8hKyygdjJa+LEUJgdbqnDfdfCAfzVFRiqq1DNRgwWa0YjNduzkA+n8c/NICqGvBUVmEwGqflMo4GApgtVmKh4IKMYU3TKKmsIjw+c9av3eMhMDI0oYvH+nowGE3YXK5pueFBX9woFgyQikcnHBVSSuLh8IKzTWQzaYKjI9icrjmzbbSN5fnBT4/QG9DgogVnNMXE0T4JuD5Q/TULKWzGPH5p5Y1DPVhFinvu2Y69PUD9EgdVNRUkUzlAl911tYLNS0rxlHtQzvt57WSIr/7qfbxz6BzBAZV/fPIoiZyCAkRSRznVE0NTzHT3DDMWSLDnbBjjwWE0o4Nyl8bGnZtpHjrEoe4c48F27rtrC5Ut3bzQkqfWa2L1smoOnPVR74mzfU0lx877OTmiPzvNXoGdKBaLkdVlGe59aDfPPX+QE6OTxmBWsZDN6xOh77prB2eae8CgUVNqpqmphpv9cU52RhgdGqW9cwQsbo6cjzDsO061I8+iuhI+dEst53pC7O+e/P5nFL2zNBzN0N3ejSXtY82aHXirajjRuRd/3kB+yojLkC+Fx+qnpaUHT2kJGgpnRg2c+f5pVFWhTPbxiQ/vIBwIsv/sOG+8dZaNm0ZACkK+djL5NsbGzkO+jEhfI5pyhFj6JK5yI6ARGQ1gzNxKKnIaoyVLJqmRjIC78uqtyPtLFSZhc7lRVBV3xaSCiQb8eKtqiAT8BEaGMJrNBEaGUKekgBrt7Wa8v2/ePL2XjRBkUinSyfisxQaTieDoMEbzwsIEnN5ShKJMU+4X4iCdXi/e6lqMJjNSSgxmC3P1lLxVNSAlDreHRFSfpBXx+UCIS+ZEBt0QzkvJ5x9cxtcemt2IX1uZ47a1JQxGlA/E8soLwSpj/Prj23hgaxkZYWZfR47XWzX+4nvHiBoqeP6dQb75w7do808aC1kNGlav4YWXj2E3wbneCHvePstoVIBqIpwWfPJWL6VOA80BfTh4MG7mif1hfGkLYc1BTugy8fqhHv7p6ePkjXaGE2bUbJyxvm42NJhxWcDmdNA7GMCpptm0bT2KADU/Oax754ZSVm/ewOsH+zAokuDoCJk5Inz6fWkOH2llJJwnJm18/2eHaG4f4Z6dTSxvKuNbb4YQBhOlpiQ9EQudMRfff3OMjv4INruNcnsWJZdE1aa/j/5gguWrl1PXVMfpw8c5fbKV33l8DfetnzRsPKYs/qjGgUE7z5wRjIVzLCvJgGqgySv5ykdWct+H7qG/9RzLljdiVjSO96RBMdI8IonGM5R77UQyKnW15ZR57UTydjbWG7hrlQGTFmdJtZWqUhvGXAJD0seXP7Scj99ateBlT3/Z8FRWIfPaxPyNXCaDoqoIRWF8cIBEJIymaSSj0YnsC8GR4RkrYl4pQgi0nEYmlZw1i4/ZZiUaDCw4HMxbXUMsGJiR5UJK3ZvrraqZMEyFEBgKWY4uxuZ0IaWkZslygiP6xKYLuYenLi09H+HxcVzeMmLhEMnYzPz3HmOKj+70Ek9rZMUHK/RsPh7YWsavP74NG3Faxo0cG3PyZ986zIkhONqT5blXzvKTg5OhLvFYkvoVq2k+10MomsEXzfDGW2c4261/K4M5G9sWmbl3cwmHe7KkDW5yioWfHY1zYkgljUV3CgDnh5J8/Zuv0hE0ksLCkD9JZGyEKq8Rj+bD6zLh94cIpAysXVFFZUMDJCbb0uBM88Ajt3P8bB8Gi75iYzo9e2xsQho5ePg8bT0hAH5+cJxDR9oxGSRf/sROfvzWICeHYJE7TShtoHlU5dUOA3uODWA0Wyl3GpDZJMbs9Inbfb4MTquRRz58B6ePNbP3pTe5c0Mpv/342omlpclncVgN7D0X541eG6+djrBpkQ0jGRRF8Ku7y/jKF+4nGQnjcFhZ2VjK8Y4wDi84SiUa3dhsi7G4YqjChcNdj9GiQt5CpH89MZ9CbLwEmXeSTZsIjaSJjTVS4vokoaGrZ8IuqCYhxP1CiDYhRIcQ4j/NUm4WQjxZKD8khGi6ai28TKwOJ9lUSk+QPjKMzenWh7KkxFtVQzadxltVM61HrhqMaFqOZDxBLBggXlA4gZEh3Wv6LnB5S8lrOcrrG2edrOEuK8dbVUMukyYwPDgRvzwVKXWjI5fNYrbZZqzYNNbbTWB4aNqxDk8JFpttWt7iC5MGQfcCx0JBwuNjGIy6iyCTThP1+0hG9X3i4RCBkSH8Q4Mz2qQajCRCIVLxGEIRBYN8+selvtLOmlX1mMX88dBrK7JsqNauqRFxo8huUprZf6iVs52TsiBUA7KwKltvxMxYvpxGV5ZHNtuxKynePhflhddOsn5NHY/dXsvHdjfS0hslU/jYGUSempoKbCSQUuIiClqGUnOKOvukIVluTvC1L9zJliYzTdYQNdY4GzauwGA0sWb7dhxKBr8vRCKrEJYOvvPDN7G6XNy0YTIvbP+gH//QENvWlPPjgxG+/8YQt61xsa1+euxhgzPDI7tqOXFumBI1DlqG4ayXPW1ZfKEUI0NjrLf28bmPbOajt07WnxVm9p7Pkctk2bKmnk/truIzd9diTAfI5zLksykC0Qyj/QP0jaV4ttXMshWLSEYiqNk4ajbG1gbB7uVG7txazWKXHg5x19YaPnT3KmQmSSIDAX+Q3vPtvHqkj1+8dpqH79/Cbat1Y9ogs6xZWUdjjQtNtfEPP2vluSP6x2lxnYdFVTZuW2Zg8YpljA2P8qk7a/niIys4feo8Xf2hq97xu1Fk91IYjEZsLjdjfb2M9fWiqCrZdJrw2AjeyirSyQRltXUTI2SgL8RhttqJBP1kUkl9lTpNwz80+K4ntwkhMFstVC1eSiI8M5bXZLFSVluHxeGYWEBjNhKRMIlopLCa3nTPbXBkmNDoCMGR4Wnby2rrsTmdEzo6l8lMM/STsSjD3R2oRt1gVg0GgqMjJKKTS9GP9nYz1tc764Q6pCTsGyWTTGKyWMhfNBGsxCpYu3YJ5a753b7lljR3rDRh5tLzS66EG0V2m7uD7Dt4jmR+0smQNzsRQiGSM3M+6sBsUnlok40lJVk6Q2ZeeO0kgXCaTz60hi8/tIRMJstwYrKDUeqx4nEYIZfCIpNYZBKjTLOiNIcyxYHwK7trefzhjSw2+zDkojx8axO5bIaGlWtYvaySWCJDIJRACIXnDo5z+vgZ7nt4NxZN/w4HEoLe9k7WLqvgcEec77/URVKaeHijDfOU+SZqPsXjN5eTTKUJh0LYiJAzuXi718BwRNDbO0yjPcFDGy189rGdVJujF54B7TEP5zpHWbd5LbcvU/m9L9xEjSmCqqXIpxNgMDI0NMpg3zBvDTrJWsvxel2ExsdwGrIscmfYURlj9+Yq7lih36N1jXYevHsDTV6VvFDx+aMM9/Rypm2Yp9/swqqk+cLDK0hF9XslZCku70qyKQVHVRcJ7cc4yxS0jBOLpY7ocD1u71qy6RhJfw0icTfpaIqQrxmT/crnXF3gksawEEIFvg48AKwGPimEWH3Rbl8CglLKpcBfAf/nqrXwXZBOJPCUVyJlHovdjreqBru7ZGJYyzfQj39ocMLQlRI8FVX6ikLhEMHRYZKxCN6qmgVPkJgVoRDx+7HY547PkhJcZRWkE4kZZcHRYdxl5XOuyCQUBaPZPMOYNFmsEyEPyViMfD5PIqIr3VgoSNOadWhajngohG9wAIvdRmXTYhSDfkwuk8HpLZ3VSDXbbFQ0NlG/cjWeiiq+epeb37jHyx98bt3EPi+fiPB3PzwxLYH5BVxqis/e7mVlaYYty0rYusyNTF/ZSn9zcSPJrkTBaYZltdYZnYep1JaZ2bhhKS6zxJ+2cKRXcrYnRlfPKEiNm1Y4WVepK4CYtPPKm6e55/5b2FYW4ne+cAuPb7Pw8I5KPv/YNgyZMFLL4TBKDh8+y6K6Ej77yd04RJKe0SR7D3by8xePM5B28p09Ac6MGhBC0J+0c67TR3v/5Ie6I2BgJJjCH8uT1AykUinWr65neeP02b1GVVJeWcquVR4+8/htbK0peDIMFvacHKXCpfLoJx6hp/ksfX3TJ3IKs51n9nTxwqEhBkZCjPT08luPb+AjG038xiOL2LaqnLoli0klk3z5rnJeOzJEe/cY22/dzqoKyUP3bERRJE5vGYmcihCCXxwY4MnnTmIx6qmBIjkzTSuWoxos7FpfTToeZ2hYN740g53/9+MzPHvID6CvVFfIq/zTA+Nksnl23rqVl37+Ct4SB00rVxD0h9jfLTjYd9UN4RtGdheClBKD0YDN6SSbTlNaU0v1kmUTuisS8BMcGZ4wEL01tcRCfrwVVQx1dZDLZOhrOYO3WncQvFuMZgvhsdHC6NjsZJIJPBVVMwxK0DNf5HI5ktHorPpPIjHbbEimlymqOi1FZmh8DKvTSXh8jPD4GNWLl2KyWEnFoox0d+L0lmIwGnGXV06MSKoGo543fxavdlldPZWNi2lYuZrg6AgRv4+wbzITUVfYxF988y1ODc7ULVJK7l2p8MAalcVVZtYt8VLvuHbG8I0ku6qAZfUleMxzTxh0GDU2rltMQ6WdvGrmSK/kvE/h+MkOPeOJJc/968womn7PXj0yTFlFBXetdfP5++r54v0N3LfGxCc+vI3VNXpnpMSQpKNjiI7mVj77mft4ZKuXtv4op8+P8/zLxzjTm+DVVsnPT6QQBiOxvIUun+TIiS5S6IZ7PG/hbHcIXziDploJJTQaKu1s3LAEh3HyehSZp7TMg9OQ5su/egcf2TEZ3356MEf7mWY+9OitWI0G+ts7CFxkahzrSvHj508wENRoa27llpV2PrbVxu99ag03L5JsvGk7fSNxvnhvLeFgiLeP9VC7aBGbVlawe3MV69c0YHN7SOR0HXisM8aTzx5haDQEqom2EY2GFcsxOkvZsshGXWMtna2dmGz6vbKVtRGJP4WrQmC0qDi8ulHtqhxjbOggjStvITDShn94gNrFa8nns9jLIrjqm7G5r55neCExw9uBDillF4AQ4kfAo0DLlH0eBf648PePgb8XQgh5ncYNPZVVhMZGp62ENDUFWzqRwFHiJZ1IYrJYsbucJMJBZC5LZeNqRnq6MFmsBEeGZ8R/XQ4LWbjjwip1s6XQMZoshMZHCwmqZ1JaU4eWmxlDPL0OPV7tggFmslgJjAxhMJow22wkIhF9uG5kCLNVN9rd5RVE/D48C4hnU1QVIZSJD4eipblpuY2u4QTJmfY9RlVSVV2GvcNH51CEu+7cwoqzIdrffaaj+bihZNdhLzwnmZmIYpFSsqlaAwEnhlTe6czS3LN/ItZ6TUWW2nIHr54OYzrXyW9/ZjtS7efMqN6Ri2QMdLb3YlRyjPf1UFFVTkfXEEdb/WSNThZ7snz2sVs5c/wMrV0+JG0MxEy0n04CZRAHoU5XKFIxF5KjT3qZLgwFgso96yysXr6U7zxzgiRWEJPy1xky86f/epQN9Qac7n76/JNK+6O31mGzGvEPDdAxGOXwqBNxkS7ri+kGRbI7xm9/ZhcDnd0k0jkS8SQtPUHG46dRjBYcLjuJvImD3TkGQkdoGzWQ/tlhBgMZfnH8AFmjPh9gJGnhI1tLqa+v4OtPn+WtMynOdR0inDWjGlSyOY3hmP5+eU1p1ja5OXQ+xsX+hpxiobVzDJFNsmX7epKxOCO9PfzknTHylmsyKeyGkt1LIYTAbLMX8qvresRotkzMhwgMD+qTfIf10SZFURBCIRGJYHe6cVdUkEmnCI4MoRrefVCrq/TSqe1KqmoIjY7gKp353AxGI+Hxydjei/FW1ZCKx/Vws3kQQhAN+DFbbZht9olOgWo0ITQNoeg6U8tmJ4xoh6eEfF7DYr/EwkZSYjAa0aYY8ytKs9jMdk4MzdYpk5R47JhMBg6cauPe3etZtSxCx4lZFPTV4YaRXZNR4Pa6uEjFUWVLs7rJyf6WKIGcnb/97kHieSMoZkpMaW5bV8aB5nHeaOvnQ1tdrFpZz95TJ0hiJqNa6ekdIRJLko7rXtaG+gpefu0YHSNZ8hnJ5x5dQTqZ4Lk3WqlqbeN8X5DmgAMogQDMlvu5ZcxAy1hmWi7+YwMqxwYSNLoln370Jp5+9jB/850DRKekgcuqNr7+k1ZshizVNX10DYagkNd4R4Ng9613EhgeJpPN8YN94yhGz7TzRjUL58YBrGy32mlsXMLBN9/BXVqKP6Kxd18zA+Nxtm9xYLRYOdGfJ/v8SQaCOeydIYwqjIaGyCkWUPWQECGz/N5X7+aHPz1Eh0/ww2eO0OfXuGuFQNM0+oN5NqqKHvvrb0IYfXBRdiXVpGIt8THQ3orFVo4gSDIWI5M7Q2XV1U8NuBBjuBbon/L/AWDHXPtIKXNCiDBQCswICBNCfAX4CrDglXUul6kJ0mfD5nKRTiYmZjbbXG5sLjclVTUT3tiLQxKuFfOt3nSpHMqqwXDJpOwGk4ny+smMFXqMmx7nlorHKa2tQwgxQ7kv5KOiKAqlNXUFr5D+ASu15rjr9nXYD7cyfHZmDLY/Y+X/fucYeaONUksO04EWBoOTS0deZa6a7E6VW9V1+VlIhKLyo/26xS+mTPgir7FjYy0CwYmBflCNRKRxYtLh4loXq1c28NaZY6SMHv7fj07oycwVXZn2RU38cH8YJWvH7PThC8RoC1jJKhaEgOEw9J7voLTEyU8OhTkymoR5kq0vhEg8zehogJi0oSkzlbqwODk9DqfHI8Dke3SydZTGSitD/jRnxy0Ts6JnI5Y1ceBQG93DMbpCRuT5IEJ46IqDlCaOP92GYtLfmzY/YDIUOlTGGROEBkYjpDM5NAzENDOxCICZb+0JI0UUpbC06cp6G3fcupaBsUP6wiUXcWjQzHg4yKP31nKyuR8MVjSj+1pNAr0msnutdC4w70IW7vJKAiNDuMsnO/0XJvhGAwES4TC1S5dfs7ZNRc/uM/tqnarBMOvE46lc0lhl5n2+4BjJZtIIBIqizPhGLaRe0PPiZ9OpghNEzw2/c20l1XWVnPrXw0jz9G+XEAo/entcl1PFwxtvn2XQlwKu2WTGG0bvnhxSOflEM8I0/Ru7rMbOrTet4XzvOwzE9RzvF8bJy50KGzcupXMgxHhK5cXjQd446SOp6M8nJyz85EgMKa2ksj48dgOn+saJ4ALMCKOktbWbxY0VGGxOvrs/AVx6wuZ8pHKCwYER0tJEdLbnZrKRAL7zdgSmLPDRPpqjsaOfgcFx+mNmFOP8C7Cc6fAzMBLj7UEXe4bHEMJOaygDuPmrp1oRRgtCVXWdi4H4hU/8RfUGE3laz3URSkpQzbQX9n/+nIY824titPAIkAgqlFfehn/0ONA6oz2lDQq+3rewme4nmx4lo3XiqJx9HtaV8p5nk5BS/jPwzwBN6zZcF8+x1eFkNl/qbEbhLzMLVb7zcbExPpa28q0n38EXF8y18pE066upBTIqb5xLz7nfjcRUuTVXL3tXcjvNCL6wTTXwxKvdhb9ndopeOqYr4pSiK9M49lmDm/JGG3u6AEqmlacw88RbY6hCIkxX/rwBDvcpHO6LThjkC+XkmJWTYzDXUsZT0RQTr59Lc8GyneqlE0JBmBaeueFIvwr9aTBMP68wTE+af6Q9zuD4QXpDyqz3WCgq3QkXf/n0eRSjfn6h3vgJeW4EnasaDHPq1stdOOn9jNF05ZPbhBAzRgN/fmAYkzo0wxCeOGaKsbK/M881NISvKleqd4UQYJqpV99pj9MxuJ+huHnG6FTbuMLf/OtbBLNWhKqPCs0WmSqE4IzfCX6YaoAKIXipJY+nvZegZpuRTendMJo08509AS73uQU1O08fSzPVKTEfzWNGGMvPmu5UuQydO5Iw89Q7ES7+tgtFneYEcVfD2OCPMTnTzDXpv6zRTjb9BlUVKsrFLv6ryEI0+SBQP+X/dYVts+0zIIQwAG4KIlLkg8OFlen+5JsnrnNLJnhfyG5EmzumPKtYyF6h+ZIWC1diH2SyioXeCJecSXEp78pV4n0hu0VuDMI5ffnxG4QbXnZzwsxwkhmGMOgGWyjvRFxJ1i7VSChvvCqG8C8zQghK6jJcKk+w0Xzt8wEuxMw+AiwTQiwSQpiATwDPXrTPs8DnCn8/BrxxveKFixSZQlF2i7xfKcpukfcrRdkt8r7jkp7hQjzP14CX0Zf++JaUslkI8d+Ao1LKZ4FvAt8TQnSgh4d/4lo2ukiRhVCU3SLvV4qyW+T9SlF2i7wfWVDAm5TyBeCFi7b94ZS/U8DHr27TirxfuZHCJYqyW+T9SlF2i7xfKcpukfcbv1Qr0BUpUqRIkSJFihQpcjkUjeEiRYoUKVKkSJEiH1iKxnCRIkWKFClSpEiRDyw3fpLMIu9bLsQOw40RP1ykSJEiRYoUKXIxRc9wkSJFihQpUqRIkQ8s4nqm9hNCjAO9160BRX4ZaJRSXv46nVdAUW6LXCWKslvk/UpRdou8H5lTbq+rMVykSJEiRYoUKVKkyPWkGCZRpEiRIkWKFClS5ANL0RguUqRIkSJFihQp8oGlaAwXKVKkSJEiRYoU+cBSNIaLFClSpEiRIkWKfGApGsNFihQpUqRIkSJFPrAUjeEiRYoUKVKkSJEiH1iKxnCRIkWKFClSpEiRDyzvC2NYCNEjhLj7erfj3SKE+LYQ4n9c73YUKVKkyFwU9WyRIkU+qFy2MVxQmEkhRFQIERJCHBBCfFUIcVUM62ul0IQQq4UQR4UQwcLvNSHE6qt9nuuNEOIfhRCxKb+0ECJ6vdt1pQghzEKIbwkhIkKIESHEv59nXyGE+B9CiEEhRFgIsUcIsWaW/bxCiHEhxL5r2/oZ5533HRJCvDjl+WWFEJkp//9HIcRuIcTAHHV/e8r+ASHEq0KIlfO05Y+FEN+/Vtda5N1R1LM3NkKItUKIl4UQPiHEjJWrCjonNeW9bbse7bzaCCHuEkK0CiESQog3hRCN8+y7SwhxuCDDp4UQt8yx37eEEFIIsfTatXx+rlQnz1Lf59/r70qRK+PdKtZHpJROoBH4U+D3gW9etVZdG4aAxwAvUAY8C/zourboGiCl/KqU0nHhBzwBPH092iKEMFzF6v4YWIYuc3cA/1EIcf8c+34c+CJwK/rzfgf43iz7/R/g3FVs4+Uw5zskpXxgyvP7AfBnU57pVxdQ958Vjq0FBrnx380is1PUszcuWeAp4Evz7PO1Ke/tiveoXTO4WnpYCFEG/BT4r+jP9yjw5Bz7eoHngP8LeIA/A54TQpRctN8twJKr0b6rwLXUyUVucK7IyyClDEspnwUeBz4nhFgLE168PxdC9AkhRgveLGuhbLcQYkAI8f8VetU9QohPF8q+Anwa3dCJCSGem3K6jYXeZVgI8aQQwnKZbQ1JKXukvv60ADRgzp5ooWf/34UQ+wu9xVcKyuBC+YeEEM2FXuQeIcSqKWWbhBDHC8c9CVguqvthIcTJKT3Q9VPKfl/oHs2oEKJNCHHX5VznReexAx8DvjNHuRBC/JUQYkzoHtczU56hVQjxF0KI3sI93zflGc537T2FazgNxIUQBiHEzsJ1hoQQp4QQu9/F5XwO+O9SyqCU8hzwL8Dn59h3EbBPStklpdSA7wPTvFNCiF3AWuBf30VbrhpzvUNXqe4k+gd747s5fr7nJoT4ghDiXEFOu4QQvz6l7JwQ4uEp/zcI3QO/eQH1fr5QX1QI0X1BN8zSttAUz0xc6J6lpkLZrwkhOoTuGX9WCFEz5TgpdI9Pe6GOrwshxJTyLxbaHxS656+xsH3Od+VaU9SzN56elVK2SSm/CTRfznGzIYTYLnRveqTwHP9yStktU96VfiHE5wvb3UKI7xbeq14hxB+ISS/m5wv386+EEH7gj+eTlcvgo0CzlPJpKWUK3UGxQcw+8rQLGCnsq0kpvw+MF+q4cG0G4O+Af3OZ7bimXEudDCCEWCn0EbtAQfZ+ZUrZQ0KIEwVZ6BdC/PGUsheFEF+7qK5TQoiPLqDeB4UQLQV5HxRC/N4cbTslpo8sS1HQz5d4F3uEEL83l+64lu/iVUNKeVk/oAe4e5btfcBvFP7+K3SPgBdwovcQ/3ehbDeQA/4SMAO3A3FgRaH828D/mOWch4GaQp3ngK8WyhqA0Dy/T11UV6hw/jzwB/Nc5x6gE1gOWAv//9NC2fJCm+8BjMB/BDoAU+HXC/y7Qtlj6F6E/1E4dhMwBuwAVHQjr6dwL1YA/UBNYd8mYEnh709d4jobZrmGzwJdgJjjGu8DjqH33AWwCqgulH29cM21hXbuKrRxzmuf8qxOAvWF+1YL+IEH0Ttf9xT+X17Y///Nc02nC/uUABKonNL2x4Azc1xXY+G6lhfa+GfAM1PKVeA4sAXdoN53ue/BlfxYwDs0Zdu3mfk+7AYG5qh7Yn/Aju4RPzVPW/4Y+P4s2y/13B5C9+gI9Hc4AWwulP0h8IMpdT0EnLtUvYX2RpjUBdXAmgXcz/8FvFV41ncCPmBzQV7/Dnhryr4S+AW6zDegf6DvL5Q9ii7LqwAD8AfAgUu9K9dLRijq2euuZ9ENfTnHdY2jy+J+YPc89+Ad4DOFvx3AzsLfjUAU+GThGkuBjYWy7wI/R3/uTcB54EuFss8X7v2/QZdjK/PLyoKeLfA3wD9c1PazwMdmuaaHgZaLtrUDfzXl//8B+Jsp7+XSa/U+XY33bcq2b3PRuzPLcZ9nlu8Kuo7rB75QeDabCjKyesp7uw5dN64HRoEPF8o+C+yfUtfqwvMxL6DeYeDWwt8lFHT1Ja7hK0Ar4GJh3/25dMe7ehffcxm4ikJzEPgv6B+K+NQLAm4Cuqc87Bxgn1L+FPBf5xK0wjl/dcr//wz4xysQfDvwm8BD8+yzhylKvLD/S4W//yvw1JQyBX04ejdwG/pQoZhSfoBJJf0P6B7OqedqQ/9YLS0Izd2A8YofLrwO/PE85XeiK9GdgHLR9SSBDbMcM+e1T3lWX5xS/vvA9y6q42Xgc5dxHfXoytIyZds9QM8c+5vQFbcsyFo3sGhK+b+joNS5sYzhg8B/uWjbbO/DbuY3hlPoSjJfuPb187Tlj5ndGL6s5wY8A/xO4e+l6B9xW+H/PwD+8FL1or+XIfTRDOsC7+Xjhft5wUj/JvoQ5oVyB7qR1FT4vwRumVL+FPCfCn+/SMGgmCLbCXSjZNZ35XrJCEU9e0PoWeY2hnegG53mgmxHmeMjj96R+xOg7KLt/xn42Sz7q0CGgqFT2PbrwJ7C358H+qaUzSsrl3Gt36TQUZmybT/w+Vn2LUV/ly8Y8p9D10f/VCivRzem3IX/36jG8IJ08izHfZ7ZjeHHgbcv2vZPwB/NUc9fU+hAFOQpDjQW/v8/gW8tpF50o/7XAdcC78cthXdkeeH/C/nuz6o73qt38Up/VzObRC0QQPfw2IBjBZd4CHipsP0CQSllfMr/e9F7FPMxMuXvBPpH7l1ROPc/At8VQlS8i3PWoLf5Qn159N5NbaFsUBaeeIHeKX83Ar974d4U7k89es+oA/i36AbKmBDiR2LKEO/lIIRoQP9ofHeufaSUbwB/j+4FHhNC/LMQwoUe62dB99hczHzXfoH+KX83Ah+/6HpvQff6LZRY4V/XlG0u9A/MbPwhsA39vlrQPzRvCCFshfv52+gGxY3GhXfoSvlzKaUHvZedRO99Xy7zPjchxANCiIOFIbkQuqe3DKAgx+eAR4QQNuBDwA8vVW/hvXwc+CowLIR4fo4hWApt2IQuvx+RUo4XNl8snzF0z/NU+ZzrvW4E/mZKuwLohkTtPO/Ke01Rz95AenYupJSHpJRRKWVaSvkddKPxwTl2/xK6561VCHFETIYY1TO7Di5DNzCnXm8vc+vghcjKQogxXQfDHHpYSulHH2n59+jezfuB14ALE3//GvhvUsrwZbbhveZq6eQLNAI7LpLLTwNVAEKIHUKfmDguhAij68ILejUKPA98olDXJ9EdDZesF93B8CDQK4TYK4S4aa4GCiHq0TvOn5NSni9sXsh3fz69et3exYVytWYmb0O/KfvQXfNJ9OFNT+Hnlnrg+QVKhB7PeoEG9F4+6D3Eyzl3w0UxLhf/Zo05RL92G9Mf5kIZQn/AF9og0B/uIPpwRG1h2wUapvzdD/zPKffGI6W0SSmfAJBS/lBKeUuhfok+yQshxKcvcZ1TzwHwGfQhla75LkRK+bdSyi3oQy7L0YeufOjexdkmNsx37RPVXnS937voeu1Syj8tHH9x9oupv+ZCG4OF+7phSr0bmDtebyPwpJRyQEqZk1J+G31oaDWwHd2gaxFCjKB7kLcLPUOFOt+9upZc9A5dFaSUfcDvoBt4lxsfOOdzE0KYgZ8Af44euuIBXkA3HC/wBLqyfhR9uLTjUvUW2vyylPIe9GfUih4bPoOCcfUM8FtSyhNTii6WTzu6l2qQS9MP/PpFbbNKKQ8U2jbbu/KeUdSzN6SeXSiS6e/HZIGU7VLKTwIVhXb8uPDc+pldB/vQRzsap2xrYG4dPK+sXMazbWaKDi60cQlz6GEp5V4p5TYppRf9e7QSfSgd4C7g/xb07gUj6h0hxKdmq+t6cC10Mvoz3XuRXDqklL9RKP8hejhLvZTSjd6ZnKFXC8asBXhzIfVKKY9IKR9Fl7Fn0I3d2a7ZWij/aynli1OKFvLdn++aL/tdfK+5ImNYCOEq9GJ/hD7UeqbQY/gX4K8ueAOEELVCiPsuOvxPhBAmIcSt6PFFFzIejAKLF9oGKWWfnJI9YZbfDwptuEfoEy5UoXt0/hII8u6yCTwFPCT0NDNG4HeBNPow3Tvow5O/LYQwCj24ffuUY/8F+GqhByiEEHahB807hRArhBB3FoyNFLoCyxeu8weXuM6+i9r4WfThnDkRQmwrtMOIPvySAvKFZ/gt4C+FEDWFe3ZToV3zXftsfB/dQ3hfoR6L0Cf31BWu66vzXNPUdGjfBf5ACFEidG/hr81zfUfQvY+VQghFCPEZdE9KB/pQeBO6wbwR3Yt8Aj0WT5vvfl0LZnuHLuNYy0W/GR9bKeWr6IrsK/NUpVxUj5n5n5sJffh3HMgJIR4A7r2ozh8Vtv0Gk15h5qu38LweLXxk0+ieqPws120Afox+vy5W6k8AXxBCbCxcx/8CDkkpe+a5/gv8I/CfRSENn9AnKX288Pes78oC6rxiinr2xtOzhTot6O/ChXfRXPjbU5Bvi9Anj34aPazjpdkuUgjxq0KI8sIzDRU259G9fncLIX6lUE+pEOKCnnoK+J+F62lE98DOmiLxUrKy0GcL/AxYK4T4WOHa/xB9XkfrHNe1qfBsXOgd534p5cuF4uXohvVGJif4PlI4x3XlSnTyzKqm62j0+QrLhRCfKdwbY0G3XJiM5gQCUsqUEGI7egz7VF5ANxr/G7rD54IOmrPewvv/aSGEW0qZRZ+XMZfu+hbQKqX8s4u2X+53fyrv6l18z5HvLrYmiT40EkZXSr8FqFP2saB/hLrQb/w54LcLZbvRh0r+C3qPtY/C5IFC+TL0CVghCpOeuCiehzniHC/R7o+je5pi6B/x55k/lnIP8OUp//88U2KAgI8ALYV7sJcpE32AregGVhQ99cyTTIkxQh8yOlK4xmH0D5QTPWD+cOG4ALqA17yLZ3QT+gfbeYn97gJOF+6JD135OgplVvShrMHCNb5FIY7zEtc+7VkVtu0o7BeYcu9nTPi7RFvN6C9qBP1D/u+nlDUUrqFhivx9vXBvI+iT5e6fo95pz/W9+LGAd2jKvt9m9phhOctv6Rz7P154juZZ6v/jWeoZuNRzK7R3tCDD30P/cFx83tfRDZaqhcgDujd4b+GehNDfwdWztLmp0M544blf+F1o21fRh5cvvEN1U46dFpt48f1C92CdKchNP5MxeXO+K9dLRijq2eumZ6fI4NRfT6GsvHDeaOHcB4F75qnr++hxkzF0L+uHp5TdChyaIo+fK2wvKRw3Xtj+hxRi2S++h5eSlcu87rsLzzdZeHZNU8r+kSkx5ugd03Dh9yRQMU+9097L9/rHFerkWfb5/CzyIdEnt60ovBfj6CFcbzA5MfIx9HCEaEEu/56L3kH02G0JbLto+6z1onfYXkLvlEYKsnnLHO2W6CEOU/XqhYl3C/7uc5Hu4BrbPFfjJwoNfc8QepqO70sp697TExcpUqTIB4Sini1SpEiRhfO+WI65SJEiRYoUKVKkSJFrQdEYLlKkSJEiRYoUKfKB5T0PkyhSpEiRIkWKFClS5Eah6BkuUqRIkSJFihQp8oGlaAwXKVKkSJEiRYoU+cBiuJ4nd3q9srS2/j0957Av8Z6er8i1JTPS4ZNSXu5KSleEanNLg3u+BbXee6rLbNe7CUUuk96zp4uyW+R9yfXQuzabTXo8nvfylDcU407PjG21JuN735D3MfPp3OtqDJfW1vNHP33x0jteRf7kmycuvVOR9w29/+fh3kvvdXUxuCuo/txfv9ennZc/+tKm692EIpfJF5fXFmW3yPuS66F3PR4PX/nKfGsH/XLzj7d/eMa2P6ordmwvh/l07nU1hosUKXJ1mNrJKxrGRYoUKVKkyMIpxgwXKVKkSJEiRYoU+cDygfMMT/WaFUMmivwyckGuix7iIkWKFClS5NIsyDMshPiWEGJMCHF2jnIhhPhbIUSHEOK0EGLz1W1mkSLvjqLsFnk/UpTbIu9XirJb5P3IQsMkvg3cP0/5A8Cywu8rwD9cWbPeG/7oS5uK3rNffr7NL6HsLoQ/+eaJiV+R9x3f5gMqt0Xe93ybouwWeZ+xIGNYSvkWEJhnl0eB70qdg4BHCFF9NRr4QaS4KuDV40aV3RJjkjJT6lqfZl4uJWfZTIZoKPSu6xwd8dHTNUDAH+RnLxzn9dcOEw6G5z0+Go7yvR+/w9sHmie2xSORD9w7caPK7S8rUsoPnIxdK25U2c3k82RsTjRNu9anmpOFyFk0nrgsWZy6bzqZ5OzZTjLpNK/vOcVzv3iHnq6BS9bx6hsneeJnB0mnUoV6EmTT6QW34ZeBqxUzXAv0T/n/QGHb8MU7CiG+gt4bpLSm9iqdfnbSySRCgMlivabnebfks2nyySjCaEa1OgHQ4kFkXgMpMbjmTuMo8xoIgRBXdw6kloohMymEwYhqc899fi2LFg8hDKZ597tcpJSg5RCG9yx/4oJkd6rcqvM8l9mwkGJRhZFzQxkwWMnnNT5yax3uEhd/+UQzwjRLjuB0DGmyTTzfMnMKk0EwFDdf8nwyr5ELj4HMYyipQQgxwzusxUOYZAJVNbJlVQX33rWRvfuaOdcT4qP3rKCisownnz1KXxC+/MgyKqqmX3Nf7zAdvX5u3r4Us8UCwHMvHaWlJ8pnHl5NVU053/zxcbJGFzcvMXB6WCUbCeNPtPPRBzZgMM58vn5fkMOHW+gMmNDyEVaPBzh0uIXDvXDbGid33r5h3us+euw8vUNhNi7zsHjFUoQQs+43MjxO8/lRdm5ehN1pn1H+7ItH8YXT3HfzIrr6g2zZ0EQ4FENRFCqr5372uWwWRVFQVHXedl4l3pXOvVzZvVykzEMmgTA7rul5roRc1AeAwVkGgMxlyMUCkNcweuf+JkkpIa8h1Ks71UbmNbSoD4TA4Jo/VdaFds73bXhXbchlQTXM+c5cZd6V7LrdC//O5PN5NE8ZuXAQC3kATI3LaLztLtqffQo1GppxTDaXAykxFnRTJi9RvOVI/yjGBbzTJwMq7Vo5t1sHqHDMlJF8Ps+zYx5CaUmJ1cj9nlHCGYX9yWqWG8ZZUyJpDUreMexgU6CZjaX5acfLVApxbghZ5UJU67Lbfr6Pp1/v5Ka1Zdxx6zp+/NwROqJOdvQf41Av5JIxTvR387ufdmF1OFCU6fZCXtM4caqD5u4gEc1GYNzPwFCIPccHsVmN/Nbn75j3mkdHfOw51MPSGgur1yzGaps93302k2HfofM01HhYsqRuRnnLuR7ePDLAndvrCYXj1FaVUOp1MTQ0xtLlTXPKpZSSXDaD0XTp7+KleM+zSUgp/1lKuVVKudXhLb1m58lls8RDASJ+P/lZeoJSSsb7+xjv77tuHoF8MorBVYbMTvbApJQIowXmaVM+k0SLBcgFZ+iOBaPFCkb3RchsSm9TLjv/8fEwBlc5Upt/v8slFx4ln46hJSNXtd4rZarcXq7xv2Wpkzs3V/GbDzdSbQzxxTvL6e0Z5LV958FovVA/hkwIKSWlpiS/95lNbJ2iMx6+qYbPPrqBpaZhPrFFcO9yjQZnZtp5cuExchEf+WQExWgBRSUX8aGlYgBkA4P6/c2m0RJhEtEYKdVBKKbL34g/zmjSSCSiL0xjNatYlQwHD7fx19/cy/DQGC0tPTSf7eLt4/283Z6l5dzkNy2Xy5PFQCqV5sBbR4knMxAfZ8e2ZexqyrOkwohNzfC//nk/e94+M+M+vba/k8PDNnbWZbl5QxXf//kJDg9bEQkfpsIHKp1KMTIwu9yfPO/jzKjCv77QxZGjrXM+j70H29lzfJjjJztnLT/XPkz3cIwXXznBG+cyHDrSxreea+M7z54ln9c/UKFAiGdfOk5PzxAAyVicv/3uAb7xg7fnPO/14kpk93LZXCf5D5/ZRKkpOWt5jT3D/eusWLk+oyIyl0WoRoRQJ/SflHmEYoBLGIK58Cj5ZBQtMf/oxlzk03Hy6ZmLPuVTMVS7lwV9jvN5VLsHLR56V22YDS0WJJ9JoEXGr1qdV4upsmubw9CajbTBSNUtd1J+xwNoVQ3IpuXknR569r0BkdDEfqlsjkwuh5QS25abcd1y94Tn2NS4mCUPfZRcaSXaqs3Ea5rQahqn2QtD0RxPj1fREhRE8ibi1koOhGw0B3VZOheEH/lq6I3kGY7lCGYNZKRKzOQlq+WJ5gQhex0BTTfmzKrElAqSzOR4cryGUwFBKJnjTFBBnh/EMmZG6fBPnF/L6zo3l9Xo6RpgcNBPNjKO3WrkY7dUsaJKZW21wr88dYx//t6eGffp7NkufnEigcsCn95dyd53zvPC2QzpVBaLYfJ9GB4YIpvJzDi+o2eMVp/KM2/38/Tzp+Z8Hh0d/bxxbJiX35pdL3d0DDDsi/Pamyd5+UyKlw908+Kec/zg7QBnT+t6WkrJm2+dZv87LRPHPffSMf7sW4fo73v3ttAFrlYXdxCYupRcXWHbe05wZBizzYbF7iCbTpOMRQHdCz21d6HlcpgsFhCCP/jcuglP1ULjK7V4EKnp3lmD890Z9YrVQS7iQxhNE9sMDi/5TBLlXfb8pZRokbF5vQy5qA/VXoIW9XPxalSq1U0u6kOxzu/ZUW1uve3XwIMr83mE8p541+A9kN3T3VGsMsHKVU0oAoTMsaipCjkQRozqinWRM8FnHruNp589zGAYxkbGMeSTeE0qgYyFvSdGsDSPsm51PcvWr2Gg7RxpJH3R6Z0RxepEZpIIowmZimFwushGfAghEKoBYbKRGe9DalkMrnIygUE+8sUPAfDovesQzx+hpWOUJUvr+dgjOwD4yXOHieTzxGNJfrqnhzyCT93dQMVQjFUrJy32Rx/cygOpFO8c7eStTiMym2FZQwlOt5t77toCwFt7j5PPJznXNojXbeFoi491i50ca/UxPjyMxeaiunoJR1rGGQumKLOP8sgj63nl0CCSZkb9CZqHJZ/anWHZ8saJc+fzeR7avYxDh87Ro1gocc8tv1KCwVVGTtOQUnL8yFlqasqprqsCwG03kdQ81FamGe8dwxewsazahEERE56Vc+eHOTEoyOWHaWqqIZVMIJCXsqeuJjeMzrWJFBZDnkDWRiqtMdw/RL0HoqNpMmK6x2ZRlZXt21ZwpvMdBi9zMdB8NkU+EUbmNYwlNe+qrcJgRCb0d+aCjlGMFoRQL2kMz8eF74FicaCYLDPKZS6LzGaQ+SzCZJk2oqfa3ORigYXpUiHQ4kFU51X28Ofzl97n6nHNZdeYzdD/zltUbdgKikAxGhFmE7bSxQS620EIUtksNQ//CuHBPnJnjpKORohHQkhnCUo8THawn963XiMdj7Ni0xb6zzVTUlHJSE87JpP+zY7nVGL2aiLJALs8MUrH93Oo5FbO+M9jVWMk8gaS1gp6/T20aWVIoxG7iPEhUzMOqxmHFSKjBxlVygkkYyxyGVjEAN1hSZtaTjw1zsmEnR77KpBJUuUpZJWXC5K6cmUTv19fTjgc459+0U1WM2NXk9x8610oqsratYsJ+nz8ww+PEtcynGvu5FjrONVeM/5Qiq6eEYyaxN5YSjieoWVUYNQGeOj2ZbT1+Pn2k/vYsqqSnx4KsbF2mEcf3DLtPm9Zvwgt28bJNgNlnrm9swoS1V5CHt0e6+8ZJBAIsWHzGgDKS+wY7AYcDhNKYoxY1MiKWhsNiSSVlR4AkrEYbzVHMZJh185VZNMpZF5DcHVk92oZw88CXxNC/AjYAYSllFduql8mobFR3OUVhMZHsbncVDYtJjAyREllNaHREUqqJsOSDEYjWk4jnUygGgw4PCWXdS6paagO3aC8XLLBIYSiotjcGFxlM8oV0/xhHYrJijCYJpT3RLiFqiIMJhSLk3xajzuabXhBqEa0WBBmCbEQBuPE8OF8CINx1rZfKQZ3Jcj31Bi+5rKbyuR4rU3walsPwuDh2y/389n7FhWenx5DtqRUMtzVgcMsiWSMnGoZ5PadS1kUSPCjA2G6wwXlm0oQTZ2hq60Ho6eUfM6AQNHDWuwl5DMJVLsHAIOikA2NYi5vJBf1IYVKPql7tYwlVaCoGHDhHw9QUurBZDbTOZ4jO5bkvlQSs1X3xHzovo3cEY6AUFDTYUodBqLxLNvW12OxTsqqoihYbDYaakso7Wwn4bayYtnksPNTz7zDuS4/WQ1GrTW0tA7RH3cxvr+dlKuJtAyTt9Vw9OwQNosBhwXCpkpaWroY9ueo9FqxiSRek8DpnPQSJWJx/vmpI7gt8IVP7Z5x/y/E6V0wZDevrUdrHmbl8kUcP3KKZw4GMed7+YN/+7D+vPImtESUupoqjg3HGPRFMVjg/l1NE3Vu2tCEJrtZuaSSI0fbeP7wGPdsLGPXTWuuWF4WyA2hcwEe2lHBkiW1/OV3j3DO50AoUT7+yC6Mr53iSO/0D9U77Qn843sRwjRHbfOQ1xBmO8ziXb0UuagfpESo6qx6ayGGqMFdOS1MIhfxgcyjusqReU3vYEV9sxrDKAr5bApkHpipkw0O74Ku4906XuZDdZToRsUvkc6VEpTxYQKvPYuqquSlJF/bhLJs1cR3M2E0ExgfI5fTMAhBdqgXQ+MyGj70cc4/8S1s+Rz0d2FD0H/kAP6uDsIWKxaLlVwmjaqqLCsReKIH8HrMqKrK6io72tBbHCu7nSPxYT7q6WdorJmutB1D9WK0yCgW1YCiCMKJDG6biYjBw4h9OYOxg3gL6nSRW6UkdhCX18xLg3mUZCf56iood6PUTO8IWex2hKKw2JtnOJWjvq5sIlTrxMkOXtrfTSyewFTeyPHTPXRGnfR0d5Fz1pKTVlSzmdahFBZbiFIRIuRspGswQmfvOJhdbM2lcBOlrKRq+kN88QgtvTE+89Bqbrt144xnkNe0iXbU1VezqiJAY7Vex7/+5Bg5kwuT2sKqDauJ5VTymRRVFS5GA2n8IYUT54ZZubSKiir9fbU5nXz0lkoMBgORUJh/+vEZyuyS3//yLaiGKzdlF1SDEOIJYDdQJoQYAP4IMAJIKf8ReAF4EOgAEsAXrrhl7wKr00VwdAShTCobRVEJDA/hLp/FSyok1YuXEBgZAnRj+EJ2iYs9xDsa8iyu8/D0vjFyikVXfLEAqqt8QtEqZhsIhXwqNm/MrVAM+r6zhCkslKmK60K4RS7iQ7XbyUX9umE8h6fjWg+VXglCCBBXTylfb9m1ygS/+YlNnGnp45VmPRxBWtx8+40xUBSEULBqEW6+63YGe3ppGxN4DCke/dAtdJxrZ/+pER5d6yCTzfNCi6QvamJVPsPuXcuwOpyUnu1l08blDPYNMRxWOdQ3+WwVowWTw8VSm5+SUjjQlcfkrSM91kMuGqSyzI4/MMo//MKNFjuBYrZhyQTIYGNw0MfipQ0AGE0mvOVlDPYPk7NXEosP8ezxOKv6O/iVD22dcc1LltTxtVniwsZCGRSbm6WWGKtXmtiwYTs/ePIt+ixVLDOPk6wwEol1EUw7GMiUsK5OkkZjJGFBdVhQs1EOj9m4Z72Dqupy3njrNL5gint2LUbLK+Tm8G59+4m9hJLwlY9vYXAkRNAf5PGHN+mjQVoOoxyhxDFpDH3knhUEQ3HWbVyGw9XD63sD9CccBAKxiX3SqQxL6kspqyilfyiIzKZ47Z0uli6upLLqyr1210puq8tsVz2DTmB4kKjfx3/4/A4MJhOJaITAyBC3b2vkwbs90/bVcjliwQBCUbA5XRhMcxvF4fExNC2HQEw4MiLBkH6OeJIX3+5gw/Iy1q9bwoGDLQjgpp2rZ63rzbdOs7ctgxabb17X/AghYGq8sADVVjIRlpSL+FAdsztVhKJiLLlx5zdeTUP4WslumXTx5dRdC2rDSxvy5JdWseWpTipVfT6O7JLkOlIYVb2OF7aAYeVi5I/3cV/qLp7fbMCwop7sMwdY7F5HZJGHnYfjLJYeDraNcmbTJlxlZaSbe3CvWkKyaxC7x8NH30ngzVqhMEgnvZL/LjpQlzvY2L6CH7jsZNUQdb5+vmrzcFzJ8yN/Ixabm3+OGzkaHSEd76HOtJwvp5omL8IAZOCYqYuQ0YS5I4kwaGQr3Ajz9A6X2WrlVx/bNeM++AIx0mYv1Z4kS2pz7NqxhRMnWnmztZIygpRXGRgPhkjlNE6OVLCoohyvmkFoWXKuRpY5Qzx/PEqZ3cjNN62mu2uQt08MctuWOvJ5SQ6VvJypd9851MLrx0b50C31NNSVcaplgLu2N1JWXQmA12UikExTUq53AndtWYLDamT96gYkkjdfO8yRfgOjgclwqrymYTOrLFpSTzwWJ59N0dUf48ChNm69+cqdEAsyhqWUn7xEuQR+64pbc4UkwiGEIjBMCTvwVFRO2yebSaMoKqrBgM3lYXygD6tdH1JNRCOk4jE85dOPAbBbjZSVl6CKUXKFbRO9eZlHdZbpXmLBhIdgTowmclE/Bo9+nlx4DJCororLmsCQz6R0T6CjRA9ZKHgkroX34N1wqaHD94LrLbtZqdDZNchYIAFMfnCEakDmNSpUPwa7icNvH8ZoMhBJA4qVJ545jD8myWQV6uorcZWW8srRV8k5atH7egKJQjSVJ5fLYiKF15BDSts0GTKYLNyxs4qqxia6vvM2QyM9KAYjVo+H3/z8Lv7qn18hmgiRz+mTJlPmCswpH2bTzI9jbX0168vOsv9EFFOyk1P9cYL+EGsXu9mxa+Osk+Km8rmPbCabzeIt8zLYP0I0EufRB7fS2jmKSTh4sTlHLjeGU9XYvcLErm07MZrNHDjYgmMoSlVNOdYxHzarLt8t3RH8aSOJl0/x4E2LWL5CN95fffMUQ74Ej92/HrvTjpYX5BFIJM+81kw0a+Royyi/9aV7qK6v5r/+dtW0e9bQWE1Hz2nefOs0qYxkkGo21yTYtm3lxD4//MVpfEkjX31UYdPGpbR3j9M5dvVChq633C6URDSClHpo0wXD1uZ0YXO6JvbJ5/PkMmlMFiuqwUAmnUI1GDCYTGi5HGHfGFaHE6vDOa1uTcvhLPES8U+OvrlKPAC0tQ/QGTRi6Q2xekWGV4+NoQjJti3LZpXD3beuQ2QO8XqLXqbFQ0gth2K26Y6JBSKlRIv6UW0uhKKiJcMTI2mK5fpPGsxnkuRTcYSqotovb7TzanEjyK7DlyQqRrAxKQtCCIyqga6cnzGvgtKZZlRJsz2lT6JdeSxEpCXIxmAV392RpmbtSo717adhMIdmUMjnNSx2J/ZgjlxOIyGyxPIRRrUkXsU67TwrF5fi2b2ViO0s/+2onyOa5FMlS2jd6SQUTZA/0o8xGuSMwcmZylrM4/3Y5ph/819UF4+PtJA1qigmC9rTA4jGCtiwGJh/wuVdt69j1eJhahs3k4glGBnxcfvubVgcbdRVL+X7z7eQEmXklQzrS2LcsnMl1TXlDA6MEjvYzcpF1fhPj2K36KZiZ5+f7pCR5JtnWdxYwX/8/DpMFqseE3y4n9s217JyZSOaJtFQyUs4cLyHA6eG2XM6wBcfzlPfUM3Xfu3+aSPXdqcdb4mdl99uZXmNlWM+F2XOGB97YP3Etew90MLetix3jMa5/da1PHjrIp55exC4OnO+fqlWoNM0DU9FJVH/7IZoMhYjnYiTTiaobFxExDeGwWiauJWpeIySymqCozNHbF5vSfPGmXMwy8x/xeJAi/lRnaWgZclF5hgqu0Auh6m8UTdgVaM+i1dRQcuCYeHDh/lUVI/9TYSvScjClSK1SwwdfgDIKRaeOTbdEL7AqkrJPdtX46mo4tj+I9QvakQ5doYP3+LFH0jQHgAwc+LYOUpcFn7945t57fAA0XiWmkoPJ0+0csbv5eSz3fzeJ1aRy2Swnj9HyjD5EdRUK68eGmT5aJKIZsZc0QRAVsvxxr4WSp0qkbE05vJFaKkYWjyEWrqIn758htt2ptiwbsm0Nrf1x7E1riMXGkZKGIgIhtvyBJKneeT+6fFk0+5DNstbB9uoKHVgVAX/+lI3NpHm3395N7dUlJKKx+nqPkBVg5Plq5dSWuri6MkuVi6rZtfO1VzweezcMVnnx+9byZGjrRwb9eLqDbJqzWIAeobjDMdUIuEodqedT39kK6+8eZa2jlF2ravkrZNj2O2T8nhxBzSXSbO/JYSK5FMPLCWaHGHH1uWEg2HGfWGWLW+kocKGLZzGUchG8fEP70TL5S7ZIfhlQ8vmcHhKiAbn9rj6BvqxOpykE0m0XBaj2UImqYc6hH1jeKtqCIwMzTCGvVU1RAMBvNUz44M3rF+KydBNQ30FBpOJD99ShxDMef+HB4bY020ATXdlSC03MZp2OcawFtX1vBYdv2Tmh+tBPhWfuK4PMrcM2vUoZHX6d2c0F+HgfeWUNy0iuf805auXk249w4HSOP7FHnbsDyOEoOlUgLboQSwVNl4qy9PQY8EoVHydndwfclL5cpRnNztxrl9N+/BhVl2UveyWTgOnrW00DUtWltRzZ2F7uDPGLkcWTzrNb5YuQxUKp3ztvF61mFcDQ6RCPfw7dwPKlBDG1/JpZFkdVqeXbHgck9QQw3lkqBtteeO8IQKnz3bTNxSkvKqM515vpnVc4RNZjZt26CMoO5f1EAlFWbpyMavXLKalpZtYLMmy5Q189jHdWbd5y6QT4Nady/E6Onn2HQP+8yHu2q3HCQ+PhBlKWBgYCbFyZSO37FqDymkGRqOsX15Be8cwSZnFYJjiELpI7548p0/Gq/NqbKpTqCmvxmq1cK6lk6bGKqrLXVT2DlBdqY+8rV+3lNUrGuYdXboc3lfGcDIWJeLzIVSFXDqNxW7HYndgc+lDw1anE99AH845slQIIdByOWRhODWTSmEwmgiOjuAs8aKqBoKjw9hdHmB0+rGqYfoQ2RQUk3UyztdguqRhKkwWclEfwmhGKIVwBpnX44AvEy0eRDHPTA91rciFx0CAYnEuILZ5/qHDDxKl5hRl5izeUhcmmSGLgfMjOQYGxjl9boiWvhhDkQ6EolBR4UXL5VlcEmF5nYs3T5rZaDBSHktAJo7ZaUTLprnp1s10vdDKsLRx+Gg7JhWSimtGRGJP3EFPcwamTmZSVHpHE0RkCaYyC2gZbEZI2D2kx3oZ91TS0hmYMIYD/iA/f62VmnInofg4qzeU0dY5QibjJxzPkIrPLwvd57s40geitZf1axppcuUYGArx7Sf28rlP3Mbe/S20JcoYaB9m9z0VHDjYwqvNaboHmjGaLOxYX0ND4/Rh5sqqMu67dztVZ7pZuliPRQuHIjSWm7l1g2tiQtzIiJ8TIwbOdHWxcUUp//lr915iBEawoiyPKnI0NlSzaJEe8vHtp96hJ2Tgs4rgoft0w7+1tZcX9vewe1M1mzcvv4QUvP/I5/MER4ZJxqJIKbG73dPCFhwlJQx1tGO+xEz/XCaN0azLn5SSbCpFMhbD6nARGBlCnSNm1+mdPZZWURTWrJ3sqG3YsHTe85dXlrO1cYxDhYnoitlWCCvzzHvcxQijWR8BVN67T6eWCCO1LEKol9Slqt1TMPBvzHSi7yVBmaLVlSBdbiMbiZJbVMHKQxr2/jCR8WZWtqcZjp2hLGHAX66i1pQyYhjm9Do7defdOHvTtCxVSMUTjJAkm3dQVl/HycAAD3UbaDofoUe0sL5fzAgDrxEuapoBpst1SVxgSqs8UqV7PPu0IL9bsphFYT/f1zSetVv4UiaBp5Ca8C9CPXTnM6zJpjlZmifniqOmFJREHITxkpmwXny7k7SlnPKjzVR5DAyN+nl2jx+7w4rbYWZvu4aWynPLbR7ikQg/fnsEs0yxtttHicvCzTdNDzsyWyxs3roGp8upp5FUFKSUGI0KdyzR2LVr7cS+xzsijKctdHef4nOP34zb45pX7zaUm4j5+2hq2sb2nbohfvBQCy+dSbF1IMLD925i5cpGkvEE//S9t3DbVT7x0Zvnvf7L4X1nDFc2LSIwMkQ2ncZVWk4sFJwwhtOJOFWL9Bhgu9sz43iL3Y7Jap14IO6yclKJ+ESYxKxxxfOwyJ1BFZKO0OyzKKWU3LdaxaAKnj+dmYjLUi0OmDKk9m6Hs652rslLIWUeKfMY7F49RdCljGGL44YYOrwR+NCuGqxGhfL6erpaWkhl8oxHsvz0RBahqDyyuZ5NG5fR+519/PPP28kLhXvWu9i6eRmjowHuf2AHL75wgA8/vAPf0BB7j/Zzh82Nltc7efv7dRm8ZNrpfBa3iLK03MCDj9zKyVMdPHc8zm0rrezavoF/evIYcVMZN9cnWblmKb6Bfsrq6vH7wvSGDSwrtfO1T+0EYMmyYZ7+8R4yikJzV5CPz3PamoZazK+8jtNu4LnXztA5ngFNMOqPIaWksbaEg81tmE0Z/uIbe1jbaGVdtQGZznN2TMHRMTbDGAY9nnnrlhUkEwm+9cQ+/L4gCVsdY/4BBsZT3LJjKU2L67mtc4i9LZLekcTE+5/XNI4cO09DXRnVUyalvPHmMZrHVGQ2R8PxdrYXwiOW1bsxqBHKyjwT+0aiCSJ5O+FoCi2XQxQ+EL8shMZG8FbXMN7fSzqRwFNeSWBkcuQs4vdR2bRoztE4gIqGRvL5/MR9GWxvw2zXc56abTasjoXriFgwQDadxup0YbHP7gTwDw3q4XImM66CY8RoMvHwvZs41q/PBbnc8IgLqFYnWJ2X3vEqoqXiGEuq0aKXTn0mVMMNOUp4PTi3RKF/VS3eqhrCp9swLSqnvT/ATe0qFdLCCa+GvG893W+2cnO7INrawVCJmfymxXQOHkLcswH74DiaMU72ptWUfe91FFsJjlxhIm7Cy+YTTHcyzEGfiDBsy9K/qQx7Ux2Ob58l7BD0/soGHHvO86nuKiyGPKnFJt52WrjnaAaLwcRhJY/P5uYHmoWH76zDkEzCkXZEOICimulo62Ll2hVznreh3EhHXy85rZG9rSlsqShRzUo8nqK2tgJnPkhCS/P08ycxmxR2LS8hlxIc7svhUn3cfNPs9S5broekvb7nFCfP9BC11mHNhsiKVpYvKqehsZqHbl3EMy8cJmCsJRiI4CnR7bTOjgFi8dS0DmzQH+TFt9uR9gqefeUsX/6sbgzX15bS1NfDotpJ2yybyRBKG8hLPSXe1RqRe18ZwwaTGd/gANl0EmeJl3gkPC0m2O4uITgyjNXhJBoITHgjHCW6dyEeDk1M3ABwektxlHhn7a1MnWQyW7o1KfPcs70Wu8PGXzzZNkcYgKTEbdeHBuQ4oFJiTLF9hYd3WsNEcleeKHo+cpFxQCBMFt0Av5K6YgHymRQylyEbHsVUWn/pg+ZAiwURJusHKnRi/6lRzEqayDsDDAay3Le1jE99ZAdf/+4+fFk7b532c647SH2ZmV1lRnyRLO1do5xqHSGUs2J55TAt/UmWdbQjFEFH0ETHa+OQV9naBOOhDH3RyZEFKSU2keIjN1fS1zdC27jCeMrCpnoD9+/eRe+5Fnqaz9LeFQHsjAVTnG/rJ5fL8Pl7FpOOh3F4vMRD+vB3bY2XT28PYrW7yaZTGM0WXj/UQ8RYicFsh3CUnzyzj/IyD7fdonsHXnj1OL0jcT718HrcJW7+07/VU7j94uVjKOko+ZJGtMQYR4+3s33rCv5ozVJOnmjjmSMh9h3uYUlTBeuXV1BZnqOq3M2re06za8uSGQtldHT0s+9IL/2+JEpGI6f5GE+n6Yx7KHUP0DPg41S7H49V8KlHJmPQWlt7ePF0kqaeTu7eqWE0GcjEYxzoBtJR7CTJZSaV8LZNS6goGcThmnyXtm9bRUP1IE63m7/9zn4cJsmvfWb31RWe64jdXUJwdJhcJourrJyI34dnitPAXVY+4dnNplNE/H6EAG+1nkUkm04RD0/X0zVLdQ/6u1ngIZNOTYRVzGUMy3wep7eMRCQy0Yawz4eiXP75LhctGUFm9XysV2qU5tOJiUWYMiMdmCoWXUFdcaSWu6EnT19t6vuzZPJBzG8PsjKo0N3eQvpjO2jb20ZFByz3GZHPnUWNpHh1qxstoVDZG8fyxAFujno4/vxZvJqkvVQjNTpCjc3NHXuzCGGnxRkn6FLY2mfArOqG2AUv7StLkwSteZoGcmwLOBlU4zR/ahUDba3kEkFyhwKUCScymybfNoArnOPny5OwfAXEogiTkzxB8jLP440WcvVusq2FSWpdY1iTpWTMSRSzleMnOmnpi3HPzctxup20n+/nxf093Lqpmk0bl/Lpx+9ESklHez/mlg7SqhPV5ubIsXaWLKnld3/rYTKpJP/nG++Q8SfwBeLcvrWOu5x5qiobeXPvGeprPSxdOv17n4zH+cXrLQwP+4gay8n4+jEbcuzvLGM8OEA0luK5PedJpc08uNnIoiWTxz+zp5OYtOK2dpHJC5ataOIbTx1CKW1CjDRjKqmZyERRW1fJHVuzlJRMzkFwlXj4jY+txmA08txLxzjbG+MzD66gvuHKJqi+r1wYLm8pZbV1VC9ehqu0DHfZdM+o2WqlpKoaq8NJNpOipKqaTFqfjZhNpwiPjxMeH51InA+Xr5BlXqPKksAgszy7b4CnXj0/p1EnhMKP9o3z/TdH9NhgoKHczM4dq6j1zt4P0VOiXaWcj1Ki2t3I3Mxk2bORC4/pieXzeX2xhqkLX+Rz+mxoKVFtnnfdpFwsgGJ1kE/dWItqXGt6A3kymkLfeIac0cnhtgg/f+k4vpRuwIZzFjqCJlYvKWXNuuU0OLN87lO72bS6Gq8lx913bWHtkhIUqxtHaRUuU45ScwqHkuTBuzdw0+oSqm26rFdaUnzlngoa7QmMWpIdO9Zwz5ZKzJkAyUiIU8fOsnTjZuwuJxmpy2Grz8jLx8ZRJBgtFiSCZ559e2KVyHQ8TmllBXaXC9/gIOlkkps31rBrbSmN1iBZk4NTvWkONk96r4ZHI4wEUsTj+gIMQgiEEDxy/1Z+7zfuZakzTDKv0toTnDhm7ZpF2BJDSNVIe4+f505n6BuOcLrTz4FOjX/53ps8+bMDAIRCEV5+4zSHj3XQm7CzyCu4Y1M1y0py3H3LMtaUJkjEE/SMppAWDxYVPCVuXnn9JK++cZKmpio218P6JgfffqmT7/z8NCazCZkIYMknSLkXc6x9Uk5f33eOH+wLcejI9MTxVXV6DnPJbEmz3t+YrVa8VTXULF2Gu6wcT0XljBg9b1UN7rJyEtGoPro2RaeO9fcjpSQ4xZt8QQ4uh0jATyTgx2KzExwZxlkydyoyb00tmWRywgBPRKO6AT/XKla5zIJ15KWQuaweerFAHa4lwvpCOek4WjJCLuKbMKpkNo3qKkcIBdXuvqKV7/LpOMJgvuEWM7qW1KQtuINZbME09aqHjQEHzlfPsahHf9Z2xcTmMSvJUiumzcvwlRvo2VVN7MObiOWSjG2qZHhnLU05B+X1jTgVM83OGGktS+9qJ7F7V7PX4yOpZYjnUjy3Q/DiyiR+S464XSX6sS00Cx/dhJCne7DbnTStXU8+lcakGqjV7Nz6TgJbNIdFMaEgSHUMcNuLPmwGC4O5EOkdi7CvW8yxRZKyWBjZUErKmyRdbwQE3eMZTg1Kenr1sE5/MMpYKIkvEJ24D0IIli1v4Pe/egf372rEEBuhK+EiGtLTbJosVtbVmxFC4Bv384sTCfaeHCMRT/BWR45nX2/jH763n9FhXTb3HWjmwIGzNI8KkjmFX7nJw4oqlTt3LWF7fR67MUtnzxgpcznkM1TXVnHuXC9PP3eMYCDErnUV7Fxs5OA5Hz/cF6CluQuLkicfGcNZVkFX0ktXRx8Afd0DfPvVIX76SvO0Z+sq8WBz2OEqat33lWfYN9CPUBTsbs+cXoELOEu8DLa3YbJaSScSJCJhyusb8A32zzuMmUklifj9yHye8np9KGBqurV6Z5YvfeJmXt97mn0dl06NJgzTDeVT/VlGf3CAkYQBpqSzkXmNfCKix6RFxvWclleIai/RJ1QsIIellBIURU8RFBrG6KnScxEXIiFUWwlazI+xvAHlEml4pMyjRQMoZuuMeGbFaCmsnvTLZjbMjcileewWDzaLgTt3OviHZ7sYx8r4IKBOH9555sAot/t81FeVc+Lgcc70ZKkpUQmMDCNTUX60N4WQeT599yJKvB7+/Ien+daT73DvlnIe2l5OKAEtHVGcLjtej5WmNWs5dvAUzT1BvvDgUioaGvinH+zDoB6jaXE9I6FCLHE6zpc/sZagz8/f/6QNo5onZ6ziv3/rGIu8ktFgml+9owaEoHrxEsb6eil3G2lqWE4m08SzLxyjI2Rm54rJ0BmpKChC8PTLLSxvGOLmbYsxm82YrVasNhuf+vjttJ7rorJyUj4NJhO/+7VHGOkf5DvPnCIRHKYtLPnSRxZhMYxyvN1K2/k+/u6bSWrLrZwZt1Jn0shGxkkZjbx2XqIlVar8GUajkrO+HB/dXEFpuZeauipy2QyH2iIo5LnzNjMfum8zWi7H82//glgyBspK7tlWw8Z1izh+doAy72SKuIYqNz0DPRw+E6CrP8inH5uMV7M57PzO525G/BKFSIAeBqFlswhFmZGZ52LcZeWM9vVCPk/E78NVWobRaMTmchEcG533WN/gAIoisDrdM8ImcpmMPs9DSkxO10RY3FwoijIxGnihXaGxUSy26broQtiXFtNTval27xUvtWxwlqLFggueJ6EvfjM54U11etFiAQzOUj2PfaEudQHzQrREWF+hbrZzS0k+GbluGSauBy/XhhheZKdq8VaMP2tlddzJzj6A6Z25DX0Kbzz9Fo7blhPvHqCiJUDaCPF8mtxYlPt6zIx+6zhDix2E7lyN9tPTrDuW5ZDvBJYPbeGFs124/BmE3UMiEMKxdinGcATXL85waplK5W27MexrwXsmSNhhpVabfJZHV6lkdm2i/tuHsJ+O0Wiqw2Qy0mGOIUxGlr41TJ+1C9eHb2NHdw8nkyniqyoIWptIHj+HYaSMemOQNWt0G0WiZ7k63zlC1/A+Hr9/FSDwlOoj4Fu3LKe22kMymcFbMelMfPRDu7gnGuVnvzjCub5RUiYr8XSe25Ya6O6Dbn+c7/14P0tqnZzyu3CIFGokRMLg4PUDnfgN1Ywe6WfLxkUc7lfYWpvj07d4WLR0PQaDgaeeO8q5MZXFPaPctGMVAN/5wWtkx6OMDaXYtaURj8NCFgNDY+GJtJ4lXjeNnn7S8Sh//c29fPKhNVRWTY64PHL/Vh7MZq/KJLr3jTGcTadJJ5OU1tSSLUyemw+j2YLV6ZwYUrO7PET8PszW+eNcM6kUdreHeDg0a/l4XLDvYAudQwngXYQ5qCZGUkzzybvUJJ+4t5FX3wrSPpZgPkNRX0Y5i+oonZEbMhscLqw8V65PzDMYUQ2eBTVLCIFQDMhcFqO7Ei3mnxaAutDFOAC0aKAw49qvL3iQSSFUA6rd865j9d7PuAjhdFQTCfhJhjNIoehPOJ9lY52B7vE0obQRhEIyo3FuUGPVqlJUq51gczcNXiOxWJybbt7AsafOkjXYOXh2FKs6wCPby8in4gyOhAlFU9z/4C209gb58x+dw2RQyL5+iraBJB6TYHhwmPFAjBqPgZraKk6f7SGZN4MK0mhhpG8Aj8fG7csN3HTzRr71owM4nSY+87HbeH3vGaqXLCUWChbyckusDidDHW2UVFRRXW5lIJyiobFp4rorSqxEwjHCOS9D41H+8ptvYzfmcTktbF1bx5Zta1i5ajGnjp3lxy+3sGZRCWtX1TE4OM6q1Yv5j1+r4a39zeQl1DfV0rCojsU1bfzobSuj4QhrF3nY5TKwfsUGTp7pIhpPk4mNEJLQVGWnwmtlxBdl9brlGIxGursGCARjPH53I4pQJmZhnznbTTIex1SxjCd+fpKwqRqTZRSH3UJzp4+GujKef+MMwUiWtU02DnTkiCZnev6uRuL3Gw3f4ABNa9fjG+i/9M6AyWSipKq6ICOgGAxEAwFKq+YfwhRC4PSWFibVTTeGVaORTFIfXXC9y3t8sSEvpeShtUasVhNPvDQMijKn5zifTpBPJ1BMlhlzICYW8zCaUK36UO7lTBhWTBcm8rnREhG0qA/VNnn85dQlc1kUi4NcIgzZFCAmVhi9Gs6V9xMZLYuvzEA+L4kPDGPOTT7bZmeMrArrAlZURSWtZdgYdrJ/PEzdzq14nzjGYIWCHA1St2sbrX2n2BwsgaEYvftaGfJI2kuzGL0esi8ewXLbetLmAHe/GkbFztlAD2oeyqMKHRaN0ZZWaodChHY1IfvGafBPtiUZjhIdGyFSA867ttH/8hkaBjM0P7qMfCLFo68kWB9z0vzzMxyuzfK19WtpPXWSSreVA3UltI+Fqa+fXGSjxG3Ho/rJ5AyEkirf/dFb+FMm6t053CVuHvvo7VTXVDA+6uPJn7xNTqp8/OHNtHcMUl9Xzqc/eSetrV2c6w6zYlkN3tISdqWW8Q/f3UtQK2c4EObetTaczhJMhgaOnerBotoJ9g2yuMHBuhXVxBJ9bF7fRHVNObFIjJPNfexcV8lif4IN6/SMP9FwhP7hKMJkZn9bgqzJyGJvlAdvX8aJ1jHOtw+QSGZ489gQW5c66Bk2MxYzk0pOX8ZdCPHByyYx2HGeysZFjPR207R67Yzy4OgIACWVk6ukmK02AsODuMsrUQ2GS854BnB4SogFA3OuSJfGzOvNad6VITwHAonBYMBT4kFNzr1YBoCUGqqzHC3mn2acysLqSsJoQeayiFnyxEop0WIBVLsHoahILUsu6kdLRjHY3IUhOf3cV5I2SLHYCzOuFWQm9YFP9XP3tmoqGxuJBgP4QikURR9Sr3FoPHLvFlqPn8BWUsrhk7088sB2vvvzUzzxynnyedi8xM09d6zj7TfeweePogh9NOLcuJFGp8bDW1Yy1NVFJCV5+XyEs994izh2FJOVHHCkJ49Ipfjar+2iv3eI770VZFO1AdVo4vxAHINiJYuedP94d5yGSoEvlqf5VCuf+/hNdHb28/res7T0xdlXiJ3/oy9tIh4O4Rvox1lSiqKqbNm4lDvuKpsmux96YBsA4yNjjA2N0J9wEB5tJ26r47UjQzTWl3GmpZfXTwUx2Ero39vKawe7yWQltYd7+egD67lz90YAUskkwUCYuoZaat1jRFMR9pwCrzlDfZWLUFKlNeCkzJREM1ew70gnGWHl8YfWYjAaiUdi/OTVVmKKhy/dbad+0WQMWyqdQzjKMWsR6mtdlOWSHDvrI5GBmKGU9UPjhGIaY/4or2edrCnN8vC9ejYJKSU/e2Yfw6EsH7l3HTW17+2k1mtJLBjA4S0lNDqCOssElUQ0SiIawV1WhtGk60Ont1SP5y14YctqZy6+MhuOEi/JeBxX6SyrwwkxMUp3NVFUgdFowOip0tNbzmMMT6SIvHjuxQV9HPVNjKLNOD4VA6FMOAFykTG0tO4gMNg9E7HFV5wfXub1FSZNVhSrWz/vB5S3HGOUb7oJ/2A/YiCkL7dd4Py2UvzxIB0ldsr39xG9axW2M4PccSjD0PnTGOJZYp/cie3QaQLHz2LLpAAni9IOys8kePOxOrR4FHtlFSuOR3H8tBeTVLEadAHYHNDfldc3QsWWddR/9xhWaeeE0UT5eA4lO9mWjeMWWgaSOEIK/o4hQnU20nevxvz8McpUB4pwYBYKm31GxjZaebalhZvLSjEbjAiblf/wlU3T5HblykZWrmwkEYuTSqb4l6djKJ4yugODGKWDja2daLksPz0wTjIaQbG6+Z9//Rw5gx23rYPbtzWxY9sKVunOWwZ6BqmsKWfl4gpa2wYZC2m8eaCVHZsXU15ioz3moVQJIt0N+BNhfvTSOW7ZUEV1TTlSSn7x0hHaoh62x1I8cM/miXbmsjkM7gos4TEqXBY8HkhEY3zv6YNELTVYun2UOIyE0wp7WuKYyfCbj62mtODNbj7bzmvvdLN5VRW33jI5D+RKeN8Yw+6ycsYHeqct/3qBWCiIlsthd3tIRMLYXG5y2SyxUHDakoALxTFPPBqAXUlR6VLoDKgT3lmp5bDIJGnD7DONnUoSBES1me0Paza+/mzvvAr5AkIxoEXHUS/y0gohUEw2fdnZOWKYtahP99hGfBjcFUhNQxgtqEJBmO1k/X0oRuuEN2E2pMyjRXwglDkniExNNScv5F3+AGeV6BmJYzp5glQyyc07N3G88yhxTAxFVfa8vIc1axajGk1sWOTAPzaGiTS7tzdxuHmMUz0xki8dZzyQ5UufuokkLbxxTl/Jridi4u++s49qa4qdWxazyhkgKu3EYwp3LBMYVMErLVmk2cUzL50kkc5TbZP0ByTf+Fkz/+4Lu2hp7eP5w35A0h6w0u2LYFagZTxLmh5G/HFGQlmiaXXagEUuk8Fst5PLZjHZ7LjnSIEFUF5VQVllOfdmzmFav4YT50apKDfzt0+dRYv4MZmNJIfGUWxOVFspwtfLcMRKb5+PqqoyQsEw3/jRASJpA194ZBW/9qlb+d4PXyMcdTIy1sMzLxzB6i6jQUmwfctignGNjm4zYzGVRDxJidfDD547gX/MjzCECYesTJ0OsnPHKlYtqcBdphsjQ/3DfOOlXsrNUe7b7GLFykVEYynejsexm6KsXt6A1a4bNoGxcY51xTB5qnj2paNs27SULZuXXW0Rui6oRhOZxBiJbJbGWRwQgeFB6pavZLS3h8rCiEBofAxFVdByl7e6ptlqnXfULptJEw349VSaUxb0iPh9WJ3OCWN8KulEgngkhKe8csY3QAjBcyfTIFOXXIpZsTjmzEd8IXzsYn18gXw6gQRkOjZ5vJQoJjNGdyXpsS5UiwPF4pp3QrG+gJE+AW6uFJxT9bYWDy5oielfVhpxs6/5HNlMGtvqJYzFh1lcyAVcu38Q/2Y7wmKhuUqjJBTAncpxcJUKKNwz7ibx3BmWhPKcvLWcQFMtsacGcZhsOEw2Nj87wKgWoe32LEdqkyyPOVg2rnDSE6N/jYeNB0PUaw4a22KM+1uwpPMES43c9dMR9u1003JXHfK7ZzFIQR0eKk9odKsqW/alOFmVIZjpoylkxKxOT5tmymQodbl4MxBmMJbC7ynjw3PYCzaHHZvDzmP3rWJwOMT4uItUNs6TLw4QT2pYLUZEMkg6EcVSvQx1vJMIDlp7guzYpnfyn3jyTVoGM9y0rpKH7t3EiiYv3/pFO7lsmjcOdlJX5aFMS7FlRTWawUw8YmV/r4ovGAfg7f3NnOoKo4goAyjApDFcUubl3zy+HpPZNJFy8Rs/3E/UYOX2RRqbNy8nj+Rc1zHymQyNDeUThjDAWwc7CFLO28f6CMdz3Ld7zUQ975b3jTFcUlk1zet7MZlkglgoOKG0ZV7DZLGiZWdf1eXd8O8/0kgmlaSjP8yOHav5f9/bT0pTaCw3YTMq3L17J9946ihj6Slxk7kUUko+fl89NruVv/1pO4pxptJbqOKaLy/mXAan7pWVhdWTAhOxyorJAlJDy6bQ4gEM7kq0WGjOdeqzwWHyqTjG8kbdA7EAhGr8wKf6OTZs5dgwmKRgz/njxEXhOalGhqJGVuRyHD3ezq5bNvPcng4SmonKqnKs7T7ieSMnBsGQN/LG3rOcH4wBZrymFCZFMpJysLnKSnVjA1sTCRpWLOfP//l1aipXYjIaoXkYoajEkhrxRJIvPrYdvy/Iv746yMmjZwlGUzx+Ww02m5l/eXGAB7d5WbGijr/94XFCoSi1bsFHHtrF/oPneL1FN8L/5JsnuH25kdtvWUNwdBjXPIbwBYQQ7Coslbt1+zpOHD/H8d5BjGYTsqQep2xncbWCxRLiSNBCnTXFhjX1/PjZw0TCYeKmKsyZYVwuG4cOtxLJmllm6KHF4kDKJEHpYnzYh//tThxuD0vKTQwE4wyMRLDZrYz746jkMFYsp2MkxcWm3QVDGKCmvppfe0DgdDkmMkf4w2kihgp2rbDQWF/ON57YR22ZjQfu2czyMmgPjNOf05AtY780xrDV4aBu+co5y7VcjpHuTkzWKSFrUmJ3l5CKRec87nLIpJLEQkEyiQRVi5cSGBnCaDYTDfjJJBKU1tUT8fkmJnqCnhs5GY2QTiYmwuS8VTMX7ljoEsSKyTL3JOk5wse0VAyZSQESmddgSj5Y1VFKLurTPc0GM8LiREuGZz1HLqp3VPO5DKaSGnIR34L06QcpNng2liUdLDsGGc1M1/leGhLmiXWPFqUsnBcq0dNt1NQ3Yh6JsKvfyvO3GPUwQyXNtjG94+I75UNTwW60E5ZJur15lvuMBBQjrqZ6xrQMvtVrCDxzGLPJjGFRNYnjQUiCJatgjWXpWO1A3rwK0w9PYOoP4M8lOFeeRTy8lcjTZ0nbVMYf3ULw+WasoSyjS5yc2V2JuawE1w+6KDHrDraydJLda1byNt2cMTkWNOtmyZI6lizRR2dyuRz/5+9eQMmnyLsXYVUlFcYcu9ZIfvKGhppN8uDtyzh0pI3Wbj+dIzkUVaW8xMr4qI+XDw6wsd7AmXPDZA0O/Bk7+UiEF476KHcbWFHnwJUPMjyqd9bau0ZRtDQGbz3j6dSMttld0x2Hn3h4A7FonKpaPaSnr2eAsbSdRo+Vh+/bwouvnmBwPMHjD63n1q1NPPlqJ6l8lqP9krWDozQtvrLRo/eNMTwfDk8JZqsVg8k84Vk1mi1YHU6EoryrFD6zkc2k8FbX0PpmK/5IhvGkgTvXOrl112qef2E/HR39JKbEJkkty6/uriSbzXG8ZRiDQUUYrm06tdmRqA4vWjw0YyhOMdsnJrllAsMIg4FcZFwfOrwIoSgYS6rIRUYnJnTkImN6honLXEr6g0hGWMjkpm/rjDk5/8o4OxaXsudgB90RM2gZ/v5f3yBuLEcxqpSaklhEljNdAYKaAyHgoZ3V1NVX86ffOsir58y0dr+ByeYgljzNx26u4Mjx83REXAiDFTUT5rMfu4Xe7gF+8UYLmZwkLww0NlWz3GLm6PEObHYrKCrdwxFSmV7sRo2taxpANbBvz2Fqa8pYX5Xg9Ij+RTnQGuV8/wG+/PjOBV17LBggk06R1/KU1dbRPhBHWNzcudHLmTPdDJvKKKsrp7tnGHN5AygBEokk50bz2IWRu9aYWLlkByOjft5+p4WYrQGvqxwzJayqzCAzIU5mq8nGhxkxV1GZjKMJM5lMjkwmi7S6Wew1s2yxidXLa4hH47zydhtL6t2sv2iVPYCq2koOHGwhnUyhCSO3bFvMsoYgTUvqaT7RzHDUAPk4Bw62sHplA5muMJVOycZCTNwHgfoVq8hr2rSYPW91jR46cZk52+ciHgrhraphvK9XN4RNFmKBAN6qGoY62okG/DNCff2DAzi9paRi8WkhG+8lk+FhM3WpUA0T2/KZJJnAEEZ3BVoqNjMFptRQ7V7ygUFykXFdjxcW4VBMMycoF5mOSTWwMu2atgBouXDw8bcydLrtDFsSrG/JoQgzS98cwJZVMDiqCMgk3aUadl+ChrwLoQhaGhRi96wl/9xZNo+Vk/neEcpVwVDwNOPLLJhHY9z0L0dZZtWNuXNrbbBlCaYn9mNKttAQN+NvsFOyfTm5F46gdQziyqpoURg91U1JWOPAagNVq5rIvHaEiC/IgR02dh9NYTdYGHKV8PfNrfhMlovnAM7JaE8XQlEpqari3Lk+MvZqVtVlcBtDHPZp2F1ebCVlKPYQwmTGbjVxvjdId8TMruV5GprqaKgr44mn9jCcdmMzKIjKFbjzUR692cuTe1OoiSCBbC1D43HyqoWMps+nUM0W7JUN3LLMTEWl3lndd6CFaDzFfXdtnJHIwOFyMDIW5JXXjqJhYN2Kar54bx0lXje+0XEGx2IMJYycPduJYjCwemkZMptm5TInjYvefarXC7xvjOGwbxxFUWddkejCh9ZgMKHlsjhLyzAYjXNOsov4fWTTaUqqqi8rQb6qGggMD/Hpj9+KwWTiQeCvvnMQf/g4pwcMHB2OAFN690IhFI6Ty+U5MWwopBS6zAu/Cihm+6yG8MUY7C49H+Vc9dg8oGVRTXakphWyQigoVjtaKopqcSIzSWQuc1krO+nZJ/wIg+mXLg+mzGvUOjKMxhQ0ZWZHaLEnQ4lFsGtzE7FoFI0xKswptu3aTcvpVp5rkTx2Wx3eqgoSkQhvHWhlIGZk/5lRHOd95E0OFKEQV9xUeSykowHW33UHRvNZ2t7JIoCc0cVPnj9OLJ2nPzq5OMeLB/pQFUF32AzkMYocJU4HZ7oj5POCkaFRWgeTDEQMbN5ahWsoCkjsSorVjVZO9aT4798+DUzPyz0bmqahqAay6TiD7W1sX+GBzCDRQI5x8yKs2igtrX00VTvx9Q6x7aZGvOVlfOauFEajgZMtg5xrH2HfySFS1noWGQbZfetNJF49TZW3DJPVS+vYAHfvXk15iYPGxZu5LxbF5nSRSaXZvdLMuD/H6/vbOXN+jJ1rKzjRk6Svf5RlS6qx2mz0dg/gdjswqNB9vodXmzVEdBRc1VSX+Vi7bgmvvnGS/Z05FH83K5cv5tXmNA7Nz5d/ZTs2m4VkPH51Beg6koxFScaieCqqZujJXCYzERJhMJkxGI3YnC4UVZ11vsWFkAWrwzlj2eX5sDic+lLNLtdEvdl0isDIEE5v6azfA6EoJKJhHF7vxKIbF7iUnF4t8prGuXM9LFq0HNslJns/9cw7DPrTfOEjG/F4PdPKpJSMD49gti3nqefPUlehksm5ODkkuHuNmVfPJiGfR0uEUG2ey8qGocVDSC2L6ix7Xzgy2tC4hYWlhvMYkuQlRGYJS3QoKbatdaECu3Yu578O7cGojHPn7s1EQyG+tneEbUvM7Lp1C/7hQZ5uH6HXF2NkIMeGvWc5OhYjRRbyJjbXm8gPD3P7so3kvWX854E2RrJ6G8tbU9SNhzkRNUIiDQo4OsIsjR7n9KBGflhPKbmqLItpKMPxONzjj9Pxypu81uvko9ssyGov9x9pI68Z2Xk2xGgoi5JMYSEEwJ8wOO99+OhWG3ZDisHxTkbHwzRY4pzrjCJMNgxlTQx0nuTbQ2MoqgEtCf/3qQ7yaY18Jsq+8wLRdh4tdQxzxWKywQ46lVo2OVPkpcoSYxke4xB19dXcuaqeCm8JiiIwGIwY/Cp31FcxPD7Oq0cHMJv9OKIqh0+PEYwnWW1t54/S5xhMZBhOaWwpsXB6LMAzoQqOpi0YXWXU9LzDXy8WnDmW4MNjDWSDI/zb0jg/OV7JgKWM/ynO8quLyxnoHaA20LIgGf7iPGULenOEEPcDf4Pev/qGlPJPLypvAL4DeAr7/Ccp5QsLqXshxMMhzFYbiejsQ/MXErEPnG+lZulyBs+3YnW65py8kctm8FbXEBydzH15YRjNNziAEAKzzTZDqc/m7YjkzJwaAtSZXTWhqDx/RncFXk9ls9AMDlO9xFPJpxP6IhlGMxjN5CJjhUkj4wjVRC4eQlFUcskowmBCsbrQEuEFG7Z69okyfdLdVeZ6y+4iT47PfGwnb7x2kP092YlUamo+xcdvroBMnCVrVnHy8CkqSqw89sh2AiND9La14bRbaXDFGRgYJTQ+hi+c5s7b1zHUN8SP9gfY0GSnxJgmlLOwtt7EhmWldLVH6T3XgqvES42tl+GkvuLiOZ8RqeW4Y5VCJpUmoRk506+gKZNyW27TuOO2tRjeaUZIJ6s2L2Nf637qSs389XffIadYWVxhoNyucP/dG4k+e5TWKYtiXYjrdHnLiIWCWJ0u4qEABpMZd1k5Iz1deCqq8A3207RiKT0Dft7sUlnmCDEQiRG0LcEZj/D//c5DE3U2La5jfHiUo70aDjHO1hUlnOv0c8/d2zhyqpfeiIG+g0P8p6/cxuZNk+EJUkqOnuzBYoK0pvLGeUFJPo4mTPjTZupqy2h0jTKQruJ//91LbF1RxokxM+XmJCOBNLl0gu2ryjnpiyJCOZYsugMAr8eOkuhCWr00NtZQ1tHKaErl2Ok+Rn0xOv2SL9y/iNr6uUO6Fsr1lt1kLEpJZTXB0eEZYQbxcIiSyioCI8PY3TbG+3tIxaLYXLOnvUxEwniragiODKNls2TSKexufUQvEvCTy6SReTkt3AH0UI2Ls0sYzZZZwx4usNBJe9cSRVWnLRc9H7/y4ZnLfGVSSRACk9lCRU01w/0jDCdU1ECSj967hqqOYUZGw2ixCFoyhrmiiVxk/LJWJZX5nD6HpJDK7WpyPWU3n03xmQ8tJzA6xo/fCZBWJuVxR4PGqsYKyqvLeWf/SYY623ngvm0ko2EiwSCxcJg1dQb6R2L0t7Uy5k9Q4raycqmbZ15vpW9MpcYNXWGosmvsWldBPO6kt72D8qoqljeUMNKpu5PGUxbGB2FpOaxqsNLd72ckpnBySIAyuTT5Teuq8HjdjP38KLfcfScvvX6SpaUp9pwYJXzIT7lTwSKjPPrAnZw+1cEzx6ZPjHSrCVKaQjYnyUtBjVvgsAja/EZ+cjDAo1ucLFpcw5JFlZzvHKE/U0LG10dmrAdTaR1CVVGtzom1EC7YC9mIPjdJS8XJ+AcQRjMym+JkSCWXTrJsyMcffuyuaW1p7ennXG8/25c18J0zPixanExeoFlKGQ5GuK3eyS+GnXzncAfHlBQGk41TagXec2cZ9S5jR6KD1ZhoDmVZ6goBJXiMCqUpH4NGKxZznofyo3w9IviOpRLncIzfiS7m3wT7+N3GK1vE65LGsNCnYX4duAcYAI4IIZ6VUrZM2e0PgKeklP8ghFgNvAA0XVHLpmB1uggMDc6Z+sbuLtG9B04XQ53nKa9vJBENk4rHSUYjWByOad6IWDBILBiirK6ebCGWJZfJYDCZSITDlFTXEBobI5/Pz/AsvFdcagW8q8mF1EGqs3SG0a7FggijCS0yNpGeR3WUFiaN6NknhNGsL8+cz+n5LBPhy/IMq3YPufCobmxfRW4E2R2JwJEDx7nrnptIvXqSY4UMVSp5Sss8dHZE+caTh/G6jAiRQm0/jz8Ypa19mMc+9TBjiRZ+0ZxCTUeQqoGKsgGWb1jHpr79PPLAZvYdbOH15jTHW30sq3VQWVNBMBghp9pI5gSL3Bl2rCnnxcOjRDJ51q/W06PVL1mMfGYfnlI775yPksHCUFTh+Wf3MjAex1lSivl0F02VNh58YCtPPXuUdFbjMx/bwZt7jvHKywc5P5wDg/6h+ZNvnmBdVZ6PPrSFrlPHaVyznq5TJ1i2ZdvEggtmq43xvh6y2SxjvT2UeD0sCYa455b1JKJxnt97nlAky89+vg+MVu7atQyXx4XFakFN+FDMee65ezf33K3fw9PnhlHyGWqcuRmZYsaGR3jlUD+qxcnD20tY6s2yfc0a3DYVVAMV1RXcsSvLc681M66aGRoLs6S0DCWbY0jTUPIat9y0inhWIPMSc2GofcvmZaxf00AykcBVUsJHHzRz9HQfG1bXsv9oJ/ZADJPpygfcbgTZVRSV4OgwVodrRpm7vILgyDBGk4lowI9qNFFSiM9NREKoBuM050E2k2G4swOD2YREThjGZquVeCiAw+Ml7BufWP77l518Pk/zmS4aGitwe6bf31w2y9d/cAiVPF/7wm4URaG6vopfexBcTgd2l4Md29w88/wRhGpEqEZyUd+cE+vmaQS58DgG99XNgHK9ZVcYzLy5r5l77tjAY7dZ+MG+SSea3WLE4fHwk18cI5BS8ZRrJOPnQQqOtfnYtW0pOxaX8Rc/OEnr6+MIVWVnTZDVG1azYVWYmnIXLo+T//uDswxrJs639bB24yqS0TCxdJ5gLIuFHP8/ef8dZsl5nfeiv6raOafOuXt6cs7AzCAnAgRAMIJRFClR2bLPtXWvj69k2ec591i2bAVbFJOYAwgCIHLOk/P0TM9M57xzzqnC/WN393RP9yQAlED6fcjnGfTeu3btqlXft771vet9H9xVx4XxBOcjelp9ZjZs6Kar1cXIZIx0QWUiXMSfMyAIAm8fG8MklMhWLZzpGyYRT/OFT9/KuXOjPHkgzOfvX00mnePZZ/cTymjApXgxKjn+4PM7GBkcp6WljmImjYpAU0cH/8+33qWqdyIqJeJ+PwfOBAjlDSjFaq1p0+qmGpsCpYpcyCCZLIiSfp5vrpULVKp+JKsT3ezflHwKSa1gUvJ0NyzdlXnq6DnCWAmmzrOjzo3TVM/eNZ2E4wl6Ojopl0vMZE9xPJznos7AHziKOCsh3hGsqNUyHVKVLQ02fpjR2OOtVfXbbCaObYLpdIpWhw1VMyCOx9lg02ERBbyVFG7Llfazrx/XM2rvBEY0TRsDEAThMeBhYGFgL7xDTiDwvs9sAURRvOoAubgTuZl0NILOYKSYzeBubJq3aJ6DzeXC6nRTrZRRlVpzg85gIBUJ07Sil8DIEO7GpkVND+8Va+tlLEaJ45PqdTds/HNjLhFWsvGlzRmCgFopLlqICKK0qGlENJgRRB2I4g39xhrfuMatFo3WWqPJB4t/8dgtYeTgSAm9ZQR/fFaST6lg1av8w+N9NFhVdCYLF6N6LoRk2p1xGh0SH/vUvUwPXKDvYhCvwczvfuEmDh7oo7GliQun+znrVyk9f5LpWAUwsa63jtaeHk68ewCTq44f708gCCa6bRrdPa1YTodIiTq++dR5jEKVzsEkDpeN2/atZyp8hPE0tDhg9/YVuBub+N5jB8gVqiSyZV58/QwjkVoj6utvn4OqzN337EL3xlHC2QpDidokPBOvcPzkIG5dTWnA6nEz2neK+rZOAAwmE0azhZaV7aSjEXp73PR01qHIMqpUZVuPhVdGjAz74xSNVromQmze7EDS6xG1KqmKhdGRGXpW1Cp/d+xbw4nR48SVpc2n9U2NdNUbCGUqNDb62LFzsc5tIZ/neH8Qj1klUTRgtYm4zTCW0XHbJjtr1mzHV+/lI7et4Scv9PPS66d5YFZOTVFVnn9rkDqXicHRMJGcgNsq8dB92z/I0PkXj91rmWy4F2gHF7IZkuEgAgLOunrSscii9+r0OurbO0gE/RhMZhKhwPzOm8FUU8GRPiC90LlKs9Fswep0fSDH/KDRd2aYZ07lWTeV5lMPblv0miAIGEUNSVi8o9jUsni34eH7t3P6m0cx3AC1TCmk0eQqqlKtFR+qZQThAzeK+ReNXUEQOBez4j4zQaEkM0cYdog53uqH42eP0NDkI5PTeP5MCa+hhJkSX/jkHiJTkxw9eh4MVj5zkwOL1UwiGiU0OcHJC2HOGDJIYq166pIKbLtpOwN952jpbOenr4yQqJpxiBW6u5sJJwpowTJvny9yfOAQbfUWSrk8X/rcbRw/MYj/bBFN09i11kPnqpUcPTbA4EQKt9vK0y+cIJJVEAxmXt0/hKRWePihvZw62keyJHF0pIAiGilj4MjxYbKpJG67AVWuIlcr/OSJ/VT1TgRBoFBW2bRrAwNBmYnJKh5nmaIisW+NHqPQyYvHIlQqZfSO+kUSqJqqIhrMqMUszCbDktXFertMX8ZLIJGmpWHxGHFTTxPPD4RpafPx8M2XxkOHwwXAgQujVCoVrBYrlmqetVKeZytmvuhT2GaP8XBzbUw5mcvzHwJmfmQs4TXXimTPZvQcC8Mm0ny93Mb6VIAXtzk4WVfhirqGN4DrSYZbgIWK6zPArsve85fAq4Ig/AlgBe660sEEQfga8DVgyZbYB4W5ikQxl1u2gcJgtlAuFpZoWhpMJrKJGDaXG7PVit547bL7Qne65bBtdR2NzXWcHDmJZlzKldOUKoJSBcPiytbC4y3Hc/tAq8WCgJKNz1Mp1EqxZt8p6hBNNqrpCMIVmcSzh3hPMj4CktVJJe5HnP39mlxBKaQRRN0NCc5fAR9Y7C6MW+kGtiIBsoqJ507XVCAAdq8wcc/tOzl18Cgd3W246xv4q+8coKp3Mp3ToZPKTIxOE5iOsbbHx8mRDNMTAaI5+MELA2SrErLOxoUwWATw6gukUwrJSAhFb+WpE4X5RcnJaZX+7x2mzgK/f28Tx875OR1xcTYIeq1EKPwOEwkRDEaCWZG+i9M0JfIo1QprO2w02lV+flJBEGrPwsFRGY9BgzdPsnPbKvKZLIPPTyKYbCSrJl44nUfQZPTyKF++u4WG9s55qUKr04WiKEwPXMTd0Egxl8Nks5GLxWhe0YvOYERVpzg7KdLtzrJ+XU3zwWK1sHVDO8eGc4us1A0mM02WEoUyVMplTOaaO93F0Ri337SCu25Zx1NvDjPlT8771p8/P4bdZqpxOsMC5AQ0o4WRiSk0kwvR5qW1tY6W1tkxpFghVTaQylyy600l0gzHBNL5HIqiomoCZ/r9uFxWhmey7NvWia/+fe8o/Upi91c15lrsDix2B5qmEQ/4lxiQ2NwekqHgvOY7XHq2FbmKqii4fXUYre9fglGulC+ZLV0hGc4lE9eU0PxVoq3Vx8rJNKs7L81Bb+8/h6qq3H7LRlb3eDk7kiTgj87H4uUQBOGGd9M0uYLOUUcl4Z8t9tTGdTkTm9VM9n0QRZt/8XFXECX2j2rMJcJuXZ4/+vxNXDhznqbmbnzNLfzyxVOcDUK8YsaIwMjwDJl4CpfbgTuUIRLLYswVeftcFqOUJ626oAooVZrtJWIZhfDMDHUNXr7x5HlkowuAjGrhf/zoBGVF4HM3O6mURZ48Z2IgJqBpDr7/s3fIFjXAhSAIHLuYRBUm8MfLbOq04Ktz8+MXB8iIXgQBzkcNCArY3+3HbZa4+/aNhIOvM1o0gmTgrcEqgmCnP+DHKhUxW2z4i875+tWrAxoz8QPkyzJb2x189J4dvPnyO+zbezNR/zRrg1nODOUph0cXmbPobG4QRdTLrMVb7XpGwxEErZbPZLJZXjg9yPoWH7du3cS54LtMJ3I17wNBIBCJMB1NsnPtSk75E8wkCkjORgqZGH8ZqBDyNtFWLvKfmy/lWxOKgSnJSU7JMzeSvlMwc1xqoKkUQ9NgpCzyxHSWs7KJLWaFRxp/xTSJ68Rnge9rmvbfBUG4CfiRIAjrNW2pQbumad8CvgXQuWHT+y+9XgXL8c2AKxpqWBzOa1p9ziEyNQEIeJtbruo89fSBADopsGwiDHDvBjM9XV18+9khZOn9ObMZ1AKyJqFKNzZAXs4XU0v5eaMMTZWRjBY0uTIf3B8URKMVtZzH2NCFpsgIkg45G6vxlHIfPH/4Criu2F0Yt8am3vcVt9PREmMDQ3jdVqZGxjh0ehokHZubNS4EyoiCyOmhOGu7mlnR28qRwRP89GCaWguxYZHe70e2+1i5sp2/+8F+RmcyTMdVBPHSwkQQJSqiA5+rQGNnF43+BA+1WhiYyDATl7nvll5mZsIE4xUcTguvnishTORRFSeyKuL0+kD1L7KNTlSMHBtK0e4coqGzm49tEnlmELa3KKzvrePnb/spGtw0r1g1/5nYzHRtl0FVaV+zllQ4hCLLpMNhLA4nQ8eP4G1tx+KtIzyeo06vops1eug/P8qaFfXcdvMqTAvoEIIgoBnsJKpG/DMReno7OH0xzGBMR8d4GL1BJKOYSWWKxCIxsqkMTxyK4dKV+NPfvoVHSzJnL+YYnYmzbUs7oZSCTsiwes3O+e9oaWvkDz+mm5dYA2hsaeTLd8vYbBY8Pjc/+8V+hrN2Dp2aJih78DlD7Hv/yfD14IZj91c95gqCsCxn12AyY2hcvnpT3955XcdORcKoqoLBaLpqIjtHm3N4lpcgSwT9WF0eEkE/nqb3tzgoF4tUisVlG/muBl+9l889cilGVEXhwLk4KgL7dpdJ5yqkZRP5fPF9nd/lkGwe5GwMvbO+1kW7oCos2bz/nJbN/6zjbrYq0d83gMdhIjA1xfBYiOFgmV6PSLYIRVnAHy+Tzwk8cvs6JiMneWsEQAbBRmnBWa1tEvnUgzt5+qVTnBxKUO+2IEuLY7uqsyNUUrT39pCORtmRjOKwm3jjfJENK3y01tt4++gomzZ08urxEj8/VgQM1DkqrNrYjNU2Raaw4DpIBg6OKtzbHice9LN3UyPBw0nMJolH9rbx7ukAQwk7ZewwGzL15jI3r/PxTl+U9auaWLW6ix/+7B36+kZwOO34R4Z4/d2LjFfqavrVooQ4q3allHK1OVlvXeJeKOiM5C11jCcKbAcGZ4IcS0C2HGJNRwuxsoYoqOTzWTL5Ak+cGmWsZMBuGueLu9fQNzrBofEYq2Q/tzWYeSExzJ93Lb613++ukqsGabFdGu//pq3EVGGUm3x1bB0b49/ZtvGPkQFG3N2cTQd4pPH97SxfTzLsh0Ua9a2zf1uIrwL3AWiadliolZF8QITfQGiaRrlQxGS1ko5G8DQ1X5Hjm1XNsNS5dR75YoV4LI3Glbeq/tMC5685XF4t/n++dYA/+vRGRkb9HLqY4t7tDRw4G2Eqe+M8XMnqmhWZNyPqTaiqiqA3XjURVst5QJivLtc6lWUQuKKNs2i0wOz757qgJZsHJRtDWEaL+T3gQxG7Bq3M2lYjFwNlypoRRdGob6xnfGiELfv2kn7jMF+6swWXx4VwZJwtq+rw1Xn42x8epP3CNJLOzHKF+TpjianpIqFEgYLg4KWzJUCPplRZ4YNAUqE4q27SF9IT/9lB8oUyf/DFDZjFYUYjFTLpPJt2bEE8doqG9kZeOzMEkg5R0vGjN2qXSrhsoNc0DVXTUGSFdCxKS2cHnvFp9HoTVrsVUdBAuxS3olLmd++uR9M0zHY7iWAAnV6PwWRCZ9CTS8ZZuWM3iWCAVp+Zr92pR2+qnXfYH+TJQ3EMlTT37+ti08YV8+cxPRWiWsixvVGb97K/86ZuuiYirF/XgU6vR85laGxp4JvPDOMxlNna5sDtqCUhq9d2MR1KUUk5KYsaX/psTRT+1TfOMDiT4dH71mIxG7DaLBhNJk6eGiaRLnDnLeux280cP36RO+7cwX13bqBjOEhP+zpGpxJs29j5QYTNhyJ2P0zIpzOYrBaSkdBVk+FrGXgIokQ+nfxAaGtzFeZ4MIAqy6iqQkNH1w0fR5QkPnVnF6qqoTea+OhdG9mbSFHXeGWJumqlUuNwzvZnaHIVORcHTUXvXr7B8HKK2/zfJR1KIXXFsfoG8S8eu5qm0eupkCtDqGCkKoPDaSOTiNC7YSODAxM8epsXs1EimasyGcxz9+0b+PEvDvHDn75JriqxkJs7BwMlRFnh8JHzTEYrpKpGCFZAZ6TOWEIUIVysjV2CxcW3nzyNogg8uLuexuY6jl84RSpZZfvO9axL5Fi1uovD58KkZnviDozI9I0fIKPZFrVIzRWiVETS0Sh2j5e1zTmmkhp2pw2dtHRu3tAk0OIz4TXLHO6PMTCeJFTQMzKTYcYf5Suf6WHLVo3U2SQfubWLQ2emmSzUChBapYRk91IJj2Ko65gvhmiqwkQkQaea5+4NewDYsqKLkjzCiiYfOp2e397eidFo5McHzzGUE7i9QcJjho7GeqxWG6Kq8EpAZUKT+ZNOmT/phKPxIrdc0PFVZ5bPNRjIV2Ra7BYuZkr8MK7nK94qvQ4Tz8zkMGoKn+z0UQ4MsrFbpD8/yFqPyCIlr/eA6yELHQd6BUHoEgTBADwKPHvZe6aAOwEEQVgze1ZRfkMhCAIGkxFvSyvXpXx9FRwcF3n8aBZFuv4bKVcqZOKL7Y2r6Bga8eOP5rHooXtFOw7LtQf7ajKAnA6jyZe2gQVJh87hm1eWEI2WeUe55aDJFbRqBbWcY25hrylyjeagXmUlsAwEQUTnqEMyX7/80lXwoYjdVc0GHr5vC+tba/dY1TSymTwT4RL950bRNAG7282b+8+TTOd59/g4P3ruLHabmc995nbu2OCkw1Fewqn+6M1N3HHHZg73RxdVbtscCl/4+E5uWr1gMBf1zBQsJHEzePY8TrcTWYXnjsV45qVTPHMqx3eeHVpE1ykLZsrC4vt+W4/Kp3fbEVSFro2byWay6M0WRKBvIsu3nzxLXlu8w2EUZVwNjYiSiMFkwuJwYLRYa/JXLjcGk4lkOIhOr0cQBLyNjRgNtd/jrfexxlMkX1J44/glWmE8muCnz58jmNYQjdb5hVpdvZddO9egNxg4ePgCT59TOTcYpN6q0Og1I8sy8VQeVVGQKxVGxsJU02HOnxvmJ08eoVgo4A+nSZQNxKNx/uHxc3z3iRMAvHVklHdOh5iZmObHT53ksN/Mk08fwON1s2f3WhqbG9mze+2i6vX7wIcidj9MMFotOHx1yzb03QjcDY14GpuvauK0HNKxKPJlJk6appFLJhAEEbPdjnQddLGTp4b5m+/uZ2hoetHfV63qYM2aTgD0BsNVE2GAF14/i2iyIucStXOZ7b0QxBvf8JWsrg8qEYYPQezqq2k++7Gd3Lm1VtXUEMjnyyRyGv0XpghFMvga6ugf8HPo9AzReIqfPHWU0ZSOm7d18dXP7KLdEMVIedFxt3ZZ+cQjewlH0rVEeBaaqvDx29r5zD0rUauXPpOsWsmoFi6MxtAUFbfTxOEpiWdfPs3rZ9P89Xf2M5VdMPdLBrLYFxWeOm0FfucuH43mMjpnE1aXC9FgQtIbiBdEvvP4CfrDS+d6s92B2eFmKi4TTpbpCwpsaNT45Ee3Uee1MzAcYCacxaJT6eppw+1cMOcKAtX4DHpvG0r+UgNiNeHnbChDrAIuZ+051On17NuwhiZfHdF4lH886ednJ0ZocphpMshYTCYy5SrZYolKucRMMoucixOOx/n4oMC78RLDeZkpQx1TZZE/m1C5NdTB0XiBx6MaP8rY+U5A5lsjMf5K2siXpu2IosgXWy1scpv5fKuFLa73Xzy75lOjaZosCMIfA69QI+B8V9O084Ig/GfghKZpzwL/L+DbgiD8G2o1rC9r2gfQffYeUMzliAdmsNgdmGyLrTtvFJl4bNa8YynVwtPcQjoawd3QtMwna9jdrtLa6OCXh2MIAoioVMQbmyi7LEkKqolCFf7m+4fIKGZu7hK4be8a0tHIPD/6L7622PwgFQlzNihQb8qTKUtUhCs4KIk6BKOlxl2+0W7kOYgSarU4y0GrPcQ6hw8ll0T6F3Sf+7DE7mCgwjMvn+ZioNZAFymZ+NZrEQTBxuloFk3Vs3+4H7tU4FO3tlIsVXjnfI54SeL1t89h01f58qd2862fHiRYvBQ/o2NBhEqB3lY7A9FLroHBtMrbb53g3HSJGh0PRLXMnpU2JsJ5nj2tIAlTCAYLySokA4DezlyqLSklHrnJy0w4y5FJEZOSo6jp6bTm6WlpRWe2oIhG9h8ZIpUTePzUIKKq8KePbiQeTfDjA2msaoqtrQInZjQcFgNf/8kRCsUKf/DJGg9YVVQsdidxv5/G7p75wb9aKVPK5TFZrbWtbm8dj3x0N+63T+KwXorPQqFEWWen1ZPnzr2X6BgL4XXbcBBhbErmtj2r6O6o579+7xgSCqEfv0OuqmOFz0okmwOTk9G4QHgmxExSxVCN0tG1AfupMDZj7dwcdjN5o4N4psKKdienhyKs2trxwQXKAnxYYvd6oKoq0alJVFXBbLNfs/HuaijmclRKRZy+pfxQ3+yYa7+Kwk86GkFRZARBxOH1kYnHcNU33BC9KzozjaYoWJ0uyqUCrroG0rEodreHVCS8iAay8N+FTG1xl0slUarVKxqPJNMF0oqZdPr9aVJ7nWaUwQCCvvZciEZLrdfjgykkvGd8GGK3qnfys6ePkSsDGBH1Rp44ngdqqj1g4sgPT6HT6birV2TFqi7eOXQBg2Dn2IUIU9MRfutzd3LwyABvDlwqFI1NRQiOj9LiNXAmrIBQM/USRIkDx8dQERF0lwoIq7xVHFY9x8Zg5Jf9tYqvKHDaD2CBBS73O1oVulpdPHUoioaATlChWmZ7tw2P14VOCjAwnaFUVXm7bwrVYOWONTb23ryDf/zJIWIlA9vr0iSKeqIlAwfOpXj9RIANrWbuuWsbb751kjvv3MXrrx5iIiUxki7P3h4z/+27h6hINuqMBXJVkZLdS51Dw6jLMs2lnitRb8JosfHZzcvnPRazmUaDQimfRaq38+8evIUfvnWMoYKeF4+epj8rcV+HA7MIJoPIKUMbJ3NDjFStyIUMW3wVzpX11BVT2HUizVIFncNHuJLli25wTc2wVZ8DPvgYv64l5Kz+34uX/e0vFvz7ArDngz215aHIMpqqLnI9WohiNk1L7ypi05PEZqZoX3O58er1IZOIY7JaySYSyybDeoNxUWUhn05RLhYQFpSKnXYTTU1eJCHCx25qoKHRw/984gLolxdhX1NXpavJzqtnUsiiiSYpyqMfv4VoIISo06OTJP7huSniWYFsIo7RfOXE2lXfgFs3xB987mZOnBqa3UIHQSmjF5T5pFw0O0BT3peTkVrMItm8S5s5RHFWZm0xB01Tqqil/A3Jr71XfBhit9Ep4LEbqJYzaHrDrPnKYnUOTTLwxQdXgFrF2+zkY74Uv3hrikNjCnWmCqpyrDY4Amt8FZyGKqqs0bZ6Ld7xA/zB/W28dGiabEljU7eem/ZsIPrKWRKzm44uQ5Xbb1nH8RODTJ1O8+AWO+lskeOjZVrsVdavaub10zHyqgmLUMJt05FOCdjFAn/4ue2cOnqW3bfczvCpExirCr31IofGNUCPKMIdG6yMDw4RSmuAgYd21dHR24P10HHW71jPyPkhVqxbTSIwg8FkRNM0irkM3qbWRddCbzCi9xjn+ZyJUACd3sDtt28nNDFGuVDAaLHQ1tHMHz6sx+60YzSZmByfwe124HA5ePHVU0TTZT59/0b25Yq8eLbI/iNDHD0X5IEdPuobvLz09kWESpVVK1p56OG9JONJcrkirW2N9PaHyadL5PMl/uBLt8yf2227ujl70U+928umTTu4/75LG2uTEwH2n5zCblDZvWMlDY3vfxH4YYjd2e+hWi5hMC2/O5SKhKjv6CQRDJBJxLA6ndfVfLwcitk0do+XTDy2pMEZlmq913o3wNfShihJKHIVh6+edDRCKhKeVRMKXJEbnE0kqFZKiKKEq76BUj6PpmnUd3QydfE87WvWkQgFMBhNZBIxRPHKSfVcv0kilMbu9pBJxHF4vGiaRiocwlnfgCiK3HHrBtatCNLU9t75yplUhlXddYsSNaBWmCjlZiXXFk/vSj6JaLLfkDHHe8W/dOyahTLdLS76hhK1Qo+kX7IgEow29qzQ0bvSg7ephZ0bs7iDVfaPyIzHy/DOKcpVBRQRr0VhTaOOQt6A2e7CZi/zxVtMzITSvDtUZnOLwO5NPYTiOS4mLi1ytq320d7ZzKmRY7TXm9mwwsmzB/3YpCo7N7ZwcTLDaFKPpirU28Fp0SEJKvfv8NHS5KGYLyKhMHnxAutbdLw8KDGeqoDRzmpvFZ9d4MThU2TKEiutKe594HZmhgbQDDYMgkI2X8HX6GPg/BCZosrY0AQD03lkYfGzVdU7sZPl9z57E+f6x3j2VIHdWzpY09vMt392kOSsWoNocfD/uXMtXo+HeDJJvlikvbmZ/vFJXj4/xUfWtfPH9+zi3//yMG8NBQlmirQ5THy11UE0a+JiJoIoqvzHj9/KZwZe4t34eW7xWng8UmE8nySvKPz7Ljv/nipgos4gMhoYZa0hy2qXkz6vwFwiXKhU+fNpgWqpwL1ePQ9coSfhevGBa6r8KqFpGrGZKdKx6Lw+8OUQRInYzDS5dJqW3tWEJ8bf03cZzRYy8TjXu1itFIu46hoWdbu/fDbH/3riAhXRwlQwzeBwAE24cvW1yyvRVm/CKNaMOkqijfGLQ5zsn+bYuQCH+2qNVoMxHZ7G5mvKBmWrevYfvsjA1CXXnvu3uvijT23AoNbY+aLBdMVEWC0Xril3puRTtYpEcakhiiZXEfRmlGJ28WdyyZorXi551WP/pmB1u52Nqxv4g0dW87kdOra21K7pam+FT++2YxGKIOk4enaG42fGCU1OgCDiMam02MpEU2V23bSZO3a2oykyezc2ctPONWze1MP5U+dI5CoYDAYEVHb1GFm/uoW+IyeJZC55P8erVr79s0O8dTaJoCq0tNThc1t59PYW7r9tNat6m3EYVUyUuXmdm+aubgIphZIiMjA4TShdof/sMMlUnvbVq1nfYaFRlwCliiAX2by+k+amOnpmu+OHp9NE/QFOj+e4cH6EFWt7SUSjGC0WXA1NmCw23I1N5DOpZa+ZzmCsJSEmMw6vj/DkON7mVrLJ2pZwNp3l7GCYTCbPKy8f5TtPnuXJl2pueJPhPFNJgWy2wOZN3dy/2YLLZWc8ZaAoCzS3NvCVz9/Kum4PP35tiscefwuPz0N7ZwuiJLFlTQPTSj0vvDO86Jy6OusZmsnw9Z8c5X9+44VFrw1NxBlNGTkxkmf/ickPImw+NIgH/FSKRVKR8LKvm2dd4pLhIE3dvcQD710lS1U1MvGrL/TnoGkaOr0es81BtVJLCj1NLeTTKTxNzUg6HalICN1VEvNsokY3K2RrY6Sk11HKZZkeOI/F7qipEVlt2NwePI3N19Vwp6ka6VhsflcyEQzgamic19uu6QYvf5xquUwxd+2K8U+e6+Pbz48uGVvVYg6d3TfrDnoJcjaOaLKhzFIqftNRb9O4adcabt3g4Hfvruej6wREpYRNLPHoTQ5WemrxMhzIc2E4zOE33qGhvZNC3M/GJhVZE7HZ7Xzk3t3UW6qs77CzdX0rDz58C9Ojo4xOJdAbDEiSSI9HZs/WNmKhECPTqUXn8dzhEN/5xSkUgx23zUBbeyPbu638/pfvoL3eQludGU1VWOtIs+2mbSRzVcqChZlQluHxCBdHwowMTdDau5KWRidrPQV0aq1DrrfZQu/qHnq6mrDqFcIVE6GpKYanUhw/M46nqRmDpOIPxHnqeJaBkEIonucrj96MQyxcfsnIK0YOHBng/HhtLn/9VJyBixN89dG9mLVaTKrFLJOxJIFolL96/gD/481zhCMRZmJpZqompiJJDEYTX93VzX0rfZzPSgwlimzoXcEdWzfwR/tW8dxIkr96+i3SVYW7GuwYdBJfaDaR1Vv4P0urGE9fMhWpM9d0yf8saKXnhMrJ+KXzHsuVeUpr46mqj38b8yzKvd4Lfm3smOegqiqKLF/RgGOuWlutlEmGQ8jVKoosk03EcdbVX/d2mdFsxtjSSrVcumKVYtH3NjaRDIewezz8x6/WBrr/9E+n0Wad6Y5MiUB1XoKszlhE0wRilUsDtdvnpq6ljXJ5EozgskqIZjvjyTypau1WzZ3+ck11l+PPL6NOADz70nFEwY+sXZ1PrBTSaKqCkgwgGEwYPMu7Ogk6A0ohtfxBNBW1mEYwWJAzMQSdvuZKJ9SOjyii5JP/XN3L/2J461yaC0NB7t3bi8VixmUXEdUcqxt19KxoxXt6ikLZzEm/hFoW2bjSQHR6ik89cjPDF4Z48rDMT589RbkKgmTklwcCrPIW6WxysXL9epIlke88fYF7tnmwimU8TS2MTKdJFVJIWglFMmGTyvhcJkL5KuhNfOuZITRBYkdXHoOo0TeRI4uDPT06Nm7oZP87JxkKyVRFE8+czAM2fK4sq1d1c+TV12hub+aBm9sYGw/T2tFKOhKkXKowEcwDRiwWC+FUmZDi5cVzMgOBQZqcIj0dPkLnhzCbDDgdZkr5pYMysOR587W0kU0m0GYHvNP9U+wfrpIvTjEWKCI66rBqNcphh0/HxLFRvv2jaR66ewMruxro7fSxKpBizepao50gCDTU2RGFGINxI7l0GpuzVtlraalnTX2cnlYv58+Pc/LMKA/cvYWjp8cox/3omzcSj02QjCdxe2uxu3dHNxb9KNGUgy3rrkyd+nWEIAhUK5UrWtfPWSybrTaSwQCSJNV6GgThuiUq5zBHO0hFwkh6/byiyJXOy2ixomnaooa5OYrF5XSNQjZDKZ/D4a2bP67JZsPT2EzMPwNAtVTC5nKhKup7Nv+4XL5OZzDMc+Kvhe//4iiBSJreRiMfe2gPFtvyhYpmjxFjtsqksri4MqfIg96InI7UGpgd9Qg6fY37KQjIucQix7HfRExmDHzjxwfZ1GnGblNobvYh9k3QYc3T3bOVbCrNUAKCBSPBYbh3hYlsMs6mdR20rFhJ+PuvcfiCwlT4JJGinvRQjlgwxLa1McxWC7esWsXf/OgEO3tt3LTaTbVcpWfdOn5xaD9Go4GyZEdTZFrr9ARTteLH/uEyhwdP0ugy4jg9xNG+aWKyDY++yic/eRvnTvRxYKgEGDk+I8FMhSZTmUdu6WGo7yxWq5kdvTY2dCgUNCMmNU8ulWR8ZJJsVaLFqackiwzFdcTKNuJPn8FpkLl9dw+3dCe5ed9ORs/1U0gl0apFuEy9SpMMvDMkA7W4KGJiIlJE0M1Q1aSa5bfVxVN9k+zq8FK1N2FLT2CzWFjX7OOF0/t5NSwTjob57N230uiy0+RL0ei5NL+7HHbMmkzO1sQziWF+Z8Gj8klrDr9cRBBEfu9CntusVeosRg6mRfQGE5qjgednjrPNWzvv9R4b35RHOSRXabMZEMX/jSrDgnBJyky7wiogm0jMCrp7KGYzqIpMIhjA4fUtsl9eiPDkODH/DMVcdslr6VgMs91OOnrtJld3Q+MVtxIXQq2W+ex9q/jE7e2LKq+vngjzo6eOIxtrk7LDLNLR2YJZd/XqdDoaIRkKko5du//gdEDHc2dKqJIRTVOpNxSQ1PLSN4oSajGLsXEFgqRfUmmYf5vRgs5Rj86xlB+nc9ajczagVcvoHD40udZ8Unu/DxQZ0WSbbwD5TUVVMDFT8fDTN6d54dA0b/QX2NJhYt3WjYz09ZFRasnCRm+Bne0Crx4cweZ20XfoMIIo8XuPrGE8JhMoGLGKRe7ZUY/N4cTb2kp4chKdUqDdDZu2rkcRDDzz7EHePRvhS3e18OnddkxCma09dj5+/za6PLXVlKa3gM5IIiuTKqhkcSAIAn0Ted46MkYkXeH2DU7EBbERTRaRdDpuvu9ejCYLrb0rsVkNdK7oZGIqgtlswmXVoWkadV4rXqeJr97p45HNekYTEpJOh9lsIpMpkMpXEAQRQRSIB/yEJ8Yp5mralNHpqZoUG7Vm0UQogKoq+FpaMdvtFHNZVnV5uLm1yLYNLTx42wq6rWkuZlxcvDiBx+NCZ7Ije1bw5LNH+IcnB3j6jUE2bOhZlJBs3riCR27r4iPbPfOJMIDNYeMzD+1g+9Ze3jo0wFjBxS9f7mNwpoBUv5L1zjQGp4/vPtU3v3NktlrZs2cjH3tgFx2dV7YK/nWEt7mlZopxBQnJSqlIIuhHrlYpl4ooikw6Hsdkqe2uLYdkODRbTQ4tfS0UxO7xXteYa3W6riiVeTlK+RyexmYy8UvjpNnmqH3frDqFXK1idV1bJq1cKBAP+IlOT13zvU5fHZ7G5nmKRzaRIJNY/roI5SyatZ4LYTjeN3HFYz78wE6+8uieJdS0uUY4UZRqaj2CWLt3ZsesoZKAZHH+xu/KCaJEuGzh1fNVXjnm55+eH8YkqXz8E3cxNXCBqVhtXPNKWe5ZBe+cSxIYG0euVHn3jUN87bfvwWmG82ERRD03rTDS3uygqbuHcrFIOhbHqOS45eZ1mKw2zg34+eHTp7h5vY+v3NdJrz1NnanMpx/awZ71tXgSJD2K3k62rJHIlEkrVjTRSKJi5JlXznB6JMNNa73Umy+NueG0jM5gomtVLy09vTi8dVisFjraG1F1VqL+GRqb6xEUBZtJpLO7ld1dEl+7w0m1XKagGLBYTMiqRtAfZiRU5sKQn/v3ddFuyWGfrRA3WcrcscaAXqvtuNcZS/iMJc6GdDxzPIVekBHMDrxalPtWerl1TTc3O4oULXX88ng/BqMBSVOgcRXHw0W+/tIB/subF/A6bPjcC5NhJ39yzw7uaNbziHdx+vmnHSb+a4+eAxl4oerjP2RbeTupMuPu5ePmFD35Sb5n3cmr4UsFlHvqLfzlaidfbf3nMd34UCGXSuJtrnEJPctwRKqV0iXBdZcLu9uDf3QEgqDTL09REEUJs81Wc6NbgEw8RjGbQRQFTB+AGPwcBJ2B1w6Oomos0oSNlkywgP1xxi/Q/93DKIYrNwH+p386zUpPhUc/tpNE8NrbkwsryYlQAHdDE2/v7+fdYXnR+ySTDUEQqcSmQVUQb9BoYtGxLM5ZqbbLtj4FASWfRjR8IDJqH3rcs62ejRu6+ZvvHWQspHD4xDBHL8rkqTlw7dvZidlq5Z9+up+2lWsIZweJxDKUyhU0UY8AGESNtvYmYpE4/ukQTa3NSLE8D923lnfeOMw7YwKqYKLZpBKY8rPr1pvZmjjH6dEs2fwpJuLanA49APs2N9LYXM/57x0DowNJFIinS6zrdLFuXScH+k9SmDULORc1E3llkM0rwthNAicuHuZ8UOP08OsUBCud3Xo2blnLS2dO8OThCiYlyx9+bjuaWkWUo7wzYuHM6CDbVtfx9vkMhX6V+zeaWNfsIOafIeafpr6tA7PdTrlYIDI1SblQoG31GpKhIJqmocgymVgMTVO5656bSIaDNHe3Mu1PErwQQ6+T2L1rDUqlyP6Tk+za3Uu/v4LjMqktVVUZHZ5k/dp29LP9B/sPnQdNY9+eS30Gt+3u4ZVD06xb2UR3Zz3lcoWWlnp++sujGHWXuN/FfJ4nXjpLvdvEvXdeebfm1xGZeAyHx0smEVv29XwqNc/vtjqdeBqbmR4aIBkOoVTlZT+jqQo2t4dccvFCuJTPU8zlkOUquvdk5HNl6PQGEqEAFvulhc/lWvQOr49sIoGz/upKDtVyCYvDST6duqFzUBUFuVpB0uuplktLquZf/cr9PPv8YcJxgXW9N6Z2sRCi0YKcSyCI0uL+BL2hlghfocr/m4ZVDSKPfuwWnn/1DCcnK7y5v59AtMR4pnbdb9noYePW9eTyhzF5G2jpbOHdU28yNTJOrngpdn0eK2YdTE8FqWp6LA4nD97SRdjv58kDAQqiC4dUJB2J4NjZyy074J9eD/HUCyfxJ6rMGS4BrG0zc/dtG4mljjMUBxGNclXDoIctW3qZCGaJzGoFq0Yn33txmG63TG+bA38kz3hSIl8IUGfT095k4datK+jqT9EfFhj8zkEe3uXB4fHgMw4znHfxPx47z941Tt45HWYyY6WnWmbfbd2QS+LwuPjuawFWt3vZe9Na4uH9NDU7aat3IRmM/OOLAW5fY2F1eyORcIz1O+4nNxnEYbeze81K+vafw6S30ODz8eef/gj/84V38ThFvE4rhVQRw2W7ITOhECaDgQd3bsLbN8qheIkXMjr+VYNCg6V2jT7ZYOCn0ThOnci/bdexL3WRO9ttfD9Y5elchHbzpdj9m8kSx0sm/ratTL3lxmVkF+LXLhk2mMwkQ0EMV9h6M1lqXeh2j5diLkc+ncbhqfG95jhbl8Pd0Ei1Ul5k2ayqKtVKGVddA/ls+n2Lsy+EIAhcjC0d6C83tRBE6aqJ8BwG4zpS4RCephurSJmsNpLhICOBAjVDh8UQjRYMlyew7wGCTr/U5hnQLUiw1WoJtZhD0Bs/KFm1Dx3OjiaJJfvJqUaoGnjzYgWwIKkV6swlDh2J43GaEKwe/umxwyQL8Pm72rHazHSeP05ac5KULfy3H5xAkcwIkgJHBzHrFMy2IP6MiCYaaDAW+N3P72ViYJCXXzlGf0Ahr5o4EwAuM2R57pAfj3GSves8HBvJcetGL1s29/L1773J22fjFATrfFwKokREcfPqYO2z9Wa4a62RTdu3458K8uzBAAYpCKba/SvpjBw8cI69e9bT4UsxkRFZ1e7ilj3r8EdrE8FLp9P4TBU6128kOD6K0WIhPDlOpVCkeeUqREkiEQqgUbMHzcRiGM0m0vE4yXBwfpHa3uIhnq3g9da+e8++rezZV9MNvn2Ze3H02ACv9Je42Z/mnjs2I1ervHU6CoLATTsq8w266zesZP2GlUs+/8VPXer9mZwI8tJLB5nOmfFPV3/jkmGLw0kqEr5i85jd65vnd88lnCaTmbr2DhKh5RfonqYWcsnEknE1n0nRvKKXif6zdKzb8IH+juWobssZCV2PgYbN7SGXSs5XlK8XoiQhVyrIlcqynxUEgYcfvPmGjnkl6GxLjy+ZHYuca+fsd5cbn38TMJOU2X/oAqPhEohGDo6qgAlN02gwFTlxJkm1VCSeKnE+GMR0MsTKrjY6V/bQeG4SWyXHRN7KE4cSCKhoOnPNjOLkAHtXmTDkNfLYEYCP72umrt7LGy8fIKq6QDRwLgQLE2GAU2NF4slDuO0GmotlrCaJRx/ezqtv9vH339tPomoEUTcfl1nVQl8c+uIgKDru2+LAYXSxeuMavvWjNwk+fZzhiIogGZANTt7pi1HntdPT287wuRJOE9x52wb6zo4weTLPSNLAX33zLb70kRWYLWZkNcTFsThm4RQN9U52bF/Fc88doKQZoVolEFeptyg4HRaOH+1nU12NfuR12Vjf5KSnoabu4nW7+csvPHzFe5FIxvn7gyM4hAr/34/fAcBPUwaeFztZmxri87Ophkmv48Utl1LTextr1+93WiV+BwUwkS5X+NupKt+JCGgWIzPF/P9+yfC1tsQWusjpPbWLExgdYXrgAnULnI6KuRygYbbZ0RkMS9QpRFGkkMlQNVWuWFG+Fq5kxLEc1tdX2bW+iSfemSat3FjJXxBE/v6FEBBa8r1Xw5yF6u8+ujSJ/kDtnq8DajFXc73LxvhVyKZ8GDCe0jOeUkFaHE87V5jZtqoVd0MjqWgYhy/PL0/kQK0yMDyNlk/xpS/cy+jACI/tjyGJoKDRbCmz7+YmXj8Z5sljWeYWNImSxPnT57EaVNatqOP0VIA6Ux6bTqaEiWDh0qARr5hZ1abjzls34I8d5fhAAn/kNDHZDpKeHU0ldmxq5/l3h5kqLHZn9Fgltu7ewsWjR1A0kUhRv8TIoD+qJ3NgjImUCCKcmigT/vlhptISSKBJRn5wVKah7xCJksR/6F6BzeXC2tFFMhLC7vZgdbqYGbxItVRCEEVMVhuiTo+7oQlBEEiGQwwPT9I3oWHiAvfdt5vHn3iXbEXgUw9sxuVe6irZ2OCkaTRJS30t9nV6PR+/tcYnvpJSzZVw4PQME+EiptYuKunLvQV+/aHT65d1lVv4uqfx0hhislpJRsIERoYWVT4VWSaXTMzTBZYzzhAFkdD4KEaLFUWWr4tn+16RScSRK2WUqkxdW/sNf/566RmX4718168CNZUFHWjavAPobxryqok3L9YkLRfCLeV59O5ebC43M+PjfOam7fzXb71DWnFiDyc4/M5R9u3oob6tnb/71stkBRdoIColHtjhYSqY5cC4CKjzY17/QID1lQLbd67ltWMBLEIRt6GCw2HjYliF2V3gimAkns3x2Y9v4+SpYV49HeflN89yYapAVrXhENN8/p5uRidCvDa8OP71yKzubcU/PMzkhfNUqiqDcd2i3b5o1cZbZ6IEUypgJKPZ+PbPDpOt1IwpBEGgrHfz2JszgIZgtFLv1dhx81Z++sQBjv7oECnZzmpfla/d28zoVAJ/WuP2Tb08/9gx7undTDafYjg0xdFggVF/kA2dbRy9MMA7w0Hu29jD1pU9S+6F1WKlxybgNF3iwf9pXYVN6SE+5rsxA5xX4zLfTNsRLHokqwun9P4da3+to19VFBCEKzZ2zMFkteDwdpBPJTFZLKiqSiGTRjfboHGlBo+2VTUt32upNiyHQiZNqZCfn7CvBZ0kYHNYWa74omkaaLWHrsNRQRRgPP0eNYE/ZFArpdo9NNtrTXaXy7P9BkJTFZpNOXQiTOfNBEMl8s1GZsaPMBSsEi4ZARMuXYnb79zHycMnGe47i8Fo5LO31NHS0cLBo0Ok81VWrurkWH+Y+ALatywYefJkgVu7Yc3qepxSgd///J3EA37S6Tw/PpCZb+QEODGSJxg7ynhCQKuWcIgFHJJIWnPgsEhYbFYcRgEu63W7GBH56398iT/8wj4K2TT0L+V/5mQ9F8IigqawqVljMqYxlTOBBD5DEVmDVNVMpGyZF9w0WW2UiwUaO7vnj1MuFmhZuZrI5ASlQgGoVfRqz4bGnt1rOXPxbU7MNOA9cIz+mTI6Rx3TM1HefLuP4ckEW9Y2c/fdOxAEga6uFn6va3FVcv36bkZHZ/jGjw9yy9YW1q7tvOp9TMfj2N1u9m1txShnGJ6aZNeW99Z09esCTdNQFeWqFvQAqCrNK1Yu2o1LhkO46htIhoK4G5dvMnQ3Ns0rO9xoIixXq2TiUawOF8brMT7RNAwmM8Xq0l4RqM0voiSRSyWplmq0iOs67occmqbWpC3NdjS1RgX4TUyEL4dTyuPUlYlVzKQrEqGZIEyMMxIocOhCiqLkQAB2bGiltdnHyMAwsUicr31uL8MXhmlsa+W7T/fR27OBSnUKgot7bU6EzERSYT5+XwOiCA/f3EhHRxPFbIb4C+eIqJf0seOyhe89fphEQaCi6pgYD+AzG0nnDRhFGYvdhtNm5HL72opk5eu/OMs9G8ysWbsOz9ko8cvFR0QdAxEVQdTTaitj1AmMpmpxa6JMnU1jKqMnu2CLoG9GZvr7+0lUzbPUGqjIoNPr2LptDU+9dJr+/nHyldognVbzdO9cx+6ZNziSbOaZo8c5ORahYG/h0NAUEiq/OHKOBruFz92+G6/LhdFo4vfuXaym1+sw0Wyq8gfjIm26Mv93z9Xn/2y5pgJyn0/Pv62WeHomiFOL0db9/p/LX9snoFIqkonXVvaNXUtXIQsh6fRk4lHkSpWYfwab24NcKSNXK1cVcAeQ9LXPuhubb0i4vVTI46pvrGldNjTOV2uvVHE9HZA49fjgsk5vd68WqfM6+dk7Ie7d3YnVYuK//2II8QqWxdejNHEtLPfZ//gP++eTV539ytetEp0CSUJndS/lCS+AJldRy3k0pYrO2fAbuVWnqQpr6lUiGZVEpfagr/MW+NTHb2NmaIAjQ3lCST0mk4lNe/Zg7uvnjf6atExSsfKTp46RzBTZu7GeSrFCMpOjooqUclliGZH/9u39FCX7InGVHlcFh0XHRX+BMxMDZBU77x68QD4yzfbdW3hgi8KL5y7pk1YEI+NpkCjwxbua6Fi1koFTJ7F76nj35DSHfnKUkmRHLxSoLuhAFkSJoqmZHz5zBlkRcJn0tHlFKqUS29Y18eqhST52Vy/9I2GmojIf+8guDh8b4NVzRczVBJ+8q4dMtshPj14iyl8eu4lQAFVR6dq4hWQ4iMPnw2yzk45Fa9vxllqVoVzIs6rdxrq1dQwPTrKqTsXnLbJu3WaefOUCimTl0JQOz7GzbN+1adl7pcgyjz99mExJJNBqZ+3aK9/XwYFJHnsnyPYuAw/cs5XB0QjltBuz9Teb/x6bmUZvNCLp9FelE5hsdpKhIHK1QjIURNTpECWRTDyK/ho9AnqDgVwyWXN1W0bj/UrIxKPz/SLXk7Q6vD7KhQLWVteS1xJBP+Jsgqip6qxecfCfPRnWNI2nnjsGaHz8wV1XnIPkTAxVqSAgondfnWsspyNIFhdKPvlBus59qNBgKmMzwUiypuuulvN8+VMrUapV/JEcTx3PIqsa67bvxDwyyoWJDEKydm1fPRHGZgjjdejo8EhMTUeIp0sUKpN0NNr5nz89QVU0LaKcOXRlNnfZOD8m8sRL55gu2dEPxQn6I5gNAp99eDvfefr8vDunIIhM52pz/Z6OAntu3kM2EScaz1Io1/G/fnqSiliTWS1JzkX3vSxaee18iTPj7zKdNrChXSUUy3HXzjZOD8ZocutpafDw07dD3LOjFV+Dj7/6/gkwWLh3k5HOzmZ+/toIodKCsVzSk1T0CGLtt6xtM3NyTOWHbwTQCX7Sio3J4wn2rbETTgaw6cwUxkM0OBzcUydjNxloiRkxSEk+vmcHv9h/jBQm8oKP771xlH/7iXuveK/+fCjD61k7XdeogymqygMjZlRE3l5d4i5Hma/XbaBZC2PQvU8rYH7N1CQWQtNAFIWrJqiJoJ9EKIAoSngamxElCavTiVKt0NDZTUNHF6J09fJ8pVTE3dhMKhwil0wQmRwnFvBfs3FCQCAZCmJxOEkE/fiHBokF/Lj0yyg3UOOKzTWSaUqVOmMBlJr6giQJ6HQSCCIvHprmiTeGr5gIv1+oqkp4Yozg6AixwGKFDXXWrxztGnp+ooDe1Ug5Pl2zep7tuNcUGTkTRSnO6h4LAppcBmX5JpvfBHh0RT7z8E72bri0eMjnS0RnpsmmM0zFKjQ4dQRCCfpP9dPY2oRJp3LHSvjoRiMOs8Yd2xppa/aQq+p4a0zH44dTbN/SzWfuXU1BM84/A3apxLY22NVrYfc6H/dstvPRvR2okpF8Js3umzaSjobIprMISpmH1sMjmyQ0pZYYa4ikMgVGz59nMpDBaNCxotnMLWvtfOXOen7/kdUI1cVlCEktkSzrSKo2dq12cf+tK2mwlGnvrGlc6gwSkigQzOn5xXMnOXIxBcCaLjcNHZ0EYzmWQyYeIxkKolSqqIpCdHoST2PzPK9fkat4GpspFfLI1SqaBuu7XbR3tVJf52JlVz333LMLURS5Z0cj1UyEaiqEdBWXxeGLI5SdPUg6iVSmxPn+Sxrl0XCct/b3k8/Wfr/BqEMv5xkYCjA9FaKhzka9sUC97/1ZBf86QJQkNJZXuMmlkiSCtfHR3diEKOlw1jcgVyo1nd7G5mtycrPJBO7GJoq5TE2pIhQgPDl+xZ6POcz1i+j0BnLJBPGgn8DoMInglakrRotl/vlJx6KLxnVJp0fTNAzmWp+K1eW66ve/H8zNVYHR4UUqGqqiMBQsMhQso1xmBb0QSiGD3tWIUkzXEuPypW0cJZ+c5wZDLRFTSzkQfm2n/2vizm31fO6RnRjk2blG0hMPBijl8/RdDOIyVFFFA30nzqLXS7gdZnrcVb54ixuHrsKeTY00O0U6env45YEg+6fNFDUzn/v4blp8ZrS5RFipsqlZY2uLyqaVHvau0PPlz+7DZygQiGTYsLEbm1EgND2Dogpsqc/zW/sc+HSX5tWSoic4Ps7Y6DQGsxmzTmHvWgeP7jTzZ797K93OxcYqmiKDUmG6YKfdLfDQ3RvZ0mGgqcmL06ZHEkV0+hrn+OWjAR5/8SyCyY6VPJt2bCadzhEtLM17dFqZlV6FNU06dq5rYGc75BTjPG3Taaiw7+a1VPQKiqpQ0ausbGuhs9lNc3szVovGo7fvxOt285lbdqNLB6gk/FQry+c8c3hFaUDf0E19NcX/PVaa1wtWVJVvTJc4kpg1DAMcSoF4ocC3Zso0GCU2qhG2GCtXOfr149e2Mmw0m5F09YiiiKqq81JM9e2X7FFVVcPp85JP10SkbS43crVyQ1wvUZRIzjbk5ZJJJIMBb1MLofFRJL2BfCqJKIpLtv0W/nc+LWC0WvE1t/DpvUUau2r2s1eqEq9tFPj0Q3t46oWTnAvBy/1V0KJ4LaCoGsHC9SXCc8c3UeZrD3Tgami84uKhXCiQz6TQVA29yYSqqLjrG8nEovMJyH/+13cxPDhBa9sq5KrMj54+QzBeQO+6rBIhiJTDY+hsXgS9EU0uI+hNKPkUOkddbWA217bm9O7fLBmqy5GomnjiueOE0zJQu2+Bkp1IosRQREBRBTZ322jv6eQffnaK/JEoisHJLrcVq9VCqVylta2J7zx+jJzgAMmAIIi8cWwGUeCStJJaZUcXrFrhIZsr4vB4ScaTHOsP06QrsKG7kWI+h6fOx8WpcRxChdaWFuweD4ZTp6hiwCwpHBzIsqbDzamwif5n+/k3X7uT0OQ4xXSKqN/PZ/Y1c3Y0yYWoHk1TeWizEXddHf/0SoDj57M0OAT23r6H//WDt8nq6vnG89NookiXSyGRLIA2q0wxXaH47AmGwuqyS/JwLEtXdytPP/Eyn/zsg/ONWKV8nkI2jcliY2Z4EJPZgiLLNdeyZLxmv2sR6dm8ZVZxppmbb92Jy+0mk8uxeetqXn3lCKeGE3zklpVs2rhi/jt7VnWzYfQEit3K+aieshJl3fouAA6enqLPD/6ZY3z+0dvo6mph88oIx6dgJpDgpt1r2bjh6jtUvwnwtbYhVyvoDcaawgcaJot1vk9DkWWsLg/ZeC35cjc2kY5Gbqi512S1kQwF0RtM5FJJXPU1wwqdsWbEIggiqqLg8PnQGy6Vkxb2i9RUIxyYrDaK2SzFXO6qVeZMIo7ZZiOXTGB1uvA0tVAtl1BkI8VsBqvLdV2ymXOQq1Wy8RgWp2uRBvLlSAT9qKqGpii4GhqplEqoijLf2CfpdPz2R9eioaEzGHj2pRNMhQt8/qGNuD2u+eNIzjoq4XFEo63We7FAvUdTFSSrCyWXRLK50TmvrpTxm4C3Tkc4cTFCRVejPog6A8OhKvVehbG0kVt7VDZsXsPzr57huVMBNMnIxhaRlrZG7P1T9Kxo54lng7za309Fqu0+nZvIUan2MZ3S5ildKxx5tvc0EUuqeBqbqZbLvPHqYQoljTvW28hEIzR3djA1HaaoCKxstdK5soeWgTCxKOjUEkP+EmaLifGIHv9wgk/v8bB7UzuT588y2neG1Y0CazuNPH8qi6AzsKWpyt23buHHL/QznZY4fvA4N912M8+9eISTM1JNKeRCCLep5jhbUnVomkpesPOjJ46QKoIiLs0hNrYbefCeLTz33EGKhRK33raNQ98+hGp00GAskihJfPvH7/KpLS2ktQKudV1ELgyhaRKlbIb7H7mFdDiNHRdul5M//8InOHLuAvu2bmJscoof7D9Fd1M9v3Xn4gbRP/OkOJpJctjaxtmqk98pTNJgs/B2NM9/kdfRMD3Nk8YSrVYjf9Ei8+nkCt4phfhDi8ZTq+FyPvh7xa9NMpxLJakUC2jaJVHzOU5ZuVjEYrdTKZcWdQd7GpvIpVPz4usmqxVYXsT8Slgo3C5KEuVcgZnhQeweL5HJcVpXrr6mHqbBaKKUzzMzNIC7sYlUOHRFzhxAMKVw/OTgvCSL21Dlozc1opbytK9cwV999yiacUEFqlJA0xmXNC/N4e7NTpx19QTHR2nuXrHse/KZFO6GJpLhIGabg1I+RzoWWbSlKQgCK1fXkoNoOEZKNiAIxaW/11O7P0o+BaqMqK8l03MSa/878NPmIEg6ipUK92xv4OVDU+xZbSGckXjieI6VHpUtrRqtXe289fYpspoVjLVx9hcH4kAMBJG3L5xD0S3ezhxJLq5wdrhU1qxsxebx8NjL79LZECElGxmLwVdvr2lzv7v/HJ/+woOs6imhClE0TeXc0eNUJSdW8vzJ57czMTzGqg1rCUX2M5jy8p3HDiNnE/z25+/A4J+kvr0FVa6QK+UolGVWrd/KwNmLIErYrAZcThvjQ6PkxFpSsr5ZYEuvG6Mo4/D6yGXzfPO1CBva9FSqMnKljGBaWq09dC5C/0CAPbvXMX6ub95Mp5C5JONlsdtxeOuYvHAOm8uF0+tDZzDiaWokEfQv0otdu7EXgJlJP4cmJeSqjkz2Ej3DPxPm2IkhLk6kaau3sa9LpbnRy0tv9LFrczs71jfTP3iCgayRnzx+gB2b27lj72o6xwKsXt35AUTKhxPhiTEEUcLd2IjeUNuFmEtANU3F1dBEKhKaT0Kdvjpys5VdqDUiL7Stvx7MNfYCFHNZUpHQvPGRKIpoWo22kJ61W14OVqebQjpFNh7D2dBIMZe5ajJsttlIRy/pDyuyTCIUpFIq0bpyNclwcJGUp1ytUi2Xr3jMdCyCt6mFwOgwzT29V/6xgoDD66GQyVLIZtDpDaiquqho0dhyKXlN56qkq3rKpcXVMJ3Zjs5sRy0XkLMxJOvCplEBJZdAeh/ymL9uSBY09m2sxziRwKiVaG928czJEvZQin1rrLTXmRg9f56TExVEQ+0e9gVVzn33KKrBzsVv7aeidyAsaOJJVY0cnVBBmI1/ucrezU00dHRxduQ4/T97A4/PxfFpPfeu0dHV2ciZ00N0CkY2bN3AOydfpqltOwPHDjMYrILOzIM7ffjsEk1dXZw5eYFAX4WXTkR555SfPavtbNixBf/IMGanmx3hJMcCAhtXNZBNpcgVFFTRSFOjk8jkJJPRCoJkxyGVePCmRqr5NA6Hl+aeXr792GEEQaSr2cH+vgiaTrdkHh70lzC9dQ6PTQRV5vln30UzefHp8vz+F/Zw+OgA8VQJz4ZeoueHycRjmOx26iUvhUKWUjCFZUFi6nW7eeCWGkf4668dI21qYDp86RlLlSv8cLrAjwoePHKWT9kibHUk+WlcYnWhxO0eM5vCg5yS6vnTkRx7XBr/pt3Cj9QROs0Sc8WlDwq/NlmJUq1ic3uITk+RTSTmt9qKuRzq7Da70WxZNIiIkoTjGpzgOZQLBaIzU1gcDnR6w7IyPM66epx19TU/+3KR1lVrSEVC1+TA2dwebG4PyXCIcj6H1VmrTF+JR5yqGnnxTIG5FY9Rp9HW3szhQ2c4N3UW1WCbW5hi1Ap87ZOrOXtxhneGl6cvxOJpUpEQp4eTNHcv+5bZ6ksAk82+SHszHY2QCPqXcKbrGnz84ccEzBYzplke3eW/Q7K6Fv33chJrcjYOmlazhTZ9cFrOHyY4LDpsJpGtrQqbdm6l73gf+OHmTQ3U1dfxjR/tRzBYeGS7jeMDCWZyBlhAg1Ew0mqrsGO1hzfOxMnIi1fCraYMq70ihXyORCJNSXJyOlabuC1ijoaOTiZGJrhYaeP7TxwlWxLodMtoKmRm1zIlVUffuXGmxqbxeZ2s7/YwdLpCsGjBotMYGxwmky3y8qG3+PLn7iKcGebMWJaZ6RAXAlUE0cB0WuWtUyEmoxW02cqDw6Knub2Jo28fYa3JxORUBOQqt+xYRSwQ4P7b1/OLF04xnlt87yfSBjRVYmNJoWfDJv7++/v5V19uQNLp5y1yS/kcqXCIxs4eysU8Do9vXglCVRSS4RDT4zlePxVj57p6tm7pxVfvYW2jH7vOxt6b181/32MvXSCVKoAoMVF00izqGPVnODEFRoOfO/at5+E71tDXP85ozoZuoGaVWiqWaG324HBf/27TrxMknR6D2UJ0epKm7t4a/1JRSMeiWJxu0tEI7obFCelyKhHLQdM0whPjiJKEKIrLOr7NudtZnW7y6SRmuwO5UiYVDuJuvHK12Wg21/5vtVLK55CuoVmsNxgXKWaoqlKbT0SReNCPxbZY4SYRrC3GCpn0/EJgIaqVCvGgH1W5OqVMZzBSyGQWFV2Kuey8HnKtgHMJn/7oZgq5Au665ec10WhZ0qdxeX+HWs6jlos1d7rfUM6wXlRpqHOSnBlnzdaNlPN5JDKsaTZzx60befyXBxmLqdyxzkGpInNkUkQQRDRjrZJcNTjRayXu2+xhxJ9hILo4VdIrWXa2qYiSm+mhQRJFHaMFK6NTgGTA5rDg8NXRFxjgbCyO+1wMWW+nkM2iiTpUqUYzGvOnyblMxGKn6OnpwHyijxwesrKBZKbMQN853jkZ5PadMjftWs3RX1wkGM0iCAIZzYIgiLx5No1Akrhci1GDpNHa0cSxgyGcThtTQyPECwK3rbGyYW0za1fUMTLi5+WBxdcsr5o4NCazs1mguWcF9qk8pFXSVV1Nns6fI1FQyU4EqbfWU0gWsJmcWCw2LJba+B1LR5iJTfL8iSkseokvzVaBd3Q2MBKO84lde+e/7+/9Kt8ud0ApRcS3CqUc5k4xzt8qq1mdCPKRepm/7Vb4QTTOz3Ne+gpGmqeneKrg4mu2KG22f4FkWBCE+4C/oybg8R1N0/7LMu/5NPCXgAb0aZr2uQ/wPHHW1TMzcJGGrm6yyUsyGvl0Couj5p613KB0vcink5isNtwNTdc0r1jIefNcZUC+HAsrJNVyiWwijnQdsm3hkpm/+t4RFJ11vtNzDhoC8XiaYlnm8v3mNb4qa7vcvHwsQ7oSYiQk88Dsa3P8u4UVnOW0lBVFxlnXQDoaWWJvOjQWwWiQ8NoNWOzvMZHVVCS7DyUb/5Ukwx+G2D09o7G6OceGbZsITExyZrKETdCwGHycOXkexWDDZ1HYsHEF+cxJpgeXap82ug1s2LiCEwNRMgtotpqm8dG9nUg6CavDyetvnqDJZWUiUUYVjRRFG9947ARFWUQUTfNNGyWtSrGqcTZSiz9FNPLS2RIobtZHkzTWO7EzQUaz0miVaWyqI18M4lea+OHjB2irt3LrGgtKpUSdqcIQBhosKvFEkYxsQxDArS+Rzov89feOoBhdnAxMklVNCDoDyWgUQVMoZFJs6XEw3ncpadjdJrO608XgWJTnj8epH0iSqM4m9w4H2WQCVZYXPXtW5+JnPxUN421uIV8YJVg0MjgS5NDZMJt7PTxw+zoOnxxjYnQKEZVUpkgxFUcVLDy8w01ZZ2T9ygb+6fEj6EoyumoDz75ympu3tNNUv4FfvHCa7vpm3jobJx2NcH66zCdubWXz1jUfZNh8KGLX5vaQCAVo7Fox3wycnN3ZSoaCS6yHbwSpcAizw4HRZCaXuroj2lxyC4D1+nf3FlaZoTbuKYqCp6n5qipEeoMRo8WKyWpbkpBCrSpeKhSWKA3lkgkq5RIGoxE0DfuCRVIulaRSKmJzuecpF8sVa0q53Lwu/uXfHQqnGJ2Ks6ZUpFKuLquTfC2olSKSzY3yK3L+/DDEbVa18NbbJ/nog/uIzMwwPJWmIlrw2kX8o6OM+PPodQJrV66ilM9xYjyEfJmdr0VSWL+ug3J1jIHoYt7rXevt9HTW42lqZqT/PLmijFOnkZZrCdoLJxK8dSZKVvSADJksWMUixarAxRBUhNp39QUlCFbZ2VymuaXE6nY7pwIamlyhq82NpNMTqtp5+nCUTZ057l5jxKZX0Rv0WCigoseiFxgMyWAAUS3T4jPzDz88SFZwcmg8gqIJyKKJYqlMJhFDVQXamx04BwOktdqc22guc//uRlKJNK+cLpN77iRjkQpgQhaMDM1kkUTIKSba7LVFo9O+dNGbM5RxdDYz/Uofkt7Ct15+l6qq8fv37sV0YZiRQIRcOk26VGE4mUfTV7lfH+MWQ4Eup8QrKR1CYoq1+gh/OeJgiw3+sstM/HwYRYHTso39aZlD5TZuikf5xaYPLme4ZjIsCIIE/ANwNzADHBcE4VlN0y4seE8v8O+BPZqmJQVB+JWQkhq7e0jHokg6HeVikUI6RSmXBU3DWff+toAknR61UiY0NkLjFagEy6FcKJBPJxEl3ZJk8WrIzgrOJ0KBZZUbLq+yqgYHC4c8USkhagoVnZWfHkyzHPGy3mOmd2Ubb5yOcCEsgmDiP/3TaTRF5o8fbEOvl5Cr1Xm6STIURJFlZFmmsbNGhxBFiVQkvIjzl0tnSCeSvHgqBdkwgqMJChf4o8/tpK7Bd0MaxaLZjpKLI5rtqJXismoa7xUfltgVRIkTA0nWllVe7UtjNOppdsj4o3mCsQJ/9JkdDA7PMHT6LOvW9/DKuX4wXnrINUXGYtDzykuHmcqaFi2GRK3C0Mg0gqpwYiRPW2sdX/zEDp55+TRnZvuGkvLSDvhMXubgqSm2r/Ry9HyEsmZElswg6Tk1lqctBxubNdaucvLagSgmm4NMJYwgCLS21LFrQyOIAqlIlL23bGXi6VPs7NbRtWoDh44Pc2TGwM3rPGzftor/9YMDxGWBHHYECfRKjtdOFhFFgRVtEol0hbmhSFMV6u0CRqOORp+VQzMKqYSAINaeiVZria8+etOSZqrI1ARyuYKzoQGrw4nDW0ci6EdC4Y8/0kggGOPpM1UmJ4IImsLBUZlDJ/qoaAI6VxMWq406E2zcsYnX373A9355FjQNRYU3hkCrpHBYDFgtOsKyh0NnZ9i1soFjxQQZVUZRr26ZfsMx8yGJXZPVitlmJxEM4G5oJBGqNSGlI2H0xvfH1TPZ7BRzGWKJOHUtNyZJFw/451Uerinzdhlc9Q1kE3GcvqvPGZdTIOYq4q76Bho6upb9TLVcxumrJxUJL1koVErFebWLOcpFIZuhlMuSS6VoXbUGURQxWiy1RHhBNVqRZRKRGPtPTjPkz/PuhQxyPo0giDfMAZZsXpRcAsFoQylmakYcHxA+LHELMJqx0X9mkMGZHCMpA6sbFMLxIqqo5+5drWzc0M3brx1i323b6fTFGLlsbeBz6Ok/O8q7fTHQLb5G49MxbEaJX754gnjZyP/xu3cwNurnsUMpAEqYKC3pCxc4fDZAo89KWz5PJF2lLNUW8RfCAt5Ajmwmw9fu6mFoOEgqr9LQaEcUwpj0AvfevYOZsXHK2TSNHa3syVRIp/NsXtvEvi1G/unlGbrr9XzsI1t4891+9g9XKWMGocYd7hvLkywKlIsluts85FX9PPe5zlzFqBPwee2YjDkuRGqaxFAruNy/uxW7y85f/6R//teEU0EK+gq6ZJW21lrOZC0bSPSP8OWH1iNnijx2OESpUiXgn+KJFWTnMwABAABJREFU8yGQy1SrZQRRh96+jo74RR7pNGHRi/xp0EG3EkdvsvALoRctV2aLLHN/XYVXtWYqpRyfNRT4qJTlZWyUqx9M49wcrqeddCcwomnamKZpFeAx4HKbkd8F/kHTtCSApmnXNpV/D9AZDHibW3DVN5BPJ3E3NmFxOvG1ts1rBV9uqXy9cNbV42upHScZCsyaclwb6VgEd2Mzsry8IkIpnycRCpCORRf93VXXQCLoX9KUUa2UFyk4XAkf2+3l9x5Zs6i7X6cUkZRLHN63Lxb4mx8eJ3VZMiRIOl44MIEiX0qE07Eo1XIZVVVwen1kErXqu6u+AW9zy3z1QZFlvvmL0/zsjQnuXmdlTacLqZLBaRIwm29s20LORFGLGUSTDSWfRKuWUStF1HIBtXy5eOJ7wocmdkdyNp49p1ASbdy60cOjn9jDyf4ZZEUhND1NIJDk1f4MP3tpAMG4eBIWlRLbNnfT01W/pAq0pd3Ivjv34s/ouWVnFzZ9hbfe7WckVGI5iGqZFc4Cj9zeye6VTtb3ePnkre389v1dqNVa9WM4YeDNgSpNDS4cHg+CCP/9x6c5MFJ7tk6O5Xnx4BTf+MU53jkTIRqOsabVyMpNmwjNTFPRatz1Q+cTPPHcCdIlDSu1++nQUvybz29l20onMwUrbw/K9AUlWg1xTFoOGzk2795GPF3m2VOFJb93JiPy9Eun5hMxuVIhHY0gV2XMTuf8rpFOr8fT1ILZasXmctLWVs89q0VGcjYC0TyO0jSVQgbKOezVKKVslukUjAyOky/KFDQTn35gCzdvbafNXmHfOjs7NneyeUMX23xpUlI9Ry7GefSRXRitDg6emiadyhAOhKmUrt49fZ340MSuu6ERX0sruVQSh7cOi92Ou7Fpnko21/B1ozDbbHgam3F4vBQyaZLhpTrVV4Kqqjh8PvKZ9LKvxwN+Yv6ZJecl6fU1HvFlifDceHc1JEJBnHX1JBe46s3F3xzcjU2LjEUWwmA0zVpW16rFxVyWXCKBqqjUd3SRCNRWrxaHE3dj06Jk/KU3zvL1F6Zodgts6TRgUvOYhAqCdGNazEoxi5KNI4gSWimLoDMiZ2NoqlKzaX7/+NDEbVGw8PwFGM7Y6PWJfOah7ehNZgbGYpiEMsMDo5yagV++PsBIdGn8rmiysGXbaqymxWmSRcvyyU/cjqwz421q4SN7OnntjTMcu3Dln9FiKXJTj557drWxaWUd2zpN/NlX99FiqY3TOcXES2eLiIKIr7ERp1XiqeMZvvnsCJrOTFKx8sMnjvLkO9P88nCcYCiOIivcd/8eMskMuXwJTRAZiys8/dIpTg6ncIu5mvIE8JmbnPzOJ7dxcTLHcNrCK/0lLEKJBl0KgNUrm6lra+fxlweIVy/LFwSBV47O8MvXB+YpOMlklEI5TxUFfU898VTtt9e5Gqh3NGK22zFZLPzpXVsx6yW+eXyS9ZYCaj4B2RgmpUhDepQJUwOPxSUyskbc4GKbQ8/3GmNs1+f4kiHCX9Tn0EsS32iIYtOJ/ES3ik82GtgsZRmytPH0dJJYoYQ/v/x8dyO4niV1CzC94L9ngF2XvWfl7EU7SG1r5C81TXt5uYMJgvA14GvA+9piM1ltNT1J86UblwyHapw2Vbkh+sJlJ4jV6aZSWnxxVVVddltN0utJhoNUSoUlrwEUsun5asBCiJK0LC0hHYlgcTj4d5/qnqd9LFdpDUayFMsyqqBDoFY9/OLdbaiqyvffjNboFJKB8jI2ywATGSP/84UwWnmMf/XxnnnNzUqpQDGfvWLntCCKeKw1s4Ob96xfdE0uXhjHaEot4ULPDbSiybqk8itZPVSTATRVAaWKqDfNDtIGVLH0fiXkPrDYXRi377cR5eiFBFPB09y2vQObRUddWwfTM0d4eF8HP31jBi7b9WywyhTTcXLJBFCb/DRNRRBExsJl9h86jz9R5O7b1iCKAs+cKrJwVV8zqKjdpzXNej75wG4OvnuSep8Nq9PN8eMXsLi8ixoqNE0jn8mgKgomkxGtbMeglWmyyUymdcSyVT53zwoOng3x3bcSbKyTSceiBGNlTvlndxqqJpIReGR3AytWtPB3PzmFQaeSTyWRtEuL1g5TnN/63J2MDgzzk0M5fv7MMRJ5FUUy4dYVqFRl1nU6mYiUiBSNBBIlDvdNc/T8Gf7gkVW46hvIJRKU83m4TPLL4a0jMDqCpJNw2o3YhTQ+j49zIxL6lnX4qtP87pfv4K+//hKy3oTVauETD/RSyOVwuN2YDDpSqQG2bOzCarfy9AvHSBVF5GQQySpyum+cYjxMSZR46aWjDOacrGmY5NMP7XxfMcKvKHbfz5jr8PqIB/xIC+Qoi7kcxWyaarlMQ+cVGhKuAblSxlXfSOKyav9cI9nlC6J0LIrOYCA0MU776qVi0JqmIYgCZqudUj6/KKlcrhckEfTXLKWD/mXH5Dno9HpSkRC6BQoWqWikRh1ZYCSyXCIMl7jU5WKRarlMIZPBZLeTioQRJBHhKrQNl92EQ4rR072Cjs5Lc9t//PoB5EwMye6Zf8bnoORTwOLeDa1aQueoo5qJohbSaGgIgoSSjSPZvcjZ2PvlEf/K8oX3M+5OxBVeeqMPUSnz8F1r0ZvMXDw/xlceWs3rR6eXuIKiVKizGwiMDFKVZ6VBZ8fcvGrkzf3nCSZKdDVa6VnRxqunTpPXLlFa5t4LIFXS/NYXb8Y/6WdkIspN+7Zx7sIkgwMT5C4rblbLZYrZLKKkQ9CJqJpKi6VIsiAwntTx0BYvlarCTw5mcOsVuiYmsLqc/PitMOgsqEBfANbUGfn0Qzv4xbPHuRAFQa1SzKRBq86en8ajd3Xia2riv35nP2+fKXF2OEZS34CJMja9jMuqx2wUOReS8Kdrkp25bJxYMoTW5kCcKaIlM5SkNMYFFBOH3U0sMAh2A8HUNHaDjCjoSJRVxIZe1PgU/+cjt3H0uSeZEY249PBgo4WtljGa7VY0TWNLPM5au8ROj5lnQkV+kLbhqqRIpvWEnRqnUmWwVPj/5Q04MmaikoPX20PUWd77zvIH1UCnA3qB24BW4F1BEDZompa6/I2apn0L+BZA54ZN73lvsZTPIYrSYs6WpiHpDajlq+vWxvwzoGnLbrE5vF4qxeIiXnAi6EcQaoPVQipEzD9DpVhEbzLicC/f0OD01c83/FwPVFWhkM1e0/Xu8KQIlBF0swOzKDI+FUfVtOvWj2y2lPj8pzaRjAQBDZ1eR337Yt6jXK2iVKvzYvOiKPLbn71lybFSsTiP7w9jFkr82dcWW7cqueQluZ8FybBotMxu09kRdMaa/rBcRinlEPQm9P88DXXXFbsL49bY1Pue41ZQy9S7DAyHSuRLVYwSjLw8wZYeB3q97vI8GACvy0JDRxcXhoLcscZKPp1m0/oOnnl7nLKs8cb5IoLo4R+fvICCtEgM/rZegeYGFz9/J4SqMzMarvLKq8dx2IyMTcUYn8lgcHiZjJYRxEtVJo++QFdPO5VymXCulvzsXGHlrts28INfHKFQAY/PjUEXxkCJiqySylYoKksVTUZnMmTzFSqyQFuHm1cPjRDOCjSYdIRLFuIlPeMDQ4xMxBEEC4Px2sSkl7N87fM7mDg/wOptm+cNOzZ0O9h30zpWtwxTLhZJxyI46+sXNW4Vc7maLKDdhqepiUQ4SL3PySf3ibUEqlLg3RPDdG3t5tTZMarODlbYcnT1dgLMN8T9/PnTJKQG0q+c4yufv5URf54yRj57bzOlUplAvIxkNCOZrEgUsapZfM5/tq79G47d9zPm5lNJREnEdplOsCBKcA3eaiYeQ6lW0ZtMS6Qt3Y3NS6hYcw6ecqVCfXvnouPIlQrFXBabc/keEUEQ0OkNVEulKyaml59/LpG4ohrPHJajwYmSSDoWwXAFF9PLUcrnKRfylItFNE1Fkau0rFi5ZB4qZDOLuM57b17L3psvPxqo5SKS3YuSjS9qTtaUKqDV/rfAalmyeWrJs9kBqlIrmsxVh1kg1firxXvKF97PuNvohGC8RKYE+vMhzgxEsJh1fKaradnQNQhVWro7Cc0EafNIuK1lelc0MTAW49xklWOjKrJgYiyeZ//5U1SlS3NVh6PCvbtaePHwDDM5I7LeznOv9mE3KBgMBg4ePEe6AFo0R6osIiwIu63rmlFkhWCsANjwGYr8zqN7OHZ8kJdOZ3A4rJRKFTQti8cKw+NxWpq9qJdt8kcyCqfPDBHOyLTbVQZmVEaOxWmus+FP1/pJJqcixGMpqpKVaMlEtOanxV2bnGzdshL/xCT1zU30f+8YDW49d9+2gU1TkySTcQyRKnpNoKN1fe0LTbXFayg+g17Qo7OaMTf5SKViPHD7Cpo0D+Wqyt89+wYmixVFqfC6YQX2Sp7/0lWbd1octWv404kE39F60ScKfLK1yImijpP6Fv6tN4lXF8Ii6hDNNkRnPetzIaYrAj1GBesN0qUux/V82g8sJHS1zv5tIWaAo5qmVYFxQRCGqAX78fd1dldAIZPGYndSnLXtnIO7sYlquXRNUXdRFLC6vBSzmUUTaCGbQW8wLOmG1jQwmE1Uy+Ulx/E2t1CtlK+oXSzpdNdVpc6nU1SKRSx2x5Lvvx5OsSCIvD2izf77+hoqZBUSiRRv9SUYS83REiKLvjMRDGCy2ahWypistitapDo8bnZ0G7AuSGDnjhGLxHnt0Bgbd6/giSOp+ddFoxXRWFtNq6UcOmc9Si6Bob4LJRf/ICTYPjSx22guoZdAJ4l8/P6tvLW/n8HpDFVFoKRzcWhC5dDoDEZJ4FO7HAyOBumL1tRRvDaJ4weOcnosz7/+nV2cPXEWi9lEh1fkI/ffzM+fPc7gVIptKx1oaByd0rBoWRodAmadA1GVefSWesZm0hyZMjIQyPEnX9zKiVPDvHs2yr/+0mb6z08wkrhEDcpWdQzN5IhH46zucHJ4uMjEVIxzpwS0aplIycF/+8EJ1rTbuL1HY/dte3n8lwe5mLi0U+PUlbDoNS4ERXRSlUZLiQfv2UNf3wjrgA0buvmb7x0kJzj58f4UH9niZodU4PhMbXaoiiaG+odprPfw0ksH6Q/WeGyHLmSRc4dob6/niXcjlOZtRSeBWtxl4lEaOruYOH8Od0MjRpMFh883v21++1272bV7A5qqUipXGfcPUWczLNkB2rquicNnw+zY3oEgCDy0t403T8zw5sFBwiULK+rgjx/dRCqR4WdH8jh1ee64deMHETIfmtidQ7Vcnm/smquCmm029AbDNc2L5Eq51iMR9MOCsVKuVCgXC0vk1zRNQ6c3IFcWG03I1Qre5pZrVnGXqwBfDkWWSYZDiJL4nncSb/RzoiRSLZfRVOWKlfRE0I/Z7iAe9OPwLtZSvhyCKKFkY4imxWoXiLp52pMkuRe9fy5pFmyeWWvmHMb6rpokm+W9N6HP4kMTtybK9DTqOT+Z42O3raNcLvPDl8eZCmXJCA6yFYm/e2oUQWfgpg6VereZZ47GwGin2aVjcniUt/sS3LajjTq3GVkRMAgKf/joFoZH/DxzOEqLQ2HTqgbe6ktQUaDeWMJt0GO1mlnTJLHXZ+cXB6OcC5t49GYPHR1N/PUPTvDwniZWrWzn+PBRSgt2b4eCZcKpGfQWOx5DiVxB5cTh0+TzFRAkfvRWmGZblfX2Ip/8xN0Mnh/iscMZmFXvkdQKnV6BsbjA+dEEFoPAzRvq6F3ZweNPvs2jn97N86+e5uQ0vDKsZ119hY/t9vLiiThVoXaMyekonU12AoEYLx4Ng9GBP6fwxC/3s2VVPY0WOy2WNrisFSWaDGJe1UxsagpnwQTjKZxOH7YGH1qoTL2vjv/ry58mHo/h9dbxVeMbBJQqadmIeUFhfp/PQs9wgPWmKoJg5//drDE9dIEDGDhUtmJQKxxfnSFeSfEflTqG9a18x3Iei+GyZ+AGcT3ZxnGgVxCELmpB/Shweefn08Bnge8JguCjtg0y9r7O7CqQZZmUfwbrMgmo/jpW6AazhXIhv2jAzKdTCIJAOhpdIvHjbW6hXCwuSXgNJjPlYuG6Bt5roVwsLEun+FUiUjLxndejCMKVB1tNVagUixQyaaxOV82kYRkKhSiK3H/31mWP4av38tmP1SrnTxxZvrluTkmitmUXRbJenzzTNfChiF2XrsR9Wz0IKBw9Pcmrrx2nfyzNH31pDwF/mB++k6TOWGR3r5m+0TwdHY24TCrrq/D66Rgetxufz0Xm3Cj/8OPDZCoildND1NsFzpwZQawW+T9/by8zI8PozA7OT43xJ1/cRS4RZ2AqxRPvBvjdj28gGMsjKkXyMnz9J4fJ5CpUDC6+8bOj5KuLdRtlwcjrF8rcv7me7VtXMjX9Og/evoq61jYUcYTJkzlafEY+8/AOpgYukggFqOYzLBwhH9jVQGd3K48/dYAH79vNCy8c5EdPHCFRALdVJJIo4LMLtJkqDAWrrOptwTQV5vjM7MJM1PPG+QJr0hpn/BJVBR7YqJLICrw7ZUabzCDMdmVbKOA0VC85Q2ka0wMXKGazuBsaqVbKhKcmMBhr71dVlW8/fpxSqczdu9vQSRIHJiW8fcNs2bIKgHAohigZ+NOv3IreaGT/gX7ePDKC5mzFphaQTFZcdoWGlhbqmpq4NdmPy+H6oMLmQxG7cygXCpQKBYJjw/gua3abk7O7GuweL8lQEIdvcaU2FQljdbnJJROLigBWp6umvHBZYcDmci97nPeC/KwG/ZxByD8HDCYz3pbWqxYsBEGkmMtSSKfRG03k5dQVm7Ml2/JFGEEQlpohXf4enaG2E6WqNf33a0iEXic+HHGrVLhns4kGjwWfocjhoxcI5XXcutHLzh2r+ccfHyJWlLhrFcTzZerdDnq6G/mUWmAkplAqC3St6uXAxdM8eySMQYRUWQJUDJZJItE0v//IKtKxKCvWruTUwCFuWl9Hb08z+Uya//7jU9y9vQGP14WoBTEoaZ45WMBwaBpZtPDS8Shvn4lQEhcncOfCerrdFb748c2ob52ltd6Hz2nC3dDAsbFDlHR2Prq3BafbTmB0mEo+w8I0blObgQfv28ITTx/igbs2EZwO8PzRAAfPhojnzew/eJ5QLMvuLhenxgo0eW2sXtXGG6ciVGfr7v1RE4bzEfwxlXDRxKb6Et3NFl48U6X/UJ6/faRGTSoW80QSAfRmMz6bD4fFxfD587XeI6sDo91KIZSklEyzrmMzAM8cOc07/iI3ewZ4QCzyTctGKoEpvjWrWVCRFV5PwzdXCKxy2BlIl/jCjJ28YkIxOUHO4UWhwW6jURD4fS3Pifwwez3vv/H+msmwpmmyIAh/DLxCjd/zXU3TzguC8J+BE5qmPTv72j2CIFwAFODfaZp27Y6E9wi5UqZt9VrCE+/t+Vmuiivp9MT8MyjVyrL0ieVchK5XT/N6zykZCs43V1wLl1eLb0TBYSGuNCgvPN5ffGUzcqWMpl7Dhvk6sPC8lzvnKw3u7wUflthd3WbF4XLgamjE5nIRTxU5OKbywhv9FCsqBlR2dOjYsGUd/vBRfvTkEW7d4GL11q30jaT45bEUN3Wm+Z17m7k4EuLghI42t0KXs0JwJkisKBGYmuH0xQhDyRSypufcuTGqpTxnpxXKeid//1gfGK08vN3Jip4WHnv2OP/q89t56Z1BLkSXSkf5jCXu2tbA0b4ZhkaC3L67h0AwzvEzkwzEdICJYFbkuVdOk4zF8ToTTOSs3LvFyLA/y1jSwNH+IJFwgkBG4NWXD3Hbvg08/fqFWiWgUmLAX+Bjezvx1Xk4dPgs333yJHnNAuKlxVlGviR0b1ATrFq9hUggyOGJHAZR5Y71Li6MhHn47vWolSIWh4u//PoBWtwiv/vZm/EPD6KpKqos07Z6LfHZJqV8KkWbrURMU3j2VIntDWW6XXpaWy4tbN86Ms5gXIfBMEFHq4/pyRlk0cgmR4L7PnILqlzBMbsLJYoit9/ygVSEgQ9P7M4hn0nR1N1DaHz0ugoOl0NvNC1rkCFXq8RmJrE43VxOilpu0W0wmTE0vv+JD2rV42R4MQf4nwPX2rlzNzahaRrarDPdjUqn3SiW0yZ+r/iwxK1TX2bzjp0EJ8a59a49JMNBfvrCRc6MiKTz54gVBFZYk2zbeSsTw6P8/GCUu5JRNu/cgmIM8+SxLMmfH+bhO3oJBKK8M1jBolfZ3CKiFlKMBPL0hmLkMzn+7p/eJoWTCX8arVpmaCqNYPXy2rkCr506y6oWK599ZCePPXWYXRs7yeaK/PJkTWZtEeQyD2xzEk/IfO/nh1jbZkEpZhmIJLj49jjlWTe914/70VGlzq7jvL/CpkYLTruRdwZKDIUUjh4+Q64g89gzx7jvlpXsXuPipf4qZqHEWCBLa72de+/YiMtwkvNTSQ6cP0FJXPD0SXpOTcOcz0Fvi5XOFR04Tx+iLDQynZhEFUAQBeQ6I86mJuIjQRqczTi8PiSDgWIkgSor2JrrEaq1vKFUymMkw2p7icMpF3bFzu3iDHdYaxJuAC9Fy/zn6mrujEzz96YKx6NZIkUTHUqab3TmaTCAy2iYfybuqjNz1wfESruufWhN014EXrzsb3+x4N8a8H/M/v9XDkVRCY6OIBn070lncTmYrFYsDvuSbcB/Liwc5BVZJhkK1rbvltkKjM1MI0oiJqtteW1lucTDO2pJ14HxG782klJrHlSkWoAKgkB9R1fNHOMa26EfNnwYYvfkWIFwfAKjbgKfucKmDT3s7NJzYrp2b+5cZ6S7zUFwyk+uItBQ5+SxEzLOM/vJqBYEnRG9UcBmt7J5fQdHRke4Y2s7HV2tZBNxzj9+HLtjFTft7KXvpSCCKPHC2TK1x1uHXYnz6CNrGZ+M4o/mUeQprHqFSDAy3xxyOewm6F3VSd9wjHhWpqW9mfNDYSbTOj55SxOjY0FGwlUyORgruhkvibjNeXZsW4nbMkziTBpRZ2DPrdspav2MBnKsDEXY1Gmj2Vlg1+5NRMMxnjs4w5qmAHfefROBp46iL6jcv8vNgb4Q4+nFSYoiWQj6I9hMBvatMnNhMsPOHasoV6ucOT+DQSsSig+DZCOaV0iEAthcbmxuDw5fXc35saFxVilG47ZbNiHpdLz47jC37NuIw7VYPmnb2kYsY1G6O+r49pNnKWYr6FxtmNwCNsfi1O35V04gyyoPfWT7VfVrbwQfhtidg9lmxz88hNXlIhUJ35CM5NVgMJto7Or+Z90RW4iF9IxkOISmKlhdniXFj0wijlyp0Q6uRI2IzUwj6iSMZss1ez4uh1ytkk+n5lUuBKFGwVNk+Yal4/6l8WGI25Ri43uPH0ZQFeovhFjVZufem9r5ycE0oTGFFgc89JHdxIIhBsYT7F7t4tBEkYMT55A1EUE0IRrNWO1WOtpFGkN+nHYj99y5iWQoiGQMksgp3LJvB/2BI6RzAqeDOk4HZcCKTitzy2qJ1avW89wbFxkcGKdSKpKMxSirumVzFlGT6e5sQK8TOTyZZZ/XiaYpvHYsxCO7vKiVIqdG8tgtVgZDGiMZE2BiTbeDttZ6AsETDMd1bFi/gubGBN971U8qXUCUCzx6s49oRGXvrdv4zk/e4pfPHOD+e7Yimqd54USaB7eYyOZKvDO69FpORsu43XEeuH01330tiGwWMLtclCfCVMtVgtGLeI0eRFFEysmAzApfL5qmkcun0c3SHSOVOKu29XBzcwuvPXeITxZk7qnTs3BHcp9bz+eCY9zlkvm/ZiR+XOpG7zBRqepZ51pMmXoxXOJnaTP/obHEasf7X9D+ej1ls3DXN5AIBmY7NhcHVT6dolwsIIrSVQdsTdOITk8BUNfWPusDr6/ZuC5TnS3mshRz2Wse92q4kiLF5Zjbvsskrrx9Z3V5KBeWlx8TNJXm5jogClyf5MiONoU6t4UXTqT4wt21BPz7b0Xnm0o+qAn+cmhKteZCB9fc1vt1RVUwkikV0YkCgYyRlo4yiVwVZrliF8czVCsqgWiaW7e10tzZyeA33iQjuuav/7sjCscGz2M0GtDp9cQi8ZrmpGAiq6/ntUOjGKoZHtrWzrmxFBPp2rENap5P3daOUC1SKuY45bfQmc3xW5+9h5deP8PwAlvnZmuZJo+BkxMyYykj//Vb71DSORAEPa++fITbbtvKM6+cpqGpHqtRorujQkdvN3/9nXcoCE6SspWnnznIA/dtpzc8zOmJEs+9chqpnGJbbwM/fm2a33lkHeiSvPzWeUpVjUhRT2K4yFTwdcYLTlrtKm0dzVgHozCrmqWpCsglFIOVXx7wc8+OZgLxErGKhX/8/lvs2dzMeDCHXCrzsYf2UH+4n7dH9UuSlrkFrt5oJBH0I1cqWF1uPvvxZTqTgN6VbfSubEPTNFqdAgWdyKZNZtb01hpEpyaDvLh/jB1r6zk/nqWKjvtKpXlHxt8k1JzgMqiKvKRiq6oqsZmagEB9e8dVj5OKhFFVBZPFisXhxGJ3kggF0F3BfCg2M42maXibW97TQlzTNDRNu67xq2bz3EwyHFySDCuVCg5vbUF1RcwqEV1pXL4c6WgERZHR6Q1USiVc9Q01Q5MFCfqvKhGWMzWpz1pV+PpNTH5dIAgCoaxAm9vAiRkNh1NFVXLzzeWRvMDJ/gAj0zF2rfKwfusGSi+d5NTkpSbCQMHEX//kHA1OiUjRyFZdjmPvHEZG5PBwGZO5TKV8inaXRmcd7B+7pCBx5xrj/5+9/4yS5LyudOEnItJ7U95XdVV774BGA2h4gAAIGhAUPSmJouwsjdadmbXu/dYaSTPXaO6dkUYjaSRSBEVPkAAJgCS8626096aqy/uq9N5HZEbE9yPLdHVVOxgShGb/ATozMjIy6o0TJ87ZZ2/aGhykIiEiRQNP7Q/yZ7+1nWQizbf3JxbyFhMldnQ56J3MkcXOP/6sHxURQbLw0uExvvDoRra1RPD7nFgkGx6XhVUbNizwfgGee2uU33nMxJ7tnQwfSPDsq71YKfLJPU28fTFOV4OFje0NHD83ReGtCwSyJqYLZhJPHyJasoBuoLHBizmRhtHLVLHkHLrJxokpASpBHE4HSCZ8ZQehiRnMDju+kp2Uu0DBolMqFWj1Lb3+3a7F7rmaLyEXFJK5Mo9s28YDQ0vlZgF8FiP/dyeAgZBSYnUqzOesJbbWWgErqqbxtWEVh6BhMRg5aGjhoewQa98DqezfyGTYYDReNejKhTzehqbrusiplcpCwFMrFQxG4zVF2BPBIE3dPdfd79Uw7z505XT0Sphv313N5tlTV08pn8Plr1nQVb6SfvBPzw2iCSKC4fotzRpziU1ddbj8fl45HWc6lKq+MXdh//k/HUMQRf7ia+9aLmoJ/vx3t5FJJvlvP1IWdIW1cgmtmEMwGN+LYY4PBHRd52O3t+D1ufmvP+zlx0cycNnQRKBgJjBc5u61HpxOBz/76Vt89qE1BEIJXu2vtpgEQUQ2eJBVaDAlWdXVxvkhA0dGNEQDZItFPr5vPd66BlLZS0ykK+hqGVkTSCVTtHd3EUpMI2kKTV6R06f6mIgU8Rjg/p11HO+Lsm21ny1buhl68gANfhvhjJVSSaXTW+KWXT3Mjk8QKhj5b/9ymE1dfuKpPM7BBHkW7cHjJZG+C/0MTOaoCG4CsQKfuns1cqnEg9tcfOO5fpDM6AYzfinHHz7SzeT4LNt23cLXnzrBbMHOX33zCKrJuTDlvXeVgVu2b+I7Pz3Fb318MwNDAUaTRkBjU7PEmjVtlJQxAoEi6ViMfEEGrPzlk2cRikk+treJRr91IWakoxEaV/XcsIOaIAhgMhPMmHmw1kWlUm1jWoQSoZKbYCzHFx5Zz+DgGC++foEH796E3fnhSzCuNrBWlmWsDidlpXTdTp2mVqoJZyiAzVW1G17J4Q2qJhW6UNXdlYsFrI6bH5CJTI5jNJuxOt3LTDSuhMVmJxkKrGjz7G1oJB2L4mtsQtd11HJ5GVfaU1u3EJevh6oKSozWtetIBAOIkkgmHl1QpdA0DblQuO4xv3PoSHYfajGDaLZTycQAHcO7lI38IGFXt4P779rE9352nDcH5+NodW2WBQv7BxUarQa613Rx/NBpzCj88ce6+PaLoxTnhnJFq4uoArqgsabFgcvr5Z9enEU0OclmS3xyXyOiqoDRwsGhcTCYQC2TiGXp6axlNpJFwcjqOpX+vhGCGUAXuHedCVkuE80YeODuTWhvnGcsVMBqEJnMmjHJST724CoSkSiKbuBbL0+xyldB1QT6A+e4NF1ivqJaMbkYGQswEykiCG6GkyY+v9tOTb2bB8wizx2a4fjQaSoGN6NDRR7f7UXQyqzZtI8DRwY4MqbxzRfG0HUB5qRM6ywlvvyZHbz8Vh+1HhOru1p58pcjCJKNeDaKZpcw+90oEwnKkkKlUMLoqxYJZblIMBMAuxG/7sZpd5PNJrG21SEk03Q4rv3APA8TGmPubiLiODu9Zv7jaIlJReJkxYlLqPBCa54twfMczphps5S4w//uOO/vT7nv1whPfSOpcOi6ihIGoxFRMiBKhqsqJFwOo8VMPBhYYgV9U5ibjl4mInsVeOsbrvobDHOKF5VymXhgluj05DJxed1oW5oIa2Vu75bo8ix3bfE7RGoa6nn59fOoRgdvDmqcHiuypqaCpuT5yv1NfHzHex+Uy3IJh9uNrqlLVSVcNXPSQB8OCILAofMhDh+9xP1bPZhZ2ZThWF+ctw4NMBCVkJXyVSkMq9pq8Dc2MxWolk7rrDIb2qyEgjF++JO3eHuwAJUSX763gYe32GhsaSIZCfPYg1tosWW5/77dlCoC4ZwBu0ln7doOVtUI+JxGnv7pQUxGic99Yjf3rDPx23e52dVjx2S2cGiwQHe9kcfuaOfirMxUwcFMosKjO5zUmKsdiHUtdrbfuoO1ddUqXqIkcmkkjKKUWb+xm3prGd1gxmss8tFb6zBIIrlihdG+fra2W7h3rYGeJtsSzVSlmCcdi2GkTCmXRdCqa1hSsqzbsIpsIsHB81EuJBw898YAXpeVDlOcLluK3/9YNx1tdUuqivN6sZLBQC6VRL2KYc7lcFtFjEqG8fEQkWiSybQRBQtfvquGB+5cT0NTDW9fSHAxauZi3/s2O/yBhNlqRRCqVK/rUdbsbi+pcAhP/fVpaJl4HKvNTnh87B0lwgAIAqJk4Er96ZVgc7nxNTZf9Te4a2oRJYn47Az5TJrMFYN3hhWUiBKhAPHALGVl6TVfLhWpaW5hsu8ivsYmfA1NODxeFLlEIZMmPjuDrmvLvuPdQtdU9EoZ0epGK2YxzClKIAgIJiua8u7NCz4ouDSV583952j3G2lzruxWNpsz8cuXjnN8JI8mmSiV5BVXSq25yOotm5kJZhBNFiRN5s51NgITU1zon+LbL44iGs3sbtP5o8c6qPHaESWRGqeB7a0G7tjWzKYtazg7UUAvl+jprKfeY2TnOj8H3zrB2fEiH7mlicf2dfDpbSJffawHk9nIVKxMJKPyubsbqQgWJgtOTo0r7O6xsaWxGrecQoFde7azfX01GRUEgb6pAsOXhmjrWcXubisVgwNd1/jYVgseu4SOQP+5S7TXWdlam2PfBidc1j1RFIXo9BROYwVBVSjlclXZVqAgVeeqQr2DtDR1UVN2YRSN9E9dYCo8xlRhloIoY/V5qVSq591gMFFKphEUjVKpQCF/fWOxBhP4C2H6smXySpnX8haOig18o2aWH7dn8VvN/CIj8YJlHf9n4ObMZ1bCb2Rl+FoQRfGG+b7XS5gvh1IoYHW6lnB08+lUVZWipu66CbXD66smf+/h0B0stgEvx0pSbP/1yYPctXc7F3vHGTu91F1vIGZg5kenyOFYkCi+fYOPnTtW8/ff3k82kydflJcMvK30HTeDcCjKt57vp7POyH/6k30Lr//F10+8l5PNHxgMxY3c0WPjtlvX0z9xlNkVPFq2dHt48J7NlJ47yQ8PJYHlhgMAoVCcgwdOEypUK1PrWh3cettGEqEAJwYS7F1j5/xwlLJSplzWSWcLdK5Zx6n9B/B73Xz7qQMY1DJ/8PA6zlwK8v89eYieBgu3NNWTOBYgJks8//IZOurMSCLIFYG//skAktnGujYjXZ3NmE5GqAD1Lom1XXV4rCKH+xJcmpZpOH+BSKGafCpYeHMYOgMRthcUSqId5uYwLU4nbxy8RFI20txgYc2aRswmAxZzhJycZlWDjcNDBcqildbuVTT1h2jp6iBd0GA0i2Z289z+MbRKhaLBh98ks6PHzaadm+hsmcbT0MBo7yWK+SmyisSBl8L8xVd3LGjPZuIxjCYzyVCQmpZWsuks3332DHUeM098/NaF8x2LxDk3UaRQUDgxlKElnEIt6BRFmc7u2yjLMv/43QOgZHHJs2zZdPd7unZ+E3Cjcc1ssy1oll8PFUWhJAiY7bYlr2USsQWaxfVQ29KGqlauKU92s9B1vaq3eYOzKu7auiV8YKier2wiQUPnqoVrPJdKLsysCIJAKZ+7anfwnaKSDiMarQhG08KwsiCIIFQlEyXnr0Tb/VeCVNnMwHSOP/zCXsRj/UxdWl6E8BqLPP743Zy/MMrzp7KcmIouKNRcDllRefutE4zGAEz4rSp337mZZDhIfjTO6kaZbElB00TKcplMoWr8lYhEEco59p/MoVR0PrnLjdPj5lvP92ExCfzu4x1MBDIogs7+MyFa3SpbN7ahlFWefmuMpOqgzQndPe30jsQhC5Iqs2PLOkIT4zgtFQ4NWeg7c4FEtsz80Nv5sIl+rYxkPkMwu5jkCpJEMlvm4MUEnfVmHt61hWIux5pNqzh16Sg71zbQN5EhWxBo7OwiW55CFAVaVnVgPjBDAWiyNhK6NMaG9q0Ui3lSegZnUyOKFMLV3c50by/5dAq9otFoqSboVqudDqoFr7HsBGaXg4Qs4zNXK74HZQffacvT7li8Tp+MGUlg4W2jmx9OXGKq0opUDLJ3tQ9BEPir8RJnNA/2SD+/06QC744r8aFLht8pyoqMwWi6alWgtq2DfDqJ27so6SMXC1XtzFDghvQm38kU9rVQyucQJRGnv+G6FZk8Tr7+o+PkygKw9GIXBJGcZqenRiWYLpPXLBwfiDMTOUNcsfGz08WbHlLs7R1jcDLJA7evxuleXtURBQEJFYNoopDJYrHbECUJwWBcIh7/YcKRwTyDU0cIlywr3kcvTuaovHaOsZhKs0Nl11o/b52Pk6mYMWoljKKKQdD5zOO3c/b8KDJFdF3nSF8Si3qIujo/LqvIffs2opdP88KxAJ9/sIeTx3uxWQw4/HXs3rKBp549xh1bWjFJAug6JcnFhYhG77+cQDe7ECQ4NwsXp7MYKFMS7Ehz0+av9+Y5cPEsZUM1sA3GRLSXz/LZJ/YxOpvj6LjE0ydz6JqOhQxFyYkgCIznnYyfVZlv7TksEi8fHKa7xc2n79jOT549wtixON0+lbXd9WzpdLBz13ouTR3m/IxA/KmjzKQNJJ45jlaRqTWbiMpWArILCzJr/BXWtDjZumM9p15/jYbWFg4fusCZ0Ty/89gabE4PB4bPLDnfoiQtGdwql8ukywZyU1HePHCee/ZtAao5j0nU8HoM3LW3nZnpMEwnaKxzkUunMZlNyKqEv66OP/7tu9/36f8PC+Yr8lfjxTZ0dlVl1HyLSWQ2EV9IGG8kGRYl6T0d+q0oCqJUdQbz+q8v72a22sglEyvOmTh9PtLRCMVsBm9DIzanm2QoiNFsXlCUuJm1VLWxLyBIEpL9Kqo8uo6uVUAV0cqLDp8Gx3tbpPmgICLb+McfHCZVMsAKEqKpspVnXzxNOF3BoMP9W1yMB3IMxIzoagWvsUiyYuMje5rpWtXMoe+eBIOJUE7iuZ+9xfZ1TcyOT/P4E/cRnJ7hX/anqPdEaaz3cv74aZraGrmrrY3RyTjpnExjnZVSRacsWlCw8jc/Oo9usCKIElNZE5MZjXPTo2Q1G6LkQhBgOmfhr/75bRSpWqzSTA6+/sxZfuueDta4RQ4OTPLcuQpWUcGsl1EwoUsmFNHOL/uhKuoBDklhMqyTjkX4wy/cT2/fGH/9rbcR0DBYpljfYmHf3g1UKhc5NFLhn39yikJZwGSA030Bat0mJlNlfO4a3HYP4UyQQilP/aY1jJ49jWQyEh4eodXeQtBsprGnh9iFIXxXmBCpBZlULotprhIdUA1MKQJ/PiPyf7fJNNmqfyezoOFG5tNSgLtrHfxVqkidVCFT0nCYTWQ1Ac3m4Rs1BfbWvHta2v9KhqnaewqCgFIsLtMYnofZal02VGEwmqoDd54bCyS6ri/wk8tyiVwyidPnvyGdzpWglIrUNLeSDAWxXoV3N48/frBqOPAPr0RXTMQa7Qqf/+TeBZevWMlCLABIxhWJHfNV4qtViM8NRRlJGFk9GWbT5uXJ8Atv9uEw62xdV89f/+g865pMPP7R3cusnD9MqAhG1jYb2WSUeL2/vMTxSq+UyUkWTk3pIJhp8Ols2dLN+eEYmQx8fE8tbW0N/N33j3PmTD9Wg47fXKLVZ+S2basZH53G7q0hlpyorgezBIKEqqqUTS6+8+osEhqDgdOMxAT081EqlTKjaRuCUH0g0kxOHHqGnG6vivmLZlTMVbtvTa22UiUTBlQchgLJig1BlBjKuvnZT/ezeU0dJrHMmp5OtLJMQ1sr3/vZCaayyystd65z4PG3kEvGGeobZDolIAsWXG6Btes6+fZThzg7miZVFLh/s4OhmSwYTExm4St3NVFb5+f//d5ZBLODXT0O7rlzI889/zY1riFqmls4dCnNYNwIkoeXDgwjqyCY3QvryimV+MLdjRjMZnS1Wqr21fj43Yfa+adfaBy/lODuO3WUUokX9w/R5AKPvwGzAXqnS+zZVIfVbOK//bCXT97RwJ98fheCKP6vRPgGoakqsdnqBFBtS9tVE9Yru3w219zA3U1UeiuKshBjU5EwJovlhhLplZBJxPA3tdyQ+kU6FkWrVDCtIMs5D1Wt4LhMZ/ly/vTNriVNLiw4fa6ESiZatR0WRTS5gKjr1aHu90hW7YMIQRCwW4zcva2Gl09GyKiLBan5mHYxJAESDjHPlk1d6Po4A7ESm5pEHn/0Tp567gR9o1FEtcTqBgMzqSKff3gVly6N09jVjtKXYmpwCLfPjS7nADeC0cDPjxcwnB2hq9FCNKuiaZDLK5weL6Ib5taEyYFFL1LRBFTRUrV7xoUozXUgNBVBMlAWbTTaFEJ5A0hG8jj5xcExdnVZ+L2HWhgcj7Hvzu3EZmcYCxV5rW95FXxTk4GdmxqJBXVCkxP0jibJCy58xgI9a7sIxQs8+dRRwlnY1GjAabNxeLRCQZdY2yLx4D2b+cGzJwCIpcPYVjchT0wTGhjG29RMJZqh0VSP0+GhGMkTPtdPR333wvcrSolYoXrf8XW2EQwM0gP8fSd8bbTAfvMqjqYHeNwGfzdVIqyZuc+QZK/PxP8VFum2S/xlTZlbJ9q4W4ry991G/r0cxHON6+tm8K8qGZYLBXKpJIIoLKvkaqp6w22vedys2UZ0ehKTxYrRbCaXTFDf0cXs8BDNPatvaj/zMFmsJEKB62oT67q+IMVGZQaMVtb4y6zv9PLiqRgyFsJ5iRdePctEdJGYfyWMWgmrQSWjXf8p7IG9q1g3E2PDxpVdlrIlnZJmQhJFTEIZs+m9WdAfbOi0NnmxWs3QNwNzyXC9mODR+7s40RflYqRKtzkzUWH0Xw6R0qrJ6tR0GJOoYrYYmYzIPLR3FZnCOJFkkUqlwuGhAi/1DoPo4+C5IJMRmYxq5esvB6s2y1J1vxcCgGhiKAG6KrBnlUAiU2YoYaTTLfOlT93Jcy+e4cJlQ/NipcgX7m1mNpTkjUGdT9xWS3tXK2/vP8WpGQOlssxjj91GOhpjOlZiaDyCiTLZokamtPI1NTyd5p6eVVy4NM3F2Tw5rbrmjg4XOTd6mKLkAQX8lhy37l6LzgCT6apzVyQUITQ9xaO31NE7FGZmVuOlN87TFzUSLSTQgWDBskD5Gc27cYoFTHoJZc5laWePi7r2DiYv9S55yK1vbeEz96hc7Bvnjf3n2bK+mYkklLN5pLwHgxYmr1kolDTcTgMmZExGA2brhzeheLeIB2bRdR13be1SuoJ+fR7vlbgZmgVUk19RkqgoMoIo4fB4SQQD7zgZdvlqSARnMZqvH6/UsrLgumd3e8glEyhyCQFhSZKficevOshZKZfJxKO4fDXXLZpIdk/V8v5qya2uYbB7UYtZ0DX0ioxg/HDR0VaC32mkZ3Ubb58PkylWXxMqRR5eL2JxuPnpqXzVklu38/c/PEVRNYBoJhTPMdLXj1msMBjWuH9vE5qmkc+nqFQqJIoif/XkCXSLC20wh0nMIZgdvNBbAT2LYHKgAAMxgGr8PTkNHX6J1loDhwYL6FqZ339iA6FQnJ8cW8qjvbVdZ/OaJr7/2iRrmyUee+Q2zh47zdkphemsie3rG9i1ay0D5y4QSRUZ6B+nVCgQipdZKbUbnMmyZ7edXNnAyfMJRlPVazGuWPmbbx+mJNhAsoAIm3vcNDTWcXTwLLrJQT6TYvD8BbpqDYwEBjEbTJSGpnAa7PitbnK5PDX+TkxztJ7GujachQzZfBrz3GuJbBzb6iZyI0XkTAbjHDvbYjTwn1pkvjN7kYOqjVvyMieKZs5IjZxS8sSTWSI6RCUHopDBqeZxGasKMR7re7d+/1Ulw4VsBk9dPeloeMnr7praX5me4zy/t6Ioc9WFmzOyKGQz1SEiYZ4bfX2TCkEQMFmsVCoV/uIPqjJSsdkZPLV1tDe5+e8/n0WXzJyahqslwgAP7/Kzdk0rf/v9RZHuq/GI6+prqKu/+sPCVz+9G03TsDsd/PtVbcuqINcz5/hNhCCI/Gh/CK+xiEG0owJSOcsXPruLTCyCpqnoqlC1oZaMpHXjwvOZItjoXr+GpqEMfSGB+ovj3LlvB9/96fG5hNc5H285Nwvzf8fLq88GXabdJzIW09ElE2a9xN17tzA6OsPQ4Tg2sUx/3yipTI671tRwbixDqlzdz+W89EwqS3Rqkjvv3kXohfOMJFz86BfnkSs6gbwZQdABAwxnuHw9NdsVtnR72H8hwfGAhZNPHke3uOb2r+FSE3x0XwfRRIHhYIlbN9Ty4vEi//P7h8nIhqrlqKrQ3tVNMhJmzZY11HtN1DU18lffOMQjexqplAocGlk6EGdWc/zRZ3cwNDzLs6dy6GqFU8MlYunT9M5U+I9f20gxl6OUy2K22ejubuZHL/ahjeUQ9TK1eoRpTDQKUe7adydrpmZBNNLR3cZtt677X9Xg60AQBVy+GorZLEZ/9QYsShK1c6o675ds4zzm165kMJIIzaLI11e9uBLR6Sl0XaemueWaNtCXw+7xkQwF8dRVpdIUuYSntp5EKLiwzfXodZlYZCGhvt73CpLhmhQzyVWHVsxgcFbdQN8rjf4POk5Nqoz8y1uoxsUizsPbHGzespqzR0+hKzrCnANqTrcvyAoUygJt3avIlie4EM3z9Atn+b0v30teG1wsMliqQXcqU13X1dMpLMzJ67pOq0MmXYLsXFV60yovWzev4tzoYUyizvDwFLG0wrZmgUJJq3a0qp9eGObL54uEJ8dZ1dOBZoozfTbP8UtJpkOn6AtUEAx2hk7OS/ot5jEGvcS9mzwMzWQYT3n5m6d60SUTglR9sDLrBTY2wo7Nq/nxq0Pcv9vPwGSSnx0KYZSC6KbqeXG73dTW19HW7SQ1O0vN6jYKo0FKaomMoQi5Ikb30vUZ11LYW2uJT0dwO714HT7iY0FqJR9eSw3t0gkOGCw4KmV2OMxERZHn8i70kRkcRgt6cgyLycifNVdoNsHBeIJtPjfHa8vXdM19p/jQqUlcC976BjLxGBaHk2IuSzIUpJDNkEsmyMSiyIXlU01ysUgumbjmftVKBblYvO7317a24/T5ESUDFoeTQjpNbeuNyYzMo5TP4alvRNc1ynKJRChAJlFVuNBUlXhglnRsuX6fw+vD5fMv/NtdU0M+k8ZdW4dJL/LELU42N1x7qn54Ks3JM6OU9HdG67gcVrsNu3PegvnDH5Dn4bNp/NFX7ubO9VXqiFCRKWbTpGMR9mxp5cFNl7XxdJ06cwGjXuLslMI/fuctxgJ5as0ybqPC+WOnUBWFHr+6bIiy1lykTkohqIvtsq3tFr7wyd2sbagmyM1+M72nz3Hi1BCranSeePxOpiMFLBYb+27fwOqmaoVJM1j57v4Yrw9o1NtkkEy8dmiAHzx3hpG5pTaRMVersdf4W7bVW9i5YzVeq47LILNzjQeDXj2+db4if/a1+1CL1eFOj93Aqu5WHGaIlx2Uxbnk3mjlm78Y5idHU/z9dw5xoW+G8EwAn1OkqcHDqvY6HtpVh6QprKlRMegKMiZOnBllcCLOzoYCf/LRVmxGuBgU0eduCsVclbcpFwpIBgNtDQ4kXzOHzwYJUc/H9tTxpSf2YrZYeOFYgO++FSAaivyrWrvvFGarjUI6jdPnr8anaISyIpMKB1eMrbqukwyH0K7jeFnMXX8i3VNXj93twdfYjFIsoGvg8Phu6u+m6zqSQcLh8SAXiyRDwYVqN1TpEPHA7ILM5eLvtuJtaFyggPgamsjEY3jmBjgjUxPEZmeuee8wmq03TQu5GgRBWCJX+a9l7QqSgcfu6uGrH98AcxKedkklEZglHUvwp0+sx6Iv3vvtYgmPoUhBcPJPT53kreMTGNQC6zucDJ8/S3//NLs6jBj1pVQECzIdjgKGcnrhNQdZfvvTt3Df9ipv1kwJlDwvP/ca2XyZ33l8B/V1Xk6NFrn/zvXcsmGRh35sUuSfXw4gqyJdHXUcOznIT168wFvnq/f7VMXCpYiEYLj62nAZVXbvXM2qJidoZbZ02KizV68rqZzljz+1kY2ratB1MEoanV2N1HgsFLGSURc7DG8Pl/jnnw/xjz85hymvE5kYp1DKowk69lofQoOTaDxIMD5DYk7D2lgWyAejJDNRprUwwVyQJncL3rkHtul8geHb7uVU51oAdhvzGFy1HMbPS9Z1fKVW49meCpu9Vr4dE/kzdStfD5Tft3X7G5UMJ4KzJEPBdyU3461vwOZ0Ucxl8TY0kksmSMeiiJJEIZNetn0umcBotpBNXD0hjgdmkAt5CtnMNb9bEAQMRiNKsYC7phar07Wi5ei1j7+RdCSM3e0lm0zga2hacEZKRcP4GptQK8tlyYq53JJgbTRbFqab//gTq1m1qpk7tjby57+77ao84EtRA28OlKu8sxXwl0+efV+quNc6pt8U3LNa4OPbLaTyKidODTIWqAblssXP7MQ07es2oRSyFIqLf7tac4E/+Pxt7NvgAsnEhlU1/Nsv7+LWbiub99xKPhnnI3s7ePyhTSAvKoRocoEvPrqeTz+4mke2L07YRqIZjhw4yXhEQdBkOn06rW2NfPGLD6IUS7x5sJeBmTxDUZ1v/+QYp8cXZZYEUUIQBBo8Jtqa3Hz6ifuI57QF+sWVuFzlRNdUUAocGy7yd985xEzewuZOJw/ft4UOfzVRcFolUuEQk+Eir/ZXODuj8/996wgFBTotCTStsrC/smRDMzqIV+zUe820dLbjsJr55i9HONEX4OxgjI0tRj7zsZ1sbDGBZOKtwQoFBW7Z2s6Vhci/fPIs33ruEs8/8wqWOV3Xe2/rYUebwKN39fDJPTXsvm3HgnZwd7ODbj+4VhgM/bAhl0qSCM4uGBS9E9jdHty1daSjEbwNjWiqSmh8FE3TUeTlUl6JYAB3bd01Nd0TwWoyeiPc3XmlH0EU8dY3YLzJGQ1BEDBZbagVdUH3111TS3auCKFWyvgam0hd0XGsKMqyRNdTV79AdxAlAzaXC7W8suwXVIfsfA1NN03J+1+ATo/Cb9/jp8Zconckxomz4+hztJCxUBFN07n1ntsJzsyiXTYZ84m9DXz1k1tAyWE1Cfzbr97LvtUm9u7bjSRKbFvt45H7t9BZs7STfPs6B1/+rb389oNt2IVqfJc1keNHznLmUnWdNlqKtDT6eOgTD3D3Fh8vH+jn6IUgutnJt356jucPL65nQah2CS1ihY56G49+/D78Pid57erd2yVFETlHTLHyd987wlu9GbxGmY9/ZDu3rKvOOEkVmVIugyIrfOPlADHVx3//wRkOXkyx2p3DpBWqsnuAIJkoSU6ymg1NAKe/Bt0k0uhsJDswjSGvopYVzKvqyBir13STt5V6ox/NZ0FnuepVvdmE/OKzbOw/Vz3vTXa+KozyH3wZ/n/GIf5dh5mNnmp+tMOusV2ZYdv7KN/+G0WT0FQNp9+3YtJ6s5if3FVVlabu1USmJpY4/8xD1zRyqeQ17TV1XacsyyuqRRRzWUq5HAaTeUHKzV1bRzoWxeG5PsXhSgjCIt9MMlYd8+YTak9dA4lggGI2A7q+YNecScQxGAzEA7PUtrYt26fLX8NE7wWsDielfP6qIvhXg0mX2dBqoX+mRImlT6maqqKp6jseEvywwGU34/O5KJPklYsl5jkNgiDwSp+MxRNkeCbPmdlqcqiXS6QKeYKTE9hFGRBIJHNMjM5wciTDbOwQt+3YgMFo5OCB0zT7DMzm1GrSarIyPjSC224hGc8CFqgo7OxxsnrjGvrG36ahoZY9t2/k0onjpDIFYiUT08Pl6rYSTGah0SHTWitwckxGUouUjU7OTauY9GnaW2UUTQShetOpdxsJRPNM54zs7RLpanISihd5ZUBnX4+BbZu7+cZPL5Au6vTUl7ELFc6fOMfEbAKsdZybhZI6TaPXxh1mjUPjIoro4qMbBLrWbGLg3HkKOHhjaDGg6rqO0+th5NwZbt/ko3cix6lANaRZ0yVeefMiQwEZMGMXS1gFmWQyQ99whHCpWiGrtcjUugxs726htbOdyNQkdpebtvYGmhq9SEbTsjb+g/duIxKK8eTTp1jf6eGuOza9z6vn1wdN07A63dftjt0I3LV1JEMBJIOxmiDX1BEcX67JbDCZSEVC15SrFEQJOZ9fokc9D13XiQdmEUVhCbXA5nIhl4pLOmQ3istjtShJZBKxBYqDZDASHB3GZLMtURZKhAJY7A40VV3RPEPXNZLhEI6btG6uflYnEQzQZJcJ5JdXBrWyvOCk9q8VFoNAXX0NJmmWs8FqXJinjZ2cNWIxxairU3nuVB5NslYdbZUCiWgFq0HHYYK8rDE6NM5oqETkhdN0uUv0bNpA35nz5HJ5jLqJ8twcQjKRITAyTCZXRNYkdHS2NMKmjV3kikOksnE+/+l9XDpxEllWmArnGM0srouYYsWky9zWbaB/Ok+6oKEhUjDYef7AOHfvVkkXVarDfiV2rXExNhElIZuocUns6bFhcTh5+mAAh1ngi5/ZwS/f6GVgVsdhqbBztZu+M+e5eDEANCBb/Lx6IoDLqPKpPXW8dDJKQXKw3p/l4fs2Mz02gd3j58f7p8lri0U7i8OBXCqSziSYkiSaa9uxWu2oDpXg+CxWwQhWUMoyyWKKbCKKZDSxrmE9AIVijlQ5zbeNDiz3P8DF08fpiM3gFEX+9zaRimrFfMW1f1eNlbtqNP5kUOTvohrf7lKxmN69tvDl+I1Khv3NLeRTyRWT1pvFvPORpqokQwHsLveKVdqrqUtcjvr2zqvyr4q5bFVv8IoKxrXc7lZCWZEpZDILnyvl8+RSSTRVxddYTbJFUcTf1ExsVsfpr6GQTi+8XsrnrrpvqNIo7G4PlbIC2Pnz3922YG39rZcmllwMV2JNo5HHHtyKOGcRebnSRHRmCpPFisXueNduSr+pPGIzMtG0yBtnh9GxLFPnMFmsTEVL9M6WabCWkZUKD9/egqL4iCRKxOeoYB2tfrq6W/j5sQiJiAHfWIR8sYzBaOJ3ntjBkz85TrBoQxAE3h4q43doDESNuIQ0n9pXR9va9Vw8fpqP3b2GvoFpjp8e5eiQRF4vAhZ0TWVdnUY8pxItWdjW42HnjjU4tLfZumszLx0cxuswIolGnj6eRpi7CWxfU8PaNW3kkgmOnpnA67LicDiwl3SgRLFQIhaJs65B5IH7dxKcmqW5vYXw1ARfe2I7//z8EGXJxoWZErfvaCKVyqKPpWm0KYTjCjWJJFank4osAotUHkEQePbANJ++q5HG9jZiuUkuhKpdkhqHSLlSoaCKIMLtG73cumstU4P91Pus6PHq9bp3g58tW3t4+41DCKLEqQsBnvjUGmaHB3H6/MiF/IqOkelMnmjJTCSxWPmbmQ4zNRvn1l1r3lM5r18nXD4/hUwaX+P1pSOvB0FYTE4z8RjpWISWFYaHbyQ2eusbrhpz8+kUTp+fQjq15HWrw8nNjummoxHsbs/Cw3x0egpRkpYM4LlratEqFVw1tSQvs2vWVBWlWLzqcKUoSjR2dZO8jEOsViokwyEkSbqmXn46GsFb38A928t8/+3kkve6PDKP7uvmZ68PM5P/8A/IrQRd15BEePrnp5jNWEDSljw4CegUNRNHLyWxGKDWUcLvkLjnjm3sP3AWl0+ngkSz10jPum4ujKa4GBIRBRP5swOMBgp85dN7OXZqhDf7q5X98yGRipRlMKhQESw8sirLlj27CU/PsqHTR2udgzf3nyWclRjtzyII1fthraWEzy4yEDPQ7BG4/65N+I6do8bvIF1QOT2YYsfaVn5+NLIwaNxea+LO2zawrm2aVE7m9KUwTpcdm9uDQQiglFVioQiiqvC/fWkH/RcH2XHrZqYG+vjME/t45qWLjKZMjCRN7F0lsrqnlf1nw+jlEoJeIRVPks2VqGm2LrtfNTobGZjpxVVTi83rQ4mXsFrtFIpZdIOIec5dNZGLY+1uwDqUQTJKpNNx6mqbSStpbF0NFCclipPj1KRivHj7g1gnRhGUEtm6Jj7Ve4Ia8/ICWp9qJS46yFVCWExGMkqZH4Q1HvRCl+PdPfzdUDIsCMJDwN9SFaz7pq7rf3WV7R4HngF26bp+6l0d2cr7x+H1oes6qUh4wRFoJYQnxhAlA576eowmM5lEnFwySW1rK0aTeWEfDq/3hgcirndsK8Hp9ZEIBbA6lgtCx2amQRBw+f3XpUtkYjHcNbWkImE8dfVUygp2t4f8FQEfqnzgYja7YC7g8HjR3Z5rcm2cPn/VFOSyCohcLOBraKKnIcS5FbqRTrGAookMBODZl04zGFgU/V6Ari/j0v0q8UFYux1+ifvu3oJZOMmaniZeeGuAKXlRjm99q50H7t5EJPQWT3xiD6lolHgwiMnu4CcnkjS7wVHOMzpTIV8sI6tgF8u8MWRBKKv89gPNjPQNECtIC4MbMdlCTK46ahupVqYmBwY4OxTjiQ1r6Fyl850DKbp9Bjobzbx5MYNFkPn0Y3dyqW+MZ45nOHAxSSpxlHvv3ctIbx8GTaazyYfBIGK3lZiOFOiLGHj5ZIST56e5Y1sDt2zv4JvP9oIawGq1gGpl84ZWCtkcLoeJsYFhZsYmETWZUDSDp2JAm7tJCUYL//zLEXQEEEx8dG8LDqeN//rUQNVFTBSXDAQCyGYfP3o7gXAgTFmyLVB4dq31s2FjF643j/HmqM7ASIZ8KonPbeXWO3dzafI1pktu3u6N0T+RZCBqQZjI0WC1MdA/hsdiXJFuNI+e1e18zWbCYjWz/1AfG3oaePXoOFMZEz7XJGvXr6yicjP4IKxdYCHxK2TS1XmHq3SO5pM6yWjE5a+hlM+TiUUw2xy4a2sX9qHr+nvS9r9aPHN4vCTDIcQVBqIz8RiVsoLBaLruMSTDIZw+P+loZEHtQRDFqlNcaSm9w9vQWI3NtYucz4bOVdccUvM1NpGKhJc8aOSSiepsywpzH1AtgpTyuQUayeunQ1wZc3VdQC7KS1r/v2r8uteuKOd49P5bGB8a4W63l8FLI7w9Y1+IHx5jiUceuINz54dRFJXdu9Zy7tAhUtEwkUyFoeNh3JJMOFnh7NlhQukyNr3A+RkzSGZubRPJJlOMTkSB6vVREcycD8D838Pt8xKZmuT0xVk2rGlmzeb1vPn9IxQqIo9stXFmKEWoaGbfljrWb+jiv/7zAcYTNn744/187KGtZJJp4pEITS7YuLGLUDCK023mtYsZ+oIi2R8fobsGNqxvx2yx8PWfD9PoNZGUbdy6ykZDaxPGC+NMDo0QmA3hOX+OWDyFYHZSvuyWfHhI5vTQcUqSkzt6jNxz5x6+98xxRlNG9L4RROMVkrIGI911a0hn4lg0Dber2mnJVnI4VzUSHB5Gy2iYMBLs66ecK9J0y3biA2NYskk8Jg+JsSCfVLI0jfeSUsv8fGoMTyZB2miGsnJVYa+nOgqU1CxvpgRsmSLhisB/qaxmJDLOf3uXfjHClTyOZRsIggQMAfcDM8BJ4LO6rl+6Yjsn8AJgAv7kRhZ2x6Yt+p//7KUbOtBcKolSKuKtbyQZCuCpbyQRDFDT3LJku9jsDFClN1jsDoxmM2qlTHhiDH9LO8VMmobOLhKhAJ7aepLh0IqyNpqmkQgGkAyG96QSvRLigdmqM12peF0Hp0RwFgQBs9W2QNnIpZIYzZZl+sfvFeRikXw6id3lWZAzmqd9/MPP+vnjJ7YwOT7F8xevvo/q+tL5i6/ueF+O8XdWN5/WdX3nSu+9X2vX3NijN375v9/wMdYZs/gdAnIF7t7WgL+pif/547PVyWXAqJfo8EGLz4RBL9LR0USxVKaxtYWRs6dp6elB1zR+eXiaiYyZvV0id92+nm/8+ASxZJHP3t9JOJrhjaHq95kosaXdyqXpInnNgq7rGNOTVOz1YLTiMxUpKyod9Ra2dbtoXdXF33/vGKou0OHTCOWNxGTL3LHJrG00UVGKfPoTe9n/2lGKZY07925kYCTEL88tDp6sqynTVGvnzb4sj++ppae7hYELl0hkShgNsPeuPZw7fobuNZ0kI1FeP5dkKnt1+kynW8EgwXBi6Tbrass4LAZOTGrLkuN5uAwy96410dzVzj/8tJ/f2tdIZ1crP3/uDRoa6ti4vpWDx8c4G15eTWi2yzy8p4VXjk8zmTHzF1/dftVjPHKsn9f6SpgKIW7bVE+hLHLPHWsxW65fkft1rN2biblluUQ2mcDu8qCqFdB1CtnsspibScSpzHWuGjpXLUiBBSdGERDw1DeArmN1OMnEogsJ5UrUqXQsSkVRcNfUvi/UqnhgFn9T88J/r4X5ew4sqj4opSJK8frx+t0gEQpgNFkWaHWaqpKKhDBZrCilIjogIOBrbLpqh0zX1KteG+8FJv/Lox/ouGsTSrS7ZSJZjfu2+Fm9eSO/eOUs54JzNDRdo9Ot4DapNNVY8TjNiOis2rSRvhMnsDvs1LW2cup4H/unrNQYC/z+Z3dz4Eg/bw8U2N0usnltEz96c4qCbkXXddbXlMkpOtPZakzR81FEXUN31GPSS3jNCopu4K61Vjbt2sbLr53l1IRCt6eEJpoYTpkRBBFd1+nyKGSzOb7yxB5mxiaZjhbw2CXWb1rN3/3wzIKak8dQ4vZNfo5ditPgNfH4IzsYv3SJgckUTQ0+Wpq8aKqGWpZB0+gdDnNoyrQivQiqcXN1k4VzkyUqlyk2eI0ltvW4OD6Q4f987PYVP1sqFRiPj+LubIVQDl0Ce1cjM+d7sZptVCwi5XyejQ2bAfjE+Z8tfDapKPykayOOdILPpiPXVJhJFIrsmGpBl3N8xRxBNTv4mKfMTu/1Y67wB3901XV7IwN0u4ERXdfHdF1XgKeAj62w3X8G/gvwvpibK6Uintp60tEIBpOZVCS0ohSaMFdpRRSQjNUqhlws0LVlO4nADKJU/ckmi5VUNHzVk56ORvA1Ni0QyG8GieAssZnpZYTxK2FzuQhPjFEqFCivMEhyOXyNzfgampZwlx0e75JEOBOPkQwFV1STeCcwW634GpqW6HqWcjm8DY101FsJBYKsXtezMCywEgRBuOqF9yvAr33tGssZfvfTt7BlXRNpWaJ3NMroWBBFW7xRlQULk3GV9WsaMVvtfOvlaZ55Y5QfPXOI1p4eJIOB4HSQ+dm62XiR3osjdLjK/Luv3MLETILXBxfXWk+9iYfv28rHb/FgpsS6mjL/4d88Qqu3+rjtt0t8+eFuNjRLeHweBk4eI1GS+MTeevZsbkZUS+hqZe7YzFwMCUylRA4f7aeuwc9DH7mN7z19mGI+z4a6RdpCf8zIG/0Kumjmwkicwd4BmtqaOTml88aQyM9ePM3x/iSTQyPUNDXR7F485o31FR7ebEHSZARVwU6O8bRpWSIMsH1NLffcvhapslT9Rdd1BCXPx3fYWNdk5OfnZb7x3AC60c6pgTjTIyM88vAdHL84gyBJdLetrDUrCjpOt52eOpENdcu7Gvv3n+GZnx6kLMtsWNtMDTEK2DBbrXzk/q03lAjfAH7ta3d+QDefSWE0mShkMmjqcsWZcqk0Fyfs1ep7QxOZRIzW1etAECikU0gGI6Ikocgl5GIB6Sp8YK1SwddY/fzNIJdMkAwFr6sw4amrZ3qwH3R9QYXnanB4vPgampbIn5ks1iWJsFIqEpudeVcDhlfC19C0kAjDHCWioYmyLJNPp/DU1i+rTF+J9zMRvgH82tfuPVt9fOoTd1YTwLEUw0MTJPOL17IgiExkLDTWuWhvreH5I0GeOhjkb//pJexOJ50bNjJ5qZ+8Vs0x8mWBixdGSCUy/PbdPrZvauXJF8cp6NX7r0FJ8/ijO3jk1iY6PQoWvcC//cJu7t5ZfeASBZ3H7uzioU1WNmzfzPCZ40TiaW7tsfHgnatpdItoSmnu2ATG02aiFQ/7jwwSjGa5796dJHIar7x6ijs2+RdUglIVC788mycmW5iOlzl9shen201OkXjuTJGfHxjn5wfGmJyMoCPQ2exEmxvY9BhLfHK3i0abXJ2/IEtGFjg1pS9JhAG6GqzcsWcDLd7lOVelUmYqMUlIjdHsbMEULNLobcYuWokMj+Jpb8YsmVFLMrWdnSRSy/MTTdPB7iBhNPNsTTPp8tI4cyZZ5AsXspxNlfBaLXyeMVRNY1hw8587pRtKhK+HG6FJNAPTl/17Brjl8g0EQdgOtOq6/oIgCP/+WjsTBOFrwNeA6z6ZL/kcAslwCFdNzTV95m0uN6V8ntrmRa6vwWQmEQrQ1L16IXms0gGuPsDmqasn+U4lbQQBV00N+VTymhUEq8OJw+PB7vEhFwrv2K65kM2gliuUZRlfY9M1p7AvRzGXRSkWF+gUNwKj2UwyFOTxBzeRTyUZGw+iqNJ1H6uu5lg3OxPmyLkZ9m5ro6n55njUN4D3bO1evm4l140fpyLaeP3gJRJZmY/d0YLH4+LHvzjNYzvqGJzKcDFmm9vOTiZTpLO7jYahc/zO5x/kuZfOMDMdorGplpcvFsgLVfWCWpeRWp+TfDJGIZNGlssIwuKlPBCscOroGTo6mjEKcQplgdnpIPJ8fBFAMkhoWvXhpq6tC6EvyMBwgI88eicfBULxEi9crAZNgy6zpdPBudEUFU3g9NBxMrqDnbvW0ds3SV9kuTTUUNzIdCxDw1CSfMWOIBm4GATw8fQFnSfMU2zf1s3F8TMUJTdt9S42rm9j//mz7F7n4bbd23j6uaNkymbCpaXX4KEzk6yPRHCYdC7Xb9naWGFrdy2e2joqFQ11SmT+9icJkMyVOfXaOTKGOkbGIySSRbislSyqJVZ5FPbt7uJ7PznE73zxPiYngsvW7v4zQTSDDetrx1ENdn7707cQCCZY1XNzMonXwfuydm8m5pqttqo9sMmC0Wy56vyEt76BRCiAt75hYejN7vaSCAVw+WuWDKzVt3de8zsNJnO181d3c924sizjbWisui86rq7yIRkM2F2uBe3ed4qKopBJxDCYzDg83hXpaitBU1VS0TBOn/+a97HL4fD5FgYP3bX1pGORhfvYO1HZKSsKr7zVS63Xxi2719705wF+579c8+1fe9y9MJIikemlu9XLQ/fv4Mc/O8yWTjdrSyXe6C9TEeeNIBR2t7ZR657k4bvXEY2mOD8cxO0LMJYQOR2cW88mgaZGD9FoArNRIptMo0uGheihmj38/BdH2HdrN26rxHRSIxSMkc3JgAQ6SAYRp9vNmUNH2X77Ho4OHWU0WGBjZ5k79m2nu32CZ47EyKrVv+26WpVCUeV0WCNSOMVopMxHdjSypqeZgxfPIF9Bj0mXzfzybIGu0SjBOa741FyVemYYNiUDfPyje+jpO0wom8dnM7BxYxcjUynQi3z1M7fzxusniebLDMcAcfGB9cJ4Bv+BYwvSdPNIpKPk7BUKWgGvvwU1XKLGv8h1NxpMFAJRmpzN6CUoxpPYDFXK6NcfzKFpGuERBbvlDgr5Xsw1flJNO/mnxCCexsWk4tvfVAlY1zKSPI/X4mHnx1W+ogVx+yS+7n5vBune9QCdUC37/TXwlRvZXtf1bwDfgGrL7ka/5/JhgoqikE3EESQJTa2gazqCwFywqFs2qPVOpocvH/a4WUgGI/l0+oboFVanC7lYeEfHOI9iNlvl9QmQCofw1NXf4OcyOP01pGPRqw6tyIUC+UwKh8e7rCpidTj4h1fOgmih0SbT2Wjn2FAeTbp2kJdLJQrZPAVZ5fnXLhIuWvE5w+9HMnxN3MzavXzdmht7bnjdCpKBk9MAZsSzQWzSLFu7nNiMGresr6VuJkGyAPFkjsHRApZgloJuYXhoinRB47W+Eq6RKXI4FgKvKIBklDg6pvL26DiytHS9a7rO0HQGRZMoqkYkoSpro8/tYThh4m+fHkBE42O3mkml4tyz2ojT7uc7P3qL7T0+5MvUnurtGvfftQnL4T7eHFBIpQDRzN//6DQmoYJLMi7RpDToMvW2CrevtuL2eXnlyBSTsufy885stEi5HOb3P3MLFwdneflsmpO9x7GbzcxEC5w8doF925soq/Dtt7NLeJfrmsx0dTZhMUd5dglFRwBVpff0BWaiCg0GCQwWQiUrazs8rF/bzpsXTyAaLfzyXAkQ0HWdzfUVFEWhs85ES2MLbp8Lk7uWb/zkDLIqwGVjV+lEkgaPkXgyxcUpO/mKiipf5CMPbP+V6ra+07V7MzHX7vYs6USloxEESaJcKqFrGoIkoWsavsamZeYRK9nX3wgur4jeDCwOJ4lQAOcN0BdcNXUkQgHctTcWJ1dCJh7F29BEMhRAQLhhR7tUJISv8do0jarOchCT2YLD68NoMq94LyrmchRzmRviPwNEAkE8fh+/ePEk5yaK1PsL3LL7hg77PcWvIu5OZU1MZVU8RgXprfM4JIXmOifZhMIX99Vypj9IJp0jl7Vz7twI8YLI+GSEbL7EhbCZ3JEZJuLaQpFHEMAgSaRKBr73+jR5HAiGpZrwM/ESI1MJAgkFsfo70eaOuCRY+Z+/nMakFtnUZmFsaAxBl3noljZeOzZBo2eKNavbmJfW1nWNO7a3YLNZ6H1miP5I1TL6xZNx3jw1g89uJpBfpMLouk6jtUinW2HzhjamZ6K8OLT0nCRKEiNDE2zucPKJtd387Q/P8Df//AYep5V0ocKFC6N4bHDLzlU8/eoQM/nFJLPBKrN69SpaGrLEEiFqfIu5TSGfQ5EVAhd6cZnd5JU8Nc5aCmoR76pW8mNBHDYXDtvi3FQsHSFVbiERDFLXeB+SUcBUsWPxDRKLj+JuXIylZblCa1OJwIVpMmYrwel2EtEhHri/gvM9SoThxpLhWeDykkDL3GvzcAIbgf1zN4MG4OeCIDz2fgxzAAuyNlP9fbSuXU9oYoyGji6S4eBC8nY55+r9QioSRtPUZd91I9PQ8wHP6nC9q0QYqtWGavusDsNNcNl0vTqYdy2Jt3wmha+hiWQoiKlh+c1tvjIRmZygtq2dzR0TfPPVABUkWCEp/ssnz1JJRxAtDtbVVohqflZ5k9y6/doVo3eID9TaHU6Y+MhmKzt2rqH3yGHa1zTTVCrSIom0P3wLfecHmYyWSCsSr54Kc8cmP4NjIRrqvET6s7itcN/2eg6cDXPshWkEaU4ezFxCEiFUrAbnh7a56KhvwtfYyPHBY1iNJppbGjGdWpxa39FlpdEl0tpah9mYoFjWqK31MnEyTWEgR0qWYE4tIp0v88On36aiafT4LIxENOocGsGckT98pBNJlPiHX04hzGkO39Jt59atLaRjMYxmM/oKVKSjkyKG8QwPEGQqXH2AuvfWOjo7m/n69w/S7nXT3N3D8SPnliSZekWmqcGDDlwammWNr5a8AjM5M+eCEtvWWNh95y00DFyipWcNxVyOrz87wMunSxw8H6UoLD44uAwyd66z0+B3UVEUGrtWceyNA7zx0iQOmwlJU5CxLdwQ//wf3gZAkzV8Hj+JfIVaq8KFmIfWS1Ps3LHmvVssH7C1m0slsdirtqyCKGB3+4jNTtO0qodMLLpAn3gvhpGvhWIutyCteXkyaXXcmFpNLplA07TrOr9dD5LRRCocwmi23tR9xmSZN9G4Oh+6OohXv0y3+Epk4zHq2jsIT4xhsduvyWU+eXqQF85k2egfojfhxGuXeWzfux/yvAo+MGs3VbYQjBf50qfu5uhrr9PW0YqnroZtlRIOTxfu2jpefOkYJpORl87nuG+Dnc0NRfw1XgpylkBG5pEdLhJJjb97bgIkI4JowoJMq09nNKqjS0ZWeWQevm1DVc0pe47sRJ6GxhpC8TzM9aeaXHDb+maEUpK2zhYu9M/S2FxP+WSAC0HoD8+Q16tFBZOu8OqhQVRd4pZuD2fH8ngsGmlFYku3n3vv2sKTPzrETKE6d+I35Pna526n79gxJMmAIC5P7WZzZn50OM3WJpVc7yRl0czGVgcf+8h2nvn5CSano9y1Zw2FbJ7ZNEuywy2rXAiCQCwax+dzMJuaptZeh89dSy5RoGFzF6PnzuDfuoZEcJZEKUWto47EUIgax2J+o1YqTGWnyeRTCEoNq7fcwfjF40iOQTyNkEvqWBw6Vdp5Fc/93Mp4tJu1q8bpD3XjUy8Qruzg0IlxPtN+fbOzG8WNJMMngR5BEDqpLujPAJ+bf1PX9TSw8FgqCMJ+4N+9X4kwgMVmJxkK4qqtY2ZoALvLxcxgP566hqoM0Fzy9n5DneO3JW9A+P1KJMNBvPWNhCfHKeYy1arrO9AdBlbUDr4R3EjL1GS2kAgFMFttCwN181Xiy1GplEmGgyilIn/yxEaGRmZ58YK84j51XUOT8+zetoaGUI5dW25ZMDR4j/GBW7u9w1HyqTidrXVkElFsLidTY5MUSufJ5ss8cv8uQk8dxW6R2Lq1B0lT2LhtPf0TR7CZRGo8ZhqsRQIFz/xv4ON3tGJ32vjrHw8gGC0U0ikmi2mefmOUjO6hoilcPNtLsrBYWOlq8dDRVk94apKh8QSng2YEPUmNXeNrn7mVvnN9HB8pEU0r/OEXdjI1HcJmNlDfWMdrb5zh0Uf3sv/1w2TjURwuJ2a9hDKnnTw0m8eoDXHrbZu5cHaQyYJjxengigYvnU6gIyBQ5vRAmbGZND0dNWzfsYqzp/s4NVaVfZtHqwda16xj8Hwvo0kL//tndzE+Oj0nL6Vz6MQID9rMJDMKyfPDBBMyJcGGU6xUnVMvo6K5LRqbt64hHYuhqSqXzvVy+0P3EX7uCPt2deD0eekfmOLVk2FKBhc6AhY5Rl418vDt7WQyRWprXQyNx1i/toX3GB+otWtzuUkEZhFEEU3XyMQioOukIiHctfXkkglEyUBZkW+4/f9OoJSKuGpqyL5D4yWlVMTicDI7PIjV6XzHSfHNSmPO40YG76oKREGkOaWkZCiI0Wxe9llBEkmEAmiaSiYex+Hxkk0kVkzOnXYLDiFEe3sDTU0qjXVraWt/93J5V8EHau3OpnQOvHkMuWzC6nBSzGaJhmLIZZ3+gWke/sitHD89zIHzCbZt7mTk0iBbbtmAqvYR7kvS5LdhUgvoWgXRUI1xu7rt3LtvE9/76QnGUqCpZSKhGK+93c9Q2onNKDA+MsFMOAdUE9w6t5GNm3uITE0wfP4iF+IO+uYs6T9/uwenVeTwuVkuhE3cs9nDrh27ePvQee66awvlnx/io4/exoWz/YjlHIlQAL9dZGZubCKlGHnrYC8tNX7MLg+vXxgG0/Iim65rXJjIoxpFpEqRsYjO20cukUhm+eoX7+bS2QsMBRT0K6reza1NmCw23uwrsOojIq62JpKDIeprmjEUNWYHBgCB2OgEqqzgs9VXPQZEljhJykoJk8+JVCngaahnqv8EDZ2rKeQsVDIaJq0Wh8lPePTHeJskTFYDDmMBpxhh2+YitXWjrF0NF/v66epUmNfrfy9w3WRY1/WKIAh/ArxCVSblW7qu9wmC8J+AU7qu//w9O5obhM3lXmhL6ZUKZpsNXa+22MqKXBU7t918clWWS1TKlRvWw3XX1JIKh/C+g4BqdbhIhoNU5BJ1bR2kIiGuxWG+EsVcDrPNtuIAYFkukY5VbxZXTn7ruk50ehIQqGlpvebUJiwN3vOC8tX/Lk2GPbV1lAp5vA1NjE6E5vRXl+7boMvcs8nF6Kyf0aSRru522jsq/PSXp7FZJR59cMUhz3eMD+La7Wz2cNedG3n5FwdorTPjq6vj0JBKc2OZdKbARPwkM1kJPSvyN994jYJu5ujAEYqKSjRVRFU19t25GcOxQU7MmhAkA/vPzCIoeVwGyJUUbrvjVoKzEaJDMQQB/C4zm7atIxI9THuHl+eORnn2WInVA7NYzQbCOZHfua+BC/2zXJzVOfjWCe6+/zYM1jF+cjDE8dOjJLMy0YyKUQpQViWOHLtEY60Hk9XAyEwe5bKBi0hOJzqsc3zsFCVN4rYuM0oxy2xawGQ0MJnQwGjlt/bWYrdbiEdjNDY38vVfjOLJqOzb5OPVty5yPmwEcTEomymxpcvJ/rdOcm5apWz1872fnaCgCICZLY0aD955G9975gjBshdB0gETggT3bTTR0lzD9168RFqo3oenshb+x3ePYTOLGEQNq6Ric0+SKOoMjUXwJTIUsln+w+/dwbPPH2Z1u5sN227ju88cZ82admZnIrxyeJSd6+uw3aRRzfXwQVu7oigucIaLuVzV2pjFSrCu66iV8k0nwrquk0smb7i66q6pJR2LYne/s8KBplZVgurbO8ne5JBeRVHQNPWqMpjzHGSby7NMfi4ZDqHr2g0VPQwm00LcTkcjuGpqScciy7bz1jdWlTv8tRQyGfLp1Ip0jdjMNDUOkX/7pT0LFenjJwc4cOooj927Fp//nZ3Lq+GDtnbdZo07776N48cuMj46SWNjLaEcnA7lsRhUpn5xlkBGpWyw8z+fOkmprHN89DCZnILVZGQqkGZVay2fuy3LT0+kKYs2eifzVN48RyIWRxS8rO2qY932tRzoP4wmGrFKFdZvWksifpyda22c7o9wfsZC/LtvsKrVy7nhFJ+5fRWJGJyeLHF2MMqutX4+8dE9jH79TYanK2j6ECeHc8RypxkKaviO9qPJebZt6WZ6JspMZvH+qopGDvUmkEwmJCFKvd/J+nYDJ87O0NxaT+9kFs1oZ0uTziP33srrrx3n/gdv47s/O80bvTnuWlfLgbdOcnZaI6sunV26pV1nfDzAUFglZ6jBqVkpjASo8zSQSEUROn0Yxous9a3Gbl+kQoyFhsBvJR2bYK11AwA2m4NKpoyEh3TpIJiS5NJGdCGFIJaQCxXKoRAu16OkpgaolCs8dM8tpFO9eNoKtPdoPP+cDZNBo2PVr8F0Q9f1F4EXr3jtP15l27ve/WHdOLwNjZTy+YUqp9FkfsdP+6lIBKvDQTGXveYQxjwMJtM1hdGvhfm2ntPrIx0JY3W4SIQC2JzuazrApSJhSoU8JouFVCSMZKjy9uo7FltepXwBp89PPrXcNUrXdQwmEwajCbWsIN7E0N58i2+lm8H8A0oumWDd2ja2bLXyyGXv/+WTZ7EbKuzesRoYYjQp85dPnkUr5TAaDdjE967dcTk+KGvXrBeo6BKjIQXriQHORy3gsLKxaxWr6mb52GO7OH1miF+ezYMITqHAlx7dxqnzUwwFCvzpl/dy+NgAR05PcNuOTnZvbSevhbgUgZmEyhfv7aChvZPnnn6FH/30CBVd5Et3tjMwkeDIqEqDs4/N61qo7+hk1WCYgYyFS+nq336VR6ahpQGHzYhqiHBwSmf2p8cxUOZPP7WWFw6OMpoyYVTylE3VdlmoT8akFxEBi0mg0wdjqWrl+Yk9flwuG998eRpBEFnd6sJf3zW3Xg0YLVZeOjCMy+4lEgrgddspF9LogkitS2Dr9jVMhPNVcvRlcBhVtm5dw6FjA6TLFQQBJjKL61cua0QjcWTJgaAtDW1lrSpFZbOMkp5rWAiCQA4nOQUe2GBiTbuHH7x4idu3tzM2m+aNEZlWJ9QOTeJ22WhurmNsaIxMaY7uk4kiOWvwz6bZ/D6Y0H1Q1u6VsDocGIwG7JcldTc6p3AlEsEALr9/iXPb9fBOq7KwaKKUioSxub0kgrMYTOZrcm6LuSzFXJZsMoGntp5EMIjJalkxsXX5a8mnU8tiuKaqVS3icBBuogNon9dMlpYXLQxGI76GJpRSEavDcdWqsyiJ2D0+SvkcDlN1m7HZDBNpI5Fw8j1PhuGDsXZFTcYsVEjJEsdODDAwXSSVK/Nv966iNQfrrBIdXa38P19/G9XiAWDfZj/1dV6+88oUn727nfp6P99++jg1TgmHzchHd9Xws9MFUmUzXkORP/rte+k7c4GTF0aZCuZY02ThngY3Pz5Y4uWXj7Gp20PHhtVUymWGz5SZrfiZHQej4KC2xkONy0RNXYWnjqQJpaM4T0/zqXtXEYykea1PRtQM9M2WweDkzQEFVDgz3keuYmRNo5FsREYRzGxu0Hjkvlv49k/PECrZaKuX6Gr2sGl9B4nALFvbjYyEZOpcRmZGhvHYBTLxKGZBRlIldm5Zz8xMmIMTmWXnsbvVi8/v5tVLA2ACr7NmoWwnSSKldBqb1b4kEQYQVPDUN5LMLbUbdzm9uJxe0hUVf81jZDKnkAwColaHr6sPtSJSTltQSklqGm8nGZ5GMFdzGaVYYSTQjFEooeuJ93RO4zfKge5quFn74KtBUyuU8nmc75LDezMwmi0LU9Dz9I5r/R5NU6lv72RqoA+1XMHX0EhZUZaIuzt9PjKJOJYVEnpRFLHY7FXt2RtIhNPRCKpawWy1XVeBI5tIYDSbycTjyyrSAGnVzt9//yi5smGh4idaHHzl/gZMJiPxaBxNq5p0uL0uLO+TfvKvGsZKnj/6rc2MTwR57nSB2d4SYObceIHCz49S0XSe/eVxZlM684LtGgL5XB5F1ciWJU6dGWIylGc05WDqjUlu21SDy1ThU7vdvHIoTCHrIDQxxq6tHYgmG997dQKXx0mzJ8XOVo1AWieWDHNuIMRwyrqkaD+cMPK3Tx5k6/pGhoMlBMHCaNLALS062WQCXYcOl8yXHr+DZ35xiv54tbqkCNW/zyPbXKzuaeL5XxxlKCaRSAmU5HLVGloy8vSBGR7aqeBzGRFEAyVZxSqVqW1s4vRAjESpTEEuIhjMDMVU/u47b5NQzAvTzF5DgUJFIl6287ffPUpeNS+Ya1yOwbiJwf0J5gfetjZWsJoNHBlTefVCiVMjRwiV7EsoG7qmYlZzpJMmPLvX0eQZZt2aFopyhd6wzHTWxFNH0qCqDMyOElMsCHNrV3L6+cxeD+1t9UyOzVBT6yYVT9PU3vwrHab7deCdKt9cCVEUySYTSNKv9lbkqatqzHvqGq7LzZ13ES1kssjFImW5hK+xkWJ2qYybzVU1QVpJncdVU7MgkXY9FHM5itk0giDibWhcMZZejnmKRC6ZWDEhttgdyIX8koT/0bvXsSsUp6WtnvHRSWprfCiygq/uV3fve79x/2YXWzd18Pc/OsOrvSXAhK4b+P5Pj2ETy1R0geN9ESpm98JwsqxUKORL6Aj0jyWYCWZI6F6+fzTLPevt5NIZPnd7M4fOBalUKsRmp7GbdL7yxft58plTNNc4cLts3L3OwvBMhURBZPiFgwzFBapU6SoU0crfP9PHplYzGRnATEIxY0ShXMiiqSpCucgffGINgWCc507P8SEkIxmMrG/SeOKjO3jtlSMMziQoKE4CMyEUrfpLDg8WKRfzbOhW8DU2MjYwRDFfwNfVjlLWGIplMMxkmc6a0UwW/umZ81R0kXlKmhkZm0ElWbHx9NthJCEEpuVOim6nHzf+hRnjWDpCwSDj0uy0N3YTHQ7SYF1+PaTSMRQxicMqIOq1SIKA3dWOLPdi90pYXRdxtUIm/DLWehWrq0oZsthNfP5jE0gSpOJQVjQQwOkyYLW/u0rxhyIZvhayiQRlpVS14rxOtffy6uo8NE0jOjUBQG1bx3VpBe8UZrv9hugdFruDZDhIy+p1pCMhjGYzpVxu2c33WkN58620VCSMWqlcU+BerZQXpqYvnyxfCQaTiXw6ha4t12aeH7T7yyfPLpNhe/K1ELqmUsnGqtOxaoV1nV4+98lbr/l9vykoCwb6h2YIxwtUu4ZVKFgwWeDxx/bw0xdOE5cXT0xBt3LwXAirSUTBzEsXSoARXddo8RsZGE/R3mCnra2Bx/ap5IsVXnpzjLu31pEqFCiKdr71zCm+/Mha7JYc3z+hLNh/Xn7+3YYin9rXyvGLKkdGK8wHQwc5HnpoH329o4xnzNRaSoyPTNJZayBVlAkWFtvhR/uiRENhnnjiHoYv9vGD4zKCoCwM1BUkDz87q+A3paloAql8hT/77C5G+vqYjJRIVAwL58UklNnYbGIymEa0OgnGi/zB52/j0sAkz51IklcFNIPE5voK6YK6IB20EjZ111BT5+PI0EXa6404rUZCM/rlampsbYbHHqzSIEaHJojJFv7h+8fY1O3DbSiRrswlfZIJXdT52C43R/pixEoWBEHkx0fSlF8cQtdUDFoJvG08uj3Hrp3vTLLqwwClVCSXTCyo+1wLV+uszZsMvZ+D0PMubivp1V8Ol7+2ytFsaqaQSdPQ1U1wbJi2tRuWbGex269ayDCazHjrGyhkM5TyuWvSJUq5bDVJj4RWfP9K6Jp2VYoEsOLrTrcTp9vJ9546wGjWjhA7grGmgz/4+Gp8tR+OhHgmksc0MI2sSZepQoiEkwr/21cXnTYvv3WeGi2xqcOA2ShwNiABOoJkoMGqUpA1gimVB7taiEdjbNmxje/84E02ddcgjE1TUARe7ZX5GFP0tNdxcSLLLy9WgKUVU13XeWSjAaOxhudOFxAuexC8Y1szPRu6eO4b+9EFKzMzUXQlz45mODUjLtznRyIKP//52zz4wC62JeL88LUJvnsgyXz81iUTx2fh7GyEWluY6ayRezfUUFPj4+cvHGYiW8PkhSIIVVOmTp+GpMukVQhl4MEdftavbee/f/8EJaWCYnbTaJNp9ptQlBIm08oPwyVkXG1NFEeCkNdRTDqqvlSrPZGKUm60IgRXUchNIBjimHwzxANTmO0+8OYWtrW6K+TDqykm0/jaq7rgTa1VB+H/8v+aKAtuBDS6WnN87rNLK9A3i1+bG8KvChVFxtfQRCm3eILTsejCRPL1oGsaRosFo8WyYpIHVS5tIjiLXCis+P7lKGTSJIKzy0TabU4XvoamhcBVKZcpK9V+rlwsEg/MEg/MLmwnSRKCICIXC7jfYYtyXhYpew3xebvHRzIcxFN/fTqI1eHA39SMruvEA7MULzvn14UgopXy6HJ1arbG895Unj4QkMy8fFHmzAyIuaWDnf3TJX756lmGQssv5Lu2NfDovRsRi9UWkVYps84a5tH7N3P7ljpe783zt98/RTxTJpFViFPDM+c0Xh+qGp1YnS7c9fVMRIqIWhm/IY+uLQYmXa2wrc0EShGDJGLUStQICWpNebI4eOq5Exw4XxVIj5YsXOyfYedt29nYsjQBDeTNHJ9QGbrQRyiaQS/L6LqGXpHxCSk+us3GaleGdIlqcmm0cuz0KHablU/f371g8OE3FekwJ9h7+2YeuqOHL33qVvwOA8dODjMwkeLBTQ7+5IkN2MsxPv6R7dy+uQ6fmOIP7vdzV+fy8/fM20G++Wwv3XVGdnRZ+cg9m7ijXUFQF7dN5isMD00RyMC5gSC3b/SwZ62TB+7Zyob2pbMDdS6RbVt7qHct3rzUQhpVLgAaqi5iKYXxuN6XYdDfGORSSbwNTVXXujkUc1lSkWtXYC+Hpmq4fDVUyivf4PLp1E0ZDIUnx4nNzlDKL+qkiqJITXPLggSmrutL3p+PuWqlgq+hCavDgcVuJ5uI4fK9MzvpUj63QG24Gjz1DaSjEazOG5Nrq21tw2A0UsxlSIZvLIGeh9dpQs3GsJmN1NpVLLYPRzcOoC9i4BdnC2ilHJqyeG/OYeeZX57i0MXla2dTm4n77trEurlbqq7r+MQUD2338dC9W1B0ib/650NMRFWmJoLkJC+vj5r4weFMlWsrSlhdXioYCeZNeKQcRm2pp0iHW8HvMmIQNXStgldI0WjOIqoyB85HeOq5ExQkFxjMvHAqRntHM7duaYbLYreChTMRGyeOnicWiSOXNfTKXIe4EOOetUZ2NZZwGHVm8hZEycBoIMvsdJCPffR22tzVa9OMTKMpw23bmnns43fx2B0d7F3vZmAixbGTw9TZNf6Pr93Oal+ZXWt9PHL/NlLZBBdDF+hPDpDNLc2jasx+5KEQRsFMuBTFVO9hphAgnl481yaTmWIsgdFWQjeMIRcF5NgObNYdGPTNS8zK5LyGy7sRSVjsqOQzMoHJQrUqLBmRijFqfSsP698MPhSVYbVSIR2L4KmtR5SWOu9YHI6q/uRcpTSTiGNzOskm4jekDSkZDFgdroX/vxo8dQ2kY9Elbm0rH6uK1ekmn0pedZtqMjlTnSD2eOdaXP5lSes75SvPY17g/lqtu6vphZbyeYrZDDaXe9lvFkURm8uFWikv+9xKIvF/+eRZBEHAVNeJXlHIGc08cM/Wm/9BH1Douk69pUiPr8zt+/bxyhtnORetJkxlDfqn8yjY0ZUCGMwL2pHRSBKbxYDNZqLFX2Z3twOPv5lcIsGR40N88a4exqaTvNxXYUm5cw4Jxcp//ZeTVCQrt3SZeeje3Xzn6WNMZEQs5SQlRWXXrr3MTIc4GxB5ZJuXzoYWfE3N/I9vH2YoUU0GLXoBVRcpqAaiM1MMTmcAF6hlbl9tJppWGIw5+NFJBaeo8aefWsvxcxM0+Ny0tnRhs1nwGmXusNkZmExzfqpM/4xGJl8BIYMgmUDJ8Tu/tZ3gTICTJ/rI5mWkiQyhgpHZoTJgxGMrEgzGkQ1u/uXpExTKYDfqOL0e3I4EsFSGtIgVXVH4yh1dVMoK509fYO+d2xkOHMFsU5nMWJjKmJk6kqLba+Xhu3tQVY2CrPLDZ08wmVC5XMmiPyLyP779NgnFgl4pUMklwGCCigJGE5KvhUI+Sc/qlc0pPmzIxGMYzZZlA8eeugaSoQAm62JcKGYzuGrqSEcjN2Ty421oJJ9OXVWrXS4WFoZ5bwSSZMDqcKzooDeParHBWZU2q6tHEMDp81eHledi4JXayzeLeTOS+XvKShAEYcXYrut61QjKbFnW+VMrZdy19TedDD/6yB4euLeI0Wz50FF77GIRn5jlU5/bSWg2xI9OLj5YzUSLpFUb6GXQ1QXN4ESyVF1TooiVIh/d6cDr7sDudnHs4ElWN1lpa27iJ2+HGTyS5nINcqj+7X5yOI5ADJ9F40++sIdTZ4Z5+WIJo1qgrJRZs7GejrVr+PtvH6S71sLDt63G39jMK2+e59i4RrQEoi5jFxQqkoFSscToRKQaJ4FV3jKtdTYO9Od4c8wMqDy82UNdjYejZ6d4/It3Eg8G0BqtrCvkUA12njkwS7ls5JXTUdbFFMJZAQS4c4ObPbfcwku/2I8/mCGVLTMarRAtWRiMl2mwmpmemKVY1jlwIUHvyHH+5K49xNMZLA4HcrqI07GYR1ksNiwWGzO5WepX9TB+4hQtWzaSHg2goOA2uauaw7iYtL2MofI4lUwIp7eBaPglbB5xyTp0+E1kY89h8oCuC7z2YpkzvW4EQQd7LVQKmP013Ht/jJXugTeDD0UynI6G8TZUndeulAu7kh4hSRKhiQlE8cZOXCYeo6LIuPzVoQ1d10lFwphtNmzOakCz2B2EJ8Yx223k06lrBkunz0chk8ZzHUMOTVWpKGUEUcQ1Z4xhda4cQEPjo4iSAW9Dw01Nc8+3H29WvB2gkE0v3IyuTIbdtbUopdJNS8UJgoBgNKNXyiil4lWntn/T4JXy/P7n9jLR3082laSoLCZtD21z0VxjY//xUT5y/w6OnZng2GT1vdf7ijiGJ8jjxCiVsbvsBINRjl8ME1Yc3Od2Yg5nQcmhS0ZWe2Xu3NnCG8dnGc/Z6PEpyBUT01kDU9ESp071Q0Wmy6XzhU/dzcTAAN/6yXFcNgM7Wh0MT8TRlTx9YwmyqhFE8AtJPnFPF7miyo+OpBn5+QS6pboOzcjcfutmRkZmGYxVBy80BHLZHOWKRjJTRAomePvkOPfvbsTv8WCdTfP47Y34a32cOnySteu7MFyMcD5s441DAxRklUBcJlMxgaSCaEZXyyCIHJ+WOD6dA8nCzFwBz2CFN18/wdmQEUwunGKBkipSntNIFgwmfvpaPzapwkTGzNuDp3hgVzvr1nfy1//0GjmDF0EyMh7XePPoOEOTCbLYEQxmwIhQkZGoUDHYsSCTKRsQJANqPoXJ34Icm0YwGFALGUSjGSQjmqa9b3SqDwoyifhclTSxLBkWRXGZ3nA+nSKfTlPX1nHdfc9rxV9+/edSSdRyeSGRdtfUEZ+dqUo6hoLXLQy46+qoKMo1qXKCICAXCgsFFavTRSGbXXFgbz4Jv5mYCYvFBV3Xic3OAMsVf66GVCSMp75xRfqEr7GZdDRyUw6D8zBZqseTz2Swu66epP+m4aO31tPRuY3pgQFyRY35RvjaWo0H96zm0uAMRpOFxqYa/uXFCXSjlf64kdzBKWbTYDOAv66OZCTMmQtjnIrYuXudBbfLjqCWoaIhovLZffWEY2leHzbiNZZoazJzfrpMriJy/NQQoVAca7nM157YipzL8OrRCXoHQ6zt8DE2k2J0IsrETJLRYBEwY0bmjh7Yeetuvv7j03zzlVl0qaqKA7C+w83mTV2cGjxKbm7GRC6VKRRKFGSN2ekg+09M0F1vYnVPC5LFxo7uNPffu4NXXzpCV61Ao8fNT46l6JtQkMt99IVAixQoCVbAUK3OqmVCRTPfPZhkfpYlk4FSqYBQqFBJpanp3ECukKEkF6nxLnaonbqVwNk+2rwdVCZSGI0mrF0NxEdm0CoVHE4PVpeF1Mx+sMqU9CM0rDEDGrqukw7LuOvNlIsqugZWlwG5oHB6pBNVlLELMVQlyT17ZmhpM1GWTZit7y7mfiiS4QUBdMvy1vo8R8vqcGF1OFCKRVrXrL3hioJaLuNrbF4IuKlIuCqpFg0vJMM2pws5n8fb0EjiBri186oLNrdnxZumIAg0dK5a+H+49gS1wWjCZLWiqctpHPPqD/MalBVFRpSkJdWZYi5zU1UWWLRqXYnjbDRbbmrA5vJq8V988zSVXJz//I9vI9k9CJLxHVmOfpCQqRg5c+IiqzrqONUfZTBdTR7chhJmvUJd2zo2ReOEJ8YplcpAtQJQYy2zrsXG28MFLoat+Eai3H3PTo4OHkGpWPmfz41goMIffmIto+NhVFmnqb2dnbEE40cTPPGFvUyOTjAwK3NxSieclPnK5+7i+Z++zuzYOLJcIaVa2be+lg0bu/ibbx1iOC0CGojmarX2i7eQjsUYnU4iCBKayY4gZ8HsRJYcfP0nZyhVYL5CklMtvHpsimxJJ6M7gSKIDZwYkbFPDHAuZGBLNop5LEGdy44kSdQ5NAjDmVmRRmuJP/3KXl574zShlMxEVOaL97VTymfI5GQi8QLnwmYwVIPzxk4Xd+zZQ+BHR0jmcvzR53YyMDjNc6dyoFUQJCMdDQ7uu2cbzz1/iOGExKXBaUYnInzpE1sZGY/yWn8ZVTRxZhYw+JbUFx7d5aGzvZ5/+vEp/vCzu5mdifL0iSyS3U0lE8Po9CMYjFWaTzGLIBn4j3/zCkZPw2/8ur0WzFYb2URiSUtzHppWlS8zmky4a+uolMu4auoQBOG6/FxgRa14pVhVyMkk4rh8fiSDAcloxFPfQOYGqBJGkxmtoiIXi1d1xpuneM3H3GvNmWiqhrumhlwqtey9XCqJUiria2iioiikImF0XV+iB6+Wy5gsVb5mpVxesLG+Flz+GpKh4LLu5zxupOJ+Nbz+1nmODBX49J2NrFv/vhgg/cpx9lIAt1XEYHPzi9PVdr6uqXTWGSnm86xf00IkECIaCKEJAgJgFMpsaLJg0nOM5lw899olvvrFu4iVBtFjJd7oV3ijd4y71rvZsr6VHz93hMaWLdgsBnyTEXat8bB7x2pMrxxnKilytC/Gn35pDyePnWN6YgaHVaIsWvB4DTxwzxZefP08L13SgDLzCeedG1zsuWUdp46cJl8WwWRBkLPogoggSrx6NsmR3uPkLhvIOzFWwjWZYkb28J0DScBDckZGllKcHhzD4bBiP9ZPVlaRRAGn1YBFlwnk3cwOlPjqAz2IksDz+0cpqkbWNJq4dWsnY6MzRCJJRpJGUlr1+zKlNA2b15GdqF6fcS2FrbWGxHQEp8OD0WhCLsvUb15LdGyCdkcrocQ0iYEJSuUShjYXaiIBDeBpmaclLRbxUjMuauseJTr7CwStDq9/G6nIM7jrTHzy/gkkUWfVGiNlOYXJ4uWfnzRTLNv5vS+EsDqubmZzPXwoyhcmixUdvWqpdhkiU5MkgoE5znB18tfu8VQTxBtM1gwmM4ngLM65p3+b00UqEkK4oiRvc1f3a3d5rrvPVCSMyWolEZhd9npZrvKLBEGglM9fk1s2D6e/BpNlOZ1h3slofh+5VBIdnbJyhdTJ3IDISoG/kElTVmSS4RC5ZGJhv2arDW9D4w3bkN44BFAr1Wrgu2x7fFCgiWZeuljk9VMBzowtchL9ZhmXw8bgqRPUNdTR1NXJ4EwWo1bi49ut7Nvk4Zbbd9DjrSAIAudnKjz70mlmc9WEQjBaQDQQj6bIF2XeHNQ4f/Q43sYmBKOVM0dPY9QrfPSBrexuF6l3Gznw6tvce/+tzMZlfny6gipaeONslO88c4wsDnS1wt4ugU31FXSjjdPHLxANBpkJVCk6u9vg339xO+td8WrbtmylUJFw6Fl0XWdPc4mP7+vkk7f62FK3yJUbTZk4HzFj1EpcDBkYCclYHB5S6QK33XUrDr16faZLIufOj2AQ4ctP3Mr6ZiOKoiDpKk0+Cx/7+D5uaVu8zo9cyvLtp48RyJmQdROnzo6STSS4v6fC73+kGauaRs1niAdmqXGbuKPbyOOfuJPxcIFEIks6nWVfj4HVrsxCYtfhkml1VjlokXie8YkwimChr3+aiUBq4btNViui2YYgGavUFkFAU0ofunbzSpivbl6JVCTMVH8v/qbmBc6wwWhErZSplJVrOq/NYyFGXxbPNE0nHYthuyxGeerqScciSDewz0q5TD6dJJuIo6mL3MtCJk3uMsqapqpL/n01+JuaKebzK9I4lFKx6iAXCSMXC1TKyrKYazCZqjMour4sES4rMoVMmnw6RSIUQNd1Cpk0crGAv6n5qtSRdwOT0YBZL2Ewrpxo/yZiMOXgxeMhXjl1mUZzuYjPJpCMhElFw6zZtpV0TkEwWNjZovHErR627ljPrRurxaeg4uD5V85ycqiaTAuiVDU2KipEo0kSupf9b57E7a/BatAZGw8wcPwIH/nIHu7e6mfPBj/Hj5zD7bLTvqqDHx1KMp010x9S+eGzJzk3XuUyd7gV7t9QjY/jUzEGz18gFIpTqgh4jUX+/Zd28PBaFYMuI2MmXrZj13MIqkKtpcTn727ik/et5SOrsghqNXZlKmYOjWrImkQkL/HqhSwNdW5mAklaV/ewadVc51YQuTQS5vy5Ib76W7fy8O46VE1DLpYwV1J85LG7+fjexY5DjauO4nAIj1i9Fg0KpCZnmUlPE5ASTEZGkZUiobFRBJOBoemL2Ne0YDKbsVtslNJZEsU4kcFGipnqdZFLCKRnalCKKpJJJhkZxmCS0cUY6UQ/JnO10NdYW6FrtaFKq7RUrxuzVMYklZAM/4smcdXKpmQwYHN5CE2M4ZnzoTdZrMsMIy5H1ZSiOtxW19a+bJLZbLMt0AI0TSMVCeGprV/CrdU0jVQ4WK3IzkndzFcLzFYbyUiIRDCw5Ek+GQriqqklFQnjb2qmlM9TVmTyqcKCNubVcLVKh2Neo3Ku+myyWPDWNxKbmV6y3bxe5eXnIB6YRSkV8dY3MDM4QOva9aQiYRKhEC2r15AMh95RS+56+IuvbkfXqxW1+aTiL588C6zMN/5NgSaauRSGyzmoa3sasXscmCwWkqEQk5NBypIdk6jS3dNKOhzgwrHjXIyaQYJ02cyFAPgsCo9ut5OTdfZfSOP3O+mbSGIyCCiSk1feHgGTA6NVp76jg4lLvViMAjt2recb392Pe3SWYCiJTdcpCnbSFQulrEyLvUQ4nmdjZw/RaIp0vkiNy8i6XTuprR/lhcPTONQS4YlRHrhnKyNP96IY3dy2ysx9d+3kn586jtvrwup0kc+kaas1cT4CbqlARRdY22Lmzl2b+N4LA1iNOs31Lo4fu8iFsTQ5HAhAQbfwizN5HGIFw6E+ppICvUdS/N79DeiqzMCFPgYDMrpuZk+HjoCRw2MaoiShI/H22QD/7qv7GL/Uh8UksbVZ54FH7uaNlw+CaODWvds4+Pph0qqDHx/L4pEq/JsvbSAZDlI8OMlkQuAT964hnyvw9VfDHJ8SYaoIJgev9hbZ0iJSZy2xtsXOrq3r+fpPz5PTqvFAsrmXVBbn1y38Zq/dlVAplzGazQv/P5/QVcplWtduYHqwf0k363oawvPW9habHZvLvSxGX04lyCUTSEYTVodjyX4ziTgVuYS3oQlBEKpV2WikOmwsikSnp7B7vAhz8bA6MJfDYLYsVIyToSBOn590LHrNbpwgCFdV7BEQSIZDVae8RJy69k5iVwxMw/JK7jwlr5Qv4G1oIJ9M4m9uYaLvInaXC6PJjNlqu6Hq+s1i3x0bufN2/UP3IDedW1r0WlVvwt9QPe+paISB06cZCc8nWnaa25uY6u/ltTNREBpBNHIhALpm4KMbytTX+3n2UJDWOj+FfBFFsKCZjbx99BIzeQvt5iLdO3YzdamXqckE933kTt48eJHRYIFieQYLRZQ5acihmEqrE0LZImsbjKztqWNsLEit00pNrZ+utauxv3mUqVCe6f5eVq1qYTYb4kIQfIY8f/DZWzhyfJCJUI7allbGLp6nubURYTCMQQS3qUJFg698ej3Hzk5zbKRIW4OT4FSGF145VdUvpsoVPzopoKsO9P19xHMKY0kTJmOMe+/YS//ps3MUDjutToWAHMIlWXHYqp3xJm8rI6kRTH4Xuq6RVtI0r11HbmqKwnSE5l2biY6N4xPctNRUuw6j+jh1DbcxO67RvCmMVlhFbf0tRCLP4GmWgXkzwjKZ0BiltK/afXd/gcTMfrxti/NTX/qKhq7nEYR3J632G18ZTgSr076BkeFllU2724PZaqGho2uZ5E0xl1tx2KCiyFjsdoxm85IKwkpIhqqWylfuJx2pcpgVebEyVi6V8DU0kY5H8dTUUdPcgsPrnftOhUIuSyIYQJjjMksGCTmfn6uolG+oWnElDCZTtZIwx6cTJYlkOIjd4yGXTCAXV64651NJXH4/FpuNfDqN2WYnFQlTzGZo7lnNzFD/+8qJFAThQxeUr4SmFNFKWUKBKPuPjTIULPH2YIGdq+xUkPgf3z/B8b44b4+CJi3lgduFIjaHlY6uVkS1jIAOmobPqrL7lvV0tFTX1QsXFZ5/5RwvnYpzcETjH39whFDFw/NnCjQ1evk3n9uGnWql+o4NLn73M3vYs85DQ0cHuVKZ3/6tPczEZEbPn8XmctNkK3L7g/djMJk4dqwX2eDELpYwaDK9F0fJKgJHemNM9g8gma0MzMpQiPGlh9fwib2NuIwVQMeEQrak4amrZ+fO9Xici0ODuq6zqb5Mq09k/6BCTpG4f4ONeChELJblR0eyFMs6uqayYVU9PY0W/s2jTXTYq5Xllobq2o7E8yRSOUJ5iTfeOMm2HRvo6WpgfGSC7TvW0+quXts9tSJjF84zMx0kUxIQTRZ+9sYQLx2bRRAW17jXUGCbN8rHP7KdPetrSOcUIsEwW1tNCNriJPOHfd1C9cE+E48uKDlcXtn0NTaRiUVpXbNuWTKpaRqJUGDFbpemVvDWN1Iq5Je9d+V3S0bTimpAqqJUB5mjkYVtfXOxr5TPsWb3HnRNW/gbpaMR8uk0pVwW42XV5Xw6iSRJZBLxJVayNwpvQyP+pmaMJjNWh5NUpErhk4vFhe7aSqiUFXyNzcjFAoVMBk3TCI2N0tzdg1Iqocilq1Ik3gt82NeurqkYKgXyeZmDhy8xMJbk9QspGvwWmuwyvzyV4ie/PMOpSY0IS6vvBq2ExQDNXV147CKgI6Ch6xpb1zayc1s3ekVhSvHxLz8+yuG+JIenTHz9B0c4OlTgzKxE73iaP/u9+9jSXI0rLQ6lGnPbdHbdtoPxoTF+61N30NJSy+TwKPl0GqvDziMPbqO+vYOxwRGGQmV0tUKjCwb6R5mNFRhLmTjwygEQDUwFMlREC3s6Bf7oi3upMeURBAGHoQxGK8WSyqZd21jX7qFUXuzs1Fll7lhj4eyUzFjSxBp/mRqzwtTYBG/35+gNCQiqTIvfjOC0EDfl6Q/2AXMcYrOBfCpFOVPAaXFRmI4iadC2ZzuBwSEki5mSsRpzA5EpCsUcYxdOYvNUK8OibZRo+GXs/sXrXymoBHqdqPl11NY/TDErk4pNUco4yUaWPhC+F2v3N6oyXFEUMokYZqttgZeraTqeunryqdSyZPha5hXFbHph+vbytpPRbKGUL2A0ma4ZeNLRCKVcjtjMNKYruMpOn3+ZfqXN5V5wWQqNjQLQtn4jAJlEjObu1UtcmIxmywLHLDYzjcPrW+DLvVPM/855c4xsIo55heENh9dHMhxCMprwXXZDS4QCpGMRalvbl5xruVjEZFmcRq6Uy2TjMdy1de9J8P4wVNWslGj1GxiK6Ahaha8+3I6oyqiCCcEi8+hjt3DmxAW2795M8vlTDMYsXIiChSKf3G5maCJCb8INSo5PPb6TmfEpvvXyDFaTFbvTQX2Nk96ozD989zApxQiiCV00M5iaS6QFiClmBAG2N6tYBZlL/ZOUKgIY4NJEBkXu5fxkgcpbFxieKlIR+7gQFrkQyHJ/OYDD7WR2dJR4LM6RGSuiQWRrl5N79m3kB8+eJK9ZcBt1GrtW8fapcYaj8NWPbyQamCVT0iiUKmQyBXKqiUJF5MTJS3gskMmXAQM15hJOg8x9t20hn82yNVfixUPjbN6wlmwyTm1TM8OzR/nUJ/bx1PMn+cGbU2ytL7GnoYFVDRYmRmEsrvPysVkm40bkySy6bmcsqeCyTpBIl5jNStwpGSmUBXRdp6PJSceGdfzgxwdJV3wY9BLRjEqBpbHjrg121m7czqu/fIuJlIhBV0nUO7j77u1cmDpMRr/24OpvcncjHY2gadpC/FDLZZxe3xxvdmnCK4riVdv4qUioWjwIBZYN2Nnd3qqEY93VKQByoUAumUCrqBjMK5xvQSARCi58v7u2jmQ4iMlsoZjNEBwbwXYZjU3XNBq7uilkMwtx6nKHOrvbTSIwe93O3LVwOe84NjuzMLuxknay2WojEQrQunb9wgNGPp0il0ri8HiXuPxVFAUEYcmDyNXUPf61QtdUemo0QimVnGZhT5fExo5WaluaCR8c4cuf3UPrhT427trG+QujPH8qy2TRDEW4vVPFbijzSl8Fwezgrs0+1mzt5hvf/CVBoYmtgkhbRwuGU5d46q1pRAFEY7WbESq7CZVBMEJYBkSotZT+/+z9d5gk13XfjX9uVefcPTnspM15F8AiLRIJgARAAoxgEEWRlCgq2fLPQbbf16/1yvZrW5JlZVkSRVLMAQRBEonIwOac0+zu5NgznXOsur8/qifuzO5sALkg+vs88zzTdatv36o699S5557zPdzS5eT82R5CiQJS2ghlFN7adZpzk5LUy8eZjBUIZs8QShQZiFi5qzhAR1sdo/0DuJwODgxq5KWVGkuaj3/kXo4cvcDFqAUhJL6GBqTVzivnQmxfYeX2bSs4vGs/fq+TeCzNRNp4N5/ui1HMpSnqKjoCiyywttlCvc/J9rs30mA/Qu9EltpaP+2tLuqWtXHyfIhPP76B3r4xnjuaYqt7HFNHLboFNE3Dbnfiidvxuduo9TWgVxacPWPnGD93niZrHVlFQykZC8tUIUHr5rUMnz+If1kMraRRLgjcjZNzbKbwgJ3m9ocZ7TnJ2MiPUBQb6fQJOlc/SWjiTWDpOU5LwTvKGE5Gw9PhEFPGsL+hcbrQw5TSWBKEIBGamKMcp7AUkvdSsUjzylWXhDvAjEd2NmaHV3Rs2DSnzROoJRocw7wIkbURMxbHeoWCHFDZKqzwEy+0NRkdHyWXyRoG/AIxf1NY6IW2UH+J0CSq2UwqEp5+aSTDk4uye7xbcftqNw/cs4FvPH2A/oggHk8Tmoyy52KBzoBg157TnOyJc378MBcnNKi8nC2KpD5gZ/W6O4k/tZdhzc3BY300uDQevcVPIZ9nuKeXaDiBEB4iZecV93ta6910dDXx7MvH+dIHV/Dc7iFG0lbGegyC+H19GuDm9XMFNjWolEsa/toAbpeN+rZlFApFhDBi3Y73pUhnjxFN5PjVe9vYf6bEXz59AWG2glAIheKkomnufWg7+w+c4yuvTSKEHQS8fGaK5spQQ49uq6dzVRff+vZLrO8MsG7Leh4pF3lj12n6xrNsWx3FbFK5eH6AZE4igK1b1zDS08uFsRxgRipmxsJpCtJGs7vAB7cvY++hi2y7+y4OHOxm/1iO7+yOAza2LdNoaG7km99+lVDJDSo8fnsNyztb+MvvHqVsmjEqesay+PxBzoZMPHZHI10rO3j95d38w7kwCd3FL6tTTUqjIqRtVpl6b109yWgEs8W6JCaHKVjtDmIT46imS7czZ+vHxVDM5/E3NJGKRRdkYJivs4QQ0zprocpsQlFIRkILUksqqkoqFl2wDPJ8aOUykbERpK5T3955iZcqHYtSLOQpZLMIIRZNsF6Itm2hY6VigUQohFYuUd/WgRCCZCSM3eUiGYlUjeEKGuwFPvOR7Rw4eI6XTuXJF8rkivDXX3sTu8POzl0niKQlRwf3E8sJZidx1Thh87bbKZUP8kafRt9YGp/tIo/ev5rTPREsuqDn3AUkkqy0z2d1vAQ+h8KGWzby/ad38vC2dgZGY+zstbLjQglwEh4DcDE2AHU2nXvXuCnkcjQvayTjsoCUWCw5yEGkaOOHzx0mGC3w/nVuNE3nJ4czCDIIk4V0rkRwfJL6liY2NTfwx1/bD5Vy06cmTJyakEAZYbKxsanI44/dwq439vGTp1/l0Q/cg9XSTSSv843nz7C6dQiHzURv7yjBSNaoCuq1UUinKcbSqLWVynCqFSEE2WyaCRlFzxcx13rw19RgGkpT76wDJ4TjkzjbGxk7cRql9iRa0Upqopb6xseYDD6Pr3Vmx8fhz5EIj2J2hrFYndQ3PMZYbzcjQ9/F22g4UG4k3lHG8BRHo2kWfZhqMqFrGp7aOhLhSS5XLng2rhTDthCyyQT5bAZvbT2BxibiE0ECTVffz3yYLJbLjmd2FvKVoBWLeGrqFie4F4KGtnYiwXEsFsucBcSUIb2Uan2z+yvl88y2Bi7H7vFuxYm+NLn8CYZjEmGy8czhLGBjY4eFjz52K8+8eIRw2U04zLQhvLa2xMq2OvYeusg9d5q4c2MDI0eK7O7VeWKzFYsK/pZGFFnk4fcuZ/SpvUzKugW3jOpteXQdwkUbzx+OYjoSptlnwWyxLG7I6WXuva0dXdf4h2e62dYu0FH52eEQQvUBkNFtnBiDBruZZW1NnO4J41RzZKUZYbLy02N5pG6l96l9hNIgxOIyMTwSwiJK+Pxu3jydZnRiD+977F7S5SEuTpS46+5NnDs3yGtHJ2j2W0lm0miaRm1TPVtK47RlCgxENX79k/fw+htHMSkKKjqZssqPXzzCcLgI2GhyFPA7FTQNstkCy1s9PL6ug5d39ZCJl+g5X6CMYbBJqXNPl8CumrnQM8rdG2o50T2O0EtE8lbCaQmiiBTqnEpSi2F2HPE7AUII44WfTM7RdZ5ADdHgGN7a+mle3ivhWjh6y6USyUgIm9OFOxAwvKoLGLbXgsuN+Wro0nStjNXhpFRYmPi/WDBC5CJyFKTBuTy1a3k11fqmIBDoWnlOGJ/V7iAZiSyY1PhuxWTWxPOvHGcolAesHB83cXw8hVWx85ufupOenmH27U/O+Y7HVOChW2o5dXqA2pp+Nqxv58RwL/1xF7ahDA/e2YHNGscbCLBqazsT8V0cHS8iFygPb6NAk0/QF1G4EDHxZ1/ZQUE3cY/ZVFlkLRyCs7bNzQP3buCr393Nd7/3Bu+5Zy2nLwQZyzoQAoRq4uwkSM1MQ72PcrmMVYyiCxMa5orBmyBgyWNWx6YN4YUwFskSGhlGKxYZyjh49vl9rF3ZyMYN7bx1MkZHeyNr17bzV1/byarOAG41j645MLmcaCbB+cgFfGUHxXoLpVwekSqSN5WwKGbsOZXiYIiawDLS2SSJchKZL1HOm1EUFVV7iMkLoyjmEBND3WCdeRbxMQcUO0kmzuN0N1Eq9DDad5xSKUbNsjzlIpgsAsWk3LDwniUFfgohHhFCnBdC9Agh/uMC7f9GCHFWCHFSCPG6EKL9hoxuHqx2O4HG5ktCBZw+31VVN1oKSoX8dOzZFPLZjBH3G55EUVX8jU0/1zir0Z7zjPX2XDaWeYqsPrCIt8ZitZGKRTFbzPgbmwxDtoKpan25CvOGcaxIJhEnFY0alfbmJSl6a+vw1jfM8dR4a+vwNzZdU0iHlPLqKtddATeL7MbzArtM8dFtLpocMy/NwVCJ3XvPMhiqFCgp5ZCVCmnNdU7WrW2jP2lj1/Eghy6mpsbMs8fzPH0kz9dfGebNo0H6Lg7w259/iHpbDovMzal6JMtFnrirgUdv9eDS4uioFBUHA0krf/VML8PzShpbKbCtuYhPzfH91/p46vUBVi1z89gT7+HiaJqo7rvk+iZyNv7kn/cTTRb4d1+8l62zNgQcSpHb1wRou8I69c1ehZN9KZ744D10tPo4Fq/nb797lJePxckKD//0g4O8fCTEHWtr+Mhjt+C0KvzDS+P8+NWztC9v4777N5NMZjlzph+bKrnz9tW8vKcXi9XK6iYzH7ijHr85z72b6/j449voHsny1dcnyRahtrmFBjesW9+F0+0yip/oBTbUayxvcdFa72DdikZWtNfRE1b53sEi/TH43Y+uZaUng5ZLUgj2UE4urSLaUnCzyG6gsZma5pZLdJ1AGOEEPt8N+6345MR05U2AZCRksAFlDJ3gDgSu6EG+kQiPGdVCU9HFY33NVhsWmw2Xz7/g+8DlM5w4iqLgDgQM5qMKFqrWB4ZjQtM0Jgb6mBjom2PkmiwW6pa109i5fPr3rA4HNc0tS+Ysno98JnNN8dEL4WaRW1QLiWSG7csVbm2akam8sPHm7rMcOx8GjHAKihX5suisX9+Fp6aGFw+F2XdygkjRMHTPhkz8zU8G2Nmn8O1Xetm74yCPPbad7avtoJVwyNScn7+9y8Lj29tY4U5iE0WyihfN5OSrr4zx5vm5z1vqGmv8WZa7EuzrTvK1H+xjJFbiV3/lQVSzmeMh56XzTzXzrVdH+N6rA3zpw+t4cvvcxdTaJhNbO50VZqaFESz6+PZzp7n//ffx4G2NnE36+emhBH//1DEKqouXDk/y5R8cpKHWzePv28qWLjer6tcSyNqwu5w0rFpONBtGi2coxJO4V7aiF8oEFB+xcoKMpcRIbIhEKYmzswnFYaHN1EyNtQaLw47VWk8556F+2WqjkAYQH7OTjXpxONsxKx2YzQ2YrDbqVp+heeMY2dAqEpP38xd/38C3vyHZ91b6hiwCr2gMCyFU4O+AR4F1wKeFEOvmnXYMuE1KuQl4GvjT6x7ZVcBssVLT3HJN3t7FkIxEcFbYGKZgMlsuS59WyGaJBccXTXbLZzIE+3uJjo8u2H456LqO2WLF4fGQSSYve663tm7RWF2XP4C/oXHay26dFVdtd3mms6mnEJsIoqgqiUgIT6B2QS7jG5lM9+qbJ/jTbx+nu3vguvu6mWTXQpGOFh9rN6+no85Mp6/Ih291UdYkr58rkCxbseQn+eIHOvnIbS5MWo43TqfYu+ckj97ezNmxMoPJGaNVKKqRdKaodDZ7mYxmOH6yl1RW53Pva+dX3tOElJVnpZrJFTU61qzlC0+sYVvXzDa1MBmK3m/Os7VF0ubMcke7zmOP3sEHbq8lWrQRLdlJptKcOnSMnuH4oteoWzwkCwrnzvYTTs0o+1prnhWr2y8pbwwgtAIfuc3BXe06QjVzZkzjxVePMzAWY40rzGMbVFZ5DdqzyYKDjG5j9+ko3//JQUJ5K4pqZlw2cujwedLxOO0tfp45mGTfuRjZTJ71K+rwu8zUBNy0dS7DbobXjkzwrR/tI6t4EELhwLidv/nqq2zdtoHJYJQX9htzvqtG4eNP3E5v/ySNncvJFHT+6dkLlEzGnNFRGB8PI/QSijBMHKlL9NL1lwa9mWR3McxOFLsRmNI9yXB4+pjDbeRamMyL06dFx0cvy5E+3t/LWO/Fa3ph5tMpAk3NCxa6mA27y71ojorBYNSMv6GJdDyGoszo5qlqfdZZ1fpiwXHsLhfR0RHMNhtmm+0SB8iNTDIeGhzjz759jJ++ePjKJ18BN5vcbmyz07myi1s3tGCTGZ64xcmKWtg/IOmJWVC1PPd0wb/5lc3UiTAjGRvf+cFONq8IYFLh8DDTld+EEAiTQaPY2uDGbHdy+NAZRsM57l5h5d98/m7qrTNln3P5Ev7GJu7d2sIn7muclj+hmhFCQegFbmmBZmuSWxoLfPQDt/HY/avwWnWG0zaE2cqZE2c5cap/0euTZju6xcWFnjEGZ9E+AqztrGHdmmWI/KX2wtbmMp+4w41F5kmY6njmhSPsPT6GT4/wwTUl7usydHNGtxEqOOiLSH743BGO9KSN8KNAA7a0ZKK/D5PPSYe/kw5/F6ELPQQ62oglw1g8Ttx19UhV4Lf4yPSM4TV5UBSF+tpmdOtr6CJI64rtDFx4Gk+TTj6Vx2l7Lx5vF8lYP80rVhEOv4S3eSZ8QpIhEwshdYWBITOvH1/H7jeu34G2FCvmdqBHStknpSwC3wc+NPsEKeWbUsopKdgPXNvy9DJIRsJEg2NExq7ekLwWCGF4JWYnx3lqagk0Nk97JsqlEpGx0WkPciYZv8TbOhuhkSEaO5dTyl/9y1JRFPKZDMnwJA73EkMYLoMpL/vscAi7y4W/semSl1sulSTQYJSb1jWN0PAQ0eAY4dERyqXFV52zkY4ZnuX53vb5MJsULLKEuoRYvSXgppDdjfUlPv1gGxcHIux8dTf7ews0+Sxs3NiF22IYrHXWHL//2bvIJxP47AqffqAJXTFjczioqfUiKltqulamSZlEagWkrtHuynLblk7q6mt47miGnOLgQn+I3iFjy3SK6mvXySivvn6E/pE445ECDpHn9k4VK4Ysblvj5713dvKpD25hRVczh/cd40TPzKLu7vV1bNy2lWavQOoadZYsaEU8pgJdPmMsAPGyjacPJBlJz8hQuGDj1NFznB6YUcpWCjQ7cih6kZbmOmp8xpzKSisj4zE+94E1bGxz0tTewQceuZNfu8vKJ28RUMqTKFnpDpugYlQIIYjmTUxG0oRTZbpcKT7xQDPRUJh4qsC+3jLff6WHM6d70DWdh9bZeO+WetTClKddYVmjl2I2zcBQiHjZmPMDEclzLx8nmi7Sf6GX4xfCFBQHXlOeGksOqdp4Zu8kTzx+D5+8rwkkyFIOLXP1zC8L4Bcuu3rFMxns7/25bL+bbTZj123W4trmdBq7gbPCFuKTE4RHR9A1rZK8a0cIZUHPpq7rWKw2fPUNJCNX77W3OZyMXui+bGLf1SDQ2DwnHGKqWt/s8BHFZCIdjWKyWLC73BTzORKhCSJjo5d1tsxHuVgkPDI8TRW6GEyqioUS5hvDMfwLl1sAj5rj8w8EGAkmuHC+nx+/1YvTpLNxQycttcb8lrrGr7ynic4GO4lohM88voV6Ww5pslHbUId51ivIL6PYtARS13AqObZ0ediyeSW7zibpj1sYj+Y5c6afdFFM68LT4zqvvXWS3pE4FwdiIHU2Nmg0V3YGWz2Sxx/ZygO3NPLE49vZ89Z+zp0fI1Ywwq06XHluufNW1q00ZM+t5rCTQ2hFVteUp3W3UM28eq7MvsG578zTF4KcOHERafVMX2+rM49ZFvC5rbS01mMSGkJRORVUuG+9hwdWKrR0dXH7A/fw6MoCv/NwgEZzEqlaODupkNFnFqU+bx2UdEyaQiIeoT8zQL6YJx9PUOtrwJ1QSQyOoBWL9AbPk3dIRiOzZFGqmE2tjA2cxteaR1EUbG4bmexbZPPH0IplJseO0LLGRCmnEx+zUcprBDrC1LcI/uCL97GsLoMsZOnpvfZiG1NYSsxwCzCbmHYEuOMy5/8G8LPFGoUQXwK+BFxVcpWuaTjc3mlqmsjYKFIaTBIms5lUNEqpkMNTW7+kaj5Xwvxs5/koZLNGMojZMr1qn9oOm73Knw1PTS3D3WdRlzC+XDp9SSJE29r1cz6HR4ZBCDw1NUsqXTxVjU9VTXjr6omMjSIUcdmSorPjlXVNw2y1TStjX30DmUT8snycUyjkcgSamonNCrWYGsdsvOe+TTxw7w3ju7xhsjtbblXPla93NqxWEzW1fn66Y4B4Xue9G120BMw899wuJgpe2t15hFZiaDjEke44y+rtlEs5hFB4+VQWjl9AWAyZuqejzMPvez/7duyna0UzWqlMKhzmud1DYA0ghMKOHoksa3ziLi/pdJ6fndUYSlkYSgFDeWptkg/fVYvLKkjH42R0wb5TKYLjITZ1elCEYGd3lpQ+4+k62RsD/QR9EcHyQJnPfmw7L7xyjKZaF1u3ruBvvrGbmOZC6hpSK6GYK4vIUo6sUHj+LIADKXXqzEneuynAmi2b+D/f3MnOPWcIeCzU2XRCeRtmE9Q0NXP+1HnkwADj4TRr1nSAVubRjWZOD6ZYvcyNx23jRweSoBX5yGO3EZoME8xaeXCVlY51G3j5Z3vZP2ZHqCb8Xjebt65lfPIAbrcDp9uFTWbIUqkiabfg9tdwKjhKl79Ie4OLHWcKHB2RvG9DI12rV/CzIwe5r0uyur0Bu8vFXz/dDVY3X3nmBCVdoDrcKDYPsnh5erAl4m2R3avSubqOyWJF6rqRoJxIUC4WMFdCAgq5HJlEbA67z/XAyF24fCxNeHSEUiGPr6GJRDiEv6GRbCIOQiy4Q6UoCulYlFQ0Stva+Q7KuSjkcpjM5jkZ7UZS8AybRDISNoqHLLEMs5SS8MjwdAW6TIVvXitri+aCzNen2WQST209k0MDNC9fOacy3+WvJ4vT5yebTJBNJsil02jlMvVtc6MSmlsb+IMv1d90OheuXe+aFKip9aNZ3PzseJauRhu3LXdyfP8Rdp7R8DpVmn0mhkYjqKrKQPcEW1ZpZEsKoYKVP/nGEYTVeP9a8mG+9IXtRILjpHISSnnaO1v5yfP7SEuj6FR/wkL/4TSbm8zcvr6R7785REqzs6dXA6ygFXl0g5VlDU4moxkOXMgSTZX5/o/3s6ZeMHTuDNGChVMj6vQifyxj5uTBY1wYy0ABfvMzW5gMhth/NsynPryN1946zZ5ewxmlF7IoVuMdIXUNpZxj/5gxfmECp5Jnc32Ohx9/L2/uOMG5gRTl7Ak6a82cDkmQOt5AHS63i/7u84wPj6Hpklw6yYO31nO6N0K2qHPfbR2EE5PUeuvJWco0tK8gfyFIIhuneeNqJvp66XQYcp2S4Kl1ko8nKGbK1LhcTAyPo2kaqqqilwVufx2auABSITG8CsXah681Q2zETn37NsITb5KNuxHFW7CY7WQjB/G2JLH6zhNP9vGBD8PXnzFhc7swqvhdO25oAp0Q4leB24D7FztHSvll4MsAHRs3L9nd4KtvIJtMUFOJiRKKwBOoJZtM4KmppVTMzymb/HajkMsSaGomOj5TkvhKBT28tXW4/QEmhwYI9vdS3965oAKPjo9idboY7j6Lv6GRfCUL2R0IzDF6Na2Mt66B8OgIzctXLvq7U97BfDqFv9EwSMGgFrK7vRQX4Ruejyl6N7vbjV4uk4pGllwNyd/YRGxi3EjuC03iqakhs0ApU/jF8F1eSXZny621aeVVuckODUkO9RznV97TSimXZu3mDUwOD1FWs1BI8iufuZ3xsRBffzMCWOmN60xV3xOqGdSZxdN4pETPyRNopSKqqnLoaC/hnJmSNYDQ8ggp0U12QGI2mzCZFWDuFmudQxLwOkjHY6xocbP1jq389Lk9tDX5CDTUEAqGKGliTgHAnqSLydNZPv7AMk52j3PwUDeDoTzD4QKjoRSxopW7unQ6Guw4XHUcODHM2eEcv/vkJiKhKN87aOyWtDgKfPHTDzDcfZax3l60XJaPfO5RYsFxhC3Km+eKDGa9/OU/7yZRcrC8BlIFF+aRJOtXNlDf5mTtOsmZ4+dwugJAHCxOnnvtNIWSjigU2H3eTDB+mHNBBbOWoKi66Iub+euv7yJatDAxdgGnw8IXP3k7L+zspTduYV+fxskL+6nzmLm100PX6g6OnD9KUlp5/WSSfWcOkpJOnA4LZoeTXfsvIM0OBJDQjJeQyWNDL2QwuZeefHUjcDWyezU612Q24w4EEEKgqKqhY6eLG/nJJGKXsPu83VAUQaCpmcnBAVpXrwW4or5vX7+R8OgI8dDEokZsNpmgXC4THglhd3swWaxoxSKq2Tzn/GwiQWPXcobOnb2sMTylc7VyeXp3USuX0aXE6nCSvUKo22w4vT4y8Rg1za3EguNLjtF2en2kolHsLhe6pmF3u99ROheuXe9GS3b+7Dsn2NJm49//+u0M9g3TuaKdo/uPIE1W7lzr4s5ta/jH7+wlmLcDVvoOpZgqijRlCAOUFBt9Z86imEzoiolkMsOZHec5H7Mh0TCXM5QtxqJaEWC1WVHm0UtYKNLWXIfUdOyKzm9+6g5OHD9PNFnA47distnIlOZu9RcUFz8+JXl4jYvlrWb2HjxPriQZjOj87PUTdI/kaHXB/ZtrcTn8nOoe4+y44K6VVjZu2sqXf3CYOF7DA/5wGzaLSnCgn+hkhAdubWfl6k6GL5zn1HgcxWzj668Yaxi72U6tW5JIwifWBKhpbsHtGqBnMILX50FGDKPTrllI941hx4zb20D8wih1Zj/pdAJFUXF7/GjhMC7Fg2IqMLDvCM0b1zKQ7Ge5fwWeRo3o2Hcp5G1o+RV4/cvJFZNAEG9zhlDwOzjrNNJhH95APcHBw3jbEoDA5laxuXXAxu99dgCrwwxc387GUozhUWYvjY0tjUtiFYQQDwH/CbhfSnn9QXMLYHbpX4vVRiYen64WNFU22VNzdV47MJIV3P7AkhVCeGQYRVWIpZJ46+qxOZ1G+VCbfQ61Wzoew+Z0oZpM031LKTFbjZr0i1GbCaGQTaVwuD0UC/lpQ7iQzU0bw+l4jGwyiWIyY3cuTqUT7O+tZCrX4WswDFKn1xhjTUsr+UxmwazqTCJOIWfsZM2Oxb7apLgpbmh/Q9N0PzXNLWTiMayV+6Yo6pKy0a8BN4XsCqEgLS5CkRSqKvj7b+/GqpaZSKsIxcwPXzhBQROAsdVjlgVWN5m5MF6iKOaGrPRn3Tzg8nFL1wq+8b0dtLfVMTgukYrkk3fXIEs5vr8/g2Kx891dURBipqBFucgHb3ETDaWwub2k01l6hyfRxWlUVWHrbev50U/2cDKookiJVMtzGBJUIamtq0HtifCzkzmmXhwTI4BqprXBRX1TgPDYKI89tJn0M3so5TJoxRybmzQ2LK/h2V0x9u44iE0t09TRRUy6+P5PDqBqBWJZSY3FTKRop4SJJ281s+7WW+i5MMBzuwdYVmeht7sHl9fL4f4s4QtBhMkYw7mwmVZrkt95ootTp/qpba4jkx7lMx/fzvOvnuDEuEJcd9Puy/FrT36Q117ZT6lYREpJu7fIHavcNDR1UMplqWtt5evfeo2s7ma5J4XbacVtMWOx6rxxIkrhaJwmn4n3rRU0N/p542iQ4ZRBLaTabhit1U0hu7MX31M7X+5ADcloBKvNQSw4vqRdqfnIpVOYzGbM1qUxzkwx3RTyOUxZK8vWrCMVjVIuFuYYw7l0GtVkwmQ2z82bkBKH20thkaIeQlEoZrOUCgUCTW4SoRCNnV1zwvKK+RzFUpHR3otY7IuPOzo+CkJM73yJyjhMZjOeQA35TGbaqTMbRvXTQQBqW9umHSU2p3M6HnmxaqPzkQiHsDmcc2hCs6kk/sam6bCJ2tZlb4cRfFPILRgGbbZUYnQ4yJuHR9l9dJhowYS5XODguRLj4SMEMyZQjXu/3F8glYdQfu6zlRYXI2mV971nEz94Zg81XitDoQK6Ymdrk869t6zmR6+eY6zo4+ioytGhPoRpZnd4XV2JjSubCYbSrNuwgjPdo0zuPsbYWISPfOQBLlwY5NuvTKBrZaQqEKppznPxuh04nDaePWpQpyFMHBzQASsdLo2uVV0MnDnDbZs68fiT2MiSikZwqVmeuKeDvScnOHaiD69N45a7thHXgrxxbJKzF8eZiJXpqrHRHytTUO08sAJWLPPS3NnJX399Nz0XhoiMj1PWBdFokv/1ndP89aeMtUutt55MJsmQNkZmcoj6hiZSqSRKvZtSJkendOLz1JLNpDC3BQjYNKSmgy5JZRIkBreg5XK0dd1KbGKcRPw0roZBxi+YcNjbyKZj5CJ1WLyjZMrfxd9hIRVsIzvpQyhxapYbYuXw3BjWqqUEZh4CVgohOoUQFuBTwLOzTxBCbAX+EXhCSnn5oNAbBJc/gK/eKJrh9PrQikb1HtMS6tTPRjQ4hsPlJjo+UwN+NhLh0KVVg4TA6Qtgd3uwu1zEJwwy+dmVlaYo4Cb6e+eUP1ZNJlz+AJ6amkWT3Mw2gzi9kMthsdpweDzkM5lpxVYq5Ct0crVYbfbLekYUVcVisyF1acSnzYp5FkIsyklZzOXw1TVQKhSJBsfQyuUFz7sSkpEQ/oYmouMzCS5CCFz+APlMGn9DE7puxP4tVhHvOnDTyK4QgtfOS14+q2O3Wfjirz7Ir763hd/8YBcXQ5Lh1Izcrmux8LEP3MrdXYJ7V6pQYZeYwrN7RvnGT0/wyL0refR9t1FnTkDZKD27Zssm1jerSF2j2VXkgRXw/vUmpFZGSI1lrXW0LGvk735wnG/vCGP3Brj19g0kMyUO7NyP227ioQ0O/tWTa/j1B7zUqDMZ0rGynT/7znEOjVx6fbJcIJ3Nc/bkeQIN9Rw41M1gwcdYOEtjZycOUaKxqZ4aB9x13zZiJQdffqEfLC7ORyycidj4yIOr+eSDXUitjCqgsa2dA7sO0j8QpM7n4Pu7E4QzgpUb1/LY9q7p5L8peJ0Kda3LaG32smFDF2ZZpr93iER2xjOezmkM9fSTyOn8nxfH6EtYcVmga1UXZ870ceLcON/60QGGSjV8+I5a3n93F48/chudDVbuue9WNnZ6wOJgZYuT1csbaWlrxqWWkFJHL2QoJ0M3Kr72ppHdKUwlgmWTSWwOB7lMGn9j09K53SvIppLomkYiFJrzeQq5dIpocGzOfZyijDRbbNMe2VIxj7umdjoPIZtMoJWKTA4NEA2Oz9HHgeYWtHJpUfoyu8uNruvULmsnGhynblkbseD4nPPTsSitK1eDlNS1Lk53qetyuj8wHAiznQg2p3PBHUEpJSaLBavDSSw4NofV52qQCIdweDyXxBY73B4UVcVksWBzuijkstdU2fQKuKnk9mLUzLd2xhjPO/jAe9by8btr+Q9f3I5N1Tg5pkzvutnKCT7zkTu4f52Lh9db8Zvn5v0c7s3yrR8dwGnWeOjB29i+yo6UktjEBDank+2bjXewz5RjbW2RT2/34TMZfQTcVjram9h1Ksxff+coJ8cF2++9hbXrunjhpQPopTydvhL/4XO38oV7XWxrKc8k2wnBD/fF+ObrY5foO4CyptF9qhvFbGN4eIL93TFODaSpbWmlvsZDc0sDTgts3NDOinWr+ZOv7mMkY2MyZ+NkyMmarjo+9+SdtHuN97vdZiafL/LKS3tZ3mjj5e4yr51M0NDaxAeeeIBa51zdJqXE7nFj9zixN9SimwWZcAQ9V5g26M1WK8mJSbRiiWWWZroCK9C0Ei5vK6VSlvD4YTL5g7gaB8knm3DZHqSu8QHK6UaWrbwLk74FV8BOPmnBX3MLbk8LquKlmC1RLmmcOFIkES1ecm+uFlf0DEspy0KIfwG8jOGH/pqU8owQ4r8Ch6WUzwL/C3ABP6zcgCEp5RPXPbolQFEEyUho0YIVV4KqmkhFIyiqSmR0BJc/MM2bmY5FsTldZOJzjWFvXR35dGZaKbv8/oryShOVo9jdHhRFJZOIIRZQelda3asmE9lkEpPFPE0WPzvRTTVbyGcMD0dN0+U9tYHGZnRdu2rvjb+xifjkhLEt2dhMZGz0mgpoqCazUQVqgd/31TdOt2XiUXRNx9zccsPYKW5W2Z1MwZ63DhBwqVgtKnYK5JmR3+6xIs+/coz2eh9r1nVy5MJ+sswowkjRztbGEpTznD90gGjeymfvM5LsTp+6SCSj0+WHz37sboYu9mKxu5DH+xFmO19+9iISBWlygoCL43ne2HUat6XE8tVrCIeTDI4lSUTjmFSFx+9q4Om9EdK68fxmbx+uqy+zotXDi0ei6FJjxYpWJscmSGWKXJzQkIqVYKyAOjjBgUHJ/oFj2Kw2jh2/yHCkiDDPkgnFxFuHBpEY2dsZaeJvftSNtRDjD37vEYYHx/jWzhiHRrPYd51gMg3MuidS6iTzGs8/t4tNq+s4uWc/a1c10bKskbGdY0ih8sBqM4pmpWPVcoKxImejxsvq9KSJ7q/tQ7P6ZsajFVFKGSbG4uzcf557ti3n2P4jnBoqAVb2XsjQPZSknDvJFz55D02Hz7D/fIaMuw4tHbnuUImbVXbB8HBerqzwlaCqJlLJKJpWrhTvsBAZG52Ooc2lU5Uy9+PTu0n+RiNGeD5lZHCgH7vTSWwiiM3pIp9KoS2Q1KsoyhJCOSSFTIZAYxOqyXSJk0EoqlFFr75hTlzxfNQ0t1Su4eqS7hRFweZwkopGCDQ1k4pGls73PgtWu2MOI8f83zCZLUipk45GjZ3V0OSSOY6vhJtWbhUTB4/2UGfXcPu8tPgE47MIQvImD08/dxiXucxjj91NOH6U2Cx/dklYSeXzbF/XwMVjRxgYjnNPm4Pbb72D8939jESKyGKBL3xyHZHxcdqWt+I8FiRehl0XC+y/cISyyW+EnmklXn7jBMVsljUdAbrWrOBUz34ik2EQsKnLTa6U4kzIMNQV88zuoNeU56Fb6zl4NsxwykJjwEnXqg66T3QTSkO8aMWmQu/FQcZSKn/yzwfRzE5s1klMiopwzl24nhlKou04xXjKCIt78UQOpZjgfbc2cMedGxj45h7C5Rpe291LQ0OYRHFuvlNRK1IMJkDVGL14nlI4xcr77ybbYzi/gvFRihYdXYG6FZ1kxuJ4fbX4PLVE9X+ibqWK2WbC2PNXiA2BSSTojx/DZG5i4MxJHLXdxrU3l0mMvYAm02j5LRQHt3BhcJhdA62sHb3Ih5/4OcQMSylfBF6cd+wPZ/3/0HWN4jowP9EtNhFEUZQlT25vXb3BklAuIxSFbCoxTeNjdxtUY/OrEpgtVkx+C7quoygKZquNQFML0fFRfA1NxCeD00q8XIk7uxpMFb3IJOKGh0SX+BubiI6NIhSFmuaWS5IgFsPlPOW6rhMeGaKYz2N3uxHMvZ9GBnZ4OgTkWnC551DK50FKirkcpUJhuozjjcTNKLseq87d99/JqaNn6J/Ik1csrAtk8doVjo9BTto4MgxnhyPsPBnG67TQbMpgtygsa/bz0rEEHS0+6tuaOX/iFG5zEYsJJCo/2h1HmGw48gX2HjjHifOTRPKW6VKhusluUK5VYhoTJStn+iJ8+v3rSYQj/HBnBN3iZP9Qkq31OW7d2IaUl75YnUqeDW0e6hu92I+HSQkn//CjsyiyhNNmwuM084m7POw5OsymlXW8f0Oa/X0lYiUbzx/LMtuQBcMDcjY899jmNhuPv+8Rnnt+HwG7xq/c1cwPd6XYNejAIfJ8+FYXockIHe0N7DzYxxc+9V72HzhLNFFky33beeO1fRw53k9RmpF6iXUr20gm0zz/3C7G4jpUkufsosj77m7hVE+M/kSFRkkrYLG6iRc0umMOfAMpLowWKWBDakXuWanisNvZ310iPBmhs7MRi8PF87uHUJy+GyInN6PswqXFM6ZCqjyB2iXtzFkdDnRdJ59OUS4WpitmTkEIhVhw7JLqoN7aujmMEYHGZpCj03kQdpcLu8tFoKkZqeuXNVgXQn1bBwATg/2kY7Hp6qaaVsbp8S3ZuBVC4HB7Fm2PBcfRK8ao1eGYkzvi8HhRzRYSixizS8HssIqFUCrk0DUdKSWZZHxOEasbgZtRboUQrF/TSm2dn3Nn+xmMKzQ4CqyqE/RMFBjPuzkXVkCHke/tJZ4us7nVRXB8gntuX8WeUyECThOda1bRd+I4umLG5zJTzOc42RNhIOsDs43dh/vI5Ur8YPdeiiZDBoRqpiRNIHWEMLzRR/oLfHCrhxVrV/KN77/FaLmenjciBNQUH3+wC51LdwWkrrG5VdBUY6POa2Y4BW+czbD7zEF8DjOJbJmP3tXMuf4i8XiK+9a5ONaT4mJC5cDQ1H2Y62gK523s7ilDJRzPZSry25+6k5Onevjpj9/kA3e0sv/UBOeTbrqTGtuXmzkzchJnjR9TVlJ2CvwtHYwfOUX7XbcS6R8kOTSGSzWcO0Wh4WxsIHFkglimn1XLNkz/diHeRjFuwdc+OFPpUTchzCquujh6HqRU8LdpgCDS70QW2lEcF1DUElrJxKZN2xkO72LNiixwfcQJ76gKdFdCIWuUGS7mctOG6kLIpVPk0imcHh9WhwOtXMITqCWTTMzJ5FVNpkXr0k8O9mO2WiuhEsbq3eHxGZ6DhhmPwpVeDuO9PahmMy6//xIFWioUKiv3ENlEHE9t7Q3d1tLKJawOJ6rJjMvnX5BY/moqMV0N0vEYmVgUp89PsZCnoaPrbfmdmxHxgsK+A92cH8owlLIgSiXuv7WD+rZ2rG8dpqbGzbELEfridnIl+NU7fXQub6Pn5HF8dS6W90/w0wMRmg6c5gtf/AjCeRGLy8fEZAxRKXWblVb2nElQ67KiFc3TuXAmPc+n72+kfyTG7gp95V0bGrFaLLxxZIytXV6Wt7h57eAw9fWNPL1jkIy8lB1leZ3K2s3rObb3ECndaC9h4n1rzNx21xZeeXkfjTVO7t9Ug8frhKKTjYU0OweWfp/SeY3B/lHSBZ07N7dR09RM28lxgrk8t3aYWdlVj15I09xaT2bvIK++dYqBYJZcSRLNnebgoKBACUxWFOBrL/SwpanMHVs6GAul+ckxwwhzWzU2b1xOfHI/Prvk9Dh43QrL16/j4N4jPHFnPTtPTBIuGAp+lb/A8tZGaptbGBk/wtffiuC3FDArYPK//cm7NxuKudx0It1iXO+6rhMLjmO22Yy42XTKSKpdIOF5MaNz2jEh5fR3/I3Nc/IgoMJ7fpndpWhwHK1cRqk4FuZDNZmxu1yUigU0rTx9bTeq2Ieu64ahHY8byXXzwmqsdjvWayyecTmUSyXikxPk0inq2zoo5XMLlqn+ZcWpC2Fsg3H29WsIxcbD68ysX1HPZl1y4swwiqLyVo/KeNbMtk6Fxx7azPD5c9Q01xMLR9lxochf/9PLPLStlU98dDsvv7iDtRvXEMkbOlcIhUMDZTr8wLyQhnu6JMuX1fC9t8YpKTY6ahTWrlvOzh1HKKhufm17gLcOj9DW6GXnkRG6I5cuUCxamnvv205kbJTTgxlQXaBa6HJn+PAHt7Jr3zmWdzZi0XOYzQpOp4PbV+hcOKwt2clU0gXDw0FCyTIrWxy0r1pBIpHm/Ikym5qho86O4rDgqPGRz0WxZAX5oRAr2zYQGRjHg5N658z8bbDVMXq2H1ujH4vLSTgapK6mCSklFlMbUjczdDxIzTJw15dw+TuwOxpIRLtQrSkC7WFAkIlDNtJE58bNDJzNULeyBwTkE/18/ONpzLbrZxC7cdUSbgJY7HbymQxSLm4IA+TTaQKNzWSS8eljBsPBVRh+QqCazHPi2qY4Ma/GuymRuAM1TAz2k0nE57T56hvIpVJ46+pw+QNkEonLks9fCfHJiTnGtNlixWQ2T8cnL1a17u1AMZ+joXP5dKLHuwklYWNgPMmKFieKXkDaPPxk5wBvvHmEoWCajmU1bOly0WA3jLX9x4c5f+w4yXSRTDLJ++9dyepAnt/40sfYt/sIB8+GCE7GiSbmxlzfu8HHFz5xJ/W2Gc+bkDo2uxXVNDM/9pyO8sLOHkYLXvxuG80tdTT7zdx5x1qW1RkG4Nq6Eo9stKLqRl+DI2HG+3txOsysdMW4q7XIHR0Kd963jcP7jnN0xMQPXzpFS2cnhw+cpGn5SobCV44Jb3IUuL+jwKfudDGR1PnO7jjjiTIXu3t487Xd9CUdbGhz8J733MbLb57mp8dy/O9vHiGqe9nXpzGetRIv2dh1sUSBuS+UgrDTuqwRu8fH4TMz9FShgpO//drr3HHXJrZvXcbyehOhvI0fPrOD1uYaGn1mAg7JhgaNFleRDaua8NfX0336PB/+8L00OwvES3ZChWvbPXmnQ7VcvhgRQGJygkBT87QX2GyzXVL050qQSMxW65wKbkKIOXkQS0E6FsXf0EgyEiI2EbwkxnvK6213ubE5nMaOX921Jfhmk4lL4p89NTUkI2Hq2zpweHyL5o7caGQScXx19dicLrLJxLvKEAboCZXxe+3UO4zt9L3dKfYcvMBLOy/S1VbLsloLmxqMeN2TfQlOHT5GKpHmwqnTrF/Twpb6HL/28TsxmUz8+GdHyUoH42OTlPUZXdruK/P5J+/kzlVzw1tMqorVbpmustYXkTz7xjmOjAjsZkFrWxMeq872O1ezcYVhh3jNBT50q4vGCi9xyezlwrHjqKpKrRLl3o4S7eYgH/vIvQwPDHFxoshffvswis1JPJHF6vYRK1y5OIuFPHe3aTx5m5XOWhNP7U9xbFjSMzDJrhde4c0zGbxqjo984Dby0kKLqQHrWIEWbyvNgWUsC7Rjtztp9Syj3jt3IWu12rE6HdS2t5MZD+HzGmGdQghU737y2QnaVnyQbKjidLQcY3L4FKrShF70k5ywEB+upZBw0bXpdroPvUrXhnsoxFdic6n4WnKYbTdm/rzjPMMGi4Ixked7UqdYF9LxGLHJCcxm8yUTPjQ8RCGfo6yVcVWU3kLejHQsisliXXS7qa61Da1cWnI29GJQhMLQuTO0rV1PLpW4JK5ttoF+tTFos5GMhHH6fKSiEWZzef68KJHmw+XzE6skqlxrCMY7DfW2HPlsnrjuYH2Hh3XrV3Cw+wBprITzVhpzGpF0mVdeOchHP/F+YtkzTHQXcbpdrL3tFnpPnqCUzVCzbj0B3zAXT56iubGGQ929/PhwGqGoSClx6EmywsXJnhjx0G4iOfM060xJdfDlF4dBNU1vmcXLNmJhiSzleO20zhsnT6ErFsLf2UMwpSAVlc4mN5s2drLr1GEyWJFmB8l4gonJBJ968gGC/X1kMjmOHjvPnr4yusXBeNnBX/7zDvKWAAe+spuCyTMn4qjFWUAI5hTouGdTHWvXdREc6KfOVkSoOg/dsRq7zcSuQwPYlCLHBnSSzx1mNKKxulYhX1YZSpbmUNABiFIWKRQwzczRnx6IYD4YIifm6oWE9NB9fohcJsvFCR2hWBhJmnB6vBw8fJ6hyRx/8KU76enu49Vd59hzIohqNpPSzxLJGhelZWJITQMhMLmvvhT5zYpSsUAqGkHX9AXLMnsCNcQmgmTTSaPwUMPcMvWJcIhyucR4bw9OrxEduBCncDGfI5/NLspYE2hsppDLXXXC3nx46+oZvdiN3e3BW1dvJEDPcgTMTip2eLxzWIyuFvlsBl9dA/HJiWn9bbba8NXfmAz4q4G3to7YRBC70/muMYQdIo/fWmY4LmluULl92xomo0cIjUBasxLJ5EAr8NM3L/Dk+9bynrsaOfH0BRRVsHrjesYH+tAjk7gDtaxe2cqFcz0sa6mlkAvRFzNxOpQA7Ji1LLpQCSYFL7+0n56JIjBjEL91UeOt7mGEyXjXScXC2QnQi5DVzPzxV/aiWTyM/uAIeU2glxRqvLB58wqGxlMEs0ayWjpfojQ8yuMPb6GYS7Nl3TLOnLrI6cE0kzkbWGx8/41BpBSYTp+hJM1gss65H531Fs6OlZGVynqrm6w8/PAthEaGcY0kWFev4lJyPPTwI5w/eZbyRJKMbuG7zxwglCzSda+LYi6HMKl4XHPnYqlcJJtO4vXN2C317kZiFyZY3bAOddbCz+FVycWixCYvYnL3AeBpKFFO2zBbJZr5JBRvp65hI+eOfJVS6Ska1uQIT+xHmI2Y5Fy6yHd/6MXryvPxJ68vcfkdZwwbGcIGf2MmEb/EmEvHovgbm5kc7EfaLlU4qkmltrmVcqm4aHJCOh5DNVvIJOKLGsOKql5xRZ9Lp1FU9bIJc41dy6lra5/DtnAlxCaCSF1DKEqFos1YCHhq6xaNk3O4PcRDk78QPsmFYLHZsVyGk/mXDaZSil//ldsZ6zmP1ekiGk4QmwiSyetggzXNZp547Fb6Tp2kfe06dr5xgD39Bo/iueE0zW/uZP1tmxnvH+CFV49xdrBMe4NCQ1Mtv/5xL28eGOTEOKz0pHj0vlW8tb8PXbXy/kfvYPzpAwynwUaBjlqV7glgXuzYqkCJJx7cwPefP8lo3oUpH6Gpxs+mZSUaWxrZub+Hi/2TZCpxthaLhc616xmOnuLo0W4seg5psvPcoeS0wm9x5Pj1zz/Csy8f48S4DXSNOzpUcoUykWSJD9/XjsVq4x9/cIgt65q5MJLhzWN5jp6doD9c4uP3L2PN2i52vrKTunofDTVOHn14Df/newfJ5QV3rrCyoqORurZ2vvfjQ1yYFeVToyT4wAPNJHM6Pzk645EuKzYW4kXRVSvPnSgCpun9sqTm4C9+cBZpsrKyzsnPnt/BhuW1/M4XH+OnLx3jZFBl/GyRKYo5qWmoLj9aKnJjhOYmgbGABncgQHR87JLQgthEEE9NLZPDgzR2dM1JfAMjb6K2ZRnR8bHL5hAkI5Fpr+liu3RXSj7WymVyqeRljT1vbZ1hGAbHiU+MY79MfO8UsskE+WwG1WSmkDUoJ20uF2aLdVFGHgCBIDYRvGmMz+txqLwT8cDmAI1ODafXy/Fj3USDY6RSecCBpZTkMx+7l+BAH05/DZMjY/xoxzCK2U4OePO1/axo9bJ886289MIOwiUPza4SW29t4O6NObaWzTx1IIUopvjsQ03E4hleOpFh+92bcZ0e5LVzRaSusSKgEUpLkvNoMq0yx69/ZAXnukd4q9eLKOfxuTTqPCp33b6SZ187xc9e2s/xIQ1MTkASaGjEarVy9MwwAbtGi9XFrrNxIpVdKVnK8aUPbyAaTfDUAYO3uM1dZFWbm72nQzxxex2rN67jqad3oKs6iqJydlRDvnCEi0NxVrf7ePLxW9n51mHGBocZGYvwb7/wAC+9cZKe8Rzt3hIxPUXz+pXER4J4Zi1oM9kUg/EBPMua0SIhAj4j5NRsslBfu3DyfU1HDJgb+uluOY2UkmLGRSY9xsWxMC0dHyaXCeKpOwH0TZ9bKukk8n4kcSDL9eAdZwwLYZQlLpeKlItFcqkUNS2t00aeopqIBscoFYuoC4QU2FzuSizu4srJbLVVPCHaoudcCeHREcxWK9lkkqau5Zc9VzWZFq1GtBCk1PE1NDF8/izLVq9j5Pw5lq1Zt+CLagomi4Xaa4xDK5dKFPO5yyaFXA5TLxKb03XNfbzTUVIdvPLaYbaursFitRJPZhkJD6FbXQjg/HiRQ3uPkkimGc+c50xQp1gxshwWha3bb2ffzkPs7S1RMHmRuoWCrnLywDH8rW3E0mXAQq3PoL/yuscYimj09QyRKwkcIs9jt3hpa2uk9FYPvVP6Rytx53ILbork0kk2tVmoi6Z49JF7SIbDhENxCrkcj75nLSaTiQs/7keYzISLdv7s6/spKg6EWgAUpMxPxywDZEuCnouDxDJlQIVynu3bNhGaiNA3liKXStJ/9jyffWw1jR2dWPee4c1zRcIFwGJn94kQZ/uinBoxc5cZtFyas92DqHqBjz60HkVVGbzYy6neMHopD5oFKt6OJ+7roK6hlnOv7kGW/dPjkrqGuZymbDG8ffX2PO+7rYm3jk0wkr5UXzT7VPy2Ao++ZwPxWILe/nGkdZB4tnJNs2Dy1FJOR6+6QuHNDpvDSSQ4RrmskY1HEYqYM5dtTheJ0ATlUslIZHPP9aR66+qJTYwvyRBLRaM4PNeuI0Yvnqe+vZPwyPCi+R5TuJriTPlMmkBTC5HxUVSzCbPZSiGbpZTPX9YYvp4CUOlKTsW1ODB0TSMaHMdkNr9dHO7vCJzoiePqNJiLTOj09QUZiBvMCUWzhxdfOkBTwEqkN0amJIiWZhZb7R3NuDw2vvqtN4mYjfeq3ykY7ukjmiqRyBqOOZPM07J8OfQNUCLH4GCQSDKH1GF7W4lbN7XRP57h+WMzHNedviJtHtDzadrrrXi6h/nVxzciyyV0xUQum2VVe4A779pE+EcH6I8bts/33goaxVwqCWqyN4IQc1l5BoYmSWeLTFVNWrHMxd13rKW/b4yAz83x3bv5wMNbyGbSmMxWzj7Ty+mgApYA58cLvPjaCU4NlRmMhqlzujh18iIT8QLvu60Bv1PF6fEycfY8alkQ1yP4KrtgcS1J88Z1DJ89g6p7wTczrEQijN3uwmKxkc9nCJbD5PqaqOm6tJpiuaBQTDVTyFhZtuIe+s79lHR8DKlc6mTw+G188ZN9mC0K85OyrxbvOGPY39BocCRmM2STCWwuF8V8ftpjMD3xF9FBCxlj4dERFEVgdThxen03JoFBCPLZtMGYcINhd7lJTE6wbPU6hrvPUN/WyXD3Gby1N4YeZz6mqh6lY9Elezh0TZv2nBeyWQKNzcSC4+9aY1goKkcnnQRjY9y/zsP2B7ez98A5xLgRD1bExgtnNNY12Ij0JY0trwrimpO//tYBMroZaXKw3Fdk++YGnts5wO1rA4wFYwxVeIqPDOlkXjxK91iJkrDxnd1xwMbaOo31W9ZxeP9xhiIaKIZx6JApHrzvPsKjIzi9fiaivQhUUpEI5872c3ggi9ftQogIQlEQs7bcSmYP7Z4im1c4ef1YhCxzd2LWt1qJxjMMxhSECsLi5Cs/PoUmBdlsjju2bEOqVoYnM7x2aDcjSRPMivMdy1oZy0LAlud979nEkWMX+OmRDFLz8Pru83S1eBgK65R0wWc+cS/PvHiEUxXduvvEBDZ1jLvu2ErdSIgXTxk8lFtbBI89dDf//PRhxnN27CboXL6Mw2cnIG0sNGEm63oqbOOb33mNvOImmLNCf2LOOGfD5Lo5PIA3ElOhAqHhIWqaW5EYxuHUXJ5hcVj4+yaz+ZJQtFQ0SqlY4WGttF3rYn02pJSkYlEU5cbugPnqG4kGx3B5/YRHhzAHbBSzWcwL7D7eCEzp3MjY6JLvy2ydmwhNUtPcQnwieIVv/XJjNG3hB4dTfKh8nlXrV+EO1PD88WMIq7GbeiRopyFewO8UnAurc8K4ntkbQlV08uYWbOT46D2NnO2NcOhCks2r63nr3ARgp2ip5bs/PkiqICkLG08fTAEqajnJ/fffycTYGAe7I0zvIEnJtpUeVq9fRSIcIhpJIYVCKZ8nEU+w92wMTBZyBUkwfpTBqJzerdJNdqwUeHSLnbODCfpicw3Adp/E57Wz/8JMNb1dp5OcvLiHyYKflSNRtt19NycOHuP8SIZo3jxduAiggJVDg0ZBjzvXeWnvbOXP/nkfJbMHeTrM6nrB+k4zHunAuq6ZxGQIH4Yx7MBKamAcs2aCDi/xcNigUIuHKDXZSQQnabO0US6VsPrcFDN+wFDYuqZPM0oU0/XUNTzI2OBrhCZfoHF1ApP11KLP2BO4MXPwHWcMg5EtXC6V0HUdrVzG5bv+7XZ3oOaqSmReCWazmXw6TdPyFYueM0UldrUr/ynqNQBPoJZcKkF9W+dl6XSuB1JKcqkUdvfSOC9Dw0OYLBZMZotROS+fJzw6jMv3y2coXC2KWFEtNl554U2OTTiYbVS5RZYnH7+XM2f6+NGBubKYxgUKmLU0NkXQ3NqIWe2ntTlAKZNCIceOPkFJWA2DUMxVEOeCGt/44X6GYqCrM223r3DRf+oETp+ff/7BPkIywPp6jWdev8j2Lc082aXSunw5X/neXkZnxfbKCk3QslobmzctZ3R4gvFMgfHszDnN9R4CNR44dhGpmEDXSGIkOulmMweO9pLJaxwfV4HFZVeoJl5+eR+nRnXAiVDNnJg0c2KyCKi41Ty79p6lf6JAwKQRK5q5GLMitDyrIwlSmTxTb5NErsxA3wi5kjHnBpJW/uc/7qJk8YBe4uO3e8jlCrxwRkPoZd46OMDhc5P052suO0+llHR4CsRygmT5xlJV3Uwo5PMUMikaOi6/23UllIsFozT75MQNGpnBEuRwuTGpCv5FWC2AyzINLQZFVaeNdl99I8VcDpfff8P4eRf6vXQ8NkM5dQUkI2G0chmtXKa2pRWL3c54bw8u//XFV/9SQLWimiwM9g5waOfoHK50gPu2GAve//2VnWTEjLOmpNgoYdAsWkWGhoZahseTOGxmAi6Vj9zdwE/2TZDR7fTGL53zusXDV54+TFFTSJRndG6LNY5a0giNDnP01AgHRq00uD0cODOJJiVPPLCSumVt7N5/ltfPFEAx+jYW6gKXpcSWzSvIpo5hN2ucHpfTlUL9LhMrV3Ww+8Qk8RJIrUxJtREuGQQr50Zy6Mp53jxdpCQWf5+repGLgxF2HR2iZDZ2eoZTFoZT8IGNbRStBYLDE1ikQqJseGz97lr8wGBpgHwiibPSv9lkJhmJompGTK/L7YN4HK3lJGAiOhjAoq5D2vbgrpUUS0NMBF/A1RDB5la5XJnldFihXDDjbc5fdwjoO9IYtjocWCqe4Gu5AcV8jnQ8Nk2t5q2rI5dO31DFpmllWlaumk7OmConqprMeGuN38smE5SLheuiFbuebbgpTJdelvIS3mZgyZzGs6GazUgk0eAY9cvaiAbHp431bCpJfHICq8MxnQ3+bkFZ0+nauIGU3kNhYm4t+hROvv+Tg0SzRqzwHGhFtrWUuf/+W+g+08Mff2U/2H388KXT/MoHNtGgm5C9qUXnQ51T0lznZCSRQZM6slzESpG7tt/J5NgoP9s7RJhabOUEH/vgfVw8P8D4RIJMUicaPsTDW2t4Zu84Seml0V7giXuX8drBEfZchNPnXuL3f+sRxoeG2XNshC3rmjhxeoindyYRpgmExcHtbTqbVzfz7VcHyWHnwTVmWpt8fPfNcbhM7L3XlOdDd9XTtmI5PPsaXSsbee1oaLpkaqe3yG1r63np0CRuK/zmp+/hjZ2n2N2jIVUbTx9MM5s0pz9uoX9PYvr+CiEoW70IDIYrk9mEWipzZ3uJFU0umjvX8w9PHZ++rwFzjoCtzPpVTbxxPExKM/rxiDSfe/JeTp7o4SdH5j7XXxbULWtDVviprwWx4DiqxYInUGMU0QhN3tAt/Fw6ZeRfBI38i1IhTyIcRur6dBja5NAgJosZq91xzcnD83mWrxUTg/0IYdC7zc/1uNp3kZQSk9mCViqRS6cN6iq7fTr2WiuXSYQnyWeymC0W/I1NmK6S//6dCmGyYPP42HDbZt748k4wz3WevXlskuPnw6SFi/mS3ektcOdqL43L1vD339pFzlqP0Ar4rGU23roe66EJMosUP1P1Iitb3fSMZaAMejGHMNu4dV0TK7au5qVnX+fwpAehmrhrnY/Nm1fwgx++STiW4WLPXtqX1XNbY4zDQQeU83z63npCkRSvX3DxV9/cy/2b6/j4A2vxv7wHFB2Xy8rLh+Oc+8ouiiYvddY8H39vB28eHKI7YqHdU+Sx7e08t2uQkljcmyq1Eu/bYOL2u29l787D3OG10Tee4eiooadT6TgRkcSsQ72nkWF9AkVVcZSKmM0W2gMdc/pzu3y48cEswheX20fWUZF5KTCZrcQjFtLjnbQs30Qk/GbFEIZcUicVsmJRO8EUxNc64yjSc5uorVtDZPKbeBuuL0ziHUutdi0e1URoklhwnInB/jnUamaLddEM5muFyWI1EkYqyr6Uz+NvaEIrTc0caSijG5DQlknEiY6PLinGWUp5SdnjYj6PJ1CLrt+QMrLUti6jVMhTLuQRikoiNDknizSfSWNzuoywjhtTuvYdg1jJzo9fOMzZ86Mo2qXFBi5ELYTzlyqqO1oKvOf+TSQmgixr8tHgKnPvSjP339aGIsvExwZpcBiypRdzCL3A9uUqrS7j2MYONw8/sJEGp877VsHvf3QFqiJ4fddZdp0IM1IwVv95k4dv/+gArx4JsqMXXuxWsDpcNHW04TUb8qUq4HDYUBVAtRC3NPHUM7uwWs1sXt2A323lA+/fxgOba9DUGQ0ohBGz2+UtgFZAVRVqbXlqrDmkri1YxrjRq+Lzezm0+wCbNnbQ3tmC1zYzZ2q9FlatasNplsRzgsNHzjM0GqfNmWalP4+uG8UF7uuSPLRaQepz54iVPH5TJfFCVfnum6OcGUhS51awWkz0dPdxS5eDNncBvZjjsx9Yw4N3drJp03J89pnxpnQbL7xynIPd116Z7Z2Aq9W5hVyO8Mgww+fP4a6pnVNgw1tXf0MNMqfHRzQ4Nr1rVshmcfn8lyQ6myxW5KziHdeCctEoU59NLW03sZjPzSkYIqWs8Bm7KRevv5Sst7YOIUAxqRTzOXKpFFp5piJXIjxJoLEZ1WTC5fdTzF1fstE7DTuOT/Lc8/swWS6Vt3DBxsWY5ZKCFDWWHI/c0YzHbSUbj7J+RQ3bOk1sa1PYsGkVZ/YfoM1vzAe9VEDqGqtqStzWoiN1jXpnmYcf2MTGLi/t9hR/8Om1rKstcKI3yRs7T3F40j3N6LDjZJjv/vgA3QkPTx3KMxYr07p8OY2BiuEuJVabBbO5YpBKN3vPJjh95AT3PnAbXodgWb2Hf/GpLeizfJxCKIjKtfgtRUwmEzalRKe3iF4uXqIPAUx6gRXLl3Hh1BkafWZammpoqpnR44VSAWdDLZrJ2MEgVUCLZQhODDGSGCGVSgAwHhtlMDdMLDm3gEyxVGAyOkYpb6Qy2/yjZEuvIMs+3L4mohP95FM68aEmtKJGMbGC1rZPIPR60OfmY0jTBUKTr+EKXD+92jvSM7wYCrkcqWhkjidgNnRNw+72EBkbZby/F/d1UvRcDvONa39jE/GJIN4KX6XN6SKTTFDbcvkkjymEhocQQuCrb7ikkEchlzUq4F2G9H4KkbFRbE4nuVRy2ivjb2gkEQ7hrbsxiT9TC5XFiPgVRUXXtStml/8yQqgm4pkcX/jE/ezffQSby8lLRyJ0ekts3dDMjuPh6VADGznW1ENDvY94LMfE8DAnTg1hCTTQVO/hvfdt4Pnn91LntXLb/fcy8uxePFZ44sF1PP/yUR68/w4OHznPyIkcoVCU3W8dYCgmeWiTDVnMo5VLHBwCqSvc3i5J58ucC5npT841xp/aE8G9Z5BtG5roKmu8eR7+8nvHwW6EvQghOJ/0En1jkFxJUMol+fC9HUSTeUx6ifdt8TIyGuYfXhzl7jaV27e2031xjK+92M8ffPYWgsMjuPx+us8Ns2cAymJGvrsnBZEXu4lmJB91ZilpQYYm0rx3lUZPWONgv42T/XspqMb25gtHknzh4U5sZom/ro43XjvA/qCH1iYfTqcdeXoQoajopQKK2cojt9aybm07f/XtA2zqdLGmpZFlK1cw0DvE198YxW2T/P6vbcd17CKDyQxvHeijXCoz/Go/CemaWcsqZo6MwPUmcbwTMZVzYXd7L0kmk7qOxW4nm0oY1Gq+a6cpuxKsDsccvmGXP3BJQt7U/0uhZ0uEJtG0MmaL7ZKE61Q0Mq3frpQHkY5F0aUkPzk5vcsmhMDp9SJ1/YYV8ygVCtO5GfPff3aXu+Ixl2il0k3DbvHzwmhC8KH7lrMxESdTUjncHSWSzPO+rTWMhHMcGqmYQlqJdleGzWubOd+bRko4fbIH1dvA6ESG3/y12zl59CynTlzk9gcewHn8FGfHk3zh8eV09wRpafTS1t7EsX8+QL5k4tDeIxy/kGJTm4NSPo/bonMuYmMopbPMJ+hqMrO7O0O8ZCMemyH5OR11Mv6VV/B77XzizhZeOJDjm893o9l8KJWQiGjRys9OZNnTfZjxpODe9Di19QU0YWJrs0aD187fPXMar9POZx9up1wq8jffP8GD25rZfudaTh05icVq4eXDYeL6zLzVzC6+/uJFSrrC5ibJ3S0qR7tD3FIrsdiseJxeMsMpGhx1CCHoqOliKDpIvkZS19rEUHc3bUJSRsPV0EBhwDCGS8UCimoinAnhWNlEYqIZYYpit3yUXG6E9lUb6b/wzzSvM6OM3II30EUi8V2EZYTQxB4K4gLeGoXZZqu3KYvBIlE1hueglDc4KGcXr5jaHrK7PPgbmxjrvUjXlluIT4y/rQphKkFE6pKa5hYURZkT0hAdH8Nf30h8cmJRBojZUFQVh8dLPpvBNc8YVlUT0fFRnL6AUV0vlUTX9AWzqYUQBj3dPC+Fy+dfcvnScqlEJpHA5fMt+h2T2UJkbHTBbdB3a3azXWYoShPhtODAoW5MZgvr17az81A/77l9NfVt7ZzujTNecdo8ttWDy6LT2NXB33znECZLnieefD9f+f4+JtIqyR8doD+ikiiGaOgPcTpiZ3ktpBJpkpqNr3xvH7GcAGxsWNNM67JG3uo+wo6zKRqccX798dW8uLOX0aTgvffcxsjwBGeDIR5cJajzWfnZ8QxJzYZudhIvQL3XjGJx83FXivblq/m7p89SVGZe5FNFJza2m1m9YRUHuvfjMGls2bScrhYvoTf6KGhmFLOFCyNJhM3Lz3acR9HyPHBXLSvaPHR12Xh+X3A6DEKoJsJFE5ghntEwmwvc0lTgzvvuZcXYOP/4api8cM9sbyoKwckYxVSMxngKm8eHmJD8YOcEIAGF9c4g73v4dk6cvMD5/hyJVJ6sZqFY0tBUC0//ZC+xPLx3k59wPMc/fW8fibyCEDZOjKtsbJDcutrPG2ezoFoQ5RwSZQ6f57sJBr97Dbl0etoYTkaMF6CnphaEwOnzY7XZr5uX/XKQUjIx0IdQFGpblqGaTHOM2EwijqKqZJPJJRnD5VKJQFPzgrSXdreHaHBsugjS5NCg4XX1+S81boWglM+hleeS+pmttiV7xqWUZJMJFNW0KHvF1JgWKmI0O8/k3QRVL2ARZbKqg8OnRrDoed77/rsZnkyzsl5h5ep2rNYxDo0YSndTi+CWznrqljUxNJHhh6+e53c//yB79nczXvbz1R/sJ1UpZFESJzl0PobEQjaTo1TSeH5fEOvBMTSLh44Gyba7b6F38iCHhzQSmT62rG/BbgmyY9DKug4Pd2xbw+n+3fhsBW5f7efEQJazYcNLHRX1LHck6WhrYG3PII/82nv40XMHOBedeedmpY1sHpzmDHdu38rps4NI1cqqZQ46OltJZfKcHi5isto4f3EU6QhwojdBOnuSRrfE57by4bvqODWQ5sjojEE5VVU0nCuSSWdxlmPcffs2appaiJ4fp87XOOfdryLQsjmGTpzE4fMipaTR3UhyIEatp56LPacQTS5y0RRu3Y42NI7qjSJ1ST4To1geYDI4jM0ZIDXSSlkcJp48gbfJChRJhYaxs5VSrhurU0MraeSSJVw1N06fvGPDJBaCyx+gXCzMieea2h5KxSJEg2N4amqJTwYRysyDnxwaJDQ8RLlUWqDXa4OulXH5/EYs7gJQTSYS4cklG6B2txutVFxQiXvr6gk0tWC12ykVi0Zp0kW2M2uaWyjkcigmM7m0Eds4OdhPMhxa0pZfLp0iGZ4km4gb5VEXQDQ4RqlQwOUPLPn6ftlhk2l+71NbeWSrjxw2Xj6V52cns/zltw8SU+p461iQ737v9Wk2BAOCjvUbefqZnQaNWKjI4SPnieUEmmJhOKbzwdt8qKrCniEritlKf8LKl1+dJJizM5azk6vExr6wq48vP3UEzexmIGlFlLMoUmNruwmHVSUUnKS7N4jfnOee+2/D73djYoYJ5b0bfSxb3sFzO3pwOczkknHKpYUYeyGSLHP2TB+JHCR1J0/9ZA8DwyHu31xDrd/Gnz91gUTRilstcDZk5nTUzVeePc9wMENrRztNrjJSKyO1ufNxYDROfUMNjU11XDxxklMnzvObD9Vx36xcLodaons4y+sDTr6zL0P3UJZWZx5NtVHvVvjie3088ZH3kAhNsGFtB1qpzFvdOVAtHBnS6RtJIMxWwinYvKGD5a0+gnkHXfUqd3aAWs6xfpmd9cvrMWk59FyCX3+0g4/fHVgwzOPdAJc/QC6TmY5PLReLSCmRuk50fAyp62ilMtlUapp9IT45YXC+LlAC/lohpUQ1G4m7C4WMqSYz2WQSXVtYbufDW1t3SUGOKUxVG526ZsNZ4aFULFxyrsvnR9d0PDVGcRIw4qczifh0fPOVEBoeopjLkQhPTvMcz0Y6HiObMiqUXk+RkF82PLLVx+99ait2MhwaUdk96uDPv7abQ30lTo5qvPbWKZ7ePZPEWchmaFu7jjOnLtI3EiepOzh4+AL9wTRCCMaydlY1mti20sVrZ/IkpIeSYuObO2PsHVRIajZCRcOQPDGQ5svffJPuSUhpNi6MprFZTXQ0OnCUwlDKce7EWUJZC3dtamHFhnVYizPzodme433vv5s3d57E7XGRCE9iVRcO7ylIE+cvDDMWMmTjuX3jnDh+HpsZPv3+Vfzj0yfY0VOm0ZYjlLdyYEDnx8cK7D0ySKCpmfYGO3q5ZFBUzkLvZIlSIcP737+N3rMXObhjFxO5EEPaOKl0HDAKbShCpcXWxIbmzQSKLtJaBq1cxm5zcj52HteGdvK5DGanHVwW/Lhx1ZZx12to4gQOVw32QAhVacQbWI9qESgmQWJ4JZkYpIIBVNFEOe8mn8qTHGvFZf0UyckbxxqzJGNYCPGIEOK8EKJHCPEfF2i3CiF+UGk/IITouGEjvEq4/MZLKRocIz45gc3pmjbO/A1N0zRfszkvVZPJKOWczZBLp8hnMhRyOaLBsWuO5/LW1TPe14e3tm5OCeQp+OobCDQ2G2MdH11QwYGxxSalxOH2XOLJnhwaJDw6Mue7nkANpUIeb+0MaX2pkJ829MvFIrlEwjCIKxnVui7RpT7NppFNJYkGxxYxdgW6phtKf7H4QSnx1tWTu4JxHR0fJTI2etlzrhc3i+wWdTNnzw0xPCtpTqpWcsKFEILuiJWeXA2NzjLvXWvBSoF951Ps2nuWDatb+Mx7W7hvcx37zkbJyQr/sEln/dp2Gj3Gws5USiF1DbdaoMY8IxN+c47f/ey9rGk049PD1FmzrF/bhqaV2Xz3XXjVHN6AH6FaiGlOfvCjHSBMbFs748EPx5IkQiE2dbp59lCcH7w1xtblTjY0zDUsGu0F7tlcx5tHxihnE0itTE/azwvHsqgWG6VCgeWWIF96cjOfuH9mDuZVNy+dyhIc6OeWDcv42DYXn7jLh5ZLTRuZyXSRfCZDLANPnVBZsaodu82M26JBKcuaWo0H15h5/N42OpwpUEw8fs8yPvnYevRCFikNJoHQ6Bh7jg7y1v4ePvTIFravMDy6Zj3PPXesYuPKGspmF3//w+P89KDh4dy8qo4tq2q4u1Nn5cZ1DPT08+RdtXzh4VZGBkcJRzM3vKDNzSK7V4LVbscTqCE8MmyEc6kqxVyO+OQE7kCAbDJBfVs79W3t0zpHK5fx1tYbScSlEsloBCklseA42WTimsahKAY9lcPjnfZMz4bN6aS2pRWXP0A0OEYiHFqwn0I2SzGfw1RJNJvNPJEITRrfDU3O+Y47UFNhNjKcFbquz9HL+UyKZDh0iYxkEjPXOuWUme9BnoKu6xSzuQUdDMV8jkBj85yY7IWQjkWJBsfIZzKXPe96cbPI7lAwxdlzQxR189TvkhFuUM2E8laOTtjBZOE9ayy0ugr0Jazs2nuWcLzAb33iVj51XwPj4TT98Znd2K4WP2uWNyC0PEo5Z/zpJVocOZi1gP/4Pc188D1rCeghKGX5wF0tJMOTdGzYxIblNdgd9gpDk+Rnhyc5vv8I9z90NxbdkJtMSTA+NMzaLj/7LmR55s0BJlIK71ltwazPGK2KVuDRW3yMTKS4OBjBpGfJKl5e6hYkiybKpTL19jwf3urktz5zN/WmuPE9k4VTcR9Hjnazem0Xd7eX+dcfX0WNmp52ROiKmWQiRSad4+UeC2nhxx7woCNJZRKE4kHODRwn59QYTg2jKAoZcxHH8ibi+Yrdo0uSoQm0dAFLSieTSxN3FilkjN9Q5DJq6u4gn1Kx13QTzzyFt15By9fgcq0lPtRAoO4WCrkkyQkXmeADZFMlUrERFNP1xf7PxhWNYSGECvwd8CiwDvi0EGLdvNN+A4hJKVcAfwH8yQ0b4TUgl07ib2hC1zUcbg+Bxmaj/O/EOBabfdoIm1rF67qGACKjI8QmgoRHh0nHowQam0lGL1WqS4Xd5SKXTl92a1BKHX9j84IvgNhEELPNTmR0ZMHvKqqK0+u9xBvh8gemf7OQzZKOGwl2AMlIiK4tt1DM58kkDc+E2WbFW1s/TeNTyBglRKc4V+dfU6CpmWVr1lHT3MLEQB8Tg/1zPDE2l5tUNLJgOEQ6HiMWHCc8NopWKlPMZac91DcaN5PsaoqZXK5AwG26rAdxVYuLe+9eT71LMp618mZ3kYHJPBMTcVpa6tnWZWdFwFAiCc3Bcz87yJaNHWz0xfj3X7iDD20QfPjuen7zE7caxrGUWPQsF7v7WN7i5l/+xoN4yBDPKRw/NcAbO04yVnDz5987zaFhI+GiJ2olGM0yEZ15mXdPQKagUxYWYiUb0YzG/Xeu4ta1c2O+/U6FNWu72L7Syu/86j3c0mDIpjTb+eHrg5j1HJ/6zCOMXrhAJDR3kSisLnadDLPj6Bj5QpFsPMy/+HAnj6zW+NRdHm5b34C3vp6JSJpP3Ollx7EJznUPcdvdt7GxQeOTH7oNu81kzH1UhBC8fniUn756GqEIgjkrE0lo6eoiVTa2KZORMPGYsWgrm9384w+P8dO9hqcoi5NyJev6J3vGyWWLPPDQ3bz+/Gs0NPhYvWUD5VKR17rLvNVznQIyDzeT7C4FUkoUU0Uf5fPULWujsXM5yYhBu5SORYkFx0nHDM+Xt7aO8b4eLHY7I+fPkU8lGe4+i7eunnz22g01p9dLPp26bPhBPpMm0Ng8J8FsCqVCnmzKWPgtNE/LpRK++sZLdhGtdvucXbvI6AjlUpFkJEwyGqGxowuTxUohl2VioA9PbR2lQgFvXT2lgmHYqCYTTq+3UmV1LuqWteGrb6Bt3XqSkdAlXnVPTZ3Bg7xA6J+UkonBfiaHBsjnsqgmM9HJhXf1bgRuJtnNFHVcDgtOy+I612cpc+/d61jb7qEkbLzZXaQvJjhzupeG5iZafIJ7VqigGY6xF/cPo5XK3LXcyucfauQ33tfEQ6tVvvjpu1nbZLxD7eQYG51g+OJ5/uVvPcYHtzoJxkoMjCXYueskPcEiPz6Y4uuvjqGYrUQKNkZTCn0DQcqyQgNZtnFhMIauWCkLCyMZK2u7fNy7fR0B+8y72STKrFrRQrNb5/c/dw8fu20mjGZ/v84br+3jkx+5B7tFMjk0RLow916cHtV4bdd5knlBLBTmnpUmPrJZ5fMPBLhrWZn1t93GqZ4wH7+3gdBkFBnP4/R40FwmMo4yasCFp7Yei8XQlW7sZPqDiIKOw+HCb/JS395JoKaBbDmH2WkjMjyMyWJcp9l7jnDsB3gawOo04a03nDuO2nEmRg7Que4hIuPnCI8N077mLkyqCac/jXvZYVyBG+eAWMoe9u1Aj5SyD0AI8X3gQ8DZWed8CPijyv9PA38rhBDyF7Rv6KtvJDYxPidGyls7kxwWDY7hraklk0zgra3D7nJTyucpl4q0r9tAsL8Xs9VGNDiG1X7tyQ1LoSSzOV2V6kyXbsWpJhOZRAyxCCemu+IFvlz8m1AE5WJx2ttgqlyXoirTPJ/uQA3JSAhzRZh9DUYss3MRXuCp7Gxd0zBbrUZCUoXwvVTIGy+jRRYApXweT63xu8VigablK4mOj122itN14OaRXV2nraXirT8fAjETprMqYCjZC1EL+y6m6Rnby1jaglBgub+E22HlJ8cyuI/s4ve/+BCu7iF6oikA8tJKLpfHb9OJTwRp72hkYHCSC0NJSoqdNneeL3ziQY4eOE4omcHu6CdUsPCjQ2kgACFpxL2qM54PTbXxkyNzkxJKip1v7owhhMI9XZLly9r45jNHKWABZqiKzoZU/uwrO1jfaqUxEiaUmjEaPvneVuwWhVQsSs9gmP0TnumKcUDFQ258Dp9L8Xufvo3Q8DBWq5n6ej8nz42Q1/rw+VwsX9HC60eDHB6WRF89zplJBdNLRxkMZnjlxG7impHc1p+w8ugGM++9o46vvNDLwQsFRkJHyGkqXr8HX109oylj69ql5ulqcnByqMB8jqWstDMwEkHIAh3L28nlioz39/HUjjE0241loqng5pHdJUAIgdlio1Qs4q01tulnJ7RNJdJOhQWYLBbMFiOcwenz46tvYOzieWITwavmAJ6NpSTkemvrK4lvl4YTCKFQKuQX9c4GmpqJTwQJNF2ZDrKQy2K22LA5HSTCBg+wzelE18oIIVAUQbmQx1xJtrY5nWhlDXdgoXGJaY+wrkt89fXTZbIBUpEwuqYv6HiRuo7ZakVVTaTjcTw1tW9LMahZuGlkt9ZtYcXKZdiPBUnNipzxm/OsbnVwuC9HqOjgy9/dSzSvADZcap4tXT72XkzwysmjPH5nA7es7+ToxX1ksVAWVvKFIiY0KOXREKxa0cjuPScYjpTQSyV+/cMrKBayvLTjPK39fQRDaQ5PODHKsmmAFWGaq2aOjqocHc3CLB743f0Ku/ritLgFH7ynkdf39nC2by/BvG16Y7aoOPnbp07iUPK0tIYJxbJMUUduay7xnnsfIh2LUipJvvrSMCXT3Pd6pGAjMiQBG2tKgpUb13HiwBHWbl7HsdPDHDl6gXgyz/KuVgbHkrTXdBIJRXFipVQsYZEu5ECMFrthw/jcNWQjQ9DuJzg2it9RQ2xgArdwEDMLfI2NmPOgmlXKBY1Coh7VmkCIuY/eYlcxOycIDvShmJxYnSnS0QiZ/DGau268/C7FGG4Bhmd9HgHuWOwcKWVZCJEAaoBL3KpCiC8BXwKWlDh2LVAU5bKsChabnVQsOh0q4fL50XUdT20d0fFRXD7/zy3b1uH2LJqNPBWPthisdvt05b3FYLHZ5yTSzWa5mOL5NJnNc/oRQiypdKqiqpXSq3Ka4SIVi04zWyyEKX5RT20t2YSZ+ETwitdwHbhhsjtbbq+l3K5QTXz79dHK/zPXK7UyD93RjlAE558dpKxaGc/OZBVvXhFg7dp2jvbsI21u4svfP0SmLJgyQHvjFnpeDmLVLXhqo0SjaY6Pm8lKK0I1Ec2WCQ4M0NIY4LmjaXYMJRDi2mIKp7Z4TaqCzW4lWTZTVOzzzlHICi+HxuDQWIzZNTl7h2K0NzkYH4pxNu6eYwjPR15TOXtuiItDcc5OgHLkHNLi4Wy8BDoc/eYhiqqxgDo6DJicHBsFcFXGMdNXJlciFksihSBSsBIJAnj4yvP9SDmAbjfGuLnDxUMPbCT5zCF6Lo1sYkevIJwI89EP3cOuHYcQKaMK39uEt0V23y6dC1y2xL27EprgnqVX69s7jYpx0QipaJj29RvftrHNhmoyLfp+MFks1Ld1LPpdIcSSuN3nczJPVZHLppKGIayql3C6L5W72N/QSDoeu0RHe+vqSEUjl7w3FFXF5nSBlNS2tJKKRBZ1sNwg3DR690B/mRN9+yiY5s7TTZ0eHrh3PePh/QymBMH8jNNrWcDM9rvWEkkc49iolZeOhNl5cpJspYhEQdj55zfDIC2UZByf08zxwyHGC27AhlA1RobGaG70Y3X7+ac3Eghx7QWxhBAowqCzxGQjmLZcEqFYVBwUcfDl16PM5qgfTUJ4MsroyDgDcTMl0+XHMRRMkc6WeKXPwasXDyItbk6Es4CX//2NAxSEnU9tddBiu7yTUFVMZBNxnIoZu92J3W78rkW1EL8Qoq2hgwh7SIdV6hsfIRw8Cpy7pJ+6LpjoeYu6lg8THutGYwJP/aU7JzcCP/fsJinll4EvA3Rs3PwL8Rwv5ElVFAUUZcGiE+90LBbLeCNozeZ7dD2BWqLjo1hsixu4U7/7TqJVmy231qaV1yS3mnrpPRGqiR+92Q8ChHqpV+elwyF2ngiSUwxFHC5dqoSEUCiqbp4/DVPG4BQyuo3v7RjHpHBJ5aVrxVsXNd7qHkKYrm7XZO+wmb3DJQyP8+WpcErCxrNHM4AZoYJUZ217K2aKLJ2fdmcv0Jue43EB0Gxz9cDR3jSx9BF6I/rCAWSqmdNRE+e/vJOS2YsQZVBv/sIFN4PONVttlxigUxSMs3ftfpmwkN69EeXoVZPpknumqCqpSHjR99fs371RVG4/D1yv3hWqiQKX3vMDF1OMhg8yGFcuUUXngjpf+d5exlIqqBZy2MnNi6gRQgEB+0amdPrMLrRQVJ47nqfJPcpIyoRQr38rfyRj489/eAHFfHXsCRN5B9/YleRyFT5n4/CwAhQRJiuYrHM810WT+5KiJIuhwV+Z6/MIdhwOFw7HzHvIXa8xOfEcJsfioZINK6xkYj8hsFzFYn/7TNal9DwKzOboaq0cW+icESGECfACEap418FksdxMC4p3hOxOLFBkYwpZaSN7nZz8Kc1u7MzdIAihgOmXj083h42zE4Cy+LUJIShbfEt+KVwH3hGyW8XNgZvMsXDTy25eWumJsvCaXDUzmjVfF3WtrloZzc6JhrtuXK0h/E6AalbnVJRbDE7/209buZS9kkPASiFEpxDCAnwKeHbeOc8Cn6v8/3HgjV9UvHAVVcxCVXareKeiKrtVvFNRld0q3nG4ome4Es/zL4CXMdZKX5NSnhFC/FfgsJTyWeCrwLeEED1AFEP4q6jiF4qq7FbxTkVVdqt4p6Iqu1W8E7GkAAwp5YvAi/OO/eGs//PAkzd2aFVUcf2oym4V71RUZbeKdyqqslvFOw2/VBXoqqiiiiqqqKKKKqqo4mpQNYarqKKKKqqooooqqnjXomoMV1FFFVVUUUUVVVTxrkXVGK6iiiqqqKKKKqqo4l2LqjFcRRVVVFFFFVVUUcW7FuIXSe0nhAgBg7+wAVTxy4B2KeXPtYRVVW6ruEGoym4V71RUZbeKdyIWldtfqDFcRRVVVFFFFVVUUUUVv0hUwySqqKKKKqqooooqqnjXomoMV1FFFVVUUUUVVVTxrkXVGK6iiiqqqKKKKqqo4l2LqjFcRRVVVFFFFVVUUcW7FlVjuIoqqqiiiiqqqKKKdy2qxnAVVVRRRRVVVFFFFe9aVI3hKqqooooqqqiiiiretagaw1VUUUUVVVRRRRVVvGtxUxrDQogBIcRDv+hxXCuEEG8JIb74ix5HFVVUUcVSUdW7VVRRxbsVVzSGKwoyJ4RICSHiQoi9QojfFkLcEENaCPF1IcT/dyP6usxv/KEQQr6TFf1iEEK8RwjxphAiIYQYWKD9vwkhTgkhykKIP/r5j/DtgRDiQSFEtxAiW7n+9sucu0UIsatyj0aEEP95XvsXhRA9Qoi0EOIlIUTz2zz2y84pIcTPKmNJCyFKQojirM//IIR4QAgxskjfX591flQI8aoQYs1lxvJHQohvv13XWsW1oap3b24IIf61EKJPCJEUQowJIf5CCGGa1V7Vu0LcLYQ4WJHhk0KIe2a1/d+zdFq6Iuu6EKL253Mll4z1unTyAv19Xgix++d/JVVcK5aqWB+XUrqBduCPgf8AfPVtG9UNhBBiOfAkMP6LHsvbhAzwNeAPFmnvAf498MLPbUSLYPbL4jr7qQWeAf4zEAAOAz+4zFe+C+ysnHs/8LtCiCcqfT0A/A/gQ5X2fuB7N2KcV8Cic0pK+aiU0iWldAHfAf506rOU8reX0PefVr7bAozyDpmrVVyCqt69efEscIuU0gNsADYDvz+r/V2td4UQAeA54H8BPuBPgeeEEH4AKeX/mKXTXMCfAG9JKcM3YqzXiLdTJ1dxk+OqvAxSyoSU8lngk8DnhBAbAIQQViHEnwkhhoQQExXvlb3S9kDFG/d/CyHClRXYZyptXwI+A/z7ygrruVk/t6WymkwIIX4ghLBd4zX+HYZQFy93UmVc/26x3xRC/GbFexgVQjw723sohHi4slpOCCH+FhDz+v51IcQ5IURMCPHy1GpaGPgLIcRkxcNwauqeLhVSyoNSym8BfYu0f0NK+TMgdaW+hBC3CyEOV8YyIYT481lt91RWy3EhxLAQ4vOV414hxDeFECEhxKAQ4v+ZtZr+vBBiT+UaI8AfXU5WrgIfBc5IKX8opcwDfwRsFot7QDuA70gpNSllL7AbWF9p+yDwQynlGSllEfhvwH2Vl/nbjsXm1A3qOwc8BWy5lu8LIe6c9cxPVBYOU21fqMh0Shgest+a1XZOCPHBWZ9NFfm4ZQn9fr7SX0oI0T+lKxYYW3yWZyYjDA9kR6XtcnNVCsPjc7HSx98JIcSs9rdtrl4rqnr3ptS7vVLK+NRPATqwYlb7u13v3g0EK+dqUspvA6FKH/OvXwC/BnzjKsfztuDt1MkAQog1wtixiwohzgshPjGr7QNCiGMVWRgWs7l3etAAAQAASURBVHYVhOGd/hfz+johhPjoEvp9TAhxVhh6dVQI8e8WGdsJMddjL0VFPwshnhBCnKnI4ltCiLWzvnelefxBIcRxMeN13zSr7T9UxpSqjPvB67i91w4p5WX/gAHgoQWODwG/U/n/LzBWygHAjbEi/J+VtgeAMvDngBXDM5cBVlfavw78fwv85kGgudLnOeC3K21tQPwyf78yq58ngZ9e7jqW+JvvBcLALZVr+BtgZ6WtFkPhfRwwA/+6cr1frLR/CMNLsBYwAf8PsLfS9n7gCMbKWVTOaaq0/cfLXecC438IGLjM9X0b+KMrPOt9wGcr/7uAOyv/t1eu8dOVa6wBtlTavgn8tPLcO4ALwG9U2j5fuRf/snLtdi4vK0t6tsBfAX8/b+yngY8tcl3/A2OlbwZWAyPAtkrbnwH/Z9a5LYAEPnSluXGtfyxhTs069nUunR8PACOL9D19PuAEvgWcuMxY/gj49gLHW4AI8BjGovnhyue6SvsHgOUYcns/kMXwlAH8Icbig1nnnrtSv5XxJpnRDU3A+iXcz/+B4fk3c5m5WjlXAs9jzLk2jBf0I9czV39RMkJV7/5C9S7wKxjyKjHkaPMC1/eu1LsYToaz845dBP5igXPvA9KA6+2aTzdivs069nXmzZ0Fvvd5YPcCx53AMPCFyrPZiiHj62bN240YunETMAF8uNL2a8CeWX2tqzwf6xL6HQfurfzvp6Krr3ANXwK6AQ+wCkN/PFyRxX+PMb8sS5jHW4FJ4A5ABT5XOd+K8T4eBpor53YAy38hMnAdQrIf+E8YyiQz+wKAu4D+WQ+3DDhntT8F/OfFBKvym7866/OfAv9wlcLtrky+jstdx1J+E2Or5E9ntbmAUuXB/Rqwf1abwDC2ppTyz6goqcpnBcNwaMdQ9heAOwHluh7kjTGGdwL/Baidd/z/An68wPkqhudn3axjv4Wx3QWGQhiad28WlZWruNavAn8879ge4POLnH83xsQtY7y4/su8+xbGUDx24B8xvDyfvp7ncYXxX3ZOzTu20Px4gMsbw3kMJaljhH1susxY/oiFjeH/AHxr3rGXgc8t0s9PgH9V+X8FxkvcUfn8HeAPr9QvhkKPAx8D7Eu8l5+s3M8pI33RuVr5LIF7ZrU/BfzHyv8/l7l6I2TkSnOJqt79uT1LYCXGjlLjAm3vSr2LYbjHmTHkP4ehj/5xkX6/fiPnzzU8w8vOt3nHLpk7C3zv8yxsDH8S2DXv2D8C/+8i/fwllQVEZW5lgPbK5/8OfG0p/WIY9b8FeJZ4P+7BMGBXVT7/Z+CpWe0KRgjeA7Pu32Lz+O+B/zav//MYC/QVld95CDD/ImXgepIxWoAohkfHARypuMDjwEuV41OISSkzsz4PYqwgLofgrP+zGIrwavBHGC/dgav4zmK/2YwxZgCklGkMb1ZLpW14Vpuc/RlD+f7VrHsTxVBOLVLKN4C/xdhSnBRCfFkI4bmK8d5o/AbGCrBbCHFIzGx1LwN6Fzi/FkPRDc46NohxX6Yw+14sRVaWgjTGanU2PCywJSmM2LWXgP8K2DCu5f1CiN8FkFK+Bvy/wI8wJvRApZ8FE9TeZkzNqevFn0kpfRhGQw5j9X21aAeenHpOlWd1D4a3FiHEo0KI/ZUtuTiGp7cWQErZg+EZeFwI4QCewIjbvmy/FR3xSeC3gXEhxAuLbMFSGcNWjPnzESllqHL4cnN1CovN83fCXK3q3ZtM70opLwJngP9zjV380uldKWUEwzv/bzC8m48ArzFPr1b0w5PcJCESC+BG6eQptAN3zNN/nwEaAYQQdwgjMTEkhEhg6MIpvZrCiEH/VKWvT2M4Gq7YL4aD4TFgUAixQwhx12IDFEIsw1g4f05KeaFyeP5c1DFkbKl69d/OG9syDG9wD/D/w9Abk0KI74u3OYF9MVyTMSyE2IZxE3ZjeNVyGNuZvsqfVxqB5lPwCyGcsz63AWOV/+VV/nbbvJiW+X9TMYYPAr8vhAgKIYIYN/8pIcR/uIZLHsN4oFNjcGKsfEcxth+WzWoTsz9jCMxvzbo3PimlXUq5F0BK+ddSylsxtjxWUUmEE5dm2875u4ZruCKklBellJ8G6jESGp6uXOswxpb4fIQxPDXts461YdyX6W7nnb+orFzFsz2DkbBC5XvOyvjOLDDGLkCTUn5TSlmWUo4A38dQDFPX/XdSypVSygYMo9iEsf33c8O8OXVDIKUcAv4VhlFwtfGBwxhGzWy5dUop/1gIYcW4T38GNFQM7xeZG7P5PQxl/SGM7dKeK/VbGfPLUsqHMYzubuCfFhqcEKIewxv9e1LKY7OaLjdXl3LNVz1Xf16o6t2bWu+aWFhHXhG/pHoXKeUOKeU2KWUA+CywBmMrfTY+gmFsvrXI7fmF4e3QyRjPdMc8uXRJKX+n0v5djHCWZVJKL/APLKBXK8asDXhzKf1KKQ9JKT+EIWM/wTB2F7pme6X9L6UR8z6F+XNxar4tVa/+93ljc0gpv1cZ23ellPdU+pcYc+DnjqsyhoUQnsqq9fsYW6unKiuEfwL+ovKCQgjRIoR4/7yv/xchhEUIcS+VpKXK8QkMg2VJkFIOyVlZqAv8Ta2UHsTI8t1S+RvD2Cb4u6u55gq+B3xBGBRdVowYxQMV78cLwHohxEeFkbX7+8ysxsAQ5v9LCLEephMfnqz8v62yEjRjbH/kMbaSkPOybef/TXUuhFCEEahuNj4KmxDCMqvdXGlXAFOlXV3oIoUQvyqEqKs803jlsI6x+nxICPEJYSRD1QghtkgpNYxJ9d+FEG5hJKj8G4ytwUtwJVm5imf7Y2CDEOJjlWv7Q+CklLJ7gZ+9ULkvv1K5V40Y3seTld+3CSE2CANtwJeBv5JSxha6hhuNhebUVXzXNu9PzD9HSvkqhux/6TJdKfP6sWI8w8eFEO8XQqiV4w8IIVoBC0a8VwgoCyEeBd43r8/vV479DjNeYS7XrxCiQQjxocpLtoDhidIXuG4T8DTG/Zqv1C83V6+Ea5qrbzeqevem1LtfnHXf12GENLw+q/3drncRQmyt3AcPxsJ5WEr58rzTPgd8U0p5VYuztxPXo5Mv7WqujsbIV1glhPhs5d6YK/I4lYzmBqJSyrwQ4naMuPTZeBHDaPyvwA8qz5bL9VuZ/58RQnillCWMOPfFdNfXgG4p5Z/OO/4U8AFhUOuZgX+LoaP3LuE+/BPw25U5J4QQTmEkCrqFEKuFEO+tzO88xqLt56JXL4FcWixNDmMrJIER7P97gDrrHBuGourDuNHngN+vtD2AsTXynzBWqENUkgUq7SuB4xhK4CezfvOhWef8EQvENV7N3/w+r9Q+/zcxtit6MVaxzwOts9oewTC6EhjbbzuoxK5V2j8LnKrcm2Fm4nwexDDK0pV78x2uMomgcn/lvL+3ZrV/fYH2zy/S17cx4nfSGKv9D89quxc4MOsaPlc57q98L1Q5/odU4vBYIG7qcrJyldf9EIbnMIfhVeiY1fYPzIp1xIgRPFR5PkGMyTkVz+qrPINMpe1/Mku2344/ljCn5j2/hWKG5z9TiRF/tdD5n8RYwVsX6P+PFuhnpNJ2R0WWo5Xn+wLQVmn7PQyDKo6RpPf9BX73/8/efwfXlV93vuhnh5PzAXCQEwkQBHNmk+ycg9RSK7dkyUq25814xva9nnnvVd0a37l136vRG/vesWYcZFmyrKxWS2q11Dky5wQGEDmfnHPY4f1xQJAgwNRkJwnfKlYR5+zwO3uvvfb6rd93fdcbVHmrDVd8vuhxqWaDd89ek+TsfV21yJg7ZseZm7XVi/8uju1az6oOdF3t+vIuPqu320ZY8rvvp9/9F6r2n5v9Df8NMF9hV7/vfvcns/cmRVWCzXfFsZqp+oeumx3H+/G8XXFvb4QzvJiPlqnS1l6YvXcx4E0uFUZ+iiodITNr7/+TK55Bqhxrndki8Ms+X/S4VJMXLwOJ2Xt/lMvqJq44hk6V4nC5X71YePcUcH72+uzmsuJmrv8cPzp73iTVVZ2fUw3811FdLchw6Rlvej9sQJgd6LsGoSrL8UNd11ve1RMtYQlLWMISgCW/u4QlLGEJN4MPZDvmJSxhCUtYwhKWsIQlLOG9wFIwvIQlLGEJS1jCEpawhN9bvOs0iSUsYQlLWMISlrCEJSzhg4qlzPASlrCEJSxhCUtYwhJ+byG/nyd3eL16TXPr9Te8jQhE8+/p+Zbw7qIcHI7qun6z4vG3BMnq0mWX77085XXRWGt9v4ewhJvExNm+99x23w+fez0s+eQPH94Pv1vr8ujtvvelH8NVEci9JwqcANTULFTmy+B9z87/u4Br+dz3NRiuaW7lr3750vU3vI34L985+Z6ebwnvLia+8ZGJ6291eyG7fDT+4X9/r097TfzV1za+30NYwk3iqyua33PbfT987vWw5JM/fHg//G67r4n93/zpe33aa+K/Hv7Fe3auP/iDhU0S9+qfW2TLJVwN1/K572swvIQlLOH24PKAYikwXsISlrCEJSzhxrHEGV7CEpawhCUsYQlLWMLvLX7vMsOXZ82WlueW8LuIi3a9lCFewhKWsIQlLOH6uKHMsCAI3xUEISwIwtmrfC8IgvBNQRCGBUHoEwRh0+0d5hKW8M6wZLtL+DBiyW6X8GHFku0u4cOIG6VJfI9qb+mr4TGqve67gT8G/uHWhvXe4K++tnEpe/a7j+/xO2i7N4L/8p2Tc/+W8KHD9/g9tdslfOjxPZZsdwkfMtxQMKzr+h4gfo1NPgZ8X6/iEOAWBKHxdgxwCUu4FXxQbddCAbtQeLdPc8u4laY86WSKcDBCLpPjtbfPcPxIH8X8tWW0Crkcv/ztMY6fGHrH5/1dwAfVbpewhOvhg2q72VKRM+koqqq+26e6JdyKz9VUlfGRCXRd5/CRC+zZc5JIKHrd/Q4cOs/zLx2nUi6/43N/2HG7OMPNwNRlf0/Pfha4ckNBEP6Y6myQmqbm23T6xXHRqARBeFfP806hqxXUXArRZEU0VXVi1XwKXa0AIDtq3/MxaaU8WimPYDQjme1X3U7XVNRsHMFoueZ2HwLckO1ebreS8+bkNWW9RJMLJpMiiAZ0XefT9zbhcjn422cHEI2WBfvouj7Pbh1SEVnQSSgLt124r4aSCgNgcDcAC/nxaiGNx1gEJLasbuSuXas5cmyAgYkkH72vB7fXzc+fO8RkpMhXnlqHt3a+nmU4GGV8KsqmDcuRDQYAXn/rNBcm03zm0V7qfDX8448PU5bs3NFl5MC4RCUdYTxc5pMf2bLouHOZHIcP9dEXNJLIRujpauTUyQH296e5a0M9O+9Ydc3ffe7cGFOBJDs3teH01lx1u0Q8ycBwkI3rOjCZzQu+f+Pt08RSRR7c2cXEdIw1qzvIZ3OIkoTDtVDe6H3CB9LnwkLb/aBBzSZAAMnmAap+WMnEQNcweN57HVtd11HTERDF6/p8NZdE11Rkx9Xt+0OAd2S7rb4bj5d1XedkLk6jZKTR4gDggFgkunEFxb5BttoWXucr44V0qcBIpcAqkwPTrI+7Fs4nYFT1stMWwmtZuL2u67wcspMo6dRaJe5zJ8gocCRXR5ecoMsNIymd/eU2NsvTrPbMD4rLZZWXTmlsatdprTcCMDHu59dvDbNtVR13bO/lV88f5EzMyt1jQfYMKajFHHvPp/nLP9yKybJQi17XdQYvjHHkfJiUamNLKEo6neW1gxPYrUa+8vl7rvmbE/Ek+4+Ns2qZm47OVkRpoRYygKZpHD8xSFODl+aWhRr9IyPT7Dsxzd2bW8nmCtT73Hg8TmKRGA3N780c/z0voNN1/Z+AfwLoWLv+XesFrSoK0elJdF2nvmPZos45OjN9cUzvi/NWcylkZy1KOjoXDOtKBcnuQc3ErrqfVimh5atO8Z0672rAa1nwu7VyvjqmTBSuEeSq2QSSo7Y6ztsYDCupEAjiBy7IvtxuTY3dN2W325Zb2dxbSzpT5IX9k9y7uYXATJjBiQSCwTS3nVYpIhrMOKUCn7q7hcPnQpwLVx/Rp3Y14mus42e/2MemnlriWZXBsEaocGl/JT2bARAlRKMFrVKikoogmW2IJiuVZBBBEJBsXtRMgggqxppWJoMZAIYnk4wkZILBOG6vm7KqUdIlDh8dYDqh89SDPeTyRXQdDpyaYShuwGicYMP6LgBiqSKxsolspsD0yHHSuQqyFGfT2jvIFEaY1sGgF/m/vrObXWt9bN/WO+86vfR2P2eCRjbX5ehd2cr3nz1MWHGg5osUitUJoqZplPJ5LPaFtrG/z48/Z2Hfif18+pFVrJ8d15V4c98Ap0bTqKrKrh2rF3x/rG+KrGogmzjElNpEOn2Ow0NZDKj82VfvRhRFcpkch06MsnpFAw2NdZQKBf7l2aPYzSJ/8Ok7b9Q03hO8Vz4Xqj5VkiQko3HRCUk6FkWplLHYnYvew3cbulIBUQRNQ9dUBFFCVxVEkxW9XLzmvkoqDILwjn2TrlRtWJDnB0paLonkqEG9gQYOuqogWZ2o+RSS1XXTY1gMai6JrioAyM73PgFzLVxuu5u7V9+w7fZnYpxYXk8pmWBlOkpO0PFrZbwj4zSJl3xmqVJGFiVEUeSHShRdlPg8TmRJ5rBUIrq6m+iJswyXVIzFMh02F/ebvXPvzXBO4UjBx0o5Rki1E7F1cjCSZKVTZblbYDStc6ZczxZTAAMqQcWCIoJiqqNQiRIuygRsy7Hk++kih6KBanSQKmj8OlLHCjlKm1XBnxd4/UyZ/9G3gV3+Uf7Lx6u2lErniVcsxFIFouEoo1MxVLUAOHlscw0nz2Sw2wX+9dmjWIwiX/zsXfOu07mzozx7OEmrSeXBrR6OnBjmVMSOkCkhSpfsNJ/JYLHbF8QLZy/McHxK5+jZc6zsCPD0J3Ysej8GB8Z5fv8MLZ4Af/KlhcHwuf5Jhqez5OInCUuNtNkjeJ0GTs9ofPbOIit7OwE4emwAg0Gae+e89uYpzo2l+Nzjq2hovLUeMLcrGJ4BLm9r1DL72XuOdCyKyWJFMhiQDEbymTTxoJ+axvkZEaVSwWAyIQgC/9uX1iAbqzOtG+VXqvkUulJBECUku+cdjVU0WVHSUQTp0m2QnbWzgeY1Zv6aimC0QnnxZXYlHQFBvGr2QMnGEQ0m1HQY2VV/xZjsKJkoovHaHc1Eix01E0MQF58JvnMIiGYHeuXaL6bbiHfddi9M56ixqKzZuBr7kTEa611YDRrZ6QyCUGUqtVjzfOrhlTz/1iDJPDjdDuzSBDZRJqeZOdYfxjoWZ9Oqelav6yUwNozBCqH+y5e1dCSbB7WQBkFELxeR3T4qiSAGdwOCKCKa7BQjE1DOI7l8lEKjfPzpjwLwxP29mN44yUxYpqdX5+mPb6dcLPKr184ykxWJRpP8cs8Uqi7y8Z0NWM1ZlrVfcmwff3Q9yXiKwbEIb/SLqMUsvd11eH21PPWR6kt2396TpAMVTp2dxOu2cqI/wtrlLo6dCxKYDmCRrXR2dnN8IMJMrIjHVuaRe5o5PpLj2PEh/KEkp6fKfPGhdjqWtcy7zg/v6GT/oQuMlazI0tUZYOVyCcleQ6lQtbGxkSlqalw43dWsr9NmoKDXUuPOEp4OkUjZqbOBLElzL4PT5ybYN6yQzE7yySfqUCoV0mUZdXZV5z3AB8bnFrJZlHIZh9eLrmmIZjPpaASTxYrJMn8lQ6mU8TY0EQ/6bzoY1pUKai6OrutzKx43DUlGr5QA5nyXaLSglTSE2QzitSBanOiL+F21kEavlJGsTgTZuHDsagU1n0DXNGSXb+65B5Dsntn3wI34Uh01l7jp1alrHlFTkGwu1Oy1mA23Fe+67baZ7JwcGcfQ002uECQnixSRyAk6hll2aDyf5Vc1MsZkkj8w1qEZjOSUEqczUTa56+koCxSGJ0hkUjjvvIOZC/2IrfVkxlM4rTYAYiWRiG0ZnnyBHc4UzsheTtfeRS7Wj1nKEK1YiNvaGInNMFR2ocoCdj3DQ5Ifp9WEw6KTDR4kLblIFxV6PDLtxZNMaTID5naiuRyhrMi4bRW92ZM80jTMrmUFoGpj69Z1Uef1IwgC33puiFJJwGrIc9ddd2Mwmdi+bSXpeIL/8dPToGQZH53iZH+YpjoriWSWC0N+jCUVZ3stqqpzbELFpAe5f2sLkWSBZ58/zJpuH8/snmHrciuPPTS/1nHzug4ymX5O5wWM0tUTiqKuIpntlJVs9dpH4+TzRVraqsm8WrcZyW7EaM5Qk4+Qy8m0+7x45AIORzUWyWcyvHgkgkyJ9euWIwgC6VyZtGYmny/dss3crmD4eeBPBUH4KbAdSOm6vmDJ491GKhrB6nSSjkapaWrGVVsLgoC7rp5kOITbdynwkw0GVKVCPpPBYDLNBcM3Cl0pz2ZGIzc9zsszdIvNxK8XXIsmK1oph2Ctvrwv0i0EgxFBEBFNNrRS/qoZb0EQ0MoFYOF3otGMaFy4dLxgO4MZ0XD97W4Wkt2DVi4g2dy3/dhXwbtuu7Gczq9Pl3np5EEUo5d/evYUf/TpzdTmVJioBmTL3BUy8Si1FpWRpIXfvnyMx+5fS3s8xzMH05yPVGfp6WwByTDCmXNTqJIFXbNdeqmb7aiFNLK9SmkQRIlKMoTJ11HN9OugZKIIuo7kaUSyedAEEXQVTVVxOO1cCGkooRS7thUwW62YbTY+9tAaouEEbo8TuXwet82AxWzk4bt7sNpsc7/TZDZT32QmlsxjVUJgtdDRfiloeeHVE5w856eUyxNoWM7hk+OMZJ1MTpwnb2ujVDFhcjdz7FwAm1HAZoKcoYZJf5yRgIrZlMRpkTDqZST5UuBQzOf5wa+O47RIfOFz9193pWd1TzOZM0GWL1vGmZP9PPPWBFapzP/7z56sHk+VUXIxWtfUcSpsZjyUw+W2cu/2jrnjru1tJZMfY82KJvrOjPDygUnuWlPD+vXLb4fJ3Ag+ED4XoJBJYXN5yCbi1La0Ep4Yp2XFSuJB/4Jg2GJ3MD14Aavj5ukmWqWIaHGiFbM3va+aS6CrKoJsYLFW6qLJtshe8yHZPWil/JxvUrJx0DRkZy26Up5bUVuc6iBUs6+axmJ+90YzsvJtDILnjumove0B9nXwrtuuWZZ5Uq8hNxTCY7JRKlZ4SShRbm+iMBwE4EwyTESyYJr1F1vTFd6SyvRvWoPj1DArXLV0A1OeZt4cn6AllsGaGaZgr+Wi9a70CNhSB2hwihgNMpuaJNTpPZzz7GJfIcRTrknioROMFUwIjV1IhSyiLuA2ZimXKxiNBnJGD5O2Xnz5o6wxg9lsosukY0sfoNYl8WbQiFQapd5eZtuKHMsa5793G1uayGWy1FrKhDMavlo3BlM1+93fP8GLu4fIxuMYa1rZc+ACowUP/f39lJ2tKCUzosHI+ekiDnsSLwnStnZiWZUzA0F0i4fejjJGvYzRMH+y+Ppbp+ifSPPZR1fx2MObr+lz6xt9tLkidDZVn72///5eSpj40mM5unu7yVZk1FyY+mYHIdnETFZmZCLCxp4WmluqcZvV4eDhzV4MBplsOsv3fnWCGrvEn36sB6/v1m33hoJhQRB+AtwL1AqCMA38FWAA0HX9H4EXgceBYSAPfOWWR/YOYLJYycQukcUNJjOiKJAMh3DWLJ4lbenumc1SVG/0RXWJKzPE6xtV2hrsvHg8iSqaqstamVh1yXnW0YpmO4IooubT1aDyKktpgigimh1olSKSfH0u0mK43HlfTreQnLVzmeGrGadk83xgeX2CZEBahG/1jo/3PtuuWS/w1ae6OTfgZ/dQdcJVMtXy97/sR0ME2YxJTXP3Q3cSnJpiKCbhEvN8/ukHGR0Y5sT5EA91GSmUVPZOGhlMmGmMpti1sQWb08Whk6P0rmglFk0wkzTQF7wUfIgmKwargwYhhNuncTZkwFjbRik8hlbMYlYy5LNZvvGvJ9GKWUSrE3spRgkL4XCCto7qjNxqs9HWaWNibJqCuR4xN8MP98ZY2xBdlP+7alUnq1Z1LrCxoakMqsVLs1llZafAlg3r+NnzR5gRvXQYIii1Evn8OPGKjUlDHT31ChlVIZgWkS0WHEKek8Mqj9zRTGtbI4ePDhBL5NmxsYVYUaZcKV+85/PG87PnDpLKKnzpE5uJRtOYjDJ//PldAIwrJSSzFfNlieRH71pONJ5j4/ZV2Jyj7D0QZiLhYMofp7WtGtwbDBJ3bGjF5fUwNRMjj5W3j4zR09OC1X79wOp6eL/t9magaTqZRBxnTQ2CIGBzu4kH/RgWmVQbzRYcHi+CKKKUy8hG41UVfdKxKGqlgiCKc4kM/3QQs9mIJMu8eWCI1V0+Vqxopa9vGKhmyhbDa2+eZv+oipq5fjHR1SBIhvnUBF2rZlTzKQTZWPW/1sWDfEGSkd1V7uMH0e9e5E/fDrxbtpurZDju33NDYzjhaERsaqej7yBuU/V90lqpkJ8+SdRiJpqGAd9yWlesIvnmbzluHOZk8yrcnWuJ7X2Nt5QyL8tZukND+MwmjIEKow3duOvr+cFwP87GFoqRIPUbt7EzMITdeOmd9UCLxt+Nz2CskWmrGAl416Fk47gz03zEnSCt6vwo0IjN4uQ7ooNzyWkGClO0ie18vXiZ/ZoAFY6YxokYTfxfBy0IsoGffyWIyTT/HWlz2PmTL96zoPhufCZBRvbidWRpr9e4e8cGTpwY4FCpFo8Soc4nkkwlKes6h6fraK/zYVWLlLIKqquNbnuKV44EaKk18sC965mZDnH49Aw7NrYST5dIlE3kckV8V9j0yVPDvH3Cz+O72mlpqmVkLMQXPr5prkbDajGi6jYss39vWdeKIAhsXltd7dv71nFOBE3Ikynu2lk9pq7rLG/1UNfYQDKWIF0SicaTdE/F37tgWNf1p6/zvQ78u1sezS2imMuCIMwrivE2XJ1Ta7E7iQf9yIbZICWfJ59O4a5fuATXXGejp7uV10/EKACCIM7N5nVVnQtGEZjLEFw1GJaNVJJhjN7q2KpcT/2mZ/26UkEr55Gsruoy22xgfSPHeS8c8kUqydWWDt8LvN+2q+oCqWSGUknhcvEWTbai6zrWUhijyciJw6fRNI14QQJB4jevnCQQL5Mvajy6qxlXrY9D33oLxVKHy27CaLZgtNoQJQPN7Y2o2Ti6rUgf823OaDbzsfuXUdPYROCHB4hEJxEkGbPdwV98cRvf/M4b5CpFtEoJoVIkZ25ATvsRFzGP9s4WNtcPsudoCrNjir5QjmIuw9Z1bXSvXMjLv/Lvz39kNaVSmda2nSRjcWRZ5iMPbeDMYAin0clrAxqVSgSbXmbLcoH7d96BxWbj9bdOoflz2Bx2FAoolWo1+OGzYeKKhXTyDB/d0jRHm9h/6DyBaI6PPrgWk9lMLFUhrRgol8r87IU+knmF9sNDfP1LD9LR1cFf+ryYTJd4hL29HRw+coFjxweIp0vMCC2sqU1zx9ZLS4Q/fO4EkbzIn3yshzu2r+Js/8sEBB/F4u2pxn6/7fZGUchm5+6z0VydiNndHmDx4EqS5bmKdWdNLbqukwwFsbrcC7LIlVIJb2MT8YB/7rOmlqpvPn5igL6ASFkJsayjnl/tnUYUdFb1ts8VdF6Oe+/sxcgJ3jhXvc8XaQ2i2X5DK2GXQ80mEK1OQKhmVB111WtwndrW98LnapUSWiGDYDAiWd6fYs8Pgu2KlTJKOsnlK/cmgwGTwUAslycpGNFmJoio0KEVAQM100PkQ1PcoWfZ29RDU+8aBvfE8JGjIJlAFHD7GiifPYa5sYVUOkNOFfAUK/OCYUkU2dhbR92WHeSO7uXz/f2cMxr4dJtIdvkW9gQFKidmKJXyHBR0jjS2IYdGMV7lHflXkoMv+s+QMhkxGo38h2/nuG+9iU/tMMIVzJorbez+O1fS2exnxYr1KBWFZCLJQw9uxXhwgNamDn7xxjAlwY6qFllhS3PXti46lzUzPjZDZO8YHS01zPRnqCjVIPvcUIgzQYHkm310t3u5d1sTvsZ6pqdC7D42yc4NTXR2NpNI5kipVlKpPGPTw+w75eel/eN87ZMbaWiq499/7QGK+TwOtxsAb42Hns4ix/qm6Gy0cirhpMaS5eMPXaor2X/wPK+fK/DIugQ7tq/i3l4rr56TSaVvD6Xyd6oDnaYqeBqaSAT9i35fyufJxGOoSoX6jmVkE3FESZqjSORSCdz1jSRDwQX7vnQqxRunTlISF2Z9RKO5mhWwe9CVSjUwNVw9+NOVCiZfO0o6gmT3gihWCzmU8k0FjWougWh1oZWyH7jCB6jSN669dPi7j4po5od7k/M4ghfR5anw2B2rcdb5OHfiDMtW9/BK3zEe3OQjmS4SLJjQdSMDZwdxOqb41D0tHB5IE4hVsFslTvfPcMRv5di39/Efnt5ArVLhzYEByrJ77hyKZGXfST8rUmWKmDHWVr9T1TLH+0Zp9MgM+HOYfB1ohTReQ4FkXTcvvnWee3dqrFjROm/M/RMZLG2rUdNhdM3KQEhn8PVJdvkzPPzAhqteB13XGRgOUut1kEtn+NavLmCVKvz7r9xDc0s9hXyemcAh7I02ulf00tHeQH//BMs6G3nwvkvH3bYlg9VRXcX52H3LOXp8iHNJD/JUjtXrqxOBM8MJQgUjO8Ixmtua+YMn17H3wDlmgilWdzo4OlJEuWxiYnfODxoqpSIvHwsh6RqfeqATfyzI1k0rKBWLJJMZGpsbcFllSuUSxlnf8cXP3Usuk8Nb96Gu8r9plIsFnLW1pKNXz7hGpiaRZAmT1YZSqSBK4tzzkAj653y2yTK/rsPb2EQyFMSzSHJi3ZpOFHWM5e21yEYjD22uLr8uFggDxMIx3h4W0JUqt1CvlC8VL99EMKxkokhWN2omtijd4v2GVshcSsxcX3jmdxYbijF0fxTBON8eksUS51dso355N8qxA/hWraUUn2ZQkMjXNrJsZhDJIGGZGGCsVEI0WDlhsFGjRomqKpPHDrFVK6Lv/jUxXyfNGzbjT4ZpIzfvPJ1JP8GhC3jLOTYvd/KR2c+HE2HWWO2gKPy5vRWbwcTh8DCHGrvZHQ9gS03xZWfLvKB2n1pEqW3DYHVRKaTpLzi5cEDhhf4yX/+qelUFB4CJyQihaI4VK+DXr53mfEDnC/c18uC96wDYMRMmlcjQ0NzMtq09TE34mZkK0tHZzL/trD6PWzbn5xKGu7Ysx2wY4Y3jOoF0kl271gMwNBZhOC5TNx6js7OZe+9ei0E/SrZYYUWHl77+aUoGF5VKtabCYDRiuIKaeuDUNANRGZspT3eNTlOdD4/XzdTYFI0tDTjsJuxCFLu1SgPcdfdmupb7qWt8h/UDV+BDFQyX8nmSkTCSLFEplzGZzVgcrrlCDJPFhn94CE/D4hdHVRXMdjvFbJVzpioKdreH6NQk1lWrEQSRZDg4R5m4HLpoooRpwedQ5WpezAILRum6zlWQjVXupmys8j11HV2tIMg3Xx2sFdKLSnO9W6hmsTVEiwvRsPj1uIhLS4e3p+r5wwpBELCJBdyGEjUeB2ZRoSLIBBM6sWiC0ak4R84nGPT3gSCzamUrM9Nh/Mk4yxqsvH5OYl1jifvuqcd4IUyN04zdbmPjGg/DiWmigpfz58cxGUTKi0zWzsWtnIvngUt2KUhGjg8kKagezD4zuqYiSTKxIqj5KWYcNRw9F5wLhjOpDC/uvkC91wKpKJ0dZkYmcwhKlJzkIZ3OXPMaDPcP8UZ/GSl/gf/nn9xDrUUlGkvx8+cO8amPbefQofOcS7lxR4M89ngrhw6f55WzJXrHIjhsVjataaa+oXYuEAZo72ii3uem7sQYK7uqy+j5XI4VTWZ2uC00t1WdeSSS5GjAwumxAXasa+R//dJaZOPVXZ8kG1jlUzFI0NPTzsqVHQD86BeHGI4JfPlhlU9//A4ARkem+fELfexa38Tq1Z3XN4YPGS5mbov5LLoOZpsNUZTmaAuu2jqmhwYwW69ODREEAZvLQ6lYQFUqOGvq8A8NYHW6MNvsJEKBRQtxBUHA07C4rJLBaGT71p65v68nu+ep9bCyfoqzo7PyWbMJDPEGiubmjUkyoOaSsMjk9t2CWsigKyUEUb5uLYVkdc4mY67tm38fUKioTCugub2U8zlEXzO1U4OQSRC5cJb62Aypva/RWcoxU9+OsXMFobF+puvaaNUCeANDhJevp1zIEVUAixVbTR0jlTxb1AzedJTY0AUaCmmwzLffFouBlvDggjHVFTM49Cx/6KtSgxKlDH9V08W3UxF+o5T5rs3Fx0oZvObqBP27qSkuVPK0aCVqayJUtDh+3UNRl8gXxOtqEv/q9QsUTbWYxdPUuMyYp0O8tDvJp+0W7FYju/vz6MUif3FvI4Vslu+/OomJIttWhXE7rGzY0DVPks3msHH3netw2ocRJQFRrD4HXofMXZ15dmxbAYAoipyerBCtGBgdOceffH4XoqDj8FydjrO8wUwxNcPKrq3s2llNKhw7doHfnspxR0eURx/cyPp1XZRLRX747EGcdgNPPrq4TOc7wYcqGM6lEvja2kmEqlx7d30jqXBoLhguFfM0d68gHvQvWqBhdTgpZDM4a6tZSoPZTD6TxjKbGbqa470aGiwlJBFmcos7Hl3XuWsZSJLA20PaXDbkyuDwnWpGvj+ZCR3JXoOaT103GJYszt/r7MTl+ORdTdhMEr7WVqaGBimUVILxOD8+WkEQBD66qY1NG1fwze/t5R9/cQ5FF3hovZttW1eSSR3gY0/u4sXf7ubxB9cT8Qc4eHKCJx7fiVGcRhBEXhuafTmL135J67qGoZhgRYPMxz6yg9Nnxnixr8COTpE7Nq/hO78+T87o5Y6WCqtXNxEPzOBtbGZ6Okx/WGKZ28V//IPtAISCUZ756WukFIX+katLAQLUN/kQ0gNYTSKvvX2OaDJHvqQxNFlVB3C7rGiZSXSpyD/9eD9dDSaWuVW0cpkjUTM60zzesHB1wWy1cs+dq6mUSvz0ucOEAlGSxiZ6PVEKlX42b1xOZ1cb20YCHLoAZ0aS3He3ffZa6PSfH6WhwYu35pKT3rfnBGdCRrRyntaTg2zeVA26fB4zmUJurroZIBBO4c9bmAmlWL1Qpe1Dj2QoiMtXT3mqSLlYwFPfOG/lLRWN0NCxbF6txpVw1zdQzGXnpNbG+k5R29KKpipYnS6szhufLOfTKUr5PHaPB4Np8aRDIhhAR8doMmP3VLNIJrOZz35sGxdma0Eks/0dSUK+HxN7vVKazfZev1hbkI0fyFXC9wOT7gZSLV14GhrJXjiLa9kKpsMBNkQncBhlRm0OHHc+TOjEfroiE6SDY+SsdvR125je+yrWex7EGA5SKeSQ77gf7aVf4Hj4SXSLFbIZ1kgKBC8sCIQXQ7xQJCkZCbeuxtHaTmB0gJxV5MKnu6jZO8pfBFqpq2goHSJHHSbuP69gkGReEFQi7hp+XJao/cNhiiU3P3irwPeO2MlhZWxkgq6eqxft1tpgIuqnVKnn6IUYBiVHuGglEk5R09uGqZKiUFF47uWT2Cwm1rbIKCWZty+UcYoJNmxYnIN/8fMDh85z+swYIb0Ou57BYptgWbuP+oZaHrqjlRfeOMOUXE8kmqRrRQcA/ukQhWKZ5V2XVh1z2Rwv7B5Bt9Xwm9f6+PIX7gOgpsZBrTFKnfeS+EEunWMiKeBIz8/G3yo+VMGwJBuI+qepFIuYLFZS4dA8fq/F7iQRDGCyWMmlkpQLBUxW65yzLeZyiKI0x22raWwil0piti10ipcXdSwmt6brGk/e2YLNbuVvfjZwlWywzrK2GowGA29fmAFZxC4WWd9p5+Rolrx++9UYLsdFBYHLm3q8U6i5JGoxi1bOo1VKGGtarr/T1Y6VTyEarQv0Nn+XcWoggs2gkjoVZDKU4571dfzR0zv5n9/fR1yxc+h8jMngCWodMk0eiWQeTp6fpm8wSLxkxL37JMNhhZ6pSUDndMjImX85gm6w0eurEMuqRIrz7cmoF3l8Sy2TkwGG4wbSqpk19RpPPnQnY2f6CIyNMBVIAhYKJZVYJIGglvjSvS3oSpG6pmZSkWrzjo72ej6dTWBzOFAqFWSDgZf2DBPSazE4PWjJKV557Si1NS42b6pmB97ee4apUJanHl6L0+3mL79+D5Is89vXz5IvqgieNqRimHPnx9i4eRU9K9o4e26CF88W8R8dY92qFla2+aiJl+lscXHwUD+bNnQuaJQxPRVi/7Fh+meKCIUKqiHKZKFIf8KB2TRBKJri5IUIDXYDH3/4UjZx4MIYzxxMsswd4SP3rkCWJXLpDG/2F6GQwqwXUC/ryPTAvetYMxOYFzjv2N6LzzNOY4OXb/1wDw6zxOc/tev2Gs/7CIvDSTIcpFIsYnW4SIaC2FyXfr+zppZ4wI8oSSiVCqlIGFGS5qgNmqpSyGRweC81bWnpWYlSUd6RznAxn5uTZrtaPYiqqngbGklGQkBVRjMZDiFJ0qLFerezXblWzKKVi9UGGnbv9Xe41rEqRZR0FH2WByx733lDEK1cBE25ah3L7yKcmTiF4ATFkXO0ZuOEA+M47/8IUycPsCoToq6UIXBsL4ZEmIHaNtRiAUciSP7VX9FDmYmTB7BWygQMNtRoBLfDTvuhV7AaDfgFIzmDkeVKbi47ehFnTB5ykow3EabbCLGKSnDnE0yPDKLl8ygXzuISHJT1CpVIAkNF5/n2OFLvCoRyhYrNReGMH1mU+HydRKnFgDRmYGLy73j9XA8/m/l3GCwziBYnp08PM+rPcfcd3ZgtFibGA7x+aJyd65vo7W3ny1+4j2wqzXQwSfFChbJereEZHJ5i9dpl/Kd/9xjZRIK/feYcSjBFvUviwR2d1AST+HytHDnST3OTd07R4SIqpRKv7T3P8GiQmOqlkgpQkiq8etZLT2CMLWsKvPj2IIUyPLRGZHl3+9y+z7w6QFox8cdmEQ2BppYmvv3j/eBqRA8PIrnq54qvOzub+ZzNhMNxaeXJU1fDVx6tYDYbee3NU5yfSPO5R1dR33hrk8D3bq3nNsBV56OuuZWm5d3UNDXjaWicx62x2O14GhqxudyUCnk8DY0U89XZQ6VcIuafJhEKzFtasLncSPKNzwl0XcdBBkFTeO3oDL95e/CqtAhBEPnxWwH+9dWJucBvRaOZB+9dy7L696CgTNeRHF608rVb4F6Eko7OZR+UbHyehJGuKhhrWhDNdqSbXFq8HGouiWAw3ZDA/O8Szvk1phI6Z/0qWcHFqdEsb+45Q7JctYtI0cxpv8C2NQ3s3LWOlT6VP/7SA/Quq8dmhO1be+hodGKwu/E2tmIRKlhNMnayfObJrdy3vga3oap/6jUWeXqXi1ZbDrexzL13r+Xx7T4o5ygXcgyeOU/P1m1Y7XZKavX8p4MyP3nbj6Zq1DY1YjCZeOH5t6ryhEAxm6GxvYmahnpC46NUyiXWr6hlQ5eHej1IRbJwcFTj9SOX5EKHp1KMRFQS8SQANqcTs9XKJ57YzL/57AZaTEmyiszx81WbszrsrF/fiZSaRhEMHDs1zjNH86RTWc4MxXj1XJHv/PAtfvvKcQDy2Rz7Dp5n/5FBLsStLHdrPLSlgRW1Fe7fsZweTwGtUuLsWIaK1UelotLU7OPAofMcOtxPU2MtPbUqy+tN/NOvzvOdX5ykomqo+TSyWkBxd3JkIDX3e97c3ce3Xg5w7PjA3GeiKNK9chm6IJAsyiRyH+xWrzcLs82Gt6GJlp7eOZ9rsl6aWAuCUP28voFMPIanoRFd1+a+D46OoCrluUkVVFV+bjYQzqWS5FJJjCYziWAAq+PqGVp3nY90LDoXLGfiMbw3uer3TqGVi1WNeO3G7EAtZFDSUbRyAa2Uq8q1XTxWMYfB24RocSCabdddibvmuArp2WPevCzdhxWNooo3HqQ5H6fVYqBLL6KcOownWbVFh0FmRT6K6q7FunE7qZoGYr1bkO64H1VVKPpaKLT30GiUqO9chstsJC0ZkESBcGs32q5HOJlXqagqpUqFk542TplriBtt5Gxu9AefYrqoEMuXKPonsbs8LFu3kUqxgFUy0V6x89gbWZrCGqLHgdXhIDU+ybZfT+E0WplWEpTv78azay1H2ssk8jWsbpxki+0l7q59AU1VGYoIHBxVGRyq+t3pQILJJIz7q+9XSZZx1XhZvXoZf/HpFdy1sREhG+ZM1EwsFKl+X1dHVy0gmZiaDPHjtwIcOR8DXeHFvgLPvnyW7z97mFi0esxTp4Y4cKCPI+M6RUXmqW0OVjdJPHjHMtY2qDiNCv1DIdJyLSVNpLm5nolxPy+9fppcJseaTidrmkT2Hp/i2y9NM3BhHLVSQc0lcNXUMFKsYWx4AoCZqSD/8Nwwz7xwet69bWppwFvrJZktk6qYyOdvvYjuQ5UZjvmrN9zu8S6oPL4SVocL//AgksFIpVwim0hQ09xCdHrqmvtVyiVSkerLuba5mv28XG6tyVrg65+7k9fe6uPQ+PUb4iji/ED59FSZ9C+PMhLTQJwfEF9UX0DXbgsFQjQ7ULNxJPv1aRi6roMAotFKJeFHdtah5pJzmQTRbKeSDCEardddKtR1HTUbRzTZFkwUBElGK2SAd7UR1gcKulrmqa02HGaRCgZ+sCfKTNbMzLAK4vwX3G8OBrgzHKahzs3ZE2cZ8RdocenkkgmMap6fvz2DgMZnHujE7XHytz8/z0+fO8zOVR6e2uEjmCgzMZWmq7udyckg7atWc/JoH4OTGb76gI/m5cv5+x/uRRdOUd9Qy2Q4B7ILvZznj55aQTKW5L//6ASVfAqcTZz6/lnqLSWyeYXP39dAQcjS3N1DZGqS9gYra1a1kst189tXjjMeTbOl95JtSHoFsVTk5f2jdE8luHvXagRBQJQkGlua+eoXGjl+fJCW5kv2abJY+bOv3cvY0DjP7Z2mkgrRl9L4gydWoSgRzo3LRE6OEE0U8TpkTgaNNElFlHSRgkfkjQsqlaJEQ4tKIqfz/MkCH9tYi2yQ6V6xjkq5xOsnIghobN3czdMf30alXOatoy9TUcp4vJt4fHsjXd3NHOmbwVdzSZnF47Ji16Y5eibNTCjNxx7fOvedw+Xi//HJVcg3MbH+MCATj6OUS0gGA86aa2de3L56wpPjaKpGNhHH7vEiyBJGs5V0PI7rGiI38aAfdB2byzMv2IZqZrdSKlUTEd6aOerD1SAbjfM05d2+ehKhwKJSb7quU4lX3yuyu+GWmwhJjhrUbOyGuci6UrpU8HaxaU42gWT3INm91Q6fmorkrr/usdRitrrtIv5Z11S0Un5WBeP3Aycwk2jqwO50URg8TosMrrR/gQJDSzpM35svYlm5gezMBJaInzKQQ0RLp+lJ+om/8Suydg/6tnsY3/MCvqlBRhNx3A98jGNnjmMrZJAaWsn4J3G1dVJIp1GP7+eC2U3rgw8gnziIKT9FzGDEo1xqEHGoWye/o5f2H51E2hfgAVMdDqOVaTGDYJBpPjSD3zxGzeN3Ehn7PM7Kszy9YT9OSwrP0TKvhp6mSYrQ21PlzJuNIoJaYXoqw49+cYhPPr4eo8mEKIo4a2q4964aWps85HJF6hov2dRnPrGL6bEpXt1XZiKSIC3KpNIFNrWCf0ZjKFjkx8/uY0Wbh4PTJhxiDjGZJCPbOXhsjJDuw396hi3rO9kzKLG5qcwT6220NW3E19TIz54/xoWIRJ13Zq4g+l9/9CZKukAiZuCRO7swyAK5ssBMOENza3VlyWo14TVXyKXzfPvHB/jEQyupqbv0/H/8kfXcn0xTU/8eSat9EKCpKuVSkZqmZorZ7HWDYbPNhtluv6zbkYNcMonZarumxE0hm8VZU0M2sXg3nnRJpK9vBH+8CFcpqLsWVNHIcIJ5OXmbWOTJHfXsPhRmuuCYm8Uvun8+ha6ULsn5XAYlFULX9bkORzfaQANmJVkEEa1cmBNhv1wc/maOpWbjSDY3ajYGulZt/Twr9XN5seHvC+xamtraRgqZNJLJiDC7MqGrCt11OoGkSk6rXtuUYmY4nKdnlQ+jo8j0iXG8DQKZVJpNm1dy9PkRNNnG+dEoZiHE/Wvd6KUc04EkFUXj3gd3EIif4Bvf3osgGzAeOMeZsRyyWiabTDE2OEKj24jT5WBsIkjl4mRNMpCKRLBZDGxtF9myZSff++VJXA4DX336bl57u4/m7h7S8RjxoB+lUsFZU8tU/3kctXXUOI2MpiXaWi+jLVmMSGTwZ80wkWD/0edxWkRqvU42r29jxcplbN26krHBEX7y3Cg97V5WrWwhlcyyfut6Opa38eb+CwiiRFdPJ90rl9Fz4hy/PGRieCbNnWtrWN+ks35FD/1DISqlArlMhGxFoc1nxWqWCEbzrFrbjclsJhiIkErleHJXM6LA3IrQ8IifYrGIaPPyLz/ZS1xuxGBJsKzVy9h0gmKhwKu7z5HMlHlwvZsXzpSohBd2IXN63O+uIb0PSEaCtPasmmtdfy0IgoDRZMbT0FgNbgFJksln0nh815nc6zquunoy8diCYFiSZcrFwtz/bxaCICxKqQiNj1an5KI0V8i8GLRKEa2QXZRuNqcxP6srLwjCTSnniAZzVYbTUvX7ai6OaHHNjftm+L96OY9oslcL7soFEIQ5mU2D573JjH9QoGkaabsX9GptkH5Z8sWviqiCQKtYzd5bZYkupchgNkX71h3Ib/+GhGxFSURpWLuRSDLAMqHMVCFNvP80OYOZsi5iNluIH3gLz9Y7KYdmWH7qLSR0pvIpLJpKfTHFtOQiOjmGKRFFX96LEgtTq10KhrPFLNl4jIFGDdMnNxN/e4iO6TwnPr0cvVDiydfz5PUKZ149T7nmFXKrv8vA2f24TLU0Nr+JGrPi8xnmmmzIsoxBUEkWRQIV+N73XyGcgd5WK263i4ce2c7y5S3k0mleeuUoJRWefGQT/ukQjW1NfOULzRw92s9IqMzy5c3sbKglk8rwnR/vIaK6Ef0ZdnbZcdrrsZqbOX9hCgkbobEZmtscdHfUEYhOsmZlCx2dzZSKRU6dGmL7mnoa/GnWrmoDqhzhQDSDpoq8eXSaksVHd63OR+7vZSacJRCMk8uV2HfKz45VHvqGYSIjk0hm5gXDBpPptgTC8CEKhif7z+Jr7yQwPET76rULvs8m4miaNi97YTCaiQdmcHhrZpfmrj9bd3prSEUjmK5SHZ3TzPz6eJZ3EghfDSZZp62jibaZFNMXsgs6AV3Oc/vHH+4nWHTypXu8LOvumPv8f//nEyBISCYzeqWEcBWFCa2YRTBVJwS6pqKkI9WuShbnPMcrO995Zlo0WlCz1YhfK+V/76V+HtxUS31rG+ePHGZ4JAVilZrQbK/w+Y/v4MzhowhmM32DEe7e1sHz+2b41ZtDaDps7Xbw8H3rOLzvKKZkDkGrABaOz8h0ujW+9MhaQhMTZIoqP9wd4/wP9hMpyGCovlDf6i8jlir8xy9vZ3oqyA/2JtnRaaG+tZmX9k+g6dWXuyAZ6JvIsbzZSVERCPv9fOVTmxkdneHQ0QHGgoU5buVffW0jmXicyPQEzto6XLV1bN8kcecO87xq4c8+tRNd15kc9xMPh3i+YCUUHiEmNTD11gj/vrWBs2eG+PU+P7K7ngtD53lp9wXyFZGu5iE+9sh6nvpotde9pqrkcznaOppxnQhTKaQ42i/QaNcQexvJlgX6ow5qLQUyVh9HT0+gG6w89fAaTGYzSqXCT184Q0qz80ePtdDUeik4isay6CYHoiDgcVkw63lO98dJFyEt1tAx6mcilCcayzCaaqDXU+bh+9fP7f/G60eZjhR44oHV1Pp+d6TV8ukUBpOZeNCPtsiyf6lQIJdK4Kr1zQWpFxtuGGeL23xt7Qv2WwwWh5N0LLqojJogCPjaOt75D1kEuq4jGYwYzWYEowXRYEKQFn8daoXsJe34K4JhXVWQnXVVZYqrTPK1ShFBkOaochdpEYgSssOLbK76XdFway91XdNQC2kEg6kquVm4tsLL7zJO5VQa795GZHKc7NnjtGkqF8XTZ5avJ53PMyNLuCf6yS5bizk0xYqpfpLxAHoui/j45zCfPEp8fAShXAJTNXj2TvczvO0R9EwGW1MLDW89h+HQKxjQcJuqK72rKtVk1pmG5bSv2ojptWcxyjKJljbMp45gvayd9/qohTOJMraCgVgiTajFTPreduR953BLVkTBhl0wsWMK+pYPMTD4A8w1D2FraMJcPs6ff3YVtsukIdev72Lt2mUkEylyuQI/eD6N5q7l1IQfQwp6J6aRRJ0fvTJOOpVBsLo5/de/oCzZqXOI3L+zm513bmC2zwXZZBK7y0V7ax35kSDJksbpM+PcvaMHQRcYyHioFRMItZ1k1QyvHBjjjrX1dMzKsr32xkmOB83sXF7goVk5N4BCvkDF7EUuRbFYHTQ6KqjFEj/4+QHiUgNlJYDLKjOTFggfjmISSnzl8U7aOqqr9WMjU7yxb5DNa1vZOFujcqv40ATDdm8N8cAMsnFhEJrPpCnkcticTvKZNFaHs1q4kU1X+9hfper4anDVXtspGSniMWkEi5a57Kyu6+jlwlUL1Yx6AQEoCQsjwnjZwl9/7wiKaLlu1nTH+gYCoTSt7fMzHYIgIMgGdFWpVkovAiUTQzRZUdMRZJevGjSbbIiCiGC0UI5OIBqt12zaoes6aiZalfm5StvoyzMoWqVUfVHcYgHfhxnxZIGJC+fRdY1HH97C8A8Pk8FAICey+5W3Wb2mC6vTiV5I4vW6sEtjbFrZzMmBGOcnc0i7zzA+neOrn7+HpHKe3YPVoq7RmMB3nzmETU2zaV0rbeYkWd2GLhrY0a4hCQL7xnRUg5U3910gW6jgMaqcG1fpG9zNnzy9gwtD07x4IgvonA0ZOTOTQNJ1TvszPLk9TDhZ4txEgrw2X+BdR8dgMs1y8Wdo6Fy24HcLgoAgCHQsa6GtvZFw5hRiWxvnJ5I01hr4xj/tQS2kEBAoziSQzHYEWyNCcJCxqJWB4RA7ajzkszn++cd7iRclvvbxNfzF1+/jX77/GhNlLyPBURLPHcLu9dIq5dm8poVgWmNiWiCQFYlFk9iddn7w7CFCgQiiIU0mZYfLguFdO1fR1uSksbkeo8nE1PgM331tBg8JHl5tYuXKDorFEvuPZdHEDF3LmvF43dV7G47wVl8cg8vH86+eZMfmbnp7bywA/MBDEFDKFYrZLG2r1iz4OjI5TktPL+GJcXztHQBkk1VeoXAdVZMrYbE7rpmsUBWFdDSCxeHEfFkL8GIuh9FiWVDEBMzR49y++kUbwtjdHnRdQ74O7Us0Wa4qVyaaHXMa84tBKxfRKwXUSgmD+2KgryEYTRicPkrhMSSzDcnqvqbGfHVFsIxk81w1aL90/Kqvv1XKx4cZNTYLw4P9lPN56lZvIjZ2nrp8VfHGMnSapK8Dd3cPI8EADQ43WizAtMsHCKw0S4wf30dbNkGkZjXKxjspnHwLi8mIzWzGd3w38VKJSGolMclKi1DBo5WY1A0k6ttomRmkxiDhjPrJ9pVxaypFDNS98Qummlbg3/EYDROj2CsSrVhpOajiLwvc9XqRAy0aSWOEVTMiNol5nbs1TcJmLiMmfkQlEqSr9ixB9x8v+O2iKOKt8eCt8fDRewqMT8eJGmTK5PjRc0dJ5RRMsoSaz6Dl05gaVyBGRohmHRzrj7BubVWd4te/2cexwTR3b2ziqY9sY+2FEf71lQkKSplfv3GBrlYXdWqRjSt8ZBSJQlbkZMhIkz/F6lVw6PB5DpyaQTCamZIE4FIwXOur5U8+thKT0YDD5UCUJL71o/3EVBNbWorcsWUFBllkfOo4uYJCg885FwgDvPjmGSJCA9H9wySzRe7Ztfqaess3gg9NMFzb1IKmLi4wrVQqqEqFqN9PS3d1llAplzHb7HNcs9vR/ecvP9VJqZDnwniSHdt7+bsf7CdbkWlygcMs8MCu1fzrb88TL18KeHVdR9c1PndfExaLmX/4zfiCQoirtSNdDOvXLmf9wsT4NdUvlGwcNBVd19BKOZi9FqLJil7IoKll1Eweg7elqqF5FSipEGo+g7G+84YL4ESD6ZYKP34XsGfSzO6JPA5Z5+DocdK6HUGoaldHChXUSpkDbx7k/o88yE+e2U1BN7Oqt4OZUJaxlM6+YQUTZo4cHWAskAWMWIUCRiNMZSw82lvH8t4eUMq0dnfzjX/azcplqzEZDewbnkKQDYyFCpSKJb7+6U0kYkl+8GaA4f5h4ok8n9hWg8Vq4kdvR3lso5MVXU1865fnGZ5OU2NW+LMvbWf/4QF2DypA1b7uW2nk7l2rr1nVfzlESeLRhzYD8DBw6ng//bE0glJG9LRgTQzi86g4LBFOmRz45Bwb1rbx0msniEWTJKR6BMWPQZY53TcMRivNmUHGZBtlrUK44kRPZckcn8RbW0t3s430SJZEtkhNOksgkkXQFYx1K+ifLNBzWWwniiLty9rm/m7taObz9yh43MvnMr2BWIm43MiDq0ys6mniJ786RFOtnbvvXE2bs8xkKsxIpURRn/qdCYatDidmm31uUnMldCAyPYUkX/LJuqbjqvORicew3QYVMqVcJh2PUioWaexYVm3zbDKRioZRKhXsLjexmWnqWtvm7afrOuloFE9DI4lQYFEbvTyovhZEkw3RtPi2V6OPaaU8WikP6OiaOq+gTrRUtYCVTBRBMiLZPGjFHNIiwbCaS6BrKrpSweBpRElHb4g68U7lOn9X0C4qtAQvUFZVAtkIvkoODNVwp0ErEbdaGTqwm+YVvZQmhliTCnCmawuCKGBIB+jNR0GETGAcXZQxGWSKlQohwUiToJDRwde7Fr/BSLlnFUNvv4Boc2FasYZMcJwaVJyVIsSDRBqXYVi3Fd56DlIxYiMDnPWUKTy4ht4XxsgbIfiJTQSfP0tzVKDo0zl5Ty2mGjd3PTuNy1i1vVhpOYY1f4Yy+jN6DK/f0HVYu3Y5a2eDW1VR+P/+3esgZKGmE6d5GotQprc5x1tBFVnJ8dAd6zlzZpSBsTCnx4ogypgMEsl4koPnoqxp0Dh3IQImB1N5O1KxzGt9aVo8Mt2tDryhGOl09Xm4MBQAtYRsbyaQW1jE72uYn3T75EMrSaZydHVXn+XR4QmmS25aXWU++9RO9uw/x0w4y8cfXsMdG9p47u1RcmqF3YMKHU3TdHbdmt/90ATDwFUjf6e3BgGBmibb3DYmiwWlXEI2Gm9bG8xSIY/b18DYW/0oqk6yJHP3Kgd371rNKy8fJJVMo2mXzqVrKh/dYEKpaAyNRzHK8vsjJ6ZpSI5a1GxsAZ9Nsjjm1CEqcT+6VqGSVOZlGeYgCMjeZirxmbmXQ1W+TbslWsXvOqrBhEROs5DLz81FADgXszL40iTdzR6efW4fw3kP6Bp//a1XKRpqQTLgkIrIVHjzZIiyXF0S+/iuBppb6vmb7x/nldMCk/7dCAYThfIFPrnNxdv7zhEsuxBkC1I5w9e/sI3JcT97Dw1TVDQUZBpb6unsMnH+3BiqpoEgEEvmmZ4OYxVK7FrbiMFk5vTxs9S7bfTUFBiIVe330ECaqfARPvvEhhu6Bvl0qqrsout4G5sZDuRQS1ke2NTAuYEJguZ6mpd5mZkMYKppwSDGyaUzHBlTsCJyR5fImhVbKJeKvLX3LElTGyu8PkxmLz01Oagk6UsbyGbSJCQDBjVFVnQRi+fweTIoZi9trUY62iXW9VS5bHsODtLZ6qGrq3XBeLtXtHP69DDj434qmsTd25bT4gvR29vG1MQ0g1GRdD6Jp2+YjeuWkT8bx2czsnlj2yK//sOLxTKuF+Fr60Apl7C53HOfOWtrySUTi9Id3gnS8aoqRHhinHjQjyQbSEXDeBuamBkaoGjILfDv0ZlpREmkVCyQDAfnKBvvJS6nh13pS0WDeU6aUitmKYXHkW2uaoHbAhpGBclRRzkyUe1YanWjFrPoleJsgfLvKffsBiCJIhZRZBmluUAYoNZkYM3wMTKiieTEECti05hsFmpP7cVpNiFbTOQrChHJjDcaoMZiRDQYmLDWIGy7l8n9r9At5Tj92nO4dUiUCyTcDRhiIZa98gztViMgMNW0HFPvBkqv/QrhDHg1lbzXg2PDVkqBI6jJDJIGtopIaXgaawn296jUb16Otuc46VSaI+tM3HW2jFk2Um+7gL//L/GJQ3CDYUR4chwQ8DY2MTg4ScVgp7vViNeW4khUwVhby7KudvZcKCIYTdR6Hbx5eIKxlJENrRJtba2sX9PBz555jeF8LR0uM3JjFxYtz0Nb7Dy/J4aSizJpWo4+niCHjWim2mWuIpgxNSxjWyv46qs+9uSpYbK5InfuXL3gua311VAqKxw6dIaKJrKyq4HP7lKorXFVk5ATSQI5A+fPjmI0GWhv9qCVi6zsMtK+bKEPv1kI1+tg8m6iY+16/a9++dINbXuxdfJiAu0XhdhNNhulfH7RZbF5x0om5gTkbyZQTgQDaJqGw+ud0yr++x8dorvZxpHhHBXmB966WuHzd9VQqSj8/Eh20Za8V+JmssTXw8UMsVrIoFeKSI7aa/5etZgFXUcr5RYNhrVSHl2tzHbMUxAMRvRKGdFsrzptiwOtUkRXKjclv1alXsQQjOarUjyuholvfOS4ruu3rw3NDcDU2K03/uF/v6FtdV3HLeZIKUaQFmZ+mqwlnMYyj9+/lnQqw2tHpqk35bj7vu2cPHaWN8YsfP1+NzX1PgqZDK/s6SeQM9NaI+O0GjgwqiCIElahSFuNgU5bii333cvkhQt872Bpjhu+tU0kna8wGL80hpU1ZUQBzoblqsqDVmFju5GxUBHUMh/dVsO50TjDMZF/+7mtHD4+xJsXKpgoscwnMxBU0GbVMK5nt4lQEIPJTCYRQ9d1UpkSh86GafUI7JuxYyhEqbepeNxWzkzkuXdTI/feu4mzZ0ewWIxM+RM47RZePTBGQXLRJgV44IGtvHpglA1dblRB4pWTKe7vteDx2Fm1qoPgdJDGtmpG8PCBEyQyFU4NRGhqcLF+hY9fH01TI8T5d197GFGSiIaj2GwWzFYr0+NTfOf1MGI2jO5s5FPbnaxes5w9+87yxqk45kKAnZvbeWvUgIckf/L5HZit1ptahfrqiub33HZvxueWCgUKmfQ8ZYaL0FSVRCiIJMsYTCZkg3FB4dvlqJSKZBJxbE73Nbe7EhcnUbLRNNe0o5TPk0snkeSqwsWV1zsyNYnN7aZSKl2X8vZuoVQscqpvjJ7uJtyexVPkF/1zJRmsJhcEYYH/0zUVNZdAMFrRS1mq6+bCXKAtO2vn1Hsku/em3mdqIY2ulG+q4O8iPuh+16wX0FmclmiixLp2C26ryM6da3nm529TKRf5yKObiQZC/Ppomq3LTNx1z2ZCk+OcHwozHFIoqQKbezwcOJ8gq5rRVYWVPjCWY9x71zoQ4OevjxAsVe9hq6NMR72V/YO5OT/pNZbobbVxZDhLGVOVRuYsIUsCgzGJx5YXsFot/OJkhc/dXUdTUx1/+9M+NIOVbk+FaE4nWbnxyd3TO51YJJXxYI5wLEswlscfKyIYLMjOGvJjp5Esjjlak9HXiVbKVQswRQk0FbWYw+TroOgfxOBp4AnXGJJS5D9tyPHk4fWsNoX4ckeU3hoNTdOwGQRq7Qb2jhe5ENX4zkwbRlnm/7cxwH84vQx/3sAzm45z8vgnKChF8mqRGpMbVVP5MUGmZBWDs46VsQQflZoIl1L8wJpDSUfYqtkYcphJ2xw8EUiyytl+Uz73T7/1wFXt9oYyw4IgPAr8LVXW4D/ruv5fr/i+DfhXwD27zf9L1/UXb2h0N4B8Jo0oyxQymUWD4VK+qik8MzRAw7IupvrPY/d6rrp8Wy4WcNfVkwyH5i7iRYcfD8yg61X94SuX0RbrUBcpmoiMKCCYuPJ2CJKBH++JAsL72mBCsjjgBoJTyWyfzWgs/gK5mLVQ0pHZopEIiBJqNo4gSVSKGQRRRjRXK5pvNCBWs3Ekhxc1E39HXaGuhffbdlvtRb762Tt54Td7OBaS5nh8olri8c1ubJLIinXbOLbvKHVeC1/+zE5igRkCI0PUeazU+fMkYgLlXIZ4usATD21gcnSCnx/J012vY5NU8rrE5uUW1i2vYWQgh390BNkg4zOniZTMCKLEsWnQNYntHTrlYpmsInEhIoBomGta1+jQ+OgjG9l/6DzlskJ9Rye/PhjC5bDyzR8cIKcZqbdBW52Bxx/ZMiuXc+m3appGKhzC5atHVSpIsoFkKIDRbMFT38DM4AC+9g6iM1P0rl9NNJHj9QsaHfYUoXSWaa0DqZjhf/9fnpg75po1ywn7A7zdX8IuxFnRYmd4Ks69929kaDzCdDhLMJblP339blavKOO8rIAvnCxQqMwQjmZ49YKIR0lS0IxMpM08VGOn0TRDUG3gv/6PF9i6up7D4zr1lhLTwRRKMc+63mb6Y2mklEpby90AyLIISomC7KK5yYd7eJhoXuTgsVFSmTyDMzm+/LG1+OpvvQvY+2272US8KksWDCzwfalIGG9jEzH/DEaLhfDUJDanA7vnUqLgcmQS8TllH1WpUMznqoXNRtNcckKSZFx181eYFutQZ7JarxlQ1zS3UMrn3rdAGKod77Zv672hbWVHLbpSXrSuQhClqrpPNlGVXcslEY1VBQpNKc0VQBtqW1EzkZtaodMrZST7JSm324n303a1SokvP7mcZDTKzw4m0eVL13V9o8qqNjdtna3s330U/8gwjz+4nmIhTy6VRtBUVvgglsgRmpwgFk3R6HOyttfBMy8PcGoI7EbIFqDRVuHhOzpIxO2Ep2ew2m201RkJzgqvTGWMTGUUWl0CXc0GxiZjxEpG9o8oIJgRqCZLHtjajNfr5nvPHmLznffw4usnaXJqvHJ4mpIWwm4WsZHg8594gL7Twzx3fL5WtFHLoegyKhIIAjXmClYDTOfM/HxfmI9v87Bp0wrUUpGR8RC/Pp6lEpumHMlj9DYiiBKSzY0gVWOUi90ZlUy0+p7PZynHZ6qceV3nrXgdWVXirsgwu+8+jc0kYZAlQORMWOPtgIH763P80YXtOCoxAhUzsq2Bw9EkX6gd4v+O7+RrJ3tpKI5RNkgE3XYs00dIeGppTWfwygLxSgVPXgDHrNKVUkKx2JEqFtoyWU5S5oBNRi5FecFcYEdB4g7zO29KAzcQDAuCIAF/BzwETANHBUF4Xtf185dt9r8Bz+i6/g+CIKwCXgQ6bmlkl8FksRIP+K/ah9tsd1S5ZBYLwZEhfB2d5NNJysUCuWQSq9M1z3nmkkny6TSexiaUUlXmRCmXkY1GcqkkvvZlhMZG8DY2XVfT8nq4VlHEYri8Yv9Wcb0uehehVUropTyS3bOIdFASXVWAS1QIyequFo3MFnNopVz13pTyVV5yMYtouXE9S8niQM1EQbi9BR8fBNtNFAROHT7J40/cSeXlU/QFq58bBIWe7haGhyb44S8O47YbsFk1/CPDZDN5Tp7389kvfJR46Ty/OJ4CpYwuSDxtnWL1pg2MTu/jo09uY9/B87xxvkTfQJg1nV6a21sIhqK0drSiE6fZXmZjt4e3TsfIlRTu3r6RZDxKc0cHz/5yH2a7gVMTZVTRyEwaXnpxP0NTaVqaahgfD9LdZOWJx3fw0+eOUiwrfPkzO3jzzWO8+eYxRoIlkKr28l++c5KVtRU+8+RWRk+fpLalleDYCCu2bCcZqv5ou8eDf2SIUqGAYXoKg9lKgy3Fg3evJplI8fKBSbI5hddeOwIGM3dt68JstWJ3OjHl/BgtEp/42Efmrm3fUBjR6sKjhjCazfMmr2F/kF+8PogoSnxkZzNN1gLbVi1HFhRsdifN7S3cvV3jhbcvEC9qDI+FqbV6kNQCutGBoME9O3pI51VUTcdqrx575x2rWLOyhVw2T2NLA5+wWDh0eoaVXfXsOTKCohtQlVtvvPFBsF1BFEhFw4t26HTXNxAPVOXT8uk0BqMBb2Mz8aAfQUhVdYm9l3irSrlCaGwE0WCc6yJ3McjOJuK46upJzAbK3sbmWxq3KIo3pBz0fkLXdZRsvFo0KhvnFcXpmoqSDIKuI3ubEQQBye5BycZni5NtiGY7SiqMZHWhlQrVhIR48wkXNRNDusVOeVfi/bZdQTZwqm+YrZtW8KmdRn5+5FLw2FRrpamthd++fJxoXqKlCIXJcURR5PhAjB2bl/HAvd1843vHODMzgmp0sr0uQs+aB9i6JkWTz4HT4+Svf3SWoCozNjLF2s3rOXfsBE6fA13II+tFHlrvZnAqw0jCQE+bg53be1m9zM/YVJLpWImZeIlo0YwgCLx1eBSDXqYsmBkfnaZUKPFHn9tF35lRfnUwwp9/rIdMOstLLx3Cn1CAS8+jUcvzp59Zz8jwJL4aK6VcDtnsoam9nW98ex9lg5NiNs300ADHLyQI5UTUXKXaxMXqphKfBlVFLRUQTWZE2TSnU60WMqiFLLLdNddNUc0mKJs8OJOj9LhU3Lb58c1/Ouqhr9TAR2aG2GWdpMFU4hNNUaZyF3h0mUC2AkcODfJ2zkBO0NhQcVLO5QhYDFXOdSLBcksjx2WNFkN1Ul1ndPLnmo2ZYowWcw2KXAvlMD5dRtE1KkYzlUKZW8WNZIa3AcO6ro8CCILwU+BjwOWGrQMXox8X4Oc2QpLlBQUSl8Nit8/raBQP+hFFiWwyMed0Lw+GbW43Do+XYi6PMttuVTYaSUUj1LV14h8eoKWnl3wqteBcN4tOVwmzUeT87FL0BxFaIYVkr0HJxBYUXui6hmixo+UvaR8LsmFeEYdoslUl2yzOG9YihqrEELqGrqsIouGmK9BvAO+77eY0M3sHi1hdkyRzCmBEVxV0XeWbPz6OUS9gtDkZS0ucnC7TW5/EJJR57LFdTA30c6o/gMts4fMPruBE3yiNrU0MnR+gP6giv3GakUAeMNPR4sFZW8vg6T48tT7+/rdTiLKZ7Q0CmzZ2c2owSk6z88+/7MMsllk2lqa21sG9d68n+YsjjCSh0a6xZW0rD9xfx3eeOYpxJkUiXWHP/nNMxRVA4ODhfjRV4YEHt5PP7SdcKDGVqS4BJrIaF/pHMaChqSquOh/j587Mdf+SZBmL3U5b72oSoQAb1naybrWKUi4jlkXuWGHhjTErJwcjFMw+alzTbNq4Ak1TUXSRRFFmajJIa1uVwvPoPSs5+529FCzu+URsoLbBR71LIq46qal188d3zK86LRdLjEzFafNKZKVG7I4c7c02hmdgY0uF7mUraGjy8ZmPmvnlq2fZc7Cf++6qHsNiMfHWgSHqpuP0DwaYjpVY3mjh0x/dSrlYvOHCrOvgfbfdaxVGXuw8dxHZZKK6qoaA0+slHY/O2142GvA2tBMP+pGNJuJB/1wXOUk2UMimsTidqBXllsd9MdN8PYWK9xNn+oaRrK5qHceV2VxdQ5BNoKtUb3HVtq9s7yzZPWilPMa6G+epq8UsermIrmvVIl5du6o6xS3gfbVdQRA5OGHA7Q6TzZe4eP0MSoaXT2R549AINbU1hAoyPz2UodlWxKCX+NhD60mHAxw6GAKTncfXyVgsJrSKiej0FGeHwwxOZ5BFP4LRgkMu0rNmLedOnGb1ls18+5kjRMo2PLLCpg1dlCuDjCTK7D6bom9gDy0NDrKpNE9/5l6OHR/khVPVJNL2lV7aupax71A/+86EsRtk3th9Bn+8hGAwcfDkOIJS4qEHt3Di2Flqkhp9MyqIBiq6xMDQNIlIgmafA0wmlFKRX//2EGWDY65/QM/GTYxGTzCY0zGbM2iSma0dEuauNt7sS6AqJQxO32zzl0sQTZZq18JZ25PsHh7UD/OKZyP+XJwrU3b31SXpjy7HbTPyjZ0Xi+ytbJ7933NjEu2GDE5XB5W8Rm/RQEQsskGzY/KHuc+7CUEQKBSnOCznqVdsWGQzkigRk3T6lAC+kspZh05zNsPn7b10ZnKYTbe+EncjT0EzcHnbtmlg+xXb/O/Aq4Ig/HvABjx4tYMJgvDHwB8D85zp7cRFJ55Pp+ZpXl6EbDSRS6UWcOEkSSKfTmJzeShkMguW7BbD5d3pFsPdGxtpbK7nwncOo5sXz5Yuxnm5/Hi3M0u8+DhF1GxiLpDVKiW0YgZBNiJZXZTDY1fVLZ47wjukN0iOGsrhMYx1HXNZaDWXmDv3LeK22e7ldnulDvT1kKiY+emBJFCdRW9pl3jkvh0c23eUrhWrcdbW8Tf/eoSK7KA/Aj01Etl0lvGpMK0NToYCVf5bQTXw7OuDxPMCBcnJkXENWQOrkEMpQS6VIFXQ+fXbQUS5er8Oj5YYmNqHJCj84c4ajvZnOZ9wERxVsQhFIvEDjIQ0MBmIFiRGJiI0lVXMQpltK2sIR0SePVlCEKq28erZIg0WsB3s4567VpNNZfmHl/1IspFQ0cQzB9OImoJDPcXH72qiprFpTvvb7vGi6TrTA/246xvIJhOYLFayyQTNXd0YzWYqlTFGQiIdjhyre6vLzHank7UrfJwOCKQzubnrarLa8DlEiqUCqqIgGo1MTgQYGIty59ZlfOKR9Tz/9hDJ9KVWnRPjM1gtJtKpLMcmdYRMhYoaYyiaYjhYRHA0sHWNkzVruwBIJtJMJmUELmWXIqEoJ6c1aiNxinkF1WDj4LFhPG47IzMptm/oxOm+5SDsXbHdd8vn2t0ecHvQVJV4wI8ozZ/YWh0uEsEADo93gdSlqlSqzYIMhkX5yTeLcrEwr9nSYrhdCkPvFHV1btTsOFxWR1ItRgbZWYumlBAQ0Et5hKv4VkEy3LSP1MtFZGct5fjMrIpFVYu4qjikLNrM6R3gffe7gmzg5XNlLgbCLjHPv/niFs6ePE9bazu+tjae/e1xzoVgJmfGgk4ymSaWzGMwm7GLOcCODrx2OonVlCVYcEGhmrl3SVnKikgmEaO2zsP//d23KZp8CAIkVTv/8weHSJdFPrreSKUi8NKgg/C0gK7Z+ckvDxBOlgA3giDQN5LAbAuSLWps77bi89XwvefPkzPUIghwdAokTcJ9chir0chTj68h8YM3mSp70CUTL5wuoutWzvnHcMkFTFYrgyn73H186ZzKTOIwgWiedQ12nnxkF2+8eoBHHr6DWGCGYDxH34VkVebvsgnXxSZZWn5+UnCtt8LxqQkETQEMZIoq/3jBzj31Of7jVoGBty6QV+W5Z8yfVhhNCtzZJvHPE430p6sSsqoQ53ktSL5uBVI4yNP27rlzTBogbrOTSxaxyFV/cdagEPB4KI+Pojs7mc4MMVKIEBQrNJSLLDfdmoLK7ZoSPg18T9f1vxEEYQfwA0EQ1uiXN6mfha7r/wT8E1SLOW7T+RfFYnwzYN7y3eW4GUpEdHoKXdepaW65ZsX1Cwf9mGT/VQPhOzt1Whqc/HxfBFW6tarnQjaDwWhCNt4cNeNKqR6tkJkr0NAlA7KrHr1SvO0vEMFgQs0lMNYvR8sl54TtZWdd9cXw3uCGbPdyuzU1dt+S3cazFYJT0zT4HISmpzkzGEbVBbq8FcaiOpmizqtHZti+poUd3W2c/e4B/uGFaRBlBGH+UugTW7x0d7XwDz86SChWIFEyoF0mdYVkJKkZ2dyQp6O3h1gqT0O9keGZLOG0yl2bO2j1+gmlS1itJl7uVxEGkmiKA0SZ+qYGODYJl3HegwUTkVNJPHIRX1srH+0p8+KIkTX1CivbPfzmSImUWE/H6ku6kjH/DLqmgSjS3N1DMhJCrZTJFguY7HaGT53A4fXirKvHP5PHJauYzNXnYXx0mm0b2rljo05D8yXuqiiKCGYnCa26vNi9chkHTk4zEJPxOmcQBZ1Q2cZUMM2qbI50Ks2/vjaFx1jmT790F0+ki5wfMDITybGuq4HxaAUjftasuTT5bO9s4SsPgdtz6fltamvmU7uKuJ02vB4HP35mNzN6G6/vHyagejEZJrl71+pbMZEbxU3b7rvtc0VJorZlYWW32Wa7asa8oXP5DR07FY2gKhXMVtuifv0iLLO0Obt7cR5sIhSsZkQRFq0DuRkolQrlYgGr4+baHDc21c3zu7qmgiAiSFKVPywbq+2Yc4nb2rFTsjqrPtZRUy10ts2+8zQNyV6DmkssyEC/S3hP/W5JE5kcm6ahzkYsFCIQSTMdr9Bs1ciVBUqqwPGBGJIAH398PdHMSX7TVwG9jCDaSV/WcLKnVuXpp+7m2d8cpW8oTkOdjZI83x5Tuh29HGf1ho2kolHWJAM4rEYOjkFHg50719bx+sFx1qxuY09fkXO704CBWpfGqg3NeD0T5C6jBquikVfPlniwJULU7+HeDV5+fjiH2Sjx6NZ6Dp0LM55yklKckK4ulHkMRTavcHHoQpHl7T4efbCVnz93kLHRaTwuM6HxMfbsP89wzo3krEEQpTl1kqosINXC+yv45LLRRNzezb5UkcdJ8dqkxN9FN9OfucCG2hDHis2IRY1yJUm+rPKfTrawr7iMHwv7+f+smeQ3oxIvxJoQsxVaZDf9/jF2UDevj9knFA+5RJla86VzP6I4iIQy9LpW89bwaY539/C6f5x0Yye+eJwb8yJXx40EwzPA5d6tZfazy/E14FEAXdcPCtU0Ui0QvsXxfSCh6zrFXBaT1UYiHKSmoemq/NxoyQylxY5ShcUk4XI5EAhddZsb4RHnUkmg6ugtdjvlUnHRgpQb4RGLFsecyLxotKAW0ohGyzUDYV2tAMLcktvFSmVBkK5anFEtsKtmbi5uU+UjR26aa30VfCBsV9RKLKsVGYvqqKKRTEGr0ngyBVZu3szMG0d5+p56mloaeG3fMJtX1lFT5+UffnKIE30TqKIFQVz4qDqkAv5gkWJZJS/a+fnhDCChayqN1hLRgoQiVD3MCb9M/pf7iKWL/Js/fIDavn5+eThBKV9g+11buXDyFE2dnewfOAtGG6Js5IevTyCgI8gLC3tkygiCmVwqSXNbE66JMLVuO53LGjEeC1HSLrMvtcwfPeBFNhgQRZFEKFjldTqcqIpCJhGjtWcl2USCdp/Il+4U59qtR4Nhvv/6DGY1zVMPrORyjZNQMIqoFFjv01neXe0Id+fmNupGw6xe2YLJYsEknMdb6+WbPzmJ11RhRa0Vj7O6fLh1y0oyuTLjRS+CTeBPP74BgL0HzzE8leKpB1fhdDtp7ajyNi9cmCCRynHHtl66Ohs5c6qf5pZNPPHoVs4MBOhq6WJ4OsX61bcu88MHxHY/SMinU5gsFuIB/3WD4WvRI3RNxeJwUshcve39jSIRDGBzu0lFQpSLVU37G+26dzmq7aA1dFVDkF2IFidqLnlNpQdd19GVEqKhOmnUVWUuibCoNCbVGpa5YxouS76IImo2huS4LUWHHwjbbbYWyVUgWTFTUESKpQqldIb23l76z4/zyCYvdV4bsVSRyVCeh+5dy4+fPcBPf7GPYFJBEFxcWRUvqiUEpUTf6SHCaYVzYRkm8yCZcEgFBHTS6mxXT5uXH/7iGCUNHtvRQkNTPX1DBynnLbR2r2NLpsjaTT30jx4iO2uKb/cXOTexn0DexGLiUyazmVwqgcXuoKcuRzivsbyrhQvjcbiC1bmhVWJlm4spf4rTQ1FmwhnGkyJKX4hUMk1nVwcdXR1Mnk/z+OZGjp0NEFCq712tlEO0eahEJzFeNhnTdY3xlMZ29SRfX54GJB5pU/izwnHu8uUxGiS+v64Pk1Hkzw/XsTvbxtOefkR0lrkFGhwiNXKeH5xqw+ZK8DCtPAz4y0l+oM2woWJgrcmHw2DFJdhJVHKc0TNsEJz4jE6i6TgpPcM9NWswhCM0irWEQgkaMd9yU+AbCYaPAt2CIHRSNejPAZ+/YptJ4AHge4Ig9AJmIMLvKARBQDaZqGttIx68NarTq+cr6H2jiMYblxvSNI1KsTiPBy1KMvl0Cl3XKBUKeBub5gpcroVKMjhboOGdqya9slGGdJ1iOF2toGYT6JqC7K7K1emVUlXbOHNzZiBI8jU74N0kPhC2u7rJwCee2MxvXjnFiWkdo1TltJ7tn8I24cduNdDS0cLevX2EY0X2HsuhiNVui09/egdHj13g6ECCaNk6b0Ly8V0N1Df4+Ot/PQoW99znzbYyX396J7v3nWP3YFXzUReN9CeM6LqVgVOnqfHVUVHivHwixvJAkdNDKYTT5xCMl7J3GXUhNWZHu4bbZeGVIxK+5SsIjA7Tva4LiyHM3jNRDvWFKF6xXGUVS9S1tpMI+HHV1iIgIMoyMf80Tm8tpXyOfCpVzfQK0Lqsg2wiDoDD7aTNUWR4RuG3+8b5ixXVd2wqmebHz58kntOpr7fO6Yu3tNbT0lpdaj967AIvHE1yT28Jk6hgtRiocZkQxUvXcGhkhnJCpz+dpVJReOKBtQxPJJhIm/BPh/jX505hN8LX/uBefvvWAMmiTovPzm/euEBI8zAV2M0nPnkvjU1Vm13Wze3CB8J2P0gQRRF3fSOadmvJbW9jM/lM+qYL9Yq5HCbr/GdQ13WK2QyarmP3eMinrx9gnzs/zv7TM6j5yjyaw+WB7400K1JSoWpH0XIRyeauZvEsTrRS9pr7LYbbnA1+323XUEnx5U/tYmx0mh/vS4Ku4qn1EA5UmJmOUMgX2Lp9DUcPnmRgOo+mqvz65ROMJiQ+fWc9LS0NfO9n+0joLlTx0n3YstzCYw/cwTO/2k+keOn9q2sqn3uwDZPZxDd/NTJ376ZL1UnZwGgYr8dBvc/B/nEdZfcZBqZS7Dm3j0jRPBf4qqKJYHEee4YmW5m719fy+okwJdmNKMp46htxuXOcDhX5799+nayhbkHw7Pa4cXhrmYwMkNPMDMV1tnZaefzhzfzgmT2EI2ky+RIeq87GTb2EEmUCExefLQElFUJ2N6BmE3OrGJXYND+RWqkzlVnmqVLWbGaZv1hfAAT8qTJfObuebmOMdksBh5am3VYmrquoswIIY1kjSjJIIhXjFw6ROzQbQSVLoM6LL5okUJyi3wKfLtrpJ8cRi04uG6AuD2821WBMBPlzqYe7pSod9na53OsGw7quK4Ig/CnwClUJlO/qun5OEIT/Azim6/rzwP8KfFsQhL+gSoz/sv4+CRiXiwWiM9NYbPYFrTtvFtlkAqPZvKhUkMfXQDzox113dY7b+kaVplorL5+ebcahqwiG+ccSRAnBeHUVhVo5QwUDxYpOLpXENttxyep0Uorl5/iYlxcRappGIhTAWVtLKhrBbLVdVYpIEEVEkx2tUkKS3qn8mzDbZenSCpfkqKlmGqy3V7LnZvBBsd2RUIU3dp9lwF8AzPjzZr7x3SNoJgeHAglQdfYOHAclzxfubyObK/DK6SxZ1cChowNIapF/98Vd/OOPDhAuXbqP/ukIJsr0NFsZiF86XzQvcOBAH4PTBeamy2qFTW0GpmIlXjilIwnjCCYbwTwERxQQXTB7+wStxCPrnQSieU4HJPRyDmQzPjHO6s7l2NweXj4S4sKAn0hC47nvHqSsy/zbp9YQi6Z45nAGo5phTb3GmZCEKEEqHMRosZAKh1FVFU1VEUSBeNBPfceyOapRKZ8nm4hj93irz5evgT/41E5eePEQLselTFY8miItuKhzpLln++ILZAaDjEErMjZV4KkHVtHY4OEb/3IUERV/aA+5MrhtJsRUmZLk5PSMzvqJaQKxImYlTlvHStSjIZRZu7ZbDWQNLuKpIvU1FsITcRpW357mElfig2K7N4ro9BSqUsHicM75pHeCcrFAuVhclOLga+8kEQpgc109K5yORVEq5TkN4lwysSj97Vq0hnQ8RrlQwOH1kk9XdZbTsSiywUBsZnoeDeTyLHAmHsdit1PIZlDKFRzexQPMqUASf86Crtx80Ho5BEGorr5dTGKY7bOreDeeWHk38EGw3bJk54XXTpPMq4ARwWDhuy+MoYsSgqwDJg5/Zx8FVeb+5bB67QpefO00Gl7OjcSJRZP88RfvZd/hIfYMVeaOO+2PExofo7PORP9lPlcQJY71TSJI0rxVzVZHCbtJ5MiEzmRsEH/OhCBK7BtWqFKlLwW+a+sVWhvsvHIyhaKJCFoFQauwbZWF7p5ODp2NMB0tYrGY+Mn3D1AQndzZbeLOHffxrZ8dJ1420etKkSyKxMsm3jie5K1TYVY027lvZzdv7zvHtrVd7Hn7CP6skdEjVd1qXTfzt/+yj6RixCZWKOkyOGtxVkJIYpa4cCmGEo1mTBYb/7njALAwLjKIAjY9TzSr8nhDiW/cMcGfHqzjhfwqOHGQ/YU2vlo/jFEWUI1mRmu91IaTpCUNNRGitWxkXNZRZSMaOpayguTzkSlG6NXMCJk47op2sfzmtuKGOMOz+n8vXvHZf77s/+eBXbd3aO8MmXgcX1sHqUiYyPQkrT03pvV4JbKJOJLBSDoWo7a5ZcH3V2pdFrIZCtkM4mX94Nsa7KzoauGN06d4dGsNvjoP//zCKBgWGhHAMneFVp+VPRey6KKJOiHK1z6zi3AgBIJMKp3jv/1skPXNAvduNiAbF88ciKKIt6GJVCSM1eUiHY3OjVWpVKiUSljsdv7qaxuJReKUSmWaWqov9WtJsF0NeqWI5KyrBvazWRNBEBENZrRKAekKjWVd16rNOm5CeeKd4oNgu04LlCsK+YpYfTUAutl5aQVOMlJUBf7oI8swijp1rW18wRfjZ29O8Nq5Eq0OBX3/cdCrlfbtrjIOsUQmo9K4bAuOC3v5/J0+3joRIlPUWVWvsX1rLxOhEzDbBbPGXOajj27j2PEBfns8xX29JnL5CicmKvgsRVZ11bPvfJoSJsx6nva6BiRdZTiY4o8+t4ZTJ/rZsesepvrPkkklafHKvHq+DBjRRZE7lkn4x8aJ5QFkntxkp6WjlZpTZ9mwbTPnTp+nqbWZSi6B0WypNqDRwdvQOI9zf/G5ivln8DY2kQj6ESWZj35kJ6GJMZRKBdlgoLOrlS8JUFOzEqfbSTQcxeG0YzKb2b33DJFkkScfWkexWOGVs0Xe3D+Ay+Pk0U1e3F4nrx0cJ1OWeGJXC5/p6CAwEyaVydPa2UqDN0AlV61C/w9fvGNO5eSOja2cG47S3Ohh/YYVfPKyexwMRDh0chKnWWfzphW43DfHIV0MHwTbvREkgoHqvQoFSUUj2FxuJPmdlaOkYzHsbs/chOhyCIKwQOHiYu1GbUsrgiBQKZXmVsVi/hmcNTWL6iRfRC6VpFwoVKXgamopFQrk00nq25cxef4crb2rSIQCyEYT5UJhgWrJ5bgY/MYDM1id7nm/IZtMzAX49+/qZVmznx/ve+exn65UEM0OBKN5XjMn0WhBzaUQTNYFTZ60cgHBYH5PCgffb9s1CgpWq42J6GUTDqN1HuuhKDnZ2SWwemUdNY3NPLAzz7npAgdGVAZDJXTOkUkW0DUTTkOF5bWQy2qY7Hasthwf2yQTiuU4NKrSU1Nmy7o2AtEcJwKXCnbv2VBPe2cL//Wf92OzWHlypYOXj0WQ1Tx3rGtmeCbLVMaIruu0eQXam5yYTsV4dJOXxno3xUIBixHO7t9Hm9vInkkDF6J5MNTQ7qxQYxcZOD9IURXossZ47IHNRP0zqAY7RkEhEstQW+shGgyjA5qmc2aiQFG/5J8EQSCl27FLOf7085vpOzvGS30l7rujizWr2/kf332L9GzgLpps/HLTUdbVW0jmFXJljWa3kSMBjb8fbuDfdgV59f4xVr+2gf9zIM+FTIQNtjh3eg8wnRUJl3xIDHDhI4N88xf3MhhMsVL2ckKN4a6U0DSJx4ytPFAoYTKZsYlGArEEyysSHfZ6/iNcnEOgaAp7lBBaqUi30UO76dZWN267ltW7jeDYCOHJ8TlJtCshiAKJUJBkOER9ewdR/5VUpRuDZKhqDmvqjWmGFrIZPPWNaJf1oH/xeJK/e+YkZdFGOlMkFk+hX8MRrWwysGaZG6dUnYkKRhuBiQkGhgL0j4Q4PxQCUaYvKOOub7hq5uEijBYrmdj8QrREMICqVOY4xjV13rlA+J1AzadAEFEz0QVOVivnEUSpKs1yGZRUuEqtyCXf8Xk/TNiw3M2dm9v4g3tq+MR6WOWrBrWd7gpPbLBgogSixMBImPMXJpkcHETTdGxyhRpjgelIkY1b1vDojnZ0VeGRLQ08dM9qtm5dwejACOWKzvKuNuxmgV0rLGzf2MG5Y8fJXsZVj5bM/OiXh9l7NoGglVm/up1lLW4+c3c9H7+/h20bO6mzach6iTt6XDR0djARLqDqItFwnFxRZWJ8mmg8xcpNm9naZcOuxtF1DUnNcc+OHpqafTT4qlm7cKJEpVRm0J9nZGiMlatXYDYbsTqcNHQux1lbh2w0Eg8GF71mssFAIhTAYLLgqvMRGB3C5vbMUX+KhQLheB4d2LP7ON/8/iGe/W11IndmNMm5gE48GmfD2nbu6TFithg5ExApaxLd3W185ZNb2NBu4J9+PcxvfruP5tYGVq1ahmwwcM/WNgKaj+deO4dsNM4Fdmt62wmE0/z3f36Df/qXV+aN93R/gNMBkbdOJ3jjwNDtNJ/3HfGgn3jQTzq2eFGr0WKZ9blBfG3thCcn3vG5dE0jl0oiGa6f+tF1HVGWsDgc1UCVamOkRCiAp74BURLJJhNzFJrFcFECLjfLHxYEqBTLzAwNYLLZqu2czRac3hrc9Q2LJkauhKqoVaWU2QREPOjHYDQRD1TfRUaziRUrO2+oI+nVoGRj6Jpa7RR2+blzieqqXCa24HNdU1FSV69N+V1Cswseunct962y8PR2M/d366CWsVDkIxuttDur8UMgXmJiOsbR3Xtx1tWRC8+wzF2iqMnIJgtPPrkLn7nE5i4nd21p5/Ofe4DA+ATTwSRtrT5qPVY6XSUevaubVDRKNJ6fN46XjwT5wS+PoRpdtPpsrF3TyZYOmf/l6/exZrmHnjYHuq7TYYyy6Y5NRGI58oKNTLZIIpEhGE4xNjRB1/oNrOzy0W7LoyvVYHtdp411m1fj8zowipBSTJTLJQLhDP39kzS0tVLnsaJLBn64J8apsJXjfRN85uGV2MXCgmtW1GTOnB1nMlh9X799OsLpY2f50lObMevV7bVKiZwiMZ1SeODlJh7Y3ctkosyekI23SyvYF7JhMRn4655+vlo/zI/T63kl0cjTKzX+cnOFf+58nf82tYrHXqpBFEQ2mBswyyZ2mpqQDCZe9dlJltKYZhUkPAY7LlXjBTHO3+TPEipdIkaHigmO1bk56pD4lTmHtlCv4aZw2wUG301U5XeMGMxmVFVddPAXMwdKqUQ6FqOQyaA3NlHIZm6q4vci7UBTVfKZ9HX3dfsaSIQCWOxO/upr1TH8l++cRJ1dpn57GCCPMHuTHVIBXYesdilL7PW68NQ3kC0MgRmMBolkUaIvIJBRqw79Yrz5f3z3FHDtoror9ZehmpUt5nJXXWq8eLz//Hd70Qrp2U5yTgyexTMrgihdlaOmaxpqIYNoss8V5F3sSqdXStWijZvoVPdhxd5zCcbGg3z0sS1k4hJ5rcj5YIZ1LRLrNnTT17+bqZKHvaOgFVX++GEr8aCfL37mLkYGxvjxvgi/fa2PfFlDkEy8eNjPqjqNlmYPze3tTEUK/M233+DONXXUWBS8jc0MT6WYSaUQhAqCbMAoVFA1kXRJBIONb/3qHIoqsGuFmVhM5PSbIwSLFnYsN7JpXQtHDp1mJKxSxMIP96UAGxZrgtU93ez97Qt0rerl03ebuTASoamlgZh/mnKxRCRcAmTyqsyZwRDjRR/TJ4qsDo1hUPO0tfkYGTuCURZpa2uYa3pzJa4s/PQ2NpNLVTnxAEdPjvJmf5lwYoSRqQyiuwmxUg0AuuoNBI8M8qOfj/Opj23n7p29pBIpOkZCbFzXAYDFZsXtcgAJTs5IPJBKYZ99JrweB+2uadobXIyNznDm7CgP3r+RI8dHSIcDSPW9zERmKOTyWGzVgOeOTR1oyiCxpIXVy29d8/KDBE3VcNXVkY3HF/3e5nJjc7kxWSyko1EQLq2smSyWawajV+Kinny1/uHa6jWCICAbTWiqOhd4XlwVg4U6ycVcjnwmhdvXMLcaYTBZ8DQ0Ep6aBEBVFKxOZzXbfEXge6MZ1Ss18UVRIpdO3lDwW4nPoJULaLqO2dcxR4FYAF1DLxcQrvCdgmhAzcYQDKaqZqxwkYssoJeLCIJQpVKY7bcUjH/QMZ4U+eEvjrBumYNaXw0er8ae/iFaLQU2btiOXj7NxDkYTxkZP6PyRK+FciHPpnXttPb08s1/fpWTQwrx9CmiBYljQ2nyyRgbVheQjQY2berg7396jJXNZu7ocVEulehet5ZnvrUXXTQimGzouobVoBPLV+3m7fMZjl44RJ3LxMjwJIdPTTKdM+OWFL7w2Xu4cPoch4bygJE9owKM5qk35fnkPV2cOXIEb42He9e5yGYKJBUJo5YjHgwQ8IcoqgIWi5kpf5qj0xIpxUbit6cx6iU29kpsa9VYt7qOZCiIiIKkFECcv0KtiiZe7CsCVZtLKWYiWQ1nPIWqC6iFFJLZzp/1LeNTDUFizhV40kPYTQKP1Sf5zvlzfM9fRsmX+Y87DGjLBDqHDrDaqwIigiCwwmdG7Csw6l5LXzbBNvlSIq6jLJDWcoi4eCU3yjIsGGUzI2oGTBYUl49zY6PU11VjlCZLLQ8GA4yrRTwGO6Lp1uz5QxUMC4KA1VWt3LW53Ituk0slKRXy2NweUpEQmqoSnZnG4fGSDIcW1bGMTE0iiCIOj3cBtzbmn8HmdpOOx64qyQbznfD1oCtlvvhEF+VSmW+/FppzSrtPhzl+IYpiqi6hN3iNrF/fzYmBKJlr0MvS8RhquYxkNF5zjAC+to55fyfDIWwu1wLtTzQVXdcxN/VQSQZR86lFNS1Fs/2q0j8XK5qVdHROqg2LA4O7odqBKRVCNFpRc0kkm/ua4/4wI6eZGciYGfv+IZxmlbjqYkObkZVrVzJ2to+sVp0wddrSGF0Cew6PsnNzO+ePHEW0Ovn/s/ffUZJc15kv+ouIjPS+vDfdXe29hWl4gARIgiBoRIhGhqREmZlZV/fOPGne3Blp3psrN5qRRp4iQRL0AEk4wpsG2ntX7arLu/TeRma4+0dWVVd1VzsA1ICQvrV6rV6VkZGRkSf22Wefb3/flx/q4fEXx0B2YEdhU18dmWQSUbYTm5zARoX2eie33L6Rof5+3nz9EP1TFb5wVxvFXIafna6wbamb++5ayxM/PsRoFhScIMFgpIJNgmjVjSDCwFQRmzVEJFpgU6+bfYMKSLUqXalUxWKRuP0jDzF9cYDOFavIZI6yZv0Kjuw5RGtLAJu1VnFZ1h3E47LT3pAjmy3ys/PwoTVBurtaGCzkcPv9Ne4wZk12DfAGaxq0ydD0nKmDoetk4lFcXj/1be2UCwUq5TK9bX5i0UHW9vXR2+bn8PEhJrMWhoemsDmdGDYveU873/7h2zgaOmkPyjz2yYW7stu3raSq6lSqGi7vpcVuoC7Ar/3SrQD87ddfIa77ST59mKQiItT10m1PEdK8/NOPDvNvfu1OBEHA5/fy4AOLWt7/wiPY0kp4ZIhA0+I7SJqqkkvEsNodlIsFJIuFbCJOoKmZZGh6UcOkWZm0xRRvsvEYVofzCn7uYrhevJuPUi5DoLmVdDQ8F6sdLteMDJsfqHHWffUNZBPX7uVSKwq5ZHLRpPlyXD7nzCb6i0GvlLDWd6KXs+jF7BWyl7OQA4vPNbOqPEalhGCTMKplTNOsNdiZ5oyGuw09F8fie/eazu9biDLDGRg8mKTRMkbRdGC1SHziEzsZ6z9NNFWjeLnMHGvbrbx5IoNTquJwutm36wBf+extfP+Ffg6PmyDZWNNu4BAFJKsDpZSglE1hKkU+9uGdZOJxBodCjB0Js3mZl019dby8b5ySbuFXP3MbR49f5MWTJUzRRgEbek7h3FiGiYITXbSSVavs2n+BWDzHsvY68kM5MmptTkjmqticTpasWoksW2u9FkKS7rYuQpMhMrEo9XUBVDVJS6uNDZtWUMkfpLnVzU935wh6bfStWko0lsbtcXHmfJW8GuKOzW0cPBMjo0iokpM6m8KSFidHh8sYkg2PWMJE4NCEg4NjKURVRXR4sBem+EL3NA/3VAnlDrNHbuGvz3r4pe48BUNCar2Fv5yYoL+Y4LzaxE9uGaQrcCnN7PTLfPvWSX4yWcAbX7XgJ3vAXnvWj2phjrslTgsaq4tZcq09LJkaJVGZ4lhXN92pJL32OgRBYJOjlU28OxvmWfxCJcMASiFHS+9SkqHpRQXkK+XSnOC62x/AE6xjeugioiheVQ9YEEXc/gBqZaFCQyGTplzII1mkRZvoroerVW1N0yQxNYlVhD/88uZFjwFQqxUy0Qi/9plbrlmV0CpKzQo1fHOUkHQkjK+hkXQ0csW9/K//5i5Gh8Z47s2LRKuld6XwIDpmKsPzOMKCICAIQs257ga2RD8IeGBHO2tWd/O/vneEcArOD0yx51iKtBDENE0eumMpDpeLb3x/L10rV3Hs2AXUQgGLJYcpCAiAWzZYu6aHU0fyqJUq9W3tZIqTfGhFA3t2HWbvsEEFKz6zRD4ZY+NttxAtnub8ZBHh7TNMZYwFckEPbG2hpa2RP378MNi8lFU4P5bl1jUNrF7dw8nhAxRnuhWOhiyk8oOsX5bCYdHZtesox0cVjg69Tros8lhHMxs3r+LV00f58Z4yTgp89Zdvxx0Nw6kIr55SOdh/mGXtPk6fiaBa3Hx8s4uWujrCQ4OU8jka2ztxejwopSLxyQmUUoH2vpWko2EMw6BSKlLIpACBTzy8k2w8Rnd3D1ORDBNDFSoVlbt2riWXTHByZJK1y1u4mBTn93bOITod4vZbV889WydODgGwccPSuWO2rGnh9aNROlrruaunAUVRWba0ja//cD82y6VqYUVR+NnrZ2gMOth56z+LxvA/G4qZDPVtHRQzqUV3yPLJxJwVs8cfINDcwuTgBYrZ7FXpbFq1SrClleRlNDa1opBPp3Bo6nvuSClKFtLR8AJ76dmq9iz8jU1k47GrahTPolws4q2rI59KXvO4y2HoOkqpiGSRMbXars18WOs7UNPTgHBNWbXrQbQ5ZyrDwrw+DqG2k1fOX5P7/EFCX5PM5x59kGdfOsbpSZWTp0eZChU4k6gpONy/sY71m9cgvHwAq7+JrqVd7P3eq/T2plDVS0GjtyOATTIwEbA4PdS3tPGR23KMXhziteNpUoYHm1nGpqYJNKzg/lsFvvl6lFd3nWYiNq+RGVjf7eJD96yj8swRBpJgIjAZLeGSJXbeuopM4QTHZyxLNFuA7750kWUNBj1tfsKxHKMpkfSBIzhlg9U9ddy6YTlLLxzl+KTG8Df38NFtDTS3tdLkGGYw5+GP/2EXKzq8fPf50yR0H8vrVT57+wocRhGPz8e33gizfmWQnbeuppzdg7/OQV97K6Js5WuvhLl1iYW1vR1MTcXZsO1BGsZ202U7zxf6yrx40k+mmmJFg8xTt4/zlWMiLdYsVosVVZW5fM0XyVXp8wv8WWuWv510E6lmGaTEVjGI3VK7RyslP4dKY9hEC7eKTTRFs6xxLOGQmqC/VMQ6r6HvaCXMtKjzgFA/Z87xTvELlwxbbHbSkTCybfHmMdlqJxUJ4fIFUAp5cqkEnmBwLkFeDJ5AELWiLGjYMAwDpVTC19BYS7BvwpDjehAE4Zr20pe+i+2GROG9dQ2kIiG89dd3zFtwfrudTDyKIC4eGHuWdvPvlna/o6a6+RBl+5wW5nzMr0yYmopeyiLaHIi298TO9n2H4akcVXUERZcplW08d7wIQhB0Fa9U5sTJAj6XBdXq5YfPHCaa1fnUne243E7qpCkUARKqk7984gAFzQpCHptwCrug8Qmfk2hBoCrYqJeL/Pbn7mDw7Hl27+3nwmSRtGpn75AKwsLf4bWjYTwnJ9jY6+X0ZJV7NwfZtGEZ//jELvafiVMU5m3DijIjRZmRkyqmaRCwaWzrsbJ1+yamJqO8fDiMzRLGtLlRBYEsDva8fYjNm5bT0yAxlrOxssfJh+9ZR/G5o1yIw4tHkvjEEj3rNhAeGcbucjFx/ixKsUjnqjUIkkQ6GkaSLEgWiVwygdtfU5rIxKPYHLXF65rlbVTLg3R1NiIIAh//xD18fOay1WrliibOI8cGeOF4njv64txz53o0VeX5fVMArF3VOWdcs33HOrbvuPK3/OoX75r7fySS4NWX9jGYtuG2Gh+4ZNjucpJNJLhiZpuBOxCo2SzL1hkeeAirbKO+vYN0NLzoe2a5vcGWhVWdXDJJ27LljJ05TfeadYu+953iRt3tbsR51Busqyn13KTdsyCKqJVKbZGwCH1ElO3YGntv6pxXw2JV5ct397RCCgHhqlrwv+iI5w1OnBgklFYxJBuvnKkALgQR3BQ43p/HIuhEk0WGE1Gcp2O0dLTR2t2J7+AwummQVN08tSeCJEDZkBHRkA8d546VbqgKJFU7ggSf3tlEY9NKdr91hIzuwpSsHBw1uFwA9/RYEeWlo1gFlTqbht8p8flHb+Hl10/wjR8eYDovwDw5t3jFQXwK9k1WwJC4c4WDTUu9rF6/km98bxfJ0glG4hqCZCNnyrx+eJKHbSJLlnYydKaC02Hl0Y9t5fSpIZ45VuBCTOSvv/k2n7q7C5fHg6pPc3YogZ1jtDR52HHrOl57aQ8KNX37QllFKSm0twQYOD/CKjkONlhdB1/wn+bONg2Q2NHtor+7JhNtGAqqlsZmvZRixnJVPnxgPS1CmpceqPWKHBQLDNYHcUUzbLLUnk+X7OB35EvCB5tnXLvvkNq4g9rt1HSVI5UIu8lguOrYmM/T+S8tGb7ettj8prJZ4f7Q0CATF87R0H4pAdVUFUwTi9V6hTIE1GgPpWwWu8t5U5y3d4pUeBoEAavNflNOeAAWq/WGKRrzUat+XD8IXs9y+r2AXsrOOdB9UJPh8wmZ84kKSAuD49Yema0rW/DW11PKZrH58jxzrIBpiAwMTiFUC3z1i3cycnGUH+zPkTdkBIuVRkeVrSsa2Hc2zbffTjP7OOerEiMDQ9gkk0afTL4KLgo4ZQNNkEmrl3Y5pgs2di5zc88da8j99DBnRjLk82eJqy5M3cbahiLb1rbxwp5xIuqliVQQRNqDMrfuXM/gyROUKxoTOSuCIC4oOp1LOFDPxJjMACKcGC2Se+4oF6MaiBKqaOfbB1V6Bw8Rzpj8f3qX4A4EaFmylPjEBO5gEG+wjokL5yik08h2O4IAvrp6Ak01TetcMsHJU4McnRJxHDzDvfdt48WXDpAvm3zsgQ24PFeOJ6/bjkeI4PPUnhuLLPOhrTX6zs06OL55cJRzk0VsTc2Uc4snf7/IkG32a1IBZJt9Qfxxeryko1GmBwcW7KiZpklVUWo84qvRygSIT4zjcHvQNQ2L/E7lHq+PQiZNtVzCNN+ZTbWv/uZ3ywRBoKmrZ+b/6Zt+/3sJU1dnVF1MTF2bM0z6ICGr2XnueIHLE1KfWOTzH1qCy+tlemycz332bv7s63uIVXyIRoYjB45z17ZOGjs6+R/f2E1J9IJhIoo6d6/2EooXeX0AQJ3jdY9NxLGLOiuWt/PmiRQWU8EtKHjddsZzcs1YBSiZdiZjRX73V27n2PGLvHkyxd795xiKKCQrduxk+ezOBoYn4uwZv3TdgiBio8ot29Yzfv4C4xfOUSgbTE8CwqXjYpqPE6NFJuJVwEbWcPG9nx4mWTQAO4IokTK8/HRPGFEMI9q9tDXB1ls38uOn9/H1HxxguuSi16/x+W0yF6cUBiYL3LVzNT/+yUn+4o4EibLJM5EgX88tZ3/8LDs7CrwxovL10Xp+e3mWOzqEBYkwgEMW6BBTtNkuNRluNVx4Y2mWize3GDunJnlTLiFYagZRbuHdj90P3uhfBHa3C199I4V0TQfSNE2SoSkki4y/ofGqk1/HipVkohGcV+EnXwtKsUilVLyhKgPUJE/8DQ0UMtcOkNl4DNM0b7jK8X7HLHdOtLtqVArLz2/ye7/ANE18ZJEwSZleEskixYKD8NgY01mRqZwE2AhYStx9306O7j1MeGQYUVf55BY7LW3NHDw5jm5a2bp5OUMTh8nO622qCnZ+sC/Nh9bYWbW6h8DRSb782B2ko2HKKjOJ8yUcG8qTzh9jNGmgYUHJR7DoNlTRRnudg+b2dlr8U0Quo1GemdaJPrGLLz66BaVYgrPTIC3c2s6oNo6Mm5imxNKASiQL5+MSiBJusYRuCJQlB6OZS++RrXaKmQytSy/JqRuaSueaVUTGRqhWlJq188y91FWVO29bxdlv7+bgaAP+A8c4MFBA9jawajRMLJri/FCUbes72X5rzalu+fIuli9f6BS2fdsKpiajfOcnh7hlfStLl16brzrb4LV5VRNKJsZkIsz65R+s5rl3DNOgvW8F6cilxUFyegq7241SyF81Lta1tM0ZrtxsImwYBtlYFHcwiHwV2cn50KpVPHX1ZOPX5geX8jkqxeINn/cXAaZpIkgypl4Fkw9kInw57GYZh1AmbzopqiKxcAQmx5hMVDk7UUYR3QjA9vXttLYECY9NMHL2LL/60ZWMj00RbGzgJ7uG2bZpA+fOj9ckzuZhz7iVZCbEpx7diedChkdWBunuasbUVb7zwjlilUuL8kTFxo+eO0Ikq1MybRw8G8UmaoAdv0WjpbOVaqUC4wsbjCuSm3/80THuWmln+cYNtJ6Nk73MeQ7JyrFJABv1NgVZguFMrWoqGRV8VpWk6iJRvVRJPTlRIf6jA0xlZUxJRhDAKpn46gLcvaSX5146ztRkFFWvVToOSCuR7rqfe6JP8mZ+PX9y/Bg/Ga8j4V2FePEsTjHGfzrmZ5WnyH/aphF0WfA4ZJ6/f6GaSZvVT5Pu4iU9gk8RucN+7UXpbL7QI3nZZOpcyExhL1dwWd/9bsov7BNQ49NGMXSNpu5r3whBqFnAmoZBYnoKb339Jcm063Qr21yuORvQm0Exm6k1YsRjN5QQ+xubKGYziya50fFRJMmCOxjEMAxkm41KuXzT1/Ru8W8e6eb1fcOsXVbPk/uvnrRXk5MgCFjcdXNe54vB1DW0XAwMA0uwDcs1jv1FhWmadHoUUiUoziiH9HnzPPbpuwgNXWTP2SyZggWny0ln321w7DSDyZqMTVq188yLx4mmqqzQS7TUOagUFUrFMkK1zFgC/uaJvSQq9gXuQ22uCi4b7D2bZs/pgyiSm/6zo2SiEbp7W7lzKbw9dOn4kmnnTAREw+CXtkis3HQfF44eQ3R7OXBympMXdzGtuBFEZU4NBQBJJm7W89OXz1DVDVwWG03eCoZhsG5ZPW8fC/GhHR1cnEgTTVf5/KO3ceDQBV49U8ZaSfPYh7vIF6v88PAlXc7LrcczsSiGodPcu5TY+BieQBCXz08+lZpTb9F1Hb1QoLPBzsoVPqYnpunyqnh9OVatXMNPXzuPLtp56ayK03GOtRsXNm7MwjAMfviTPaQViYaA/ZrJ8MjwFE++epFtK+u45671hCIZJioKHe1XN4T4ICAxPYUoiVjtjmvyaq0OB6lICE1VSUdqOr0IAqqiIF5Hg9jh8ZJLxKkq5Zvq1chEwwSaaxrDN1LpnTXT8C8Sn9PRCJgmosWCoWk1Wsc19Ip/ntCy0dqOha/pqr0jWiGFUSkjWmQsvmvPN1o2CoKEYJGxeG+OWveLAp9UxmmFcLk2foxqmS8/0o2h60xG8jx3ooRgsbBkzSbkwRH6x4pzlve7T8bxDiTAUFnSbMOpalQ1nUI2h99l5e++f5iyIS+gnDlQWNlh58KkyD9881WiZgM2OUupUMSolvnw9lae3B1BmTGqECQLF+IAFjY1Frh75waK2SxjUynKapB/+u7bZDUHpiEhXLZTmtGcvHG2xHBoL+fiVnobq6QyCndsauHMSIZmn0RjnYvnDmf42N2tNDQ18KffPgZWF/evkFi+opfvv3KR+Lzk3BBtTBYACewoLGu2cmbaJP7yBax2J5Gyi/O742ztstNfcLGMUYyhN1jiLKP4K0Scq1gVP02heoL/uDnDn5500a+1c0FvILLvBN9/oHjV32pX7iKnnAYB0V6jQVwFhmnwbXUUgF+xdLNJdXG+ZSn1+RI2y7tfpP7CaqvoqobD7b6CCzgf6Ui4pvFos1Hf1o5kkfAE66gUSzT3LKGxs/u61QelkMdbV08mFqWUz5GYmiQZnqZcyF/3GrOJOFaHk3Q0QmhkmERoek7f93JYZHlu280wDNKRWsMQgGSRcXg8GLqOaehUSiWs9p+PYYVpmsQmxoiMDpMMT1MpXVr9jo7HOB+XODN0naYRQUIOtFGNj6PlLlVdTNNAy8Uv6Q7PVCcQf/40lP9dCEgFfu0zt3DP+ktbqnpVITE5QTadIZbTcTktjE9EGR0YomdJJ3UugVu6dO5abkXXNTb3+dmyfgn5isDPzsE33oiycV0Pn39oBfGSZW77zY7CinqNO1a5uG9LKw9v8fPwnb1ogp3R8Th9S5sRDRW7LIKu8sAyjQf6DExdm7s2u9PJ9PAwsVSBrq4Wlrc7WNri4It3+PjKQ10I2kJ9SkOtMJK1MK14uX21j1/6yHo6PRU2rFuCz6bT2dlE0GcjWpJ46fVTnBjKALCm109r7xKS6cVlUgqZNNl4DK1aRatUySXiNHZ1zzU7qVWFYHMrSiE/0xgksnllHWs3rKSppZHlPXV85pN3YJFlblnhRcsn0bIxypWr64YPnhuk4OpGEES0qsrIyKXmrmwmx5EjF6gqtUqNpukopsyp89NEIwncDisuoYTD/sGoHF4LnkAQXVUXfa2Uy5IKT1MpFQk2t2KxWAg0t6BWytS3teNrbLouvSAbjxJobqGQTqGpKqlIiMTUFNl47Jrvs9odNX65pWZNn4qEiIyN1BLbq8BbVz+3M1hIp1CKtUlb1zR8DY3omorFaiMdCeO4CWnOm0Wnp8rDm100WzN4pEvPmGnoCJK11nNhaFd9v17KYK1rQyvl0HIJjKoy77UsWuHS1pFpmjXDo3epy/p+xkM7mvm1T21BVmfKpoJANhGnnM8zNJHAbVHJ5qsMXRjG47bT1eKhw1Pl0a0e0BT6uoP0tblYvX4VT7w6ymtDNmJFgd/4/B0E3FbUmUTYNHSWBqps6TS5bX0T9/SJ/OavPUCdVeHCRJ7WliA2i4lNlpAEk5WBIr+0zY6XS3HP7nCQiccITYZo72ikySfT0+Li4U1O/sPn19PuXlgdNk2TXNmgP+miMyjwhUe3sblTYN3qbjoaHNQHXHR2NCKi8fbJCM+/fgasLlxmnm23byGfK5CtLDLn6lVanQrrOqzcu72TLW0GKTNIpFz7rnXWKg/ev4EzzlXIgkne4uOBDpWNy5voWbWSjOzn6/cUWNMk8583l7Bkxqmmw4SK104z+30O5Lou3Lk0B5XQXPXXNE1Ol8PEqrnZL05FEklJJqcqMayChKtcxPUu7dln8QubDNtdLkSLBU+wbk6dITE1ueAYwzDwNzShKsrMe9xUSkU8weCcmsF1IQhk41EcHi9KsQCiSF1LG5lYDE3TSIamFw3Sda1t1LW2zdAyDGwOO/WtbRRuoPs4HQnjb2qeMxjwBIIIooihaUiylbrWtptyEaqUSjckFZSK1KRarHYHVrsDX30jxVxm7pj1a3v52CYX99+2hP/rl/ro9pQXF3E3dSqRISRPPYJsx1Br91/Pp5A89XOBWrDISE4fFk/9P4sr0v8OZFQbL79xkuMXL01GoYqHsmownpEoqrBjuY9N2zfy/IEw//R0PxdTFpZ0Blm5rIXORjtr1y7h2z89zCsnMwiCgChaONgfZt+xsTnrT9PQ2d5l8tG7lmGz2fE1NqLqBqeHkgTMJFtXBpAkC16/n/FQGpeZo29pK1u2r8U2I6gumDpP753ixFCOPRMO/um7b7Pj9i2sXtEOapXk5Cgf3exjSaCWCJmmySe3e/nC3S2YmsrxgTiTw6Nsv30rf/+t15moBPir75/gzTMlgjaNc2NpsuXaBHw+VOHF106ye2jx5DQUSWNze9i95xSNXd1IM4tWtaKQjkawOV1ERocxDANNreKpq0MUJTLRMD6bwc67t881b33oI3fy8XtXsnNNkC1bV3Fg7wn+5vE3uHBhoTlE15JOulxFljTLHJuW2H/iUjL89sEhXjxd5rkXDwPQt7yLta0iWbmZwdEoW7eu4N//xl2sWtX9bofM+xr+hkbKxRr9KxuPkYqEKBcuTexVRcFb3zjXa+etayAdCc81915N0Wc+rA4n6Ui45gCaiOFvbEYQBURJIhuPkU3ESYamrzBEcgdqjdL+xiYqpRIOtwdvXT26rlFVrjQZmI9CJo0kW+doasGWVvKpmhueVq3gqavH7rrxXobZgsbV1DRm0emtsLxOpbXOxvp1S3loexufvqN9LiEQRGlm97JWONCyMbRcbEGyCyC5AlSiIwiyDYu3foHRkamrSHbPnMmRxdcIgojk+mA2zQEcPBPnpTf6qUo15RBRtjOVVFGwMhCTWN9isP22zYzHVb7zeoiXjmdo9FtZvaaXZp/I+nVLGI9X+LsfnUC1eBEEgaFQkT37zxKZVwfrtGd56LZuGvwOgs2ttHe2su+to5QqOrf3yWilHD3LlxEKxclrVjb0elmxdiVLW2aSUa3CgQtZjgxk2Tcm8vhLE4g2Jx9+8DbsFoHoxBjLG03u6pPmihZrG6r8n59bT6NdIZwXOLhrH7fft5OXXj3Mngslnj+W4W9/ch6rRSSdLTOVqI2VIi5++sIxXjwUo8qVxbQNnTJfeewWKmWFYqHE/fdtQajUElEXBZKKwHee2k8wfo5RxUG1azMXhVakchYlk+Chzz7CHrHWPLys3sILH83z2YYRvnVXmpFEhYdfcPKHR6783M2KSGs8Qqa+hd1BB/mZzxwpx3m52cdPxCQltYwoStxTtqJ56zljMwhYPfym0MlDtuuLEdwIfmFoEqV8DqVQk4SZbbyYlflRisU5F6L5Qu3e+nqyiTj+GX1Mp/fmtzDnN3mUshlUpUh4ZAiHx8v0xQt0rlxN5hqVB6hVdkv5PNODA7gDdVfVO56FxWolE40gz1Qs1GqFqlKmlM3Q0NlDPpVa0Ch4PXH6XCqJr6GB6PjoXPPG5Sik0wSbW2tKHXY75UKeXDK+oPJukWU2bewDIDwdYTwrLkozsdbVtpe1fBJTq8yZaogON3o+saASPN/H/QMJyUooWWHziiC5o2FuXeUnkpF5fFeKTq/Guiadts42du86QnbGIlMU4UdvRxAwMRDZffY4RRoWSKL1R2uP7uzt7/SqrOprpVIu89K+IfrG4yQVC2fD8Kt3tCHbZA4dOssjn32YDasUbKNJquUyJ/fsp2rx4TBLfPWz6wlNTrFi7SpyT+1lMNvI9356GL2Y4NGHbyUVmqZtWR8OeZDCmRwVTae1qYnQVAQEAbvNij/gJTodIm34EESBrkYb63rc1HtquxuFgsLX30zQ2SCRylVQDOuiTKWTAwnGJpNs2byMkVPHCcw8h7lkkkBzy4wzWK3ZdHJgALvLTaCpCVGUZix4Qzi9/rnz7bitxhUOT0V49ayCWlSZjmZZsaL2eiqR4tiJIdL5Cu1BF9t9Ot1tdezZf5ZNa7tZvayRUwP9nMpbEJ/dx5YNvdx/11o6B0OsW9v9ng6Z9xNiE+MIgkCguQWLLGOZp2Wu69qcSs+suc+sNNlsfLJYrTdNLZhPvyhmM2RiEfLJBO5AsNbMLDBj/xy+auOw3e2pqQkl4njqG8inUtekTljtdnLJ5IIEu1IukUsm6FixilR4mmDLwvdfK+7OUjbCI8O0Llm66DEAd29upbWtkT/52l7Oju1haasTTc8gCJfi7gINdkFAcvowKiWYJ1VpcQWwuAIYSqHWhDzfjMM00Yu1QkTtFCKCbWHD+AcNUxmDVd0uikoOm0WlvcnDyycUHCMxNnTbWbbEy+i5cxweLIDVBQIcG1cZeHwvOcPB8Lf2kFYdCNKl+xQr23nzfK0pDWoKSPfe1o4gCoyHMow9txePz8XeEbizz0lfXytnTl2ky+Jg8y2b2d//EvXNGxk4doRzk1WwOPjIZi+N3iCdfX2cOHaO505WeO14jEP9U2zscbNq3UpsznE8wXqi0ROcTbtZ2ekkEwmhajoqDppb/CSmpghlTEzJilNQeGBTI5JexOcJ0Lakj6/94CAaEk67g+i0umjmNxavsv/geYIuAV0p8tJLezGsAYKWIr/12HYOHL5IMlcltO3XsR/7CZlohKDTx+e0vUSzAkOso7c6zowSJ2saZf5HowlY+OgrLZwWukiHhvhDasm5pqv0F6YYdkvYSjprCiqBssKQAHUVnVarl2BskrjTwXO5CZYZPja5WnkoGaVRdM99znuFX5hkuFIs4mtoIjY5TimXnUts1WoFQRDQVBVJlhcEJ9lqu6pQ/OVQqxUSkxNYnU5sdseiig6zQT0bj6FWq7T1rSAVDl23+9xX34CvvoFUeBpdrVx3u+3ybcSqUsbf2EwplyOfTCyYXEq5LOVCAV3TaOzsuvxUAFSKBQqSOEe7WAyeunpS4WmsdscC7c1cKkk6GrniPra0NfOlD5u43U58gdpvcbnahMWzUPljMYk1vZjG1HVEmxPxAxqgW+vs9LT6SDYMs2r5auxDE5wKC9y3pYXG5ga+/aO9FHUb96/xc2okQ6xsR53nDqQBDXaFDUt87DuXpWQuvId+IUuX26CYy2N1GhTwsmey9n6XmKNz+RbGLo5wstBG5ZnDZMsmdTYFw/CjmLVKnYrI1FSMkaFpgn43KzpdDJ2B4YwVq+FjcmQCRamw/6nXefQTd5EojnByKIsgyQzFDATJQjinc2wgxWCoiC7WrrG9wcGqNcs48vYBlvRZScTToFb4yF2rSUxPcafTw8sHJgiVFxq3nE/UdFiXdUr0rNvIX397L//2V5sRJWnOIlcpFsklkzS0t6GpKm5/YI5japom6UiISDjGnlMxtqxqYuXKbrw+Dx0+E2fAzp23XpLv+c5zp0ikipiilbzFy60NEiORIkfGdFR9lHt2ruH+W/KcPTdFf8JJ9cQU9T4ZVTPmFq0fREgWC3a3m9jEGK1Lag2NpmlSzGZwuD2kIiH8DQsX9jfaNAwQn57E1HQkWV40WZ2NRQ63l3Ihh93lRqtWSYVD14zts+6bst1OVSnPWWpfDVa7Y4Fihq5WsbvciJKFRGgKu3NhVTg6PopkkWeu7UrToapSIRUJYVyD2gDw0oEQNss0prOOPHAiBJJRpTeoMpICxIU0PtHuxqiUrmpStJgJ0uUa8Ua1jKEUEUTpAyup5pR01qzsoBjby7KVfZi6hk1Ms77bwwP3bOCZ5/YxljbZusRBRdU4HbGAKFNARpQgY3iQqHDnciejkQJj2cue8WqRdfUKuu6ikElTElycj8sQB0QrDfUuAs0tnHrxPGdTcRoGUlREN9l4oragmykyJdJlJMFB7sgJOjuasB8bJFnxklBstGfLjA1c5MDJKXasq/Dhezdw5vv9aDjJlE1SVTuCKHLgQhZJyBJWXAgCeGwGa9f2cnT/ceqDPiIT4+SrIrevdLNhbRfL28OMTqbZO7HwO2WqNl47q3Bbh0THilUMhCsISSiqEv1nRpmKl0gWDByjB9hsixFJvkWrkKPZJdDshPWcZkSQOZZ18uR5AbfF4P/eUtuR2dmQh/g4/8+GCMxUpfeqUQ7W2zEqJSztXZQyKT6kSPywyUVdJs2XhCAfMRo4VCkw7HEyYRFxpMMM20xa9Pd+J/mGkmFBED4M/BUgAV83TfNPFjnmM8AfAiZwyjTNX34Pr7Mm5D5wnrrWdpRifi4ZTkci2N1urHbHokHpRpFLJJDtDupmxOOvhfnB/mYkeeZXFmZdm2SbY0GVdzEEmlrIxKI0dfdc0c08a0VayuWueF86EsY0DVz+mvuQZ16CP0ubmE28LbJ8ReUDQKtW8AbrySUTeOsWdspncmXKiobTaccwrs7FvBZMXZ9zp/t5JMPvh7F7aKRCT32ULbdsolqpcG6yjBOQTC/HDp8mUXXSHoBbd6wE9TivXbzyHEtaXNy6YxWDkwcZm/dTm6bJp+/twma14gkGee2V/bisdoolFSSZouDh8R8dpFAVEEU7A6laVb7JL+Gua+DE/hrNRRPsPHUoj2B46MsWaGvy4ToTooiLDq9Bc0s9A0NhBooN/OjZQ3gdEht73ExNRnDOxFSXbDA4XSBZnU3Ey4xNGxz59n6KhpOW6DTRkogg20iEptE1lab6IFuXJHn2zKXvtL5ZZWWnmwtjJV45lqB1NEe6Whv33rp6sokYoiRdU+4rE40QaG4lNzTCSMaK5ewkh/ojrF1ax+cf2czx0yOk0zncThuxWIZ8KoVpWLlrpYWqTWDd8maefP4IdsXEI7Xy5u4zbFnXxbKuRn784gl6mhp541SKQizCwTMxPvvAUlauvnoF8J3g/TB2HW43qWiY5u4lZBPxmUV9CHcgSCmbeUeSjrPIxKJIgoi7ueG69LHFrOVvBJfLR2bjMXRNJdDces3dNNlmp6ooOD2eRXcUBUHE5nBiXhb3Zh1QbU4nuqbh8lx6b7mQp1zI461rmOtViSlXcsw3dtv4yP0beOr5o5y7nIFn6Ji6hqFVMXUN6R3ETEMpInnq0PM3Zxhyo3g/jNus4eKlF/fywIduIZdMMBnNo4huvLLGxMUhzk6WwITbPraKQi7PmekwxmWSl15Z5fZbV+I4fpGxUwtpNg+scbB8aQ/BljZGz51jOlnBjjbXIPfSsRT7zhwkRRBBEYgr4JUl/C2t7D86XHMABQ5NiDBR4dZ2haYWnWVNMv0JMNUKfd31gMhQ3kfyWJLesTS3LpEpF/LYPT7soopm6ChVg8mcVPML0FVcdgt/861dpHUPvuEQmilQMh0o5TKpSIhAMIDDZuHkZIiCWVvk1dsV7t9YTzaT562zCurrpzg/pQB2qoKd/WeTiIJAqmrns+Je8MAyElfc913u2zFblvOz3a9iE0yKB6Iohsj/uCXPxgmFlGajWtWYyqqEywlMVx1dmSytioUmycEYCmI8RXNBY79DoFly8IilnedyF9EpMWJzc5YC5+UKy4oRPuXqe8/GzHWTYUEQJOBvgfuBKeCIIAjPmaZ5bt4xy4A/AG4zTTMtCMLPpUW1ubuHXDKJKIqo1QqFVAqlVEQUxTnx/XeK2XOGhgevsCy+FtSKQj6VRJKtN6U7mUvG51ybrgdBEK6ogmiqiqFruANByoXCokm5iYm/sZlsIk5wXjVZm9f8oqnqXGDOxmMYuo7FZluQOGfisQXv1zWNXDLJj/dEIR9Ft7qRjQqGzXfTGsGzTknijF3oe8kdfr+MXUGycn4sh2ix8vyhGDoydbYKZRWS+Sq/+5n1DFycYPB0P6tWdPBq/wUE26WJ3zR0tKrKiy/sYzRjW6AcgaExMRZGtgiceq0fj9/Hb33+Fn76wjH6I7WxM126siN/PFbl+08fpq+7mWODWapYEWUbpmijf6xIT6vIigaNNX0OXj8QwR2oRxcSCKJBc1OQrSsbkG02sqkUrU0BRmOT3LZEorWzjb3HJjgVd3Dn2jq2bO7jb57YS0mzEFEsIIJZVdh/vooIdKbPk1clZjkgpmnSFRSpr/OxTFM5cUwnWhZAkvmjb5yg1VnmK4/dSioSWuCGFp+cAMDf1IxsteIOBEhHQohGha/cG2B6SuOFCyL2sQSqqvLKmQrS3j0oKlj8LTjtDoI2gVvv2s7Bo8M8/foARVWiYpi8cKqEoecRBHA7LIT1ANX+ELetaGRPIYXqDJLNla64x+9qzLxPxq7T60MpFcnGYzXaWTxGuZivOXq+S/11q92OUioSHR2mru3aMnaXIx0Jo+v6TfdPGLqOr6GJXCJ+3Qq26zJJTdM0a5Q8t5tgSytatXoFj7hSLhFoaiEdCV2xWCsX8nO0kmBzK//lSxtRikVKuQwmNVk5qDXypSNhPnLnMj49k4ibpommVvnRz05xMWQgKllUpYxZcdy0O6jkCaLnk4g2xwc25gKM5p1MjE4yMJbiZNRKh8+kUIZCxeSejU2sXdPLgb1H2LFjPUsaYgymFr7f5ZA5uP8ke8/lQVq4mzsZztDgs/HWntOMJ+G3fuVORkfDPHmwVqnIaTZy2kIWYVkT+cGzR2hrqaPJrhDOaogzcf5cFFrbqijlKr9yewPnh0uUqgJNrQ2IZk3Z5GMfu43Q2BhquYjT42JbV5ZCWWXbmhayxSo/3Jeht17kC5/czhtvn2HvkEpWv9RTcnK0RAUbueRpVixrp2pIc9S7ZqdGXcCJ32PDPVzm8HhNkxhqY++Rne14fR7+4ofnYe/fAXDGuor+ZZ9n+7m/odes5TEr3f2EzrTz1R1bccXO8jcDnZREJ//h5T/mt/S/Q1AVKkoJZCdSSxBXeJSNtla8FgevyAWspSJGfQun7XlMQ6XFhC5d46LPjVYpsq2s0FEtEOroJVu9Mhl/N7iRyvA2YMg0zREAQRB+CHwcODfvmK8Af2uaZhrANM1rt/2+Q8g2+1zSNxtQTMx3VZ2YxSz1YLYhzu0PXGHEsRgy8TgN7R1XTWqrSplCJo1stS+oAHuCdaTC01hsVxLKbyRApcLT2JwudE2fq5jMNonMbhU7Pb4aZ/oyfrJFllErlbn/Q42Trakquqah6VrN+nemIWU+DF3n757YDSZsX+ojFHIynpWwmAYaNxdUtXwSTB3JGag14okSkiswo45gzomZvwu8b8bu6aSL08ky4OGjG51s3LCMf3ziTZyySToeI5sr0T9mIl8cXpAIA4hqkXt2biE8HeNIJLPgtfVtEjvu2sb3n9rH0iVt5LM5Dh8dYCpZhUWaJNBVWuxFPnHfCrLxOI3trfQ2WZGsdr6zK45gkTkTtXAmWuazWxtpX7IEx7Ex/vK7h1EMK0jWmoNSRWcykqHJK/LQfZtY3TpF9/JlVIoF3B4nxE1ODKZJZE6RKoEkFtEtLhx6lt/41FrOXRjjtYsiF2e+jltNUBZd2AWV9dt3MnD2Is8fLyIICxP5aEHktbf62bamtjg0DAOlkMc0dEzTJDo2QnvfipoRREsbhmESbGnFKlu4uxpi90AVWUrjV3PECzlM0Y61kkRRiuSqHqbGw4QSJaJlK5++o5Fzw3GmkipdTXY2rG7HYbcyOrSPc4VGDp1P8cVHt/DdFy/QPwAb1tcqw1a7/YYaxa6D983YnY0BuVQSp8+HrmvvicSY0+vD6fVhtdlRigXUSuWGCwq6ruNraCSXTCz6ntldsct3uwRRJBOLXuF8d2MxN4TT652TWLPIMoZhUM7n5hLnQFMLmWgEl//K3T6LbJ3hV9cSq9lCikWW52Q/69vaF6Xovb7rFAcHstyyzAEVg+GkBQHzpm2VDaWAUVUQLHKNd1wpI4hSrRihVmoqE+8O75txmzfdPHm0CrhZ1qDyuU9s5+XXj7P7+BQ7VvgITU5zJixSOjTGSMK4Qk5gTbeH7dtXcWJkH+V54ilOs8jDH7uVc+fHqch1bFtn5+CRAZJ5jaulVAG5zIZOmZVLVyFKEtNTEZasWMt3nusnqtjJqHZ+fCjHSj90L19GPpfnyf1JLEIC0+omrWr85GfHSGYKVMoKv/zxTTjtMjt2rGZ6aBBfYxsCaabSJq+91c/Z8TyyWqU60/z3iY0yLa19/OOzQxjWOs4fKyOpVZxSmZIUYMWyVgJNLXztm68SNRsXDCtBENh7MoJsiSLM0BzTFZGJhrVM1m0meuvf8vH9v0OPGeLWwh6mdS8v3vpVrEKR7079Gb+d+QKf1X+fB5RneF1bj6rJONGwVFQKfj/niwWWGgJJf4ANFZNV4TSHvRbqCgobZDeSzcIDRYk3ZJGj7S18fMrKgViErN3KcDFMt6MR3dSwSu9OyedGInYbMF+mYWrmb/PRB/QJgrBPEISDM9ski0IQhN8QBOGoIAhHb0RZ4WqwOZw12bR5D282EScdCV9TSud6EIRa451Surou3gKYBsnQNOX84lJrxUxtK1G9rPtXttoItrRd4agXHR8lFQ5dV7rN0HXUSmVu0tU1jXwqtaAJxO5yEWhqXjTI17e1z1Uusok4giBSVcpUlRIOlxvjKtarCMJsDY8H7t7Ar33hfv7Tb9zC7/+7j2LqKnr5yus2TRMtn8DUqpe/gOSpR82EaxJCooRpGGi5GHoxc+XxN4/3bOzOH7d66XKV85tD/3CGN3f3c/fmNh64bSndfcuwoLNjVR1T6Svve9Ch12QCo1cqd4QzVY6fuEgyp7B5fS89XU28dKpEWl18UlvZLPIbX7ybkdEQhiQjWe1EwnFyudIVE2sqFqt19VsdlIVagh6UChR0K8PRCvds7aSg2/jT754kXxEp5/McPTHA3qEaTzJcsnF43OQjW+v5nU+vQdZLeGUNXVXwOS9NGq1yin/7a3fwye1+CqaDF187yYHzWRQc2M0iFjXP6iYDv1xBF22cmyiy68gkf/RPh0mFphElCxVFwWKzXSE56GtoZLz/FJVyCb/PhmjoOBw2EgUDuW0t7fU2fv93P4wkioh2D6Zp8OiH1/KVBztZtXY5H7p7Lavbbdx/x1oCQT97Dl7EEC2omQimVuHM+SmKxRKj4Tw/e+kQ//2JYzz/8rGbGxCL4+cydt9NzHV5fWRjMcx5UkaVcpnE9BSxibF3fN6qUibQ1IKu3tjznpv5DuHhwUUT4VklBofHu0DpAmoNfpdXk9ORMJloZIFByGIQRIFyIY8wb6GTCk0jWeQ5RaHZZsPFNOC9dfUEm1vnjJ/S0SgWWSafTmF3u69qdz17XsE06epq5vOP3c1//I3b+KN//zCizVWLrYu8Vy/n0ZWF39+oKjW1CU1FK2YQrHYMQ0XPxTENbYEE2zvEzy1feDdxdzqts2f/WUS9wmcfXMXqjWsoVXQ+trOLVKGKLl7GCTZUPHKV8XNnKFUX9tqUTQvHT40yPJ2np9XDtq0rODFS5Ex08URYqub5jU9vpL0lyNh4vKZGlVVIxVNol/1shVyJ6Pgomqqhi3YU7PilArKo0x82WdnlZ83SBv7Xjwc4OlIim0ii6SaPP3MW0+KgKtjYP6zR4Bb5/d+4g2XBWhbvtksIuoqk1wpmpmnyaw+087u/vA2LkuHQuQQvvHqCiB5EMqo4zAKtrio9vlrRbCBmIkkSfmuVIdp56tE3USweGi8+j93rR5u3CGiTcrS99p/R1Cqn2z5K1eZHRGecZtS2Ldgcbg42/D+0V3REuxvTIrHO1sRj4SL3yM1s8nSzOVthi+inz1bPUCXJoKwhl4pouRg5rUpIqFCQRF42E3xXm+DrlgQl9d3tzr1XDXQWYBlwF9AO7BYEYa1pmpnLDzRN82vA1wC6165/xwJxaqWCRbYuqLbqahV/YzOp6wS1VHh6rmJ0eQXH4fFRyuUWBNl0NIJpGkgWecHfU+FpKmUFu9uF5zI+7SzcwSCpSOiGxeMFQUC22RYNbvPR3LNkQTVDEAS0aqX2vhusFmTjMXRdQykU0d0qss1OU3cv1XL5qjJCoijy279619z/oVaxz6ZSCJKMUSnC/E5mQM8n57bm5m/pCbINPZ9EsDqR7K4ah81iw1ArCCZIN1lpfoe4obE7f9zaWpa9c2FDQ0USBY4Ml8gVqjiteX7y9hTrer10dbUgH45yuYJrW6OH1iVLGZ1Msb1boFwosGZFGy8fDpPOVXjuWAFBCPIPT52kaogLxOB3dBo01Ln42ZEMpsXGZEpl954T6CpkpzLEMlVyuoPB4TzCvJW1TyrRs7QTX0MjaaUmQbZ9qZ0H7t7GN588gK7X5MWGp3NMpiGWLmFIVpz+RoT4wskjliphkSJoBvj8Hl7bN0gkDx5RJm84KWkSsakpovEsgmTn2BSAFVkr8tufXc/YwABrt23m4JELvHK6zOY+L7fvWMWKE6dRqxVK+Sy+hkYcLlfNXpZaglXMZJDtdpqXLCUdCdPWXMcX7rHQuXI1auktjpwbomFVK0ePDaD6e+h1ZFm+usZBc86M/+88dYC40MT0z47yK4/dyfGLaaqCjY/fFsAqWxiLlhEsNmSnB9QMgu5Akt577vtVcNNj993E3EqpiGiR8NVf2tXW1SpOj4fSVYoBsyikU6iVCjan8woOrr+xmUw0siCGlgt5Srkchq7T0NG54DyVUolKubyAJjMfs7rTSqFwQxVsExO703XdAkiwufXKCrIgUMpna6YiN4CqUiYbj89Q1UzApHXJMtRqlbprcODvu3s9d+/U5hoBZ3tHDKVQ4/8Wklg8l+6fqauYulqzWrY65rTIJad3pj/DAaaOUc4hOXyouRii8O6pLzeId5QvvJu467bC6ZEcgiDgG09z8qWz2GSRL3zmdk4OxOGylhu7qdC3dgORySmavGn89jJLuhsYms7SP6Hx2ukcSDYuRrMcOHeYnHFpvmxxVrh7YyOvH4sRU2xokoO3911A1EoYosSpEwPE8gaZgTiJkgVh3i3ftLIJX0MT54dqi6ugXOJ3P38rB48M8OqpPL1drShlBYYMLGKF4YkES5e0IcgLOc2FCgxfHKNYMWmwK5wcLBDNJfF4HKQqKogWEvE05XIFVbQymbcymQdBErl/jY0N63uIT0doamvmjx8/TFtA5pEHtzM1NMTpMxsxktM41CyPxP+J4sTf4LHWEuxzYjetWpRyxxb0bZ/l/PEDfGx5Hb/+5iNMO/x8LtSMVYKCKjBe34hVKfGgWCvYdThrceVUbpw3G71IlTL/l2kyKFYYqQuyqVzBnQeHbAWHF9nfRCBXIKeXkTQR8V3mCzeSDE8D8wld7TN/m48p4JBpmiowKgjCRWqD/ci7urqroJTLYne5KecXjuBAcyvZeOz6TW2CgK+hnkImvaAyaxgGdpfrikYNXdMIzsg5XX6epq4ulGLpqk1wstV2QzSO2eYKp8eL1eG4oeR5flAWJem6TnyXw9B1XL4Ahm4suMb5ifBs17TbH5j7+/wFxKyChGno6OUrm/gABKsdPZ9iIdmVmuTaTOKsF9JY/E3oxSxyfSd6If1eWDO/b8au36JgEcFtF/jCJ3fw5ttnOD2aRTUESqabN88r7D57AlGy8NAGB8PTWQaStWqFTdQ4tOcQRwYy/LvfeIAzx06xZGknvYPTPPi5O/n+04cZTEr0tFrBNOmPgVjJE3DoNAWbaKp38/BWg7FIiVNhO6dGCvzuF2/n+IlB3joe4fe+tJP+/mGmjlxKaMqaSDhV5eDR3TTX1RObVpmcLnCh/wKmphFSPPzZ1/fQ6LNyR4/JnfffzXd+uIvhvGdu4nUIZWwiHBm30FfMU2dTeOwT93Ly5CB9hsHqVV38r+8dIWP6+PqbSe7oc7GmqTJXYVGxMDU+SUN9gF1vHub0lAHYOHwhi00/Ru/SDr71whAFc+Gz8l++tJF0NEJjZzdjZ07XkgxRJNDUzOxs+vFH7uKhh6qIkkQsmqJz+CJdjVc2aC3rqiN9IUrfylrD1cO3t7H/ZIjT59OMZ2VWNIo8dl/N2eqnx6z4HCU++qHN78WQed+M3VkoM0Ya853YnF4fpVx2QY/BYqhWlDm+7PxkeHbRf3nSqlVVXD7/Ffb01YoyR0u7Vly9Ebt60zRJhqaxyDKiZLmhOH35Ltu1mjgXg6EbNfpdqbQgyZ+vSJSOhDExEUVpwfdYVBFDEGb4v5cVL0QLplqh5rV8Ke4KFisW74zEGgKYBka1jK2xBzUbQ3K9azvx9824tZgV2vwCo9Eqjz28EkWp8PhLYxw5nyCh+hE0gT/52l5Uq4dNrRpBn53XzxQRLDaCXhvnTp7l4IUs92zvot7vQLa7yOVL/M6nlzI8EuJnJ8sEHCaruwLsu5Cjqgt4hCINLjtL+roJh+Js99l54ViWg+MWfvn2Vrp72vizbxzgE3e0s2JFNxe+sZcylxZ14TzkD5wkVTRxiwaFssGp4+coZvMg2fjWy2P4rFV6bCW++NiH6D91nr9/fgxRri3ATb1Ks0sjXJDZdTyCZgjct6WJpX3d/OAHb/C5z93Psy8f5+S0wDNnJZYECty/IcCuMzl0sbbASsTTFJJewqEYb52Igs3LdL7KKy8fZPO6Ttw2iUcPfq52wYKAZ2bonpWWcOgzz5EcOsun9n+F8siP0db/PmJ7F2VbkE2WNGc9/x3NMLGIAssmFKpqFcm+cAHWYvNjz4Zo0EUEl8Dt+ClMT5ARRI7YDGS9zOeKAcqlFEfdfrKBII+GC9hd787B9kaS4SPAMkEQeqgN6s8Cl3d+PgM8BnxTEIR6atsgI+/qyq4BXdeJT07iDvgX/F0QhBsKgharjUI6vaAprVzIU87nUCuVK5LKYEstyQ5cFiwtspVCJnPD8m3XwvzmisU4Yz8PBJpbKGTS11w8CIKI3ekkNj6C3e0l0Nx8haIF1MThZf/i90Gyu8F+7U7wOYkfAYxCEovTf8Pf4xp4X4xdl6jw0a0+rJLIroNDvP32Sc4Np/jyp7YRCcf43t4sAbvBjhVB+geirF+7iSbfKCsLOm+dzdPT2UBTU5CXz5zlm08eIFkyef7IHup8doYvjmFD5bcf6qBSKGB1uxl+aYSvfm4DSi7DuZEErx8N8dXHdlDRJjg5VSBRgW8/dZBESaCAm28+eZCsIjCrnwlQFew8d6LMRzd2sXnTclJPvM5Dt/fS0tNL1bAwdaxAndfKlx67jYnz50iGp5GNCoLonzvHx3Y00dPdwk+eP8Rjn7ibV14/zk9fOEYkU6XOLVGujOCzmTRYK0ynVbZvWc34eIQz0ZlFlcXGm6ezrOv1cmRMp6SJPLDGQiov88I5E+HURZhJAiS9jEuswIxutaHrRMZGqJTLaBUFDIOpwQtzElmmafKN7+9FKSt85J4VBLw23h6GhoZh1qxdAtRc55obA/zBvZsRRZHDRwfYtW+Asqsdh1JCcgeRLDlWr1+Jpqpsip0meB0r3JvA+2LszkKtKJTyeSrlEYKXxbsb0W93enykI+Erkub45Diy1YbV4VjQsOYJBimkU3jrFtLIHG7voud5J8jONAZn47GbMtR4N7C7XAiCgMPjueoxhmHgDgSJjY9iGDoW2XqFks8s5leD50MQBOTAtavi89V7tFwCUX5P3BPfF+PW1DXuXWmhuyPIsVOjHDxygWxV5u51AXZsW8HffXcfCcXKjlU+UjmVJe1+entbceonGUqLyBYLa7es58TYIV48FMVhMYjnDXTDwOGMEE/k+fzOBqrFPKs2rWZo6gDrl/pYvnQ5pUKJP/mbl3ng1h6WLmnDcjxFRcnz0iEF+7EwmtXLa0djHOiPURI9C+qZhydElgYtfO4T23jtrX4a/VZa6pys37yaY/+0G0Xy8sidHfj8bsKjw0i6suB3W98u84mHtvOjn+7j4Qc2kIineOngNCcuxImpTo4dv0giWWBNs4tzIZVl7T62bFrGkQsHyRq18xwPS7i8acajMJ6zsbJBZWm7j5eOpzkwMsyY92kQBCo6DGt1KO4W1lb6aTEipM4fpWJI7O75MoavBXH8JNbxQ3Rbaovav07dwj/qD/Nb2vdYokm80NzCK+kYH59ZPxmmQcIo86uWTvx2F8lqnmctWdJOG4bLi1EuIBo6ne6aNXm1EsOfSNNme9eLuOsnw6ZpaoIg/C7wCjWplMdN0zwrCMJ/BY6apvnczGsPCIJwDtCBf2+a5s9Ht4VaYO5YsXLOoe1mcTlPF2a7dTWK2ewVW2HiTFXpivNcJUC9E8xOFg731YPkzwPzBe4XQ7C5BbVaxen1Y3U6MTT9PRe7no+rBfd3gvfL2F3X7aKuvg5vXT0PeTwkMgpvDqjsPzJEoVxFNAy2tJks764nGk3zw5/u4871DazftJbR6HF+sj/OhrYEv3xnE2cH40zkbNR7RBptZU6cGSen2bHZ7Rw+OshIzoomWJiejFIu5hmJqhQtdfz1j06imhYeWONiaW8PP36pn8/cuYQ9JyMMpa/kF/vlCrevCXLmYpSx8Rjb1neQSuUYGD1I/zSAjXhR5M3dZ8jEYzQE8wxl7dy+SmI0Uma6YOXsUJxsOsd0ymTXG4dYvaSF14+GiSt2KmqJiWSGz97dQ31jHa++eZzHnzxM0bABl1b4icqs0L0dq5ZkaUcLmWSaoxM1XfEdSywMTSR5+EMrkPQKdo+XciGPzenE39hMVVFw+WuKK10r15AK14pU5UIeq1mmrKt8b3eKjQ0lmuwSgcCl5++V3Rc5FxPRzSGW9bYwPDxJXrexwhHjgY9soaJUaO+uVYEtsszHPvyeVISB98/YnUU+naJ92XLiE+M31Fh8Oewu16IJp2GYFLIZXKZxhXrDYkWBdyqxthh8DY2kIyEk+Z9XJ/p696+utY1COoXD48Vb10A++d52zV+OxbSJ3yneL+M2KCvs2LmT0OgID37sbjLRCE+8MICiChhcIKtItEtxNq7YTCwc5+m9UzxUSLN662acYyF+uDdN8ru7uHt7D5FIkn3DJoJkYVWjRmgqzMlxldV9rWQrGv/0vb1Ml+x0ZEpEp6NcnMhQdTTy4vEsrx1P0hqQ+KWPbOTJn51k7RI/pVKF1y/ayVymNoGuctcKO+lclSefP0qTG4SqyuRUgdcOTaBItWa4/f1hbIJGg7/WzNwXtONxWDg6aTKV1Dhx7ByFssqzLx1jy+om+pqtvD0iIBsGB8/EWNbu44F71tP41hFODcQ4dD5Jdh7NwxRt7B7UmJ3oV7ZaaW1y4zVGSNla2B34MGXZR9kWYKj3Eeo7ulGe+Qo7CntwOu04bW50owWjeRWlprWY+Wk4+i2qOsRUB16XwJ+L/4Fl1RQN+RxNugQzm8AXlBg/a/ayNJnmEcPOdDFG1Ae+fJ4PVT24TQ9eS+NcfrbO1si692jM3BBn2DTNF4EXL/vbf573fxP4vZl/P3fomkZ4ZGj2s98TaRinx0spm6Vn3YZrOhv9vDB/spjdvpMslkWT8NkJ3eHxLpo8q9UK2VgMwzCuasRxLcxaiFqs1rl/olgz7ZgN5JcbbLxf8X4YuydHi+QLY9jlcQJWla6ORta3woExE5C5a6XMkjYnhgnZYhXR5uQbu1K0n9pHuGAByU4wYKW9s5W6gIf+Zy7y0LZOOrprk+bXnzpGqVBg08alHHs1giBK/OhQgZpujhVZSfHxOzqYjuUpKVWSiQwOsUwg4MVmWcROG2jyimze1MdEJE88o7B6zVJe3XWaC9Mm929qYGQswkhCZ2gqS7gcgAzUuVTuuWMtA2cG+NnRFIpmYcdtG8lV+xmNFdi2xcfa9iQN6Qp33LaOeCzJa0emWd4U5uMfu53vPX0YLafz4EYPh84lCRUXJimmxYEpSDhddnb0GIxGKtx75xrs+84wPhlHNhXCqWmOhq24RJUvf6S28FWVMvXtnaQiITzBOiqlEtWywiMf3oggWfjJa+fZuXMdwbqFC8MVPQE0PUlbS5CvPXmMQr6M7GvHVw+NLQsrwLt2n0bTDO67e/17JlX1fhi7s7A5nISGh7DI8qKa4+8UFlmmqaub9A1ITL7XEARhgdpENhFHV6t46uqv2P0qZNJUlTKCsHhhBGbisiDgcHtuuqhhmibVcnkuvroDQZw+P4V06j1R7vjnxPth3KY0Bz969jCCXqVlPEWDz8Ld64M8fVJlPFehxW3y6Qe2o2k6o6EMfV0+Xjhd4u2LtcqmIDqQ7A56lnbhc1uZzkZwO2Ueum99zV7cF+LiWIK771jP8bHDCKLEgXE4MF4GbAimypYOWNrdwr5T08SjSfRKEZc9iCTaMc3yFXFCMips2bia8YkIT+5LcesDrZimwddfDXHfajed9VWOjxZRqnYGUiJGTAK83LfKT0dXM9Gn9jKZt9O3rJ26gItvvzbNHV4fvlyBj25wUSzo7LxjB49/bxevvXKI229bjdsX5tkjGe5ZKVFS1Jru8WVIFHTaZSsfvn0J392d4vyKLyI2LaH1jT/CkhjCmDpIc/Y8okWgdfRVDEnm/rGvoZkSKWszNrMMArzU9RX893yS32zv4s0nnsApdLNOaFwgetRq8bAklWaZLvOGHuJY0FrjuYtWlrCwiDlaSXFWKnOb6SMgv/vF3C+MA918+BubajqT2pXuPqV8DqVYuObW0iwSU7Wm1/r2WoneYrWSji5ena2UShRzmSua6H4emL99txhMs1bVKKRTi15rtVzG5Q9Qyt14921iegqobU/mErVKRF1r21xDxTupBt0ITENHy8URBAGL7/oUl19ElE07owkFUahxpTp77Wj6pSaz8WgJh1XizIVR7r+1h/YlPfzZ13YTLjtrtRXgtf4Cx84dRLY7EWUboVCCZDiEIdkpWoKcGEigl3Lcu7qRCxN5QsXaZC7rJT57dzMup0w6bfL6oERHPM6vfuFBXnz5CGdi8lx1Imit0OAVuRATuRAX+etv7SFZtYHo4Plnd7N+dSepVJaVq3tpCtpZXVDoXtrDXzy+l5LoJVF18OKL+7l75xrWxKucHC2xa/cZSukYPc31/Pdv7OHf/urteKJJ9h8ZolTRmMzbiGZLjIffZDjnotMPa9cuYTyUIzSvn8k0TTTJyRMvDvLx29vIl1SiZRuPf383K3sCjEUVzGqZj963BuuRQQ5O2a9Y0M52+GvVKkqpgFLM4/IG+NIv37FoArtu7RLWrV2CYRh4bAY2Q2BVn8zalbUEKhKO89r+ETavbOLA2SQqFnZuL/2zbbn/c8Ll81PO52u81cvulWmaJKYmEQRhLpZeDblkAk2t4nB7cbjdNamyaBhRWnwqSoamMQ2Durb291QPdzHomjqn/X752KmWSwSaW6+7G+kN1npRbiQZnr0XstVOpVTE7najlIpz84soiu/p7uN81GQtDUSb6wPp/CmIEhdjGg0OgbNxnY9vsqHrxtzYzSgig+Mp+s9Nsr6vnk3bN/Dcy8c5MX1pjI3n7Pz5P75JS4OH0YzI2vocJ/YfQZAETo4UsTnsOI9coMlt0OTXOT4tzo3Ru/pEels8iLJArCjxjVcm+Z1PbCSTzvKTQ/E5aoNkVFnVJjMYqaLIbv7+qRNopoQg2Xn2rYs8uK2FlUGF5Uu6EfQqzXVZlq1dw/OvnOB4bcrmZ28P8/mPWLj31j6+tSvJK7sHELUy960L8tPXB1jb6+e2zb385Jl97D90nqjiZHJCYjpxkFTVgaDD6hW9JBMZDk1c6vuZLTS+PWhiqsN4fV4EUeLeI/+Ro/67URpW8skTf8D3b/knnr31b/mt/b/EJyKP194sA2gEmZrTMnbkp5ESI1im9/Pn4t/zE9s3r/jd/LKLT+ICCQpKCLeqsCoSp93qB1uNRvFydRqrCYpF5Hx9kJZojs38C02GZauNho5axfPyAKkUC3Pc22tBU1XkGRmmWeOJa/GNU5EQLb1Lb8gkYzGU8jnK+TymYVx3wrje9p3bH6CYSV/1el0zFQWn99q2z7PIp1IzYvQNKMUihn5tC9H3EkalhOT0Y8xIAJmail7KIljtNa7xBwCmafKpnS34A17+8snzfP31OIJw6bcdzciMZhTuX92C2+PkpZ/t5sHtTcRTJfaOzoxvyUqKOlCg2ZZj9Yo++oeT7LqgIsh2ppIKj9zWQ2NnF4ZxjtBArbqvI6IUSzS2tjK8fxR0F41uuHB2iGjexC0p3Lk2yPHBDDtW1rF+wzL+5+O7cTkspEsWBEmm3V1h0/ouME0iRQt//Y3XWd3bSCqTZ2AyT2mG1iAIImMJnXPnRjg3kqMieDk/nuUz967A0DQETeFrP+nHECSqggOvpPLLt9cTDVXZuGUD3/jpKcZydv7HN/aQN+xzOtMbW3XW9TXw9K5hPrKzi9GpDOfiMggm7V6VrZuXY+sfIRSuolUrWIRaU9YffeMEaBXuX+ehr8M799zlUomadbPNtqjr4uUQRRG/z8XFkoXlvQ1YZQs/eu4IQrXESNaLZzzFp+9dwvRUhH2HL3L7LSux2d+1Xuv7DvXtHYvuxFXLZRweD6qiXHenTlOrc/HZ4Xbj9HivqgqhqSqmaeLyByjnczfETb4csYkxRMmCJxC87oJettpJhafxNVwZVwPNrWSiEbz1V09OXf4gxVz2hvpW1GqFXCJB+/IVcxVlVVGQ5HfdNHxjmJG11AvJmvFRIQWmicVzJYXwFxVbex18+N71fPupAzx3qqbRM6s2UzbtvHCyRLvLxYpVvZw8chr0Mo/d1sxP98WoYEcQBBRbPaM5MAWT1b126hrq+etnxxCtXox0hfu3eFna4Ue2OTg2fnFOh7eUTeNa0crwaJSyaafTV2F8ZJJUsWZdf0s3VFSdUkXk0Yc28cqbpzg3UcIqiSSqdiRD4Z5trciWWiHq689fZGUTaDpMZc8wFKkw2+ORE9ycHwwRSVUQBA+nIxKPbQ3Q3NZE0C3xwuEoxwYPksfH+f4SH1rtQDQ11q7fwa69AxydFvn6swPopgBi7fqDcplP7Oxg76kwQbdEW2sDT+2LI0h2IkIjU8sext/aweTAM+gWB6pWQpz32L/pf4hI83YePPvHBCSFpGpjdO2v0hg+xeeH/xs3IvwQwILidGHVNPps9eythEiZFQY8DmyayhcqXhpCcVJ6hZBgo9Xqf1fj5RcyGYYrk+BZeOsaFgibXw2WeUHHcgMBSJAk4pMTlAq5d0Sh0FQVtz9APn19HcfLt+8uh83pnLP7TIamMHSdpu7eBffkcr6dpqpk4zEki+WKYK1Wyrj9fmLjY3SsWIW3rp5SLksmFsEVCNYoF7pGc8+Sm/zW14fk8KAX0wgzib9eztbsmfOJ6zbd/aJAEAROXkzgs8W4dbmLIyMKGlc2q+w9HScaitEfNtmyrR5VjwPKFcd1tXjxNTYxvOsi4MUvV1jWJJHLFzn4zG7OJqyYBnxiW4BMWqOhtYXYxAQfvW8tz752mo9+5F72HzzHVMFGl0dhy+bllHKHscvw7HN7kQSTr3z2Fk4cOoHDKlKtSrR1d/HtJ/fTGrDR3RLk9dM5dNGNK6dw9yovJ4ZyZDQ763s9bNmxkUhiH8eiNQmdiakEjUEXO3as4ezYARLU4ZUUHljnoqu7lUQ0QWh0hJUtIoYoEEpZKeQvPZN2QcUq6jgEhfp6P+lMHjCRKlm2bF5JNhFn98kQWdNH+OXTdLX4CZLAapG4c0sjHUu6UXKZeb+HiFqpIAg16s+NGGRIooCuVhkfj+APeDgfk+jyWHh0i4eenmacbic/eKEf09uKyzHMjh2r38FIef9jsbhrczpRSkUkWb5u9dbh9pCKhPDWXX93LROPIdtshEeG6F234R1dryhZcHq9aGoVG9dOhq+mCASX9IOhVq0WROEKIyWbw3GFvnA6GkHXNAJNzQvUIMqFAsG2VsbP9dO2bAUWWaZaqVBIJykXChSzGURJxGqz/1waqkWbc0bysg7TNMA0EWQbRlV5L4w33hcYjZY5ePAszT6JklolVr4y5k7kLLz42nGmMgLrl/hpbm7AIkSpXCbiFpTL9K7cyvFj5xGtDtCrbOmSyUQjTCkqRycFRNnBumaNNUuCxEJlTNOkziWwttlg+5oOgnUB/vQ7JxAEka3rVxILhakYFva8dZjTYzqfuK2ZgN/B+MgUbpeblo4WzpwbZzSu8eGtTRw5nyJStmEmFbZ2yOTKVS6mrASkErffeTdD5wc4d6BGvxiLlKmUhll3yw7iiSxvjNTkWu9ZBj3tAUpllfGLw3Q22ckXU3i9bg6PXrLNEjEQjApBu0rAZaWh3o9oRtCB472/jLOhFWXXt7nNOoJ772/S3/oRXrDdS3d1hKPLv0zW3YWvdyXJ8/9AgDCiYIKSR1Rr9+VGNPJEQQRNYUoroBkap6waJXeAD4fSBO1+AjYPY5VJJjp6mIyF+XX872q8/MImw1eDRZZvOFm9GbqDqijIHi/2edWFWQUKf1PLdSdUb7COfCqF7xqVhZuFYehY7Y5F6SKXI59MEGypVTeuuLa6BnKpBM29tWRXEISarWhzK7GJcewuF9Vy+Yr3vatrrxQxKkVMw1igQiHa3Wi5xHshq/a+wqmwxF3LHTxw+2qm4geYLFx5zNolfh68dz3lp4/wD09fxBAlBOnK3YFYLM3xo+dIKjOV0yUe7rhtNcnwNPETMVa12xmYyNDUVAeYFIsKPWvXcWzX2zjsVp589iClfI5fvrWX/qEKf/udfXQ32ti5opc9p+NkNQtv7u6nLeAk6HeQL1b5k7/fRdUe5KGlDjas7WXfmcMUsNFZJ7NlXQd17in2n88xNFmhb2KMdLkW7sqmg+f7DVb5p9lcrWLanFABm8Vk6arlvPD8HkZSEp+8u55tm9uQZQsDIxFKZ5N01ts4Pq6imFZae3ppb45it8szVdcyus3Hq3uHMAyTnBDELSls7qtj447NrB0dwdvQRDGd4vSBQyTLEkdjUf7wy5sINDVjGAalbIZsLIqmqjR0dFIuFnnyhVPU++x85EOb5u53OpVhNJRHKZfZezZNb30WLVtEF2Ht+tvQNY0nntyHWc5jFadY2bfz5zGE3te40Vh6M3zaGkeXBTKThq6TiUfnaBbXgydYh1atXNGc925gGgbeugaK2RugoZnmJTWieVxjb7CObDxGfVvHXDGmkE5e2tU0TZwe35yr6HsFNR2uOc45PHMSayDU9IirZaSbtHZ+PyNWtnFyOMNXP3cbBw5f4NX+K++lXyrz6CN3cOr0EM8ezrLn3ClM65XjqqyoHD98muG4Dlhpdul87MHtJMPTnB5MUe8u4qxW8DjttLY1Mz0Voa6ljXQsjqTm2XWohGEKPLDagcvj5vGnT+GwmHzpsVs5dGyQkqlx9HycjoDI8iVNuPxBvv3jA0QqbnrrBDZuWMZ0/ASRSZC0EvfeuZXJwSHcjgrHRmRGz50nnVWYLbkenJJx6DnsjtNkyjMprmnQ0hIkmyvy3J5JVnf7eOjB7YjGSfrWruLs0Nus6mlgMFSmqOi09PSSVQQMXcPusCILOipw7+BfcyxxmoejT1ASJU63fYzi7b/FyNQ4mb6VpE7uoxiPYEmN4TOyIEHAUuUrR34dAXii9w+oBHv5/OhpfDYb/3NcYb/i4K86FFqdlxYs/8fFClLBznhDA37xAPlsI5ZUhr+/04ogxPj7yQmyhowQG+LXG8r8Tu/lCv1X4nev8doHLhn+eaG+rYNyIYe37lLjTLmQJ9DcesMNd9eqPLwTqJUKpUIOT7DuuhUZf1Mz6UgI2XalFp/Fap0Rvg/PNeWJokQ6EqpVkU0T5zWkgBaDXspiaiqS04tguTKhMw0d0ebGUBaK9YuyHVH+YFQmLseBgTzj0UNMZKUFQuuzuDhdwrn3LFMpjTq3wIYlXvafz1IybaBXkNCxW0w+84lbOHF6lKJR+y0PDeRwGAfxep0EPTKPPLiRV187xvde6OfBbS2cOzuKwy7jqW/ks/es4odPH+Tubd00tbUyGS3QHzNJTKicf3wvRcGDIArsHdKxk8ZmhsnodgRHHQLw2qkse/uPUJjhaF2IGFjfOMnHP76TaOYse4Zs/N3TA5hWD4JZmLOWPpfxcnZfCUGsXbMBfPN7b7O03cvvfXIHP356H5PZaTr9Ol1t9Wzr87F16yqmvruP/mmT0rNHGYyYKG8NkCuU8YgSecPJxby3pifqKrNpWYANm5Zz8q1d1DU30d8/xN7j03zp05twev0c/dYlZzhRFDFNkGQr6kzDaKFQYiIjEolM0xB0sm3rCgDUqkpZdFLvUdm5qZXpqRiIEm63PPN6lWgePI3N/B9fuvPnzm39l4KWniWkwqEFcTMTjy6gWVwPi1Vr3w0MXcc0DRKhaVpuYKfMYrWRiUUINF3ZBOdraCSXSpKNx/A1NGJ3uUlFQlhkK+6GAEqxcFOcYUNVMMoFBIuM5FycUiKIIqLdhWnoC6/T+/PhJv/vRqRk49tPHSCWXygdOYucbuP1t04znaggCiY7V/uZiJUYy1oxTROrmqMqe3lwRyvdXc288aPTYLESLsq8+Pwe+rr9RCYneOyXPsTU6ASPv5lAqBzD6XZx4dQZmppbuKe9nZGpDJlcheW9PgTZTvFwioLo5K++c5SyKYNkZSApMxBX6Z8cI5IZrMVcC4xkDP7623tJV20gyRhWD19/8gifuncJ2+pEjk1M8sRbSQSjChY7psWGIEqUJS/fP1JFmHHXswoqB09NUcxk+N0v3suZc+P8w/f2USkrKPoAK9qdfOT+Dezac4a3B6p8+6lD5CpglwXOj6ZwyAJFVWeNOcLq5DAnXOuYcvSiPfB/Ej26F83qJnv+CB858//n5c3/Fd/KrexOHeeT+acBEGfiomFxYMouzJnE/ahi55Di4I8nivz/eqr4bbXrjRm1cfwpY4S1ARkhJ+CVhLn4OliRyPna+Lp3hHsbb55CdTn+NRmmZu+pVSszq/jF6QmLSfrMJowOz83/ELqmkU3E8Dc239A27WJQigVae5dd10YUIBUOYRoG7sDiUmqZWGQusXe4Pdflvf2XL20Erq4qYWpqje6QSywaaA2liFEtITp8aLk4pqFfVaf4g4IKNurdOk0+kQNjxhx/bRYZ1c5bAzUZsbUtIrfdspLR8GGG0/DwFj+dHY18/ScnGRwYwyFU8MkVWv0iG5c3k89kaO7sYs+x/aQjYez2mjNg77IuxmNlfvjmJKKpM5E6zWjSxDGURe2f5kzShSDJCJJMCRlByWLaahI+CnYUwY4wL0pogo2SZmIXiiiiC1OSOZmQqD71BkvbPWxrM1m+ZDnoVZpaW/j+C2cIlWqLm1kzDoAPbfASDHaRz6QYHxwhVLSQN2wE62S2bF3FEz96i8GpAvEC3LLCyWi4hGFxcDYGX9jZQV1DgL/8wRmwudi21MX9d63l+ed20+S34Gts5PREheMTOqajhb2Hh1FUEGzuufFqR+HX72+lqlZr23FAQ1MDn78rz7dfV3ntSIitW5ajVavsOTpGn7dIsKGJtkYPR8/H2LHUTrChnj/9h108cncvv/noGkRJ/NdE+AZhGAax8VEAGrt6Fo2BgiBcoYE+S7OQrtJwdz3kUkmsNvs7bnLMxKM0dHTdUO9ILpVEr1ZxuD1XHRdaRcHlC1DMZnD5/Av40zfLkTaUwiWK2WKflU/WzJFKOTANzEoR0eH7wNAiFoMgSlQ1jbvWBXi7P0XRuOy7SlYOjJqAFa+U587btnL81BBjJ0qsqKvymYd38t2nDzM+rWEXNXrqIFRQePj2ZqYnoyxZs4aDFwuMnDuHx+sFTaG1vdb78d2XBrHLSZZ1eAmnqhimCZrCgQtZTGttHi6LLlDLmGYFwWIDUSZakRHmrd8EQSSlOvCIRfKGiCBKJDUPP33jImtbJT6zo4mxUIa7d24iEQ4zPF3g7SFz7vvPYlOnha1rOolPTZGORhgP54kqThpsJhu3rCa/+xQ/evYI40mNvjoJp01mPC8gqCId9fC7H7+FJ358CCpwRlzGyU//COn4T8mffhtncy91429z98S36BGmSZ/6nwyHd3J/+vm5LFM1TA5778AWG6AUXEpGkvADf9VZ5bdGVZ63reCO5AU+3WrlOyEFmwmPmUM82urmOwmBrZYC/7FF5ZYzTu52FPlvXRJfLg6xyv/e0Cn/RSXDakUhl0xewZs1NA1PsI5sPH5T57uRRon5iE9OIEoSTq+XbDxOU3cPoaGLtC1bflPnmYXFarshfrRpmgiigNPrRykWcLg9NZcj08Dh8c00svhIR0JX7eoGqJTLqEr5hjhsgmxFyyWQXFepUEgSFm8jhlJEdHqv6l73QYJpGqxZ1oDDYWf/0CjCTEex10jy4e3tnBrJMZCsVRuPDpeZjh1gKl+z60zEU7itBoIkMRQq86Hbl5ApDFCqQkdHE984MMYrp8+gE+D4QJyhkEpadfDn3z6KbnEiiLXJf/+wDoKdk2EwDQ/r2kwyxSqTeSvt7gpf+PwOnnnpFOeT86r5WoVHtgeIJQvsHxN5dEeA7p42Xt91nP6YDa1a4eGP3ko+naIyniKZzmMxNSzWNKp+xW0AYDpaZOnq1VwcDHFiqkCmWpuk9g8UOT+2j3jVi1AUaXCp3HfnWg4dGSDcX8Y0dJKxBMlImLvW+Tk7lGA6DHv2n+Vc3Er2VAoTk5GMDaSaQeeJuBurXkSggjljOX3LCi8NnV1MDw4g2S5Rcnr6enm4oDE2EeHQ4Qv0dgQ4EzLQC1WkPFTKY0TLVnwuE0e5SlmwU6mo+OsWX2T+K2rNx4ZuLODNmoaBdaZiaxoG3GBB4GZly7KJOLqmIiAgyTJWh5NMNEJzz825dc7C7Q+QCk8j3QCNS6tW5lWxPZRyWZRScYGznGGY5FNJglcxPjJNk0w0gq+x6bpFE8lRs1oWrpbcmjoWfzP6TFIsyHYwjcWP/QChs8nBls199A8foDhDTzO0Cnf36lidbl49ryEIIlnDzT/84CD5igjYyZU0Rs4P4BQ1zk9r3HfHaiqVKqWBDB0dTQyOp/jv//Q2RdGDPKpgtVQQbG6e3JdEII4p+6gCxyZhVrM3MgItfifNQZMTExqCrvGVjy0hFkvzzPGFNI4NLTrLuwM8cyDG0gb45Mfv4MDbBzk5rRJX7Gxc2cIt21YwNTyMUtGIhmKUC2VKisacDNE8jIXy3HW7n2g0xcGzSc7GZyqwFSd/9939ZCsSmmgHLNyyNkBrWxOnv3kY0+alXCgyeOYcbX6T1/N341AS+Pb9A53xQwSVMENNO7ll6sd4pQoAO/UTbJjsJ4sT74zX9WnbOi5+/Gvk+9/GVteGPjIOQL3Dyn9uVfhB7DxndZF7FZUX8g4OWFvRixnG40XGVYmI00deHyZj8ZDWyzhky3uWCMO/sGS4kE4TbKlVP+fD39hELpkg+HPWcxREEZfPj1atoGtqjb97k27rSrFIaVbireHG3K4EQcAiW6mWy3PvMU0Df1ML2VgUh9t9VVH8+SikU7h8fvKp1NzW5WyFGBZWiSWHd753whUQbS5M00QONM9UND44XLWrQRBEfrhrGptRRBRriwRRLfIrj65HyWdxOy49joZkY7rEHJ2iKrpYtmYVPaNHOTWl0tw/wl33bOOJHx/gz799FMPqh5m5cu+QzuyWoGGd53BkqDQ5VSJFK4JkwWYUeOTDOxm8OMYP9qaxUyY0FUWpVNjSaeP8VImi4UBEp7WlDl03gdqCKBuP8qH7t1F85SwDCSs/e+MMSllhKGObx3NOMl9EssFeYVWnhwMXc7w1InN0ZDcFwYMwU3oWijE+clsHqWwZOaqyeXmAXSeKfOupg8QL1M6lVVi2ciXJcJita1bT3TRMfXMzf/HEEe5cF0CrKBwaMxd0K1v1Ir/zmbUMDoX42alaQ+Lp0TxK9TSHLqT5gy/dQqVcppTNYHd7WL+ul+d2D3PiYoaP3tFNCxEmDAv1eow7d95O31QIp9NOS2c7W9dd6ZL2r7gSgaZmCunUXPyRLBacMztqi9oMv0fQNRVffSPpaARBEskl4mjVyk3r0yemp8A0qWtrvyEFEpjnljdj8qQUC7Xdt3lV5evZOafCIYItNUm3azmFwkKr5cUguYLohTSSpx50DdPQas1gH3AcGlIYGnuDjGqby3juX2ll04aljA6O1LRKhdo8Ga9c6gnKlXV6V62gbIxwNp3nqWcP8sXP3YsiDFwqMkg+BOBCohZ8BQGw2BZM60G5RFGVqMzE5G0r61m/fgkj39qLjkY8liKVKdEXVFFUmMjXjvN7bLS3NyELETANElOTrFm7DIc/zXPHCpwYTJPJneDoQArDHqR/d2bmEy8lwqJe4bblLobDJULFAH/1veNUkDFnrJcFtcTqJpM1y1t4Yf8kt6/1Mzyd4/n9YayWMKatVmirb/DT0FRP17KlnBgSqF+9naXP/xsqFie7V/1bVvT/01wiPIufrfoDCise5L5nHqZHTLBMGSD61p+zNbafjqMD+Lr+mCNIuA2dtX47X0saPF1wowxP0CbIqMkSVtnGr7cq9NgFTqci3NlSzx5/aI5K8V7iX1Qy7G9qJh0NY7U7qJTLFLNpnB4fhq6hqVV0TZ3T1Z2Frmlo1ep7orPra2igUioh2x3IdgeFbIb6tmvLrF2OUj47p4WpqSq5RAyrw4nbH8A0zTle8OX85Mu5Zw6Pj2wsir+pmXKhQDlfawa5VqA3dJ1CJn1d17obgWi7lHi/V+5HvwhwyCa/+Zk72HtogD1DOhatiF5VKOZy9DQ5cMjlS3JqgIsCJcPKyXGT1I8PMByp4HNZECsVTh0+QbFYoTVgY6q48HM8YglNrVLCjTBT7d/UKfOxD23jB88c5mIS6rx2ju4/Rv9wit6An8996m5efO0ENruDj9y/AemNUxwaMzAsTv7+6QsYgkTQASXNxRv7L2DzZRiKawiijbMxGZAX5ULPYkW7m7t2rmYsfJBoXqOz0cWFsIopWenxlPjlL97D+IULCH4nFUNh08Y+Tg8lmchfSqgFq5PHnzuPrqk0nDtIs1ujTzdxW1TWLG/DqJapbyjzzKE07V6DqbyEhoWh4RChRJGVviKb1nbw0uEoB0Z0sHqxWK3kZrRlay6QbtqCdkJqM6/sHcXwNHPvBpP1G5fj8rh441iEhGLhtz7uJNjwr4nw9SBb7eQScQLNLTVOrNWGy+ujlMvUmuMWWYSXC/n3xI0z2FxrXqtrbSMVDqFVqzh9/ptKhE3TRJREHG4P5UIeVVHQdW2uTySfSqFWygSaWxec93Jqnb+phXQ0jMtfi82JqUkQBHz19ci2xau5s9r3N6J4dD0IkuWSdJpFRuCD1aR8NZiSlft29BAIevn7py+C1UmdW6SUzzE+NMbn71jHU3siVGe4CbKhIAkmBTw8/qODpHNlEFw0BywMnDzFuYEEfW0+BqI65rzEUzIq+OUq8bKEaK3lC06zwFc/u52z58Z59lgB2axQKhi89Nwu0gWT3/v8ZpKJDM/sj/H7X95OeCrKt96qKU7tOl9m95kTGBYbgYCV/UcGKWMnWpQAG3HFTnwcsF99pzZo17j7jjU4D19g+nSR9jor8YJJVgVRK/Hbj/aRjsVp6WjGbRll04Yl6MYQg6kKzOtH23O+wOnhNJIk8l8sjzMoScSkBgRfA/qqB9gbXE3Tri9SsgbwGlk6zSj+1AWqoz6mdB8vb/5vdE29wUPTMzrEVpgoFDn54U9hTE+wcvQs68UMz3m6eC1fJOnt4rPiOT5eX2FnvZO/mSjz59pG/u+pQb7c8fNZwP1CJcOz3FiL1faOmtEEQZgLYLPC6vGpCZRiAX9DM4V0+gq3n2RoGqfHg6ZWr9qRHB0fRbLIuP2Ba1ZXZasN2WojHQlT39ZOJha5aWtRf0MTqUgIu8tNLhmfS4whQCYWxd/UQiZ2pWLE5ZgfqKvlEt66BrKJa9NEGjo6r/n69XjE/5JxS5eB22VlT7/BwOAksbQCyFTs9cSmQzS1t1HM53E6ZKCmDhKUS3z1s9vZf/gibw2oNAdMHrqzj7GhcTbt2Mih19/gkTv78DfU86ffOopgryUPRrXMr316BZpS5uJ4ktcv1LZCY4kcB/ceJZzRMXVY0SzS09PCxm3reeKpAxw+coHxeIVEEZ56/hjDMZXZCrMpuxCA3mZY0u5jWe9WHn9hGEO8scBkmiYHBwuMRQ4wkbVw+3IH9925hu89fYShVM3xLp9MMBrKsm9MAkFkaGovVUOkxVEiVHLMJRp5wwkijOdhVZtMz/IlNJyJ8/VnzrBjqYt4Eda2W3j0oc389MVj9Idlnj+p0O6q8vBtPfibmnGciEKtb44/+sYJbGqa1Y3nuPuemqXyHTuWcPJ8jJalHVisdm69ZdXcd2n02xCzVeyODy7XchalfA6lkMc0uW5l8mqYjdXZeAxffSO5RJzI6BB2l4eKUr5CLj8dCWN3u0mGpq/6meloBNM0rukIN4vZarQgCjR0dlLO5695/OUQBAGL1Ta3s5YuFvEG6+ec+NSqUou70cg13eJEUVzQaC1KIi5foFYguUoy/PM2ePogo91d5da19bx6NMZEyCSZLWFKVgRgOqHgduTYvGMjmmEyn4DyydsaaWwO8r9+dBbNlPjqL23m2NEL3HXfnUwPXWRtj49Nt2zhB08f4eI8pdSdy53csXM74wMD/GhfCgUHigpHD51mJFIBnDRY86xcugbX1tVY957h0PFRyhUN0+7le8+coKJfavQTJBlDknGRZ8PyNmRbBy/tHiJTvbGqqGmaxKsOvv7DA6RKAkFZ43OP7uTY8Yv87EQRWStgVBVMQ+N/fu84ulzH3373EIUqdNXJTGUE9JnmO120kdJsoIFoteDqWU2mFOKXzvx/+Vl8Am/rSkqqwcHP/BBp9AC/dvx3eDDxFKXwk/ztLT/C3baEfGYA5qUYbQ476gs/YZ3HDSI80uymf3qcZd4SeXGYX++y0uSofX6XFboLETp+jnWzX6hkWNd1gs0tZOKLW8jeDOxOF+lIGFWp0LF8FbHxUbz1i9EOTCozovJXgyhK2F2uRc0qKqUSpVwWq8Mxl0z7m5rJRCPYXTf/y4qSNBdQZauVVHgay4x1qCdYRzoSrgV705zjAxcyaarlErqmL5rQ+hoaGTvbj9XuoKqUF0gZ3Qhmt5gdHu8H0n3rvUBni5/6Bj+vncrz08N5Zs3YBUHk9TMlPt1kcnEyz75RAUGyYJomhVKV2OQkLkEBJKpVlVwmy+nRPOn8QdYtX4rFZuHg/pP4HJA1alu/gmwjPD6JyyFjVCuAjGnobOp1sWrDag6ffYt17Q1s276K0f7TKEqVjGrjpdM1K1FEOBeDgGyyNKBzJmyACYJF5vh4FY8lQndX09xWYIuzQp1bJJRUSFbtbOswWdLiYDqlsmdUZGu7zoreOp56O8xEzkqHT0OqZDh19DTj0SLIPk6HQLDGkGU7m7rg+LREWrfyyFqBjs5GBs4OU8TJvrFL05ZpmtQFvYycPsn6bheyLPHWaC2keS0V9h04z3i8ltDLpoKsFckXFN7e+zrTpZa54wIOkx3LG+ns7SKbiCEIAsv7Olnet/ji7xMf3UYqmeapl06zojvI9q3vjPP/iwC1Uqn1UyQWb8q6GXiCdaQiYSRJmmnSbWZ6cIC6y3ajBFFEKRQQxKtXb01DxxOsI59KLvp6KjyNIEoLEmWr3UExk7npXg+oSaHNR2am2gy1Zzg2PoposdQKEjPnj4wOY5GteIJ1i+4sqppGfHLimkYe10I6EiZorZCqXqmS8K+AOo/E8hU9HDwTZf+4AGhzu2T7xgRcjiItrS6+8/Iwxkx11TRN8ukUDknFYdHRdJFsOkssp/Pqm6eoE7P0rVvDxf5zJNN5BMM5RzkoFwtERkdqiiMzPK01rbBh43JSe87hTGf4/GO3cfH4MZo7OsnkKpxNOZlNwyYKdkSjwvp2k6FolUJVAkGgKHp4efdF7rm1j1njUhsV1nU7GJ1IkTfs1LlEbllmR3a4eO5gDJdV4OHb23n7eIjBpBWnqLKi1c6pQ8c5P54HvCjWOvb3xxG0MvdvqufN0xmyuFlRX+D+2zqYmgghu708dzCGMo/uZjb0UszlyZWsPLf093hk8C9wFp+hIsPwwb8nkK81xuqGyXnnOoheJDV1kS9O/AVYBQq6hZN1dzGIFenBBzl7/DBrs1F8Vgt/tVSERdzkPtbs4GPNGn84LPB8RuUvl4hYpGtsQ74DvDMZg/9NmOX2LiZTc7Nwen0Emlto7OwiFZ7G7vYsmsg1dnYTbGm9qksSgL+pCckiL9r9W8plCTS3UCmX5v42K+B+rXNeDkPXF9grV5Uy2UQCwzDnKBAWWaautQ2ntzbRKIVaBcQwDBzX+SxvMEh9WxtK6dJ1lgv5WnJduHYlpZitVdRLM1SL//KljXNV4tt7TD6xxQla5Vqn+EDDYla4OJ7iiWdPg3zlQqOCnf39IQ6OGvjlKk6jwMfXW7l3nZ+KaUEVaolzY4OHQF2QSNHCsUmYjmW5MBjBFGT+3a/eTpOt1oAhCCL7Byucnqjw5hA4zDxf2G5lw47NXDx9lk/f34ebIhcuhnj1TJlvvJmiYNgxTZMOdxmvVOPV3rIqyKc+toXbWov85oebWRqosqFNJFeVePzNBMoMKfz2dQ08+tGtfP7Dy1jfrNHZ7Ka5vYX2Fl9NnsgCPp+HZUGV33qolfs2NXDnvbcQdMt85s42JEOhZNrZP1Bgw7peVi+pwzRN/HKZdCaPw+OnsTlIc8PCBakgCDy3dwxRllm5djlL2y+NcZvFZCqWJ1utTTR3rfHxhc/dh+P/Ze+/w+w4rzNf9Fdp59w5otFIjZwTATCBWRIpihIpKsuyNWP7+HrOzNhzzp1njufO3Ake2/KZ8WgkUcESJUoUgyhGkWBCzhndaHTOO+ecqur+sTsCjUSCFqV73ufhA6JRvXft2qu+Wt9a73pfo0R940zycdfaKr76uW2kkhni4TB7jw4iSgregT4i3glCY6PzfqeBQJShuMLg+Mw9GQpGOH+uD12/yUGAjzGc1TXk0ulbwosWJYnqpmbc9Q2IkkzU76N52fIrjnPV1uGqq7+mXKWnoYl8JjsvrSsdi1aGfC/7Hmwu900nwplEHE2bGTKLeCcq9txuz3Snwl1Xj8Fkoqa5dU5BRJRkDBbLnN+fDUWWaV7WUVEymoSu60S8EyRCwWueVyIcwlFdw4Nbr6yKt9iLfOUON3Xm//9dc3VdJ5kp8tNn9zGSvLLqrgsSw2GVVw6OIxmtVCsZVtSU+Mbd1USTBQw2J4Kk4LKINLQ2o4kKR4Y0QgUT/X3DnLzo50++die7ls3kDGe9Ip2jWV46nqCAiXtakzxw9zpCvgBrFjm5d62T06d76Y0ofPc3E5OJMDjlPM3WihnFQo/Ipx/cwM6lRj6/xcyDqwzUWwq0t9Xzkz0j9MUqldKlDQYe2r2Wz96ziIc3e6ixS9TVeVjY3oJF1hEFDZfbgU0u8837G7hruZH77tuMx2Xinq0LabEXEESJs14Bp9vJ5k3LcBk1ZL2AWsoimyyIkszChQ0Yxbnxe9foTxF792FpW0Fm3WeJ6JVrkBKsWNQkS5KnAThl3cL5x59Dr12CoX0dwXLlezhTtZu+T/wDKcVEJhzGmM/yy0138EJ1My9YPfywaTHxSbnLy7Enb+dtvY5wrhLbhbLK894sgeyHj/UbSoYFQXhAEIQeQRD6BUH4P65x3GOCIOiCIGz60Gc2D6YskwVBIJdOX/OhExwdITQ2Om1IkUnEiQeDc34nGY1UKq0NTdfUc7wev0wxGK9Kd7A4nET9XozmKysDEe8E4Ylxylf54mcj6qsoPUxRGfLZLI6q+fWFLQ4XiXAI12RVxOGpJBfXanOa7Q7ymcycCkhFR7nhqslwJhEnn8lgsliJ+r3zVpTdTjP1dVUI+lVkBT5ifBxid3GNzMMPbWbDYitf2umgVp4r1r+u3cZnP7WVdkeOP/rsOr50bwtGcrjtBp7eM8axngRSOUMwkmNkNEBZhWKhxCvnNd6+WKCxzk7PuQskizO380TGwOkJAUQFm1jEXVuDf2iQ7qEonoYGlq9o4+VTKWw2MzuWGBHUIjbSfO1z27h3Y6VDcuRilP17T3DXfTso5rPI5RTrllazcXkdty+WWOSukMrePR3khZcOEounuG19C28d9/PDF07y2oFR0Mq0NjgZGRjGaZUp5nP0dnbj7e8lnsrhcDkRJyfaK3zgS7yw3wfoPHZ7C2vXL+e/fv8QvzgU51dHr6wCJsVqXjwa5zs/P8SeM/Hpn+9aU8PjD2/mtqYsulqmbzjE/r0n8AUTbN+xAY/mR9dUTnRHeH3PWd7oFvj+e3Hysp1wKIKu61gczqve+x3L2/nCriru3bGQk6d6ScSTvL63j1+dSNJ7aejDhMs0Pg6xC5V5g6muUbl0dWH7eDBAzO8jPemyWSrkifq8lAozD6p8JkM+k8FVW0d1U/NVr++NcHqvRpWzuT2Vc5jnNVLRKFG/d/ocr4WKY6dC1Dsx67zAUV09p7gBTNMkpvjAAO76eowm81WfDc5JytvsjmQ8GMBd34Cmzr9elgp5ktFIpQsY8HPo/JVdUrOi09zaiOm3SAn+bceuUEjyhUc2sX1NPZ/bamdj3dx8wS1nefLRbdy+tpY7Vzn44y/dRrs9hyKWGY+V+fFrfYi6SjKvM9A3SjKnIRZTHB0VeaVTwGG34B8dZcIXm37NAkYOD5RJT+q/NzTXkgiH6O6ZoKxJrNu6gQsjGQbCcMdKBx5D5b64Z2MtX398G1Y9zVBU4+XXDrNiWStuj4NSLkN7lcj2rctZU6+zs11EV4t0e4s89/Ixhod81LjNFEtl/vG1bp766XuECkaaqozkszmK+SzFbIqQL8BI90VC/ggOtxtlVlH1QHeGb//0EIGCmS2LrXzhyft58Y0zvHAyz989fZKENjd3scgqXxr4L9zx3p9w50ufpkWpqEVcqL6b8d3/nudW/SeGhUbqUn3k9v8MR+8eqhcu4Uz7F4mWjSyLHaVm/7d4uJTmX/ae5hOFNHosilLMk7NY0apqKWjz53Y/bknyy5pxunNwJJLn2UCRvyh08K3Ahyc5XPcVBEGQgG8D9wLjwAlBEF7Rdf3iZcfZgT8Hjn3os5oHuXRqhrMV8GO0WOadsJ2S8RElEYvdQSGXRRAEfEMDuKpr8Q700rR4GfFgAKvTSXSSv3s5pobRZIPxpoTPL8eUdfJ8EEQBp6eGbCp5Q++RTSVQJmVzHJ4qkpEwFseVFd/5lCGuV4WeT7LIbHNMywJNYYr2ISkyoqwQC/hoaF88b1X8r76xfvoBqisffgDxZvFxiV1/JM0rrx0lXyyzfKHAEw+u5Iev9pKdtIc9P5wm/5tTuB1Gus520tZah8XhprGtlU8E97N41Spy2Qy/OR7i5HiWTe1mdu/s4PsvniVW1PDUVDMxESJPJamUtCJL6yX6AyVKgomQXsVPXz5PVjBTlGpIvXyOQhmWeiS2dLhp71jKxeGDZIrw+utHCeUkwECsZOLIQJ683kM0HOWJz+3mnbcOksmVeOihHXR3jzJwKk20aCJaBONQktZ6nZxo5eEtrSxe1Ejn2YvEIjFEQWf3/Ts4efgU2+7YTsjn52B3msCpAYRZsZHWzZPfCRy94EMSBQRbFeqsxKbNUcBiFOkKygiCQEa3ktGtcxQk9p8LYVAzbN+xnqPPnGHTyiYWtjfw+muHUOnia5/dyp4DfXSGjHizgFTJHEaTRl49PME9G+t449cnmcha+PffvHLIVRAElnYs5MixbvZ05rEcP8KGZdVYTTrNzTffhp/n9X/rsauWyyTDIWweD+ViiWIuSyGXpba1bc5x6XiMYj5HIZOlvn0RMb8XTVXxDw2g6aDpGha7A5PFSiYRRxAFZINh3qGwVDRKMZ/DXVd/xTDzzeBqg8ClYn7G5e06ECSp0u2aPRRnd5JNJq/g8oqieAVfWDEYpxS15oUky1dUv121dUR93jnXZkpezWixkE2lMFutJCNhqpuaGU5cOefREzHwX75/GN304Y0IPgg+DrErKwZ+9fIhUgW4b1sLd+5aTXZvL93hynWNlcy8+NoJhHKBOpeRkb4+qmqrqW9rZ4MvhNVspKGtjcOHL/CLQ3Hcssq/+spG9h3u5diIjsVixuGpJpid2Si12vPkShDKV57Rv9zrwyKrxMVqOkNh6i9GyRZ07l2hsHH7KoqlcxzpL3Du/BBD43EyuhlBkjnj1ygfGSQeTfDYJzfhHZvgN28epaHWwco1yzjVf4ycYKM7DKF0HmdNmUQOFjS4eOKRLXSfOc+IL0Uikeau29egaSrr1i8FXWc8ofPKz85OmyEBqKKBaNmAIEDvRBrDwS4CeQuCYqQ8SY+wiXlWLbBwerCyCaySclQxMOearw29Q9/hZ5FXP8TY2HKKig3z7V+iuOfbKMd/zmDLffjca/jT7n/BJ8e+Dw3/FYAao4EvDHXxUvNiTIkYD471UW2an0O/1GEmls3x2GgzeiHFP7MGeUAY5QFnifnk5G4GN1IZ3gL067o+qOt6EXgWeGSe4/4j8NdA/kOd0VWQSyWxOisVT0EQKGQyV+WUuWrrKBeLaKqKxe4gl06xeN1GsqnktI6uJCukYtGrViCmhtHKpetXbS9HLOAn6pu47nEGkxnvQB/FfP6aFReA6uYWPPWNc6ohjqrqOYlqOhYl5veRvAqP7mZhttnw1DfOeY9MMl6hfWSyxHw+LHYH6Xjsqq9hMJlvig5yi/Fbj125nOaPntjM4rZqRmMCFy55SSQzaPpM3GU0E91jGXZuX47BZOan74zx3LuDvPCrfSxeubJigJHOTMdqJl9mYjxAqzXPNx9q5fCRLl4+OVNt7miQefxTm/jMZgeKXqDdWeCJh1bhsVWezJIs8qnb6tnQZqCq2kP3kUOEcyKf29XA6qUekplZlTxMHBks488aOHd+gOamOh759F387Nn3CYYitLtm7o8zXomXT2dRRSMD43EmhkZYtrydA31F9lzS2fP+ebqHY/hHR1iwbBnLWu0VrVNgsafEHUtlBLWIrpaRSim6ggrn/fIV9+gd6xv49P1rEQvzaFOrRe5ZYaDJo/Dy6Qzf/9V5dKOdSyMxgmNj3H/fZg6fHiWfzbGofv4F124SWLy0jSUNJtqrrqxQnD7Tx9vvnUFTVZYsrMVRDpMqGTBZzHzu4U1Y7beEN/9bj91EqFKlTEXCiKJIaXJNvRzFfA5PfSOSQZkcImskHgrQ0rESSZKmnacQBEqFPKV8/qqaueVioWIbf5NzIdlkgpjfRyGbveZxdreHib5eSoXCdavDDk8VnvrGOcUSs802JxEuF4uEJ8aJeK+/3t8IpoxGZstmTukM57OZCm1D18mlrq7LLgjCby0RnsRvPXbvXe/m0Ud2kC7oHDw5RCKWoqTO3MuCJNMZkGlrrWZFRzOv7B/l2X1envrxu7jdTpasW8dEfx/i5DxOSRPxjgcpZNM8uUmi0a3wrZ8crQzzAlIhzlc+s5nP7Gyk2VbEoOd48r5FrFhY6bQWyrC5w82Da0ys3biagbOn8HrDbF6o8NDuVVDKwqRBhiCIdAZkxvJOznWNEotlePCBbYRTRV574yjrF9lBreQL4byJXx5O4M0aCadULl3ooaG5ngImfnYoxTtHhnn36DDhUBzFaGLzujZ0sZID2cQ89602U2WsXH6xmCSUVdjbU5yWgZvCilYr99+9lkW187cb3nc9yFsr/w2f6Pkbdr7xNbbF3qE50UWm+zCFTU/S6D+CngqjtqxhmCtns3KqRqGhmbCrmuNVjWTLc+ev+pJ5/u1gib5kHpfZxH3qMAUVTqoevrsI7qr+8MPMN1JbbgLGZv19HNg6+wBBEDYALbquvy4Iwl9c68UEQfgm8E24+enkRDiEze3BaDZfVSfSaLaQikaon2WVKUnypHpEA9ZJWbDrqVE4a2qJ+rwfTANT1yeHO6LXfB+by00xn8PhqSabTHzgCnQhm0VVyxQLN171gMpDrJi7MRONKciKgag02NsfAAEAAElEQVTfi9XlQkdHVcvIhutPt15NaUIrZNAKOUSjBdF4y6vHtyx2Z8etdBOayGXByInTg4QTeR6/qxm7w8YzL5/hrg4P/f4sfYnKZ85LdgLeIA1NdVgvhvniY1t4fW8PvokANbUeXjwcJCtXFlZZFCiWNOo8Rqx2GzabCSE68x30BYp0numkqakWixhFFA2YzKZpXwO7UaC+uYnhZIxMPEZ160LELh+jIz52P3g7jyIx7E+zt3/ys6tF2hqN7D0XxqRA9+gpIgUDX71rE52dQwyeSl/xuc/7ZXomQtSYvaQ1N4IgVqTMqGLghMojxS4WL6jmSNclyoqTFW1OVq1cyMneo6xd6GDH1hX84qUTJMsGkupc+s2+k8MsGvOhKAKzt6od1SVWNBpp72hjYHCCc77MtI53IqviC2XoHOwlJriJJnKk8nO5cLpaosWaZ/PyZr731Mt84+sP0TTsnY7ZqRh+5Z0uyqIJoXgU0WzjD5/YysBIkJXLr622cpP4SGL3ZtZcg8lMzO9DUgwYLZZpk4zLURmM8+KqqZ2mSk11lWwuNza3Z7rSWX8dC2NRlon6vDetolDIZnHXNxDz+64pg6kYTZjttptaJ+eDpmkkwyFEWcZZXU3qBmgXMFnlDQZw1tTesPOoxekiHvAhCCKumtqK1OfkdzFb5/1mzn3fwU5qPDZWrWr/KNR/fuvrbv94ClXrZ2mTjQcf2MJPf7mftgYbDc4SBwe16aE3rz/O2jWLsZqNPLJ7IZFIks6+EHaXg4FQmeMTRgQBZKmylJgNEi63AxV5TrezbHDy9tvH2LJ+IQ0eA6FUDqNRQZIqOYoiajS1NJCJGeg8cYqVm9YjXjqOP1akWCjy0IPbWXD6LG91FslOdscWuMoM+1W8CUiUz3FxrMj9mxrpWNbK6f6j5C+TxgsXTPziSJI28wi+nBUkCz2Tz4XeGKzyDXHvHStptZfwpjUa6wxs39JBOH4aKZTjD764lbffPYM3UcCbMc5xrzvbH8elnCQVj80pwA5Tx9ub/jOFfA7jsm3kur/H2nI3iAK2UgxXrJ9CuJ8lqfOkow2Me2oQNQ1E+N79ledGeDSDom8lEz6M0VKLf/lO/iH8DK7Gmfzu6R+pjKQb2CsPU++0sf4LJR4P+3no37xA9xu3Zi/1oYkWQsVT9lvA127keF3XnwKeAmhbvfaGJ01mt700VSURCmIwmynkskiSjFouTevrXm56dqPmFLMhiuJ1BdGvCkGouArdgDi7wWQmHY99oAnnKaRiUcw223Siar/B5DYZiWB3e66ZtJeKBVLRCI6qGmRFmZOwWxxONE1DFMVpS2u7p6rSHrwGdF2v2IGWCpSSYRRXHVo+/VEkw9fEzcTu7Lg1Niy58QkpSWFvbxmQkYQgJiXA1qU2Gmqt1LkNVI0lSBQVgqEUIxN57KkSqqCQjKcoqxWtSc+oj4zknmYBeJxGWlvr+dGxUQ73niYpuufQIwuqzPGuEG2xPImyAVsRxrxRspOZ44WARP8P3gPJxL3rRBLpKNvbZBSjjRd+fYj1HTW4HGagMpDX7NL59IMbOHC4i/e6iwSygOTme88eo1goYtSNFGb7h6pFXHKeu9eY8FQ18MaRMbylmfgSRIl0XsOazfHPH1tDV1+At05HOXZ2HEEwksiU6O8Z5J5NDWiCxE8OJOdsfBfXKizvaMFuCfDrzpm3dVgU6hqqOLLvCKNRDasmIytGEqqFzR3VrFy5kG/96BCCwc4vDieAis99u6tAsVhiUa1Me0s9zYvbONoZ4OlfnSZbgtnGIWq5jMthJp4qcHowS1rXyGcucO89m1FuYFN4q/BBY/dm1tzLN8npWAxREinmcqiqimwwoJVLuOsbr2j3z2dffyP4oFJiBnMlcb8RC2O721Mxw7iJIsDliPq8uOvqSYSDZFX1hhV4Yn4vrroGoj7vNZ8viVAQxWjE4nBiNJsxmmc9/ybX3CmtfIPRdEMFDbVcRhBF3njjMMcGS9Q6Eqxa9cGc+D4M/inW3b6oQl+0QJ1Z48jRi9jFAqs7lhEaH+XxrQ5Od4dIZMqk0hID/aNkypDJ5Mjni5wNKBTP+OnxCtPrjlmBtoVNdPWHeP79UUJZEXEW1UAQBE4P5bBaA/RNZFB1Ca8/QSRVBAxksfD3T5/AatRZWGPEeGmQUrHE1g1NvHNsmAU1PtauX4F88TyoFVOsB7e3YraY+NbzvZwY0QATb54IceDUOIokkrusIOgU0iyqLbBx9UJGRkPsGZx7TTJlA+lklvXtNh5ZtIDvvNDJd57eR1lVKesKoyM+6hwCd+1cyTOvd+HLzTyPq40Fli5ZRGuDg8FjdbQLlc5NRrSRdbVR6D2O6Y2/IZbXOG3tYEWph76a7ZRu+wrN7/1/aSFIS/CnaIGnEUWBAXEBifEaYkE/bvf92N1uII/s6CcY9OJs1Jnivem6TkNDiZGwSjxtYrx/Cf6Jizz4kEqzeuuaCjeSDE8As0lzzZM/m4IdWAXsnfxi6oFXBEF4WNf1k7fqRGcjHqy04sYuddG6fBWB4UHq2tqJ+r2UCnlSsShGs+WqusC3CslImHKpeMV7XU/3cgrxYACLw/GhTSzUcml64ttguvHqsq5ppOOxaz5AUpHwtJbxfNPdU9WNQjpNTesCQqPDOGvrkBXDVTl/5bgfQVbQClmMNQsoBIdRnDe/YbkBfKxi95xf5r5VRjZsXMrFY0dYtHoNgiyhFvI0P7CLzs5++sazhPNGfrl3nC3LnPQPh3Fa7YjhAk5FZ9fqKg5fCHCw6xSq4gIJnFIeQdBJlCsP5N3LDSxtbae2tZULIwepcVpYtXoxpy6FiZcqbbj2Zg81lhLLOtrw+sKoKtTWefiH5y8yEhgloxnAUKHHBKJ5fvXqMZLpAs1WhfGkhFXMEcha+MN7W5EkkafenECY5N1uXWRi58ZlxAN+LHY7JqMyR8Ad4N1eHYMe5tO3SURTRQqYuH1zDQsWNPC9XxzFaSix+r7tnDh8Zs6Cr5VLFZUKBPqHJmi2VpMr6USKZo4Nq6xcWOKOe3cx1HmepiVLKeRyfO/lPt4+nedYV5C0YEOgcg0sQp4ti4wsa60ll87QsKid88dO8+w7QxQEC7pWQlOs00YiyXiCp54/Q7VNQZNMxNIlPKYMJ3x11HcNs2H90lsZLh+r2M0mE8gGhVwqiSCI2D1VhEaHaVy8dFr5QNf1G177PigKuRzpWPQKjq7V6bqh9T6bSqKp6jX1gG8EkiyTDIeQFcNNdfRkg5F40H/NjmMiHMLidJKKhOddm6fW3GQ4RE1LK8GRISwOJ+VS8apJ+fnz/bx8cIw1zQpnghYchij3bvvIEuGPTewGckYujcT52uP3cOK992lZ2EpVUzNmScVss+OoreXl105QxsDzh+NsW6zQ7ipjMpixGiCfK3HnchPxlMx/++ERSrIVQXSgKEVqzdnpCmqLvcAndi+mrq2NbPkCF4YSrFzZRkkd4mKoQjtzOixsWmLHLmZYsmIJ/SNhVqxYyMmLQfb3ljjUfYy8odL9E7Qyew71gyCyssnMJX8Rs1AkpymsWeDi3rvW8INnj0wnrC4pzZ9+cRsXjx1FMRix2i1cbm87lDDw1NsBbmsDcSKELhmpq1L4zCc28uyvj3HywgT37VpCIhYnnBHnkGjXLbJXOuyhMHFsHLR3sD2xl5UM0NX5LJnd/5L+sy2Ij/4VUZ+X+Pl/YEvwdQyvplgRPzbntV5u+Bq91rXkY80sXHoH431dpHP7cTWWKObKGGwFRHGmoPbKrwX6xhtZscDPpcBSHPnzTIjref/AII/dwli5kT7NCWCJIAgLBUEwAJ8HXpn6R13XE7quV+u63qbrehtwFPjIEmFg2l/e5vYw3nsJUVYY77mIJCsVy+X6Roq53PVf6EOiXCriqW+kkM1c/+DLEAv4sXuqiHi9RP1estfggF0PdQsWUt3UfNP6wDUtrVQ1Nl2zgiMbTRWlCKOJcrFIzO+bV/2iWMwT9XvJZ7PkMxnCE2PzvFqlrbdqkQur2YAgGyinwijO2o+qKvyxi92B0TiH9p/AWlVLaGIcSRBIJLOM9fVTzGR4/OFNNDtUWqsN7Ny+gs0ranjovvXUWzVqHRKLWt20VYuoin3qM/DZO5r56kPL0IqVXbKaTxPw+fnJs/uJqVYiyQJH9h3HNyvE1i6tYvuO9QSGBxkc9PHC4RDfe6kblxn+7Gu7uH+1GbeSRypn+OePr2PJAjd3b13AFx9ey/q6PP/yD3axvSlPPhFBL2YxzCIsjIfydHX20bh4CePeKAOJK+NSEASKgpHnDsc46xXRNZWekTgnzw2yvM3F9q3L6enq4/zY3Cy6xVFmwfKVRCMxusNGvvrYJh7cWtmkCaLEiQvjJMIh8mWB4cEJznSNUcBAoQzpwtxKSp1dYOeONRVHSKOBge4+lq9fRVO1mT94oIX//YsbuH+1Fb1Y4aH+7TMXSMQS9Pty3LmxkbvW1fDAnR2sbtBY1Pbhh+Yuw8cqdo0WK+lYDLWsUi6XiPom0HSdqN+HbVJmTFYMlGbJhH0UyCYTuOvq0W/Wx34SU4Yb3oFe4sEPrlfvrqvHXd9w09Q2R1U1nvrGa24azDYbiVBoWhkuEQ7NkdWcgqaVJ51Iy4Qnxslns2QS8XlfUwd0XcTtdnBbu8hDuxbR0bHgps79JvCxit1IVuDI/hPE8yIGk4mId4JoOEo+n6PrTDefeWQb2zqcGMhz944VrG638eDutaxrtyNrBVYtrmVRrUxJsU1TB7YuMfPNL+xgoavCbRXLBWLRKK+9epBTA2lUJE6f7OLS4Iw+d1utke3bVlJVU0XvqVOc9Br41g8PMJw08pkdDXzloSW025Lous7dK608/sgWWuosPP6pTaypK/PnX9rCA6vNVBtzxAI+qswzNK9MSebUmX5sNY3Yq6rZc2p+XXBBEDk8pPPy6RyaKOOLFTl9uo9sOssTj24n5AtyrjdMSZylK6zrtLQ2ISkKey+mubTq6/R+6jt0yUsA2Dj6PIG+iyhamdylw1hHjtCSOI+BEtZMAKM+syYkixL+9V+j5GjAVVuPb+girpoazMZFlBIrIHMPRu3TRMezaJOiyqVCEXRY3lFk47IxHnlEZWVTH2uW35x5zvVw3cqwrutlQRD+N+AtKmyRH+m63iUIwn8ATuq6/sq1X+HWY04lVddx1dYT9ftwVtdQyOWI+r3Tqgs3gynplRu16rQ63VdI49wojGYziXCQcqlIQ/0ion7vLRs0K5dKxIMBRFGYl6oRHh9D13Wqm1uu+1lnS61FfROVKvHkn7PhrKqhWMhXHJkKhXll7wq5HJl4lPu2L8ThqeI//bQLXddQkyG0QhrZcWurwx/H2K2tsnDbrpXsffswrY12TO4q3unK4nZAuawSzJ5hIiUwniwT/8Vh4hmVs4PHCccLeMNZdufybFndQi4/TFfMiiCInLzoR9BVDBRQC0W279yCzxdipCuCIMDCBgfbdq4gGHmPpiYLb55N8/LhHCv7x7FazYxENB7dXsOF7gmGYgKnjp5j2+2bsbkGef5QiL5+L+F4jtOJKEYlQLZgoPPCAIsWVGE2ygTiJdRZS8l4WmGsW+PE4BGSRYl1TRLlcg5vQkcWRUKFiqbxJ1crmM0G4tEENbVV/Hx/CFuwxI5ldvYf6eH0+IwDElRsUhc3mjh08AznRgqUTVX8+s0zk9xfIx3VJTatauXV93sYzdpAKgAyggT3r4KWpmp+8lofGaWyfgzGZb7/y2OYZB0BAUEv4amppqQJBIJxisUSlLL86y+u5tdvnmFZh41V6+7lZy+fYcP6JYSDEd47NsS6ZXU43bd2YOnjFruSLE8b9mRTSdB1sqnUdKtfVcuo5dIHcga92vzHfHDV1n1gwyKodNHioQD1bYtIRq7tuHmziAUqcn02t+eKwkQiHEItlzBZrNelchhM5unrmoyEsdjtpKKRK37PU99IKhbF7qkil05SLuSR57kuUd8ETR4jf/n1TZgsleHO8xcGef61U9y/c8mH+cjz4uMWuyZRZdO2jZw80UVgwkdNfR3eJOwbDGGWwZu8yFAwT0m289TzJ8kVy5wfOc5EOAuiQt+Qn4UNDh5eEePVC3mQTfR7M1iOdhOKptEFkY7FtXRsWM77Fw9REk14jFm27dhA/t0jrHbKnO2Pc3rEQO7FfbQ1OjnVneSTm1qIReKcm8gzMK6zepGLLz1+O3/3g/34I2Z6ese4MJgmr56nP1imq3sYtVhi2YrFRMJJwvkZznBJNPGb81ksQgyjHMBut7G5VeFoZ4CGGjtDEUBS6KgqcteWVg4d7WHHtqW8tHeEV04l2NzqYN/ek3T5dCKFuTTHNfVl+ge9eJM6EapZ0/c9xiMXWVwcZESq5a3b/57mS7/mztjrNAsz3Pk3HA/Sve0v6Dz/c74Y+iEALqPG7je+REhwcWD3H1GWhyiXd6HpJdDzFHMG9GgGSbybUP8Qmqry8O6NpJMX8SyysnxNiXf2mLFbCnSsvLXagTfEGdZ1/Q3gjct+9n9d5dg7P/xp3Tjc9Y3EgwE8DZXqUIVf9cG8q4MjQ0iK4bq2ylP4MO9lcTgr/9krOsTWST1im8t9zQpvMhImk0wgCgI6Ffc7gNrWmV1+NpnAVVNLMnrl7lDTNCRZRjEaKRXyN1VNnqoSy/NYh05x1or5HP/p6c5J1Y6ZwYy/+sZ6sok47vpGYgEfssHAX31jPYlIhG89X0TLXTmEdSvwcYldoZhFk2QCMejuHuGMX6FkFHhw3QIW1w7zyKdv4+TpXt44mwXRiJkcd25ooHMgwkiowL/8+jYOH+vhTNcId965iTu3CpROeOmLGujxlXhim5NP3LeBXzz7Di+9cZKyqvPopgYGxhMc7Cngkk+xec0CGhYtYmD0fXpSHk4EKt99RzWsWLmIeo+Z/Wf9vNWr40udopTP8pW7W9l7JsBYyoBeFhHkygI0djKNXcwhiVDSBKotGsFCJbF5cIWE1WLhhWMaoLNlRQ0Gg4FkNIzJZiOdLrDvbIBadzOpVJrGGgtmq4IAtHgUtt+2ilf3nEG9rG/lNmnccft6Dh69SChfUbzqCs4cpEgCnmo3Wd0C0lz+riQbqGluwWUfJjNJMxNEiUC+0pG4e7mBNR0N/OjFs2xeWc/FiTQDnTqLXDqt0QQttTYWLWogGgpR0kT+Pz88QzkZRnZUo8hBli69Un7tw+LjEruXw2J3kE0m5hQlrmWQcS1E/d7KRkQUb2huYsqw6IOitrWtIpsZ8GG22YkF/CgGwzU5t4VslkwyTioaxepwouk6siJfkdjquoarroFEMIChfu66qpZL00N7N8JrnoLZZruq+59iNOGpb0RTVYwWM4rRNP+mQhBw1daRTSVnkuG+MP1RmY6xa5t7fFB8HGJXV0uIaoEsEj09owyHSgRief7FphaaowWWLZVpXdDIX//jUTRDpRC1qsWMx2XhV8difO62Jmpr3bzwxhlaG5w0N9fwSUOG184VCOZMaKkwf/aV2zhz4gKnO0eIJQosqFbYWmPi1ZN5XntlPyvbHCxatxqLsYvnThbpjhvojusoqpmOJc3k66y0NJd47miSiWgI9wU/926sJRzP8euTGXTVwrGhEoLg4JXTWSRN5cJ4L76kSIsbRK2AJhpZ6ilyx8ZmXto3Srho4s5FBpa32ljR7qaYTZOIpekPFmlwSeRTcepdIiajEZtUQCqX2H3HFsZHfOwfjl9xHTd01FJV4+Gdn59HMBhZVbzIKv9FkEFFRnQ1YLMYaI5fNkSqqXjqGymNt82xYV7MOIv1cfYLSRobv0Q0egDJoCLgoGpJJ6UCqIltFBN56pp3kEnGQKxUl/OZIqd6FiGT5c67b41q1hR+p+yY54MgCLeMpyaIIorRiK7P7xj0UWBKE3iKk1v58+oJarlUpGHhIvxDA+TSaaqbminm83OqK46qauLBAIZ5klZRFJENRjRdv6FEeIoXbbbZr7AkvRyZRBy1XObuDgN7+668hq66emJ+75yqjrOqCr2Qq3CIi3kqDT0BQTFQmbP43YesZvnmZ5YxNBLkNxcKDJ5IAWa6xvKw5xSpXJm33zvDSKjIlC+9JGjU1Vcz7E2QLxcZHJggkixxMWRl8JkD3LF1AU6DxoNrjOw/FUE2VhPz+7h9UwuqaOKlgz4ebW9EKOcplTUSJZniRJDB0TCDSfMcTd7uoMh3/vEd1i1vZDRURBBNnPfrrK/R8bgsWBSdRmuBx+5exBsHBhmIVxLNlGYGDR7dZKNjWQvPPH+AkYwNRbFjMBkAHUE28OL7Q3xq1wKMZjOSrNDUVoer20vz4kW89e4ZHBaNjNcPiolLgRI/eu4oEwlgkjdm1DKUdJlAwcx3nzlMLC+BcOWQ5nm/xPmfdyIYKgnusqoiRkXknE9kz7kUF0aOM54xTXOAoZK866U8+WQOUWik2aWzbfMSjOcGGYhlGYgb6H8nhKyXGAqOMhIXQarcV5LVxSfXW1ncXk8sHMHudFDM57Fcw7r99wU3k9BdE7qO0WajkLl5qtkHhSAIeOobSYRD2N2eeYsGs5FNJibpcFkMZktljqK+/YpqrclircyzzOOQanW4iPl9OG+gizjVQRMledqc5FoIT4xhstooFQrz8qYVg4lULDrnOfnAzkWMTURYvrwNde9BRKMVXVMRld8fa+e7lptYt2oZ33uxk1+dSAEKuirw6zdOU8ylkGSFrsEoqmydXg4ddjM1NW5EovhCSdLZIoGikx++OcJ9axzEU3ke2VjD8e4IFpNMMhKhyiry1c9u58cvX2T7SjeL2+u5LZTAHxcpYODw3sNc9JapUKUrKEk2/uezp1i/wES8IAIKvqyRXDbO5uUCqmZCKMX58u5G/MEEb1+qPE9V0YAvZ2B5o8rjD2/ijTcO0elNI4kGrBYT0uQj8/ClFGI5w7LFjTiraynmyxilOM2tzRRLZYbjCpbRIBMZA5rBzA+fP02hDEy6iopqAUUoUxCtvHjQhyx4EQxXFgjb8fLkK7uxKxoIAn1SGxdbH2br0E+5J/02J175Y9pSF674vUwJSsU0uVQCNe/CYLPjcLeRSvdjrzagO45ja4GE920MVSWsrsrvmW1GPnv/IJIEhSzENZDRMQsg3WB36Wr4nU+Gr4dMIk4hl8XqdF+3iutpaEJTy3OSRF3XCY2NAFDTsuCG23k3C4PJPM3NveZxRhNR3wRWpxNZMaCqZUqF/BXnda0qy1QrMxkJUyoUKvaoV9P9nORFX26+MR8EUaRcLFAqqczJtuAKearZ+A9/fjeaqvJfv/MO2YKOrhYRJAXF9dEO4/xTQUMkGIyRSOWZfV0yqomyBl/+wm6ef+0U3szMgyitW3n21VMYjQbymHn+WAqQ0XUdm9vGoc4Ya9qdrF3djpkCI2MBer05bl/bRCqdJa1b+O7P9vP5exaxabHI00cKCMIkL3vWV2MT83zitlrOXNJ4+2KRKeUEGyk+9alddF3o5VLEQKO1QLlcZmG1SDyXJ1KYidOz/TFS0TBf//K9dJ48wwtn8qBnEeRK0hzV3fx4b4xmW5GyBv7wJf7kifV0Hj/FheEMOdHJlDuBJOjUmFQyyTSSwUoyp/FnT27kYs8or5/NEcgZQRBZ5MyTLkAwP3MegiCAYYZ7vn11PTW1VZz76RncVQqSoIE4t2K8orrEg3cs5+29naRTGVK6je/87CCttVYsgkZWNyIIAqpgJJrNs3u1jZO9CRJlE4Ik89qZDOX9x9CKeYwU0ay1PLqzgbVrF3+IiPndRrlUIhkOIhtN191AexqayKXTV1R7YwE/uq5hMJk/9IDx1WB1uqbpZNeCze2eprHlUgmqmpqZ6L3EgpWr5xw31e2bD1PmS4VslkQ4iMlquyotrmJvX+mg3Qh0XadcLFxV4nI+6kp1bRXVtVX88sX9CIqJnLcHo6cRTVP/yVV9PiqkskX8/jDqrAVPkGT6vEn+9R/s4uLFIV48nmJ2zeWdMyGWNqSRJIlDQyJQRJAVnAYT41GNdFrl/vsXU0glaGit4dW3z7F2aS3WaBxV13ntZJyH0hHWrmhm6MAoz58qMZVgTkHXde5cIqBIbt7uLs2RMNu9tZXWpQt5/ql3QbChaRoWWWV5dYnu8Mz3Oxop8e7bR7nz9nVsjIb52bvjfOuFXsRJ3faiYOTdfp2jA8O0VBnpmciyc4UTk1Hh3X1n6c830BvLT5+bTSnjkkqYVI1YQeb+DU6WL2vlfz57hpRmQhAl3EqeWqdEKamjzLpnnIYZ5Yfeht1Eb/tj+iNdtCfPkLE2YkyenPPMGdWqeOPBZygnL6GKSSQlj+zowz/eg8XlAGbyGXtNnpS/hXg6jau5MvSyeJkBXdf5u7+VKdz5v6OUC2wN9vDv+t/9gJFSwe9H6e0aKOYqgvDZWYMF6Vh0XnF2WVGuqJaq5TKK0YTBZJ62dr4c8WCAqG+CUuH6Mh+5dJqor2LDPBs2lxtPfeO87bpSsUDEO0FscljF09CE3VONIIpoqorjA8oRqaUSnoZGEtcYJJnSC3V4rj8oYrE7cNU1kMyVeXCNEVG98WEaQRQRygV0tYj2EQ/h/FNDk0y8cDzNoaFK6242+vx59h7onKwKz8WDOxby+Yc3QLbSftJ1nVbGePJTG7l3Uy1vn0vyD08fRTRaUEwORvPV/OxYgZfPqwiihNlup6F9Ed5oETQVs5qcw+XWdY1VDeCxyLjtCqhFjMUoViFDWjPz+ttnOX4pXnFwzJrYf7iXHXdsZkP73IflUFzh8ECJsb5+8oUyCCKCpFQSdzHL3R0GmowJfGmRQN4MZjd9A14cDitfun8JulYxcrAKWdrMMe65ey2fuWsxf/ylHXjMOt09Y0wE09y+CL56VzWWQpAvfmYr92ysw06SP7jTybbmK++9Xx+a4Mcvn6fJLbNzmZXHP7WJTTXJacF6gJKmk0yk8aV03jrYz8pWC2vaLDzyiS2sa59bCZkaamyrndm06LqOmkshKkZKohHyMWT5wzkh/a4jGQnhaWiiPOs+LuRyVzUDmm+AV1NVXLX1FPPzD0Ln0ilifh+p6I3p+4bGRglPjM95PVlRqG5qvqoEZtTvrZhpTFaSnTW1WJ0usqkPrgmfScbx1DeSz1ydFuaqneygWW7MvKVuwUJExUA+k55W9rhRiOiouSQCoJevbfz0u4ZT4xLPHk5S0OQ5614OM2++d55TPVfG4/p2G5/+xGaW180cbynH+eQmD5/91CayKvz3fzzARLQAgkxc8PDaJYWn3okQK5nRRAOe+gYko4WJuIBRTYM6d21vsBRorTFSX21DV1UMpTh2PQFaieMXw7y+5ywZ0YUum/j5u+O0Lmhg97a2Oc+OjGbiwLBM94Ue8tksosB0IqyVC2xtg+WeLCDQE5HB5CAYL5KIp/j0J2+jyVpZLyWtiF2Lcd/WZh5/bCdP3reYnR02xoNpunvGqLZq/MlDjbQ5CuxcXcXnH9lCj7SY/774r/nWqqfIleZ2gLeP/JyOX/8h9fFOXl/wxwzv+kueW/bvGBJnuhuSoEE6gtEsoSmnUUs5CpFl2B23IZY2zPmuMvEy7qrtiPqMPrmu68QjRfIFCcFRQzkTx1T+8DnD70VlWNd1EqEgzpraKyqk0/qTk+2jdCyKbDCSjseuKc4+hUqCbJr+//mgaWqFuxzwX5fPVirksU1q+14L/qEBREmaTOQTuGrrSITnLnQ3a1pyOaYE7q9VRb6aXmipkCcdi2Fzu1FmVbNFUWRBg4PlHS28f+40+cucbOYTeP+rb6xHEAT+9R/fTywap6a+lv/wo7Mf/IN9DGEjzfLqElu3LOO9o4NcjFWuabIgcKArjqZc+eCLhuOYjTI2s0KNs8jGhUbqGjYSDwU5eWaAT21uYcSX4vnjaaY0c2cjVLDyf//4MGnVwIZWmU/eu5MfPXeMiawZvZBBROWuO7cxPjrB0cEy9622saixHnddPf/z5yc4Pa4ARoRSFl2Q0GWFiG+CobEY4ETXVNY3C8TSZUaSdn74fgyLWODLuxo53x+h2i7TWl9PXVM9LR4dVZe4OJqhc7zEgYsF1iwwgZ4FQYRihm8+uRrvuJfeniFSyQwjoQKRooHXz+UAmTsWgSzLlBQ7z718nFQeqsxl6pubSCYzMD53sxovmdHLRf5fj7ajlotcOHWW+x+8jcGf7kdSzIRLFvpjRvreCbHYbeKRuxYjKQb6Byd45c3T9PpmKicAXd4yiV8eZTwhoKkapWQIdB29XEQt5lDs1ZQLGVauXHhrg+djikwijmI0XlFAcFTVEPVNzJktSEUj2Cct5G8kkXRUVZEIBeelHEAlGfbUNxLz31j1VJQkrE4XxfzV5ySivkriK8nKtN6xq7aOdCw6rVV/MwZF82GquHCtRFcUxasm6PFgAMVovIIOoZWKuOsbifpuzkjkc4/dwYX/8T6mpo7KJvYj6nz+NqBoeRwk+Ox9y/AHorzcOalbK8ic6UtQMji4/OMmU7mKcYssYiTPfavM1FQ143R7OH3sDC1VRprrnbx2Isr5t3wI4pR9vDD95y/3+xHx47QI/MnnN3LizCDvdRfRSnkEUWb9EjcLly/juz9+nzaPiU/tWEJVYxOvv32WU2MwNimSIJVSGAwixUKJ0bHAtHRlk61Ig9vAyWGNV7tEUJPc2WHB7TRzrjfMfdvbkAQol12k43EympHXT4TxReHt0yHWLioRy1bO944VNnZs28T7bx+kIZknnMjR7ysznjZwzpej2WZAURQEQeDoxSjD3lN8sTzAG3UrMDnc+I8aWajMJOkeKcf2zCFeWvKvkLd9ifDe57Bt/gRdkVNEMgN0ZM7RJMX4Z0e+wP/47F8glT6Dlg7jrm1iYvh1rJ65MeioNZLwv4RkqyTdh/blOXrCiqYK6NY6yjEfDkcN/+rsM1zxZd4kfi+S4SkB9Jjfe8Uicrn+pChKBEeHEUSJazfwKkjHohTzOVy1My37ZCSM0WKdpl0YTGb8Q/0oJgu5dOqadAJHVTXJaOSai6qu60iygsFsRtNUnDW1xPy+qy7iwdFhBEHE09B4U455Uwt+IZcjEQ7esHg7VIw+ZjjOc4dnfnM6zntnwuSFm5v4VoxGahtuuUTVbx0OMcOfPrmFkd4eLA4n8qwW00PrbDR4jLx7bJjbtyzmQn+Ys77Kd/h+dxb38BgpbCyzQ0NzPWF/mLO9IYbiBh5obyJXGIWJSlupxZTi9o0NvHPCR6Bop8mSp6jJpPIGIskCl7qH0Ao5mq3w+c+tYah3gKdfOIYi6yyrMeEPp3AayoyHMuRUCUSwanE+e3cryVyZXx1PMfJaP2mh8hAxaWk+dd8uenuGGTmSRJBkZLFIbX0N1vEEBkUCWeGXLx1ia4ebBR3LiaeHWL7Qg9vj5MTRs3QsbSWZCXMpbOTk2WEy+RLnhzKTep4FZhte7O3X2NvrRZAs9EzuJZ2Sxpuv7eV8QAajB6WcoSzI6FJlEybIBl7f24Oo5vHlrRztP8FdW9roWNbK3//4KDnJjiAIjMVVTlzw0jccIlw0URZNgLlStdZUBNmAoKuMxUUE2YCWDWOsbqEY86LrCnoxh1pIIxk/mMrB7xrS8dik1m6Y6ua5w4OyolyxDmeTCXLpJNVN13fpm9KKN1lt0w/GXDqNWipOr092TxVRn5diPj9dCLkWrE4X5WLhmuubpmo4a2pIx+NAZV1PhkPzFjhiAT/oOrLBeFMKGrOLC1MOeDc6fDjlwJqMhK5Ihl11DcQCvg9k3iRNETJ/z/DIthraFqwiHg5gMBiAymZ5kbvAp3Yt58TpAQxGI1VVNl44EkWQTVwMSqgnJugPqJgljcVLWgl5vZw62cWRMYV71zlZtLAB+WQYdXIT/9hWJ75QhsPjRqxinganRF9YRKVMT+8YkXACqVDgm59aSimTYu+5IJeGQtTV2AhEs/gCMcKxLL5oxaBD0opsW1Bi+44NfP/5c/xkzyhFXQap8lzYtMzD2rWL6f3RAZLYQTbgtJuoqXYh9YYxmc3s2ddJs1ti6bI2Gu1ONgRTPHD/Fl579RAuQ5G7Vlp5/VyeYX8J05k+TozolEbiaLKZKcoawHjayH9/aXCa8hbyQ1GRqTv3DJ7EAAttJVJlmSRmmuQZqbPVwy9yPBLgUd/LhGNvEjfVceGxnxF7+//insBzCIKA0WYkNnqEklAgmTtC06qZjlohU8RoNaAWVSRjAavbSCFbZN/ZRah6EaMQh2KaJ7reYFMhPmP5/iHwe5EMS7JMIhREkq+s3OYzGbKpxDRnuJDL0rp85Q1bcZYKBTwNTcT8Ptz1DRVBdIeDZDg87Qpkc7kp5fO46xtuiFvr8FTNKz02BUEQcNbUoKnadAJ8rYqzJCsYLRaK+fwVVdxEKIhiMmGxO8gk4hRzOaTLnOSyifhN25MqBlMlQZ9V/Zmu+opGstz4IMbsavH/9Qfr+OHP9lIrwze/uAtJlj8Ku9B/UmTLEr2XBmisq+Kd909zPlKJD6uYx6gWaF68ks3xJBTTGA0zC4KilWhwyEwkC5wckbGIQ9x973b2XTxMXjTzD8+eRVU1vnBnE+P+BBbFyuKOJeQSSV48HuVLT25nbGiUk/1p+oPgHk3wR1+9m5defJdMIoHDYSOQy/Hw1lpWrV7Et364nwtBI1AA0TRZrd1AOhYlMpFBECUyOJgSQC3ITn743DGyRYGppDWlWfjxC8fI6iZyugnO+xHkGmz+MuOR8xwa1NiyuIg5kKKx1oHTZafFHeZSVOLAgEaNscBffH0be947x0g4TygNj2yropzLksiqjPnijORd01WSTR0udm67jcAvDhNKZ/nTJ9bQ0zfOG+dn2mYeh5H7d2/lhV8fZiBuoLtnjGAoycO31TIRzHJwSKCIiQP9JcA1hzx230oDC5qr+PFrPXzj0dX4vGFeOZtHNNkoJ8OIooLkcCCIErpaQitk+XffehPZWfeBrHJ/VyDJCtlkAk27clBW13Vifu+0I2i5VJru2t2IS9+UVnzM75vm1WaTCaxOF+l4DJvLjWIwIogitQvarknzmoLJakW3WK4p41bV1Ew6FpseNLsWV3nKuCM+D683m0pSyudx1tSilsuV6rUgzBmEKxeLyEqF+1gula7adZwNi8NBIhSctwAmiuIHVvQAKCeDgIggyb83yXH/cIhqh0w8muS5U2VEWUHXNRZUSeQyabZuXsZo3wBmg4CoTypX6+A2lKgxl/Dm7bzw2mm+/Pld+FIDlIQCvzmd5O3TF9jQZmRJm4t39k2wuGMDVR4/nf4g2ztcbN3Swa9e2s942sjbJ4P86efXU3Wii0wqjcUoI8oGTEaFz3xyI2+8c45fnSlTSdQr90alWttB5+lzFDWBvDgZt5Of672zYc70hEjotulY2HMyiFXyEsHD37/Qi6g4CObyiOYIJy71YjJbOX9+AFESsTusWKw6shpmMO5mIJrmK3e3IQoCv9o3QhGFpXUya5dU4QvEGBmNMp6zkhcrz61u61q0R/6KwrEfQ/8JXl35b8ksvZf7f/0wrVKlSqFpGund/4K3Lqzmn1/6C97LbcZ0+B8ZFhr47paneezYn1YGWRfEJj/VzHMvNm7BanqQePx99HINTtc6UuFXsFcbeOC2YdA0VqyEVDLBY+8P8G+WPsBTZiffOvMs5uvw/6+F3wvOsNnuQEe/oioanhgnPDE+hzNsstkr8mDKjVmnVqgEE9jclYXRYDKTilw5fWyy2SrtrxvQv0xGwsQD/it4w6lodJqXbDCZMU4u3teD2V6pbl2eCCcjYSxOJ/l0ZceWiccQJYlyaS6HyepyVYb35qk8a6paoaGEQ9PGIOlYFKvLhbu+4UO3DS+HrutkSpAtiWiTXNLfdZRFE6+cTHLsYpi+yMxDr9ZUwO2xc+nEceoaa6lrbeVsTwhRLXDvCiP3b3Cx+56trKguIUgyl4Lw9t7zBNKV27YoWUGSsdutmIwy717M0X3yFA1tzQiSkbPHziCWczz5yCY2twhU2QSOHzjB7bvWcqHHz4/fDVIWzRy4EOL5V0+Q0q3ousbaBpUlniK6bKLzfB9+b4Dzw5Vp/9V1Jf5ot4dWpXIPeLNmYkUFsViJsbXVGT5//zI+v9PD8urytBRbZ0Dm4JgJXTJwfFTk1GCWTFkmGIiy/fYtWPUKhzJfEhgensBq0PjTr+xkea1ObY2bmiorixpMfP0r97GpcaYtd/xSgudfO8V4SqKsiwwMesmlU+xoKfLEdgdGLYNQSJIMB2mts3D7EolPf/I2ugZjOF1OREFlUws0GmLTr1lnzlNjqnDqikWVTCaPhkjAHyGWrMwaCLIRyeZGdtYgmWyIBjNo2u/N8NH1YLbZEEQB2TA3iUtGwox1d+Gqa6A0aQIjKwqlQoFiPn/VIa/ZmF6jZ9m6a6paobbNGoJ21dYR9Xmv6nQ5G5qqEhgexD80MCeBL2Sz5NKV2BMEAbvHM2+CfzmcNbUkggHc8ySg+XQKi9NJIhwil0qi6TrqZXxc2WBALZXQyuUrEmFd19FUlVx6hgNcyFZMCKoam65KofhQ0HVEk+2fVEnpo8aZgJH3Twc4NVxCnFyHtEKORo+JqD9AeGKcVdu2MDQSQlfMrKor8+gGI3feuZ6711WKRd6Cjb2Hezg/WDE90SUjJcmC0SjjcNqJC26OHjiJw1OF26wzNByg6/AhHv30Lu7bUMXadisXzl7CYTNid7n48RsD9McM9PpLvPLmGTpHKutJg6XA9nYRUSsw4Y/T33WJzr4QGc2IQ8rxh7ur2NWcAbVISjUxmjYjldLoahmXkueLu5v5wkPLuWdhZnoYPlIw8dZFjUjJxkRa4aXjcWSDgf7eUZoXL2btosnNniAy4Y8zNDjKnzy5iU9uqcFmUWhoqsMpJHn88d18btdMZ3xl+ixtv/lLNg0+DYAz2oM2fIZ3nA/wvS1Pc8i6i5hqJOadIF27mhe4g5HHf4wrO4HdKCLa3Jy1bSXY66CUq9wX2YRGYsKGWlQRRJ1iLoUg6uhkSScmEOVKHrR2vciGrUZMNiM1jZW1Nml2krRVU/5/aBKV6dv5KpuiJGJxuQgMD2KfnGq+Ggd2CrquE5kYn97JOy8bTrv89xPhEI6qasw2+5yKcMzvw2ixTE8XZ1NJCpkMJpudmN+HJMtzEudEKIjF4SDm91Hd3EIhlyM1KWtWv3CGPD4frjaVbLJaSc7SqBQEEavLTeQyXpnBZL5Czq0yEFhAMZmIh4I0L1lGMhIh7vdR3dJK1Oe9ruTPB8F//MdzaCUzoPOff3oRmFGg+F2uEJcEI8eHK/7yU1i2qBaby4XZaiceDhP0hdCNdixCiU3rFxH2jnPp7PmKlq4IobyJ0ICKQ9F5YK1EMqtyqKdMLBJjYCINoow/LXL4nUtgdGB1StS3tTLW043DInLb7Rt46un38NSmKJRUoPLgC+VNRLNF3EqOZKrA9lVLiMbSRBJRPBYLHZu2UVvXy+tHQziLESShhofvXclTr/RTlO1sbBG4784t/PCF07Q2V+GsriYW8LKkwcClKJj0HGVdYHmDzM4NrTz79iBuq8jKjhZOnuxmKHierD5VWTbzi0MJ3IqO7VQPgazMD17t48ld1RgUA8M9vYxHKxvGNfVlBGTO+gQEyYAGvHZ4jP/zn93JWM8lGlrrWNc3zAOP7Obd3+yjpAncfsdGTh0/R1K38t3XRqgyFvizr91O2DvBS/vHmIjDk48uI5PK8tTbAfb2C9CfQDA6eelUhkWuEk5ZZ2mDgbVL63nm3VFyk7xiyepCy6eR7JUH6ex4/X2rEpdLpelO3OzKZrlYoHHJMrz9PVidM5XV660VU6YUZptj3jV6yvADKmvp1LDz7NdNx2OUi8VpqoCmqsQCfmRFQZRk4sFAhe42WWDQdZ1ULIpiMCArMorRRGhsFEmRUQyma9IfZEW5ardO1yEZDmP3eMgmk7hr664ofMCV3b4pSl4uk8Fss6EWS7jrGxi7dBGT1YooySiG+htK/m8WkqMWLZ9Gtt3a4sZvE4Ig0BOdu/lqr5Hw1Faja1UUclmGOjuZiFfWwaUL3Cxd3MhwZyeHLkaAWlTRyOEBFV03cM+iIvV1Ll45FkYRzXRe6CeHhWC2wPv7zjOUMLPYnGLZ5tsY771E0Bvm3vtu5/0DnSSTBcyWFPpkvlYSjJwe1/HIZfKlAmuaJVatbmV8/BROixVPtZPPPbaYPa/vZTSUo5yxsWblAmLlIJ1+cEo5vvmVjRw61kcoodHU3s5w5zka65zIvXFUwCwWkWSJLz6wkGPnxzkzXGD9inZ8I2O8f7CTfn8BqKjlvNero6sGRPMAoXiOTr9INnGCB+7bwsilSwz7M4CJWnOBN9v/BTv6f0CdUNkgfCL0LN+r3UZw7RfxNDRxKPQp3Lt3Yho+j/3CK8Qf/RtSFw6yOX6O+3IXyA/8PT+57Wnqm9czcmkPLevjlFNLqKnbRjD4Aq6mHLp+YLKDUyAVilNMWygXSijqnRS007ibZ+xUv3XmWcqCgP1DMiV+5yvDsYCfUiGPf3jgisqmyWJFliTq2tqvkLwp5uefbi4XCxgtVmRFQVOvXZmM+iYqZhmXJZexgB9nTS35WTbNhUym0lYLB7B7PNg8VdiqKgm6pqqkEzES4TDClMSZXql0T/39RqoVl8NgMlPV2DQ9aCcZlArfzOGgkM1eVR0jHYtic3uQjUYkScZoNpOMRMgmk1S3tBIYGf5IBy1ExTg9Gfv7Ck3TKOcyeMf8HDvRQ3dfgFdOJljWYCKnGfjuzw/TORDhUF+Rkjh32MYmZqmudbNm/VKsQpHFy9pxWhXqbTp33bmeJQsrydirJxLsO9jJe2dCHB4o85Pnj+ItOHjmYBy7w8qff34NJiqViduX2/izr+xgW4edutYFxOIp/uxru5gIZRjquoDDXUWjIcauT9xHLp3k4qURCoIZg17AJBQZG/FSVAX2nglw/tgJ6tsWMxQsohfS/NEjy/jsjlqqzSqCVsIsFQgnSxitVpa011Mul0GaqY4tchVxmAXeOJslmpfZutRKNpMmnsjzj/vi+DMyuqaybU0j6xc5+PqdLuqNlcp0W32llezzR4kEAiRVI0cPn2PV2mUsXdxA2B+gpclDrU1HVIw0ukQunTxOLByjWNYRFCNvHehj7+kJhMmBIkEQsIl5VjvjfOmxrdyxtgpRAEURWVnPHHUK0WSbI5X0+4hsKkkyEiIZDl9R2XRU1ZCKhGloX3KF/ruu68SDgXnXnSlTilz62rb02VQSXdPmbPKnUMznsLncJCc7d4lQEE9DxZQiFYuwbMt2CrnsdDKZjITJpZKTP5upCxmMJnT0D7TmAtNrrsFkRjEaScUiGM0m1HJ5XhWj6fMv5PE0NFWobJJMuVwmPDGGu76RXDpdUSv6iNZdQRCQzL//+tgSZRLxDKdO93DuTA+vHgtiNBrxGAq8dizEK2+coDskMJy/bKKolKfWY2TximU0ukSaGqpoaa5F18rs3NjKzu0rQC0xkK/m+RcPcG4gzoEhkZ++eIxjvWkODYnsPxfkL//oTlbUVNaLRkuOP/vqTra1qGzcupaB7n6+8NhttDS68Q0Nk4qGqa+r4jMPrMVRVcX4yAgjoSK6rlFtLuId85PMlugNS7z7xvsgGUjnoSRbuX2ZiX/xla3UyClEvYzHpILBSiSSon3FUqpMKsncTNfZpRTY0GpgX3eWrqBCm0ujzm3EP+Fnz5kYBwZB11SWNlnxrXycZzZ9m6fr/wSAdFEn4VpELhYi1n2C2nII9/nnUXJxyp/5j0T7LlAyOumpuQNJFBgT64mkSwyeP4nVXVk7BMMIocBeTM5KziQIAqW8SmzUgZZbR031p8nEyoiiTD7uJB2duQ/M4odPhOF3rDKsaRrxoH9OFVZTVWpa2ogH/VdwvK4lDJ+MRHBWV5MIh+ZUfxWjiWwyiSCK19yBJyNhsskUmnYlPcPqdBIL+BFm8VemaBQOdzWh8RHQdVqrKjqV8VCApsXL5gyjGS0WRFlCEESCoyPIBuWmBtzmw9RrZxLxyuBJOEhta9sVx1ld7kr7URSxOJ3Yq6oRRZEw46RjUTz1DfOKu09B1zWUYmpyWvfDR+nvckV4CrKWp9amM5E2IKglPrfNTZXLjKgYOT+S5wufvY2Go+fYtG0tpVdOcink4sgoKHqeB1cb6BkMMph1IRSzPPqpdXhHRnn3rSF0wUzE78dsEhmbUPjxc0fxpwCMlGQbJ/wz55BJVoQbVtSWsUs6fm8IVatUnYf8aYwne+jz5TEfvUjPeBHj6V66QgqXwgm2Li5idjiI+XxkUlne7RUQZJlNi0zce+dqnvnVCRJlEx6DxuqtG3n3vbOc92o8sasW79AQmaJArqRjcXnIaUbymkBfzwh2E9M6rw65gFnP8MjujWQSKfyhBHuOB7jzttuJBQPUtS7g4vA+HnlwIy+81cUv3x1hfZPGzru2sXI8jH8ARmJw+EKIXp+Bt/pDiIqVrmCOT+qjpLIq3qTIfdtb0fWKJdKG5Y20LV3IL37xLpFiNYKap9evospzNyB3LzexoK2NfW8fpC+gkUgXqHYaeeih7fT/+CBx7dqcz2vpbH/ckYxG0DVtZuA2m62YR+j6FdVN2WC4asU0FvDhqqkj6vddUSk2T1IjHFVXl4ks5nMkgkEQxfm1gXWdeCiIa3KYzjlJo5ANBtRymcDI0JzunVYuU9++iFw6Pb2GVze3UMznKzJlwQCapn0o1Z7ZA9zB0WHMNgflUvGq5hhRv5fGxUsQJQlnTS2paJRiPovN7b4uJzgdj2EwmW7KVfT3Gbqu0WjJE8mKFAUT6xvLrF5QxYKli3jn2DBPPnon9RcvsX7bJs6d6+fXJ1N0xU0Qh40tKmYhw4FhGVE2csdKO41tC/jZM2/Tn3HRHohQV1+FpJX41b4RBITpAk5f1gNZQIbBeOVcXIYCa9vMeMe8ZCf3zvGcyMlTPYxFdfYd7sYXLJDUBglEs/QFZLZmR6mudhMOhrGYjRzpLZLS3HjkNF98/A5OnemlMyCDoNOysBXJZOD590fY1G5iyYIqzh8/jd1iwOx0kyhV1rvhQBpFVDGZTSBkEdQi7VUCCxtt7Ni+iqZDx+j1pmlfUMOiZjvVjU00dvt5dPdChkZDvH8xw+Pev2Di4b/DK1tRvd/GZhC47fzfomgl1iUOIYsgiQLPOZ9gvMvG/Rf/lmM7/xpBq2yCL9XcSfOGHUz0n8bTNliRp9RSOJtKCMJMLhUeMuOwbyYWGKJUfgNJKROJvE/b0icIB/eBZ+KWxsvvVDI85e4zZaUJMxI8oiRfV8nhcqSiEUzzHH+9yWSoVJCbl3UQ9U1cUQGZqsjOxuwE3upcM+ffrM6KqPvlA4DKLM6cYjBxA/Rh0vEYxXwOUZTmnSyOBfxkEonKQMlVXlAQhHkfAPO1Oqcc6maf3Ioalc9+chdPv3ickdTvd4X3RrF9qZ2771jFj355hLGYjtNtZ3TMx/tdWWotKqdP93C2P44veZaBYJkpmzSrrLKgwcrK5Zv4ya9OEBRt9A/6sQgaW5faKRUKZDMpcqkMgmhnJHX9qmTHAhdLljTzi5eO8cQdbbx90s9wwsjwhTzg4N2uAmBn/EyGdpeAWizTurCVmlQSxWTC7vYAlRbZxdEMwt5OwvEsn97UxOmeIn/3k+MUBRMCOiaziUg8xtZd2zh27CJ/9/QpdKMdBHjxZA69XARJQRDgk1uqWLR0M7987j1WLHSxfO1KRL3E63tOE4oXWNocwGiUiUXjqLpIXtVobKzh3MGD9HoFQEEVDZwZSKAZbNTZi9y70cnp8yNsuu1Ojh2/xMBonv/1+gSCaGJ1bQkE+OXP36Q3YUM0wSc3uljYVsd3XrxIeVZCHIgXaJNkLkxo3L2hjsVLW3n3rSP85PkUMdXyURXsfuuYMnQwWW3k0mnMNhvuunriwQCSolxRTLgWFIOJeCiANE+R4XKa2XzIpdNUt7RUHODm4c1e/jNRFKfXsfnOUUcnEQrhaZhJMgVBwGg2k0+nMJjN5FKpK37vcmiaRnh8DNDnLS5kkwny2QylYgEpn8N8FYfC+WgZ8/2sXCoR8Y6jaxp1be0IgkA6FkVSDCQjkY+Evva7iBpDjj96cgdHj19iT2ceoyJhc7n5/tPvkijInDnbTzipMvjaSQKJMswa+l5YI7N05UbU0gmO+A0EY3m84wE2rGjAMpLAabER9fvQVJVI8fo5R6NLZvP29bzw60NsWFJDbSDFiTETb5zLAVbGBzTAyuClEi5ZZXWrCRRYsWoR4309WGx2jJY0pCFWNPDmu+cYC+XY1W5CVeGX+wOV6r7JhiyqmCxWapsaWL25jr/+X++h2moRRInjoyLHhrOgawiyibV1BR755Fb2vXOYt1/fzx33bMHR3c1YNMtzb47RWjuMrpdJJdPkCyXKgpFM/Wr83efweE8gTW5KV0UPIaFTQubZVf8Za3yAaOvt2BuX0Xh2gj86+DiSAAPSAnxLPgXvPIW2VEPXbcQn7NRUP0lo4jXczTP620ZbDlESUCxpJAUa67/G6KWz+Cd+jaUqza0mNvxOJcNmm4NYwIc0q6WlGE1IsozZZiMZidxwMvxBFowpZQp3XQP2qor9reMG7DWvB6PZfE13vOrmFkqFwnUd9ACKuew19SZ1XaNx8RJCYyMYjKY5G4hptz6H64Y0mAF+/lYvX390Pa+/28lUOKXyOoMDY9M74P8H0DORRjnURSANKGZ+8JtRBFFiZYOZzz28medeOcFEwcHEmD5tNdzuKrGwwcPZ80NsWCdx+5oaXjxT5s3OAl/Y4cImgtVuo5hJsvuudfQ9c5i0YX5pJbuUA73CyX39RBjTqQC1LjMLF7VgveCDebwNdLXEgzsWgq7z1K86WdessXnTCt456UWQXQDES0YODZRotCisXt2OL5RiNFQAo4wgKTz9bgB0nZH4SSZi5UoiPAtTkj0A4XACh3kESZR4rzNJJHKE2++7HU0ZZuikl7t2b+Vi1yC/fH+cOoeETInG1iZyTgslxnAnswRSAn/wxW28+d4ZjIJGa2sdpzsneGfvBQb9WcBIlamM3VjCajFR11hPjWeUu3e18trBEUrZMn4vqJMVCl3X2dCkIqCz98AFVrVXMTAaxm4SyOgmhhPKTbWuf9e6HIJQ0VTOJhJ4Zm2QK8NrEzelHXwzEmRTmOoGWuxOnNU1JELBeQsYHwTXqrQ6a2opZLNU3cBzolQoYLbZKRVy86pVFLLZaXUMHZ1SPg+Tcx7lYpFkJHRDbn1T0DUVo9lCuTSzwEqKgWwygf4BqR2/j4gVZPYdvMiANw0YODKkcaRvEKNk4s+/tIH+/gne65sq4lQ2aBYhz65VLs73jVNV5WLj+nYu7RniUtiGSUnx4O7VxNNduKpcLF23hkH/Pi5EygjSlamUpBWoMqsE8ia6fBqhnx0knlbZfXsthWIZxuY3ili32MEdO1byj784yNM/28Mn7lvPha5RRlPGylIjGTg+oqOXJT65q45Sscyh3hGQDAjA8TGRY0N9NDsFjLIPzdEwxw+2QuOqfN5oMkfU70VTi5zxiujvnaSttYadOxZyYuAoC9vqWbGynb996h1a6lyYKJNytFG9aDnxUoYfuv9P7u/7Fr+5+yfomRgLLv6CmGsJuiix8uKPyfQ5qTUWSepmznnuxpCaQG5aijJyFEV7AF/nCJIpQcQ/jC7NGCclAwaEcjN+/3s4q9ool2L4hrvR9SyOhgSScuupaDeUWguC8IAgCD2CIPQLgvB/zPPv/1IQhIuCIJwXBOFdQRAW3PIzpTK8NuUENBtGi5VkZH53ow8KtVwmHZtrjJFNxqcr04rBiLu+4YYkcT4sRFHEaDbjHx7EPzR4TS7blPmHo2r+hVVWDMQDvul2Zj49sxMr5CqLdiYZn/M7mqaRScSJ+r0Vfc1ZCOTM/PWPjnPePxNK42kDzxyIEcr/9qvCH5fYDaRFUtEw9yw3UGXMIyomBEkhkFQ5c7aPYLLCT9d1fbpiv7TFwW1bl9EdgNM9YbrGclPnzLMHgjyzN8CPXu/n+MUww/1D/OnX78BjyEEpB6WZhUUvF/ncrnoe3uRAysfJawoJzUpvROG/fO8AA7G5MniSVmCpM42RPC/tHeKlvUO01ll48FN3c/TsGOMF1xWfbyJj4v/+x4OMBTL85dc2saKm0hITZAWDDC21ZlzX2V+9c6nM2Z4wjz9xN011Tg74PTz17HH2nAqTxs7TLxzlndNB7lhTzZce24pJFvnWT0/wm/e7WdLRxifu30gxl2Vi3E+VVebe+7fz0hsnyWOgyqKxfbkLu5Tnno01fOWzWznbF+PvfnoKUTZQt6CNtiqBdZtWYDKbKzrFWomF9hwbOqpZsdDF9vUL2bR2AZ1ejX88mKUnJPLl2z20myOUkmEKwWHU/NWdxW4WH5fYrW5qprq55QrLdl2v0M2MN+iUdiNIRaNzZjWmuoHZyTXJWVN71YHhWw2jxUIiFCQ8MU5mloPpFceZzQiigNFinZcWZrZXjDZUVcXmcqOqM5zpZDR8hVsfVNZcXdcJjg4THB2e08VTjCZMVht2t2f6/cw2G1WNTXMGDX9b+LjErSoaGZqIs6K2xHJPDkGUEAwWirrC6XPD9I8npo+dur41Nti2ZTlVtXW8dSJA52CcZKnyjD8zofM3PzrCnu4iL703wJmjZ/jkJ7axdWFlhkEozOW7b1ts5PHdbTQpUURUQgUrJcXBt5/v5I3Tc4/VdZ0mU5JaKcqJ3iTPvXKS0WiRxx+7g0QsxYFRA4Iw9/4TZIWn3xzmmTf7+MYn2nl0S+W+EIQKZaPOIdLoUaYdPufDSNbJL18/xx337OLBrY0c8Vp5+ViU7z93krxo593TQZ5+4Sh1VXY+/+nNbFps44ud/4bNL38Z2e5B3PUVDjjuQw71UYoHGH/sOzhivew481+5VHs7Qw13cMD1AKdqH2Lwob8jXbOcT/18J2u9r2GxObDZF6EX3NQ0LUIUK+eZDMhkItU43WuwmNdhUBZgMNipWnKahjVDJL0tjHeu4tvftfNfWrdzyPrhC5JwA8mwIAgS8G3gQWAF8KQgCCsuO+wMsEnX9TXAC8B/uyVnd4MwmucOit0KxPw+FJOZRDg0/TNRkudQNC5HqZAn5vdNS5BdjmI+R2B4kMQ80mzXg6ZpSLKCxeEkl0xc9ThBEHDXN8xxhZsNR1U1noYmLHYnUb8XxTRznNFsIer3zpkCD44OEw/6iYcqk9jz3Vi6yXHFjfpBUU4GKSfDqJn4h36tj1PsmsizclEVm2/byPImE43WAvesNJLK67xyKk2kYETPxnh8q417luro5Tzvno/x3rvH2bm2nmMDBS6FZzZeumRCk80UdANWqxlfOMvosI9CQeXLuxt5YlfNjEySpFAsqSxYuoR/9umlrG+avj6UjU4EQcAq5ljiKVEtp9nSXObJz+7iM1vdeDNGvFkTyXSWc8dOMxae33JcEARS2CnqEkF/iMIsm846U5bNmzrYtGie+6Zc4L4VBtY1qmiike6Axv5DXYz40iyyJNjcVKJKTiAIAsNJE/GSieOXIry65zThgoJmdDGQ93D2bB/xQIDaKhtP74tyvD/N+MAwzbU2WmsttDZVsXrtMtwWnUPnw/z6N6fISQ50o539wwZ++LP3WNrRzlDvMHsmidYLPTpffWIHPb1eqhqbSWby/PClTkryzOeQFRlB05CtTvRyES0duyW2th+n2L0aptbcG+lY3QgSoSAmq2VOV8tktREL+OYMuF2OWMBP/Bpaw8GxEQIjwx/onDLJBFWNTUSv43Rnc7mvOkdhslrx1DdS1dh0RdFmyq1PMcysw4lQsJKEj49hMJkxmMxXDB2arNYb7t5dD2ouRTkZopy4vl7z9fBxi9v1CxRWrlnOnZsXoGg5dq8w0uIWeLe7yAW/jF4usb6uyB/cVYW1HGE4ofCL5/axoN5KrqSzr7eENmXgI0qUDQ4EyYDJZiNZhIHeIRKZEptbBP7ya5upUmYGJEuFPFUNTdy9oYEndtZMJ9yqbAXZCGqJpZ4ybiHFUnucrz1+G4/f14FRVOkOSSCZ6TrbRe9Q4KqzNwXBTFGyEY0kSabmrs2bVtZw2+YlCLnYFb+3vKbEQ2tMKHqBoFrF23svcKYnhKkcZ2dzlmWuDGglYiUTw0kTY3H4zTvnuDCcxiprbJMHWX3u2wT6L5Jo2cbXe/8dfzDwH8ge/TVp92KGze2kFuxE7tiFr24TK8PvU7f3v7HC9zb1piLrxWFK0rvkcv1UN65lpPcl7DVl8qk8ZvlebPY2wt5L1C1YQDj0Ltaa0KyzFygWBVLlavbVr+bfb/0DXrF9cI3tKdxIBrMF6Nd1fVDX9SLwLPDI7AN0XX9f1/WpKDgK3HLSUjoWrVQmb9B+80NDEMgkYnP4ba7aOjz1jTPDe5pGxDsxrUqRikVx1zdQyGTmfcnQ2Ch1be3XTGavfjoVXlgs4L0llZipKvvsoUOr04WnvvGyh5uAbDBWFm3vBKVigYh3gniwotN4o7qUVjHP3SsMeAzX8RDXdUSz/VbpXX4sYnepp8Qnb2tidCLG6UPHOdaXZnGjldu2LqfKWlkgqww5/vQzy3DZTbTUWXl8RxVFjFRVe1i6uAlZL0+dL8asf/r6NBgS3L1rBY1NtfziUIK0biYcTRGNVyyaoRI7xy/FOH78IuFIkmROxaAXWFmvIeuV72PHCg+P3L2Urz26juVLm+k+10X/+MymbseqatZt20itXUDXdSxaEl1TMZGnzpSdXujDBRM/3htlMDFTbY4WzfSe76RvbCbuJa2IU0wj6yVWr1zAwsZKVSNRMnKuJ8CX72tjfZvM4hXLeOLT23hig8Cja0BXi4TyJk6PVeTUoPKQ8sYhV9LJlQQajQnuX2NFUhRkg4EDl7I891YXx49eIJXT2NQmsmaBFcqTlXZJxmo1IZQLBCNJArnKuU/ENd7b30konmd8eJxLIwkSmhWTnsMqZFElEz9+vY/PfPo27l9aRjSYEAwmyulrW63fIH7rsatpGoGRIQIjQzekd/5hIUoyqVh0RlGHimykp75xzvxDMhIm4p1A13UKuRyKoWJeMV/HTNM0JEmu0DmiN1+EkGWJsUtd09KcHwbCpFznbHrGlFvfbAqJrusYTCZESUI2GMhl0iTDQeLBIDG/j1z6+jxmqAyXh8fH5pV1u+zASY3hW/Id/9bjFsAi5PjsVgfeSJaxkTFe39+H26yzY9tyljTbJs9D43O3OVneasHptPHlh5ZRbSqCYmLZ8nZc5pkEVCnEEIuV57qBPNs6nNy+ax1vngzRE1FIF1S8E0FK2kzsXgoIHD3eTTiRwx9Koes67c48VcbKmtviVHny0c08uLWWLzxxNycPHWd4LEi6VMk5FjrybL19K0vaKnx3g5ZF0vLoapkmSw5Jq/gFCLKBX5/J817f3GvQP+Cn52LfNDVN13XcUhpBLdJaZ2PN6oWYJBUkhSNDGhvajNyzuMzS1R3c86l7uXdhhj/YZcMjJSkLRo6PaCTKM5u2lcWL2HIhXAU/iYLI/1r+96RFGwaLjSXFIe7b82WUA9/HHuzkbfv9XFzwKN2GjunfF2QVg6GJiHcUe0MGySBhtBlJpY+Sy11A04pEAz3UL9XRdYj7Ki6RnoVe3J4sf/roUppTo0hmO4eq2j90zNwIZ7gJGJv193Fg6zWO/wbwmw9zUvOhVCjgrK6dbtPH/D5UVcXT0IgoihW+azaDq67hinbeB8H1OMWlQp7Q2BhGqwW1WAnK6WqrYf6qrMXuZLz30gc6H0EQaFu1Zvr/oSLtpmk6rpraGxKzz6XT5NJJZMWAY5LzrKNfU1OzurmFcrGAwWRG1zTM9lpSk9PlnoZGDOV+SsrVVTum0OSS2LV9Jcn0WUyRAjtWV/POqSCx0txrJTlqbqXe5ccidmtcBpYubuZ7p3xE8hrb2gzUmIu89sp+vBkb9eY8BorkCyoHTw3T3uRAnXwuvXYyhnwyRGlymGtzfZYHH7qf/e8conlBMxajh4h3nDcOjYDkRhAlftNZRlfLPLTGTDZXZN+gQG9EoTcCkMep6Dy8yUG1y0K5MEE4neFUT4Z4OMKiJitoGq+eyZNjpvI0MBrHZupiIqbR5ijwlc/u4pU3z9BU52Hj+iX8w08OEdeu1O/WdZ2MbuLZUyqCUNlkmcsxHtjoYdX6TXz7p4d45Y3juO0GXLJEvGzCZZWoW7CA0f5BIt4JQrEMi5a2k4qG2bWgzCV/gY4WG1aLwpvnc1Au8OnPbiAcijCaMnBfh4EVm9fz1mv7OeKzIEgGXJ4qtm5fQzJ9nPr6KuxuDy5xnASVc66vtlPb3MyLB300WYs0VRs5PihyoK/EQ2ubWLxyKb85eYjNzTKrFlZjcTj59q96weLhp69eoKQKFSk2oxUKt4Qq8VuPXa1cxmi2oGkquqaRTaco5nIYrVYsdgelYoFUNDKtDfxhcSOc4qjfSy5VGaSr6AbXkY5FEQTmXfcFQSAZDZOKRWle2jHPK14bdW2L5vCA07EoxUL+ppR9ppLR6qbmyjBdJo2uc9VOpqu2rsIzbqh0bYr5HK7aevxDAzQuWkLMf/Xu5GxkEgkc1dWk4zFy6XSFU6zrVzzbJKsLNZ9GdtzYIOR18FuPWwCrorN0aQvjgSTPnyrT4jCxbaHE0fcPs78PzIpItVUjk5LJSXDi/QtsX9dGSRXoicj8zff3kRXtCAIohTB//qUthHwBwskyJlGipaWOV185SFKruMBdCitc2h+jo1rioaVOXjniJ1k289aFPCCDWuLORbB8cT3+cJq95xOEkhqvv3WKWlOe0e4uRiIal+KAUHkmBrIifRe66BuJQxG++dkOQsE4Jy6F+fJjt/HWe+c5OjQ/BULXNd4fNlViVzYia3lWelI88pl7eef9s5zoDhMJBKixm0gnAU2lvqmJYpWDiYEBosEwJpMBXS1y1yonZwdSFDXYsa6RvnNtLFGHObXyT7Csup1lz/0PupRFuDfdS6T3PF/5zf1YFIFAQaG47SuM+3sJxPM0tbbTOXwH93gPAVDOK1Q1LiIaPoAk6STGFyCZx/EsiJGYsFKzcDuhwF6KGTNaZg1Gs4ek7xCu5gymqkFKmQD/5tJ7/HlNB5rt+jML18MtHaATBOFLwCbgjmsc803gm3D1xWA+uOsbSISC0xUCHR13XT3JcKiyeEwOjsUD/mtaF98qZBIJahe0EfVOIE+2q0xWKybr1au27vp6XHV1BEeHCYwMUdvaNm/7Ixbwo2kq2VSSqvrG6cXTUV09R2FCLZdx1dYTGB2mafHS655zLp2cY06iaRqu2jqS4dBVf0cUxWmpHkdVNfFgAIPRhKqqxPw+irKDGxkf6g3DD35xGF9aZGWjTMfyhRzvChK7rKMsCCKS+Z+GEzj3fa8du7PjVrrJh8ahviIne49y73o3Wi7Nptu3E/V5GY74EYoZvvqFTQR8IX74XhhBsNOb1KfeE00yUpw15ZwqaIx2X0SmTFt7M/vfP0E4K5EWXTBJYRFECV0r09xURSKRQR9IzomzFjfU1VTsudvrDHz+M5t5/lcHcLmsNLYtIBoMIgh5mFUouhC1MXg8yQObm+gdDNB9cYhIqkQsEyed7iJRVljXrNJWLWM0Gjl+McRguMzX7m0hFk/xSmfl/euMWf7wK7sY7+nGO9APpSxPfvV+4gE/9sEY73YXGEha+d4zh4nkLXj8BfKqEd0QpGNJA42LnaxPpxkZHKNxQR2c6QODhX1H+8gVVXRd5EhfkUTmJKd9CrpaAkGkL6zzg18cxpuEoLcTu9XAI7uXs/e0n9FURV/z5MX9mA0KWxbbWLluFT1jR0hoBt47F+NUzxFiqpXmOivuujqOHu1Cl00IVHjzALK7ATUTQ7LfkqTihnEzsXsza65sMGCY7BKJkkQxl5u2nLfYHaSiken15FYkwzeK2gVtTPT20Lp8xVWVb6YgCAILV60l6veSjISumsTm0mkyiTj5TAqbyzPtmicbjHOS9EwyQd2ChYz3XrqhZLhcKqEYK/dvuVikVChMDh1ee8ZlNgXCZLURD/px1dZPXvvrFx+gsrlIhIIoBhOlYgG7x0MqOn/XQjL9031/U7jZfOFm1t1Q0cK3fnyUtiqJf/ZAG+l0jkXL2rl46iwloczdK+1s29LBd352iGDBgiA46dsfA0wIAuQk5/RzTUXBNzRMqVSmzlNDNBLl4KlRuiZpa3q5NO206bIpLFjYiOmEb84AuYk8q5a0kc9nMeol/vjJTVy4MIg3mKauvhqzxQLS3Ip/VnDw8+NFdi40c/cqke6eMbJ5FV9c48DhLvq9GWrNsHO5E7MMXYMReiMyW9pEOhY38tM9g2QEB7qm8sXdTVgNIr6hQZLRCPduWcjSZW14B/r5/ntRRMXE03uGAR1NV3AYK253n13spnV5I3W1I/SNhFmytI14dzXkhmmfeJshtUhzfhAreUJ7/iOr453IIpQ1nTpjiZ2vfQGzlmesaOFI33Y8KzbwS+nPeGLsH3A1lgiNPk2pWKLo68BTu5ZMVgUmsNUkCQZfwOTKkItWUdu8lNGeY9ibKg0Fq0sAV5YlepH/dfA7uLW5rrofBDeSDE8ALbP+3jz5szkQBOEe4N8Cd+i6ftVeuK7rTwFPAbStXntTfZnZg3OyYiARDuKua5iWEov5vR9Ih1fTtJuqJkd9lY8fHh/D7vFgdbqIBfyYrNY5O/b5JovVcrmSXE5abl6uUQyV9pbdUxmOyGczIAg4q2vIJOLTEkG5dIpMIokkK5ivkYAHR4cRBBFXXR0OT/Ucy2hnTS3pSWrH5cimkuQz6Ssk2i6XaxOE4DWvla5ryMUkqtHFRFYBEc57Vfp/sJ8CRrYvkeibyBAufCTDdrcsdmfHrbFhyc31EyWFvC4hyzKyy81PnjtMMRllouQGychv3usiX9QQhMm2v1agzQ3DMdDFucNtPXE7OyxONu5o56kfvklVQ22FXybAw+uMaMUsr15QERUTP3xjCF0QEKTKtdXVMnctN5KMZnFU1VAsFvD1RDh/phu7xcD2Het5/fUjnBjRwGC+QiTBImssW9aKL5TmhWNJpqSIRpNlEI2sbHfS0FBDMhLmsQfX8PxLh3A4rGjlIsuqs3QscLL/dJIzJ85jklSaG1qIlXy8vuc0klZkKJDHJhhJi2ZieZH7OiTWbdnA4MAYbx0ZoanKxNClPhSzhb1ng2QuFBAMlaTh5DjUGfJ8dUcVXb1JHA4nteYgn3tgNW8d7Kc7YmAiq9DgyPOZh+9h//4zNLc2YOn002ApsHGRlaamVrRinoa2Nn7x7LvECxbqLQnsVgMOi0gbBd44lkI/HsJukbh9EdTW2DjUFcGfNSKIErL9w1coJvGRxO7Nrrmzh9XM9opDptXholTIV/i8ft8c2+QbhaZp04YmN4IpychCNocgRGlbtZpsMkGpWJwjmzbfmguV9upU8WTe81HLmKxWCtksBrOZVDRK3YK2Oa6m5VKJfDZDcHQYWbl6Jy4WqNCYpjpwU7KTssGAs6aWZDSCo3r+OAmNjQKVjtzU57DYHdPfg+UqsmyXIx2LYrRa5zwzk9EINrdnmmJS1dj0UZgnfWT5ws2uu3nJjqSUMBoNvH1wgKNnRhiNauiynfMDCdK5C0RyMoJUuQb1phzZskiyPDeeNaOTwajIfXdt5LkXD6CYTPQFypQEEyuqS9y2qoqXD4wRVp0cGShzsu84ZWXme1rkLtHRVkcgmqJj5VKO7T9C8vQlxsaDfOax3fT2DPOz14coSFYuT0N0XWdBkwur1cJ3XxtGVIyAife6i4CJjS06q9evIDgyzM7NTurGUziVIhablSo5y/0bmzjRHaKvbwynUWfjru1kTgU50hliYiLMcCBLrUUhVNRIqWa2tWp0LHDSsrid//6jfYwMjhMLBEhm8nh9Sf76BwfotZ0EYEP2FEt6zvLdNf+AGvOy2FaimBzgx1t/hJiJ8I2Lf8EKdZBUSeSdu36O2TuIUL+EHGWiwyYSox2U0wUaFmwiHYsSD3dirR8hOFTEqLRSyCfJRpswu/wEIz/BvRAywSbyYTuiIY2nrcJxb9OuQ728QdxIMnwCWCIIwkIqQf154AuzDxAEYT3wPeABXdevnR3dIkxJ+YTHx6aneD+IZ3ss4AddR0efV2onHYsiyvKch4KuzySSVqeLeDCAo6qaRCgwnQxPVXdzySQmm326NSUryvSuf75EGCoGHb6BfgRRwllTgyTLpKKRaT3jUrFAIZvF6qyck/saEkGiVJGdKxeLmG32K/hqV9NUzqdTuOsbiXjHifl9uOrq5yycNyoRtapO5dMP7OQnL55kPFNJygRRIoeTZmue++5ag/lQF+92VwL6Fi/OH5vYFQSRl05lQddptMEffuMT9J3vQjRZ+Nne0OQiV8HqJoVHH9rInj1HKGg6p0bLCLMc2t46NoEijfPAHR20L1/Ct//xHUKqB4pZ1m3ZQI/vBH1xHatcpqPJhNEkcKCvjKAWWLtyCcGgle89d5JcWaCj0c6a9cu58Nw+juw/gYrObUtNLGt1ksnm2XM2QUKtVAenqi15THMc46Aiw+YNJBgbGqeuysywN4G3XEX3pVGaW+uos2VZ3tHK2a5x1m5YxXv7z/Pary6iG52cGgddlfjnDy0D4LtvTGBUNJavWsLFc114w1mMZgsvHouzql7mji0rsThcPHN4Lh2hzg4Ll69AVXUWrVzO+KiPTDZHedYjtFRSiYZCJPPwX39wCNXgZEMTrF3fwblTneQKZY50RehNOXlks43mWhvVzc0Md55n4eq1lN8+y6lRnTULDaxc6MLT0EjvWAJ/FrRiHq2YvVUUn49N7E5hqvOVikbRdY18JkNt680LAeQzGTKJOOVigbq2K7l+hVyOfDo1Z22akoyM+b3T62A+k57kAkdweKqmq7uZRAyzzYGnvmGaPuaqqdC7rtY1tDpdjFzsRDGaiPp81La2EvV758xUxIMBmhYtJTA8RE3r1VUb1HIZT30D8WCF0nf5Gns1CTVN05AVBdlgJBbwYXW6P9BwYioaRTEaSYRCcygRDk9VpfAjSShGI8V8HoPplhchPlZx2xmU6XxpEAQTf3j/IvLJGFX1dTy7p4/DAypMDscZy0m+8fhtdF/owZ/UOD+UIa3NXJtzQxky+VNYFJVPfmIzRw6dYc8l0IsZXJ7F7Fyd49dnS5jFErV2WNdh471zYdKqidZaC+tWt/ODZw6w93yMXEnkz7+4HMVk4tXXDtNQY6XeAfffVkMiFuPSRJELAXnqWvHsPn+FBqRcGQuJVIHTx85RTMWwOF2c689jlQp4aty43TZWrljIqDfOwjYPBkXhb596n5xSKbSNpmDnYjN3376aHz57hImsmYZaG5II+/eepNFj4I0LBerMST69u4NVm2r59jPH57x/QQW5qYOcpZbkshWomlrZKBcy089yWdDIxyMgiDz6xqcxChoBuRZn1QqyyTPEw73k82PY6qLkE25Mwgaq65oZOHeU1uUbiIeGcLacJD4h43BsRhAEMulxdN2PruucNrlZmk9gFz4c5/26ybCu62VBEP434C0q4nQ/0nW9SxCE/wCc1HX9FeBvABvw/OQFGNV1/eEPdWY3CkGgXCp+cL92XcdgNlPIZoh4JxBEYXpHn0nEkRSFbDI5Jxm2udxk4rHpKqnZZicRCpBNpYAJLA4Xuq5htjlQS6Ur3vK60kC6jruhkXw6Pa9YvCTJFHKVxKq6ufWaCaTV6ULX1JsyIwFwTUrIqaUSnoYmoj7vB1LrSBd0RobGyc/j/DyWlHn6xWN4oyUeXueiXFZ5o0u9ZQnxxy12p2x6k4USp46cwWkRsZtEjHqO0iwqxECgyN4DnbQ0VrNsxSJ6f3SQNDPJ50TGSEdVATWfYqizk2RB4bGNIgISY8Pj5FSRVnuer31uJ97hEcw2Owcu9YLBylMvXUTVoShUNmRjkTzHT/ZgFvKsWLmaSCTBuD+JzeXA6bJxr1ri9bNZclQW4rw0q+LhKrGgwcq+rjRoRTauX0nA66OmrpoTb1+iJBgpCqBpAof6cpwYPIGkmBkaGiea0SmKs6bhRZlTXd4KNUOUSGkW/uG5C5RzKf7ff3ofo8MTPL0vyonRNO7zvXijJWYvX7qu44uVeHvPERY32Ti17yBtLTWYrVaGQ2V0UWZLKxh0maa2BbSEclyM5hCA02Ml+p8+TFK3z3JAKmEgTySY5djpAdYur6fz1DkujecAE0cupRjyJsmnOrl/5xJsoo/TA0nylhrKqQiy/cMNXH3cYnc2BAHKxdIHvk8rVVMFtVyqVHxzWdSyOi0Llo5FcdZU5kOmEt8pCtzsQTZN0wmOjWIwm0mENRSjEYPZTD6bxmSzoZbL08mwbDDMa0I0G2abDZPNjizLGExmPPX/P/beM0yO6zrQfm9V59w9Oc8gDnImQBIkwZwkkpJIyQpUli2vw+7a3vV6d23LXnvt9bdr2ZZsyZIlUaIkUhJNiRHMJHIGBmlmgMk5dE9P59xV34/qyQGDRABiv88zz3RXVd+6VXXuqXPPPffcqcaHJGnxx86ionlXefOUlhH0eed1UsyGJEnoDEaioQCuohLC/hGMl5APX9briAYDs+YcliQJSZLIpFIkolEkWcIpx8c7vJfL9Sa3QgjQaRMsG5u6cJsyeIoKqHRkGZ6UfCEhLLz+zmmMcpp779lKMtXAsZ4J4yqmGun2JrlvTQFdZ88wMDjKxhIT65dW0NM7hDeQQk0n+OJHlhL2ealbuYSTLT4iYdjVFOHouYOEcUMWRDbJoaMtBAIhltYWUL96OZ0De3F73Ehk2GhKkUiHaPFrOj8rTzwbq5Rg+2o3J1oCDMeNLK50sW7TUjqazzEYyDAYN1JpAyFkRpN6/t8P9hFVjNhMQXSyRFznmtJu2wfiWI80MxLTtr1wyI+UTXHvlhI+cVc9//yjvfSmPBw80UVpSYhYRoZJgyJxo5uyQ/+CWrSF7rMZirs6MDz+ORbv/E8AHDdvpK3yPlJ6K/bl28ic+R8UmBVsDPJ89Bd46lSMVh1jgT/BPj06Eabr/NuowkrvubMYXa0A2IuThIbeJZMNkQpUEw3W8t3bH+V5z23cf+ol/nPH7suSlQXFDKuq+irw6rRtfzbp8z2XVYvLoLCiEiWbnbLePEIsOIG5u7SMkYF+dDotRszicJOMabNGjWYLgdySnJMxWixTYrrGv4v+8Rg6T2k5sbDmFb7YvJhWp4tUIo4sy/gH+xEIXCWl2hLJsoy7pJSSmroFlTVfLJ+qqnh7urWk8XYbAjHuOZEkCU9pOYHhIQLDgwuaoDcbXUEDXXsCwGweCAW7SYdJn8ZqNZFOZ4AoLCgKeWFcj7JrklXWbV5D48lG4oEkWclInSOKVVY4N6Iniold59M4dWEONnrRG3SU6WLYTDLlRVZ2NcVYu7SQ6sUVnNp/CJ2aorjIgaQ38s2XupH0JuxygtOn2jjR2M9wXI/IeRXimKfcXl/CxO6GQb706Eb8Q0P8fJ+PBGbePtPM1mqVO+7YhP50A/Fp8zT0aoJ1dVYWLa7g6LnThCQb3/7FCbLZLEqmE4/LxkPrLRw+009ZkZ3tS40c61aIZE08uz8ETPUsCyE42ivnPmvbaosM3LttIy+/vB+rPstjawt48bjg1bMqBjXDPaut+H0BqiuLOHSyhy8/uYN9+04TSahs3nEbu97aT0fXEBlk1HSSmzcuJxyM8NprB+jypgCtXRolhS0rCmnujtAf1eRczSSxWp1EYinO+EwUBlQaOxNEFRNqNsOaShWLWc+ZqAl3oZs1Rh0m2yhvHupDsiwspvNCXI+yC2Bze6bo3LGJua6ikgU5Jcw2O0omQzqtJ5VMYrLZiQYC4/uFJAj5pi6uMZYycjKFFZXjutY/2I+zsEibeFZchpCli049VlhRRSadIuj1Eg0G8ZSVEwuFSKcS2N2eBY88junouQgMD5HNZogGAhgtlilzR+weD3qjkUhg9JIX0JgcVjEbiqJouZxVFZPFiiwBc6eivWiuR7kVQlBbXUxBoZO+ngGGYgZchiR17iwdXoUANo72glBUhn95hB5fjCWFZoZHoty8rowjzQEqC/Ws2LCGjtOniCQF6ypNFFaUs+fVI7SEXSAbOHuun1g0xkuH946vTKlIRsKTnB2qbOSdphiPrLezeFkdz/7iPc5H3DT++CSlpjhPPrEVa8fMjFSqqrK6VGVFrYdAKMlwp8LbpwIcbNxPKpEkpeq5b1Mxrb0pGlsGWVdtpKEzSyxq4L1WAGXcITNGf9RA/+kEY+9ng6zymQeW0NLSz6uv7OOOlXYOtwQ5NmSHoSQbKnQ8Lb4AFatY1PkSZ5d/FlGxEtfrf4/j0YfIpPsRrQfxJLUQhq7yHYS3fBbPr/4XlvadFJsyjL2AMvEisnEdevPgeJiqwIDBZEayDpGJFQA6XDUJQCI4aCIdKkLvjGKxe8imdBR95lPU/ugNVvm7LltGbqgV6OZiTAEn43EkWSadSMwbB5yMxYiGAtg9BegN2qouFoeDeCSCqirjHgSdwUBhZdWsZQx3dyHJMna3Z1zpmqw2/AN9uIo1RbgQI3ioqwOBwFFYNGXyncFkJhrQPASB4UEio6M4CgqIjM7MGXipZFJJTDYbOr0Oh6dwSk7lMS7kTblUTCTZtkzPlo1LONXUzzN7RgAxPhHh15lYWqK5uYvGvhQtfhUyKR7ctoiiqmrefvsINruJ0x0h+iImgmH49HYXNXUVdDaeoaC0iLbOs7x8SMG55wRf+spHEY7zjAZj+PyD40Np4ayJl4+O4NBLxFTTuIEpZxM8srWA7sEQx3LG5x0bSpFQ2X1ygCWldmpKrew5FcFgc/Ptnx4kops57L+iTM+ajWs5tv8woVwWiXDWxJ11abbeehPvvXec+roiLGqUxUuqsOmzKATZ03lx90pVIRRX2Lq+hsLySk637qEnJrO+AjatraW1uZ36VbUcONXP/sPNtA8liKVUYso5jvRAtCsOshFJhqdebmaJK81NG2sp9SV44YSWWs1jzrL95pWkY4ex6hO0+gXFdkFt/XKO7D/GHWtcHGwOEExrL7Qaa5j1y6spqqxk0Lufv3/2LOUuGYNOm0T3QWCy0RuPhMYXI5prVTdVVRkdGsBgMmNzuUkm4hSWV2id/WmT4OYqI+gdRslmEZI0rpechcW5CXya4bwQAzg04iMZjaI3maboN0mWMchmZJ2M2e4kEY2QTiWmODiuBEo2ozlLgkEMRtOMuSMXmoh9yedVFPwD/SSiEYqra0hEYwhJxp++Ml7h653O/iBD/hhvNyYRsoH7VhpYsbiQmzMKhxp6kHQSh7sNtPgFm2udPHzvetpPn6JiSQ2xQIA9bXGGfvAGt2+s4BMfvZk3d+7FZu2iP6y9s4Qk8975DIX6LKGMfkqKwE0VWarLHLx4aISsbGJRgUr9iloOHzqNN2niY1ud7D+VoNTj4d9fPkF7xMr01P3GdJD77r+D4e5uTrQEQW8nI5lw6SN88pPbeW9XA5s3LMGla8TutGO2mrCbvfzkiHLRozhJVaK6QGb15nUonKS7IcNiV4pVNS765AcoXFyPN9hGbcfLRAePsD38IruO1VE2dJhbw++Nl3PH+W9xsOc4TWu+TKigivbX3mWxGEZVVfTSMvQGK90n+yms1mErULDaq7HYCxj1lqG3RHBV+gCJeEglPFjJ0vW30HY6i2fRMTIpQe2/9XHv4b3YZhmBv1iu7OLO1xiDyUQiEiGbycw7IS4aCuApLSecyw+sZBWCXi9Wp2vBXlxJlrE6naQnrRxksTvwlFVcVMiGklVwlZQw1NVOPDI1BtJVUkrQ58XicOVmAo9MaWAXS8g/MiVH5djCHDqDifCof85JHVeDZeUG7tixiRMNrRw8F0ToDB8IQxggjomj5/x47HrUbArV6OCNAx0cOXiaEX+Udatr2FxnxqXXZOvY2T7aT58hkUgT9Pv58B1LKTNFefLJhzmy/zhnWn0YbQ4MlqmhMHescvA7T95KoWEiEbwsFGqqSyhyTxgNR8/52X2il86wjZpSG2tW1bCoQOKeHetYXK0ZwnWuNLctkRFZbdZuT88Qw12dOGxmSiUfG8ozbKpQuPWOzTQ2nOVYV5aX3migfv1aDu3aT0ltHd7ghWf8uvUJNpdE+fBGC11+hX9+uYeeILQ1tnBw1366olY21Fp48MGbefvdBl44MsrXf3iAobSDt88m6QwaGI4bee1UjKgy9SUfylpYtrwKV3EpZ85PzOkZiJv4t6ffYcO6xdx7UwXLS3T44npeemU/hQUOllXaqXDrqHMmKTQm2Ly2GkdBAU0nz/Lxj91BmUMwGDfRHb72Ky5eC+QLLEYEmjfUVVRCKqF1QHQGI6ODAxjNFsw2+4J0ZiadxllcMnUZYp1uSu73hTA6PERhVTVBn1cbSZyG0WIlnUpidbowGE34B/svOc9wIhol6J0aFmtxuBgd0uZhGC2WOeeOXGmC3mE8ZeWYrFYio34cBQXvaxaQa82JrhRpRcJt1GL2DreEOX22k71HO9iwqpxV1VaWOLXYiebuKI3HT5FJp2k+cZKN6+pYWxjn0XvXoWQV3t3XBEYbzqJiJGnC0Ky0Jvmdz97KzUundsoK3RZqa0rQCc3b3+NXee9QO8e6FTxWmdWrF1HmhIfvWctN6ysRkoxVSnD3SuN4bv6k3klLQwM6gw6nGGVjaYIKY5BPfOQWets66Q0IvvH0fmyeAka8PnR6I3HFcEFDWFZSrClK8PBqHaVOme++1s/+Dmjr8nL0nffYc2YUp4jymY9tI5GVeeL4H3LHM/dyX/t3uG/kl3yk99sU6ZM83vp3UwxhAI8cR+8uxlO/CV3rbsoUzeYSQiAsBxkdbqWi+jGiw9pIt6I7zUD7cXRSDUqqkohPJtBrIxF0U7dqC02H36F2xa2kw8twFhtYs/vdK2IIww3oGY5HwiRjMZxFxTMe8thQWtg/MuvEN4CR/j5i4RCKoo5nYZgtp3AiGs1NZpg9PMDuKSCTSk6ZYHEpZDIpOs+cpmLpMqLBwBTlJISYMtx2KRMExwj7/RhNZiKB0SkvjoWGk1xpGvtSZF46SstgmrT0wTAi7FKMVBaSwsKW5S5WrVlKY/dewqqBtoAJVQTpHM6w89V9fOTxewlnzvJOUwqL1cryTRtoaThOOhaheOVKygv76G/vwOG003sqyFNvDiBkWUurlgiD0UZbXxh13ymCKXk8NCIlWfjmz0+TQaetggQMx00M9wCyntcbQrx38jgJ1UDk+cN0+BSQjaxZ7GLdmsU0tO4jjIGMbCEwGmBoeJSvfPYu+s6fIxCK0dbazZ7zaTJ6Oy1R+P++8y5JzBzvP4Q/bZ7i7SgwJhAq+FITz/+eTcXUr6hjpL+PIkMvKWHgvs0V2C0Gdp8YJJtOcaZbQXmrgaaBNEUWSGYF0XR2xhCgqmRBiCmrI754YAjj4UFGMxPebiEkhhIWhof9RCMR2r1pkE10+GLcd3cVx4820t47yn/96j2cb2xj595WPJ5hVCGTNbQRTmnlZ2NBLc2SJCPbLk8vXE9kMxmCvmFsLvessbJjGRKymSxB7/CMCWMh/wipRJzh7q7xCWGz6Z1sJkMqEZ/TsPWUaWFbl7vSqM3lpqvpLLKsw2y3z6jz5JXkLiU70WRioQD2gsIp57hant8L4SouYXSwH4PJPD4B/dcdvZLAZsjiT1uoKYC7bl9NMtXA4S6VQNrI2b4omVSC595q5hP31fPhu4r5+1+cR5Ez1K9fTc/5FlKxISxOJ6uWl+MdGMDptNN3rp/uoIEj3W1IegtqOg5Chz8mOLD/NO39USaHBr7eEOLtBj+ZXL74tDByuFMBjAQCCl///h5CWTNDzx0hmhKAiXKXju03ryQYacDfrWVJCYZjZDIDPHznKoSSQlEF3V39nOmI0hsxAkZ++FoHANbmZi3Gd9L71aAmKXdCZ0ACSXM+razQ89GHNjIy0IcvmEBVsjj1Me65+3bazncwEguSlY28sPM4g/4EnzCXoKhRXNkoFqaGc6iqSlYF3aQOws39z9P0XCurYycw6ybisG0FkAjEiIwOIYxanV3lcUSqEKPZQjTzLkp8C0Ulazh38ruoyk7cNaOM+k4jJM2oTigqf73iIYpjfn6v59BlycqNZwyHQ6QSCVKJBDa3e4axOzo0iKu4BG9vN0aTacZ+IQlKa+uIR6NzLp8ZCwVRslnC/pE513o3ms0XnOm7kPRBVctWkE4lCQwNLXjVtaB3mGwmjaw3ks2kkGUdQpKwewrmPJfJaiHo842n+bkUFppBYiFkhJHGYUBauBf9RkaXDvNbn9nIYGsLksFIJBxisLOTcFwFE6ws1/H4h7bS0nCCmhUr2LfrKIc60oCJs10hSt7bw5rNGxjo6mDX3jOc7leoKhMsXlrNV5xmdjUM0eSTqTKHefieGt4+3AWSkTUrqmjqPc9ADHRqklKbSk/IiJi2vG2NI8ldG8t45WA/wwkrajaBThJsXwSeAjOHT3bTeL6PMC4ArBYDS9auZWjvSc43taMXAntRMT94ox9JrynfEnOcT310M6/tOk/TiAGEyuriNIm0SiCW4eN31qI3mviHnxxm3bJiOofT7D/j5XyHl9aBBA/eXMvy5dUc33cICt2UuHQ8cOcq/vW5BroGo9y02MyKJaUUVVXz9L8fpD0wIUvWbIAHNrkJJeDN5skTYczEZpnMmZVNPHtwLF5dq/9oxsLXf3SEJEbKnRbeeHUvS6tdfOnjW3l1dwvNPj2dxyZeemomhWwvJBueO2/3jUjQO4SQZMJ+P5IkzYjdDfq8WOx2hru7KamtmzLxDbRwrJKaOvyD/fPmgB/p78PmchEZ9c9qhE53DszFhVJlFpSVU1BWzkh/H+ER34JW9BxfsMhgJBWPg6picTrRGwzjI2yzoaoQ8vmwOK5MHPnlcKkZl25k7lrrotIFepOZhpPntVVsAyHAjj4d4ktP3oyvtxu91YGvf5CXmyNIejNR1cgbr+1nWbWDpRs3s/fdgwwnLDh1SVZvWsud6SShpOCFEwlEJs5nbnPhD8R4pylDXU0h8VSWgXbNOCwzxwkkJBJMlTO9kuDx7cW09fg53GMHSUFVBVXONI+tKeeNfa289OJeGgZU0NlQVYWSykpMZhNNzV24TSrL1q7mRy+eYjA+poMSfOqeagKBCC+dSoMExeYki8ssHD03yoe3FrJ6wyp+9Mx7ZGQTsoCWQXjt7ZO0d3kpKXLw+Y9vY+97R4gEQ3i9o/zxF7bx2rtnOT+YpMqS4K1Nf0lheSXtZ1/kk41/On494ayeZ0q+THL53Xx433+gFm1ExCZn2JI8rk2nnEbhYi8wVV8aC46gKAKTaiY00EPIG6ag4H5S8WGK6sNA4/ixQUnmdPVGCv098EEzhkEbLnPkhpri4fAUT4EkSwS9w2QSSeRZ1rM3GE3EQqE5U4qBFvuTCIdRlEufVRAYHiQZj5OKxalaMX1p9qnoDcY5je7ZyGYzuEvL6W4+S82K1fScb6asdhEj/X1zrpynN5ouuKrefFzOUp16NcnSEh3nhzJkxMXnJP11IC2ZOHjgLKuXFmlpnLpPMhzMoBqsCKDTm6LxxBlG/VFiTd00D2aJZjUFZzVKbLljO0f2HOJAS5wALtSMDqE30nj0OIWVNaRy+cOqikyU1NRQ3uGlz58lmUigqtqEtwfXWli2vIZ/f/McHbmVkVUly5oyKDYkKSkvYm1ZH/2jEe68eREC8PuDWBxOHrnHgU6n4xu/6kTo9AzEzfzTU/sIZQyocgQ1kwIC44YwaFkkIqHoRGqzVJQH79yId8hHe3+YRCRE57lWvvyhZVQuXsye/Y2805SkLwJIRo6f89EzGOLgeVhTHcciJxgc8GJSEzz58EbSmQz9nT109AdJxqKoWXncyP/ojhpKSgs4duQMTFpJT1VVyKYROm3Ex61PcMe6Ivaf9TEcnymbVrOeUl2cJx7eiH9klIH+YayRCFllZnuQ7QVkwyPI1iuSWu26wWC2MDrYT0FFldZpzy38MObd1BsMhP0jKNnMjIlvoHliFxpqEI9ELmvovuvs6VyO9plG+3QuxsM8tmDRyEAfkixhMJqIBEaRhDTnvJKLPcd05sqZvNDfjg72ozOartno3/VAa1+YAoOO8iXLsDS10tE+QF9I0xEp2cq+vQ0UufQEekNEUip9Mc3BJYRgyeJyHA4TP/vFu7SnyxBCsKVKZrCjnWgiQySmOa906Qh19VsxdHahNg2SSmXIZjXDdkNRhNu2LqWtN8irJ+Pj9SqzJCm3JiktcWFQkpxp7+PjO6qQhQWdxY67sID1SwPcdPM6Rp47RFdQG8F69t0+ECoJLJouaziOME5uLxKxaIJEaqLHv26Rk1u2rWBk+B1Ki52cPnCQD91VTzabRac38o/Pt3GoUwEKiPsS7N5/lqOdGRoH+ii2GejvHSKaVHh4awkuo4LRoCN18jX0fUcZUhyUSCEA9lR/Bv2O38fffFLzuU0S3WRGxSBr9zWeFby47L/i7yzEUzvLEulCIh0pJBWzU7PkNlpPv0gmW4QySzrqEhT+37t/j1WZxcNxkdxwxrCnrAKTLUxkdAQlo2C0WEjGYuMTJ8YmOcylhGbzOIwlVjfb7Lk/22XHUqUSSfRGA+nklUkIPRlj7uVUsXgZ3U1ncRYVMdjRNqen+3LRkszrMahxUuLiJ1usqTLx4fvX8/yrxzk9cBUqeAMgZD17u6Gju5H1dWZ2PHA3Bw41ISQtRi2qmPj5sRQ1Dolg78iUNeBH0la+/eP9BFISKVxU21NsXlHAy3s6WbPYRf/5IdoCmnF3oieL+u5pTnakiakmWnYOICQTK0sUNty0jtPHTjMQnDDkrNkgH334LgY7O4gGA8QSGexmHUaTmXON59nXGEaIXoqLnEiC8fzCQgiCqo1Se5KVNQb2NiVITcsYUl2go7Hdx3mfjJBAGG08/eIp0lmVYDjOuifWUSR0BCNJjr1yiDavwuShxfaAgfYAFFhVPvahzRw/cZ6f7A1A1s7+Iy0sqnIzGBaMRpN8+cm7+fmLR2jKORlOtY5g7vRRVVrAHXKcXW3a9pVFGe7eVsfP3mzDmzRRYBOsXbuY9t4gw3FmcPfGIupX1PGLX7xDUmenI2BAbfKOL5Ay5RkLCZ3j12/42eZyY3O5GWhv09KXmczEwsFxY9jicGJxOOf0Os6WpiwaDJCMx6Ys6nMpOYunI2QZncFEInpFlsQex+4pYHRwAIvdoaXgdEokY9F5U6xdDoHhIVRFmTP//UJ+7yopIzg8dBVqd+PQNqqnfWCUO/vfYPGK5bhLSnmp4RjCqDm9dnXIuHQJ7CaV7vDERGOAX+0fwiApjGbKMZDgwU0FtHT6eftYP/WLSth7fhQwkjJ6eOG1EwSiGZLCzA/e8QICORXkQw/fxmBvL2fag0zOSXbbKhf1a5Yz0NZKOpNBLzJYbFbCgSBv7+8kFDyFbLQRTJ6mP6COG5YJYUanJNixQk9LX5S+yFQ7pdyhksgKDpyPQS4d5t7GAC09B2kP2ljU6WXDpg20nztHS08QX0yH0E3o3Ihi4t3cgh4f3uBk8dIa/vY7e0gbnHB+hOWlMqs8Kbae/SeOPfE8O9t38PlT/xmAau8hwseeoczbx2vbvs6HD/wuldIoXWoxr977fcqan+exge8TzBoJrXgYOTYEzDSGk8ESiorvp6/zbbxDb1NaP4rePJbfeGbncHFmFsV9CdxwxjBoqZfMNgfZTJZ0InHZcbuoKs6iEkIjvovOxzsXJpsNX18PZXWLr0h5k7E6XeOGr9Xp0nIBl1dcdAq3hSO0dCcLPHpVcYZViz28fHCYmGribMco8psNtAykgA+mZ3iMrNlDWXUR7725l2N9MpONPzsRPv/EbZw9086/Hw6NbxdCMJzSOntqOk6h3cCqVYs4cKKLdSurCI14ESLOkR6ZuGriQHtmvNyxONpzgxmee/kYLUOpKUbrmmojbScbsNhs/PL103SnCqlzJPnJL4+waVUpj9zmorZ+Od/56X4GE5YZq9Itr7Rx2y2rGB7YRV8URtMTZa9cXIinwMW+prNg1Ayn8eE8nY7m1gEi0RQHuiSmJK+cRjIrsfOVvZz3SYAZZAMHeuBAjxbWUGDMcPx4C4OBDMZsnAQmTg7okbMJVq9wEIqmAc1zoKoqmXR6fKXplhEd//iDPQQyZhAqD6w2kkim2dUmUFWFvQ39NHX4aQq5xu/lXN66An2UaFrWFiX5NUSn12Nze/D191C6wNSOc5GMRccX0bhSJGMxdAYDsVCA0iusd/UG47in2VlYTDqVwOZ0X9D7fKmoqorRaiUeDl/4YLQ5IelUAlQVT1kFFocDX2/P1VhU44ZDkc2U1ZYx1DfAziPD0zypcO9mbZ7C//veHmJi4h0aVUxEFW3lTiNxVtZXE42lyWRVFlXYMOmyvHosREIycmoQxuIAxuYoKEYXTz9/hHhaMJyYeO8VSAHkdIahzg6aO3zsaVNxmV28tb8VRZW5c10xlctuYe/+Jt49l4Jpo6kek8Ltt65C2nsc3UCCzpBh/JyVBUY2bVzG2faDRHKvkLhqojOkRSR2+NKYz3Wz82iUBPM4/LJaerZDDT2k9A4E0OLX0+KHb5q+SEzItJ56Dk/gPCMZEyqwmkZWN/8l/175VRLOQjLjOdtV1HQCkRtpLzUkuO/Fj/LLj30FkBntdSCrS5Csx7B5BMh9eAffwVo8gMUpmM9M9TlcRO12avp65r6WBXJDZpMw2+xa2rOKiktSRpl0Gv9g/3gmCKvTTWjEt6B4tAWfI5WkbvU6ErkMEZFRP/7B/vG14ZPxOL6+Xoa7Oy/rPAXlFZryuwxDOBYOabFUQ4Oz7i+sqERvNPHHX76FP//SBv78SxvmLc9l01NXW4ZBUik1J/gPH19HKJIkkTOEZSWFW/i5s95Alf3y1xS/kYglspQtWoyjsJhIduqLKqyYefn1ExxsnNlbVrMZVrrD/N5Hl+I2q/z99/bSn3Lz418dw1VczPJaz7yhLDajik4WpLMTTV6XiXD77Rsw2x3sbhikJ12EKRvms09s485blqKoEI0lOHP4ODtWO7AomnYtNCX41K1OKm1J9jeH+c73d/LhD9/MY7eWUmOL8MgmK4sdUX6+u59/e6ERjFbWlmb4xM0OjGie8FsWyVjNBg62zz8T2Col+NitpTzw0K3UWCN8eIMJl34iW365NcXWehdvN4yglxT+8PPb2LZoLFm9ie+80s1rpyeObx4x8K2dA+PLfwtJJqjaEbIONZuhsqKA0iIHa0szPL5e5qP31NMxnB43hC0iTrkhwN0rjZiZKNdGmN/+1Dbu3fjrOyTtKStHyWaoWrZi3jjZuQj6vESDAWBiEY3LnaA2mWgoQPmiJRhyczky6TS+vl5G+icyh/h6e8YnUV8qdo8HT2n5ZRvC3p5uvD3dWs7fabhLShFCwlO2MK9wJp3C4SlEySokYzFioRCgjnvdtbCJAYa62vH19sx6zl9XhN5EBj2rt25hODDzfXPwrI+XXjtBVJ2Zlq/UkuSx9QY+/dAKvvm9d3nnTJjdZ0fp6Bxk1Zrl2I3zDM9nUzjtBlLTbvW2VcXUrVlHY3MXB7oE6M3csa6Q33hiByY5Azodxw8co9IjWOXR7Ac1k+ThdSZurVUYSpr4zk/3Y7FY+NwT29hcHGFTeZI7l0kcOh/iGz/cS0fQgFuf4NPbXdS5tGsusyTZXF/EgcaReTvsqpLlrmWCRz98C1UlVh5aLbOqeOI6fYqVl1b+d6qHD7LD9yt+ceu/8dztT5HKau+fx7q/xadfvp9aoQ3T1Qgvv7X7Yzwy+NR4GTWSD7Mz13lQrDg8tUS8BgbPLsYsP0pWieUMYUjFsng7sgS6awgOTI27Pvvbv0/P17/FoPXys6LckMYwaItJXKxCDvlHGB0cYLCjVUutlkurY7RYrqghDCBJMv6Bfhy5FeRSiTie0nKt945mLFscDqRZ4povlngkjH+w/5LjehPRCK7iUm32/SxIsnxRCez3tqT4158ewGGGrAKRcIzspKrdsdLGpx+o57ZbVlJffWU88TcKoayRt949RVNLPyhTDUEh6zjeJ+iLzPSSbi6N8dDda8nEIyypLcAopdlUJXHrphqyyTg9La3jKXgAyKZZV65SZNK2bV7i4LEHN1LhULi1KsVnttuRhcrRhnYON/s5F7QhhCAp23j+lWPsPTXMzrMZnjueweJ0sHhlPcUWrb5WPSxeWoPDLJGWTPRni3jtjSNYzAZuXVtGXYWL+29dxKY68/gLxu0wUlVVil5kKTXFcFoEVZVFOKUINmnuYa6aQgNut40zR09w8+YlbNy4glLXRJupLTGzedNyPBaVWEaipaUHbyBBkTFOpTWBpNcmC26uzHJzjYqqTk08L2WTmFTthSPpjfxgZye7j/VQV6TD7bIR8o+yslxHiSmJkk7whYeX8vBti7h12wpKnRMe4mjWyO79TZxtv3J5wK83ZJ3uokOx0qkkvt4eeluaMdts4wsajWX+uZJhBiarDf9gP0azJnOxcAhnYeHU0QwhsLk9U9KzXQpKNot/sJ9EdObiCAtBVVVknYzF4SAZn13+zTbbgmOG3SWlBLzDCEkiGY+STaenGLxjqdwkWY+9oPCyOgM3IkfP+Xn73Qay6sz72RM20DAgzZhU7NQleOzWckqKbEjZJEuqHdSXSqwpk1i5aimH33kXj2VqeVX2FPUFKW3inD3LRx7cxE3LnZQYwnzxTjeLnHFa+qMcO9HK/l7z+ByaQ40jvPjacU77bXz/3QB9I0kWrVzJsmoXAJKapaaqiJJCG0JIDCYsHDsf5PypJu677yaq3DoWlZr54oO1hFI6hJAw6VSqayuwmyTsUpxCY5JFS6qx6dIUG2JzTtjXZWOsXVVHZ/N5yt0y69cvY2nVxATQAbmMyMZP0FN6C7IAx8Ax7H1HGVbt7HI/RFQxYDPACdN6frrqr+gWJcjSRCIBRVVpzpaRTWvyaS/tZWjoGbIpB3ZXHcl4hEREZrTbhaIoxEcWUVb+GSS1DpGZGp9f8O5b6H/+E9xXICzqhgyTmIt0KknQ652RxH2MTDKBq0RbcW64pwvTFehNzMX0xSrsBYXaJJKcJ8TqdBEa8S04f6Wvr1dbprm0bEZeyng4pA05zpP0foyxFe1kvX48vY67pIzA0CBW55VJByVkPXdsqmbduiX8ww/28p03h6fEWHYMRjHoJU69cx5vwgTiAzSUJ+npHIry5U/cxt5dR5FMRnY1hig1J9hQX8z+piAjOa+lnE2wyJOhuNCBSFsI+Uc43tCGo7icugo7H7p/Pa+/doBSt4Gb79pO4I2j2JOCuzaXs/dwG489eCdHj53jlYYYfQMj7H3vCD0BlXs3OCksK0GoPbx7LoOqyqwqThNLqXQGDZwdBtBpRoSA5/b0UXK0k/LSAooUhUNdBv7mX3eRNjgRQvOuHh8049/bTSQFSqKDj969HEVVkZQU25db6e7xsvdskLXlglu31NJ8vp9/fuYYv/epTXj7B0Bv4nzrIEf7dSBPyErjYJbYrg4G/Cke2gijwbOc7wmzsULQE5I50GqguWsvIxkLQkj8fJ+fx29yU+Qx4y4uZufOg5wYcbJqcSE2u5V9ra2ISZP8HtjoZGV9Nf/87Anqy43UFRip37CZ7s4+frqrD6Ok8nuf386JhhZePBbmxNle0qk0L+/vpT9qHE8Vp8oGdrdkmC/c49cV/2A/qCpWp3tGp1lb1dNBPBpluKsL01XMazt95TWHp4CgdxiDeaJOdrebVDy2oEllIf8ImVRyfKGQyQS8Q9piHAN9F0yTFg0GSMaiKFllfLKdEAKD2YKSVbA6r8w9kWRt1dDRwQEKpk2WNlmsjA4NkErESUQjOHNOmg8KrV64c1MFi8qDjEThVEeIkVCaHSstDASznBnSRpNUJUuBGGX9ynJ6+0Lo9TJnGtswuIoYCSb4wqdv4dTxMzSfbWHbvffgPnmatsMRHr+1mPbeUZbXlVBTV8nffHcv4ZjEkf3HOdESZlWVidKKUspaB9jXo+f8SJIii0p1ERzrSjMYNzIYByFrCuXEgIHwM2+TViUeWlfOOycTfPuXjajCMJ4ScyBm5LWTIQpaT9I1kuWOpaOUV2iJAeoL07gtOv7Pt9/BZLPz5N0VqCj8zTd2sn1TLbfdupKjB44j6yTePh0iLiZkMKu389PXW0hkYFUpWJxDHDo9wCJzEpPRxPLoeaSffZjyzABCFnyq++u8VvAxfnzLDylZupIjJ97j86f+gL7CjSTWfZT+9peojk/Eru+37+D8I98iNPgaOlMAEtvQKxEql6+l49xPKFuhoA7chKdoKSPep0DnZWT4BPHkOZwlWSb7cFcf3g+H918RGfm1MobjkQjOwkLCo/7xbaqqaoaey4W7tJzec83UrFxN0Oe9qrNsxyaIjC1xrDcYpxiqo4MDSLJMLBi4YIo20BSdzeUmFgph90wdWhSSzOhgP2a7U1tdL6h5p2ab0KJkFZxFRVNWspttqdMLoSoz87pO5mizn77hBkIZI0Ke2nvuCOjpCCQA15Vcefm6R6SjKMJAOCVxtrEDp8vGmvX1NDS+xcPbl1FaU0uP9zgjuVHdD2204zBkqVm5in/4/i7SqsJ9D+/g335xlGBCIv3qMRr7BdHMCJXDYRr6BctLoayimKTSzTO/PMxQWMtluWl1JdW1FbzXuJ/9jX6cTT08vmMRrx/sxReFxx64md7uATre9bKtMkVJgZW3zkSJqWYSkpOOcJy7b3ahSjo8pkGqqhbz1Ft9ZMTE7Ouu3KIT9UUynkI3PYf6sOsz3LF9Ff6Bfn7+bhcmqwmHp5De4RayZg/7j3WgpqLcc88WrHKWZYsFrx4dIZDKxclJejpDgM6IqjPjLHBxU1k3dz14J96BQb779ij+rHGS909FkgW9nb2kkilKyosR/hQ/29WPhIqkt7DMEeSOzbWcPtdH70AS6Cap6DCbdFQtqeGNt44zElFYW2tlNJTgJ88fxhdVEcLI/g5Y6lGpKrLQH8nFIc+Sz/gDRW7ORdg/Mm4MRwKafrG53EQCo5isVoxm81XNr6stL68ty1pYWY0kSVOyBsUjYRKRCKlkYkFOiEwqOb76HEw1hse80HJuoSBfXy9CCOwezwxvt5JVsDhc4/dkjIud66KqKqqqzpk2bqxOeoNphkd5bJLjB45sGqGkUHVmzncMo1cS3HrnNiKJMywvibNx0wr6uvs5M6TFZq8qUbhpSRllixYRjKT4+c6zfOFTt7Pv0Dm6Ey6e+dVhAjEVRVXRmZo4cMaPLPQUFbvxjkZ57fAAlhMDZA1OllcJttyyng7fUU73p4m9vp/q2nI2Z/wcHTCzebmHmzYvp/vpvehFnJuWOjjdl6JtVFuAqi3mYWtFko0bljDQ8x63blvJq3vbaZ/k1A+kjQQCYJRirFy9hNONPWRlExuX26mpq0RJH6HVB57SMs6cbCRtLaW1P4p0oJFSt4MCt42PWWVOdMQ5OzxhDg4nNRkOJFMUl5dhE43cf+c6CsoqOPuz1WzINE5JlaYICVmo+Bp2YyqpJSZM7Oj6ER3P7GaV0kJb0s6Lt34bxd/Lhr4XkZveQi6NoGZlbM5SBrt34xsawWgzEBmoQOE4Xt9Z3JUmIEbEfw6LqENR2gGtLSjZS1uufC5+rYxhh6eAoM+LaVLeyNGhAVzFpYz096E3GHCVlBAeHZmyaoyvrxdVUSgov7jV4+YjFY/jLCzWPLqzoKIiZBkWGLtlMJpyxv7MHv3kEI+gz4u9oHA8BGQ6nrJyOk434CwoIhmPYzSbx5eWtrncF3xZJWMxAt4hvnibBbPVxr+8MTLjmEpbklKPkaMd6fHsAx90jGqc33piFU3n+3izMc3zh8Po1QR7zuzHq7g5cnYIcaqHEwMGRM4zKpGldtVqnnn2TeKqDW8EWlp6iKUFSYyc7Utx+0o77QMRdjaBMNg4N6Lyt/92CNXkgEmjry/v68Z8tJ+s0ck5P2wrTVFS4mFLTS/vtRvobO2iqc2LW5fh/gduw9fXi7U5SCw3mnzrMjN2p4unXzzOIzeXYzYZUNNJMM7syCXSKl7vKOksBDJWXnxxL8tqPWxdamYkmOb/e+oQOp0Bg5riSI8JsHP+R3vYsbaQDds2UtUyTGCWVL3HT3dx3y0SBYUOupqb6Ood4ZPbqmjti3CkRzMQ9CLLO8eG8KbM6JuGsOszeAwG/CkzRaYEj67R4SlYiiQJtqyr5eXd7bzSEEPIRva2pIjFzhNMCHr8GT7+yAq6Ovp4dn+IRa4U1cY0p/sVNtZaKK+p5ET7GVIZI5+41UM4EuPVM9lLToV1I2O2O6bMucik02TTaVRVJeTzYbJZiQZGSUSz4wZgaMRHJp3CaLZcsSw4qqqiMxiQJJlsOoU0LYxOVVVmzACdB6vTzejgAA7PzAwh073QY4ZwIhabYQzbPR76zjdjsFjGF9+YbWnp+fD19pDNpEklk5TW1s0IEYyFQySiEQxG0xWNw77RuXeNhRXLlvKvv2xid5sZVdFzun8/vphMuVMgDpzhSEccchPnsokYVfWbOX7wBGda/AijlZaWXryBJELoafEbWFmUxmk18PyRCEJ2gIBv/KIRVTYgZBNjUwkaOiKMPrefDr+MKptI9EW4fUc5FuKc7holHs7QcPgkQ1Edn91RRt2yOvoG3qIN7R1fbIqz/eZVvPbaQTxuO3qDngIzU4zhMRRVwucLEEsqgOD1A73siEaxmvXcu6WIbzy1iyhm7HrojdjobU5D0s+WshR3P3ALiWwXZ4ZiMzr0jf0ZVjcc5/atS+lr76Kvq5dQ8WMcK/xtPnriv+CREyiqSvnoaTbveRGblKY742TAs4yS8CEWpdv552V/S6pyPYlkCkP1RgZNKZ44/Ps8/ZX/CcBw2wtYnKVYinoQ3tV4ijfg87ejMyYI9lZhsHcT7i/AXbiUZDQAbj+jXYWYDKvpL9xJuW945g25BBbkyhBCPCCEOCeEaBVC/LdZ9huFED/L7T8khKi9IrW7BJyFRch6A/7BfkIjPoxmC4HhQRLRMI6CQtK52N3JXlNJlnAUFBKPhDVFnsmQSaXwD/ajKJfW+3CXltHVeEab3TxLfJa2hKgNSafDP9A3vkzpdMbigG1uzwxD2NfXi6+vd8pvnYVFxIJBzPa5vQCSkDBaLChZzbMl0LJfjHmUE9Eo/sF+ArOk5clm0toypfPMUt68vIAH716HXU7MeQxoAf2V1vmPuVyuF9nNqIKBgRGCkYm43rQwMZK2Isk6jg8YODZsw21S2ForoVOTnOhMcOJkK0vrivncPaWsrXPy2pHh8Yl3Dn2K7TevoL5Ki7vWcv2CzmCYsjKQU47z2Q+votQpYcyEKTDEWVZTQHB4iPW33IxHH6NmUTUWm4XRtImXXzlAPB5nVe2EDKWSKVKxCEtLzew8FuDnb7WwrMLCItfU1IEeQ5KVdS5+taePkYD2bE+O2HnuYJCq2mo8LguFugi/88QqPnnHhDyH5CJeOBqmp6WFDfWl3FcveGClPCWOPZ0VuIpLyMpmfnxEZVFdBZXV5ZS5dCiZFJXWBHctk/nk/YupNEfIyBY+dudiPvfwCpRkDJMOnE4bOqOBPbuPcaihh4duX8KWXBiaUU3w0H0buXlNMRm9ne/+/BgvHtDawK1rS9ixqYotpXHqN6yl6XQzD66z8rHNZjLJxLyLPFwq14vsXgizzY67pBT/QB++vl4kWSYZjxH0DqM3mQiNjFBSu4ji6tpxZ8OY1zUZi6KqKumkJitBn/eS43AlSSIRDpPNZKaMDo5hsTuwuz3Y3AXa+8E/syMPEx5Yo9mMu7RsyiqkIf/I+LtlStkOB4lodM7RRkVVMdvs43G8mXQaZ1HxFG+xr69Xm9w22ztHCJyFxQhmz/meiEbwlJaTSs6vT2OhIP7B/jnfN1eK60V2g5EkAwMjZHKxwkKSGU5aUGQjvRED73XqiSkmtlQLikwJusJGTjS04A0k+P0nt/KhzW7OtPtp9k04ddYtK+D2m5ehU+KoSlb7k4249Ykp+uqhjS5uXlOGPhNGTSe4Z4OH3nNN1K5Zz+o6B6UlbkorSxEovNvgo+HAETZuWYte0Z5NVhVEgyEWlVk51Brj5XfP0zmicFO1QCiT9G4myfYVdhpaRjjSHoNskhHFyb83KKSFmYqKEhwWmcc2O/j9J7fikXJJ5o12jvgLOHjgNHWLKthcmuCzt7tx6SZkSBU69GYrFqebF86o+FJWUsvuJFW9gR61kPNSDc8aP8xbt3+TXy75Iyw6hZalT9D4kac45rydpCKRLqhFZzKj7zlO5YnvMpiy8OPbniYV1zwtJkM9RSV3EvXL6B2N+Hw/w1kqyMZKcdg3M9zqxlO0mUQ0wGi/YPDsauIhCSFJqNKVcz5cUIMLIWTgn4EHgZXAJ4UQ01eR+BIwqqrqEuDrwP+5YjW8BKLBUTyl5WTSKaxOF57ScmwuDwHvELLewOjQICP9fWQzmjGYTaUIjfgYHRqkv62F3nPNBH3eXCztpSfGtTqdqIoy5/Cp3mAkm0njKasgGgjM2B/0eQnk6jobkiRwFBSQiMWmbHcWFY/nSU4nE3h7uhnq1IYXRgcHqF2zjpGBfuKRMIHhIRQ1iyQEIvdCj4WDuEvKZl10xOJwIkkSdreHgopKfvteN799r5s//cK68WPebvDxg58fJKTOjIUzkuS+NWbKrQke3lbG/ZsKUFJXxyC+nmQ3I4x0DWhKaL6JjuvqHDxw9zoqnNAZNPDyiRj+qEI0HGflqkVsrJKotGmK0J+x8qsX9lFaYGaZdYT/+JE67lmU4GM3F/DbT6xHl85NDEtFCAfDLCsz8Yef34pDRFB1Ztq6hjl67DwDCSt//6ND7GtJIWQ9pwcEaUVHclLi9jP9WXRmKzannaGkmcGw4MN3r2bHxqmhOJUePVs2LeeWRYLf/ugyVnu04UdVb+FbPztOcHiAjz6wluHuLuLhaZMeTDYa2oIcaxqmwGPHYVT51K0OdtSl+NB6M2uWFRIJhmnuGOHhdRYONPo5fvAEq9ctZ1VBnC9+Yhsep4mCsgpMRh1CCPafHuDtA62gN9ETMdHcOojZamUgZqGy0EAyGiEV19pPWu/gB88d5dWDWlYVf9pCTNW8fK8cHCAYivLAw7ez+/X3KC/1sGHbJtwuKy8dDfDyyeQV9QpfT7K7EMa8rlanFqpVXF1LcU0dsVAQVVGIhYKMDg6MZ5Owujx0NzeSTWfoPHOK4e4u+lrPY3E4iIUCl1wPs92BJElz6lydwUAyphmOmdTMHPCZVApvTxeDHW2zttNMMjHrb802+5Qljn29PfgH+4mM+omM+ikoryQ86iedSjLc3YmruIS+lnPYCwrHOwKSLGF1uUlEZqZTcxUVk0zEKV20hGhQM2jH7iWA3e3Bn1sMZTbGMlfEc97juTIHXQmuJ9nt92eIJrIY5Ll1brElw0P3rmfjUhcJTLx8IkZPUKb9fDtL6xezqEhmQ4WKmnMevbq3m57OPtZV6fnkVjOf3mbmjkUZ/uMXbmd5kdaRkTJxopEwwaE+/ujLt3P/KgMpdIyGk5w43kSfP8Mv9nr53sutCL2ZvqgBf0JPKBxDycUOjiRNtPYGKK6qIqXqaQma2VBfyIP3rqfUOtFhMok0WzcvYUmJzO88UsdHN0ykYtt1LsGPvv88j921DIucIeAdJpOe+l4/P6Ry9FQPqpApKHSwpSLJvUtTPL7VwabyFDXLlvLOrpM8sLmQoSE/rsYXiUUTtNR/ire3/g2tq57EU1aOlFuCfsnAu7gPfJu60Ek8hgyrTv4Lkt5IvTxI2uAkVbiYUZ9/XF/KtiaGh5/HUapidkq4KrSVe43OXgZ7DrN07cP4Bs7h7e9lydp7sdoKsbhj6D1vUnEF82gvJEziJqBVVdV2ACHEs8CjTF4TT/v+tdzn54BvCiGEejnLll0GDk/hlFnFMDWUYHRwAHdJKaERH67iEow2OwajiXDrCIvWbWCgvQ1Zp2N0aAD9LMPAC6Wkpu6CqwgZTGb8A324imdms1AVBaPVSiwYnPW3Jptd80bMs858NpMdX5gEtFyhgaFBdDod7pIyRgf7cRQUE4+ExuPfXMWljA4NzJlzeSz2TMlm0RuMSDod2Uw6V+csJW6JwaAy63V7zArbtiwnET/DudYBdty1hVqPj+4rmyN/jOtHdpUs6+u1mPFDHf0waebymHHbGzFy6HyIft8RukYlkKHCmiKR1vHsgTDFR97mq1+6n6LGDp47FEIIQUYyUlFVTnlLO2o2Q/3yavr7vJw41UFGMlJmjvPFJ+7k4N7jyLIgMDxMMKXn6X1hwA6kQTKSnZT/OS2ZeHpPYIpBkRRmvvFcE6psYHO1RHVZCT994RhJ9EzOlXyqP8vAj/eyolSPwWQmMWnS/m/cWYXVKGG22TjV0MyBAeuUyZNCSBzvA5DpHO7mt57YRDTgI1tgp3pRFW+/cxSTxUpVuZtNG5dyuNlHKGkgfbiVdr/EO7vP0NEzyu6m/fRFzAgJmrx67lik8hs32/nFfh/nhgWJAy0oko6ysiKcxSX07dMUqpEkDoueAa86w03gT5kYGAqgl1qxu51Eowl6Wlr46RutpE2lVyP0/fqR3QUghECWdSSi0XFdO3nxotHBAdylZYwODmB1ujCazVhsdm1CnSTwlJbT09xIyDd7eNdCcZeWXVDn2j2aZ3i2CdSqqqDTzx3a5Sgsxj/Yj6Nw7hVMtXJUrA4XiVgUk8VKeNSPqiiYHE6y6TRCCMw2O+l4HF3Om6wt9RybdXVUncEwPjKoZLO4S8sIDA+Oh5jEcvmIZwtzU7JZdAYDsl5PyOvF6nAhru5kjetGdmtKzGzetIyG8weYnLTDKiWoKzZwti/DYNzIj58/zGAwC5gwkaSmxMprpyO8fvIwD9xUxoe2LeL89/cQxUEKA8VlxQyPBLGaZBCwekUVDceb8IYVlHSSLz9UTTaZ5N2DbdQsHiYWT7L3vISmc5OAccbyxPs6BXs7AghpQie+eSbO2yebKXRI3LvZxYETvbT1HaY/okfkfp+QbXzr2WOYibOsfjHxZBrQZHhtcYq7tz+AEAJVyPzo9U4i8tQwmv6Ykf7mFKqqp7yll1Ub1tDe1MzKVYvo6fXS3jGAImQ2bVhKOJLi8a7vstsKdf27KPCepkZnpfjMX1GV6gYBKzIthAcP8u+3fY9bj/01G2InSZ59mvqBN3h+6Z9QVLcUZ89ORkzFKFmFdNSO3hKbMbpmsusQ+gG8vT2g6tEbE4wM9OP3HqB2SwohrmyU70JKqwAmZzTuBbbOdYyqqhkhRBAoYLblRd4HdAbDvFkVZIOBwPAg7twxDk8BkcAoZUuW4uvrxeJwXLHZthfyFtlcbphjIoWruIR4JDxjZvAYC8ktPKYcx/6PKVpXSel4nk+DyTxlxT1Jkha06pEkyxjMZlRVRW/QjKkSc5JPf/RWDh1umpLfdYz+mJF/eXofo0k9FU5Ba0s30fRVU8zXjewKWcfTb3TlPk90sNRshkdvr0VIEt94oZOEbKLFz7ii3La6kJUr62j93h6GRQk//MVBQkmJscVLGr06mr93EJtBR0HREOFoisOdCoGMCWQ9sXSWkYEBli4q4VsvdfDGmS4wui5c39nkNrd0dKHbSG1NKa8e9pKUpoXLSHq8ST3DnQrvtTQjGSZk1OuPYCq1c+pEI42jVjLzZBHJCiODg16aWgZp6BcYDvtJSg5O+GJI2QynuvYTyFoRQjB0Pg2ynb2tGUA732THoMVswOm0IeFjIGZkoENBVe08vbMFhfNEJO3lsGmxlXt3rOEnzx+hdZYMae+cy7IpOsKDD97CwT1HiKkZEroL38tL5LqR3YUy3xL3FocT/2A/VodrfJujsJBMOo1Op8c/0E/NqjVXxLt+oTKmT2aess9owu4pQAhp1nJ0ev2CdGNBeUUutZv2HhmfWDjqRzKZkGR5xjLOC53Q7SjQQpzcJROTnpVMBrungJB/ZEY5kiyj0xtQUSmoqCAaDFyxuTFzcN3I7v6WGI0de/FnrVPCxbcsdXDH9lVEfnGQzpBM26jMmAG5pFTP/XetIfXGCY73wJvHvRxuGiaCHQHEhYV/fPYUWSTuSaVx2gycOuGlLWwDjAg5S3BklAK3FYPNzTdf6NB05wJEe7rMCVmPKuuxGhIsXlLNiWYvTb4JQ3iMYNZCEAv/96dnQW8eP1coKUjE4nS2d9EXMRJR554TJIREMJqhu8fLCw0p3mraTRQrh/qCqKqDb/xwH8GMHrclwaMd39B+lDw1qYCJjynZhOypJCUZKZZCPNL5LwB87swf0XK6lM208TR/QmhIorjkMXyDx8HTNKNOJcuy9De9Q/nixxnqOYPQRSmsvfRlyufjfZ9AJ4T4TeA34fLWbb8cZlM6YxM7zFcx3dqlcCVWxJvNW3ApGSRmY/rkl+GYjpffOEG3N9f7nXFeCV/aChJ0h6F7XwBugBW7Jsut7Li0jlKcmaMMQtbxyt7O3OeZ9+vtY8McbRwmIuwIIeiOTC1DCIFqdBAG/v0kTE/tFcyY+PfdfRh0IMyuS6r3dF5vCPF2wykyuvkVqzBMrevbrTpojcMs92E6CWHmp/tCgAV0mi9lDEU2ElSMC3q5ALx6Kg4NnVNSqgkhCImpndAzXVEyb5+kayQD0kzVmJUMHOrJcP4HuxnNWLSltHU3luxeK51rtFhmpF0zmMwYTOaruHLmpXEpC4pMZ2xC8nSuxOQ2vdE0Q3erqAS93jmf7+QMRFdqldX3g8vVu6pkZHQWXXGsNUQgfJzuADNGgRr706RfOEr7cBokE8GMiWB46txL1WBDAt7pHNsyYTcISeaFYxHqChO0eJUZK95dCh1BI3/73T2kdPZ59Z4wTG1j3VEr//qWH80jfWH2tAsgjjC7iDFh3wohCCi2Ba9MsT28i5W/uBmPaaqjv0wOUcbEHCqrJ8vw4JvIxtnzswshqFipI+R9HmeVitlx9TpxCzGG+4DJXdjK3LbZjukVmu/aCcw6O0FV1e8A3wGoXbPumoRR5LmKyAaO9cB1suzyFZPdyXJrLFt6ReW2MzT3vQpkTASmKeKLxZs0TbUmLxedkcz18XwXhJB1U8JS5iKUMXK4U4Hp3u5pZQUUO+9DFrWrIrt5nfvryUK81e8j173eDWdNNPQD0kw9pkhGzvnQ1i++RFLCxLkRZoRCXCpCCNJ65w2ViXS6ITwbepOMq+rC2SAcRVdf4S7kDEeApUKIOqGtnPAbwIvTjnkR+Fzu8+PAO9cqXjjPtWMhSzW/z+RlN8+NSl5289yo5GU3zw3HBd0luXie3wVeR+vnfF9V1bNCiL8Ejqqq+iLwPeBpIUQr4EcT/jx5ril52c1zo5KX3Tw3KnnZzXMjsqCYYVVVXwVenbbtzyZ9TgBPXNmq5blRGfMO/8X3TlzjmuRlN8+NS15289yo5GU3z43GB3T90Dx58uTJkydPnjx58sZwnjx58uTJkydPng8weWM4T548efLkyZMnzweW9z3PcJ4PDpMzS1wP8cN58uTJkydPnjzTyXuG8+TJkydPnjx58nxgEdcytZ8Qwgt0XbMK5Pl1oEZV1SuzdvYCycttnitEXnbz3KjkZTfPjciccntNjeE8efLkyZMnT548ea4l+TCJPHny5MmTJ0+ePB9Y8sZwnjx58uTJkydPng8seWM4T548efLkyZMnzweWvDGcJ0+ePHny5MmT5wNL3hjOkydPnjx58uTJ84ElbwznyZMnT548efLk+cCSN4bz5MmTJ0+ePHnyfGDJG8N58uTJkydPnjx5PrBcl8awEKJTCHHPta7HpSKEeE8I8eVrXY88efLkWSh5vZsnT54PKhc0hnMKMi6ECAshAkKI/UKIrwohroghLYR4SgjxV1eirGnl1gohVCFEZNLfn17p81xrhBB3CiHeFUIEhRCds+y/RQhxOPf8Tgkhtl+Dal5xhBB3CyGahRCx3PXXzHPseiHEntw96p0uB0KIjwshmnL3qFEI8dhVrvu8bUoIsXOSzKaFEKlJ378thNghhOido+ynJh3vF0K8KYSon6cuXxNC/PhqXWueSyOvd28MhBCGnO7onbTttmnXH8ndk49dy7peCYQQnxJCdAkhokKIXwkhPPMc+2EhxJnc9e8XQqyctO/b0+5PUggRfn+uYta6XpZOnqW8zwsh9r7/V5LnUlmoYv2wqqp2oAb4W+CPge9dtVpdWVyqqtpyf//rWlfmKhAFvg/8l+k7corqJeD/A1zA3wEvCSHc72cFJ9VHd4XKKQSeB/4U8ABHgZ/N85OfArtzx94B/AchxCO5siqAHwN/ADjQ7uNPhRDFV6Ku8zBnm1JV9cExmQV+AvzdJBn+6gLK/rvcbyuAPm6ctppnKnm9e/3zXwDv5A2qqu6ZdO024ENABHjtWlTwCurdVcC/Ak8CJUAM+Jc5jl2Kpru+ivbueQl4cawuqqp+ddo9egb4xZWo52VwNXVynuuci/IyqKoaVFX1ReATwOeEEKsBhBBGIcT/FUJ0CyGGcr0+c27fjpw37r8LIXy5Htinc/t+E/g08F9zPayXJp1uvdA8mUEhxM+EEKYrcsVzkKvXH811TiHEV4QQrTlv24tCiPJJ++4VmpcyKIT4JiCmlf3FnPdgVAjxush5MYXG14UQw0KIkBDi9Ng9XSiqqh5WVfVpoH2W3bcAg6qq/kJV1ayqqj9GU9wfneMe3CSEOJqry5AQ4u8n7due6y0HhBA9QojP57Y7hRA/EkJ4cx6D/zmpN/15IcS+3DWOAF+bT1Yugo8CZ3PXlQC+BqwTc3tAa4Gf5O5BG7AXWJXbVwkEVFXdqWq8gtbBWHyRdbok5mpTV6jsOPBzYP2l/F4IsW3SMz8phNgxad8XxIQ3vV0I8VuT9jUJIT406bsuJx8bF1Du53PlhYUQHWO6Ypa6BSZ5ZqJC87zV5vbN11ZVoXl8WnJl/LMQQkzaf9Xa6qWS17vXn97NlVMHfAb4mwsc+jngOVVVo3OU85DQRqTCQog+IcQfTdr3qBCiIVfPNiHEA7nt5bn74c/dn69M+s3XhBDPCSF+LIQIAZ8Xmp7+nhBiIHeOvxJCyBd5yZ8GXlJVdbeqqhE0Z8RHhRD2WY69H9ijqupeVVUzwP9B65zfMcv1W4GPAT+8yPpcFa6mTgYQQtQLbcTOL4Q4J4T4+KR9DwshTuSed48Q4muT9u0UQvzutLJOCiE+uoBy55SxWcqbPqKxI7fvESHEWaHpzfeEECsm/e5C7fhDOTke87qvnbTvj3N1Cufqffdl3N5LR1XVef+ATuCeWbZ3A7+d+/x14EU0z5sdrRf4N7l9O4AM8PeAEa0xRIHluf1PAX81yzkPA+W5MpuAr+b2VQOBef4+lTuuFlDRPGO9wA+Awgtc51znvAvwARtz1/ANYHduXyEQBh4H9MB/zl3vl3P7HwVagRWADvifwP7cvvuBY2g9Z5E7piy377/Nd52z1P8eoHPatg8BjdO2tQBfn+MeHACezH22Adtyn2ty1/jJ3DUWAOtz+34EvJB77rXAeeBLuX2fz92L38tdu5n5ZWWhz/YfgW9Nq/sZ4GNzXNf/Ruvp64HlOXnYktsnA7uAR3KfH8vtt16obVzqHwtoU5O2PcXM9rED6J2j7PHjASvwNHBynrp8DfjxLNsrgBHgIbRO872570W5/Q+jdRgEWpuOARtz+/4MrfPBpGObLlRurr4hJnRDGbBqAffzf6N5/vXM01Zzx6rAy2htrhqtc/jA5bTVayUj5PXuNdW7aHL0EeZvj9ZcPXfMcw8GgNtyn91MtKObgCBaG5HQ2k59bt9uNK+sCa2z6wXumtSm02i6TELTu79E8+pageLcPf+t3PHbL/Bst+eOewH442l1jwCbZrmm3wVenfRdBhLAf5zl2M+iOXPE1WpPV6K9Tdr2FNPaziy/+zywdw556AG+kJPLDWgyvnJSu12Te25rgSHgsUn3ad+kslbmno9xAeXOKmMXuIbfBJrRRkyXoemPe9Ha239Fa1+GBbTjDcAwsDUnB5/LHW9Eex/3AOWT9MfiayIDlyEkB4H/gaZMopMvALgZ6Jj0cDNMMi7QvFV/Opdg5c75mUnf/w749kUKtw3YnBOMEuA54PULXOes50QbKvm7aWWncw/us8DBSfsE2ktgTCnvJGcc5r5LaIZDDZqyPw9sA6TLepCzG8MFucYyZsR+DlCAf52jjN3AXzDt5QX8CfDLWY6XgRS5Bpfb9lvAe7nPnwe6p92bOWXlIq71e8DfTtu2D/j8HMffgtZwM2gv6r+Ytv9LaEo9k3s2D19uw7qcNjVt22ztYwfzG8OJ3HNXgA5g7Tx1+RqzG8N/DDw9bdvrwOfmKOdX5F50wBI0A8CS+/4T4M8uVC6aQg+geYnMC7yXn8jdzzEjfc62mvuuknu5577/HPhvuc/vS1u9EjJyobZEXu9e1WeJZgTvnHSv52qPT6K1wTkNPTSD67cAx7Tt/8osjgugCsgC9knb/gZ4Kvf5a0ztAJYASSa1KbR3wrsXec1vkzNwJm3rYxZDH6jPyecOwIDmRVaAP5mj3K9drba0wGubt71N2zaj7czyu88zuzH8CTSP+fTn/OdzlPMPYzKA1uGNAjW5738NfH8h5c4lY/PUfzuaAbss9/1PgZ9P2i9NfvbM346/BfyvaeWfQ+ugL8md5x5Afy1l4HImY1QAfjSPjgU4lnOBB9Bio4omHTuqTh0i6kLrQczH4KTPMTRFuGBUVY2oqnpUVdWMqqpDaD3V++YY0rnQOctzdR4vG82bVZHb1zNpnzr5O5ry/cdJ98aPprgrVFV9B/gm8M/AsBDiO0IIx8Vc53yoqjqC5iH5A7Qe5gPAW2gvjdn4EloPsFkIcURMDHVXAW2zHF+IZmR3TdrWhXZfxph8LxYiKwshgtZbnYwDzQCbgtDipl8D/hLNi1IF3C+E+A+5/fegNdwdaEr7DuDfhBDrL7JOV4KxNnW5/F9VVV1oRkMcrfd9sdQAT4w9p9yz2o7mrUUI8aAQ4mBuSC6A5uktBFBVtRXNM/BhIYQFzev+0wuVm9MRn0CLMxwQQrwi5p/8twGt/XxEVdWxuM352uoYc7Xza9ZWL4K83r3Gejc3rP93wO8v4PDPAT/K1W8uPobWfrqEELuEEDfnts+ld8sBv6qqk/XdfHq3Bk1PD0y6H/+K5iG+GBasd1VVbUa79m+ieSULgUamvXuEENVouvdHF1mX94srpZPHqAG2TtN/nwZKAYQQW4U2IdwrhAii6cIxvRoGXgF+I1fWJ9EcDRcsl7llbAZCiCq0jvPnVFU9n9s8vS0qaDK2UL36h9PqVoXmDW4F/hNaB25YCPGsmBQK9X5yScawEGIL2k3Yi+aKj6MNZ7pyf05VCzQfw51TIGNUA/25z/MpidnOXS1mztSd/DdrjOGk81zKNfejPdCxOljRvK59aA29atI+Mfk7msD81qR741JV1ayq6n4AVVX/SVXVTWhDHsvITYQTWqzfnNe50IqrqrpLVdUtqqp60LwU9WjDGbMd26Kq6ifRlOT/AZ7LXWsPs8fQ+tA8NTWTtlXn7st4sdOOn1NWLuLZngXWjRWaq+Pi3PbpLAKyqqr+KPeC7gWeRVMMoA0x7s69wBVVVY8Ah9B6qu8b09rUFUFV1W7gP6IZBRcbl92D5sGdLLdWVVX/VghhBP4d+L9ASc7wfpWpMZvPoCnrR9FCdVovVG6uzq+rqnovmtHdDHx3tsoJbYLjr4DfUVX1xKRd87XVhVzzRbfV94u83r1u9O5StI7mHiHEINpk3jIhxKDIxa3nyqpiAYaeqqpHVFV9FE3v/grNEBm7htn0bj/gmdbBmE/v9qB5hgsn3QuHqqqrcvWcLfvF5L/bcuVM17uL0Ia6zzMLqqo+p6rqalVVC4A/R7tnR6Yd9iTa0P9sc16uKVdDJ6M9i13T5NKmqupv5/b/FC30qUpVVSfwbWbRqzlj1gS8u5By55Gx6ddszu3/B1VVd07aNb0tjrW3herVv55WN4uqqs/k6vZTVVW358pX0WyP952LUlBCCIfQvIXPog2tns71EL4LfD33gkIIUSGEuH/az/9CaGlobkOLZR2bOTqEZrAsCFVVu9VJs1Bn+ftJrg5bhRDLhRCSEKIA+Ce04fvgxVxzjmeALwgtRZcRLUbxkKqqnWg9tVVCiI8Kbabs7zPRGwNNmP9EaDNxxyacPZH7vCVXTz3a8EcCbSgJVVX/93zXOVZ47vpMaD1/IYQwCSEMk/ZvEELoheb5+L9Aj6qqr892kUKIzwghinLPNJDbrKD1Pu8RWgoynRCiQAixXlXVLFqj+mshhF1oE1T+AC07wwwuJCsLfbZo8W+rhRAfy137nwGnVM0bMZ3zufvyqdy9KkXzPp7K7T8C3CZynmCheRtvm7T/qjJbm7qI35qm/Ynpx6iq+iaaIvvNeYqSppVjRHuGHxZC3C+EkHPbdwghKtE86Ea0OMWMEOJB4L5pZT6b2/bbTHiFma9cIUSJ0CYMWdFe3hFy7WHadevQht9/rKrqdKU+X1u9EJfUVq82eb173endM2iGwPrc35fR7ud6pnpkn0SLU57Nu0uuLgYhxKeFEE5VVdNoMfNjcvW93PXfnbufFUKIelVVe4D9wN/k2s9atFG9ufTuAPAG8P9ysiQJIRYLIe7I7d9zgWe7J1fUT9Da7m25NvqXwPPqVA/15GvblGvjRcB3gBdn0dGfRQs7uG64HJ08s6ipOhotznyZEOLJ3HtZn5PHsclodjSvf0IIcRPwqWllvopmNP4l8LOcHmC+ci8gY9P5PtCsqurfTdv+c+DhnCzqgT9E09H7F3Afvgt8NdfmhBDCKrSJgvacrrgr174TaB3890WvzkBdWCxNHG0oJIg2yep3AHnSMSY0RdWOdqObgN/P7duBNjTyP9C8Gd3kJmnl9i8FGtCMr19NOuc9k475GrPENV6g3p9Ei9WKonkRfgSUXuA65zwn2nBFG9qQyctA5aR9D6AZXUG0YaFd5GLXcvufBE7n7k0PE3E+d6MZXZHcvfkJYLvI69yB1pua/PfepP3P5OoVREs/VjxPWT9Gi9+JoHkBHpu07zY0j+nYNXwut92d+503t/3PyMXhMUvc1HyycpHXfQ+a5zAOvEcuJjS379tMinVEixE8krsHg2iN0zJp/++ixRSHc/X6w4utz0XWvZMLtKlJxz7F7DHD05+5ihZ/Ndvxn0DrwRtnKf9rs5TTm9u3NSfL/tzzfQWozu37HTQDIIA2Se/ZWc77Nlrcaum07bOWi+YN3pW7J4Hcc105S51rc/WM5mR17G+sbvO1VRVYMtf95Sq21SstI+T17jXTu7O0xxkxw2j66UsX+K0BLbxlNFfPI0yNaf9Irq5hNB11f257Ze5++HP356uTfjPjuQFOtNjN3tz9OgH8xiVc66dyshRFm1DnmbRvJ/DfJ33fm6u3n9zkvWll3Zwrx36x9bgW7W3SsU+xsJjh2XS0Di1s7RU03TcCvMPEhPTH0cIRwrnn+81ZnuX3cmVtmbZ91nIvJGPTylDRQhwm69WxiXcfQQt1CaK1tVXT7t987fiB3HkDaHrhF2iG/1q0keoxOXmZ3GS69/tP5Cp61RBaWo4fq6paeVVPlCdPnjx5gLzezZMnT56L4bpcjjlPnjx58uTJkydPnveDvDGcJ0+ePHny5MmT5wPLVQ+TyJMnT548efLkyZPneiXvGc6TJ0+ePHny5MnzgUV3LU9u93jUgoqqCx94BRnwxd7X8+W5uqQGW32qql7soh2XhWxxqjrnxearv7qUFVqudRXyXCRdZ06977J7LXTuhcjr5BuPa6F3XS6XWlZW9n6e8rpCp5u5vEAYzzWoyY3LfDr3mhrDBRVV/PnzOy984BXkL7534sIH5blh6Po/H+q68FFXFp2zmLLP/cP7fdp5+fMvbbjWVchzkXxxWcX7LrvXQudeiLxOvvG4Fnq3rKyMH/zgB+/3aa8bCgtnpvTdo/7GLEfmmYv5dO41NYbz5MlzZZhsUOQN4zx58uTJk2fh5GOG8+TJkydPnjx58nxg+cB5hid7zfLDc3l+HRmT67yHOE+ePHny5LkwC/IMCyG+L4QYFkKcmWO/EEL8kxCiVQhxSgix8cpWM0+eSyMvu3luRPJym+dGJS+7eW5EFhom8RTa2tJz8SDaWvdLgd9EWwP9uufPv7Qh7z379ecpfg1ldyH8xfdOjP/lueF4ig+o3Oa54XmKvOzmucFYkDGsqupuwD/PIY8CP1I1DgIuIcQHNwdKnuuG61V2ZSWBTolf7dNcU1KJONFQiEQiwYFDTbQ1t5FJp+f9TTqZ5I13T9LU9L5PVr+uuF7lNk+eC3G9ym46k2HAP8qv80Jjqqoy6vUBcPZMOw0nmokEQxf8XcPJVt7ZdRJFUa52Fa9brlTMcAXQM+l7b27bwPQDhRC/idYbpKC84gqd/sZEVRWyYT+SyYZkMAGQjYdQMymEkJFt7ve9TkoqgZKMIBksSMa5c9eqqko2MnLB424AFiS7k+VWdlxkes1sigJTCl/KghASqqry8dtKsNstfPulDiS96YJFGNQ4soA45gseq6oqmeAQQgh0zhJgZnx8NhGh0plFySpsXlPF5o1LOXOmnZbuUe7dvhybw8Yrrx+jxxvnkw+vwel2Tvl9MBCir8/LipWLEEIAsO9gIy3dQR65ux5PgZt//uEeEpjZutzGnjbIBLvZvGKURx/cPGu9U4kkR4+cZn+bRMVgH0sWldJ4poU9ZwPcvLqETRuXznvdHR199A8Gufmm5UiyPOdx0XCUjq5BVtTXIOtmqsADh5rwB+PsuHkp/X0+Fi+rQclkANAZDPPW4X0kr3MvkWwsCIBs0WRaVbJkQl4A9K7Sa1KnTMiHkGVk6/w6PxsPg5JFtrren4pdHS5JdktLL+7Z9I0GcRj12C3a+6klkkBdtJpEeyN1HucFfg2pdJqhUIQKtxNJurDfcP/5QQ72xPjMpiKKXfYZ+1VV5Z/fa6VzOMyiUhdfuaWK0WiCnzWMcGuNlY11RRzv8PLDhgCPr7BxW/3U/oGiKOxtTLKqUqbApemh/r5hdu5pZdOKYtavW8KrOw9xpEdwT30nbzelyCYi2I4O85+e3ILBNPu7Y6B3gPeO9hFQbSyv7UcS8Mb+DswmHR9/7OZ5rzkajnLkZCerl5VSWFww53GqqnKuuZPiYheegpky3tczxP6TvWzfWE0qmcTtdmB32knGYpis1nnrcKV43yfQqar6HeA7ALVr1l21LpqiKHh7NO9ScXXt+At7Mv7B/qt1+gWRDY8g2wvJhn3jxrCaTo5vmws1kyYb9aOq6hVX3koygs5eSCbsm9fIzUZGkG0ezZi/gsbw2EtJMlqvKyN7stway5ZelNzetMjItjU1DA4HeP3wEDevLWbUN8KwL4yQ9TOOt0oJHr6pmBPnfbT4NaX3sVtLKC4p4NlfHWH1YieBcIY2v0QgbRz/XSY8AqoKOh2S0YqSTpAOepHNdiSDiUxwGFCR7YVkQj46QyqGohoa2/1s3ggnznlpG9WztGuQ1WuW4A2m8MZ0HD12juEwPLRjOamU5tl9+2AHzV6ZjyntrFmzGIDOvhCdQT0+b4CA18tIMImsS7O8bhH93k56Y1mUVILv/HQfN60uYf3aJVOu+9V3TnOiO8Oa4hSrV1Txo1/spzdiIpNKMeyfmXB+Om8e7KQ/auadfS/w+MMbWbGidtbj3trTzLGWIA/H0my9qX7G/t2H2glndHj7B+jMlHGfP8yhRj96SeF3vnAnQghSiSQnTrWzbEkZbo+LdDLJz146htWk4yMfuumCdX0/eb90Lmg6VSDQG43Y3DMXBIiM+kklE1idbozmC3fsrjRqNg2qiqoqqEoWIcmazjXZUFLzj9RM6CYLkvHKvaCzkVFkm5tsdPSCx6rpBJLJTjYeQjY7rsz54yHUdAqEQGef26C5FkyW3RUrVixYdvv8o/QXVtE26qdsNExKBV8yhbmvm0LdzI6yqqoc90dQJYkNDhOyLNMWS6EuXUtj4wmCCsjZDIVWC0s8E/e9zxfi2ZMj3LnIxsGeGIfDTjJ72nlgTTlra4to6PSysyXCx1e7MOlgX0eENBJ9PjMfC0Y4NRBlX8COSoiNdUUMhRIM4qJ50M++njh31FpYX+WmbTBApifJ3xxdx47idv70Ua1zPjDopydioqAvyPLFUZrbvWTSRqJxO7cut3D6rBerUc/PXzqO2aTjYx/eOuW6zzV38uyeYSoNKbbVW2g618O+Th1KOIjLZbvgfT5+upNd51LsPnKQtcuKeOzh2XVf2/kufvJmB3WFer74qdtmlnOqg1MtIfxDQwwqhdS6eihyGjjWHudT99SyeEklAE2NHeh0MkuXVQOw98BZmjqCfOSe5fMa4wvhShnDfcDkZY0qc9vedyKBUYwWCwKB0WwhHgkRGB7CXTLVaMyk08g6PUII/seTq8Y9PguNr8zGw6jpJEKnH/cwXCySwUw2PIKQJh6DbC/QDM15ylQySSSTHSU5u4GQCY8gJGlOL0M2GkDNZgAFnWPqSmqSwUIm7ENcwFspGSxkw36Y2ce4TFRkqxslHoH3xxi+6rLb401QMzDCinUrOXa6j9XLK+jv6aWpJ4aQNMVcYkrwwNZS3jk+TCKpsHhxJV3dA+gVhbRkoqVrlH5vhC31blatW4G3twvXKLx9NjlxIlUdlx8kFSUVw+AuJ+XrwVBQCUIgmZ0khzrJJiPoncUk+pt5+NEHAbjv1sXs2ddINKY9+088vJZIJMYb+ztoGdGxtneIVw70o6gSd28oIJONUl42YfA8cs8qvN5RvP4orx71QyrKsuoSKmoq+EyN5pHcu7uBk16FYw1dFHnsnGgaYPWiAo6f6aGzaxBjVkf90nrOtPpoH4hit6S4f72b7kCas2c76BsMcqo9wCcfqKeiamqbvm19BXsOt9BnLSaRmDscIxaJIJltRCNRALyDwzic9nHjzGHVk6AIuz2AsW8Qv9+BTlLQT3IOHTvZzhtnEvT72vjIQ5uIx2J0jQqs8vu2mtp1o3NTiTiZVAqLw4mSVXAUFDLY0YbJapvhSU8lE3hKy/EP9l+0MawqWc1JIMQMvbVgJB1KOqF9FtoDlYwWsrEgwnCh+qjIVg/ZeGiGMawkIiipBLLNPd6mp9c9ExwCRUHnqZjinJGsLrIhL8zyu1kKQokHke2FFz52gWgOmIJ5HTBXmKsuuw6TibbeTtzLVxMb6CYtyah6M2RSWHINORaPcyolISfjbCp0kLXYSKbT9I2MUl1ciE1V8PZ0Eo9EsK7dzEBbK4bSaiKjfdhy3srT/UGOhB1YesJ8emMR7hNdvBYoY/BQH79v1tHQH+Nk1EFx8wC7W0dJqkbKTBl+c6NESaGbO5w2hgNtRBWZUDTOA2srWVYwTLvfzFttFmz9EU4N9PHOiJ2vLFPY6ulka20c0JwoGzcux27txGEz8Y8/PUY8msFuhttuuxWL1co9d64nGgrx9z85iZwNMDw4xMnGQcqK7ARCEc409iCHMzhqXNitBl45GENPhu3rSkhnFF576wTLFxXxi7da2VLv4c7b1065z2vqKxgcbqIxoicaz875PBQli6w3EotpOjcajpBMJPEUaQasy6pDthci9AGcUR/RsJ4ihwudmkaStbYSj0T4+a4+DKT5b0urEELQOxSlL6LHPxq+bozhF4HfFUI8C2wFgqqqzhjyuNqE/X70RiNBr5fCikoMZjPpZBKby0VoxIejYEKB6PR6MqkU0WAAo9ly0cOfajqJzqF52C6WTGhYM1xsBehMU3tfQkjoLqDoZJNtikJWlSzZyKjmXRYCyWBGScZQVXVWj7iqKkhmG0puuHAymtfjwkboQo+7WCSzAyUReT9DRK667A7EjPzicBTH8T0EFTf/9rODfOk3biahDHKiX+vQ1NljuJ02ym39HAyZ+fEzb/HI/RupqAjz/JEoR/tkQGFNcRpP3yAnzgwxGldRVdf4M5YMptxoQ4G2TdaT8vdhLFlEJuTTXsiBflRVQe8sRu8qRUgSBUWaQVtU7OHcUJYzQyOsWxPDbLVitlp5+A49ff0j1FQXI+06j9Wko7J8CevXL0U/qd3YnXbsTjvBhlbkbJys2UlZ6YSxvGvPafYf7yYVSdBdVMO7+87RFrFz/lwDYXMlqbgOQ2EVJ5qGMEoZLHqVtM5JMJLibI9KNuvDbIS4aiKVyoyXm04mee6VE9gsOr7y2XsIeH24i+cOZVm8qJSBk4NUVS7iXFMrP97ZitOQ4Y9+90MAxNOQjg1RvbyQ0347LYMhyovt3LFlYoRp2eJS+n3trF1ewrlzXbx1qIc7V9lYsWz5lRGaC3Nd6FyA0MgIFoeDaDCAq6iYwc52qleswj/Qh6dsaliG0Wyhr/UcFtvFezWVRATJ4kKJhy/6t9lYEDWTRuiNs46mLcShIZkdKPEwOptnokwli87mQUkntPdB2De7/lYVhM4AShZQmexF0MKZFmbcj4U9XUlke6HmgLlAiMYV5KrLrt1i5naLmYHuZhwmExklQ3NaxVRdR7SnBbsFOoeGibnLkHRGJEmiNOyjNaUSrF/NQM85qtwuqoCh4gLafMPYU3GUtmYomJCVu1aUYpCHWF9ZhMdp5TO3LSe75xxvjRbz9X0+/ur+SrzvNnOkPUTMsRg5kySpS7O2VnveBr2e0ayZvQEbVa0+HlxXxeLKEmrLsliNQ6woL+bfdrdhicepdKW5e22YIvfEaKAQgmX1dYQCQfRkSMgSdocDS85Yb2/r5dX3zhHz+TB4ytn55kk6koWYGhpI2KvJRHRIegtNAxkKXH7sapC4uZIsOo43dpM1F1BWYCKhmojFM1Pu8b6DjZzvCvDoPSu4/w4wzxPOUFDoxmPqpa5cM1i/8f13iGX1fOnRldQsriGu6MiGvZQstTKkM9IfNWIZ9nPPlhrq6jQdYrJauWW5Db1eIhGL8cxLDbisEl+8t4rqusrLlpkFGcNCiGeAHUChEKIX+HNyXRNVVb8NvAo8BLQCMeALl12zS0DW64iFAtpQMWCxO4iHw4RGRmYdshMCqupXMjrYj9Eyv2G3vCBNRaGFdxujqLIB2eokE/Ihme05RZvSFKoka4bpvMaihGx1oCSjl+xVnjxElo2M5nr2miGUDQ2DELMawgA6m4dsPHzxsa/vA5LeBAuIoV0o11p29UqCx28roa3bz+EeO0JAQC7iX35+irQqgWTCmI2w475b8fb10j4qcIgIn//sA3S1dNDc7uOWSkE8meX4sIXTwyYsukE2LHNjcxew53AbixeVMzISYDhs5NzIROdKNtkgk8Se9uKwJ+gKm9EX1ZEcbkfJpMh6W8nEovzFP+xkU30RN29ejDHlJZU2MjoapizXJlweFy6Pi7aWLiLGUqTkAN/Z2cv6ygEefXDTjGvesH4J69ctJuAbwVU40Vs/0jxC0lyMS+1jaQXcvGEZwddOMahYqZS8KC6FRKIHX9pIUFfEosIM/mSS/lGQZR1uQ5xzQ3D/Ohd1iys5faYNfyDG2uXltI2ALRBFCDHDEH7l9WMEY2meeGgDoVCUihInf/AlzWhtaWzR2rA6Mcpy+5Y6fKMRNm5bg8HazuGjvTQNuyjvGKa0TCvbU+DiIw+sR5Jl9uw9gzdlYf/xXlavXHRF5OZay+3FoGSzxEIh7G4POoMBZ2Ex/sF+ZP1MB4PJasOaTCIkiUwqNa8TwqFLsn21m8PNfnwJE7LFSTYyitAbUNJJlHgYoTcgmx25EAMxZyytmklPOC/MM+M5F8J03aRm09q5Y0GEJGvvA9PsQ8tC1iMZbTm9fH2tdSWEuKAD5iLLu+aye2IkRMpoYaXBgNWsPbPVUoJwz3lK3S4Aop5SCiuqGTlxEDy1DNs9FBWV4W8+Q1pJ0Z5UWWXTU+KwEx3ycTqrUlhexeG+bpyFelKhUaw2O7csLsRk0s6h1+t5cvsyht9tRy+l6B4Y5miqgozOiDXp564KBbNe5cnvH8Fps/LXD1aTCA2T9voYKZyku2WZW5aXAzCQMRE3Wvn6vjTisIGffNaH0TjVdHO4nPzBV+4kFokiyxPy1dTuYwQPVlOACrfCHTevxNHQxrGoC3dqCLcLotEoaUVlT6eHmpJCfJEYwVHIWstY4gxzqNHH8kKVB++9CZ/Xz7HTPWxeW01nX4iukAGfN8Cy+rop9Wls6mRfQz/3bquhorwQn2+U3/3s9om5HLIBYXSQzmje5LUrKogmFbaur0JRVA7uPc6JETvplhG25KaYCCG46/bVyDodvmEffSGJ3sEAS2uvTAdxQcawqqqfvMB+FfidK1KjyyCT0uKezPYJZTffhBGT1cbo0ACSrN2GdCrJf36sCkdB4YxwieU1TlatqOXgucPEMCBkPTqHpkAy8TA6R9G4l3hM6c5pDOt0pPx9GIpqtN9H/KCqFx2vpaoKaiaNZLKRDfsQkm7KpKn5kC/xhXAxZBMR1FQC2epCyNdmfZdrLbuyUCkocDLgDQMTM3XjwgICRDoGIsXZk80kkymGo3oEMu/tbaTXF2M0lOXubYtxFZVw+ltvkTEXU1Fkwep0Y3N7cDj6WLNmMZ1nz2CVY5wbmRqDbDIZ+NR9lTgKi/j2M0cY8XUjZB1Gq53f+40NfOuHu0jqbew/0cOhplEkUyVKpJNMNsN0Fi2pZnNTJ3sO+zC5JU6fCiErSTZtWEpZ+VQDVAiBu2jqC/aJe5cRT6Sor99GOpVEkmQe2LGSE81DFNsF77YI0jEvFinJynKFB27fisPl4MWdRwkkIiCbGM3qiae1Tt47R/oZzVoI+M7w6JZiyso1b0vDyVYGvGHuuX0VeoOB1v4o4YyBSCjCj355HH84xapqO7/xxO0sXbmU33E7sVgn2urmTdpkwnPnuvGFEvSJauodQW7aODGZ5Omf72U4lOUrj6/n1ltWcvLsTkZ0BQRGQzhclx/Lea3ldqEk43FknQ5JksYdCnbPTMfDGJIsk0poYQpjI3X/6ZEKrE7XDMN4zLO8uHymh/no8fO8csJIJuzT4oBBiwXOZmbVNZLZTtLXjS5nLI+HNVicCN3MuP35UNIJhM4Iqko2OorsKFqQgTs2L+RqombTZKNBJINpTsP8qtfhKsmuJSOxfnRhsdotSpK4zcnyvjDFqbHfaP/T3jQd4VEK1ARD6U4elEuoH7USj/sZDffyhKGCb0sBSpbX03XoKDsKSugJj2BxO/GUlhNs7cRQVkk0nqQvmuAmr556z+R6WblnVSn6pUvQN57n89YAR1JZ/suaRQyWmPhld4C4PEQ6JfPd59/mqHM7Svoc588P8lqkY8a1rE+n6OqUGbE6MBgM/PWzo9y2zsm966e2FyEEVvvUZ37H1iWUFPSzZuXDGIxGkvE499/nRuw+R215Na/u7yYpOVDSCar0AW5aX8fKFbWcO9dF13vtlBa7ONiWAjWDJEkcO93LwQ6F4eFTLK/zcMt6J3WLqxka9HGgoYctqyuoqCympz9AX9RE70CA8x1e9pwcwvFeO198fBMFRR5+73O3EQ5HKC3XbJXSsiJuEYLWzmGqim2cDboo1If50B3rx6/l6LHz7DzYx0M3V7Bp4zJuqmlhX6ud3qEga9YsSCzm5ddqBbpMOjUej2Z1umbsTycTBL1eFEWhuLqGWDiMEAJTToCCXi+uomICw0MzfvvacT+7T/mIMVPBCL2BTMiHbHGiZtO5mcHz3NpMCkNRLdmwF9mmGcBC1mlZJHQLD9fIBIeRcnFuuuvQy6teaOjwA0BCmPnmc82osmGGTFTZkzy4uQxXSQltTedZuXk1b546yC2rPIyGE3QEDKiqju62LkYGh7l/SwkNHUna+xKQSXL4RCfHhsw0tO/i8x9ajqNAxXCujZRuwhhL6+wcbxqifglkdSYMhbmh0GySzs5BqgoNNHb0YCxbghqP4CBMpGwF7+07x51CR2XVRMdKCMG5rgCmyhVkwz4yqonD7SmOt55gx6Zybt++et574Q9E8LhsxCNR/uXZY1j1Wb76uTtZvLiSSChC/8AhdC4Dy5YtZs3qRXS292A2G3kkl31CVVXWdPVRnos/vm9bFcdPtnPC5yKti7FmvdaW9p0axJs0s3LREDWLqvj0w6s4duw8oWiSqkIjoawZb2TC2C8umzpEnU4meH53DxIqj2yvpNAwwKb1S9DpdISDQexOJ6oKKgJUFUmS+OwnbiMYCFFVe/nDdTcSsVAQd0kpAe9MnTnGSH8fQoDZ7iCTSqMz6JFlreM+OjiAvaCQwPAQhRVT752jsHh8/3RW11cSirTz3ikjSJruBObUu2omid5RhJIIg9mBkkqMOy3GnBoLIRsZBVmHEgstOLTh/SQbDU44Y66RMXw98IhqJ9EXxWmZ6vQZiUV4Wo5QvHkliVOncS1bhu9UC0diowybdNye0mEy6XEPBuihCYOS5qW4l1qDhbMjfgaPHuGT9jKiZ7rYqUSpXLeOhhNnmD4Nd1NS5pjXR7nBwsdvmgiPfjvuY61bR3NqgJtsozjtZjq8DYyUrWMg2E7zqJ9699QR3cGUAYqqEWYnqXSC97w2dr2W5FcNCT7+pDJvpotAMIpQFQxGIy/tPMqp7jhPPrCYxx7U1jnxDo/g9QYpLi/ljpuXEwiE8fv8LF9ew39drjnrNqwewWjROnJb1lWhKB0cPJOk2+/jT766CoAz5wY52QdG/QAVlcXctX0FJukUeh1Ulbkwn+4nJrsJhmIUFHmw2q1Y7VM7Nu8d6qTZJ3N3OkWpNUtFcQFl5UWE/H7sbjeKoqAKibFZlPfeu5VFtV3U1pYvSCYuxA1lDGdSKUaHB5FkmUw6jV6vx+ryjE/EMJgt9DQ3zvAijJGMx7G63MRCWqxsNpvBXVzCYIcW4yZJgpDfh9E806ObwkRqprMMyIUs5OZeCJ1+3CM814Iezc1dvH2kh7u311NfX8O+A40oisJtt85uTMw3qU+Lg3v/0j1lIn5QMsgW9wU9KkLS5UJJPrhKGQCDBb2SwEYUj9OEWaeQQUc8BZlMivbWLnaf9HKyNYCQZW65aSm9PYMMBb1UFhj41YkEy92jfOxjd9LjPU1NsYPiEjeeYoW2wBCjKQe9vV70siCJccacxiMDJo4MBGFyWjbZyGvHfKRVD+ZKLYWPanURjAXIhvtoTTiRjnTz6ZwxnIjFeHvvOdx2PfGAn5pCQfdAAikyiOKpY8gbmPcWdLS08cKREPpEJ3/4pe3oJYVAIMzON4/z4L0bOXW6jeagnRJphMfXLObo0WZeboiyvnSQAo+VNSsqcbmdVEwyNlesqKWirIC9R9tZtUQzTNKpFGsqjRjMxvE4slAwzIE+Iw0dZ7nzpmruuLUAo3Fu2ZX1BlYWZzAadKxdu4S1uawXP/vVQVqGFb7w4CKe/PitKJkMQ8OjvLzrCFvXlLJkSdWcZd7IBH1ekvEYqqKiNxrQ6Q3jXl1XcQm955sxWeb32NkLCokFg2Qzadyl5fSea8LicKA3mQiNeJHkmS90nV6Pu3T29LMmi4W7bl/NXbcv7BpikSjPvtxAe582OiN0+pzBeJFZIQTjhvf7hZKMoiTj4yEh8yGZbJoz5iK93TcC6UgW367Ago9PZTOcUfuIF1nIJBIkyp1UN4eRt9vwt7az9EwcX8cBPMMWTq+zkFldw4kfHiJW5WJtn4Wuhm76HlqON55F6Yugry9ANpp4p2GQ+4YLKCmCYU8vi1uS+BJT61WDiZrTaUDGx8S+RdkM5ah8vvgOQOvgf9YZ5+shL3tSeg6ZV/PfAxY8Ju05Px/qx50M4VbjOG1B0vFRhtMOZKON/pgNVVFgHmP4mZdPE9V7ENnTyDoJNZPizV1NfMRmwWzUc/B8DCWZ5sMP15FOpfm3F5oxShlu31CK025l6bIqPJMmpnkK3Dx4jxu7pRFZFuOGeGWRia2pKDdvWgGA3mjkdHcSX1pimXWA3/70NuKJJOWVc6eTXlRmJBEeZOWKjWy/TTvnqVOtPL/fy+31Fu7asY4N6+oQQuKXrxzBYTVw9451C5aHC3FDGcNBn5eC8koCw4OgKLhLyxkdGhg3hlPxGFX1K3Oe4ZmxuDaXm0hgFItD2ydUCPtHxr3IcxnRc+HSxZEE+NNzz0L29nSjqipFVdXjMbz19TXU19eMH3PrzSsv6rxj6F2lqKry/sagKQqyvYhsZOTCE/1u7FyYV5QnthfjtOgoqamhv62VeErhpYODfO+9EELW8/CGGjZtWMY/PbWX7/y8gZQiuHOdhy2b68m+sJuPPPoQO1/ZxbY1dfiHfZw82809D2zHcWSQQEbmhdMqoGrDtxcgm4qz2BHn8Ue2cfJMJ282plhfmmHt8iKe250gIuvYWJ5h4xoPo0ODuEtKaWsf4GgP1Ng9/M/PbwO0XMM/f+Z12r3dnIvMr0ocDhtKqAlZp7L/SCuymiGaUjjaNMz9dytIaEPOEWL85JeHqXTLlJoSRCIpTg7pCcc6eeiemYrP4bLz0D3ryKTTvPzaMXr7hhiijI3FIc6cbmPV6kVUVZex2tPDyS6V/aeGuWnzxCS37o4+CgpdU7wUxw6f5pTXjBoLUnu6lTVrNGPYbJQxiwQGgxYWIBkMtHf7aPXr8HT5fy2N4cDwEFani3gkTCaZoqSmdkpKyvCon9K6RYT9I3OWYXN7iIfDOIuKURSFzrOnKaqoJJVIYHO5gYVP3IpHIsQjIRwFRej0sxt8Qe8w2WwGk8U6rustNitf/I1bxx0LlzxXw+p+33WukopPinee/1jJYHpfwjFuBI5Vp+laV01BWQWBs+dxrFjC+YF9PLTHhF2v45THjPTYWlrfaWLD6SS+cw3E7WbC96zgzGvHUB69BcOQl+RIgL4NpUhvHsP18XuQCmMwDHd63fCuAlx4VDaZSTFoSHBikwV9TRU3/aKDqAlObPdQeSrCX43U8G+RdrKlCqccem7ryCJLMj8kyYiniJ8moPi32lEUB8/vDfP1tzPEElZ6uvqpXVw953mtugyh0BDhcAEdAynsUoyuoJ3uXi+rVlRDKkY6neLVtxqwW01UeQRKWuHl4xEc0hB/sGx2nbb9Fs1maTjZyqnTnbRHrLh0cSpKhqlWVZxuJ7esLeHNvec5pxSzyTvK8hVaCs5Rf4BUIkVJ+cTISiqZ5PV97aR0Ll59+zSf+cQOAIxGPWaRxGTS2qveYMQ/7OVUv4pDCnD3jgUIwgK5oYxhSZLwD/STjEfRGYyMDg3gKpoYxjWaLfgH+9EbTMQjYeKRMGabA7NN80wqioLVOTH7vrimlqDPO75/MpO9urN5ZlVV4fE7qrDaLHz9F+dnVUBf++5RvnJvKQajnkwqid5oIhYOkYxGMdnss553NmbzMI/VaT6lnI2MoipZJJN1PJziUsnGQ2SjAbLpBEomid596UMTaiYFsn7OCX6/jnT0BbDpsxxv8dPRF+SmFYX83pO38M0fHyCQ1XOqNUAgdBqHWVBkEwSTEodO9XKuw89QWObI0Wa6/Soro2FMRsG+9iwnv7ebCHZqHHFCSYlgeqohrFOT7FjtoKdnmM6QkSQmlnpS3H/rErwdbfgHevH5w4ARk0HG43Gip4tP316EUVKoXLyI0Zzhs7iuhIf9QzhddhRFG5p74a1GuuJ2jKXFZAM9HNh/GpfbPp7f9/DRc/QNRXjwrpUUlJTwu5/eisGgZ+eucwwGM8iuSoypYdrb+9h263oWLRrmXGs/75xXaW/r5JbNi1hcYcfeGqC+xsXpk62sWFkzwwjyDo9w4NA5jnVnIJZE0fs4F4tzbMiEqrYRiSXp7A9Q6TJwz+0TEz1aW7r4yXtDLCno4fEH1yIkiVAgyKvH/KixMHImQSKeGD/+kQe3kErEpySv37pxCXZLF3XVRfzk3w9gN+t45KEtV1h6rh0Gs5mQ30cyHsdsteEf7Mdsmxh6tjld+P9/8v47OrL7yu9FPydUzgWgUMhooAF0zrmbOYhJonIcaaTRjGY8M7bHY19f+977nsf3Xr9rr2f7TbA94xlplIdUoEhRFEWKsXNO6ACgkWPlnOuk90eh0UA3utlkUxLJ+a7Ftdiog1OnCr+zz/7t/d3fb2gOQRTRdZ1UODQ/RHctQTCZzQsFC1EUCXZ2oanKslS2t0Ipn12gwvmDy8egq9XnVCRUk3tbdF23iqW3i1vFXL1SRK8Ub8tA461gqApKJoyhVNDLhTuiwhm6VlO0WEbX/IMKT0bDNpvFGEzSO1tmbuQEwmf3cfGNAfaOi7SkBDKHhrDN5bjQYUcvGzTOlTD95ARrk2aGzk7hLSoMuxSkapkGk5sN3xvCg5kZS5WURWNd3nXDc+xYsEDKpLBiWmcVfiJGgWOPB5gLTSEYBeomZrAZEllBQ67zoJpSvNiUwL5hFWgaBbeP/PAkHrODz7sMyk0qjnCtUvzCaZW/HtqOyRVGtHsZuHCF2VieHVtWYjKbCYdi7D85yY51TazoauErn7+LZCJNLFkgPpZFUmudnWgozqaNPfzp791LKhbnG7+YRKum6AqYefiuXvoH5qjzBxm4PEog4Keufula1jWNQ0cH6B+YJaq60XIxckKFZ054WT2RYt/mdk6cm0KWRPatMOjpuxZ3v/fT82RVM3/wpIDVasHhdvP17x1AsdSjJ8bRvdeKbH19HfzpiiDSok6HP9DAF+4tYbOaOXT0MoMTaT724KoFVaR3ivdVMnyzltlVODzehQB7NVjWgrcTVVEIjQ0jSTJN3T0LC3hx0L5diNUsmuzg6IUwsgSCaflqnCBKPPXGFIJh8C9/Zy8AlUIBX7Bp4bp+lTB0bUFl4naSYS2fwjB0ZFddbUJaNi/8nqFUMde3o6TDiLLlHSeyWikLhoFeTf7G3J5+Ezg2puIzV0mqEoLgYWCmgGJcoaDIIMJ0zsx0TuNL97TR3tnC6LkzdK67i8MnhkgUc7Q0OJmcsyHb3fg8TiTOUjHMuMQ8X/7UXQxcHOGFk3HK2HDLFe7dUMeFywnafR429G1kejbBD4+mQamQjkTp27GL+OwMJa0mU3V0QufI4DmcZoMVvd3EZ6d55eevc/d9tSpwMZelq7cTq8PF7JUBWnpW0d3qxtB0MokZooKFl/oLOIT4QjJ87kqcuYKFzaE4nV1tBIK1e+2jH1rPlrFpXjkxS6Rq4uCZGVaubCPQFMDhsPDa8f2UNJHXDg5woL6N3V0y/SMJzs8JtJ1/g64VTdx713qq5QqXB6cYmYhxKWFjhStGV1+QqVCa7q5OrszmkAQ7h/qjFE0BjFyY7u5WzvePIIoCLUEfzY5ZGj0W/tv3T2ERVR7f24FaLiFpVYS6Tk4Nptk+ryN/8NBFXu9P8rF9zQvUCbPVwqZNvWQSScaT4JQKv9Z19auG3eXG7nJTd5OumShJ1LfWqkepcAh/Uy0JvYrIxDgIYHO6FqgV7yTulfL52nCwyUwqHMLquPk5HF5/rVASqMWXTDSCv6mZdCT8tt/37UKvFN+W5OZVCoRkd2PoOoZaWahaa6UMJn9rTTce/Y6kLNVMBMFkRTRZ31NmRr9KrMk7sfVn8OtmPIKfoFKg//QY9REVsNCAnXuG4FiHi+qDqwmNjRLrA7vPh/VHU6TtBoLbQkfGhLqim7rTGbS8hkO2cmCbhLi6ncw3D7DXaEXRNQ716ZhLCtMBkZLNBveuxPK9i5SrRYyqD3ddHb7WNrLH+nHKPpxV8H1vFFmQeGOvF5e/jrETJ9g3nsJjdjOnpNEeX0WwpYXDvzzF9pzG6iaDjaNTOKxhDiWsnJvRqCYquOxTbNiwkuHxKIMxCedojBVdLdgcDlocDlraoc47w/lBg1OXwhyZrGdzKEyguQmH00G7e4SxhMTglVnG4xpec5XH2up56nCKBmmSYMDDQ3t7cHvdjAxPEYvEeX0QHKrIoxvsTEzItLU0MZlU8Jh1Tl+cIaL7UcthOtoDRCMJhsej7NjSTUejnUxB5cDxMS7MqvzWQx3kChU0Vcfn8zBWqmNybIaOrlYi4Rh///wgXQ0mPvOxXQt/25U9tWr4wdNTzORMJBKZf1zJcCocQtd13PX1mMy3bgdbHU5CoyMgCmiqSj6VxNPQ+JYBUVNVUpEwoiQuVB6uVhP+/TfOErCW+OoXdvHymxc5M1uTCblVXljQbQu/C/CvP7OSVDiEbRmdzdmZCM+9PsyW3jp271p9y+tcfE03g2ixzcutvfUiMQwDw9AQzTaUdBjJ7kUvZxeSYdFip5oKIYribWkAa4U0osWxDHdNwNB+vZy73zQMTeXD6800eF1kShrPnCwyljIzlqqAuLSj8PLxEFtDIQL1LsaujBFJlml1qzidNrwWnWcPTiMJ8Jn72/F4XPz1c0P8/JdnWdNm5TP76hkLl0nEq2zatJJkLEZr7younDrPWLjEF3a6aO9Zw/986hgPqjpej4OJcB4kD+gKX3m8m3Qyw19+7wRoFfKCmyNPDeEkDyJ87q5GitksbavWEp+bZXWnl907VhGLJnn59fPMpbNs6Lq2ru2SiqWU5sjZKtFkcYGeYLPb6VvXR1dPJ4eOD9PZem09Odwe/skXdjN0+QqvnkujlXIcv1jl4w+tIp2LMTYHs/ExEpkKdpPBiRmZZjGHmi1Q8YrsH1aoFKGlQ6CiwI+PZXh4nZ+qqrNx/T0o1Qo/PTiLIOj8b1/r4Pc+v4dqpczR/lcp6SotHS08sTNNU0sjx/pnaVxk2ypKIoJW5cT5KaKJAg/ed4224anz87uPdWO2vK9C6luikElTLZWQzZZbqkQAeAKNxKanqFbKWB1Z7C43SqVc4wvnc0t03q9HOhpB11Rc/jpMlqX3hKaqlPLZ2nvUB5a10F4Mi822xNDDE2gkGZpbVsbNMAyUVK37IXuDd0x/kJy+WysJXYclFAh0RJsHrZhBsnuQnH7UbAxdKWP23boQBLVEHENffnDOMOY1jv/xYL8nzshaJ3aLnV1HsqyoOHnoPFxVlbiKnkmNwy+fRF7TSD4SwRWvUhCq5OocSKrB3jMV5lLnSVsMYr+7mewP++m4JHEpdwHl8zv52aGL1KUMShtXkZiYxd7UgFjIYT41ztHGPJ4HtuN8cwCLqpCUJBri14aPLvXIpLa2suKnQ4gn4+wx6qgT7cT0PAICdRejRIemaPzQHi5HDHrsV/izJ/JYzS6+8doEL463ERRjrOzuBcBlNyGXQiSjAs++eJonHliHyVLLldo6W2nrbKWjdZRcvkJD07Vi1Gc/tovBwXEOnCgTzZWIlw1SqTyr6jVisSoXZjQyPzvBylYPbwzruKUyQjpNVrJxYWCa2aqPcDbG1vXtvDGksCVY4q5uG22NPfT0dfKD508xGJOwWacWOmff+t5raCWVRDzJR+9fSUWDbEFnOpqjobH2TBAFAQmNZKLAU8+e4LH7VuFZpNbz4QfWsiuWorPr16Qz/F6AYRgolQr1rW1kE3G8gVvLh9ldbsqF/CK3IzvlQqHmTneL7DWfTuENNJJNxJZ9vaIKTE7OkStpwNsPnDana0mbEWoT2eViganxWWJlC5HkzatLkVCceCLD2nXdN7ymZmM1Mw93A4IgzFsa396AiCDUJuP1SgHR5kEvZWFhbrOWDJtvM8Br+VRN7q2QQrS70Uv5BakfyebC0O3LujR9UGHXMrS39qFUKzT5vYgnrmBQo9o028vEiyKKUEsAImUL08kifWuCWEplho6kWNdgEJoYp6PVz9GJBLpsYyacJR5Ps6PHgVEpEY5WkSSZ++/Zzgu/PMNffesQVQ28Z69wZqRMuVhk4wonsVCERo8Zk8VCIlVAFa5uKkX0coE6t4negM6a3i5+tH8av13idz+3j5deO09LTx+ZWJRkeI5qsUB9axvj58/hbmjA67QyljfT1nZt2EITTFQ1gStJM/lSjMPHh/E6TTQ2uNi8YQVNrU3cd/c68pkcP3v5DCvb6+jrbcViErn7gb309EX45YHLmMwu1q5byfoNvZw8foEXj85ydjDCztU+un0GW3q7qZ9MIqtlUuMplHKJem8PqqZjjRfZsLEHh9NBJpUhGknywJYGRIGFpGpmJk61UgWLnb//3uuEjQAfdZbYsbGNyZkkSrXKwaODpPMVPr0vwA9PlsiNZ3jwvqV/52DLe09d4E6RTSRo6uomEXprgzBRFDGZzQTaO0iG57C73MhmM9VSCU/drTtwuq7hC9aqt9d3AAVRRJmXYxNuMSx0q+taTmIzOjWBruk1ypYo1ZLFZQb5DFVBK2YQbc6a1vAiXDXzuKorL4jS21KnEGQzaq6WPOvlHHopg2itPR8EQcT0NhQr9HIeYd5wSa8UQRQXDEJkXzNgvOc0jn+VmG01IUoy/o52CicvwLxZ54xUQBF0Vqi177kOGxuiGkdWVGnbvZ2mp88Rs2mUY0mcjQHiLoGNaScX3XkmhqYI2xV0QcGq28kePIvv7q0kpsJsfWYcWTe43B3Gp+hsnpR4plsiG4/jLZSodjegZ/K0qNc2ahmjQrFSZLheQVzbSeVcAjmc4+iTjehlhY+8WSGHhXOHrmBqneKC68NErpzH53fTGhynNO2hq15YMNlQFB3F7GYuk6Vc1Mg+9QqRrM6m3jp8Xifbd21k/bpudF3nyLHLlMoKD9y7kXKpzMZNq+ntXcGBQ/1MJHRaWgPs2hMkHk3w3R8eYixmJV+Ksb6lAY/Di9MeYGw8DIaAPh7C1+ygOeiheWqanpWtrOprR9c0hofG2bamAed4itU9tfuwUi6TyFRQFZU3j09QsDTQFxB48qH1VM+Mk80WCYVTHD0/y5N7Wzh6McpQQmJzKL4kGV5OleKd4n2TDE8PXMYbDDI1eJnOtTeKyhVzWYx5TvBVSLKJZGgWh8eHxW7H7va8ZXvfU99AKhzCdJMhhIxq5R8Opblqh/h2sbiSe7W6WykW8TY00qsbtLVDoPHmwfSnbwwxV7DgtE/T0dW2cI4/+/qZmvucxY5RLSHcRuJqGDpaNoZWLiI5PEs5aZY74BjLJrRiBgTQS/kbpH7+MSXCAPdv9NHQ1sbZ/fsZik6jSy4EIGgr83uf28OZw8epijIDEyn2bG7hpeMlXjo8iqEb7Fjp4NEH93D+5HnsugqaArKNQ+MC3T6d3/r4DmKzM+SLKt95M8qV6HGmUqCJThDghbNFhKrCn3xuO6GZCN9+Jcbdq910963kr797AIXatQiymctTefo66zCbTDgdZn7r4S6mpqNcujhGJFVZWLv/7qubycRjRKcm8DY24gs2sUvX2YqJlvZrPM7PPbmFUr7I9FyKfDLBS4UG4rNTTJTcXJro51/9kyBDgxM8/cJ5BH8HZy/1Y331PDlVZl27m8cf2sRvf35pxtnV1Yz5XApzepaBCYl2v0RdfRfqeJr+uIuAq0jF1c7gyCyyxcmnH9+IdV7/9vs/O0+8bOL3n+iisfnaZnpyNoUhWZDtPiRTDp9e4OJgjkTeIC34aPBN0z+aJpEp0T/jYZW3uERG7uSJi0yHczx49zrc3l+9fvevC6V8Hl1Xic/NolVv7OaoikIumcAbaFyIqzaXm2R4Dnle4Sa4ovumTpiLYbbaSIXn8C3DAxZFkcbOd8fM5CoMw0A2mTC77QiCiGiy3JRPqxUXyZVdlwwvNvO43Wqwmk+il2vJqsndgDCvEHGn9AVDVzEqhZrBh821xKmv9v3/45nROCjPUrd9L5GJMZLPvsnmwrVNxcm7fGSVAudLKisuZZlb78c/LbDrZJHQ3CBGvkj0yzvwnLqIYDWT1IuAk3VZJ+37c+z/wiqKmQzelha2fP8swjMD2FSBFpwgQuO8VPDr6zUat24n+J2T2Kx2Jtd34zk4RGeShfRhdczE+ZKGCwvVYB0jTXGmtzdiXJ7CJdkQsOMRbNxzBRLbKhycvYjsacba3Iksl/jdD7VSH7jWsdm+fRUr2iJUVMjlivzk1SRVewP7z80gewXa2iL46zz8zT8cIZ6pINp8nDr9Awqih2a3wEP3ruXRR6/pqQPUB+oIBOtJz+YoFSuEZyP07V2DoRsM5Tw0SmnkQDeaucDpyxHu39lOd3etUnvg8EX2D+vc1SPx+EObFs6ZTmbI4kSS8hgWG/XmMtWSwfd+dISQXk8yN4XLJjMSg8nQFFahwqfvCdI3b+4Ri8R5bf9Ftmzqorf35gOEbwfvm2TY6nRSLhSQ5RsTqXKhQD6VxOp0UcrnsTmd6LpOpVgEWBCDv12e61txk0W9gkNUyC2jOXxTqGUEw6j5oy/zfuloBJffT5311kno+m4/dbECjU1LE2ZBEBBECV2pLFQDrkeNE6zVDD7cDfNJsxMRAUE2U41PIlqcb2n+oeYSCJJ804lsyeqE+cRXr5ZQc3GEf8QTzqoO4YlxHC4HH9+1jv/2vRPkcJEsihx+5QCr1nbj9Pmwaufp7e3kxLlZ2oM+LoxlSRaLHDsxwKWhOF/89F3siqscGavJQ43FDX74s1MIxSSrVjZSJ6YIp51oop0NQRVJFDgzK2JIFs5dmCBTqGKTFU4MFLk0/AafeWwDQyMhXr9SO9/pWZlTMykMVeDE6CBfeHglFVXgtcNzaJINYdGtJ8kysslMpVwiPDpC08qeG+4vs8WK2WLFU+dHqbYxET+B6PcxGs3Q6JX5v/7iF2iFDFXNQAhfQZBs6O5WtNlLXAo5aB+YZvfO1VTLFb791BvECwZf+fg2/vRL2/jO02Xm9Ab6J8YI/fgwbq+XZpPC+p5mZpMKkahKVIMNszG6ezp4+ieHmZ0OI5osFHIB4FoyvG9nLwG/HZ/LTKA5yMxUiG+9EcOtRNmzSqK7u4W7SmWOnZkkrxVoa2+ieb4KnIoneP7QLLInQOnl0+zb2UvHu6R7+ZuGpipIsolSLkNTV88Nr4fGhmnpWUV8ZoqGtpo6TilfS8AWUxJuJ+46vT7w3px+ZRgG6UgYp893A43iZtB1nXwquSw9QxAErI7ac+Kt4p1gtt5Urky02FFz8ZvGQl2p1NzxdA2Tf746rWsIZgsmdwOV6ASS1Y7k8N1yuK1mYFSat1pfvrp7dajZMAy0XPzW/L0POOw2B1OzM7XBz7vXMdqfIDBZe83fHybebcaxeSMns0doWhkkn5+mIlegUqVDcxM/PkpfWGDcWyFx9wpKLySxmSy4zQ66XxwjrheY7U5g2MqszFlp1dyM2PNMd9rYMFClDhu+cJlY/xQNupVKWaPn2+e43Cnx+kdb2fWzWRpEJ90VJ91vKlRUF4VvD3G2VySn6mwZFfCIAoJ87W8oSwKNjhz2fBpt5AJbOotg23PDZ68PXott96YKjE4nyWgSilDg6eeOEUtXMMkiajGPUcghNPWhR0aYE7zsPz27oIrz2qsnONwf5r4dXXzuY7u4dO4SPzycIFeo8v0XzrO+00u9UWH9yiDRnIZW0rgck3CMxunubuXsuRFePTgAFjez0yKwYeG6Gpsb+fIjCqKhUtfgx+lx8z++c4hwEdY3Fdm9YSUOu4mZmdOkCxo+t53Va7oWYsmPf3acqNDM1KsD3J8tsnVr3x0P5L9vkuGGtnayiTiBtht3AZViAV3TyCXiCxUEpVzG7nJRrZRvqzJxO/jXn+mhWirSfyXKru29/PVTJ8hWZfxWlTq3iZ3rgjx3cJaMtjShNQydz+5rwGaz0NwaWJbv/Fa0j6vYvfPmXOKbTS9rhTSGpmAYBpLNPU+BANHiQCukMKpl1EoRU30beiF10/Or2ShaMVc7bv4cbwXRbLtjJYv3O166rCKcG8PnEGmYPE9WtyOIoIhWEmWdaqXEqYOD7H7gXn7y7AEqWNi5fRWF0gUOjWi8fKGMXbBxZXiaaLoCmJD1MpKoMxA18/i6IOu3bsAqGTR2dvHn/3COneu6sFgtnJkaQ5DNnBzOUa1U+P1PbCSVyvD0/jCxUJhyPsfDq1yYTRI/O1fi3j4T3R1tfOeVKY6cn8Nv1fmXX9rKoWPDHJ2o0Wb+/TfOcv8qM3ftXUsqHHrLzSPUFAU++4l9C/8+e2aAsWIBXdGw+luxJAdxORSc5gjDrgBeMc/61Vs5ePgi4XCCOb0RrRpGUVUmpxPY3Q7804OEsFGsQLbiRszOoCuzNDQFWLfCzbmRDFW1jlKhwPh0GkOtIgd76B9N0dW36NosliW0o46uNp7Mlqmva6Gtvcarm0tUiUtN3L/OwvbN3fzs5TME6x1s3bSSJnuJ2eQsl+IaGWWcP/yAJMNOr69GfbBal5cxM67NcSz8yNDxNTbVlBxcd+7Ep+s66WgYtVqlvrV9YUgvHQmjaRqiJKKr2sIQ32IkQ3N4GwIL8oDX46rs2r/76jtXffj33zi7bEVXr5bRy3kMAUSTBV2pLLwmWhwo2RjKvDmT5KwNLC9XxNCKmVrs1hRkTxAtl3hLGoYgCO9JE6ZfJ7ZkPTQ9H6GMSqJLoit0jfLXnZSZXGdj9NgxAn3dZM9f4a5+mdcfbwBRwDqZ4b5BGXASmyugm0qYJRNVTWVGzLEq7+GsVKBux0bmfFcQe3rJ/eQ8hTor6p5e5mbOUZeDrriIJ5VlZJWdyt5eVvzDecSKQnxmmkuuEuntPjYdSVE0w9B9zXQfmKN3RmDUnOPMXi9mv5e7X4jgMtXW10TSQr7pUYTwSe5rGgXkxUzGZbFnzzqupsu6pvF///fXMEQdob4Tb3EWSS/T7k5yLiYjKAXu2dLHyMg0w2NRjg3m0QUbpYpCsVBiOKLQ66swOBpGsPkYyrqQy1UOno+wotlFd5ufaDqMVqkVwi4OTKGqGhafl+lM6YZrW9G9lOf74XtXkkhm2bixVlgZHhpnulpHs7fE73xuL6dODxOK5fjQvWtZ3xfk5cMT5DSFF84VqPdP09l1ZxXi900yLAjCTZUfPA21Ko3F7lgI2ha7nUq5hNlifdckvEq5DO66BuZClzh/0URekdi3ysk9+9by+qvHCQTqkKVZmJ9TMHSNB1aZUFWDWCKH2Vyitf2tE4d3G4amLthFG7qKtChQSg7fvHamgZIKgaag6tpNLJ0FTP4W1HR4IcHVCimM26iu/GOGIJnB5ielQyoJiws7Z8MmJhIh3HYbMz85zGDaCaLIf//OQVIVM0gWzEYJQ9f50YHwwoP347sbaG5p4C+e7ufV8wap1GFUXUDRJ/hQT5VfvHGJnOBCkG1ISp7f//xmpqcj9A9MU6xoKIIZb52fQHOQuZkILo8TjCK6rqPpOg6xwgPburDYLEwMj9Pokehwl5jM1u6v06M5ktkzPHrfrQc9r+Kq1KEgiPgag0yG8qjZGHet8TA8NU3UEmRDr494KIzsbsAuJynlc7x2qYTN0FnborFqexcOm5nnXzpFXGqlJxggkffR48mhaUkuZ0xEk3nCiKx0ZkkJPqZCGRxWmYotQNBmoiWos2FVEE1VOXH6Cu0tdbS0Ll3rgiCweXMvYyPTDF0eoarAvm2d+D0htm7oJDwX4/SUTmMsTr3XxvYtPaRORQk4FLavv71N7fsFVxPG5VDX0oqqKEv4uHaXh1QkhK/x3Ylz6UgIX7CZ8PgY6XnDpavnnxkeoqGljXwqueR3kqFZEASq5RLZZBz5LYatfxXQK9foYYLZhmy51kUULXYsDbVKulbKUo2O12gN1dINhQNDrSK7G6hGx9Fy8dpxlSJ6tYhkc78tx9J/TBAEgWZb7ZnUFVr6Witu7j2YpSRKzCZn6ZsycJvtbH0lgiiImCUnFV1hWi6wc1DGabYiiiKngkUyj20l+8x5NqcDvPzTo/gVlUJFZKSpRGA2Qe93C6wq1+gSpzZYULb0IT13AuH8BL6qCbfNjry1j3TsGKZgPVUhCQgYaq1je3g11O1cTeXoOYqVAie7Je6aUDGJMu2+MsXwKzSYb16wuh7xmWkMw6CuuYXh4WlUQ6arQcLjyXAuplLX0MDOHT30z/QjmKy0Ntfx9M8vMJmz0FOvUV/v5oF7N/Dcj39Jf7aBdqcTW1MvFr3AXWtNvHJcoVAsMmhtIJuLkNRcqLHaxq+gmrEGu1nXUCUwX+y7cmWaQqHM5s03dpra2oM4HBaGBkYpVXVWdDby+MYKwcZaceHkQJRIyULH5RGC9V7qAzmMaoneTpGW1jtXpnrfJMPFXBZRlLA6biRLl/J5dE1DEATKhcLCMW7/8glaKZ+rDXU0vP2Bl0w8xpOP7sDqcLBtC3z96eOYjw9yYlLn0PBZWBT00HVWtNdTrSp0drff0jbxV4ma21IUyVl3U76uIAhIVgeCbEEvL1/1Fcy2WqvO4cVQqrXKh6bVhuXKeSSrE0PXMDQV8SZyczeDlk8hmCwfSNkfk5KlKjmW/e7rbBoOQeWTH1pPLpMn/sY4jZYCd+9bx8WBaQ5Nw+fvaaS+sZ5cMsWLh8aIVmyMz2oksxV00UJFMnFqpkLAadBoT7L57n0ERkb59tEKggCqaOH0uTFS+SrnQxIgIohw+lIISRI4Ma4gkEeQJCJplTNj09jMJiRJ4Gz/GJfnNP7oi3spaoNMXqwg6VU8Njg3rXLu+4PAzd0Wr6KUz+HweEnMzVItFWmvMzHts+KwySSkIFY1QSYaxmwxo8WitK/2Ut8U5JGNKZyOOsoVBZPFytd/dJo8ftrEKTavX0/8xDSd7XUUqwZDeYVtbT58Xisb1+5gcipMV1crZquFD60KUSh7uTgaQa9WyGcLvNxfJNA/wT/53UdrsaNYxGyxIEoS4dkw3319DqGYRHc28lmzyN5dazhxcpCXj07h0LOsXdnGt1+LEDDl+Fe/sweL9YNFBVKr1ZoKxDJx1DAMyvkcssWKUikjSjKSLGN1OJaN0aqikEvEcfr9b6kEtBhmq22+yuxaiNelfI5UJITT40VTFfxNSyvxum7gDQQWNl6/StxMt/iqE5xott7AM14MyebGUMqIVheGpnC9q4Zk99bs7N2N6NU8ejkPBjdYSS+XSL8V9EoBQ63esR7yrwtDaOzjNjuSaq0Sqcs3fieyUaE3INNSb2PP7nX87z94k3wuyuP39ZHJ5HjxXJTNKyQeeGA7B4aHuTga50pEw5aV2X1xjDdKZVKCgRG30OoA/8Aod+1Zi9op8n++PkZ4/jm/ck6hG5XX0yLK2dp1N4UKrD8xyIE5nfK3ToHVRVAsIe0fZaZg5ZOSROriJb5/Ns/nH2jGuaaRB0ZOo5mcND+zgmxFpKAv7gzcWiP7i3d7sYgav3zlNJFEHp+lyngChFwV2ddMePwSf/39BJIk45c1AkUnH+7rZDiSpKtuNTOpHK/95DgXco3I8RE+tmMfJ87sx0Oef23pZ79jB+uceT7depQtDQpV1cBthq7Jfnrby1yK6fw00kwiPs1262v8zaku5spWfrf4Y175xTi6bqDoOpZ5+usP7buZsQQxeYP0Pf8tHq5eIqWK/Cfv/VQLWTYoU4NIlgABAABJREFUk7yeXEPW2crjo9+n0wbCjEDuzdtaFrfEbSXDgiA8AvwFIAFfNwzjP173ejvwbcA7f8y/MQzjxTu/vBpK+Ty6qlIsZpcNtOV8Dl+widmRK/gCjUwPXsJd13DTZLeUqzkYZeKx2nSyYSzwylKRMLqm4fL7l4jrw/IOdbMFM7OXyiDY4LoYL8gmvvXyJCDwf/R0vqPP/m7gdt2WJLtnfmp6+famNM8DvhqEr2ppavkkiOJ8oDYQzTZ0Xb1tJQstn0K0Oefl2N7dZPg3vXaD1hK/88Xd/OzFE/THFymZaFXuW+OgwSHRt3EnJw8cw+M288dfvpv4zDSFbIZmnwXPXIlyQSIxV6WQL/LJxzYxemWc5y7otDjSmCUJBdjZY2NDt58rl4dJhkLomobfXCal2BAkE28OaxiGyLpGhUpVoVCBMzNmBElCNNUCUbO9zOc+tpvDxy6TzZUQJBNnx8uYTTJ//b3DpCsSTkGlr83GE49s56nnTnJlkfGYYRjkU6kFCa6rPE+Lw4GvsYmpgUu0rVpDbHqSLbs2Uaqc5JVLZZodJeLZAkO5djodWf7Xr+7GOe8guWvnGqJzIf7HCwmcQohmv5mJcIbd+1aTyJRIpgu8drLMn3xlL12tSdo62xa+Y0mWicXSzEVSvDwk4NVixMsy6ZiJbWslGoQEURr5//2PF9mxvpmDg3la3DA1l0Apl+nubmYikUFGJxio0a/yxQqaxUO2oFNf58E1NEUoDcdOjVCuKIzO5vns4+vw1915gvGbXrvpWBRPfT2ZWPSGWJqORvAFm0mE5jB0nUwsitPrrTnDLSNhlk3EFpR97C4PxVwGb0MjoiQtqOnIZssNibfTdyN1YDlFnsXwNgQopFO/8kT4VhBNt06ClxxrdWNo1WWtlgXZhOyqR80lkFz1aLkkgqmmQKGr1Zr0WrWC7PQuSY5vB3qluBDz36kj383wm1y7hqrw5Q91kMtk+MGxHOKi6nlfXZU1bU761nRz+M0TTA8O8Oi9q9GUKqqiYDcLdHmrqFUz8dkZFEVhRauX7RvdfP/ng7xyWkeaD+GNljKfuL+b8FyUTCyKbLEQ9JoIR2qvjyRNjCTLBBzQ2SgyNp0gWbTzy4tlwA7WWox8fE8rfr+Xr//wOC0dG3n9yDBuG7xwaBJRDiPLEh4S/O5nH+B8/wjPn75ObUopYYjyAufcIZawSAZJxc4zB0M8uSvA/fdupJjLMD4V57kTaZRUCKNawuSuR5DMiGYL/6/P3ocoinS3ttDd2sJ/f+koI2UTe10aciFOX0sDJtnMlbyVWNXL4+kRfr71BF6bQJ3DBEhMpFQuJ0WcUoU/GtqCtZpiWnFjcjfw8twZnvSM8Xds57dPrqRRkimYbIQ93bhC54j6V9OaGcZVVcmrFRzFKMigIFJ2BVHNbsRMgrrcJAnJzWH/bqRCP697d7M1c4714s1dMG8Hb5kMC4IgAf8deAiYAU4KgvC8YRiXFx32fwA/NAzjrwVBWAO8CHTe0ZUtgslsJp9Kot9EJ9Fit5MKhxBFiVQ4REP7CorZ9LVqxHVDF8VcjnKxhKe+AVWpTUmr1Sqy2YyuafiCTUwPXaahpe2WbcK3wltVy94rMDQVvVKoaVteFxS1UhZDqYLAgv3y1aqHZK+16bRyHkEQFyoNhlZ9W+07wWyrDZm8y9PO74W1W9ZEhi8O8tC9a1H2DzMYrwUsq1Bl57aNjA1P8uyLZ3BZzfhNFsJjo5RKZc5enObjn3mUtD7Aj0+lkQWdcsXgM/I0m3ZuYSJ0gI9+9G4OHbnM64NVBsci7N7eQ3u3wtR0lE3bN2G5eIYGqcz6TjeHB3NUqlU+/OB2ktEYTR3t/MOPDyCZbAxGDRBNhHLwyisnGJotsaLJQbmi0tds4cNP7OX7PzmO1azxlU/v4/XXT3Ho0DmmEypXQ8i//8ZZur0VPv34RsbOn8XpryM5N0vv9p2ko2HsLjfexiCj58+iVStIJhOKIeKQNR7c10csmuSVU2GKosbFgUl0ZLbPuyq5PG4c5RB2u8xvffaxhe/2R8+fBEc95uIUJrOF9hXXOGOJSIzv/OwSkijwyK5W3GKRHWvb0dUKLo+HFb0r2VOEXxwaI5avcnFgBrPoopgrUDX70bUc9+1ayU/yKjoiTndtY3ff3Rtob7iCIQfp6e3AZHVw6OwMHa1+Dp2eIl4xUSiU7jgZfi+sXUEQyKWSNxQFANx19SRDc+iqikqNd+1vaiEZnkOSTcgm0xJlH1VRiExOIEoyxVxmiYtcaV4CMzQ2glat3hYH/VaQzeZ31PX7dUMrpBFtrnn30mvPJ8PQUdMRwED2NtW6dk4/Wi6BYDIvJM21bp8fLTaFrpTffvg0DLRCGsnhfbc+EvAeWLuiyPjELD0rgnxks84LF5SFl/o6vKxa3cmrr50mmhXoNdvIRMMgCAxN51m/qpknHl3J//P1YwyExknrdnY2ZuhZ3cPO9SlaAm7cXhf/9QcDJHSJWCzNqk3rOf7mIdZt7cUdG0OcK7FvlYOxUIGZvIXN3V527VxNfHaGsdkswzM5ojmDrFozrzp4chKTPI5gtlEuVxEMjT/63A4uXBrn+ZMp/vAj3eRzBV5/4yzT8flEeh4mrcjXPr6KkZFpGjwWNKWCxd5IsL2F//ytExRkJ9G5OcrpOFdCVSJZDb2s1LrANjdquuZwaGhV3uwfYFVLgOaGGo3SZpSwZGNs376FTz5Q4/eeHRomaW3DWhil3qrTXb/0Of/PjtVxuhTkM97LdEpxgu4S/7Zxkrmyhc/2KJRUOHh0mvMFSJjbWVmdRVYKRB0diN4miPXTJ1U57+wjOM8zDsgqvzXxTUKCm26pgGEIaCU3DdU4WcFK1t9NujAG+q84GQZ2ACOGYYwBCILwNPAksHhhG8DVba0HmONdhGw207DM4NxV2N2ehaRV13WSoTlESSQbjy4E6MXWnXa3G5e/jmI2S7VU+8LddfXkkkkEAcb7z9K5biPZeOyOkmGATCyKpqk3tQ59L0DLJxHtHrRC6oaWmaFWkZw+tPy1hSaarUvspyWrs1ZRNtsQ3Q23PbCo5pOgqfMkWnHZae07xG987aYVC/sHCnzEn0fVatMOhmFQVET++unTVCpVBMlMSbBzYjzP5k6NaqnIjm09zAwPcXEojFW28pFdTQyNzNHU0sTklVEmU0bNinKqZqdc7/OQjsbJp5M0Ngf5j984jGH1sbdb5q69axmbO8ZE1sW3nzuHXVRYEcrTEvBwz90b+e4zxxlLQ71dY9OqFjauFvnh65NkCzMois7pM1eI5Q0MQ+TSxTHQNfbsXk84eohIAeLV2lqoqBAOxWqasY1BdE1l5sogrvnqngB46xuob20jHQlz912b2LdXp1zIYzGK3L3ayRuTNvafDlG2BrBZJti8uRelqlDUZEq52vmDTbVg/cg9vQx/8wCiqx5RWkpBcfs8eO0COammr/mnX10qx6hrGplcmdUtJs4n2nE6c+xZ3czgeAp7LkVrr4+2jmZ++6MWXjo4zOlzY+zcXptY7upbyesHLlAoKwwMzRGK5Cnk6/jkYxvJpnMEmt6VROw3vnaX0+a9CkmWF143DINsIk4yNIthCNicTvKp5JJkWDaZFhJgSZJJhucWXOQqhSKh0WEcHh+aeueGPMVclnIhj8PtXVASeq9BzSeRrC60XPzG+QxNQzRZaxbKGIAwPxS3tOorWt1oxQyWxhW3HXOvOt6BUbshDX4VvOPf6NoVRInXh1T8vhLl6rVEWK+W+MWpIm+eCWEgktXtfP31JD1+BUEpsW9rO2opz7GjEbB52dYjYDZLOC0NpCNhxqcSzMWLmOQogsmKRSxjs1s5e+Q42+/ew9e/8xohxUudReHeu9ZhPznIzIUyhy6nGZ48REvASSqR4QufuIdTp6/w83MFDMNgU4+HhgY/x85N8+ybEzhkg1NnR5iO1mTyBkfC6NUKe3av5cypQeR4ldGEiCDJ6IjEYymUUpGGvjYqpSLFbIY3D/ajiLVNrMftYP2Orcz88jTxtIhkVxAEWN2gYm9v4viVHLpa5WcTJUbjY/zeg7X4WlJ1CsicGJ6go6WWDG/u62Hu0l/xmns9ZS1yw3e/zpnhvLQaxeTmubui8z81z/+5ZU5OCDzsjzBSXY1WyLEnfZmjgohYSlMaucKHzTNIuoA0W2HE0kZ7+RImScRnMRHTzZyQG6mvRJkxBRBLaXaLSeqH/5aAbID4q1eTaAGmF/17Bth53TF/BvxSEIR/Ss3e5cGbnUwQhK8BX4NbB9t3ClEUqZ//w+VTyZonvcl83TESuUT8BtqDYeiYrTYcXh/ZRPy2KhRvVf3VNQ23v55sIn5LB6bfNPRSbsFW2tCUheRWcvqphEaQrLemPCyuKN/2wKKhI7kbqIZHMAdXouXiNe3jXALBZEWy3bFm67u2dhevW+ltTmpHy1b+7tUYglBbhxsaVR7cu4aTx/tZ3deBu76Bv3zqPIrs4NSUwfpGE3XBJs6dOIvHZaGUVWnrbGZkKs1LRycJp1UyhofXB6oYKkhGAbMo4vQ4uXJliqNnZzGstU3N8eE8E6Ej5PJlPr3NycmhHKN5F6OXKnjkMoXKWSaTOoiQrcjMhRJ0drfjNVd4eFcf0zNRfnq2wFUO0E9O5mh3iVw8P8CH7ttALpPjb1+NIwgCM3kL33w9gRmFhjMv8cCOdryB4EK72l1XT6Iyy9zIMN6GALHpSWSzhUqpRMvKXkxmC/nSBKEkWB1FerprQxZun5fedg9DKSuRSHohGbY7HDhtIlopg2HUNhrRSILR8SjbtnTz2Q9v4qUDw6jXxA6IR+NYLBYikQT7rygY6QKqmmUkXmIkVEBwN/Oxbd1s2Fh770Qyz2BMplBOsrNmnMTs1ByHRjX8EyFKpTJl2cP+Q5epr/MwOpnA7XEuaBvfAX4la/dXEXMXDzer1SrpWPSGY6x2B8nw3LIJqmSSkc1mysX8u0JtWGK29B5NhgVRmtdivxYrtXwKAwPZ6UerFEA3EC3lm2rGLy5K3G7Mvep4V03OILsa0EuZ2nvPq1Zc7f7dIX7jcVeQLfz4ZOHqOXCKRb7yyVVcPD9Ee3OAjtWr+cHzpxiKC4ykzLhEFV99HVOjGRRDwkKFhroG7A4bL+wfxeUoMJp1IeQEDMPAVM0iWEw4XQ6Ukou/+sZrpMV6BEkgocj83VNHSBbgoR6JqqKzf8rBWM7A0KyYXj7DTKwM2BAEgbHpFMHmIJJJ5r71DgIBP19/9jJlaz2CCG8O65gMjbqGOTxuK1+8Zy1f/4eDzJacaJKVHxzLYehmBmfP45WKWNw+zoQtCPMFgp+dLxHKnWJiNkuv38GH9nZx9NhlHv/IPSTDc2TyQ1wYStFGir0rexe+w13drQwPZsguDqBAr9/g6HgYpaoCJqqKxj8MW9gdqPIf9glk3jyLb1FdK1tSCeU1+hos/KcrrQxmrQgmGc0Qeca8kVLbPppmj/PJ6hmuGpmNuVeT9q5gy+gADfN1jtPuDcTq19I28gvU+i5GywXC5VmisgvDKNBEhTvBuzXR9TngW4ZhtAKPAd8VbiKGaBjG3xqGsc0wjG3Omwy4vVtw+vz4gk03JKHeQOOy/F93XT0mq43GjhVvGZQTc7MLk5q3hCCQicdw3eSzRqcmic/OLGgi3wne8lpuAtkTQHbXLySfWiGD7KpHr5QwqmXMdS0IsuUdn/9mECQTWi6OqaFz3ja6Di2fRHLVY6h3trDfBm5r7S5et++EX7f4YaVoBqVCns4WD9VymUuXx1E0aLIVQasyk6jy908fwR9s5lMf3U2xrPH//eYJjk/qDMZk0sq1qvxjm9z88afWMhIqEgnHqIg2KsK1trYqWpkt2uhrsbJ68zrWd3nY0SHQaKtQVgx6W+3sblXo9VdZ1STxk/Ma//VHVxhO2zAQaetoxlCVJZ9lKmfmuRNpZoaHMMkCD7bXtGV7/AqPrLdi6DBLGyvWb1q4j1LhEPGZaURZJtDRQaVUq4qoShWTxcrMlSF0TaUhGGBGDSCbLDjdtcphLBLngT3dfOEuPxs2rly4DkmWsbl8ZKxtjI1MAfD60TF+eanMhYsThCJZZkouBidqagPJWIL/+fww3/vpWVZ0tXJ3r0zQa8JiFlnb6cVuFnGXp1i37prBQ9fKdj6128eH77s2/dza2coj6+08ureT3/nYRhqlJDFTBz/95UVeuVTh5Lnxt70+3iHe9tr9Vcdc2WymvqV1oSBxFXa3B3+wednktK65FXddPY0dK5alZFxFLpkkGZ5b0DK+GSw2O8nw3LKW98CCi2JmmaT9neCdxEXJ7kF21yO7a10EQ9cwMBBECUOtIpqsmOpba05y7yJEi7M2kOfwY1RLC253hqog2b3zdLVfC37lcVcQhIW4qxsChVyOjiY3JpPMyOAIiZyKTy5io0RZk/jxz89wJVTlwQe2sabVyg8OxfjWy5PEVBdjmWuqVN3eCv/29++i2Sdx+uwIhmwjj2vhdUEQCJXslApFtu3ayNrVHaxwl1gfUECUcZkM7l1jo544d/eZuBg18+c/GeX4lEC2pFPX3EJjw1IPA0Ww8uypPMnwLLGZafb1WrFQxiGW+fBmJy1OlTnFx+VyC2ejNSdEh1hmT5eEJEk01rn48qd3IukVFFWl0WcjEZrl2LHLTGfNmDz1zJQlVjbVuhTFUoGg38sfbgnyqV1Lu2oui4mCbyUHM7W86sUJiT+b28V/GgygqDqvF1fwTLwdVasl0X96MsBjp/dwak7lf+mZ5sO+SVxGnvr8NI0UMMJX2Ji/tOQ9PpQ6yOPjT9OwqI65L3OKfePP8rgwRvfFp6F5DS9b1vFm16fZ797+ttbGcridyvAssFjEsXX+Z4vxVeARAMMwjgqCYAXqgXcn2vwasdjT/mYwDINyIYfJYiMVCeO/RQX5rZJqUZJweLwo1codVTEkrcyn7wowHcpwZqLCrtVuzo9mSVTe/oS7aHXUJIEkGdFiRyukEGTT25Ko08p5DKWMIJlubs6x6OfifAtQsrlrgvHvjkvde2PtagpNToVQXgbJTDhrkC9UKBXLBNoDhEdG+cTuOrp72vnF/iG2rQ5SV+/n2z85xblL05QFG4LZfAMl0EKZTFZhZjZGSXDwvUO5ecqJgVvIk9MsINWiydkZkF8+wXQkzVe/9DCXzw/w0xNJbCaJ+z60jyvnL9C+sptz3z2LMK+I8qM3xhEQEOQb15BZK2I211MpFunoCOKYTbKi2cOWTd0cvXSCzKJiglqtUsxlsTqcKOUy2Xht8NLh9aFWKuRSSRxeL6Ig0hE08SmzgcNVu4ZkLMHfPj+MnSKffmTtkjWYTqYxGWXW1kHnvLbv1jVB7GMxVnYFcbocmKQxGvx2/uLv38RnNWh0mPE7LUiyzH13rUcQBCJDCo4GkX/1qXUIosiZsyOMzqR57N7VON3OBQ3iqck5Mtki69evZMf2PiJTUzQ0NfL4w1s4MxBmZWsbIzM5Vq98Vwa33htr99eAZTWMl0Exl8ZktpCYm6W1d9VNj3N4vEsoGtdDqVbxNzWTDN15Zz46NYlskjFbbZQLhXdsdFGzg1YxNBVs7lrczSWQXMsbKC0HQ9dqsRMB+SY2zksobtdVnLV8bUjvXcB7Yu365CJlVaCEjYJqYjacwilV8QVczExH2NnnpqPFSyxZYiZW4uH7dvHUjw/x3AvHGZkrguy9UcZXUxDUMhNj0xQqcChp4dBkEkGyYtaLCIKwUIwQnHU89+JpyorBPVtbaWpr4so3DmDGyerNu9GMi6zfuo652AlGkrV74I3LJYZDJ5hMS7Wxwus/k9tJpVDA5fHQ5Y1QUCU2b15JJJlnbnLpsVvbRDb01ZHKFhmdyVIoTTAQFYj+8gomVOobS9g9PoSkwkOb/dQbEub52arvHTzHQBYeahLp6bhGUTUMg0ShwnbjAp9pSwEi+5pVPp/u54FAFrNJ4lubLiEA//sJFwdS9dzrDdMnhWiww7Zm6HNl+eWZTQjuCk9kXsYojJKSTPzMuoU1xWG6xRwBWSWASlEzuCI20qdHaZNK2ItpBIvMA7YU1rn9BMoRYjN5mpT4HY8c3U4yfBLoEQRhBbUF/Vng89cdMwU8AHxLEITV1KYBYnd2ae9dCIKAZDITaO8gGb6zgOry+VGqlZoD0x1dk4HL5cCaLNDiU7lr91pyhXMkJm9dtVAzUcBActUvSH9db5TxVtI7hq6hZiI1ZztfM4IgYFTLSxQnbvtzyOZ3UzD+PbF2VzeJfPrDe3nuF2c4Pwduq86K3i72vx6jSZIJ+m2s2dDH0YOniSUKHD9fRpIjVHQTH31iG00nr3BsME1JXEob+cTeAIEGH3/+g4tgcS3EgkZrka99di+vH7jI4Xm3OlWycXQGDN3PSP9FAg1+KkqcV05H6EsonBlIIVy6sJAIA0TLN24MNzZpeJ0mDly04GwIkomG6dm0Ge+Zo7x6OsaxC1GyQm2Tc9W+2WFk+dPfuYv4zBSB9s6FcyVDs9hcHiqlInaXm1Iui2ySWbV+FZlojY9mc9ioM5WZiZX48atX+OdfqSWahVyB7z97inAOtq+2Y7LUaBw9vW309Naew/0XRnnp2Ax71ngp6SZcgsHaFb4lEoejI9NUEyojxTKvCQYP3LOe/uEYkzkLa8ZnOHYxhtMm8tmP7+WZlwZIFFTqfXZeePUC0wUHOzrneOLxPXSuqHWaNlwzWbpTvCfW7nsJhm7gb2pBN2bu6Dx1zS2kI+F3jTJittooZDJ4G4MUMqm3pM6NjExz4kKIwbnKgkIPsFAlBhAs9rdU1lEzURBqsxaS3YNeKSLaPDVVn7eJt6NCcRv4ja9dWcnxtc9vZ2J8jh8czSJoVVau7CI0M4MhylhNAlu3raH/VD8DUznyxSqv7b/AZEbmiV4/9+zu5Rs/PEFB8sEiZ8CtnTKPP3Qv3//RIeaKztreR5AwdI3P39+K2WLif/58GkE2IwgCA6kavbBtIorbaaWtycuhcQXZMcDl8Qxnxo8zkRQWEt8KFkZTLEmE6y1ldq3xc/BCkpRixlmp0L56Dc1xlVcuFvjLb7xKWncvFD6uojFYVxMDiAyQl+q4EKmyrdvJ4w9v5jtPvYnJZsdqK9HkVrn77s288kY//+K5UwComQyGpvGS6uIX33t5gT5TjU0hyF0ELCobGmsUm3qHzP9ne006Lp5X+LcXOum1ZxEEkYzgZpNnDIc1g2v+a5wuSFTiMyj5BK+ZVrGpMsq06GOiaSfW2TKRapYRVw+PpQ8yYGrjlH87mdgRGspxXun6LWypMb5WOcID6pWarbWaeVdm798yGTYMQxUE4Y+Bl6n9if7eMIxLgiD8n8ApwzCeB/4l8HeCIPwLakzpLxvvdk/9NqGpKom5GWSzGZfPf9vWnctBqVaQZNOy+sDuunqS4bmb0h+gRqUwDANPff2C8Pv11VWL3X7LinA2mUCSJCTZhGEY2JxO4rMziJKI2WJdkB5SRRt/88J4TV7FgK8/dYRQTkTUFDTJcnOrT0GsCbmX8+9cXkfXEWQLLFL7kBwe1Fwc0eq8xS/+avFeWbuzSZWjxweYjFUAK5NZK//lG4coGDb2j05gEjWOjRwhk6vw5YdbyWbzvHC2JpczODSFVVT4F7+9i799+iRx5dpaSUQTuG0CXQ0yY4vkN3MVkfP9I8wmytSGF2oblr56g0hO46X+LLKYRbA4mczD5MUy4LlmFqNVuafPSiRdYShuWhjOcYt5dqxuxVNXz8H+44SjWSLRKi9+6xCpisRXHukilcrx/LkKolamy1VkOGOjbEBidgaL3UFkYmyhraypCtVyhUB7J5VSEX9TC8VclnQ0jDcQXJD0+p3P7eHZnx3D67oW7Gdno8QMH15bij2bb3QfAyiXFYrYGJ9O8Nl7e2ho8PKfv3cOSdCZDacoVAxk2YRksZDWZA6PaXS3jBNNZLErJdra7+XnJ5OUlRpNxGIykF11xBN5rGYZI1XEZvnVaLS+V9bu7SIVCaNWK9icrmXl0G4Xuq6jqcqyWsSB9s7aBspx85iSTyWpVsoLMm3LDZYJgnDLeZByoUApn8NdV08hk14YrlaqZQzdWJJE17e0olQqNHb6ycSimMxWKqUSmlK96fD10HiC4aQJo5pZsK1/ZzAQbS6MeSqFZHMtdPF+k3gvrF1FtHLo2BDJXBUwgdnO3/10EA0R1ZjFEEROjx8mURTZ167x4K5efvziecpGAzORLNVqmT/64h4OnxxbKCgAxGNZ4jPT9LXaGR1Y9IaCyNBYFEkSQbqWVjVYy9jNAkcnDOZy04zEDJDsvHSxQo0qzULi2+Ov0lJvZ/9AEUMyYxgGhlphzzoLm7f0cWXyBOmCQbDRyd985wApzcHOThN7tm7lmz8bIKOaaLOmyZQF8pqVV46nOXIhSmujix1rfZy6MMPaFc2cOHKWWNnC3/58EkGUAZG/e+oIkbyIqKnoohnZE8BcDCGRJ2++RjcSLXZMdjd/HDjIDVqyQFUzSApuBrNV/kVfhP8QjPK/9TfzUmk1+TNH6a808hH/FJLDh64qDDTvwDqlUNJ01NgE7fkxRp0ryXg6KKSOYq7U1E6SaR/N1QhGJY/pV0ShvC2d4Xn9vxev+9n/e9H/Xwb2vruX9s6QCofwNAQo5/Nk4jHqW5Z/UL4VitkMSqVCpVRcUs26CrvLvcRutFIsUsimkU3mBY6yIAp4/A0UshlKuVlkkxlXXf1NqRiZWBRNVXDV1WMyWwiNjeJtCJBLJZFNMoIg1ipghoHD7aVcvKY3uFw14j///WH+4LObOX1ujDeHryWqix8QgmzCqBSRnHfwUJ+nU1ydeoYaH1i0OMBYXg7v14X3wtoVRZiNFkhXJBBrD+OicK2Sq2IiVVX50iNt2GwSgdY2frc1wz/8cpznThVY6VORz1xC16uAnYC1gk2oEImprF7bhcc8xZNbGzhyKUGmZLDCU6ajxU//yDX+X72lzOc+to9Tp4d44UyOnZ0i9WWViyEDn6nCqg4Pp8aKqIIFm55nbVcTvkieyViaT9/TxPDILFs395IOz5KMRKlzmXnuTAmwYBgmNjQr5OJRStXaxvEjG2TaOlbRfvEKm7Zv5tzJfuqbgjhNKlZHrcJt93ixWG2IkrSgG3v1vorPzuBrDJIMzyEIIp/6+F2kI+GFz9PT18knqhqNjR3UB+qWbFxPnh4ikSry0L3rKaRPcWCqDk5OEAz6eWijF4fLwZunZ8jrFv7oo5tRKhWSeYVMpkhLRwt26zSCUMVqs/EHH1+NNP9w27K2hYtjKRob/XxxY++S+yiVTHP24gweq8Hadd3vxgDde2Lt3g4ysSgOj4dsPE6lWLyjZDg+M7XgJHo91UGUpBtmPa4WHOqaWxAEgWqlvDA8lwzNIggioiTdXHM+n6Ocz2OyWHDOd+lSkRCNHSuYGrxMa08fqUgYURRxeHzkEks7XaIkLRQzrr5HfHYGu8tFMZtZSIgXr5V7d/XQVD/L8yeXcvHfLkRnHUalsCR2i3YPeiFzR+d9N/CbXruSoJMra0wlNGrlQ6iKtb+TMP9fQnGwtVNnw9oax/0TH9I4eSXJ8UmwT+fAmCCbTmEYbmxClRZXzZZYQ0AWBR5cbSKWLnNuFlpsebpaWwgnigjCteT5Q9uDdHa18f/83SEqio371jo5cDmLWi2zs8/HeKRErFwr2PUGZXp6mjg5NMC2lWYCPgeqIuO2ilw4cgiHZHA27ORcOAv4CboqNLgE4pEYuiHQaY7x4QfWkY7WZkcsosZcJEugwY3P68JplWjpaOWVk2Hyug1x0Z5prihjFQr8wWfW0395itcHVR69u5eNG7r5828eJDu/TRFMZr6x+hj3d1jQNB1NNzCbJC7Fdb415ud3uhK8uP0Mew9s4H+55OL38zPscsdZ4zpFsihyqbyCT5lDnLz3FP/121cYV66wpjrLWXMHZkNB0DQeKvWzc+widWawayoT8UusUML0WBT+efLZhfvIMAzOEERQyrSJBRpk9Y7WzG/GEu0OEJ2aIDo1iabe5IMLArlkktjMNKIkk4m/w86LIKBp6m0PRxSzNe1MTbkW4Kx2B/l0Ck99A6IkYbJYMHT9pufIZ1IIokQ+WRv4MZnN5FKJmmNeuUy1XJp/IDSjVCs3tae+CtUQmZmJkM5f20nt7dT5/F4Pkl4GarzdO0mEtXIeLRefV59YWoXXSzkMXbthCETNRFCzcbTS7bkJvd+xe5WXx+7t5VM7nDy6SqfLW5OParZXuLfPhEkvgyAQjWUYn5hj/PIl8uk0FqOMUywzGq7Qt7aXx/Z0YmgqT+5p4mMPr2H3zj5KhSKyycSmTT0E3DL3rnVx355eIpMTLF5pibKZ535xhhODKUSlyN27+tjUW8fHt7v4+N0t3L+vj2a3AbrCli4XgbZ2RmcziIKB2+tGlkRUTSOdzrNu1072rXZiYX4NVbJ85JEtBIINmOcNF8qaiM3tJRQrMzcxzcYta1jR1YLFasNdV4/FaqOQTpMMh67/umrnlCQy8SiSbMLTECA0NoJarRKZrA2naapaq1a7HZw5cYn/8Jcv8czzJwA42h/l2LhGeDbC1u1r2NouIMoSR8dUdMnExo0r+dJHN7G9Q+Ivv3OE/oEZ+vo62LFjNRarjQ/f20NSDvDsL87j8ftwemqJ+vatPVRLRf7671/l6R+9uaTieOLcJAeHFZ49HOLlA4Pv6vr5TSMVCZMMz5FLJpd9XZRkcskk2UQcQRSJTE284/cyDANNVW5rPsEwDERRxO5yLQwgu/3zHTufH103sDgc6LeIuVefD4XsvKqCooIBkckJLFZLzc7ZVNMtVipl/LdBrdA1lWIuhzRfoU1FwqQiIVLza93hcrBlc+/Nu3W3ASU5i55P3nAOLRtHtLtvoKdpxQxqNj5Pi/vgo8Mn8LFHt/LgGitPbhDZ1aaCpmAyyty3ykyTvfZMzJdVEsksZ48cR1GrlFMxGq1FCrqVsibzsY/eQ725yM5eF4/d3c3vffkRcokEmaLKxnWddLd66HBX+cxj69GKWTRt6Vrbfy7Kj39+BtXkZlW7i7v2rGFzs8a/+NxG9mxsZnNP7dkbEGJs3Lqe6dk4BcGJ1SLjdNkxEInHkvRs2sLOje0ErKWFnGRHn4dtuzZjkgQEDKqCBbe/nky+zMx0hJYVnXR1NOAPNPCXT53h+KyZF35xjHs3N2KldMN3phoSs7MxMtlaXD9yMcbJw6f58J5WTPr88bpOk90gWdC473kvO3/RQTir8LMpJz/KruNn006a/Tb+Tfc4H/ON8leJHTwfb+afbSjzv20t8+ctr/DfRpv4gwM+/BbYqc/gkg3u1ifwGWVe7/goZV2gbr4J2CCptBcm2G/u5e+kbaS1a/XbuarI4RUfY3/jfTxb/zD6HTYW3jd2zFALfpJswmKzoVarSPKNl391ilmpVJBNJlLhubdMGpeD3eXGanfUHOpuA6552oTVfk2CbLH+sb+pBV1TF6alC5k0giAsaaWZbQ4cXi/FbC1JNFmtlPN56ppbbuAU3w7H+N98dTcAq9Z08+T8zw4d7sfrdSES4VY1W71SQCvl0fIJZE8jsusmdBBDRzBZFlp1S17SFIyKjmR11axJF/HgRKsTQyndtj7m+xlHB9OE52I88qEdtQTPVmL0TI6tK8xs3rmWsck3mSpbeXlARyuX+SePtlLMZPjyZ/cwNRHi+weTHDx+hUJZRZBk3jwbYk1QoKHBi8nmBMnMX33jVVa1u3EZGfxNaxmdTjOVvabZKgo6oXiJaNmCYLHwjZ+cp6rB3asdpAyNN86cZiojs73DxM6tbfSfucRkCorY+csfX0GQzSjaJJvWtHPw+edZt3MHnzCHuDSWoqm5nsjUBNVSiUpZASQmoxUir57mcqGB0dN5tqXmyCeiBIL1lIcjmNDYtHkVhUx62e/s+ja2L9CIpmoLSgLHTw3z6uUK28M5rkylwNNCMVtLbPqaTJw4P8ILL03xqU/cwxMPbSIcjhMcCrNxTa1T5PN7sdpsKIKZw8NVdu3I4nDXOj0OhxWfqYrf7SY0F2N8KsKOrX2cOXuFcCgC/i4GppNL1u6Wda3kcsPEJJmO5uVVDN6vuGpElI4sv3G56jhoslgwgHwmvaQq+nYQaO/E0PUbdKOXgyAIiJJEtVzGG6hNwctm84Kme11zC+VCYWGIWalWKKTTC8dCbXjPF2wiMjG+cE7JJAMCgfbuJe93u3Md13cSDUPH5nRTyr11xVZJh9EqBQTAHFjBTUSZFrjCN0AUa9b2koyaT9Y+j8MHuo5oc6IXM/8oYu5EyuDZF8+wtsNFU0s9HVWFMxNDtFqK3L13Nw7TBV64oDKUMDOUUPjIGgm3r46t66q0r1rDX337EENTCqp2mUxV5sJEDlHJsqqqoFSrtLcF+JunjhH0iGxpd1LK5elcu5YffOM4WGv3v2EYFMtVwlkZQTDx5sUM50eO4HPI5LMFjp0ZYzxjxi1qfOkTuxgfHKF/LAeYeam/jKHP0mCv8ql72jm7fz+Nrc08vs3HXChJWrUhVWuUjXwug2YIVAULhw6c4dSURsFwknn1Ino5w4q2Ota321jT60UvirR1NGE7MkH5OutvVbTyo+M5rqaFsbKVoi7S5XcjCWHKpRyCycpXT3XxsaYoU64NWNNjiAI8Gkzyo/HLPD+bplPW+P31dhTVoPXSCTbV1Z5DZpPEukYzyctmEt5tOIRJNi+al/RUEwh5DUPXOWU0s0KNo4kiw5Ygqs1H0d3I8PAAO+RaR7zJrLNt4gUmBS91YgXxDtf0+yoZFgQBq9NJJhqlqXvlsseU8jlK+RwOj4dMLIqBQDI0C4JQqzItkxgv5vYu5hiLkkRsegpJljBbbbds/10Vlb/V68xPTSvVCqqioKkKVqdrgZMsCgLZWGwhEdBUhcbOFfNDejcPxPl0CqVcxmS1vmXAfvVylVcvjCCYajeCWMmhmewLw3NXYahVMHSsrWuoJufQyvklwx5XIdnc6NUysufG10z+WhVlsX2zaLEjuerRK0V0pYKRSywMgHxQka5aOBu3MPjNQzjlClnRz9qASN/qXiYvXaCo127DBjmDya1z7NQwG1c1MtrfT1mT+eROFz8+mkSQrZiMCu1BN+FUEqdLQ1UyuC0aDXUeHnpoO1NDA5w4eo7zY0U+vNFNKZvh1RETu3rsPHjver79o2NM5iRSau3vf2y4gEkyiJbtIMJUvMLQeJyB0QRdAQfnZtRrFX9RwWyxsPfxx5kauEzPps1UlNOs276BCyfO4PfZ0bQKILFtXTM+j5POqVnSWZXXR1We2NTCunUrGL04gKuunnQkhKqqJOZmMVltOD0eRElaoEb4GoM1S+doBKfPh6ioWBwODMOgvclL+8hlutp7afDZOH9piqzuYHoqDCYLZWyEhGb++m9fxNfWSWudlY88tlR+566968hmi2iI2JzX1m9DYz3/9Mt3A/A//v5lQjmZ0bEoobyI4WgkQJysKPC333mDr33pPgRBoCFQxyef/NXKlv2m4KlvIDw+dlPVHF3XSUdCWJ0uwuNjWBwOUtEI5UIeTdWWNUy6ysG93oJZEARy6RSqUr2Bn7vstd3CaU4QhCV/12w8jq8xSCocWoixFltN/9jpq8XNYjZDfWs76Wh42XNehVqtkonHEEThLQ2V/MHmWudwnuJRLhRueqxRKWLyNqGXsmi5xE2HiWVPAENTEU1LeZtXB530ShHB0NGVcq2I5PTVOnGSqWagpOs3VZz4IMAQLfSH4OJMDJ8+gGb1IYkiH3lsBxMX+0lnyoAJk5qn26/x+vkqFirYnA5OHjzBx+5p54UjId4YrIJgodWvUqxUyZdUNE1D0ssUS2U+/eUHycRizExHOHYpxto2C2vbZV4/G0cVZP7wC3s4ceoKL18sowhWohVIlcpUT88ynrSBaELSq5y7NM30bBK/34MjU6CAFUGSyeUL2D0eVq5fhyRJIAgEVY1N3SuZm5wll05ht9koVhTWttm476FNyK8dpqHBynPHErTVu9m+azP6odN0dbdx+PVjFPLn2dQX4PRwhkxFQjBZcUll2urNXJ5TQTJjNkoYBrw5ZObNS0NgsiJazBjJKR5ZEeXx1jKDyTOMOTw8Nebk3sYC4ZKM3Hw/f3JxkoPJGMPVOr65c4om97U0s6dO5i82jPBsOE+jnloyKPi4OgAqnDcFOODdyTG1TF9pjHTLVgKjb5IvJjjddD/N8V/SKteS3z3MsMeY4ZaVvdvE+44mUSnkCXZ131QWp5TP4Q82oypVHF4vLSt7yafT2F2em1IrBAE89fWU8vnrzpWnVChgdbruuAS/GJJsolIsoFarS3bodc0t1Le2LVS8HW4vyfAcnvpbB61quYQv2ES1fGPr43r82e9t48/+YA//7qub+ecfbubffHUH29tu3FFJDh+GYVBNzGCoFUT5RrL8VYhm680rGNRI92o2vlDJEERpQdNYMN38vB803LU5yJc+czeioZErG8yFErx2Nk686sQwDD714Eo+9+HNTCc1VqzfRFlyI5os+H0uhPn157dq7N29muZGFx6/m2BXF16fl229Lo4eOs3Tb0Z5aQCi6SI2QWXPfXvZvsLMWLjI8ZNDxPJL/9Yf2dvCVz62GSq1imu8AAf642xe3cyTj27BKV6r+B+fEnjzxBhjQyOYbBZOHDnLG5fyfPfp/bx8JoFgsrFt2xqMSp5nD83xg5+fYfX6VfR2BzGUMi+fTfO3/3CYi5MFvvvyKN88qlAQnHgaAsSmxpkZHqJcKGC1OzAMndjMNDNXBvHUN5CN11rw6UiYqcsXoZzhtz69jya/le3b+ggG60kodpKpPA/du4GVDRJ6Jkxbs5tUWSaRvZGfqakqTzy2kycf244oily5MsWVK1NLjlndWYckSXg8Dh7f28FH9rXy+195ELvTiaJf+y5VReHl185x5uzwu7Ze3iuolIr4GhvJp5fXoE1Hw/iCzZQLebyBAC3dPeiahsXuuGnMVSqlWpyulJf8XFNVsvEYNqf7lpSydwJRFEnHIpis1woeLr8ff7B5gZ/sbQySjoYX3PFuhkIm/bYsnxc7pBYyaUr5HIZ245qU3A2o6TB6tXRLZzhBlG5IhJe8brbV6GmLqsCSzV2TSjRZ4UbRsA8k2rwCf/h7j9Pst1A1RKZmYwxM5Tk0UXv9kc0ePvOpe1ndbsfsC9K+eh0j0ynqG+oxidcyrM2rAmxY1URzWxM2j5+mjhXcu87DwNkLPPfmOD+9CP3TVcRqlraudh7b10FONXHkxBBXZpbSAbd02fnSJ3bRW1/7u6iCzKnBJEgmHrl/A2tar80bVC1+fvjSAMMjsxTzecZHpjhxJcff/+AYvzw6TjSrsWLtOnqCMqcnyvztU0doaQ3QvaqbdkeR4YTEX37rAIPTBf7nd/azf9bFeM7M3fvW8/A6G1+6x4eoltje5+ZTT2xlVV2VzS0an7unkS/MWzBv6TTzpV02Huiq8r/+8YfYuL6dNfUSX+3JMim2cTlnZ2NQ5r9smMCUmaRZTBPVnEzoATKVpetM1XSeWCnxzbvjNEgKKU3kvNGAuuheX6ElsFbzmNHYVB5hx/RLfFy4Qp8eQTPb0RflGoO6jzelbhTtzmPF+6oyDCCZzKSj4WUpElBLNGuC6y5K+RyZeUtlValyswBgdTgpZrNLgpuu6+TTSZweD8nwHK09N9e1fLsQRXHZobzr8VZKE1fh9Ppq1Y23Kc8mySZyqSS5ssZy+yKz/92xkBZvIhMkewILAvOGrqHlU4hWxxJZtw8SYqkiY+NzKIbIdM7MPxzOAj4MXcOkFrgyXMVplcjrFl545SwzsQoPb6kHVcEulqnqAuGylb/53hGSRQNdz+CyTWKiyhef3MzA1Agl2Y1PLvK1393H8IUBzpwaYCpeIVK0EL5QG3hbjMPnwzgH5lgZtDISr/LgRjdbNnbz7R8e5sxQrCYmP3+sIVroj8H5aAGxksNuN7O+yczuXWsJhWIcOBfGao6C2U5eF8lj4/Abx1mzpp0Ov8B03kpvp4NH7t/AD54/xWAMXj4Vw2Hk6N60lbnREawOB9NDlynnC3SsXYco1RIYUZLAMKgUiwQ6VxCdmiCXSmKar1pv39CMoFxhVd86REniK7/zxMJnTMYS2BxL11T/hVGeOzDNg1sD7Nm1BlVR+MGrYwD8284g8jz3+b77t7FvXwXZZF6ycf2jL+5CFCUEQSCdyvD6y4c4G7XjksNs2dzDBwmy2UIumUDXlk9sHW4vqUgIUZSQzWaS4TlMZvN8N255uoO7roFkeA533dLKZyoSpnFFNxMXz9O9aeu7+jlux1FUEN660gu1inQqHFrQZb1dCIKAUinX6HfLFBAkm+vdcN6s2TcvU/mVnD70ahlxXsZNK9aoGx/UzlyhCiPDk2RLOppo5ScnC4ANRJCVPANjKm7nAPFkkUghxrnhJN6GAJpaRTKqODAo4OCZA7NIgkGuNIMkidiPRbl/cz12u5XZQhRBlvjkrnoCjSs5cfQcOd2OKlh47XKFq4o+VzE4U0R+sx+9WsQpmamzw29/ah8/f/kUP/jpKcZiKgjX4vRMwcbMKDAYRTdEtndZ2d3qZP2mVXznh4coGReZTuroooVQEV47PMaHjCrtnS0MDyrohsBvf+4u+s+P8NzpPJdDGt/8wRE+tCOI0+1FV8NcGo5h5SwdTS527dnEgdcOowhWEEQkycDutLE+UE94JkyfXiuQ7GqR+P2ZI9zTagAmPrvBzmc31GQPs6U0yXKITt+1z54sKDxxoJtmOc+PH6rNHxyzr2OkeS/i6A9ZTwIAtwl+v/AqAJJZpEGfAgnu00bZO3cFiyyjGwaDmotXHBsxfK2smJ6mQ7ozK/f3XTL8Vvzfxa9fnVCfHblCMZ+lfhnXOWBZbpsgCJTzecw22xIe8K8KqUgYw9Cx2h1vm2tnttrwB99+AnmV6/fZj14L/le1YX8dEARxvkoBWj6J7G6oUSk+oMnw2TmZs3MFEJc+QDe3wO61HeiihMUk84jFw8/OFDAMC1MzCSStzD/74i6Gr0zwzKkK0aodZPDIZTZ3uzlxJct/ffoSmKwIApRVgejMHB6XlWReJ54HSctjlXV0wURpEVdsJGVm30oTT96zju/+5DgT4TyCMEa0akdVLPR48uxcH+TFo3Ok9BoXThAEDKublUGDB+5fx9jlyxTyZQbj5nnXp2ufbSBpRpouEJlvulyczKO/co7RqAKCREG38t1jVdbPnGYiWuVPu1fi8Hhp7u4lNDaCy+fH0xBgbuQK+VQS2WIhHQkjyyZ8jU0IgkA+leTYqWHOhm14Tl9h394NHD54lnRe5cH71uNveGv6gmwysWdNrRtyNRG+iuVkvhYnQS8duMLZoQyWgI9ibvkhs/czLDYblusc5Za8fsOm3Uc6FiE5N4vFtvxmfjG3dzGu0WL86KqKaL55dfROUcxlKedzNUrObSTK1+Od/I4gCARX1LjIgph+27//buAq7cnQFDB0MMDQavMIHzTEK1aeOpzh+iKAUyjwxSe6MAydZDzJZz95D//1O8eZklx0OXOMjc1x/9Ymgu3t/MX3zpBfkEFT2NFtJpyq8JMTOQwjs1ChT6UyeO0ibS0BXuvPgKpi0su47TJxxbGwmc6oVgYmM/zxl+7m9NlhDl5Icu78CLNJjXDJgqyV+MweDyNTSU6HF90/Jgc2LcujD+xg9OIlZkZHyRR1DgwpSz5fRPMwGjUYDRUAMxnVxnMvniGamT9ONDGVN/HSySgiUbB6aGsS2b57Iz994QhPPXuCoZiZVo/KJzdbGZzMcry/xK4tK/jp0TD/130h8hWNZyYs/PfcHk4NDvKjthT9oSp/P+zid/pKbGiUcd/kMS4sKkr2lcYQZ3U6jKVxU1pmVksQBCzzRdBB3cuLnj01iqWh4zXK3CnR4YO3+peBzenE5a+jlKu1gg3DIDIxhiCK1Le0LVtlFgSB5pW9ZOLRhaT67UCpVqgUCrctM2ToGt7GJtLR8C2T4WwyAYZxg8X0+x0LVIp3x3nuPQ+5mgFDQzH7yOeLlIpFyqUikbTKZEoAzHjFAvc8sJczR06QicUQlRIP9xo0NPg4P5zAYrFyz761RJKnGIhd+95K2Pj+/iiPb3azet1KDl84yG9/Zhe5RIySIvDdg+kl13JxIoeq9TOdNFAEM5MzkyiiC8EMazo8dPetZOVIhJORpZ/hwkyV7DNH+ehDa6lWK3BpFq4b6omWLLw+WMUwzDTZiiRKIienDBCsmLQiuiCiSVYuhKCmu1/rWGRikSUuY0q1SseadYTGRjCZLWjzFtGGYVCtlLlv92qGvvMmhy74cFsv8NKpKLI7QOvQDOVikYHhOXZv7aZvba1qu2F9N2tWtS9xP3vg3o1Ew3GeffE0O9a30tJ2bdDqVli1wkdsxka8mKKn7YNZYXu70DWNtlVrlpgSXZ3dWCw/eT0aWtvIxGOYrdYbNiW3g0wsiquufllt+OtRKRRqMfcmg4ELxxWLFLMZ3PUNN+1Ivi8hyuhKTVVBFL2/2Wv5NUBUS8hqiarJQVUUSUQiiKjE0lVmjw5QmY8/Oza0EKhzk0+nmBuf4Mnd9UTCKVw+D6+eSvLQvfdy8eIYE5n8Eq+HXw4JbE2HeeLDe7k8c5YdfTZWdAaQJZHvvHCJWOVaUS1ZMfPiK+eYjlfIqhZ+fnQOSa+C1ULAUmLlqpWY5TFOh5cOplckN9/44XF2r7TSu2kjrZdCXE4v/ZyaaOHAsAKYcYklZBn6wzbAApqCVShTFl1M564l0P2TJQrPn+JKREITTQgS+BwaTc319K7t5cVfnkaU5IUhtTdZjfbQw9z91A84lGrlv/Xn+e6In4h7DdFLl/i/TTH+3Ukbm915/nCrjNUs4XeYOPDwxPw5aufpEvN0Vi5wSO7EpZfYLNye2kkzOXqUEJMlKyYlj/ldIPy+b+9sVVFIhUMYhkGgvePWBxsGmWjNaS0+O4M30Ihsrlmy6rqGdJOvQZJlHB4flWLhbSfEmWgUl7+ObDKxZEDkZnB4/WSiEXyNN1YbYtNTCIKAq74erVrFZLFQKZVuyzr63YReLaOX82858KakQhiGhuxquCWvreZcFwVDx+RvqekSfwDhlwvkFKnWdgI67Fm+8MU9RCZGefNChmJFxu5y0dzVTfrkRWK5Wrsno5p57c0LTEdUZiNDbN2yCjFfJNjcyMh4hAsTReI/Ps5kElg0fV9nKWOVDF4+GeX1MxHKgpOZmSjZeBy3x8nOdo3jU9eOT6tWjo1rCBp8eL3Kpp0PcfHESRSLnbMDcwxPvcHlpAPhun2KLloYK5h55dAQiqZjFmW85iqSJLGm082Ri3Hu39zI6FyOVLbK1z6/h8PHBnjtcgWhnOHzDzRRKKv8+PS19tbVzsRV3exsMoGuqviCzYQnRnF6/djdborZDKlICKfXh1pVUKsKdT4zvd1eZiZmCNhUbOYkfb2r+I//4zU00cTEwSSfF0fpXV2rzF1vA2wYBj985gChvIzFIt8yGZ6ZCvPs68NsXVXHnl1rKJWqvHYqzMb1nW9vcbzPcDW5tTqcS3TWr4fJbCUZnkOrVkmG5zBbbeiajqehgULm1qoK7rp60pEwqqLctlUz1DTm3fUNJENzC6pCt0KNHxzB4b2xYJGJx9BVFdlsQale0y6+HQrFuw01GwOMJQ5110Mr5dAKaUSrA9l56wJM7XwCgsmCyfuuWIe/52CjhEUySGu1yqquVvjaI62I6EyG87zYX8ZstdHS0UZ1aIQLU9UFp7mTAwn8ziyRaIJ1Kzys2biGUr6I12tHFnT+7ulj5KoCLOqwmfQyXQ0y5+Z0Zr/1SyKqD7u5iHU2Si6T5u4NDfzsRJLq/DMAycypaQAL6+ryPLhvDcVclqHxBEXFx9M/PkC0JAE3PmdDJTsHBgtEsye5HDcTcBTJFlX2rKtncDJHwCNT77XyysUCH7+nmfqGOv7z988hWJzc262xYX0f33tphOQiA6eqYGEgBogSslGhzSdwYUYnn72CYLYxlrZz9tlR1raaGClYaDNC5CeO0elUSdlELtt76bFcxlq8zB9uivHvTtp5Pd/JAbGBoUOn+Z/312YDZOnGrPVk0c7x+j48VNlcunkybBgGPzVvxEDgSeMcdxX7idY9TGt+Apt859nw+26A7iqq5RIOr/eWO/VMLFqTO3O6qG9tQ5RlvA0BitkMLp8fm9O1bAt0MfKpJDank0w8RqVYJB2LkgqHFnQtb/m76RSyyUQmHiM6OU4yPLcgDXU9LDYbvmDTQisll0wu6AmKklQThC+X0VSVUj6P2fr2uGq3C8Mw2BRU2RRUcJODRUMeeiWP7K7HUG8tFm8YBmZ/K9X4JGouseTnai6xoDtsaCqi2VYz/vjNGGf9yuEWcvzhF3bx0KZrfG6rUCUdjZDP5MiVa+Ys42NzhGdnWb26gxafzKYmle2dMuFkiZVNNh55dC9zkRRPH0nxX757itV9rXzp8VVMJFiw4ZSNCq2OMg+uc/KRvS18bJefh3a2UcHKif5ZHFYJh1WmqcGJoWvsbS2zp7WMYdSGDyRUGpvqic1MUyxV2LRxJb0tdmwmkU9ulvnkDgcs4/5zIW5jKO3krnVufu8zO+j1ltm3ew1Bh8LG9SvoDDpIlUUOHr7M0FRt/W/qctG5qo9Cfvmhz1I+Ry6ZRK1UqBSLVMtFgp3duPx+JFlGqVbwB5sppNOYzGZkk8zdm5vZd9dmAq3NrF5Rz+9+8QGsNhvrW00ohTRqPkEsufz9BzAyOExcakYQDMyCytzsNY3ycrHI5Uuj6FptqCadLZCoWjl9YZp0KoOq6qiC6Qad0Q8aDN3AUx+4afwr5fMkQ7OoShV/sBlpng5RLZfwN7dQKhSWSJsth1R4Dm9jzYFQ13VS4RCpaPimOsdXIZnNZOJRREmklM+TCoeITU/dVGteEAR8jcGFokIpn0ep1ta3plTxNgZRKqWFOZS3Gqq7EwRtFe5fY8ZtpLEY1+4JQ9cQRBlBttwy7qq5KOb6NtR8EjUbr6kBzUMr59EK6WsHGwaSw7PsAN8HBU/sauT3P70ZWZnvBmsa1XyGciFPKJzAKqnMhDPMzc7RUOdm7QofjbYKD6+zksmW8LitbFvdyIYt6/jLb77Jc+crDI7F+ZPfexBJFCjotTVjGAZNtiJb23Qe3tXCh1bBVz53Dx65yomhGjfMJOi0NPmwSDqd9jxPrBOx6teG9Rv8bkr5HIlolLWrO+hpsmMyidzTZ+er9/sJ2m+MubGqnUOTMs0ugT/4wh52dgrs3bWaVe0uuls9bFzXiclQOD0QZf+xK2C2Y9Oz7LtnO4V8gZJ649C8oam4hTxbOs187L4eNjSqTJS8jGcsCIJAwKnz6Y9s56RtI36xiMlQ+Xh7gXu3trF621YiuHjxkTj72mX+6doCQnYWNR3hYurWHZ5TwXsw17XiTo1wWV869zShWMlotWvVDYOYvZk5ZzvDmgsDAdVkQxHfnZru+zYZtrvc6KqKzVmbxE/MzdbacIugaSq+xibKhflFabaSSyVrov92O1bHW1ciDcMgl0zM+8+nUMolvI1BEqE5dF0nGZpdNkjXt7ZR19yC3eVGUxVEuSa9lk0klnmXpUiGZrE67AuKGTaXC6VSQZJlrA4HDW3tb0snUqlWyKdu/iD59984y5/97Umeeu4ELqHAzk0t7Nncxh//1k52rLi2kCWbZ57Ta8VQFdRsdL7KcB3UCuXICJLDjyCb0ZXarlDLJ5EcXvRKTVpINFkQZBOixfmB1b3Mq2aOHBtkcOpaNWw6b8Pi9BAumkkUBe5e52f7XTt49s0Jnn55iMthnc2rAuze3MnqVht79m7g+88c4cBAEUG2YljcDI7GuTAUWrD+NAyD7a0aX/r4FhxOO/6mZirlMpNzGexKkrvW+Qg0BbC7nVwYmMaupdiysYMHHtqJRa09MBTBzFO/HOONMyFeGrbwze+8yt57drBjYydupxUrZe5bbaHVWV14z0fWiDy5yYKhqVyZzDJ66TKbdmzgm99/nfGSj7/6/gle7c9iEjQO9MeYTdeSxdGowoHDlzgwvPzQw9h4GEOU2b//LIGOzoX1oWsa2UQcs9VGdHICw9BRVRVvIIhgGLWhLKvBvfdvIzXvWPfxTz/MPds62NDlZPvW1Vw6P8i3nz7E+PjSeNHU0ky9uUCLV+TwuMgbx8cXXnv10BA/PJrhxZeOA7BuXTc9riwJw8+FgRnu2ruOf/PbW9i4cXnJxw8KnD4/uWQCX2OQbDJBMjxHpXQteSvls3gbmxY2WA6Pj1Q4hMvnRxTF2+qSmSw20pHakHQ6EsLdEECtKui6Ri6ZJJ9KkgzN3rCBdvvr8Aeb8QebKedzWJ1O7B4PSrV6c5OmeRRzWTRVIR2pcYHcdQ21zoO/Hn1+fd2qEr4cribzt0LAWqHNWaanxcldu9fy8X1NfPrupoXPJogShqHXOL2yqWackY0t0BuuQrK6qUQnECQzsrserXhNwcColhFM1gWTI8npQy/n37KC/H7GpdEER04Mo8zPZ0gWO4migL0uyIWIzKagxj0P7GI0VOZH++d46XScriY7u3euZmWjib27VjMbL/P3z5yham9GkK3MJlXOnRshvUgApVFM8IXH19La4MAfbKa1rZn+M5coKjq7OzW8ThPda1YxeHmErGZj91ofW3duZH1rrQptGDqvXUjz5slZXh6Ab744iiFb+NTH78Fjl7CYRHr8KtvaDAy9thHv9Vf56v31+E0lEiWR4/uPsGvfNl78+WEODuT46Yk4f/2jcxiixPBcibNjBQRBpGTYeOXNi7x+JkbJuLGrvL5Z4E++so9SPk82k+GxD21FqMyvGSVHrCjwzM9O0hA7z5jqI9t1F1fkdoxihkIyxke/+HFe0/sA2NFq4vv3Z7jHM8tf7U6QzFf42mtm/vL8jYnxytwQ7tggqcaNvNr2JLlK7V6dUi083/Vb/NSxm6pmIIkie8JvoFi9nPVuok7W+Gr4xzxRvfCurJn3DU2ilM9TymUQJXmhsnCVj1suFLA5nVSKxSWC4lennL2BWivo6sDY28HidlspV7NojkyOY7XbmLkySGvvKjLRyC3OUBsUqxRzzI4MY3PYySbit+T8ipJMPpW6JjxvGCjVMpl4lLrmFgqZ9A1WpbdCOhzGVVdHfG6W+pvodjbaq3zuo3s5fnKIp16ZwC5V2bG+mdnktWlYQTYhu2vXrRVSSA4f2jLWn+bACqDWjjOU0sJ0tGi2oeWTsIhp9UGlRlyFLlm4MJljfZebuUSCXat8hBJm/vyp89Q5RNYFdFraGjmy/wRJ3YtQEhBl+OGbs4iCgWaInBg+Qax6bb0IgsCxqav/X9vPNttLbFrTSmx2hlcPj7A2nCKaFzk5DV/Y04DZauXkkdM88smPsG1DiUujCYrZHONDI1RkNzajxBcf7SAVT7F28zq+88PDjKX9PPeLsxj5GPfdu5lUaJa77tpEXf8gr57PoGk6Hc3NZDM5MAx0w8Bf5yWfzhAq2RFEEZ/LzJ42G+0NNsx2O5lsie8dyuC1wdB0bqHCcj1GZ9Kks0XWrm5j9PyZhfZ0MjSHN9BILpVEMpmwuTzMjV1BlmU8gcYancjtJBuPYp2nNgmCwKOP7AIgGo7xzNEESrFA82SCFStq90MxX+DipVHMZpmmei/NssqKFi9nzw6zZnUbXa0+zlwe4PiQgEk+zqaN3XzogU00D4XYMk+NuJ3N9fsN8ZnpBbtjUZJqw3TzlVR1vjqfDM8t/MzX2EQqEsLmrCWOi4+/XSyO0/lUkkwsQi6VxOmpdQIFUcAXbCYdCd90iM1it1PK5cgm4tjdHlKR8C2pE6IoUcxm0ecTDslkQlNUwmMjNe5zaO4tNY8X46pSRmh0hJae3pse9+juZppbAvznvzvEyEyariYbippHWMRJut7wSHL60YtZWERBk90NyO6GmtNcLo5oXbQWDQ29lEGaT34FyVQz4vgAYyhisM8n0eE1sJkVmupsPH8qhfVUjO6gg7U9PqYGBzkxmEE11Sr+x0eKjM4eJpIXmXn6KLNZEUO6RiWYyVuYOZPnKj3C0BQe2tdKMZtlfCZJNH0cp9PGLy9X2bnCzPo1XQz0D9DRDTvv2sWpoZfxeNcwcvYMF6bLIFl4oE8m4PLTt2k9p05e5uf9FQ70JxgYCdMVtNBeV8eaPg13fQOx6FEmyn7WtJgQ9TKSqFM2LATqXeRSSWJ5AUWwYDbK7FnrxylV8drdBLu7+PqPzlLRBHIljfGksETf9yqiWYX+/lG8DolKLsOBgRl0kwOPWOT3v7iVIyeGSeUVprb/HuZjT5MKh9BNLj6pHWUuKTEhbKZJu1Ycu6dD5p6OEmDiY7/0cbrayYWJKf7ZxlpB0DAMxktQ8vtpLM5iL05gzUBY8lDWqvip4IoNknA083Kpmz4tzmpLhmLoVYJaBiQw30St5p3gfZQMZ/EFm4lOTdS0SBc9eCx2O+loBEEUl1QYb1eaDGpSatGpScxWCxabfdlk86poeiocQtM0Am0dpMKht3RL8jUG8TUGic9MAzdyFa/H9W3EcrGAP9hMKZenkE7jCVzjjpXyeYrZDIauU9/atuz5yqUiYkamWro5tSNalHn+5TNMxypkNRtZzcbzpwvYBA23VCSrLf0eJYev5nBkvjld43rB+OUk1rRiBkNVEK3OG+ycPyjoaXGydU0r2alR1nZ347VEGUqY+PBddQQa6/nxT48RK0rsXWnj8lSRtGKhYNgWlACLVfCaKqxps3NytLDAPb4Ks5ohaFHIpVME2jpJ6WF+MVRbky6y9KzfytTwGMfTzWivnCeZV7BTRJTqUDHV1CEM0FSdudkI9X4nK4MWxnMS/SGQFDvrwjGqFY2fPfs6Dz28g60lg/6RNHXBJs4MxhBkE/GixpXZIpcnsqjzFZmeVie7dq3hzP5DtHW1UcoXMColPvmhdcSnZ6kIVl47EyFeXZownZ2TMaaKfOXeetp61vGX3z7Mn3ylCVESySbjmMxWSpUchUwaX0MQAwOX178kLqQiYdKpLMcvRti4qpGurlYsFjNes4LdJnLXzmsSaN9+5hSheAFdNBGq1LO3WyaUKHFsXCdbGOWefWvZF8sycGWWYzNmUqVxOpqcmCQRh+uDlwRfhShL2JxuotNTBDtXLPzcMAwsNnst6fMv3ai9HV5tOhpZcAtdLrG9WvCw2h2UiwXM1pr7aDJ0a2fRq+6fssWCWr2xzXw9rA7HkrWjVMrYnE5EWSIRml1wDr2K2PQUgiji8vmXfcZUSqX5yvCt3QDePB3Cej5E1eonVBYIjQNalYC9QqRovkHhQTRb0QrpmzqCLjfLIXuWPk90pYJeyn2gzY485ir7dm9Fe/E1unvaMZtNHB9Ms2llHQ/ft4EXfn6EmbRAb7OFqlplJGVGFy1EKyCYYKYAUGV7O8zEK4SKS+mUhlql1RRHr5owWfxoJjcHJiRAA8FKe6uLuuYW+l8aYDiXIDiVo2BYKGSySCa5Ru80QNcNBNnM5TP9tDR4MGsJZgtOZgtmnJbS/5+9/46S67zOfOHfOady6qrqVB2BbnQjN3IOJMGcxKBAUclWsizbmutrz507M2vujMdz5/OdsSfYHtsaK5KiEsUMMRMEiJzRaADdQOfclXOuOuH7ozqiG4mEbEr2s5aWiK5Tp6pO7XrPfvd+9vPgHJvg9IUh1ixN8+lPbObPn7uArayOgiYQyBgRJJELwxmksSzDaQuCABVWjR1bV3D+VDsmq5lYIEBeEdi2zM6GNU2s7B2mfyxJu39ulTaQNfHqmSS7G0Wa16yjP3QOQRQoqAKjIz7i6SLhlII4coE2SxJ/7BS1Sohmm0yzVWYXJ5gQBLoTOn7ZJ2HVq/xeW4mKs9SexxsO8GdrJphSvjgl1HKsYScAUtUGXLF+7g0d5IWWr1IR6ebzqUPcmz7HSWE1w+VrGNKZ0I+9RMpixylf3xTnw+CmkmFBEB4E/orSfuJ7mqb9lwWOeQr4j5Ru4R2apn3+Nr5PnFUexnq6KasoJx2PTS9cvsF+dHoDdnf5TSe+CyEyMY6kk3B7aon6vNetvM5etG+lGjQ7WZ1ybTJarDes8jorq4n4SkMhV3/GYiE/3bq8GvFgAEWRsZaVFrzZyhZT1I7pKoxkoH0Mpib6p/D49moaGjz8jx+fRdHPHSIUBLEkzfMRoCnFkjtdMvQrSYY/DrF7sjdNrW2A7Xduwu4q59DpYUxALh7j7NAEPTEzrVUC9921BsuR8+zrns+fXtVo4967VuOPnqJ/lveBpml86d4GzBYTZRVVvPvL/aiyCQ0FQZRICTZ+/uopohkVUWfi3DiAgS2LDFTUN/La0XHARF4w8/19fnSqmSUtBRpqHJh7Q2Qxs9gNFZVOrvRkaQ/Zyb13Aa1YoMVj58zJ8xQnOV2ipnHicoS0VvpN6LUcXX1xLvYdJZDV0xIJMBJREQwmgmMTqHKBpWtWkIqGeaN75jMtKy+yvM5I96jK/o4Ii3w5EnJpAzlVEdQbjdft9MQCfhzlFUT7BrngFclnBznb6WfVknK+9du76ewaRJFLsRsNhomEgqiyns1LdOSNCsuaPLy1vwNLTqDK0cTJU5fZsbmFNStqeemtDpqqK9l31kcqEmD/qWG++OgKmlsWf4QomY+PQ+zqDSbC4yNULWqaHgaO+CZK5g2i+JEGyhLhEPlslsr6BmLB63fXZlvb3wqupmUkImGUYnHaovlaMJjM5NJp9EbTgtQOQRSxljkpFvJz1uQpB1Sz1YZcKMyhVuQzGdKJGM4qz7TaxXBisus2iyW2vlHPYw9u5eevnqb76mVdEAHtI1kqq9nktCPorwIfh7gNF628/so+9uzZgKbB+ESYrGjDKKfp77rMhdEcuYLGFz+xiUQkRt87PrjK5MRlKPDQvVs4197L6+1zXQPvbtVYvXI9bk8tAxc66BxOIelMKGIp0XvvbJBz3WGCqgshKTGaBKfRQF1rK8eOdU6vkQd6VehJcmeTQmVFGc3lGldioBayLG+pQpFlOkIOgvk4VX0h1jXoGR4ax+xwYhAVCorKSLBApGhGEIWSXr+i8p0ffUCoaKa834esQFIxk89kCY6PsLipHndZiO6Aj8wkXaJMn+fO1Q7isTTnBgvoj3bSPZEHTOQw88sTfkQ0kqqFL3MInABzDYoA3rbsQqlu5XuHDmNAIV0cI6+K/Jdtac75kugm+b3JbJGJnIgGeCZO4zYZ8KhxxkQn+lA/nkQPnUIZ5WT5dPYUb2aaUYEr1mV0WZbQYWlhZbyT+4Xh2xYzN0yGhVK/5m+B+4Ax4LQgCHs1TeuadUwr8G+BnZqmRQVBuO0+j6IoUtXQOO2CpCrKNCfLYDbfkJt1IwiiSDGfZ7yvl8r6G08iT0EuFkmEAje0a74aU65NUf/1E28oDdBd66bjcJeTjERwlM9fsKc401G/d87z5WJxWkBfLs4MUZQbc7Q1OThxJUlucvfW2R9hzJ9CFk1zZGRKqhIGinE/aj6NWszzb755Nw5n2S1pFQt6E3Ii9CupUHxcYlcRjQwHMtidWX762j5iohu3lKaibhlD/h5+99FF9PaN03fxEstbanjvQg+CcWZYR9M0orE4b755lP6Q7qoWl0bAG8RokDh45DKyZONffn0HL+w9zeWQhCCI9ETm87QuDCTp738fT10VIW8eVTQiiBKKaObycILWRhfNZVlWtZZx7FwSZ3UNupEoSEXKyoxsXlmJ3mgiHU/QBIxGvNyzxkG5y86BM2N0Ry3c3eZky+Zl/M2PjiLojKUkXijd+DuG0oiqTCJ9mqQ8t1OyzCPRtLgWs97Lz87IjCRlEI386ffb8ZgyfOPzO4j6vXM2ouGJcTRVxV1TiyhJmG124kE/klrgt3baGffmeX9ARFVDpDN53uzIYNrfRSpTQHLWYDGYsNlE9ty7jc7ucT44NUggLaEoCs9/MIImGckVVCwmHd6iC+3yBDtWVHDobBzVVs3YeOS2JsMfl9i1u93ksxmSkQh2t5tEJEw2mcJdU+LlfhSIkoROr2P0StctURBgcqMvF6e7dTcLpVAoqfzcgKoGXPdxu8tNMZ+bt+ZPOaBGfBPzOnXpeLS05vsmcNfU8SdfW08+myUdiyCI0nSCnoiEifq8PHrnEp6+6vw/e+U0l8cV9NkAcj6PrLNes0p8LUjW0uzHr8L98+MSt4IgMJYxEw3H6Ooe59SEEbdJQWeyYLY72b40zYpl9Zw63sHGjStoqRLou2qsRtJJHPrgDGf6syDMLQQFI1ni0Rjnzl6hx5fnDz63k+FhH6+cKSXNobyJUH6ur0q8qOPvnzlARWUZTr1ArGgqbWgEicv+Is1NoCoqn91ipGsgRUERqK5vQKeeJZsXeOJzd+AbHkEp5jBZrMRjSWTJxJbl1XgDSV45l6HJpfHbn9nFuwcu4BtQ8M+aT77iV9CZNTo6T7FsaQOqyjRjsd4h01RfjlpTRo9viP1XCkwVxjRN46k767DZbfzViz1w5O8A6NEtpmvRJ9nc/yx1k4YZi9yj+Acb+L22KizhHv56eBU5nZ2vv/0tvlD8SzS5gJqNU5SsCIucGPy9rNNFqZBzHLGvo5jLUqxs4bxgAKMFTyHEZxMfMFC5DrmQY0v4OOXZIvGm3XgLMcj9AybDwBagT9O0AQBBEH4OPA50zTrmd4C/1TQtOnnxbk4s7hYxm/YQnhinvLaO4sgwRov1I8uMTS3GUZ93OrnU34S7UDwUoLymbo6e5mzIhQKJSGge9aI0WDKB+CGFzv1DA0g6PXZ3+XSFbHroYrJiYLLa5nCmpyDpdNNDL45ZrcZldVZWNzmpdRl4+XiIHCYu+nXgVxGkGcK/HPWiaSBMyqRItgqI+5GL1x9SuRpKOoqmFJFs5chxPwgiOlv5tG3zbcDHJnZPey2c9iZAV8uDbUbWr9nA3z37PkadyMqWHAICp3rTGIcyYJjbbRDyCR5/aBsToz5Oe+da4q6slFm3YwvP/uIYnvJyCtk0l7sGiKQX3hxqqoJDjfH5R1eSDIeoXdRIS/cgmmjgtXMZBEnHmTGJM2MJPr+9jpYVyzjfNcbf/fgY8YIEgokrY1l0QohxX4wqh8D9D+1kdfU4ZTYzBpOJuioH3VGZ7tEEBfky8byIRgFBZ8AoJ/n8PXX0DIY5OmKi3V+qcEmFJLJkxCLkWb1hGwPd/bzdkUa4ihISyYocP3mFFU1zOY+qqqDKMt6BXupal89ZK9w1ddjtJrLyGB2DWSw6GaeaJBiNgqUCIZcgX8yRLFiIhKP0jMQYjBl4dLONzh4/E0mB+nKVZS3VWEwGurtP0pepIN0b53MPreLVgwOMefUUC4WS89rtwccmdqe4tqlYFIPRhMlassv+MKYTs2FzurA5XZisNvLZzE3LUEJJd9pZVU08GFjQFnmqUHJ1BVjTVGIBP+6aW69oR30lPWJRkiirrJqOr9lV2ilnvSnO9GyIkm5yEzez0c3EY+gMJvKZ1LR020LX4PCxTk5fDrGq3kydLYc3V4acjyJo16dhXA01n0HNZxANJtRivpQU3166xMcmbsOyg2ePpAEnTeV5fuvT23n9rTMc39vOPRs9FLIZLntV1Es+RsJKiR8xC5uWOtm6ZSVd40dJzWLaGNU09927ka7uMUbTVloXldHdM0ogmmVBMi5g1jJsbNKzZkUber2e4eEJ3OXlvHZsnHDeRDBn4pkPIrS5JZa3rUQrXuCFw34Mog/VYCdeLPDO+x1EInGymQxPf/oOKt0RPNVOkrEYjc0NiKcv4U/qOH7yCgPeDGpRQ5w0tbqvVaaq0s1PD4XQdOWcOZ5GUARELYWqt7G0qQpLmYufPr+fiXzFnCReEATOdwfQS2EE/cz61l99J32NDzPqWseTp/+YeiHEPZFfMiS7eO+pdzD22vl7/1/w/8Ye4pv6b7BTPsDhXAtJsQy9JGBIBsk46hiKRyiQZrx6I8tG9lPX8wIdNXfhjvbSpnqRRJGt4eOctq7mzNKneOzKdzk2IpE3leHLC3iMt0eJ6mbUJOqA0Vn/Hpv822wsBZYKgnBUEIQTk22SXykMJjNRn7d005tMhKd21NeS0rkZaGi4qj031MKcgpwvEBobJZNILPh4MhLG7aklfxVf12g2466pm8cPDo6OEBofu6F0myiVlCWmOGmqohAYHsQ/NDBdJbfYHbg9tfME6AVBoKpxEVWNixAEAYeU48t3uUnEE/QNBWhoqsMoXSPAtBLHSdQb0TmqMFQ0oqZjSDYXmgaJWJw/+dr6aZ3YKSjp6PQ07PSpVAXJXkkx5gUNRIMFVS5QjIyXtIo/uvTPxzJ2BydSnOvo557NjTx+91JqmxYjy0VaGuxc9qnz2p92k4ZvcIDA+Pi8cyWyGn09Q2QzWe7ZvZLlrbW8cCKBP7tw1WdphcoffeMeRoe9KJqArKioikJZmRWums73j00QGBlCFQ2Ei1aKqg6jnCBWNNI+lGZFazUjcZG/+O5hFMmIw+3i6JHz7O8qxe5Q3MCBKwX2rLLxOw/VIylZyk0FKj1VNFSXEglBEKiWovzLL23gyQ1mspqRIyeucLYvSUw2IRTTqIUMix15LEKOgmDiaFecN46O8B+/c7qkIuObIJNMYrY7MFrmyl/ZXOUMXewgn83gthtIY0ERJELxAvqGNdRY0vzb39uDKAiItgpSiTSP3b2cz+1ys2nrGp7+zG7uW1fGZx/fhsdTQeeVMawmHXIyRD6TYWgsTDxd5NJAlDffPsl//95B3nn/trg4fuxi12SxkopGUBVluv1fLOQJjY9Nz0N8GOSzGdye2pvi9kIpKVfkIuM93XM281PQNA1VUTBZrWRTqTmPuWvqSjKbs+Y8piQ448Hr52SKomB1Oqfl9QBC42NE/d6SGRKleRC3pxazbb4Mm7OqGrenFoujDE3T8A70kc9lifgmcFbXoF5Hli+RKpBUzDTUV/K7X76fbz3Zwr94ei2SxTlXNm0WphLfOX8rZNA5KlCLOZRMad1W5TxyIoicCF3zXLeAj13cAoTTGu3nezGIMl/91DrWbllHLJFj5/p6BrzpGf3fSWiqgl5OMnDxAon03CKPrEkMDfsIRjO0LXFyz93rOd4Z4ezYwomwVEzxzU+3sajOxeiIr9SZiKdwV7rRXcV0CUcSeAf7yWayZDETVy0YlFIMnxhSKHfZ8dRU8tc/a+d0TxSX20kmV+C7L55HM9jIaibevZTFpId/+ZmlLHaUflN11Q6qPRUYijPdnC/d4eIPP7saKZ/k0kCMoycuM5xzgaoiFtOUG3NUm0tFs3OjEE7JWMUiw1Tz7a0/IZ8rUDZ4ENOilcSlmc3UYl2Uutf/b8TIIJHqtQTNixjVN+KTbRTqN2PWqXxg/xPqE73obW5yBjtrtAAP9D7H7vxldhmj3Df2CvfnL7JaCDGumonry5ByCZRkiLBqwG+qJmL28LpxDa/o1/Bjy07y8kdjB9yuATod0ArcBdQDhwRBaNM0LXb1gYIgfAP4BnDLrbHZ0DQVvdE4p01VzOVw19ROS5JdC7GAH0WWcdfUzks8jGYLseBc84vZAuyzeYqxgJ9CPofF6MB+DYqEpcxJxDeBTn9zFaNrcdGuhrO6GqUoT7eKNU1D0htKCc1NavYmImGUQoEaaxFXuROjKcTbl4rsv3SWgrSwpqYgSogmWykpnnSL05VVouYzfOe1K1gkmT/86p1zniMnw0gWB0oyjK6sata5dCjJIIJkQDRaUZIhJHupNSnqTWiqOs/o4VeAm4rd2XErOebfgG8WmqoQTRXp7UiwuUlPLJHn3VNeljVYWdvWzKGLZ0hrcxPZ1lo7jctX4g+dYXW1QiGXZXmLh4MXwozGtEm70Qq+98IZsorIbN73Go9MhdPM+51pBMlAKKnQfvYKoUSBRCpPXvXTN5El0DOCoJtpBdrFDEtaF1NZ30hWLnHDNi2SePDuHfzghVPoJJFNG5cSSeTwpvJ0D4ZZs7yOyvoGiM5NaoqySi6bL7ED9SZ++fpxvGkdetlAUWdF0UqWyplMDiQDh3oVQI+kZPjmJ5cz3NPHxl3bOH7qCu9ezLJ9hYNd21dy/mQ7+VwWV5UHSdKhMximuzlysUg6FkVnMFCzpJVIwMfixmo+qxunZe06kpH3uTI2RFmTh87LIxSdi6g3xFi1bnNJf7a8VHl+9mcfMKFUcmXkOF/47J180O4jj5G711ip8pTTPRRDkHTo7RUUUkHSSiXpzD+Yfustx+5HWXOLhQKiTpqzNubTaWxOF5lE7NpPBDKJOPlMBrPdMW/Owj7JQ7Y6nDPnzWRIx6No2tz3nEnEySQSKEUZs92+IG+2NBCqkkkkbqoCLBeLuDw1N7xvlNfWkY5F51bENQ2zzU4hu7Be9rzXKpQ0xhVFRtLp0RsMlNfUkknEr6u//NA9a9gSCFFZUzqmorq0BimZS0gWF0oqimSb6ZZoioxayIAGgt44vVaLRlupGmwwIhrtFMNjiPYKlIQfvaseNffRqC83iQ+VL3yUdRdN5cD5EA6zRF0ww9sHDyEIIk9/ZjcjEwm8V9WezGqaddt24x8ZocIWwWxIsmRRJUO+FJe9Ei+fSiCIEubxCGevHCeqWKd535WmPNtXlXP4QohoscQj7ugcJpdKkitolA2MMh7TGH37HL7szPMA1i2toKKugeHxUjGuTMzwzc9v4uSZPvZ3ptnY1kwmk+X0aIhMMcvZs5dZs2456oVLc96/qgmkMzkUDRxSjmPtYXLqOJrOMCl7KFDI5UmEwyiaQG9ET29EBcnAnqUSG9qWEw2Fqaqt5r8+c4Y6l44vfnIHQ929dHSuRaqogxEzX+r/zwR6/4pGfakYOCw7qSRJunU7hc1f4uTZ4zy+3MHT+z/LYFk13wwsQRRENAEmqjehTwW4O3sRUSewVEwBIldyBt5e/CmkfIJvxV6n09REd92drOh/A1toFItOQDU7MLg82KJdRKVKFHM5ys3VL6+Jm0mGx4HZ5Kf6yb/NxhhwUtO0IjAoCEIPpWA/ffXJNE37DvAdgMVtaz9UfTubSqI3GucZWLiqPcT8vgXbZrOhqgpllVUkwqF5E8nWMuc8Dq9SLExzva4+j6epmWwyeU1+2c1KC00NVxiMJhS5iM15fekbvcE4xzBE0ukoq5hMJG+gbjEFOZ/DWV2D0TLO//jpRTCYESQ9BWbaRZvqFarKLbx5LgFS6fVEw/zPI+j01DgKWI3zK5KCpCtJsF1145KsTqCUyCupMLqyatRcEtFShppNordd/xrcBG5b7M6OW2NN6y3HrYksOlHDZRP4ylM72HfwImf7UqXqrGhhrDPH0StnyCo67limZziQZjhe2kDJhRwnD5/hdE+Ub33tPrrOX2LF2ha8Y352PryClw/0MpIwUmaRcCCQipVuhlYhy9KGGmo9LkRtjNFQge6wiWNdIb71W7s5d66H98/5+OOv3cHFi/28fGqmu1FUBeLpIu2vf4DRaEXLKIRieYb6h0GVGcnY+F/PHEbQFLbVidz/8P0897P3GUzZZ0xA1BwSKh9066kf92KXcnz9c3fTfr6XhrxM28pG/u4XHYRUJ3+zd4iNTRaWuIr0R0vxpyISC4epqnJy7PA5LowWACMd/XHKjBdpamlEVWS0yd/zbITGR6moa2C85wrOqmoK2QyeRU2oqopOr+dLX3yQSDCE3WFnwhumwuhnaaNrXnJV6bYxMRikZnEFgiDw4JZaLvT48AUzHOgIsabewAMbKzAZ9bx1sRKbEuHxh+6/1fBYCL+S2P2way5MKvpcNYNQGt6NTMvYXQtTijgl84q5ybDeYJw3E5HLpLGXV5AMzx3yymcyVDUuuqEb3M1yiSO+CXQGA/Fg4IYbBUEQ5nGEy+vqyaaSN7znTKFYyGNxOMimUjjKy1FVDb3RRNksSt7U4LOk00/fn0RJmk6Er3pXKJn4/OFjUUSb0iKe1fMWDaaZYzUNDEa0QgZD5WIKgUGM1Utu6nNcB7+yfOGW112lQLmpSDAt8qUnWigUinzvrRHePOklK5ShaSp/9cMjxBUjy6vAadNzvF9GkHTYrAbOnWinfSDNns2LKHeasZQ5kRhg59oyBkdC7O9RMeoF6qusBAZzKKIBnZKh1iGxfl0rsVAYyazjQGeB/VdkvrCrhuaWRv6/vz/MJ+9sYPnKZv7iuwfJzqqqpmU9HafP0z+WxoiZrAIDvSPk0ylEvYln3uzFoBWo1LL8zufv4UJ7F3/7wiWKkxJwmqpgE9KMJGz84v1BVCQe2lrFkiUN/PT5D/jX37iXl14/Q1dQz89P5am1xti+wsnxvtz0up1Lp8ml4vi9fk5fCaEZbPiSBQ4fPEvbinp0jgo+8/LdOPQKkiTQKJXuG900cvCpl0n0XeSJc/+K6Og75Fd9C0PrCsSTZdyv99Ju/TOyikiFsUhVcBBBzuMQNWbLrdp1GmIqSFk+giAIbM52kx0sgqZwyr4KfT7BQ763yYYsDFiaSLiaeXjgp1jMH80242aS4dNAqyAITZSC+mng6snPV4HPAT8UBKGCUhtk4CO9s+tAVRSCoyPzEkZRkm6KxyaKEolQYM6CmUunScdjKLI8z955SoD9au6tIIgkQqGPVG2ZQjoRm7H8rPhwE9o3w3Gejb9+w49F7SMjWBGuofdbX21n8SIPAV8Iu8PM/iuFOXI/V9MhZmP2Y9cbqhMEAd1kRVjNJdEKmTlVjo+Aj0Xs6rUcT262YzIbeOtQD6dOdTE4GuF3n1iD3x/l+RMJTDqNjS1OegcC3LlrC+N9fYyFshztTtO2vA5PTSVvXzjD83tP4wtnea/9MHazjmw2h11X5Au7qjGKMkarjR++0ceXHmhCUPNcGYhw4PQw3/jCbiyXh+gOZwhljbyw9wzeWJGEauH5vacJJxWmJG8Acph5/mSGR9bX89D6pXzvR++za5WHJcuWkMppvHY2hV4v8buf38XIlculJEeQpxdUgMe2ltPYUM3ed87xpaf38OY7p3n3wAXGQzkqbCL9A+NYpAJ2g0CkoPHgPWsYGhyj/2hpi69JJvafj7J5hZsT/XkSBYldrQLRpMTLp9MYz3aRF0sdDE0uoNdKxjT/5us7UGSFiM9LIZ9DkYvojSZGuy9jNM3wPF/ff5lCXuYT9yynqdrCBz0yHs8wy5aXfv+5TIa1qxp44rGSyc2Fi/0cOtVPzFCLPu1FKvOQLoTZfecm8rkcfd4O3I6a67pi3gI+FrE7BUWWSUWjyJMDaLNxM/rtJquNiG8Ci30uNzU0NoooiZjtjjmW92UVlcRDQcxXHW+0WBY8z4dBPBigrKKKRCj4ofnPgiDckhmH2WYnHY9hcZRdc70uFgqU19Yx1nulFLsG0zWv8dXylTPvS0Tvvv59STKX3reSTaAkI7fLhONjEbeapnJns8rq5Y0cOHqF8xcGyKo69qxysG1zK9/++WmiBSMtDVYiqSLrl1awqKkOm3KcvoSFcoeRTTs20O0/xb6zfmxG8MdlirLMZ+40IReLPLbehk4RaNu8jsDzx1lSI7BscSNFuchff/c97tyyiGXLGjneeZqspuf9s35OXPJTNDj4oCPI+Z4QGdE+ZzD94IDAEhd88ek9vPfBRWx6FbfDyPJVWzj3vcOkJAdf3lOP02ElPD6KWadNJ8IAqz0an3r0Dn76wmEee2AdkVCUg+d99I3ESapmeruHSafzNJWpDEZENqz0sHH9Uq6MHCGqlNbuM6PgKk8xEBbpDutY4iqy2GPng84kx7qvcMH0EwxGAVWDUE4gpPewTJzAocWJjw5S0Ns4Wfskor0cY99B9IOHaNaV/AVeSbfxQ/lBvhX/MetTXbyx6LPsC6rcL8/ICakafCPxHiadQFKGA/YNTBirUW1VKLkUgiCwophDEPJQMKKLitTob21eaSHccNXWNE0WBOFbwDuU2OE/0DStUxCE/wSc0TRt7+Rj9wuC0AUowL/SNO3GVmsfEvlMmvqly0knPlxdfKF2lFwsoDcaSS7g1KabtBS9GjeS57kVTN0sjOYPLw93qxAEgazkYH6jcQZ7T0XQnQryqTvqKXeXsb/zyrTr2a8C11rcPww+LrG7aYkVT30NJquVTz5kJRjNMZGx0NUzQSKdB1Vh8yKVtlY3qXiMV145xNa1dWzfsZZQop2Xj3hZWjnB49uq6BwIE1Vs2KU8YjHF6we6MJhtNLc08s5bRxhJGECQEESBWCSFN6ERppy/+/kZMrLIrmYj9R4375wY5b5tjZy4FOJK0MDVS4FVzLJ1aRmdPT683jBrl1WDpnHm2DnaR4qAkXhe4szZHmKBMJXJIj1RPeuaNcbDBYI5I8MTcYq5HL6YwtHDZ2ltdHPgfBBvxkggkeXiWJgv3dtMRWU5r719lh++cIKsomc2zcObMbL3bBowYSiGWdOylFgkTldQJq8IrKvVGPImefjOBqxG0Fsc5NJpLHY7NqeLVCyCo7yS/PgojctXTg+6FgsF4rEkqUyW//3mCKvKc1jQMBpnrsMb+7u46IVPZYqsWt1Md5+PQFai1ezljodWkk7nWNW2FgCjycTnntx622Lm4xK7U4gH/TSuWEXEOz4nab1ZWOyOhZNGQUAuymSTqXnnXUhH+MNKrC0Ee3kFEe8E0k120m4XbqQe5K4pyQeaLLZSJf4aw9m3C5LZMeUj8ZHxcYlbl5Tmrnt24x0Y4Mkn7yIRCvKjdwapcWl0XRkhq+goV31sX7OBoC/EL4+O8EgmxtY9u6jqH+Wnh0OEfvoB61d4CIbinBrWkDU99VaFk6e76YtK/MHTzXhHJ/j5q6cZiUu01AooqkbvYJCI5uTN02H2nwtQXqbnga0VvHtijMUeGzWuIkcGjQSyc5ulmqqwuVEklZZ5c995JLWAxSwRjcQ5cclHTiw5tV7qC2KWfFQ6zZzvT9FgN2A1CFwO6QklFbq7+sjkFQ4cusiSBieVDh2nRgRQDOw9OsqaZicP3L2G9949wdlOP+e7w0TkGbqGLJp460IOJjvEaxcZqKt1cv6KlwjldDi2k5VsxE0eOps/TWVTK/FXv8rmzAlsWhrNaCFTux61dgXZZhVzcgLhxDNomkZ3zknI4OL/Mv1nmo1HMWUCmJUZilGfbOPNls/T4j3Ow4WLhDQjQ6YG7NFBdkaOYlIyuMkj6EtvdiM+NuZ8t4Xwe1On0DTtTeDNq/72H2b9twb88eT/fuWQizKBkSFkWb6u8PqtwOZ04R8aoH7pcqJ+321NdG8GV98sIt5xJL1hwc8X9fvQVAVrmWtBXrFcLBLz+0AQ5rku3YrsGYAqmSgALx72Iwo+BEPp9a5XEf444eMQu53DaTR5CLNRwq6XsdvMLK/W2He5CIjsbJFoaXRjd5UTiXeRw8yP3x2i4WKEwRAoopm6WjMrVy9mUZ2Lv3n5Co/ds5hFizwkoxG+92IHvZ1dLF+xmJP7gwiixN+/NQ6iDkHQQyHDzk0ufOEMJpOOMqcds5KktbWR3pEYIwvQBBsrDOzeuYrY2+0EYjkefXg17x+8yPmBPHesdmEf8jMUFTneGSam2MGnUWE38viDG+jquMxrZ2KEkwKPPrgGf6KDgUCGbdsXEQpFcIcz7Nm5nHAoxtEOH0uqQzz96Tv42aunScYU7l9tpr0vRjA3l3IjGMyYbA4s2Sxra3L4ozKPP7SVo0c6yGbz5BIZIrkkB7qL2HVFvvKQirOiknQijsPlnq4oFnJZEqEgn3u0DRWRn77dze4da/i0Zy7VqcFjJ5wMUV7u4NvPfkA8lsBQtgi3R6O5dfGcY0+fuYKsqGzfuvK2xc3HIXanYDCZ8Q8NUCwW0E/KrN0OaKpCRV39tHX2PyREUZyzPqaiEQq5bEkH+KoEOZOIk8uk51AXrkbU70PTVCz2so/kRiiKIi5PTYlf7C9JcP464eMQt7GiiTfeOw/FLLXhFGadxpZmI+/1inSHU1QaFZ56cAPWMicXOkepdJp5+XSSqsvHyah6EE1IRiNr1i0j6psgmvNhMop84v6tRHwTXLwyzukz3dy5u40jXR0gWXi/W+H9ywEEyQiixtJqlaY6F519QcrdLkS5m0ZPLbmiijYQm0fJ0ikZ7r1zCyNDE/zkUIjfe6QBTdP4u18OsbPVxLaGPB0jGUYCIsGsASQFsPOlO1w0LKrlu899gC9upaamgnu26vjJ/nF276hFKQ6xx2ygmFe4Y/c2fvziMY4cbmfn9pVU9Pl57UycrYsFsnm5pB51FTJFEYvdwc5VTvZ2FDmz9o+Qaloo3/dfIJtA7TpAVX4cASgLXkQV9dzX81cURBMRUw0WtUTIfrPqC5Rt/Qx/vGQprz3zPDY1zqPxd+a8loss1aFOPIUAR2ngrGMpOqsLVc2yMt4+R/LBpxjoMTSwsdCP9TbsZ39tHOhmw1lVRTaZpJDLzRMfz6XTZJJxDEbTDXV/p6pEU1VfvclEIhzEZJm/kBXzOZLRyHVbVrcLsYCfsspqEtdQxdA0FWd1DfFgYMFkOJtM4qiomNZkvhkscRZw2vScHpZ5qK2UhLzdKU/b/U55vN9uaJqKkgiWZNVuY1X444SEYuLsUA5RKOAwwVc+uYrO0RmloXCiQDSl8OZP9nHfruXUNzXy335wjL6IYfrH/257lM7uCUSDBUUy45sIkouFSvq3egcTEZnixARbmy30e7OE86XvUFKyPLHJSGWlGVSZNzrydPZf4ctfeoA33zrJOZ9xWiLPJuZwmmE0ZeSyV+GHzx9nLCGgoOf1vYdY3FhBnV1my5YVtDQ4iMTSNDQ18lfPnSYr2gjmTLz/3gm2blrK+nCRSyNpTp2+QjISwulw8t/+9g2+9ZV78PiDdHWPk8nK9EQMTMRy+BPnGAyrNLpFtm9dTizZQXB47nRwQbTw7Eun+fR9yxCFBN60np++dBSPy0z3RBzkLA/taCaWGOe83zyvm2OlRL0p5nNoWkn31WJ38Idf3bPgINaWTcvYsmkZqqKgqGA0GlhTr7F+VSmBioSjHDw5wJplVbxzcgJZ0LNuVWpBJYFfd9hcbnLpNM7qmnn6wpqmEfFOIAg35uqmohEK+VxpI282Y3GUEQv65yneTCHq86Jp6i3rCX8YFPI53JMymQtxmKdobNeCpqk4qzzEA/6bSoanroXRbCGXTiOIAjqDcVpaTWcwfGT5umuhJGspI5rt0/Jbv1GQ9JwZKmIXZU6PF/jineVUmjXoiYIAWVkkFM/x9oFDLFlUyW99ehOvvnWOjomZdaA/oud/P7ufCreNngC0uvJ0nutAEqFvIofeaKS330u5FVy2ApdD+mkK4fb6IkvrrVidVva3h/ivPzzF159cRTKW4KUTEQRpshSvFGgqh9Gohqy38/0Xz5ErgiCZefX9bnasctLqKrB1/XLkXIammijL1rbxypvnuFBS+uPdIwN80iTw8F3LeGZ/kBPtQxRzGbYutfLjvefZuLyS3TtX8tprh+jqGiaQNTJ8uYg/dgV/QgVZZteWNYQCES765+cMb3ek0fKXKK+uAkLsOPuf6bSux2ix8OWTX+NHG/+Wvcv/Lb9/8ff5/PB/Lz1JD5CloThzPgEZrZhBvbSPvzH9PS8I823Ky3UKn00fBeCI0IhoddEyso86UiCW1ppjQiMGZMLmcnrrdmMffIX1fPTN9K9lMmwwmVEVFZNt/jRxNpm44aIFpeqpNKlnKxeL05I410LEO0H14uYbnvdamOIk38wNw1FRWWrfXYN7aLLaiAf8OK9Rvba73cRDwXkWoteCVcpx53oP1bW1dPzgKOWu8lL/RotwXQ7FbYCaTSJZXSjZEglfUxWUVHRB6+ZfV2iaxlN3VOMos/N3r/bx58+cQTPMtKWuhPRcCWV4YHUzDoeZwwfPsnuVi1i6yJmxUpIgiyaGcybIQb0tzdo1y7nYG2RfRw70VrpGczy43s6S1as5fKyT/ZcL06+vl0QcFZV0nxwDTLhtIuOjE8QLOkySwtalZi4NpdjdVsHatS385Q8PI0gi4wkdqmjEY86zclktTqeN/ecj/OAn+1m2qJxoPMNEuEBWm3TREiU6x9I4HaNcGYqT1uycvBzhc/cuB01Dr+X53svnUTSRpGrGKuZ4fGMloUCW5a1V9PpG6Q8b+PufHMOfEWHSzWlVlczyJjdvHh9l58YGTl70ct6nR5AELGqUu+7azoULvfgmVNzVVZQP+cFf6oJoSpEdLQY2raic/t2l43EEScRRXon7ZmYMJInmOgd94yJb1zVid1h54912Cpk0F8JWIMCjOxuJRWN0do+zbk3zDS3Xfx3hrqklk0zMGxbLZzKYrFYK2ewNndEK+dz0+mw0mxccWJ6CqqqoqorFUUYmEf9Q9IjQ2CgIAmUVFTecqZB0eiLecewLDEOXVVSVnElnKV5cDbPNft11eTYUWSYWClLfuoyIbwJNVbG7K64p0Xm7oSkKOkdlyflTb5qUVNOQrLdlVuNjgU2L9Tx87yaeeeEEPzlQcjgUJhP/lGLi+eMJGh0u2tqWcPlCFxSyPLahgjfPRpAFE4IoEVDcBIIlydUNS22U11Txl7/oQTTa0JJF1i0ucOfmRRgtFrqe70aYHE4U5TRuTzN9/ROksVLhVIkGw8RSMopoYq1HplhUURF5+onNvPV+Bx1DGbIFjZRmQVTybFlTQVWFjYqIxg9e66StXkcur5KQuxmPlNzhAHwFK5d7vIQSRQTRxvFBjc9utFO/qJ4ap55958JcGDiGL2vnfCjBrmYjOk2mpdnDyUs+gjkr33/lIrI2o0RUpsvx4OYqTl0O4zTrMNqsPP+BF8FgRcnnmFj/GJnGVq6MHAN3I6qoImtMj96fsO3CW7GBe/u/jV0qEivq8dbsosl/hKcnvj151PxkeDbq5BCXi0mqxCxthOnQKolqBi7U7EKfT/Kp4NvYh+NoxRxRQcKluzXN7avxa5kMw7VtkG0uV2mYZ4Hq7mzo9PppvcibuXEpikpgZJh8NvuhLEjzmTRlFZUkwjfWQL66fXc1pigVqqoSHB0BNKoaF8855upWnqqqRH1eyo05wvm5N4UlVQaczjL2HziDbHTxkw8C6LUCLrNItGDivlVGsjmZo0O3PzOWLGXIyTDCpE2jkopOW4X+piTDgiAwMBrFGojRVi/ROSHOtSaaxNFLIXy+MBdGC/zhF1YwMhrgzFhq3nHVbgNmm53ewU7AgVXM0VSuYnU42PfucdrHBDRZ5L42C4lEHmdFBaO9PezeWEvhxBCffvIejp7oYiBupNlVYM/u1YjFUwhqgXfeOYmIwre+tIMzJ9ox6DXQ9DQva+HnLx6mzG6kobKM97uyaJIJgy/J5iYzXWNZ0qqJDS1lbNy6longUc75oaAKhIJRyhwW7t6znu7nDpMUK7GKOe5ebmLNmiWcP51CK2ZpKVeRBfAnRDRxhiJRboUqhw4HGZa11IGi0OEvIObj7Nq5iojPy7FzowRlOxM/24fNZsNUUDAaJO5oc7B6/QpSsRlKoqrIOCuqbkmPPJlVSMgGRoZ9WGxmzoxCvVXk/lUmlrV6cLmd/NlfvYlsl9CUXjZvuX10iY8LRElaUOXGZLUS9XkRRPGGFsFGc2kA7lpSlLMxdU5vfy/Naz8cLUsQxcmqduaGyfD1KHeSTjddpY36vGho84yUzDb7PN5zPBRELhTmyXimohHcnlpGr3RRvbgJncFIMhJBVUvSialoBARh3mvcLggGE3IiiGRzo2kqmioj6IyoxdxvTKU4ECvQebGfCgsk8wKx4nylo5GoyL6DXQyEZLaurGDlikUcOB8ieZVkrVPKUte8jPPt3YhGC5pSZHmVikGnMjoywZkhBdFgYll5kWWLnCTDGfK5LBYhx1I37FrXhLvCxZ8/144giNy7azWBcR+BeIHjh87QPVbkyR1VuB1mentHsFoMLFvdzOXOIS4Opdm+qpzz/QkiBQuaP83KChGLIc9o0kiFIcOd9+yht/MKl06U+Lf+aBZBG6Jtwwai8ZMcGDAAGtvqZdYuryeXl9HkAs0eE/FEDJvdRFdAmi7QmHUqbpuOGlvJJrq1tYF326PkgSPL/wCju4bUoZ9wl74X3f4/YNC6mpNSG3W5IU4t+10CFetwtK5nbPBlVjBGEQm1uoVCIQE3WU/MCQZyjjpGYv2sx8/psvVkyhrZ0fNT3AaRKp3MqaLE2dan6fad43O5Ux8+WPg1ToavBb3RdNPJ6q3wghW5gNFsRmecmZbPZ7PT+pA3ugmUVVYRDwawXKeycKuQC3lMNhtyIY+qqtdsNQL85Q+P8Edf3c2da3NzJLQALo0XSR/oYzAigVjaPd+9uowtG5fyNz/8gNYla4lFExwdun1VC7WQLWlaaszRHhaNlpIOpvgPO9Tyq8bxYZE9Kwx86tENJH5xfEGe7rIGK4/ev4HkSyf49ouXUBBhAXpKPJaiv2eIWKEUi1uWOrhj5yrG+/voHs9R67Qx7EuwcvlSfONB8oUiLWvXceHoEUQ03nj3LL6JMI+tq+fKUIZnXjxJnUvPmvUraX/hBGnFxOmzPbjdZZQ7raQzBf7q+/uJaWU8tsnBurUtdPQfIakZaK02cPeOVmovD3DkSooxf4Gwd5xsoaSClFJMPH+myMbqcbbq9RitNsiC3aCxdvMa9r19lBN9Gb7yieXcfUcboijQ2+9nf0eYmjKRKwGBVF6kqnER9XUTyMX89IKtGOycODeMqqoEVDcGMU/bMg+bd25mrKcbi6scvSRw6uAR/CmBSzE/f/K19bhr6kiEQ5isViLecVRVo6Kunnwux973LlDpNHPX7rbp652IJQhHkuSDUQ5dLLKsRkchEkEQdWzftgNVUXjpl6coZJJI2gSLGzbd/gD6mONm2/nXqwRfjXwmg9FqwTBLmlLTNGJ+H1an86Y6XxaHg3w2c9POdjeDKWe7eDBww8+iTurZl7i/M9eorLJUaXZWeaY/h1LMlyQ8/SWHz7LyG1Pdrje7sdB8SDHmQxBERItjrm6vqqIVMoim2+6M/I+G0aSB4qUAv/uFnZw4dYV3Ls7XgrZJeR5+cCsdFwd4qz3G0UtnyIrzC2l5uUjvlT4mYgqgo8Yq8/STOwiOjjAcyCMg49JnqatwsGrFIk4dC1JV30gyHMGghDhydgBRlNjRrMPqsPHsax1YxSK//bm7OHmmm7ic5/JglHpXnKWt9bg9NTz3swOMZa00VRjYvWMlqUwHp4ZVdIU4n3p0N/2dXZwfzHJlQmSsr49UOgeUii8HBw04tAgO1wBFdTIv0FRWLK0hFU/xiwNDrF3i4sEHtmDSX2DZmtX8+d/vo7nOzXBIJp4uUtnQSH1SJp/LIRdyiJQUGzb3/ZALGT+Pjv4tRUljtHwT2fv/DQcHSzNXwa5zZEIhpLFnqJF9oIdKfY5PvfEJzKLCC43fJONoYP3KHZiMJt7q6edyIsvXVzbhmFXE7LtwGaF/mMHaHaSrdpLq86ELD/Gtr/4JgiDwfv8QoZ5h5Mg4GxctYfvGT984KH7xxjUf+o1Lhn9VmHKRc8yqaKSikWlt45u5GdysFuXNQlM1kpMWptdLhAESqoWXXj9DMCkze1ofQBWN9MfAISVJKaV/940ngR5SWPne3h5UYeHE7FoYH/MzOBpm68aWBS1qtWIe0VyGmp2rCPKbRI+4Gmd6EoRiZxmNiQu6do6GCpw+200wqWE0SKxssHJ2IEVRMJXc+1QVq67IJx7cyPlLw8Tl0vfR3pfAIZ3FZBCpcRv45OObefPdszz70jl2tlUwOBDEbDJgKqvgy19cyU9eOs5dm+pobF1COt/L+5eLjETz9E4cJZArtQffuZTHoUvgEMfwZY3IkhtBgH3tYU51BUmoNgQBrnhl7IfO88BDO4nlOvngSp6RX/aQxoYgzrTMz/gsnNs7gGYsDYkm8xrf/dF+at1G/t3v38NLe48RyY7hsWmUu2zsWmFn85ZVfPvHR+mckOCddi6NKUiGUYKRFHpFpChZOOu3gFLApU+za00lbauauHDkMHang5ERP4dO9vHFT25mk8PJxWfOTl9rR3kF8VAQm8tNIlyqGsfCMbq8YBocptJlZdXqZgBSyTQRxYbDLbNhqRufL4ygMyLqS7+5fDZLt7eItbyKP/zt7Rhvkp70z7g+PE3NRP0+rLPoETG/j7KqamJ+703xiM02++0SSgBKybhcLBAcHaZ6cfMNjxcliYh3YsH7g8tTQzoeIzk5kGi0WIn6vYiihNXtJH0DI46rkc/lOHWun6XN1VR75lM9oFQpF00ONLkAsyrAswsSv0nwpfW89PoZxsJFrr7vAWQUPafP9TLiT6NpIisXW5gI5/FmSlVktZhH1BvZs66Kmvoq9p7tBkmHL6Nj/74TNFaaiYUCfPmT9zA2Ms6PPwiSiZ/EYDIxcPkK5bW17KmqYtCbIhrPsm5pOQargwMX4oR0Lv72x8dIFHUgmOjwSlwYz7N4dJhAtJu0rhxE6A0V+f7zJ5iIA5IRxejkmReO8/hdLeypEun65TDPHfAjqwKaZJpecxOCm++9NYaqMyNIICGz71gf2XSG3/vcbjovD/HcyydJxJPE0udZVmPhycc2ceDwJQ5263lh72miGRWTXmAikkeTZTS9xna5g+0jHXTr6rho3UnuE/8R79mjFHVmEoNd7L74Fxxf96+wr3iQ/Xv7+WTyFQDchlInPlmxHKV6GfnhAiajiVORDF1pBfulK/zWujaMk/lCb6oA7kbWCXEqrZWoOgPiLBfbi9EMibJ6fr9cZs+yZR85Vv45GaZk71nIZREE8ZrV4oUqGqIoEgv45njN3yw0TVvQ9ONWkI5HqWtZelM85j/8RB2apvK/3lzYcrRcn+L3v7CTI8evcKC7wEDUwEA0f80EeKrqcK3KxPsnhxiMGSizjNC2tmXe45qcp5gMIZntyIkgoKFz/GYuyFNIKiVDldW1Ihd887mVgayRN89nABPbm3Xcv6eNSPw0PRG4f6We+ho3P323l6A/hE0nYxEKeMpE2pZUoFNzNC5r5kj7fiK+CWx6FYPJyIZNKzlwpJNXD40iqEUimS68CY0BX57e4ROcGjeAZEITjQQLRhBm+oMJ2UgC45zEPauZyKQLiGoGTW9FEQ2cGBOIv/A+teVG1lZLNNVWIWpFnG4Xrx+bIJg3IQjidCIM8NimMlzuRrLJOL7RcUJZPcGciRWLDOzetYrnXzrMROQcgaTGmsV6Bv05CpKVU8Pw9PZaHiov4+9e7gaDhS3NRh68ZwtvvX6IGqcei93OYBiO9CRRdbV0XBwmUxgCg3U6bnVanm88UEsqGp1WDqiu8/DprVFeOJrn1UNDrFzVhKaqXOjxsaYyS0VFNSuW1TDiS7KtRcRT6+Fvnj3CI3c08dsPtaDTS/+cCN8kNE0jODoMQGXDogU7a6IkzdNwN1osxAK+D905SsdjGMzmOYZFt4KY30dlwyJifu8Nj03FoqiKgs3pumaxIpdOY7bbySTi8+4xt3pvuHBpiP2XC3hDQzz12PxkWElHUeUCajpacukrZJGsLgTdzbmj/lpC0uOL51jb7OB4d2Ke7bIqGdnXVQD0OPUpHrlvM+c7+th7NkWTI89je1p56f1e4nGFRCRCra1IKJfl/s2VRIJhWtau5exgnpHeHswWM6pcoKW1HrvDznOvd2Ez+Vm2yM1oIIOsgt0U5kRnD6rehQBEZBsaasnRVRDQRCODSUA3qyAk6hlNaojFOJpoQBAExjI2Xnqvm2a3wiPraxmdiLFlTR2JWJShoMzp0VK8acYZHeONjSJb25bhHxkmE48QjucZiBrwmMxs37mBw4fO8fq77fT58jTYoSiDN116PadF5V/97h6eeeEkyHBZWMyRz7yK/vxekldOYa6spzZwnl1nvs8KtZfk5R8yFB9ie+TtaSKxpmmc16/C3refmKBDlVoB+MbyBv7mQh8HlHJax8a5q7mJY8OjVIkyy8wF7l66nAOjPtZbJZ5Y0si/O9ZBW5mJL69o5K5ojLV1N96U3gz+SSXDcrFIIhQoTezOGpIo5LI4K6uJBW5tIvFWJ31D42MIgoC1zEk86Ke8roGJ/l5ql7Te0nmmIOn0k45O10/GNU1DQ8Nsd6AVhhAMFmoseZo8Fk70ZVBFI8mCjnPtpR0yLMyh1hQZ1CKC/sY3/G1ttVSMhGlpucY1EkQMrhqUTBzJ7kZJ37zyxa8rNE1lx5oaLDYLHS/2TA9zmLUU92+s5nx/jOF46dqfHUgRjp+hN6iCVLIaL+aSaIh0DSW4b9dSIvELCHojq1ct5tnnj7CvI0GWCrqHYwyEVIIFC//z2WOkVROIZsDMeGceMHNsGDTNzpLyPMlcjmDOhMec47Hdjbx/aoz+2MwNUlMK3N9mIxTL0j4h8fgGK02LPbx94BI9UTOaXOCRB7aSTcUxjUcxm42gCJSXu9BJC2/UwvE8S9c00H4yyLkLXoK50rU43p1kyHuCwagJISZQbRd48qGNnDzdzdsXMqVNZCRCKhpm0xIzV4bjBEIi7ed76QrqyV0Oo2lwKaAH0YgAHBrRoRWzICrTGtk7Wq1U1DfgG+xHP8s1ceWa5dyd7CQUjNDZOUiF08SJAQUtlUOMQCx+hf64mRZJQhdNEyqaCUdSbNr40SsTv6mIBwPIxeIc3qwiy9McXkWWb3rg8FZ1hpORCMVCDknSIen1CKJIaGyUmub5G/SbgdnuIOb33lQyXshlZ4YFLRayqSTZVBKd3jB9/1FkmXQsdl3b6JsdHlzeWoc/2s/KJQsXdDRFxuCuny4+iEYrmlz4zU6GgWV1Nu7avYph3wmmmH6qqrKzSUUSJQ4PlKgFUcXCj148SSQDYERVFWJBPzZ9kfaBPHfftY5UIsWpnjhtq5v44HCabz93FH/WgNmYw2SQQW/m+YM+RMFHXnCQyoOvRwZK13ikS8VlMLPUUaQ7KCIoRZ7eXUk4mmJf91yDveUVRVrqHbxzLsoip8Jnn9jFgX3H6QwaiBeNrF5axY6tK/APDxEIaNgcVjQ5jymeBuab9U0EkqXh/Eic9p4wZ8Z1CEJJy/2HvzhGMCmQxQQYeWKnm7p6D3/2veNgKqOYzzLS20+VReZkbh0ko1gvvkaD/xCuoQn66u9n18APqBBK/L8Hs/uRe98nrc38Ts7rVtL+1IukOo9gbtlA9qIPF1DjdPJ0az0HxwIEUzqyhTzvemN0qy7keJiJ3nFGMnlikpu783mGVRNl6QJOq411H6IQeS38k0qGE+HgtHTObLiqa4gF/AtOEd9OCIKAo7ycbCpFMV8gGQ5ND/HdLKaGK3RG003TLgRBQBBEsqkk//H3dgIlWTlXdQ2bVvj46zd8FAQTb3RkuVYiDHDPSiPLlizie7/snXa9mc1Lm10lXrq0gaVLG+adY/o96U1oiozeVYuSjk1bM/8mQxBEXjo0CsUMguQEQJSzPLWnBh0ytW4jw/FSZbaAiZ4wMFm1TGsmlqxcSetglgujBTwX+7nvwR08+4uj/OWPjpPGOf06717KM7X4prFPy7NNWXWmKKmwmOQEX3jyDnq7h/jZ0RgmslgsJkSlwIpKif5gkQIm9GqB1SsaGBnx0z6RwiAq5NNJnnh4My+/20VPyMyhkz0Uslku+iVkNYOGBoc7EI0zi1WZPk+Lx8T54TzvXhE4P3wUf9aIMDkspxVz7FpjI5bIk8oXaWuycKwzxS/2nmYiOknvKWRYuWYNgfFxNu5cwYorvbgqK/jrn19gS6uNQj5Ph3cuDUWnZvnaY0voH/Kz73Lp99bnTaM/eZkTlwL8wdObKBbypCIRLGVOdm5bzn/+u/dp773I5x9ZRQ1eRooarkKQnds30+wNUuF24Kpws3KJn4bF1x52/WeUHENdntIaO9V50+n1GEym6f/+VaGYz5Z4uL4JZFlGlWWUQvGGqhdXo6T4oOGuqb1pDeGpYUFrWWnoMJtKzlM6utrtdKHXNdscRLzjN6SF2MvsPHrfums+LpodyMlQaWiumEdTFSTzrRuo/LrhVF+a4fFDjMYEBFNprdnZWGT98jpisRT0pUDSIQgiQ4mZjXE4KbNo+QqScj+XIwl+8eJBnv7s3eSE7llFBguCBO2TX6kgShSvIuaYtTR5VYcqlc59x9pK1q5Zwl8/c4R0sYDRqEevl6i3pigoEJgsDDRU21i9ajEHO0LYjCXJ1U0bllLhTbL3bIrukSSqcolTXUGSgpNTv+hBQAWdcWazphRY36hnNJRnPO/m2z87TbooUhBMJcEoTWVZhcLSxnLeO+tj9zIbw/4M75z0Yjo3AabSJszjceN0OXj4kSUcvKSjom0bS1/7XUxajs7Gx1l1+YdUGOYOwrzc9EdElz7AI+98nnoxSmNxmIGTP2TF+EFqz/YwvvktJjIR9IJEW42HD7xRXvBnyOcu0SCoXPR50RlM7Kis5rP2GkKJGBuamqlxBqiw3v64/SeVDJdVVBHxjqMzmigW8iQjYWxOF6qiomnqtKburwrWMifZVAqz3U42lSKdiN+UtNNspGLR6YReVdVpmsaUYUcs4EdvNM6jdFxN/zBZrER9EziraxDVYXYtszIcyDAcv3aVIJeTiUUTJf7wR8TsRfifQiI8BVWDr316K0dO9XJqBHRyEoejiUQkjNMMm+rVaTk1AKmYRBbNXBhWyL91jm5vEb2okE1GuNR+iWS6gNFgJF2Y+zoGNYOKiDyL5rKmBp585A5+/PIJBmIm7DYDp4+d49JgnEa7hS995i5e2XsCyWjiqcc28fb7HZwcUpH1Nv73ixcpaiI2HQQTRnqGBjA5YgyHFQTRyKkRAEtpAFOcVOS7quK0ttnGnl2ribx0ktGoitEgQUYFJOrMaR57sIl8KoXbbsZozHDHzlUMeU9yOahjaqkSjFae3XsJTS5Q1ZfBrc+U5LeEPLu2riOfTlE3Eef19gwuXYaobEHTBOKxJLlckUZTgg2r6th/Psf7nXkQyjDbbNPaslP/X22X8FkaeOGti6j2GnasUti4YSmuchevvnuJYMrP7366jcama2/4/hkliDodUZ+3NEgW8KMzGLCWOclnMx+KYnYrcFbXEPP7cFRUkQyHyKRTWBxlt5QIlzwiSlXpbDKBIiuoijxdjMgk4uSz2Xlr7NW0B0d55WRyW1r7poY3nVXV19wQiKJENpW4LfcmUW9E1JcSMuE3dC5jIRQFI5tXlnGfy84P3h5F0JtorDJhMJno7Wrnya3Lef1UeGatlPOIqCQlGz9/9RTRjIagiRgkje4LnfQOhHDZTKSvnidXCpiFPFlx5t5mVtN86/Pr6ewa4c0LOUQlTyxc5J23/IRTMv/iqbUE/UHeOh3k3/7ODrxjfp75oOSC+/6FBEc7z5BWDIg6gVPtgwgGEyMhBTAymjQwekUGsUS5mJJ1m40qi8xjD27l1OkrvNmRwaSH3KRzsShn+cJd1eSScVpWLeZ85yh77ljNmbPdvNmRhVnzhke7EvSMxBCFfv6F+AJDOh1hXSXFiiWkt/4Wb1Zvx3HkK8iCDruWoVJMYSgk0GI+JvIm9q37zzT6j/Gp/r8onVAHF5IRImtryPnDVKahQS8jWco4EvOTsNey0wNbaj3sXNzAW70DPDee5qvKAPe23B5axNX4tUqG48EAiiJ/aLkZSaeb3l1P3fTC3nHSsRjltXWlyvFVShSBkSEknR6z3X5ND/rg6AiCKGJ3l2M0X5tCYLJaSxPsvgmqGhcR9XtvWTvT4a4g4pvAYDITC/hKdp1+Lxa7g3gwMDkQFLzh9ZndbvzWJxaVhlICvunPv9Ak8rFhgaNDCYQPySP+p4x1NQoWk0THkEooGCZXKCWBeb0b3/AIrsoKavUKeqMGYyXHnjIpyzee3sixU70cHdChExSe3l1FJBJjw+atdBw5yuN3NuGqKOe//fg8wmQVVi3m+OpjS9AKWS71Rzg6VLqRRuNpzp/qIJouVQRW1xloXlTFylXNvPDWRS53DRIvSPgSMm/t66BztMRfBsgKFhBgRYPIqiUu0nVl/PxQYB4H73o405MiGDnDYERge4uZ+/es4bmXTjIQg0a3iMViprNzkGMjEiAwEjiBLyZTZigSV2eqccF8ifIRCsCDyy20rFxGfXecH77UzvYVDvxxlZVVKk89fgcv7D1DV9DEz44lqDHneXJ3M5UNjZzrCZOYLGT86ffbsWgpNjaNsWn9EgC2bVzMua4gntoadCYT9+1ZO51A6SUBvSDfcGj1NwG5dJpMIgaC8KEkJWGG+5qIhLE6nSQjYWJBPxZ7Gbl0at66Ggv40dRSh+RaVLR4KIgiF6/rCAczbm5TqGtdRiIcuqX3LwgCoiiRSyVxeWpKnHyna3rwLZdO4agoqQVdr1s3T8teECirrCCTiM+h7c2Gs6r6lqvY/4wSqsw5Ni1zc+hChHgKVJiWtPRH8pgMXlavW4atzIlRCiBPMgs+ud1NZYWLv9/bSzgFn9hRR3ffOPc/cC+BkSFaa1JsvXMbP3nlFH2Rmdfb2Wrgzp3r6bnYyd72LAXBTF6Bi+cuMRpRADOV+jTr16xBlCRkeujumyCTLaKZnLzyVgdZGaa6eqpkJIMRu5hk9+bl5HN53jk1gS9783x3f8bAz149hS+u4pKK/M7ndnHmbA9vdmTQK2lcTisROcdf//gUKdx892fHiKQ1yg0QyusRpNJ7yWFkdFLl026J4Fq2gXAxyOMX/j2vRGNU1S4lUZQ4/tRr6AZO8JWLf8QT3h+QHfkef7v1h9iXbsCv5SA2Y0zosDjoOdeJ21QGJhs7Fy+is2sYT7mVvJjjyaZWapxOAAyiiFEpYJAWzsFuB36tVnNFLuKqriGfSX/kcxmMJiK+CXKpNA3LV5KORhesUgiCiNlmm16cF4IoSVjLnBTzuXmPFfM5oj4v2dSMXqyzykPUN4HhBrqXC0FnMOD21GJzurA6nER9E4iTLRGLo5QQZxIJIt5x8plSUpVJlv4dnhhf8JzOag9j3V1kU2mKhfx1X3/BRVkpUmvJgVKY/9g/A4DVS9xs3bCEdB5+dDDKBV/pOxMkHYcuZ7C5KxnxZ3j9zAx3ulAoEAv4cehL19VilCivdNM/luDk8Q6qG+oxG3WcP9uFXpyh2wiSnljAj1zI45z0qdQ0jdUNJpa3LSWXjLOyUmbzxlaiAT+ZVJpEQceLJxMlOSLBxKlhFdBYZM+VlCwmcX4oy/B4BHdlJVLp9oLbkGexI4exGCsl2ZUFHm+DjXWlEkSbR+aTm20UFY3LQYlys4ySCnPhdAfj4dJn6/ILnLs4Qk7R0VopIQtGxlJGHlpr4YsPNHFnXZz1tXMpRZqmUVluZ+hyJ4vLwWG38GaXwNlxiUBS4fz5PvyJ0nsQtSJCIUE6m+f1l/cxPNkONZGjwpDm/jYLbctrp93V1q1p4atPb+fhh7dx/93r5sT9F5/axVc/tZ53Dvdw4WL/R4yMjzeyqSTOKg9o8zmIt4rShj2IpmqYrHbs7nLSsdi841RVwep0ol5nzZULBVzVJcvihRD1++bpSEt6PbGg/5YUGqbgrKqeTqo1VSMRCmEtmylkhCfGyGXScxLtwMgQobHRBe8LUJph8Q3033BTda1EOB4M3JLL6D81NFaY2LxxGVUOgf098Nq53DQ/+sigRjIvYXNX8IOXO0hrM5vtQipBPhlBLxTRSwKVnkqyBY2jxzsZ6hti2cpmBi534w8l0ZTi9PO0fI7IxDgVFW6kya+stUJh3aY1iAIY5ThPP76RkZ4e8tksqqLw/hWF48Mlfe4rYQPDEYElriIGZmImiY0DRy7jrKzEoi+dWKcVWFmtYJZjiEqeSlOeR1ZoPLrWiJE8Tn2Oz+4oY5FToSesJ1uEOpfI+ZNn6RssDdHn9WWcujBG10CY9a1O9BTwZi00lql87r4mHlsFD6+1oNfmxm+hbh3xYICxaIHDtU/zpeB3+fKlf0WTFMHR+Ro1E0dK10PTGBTqEJIRgsff5IHO/1p6vgJnjetojw9Bcy0RpZSnVNod/LutbXxt4zp+f/2K6UQY4J4li/nB3RsI5fI823H5umvDh8WvVTJsdbqJ+kvajB8VNpcbt6eWyoaGUmJqsSxY+XV5ahBE8bqVVmuZE6VYWFCQPhWN4vLUkE3N9FREUcRdU3dDu+iroc26IRUL+emFcGpx1xtNlNfWYXE4cHlqSSdipWNzOezlFXOePxuCIGBzualetHjaAelPvraef/O5Zfwfj3iQ1OsnuSs8Ir/zue2sayi1+v70++3TVeLg6Aih8TG0f8qJslrkbKeXH7x0Bgzz+YYR2czLb5xh38U0OkFBkjPcs0xkS6sVndmO0Va66eoEjUggyEDMwLG+AqlUjjFvjExB5f/68jbKDaVFRRAlTg/kuTwU5432FAY5zVPrYPPOTfRe7OQLDzRjFTJMeCMc7Erxv98aI66U2qZuXRrT5EJ8Z5ub3/7MNja4ozy91UKjPU9zhUDfeJr/+dMOMpSec8+GSn7r09v4xhPLWO7KsarJwZLWRaxuKcVcldNMc3MtLa48n99ZxiNbqrn/od24yww8vLkcUckRl03sv5Ri986VbG/zoGkaJrLkcgXc1R4WL6pi2aK5vy9BEHi7NAnI1l2bWNvqnH5MVuBcd4BQrnTzu2uFla984W5sZiPOCud0gnHfejff/Ny2kkOe0ch7h3sYGxrFNzRIeGKc0PjYgl/pyFiQSz6RC70zyU8ilmCwf+RWo+NjDWdVNfFQELP91t3froZOr6eirp7y2jpEUSAeDFDbMt+Fyu2ppZDNXneozOWpuaakZSoWxeIoQ5GLc/7uKK+45er21Wtm1OdFEKCssnJahcRdU4feaKR6URNycWadk3R6LGVlFPMLFxh0ej0Ny1dSuCpZjvgmSETCCz5nColIGIvDQSE3Xzs3HgyUOp+GhZPwfyoYCyT50U8P0B+Z3wAvYuBEV4AfvnyejOTAoiVpdRd4apuDREamorYek0GHQYJEMEAsJ7Kvq0AGKwGvn7OXvHzrS7vYvmSG3tLhhb6JDM/v6yeLmZ21cR7eswrfyAiblrq5a7mBocFxRuJ6vvP6IO2B0vppIodbVyrwNZfDFz+5hV2tBh5dqXJHs4bbkMfmcvPfv3eIS4HSZ1lRq+czj27itx5o4tGNDhorjTQ3VbN+w3LKjAo2g8bSpYuotMFntzvYs1zPp5/YSWW5jZ0b6qmx5EHUc2JEwlVRwT13tlFpUUApoORSWJ0ubHYL69c2Y9PPTTx3Df0IYaQdc+smgrv/D8ZVJwCqIFIXOsOWQKn6e9a4nuNf2kfR3YB+8VrSk9rzJ933cOHTPyMpKhjNFhRF5rQlQUcxQGchwHkpSjY/P64FQeBdf4p3ExBOxoDS77N9ZJR07qPH+k3RJARBeBD4K0pjKd/TNO2/XOO4TwEvAps1TTvzkd/dVTCazdelIcxGaGwUTdNKC68kkU2l0FRlDi1BVRQMJvN1BxN0ev0NBzxMVitcY6jCZLMR9XnRL8Dnifq8KIqC21MzvbBe7/OIOgm9wYTd7SYTj1NWWbWgo51pUq9yatNQOi5EWcW1BwQNJjPJSHgO7y2diOH21NJW7+X8AqIAmpwDQWIsonD85GWGgzMWkVMQJQmLowxJHUKV/uGnlj8OsbusUuCpJ3by/vunqKqyc6gjSGiWC+DGZjMP3L2N535+kEfvW0MyEiGbjCHpzXz7pUsYJQ1EK7KqRxUkVA1Ssp6fnymgKQU+udHG0JUecvJMBak/qqc/ChgMuMUQNQ0thCbGGRyPs3ztatZIRn6wP0KF0cSaeiMdY0WsYo5vfm4bXV3DvHo2xbneGErhPA8+sot4KIRJHubObSvQ63VY2scIJAuMpwwcvRBkZCTAiiUVbG+r4pXDoxhPDpOSdSA50Qt5zh4/i8sqUV3l5NSRU+gpkM2rLG5qQHcmSoFJPvBrnciaBhh5+q46TEY9f/73+xEN5pIJiTD39x/UKnjjTAzr+YOT17R0Xe9ZX8mq1c38cu8h2oM2Rr1JjKcuoBdh85ZVnLx8lJSunEuDMeKpyxy6XEQ938fSSgfuchdh7yjlNTXTGsRXY9WqZorFXupr3VzpGmDRompe29dFf0TitzRobmn8yHHzcYhdQRBu2pwoEQ6hFIsYJm2WFVkmGQlTVlk1vfmYqujcKCm9UaHgavrDbFjLnIQnxhHF+RXVdDxGIZvFaLHckKKWiIRLhkaKOu0IqqHhrPKQCIdwVs38hq/mA0OJiqYq8jULKXaXm6jPO6eIEg8GcFZWEw8uLIGpKgr5bBaL3UEs4F+wajyl3OG2jBD5R6pB/GPHrpBL8OUvbGWkf5jlaYWJUIYO78w91iml+foX7qL9fC+pdIHtm9dx9vAxyu16jp5NceK5E2g6E4omoAo6VAQ0VeHgoA4GZdZUGvCPj5UG8Ch1lNOqiX2XC0Dp+2xpqiaXSjE0GqR5kYdtd+7g739ylFBWYu1iK93jOVKqiYc2VbB8+SL+57MnGI0aeO/9s2xYWYMiK4yMBlheq+e+u9rIJOIIejg3KtPjVXjz3bPUOASqK+x0DcX4xbvdFDLthHU1rK5W6O64QCQUpXxNHSMDMcZ6e4gGI6zevp2yS0G8pdoJR7oS9IwcZyJtZNsSPQ/c/RDP/uR9RpMGbGdOkNDmdsxdUo7P9PwZXYPLqBbiNOtjAJytfIDBh/6CjrNv8uSV/x+V+QmSx17CkfBieuhfcKHxk1T6n2dx4hL+0z9ipekOHH1pCroKhm1W1HSBvFGP3lNBtiuE2Tg/1/vD5bVkijKJvEw2EqYnEuf7AbgnMsjX1634SDFzw2RYEAQJ+FvgPmAMOC0Iwl5N07quOs4O/CFw8iO9o2sgn81SyGaxu93T3GGYv6hG/T4UWS7ZcJY5S1I2BiNjPZdxlFcSD4WoaV5SWrhlGUWWr2l9HPX70BsMt1zBnY2FLDqnoKHh9tRMLqzXb91pmobJapuuMpRVVhH1+xZ0YVpIfuhanLQpLFTVNpotRH1e7t3RzOOTC/rU1P1fvzrA1x9uwuuL8ubFAu9eynF1Ivyn329HUnPoUFH1NzeBfTvxcYndsUCSd987Qy6vUF2m55GtVTx/0E9uMrG7MpZF98EFLAaNkf4hajwuBNFJXVMTd4++x8r1bSTjCd4+F+PwQIw1tXq2ranhF/uHSBY1FjU3MjYWID1FZ1AKNDpVxuICqmjEq5Tz2r5OIjkdCc1N+s0L5GSNRrvArlUuWlctZ/SZw0Sz8MEH5wmmNcCAL2Mk3ZNDEYcYGxrjqafu5r23jpLOZHnyM/fT1TnIS6cSTGSMTGRA1CdoqneRVs3sWu+hpbmG8+092Cw2zJLGmq2bOHX4JFt2bMI7Osq758KkjkcpSDOxESqYJr8T6OwLopNEcgb3nAEijzmPUacxnCwdGypaCc0tAnLqchiLVODeezZw4bnzrGqppmlxNe/vO43ePMTXnmjj3RPDXAkbGIzJoDMhAn0x+O4vTrN7Qx3v/OIE3qyJf/+N+ZtlURTZsGEZJ09d5q0LWVxH+1m+2I2iFnCXf/Qq6schdjVNIxbwU1ZRSbFQUr9R5OI8s4lMIk4uk6aQy+FZ3EzEN4HFUcZo92V0ej25TBpnZTUGs5nA8CCCIFDZsGjBAkA6HiOfzeCqrvnQPFlBEK65puezmelByRslw5qiYLLayMRnjIGMZgvxYGBeIj6PDwyYbdcfDtQbTfPOY3eXE/F5ka66NvFgAJPVRiJcomdkk8lrfkZnVTVRv5feqJ5/DKrxxyJ2dQZef+M4uSLcs30Jizw2UlnvtGRkvGjgnffPk06mqCwzEBgbo7ahhqrGRtY1TWA2CNS3tnLwyCW+814Ah07lG/d7ONXppcOro6KijOq6eryHZ+RYK41Z8rJAQimtS68d9eMwqQxnnVzwhmjoSxDPKty9zMj23esxfnCRo30FLnQOE45nyWEEwcDRfhkFP5FAmHvuWoN+ws+bbxxlcZ2LtvUr6P7+YTI4OD1aWgsf8ZiQVRG7zcLnvngnHac7CMVkPA1NPFjtQdFUlrXUIaDRPZHnze8cIivZpmMjP8kHFkQYDWQ5e66HYMGCajCTmGyMGMnT6tFzeaKUd9ULYerlY3Ou+bLIMa6cewt1yXb6/VtQVHDs/DTKG/8N4dK7XK5/GF/VRr52+V/T0PP/cWz9YwBYAa0vyqhDgFiamqiG2+Zc8Htd4fGQyqT4g1ODqIUMT3isLBU0ljsXPv5WcDM0iS1An6ZpA5qmFYCfA48vcNz/C/xX4FfSm0lGwhhMppJ/+6SQuarM541omoq7ppZcOkU+m8Fa5iQdi7Bk3caSlIxuhkMp6fXX5MLFQ0Hs7vJ5LaybQTwUJOq/sWaxzmBkvLcbuVi8ocRaeV09giDMGRZxVXvmJLGZRJyIb+K28cisZU5cnpo5lY1kOISz2sOiMoV0JIjHbcKgzW9pTEERTeTFf7TJ5X/02NXJab7+mY1UV9q5OC7TM+DDWV6OJM7EXaxo5Ex3lE88sh3RYOKlg+PsPTLG3tcOsnJ9GwJg0Ouw6Es3ekkUMBj01NlyfHGPh/f2n+OVEzPt+hUeia88tZ3H1lsQlTyNjiI7NzZhNJYE1FN5jd2r3exoNVHlqaDrxHGCaYGndnlY7LEwEZ4pJyUVE/s6cwRlG4MDYyxa7OHJz9zPz36+j+ERP7WWmRbw8WGRnxyJIYsmQtEs8VCITRuX8c7pAG+ez3L0RBcj/jQh7wTL1q9n3Yqa6US43pZnYwOglGSvNEXm9JjE8WFh3iT9A1tr+OKTmxByc90LATSlyLbFYDEK/PJMnB/t7UQ12pkIpogHg+ze1cbBU0Nk02maKhde/qorrGxYv5QltWaqFtjH9nSPcPxkF5qmUV/rxlIME85IWK1mvvzUdpyuj54M8zGI3ahvgrLKKiI+L6qiYLRYEaX59ZNcJo3bU4umaUR9XhzllUT9XhpXrALA4S6fpg8IooggStekbOWzGZxVJVfPW0E2lSLq816TnzsFq8OJb7CffC5HJjE/fmZjqqLtnmX8MbUmTkFVFELjYzdlfHQzECWJirr6Oa8xZfucjkfJJpOkEwmSscg1zyHpdLg9tb9ydaTr4B89du9ts/PQg1vwpkT2H+2irKICk37WzkAycHIYWpo9bNm6mr2HBnntmI+fvniUqqoyVm7ZQnBkCLfTVhqgRMNgNCCpeZ5oK1Eb/vLZo9P0MrGQ4Guf3sBTd9VQacqhU3PcvbmOcrcDQRBI5GFxlYkH2yxs2LSKwUsXGB8Psb5W4+E9qwgGojDZORUkHSeHoCdhZ3Q8TD6T5eFHdhKK53jtl0doqbVMz3H4ska+ty/IUMJIKg+jg8M0NddRFE385QvdnLgwxqnzo2TSWUw2G/fvWUNGMyAIIiby7Fyiwy6VLr+myIynDbxxPkNGm1tkW9tk4VOPbGRp9cId7BO2XZxY9HkevfAf2Hzw/2Zj8D3cuTFS/RdIbf1tFvW9glzIE3O2Mq4tUFwURcRFNeRcZqIGheJVFKdwMsWLl/sIJ1OYjWaWCClyssL5tMqfbm9j1+KPrupzM7+WOmB01r/HJv82DUEQNgANmqZd2/j5o0LTSMWi6AwGXJ4a8pnsPHciKCWYMb+X2pal04mjIErEAj4kvX665VdWUYnZaqX8Grtra5mTWMD/oQZHFLmItayMVPTaCxaUbhI2p2u6Onw9iKJ4zQqzqijIxeL0Tal4k/wZVVGmh+xuFqKkI+r3Esnr8SZKFWed8OGHa9RCFjkRQi38SvZQ/+ixKws6+vonGPcn+exddSxZ0sAPfnaE9fUi9daZTURWstPb2Y3dakJRijy6u4l40UjIF6BYyPPzd7oZmJS9y+QVhkZDLKqwULeojuqKMpRZCh8j4SK9nVdY3FRLmaGI3SSwpHUR1kmWisdloGVFK5KokgiFcNfWIej0hHwBWtpW8eTOKrY1znynmlLEaZF4+YiXk1di7PvgAr6kxMMPb2fbqrkdh6lq3skRkZ9+4OVne0+TEMrI62zs68zTGXfxo2NZzhw9g9sqouVSaJrG5uXlPHzvWmxijo31Kt98uI5yIYJpgY3W0XMjHD14BqS59KVmZ5GHVors2bmSta3lxGXTtGbncKjAyESYSz1ewrIV0eJAb5pfuas05WiptfODH/ySnTvXcs+G+R2bn/+ynTeODHP04CnGvRG+/tQmHthSw6Z1i68XCreKf/TY1RmMxAN+dHo9ZpsNvdGIs2q+WoLV4Szplld5cHlq0On1mKw2YgEfBrMZTdOmXdgq6hpw19Qi6RZuSgqCSNTnxXqLlZ5sKoHLU0Mqev1CgNFiwWi2ULO4+abWPrPNfs0Btyl5Tle1B4GbL8FmU6lrbgYWgsFsmabD2d1uyiorP9Tw9RQ0TUNOBFEy198MfAT8o8euP5qlr2+C5TUGnn76fn7y/AeYdQrrPTmYNfQ2NBKgkM+DpOeOtdXUV5rpGQoT9XvpGc9M0h5AQWTMF0MSRerqKmldupicNqPqoOisnDp+AZNBT0utFZ2gsKixmkpnKak0iTIrVjXjqa2i9+IlPIubESWRZE6lWCzy5Ce28eBSGeOsfUG1TeVsT4wPehUOHunk0liR5a11PP7QRizajIjA1Jrryxr5wf4wr757kTP9aUSjlfYJHe1+I8+3axw8OUA8nqTGrqEpRZoqddx7VxvL68y49Vl+/9EGVpdncIjz4/PSQJzjR84RCMXm/H1Cc/Pj1X/OuebPE9n+TVJSGdtSR7DoFGpzQ5SPHcE0eIxFuQGWpjpwVFSRF+aqYaRyaUbLVHLnuyFXQF27BF927uv8fXsnvxiJ8t2z53m9b4jfW7+K31nq4beW3Jo07fXwkaXVhNL2838AX77J478BfANYMJm9FirqZzJ/TdNQ5CKFbJZ0IobeaKKYz2E0W3C4y+c991qcN/11FpSpYY8PBa00bXytRHs2JIOBWND/oWWLAIKjwxhMZiS9gajv5uXaQuOjmG0OioX8gjQJKCXM8WAAZ7WnZMs4Sef44y/XIhcK/Nn3T6IZbFilPB6HSF9YvGmrVLWQQ4750bvrULJxxAV41b9K3Erszo5byXELNqmSkTc6coCETopi1IvsWF3O4sUeGiMRLo1kiOcl/JEs0bgFTWfEIAp4aioxG70c6clR5VRJ6CqnF71FNXbWtC3hh88fpWP4COM5xxwXqbRq4kB7gMaKKJG8ESkhc+Z0F6FM6fnnRmS8z+wjo+rZuVwlnY2yvl5HWjXw9ntnaFviZlGtgxMjJWWFhjKVL35yG4ePdbL/coHhhIYmuXj2hRPEEzkExYimm6kkaKqCQUnxwGoTlZWV/PLYBEF1phog6AyIJhPlFW5++16J3tEU+9pDnLk0Rk4pJbiFXI5HttWgSgaeO5yY0zKvd4msaWvCahnjjcszl7q2wsTS1iref/sAozEdQk5EbzBQEK3sXlPFqlXN/PfvHQRTGd95rRdVEBF0RmosOWRFo7VaR5PHwZLVy7kyEueFNztI5zV+ciQGzEgGmm0W5IzM8csJkprMnniMu+7Z9g8qf/VhY/dW1tyrqVWqIqNpGum4H1VV0BtMyMUCrmoPRsvc7o/F7lhwIPlaSfAUbpaffDX0BhNRnxfjTRhimO2OW1onF8KUXr2qqiRCQSTDzc1DRP0+jBYLEe/Edb+LZCSCwWTCaLFgttnmUC4SkTDltXXTyfhsnfnZWEjiUtM0Duw/xQeXjVTZRb712+sXlNH8VeIfYt296NNx0ZeiwS7SeWmAMquOPbtWMXL5Eg3lOs72xkgUIJOFVDKDpqpUVDoBeLu/gGYMczkgIehKiZvLDGvXtuINpHjjUD8TcQ1NPxM/gihxsDdPUZvg0mCOgqan4+IAQ/4MYCalWfnb547hMIu4bRKCYYhMtsj65moOnh2lxRNi7cbVnOg/S14pdbifuKMRi9nE/3ixhw+6C4CRd88EONHhpaAwx1gIQC+XhgC3r62nbyjEwVnbEUEQyGt6qus8rG/wU13v4cdvD/LciyfwhxIYzKXfTYNb4uF7VvHs3osE8jO/abuuwLKWJdRXWRk5WUGjWCreBfXVxJvuIHnubWpe/feY0xNcMVWyVBfgYuXdFO76A5bs/zOWqKM0DP0tsb7vUmUsMk4FRyoOkc+nUMWVeBYvo1AWRTSfJ+Drx74lRMww8wHFoSLCUCsD6jgd4Vr6932PPxw9ye7/8/fh1ppI18TNJMPjwOwadP3k36ZgB1YDH0zeDDzAXkEQHluIEK9p2neA7wAsblv7oUqKUb8XZ2U1o92XWbRyNf6hAaoWNRH1ezFZbcRDgetydW8Xpqw+r16MbuQUNPv5FrvjIzswaZqGpqkYTWZMt+iiV8hlr8tti/p9uGtqF1y8dQYDmqH03DtX2tm8ZRXffvYQAfn6170Y8yGIImqhgKFqMfnAEHrHr8T977bF7uy4Nda0fqi4PT4ssmeZnnUbltF77jRLN27GbB+nmE1Ts6SNjgsDnOwKM5G38lfPHmXt0kpC8RjZvIQAWMUcW5Y5ONMV5HhnmNTkoIZJl0PQstMc5O2LVFY211HfvISeHx5mcZWNLdva6Jk4RX+0JL1mtjuo1aVZu2Elo8MTNAgCnpoq/vtP2rnQ109BNIG+9D16Q1ne3tfORCCJ26AjnDMgyWmG4la+eIcHSRR49kAQYbKFvrFB4K6ta4n6vTjc5ThtQYJXCdTvPZPApE7wxYeWoWpJkoqJu9e6WNRYzXd+0Y6aS/HIIzs5d+o8gjCzTKmqQkO1HdAITPgp1zvJqyIpxcSR7iwttWnueeguBjrOU724mUKhyA/eHOTg+RwXekOkBDsCoOnNGMmxrq7AuuXVpKJxXNXVRMNRvv3Mfvx5C4gigjjDu0wnU/zolXPUuXT4JB3RVAGnIc7BIQ/ujj7WrvtwturXwK8kdj/smptNJVFVlVwyiSRJ2Jwu/MOD1DS1EA8FEQQBTdOuq/l7O1As5EmEQkg63Zw5C7v75uY68pkMmqZec/jupiEIaIpSKhDcQgIvCAL5dPq6XN6pRDgZjczbZADTBZ9YMEhlXT2BkaFrauBPobt7mDeODLGyzsCJMQM2qcCONYtv+n3fIj426+5o0oB8yc/Xnrqb84cOU9e8iKUNi3DZuzCYLNjKK3lx7ykSio3v/rKPtno9FaYisVSpIqypCpsbReIZkb/8weESH1hygFjETpKEVqJReMx57l/nomnlSpQDF7k4EGP7to2YL/QzcH6yu6U3s6jOTJVFZuXaVQyPRdm6ZTl9r5zil+fTvN9+hIyxYuqDs//kAHpJosEpMJ4sIsp5ooqJ5ioDX3hyNT946Rz+yc6XQ8zwe1/aRPfZs5isNqoqCjA6l3rZHTbwX753krvaylBkBU3SY9AJ/PE37uWnr5zktX1dfGLPUiLBEPGcwOxmx9pFZnR6A8lIhIhmJqRvY33hAmvly3SefQ7Lnm/Rc76F7EP/jlQ8xqaz/421gX1o7/0/rPLvAwEMkkClWOA912N0OneRjy3FWuYgW0gxPvQ67sYMOqOG2ZmfprMCvPu2xkjASUt5D/3hVip6jnB6/RN822xn960GxHVwMzSJ00CrIAhNgiAYgKeBvVMPapoW1zStQtO0xZqmLQZOAAsmwrcLOoORWNCP2WZjrOcKCCITvd0Igkg8FMDtqSWbSt74RB8RciGP21PiJ98q4sEARouZwMhwSe84/eG1k6sXN+Os8ty0TegUqhoX466pvW6FRKfXE/V70RuNqKpK1Oedo/H3J19bz598bT01LomId5xHNpfz1DY72xddWwdQEEREkx0EATkZQu+oQFygZX0b8LGLXX84xcXzlzE7Kxnv60HOZSkqKmGvD52S52tP76DOVqCl0cUDd6/lrnXVPPXYZmpsMo3letYvr6GpSk9qcoJZ0zSevrOGLz+8BLVYarGZhQK5dJoXXj1KRDYzFkhy+MBJhoMzXOCda6p48OFdjHRdZGTUz8tHfHznpQ4cZpF/8ds7ubNVj1XMIhQzfP2JVVSUGbl7SyNffXItbe4U//or21hXmUbNxtGpOfTMcIejKZmBvgEalq3A5wvTF50vEi/oDOQNbr73no8Tw6VV1xtKMzDoo63Zzp472hgbGuWKd24c1VnzNK1uIxoM0+418PWnNvLYtsmkSDLQ2e0lEQyiinpikRgDw36Kgo5wRmA4JM/hUTa4JO67ZwMGowmTxUQyFsNotWI26fniHS5+7wEPdyyZee3/+qN2vEmBy+MFNq+qYvPyCu7atoRmV5G62g8/ZHsNfKxiV28wkk0mUeQicrFIcHQUTdWITQ52qYqCIIo31Cn/qEhFIrhraq+r+349JCNhivkc3sH+eTrEtwK3pxaby33LmsXOqmqc1Z7rFkymEuEpil4qGlmQ0iEX8kR8ExTzOQIjw4Qnxskkr7ZFKyGRzJFQrYh6A2s8Gns2N7Jh/W3dvM3Gxyp2M0WRC2cvEs6UONkTfb0kY3FESWB0YIgvfGYnO1faMYgKTz6yme3LHXzm0Y1sWeZAJ6fZvXkxa+r1xDXbNDVrc7OeP/rqbhpspXg3inlEEQ68f5L2gRQ5Tc+xQ+c4f8U//T6W11u4b886qiqddJ85xclRkW8/d5TekMiTO6p46v4leCaVGXa36njk7jbcZUa+/vR2VlcU+eMvbuCe5To8lnzJIMw0s57nVZH+/glcnlrKKqt474x33nUQBAHN5GB/j8pzB8OoOjPxrEZv9zBqIctXPrebVDxB32iM/CzVHk3TaGyqBQQOX05yedXXaP/0z+kUS4vjurFXCQz1IWoyOf8w0sRlKrIjuIQ09eMHqdBi0+eK5kX6dv1bUu7F2N3l5LMZBLGIyVxBJtRIpHcTmYmdZOLyzHPiBhLFSlqaiyxv9PEHg4fY1HuQzf4rHzk2ZuOGlWFN02RBEL4FvEOpMP8DTdM6BUH4T8AZTdP2Xv8Mtx+zqRAR7/i097yr2kM2lSLim0DS/er87qdgmrRxtX8ItQlJpyMVi6LKBdyeFqI+7y0ns1MQBAFh1vSxqqpEvBNIOt2CbceIdxxNA3dN7Q1bu7MdlcIT49esEjvcFcjFAjaXC4tkJJrIAvLckylF1jboGJXMBFMyhvK6EuUlGUQt5tDZb291+OMYu2ajntVrl3Pq2DkW1ZZhLXPx0t5OjOYYer2OuHKJYErAn5IpvHqacCJL73iG8UiBiXCWO9al2LjKQzg5xnDGjiAIdA+F0YlC6eZZSLFhywb8Xj9dYQVBhJXN5ezesYqJwPtUlBs40q/y5kkfa0fGsNps9IynuWuNhwtXfIRzOno6u9l11xZcnYO8cjxIOBInmc4zMJHC0hcmqxkZHZlgdWslZqOOdF5AE2bibzBuYKBDpX3wBKEMtFSIqFoBb1xBEjSSqgVN09jTAiaTkUQyjbvMzi/PpzCOxNjabOB0+yCnh2TyzCTSopqn0a3j7OlOzg+mKZpcfHDkMrFUEdDT5CzQ2FjJeyeGGIzpKQppQADRyIPLVRbVeXjm7UHyeicAAyH42S/PYRZlFE0km87y+c/swKAbRS0qiJKI3ajxlbsreO/YAC1NZpY0eXjt8BC7d6wiHktw9Mwgd21qpKJqPj3ro+DjFrs6g4HKhpJcXCoWxVFeQToenU7qkpEwFAofai28FZRVVZd04c0fbihXkYukojkqGxtJRa4/03EjXE35iAcDyMUiZRWV6K6iTUx1Ec02xw1VJowWy3RFOBWNoDMYF6wSu6trSCdi2FzlFHM5zHb7goPYUb+Pphor3/TYqK4rrfl9vaO89X4He7bf/oT44xa7gqaxdEUrqewV4uEI7uoqLvUFeOdiP0ajHn+yn97xFEV9Gc+8eJJ0tkhf4Bz9E2lk0UTX5WGa6pzcuyTIez0Cok6PN5yno6OPSKqAhpGliytpXLaCX546QhYbNdYsd9yzA2X/GZaIKpeG0rQPGeCtYyzylHHqSpK7V1cTiSSI5IoEw2lctjK+9rld/I9njpHJWQkHI/SPpzAe62I8WmB83IdRp9KypJlstkBKmVkb85h48VQSpz6H+bQfweRgc43Auf4EbptEIGtEECWanAW2r67i7IURNq9p4O3Tfn52NMrKcjNHD5+jJwAT6bmx2+IqMjjkJ14I41XKaRn9GeO5CI3yGF7Rycn1/5rGSz9nY/IoS9Wh6eftM9/J+R3/gcaz3+Gp+C8AcJs0dr7zO3iFcjp2f4FU7gKems+QTqZRtVJRURB0pMfbSAf8FOUiD2xeTiY3QO1KK5vIM/ZyNVt8V3gwNsTtxE1xhjVNexN486q//YdrHHvXR39bN4+pyWNHeak9dzW/6lYQGBlCFCUcFRULSpZdjY9CxZiSazNZbdMyP1GfF3t5xXVpE6lohGQsik6nK2mhTFp1zuZUJ0JB3J6aBbUqVVVFECUMRiOFXO6mdZuhdEOM+X3zFnqYyy/8T98+iirpEa4acCo3FXjioS2cPdfD6+2lSriaTSBZnCiZhSsaHxUfl9jVNBUQyBQUfBNBzo3ryFLkwVUNNHkGeOLxXZw628M7F3MgmjBoOVYsdnNlBPr9Of7ws22cbB+kp3eMXXdt5SEB3j4dYChh5MxQgU9vMPFHn2nl+dfOcPB4N+l0hvtWuRnxpThyOYdJOc6O9Q3Ut7YSDO2nO+3mwHDpvbV5HGzZvIKWegfvn/by2nmZQPIiiUSSJ7fXcPhiCH/WCEx9nyb6D8eoNOWQBIFQWsOiU0lOFuvuaNYwmwy8fVFFUxXu3lODpsqkYnEsDjvBaJZjl8IsrqlFLsp4HI7S5P65OC21Bu7es5E33ztP/ipSXJVF5cEHd3DsxGXGUwYEEU4OM/2+ym16lq9o5ujFMMWrhjSsVhOexYupcowwOtm11CQ9A1EAA7uWCGzes5L/9d19rFxez+GuOKOJNCsrFdrWVbC0IcSKJVVY7GUY9BP86ffbkRMhdI4KcnkvjYtu3yDHTMx8PGL3akxZEc927Pyw8xWxQIl/fCNb5SlMGRZ9WFQvbkaRZeKhAEazhUQ4hM5guC7NoJjPkYxGSMdjmK12EIXJgea5ia2iyLhraon6vfNmQIqF3LSk263cn/QmM6loZMFK+OykWS4UKOSyC89+aBquas//n7z/jJPjPM984X9VdVd1TpNzwiDnDBBgphhEUVSgKUqWbEmW7bW9u2ftTe/ue8757Z7feXe9QV6vbdmWlUWJEnPOBAkihwEwwARMjj09nXPuqno/9MwAgxkEJomiri8kZnqqq7ufvp/7ue/rvi5S0chC8ePYeR+jMSMNVR+OCsbSp/x4rF1d1yjpAn5/iEBK59Rwgv/jG5uoqU/R1m6gqamWbz/ahTpHCavzKLhsDl47n+b+LW4qK50cODJIR2s1qzobEIwh3hzQmU4pNM94+YMH1nDmzCAXxzKUSn00eoxsdBk40AMvvnCIjmoja3btpra7l8dPFzg1A6dmCiiqwpd3dJIIhegIZ3jmdBpvJETFUIib1rmJJgo8ejgOOJjtzwMuHjuSQKbAcGCKAV+BSosGmgiikVZngT3rq3jlZA5f1sztq2XWtDjY0GpFEsEfiDIcVGl0CdgVndYKkZb2Jjznp4gkcnzu0zcxPenjnbGlB8Sbt9RSVVPFX/64C0GxsSN9nB3p4yCBj1pKHbuR48OsjI8v+ruM5KCiroFU3RaYS4YBNhZ62Qh0S3fQ1Pp1ZqdfRzaVECQHrvaTZJMCrtrPMDseorphFzoamuAHwmRTeX645SFMuQSfOfi/PtS18oEH6H7dECXpg/O/Fq5lwOJwUCoUbigZ/jAwP2gS8Xnx1DUs/PdqKORz1LV1EJyaIJNMUNnQSD6TXuRfX9Yg9mEwLk1aRVFEFEVKheUd865EKhqhkM9hdbiuu1llU0kyiQQ7V5g4MbmUgRPKm3js2ZP44yrzmsSSxUkpGVokt/SrHET6VUBSczx8cw1ef5yDw0b6g1HAxMBsHsuhC8QSeY6duMioL818YmcxaKxe3UQ8lWcqXCKVTFEs6RyYNDHuf4f921vwmFWaayTODORwemrQikVu31JNRhV5c1Lls/d24Lg4Qr6YQDeaiYajBMNnmEwpi/hgF7wq6V+8zfrOWoLJEkgKx8Z1NrhU2lsqGZyMoes57tlVzztnZplMltdVcI6v9pltFtauaeZ7PztIUPVQV+3B7rCgd08gGk08f3CYL96zEVEUEEQD6zY2MzZxiJZVK3nzQBcVVpHxmUEwmrnoy/P4C6cZ8ZdgLqEVChk0yYgvI/OTp07gj2tcqWkNcGpC5cIPjpI3lBObJnsexQBDEZk3uxMM+84wlVKWDJ4AkM+QSyZorFK4545NnDs3jPdMiv6IgYs/PI1ikvHFZrk4NYBuKh9kRbOdW1fLrO6oQdO069rqfpJwoxzd62HeICLmX9rW/agwLz2WjERQLFbSscg1k+FUNLrgimdxOokFAtS1dxD1+xYltuUhvhlcNUv3o/mih32ZAe8rUSzkSYZDGGQFR0UlivnayX9gcrzsdudY/jWIBgPxoH/RvnLbzhZap0KsWd3M0ycv/Dpl2D4y7G7WWN1eyWNve/npu1HAAJqJt965QDSaQFGMTPtTlETTQjhsqXVSV1/BG+d6yOVk0ukskxkLP3xxkHu3echlMtyxzsW54Tg1lTZ0VaWpSmHdmhp++c4Md2ytor29jmj4DIk8WFxuLpzs4sJEhnlzDoC8ZOMffnaMbR12whkAibG4TCAc4ZG7qnDZVbomQnx2p5twNMPhsfIdFjAxFIZVtTpf/txOnn3+CL1+FZfFSHtHE5azs8SKcHwggVVWWbWqDbVUoFQsEstmWNHZRLFYZDoh4Tjfy0zSiKaY+ekzXWSLMB9XdbWIqBbRZQvPH/ViFGcQlKWHuFVMYv7lnVSJKZBgSqihr/ZOdkw/zR2JVzn2ukJ75OSyn08hnyeW9kOpAqOhCmdFB7HUo7hqZLLx56ldJ5IKHkLTYribRUDEbFP4i+M/xqiXu84fZtz9jU+Gr4dsKkk2lcTuqcAoL+UuXg6byz0ni+Za+Jmu64Smy2OZlY1NH1miZlDK09CG60jmGIwyEZ8XUTKgmM1k4nFKamnRfQmCcE11innqQyoWpZDN4K69Ol2ikL9U0VhumONyqKUSZrsduzUKFJf8XhAlBsMSlyqMc6/JXomuaxSDE+gCoOuIshmj64Pbbn88oGM2KxglEbhU4YkVFMLJIt/4/U/xi+dOMRq79L7EVAs/fvwYuiiR1uz84EAYQTAgCJATLLx4PMDe9VVs2dSBSTtJf88YgUSJ/bs7kYo6Sb3EP/zkHT5/SzP71zr48dEMAhKCKIJwiY5jJsft2z1cGNF5/lwO5mgJFj3JZz6zl4G+US74oMUJza0NtE/4iGZyJNVL63R4Ok4x1c2ffvNuzh7v4okjwfJnaCwfKH1FN3/7VD/tFToqBmZDfXzp7tWcO3aK04MpcgYnwhxHTddFSpkMQqGARS6iIvGHD62hf3CGN/uLjMXKmWytKUu2JBAvXboPQTKQ51JCcOeOeqprKvnLH57GYDISiuVAWnzIbXcXuHlzHWcuTOCqriIvTvP9n7+L3Sxh1A3lCrPJTh4YC+bYtaaS8+MZMroJ0ajwzsUCb3adR0vHsSk6osXNA7e0s2ZNywdbMr/B0DSNmN+HbLZc98DtqaufM7FYHK/mjZWuppTwYcBktRAPXVvSEsomRpHZGQxGmUQoiNXpZKL3As1r1y963LUOCPNFj2I+V+4E2p1XpcUlI+FyYeQGtYsFQcRst6OWSsv+frkiRmNTDY1NNTz34jFKySSluB+joxrRbEeUfzWFoI8aBoOIyWxaLHonyZwdSfAvv7qDiwOTPHs6vaiD+cIxLy0Vs+gGhTcHdSCFYDAhitA1msEgCfzup9ZiVM+AKPL62+dY31mLs6ICozTDCyeC3BmeZe/WFp47NMUPDybmBosXJ5I7mzUMopM3h/VFB5FP7W6mqqGRX/zoXQTdTH19JYoUpCUcZyJxKX8JJlROHDnL7fvXsjMa5dEDXnq/f4TinMJFRjfx/JkcledP0tLooW8sysZ2O6Vintff7mWiVEtPSFuIu/lCCVHNY9FLZDSZu9ZbWbOynu8+e5FwvvwYi5DFYwG9pC/KF5qNl7q63Y0PELz5z+l9KcjayGGUYpLKgn9RAcKnOXlh57cppsI4a60IBgXRcg7veB/2KgugYnaWX6uzLkHcW0UykMdZV+bN35mYRNd1vrrhi0TPiHjEIrc7NP7bimvnd9fDJ+84eAVyqRSe2vpF/LBsKkWpsNSn0mS1LrHOVEslZJMJ2WxGLS5N8KBsQxrxeSld5feXI5/JEJ7xLgl0Dk8F7tq6ZaXh1FKJ8IyXWMCPo6IST10DFfUNSJIByWjAfgMV3uVQyGVx1dSV9ZSvAsVsITI7c0NVZJvLDbrOmDfO/k4J1PfoBSqJiAblhqXZflOgSma+96qXN/qXrg9vJM+p0xeZjS3dyO7Z187vf2EH5GILwceVn+L3P7+F+/fU8ebZMN/56bs0tDZR3dJEf6aK777h5yfvBBBECcVqo2HlasJJtRxwi4s1e3VdZ3VVkfZ6By3VZSF3PZdAKqbI6CYOHb9I92gcQZSYTJp48vHXufn2XexeuXgT7w8aOT6cJzA1hSIbUUUFbU5qzUyOna0iNkOB4ZiJ8aSZrOQmGkvjdFr40qc6QC8fECQ1Q5M5xmfv2chX7mzmX/3eblxygYA/SjKdY0ejyue2WzDlQnzjoe3ct6sGs5biy7stbKpaOoD6yrEZHnuxG4/dwB3rrPzeF7az2h5dEKwHMBvLMnb+JPzjD16nocJES6XMw5/fx46OxYe/zjqZu2/fxKr6xQdWNRVFtDjIaCaS2SK53K/JA/djglhgFndtPYXcpfWmlkrLDjWLoljW6b3iMK6WitccTs5nMkRnfaTjsRu6p/CMl5B3etGAn1ExUdnQeFWKRyzgJ+SdxiDLeGrrqWxswuJwopaK2D0V76silYxG8NTWk0leXePXUVFFxOfFeINSk+6a2nJhI5clEVnePvxqSCQyZVlG0YAgmxa+i58EHBrR+PsXxhdUduaR1WWOnx7i4nhsyd9sbrfzpS/sY211WSlEEASEfJzPbHfxew/tJp4s8E+PHSWUKLBiTSeBkosnu3X+8idnCeZN5FGobW5CsdqYipQQ1MKieAPgNmZZ1WBm7YpqUEvo+TRSPo6ua/SMRjl8/CIpwY5utPAPj5/D4zTxwM1t6JfpI8dKJl7pKTI94UUQwGQUFxJhXVNZX1OixZEjppo5Mw05o5tsXkdTNR68bxs1Sqb8nVOLGHJhPrunjt9/aA/fvH8F+1aZSaZzBPxR3HKRr+xzUW8tcPvmCr7x8B56hVb+ofH/w9+s+EuKVxifbZ18kpZX/x1NodM82/AtBu7+n/xixb/Hy6W8Ji/IUNOB2eYklnqRbHaaQqwel+smhNzORRrHyVCBquq7EUqLrZajgkTIWoHqaWQ2WyCiffCc4RNTGS4W8stWfg2yUh5Om2tnZRJxNE0jFY0sDIRcCwajcWE4bTmuLIBaLC6c5K+nF5xNJXFV1xAPXj0BhXLrCwQq6hvKHOC6+iWuTDdy/9fCvMC9o/Lqg2tWp2vJAQHKm1siFMRRWbVokMTicHLf/jYcFVWcHjhGlhvT3xQEEcnqQctnMJjtCJ+Q6sQ8jHqeVRUl9m1t482Tk4wkyxy1UE7mpTNJBGnpxhePxjDLIlZZwGktsLXVQGP9ZhLBIBd6xtm3thpv0MCPXp1ER0AwmsBw6Tq+rIl//PlRIhmR9TUSn759Kz9+vht/tvzeSoU49927D+/EFIcHM9yyUmFlYyPOqmr+8cnzHBoyAnI5mAsCit1D1O9jxh8HbOi6zsqKAoks+LMOvvvKNLKQ53O7Gugfi1JhM9Jc46J1RSvr6o0ks0X6vQV6ZzSePxXh5jVWdC1U5r4Xs/zR51YxM+XF5/UTjyWIZsdJlhR+eTwBSNyzXqaluRbV4OfVAxeIpUs02Ap0rOlE0zS6g4uNW2azCnqpwJ99tg1NLTJ4oZcvfuEW/vf3DqCKZtJY6fEb6P3hSVqrFL58714Uq43R4SneOniBvqk0l9Mx+rwlis+fZjhQQldFijEfOuXNR8ulkGwetEyCLR/dlP7HCqViEVGSliSFdreH6BVDzBHfzIIR0Y3Y21vmjDxcVcurNWQScdy1dWWDjmXi05UQhPJcQzaVwuhZvoIU9c+i6xpG2YTd40HXNCrqG4j5ZxeoeNeztb8eTBYrkdmZaya6BqPxqlS5RDiEUVEWzaoYZHnBDvq9OuF95Uu38X/+z1eQPY0Iooio/NrcQj90CFoRqxrj4ds6mPFHeXVwbj1KMm/3ZhGWGbLPZXPlNWUUMOp5bu400lBVjaeqgt5zvdS4ZWqqHBw4H+fMT7rQZHtZJm+OQiAIAk8c9CKKYLcY+IMH19HVPc7h0UsJ3p51FbSvXcX3fvoWDXYzn9lTT0VDIy++cZ7zs0aGIiq6aAS1hMWiIAgSE+PehQp2pSlHlU2iLyDy+MksRi3Ctg4LDpuRvrE4t26tpcJjI5cpu4CG8gbe6k3SN5UnVfCzbVUl6WL5O7t/pcLe3fs4feQ0jZpAOJLCF84zEjVyYjJBm1OhfUUzp/oCnBuKEYqd52HVy6tt+zG5PIydMbHScenwXy9EqQ8/z7Mr/yXinj8meOQ5rBs/TXdmiNjsUTq1cVqlIF94+g5+/Dv/EkvpQTKlBBX1zUwOvoi1Qlp0MHZUK4RmnkUylQ8C57ty/Hjdg+QQUJ3V6KFpbHYPf9v63hW9rsQnIhmeb2GlipFlvN4XB14doXzav0Ft30wyQamQx30ZDywVi2KyWBeSY0mWmR0bwSAr5DOZa9IJyr7xs5iv0frTdR3JYEQxmynm87hqaon4ZjCalg+goekpdF2nor4BUbrxE9K80kRxTqLnvbQkYwE/FfUNhGe8S5QlTBYryUiYrPjehgslkw3po5FY+7XCKqT5Z1/ZytTQIDUtLbh7vTBXJLu1U6TBrfDGaR/7t7XSPxGlP1hem0cHslT6/KSwsaHaSHtbDfFIlL6xCBeD8C/v7cDcN0F/sNw+qpKS7N9UwdvdYaKqHY+cJ1MQKIom8sU8wUCIUjZDrVnkgb11zMyo/OLZk+iaSr3NQDZfIpNOk8zNUtDKOpNSPsbn9lSRzKq81lPC98YY/qwJQQKTGueRB29l8OIYvzgaRzOYMRt01qxqIZrI4bYrVNRU8OJLx1jTbKVz40ZUcYI1rRJut51TJ3tZ2VFHWyjOWMTA2HiARFrl6dNRBIOMIKS4PBl95VySN85dQDXYOeMFkDFpCq8+9xZ9AREMHrRCDsFgvNRdkIwcPDlGKZ8hkDNxZuwkt+5oYvWqJv7652fIizZQHARTOfpHwwwN9+DLKmR0E1fykkuCgf6AgCAoqJkQcmUzxUQATVPRChmEvIJk+Wha+h83ZBJx8tkshVyWmpa2Rb8zKqYlyVw2mSSfSeOpu765UKlYJJOMY7E7F+JZIZelVCwuxKf5geN8NkMyErkuh1mxWMkkk9ece1BLpUX8ZUmWifhmlr3neCiIViohm803lIzPw+JwLkhZznfkblSerTy0aCUZiSwZ3HZ4Km+4g3c5RFFE9rx/w6ePMx7Y7qK1aQVqMU+lqsFgOU422XJ8ans1XRe8mKwWXA4zr3SnECSZXr+AsSdA76yO1VBiy+Y1BGdmGOgf5d0Rnbu2VrBqZRNHe06Tk+xohRz3blCYjeToDpqRyWFTdGYyJsxCnnAwQiaThVyRh2+pRlQLnLg4y4Q3ilFWyOULpDN58lNektkSIIFaZGtVmp07VvGzN8Z57MAkmZIEQjke7VtXyabNnfyvH7xLXLdTkuw019qoratgejZGe2crL710hFqHSPvKNto8FUSiXdz7qZt47sUTqLkk21pl3hkqEYrrjI54OTKikx2JzFE6LuVGozGZ//KPhyjKZVvp6ZSGwVii4vSPsOVDrHQUKGk6uZKA7bK614rpNzj3Vp7PTT2ON3GYtAonf/dVfK/8O+6MPE+FomJ2mohNnidfyBGJnqBxGQl0QRBw1GYQJZF8psCLhztQqwuYslH0Yp6HTCFuq7Zgkj/4Ie4TkQwD5WnbZXiv85PA85zhfCZFy9r1RG/wBJ1Lp3DX1C1UBxKRMLJiIhbwLyg4ODwVC5rDN8KtvZ7LkiAIWBwONFVd4JVdy61INEiYbXby2cySIJmMRJDN5jK/OJkgl04hK6ZF1ZlUJLJw7zeaDBuVcsXdqCytslwK+O99KEbXdUoxHyBgcFZ/IigTRU1k1juDp9LDc0+8zLlELYIAsp7DIWl0rN9DPl+g0ikRcZvpD5YpE8lMnipLAQMKx4dVFG2Mm2/fxWtnjpGVXHznsS6yhSKf2V7LbChFlcPBhi3r0PNdPN2V4Ju/sw3vhJd3eyIMhyWMF2b5o6/ezEsvn8BdXYWuqbzeM8Ond9WxfkMHf/WDw5ycFMtJqGAuV2u/sIFCOkEymwRJJlCQmVdRy0lOHnv2BIkMzHONoyUL//DTgyRUE5ogIwohVMmNOaYSO3mBd/qz7F3lIJMt0N7ooKm1nnAkwXjCyCs9eTzGHP/yCyt5+9gII7NZ0rqJu9ZbUPM5EnmRwbE4Scm8wLO7ab2HfXvW4n3sKIVkhm9+dgWDI7McGCy37wShbJR7/z3befLFM4xGTJgFH/lCibs2OfFFC3RNS6Q1E6+ezwCLNbf3tenUVtl4+pCXh29rJhBK8NYgiIqFYiKIVsghWd2Ic4YjWiHH//lXr2NwVC3rAPaJgSBc06o+6p9FNpmwOl1lubGqKhCEG5JES4SDC/FoPv4lQiHMdjuZRByLw4lisZBLp6hqaiFxA3rBN5Kwljt2l/jLy1HW5jFP44jMziy5dj6bpZDNlqvLuk54xosoiYu6hqVCAVEqDw2XisUbKs4oFjPJSGRZK+d5Ksf7RSkZAh0EgxHJ8v6d+T5OCAbj1FeYmB6b5KV+AeRyN6vZLWAQ4fab1zExNEJlgwvhbBQkmaImkYnHkAWBmGrnqZdO8dADu5mMaKS1Ai+dCvPWmSCrGk20N1g5emKabTs+RdjnY+iAj71rnezdtYaf/eJtfFkzTx728cefX4/dNIDH44JSDtmUQ0Pk9x7ezctvdvPTY1kE4dK8xv6VCjft3sDMyBgAMdW6aOD5cE+IgYkoMdXCPN34uaNeTOIEccHNf/3uIQpGB/XpArI9StfbA0iyhYkxL06rkdpqN5UelUO94/SH3PQFonxhRyWiKPD8sQAlUWZFlci6NiezgRjDE1nCmow2N29x3roVPv+fEE78EIYP8ETbX5DouIMH3nyEOrHMH7YUoiS3fpm3lQr+cOL/5W11HeK5F5iW6vnRhm/zwLn/UFaGaV1qHxf3mZBKm9GMZyllnciGFWA9jNVtZP+mSeq+f4rbgwPEFRtf+pPf458P5nkiqvKDTpAN7z9f+ERwhu2eCoqFwhKZsIjPi39ifG5yuMylMlltRP2+G9YhLlMJZhZO8waDgUwitiQgzXNrb0SFIhWNEJ31LWlpXT4AYbbZb7jiIJvMFAuF5RNhk4lUtMyXziQTyCYzhfzidrLZ7ihX168xYHi58Luu6zgqKssc5w/YNlwKHUEylq2ZtaWamb+JKAhmnjoaYmA6zXShYiGRa7CXqK6uZPDMGWrqqrB7Kjja7QW1wJ42kc9ud/HAfbvZUF0ASWYkLHL85EUi2fLfJzQLCEY62uuorbJxsDfB8PnzNLaV6TO953qhkOIPvrSHrQ0aHqvA4IU+Nqyp45WXDvHjN70UJCtdAxFeeaublFauPKxwF2i05dEFA5MTXmam/RzqL5eyV1UUeWS3lUo9jCAIDEUU/DllgRe3ypnk4U+t5JF9Hlo8OqpUTn5OTUm8MWSkaHBwcAQOXEgQiGtMj3vZuWcL5jmNSR3IZfO4zRr/5lu30OnIsGZlAx0tFWxoUPjzf3YfGysvGRB0j8R55a1uZpMiGgKJRBpBLbC1Jsv9my0YtByKliKfTrK6ycbtay3c+6mdHO/x07mylQq7zJqqEm7jpe+EQ8pgF8t8V4dNobrag4iGUTZinAu2omLB6KhCqWzGYHUhmmxopQKS1Tn3Kj7ZsNgdaLq2JN6lohEm+3uxuT3kM2Uet2QwLCSI17NjhktUgstjtKqWyKZSi35mc3vK1IYbeL81TcM/MYZ/fHRR7NY0bcFEyGA0LstfXg42l5vorG9ZGkcqOucgF4mQjEYwyEb0K7iVBlmmmM9TKhSumggXclmSc7Muuq5jVExU1De8bxm7a0LXkGxu9NL1515+U3B0ysDJ/jCjCdOCU6pWyNLZ6CDk8xHyelm/aye9PWNgtNLuLvDptfDgA3u5b3v5IOTNWjnbM8nQdDk+FQUTSc1CjdtCR3sDSZycOXYam9NBnUti2hui78RxHv7CPu7Z5mFNnZHJ0QkcVolZr5+fvNBLf1BiPFjkrYMXGPBmywPvcp6NdRqoRSKxDN6xSQ6cmiClmbGKOR7ebWNzRQxdLRHKm+gPldeMruvYxByP3FLHV+9bxb6GNAXJgiAI+DIKz54rMpVzM55QePRQhGRep79vhPr2dta3u8pvlCBQLJVIxWP8ycOb+PR2F3WVZlavbaPBXuCbv3sLD++51HFYme6l5p3/xrrxZwCQiylKyTAHlP38ZOO3OWPZRlw1kkymCDfu5TVpN6Nf+SV1s8eQPTUUW7ZzzrSF6JR14buYS6nEvFL5+6gasHkaUEsSIJbzEr3M395/q8Q3gn20orIpX+bddxfMnBfcpG5gZuta+ERUhpORMJUNjQt6vQsQBKwuN4GJMSxzieX8VO+1EPF5YU6R4coq7uVtLrgk7XEltzYeCqKYLQuVjVw6TTaZwOJ0EQ+FsDhdaMVLXJtEOISmqpQKBSobmygW8sT8ZQ3OK9uQV+JqrTGjopCKRRc0KkuFAganm3RisaavyWpdMtkcC/gpFgqIokg6HitXYCJhiIQwGIyoqvqRBGVBmOOt6Xp5sOMTgqxu4kB/Hi4zkehocmOa08WOh4KkEglEswM7ee68dQeBiTHGBwYYDJUDxnRKZro3j0WEe9bqRNMlusY1BvtHuTCeJKMrDPvyzJzvQzA5sNuN1DXXMz00SKVdYs/NO/j+Tw/w4N1NeKpryMdVBGAyKTMZKyKTp5BJ8Km7VxJP5Xny4DQ2o8yqnXuorbnI86ci1MoZGppW8UW7wvdfnaQo2VhXVWTftkaeODDB2hU1ZZ7luS42NMmM94JQyqIhsLpGZNuaal446qPWZWDPrlWcOztAsGuInCaDBNGime++PkuNBer6R0lqFr77bD/3b7FhUUT8E+PEM+X13OkpgC5yclwDqfy+/vyNEf79H+5ndmyU+rZWZiYmufeBO3j3rWOk8zrbNlQx2DdABgt/88vzOOQC//zrt+MbH+PpQ7ME0vB7D6wincry/bcCvHQ2jXBmEBQPP3rTR62lgBkDK2oMrGnz8NzxAPk5OoXB5kFNR5EsLgD+0/fPLnzWn7QqcbmaKV/2/+XNuZDPUdfeQWBibEF2TBAEqpuvra6xIOHodC+JscCiGKhpGoIgIBkMi2JQNpWkWCgsVHR1XSc6O4NRMWNQZDLJJI6KCnRNQ5irygYmxhAlA57aOgyyTHimPJCkWJYOU18O2WRGrl2+8KGpKqlYFKvTRT6bQTFbicS8Sx53Zbcvk0yQSyUp5gsYZJlSsYiruobg1CTqXJJa3dL2kUj4SVYPaiaOwfFhFzd+fRAEcY5Oden9avEI2NxObC4n+WyWmZEhAqlyfN2+qpIVnU2M9Zzn7FAM8FDAxBu9eXTdyN7GLLXVDl47GyeZyHHo4GnSop0Bfwb/oV6GQyZW2fN0bt6Bf3yURDjMA/fdxDuHejFK0NlaR/5sEkEQyWLi8HAJpVRAFyS2tRjYsnUV/iePYVZsOJ02vvrIbbz43EFmEhrVFa1UujrJdfm4GAS7mOVLd7VwutdHrmikdfUqJvp6WNHi4eRkhIIqIKlZTIqBz+6toXswTN90njv2rWd6dIxTXQPMRPKACUEQeb67iKDqSJYZ/OEMpydKRAOHue2WDfgnJwmGE4CMy5jnSPOX2TP5GG6pXED4wsx3+SdHB5M7/4SaljYOpovYbt6GeWYY58UXGdj9b8n1HGdjdoabep8n3vs/eG7Pd6iq2sbI2Rdo2ZomH+2gqmYvQd8TuBqSJMOP4m40o+tpEoFphKJCKqSjZ7fSv6WbNWe7Fj7TX7RlKGopPO/TiGcev/GV4XgwQD6bJTA5vqSyaZTLsirVLW1LEkZNVZedbi7mcxgVM6IoLevmczmi/lniwcCSCm88FMTicCyadM4mE7hr64gFZlEsFnS1hNXlAspBOxEOI4jiwkmpVChitts/kJOeyWotVxLm6BwGo1zm4l3HKCQVi2K2OxAlEYvDicEok47HyMTjmCxWCoX8NVukHxSiYv2o7Jk/VlBzaXxTM/T0jNA3MM3P3/ZR5zKQKMn88LF3GZmOcXQwQ4bFn5fLmKW5uYb9+zfjFDNs272J+moHjU6de+7eQWd7mRf50ukwFy6McPzCLCfHSjz5YhfTWRt/89RF8oUSv39bJbJeroDu61T486/tYEenlcrGJnxeP//2D2/BOxtjcqAPm8tFozHEpm3r8Q0P4fWGKSAjannscgmDZABd58CZWU4dPETH5m34oiUoZvnW/R18fpebBge47TJ2YwFfOIeqQbXHQiCaRZcuHXzqrQUEXeDxYwn8WSMra2XQNbJF+M5rQSazDnRN5c5dzdy80cNDO8x4pPJ3ubXGRjIYZMYbIhWLohrM9J6/SGtrHSuaXChWCybFgNMEJYMVpwl6jh1D13UMEggGhaNd43T1+xEEsTxkYyxzATvtSf7oKzdxx5YKPE6F5pZaVrgWT4tLVvcn6hC3HLKpFIlwkGQktKSyaXW6SUWjVDe3LDsElo4v7arBJQnHdDx63eeOzvoITIwt/V0ygWK2LFRTYwE/rpo6ioUcYe80LWvWkYyEF3jIqVgUVS0tSi51XcfuqVhWbehGUdXUTEV9AyarFVGUyKbK93U95NIpPHUNZNOpsmpFoUAsMAuCQCGbK1NxPqK4K0gGDLaP1j3w4wCJEtFogt6eEfp7B3nirVHSRQmrmOOVUwHeeuMEk3GJvtjigplezLOy2cnGretprTKwfk0za9e1oWsl7trbxq03rUXXSlxMunjzzZMMTsQ4NFLimZe76BpO8EZPnmde7+Ub97bR4SqvrSoly5///m521ufYsm0Ngxf6eeSzO6mvshOYmiQRCtHeUsVnbmohn0rhn5gmEFfRdR2nIYvBICEK0D+r8cZLb2NQTKiiiYJk46YVRv78d7dRIyfx2BXqHYBiY2LcS21jPWo2RTB9qQNik/J0Vht48UyS09MitXadSpdCJpnhxeN+3hwpx7SNbTYmdvwpP9n0bZ5yfQmAVEEn4lxFNhwgPNyLTShgGj+OloyQvO0vyGkiOgI+WydWg0pRkwiF44z3nsfmKu9tgjxLyH8CxZ5HEATslWbUkkp8xgS5HTjtD5IM6Tg8bUxu2UHosoJmvdVEi/23jDOs6zqxgL/MGZujRKhqibq2DiKzM0s4XtcaqgjPeLG6XEuGL4yKiVQ0CoJwzWG0VDRCKhrFVV1DMb9YskoxW0hcoV8pm81EZ32YbXai/llAxzGn9xv1+2joXElwaoKqpnIFxWyzkUnEsbnchLzTiKJQHnBzvH8+13wVJZtKEp7xopaKVDe3LnmcxeEkMuNFEEXUUpHKxkZkkxld0ygW8kgGIxXXGYQpXkHF+K2HWsBpLJT5X1qRezdYaW2oxGAy03Wgn6/9zn1UHe9m194tPPbcaQZDTqYHQdLgltVGRmdSZcOIYpZ77lzF5ISXUwdGiGk2Bs+dp5jPMhUTeeKFLiZDBcBEWnDwxjAwl0zH/IAk0u7RqXKImBR54TQcTBQYHvbiixbo7h5mMqJRPTDOQNTE6JkIGxtTKJbyEEWhpPHihSKCZGJnm8inbtvIj395hEjRSpWss+v2/bz52lFOjUvct9VO1Oclky6QL4GrqpqiPk5JEAgGQlisZty2Evh1FHLIappH7tlGKpFiaDzA0fN+Hrj7TkIzM9S2tNBx8W1u293B66d8PPPOOBsbYPfNu4lGE7w5DDNJOD8ap3fGyIHBfopGJ2dnEjy4MUU6r9E10MNDD+7l2EAX5GH/1hZaV7bz80dfZrZQD2icntSWuCfeuUahrbWZY+8cZ9Cv4o2UMIklvviFW5j50SGi6rUPb/NV4t/ECnE6HkPXtIU5g2wqsTBQfCVPVZmbT1gOsYAfs81OeMa7pKskm8zXtbYvFQqXeMTLUBk0VSMZCeOoKO8Ddk8F0VkfksGAppblKS93zSvmc3hqGyhkMwvD0K6qajLJBKJkWChyfBAu7uV7y7w5htluX7Y7KRmMRGZnqKirRy0Vqe9cuTCoZ7Ja8NTWXXNPmo/Nv03mL9eDQ0iRKhnRJIW1VSW2dFSxYu0a3j0zy2fv3o1zYJite7dz/vwoz3UlOTELoLO2Rsdm1jg5oSOIEns7FSwuN888/Q79ITM1w5N4XBYkXeWlI1OIIojGcofolH/usxUVzvsATNiMOda2WDGbTYhzSzdbFBgeniKSFejumWBqNo+q+PCFcvR6YU9mGqNiplQsIhkkDg+miKgVuAwpvv7lWzl5spfT0yKIIh0rW9FF+Nlb46xrstHR4GCktxezLOKsqiY7GAJ0IokCHkeKpsYqxJ4pNLVIraXIunYn+/eu5/CBI1z05di8spa2eisVdQ00XPBya7uNmUCCk4NJ7gv+Z+Kf/k8M2epRjz6G1Qhbh36EpBVYf+EAForYjCq/cD7ChK+e7af/C8MP/gOZzAAE4HTtp2nccxeTA6dxt84AImZXEqMywuX12eCIgs28h0hwHI0jGC1JJkeepu2BhxiPRqh85pKr3YeB36hkOOafnXNXm11w5bHY5wXRFQq57HtyjsulkiiWpcLnN+JoV8jnaFq9htnxUWpb2xf9bjnaweU0CqvThXBZsm22OebaeaZFfLX5xDcVi2Jze8imri8fMj8kdzV703goSDISxl1TS+YKusQ8RFFcZO88j6qm5kVOd3CpvSkI4gKlJOLzYlTMNFhzeNM3ppX5SceeThN33bqT7/3iGL64TkdHHd7xCQ70ZbGQZ3hwnJHpBOlDPUyGisyrlLuUAmtbaljT7ODnb4wQF0zEYikMBiPtdQaKuTTuSg+CdxwkO30BWM6d7XLsWFNJx4pGfvCzt7lnxwrePR9iIKQwEEoADqa7UoCd4aNx6izlLsXKtWtJJRJkEglsbjeaHkEARmczHDtxkURW4651Js6P5vjfPz5CsmREEDRaWmqZHZ9k9y27OX6il2//6ChZsbxZ/PRQAqmYLDtASUYe3FVB+4otvPjKMTob7OzdsxGzWOL5l06QLajUDsxgMxupqatClnxMJUExmTn37iEGpzXASQET7w7kEEQTLivcvNFGT/8Um3bfxrETFxlMyPzX7x1BU1ys9BTJ5oq89NzbDKQrkIxwx2oDLQ01/Pj1yQWtZIBMXsNeUUHP9BA711bx8MomDrx5gidfOEWkYFoYKvykQdd18pk0stlCLp3GZLXiqq5dmLtIxaI3rGAgShKZRBxRXJrIlq9x7eukYlHq2joIeaeoalwqK3llzDIYjQtUBGdVNaViYZH8pqZqpGPRRfHeIMs4KiqJzvpwVlbPFS6ujXljJkEQlo2b2VSKbCqBpmnYbLardhyXi9fOyqolMVdTVULesoLQPH0kHY9RKhTIZzPLFjh+G+ExpPmTr+zh6ImLHLhYpNKlUFVXw89++Q7eqMrYuI9QSuP1t88zE87DZTKgG5pN1NRVkkv0cSFeQbagkc/maapzkyklqKt0Uyqp6LqKN728ecrlaK+R2X/LNp546h3aGqoxKxnOz5p44ngCsDLSkwes9EWyWIQSLZUGNIPCrj0bGDzThc3lRLHaIAGposzh4xcZ92XZ1iihaTpPHPSVZ1pNLjwOkfrmBgJGAw9s2sBfffdNsnIFSDIHRwTeHQghoKIbLayvzPLFz97E268f5tDbx9m5ews1g0MM+SL0DXip9kySzWSorHSRSOXJIWK22ek7ewxPuBdp7rt8R7jMH86LIi90/mtsyUnirZ/CU9vJhpMjrH/mHpxSngljDdHGvWTf+Snyag1RNBDzmjEZPkVaPYSr/lJh0aAUsXk8ZLIjIKWorfoWY8ETyH/3V7ScOvZhLpXy833oV/wIoVgsxIL+RSdfk9VKqZDHICskwuEb5rG+H43eQi5LJpHAVV2D1eEiOuvD8z6soK8cIjHP8UavBmdVFdlU6rp2yDDXaruG3qRaKlK/YiXewYuYbPZFUnA34tZ35XBJIZ8rb46zvssfhFoq8oXb2hYS5Mv5k7+NmA7mOHN2iHhOQDea+cdnL6Ih0l5p4JEHb+exZ08xnHQwlCwyn8zWW/M0VtoZGPSyactqbtvo4rkL8NSpNF+7xc0qj4DV0UIyHGTfvk1c+OUZCkbXss8va5lyu1Uw8+rpIJZzfiqrKtm0aQX9Y2GW0+rX1SKfv60NdJ0fPNvDulqd2+7YzePPHkMwlA9qgayJN3pzNNuM7N29hkzuAoeHiwiiACL80/OD6FqJmdQ5xgPZhUR4HqrRvjAonU6liAcDpFN5jvRBKnmM3bffjHJhhNdPevnK7+yhr3eUv/rBUdwuM2ZJZ92m1aQiYVLFcQzhJImCkS/e1szB05NYDCU2rGtjdDzIsZMXGfImEQQZs1nBYsxQV+lgxao2JiZm+PotTl456UcRyoNw8+tc13VWV5YIRLI89cRb1FfXEookqIuG0YxmegOG95QI/6Z9DwRBoFQsUSomFmKrKJaVEcIzXhSz5Ya1g9/vsG0s4MfqdOKqrllQvHkvEpLzr+PKmHatvcJdW1dWlriO8g9AIZvFbLdTyGWXJK5QLrp4ausJTU+RjEUXDTrfiFvfldcrFgqYbHZK+dzC8wmCgKaqy1JQfluRKkmcOTvMhD8DGDl4Mcvxi73oGPmzr2xmdNTHCa9CeeC1nAjL5Ni5wsb5AT/3tTayd3s7kwe8dPtsyHKMe+/YjC6cx+VxUlFXz6qx41yMLv3MAVALWKU8aez0eEuknjqJL6hy390tmIemOT+bWfo3wM5Vdm65aR0//sUhpn72Op978CYudA8yHhURJFBFmbcvFtBL8Kf7minmC5yZ9iGIEoIAh4fynBg4RXOlgqknQMa0eChUNygLI6f5fJHorA8RjXcvZjEYeqmucnHP3Rv4H987xLaN1dx9dzv/7W9fxu2yYdAVZur2UtO6neiFAj83fJ17Zn7Ck9v+CjGXoGPwcXwtd2CLjdAy+iLZmUo8cpGCpnPevhO1WEBYexvOI98nGt/DTHwag5LDYCqgC5eGTFMhAxJVDHT/jIq6dor5PKHpcRSzhXWvv4z5I3ACvqFkWBCEe4C/plyu+p6u6//1it//OfAHQAkIAt/QdX3iQ77XZQcrAKQ5Tuv8oNiHhSt9r5ORyIJOsLum9roSah8WjLKC0aMQ8k6DrlPR0HjViWdnZfWC3edyEEWJiG8Gs8NJZX3DIim47FzQXs485GoVZ/ecg93lP/PU1qOp6nvesD4KfFzW7mRcwjo6w+ZGE+e9OZKU3/NULs/I0ASp3NJNbEunh21bO/nf338LVRwjkdcBA4Ig8PhBHwJglHTW1RtozuT41oNrefS1EWJF0/xrA0AvFXnk9lpymSyPHU0S1xUSJQFfRmX6h+8SK12S6AFALVAtpwgUFV47Oo6ug8du5I5Pbee5F44wkl66tiYSRv7xZ0dA0/iDO1s4eMbHcFRGlSxIQh7FaMCwTEXwcrzWk2dHYoavfvUefvHsSV4bMzDwxHFiOYGUbuXpl7oIJUvcvrORHdtX8bc/Oczf/vQILW6B229axS63h+8/dhRZUWjyGNhz8x6eeuYQkaxEbSHLqgYrgUSSe3bUsGplE9/+/iFOXoyyZ4WFtjVrWD+bYvP2DUyOTaNKJnRNpcqQ4tatbaj5PJLRiLOqir9+tIvDIz5EQeSzu8yc75tmKKij5XMY7J4Pzbjg47J2rzb8pqkq6XjsA1G3llzzipgbnfUtdAMr6hs+EGXhvcJZVU0iHEItFlGs1qsOXisWC7lMGoOsLBuXFWtZHUNHx1VZTToRW/jdvFtf1O/jysr4fMUZylXv+WsrZnO5AGSzL/zM4nBistrKduu/Znxc1m0BE11DUdqdBUrWIhNpCwVkBDXP+Pgs/kiaRT7BQKNL5I5bNvDmQYHn3uhhZVsVGdUAIpwaLTIweYh0yUjLWIRtq2Pcta8T8+kJzs0a0HVtkbXynnaZrWsaePytYQJ5W9lK3ujh7395lrwmgbi4g+cU4hTyJc6N2EhlzjEVKfEnv7OD4b5BXu1Vl1C3BIPMo68OoRULPLSrjngyx5sDOohGiqIRo6GIbBQpJ/vLx96huJVn3+jhyw/tx1E1yfNn0rjGwji6Q2REO0cuBOkfC1NT7eL3H76JN965wENn/oSuvi10rftn5Pf+W956MoBuUMhKNkYe+Tn2Cy9zU/f/pKvtEbKKizOOm0grlYzf85c0vvF/cfPPbicguImu+wJqyUOxNI2rqpZQuMylToZ0MsFqapv3UszUYzI6UMUerFWH0DWdvk/dx9TqDbzz7ig3DaW4v0Jgq+f61fnr4brJsCAIEvB3wF3ANHBKEITndV3vu+xhZ4Htuq5nBEH4Z8B/Ax7+wHd3g7heZfX9IDg1icFoRJLlBS6yIArEQwFMy1Ar4JIrm9nuWNZ3vlQsLvz9exFqBxbkf0xWK5l4fGH47kpIBsM1N4x5gfdMIk501rdo6NAom4jMzmC2XQr6oempsuB1NkNde+eSirMgCMtWT95vIrygd2mUkcwfzMDg47R2TVqKXWsraF27AfGdbvqnM6xssHJyBH5+OAaU3dLu22InnsxxZAzeOR8mFgqzeVUNb/dnEC4bMsvPWYxmSyrJgs50MIOrqoSuqjy41USpWOLFC6XyZilJqMUiLSva+IZpmhMX4/SHysYUcc2OIJYrIhVmjWROY3UdfPozd9Bz+ixPdZefr9qY5OKFfsLZ5UOGIErM5izUmnM43U4M4qVOQb0lw20376K6u4+nuq4YTNKK7O2QCScKDIRNDAZzeM4M4o+rNJrztNlznImUEIy19PgBJHrG4qSzPcTyRjTJRm+kSEP/OHW1MSw2K3/99AgVcpbqqgFcDhPV1RZWt7uoqGtgaOYE5wbDeP0JcpIdRCMHhvJ4gwdZv7Ka3nO9dE8VAZlWZ5Hfe+gWDr5xmC3b1jI77eO5I17yBgciYCilaW6s5nzfNJKtglJykFJCxehpmBOvf//4OK3dq+GDOmBeiUQ4hFoqoZZKC1Vb2Wxe0g1c7u8QhKvqAseCATRVfV9dvHQsRl3HCrzDg9dUIbpW125ewUjTNCIz3kV85+Xc+hKRMGqhgKZpyHNGS2qpdMWgomvJ87zfmKvlUmiFLKBjcFS/r2vM4+O2bne1CqxYvYFcNss/vDDBzpU2Rnw6z5/NMp8Ir60usa7NzQvH/YyGjTz59CHaWyrpmzDyyvncpaRVMpLQjSBBRheYmE3jcGXRgPXVRfZsrOeJdyaJlcqxWStmqahv4JY1fvIoPN9d7jilsYJYdq5ssBWIJItUKAW+9qWbiYeC/PyNCU5P6miiiZGBUaKJAoK0PP0zoVrQVRGb3UqhqAKX4uvNm2pwVVVx5vtHwbr4u9HmLNBcY+Hdi3mmsg5OnRlhJpRGRmVDRZZQPAvU4sso+DKgoHHoaB9D3jSVhix3l44Sv+hg2KDgrljHH5z+Q5KqkUeL/w+iq5ZJpRXfygdwVdcwck5k78DfEzn+fVaEjtEmBegkwDvZ1ylmKrFY2pgae53KtiK5lIqsfwbdksA32k1l/UpmJt6gdnUWg1yOqfn6BpI1zQw0OhmK+fhu2sr/Ss3wxeb3ZjhzJW7kGLkTGNZ1fVTX9QLwC+Czlz9A1/W3dV2fr/kfBz50za1MIk5kdmbBtedXAaOiLJre9dTW46mtX6iE6LpOZHZmQTUiHgrgrq27qu+8f2KcirqGBc3j9wJBEEgn4sRDQWTzB+fhWhzOsk7wZRuI3ePBU1u/+GAhCFidbsw2B6GZafJzdpWJcKhc7bjBtpxMjt1tIjbpOoN12pzeZfH9T3Nfho/F2m12FLh1cw3BYJKL585zZjjBhjYHd922kVpb+f1zSlke2WNnRWs1a5od3LtWIqUq1NZVsmtbB8plQU7LX+KOVxLm85/eRnNzLf/4qo94yYRJNiLLRub1bgVB5MJ4ioH+8YWJdFHL0+IogFaWbNq/zslX7l/Ptz63gXWr6xm7OEQgeom/tWu1i/VbN+Iyz33e+UTZKVHLYxfSC4+bzZr4Hz/rWdDBBIgVjMyMjeL1XabeohaR1RRGLcfNe1ezqbO8DkM5E++c8fLZXW52twls2LKObz60k8+u07h7ZQldLTKVlHl3qIQ2J6eGZGQwqOKqrkUSBSqVHLs7ZDxVlVRWODjcn+S513s4dLCLQKxAu1ul1g6aOqfrLSnkdRGXTUbVYCJePnSE0nDy1ACzkQLhYJiJQJbZnBVRzSGpGUoGK9957AT337WBmxtTiCYbosVBKfnev9/L4Ne+dnVdJzA5QWBy4lfSftd1HaMsL4q5VqerLHF5WSI7r9MOZeqaIIioxeJCweByaJpGqVAoO7fN6a2/F2i6RmByAtOH0AWcn8W4nJ4x79bnrLqUhJYKeZxV1WUKhCiSScRJhAIko+Gy615m+fb6ldB1nZB3+roWzVqpUJYD/HA+4l/7ugVQyHPvRjOhWIHgzAwHjo1Q49C5+/aNbOqY37817l4jsrHZREdHPZ/f6cQhl8BoZuu2NdS7L8UwvZhDV8uxUlTz3LzRwz337OKJA2OcnzUgiWCymBbVX4fDIr09I6i6uLA2a0wZbGJ5D2y0FfjWI3t5YFcV3/jqHfScOkMwECGvlq/SZs+z46btNNa7yhcsZtFLeXRdwyWmYO5+BKOJH77u5fkzaS7HjC+Ed3wC4TJ3NrmURFdLrG1zcvPetdikArok81Z/gTa3zh1NcTZtXslDj9zHLQ0xvrxLwS4kyaNwoD9PMHepeLY7dhCnDGarmYIm8GjHf6BosKI0raW1NMn+g/8SXv1fuCcP02XcwIRrC7OXdT8snhKyXIuqgrUyjNFkQLYYSafOk8sNogslkvEZqjqyGBSB2GweXdfZ9uPvUTvczdfvaaRaiyM5Kngh8sEX740kww3A1GX/np772dXwTeCVD3JTy2HeCW5+A4sHA0R83oUgPS+582EF7crGJmSz+ao8t1KxiHdoEBDIZ8vfa5PVNje9vLwcmmxSCEyMUzIYs6wAAQAASURBVMi9d6UFQRCoa2unsqEJo1JOhqP+WULe6etKwM0jn80SmZ1ZMOGIBfyLkvnl4KyspJjP4aquwWiUqW5qRkdHLRZxVZUdm24E7ZUG7r59E+uarVSZcty3yYx9mcRYsrk/TL3Lj8Xaba+zsnPHKk5P6Tx2Mk9bpYiNNC+/fISphAG7mMEq5Wlsa+bg0R7iqRxmczkhe/FUiL//5VkKUvmAsrEixb/76mb21Cb47DYbD9zeiW9slNePT5Y5Y5KBXxyN8tSJODevkNjRVA7C3T6J57oLfP/tKBMRnfs2mvninZ2srQFTKU7faJwTpwaYnRgnE4/yyyMhDk1eqkb4gglmx8cIJUrUW3L8+6/vZG1ViTs2OvizL+/AIVxK0EXFsqhdnNRs/NNrPo5Nz1VLs1Hu32jgz7+2HZtJ4rEnD9HbP4lFyANQ7zLQuno1hVyBeDDA6MVBmlrqqLRLbK5KY9GTbKsvsa9DKMua5dM8cOcGfDMBRmIy21Y42HHzXk4fP89zJ6IUBAWLq4L9t2xja5uZFR31rFq3Erd4aYC0o7mC+vY2jl9MUqnkWFtdIlUy8uqFLJ0rG2lb1clFb4711UUeucnJN+9rh0IG1VrLi++OMRKVQSurUHxIrepf+9otFctJpFFR0DWNbCpJdNZHLl3edDVVJTI7Qz6bvc6VbgzOyipks5mKa3B5YwE/saAfs8NJPBjAqJjIpVOoxeKy1WNBEEjHY4S90++L1lbf0YnF4aCivnxP80WZTGL5gsdyiMzOLCSk2VSKiM97zQTVU1tPIhzCM2dqpFituGvrSUYi5WLLDT53MhIuO/9Rjv3hGW9ZQ/8KGGwetHwKyeq64dd0Dfza1y2A26SyY/sqDDY3PzleIJQzsLZG5+g7xznSG8Og5agwpHA5rWiSkZdfOkZVQz2SAD0+jb/76WF6fOXYKeWj/IvPtfPILgu3dIrcv8lEY30lr75yjLhe5n+f8xn466eGcdkM3L/Fiokc4bzCUyeTPH1e44XuHNvrsjx0Wyuf2lqBrKUJJoocPHSBRDTC9NAgfd4iT5xRyVKOu7Gcjm9slBl/DIpZ/uDTbXxuh5NWR4F/8fv72NF6Kc8QjcoSGsUL50s8eigKRjN6KcdKS4B//fXd7GwROXLOzzNPv4nVVN5ndLVER2czje3tBLzTTA9cpMJtwWSAm1eaqBYj1Chp7t9iYUIsH0xPrf1jpNoONg89yjlWYN33MEVrJfc9cQedgo+m1EW02/+YsY2/T2/Hl3Ct2sLx+s8v3F8+aaK2ZT1IU8hmjfh0NdmEgKdtFsVeomXVXiQlTKkgEx3dhKJ/hpjXjAKse+VF1jzxI/5nk4YWDxBTru4WeaP4UAfoBEH4XWA7cMs1HvOHwB/CtS2Gr4RrzhLZ6ioPaqhqCVd1LbGAH3dNLdlkfNG/PygEQbimMkUyHCrLoU1OLFgSX8/Qo6qxmUwyAQIEJieoampelmMWDwZQ1RKZZJLK+kayqSSaquKqrlk0fKeWinjqGpgdG6G+o/O6rykdjy4artPUUpmvtoyl6DyMimkh+XZWVc8pd8iopRKRWR+e60iszWMgoPGLZ08xGiqxoUlhx/bVDE6eIHmFrKggGX8tepfXW7uXr1vJcf1BxstxqD9N99ARNrXbWF9Ise/OfUT9PsJ9QQQ1wbce3kzAH+K///QsyHa6/RkQyu9FHhP5ywpeAjph3zRmSWXTphUce/cUkaxIWLUvdF8FyQhalo1rG4nHEpycjC2sM0GUWFEDLY0VzE5OUG8v8cXP3MJjT7yLJFpoWtFBIhLBKEyRv+xcecpnoXtyjDu21THpDTE7EyBX1JnwpRCFUTKqgVVVBVorRAyKmVN9QWYzRh7e6yaWyPDG0JytuJzhGw/vYnZ0CP/EOGIhyde+cRexoJ/e0RgH+vMMRhUe/eUhppMK8licAjJ3iAFWtNVx35q1RANBQoEwDa0tHO7rRTea6O6ZJJMrq3B0jWVAOMeZWRndUP5uDgbU8voL5MkmR5DFQe7Yu4KjPSFmMwoHexOc6XubrCryqTUKm3dtYeZHh4hpdt69EKVv9ASRopm72t00ttVy6vgFdNGIAIzFy89hdNWiZuJIv+L1+17W7nuJuUZZIS+mEWUZUZLIpVK4a+sW5M1igVk8dQ1EfN4FdZ8PiuupAemaRv2KVUz0XqBp1RoEQbgmXUMQBOpXdBIPBklFI5gs1mU5zvlMhlQsSi6dwl5RicFgIJ/JIJvNiwbb0rEYVc0tzAwP3hBXuiyLVU5SSoUCuXQKZ1UN8eC1O5zzdDYAWTERnZMOLb/3N0YJnFfFkAxGcqnkHAd6eetqyfrBWszvB+81X3gvcdeXNfO3PzmM2yLwlX316LpG5+oOBrvPkynluXOTjb07V/N3P3qHcNEMkptzj19ElM0IEoQKxoXBWAGdZDSMms+wpr2RcDBE98AsF2aFBY6wIAgIRoWmKgNbNnVwvDdArjD/GkTMeoq921aSjEYoJeP884c30dc/ydBUjFu31GKymLHZknCZYFQcF//4qo+tLUZ2twsE/RES6QKRDJw9N8R0OI/LqLOr04pVFjg/EmYirrC1EVa1V/H4QR85gw1dU/nyzdXYTTUEpybIp6PcubOVlSubCExO8N23wohGE794fQhB14jkDFjlEE65yIN3tNK0ei2tbdMMjcyydctKvJPttKR91IbOkh2ook4PYRYyjB/5HjuDZ2gwll9EnanIlpe+hVlNM6PaODl7kTq3iedrv8YDsz/BWZ/DP/MzVClJdKKdmoa9pNKnwTWNxRMlGHgR2RYln6iirnUjkwNnsdaUq+H1fh/1fh9r/tW/4HE5Sr3JwOWGVu8HN5IMe4HL9WIa5362CIIg3An8R+AWXdfzV7uYruvfBb4L0Lph0w2XcUVRXNQqEwSRyKxvIbgLgkgsMIvF4brRS75vRP2zaJpKYHIci92J3eMhEQ6hWKxX1dich6yYFgTYr+SBzaNULOKpq0dTNTKJGAjCkunmUqFAJplEFH3XfM7g1CQAnrp6bC73Istom9tDzF8e4LgSuXSaTDKOwSgvqo6/nwGWUrGILsoMhAHBwJmJApM/OUwwI7KxWWMiWCRR+mAL+Sr40Nbu5etWqet8T+0HVZSJqAYaap1IoounXzhJIhphMutCN5g51jVCOltEUMqbnC6oVJsLBHOAuHh9dIftbDVY2L5vF3//jy9gdnmYSJXX0+2dYDAIvNZbQjCa+f4LA+iICEL5MKNrKjtaRLKxKJ7aLailEqPeFIP9I1R5rNxy23beeP04p4dTFK44aQuCgMehsHPHajK5Xn70ToT5CeyBcJlXt2u9m/qGauKhMKtW1PPEs4dpbl2HIxyhNRBiRYOdMwMJpsen0DWoqW8mlvfx7uEeJC3PhYk0Rk2hKJqZSKjsXyGyY9dmRkd8HD4zTo3HxPjgMBhNHDgTQDuXBsWKABwc1qgw5vjiZiu9o3lSRTt2Y5GH93k4dM7HaExhIAxVlhKbNnXS0zfJ+vUdDE3EKGk5NjSZaaqrQaREU0cHzzz9DpGiFbcxg9WgI0sia91pnj+SQj45iy6IbGkoUV1ppWs4STivIBiMH6aD10eydt9LzAUWqUQoFsuCVnr539ZrdsI+TGQScXKZNPlsFt3vo3X9RvKZDLl06rpKFkZZQRQF3DV1RK90KZ1DMZ/D4nBSzOeQJKlsHNLSSuSyQoGu6xQKBYLTUwjX4OfOFzNkxYTN7UErlbuZBlnGXVNL1H/1fSo8U+52VtQ3LBxgb0Sp40qUk3DDoj1zXuc56p9F17WPahjxI8sX3kvcFQSBSMlGq12jpa2RZ188xoV+L4OzJQTFw/BUCpGLJDULwtyB2WXSyWm5BUfJeZQUDxe9Oe6+YydPPH0IVRcZjUoUBRMdrgK711Xy0gk/sZKZQwNpzg0fJa5ZF4oTjbYCKxoqCYTirFq3ltChI4wMTTEzPcOXv3AnwxdHefJAH1HciweZAYxmNq2qwO6w8ddPDiLKJsDEC2fSgMLOFpHdezYS9nmprXExOJ2kxgoNLQ1Uy4OsWVtJ93CMUDBGwayzdusWsucjXBiJkEokGZ6MYRUFspgIFu1srC1xV5uDlhVt/M1PjjA96SURjRAORBiZTHBq9DBdhsMgCNyUfIct5w/yvRX/GSERoE1L4i4G+MGa/4IhG+Vr4/+N7bkzZEtwdMtf4wpOoa6+jaC3j8T0YySm2yikSlTWbqFoLBAJ9GCpmSKbKFJIVVAspUhNObG4ZwkEHsPVkiMTrubtR76K2+tl87sHANhT+cGH5+DGkuFTQKcgCG2UF/WXgC9f/gBBELYA/wjco+v6jfXNPyDmk8LwjBdBFDDIylUHKK6FeCiIWioiitKi0/g8MskEkmRY1GLTdQ13bT3xgH8hETbbbCTC4YUKSTwUpFQokE0lsTgcC4HHIMtl3iZc1ZPeZLMz0n0Gg6zgqqxCNBiI+X0LSWupWCQW8CNJEpoOnpqrD4ZIBgmz3UkunZrj311KnK9lKZpJxheqyNlU6n0PKIZnvBhkmVpzjtns/CCCTKgo0+zO8fn7tnHoaC8H+j8UjvCV+NisXUEQeeydsmZppU3gGw/fRn93L6qo8MLZzKIW1/o6kS9+Zh8vvXiERFFnIGxYNKV86NwssjTLnftX0rl2FX/3g7cI6R48VoG6hhouTo4ymbZQzBdZ3WRGNqqcmRYQihlu3buN2ZkAP3ziJPF0gZYaCyvXdHDq/DscP9JFPF1kXZuLzgYzmWyBt/vSpLXy5zabNfN3PzlMrCCDuNhlTddUhsYCjAyMUeE2ocsOAnoVp092U+Fx01Ejs2fXaoZGfVTVVHHk1BAvnT2HanZzcFhDVwW+cdcKAH7wph+rUWXHzg1MDI8zNZMgq1t4+VSYlTUGdm9eiclm4/GTi2k2jQ6Nddu2oCi9rFi/jsTT71LXUIOl71IVThI03B4H6ZzGt7//Lkndys4WE3t3r2Wob5BstkDfRDcXwhbuXqfQ3lBNZUMD0wMXaV2/gedfPcNZr8Dtq2XWtbvw1DUQSpwlPFVW7dAKGSTLh6Ku8LFZu/OYV/NJxaJEfF40VVtWV/d6yGezJCNhNLW0rCZuOW6mFhlW5DLpJUo385bH81rH89dNx2KY7XYq6hsWOmlWl4eo34frKrHS5vYw0deDIApEA34q6hqWqPKEvdM4KyqIBQPXrLCrpeJCxw2W6tZfrXOpaRqiJGGUZdJzLqBXynDeCFKxKKVCgUIuu+j9dVXXoGkauXQa2WQmn81et3jzPvCxWrddUzrnf3CMomTha7dVsb49idFi5eWTft7ozYNQToRlNcUfP7KNgb4RRoMFBmaK5C+rNPZP5xHfOY8iqjzw4H4OHzrLW4NgFgu47Qq7O2ReHQA0DVnWuWO1iaMXE+R0hTUtdvbsWsOPfvY2R3vCBOMl/uzLLeRKGi+/fAyn1YhiNvHINjeZRIKLM0UGI8b594pfvuNFEnREeSnNZzaY5PjhM2SifqobGhicyjJaTKGpRVxOK7t2rCaR6sZmVzAYJb7zk0OESjYEUWIgDLtaXHzpoQ380y9P4M9ZWN3mwWoWOXOqF49F4NWeHPXmOHffvIo1291855dnES/rZieKIuqKm0hGI9hWryN1vIqipx0t5V+Q/VN1gaKtFl0Tuef5z2Mmz4xYTWX1HqYTXWSSQbLZSaxVfgpJK6X0OurbVzJ6/gSNKzcSDY7haj9LzGvFat6D+FmF8EAfzCXDA9EU7XYzRsMHU6+6LrlN1/US8GfAa0A/8Liu672CIPxnQRAemHvYfwdswBOCIJwTBOH5D3RX7wG6pmH3VKAWi+/r70uFAq7qWkrF4gK3a97Oc56ecOXAm8lqIxaYxTUX1IyKQjISJptKEvF5KeSylAoFPHX1KGYLurb4QGv3eK7pjqerJRo7V2NzunBV1+DwVOCpu1QpgDJNRJQkKurqrzlFrFisFAv596xe4aioWuAD6rp23SGMq+FacoBTcZGnX+7i1ECM21eJ3NKhf6iDOh+3tasZzGgGM/kSDPUO4nZZaW+pQlYXm6l4o0VOnb5IR1s1X3pwJ3YWD0YMR2XSBQ01m8Q3NkyqKHLvapVCLo9okJEMEnXmLP/mG3vYu6GWW3etgGIOFDs/eLqb5474mE6bSOIgklLp7xvFoOXZsKGTHRubqamw0NLWyIoV9dy+RkbWy0mnIAiESzbUuUS43lpgV6sAagGplObW/ZvoXNnCpt276J9MkseE2VVNQ2sTx/pjfOfRI8SKJjLpDHlVJKldFtxFiZHxEMPjQRBE4qqVf3z8LM8c9nH7rVv5zN56/HkLp0aLTIx5mfIvNaAZCxY4dqgLrVTk9LtHqHJbmBoZpW+mPHixtqpIvUNHFEXq6itJCQ4EUeL0RJ4fPHmKX57M8kKfwMkJ0AUJlxnSySRvv3UCHZ3B872MB8uHtlNDCQ6cmuYnP3uL1iqFjRUp5HwQUTajpq9tKXwj+Lit3cuhqeoCXe39QC0WsDgciJKhzMH1eQnPXCoexoIBFIuZeOhSS38+Hl2enOqaRtQ/SzaZJBmJUMznsDpdKBYzVqdz0WyGYjbjqa2/piqF1emiuqkVV2UVZpsNT239ElWgYj6Po6JykVbwlbB7KsqJd/V7o+uJoog4V5XWdH3Re/JhYf71F3JZ0rEIkdmZhYGuDwMft3UriBIl2QGiyPR0gGwqQVNLA0320qLHFVA43jVMPJnlc/duY0Pz4upwvGSieyxFU60N7/AAsViCNe4UG9pdZPIqJYxoxRzfuLeVu7dXsn/vWuqc5c3vYG+c7/78KBM5F1NpC0XRxMDQFJFoipYGFzfdsp0am0bnqjYaat3sXOWg2XGpOJTFTEovx0qZHPs7jbjkcjF9fWclu27aQufqFeQ1I5MJGV220rF+HRlN5u9/dpTjwxny+QK5fHEhEZ5HIFagr3+cVKG8Lp47FuBnb3sRFTO/98gtmCSdoZSTC/3TTIzNUNQX5xqSwYjn9I8xhkaY6u0mPXaBtOymrf8XCIJAn7yKd9r/gFQihtC6GaWYoFLKsFr0Eoo8jrNpAEfLCWpW+7BVaGQTCgIiU8NHKJWKeIcHKelDAFgrcuSKJ3H8p39P/mI/r3716/xlSOWecCf/efLG5qauhRs6duq6/jLw8hU/+78u+/87P/CdvE946htIxaILp+1ULIogCDec/Hnq6pkdG8HidFHM5XDX1JKYC8KSwUA6FkNVF39xruQGm232cnAUZi5VL+rqiflnkYxGbFeRQbsabG4PqWgExVy2KJ2vWkf9s4iShLOyauHEfzW94Xlc633Q5wJuIZfFZLUiSYaFqWaD0Yintr48vZxOL6pMvhd46hooFYv80Zf3AItNB3RBIp0pUiqptDRUUCoWYSjMh2nn9XFcu4Ku07ayg76z3WTzKhhM1JiyyHqWqYyNGCZe7s5Sbc5xfiSKiojbkMFuNlDlkjk9XmTv+mraVzTT9fbbaCWdjrY6DIqJbz92Hsniwm3MMTUxQ9eFKQIZw8JEcaS4uBI0k1Z47vA0f/yF7QRnvDxzLEyyaODNrlPctEJhz76tHLp4msIVsUZU8+zsMLFqbSeDk2eISg6+/1QX2ZxK/tWL2F0ubl0lc6TbhyTorGtUOD8rktcV/unNAIJwhWamIPDuKICwcIDyOGT27m3kzbdOI6oFbl9h561+I4+fzmPQVfZ2KMRiCerrPJzr8/Otr+7n6NEeiips3beHo+8cRxPdCIIBvZDlnv1riceTHDs5yIgvzbxNtaBDc42NopYhlC+HRL2Yw2K2ks0WODcjUttgoXs4QrSgoOsajfYSiigRKBlZtXYFlW4rZmuQI+eDCKYPR+bx47h2ocxFTUUjC8WAQi5LOh7HVV1z3XgE5QpzPBRALRbJZ7PYKyqJBxdzWVPRCLL50mFpPh5djqqm5oVK8fx/U7EoisWCruvvuZvlqKigkMuRz2bJpafw1DeQTSbIZzM4K6upbGxaooO8HIyK6ZoUhEQ4RLGQJ5tMIpvMi2ZHnJVVGBWFbDKJrr8/3Xyby71Ak1gOoiShlXRUTcNVXY3ZOEbqqkSF946P47oVBBG324rbbWXkwgXiRRmrmKPOUmQ6IZKTrBwcVDHqGrH8WfonE9TZDMQyKttXejg3mmRFrYktu7cy0n2W2UiB3eurWbF+Lb98/AADKTeCaMDni5BMpHjn/FGmk2XecQETs7lLhSFVVHj+dJL7N1npWNHEM88eojtkZeCfDlJjKfKlz99E7UyWyWUMYtdXldi+vg5V9XJ0VOXt81HODR3DH4yjGi3sW+tmdEbnjTdP0VwhcX5KR5fMvNSjAuqiRBhgLC4zdjLJvNGTrut8enctM74wb711mm2tCmfH07w74YCJFKsqRJ4RPkupbi0d069xdvMfoNWtpurwD9G230kucwtyMY1DKhcn+5o/S3LX13G/9N+xzx6hUimxoHmsWcjFRUyO+ML6FzFjMMqIpkkMci2QxN2aAEQyUZl0VKDa5yPyyDrSJhM5i5uqF7tptX9wj4nfKAe65SCK4gI9opDLoms6hUIWs91x1aBVLOTLk7aV1UgGA7LJjGIyg6aTikYW2lqyyXzVNmBoeqqsbVlRscDBlU1mIj4v9orKsv7uDehahma86KqKs6pq0fCIze0hMjtT5rn5faSiEaxOJ+lYDLh+EnwjKBXyKGbLQoIdDy3tWLlr65Z1VXovWI4OYtDzbG2CW/et51zvFD95YxIQEKRPvn1zURfwzwaZjBu4MJhDLBT53N2tVDU28eabp5AUAwPTaQJZE4EsfOmmClpb6xjv76ehvZXJ6VO8ckql+uwQX/j8bejOYaan/MQT6bJEEhAtmvjZwQAmAXLipXUlaHnu2uDAG0zRGyh/LndsrUEvFTh+3k+V08KWKjPH+/MkSjL/8PMjxFhaBVzXILFpx2ZOHT5JRC3z4/xZEzc1F9i54yZOnLrIjo2NOA1pNm5bw+zYKIoc5fAEN3ywsikiLW0NnDg3wR27WqhuamFs+m0m0gLraorcetMqRgdGWbl+Nf3DfvouTjKb1BgNlcA0RteUQHQ0jiCZECX42csXqTNn2bG5BafDzEx3OQOos+vcc8cmDh+9wMBkiumkRJVNp2X1ak4eOcOWDgevngqS0ctrs84QZf+WVqqbW/nZL9/l2z86Tr1bwiQbkJw3lhD+puNyHms5Ma6bmz+4esyLBwPIZjNmmx21WKS6pZXo7AzZZBJn5SWu9dWc4RLhEKViYdEcg30uTi7MQdyANXR5UC6NbDItmoeQTWZkk5lCLovNXUkmEaeQyy5Ktq+XCN8ISsUCFXUNTCcHkE2mJbMjFrsD82WGGu8Hy8VcXdfn3u8UVc3NZBIJ0vEYwfyvxjzq141YIktJ1Xj2dAnRqHDXWiNr2ivJF1XePT2FKIr0BGTOemFLs4MH7tnC4NkztK9bSSF1klPjWVJPHmXrSjdf+tweXn/tCKgFJhIKwlyL/uWeImYtTxbzIq3xtVVFGqttvHEhgS4qtHs01qxu4kL3IGMRgXs22egaKKJYzTz+3AnGUza4Qh3CWIxz33378E9N0TUYA4OdrG7CkY/yF9+8mbfePstt+9dT3XWOyqoKzBYTtc4ZftZ14/u3UdRpaqolEM3iltJs3LMbu+08T50tUWvKsHtNFReFr1HTuYYJNUfF7EmyqWn2h57m7YENtIcOccfAv154vr1D3+OMt5uBji+SqWlj4vUXaZMiZVlOfSMmmwv/0HM4agxYnAJmWz1Wh5uQ34nJEcNZlwFE8ukS0ckWOrfcxKnfybDvP/8HohVVGP7on/GnnVkqDR88b/j129V8iDDICtlUklJheZmdeSTDITy19QsTvZqqLiSbl+s9XguiJGL3VJDPXJIVsrnceOoarmplvBxKhTzu2jr8ExMUC4uP567qWqJ+HyarDavLTSIcft/VAij7118ug2RUTKilIoJQNhOxXmWo46PY3Nc2yNx7z256LgxxdjiGKplRfwsSYYC0ZuLVkz4QRNA0NMXO0XOTXOwZJJspcPOelexoL1cuAPqGA0wNDSNIBgIzPj53+wpsQpr9e9Zy4WwP49MxGtpaqKhd3Ja9ebWZf/XVXbikSzQLhSJbNrbS3nCps9E7Fqd7MMxQ3MS6dhf7dq9mTa3AA/dup62hnFzUW/NsbdQXtDZnpgMEp6dwO8zYShFWVRRZX1Vg146VTI+OcX48w2tvnWPjzu2cfucwlQ0NJDLXpzJZhCxrnEluXyPTP1PgL793lJm0zPToGN0nTuPNWtnWZuLBz+7n7QNneOFEkL9/9AjTOSfPdaUYCBmYSso8eTxBrGRatHb9ORNr17ZQ3dTM6NglU5DppIFHf3mQ5moL9++pZWWlQDRn5K23TuN2mtm2qoKOWpkaJYNNyrF3WytWp5verrP8zhf2YLcYGEta6A/LvxWJ8JWYH16+lnRZPBTE6nSRTZbLXZJRJuafxaiU5SvnFWuuhVIhj6e2nmL+Upycr8LeSBI8j6jfR2VDI8lIpKzucwUMskIulcTmciMZjHNDdO9PbaFYyC9IWc7DZLWVr+lyIhoMyyauH8U6igX8uGrqkC0WEqEQzqrqa5qFfNJwaDDPdLiATS5T8bpHk4yNzXCud4qbtzexc7WLBnM5Vo4Hsgyc78VsMdNzqou9u1az0pNly+oqspkM5y6M43B76Fi3FpNyqdpaa8ryF1+/iZ2tiz/TFU1Otmxqw0S5y+yL65zp9XJ6vEi9x8SenatprxT40oM72bO1FSTjnDa/YUGCtCDZGOvrRVFkLHqCla4slYYYD923Ad/4OJGcgX/62SFqGuoJ+3yIBgMlg/n6a0kt0GpJcutKAadF4n/9/Cxv92bxBRL0Hj/Gqf4QDiHFHz6yh1RO594z/5Etv/wCtw79PQ/O/ohHhv9/NCppvtrzb7kz8sKi56sXIsjOCjyb9oG3F8+cXIYgCOjySfwTZ7HId5Ka6SjfijjI9OBpFMNa9PwK0lGdmNdINlpF27rtDJ45RMXtdzF6/+fo9Pu4Lxmi8gNyhefxG1cZzmez5LOZZYflRFGkqqmZXDq17OAblO090/EEOpSrwSzvpHS9aqjZ7rjqfbwXFDIZJnrP46lvJDo7u8j6VBTFRe22q1VMbgTpeAxBFEmGQyiXVbuXGxr8VWBwpsDLb3XTM54jy29HEixrGVRdRJVM7FtfwYaNnUz98DBx3Ub3rIIvFsAfUxFeOswDn7uDnF4eLDQoJlZs3Ej/qZPohRzta9fSNjSLgRKiQWE4UmLo2bJyBAbTwtr1R3MMDE6RUy8Fi5xo429/cYaCeskOdDIpM5ksgajwWleYI+cDJApG9FfO0D+TB0zsXF3Bxk0rGP7hIRK6kbxoJRWLEwhG+NPf3UNwaoJINEkynubtvgxpyUV3WMP706PEc9ATPMdU3LDI/dQiZBGBlH6pcn3v9ipWrW4hHYvSN+QnbTBw10YrlZ4a3j0fJI/MkC/Lu0d6uTBVQJJ0kmnthiPZq6cCmM/68WYuVTYFycBEwohithAJhvHGSmiSiQFfmttv30Z3Vy/DU1H+/Bu3MDgwzrtnfQxNxMgXVcxOH/k5FpWaTaIX8wgG44c1RPexgK7rxPyzOCqrlm29u2vryKXTiAYDyUhkyTxEKhYlm0qSS6cwGMt886slYdeKu86qGqKzvg8csxSLlamLfZTmCgGJcGhRhfjymP5Bk8V4MIjd7SERCS9c93oSnB8VnFXVRHwzGGX51xb3f+VQC5gokJNstFcIfOZTmzEeOM+JMZVAzsTB/jT5bIEh7wAP3bWS37lnLd9+YpCCVmTlhrVMDAxg0PMYFRMbV9ZgMoDisnHiTBR/WuTEcBclo31h3aaKAv0XJwgmisClhPiV0xHeOhskK5Y56DmUuaFxhUC6xHd/fgRfUiL67CmSWR1QaK8ycvftG9Df6ubEuIYgSkSiKTRN5+49LZiMAoWiRiaVpm8qOyfxqPCTV0fQdHCOXiSRF+Gy/VXQ8lQoJYIF80KHbl29gS/ev4uwz0upFCRfKFFpyrJ1+1qmJv1M5mQErcSBd3uYDmX5uppDzCcxGhbTR6+G7d5nML8YYFPkEA7pEhfaUVOikJAwmoyk89MAuBsTSNpKzFYHsdTbiKmtVFZvYGzg+4jCUez1MxT7ZBxz/gbFksp/nNCoM6j8q5YPlkf8xiXDyUiYUrEw11qrWjLgEPZOY3Y4SISCGBXTstWK+hWd5Qnkq0jWZFMp0vEYaqlITUvbso8x2+x8GHO4TWvWkc9kFqarbwSJSJhSPoditZHPpDHICjaX+5rVcINRJhmNoGkfnGj+YSCHwqlxDX5LEmGplOaPvriW8MQoKgK5bILp4RFiOR1BgTW1Ag8/cDMXu07R2N7JyaNnODNcTkT7xpPUHTrG2s3r8U+M09V1kX4/NFRn2bhlNRa5n1PDGUZiMrXGFLdvdnGkN0a+KGO3GLEpkMsDagG3sUBEtSwxhqi35LlpYxVvnckRLljRtRKhWI6NtTout5Fj5ybpG/SW7ZsFcNhkWtasYTZxgWAgiGBUqGut4DvPjSDK5W9GpZLn/r1NHDo3y2hMBgnanXkKKiSzKl+6rRmDovC/n+yns97ETFTj3HCR2WCSwakE+7Y0sXJlA6N9A+iCQI1dYO+man7x9hSnBqLsWO1iTZuHivoGfvLkCSaSl9aSoRDnzg12UgWBw2OXkqtIwXS5Y+kCSqKZ77wwPmeaUb5OMG/hb358hGRJxi4bOXiwi5YqMw/e3Mzrp2cZiykMHonDXCTQi3kMjkpKieW1XH9TEZ2dQZAMRGZnMMrKkkQqEQkjiiLRyQlq2tqIh4KLkshiLkdtazvRWd81aRSByQkkgwGTdXm7+iulwt4vqpta0FSV8IyXbDJxXW1jKBdh0vHoAo0CXcdVU1fWl71W5U3XScWimO1XH7j7VUEUxQ9UUPlNxO3rrLRVOkAycK57mLDPSygYBRwYSin++Ktbifpm0I1mwv4Q5yZyiEYTKV3mjdeOs6LBwsrtuzl34iwzaSOGYpj7P3srt+d7CCRKvDVohFKez202Ek3mODomYBDBYxMZi5XvwSGkSGMkrS/OVSQtz33bXEzOpuj2WcAA4VQWj1Ji364q3jk1znPPHaLXL4JkQdc1GlqaUUwy42PTaLLAqs2b+MHjJ/Bm5mJQqcidOzwkUzkOlOfOcBnzNFUauTCR5f6tdrbs3MgPHz9GriggCjAZgkNHexmbDGK1KPzZ1/Zx9OAJbE4XyeQwf/ipTg6f9XJiJEOjJcsbn/oxZosZV99zfGnw/114PQUVHnc8RG7VHdzb9R9oEModEY+UZX/8zUWFkHl42icp5Uepq72kTiTZT5BTBWxuA9GpCdLxHLJ0E5l4kNq1Ajf/4X9ceKw3k+MptY36fIR/xY3lT1fDb1wyDIAOjspKIj4vZpt9sf6wKJJLpyjmcssmh5LRSCIUvGZQ1XUNxWwhm0pe9THXQyIcLkvcFAs0r1571ccJgoDJal2S1F8LaqGAp66Bif4eWtasxzs0iFosXlM7UrFY3pcD04eB8uRyDJv7Vy/s/nGBioHB/lE6WqqwuTwce/cYyawGc1yn2WiJ0f4Bstkis4EIA74isWL5d3azyLZ9uzl/4jSnhzNM5x1oRRGz1UzfyZN0bNhI93gfAO21Mp0bNzATPoU/odPQVIvp9AxiNs+dawxs2ryZX75ygcnkXPDUddpdeZrtRdasbSfk8zMZTnL7zkbMZjORSBxnZSVtjW4MBomBFybBIOJNyXz/8ROE0iKF/iiSlkPAv5AIA8gS1NVXY56TNtNzSR56ZDvB2RCjM0nUfIaZiQm+st/Dqk0bePdoL2/3FxiJAjgZmIgST+V5qztOW2WKOocBs8WElSxf+ewmktEYfq+PUCxLOpFAR1lITB66tZHaGjdDg5PX/FxsUo49q12cHooTveJgJggCRQx4jGm+9rnthEMR4uEwzTXVmI1LTRMkq5NSIoRo/tVX/T5KGBQTsYCfxpWr8Y+PomkqdrdngdogCgKFbAadpYNvUO6i3SjVwGS1oi9jq3yjmOzvw2y1Ilusi3jIV0KUpGuadVyJecOisM+LKIjIFgu+0WEMBgM1re1X/bv3Iz33YSHqn8WoKO+JQvJJw2w4Q6PDROv61UyNTTE9HSScL9MYS6JCT/cgLrNAqpghmdEZjpV/JwgiKzrqcNkUXn7xIGejFYiixJ42B/6xkfL7apWAHLKaYO3mW/B7vZycmKWurpJgJAOUWGmPc/f+lQxMxni95xK9x23MUWtKsmbVBjyWSfonfXx+TxUWkxuj2UZVQz3pRIKdezYTfvw4U6nyPT1xcAoRiJbM6GoJc9dhsuIlwyV0lQqPHUkUgDIlcudqF3t2rqb0xNu0tVQzcOYst25wY3c6MMgKf/30yFyV2om7kKPrzCBdEypdwyepcRnZZDEhigKf2VGBS1HJBmcR1Rii7yLxkhGnoUx/O1D/CPnb/79EJsfIiBbQl7c/L6g6rzZ/i+iUE3dTHNmyWKZTNkM6YiUfq6Slcz9D516iqr6JfK5A2dDwElodVn5YGMdtEOADlid/45LhyoZGUrEYsYAfTVUxmkzkM5mFRK+ivqEsWl63vA7kcvbKsYAfTVOxOlwoFgsWu4N8JvOBTvPpWAS7p4LMNayO3y8MskLE56W6uYWpi71Y7GUZIaP80Yjfh6anEEQRi8NxTUmhqyEVW+x891sJg8JrA7Bi7AIdtTK3f/pTHDvRjzDHB4uVTPzkSJpKo0ZmwL+IOhLImfjpkycIpDTSmoMac57NG5w88844Kxqs9Lx8ioGkE0GAHp+O5WgPZyeKxEomLn7/OLriYG2txp792+jv7iWSvlTJsmoJvvqFW5gdHSE0PYUu6NR7DFQ1NDJwvpfDfVEy2QlWNFcgosPcUIggSsxkzLjlHJsbRLpGRUpXaA+7rAZee/MMF2YVRBEEk51fvtRNURWIxLOsal2Jo0JDMZl580AXF2cKXN4p6Asa6QsWqbBKfO2hfZw5O8jfPDOCUbLR0ztO54oGksEs40NR/uSbn+Lnz5xkOFq+h3FvHH8wjiIb2dVU4MRUuSzR4Sqwd2MNLx7zES2aaPIY2bt7DaHYWaLLKFnds6Oa1auaefmlIxQkC70BI8Lpk2jyZRvQHATpQzXd+NjA4anA7vYwPXQRWTFhstpIRaMLBQWb24Ou63iuEnOXO+xnkgly6RSSwbhQRa5saCSfzWJ2vn81Dskg4ayuJuL1XjMZfq+wOt1EZ30oZguxgJ9CPl9O2j8ijvj8sKAgiO/LUTUeDOCoqFxQRroW/u9vbnnP1//GX77nP/m1oC9oZGTKz36vn6a2FqqbGnnmVBeCooBo5OU+MJPBYtQIFxev0ZePz6AYBGYy1RjJc+taC2PTMd4IxKmttHN8KAOynbzBxYFDPUSTBbKY+etfnEeTFKRShi9+dS+hGR9jMykup03cvsnDuo278Q4NAGAnS21DLclYnMNnvfhe60E221HFiwQvd6UrmRG0PDtaYTygEsw5uHwFVlgFxqYiHOuPglQ+lJ/oj+INdNEXUmgenmH9hk4S4SDdPROEs9KiQb1o0cSLZ9OAmS/fVEv7imb+y98foGSuRBTirK6X6Wh0sfPlv+D0g4/y3Og2vtb/HwCoSgwy2/8WntEuDm/8NzjO/p/UiAm8upuXd/x3Gsdf497QEwRVC/5df4gU9wJdSz6zTKiK6pp7mR59i1DgKLVrwiC8hk0SWS5lvbnywyny/cYlwwCiKOCqriYRDpHPZJacfN/r8IGmqQuqDfNJ9QetotorKvEND1PZfOPVhxu+9mWcPJPVjiAKGBUFz4fQQlwWglAWtc9lb+jsFZmdAV3HZLNjsTvm7ER9N9SO/KQjL3toW1nHiUOn6JpQudxC0kqaP/7ybnp7x3m261IEFESJscSlHlNrjYndO9fQOzDDvl0rCfu8yKMZegJGEiWFN/uLgBlBAF0pB8ThQIFX3+qmZzKzYKIB0O7RGe85j0FROHhkhItxJ9WmAuOPvkZbWy23bKhkxbrV/NPjpwjmLUv2/s0dDm6+aR3xyNtMJVUyl/F/d62voaLKzZlHu2HOXW88MSfhAwSCCeKJLG/2xxGNClejzKRy8NrLh5mIGxGNCirw5hC80TcOooE6m87gxXESOR29kAGjmWMTIlIpzZ9+sZ2JST9MlaskNrNEY1MdyikfFKF/VuN7jx1jJimiCxL7VxgoFksLyfPZwRBef5KzQcuCG6CuLN6ALv/8cpoBVfxI3BR/rRAEAbPVjqOyEv/4KFWNLUt+/16QS6eWHJBFSXrf5j5QHlZTSyozoyO0rl3/vq+zHBSzecGgQi2VUEtFEKCy/qOhHZQKeVw1dUR8N1ZAKA9HZxaSZ6vTRSzgRxB/+wY6r0ROtNDcWU8sGOBIXxTkxUnvvTuqWb26mb/68Qmy4qX1Fy6YFyhVdmORvTtXYZSGKJRU1ndU4LQFeKMnQ1FSOD4BC/Jksg0BUEUHz7x6jnReYzJxKSY4iGEo5PGPjzI2HePwQAZJcfPiq2fQBIkd62p44O4tHDoxwBu9Oa6MizUWlfvu2sLhQ2c4N5YmVLAsfP9WNpi5ef9GJoMn5zpsZY3kuB8E2YwvXqLaH+bJdybJiM45ms/S90zXVM73TXH+oo+SuQJBELjgN3DeV+RC973oooGe8RO4ohfJlsoDiduyXWw718Xj7f+GeNtuUt1WakiQF0xQt5pMsBtC0CBnuem5L/HKpx8BBGIzVkS1BYOjB4tTxGCNEvIfw1Llx+bRuVaaGi6WSGgabYp81cfcKH4jk+F5FyRHRdX7Cp6aphEP+HFWVSNKEiar7X2JpF8LhVyW9s1bFgw75u1EZVPZ676YzxEPhUDXP1Ar7b20+q6Geevly3WGL4ejooJCNnvjw4K6jrOqpqynmc+jlUro6Nhcbv7vb7opFvLEg0FO9ocY92cJ5n47eMMA0ZSKp66ByUCOcH6x2H1Gk3n3aD8z4RyXVxGgTN1psybYv7WZodFZ/v6nR/DnnPzkiWP83u/sYYc5wQV/+KpJiSRAKJ4nVZQWZJylUpo779hMMhjg7GCIi8kKFDL8wcO7GBmZRlVLKEaNofO97F1h4qXuJCWDHZchx82bKjjRF+H4QI7JqQN88YHdzEz5eO2kl/UdFQxPp3jmkBdJ8iIoNlZVFulsdPDa2RhFQWFLk4FUTuPAxcJcIrw8ZHJ8YV81Has6+OUv3mDNygZODpdd8QSjiSpTnpVNNp46Motd0fmLR9Zz4OgQ53wSqsHKd57qQ0UCqfwc52YELvzwOJo8R2WQjHgzRpDK2sIb17aQTKSIpPx01hpwV1Ty9GE/zMnTSWoWhyHPqtYKukYzFOccrKyk+bMvb+NCzzgvn//wTAw+TnBUVJBNJmladXXa17WQikWRDEbMNhvOymoiszOYbR8epSQZCdO8Zu1Cgq2pKpFZH6J0aRA54vOi62X99fdCTbscH5YCQ8g7DbpORUPjku+tu7aeWMB/wwWOfDZTVh+a9VHM54gFAmhqaRGFIx4MUMjnEQRhkd3zJx2CbCGZLrJiw3pe6O5CMCxOnC6MhAmE02R0eckh12XIsa3VQJWnmr/7wZskBQegYZMKbN+1mTMjR5m92tddU8mXdELJxUZSu1e7aVnbybkTZzk6bqAgu/nMFiubN+3mhecOUlNfw1BvPw0OgTZrkrG0HV0tctsaE/FUgTNTMo8+dYI1zXb+5Hc38/RTb4Niw2aROTWUwhs8xlRCwm7MccfmSk4PRJhOyVSZ8rQ3VPDyyVmykmvZAz2UqXM3NRW4655beOONk+y363hjBcZiMoIooUsy77R9gw0jj7Exc5bvb/sOumTkm6e/hUEUuH/w20QG/4FGQ5lm2o4Py5N34DHkyhsRsFYd5ZBnXni5Ak/VRqYnh0h46zBb69ClPhye8vtWyqvEgwUMehuCvJh68WLzSgpNbdz77ss0mj5YEeI3VlrN5nK/50Q4FY0QnfUxMzSIq6aWyGxZXslid3xoGpKXIxbwY50z3Ji3Ey3OuSLl0hnsnoolg0zvB/lslnjw/btazlsvX2kuMg/ZZL7qsOFysLo8BKcmANBKJWxuN5p6iQcYDwbRdY377tzM1pW/XXy2jGrkZNcQw+PBpTJ5ksyhYZWR6FK6ywZPks/fvYnqGg+bVteRzeVZVQXbNzWTSyYY6OnHJl3ipOmaygp3AYeh/LM9q5387ud30uRQ2VyT43NbFQRURkZnuTCR4ozfgiBK5AUTBw73cWYgxFNHIzz6bhSLw8GmXVtpsZfLJJU2gc2bOql1y2R1E8MJO0eP9WC3yty5o56t6xu5c1sV7TVGIoVyEtlcY2PDujYsUgmHkKK5SmHjuhaspDBq2SWvdx6dNTKVFXaGevq57aaV3Lx/I61Vlzaz1U02btu/nnqHgKZBNBIjX9JwSFkq5CwlyYIuKaytKrKxtiz4vpAIUx44EQrlKrxoNPGDFwZ59fAY65stNNV7qKz0sKJSw2XMoxXzfOPeNj53cwufum0DTZ5L20lOM3ChZ5yJ2aXOeJ8UyCbze04ES8UioekpZoaHkAxG0nO0MclgwFNb/4EqwcvdX3TWh1EuH66TkfCyFANnZRX5THrJz98LdF0n6p9dIof5Xv5elEQsTie59NI1IwgC7praa7qLXg53TR2RGS+qWiKbTKFYrUiGy9rf/lmsLjeCIOCsrCQV/eAuib9J6JuIc+L0EAV1qcPpUETm8KiGIC1Okq1Sjt+5pZ7O1krqGiqpqzRT59Bpd6qsXNPOsdfeRL7i46lUcjTbyvGs3lbgq5/fxU1rXbjEJF/abaXRlscXLTIyMsPbIxI5vZzAnR+J8vahHs4FTPztU/2Mz2ZYvWUT21aV911RzbNlQysrm90IkoGRmEzvZJLxi4Pcf99uVtUZ2Nhq57O7PEzHAdGIy6yzcdMKaj0ysp6lxlJg0+ZOKi1g5erzUMZCgl07VjE1PEyzR+SWmzexdeWlQtiY3E543z9nqOV+BAHEdBgpFSKumjhp3okoaDQakvQbO3mm/f/ArzupVfLI0qV4OZ2VF9xmLZVjzHgfRc2asTs6cXrqycT+/+y9d5wcx3Xg/63uyXlnc8IugEXORCCYk5iUKVFUspJlydY5353Pdz4H+YLvzj/f2eezZVk2bUqiEkUFUsyZiETOaXPe2Z3ZyXmmu35/9GADNmBBAAQozvfz2c/OdPVUV3e/fv3q1atXKpFBY/Gc5Ogiqny/gkmsgfzSaW2tDY/h6j6HT718O+pd6RmeC61YLK3Spsw6kSyfzeCvbyQSHGV8ZAiz5fJd63Nx4fGd3oppy4m6/Ua6nYXGJYcDw+iajr9+ptGejITxVtcYeSQvkjInMhoAKTFZrBPhFr7qWsKBYWzOK/NistrtEwntE+Fxsqk0lQ2T8YRCCKSEH/10FwNxlfdKRgkAXbVyvDvGFx/awo4dR5FmJ/u7MvhMGTa0+TnckyFeNBSkLBZodGapqXRRYXOQTSU5dOAkVc0tLGt08KH3b+GVl98im7Vwy103k37zBIF4jts2VHPweB+f/djdHDx0jmePphkYCrF312GGYpL7NldT29zEiwcC/OJoFlBocWfJFQWBjJV9fQAWMBvhDL/YM0TT6UEcbjdr3QVOBEz87WM7iRRsRvYF1cSOHp3x1AjRlI7Y38cjH96Kz50CLcPmVhOnOsbYc3KclgrJXTct5fTZQf7+e/v50kMbGB8JkMVKe9cIZyLOaasknQsUEYdG6A8kuWdtnlD4KCd747RVSkZTJt5qN9M3spe+mAmhWnn0lTEeXGvj1vVuKqpr+MVz+zkd87J9fR1ut4ujT5xDWCbl7d51DlavWMY//uwMS2pMtPitrN+0kcGBAE+8MYgodvHbv3Yvh4+08/TBOD0DQYq5PDtPjtMdYmKGtKZYSx7hXyqVuiCiY6NoxSKeysoZ+YKzqSSuCj/RsQDRscA0A+1Kc2G4nLfa8D6fT+cG4PD4SMWiC8onn4xGKGSzWJ3OGanQzo8kRgIj03TbbGSSCTKJOFIysa8QApPZQiGbXXBu+/kQQqCYVKrqmifeM7YpoX5mi4X4eNCI01bVK5KV493EyRH4leVeHnabGYlrnB1IE0lpbGkRRDLqxFwDKSXWfJgbVlYzHspjsZhoP9OJ1eUlndX4widv5cSRU3Sc7mD7fffgP36CoQMZHrzBR38gwYbl9bQsbuJ//NMuYprg4FvHONERY+MiM8tWtTEcOMCOXhMnRpN4LVDnK3J2FPpiFvpixmqkOjYODmaRz+4mGMlyx/I69pwz848/OU5RKiAMB0NP1EL6SJTanhSdI2nu3WilaVE9ihynyVPAbVX4P//0BkWh8it3N6II+OtvvsC6FbU8/KEt7Np5GCEUdnbk0dRJWSlYPPzstXZSeVhZDdbuXvYcHaZGLWIxK6wrnCL/k8/RlO1GEYIvd/wJb3jv519ufJSqVZvZu+9Zvnjuj+hcdA/Rm36d7tGD1KZ2TdS/z7Gd45/4JtGhlzDbE+jpzSgyR8vKjfSe+zF5NYrLewf+qmWMjz0GSpxYpItU6gye2umpgB7IJSGXhFlydV8qv1SaOxkJ46upJTEemrY9Fgri8lXgq6ljsP0Mda1LSEWjeBsuXwnNxfkJIueXUp4acwbGC0TqOlLTYIE5J33VNSQj4RmTAIWAeGgMm8tNPpshGQkbsWOzKDxd06ioqyc6OrnogKKq8y4f+rYQgujYKK4K/7TzhskXwtkXx6/sMa9zpK6BUMgXBYHhMRrrfKzZsIquvld56M4lNCxZQiJ7hEMDxv7v32Cjymlj8dp1/O2jr5DKFrn1nlv49tOnyBYFttdPcLhfUtCjtGSKnBzSWNFgYdXqJRw8NcTTLxxmcNxIz3bjhmZalzTz6vGdHDk7hqu9n3u3NPL6kTGSOZ1f+fwtDPYN89gb46zxJ6mvcrGrI08OK2HNTSiQ43c/vpRsOovfNkBjfS1P7AmjlcI5hFA4HTQ6aYt9guDgIKe6I/itgg/cu5WxgX6eeGOI6io7/rp6xvd1kjF5ON0+jJ6Oc+e9N1PnVVkVzfLS8QQprTTjW1g4GQDwYHG5qanxs613mHvefxfBkREefT1Gf3JyBW8hJQ31fsKjQyAlbUvrOXMkw093DKIKUCx2FjkT3LahnmNnR4glbAQC42hSUOu3s3ZDK/v2n2UsXqCp2k40ofCz5w4zEskhFBuvnNFochXx2BWkYppzqPG9hK5rE8vPn9c5RiYeY65BbDwECKwOO+7LzMt+MYIDRvaQqqZmhBDT9Fo2lSqlzFxYCqapq89daAxbbHaiY4EJx0Q4MIzUJd6qakwXOFny2Szuyirioenvpdkmc18OFpt9wvi/MATk/MjeFdfz1zlSSpDGRMdwJIEoZrn3zm2oO06iZ2LccedmBvsG6dxpLL6y3F/gprYqmlet5qUdp/n5q2d4+AOb2XOwh+6Ei2deOkowlqeog9vXw8FzMcxCsHJ5M5rexxtHArhOj1E0e9jUorBl+wZ6Qoc4O5pHvLoLp9PDqooUZyIOblnrZ+vmFXzju7vRtDSblzg4F9DpT1jAZONQAO5c4eOOW9cQDr7Glo1LeGnfIEPpyfMbzVoZDYAFFbvVxP79p9BMbm5b76VlSTPP/GInIymVxsWLOXv8NDHFz0gkz4kT3SxeVI3X66LaPcShvryR/hKjY3V+bkdDUadleRvuw13ce/daKhsaOfWjVWzLHZpYVVkIQdLZgOqrIXjmENbWTYTbPdzc+x26QkfYmNjHmGblR5v+CiUywJrxneiDp1A8RYpZM1XVKxnofIPxsbeweXREsY2iPE5wrANvkwVFSZCOHcGpNKIo07NJXEl+qYxhb3UNkcAIpikrwEVGA7gr/ERGA3gqK/FU1ZBNJaeFJ4RHhtA1fdbYrbdLNpWcmJQ3G1qxSEVtneGpXQAms8UY9pvFwJ06izsyGsBXU0c0ODP1ExhDhD0njuOprKSQz2G2WGddWnou8tkMkcAIuWwWp8c7q1ckFgoidYmvpnbWJP3vRcx6ls/cVU9Xf5hdPTa+82YEp5LlYPtbjOVdnO0N0949ytE+BUpZGWwmjablq3jyx68SLnpI5CEyHkXTBSndxp6ONNuW2OkPZtk/mAOTm5MBjd5/3kFSuBEJwXmv+ysHR3GeGKVo8XJkTHBLk8KqVYvIjI/wRq+Vs6c66OoP41UkH//orURGRzg91MdISfFublGJR+M8t7uHj9zWQkV1DcqOoVlXDTQJqGlqwHwyzmjSzCsv7WVZi5/NrWZCiQx/++3dxHMmhCjyZoeKlE66H3+d7asrWb91E52DezkxyyT43Qe7eN+2HP4KF6N9PfT2BvjQ+hp6x7KcCBjWsFDgxy+dJSWcONRh0Is4VTPRggOfJcfH1gsqqxpxeXzc6XXw7J5BDryVAMXG66dSjI0eIZyzMB7P8h++fAs93YN8f1eUeodgiS9LZ0hle5uNpSuX0fHdA+QVB+/f4CSdyfNm11URneseIzxhmIqSoVUsFMgmk0gkQhge23QsSjGfn0j0n4yEyeey2JyuK7YAha7rmMxmTBYrhVx2hi7TigUcHg+pWGxB9dldHiKBkVlTkxnbLvBEV1WTisdmhJJ4q6oZbD+HxWqZWHwjPh5CKxRQzeYFGcXjw0PkMxm0YoG6xUtnGNzZVIp8NoPN4cTh+eVZ8OVyuW0JLF1UxfdfH+H5UyrocGZ0H0NRneYKM0cPnmR/RxIwZNAsszSu2MDxA8c40p7GanMSDsfIFTWEauLIECz2CiqcCt/dFUUINwj4fz88QkGa0FUrJAwH1cn+LIXnD9MRKFAQNlJ9OX7rV1ZSee4MnW8liIXzHNp7hLGUwmfvbKR1ySKybxykvxTB4LdkWdxQwbPP7KK2wkFTSzPN54anGcPnEUBFlR97OAujktcPDHB3MUOV30Vzi4dvPPY64bwVMzrdETfdkTSWYpztiyS3ve8WpKWbrv2pGfbPkd4MS/fuYevaZsYDI4RD4+R87+NE5af54Jm/wFtaRKOt/zlWdD1JlbXIsPSTsHhp0YKsj+/j263/gXD9VnSzA1P1SkZHnfz63s/yj1/8YwAG23+A1V2Bq3aI1Og6Kms3Egx9D4szR2K4BqtvlNhgNZU1G8kkjLCk4zffTuh99+OMDLPoCq1At6BACyHEA0KIc0KITiHEf5yl3CqE+FGpfJ8QovWKtO5tUFFXj83lJBwYJhkJYzJbiIdDZBJxQ5nk81TU1k9LPi6EgqeqilR0Mo5K13WiY7MblAvBV1NHz/GjZJIpMsmZMWH++gbi4yHMVhvhwDDFwvxL1Xoqq2YYwuGRIUJDgxTzk0MHvppaosFRrPbZs2GYLBasNhsun28ifhkhcFX4SYSN4PR8NkM4MEz8Ag87YEykq6rB7nLPmQ9UKxbw1zcQC80fx1xhNuI6rybXj+xKzBYz6pTYppRuoy9hQzFb2dmj8mafDZtZZ02tDnqB04N5erqHqKt28fnbvDRWO/nB60NEi4YBWmkt8MA9G7hhmW/yfBSVtG7FpE1qTJeS5X1barGaBOTTeE1Z6isURnt72XjzNmptGVavX4nP7yNetPD6a4cIBUIsqpwcenJYBFU1lTRWmHlp/xA/efYQDdUOGhzTYybdapb6aifffOIogzEFIRT2DNr5zmujrFm3nCVNlZCN81sfX8GnbjFe2kIIhoqV/HR/lP5z51izpIJbF+vcvoRpcdVCKNQvXoLdU8E/vxqmobGGNWuX0FZvR9d1KtQkdy7V+fwHV1JlzpCUDh6+ezFf+tBK9HwWvx3q6iupbmzmwO6DnDg7zPaVHtbWGp5Ci57l4x+9hXu21FEwe3nsyQO8sN/orN67pY6P3LmcjZUx1mzeyOF9R7htuZUH1pip8dupqXJNxMBdKa4f2Z2f88vQx4JjhAPDKKpKPpshPh4im04zPjRA/ZI2qptbJpYezuey+OsaZsTLJiNhCrm3NwFRURTSiTix0NisBq/T60PXNGxOZ2kl0ui89dldLirq6qcZ1clIeOLdMhWLzU4iEp4zplpRFCrqGymWzq2Qy1FRVz8tdjccGCY0NDinHFU2NaGoplk925lE3LieF4mFziSTC3rfXC7Xi+yqqlJKOVq6poqZnqiFPDa6ImaeO6sQzNtZVa3hNefoi1vo6R4iGMvzlQ8t4fZVDt44EuDYyKRT5+Z1NXzw3g2Y8pNxt1nhQNEy0+7dzcusLKq2kc9m0PUiWxer9Jw4yuK161ndYGZJaw1LlrWA1Nl3epwzR45TX+dH1Q0ZMSlQXVNFc62TAz05nnp6J6dHCqyu0UGbvH9SK7C+xc5zb7bzxpksUtcYynn4zp4MWJysW7MYFckD62z8u89vxisML3je5GHHsJfdOw/R3FjFusokH9vqxqVOPn9CNeGpqqJ+URNPvBWnLyJIrX+I5JoPMKBXMij9PC1u5Zl7v8fOpV/Br2bpa7mfg5/6BfudN5PQzcSbtuNtWowy1oH/9FMEUvDo6v+PQtaQY4d9DXUNHyARUlCcpxkb+zmeOkkh0Yiv4k4CZ9z4q7aQjo8zPpTimT/4zwRaW7GsXkvqCo7NXdQYFkKowN8DDwKrgU8LIS6cTvxlICKlbAP+GrimWQgT4XH8dQ3kc1ncfj/+ugacPh+FfB6hKMTHQ4wPD00Ibj6fIzIaIBWP033iKH2nTzA+PISn0ljY4+2gKApufyXeysqZE6UwDABfTS3FQg5/XcOM0A7jPAzFGwnM7l2mVEcqHpuyyRgaPL+CUzGfJzjQz1h/L2AY0JWNTYz2dpNNp4iFguTzWfKZ9ESKlVQ0akyom0Vhuir8FPN5pJT4ausIDQ4QHOifpgRMZgvhkWF81TPjl7OpFJHACNHgGB+7rYlP3NmMnr86s++vJ9nNCxtvHRlgPD7/hJutbR4e/uBmWn0658Yt/HBPHE0YeXpv2r6aDQ3GJA2AUN7GU0/txGlVaLaG+eLtHm5qSPLQNg9f+9hqlKJhEKtaltq6albWKfzBr6yjQo1T39rKWChGZ+cgI1k7f/ed3ew4nQTVwoHeAlVNTTgckyMsh7rSZFMZ6huq6E976IqY+OSD63hg+/SRgbY6K3fdtpbbVlj5zffXscxtKF5p9fCNJ44x0NvPpx9cRSI0iihOly/d4qZzJEPnYJylLVW0tVby0GYnNzZmuGuFmSXNPkb6BzlwcoS71nk51p3gyJ6DLG1rZoUnxm99/hbqq1xUNzZR4bYghOBkxxiHjvUhzBa6omZOn+kjFhzjTMiE0wJOqwmbYijlvNnDD35+gFcPGgbwUNpurFgHvHIwQCg4zgc+eDv73tzDouZqbrv7JlobK/jRKz08uTt0RWfnX0+yuxCklOi6ht3lJpdOUdu6pLTSm3FtM8kk0dHAxEJGdpeHgXNnKObz9J8+Sf+504x0d2G22owsO28Tu8tFdXOLEZI0C06vj3w2Q0VdPbnMTBebViwy1t/LaF/PrL8/b8TnLzDYXb6KaZP1wiNDhAPDpOMx0vEYbn8lo33dFAtFQoMDeKuq6TtzEpvLNW0SnrvCP6uR7vJVEB0bw1dbSzadMupOxCfPu7Swic0xe4aM8WHDcZJOxIy65hg5vBJcT7J7eiBNR2943nzQdc4Cj3x4Czet9JLSbfxwT5zhhEIyEmHLtnWsbbSyzJ+feI+/uLePc6c7WdFo44OrJR9apbG1Ls1/+urtLPEajimpFfC4LFhJ8wefv4E7F2tU1daRLUi62nsJZwQ/3jHCo0+fQVgcdEUsJDQr1XXVKKXjjGVtHDl8hsXL28hqKsfDXravqeUTH9pMg2uyQ2Qnw/13rWPTUjdfe7CeD6wy3sVCUXntVIJ/+KeneeiepVTYjRR8ij497rYvotDRF8LtdrB6dSvbmnVuW5TlwQ0O1lQXcHu8/OKFA9y+oY6xsRiOjtcIj43RvuJTPHPjX3N0zW9Q1dhEscrIXNIYOoT96E9ozHRTbSmw8vD/IxYKsSx5HG92mFT1KsKmqglnmmI/x2jgGdxVOi4/VDSlURQFs3uIkZ59LN/4EOOBDsZHhmlb92HEshVU9faw/HOfYJXpyiU9WMgY9jagU0rZDSCE+CHwEeD0lH0+Any99PlJ4O+EEEJeaVfJAnH5KkpLh04O4frrGtB13Vg2NDAyLcbNZnfg8HrpP32KJRs2MdrXg2oyEQ2OTgu5uFQqausoFgrzpvA5v4CGe5ahskI+i7eqZs5QCovVNueM6ck6cjg8HrIpw2MgFJVsMoFqtkzEw/kqq8mmUxMTl9yVVYQDw3N6l91+P26/H13TMFksKCYTxbyxfruu6xTzOexu96wzoc9nrggHhtGyCXz1DTR4JYGr4yC+fmRXL3Lb1laQkhPPDiLUyUevyjJp3B7uShBLHqE/CiiG4Ts0LthxLs2iA6/whc/dy+lT3Ty5L27cL4uTVWuXERoepH5RI067hcBomL7+UXShUm3N8tkH17N312Eq/U6yySQZzczfPtkBFjtCpEGxE9GYmAyWE3b+7smzSNUy0c6s6uafn+2gIM2sqVdprK7kJy8cpaCbgMkh22MDeaI/2cfyWivemhpMymTswIMbXVS4/VQ2NrP7lTfZP+Jg6qpBQlHZ2SUBM+cGu3nk7lbq/VYclkpalrby2qtvkdMrWdbq5/bb1vKP399DPGdFbR8mkFTYf/Acnb0RDnUfoD1spEs7NGRi2yKdD2608+yhOH1xC2p/HItZZcnSBvx1DTy1ZwSwYZJ5MnmdkaR5Igb5PMNpK+PhJA7rELpUiIZjaGfP8Iud/WQtV2XuwfUjuwtACIFAGB7KUtiWw+PF5nIjhJjQtZHAiLGUvcsIj3B4vAgE3tpaBs+dJRm1wWU031/faCzyM8cCIDA5mXm2kDBDX7so5HJIKWd0cM6/Wy62qpuuS3zV1SSjEawOJ7lMAiTYXW5jMQ1Fwe50U8znJyb4qaqJdDw2ayic1eGgxmGk0QynhmfEMhdyOVTVNGuIhK5pKKqKyWwhFhrDZLaQz1zV9H/XjeyuavFw521r6R7Zy8CUQQgLWRq9gu6wSiBl4ufPH6Y/aMyvMMkcXqeFH7wVx39sL3dsrOXTNy3lf//zm6SEl4xmom15C9lsB82NFQhF0Nio09XRSzIvkcUCn72tAq2Q4+DpMeoa6zGrgh/tDiOlQDHHmcgvP+VsXz6Z5ZVjZ8Ey+d599azGjnPHsNtM3L/OyfGzI4yG0wwn1Ql9nVU9PPrEfmwyxac3rGJsbHLUoq2iwG3r1+GrqiEdT/LEq71ExHRboydqpudIGjQdl/kwy9saGR8NsXrLChLROOlMAZvNyh23ruHNXaf4eO+/53W3lcbRfVgTI/hVD3VP/TOL0sYCIhtzxxFd8NINf87243/NhtwJUmO7aYvs59ll/5a6FWux7fgmCYcHKSXFnMDqiaBekJrD4VWIB0YZHx5C1xQUc57Rvh4sL7/Aht07UK9wasCFGMONwMCU74PAjXPtI6UsCiFiQCXw9rv4l4HFZsdfN1PRnZ/soKgq4ZHhCaXjra4hFgpSs6iVYH8fqmq6IgtYmCyWGbFdFzJf7l5/XQOx4Nicxu5C0p3ZXW5SsSgOj6E0z9d13uC1uzzGi2mKEjWZzQuaaKGoKorJBFJOzCKPjgWoqGsgMjoyayygp7J6MnOFlMZL5+pNQ7puZFeoZn74Snfp86RsSq3II/csBiH4+1/0EcfKkSGgtHDDnRtrWL1mCX/1z2/Sm/Pz46cPEE7qnFemRwd1Oh/dgUUIfIcOoytm9nYXGcvooFrRyVDMZ1m/uolv/qIb6/E0ObUCcbE+nsUx467kSgnplzY5WLVyETtPhMlcsOqcrljpiULPeIHXTr5FweybPFcUrA4XR/fu42zURVrO3QhNsWKxOzhxspf93XkcB4JENQ/7AjEsFGgf2UsgY0NkFfqPZQAvL57IAqWMKFP0amONm+amatRDYXqiTnqiOaR089NX25H6OcYKPoSAbW0O7rtrPd95ch89s4SVvnomz/bsOHfevZ3Dbx0mJy2E5VVbevm6kd2FMpsRd17n2lwuYwW3KY4Bh8eLVsiDEIT6+2lds27BqcTm42KG6oWTmS8s04oFzFbbrJ7+ud4tF+KtqiIVj01k9zmfQi4WCqKaTKgmEzWLpi9cstCsEg63l3BgGG/V5P6FfBaXr4JEODxtUSYo6WlVRdeMeSq5TBqT+arO5bhuZPetc0m6h/YykDAjpjgRb1ru5s7b1vKvT+ylP2Hj2DCcn1+xqt7Mxz5wA8+8ZExmfvN4iJPdYZIYi2mkcPL/vn+EXFHnvnwKl81M+2iRY2M2hLCBKKBQxOW2oTgq+eenO8kIB8I0/4RboZomVvg8j65ayWFlkTPPpo3L6R1OcGxYwAVp4EYydsDOX/3LbnLCiShlbZFS4K2s5vSBAwynrYzl5llMTDUjzAo5TeFn+8K80b6bsbSJXX0hpG4n9IM9jKUEtfY4nzrzZ8ZvUntmrSpkb4TltxFu/yFrCud45Nx/BcBx8k84076cWzN7eYJ/TywAVVWfIDx2BLxnZ9RTvSRDoH0nzSs+xkj3cexuG8s7zl5xQxiuwQQ6IcRXga8CF01Jc7WYTemcj/W6UJFca65E2p3zIRNTWajBezEuNOYdbi+RwDCKOrtoTT2uw+1B13VGM3OEgVxHTJVb1fP2ku5HCjNfokI18fqBfhCGwXwhu44HOdMTJoULoaicCakzfp/CQwr42ZnzWyev/XjOzlNv9mG1qEi7n9wVUCLPHwzz6pEgGWWeRQtUMwV1upfqqeNF0McQposvdpCWdv7+qR6EyYwwWchPGfXOY2M4vfCVcJ/aN466L4g25bhCKAznfKXPxraO4RT2PacYic/unMph5c3OPF1jexmICVCjiFkmEF5vXA861/AGuy/YZhiIl5LD/J3gSkzoM1tteK0zZeNKLNgx2/LWUpfEQyH89bPr9KnHtbs9Vzyn/tXicvVuXlgZTDHNEAY41ZegqJ1gJC640EI9O5LnmZePcnrAWP1tLGNlLDO9joziBAu80Hl+i3lCjwjVzE/fCrOi0U5PWFI0zb5i5aXQPq7yf//1fDrLue9d3jx9MY3OuJP//eMOFPPCJlW+eKoAJwIIRzXB3JQsPYrKUNo+41rNxV2R5+j69j7azOPTFHUbQ7TlhyacFQ6vzvjYHjDNvmy4alZpXKMRHfkJ7iYNu/cMbaUlrK80CzGGh4CpS6Q1lbbNts+gEMIEeIFZ82ZJKb8FfAugdd2GaxJGUebqMZuino+rrJSvmOxOlVtr/bIrKrdnQnPnSAxkrAQyM5X5pTCQskNq4cbjxSgoNgpv4woIRQVl4Z6/+VamuxR01cbsUz2nE8raeO1MnqlLZM9AtRgv16vvRrgqslvWub+cXEon5x0whK97vRvK2Qh1FZltiKwgbBzql1xO/vu0dHBkkFnrfzsIRSWqu2aEby2ES9Gjl6qj5zymECyzhLmY9WxxqFgcfRetz1uvl+q6esksF/JUHACWCSEWCyEswKeApy/Y52ngC6XPDwOvXat44TJlplCW3TLvVsqyW+bdSll2y7zruKh/oxTP81vAixjO7X+RUp4SQvwX4KCU8mngUeC7QohOIIwh/GXKXFPKslvm3UpZdsu8WynLbpl3Iwsa7JNSPgc8d8G2P53yOQt84so2rUyZy6csu2XerZRlt8y7lbLslnm38e6Ioi9TpkyZMmXKlClT5ipQXiu3zDXnz768aeLznz965Bq2pEyZMmXKlCnzXqPsGS5TpkyZMmXKlCnznqVsDJcpU6ZMmTJlypR5z1I2hsuUKVOmTJkyZcq8ZxHXMrWfECIIXDzjcpkyc9Mipbz8ZZ0ugbLclrlClGW3zLuVsuyWeTcyp9xeU2O4TJkyZcqUKVOmTJlrSTlMokyZMmXKlClTpsx7lrIxXKZMmTJlypQpU+Y9S9kYLlOmTJkyZcqUKfOepWwMlylTpkyZMmXKlHnPUjaGy5QpU6ZMmTJlyrxnKRvDZcqUKVOmTJkyZd6zlI3hMmXKlClTpkyZMu9ZysZwmTJlypQpU6ZMmfcs16UxLIToFUK871q34+0ihHhMCPHfrnU7ypQpU2ahlPVumTJl3qtc1BguKciMECIhhIgKIfYIIX5DCHFFDOmrqcCEEA4hxDeEECEhREwIseNqHOdaIoT4lBDiXOn8xoQQ3xZCeKaUPy6EGBFCxIUQ7UKIX7uW7b1SCCE2CiEOCSHSpf8b59l3lRDitdI16hRCPDTHfn8qhJBX2yC42DMlhHheCJEs/RWEEPkp378phLhTCDE4R92PTdk/LIR4WQixcp62fF0I8fjVOtcyb4+y3r2+EUJ8UQihTXkuk0KIO6eU3yyE2F+6f8eFELdeu9ZeOYQQ9wghzpb07utCiJZ59p33GgghflsI0VN6Nx28ltfocnXyLPV9UQix650/kzJvl4Uq1g9JKd1AC/A/gT8EHr1qrbpyfAvwA6tK/3//2jbnqrAbuEVK6QWWACZg6kvufwCtUkoP8GHgvwkhNr/zzQQhhOkK1WMBngIeByqAbwNPlbbPdsyngGcwZOCrwONCiOUX7LcU+AQwciXauADmfKaklA9KKV1SShfwPeAvz3+XUv7GAur+y9JvG4Eh3h3PapmZlPXu9c3eKc+lS0r5BoAQwg/8Avj/AB/wl8AvhBAV16KRV1DvVgE/Bf4E474eBH40x77zXgMhxI0YMv0w4MWQ658JIdQr0da3ydXUyWWucy7JyyCljEkpnwY+CXxBCLEWQAhhFUL8lRCiXwgxWvJe2UtldwohBoUQf1TyFPQKIT5bKvsq8FngP5R6WL+YcriNpd5kTAjxIyGE7VLaWvKGfRj4qpQyKKXUpJSH5tn/DSHEfxVC7C71Dl8qPfznyz8shDhV6jW+IYRYNaVskxDicOl3PwJsF9T9QSHE0Sk9zvVTyv5QCDFU+u05IcQ9l3KeUsoBKWVoyiYNaJtSfkpKmTv/tfS3dI5r0CaEeLN0zUOlczlftkYYXsZw6R7/UWm7VQjxN0KI4dLf3wghrKWy8/f+D4UQAeBfhRCKEOI/CiG6hBDjQognSorzUrgTw+j/GyllTkr5t4AA7p5l35VAA/DXJRl4DaMD8bkL9vt7DOWXv8S2XBZzPVNXqO4M8ASw8e38XgixvSSvUSHEMTHd8/UlIcSZktx2CyF+fUrZGSHEB6d8NwkhgkKIGxZQ7xdL9SWE4TX67Bxti07xzKSE4dFvLZV9RRgjAGEhxNNCiIYpv5PC8Ph0lOr4eyGEmFL+q6X2R4QQL4qS50sY/LUwRl/iQogTV/JezUdZ715/evci3AwEpJQ/Lp3/40AQ+Ngc12CbMDyj8dJ9/D9Tym6d8qwMCCG+WNruFUJ8p/Rc9Qkh/lhMejG/WLqefy2EGAe+Pp+sXAIfA06VzisLfB3YIGYfebrYNWgt1XVISimB7wBVQM0ltumKczV1MhjPiJh8l54TQjwypewDQogjJVkYEEJ8fUrZ80KI37qgrmNCiI8toN73CyFOl+R9SAjx7+do2zExfbRDipJ+vsiz2CuE+Pdz6Y5r+CwuHCnlvH9AL/C+Wbb3A18rff5r4GmM3qIbo0f4P0pldwJF4P8AVuAOIAWsKJU/Bvy3WY65H8OI8QNngN8olS0CovP8faa03+eBE6W2hUqfPz7Peb4BdAHLAXvp+/8slS0vtflewAz8B6ATsJT++jC8H2aMnm7h/DkBm4Ax4EZABb5QOj8rsAIYABpK+7YCS0ufP3OR81w0pe23AjEMQzcF3HfBuX0DSJfKDwOuOa7BD4D/jNFJsgG3lra7MTym/6603Q3cWCr7L8BbGEqsGtgD/NcL7v3/Kp2vHfjd0v5NpW3/CPxgShvmO+f/WNrn94HnL2j7M8C/m+Wc1gJJQEzZ9jLwsynfPwE8NZ+8X8m/uY7BlGdqyrbHmPl83AkMzlH3xP6AE/gucGyetnwdeHyW7Y3AOPD+kjzcW/peXSr/AEanSmA802nghlLZnwLfm1LXB4AzF6u31N44k7qhHlizgOv5F8AOjOfvbozn/YaSfP0/YMeUfWVJVnwYuiQIPFAq+wjGc70Ko7P1x8CeUtn9wKHS70Rpn/prKSOU9e4107vAF0ttCwHtGN5SU6nsg8DpC86zA6NDPts12At8rvTZBWwvfW4BEsCnS+dYCWwslX0HY8TLXWp/O/DlKW0rAr+NIcd25peVhd7b/wv8wwVtPznb/b3YNQA8GM/T+fvz28ARpujpd/KPy9TJs/zui8CuWbY7S7L3pdK92VSSodVTntt1GLpxPTAKfHTKs7V7Sl2rS/fHuoB6R4DbSp8rKOnqi5zDV4GzpXs157O4AN3xtp7Fd1wGLkNI3sIwnETpIi2dUnYT0DPl5hYB55TyJ4A/mUuwSsf8lSnf/xL45iUK9x9hvPi+jqE478AwilbNsf8bwB9P+f5vgBdKn/8EeGJKmYIx/HwncDswzHRjaw+TSvkfKBmHU8rPldrTVhKS9wHmy76ZhqHxdWD5LGUqhtH8x3MdC0PBfgtoumD7p4Ejc/ymC3j/lO/3A71T7n0esE0pPwPcM+V7PcZLzHQJ5/knwA8v2PY94Ouz7GsGujEeXjNwX6lNL5bK3RhKunU+eb+Sf3Mdg9IzdcG22Z6PO5nfGM5iKEkd6AHWz9OWrzO7MfyHwHcv2PYi8IU56vk58Lulz20YL3HHlHvzpxerF0OhR4GPA/YFXstPlq7neSP9UYwhzPPlrpJ8nb+/klInr/T9CSY7Wc9TMihK3xUMI78Fw8huB7YDytWUj4XICGW9e031LkZI2uJSm9YBp4H/VCqrLMnxeSP2CxjP4j/OUdcO4M+Bqgu2/yemdNqnbFcxdNjqKdt+HXij9PmLQP+Usnll5RLO+VFKHZUp23YDX5xl33mvQalNf4TxbBYxDLetV/u5ervP2wXbZjw7s/zui8xuDH8S2HnBtn8E/myOev6GyQ6Eu3QfW0rf/zvwLwupF8Oo/3XAs8DrcWvpGVle+j7nszjl+s2qO3gHbaDL+bucyRiNQBjDo+MADpVc4FHghdL280SklKkp3/swehDzEZjyOY3xUrsUMkx6CvJSyjeB1zGMoUs9ZgNGmwGQUuoYvZnGUtmQLN3hEn1TPrcA/+78tSldn2aMnlAn8HsYL44xIcQPxZQh3UtFSjmEce1/OEuZJqXcheGR/docVfwHDCW1vzQc8qul7c0YRu9sTLs2zLy3QWkMqZ2nBSM27Py1OIMR2lE737ldQBKjtzoVD4YBNg0pZQH4KIZ3MoDh3X4COD8B7esYxlnvJRz/anH+mbpc/kpK6cPoZWcwet+XSgvwiQvk9laMzgtCiAeFEG+VhuSiGJ7eKoCSXJ8BPiSEcGAMm3//YvWWdMQngd8ARoQQz84xBEupDZuAvwMeklIGS5svfFaTGJ7nxik/nes5bwH+75R2hTGeh0ZphNf8HUY4zZgQ4ltiykTVd5Cy3r0O9K6UsltK2SOl1KWUJzBGyB4ulY1jjDL8WwzP3gPAK0zqnAv5Mobn7awQ4oCYDDGaS+9WYRiYF+rdqTI+MOXzQmRlIVyK3r3YNfgyhhdzDUan6VeAZy7n/XeVuFI6+TwtwI0XyOVngTowYqmFMTExKISIYejC83o1ATwLfKpU16cxHA0XrRfDwfB+oE8YoZA3zdVAIUQzxjvyC1LK9tLm+Z7F88ynV98RG+hyeFvGsBBiK8ZF2IXRo8tgDGf6Sn9eaQSan6dCCOGc8n0RRq8eDC/CpRx70QUxLRf+nY8xPD7Lzy/pWFMYxrih59sgMG7mEMbwQ2Np23kWTfk8APz3KdfGJ6V0SCl/ACCl/L6U8tZS/RIjpAAhxGcvcp5TjzEVE3PEBF+sXEoZkFJ+RUrZgNGL/IYQoq10DksWcm2Yfm9h5jUfAB684HrYSoY8FznnPyrVcQpYf8E1X1/aPtt5HZdS3iGlrJRS3l86l/2l4nuA3xFCBIQR19wMPCGE+MM5zveqcMEzdUWQUvZjhKX8X3Hp8YEDGJ2EqffJKaX8n8KICf8J8FdAbcnwfg7DcDzPDzCU9Ucwhks7L1Zvqc0vSinvxTC6zwL/NFvjhBA1GN7o35RSHplSdOGz6sTwUg0t8Jx//YK22aWUe0pt+1sp5WaM4cnlwB8soM4rRlnvXtd6VzJF/qWUb0opt0op/RjzE1YyqXOm/1DKDinlpzFCzf4X8GTpvg0wu64OYXQ4LtS7U2VcXrD/nLJyCff2FLDhfKWlNi5lbr073zXYCDwjpWwvdShewLinN89W17XgauhkjHv65gVy6ZJSnndQfR8jnKVZGpPiv8kserVkzNowOpoXrVdKeUBK+REMGfs5hrE72znbS+V/I6V8fkrRfM/iQs75kp/Fd5pLMoaFEJ5Sr/WHGEOrJ0o9hH8C/rr0gkII0SiEuP+Cn/+5EMIihLgNI57ox6Xto8xtaM1AStkvp8/gvfDvfE9pB8bQwH8SxgSeW4C7MIZkL5UngA8II62MGcO7mMMYltuLMczzO0IIszCC2bdN+e0/Ab9R6vEJIYRTGEHybiHECiHE3SXjIouhsPTSeX7vIufZDxPKe1HpcwvG0Mmrpe81wki95hJCqKV78unz5RcihPiEEKKp9DWCIZg6RoxlvRDi94QxEcMtjNnAYDycfyyEqBbGxJc/xcjyMBffBP67mJyYVC2E+Mj5wouc81+UdnsDw5v8O6X2nJ9U8Noc57VeCGETRsqnf49haD1WKr4HI654Y+lvGKMj8PfznMMVY7Zn6hJ+a7vgT1y4j5TyZYxz+uo8VSkX1GPFuIcfEkLcX5IdmzAmZTVheHKsGPG2RSHEg8z0/P2wtO1rTHqFma9eIUStEOIjpZdsDsMTpc9y3ibgSYzrdaFS/wHwJWGk3rNixBPvkwvz/H8TQ1+sKR3HK4T4ROnz1tIzbMYYqszO1rarQVnvXpd690EhRG3p80qMYeSnzh9cGJP7zMIYPfgrYEBKOes1EEL8ihCiunRPo6XNOobX731CiEdK17JSCLFRSqmVrs1/L51PC4YHdla9ezFZuYR7+zNgrRDi48KYHPWnwHEp5dk5zmu+a3CgdG+XlO7PvRgdzJOz1fVOcjk6eWZV03U0xrt0uRDic6VrYy7plvOT0dxAWEqZFUJsw4hhn8pzGEbjfwF+VLq3zFdv6fn/rBDCK42R0jhz665/Ac5KKf/ygu3zPYsX4209i+84cmGxNBmMoZAYhhL6TUCdso8N46XTjXGhzwC/Uyq7E2No5D9j9FD7KU0WKJUvA45iKIGfTznm+6bs83VmiWtcQNvXlNqbwojpemiefd8Afm3K9y8yJeYHeKhURwx4kykTe4AtGMH/CYxUMz9iSkwRxhDRgdI5jmC8kNwY3sz9pd+FMQS64RLP8b+Xrm+q9P9bQGWprLrU1mjpvpwAvjJPXX+J0dNLYgzPfXVK2VoMIzqCMRxyPs7SBvxt6bxGSp9tU+/9BcdQMBT3udJ5dwF/8Tbu7SaMCRgZjEmBm6aU/RFTJthhpPeJlM7reaDtIvL+TsQMz/tMTdn3MWaPGZaz/LXNsf8nS/fVOkv9X5+lnsFS2Y0l+QljGL7PMjmB6DcxDKooxiS9H85y3FcxDJa6C7bPWi9GJ+XN0jWJYjyTq2dpcyuTk0WTU/7Ot+03SnJ1/plqmvJbOfX+X3i9MDxYJzCelwEmY/LuwfB6JjH02PeYYyLqOyUjlPXutdS7f4Uh/6nS9f8vTIl5xOiUxUp/PwJq5qnrcYy4ySSGl/WjU8puA/ZNkccvlLZXlH4XLG3/U0qx7Bdew4vJyiWe9/swRmwypXvXOqXsm0yJMZ/vGmB4O/9LSS4TpfZ87lLb804+b1P2fYyFxQzPpqNNGGFrz5bu3TiGE2dj6XcPY4QjJEpy+Xdc8AxixG5LLoixnqteDOfFCxjvwDjGM3HrHO2WGCEOU/Xq+Yl38z2LvcyjO7iKz+KV+hOlhl41hJGW43EpZdNFdi1TpkyZMleAst4tU6ZMmYVzXS7HXKZMmTJlypQpU6bMO0HZGC5TpkyZMmXKlCnznuWqh0mUKVOmTJkyZcqUKXO9UvYMlylTpkyZMmXKlHnPYrqWB3f7/bKysfkdPeZIKP2OHq/M1SUf6AxJKS81efxloTq80uSteScPeVHqqxzXugllLpG+k8ffcdm9Fjr3YpR18ruPa6F3vV5V1tVdU5PlmtI9S8rpRov5GrTk3ct8OveaSlZlYzN/9tPnL77jFeTPHz1y8Z3KvGvo+18f7Lv4XlcWk7eG+i/8zTt92Hn5sy9vutZNKHOJ/Oryxndcdq+Fzr0YZZ387uNa6N26OhPf+If3bnKUz4rvz9j2Z03Xl1Pmemc+nfve7WaVKfNLxFSDomwYlylTpkyZMgunHDNcpkyZMmXKlClT5j3Le84zPNVrVh6eK/PLyHm5LnuIy5QpU6ZMmYuzIM+wEOJfhBBjQohZ1w0vrTf9t0KITiHEcSHEDVe2mWXKvD3Kslvm3UhZbsu8WynLbpl3IwsNk3gMY23puXgQY637ZcBXgX+4vGa9M/zZlzeVvWe//DzGL6HsLoQ/f/TIxF+Zdx2P8R6V2zLveh6jLLtl3mUsyBiWUu4AwvPs8hHgO9LgLcAnhKi/Eg0sU+ZyuF5lVxbzyGL2ah/mmiKlREpJsVDg+PFOYuEoF1vkR9c09rx1mt7e4Xeoldcn16vclilzMa5X2ZVSEouLq32Ya855HdvbPUh/7yC6pl30N+3tA+zff+ai+vmXmSsVM9wIDEz5PljaNnLhjkKIr2L0BqlsaLxCh393IqVES0VQbW6EycgXqGeT6IUsQjWjOrzvfJuKebRMHMXmQjHb5t1XS0UQFgeK2foOte6qsCDZnSq3qufS0mtKXcMmk+RU435KKXl4uxeny8FjLw8v6PqJYg6Bjm6yX/x4UqIlgoDAVGrrhd5hPZdmZR0UCxqb1y1i9epWOjsH6BmMcPuNy7Da7by+8wRDY0keum89Trdz2u+zmQxjgTCLFk8+w0ePddLeF+XBO1bg9rr5x399mVRBZeuqSl7vkGgvn+Xm9Q08cO/so6K6rnPi6BleOpmnsaeXX2upZ6BviNcODLFtTS2rV7fOe96BkSCjo1HWb2hDiLlfeoVcjqGhUVoWN8+63/ETXYSjKW67aTXBwBh1TQ3zHvcaUda5bxM9mwRAsbkAkFJHi5eel2uUP7yYDCMU9aI6X8+lkbqGane/Qy27Krwt2a2puTRzZTzuxGVLY7UYBl5X8j5k6++R7P09Gj0dF/29rkvG4w6qfZkFHe/kQDVHRlby4dV78LpmGqBSSn58aCu9wQqW1ET42KYDJDMmnjuzjS2NZ2irj3Ju2M9Pz97Pg0veYGPrjMuBNhRAqfQhbMa7OTQ2zit7u9m4ooaVK1t4440j7DwxzgPbanjhaIJiOkmF+xy/9fnbMFkss7Y7GYvx3K4eopqDprphqmoqefrl49gtJj5w//wRLLlslhOn+lnRVo/bO79MDg0M4/N5Z7xLAIJj4xw8Mci2DYuQuobb48Jqm9/+uNK84xPopJTfAr4F0Lpuw1XrhkgpCQ70A1DdvGjWl150bPRqHX5BaIlxVFcFWnIck8dQwno+i8lTRTEemvN3UtfQEiGuhvLW0vGJ489nDBeTYVS7Gy0VQTFfuTYUEyGQEsXmRrG8sw/DfEyVW2v9skuS2xuaFW7btJKe/hCvHg2zeZmPXDpFoaAhlJmDMzay3L3Bz8nuKP0JQ4F9/GY/VVUV/PiFE6xu9TMaTjIUV0npk9dIS0WQmoYwWxEWB3o+SyEWxOT0IUxmivEgSInqqaIQD3IiLrFWt6KdGmX16lb2HBuhJ2qmrmKIdRva6BpMMJQwcejwWaIZhXtuWY6UGkh4Yec5Tg7DJ2/NsWr1EgCOd4zTHTWzdnCM6kyGwfE8JquNxjov9X39DAOJeIrv/Ww/W1bXsmJFy7Tzfv7loxzoSrCyWmHtqgZ+9OQOOkaLFDBR6Q1f1Bh+5o0OBlNWXt75DA+9fxNLl86ek/SlHafZ353nw1vSbN68ckb582+cI1E0MdTTT0eujg9tinHw9ChmFb70mTsQQqBrGqdP97C4tR6n24muaTz1/CGcDgv33b1x3na+07xTOhcgMhpASh2bw4nDM9OwS8djZNMp3P5KzJZ3vhMttQJ6MQ9SR1jsCEVF5tIoNjd6bv7FP4qJcZC64SiwXLxTulC0dAzV5kZLxy66r55Lolid6NnkhDF/uejZJHo+i1BVVGfFFanzSjFVdlessC5Ydsfi1YTq/4GeYCe1uR9RFC4ihWVYI314RH7W35xLPIwUZpY7vo+iCLpT96Gu+iNiJ38fzb6GYmoEny1Ao/v0xG/CCQvPnt3O9qbjvN63naPpe0nvz3PfmjMsro3TGfDyZt9W3r9sN1aR5fn2m9FUB+eo4pbwEc6MLeHl8KeJ5J6nrf55usfr6SzexLHhXg4FVnFj4wlWNYwxGjajJwawt0vynj64ZQUAPX1BzoVMWMwhVq5s4fDpIQqKl1AowbomM6fPpQEPv3jxCA6HhfvvmR4W2tM1yOOv9NNgy7B2iY/BwTEe/UU7hXQSt8/NBy5ynQ8c6ebV0zle2b2TG9Y0cN89G2fdr7d7kMde7GdpteBzD980o/ytQ53sPxtjZGCEobyPJVVQX2nncHuER+5bzqIWwyHR3zeMqqg0NtcCcOhwB+19ER68cwW+istzHl4pY3gImLqsUVNp2ztOsVBANZkoFvJYHQ5yqSSJ8XE8VVUz9hOKghACqRUQ6qWt5KLnUui5DMJsfdu9dGG2oiUjICYNItXppZgIzavo9FwKxeFDzyRmLddSURBiTi+DlokjC3kQYHJPvy7CYqOYCE14qudCMVnQUjHgCg87SVDdlWjJ8DtlDF912R1P5AmPR7lh61rau1/l1u3L6TrbyfH+9ITcVVqz3LWhhl0ngiB1Nt+wjGhoHwPRHFK1MhpKkMkW2bLEzvIVNaQTNnpDOq+ezk0cR2qa0ZEpdZT0bAJLdQv50W4sNYsBgerykR/roZhOYPHVsMwa4I6bjN7/HZubsR9sR5dGz/3j960iFkux88gw3VGF1q4hXj04jIbCjSu9jMeS+Cs8E8d//+1tDA2HyRV0/vHJ44hcgpYaM0uXL2bp8sUU83n27j/La+c0Coe6qfS7Odk+wpqlNRw92UdP9xBKSmPd7evo6A9zsi+Bze7gzmVm0rpOd/cQQyNRTvVEeeh9K6itmy67m1ZUkz7UQ8hUSWg8ztKZCzYBEI/EIKeRSBjqL5dJY7baUEodE5fTTFZWYbJHMI2PMDpSQTKvYFIm38UHDrXzwoksG4fifOSBG0hEopwc1nGIKPfdfVnislCuG50rpUTXNFSTCalr+Grr6T97ikUr10xc0/Nk0yn8dQ2EA8P46y7N4z7hwRUqJk/VxX8wG4qKLOQAOaF3FZvLGOW6iM5Dyim6aboxrOfS6Lk0qrtyVseL1DWKsTFAYvLVT9tHsbnQEuMwz2jGZD06ejaJ6vRfdN+FouczmDzV8zpgrjBXXXZtphTxgUPUrXuAVF8ATW1AcdcjEjtxW4xD5fKCTv23MRUGWOb8KXnP3WjCytjYT6mrymElRGzkMJlkFea6DxMvjGFqbiE1/CGcDuNeHexbwhuRh8kVrXxkxevYT4+xO/UJhg7s4Xdv+wVvDWxgT+zDONrH2de9mII0U8dZPtZ2mPoqDa+rk6HotzErGpms4L7VJ6l3/VfGEh5+FPhdCpqFYyNRXhv/OLIuRdGkI72Oibfupo1LMZl6qal08DePvk4ikcVmLnDLLffg8Xn48AMayViM//vEWZRiiJu3JDh5ZoCaag/pVJZDh9uRyQJuv5dF9V4ef+4cisnEDSv8OO0Wdu05xeJF1Tz1egeblvu56cZV067zssU1dPadoTthZnielSRzuSwynyYaLgBGOFyxkMdiM54jr03B5KkmJ8NY8+PEIypOq0Ja2shmjd9kUym+80I3Fgr8wVdrEEJwti9Cx7iJDcOh68YYfhr4LSHED4EbgZiUcqaP/yqTikUp5HLksxlqFrWiqipSSix2O4lwGLd/UoGYzGaK+TzJcJg//uLGiSGEhU42MhRIyYN7icZwMR4CqaF6qhEX/Fao5hkG6oWodo+hvM1Gm6WUaMlxFIuxJK8wmdFzGaSUsyvmQn7CIz2jbpsLFuBxUGyuK+aZmFav1YGWDKO6Kq943XNw1WW3P27lB7tj1B7dw2DSw7/+4E2+8OnbEZZhzgbjACxxpliyuJah4TH2DNj5l8ee5YP33kBldZxfHM2ys1sBctzYpCJUMyfOjTEQLgCTMi3MForxIKrLj1BUhGoiH+zDUrsULRFE6pJ8sA8pdUzeaswVDZwOBvlMk9HLbl5Uy+PPn+V0cJQVy5uoqKygorICm91K38A4bW0NvLizHYvFzOYNm7j1Ftc0+aqqqaSqppK39p2mYHIiHUXqGydHDY6e6OWtw13kEkW6ffW8+MYpOuMujh/fR8TSSC4G1urFnOwIohSzmCmCVgDVycF+hVhmGIsKoxkz0WhywhjWikWeefkYHqeFf/PFuxjsH6ZlyaI570dTQxUdwRDVVRX0dvXxLz8/QZVT8Du/YfhBcnlJMR2gtc3PmZiP9rE4S2stbN/UOnG+Lc1VLO7vpq25ht6eId48OMBdKy0sXrz4isjMArgudC7AWH8vFqsNm8uF0+dnqP0si1auIRIYmRGWYbJYGe5sx+a6dAeCno6huirR0tFL/q2WSSALORSrHXPFzPDUhXhEFasDLRFGdVdO1ImuoTp9E4awlhif3VDXNRSLHakVAMlUJ4JQ1AWP8Jl9dQva71JQXX5jJPAq6PM5uOqy63GkudH+Fwyd/jEN5gBF3caA6Wu4l3+G+Olf4LCO0D/mI924FaEsR1F+RkXw6wzonyC58klCfV+g2X2EZo4w4msmYjFhyZ4g1/4LVO/kvbu17RwF/Z/Z1NRJgz/NZ27cR2GvyuH0g/zNWx5+d/v3iB0ocqyniqhzM2YkabmYm9p+BggcNklW+Hkj/iGquv6O961pZ+PiILl8EGH6Bmvr+vjJkS1YssOk/IvR1tUgzJOdNpPZzKZNy4iEwmQ0M0XVjtfrxOMznBQjI+O88PpJUqMBLP4GfvbMXrozVTiS50g7GimmTKhmGx0hScNIEItMUtSceH1V7DkZpCDyfEDVGctaGR2fbuwePtJBx0CUjz+4kWQihWeeMAmfz4vNZqK+1pCx//ONZ0kWVH79kY3UNzWS0VSK8SB1S5wIs41A1k5FLMQD62pYXhpBtNjtrGm0YDHbyedyPPXiMXw2ePhG78To5OWwIGNYCPED4E6gSggxCPwZYAaQUn4TeA54P9AJpIEvXXbL3gYXBn+7KvxkkklSseisQ3aKotC0chXRsdGLxtIt8uSpq7Cwv7sAqhnF5jYUiNWBlk0i8xlUlx+EYhimNvfcsaACVGelodzf5rDU1N9pyXFUl98Iu3BXUoyNIYSYM27S5KkywhyusyExMF44itVxxeq71rJr0rO8f4uf3uEixwMWFBUCeg3feuIIuSKAHYuW4va7txEeGaZvXMcl0nzuM/cy0tdPIJRgfWWWdE7SmfTw1oCJRPwYm5b52by+ktf2ddPcVEMkkiCYtNGfmPTUqg4vUitizYVwu2E0oWKtayMX6ARdIzfaTSGX4n/8v+e5cX0jN96wFEchTKpoIh5PYXMY96Guvpq6+mo6znaTsjdg1gL878ePsqXNxYP3zszGsv3G1axcGiIaS9HYPGl4vH54hJStAXuml8U1gps2NhN+s53RjIVaUxBcBQrZIUaCJqKiipbqPMMZOwOBJGpGp9ruoC8M961ysGJlK11dg0RjKRY3+Tk6qOFWwtx1u5nWpdPDL17fcYJ4Ks8H3reeXDbH2pUN3HTjCkxmMyePnEZxVpMsRCb237y2kVA0w8Zta9GsXZw+meDYWBP+vshE/HBdfTWff7h6ov7euJVIOMANN6y4InJzreX27WK12/FUVRMdC6CaZr5enB4vWj4PQlAsFDCZ5/bGOkSOLctcHOtJEitYUZ0VxqiVYkJqBbRUDMViMzyrmTgg5hylk4XcxKiJYp0Zs7gQLtRNspArHTsBioKWGJ9TdwmTBVHMI0xmhFhoEqd3BqFchqd9tvquA9ltT3yEgnUlrdb/jdNWBJKY0n9D4szj1HqHAUGm8lfxVVUTOPwitEC84jeorN7OePcOipl6+rP3ssr9JPXeAbIdX2GI38XafDfHBmvwVbnJRQewO83cu+rnWMyG7eGwwRdv2sP4zjbcNoVYQuFQ8WGKaghLYZwbfDto9Qzx+098Br+vwB/c8QSkAohwB4mKSbmwWuDe1WcBGCysImtrwnR0BHEyhPbA6hmjGBVVfn7nUxuIx5PYHZOjFodPDTGYr8BiDlHj0tmysQ3rmQFOxBx4c2O4nZJsNgEFeKXTQ0udn4GoIBAIoWuStso07UMqa6sKvP/ubSRiCY6d7mfD6kWc7A7THTGzbnCM1WumD8N1dQ2y78QId25tpa6+Eq2Q599/6eaJ5z0nTeCsJBZNUd8EK9vqCMWL3LChmaKmcWj/SU7GfMR70mwrRVUoisJDH9wGwOjwKGdGQclGWLa0Yd45IgtlQcawlPLTFymXwG9edmsuFykp5HO4Kia9ZdXNc3uIzDYbsdAYQjEupK5p/MEjS3G4PTM8xJtXVLJ27RJO9+4iiRnFbJ0wdovx0LRhJsNDEEIxzz7RSigm8uFhrNVG27RU1Pid0/e2TluxOCaG2YRQFuQ9MLmu3DDbXEwOHfqv2QvgWsuuWWgsb2sil+/jeGAypCFSMBSW1AoUCnl6uweIxRIMpW2YZJGjx3voG0kwEs7xuQfbcPur+Mtv7aBor2TN0mq8lRV4a2porA5y8/bVDHV2MDwao//c9OM77Ba+dH8TimrmsWfPERsfRKgmzE43v/ah5Tz24/1kzX5efauH1w8HUOwNFGN9ZHMz4+qWLm/lhvbd7DsYQK1QOXlyDK9DsHJlC/7K6R0rX1UVvgtCkz54ayvpTI7NN9w4se3uvM6hM6O0VJl4vbMKLRHEVsjTUl/gQ3dtxet18tPnjqIkC2SKguGMnaWaobae3dlDuGDnlrEQH9rsp7rKGHk9197PWDDOLTetRlEUjnSESeh2botE+f4zJxiLpNm83M9HPnQzazetxubqw+uZVOZ33LqGnp4hRgLjaJpksFhFmyfC5vWT7f7J028xFs3z+Y/ewK03LufYqVeI4CcQCLGk7e0ZW1O51nK7UAr5HKrJjK7r2EveXm/V3BNMFVUlnzOyqJw3lv/gE0uwudwzQirOh1JsWDYzpOLQ4XaeOWI2jGOzFTQNiUTqGkJRZx7X6iAfHka1G53FCd3kqph1/wUhNfRMDNVdtaA63gnPq9Q1tGTkijsVLqkNV0l2FWUJTse/LmhfXctjqapFDS7G6TDk0umA813z8UgUS14jPjLEmqptOB0P4gonyAUD3Oxfxu7E79CwcjVnD2/hVn8DGWsAl7uCyoZGBvrXYFt8C4nuDlKapCp/FxXeyZFMpwMe3B5F9VeRHlnLdtc47Zk8X7qxCUvlV3j5XIyIEieRt3Ogew17tQry+W6y+sM4HatmnMtXbgjy1y8cIyycKGYrhb3HMbU2ojRPf887PW6cnumdwZs3t+J2DbP1kQ9MTFxraqyi+NoZljS42XF0lLSqomUz1Cgx1q9s5rOrmzjbMUx7aJgKn4lDQ4IqK1hsVt7Ye4693RrDI8dYt8jPxjYzq1YvIRqJcfD4AJvWNFJZVUF7zzgd4yaa+8Y41zXCqwdHqPGofOHjW/FWePn1T29nfDzGipXGSFpLawM+n4ve3lFqazx0JtxUihj33Lhm4lyOn+jilf1D3H9jM2vWLmZD7TkODzrp6Btn+fJmLpdfqhXoCrkc1U2LiARGcLg9M8qLhQLR0QAIQVVjE/lsBqnLifCJ8eEhXBV+4uMzY6dePhTkrVNjJHDNiJIVquHiV+xu0IqGYTqPcpRaAUtF/cSQtpS6MZGjmEeYZp/xOev5RgPGcLjFPpE14HpiYugwOX7R0I9fVjLCyd/+4DAFYQZl+khBvSPHvRu8+OuXMdQ7yLabb+DVU7tYu9hNx0CcrqgFqQkCg8PEQuPcstrF6ZEsp7uyLE5EGTrUzfGgjRN9O/jIbc0saqrEfGqQgmlSIeZNbs71hFi/bikmqx1LpaG0lWKGVCpLa42dE90d2GoWo+cz2AthsvXL2XewA7vdRnXNpJJXFIXugTBq3Qq0ZJCIJnj+cIzXDx/g3pta2LZlfq+o2SRobvCTz2Z49IkDOC2Cz3/qNtasWUx4PMJA6Cy63cSytkXcdOMqQoFRVLOFT3xkG4VcFtVkZkXnwMTEuJvX1XLidD+7B3ys19PccIPxInllXz/BnIPmugFal7bwyL0rOHOul4Iu8Fo0gk4/3aOTHZO2ZdM9yYVclu+92IWCzvs212Ijw8b1rTjdzonQo3CySCRnJpfL4fS4+OzHbiQYirGkbXpdv+wkw2EqGxoNvToHkcAIUuo4PD6KhTxmqxWTxYoQglhwDKvDSXh4iKqm6S80d4WfSGAEp8c3o85lS+rYNNbFwQ4zKCb0Yg6knDb/YhpSR3V4kLkU2F3oufREmNuleEW1VBSpFQGJyVu74N+9U2jJMKq7al4v9XuBlSadbLCfyguMw2Q6w/5YhsplK0m3n6F66XKyXacZiCbQTSorzBKbzYYYHmS4q5N8rsDpcJxau4WRwAgDsSibq70kO0/QH4lTs3ojQ52nuHCqbo2eJ2WzY3M5+P37JkfHjo3HaKuz09U+yMNLFVa21tHY1cVQdQvdsTAHOgNsbZtu5AYSWeLWesw2J1LXsQ2lkf096LUB5BfundcrKnWder8Dp9vJS68d5URXlE8/uIrPfszo2EfiaUZGI1QuruT+O1YZsbxFnfXrlrJ8SR1Wh4N1fcM4nYbzZt2KeuLJHk50JukcK/Ifv3o7QggOHe9nd2eRQqGfB99Xwe03tmFTz+JzmtCkFbPQCMtKRkfDeCu8VFX7qaqe7pB7cWcHp0cF9yyPY1cLNFV5Wbq0aULnxuIZ4rqDaMII1/jAg9tpPd3HsqVXJtvPu8oY1nWdeCiI1HW0YhFFVXBXVk3MSjbbbPSdPkl18+y9hEwigaeqimTESIGoFTUqausY7mxn0ao1CCHIJONYrDMnbiV1G8n07HMcpoUbmOHPf/O2ec/j2LFOXtw3yH13L2Hjhjb+5P+8YMSS2Wca8BdDsblKE0LeGYyXQR7VVXlxb8hFhg7fK+RVF7KYxVKM4feYcVgEmlQwqwKn00Z4bJxdxwIcPhNEKCrvv3s9A/3DBPeOUudX+MmBLMvco3ziU/eTfv0kzRV2GuqrqElnad8VZCzvJJlIowhJcZZH+vUuldfOnpuIKQfQTXa+/8YowlyNo+RhUKwOUolx9OgIJ7JuCnu6+cxHDWO4kM+ze187DqtKNB6j0gWhSAESAQrVS+kdDLNty9zXoL9ngMdfG8Gmxfmdz91EsqAQSyTZueskt926lt6eAO1DaRb7dW66cRXHjnXy8/1hti7qp67Gy8rljVjNZlaumowN27J5Oa2LqnjtrW7WtBmdQSkl65osFFUTi1qNV5RWLLK718SxrqM8eFsbtzvM2OxzT840WawsqyjicDnZtnUV27YaRvbPn91P51CKz39kHb/y0RvIZbIUNMnPXzjC1jUNM4YKf1lIRsIUCnlD5yoKFqttYvTNW1PLUPtZrPa5sytIqeOrqSMWCiKljr+ugcH2czjcHoSqkk7EZlWsZquNirrZ088ak4M28eH5lnaYQiIW57GfHmE0owPnHRghFOulZYWQuobqMOZsvFPo+Qx6NjUREjIfitWJlhh/+97u65hYLMYLL7yw4P2llKQyWUzeCrRCHntNPemBHvx33E8sECDYcYZAdyemcBD3hi00bNrKM997FEdlFflggEQ+z5IHP04wk6RvaADX4uWYzRbePLwPRyJMtrqBZCRMsLOLyKljM46f278Xi8XCwBTZ1nUdtVjkozUWiqEIJ0M9bLcW2Jks0pmW/O9DTh458XMcJf3UE9fpT4JSrKRo0ihm4qjSimp3oSRVtGJx3lCj7/78CDHh5eFclmS6QFK38uqOk3zk/XYsFhNHz42jF7J85mM3I4TgG08cw6pq3Le9BZfLTpPTyaLWyRDS+oZqPl5fhevVo6iKmBjNaa1zkEqH2LK+DQCn28nZwSxjHTobajL8m89sJRxOsGxF65xtba22kE6Ms3r1Bm673bCpzp3r46evd3P7hlpuvXkNy1qGqa6v4+XXjuJxWblx20xP+tvlXWUMh4eH8FRXk4pG0YoFqpqWEAmMTCjMfCZNy+q1hEeGcLhnxgi7/X5ioSAWu2EUFHM5YsExXBXGhZ/umei7aHtsZFCQpJnb2AsNDYKUVDY2TfTgNmxoY8OGtol93q6HweSuQs9n3nZ4xdtBakVMnpoFeVTeiVCMdwsP3+TH5zLRuHgJgZ5uckXJ918b4lvP9lG0eHhwfRM3bFzK331vP//6k0NkNcGtayrYumUlT/70DT720Qd56dkdLF9aTyIa42z7ILfctZ2aYyFSMZUfHjRm3DJLHmIhFMSU2e9SSqqVcR75+EZOnBliZ5dkVVWB1Uv8PLs/SyprZVVNkW3L3cSCY3irazh3boA32wu0eKr4+q9tByAWDvPUT1/j9HAnnYn5VYnVrKIlxykqRY6dHsCnJOlLpHnj8Ai33LSKeDwJCAJjMZ56/jB+l8BBmmBI48CgibFIJw/cvWFGvVXVfh75kB8pJa/vOE5/f4CebCW3tubp7xumdUkztXV+lri6aA9ovPTWAL//5dsnfh8OhnB7PZin5OA8d6aHMxEnev8oy9v6JlLA5QuSnDSjFTXsDgd2h4M3dp3i2BCY1ZGJdD+/TMTHQ1hsduLhcXRNo2n5SsKByQVR0vEY1c0tpGJzG4d2t4dYKIivphatUKD/zCkq6hrIJhN4/Jc2UTafzZCMRvDV1M0Iq5ja5mIhj93lngjdcHs9/PaX7pgIf3u78yVM7kojFdo7OBKn51KT6S4vagxfu/CI641iZS01azZR1byIwVPHaV67gaPf/xcirz+PxWzC7PXT9uGH6X39RdJnjtHR24XV5WbJgx+l/dXnWbluM/FggOToCJ7mJfTv283mj3+aXGMzxbNhbMFh0sFh5gqKslqnjwTmpMS8bC1VzS0EX3kGYbbg3rQNW/tpPmALs38MKvwqZl8LMhRACMFbuSay3lo+pu/iRx/8LIquUzhyAv3QMIrVQWAkSNOiuT2jip6nmB4nGCwSS+h4MsN0FOvo6B5h9Ypm8pqkUICXXjuKx23HY9FR9AJP7AziMWX5vV+dGXIphOCB9xlzRc6193PyVA+nRk1U2fIkEyncbgc2u511S33sPNjH0dEqVo7HWbnacBZkUmkK+TyeCt9EnVJK3jw6QiJv4rUdJ/nExwyHYj5fIC8t5PIFhBDUNTUSHA6wp6uAk+h71xhWVIVEeJxsMoFiMhMODOPxTxpkFpudcGAY1Wwhl06TikdxeiumeS2mxrPVLVlKdDQw68zmqcs0z5ZhQkqdT93ViL/CjcVun9UzomsaJrMZ1WSmkMtisdnJpdOk4zEcXt/Eby52rLkQqmnetG5aOoYsFlDs80zmWyB6NkkxGUbP59CLuasyq/mXmXA0TSEt6Rk5RffAOKtavPzbL2zjH354mLgu6BqKo8tObKpuKKSiibeODzI8lmQornDuTA8jcdhgN6HqNp55PcixwV2MZW1UWVKkiipZpns7hZ5j+1I7A8NhhtM2dNVGqyfHnZtqSYUyFFIJ8rk8YKa6wsayZU3YDwzywDYfPoeJltWThs+S1hruGBygqqZiYtjq2TfbaY/asTc2kI8McOpkB263cyIn5KmTPQwF49x1yypqmxr48kM6VpuFV/Z00x8zYapowFEIMTIS4s67t9JY38XAiJedPQJLYpC7bm6jucHPjgP9LGmopqezj9alM3OGx6Jx9u07xe5uiUykkRbB0dMpdvXAI9kCxaJOKpmipcLETVsmBzT7egb5ziuDrKgRPPIRY9gwFg7z45fOUcykkVISj8Yn9n/4Q1vIptI4pgy9btvYilntY9WyOn7+3AFcdgvvu2um0f5uRVFVUnEjS4/ZYiEcGMZqnzS2bE7XRIiElJLI6Mg0zzEwzSg1WSz46xvQisV5Y4vnIhkJU1HXQCQwjL9+9knPxUIef10DkcAIdpd7ol1mi22arj3PpS5XPt/CGHohi55JIkyXv2iS1DUK0RH0XBa9kMXk8F1Wfe81ZD5PNh5j4MBeUgN9nB3sY90jn6fvzZdQA4Pk0ymGjx4kExzF7PWjFQoUggHaX3gaLRgg7PJQTCURDjeqxYpNVen88XdQtQIIBV01YdOLM45bcFdQVEwQGsFuNpHXJe4tt5CLx9GtNtLxOAKJbjZT1baS9PAQacXEHbduRigCl7eC/h8/hs1mY5N1AJsvizNrY1fza7x4JMdfjq2h6C1iclbQfqqd8XCKdeuXoigK4fEIew/3s2l1Aw2N1Xzhk7cQCIwTT+bo68tgEk5UIUnHY9idK/jNT20iNDrOj3aPI/Mh1rc4ed8d63njrS587goGeofwV/pmLJQhpeTIkXb2Hu5nrOCkmAwzHs/y7dfcrKsf445ti+nuD+G2q6xv1FnaNulo/PZPDxHLq3ztY6snDOJ/efxV4mkdLT1KMj753Kxb18biRdU4PZOj5tUNdXxkawKno45Dhzvo6I/w4J0r8foufWR9Ku8qY3gu5XeeqQr4/OQLQ3nb0TWN0NAAUtepaVk8kW1hrmG4+ZBaERSVU51BtqwCp883636KqiIUBV0rTuTTS8djVNTVT7TraiK1wuQM6gUYw1o6ZsTWOSvQs0mEyTq5Ml4+i6VqEYXYmBGn/DaH4c5n3kDq12XM3dXitXMaVi1J3uwFPDiCeewdg+R0w7vVEbbQEc7x+TtaaFpUz3BnO/7Gtew50ImGGVUVWOx2UCxUNVdSEBHG0macappf//R2zpzu4en9YTTVhkNk2b7SS3dvhLWLKtm+sYme/hA/O5jCbpY47Waat24nPDpCPG8c/82zGfadPYDFpLDuhnUE+rrZ9coubti2DoBsMs76Tcuxuzz0nz3NopWrqfHZCfud5FN9hIWVJ3eFcChD/MFXDWN417FhRjJ2ljYOs3R5K61LDEP0w/dYOXeulx3HgkRyJl7e08MXH6ll2aql1NRGeOPwbhK65OkXj2D1VHH35lra+yMc7NdZcaiLZW1NbNm8HF3X6ero41RnkGMBG4vso7Qua2BkLEZdbRNdI1lMQvLMnj7SSjW26DBr1y6hq3MQAThdNtxKDofZzjceex2bWXDbxnrymFEUgbmikSOdMbaW5s0dPNLJjqMBPnRb64S32OFycstNq4mExjk+qOFUorzvrndOrq42Ll8FLl8FlXPoXpPZPDGiFhkN4KuuJRqcXMxofHgIoYhpBrLLd+le2fNLyiqqicjoCFbH3JMU7S73NEdJdGzUCNN4BxZZ0rPJiy6aNG3/UgiE6vSBlOjFnJHeEmMRHYu/qbQQ0eVNwCtEhhGKCcXuua4WM7qaWJJRUgd3YRbgMJnI5dMEO86iJROogEVqFE8fwdHQQutd9xMaHiIbGcfp8RF85Wn0YgHV7kDJp6lpaSV6dB8k0lisViwbtlG1bBWnHv8nKmwWdF1H1i9Cz+ewNLVgtdmpues+en/+PXRdx1PfgLTY8Dc00H/kIBaTCfJZOr73T1gVgXfLrVTU1XNu3x7CI/3YbDYyhSKb3v8g1YtaOfP8UyTTKep9gkXmAD7vMIcTJvZ3aWSHEqhqN2vXtXHizDAH+3V0OUhDYzW+Ci++Ci+6ruNy9HDsTJqzfVFePaOycnmA6oY6qutqqT/0EoN5lQMn+jjRE6HeZ2L98jX8y0tD1Nk6aG3yc/uNS7E7nYwMjjIaGOPpo3lcRbhjpY3AqIPaqkq6xnK4zSp7j/TTk/JQSGa5u6WaZDJNT18v69cuxmNXkLLIzn3tnOpP8+kHVhhp20xuKr12BvKVDPYP07SogXAozHd/cYLFdU4+/OBkHN7GjcsAePyn++gMm1k/FHxvGcOx4BjFQgFfTe2saXumYrHZGe7pBF0ipSQRCSOEQrbk8Zkr6FxKyfjwECazGV+NYaxN9SbEQkEACtnsjAkfs3Gh98NssxEJjGCbRZmPBUKGEhUCk/vy8+wKk5ViPITqvLiHQkqJLBYQFhuFWBDV5kBLhScMVmGxkY+MgJQLmqyn57MIs2VmFgldM1Z7ylx8taVfFqTUuWeZRmtdLcPjGZ4/pXE6aOZ0MAkXeHPfPBJgXWAEh1VBDwRJ5zQWufMsXtzI8PA4z+0dRFXgYzdX43E7+PZL/ezce4bmCpVP3lrB2f4UmZTGbTevJpeIUNPSyrnjpxgO5fn4BjN1DS1876lD3H9LFKsJegMJUHwg4YFtVSQSWf7x+3swiSKBjJ1X+7pRcgk8TpWHb6okFYvRvGIVkdERtm1o4p4719PfF+C1XScJxmKsaJz0mnotGonYKCc7imTyOmvXGvG+3gov27ZvYN26FK/ubmdxo2/yN/4KvvTQRk4cO8f+bgXN7OSN/b08cNsyagLjnB4q0Dnczngsi4kiO7uhQRmnEFcpehX2n4uSTGZpbW3AYsrz411j3LbaTzSWZssN2ynkc3z/5W5UdP7wK7fye1++g1wmzV8+ugdRzLF4xVIeHI/h9TSy72yYuspJL2gymSWhWdl3qIvxSIqbt6+eKKuoquQzd6Wx2y5t8Z7rnUwyQTaZxGK34/T65t3X7a80DIpkAofbi83pJBmL4nC5SWaj05wVFxIfD1HM5/BU1cyIgdQ1jeBgaTXRpkUo6vwd8ame6PPtigRGZv2dlJJC1PBsm7y1l52iSbV7KMZDiAUanHp2MgQCaehGLRNHtXtQHT4K0VH0fBZzxcUdB1IrGivrzTIJWygqwuoAOXOZ4F9WUlYHjo3rMasm0kfewqoXyR3ew4VXJz8yQOfO1zD5qykkE1AokNN0fE0tCGB850t0v5RFQ7Do459j6KVfUOjpJJfLsewTn6d/52voqRhtN91BsKcLh6+CbDpFqOMsOY+f5q230Pn6y5jtdnStSD4YmGiDua4RZ9tKgvt2Ej55GHMhjw1JvlBAFjXivV2EB/pYef+HOD62j7VVnXzzM1GKup1/eHmEXYO1eESQ5mYj7NLvsWDPj5CJKbz8+jHuuX0tiqqiKAqr1yxl9Zql7Nt/hngyR2XdZG7rTz50I0ePdnLwZIqYZqN/PMtYKEqju0gimmZvl4vx0H5WtFbxwrEkLjUH8TgxLAwMBOgcNxNJxrlhbTMvnkizpTHDxjozjWsbWLV6CT9+5hBnxlSQPXzm4VsA+NfHXyWt2QiMhPjE/asJhuIk8z4GxtJ4PEbHL5crkCxaGBwK8tQLh7n3thU4nJO20/vvWM7wSPidyzN8vZAvGaDR0cBFPbouXwX5TNoYUisN3Tm83olJIHMRHRvFX99AdGz22dFCiBn5jC+F2bwimWSSTDJOx7mhibRsc6Hn0shibtaYN2O5UDkRy6va3QteEEQIYaQKyiYNYzWbQur6RLlqc014LC6Glo4Z+ZbTUUwuI8ZOsTlRLHZUhxctk3gnF9W45lhyEVYtX0WxkGfVmgZeOH4cVBdSSrxKioRmRpYyTfTFLdS4ctyycjGpVJajgzqrvAV6T5/E77HxZmcKVCvLM3lkscDqBgtjwRh2rFisJj70wGaee/kwj/7oLVJpjebOfg725BgPx1m9qAFVVaiq8gACYbGinVfLUqeu2k2Vy8RoKMmypY08d2CcCnuWL312G8+/doLG5SuJjAaIjgXIJpP4G7x0HTmEt7oGt8tBX9ZOS/OkvKWKKrGs5MiIiUBkmN0HO6h0W2ms8bBm3WI8vgo+eN8m8tkcr795gsUtlbS2NtC6pJHFS5tY1d7Psy8dwl7pY/MNK9i6VWXnjiO8cXiYnUeG2LzMTb1dsGnZIjxDCVxKltGeFDKXwGkz4/eYyeQybFy/Bo/PQzadJhFLsm25GyHERIc6GIqTj0eQVgff+d6rDKSdfOJ2G++/YzlDw+Pous6Bg+coaDqfutHOEwcUgidD3Lx9+n1uW3b56X2uN+KhILWtxtyMixnDJrMZk9lE88rVRALD2JxObA4HVqcT00WcF8VCHn9947Q5IFcKk9k8ax750OAAWrEIiskwlLUizLIK3fl0ZarTO2OlUmOkK4tid6GYbQiT5ZKyUwjVZMQCW2xo2WRpuWXXRJnZt/DRs2J8DGGyGss159MIoUzMJ1EcPsMR8R6KJ7Y0tWB1OKlrXUJn+wlIGA6YnG68v62llKpWqZMbGcTa2ELL6rW0P/k40mQmMR7CZLGiWuyowWFMngrSkXE0s5VisYBMJhk8fojl93+Q8d5u+n7xBHqxQLFtNXo+h+xtx9TUhlBVFJMJR2U1qmrCOqXDJW0O3DX1jLq81CxbSaL9FMVYGN/t96HlcmQP7UYiGHE6afMF2O+4n/FTJ/FX2GmrH+T50Soaq/QJr2gsmSdt9tM1Nk4uWiASeJlgUnLj+no8HhfLV7VNxNkeP95JOpNn+42r8fo83HnXZtavX8LzL+xjKGGnurqCX9u+joH+AE8+tZczSQehyCAtlT48ThfrllQQGItQzOXRcynMLgWvx45XCdLc1MiG9W1IKRkbHmHt0kqQ4yxuNQzwQj5PNJGjEE+y69A4KeFjVZOND927gaMnetB0naGBUfafHOSR26rZdVTnyCAs6w1Mm6jsr6yYkdbz7fKuMYYHO87h8HjpP3WSRWvWzijPZTLomobdNWmwCUUlEhjG7vZgd7lJJ+Lz5h0G8NXUEh4ZnnOGpqeyykgWX3XlPECZZJyK2npWSskLR06j2OY2YPVcyjAoU9FpE+cMA12iWB3oufSClJ6UEi0eRMtnMDl908MWbJeXK1UWjQwXWjo2OfmjNInr7S5f/W7ljjUeqhoaOfDa65wb7UKa/QigxprhNz5zM3t3vEVah+6RJJtX1/D60Qz6gR50BJtbzHzwvrs5e+IMVRUuFD2Crlp56YxOm7/Ar3xsO6GhQVJZje++FqB3/BAdgQI5rICVH+6JIwpFvvbQJsYCY3z7Z53ctaGKFetX863v7iCvGEpUmG0cOznIhjXNVHsttDT5+aiiExiLMzQQIJ3TJ2Ir/+zLm4iOjRLs78Pf0IC/roGbi0XWZpnIGwnwyPvXE48l6R+OkE9lea3dzcDwECdGTew5uZ9/97X76e4e5EdPHyHvbmL34cO4rYeIZSU3rKzmfXdv4vd+66Fp13LFskbePJPBFh2kf0RheaOd5cuaGAh2cHDETZ07TcC1isHhIHani698esPE5LjHnzrMWErlqx9eRlXNpMFytiuIplqweGrJahHM5Dl5po9gQhLUvDjtvew+ESQSz2E1K6yoUdi6ednE7zvOdtE3HOXW7asmFir5ZSCXTlPI5QkODpTSiU1H13WSkTCeyslraXO6iIyOoKjGq6WyvpFCPj9NL8+GyWIlPDKEt3qm8aeoKtVNiyY+XwmklCgmFYfHA7oOJvOcyzFryXFUdzVaIjRjVEzms5P6zbwwb7CWiqJlU6AIzN7aiZCzy85DrOugF9FzKRSbEz2TnCi63Dkj7zbiKKzYtJXRnm6O/vQHOFNxUA0nmPfGOygiKYwHyfS04162GmV0mPihPRRDAQrZLCs/+QX6jxykbtUaus6ewAJY4hHCrz1Hy8OfJxWLUdXUzLknvkP3M09CsYBVKxgLC3adRgVYuorGjVs5++Tj2B0OFm3ZTv/eNzEnJiebamPDpBMxLFYrNStWk4xGcCxfQ3RoAJOqIgCLgOLpIyz/qIM3RwbQnU1YW5Zjsx7gU84KGhsmZfLm7atorBmgoFUSi2d4ce8YRWslP32tC4u3ht/0+/BX+vj2E3vpH02Bo4K39j1BvGinucrKfXdv4LOfnZ6ipXlRHb7qGqKhIoXsODKnsmHzajLZAjs6CtSZY5irmrF6svQMx3nk/pU0llY13fPWaV4+meGe1XYe+fBkmENoLES46EQxZ8gIK2aZIxkv8sOf7KIn62cw2IXNauLYgMbZzg5cZo33b/azcmUrAMl4kp27j7N+7dIrNnH5XWMMm0xmtEIBYVJnDGXlMhmioyNYHA4URcHqcBiGXqEAQkwMmc2We/hChBAXXY0OKWcs73wx9JKXdTavtK+mjsjoCA63dwH5eCVaOopim34uxjURE/kzZ0NLx0rLgRphGDKXQthcKFIHoZAf70e1uS8601pLRUFR5zRqVYd3IhRFz6WMxPhzvGjeC9isZoID/VT4vTxy8yr+3+MHSOImnlfZv+stli9vwVddg++tA2zetJyznbuwO9ycHUxiM2mcPtXN/qPDPPLRG9nUGuLQkHG/+8KS5145RjYyRlO9D2shzulBB7rJwTJ/HgGcGzcjhUr/YJBILItQFHadCHG2+03u3NxI30icvX2GTO4dMLG3tw+hqBxoP8KvfmIz8bTGd94IgTBPy35lsdtRLWayqTQD7WdpXLqMhgsMFbfXjdvrpnFRPblMhvbhfQiLneFEEq9P4X/93XMUkjGSBYGS7gLVjOZZRGbsJAd6/VQe6+WmG1eiaxo/fOINxtPwmQ9v4msPLefHv4gzSg27TvTQNbQTp9tFtVJg5ZJaHKECvaNpxqWdxfWDLFu5hKefP0hv9zDCYiMdr4cpxvDNW5bgcpjx2ARLlq1haCDAd3dEcOUDbGj10txcy63JFAeP9BLUfFTXeCZyHcfGw3z3+XZUTx3x2GFuuWnlxDLR73Zy2QwWu51CNjOrE2Go/Sx1i5cyPjw0oTMLOaMTbHMahp3JYplY6n4+LpZVQlFVYqEgLl/FRUPkpqIVi7PuL4TAbLFRLBQw++ZfClmYrEa6MnWWeiw2Y07GHIas1AoTI3bnl4GWWhHFbMHkqSYX7EW1OoyFO+ZZmEjPpdHzaSOl5Vwri/rPv7ckWjzEjIT47yHMTjexYBBdl7TccifxsydgyMgQFe3pwNrQTOtNt3O2WKR2wxbGjh8mMzZCNjSKRRYJtZ9BDwcZ6zhH1cYtJHa/islkwmqxMPTmS+SLOrHBPgpI9PEgDquFvMmCpa6JfH8XFlWhEI8R7e/Bho6WiNH+5HfB68e7+Rbi+3dgVVXshRzjL/4cm8XCuce/hX3ZGrwNjcQO7sYkQEyxF5x2haXOAQJJB6nTXWxviUD9tmnnrSgKi6fkOg9HU3QNRkk6TGgyzU+e2stoNIumC7R0Aj0VJ1rXRn60m+6wnRd3d/OrnzSMy317j7Hr6DC3b13Cpz68iaMHjvPccT/RsQLnnjjMpjYPPi3D0iU1OKJFVK3AwT4dXRumsamWM2d6efnNkxTNXoYGVGByAY36pgY+eWcGvZCjvrGGqppKvvH4bkbjsLQywfpli6nwOQgMHGSsqCKsNrZuWTkh+9//8Q6GZR1n+o/z/tvaWLl6MZfLu8YYrlnUQiw4RtPylTPK0vEYUkoy8cREGEIuncbudpPPZOaNEb4U8tkMuXSGXCaNp7KSWCiIw+MhFY2i60YslsVmnxEKIaVkrK8HRVXx1zfO8DorijKxwtJss53P8+ePHsHkmV1xz5eRQsvEkYUcUuqYPNWGosTwRBQT48hCFi2fxVTVjD5P/sxiIoSWTmCqqENmU/OGYJy/3orV+baXP/1l4fmTOezHO/A5VWoCZ0joNoQKOayEUhmaM2mO7trLxltu5LlndpLTVO65Yx3qrpO8ea7A4P4EbtVJKBQhW9AABVnMoiE50KfzwXV1bN62Dq/zCP6GZv7hJ6e5Z+tSrDYbZ5/sQDFbeeHgOFqxyK99eAWxWJKf7x3DaTdjVYrcutiM2azy2lmNG5daWVTn4Wd7dX7y/FF8Fo1ff2A1B04Oc2TYUBd//ugR7lpp4fZb1kxMVL0YVrudr3zuzonvh4+c4+lDKYoZDXt1E5bwWSwWBTcjDHhqcckYK5et5ciRDgYGR2lPVaDFRonH06gmlUq/m1RvJ+PCQiSlMW7yYksNMzASpa6umiXVJo52RVAtNeSzOU61B9DyWWx1yzjcHmRRW+tEWxwuJ9u3TeqVxW0t3DOWorZm3cTKRoFwkaCpiVvaNO68dQ2v7ThObaWb5W0N+M05xsODHBzTCKbP8euf/eUwhj3+SgQCs7UK8yy51xGQiIyTz2YmNunF4kQmB5vziqzER3RsFF3T8FZVExkNUNXYRCw4BoCmFUHKWSdXh4YGjVEBIWbNXHHemfFnX3779+vPHz0CsxjCsphHSxuZSBSbC5lPT5QJi41iPIREIoRqeJ3nWJhIyyaRhSx6sYDZWzPvAkaT7ziByTu/gf/Lji0ZZfSVZyjqOnLpCgojgxNxunJsGLW1ja4jh6hpW8nAsSPkTx2i9r6PIhRB+KWnKJw8hEVKiv5qZCE/ER6ZzuVxxiNkhUrbTbcxWFlNw9JldD79BLbaBhbdfAedT0UgGUWMDREdHcS2eDkN226h56kfYbY7KErI2V141mwgcewAiseHY9N2CscOkGk/SX9kHOvytdg8XlIHdmIudeY6xyyM1z+EJbCfu+u7ARUuErF5/72bJz7rmsZ//fvXyOk61upFuFKDaMUMteYg3SYTIp9i66pWhgZH6eoe4fVjEQpFldHxFOsVhYRmp9URontgHJyVnIh4sBTznO2NsbjBxaK6WuJHBjDhA+DI8R6y2SIWt5Oe8MwVTdeum56X/X03Lpq2cmjH2W4GtBpqnDG+8umbOXO2j8BYnDtvXcOSRZUMHOolouX54S4fX3ZYaG69iBPzIrxrjGFFVeeMJfPV1BIZNSalnV+Aw+Z0EguOoZhMV8QQBoiPjxuTMcYCKIrA6nASD4Xw1dQy2tNN7eIlxEsT7MDwBocGByaMcSEUY5WkdxhZyKO6jaE8LRlBnTI5z+SuBHclUuoUIgFkMT/3JDkJZn8DxdjYxLDb1AwUZWZHU6wkFSvJHAwOMS3u8PCQQiAWoliQdD/9FmcjdiQK3/7xWwzHJWBDFHOkipJvvxEGjN8+tK2C2rpKvvVUOztOFinkD5HJ5MAU5O4VgudeO03eZMQxKsU0X/v4agYHxxgcHiedzpPDSlGTtLU1kYgn8Pq8vHqqjwqPh4aGKhxigA/ethSH004qmaaxwsRIJEcgY9z3k70J8oUT3LJlYT3y86kOVdWEt7qGkdE4hWA/W5Z5GAgNE7TVsX5lBYnxIGrRi8cSRctleepABIfM0+JTaFtWS0NjJd/9/psMyVpWNPiJRxws9abRtBDtUUHPQJTutJ/Fjjjj0s+57nGE1Mk566k0KVR786xYXIuUkpMnumio91N5wUpIiqJw261rGRsZY2RwhGyuwLYNTdisI2zdtJSB3iF2tBeptg5RU+nk5q3LeO5YimoZYu3SX67nYL7Rr4qaOoqFAvVLJnOmW51OwoFhvFVXxhiLjI7gq65lpKcbEQ6hKILIaAC3v5LhjnYa2pZNTGqe/E3A0GfZLBa7Ham985PGtEx8WlaJ83HAMH3+hZaKkA/2GOFthdyMcIbzYRj5sV60ZBjF5kLPZ9FzSVSHb1ZvdRmjY+A2q4AKg93TJs3ZFUHq6D70QoHRwQqIhHCYzQR3vgyAVVUnDd+es0hAVVUKviqW3ftBep99Ekc8yrlXXyCfy2IWAlHbzPhQD/lnnkTExkFVMS9bQ9OGLXS++jzhvh6EVoR8noblK0kO9lOzYg3x08cRJhOVLYuJnT6KZeUGlm6/hd4jB8jl8+hVdchIECEEDZ4s0cBOqtSFZ0UZHx5C6jqVjU309Y2gFfM0OrP4XDFOjUOlv5YH713FP/zwEKrJwrK2Bn707HF641YaXVlcLjv33bmGN1/Zw54RL81OH446NxY9zealkt1HMgTiecJUMDjST7BYQXYww4NAJGfGWt/GYleKmhpDLw72B8hkcyxbPnOlzhXLF9FUnyIwNEoqnaW+oZrbl6VorFuKyWLhjUNDjGXt1FW0s7KtjsP9GiKboLUeqmsvf02Dd82TVMznEYoy65BXIZcteTCmKxJv9ewKOZfJkM9kLinMAQApSUbCVDc1T4Re5DJpYqExHD4fifD4NINdK+SxOZ1ohQKuCj+Kql7SEN+FLDQf8fn9zu8jFBUtEcTkrJgzXEEIBdXqQPFUo6Wjs+9jMqNnEphcFSWFnDbyGFsdpYl3bz/mTUvHEGbbL2Vsm17IIUyWWTtlDpMkk8nw+Y9uIhlP0ftiF61VJravr+fEuREOjcJnbq2gsqaS0eEArxwKECk6CUdByhC6UIhLDy+dyeEzaVTYI6xZ00ZdTZDH9xURAjRUunpGicTSpZAIAUKhayCMqqrsPJtEVcII1cKJznHeODKC32PD7rBx6nQvh7pT/NYX70RTz/H88QxSy6NrBXZ15Njd1QHMP6IBkIpH8firGO3rIZfN4rFquNwumhfVcjKcxi7DiKKNglQppqNU1tjx19Zw67IAbmcDPrcNu8PC3z+2g2jRTpNtkOVLltJ7MEBbWwOJdJHuXJE1/iTeChOb12ygqz/IquVNOFwO3h+MksrU0N4XoW9AQeoaT+6L0Wzr49c+d8+M9gZHg3zrmW5IhSk6qvnsnTXcd9d6jh3v5MXdPXi1FGsW1/MPT/fQ6EjzWx9eTWXt1ivW8b4ekFJSzOdm9wpjTIK5UOc63J5Zw9GklERHA3iray4p7tdksRINjuJwuSZ0azoeIz4exOWvIBWP4amcHmIhdY2KUlpNu8s14SC5GsyVt1ixOIysEibzvBOPVWcFUiuiOnzouRRcoP8Um8vICOStRuZSyHwWqWtvaynpC9HzWWM10bex8um1YFw6eSy7dUH7Sq0IQsyeAlQvsMir07bYxW23rOVfv/cGsYzOh25dRDQa5ycnc6xvgAfv30bHiROc6kvRPqpTazaj9o/wcnoxwaIN2SOpUFM0JfvZfkMLrrp6fr57mLHCUijA2nCRld0j/CLYSC6YB7bQEs6TOtXDS/0unv6XXaTFanymLOZvv8aY1srnlroZ6Ojgu3tTfPZ9LbTes5b/9a9voVs8/OyJNOmiSkFM9ajOnyP7S3f5sajw5M93EwqncZgFI3kPI0NZTO4qggOd/N3jMUDgUjSqkw7uWtRI++g4mxdtIJRI89aLx9k94sAU6eT+ddt489ghmqwJ/tB1mg+4bmaFY5CPVB9ge3WWZB78Np0b+o6zckmBI0HBvrAHdVDhrmM7+MzeJQwXnLwW/yGWYw/PaO/vxXvZp+VQfHV8JNHLX3gWMXYywh88fQotHeUhq5cjL6sMWW38j3SBVZ4mnGM2+P7wzJO/RBZkmQkhHgD+L6AC/yyl/J8XlC8Cvg34Svv8Rynlc5fduhK5TIZULEIhl6O2ZaYnKhWNUlFXz3BXB3any1CQVdVzxqElwoaHNx4en4jhPR/aEAsF0Qp5PJXVM2LdZkulNt8QsdlqI5dOo9hsM14a7ySqa2HeKtXpQ0tG5gxrOJ9EvpgITUkHpJeyRwj0fBqpFY18ljbXgmcuG4awFT0dQ7nCw3vXWnarLFk+85HlvLKni9PBKR0RvcC2xWaa/U6Wr7mBQ3sP4bEr/MFXbmew/SwWi2BxtZnToxnQTGSiYTweB5/98CbOne7khXaJRwmiCCsSuKnNzsZljXScPINiMqFrOh5TjoRmQ5isPHc8Cyi0enLkCxqJjMbObhdCSDA50YF6W5qvfPY2du45RSiSZjycYPe5JIUifPvHbxFKg5IrsGGJgw8/cBuP/2QfXdHpL5sLQ5JiwTFsThfeqhoG28+waNVagv193HbXdizmgzz/1hAVTgvRXIa97VaWV2p87eG1NDYbz9X77tpIKDDGN57uxaVmcNkE0XCKTVsXo6smCrkMOw708LXP3UJ9VYhly9ZMTJhryOXJ5XJ09YzwwuEIXjVFMG1ipKiwpKFIpT7KQNLHNx59ke0bmtlxfIwmv4XuvjHy2SzVDfWMhpOYFUFFhZG6JxBMkjZXUsxo+DwOLIURekZ1zvWE0LtC9AzH+ei9RvaKy+Vay25ocACb00UmlZqhS2PBMTyVVURGA2RTKdLxGC6fD19t/azzIiKBYcNAHRnGU1lJMhLBV1uHEIJMMkk2mcBss80IMZtNhzs8XhyeudNFOn1+oqMB/HUN16xzcikrwZ13JsympxWLDaUUVnE+nEKoJoqJELKYpxgPohcLKCbLJafk1DNxFPtkKrf/n7v/jpLrsK584d8NlXN1TuhGzo1AZDAHMUmiRFqURGUr2HJ64/w885ZnPOu9SfbMZ3ts2dZItkRJpEQlUkxiBkHkjAbQCJ1jVVfOVbdu+v643Y1uoBsACVCCtNfSEth1K58699xz9tn7RuKXGbumrvKJHSEqSpVnjyuzYqDdX2VVi50Nm1ax+82D9J85wwO3LgRDt3jdQScL/TlcNiepaIRgKMQq0c7OjT6+83IvP9g1ZlGxBai1l/j0A8sYHhzF0HQMwaDWIxCbZAScnpA5PZEnKMOSGoOB8RwjaRdDh/OAF0TANHn09hZC4SDf/NERJFsNB06PI8kSL+4bxXEkgiHY8KpJfudTt9F1eoAXT5Znv99Lcq7NqGATdUp4eG7vOA9tqeexD28nE5tgYCzDs++MoZezFnfd4QbDQHR6+Y+P34EkSXQu6aBzSQdfe2UfF0o2trqLUK7SWhOkLhRE1XTezgb4VCnH02sO0uA26QjJgECyqDGQMUkVDf7o9FLkao4Box7ZV8vKwWPc6R3h+9nVfHpPC3cbw8QMjTMSLMwm2e900qmZhASDQnqcoGnl8bhWoc8TQJME7IKLmkqOc6bK1034d1qZfyhP8Buii7u911c7XLUYFgRBAv4RuA8YBQ4LgvAz0zS7Zxz2/wDPmKb5T4IgrAJeAjqu65XNeg1YwTbPuMvmcJCORjBNA0GSqGlupVzITXcj/LV1szqySqmArlbxBMNoVWvhQ1NVZJsNQ9MINTYzfPY09QsWXnUL+mq4krbm9eDS7u+VjrnacaZpgqFbjnaXJGSjUrA0g0Vp+raprofo9FqSQJNdXaOcB0Gc1LM05nqqOSFINoxyjqsSoN4lbobYNTHJxGNsX1tP+dgEAxnrB+6izP133ULfhX7e2nMWt8NDuMFPfHgQ2Wbn8KFzfOhjD5E1z/Ls0TQ2IUsmU+Ljt9exZecmhmPv8BsfvY1de87wTq/O0FCMO3euZMEylVMnz7H9zh0Ezh1CVCosa3FxfLCCVlX45Ie2kJyI07igjSe/vxtNsDOSkxEkmURZYvfuE5wbLbK4yUNDcyNL6sZ55JFbefJHB/HZ4fc/sYVdu45z9MhZYvmL3/FfffM4bT6FB7a2Ui2kcbk9pGMTLF6/kXwqQbiphVBjMwNdx1HKZWSHnVxJw7B5uXdnG2Njcd45W6BQUUilCiRTPaxZa7kqeX0e3Goctyzxlc9f3HR++tlD6N4m1NwgNrtjluROOp7kX354AgmD+7a2ImCwanE9ilIlFHKwdPUyUkWDVw+OMpotc/BYLyWhlmgsS0GuxZBzfGB7Bz9+08AQRAIBKw/cfdsqgs7T2NwLWbd+GbLLw66jY9SGvew/Oc5QViaZzF53MXwzxC5YkmfSHMo67kCATGwCrargDYVRFeWijKXThSTbZuVOXTdIjI0giCK5pDVBS09ECDc2Uy7kCDc2ExnoQ1fVeSd61wrHPI6gNxumzJtEhwdmNCBM00TLWqPwKadPyRdGz8cRJPu0ipBVINegT/Qj+WutpsS7eX7TwCjnEW98IfxLjl2BcrFEyO/gnqXwZu/FWzYuC7NmzSJ2v3mIibzA9vYFxIeGEESRoWiejgV1fPihzfzNvx2gLz7MWEphW7vBoqUL2bYqSXN9AF/Ayz/8pJecKZFJ5+nccgtv/OxFtt99B01Jne5EgY3tNobjCgnFydaVQbZtWcnE0CD9kSKn+jOkyxIVHAiCwKGuMRy2CA6ng+a2Zlw9Mf7gE2s41T3Ez0/k+c37WykVShw+ep7hWAm42FiTjAofv62B4bEk9UE7pqri8oVoamvl754+QQoPo0PjZKIRJkoCkaSKINusXR6nF72QmjR7qXKqf5hFTfWEJ03E3FRxlVLs3LKeT7ZYC8MHz5xn0L4Es2jpfm9tmd0M+ereMPsKjfxm7RlkdBpdBk/UnSFS9fCpxUUU1eSNfRkGi3aeEtPcYvORtjsZlgTE2ja0kfPcE2jkpz4/C4sVAFZ7avjfuQinVJGHfCEER5C/qMRYKQicVUuc9AVZms9x93VGzbV0hrcAvaZp9gMIgvB94BFgZmCbwNQvKgBcf896BuxOF+Hmlnmv8qcKzhBNZBJxCukUgiiSiowTbrK6ETMVIlw+P75QmFKhML38IckyxWwGTdPoO3mchWs6ySZi110M51JJDE2bNvC4GaFlJxBlB4jiZRaiRrUyqX2cnP7bpV0PyR1AL6StkaA9gKmr19QVseyiFZDsgIhw48eZv/TYTVZdvH4syWcfvQWnLTb997Lo5xs/OEiuVKWkyRiinb2nBti+toH4RJyNaxYx1tvD+f4JDNPOHRsa6BuIUN/cwPjQMIkinOjqYzRRBuw4fH5G+kfQyjnaF7bxt//6DnnBz+3L7Nx9+xqSPz5EX9rHD148iUfSWJyp0tHs5447NvDtHx5gMCfjt+us7AizsMXPD3eN0je0H5fbQc/5QQpVMAyT8dEJJMFk+bIWzvREoWKQN6zvWhbAF/QRTUdp71gDAsSGBnD5LEqRqev46xoINzSSTcS5976t3LazhGHo+KQqolrm7dFGXtozQNlRh2n2sW79UirlCgVVplTVSCbS1NRaF2X371zM0HffxhvwXTYKd/s8uGSDiqsBn8/Df/it1bPG86ZpIksCtyxyc2SiFq83y20rwvQNi4hjMRoWuFm4pJ3PeZ3sOTTAuQujrF2zGJvdzpYdGzh46Cy9PaMMDMVQSkUcsshH71tFMpll4eIbojf8S4/durYFGLo+J63BZndM59RyIT/ZkLCeXpJly+51Ru6UZGnaEVQQRDKx6LSts1IsMXLuLP66WksB6DpRKRYp5bP4QuF5KR6/bOiTi8qGOoe1va4i2l2Yumo1eAQRQRAvW54WHS70fBJ7wyKMcu6azZAMpQCiPKlUIL4fjnS/1NgVJJnnjuX54kO1+P0mUJm+7bVjCfafniCWqaI7gvz1t4+ytt2NXimwdnkzRrXM8aNnMFwh2utNljS7qPNL5FNJYvE8hZKG3Z61znWCSkUzOb7vIHc+dD/f/f4uhspe6lwaH7p/K4ePnOOlk2UOnssSjR2kqcbFRDTFlz95B4ePTFLOTJPlrV7q6wIoJ8b5pyffxumw0T8wTixVRhAl4vEMVaXC8mXtlIt9ZIslohWnFReYeL1uAs4Ui5cupJTPUcpmOdnViyrYwDSprwuwckMnL/z8KKOKG8FWQXK4WeCr4KoN0j1awtR1vnsuS2ckw2/ebSlU5KsGBU3gaN8wCyaL4c0rlxI794/skVvwyiaXSpbUSEUkXx3jZi27PjCEKApY10YVQOJQxOB3F/TzV8IGpLLCn9tDfCcfJyfYGRzr4b82rMYtO/AlB7hgd3K3oSOJEhv8TZilFK9X0iwWbCRUBcEU+WjNAhrzMda73721+6W4lmK4BRiZ8d+jwNZLjvlPwKuCIPw+4AHuve5XdgmuZJQxE8EZW8O5VJLMRHROzeBsPE5NSyvCDI1MrVolWF+PoalkEzGC9Y2X3e/dQqsq+ELhdy3F9gvHjJg2TcNa1nB4EL0hqhN9CFfR0JzZUb5WGTVTV5F8dVSjfTiallgb1k4veiGJaL/2MeMVcFPE7njFw3/7t0OYdh+CAEvDVXasbeDM2Tz3b2rGG6rhn39yFsUeYtf5Kpta/XQsW8qxvQcQBAGPzaBz7SKS6QL7uyYYTSjEtQDPHytimjIYGjUegbZFbbzz5n5OnixTEAMIwOGePLHUYcbjeR7uDHG8T6G/6udUMk+to4Kw9wwRa+mdiiaSSmdZtHI5Dd5BHrxjNQODUb6/L8uUU96Tb6dYEpKIjUX58Ac6yecKfPONJIIgMJBz8DffO82ffHIl5w/tx+ZwEqitm970D9TVM97Xw8TgAIG6OiYG+xElGV3XaF6yFMlmI1MZJp02EJwl2tosSlSwtoaFjW4Gi14Gh2PTxbA/6Ee2O6gUCtOjwmwmx/BQjNVrF/GZR9bz+t4enK6LPNVyoYjNbmNocJwXTpQgHaOq6gwkdQYjJQxfE49sW8H69csASGdKnIzZSRQnWLvG6jyPDo7y81NlwlKSYrlCRQzxyutH+OTH76ZQVCwu7TXIiV0FN0XsXgu/d6bjm6pUyCYSl03x7A7nJId3tjscWK6cnmCIYjZ9Q3JuKZ+dLryvRenklwMr4c5s8Ex1diV3AD0bwzR0RId3Xje7mUo9lzYx5oOhFJB9tVSTo9hCTegFqyjXy3nQtWum1F0Fv/TYFewe/vXlIUxBRJAduCjz2K2N9PSX6Gj0sXTtap567gj9mQCnJiAgOfjw0g5GevrIlnRkw2DJgga8Pg8vvHWOwLjCqaQbISUCJhgGdtlg4aIWRvqqfPOp3YwrQQRRIlaR+d5PDjKRM9jRoqPqJoejXk5O6Ii6k8Du0wxMlABrj2QikWPpqsXUBNOsavdSVxPk//zsAqozjCDBi6dUHGaVxoYCDbUe7rlvDV//3l6iigdNdPHPLwwiCCZ9Y8cI2ivYvGF29wsIkpWDXjyaJlk8wVA0x8Kgm1s7mzh+aoDHHr2LZGSM6hvnONcfo0PI0tnSMf0ZbmirpU9TiCsXf8uiKNLmF9AyOumyBtgxDJOXBmB9rc7X7jb5d28fotVjIE3qOuu6Qb6iEvQ4+A+nF9CddSGoGTQT/qTQx2DrMjam43wn1Dn9PG847Ix6fdxbSrHca9V0X9PznPUF2RwZINa8iJ+M9/CxahFTEEjqVTzy9V3U3agFuk8C3zJN838KgrAd+I4gCGtM8/JZuSAIXwG+Alxdz/c6MR9neL4EGairJ5dMUNPcelVtzKmN5asmW9MkG48Tnue9JsZGreeunUe+6Cq42uLStUAONIChTasc6PnUdDdYdJjYQs0WH/gGSdRNQxCtxb5w87RttF5IIXlCk9zlX4iBwTXF7sy4la6hA3MZHP7p6w2XXaShqQ6tkMYmCkTHY+gm+MiRMzx0j5QY+Nbr3LtjKZ/d2c7/+MY7/P++tZeC4QTRxswx2Z1LRRYtqOeHr5xl3cgosjdEbkYhUsHJ+SRsaXeyecdGbLaT9EZVxtIamQoEnCaraiskFbDLAk8drODYvw8VJ6YpsHBhC+bJoVkXOL1pOxd2xfj4LWlCdXXc3pzjnUiANl+VjiV+/vZHFzBE12wb80krdW8wjMPlIp9OIdvs2JxOyvkckf5eQKC5sZauZJUVbn3aWaiUL/DQXcsZjWRYu/rizoBssxEIBxkrOBjoG2Hx0nZeeecC3RMiutmLqhoMlvy4zsZYsqSNbDrDv/z4NGG3yWce3cymBWl6VTuZisiCQJXRkoyzOMbKFRfPy0uWtfNAtkLzjMXYlgXN3LokTV24Cb9b5rmfnyDq6uCZnx1lTA2RL/Wyc/tFq+b3Ee86dt/vnGtzOKmd7CLNxJXoYp5AENM0ZqlSzIViNoNSLuHxB3FcwdzEZrcK77ks78FqkmhVBdnuuKq+8fsFyRO0NN9Fq4g1DR3T0BFECVOrItqdyL5aS8P4BnZuRbvb2vnwBNGLmenHNlUFye1HL2WvubC+Trz/edfmms65smhS31iLqBbw19QSGRmlXAWXWUI1RXK6zJM/2E045OOxD2+n+vJxfrA7ggAogo+RMtM6620+hUfuWMQLu/s5crCLxUvaiZfTCLJ14SiIEr1pCaOQ4LbHd5JPJRnNDONyiPRlHFSqVdY2Q/psmuUdYQ4OyRx88iia6OThdU7q2tpoqRthMH/xrSiCiyd3p7mjOU1iZJgdi0R+1l1BFgR2dPrpGshyLh8AApAEQQIHCsubbHSPO3A67Tzx4Q3seqebtvZmEuMRkuNjdHX1kqg6sAXqiVZEOjus366uaaztaMPhiNPRMHtJs9knYNQs5EA2x0PkebEffm/gVh6InuPvN0/wUmEpYl7nD/WzyJLIv9sf4PVcO8/ccpIvtEX4qWrncHUBTdkMYbuH/nSEe83Zk70/lX1EC2WW+y/WV58WXXTnc3yyZgn/Zfgsexvb+YvUAP31bawppPhnx/XRfa6lGB4DZs79Wif/NhNfBB4AME1zvyAITqAWiF1yHKZpfh34OkDH2nW/eJ2xq2Cmm9J8ME2TUiGHLNvJxCauSIGYS/9yJkRRwBsKUy4Wr2ukp5RKFDJpDF3HGwpRLuSxO5zXxFkWBAFmyH1Njd8EUUJ0uNHySQThcrOTK8FQShhKCcFmn3c5Q/bOeG2Tha/o8Fg8phtTdN+w2J0Zt46mpe8qbk3TwC8UyBkeK1FOVLnQdQaHTaCii5zuSfDAOh/r1i/nuddOsWXVAkI1QX78chdneyco40LBbi1czICgV8CwYRgGZdHLN18dwxAd1givmkOTPdPb1F1jJqF9J+gZiPOZT93HqePdvHQ0RUONh1VrljJw7gJtSxbz3791BNVpnQyff2cIQbBMBy6FV8/jcbdiaCoLO+o4FM2zZmGQzZuWc2ZwDynt4n0MXSeXSuANhinls6hKxZLvc9ipFAqoShWn14vd4aBdLvMQKQKByYXWVJp//skZfJLCJz60YdaUp5gv4qLK0hA0NVu/2xUdITQtSVtrHV6vi6reT1ujn288vYeAXcchgtMm4XA6+eAHNrB7r403uys0ddh4dEM7Nrud/oEoA6Np7r51BU6Xi21bLfvS2ESCYqHCwsWt3Htn5/TF4QP3Chw+M8HS5joc4yU62m5IN/J9id2bMedeKxWtmMsiyzKJ8RFaliyf97irTeA0pUK4qYVU5NKP890jMTqCKIk4vX5KuSyidG0TTJgtsThVBJuA6PIj2iaX5ma4jF4NU46iCOK8KhMzKW6z1H9MA72YRvLekOnlTZF3nWYR1ZTQRSc5zcGBPcdY0OghncpyYTjL8mYnKxbWMJEuM5Yo8+A9W3nqh7t59Y0T9IxkqUqXXxSYho6oljB0HRN47Ty8ca4P0+ZB0CqAiSlbfHXBE+bN3V1UFJ37tzbT3NbM//g/u6lxB9mwZSN2xxnWbV5P/qeHuZCypiW7zxYZTR1jKCtenu8FgYZaH6qqEqwJ0uGLoUsubtuxikq1i0Tf7GnMLW2wcU0jum5RLmzyBF3jGr1ff5W6Gj/h2jyK6KKq62xf5qFOkLFP1iBP7jrMmbTGR5d4qQsvm/W4pUqVdeY57mu0qvX1dTr3T5zj/oY0DrvM36/uRsTkf550804qxCJbGh8FHLLJEyt0bq1Pc9fB5dh8In/jaSVRLSKJNv46N8IHZA/r3GE2ua2L1JKmcLCcYru7hjs99dwxmXP/onE1f1OJs8Lu43whx1quexJ3TcXwYWCpIAgLsQL6E8ATlxwzDNwDfEsQhJVYM9U4v6YQBAFRkGho7yAdjVzXYzm9PsqFwpyi8O8GqlLB7Q9QzGYoF/LTY8KrYUoRQvLXzWuUcbUNZdPQ0bIxwOoiA9NOeFouAe9il2Vqe/oG4aaI3WU1Gp/8yO38+IUjnIlBY0Bm3fYt7N11kG3r20mnM2zcuo5jB46RSBU5eTaC05kiVRb4jYdW4TvWz75zeUzH7PHyY9trqAn7+aefnreWYCRr+FprL/OlT23l9d3dHJkcVlYED6+cNUEP0N/dTVO9n3I1ydvHxli1WOXQ6RTiuQLCDCvwofzlRfCycBW/S+bIoA8NCbVUYcm6dTSePsBbXWlO9OwjqXoQhItLmx4jyx9/6Q7iw0M0tC+cjrPk+BjeUIh8KklNcwupyDgOh51NW9eTnrB+V5IkYzMUxlMlnnrxDL/3udsAUCoVvveTA4xmBDat8OCeNHjoXLuYzkkx9/Pnhzh+IYVkqEwUJHSXyZ2bmpBmUK6GByPoGYWBC1X8HhvbtqzkwOkowzkHbReGOdWXwuu28eEHNvH9F06RKGj87sdsvPb2Gc5HVe5cG+aeezezYoWlm7nteoPlIm6K2L2ZoFWr1Le1Ex8dufrBV4C/tp5UdBz/DdBCFkQRTyBEMjpOXUsr+XTqqtO6sZEJjp4Z42h/edb0ayZ3WHB6rypVOaVhLNidSE6vpQ7hDliLzO8SN9ik45ceu7Ja4KufWMfQcJSfHC6CVmHrzg2MDQzR1NJCoaSyfnMnZ0+eoW8oSyJb4cChs4wXbCxf6OBTD63gmz85ie6qmSXP1tls8sj9t/NvT+9hrBpAkMHEgWkafPL2eux2G996I4og2RAEkcNjVg6tHUngddvpaAmw+2wZt2+As8NFeiaO0pvQQbRKsbzu5OQ4IF7MvUG5woYlfg5dyBHJAmaclVu2sTgj8POTBb75/f1ECwIIs/N1W0st4aZmRiPdZKVaDo+UWN/u5kMP3Mq3nnqTmsYGClVYUMjx0INbeOPt0/zhs0cAUDOWa+IPuit8/8yr042ranIEQVhMg1vntlYr/toCMl/fae0UZUoa3xpsZrGrwKji4pzWzJdah1il6rROhnOkIFLNxkkUCzyJzIccYXYrWZ7zB6jkc5zLVdiNyr93hHlByfAtyeQ3c+OsFGT+jBILKhW+39jJf7FfrlV8XTFztQNM09QEQfg94BUsCZR/NU3zjCAI/xk4Yprmz4A/Bv6PIAh/iEWM/7xp/hLcJSZRzGZRykVLHm0OvvCNgC8cJhUdxxOYn2OVjkbQdZ1gfcO8r8Pt88P8Rm4UsxlESZ7ejhYlabrIdbo90xJD3lCYQiaNL1yDIDDNz9NU9araxpI3hFHKvqsuxEyYunbZwofo8lkjvl8M1WHu13WTxG6qaHD6VB/xvAbI9KUkvvbdvcSKIru692BzOjg+sJ/RlMrn72slncry3LESLodEfCKJ36Hzx5+5hW/+5ARp7eLnWc7lEAMOOmpEhi8aXKFoMDw4Tr6kMWXSYZomLZ4K6bLAW6dy2MQcgsPLuTScO1Lk4i6L9X3eskAkkVcZzl1MsB6xwh0bmgg3NnDiG+8guRYwOhLlraf3MZaBj24LkStUiFwAtCphIUXCrCGPk+T4GHa3m/jI0HRHVSmVUKsKNc2tZGMThJuaKWUzpKPjBCcNHbwBH7/72Z089ZMDhLwXT0oDA+OMqyG89iS3rJ7bjCeWyJOouukbTvKJ2zsIBn38w4+7kTAYjaYpVXTKGoi+WmKVNK+cKtMY7CeTSOHXVFqbdvCzQync6QIAglFFdAZIJHOUKhqCw0e5crmz0o3AzRK71wpNVcklLBm9K8meXQ/q29pJRcauSJEo5bJUSsU5nUCnINtsV6S3qUqFcqGAL1yDrqrIdjuFTHp62XrmfX3hMEqpTPOiJaSjESTZhmmaGLo+b949fjbC8TEBQyldZ340kLw16MUMOL1I7gBaPoHwLnSc3w/cDLGrCTbOnBshni4DEoLdwzeePYOmQ/VQF5oJJwYPMp412bxAYMe6RXz3pbMUbA3kCxU86Qy//8RG9h4d5sjoxcctFSukYxOsWehl7PzMZxSIJfPIoggzbLX9UgWnzeTQoEC6MsFAwkQXffz4cBGY/O4nC982X5WGoJ0jg+r0pNY0dG5d7uSWbauJJo+gIhBqaeLbT+8iWnbR2SyxYUUTP3knQsEAv56kZNhQJQ9vHItx/EKScMjLPSt8nOgeZ3l7E6dPnCGve/jaj7vRkTAFkaefPcxQUsc0ZBBEbMFGhHwEAQVVvligCDYnsjfMJzxvwxzd2IxicFJpIlKK8Zcrhvj3/gh/19PIy6VVRPN7GdBq2eGNIgZaKOkjfMsfoJpLo6sVHPEkO2whXhdVTnj9DBVL2FUF0RXkfDlJmwi4fZSqlcue90bgmjjDk/p/L13yt7+c8e9uYOeNfWnvDfGRYSSbjGx3kEvG3/MCRbmQp5jNYuga9Qs6LrvdSrQXk62qVMinU7OoCSYm4cYmcskE1UoZUZQI1NXNS4fIpZJoSoVAXQOSLBMbHsLt95NLxsE0EUSRmuZWTMMkUFdPIZ2adeKZmfzDjS4K6RRKqTTLLvVSCJKEXsrOa/F5LRBtDnRdRZStq+GpvwmS/Etx3JuJmyF2KyocPRdnomhDEK2RaFxxI8igyU40E0YLOh/Z5sfjclC/ahm/3ZzhqTdG+O6eLKvrDby9/ZiqAoIbv1RGNioMRUwWLGgg4NC4Z6GDI+ez5BWBGmcZWRYpVC7S72psRb70iVs5cvQ8L54osaZeZVFAoT/rwCtW6Ki3c3pMA8mOU8+zo3M50WSJ6MEEH9pSS//QBOtXNqMUMpw7Mo7L5eRbb0StxC84WVxTwm0zwesEKjy82mThok5OHO9m1ZoVHDl6ntqmJpoCEk6fF9MwCTU2Wbxhh2PaUGHqt5OKjE0XFoIg8NnHbyWbuDhBXbasnftzFVqb1tLSOpumdKZ7gFS6yI5tKymk93IwGoCuMRa21XLbSi9Ol4sDp2MUTCdf/eAaxkcm0KSFZPMKDS0N6PYINrlCoLaGzz+g43BYJ6Y1K5rp6k0TDPr50ufuZWJ4mKaODsCibJw+N0qdX2LBovYbchF+M8TutcDi4FbRNZ1KqXhdxXBseAhJlnH7/Zct2sl2+2W0s0t3N5RSadoOeuo22Wafl/6mlEqUclkcbjdufwBNVYkNDVHX3s5w9xlCjY3TxW2gtp5MbLb7l93pwu60GhVTMTwx2I/N6cTl9c9JAdm5qYOAd4zXu67QBbkGSO7QZO6e6Shaa7mI/pLxS49dUaR3vMBY2sSqxyGvT44oZWuCNpSDNQ0qKxeFaGjv4IkHDA6dTfF2n4R/MM3DmwQq+RwQRDYVauwVEokClbKCLJhs64BUrsr5pI0gKbzORuJZZVYn+YPbGmjvaOF//NsBxtNwy0IXh/sVTARWNYmMpVSymlUPrGuzsXLNEs4NH2f1ApHagIuqUiLklTl7cD9GpcKBWIAD/aMIcpCgXaHZLxAMepFEk0YhzmMPriY9ESOjiDhEiUiyTGujj8WLmohPpFi+agnfemY/Gc019bEAcCEJDlPli/c2cK4/xr5BgQ/duYR1nUv4u2/tITd5GhclG3/dfoDHl88uhIcyOt8f9PPJhTo/6jzARw6s4g+6V/Lni/rZ5ktQZz9JuWrn7epybrWneXLpm0SP7+BQLsfDDj/fNzU0Ry2uqsmfOsN8rFRgo6+BYNnOS+UsnXY3D/jbWJGboCl8kSL1Wj6CQ9dZ6QpRN48/wjWHzHXd+5eA+Mgw8ZFhDGN+HVtZthEbGsDQDQrp1Ht6Hl3TcPv9iHM52MyBQjpNuLEZVVGm/2azO8nEJyZdl6wEr1bnT1SFVArZ4bxo6WwalHI5KkWr7Td14eyvqaGYzVyTXNulPN+NLTof2uBC1K2rK8kTuq5C2FCKaLk4plK6zKxDy0TRi2mMS67ktFwcLZfAqBTe8/P+KuG21SEef3AND6+VuaNDpdljxUCto8LmNhAMK2ZsssxENMnQ+XNUcjlkvYTNqHBmVKGpvY0HdrRj6hofu6OZTz20kh2bFhOsq8PvdXLrtlV01Du4Y5WXB+9Yhl1Qcc2ox9JVG2+8fYquvgyikudD93Vy67oG7lsh8OFNfj5y/zragyamobOyxUG4qZlzvRPYRZ1Fi5sJ+2zUtzaTyxZZf+sO7lrjxSYalv50NcsTj27D53WTTFgb8bLDhb+mlkJJQynl2bZtDevWLUF22HF5fdgcDvLpFLlkYt7PTZikM3iCISYGB6iWK8RHhqdva6r10NRUw7nTPfy3v3uOF145CsAbB0d446xCZCTClq1rWFlnounw2pkKDqeLHdtW8YkHVrKtXeTJn56gqkvccssK7r5zHW6vl4/e2kJBt/HsS0doaWuktt4qNu7YuZoat8B3fvA2L79ycLoQBth7pI+fd5X41xf7eOWtUzcmcG4SZBNxUtFxitnM3AeYJrLNRj6dQlc1kuPvnYsriiJuvx9d0656rGmaYJo43R4qxSIA7kCQVHQctz+ArmkE6xqmteTnQjZp5dpizopbVakgytJkl1eezrmhhkYK6RT+2mvIlYKAMEOeZ+rzy8ati7lQOMhtO1Zfl9umOplbL+0sa7kYRrWMVph93tPLebRcYppa8euOjqDBZx7dyj0rbdy3zKCzXrX4vrrC5naBsN2KCUEQME2B00eOoSkKejGFTyiS051EMyof/vBOQnKJ7Uu9fOzepfzBbz2IqesYkp07d65kw/JaWj0VvvjYRnw2jaB/NifwyNkEr759Bk32sGFpiAfvXc/6RpXfvKeO+3d0sG3lpDKOFmdl53L6ekfI46Wpzkf7gjoa6sMo5SqL163nrq2LCMiV6WXm21YF2Hb7JobP91DVwGGzEW5sQtEMlFKRJSuX0LmykbaF7fzvb7/DO/3w7HN7WL+sBrs5d3dVEMXpmuH4hTRHDhzn7g31yMbk8aLErY0qJUXjw887uPelOhIFlaf6ffxTYgNP9/tY3eTkCwsi3O7s5y/Hd/CzRAv/eVOev9hQ5K/q3+KHIyG+1+9jR7CFP/S30u7w8ye+NpYUMvx3QcE0TTZOGmiscoV4HDvPFGJ8MdqFy+HFMbnDcrYQ56/cTv6CEl9RJjDehbfBXPiVsWMGK/lJsoTT40Uplea86q5tbUNTq/hCYQK1dYz3XnhPxhfeYIhSLkug/tq4VJ6glYRtM/iuMxc5vMEQhq5NW5VWikUEQZg18rM5HNgdTpTJQt/p9VPMpKlpaprutkxZOgeuYdnOGwqjVav4a+v4j1/sAODIkW6WLGpGPprkSv0Do1q2EmghhT3cguSau4thaiqiy4dRys1xo3WyMk19lkkHmJZiRDn3q3c19h5wvDdDNpng3vt3kJ6IEJwo89zRPNuWerll61qiT73NSNnBDw8V0Ms5/q/HllEu5Pni49sYGp7gmX0pTp8dIV9QQJQ4emaCpY02/H43PV2nyFUE/s933qbGL+I3CtQ2r+Lg/pP0pO3Te4gmIid6MhQEL4LTwbd/ehxFM7lnYx12l4NnXz7KcFZgQwvcfstiLnT3MF6QKZgO/vZ7x6hiJ5HYwy2dbex54Xk6d+zgI/RxaihFXUeA8b4eVFUlFPLCsEpXf46+ob2cyjZwYW+KHWsgPnYStz+IqkaRjQq33r6RQjo552cWbmpBq1anVV38NTXIdgeFjCUFdejwOV7uKrFjUZqzA2kqjkYmotaJflmznZPdw+zbO8aHPnIPH39kE0ODEY6fi7JiqdW9a25t4MyFCOmKwM9PpFm9poDbZ+UTt9eNhIkoQCqZZmw8yZo1i+k+08f5vghCoJlD3UkefvDi6129pIHxiQskFJOa4M1v+PBuoGuqtYMQGcMTCF52u7+mFlWpEG5swh0IEBsaolzIX9bZvRYE6uuplsvzUhxmYuqkXSkWpjvGMw03bA4HuWSC0GTX2NB1CtnMbAWJyQlFpL8PsCgUgiiAINC6fMW0GRNwzWYgdW3tGLo+fT+tWp3Wu78atOwEulJCEGXstfPrVQuCiOj0WMYdlwwhTMNapNKLGRAEJHcAU1OQvKFZevG/zhjLwmtvdbG4OUhTayNqucy5H5+m0avz0L3bOHLoFC+e0uiKSnSNJXn0FgdNi5ewrqrwoRWr+NpThxmN2zh1eoCiKtIzXsAvlzEMg1Q0gmgP8PWn9uG1G6xtdVPMZWlctITvffsguC6e90eSCpW4iSDZ2XM6zYWhA3gdNuqaGti16zjnkxIeQeMLj20gMjRCz3gRQZB57lAaiQQ+WeGjt7ZwdNcu6pqbeXRriP7hBKmqHbGiEBseJFxXg3whTkp18tor+zg6YqDgJKdeQC2mCYQStNa5WbY4gFuosGRVB3uOjZNidg2hCC6+8cqYpUEtwEjezkrRweLFrdiOJqgqRQRR5FP7O3ikKU6XazNidpSKBg80Znhh9DyHUjEOhQT+wyaBYkWj/tRJNtdYzbygS2ZTg8ZfnvdyPriMdflxHvFbv1tJlHCLErJpLZy/mouwwelHNU1eVLLE7E6Svlpez47xqXproW+RK8gjhXEOVUp02L2zLkDfC36limFBELA7XRRzOermsEYGqFYqFLNpHB4Pkb5eEEXLnQ4Tm90556ZxKjqOoRuXcXvd/gDJ8TEEgaty4exOF+HG+U+CTs/FrqlWrVIu5DF0HZvTOa2hLAgChXRqugDXVIWmxUtIRcfxSvMX9KVcFqVUwuHxTBfbU7hUIu6lozleO9ZFVbJez5Scz6UwqmUwDZzNy1BTYwiiOKdNs+QJWnI8c/CN5XCLtaVcSE8v04l2J5I7aC15GBpaLjG9APLriomyg2jJzvkn38EjVsgYfpaERFqbQoycP0d1cgnYQwHJZXLk4Ck6WoOUiiVKZZMH13l4+UQBQbYjGQoOl5Oe0SzLO2wEgn4ay1kU3c2jj2xmvK+HMyfPcmGswr0r3ZTSKfZFfGzusPHgPZv45g8OMF5yESlbsfrCvjFkTPJSCERIFqpEEkUOnowSdttJKgaq5EUAfH4P/lCIzffcy8i5blZt2QzScVZv2sjZ4ydxO0QSiQzg4fbN7dTW+Gk+eYF0Hl4/o/DhWzroXLOIntNnCNd1kIpGqJZKyLYxQg2N05q22XgMBGF6qTSXSloXp9kMvskL29oaH7VynPraZuw2idNnh8EeIBqJY4hOsgqcztXR/w/P0rx4EU1hFx95YPZi0z13dhKJppAcMg7XxRNDU0sDf/blWgRR5BtPvsFQyuDs+TEGUyam3YdPT6OJBt/74R4+9bFbAWhpa+Dzn7h5jXWuB55AiPjwIIF5NIBN06SQTuP2Bxg+ewaPP0A2Hqecz2EY5pxSa1Mc3Eu5vTa7A6VYtMw5EKapB/PhSreLkjRrepaKjBOoq5ulAOT0eq38Ovka8ukUDe2Lphc456O7GLpOKhpBttkum9CJojhLFz/c1ExmIjr9Wq801TSqFWRfLcZkJ3deVQiX39Jpv6RJIfvrLZk2rWr9f7ViGcz4aq1usSBNd4fne+xfB6iCg339OicGJvAb55E8QQTJzv07WxjqPk2xqAASgq5QL2V5+4SAWMni9gc4dbSL+zc38NqxBM8fL4HgxOesMhgt4fEXEWw2Gmo8pHMjfPkrd5NPp4hHE5zuz7KkycWKNpG3TqaQbHa++onNHDrax5vnqhQNJwNZQKsQfWo3MaMGQZKRTZOh0RQ9g0kEmxM7FaqSEw1QqhWC9fXYHQ7rwkaW6WhWuX3lKsYGhynm8hQLBbKKxPalLu6/Zx22n79DIGTn5RN5ljQEeOSuzRw9eIKNG5ax74136OnqYskCP6dHFEqTkmYOFBr9MJiRrYtMrQImvNql8FbXcescIKlo+QQbmjPsrK/wduQUZbfMG+NOVgUq9OclRuvu47F9g3wxEqevWsffb4oS9lysL1Y3yPzfS/p5PlFhsW32Atzfh5ZimAYv5aP8v3qOcDbJXTYvPaF6FkT6SKsqz7r9bCpnWO4K4pBs/GmgHQI3ZpHuV64xpyoKHr9/XlmcYiZFqKEJQ9NwBwI0dliuLMG6BtQrEK+nxmAzoVWrqNUqvpraWfSH64UgilQrZVSlMovGUNvaRm1r27SbltNjJWrfVTrbSqlEqLGJSvHqtIO//K1t/MVXbuU/fnEDf/iRNv6vD7eytv5y1yfZG8bQqqjpKGjq9LbrXJDcAQT5cjK9IAiWPJvdkgmaWuwQZLsl7m6C5PZbj/9rDkEQWLMwwAfv20BVMzFMMAQbe09GiSpeTNPkc/cv4kuPrufchMmyTVspGC5cfh9LFjUimNZn1OA1eOCe9SzrqKW+oYbmxUsIhoOsXuDiyIEufrJriB8frdA3UaE5bOfeh+5gQ6tILF2l+8wAeWX21fNjd7Tz5Y9vBsWKneEM/HTPOJs7W3ji0a34KE4fe3AIDh7rJx6J4vb76T7Zzf5zWZ55dh8vHophc3nZtn0tZrXIC/tG+dFzB9l66yY2rW3DUBVeO5bgG0/t5fDZFN96qYdvvJlBsQUINzVz4chBhs+dRSmVkO12DE0jGRljrPcCLq/XUppwu8klEwye7sKm5vjUg8tY1BLkztvW0tLWxEjRzeh4intuXU6TT8AspAj67AykRAYil/82RFHks0/czace24Eky4wORxgdtoogUbKkBJtqXcjuAEg27tzYxD2bW/j9L96N7K0hltWmx+imabJn3xnOnRt6P8LnlwpD17C7PWRi0Tlvz0xECdQ3UMymCdTW0bRoCaqq4AmGMOcp/KqVMuHG5sv2GUzTpJDJEKitv2LR+F4giCL5dApphma2v6aWcGPzdJMkWNdAOjo+zQOeD9l4jHBTM4ahX/E4sH77ocYmRFHENE1iQwPWIukc95VcPrR8ElNTrrgIJ9qd807rBFFCsDksGpqpT59jZG8YBKuBwXWOlH9VEHKLPPHYdtwOCRNQVIOhiRJ7eq18+uBaB7/9xftZUO/EUdNMy7IV9I1lWbZyET7HxX2X29Y3sXNjG8tXLcUXrqNl0UK2LfFw7mQ3b+zv50dHK+zpUQnYVZYubeORW1spayLd54YZT5ZmvaZNC538zpceYEmN9R1ogpMX90cwBBuPPXwL69ovTouLcogX3jxPJJJAV1Wi41HOjZX51g8P8MI7A8SzKmu2bWdxncCxgRJP/fQwixc3s2HTWhZ6y5yPmXzj6X0c7o7xL99+k1f7XZyNwoP33cL9q2Qe7QRRr7BzpY/Pf2wbSwMlloUUnri9jk/eUY8pyCxrcvIbGyS2t1X4nY91cu+6IJubBH5/RYqz0jJ2JUJsbrHxZ4uHMHNRvGaJ48Uw+yrtjOUvj7OvbhB46b4Ia1xhUtUSu3IRDNNAEAQkUaLT4cUtSOhOLx+QXHykXObv6ldylzvEhCdAQr840z5UTPCd3Aj6NfwOr4Zfqc4wAJNb6PPp0AqiRHoigtPjpVwokE8mkWSbNdqYJ7nYJ3m6M7sMpmkSHx1BFAWi/f20rVh5w96CJMs0tC+86nFun/+yTu9ccHp9Fk/O9+4WV0zTRLLZ5pX0ddQueFePNx/EeWSCJE8Io1pC8oYsjcxCEsnln7Ow/nWAquoU8kVMoD9j519eiSIIAcAEXWV0dAKXy0bBsPH2njMMRotsWeojE08g6Sq6oDBesPHkjw4ykVYQhSQ+9wCSofCZ39jJrn1nSVJDQC7xuU+sZeBcL1Wjj1ReZThvZ/hQDi4ZjZ3sSeIZTtHoh0hZ557VHjZ2ruGZnx3m/GCavOmejg9VdLJ/FPYNJ/EKRVTsrKy3c+vWZUQmUhw+l8TtyIDsJKlIJEwn+97cw6KFzbQGDMZLLtY0uXnovvU8/exhLiRl3jgWw6HlWL5lO5H+XuwuF/HRYSrFIu2rVoMJ+VQSURTQVBVNrdK8dBnRgX5km50pjf6d61twGBfoXLMau8PB7//uR6bf4/DQGH7/7Pg7f36IF94Z5M6NzdyycSmaqvLkS9Z6+J99sXa6I/jBh3eyJTJBqCY0y1Xutx5bPV0wl4tF9u06yO5RDwExOi2z9usDAVVR5i1snV4vmVgUQRBxuC3DC5tss+zt1bnJWN5gaE41nuTYKN5QiL6TR1nUufGGvotrMRwRJemq2vAAwYZGUpFxbI53x/s1JxehRVGac7lY8oZviNavMKkIcClkX80sPWF9cm/j13Uypxsm+VwRzTCpCi6+/XYKQbCBaMPUVEZjCk19/WRzCkfPp+gbK2BzuElFxqlUKkiaji57eG7vKLIIxTdHAQHf0QnuWNeKP+DjpycHEG0OPrxWpr62ltMnz1HUHVQFJz87WuTSMmsornDg4FmqlRIOTGrdBl/43K288MoRXnj1BGdHK0wZKwmCwIW0gwtpcJoRFF1ieYPEqgUe1q/fwDPPH0E4ep54zkAVnPSkQN3fx53VMi3NtfT2C+RKFf7dF+7lZFcvPzta5NyEwjM/O8zO1UH8oRqMgyc526/ikrpY2Oxjx60bOPD2fgzZBYJIyCfR0BCmrb0ZVdUxC1YP9c4FAr8f3c2drQbg4A+3OfhDBgAYz2lEC+Osbbx44Zkvqzyxp5UWR4l/vt2S//vHSoKf+wL8+/wED/ut+qvdGeDHooxumtQ5vKyfvP+fyA4+Wcmz2FuPaZocy0/wl9UkuWAjy4txtviuz73yV64YDjU0XtEJLdRw8QOZojWM9V5ALSqE6uYeY87HKdaqVewuJ07v9W0pXguy8Ri6rs27gXwluLzed30fgEBtHapS4SMPb+ajl3yeUxqx7ycE2YYkW9+Rnk8i+cLo+QSy/4ZqXt402D8ksm8wjSBMirJPKm+sqlPZviKIakoEAm4+sMXOy10KpmlnSbaErCv84Wc2cv7CCM+fVK1Rm2jHLVRoqXNxckjkf337IIpoOdSZpoBaKVNf52c0UWA4AyYaNlPBFC0R+imcmpDZsUjitz69iSd/dIBktszgYIRIycFwRaLVXWDryjCvHEtQFKwLM0GUKOJnQys8cMcKRnv7qeYKHB+zLqymaDeCIHAh5cAVNsiUrfjqiZTZvfcMoylLZi5VdfL9wwqb48e4EKnwe4uX4vEHaFy4mOhALx5/kFBjE9HBfvKpIWSHndjgAAICDre1yV8u5Nl7qJeuhJfargG2bF7BmZPnSeUVdmxbxYL2y4ubXKFC3vSQy1udSUmWWd3mnv73TNQ3XZ43AuGLRdwLb57l6LEotkA9ufKvHyfT5fXOonldfvvlFsuZeIxsIobLM3f3cj5amWEYKOUS3mD4fVeiKRcKlPNZREm+pmXkmRAE4T25+YmiSG1LG6Zp8p++Mn+z4f3Mv5LHil1TVy3lCdPEtLvmpMv9qiNadvL112IIwlRxaeVct1DmY3fVAQK5TI7HHtnJ33//ONWknSUBnVSmxL0b6mlc0Mo/PHOapGLlBtPQWdsEiZzGD/cmgBiibbKTq1eRJRO/38ORM2VM0waaglvSKYsXz8/xioNDZxP83mfv4MjRCxw8l6G/b4R0SWAoZyKqBh/aINI3nqc7dfF3VxG8OMny+CN30NvVRXxsnGTR4KUTJWY2OcaqPmIlmZF0EbCT1x288fYpxpIVwI4mODgbB/1kAkmIYToDtDRIbNrayYsv7uVnPz/G8WGROk+Zh1Y56B5IUsikWbeqjR/uGuaM+8+pGgI/ya3g7x3/gZNH3uQ7g19jrGjje/l1fOyejSwMyTRf0scrqyYjRg1aRQCsYnir6CCVz7DKHpx1bNh+eb5xSnYWeyy+/65ClD+rxEAAMZ+k3XX9NcOvHE0CLldIuBpcHg/1bR3T/22aJhNDA8SGB+cdxQmCQENHB7Ldfk3d2UthmibqFbaYL4Wua4QbmykX5lhEm4FiNjO9RHQjYHM4b6zF8nuEYHOg5y1O268zpj5rQ1XQq1YhZqoKmDo+r5P+vjGGohY1wS8U2bZjHTa7RCmXw2lWuK1D4yObPCwNq6xe4Obh+9aztMGOIvsmrZohb7h48rVhiqrI1u2d1Eo5vvJAE5+5s47Hb708afSMF9mzv5to1uRkROaZt8dRTKsg3LIixNqNq+lsuZw7eWZE4flXjhOsDbNgYQvol9NdRvJ2XjhepGQ68VEgqwi8da5KyXRiqhVMrYomONg/JJKsuqc+JDKxCVqWrpie1lTLJdpXrwHAF67B5fNhczgtN8hcjju2LcaZ7eWdY8NcOHOB7785wJvndc50D9J9uodnf/IW48MXBUM337Kcrz7UzJ23r53+Xh55eAt37FjO62+fIh679qK2rcFL0COCqdNU/wuxsv2FQxCEd+dAqam0r1yDbLt4YZGORkhFx6+o8FO/oB0QcHl9l+07XAtUpTJNXbkayoUcocarUx1UpWLtndyg4lyS5fdN//5dQZQxVQVTU2Zp4/66YSpuTV3DUEoWl9oEpZDHJhpUNJOu7iGqpvWdrF/eSDDgwu12kI7FuH+9n20tJe5eLuI1cjz68C3sXFuHLjnRpYuUhp91aZw+P8HqjetY3OjkvhUyX36gmd9+dBVh22yqRLZqY/febroHc6SqDr771gQDcUtBpcVVZMOWTjavurzTWZb8PPWTgyiKRtvSJSwIXv6bVAUnL3WV6U/bsZtlnJLGvn6Doax9kkdunV8upJ2cTbkRBIHukRIvvnaCrqjI8TEBJDuttQ6WLGrkEx/dhsPponFBCy6XA0EQeL3lUxS/+iO26Ic5bK7kO5lOHk9+ha8F/4i/PFFHrKDyf+8y+empPIZh/W7q/XZ+vv0ET9960TTnA94G/pdvAQeqeV4vTFz2XuZDu81Np+zGpqo4TRNZuP7f069cZ3gKhq5b27mCMOeCxuxjDfLJBCZQKZUINjRis9uR7Q50tYo4jzKD3ekiUFNHpVSc8/YrIT4yhMPtQZKka1KzcHn9pKLjBOfoXifHxzANg0B9A0q5hGyzTy+fvF+Y6aI01aUwtSp6KXfVhTc1l8DUFGyB+lmWo5fCNI1J57pJ96V5OHC/6nAZRSrImJPi6s32LI8/soZUZIy3uksUdRtufwDThFIV+mNW17Rk2Dl0tJfBqM7g+Bluv20dTn+JlvZW4rEMR/pSlJSjnI9qIF4sHLxiBbss8Py+CJ6jEQqmGxBIp/OINhudjRpd0Ys//XjFyRvdCqYu8oFlCus2dHL2xGlKspsjZ6JE41kODXNZtqgKDk7FDfxdw1RVHUGQ8JgFnE6ZxU1ujvVk2bEqzHCsSL6k8tUntrPnwDl2nVcxq3k+sT1ISRV4vuuijNZUrE3F35TFuC9cQ3SwD28whN3pxDAN0hMR/OFaNLWKoAn4fG4Wtofp6e4hIGnYzQSLOpbyP7+xCw0bx6OD/OYDBu2LrI5cQ8vlGuQ/+tEuBnN2VM3koXvnd16ciCZ46e0e1i2rZduWFdhtEm8fHeXOWxe/m9D4lUMmNoFh6FedYMl2B6noOLquk4qO4/R4MQyDUEMjmfiVT3o1Tc3kkokrTgDne22iLFNNJK56TgAI1jeSnojMqXqRSyXRq1XsLhdKqUiosZn0ROQ969ZfD7RJBYgrOYEaqoKaiSJ7w/NyiS8+XgJMi3dsC115QfFXFZJeQRYMFNEqVg1N5XO3+5EFk4GJCm9dsOP0enC4PejVDGejeZCsHHpuKE0i46RvIErnkjDrNq3lfNcZ6pob2X1snKd+eohU0WSKygAg6FVa/Dp7e1SGJt5kvOLm7pUuDN2k71wPW5cHeK0rjzY5lTMkB29fUAEbS30F7tm2gGq5TFdfmrLq44Xn32E8awCzL64FQaA346BaLVA2ujgXl/HIecqawKalfvojJWp8MiGvzP4+ld+4vZGa2iD/+5lucHjY1lxm44bFPPXaIFntYv1QMp0cGTYBJ+hV6lwqxwck9EofhmCnKyJw5N8O0hK2MaLVUZPvZ+L8LjqceZLhMO84PknrqX2Ukj4+tiHFn+9z82qunaerdexLH+Gvb7caJY3+yy9wn49d4H9Rocnu5l7mn9CYpsl/yQ5iAv8h0MH/J0j8uSTRqUPNdWoMw69oZxgsUwxfuOaKXvC5VNLipQVD1La2Icsy4cYmCqkkTo8XSZbnNcCYQiY2gSTbyKdSqFWFQjpFNh5Du4Je8BQMTYNJhYjk+Bip6DhKeW4DDJfXS7ixeZrXPLMLIYgCgbo6KoUCWrVKpVhAtr93jcqrIRUZIzk+RjYRx9Avdk30cg7ZX4t5FQcYU1Owh1uoxAbQi7O72HoxMy0Kb2pVRIcbQZRvWNflZoNXKPIHn76Fe9denC6EHBq6pqIqVQwEyopOX88wksPO+rXtLKy3sSxcZUUDdA/mCHslHvno3YwMT/D02xP87ZP76VhQwxMfWMrpUR19qhDWq4SkAg+ud/Ox2xr50NYatq9tpCK4ee7Nc1SqGnU1QVYsDGOaJp01BdbWFKY/e5tZZdHCZsrFIqIocNuOVSxq9hDPKNy/SuKBtQ5MfXbcC4LIvhE7R6Iubl/h5v/67FbWtQo8eM862n0Kd9y6itULgxRUiRMn+xiOWReWna1OVqzvnDeWlHKZUi5LtVKmnLdGao0diwnU1uHy+jANy2ghn0ridHuQbTbu2VDPgx/YROOCBaxZWs8ffOk+vH4vi8ImWimLXs4zPDq/zurAhT6G1VrQFbw2jWTiYuxqqsrIwMj0ZxWJphjKOzhwfIhSoUgqUyJr+sjm3v2F868SDEMn1NBEpTC35a9SLpOKjE1/P7Jsub0pxSKB2jqyiTihhisXYOloBLfPP61XnI3HKOaylCa1gOeDIAgYmma5G5bLpKMRkpEx8qm5O9GiKBJubJ4uhmfmIK2qEGpsQimXpvdQ3s/mw9S5Kh2LTmsmw6TajyAiSDLmFRaN1fQojrp21GwMLZeYtZxnKCX0mRbNponkC2Oo74+T182AD2+t4Xc+thZZtTjRplbFJlpSn+ViCZugc6E/holAR0c9W1bWErJV2LlYZihaQtFg85pG1m5Yydf+9XWeO1bm6MkB/vS37qFQ1klVL55/A0KBDU0aj97VwT3LDD7+yBY8ss7rXRkiE1lMTNau6cAj6zTYctyxUEXWL3aK25v9YBoUc1l2bF7GxqUBYlmV1c02Pr7dR43j8u9puOTlpTMGtT6BP/rCTu5a5ebBe9axfnGQ9cvC3LlzJTajQs9wiq4zI5g2J06jwF33bEKrlNGNyy8yTdNEVrJsarfx+UfWsiys0JXwcjpuR5RtBN0Sn398O3tX/h4L82doSBznU/IuHtzaxLq77mFcbOJQ03/lw8tkPr64DHnLT+Cd+JV/N/8oG9iCDbTm4hwszHbk7i2lyE/GqW7qvCOJvC7CsWKMnF5l2OVlVLoxk+1f2c6wJxAkm4hP6/qmoxEQhFmcYa2qTLsRubxeRFkmE4sSamy+5o6DaZqU81mcHi/ZuFUchhqbiA0P0bxkKZnYBDaH4zL9zbq2dkzDmLZPNnSduuYFxEeHqWu98mJaeiI6zZcLNTZhdzitMbnXh2ST3zVtwzRNNLU6rVIxFwzDIBOLYrM7kGx2ME0cLjepaGT6GNHptVQhZBumrqEXLVrDpR0LQ61QmehH9oRAlDBUxXKpK6QRnV70Yho5UI9oc6KrCoLNcVNQNd4PVHSJ7rNDjMcvLlIM5e24vF6SqpOxbInHt9eyYs1yvvaNVwjWhumNG3zxA834Az76ekdZd8tqfvDMm8RUL5rkQjWdjE/kkCURZkg4bWhQePjhHUSGhqhvayc2foC04kKqZPjA7fX4Q0EEUeTgOxdwVeGObasJ1jdy/uu7qdoCaLKX77/eR8BpMpBzcXr4dT79yXuIDQ9impZb4ZYFBQaTCvGKA9M0uWMx2GwSr59VGUtUuXDiJK1NdTz1w930FPz88/f2k6+KqKrOzw6nECTLhS+S1Tly7Dx7+3TmSkPd3YO0tdWzb+8pHvrw3WQmLCUD0zQnLXIdxEdHkGSZarVKbXMLqfFxSybLprH2rvVk4zECdfV86rMP88Of7KZYMdi4YTnjo1EOdI2xbd0Cmlvqpp8zXFeLlz7sTp03ewRGUz088dEtALz+9hkODOrcsWiCu+7exLp1Szlx+nUGCl6Odg1y9x1rWbU4QlPbL75z+IuEy+sjPREh1NA0LY/mC9dM55ZiNk24qcXKx1jLveloBLc/gGy3z8rP80GUZWtpUhItNZ1wLeno+KzGhVIuX/ZYgbp6DF1HlCzTDKfXh65WUcqWPuxMubNLUS4UKGYz6GqVho5FeAKhSSWfGkr5HIHad7+co1aVK+ZcgHwqhaFr0zS50Z7z6Ko23RUXRAnT0MAAwR2w5NEMfVIq7OLUTbC5UeLDCKI0LWM5JZ1mKAVEhwejUrCWmV0+9EIKyTt/p/lXHcMRyzJdmxyfS04P2bJJW3sLR99Osr5N574HbuOV144ykqiQr0qsbfdy751rQT3AvXet5c03j3L8hS7SciOCIJAsVxkcGKOsXTxXBcwkX3psE4O9A4Qbm2nP5hjs6UXVDDY3K3S0hnC6Wzi87zhZw8uDt9hY3rmGUvUAhycFsd46W6JvOMFowYG3+zz3b67nsx+/jdEL52he2MySgXHqdYnumCV71hGosmVlLa8ciZFXBI7tPcyS9mZefmkvp6MigmDiOBxFFewc7qtgSgaCZKOi2zl0tJ9oskTBuLwJuKKmyuMfvo3nnt9HOpHk4Q9spOfpk5h2L6auktRkXnnzJL8de45z4e1M3P4nFHfZ0fMpcobB47/1aV49UeZh4IHFMn+vpfh6r8ifrEyhaQL/9ZiLRX6dT62YTUtaawh0FzMMBBv4c7vBjys5apx+ThWT/K7NYHlukH8JL0MWZb6iqPwPt4N/0St83d3At8sZwu53T2OdC78yxbBSLlPMpJDtjmlrzSkd0kqxiMPtRimVZo3WpqTJ/OHZx78b1LVdLFxLuRxqtWIlZqeTsZ4LNLR3kEslLiuGBUG4KI1jmijlEpH+XhAE8qnUnHrHUzBNA5fXRzlv8Yclm52qUiE2NEiosfFdC9rHhwexuVwIgjAnDQOwLhIamkhPRBBFiVIhj65rszrvos2JaLN+RFo+ieSrtXi+l8DZYI2KtewEZrWM6LReqyDb0EsZZmpjS+5fT47lFDTRyTunM6xodWHTsqxb5COWsfO/nz6JXdJZUSPQ2lLPkf3HiVNLIiWBBM++M4okClR1gZMDBxkshKfjWhAE3uoBMKaXXuocZbZuaGesr4+9x4ZYm84RKzt5p9/k49tC2Gwyp4+cZOeD97JlfTun+5IUMxmG+gZRZB92o8JHd9ZTLUqs29zJv/1gHwNZP2+8fQqzkKBzzULyiTgPPbCFUye6eeV4FtMwWNbeiFJRwKhQKGnUNTQjOz0MZ2VE2Q6iwaYOO8sW+DFNg3RW4acnNQRg/5kUGXXuyUwiU0YQJmhvCjJ89vT0glNybBSb07qPANidTmIjQ0iigK/O+n17vG4KmfR0J08URT7+G3cCkE6k+OZPT6EoVTxO23QxbOg60YkUC5p81Lq9JEoqy9oDXDg3wJKlC6iv8SCe7mNXF8jSUTo7l3DfHZ0cPxthzYoWRFGkecG7X6i62ZGKjGHoBjUtrQiCMGtZbkoeLRUdn6YPBOsaSEXGcLitseV7We6dmadzyQS5ZJxiNovbb6JrKqIoEqhrmKUXPIWpyZrN4aCUy1JIp5DtdlLjY9TOo00PVs61O51UdIuyY3c6yacMxvt7aVmybNZ7vBZkYhOIkkwiO0LToiXzHqdWK3iDIXKJuKVeJAjoanVWc0D2zzhvmYaVdwupWU0I+yTdQS+m0fIJRMfFbpyp6xiVwvTi3Mw8/uuKo8M6m0SFBi847Ar1QQfPHkhgPzBBg99G57I6Ri5c4ORQibJgxeeh3gLjyYMMxVUSpSP0xzVUwTGtptOfttO/N8PUspqpazy4tZFCJsXwWIqyegy3y84LJ8qsbRLZvG4F/Rd6aW5vZ/sdWzn+b2/hcXXQf6qLM8NlkBxsbzep88is33Y3Bw9288qZKofPpRgbT1Ln1igXi2xYs4BgQyPpp94mYtSxpkUm5AaXrJNRXfgDdnyhAKnyKCXTiWwodHa4CTk0wh4ngfpGvvdaP2VE+sbyDGblOSnixSoM9I3gc4jkEjF6BuMYkgOfUOZTD3Vw9PQ4yWyFnke/geeFv7KafK4GPtT9XxiTGxle/Sn8xTFgBQCPLZd4bHkakHniVQ+7C220iik+tSI2/ZwTpQwhh5uHKiXKpoFQLjMmiWhKkRrZQbAwRpck8deJ89zvruOh0ALGihOslaz4XuAK3rCY+ZUphqc6DrGRYVzeyqwugdPjscwxxNlLHtcqTTaFqU7HXNvRwHQyTY6PYZomocZGson4vNJkUwg3tRBugtjwEDa7/erHNzZTLlx0VaoU8oQbm6kUClQKhVmWoEqpRCGTRhCYVxKoUiohOxzTestzweMPThfCwfqG6ZNMuVDgjx+zhPFnbjhL3jB6PjltDTkX5MAlJ6o5JNb0SgGzWpnUKr4JlkreB6zt8HLr1iVkR55n25rFjI4meLbL4PHbQ9TV1/LKm8cZSRmsa/XSF61QNJwkqxdPZhkVvFKFxQ12To+qGNLsbpOgVQi78+TTKdqWryS2P86PTwKIeMmxYsNtjPUP8HY0DAcvEEtXoFrE5mjAREIQRGQMmpvrOHVknPHBARbVSgwX7OzrNzCrdpYu1dARee3l3WzfvpZtZegeSNPUsZA3d51AkO3kqwajSYUT54ZRJpUn1i8OsGPbKk7u3UtTWyuuchWzWubTj64iERknVZHZeyZNRp39nvYNCgi9WT5/Vy1NHe38w3cP8oe/2TxLUlHXNSrFoqXDLQj4QmHcPj/hySZeLpkgORHj2Nkoa5Y10dRch2Ga2Ow2Ag6dHbdclDf81vf3MDxRQBdsyP46bl8ik8xV+dmxEvekSty2YzVjE1l6+qO80SMQyfWwoiNEa72XUDh4Q+PlpoIg4KupIT48RH17x6ybbHbnZfJo1ypNNgVNVa3pmt0+p8PbVOPD4XRRVSrIdgdaVSETm7hiQ8EbCuMNWaZDhq5f1d7Z7fOjlMvTTY1qpYLT40EURTLxics6vIkxaxkzUFs7J9WuXMjj9HhRlSvT6UzDJJdIEG5qmS7kDV3HY+yhIPgum5gJsh09n0DyzW2YMVXwzsSlvGBTV9GLWQSb46r84l9V1DhVHv7AVl5//nU6Fjbh97npHsyzdlGYB+5Zx89f3ku8KNEYtKHqCqMFB6rgZCAD2OycT1jfzapGjWhGI33JRbtpGgSMBEa1Fm+oFcGT5aVuABVwsmyxj5qWVn78+nn6cklao2VKhoRa1ZAkCVGySq9QwEljo59zXadpDjux6Rn60m760nBbm059uczJrj4WdxR44rFt/PV3TtLQuBBTEokU7SAKDMarDIyfpiftRBCgyWfygbs6OXXkOJ6AH0kATNi5wsvWWxbTdeI8AzGV7vjs8m+04OC776S5Y4HAis1bGX796GRD7+JvR9EE9LFzLNKG8fb8iObEUdaoZ1mjnoUjb5HWHIzml/PGiIxLNnl8mSVQ4HOI+BSNP10yxpRl4o9y4/yNkgKXDylUw9JykX8v+/mS3WBlKc6/+Dv4Uy3EP2sFXnVIvCJW+MeygQ+RTY4b0w2eiWsqhgVBeAD4O0ACvmGa5n+b45iJphLdAAEAAElEQVTHgf8EmMBJ0zSfuIGvE39NHeO9PTi9XrIzFiRiw4OIokSgru6q/N8rITE2iqpUaFq0ZJJWMX+SmCmp826K7foF7dPjOtM0yUxEcXp9c3ZOZv7NGw6Tio4Tamy67HVVigUCtXXkkvFLH4JcKolWVfAEQhi6jjd0sZMwxb+bkp9zuN2zrKGnUMxm8AQCFLOZWX8XBMGiN1xh9HgtMNWKNdbLJ5DnSfDXg5shdg/1FKh1nOauu7cSbmzm0MlRbIZBMZMhGonTlXCztEbnow/ewu7dJ3ir53L+9IZFPu65Yw2lnx6id0Yz3jRNPntHGL9/AeGmZl597jUyJQem3ZqQFE03L752gkRWRbC52N2jAzZ2Lq6noWMhL+0dAuyUBTd///0uRNOkvcOktd6NYyCPIrhYHBbw+z2ciWQ4MGqnsq+HVCpLbcDPrtf2kijJgJOKavLSkSS6NCnBZigcO5OidyTHUEpgTSZGT7QKsp34+BjoGptuWY1eOsTPL1x8Twt8CksaJHojOntPJ1mYVikZVgKtbWklFRnDF6654qQnl0zg9HiY6BtiX59OKt2D3zfOikW1/PEXdjAyPI7DYXGtNVUlEkujqgJrF4iUhDLtbQvYve8s7irUhRZz+lQvD9zdybYNHfzopS7aaut4/p1hiqk4r+zp4TMf2UBz6/XpXF6KmyF2JdlGdLCf+rYOCpk03mBoeolOttmva6Fsapdiwao1045v8+FalpDnQqC2bhZFwtI+VueMnSkb56l/l/M5JFkmPEeRLooC3lCYcrE4m75RKlHMZXB5fSjl0qw8rlYVipnMrG72XPJs6Ykof/yl2/nuTw7Sn5ldhIs2J4ahX1Ykvxvoxew0leL9WFq+GeI2oTj52Y9fY8f2VTjdHqLROEXBi6wX6Dt7nlOjGkXV5E8/3Uk2leZfXo1NF6hTqLFXePzDt3HsWA/PH59t2rOzVWHjuk5qmlroP93FobNpTLt3uqHzzqkk54dzRNUAEykbPSmVGo+T9hUrOHjgNAWsuHjxeB7RSHH3CgehoJf2gE5vwXKAXbGojmIuz95ogAmlgKfnGIvrZU529eL2B5Aw0E2Do70FFNmPIAiYpkk6W+bJH+whUpBp9E2gqDoZzYNaKRIZ7Gft+uU0jY3T/9YElUmZT7dQYfsyN9lciWPDGv7jFxhKaIBEwXTxjRf6EEUBVfLw1f2TX9Xw5fJ/z63/f6ku2Mnf7DqMA5WSNoRqCPzz7TkuxOO47Bd3ok6Xk5hONysSYwT9dXTKTs4oBTzlIksFG4cKMRbanHzPU8//Ez+HqlR5xuHmJaPCt9JpPi46+WrN/FOXd4urFsOCIEjAPwL3AaPAYUEQfmaaZveMY5YCfwHsNE0zLQjCDReKlW02Qo2NlHI5TMOwisnYBAgibr8fVVGuqxjGNJEdTsb7et5VgjcMg8ykyceV7JqnMJWUMxNRAnX1ZGLRq44RbXbHvK/JeowJXHMU5Xq1Os2ZDjVeHBFqqjq9yGd3uadlfgrpFKqi4PL5p3VFDV2nmM0SqJ1dqBqKZXyiZWNgc4BWRQ42vuvxmyDZLJvm90H0/WaJXQUHyVyFugaDJ7/zcwaKfkJSiYUrOzl0sJvHt/oZGU3Qd+YMyxfW8NbpIbhkOzYaS/PKy/sZSIiXrb2WCiU0pczxE72kVAd/8ZtbeObFLvoydgRJ5tgowOwt3gPdKc73/NzqhJVUkGwYNg8GcH44y7pVLbS6o6xc7OTE2SLhpmY841kMUUGU4UP3rka2O6iWy1QUhcg7ce5Z56W2xsvrh8YYKHi5e7WPLRs38LWnD2PIHrqiADKCaNIbVRA0BVM6g2BzMbP7sLHDwdIVi6kPDPD0EZ0LaQUEB3/1zePU2Ut85RNbyMZjswqJdDSCYRiEm6x9AJvDSSGdQjI1PrbJQXSixDtDBplihBXZIs8dzeNXTlEoVTGdAZwC+F0C99+/naHRBMdPjzGUFsE0+PHr56lKfu7NKbhdMjEjxJneCbYuC7DnRJ6Kq5FzF8ZuaDF8s8RuoLbOKvCyGcsSO5ellMvRuGgxmasUsFeDYZoEG5oYPnOaUNO7UzXIpZLoqnptHOQZF+yWhnGIQjp11QL7StrDTq+PcqFwWVFdymWnc+6lxkq5RIJQQ+NkPrber1pVyCcTSDb79GPJNhuZiSiP3LUUf3g2r/eZnx3i9JCER5lA0zRKuOfsBl8Joss3vftxo3GzxK0gSkSLdpRKhdNdPewdcWDXFcI1dYTr61nTlmbRgjoOH+hi3bolLA7rDGRnl0OqIfDW6wc4PaYBs/NxWalSLhQ5uGsvZ0eLfPXxjQwOx3i5y5JTHcnbGckzi9cdL9v5x399DbfLhUe0UzScCJIdU7LTHanQ2RnAZhvhQ2tEugc1dEGmdckC5N0HSOREPvmZW0lGIuhqFbvTSaEwhCbK3Nq5iN6hBK90a7T5Nb7w+J28/PpJBgowOGNvcjAJobCdvjf3s7pzOZJoWpciwKJak85VrWhVhfG3Bi0b6km1DNM0+cRdLXi9bv7p+QF++hGrc5HJpyiaZYKyH4/buqjKpAZRJzJ8dFM9pgr/30kXqmhDXr6W/37sFGZVQVBLKJqO0+HCnovx0XA7mxx+/lVJc1QrkKtt4cWJfn4kmnQaJf5RdnPA5UKrlvmyUqG5kiHWupw301G+egNj5lo6w1uAXtM0+wEEQfg+8AjQPeOYLwP/aJpmGsA0zdhlj3IDMJO+kIqMEWxoIjY0iGmal3F23y1qWlqpVipUCnmK2Qyy3X5NWpBTC3npicicxfDUYtql1AuXz2/Zm77HK/zY8BCiJBGorZ03adsclryRv2Z2wpZkedoGdabBQFWxtjYz8SgBsx6X1zep+3kRpmmiZSKWG5UoYSJgDzahpiOWSsS7KIb1UhZTU5B8dWjZCfSSxY+7geLvN03s7h52sns4DTRyb6eNDZ3r+fp3dmMaBl/oXEShWKFrsITLrmDanMyKikqWxz+9nbGRCAfGZ6tzLA1VaelYzDMvdRMKurDbqkTGYija3OocpmkilWJ8/iNrUfJZOpYv4+jBE1RNkdfPqgiixJ4+nXcu9PGZOxawZOVyegde49s/PECiCOBkKF4h1J8iGs9R4xW5455tdPZO4PPa8YfDLG0vM3CmymisiLt7kJIuTfPEZb3Eo9tr6BlKc3zCxf6BDKZow/LmlnFRYunqjYz0DbKruzwtlj+FoirS3T1Ia8Psk5Oua2iaxljveVqXrrjIVRUEwo3N1I4MU9bGGJioErHr+I08yVgCwd+MZJiomo4qyJRLFY6fjTOUd3D3Gh/d/WkSWoBme5H21kV43A5auo4yWvZTGMzz6N2Lee3gMPmc511LgV0FN03sTuWAqWmSzekkG48Ruk6ZMX+4hmqljK29nUqxMN15vhaoSgVfuIZcMjFNpZiJXCppyVFeUqwaukEukSB4DUX0pcjEJjANA8lms55zjqaqN2Qt3jlcl0/ZpigXM1UpCqkUDreHQjqNaRgE6xvmpIscPnqe4+cTNAdFwnKBjFSHVkkh8O6s7A21glEuIDrcmKpiFcU2O5Lrho2db5q4jah+vvFWDgjQ6qvwhY/dxnMvHebl3Xv54G0LaGgMs/voMM7BNLH85fly55oatm5Zybnv7p15rY7dKLH5luWc6R6iJyHR5PcSj6XI5yvA3L9/USuxuV3illUrCTc2cfr4GZxeP68ciZHVnERKTv7nD86xrllg49Z1uB2n+OneCA45imH3U9AU9h+6QCqZplwo8Oijd9HWksPndlDM5+hcv5zXTx0jW5E5fbqfiUyVmQ2QW9tV6kJefno4hSn4eWewH9PmAkNFkG0sbAki2528/NoxxguBWQ0XQRAYGE1jt+VnFfcFs4TqgvHSBI1FA58nQHu4g2QqSuiWNgrRGJ+QAuw608szB8/QYtfpTyUpGzKSzYZsmlScPvqrRVRB4FV/kLszOh+MjfJCTRvtqXFuc7mQRYkPaSYvmgb/FKrlbwse/iHShyzbiZYzNN4g3vC1FMMtwMiM/x4Ftl5yzDIAQRD2Yo1G/pNpmj+/Ia9wHkg2O9nYBA63e7oQLmTSqJUKkt1+2RX11SAIAg6Xa5Kb3ExmIjrLnnk+VCsVogP9k9vAl98+czFtZjHs9HjmdHWa4qL5a2quKOUjShKeQIBqxeJPG4ZBfGQIgPoFHQiCMG/nQxCEWV2LKa50pVBAkCTq29rJJRNzU0VMA0G21B8klyUJo6bHER0e6ypXq85pp2xqVZBss4oFU1eRfHWo6TEEQUJ0+TGrZbRyHgThRhTGN2XsxjNlBgbGuW19I/U1PuwOG8lkloDPz55zZQRp9ufnkAUGz3YzEc9z6RlYN6FUVEBXeOzhW+nvHeZbu1LM1MCciYUBhc984T5OHDyGwyYQGxvH47bTWleHeXoIQZSm/zcRieN1yVR0kaGiZXBhVgvE8fL22TzblwU41Z+k69vv0LnQQ9OCNl57eQ+n0gEQHJxP2jifLLG9w05rg48f74tR7yyxaMkGbBIcnyiD3U2YFJ/+4BouXBjhtbM2TncPMRorES07LJF4BOodZbJVmRJOXjic5Lc/6Jm+0ARrK7++bQFKeba4vdsfZPjsGSSbTK1f5vCYjQbVJJNXsLWto650gU9/+n7+7l93gb+JWDTOA7ctYTySZMOGZWzdrjB0oZcla7YhiiJdp/poqXUweCFNUVCJJwukSwIHzkzgdB1gMGGwsiPI7TtXX2+Y3HSxK9vt5BKWbFeowZo0TXF+36sjm93popBJTy/iwdWL4VIuSzmXo5BO07Z85WW3m6aJVlVwuj1UisVZeXYu/eEpOplss89ZWE9BU1VqmlssfftJWK8Z7A4n3lAYm8M57xTv0vPJxNAAhqGTTSZoX7WGdHR8zvsBjMWKjBcdbF0V4IMPbae/d4hK0ccPDuanVSIu+xwm5dVm5lCjUpimpemVAvbadrRc3JJtM03LFfT6lppvurgFKFZNenuGcEk6X350LaHGRk4ePc2qpY0c6clQNC7lBJsY+Tg9xyvkitqsSslEpFyqYEo2tq30s379Ev7hyT2ktLmnm6JW4rc/spxULM5EJI5ss1MplVi3qZM9XRNkJwtt0e4ilogQHeijkC+SVl2gglktocsO3jir0NnoQPLa+dpTh/DbNT7/yds5deQEzz5zCMMeJK/DTw/naXabfO6uGl4/FGGsaGfFwhpC9fU49u9FcTVg2j08vlGipq6Gf3lhgKGojmYMcSHrwxRlMHS8chUZk6zhZu8ANLkK2AWJfCFDUshhlBU01aR2yULKfXF8HituasKN9J45h2mDWr+NpCowkTep0fKY9ctwxPv53bs7OfXyEd6ua6Uvl+Kr7lqkXIIdrnoagx4+EO9ncWARQaeXgUoWr2THUc6QLaYZVkz6RBHFZuePkr2s9IRJCfBffa04pctrj2vFjVqgk4GlwJ1AK7BbEIS1pmlmLj1QEISvAF+Ba/OKn/cJbTYEh2MWZ3fmdvOVkEsm0DVtzhGbbHeQiozPSlwzBdhndqBzyQSqUiFQWz/vgobL659eTLsWTHHRlNKVTTU8gSC6pk53Ugxdt443TQxdv8xSdi5MXTyU8nkaOhZiGlaHPZ9KzvnZTBkhJGJJ/v6H3QiTHCt7uAWjWsZUK+hqxTLQmAG9mAZBxFTTs5fqBBE9H0cQ5WnZNjlYD4KAaHdhaiqC/X13pLum2J0Zt5K/jvcK0zTpi5TpGjO5Y7kNIZnnwNkk7Q0BNm1axYneveTN2T/o1Qs8LF2/gcKBo3T4K2iqyvKFtRw4l2Uga9mNQi3f/vFBSlWBmdacy2tUgj4bB/o0BEmmpELfhUFGEhUCbhlPDRzpjpFVkoi24PT93EKZtpY6GtoXIey3NIA6GzXuv30dTz5/Go9D5M7bVqPpp9jTo3D01BirFtfTurCDY5nZBWnA56S+IYQoTFDSbbz28/2M5kWMqhPR7sQpC2Dq2GRLjN4aNcpIeoUn7mxkfGiEnffexr6DZ3n9jMJtK32EGpo4uOcIC9tqqG1dgICAYZjTKgaWJGIOQ9dpXLiITCzGkkVePiIMs2LDOpITE4wkRnC21jMynsLwNtIsJViz7m5km42mZus7fuqH7zBUCrCqZw8fe/Q2XtwzhIKDrcu8NDXX0z+aAwEctQvITESJVpoIxH9hWsPvOnavJ+da9BPHrM6lJTtWS/4KrnJgLeJWCnk8weBleW1KxmzmxbeqVMinkgiCOCsXlwsF8skkdpcb0zSml84ufZ2GplPK5ai5BvMNTakQbmqZ1jWeD+HGJjITUcJNF4tdQ7e6ufnk/PrVM6Fr2rSbnWyzY3M4CDVYzZcr0TYevGsV68ZidCyyLkIWLbG69frrLyO5/OjFDJInOH28aeiThkYmcqBhuiAW7W6LKyzbEGU71eQokjeEnk9hr21Fz/9C7MTfU71wPXm3qJj86J0orSGJgqKz/5XD6LrJox+9hWz+BMnh2Z1hl55j2913EBsZwe/MUiPnWNQaZiReYjDr5MndaQRBJDCa4Ex/kmTVNa3QEJArbFoW4ND5LHndiYHI6GicTCpDuqDS0iExFKvS84NdjJVCs4bDqxd4qW9fyHisABh4xRJffHwlh04MsfdChbu3LaNYKPF/Xo9RLJY4+M4hOm9ZwytdJ2d1c502aGlpwGkbx0mF3Ydi2J2jlAXP9GEOu4RgGmAYdEUluqLKpMKFwerF9VSrKvVNDfzP7x2nOSDy5U/uoLf7PBPpCIGV7ZT1BE22Ggp9CeomlzSLxRxOpwdHyIuvvYm+Y0d59NZ6QlqQaCbM94/0gCjjdTo44w3izSX5I3cjLsnOo37rd7U3O8afOAV8pVFecSzn6WqOl/wBPlDJ4RecOOygmAb2UCMupcxxQSfv8lJQK+97MTwGzNSkaZ3820yMAgdN01SBAUEQLmAF++FLH8w0za8DXwfoWLvuPTktlAuWUUAln59VDPvCNaSjkauO2jS1ij9cO+eIba6O8pResbU5HZz1OI0diyik0/N2ka9VWkitKuRTSSSbjUqxeMUOxdTjzoRss00vwF1LIQyWxW24qQXTNChmM/hra7HZHbM6KdNb03V10xvVtfU1lzvQCaIl4j6PtanVpZg9QpK94enb9EIaW6AOo5xHkG0YlSK28HXLrt2w2J0Zt46mpe86biW9giiY1HrhSx+/lVfePMnus2UMQUCQnfTHCxzp2U9Oc7CpA8YSCtGy9XmXSmUO7jnKkQtJfucL93G+q5sV61aRTe9j9bIQrx6OEik50A0Ru3TxpYnVPBuWtdDaWodknmcsU2Uo6+Tnh8b5vc/eyrHjPfzo9V7+6Et3c/p0Pz89fJFgJgKy08WuV96hpFmLGVXNJJNMIxoq/Sk3//aD/STTRdY3ynz4Qw/x9A93MVhwgzAlPVRFNHRePq4QPD6GS7bzO5/ewYmufrwlhUeXNfOvL/QQ0UL8y7Pn6aix0eyxMV68mNCcdom2lhqOHT7NheESYOfccJ7G4Hk61y2jmMtRSKfm7LoFautJjY/iC4Yp5TJ0rFmHoes43W5++8sfZHhglJraEOORJC5BYdWylsuoUQ5ZRi9lcDmtBZW7NtZzoS+GqUu89HYPazs8bFvux+eR2NNTj1+d4JH77n634TEX3pfYfa85FyCXTBKoqyc9EZ2+WPaHa8jGY9ivsq9RLuRmyLDNLoYdLtes5TWAYjZLsP5yt7pKIU/DwkXER0eoa5lfr/1KMmozYZkqyaSi43PSE2ZClKTL4ixYV08xM3/+vxSVYgFvyIpHl8+PaRg43W6cM5aXpzrVNrtzWjHD4XSycPHl71cQBAylhGCbowgwjamDLr4HhxvRYT2XbpqIpolZLWMLNVCd6MPecN0LSe9bvfBu865p6LgMywr+cw8vpFpV+bfXIgy+Porp8GHqKqmn9xMpCLQHBXwukVNREUEQcThsHNp3lO7BAvduayfktRFubOLkyR422STGJnLsHxLQDLDbZETTwEQCrcLCJolbt6+inN+PLsLBAYmfnajwxK2N3Lqwhf/+9d08etdCVqzo4G++uYeydLGGsXmDXOg6w7GzUSQjgI5AJp1F0BREu5PvvHweQa3gU6v89qd2cvzYaf75hycpixebAGI1T1/Gx//6xlvodh+PbGtg8eJ1PPWjffzZZ7bw3Otn6UnbeWpvjhr7BGs7gpwcU6cpEHZBx+t20Ds6zoWRHKbsIlFSOXb4NIva67CVDOSRIo2eeux2Jy6X9dypbJxyjUhm9Cx1tjClvgiBmjpqFrShXYixqH0hy9tbKVcUamvC1OgncZkCi5yzz/N2QQKliFs3EASBR20+kvFxGkyB55QsB9Qqv28PkEkl6Le5OCfb+Y+FCrU11+emeC1V02FgqSAIC7GC+hPApZufzwKfBP5NEIRarDFI/3W9sivANE0SY6O4fbNHxja745qTUiY2QXhGl6RaKZNPpTBN87JRmicQIh2N4Lu0UDZNsvH4rMd5r8inkpdpdr5bvFszjmB94/T7mm/5cKpTPd7Tg9vvp6a5Zc5ujGhzIAbn5uFJnpDlpDRPd3xKKB7AqOSnReVvAG6K2BUNhUfWO/D63Lyw6wJnTvUSjRf48oeWEYulefZYGROBtnoPYiTNw/dtYfhCDxdGchwd1ti6bgFNLfW8cnwfL752gvFYnj3d+3CIOi1tTYRPjbBlZZharw+728M3XujjsZ0N+Fx+zvTGeedwP7/5aavgHTpSIKXY+fnrJxlJVCgKXl5+/STR9GyOWcF08S8vj/Hwxlq+8oEVfP3JN1nVUkPTglY2r1F4/liRklLlDz5/G8MXzpKORbGjoQkX4+hDt/hpa63jpTe6+Nwn7+P5lw5y8Ggvw9E8tT6ZfC6PAwWbYKCYAh9/dDv9fSN87x2LF61LTl45OMLOtQ3sPRcnpdjY0GKQLQk8sy+N1xYno09dlI2BWkHA5C9/ewdatUopn0VVVExM7G4Po+fPYp9RdB0+PYaqjfDRB9Zxy7IUe07HaWkaZdFi6/evqSr33bmaT9TXIkoSFy6McPL0KFEakOMRTH8ziWyCL3/+TsqlEr3jxwg3NeCag/70HnBTxO4UTNMkn0pgmsZleeZqRSRYNIIpW+aZSI6PIQhWjp2pZhOsbyAdjVzGvZ3ag/AEAtfNz84lE3iCwenc+14gzyMJNx88gSC5VBKH2zOvYtFUp3q89wJaVblsIjnr+QNz74sIooQ82a0T5hKVhekcq5eyGKU8krfmRnDeb4q4NU2TLc1ltt6ylOdfPc6FXhHNFLl1mYMdm9fy9R+fIGs68btMDEx2rq1j4eI2/C+9RX/Jz4J6H1t3djKQOMLeUzH8TpFoeoBKReOzj3RSKFa4Z4WAR4YNWzfwbz/YT0uNxMoFtSi6zje/9zZbO5tZsaKDk/37qWBj/6kYp3oSaI4gB88k6BvNUsI9q0X089NV2n1lvvT5+3n1rS4kU0MWTe64YwNHnjxEUvHwxK2NhPxOcokYYa+dgnnx+10WVvnYw9v43k8O8OFHNpNOZTl2PkEsXaIq2MmksmiaRp1dJWY42ba+lo0bljHyrXdI61YxvL9fozacYiQn0RWFZq9GW52L548XqD2X5U/u2YzTOWlzbRhkMwlC4XokUaSUzSI6bWRLWewuF1oyRyx7nqVNFp2pL5Jg38AEH1zVxh/bw/ypnuN/Z4f4g2DH9HtolB286VqCy+Yko5Z5Rs3RZZc56A6iVUsUlBKfCi1EFET+OTtM2tBZ7b1+JaqrFsOmaWqCIPwe8AoWv+dfTdM8IwjCfwaOmKb5s8nbPiAIQjegA39qmub7Nm8p5bI0LVpCdR5r46thrsRXKZVw+fwkxkYuu22uzgXMr+v7XmB3ukhFx6cd9X4RmKvTcSmcHi/lQgFfOITL56dSKr7rohu4Zu7vfMn9veBmid1NC510LFmAbLPx+ENOIqkKQzkbsViadNYyirmlTeeWzgb2VIr8/OV9rF1aw333bqLyynGe2zfOgsAId68Pc3Y4R0TxYzMquM0i//D1l2hobWb9+mW8+eo+xnIiNkmgpa2R+NgouarEqFrDN35wgJwisqnFRlOdn7eOT3D7hibMC2mOjMClahMOFNYtcXNhIEk+e5SVHSFqwn66T3Zzut/q0JY0gZ7eUZITBXTs9GVsLG1QmcgZ5DQHmWwJpxwnlTc4dqiLhc0BdndnSFSc9E6U2dsb5XN3d1BTF+KHLxzluz85SFGdTfMYLrgZ3p8HnNiUBDvWLCOdzjJwRCdd1VhapzKWqHDvhhpqfB4klxelbLmiSbKMaegE6xuJDQ/SvHzlNIXKMAz6RjKU8ln+ZkJlcVhHNWV0w5h+7hdfP8nJEYPHbyuxYuVCus6NM5IxaA9F2HLHYhLxDDt27ADA5XbzxSduvWExc7PE7hRSkXEWrFpLKjJ+Tao5l2L+/QUQRJFSPneZtONcuem9SqzNBbc/MM13/kXiavss/po661zgdBJqbLpsInmtmK8IvhQ30vjoZonbgFjggQd2Mt7fzyd+405yqRRPvjrE4gYn4+MxVF3AW4lwz5YNxGIpXts/xAcqWe750L10XBjkmT0xMj98hwUtAeKJPKciErrpIChU+f4P3yKp+/jjz+9gdHCU5189zmhOYO1iN4HaGs52DzBScJI5mmBvVxy/x84jG/3sOjZBQ8jOLW06x8bsDOeZphpan53BqnoDpQK7956mWsrT3uBGVzXe3nuaqmDt6oyMZ8gkIeh3cnq4RJ1DxmmDkYKTigZjI+Oousnxrn7qAjYkUWB3j45puPnGi31sXhbgs/dt4Pmf7eHI6SIXhjKk1Is0D1V08ZNjFabKw61LnLQ019I3fJ6kGqagFMiWM6imRkbL0rhoMRPD49QFG5nIJpElGSlow1UTwvDaEAxzWtGlL55iKBbnH3NV7i3mUXx+KjO0uA8W4vypU+D+4gT/IdDOmUqWlwSd+lyKz+HApmostQcQJ1/sbwcW8Ns3KGauaZ5umuZLwEuX/O0vZ/zbBP5o8n/vOwxdIx0dn9wovjHJ0R+uYbzXcpTLJuLvya3uemBROy7SO9ITUWSbfc73l43H0DV13o6uYRikIuOIknhdOqBwUYd4SnbtavSNmw03Q+z2T5RxnxrE57bjEFScksiiWoFnj5UBgU1tBss7aqxOfb6blGJnIDpOS2+Bs+MaCk5ub/ewbu1ili8c559/1sdHb2+lvX0N5XyOr/+4i9NHjtHUVMPu4QKC4OBvnzqBLjpAsoFRZWmrj0RGobHWw+JFzXR1j7Jp4zIS6ZNEhy6fPi5psPHgvet48bUTjGQqfP5jm9n19nH2ny+wdXmQSiFGtOLk+f0RFNEDwwq1HjtPfNRyqHvucJ6huM5dd26gL1KmJ6Lw8Uc6yWQOMRAvcM/2paRSWU71JliQyfKbT9zJU88dJZPT2bnYxumhPFltdmyLdifemlqUqsqK2hTpgsqnPrqTPbuPU1MTQMklyeVUvvHzUYIOjc/dv5BAXT3Z2AROt2e6M6lVqyTGRvncw8vQDIFvv9TLzm2r+EhNYBZFKOh14pNTuN0OvvX0buKxNLbgAhqaDNatXz7rtXV3D6DrOmvX3jjdy5shdqdgczhIjo1QKZcmtceDN+RxNU0nWBcml7g2zu2NhGyzzZoClnJZKqUioYamywrkcqFAuZCbRV24FNl4DF3X8AZDV9z3uOrrslv6zUq5TDoaIVB7w5XH3lfcDHGb1+3s3teNWS1RKKuIhsr6Vok9wyJd0QxhG3zktmUE6uq50BcB2cZPDmVo79tHRpHRBAfIEjt3dJKKjlM9PI5NEvnIg3eTHB/j+OkRdu0+wc4ty3njZB+G6OTFoxlePprCkN0Isp2mQJW2eg+j0SzLVyzi2KkxblnTSj5X4Oho+rIYs1XzPPbwrQz0jfDdt+P83oeXoOs6//RsD53tLlbXqpyNaxzrq1LEiyAqgJfP3B6irb2Zf/jXNxlO+nB7PNy+sZUf7o7wh59ahSj24nKYYGjcvmMzP3rxMMeOnOGu21dzrj/GC8eKrGnUUdQqvenL6TaGaMn+bWwf5tU+jYKziiccotI3gt3jJhuLE5LclveAYSJgEjJcGJEyDsPEJsrggNHUMGtXerj3ofv51tO7aVW8PC+FcAUu5vmgZKOhlKFRkPh+boynKymkYAO6z+DTgdnUp2Elxx4lzyPuWjzylW3PrwW/Mg50MxGoradaqVCtlC+TM6pWyhQyaZxuz1U7GJmYxUebkiazu9wUs5k5+W+aqpJLxnG43DfsRDAfcskEvlCYXGruE4Sua4Qa51e8yKeSBOvq573/XEhPRNE1jXBTM4nRYQDq2tqnP9sb2ZGZCdM00fNxEKRZ9qK/TkhUnOw6W0GgQoMPvvyJrQwkuiy3I0DTTDRknvzuz9m5aQlti9r42yePEB+X/v/s/XeUJOd55on+IiIjva+sqixv2nuPdmgADYAgQAAkYSga0YkcmdFIo517d2Zn77m7s5p7zt3R3NUsRzMjiRK9KDqQAAhDmAYaaLT3vru6vE3vfUaGuX9kVXVXV7WDEQHMPOfg4HRmZGRk1Bfv937v97zPQ724AntOJRgeDqGb7KiSlUQihUkrYogSmslBsSZRLWRZ1SwykayQnxZ1F7UKn1iq09vtIZQo8sKJLMHLET6zeyUvvnSQM2EZppsOzEYFh6yTVu30hVV+8cIJhmIqiiHyym8O4ffa6WkQuf/eNaxbOkUsnqWju5P/+vMzVEUH8bLMgX0nWbu6i41xhYFQmcuXRigXCyCa+S9/9wp/8JX76AzHiMbS5AsVzoRNjCXKZKuXmUzrdPklHrxvNfpb5zg8PJd/rkhO/vHZIzz18Fp8zgJXogYvvHICWajxm/3DCLrCwzt6WBnIcDltx9scXLDqVy2Xsbnd5GIxzHYb/+YP78O0AM/+3l2ruXdXvTk1WRxAlcwsD6isWVZfYBZyBQ6fGmbVkiDPvT2CKphZ3BO8Y/vhjwLcDQESlQotPYvJp5I4rgut6UgYQRRvqs0LVxNOl78B2WzB5nDWHTRvYN6TTcTRNe229ITfK2YS4YXi6rWc5xuhfp115aDredELYeZe2JwuKoVCnc5jtc32vNxoR/L9QF3WUkGyez+Wzp+GaOHtKwqiUkEfEvjmQ60sdvs4MBYDQUI3QJBt/Pr5t2nwOfnjr9zNr146wYXo1R3M/oTBj3/+DgGfneGYSrenxtClPkR0otkassVKKlPEZ6lhN8N4wcrMvtL6oMKqdguB1iaOXk7xH/76DT69q5PR4Un2XiojTJtdGLpGs61KrGRCtXj40bPHKCkCgmTl129eYW2vk3a3xifvWU45n2d5KMaqzdt55sXjXI7Xr/WdY6M8LOt8+v5l/MPbCfqHI1TKVVZ22Pn+L49x18omHvnEKn7z8n7CoRixkpmXThXYlhtjIl4FReHR3RuJxxIMvjW/EfY3JzOI6kW6l/bAwCiWkkAyNozd5sJWkokZKWJiCY/uZ7F/KcCCcVcXDMw2G7lojG/cs4mH30rPO2aZzcsz01Jpf5kdI+kPsi0dZ901jnO/yk1hFQROGRqvuT2Y80medr23oh98RJNhi92OWlOwuebbVRYzmdmgdbNkWK3VZgOwWqvNqxJcj3QkRGNH17vesqqWyxTSKURRvCU1weHxko6EEaWFJwiz1UY6Gr6htbIn0Eg6Esa0UFPFAigX8vVEOFgP5DPVZk1Vb0tr+b1AL+eQ7D60Ul3D1DAMtEKybt18hwYeH1YYhsHv7GzA5bLznVcn+b++d4AyNhDr9/ZsxMSZcI6H1/Tg9zo4c/Iym3qsZCsqF2P1R7Rs2LiQrgfQdneZ7Ts2cuTkIG9eqoLZxZH+Ep9YY+ee+9Zx4PCl+uuAhE5zkwdvUxN7jp1EF224LBVks0xZk5FEg7Ud0B+qcN8aH+vWLuKv/uEoVcPgUsSMIFnwmSv0dvhobWvi2JVzPPPcAZZ0+kikCpRqk9SMelAWJDMnh3M4HREGp3JkNBevn4jypd2dmC0W3jpc5Ue/PktNqztEWajywEo3mWSJYIMNScgxEBf48bPHGE9ps414i30qi9td7D0dY9nyZt7Yf4WLCQuCZKaUjvD5Lz7M+bODRKNxOnq7iCfyXE4b/PvvncHQNda1wn2b2mafu2qpSDGbxuJ00tRx4yasGYiSxKpOO6MRgU/uWoLDaeft/RfIZ7KcitnJlya4b0OQQi7P2ESMZcsd/+Rb7/8U8DQ21pvFrktMK8UiZpsNpTy/OHE9KqXinN6IW+3sqTUFu8tDKZd9V/SMVHgKXTfwNjZhMt88HgqCSDoSwuGdf00zzdnXc56vhWy1ko6E8DbdOnHXdZ10NErbkqWkIiEM3cDXHCQb/0Akd+fB0GqY3I2zzp9aOQ8Y76fe8G8da4Majz24jR88d4p/2DOOAQhiPYZmVBvfeTNOl8fFQxuXMtjXj6GUuX+Fn30XC2iiGUSZoYLMUAEMQ2T7uiZ8AR9/+dNLiBYXRkalI5DlwR29WO12/vLnVxCnaY4ec5Vg11KGBicpCi4cZh2LLFExmSjqFpb6q9R0kCWB331yJy+9fprToxVCGQNVsoGmsKLTSU9XM9mKxA+fO8P6HhvlSg3p8jCZ4lU610jBxsBIglRBQ5CsvHFZ5bOrRbZvWURf3yj7Lya5MnWUoaSNY+E0G9tkTIZKV4uLZFZBsDj54QtnUTWA+v1xiBXuW+vnzEAGt81EVhF58aV+BLMbSRcQvTacnW0kTl7G0upBNpupKRWs1vrOWjwTRREUGm2NmM1WKpUSNUGlliiwtHvd9JXPT4avxX2SjROFLA9Y/XzKFeTtQowJpcC37TbsSoX/ILmRsxlcmkFSKdFgnq/tfSd4b166v0U4PN4Fuat2t4dUJHTL7maTLKMqCqqi3FbCVy2XiY2NUs7nb3nsQihlM/iCLRjcuiFWMpkItHfckJPs9PrwB1sRRJH4xDiJyfk8Z1+wZQ6lwTAMUuEpCgtIIJULeWSLhcmBK/iDrVhsNkRRpJTLomsa8Ylx4hPjd/Brbx+S3YNWSs92PGv5JJLTj15+d/f5wwhBEEimiyTiaXr9KiXjaiJ87THH+1IcPTPOG2fS7Nq5ijWLF04U/HaBXDrN8Hjdgls2KnS6FTp7uzi8/yQnBnIYmsr2HoEVQQHZ4mDo/AXW9nhpk7N84XP3cvbSFJcTMt0NEo8/tIGNnTJ6TeHAwXNI1PhXX97EJ5aKPLi4xo6lFpatWcGb+y9jttgw2+w8f7LIwXEzr5zKsrxFRjbqhi0bF3lYv3k1Hf7pBFmAmqJSrVR5/FPbyGdzs4nwfUvrXdddrR78bjM9XpVev04yr1G7phGvq9FEb5sTn6nI1k1LWNobQJBMSLU899+zmmRoiqPnxjk2IfLML9/kzOUpBKWAVcvx4GKNzzy8Yc5zV6tWaelZPMeZ7FaI51SiFSujI1MMDEywr79GNA87FpnYvr6THdtWcLY/yc8OZjhzqu+2z/tRgmy2LNgsZnXU9XwNbm06IpvrjXR2160T21QkhKZqhIcHFnTYvC0IAt7GJkr53C0P9TUH8be0LViNnWnOtrvcZGJRUpEQ5cLcGOX0+vC3zG0wLqRTC1aTs/EY3uZmJgf6sLs8uAN1dSNBFFFrNdLRyILf8X6h7vwZR7J5MAwdo1aty3LWqh/I9/02UKzqTE6E8FtUZElAFef+XQVBYDID+48N8vLhCJ0djezcuhynSZl3LpdUwe6wcf7cAILZhqFrtDvKtAWcJGIJnnuzngh3eRQeWGFBrUE+nUIvZeh2V/nc/T00NHp54VgGoVbmiU+s4t61DbT6ZI4fOslYrMJntzXwjYc72dle5KFlBlu3ryUSy3OiP0tPh5fDwyoHJmz84nAOWTJotNZjbqOlwq7dd7Gs+yrNsqYLRCcm2LR1Peu6LAynzSCIrGssc/emLjas7iDgtbO4WSZgymE1CSSqV2Ouz2bQ0+qkq8FgebebrVuWYzbVx3VSS2N1uZg4fZbF3asxYkUyAxOkUnGKxTxjqREyQh57TwuZXJ0KXlUqOJobcQRu3y1xUq8x7gnwTiUDwLf0In/r9fHVTJo/E6xsdDRAucC/97r53wo3l0W8HXwkK8M3g8Vun9eIcSPciebmjPOQpl11/Kl3rOdui0frbQ6Sjoax2t+XTnOgbvhhczqpVavoun7TyT0Ti+JtbiEbi857z+Z0UynkaWzvRBAE7G4PialJPIEA8akJXD4/leuC8ozm8J9/d74/+e2g7oSUBwRM7qsTrGi2ouVTcJvNHx8V7B2A+5aLfO137uZ7Pz/MRGH+Aqw9YOHhhzcS/eURvv2LM1R1mFmpXwvdgJqqkVPq59ixzMV9u1YzdPYMR/tz2KwW8kqRnVu2EZqKYqCzZP16hs+fQ69V2H/oIkNjCe5f1sRwqMgvXz5JwCGxZdtafvTLo5QNK4ODU7Q0e/H6HJTLCn//j+8QKlr5zF0+1q1bzMgP9pPVZZa3mPj0gys5c+oyB/orxFIqqUhotnknq9r4+zcT3LMI1skmPB4XhRIE7Dqbt21i/94jvHWpxDcec/HIg+sBg8HhGK+eTNBgN5gsWkgXdBrb2mkNTpBLJlDK9UlAFW1c6pvCwGBK8SIaNbpafGy7ZwvD589h9fjx+twc3PMW42kYLEX5d9/cgC84Y4LjJBWemnWpU2s19uy7QIPXzl2br3KCS8UiSqmIEkuy72yQ1R1WavEQ5jY7n7hvJ4Zh8MqeUxTyOQRVoKlx7fs9fD70uN1Yeic9HtVSCbPNhmyxzEmyc8kEdrfntooYM6Yet6Jv3An0aZra9UZKC6FWreJtbCYbj81ZSHibmkmFQ7h8DbM8dV3X8DY2k45GEARm4/WtvuNOoObqlWfJ7kO4pnHO0FUMRcVke/++67eN4YyF4rEQf/S7uzh8rI/Xz89vuLeJKvfu3ID34hhvnE1z7NJhMppjnjGsYRgoNZV0SUAQBJqsVb75pV2ER4cZ6C+QKYrYhTLLOrxs3bKcI28fpKVnEdViAUc0wYkLk5hlE2tbDVxuFz99+RxWQeFLn7+PEyevkKiKhGN5UMpsXNuDL9jKM796m9Gche6gnUfuX4u49xxHRjSkaoavfm0Xgxcucbi/xGRcJTI2ija9kBEEgZcvagTECL/j8SDMUMAMna0busmn0/xqX4h1i108cP9mnPZzLFu7mr/42700NziI5AUSWQVfU5DWljKVYoFcMjFbULAZNkrxFG2uNgRBQNNrdGxdz0TfZQyPi2KsSiGVphhPsryjHgs9bj9GLIHb5GM8NYohCvQP/QdMosBl3UfYHGBn9QqW6d3wbQ89wshIBfN4jXd8XfzU/DaJog1zMcIn7rYhinF+Hp3gQFJHzUm4HAnGlrw7QYUZfOyS4Q8KvuYgSrWC03uV15qJx/A0NtYTzVsEW2F6wn0/IUoi2XgMV0PjLatcTl9dHm6h42a0kHPJBLLZPLudmE8lcXl9qLUa5gXsRW8GvVpEr5aRXP4Fu5r1agnJ6UcrzK1Ui1bngm5KHwecH8lTVc4RzgsLunamixpX+kbIVwSqGiwKmrkUqqKLV5sDrEaZu9a0cfrCFEmlnihfGs8TOHUW2dDpajTzxKd38MIrJ/j+L4+xdpGLSr6A3WZFF838wTcf4Ue/OMjda5tYum4N5uN9vHahimxUGE8cYSQtgmjlV8cLNForBKwhxjMSRVwgwdtnE5wfTM5OGANRhcOHznPv/XdRNi7y1sUS0T3DxMvmGbozomzhwGiNM2PD5HEiCBDLa/zw5wdwmg3++KmV7DvST0GZJOASsVhM3Lvazda7VvLX/3CQ/qjEW+9coD+s4vOkmYqVMGoCgmxl31hdMcKs5XlgYxNrVnZx+dhRbDYbxUKZl/ec4alHN7LZ5eEvflRfuIlivbE0HY3gaWye7R2IRWIcHdGwVwdpbHDS01NP8BKxDJNVDw6PypJ2J6FEBskbpKrVF4jlfIHjw2Vsvkb+6HMb8AU+GH79f29obO8km4jjuIYekYlFcXp9ZGLRm9LaZnC79s53gppSIzY+RuNtUGwAUpEw3usq6jOOfZVikVI+h93lRjZbycSjiKKIzeUmG4vekW30jF77tVrC8yEg2b3o1SKSyTv76vVGSR8XxEsSr755hpFomWtVamZQ1SUGhyaJJksohkzAI6LnqqRrc4/d3GunXFE4PV4Dk4lk2cThg6dodpnQSgV+/3O7mBqP8MzBGOn4AQRRYnxgEF+wlbtdHsaiJVLZKtvXt+P0+vi/fnQC1eTm+784QnLa5v7wmIg8WmZ5eJx4so+w6kUQRPpjCj9/4QTD8RpgRTV7eObXR/nEjkU83iLyX349yk/3TqHoAjPFE0GUSBLgB6+NUTFkEC0I6Ly49xKKovK5T6xmaCTCc6+cIhnPkMqeZFGzmd95ajt7913gnSsSr7xxlkS+hlUWKCppKhUF7NDd3AtAOhNnPDZC88ZVDJ85DQJUCkVsVRFcXlqXLWXy3ACL25YD4PXUi4YaaWx+L3kETMA510rC7kVI41l2CVFEsT45Hi86qTU30V0YRDQ0VEcjglZBEOoFyYMZG5mGLj6vn+SpZe+93+h/JMPUXZQqxQKSZLqhZuRCDWSCIJBPJu44UZyBrmkLavbeLnKJBC2Ll85a0t4MpVwOyWS6YdKejcewu91k4jECbe23NdHA1Qrx9fjxs8cYTNnR8klM7sD8SrKuosRGEG0e1FyceoX4o6VUcadIVi1EkmW6/QKDC9ClJvJmJg7nACvbe008tHsNyvPH6U/C3T06TQEXrxxKY7NZaPSYME9UaXQJLO/yIErQs3wFB869QSI0hduiIZvN7Nq1iX0HzvPakUl0tYoiDpEuCyQKBvG9hzkwIoBooyZYGckyhzgVr1iJV+ZOClnVSiZj1AX9BVCwsm9QIZV9B5dVZ3mjhY5GF7JQw+V1sedkvD6xiDIF5Nk1wGfv8uH3OqkU84iSQKoiEypZ6e2wsGvHSp57fj973zlPsiTQ0yRycjhPUXCy90qNJzb62LHRxfdenUCQrWxsF3jkgR28ueco2bgVSTYTK5vYcy6JZjQxNBSmXJsEs/3q+NMU/uSxdiLDQ7MmNa0dbTy8KsFrZ9z87LV+/u0f1hev4+EMm4NlAoEgq1Yt5pW3LrBGzLBkWS8/+MURPrGjhy/u7sBkkv5HInybMAxjlt4VaO9YkF5hMpvnVZxNskwulZidMO8UuqYhiOK75nRnYlEaWtvIxmO3LEDMUBw8gcAN+cr1Zm/7tHzl3LFjvQ296mvj74mTV3j5jMTKZp3PPbZh3q6dVsrWnUK1GoIooWajdW1h6eObBuiihcuTFZa02EiOVeoKO9dAFa08f7IESPjlAl/47C5OnxnghZMF2p1V7t8U5PVjYUwmO06bhYCtSloRuGeNh0o+z6K7N3FqrEJ4ZBSzSUJRNFav7MLtcfHjF8/jdYRZ2tXAWKSApkEkkuLwm/1osheBuhzatagJFs7HAKyz1WlDNNMXnw65Yj3vuJKxU9p7hWaHwv0rWpiK59i4vIliPs9oXOV8dLrXRHDOFl7WtxrsXL+C0MgINquIagicCwm02CzsvHcLB/ef5u39F7g8kSdgNwilNULF+v0ShTL/yze386NfnwUglYmjttpQJtIkJyawe9yYMOEsyzS3dNI/eZHowBCN9rmL0UQ6ilrIU1JVtjz973BbHTQmEvz9xWHOLnmSnS0iO3u6Odf3CotFhQ16mAdXeTgYc7FBH+ETQYH/2Bdglb3C77YJbMpeZlfL+7Pg/fg+BQtA13Uy0TBmm31OxaBSLMx2Ad8J7tTadKZRwuX3k43HkGQzSqVMsLv3js4zA1GSyMQit5TxMQwDTa1hc7ooF/LYnK66y1G1gquh7jonyfK0/en70/izerGfK2+OIFpvFNBFZH8baj6Jydcyr0L8cYRh6HxiazsOu5W/fKZ/tkHQQpVdq9xcHMkRLtWDz7nRAtXXzjCc0EAw4bRJeGwiiiFy6NQYD9+/mlDsJG6fj51bV/Djn+1j/4UMWcNLOFEinBMIl6387Y8PkaqIqKIVMDN0PA/YebPfAOwE7WVKtQo5zUqDpcInNzez/1ycifzVydvQauxYbCZTULgcl3lwiUZnq589R0aZKLtAq3HfPatRy0WmojkaGrwYapXWrg6OXIiRrs2/F5VqjWB3N5dOn2HfWwOESvVxcuxKlmjqJBfjFkhqNDnhK09u5ejxPl49V98GUyslstEyK4MiA5EcmZzEyPAkfQkTDKYxgKNjVQSxfn9fuQIgzdn63LHYiq85SLw6hmy9OkFu3b6WZOE0pUKB0ZEpLCaBNy5VIF+EqJNE8gwX43Z6fT4mYkVGc2bGp5Js37ryfRolHz/MOKpduzOmqSpm65036t6pqk0xm0Epl5HMZkwmE8V8nkohT8eyFXd0nhmYbTZyidi8bfSFUC7k5zQLVkslirm6WtHM79BqCqW8hi/43iuzPV1NLJ8cYtWihYsKhlrDHOis2zFjINpc6ErpY9U0txDW9Ti5/57VpH51dFbBxzAMNrbVXVFPTdUXRynFyq9eOkk0WwMsWEzgtIh4zAqHLpa5a8syti+LcuxKlp1bt7H/wHl+9MujjKbA56his5rAZOGZfVOIgkFOc5PMwdD5KlAf3/0pFYdopdVeZqpoBb3GYxvdZHMlDozMXVz1eBW6mh28c6lAm1vj8Xu6OXikn/60lTJWFnX62bF1GZl4jJpSoqe3g2Q4TEUvcj46n/eczRbxt7RSyBc5dynE/mERUYRwQeYXLxxnKq2RUwGsfO1eHy3tQf7iu0cxrG5EvUYyGsMnV0lkYiilAkqijFWwYlHNVEwmfIYL17S4wNL2VfO+P5YKI3X70UbSNHR3kD0xjBsHiwMBnugu804kTb4kUVNr/DLuZFBup5aLMzleZLBqIevsZYd2jnNiO7VSiMe6dILv4ybyf1fJcDYWneV6XavpW+dphXG4vR/4NXibmsmnklRKRbyNLoqZm3dUXg9VUcgl45ht9tuWGxIEAQyDYjY7m8CrShV/SxvpSBhfsKW+OLjFlmJsfBRRMuHwePiPPx+c9/61VYr1axezfu18zdWZYwYHJvjhb/qR/W1ohRSi5f3jUn9YIQgiLx6YQBSMq0oZapVPb3XidZqoVp2EB+uZY1G3cmrSAKGeqCXyGlu3L2bZlQyXozXazw/w2OO7+OHP93Ppx4eIVl2zdJRnjxcAuU5HUOyz1d4Zq05jWqbGoub4xue2MzQ4wc8P53BQZtGSLk5fDtPh1AnlRDTRjKxXuGf7GsZGQ1yO5wh4rDicNr742S08u6ePwYSFc5cmUCsVToxr1LQchqYhi+NUJPds4mATKnQ1yPRFNV45b3Bx8hjDSQOkaStRTWV1t5VssYbbrLOsTeDMkMZv9pxmNFYBrBjVIstXrSMamuR3tm6k//xlXH4/f/fiIKvaZJKZCgMZyxypLkmr8PTORiajWQ5OTzihVIVz54c5eGaKrz+xHl3T6pQjfwMP37+W//Pb+7gwfIrfe2o9LfoU41UNtyXBpk0baAql6GhrwOOy0dMaYcWK7g9u0HwMoCkK3mk6yszOlEmWEaZ3xT5IxZpquTSbkCqVMrLJRBVuqXpxPbLxWF06bbqJ7nYw0yxoc9aPL+Yy8+TZmm9RCMnEoui6hoBwSxWihoCPz39m8w3fFy121HwCye5BV6sYSuX9cvr8UOPEYJ5E5jjDCQNhOuNZ31xh8/JmajWdUxNpkGQEycSFKEA95kZSFRra2lm1VKHvWJaXXjrMZz6zi5LRXy8yVKW6HrEEB0cBNATJREGfm1YJSgFdtMxK2D2woYF1axfzn39wgFxZoatjEdFoioapBKouzOqrr+jysGnDEk4PHKLJKWCxWNm1fSnt4QIvny4xmShz8eIwh89OEVXcHB08iiAIKJhn5TINTWVZo0E4qzFc8vK9nx8hWxEo6FZmQmSX3yDod9AfSrOhx8xkoso7Z6LYLsXQLS4EIBj04XDYeOrJewhd6aN56SLE8TQmSaZMBadiw+XzzvndY6kRdKtEwPDgcniwmW2kwzHsmhltKEG7o4F4MYNZMrGtq4OTqQI/jFSpan0s0mJcSlaRTDKrbGUeaqiQVzNsCwbwRK/Q4jDN/p3eL/x3lQw7/X7SkRCSSUbXNDLxKO6GxrpVMMIcq9YPAla7g1wygbshQKVYJBmepKHl9ugIM8ilEvhb2upVZsNLJhbF7nLPNg3mUknMFuu8LbbrlSlks5VUeAp3QyM1pUo+mUAyyTe1FhUEEavDga5pNzzmdrF4SQcmZ10H+eOqL7wQ8lWDp3e1cqovxrmICYuWo6t3Rb1pRq2wqknnYuxqcmBoKogSfSEF89vnGY6qaBpkk2muXLhCrqRTNaT5vOxaGUMQEExXt+FWBGo8+ant/Pi5k4wXrJhlidPHL9AfKtNiF/nCp7fyzDN70SxuvvH5rfzmjTMcHzNQZRd/98xpqipYEBkNVxgei+FqbCaUqcv5vN2vM+tiNy2PXGUuNXrLUhe7717Nj351lJGkQKZQxRDrdqSNljIPb2nGYZXIlXX8kSIP3reGVO4Yx8dhhu8nWBz8/JULoCn0TSo4KSCIBnIty6d230Mxm6FrNMUbl1XkWpaa7EEQDPx+N6lsiQZTlg3LGjh0qcKvTxYADw6Pl2RoCn9LK+lICH9LG15ZIWFu4cfPnkZ3NrF+mcqWDYsItjTy1qF+jpyP8HtPbGTV6kXv+xj5OCIVCeMPtpBLJZHNZmxOF7qqvq/NYQvB3VCXmXR6fZRyOZLhKdwNgTtKhA3DQNNUbE43pVxdAlJTtVlaQ6VYRKlW5jnLXU97cHp9pCKhWYvpdCSMpmn4W1pvSLnQdQ2H20sxe2dFk4VwLZdY+hhqC98IZcNKe4PA8g4nzx7LIZjMrOr24G9u4fUX9/DQ2iW8eS6HLtWTK8PQwTAoGHZe3nOGWEYBZIqlCsN9A4xOJKhpAjWsc+KboWuItRKG5eqYthgl/vDza7jUN8UblxUMTSEZr/LO/jNkK/DNx5czNjzOKydT/M+/t51wKM4/vFP/W79xJs2xy4dJqzaKisKhQ2dxev0MRurXM5iSGUyVAT+CBDXmP0vNNoUvPrGTY8f7eOVcmUJZo6LL9cCsVfnsJjeiZrBq8wqGR9/k05+8mxOnrvDy6RIwK/LE0b4sk9ECIiPsbHcSHxvFUpUwux24utoIDwwg5SREQUCWzVitDgxBwOJ0UAhnSNUyWJDp9HbAdGqSHRoivCKAEk+yuQLNoopotvJ6OE7WvZFNzous8dV4qNPGvlCFn8R96EaGHS0fTOHsI9Wyn0sm3pPcjGy24G9pw9PYRDoawR9sJRuPERoaxOJwkF5AAicxOUEyNEWlWLzheZOhKRJTk9SUm8vS2N2eupZkIkawpxd3Q+COHfQcnnpANZktZKIRPIHG2UCZSyWx2uvGIbeCy+/H39KGyWwmn0riC7aiaepNP+MLtiCZ5BvqLP/5d0/fkbrEv/vmhhtyjj9uWOpXWNeiIhoaHq8Li1x/9ComD6OXLmHoGisW+VnedbU67xTL/NGn2tjcrlPQrGRyZR7e7OfBFWZ23b8NvVrk8bs7+P3ProTq1fGp16p8/aF2vnl/gI1tV/+mpVKFwUtXqEy/tKHXQW93E7s3t2LSK8QiCRTZxVTaYP/BiwyGrnbnpms2SoaNtd02Nq/tYNGidt65lKds3L4W9NmhPC/vOcN4Cu7qsfAnX72bbnd9O29xALoXd9M/MMnzhyKcHCrWm0ZiCmZ97rM3XrAyXnZzbExHstpYsmoli7qa+MfnTxKLJqlUayzxKfyvf3gvS/w1VNHGXz8/wKmBLE/uamXntpUEPVensT//7ml+/MYEZ84MIk1rc2/e0EODXGFJl4fVbRJPfXoH3d31bf5SRaekyqjqzZ+XjwOq5TKp8NRsk+G7gS/YQqCtnVIui8Vqo5zPERoaxNB1CgvsjOWSCdKR8E2/M59KkY6EyaduTq8yyTK+YAtmqw1D1+lZs/629ddnMJM4F7OZuiV9sYBsscxeezGbwWq3k0vd3FHYbLXhD7bOiZ++5iC5RPyGn/EHW6lN7+L9D9wZvHKVe5bJWIUqNqsZt8cJ07YY0ViO0MAVVq9ezNplrdilq1yuh1ea+N1dPtA1hiJVtq1qZHOwxJe//DBer5MOv8yffu1uejxz+V9bugT+569u4tGVOrI+rXhjCIz09ZPJ1ZPLZkuZbZuXsrKngdWtIslUnnJNQLN4eXN/HycuXdWZVgQrCcWBRyzyyL3LWLO6hyuhCmO521/IxMomXnjtFMf703iEAv/iy1t5YM3VncHFi9vweJ387T8eYqTk5R+fPco751JY1RyGfrXoldes9CVkLiUsWEUzLUuWIrqteHAwefYCsmymWMpR8AtEavUiV4erHXsKYmoKV3cLVdPceGmz2NHHo9hy9bxpe1c7HUKVZS4ba7RxPt8t8WhXfX7J1yBv9pFfgHL3fuEjlQyrNQV/sPV90V6UrdbZxLp96XJyN2iEE0QRp9dHrXrjRFcQ6k0S5UJhgWuukY6EqZavJhbuhkZS4ak7DspQdyXyB1tx+xuwOp315rnpYG2x2sinUlSKBVLhKWrV+gNZLtT/nY4szIn2NgWZ7L9MMZtFu8kEb5LlBd21DF3DLRTqVcz/gQWxfW2Qh+5dRa5s8K1fXObYtGyzIJk5NlSmqbObqXiJF49d4xqoqZhEaHTUJW2CDXaWLe0gnChw+fwAVosZp01moH8U7Rr5akGUqBVziOh0NV1dRa/q9dHW3UWmqLLIW2V5t498KoG/qYmibuEHb6cYzlgoGRb29ikUFAiYi9TdU+u4MFYiGs/RtagDq1gPlg6xQpOlhF6tj//FvioPLlJYEagnukv9NR5abaGgCJwYN7DJOpVcgnMnzpDI18/Rn4Djh06SLEGjW6KChb64xMOrrfyzh7u4qynFisa5kdAwDFobHUwN9OM3ldEkC8+c0jg4IlJQYKh/lGJ1+tolMyhFDANef+kthpL1LXpJr+KgyPZekWavhKrUr3nbluX86dd38fmn7+PJx+6a0+j6lae38M1HF3H4zBiDA/M1vj9OqOujt6Lr7303yGK317VXNR2zxYLd41lQ/7dWreJtDqLWbjzz1ZQKvmALterCckq5ZGKeprogiqQj4Xcls+YPthJoa69LSakahXRq1oDDMAwysRjFbGbOdyYmJ0hMTtzwd9RqNUKD/ciWm2/33kgRI59KfWA6xB8HLGuzsfvu1XT4JH59ssD3X5+a3Sk7OAqqyU5zZxff/9VxClyd1+yygcMiYjIquCywYkU3stnC+bP9DF7qZ+WKTsYHh0lkqnNio4UqxUyS7s5mzFI96e7y6qzbuol8WcOsl3jsnl6GL13C3RDAbZf59ekKewfqMfvklMilmEjQWkLUruYbOd3B4WOXaenqoskznTPoNTrdVYRqXVPeY6qwu7fG7qUisl7BKVV4bIODFpfB6UmBZEnAb6tx/uQ5xientX9NHk6dHuDc5TDtjQ4kdAbTZvzmKt98bBGfXKJwzxIZSZ/LPzZ5naQjIeKhSTKVDCtaVrPI2YPP00glnUWo1X+7ZDKhqgom2czQqZP4qCfhuq4TS4a4lJ+i6DFTnH6G27w+/uPd6/ifdmzm3y7X6fFeLbQ82mnhW60DSCI8P1KZc9/fL3ykaBI2p5t0JIzb/95VB2a2tOwuD9l4FLPVumDQcfr8KOXyTSu4VoeTUj6PJ9A4771cMl7niYWnsNjqq3uTLL/nlb6mqpRyOURJmuUOz2gszzRszPCBK8UC3qbgDVUnRFHE6fHhaarrYc6cr6ZUKaRSOH0+ZIv1hlXfJQ0aX3ribp59+SQXolcVI/7dNzeQmJoE6lzpG3EDr60Ov1vd4g8zDE1l//ER8tURsHjmqapNFB38+BeHCFVsGIaAQZkdi61oqhnJbMHp8wF5Crk8fWcvcTFuZjSb5/P3tpDKlYmnS/yr31nBj35zhYxqQ5BMnB0r0+Iu8/alEpIk8+gqE929rUwMDvDkZjtXxnOIJpmDF9NM7D+EYqk/U3ajSNUwoYkWdq/xsHXLcn72k1dZubKXY1cymCSB45cSvHw8RVmsJ9oPb2li+bJOEpOT7DkZZctSD20dLXSmslx6M0lvm4uN6xcxPHqAlcv8uK1uOnraiI+Ps2uFwKsXqiSrNl45X+TffHkdqVSG77wRx6RXEQQzgfZ21pSKVAULl+OZ2fsmCAJvHZ9k94YmHnzkbprODfH8iXpykCkZvHYsRLJWv8a7l8jsvGsXxUwKq8s520H/0Ho3a1f3MNo/iL85yDO/eoctm6s0uEyIooQgzpdENFushGOTHBs1iKdDLF7SAUC1UiGXydEYvDHV6KMGT1O9n8LyLhVzroVssc6q1CSmJsmnUgR75nNm/S11q3n/TTiybn+gPhc0zI+5xWwGs9VGKZ+d8/r7oTWcjceQTBLuQNNsPAu0tZOKhGgKds3hA4uSiMPjo1LIL9j4J8syTctXko6E51SLs/EYJrP5pk6nhUwa2WKpV6uvo5rMNCy6TVVy6vvLq/woYXA8zU9+sY+BjA1BkhGuEW6qYGXPsSmqh6fI6V5ENU9HwMLqXi/pXI6lK5twWqdQdeg7c46JZI0jEyUeWeGjWChx6lKIb3x2NQdOjnBqqn7iixERvz/HqcsxioaPjQ1ZtqzvZvTyJdZ1mWmyZqgpNZIVC3/7jwfICA0IYn1BbhZUyoKDbq/K1z+3k7f2nkQUVIqKwOVQjaJu4//+zl7yeBAkE6taJJ5+7C7G+wcIpSpkijqrVzTiD7bSN3EQiyyyccMS4omTbFpqp5TX2HXf/UwNXsHt9RA7mSBZtbJ3CD6xqokd21YQ/elhpvIqYq2Et6mZ5myenhXLuTh6kGTtauHOJ7oYz07h7+rAGWwh1R+lsbEVyWTCXpbx2L0AxDMRhG4vxkgSX0sLeqW+KIxkQtiWBInGh2lraSURTnDanMFcUJANkapZZEmthuWafEEQBJo8Tp4ZtZE3e9mZG6TRU4/tY6k87V4H0h2YKC2E2/q0IAgPC4JwRRCEQUEQ/u1NjntKEARDEIQbs/jfA2xOJ75gyy1tNaFuw5mYmpxdQdSU6pzq7AysDgf+lrYbagBbbLZbUhnsbs+CiXD983bSkfDs9uu1yCbiJENTt7XKSYWnSEVCsxSIXDJRd7Qz9HnHmi31qrdr2gzE29RMNhHHfpMGQclsJhOdWzXJT39HfgHXujnXVjQ4f36IWG5+BUSURNwNDbflAPVB4MMwdpc26nzlC/exKGjjk2useOS5uwybu81882sP0ump8fuPL+LLu/z0BESWtDn59rMXeG7fGIau4fE6ae/tRkQnp9n59ithfnIgQ7PPTjoaQb9mGF2ImtgzYKImuwmai3T1doBhMBHK0LV8BevXdPM3r4SJV210NLsxdA2bUeRffHEDD2+o67pemchz9uQFnnziXtqbnfisGo/t7OTxB5bT7hcJWOo7D6evJDh8+DyabrC5186eExGe+80pfvnWGBg65XyO/XuPEHCaWLmsndDkFPHxcRTNYN2GpVipVx4Ei4OfvXqRlw9NAQafv6eZxiYv/+0H+3j2SJxfH5y/szFW8fHW+RzPvXCIt89drap/clMDf/iFu1jmTGEYBulcmcH+EUZHpli/bhk2o75tORYpcv7CKL84mOAvv3cYi9vP0mXdlLLZ+rNwg2dz+YpOdi83s/uuLiZHp1BrNZ595Qx/88IIY6Pv3Q0JPhxjd0aT+XYs6AvpOnVhplppGMYsx/Z6zMg3yub5yZog1JvFbiY7aTKbbzgX2JwuCukUujq/ml0u5Kevcf4u3kK/JxUJ1Y1ZplFvomsln0zMOdbl88/hAwNY7A6q5dINFTDsbg/pSHiOu14umcDu8VAtl256bRZb3Uxkof6NGeWOVu9vr9b12x67QjXP7z29hY0rmrhnmZVlDXOrm26hwB9+eRe71rdy9xKZ/+dXN7HMU6C7xcHgZIb/8o/HyFQlLCZYvGo5NnN9LP7mgsp39yapaWJdqaRSmT1npmbhxbM1ppR6UW3diiAms0wyVcDr97H74d28dizEO4MaLc1+rGJ9J/WRjV7+xec3YNULxHIGhw+fZ8WiRlYsbqYz6GT9IjtPPrqJ7iYrSwM6hqEzFlfYf+A8xUKRZrdILJHjlQND/N2P9hIqWpBEgbPHThGaDLO4qwE0hdjYKLlUhsUrltDqu/rcHO7L8IsXThDKS2zqFPnSlz7Bz57Zz7OH4vzdTw6RUOYuhF1OL63WZvR4gcpghECgvmhNFGJYljQzlh+jWMpjEk3ER0fQCmU8Tc0U9Hr+ZZOt5KciLLcFse6/yFLNjdQcQLHLFHwWhMWt5BZ4dgG+GUzzz9zDGKJIqlRlf6jM/yu+gp+MvPedq1s+LYIgSMB/Az4BTALHBUF4wTCMS9cd5wL+DDj6nq9qAWiqSq1axepwkEsl0RQFQRTnrfZzyUSd0iDU/eTrfC4Hw+fO4A00YgDB7l7yqRQ1pQKGccMqbS6ZwGQ233b38EJweLw3nEg0tYYv2EImFr2lMoRhgKchMMtT8zY1k46EMC1gO3198BUE4Zbnv775A+oct3QkjGy++h11g4MCNcHK0zv8xJNF9g1ZeO54noVEzc1WG+V8/qaNeR8UPixjdype4uDB84DA4jYXfofILw+nZi2HR+MVjh67jNlQySYS+Dw2arqZtp4eNg3+hrWbVpNJ53j1dIY9Z3Isa5HZuNzDi4crlKtVVqxdzeR4hJxWD/iGrtFgLpOqWkCSmah6eedwP5GcSljxUNl7nooKTXad3Wu8LF+znP/ywwNkqhLnL4wwFS8DJsayZvJ9JQQ5xPDgGA/eu57Dh85TLJX54hce4eLFYX51NMdwxsxwBhALrFzWRv5UgTW9dnZ3+Dl7eZLO9iaqxQLL1q/l6L6jLF3SQSwc4+0LOWqHE1Skq1uUE/mZ5MhgMpzBLEskVCeCeDUx8pgqWEwQq1gRBIHxoh2uo/RfHMngsw3z6U/dRf+PTtLZHKCxqZFjxxN4wjGe2OHnyOUcl2JmLsUqYPGiApfiOn/9vTf54qMriY6N3LCaKJvN3LNzFadO9/PCiRzN0kU6gh78FgWH/fZ51DfCh2XslnJZbC43ak0hG4uh6zpNnV1zjqkUi5TzOWpKlabO7mkFBRdjly4gyWayiQT+llbMViuxsREAGju7F2waKxcKVEvF91TFFSWJQHvHgu9dK3e2EOXrWtQUBXdD4xzusslsIR0J4buueCJbrPMKKrdaQCzklmp31bXer9dRzqdSWJ0OMtEokknCbLPfUAt+JjG/HNVnFTv+KfFhGLuaZOHt/WeolKrsvnsllXKZ0vHYrGRkQZU5fOwKiUQWn0Min4zT0d1KY1s7q7qnkKnRtaSHtw73839+7xh2q4nPb3dzdiBJX8JCZ4eH1t4epq5ZoDvFEjVdpDo9D752IorfGuFc0kHr+BSLRnNkywb3LhG57/4t7Hn7PIeGVEansmi6jmLI6Fh47XyJB3WBZDzB6hWduEslXn55P0u7A6xet5y//M47FHQ3e6+odDgrfPGxpZj6ClRVnacfXk5f3yjFisHSVctoamkmny/S6LVSyOc4M5Thzb4DJCpmhGm3t4Jm5XIckCRS+SqDA+MkajaKgpVipc7ClHSFTj+MTNPifa4APtfcHXq7yUF8eARbUwO5TA5D0/G1tRO/1E8xniCvpKkkqiwOLMEHNFuTYK0vHIwLUaJ2FSFToiGu0GhbOIbe1WylWKnyPw0E0KolPutN0aTEaLZrzMjXvVvcTmX4LmDQMIxhwzAU4GfAZxY47v8D/AVQWeC994xkaAq1plDIpFGrFbzNwQX5rWpNwd/SSjmfp5TL1t2K4jF616xHlCSk6e1Rtabg9gfQ9YUrP7lUEqvDMc+G+HZQSKfIXVc5WAiSZCI0OICmqresDrsDAUr53OwkIQgC/pa2OUlsuVAgFQm9b1VYp8+PL9gyWxn/d9/cwJ98Ksj/8s/ups1RwSZpdLc4ZpsFrseff/c0f/mrUb71wu1Xyt7nprrf+tgV1TJf/tQKTJLAkcEqo+NxOns7sIhXV7LxipV9Z6J84QsPoEtmXjseY8/RSfa8dpANd62tb8u67DR5LWC243XKdHW30mIt8OT2AC+9cpznD12dsJcGdP70a7t4ZJUJNIUWp0Z3TytVwYEoSkxldJZ3ONm90kFLSwN9J06QLMKn1jswa2X6QldvQ0qx8OuTBeKKA0VR6O4O8pknHuDZ595maDhMg+XqsW9eqvJff9lHVbCh6waSaHDfrtW8vH+UV09lOH9uiGS2jFIus2bbVtavbCWv15OBgKXC8kBttmlDEATeGRZ444o+JxEG+PSOFr7x1AbE6vxn09A11gRVlJrBqycz/OKVCxhWD8WyglopsnFdL28eHMDtsLK4cb6igCCINAf9NLS0cXkkzd8/d3HeMRPjES6cHwLA73MiV9OEcgIer4s/+douAk3vizrKb33spiNhBFEiFQ5Rq1SwezyzBiXXopTP4gu2oKn1/giXz08mFqVt8VIw6nJkSrmMoevIVitmq+2GijTlfBanr67DfidQKmXSkfBNecZQp7TFxseolkq3rA77moMUs5k57nEzjcczTXWGYZAMTd3x9d4IJrOZQFv7nAJNvZ/FRjYep1IooOnGTZv1ZhJzQfqtKUb81sfuPUstbN+ynKGMmdffOkOwq4tG99X7oUsW9vbVWNTTzL0PbOU3+4fYczLOCy8fpbXJxdptd5FLROkMusDixioLdPe24bHqfHKpSjWf5a9/tJ9UrR6/RKXAHz61ji/d24TXVEHUqqxZ3IhudiBKJqJlE1bJ4KHVVrbetZKxyxeZCiVZ0aCwebmPS/3RWTULQTLzZl+N01ELNVVH1FUefXQX8WSBl39zmKBXns0XJgpW/uKHJ+lPyRgI6GqNFUvb0SUr//nHJ7k0GKNvKIbFYsbb0MCjD20mXpIQJBmTUWV9q4H1mts/mrPw88O5WXm3GWzstvDVp7ayvHnhlDGeiVLQCjQYHuRsDa/ZiyRIFDJpHB1NCOkqollGMxvki/N3i0yCgLS8i0qTk7Kgo+tzd7wLFYU3JisUKgoW2YS/lqSgSxyvNvB/r1F4qOO9FyBuJxluA67tEpmcfm0WgiBsBDoMw3j5PV/RDWFQLZXqHNlgnVO2UPVAkkwkQ1O0LloyWw0VRYF8Oomqarimk0dfc5BiLnvDiqnN4SCXTN4wWb4ZlGoFs9V2S1UHT2MTDre7zpG7Rbe2bLbgbrg5V7oyXfWo3kT54r1CkiSyiRgl3UI0qxLsaMcsvfstikqpxKnT/VQWoLC8D/jtj11BIJMpUCwrfO7eZvx+F3/zg7fp9akELFd/c0l0cfroKfSaQjKvsHVtG2NJyCRS1CpVnn3zClfi9cc1nKpw9OhllrQ5WbpyCZ1tPspclQWM5TRG+wdZurQdv0Uh6DOzbt1iGqZ76XqCNtZvWoVVFsilkngCAQyTGb1SYt22TTy5rYG1wasLTUPXwND5zksjnBvJc/z0IOMJjU8/vpN7116lBwmSCcz1yeHtQYN/eH2Un79wgiR+coKH508WOJn08b3XJjl28AQ2ScOYrmbfs7aRz3/mLtxikVVNKl/c6cGhpRHV+ePi+IUpjh4+jybOnexbHQr3dCt89uGN7FgTIFK2MJavB8lz41VGRyOEEwViFQsWlw+3b36PgFeu0OiS+MlPX2PbXcv51F3zY8wPf3WUn712hdMnzlIuVfjmU+u5e22QtSvvTCbxFvitj11BFKkU8giigN3tQdc07NdYI8/A5nSRioTwBJrwBVuQLda6Sk06iWyxolTqPReiJGFzurE6nTfVFs7GY7PNabeLQiaNL9hCLnljZQZg2vbYTEvv4tsqdHgCjTel5WViUXzBlvdFbvJGMMkyxUwKDAOby0VDSyuWWxgt3QpqPolW/sCa737rY7eqqGTSOZYEDJ747H384B9ep5DPscRTmKOSMDwaJTQ6TlGVWd7tw2IxMTKeIp9KMDCR442L003oisDpUwNoqsbSxa1s2rKSVPmqk6EmWbh8cRC71cyqLic2SWXD2h56Wut8bpdUY8eONXR0tjDW309DSyuSCAgCdpuNz3/2Lu7tVpCNqxQ6t8XgleMR9g1oHD95hStRlUU9zfzu09txGFcLXoLFiSAITOQt/NcXxvjNOwOcGCyiyG4OjggcHDPxg/0Z9h0ZJBZLEZieB5Y2m/jMIxtZ22XHY6rwpbu9LPaUkdX546J/qsjxI+eIpebmFoVSjon8JFmxiKO3FVWr0eJuw2Zz4LF50NMlasUKTrsHu2jD39pGVZm79qkoVaIuqJ7sQ80XUTYtJlSbm3d9u7/G30cDfLevzMFIlX+7TON3mgo81XRrutPt4j2TioS6wOl/Ar5+m8f/AfAHcGcObk2d3XP+bZnW0U1FQlgdTpRyGYvdseB2/I1oEDfi+cLcZo87ha5q5FPJ2/p9oiSRjoTxtyzMWb4dRMdGkCQTssVKOhLGeovtvxnExseQTCZsLtcNqSCGYVBIp2erwzPC7//yq61Uy2X+849PUhYdmKngt+qEy7YFNTyvbaqbQbVS4dkXj9Cfc5PODfHAvatn3/unaKq7k7F77biV3DceN9dDl6z84mgew4AHpCI2i4mtK/wsW9pBZHSU05NFMmVIFDREOYCnwYfHEmP5ih76xzIcHarQEhBIGA2zW56renxs3rSUH/70bUZjB+hLWUG6ujLOqlZePTJFhz9CompBCxc5sP80k+m6hfLJkQq5Z94mXRbY1GOjomRY3iQxma5RPXiWxe1e1iy2cS6SAaDVqfD7X9jBOwcv8fYVhStJBUPw8quXThDLKhi6ZU711jAMdKXMrhUiLc0N/PpYkrR2zfhyNuJwO2ltC/CEOM5YosY75+NcGIqTrZrwOmWam7w8dW8Hiibw00O5OWMq4BJYv7YHkzDEnqGrp13W4WT98iCvPv86obINXbUhGhrINh7Y2MiqVb38p+/tx7D5+JtfXURHBNGKVy6j6wJLW2QWNbtYvn41P332CG8c6Cdb0vjJwXolY2ZMSmY7kgp7T8bIaUUe35Dhk/dvvO0x8X7g3Y7dO4m51xcbzFYrgiiSSyXrpioWCzVFwRNonNfEVW9Gnr/YuBU14d02FptkM+nI7TX61WU0bz9OLoR0NAKGgTAdv2/XOCQbj81KWN6oTwXqdA7ZbKnT9Nye2UWIYRh1Sc3GplmtfLvLs6B184122I4fPs1Lp2SaXCL/4qvzbZs/aPxTxN3jkxLHJzMs8pqZmozgsok88cTd9B8/TGeDysmhPAVVolI1CLQ0Y5FGWbaklVg0zW9OKJg9Wa4kTNPOnRD0CGzfsYY9e0/z1rFRJpMKhtl79TolmVfOFtheqHJurEJBt7L/4AUm4mXARVZ38Pf/+A5eh4xJ1NCECfIlldYWGwdPjbGkM8OOu9dzYeo4yZoFw9D5/O5OrDYrf/XsIL85UwKsvHM2zvmB5BzTjBnoSoUlnhJ3r2mhcTjO4Wv65UWzA13WWLR8MRsjCVx+Oy8djvD8K6e5PJrC47LS2dVCOhbniU+u4XvPnyN5DVfYpFfo7eqm0W8hl0/jdtWf7UI5j7nDQ+TMOZRkliXtq8lmEni8AdLVDE1rllIaidDgbsRRcVCaKOD3NVMs5dkfeB1B0ilEu+latoVK/AKYL5GIRijuLpGxXZ1TimkDMeLmkjLOsdI67n37Z/zp1Ak2/z/+Jajw304vu+2xcSPcTjI8BVxLwGqffm0GLmA18Pb0hBUEXhAE4dOGYZy4/mSGYfwd8HcA3WvWvSt9jHQ0gtXhZOLKZbpWriY2NkpDWzu5RAyrw0EmGsHu8WL5gE00Srks1VIJu9szh/t1I77a9dBUFXeg8T1bIEuSCavTWU9s70DEXhAEbK66+P2NkAqHcDc0zCpUXAuLzTarKLB7lZutW1fy1z86QEK9+STz5r5zjEeK+OwwUPDh08Ms6f5A9Ibft7F77bi1tCy543ErCAJ7B2B7t8rW9UuZvHKJpZu24AtOUquUaWht58SZQd45FSKJn2995y262zxE01WUmoYhmLFQYV23ncPnI5zsSxKtehEqAgIVRLWMbqqP9w2tGusXt9OxuJehHxxgaaebXfesYzJ1gv4k6KKFbA3cUpZN23cyNjxOhyjS2tbMX3z/GEev5NAwgVAf04miwIHDlxieSGJHokT99QtRkc9u9CEJAr86UZxNiNc0q9yzqZtCOoUv2EKTI0X6OubO80cSOIVRvvG5bWTKI5wOSWzslbh3cyPfe+ESiXCETz28hSuXBrmWC2YYBt2NdjRVpVLM4xCs1HQJRbBy4FKOjoCF+x++h8Gzp/lkYwOCycwP90xw7JLC6FSOgm5HkEAR7Ui6wuqGEtvXt1JIpXF4vWiqyj/8bB/DORtI0+4h06iUyzzz0hmWBC1MpFRS+Qpuc4qXLgSxuYbebwOOD2TsvtuYWy2VqBQLVMtlTGYZh9tLfGKUpq4e8qnUrDj/ndol3yk0VSUbj2KyWOdQxG61azYDXdex2h3vqQ9k5jq8Tc3kkvE7WmDomobL5yebuDGNrpBJI4oi6WiExo7OOe/NNBcCJMNTNLS0EZ8YXzAZvhYjI1PsOTzG0haZfYMGNqPM2sW3N0+9C3xo4u5Qxkz+WJivPr6NM/vfoXvpUla0ttHeeAFRlrF7A/zd918la2rh289dpssHFtHgyliWogIGBisDNQplnb//ySGiRQlNtGPoFmQ1h2quj6OAtcIDm70sX7ca463zXBrJ8MADd3Pm7ADjJ4sIgkCmZqPJLtPjE1i1YS1T0YM8cO8afvrrEzx3PIfn7GGSat2xUxBEjl0IIwkGfotCWpPBMAgXzTQ4VP7k0z38/I0hkko95juFMr/39DLGLl3A6fHQ1WFwODK3afB8GEa+8w73bWikJdiALibIF6v8y9/dwi9evcjf/+hNHr1nCfGpKcq1uTnJ2k4rVruDxNQUJbsLpVYl4A/S5GthcPgKS7ZvY/DMKUZrUwgWKKbKuCxucqMRHEL9Gq1WO1arnVBqknQ1jWFZi2yWcHlsjPW/jLczh8MrAGGujbv79+nkChZ63JcYTi7BN3iYfRufBLubH97pgLgJbocmcRxYIghCjyAIZuALwAszbxqGkTUMI2AYRrdhGN3AEWDBRPj9giiKlAs5LDYb4aEBdEMnOlIvEaWjYbzNwfq20geMaqmEL9hCMZe548/mUknyqSThoYFZq9B3C1dD4I4TYbha5b3ZBCZKEvl0CnE60bleJH+G49vuF0mFQzx2l59PrbOwvmXhBPvPv3uat09FGMuI+N1m2p1Vnnh4A51dN5ZReg884g/d2K3WNBLJDILZxtjF8xTTKVRVo5jN4LYY/Ok/e5BWe4Wedi9PPrqZT24K8Huf30GLXWFxs5n7tnTTG7QSU+wIgoBhGHxhVxNf+2QXhloPfgGnAbrKK68dI12zMDyZ5Z23jjEQuTrGPrG5mS98/gH6Tx5jYiLKi4dCfP+5MzisMl9+ZCnrWnRko4KgVnhiWyNaTWHXxnZ+/4lVLHVm+OefamWZK4/LrOO2C0jX8MZrGqTjSXpWrSEWSTCUnb/NrIpWMkKAb/30LG/11T9brajkckXW9zh55KFNlIplhhLCnMVik7VC18pVZBMJDg9W+aOn1/OZ7fXdoJpoZXi8ri9rcbiwOhwkE2kMRCayIqdGyrOSagA9AYFPf2oLZrMZu8uJLMuUFYNSDT6zwcJXdtjZ0n51S/X/+91jDCbg7HiZFb0+Vvb42ba+i2ZbFZ/vfXdS+1CNXUEUUCoVNLWGVlOJT4yiaTq5ZBLZWq8Q67p+S+Oh94psIoa/pQ1NUW598AKIjY2QnJokOjY8T4f4TtDQ2kYxm7lpdXch1KUuSzdNoCWTiVI+P6sUVC4UZvWvr0W1VCIZnqJaKt7SHCoczRIqWSlUoNensX19O7t2rLqja78DfKjGrqYbJBNpskWBUi5bj7u5HGaLmUwywTe//AC7VjhAV/niUzu4f7WLr//ONnaucGOq5fj0Q6u5a6mNUNmGJtZj2YY2gX/9je0EbfXY5TLV8HnsHD98hotjBXKqibffOMKJC1cb7NZ02XjikU0E/HYGT5/i6KjGj355lP6oxoOrnTy4oQk3GQA2t2msXxpAFuFffn0Xy30lfv+TLWzvqNHuqmESDQLWq/x4zYB8rkCgvQNfc5A3Z4Tsr4EgShRFNy+dzPE3z11Bk+yoOmRSWWSjwh985X5AJ5quUtSvaZo3DHp6gtQUhSOXElTtBnR5SaQjiKKIy+QgNj4KhoHD66GczyGJJlwODy7dhsd5dYeokM8gBF3oUl3W1ukJUCnGsTotVDNNhM+vIj28hkr+av4wEXYQLnbR1VGjsynFN0YOsmjqPIuz749qzwxuWRk2DEMVBOFPgNeop+vfMwzjoiAI/x44YRjGCzc/w/sPT2PTrLf8TMVy5v+lXJZ0NDyv6eaDgNlmIxUJ4biJZNnNIEoSmqrNagKbg++ukn19BdwwjLrttGxekAoys8XnC7bccnvvWk51KjyFw+snFZ6at53p9PrRdQ27y8WKNj8iE5wJz+UGGbrGkgaNkCaTr5S4597d3AOcPHWFfLHCqpU9d/jLb44P49hVVAOLWSZWqNDR4sfqcvOzl85TI47bZUE1XSFTEUmFFV58/TTxZJFw5jzxkkQsk2dHKsW6RX7C2RThUr3hIhLPYZaLIEpQK7Jy1Sri0STHp8wgwbplLnZuW8Fk9C0s1iLnYxbeOBFhYzSC3eni0mSC1d0BzvaF0U0O8qkkux/YQvPlcV46lsDltpMvVrg8ksIZziGarUiSxJZVjdisZkSbC0lIMtPycCUpczlaYfXYCcKZGkGXgK5XiOUNRMFAEeuV5W2dOrLspFSu4nKIvNWnIA0k2NQBF/omOdRfomRcs+2t1Qi6DfouDXOqP4dqa+TU+RHSuSog0eZUcLgc7D89RX+4RkkvIcp1Csn9i1S6W5v48d4QNblezRmO67z4xjnsokZN1SmUFb7w9D2cH0zQ2ODBG/CRK9b4nQ4bbx2fpHexTHdHgNeOVHj4gQ2UikWOnx7lyQeX0Rx879rn1+LDNnbNVhuB9g4EQSCfSuFtaiKfTuEPtmIYBrlEXcXHtYAqzfsJT6CJZGjqlkYVN4OBga+5hWIm867PIQjCvNiaT6VQKmV8zcF5snDFbIZquYTD47ulVKfN6ZotbJRyWXRdJ59KzlPx8DUHKRfyOLw+dE3D6fNTLZfmVYlzyQRLO900+Wx09bQhm81MTkR55+BFtm9Z8m5vwQ3xYRu7imogAJLVBoKIr7mRgfEMey4MoSKyaz0MhwsoJhfPvHCcfLFKOH+eK5MFNLOHU6f66G33sb0jxuGJ+rjLlWqMjU4xLZ1Ld6uPhrYOfr7vMDnNRZurzO5P7EDYd4qmXIWBqMr5cRnX2ydobbJzcjDDhl4f6UwBDBndALfTwh9/aRt/9Y+nsMgOPF430fQ4p08Pki5omCSRJo+Zrq52ZKttlsIBUMbG999K0upQsJ+JUZQ8rGjQuDylYDepFIU6r7jdWWXTsgbO9oVYt8LF22cq/P0bcbqdJk4cv8hQTGMoI88pQLQ7FSZDKaqTOUaqTciqQDEco9Hio1DKUbOCkS7T6e7EnhJpbVoLwFR8jKJNJR6KsahtOQBOl5dcZBKrKqMxyVToBB1dX6SQrevrW21uXB4fiYkCsj2NqpT45KZe8qVJutc52EmR6q9lPje4j3vzIeCT79s4uS3OsGEYvwF+c91r//sNjr3vvV/WrTHzx3L5G6ZFy+urj2v5VXeKxGSd8+9palpQ//J63Ew27VZw+xuoKdXZhN7u9pKebgq8GW2ilM+RTcSRzWZEUULXdURRmJOcZmJRvM0tZBdoypvp0pStVqrl8h1RSQRRopTNLLjQmKNPnEqxemUXmzZfTWT+/LunCVgq/O6Td3PyVD8vnS7y5989jVbKIlps2PTSLZPhd8Mj/rCNXZMo4HQ5OD4mkC5n+NQjK2j0XeGzj+/g2MkhXjlXBqyY9Ap+t4V0XuH0cJ4v3dvCmSsxQpNxNu/cwiPCIK+fTjJZsPDOlSqPr5X5/Qcb+PlrA5y7OEEuV2Rnr52JRIXDfRXM6nHuXt9C5/LlVH/6JgMlPy/3A6isb/Vw/71rWLvEz2tHJvnJwRwP5IeIx1M8uD7Ar/YOklZs01VVA8OwcPnXY3T6dCRDZSQxhfkalYEtHRoW2cz+QRVDE/jCA+0o5TL5TBaH281krMiRvgzLOloQRAldlQm0tvH2xfOs6LDzqUc28Zs9Z+YmwkCLU+XJT+/k8NHLjORsIMFbfSozW2qdjVa2bl3N935+mIrk5NphGvDa6Vy6hOCJEBPTBXJdsnA+DCCxuU1j+/ogf/V3r9LW0sCv942QLI+wqt3CZx9bSSqZZVlvE/6WVg5fjPPn3z2NmktgcgdIZsd58tH3NxmGD9/YvRpz62oPM5KLgiDMS9RuF7lkArWmIJutt2VNL5lMd0RLuB5Nnd0olTKFdAqTxUoxm8Ekm+dJnF0LtVYjl4xTzuex2OyIsgyGjsPtnfO5mlLB39JKOhqeVzGulkuzRZs7jbnVQmFBPflrk+ZqqYRSLi8okanVaviagshyCnm6GfCtY2MMZ2S8rvkVxPcDH6axKwjgdDkpqCZ+/vYEf/b1XvxNAR5sl2lrb+S//uICuuxAEEA2iXS3utl/pcL9yyx43FYuXImwYkkbG1d3IAhhDo1LDGcteC6P8bl7OjlxbpLxmBnHuWGanBJL3HB0CF5/9TAtbp37Ht/JxTMX+eVJhb1DwFAViybyr59YQyoSYTyS58UzJVYmEgQn82zosZEqVPnPv7yCaHYzdroAePiblydwmFSWZaKc6b+MbDZhmEwIgkirvcqm5X7eOpskXLJy/wozK7u9bOzJYLObGZ9KMRiH3oBIe6ONasbEurWLuDIQJh+r8JWndzE+OsWegauUpxl88q5WAs0B/uKHJxEsTlp9VxkwsWQI56IgINDknCtGUKwUaFq+nPjA8JzXW/31XqxB4R8J+B8hEnoDs1UFzJgc50imTTR3fIGp4aMEmrdittmQMhUgS7lQ5Vvbvo61kuOefd96X8fJR8qBbiHIZsvsdv97xYxjULVYvK1k+L1CNluQ/fXvSYam8AVbSIVDNw32lWKBYHcvydAU5UIeX7CVarEwWymHeuU8FQ4tWPUVRREMA6VSvqHN57Uo5XNUigVcPv8ttYorxSLFbAZD1xec2JIVMy+8dorJRJUZTWLR5ub+5WZsVu8tr+WjCkGr8vhmL5FkkaNjIqd+cQXRbGMsXeXEyT4y+SqX+8YJJ4vM8GPdZpXtW5YhCv0k8ykamwM4J7K8fFllPLqPB+5dTYMlQpPXTP94mZZgEG8wyKObo6QrCgPRGn/29TVcOt/PgYtp7B4v5VKevrPnCZfnjotzkwq8cJAVvYG6fbFs483LCqu8BhtWdxJPVxBiFXZv8HPoQpxIyQImmYk8gIVHtlhYuayDv/mH/RQtzSzvbsDjdbH/Sj+ibOP1d/p54tE6HQEEttzVTTJ9lO7ly3ln3ylaG51cuTwIZif9kQov7znDpYn6ogCYHduhgsSzvznJRKIGzH8+jwxW6Bs7QEqrT2yNlgpmCaZKVt6+mGMqc55Q0bIgOcwuKdhtJprdIk9/+i5OnxnghZMFzkU1Br+zH9Ekky3H6HvxEjlTAEEA0epgS5fI6iUfH8e528X7pRuuKlX8LW1zjC0+SIiShNXhxOpw1rm50zSwmyXDMy6i4dIgLn8D2UScps6uesPeNZ+TTDKpcGjB3TizdXoX0XPrmDvDizbb7Di9vls2HSYmJxBE8abxPB2NzJlXtq1poXEixZJFLXD842npvL5FY1G7hxeOVvjWL/sRZAuS6Ob46SFC0TROm0yhXEMT5VlX0NWL/bS1BTncdwq3K0Ag4GXwSIofvnSJJ3Z1YDfD9l6JC2NFFnd48DcHWdWVweTw8MuDMR69K0jvog4yyQPkyhbWr+pg4PxF+sfSwNWKfVXy8L2fHWLjEifJvIEgiFxOmBmajPPPPruCdF7hcjTBgyvMZPIVTkyKCJJMyZA5PQXdLQ6+8tRWfvHcAfoSMm0BKxvWL+HsQIJCHk4N5Ag4RRYtXUQpn6NdVTEkhRVLWqnVFKJ5gdDwMKE8aGYPz7x4klIN4CqlbSbuvn5sCrNpCsEyfxw2NbQSHw4TmNYLLpRy5JQcfquf9oYuUqNhfNLCxUmlrCGpOqIWwCIH8TctJZH+Ps2LreQTz+Dv0ijna2RyCfwdGiBhc1r4xulfYNG099xrdT2ED8Lj+XbRvWad8e+efeUD/Y5quUwxm8YTaFpQI/NalHJZVFWdt7pOhuqB+r1UJG6FbCKOrqqIknTTiSYTi9YNSJQahqaiqjVks5lgz50375TyOZRy+aYC99fTUG6GXCqJxWankE7d8F7dqKJrGAZKfBSn1YTLbWPl4mYeuHftLX/DN5a2nTQM4wNxPLwRLC1LjJavfeu2jzdpJf74qZWMjEZ48cxc6siKQI3PfXoLP3n2KIOZqwmeYRi0mVMomomE7oFqAUO2IYgSXqmMUinxiW1drFu3mLdfP4CuVMjnSuy8bxOKovN3r0dos+R46K5mDEz88J0MkmDMNtnNQDYq3L3CzeXxfD3JnYZNL/KnX9rAQP8Yzx3Ps6jB4Hef3Mq+vcc5OqpTuSYZ3dim0e6F1RvWcPzwad4Z1BEF5si9WfUiy5pB0SWi6TJ3r2pAVcq8ebFKxTCDICKYzBi6Rqu9TLQggK4jmmS+eG+Q4YkUB0evZrEesURVF6hw4yrb793fQFNzgL/4/gmcdhmzySClzD2+w6WwdWWAgeEIn3l8Bz97/iiGrqMpCiMFK4Z49XfKRpVlLTL94RqKcPV1tZRDKyQJOEXM7gCP3N3NokW3VqL5bYzdf4qYO6N4YHU6b9nHoCoKuVQCb2PzHGrBjKXwjZQS3g9Uy2XyqSS6pt20sl0u5CkX8tSqVTRNQzDqOvUti5bctorEDGaqzC6fH3kBwyS4s5gL9fnJ6fOjlMu3VV2/FnveOMG+s3G0QhqTqwHR7kGUb10IGvuLxz70cfeB5XLdafOZM5SuSUQtepE/+fx6+vrHefnsXI67XcsSdBkM5Z1g6AjTajSyUcEjlfB5HHzpyW0cPngaUVOJhkIsW9LOorVr+e4vjlOoCdzTo9GzuJvn3xkjkq6hWeYng2uaa0iiyOmQOCepe3yDjeVLO/j7nx0mp1r5l59fQzQUZe+ZJNHK1fESsFa4d6Wb5pYGitkcP90XwS4LpDXH7PlErUqHo0RXRxMXB2N0NNlY2eXiwJkQYxU/1MqzCa5HKqHrOsWqgWayc3evQG+Hn5/ui8zSMWSjglPW+N8fu/eG93wyP4mzu4XKcASvxUemlMbvbMB8jXFXoZQjaWRIVY4RbN1NIT+CYBmgkJRwNZdwNVyN84ZhkJlyYDIruJrqPOJ7Hv4eAH+89FPEmrtol3VcZR+7LbduCP2Tbz9ww3H73sycPwIoZtP4g61kE1dF0W+0ALC7PfMSYbVWw2Q2I1ssCzYxwLRtZ3hqnlD0QqhVKyRDU3Xe7jXwBBrxBVsWTIRnhN1zqSTepmYaWtsIdndjMpvxB1uwv0uqRqWQv6XAvWyuWzvbXbemnrj9DVTLJWqKMm2ScnMB/DkwdETZRgkb0WSZcOLmdqQfJaiSnf/2y4u8eHK+2Hi6pHP50jCZytwxKQgCD27v5etPbYJqHix1FzaHkuD3n17HE7t7eOtskh/+fD8r1iyla+kizpQ7+PZLY/xgzySiSUaw2OleuYZMSUOQrWjS/Ml3qa/K+uXNLO+oJy2GYWBoNaqGifOXxhiYKoJkZjAt86tf7GHXvRvZsWxuFe3UlMShvgLZZAK/104F62wiLBtVVjbr1Go1zsRsXE5aSSo2PH4vTY1ePnt3G0hyPRFWFTosWZ6+v5cvbHXxr7+2mQZzGZvdikmWWNOs8tAqM7KS5I8+v4HHtzZjUvN8Zp2JJZ75jUNvnwzzwuvnsVkkHl7v5PefXk+3OTHn+Q+4ZVas7CFR0Pkvf/sidrOI26zzlS/ex5aeufdrRavMU49uYnX73GRBzcaRnH7SNSvRXI1E8uNZabtdZKIRPE3Ns7bMM1go7tZjWOs8ju2MpXApv7Cdc61amWP9fCukIiESU5NzjJosNhuBtvYbJsK5ZIJkaAqrw4k/2EpzVw8OlxtPUxM2p+uOE2GAXCKGP9hK/iamGS5fvS9DMt3e+evGUlFUpTqvwflWmAhnMbkCIAiIVudsE+7HAW9cLPKffzo3EQaoGSau9E8wFZsfM1Z2u/jKF3eztEFBMJlBtmGoCo9v9vDPv7abVLbCT587Tqmssmn7esaVBn56QuUvv3+YSMVGXrXQ1t2F1elkKqXMqk1cC7tQZn23g50bO2bvt6HV58rRUJ7zl8bI6k502cHf/OwELpvE5x7onT0GIFGx8stjefKZHFZZwm0TyejO2abqHncFv0VltODgnYEaScOHSTbT3NbKo/ctJ2BVECxODENHK2Z4cpufrz7cyz//dC9bu0VMsoTNbsUvV/nsJieN1ioPrvPyL353G4l0hCuhi1wKnUe7Tl/biY3CSBhZkxmJD2BZ3Mxwcohi6epzqihV7E0NOFwtpLK/olTup1b04vXvgNKOOXEiG63S2PgZjOq6Od9T1A2G/V0U/L2cLwlEpPde1P3I0yRuBckk17WI7fUHolwoUMxm0DV1nnbxQjDJMoauY8ANxdeVamXWCORWlI1COj3LK7sZ4hN1LldDaxvZeKxuzHFdAt3QVudivlveMoJANh67qZrEjSoNhmGQjcfwNDbNWdm6/Q2oShVvU5BsPHZLasXspYgSgklGr5YQrQ6eenjNnf2WDzlUzCzzldm5vpE9x6eYLNeTz0jJwjNHcixkZV3K5SlZJBwmHbu1yvoOifZgJ6VMiqGhKVZ1uImkBX7wmyF0Q0AQrWimq4nqVF7mx88eI5zRWeIT2LWhhV8fnCRZrSeqQiXLpx/dTnhyikN9ebZ0mFjSYsbla+ZHr4/xyrkqMyFCEEQsTg/ZRIxUOg/T8mpt9jIFRSChevjuK6NIuspDaxoZmMzjc0p0BxysWLuUqcEh4qkifVGVobSZH7w2ziPrbIiSXCf11Sp8/aF2YqEI1aqKohlMTUYpGTb+9qUxBMnEZza5WbasnX1nohw+PkAyV2WxT2PdptU47P0MHJ67gBrJmjHUGn/0WC+GWmO0b4Df/cJ9fOs7+6iIVjSTg1PjGle+ux+fU+bLT2zB29jEYP8oR45dZixa4Vo6Rl9YqVM4pqoYugklNVW/dkFHK6YxOXxo5Tx3bVn+/g2cjyDsbg+ZaJi6nGwdsfExTLIJq8N5Wz0dVoeTVCSE278wF7uQrptspCPh21bR8TY1U8ikb6gvP6MBbLHZcXi8aLXabNydieuexibKhQIN71KDfoYuYboJDU+2WG+ot1zMZpAtFszXmG5Y7HbM03TBVCTEQvrON8KXP7eT/+M/vYzJ3Yihq0i29yY596GCIGGoRb60w89ULM++0fr8rUsWXjpbYaH0R69WSEVCeO0iYqrK1i6Jdr+JlhY/g5eu4HPL+NwmDgyWOD16pN6YZoLKNL1AEASe3z+JJILNauHpe3xcHk5xYvLqs3DvGj89q5bxo5/spdlp5xPrZPxNrew5NMr5qJnz0SpMu9HJsoxJlglNhmYdBV1SBZ/NYCxv5cf7UzglhZ5mG8vsAv1TJXau8tHd2UkxlycRjREpwOFhhWOjkM2cY+fmHlS9Pmdv7YRtG9cyeLmfHo+XWCRBoaJxdFTnrUtjrAjaWbd+CYOTWfon8ihqPw909JKxVXF7vESHxmht7539bV5XA15gIjdBcN0qxs6eIdDdTTqVoZIs4vc34/c2kp6KY2o8j1X9FGW1QlN7L0MXX8bpn9u8524yEw+9jCTXK/hDfWVeWPQAWZMFzeVHT0zgtDt5vPLeG3c/FslwJhbF0PUFKQbXBz5D16iWSrfNN5k59trz6pqGIF7d3hBFifjEGAJQU6o35Rt7m4Oko+E5wex6GIaBND1xVMtl3IHGBTnAoihidTimq9IGDa1td8SjmdmC0zVttvp7u1uSydAU/htwnGWzlUw0jO8OZYdMrgZw1Qe17QPaGv1twEaZrz3WS2Jqgs4li+gciTHdq8m2ToNml8HeM0m2b2hncLLAcKb+dz4+UqElk6aInfVtNlYsDaDWVC4PRrkwWeNffXMNFy4MM3KiAAK4yLF9uZuDlwsUBSd2UWEiJaAINmRJwef3YBImCFgrPLK5iamwwot7TqMoGg7ZwG61YbGY0XQDg/pKW6/keXSTl2JZ5eAgZCqTDKdkEMGiZvnG7+yi/8ooPz+co4KdBnOBbXctxzD68LvMtHc088aeo3T4RDZs3Yrt8gjLyxXcrhZOnR9jabefVodCKCdQLJSpIfPt12MgighCBrAyYzT3m5Mp3jwdpyr7eGdQB2QkReStV9/hYkQHvPNvvmTi7OUQum4wnqhxaeosuza2sGxJG3/77CWqko0SbkxKlVCiyDtHDjGaNU3bkc59jhWsnBg3AAtaIYEl0EktF0c3dHSlil6rINlc7zuX7cOIcqFAKZdFU9V5lVWL3T6Pg1spFbE6nbfl1GYYxmyfwkwBwjCM2RgPYHU6SUfCs30KtyoIyGYr+VTypotzTa3N8pcdHi+iJNV7Oa77jM3pJJ9KoSpVLI470yy+tvAwY6m8UNPbQihk0kgmE7lkcp4hlN3jve0dvGthtlqxNPfe+sCPIB5aKdPZ0ovTZcNstbBvtC52HrRVuW+NmxMXYzjcTlx2E/v7awiSib64iHsozUAMfJYad29fSS6VZnIiwt7LFR5Y38zy5V2cHTpMUXCh6yp3d6rEciqDOSeiXqWqqOQMJ3ZKeL1uzHIao1bh05ucmEWdM0MxkukSZVXEJNbweD0Ymj4bcw1DZ4WvyPqVbTx/sMzzBybJVQVmCib3rw+wbt1ivvW9/eQEF3nDwurFHlpbm8kXzrF2/XLefP0wDTaDjsVdrG5uIZ8/yL3blvLagX6ikQSLG0VOhHSUmk4+V+Dtfp2XL09MJ9wmBLFeoOqLa3zr+++QqdkQJJmhdJVPLbZRHI6hhFKs7F1Y8tSsm8hPhGm2BtHSFZRiCfvKHqaGJmhv6MTnbaTisZAdH6FcLhOLnaFjfXle7BRFEV97/e9WLSk881ovta5O5EoBQ1PZLafY3WCjGn/vSlQfi2R4RgA9G5+vnqCpKtlEbJaTVi2VaOldNMsDvhWK2TTuQFNdoWG6slCrVqlVq7OTgLep+SrPawHZsWshCMIteWCCIGC2WFFrtdlAeVO+siDg9Hop53Pzqi7lQgHZYsEky1RLJYq5TF10/prjMvHoLEftdpNhkyyTjccW3Cq8U97a9ahlIvy///IVTJ4mBEF8txrDHxoYgFarJ6Ov/3oPhyJuBBNIukKTTWPVxs0Iwjk6Or0YBgxn6qvgqUQVo1IAnBwbKGAxiqxe2cO5iQp50cff/ewI+ZLK/SsDxNIlOhvcbNm+Aat4gl+fLvAHX1hDOBTjteNRLkStlF46yRP3LefIyWF6lvbisEocfG2CT25p5ulV3XzrB4d4+6IJ5AKCaMeoVfi9h7sxGVUyJQNtuMhwhllyVUV08uLrZ0gX6p3AAImag7/+3h4yqhXJZMZ0NEoJF1a7gX76HHvOFdm12oNhwNoeD4tWLaVcukC4ZOaZYwU8pgpf3d3KsYtR+qaqYLazvUdEVxVyVYn+iSLYro7Re9YE2LVzJQM/OYRUqvD0jkbGw1kOj9UvUhAEUnmFXeuDjEXHOBeWMRkZ7FYTOxZbiBdULkRN5FQLvzqaB+Y2iWxq12j02XnlRIJPb20klSlxcFRENFup5WLo1TKSxYbJ7kWQ6jsb/9u39mByBT7y4/Zm0NQadrf7hvJkuWQC2WLF5nSi1mo4vT4EwHobVdx0JIQv2Eo6EpqNpbGxEWSLBZvLg22ai1yrVgm0t5NPp26ZDN9OTHL6/PWqYFM9+b1Z70ZNqcxKYl6fDKu1GrVqdbbxLRWeQpRMc3ozVEXB0HUwjDoV7zYoFybZPL2rOX9BYbHZ3pPJlFpIga4jmK1I1nfvzPdhglqrYTFLDJy9yN5hEaYbuTo9Kh63jcc+sZrxgSHaF/dy8PJFDMlJUZMZGAxRUayUBQcvvnKSB3YuJpzRyCgWXj0RZ//ZKF3NVrqCFk6fHueBBx8jPjnB2J4wd69wsXPbcr73473Eai6+/cwZvvCJXmqlSRYvbkcpFbGFVbIljT/62m5efPU0f/3iKIbJijhdDd7aCTs2raJaLmGRDEKluQvLE30ppmJnyGnWWW+KZ/eNIzNEDg/jPzhAWrXR6a7h8ud48+AQusmKYUCr38Ki3iBdSo1Tw6OciXg4FYrz8EonggCvnsmByUKX12BZh4NovMxQuIYgXN25jKZCdN61gcJYfad6NDmMYTURwIPLUb/HVslCgSqlWpHljauYLI6Qi0SplHOM5cdplhuQTBL+3rFrflk9Ec7HzBjVlQiWC6gVNxKdmDynsLll1i0O4XnuMg9GL5GzOvnn33iSfz+qcFgZ5zFT26wfwrvBx4Iz7G1qJjQ0gP06vd90NMLUYD++5hYysfofTrZaycSjd8T3yiViWKZpFhjGgo14ZkudWytbbh2QitkM6UiYzALSZzNw+vy3XTEwyWYqxcK8RLiYzaCpNdKROiWjmMvga26hUprLlZrZkpSkG6+NqqXSHA6wt6n5hhzn9wLD0BEkE6LZhqHeAef4Q4wKNn66d5xIDkZLrjoXDejw1Ai2NjF88SKtbc1Y7A7eOTmOoamsCWo8sdnJl57awdpmhZpoZTQtMBHJUapJCIJAtGJHNUQ2re9maaeXI1fyjF6+SPfiLtBqDF0Zwiil+bOv383aJoUmrxm1WmVRp59f//JVfvrmBFXJyeXRDIeOXqGMDcHioN1Vo8FSBkGgVCwSi6Z44VAIgG6PwqNrZBxqGkGUOBMSGctdpQ91Owo8uXsRv7PNS4ODWbe6d4YFnjsvUhBc/OaCyq8ORBiPVxnpH2L9plVY9bpLk1mC1vZmmh0a/8vXNtFly7JjyxLWLQ+ybYmD//UP72W59yr/7MpEngOHL5Esi0joBBp9eB0SS70Fdi8zI2pVvLJCQ2OAdd12di2W2L5lCXuPT3DX1pX0tLrodJZxiFcNSSxGGbNR/3dn0M2Kpe2YjSod7Y00NdQTBdHqRHY3YWnswuRuQrJ70JUSkssPv72e5H8yOL0+cqkkomnu5FPKZZm4chmL3U4pV+f7SiYTtWoFpVq5ZRMzgNlmJx0NI14bjwRhWtLx6s21u9xkEwkM/dY33DAMYuNjxMZHb9gzYrbaFuQvLwSb0006Esa5QJKdCofQNZViNkMumcDlD9QT32sgyTJKuYxSufE90TVtjomG1eGgobXtXcvY3RS6huRqwFDevfnThw1v9huc7Y8R1dxUphNhXSmzelkzqUiYxNQUa7Zt5cTxixhmJ60Ohd1dJb7xlQf4zBYPgiAwVrAQSlSI5eoLkKJuJVa1s7jNzaZ1iygJLs4eO4HN6aSnwUQ8kaX/zGm+8rmdfGqTl55mC4Kh0uy3ceFcH8++fokLIY1QRuXoscuMJaoIFiduWaXXW8XQNRSlRi6b4/lXzpDV7Vip8Kl1FnqtSQzDYKpo5sQEME2bsFDls1sDfOWRZWxqKpBW643WEwUr/3i0Sl/OTX/KzH99cZxwqsrFs/00dXaxsque0whAIODCZRP5559dxsNrbSzpdLFt60rWdFj44y9u4YlNV5Nhl91NYSyCRauPW0MSsbgcjIeGmShMksjGKFeKWD0ucJkZnepH7PBgKhrYvG7swQZiyTCZ0NUcrFbRyETqfH61aqeheSWqYkUwnLh83ahK3XzpkUcF/u3kETbXctyfDyGKIq+UXQy6HRRr763P6GNRGc7Go3QsWzG/smkYuHx+EhPjWKZX6XX5mZtzqjKx6Cw1Yp65hM9PTZkvLn8977YwLdcz0zGsVMoUMxmcfn+9Ea6xmfI1zSGFdAqlWsGYpjtoqkoqXE9ArrfkvB43siIVJYlSLjerUVktlUmGptD1uZUFu8s9r7pR7+auVy/K+TzuxkYqiTh2lwulWldEuFP3Jbi1VrAwrSqAYcx2Nc8c91GutBUMBy+eLnLt1ntnsxOTbCbQ3EQhnaZWVZCsTrxCmSc+tYvI6DCRsVEmUvXJezhtZvhEATPwiSUqiVyNSxETJ45doD9UIVWzcXYwQ/p0HMHuw2Ez09LeRGRkmLYGM9t2beE7P3idLz61k0IVzl6oV6AHUjL9SQU0FaFW5jMPLSJfVvnhGyGEWpkNO+7C573EC6fydLkqrFu/gaDfwg/3xlAlO0v8NbasCPDSkShbVrfQ0ruIK8cOc1evjV9fqFOTEER6fTXWLvKz51SCjoCFhz+1mROHT9E/OEltOhQlFBv/vx8cp8VrYnE8iS47+M6zZ9m5WMJtlcjGY6hq/X60OasIhsHeywoIVhDgr39yjD/72jaC/ijtS5aSjLzBrl1bObr/OCXDwqolfpLRKGXs/LefnsQqVvnjr93P5PAwzx6MkSoJfP3xXkqlMj/al+KFYymkY3Fq1gB/+/wVnGIVk2BnUUBkcbub189kqE0rS0jOBrRCEtFaj0HXju+P8thdCGqtVu/DuK6yWSkVaersJhUOzWraCoJAc9fNtzFLuSyVUhG3P7BgjG5s70TXtDl9GyazeQ5doFouoyrVOVXidDSC2WpFtlipVSvY3R50TUMymeoJ8tgIgijS0NqOZDJNc27rBYKb0R/q1ekbVVANKsUiNpcLEMgm4lQK+Tn9JIIgzIvrlWKRcj6HqqqIokitWsXp85FLVigXcmAYNHX1fCA0HNHmQssnkVwfrGnKPyVEycTBkbmvtXnAYrZg7+iiUiwQn5okX63fz13rGlm6rJvhs6cYGC8CbsqGjedOFDAME+saCwQb7LzdpzAVLhIJRSmafJwYzjOVuMJA3MQKf5WuZWvrzoC5DF946m7e2ncOt8PB6pVt7Os/D5JMXpN59XwFQ9FANtjaK3PX1lV8+6eHECU3VrOJr3zpfp7/9UFSZVi1dBW9rR5ePTzBYMaCjTKf2RHk3EACQZRZtm41E32XWbesmfOROIrgBkPHJtZ4aFMDF4czDIXLPP34XYz1D9F3eZhUQaNOiZD4yVsRRK3K0/faKJZqHB0qkAq/zZqlQfKpBEq13j/iECvklBxNtgYs04W/dmcrV8YvY2px4upqIXSxD1djgPjQMDYsqH4XxUgIn+DGJ3qpTBZRvTI+z2cZP/siHesqlOLdBBp3kgj9Ek9riljsR3haRTQlSzLah9lupZAS0IurGVy+ksV9l2b/pj9oz/MPl724LO/NBfQjnwznUkkqpRLxiXHM1rlNSKLJhFZTCHR03nYAqVUrSCYZTa2ha9qCVYIZTvBMw4UoSvNMJ2SLhWw8TqC9LvdRyNRVLWLjo4iiSD6dxHlN0M5Ma1fmpj3rq6UiTp+Pcj53R/fjWlwryl6/bjN2l4vaLaxMS7ksstlSF3FvaKBSrgu6Vwr5evXOavtAbVc/Vk0cN0OtTCwcpaKoZJNZjo6Dx+siWrbyi+cOsbTdwUBEIa3Pfchb3AIrlrbjaWwi/uM3uGf3J1HePo8QLfKZx3ey/9Alxi5XeeNMgntUlalYkdE0ZN48S6jm5q9+dppVrTJPbvHzwtEEqmjlrk7YsWkFb++/SENrKxffPMC/+fIGThw6iXuwH5fXQ495mNVrNjJ89hSqyYGGBHqNgF2nq7sN68kIb58MUYhNsWX3Pbz19mkMVeGLu5pIZQpoikpHkx2fXGYyITI1OobdInF2LId2jYSZx24iX4Xv7U1iGGZ63To+nxfRZOKvftWPaPdi6Bqf3tWFUioyGSuw/1KekuCkvdmFUsgTi8RxeTxYHE7i0ThNwSZ0tUZLRzsXz1zEJgtkVAcuscrFo0do6erEIRukJZnLA2Fqqo4giGiCBY26TFHQUuRrX7iXM+eHUDVYu7qHK4MHGSiYEYR65cLkev/NNz5sqJbLFNJJysUCFqsd9zWVTZvTTSmbwR9sual27/WolIo3lRMTJalOcyuXyScT6Lo2rwE6n0ri8HhmOcTZeAyXv4FcMk4qHKK5u4epwcFZDnC5kEeQTFhsNnRNrVdoDWO2+fdOuMDX4trryiUT2F2ueZXhhVDKZfA2tzBx5RKtvYuJjo9SzudRKhUMXcPuuZrIv98QZWvdrfFjDokauVyeVCINusqpkSJVyYWZCm+erBAPRZAdbk5GNYRrp36txtY1rbT2LiKUOsaOLYtQazWOvzLFY/cswm63cvyZfi4mrLSduoQo1JvW8sY5+iaLpMsCzZciPL2riwPn4oznzfjNZb725Cr2vnOOtevWcfnMBZ7+xCrGx0KkIiEEYMXiBlw2mVR4imKxSG5adcgtlejqCjIRyXF4sMLeV/ezcnk7NR0Uk5tNbRqbVrbw2r6LdDR1UspmGUq7OXvyEk2NLiYmU4Ty4uxvlE0CAbeZnx+um2p5rQIel5VAWys/fu44UdWHIMLmxS6kVi/DI8PYDDPdwSVoag3JYaWQTBFFRJBEauUKsknG7HUjmk1QEdBFcNjd6JpOIjRAoZzH4WoCxjGkFKn4eWRXDVES8bWIGIZBMS0iG9twWnqIhV+io2ctI9vupnFkGM90UW6Fx0qb5b1RM+EjSJOoOxZd3T5XlSqti5YgyaYFm+f8LQs3lcXGx0iFp+ZJ0cgWK0qljK6pN90uK+WyZJN1fczrJcRMZrluPnHNdpxstpKOhDFZrNQqFaqlEmZbfbLIxKIEu3uJDA/NJtV2twdVqWGx1xvkUuEpyoXCbd6lhdHQ1o4gSlhsdpKhqVnHvethdTgpZtIYuk6lWMTf3EJDa1tdeq4hQDGbvqk28QeFP//u6dn/PmowdA25Vl/YGJrK3T2wankn7b29nB5T2XLvNnatDfDHX9nJkgD0pe28cN7gcsRgcwc02eoPvqFW2LzUy1D/CD977gjRqp1zx06RyWQJ5wReeeMsZ4bq35PU3Dx3VudY2EasYuPoqI4hWvA7THQ32+nuCiIL07sGNZ1sJk9BMRgaHCdRFEmnMgxkbew7FWJkeBLRYsPd0IBoMvPc8QKGZGFTl8zu3Rv58S/2EavYkM0mtuy+h/1vH2X/lQr3LrMgKAVEpUhNB39Laz3xFc3YnS4aAh46muqVVFGrYK4k+Opjy/ncve1sDJaRSjF+98m7sJpF2jpb6fQafG6bm2aHyquHxghHM2zbsZ4di+sTebIsMRwpc3JC5EevDHJs0swP3owhiQaqAS++fIj1Wzfgm95AevCuLlZuuYu9e08zVapvL74zxCzneAYPrjDx2QdXcPbkOYYms7xxKsHpkxf40ud345XmSzRdj4/quIXpZrlrFuWlbIaG1nYcLg+N1xUabE4nvhskwtlEnHQkvKDBhslsuaW1va5pxCfGsbpccykU17xfzGYxyfXqsd3jmZWNNKBurmG9uuiqFPLIFjO1anV2B8/h8dUdPq112tvNqGy3A3dDAFEy0dDWTmJygmRoag714VoIokQmFsHlC1AuFGhfshyT2UxjRweSbMbmdH0gifDHGaZaHvT6/NzrVbh7dSOLV6/iUlgj2LOYNb0+/vhL23hog59E1creURuvXazR6zdY1VSb3VXd0CFRKinsee0gfTGds///9v47SK77yvNEP9ek91neOxRMFbwHCHojUqKRoVqurdRSz+xqZ2f27Uy8FxOx/WLeRuxuT8/0dm/3TMu3Wo6UKEqkJHoP700VUChvs9J7n3nz3vdHlgUKQMGoBYr5iWCwUJWVdTPzd8899/zO+X7PDTMz5UXQVN45OcMrH4wgyAYEnYk3R/S8Pqwnodk5MlYiUjCil6C7wUhXdxs2U/l8KakCsWicggKTU36mgnmSqQypPLxyPsvY+CzxlIrJbMFotfJ+X5RAzohdTPNnnz/AsaN9HBouUhL0dK9tA0R+9No4Xa4ia5utZGJhTDqoamhEmdu90mQDVpuN3u5GxFIeTVOxaAnuWW/lq1/Yzz2NKVxiggO9bjb2tiHLMvXVVj6xzcyOphJnx1KEL41Qt66bgkWgVCqh15swawZqbHXUluy0WJrosLRiQI+gk8mM+XA3NaLMber4Uj7W7t2LqqSwNZbd6ZyNaewtF7E4F2OJf0hEKjxAIpQgEe3DUhVn4vKLGJ/6JCOPf+LOr5U7/oy/RWIBPxank1jAv7A9ZjRb5qTTrNes5K6EIAgYLVZKytXDCKsx18hl0rSs28DkpX7aejYu+9mVFVlYPsBRVkoQFrYW9SYTiVAAq9O5rJd5/ndy6TSOmlpS0cgN3YiyqRTZVGJFe1NBECgVC8SCAWqaW0lGIys+hyhJCxXtpbjqG8imkjSuWbvwvXQ8Rj6bQZIWb0aifh+api773kedXa0ijz6wj++8cIpgosTuHVuZGhvj0EAGraSRjKcIRLOcOHkZf6LEvBNdjbnInt4mNmfz/OidafKaHofDikwJazpDj5Sma0M3wfQQpbDIiUmVldzZlnL/tlo6Oxr47g/e4sCmNRwfjHPBZ+C8N4wg2Bg9FAOs9L8Vwq1XSRVKPL15A03RONMDAxisVhStiAD4owUGBiZJlwzs75QYmIJvP3+MUFpAQGPb5k6mR0fZff8+jh2/xH/7wWGCBTOCIPC3Lwxil4tkNANIBp7Z5aBrzSbef/8cbfVmPvH4HpzvHuGlXx9BFASs4yGcVh0bejq5MByasxdV6Dt6hBFvAXCQ0Yy8diEDmLGKOR7ZaGZoNEXHum6OnhigL2xl8rsfkNCstDkKJFJZPnjnOJeSLtDB/jaNhlorvzgWRl2iyyxIZRvgl98fZUOrncf2dXD06EVee/sc8aJ+YZDl9w1N00jHY+iX2LfbqqrL8xF6A4Vc9rrKOMueS1UxWm2k47Grfraa+YhY0E9T91o8o0PUNF4dn67spdXpDQux3FFdSzoeo2pJ25tSVBBL6rIb+3kljIjXg6u+caFV7bqva04HXhSFFYenRUkkFvDNOXNWUcjlVhxUXknpwlVXTzISoa69o+weCqiqStgzAyy20GVTSTKJxIrqHh9VnFKGv/jCTo6cGObgqEpno42m1gZ++fIhJgJFMuksiipy7OQQ04EM8zEXYE+3laoaF/l3+xnJ1WLUidQ21eMNpag3Z+lor8ditSL2jTESneu9vc7m8/pGAw89uo2f/+wtHO4qut1FhiNGvvtOOeYOnEwDFk77Y+gpUGc1UJCt3H9vLxeOHKK6rhajxQZxyJQkLl6axJ+EDbUqqqbywgczyCLkDS7a6nR096xlamySpz7Rxd9/6w3iggNEA6+czyKfvoxer0fTW1nrSPOFz9zHO68f4vTxcxy4fyetwyNcmgoyNR3AYdOTiMZYd28vOsnLaU8Gi9XJ8KkTSJqEuKYLQRBoc7cDUFQKeFM+Evk4OocVg8lMbeMaioEiDr2bZDqOZDYwff4C+pphdEaZhM+IUNyMpjuPvX5xx1mQVFx19eTz0yB7MPIHRPLn0T/3QxqOHbnj6+VDlQzLej3JSHhZJcJsd6BpGkqxQMgTWZV2MJQT3nw2i829eimakqKQSSSwud2YrDZifh/17Z033cN1ZaK8Us/uUiwOJ6loZFXV2GwqsbDduBKFfI76ji5846Po9PplUnDzahPXcuuTZPkqy898NrOgojGPWirhqKklEQ7e8HhvlQ9blS2aVhgfmyFXFND0Vr754gWUkkC9Q+RTT2zixTcvM5m00hdetCGuMuSpsemZnAqwcet6Hu6J8MqgzLdfneJPH65j1wYbFqcd79gYG7rqOTk6SV5YOTERilk0QQDZyNun/Zy6FKCuuZH9ezcwGzrNRT9Xr2NV4QuPdqGqKj94uY+1tfDgo/v5xUsHEeTyep1J6Zk5laLdYeTRBzcjHezn4FCxPJWhh2/94iKoCrHiJUZmUoSKloWLhqg3kVriIKcVC2QTMWb9MYLJEoXsMQ48fID+/jFeO+bh//XlvfT3jfJfv/Emgs6ATSey/757iAV8+OMjpAtxihj4+J46jvb5sIoF7tm7gUg4Xra7jhQQJB05TY9NzNLd7Gbz9vX85qV3eXZPDa+fiVDjqqah3o2oBZjf2G6x5RkYTzM8+gZmi4NSqYSmFJFNZo5PAtLK+uMr8WFbt/M30LmSsjCgK+t0cy1fk2iaRjGfX5XWubO2jkwycdNOnolIuaXMWVtPxDuL3VV1Uy0YUI5dV85WXC9pnNeNt1fdOEnPZzKYbTbymcyChe1S5lvkvOOjRAN+bK7FGDrv1nc9ibYrixrFXA6TzUYxl1v4e6XinLpHfGWTko8i+ZLA2JiXcCIP6Hi3P8HJwTCpgsRXP9XD+GSAd8f1CEKR+URYUgtsbtHRPxLgmZ51PLS/G9+7sxydNKGWLvPE4/uwnOzHZjagM+joqtUxcg2fE00tIRUzqAYblzx51N+cYTIKX3+6l6HhaYaPJ65aK4IgsG+tlQfv3cg/P/c+vpl3eOrJfQxcGmUiIoAEimDkV2czaAr8z5/uopDP899f9c4NmML7l1KcGjpMW60J80ScsFC18DNBkilJTubHJGWhRMzvQycJvHY6gkE3is1q4ZNPb+E/f+t9nuis54H7d/C3334LSZJAtaEYoWPLVqYvXmJkZoCWmnY8WS+oGmJaQddeTSGdRcyWKESS6E11GEUL4ViAoqbgWteCNlIinezGO+BFklXqm9oJh/sX3od0VECvczJw7rs4q5vL1s2lNBZbLRt/9v9jdZpXN8eqkmFBEB4H/pZy/ePbmqb9n1f8/H8B/hxQgCDwZU3TJq96otvkWsNvgiiiFPLXnBJeCVGSblhlvZKoz4u9unrBbGK1Yu+3i9FiKesJ+2ZB064r3WabkwcyWq792mIBPwaTmermlmXyRelE7Jp9e7l0mkwyflXF2VlTlpWzOBe/525oJBEO3dKA3Z3mblm7IxGZ0nkPnVUilwN5UqoZBFDUPOlkGnWFjqV9PW52bF/L333rDRTlIol8OaCJehO/PBJAFDR0ksDGJplGMcpn763jl0cCpNTlvX9aqcgX768hm87w4jmFUN5IKA9EioR+cgRPUkJYktBpagmTEict2jh4egrQ0Osk9u3r5Ze/eJ++qOOqKshEROCHL54glcrx+f1NHO4LMp00zKlJFIklCqQL1z8/37yYYWt8mi//2cf50YvHeemyjpHYaYKJIhnNyBvv9uGP5dm3tZld29fw9z86xrd++D5tVTI7t3Vyj8PFD35+nPbOZsKhCHvu2cfLLx9iJgZGXQS3XY8ulOMTu6pYu6aJf/jhMc4NRdjRYaN322YiiVN0dTUzNT6DIlvQNA2zEuHpAz2ARklRcNXW8V/+6SgHL49RROaRzXqGx7yMhrRygmyrWlALuV3ulrVb134tHVoNpZC/phnRStxsH24s4MficBDxzlLd3HLTifStIggCrvoGUtEIqWgUk81+TdlJo8VC1O9DlKQVCyPzRhuSLGNzuckkEgs3D/NufbGAb8X3Zl4CdOnrNpjN5HNZZL1h4e9ZXW7S8RiOmpUNRf4luVvWbRYTb54N0m4vUGtUCORMxEsGJHJkMrm5uYDln1d7lcDTj2/nnQ/6eemlg6xb20RRkxAEkdPTIjM/PkI4o7GuOsqODbUc2FyD7mKIgdDV6lS7WkV29rTzs3dnCBdN9PkAqYpvPX+SdFGAK6zk9WqKfEHl8rQe8dBFZiIqf/p0D32nL/DKgIYmLd/xE2Q9z78xjKIUeXyTm3Qmz6FxEVUykNQMJLMFCsUCCNdWzhoIm1A/GOTJx3dgdEzz4rk89aYwzstRMqKNs0NhPP4kdpuRL3/hPl57+zxVqg3/wDg6o5Ga3nVMnLyIubWWfCaNfUMrsWkP9pKRjKBSUooktDgFrYB5XSPF4RkKw360dBFnaydKsZGiMl1uV5XKahDpmEI60EpTxwMIpWl0Oh2K2I9sexPJITC6/1586zZy+Mg4D0+m+JjrznT73vBZBEGQgH8AngB6gC8IgtBzxcPOAjs1TdsMvAD81R05ulVittlxzdll3inCsx4ivtnlPcWCQCoauWbflqZpRH1einON3VeiqioR3+wt9f6WRec1DGbLde/+dQYj7vrGa1503PWNVDc1Y7Jaifl9yyw/r3Trg/L7EJ71EA34cNc3olwxOCdKEu76xmUal4IgXNPl6UaUUlGURAg1d3v90XPHcdesXWMpwf0bHTzz1D3s6jJhk3JsblCZiQt8440A00k9WknhvjUi2xrLrTuHLkZ48/WjdLVW8eoAHJlcDNyJkpGYYiKQMzAeVBifTdDU0oBOUHhkncgDa5bY3woiQqlIx5pWPrtDR5dzboBS1DGbMSFIekQ1j11IolMzbK5K8e//4kE+uRH6/DJ9fh2FfJ7psQkSin7lnRBJx2hUh94g0722HZdl8RxpMWd46vFtPLDx6jWpqSW2NJRosxdIqybGwwJDgxMk8wLV+gzGfIBoNAmSjuOTGhNxPePeFGfPj5It6fEVnZyc1TE57sE7MYGoM/BX3znKubE0o5cuozfo2bq2mp1bWnjsoW20uiWGp+KcOT9OWrASViy8PZDjlVeOYjLoGB4YoX+qHJSbLTn+168+SF/fKIVCgXAwzE9/dYa87KCos6MTNLZuakcURWRbNWouRTEyW1bPuE3uprV7LWpb23FdJ9bcLKlohIhvdtkukyTrSEYjCOK1L1WpaGTF1ot5kpEIiXDo1o4pVna6u9L980pcdfXXbAmzOl246xupamgiFY0u0wlecOtj8Zyafx/C3llkvR5Zr79qLsXurrqqYmxxOK9r+HQt1HwGJRFESd7ae7SUu23d3tsBD927kc/c3wbFHBvrVKxGgR8divHBWPk973QVeGKzEZ2WYzys8tKvj6ATS0ykTPz8ZIb83E5dSdQzmzWRF8xMJWROXfJRU1+L1SSz1l3k8/sdWKXFa79UylLd0Mi+DoGHuhfjcahoJosJTdNwiCmEQhqXGuTffmk7f/HxFrJ5lfcGC+QlE96paRK58qzHSvhzRsIZic72Ohpql5+HH9tVz2ee2AyZq0vXDeY8O+Y6jUbiRkZGZ/FHMkhqgUZjau4cFBiP6Tk+CdG8jrNnR/CE8jjtVaxr3YSUVZgdGaakU6nKm3EVLARGR9EEjZySB4eBqvWdZHQFjJKRxNQsJslMXVUTa1o3EI2+TyLWD6qNZLwPs0OhkCkg5R9Br29g4uIxBBFCweMY7D5Mdj1mh47kxi3Mdm/i+LoH+aughfvHXAymVucbcT1Wk1LvBkY0TRvTNK0APAc8s/QBmqa9q2navMjbMeDWvCqvQzaVJOKbvWZQu9NyM5qmYXNXUVoShKqbmnE3NC2TUYsHA2RTZd3TqG8WZ139NX3nfeOjuOoaVjQHWQ3pRJxYKHhTlZhrYXW5r9IJdlTXlBPpK/SKHdU16AwGwl4PuXSKeDBAKhq5qeGSfCZDxDe7bBBnJTRVQbJVod4Zvcu7Yu3Wm/LsWusmnVWYHh6mbyzGrrV2PvXxHbQ4ytUJi5jjqS16dm7tYPtaN/d3aUTzepqba3nswU0YFw5xOXYlyB89u4fW1nr+8/dPEckbaGmqoqnewbwmqyBKDHuzeD1BWlqbsBhFUItU6dJopbK2430brPzFs1v42tNr2byhEd/kJDllcQJ+5zoX67ZuRi+W5t+38v9LBWRl8cZlKmnk//rWQc4v6dKJ58oDq8HI4uCQpqmohSyGUoqnHtvKvo3ldTibNvDSwWke6LVyb6fG/v1b+NfPbubRrjz3tpWn6kciOl69kFuQNFNFAxdn8rSvX4/dLGPUC6yvKVHf0kxbSzVHBmK89sFl3nv7OJ5IHruUhXwadS4BKck2ZiJFGmqsyHoDl+eqPMm8wKWBCfyxPIKoI5wWGE2YQFXQlAJF2cJ//+EhHtnfyfbqaNmwwFaFklz5/L9JfudrV9M0QjPT1xy0hTsbd8smQ9WoS3SDbW53OZFcUhnNJBPEQ+UWrGI+h6qq5LMZ1BUUG1RVJZdJI8nygu7xzVBSSoRmPQjS7b9OSZapaWldJqlmMJtxNzQtk10r5LK46hoQKLvupeMxEqEA2VTqusWWlYh4PQtDhNeirI9dBTexs3odfufrFkCn5ri3W0c0WSCdiHHi7DgNdpXPPLmD3WvLGsKapnFfF+xaY2PHtm4+scWASdZQRQP3HthCZ901rrOlIg9vcfOpT97Ht398mBOTKk6rjo6OJkzS4hqciElMT8xgd9mpqSonqnYxg04tf34Npiz/5k/u4dO77fyrP7qf0YuXyKZzaFp5rbWYM2zft3PhdzVNW4i7eiWxeNOtN/PNl4f4+eHlbYnhUBTv5DTCEpUQNV9u5dm1wc0nHt2KU5ejJBp46UwGu67IQ60xdu/o4i+++jR7qyN8aouISU2RVk386mwKT3rxPWl0tuCoqsbscqE3GAlkA+XiWGsrekmPPqEyfeo8aiJHLBYmk0lRLC4W05xNaXT6WmS9A5Pbh8EiI+kl0qlxigUPkk5D1otUdyYwWAVyyfL7tvm736B26Cx/sN+FXUkiOOo4r8ZudolcxWqS4SZgaTScmfvetfgK8OrtHNRKZFPJcmWyWK5qJSMRokvu1gu57EKAvBM45zzor3W3r6oqM0OXKZVKC/JnepOZmN+34qQzsGDvWdbsuzkEQaC6qRlXTe1CFTYeChKe9ay6PUQpFJYlpIlw6IYJqtnuIJ2IU93YjCTJ1LV3UiopFPK5svD+Kisu8y0Y+XS6/Nn5vJi4OqiLJhul1B3Tu7wr1m5vh52HH9zMwUtxvv1WEIdJQMonePPNk0zHRfRqBrtcYMv2Hg4f6aNQVGiqdwIar54M8J2fnSQ/16O73pnkf/hYNduq4jzSY+CTD3QyMzLMB2dmUPU2BFnHP785zY/fnWVHs8bG2vLN3IkpkZ8cS/O3P+1nYLbII2slvvLprayr1dDyKab8Gc6dHyHq91FIJ/neWz7eGF4MfIlElpBnhnROodaY46uP1NDlLPBQj5l/+8XtWIRyoisIAgWdY6FHDSCBg++9NjlnoQyqWuKxNSX+3WfXYTDo+MFP3uHkmWF0Wvm86KwS6dm6Ea2kkYqG8c/M0Luxi5YqHV3mMLKSZkNNkW2NCpqmohWzPHrPOs4cPcWloMz+tVbuf/xBjh86yUtHA2Q0I5LRzgMP72FXp4ltmzvYtW8zLnVx7W7qrqGxs5Oj/UFsUo42W464oufnxxOs7W6jur6GsyMJupwFPrtDzx8/VAvFLCldDUf7g8QVC6gaaGVJtjvA73ztKsUCerMZWa+npCjks1miPi+FXPlGVdM0on4fyg2kGlfLfE/x9WYjEuEQIc80RouFRCSMpNOTS6dRCoWFAbOlCIJANpkgFvAj3oISQ117B7IsU9ta3nXMplI3vbsXDwYWCgf5TIaI13PdQoKzrlyJtlVV46ytw2ixLNhEu+obrjn4fCWJcAh7VQ2lkkIxnyPi9Sy7Zs5T1seOIBruSCfm73zdAtRYNR66byOyzc0/vuJhKCzRaitw7OApTgzGoFTApCbpaHGj1+t547VDbNjUi0nW6PMofP9nx+ibKcdOMR/ny/fZeGajys4WjY/1SDQ3OHnn7eNEcCOIEsfHFf76+8fRyRIPrdej0/L4swa+/36UnxyK8/zBAOudSf7wsTY+sbsKrZAhltU4fXaIVCJOYGaaUyNZ/vlYlpRWvr7nFIHQzDTxeBpNyfHZPVYeXS/SaM7y77+8n61L3tWSZEaVl7dd/PJMlh+9HwS9GU3TaDfH+F+/0MPmeoUPzszywvOvo83FKq2ksLm3g5b2VhLhMP6pCVoabLhtBvZ3CpgKIdz6HA+u15NMxQBIUDbi0idVZr3j1PR0U1SLMBWnobYVi2CiYfMGNJeRlD5P/fq1BHOLMTefNNPUuY18fgyTo0TcY6OQEajqmkRvy9DcvZdcbhBNlQkPr6MQeZS4V49NKdLz3ttsOfI6/3tjgWI8QMpy+7tTd3SAThCEPwR2Avdf5zFfA74Gq1NtmMdeVUPEN4vJWn7RxUIOe1UN8VAQR3UNyUik3M879+/bRdbrrzvhHAv4aOpeR3B6ckEB4srhsiupb+8kFgxgMJkIeWau8pefJxEJUyoUyGXSVDc1k0kmUQoF3A2NyyoxxXwed0MjvvFRGjrX3PA1JSKhhZ5gs82OUiws+/dKLBWXd9TUEp71lAXr1RKxYGDVEmsmq52IbxaDybwwdNdaNcPgFUW035Xe5Y3W7tJ1K9lvbn0dupRgcOIIbQ0Wuoo5Hn7iAFG/lwsjUYRSnK89u55QMMZ/+d5RcoKRU9MhQECQjCRLRpJLdt1tBhFREHAbFe7Z18Ppo2dIFEQ8GTPzOVhJMqKVMty/Zw2xaJw+/+LQqaq3s7lRZX13PTPDQzRaCjzzR9t4/lenSab17NixoWxv2zdBXF1cawcnJM6MX2b7+jpCoRh2hxVZhHA8z8SEl6Iq0WrP0+pUkY0WTg6ESGhWnt6iJ54qcmiq3F/v1GV59t5mstEAiZAffSnNF75wL6lIhP6xGO8NFhiI6PnVK8cY8gqULs6Sl+08qc7S3trE53s24Z2eIZvO0tTRypkfngfJwMxsmFRRhyAIXJhKYzt/mfNemcKcjeiov8ivXj/L4HQWqTSGpI2yZ1s7p4cThPMGDvbHuDR+lFDBwGM9Onbu38Hf/dNBYqqNowMhJr0JIoqJJ3qrae9o4sLpC2hz2sL9/nIYlR21qLkUkvlfVif7ZtbuzcRcnd5ARk0gShKSLBMPBZbMFJjmdsIaiPq8d6yX91oGQvOUikVa1vUw0X+B5rXrEEXxuoNw8+YWqWiETCKOpmorzooU8zkS4TDFfA6buwpRksmmEpistmUxLhWLUNPcyuzoCCbrjWOuUiyW3fMEAaVQrlK66huJ+r3X/B1RFJdVimWdnojXg8XhJOKbXbV6h81dRcQ7iyhJpGJlDeP4Ckn470of+2bzhZuJu56Unu8+fxRJU3hmfx0mncCate1MD48Qu5TggR4z+3dt5Zs/PkRcMVHEzLnvH6cg20CEiQQLpUKZEkazAUNU5Z4dXQQ8HiZmE5yf0RDmCl+CJFPExvo2PQf29XBp4gi+uVqPpjNhVOI88UAvEd8sxXiS//HT6xkY8nDuko+n72tHZ9BTW2VjcskGYFh18u1XJ+moEthcL2EyGcjlimSKAmOj08QzJSxigS0tBmwWmQvDEbw5M5vrFNa2u3jpZJaiYEbTVJ7cpMNlriIZDiIXEjywvYV13c0EvV6+/VYQUWfkV+8PI6AxESohSwlaHfDxB1s5sG4969fPMDgyyz339JIa8WLDiaQKFPNFrFYHOknP7OQMVs1Etat8vjhc1XgnpzGLMvmcwOjJU1hMVjzRKZpcrdhq0gQCL2KsShAYdtHU/ijx+HFMdg8Ge5Rw8B2MLj9Kuo7Gjl3MDF3EWF0u/LVPjNE+Mcb6f/s/8d90YU5Odd62os9qkmEPsFTHpnnue8sQBOER4D8C92uads3Sp6Zp3wS+CdC+acuq92XmJ5iXPBGxgH+ZHE0yHMJ0h/rXrkc8FKRULBKcmsRgseCoriGTiKM3mW9o82x1OBFFcU4BY2VPeiWfw93QRMgzQyIcRhAF3A3l6ealQTKbTpadnozXTh7Dsx40VcXd2ITZ5iDim0We6yubT1DtVVcHmUIuSyoWRW8wLrSFzFenb4WlSbWs0xPxzTLoVeioVfHGNXLazfe6rYI7tnaXrltDQ/dN7SfmMTCdKvHInlpEVF5/+yypRIrBiAFV0nF52EsqXSAnlRNGRZMwqwkymv6qKuMJn4neTJ4t+3bzre/8hoJoJqQ6EUSJfW0l9LLMe8MKgt7MP718CUUDYU5hQtM0emoUMpEI7obtqGqJ2aiHcDBES62ZRx7ZxfvvHOPCeJo4V8jySTJOs4WH79/EwSMX+eufXELQm8rJpy8JgpGHdrhpaK4jEQ6zZX09L/zyGD0bHyIeCjEa8tNWZ2J4uoDFbiWfjlHf3kXibQ99feMISo6BsQRa0QA6I+c8efa06Ni7dwujYz7OD8xSbdcxPTYOsp63z4SQLyQQDOU19UpfHoeU44l1Oi5N5Bn2ZpAEjc/stnPiUojppJEzM+DSy9Q11zE+6eOJPT0EY2co+vJsaNLT4DJgklU6Nqzn1d8cIlY0YpJyKMUSsWSWJkOeXx/JYzrtI5YVWOtWqKkW6ZvMkCwZEfXl/+4Qv5W1ezMxF1hWWNAbylrphjl9dL3RRDzgX7Wc5e0wLxlZmHPRbOvZSKmkkE0lbzjIbLLaFnYWywWVq5PhbCqFraqKqM+LWlLJxMPUtLbNPX7x+ZV8gbDXA8K138aye2ceo9kypxdfQNM0ZL0eZ209Ub/3mgPOUZ8XDW3Zte5GNwjXQhCEhZuUchXfW/7MQkHQtN+W7OVvLV+4mbhbtiOW2NMusmXzGn796yNMeSJcmMwgyE684SyXB6dIaWYUyVhumFKLiKXcMklFgILBzdn+WR772B5eePEDMrlyP7EmGWmxFdi5zs1bZ0MkS0YOXkowMHEEb9a4MGRcbcjR3uogEIjSvXELmeMniYajpKJhvvLF+xkdmuDQwctMZawLFsvz5EULB3bUYLdb+esfnUc0WBAkIz85HAf07GkXefThLUR8s3S1uLk0HqOlWk9bdxcnzr1Ba7uNi5NJTEYLskGkrr2TbH+M8dkEkjrO8GQUsaSCzsh4ykq3u8Bn7rHS3t3ON35yEv+sl3QyQdDrZ2wqy+DzR/n6/bvKH2xVK4VinrHYCMVcnip3DXqDgfHoOKgaHVWdNM49JiPmKUYU3F1tZMJRCoUcCX8j+aSKqbiF6loXwdl+TDWzFHMlcgkjSD7iXh1m9xSBwC+wtkTJxR0c+tiTuAM+es6eQhAEnmmwMONzrnZpXJPVJMMngW5BEDooL+rPA19c+gBBELYB3wAe1zTt+g1Kd4h5BYT54GEwma6yRF4N84FL1ulXDDolRUEQxWVbcCWlSHVzK1G/d6EqLet1RH3ehX6wRCRMIZsln0lhcbgWqguyXr/Q1nCtxFlvtjDedw5EAUdVDZIkE/HOLiTCJUUh5JlGK5UQROG6wVIQBayuajKJOFana9lE9PUsReflgK4l0bZaor5yBUSU5YUL67yWZ7Nrkj/+zB4OHr7IO5fvzFbrFdw1a1cQJX7yzgwCYDHAZx/qpm3MQ04w8ObF3LK2gnVVCp//5AO8+MuDRHMyM2njQmVXEEROD4YxjsfYv72dDZvX83f/9AExzUFrtZ6qajeDM2P48jYieR2dVSqNUoHLIR1iIckzj+3G6/Hz3C9PkEqlsVpM7Gus473jk5w8dp7ZcIG6ahv7GmQyOYWjw3lyc7rFnpSO7z5/lEBaQDQsl7bSNI3+yx4GB0Zw2U1YXNVEpSpOHDmNxWZlY5uZffs24fnRu4TDMfrGkrx+/gxFYzW/uZBHU1W+eKB8Df3xoShOfZH77tvB7NQ04VAMf9bAu/1x2lwiWza18CA6Xupb3iPa4VTYuX8vVa7LdPX28NLLB+np6WDCE2e63NaPRaexdm0bA0MevvGjw/jSMnvXmHjonnV4Z7xkMzmOnhjk9KyOA2sk1rVVUdPUiHd0hLaejbz4m9P0+yUe3KBnY1d5MKr45jlOTmnllg2lcKd2Nu6atTvPfHzNJBOrUra5FsVCnniwnJCtpGeuaWXljqXxcalk5HyiGJ71YLLZyCTimO0Oivkc8VCITCKOyWqjqql5IW6brLZr3vhDOeGcGrhIqahQzBdw1dVdpcoTnvWgN5vIpdI4a6+dSCqF/OKOm92xrGouiuI1VXZUVQVBQK83LGg63wqZZIJcKklJKS1cjwRBwF3fiKqqxIMBdHr9bf2N63BXrdvjozkGJg8TU4x8eqeFR+wSksXG22eCDJ1KMS9jqVPS/I+f28zQ4AQDniyTYW2ZK+ZISMN67BKyUOKPv/gg7757mg/GoNai0VBlZHebxNtjUNB0pAsF9nTqODuapiga2bHWyd7dG/jJ8+9xbjDEuD/LV5/twhtM8fa7p5EFlURB5umddjKpNEM+hankopX5ix9MIwogma+WgZ3yJTj83nEKyRj1rU3MhrNMzwTIpJLYbWYevn8TvN9HPJklnRZ49+xxJuMySDrOe4tsazTxH/50A9998TyhgoldG2qwmwRGBicwiApv9OdoNMe5b3cn7etNfPvXI+h1i+9LJpVAX22nEIti7mokNj6N3m6lkMkuyP4phQI6hwWTqCHNZnBJFmLpMLVrH2YmcRaL3U3IexFLjYdS3kDUu5HmtZsZu3CMhs6NJMLjuNZcIOaxYNbdj/ZVG7MDF+k5ewqAdL6woqThzXLDZFjTNEUQhK8Dr1MuRH9X07SLgiD8J+CUpmkvA/8ZsAI/mzugKU3Tnr6tI1slqloWZo7d4lDafBV2vo9LVUsYTGYsDmdZdzcepZjPL5MXKldIZnHWlqvSkiyRTSbIZdJEvB7s1bUo+RzVTc2EZz2oV0yX36iNQ1UUmteuJxkJrxg4NVVFbzQhyTpcdQ0r9srNI+sN5FLJm64CzEu0zQ++XWk5vVpKpRLO2roVNYe9SYE33r3AkCfF3jYDJRVOTt85U8S7be3OawBbyCIg0NToxupw8v7586jGxRabaEbl8sAYvd31rO1Zw3/97iHSLFan+vw66ow52hxFQp4ZVBXu7yiSiGdZu6kXu2WGEjmefbCdklLE5nJy+YcX0Ax2fvDLc+RLEMobAT1txgLe2SBCKUNv7w7q6yKEYll6etrIJZPohQneHsyjCIaFass81YYc9U4dfbMacjHF4x+7l9nJaVq6OvjpyyfJYMFRZ2FtVxPfeu44g9PHyKh6GpvqGBiLEsgt+awFgUg0tfB1uGjhn395jmQqy7/+0l5aW/385HCcUDxGe2uKZFbhypGHYX+Bi+cHkEsZTh86hl4nce7Yac6OZUFvo8ORx0DZdKbK7eRCSAEJzoxlCcUvMOTNI0gGBFmHJupoqTWjlUqcPHqBepfMxOAQgYQCSPSNJ0inc6SOjtBS72CtLc6IJ0FRtlEq5le8cN0Md9vaXUoxl8Purr7lGY18Oo3N5SYdj5Yrvsk4zCVrAKGZafRGI6IkLygmrCQZqaolUrHYwkWwpJSwV1WhKgpWl4tcOrXQ/rWSEdKVWJ1ObO4qsqkUFofzKu1kTVWxV1cjy7rr6ipb7OV2BtsqjESWMh/Hk9EIOoOReElZtW7+UkpFBbPdeZW76vzfUEslcpkMhXyedDyKiRxZ7syOxl23biU9CU2PIJQQAKNBpru3k9ExL+eXjLsogszgiIdCLs8ffXoPv37jLKeXdD4Hcwbevxjn4S4j3vERirks7RaVRpcJ2WjGbLehKQk+f48bQc2zbvNGwrETjEbh0MUYIzMnGElYEUQJWRIIBqMUC0Xqqixs3t5L+teH2LZ9PSHPDHU1Gd4+F8GXKSed0eLiDYukFtjcqmdoNkdaNbJjQx07tq/FOzFGMF5iKFxkrdtK784dDMwe559/foKZaJFP76tDr5eZ6C9rrc+Tyav4vEGKcynKr4/5Mcga27qd/Ks/eZC//8ERLkYstEwGaGquu2rG0mA0kwt4KRSyTF+6iBYvIBezmAsyglkglgyTVrOEZ0M4amvRZ3TYbC40q8ZQ4AVMdWmK8jnqe8uv1Ttgx+GqZ3b8DPlcltDMJIKh/EGYnDly0X6s/+U91MZG3nv6M7wfyPJfwvVsKXh40HB7c5ir6hnWNO0V4JUrvve/Lfn6kds6ittgvk/YVVeumpaVHYRVawg7aurwjo9isTtQCvlyP5dvdlmwu3JA7coKtNnuKCswzAX0iG8We3UtoVkPmlrCar+5irW9qvyaZH3ZEnS+ah0PBRFFacH0QxCE6ybCcGNnp4hvlmIuj85oQNYbFh4/L9EWnvVgc7lXPbRxJe6GRpLX0Bz+j3++h6jfy4nBKFs3dFIoFDkx6V9WJb1d7sa1W1AgXyjim/bSKEroDEZMUha1kCaOk2DOyE+PJmi1FRj1nidfEjCKaWxmiSqrxEBA5OEdtXSt7eDkW2+Qzops7mlGbzbzf/zDGxTNddQa8wiCwOkLk3hTHoS54RhPZvlFbzKh5/uvT/A/PbuTwPQkr56JE80JfHDGw+61Nnbt3cqp8WOEi1e0sZSK7OnSs2V7L56fnCQqOfnBiyfJ5FWUg1MomsyOFh1vH58klczQ4JYYjoiURCP/+funUHUWhGW5sMjrA+rC11Cupj+yu4VjR/ooFEvsqBc4OWPhe+/HoFRkS4uORCJLY52d/vEIX/3CXg4f7aOt1sSmnRs5e7KPlq4OxP5BlHyGTz+6kXg0zuB4iFFPHOak24uqiEEn4TDLJEtzF4pCBr1kJB7PcmKyxKda6jh1KUAga0DTNExCgVAkT0aR+cyeTbQ2TGPsm+XMSBJBd2dafu7GtQvl2YF4MLCQqCrFIplEfNXb+VaXm1goSD6bA0HEWVtPLHB96bL5eLSUuraOhUrx/P/joSCCKFLM52+6vcBks5NJJlEVhfCsB3dDI7l0imwqiauuAXdDI+l4/IaFhfmdr2uRikbI57IUsll0BuOy1jNXXT3peDnBv1UDDZvbTSoauabmsN5oQlVLlIoFnHUNOE3jZO+IeE+Zu3HdCqJEKpNHNov4J8bJlHTotTxOOUMoZ0DVmXnlfA6ToJCjj8GZNDZKZFUdm1pNDHjy9DSZ2P3AVsb7zzPhTXFgRwsbNvfws+dfZyDhhDl1mmg8w3O/PMloSAMJ0qqR0SgL8U4Rjfz4cIyP9Rjp7Gzk1VeOcHJGYvyfDlJjzPL0J/bS5c/jG1Wueh091Xke3rsO89kZDo8WOdgfYWjqBNPBNEVVYkurFU9I4de/OYJFLzAVKVEUzDx/MAhoCLrlOwGDYR2D70eZ1zzOFOHARhexSIxjxy+xrk6gz5PjtSEb2uUArQ6Rce8IOqsRo6onIWZwNDdQGpuiqrmFqDpDTWsrxelyvpAUc9jaG4icCVAMJzFXlc8dQRAQJRU1b8FUvbj4BM1EKhZF5xjCQQuClMHZGgIkCjmZZDTM3rMnOfepvyIuSSQFC9KrA0ja7ecMHyoHupXQ6Q0LfcPFfI5CNotSLGK0WK5ZNldLJeLBAM66eiRZRqc3zA2FqcT8PpxzibVhbpJ6JY3LiNeDqmo4a2oXpM4WBh2cbmSdjupVDJXEAn5KioK9unqZRqSjumZZoE/HYxjNFtKJGMA1BeBvhmI+h05vREBYuMBdibuhkVQ0essGGqIornjxKOSy+CfHqW1t58GtNXz/tTE0QBDv+LbdXYcgaFitFvxZPa++Ng2axp883Ep1YwOvv3MWVZAZC+SZShqYSsKz++tpa63DMz5O65ouvD8+zDtnFQYujfPwowfIm0YZG50knS2iWOoRgGDeyN+/PIGoAobFBFgrFTjQbcQXzTMaLSd+j2yrppDNcPpyGL3OwOZaPWdHFSZDBc7++CChovMqk43eBoGd+3Zw8uAxIkUTggiTSSO7W1V6OqsZHvdzz94u6kw5dt27Fd/4KM6RMMemQDPYWc2GVoNLx+Yt3Tz3wkEe2NlEfXsn4R+9yUTGyTpnmmc+9gAjl0dY27uOWf/7eL1BsiWZk6M5jI4gJ8fyvHZxCHRmRAl+/sYAdiHDri2tgMDUpfK0eJO9xLNP7ubw0YucuhwhWjLjMgs0r1nLqWPn6Kwz8tx7PgpzUm5uwjy+t52GzjV87ycH+X++f5hGt4zZoEe0uhDFD31YvSFLz+lYwI+jpoZYwH/d3aNkJILeZMJgMqHk89S1tRP1+4iHgpjtzoXHVTe3XNUmAeUkspDPLZtjmK/Czs9BrGZ4OpNMkEunlj0PLFaPy+0UVaSiUYr57MLAm7u+8Spt31uhkM9R1dCEZ3gI3ZyG8NLXanE4ySQTK9ozr5ZrtQxG/T4yyTjVjS1kkgrxgL+sNX5nlUnvSowGHUablW/+ahDNUsMjPTo2dLSQzhR59/QsgiAynjByaERhY52RT39iB5dOnmLDzi0Ivz5I/4yG8NopOupNPPvUbt5/5zhKNsNw3AiyAQF47mgc8hkw2haG66CsZdzgMnJ4OAeSnjZbnt51bQwOTnJxVuHeDW4ujCdJahZe+PVpJpMmuMJkQ6ck+cQTuwl4PJwdjoJoJV40YEjn+MPHujlxbpxnHt/GuRNnaGisxWQ20TkxzXNntWXyatfDJKts3tjBmfNjGJU4+584QMPpPn5xTsEuZXhkawNZUcHV3kBq0gc5hTxpGhyNJONJrAYbek+WGne5/cmmGglfHAG9jFxlI5WJ47BXoWkakrITo9VFYPxn2Gv0GK0SJnMtFnsdwYAOq9uDrbYISBRzCsHhdtZuu5czfyKz7T/9R3yNzch//Kf8q7VJXr7Ye9vr487tSd8FiJJMPpu5yhjiSqJzrj/zvvMlpUg2mcRks+GqX952IMnyytVXQcBZU0t6iXalvaoad0PTTfVh5bMZ3A2NRGav7s2dV9DQG4yYrDaSkTCqcuuC/kqhsEyLU2cwUizkKCkKsaAf4wrVdEEQ7sgF4EpSsSgt63oIzUxzeTJJFhM5fv8TYYBEycz3Xu4nlCyh6syoOjN9Q148UzOIqsKTj25mT7uETiuPI0/MRAnOTCNLIjPjk3zy/nbUfIZ16zsYHxolEk2zdmMvja3Lt4n2r9Hzv3xpK3ZpcUTZLOR54EAPW9YsfqYT3hST/gyDYR0717n5+CNb2NxY4vOfuoemWme531CfZ11VcUHbMugLEpr14HJYMIoKzZYca5w5tnRXQynPpckUHxzsY8f+XZw7fBRHTR3F4tWVjiuRtRwtxii72wTOTqT5m+8exJsSSUQiDJ47hz9vZlubzOf+4CHee+cEb5708s8vHGM8aeHHh2Kc98qMxQ18/90wYcUKSyohEwkDmze109jZQdC32FY1kxD5xctHqLMJfOHhVrqcRdKKzInj/ditBh7c2cz6Jj12MYNey/HArnZMVhsXT5zkqQe6QZK4FDJyyiN+JBLhKxEEgWQkfN3h4WQkgt5oXNBgl2S53LtqKBczlt7cC4Kw4nMV8jnc9Y0UlujsGsxm3PWNN9wBW0rEWy4yJKMr++hKkkwqGsXmdiNKMlG/d0HF6GbRNI3iFdejeUc6vamcoKz0Ws02+x3Rk19KPBTE5q5Cry9/Do7qWlz1DXdco/9u5den4xzv86O3lHWGh6bT+L0hpmaCPHFPOw9trcIllocLgokiE4PD2O1WLhw5zoP3baZJn6K+2kw+m2VyOoCztoaeHVuxGRfP+Rpjgf/wp7vY1rh8N3lLl5sHDvRgFstrIZIRGJmKcGY8Xx5evn8jvY0yX/mDvezZ2ooqGZDUApvqNYyUf6coGvGMjmIyGjAKOVqsOWzEeXxXLVohQ07V8eMXjtDa3kLEWx6cl8zWG36+mlqiSoywp01DrxP5ux+d4q3zCTK5AuP9F+gfCWEhzde/uIdEpoi9aCQ74sOBhc7qNXTa2qmuaqDD3Eqbux2Hc3FHxmmrwmi20LKxl2w0hk5a7IVWpDN4x09i4DGSs10AlIRpZoZOY9bvQs32kk2oxAMamXA1HRt2MXbuBGzdxuS+e9k8NMBnwh5a9Hcm5n7oIrdSLFLIZVeUApNkeaHHSi2V0FZoI4gHA2VdXQF0hvKd16041+mN5XL+rfTRLqWQyzEzNIBsMOIbH6W+o2vhZ1cqaKw0bLJasqkkuXSaQi677PX+riyT9UYTUV95AHEmtbKhxO8dhQyaqEOQdTy8o4HNW7r5v793iIRm5ci0wPmpGdIlPbx6hI8/eS8F8SLvDRZQRR0dvb30HT2CXhZp7d1N90SQGpeJkWic8z6J4Rf7UTQBhMXkL5MvEQyEUZZIpGVFG9987gTposj88MhwRMdwJAeikXfOhzk9GCSU0vPme30M+/KAkfs2VbF5yxr+9nsHiWs20pgo5nNEY0n+7NFmcukk4UgKV20N3/vZSaK4ODqt4P35SULxPEPhy1z2i8tuv+VSFkGA4pLdgE/scLN+XQuFXJYpz3nCOZmHN5oxWU283xcliwVPOM+Zs8Ocm1HIFUSCmSKCYXWtCW+fCWC9FGAo7Fqshkl6LvvSPHxfE2G/n3BaoygYuTCR4S++tJ+L5wcYnY7w9T+6h6GhGc4Oh/GF0qQyKjXNzHuboObTqPksgs6AZPqXsWr/lyIVjWBxula8sC5VLFhJISeTTJCMR9ClF90Lb6XqaXO5ifq82G5hUHopkiwTnJkmnYgvFBuWVlKXVr1vN74Hp6cwmM1IkrTwN8oSnNeX4fxtYHE4iQX8SHrd7yzu/0ujqSVQcgh6C2vr9Xz+k7t47Z0LHB8vMZ0y4D+doqSJDMyM8eS97fzhkz387c9HSKoF2tauYeLyIDJ5NGDrOjc1tTbSSYHfnI6SyAmcGz9GQlssIhVVgYA/RLagslTr6/XTIQ71BcgI5biQUo386kwa0ONNFPjRL04wESiSe/0c0bQC6Omuk/j0J7bz2tvnOT6hgqgjnsggyzL3rLPicprJFAxU19Zw/PQIl8Pl8+vHb4ygqSqu6TEiKQ1YujNYxCxkyYqL+dP6WpXPP/MwEa8HkynKsf4QbQ6Vzq5Wxif8DKeciKU8p86NMh1I07OhDlGUMBtX14pql2wkxry0WVowmxfjorMxi5prxOZy4fecBsDdFkIn7sVsdRIMvYcQ34jT3YPX+zyCdh5jzQRisQZhLuiqqspfTRYYyvvYYbj1nRT4ECbDUZ+XklIkGQ7hqm+4SnNx3ss9k0yg0+uXJZdQTpKb1qydEyRfuacsn82Wq7Cl0jU1LG+kKbxa6traScdj5ap2ZnVJYSoWpZDNYHG6SMdjCwN/N0JTS3fKZei2Wf7+3XFb+rsOoZjha0+vIeqZIKsUKWUTTA0Nk8ypYIBuV5Evfvo+zh85SnV9I2dOXODyVAYwMDiTovnIKdb29hCYmWLo8jhjEYnWYJRd+7dhkM9yZhKmknqqdGkOrDVxYiRHMCGRziroZZFMsfz560spglw93FVjzLNrnZNDF/NMp8pWoZfGY7S5JJx2gaPnphgZ9xErlfWMXXYTdncVpdkEVqcTVS3RuqaWv/rmB2ArJxAug8LOnlpOXAoxEJRAlKg35SiWNDIFjS883ICoN/DN30zRYFMJZyVGPQq53AiDU3F29tbTvaaZ0MwMJouVRnuUHevt/Op4gNdOBtiz1srGTid2dw0/+k0/s+nFhFjLp7h/rYF0SeT0zOJFyZsxQIartoULkoW//2k/ChLanLSSL2fkO88dJZQREdFx+uQALrPKA5ureetsiOmkngu/mUGQyjFILWSR7dUoiRD8HiXDZUUYjcDUJCar9aq4OR+PkpEIjppaRFleVqnNp9M0dqwh6vMuk4a8ktDMNIIoYrbbVxx20xmM1/391VLf0UUiHMJRVY3JaqO4ChOkYiFPMhLGaLFSyJYn5VeX0GuoioJ0C4YfdxpZp7tlacwPK/d2y3TVu1FLGmf7ZgnNeggFo4AdSUnz9c9tKg+KKwKBWS9jYRBkPWlV4r13T9Neq6d7x24G+y7jSwhM+cZ48un7eazYhydc5PCEAU3J89gGkURK4fSsSCiaRScv3vXrlCRpwUBGW96qIKh5Huyx4gkWGQzrQNYx6M3i0Of52CY7xy/M8quXP2AgqAOMaJpKVW0VelnE4nSiCSV6tm/muz98m+lcWV5TKyls67SSyRY5Olk+BrOQo84uMhbSeLRHZt89B/j2T4+TzguARiAucPbsIONTQRRV4D987X6OfnCcmqZmxkcm+cI9dRy/GODNCwnqDBkSjhKyLBCLzNDual94PZqmMTTZj6nGiVtwYJ3TW7dZHNhWuOYAWBuGyGQv09C75AbadJx0QcTdBOHJGXJJKOU3k1Ui1K1X2fexr5YTV0FgPJHmH0trsRgS7LjNtfK7P0NvEk3TEEQRV109oZlpLE7Xsj4xTVWxuqvIJOIrVjEEUSTq9+FuuPadcTGfw+JwXtfv/kZkEglifi+qptK8dsM1H6c3mtAbTeSzWcz21W3FFXM5XPWNTF2+SNuGjfgnxihkswiieM1Khslqw2Ayr9j//NtGKRRIRsLYq2vuiovC7wRBIuDz0dDYiKO6mg9eew9VE1Glcq9ZLKfhnZhAb9BjtFgZ6Qvhy5aTO7NeZPPurQye7+PCWJLBRAm1CFabhcsnTrBx507Gw2eZSsLaWpGte3cQTx8jmtexcVMXZwaDxHJFDrQp7Nu3nZ/85uKyQbo6Q4Z1NQK7dq4nHT/KsDfBIzvrcboaiYQi1DY1sbbNiSTr6HvdA0jMJERefmeYmajCq+fPY9ZLyCILiTCAzajR09PB2ExZ2kzLp/jjz+8g6A8y5kmilwVCPj+f2qpny57tvHfoIh8MFen3lwArVaEMgjjLq8d9VJu9dDfb6Oiox3Zygs99chPJSJhIIERRFSlk0sBiMvzs/mqam6qYmgpwembRUv1KjOTZ3mnh/ESKNMuHngRBJJAWMKhp/uzT24iFo2jFHC1rOqkZTTCTEmBJX6BotKEkQojGO+LkddcgShKJSJiWdRvwTY6jFAvYq2oWKsCqqmKyOUjF4yvGF4PFssww6ZoIAlaXm3wmfUPlh2sxffkSeqMRi9N1zYKFIAg4qmvKNs6Z9KoG7eaVfcJeD6IgojeZ8IyUe36vp/hQ09KGpqr/IlrMV5IIh9AZDLf8Xv4+kMkpCJqOzt5eAr4QwUCYeLG8VV9CZmp8BrtJLG/biwbOe5Vy3iDJdLS5sFv0HHr3BB9MmxBlPfd22vFPjGN32kEuwkQSg5Jk+857CM566fd62djTSkmdoN+fp1kf5ekn1nFpLMJ7g4ttYmYhS60hwd6d2/BMTDHytocnd9hxO1zIRjP1rS2Qz7F7/2a8zx8jmy3Ho1eP+xEE8MQFRFWh6sxhQnnn4tB5qcC6NR1EwjGOTpZbPg70uti3Zz3P//RdetauxzMxwf51Fqqqq5D1ev7hpXFePpMBLNSacgxeHqdvWuH099/BbdWx674mBicifKLNTJXJRjzkx2S2QrZAybZ4o+eJTuPa2EkiGCKXyywkw1eiqiqe2AzZkglnUxa9afm5YXYoJEMySV8bLR0HGDr3Kk2d+8mkDIAP3ZK8rstp479mxzgcalka/m+JD11mUtvaRioaITg9jVoqIUnSMr3EqqZm0vEYjWvWrhiYV0oWE+EQSrGAzeVGZzBidbpIxaK3tR0X8Zf70lKrVGG4mT5jUZKI+mZx1zcxM3S57Kpkd1C4wUjwrQbk+Wq71em67pT0tUiEgwvydbeiS/r7gCYb+MU5lS32i9Q7ZR5+5nGOHB9AkMsndihn5JtvBLCQIn8qS0m3uAUVzOp46fXzzIQLRIs2XLocvWusvPjeOA0uHaeee4fRjAtBhMEgNJy7TP9siWBWYuQ7H5DCxoY6lUc+tp/h/kuklkg6m9Qkf/65fXjHRwlMTaAXNNY1Gmhft5aRvoscvRQhdNjDljXu8kViPuiKOoYiYBEVNraaueQtgbZ8e1wSRV785UH6giZEWQd6C795p598USMYy9FSpUMQBZqaGzl+rJ8Rz/KE9rRH4rQni8Ok46t/dA+nzwzyX39wGmQzE+Me1q7vJDrm4+QpL3/67C5eeP0SE4ny70fiORTFTyyRY3M9XPCVQ12LrcCu9VW8eSZIsmSks07How9uovDmOU5NXb1r8oldVazr3sLBD85QFIwcH1ewHn6PtLB8QKb8lhgQ75CSxN2Eo6YWq8vN9OAAkqzDVGUvn9NzW+32ueJDY1c3zJlLLMVss1/V1pbPZEgnYuj0xoWZBHtVFblM5pZNJqA8xFzd3IpvYuyGu3eiKK46UTRZ7UR9XnQGI4lwiFQ8iqwzIErXv4QKgoBwC3F3flhQknW35KiaiIQxWa0kI+Ebvsa//Mq2m37+L/9fN/0rvxPOeCTGpz3s84eprnPT0NZB8MhZBAMgG/jZ6Ty6XAS9Xk9aMC9TMnr7lA+TDoajdkShyJ52kUlvHG8wgc2so29GAZ2Ngs7O2bPDBKJZ0lj4ux+dIa/JiKUCX/rSPmK+AOFYjqXp1uPbq+ndtIfZ0WFETcMlJunq3kw6meDMJR9T741gMBqwXBwnmV/MY3xZI5SK9DYKeKIQLhqWqfLYTSJnzk9wdjwNcvmcOzsSJZ46z1BEom3YQ0tzNa2tTfT1jxHJicuMPgJZI88fKSvtfP6eRto7Gvmbb71NRl/DHimD22Khvq0DZTSI2lDNVGyKDldZdlYSRDKhMBlvEH1tLZlMCrPZSiqTIKzGkAvQ5G4lGgtiaqulEOkFTl31mSX9bmrrnmRq5G0iwXPUrQ+Tzb6IsUoGru6v/3SDiU83hIDQVT+7kq9f52cfumR4nurmFhKhILl0GsuSoCcIwk23MCy1JZ4P8LfbBuGqa2B2ZAjnbUwEX4ulPW3ZZAKTzUYiFKShq/uO/y0obynbq2pIJ+KrSoZjAT9qqax1abRYkPUGoj4vsuHOaFl+mEng5MCGZi6cusCliSxLkz+zVOTrX9jLxYFpfnN+yY2NpKPPB/O9XxtarTx8/yamPe/w+IOb8U1NIQylGI1JRAomXjydBcwIEqQpKzdMR4scPHKJMyMJ4sri59BsV/CMlG04T56b4KxPh1XMMOt/HbvDxqY2M9292/jeS31ECqardlt2r7Vz3z29/PNP3mU6ZUQRF5/7oR2NVNdW0f/90yCXrZIvBuaCWVFFNpqJpYt88+VhFNnKtW7t0zmVd986xnRCQtGVL+y/vgi6C+W2hmanQCwSR1niwfHuCMhKjH/7xe1MTnrLLnlAvUtP78ZOjl8MkMzAZW+Rn/zyFGMhBQ0925tUlJJKn798nCPTcZLpIkemdCBJiDqJDIYV1TAkJY0i6BCkOzv4dDcgyTIWux1nbT3TQwPUNLcu+7nZfnO6yulE7CpTn/ldslulpCjkMmlmBi/T1rvxlp9nJZYaFKmKgt5kIub33Xb/8rUo5LILBYTVMK+QIUkyjppajGYziXD4xr/4ESBSNNO2tpPQ7CxvH7oM+sVrmCAIPLG/mfXrWvh/fnyGHItFCM9c25UggEtf4GMP7ebU6SGKisrG7hqcfZO8P5xHlQy8cVllPn5lxfLOkCbIvHPwMomMwmBoMdWykEbM5wlMScz6ExwbSpEUq/jVK8dA1LOhq4r79u/ig+MjvHgyCVdoQDdYi/zB0/dw6OA5jg4lySw55k1tVh59cBPhX55ieO7jD+aMBCdU0NmIZlXW2+18/xenCGtuBFFaUUlE0zQu9I8zNh0mo6tGECVOTMGJ8Th/achjdVQTyMTQ1MUCQoOr3IIzVQvmhloykzHMZiu5fBZLSw1pb1mXvMpdh39qFqrPApDwGdCKTRicIxhtIrIxRdh/Dkt1EFuND5DBuXKqmi4WSSslak23n1t8KNUkFrbSbDaqm1tuaRo2GYks6AfPT/c6qu+cPWU+naKtZyP6uQQwm0oR8c3O6SCXBwFDnplVB7trUd3UjE5voKl73Q01h69FIZcl4pslEVk5eJpsDtLx2KorFKpawlXfSCYZJxmJoBQLCKK40EeoqiqpWJSI10Mycmv6xR9WArECFpeLdFFc1uMKkFdlLlycZHIucVuKpmnUCGE+ud1IOhbln184zmTKyg9+foT6thbu39F4lR72UgpFuDQeJVpYvLMWlSwPH1iHKAqMzmY46TMjovK1L+yhp7eT7s4GqqpseCcm2N5U7nsGsEg5HurR49LlODOa5Be/PMgnn9jBs/vc2IQEe9pFak15fnNslh//+gKC0Uabo8gD63SIpXJ/5rp6kUtDs7x8Kj6XCK+MpBZ4ek8199y7lWI8zK5WMMxPV0tmbAaocer57hseklmVP33AzYbqculbka384wvneOnYomTgyYkif/PdQ8yky+elKhoYCksoggGtmOO+3Z3s6qmnxZrjoY48Xc12Dl5KwFyCqykFjKUkG+tVRHWx19SkZfg3n9vMIxtvfufkw4LJ5iAeDNC6vnfFAeYbkU2lKM4pQSyYaJjvXEtJLOCnY9MWrK5yIUPTNMKznmWSkVGfl/Csh/xtCOs6a+sQBIGGru5b2imbJ+KbXdh1u/pv1JeHBVdZJc+lU7jrGymVFJRikXgwSEkpLnO/y6ZSRP2+277mfNgQDBZ8gRjNXd30T+evsrif8CY53zdJfoWqo4ks+1oK7O9x8p0fvcf7fRGOXI4xMebhvgd2UG+9zgyOIDAVyDAWXK4AtbvTQMuabry+MIdGS0Rx8dg2N88++zB2u4GuNa34Z2Zotqs0GMpqVZpaYleLxobqIt6UzC9eOYNBL/FvvrSLDmOETmeBjXUKp0dT/PTlU4wES5iEHI/0Gqgxls85p5zDZjXw7Z+fJyLUXFfPf3ttmmeffQilqLClQaHBPBfrJD0mo4VYMY6taKTd1cFweIiRyDClUvl1VotumIpR7S4XAqtddYjTSep0i3MEda5GbDXlx2vFRqrr9hL36fFfrqOU2khJHFv4uaqqpCMZYjNO0uHlx/xiYycv7X8EX/72HWw/lMkwlGXMbrZ6m0nEifq8eEYGMVotC9JqVmfZVvVO9rNqGiTCYQxzwX7eTjSXSi0ci6Om5upJnptElCRkvf62ksp56+VrSdKZrNabcrAzWW34JsaRZB3FfBZnbT0lZbFfKuyZKffgNTTdUAbv9408OoZGPPgiuat+pkoGXuvL0++/eh2us8X54pObWLeulb1bW/CFszTZSmzobiARDtF/bhCjuBgQNE2jwZTBSPnv3LPBzte+uJ9GS55uZ4ZH1otIaoFYLMuoJ8UHEzKCpKOIntPnxhmZjvOzg35+/EEYncnMPQ/tp8tZfq5mp8S9+3rprDcSLxo4H9Bz6dIYDpuep/Y1cf+eLj62vYoqq7SQdPa02bl3fw92fRG5mGRju4OHHtiCUU2Dcu01sL5BpqHWwczYJB9/oJuPP7qNtQ2LF61tXVaeemwbrW4BWYKqGjdGvYRBy2IRMqRUMwXBRIejwBpXHkQdKcG2cAOtadqCXJyoN/H9X1/m5fdH2L3Wxoa1Taxf10qrNYdZyKEpRf7wgRqePVDDpz++nY6qxfBZRGRmOkA08fu7nk1W601LcamqSmhmGu/4KCWlSCxQTkznTTRutqJ8PeYVaubbNGIBP666ekqlxdijoeGqbyCzRBLzVliQuizdmtTl/I2r2W4vqxtdgShJuOoblmnPXw9nTR1hr4dCNksulcTicCDJi+dJPBRE01RKioKtqvqahY/fV6YDWYZGPRS1q1OePp/MGxfzaOLy99pAni8+UM/W9Q30rG/DpgeTpFJjyNPR1czRtz9AueLzt4lZqvXlG616U46/+OJ+7u2xYdbSfHyTjlpTnlRRIByO80Z/nmSpHB9HZxOcPj/K2RmBb/3iIoOTMTbv3cmBjeUClFTM8NCB9WxfXwOSngtegTFfFt/UDJ95aic7OvTc01vF/T1mBrwKmqinzgb37O2hq8GMUMrRZFc4sH8j7Q1WxPzVBZd55EKc+/atwzsxQVeNxCef3Mu9WxYLYbFUBEtXI1ld2QZZNOiRDAby+Qz+kAej0Uy1q55YMownMUMmk8LtqsW4ZJaitOR9MzhH8HqeQ8kZsVh6qGroIRczEfeWr4OxqVr06qcxSLspZdYuO1ZrOoUU8GG8A/KAH9o2iZVQVZWIdxadXr9i8pbLpMsJ6ViaVCRyy5XU1VB1heGGyWpfZidqr6omFvAvVI5vRDwYoKQUV+y5jfl92OYc6m5UvY2HggvbfPMKFDZ3VVli6Da2KJdistrIJBKYbTbSiQTxYOCqz0OS5bLz3ypUMH6fUEQjH5wP8en7WpDUcRTRQr+3hFFN09NqY2C2uMwa1a3L4baKtNe6KCkKJ947QnVTE+ubDDz95D7ef/s4uayO/Qe2Ujw+ylQ0x+71bvoue/jyFx7k5KlBXr2QZdYX4fSJfkJpeGJXPQ1trZwYOMRPjiYQBJkaQ5ZCSSCOkXcuFwEZ5jRz3z7hoXMyiCrq6XTkGQyIfPsnR/CmRBANCJKe1/qL7EnHCMVzyBem+PQz+wnEi1z0Z9hQp3F6IMCpyyHcRpUvPtxB/+VZ3jlzjD98spdoKEw8LzE46mMmv1y+a8RfxDoYYWw6yv09NkLhM1ycTFGtyxPXLJwcEglETjERFUA08dc/PMuBdVa+9EAdrppqfvHqGUZTDh7Z1YTNbuGvnxtA1C+u8wOdGmtaq/nxu7O0uGVaXDLbtu3A6/Hzy/fHKOYu86++/Ainzw7x61NxUukcxVyO/tfPMhHWFsoJimDkZyeSLJVT+qiQCIco5vM4amqvklVLx2LYq6tJRiLk0umrrOnvJFfqoTvntOSXFjmMZguxgG/BsfR6ZJIJ8uk0ZrvjqgpwLODH4nQS8c7eUPIyn8mQjkcRBHFBDaPsHiqRS6XuiEKGKEkIQF17JxHvLEaLZdlAtiCK5NKphcHy6w2Q/z5yclLjGZfKx3pkfCmVUV+BZEFkvTtHqmRYaIkAEEt5epp05NIFjEY9UxNTGENRVFHka5/fRf+5S0yPTbFl9zZco+P89ESWB3oszIYy7FhfT2t7I3/1vRPEVTh3+iJDkzF2tUvs2r2RbOY0746KnJiKYZZkms1ZplMGBkM6BkN50FlIAWen09jeO83ITJQdLdWcndTzrZ+foyzVXo5fl0M6MudDNM+kGZxO8sh2E5s2dvFu3zncJhDR+MaPDhFJqvzh/bXIssw3vv8WzbV2/v2f7uS9Dy5QLMGpaQ1xiSlHUWfjzaMTpHIqXVUwPjDA4bNBrKqKJGi4HZsJjsxik8uSgU1yLYG4jwlpmoa1axnov8iaqjUkyWLraCA+4sVsXtz9C8R8pM0lih4zOkuaUrIXFIWmjs14Jl4lW4pitu7DYe8kHvgxCArZTIx08hK2uuWKW5/KRCETBf21Nc5Xy4e2MrwS8WAAd0PjVXfrhVxZCsfmrmJm+DJ6o4lSqXRHgtC1yKXT5daDcLmp22S1lishc9uLiXAITVWXmWBcj1JJwV5dSzwUXPHn6VgESZZRCoWrtgaXPY9SxFXfQD67uKh0egPu+sY7JhcH5cpHMhLGYDLjqqtfdpGsaWmlpqWNho6umxLL/31BFAQsNgvrOmr5zJM7qJVTfPHhVp56Yie9rYuJ2v1dGk/tdvLFT+3mzFCQE+cmaFu3ljfPxZmIwJFjA5yaVpn0p4lG4lyeydFSbWD3znVYjHre/aCf/vFyBWzXpmY2b11HKZ9ncCzA0XcOs3NDNWYhi5hP8pVnt/PUvvK2Vpspyt6WIrJargTP5Gy8N6Lx9MM9PLKnhZ2NRbavsbN0g1CQZE5MwVjcSAYLQ/2DnL4cpEqf5XNP7+Lpe5spqBKdLS6qm1vI5otEFAs+X5RkLMWBfT08dW8nj/cIC20QAHkMHB8vEVTsGOxO1mxYxyZXgj/73F6+dH8tGc04J9tWXl+aqGfThibS8RipWITN68uVzF8dnuGnr19G1Juo1SV5ZquOdlMMSRTQG/UIaKxptrJvby9DgxMMzyQwGPUIegNvvdfHhZEYgqTjl2dyHB/NEU3kUYTbD8C/DyjFAlWNTSTCwSXfK6IUi9jcbtLxOJlkYm7b/rcr7RWe9RCamS6rDgkCVY1NC0PThVyWbCqFqpRWVd3OpcuJ6rzr51IkWUcyEl4Y0o76fYQ8MytWijPJBM7aejSWb6k7a+vu6DVIZzAR9XvL/d0O57LBObu7ClddA60beqlqbPrIGG0soGkYTQasRplPPrGD7Wts7GnK8tlP3cMjOxeH6tvteT63S8+nP74dt9vG64dGcNXWM+gtMBQx8sHRy1zyFDg6miMejtI/HsckFdi7s5t1bU5ODQR56/1LlGQzvW12tu3ciM1qZCKicebwcdRSkTZrBkEQuH+jiy9/bh/VuiymUpx7mrPUmsqxT5EtvDMqsqazgScf28p6V5ZHt1VjlJevoamEgSPjKvGCjmy2yLvvnaEoW3h0Ry1f+vQe3Lo8VXaJjvXrKBQVvHkb6QJMTXrZtK6B+/d288nNAo3mxZgrCCKXgjqmkgYSJSOdPT3YDSp/+LFOvv4n9xJNhGl0teC0la/dRqMZjDImh53AxBjW+hqS6ThOwUpm1IvL5CadTjIYGKB/8hzZfAadQQ+aSCFloqpuO8V8nkR0AKM1g06uoyQMEQ0fxOKScbfF0DkPYXbKyMbf3s7b71VleL4SsHSaOR4MIMkyiVCI6uYWbK6qsmHGEpWHqN+HppbuqNJBJhnHXd84p9F5NUohf1MDEoIgLiT7V7K0MhHxzeJuKNuHroTF4WLiYh9mm31BIH/eWtpRU3PDbTmlUCA0O7MgP7eSeHsqGkEUBVz1jdcMuh+1YCyVcjyzt4opb5JTM0b+5qeDuM3QN34Kf1bPjD+BP3Cavqki84MYVWZw1dTwq5feJ1hy0Uy5DUASPYQLJt64kKS3QceF6SLvjSYQZAfnpgrM/uAw/qyBwXhZvB3gSF+AC8MhSgY7h6dF7mmXeWhvD2LmIO+O6xjoH2bam8CGypeePUAyHGQmMsVMunz8GxtlvN4Qh8/P8vF9bbgb6nn91DEKK6wXh1mgd9tGTo+dYCImc/SDU3SvaWBLI8wG4nz7uaPMxHUIksAr/UU0zcD0C++zbY2Tvfu3MRM6xsUV7vneOzbC/Zvj1LrNRHyzeKcDPNhtYyZcZDhSTkwFSeaffnEBzWDBpp8ll1eQNRlf1oxVzPHx9Sp11XW462ppbXTxy/fHeX9wBkE28+6FOBMTxwnkjKQyef4/X7uPsdFpfnQwiktXot6YxZs1ct9aPeu3bOSv/+kYBcnKA2t1ZAsKJ6Z+r2oLq0bWGwjPehZ0d9VSaaEFrbqpGWdtHUqhgKzToWnlm/9MIk4uk8Zid95W3+1S1DkJM52pbAhz5U5XPpPF6nKTjq2upcxothD1eTHbrm7luLIKrWkq7oZG4sHAVfrDzto6PMODyLJMKhYtqxXNqUUsVdO4HlGfl0wyWW5/6uy6qqWvkMtSLOQwWe0Lg35X8lGLuQA7m0u0Nth56ViY549EEdUCQ8HTjPnztFWZGTjXx8mhBFAuUlmkPPWtazh79CT9UyqyqKOqpgrTRAwkmUMjJepNKhaDwD++GUQUy+/1f3/uJBlFoiAYIQKCKDE4m8XwXh/jgSI5TEQHk/zPf3qA9oFL/PBwnEgox6mjZ4jkJT53Ty0dXS3ojvQRGC8fu13OU+Ow8dqrR2h0G1nX282MN0Jw6urXqRNUutd3kFNFCBY4em4aswGaGp3UaDq++5OD+DM60CQGQjoGQglsWoL9HbDnofvQW4d54WT6quc9NZyg2XyY9c1WUrEouUwGIZ4lKxWpN9ZgMJTPMWNORMuD21hNOpRCkPTYrE5MioWxwDAFXQmD1YLJaUEsiNRkrcTbU6iqyvTwT9CZ9VibJkl5NlJdt41A8IcY7QlSAQcmd5y4p5qa+gOkYocBGNi2g/C9D+IsZmnQ3ZnduFVFb0EQHhcEYVAQhBFBEP7fK/zcIAjC83M/Py4IQvsdObqbZL4SYHW6iPhm55zmBIqFAulkopyYzvUIVi0VH5+rGl/Zd3s7Qxb2qhomL/WTTiZXfB5HTd2CVE/EN3vDCrGrrv6qO/qVqhHO2vq5VpGV2y8MJhP2qiocNbXk5ob5mNPdTM5NHyuFAhHf7IqycJlUEnd9A2abY9kk6VIK+bIOcszvu+5rSsWiJCMR/vIr2xb+u9PcLWtXFlRaW+qocpaDh6g3ElOMXApKCAYLb1yG3wyIaGi02/NoJYVhf5FUKofZpONTWySMOvjbH5wgXCg/R42pwGef2sm+XvfiupD0+HOGZeYqJnJs7XaTLagIgohVylFtKDI10M/GbRtpshTYunMTrmoXGVXPmVMD+Gb9VFkXw0OdS0/HmjZcRoFDZ2d45bUTOGwG3Prlvc9GIY9BL/M3336HiYQBQZJ5fRC+8cIF9u7fzJYNTQQCMf780Tqe2SLPfQYigwkHLxyNM3H5Mt2NFrY3KuxsKi0bCjToJDo3bcJZ18AP3vLidDvYt7eXTR3lCpixlGRfS4E/+UQ3ZqFAsGDiqXtb+PLHu1CLORqdMl2d9TR3d3Px1FmGRv1s67Kzbr6Dp5Tns5++l4/vbaCoc/D8y6d453R5DT+5r5EvPL6ObpOfTbt3cPyDY2xphPu6VNZ1VtPd6rruAOOtcLes3Rthd1dR1dhEKhZd2JHS1BLZZJKIz0twegpnbS1mh3PhZnu+Ze3Kqmsxn1v1btmViKJINpkgGvSTnZvNWIrN7SafzSz0Fs8PM18Ls92Bq75hmVV0Zs617sqeY1mnJ+b3rijdKQgCZrud+s41FHLla0Ehl73q9ccC/mXqGkvRKCfBoixRyF09b5COldU5sqmr+4+XMj8sfavv8Wq5W9ZuldNMa0sdkqAiSDo0nYU+r0haNXEpqOPn52EybaHFmsNEjumEjmQyQySp8ql9bra2GvjRL05zbGLx/XpkZx1feGYnuuLiex0rWchd4Ta/qVmPUVLJqjo0TaO3tsjgyWPUtraytlqjd30j63vXoCol+kajjFwaxGLWLwwZW/Qqa9d30FBt5ux0kXffOsr58TRttvzCnAOUz7X2Wh3Pv3yKN86X1/Roys63X50BQc9992wknc6zvx2+/nQrVsrnRlKw89q4jUPvHKOuxkq3PcHHNhoxsWR9STL1LU2s27KRFw76uTyTxdJah7m5hmgsSDqdYHzqMjFrgXgxjsPupqQDocuNL+IhnYojOIzUda4hm0iTCUSIxcLMZn2UiiVEUcRs3kBD82dI+AQE4xAB3yvYqlXysSaqqp5k+oIeh3s78ZCHsCfMG1/9H5ju3YL40GMEhTtXgLjhMwmCIAH/ADwB9ABfEASh54qHfQWIapq2Bvgb4HeqQhgPBcq9wekUjuoaHDW1WOwObO4qSiWFklIiHvAvPD6fzRHyeChkM4z1nWdmaIDwrIdiLkv0BgndtZB1OqxOF1UNjQsT1EuRZBlXfQPFQh5XXcOy45knFYsS8c1es+UBTStXI5a0ToiiSFVj00K1QS2VCE5PEZqZBuaq4JqGd2yYQj5X7uVLpYmHQwsBcl5gfiVnJru7imwySS6bwepyE/F6CHlmlj1GFCUi3llsK7RALChXhMMLF4bbuem4HnfT2s2LZn7z5nmGJ6PXfdzetTb+5LN7aXMq9AX0fOtNP3a3i5oaJ489soPNLQbscvlzCWb1/ObXhxE1hRoxwmd3mdjkSvJ4j8yXH21AVMrvq1lXYsOGNjbWw9cecVMlJenqXU8qXSAcSeBLy3znuaMcupSgJOp571KStrXraKhd3GY9filEMhymo7ORSzEb570Sf/L0Zp45sHw3pafZyFMf287ebit//qCDVnMCQZRQLPV842fnGLg4xp892Y1QymMzLa9uFWUz/phCOJZjR08Duzc389gGmc3VaXa3QY3bwsDZ83xweopNXQ5GfXnOHztJU4ObDlOUf/fHe+hotFPf3k6dS0YQBGa8McYm/AiSjsEg9F8cxzs2ypGJ8k1bndNI1VwhrSBZ+fWb5znSF0AQBIYi+rJjHXD4go+AP8innj7AhZOn6Wir5xNPP8DGNXU89+olfnbQd0crb3fT2l0NZSvmAjqjkXw2S21bB+7GRiwOB6IooqoamXhs4Vw3mMxMD16imMsxNTjA9NAAgelJsqnUQqy6FQxmC83d61EKK0+X291VczfrDSsmw6qqEpyeIjC1sitmPpMpX1syy6to9qpq3A2LxYqoz7ugHpRNpSgVFaYvX0IpFIl4PVicLqYuX0SS5IVjVdUSFruTVOzqGGG0WPFPjmNzuigW8kR8s+TSi8cwb2xyrRmUiG92ocDhqmsgdo2dwzvB3bR2j10Mcvj4EIp27ephnTHPn/3BXu7d6CRRMvGtt4L4UuCwGnngwR3sXO+myVpYuNl9+/g0589cpK3OxIOdCg91Ful1pfh3z66l2bp4zWxvdtHgEPnXH6tlT2OO7vVdIOqJhWMUNB2/ODjL91++iGCwcDGoJ6MaWN+zBlkoJ7rejInTR8/Qvb6LTEHg4JSJvZsb+NM/2Luo7gBYSPHZp3axa72LP3uwmoc7yz9T9TbeG0jx3/7xJZ59qJNGl4wkgpHF660gCMymJMKxLI01dvbsXs/uNpUd9RnuW6uj06mQSmV48aWDbFxbRziaIhuJExgfp2CAADFiYpra1jYEazlW6pBJev0YZAMOZzVEcgQmJzALBqyCGU0WKAhFivm5hF4/Qsj/DhZ3CVuNgrMliqSXkMw+pkeOsmH754nMTpAIhujs/QzKrr24Z2do/vIX2SzfuZi7mjaJ3cCIpmljc2/ec8AzwKUlj3kG+P/Off0C8PeCIAjanS6VrBKzzUHEN7swTTufIM4nefMyavODXQazCUd1DRP9F2jr3URguhwIi4XCbV3gLA4nSrFw3V5cSZKJ+r1YHFc/ppDN4KpvJHqNaoGk0xHze3Fdx2c+l05hdbkXKgaaWsLqcJGJL+p82qvKF4j5ljarq1xZl6/RMuGoqcVRU4taKiFKMjqDjmI+h24uEGuahtXpukp8HxaVKyK+WZLhCBanE0Up3pTpyE1w16xdrVTksfvWgabx97+aXmbYYBWyIEBKNXFpKon6fh++hAAC2OQC5wbTvHOmRLtrgj/4zH1cujTOz08ky5UOvZ4dO3vJRQOs7+2mtspKwB8mly+gAW59jqf2NfHGq4dpa3bhcLspahL/8NM+coIJxBiCZF1ohwDICRb+7rmzFJFhbsI6I7v50ZvjZBSJTrdIvdPGG+9fJF8SWSqE3j+Vo/ib07RXm2hsb8d5foqpufb0vV16Gtx2GjrXcOTNdznlNTI/DALlFofXLpaH9/onh/n4vka621zUV5lpX9vJB28fpq51DRszcOD+7Xzrx0eI52TMoRSJvMTg8DRDo1EGvWcZDutAhINjApvrizywXs/7Azl8aT22lIbDJLKxtx13fSO/OvYBoEPQSkz680RLlqtEXsZiBjYmsyQjIWKxNEJJoTQwwNunPCSkWzeJuA53zdpdDYIgoKkamXicqqZmBEHA5nKXVXNqaxdib9TnxTA3vJvPZrA6XUT9PhzVteVWAp0OuPXDd9U3ELuBw+i8gcZK8a2Yy2GyWhfmTK6M/yZbeRB6pdaJpWiairOugVjAh9FsmXvOHCarDaVYQNbpMRhNqGoJca7lQUAox8cVjn2pccm8Hn7U512sWmsaOr0R6wq6x2qphCCIyDo90aAfpVCkWLx9KarrcNes3W1rq7n/QC+Bnx5jcsm9j1jKU2VSCORNhLISb73fz7i3bPojqgolTeAff3mJtvpZdqx385XPbea/fvcQaWwkC7B5Ww9wmbZmNwjQmc6Ry+ZQNdBKCk9tNZCKRhidDPLkkx1UOYP86J3ydVwRQwjC1dfGV87EefNshIK42Db09qDCkdELSLLMQ+v1jE2GyeT6CGbkhVJmWrDzoxdPICtJPvcHm8nm8jBW/nybrUUO9HZS09JCIZfjpXdHCGrVy+Lb5ZCOy6EEYimPUDrG2s4GUok4a7du5IP3TtPU1sbgeJRPPLqVg0cu0WJpIialkfNQyhex6q0khqZxy+Vzot7VSDgeJClnIRmixllHXMpgFCSCYoTW9b0EL49gtM7JVZLD4PKgMy5PR61uSM7tlpSUEqqQxDc+ivH0CTa988btGs5dxWqS4SZg6a36DLDnWo/RNE0RBCEOVLEaS5DfAkaLZdnWFpSD9byzkYBA1O9b2NJy1tYR8/tw1dcTnp1BoKwGoarqbSlOlI/h+jqa15Msc9aVA/tKFVZgVU5NZruDRCS80D/nbigPF9V3dC3ofF4pbzQve3QjRElCEARKSnEhEY76fQtKGSv1As7ri+qNJixOJ46aGlK/Pa3hu2btCpKOX7w7BggI0uJprJUUvvTxdhAE/vE3M4RyRg6NKJQtkuCxHTX09nTwX757iMsxE6++fYFgvMB8L/DpiTwzPzyMWihS19+HUoKjwzmmkwqCbEInZWlorkcnqHz3lRGspwLE5RqQWdE4Yp6CePW6jZUsIMCWLis9Pe38zfePkhGWu1sVBAN9Prg0m+fQ+bcIC9XMn0IOhwWb28nA8eNcjhiJKde+ASoKOhpamum7MMSRwSS2swFmEgbeGxnEahSZjpzEk5IRsjqGj5V7/l48kQSsEAHExYvNujYXbW31HL50hoGQlYFQGq1k4Y3Do6CN4s2ZEUTY1aHniUd2808/O8pU8upje2cgx/5ijPsfu5/LfQMYndXMpCMrmSLdCe6atbtarlTQgUUzDoPJXG4LMy5WLg0m81w7g0bE66GtZyOiLN9WzBVF8YZDaUsNNK7EYDaX+41N5hULIStdW1bCbHcSD/hx1ZUHOHPpNHXtHeWhO0FAkmXq2juX/c5qh+mMFitRnxfrkl7jXDq1oAd/pUKPKEmgaeU5ldo6JJ2OdCy2qr91i9w1a/fEUAJf+BSTMWGZ0Mv+dWYeum8T33nuKJ6MiSOjCvOzGhsaZT775A5+9fpZzsxAaSDKhO88ac1YLlpg47//+DjZfInHlQwWs56xYJFD4yBKBtAKNNa50ElwyavwrR8fIaLZEORyTLlW3NUkA1feouQxkldgQ02Je/f1EoufLR/rkvgmCAKjMT2a5ubvv/MWkYIBDOW4bDZKtPds5OKxowTSEpPpq2/051ElAw63CYPVzk/eGKJm9ARTEY13Lp0BSU/ylyeZiSo8tW4TDtxwnVb/nJbD3tpIZmS2PGxHFZhBC6oELgzS4GwiC8T9Gk7b54iGzmK0jlz1PNXtafyDR+nc/Clmhs5Q39lFzfe/fccTYfgdDNAJgvA14GuwcvD8l+DKoCMIwoqB6LcpvbYaVhPYV8OVig3zwXI1Ce+NuDKZN1osxIN+BHHlM25pom1xOElGI79VVY87xdJ1K9lv3h4VYDazwhamKHGq34PAEqvjJZweDDPjT5LBhCDpODUN84kwUO4RzusBMz88mgFRhyAZFgKeP2vip784jMVmQzFVE78DPVavnw5xqM9/VSK8KB8ZOAAABBJJREFUlJKoJ0rtsj6snx5NIBKhJK2caCwlpVn4v398BkUwgGQjmZlXetORVmEoAsIq5yZePh5Ad8K7zNxDkGQGY+V/z78lnlCes+eGiaRXPrZUycg7l/NMhk8x7M2iEUXT3f0mG3dDzLU4nFclafP/vhW74d8mK1VXb5Yrk+b5r68crrsVVrK3Likl0rHoNR1Pl8bYTCK+Ym/z3cjtxt2MZuRyCLjCEnt0NoPlxGXCmavP9clggXcP9TPiywMGppJ6ppIsKNYARBQLSPDixRIoGQS9eSF8C7Ke598aobfNhicGOanmuoWH1TDgU/n2T44wm5KWJcJLEQSBCNXLjDz7QyYGv/E+BZ1jVfnMyydiiIQo6epIxQARBEP57w2GYbUpY42lluigj1rn8vVYX9PM/HeygMFcIh6+AOLVbaIAOqNE0+YsQc8vsdTnSWTOcl//hVUdw82ymlfmAZYKKTbPfW+lx8wIgiADDmBFVW9N074JfBOgfdOW30kbRYXfHiarbZmkz/UQBOG3La12x9bu0nVraOi+Y+tWEAROe+YHya7++WRcz2ScZYH4ms+lW7nSOpqpgsxt+7sskNGMZG5F4UY2oF7DynglrudMdzPkMZJfxSc2mzEweybNlfany45JMDAYAnR35tiuw29l7VZi7u8nNS2tN37QHHfS6OQa3PVx15sx4O3PsdK5nlaNfDC4qOpzPQRRWmbvPE8cJ0cm4Y7pjks6PBndTYvhCoKAYnCt+tc02UDpDtRd9ToDddU3vvE22mSMtsHrPkYQBFzN833Ov73iw2reo5NAtyAIHUK50eXzwMtXPOZl4E/mvn4WeOd31S9cocISKmu3woeVytqt8GGlsnYrfOi4YWV4rp/n68DrlG9zvqtp2kVBEP4TcErTtJeB7wA/EARhhHLH3ud/mwddocJqqKzdCh9WKmu3woeVytqt8GFkVQ0gmqa9Arxyxff+tyVf54DP3tlDq1Dh9qms3QofViprt8KHlcrarfBh46NpmVShQoUKFSpUqFChApVkuEKFChUqVKhQocJHmEoyXKFChQoVKlSoUOEjSyUZrnBX8Zdf2cZffmXb7/owKlSoUKFChQofESrJcIUKFSpUqFChQoWPLMLvUtpPEIQgMPk7O4AKvw+0aZr2L2phVVm3Fe4QlbVb4cNKZe1W+DByzXX7O02GK1SoUKFChQoVKlT4XVJpk6hQoUKFChUqVKjwkaWSDFeoUKFChQoVKlT4yFJJhitUqFChQoUKFSp8ZKkkwxUqVKhQoUKFChU+slSS4QoVKlSoUKFChQofWSrJcIUKFSpUqFChQoWPLJVkuEKFChUqVKhQocJHlkoyXKFChQoVKlSoUOEjSyUZrlChQoUKFSpUqPCR5f8PcsKHF9ttoEkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from tqdm import tqdm\n", - "\n", - "fig, ax = plt.subplots(6, 4, figsize=(12, 16))\n", - "for i, depth in tqdm(enumerate((1, 2, 3, 4, 5, 6))):\n", - " dtl = DecisionTreeLogisticRegression(\n", - " max_depth=depth, fit_improve_algo='intercept_sort_always',\n", - " min_samples_leaf=2)\n", - " dtl.fit(X_train, y_train)\n", - " draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 0], s=4.)\n", - " draw_border(dtl, X, y, border=False, ax=ax[i, 1],\n", - " fct=lambda m, x: predict_leaves(m, x), s=4.)\n", - " ax[i, 0].set_title(\"Depth=%d nodes=%d score=%1.2f\" % (\n", - " dtl.tree_depth_, dtl.n_nodes_, dtl.score(X_test, y_test)))\n", - " ax[i, 1].set_title(\"DTLR Leaves zones\");\n", - " \n", - " dtl = DecisionTreeClassifier(max_depth=depth)\n", - " dtl.fit(X_train, y_train)\n", - " draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 2], s=4.)\n", - " draw_border(dtl, X, y, border=False, ax=ax[i, 3],\n", - " fct=lambda m, x: predict_leaves(m, x), s=4.)\n", - " ax[i, 2].set_title(\"Depth=%d nodes=%d score=%1.2f\" % (\n", - " dtl.max_depth, dtl.tree_.node_count, dtl.score(X_test, y_test)))\n", - " ax[i, 3].set_title(\"DT Leaves zones\"); \n", - "\n", - " for k in range(ax.shape[1]):\n", - " ax[i, k].get_xaxis().set_visible(False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Another example designed to fail\n", - "\n", - "Designed to be difficult with a regular decision tree." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAEXCAYAAACat4H7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gVVdrAf2duv+m9J0BICL0JSFEpgvQiYlewN+y61lXXvuq6q9/asYGKCDawICAgvSMdQk0I6b3efr4/JpX0RnHv73nywL1z5syZuTPvvOc9bxFSSty4cePGjRs3bty0D8rZHoAbN27cuHHjxs1fGbey5caNGzdu3Lhx0464lS03bty4cePGjZt2xK1suXHjxo0bN27ctCNuZcuNGzdu3Lhx46YdcStbbty4cePGjRs37Yhb2TpLCCF+FULMbEK7YiFEpzMxJjcghDghhLi0nfpeLYS4tT36duOmvXHLrHMTt8w6P3ArWw1QfhOXCSGKhBD5QogNQog7hRCtvm5SynFSys+b0M5TSnmsNccSQuwrF4DFQginEMJS7fOTrenbTd0IIZ4TQnzRDv0GCiHWCyFyyu/JjUKIoW19HDfnJ26Z5aaltJfMKu/7QyHEISGESwgxq47tDwoh0oUQhUKIT4QQhvYYx9nErWw1ziQppRcQA7wKPAZ8fHaH1DyklN3LBaAnsBaYXfFZSvlyRTshhPbsjdJNEykGbgaCAD/gn8AS92/nphpumeXmXGMXcDew4/QNQojLgMeBUaj3bCfgH2d0dGcAt7LVRKSUBVLKxcBVwEwhRA8AIYRBCPGGECJZCJEhhHhfCGGq2E8IMUUI8We5xn5UCDG2/PtK86wQorMQ4g8hRIEQIlsIsaDa/lII0bn8/z5CiLlCiCwhRJIQ4umKGasQYpYQYl35WPKEEMeFEOMaOichRIfy/m8RQiQDK8u/v1kIcaC8n9+EEDHV9kkQQiwXQuSWz1SubOk1LZ9JLRRCfFE+E98jhIgXQjwhhMgUQpwUQoyp1v6m8nEVCSGOCSHuqLbtMSHE5grhK4S4q3x2bGxkDDeUX8scIcRTp21ThBCPl/9uOUKIb4QQ/qddu9uFEKlCiDQhxCPl28YCTwJXlc/Ed1XrNqbcMlUkhFgmhAhszjWTUlqklIeklC5AAE5Upcu/Of24+evjllmV+7hlFmdPZgFIKd+RUv4OWOrYPBP4WEq5T0qZB7wAzGruMc55pJTuv3r+gBPApXV8nwzcVf7/fwOLUV92XsAS4JXybQOBAmA0qmIbASSUb1sN3Fr+//nAU+VtjMCwaseSQOfy/88Ffiw/TgcgEbilfNsswA7cBmiAu4BUQJw29urH7VDe/1zAAzABU4AjQFdACzwNbChv7wGcBG4q39YXyAa6tfD6Pof68F1W3t9c4Hj5tdCVn8vxau0nALGoSsYlQCnQr3ybAqwp7zMOyAP6NnL8bqiWoosBA/Am4Kj4zYH7gU1AZPn2D4D5p127+eXXpSeQVW3f54Av6rj2R4H48mu9Gni12vb8Bv4eP62v3YCtfAwfne1nxf13bvzhlllumXWOyqzy9uuAWad9twu4qtrnwPJxBpzt56lNn82zPYBz+Y/6Bdem8odLACVAbLVtgysetvIb/d/19L2aKgEyF/gQiKyjnQQ6owojW3UhAdwBrC7//yzgSLVt5vJ9Qxs4bsXD16na9l8pF4bln5VyARGDOkNee1p/HwDPtvD6Pgcsr/Z5Eqog0ZR/9iofn289+/8A3F/tcwcgFzgAPNGE4z8DfF3ts0f5Na4QPgeAUdW2h6G+HLTVrl1Cte2voc7QKs6tLsH1dLXPdwNLW3F/GoFrgJln+1lx/50bf26Z5ZZZ57jMqkvZOgqMrfZZVz7ODmf6+WnPP/cyYsuIQH1AglAFxHahOqPmA0vLvweIQr2RGuNvqEJwS7kZ+eY62gSi3oRJ1b5LKh9LBekV/5FSlpb/17MJxz9Z7f8xwFvVzie3fGwR5dsGVWwr334dEHp6h0KIi0SVQ+u+Bo6dUe3/ZUC2lNJZ7XPlOQghxgkhNpUvB+QD41GvS8U5nwBWoQqVd5pw3uHVz11KWQLkVNseA3xf7VwPoC7bhVRrU/3aJZX32RDp1f5fStN+nzqR6pLifOBxIUTvlvbj5n8Ct8xyy6wKzprMqodiwLva54r/F7Xxcc4qbmWrmQghBqA+xOtQzdFlQHcppW/5n49UnTpBvaljG+tTSpkupbxNShmOOvN7t8LnoRrZqDOUmGrfRQOnWndG6hCq/f8kcEe18/GVUpqklBvKt/1x2jZPKeVddZzTWlnl0Nq9tQMUanTKt8AbQIiU0hf4BVWoVrSZgDpL/x14vQndpqG+XCr2NwMB1bafBMaddr5GKWX1ax5V7f/RqMsgUPOaNolqgr6uv4YisHSoTqVu3NTCLbPcMusclFnV2QdUnyz2BjKklDn1tD8vcStbTUQI4S2EmAh8jWpq3SNVJ+WPgH8LIYLL20UINboC1Aigm4QQo8odFyOEEAl19D1DCBFZ/jEP9aZ3VW9TPnP6BnhJCOElVAfQh4C2DtV9H3hCCNG9fGw+QogZ5dt+AuLLHTR15X8DhBBd23gMdaFH9UHIAhxCdaSt7ogaCMwBbkV1uJwkhBjfSJ+LgIlCiGFCCD3wPDWfifdRr3dM+TGChBBTTuvj70IIc/n1ugmocBTOADqIZoTcVxP0df29XD6GCyvGK4QwCSEeQ521bm7qcdz8b+CWWYBbZp11mVU+Dr1QHf8FoBNCGKsdZy5wixCimxDCF9Xn7rOmjuF8wa1sNc4SIUQR6ozhKVSHxJuqbX8M1TlzkxCiEFgBdAGQUm4pb/tvVKfTP6g5y6tgALBZCFGM6rh6v6w7T829qP4Wx1BnqV8Bn7T2BKsjpfweNZ3A1+XnsxcYV76tCFVYXI06G0ovb9vuOVHKj30fqvDOA65FvVYVfAj8KKX8pXxGdAswRwgRUKuzqj73AfegXse08n5TqjV5q/wYy8rvgU3AoNO6+QP19/8deENKuaz8+4Xl/+YIIWqFO7cCA+pyQw6qhWA8MEFKmdrgXm7+l3DLLLfMOpdkFsAyVIvqENTzLkN18kdKuRTVd2wVaiBHEvBsGx//rCOkbLbl0I2b/3mEEB1Qo5B0UkrHWR6OGzdu3DSIW2adXdyWLTdu3Lhx48aNm3bErWy5+UsjhLiuHufNhqKN3Lhx4+as4JZZf03cy4hu3Lhx48aNGzftiNuy5caNGzdu3Lhx0464lS03bty4cePGjZt2xK1suTmrCCGuFWpR1RIhxA+ivGhqHe0uqsOHQQohppdvF0KIF4UQp4RaHHd1Rd4dN27cuGkvmirDyttOEkLsLZdfG4QQ3aptmyWEcJ4m44afiXNw0/64lS03Z41yZegD4AbUxJylwLt1tT0tu7MnMBG1zMPS8iYzgJuBi1AL7G4E5rXvGbhx4+Z/mebIMCFEHPAlcCfgi1oAfLEQQlut2cbTEoOubsfhuzmDuJUtNwAIIR4XQhwVQhQJIfYLIaZV23abEOJAtW39yr+PEkJ8J4TIEkLkCCH+28zDXgcskVKukVIWA38HLhdCeDVh35nAovLaYAAdgXVSymPlmau/ALrVu7cbN27+UpwHMuwy1KLY68rzXP0TtYzSJS06YTfnFW5ly00FR1GtQj7AP4AvhBBhQi178RxwI2qB0MmoGYY1qKUwklCLqEaglgWhvJREfgN/w8qP2R3YVTEAKeVR1Ar28Q0NVAjhAVwBfF7t66+BWCFEvBBCh6qMLa1rfzdu3PwlOR9kmDjt/wLoUe27vkKIbCFEohDi76dZvdycx7h/SDcASCkXVvu4QAjxBDAQtW7Xa1LKreXbjgAIIQajVot/tFo24nXlfa1DNZM3hidqSZDqFACNWbYuRy1y+0e179LKj38Itcr9SWBkE8bgxo2bvwDngQxbAfyz3A9rA2rZJD1gLt++BlXxSkJV4hYADuCVJozDzTmO27LlBgAhxI1CiD8rZm6oD30gaoX4o3XsEgUktbLsQzHqTLM63kBRI/vNBObKmkninkGt1xYFGFFntiuFEOY69nfjxs1fjHNdhkkpD6LKrv+iTg4Dgf2U1zYsd4E4LqV0SSn3oBaZvqIVY3NzDuFWttwg1ArxHwGzgQAppS9qMVeBaiGKrWO3k0B0XWbueiIHq/9dVN50H9C72n6dUAvEJjYw1ihgOGql+Or0ARZIKVOklA4p5WeAH26/LTdu/vKcLzJMSrlIStlDShmAWmy5A7C1rraApOayo5vzGLey5QbAA/XBzgIQQtxElR/BHOARIUR/odK5XLBtQZ2dvSqE8BBCGIUQQ6F25GAdf2vL+/4SmFQu2DxQZ3LfSSkbsmzdAGwo942ozlZghhAiRAihCCFuAHSULxm4cePmL815IcPKx6ARQgQBHwKLyy1eCCHGCSFCyv+fgOps/2NbXyg3Zwe3suUGKeV+4F+o6RIygJ7A+vJtC4GXgK9QTeM/AP7lEX+TgM5AMqop/KpmHncfahj0l0Amqp/D3RXbhRC/CiGePG23G6npGF/BP1EdVf8E8oEHgelSyvzmjMmNGzfnH+eRDHsLVT4dAvKA26ptGwXsFkKUAL8A3wEvN2c8bs5d3LUR3bhx48aNGzdu2hG3ZcuNGzdu3Lhx46YdaVTZEkJ8IoTIFELsrWe7EEK8LYQ4IoTYXZEszo0bN27cuHHjxk3TLFufAWMb2D4OiCv/ux14r/XDcuPGjRs3bty4+WvQqLIlpVwD5DbQZArlOY+klJsAXyFEWFsN0I0bN27cuHHj5nymLTLIR6DmK6kgpfy7tNMbCiFuR7V+YdAb+4cHRzb7YA6nA4fDgU6nR6Mo5BXkYi22oUgFl+LAy9cHD7NHi04kLz+XkpJiDNKIQAOACydGHwPeXj4t6rOlOF0u8vJzkC6J0WTCy6Mp5QJrU2K149JrcOnBbNBR6rJi1Nrx0lgwaEytH6fTxYkjeVCmRQKK2UGHzv4oyvmZHsbqLKPIacTi0IFdQbGBq9RCWWE+WqceEDgUGz4BvpgMzb9+EsjISEVrV/uSuMAkCQoIbutTaZT8gjxsRXaU8nvdSikg0CgahE4QFBiCItr2dzyeciRbShnUpp2eIdpCfrlcLmx2GxqNBp1Wh9VmJTcnB41TixQuNEaFgIDgFiVXslgt5OXm4HJKDFTcmxKn3kFIcGgLemw5EigsLMBms6JoFPx8As5ZmZCTl42j1IGQCi6NAx8/P0xGUw3Zic6FUWvHQ2tAkWrC+Ao5YVYMlFrtKDZQbE48DLqze0J1kJGZhmLTIlBw4UQxCwL9W/YY5hXkYS+yoaAFJHatjeDgUDTKmXUBdzgdZGdmonUaAHDiwIYFndAjNRI/P3+MBmObHrM18uuMluuRUn6ImluETlFx8vkH3mrW/ivXLmX7qi1oiw3Y/EqZMmMGixcsIoQYNfWbhDzPNB647/RsAY2TkZ3KvP/7hBJZTCSd0Ar1gbHKMsIGBjHpshnN7rOlOJwO/vPfl+hY2gOd0JNHJr0u7sXIi8Y1u6/tRzMoiTZTGgkXdI5iR8lh4kMyGOF7iFjP7q0e68tPL2PXHh16od7UJWUFTL3OjxtvH9Tqvs8GR4v3sSq/C4kZIbjSjJhT4MCibxHbyzCUn6PL5ULfSXLdjFub3X9pWQnvvvEmQYVVL+p8/3Tuf+CJNjuHpvLRJ2+hP1CV/Dpf5uDATqAMxWIrJbCzL9MnXdemx7zhkQlJbdrhGaS18isrN4NPP3kXba4Zl9FGx/6dyMrKpGumD6Jcqc0mlauvuYGIkOhmj+8///cysVm9yCKNKFGVw7MoPIvZs//W7P5aww8/L+Dk+hS87f5YZRmW0ALuvfPxyvM8VygoyuejN98miCgQIJ2SYp9sZt/1txqyUwmzEB+SwYDAjng61JKrFXKin0cc246cxJwCHsml9I8NOctnVZMySynvvP4GQfaoyu9aI3Pe//BNTMV+lZ9zyWTS9Cl0jklo9Vibw56DO/h9zgr8RJXuc1TuI5buSIck13CKhx74e5seszXyqy2UrVOoZQ8qiCz/rk1xOB1s+mMdEUWqEJE5ki++nIO9zIZdOoigE0IIhGzZw1xUUojGqiWYCI5zgFjZA5DkBqQxfVD9ipbL5eKX5d+TmnISLx9vpk+5Dr3O0KIxVJCWmYKSqUMn9AD4WYM5tH9/i5St9sZSYkdDlYVHkVpKi21ncURtj7dPAFnaQ9gcFjJJwYGDnkqvFvVlNJhwGuyVn13SicZ0doKC/YMCydyfg1moVtN8sgkmAgCDNFFYeHrJNzet4fsf5xOYHoVGaKAUDm46QKE2BwMeRMpOGIQJ4dRgd9gb76wOhAMMmCiliDJZgkl4kGvIoEf3Hg3ud/DoPtb8sQIhYMzoScREdmrR8atz8ugJvO2qtdYgTBRl5VJcWoiXx5ldIWgMu8OGkJrKz615h5yrGPQGnDoHTungJEdw4kSUuJBStkj5NXt7YJVW9EJ9z9k9LAT4nnljdWhwBFavUrVgElAqi9CiGkmEEGA/t37HtpDyi4Eby6MSLwQKpJS1lhBbi81mxVZkrfwshIAiQTfnALzx5wQHyddn07lrfcXWGyYytAP2wDIMmAinI4eUP8mMTOLm2+5u8EZa+OM8klYmYzjoQ+FmCx9+2rzZbl2YTR649M7Kzy7pQmjOrRungptmD6Iw5igu6cIpHdg7n+SKG/qc7WG1KXHxFyA6OUgVSXSiO/H0JulAEqnpJxvf+TQURWHi5MtJDzpOlncK2REpXDVjVtsPuglMGX8VJTG5HGY3h+SfFJGPCXUJPtecTp9eF5yVcf1VyUhLUxWtcnQ2PZGlcXSgC8c4QIksRoQ7iAyNaVH/QZEhlGqKiKMn6SRxwLydC6cOYfSIifXucyLlKD9+tRD9fi90+7yY//lnZGant+j41ZEaSfUcjk6No9WT0PYgwDcIQ5iWMkqQUpJrSqdH7z5ne1htiqJouGTUpezXbiOMGGJFdwKLIvjxlwUt6m/G1Bso7ZRHlvdJ0v2PM2jkEPx8Atp41I0T5B/C4NFD2a9s46jcxyF2EVJu97FQinfw6SUrzy6NWraEEPNRa9EFCiFSUOs56QCklO+jZrodj1oWpRS4qT0GqigaiinEJi3ohZF8mYMO9eH1Fn5kGlIYMPkChgwc0aL+jQYjt9w6m+9/mI9idzImYQIjL2ooCFMl/UQqvi7VH8KIiaLMbCxWS6vWigN8g4jpFUPSjmR0FgOWoCJumHR7i/uTLhcHv/uZI1n5WIK0dPr7wBb3dTodYwP5zzfj+ejfG9FoFGY/MY3AoJb5l52rCKEQHhaFKdGvciYYmB/Bhi1/cMXk65vdX/eEPnSN74XFWobJaD5rSytajZZH7n2OX5Z/z4E/91JmLyGJgwT5BzOw74X07dl294kbQCPIkqkEiXCc0kEe2QQSjkZoCJGRyO5l3HXtI2g1LVtwuHr6LBabviE9NY1Y7ziumHo9JmPDddg3bFxFcEFk5T3onxfKlh3rmThmeovGUMHYcVP4/uuvMeR54DBb6TGwNwZ9y2XiwSN7Wbt2JUIRjB87jfCQ5vvL1YUQgjtveYglvy0iPz+Pi3uMoH/vC9uk73OJ7t36sPaX1RiK1VUIb6c/J4+2bEXMZDRz/91PUGYpRa8zoNFoGt+pnbh4yGhiomP59tuv8LJ4kWw5SGhABH5B/lx5+Y1nbVx10ehTLaW8ppHtErinzUZUDwa9AX//IE5lHcclXRRTQC8GV273C/BvsaJVQYBvELfOuq9Z+0hNTXOsU+NEp229g+SMaTdy8sIT5Bfk0ik6Dg9zyxWYbT/OR7+jDC+nL1pRwpK8Hxk9r+GlhebQOT6Yf743pc36Oxfx8vImQ+SgQ13atQkrXp4tdzpWFAWzqWWBHG3N+NHTGD962tkexl+ejh06kZSVzFG5j2IKiKNXpaXLpXcybtQVrZqkKYqGqRMbFNe18PTyplBkVlo0rYoFb+/WL/XFd+rKnfc+SFLKUYICQghrQTBBBUeTEvnxq0WEFEYjkcxN/ZDb77oPf9/AVo8TQKvVMW1C867b+YZBb0BqXZWfpZRITeuqxzSmyJ8pYiI78dD9T5/tYTTKGXWQbw1CCKZOu5IlPyxCY9HhEg4yHMkYSzyw+ZYycuRlNdqXlpXwzXefU1pYin9IIFdMvg5tGyhBp3PZuMksWbgIfZ4Hdk8LFwy5sM00/aiwDkSFdWh1P2Unswh0qsLOJD3IO5yOw+5qZK/2wel08eWnK8lKzyY2IYYp0y9sF8uOw+EkM6MI/wAPjMbW/+4jho3lwP7XyU0qRSJQYhyMvHh8G4z0/GLDllUcOnyA0NBwLhsxGeUMRyCdz1wx9QY+zH0LQ7YBvaIj1XGcwOIwnDo7/t196RgVV6P9slVLOHIoEUUrmDLlKsKCItp8TGNHTeGdI69TdrIYqUj0HRWGDmjdpLUCHy9fenXt3+p+1m9cSXBhlOpPhcAnJ4gduzZz6SUT2mCUzWfvllP8ueY4meIQuuHXQTvNmYpKCgCBl0frl8P0OgM9B/Vh77rd6EqMWP1LmDbu6tYP8jwjNSOFFat+RqMojL/s8jO6/HneKFsA3eJ7kfBID8osJZhNnmTmpJOacZLoiI61/KrmfPY2pqN+eIgA8o8X86VlDjOvvavNx9Q1rifh90aRkpZEUEAIwQFnNsS6KbiUmjMYl9aJRnt2lq7+9dICZk3JpkcXHSvXZ/Hxe3ncenfbKi3Hj2bzyMyfcGSawauMO56+gPHTWhd5qdPqmH3HYxw+cQCAuA5dz6r5/GyweOlCTqw9gbc1gOPaZD5LfZebb5h9tod13mA0mLjvrscps5Si0+mx220cOXEQs9mDTlHxNSYdq9b9xoEVB/G1BeKSLubmfsC99z7W5tZQvc7AvXc9ztGkQ2g0GjpFxZ9zCrTZ5EEuxRhQrX52jQ1Pz7PjqrB77TY4uIf/PmYmNy+NG/7xNva7323TY7hcLj794h3yjucjBQR1DmTmNXe2elI67tKp9Ok9gOycDKIjOuHj5ds2Az5PSMs6xdyPPyQkNwYHLj448R/uvvsRvD3PTNDGeaVsgbr8UrGkFhIYRkhg7fypdocdS44Nn/JoCZP0IDc9td3G5OPl2+ob1+VysfvAdoqKC+nVrX+bPgixI0dw5Jfl+OZ4UexfSsI1Xc6Kn5Dd7sRTm0WPLupS3MihOlZsSG5wHyklubkleHkZ0eubdrs+/+ByjPviUIQC2fDGY+tITytk2jW98fNruelbo9GQENt2y6/nG8cOHMbPFgYCjA4ziQd38uEnb9E5rgsjhl12zoX1n6tULL9oNVp6JtRd3Szx4AF8beoymSIU9NkeJKUeo2tszzYfj1ajpUun1qeBOZWezJFjh4iO7EDH6LjGd2giEy6bzjsnXkdzygiKRB+rYWDfoW3Wf3M4smEt7z2mKrwB/hrumVzM8oMHwcO/3n0sVgsul7PJivKaDcsp2+cgyKWuRuTvymaO821GXTKeTq28rmFBEe1iIT0fWLV6KcG50ep7AQVnpuC/7/+TmOhOTJt0Tbu7dZx3ylZT0Gq0SF1VNJ+UEnEOn6mUkjmfv03pQRs6p54NQX8w6+a7CAlqm0T8Ud36YLogmiBHKZlBLvr3lcChNum7OSiKoMxS8zurrf4XdE5OMW+9/CUJnaycSoeeAwczdtKARo9jK6b8gVKxZ+n5/qkclsz9hg9+vJzgkHMrSuV8QZZbSKWUHGEPHaxdMRzwYO+RfRQXFzJ53JVneYR/HQwmPQ5pr8z35zTa8PXya2Svs8fGrX+w7pc/8CjyYZt5C90v7s7YS6e2Sd8mo5n77n6CwycOoNPq6ByTcNasby6pYLdLdDpVbmXlK+g86/ez+2PrHPwDd2MyQOLWSMYOexhFadginpaRitnpRUVmW7PTi5O7jvD90QVcMGYQlwwZ3Wbn87+ETqejhFI0aMiQKWhQCMuIozTdynvp/+L+e55scXBKUzi37MX1YLPbWPD953z06Vv8tnJJjZDiuhBCMGL0ZWT4JZGrzyAj6AQTJ19xhkbbfI6dTKT4cBl+riA8hQ/BWTEs+WVRmx7D7O9P1yGD8Qo/85nKK9BoFMJje/DxfCv7D1l57T0r/YfVn/z00/cW89rjDh64Rc/rT+k5smsDeXmltdpJKfngP+u45+pFPPfQL4R0NGKhBACndGChDB/8MR6K5a2X17Tb+f3VGTz0YjI9T1JILnphxCTUmaCP3Z+kw8fP8ujObTZtW8tHn77N3K8/oLi0qNH206deT15kGrmGdDI9TxI7sHOrnMzbm03r1hFcHIWH8CawLJzd23Y2Kqebg16np3tcb+I7djury5xDrprB/c+XsOeAlSW/W/hySwSR8XWnG0o8voORw3fwytMKzzyq8Oh9yWza9V2dbY8lJfLRZ2/z0WdvExYeQZ5nRuW2dJIJIpzAkgi2b9rcLuf1v8C4MdPIC0ujWBaQRzZhQk2xohcGRIaOtMyUdj3+OWzvqeKjz95Cm2jGiDeHDx+muPgrpk9uOLP1wH5D6ZbQi9z8bIIDQjG2oLRKW3EgcQ9r1v4OAsZcOpGO0Z1rbLdZrSiOaon1EEjn2XFgb2+umTmSPbviWH8kjYsmdiA2rn7lTyuseHtVXZducZCZUVhrKfC1Z39n8xwrHpYIsmQZxmG5dL5Gy+4NSWSesNCRrgghUKSCzeI8/TCVSCn56csjfL9gE0pQON2mXomZxq1gTqeTH36eT2ZaBmYvD668/MZzJlKnLbnwgovw8fPl2+++pCy7iCRnIlF0Vu9Xpe1erH811m1axZafNxFgCcUmbbyf/ib3z36ywahlLw9vHpj9JOnZqZhNHvj7tE3kXUsoKS1i0Y9fYSkppUOnWMaMmFR7yfg0cSVcClK6EOKv5dcYH7WboHuG8/OmU1hNTuLuuJidpUeA2tat3MIkBvaruk69umkoKq2d7/tUejIL531JSL768t90ah29LurL0QOJnEpJJsgRgbcot2o28lpIPnWcJb8twmazMX70VLrENm15eNe+bWxYvwYEjBo1jvhOXZu03/mEp9mLe+56lE+/egfXMQeHbbuJojNGYcalc7S7jnDOK1tlllJK08sIRhU2XnY/Uo43LZmkp9kLz1akTGgLjicfZsnX3xFcqCZb+yZtLjNvv5PQoPDKNrEduuAI/x5bihUdejK9Uhh3Yf2JCM93evaOIiTUB5vN2WAWYw+fIPYdOk73LjocDsn6HRoemaxGj6xelsg3n+xGoxWcOlaEh6ULoGarLjiq4f++uBQBzBq/AGW/Bpd0URB1hGceqD932lP3LWHpVyeIdsWjQcvGTa8zYvbDeJSne6iPr7/9hMLtZZhd/tiklY8K3uK+u9qn/E5WbgZ5hTlEhsSc8dQRLpeLn3/6jrCMTkQJHUXkc5g9+Pj5MrmVeZn+yuzd8ycBFjVwRif0aDINpKSfoGNkw/43Wq2uxQlO2wqXy8kHc/6Dd3IwRuFL4tHDWG2LmDy2ZlWN6LgYUrMz8Hb4U6IpIjA6sNHlstay/WhG441ayDGljJDoAEojId2QSZw5nXjDQcCXCzpcQLegnmw9toM47/2sF4LDhlCkzoCn4oCjGfSPDSEmrB/zvlnJM4+ofc7/zkl0qJoouKikkG9//BJbmZViaxGB+RGVcjAgLxyb1ca9sx9j3oIPKdxZinRICg25dOhSf3b/xGMH+GTOO/jZgvEjkIXHv2LoxIsY0Ui+yMPHDrBs0S8EF0chpeT7jK+58fbb2sWSWmYp5WT6CXy9/AgOaBs3mebw+5pf4YiObs4LcOLkIDsJ0oUS2SOCIP/2LbN0zitbOq0Ol6am/5VUzh+rz8bNfxBUWPUg+eWFsm3nxhpJA1PTT6qRSfo9SMXFlHEz6NmtbsfZM4XL5WL174kU5FoYPia+ljUp8WAqy37eirePBzOuuwSTqWnpFaSUvP3adwSYU/AwwadHfXj8+RvQ6WoL5pvuHMeHby/hy8WZlFo1XH3zeEwmHRvXHudf927DJ7MDEskpQyrRshSjUMeYmZPHip8PMf3aPny0+ArefnkNVouDZ+8dS3xCCH9uT2Hh53/iH2jirkcuwmzW43A4WftLMlGuOLyELwDxhd3Yt+JnhvdvOAdV1qls/MoT2+qFgfxsO1abpVVJHOti6Yof2LN+D9oSHbaAMq65fhbRER3b9BgNUVRSgMjXVPoReQlfvAJyuO2u2WfV8nKuIzQCl3RV+hG6tA5MhvPD8pmTn43MUSpLh3k7/Ek+WnPJ2OGwk5mZQYb2JCfFYaI6dmDmtY+225gqlKyS6IavYV5GCjnJx/GPjME/rGatSYfdRuren5H2Qnw7jsAnqOb2Yp0drxC1JmKcOZ0RgQeJMPkS69mddav3sfH33+keJ9mw207XKYUQOZjDhFKMgRK7uXyMRkxcza0P/IpOKzFoBzCw5zAcDjsffPRv/FLCMAgfijSlpHCMDqgTRitlHDp8CodzOtdfeRsrw37lZEoS/WL7MWzQSCzWMn5Z8QNlpSVcNGRUpQxYtWopOpueUKFO7KNcndm0fl2jytbmbesILIoAobrg+OaHsGPXFiaMbltlKzUjhXmff4g+24zTbCfhwq5MHHtm3XtSTiTj5VSDGTRCQ7A2nCFXDGVIv+HtfuxzXtnSanX0HtSPvWt3oys2YvUrYeKYy2u0kVJy4MhuikuK6R7fq1UJQNsaL29fCkQaZjwBsGos+Hj71mizaNGXhGXEEi5Uobx180aGDhx5Fkar4nK5uPuahZxabUCx6fksfifvfjuViEjVlL37zyT+WPI9T9yjJy3LyctPHePvr97cpGjBtasOMLh7ChMvVSNFE48V8eWnK5l1e22nT61Ww90PTa31/bfzduGT2aEy706EtQtJnrsJKu5EMYWYbX58/o8DxHcPomfvCP7xr6rUEhvXHOPlOzfgndaRRGFh+4av+XzJdQgBElCoUvoUFFzOJtSp08oaFjqXzoFO27A1rLmUlpWwe9OfhBSrlg6ZJVm8ZCGz7zxzBYZNRg8c+qq6ly7pwsvX261oNcLkSTOYm/UBxmwvHHobYT3DCD0tIiwjO5XjSYeJjOhw1q1Z1TEbzTi1jsrParBRTUv0j79+gzhkII7eAGSdSiEjO61dLCPbj2aoVqdI1epUHydWriX7u634Ffiw33s7PpN6Ejt2FABOh4OsH1/n3ceKCA/W8Lc3DpDiugXvapF+wmBF8VeLT8cbqhQtKSWrf13F2/9Qn+8br9Bz53NHGPOoKhsPE0qpFcBMRkoOnVydGTngxRpjS8s6hSbLUDlpCXSGkW1MJcuiRsznkklESicW/fAFV0+fxahq+fxsdhvvfPA6nsmB6NEz/+CnzLjxejrFxIMQiNPcsAWNRwj7+vpxssY7qgw/v7bPP/Xj4gUEZ8aok44SOLB1HxcPG33GUi8AaA1anNKBpjxiTpqddI/rfUaOfV44yI8dNYXr7r6Ji2+6hNtm30u3LlVFgCsi+X77+Fc2fbGJ//73dbLzMnE4HW3qoNlSLhs5GWvHQnI06WTr0tF0djJ04PDK7VJKZBmVL2pFKDjLzq7lbvOG46T8ocfXHoK38MMjMY5//+OPyu3LflrHPx42YDYrxMbomDa6hO1bTzSp77RTWXSPr7rtOnfQkpud16zx+fobsVNVJ9OhLyOqqycSF4GEEC46YMgMZu3yo7X2/eK9HfikdUIRCkbMFO70Yse2JLRaDcMnxZCkHMQmrTilg0TP/SRcMqbR8UycNJ2MwBPk6jLI8Elm6IgRbe7EW2YtReOosh4KIcDRwA7tgF6nZ+iI4WT4JpFjTCcrNJnLp117ZgdxHhIWFMHsex/lkpuGM/2uq7h2xi01tm/atpa5785h6/ztfP3+XH7/41dcLhcuV/3+hWcKD7MX3Qf1JNPjJLkik4ygE0yeVHMJMTc7pzIDPYC+2ERqRts7G1coWsUdtRyLzUQJs9T7l756M1GF0XgKHyKKIslau6NyW27uHh64Mp/OHXSYzQpvP63FfvSXGvvHRaYTH5LBCN9DlYoWqOlrAv2q5LOiCAK9DESYfBkReJC4yHSUMAulkajjVMpqLXeaTR449NWL0bsICQujVF+EDj1x9MITb3Iysmtdg0NH96JJMWIUJhShIaSgAytX/wbA6EsnYNGXkCezkFKSIVLo1qdXrT5O57KRU7DHlpCjTyfbmIYxQcOF/S5q0W/UENIha0SJa+w6SsuK2/w4DTHj8uvJCT9FjjGNDO9keg3ti88ZivI95y1bFYQFR9Y5UzqSdJCiQ6UEOENBgGemD2/85x/464NB7+KycZPo3ePsFdTV6/Tce8fjnDh1BI2iITq8U40XsRACrbcGZ66qbTukHaPP2S3YWlxkRdiqbg0FBZu1ugIoqK7HOpw0WbkYOKQrc7/5k2ceUC1Bny+0MWhY03NXrf9jHw77YTJCyzBnxqIxQtQlLnoP7MqyXUWY7apV0+ZRSJceVU6eDocTrVaDUE6b6Smycgnzxf9MIqznYuZ/nIjwDqDfFXfh4wgld+cR3lr6CdIm8Qr05oarb6tRVLdzhy7ce/9jZOSk4u8T2C4Pr593ACLAhb3Yhk7oKdLmEdmxfS0g6VmpfLNwLi6LC88AT66/+naGXTiSvr0GUFCcT6BfCHpd21rw/qp4mL3o063utCUb1vxBcFGUGupf4scfK5azbf0mFBTCO0dw7YxbzmoOswljLmdA/8HkFeYSGRqDh8mzxvao6BiOHDqGl9MXAItvMR2iYtt0DNUVLRFtJS4ynQivsnrb71BqKqoGnMQFpyOEQB+Qj8tVJcCkBA+9asWqoLo1qzp6vZb0XDP5BVZ8fTQkpdhxiMDydvu4PiqdVfk+JBKCMFgpxsCx42WVflzFpUVs2vMOHh1OkXqoFKPDF1tQCVdNvoEFc7/A165aiR3Sjt5cNblSFW+BomiQVBs7EqVcpnWKjuOB+55k4eJ5ZJQd5+Khoxl8wcU4HHa+/OZj8jJyQQtTp15Jh6iqIC2dVsfs2x/lVMZJFEUhPDiqXe63mNhOHD15DB97AA5pxxXgIMi//ZKAO51O5i/6hOzUbNBKJk6aTucOXXjwvqfIys3A08MLL48zaFU7Y0dqB4pKCli3cRV59mx8CEArdCgoaEsMhJSqa/BLf1pCQnyPNvefaQ4ajYbY6C71bp91w118+fXH2EvsGLwM3HjtHS06zsatf7Bx7VqEhMjO0Vwx+YZm91FYUEZ4pC+ahCwcB3zQoKUg5Dh33VxVnDUwJIS7Hj/B8496k5rh5Oc/vPn7K0178XeMDab/8HE8+uo6tFpI6NWPoRd3a9K+BQVlbF71O+++pMf6jIalq46z+I8gXn7zRqSU7P/ze45vzQVFcsHYQEaNTSA5KYdHb/oZS7aCzsfB9ff1Yc7ePzElR2HXWggdYqVPv6jKY4y9KhbDZeNJzAjBlWbEleRkw4qFROfGoggFy6lS5ms+Zea1d9YYm9nk0ajDc2tQFIU7bn2QRd/Po6wkn9iOnRg7qv3qUUopmTvvA4JS1SSA1lQLX4o53HLjbDzMXufUUv35ipSSzTvWklOQiUF64ilUwe8qk4SUxSCEIPfPXNZG/c7Fgy89q2MNDgir16H5spGTKSicS9qJU0hFMmbUxFoVPZpCTn4WX83/GHuJA72njuuvvQ1fb/86Fa0KH6rTcdhdpKcUE9/XQXpKDh62AEp0+cRf4GKkXyIAyR3yeeelYsKCFCJCNbz6QRnTZvSgg2/13IO1Fa0KHnjyWl7+749oZCkaQxD3PDwZoFr7fcQbNrPKnFDpx1WhcGWnf8q7r+Xg4+3BgcR8Hvp7LlNHvo6XpzcXjxnFmt9XoLHpUHzh1ivuw+VyMW/Bh2QeT0cKSOjTHU0nF4XH8tC7DOQFpHPjmKr3RXhoFPff/mSN8S768QvKdjrwIwwpJQvmz+WBB56s8U5UFE2blIZriPGjp7Fc9xPHjxzBYDZwx9QH2rUKx/c/zadwexl+MhQpJd99/RWz7/8bZpPHWUmjct4qWwVFebz//r/xyQgmnBgOs5vOshepyjECXFVRBdpSPQVFeWcl8qGp+PkEMPuO1vnepGacZN0vfxBcrCoOGTnZrPRbim9E0x3tv/50O1/9Zz+iyAjBEDAlHZ2i455Zgxl8sRoFs2DeauKD9nHlfV589EUh2/ebeefTWWi1TX9oBg6OZ+DgunPT1MXGdQdYv3IrmVkWxl+kzlgNBoUpYz3ZtNel+m4JwVufTaeo0IJGq2A2qxaXp+/+De3OWLyFgjwp+eL/dvHeksks+WYvQaF+XH7NuAatcqXF+RjLTJXmb6MwU5iT2eSxtyUeJk9mXnsX+w/tZvnynzm87yAx8Z2YPHZGm89Ei0uL0BTrKs/bIIzk56a36TH+1/n0y3cp3ltGjKMrqRzHJi3ohRFJlf+fp82XpORjMPgsD7YBhBBcNW1mq/uZ98WHeJ8IQSM0ONMdzP3yQ+676/EG96muEKWeyue+a37AnuKB9NAQOrwYs9HG4B6B3PnQDSiKQsrJXDZ9vYKF7wbw7c9FPP+mgzsevIYL+tUf5Xc6vr5mHnm6/sLVFVauEYEHAdhX6ElO2k847Ba8NJn4eKspBrrGG7j0EidOl+oPMHjAxQzoN4QySymeZi+EECxbtYTiXRaCnepk9vCGw4y/cRJZfTIoKSnmiv5XNqrY5mTk4InqgyWEQFdoIis344z7BgohGDNiEiUXFvPl13P45KN3MHgZuO7qW9uk/uPpZKVn4iH9Ko+tKzSRkZParpPihjhvla3ffl9MQEZEZZRMtIxjH1tAIwlxqQqHlBKHpxW//wEH3qPHEzEXeVdmHfay+3HixFH6NFHZKi2x8tVb+/A5qd6Irjwn1ohT/PfbmpF4qScOc++j6jX/+0P+vP6+ldJSGz4+tXOU/LBoA8cOHsbhVLh65jiiOzT/d/hz+zEObV3GPx/Vk5fv5LEXi5gxyYgQgqQUO3pTzXBdL++aFkxLnsRQrjAIIbAXaAiP8OXuRy5u0vGNZi+seguUZ753SAd6c8uXzpxOJ4qitFg5ys3P5qdF3xKcp1o+kjKSWeX5GyMbiThqLh4mDxwGG5Tn33RKJ1rTeSsuzjnyCnLIPZpLkDMSBHSkK7vkRhRFIUAJqfTHKzBmc1FC0+7V8x17kQNNeV4ujdBiK1SDMfrHhsDRDI4dL6MYA4dRl55UZWZfpcL14iMr0O/pjEloIB/SOcpnf0zC37/Kn2zp4k38/T4tnp4KM6/yYdwoB5/+dJgLBtVWto4dyWDRF8vQal106ZHAhKn1J2A+nQqF6yKf/SSt+JMvX1Hw8dZw60NF5OTqCfDX4HJJNu8URERYUbJOT2OhLpHuTTyMv8O3Kpt8mReb9uyjV+8ReATBiRwXJ3Jq7ts/tqZMNHkZsUtb5bvSYba2uACzlBKXy9Uqi9Tn895Hn+iFr/DBIe18OvfdRpXqlmD29sAmrejLy/bZzVb8fZpvcW0rzlvp6XK5akRaCBSCiSDQHkaSz0ECzEGgg6sun9lg8kApJctW/cTRxEQUrWDKlKvOydpRGVlp/PTrt7hcLi4aNpKEzjX9nKIiO7DZvAnPMnUpokQpJCYsqq6u6iQvrxSltJpZWWiw1eG7aLfXVBKKS0CnrW0Z+vmHzQSIrdz+iAGbTfLQi/N54Klb8a5DKWuIVcu28+J9eoQQ+PtpGTvCxMwHiomKNGN1+XPfYw3nI/MO1VByQC174pIuTEESjabpzutanZ7ug0dwZMcaFJsWrY/CzVc2v/iy0+nksy/fJTclF5fiot+FAxk9fEKz+zly4hCmPO9KZc3HHsCxo4l1KlsFRfmkpCcREhBGoH/zKgcoioaJUy7np8XfoVi1KN5w01V3N3u8burGJV0IWfM+9MCLzq4eJJr+JCcoFQHE9+hK/94Nm7WSTx3n51++Qzqhe8+eXDK08aCOM43D6WDxLwvIyc4mPCKScZdOq2VRVkyiMqrXJV1oTFUv9PoUrggvH2AfAJYiV6WyBiCKjeRkF9dQtvQGPYXFLvz91HaFRS70xtqTp9zcEr76aAH/elqHTif48vtNLP9Vx+hxTV8piPXsTtKR9Vwx1IaPtzqGfz0XwJV3FBLT0Z/sfD2GuOsoC/astw/fHl3IT9qPX7kvV75nPgn9hlMSUXfai4yUnEr/sAqumj6Tjwr/D3ueA5fOwYjRl9Xyu2sKG7b8wbrVKxEOBY9gT26dObuG72pTKcsrw0Ooyp5W6LDmW+ts53A6OJaciEajoWNkXLODjq6cdgMf5b9Nfo4Nl9bBRSNGntXi2+etsnXpiAnMSfw/grKjcOEimURi6YEWHR2iY7l15r1N6mfV2qUc/P0gvrZAXNLF3NwPuO++x8+pDOAFRXl8+vF7hGTHoEGwOHkR2hu1dO6QUNmmQ2QsPYf35M8t21FcCgHRgYwbNYWdx2tHtNRFaJgPuvBSnFmqo36pppBePWubdoeMHMyLb6/ginGCnftcGPziMHvUfuAS9x3mlYfV7/V6wbQxDvbuTmHIRc0z4Xp6e5KWkU5kuKowB/jrGTPlEsaM79Ok/V+bM4nHbvuJgjQnJj949b3mKzgdOvbk8lGjsNmtLfb9+3nZt9j2QbBL9SXctWoHXRN6NNuUHxocjtVcVjHxxUIpAX61HfL3H9rNkm+/w5Bnxu5lYcDIQQwfdlmzjtU9oQ/duvTGarNiNJw9n8e/Iv4+gXhEmyg+VIDZ6UkqJ/BBzf/jawzgwQefbJL1s6Aon/lzPyUkR02FsvPUDgwGExde0PbRZK3hk3n/xblfg1l6k3ToJF8XfForKvOqq2by9def4SoFjYfg2qtrbq9L4SrxV2VUvGEzoT0lh7bmY7b74pRONBHFRMfUtOBcftUwXn7mMHdcbcEp4aMFBp58YUit8e7cdpxrJjnRlQeAXDfNwGNvHGiWsgXQM7wXP/6+qfKz2aTgDI/kxLibASgGcqjfLUGJTaDIlUzOnyeQwoX3mO4UXGymoI59Qq3BeEUGUJJSlYusf2wIHmYvHrjnSaw2CzqtvkWR0nkFOaxbtpqQgg4AWPJK+XbxV1wz/aZm9yWMVUq1lBJRh75mtVl498M3IEWLFBJjJy133vJQsxLlmoxm7rvr8Vadd1ty3ipbgX7B3HbHffy2cjG7d/9JVEkXBIJMr5NMGDS1yf0cTjyEr02dNShCQZ/tQVLqMRI6NT1Crj1JPHaAL7+eQ0hltXIILoxm3YZVNZQtUB1Vx4yYhJSuZmdv1mgU3v5qKs8/tBxLoYs+PX144qXaM+Rhw7sTERXMHzuOENUxhFuvrsfXQegoLHJWlts5liRIGNJ8p+rrbhrFC0+fZMLwEkpKYfO+QB7/R+PhzBX4+3vw0bdXNfu4pyOEaFWQRWZmBmZX1WzSUOJByqkTzVa2osM7kjC0K/u37UFxajCGGpgy4fZa7Zb9toSQ3Gj1hV0Em9et5+Iho5stcIQQbkWrHRBCcPus+/l9za9s2LIGXZYJXxlIsVJAUHRQk5eZE4/uw5TjU5U02RLC3n1/njPKVpmllC++nkPygSTipPrcejh9yEhOrdU2MiyGRx58FpfLWa/8Ol3hclmNJBLCKXMCYx6QSFcK6XuKMHvAq29MwmCo+Yrz9DLy5Eu3sHrFHgCeeqlnpX9ndQICvTl6AAaXB7Ln5jnRteD5Dwr2Qu/dg39/vIeETgpfLdfS57pR+EfXH0lZixdP/y3r3vdU0W5KSuMpxchRnR3P444aVq7WyK+s3Ax0hVX7GzFTmJvfor6mT7+WBV9/jqZUh9NkY/rl19dq8+uKHzCf8KtMVF14JJeN29cwdMCIZh/vbAbHVee8VbYAAvyCuHb6LTgdTo7sSkRIgV+IH13jeza5D4NJj0PaKxPMOU02fM9Q3o3GKCop4PsFX+OZ64cNa2UmGzs2vE11W95UZ/GWraeHhfvy3tczGm3XMTaIjrENr33fcPsEHnlpLmMvsnAqQ1DgiGVK1+aH+ZrNep755y3s2ZWCh17DE1dFnNUw+JYSHd2BxINH8HL4AlDmXUTHmKYHCVRn4mXTGTNyEnaHrf7lAKeocZ0UhxaH04FecadqOFdQFA2jh08kLDSSb+bPJdV2HLvRyuzRTQ+W8fcLxG6wQnmuWZu04ulxZss4NcS8+R/CvvJ7rtpj21AtzcYmihUKF0ehxA6lGDlsUGXLuEdEnSkbqmM26xk/uX+Dx+jTL5p3VnXg3c+TCQmU/LbewCPPjGtwn/q48bbLOH6sP1mZRcx8NB8PrzygebkFm8IpQz6J1vrTTrSG0KAIbL5lyFzVIlWqFBES2rI+YyI78chDz1JcWoSn2bPO37uouAh9tXqTeqeRosLCFo//XOC8VrYAduzZQu7ufDrZ1Yer6EQ+q9cva7LD8PSp1/FB1n9QsvU4dXbi+sfVyu58tkhJT0afZ8aPIA6zG4e0o0GLM9LCdWMfOdvDa5DAQE/+/urtJB5KJ7q/qZY5vznodBr6XXDuZNVuCaOHTyQvfy6px1KQimT4JZcSEtjyCFm9Tl8rx9XKtUs5tH8/Gr0G72AfijMK8HT6YKEUU7DRnRPrHERKyc+LvyO2VJ0guopcfLNoLvfe9ViT9o+N6UJEv3BS9pxE49Qigx1cP/Hh9hxysyjJK8Ff+OAl/UiSifgQgNWnmFEjWxfQUaE8qMtlZkIjgykp9WZVdm3H+ZZyz8PTOHE8m+JiK89MCmlShYz66NgpkI6d2jtQax8Rpor0FSG4rEbMdjhWhx9Xc/H29GHC5VNZvvQncAoCIgKZMr7lKwaKotTKHJ+afpIlPy9COiUhkWEkeh8ipFB1u8jzy+DyPme2tE9bc94rWymnkjBZvSpnTR4Ob1LTmlaoGsDLw4cHZj9Jcupx1m1cRX5hPoeO7mtytfT2JMgvBIenFVEkiJO9yCINJd7FPTc93iLHxDONwaClZ68zn8/kXKStwuPr44/1y9j92y78rMG4pJPM4CTihnUlKz0THz8fLp98a7sd203LsVjL0FirJRAWCk5L8zLHXz19Fjmjsti45Q8yM9L5Y8NyxgyfdNZ9VAA0RgWXdBEqoiiRRaT5HOP+2U8S6Ne8gI2m0M8jjh0lkGj1qaZ0tI4OHc+fSPZYz+4cLd5X47u+vaPZCZBc2ur+eyT0oUdCn1b3UxdFJQXM/ewjQrLVcj7HU07Q5cIEMtLTUYTgustuJiigfQtFtzfntbJls9vo3rU3iZsWEFSivtTzTVmM6DaqWf1I4PsfvsYrOQg9BhYfXsTYK6307Hp2i0EH+gfTf/gAtq7fiMahxRik57aZD5wXilZTcblc7N+XhtPponuP8Gbl63JTxcED+/Gzqi8wRWgwZHvSrWtPEiY2fUndzZnF6XSi1WjBS+IscKIRGqzSgqd/830b121YSdL6ZLytARzdd4LP097npuvOfvTolTNmMm/eh4hiDU6jneum3douitbZJPVUPqdS8ugcH4Kf37kTWHU+cejofszZPpV+yQFloWRnZXHHzQ+c3YG1IeelslVSVsycT/8PW64Nl85JZPdostPSQULPPr3o06Pushj1cfzkYZRTBgxCXSMOKopi44Y1Z13ZAhh58TguGToGm916TkVItgVOp4tXnvmCIb1y0evg+S88efLFmRiN9afqcKNSZinl+yXzKSkuoUuXbuiNuhq+hw6jHe+zGObspmF++PlrEncdREiBZ5gnpZ1zcZY58Qzw4rqrmm+FPH7wCH62cLVkmdObzKRkHE6HqsydRUKDwnnkwWcptZRgMpjPCWtbW7Lku41kHttCn24uPn5Tw6VTJ9Knf9MTpP4vs3r9Mg4nHsTTy5NevfrjOM330GxqXpqgc53zUtlasOhzPI7541uepC3FmcTsBx9pUe4QAK1Wh9S4oLz8n0Qi2kEoZOVm8Ouy73G5JGNGTiQ8tGl5sDQaDSbNX0vRAvhl8XauGZ/H4P6qkturWynffPEHN956dkuTnOu4XE7en/MmnicC0Asvdh7ZQYdhHUgM34cm24RLb6dD346EBzc9z1pbs3HbGvbv24WntzdTxl/ljmisxoHDezi28TghVtUPsbiogC5j4xk9fFKL+zwtZRdSuFDaOJDE6XTyy4rvycrMID6+K8MGjWzSfkKIFsvmcxmn08WBHVt542l1pWHsCMlDL/7uVraawK8rfiBx1WF8bYEUSQvLM34iuFcw6ftOoXFocYZYuW7S2fNLzsxO5+ffvkO6XIwcPrZGLcmWcl4qW2VFZXiKKodrXamBvIKcFj/QHSM7o4l2cfjobvTSiM5fy8xxtcPpW0N+YS4ff/gOwdnRCARzj3/ErNvvJDQovE2Pcz6Rn1tITN+qZcOoMC0FeUVncUSNk5mdxnc/zMflkHSI7cS4S6ee8ejI7LxMZJaCvtwS62sLIuV4Mvff+xSpmSfxMHkS5H/2/BtWrv2VXb/txt8aTIEs4f20f3HfnU/85awaLeVkynHMlpp+pqdSU1rV5wWDBrF0yRK0Nj0mg5nufXs2O/1LY3w87784DyiYXZ7sOLid/PxcJl52fjsttwarxU6Ab1VUpRACs6n+KMtzAYfTwbc/fkl2ehZGTyNXXTETz7NQ5/ToocOVKZcMwkhRFoy7biqOUQ4s1lIiQqLRNpCMvD3JL8zlkznvqP5jKHydNI9rb5pFdETHVvV7Xko//5AAyigB1Ggeu3cZgX4hlZ8LiwtwOOxN7i8p5ShlOVaiZTx+Igijj4HQ4LZVgjZsXo1ftlr3SxEKwXlRrF7zW5se43zj4pG9eGeuE5dLIqXkzY9sjLis4ZDss4nFWsZnn76P4aAPHkf9ObrqKMtWLTnj4zDoTTg1jsrPUkrQSPQ6PR0iYs+qogVwYM8+/Mv9xwzChCtdkJ13ejmS/126xPWg2Ksq9L/AkE2X+KqAnDJLKaVlJU3uz+F0sGPnFsLsHYigE3aDlX59BrbpmK02CwUpBZW54nxsgRw9cLhNj3G+YfYwcDLTk4ws9Vn8c58Nnfnc9kf7etEn5G4qxPN4AHK3jo8+efvsDERRZX4FTo0Dg95ISGAYMRGxZ03RAtiyfT2+2SEoQoMQgpD8aNasX9Hqfs9Ly9aMKdfzhWUOeRlpoJNcOeUGjAYjufnZfPLZO4gCDQ6DnRFjxjCw39BG+1u24mdC89QMzAaM5KRYOXbyMJ1jEhrdt6kYDEYcokoBdGBHb/zrmdabg06nJa/Elyk3pxMe4cfE6ePo0Su63Y6XnlbA/r2niO4QSOe45glFm93G3AUfkJuRixNBmIzG2x7A8SNHoGmrKS0i8dgBVq/+DRBcOmocnWLi8fHypVOfzhzfegxdmQFLQBFXTWi/SMfC4gJWrP4ZKSWXDp/QeMmLckFaYfFzaRx/qaCO1hIT2Ykh4y5i84b1CAmxXbsw+IKLkVLy1cI5nDqUikAQ0DGAWdfe1ahF8OCRPcgTWrzwBQGRhXEsXbaYW25sflmp+tAoGlyKq8Z3DeXK+l/A6XQR3SmKO5/YjYennl79unDH/aPb7XhWq4Ntm4+haBQGDOrY7GCijVv/YO+e3RhcJqLojE7oceY5KbOUtps/cJmllEU/fkFpUSkxHTty2cjJCCEYP34qC7/6EmOOJ3aTlfh+Ce1mYZNSsnbTCk6lptC7Z3+6xTecFNtkMmNXbJikmq/Ojg0vQ+vf1eelsqXV6ph13V21vv/m27n4p4SjEVoohlW/LaN3j/6NZ5CVNYWGkAKb3caq9b9RVlbK4AEXt7hwZwUXDR7Frl3bcSY7EVJgiSjk+pHt94I818nKLGLOW/N44wktWq03j79aRnhE+4VZb9mYyKblvzJ+hIvtKwQ7t/RlxnWXNHn/Dz/9D7pED7qKfuTJLE5yhHDZAV0dddXaiuRTx/n+y68JKVB9e75J/YIbb7ud8JBIpk++luQLjpOTl0VsTJdaOWvaiqKSAt597w0CMsIBwXsH/sVddz1cp8J17ORhCovyGT5iDD/lfoc51weboYyonjH4evu3y/jOV4YMHM6QgcNrfLf1zw1k78wnxKFOOIr25PHHhuWMaKTMkjxdfqGWQdl36E+OHj9MXGwCXeNaF5Wq1epI6NONIxuPYCrzoMQnnxGXnHs1GM8kb7z4NTdNzeGxmR4sWW7nWK62WXVXm0NpqY1Xnv6UK8aWYrfDC0948/TLs9DpmqZwHdi3nqytiXS19seOjaPsJV72walzYNC3z0RISsn7H/8bz+MBGIUPh48dwWJZwNQJV9MpJp47Zz/IseREAv2DiQrr0C5jAPjsq/co3lOGh8OHX3cvIeuyDC4ZUlspzi3IJunkUTrExLKjw2ZyT2SiSAVbRAnXj7mx1eM4L5Wt+nCUOTCJqlPSWgwUlRQ2qmwNH34Z35/6mqCCSKyiDCIdLF26GH2SBzqpZ/e2t7j51rsJDmx+BvQK9DoDs+98jJ17N+N0OOnXaxBGw18r2qI5LPt5K4/dKTCbVeH0/MM63pi7nrsfnNzmx9q57TifvPMjLz+mJyHOxJAB8NjLu7DbhzVJWFmspVgyrHgJNWu+nwgik1Pkhadx27T723y8FWzcsobAgshKC1FAfjhbtq9j6virAbV0T3R46/wIGmPV2t/wywir9A/zzwxn5ZpfmTbhmso2Doedl998itKsMoQUeAV6ceW115Odm01QQDCxMV3adYx/FVLTUjDbq/lyOb1JS288Z2BC554si/yJsuQS9BjI9D1JpDmKZV/8ikeZL0c2/ETSJccYO2pKq8Y3ZfyVHO52kNTUZOJjuxEW8r+bQ6+01Ia/OZseXdTJ1uQxep54/SjQvLRDTSEjvZB/v7yIkQMLuPQiL3VpK6iYn37YwrQZDRcpryD1WCIhFtW9QCf0+Mogkr0OMWbUxDb37augoCgPVzboy4sfetv9OXksqXK7j5cvfbu37XL36ZRZSsk+lk2wMwoEBJaGs2v79lrK1nc/fcXmdesRDgWz0cygEUMIHR6Bw+mgR5c+bVLy57z02aqP6r5cLunC6W3Fz7txi1R8p65cc/MszEO0RI4Ow2A2knUikyyZihYdIdnR/LLs+1aPT6/TM6jvRQwZMPx/WtEC0Ol1FJdUzciLS1zoDW1vJfr8o2WkH/iRVx438POKUn75Xb0/fL3BZnU0sreKVqvDqalKNCmlxC/cjwfufbJdq8h7e/tgE1V10GyKBW+v9rFg1YcQCmomugpkrYCADz9/i8DMCLrSj050pTi7mFWrl3Nhv4vcilYz6NW9LwWeVYXj8zwy6d3jgkb302l1zL7zb4SPDsE8RMvgSy9i986d5JZlY6GEgLJQ9u3Y1SZjjOuQwCVDxvxPK1qg1pIts9S0KNqb7ibcZBIPpvLp25/y6K3FBPgrPP1KDlJKwoI1FBc2I1Gpor4TKxBmycxbbmfwgIvbftDlGPRGHJqqi6L6lrbb4epF0vBy9/5Du9m3Zg/dnBeQQF/sFgdbNmykR5e+9O95YZvVVvxLWbaunHYjX7s+Izc9A41B4cbpd6DRNO3XjY7oSPTlHVnw3ee4DmpIEH2xSStH2EscvSqXGqWULF3xI8cOH0ZoYPKkK4kMP79LybQ1J5Nz+GLOEow6B0bPQG6dPamWBWnitEG8/PQ+brvSgl4neOcLHY8+1/RlPVB/iyOHM7FaHSR0Da3lw2C3O8lLPcijj6kPS5fOep54KZtu8XpSc7zx8Gya+Vyr0dFrQB/2rduDrsSExb+YyROnt8iJs6Aoj9yCbEIDI+r1k1iz8Xe2rFsHLkG2RwbBZZGggK6D4OI6zN/tyciLLuO/e17HJz0YgSA/JINrLqlZOLYws5AwoVrY9MKITupx2JumyLqpolNMPEMnXszWjRtAQv/+A+jexIzdBr2RyZfN4ETKURZ8Mo9uNlVJO84BtFJH9cKEx5OP8Muv34NTENe1C2NGtDzlxF8Rh8PJnHd+pqwwE6tdy7U3TyS6Q00XB4NBi2dgPF99f4gBvRW+/01ywbDhzT5WdlYRJ5Pz6NApsM6EqD9+s5LXntSj1Qq6xuvJyXWxa6+VeT8Irruzb5OP03fIOHaUfYsx2wuH3kZU72g6RDY/nYHNbiU1MwVPs1e9yWmzcjL44quPcJa4KJWFpBiPYLZ6Ywso4cqJrV+Oaw4mo5mw+DDy/szGbPcm3zOLIYOG1WizdfsGolxxINSI0nDZgRTrERxOe5P1h6bwl1K2tFod1191W6v6yDiZho9Uza16YcAkPUjzOcbMEXcAalj74dVH8LEF4pIuvpz3MbPvfRSPsxA+ey7icDiZ89bX/OcZgcGgsD8xmTnv/MRdD9RcwjCb9Tz10i38/tsuXC4Xjz/fC0+vps8gpJS88eICukWn4+UBz39m5vEXZmE2V1nHnE4XptO6zMjRMO/XDjz6bPNqs40bPZVevfpx8Mge/HwC6Bjdufx87RSXFuHt6dOoOX7NxhVs/n092lIDNp8yrrr2hlr5W9KzTrF52XqCi1W/HbPGB8/+RoYMuoROUXHtZvKvDw+zF7PvfpTV65YhkVw37MZajqw6k66GQ7xVlNG799lPCHw+MviCixl8QcutDZu2rCWosKpYe6SMJUk5SL8EdbmmoCifb76cS0iOGhB04NQBjEYzFw9u++Wv85VP3vuFqRcn0aurDpvNzgPPf80TL92JwVDzdXnzXePYuimeFbvTGTo+lrguzXMz+X3ZnxzcuoYLejn55EcNF48by4DBNYvTK0Ki1VYpyiaTwpufe3DHvZOIjGq6H6S/Xyj33Psoew7uwGq30CNeVdQqovdNRlOjQSy5+dnM+eS/6LKNOAx24gfE11kf8cv5c/BNCkURGgJkBJnhSYydPI6o8I5nJc3E9VfexubOa0lNS+GS7hcT17Frje0+vr6kk40J1SG+lGLMAeY2s2hV8JdSttoCqa0ZSWU3WJl1y31EhscgpWTN2hW4rIIsUjFixiPHmxMpx+ge37vePl0uJ5k56Rj0xlY72jc6filJTj1GmaWEjlE1H9wdJYfxMCcCLV+KKi6ycPRoFmFhPgSHeNfanpZaQP8eDgwG9cHtFq/Huji7VjsAk0nHxKmNL5PUxR8r9zOyfzrjRqoPxJALbHw8Zzl33Dehso3RqCPfEsjeQzn06KLj15U2uvbtz8zbmufYe0wpg6MZHNu9mqSdyWgsOpYH/cLQi4ezfvVqtBY9Tk87N1x/W73LKw6ng42r1xJa0AEAmSVZvHgR993zuHo+65dx6NABSixFaIuMNfx2bKXFbRoZC7Bj92a2bd2EohFMnjiD4AaKYnuYvZgwZnq92ydNns63X89Hm6+nUJNH7wv61XL+dnNm8PcLIFc5hodUn02LKCG2bzyXT7oWgNUbfiM3J5cSSnFKB52s3Th0cF+jylZBUT6lZcUEBYS2e1b6vIIcUjOTCQ2KJMA3qMn7Vci3eMNBwLfONi6Xi8OJmQDExQfXGelZkp9Fr66q1VqvF1zYx0nKyTxiO9cey4ALYxlwYWyTx1idzavW8Z9n1cnhxEslDzy/spayNXBYP97+ZAX33qQnM9vJsvVevPzmTY0WxfYwJ3LYEMr6HKiwl51KS2bNbyvR55nZ6rmZnsN6c+DAXlzZEofWTr+hAxk9fEK9fX73w1cEpkaoAWh2SNx6iOwLMwn0D+ZUejK//vYj0iUpyCvAT6ipkxShoNg0dO3ccARgc8kvzOW7xfNxWO10696bYReOqLetEIIL+9c/gRk/+nLeO/EGBcm5OKQNu5+FJ2e/3KbjhbOobJVY7eUV288t4vqOZFvuYjyLvSgzlhHXZwhZZSayjmaQeHAzXgVBBAl1BpMuT5KjySS1UGKp51zsdisrfv4Efa4Op8aOZ8dghlxc/4urNUgpOXL0M6aNO0F4mOT9z0xYI27BrvNDGKzEmdMZEXiQCJMvsZ61C22vWr6LTas3YDZKFGMo9zw8tYYwOrT/FIvmfseIC538uFyg8epKcWExQlG4+sZRBAV74e/vwZGkqplYWZkLi63lOVOklGzbfILSUgsDBnXC7KEqcbk5BfTuVjW2sBANB/ed4M3nP8Llgl4D+zFmfH8eefpq5n++inlLsunasyMzb2vcITPesBlCBpFICKUYKdZp2b0zifTtJwi3qlnZHRkOFv/wHd0dal4wV5GLT7/4hMum3lFnn1ZrKS5L1XiFEJQUq8/Arp2/U7D9JP6OYIQ0cEDZga8rAEUoFCsF6E3+jT4r/WObnltr9/7trPxuOUElEbiki08y3uOe2Y/g5VFbeW4K8Z268cBDT5CRk0aAb1CL+3HTekZePI5DiW+Qk6z6Jho76rnxSvWetNlt7Nm2i670QwiBTVo5xgF6eDUcqfjT0kXs37IPrV2HK8DOHbc9gJdH0yZszZXxGZnbCfL/mcmX2Vm2WsfGvZcSFjak3vbHlDKKdXaEwUqE5QhF879lsxdYyry46Z6wGtYfh8PJy3+fx6Ae+QDM/9SHmE4R5OUUMPjiHgweplo87C4dpaWWyuCdI0mCwZNaHvqfnJTD4UPpxCeEERWtjsflcuHtWc2HSgj0WhsvPfUxniYnQh/AnQ9M4aIR3dli1PHEmzsxeZh5/PkxDSpaqlzfxymDeo6HU0DqDHgqDhIXLSIiJ0Y1JBTByt+XEmftXenA/uea7fTtPaDe5UGHzXlaAJqeotIChCKY9+kcQnJiEAicGicFMgcfEYBLutCa29Yab7VZ+PCjtwhIi8QgzGw7sRmXdLXYOqvX6bn3zsdIzUxBq9ESEhjeLomqz5qy5dJrKIk+MyVopJQk7d5KfupJwrr2JKRDfL1tPaO7MaRnB/KzUvHw8cfD25+K9IKntqYQ4AqutDr4E0RxmB1D71jqS0G4ffFigtNCKusuZhxJ5dhFpwiJiWu7EywnM/kQV01L4rpp6rEG93cy4fGfMEVfSVxkw4rWyeRcEnes5t9/NwCCHXtO8dVnK7n+5qrSOd9+tZQ3/65Fo9HRu5udF97cxLuvBmKzSx579TPuf+pm/P096D5gCI+9soGOUZI/D+i488GW+YRIKXn12S+5uG8Wwb7wytN6Hnh6JgEBnlw4pCtzPtjKq49LNBrBf+aU0jnSwT8eVV8Cb3+yjr27g+nRK4rrb276Q1ghrCJMhwA4ZS4g3RBKQbIVvaOm0miUVUEOilBwCaWBe9qMLUhgO2FFLwwUK4UYOgZTEm0mfWkyEY6qpesgbQRHvBIxKmaMkf70mDqFkgZyLWWk5MDRjCYrXFu3bSSoJKJy3B5ZvuxP3MWgvhc1af/8wlz2HdqFn28AXTv3RAiByWimQ0TLZvhuGudUejJbd2zEz9efiy4cWe9yslaj5Z7b/sbJ9BMIBJGhMZUTpoKiPMw2z8oXiV4YcOkdTJt0TZ19AWTmpHFw0wFCStRlbUeKnUXff8FN19/T6Ji3H83gmFJGSGTTrfnOnJX8+3kdoGPEULj+wT8oia6/fFexzo6IthIXmU7Rx9/y3pNGPMwKNpuDB19cyLOvVU1+fli4kVumF9K3hxEpJavXJTNlSBHxsTo+XbCMX3OLGTd5ADPvmMKDL35Bn642kk9Bl74X4uPTsoCm337exqmD67lkkIvlCxUiuw5jzPj+KIpCQakPp9KKiAjTknjMzr79BSz+XIdWKzh8PJWP/m8J9zw8jYGD4xk4uP531ulUyLARgQcBOEwoxRiwu6ihRChOpVLRAtAW68ktyK5X2eoU15mDSYfwsQXglE7sgWWEB0fxx/rl+OYEVxaR7ujsxiHPHdhMpWjMCtdec0sLrlz9nEw7gS7LhLZc8fOzhHBg354mK1tOp5PdB7ZjtVrp3b0/JqMZRdEQGdq+vtdnUdmC0jMU0LLrk6/QbSjEy+rNkZ2/kDMjgw4jGnqxmPHsrPrSVI/38BkQT+7eHQRaVXNyrjmXuGsmNngeZY4S/EXVLNBkNZFLNl6Rba9sleQWExNRFXnh7aXB4GlpVNECNerl0qFVM61+PXUsXFZzVuphdKHRqA/r198X8d+XAzEaFYxGePR2Fz/9vI2rb7iEyyZcwEUjepGfV8qUm7xbnHtmw9pELh2UzYRRqqDr093Ja3N+4/7HphMe6cfEq6fz2Osr0WgkaRkaPn6lyin7yoka5v12kB69ml8fsOoaVc0QDw4M5MQPpfglO9AILXmmXKweTpzZ6meLLENEejR4L/R94g72fb4AZ0Ehpphgul41jVIFHB6ixtK10yy54B+zMfn4AlBWf5cAFOu0HDte1mSFy2g0UiZt6Mpri9p1VryamKcrKeUYX8/7DI8cP2x6C9t7beKGq+subeVyuUjNVFMXhAdHucv1tJDEo/v5fv4C/PPDSNGksm//Lu68+aF6r6eiKMSE167P5+vtj93DgiyR5ZYtC3FdExqMjC4oykdTVuUHqRU6ypqQ3b5C0SruqMWrGQUNPI/XjBzz8pUUR9SOgK1AGKyV8m2zF3iUW6P0eoG/txWXy1V5nXKy8om9VFVSk1McDOprICFOPbdbrjHw2Gt7GDd5ACGh3jz3+p1kpBcyzs9cww+0uezcsJk3/64qNIMvgIde2MyY8ao1/MGnruGDd3/CZilCigCmTXBW+mfFddRhK81t8XHrUriIC6AoLx8vpy9WWYbeS09RkfpZSoktQC2TUx+jh09ESjh2+DAavYZbps7GoDfi6eWNXWPF5KpIAmplQP8hTJ90XYvH3xAeJk+cekelYHRKJxpt02SL0+nk3Tmv4zqqQXFpWBO2gjvveKjePIX5hbnkFuQQFlR/QFNTaZKyJYQYC7yFGrg5R0r56mnbo4HPURfKNcDjUspfGuxU50IJs2ArKUNr0KFo20fvc1htWPelEmrrCALCiyNJWr+dTtcOaHZfMdN7sy83mRObkkBI/Ed2IXR0J8BS7z7Bo+LJPLCL4JJQpJTkhObSZ0RHlID692kpAV4d+M83ei7o5cJoVHjzczt+/Ts0qmgBxMaFsmaxYHC5C9Whow58/Gs6YBq8QtixJ4l+PXU4nBKLVWIuv/9Kylzo9VWWH7NZ3yohBVBcVEa3akFA3l4KDrut8nPX7pF07a5Gt3y3YD079m5nYB8dObkuNu10ENOx5XnR4HSBlUDgGzey/90luEodBFwYT+ehl7PnjUVQ5EQbZqbvw1eiGOv/XY0o9H++uhVBPZcu945m/wvf4XfKmzJPCx6jo/BIMNLQfVUdYbBSjKHJCtfUiVfx7ql/oU0z4dI58U3wpmvnpiW9/GXp95XO1dgh48ApMrLTCDnN58vpdPL+J//CmuRAAqYYHXfc/FCTjnE+4XDYsTvs7ZaBG2DlyqWE5KvLP3qXgZzjaZzKSG52IkidVsf0Gdey+MeFSBt4BHhww4zayaGrExkagy2gFFemC0UoFOhySOhcfzqPimXDkmgzXpFmSgyZKP5Nl3XJrhD2HEyiZ4KOxON2jpaGEh5urbd9ddcIS5kXNpsDvV7gdEpyC3U1FNJLRvXl/z47ypOzFXQ6yM6rmlxKKXFWZXdBo1EIj/Bt8rjrw2SUp32uOqbZrGf2I5cDUFJs5f3XP1D/X+oiv9CJzenRqmOfrnCFPTeDA++sIPVAGk6NhnFD7if18DpST5wCLVw58cYG6wsLIbhs5KRaFTMG9R3Gzp1byD2agXAJXFE2bhxzU6vG3hBhwZFE9o4k5c8UtFY9tpASbp7SuKUVYMfezbiOavCVgSDAnObJkl8Xct2MW2u1XblmKdv/2IKmVIfdr4xrrmvdOTWq4QghNMA7wGggBdgqhFgspdxfrdnTwDdSyveEEN2AX4AODfVrUGz8+eRbuE4oOPV24q+JY8CNbZ/gzFZmY9dpZSaMOjvxIS3zF4t/eiBQfZwN9xN/XTTbRSZJvychNZIx911EeDdro/u1iBAomDWDG15bhk5x4dmjB1eNKq2haEkp+e7rdSQdTUJnMHPTnePx9DLSoWMge6Mv5OEXt2E2SUodATz8VE1H8ttmT2TuR8v45rd0ikuiuPnBE7zypC9lVhevfyB55e2WObvXx6Ch8fznxbV0i3dhNAre/MjGRaPqrp04dcZgXnz6OK++fYQLeutJOiUYOroxm1DjVBdYiV4+9P6/6tfESp9Pqi+R5rfsICF6es6fROreU3iFehPSOZSK+0NKSXFOMVqdBpNP3S90D3NB5VJBid1c+cKrT+nyMHtx/+wnOHbyMEaDiZjwTk33UXCethTh0GCz134Zrlq3FA7rCZCqFbj4SAF/bFjetGOcJ/yy/Hv2bN2F4lQwh5q4/aYH0LVLTbfav83pWeObSueOCTz0wN+b3N5kNHPjTbfzw49fI+2Szp07MXr4xDrbVrdmhYWAEmYhzpxOhFfTn8PYey7jlYW/w6JsXJ5+DHtgNFpdTVmZdfgUp5atRQjJiImRREQFE+vZnVl3h/LAC4sI9LWSna/j+tum1tgvoXsEhYXjeOy1jQAcOGDhh6XF9Olu4L+fFnPJxMubPM6m4hBB7DuUSfcuOvYctONU6nkmPQ30GXoxU276iS4dQafTYLF643S6WpWV/nT5Je4dQ2puITLZQMpxB526j2b65NbVUtVoNNx1y8McSTqIw2EnrmO3Gs+BxVpGqaUEXy//NrNuXz19FilDkygqKaRDRGyTJzsWSxlal67ykdKgxW6rPRmw2a1sXbeJ0EJ1aVFmSn5c/E2rxiwae2iFEIOB56SUl5V/fgJASvlKtTYfAMeklP8sb/8vKWX9Xo2Af4BZ9sgdVenLlBN0mCd/iCcsSg0NPbQrh1/mnsDDV8f1D3bF7NlyIfbGA9tJ+8kPs9WPQr8URtxvYuotndm6Ko2Vi1Lw8tcx67HurTpGe3NgZzo7Vh/H09fE2Gt6YDA23RJY3aI17+Pl9Ik5wKhhejKzHTzzbz3PvX5r5UMgpRqN2dhD8Z9XvmHW5DS27LSi1Qq27NFx99/uwLuFvg31cepkHgvm/oaUToaOuIALh9Y/q37jha94+s48vL3UpYJn3rBy3T231Zm/prkcLd7X6j6ai93m5IWbN5O/34TUOOg2Vs9dL9SOej1Vls+q7AQOp4QSag3GnKL6cXVymZrlON8UNmxZzcaf1hNYFo5VWijpkMN9dz1RKx/Nwh/nUrjWglaoz5Rd2vC72IMf1szfLqVsW638LBAZGiMDiyIIKlN93yyUEnCRD1dMVnOQWawWfln+HSUlxQy9cDidYpruc3M6+w7+yc/f/EhgYTgWpQxXbBl33/YoJWVFLP5lITabjUuGXdqqY7SW6oqWiLYS7u9NfEgG8YbNRJh8Kcy38tv8PditDoZNjCe6c8vKN6UmF7J+/jpef9wTIeC5N62Mnn4lXbqGV7apvnRY73i3HCP9wI+EB7s4le7Ay1NHlmMAV1zTNL/FpuJ0upg3Zzm5WVn4Bwdzwy2X1qs8bVh7EGfmUqZPUN+Juw/YWbmrB9fOqj/SrqlUyK9V+V04VVTA4ZRQZLIBz+OOdpETFaz44xd2rNuCxqEDPye33/LAWQ2gKS4t4p13XiMoIxoFDek+SVw184bKVD4VFBTlMefNdwksrrqvCqMy2ZK8psXyqylv7Aiges2IFGDQaW2eA5YJIe4FPIA6PRqFELcDtwOYjPpKRQtAyfZGkxtIbNfObN+cxLu37cAnLZZMbLy4bRef/3wtRmPLlKF3P+rG159v58DuDEaN68clo+P5dfE+vnokG++seAqw8vK+3Xz+07WNhtSeDdas3EvB/r289ZCepFNlvPbKVp597eYWzXiyU5MZdZ26vBccqKV3goWM9CLCwtU1ayFEk6wc0llCfKyB+FjVH0EoFtJSC1qlbO3ZlczWDQeI6hDMpWP7IIQgIsqPh55Sy9NIKUlOykFRFCIifWuNUyOslYoWQEJnyMwobBNlq6El2PbijX/8jnVtB/ylato/tCiVjMuNDLnodEf0fUR4+VDi700/jyi2cZIQAiC5GRmmm8iQgcMxGk3s/HMr3p6e3Djh4ToT/w3sP4wFu+cSXBBNHlmkKUn4727ftCftTXX55eXhTURp58oZshEz+bmqj43DYefdD17HIzkAPQYWHfqKSVdPp2t8y+oTdk/og3mWJ5u3rSXCN4ZRl0zAarPw3vtvEpAWgQYjC49+xfQbr6Zzh7ZNEdIcQiID8AoBxd9CfEgGI3wPAb6EyFg+feNjXn4UvDwFz/xrO+HX1FSQmsradcv4222mSt/Rx+/W88/PttKla1Uev6ZYT44cOsnEwVo6RqvvFCklT7yZ1uzxVKegoIyfvt+EAMZPHYSvrxmNRmHWHVW1LfPySsnJLiYq2r9W3q7kExlMvrDqWeqZoOXLX7JaNaYK6vJDrbCGN8ffsznkF+ayc802QsqtQ44iOwu/m8vNN7RdgfTm4mn24o47HmTxLwtxOmxcedF1tRQtAG9PXxR/ib1IdfU4zB6Mma3Lu9VWHqvXAJ9JKSOB8cA8IUStvqWUH0opL5BSXuDjY6JEn1fxPUp0AfEJqo/N5//dhm9aLIpQMAgjxTt8mT7yY/b8eapFgxNCcM2sC3j+zQlcMlqd/f047wA+2eV+EMJI8V5P9u9NbVH/7c3Wddt58FYDGo2gU7SOEYOKOXQgHYfDyY5tSezcnozT6Wq8I8BiE7hcVdbMzGyJZxMzqVdHZ/ThxEm1FIOUkk1/aoiM8mt2PxUsX7qTPeu+55ZJhwnWrOGtf35bY7vD4eSFJ+ey8/cv2PDz57zx4oJaSykePoHsO2Qvby/ZsEMhOqb1L/jkE9m88PhHvP3iu7z45CdkZxW1us+mkJpciElW+VDoij05nphTb/sLI6PYUXK43cfVr9cgbrlxNldfPqte5+qYyE5MmDGNos7ZZOtS6S4HEFZQ22n7fKK6/PL19qfMt6jyHizU5tKxkxr0cjQ5EU7pMQoTilAILoxm7rwP+XXFDy0+dsfozlx9+U1cNnIKWo2WvQd3YkzzRit0aq28wmjWrP29LU6zTYn17M6aVfu44xo7gQEaDAaFlx8z8PN3awFIOpHDhnVHyM1t3OkewNvXk9SMKueq1EwH3j7NT8vQrVdHfvq9qp/la+wk9Gh5ndH8/FLeeO5jpg7Zy9She/nXPz4hL6/mZOfHRRv46t2POLplPi8/+QEnk2o+y/0GxPPNT1Vy/Juf7PQb2Hrl2el08Z9XF/HWC+/yzStrSN9SwIjAg8RFpiOirRR31HJMKWvzVEz5hbloTwuusJbW7393pvD19ufGq+/gpuvvqdcaLITg9lvuR9PHyTGPvcTRk07W1k24m2LGOQVUD+mKLP+uOrcAYwGklBuFEEYgEMisr9PgUC/6TlE4uPUEQufi6WcvISBAfWgUjUAiEeXTRhdOlANh/P22Fcz7/Sq8vNugKKRWrRVVEa6Kztliy1l743SpCpKiqNej1KLWe3rhic8YO6wQKQUvLPDmqZdmNlpYefKVo/nby98zcaSDfYkK3qE9mnU9CwrKePvV+fh6FPPEy0WYPYx4eHowccaEJpe/qYtdm7bz2uPq/qMv1rJt9ykKCsoqQ66/+XItd1xVSM8Etc3K9Rks+2Unl02oylR+813j+eCtxdgXZ1Fi0XDNLVMxmVr/m37834W8/SzodArFJRae+vcinnqxbRxAD+5P58WHfsdeLAjuaOCf70+szCU2fGxnPvn9MF6FYUgpsYdnMqwen7Vzke4JvfH28WHhf+ef7aG0OVqNlnHTp7ByxVKESxAVG8PIi9SqBBqNBhQXlL83JRJtmZ7EVYl4e69i6MDWLwvpDQZcirOybKULJxpt2+Yzait0eh1l1d6xNptEKBoWfrEae8EuesS7mPOmhvFXTqVHr/qj4QAmTRvEi08eYFxaIVoNLF7pyZMvNS/j/tw5y8g6eQhrmZ2pN5XSpYsvviFx3HJX84OmKli8aANPz5ZERajy5tn7HXzxzdpKq1ZRoYWkA1t58VH12b5yoovH//UTTzw/s7KP+IQwUlNG8sjLm9BqISq2DzNGtz4Z6LyPV3D1ZWmViVqf/89houMH10oN0RR/z9NxOOzMW/AR+el5oINJk6bTuaOqIIYGRWDzrQquKFbyiYw6f2pqepi9uOn6u/m/t/+JrrT1dXubomxtBeKEEB1RlayrgWtPa5OMWu78MyFEV8AINGz/FPD3f9ZdMuW+py/i/t0/YTgehQ0LOWQQT28KT7k4eiSTPv0afiCbwn1/H8ajh5aiPR6K02ih00iFLl0bjl6b/+k2fv/hGEIjuffvQ+nV98zcOGOnXsLTr//A7dcqHDnu4Lc1WvqU7Wf29SV076IqIx2ji/lh4UZmXKvWfcrOKsLplASHeNVYbuveM4rQ8JvZv+cUfUf50Tmu7pwq9THn/37kH/eV4e+nBwJ4+EU79z55c6sjD0+3g2o0NZ2AM9NySLi86nbt2lnDjuU1Q6O1Wg33PDytVeM4HYfDSbCfHZ1OPT9PDwVPQ+sd70GdcT5x61I8DsSjF4KMfWU8fd8vvPmxeg6TZ/QkK7OYNUuSQXHxyEODiTmtRtu5TqBfMHZPCzKn/vD985WeXfvSs2vt+nSdouIxdtKSfzgbg8tECkcJpwMeNm8OHdrfJspWzy59Wdt5JflHstG6dBQH53LbuPsa3CczO43vfpyPyy7p2DmWsaOmnJHf5JKR3Xjxic0YDaX4+Qj+8e8yLpt2EQe3ruSFcuVj5FDJw68sp0cvNSdTaamNnOxiQsN8akwgdToNz7x6Ezu2JuGUkr+/GtPoBLM6G9cfIsLrAI88YQB0rNpg43jBBUyc1rrgLJfLVaOsjkYDrmqLDbm5xXSo9rowGBSMutr1Q4df2pPhl7Zsubk+cjMzKxUtgOGDXGSc9CYyzFlD4VKNTuZm5e1b9OOXWP904U84Ukq+/eYr7n/gCYwGE0aDietvvJUfflCDK0KjI5g0dkabntuZwORjxpZsrZGTrCU0qmxJKR1CiNnAb6hpHT6RUu4TQjwPbJNSLgYeBj4SQjyIOteaJVsaLgN06hzEhz9N466rv6Fkjxdx9FKFgl8poWEN5wPKyizil+/34RtgYuK0nvX6NSV0C2XOL5ez6rdEgkM9GTGmS4OCZ8m3e/n6+RN4F0QhpeSp478z59dphIS2v7Nfrz4xmD2uZvbTcxk1xMFT95j420ubufvyqmW7qDANBZsKkVLyn1cXEWBORa+DY2n+PPbcdTWuQ0CAJxcNr9/RvCEUWYK/X5Vw6xHvIiO9kI6dWqcEJPTqyRvvraNngsRqV8gsCsPXV/W1OrjvFMcSj/P2HAcP36XmhPnkGyeXTOrWqmM2Ba1WQ1aettKyaLW6KCpr3UNXQVZmETLHVHnfGYSJrKRMSkusvPjYcrJPldEhwYc5S65o1gvlbLJ73zZWr1qBkIKEHt0ZPWIiE6dN49dfFoOdxqZgfwkUReHOWx5i8bKFbF29mWhHZ4zCTJkoITSg4efE5XKxbfdGigoL6dd7YL3lvRRFw923PszOfVsoKyujT48BDdads1jL+PTT9wjOiEERCoeTj6DV/MzoEXVHFrYler2Wp1+5ieef/BK9K4V7bjSzYv3y8gzqhvLzEZgN6itjzco9bFq5iq6xku37NFx/+3Q6x1elFtFoFAZc2LIlv8MHTnLd6Kpn6eJBOpb9XzI1I8ybz8TLh/DMCweYeqkFo0Fh0W9aZj+mxojZ7U4+/+BnMlLyuXZKEGazwo49Njz9zsxk3dvPj8PH84jrqCpcG3cqXHpFMFGe/lREKkZ4+ZCYYamsmNFUP67czGw8UO9RIQS6QhNZuRkcO36YA3v3oOg0zLjiRoIDW5eG50xRVFLAVws+xVpsxcPXg2uvvJlrr7yZT63vUpCX2Sr51SRv8PKcWb+c9t0z1f6/Hxja8mHUJizcl8+X3MDdVy2i+EQy0mhn+l0JDSpbx49lc/+MJWiPReDUZrNk/n4++OaqehWukFBvrp7ZtMCC35ccxrtAjTwSQqCcCGLDH8eYdlWfZp9bSzi0/yTPPKhnYB9VoL7wiOTZNwr517O+APzrIzsTr+nP78t2M7xvKpcNV4XYrv15LPxqLVffcEmbjEPReXMqLYOIMC1SSnbsVRh1ZfNrLR4/msmGNXsJCPJjzPjeeHiaOFIIer3C2i1O+lxQtZa+cN5PfPVfD35dWcrTr2Zz8IjkxruuJD6h+Q62LeGaW6Zy73M/4u9tI7fQwG33NRwinplRyG8/bcVg1DFx2oX1Wv38AzyQ3mWVD7BD2vEJULjvhu8oXBWCQQSwY10RT+X9xGvvT6mzj3OJ9MxTLP3uZ0IKVcvzvox9+Pj4MbDfULon9AHghkfqr732V0JRNEwdezUuu4sjuxIpcmkwh5uYeNkV9e7jcrn44NN/Y0uU6J16tq7fyA033UpEaN2WfEXR0L/n4CaNJyU9CX22udJtwscewLEjh6H1RrYmodNp8DMX8s8n1RfzwH6SiTdkMXOGkeBALWs22/AKiMHlcrHmt9W8/Q/1mZnpkDz88s889XLtPEgtoUfvTvyych+3XKO++n5ZaadHn+ZXPrBY7PyyeBtWi5XR4/qj02txujQoGgdpmS40eh8Cg1S3mC8+XsH9NxbiYQrgpf/kkpPvwuATx+PPjW+Tc2qMmbeP5V8vfY1Zm0tpmaDPhUMqywbVVTEjTRdM+v6d5KVlk18wiFH96nddMHubsckqq4/Dw0ri4QPsXrYbf2swLunk0+x3ue/ex9s1F11b8cnn7+J5LACj8MGWbOFz+/vcectD3HP7o0Dr5Ne5F3pXDR8fE1/8ej25uSV4ehprRW+czlsvrMXrWLwqUJyQvs7O5g3HGHJR7WgDoFk5TPwCjaRKS2UEpcujjIjolhd0bi42mx0vc5XlrXd3I+8v8OHxf+mRUnLphLFotBqOHjrF8MlVM7fu8ToWLK+7EHRLuO2+Kfz79YUYlAIKSxSmXje5Tl83l8tFclIuGo1S+WBXsHPbMdYvXaIui55w8c9/7AdHIc8/aOLQERv3zNLz+oebGDNBfci9PRwoioYJl3ow4VIP/v6GjUFDzlyYe5eu4Tz72l01srzXx6mTeXz81jwev1tQVCx5+en9PPXSLZhMOqSUzP1wC9vWphAS6ckjz43k4VeH8u+n1+Mq0eIZLnn235O5c+wSvIW6PGxyepG0t/HfL+1QKmnZm7EGe6OjbavVN5X9h3bjWeBXGaHnawli3/4/GdivTedh5xWXT7oW62UWHA47Hg1YngCOpxym7KiNAFcoCDDmePDL0h+4bVbdy4Mul6vJ0cPenr44TDYq6oo5pB1dG/moNsWx2uWSGAxVix1CCLokBPB/88OwW0sIj+7CpOn9OXggndCgqvU3rVbgYaq93NZS+g3oxImj/fnbK3tQFPAP68Ks22svBQPk5BSTk11CTIeAGu8ei8XOS09+wt3XW/D2VHjj1d0YvUN47XHIyNYSHQG+Prms++MQFw1PIDe7yqr00pOBHEi0sTaxY6vyZzUHnU7D489dV6/8qh6pmKLP49iHP/LK1CK6dtLwyrt7WLq5iLGDhgNwMvUEy1b8BMBloydx1fRZzCl6m/wcGy6dkxGjx/Dnjm34W1X3FEVoMGR5cvzkYbrF1U5bU0FBUR7HTx4hKCCkwSz27YnL5cKaZ8W3PF2NXhjJya0/IKm5nDPK1vcLdrHki4Mg4MbZfRk+Rn2ZCiEqHecbw+lwVTrVA+DQYLHUflAzMwp5aOZiitJA6+XgiTdGcMGFDddFeuS5kdy2dwEFB82gd9BnnBcDB7c8eqW5jBjdmzef38ZrTzgxGRWeft3KTXdOJa5LGMVFFl57bi6DepdRkGHj/Xkuni+vEfjZQhtDLm47HwCzWc/fnm24DIPN5uCVZ+bRP6GQMissyArl4aeurHzQV/y0ltce0yOEIDIcjiZlsWmHg2dfK+OSISZ+X1tKSgq89NQneBot7NqTT3aOL4EBGgqLnOQVm8+K/09Tjrnwy995/SktJpMqSG+70sLKZbuZMKU/b738B2veK8SjNJx0Srk7cSEff3sNF23ojN3uRK9XrYXCWBUlJaVEY2g40vS9Z3axZ5EWfbGJ3Ih8ut1zPWbab4ki+dRxvvtuPtIm8Qr04oZrbsegNxIWFskuw5942FSlokwpISKwffL3nGvk5Gex8Nt5OK0uQiPDmDbx6sr6hQa9EYO+cQXYbrcjnNWKlSOQrtreGFJKFnz3GScTk0FIOvfowrSJ9dc3BAgOCKXLoAQObT2IxqbDFWDjtqn3A80vFn06FfUPSyMh3ZBJnDmdeMNB1IIiKhqNgk2EsW1XOv17aVm+xk5QRBy33DUOgM8//I0l8z4lNAjWbSygaFYgXp4KJ07acSnN8yttjMuvHgYMa7DNd1+vJfPEDmJjJF9+qOO2B66pLGq9avkebp5RRu9u6m/6+lMurpmdxMtvW+jfy4gQsHp9KXbNOratWUXSiRIW/aThiokm1a9pqWTMFWe+jmhj8ivWszsnj29gaq88hg9Ss9f/+xkNE29bzvajXcnLy2D9zwuIKYpFIvn4+AcMm3gNQ0bfhNOpToiFEBTbN6OR9soce1atlZN5Dsrquc/SUo+wb+0yjLme2D0sdB3anQlj2j7BbAV2h50vyp36hR4mT55Bp5h4FEVBGKhUSqWUCEPbvWfOCWVr/eqjfPb0QbxzopFS8uaRrYQu8iahW/PWeW+4qz/Pb1+Lb1osdmyYe+cxeFjtm/qpu3/FtTkGb6G+3F56YBXfbZzZ4M3o4Wlg3s/Xc+xoFiaTvlVpDlqCr6+Zex+fxeufrcDhcDD5umHEdVH9GD774FdeeNBGUKABMPDEy/nc83eJp5eebn36N6uIaVsw//PV3HdDMV3Kc3At+yON35ft5tLL1JmNotScYen1kJ1j5f2PAtFoBFPGwu0PZ/LMPaUE+GtJz/DhpocK6NUzCIvDg3sebVsn+LZESlmZAwhApxW4yj1lt69Ox6NUVeqNmMk5IFj+60GWfnsQD08dDz03Ej8/MzMf7MNnL+/Ble2BElbE48/W/2I4lZLH/iVOgotVxd87xZ9D85cQdk3DZVhaisPpYP5XnxKSoZbssaSV8bXuM2ZeeyddO/dk74CdHN9zHEUqeESYGT+6/YTmuYLD6eCTT94hIDUSjdCQnpTFd3I+V0y5vln9xMZ0wRXxHdZkC3oMZHqdZMKQqbXabdi6mqztOQTbVQtA0qZkdnfcTq/uDUeqTh53JflDcykpLSYkMAytVteiYtGnU6yzq/m1yjPG11ce7IHHp7Pwy7UsXJ5OQo+O3HKX6id1ODEDLw5w5z2q8jKkvy83PlBMQpcANIYg7n54covH1hLy8krJOL6DZx9U5df0cS6efPMnHn9eLQ3mcDgx6qs94zqB3aFw7eVeXNBbtUgndNbz42+Z/ONRf8CTmffnsOFPI4qiY+ill9ChU9AZPaemEmGIpVS7qfKzEAKXh1p+ad+ebUQURavWVAThRdHsTtqE65gLR1kZHS64kLC47nS/6io2fPoBXllm7Ho7xp6hmPrGU19yjy0/LKdTrpqGiVLYt3UXoy4Zj9HQPhb6hd/Pq+HUv3DBFzzwwJMY9EYmTbmCH7//Bm2ZAaeHjaunz2qz454TytZPi/bjmR0JQv1xDWlhLF9yqNnK1sAhHXj+cw0LPtmBh7eeB568ss7Q/5IcF5ryiuFCCFxFBgoLLY1WdtdoFOLiz95MPSjYi3vrUDRsllKCAqt+ykmjDSSVXcSoMT3O5PAqyc3Op3OHqvEkxGr4bn1e5ecBwy7g33NWMHumgWPJDjbu8iahqwcaTZVFJ7aDDkf5x9AQLb16eHP/07edsXNoKdOuuoTHX53PPx7SUVzi4t0vdTzxQnn4tsZVw5Rf5izjrQe34ZcZiwM7t+78hnm/XsO0a3ozbFQnUk7m0TE2sDJQoC6Ki6wo1iqHfUUoKM56m1ficNjJyEnD0+yFj1fTJw75hbnoSoyV52AUJgpzqjK8zJh6I2VjS3E4HXiavc6KBfJMk5ufhSZfj0aolixPlw/pKc1PkKnT6rj79kf46bdFlJaUMPXCK4nv1LVWuxMnjuBpq1qu9bD4cCzpSKPKFqg5hny9VQtNS4tFn44wWKslMk0H6q7DqigKV9XhO5qZXkB8bJUFLz5WT5cEPx58+oaWD6oV5OaU0LFasiOjUcGgr1ohGXFpT/75zBZefNiBp4fC3/9lo3uvGGJjqp6DuE56vD2ropYfvM2TP1MHMn7yuZ26JbZzEF9/6s8FBwvo3EHHqx9bKeo6gtJIINSMXWSio7yAvbCScuAwCXk90OHN4aTfKL3FSVjfXgx84X7yT6WgN5vxCgmlofTKUq+pISc0Th02u7VRZSs3Pxur3UpIQGilFbkp5GXl4nmaU392XiYRIdEkxPWg88MJFJcU4u3p06x+G+OcULZiOvlyWFuMyalG9tmNxcTEdmhRX/0GRNFvQFSDbfzCdeTssqETelzShcbPincb5O46WyT0jOPH3zYx5TI9Tqfk0/lFuHQbGTwsvtUpGVrCsOG9+ODLX7n7RkN55KCLsVdWvTQuHtmDnd5mnn13J/4BPjz54nA+/3Ap23Yd54LeOvLynazZYufhu9QlFadTUlB87uRAy8os4vMPlqARNgJCI7j+5lGVWas7dArmujuu580vNqA36Pjbc5dU5h+78/FB/PO+DXDSH+lXjMbXit/hBPWBR0/JPn82bTjOyNEJBAV7ERTcsI8PqJG72thc7H+GoBN6sswZ+PVtOBFiQVE+H815C02uHofeTrdBPZpstvf29MVutNTw/TGcll/tfHCEbUs8zd44DDYof7c6pRONoWX+OCajmRlTbmywTUKXHqzdvQa/cr+YInMuF8U3vCx2OqeX12lOsejTUa1Zqxstdl8f3XtF8u4/tVw8SKLVChb/VkzigXx2bj1K3wFnfrktKtqPue/pmDHBhcmksHmnDd/ADpXbPb2MPPzsTbw/dxVWq40ZNw3FZnPw388X8vR96u/+6n+LGNinSvZu3CHpPjTs9EOdFVwuF/M+XkFuRipO9My6YxKBQaqsURSFx5+/gUXz1/LRr8eIvDCK8XGxJGZYiLvpIjbt/xC/g+q9khmTTVhyRKVzfGRBFKc2biBifDwKEBRTEcDU8L2l7xdMXloOfvYArLIMi5ez0ZI+Xy38mNR9qSguDUoo3HXrQ01aqgcweRmxS/X9D2A3W/D3qYoS1mq0lROStuScULZuvW8IOzYtImNHAVJxEXexgUnT2zbXSHVefm8Cf7ttCbkn7ei9Ja++Ne68noGPnzKQj9/L44cHthAaJLjvNh8C/a289+7PDBvZh1VLt6I3GrjhljFtXruwLgYMjic/v4THXvsTpxNGjhtNp84hbN5wiKXf/05WZhFODPztmWvpGKu+MG65ezxz5yxn0fJ0hGLk/icmcO9zvxLibyMjV8eNd5wb0XgOh5O3XpnHm0+rObc2bDvA5x86uenOqpxxUTEB3PXApFr7Dh0eywdLA9m+JZnYuEA+/NcmMg670KDOnqTOgdmjecqxTqfhuS8G8sLTKdgKzXj36UZ03xFqUa16WPT9F/idCkcrtGCB/Rv3MWjAMAL9GveN0ev0jLjsMr5d8CV6p4kyTQn9vM77UoetwmzyYOAlg9nyx0a0Vj1OHxuzLm+fZVyA/r0Hk5aeSuKeAyCgZ/++JHRumhW7wj+rJNpMsc6OiLYSF9m8YtGnE2+oe9mwqfj6mrli5vT/Z++so6O6uij+e6PJxN0TIASCuxd3twLFtVCkpbi7W6l8FWpA8RYvxd3dnYQoxF1H3/fHQEIgTpDKXou1mMx7992Zee/efc89Z2+6fbyaCr4ixTzlbPvZilEz9+FdajDrfz1EemoajVvWoEr1N+9CoFDI+GRsL2Z8/SdyqQ5r+2L0H9qChIQ0vl3+Owkx0UTHaGjVsQHdemUWfyQltGXS0jMA1GvaiFPHrnP1bjSpaVC8TBV8y72d6um8sHrVARpXekTtvgqSklMZt2A9s5cNRfZMFFcul9KzXyOg0TNPxQcZ55Za15mAC/4AKCzKcmnojQwuJSJiYaamlFPBcgBV48txw/EpoZdC0CqVlK7Qk6uPI3OUnbjnd4vwa5E4aI15qeqANHbv+z3PRcpz9PhwAIsDpyMmSozpRoIJBjF/Diyvg/eCbMlkUlZt6U5oSBwymTTDp+9NwcrKlFW/d3+j18gOkRGJrF31JzKJBhtHV/oNaV5kLujlKvlQrcRdWjTMJFMhwWFcPhrEgs+VxMUbmDJ7DdMWDikSVfW80Lx1FZq3zqzyiYlJ5uS+/Uh0Ccwdb429rZSpi39hwKcDKVnKGYlEwoChLbO0UbnqcLRa/TvVmLpxLYA/txzEwkyPWrSmQ7cm1KmixfyZynvd6gr+PJZ/mycXVyvadTIuJMbObsCoW7uR+Lmgl6txb6ilZu1iBe6jhZWS1vPaYCuvzvnQEAx57GBp07WYCmYZr2XpchKTE/JFtgAePLyDt64CcuRIDFKeXA8lpF4gHi4F7/s/BY0+aEmNavVIevY9ymRv9hlr17IrtMz7uBfxYn5Wqrtx+8/HPTPHKi8YDCJ7frtOWnQ8GoOUtgNrYOtgSk7bhgVBKV9XypS1Y+6EzL852OpZPHM1iyYYsLOVsuyH3Wi1bd5KDqqLmzUTZ2Xdxvxh5VaK2T/FvZKM5g0s2XPoLGt/Sqb/x8YfonrtklSvnVn5Xqd+GXQ6PVKp5J0t5lNT1Hyz7A9MpIkkpkj5sG8bEqOfUruqcVFnYS6hVkU1YU8TXqkah6yVihl4to4UxXRCGiQQfUyCXGNKevEgJs+qiLv1g1fayQ1PlPG4j6rFw4jGPI1NJD04d7/GmNgolBrTjG10JaYkJebfQi02PhorjT12ojMCEjQxarbt2kC/j4YVqN8FxXtBtsC4d5rdj/1PgVar55sl6/liOpipJJy/+pC1P4pZIiKvA5/Sjqz+UkLzBsacoKu3tKSl6Jgy0phfY2crpWf7NC5f8Kd+o7dvVhvgH42NWSr1Gpvj62N80L9bZM20L48zbvpHOZ5XGKKl1eqRSITXLq1OTdWwZ8sevpolQxAkBIXG8P3vJzF9YdzUaETStQW7jiiKGAwiHp52/Lq/G0f2PcDGzpSmLX2LjHznhmLeJXgU4IelzhaDaEBrm4arY+5b7y8iPSUNpWCJVtTgJ95GSBdYs/p7unfvR+mSb9+w+32Bmak5ZqYF9+l7m3hOtCQu6bhiiZtFWr6jUr98v5cu1WOpUVlBcoqBcQsuMWtpZkTkdaHWmxMdk4C9nRS12sC123pG9jPgYG9cQE4crmTyiotvveDnOZTSVKJj9Xw+zJjj2LurBRMXPiQ31luY70YURTQafZ5SR/nBqq92Mn5gPC5OMgwGA5/O2olUYYZWKyKXGwey4KcCDfPY8Xj5/ngum/TrxrIcO/iAmKhUmrSql7EdWRB4m4Nb8nMy54RBbYJKCwRnn+lVtnRFztiewCzWEkEQiDUNp36FRvm+Xlx8DLJ0BRJBSojoh5p0xJsGtqk20LVD7pX2r4P3hmz90xEaEkftylrMVMaISO2qcnYdKTrjazs7c5q0b8eYeUdQmYoozDzwLJ6GVhuP4tnOVFIyKBzefg4XgKeXLb8HCXxQ6/VXeH4PI7hzKwhvHxfKV8wkCQaDga8Wb0VJOOkasHMtTf+hBVz+v4AnoXHUqGjIWJV6ucuRGJKxL16ZRf+7TqniIkfPyxgwIv8q3Dv/OMODG1cxV0GSxpZx0z6ie583nzSbnJrEpWtnUcgVNGnQGr1+D4H+j5HKJQzo9EmOyah37l/n5MkjgEDDRs0oW6oipcuU4+rjK8SkR1KcMsgFBWKsyM7tWxg3dsYbj+r8h6JBbXcPYrX53/JJjA6jRuVM26qaFXKOiBQGI8Z+yOKVW1FIkklJN6Frr/okJR/OeF+nA1F8O9pU2SFFrcDspeHruV9tQZCclM6p43eRK+Q0bFI2y4Ly2KEbnDt6EnsbkafRKsZM651n4Vau0Cfh4iTL6GuVsiL2PvX5fO4BGtfS8TBQwLlE1XynlwQFRLH6u204WGuIipfTe0gnmrZ6tYijqCGKItfvXCI6JopK5arRrXdv9u/fDSJUq1SD6pWzF/dNTk3i9+2/oU5Jx8XdnQ6tjTIPe+12ER2tR4kpHkJJ0ELohSdc9DhDzSpvRhfwH022tm+6zpbvbiPqBcrWsWXW8lZvNZy7e9t57t+4hkwmoLL2xJCc+Z5abUCtLdrtsao1valaMzOhNDgwmnHzNzCij0B4tIHDF+yYOq9YkV4zv3B0sqRR66Ys+XYvrs5S7G2lzP9aS6e+BTORPbj3CmEPT9OmMZy5KHL9cgV6DWiMRCJh66bTdG0aQfVKxglhw457XDznTc062Yva5gUXFyt2388c3KNj9IgSM7r1bkhEeBWiopKY0Nohowjh3On7XDx7FzcPR7r0qPtKlMrfL4rUyMusmG4k3A/841j38yEGDS+a6GZOSEiK44cfVmIRYYde0HPx0llGDZuIvEXupCgw1J+/ft+FY6KR0O6J2IH5IAsa1GmGWq3mxKFDyDXGzy4IArJUJYnJCdha/738G99XxMRHsWHjL+hSdMjMZPTpNeStfrfBgdH8tmoHFiotKRoz9DoBjUZE8Uz2IOgJeUZECgILSxMmzsqUyzAYDCyccQ1rq1hcHSV8v0Gk99BmRXa9gmLIyC5MG/MDm3Yk0aGlGQeOa7B2KpjtWWxsCivnrWHoR1pS0kTmTDrPlHn9MDNTkpCQxo2zJ/hylvGZio1Ts/R/uxg7LefIf17QiabEJ8RjbSVFFEVuP4SxPYtRuepQHvtH0aG+BY5OxmT0yIhEtm8+CUCXjxpk/P1F/LZqB1/NFJHLjcVYn83ZxaylnxS6f/nF2o3fE387GaXWlKunL9K550eMGDY+13NEUeTHX77EMsgRlWDLk4AwtmnX061TP/r0H8yPv36JZ1zmLo+F2hb/xw/+I1sFxWP/KNbMuYtVpJF83AqI4yfPswwd/XbUrG9cC0ITc4HlU40T6+6Dfhy/6sT8ryMoVRyOX5AyaNSbtS7xLGbPJ+MHcerkHcwtVEyZW/6tbFPlhDYdatCwaUW2bT6FOk1DjyE18CpeML2Zq2cv8cV0JYlJeu49iEWuOM/iaXeoXr8eoYHhVHvBrLpedSm7zz8pNNkytzChdtMmfDb7GNYWBmKTzBkz1Zio7+RsmcUXc/e280hTLjB7uIIbd5+wfH4IE2dmFZoM8A+nTpXMEvfS3jLidxSdQnFO+OvANuwj3DNEBhMD4dK1M9St0SjX8y5dOYNdokvGAsU2wZlLV8/i6Vac5o3aEhwcgOam0apDFEV0KjWWFtZv9sP8i7B+w09YBDgiFaToRT3rNvzI6JFT39r1f/r6d/43R0AulxAXn8z4xXLGzNPToIaOR4ECbj7V3mjBjUQiYeq8Phw7fAe/B8kMHVsuWwLwtuDkYsXPmydx7NBNlq0NpEz5YgzqUrFAbWxcfZjFk8DG2oRVvyVgIQ/nhyXfoJe50a5LQyr6Zo4PtjZSBPH1TO+HfNqZaYs3YmeZSlyilJadWmY4fpSv4JZxXFRkEt8vW8uCCcb5YdqytYyYOOCVimhLM21GJE4qFbC11ObLWeN1EBkTTvTDWBx0biCAaZwZhw//RamhuUfUEpPjEWOFjKpDc70V4SHGhFZ3Fy+6d+nHoY37sU03SkwlmcRSqWTBFv8FwT+WbF2/9ARJRKYWjUptw50rBde+yS+iIpOIikyiWAl7VCoFt6/7061ZJrFp10zOmVtSugwcRFRkMpPa2b+VRHUHRws6fVg72/fCn8az4df9SAQdZSuXoWXbN7+dZWampN/gwq9OU9M03Lonsu2vJKaOtsnQF5v9xRk8SlTnryPhtGtmfLh2HTRQqeHrlY7Xa1iOeg3L5Wnt9OjObZZMNBLr6pXkHD0bSXx8ahaNrNJl3Ni/RaBqBZEf1ibw8LGWdJRvfLDS6XRIyLzXJKIUjUad53m2NnZESh5hLhoLVtTSNGxtimW836v7INZovicxNhIU0K1zH2TSf+yQ8tahTdJlaHdJBSnapKKzrXkZaWlaAvyjsHcwx9HJkrQ0LZ4uOuRy47NkYy3Fyc7AsPHDCHwcTYXG5oXKzykoJBIJTVtkX5mu1xtY/+thYiMjMDGzZOAnbbK1DitqNG5ekcbNC0ayniMpMQ2/AA2JySImJgIr5hgXm7fuR7P3zG2eBkjo3t5oeu8XqMXE7PUMnG1sVMxaMiTP8WvP9rPM+EzA2sp4v80cLbJ621kGDc+ahpGYakJKqprzV9I5diaVa7cl+dKofB3o9ToEwwvOCoIAYt7jpamJCp1cm/FaFEUEWeZ55ctUIaRBIHev3wbAp3xpqlXKfq4sCvxjR8ZylZww2N+HGGsA0mSJlCiTNbfgxKGHbPnlJoIURk2tR5lyhdNB2fH7GaICL1O6hMjW32T0HdYd79LunLp0i57PFAvOXdFSopQb9g4Wb2WQygspyWq+X7GeFdMkqFQS1m07zYG/eIVwabV6wsMSsLM3fyeaXaIo8sf6E4QGPubunUga1ZFw+x5cvanOsMQBqFTGgEUJT65fSuH0Un90OqhYoy5ly7tzcO9Vbl/3x8fXk3adaxaK2OSVbP9y5bBOD9KXoogenrb4VGlM50G7WT7Lgk+HWHP8bBK//rA/w7bkTaBpozas8/8Jp7hiGNCT7BxDjSp18zyvUb1W3H9wl+gg4yLFtJiCBnUyibKpiYrhQ8a9sX7/2yFRSTBEG5AIEqMeoCrr/ZSUksj2XRtQp6kpWcqXxh+0LNS9HRaSyLpfVtG4to6z+wWsXCrzYa8GPImQZCwE0tMNJKeZYGoqL/Q4WdT47ouddG0SSuVyCoJC41k+byPTF/TPcowoikRGJCGVCu9s3L1/5wm7thwiNjYRlSKVgBApp8+nUataZp5kBV856/fE0rFXR8bM24+ZyoAodWLk+HY89ovgrx1nUSgV9OjXOFeR45yQ1/glkUrRajOjalqtiFT26jmfjOnOoAm/ULeShvmT7YmN0zN59hqmLxryxoiuk70rcjeBNP8UTEQVMWZh1KuedwRKIVdSo34dLh+/gDxNicY6ld4dB2c5pnXzzrRu/nYcSf6xZKt0GRc6jynG7tUPEfUSvKuaMWpi84z3L54NZPmnl7CKKI6IyMS7B1i1pxOubtb5aj8qMom4uFTs7c0IfXCZeROMUY1OLUUmLfuLyXMHsvbHACYteoBCDga5G59NzD6J713g5o0QurTUolIZVyR9uyqZvPxeFrLl/yiCdav+oFo5PfcfC9Rs1IiGTQu3oissdm49Swnbm1T21FOzrJQubY0DZpP6KuZ9EcOSGQ6IosipyxJGNrWnYqXmQObvvPqH/ZT3eMjCz+WcOB/GdyvDGTm26DW7KtepzsqfT9Czg5Rrt/WkiR5YZCOUW/uDMjy4chzfkkbi2qiugoNngou8Py/CzdmTvoM/5sjxfShlcoa3GpenKTKAVCpl+OBxhEUaRbtcHN2RSCQEhvqz/8BuMEDtOh9QuXyNN9r/fyt69hjAxs2/ok8xIDWT0uujQRnv6fQ6Vv20EutQZ5SCFbce30Kr1dCySf6sbXRqDU8fBWKwSeXQpqt8OUOC8lmRxLyvbhAXV52ufdsxauZfONjoiYhVMOzz98smS58eSeVyxufIy12OnXkCGo0OhcI4ren1BpbO2Uhx5xi0OohKcmHM1G5vNW83OjqZXRu3sXSqnEnzElg+2xjJ6t7Bgt4jwund1bgtevCEhtLlilO+oiflKw7NON/vYTg7121mzlhjBei02YFMnjcYc4uiFeHu2K0u8+c8YMJQDQDLfpQybtarKTcOjhYUL27H6KFGVWNbGykdmqZx9/ZTqlbP3V+4sJBIJHwyeBx7D20nPj6OFlXaUKFM9ubhL6NJ/VZUrVST+MRYnB3cMFGaotaks3XnBpLiE3BwdqJT24+QSt+8vNA/lmwBDBxRmwHDawGvmnBu/e0GVhHFM3yeFIFu7N95j0Ej8yZE3y49yYE1IQipSnBJoGuPzLCGXC6glBtf9x/aEoOhOaKY98ribcPa2ozH/pnfSUqqAfGl22Hzmj18PVuKTGb8++jZx6nf+O3mfQU8eMyw8Qq2/5WMd7HMyJqTg4xHwSZMXQYpqVLadW+VLbmJj3hM2wHG8xrXVXDwVPAb2bZr1rIyd1ztWHfgPu5eTowan/3Wh1wuJfklkzC1JvP/oiii1xuKrJz+OdycPQulIyORSHBz9sx4HR0Xyea1a3GOM3ojHnq6DxOlKb4+78Ya6p8MFyd3xo2eicFgeOWZi4wJQxKjyMhHsdbY4//wETTJu934kBDuTtvA/TgL0i2S8CqThlKZKVnh5SYSF5tKhUrFqFBp5DvXussJqWlkeZbjk4Qs/dy+5Qx928dStYJxIXz4VBiH91/Pov/3pnHjaiDd2uiRShWYm2X9DR0dLRi3QEChAGuHUgz8pNYr5/+59SQLJymRyQRMTSV80iudE0dv07Zj0QoJW1urGD97EHt3XwRg/OyaOW4NGkRJFumI6FiBEiUyx2adTl/k45dCrqBTm8IVCrxoUQXw89pvkD8ww1SwIcIvhg0pP9Ov55vV2IJ/ONmCnJ3Ore1NCSQdJcYbSqdIx8Elb4OwsKcJ7F8dinWEUclYn+DEb6svMKyPAQtzCZdvaLGwy5yc3mVCem4oU86FI/s8+XVzMO4uItsPyBk5sU2WY8xMdMhe2ON2dYSUZE22pOZNQSozIS4+kbo1TFi5Kp7yvgqkUoEf1iZQ0tebz6d9mOv5+pe29/T6N7eqLVfBg3IVcterkkoluJUsz6p1N6lZGfYeF6jTuCkA2zadwv/udcxMIUljx/jpPYp80HpdXLt5Cas4h4znyiHJnQuXTv9Htt4gshtDVCZm6GWZ+SgG0ZAlHyU3PPhtByWCvY2/YbITj9MTOHFOTcM6SlJSDZy9Jqdpj8zJ6X0kWgBN2jZi2tIDNKlr4PJNCRVq1Moy3oeFRlG+XebWVvnSUq7uj3qrfXR0subeDahdDdLVIiFPtHi4yQkK0fDQX83Pm8fkuhAXJEZi83wcTteQsfgtalhZmfJRNt6VL6Nrr+aMm7+Z/l0MBD8VuRfsSuu+zjz2i2DtD9txstUSESuj79DOlCz1fmw5P4dOryM1MhVHwVjVayZaEPO06CSYcsM/nmzlhNGTGzLk4hbib1qCVI97Az1tO+U9YURHJyEkZpINqSDD3d2deT8YkKLBxqEYgz5pkeP5aWlafvvpAClJyVSpWbbQiZZFgVHju3D/bhjx8alMmuue4eH3HKLUhsfBEZTwNJoqBzxRvlWiBdD/k7ZMmvsbH1RVk5xsoN+n4ZQspqBKBSX+TyLzPL9EmYr8sukKrRpJOX5ej3Oxcu/cmumjfk24d8eXG/5htOxeDE8vOx4+iEAXf4Xl04zf771HMaz/5TADhhVeJ+xNwNraBo00HZXBGAlRC2k4WFq/2079C2FtaYtPNR/8LvkhTVOgcUihb/uheZ8ICJqsi1ALuRUnbtmy/0wUelHOqIntcyVYB/de4fa1R1jaWNF3cPMiEd8sDGrX88Xbx41HD8Jp0d0ed4+shup1G1RkzR9/MbS3cVxbt11P7eZvV3S3QiV3zp/yYdkP/ri7Khg+MYJK5U2wNJfwcS8TLpzzp+4HPjme371PUyYsWMe4oQIJSQbWblcxfdG7XdgU93Zk+MRBXD7vh5WTOWM7GYn7+p928s1skMmMshCj5+5i5pI3LwtREEglUgyyzBW4KIogE3M5o+jwryVbZuZK1u7pxfWrISiUMipVds/XJFzSxwmpVyKGe45IBCkpJjE0aejKiPEf5BnF0usNLJ65lmkj0nF3kbF++3H27EijXedXw8dvC75lc155jBjXhZ++2Y0uPQ6NXsFnkzvlu93UVA1rfthLemoidk7O9B3crFBRPmtrFbOXfkxQYCxXbm1kw5JMQnjpdt5+Vl0++oBrl93YfPQxpcp60rxO1oEtOclo7FXUORB5oUw5V8q84JUW4BdG3aovvO8jZ82uNy8LUVBUq1Cba2UuEe0XhmAQENwMtG0xOO8T/0ORo1O7noTVDCU+KQ4v1xKoTM3yPglQetqRHJSEucECnahF7pbKxyN75StvZevGUzibXGPxOAUBIdEsmRXOjEUD3tkCJjfD9uq1SxIdXY9JS29gMECtBh/gW84t22Ozw77dl7h38z4icvoMaZNF6qUg+HhUOyLCE/lm2TZ2rjVH9izx/NSFNJ6ma3I919XdhhGTBvLn/qsoTRRMW1g9C7nVavUkJKRhZ2f2Vn8DOztzWratnOVv1ha6jEi8VCpgbaHN5sx3C0EQqN+4CacPHkeerERrlUb71rnvjhQV/rVkC4yGozVrF8/yt5CQOKZ/so/UWBELRwlLfmqX5WE2NZXz1ab2LJx4FG2qiL2zSEJsAN8tuk58qhVjp/XMsWovOCiWmhVScHcxEoY+XRRMWX4X3iHZyg1KpYxR47sU6twV8zYwaWgK7i4yrt56wPcrUxk5rlOh2pLJpHiXdMDS3oML155Qq4qckxe0KCzyl5BZpXpxqlTP+juLosjXS7djKoQikUCi+u0nz74I33IeHNwqUK2S8fXZyxo8vPI/MbwtSCQSPu7/GaHhQej0WjxdSryV5NL/kD1cHN1xcXTPeG0wGNi8bTURweGIEpEGjZu+oq5dYcBH3LXegv5pHDqTREp7pPD94m+JTZDRsWdrKlUp/vJlMhDs/4ARE4zjW3EPGb7FjJI371L/Kje0aledVu0Knt+0d9dFTNTnWTxeQUqqgXHzf2PyvI9RmSnzPjkbODlb0rVnQxZ/t5upo5QkJBpYt1PJ1Pl5awDaO1hku713+vgdTuw/QgkPkTt+cj4Z+xHuHu/O8i4+WUlqqgaVSkJamoH4pLe7gM0v6tZsSFnfCkTFRuDs4IaF2du5d//VZCs7TBq8B+FScUwEKWn3dUwc8ierd/fKcoynlx0/bOlGdHQym1f9ytxxxsHnSXgSq77bkyNBMTGRk/CCX6bBIKLJfWHzt0R6uhYnmyTcXYzfS9UKcrbuD3/tdkeN78wfG06x/UgYxUt58Mnowld3Htx7jSbVntD0A+PgeepCOHt2XKR9l7dLfNVqHX9sPEVCXCLWdhUZO/8BJkoRpUUxPhn95gT2XgeCIPyrTaffZ+w7vJO4K0nY6o1R06N/HqCYl3cWk3GJVErFUV2o7e7BkRWfs2qSCeZmRpmHUTP/okKlETlGoTVaIUtSekKSiOIdbSO+Sdy/9YDF443jl5lKQsdmau7cfkqNWjkT0bxQpXoJJNJOTF15AblSyfhZLQpN3nQ6PSf2H+Gr2cY+qtUGJi/fxZR5Awvdv8LizIm7XL30kJJlfJiywh9zk3SS0kwYOrpwC/W3gZeT5t8G/nlPyWtAFEVSIgUsnwkJygQZSRE57+eGBsdSvULmVpabswxNemKOx7u4WhGb5snWPUH4lhTYsBNad2mT4/F/VygUUuJf+BpEUSQ17fULBQRBoHufoiEgIYHhtOuaGZGpVkHGkbW5+8SFBEWzdtUuzE21qPXmjBj74WvlsOl0ehZOX8PnA9Jwd5GyfFUgLTu1p0r1EoVu8z/8uxH2JBRzvVXGa5MEc4JCH2chWy/CxkSdUSUnCAIlPAwkJKRjY5O9llPT1vWZ/cU+urWFW/dFMC1ZKN2n9x0GZKSlGTK0/ELDBMp4v/7nrFSlGJWqFHvtdhIS0ij+Qi2OUilBpcxd9FavN/DdFzvRp0eSkirQukszqtZ4PdHnP9afwEZ2nWlD5Jy7GkxslAejxr9fEiHvC/4jWy9AEASU1gbEIOPKzSAaMLHJ+fhiJez5ZZeE9s2Nxz8K0KKycM35BIzRmQvn/Dj/OJYeH5fKt67X3wkSiYSy1Wqy5LsLVC2v58hZGS06vDnRzvxi/57L3Lly3Wj5YOHCpt06RvQzEq5Nu7TUrFM2x3NFUeTHr37nm9kCCoVAVHQ8S7/cxoSZhXeJv3k9lFYfJFHa21gRO/NzBZOWnfmPbP2HQsPWwYEIIRqV+KyAwTwVdxfPHI+P06iIjUvE1kaKXi/iFyTF2jpnNfAadUrh7GbP+ct+uJWw5+OP/pn3ap9BrRk7fz2dmqsJeSrwNKk4HUvnXa3+JvEkJI61P+5CpdAgSq2IjpSSnm7AxERC8BMtojT3SM3aHw/QrdkTKpaRI4oGJi38i+Ilh+RIrPODkMf3GfnMOaNxXQVHz4a8t1Ih7xr/ka2XMPfbFswYeRBNvAQTWwNLvss58mRtraJBq1Z8PvcoFmYGtDjy6cS8I1W1CunV93dCu861CQ0pTXBQDP1GOWNvb573SW8Q168Gkhh6hiWTjAPDL5v8CI0vycTFTxEEKF2xNtVr5/y7pCSrKeGuQ6Ewhu0d7GUoJMk5Hp8fSCQCen3ma1GEt1MX8x/+qejQuhurY74l8kkwotRAjXp1cbLPeQHo268Tk7/+DUczAwnJMvoM7ZRn3qKHpy0enjWLuuvvFZxdrZk452Nu33pC6WIqOvi+nm3O60IURX5YuYmvZvKMXEWy7GcrpqwwYKrQgMwpT9HZhNgoKpYxSmEIgkCj2nr8H0VSvWax1+hX1tcGA7zjYu/3Fn9rspWclM7YQbuIDtAhVekZO/8D6jR4vZWWbzln/jjeL08vqeeoUacUNeqUeq1r5gdpaVq+XLQZlTyBpBQJzdo3oXY937xPfIdw97B5pRz7XeHy+bt80jnzdu/ZUc6SNTrGz/44X+ebmSsJCRey2JekpL+eH1iFSu7M32KNp1sSnm4SVv6so3WXdq/V5n/4e2Hf4Z3cuXoTgGKlS9C1Q+/XKtKQSWV83H80BoMeQZDk2ZappSkDpzXC2/zNSyJs33wavzs3UMhBbu7OiDEd3rkMS24wM1dSq877EbmLi0vFt4QOExPjYs/TTY6lWTqjp+dP7gNApjAnPDIRZ0fjOHjtrpT2fV5vfPYuV4FfNl2iU0sZZ6/oMLEu8d5pA74v+FuTrZmf7yPhsCNmggmiKLJk3Ck2nfQoEoPn903x/ef//cnYAfF4uMoRRZHJiw5StrwXlm/QALSw0Gh0REYk4eBo8c40eF6Gh5czV28/oll940Bw7Y4OD6/8bwsIgkD7bq0ZNXM/bk4GgsMUfDKm02v1SSqVMHV+P3Zvv8BXa25iZ6vk4J9ncfds/4/Mg/kPWXHv0S3unbiHQ7ox+eZpQjjnXE9Qt0aj125bInm/JrxbN4IRkq+wfNqzgpSLwez44xxduuft0fm28dxPUWkie2+eQ0tLEwJDM1+r1QZS0guWXD94RFvmz9uIs20SMfFQuXZtnF2s8jwvN3T6sC5XLjox69sLpCXFYWcXy8VzD6n5FgIQfze8HzNhIRH7VINCMCYoC4KAGKMiIjyBYsXt3/i1RVFEFMW3phCvUyfg4ZoZAq5R0UBIcBzlKrxfZOvWjSB2rN9NpTIitx4ItOnamqo13/22aYs2Vfh6aQAXrociESA+3YWx0wpWeVilRkkqVx9JWpq2yEy55XIpsVGxjB6gpXoliIuPZsq8dcxZPvS9XvX/h9eH/+MHmKdZwbOf2VJti5//gyIhW/mBwZC3Tl1R4cHdYFrUy7yf69eUs2d5yFu7fn6hVutYMmsdvsWSSEwWMShLMPTT9u+6W8hkUhq2asro2Uaph7v+coZ+nj8fzOdQmSmZuXggaWlalEppkc1d5hamOFpEMmO6EkhlwTf7sLQ0K5Cm2b8B7zXZEkURrVZPfFwqVy8FU9zbntJlMvfO7dyUhIrpKJ5FtgS7VJycc2fqWq2emaP3Eng7GUGpZ+y8+lSvXTADzee2KqZKUOPImCnd3ngkTKa0IjTsKe4uxp/s0k0JQ5q//S26pMR0VszfiDo5ktgE+GRsT6pUy/z+dm7axzdzZUbyK4p8NvvAe0G2BEFg9KSuJCelI4oUuopQEIQiI1rPkRIXRvVKRiJtYy2lXEk10VHJOYo1/oe/D3Q6LSLw8PEdAEqXKIdMZvytvUuU5qHqEco044IpURlLde+8Tb0vXD3NuZMnQBQoXtqbjm16FKhPKRFP0Oz9iUdOqUTHaSg1pB7eb1iUvHRZT46evULJZ8oJpy9pKe7jnvtJbwgb1xzl1uUrpKXpKOFbls8mZBrTr/vlEOMGp1Dcw/iMb9rpz+ULj6le691vJ37QqBy16vmSkJBGD1tVoclSUez8vIhTR6/z6QB5xuLws4Eyvtp0rUjI1hX/CKp5v9vChKLCe0u2zp0MYNnkEyREaUhJ1OGg8QSbOzQb4sToqY0AmLOyFeMSdxMVoEVmqmfSggZ53khLZhzm0R9KTPX2iKLIvFHHWX+0R74n3/t3niImXs0Ih9+6H8nGNUfpO7hZruf5PYokODCasuXdChW6HTyyHSsWb3khZ6tFjkahbxLL521g7ug0HOytSUk10HP4GuZ9MRqXZ1WVlmZ6hGfSGYIgYGVheCPGz4XFm1aKT03V8NtPB0lNTqZqrXI0apa9IfWLSNNI0et1SKXG7ygsUnytfiYGPSLx6k7M0XE5rTbVyxdsBfwfXh/p6nR+Xvs1KZGpRKY8xU1fAgGBg55/MXLYeBRyJWV8KhDU4DF3rt1EFKG4b3Hq1sjdm+5peAgn/zyKY7Jx6zEoOoRTNkdQOebNlh5L0kiWa5FeXMWeFQZkMiU6nYLP592iwZLct/Pi41O5fiUIW3sLKlYqOEmqUMmTR/eqMWHBDeRykJt7MmLM299CPHLgOvayK/yy3LiQmb/yDv9bIWXUOGOuZEJsAsU9MqfFimUEzvpFvxdkC4yR8DddbLR/z2XuXPfDytaKfkOao1DkThNs7a14HKynmrVx3H8crMfOwbrA1y2lvMATlS/3RBvkt/7CjgQiYkzQaPpQp0yxQnyS9wvvJdkyGAwsmXAC84eleMotSlLZOFnH23Fkkx9DPlNjZq7E3MKEVb93L1DbQfcTMNUbBypBEBDDLAgIiM73AOLv95R6LwgSV/CVs35P7uamf6w/gT7xOtUrGPj9Zwm1m7Uu8J62SqVgyty+BTrnTUDURuNgbySLZioJVcrL2PfnBQZ9YvTwS9FYEBmdiKO9jNg4PQkpb9dG4l1CrzeweMZaZn6qxtVZxto/jvLXzjTadsq9cqtLz5aMnbedJnX03H0k4FWmeqFXn6nRcTgE/Mqqb6RIJAKbdxzkxnVz7K1LsevPPxB1BkqXKUuTBgWX4oiJj+LQ0T0AtGrW8a2LAv6dsHXnbygeWpBIMt6Uw0wwqlSnBCVx5OQ+WjftBBi/x1bNOubSUlY88L+LWZJ1xtajlcaOi9ev49nKGyd3u1zPTZZrETzVFA9MQyYzknmZTMDKPHdblaCAaNZ+t4ke7XQE3oJTh4sxclzBtZS6fPQB8EGBzytKXDh9h5VTM8lKry4WTF50HzCSrYrVSrPtr1N0batAFEV+3wMd+r77yPzbwpZ1x/GwuMmS8QoeB0ezeGYEMxb1z3UM79C1NgtnPOLuo3ikEjh7w5qp8wsmOG0s0LhDY/v7BK66x6+T03FykBEZHU+vsT8hlY7g8e1DxEXGoLIyp3vnvpiaFCyfzmDQc/jEX4RHhFG5Yg0qlq2a90lFiPeSbCUmpkOSEkEQkIjSLD+0oJWTlqZ5xTQ5v7BxUhIkqlEIz863SymQ1lWZcp4c3HOGSs+Kd85c1uBZPOdwqVarJ/jhDZZMNV6vTnWRsfOP/20TCOPiBXQ6owu9KIqER+ooXzwzwvbZxO588fVOBEMyeiz5bPK/R+Au4HE0dauk4ups/K37d1MyZfndPMlW6bJujJ72MX5+UbStaflaSatJDx8wubsOicT4aH/UWcbegxfYu/M4jpFeSAQJN0NuIpPJaVA392jsi4iNj+anH77GIdq4UPnBbyXDh4/DysK60H39JyMpPhmVYINe1CEnc6xSiiakpBReMsTDzYurplcwSzdGZlKEJPR21iQXl2GRx26LoFTj4x5OYoo+Q58pLc1AQkruUdQtv+3nixkyFAo59WvBqnVB+PtF4V3SodCf413BydWeG3eiqFze+Jmv3EhHrsj8fZq3rsK2TclMWfYQjRaatmmOh+e/Z1HxJNCPT5/ZMZXwlFHSI4GYmJRco2kymZTpC/rx8L5RFHp6D6dCbXE+J1zlbBJxcjASKUd7GV6eiew/thEHPxNU2KIR0/kl8RtGDZuU77ZFUeTn375Bd09Apbfg8N39xLWKoWHd5gXuZ2HxXpItKytTpHZqDGEGlJgQI4ZjJzijJg2bUgbsXiOMOmNZSz4N205cgAhKLf3HVC5QWLZESUf8Sn3A2PkXMVWCwqIYn4yun+PxGrUO6xeslwRBwPT9tIzKF4aO+YgPh6yhXg0ZjwK0xKdY0aFr5irG3MKEsdM+eoc9fHfIzo5Jm08vVnMLE0qVcuTX7/eiSU/CwcWF3gObFnjQktk6cPWeQNWKxtdPw3UkJYMyyhyJYGzLRu3I/ft3CkS2jp3cj320OzLhWW5ZpAsnzx6ifctuBerfvwUOzg5E+sdhL7oQxANKisbt5CibUNrUyn+5/ssoWcyXUvV8uHv1NjqNiLS4NY4fNkfwVCOxTc/13EZOaZRS3kcx/AMmLLmNpUpNUpoJw0Z3zfU8mdSAQpG54HV2hKSk3K/1vmLA0OaM6H+biqVj0OtFHj6G/sM7ZTmma8/6QM5j+j8Zag1Z0j4Sk0CZxzYiGIWsfcu68Of28+zbcRgROX0/blvgvFNv83Kkp53M6IMoikSlStAmp6DCWPimEEyIj45Ep9chk+aPwiSlJJIYnISDwR0EsEtz4ebVq/+RLUEQWPJLW+aMPohDokCKIRJzTx0lPc2ZOPf1zIItLE1Ys7vXa1VktGhTjRZtqmX5m1arZ+OaY8RExlKtdhkaNjUOrmbmSp5EWxAUmoyXu5xTFzWY2eRtkXDh7APOHLuOytyMfkOaF9pDq6hRoZInK3+ZxL7d1/igtIJGzSpgYlK0CZd/V7h72BCZ7MG2v4IpVUJg/Q5o82H+dbOWzd3AjJGpODvKuHT9Hj/9L51hnxWsEsrO15utGyoSFHoHRyuR0+dtqVbuQ4LObIFn86NW1KA0Kdj9JJXJMJCpwGpAn++B7t+Izu16sSH1Z2KeRqMSVcSbPsXC3IqeTQfg4vR6ieGuPg1I9amKo6sN6mJywpWR+LiH42aRlut5ja0fANZ4O5Sj9qJXK3HPnrrHhVO3sLKxovegphmyLb4VfFm//Rx9uiiJT9Dz13EF0xflLvIZE5PMxtWH0Wk0tGhfh3IVPHI9/m1BKpWwav04Th67T0R4LJ0H+f6rIld5oWmbBhl2TNfviMitSuU7n3nX1rPYSy+xaJyS5BQD4xasY9rCjws8P7Tp0pwxc/dSqayOC7d1mDVuiv7i/SwkUJQbkBZA3kQikSAKL1XfvuXslvd2tCxZyoF1+wpvhZIXirIiQxRFlszewIieiZT2lrJp11F2/JFI5271AJg4uw9rVu0jNSkRdy8PhozM3d/v+OFbRPodZdFYBRFRUcyasZaZSwa/NxYIZmZKPuxZ+113450hJVmNwSBmOwgZ7Zj8uRgYR69PSuHimr8twaTEdLyck3F2NIbwa1RWsONQWKH6Z165NZevlMEuQEX7htWRSCQUq16MwOsBSDUy9A4aPuk0tkBtNmvUlm/vLcMizB4QSXaLpdEHgwvVv38DpFIp/XoOK/J2r/hH8FiSRmpxJWonORKXdHxU4TS2v4+bqXWu5+YmXHrgryuoI0+zcIyCwNBIFs14wszFA5BIJLTpWJND+2RMXn4PQapg7Iw2uU6gSYnpfLVgLUsmg7mZhDkrtyGKXShfMWfboLeNBo3fb0HoNwmdTk98fBq22VQ01qxTCpdndkzupRxpUaNYvtv1v/+Ij8cbF3HmZhJaN0jnwf1wKlUuGNH2LedBanprtFo9PVqpiSEZjbY8V+ddxyrWgnSzdHwr1ubq48h8VyqaqyxwKe1KzPUoTDTmJFpG07R+ywL163Xx3pKtvxNiopPxdo3Dt6TxRuvVScnkZfcAI9kyMZHzyej8V4RdOXeNJROMbTk7ymj5QSr37oYVqgroPxQdRFHkhy93IaiDUMgFopIdmDCjR5YBSxAEatfNOaH2zMm7nDp4GhMlWNp7MPCTVgiCgImpnJi4rNdKVee89NLrDYSHJbwiuhhz+gTlko7TsKWGbX/qOHWlNQ1rdOPDjn2IbhBJWnoqLg5uGfID+YW5yoJPR0zizIVjCIJAvVqNC5yg+h+KBk7udlg4gcQlnVJOEYAVbqbWr6UCf+fqTRY/G3OKe8ioUT6JwIAYSngb87Kat65K89b5Syg+c/IeQ7prsXq2GJk9VsmUL86+V2Tr34oLZ+9zaNchvD1F7vlLGTSqG8VKZDUpz82OKTY2hR+/2oaJLI1UjQlDR3fNSMPRGzK9GgFCwqB25ZzHiNjYFLQaPY5OFhkRq4jwRL5bto72TdSEBRvYt9OCfjNq0bN5MralmnP7mpTS5j7YJFjwODQGCiAN0bvbEK76XiA84ikVyrbG0614vs4rKuSLbAmC0Ar4CpACP4uiuDibY7oDszHau90QRbFXEfbzvYZMLiX1hQi+KIrodIWPUer1Anq9mCEFkJAMDu+JEvu/GaeO3aVqySDaNzdOSpdvRLNt8xm69cpffkdoSBw3zxzii+nG84+eecSOPyzp0r0ecrmUEuWrseyHy1QqY+DwaSltOme/8oqKTOLrxeupVl5L8BMRc28PaFAag8GATfAJFi+QATJaNRYZ/PkOTl5OoUH1AdjbOGbbXn6hMjWjeaP/7ITeN9SwLw66B6/Vhk6XNVcnJZU8S/5zgkKpIDEl83V6uohE+n5E5f/NEEWRgzsP8c1c40JLqxUZt2g30xcOyXcb3y3fwvwxaVhaSElKTmHK8i3MXGyMcPcc2IZxCzbSoamawBCBRH1JvIq9WiEriiLfr9yJKcGoTOFhiDWT5/RBLpey/ue9LJ8mYKYykrQf18Xz/eQTjFjSiJZeASjMfElJlZMaBslyGY8D0sA/Itc+PydjgiBQreK725HJ82kSjKJJ3wLNgVDgkiAIu0VRvPvCMT7AFKCeKIpxgiC83qj+N4O1tQqN1Isd+wKpWEbC5j9F6jXNXS8nN3To1oRJi7YyuLtAYKiB2wFOtOn7zxB2e1d4GhrH2VN3sLGzpHGz8oXK1QsKCKdn08xJo0p5GduO5v6gv4jbNwJp3zTTubVJPQUHlgfxPALauXs9QoLL8CQ0joGfO2Fnl33hxtpVu1kxTcTczLjlOOOLxxgqpGBhrcPeOrN9QRDwcJOSlHQNnb7PfzlW/yFHNGvXgJnL9zCgm8ADfwNP4twK7WvaoLEv86deQCZNxNZa4Nt1AsPHtyjiHv+7oNXqObz/Bmmp6TRoWrFQWltpaVpcHDPHB7lcwNxUV6A2LFVGogVgYS7Byiw14z13D1vGzRzCndtPKV/CDJ9S2c9ZZ07ep4p3EB1bGiOf9/0S2bjmGP0/boaAFjNV5thczENGB5N07h9JpnI7a/p4hHMs3oqHOCEo1SSjJEWbe4T9yjMy9q7FUfMz+tYE/ERRfAwgCMJmoCNw94VjPga+FUUxDkAUxcjCdCYmJpmxA3aT+NSA3MLAtC+aUKnqu9s6exISx6a1+5Ggp0qtijRuXjHHY4eP6cSZk/fZfzWKJp1K4e2T8w9793Yo+3aeAgQ6f9SYEiWzHutbzg2r4f05efYeNraWTJxZ9l+jVfUmcP/OE/7cvJVhvQQCQ0WWzLnF5Nm9CvydVqtVms1/3mbsx8bHZuNODTXqlMn3+V7Fnbh8joxKQb9ALVa21lmOMYbwc0/YlUk0mJtlDkhlSki4EJOE3FHB7XAbQp/G4e4q4+ZdNUqFgFputJb6D28e23Zv4PE9fwQBSlcsS/tWH76zvuh0etb9fIi46CgsrG3pP7RljtGqqjW8sXfozYFz93FwsuXzyTnf16kpatb8eIC0lGR8y5d8RdpEJpMyfWF/jh26zYMYNaOnlcPW1qxIP9u/CTqdnvlT19C3YzJ2xQW+WXyZwaP74lZAMqxSKQgOU5CWZsDUVEJYhA6tWLDigPgkKQaDiEQiYDCIxCdlvZ/MLUzyNO9+GhpFm+qZi9bS3jLW7IoFoExFX377/QT9upuTlmbgz4MpfNzHkhN3dC9sk9+hlPICx1S+PMKZVHXuffaXazEP0BVoy/FNID9kyw140cQqFHi5lKUUgCAIZzBuNc4WRXH/yw0JgjAUGArg5v7qjTJ1+F40p90xF4xmy7NHHWb7mdwF1d4UEhPS+Omr9ayYJsXUVMKPG45x8qiEBk2yKjW/GHqv18AXyD3x8tGDMA5u28qiCUr0epi4cDP9R/bD9aXvw8XNms7dCiYM9x+yx+6tR1kyWYFUKlCyOIRHRnH/bjhlyrkUqJ2y5d15+qQhExZdQiqFYqWq0bJR/vNkypRz5frlCkxadBtrC4GwOGsmzir4it/S1pmrtx5RtYICjUbk2CUR9+HGcL1jr2H0nrqSUnbhVCwro0FtC376zZuK3m+nYjQtPZWrNy8glUqpWrE2CnnRWhu9S7w4ftnZvKoxdeHqKUIvPMVRY0wI9jvtx+1i1yjvW+Wt9vM5vlm2nd5twilfWo5fYDxfLNzC5NlZi45eHL88i9njWSx30VGDwcDiWeuY9Wk6Lk4ydh88z+/r0ujeN2skXyaT0rx1paL9QP9SnDp+nw9bJlK3ulHPcNk0A3O/P8SYqQUT9AYYMe4jpq7cialcg16wL7A4bY/+7Rk5YyclPPQ8DpHw0aD8C/I+R/Vapdm4/RrTPjXee+u3a6hRtywArTvUYP3qZLoPPUXJYhKGD7Di6zUSPp+eqST+ogAqQEqqZXaXycDzCNjzLcfcCJcoitx9eIOo6AjK+lbC0S73qtuCoKj2FWSAD9AIcAdOCoJQQRTF+BcPEkXxR+BHgEpVPF5ZaidF6TN0fARBQIxXkpCQ9k6c169cCqBXB11G1eLQ3komr7iRQbZ2bzvHvWtXMFGK6ARHPs+nP+L+Py8w4zMFEomARALjh0rZcvAqfQY1faOf500iKTGdH77chlxIJkWtZMjIzjgVUpjz5NHbXDp7E6lUTp+PWxeJNYVUkpn/BmCmElFrChY+f45mLSvTrGXlQvelZ/+maLWN0Gp0hZbz6D+0Jb9+r+eP/eGotTJaDqzEw2fVYTITJV59ZhNz8jwHjl/D/1EZmtdpW+j+FgQpqUl8+8NyVE+tEQWRc+dOMnLYxH8M4Xpx/Crh4fPK+OXn/wBLtW1GSbl5ujV+jx+8M7Il0UVRvrTxvihZTI5KFptBroIDo1n93TZsLDXEJsgZMLzLK4nS2SHsaQKVfVNwcTLeux1aKJiyzA8ofNrE+4At647zNPAhWi1UrVez0M94ZEQiG37Zj8Ggo3aDytRrUPa1+6bV6jC3yhy/lEqh0Cbizq7WTJk7oNB9KV3WjdnLR5CUmI6FpUmhAiElSjpRoW5Lxi86g1wO3mUq0bJxZhCjz8DGNGxSkV1/nOT3I1I+m9L4lcjoi4TroTr3ucZMlcAjnPNFuDZt/ZWIa1EoNaZcsD5Hx48+xLdk0RiH5odsPQFerN10f/a3FxEKXBBFUQsECILwECP5ulSQzlg6ykgQtcieRbYEG/U78f8DsLJS8TQw83VSsgGJxDhp+D2KJDn8IiumZ/ojblh9lH5D8haJNDMzJTpWj4ebkZhFxugxs8hKJi+cfcita36ULO2RL2+9d41vV/zB1KGJ2NtJSU1NZfyiLcxeVnDhxmOHbpIQfIwl45UkJumZsGAtU+YPeW2NsVr1q7Hy50OMHqQkLELP/lNmzGzn+lptvg7kculryXhIpRI+HpWZqO6ffIeH8VmPcSxRGzNZxTzD5mpNOmeurcNgiMfBpjKVfAsv8rfv8C5snrpkuDMkBQmcvXiMRvXebon1u4JPyTKcu34Ga40x6pVsGkedEm8+Iddc98omAgApaVknwtQ0IWNyXPP9dr6cYUAul6PTiYyeu4NZS/OWqlCZKYmNz3xtMIiotVmvE/40nv17LqJQKuj0YZ33RiMwJxw5eB1X1c0M5fTlq07wwMOR0mULNkYkJabzvyW/sWK6BDOVhK9/PcQZeG3CVa++L4umn8anuB5LCwlzVqpp2bHea7X5OhAEAcvXnJfrfOBLnQ9y3gXy8LJj1Pjco27PCVfg8b8IvBOGQqWk3YAqmKqyRvGPUZoUW0uekpgr4UpIiuPJ3Sc4aj1AAFW8BYcP7X2rZOsS4CMIQnGMJOsj4OVKw51AT2C1IAj2GLcVHxe0Mwu/b8P4QbuJf6JHYSEy74sW7yxXqUp1L1bsdyU1NQQ3ZwnfrU1h+HhjhMDvwRMa1Mhc2Br9EfOXptajbyPmzQygd/s0NFrYdtCC6QtrZLz/x/oTWArXGd5VxqmLj/j5uxCGjGiT734nJKQR8DgaD0+bHBOsixqmsmTs7YzkQaWS4GSbjlarLzChuHbhJouf6bRYWkj5sHUaN66HUKfe63mTfdCoHKamSqZ9eRWVhTlT5jd7bzTL3iUMBgMHzizki/mxuDrL2L4niJOnkqhZsUuh2tNo1EhfGFJkohy1Jo+Ein8Qalapx5MnwfjfewRAmUrlKe9bOd/nX8mjqgogxVOFvzzBaL2jCqeU8j6QvexDvaYfMHXxQZrXFzh8Uo2gzBRTtjLXIJcbfyuZTMDaQpOvPtrYqBDMfFi95SHlSsG2fQJtumSOT6Ehsaz+Zh3TRklJTjGwcMZ9ps4fhEqVv+imTqfn4f0IFEoZ3iUd3sr4f+PSQxaNzZygu7aWsOfCowKTrSuXAujdUYuZykhEPhukZPKK669NtszMlYybNZCvVh9Co9bQqksdypT7TwYI4PqfsZRQBjJ+spLwyBRmL73E7KWDMwqg/JPvAFDb3YPzhGBQm6DSAsGpr7Sl1WqRGDLHL0EQEMSCF1LlhDzJliiKOkEQRgEHMOZj/SqK4h1BEOYCl0VR3P3svRaCINwF9MAEURRjCtoZW1szft7egxVzj3H3YgzfzD/NlGVNKFbcvqBNvTYEQcDK1gylEhRy+PULW8bN38n+nbakpyThb51O1YrGaopL1zW4uOdvb9fMXMn0hYM5d/oRMoWEGYt8skz8wX53WTL5eYheytnF/lnyKrLDg7tP2LxmN6byNPz8k+jU2pzTe+WUrdGQJi1eP2/ixrVADv91DkGQ0L1fc9w9siZVJqXK0Ol0GX6JkbGSQpEZkaw6LZHRAs7OReNtVK1WSarVyh9pMxgM/PbzIWIjwxAxYeCI9v/IBN+4xBg+qB2Hq7NxGOjSTsah4zeAwpGtxg1asvbhjzjFeiEiEu8QSe3qfYqwx+8/OrfryX3f2xw5vI9Af39OnjtMgzp5R7yfi5XmZSad6p7pcfhcyDQnfS03DwcuG0CvFxnW15zDZ56yYMZGVIpU7t6JJz3dFhMTCWq1gfik/EefBg9vw60bFXn4NIY+I4rj5JyZM7N1w1GWTpFjamp8hj/5KJ2jB2/SrlP1nJpDo9GxcuEWlEIMgUGJlCwmw8vDhJ1bnBk3rcdrE67kpHTW/LgfdVoqFauXoXmrrNu6zu6O3LwXTqWyRkJ46YYBzxIFy+cEMDc3ITI083VKqgFBKJpMHRsbFSPH5j8/6vJ5P44fOAPAB81qU7te6SLpx/uGYP9HDB+fqUlZs3waoSFxeHrl/hxlBzsbB5SuUtL9UlGKpsSpIqhaKef7tqDI150giuJeYO9Lf5v5wv9FYOyzf6+Frxad5NwP6ZhpPNCIBsb03sPGI72LVPE9v0iOi6Tn4MzoUHpKNLNnybC0kLLuD4G+o2Lw9LJBULozanyjfLdrYiKncbMcVjsvjSuCIOZKtkRRZOMvO/l2ngSJREVKqglzlsewdKYDo2efem2ydftmMGf372TxOCVqtci4eesZOWVQllyq3kM6MmrmH5T00hMQKtChR+FyhD7q34pxCzbQu6OaJ+FwK8CVZj1zNvl+U/jlu720rBFA9UpyEhJTmDh/HXOWDy2UXMT7gpCwQJJTEyjuXgoTpXHlrZArCYvNPMZgEElPL/zE5uLoTr9BH3Po6F9IpBI+bvnpv86oOjImjF2b/8Ap3gtBELgcdhFzMwuqVnzVHuc5rvhHkOKpIlmuzdNMWuKSnuFxmJeQ6aXz9xnRV4GXh3HslEvSaF03glaNTQl9akXP4VGULm1LcpoJQz4tWNVkhUruVMhBZPnFx0QiEfKshF39wz5G9IzF20sB2LNgZSytG8twvRvOyWP3aNik8JEhnU7PkllrmT9Wi4O9jA07TvLndjXtu2Ru7/bo04Dl859ieySa9HQRU9uSDOlWqsDXqlazGEv3OyEIETg5wPqdckZMaFXovhcWD+495cqJv1gy0UgeF3+7D0srM8qW//tGw6Iik3h4PxzPYnZZqrXVGiGjOhIgOk7MdxT1ZQiCwLDBY/nzwFYS4uKoX6ER1SsVXZHaeye8c+diJGbPqnkkggR9iCWP/aIoV6FocmxEUeSvXZd5EhxJrXplqVwtZxVZrV5OSmo6ZioJBoOIo500Q2Okbzcr7gcaGD1jRJH06zlcvEqx5c87tG8q4+QFHSqb4rlO8unpOtyd9Uie+USZqSSonq0qrSwMGAyG1yIJh/acZ/5opVHl3ERgVH84dfw2nT7MHKyKezsyZ8UIEhLSsLQ0KfT13Dxs+Hz6YK5cfIyVpxljunq9k23klPhwqlcyTlBWllIqltYQFZmcsYIXRZGdW88S8CAQpakZAz9p/V7npRy98D21atyiqoee3343p1b5ydhaOWBhZsn1+9X4ef0lKpXXs/53JaW8ehAZ85Rbj3YjERTUqNANc1X+zWRdnT3o3+uTN/hp3m/cvnsDi3i7jPvWNtWZGzcvZ0u2MqJZnnYZEavczKTNVA9xs7DCM+wM508G4ePpQ7EuhhwLc1zd7Ln1wIDXs4zba7fUfDHXeA+7u8oZP9ySUE3TnBd+hUCXjxoxadEGZn0uIznFwHcb5EyZl7NkDkBKYhzeXpmL6VrVTPAL0FLCU8qxu/Gv1R9/vyga1kjDwd4YIe/dWcmU5ffhBbIllUqYNKsXqSlqJFJJob1eBUFg4syeXL4QSEhSGuNnlci3r2BR4vTxG4zsJ8u4Bz8dqGDFumtZyNbD+0/ZvfU4AK061Kd8xffDuzI7XDj7gPOHD9C0no4j26TYetakQ1cjCWrbtQmTF+2ke1uRu49AKy+JlbWKDauPEh0Vh3cdayie/6ieXCanS9ueb+RzvHdky9RCSqqoQ/o8/GqRhoNj0eUerVz4B23qhdO1rpR12/2ICP+Alm2rZXts/2EdGTNvPTUqaAgMhdgkZUaUyWAQSUwp+ryfXgOacvq4M0vW+FGqjCfDPsu9ksnUVE5ouDRDcT4p2UBausjTcB3xKZY5Ep/kpHT8/aNwcbHC0Snn0lm5UklikgEba+NnjYo1oFK9OoAIglAkVaNWVqY0aV5425GiQJpakkXB/2kEWQbNjWuOUtblDsPGKwiPjGP2zN+Ys3xIoYjh/bthxEQnU6GS+2snnWaH0PAgalS/zcd9jau9ejW1jJiwlhZ1xwNQv9oAAkPr8ceDcEp7lEOjTeNByGK+XgKpqQZGT7tLkxpzUJn+87ZR3wQcHBy5obiBmdZIUNVCGo42r2oZPSdaycVlGdY7PqrczaRLKe8TfT2ZkBv3mNFPzoPHF1k8y4+p8/pke+81aFKOb5Y94O6jUExN4GGwkrAIHS5OxrH15n2BCg0Lvt2SGzyL2dNvZF++23oeuULOpDn1MTPPfSFiaWPHA/8ESj+TJzl7KY0hvS356lcDH32cvd6XwWDg0YNIEKBUaaccnz2VSkFMfOZ7er2IRpvDsUWwYBIEgRq1364NzMuwc7DGP0iPrY1xzPYP0mHnkFmxFxIUw64Nf7B4sgJBgOnLtqFU9sCndMG3TqOjkrh3JwwPL9s3lu5z9K/jfDFdjiAoaFIPxs27RLvOtZBIJFSo5IWT80CuXwnApbwtLSq5MX/qWkb0SsKnuJz//RZI0FNbbBsV3XZgYfHeka0ZK5ozMnQ7KcFmiGZq2g8pkSsZKAji41OxMQ2jQW3jQzVqgJQJi67yJDiShOinqLVSPhrQJqME2snZktnLhhEelkhTa1Me3A1h9Oz9+HobuP1QykcD8+d3ePr4HS6cuoJeD607N6RCJa9cj/+gUTk+KIB+U99hXRg9dzeWZlruP0zFw9OZ7/+wZey07Lfz7t95wrZ122lcW8+uQxKcvWvQvkv24dI+g5szac4aBnRNIykZdh+zZtqC979C8nXQtXcrPp+zjSZ19Nz1E/D0rZ4lNB0ZGsiYnsbXzo4yKpZOIyI8EeeX5C50Oj1fLd6KTIwiLV2gcu2atGqfWQzx4zd/4mLuT3FPkS8XyBgwoieexYp2wEpJS6Kiux4wTmQqlQSZLGsydDF3H4zFw3Do7P/44QtQKo0VVdPGpvDLmlNUL//2t0P+jihfugo3K18h7F4ogkGCwlVKu5ZZK3NfJFqCpzGaVcopImNrMGdYc+HMQ5ZOMkaaa1aWcvNuLHt2XeXu1RvI5SLeZcrQ8cO6gHHi/2xiV2JiktFq9LTrq2TO7PWULZFKdKyIjVt5SpXOW+QxOiqJtav+QkCNq6cnPfo2ynVh4e5hy8ej8l/U039oK75a8gdyMYbwiHS0BktWrLakffem2Qp36nR6Fk5fR52K8egN8Mc6W6bM7ZNthM/D05bYdC827QzEpxhs3iOhU6+8c+j+zmjfuRaLZj7i7qNYJBK4cMuaKfMyqxePHLjK+KHSjMXktE8VLFt7CZ/Sr85nh/Zd5crpc5iaiGiw5/PJ3TLyca9dfszR3Xto3UjHmb8kXLatwoe9il4CxNQkaxqNtSVotQaUSuPv7ehkSYs2xnSZx/5RVCubSNlSxjl+zGAz+sy7Bo0GFnm/Cor3jmw5Olmy8VBfQkPisLZRYWNTdBpboggvjxEBAXF0bZlO7apytFoNY+b9zvjZQzMmV5lMmmFbUa2WDxWrliAmOplODubIZHlHtq5e8ifw1mGWTFBiMIhMW7oTa+s+eBQigS8nlCzlwswleZdtP8f2Tfv4YoYMqVROp1YwaeEl1G1roMzGf9HaWsXU+YM5d+YRChMZ0xeWypee2N8ZpXxdGTtzKP7+UXSoY5klARggXUPWPIHY7PME1v9ymH7tIyn3TOto6fdnCQ4qgaeXHUGBMVjL/Rnc0xgx+6CGyLQv9zNhZtEmlHu5lmTDH+bUr63BTCVhzWYd9lY55w8JghSdHp6v8dPTydii/g95QxAEenf/mPjEWLQ6LXbWDtlGlzPMpJ8RrcbWD8ipqjBr+1nVdGLidCQEn2D5FFMEQWDjzkscO2Sexe3ixarkOcsGExOdjKmpIs+IExhtYr5atJ7lU0UszCUcP3uL9b/q6Du48BIhL0MulzJ++kf5Pn7H72cZ0i2RyuWMz07ZG/Hs2naeLt3rZnv88DGduHY5iPuR8Qz8rAQOjvnfFv87QiqVMG1+Xx4+iAARmvd0zHIPWliqCI8y4PRMlzcsUoe5xavz7JPQOAJuneKLGcb75IF/NL/9fJDBw1sDsG/nEVZOM0acGtWFSYuuo9HUK7SnZk5QmDlz9VYIVSvICX6iJTLBKtu56vln12ozX4uiiJUklVjtZcC4sPCXJ2AuefuK8u8d2QLjw1e8RNGHJG1sVMSkOHPqQgSVy8lYt12Lra0Jtas+SyCVCzSupeOxfxTlK2SfmC2XS1+JYOSGE4evMf8z40QskQgM6y1h14lb9OzX6LU/T2GhUhqyiHy6OEFKijrHG1hlpqRpi6LRGvm7wMxcScUcEoDbdm3GlMW76Nhcz637Amb2ZbPdAoyNis4gWgD1axh49CAMTy87EhPTcH1BQ1KhEJBJ9UX+OUyUJtSpOJVRE9Ygk2mwt65JxdJNcjy+erkejJw4j9mTNCSniCz7nzWt6jUo8n7902FtWTAbFCBPogVQp1FNln5/iOF9ZTx8rOfCDSkLJ0gyVv49OyqY8sW9HK3FBEHA3iH/ZCM4KJZ6VTVYPCNmjeoqOHA2JI+z3ixiouLxbpE5Vnl7STl4JT7Xc6pU9wJy31H4J0EQBEr7Zl8h375LLRZMu0+HxonIZLB1vxlTF7wakXrsF0n96pljUmlvGQk7ojNeq5RZI072NgLpadoiJ1uffN6BDauP8MfBCEzMLJgwM+eoqaeXLVueOHL8bCSlSkj5ebOeKk3LYa28AE61sngq5sfEuijx3pGtKxeC+GbuWQw6CVXqO/L5tNxD1gXF2Gnd2bPzEsc2GBPkAyMvkJQch4W5kfk/DBBoV6/oVj5W1hYEPw2j+LOKoIAQPXb21kXWfmGgtHDi2u0gqpRXEBev5/5jE3oWYQTx74SggCg2rv4LE7keS3sXBg5r9Uok4rla8/O/V6zshavbQG5eD6HsB7aULpP9oGbn5MDNe7FULGP87U9ckNC8m7HQo1RpZ+avUdCsvh5LCylb92goUfrN2JtYW9rSvG7+CoWtLW2pXWE2y78+hExiQsu6zVDI85/LkpaeysbffyElLgW5Sk6vjwZhZVE4Q+O/I9LVaWz8/VdS4pJRWijp2X0gFmaFc1PIDvUalsXa1oKvNt3AwcmWvkPsuP1gH77GXWACQvRY2Rbd9aysTQkJy3yt0YioNe820tmwWRW+WfOYKSONi9j/rdXRqEPld9qndwWtVs/P//uT9OQYNHoFAz7p+EokHkCvzyykUChkzFg0gIvnH5NuEJmxuES2BMnbx4k/10tp+CxgePehFmu7zCCImY0rZy8/pm51BU/DdQQ8NXsjeacSiSTfkVRBEBg/vQeH9l3nypE4mnctn+FT7PZMc+tFRfnsTKzvnTxA1O0HiAIU+6AuXhWKJt9LeFcGtZWqeIgHjo3J8rfoqCQGtdiBZWBJBEEgxTSatlPtGTzyzXkERkcl8dWi9dSsoCH4KTiXqELXnkW3kk9P17Jw+lqa1k4mNQ2u+zkwaVbPdyojoNcb+O2ng8THRIBgwqCRHd6ZUn9RQq3Wse7ngyTExVPcx5PO3evlStTT0rQsmbGKL2dKUSgELl7XcPxmaQYMNSqei6LItyt2ok4KIjEhnfgUC2Yu7p9vsVi93sBXS7YiMxhztqrWq03z1lUz3o+JSea3VXsRDRp8K5SiTceaubSWM/yT73AsvjS28uqcDw3BEGaCKhTMglPfuvHqql+/RHJXiUIwQSfqSCwWwZhR0zPe7zu+7RVRFN99tuprooSHjzj3869e+fuqX1ci3DVBKZigE7Ukl4hh9IgpWY55LvWQ6m5MjH++jZifyFZ2+O6LnaiEICzM4bafJZPn9s0xSl0YbFp7BG38bXyKiRw6I6PfJ93zZe3zJnHh7ANOHz6PKEKjlvWoXvv1hI/fFxw7dIOrF+6gUJrSb2irPMflb1fsoGfLUHxLyklNNTB2gcDsZcMy5pezp+5xZM8RlNJUHgUY6DWoLY2b5z/n9ujBG1w8cQaVqYgWe0ZP/jAjfUYURTb/dpywkFBMVBYM+KRNoWUX3hb8k+/wJC2eY9G+PAp1xlmd9T4OPX+RuNWXcEwzjpshVkGUnNgdaw9jteaGvh8Vevx6ryJbN68/QQy0yZggzdLsuXbmKYx8c9e0d7Bg9rJhPH0ST0Mr0zyZeXq6lh2/nyEpIYVmratTomTuk5mJiZyZiwfy4F4EMrmEVn1yrpx5W5BKJQz85J+X8Lx0zgbGDEiihKeMo2eusWZVco6f8/qVAPbvuUL9ahoUCuPqpmZlBTsOZy7j/9x+gSZVQ2hU1wQwYcvORGaM+Z6FX4/MV+WlVCphbC5msXZ25oUyk30Z+zffIuzxMZ7KTAgXi+NQsy+vCLa9JaTGpmArGCMrMkGGNkGPTq9DJn2vhpo3hpTYFOwEawBkghxNvOa15VfywoixnYiOTkaj1tHF1SrP8eXMyXvcvOqHTxmPfHkA9uzflCehVYmKSmZcU8d85Xq9adSqW5padf9ZQp3791zGEHuGJeOVxMbFMXnOGmYu/jjbqFNMTDIH/rxEeEgAviWNY5FKJaFcSQ0x0Sk4OFqQmqLm9MFDfDNHAVgSF69n1LQd6HQ6mrfOn19nkxaVctRqFASBnv0bF/rzPseDe0/ZvHo31hY6ElJMGTG+R5F44maHvEyso+7dxCXVMWP4tIu3IzrwJrY1XzWeLyjeq0xnDy8bsE3JeK0W07B1evM6JVKpBA9P2zyJllarZ+H0tbSocotR3QPZvWEzd2+H5noOGJPsy1VwpbSv8zsnWu8Tbt0IYtmc31gx9zfOnb7/Wm0lJ6XjZpdACU/jwNSknpyEqOBsj/1z+3kCru1mSKcn3HuYWWqfnGJAL2bmWPk/DKV+rRdyrmqrqFxGw5H9116rr0WJyxf88VI85ceZMv43VceouneJuXHqnfVHMMkUsRRFEZSGfw3RAhAUZPn8okJ8K1Fse3tzXN2s8xxftqw7TnrYQcb1DcFad5Kf/rcnX+27udtQuYrHe0G03hekJKv5euk2Vi74jV+/34deXzhz6Oe4e/0uA7obv19bGymt66u5fy/8leOiIpP4asFqOte7jZxkNJrM3angp2TMYxERSZQrmdknG2spJb2k3Lp8/bX6WZQQRZGNP+/g61kiCybIWDRezY9fbX2j1/Q2L4ebqTWN7e8bq4Bf+OdV1pRUWVLGsalmSZSpqsx4/3XwXo2CPqWcaD7EhcOb/JBoFFiW1DJ5fre3cu3kpHS+XbEVpTSJ5FQ5fT7u8Eqo/MqlQDo2SaKMj/Fmnj9BwuQvTlK2/MtWkf8hLwQFRHF0106WTDBqvSz74QAiAlfO3UWrSaNKzXI0bp7/HCaFUkZicuagI4oi6eoX9XWMg45UKuH+jRssm2Ic1EqXVPP5jGjKl7Xg0i0Fn03OLH8uX8Wb7XuD6NbeqDG190gK3sXkJOWjCvVt4d7tQHo2zQzdt24g48s/H4D9u0lq7/ZhHzZs+AVpihydiYaOHV8/cvd3QpcuvdiyeS3SFAU6EzXtO2RVZs+P/2FhsWXdcUIf30cUBXzKV8iQgHgRoY/v8ekk473fpqmCU0sC8rQD+w/ZY/m8DcwclYqTg4yb9/z4bmUabp5OBD4KwtLamr5DWhRoO1enF9BqReTy51XO4Fwhk9w+95v9Y8MxFk+SYG0lZexwG0ZOiaRqJXOCnsqpXLdexjVdXK1YcwP6dzNWToc+1SKTQWr+bDDfCtJSNXi66JBKjZ/TwlyCSpGzsG9R4XmEy830QZa/NxhvxyK/S0ReD0eUGCjfUsmQtgbgQbbtFATvFdkC+GxKQwZ/qiY1VYO9g/lbGwRWLtrCzBFJONjL0Gq1jJq1lbkrhud6/XeU7lZgiKJITEwKZmbKd2J7lB1OH7/F8D6SDPmEMUMUtOu/lY3/s8bOVsraP06wf4+WVu3ytz2uUMhw9CrPqnW3qFYB9hwVaNiqEQaDgfEjfsDSJB6ZTIqtmy8vKlf07mrJzQfplKvfkzZ97bLIeTRvVYUfvnrCwM+vYWsFLk5SLt6xZer8qtn04N3At5wXB07dYGA346O8/5QOhUvBrUaKCm7OnowfM4vk1CTMVeb/WNmIFLU2B+JkRuOOw0hNTcTU1II0qSzLcc/9D1PdIVwZmcVM+nVw/PAtbKRX+XSSChD5edMlrl5ypmqNEq/V7vuC1BQ16Wqd0Qj7PSCGqaka3ByScXIwLnQqlpHz3Rp/GlUO5ZNxCgJCYlk6ZwMzFvbPd5tde7Vg/IIt9O5oICAEgmI86FjSgY1rTnD++GncnCXEp1ph5+iATGb8Dkp4yRkzzJo/jpVi2PgmWSKPJiZyPuzfmR6fbMDDRQ+iiJmFBQ1b1supC28dpioFwWGyDCmd5BQDqZq3U6yVU47k6k0VSEhIQy6TFKkzyHtHtsBYdv82w9V3b4eSFh+Mg71xX1YuF/Dx0pKYmJ4lQbFajWLMm2KBp1sqLo5Slv6gpU2397ssPikxnWVzfsO3RBqR0eBRqipde9Z/193Cxs6KwFAD7s9cmIKf6PApJmJna5yc+3dTMHn53XyTLTCq79+7U4b7QVF06OuJu4cN40f+SI82qbRvYSzF333An8NXXNi0K5IP2yg4d1WLVOWOd8nsE34/Gd2O2NjGHNp7BblCxtRPqhdZEujubefxv/8IvSij98DWuLhZF7iNGrVL8u1tV4bOjUYuUfJA44VT3XqEHtyJLDaIqDBHpBIDZqYO1KzQAZnszZNtiUSCpXnRVcS9jzAopKR45jwpCFiQ3fr8uf/hc8X4vMyk8wOtVs/qH/aw61frjL91bC7l1z2PXiFb7iXKsGHHDdo3k3Hygh5zuxLvBXnJDb/9dICkyPtYWYL/E0smzynaAoDCQKmUERuf+VoUReLi02n6gbGSvbiHDHf7BJIS0/Nt2ePt48QnEwZx5aI/dsWs+Kx7MS6df8TVM8fZ9L0jgmAkI6NmxzJliZYFE2So1SJfrZYyblbDbOfMCpW8+N/aKRw+cJOo8Fhq1SubUZ33ugjwj2TrhoNIBAOValbMV/7fyxAEgV5DOvPZnN1YmWmJTlAwYlxnrlzw4/ihy4hIMDFVIZWKtOlYG6/ir587lR+8iYKx95JsFTUiwhP5a8c55AoZnbrVe+Xm3/PHEWytIS3NgKmpBFEUeRRgwMIi680rl0uZtmAAO/84S1JiMp37Vae4d+GrcoyD5F5SE6MxYMqgkR2KxPLmRfz6/R7mjdHgYG/8LMt+uEpIcLksZp4Fxb07YcREJ1GxskehS31btq3C4ll3CAqNRamAPceVVC+baQmj04no9AWfBMqUc6VMuUwfzeT4KBrWsc543bieCVcfm6NwrMjs7x9Q3NuV0ZNyFvkEsLU1o0efoiXVu7edx4YLLBqnJDXVwLgFG5g0d0ihVlKtPqrAtz+F4JIcQEN7fw78PJavZqqoVlHOqfMhnDibSue2lsxbdpt2DWf8rQ213xcYFJBaCF/f5/6HxgrEcPIjZKrXG/hzx0Uiw2Ko16gi5Spk9bE7cuAmDWvB+SvpNKhjfB6Pn1PjXepVrcAefRtx9pQzX23yw8fXk49H5e5bmBdOHLnF5TNXMBigYcu61KxTtFHVWzdCsZXfY/w445gdEJLCbz8dLJBC/cuIikzi3p0neHjZF1rPUSqVUL5GbRZ8c57KZQ2cOC9FaWqZZUs2IUlEUUBSaGdnTovWmekT+3efp2ZlRUab5mYSVIpUBn06gC/Wn0ImkzJmRqNc5w1BEGjeqmhlZaKjk9nw42ZWTJcjlwv8uOEEp47Jqd+44IuG0mVc+bBvW/5Yu4uKpdQsnv4jFXwlLB6nIjHJwPjZUcydZM+Knx7Ttf9HRUYW3zb+8WTraWgcP3+5jhmjJaSliyyc+YDJ8wZhbpFJuORykU8H2jBpfjTODjIe+Gup37pNtpOSUil7ZeJNT9ey9sf9pCYl4uXtReceuUsOPMcPX+6iV6snlPGRExefytQFG5iz7OPX/9AvQKdJITlVRP1Ui7urnAqlDYQ9TSg02fr+y1142gRQzENk5TwZA0cVzmImIiwBiSBy7Lwcucqaucu78ePXf7JldzAlPAU27JLQY1CLV84LexLP5rUHMRj0NGlViyrVc98mMTMz4c+DKfTuaqw6+X1XMpWr+1C3vm+hBoaigt+9hywebyRWKpWEdk3SuXc3nGo1chde3Ln1LI/v+yORKuk3rC22tmb434ultvl9Rg03QRSlpMVqqVbRGMGqX9uUQydSKVdaTrtWEYQGBOHpWrTebVqdlqAn/ijkSjxcir33kZIigdyAxKXguSXGaNbxfEezRFFk6ZyN9GgVQ5kGMlZt8CM2ulmWezc1NY2OLVXs2JvCsTOp6HQidwPM+H5t9kLEdev7Ure+b5a/Hdp3lVtX7yGTm9B/WJt8reyvX3lMyN2jLJlo9Iyd//U+bGwtCuWxlxNCgyMp4aHngZ+G4p5yinvISIyPL3R7Vy74cXLfXlo11HNun4QrNpULZTGj1xt4EhJJWLSC27sMDP2sA4nxScxZeZD2TUWu3gZHrwqvROD0egMbVh8lKjwSF3dnPurXKNfFj5W1GXcfajK8WiOidKRpVLh52DBiTP7s4t4ELp9/xICuhoz8sqG9lUxafjPPMdXvYTg7txxBQKRekxrUrmesKN22/i++mSNFIpERHp7IlE+NZu5WllL6dbfi1j01iyapmPH1ccZO61Hkn8ffL4rYmGTKlnN9Y7tq/3iytW3TcZZMlWGmMt7Qnw1Qc3DfNbp0z9TuKlW+DEfOnOfrBY4EhmhY+J2Sth2zN6fODktnr2fix8l4usk5djZ3yYEXYVBHU8bHOCnaWEsp5pJGclJ6FiL4OtBodDx8EMXBE3p0WpGoGB0JaRYMn1i4lUHA42gcVQEM7GHsX91qBqZ/VXCLGZ1Oz5eL1tOvk4aSxRUkJMeyZtV+Pp3QhauXgngYk8DQcd6vlP/GxaWyauU6WtRN58otNb9+/YhmHVvSsWvOkanWXZpwcMdeLl2PJDVNQG5RjFmDfXM8/m3BgFEXR/Xsvgx5CpVK5x7V3LrxFJ6W1xg6XkFCYiIT5//GjMUfE/kkkXrPxjijSXrW8zRaY3KhTkuRE6G09FQOnZ9Lz64JxMULHDhRgpb1xv3jCZeJTFuo6qTn/of53TYMDYnD1zOG2lWNE8DE4VImLL6YZVJr2LQi/1t0heXTrJFIYM5KNZ9NzH9h0V87L6BMP8/icUpi4+KZMmctMxYPyVMJ/NTRG0wfahy/BEHg455S1h24XaRkK/xJNLeD0qlcXs83v8RTq5o5pcpWLnR7B3cfyzA1blgHJi28gVb7QYbfX37xy/d7KW5zj9Y15ZTxkTN2/i6mLRqGh5czd28FUaq2Y5YI+3N8tXgrzWs94XhoCkF3/Bn7yT1WrhqR4/PSZ0hL5kwMYtiESCzMJfgFyVj54+hCffaihLWtBYGhIlWfBUZjYvUolLnPW+FhCWxds4WlUxVIpbDsh/0oFDKq1vDG0kyfkd8plQikp4uYmhq/k7gEPbbWUgyGN1PI8fN3f2Eje0Qxd5Fls+UMGd0Ld4/C7/zkhH882XoZxt8qa2Z72061OHrQhEnL72JqZsbU+S3z7f+XkJBGMZckPN2MeTyN68o5dCZ7yYGXkZwmwWDQZySJR8YYEwaLAqIo8vnQ71gyRU4pbyNp2bU/hUcxlQq9VZmYmIbLC7umSqUEqaTgFjMnjt5DIcSh1Znxx5/JODtKSUuMQhAEqtUsltH/iPBEzF/I3zt78i7Vy6USEQ3zJtmj14sMm3iYWnV9c7RQataqCqXKePLw/lNKlnLhSUg06345jERmipWVklp1S78Tr7TeA1szbsEG2jVJJ+QpRKd7410y93yEkMf+jBhvvD+sLKU0rqUmwD8an/KOrF/rR80qxsFIIpWy+H8ptGkiY/f+VMqWknPukoaDx9xp26BoLUvOXl/P/xanYG9n/I3sbPy5cP4qZUvmf7Hyd4SFNP2Zn2FBUfD8rJfnl5df29mZ8/HnfZj7/SEMBgOtutajTLn873E+uH0/I8pqayOled10Hj2IpFyFV8lClus62vAoMITypY335KMAPQ5ORecWsHf3FaKDLrFsltFHtksbcwaOV/P1L7UL3ebLpsa21qBO1xaIbGk0Os6fuE6ZHkoeB2tZ90cS1SuYExIch3dJhwwv3aTEdNLSNDg4WiAIRkkUURPGzr1JLJluj0ol4c8DyWzdcJJufbKPrtnamrHoqxFcPP8YE1M5vVys2bPjAhotWNuoKO7tQqUqnoX+PgqLWnW8WbnQlYTkMOxtRP48ZsKEWbkHGM6evM0nvYWM5P7xwxRMXXmFqjW8SVabEx2TjL2dlO4dzRnweQyTR1nwJFzP/iMpTBtjy4SFWvqPaFqknyM4KAZz/Bjez0gUG9c1MOPrvUXuUQt/I7IVEZbAL9/tQKXQYJBY8snnnfOV39K1ZyMmLVrHrGfbiF+tljF53qvVZLmJt+UGpVJGXELOkgO59q1Xaz6fs5161fTceSShSr16RWbyvHvbBRyt4in5QkJhxbIKgi7k3rf4+FRWfbkNpTSVdJ0pH3/WJUMxvbSvMwt+U9CkntFiZvNuDaXK5U8c70WcO3qOH5Y6IJEItGxsxtSF0STrMvuVlJjOsrnrqOCTRkSUiINXRXr0bYypyoRjh9P5YamR8UmlAmOGmnP2zH06fphzdMvTyw5PLzt+/vYvSjk9ItwviTrVTSnpKefnlWf4cEAPfEobLXfu3g5h2/q9WJrpSdNZ8OmE7m8krOziZs2kuUO4dzecSqVVeRItALVGkqU0/EkElLEyRWapgjqt6T/nKgZBTbRYBUuhOpdX3sfb2Z1zoX7cuG5Pm/rNinxlqDckY2ebec8W84TjJ+KK9Br/BBgMIjt/voo+KQ6D9hwduregfMW8J0l3DxvWBdpy8Xosvt4yftyoo2b9D145ztXdptACuTqdBJ1OzJgEo2IFvCzyvue79arPwhmBVC8Tj1YncD/Enokzi6ZSNzVVw8kDx2n+Qebi09RUQvHi1nmeu+6XQ8Q8DUCtEfigWT3qNSyb8Z6ZjSvnrgRQp5qc0DAdwREWBd5J2L7lDAumWFCprPE7KllMwdLvUqjfKTPn9LefDpASfR87G4E7/mZMntsPU1M5T8N1dGmpyohot29pzuTlgUDOW5kqMyWNmpbhzq0Qtq3ZQGVfNQ9CtbSpYc6lGyI3r5bLsLNJS9Pyv2V/oBDiSUyR0L5bCypXK/qKVEEQGDO1Ow/vR5CaqmHGItc8ixYsrS0IDTdQytv4OipGj8rcuPD/bGIPln69w6gbZrBj7Oze3LwdjFypxLdGDJuOaBj8WfVCFRHlBP/kO9x/Eo2bc2bAwMREgsaQgP8za5+ixN+GbH27fBNfTDNuuzwNj+bLL7Yxfkbe+lau7jYMHdOPn3aeQy6XM3FOvWwfLo1Gxy/f7iE9JQ5BasaQUR3y9RCamMhx9CrPD+tuUaUc/HlEoFm7Zvn6TL7l3Bg7cyjBQbFYl9SwY9Nxdm87R/M2tejYtUa+2sgJAf5P6NbenF83JTKktxWiKPLdmlQ+HFwm1/O+XbaFOZ+lYm0lJTEpiWnLtzBj0eCMz/r5tH4s/nEvBr2GkmV90OsMbFl/kmatq+bbxsbcjIxoHoCJUkrTDzO9r1b/8BfzPlfjYG8caL/85SaBARVo2KQs637aS0SUHmdH4637ONiAnUPelW8ajY7UWH/KfiCQnKKkS1tjX5dNE5m84hATZ/VFq9Xzx9pdz3IHJEREJbDyqx2MnfZRvj5XfiGKIr+vP8GToCdY2ljT7+OW+TqvR/9WjJ23hQ7NdPgHCugUpXFxtcI/ORSXiiUoV60750NDcHxu16Oxp5K3E5B7AcDroLhbQ1b+sJqxw2VotSL/+1lJZZ9/dlQLIElvwrH4/CuY39t6lE9qxVOvmhKDQcv4BTtx9xySZ5RZEAQmze7Nrm3n2X8hlnqNKlChUvbRyUP7r3Hz0g30OmjRsRGVqxbLV9+69m7BuPlb+KidnsfBAhHJXngVs8vzPLlcysxF/Ql4HI1Op+fp3kuM/vg7XD2cGD2hw2uVzUdFJlG7qpSzl1Lo3NoMExMJZy+lY+OQ+2fas+MCZV3u0bq3ceyY99UhPIo54ell/DxDRrZly7rj7Dr2BBMzCxq18mH9r0coX9k7399XfGwSJTwzq3o93WSYWjhm/JZ3bz/BWnqP8WOM80doWBq/rNrH8M87ULFGZe49ukDnZ+empRnQG/IXVdu7/ThLJimYsiCJJTOMebLlfWHqkrtoNI1RKGT8/L8/GdUrBi93OaIoMmbuHkr5DitSCQOAG9cCOfTXWUDgw15N81Ud2qR5eRbNvEF0bDTmKth5xJQpc43jvoWlCeOn98xyfPHihSteyA+e2/YEO9Xk9qbbtGxowNxMwh/7NSS4Vi7Qs51f/C3IVmqKGi8XTUbJvauzDBmJ+T7f2dWaISNa53rMN0u38fGHkZQsJicqOoW5CzcyY9GgfLXfs39THtwvx+PgKLoP8cxxSys7qMyUmJkrWPXFb5T30TFuoAUXrh1nxcJAxk0tvKBr5WqliEl4gr2tgRmLowl+YqBagyZ5Vk9amBqJFoClhRQrs9Qs79vZmfP5lO6kp2tZMPVXhvdOx9JcwvKF1xk+YUC2JqivfGZrFy5ce0ytKgqionU8ibWjfIXMbQ+dJhUH+8xbs3wpA0+fxFOsuD1DR3ekz8iNDOppTmy8gQehLkxfkPeDIYogl0Fqmoi1ZWYkRiYTkEqMkcnIiEQq+uqRSIzXdnKQIRiS82y7oPjxmz00qxbIp93k+AfFsmzuRqbN75fxvlqtY+Pqo8TFJvBB40oZFV7FvR0ZPW0Id24/oWJjS0r6FI0/XVJKAnf9TyKTKKno2xh5AeQhfLyqcc9fzZDRx9HrpVTw6fmvMJ5O18l5GJH/3MfkpzHUq2YcvyQSgRYf6Hh4P4KatfMuVpBKJXTp/qpA6Ys4f+YBSSEnWTLBmKw+fdku7Oz64OGVN2ny9nFi+MTBXLscgGMZK5r38sjznOcQBIHiJeyZOeFXdCmhTP7ECnjC+OFfsfTbzwqdf+rsYsXNB1ImDLdm7opY9AaRgKeWfP3Lq0UzL+LBnccMGp8ZDevUAi5efZxBtgRB4KN+RouZ334+iDbiED0aS/nr6G0CH9egUzZCsC+jcYuqrPjRj1ljjARm5c8aBo/skvH+k9AYKr6wpnV3kZGabFQl7967AcP6XEL/RSxlfBTsOGBgwuysJCMnSCTGLWSlImt02txMQKfVo1DI0Knj8XLPzKOrUdFASEgcpX2d83WN/ODenVDO7NvJknFKdDqYsGATgz7rj7OrdcYxJ47c4vL5ezi72tOjb0NkMuMCduq8Pty8EYomXceMRR5FIuEhiiJHDt4iKiKWuvXL45UHSXvRHzEl1R1Jx9F8uPB3TCUaNK5lcWjQmIdvQHv4b0G2TFUKnkRk3mBarUhyWs4TwoG/rnDn2m10OgmdPmpKKd/ccw8AZGIsJYsZ23Swl2FnkZyh2JsflPZ1LvQNfeDPC7jaa5gy2riV5FNCweQFjwuk0fIyGjWrwKa10YQFPcCABfVbVaJD17xzHeKTpBkCc6IokpCU/S1y5MBNBndPo3I5Y/+WTTOw8OfDjJ7YJdvjX8SQkW3YsPoIO46EIZWrmDirXZbtLTcvD06ev0mD2goMBpF9x6UMHe+KKIoc2HGIvRucuPtQi1QCD/7Q5GtrTKmUkS46k64J5+DxFOrVMMHBXsaq9Woq1TR+L/YOFtx9JGSUb8cn6NGJRZ/PlZbwhDrVjPeat5ccO/N4NBodCoUMg8HAohlrGTc4leIeMn5Yv4/ExNQMDRtLK1Pq1Cs60934xFjO357HjHFqEpJEln1zgjb1Z2chXDqdlnPX/yBVHYW3e31KemXdKirjXZcy3nlPUv8oaCUYwvL/bKamWREVHZOxiLhyT0/ZNpHAq2TrSUgcG1f/hUyqx8vbmy4fvbpt+DLOHr/BwjFGkiEIAoO6C+w/cw8Pr7zPBWNuUNMW2Vcv5oXY2BTSEsOYPc6WEl7G+2b5DClbt5ym35D8RflfhlIpo8eALnyxei9mpnIQbFj+fdc8ZUts7Gx5FBCNT3FjPy7fEvGs8CopFkWRqJAHjH/mJDG0t4yJi25APshW6TKupCS3Z+LSM4BA83atKFkqsyigYuVibPxBoEZl4ziy76gGnzLGvbPVP+zlx6VmiAaIjtXj6yNiyKc49gdNa7L0+/042kvZfyyFVo3NeOCvJTLBJjNyJTEjKjpzsXrznoTaba3zd4F84uBfF5j9qRJBEJDLYfQgCXuO3KBHX+NW6PYtp7EwXGHxWAV3HkawdM5Tps4z5kAJgkClyvkn83lBFEWWzdtMy9qR1K0j4ed112nQtsMrW6enj9/h4tm7yGz1VOjoxsn4ss+MqE1QYoJj408zjjWEvXyVosHfgmwJgkCLTs35bNYhSnqJ3PWTMnBk9mWvJ4/eRhd9msXjleh0IpMWbWXQ6IF5JkEnpUgQRUPGxB2XKCCTvR09IlOVCXEv8QULcwlaXcGTz1+E0SS0YEah3fu1Z+SMHfgUM+AXJKFb/+y/Z51Oj6kys9MKuYBBn7/+SiSSjByDbPvQpyFrf1Sz71QIaWqBjh+1w8ZGhVqtw8XBgEIho3L5Z/YOKm2+P9voyR+y4/dzKK2DmbwilaT4ZGysFTgnBFL3gzKozJS07NSaz2YfxMZST2ySGZ9O6px3wwWEMacvc4RNSiHjXnvsH03tisl4exk/34h+SiYtvVYowcD84NLtzXy3VI+5mXGiHjM8hm3bT1OlrPG+MRgM7D21iLlTIihZXMa0BbfZeUyJi4OKhEQXmtQc9VaEUt83SDSgytsWNQNu3r3pN+lLalZK5EmMSKxrBUrb6fBPvpMlYT41Rc1PX23gi+kSTEwk/HXkKtu3QJceuZMmK1tLgp5EUNzD+Fs8fGzAwfHtRBhNlHLS08DCLHM8sDCToNG8ni9M6bJuTFtYMCmcvkOasWR2BK628SSliFi7lKVtNgnkoigie2n2K4j8XNUa3lSt4Z3te07OljRu356xC49hohBxdPeh90Djgi49JRFPN+Nv5OUhJz4pjeDA6Iyk+txQq25pTEyVHD90hWsHE9m8V0d6SiruXgJ3b4dStrw7H3/akXmLNmFtlkR8koTGrZsWesGeE0xMTYmJy0zliIg2YGaRma8W+PA+iycYx6/ypeV4OMQSG5uCra1Ztu29DoICYyjlGkHzBsbPOG+CjAmLT2YhW7u2nkOefo6Fn5ty6YaaSaMe41HyDpIoOdriA7FyKDrylxv+FmQLoHY9X6rV9CE+LpXu9mY5rnAun7vF4nHGH1omE+jbWeTyhUe0bp974ma77i0YO28PdaoYuHFPoF6zRm+tfL1z93p8OvgyW3Yl0b2DOff9tDyNc8DG5u3YFrwI33JuzFo2goSEdKysTHL8nus1KMPsiaeZ/bma4p5yZqzQ8OGAwgt/iqLI2VMPiYyIpUbt0gwY9moek1Ip40mkArXagFIp4dZdNfcfiZw6fp8PGpbO8/eSSCR0/ageUI95U9fTr0MiDesIhEWEMm/OemYvHUz12j5Ur+2DwWB4Y+Kf9ZvXZ87KQ7RqKHLhuoB3uaoZ15LLpaS9IN8kiiL6Qoi75hciuizbEmYqAb0hc5KMig2nSYNISnnLSUo2oDOksuUnFYKg4dFjP+Yv/4HGNYeikP+7DIolGj1mwal5H/gMZoC152guRUST7mOGzNvAsWijgjxkEq7798Jp00iLiYlR56ptUwWTlz8GcidbvQc2ZeH0J9StnExqmkhAhAtjp5XN9Zyigpm5Eu9yZZm84BbfLnJAEGDqkjSGT6iT98lFDLlcyvQF/UhOSkeukOW4TSWRSEhS27N+21N6dDBl/3Edti6vl6cTFBDN1cuPcHV3oFadktkmpts6OnHt9gOqlJej0Rj4ZWM6NRuGUa6ie760zSpVKUalKsW4eMGfw9t+54sl1ohiEtOWbkWl6kWxEo5MXzjwjY5fvQc0YeasYHq2SyMtDf46ac20BZmFUnpd1uPT0kXkb8hPVqPRY2KSOX4JgoD0pUvduX2ZLycb59K9h1LYvNIKZ0fQ6zX0GPoDRI9CpbJ84/P934ZsgfFByitCpTAxzRKu9w8SsXXNO4eqctXilPT5mOCgWPo3ty5yJffcoDJT8r/VY1j1zT72TQijdPnSTJtf9JVj+YVEIsmV6EVFJvHVonV0aiFh8650HgZL6NGvDeYWhbc4+HrpNmqUDqWhr4S1v1ykSceOVKpS7JXjhn7enQlLdpCekoSEFBZOsMAvaD8rF95k7LT8VWMdP3wLbVIADesYt21dnGQUd00hISEtY8B7kyrr9RqWpZi3C/fvPqF6c8csuVeeXrb8Ee7MgeNhlCoh5ZfNBpq3z18CfX5gMOgRBEnGvVXBpyNjZixnxRyB1DSRxV+qaFwjc2KXSmUkpxj/HxCspVZVk4xzfUrIkcgvcMPPDynNqFqmfZH1832HmVJONe+C69UJ/gKPQ9NIlit5hDHtwM3CiueEy9bOjAuXMp/7lFQDBvKOHJqYyJm9dCD+flEolTK65CNXqygxZnIXDuwtycdTz2FrZ8HQsT1wdX93uXu55YqJosj/lu+gpGskag10HhxPiw4NaNjMF51On8UfNb84f+YB107up0c7gRv3DKy65M2wz159HvoObsb3K1PYvCecW7eimTraEiuLa6yYc4PPpgzA3iHvtIWkxHS+W7qJ33+0zSg0Gj9Uzi9/XmPgJ8ax4k2OX+YWJkxfOJiL5/yRWUmZvtA7SxV9rYa1WfztET7qIOH6HQN6uVeRRddEUcRgEDOuV9LHgQ0/m1OvRirF3GV8v05D5dqZ6TL+yXfQvUT+nkfkpFKBmlUSSEj8koBAV1rVm/RGo/R/K7KVHwwY2orps9bSvG4asfEQFOPOZ13yV/pqbmFC2fJ553cVBcLDEtiy7jAGvYH2XetTspQzn098d4rABcHaH/fwxXQwNzMBTJj7RRyPLv3J4+sykvVeDB/TqUDtPQmNw9nyCZ1aGR/IBRNFJi45TqUqA1451t3DlukLB7Nk1lqWTVIikQj4+kBo2FOCAmPyVUV15dw1LC3IYq0RHql7qybdbu42uGUzGQmCwLhp3Tl26DZ7LsTSsW+5PBM+c4Jer+PYxR+RyZ+SlKxEq1NTzCOOuAQJdhbtqVCqCS4OXgjCBD4Z+yeCoKBBtR6oTDPD/fY2jhw8U5K9hx/i6ixy/IyaD9sbJ4SoaB3FPQVmjhOYtfQQ8Yn1sLYsejHAfxKqeTuBfwQpWhWpakhJtQSLzGzcYsXtOUppvvzlIV6uIgdPyxkxoW2+2pZIJPiUejtWJnq9gS3rThAWGolv+eK07VSTlm0q0rLN69n/vA1cPO9PpeLBfNjOBFDSurGS0TOOYWm4wq/XFYye2vcVQeW8cOLAaZZPMdrq+PrAgm8eZ1m8PYdUKmHU+M4c+OsaHZudoG5145i3dIqepasP8Vk+cl7PnrpPjUoCT8N1lPI2bv8HP9VhaV2wPr8OTEzkNGicvTh0gyblcXa1Y/f5h7h7OjK8U+4V8Lnh6MEbXDt/FVEEpOagDsfERCTN4MjYqd2RSiVMnd+fTWuOEhuTQIMmlale2ydLG/qqjZj59SkGd9YT9ERPcoqx8lAURcIjtSyZIScoNJzlX2+mQfW+he5rXvjHkS1zCxNmLhnCw/sRuKvkdPJ+O8aVBUFMTDI/rPiNZVOlKBUCU5dspkv/npQo+ffwfJKgwdwscyVTuawcF2cpNSor+f3PQC6d96dG7ezzGbKDWq3jhS1/JBIBmSz3rFGZTMwiH2FpbrRNyg/0eoEP25gzbWEMLRqruHAlHSunSnkqZr8tCIJAkxYVXrudgMCNLJkehK+PjLkrohn4kTUebjJAZNqCncQnVsba0haZVI7OEIa9bRqnri6nbqXRWFtmktbmdUdz+vR5klPDkIhShnx+HHOLWAR0zJloJFeVy2m5cyvmP7JVBBg0vDUhwbWIj09lSmsnTEzev5y4Lxb+Tp+2kVT6SMGB4xGsWRWX7db/+4jI8DhqemeOHa7OMsr6SBjQXUmX1noW/LCHcdMLJvcil2cVSzVXgVajy/H49HQtlm6Zx6tMJehfDsHkAIVSTp0aKr75JZ5WTczQ60V+3Khl1frCi70WNUr5ulDK9/WcBK5feUzEo+Msmajk1r10Dp+MYMx4awDuPIhiw+qj9BvSDLlcQkJ8ElJ9JEf2HCIuPpnmrTK3NT1qlkHr8gHDth5G62xHj89PUtIxBrUmmb7dLJHLBUoWl5GuiXyt/uaFf6QjrVwupVwFV0q8h0QL4Mj+q4wdLGKmkiCTCcwbr2DP9jPvulv5hruXF4dPGfN61GoDR06nUraUcYVV1kcg7GlMgdorVtyOC7fMCX6iRRRFVv+upkyl3CujKlavyE8b1YiiSGiYjpOXzfIthdCxexO27pfQppkZ5y5r8At3ZdhnhTe2fV9hZxOJr4+RQBoMwjOiZUTdmhqiYo0RlYt3vuaXr5JYuUDPTyvjOXfz6yztCIJAeZ861K7UhdqVO9K4+hekJzejZ2cbLC2k6PUiew+Z4uLwqvHxfygcPDxtqVDR/b0kWhqNDjNpJJXKGp/5lo0UxEUGvttOFQDVa5Vi3Xaj0CzA6k2J1K1hjDBZWkgRUBe4Ta+Spfl9j3E88gvU8ijUCrtcomMNm5bnf79JSEo2oNeLzFyhpk2nevm6Vv1Gvvx53IrObSyIjdOz+g+ReSs+KbDl0PuOU8duMqz3s4IPfy1NPsiMEpYrLSc6IgqADauP0K3ZExZMkLJiuoTg2ycJCY7N0pZTieI4t2iFW436eNSbRlLaSGyt7DN+9627dbjYF40gb054P5by/zIolUoSkzMjNympInLF+zeo5oRufRqyaa2eI8uDeRqWQpUyZpipjGHZjbug22CfHM9NSEhj7aq96LTpVKhahuatjcnhU+b1Y90vh0mKT6RG3fJ5Gpo2b12VMydNmPLFLcwtzZkyv0W+1fdLl3Wj38gBnD9zj5LVLRnUuMw/0ssvPlGGXq9BKhWwtpRw+76G8r4KRFHk4HElZb3cEEURJ4c0FM+S5E1NJdjZpuTariAIfFC1N7+s07J2SwApyVLKe/fH1OTtF3T8h7cPqVRC2kt8RJv/ouB3DhdXK1p168yExUeRSPQ89jew+Tvj1vjJ8xqc3XMev0RRZPvm0wT5B2NmaUn/oa0wMZHTtWd9Dh+wYMoXD7Cxs2bK3Nxzbq2tVXw6eQBLfj2EXqejTbd6lC6bv8WKTCZl2oL+HDt8m3SVmsXflH8nxVRvGs6u9tzzC6ZKeQUVyyr5fXcSlcoZC3FOXdTiWdyozRgVFknl3pnaao3rGHh4/ykenjlH2W2sXVBKBjDk850oFSCXVKFWxYJV7hcU/5Gtd4CW7aqyYOoNBmpTUZkIfLtOxtiZRev59CJSktU8uB+Og6NFrjdgfiEIAr0GZPZ319azTFl+H7UGWnVsmW0uEhhXxMvnrGXRBD22NlI27jzFXzu1tO1UCxMTOR+PzBSeDQ9LYOvG44BIlx4Ns022rdegLPUaFKzi6vCB69y8dJvkFJE6DatSuVrx94Zo7d9zmTs3HlOytAcdutbO0q/DB65z48I1DAao37wutevlXTllY/MhQz7fQIO6GgKDrZi+wBwvDx2JSRKKu/bAwswoQBsRZYJOl4ZMJqBWG4iOybvQQSKR0LB6/kR//8M/C1KpBEfPMqz5/Q51q0nYc1Skcu386XkVBqIo8uBeOBqtnrLlXAqVwP4yylf0pHzFAQAEPo5k0rJ9KOV6bJ1L0G9IkxzPW/vjQWr4PGB4ZwXBT2JZOns9MxcPBKBZy8oZEi3Pc9qehERSo07ZbBePDo4W+crRehFPQ+PYuGY/eq0WZg8YhAAAvSFJREFUW2c3WrSu/N4QLf9HEfy14wxyhZyP+jfN0q/wp/H89tOfKGQ6zG2cGDisVZ6L4y496rJ41mMuXo9Dp4c7j60ZO1/ERAkmll4M+8x4z9k62HP3YSxlSxkDFqcuSWjYMW/NSx+vavh4vT23i//I1juAiYmc6YsGcfTgTXQ6PRPnVChyLZTnCAqIZu33m2nVQMupCxIMpmXpMyhnjavCoOOHdYG8xQAfPYiked10bG2Mn7VXJyVTVtynbaesdjKREYn8uGItiybLEASYvHgdQ8f2L5Ayf3Y4fOA66vAT1Cyj5d4jNaq0CH5YqqBl1/ZUrpq3kvebxK/f76OS1yMWjZFz+mI4330RwchxnQC4csGP2IATLJloVAdf+L/92NpZ5CnWa23lTgXPxcRERFG+uDU1y2avc1PNdyQDP/0OB/s0IqMsqFl+ZFF/vP/wD0Pfwc25drkkR28/pWbzEq+dn5MTDAYDS+ZsoqpPFCpTmPubisnzBmS4iRQFipVwZPLc/vk6Nj4yiMb9jdf2dJNTzCUp20T45fM306dtNJW6ytm06zDbN8flS5w2NyQlpvPjlxuYONTA8u/jKVMxktO7r3NI5suQEfkronhTePQgnF3rNzNvvIKkZJFpc1czcc5gLCxN0On0fLt8Iyung0ol4eotf1b/sI8hI3Pvs1QqYeq8voSGxCGRCHw41DrbhXGfwc34cnEccjGKtHSBijXrUOwNWv0UFv+RrXcEpVKWp/ZXUWDT6r18MV2akfy9+Nu7REbUwtEpb1udooa5hZJ7L6RzabUiWu2rq5u9/2fvvMOjqLo4/M72lt57SCCE3ntXmnQQFBALYq+oqCjqZ++9VwRFKaIISq/Se+9JgPTes3135vtjISGSRgoE9X0enofNzty5szNz59xzz/mdpTuZ9bAMN4Pruxeny/l6yTbueqBucVWH9xzl9cdVzHy1iLdfcMXzjRkq8dgra2nf8Z46tQ2wctkejuzdh1IJXgFNuOOemgcMF2ad5YaprkG8b3cVqzYnl2ZLbv3rMC/eX6YOPnWCnPnrT9SoMoJKqao2lirAN4wber/hOl5s4/Dy/Ufjp0PnJnTo3LCTlA1rjzKiTzbX93ZN0Lq0t/Lj9+vLecGvJBarUC6LOb+QS7S8ioss+Bmy6XBeePmWsWpmvn2C6rTSqmP/3rNMHGHn+wUm3nreF/35YtZf/BDHmYTsOscopyTn8f3nv+Gus2O06bj/8Qk19pr9+etmXn9ajUIhoFbD/bdY+WvDUUaM6UxaagHd2trR6Vy/R8c2Sn5ZlVGjdgVBqHY1RqGQM+O5ieWuS2PkHxkg/x9lqFXO0ngcgNAgKCgwX5W+RET6kFkSwbxfzezYa2bGa3bGT7m01plCocBqK4tps9okFPJ6mBcISnLznfh4lS1DCIKATivWuekP315K2sl1vPssvPEktAk9xao/9tZ4/78XC3A4yq6ZX4A3p86UZSqdTHASEFT/WX+NeaD6j38neTkFNAkre15DAhUUF9Z/vdKacv3wfjz3jo2d+8x88YMF/4hWlyQxyGQCtr/FsNWwuEaVeHjoSDtftu6CoQUQESKRl1t1nGV1nDqRxkszPuXdmTZee1LgpYdL+OL9RTXeX5DJsF00ZpssUulyr5eXnjNJZdtarSJWe/37eRr7+PWfsfUPJzAskvVbXZmDxSUiW/YqiWxyZQUPL+bBJ8YS0HI850yDuP+paRXKXYwe35PXP5dz/JSVk3E2XvpYYOzEPnU+9pS7buD59+D4aRtZOS7j5chJO3JN5VmMoiiye8cZtm0+Xam0xI6tJynJOsrNo8uyj4YOUHL8cEKN+9a0dTu++dlKcqqdeb9ZCWoSWzp43HRLH75c4M43P1v5dI6VldsDGHRD+xq3/R//ca3Ss29rvvpJLM0c/Ph7G/0HNvyKQGV06RHDzXffwVnjIFr3ncik2y+NtdUb1EiaSJautpCcaue9r6107NWlzsdu1zGcw2dCKDEK/LbcZXBaLCJ/blTSslXly7hnz+Swcd1x0tMKK/ze6RSZ9/WvdGorR612mQQe7nL0qppXSLj51oHMeM1Bwjkb+49Y+WGJrlS+xs1dQ0TLLvzvPSs/LLYy/WWJW+4aUeO2/yn8t4z4D2fibf1Z/JOMde8lIkoqHn1m+BXTk9q94zR/rd6OIED3fl3o3d8VJNquQxjgqkcVdyqD335eg1IpEh3bnNHje+DmrmHmy3eyevk+JEni6Zc610tMm3+AO0+/fDe7dp7h5c/2YtCLePiE88DjQyvc3uFw8vpzPzC4ZwFuWnj1WS0zX7rjEnXqIwfiGTVYw/Y95tJCvLsPWAmNqHkcy9ibenFwfwiLN58hpkU4g7uXFZtWKOQ8//ptJCflIZfLmBBScexCfWAyG7HZrXi4edX4GKIoUlCch15rQK1qmNjD//h3EhrmzbCbb+TpdzYik0l069OHjl1rruFXF/LzTXz/+TIEyYzB04+p992AQiEnMMijNH7UYrEz+/PlWE0FyJQG7n5oJDq9mvunj2bLxuP8uiWTLtfHENuq7rIogiDw6MzxHDuaxtoVe9n5dj4ISu5+dFhZIeq/sWTRNkoy9tK9vchv38to33sQvfqVTyrKzzPSqplEfIKzdCnOZpMoMtU8Li4oxJOHnrmTlav3o1armfV6p3LvmdHje5Kf357cnBIGTPCutIxSXbHZHORkl+Dn73ZZUhhGUzEOpxN3g0eDja3/GmOrsNDMF+8vRqMwYrSouPOBcQSFeF7tbjU4giAwYUq/K37cUyfSOPDXCt5+2lUd/p0v1+HhZaBNu4jSbfLyjCz6fhHvPadEoRBY+MduVi9XMWR4JwxumvN1DOsXvUHNdQNbcN3AMlXj+NMZ7Np2nIBgH64f3Lb0YVu78hAThxXSu6sr+LV1cwfffL+eex8pH9jZtHk4ZmsCxUY7s17PwSlCRqEfb350eTEa7TtG0r5jZIXfCYJAeAOXYNm6bw5evvvx9pTYvMmPob1nolJWPeAWFOXx7exPEAoUOFQ2evTvQ9+eAxu0n/9W5s1eR3ZqAnY7tO/emcHDrlwm1dWkRatQWrRqOGXvipAkiQ9encebT9nx9JBz5ORZvvpoGQ8+Ub4w/cdv/8KDk3JpEqYkPbOEN19fwKzXXMH2fQa0BOq3PqUgCLRuE0LrNmXGm8lk47eF23E4HAwa1rk0zkoUReIO7+Pd51yGWK+uMP3lzZcYW55eOk6fFbh7sjvTn8/G11vO/qMSz71x32X1zdfXwE23VF4f18tL16CZk4cOnGXZ/D9pFSNx9JTAmFtGom9a9T6SJDF/8WxST6YgiDIMYXruvv1R5H8vsFgP/GuWET9/7xeev7+I15+EN2dY+OrDhVe7S/9oli/Zwf23KksNlwdvU7J5/cFy2xzYe5abhztRKFzb3DxSzdEDJ69oP3duO8X6JQuZ0O8YfsImPnj9l9LviotKCPIve0R8veWYjJfGu103uC1HkpqSmK7HKXNH69uWtz+5t0Hrk9U3Z1NO0bnzbl57VsYTD8h5839ZbDvwU7X7Lfr1R7xTgvE1BhOYH8nOjVsxmoqvQI//Xaxevp9mfsd540mJd5+VyErYyqnjaVe7W/9Y8vKMBHrl4enheum2iVViLblUYVwt5NMkzOXNDgpQ4KYtQpKqrn5Rn5hMNl6b9R29m+9haMeDfPDKd+TkuJYYHQ6xXGUOAF0Fqi4KhZyRNw3jm4VKPLw8Scn147WPpxMW0fgy+qpi2YJVfPySgvumqPjkZQVL56+sdp9Dx/eSdSAX/6Jw/EpCkU4pWL1xWYP0r0aeLUEQhgIfAXLgW0mS3qxkuxuBxUAXSZJqHh18BdCrjHh5uh4crVaGv5e11kVH/6N64k8nE3dWwtfH9XSfSrChM5R/8v0DPIk/LNDzfDhDbp4Tpar2xaxrw+Y123hnpqumWWgwnIhPJz2tkKBgD/oOaMunnxzg7WclFAp44zMbg4Z3rbCdux4cXjrINvZAzYooKEpjeNuyl0RkmAKHs3wlAFF0snrDMjIy04lt3poenftiN9tRC2XDiMKiprCkAL2u+oK6/1GehBJXMeqKOHYwjjceLwvEHjNYxsp9CTRveWVquf7b2L75JPkFttLPTqfEuXOXTiKKjbJyWXDFJbIr+vyv+nMvj9xmo3Wsy3v15tNOPvxxAw88NgqVSkG+yYszSYVEhSvYc9CGSh9eYTsdukTTocuDiKJ4TU0SL8bd4EQ4PxYJgoC7oSypaGdKMgBZx06QsWonelFDq9DbyMhMQ2PTwflLpnUayM7OvKTt+qBaY0sQBDnwGTAISAH2CIKwTJKk43/bzg14FNjVEB2tK0VGBXa7A6XSlbqbnS//z9C6iKzMIlYtP8iZ40fw8hAQ5b48/NSNtf6Nmka78fvKdE7G25DLBJavM/PIc+WL1LZpF8rWjU346LuzBPrB+p0anvzflU3pVijKG0catStWCyAw2JObp01k1kcbAJHrh/agdduKByu4No2sC4QHt2beL7/RrpXrxfHbnw78vdqV2+b7eZ9jPSaic7qx+8RO8vJyCAgJICsxD73ojiiJODws+HpdGzU+ryaZKbmUKBUIaivg+r1i1LuAig2uoLAADh3Pon0rl8G184BIZFTDaFtdi5jNdvbvTWTZLxsI9nNQZFQw5e4xNImuWQmvv1NcVELrWBWvvJ9LixgV23aZ8fSLvGS7oWMG8tTrq+jWzsm+YzL6DK5cELUhcDqcaNRl445KKSBelPo44/lJzPlqFSWFBQSEBHHf9KpV0huboZVQcqzG22aWQF6+SzA7N89JlhFSzQWkFheSlqdF3J5KxrcbCS4Jw4aFL4reZdyYyRzeehBtscsRkKfL5Lo2DRMGURPPVlcgXpKkMwCCICwARgPH/7bdK8BbwJP12sN64tZ7xvDwi78QEWQnJVPG2Fv+fdkQFZGeWsD7bywi0DOPru0VZCjM3DzcHaUyk7nfrGba/bXTtgoIjaR1SAmRoQIFhU62HDDQJOrSmKP7p48mOSkPY4mV/431v+L1vVp1bMdX87YybaKK02ccHI73YPSdZWr1UU0DmPHcpCvap6uBj6cfhcV3M+2RxWg0oBDa0r1dmfitzW4lLykPfzEcBPC0+hF//BQPP/IUvzjnkZWagUwl49Zx91Qb5/Vvp1N0ACRkcuasmRLUiFYNpwkgVRfLAN+TVGRw3TylL++9lsGytVlYbeAR0JyB3asJSPkX4HSKfPP5ao7s3s/4ESraRTtQqwXufsyDh19czEvvPlCrdvsMaMPCbw7yxD0K0jMdHI9TMGzopfFInbs3I6ZFKElJeUwd6IWn55VVcx94Qyfee+UgbzzlRK0SmPWOnSn3lfVTpVJwz8PX5rsuoeQYqeYCTlu7Vb8xEHxHOPd+vAwPpZFChxstbh/FxhwbcSmBSElqMlfsIsToGr/UaDGmKnBKTgaPHcaWzRsQJIGOHTrSvnXdM0croibGVgiQfNHnFKDc2QuC0BEIkyRpuSAIlRpbgiDcA9wDVFrSpaGIaOLHy+89gMloRatTXdNeiPoiM6OIL9+bS6BHEW895xLEGztMz8xXc3j7BT/mLs2pdduT77iOxT8pWL87EUGm5onnR1TqJauPEkK1ZcjwTuze4cbznx7Gz9+bZ17ud8XujeSkXH5fuBlBJuOmKQOuitDsxUSFtSUqrG2F38kEGaKsfCyKxW7mq+8+BEmge+/edOlQ/wkNjYmLxy8fr7oJSF5scOnsYEJDnNpVYqQig0smk/Hk8xOxWOzI5bJ/XNHh2vL2y/NxFCfww8e+aLUur8zH3+STluEgLFDCZLLVSm0+LNyH4RPH8+73GxGQ6H19N9p1iKxwW3cPbbmA9SuJl5eOR56dykc/bsDpFJlyXx/CGjiR5gIOh5MFP/xFVkYu3fu0pmefFtXvVEMSSo6xsaA5qcWFGE0195Trxz+CA9ADSSZIyytCSlJjOOtAbnWWW/IVZU5Wr1sKNgH/oEBuHDUZhaLhahTXORtREAQZ8D5wR3XbSpL0NfA1QLsOYVcuivAiKkuRrU8sFjufvLMYtZBPUYmM4eMH06FzVIMf93L5c8k2nrgL/lxbdhvIZAJKhUBiigOtofblca5WFmRt6Nojhq49Yq7oMVOS8/jhs3m88bQSh1Pi6Tfn8PAzd+Lra6h+5wbEaComNTMZb09ffL3KlmAUCiUxbZtzduc5tBYDRfpciouLCMiMRBAENqduRKPR0aZFh6vY+4bl4vErKqxZncevTtEBdAL2JWQCOiSlmjgqN7iASwQ0G4plv+7k1KEDKBXg5hfJnfcNbXQT1Px8EyHeuZQo5KWGFkBIsILsXAcpGUq02tr/XlcjC7I2+PoaeOCxUVf0mJIk8eb/fuK+mwuJbapg7i9rWJ5bzPAxFce01pSLvVmnMwNIy9MSaK25nIwoiuQnngPAKyISKdtlaEWJWrqOvYn5P8zBI88Xm8JCtjKdJsdaoBF05McX86Ppa6ZOabhSZTUxtlK5IIrkIvT83y7gBrQGNp1/GAOBZYIgjGpsQfJXiu8++5MHJ+YQGaZEkiSeeHU5zZrffYk+09XGYhEpNorEn7WRm+fEx1vOwWMWdh+0klGk4X9v1q08Tm3YvuUEO/46iFqj4da7h15Sc6wxIUkSmzeeICcrn649YwkLr/mMctnirbz6pBLdeSXomfeJLPlzD5PvaNjK81VxJvE0v8yfhypPj0NvpUO/TgzsXyZzMXbEJE7GHiElNYmiEh8yNuaUvoB9jMHs3b/jH21sNRSdogPYl5CJQeaghOoNrobm2JFkrDm7eOdZ18R03ZY4Viz1qfOLtL6x2xxk5dhpHqVg+TojwwfqMZtFfv2jhBKLlsdm3XjFDcScnBJ++m41DrudAUO60LHLldEEqy0JcVkc2Hua0IgAuvdsVuP9MjOKiAkroGWMy2s49WY1T799pE73yAVDa2NOLEZTAGK6BinTiq5iLelLEJ0Otnz/Odpk15h6JlwiZuDNRAkGlycZuPv+hzl4dC8e7p6s/3M1GsG17KtFT15Gw2b31sTY2gM0EwShCS4jayIw+cKXkiQVAqU5ooIgbAJm/FsNLQCbuYDI8+nAgiDQvb1IclI+LapQ+b2SSJLEB2/8grcmjT/WWsjKcfLcm9n4+yrx9ZazZHYgr37tfsVm0Rf4a/0RsuI38NYMNXn5ecx8cQ7PvXHXFe9HTfng9V/o0z6N69vI+H72Xq4fM4a27SOq3xFXurXZIpbWfzRbJBTKqyt79+efvxGQ4/JUUQL7tu+mb69B5WKwYpu2IbZpGw4c202SMgW9w5V1aBUs+Lhd3WXQa5m/x3FdMLhC3DwAV5DwlTK6jh0+y7D+ZZ6i63sreeb9s43K2Nq84Qi7Nm4iNEBk83Yz2bkO9hyw4HRKvPM/Pz6cLaNVm8qTWRqCkmILH702h3dnyTDoBd76/E8kcTidujXO2Lqtm45xYs86bhoucPC4xNefRHHPwyNrtK9CIcNiLXPuSpKEw1HFDtVwsaEVlxJIoFWDLgUMKQ70Ys2U7A8d3ID3GQMGXONQcUIhZv+9dBp3c+k2Pl5+XN/HlYS1YfWqcv2XFA272Fbt6C5JkkMQhIeA1bikH2ZLknRMEISXgb2SJDWMKMU1jCDXk5VjxN/X9fMeOC4wbbDn1e3URaxdeZCBXdIZ2EcDaNi1X8u6v4zMeszlmXE6JSTxyq/y7ttxkDdnuGbT3l5yxgw0c/RwKp27Rtb7sVYv38exA0ex22HUTdfTolUovy/eTsLx4zgd0K1fN/pd36bS/RPP5RLpn8bw613eyteeknjqrY20bX9HjY4//pb+PP/KWR6704bdIfHxDypmvXqVX2aO8hmVCocSq81SYcB7+5ZdONBqDzmn0xCcMmTBIiOH3nkle/uPoyKDy+jtenFcyFSsCzU11po1D2PzrgNEnZ837D7oIDyq8UhMOJ0iW9Zs5KMXVYASu93AhLsyefHJMs+yQlEPxQgvk1074rl9nB03g8sb//QDKma+t6dBjK2U5Dzmf78ChcxBaGQTxt/Sl3Nnspn//Z/o1E5Uej/ueWRkldnk2zfs4N3z3stmUfDyh2coKbbUaAXG18+NfEsoy9cn0zpGzrzfRfoM6l+rc/m7oSUlqdHZQZ9kIgptqVeqOs4ctSNJ2lIZB42kxU1ZuQXYf9BgNq1Yi9KoweZuZtSw8bXqf02p0VRakqQVwIq//e2FSrbtX/duXdvc9dAoXn1jPp76YgqLZfQdch3ujWg5LC05i8HDyx7C9q1U/O/dEnLznLi7yXjxAyvDbrzywc6iJMNul1AqXU9LfqFAcHj9Z7Zt3nAUR85W3pyhxumUmPnmb8R36onWuoe3nnINPu98uYHAYB+at6j4JWO1OjDoywwTmUygqlrZv/y0mcRTR1AoJFRuYdw/fRQzXpzG2hX7kCvkzHq14xWJJ6yK4MhQMtKzcXN6YpOsyH1kGCrRyxIEgam3PEBGThoOh51g/7AGUV3+t1FVpqLLy1U7qpKV+DsdOjfhxNHWPPXacZQqQBXMI09dXjWEhsRYYiU0sOyzUing569j804bfbop2bjdgc4r8or3S6tTk1dQ9tlslpDJ6v+ZMJlsfPvRz7z/nAyNRsbqTYeYP1fk9NFjfPQ/OUqlwLFTycz+YkWVniqFsvyEWq8TsDvECreNP53OT98uxdPNTkGJhvum38QjT41j84ZjLNmew4DRsTSNCaxw36qoyNAynHV5s2pqZF2ge5e+/Hz4ewIKXbOEXI80hnaufALYtUMvWsS0Jic/C3+fIPTaho2XvabL9TRWATaDm4bnXp/aaPvXtVcrfvj1JDPudV3+uYvtTH1gNJ8sPIvNauOGCT0rNTIakvG3DOKJVxcwdbxIcrrEwYQgBk6q/6XXPduP8tZ5D5pcLnDrWIm3v9nLD++VGXYTR8r4dcupSn+H6KZ+/PStgb7dTIQFK/jmZxttO1econxw/zk0tgO8fX4WuXlnIkt/3cmY8T0YP6nxvMTGjZzMCs0SUpKS0LvpmTJmepUxL4IgEOR3dbKw/gmIooggCJf8xpVlKl7wctWGqmQlKmLyHdcjSdchSVKjG8Pc3DUkJKswmkT0Ohlnk+34BEVwKiecFe8n06xFBPc8fOW9xN17RvP68z4o5Ln4+wh8u0jOfU8MqffjnD6ZwdC+DjQalwdqSH8Vvz57mt4dnSjPhyK0aq5k3rLsKtsJj47llz8PMH64klMJTpKyPPH0rNgp8OPXS/j0JQG5XInJZGfmu7/y3Ot30u/61rU+j8oMrSix5t6siwkLjmTs5JvZuGk1AGMHTCQ0qOqwDje9B2762k9iLodGb2ytW3mSBV8dBkli0v3tuX5ocxLisnn23pVY8gQ0XhKvfXUDTWPqlordEDS2QeoCLVuHkpVxHTPe2IVcJtCyQycGDGzDgIGVL5tdCSKj/LnvyTvZs+M0Ht4GZjzXrEECXHUGPZnZOQT4uW7/+HMSgcF+HDmZSruWLoPrwDGRsIjKH3i5XMYzr9zGj9+to7igiB792tKjd8Wpz6eOJzGiV9m90KebkuXvJQM96u+k6gGZTMaIITde7W78oygqKWTR4rlYzTYCggMZO2ISggBzf/6SnOQcJJlEx25dyiUiQMWZiuJlZGX9napkJSqjIkOwMSAIAg89NZkXPl6KSm5FpvLlgcdHn4/tvHrPlEwm49lXprD1r9NkZZmZ/lzzBtHd8vE1sGVH2XUxmkQ0WgOnz1pK/1ZiFHFIVa8KjJ/ch/Vr3Hjm/VP4+Pvw9IsDKrzedruTQB8HcrmrPZ1OhpvWWuv+XxAq3VjQ/HzGYVGdDa0LxES3JCa6futR1heN2tg6uC+Fjx7fj2dmEyRJ4sNTe/Gbr+fNpzaiOBCNuyBDTBR5/oFVzF/X+FN0GxP9B7ah/1U2rirC19fADSM7NugxbrtrMP/731z6dzVRUARJuaE8/swY3n55AaFbcrFYJRyKCO5/rGrdGI1Gyd0PVq94H9sqgnVbD3D3+bSSv3bYaRobVvVO/3HNI0kS38z+CM+kQAyCG1nncvnF8SMGgxvmIw6XQCxwcOMBmjdvSVhQk0vauDhTsaZZWRX2RXl1g+7rG/8Ad55+sfGN+TKZjL4DYhv0GGHh3jhUsbz39UkigiXW71DywJNjOLDnFE+9tp2wYIGjcUoemTm62rauH9ye6we3r3IbpVJOeo4Ch0NCoRAwmkRKLLUz/CvLOKwPQ6ux02iMraJCM6dPZRIU7FEqeLp88TEMGaEguGYz+sxQli8+jiVfQC+4PAUyQYYpv/HNvv6j8aI3qHnhrWnEn84iSqtkXBNXMu2zL99Cfr4JuUyo1xi7dh0iiD/ZkSdfO4xCAXJdGPc83Lne2v+Pq48oiiSnnwUgLKgJMpmMopICyJehEFzZtHrRnezUTIwexejFsiVBjVFPUsq5Co0tKFtWJKlmWVkVcbGsxN+D7q9Vg+vfzG13DyEttRv5eSaeGeGHRqNk6Mgu9B/UnqJCMxP8DPW6snLH/eOY/spSPAx28ovV3HbP5avSV5Vx+E83tKCRGFtHDqby/N3rcCZ7IHiZGPNgE+58qAdhTTzZq8jD4PQEwKY0Ehrpy3H/bJwJTuSCHKfkRF+LFcQDe5P5Ze5BvH11PPBkn1qpDFdEXp6Rz99diJvWRGGJkolTRxITW338U9ypDHZuPUZgiC8Dh7RtlO77xsyu7adY/+dGDDoJh+DNA0+Mq1IyQqGQE9vy0ngwL6+GKbdx46Q+OJ29ePfVBXiTzDfvfoHepxl33n9la0E2NFk5GaxYswRJkhg0YDihwTWTwriWcTgdfPnde9gSRZBAFSHjvrueQKvR41CWuaNESURQQVhEJKdPxON2flwzuxUTFVm1qO7fX0Rmi4kVa5dgNpvo22sg4SEVG2qlVBB0T0A3XKVsyxtcs79YSWHWWUQRwpq25KZb+1f7G5iMVlYs24PD4WTw8M54e+ur3ec/yigsNPPZu4vQq4wUGRVMnDqSZs2rjlcNDvEkOMSz3N80GmWDSOVENQ3khbfuZfXyvRzcvp0tfy5gToqGx5+bUqOl0ksNLX90KZefcdjQOJwOlq/5jZzsLJpGN6dvz4H19i5uFMbWe89txhB/Pj4nE37/Jo6Jd3bilmld2LFxMam7XdXWQ7sJTL5zKAOHx/DMPSsw5kjofAXe+OryrOxtmxJ48/6duGdEEoeF/dsXMPfPW+qlBMZXHy7m1cfMuLspcDpFHnphCS+++0CVF2zH1hMc3bGGqRPkHI9z8sHrp3h81k117su/hbw8I1tXr+aD55UIgsDJ+AyevPct/IKCmf7MpEaTCbrgh03cMTqXNrEuw37B0lPs3tGMrj0apw7P5ZJfmMvsbz8jICcCEJh37ltuu+teggNCr3bXGpS/tq+FeBU+kicAJQlFbNyyikH9R9BjQB92btiK0qzG5mHh1jF3ERQQSl7uHNLPpiLJoHeffpeVaGCz2/jsq3dwT/ZDiZr5p75nwm1TiIqo3GC74B0z2nVc8I95Kztz2goh2lOl261ZsZ+24XEMm+q6R+f+cog9O0PpUkUdRpPRyuvPz+axO+yo1QLvvHaEh2fejq9fxZms/3EpX37wKy88UIK3lxyn08nEe78mINibIWMG0a1nwy5L1pS8PCNxB7bx3vOuRJ/8AjtvfbaMx2dNrNH+p63dMJoCCLRq6OUTzoGUJODSicTVZPYPn+I8IUcnGTh06hAFhXmMHnZz9TvWgEZhbInW8oGYkknJE3cvQXAo6D8smm6vu2bHEZE+rgyoYE/m/Dm5suaq5acvD+CR0QRBENCgI/+gGwf2JdG1e8WzQ6dTRC6v3iX743drKcxO4fWPJIZep6N/Tx2RIU6MJdZKtUtEUeT3BWuY/Y6rXmNwoIJjp9PJSC8kMOjKZElc65w7k0OfLk4EwfWCiG2qpkXTEh6eZuadT5fWeDBoaDLTsmk9seyR69xWxpqDGde8sbVz3xYOH9xPZl4q/jkRyATXpMU/P5y/tqxh0vh/tv5WQUEeGlFXpu8jatl/aBdn4uNx93Rn2oMPYraY8PcJRKV0vagm3ji11sc7EX8YRYoOteCaRAQURrJh02qibq/Y2BLFitP5/86RQ4ksW7iGFtEOjp+S8/h9ngzpJ+fH1WerNLa+/3o9j95uo0WM69zeeMrJh/M2XvESMtcyarkRby/XcyOXC/TsrGLqJBkvfbSWdh2jG4Wwc2Z6Ea2bl3328pQjSOar16F6Iic/i6V/LMRmtZGXnEuo5FLS97D5cO70GainQiqNIl2uRVdvTKp8AGySlVRTGgUrgiheG8z8FxPZsekckU18682dJ5OXb0eQS6hUl3q1cnNLuHXYPMZ1/JlxPeeyZX18pW3+8dtOWoecYPYHPrwxy4etO82cSbSRmCZDb6hYP0mSJN59dSEGVWG5c1OrwVGJ3sl/XEpYuDd7DpVdv5Q0Oxq1gI+3HJu58Cr2rDytOzRj6eqyZaUlqyXadrjy5TwkSSInP4us3AwkqW7itXv2b2P70i2oT7ojz9Rgx1b6nQM7am3j8Co2JN069ybXI82lQi1JJKvikaWq0ZzyoHiXhfmLvic0MKLU0KorCrkCSSgbHyQkZLKKx8bFS+fx7lsv8+5br7Bjy2+VXu+CAhPLFy1lwRcevPSULwN6afnqh0I2bHfSvFXlS8GbNxwl8eQBVMqy4yuVAk7nf+PX5WCyqTGaXL+ZJEmcTbbj4S4jOsxKdlbxVe6di4hIb7bskSGeF7w+ftqO3sO3mr0aBpPZSFpWMjZ77bMiwbUc/923nyIc1qI55YnRXD4u8uLnrK40Cs/W068M5BP9Zo7vS0El2PHfHF4aVOpWGMTmleeYNLX+AoofmNmTp46uRpsUhk1hJrCXjbbtL13qeP7hVTh2hON+vi/vzdxGt22RqFSX/mynj59l2gyXZ0UQBEYMNvDYS1YenzWxUiMxM6OIcN8sItvp+OqHQqZNduf4aRvHzngyNtSz3s73n46fvxvNO/fh9kdX46a3oVEJvPK0D4nJNlJSr0q98woZPKwj8+cW8sw7cdjt0Kl3P2Jir2wJJ1EU+X7eZxScKQRJQBum5t6pj9VakPTgob34mF3nEEg4J9hHKFEIkgxrSDG3Xn9HPfa+cRIaFMGYyTexceMaABTZcvzzXMuCarQUZeVgtVlQq+qnNmpsdBvWR62k6Ew+SlFFgU8mtw+975Lt9h/eSeruNAJsLmMpvyiHcwd3EhB2qTxC3KlMBvZ0IpO5xrBO7TS880UxXft2ZkrPypcnd23exfsvevL8W7m88rQPKpXAzDesTH2kT72c67+Fux4ax2Ov/IxczEIA7rrFHUmCbbvNjJnWOMpg6fRqJtw+jsdeW4le40SuCeH+x658/dxde7ewac16lGY1djczk26ZWn3MYiXEJ55CneWG/Lw3Xi+5kSo/g4fTB6NHIQMHDK23fjcKY0smk/Hos/0BiI/L4rEhG6HA9Z1TcqLS1K8DrmWbIL74YxTLFx/DN9CLsTe3rzBzoyTbUWr0AUiFGnJzjAQFX7q85+njSUJiDtERru33H5V45OlJtGhVebyKKErI5TBqiIFtu8288XEeh06q+Xj2lP8C5C+TgUM6kJVRSITbHrbusvDmJ/kUlzjp0LViodGrxaTbBwBXr9j0rv1bMB634ut0GQMlpwtZv3k5gwfUbslHoVLikOwoBCVyQY6/MpiYQU3x8fSjbcvOaNSNq/h6Q9E8uhXNo11B5h9+/BpSrlT6DDvlDpSK+lsGksvlPHD3k+zY+xdGYwldO07E2/NSD8PZxAT0Vo/S5U13uyc5iWcJqECLKiTUi1VbZQy73vU5O8dBdIsWTLlzYJV9EQQBby85L87wZvb8Ig4cczDl/lsvqyj7f7ikLJ597U6+ePNTFJhYusrIvF+L0Oq9KpzcXy1iW4Uw67W7rtrxRdHJpnVrCcx3GVeSWeL33xfyyIMza9Wem94Np8rGBYd8IOEYo3Np174tTZvEEuhXf+LejecqnqdpM386jXVn769JYFSjbFbAU69XrxdyuYSFe3Pf45XPvkwmGxpvKJAsqAUNkiQh9zXj51+xpP+t0wbx1otZhPkVUlQi4RnUkhHtqg4MDgr2IC7Fm32H8+nYRs3+YzLG3dKvynpWjYHkpDxOHk8hqmkQ0U0bj5jsmAk9ef25U9w+VoFMBt//quXhajKpjh1JIzeniLYdwhtEgLA2SJJ0Wca2JEnsm7+XvKPbkZoHE962X6XbZmdnonHoS1/AOtFAdk5Wrfs6btQkvsr4EGWmDlHlILB1ADcMGFvr9v4JDLlhFMt+WYyqQIfDYKVbn171XrZFIVfQp9v1lX4viiKBgcGc027H1+J6YeSpcwiOqbhiQXCIJ97hnXnqtb34+wrEJ2t58oXqE4/adevAp3M2M+1mJf176Ukr9KFjp8adgWoyWtm1IwG1Rkn3ntGNRnxap1PhE9ISf+1JOrURWLIa+o6o2tjNyizi+NFUwiJ8G81YfLnjF8C55Hi2bN+ITqdj+OBxaNQVhx9YbVbk9rKJiyAISLbar15EhjbFv40fmUfTkNsU2ANN3DvpMTzcPGvdZmUIdY3ZqC3tOoRJqzc+Vun3p05mkJ9vok2bkEpjnmpLfr6JfbsS8Qs00K79peKSO7ac5c3HNuPMUZNhTyPQ1xuPAAXPvnsdrdpWbekWF1lQquQ1Dmh0OkWWLNpORlouvfq1oUPnqFqd05Viw5pDnDm8iYG9JLbtE3AL6sqoGxuPErrFYmfLxuNIkkSfAa3Qaiu/Dl98uJRw7zNEh8MvKxTcet/NREb5V9n+qZMZFBWaad02tMq2LRY7c75aSUlRIekZRoIDtejdvZh63zDU6ornOEsWbSPuyAHUKgmnPIDpM8fX6EXw6EPzOPerJ24Wb/J0OXBdIJ17jUWfdGl9seS0c8z/di7+RWEIgkC2PoURt44jNrr2WksWq4VzqfHotQbCgiKr3PbWGcP3SZJ0zYuMRYU1k16e/lGl3xeVFJKamYSfVwC+3lXfU5eLKIrEnTuBzWalWZOWl3gPbXYrX3z7Po4MiTx7JnKFHE8PHzzCImg2djSmUJAFWegeGkaefS8DPE+VSj/YbA7MZjsel5HBu39PAts3HyUoxJcxE3rUKJnoalFQYOLdl+YwZbSVYiOs3OrFrFdva1R9Prg/keTELNp1jCI8onIP4f7dCWxe+SfD+oscOC4gGNpXK9ORk11MfFw2kU18qk3AWrtyP0f2nSAnx4ROp0CjVTJ24iCim1WcPXjuTBZzvvgNHw87uYVK7nxwPOGRLo9rQsmxUsV4Mf18NuKhJPRJJtxlefw2byH+hWHYsVIcnsPD989EpaxYjumDT17FPdEfhaDERAn6Tmpum3hPledSHcnp5zCaS2gS2rTK5f66jF+NzrN1geaxl1/UsiYkxGXz+OQ/EeN9kQwWOt54hJc/LL/u/MFzW3FLcElReErhWNzj+WnNlBq17+Z+ecsmcrmsUdXHq47dm7fz/nMu47drB3j8lb2MHNf9iix7iqLI8WPpOJ0irVoHV+gB1GiUDLqhXbVtJZ7LxVd7jqk3uV4q3TtKPPvBap76X+Wq1J+88xtN/JII9JN4fZaaR5+9DV/fij2d7778M0/cWUREqJJtu03s2p/P2GHFfPD6Ama+dOm9dOp4OrbcPbw7y3X/HDyWyfy5m7hl6nVVnockScRvs+Jt9QEBfMx+nDt4DiqpIx4WHMkNE0ay+a/1IEHf7tfVydAC0Kg1xEbVvkbaPxF3gwfuhvqv0CCKIl99/wGWODuCU87K4KU8cO+McgXDly5fiOaMBxq0+BJErpDOiLFjKJZ8MFbTvkqluOxlq45dounY5conetSGed+t5a2nJbzO1wDUaQvYuO4YA4dcmWoa6WmFJCfl0ax5QKWafu07RtC+Y/XewVXLNvDBLFcWe+9u8Mybh7Fae1c6mdux9QR7Nq6lb1cny36UEdm6N4OHdaq47T/2ICvezpsz1BQVO3n29XReeNyH599bwF2P3Ymf/6WyHnO/XMLH/5NQKJTY7RKPvfobL7xVvRG06a+1BBSGIwgCarSYUjScPnOM1s07VLj9XXc+wsLFcykxFuId4MuE0TV7N1dFdZPE+qDRGlsNxXvP/4UhPgaZIAMjHPwzkXOP5hDZpCzmwWkuk6IQBAGnqfHMeq42WrVE6RoUoNfWzm18uTidIm+8MI+ebfNQKeHleQaeffX2WqdEFxWZCfQt8+qqVAIKeeWZJ4cPpdA8OJEpN7oG6d5dnbz5zQqmP3OpHprJaCXQu5CIUNfMrFdXHWs2mWkSpkCnzK/w94o7nUq/bmV/a99KyfyVmTU7GaG8d1oSqvZWt2nRkTYtGrYk0n80DIdO7MV62om36PIu2FPdWbZiIZPHl8XRFBUVoaFMVFRl1ZKdm4nG+784KpvFgod72Xju7yMQH1edCVo//LlkJ5kJu+jQSuS79+UMHDOC9p1qv5KhU5cfR7w9wWqxV2psbVzxFx++4BqTBveDx17eUamxdfzQCd6c4ZpUu7vJGTJAx4l4O9NuFtix9QSjxl1a6NvTzYbifGyiUingYbBdsk1FyGQCEhLC+feKJIjI5ZWbJm56d+66/eEatd2Y+NdZEU675DK0LmBWUVxsKbeNf5QK63n9EJtkwS/q6mucNBbk2iD2HnLJF5yIs2Ny+lyRmIcVy/Yx8YZ8Jo7WMG6Yhhl3mVj441+1bi+meSBrtqkpKHQCsPAPG81aNq90+/zcYsIuWkF2d5MjOisuVqdSKygsKvssSRJmi8uQM5oqLu4b2zKMtVvLPu/cbyc0ovrgTEEQ6DLag2y3VCySiXT3VPz6Vu/ZawhEUSSvMAeT+cq8vP6NmExGFM6y8UiBEqul/EutTesO5GtchrokSRi9CmgR0/jqoF4Nrh/Wjdc/tSJJEhaLyBc/CvTq3/BeWadT5MT+PTzzkJqhA7S89aySFb+uq1ObBp9QNu9yXfvkNDvn0t2qFHDWa8tPJt30YqUabE5RhtVa9l1GlhN3g4ykVAlPr4rFaguK1aX7WCwiBSU1C/+5YchYMn3OYZaMFAp5KKMEmkddnWLSJrORvMKcOkviVMS/zrPVf0QTFu5PxK0wGLtkQxNTTEzz8kuW7303mhcfX0V2cjYBIWpefL/+A/SvVR54fDQLftjEL2vT8fb14YlZg67IcQvyiojsULZsGB6sZPtfhxlzU6/Lii+5gFqt4LHnbuPtr1cgOW20aNecG4Z2YM7Xa8jLziEsMpTxk/uUGkYdOkXywasKunUQ0WhkzFlkpU3nijMdFQo5EbHt+ei7A3RqLbJomZGoSCWvfGSjS9+KkzKaxgQQf6onM17bg1oFCl0YDzzet0bncusTLbG3VlJwRIZbk054+7SClMv+SeqE2WLiy+8+QMxxZd+17NKaEUNuvLKd+BfQtmVHtvptRJfthgwZ2W7JjOwxvtw2XTv2wmgq4fjhIyCTuHHoJLw9fDmbU0NP6T+Ydh0icTpGMvO9XQiCnKmPDKw0FKA+sVrseHuUvcAFQaC4MJd9uxPo1LV2S7DT7r+BxT9tZsWWZLQGN556cRg7tp5g+6aDKFVqbr17aLmlSlHhx7FTGbRqruRcsp1Cs2elE+WJt9/AE6/+zIRhVk4l2DlwxIpOp2Z/nD9PvVCxov1dD09gxhuL8TDYKDSqueeR8RVu93eCA0K5+/5H2HdgJ3qDge4d+9Z7QklNWLZyESf3nkAuKlD4Cdw77fF6zaZutAHyDcmSBYdY/0c8bp4qnn7t+gbLQtu94zRb1u1GQmDMzdfTNKZh4tAaIxaLnb/WH0UUJfpd1wqdvm5JDolns/lt7s+89pQKQYC3P82nW0cNPy/X8sKbd9dLevTbL8/nzjE5tIxRsnWPjY0HmnDvIyNLv09JzmPBnFXIBCetOrRkyPCKXfAXOJOQTdK5HPwDPCgqstQoKLU2XAg+9VZ2ZmdKMmK6prTu2JUqhfHTom8x7bajElyDU7YuhVsenEqQf/mM3H9LgHxDkp2byR8rFiM6nfTs0Z+WzdvWaL99CZkYw3VVBshfTH6+iblfLkd0WoiKjWbM+J71fSqNmgN7z5J4LpN2HaJpEl33TL+Xnp7N8w+aCPRXcOCIhVUbjYiCns4DRtVLYtTWTcdIPbGOh6eqKSxy8tSbAs+8eldp3V+Hw8ncb9ZQmJuNRu/BnfcPqzIMo7DQzKH9iejdtAiAWq2kZeugWoWMVBUg3xjK9aRkJLLg8x/xM7skcaySBbceaibdWL76xT8yQL4hGTuxHWMnNuxSy8H9Zzm6fSVvzlDhdMI9T36DwSeKJ5+/udI19X8KJpON15/7njvHm1HI4PXndvH0S1MvO3ngYiKa+DFo3Fgm3PsTLaOdDO6vp093LXmFFk6eyKBtNTIb1eFwONHJs2kZ4xqYendRsWJTefdQaJg3M56veZmoqGg/ouphkL6aZOWks2rdHwiCwA2DR+PrVXFmnbHEiFooE19UmDTk5GdfYmz9R93x8wngzlsfrHM7O1OSiankPWe3O3nvlbm89ZSIl6ec35bv4L5btzPj+Sn/iknjnK9WEWQ4SZ82MpYs2UXzTtfTZ0DdlhuffOEWZs6ci5cmg6ZNVDz1oDcyGcx8b3e9GFu7thzgrSddk1oPdzkTbjBzcH8SPXu7Si0pFHKmXUbhew8PLX0HNExdxgOHkhqk3b/jcDpYsfY3cnNzaNOqA53bV5w5n52bidKkLg1HVgsaSorqV7n/XxezdaXYuHovT97nyhRRKARmPepBhE8S33yy7Gp3rcH547edPDbVSveOGjq31/DCww4W/7y5zu22bhtOk6ahvPCED326u5YOc/JAX0evGbiyQs2W8jM2q+3aEJY9uD2L+Tf/zNcjnmfPS3Nw2moWmPp3JEni9Nnj7D6wlcLiArJzM5n9zRc498qw7xH49qtPKCjKq3DfJlFNKVLmlrZj9S4mMrRxy5j8G8lMyUWXAmK6hrS8IlKLC0k1F5BQcqzcdufO5tC3sw0vT9dyzrjhelo3tfDTN4uxWCqOVfynYLHYKc46xa03amgRo+LZh9Rs37C9zu3q9GqGjenNsEHuPHinJ3K5QHGJiEJVPzHBkiAvF2eVm0+dVxTqg4SSY6SaC0gtLiQtr4j0zEIyU3JLvVquEIT3ef+dV3n/o1c5l1x5WbzqyMnPYue+zZxLSUCSJL6Z8xGpGzIRDmjY+utfbNi8ssL9osKbYfEpLo3VKlTlEt208soJteGf7WK5iugNOrJynAQFuH7i1HQnzaKU7Dhc8cvqn4TFbMXzoowfdzcZVmvdalhd4MbJg5nx2kJuGS1yNhkSc8MYUw9ifoIg0KRFO7744QA9OsLqzdC5T+XioI2FkmILHz1yFEemFicCPvFuHJUvoseQy0+H/mnRt2QdykFpU7PBZw0BEYH45oaUFpb2zgli4e9ziW3aivZtuuDh5lW678B+wzBbTCTFnwU5TBh+K276/wqpNyY6RQdAQiYkmQAdklJNHC4v1QDfk8Cx0uVEd3ct6Rdp3drtEnYH9OjgdEkXVOYS+wfgsDvR68pPtFQVSz5dNn0HxPLac3uw2fPw9oA5vyp5dNaQemn75tsG88SrPzN1vI3UTIk9JwN5csLV9SxfMLQ25sQSlxKIlKTGcNZBlKgtXT78Yf6XpJ1IQ0BGAKEsWvAjTzz+wmWXEDt68iArFv+OtsAdm3Yz4V3CMaaY8ZO8QQAvSwD79+4BASLCo4iOKEuI8nDz4sZJt7Byxe8IokB0TDQDetfPdbnAf8ZWA3HL1IE8P2s2YwaWYLVK7Npv4YXHvdm0r56e2kbMkOFdeP3D47w7S4ZMJvDShw4m3V0/wqfRzQK478k72b87Ae9IDx69KbJe2gUYP7kvJ4815WBCOgPGRpSTA/k7kiRx+lQmSNCsuf9VU6H++fs9CFnuRNEMM0aSiUeTcfn1FjNz0sk4nomfPQQEMOR6cE46TjDRXJh3O3CQfiQF52EZOzZv5Y5p95WWsxAEgVFDJ9Tjmf1HQ3DhBbcvIRODzEEJFRtcAYHuiJoYPvjqMG1bKli+1sR9t3vw4xLoNrxx1OprKAxuGjIKvDgZX0hsUwV/rrPhH1o3LboLyGQyZr16Kzu3JXDOZOXpl5ticKufIOywcB8eeuZO9uyIw81bx5PPN6syviors4j09EKio/3qrQ8XuOAp3VjQnNTiwkoNLZPZSMLpOGJojww5ZziGtlhPYUk+3pdZ5HrDulX4F7j0urB4EXfodPlye5JEdmYmJ5fGcUC7n5b9WnHDwDGl3zeNbM7DDzxd95OvhKtqbB0+kMKyhUcJDvPgtnu7XlaZGkmS+G3BQc6ezmPQyOa063jlLHinU+TL97dw5lQe/YY2ZdT4S9Oq9QY1/3v7bmZ/tZ7Thw/TuZ07T7wu48EZtatBdy0RGOzJHQ9O4aGXl5GXlU1QiDcZ6XmlasJ1xcfHUCPh0toQ2yqY2FZVSy44nSKvP/8jXVrmI5fBwrkePPvqbVelzNKONamEEwMC6DDgJnli1V5+0ovVZkHuKOu/TJDh6xVAkTYLe6oHEhKJwmlaSp2QCwq0OQaWr/yVabdde3o39YXZYmL9XyuwWi307TUIP5/L8/acS0ng4KHd+PkF0qNzvytqsGvsGST/tR6rQYvfTUNKDa4QNw8uGFxT77uB3bti+fijJXTv6MbX86Ft9x61yv691njqf5OZ/eUa9r1xFB8fDTGtHTidYr0ozctkMnr2aVYPvbwUb289Q4a3r3a7P37bQUbCHlo1E/logZwbbx1HbKuQeunDBW/WaWu38wHxEUiZhZcYWgB7Dm4nwt4cpeByQkRLrTkh7sG9Nl5xJ+WMSxVqAmMDyT6YicamI12eSKAzHL3ght7ixpG9Bxl6/egrVof4qhlbJUUWZk3+C0NGGPsVhezY+AtfLbqpxgPOjLt/J2G5ArXFjb9+3sz9b7Vj2JiqZx8H9yWzZ3syHbqE0Ll77et3PXrHb6SvckPrCGD22njSkwu597FLVeDVagX3PzIEu30ghYVmJvvoSy9sQYGJUycyCAr2qLIkw7WKJEn4uhXx1StuCIKdNz5bgU6voXXb8HLbFRdZyM83Ehzi2ehrQl5g2W+7uG1UIV3au2aDrWOL+W3hNm66pWZSDfWF2WwnN7cE94tEUh0KB83HX75BHxwQhhTgwJZkRSWoydWm07VjDxQKBX/8+Qs2q5VAWzhywTVkCAiIzspFYP/piJLEZ1++gyHFBwVKvjv2KVPveoAAv5p5FQ8d28vqxcvxKg4gWZ7GiZNHmHbrw1UO/MXGQvbs34FGo6Frh16lApKXy96DO9j0+zp8S0KwYuZsxvdETb+LOAIxeru8VqnmbYRoPenarRVdfnqM3Fwj7u6a0qxfURQ5cjgVSZRo3Tbkmnl2a4pCISc9OZ0v3tC6sgePnuarj8w88PiYctvZ7U7S0wrw9tbXu3eoobBaHZw+uIe3nnUZOCMHSTzxxkqefbXuBabLLxtqCbS6MqMNKZcaWgA5eZmIOEs/i4hEREbX6t6OjIniXFYSHjYfLJjQBmoYPfxmPkx8lZzCdGxWK9FCWYKPIApXRJD7AlctQD4324xHRhMUghK904PMPXLi47JrtG9OdjFxWy24WX1RCWo8s5uw6JsjVe4z58tdvHDzdla/YOLlSbv54r2tVW5fERnphezeeYaze83onO4IgoBbcSBbllctaqRUyvH1NZRe1BPHUvji7e9QFS5lyx/zWPjjxsvuS2Nn84ZDPHS7HJnMJeI54x41G1btLbfNH7/tYM7HX3N440+89NRXpKcWXJ3OXia52QVER5S9XKIjFORmF17RPpiMVu4Y+TPGkzriOYpZMlKgzEHe2xvPsEvrfVaHQq7g/nuewNBdhaN1CX3HDaBz+x78tWYdMSUdaGHrQg7p2CSXIGSWWzK9eg1ogDO7NjCZSlCnuKEV9CgFFQG5kaxat7TG+2/dvJGAknBUghp30ZvCM0XkFeZUun1eQQ6fffYuJ5eeZt8v+/ns63dwOB2X1WeL1UJiagLbt2/CzxiKIAhoBB1eOVqk/SlISWrEdA2nMwPYmBNbGjgvCAK+voZSQ8tud/LKs3MpjP8VY+KvvPLMHKzWy+tLY8dkshHiV0Kgv+ucO7RWYjeV1ylLSc7j1ZlfcnjjT3z3wdesXLb7anT1sjEarQRelFQslwvo1HWfOFUUn3VBgqYiQ+u3P37m7PZzJJNAkZSPSSoh2z+JW26aVqvjjxw6gbbD2mJvXYJvX0/unTqdhb/MITizKTHW9rhL3uTiuoZGeSH+kQFX1Jt81TxbouQs99mJk2RTPPKSygecC+QWm3CK5fe3OEyXZNRczJK5R/DIawUCaAv1LJ9/jMH3elW6/d9Z+Okpts4pRlasJ92Wg1YKQiu4SmJYJGOlxxZFie9ePcrZA2ZkapG7Xo7lr1/28/nzCmQyJUP6w6x393Ekwwud4Z+jVG/Xl5CY6iAkyHWLJaXaEfWW0t+pqMDKmePbeG2GS1Bw4iiRx9//mdtn1j4offvqBM4czcQv1INBE1oikzXMjKVJdwMfzTHz4nTX9X//OxPRA9yrvP/qm0VfnMK+L4hgwQ2TVEIWKUhd3Ol650NkZBW5ZpJc3nKPVqNj0vgyXZnMnDSUZtdsXS7IaSa15YzbUZo1bcHo7uNpXseaitc0An8rkyRRt7tNQBIrX/79c9Vi/LPOexYlKDiXw8Fje+jctmaxkGmZKfz4wzeo8rUUiHmYJCtBgsu7LygkIgQ9BWcd6OxgQkOcuiyOa8+mdSz5NBFEgc43eOPhKzJ1bBGd27nujRZNjXw9dzHDJlesUl+RhldjR61WkH/R/EmSJIx/K9s275s/+PAFAbXa5SF69q0d9L2uHXpD7TIAzyZksWzxFmRyORNvu77C+oN14cL4JCklDsWL5OU78faSs/+IFYvGo87jV0WB8HqxYh0tm91G/OHTBNgi8CaQbNIweubz5IMv1jqxRhAE+vcaTP9eg0v/Zimx4Ca4fscwmnJGcQxNUwXRTWIY1H9E7U60llw1Y0vlbSBNdwb/rDDMciNiO4kzvl05W1D9kCUpJYS25yjanI/e7k6OdwotRrdnY0FZdoEkSSRsi6cgMZ+oPtEY7RouDus02dVsyI+pkQvRmG9k/ZwDBGe5UkE9pCBOyPfTxBlLoV8W7SZ3KXfsi9n80SaKfnDHzR6BKIm8cncc3YaqkcnKZhLePkrWpoXj7t94A09FUSRxTwJOq5WwTs1QV5NSLHZvxtsf/cz4lALUKol5G/V0nD6WjQUugzLnXDYtwsuMS51OhlVQVvo7VsexX9Yzvuk5Hn9Kye7DmbzzlkjH+2umYHzZ+ENuG38mv7wDQQDPbv1QBMWQVNAwh6uIk3kZKM6/3nWCgRApihQPq8vQqiA2ojZ4e/phd7MgmVyudrtgo0VsG6bcfHd9nMI1jU5rwKovwZSsQoGCXJ807hxUc+2rrj168VfWeryLAzHLjRjCdfh4lc+qzcxO59jJg/j7B+F0isgoS66RiXLslyHxseT3+fhnhiMTZHgTwGnhEAbJA6fCjmczdwZ2asf+M1mXZCoWpuRx8MmdBGe0QBAENp5Kx/uGEu4ZUObZDQtRcCpTg7aCZzdGvYuLsxyvJvFxWcSfSiWmRWi1+ndyuYzYDl1449PddGglsnGHnBvGlc9O06gcqNVlBlhUuEBenrFWxtbZhCx++X4+rz2pxGaHp96Yw6Oz7sTbW1/9zjXg4jgqgLB7Irj3s+VoBTMOt3Ba3jyQjQV18/JUFQj/d5xOB4LoOp5ckBNIGIVuqnrPYPb086Ik0Yj2fK1QvbeBu29/FGUtl+DrwlUztiSNgehnx5G6fj+agHBajexDXFbNL3bsU/dwJnYzOYnZBPcbiLpDc05f5OU98O4C5JuM6Cw6js1eBzEG8lNz8bR4U6QqQNE6iLismonzFaVkIDOVeQlkggxNuBfiYH+iOvdF3iS43LEv5tzuAiLsIWX7pXlw1qhgw45zXNdDSW6ek7WH3AjoHE1GZuOUPROdIhlzP+PRYZn4BMIbH+5EO+ERNB5Vz7w8Jj3GooRkRLMT71sjOFtQNkA7FT6c2anmttEiarWMvYftpAvNkDJrZyAospIZe7/rZdStnZLglTmcTPVBpmigWzwoAPX4nkiShEkQKr3+DYWh30Di/phLZGoUAgKJfokEtptwWYZWiamYpLQzeHv4Euh3aXCsUqFk0uQ7+G3JfLCBu78HN427vUb9E0URQai4DuQ/AZkg8NB9T7Nx6yqsVivjeoy/xFiqii7te+Lh7sW+AzuJ8GvGgN5Dy/1Wx08d5s9Fv2Eo9OaQ6hD65hryPDMIKIjAiQNzUCHtW3ep8fGkv9WE9dL6EN4rmNDgSDq07oogCBVmKh46XoRnhn9p37yLAklKTOXFLwv59FkJQYAXPnXiaDWQ0xU8u6m62HJB91eLP37bQVHaLvp1hfV/CJxu2ouhI6oWAh85rgepKbGkphQwdbr/JYaPxs2Po6cSad1cicUisveogmG31s5Y+OPXrbw6Q4laLUOthsenOViz6gATJl8aC3y5XLy8ZzSVXSP92AeRJAklEJ9T9+c0LU9bI0MLXF50j1B3jCeK0YkGCjU5VdamrQhRdHImOQ5RFIkKj0FRQfHqm8bdzk/2b8nPSgclTBp3R40NLVF01mvZoKuXjWiX4aFvhseo81kZWXC5q8ZR3YdCd9f/xfSyv5sL8rHvyCfQGubK0soykOSTiXpiLGmnzuARHUWbwdchptfsBtNJoZT4WHEUO1AICgqVeXi1iSW697BLjn0x1uJiCk6nECL5l6agmjRmojrdxTvrtvLJ7/GYRANe192ClKnj6hROcpGfnIS1MA+vJk1R68vXCss6uo/HR2YztL/L4PwxxsmNLy0jaGj1a+uehvMP0N+urwDIuz7EuJk/4aa1ky+E4tdvEmJ67QxO+99c/GaTDDFTBw20Jm8uyMO46Usi/Yyk5amQdbgVQwOIeBZnZnLs24XITCIyPx3t7rsNpUaDlmDaPnEX8UtWIIkSXbrdgaVIWWNDKyn1LPN//B51ngGLyohPjDe3TbwXtap8kG94SBOmP/RsjfsrSRI//fIt6QlpIEi06NCaEUMayMN4ldGoNdxw/Zha7x8T1YKYqBYVfrdh/Sr8C11p7Hq7G1mJyYyeNJ49+3agUaq4eegTaDU1LzMWFB5CRnIWBtETh2QHH4kRg8ZX+DK5oMd15qyZ/C2nkKFAf35dwCwYMfhGkBY8nJFPrkAQJOQxQ/BQN69wHIxTXxp03xBGV052MUcPpxAa7kPTZpdWOTi+fx/vPee6tzu2hSde3V2tsQUQEupFSGjF4SZ3PTic7z5fzk/LsrHaldz32MhaJwrIFQrMFgnN+cevxCShrGMJsorkFwKtrgNIkkTm+h+IVMfhcAqkKzrg13tcnY4nZVovMbScTicLfp1Ndmo2yGH4iLE0O3/PT7vtYVasW0J2diZdm3ejR5eah5A4nU6++O5dbGdFEKHEO59ptz9ESGD5BCyVUsXUKQ9c1nkcPLKHtauWg11A66Nl2u0PXdazVhlXzdiS2UDXQMVyHXl2lBelsQuCgNwi0Kp5P2h+/oKmXk6LCnpNvpuDS39BtDjwiAilXfcRCNX0P27VOqItLYjnKAbJAwsmFH5e+Bq98A0rq7lH3vl/V4nUA/MY2ukIrbs5+XqBBmf4/bj5lHk6VBkmAi9SbXAzyFAZbaXXz261YLOasJpKcPcJRKGsmZaYjgBo9zgAngBptT+HTEVfXvt0JZNHwcbtEhnFnQlJq97QkkSRorxMZHIFbhd5JmwWE3abBZ3BE6ECgy1/53csft+ITidDFO2Mf3AuWunFevXkSJLEjk/mEpkeiUyQYU2ycOzDH+k5xbWMp8MP/2EuT5M+yQRQ46XDP/74hYCcSFd/rX4kHD7K+zmv8uj9z6DT1n7pYuPWVRTuL8Hf6Rr0Tm89zanoozRvWrdSJ/82BKm8V1AmygnwD+a2iffWqr2xIybxh+IX0pJSUOlU3DPu0Spn7Z2iA7AcS8CQJmDBxDnpJHKU5GlyGNntDeQyBbR5tGyHSsZCSalGtGo4TQCputhLxFPrg4P7z7L+9z8Yfp2T/esF9u5oy8TbrivrgyShUZefyl782Wp1YDLZyEgrxC/ArcaFqRUKOfc+Uj9SPhNvv45nXpvDo3fYMFlEvl6gZdbrVddevUBOdjG5uUYim/iWloI7lX+EY8kZZBn6cCY/oNTrpDsv/p9+ciMzhp1kcF/X9t8t2M3K7c3wDa847q4mVJRxuHTFQgr3mfESg1xyTYsW8NAjM9Dr3JDL5Yys5URs256NSPFKfCSXIazN1vPJx28z/uZb6Nyu9pqOZouJNX8uJyDPFc9oy7OyYPGcyzbYKuIqGlvO0hdEfaOTdBz2EjGbjGgkHdmadCLCWtbpeHpUDOp7S9kfks3V7qMotKJATXPaY8WMEycKD/cGO+/aUFySR/cmR3jwNpeB1LOzxE33zCewSdnNFSaP5fWPVjLnIxGtVuDZ1+z4qnrCyXTS0r6mZUwBqekmYsPUHNvpgY/PPbgZrqycRZS6C3EJ/sx46RRabQQx/s3Px59UjsNhJz7hM0YMKqTYCFs3RNA0+naSkpcTHrKfoADYtF5PVJMHUKnKB5sH6FyGFoBMJtAs2Ib5TAFKZe3LYyQkHODcyYMIMoH23Yei07mjKVKULv+oBQ1SVnaF98/lxmdJf9Ok0aDHkObJ8tW/MmHMbbU+h6Tkc+gdHqU1xnRmd84mJfxnbF0mrdq35UDGAbzM/lhkJjQhSrzca/9MyWQyRg+7+bL2aRvpx2YEgoXm2CUbIiIydzXuaTagZvFiBlnFQff1aXCtXLKe959VIggq+naH5945gsnUu7QAsyAIOGUBHD6RSdsWSvYesiOoQ5AkiS8+WIq9+CzGEhPFRifhYe6ENu/GyHH1I8JcU3x8DDz+wp1sXHsIhULBrNfbV1kk+gKLftxIYcZhIkMlfvpayf1P3MKxjMOs+XEH7VqoOXXiNCURNyG5NykNWAdwpp5iYO8yY3toP4E/15xET3StzyHAaOXgwT/Zu8FOTIuWDOg9hMy0DPSiyyASBAFVgZb07FSaRtSt5mJRYSFqUVM6zmjQobHp2LJxfZ2MrbzCHBTGsjFcJagpKao+aa8mXDVjS69WNmi173YPzeTP1YspKMhnYNtBdGjTtcGOVRlN/cfzRdr7+GSFIENOfkAGD468vVGVMUlONxNykR6sUing76m45Nrkh/yPB56chyA4aBo2hCFd27Bq22vM/9KGXmcADDz1cjaz33fy6LNL6dTumSt7IgAEADW/zpv2/MCnbxTTJNw1KMdGJ7J67UF6djrA4/e7BrrbbzIx86Xl9OhePvh51VZvioozcHeT43BIpKRqGd4n/JJj1JTDx/eRtG0vAaYQRElkZ8F8xt50M+jsSEZXgLpTcuLuqamX5yayaRRxSQl4i/7YJCvFFBBIOBarpU7txjRtwd5je/CwuVyhRkMBMdGDq9nrP/5O/15DcDN4cPjofoK8/Rg+aNwVj39z07vjH+1D8bECdE43CvU59O3X+/Luv4vKAwWG+hN33gNWnwaXVlVeK8nXW8BstpUaWwCPzhzPT99v4KflWQSFBvLQjP6sW32I7i2SGDpAC2j5a7uJnDw7+47sxjS0U7n9rwSenjrGTqi5oZCVWURR5mFmPewyDsYOEXnig/mYzSZmv+5emo1988O/IQt4tJzXSenowvK1SYwc4jIB/lgNnWO60SSsdmOLzW7lw48/xzc9FI2gZ/+5veTkZ6HUKbFKFtSCa/nSYbBWWsz+cujaqSez935OYH4TAM5xCn9CsIt1c2T4ePpjdzMjWVz3lAUTnr41Vy2oiqtmbBUWFfDFV++h1KiYMG5KuTpr9YFSoWTs8En12ubl4uHmxX33Pcb6TStAELh5wIxGYWilZydyOO473N3sFBcFsPe4geEDzXh5ylm01IFe2/6Sfbw8fBncc3q5v7npLeh1ZUts0ZEqSkwSGnXtCiFfaWy2PCLDymZ3LWLgk+8WodRa+WaeiruneODvq0AmFF2yb68OD/PAkx/i51tEbp6azi3uq1Nf9u7bgZ/JtXSbxlmcBRKrZq/A4WEnxTcOtV2LzB3uuOn+Oh3nAsMH38ifLGbLpg1o7HqiaUW2RxITe91Rp3Z7du1PVnYGZ07GgwCdunUlKqJ+C7o2BixWC1988z5I0K17Lzq27Vbvx+jUrjud2nWv93Yvh6lTHuSv7WvJyEylR5tRtIi5vGWmTtEB7EvIpEdICDtSUgkM9cdocue01YMQ7ala9clmc/DF+0vAkU+JWYZK48Wm7Wn076kiLcPBybM6Jv0tmF0ul3HbXQPL/S0xIY1hN5Y9/13aa/jkuwJCg9QUFZqvuLF1ueTmGGl6kTa3TicjLyUHrQaef9PMkw964ekhJ8jPCXYlnS6qZ9m2+QBWrE5h7abD2B2gUQygS+vaG74p6Ykoc7TIBQUlUiF51mycW5xIbiJWPyNauxuiwkGv/v3xdPeuy2kD4O8bxMTb7+Cb7z5CKhYIJAxJKRISVbdKMhq1hhtvmsyyZYvBDh7+HkwYW3tP/8VcNWPLUmxFV+yNQ3Lwdd5HPPbIcxVmE1zreLp7c+Ooyy8K3FDYHXaOxH/M7I8dyOUC8WfjePWd5jz+HMhkJnw9OtIkpAMHjm/E0z2EJqGVvyjNZl+SUvIJD1XgcEgcPWmlWRMdclnDlKKobyJDevLFnHgemKpAkiQ++qaIr99zp0m4O8tWl/D7yhL0OjUG/aVBzG56d4b1eaHe+qLV6iiRrDhxICLSRIgFJzhz/RFbm5ky6R406vpTqBYEgZFDJtCtUx+Wr/4N0WlnQr8pRFQR5C+KYo1EAMcMnwjD662rjZL8vDxaZnsiCALr09ag1epo0az28S6NFZlMVu8FeevKN5/8wdQxGTSNVOJ0OnnkfxkcTGrDqu2paHQGHnt2EBvWuoLDe/VtXulyXIcuzVm8Io67J7sMrl+Xl9C2lYrf16kYd1f9alw1BE2ifVkwW8GoQSIajYyN20x0ay/j8Xu9yct38sbH+cya7kVcshuxYZe+W/t0urXe+qLXueFU28EBaZyjGW0RJAGKIMP7LA/NmIFapalXEdHI0Gheeu59/lz9KznZWURENGFgv8oHnppmSDdtEsvjjz5Xb/28wFWzbuSSAgRQCArkeSqyczMI8r+6Fcr/DeQV5NCzmxX5ecO2aRMlWl0ufTq8BMCZ5EOcy3qFKRNt7DskZ+v+bvTuWLFl37fzfbzwxufo9Gkkp+Xgpovgt6Vt6dl+4hU7n7oQE9mVAycKGHfHfPR6C2HBMr77qYhXZvowaoiB4ZMLiQzqRc8Ooxu8L6OH38znqe9iSbOhdpbFh8kFBTabo14NrYvx9w1k6i1VB38mpyWycOEcRJOE3CBnyi13EeB7+cWu/0nInYrSQduvJIQ9e7f9I42txojdnE/TSJcBJZcLdG7rpFWfNkQ2GYDZbOe1WbOZMsqEIAi8+uxWnn1lKroKdAE7dY0mNbkbT71xiNycQowWBeGRgTz67KirVlj+ctBolNwzfTLTnv4BhViEViuikENisp2IMCU5hTLue7UJfu1vhtyG7UuAbxCRHZpwbv/Z0rCHC8gdSiRJapDfVCFXMKaaWESH08GceZ+Tn5qPpJDo1qsX/XoNqve+VEeNjC1BEIYCHwFy4FtJkt782/ePA3cBDiAbuFOSpMSqWy3LBnGo7Oh1jX8m8U/Aw82TA8fLLntxiYjZVJbWmpD6K7M/FhAEDR3awDPn9mK2jK8w9VWlVDO452OuDw1TF7rBMZrzee1ZPS1iXMu7G7aa+HOtkehINeEBg+jVcfIV6YdOq+fRB58l/twJfl08H2eOE7kgp0CZS2zT2gm9Xi6iKPLnml9JTUxGo9cwYdytGHRuLFo4B9/UMARBQMwXWbDwex59sOZyEP9EpIuETCyCiUCP+imy/h/VYxfVFJdYcDO4Xt4nEwT6j3O9P37/ZRuPTbXSoplrwhISaOfXBVu5ddr1FbY16sbucOPVXaqtC3o3Nc0i4MXHXZnUVqvIi+/m8epMH7JtQQyf+goHDiVBbsMnZY0fPYX0nqks+WM+xlPF6EU37JINuZesThnOl8PJ+KNs2rgGCejb53paxbZj2YpF2I8J+EuumNrd63YQ27z1FZ8wVmtsCYIgBz4DBuFK8N0jCMIySZKOX7TZAaCzJEkmQRDuB94GqjQ3HQobebJMHBobbXq0w91Qu1gmh8OOKImo6pAF9m9Co9biqb2Rux/7lbBgkRNxBvp1Kos30mrKz0q8vVylFepDZ6QxYrJk0yyqLG4jJkrJjJeMyKRobuh9edlbdUWpUNKiaVvuvSeAJb/Px2p3EtsshsEDrkxZid/++JnM7dkYRC/sko2v8z7kkQeeQTSXZS7KBBkOk7Oalv75yLQyckhDEAXkITBs0D21akeSJCxWMxq19h8rAFvfTH1gNE++8RNRoVbSsqD7gH6lqu1mowVfrzIPio+XDLOpbkkfjZn8PBORFy0IqdUyMrIlbnxSQN65/pYJa0qQXwj33v4YS/6cT1Z6JlqDlntufLT6HeuBlLREls5fTEChy6hanv47+jsN5ObkoJPKnDmqYh1pGUmNz9jCld4VL0nSGQBBEBYAo4FSY0uSpIsrKe8Eqg1S8g8IYuyE8bi7eeJdy1nhr8t+IuFIHIIk4BPhwx23PHBNuH+vNi2i+9Bc7InVZqVpv/JGlEJox+8rNzHmBgVnkxzsO+DPyP5XJ6jf4bCTlH4OuVzOudTtWO2ZBHi3o13swOp3riFBvh159/NDzHxEjyRJvPdFEcHed9K59dUrsuznHcA9d06/4sdNT0rFXXRlCikFFVKejBJTEXKDHDHPiUyQ45AcqN0ad+DwlcDXx5/Jk2/H4XQQEhBWK6Xp02eOs+TXBcgtSiS9kylT7ibI/1Il//8oj6+vgZffu5fiIgs6vQq5vGzMHzyiK298foq3npEjCPDqJw5unlb/yQs1JfFcLnm5RvJzCziw+zg6g57b7x5c4bJmbQgO8eCTrU5uGiGi08nYvtdMitWH4AeeQcq8OhNkuVzO+NFXPk559/7teBcGlk5afIqC2bVnK8EhISSeSkbvdL3HrB4lhIU0ueL9q4mxFQIkX/Q5Bajq7p0GrKzoC0EQ7gHuAfDx8iMytGkNu3kpx08fInFXEgE2VzpGybEi1mz6g6HXNXx8zeHj+zl1+iiREdF06dCrwY/XEMhk8gq9Vd3bjWf7NneWLj+MQu7DDX2mXJUZt9liYu3OV5gwuoDMbBu6IgtfvuzL0pVn2bApj+7tbqrzMTJzU8guWkRYpJ37nsokv8DJw9M8+XruauDqGVtXC0EhIEllnk2H0oZGrePWW+7m5wWzcZocqNxU3HpL7bw41zp/H7/qGmP6+28LCch0CcuKhSKLfpl7RZZncwuy2bxtHUqlkuv7DrtmvdZu7pfGMYaGeXPTnRN57qNNgMTYW/sTHnl1lnhnf7ECPacJDxb5Y2kxb87yRqnM4X/Pz+V/b0+rtdr8BURR5O2X5nNDPydPvZJNXoFI61gVw7vBpnMpuGv/eVnAVeHt5U26PAOV6DJkLTITYV6BDOw7nPkFs8lMSgU5XHfdkHqRn7hc6jVAXhCEKUBnoELdfUmSvga+BogKa1ZhdZqNW1cTH3cSvcHA2JGTKh0IUlIT0VndSkXN9A43MjLqIEFeQ1atX8qJTcdxN/uwfc82ziUm1EkEsjHSvsVg4OpqI20/OI9P3ijGz1cNqPljjcBfO8yMGaZjzaZDQPXGVnZeGqfObUKt9KJjy8HI5eUHt0OnfuabDyWUSk8Afv6tCINejq+Ptf5P6Bpg9Oib+HnebFT5Ohw6G516dUWj1qBRa3j0wauhm9a4qMn4lZKeyKo1y0CSGNB/CNGRFcfbORx2BKu83PKsaGn4gl3ZuZl8982n+OSE4MTBp8ff5uH7ZzZYAsbVIKppAE88d2VDAP5OUmIuOimOh+90/a6D+2p4/aM8Xpnpy/U9TMSdyqJFq6qXsaxWB8t/301JsYnrhnQkNKy8ZMLO7QkM6ZnLiIFu3HKjGyaTyDuf53NdVxmrtyRD9L/L2OrTfSDHTxwm91w6SKAKl3NdnxuQyWTcctNdV7t7NTK2UoGwiz6HUkGxG0EQBgKzgH6SJNXqbbVy3e/EbYzDw+aLUbLwXuIrNI2KITAghL49BpZbIoyNacOhzYfQlrgC7wo1OfSIbXgv0/FDR/CxhIAAnjY/zp44gziqZinx/1FzRKkYP9+y2zMiVMnpMy79Lqu1ek9bSkY8afkf88LTIinpIu99uofhfWeVW+6Ry50olWVteXnIyct3kpntBnUTOL4mCQuO5JFHZpKelYKnh3etl/f/rWTnZjLv++8IyItAQGBB4lzCYiMw6N24ru/QcvpCCoUSuZuAM9+VCGGTrGg9G97DtGrdUvxzIpALckCNI8XOnoPb6NOt4gDy/6gdeXkmIkLKjGetVlYqMlpYBOGaql+9druT12bN4f7JJvx9ZLz75TFuvP1mmsYElm5jNlmJuCjCQ6sVEEVYtE5C1+LakN+pT+RyOffd+QSpmUlIkkRoYESjei/XpCd7gGaCIDQRBEEFTASWXbyBIAgdgK+AUZIkZdW2Mwmn4kqVpwvJQ8wE03YHR5cdY/a8T5Gksps3PKQJfYb3Jz80nYLQDGL6x9C1Y8MaWw6no0Hb/48yIoL68Om3rt/b4ZD4bHYh/j5yXnjTSYjfyGr2hhNnF/P+ywKB/go6t1Nx46h0zqbEl9smxK8/733hQJIkcvOcfP69iW9/DKZ3+8cuu7/ZeZmcPncco7nksvdtTGg1OqLCY/4ztGrB7n1b8coLdCURYKe4uAjLHie5m4r48osPKSgqXwD19tvuw9wsn/zgdKRWFm6b3LDLs06nE6nhnWf/ATSPDWTVZiUmkytr9dflJbi7CSxbYyEhI5ioaL8q99+1PZ5xg4pp11JFUICCt55R8fuijeW26dajKXN/U1JU7ESSJJ5/K5/TKQpyIvvjFnx5y2Rmi4nT546TlVtBNfFrCJlMRlhQJOHBTRqVoQU18GxJkuQQBOEhYDUu6YfZkiQdEwThZWCvJEnLgHcAA/DLebd4kiRJl1+hUy6VxowUkkdTWoMAbqIn2WdTKCzOLzc77N65D90797nsw1wuSalnWbhwLpJZoNCZi6QW8LT4UaIuILJFFDKZDKfTiSAIdb7AoiiWKja3b9ulnHbP6YTjrFq1DEEUiGgWxcgh4/8xGUypmQkcif8WHy8b2bme9Ov8GOdSb+bu6Zux22V46Efz+zIbYYFtCfANrrY9QXD9u4BSCZIkltsmNqoHcYlKpj70FzJBz6j+U9BrDRQW53Pg+F8YdL40i3SpKm/evo4De/cgINC+c2f69iwL0l+9fhlHth5CblRh8zEyacpUwq9CAOa2XRvZuW0rgigQEh3GTWNu+8fcH9cCBoM7dlkSGklLFqlE0By14JIg8M0OYe3GP5kwuizkwMfTjwfvfbLB++Vw2Pnux88oSi/EKpqx6e2EGZvhxIE5tJAu7XshSRJO0VkvwtLx506yZ992fH38ua7PDaV/t1lM7Pv4Z6QSI8cDJDp+HOV6a/wDsFodfPTWItRCPsVGgYEjr+P+GVN48fPlyHDgE9gUz3B3nJ4ePPZs9ct7oiihuOhSuB7j8paywU3Do7Pu4K3Zq3HY7PQfNpjhLS2sz23GttWHcWZJWHq46mkWFmbz6ZdzcVqcePh5MPmmaaUZ/OlZKfww52tUuXqcWhsx3WIZdcOE+vppakxuXjY/LfgWh9GB0qBkyuR78PKou9p8Y6FGT5YkSSuAFX/72wsX/b9e0sOGDxvHop9+QJPnhl1m/fu9ddVeHIsW/YBfWjiCIOAnhZLif5rwzmG0jexNp7bd+f6nz8lOzAZBolWntgwfPK7Wx/p+3meYjjnQO91YcXgZucNy6N1tAAVFeSxZuNC1RCEIJKYnsVG3iuv63lB9o42IwuICth/8EF/fEnJy1XRqcT++XsEcjv+MuZ86kckE8guymP7sZwzp9TStqJ0xHR06glmvfcXzTwikpDuZv9iX4X0vHeSaRXSmWUTn0s9pmWeJT/uQe26zcipeYO3G1oT69mPP6l34mlxG3p7cXfj5B9CiaRvMFhOHdu4noMSVqCFlSyxb9gsP3f9UrfpdW1Izkti+agv+Ja4V/+y8XDb4rKRD264YzSUE+YWgUFRf2PY/ak+vbgM4fHgfeWczMTtL8OLv3ourM34tXbEQ6YSiVGcoVXsGbTc5Xp5+XNfnTg4f28emdWsQ7DK0vhqm3f5wrYPm9x/exfola/ApDiJOnkBc/Ad07e/KTNu1YC7+p9xRCZ44Tth58579LFrZqd7O80ogSRLffrYcY14SDgdEt27H2Jt68d1nf/LgpFyahLkEPGe+sYbYx+9ixnO10+nr1rMprzyjIzrchp+PnFc/sTHsxr6XbOfra+DRp24s/Xy68Ah7PpjHI0OL8G4NH8xdi7rZw+xcM5/wnChkggxLqon5wvfcPtkl+fP7soX4Z0W4Ct4b4dTe4xT2LsDDzbNWfa8tP/z0FR6JgcgFOc5MBz/+/DV3T32ErLwMfDz9MFzjWpyNqj5Ok/Cm3P/wE5xJOk1GZhpHNh/CqzgAs6IE7yiv0vqJTqcTh9OOWtXwQZ2iKF6iM6QXDKVB8avWL8V0xE6A0zWQndx6kuYxJ2kaeflBP8XGQvLPFeAnhoIAvqZgDuzZTe9uAzibFIcmz620H+52b84kxF1zxtb2Qx/zxXt5GPQyHA47dzz0CX06PkvrFo5Sr6CXpxw3t8LLaleSJCRJLI3JahLamtTM6Tz45Do0ak+G9h57SYB8RRxN+JnvPga5XEPHtpCVc4Llfwh4Gv1K35WeRj+OHj3gMrasJhT2MiNGEAS4CjJUZ87FoSt2L+2jm92Lrds3sn/jPhQ2JU4/K/fePb1OtTkLiwtY9OtcbCY7ASEBjB0xuUa/6b8FhVzBg/c8yemzxzGajaxbtQIhQ0BARr5/OhOuexy48tpaebl5aC/SGdKb3GnVsh0dWnWl2FjEplVrCciPBMCWb2HRkh+5fdK9tTrWzu1b8C9xjV960Z2cpDQKi7KBGMR8MyrBZYAqBCVFafIal4BqLPy5ZDc9Wpzlul6uZ/7rn/Zy+GAoVlMBTcJcfxMEge4dRJIS8/C8jDg8p1MslbFQqxU8+8odLPxpM8YSEyMmdSsXr1UZuzcmMX1UEQN6ut6NXzU1cePj81GbNC5jCtCgozA7s3QfyS6Vfgcgt6kwWYxX1NiSJAlHifN8LKGrckZhbgEff/QWqiItdp2F/jcMqlOokCRJ/LHqF5LPJiFXy7hx7C34edeu8HZtaFTGFoC7wYP2LbtAS4iJasGBw3uIDYihV5f+gMu42b9zDwpRiVuwgbtufwRlA87YZTIZSreLdYbsqN3LNFLS01MwON1LP2tNBpKSz9bK2BIEGdLf3Xnn8fcNwq6zgNn12YoZlVrB0hUL0en09Os1GJXyyuofWW0WTiTsAqBl0+41Epb19irBoHc92AqFQGiwGbVKw4nDCiTJtRRbVOykqLjms5i9x5Zitm/CoJPIyAxlcM/HkMvlhAREExIQfVnnpFSKyOVlL0A/HwkfH3/OKs/h4XC55I3KIloEu7xknm7eCD4S9hIbSkFFsSKf0Cbhl3XM+iAsNJLduh0YzC5jKkeWjrJQg7/DJU/gSLHz6+8/c8cttStkLYoi33z3EV4pQRgEd7IS8/nF8SMTb7yjvk7hH4FMJic22rX0Hxvdmk1bVuMURSb1vgV3gwepGUn8OO8bZCY56CTG3zSFqPCGDWYOCQ3j7KlEDBd0hjxNRIS4amDmFWSjLCmbtKoEDcbCvArbqSkXy4dA2URVVJV9J0kSMr2ded/uISu9hNET29Cs+ZVPx9+76wwpyVl06NSUiCbVxynGnUjkzsfLXpuD+sj4c9c5lBp3UtJLCA1yfbf3iIzb+tdsCexsQhZzvviVAG87mXlKbr1nDE1jgtDp1dxxz+WVlbGYbPhFlv32bgYZCrmETVn27nBKThTasklSk6ZNiUtOwMPujUOyI/rYr6gRAq57RKYtk54RJZESUxEtbJ1d948NNq5dQ5cOPWs9Qflj9WKS/krFzemDU3LyfcHnTH9k1hV7b171KYVURcRmVEQMN468hd5dByAIAifPHGXd6pXY8x0UFOZRdKKEpSsWNngfb7vlXkqic8gLSMUaU8itt5TN+qKjmlOoLBucjG4FNI2uXSqbQeeGfzN/ChW52CQr2YYUuvXsDUBIYDixvWLJ8Egkx5BKUVg25+LPcHLDSY7+eYzPvn4Hh8NetxO9DCxWM6u3v8j4Gxcw/sYFrNr2PyzW6pWa8/K1WCyu2ClRlEhN16BSqmkReQ93PKTm8efh/hne9Gr/YI36kZqZRHDoWr54R+Kdl+CZx8+y/eCCWp+Xt1t3vp3nCszPynGwbKUHQweMxqu9O1keSWR5JOHZzo0eXVzqJjKZjHvumo6yE1iaFxB9XRSjq6nV1RBEhkbTpn87Mn0SyfJOQmjiROssC4hRCEqs5tpLWhSVFCAUylEIromNXnQjOy2zmr3++VQ1fum1BoYPvpFRQyfgbvBAkiQ++/JtTBlmjEVGjBkmfl38U4P3cej1o/Hu7E5eYBp5IakMGn0D3p4uw8LfJwibu7n0PMwY8fb3qfWx+vS7jiz3FGySlSJZPm5RBtzdXMdqO3osZ0LOkuqZTEqTU9gFC3OeiWPDh8U8Nm4l+3Yl1f1kL4NvP19O4dll9InZzcqFP7Fj64lq94lsFsq2vWXj7KadIs1bRjDtwZG8O9udWe/YefRFJ536Xo+XV828Wj9+vYRPXoQXH1fx6Uvw07dLa3tKdOwTzuvfC5jNIqIo8ew7Eh5NBtKye38yfM+S7ZZKXmgqN0+4o3SfoQNH02JQcywxBcjaO7j37kfrJXbvcpk0cSq5oSlkeiaSF5aGr2dAOcNKZpfVKUkt5Wwibk5PAOSCHGWelsychpeLusBV82zZ7Dbe++gVRJOIwiDn1lvuwde76pnN0qWLaCF2QiG4uh0nHSY3O/uyjpuYcoaVq5aCJNG5Sw86t+/BX9vXEh93Ei8fH0YNnXBJbIuPtx8P3z+zwvb69LienNwsEuPOIgkSPXv2ITy49sHRt028l10xW0jPSOX61tcRFVEWZzRiyHgG9h+BzW7ls6/fRlakRIOOPLJQnFVy9PRBl1fwIopKCtl1ZDYKuRl3fRs6tao+k68m7D22jDeeL6ZJuMub9dqsIt7/9A96dSgLrBRFJ1v3/4hIMg67J706TKN7m4e5a/qHBPgbycpR0765K24gLCiWsKC3XTOb2JrPXLLzznHzBAcXbuWWMUqstkuUSWpMu9hBnEjQMvWhncgEA4N63IZSoeTWm+8pNSb/rkmk1xpqvexSnwy+biSDBowoXab65JO3ELNEZIKMAlU2bWNrX8BSp9XjUJa9ZERJRKb89wbfSxLMnvcZeSm5SHKJ7r1706dH1fIJ+w7vwMsYhL/giv3Ll7LJLUy7xBNUFTa7lcW/z6MwrxCfAF/GjZhERnYaa9f/CQgMHTzqErFVmUzGpPF3VtieVqNj7E03s/zPJWAHz0Avxo+6pUZ9qYg2LTriMc2L/Yd24ePTjF5dBnDgrGuM9gltQvfXnsCmzUaVsZ9N0zcRLLljxYwxzc637+2i06LyXmFJkpg/dwMZKakoVHqm3je8QjHTy6Wk2IKjKJ5J53Wwnm8m8cQb2+jRu0W57bZvOcGOjbtxigJDRvdl7IQefP5+Fis2puBwQHizdrTvFAnAs6/cdlnX8gIeBjuK89HwcrmAp1vtJ80eXhrCb5vM6Ne2ITNLdOk+BS+jB3pbCGOvuw6z1YRea7jE8zhowIirruMcHBjGE9NfKF1anvPTF5hyStBJBmySFY2vuk6rWAqNAqfkQH7efnBobLUuE1ir41+xI/2NvLxcmts7u8T8cp38NP+7aoUTVahLDS1wrT0HBJUJw23btZHdO7YjiAJRLZsxamj5jIq8whzm/zCHwDyXavOm1HUcOroP4wkzHjZfssjj6/QPeeDummcICYLAuJH1V6xYEAS6d7o0EPICGrUGtUpNSU4JMUJ7ADzx5YS0H0ksP8t2OOxs3vc6X75nwt1NzrJVq9mwyUnXNmPq3E+Hw4yHW5lj1N0gw+ks79nauPsrHrnvOO1aKcjKyeTRZ99mZL8XGdbnVdeg1PzSQelyB6pg/2YsW6Wk03k7YvseBwZd7SsTALSI7k2L6N6X/P1aEX7csms9ycnn6NyjO3GnTyLaJVrGtmJA7yG1blOlVNPrur5sX78FpUWN3cPClLF312Ovry0Ki/KxZoj4ia6EhJ1rthHTrGWV9daSkhPxlHxK4+rc8SZTllR6z+fkZTF/4WwcJicaDw23Tb4H/d+Cgr+b+ymyUxp0eJGbUMjXOR9SlFVMQJ4rQWNu0ldMu/ch/HxqvgwUE9WSmEdaXs7pV0l4SJNKs3Flcjk6H08OfHCEWKlTaYxOmpRIQfGlxZJnf7mS/m0T6DFRSXZOEc+//CMvvXNXnWPdrDYHbobyBodKWX78PHTgHHH71vDmkyokCV54dykeHpN48IkxlRpVtelXoVGDyWRDp5NhNosUFNetlI97gCfBk+5ETNcQ6hNO9iGXx1Aul18TQeZJqWfYvnMTnt7eqLoaKcjOReeuZ8qNj9Sp3fFjp/Bd/qfI89U4VDba9epYGgd+Jbh6MVtiWVCeTJDjMFbvHvQJ9MWcakIj6BAlEbO+hBGDxwNwLiWBHSu34Wd01RY7m3uOHT5/lS73ABw+ug/3PJ/SB8K3JISE00doamsLgBY92Rn5mMzGK1alvDY4RScGjTtcNAGSKQVaNW9fbrv07FSGDS7G/Xwtu1FDFaxYexgYU+c+tG52A8+8eoBP3nANULNel9OmafmXuU6fTLtWrlvM31dBs6g8rDYLapWm3gKD/X2CyI6/ibunL0erlTAZWzKg69h6aftaZN6ibyg4WIzB7skR7RFi+zVn6MAx9dJ27+7X075tVwqL8/HzDrziMYKNCbvdjk4sW6ZVF+tISU+s0thq3bIdy3b/hp/ZNUZlypMZPaKsEsLcH7/COzkImSDHnm5j7s9f88BdT5R+L4oiJVkl+OOKBdJJBk4mnaKpqW3pWOqTF8z2XZuuylL25aBWqUsNLQA1aq4bcWldyOKcVHp0cnkz/HwVtGhiIjfXiK9v3TQjvL31nEnzIO5sEc2aKFmy0kpoZPty22xau58X71chCAKCAPffKmfhxiNERl1fr4kN902fwMx3f8VNa6HYrObe6TdWv9M/lBNxR/hjwa/4FoZSKGRhbVLEw/fOrJdEHG9PXx57ZBZZeRkYdO5X1KsFV9PYkguITtcSh1NyonSr3j04cfwd/OT8jvzsdGQqgQdvnFHqfj0ddwxDiWfprNHD6sOpuOPljC0vTx9sSiv683adDQuCvHw9OFHmbPQp8gq5Au9Qb0wnStBhoEjIo0X7Npe8/PQ6A8kpZTepzSZhsdTPJff1CqCl9DT3PrYYSZJoHzsBH8/yy8AlJbJyv212royYkOpf0CWmYiwWM96evjXKVGrVtE+tJSKuZXLyslj4yxwcZpd2zk033k56fBoBjggQwMviz8kjx6s1tgqLCyg2FhLgG1ytm96gc7smZscNjVKpxOgoQn8+OcbibqpWWy0mqiVdhqZyYM8ekKBLh66lXmyH04GzRER23gBRCiqKC8zl9pfJZEiKMu+LJEkIchl2bChwXTe7YEOra/y1DpsNb0bckRN4FUTikBwI0TnccsewS7Yz22SIoqNUfT0rV0BfD0WcBUFg5ktTmPfdOvJ/y6d1h2bcNLa8DIWXtzvnUlJp1sT1255NduLt61lt21arg4z0Qvz83dDpqh/v/AM9eO71ipd5/8mIopNFv/9IVnIGKFzlwrZsXo9/oUtmSYcBS5KRsylxNI2oPA7aZreSlZuBh5tntdnWCoWSYP+wKrdpKK6aseXj7UuhJhOnyYHCoKyRerJKqWbqlAcq/C48rAnHtMfQWlweKaO8iJjg8plobVt2Ym+LHeTEpSFzyiHYwei+N7F+2Sp0BR5YtCZiO7a8Jmbs0257iN9XLCQvJ5eo0CbcUMEL1dvDl+P7u/DhV7to3tTBL0v1tG9+R731wc87mEE9K3ftxkRM4cGnvmLIdVb2HFDirh1ZrfG0/cDPePnsJChA4s+/3BnUY1aDFsrds38bh48ewMPTk1E3TEClVCNJEl/N+YDE+DNIgkSvvgMYed6DWlt27PmLk6ePERAQxNDrRpVKVBQbi/j9zwXYrDY6dexO+9adq2nJhSRJfD/3c3xSQ5ELciypJhZIcy6RcpKEqiXDV2/4g0Pb9qO0qrB7WbnzzgdqVKTVZrdiNJXg4eZ1TaXu1xce7l4YmmvITk4BmUS//gNqlMHVr+cg+vW8NMNMIVcgaKRy2Vgy7aWz+f4DB7Fp5VqUxRrsHmbGD5/Cxk2rsCa7DDMxwkr/XrVfLm4odqSmkqAsRFBbaabLYMBYI3EGTw4uT0etk/HxaxPRVWBEjZwwiCdfX8rg3g6OnpYR0rQ9Wm39TIaVSjlT76v8t7r51v68/lwiA7oWY7HC/lM+zHypQ5VtHj+azK8//E7HViLH42X0GjyQnn1aVLlPXUhOzuOT17bgdEhMm94NdaTr7ylbD3L0nSVsEuXIPPWMGVm3Jbj07FTWrv8TQSZj2OAx+Hi6JDwkSWLtpj9JSjqHr68fI4dOqLEXaumKReTuKsBDDECSJBb8NAc3bw8ufvtKMqnK9tIyU5j34zcoCzTYNTa6DehJv17VZ3CKokhhcT56naFGWfT1gVBVNk1DEhXWTHp5+kf12ubSFYs4degYiDL8m/hz28R7L3kRSJJEWlYydoed0MAIFHIFOXlZxJ05QVBgKJGhlycVcC2QkZ1KUUkhYUGRpYZLZm4y+058jr+vhcwsHT3aPoq3Z/2kXlusFlIyzuFu8ECvcyMzO40iYzq5RetRqkCv6kqnViMu2S8tKxmF7k2m3+saTHNynTz1v1gG9qhZZuLlsnHrag6uPoC3JQALJqxRRTx079P8suwHTm49QaQQiyRJxAmHmTTtdlrHVj3QVsbyNb8R/1c8HlZfTPISVK3grtsewWa38tGnb2BI9caGFbOumEE3DqNTu+7VtllsLOLr9z7Gt7hs6aUgJIOQJmGk7E5Fb3WnSJ9H58Fd6Ner4qLiRSWFfPnBhwQUuYKSnZKT05oDREZGc8ukaZXOErfv/ost69ejsKmR3B3cOfXB0uy26rh1xvB9kiTVzKJsxDTE+HUm8TSLf/kJwSJDMMCtU+6pcFmysLiA7LwMAnyDcdO7Y7PbOHJyP4Ig0Ca2Y4NK4Vwu+xIyOSMzU9JEgRBupVloBgN8TxKi9STa0KpGbeTnmzh9MoPgEE/Cwl1LqA6Hkw/fXIxSysZsEWjfoxtDR9TPbSVJEqdOZGCxOohtEUhCXDYmk5WNq7ahlFlA7sa9j46p0Dh8debXfPiCs9QT98iLDp5786F66dffyc4qZtqwxRgSmiFDRkFYHNO/b8oxRSu+GzSbVvbOKAQl+VI2+f4FvPTU67U6TlZOOrO//oKAvAgkRLL8krn/gcfwcPNi0e8/kLEzGxwSNsGGe0sd90ydXqN2v/jqPXTxZfIYecpMuo7rxtbVm/DKD8AmtyA0dXL/tCcqndB9+uXb6ON9SpfRT8sO4hPky3XXD6V9my4V7lNQlMe3sz9BKFTgUNrofX1/enWrWXZAXcavRqezVRdGD7sJcagTUZLKpa4azSVs27URQRDo3e06QgLKZ7z4evtXmwlZGXaHnS071mEym+jRtW+pxd+YCPQLIdCvfDzEvhOfMecTMwqFgMVSzN3TP+WGPi/X+Vg5eRnsPfkO40cZOZ2g4MCJbjQLH4BJXMy3r8gQBIG5C1Zx4rQ3LaJ7ltu3oCiH67s44PySiK+PHJmsqM59qozjhw/jbXF5IzToMGYUkpOfxdFjh4iiNeBabgiXmrF154ZaG1vxx0/haQs8L/ToRlZSEjn52ZyIP4wp1UIJyXjgjclkYt2GFTUytnQaPQ61DYpdn0XJiUKrYPzoKRyM3kNS8ln6N+9Ps6jKZ9XFxkIU1rJ5pFyQo7JoUZ408P0PX/BIBRm4ZouJLes2EJjvWjJzFjtY9OsP3Dft8cv8Vf7j70RFxPDUjJewO+zlDCZJkth/eCfpGam0adWRiNCocoKTKqWKTm2qv2cq49ipg8QnnKJpdPNL4j5ry74ElyyIMVxHidJea0MLwMtLR7ceUeX+Nu+7ddw+MotWzV2/01ufbyMpsQnhEbWXrQDXb/32y/NpG5WFu0HitR91zHz5Dt595Udef8KKh7uctIxs3n/3F57635RL9nfTlxlaAN7uIg6HE4Wi/sV/f/v5EKqEsNLYN4/kaJZ+ewZFVx0+9oBSmRYvwY+MgpRaH2fD5lX45YWdN2hkeGUHsGXHejq07crZ0wkUOPLwIRC7ZCM+LvmS+7cytAYtdsmlTwhg11lpFdOO6Ijm7N2/HXcPT3p1GVCl51yyU06QVed0w5Diw5rflxMUFFrhZGXhL3PxTgkuzUrctv4vOrTt2uBx2v8oYwtcooIXXxqjqZjPvngXt3QfJODAvj08dP9T9fLDOhx2Pv3qbVTnDCgkJd/s+5ipdz1AgF/lQbKNAVEUCfR3GVoAGo0MH59LM4Fqw74Tc/jmAzvq85l7b3y4m2MJCmY+5kQ4PyjcdrOcqQ/tIjq8Mwq5ovRhCguKZuESLX17SMjlAivX23E3tK6XflWEJONv8XoOVEoVHp6emPON6HHFJpkoITokqqqmqj7O35byTFYj337yKQ6LAyNFtBJcMzAfAjmVe6BGbcrlcoYMH8Xq5ctQWFWIbg7uGO8SLG3fugvtW1c8q7sYf58gnN5WnGku5eYCKRcVGpcmV4G19LdJSUtk7cblrkzZbn1QWMtm9HJBgcP8X4H2+uTvL6qff/mWnIP5aG0GTu6cR//Rg+jcvke9HGv5mt84veUUBrMnCTtWktj3DMMG1b7cGJR5swJCfTCF4lo6rKWhVRl52dmlhhZA364icacy6mxsbd54gus7ZzHsetf41aOTnS+/WYOfpwkPd5dREByoQC0rwukUcThE1Oqy16hN8iA5LZewYCX5BU6yC3UNYmgBGDzUOGRFILneZQ7saA1yPKP8Mcv2lJa7EyURqQ5veqVShRMLivPmggMH23f8xenNcaRZk2hD91KDSWaXE3/2ZLmavpUxYdxtfJ3/IWIeOJQ2uvfrU1r7eMSQmoVtBIQGkJ2Sj0H0wCHZKaGIEKLQF3pyOuE4Ab5B2Ow2lq1cRGFBAa1atcNucaC5SNVAYVFTbCz8z9iqiFKtmfxCfP19GTtycqUibOv+WoFnekBpQVhZmoyNW1czvI4DCsCRkweQJaow4CqTEpAbyYo1S5h6S8VxZY0FmUxGRqYWu92MUukSwMvJrZ+4KK3GjlpdZu5GRTpJSvTgwBGBpufjh08nOEnJOEV82pNk5wp46YfTtvkg3PTuRIc8zLRH56HViCiElnRvd+lyY30xZMgIfstdgCHfC6vaTEjrMDzdvXnorqd58fUn8DT54cSJ09/KiOtrXzC4V59+/PXHevTFXpjUxVicJiItLZAkiZOUN648dDVPRW7fujNtWnTAZClBr3Vj49ZVJMTHYXAzMG7UZDRqbZX7KxVK7pz6IIuX/ERcQjx6qwehRLuMLI3Lq5eWmcK8778jID8CCYnfEhcg6EE0upJbjEIxvkGNz5vb2Nm6cwNHjxxCppAxesRNlU7QjOYSUk+mE2APAwH8SsLYsXVzvRlbJw4exc/iatvHEsjxg0frZGxdvGzoFgCyIAv9A8zEqOvP0ALw9vfnyMl82sS6DK5NO2UMvqnuk9z8vCJax5SNXwF+csxGE6bisr+JosTZRCMfvvQpeh0UWHyY8dxEFAo5Dz05ga8+XorTVogTdx59Zkyd+1QZ4yd3YOUv8ync7QSnDFXbbCZPb8teKQB1D38SdhzDIHmQpUrn+mFTa32codeP4rO4d9GleSIJEsnqOGKK26MUVGRJKaWGFoBO0lNcUrPVCL3WwPQHZ2E0l6BRaUjLTOHbOR8jAdcPGFpOY7Iyxo+ewhL5Ao4dOYQl30oULRAEAYvGSHBgKJIk8eV376FOcEeDnh2ntyMGWpAJxeglN0RJxOFhuSIrUteksfXdD58iO6lFhxc58YX8aPy6UgPH6XQiXOTrkiHD6aifmbgoiiBdpNWCgHgFYuAOHt3DsROHiAiPotd5df3K+pdflItGrUWvLZ8q3aXVw9z5yOf4+pjJznGnR9u6BVBeQKNqwx+r1zFyiIISo8jSlXqG9BzEmvXJHD91FIMeVm+08v3HKsJCXP2e9fofFBR1wtPd+3yJnf/VS1+qo1mTFtz94MMcP30Yv/+3d97hUVZp//+c6ZOZSW+kk9B7rwKCIk1BBQRFBERBxNVVt6n7vtt+77Z31921vHbFDmJFFFCa9N6bECAJ6T2ZZCZTz++PgYSQhEwmCQk4n+vKdc1MnufMued55sx9zrnv7x0WRdcUzw+BTqvjz797gbSsc6hVGuKiE7xO9S4zl7B2/SqkdDN+7O2EhUQweMBIwiMi2bprI2H6GMQuT1tCCFRSjUWaCRAmLFQQFtu0mblSqUSvM/DOipfJPZRHjKsjFdh5Nf95nnj02Ub7HRYSweIHf05G1nmWf7yMQksWLr2DmXd7tkg2b/2OyJKEGmmBog6EjDJSEJSP2+YmPCaCGXfObVKff+rs3PsDe7/ZQ2hVFG7pZlnBKzz2s1/V+Y6C5zusuJYFrJsxfF0Zn2WKO0KsKYixwT8CNY5W5oUSlr28G41WxaInR1y1fmBpqQVLpZ3oDoG1tpPmLryV//y1FOXXnpitgTeNqo7nag7DRnbnzZd28/dnPavrLy2zc9O4fggBT/7xO3p0kuw+6KJrR8nvnvY4GSfPFPPB2xuYv+g29Ho1j/+6eck03qLVqnj7y3tZv/YUTruLWybeSi6pUApD/7AQ89EKUlxqiiq1BOe6vWrT7XazadtasrIv0Ltnf/r3HoIhwMTPHv01azZ9ibXKiiMtBnW2x/ZI4skglQQ64ZZuKsNL6d7F+90IIQTGABNHT+1nxcfvEV/ZFS06Psn8gPsXLiSuQ+JVz1colEyfOodpU2bx5rIXKMsuwKVw061fd1ISu1JYko8j100Qnnss1BaJmXxChpoozMpHoVXwwN2Lr4kCQZs6W263i4PH92KxVNK/9xCvUsrdbjcVebW1ZopyGlYMHzd6Iq8e/xcRBZ50z+LIHGbdVL8Iqcvl4v0Vr1OcVYRUSW4dP4m+V8kO6929P5ti11GVqUeNhvyQDOaMW9ioDc1h7YavOLX5JEHWCA4cOEB6xnnmzKz7nhZrJa+9+S/cRQKX0kmPIb24fYJHv8XtduFywfA+T1cv27YUg3tNY+NmBavWHMVh13JTvwdRq9SMHbKYCosZp9NBYszLxMcWVZ8zdKCdQ/vzW7wv3hAaHM5NQ8bVeV2hUJIc37SadeUVZbzyyvOE58chELxx+gUefuRx9NoAPvvsI1RZATiFkwL1BYJlBEqhJFIZS3mHAoTBRVhEGHfffm+T3tPusPN/r/8vrvMK9Bg4wxE60xtXoScQNCTIO+ctIbYjv3z691RYzBj0xuofNp1OSwVlKPGskjmFg4jwaO6ZNq9J/bxRycg6z9m006R07OJ15Yhjxw5XxwoqhAJtgZGzaT/Sp/vAOseaDIEEJQZScaKMAJeJkoA8Bg5oeIt4976tbNuyGeEWRCfFcO/0BVd1uDt2SyGrLBuTLZRybTHJ3X0TBK4vEP6So3X5alZGehFL71qF8XwKLlzs2vAJy76ZRWBQ3VXY//3dBrZ+motwqAnsYue1FTOrg9KLiyq5c/ZYEhJDW3SbLrpDEHfeP5Nf/2MDSoVk4PCRDB3RFYA+/ZMpLKjAbTrNiE67qs/p3lnNsq+KGmqyVdFoVEyeeplzU1Hz0BAeTkpYAuWHMwDvwkSWffQK1qN2DK4gNh/fSFFxAbeOmcLXaz7lwv4LqKu05Glz0AoTRhlEEKGUhhRgjShFoVIwb8riJhe7X73uM45sPkSEI45MUokkjsjSeLbv2sSsu+Z71YZKqeKRhU9hrbKgVKqqFQU0ai1uhav6OCklKAX3Tvd9pc9X2szZkhJ+/5dfEFwShQYta77+iieffA6ny4FSqSIiNKreQUKhUIC6ttbM1awIDgxl0eIn+G7j1wihYPotTzZYzfzLb5ZjPeQgTHqCydetWk1SYqcGj9eotSx95Jes27gKq9XKAzctJiYqrt5jm0JmTjrfrPkC6ZL0HzCYoQNr1MxPHj5GaFUMCAhyhpF1Jh2Xy1UnPfazrz7EmB6ORngGp5M7jzNowDCCTCG88sY/oUCFS+UgpX8nnxTwUzMOkZ1/hMjQrnRLHlr9uhCCwb2mAlPrnHPJmVYq4jl8PI++PVVIKVm3UUffTnUFDa83tuxYT0h+dPWyenhhHBt/WIOUkqDMKM+1kIDdRX5MOiZ9EElJCdwx8SmfRRI3bPkWTZoJg/B8tlqpJ5cLKJUCraZpivdCCEyGwFqvTbr1Ll5K/TvaTBNSSNxJNm4aWtc5/SnyyZfvcnLHScLd0WxTbKbfLQMZPeIWyis8mmUNSchodFqc0lEdwOzSOAgKDG7wfRbOfYwNW9aQm5fN+D4T6d19QL3H5RXmsOXbTUSaPRPLksJS1oWsYuIt0xpse/rUOeyK2UrquVMM6zSMoQOar1fnsjvY8efDqIoL2dexkif+4EKj9YxP//nbAUznO6EUKlSocR7vwBvvruPOB2tPbFJPFrN5WT6hZk+spK3Aym+f/ZSl/9OPN//fMQ5/WYXCpkWdXMrv3x+KMbBpcj2FuZXsXJdKdGAsU6cPr6WH1bV7DL/6Xd3VWp1OTVx8CA57Mqu/2EXvi7knG7c7SO7aMsXnz1Ycb9b5WdZSssxlZBfrkXk2DmZmYMjwztGqslkpOl9IpDsBBIRWRXH80BEG9BtK+pE0Im2e7WaTLYTzwccgNBZNgJqnp/9Xg7+R3rzn8b1HiXUme37TZBipHCVWJBNlbPrk+0qZoEBjEAm9Esnan4XGpqcypJS7bmsbwd82c7bKzCUklncjTHhmeJ2q+vDX539LjKIjKNyEdA5hwZxH6/0RGj3uVn5YuwG12VM2ZMrEO6/6XqHB4cy+u3FPtjAvnwAZXP1cXaojtyDzqjeSXhfAnZNnN9q2t5SZS/hg2VtEFSWiEAq2Zf6AVqOtSWOt5ze5vt9pa6UFraiZYagsWopLC9mw6VtM6RHVTti5Pee4MCiN+A5JXvdxz9HP6dt3I0sXCzZs3c2mLT8yasADXp8/sv9c/vNKJUbjBcorFHSOv/eGEMpUqVS4qVmud+NGqVRRYS5HfZl6jEEG0mVQZ24ZPanZ71lRUY5W6qrvCw06ylXFDB84ukUCPvW6AH625DccObEfpVJJ3x4D273o77VAAgd27aG7HAQCjDKIrRs3cmrPCZRVapyhNhYsWFKv9tbdU+/ltdx/oczX4lI7ie0TQ2Jsw5IzCoWS8Tc3Hrt4PiMVXbmx+l4wuoLJvNB4cedhg0YxbFDznKyBKVFwNo9z560ceucL4k+Y0BNP4a5Kfp1/mqnP3wlAjvM8qsv2KiWSVHs0m0q71mrv5PETKMvLqm3RCj2pmVqW7wti/8eSKLMnnsd+IJo/PneBSX+qK4jaEKXZxeQtX89fn1BSbi7kz789yXP/s9Br/a6OKREk972Zp/9nF1qNxBiWwsIlIxo/sRHOVhyv8zk0lSxzGWcyo5EZWoznnRjcFs+18QKFQlFXl094HCKls+azUQgF0eFxPPrI0zQXm70KpavGDRFC4JIuqhLLGH9z49qb3jDr7nmc7neCgsI8unXp1WaKAW1aiFp12Q+QAgU6m4Fw4QlyLD1eyIGjuxjYp24g6NCBN9GtS69aWjMtQVBYCGVUoru4v+sMtBEZdm0zC4//eARjUUh1jEy4JYYDh3ZXO1t9Bw3k4Pr9BFaGYdGW07FncrVA5iUqLWaCwoPJVuUR6oxESok9rJKE2GS2b92MRtR8XqoqDcUlhU1ythzuXSy413Pr3DNNybZdB5FyrterM0qlstW0s9qSMSPGc/Tw35FZbgQKzB0KuG/c/RQU5vJJ6odElSUgkZSFFzCwX920cV8YOXQs7x19k+hST2xDjvE8s2fNo2/3lpOy0ml1DOk/ssXauxGQbjcKd+3hU+FSElnuWVVy5bj47IsP65XEMBkCefyxZ8jKS0evDagjy+IrCXFJbDNuhkpPkoVFYSY2+tqNX5ccrmOZFvREA6CXBvJPFXA6z/ODHzVjGvt3vUPchVhcuMjtUkjSsBmczqvJcHU7nRS4o8mL2EdgQShCCAp1BRh69eTkKQUac83qhUZoyc8V1e17Q/bKNaz6bzU6nYIOUfDQzCo2rz/KpDvqXzGsj7Hj+zJ2vO+F3S/nbMVxsqylnLYNbZId9ZFdrK92tJLdeq8dLfDs1CT26EjOvlwC7CbKTUWMHDGGqLAYRKQLe7oNjdBSos2nT88+zernJQKNwagjFNjMVrRCT6mqkM69uvDArJaNo+qS3IMuyS1X/9MX2szZMhlMZNpSMboDUaIilWNEUrMFp3XoKSoqbPD8IFOwz0uXDTF96hzeLnuJ/JxCpEoyauxYr2NeWorgoBAcahtcKikkbZgCalYoxo2aSGyHeE6ePkpC/AAG9B5S6/xDx/bx3derUVXoKFMVUBVqJtAUxOzb52MMMNGlWw8OnT1IsD0CKSW28AqSE5sWm3SZrAkAP0EB8XrR6wJ4bMmv2L57E27pZuSQ+RgCTBgTTNw1ZxZbtq5HoVDw4KRHWyw+LSY6ntnz5rJ+w7cAzLt1MYlxvstU+PEOoVDg0jkotRQRLMIok8W4RU3ijVIocdsbDkrWqDV0jGva964xYiLjGXjLYPbu3IVwCcLiwrj9tuZnXTeFgSlRbNKr4LKENJcQuHM8W9o6ohn460dJ27AFpVbNkFvuRVmqw13qOdZusbDv769hytagF3qOBR8kKDKGoD7JJA2+FZvZzLmojQTnhnucMG0BoV26V7fvFVZFLS0slRJyrRcA752tluKSo7WpsBuVlqim2VEPMs/mk6N1iVl3z+NQl71kZmcwvtttdEzwxPA98vBTfPH1x1gqKxjSYygjhtzcrH5eQgjB4oVP8cXXH1FRXk7PTj25ZdSkFq092V5oUwX5kX1vYdOmdSAhJiEOR5aL8MpYpJTkBWcwf/HiNtGscrvdbVaCRErJux+/StHJYhQuJTLawZJFT3tdsuYf//gDEXkJ1W0VxWbx9JP/VeuY7zZ9zZmTPyJUktunzGi0ptuV7Di4nFE3bWPaRAUbt7r5cnU/bh7yUJPauB6oslnRqLU/yXI0rcWNpCD/6Jxf8X9v/BO7xYbeFIBWqSMyNwGlUGFWlpIwJpapk+5pvLEWRkpP2Z+2um8PHNnN+q/XoCzXUm6opMu0CcT36OfVuXs//4DAvaI6zCFPk0XKQ7cTcVllj+KcDI5/uxrhkoR27USPMU0rT2QuzkGd/SIv/A7KzW4e+btk9jN9SQkLbzFpCm+43NE6kxlNtC2SAN+1RwHIyyyqdrScTgduKa+L8nPXC9etgvyEsVOZMLYmkHrPge3s27sLIeCuWxrWnmlt2vLHVQjBvHsfIacgE7vd5ikp5OVyqpQS6ajdFo66x9029g5uG3uHz30c0X82R48ksm79YaLCujHmsmLf1wK3283hUxupsOSSEj+SmKimOYuNYa4s4823X8RZ6saldnLLhIkM7u9dTMaWHes5fGA/AMNvGt1iekh+2h/REbH88dnnq58Xlxby6RcfUmVzkpCUwB1eCjO2NEKINl0ZGNBnKJ2Su5FflEOuWYVebwIvg7RlQQUaUVP6SWfT4U7Nw+Cu+S0wEE78+Pk1J3nZds35QZSzmKk/+x57iB7dpJvYaSlDF3AKOH5NHK61uzeze8dZcoxdMCdGwQUtAQ68DmZviGQ8jtbKL9/n/PGzIAURHSOYd+8jXv2u5RVm8+lnH1bLutxz1zyvax36uTrtSmdryICRDBngjw0RQvhUmVwIgTHCiK3Is/9dhYXAyJaJZ7uSHinD6ZFS25FIzz7Jj2kb0WtCGNp3RrNmVOlZp7iQd5CwoGS6p9RkO0opWbvtHyxekEa3TgpeeGM3lvQFdEpsuS2A5SuXEZgeWZ0ttmntOnp173fV1UVzZRmrv/uMC3svEOXwrCxuKvqe8PDIG7Lepp+6hAaHs2jBE23djXZBoDGIQGMQTRWSsA8dwu68nYRc1CCzhpczYfgwAo1NkxNonCgCz0ZQmRCARQlnMvOxVVRhXn+QKPcuZs2YTOeuvk/2i4srWbd6LyqVislTB2Mw1sSkffTV19jTTvH7mXr2Hj/Iv1eZSe71MIYM74PZr8bhE/vI2ptNlN0Tx2k+WsrmhHWMG9VwQo6Ukv1Hd/H1lytJKu+JQigoyTTzqeJ9Zt09v9l98tPOnK2fMlW2Krbt3oDT6WTk0JubrFVyiQVzl7Lyi/cwlxYTHBZcLTi5buMqjuw7iJCCuE7xzLp7fovOfs+k70dolvHGvxVcyHbxzB9PcvuY3/s0Kzp0ch2x8V/z3/Nh2+5tfL/hGGMGe7TECopzGT40nVHDPI7cH38jeeiJ1S3qbNkq7ZguTyKw6iivKG3Q2SosyefN11+ivKCMzvSpzqAKModz7PhBv7Pl5yfB4eP7yMg8T/cuvejUseGanFdj+OAx2O02Thw7CkrBnMkLCTQGcSE7nU8+eQ93lURtUjHv/sUtFk87MiyBH7JtZK/8hrd/ayc4UMEf/r2CSTNn0q1n05MXCgvMvPjXZfxqMdhskr/811Ge+dOD1Q7XuX3neeE5T/b15DGwdd85cq0VGGiZHZULmekE2Ew1WanOIDKzGs5KlVLy5nsvUHyiFK3LWJ2cZZAmCrLzW6RPfvzOVrugylbFS6/8jYDMYBQoObTvHyxZ8hRBJu9Lt1xCp9Uxd3btlNkz509ybPNRIq2eFZfCshJ+iP6em0feVud8t9tNRvY53G43JlMQZ1JPEhEeRedGBs+M3LW8+R9PoenkRBXTpxZy5tQ5n4KAy60/8PfFnltzxh2wY88RnC4nKqVHl+tyDUMhRKMB+lW2Kt7/+DUqiioQGsH06fcRH5PU4PGhkaGUp1Wix4CUEoepitCrpAuv/vYzIgsSkFyggjIC8Vw3q6aC6Gjfilf78XM98elXH5C5J4sAWyCnd3zG4AnDGD3iVp/aGjPyNsZcMTYtX/4OEdmeSg6uQicffvwWjz3yq3rPLyotoLAkn6iwDpzLOIPL5aR3t4HotA0HnxedPMQf5lUSHekRV/1/v9Ty7L+20q1n02V9Vn64mT//UkFIsGeg+vl8G2tX72P67Iu7NlfMcdUqkO6rx06v3/wNRw8cAqBH315MuIp2Wo9ufTi1YzkRlZ6Es1J9AaN73Nzg8Rk55yk/XUm4qwNp/Fj9uks6UXsph+GncfzOVjtgx97N6DODMFxcTVHnx7Pm+y/r1Qb76tsVnDuVCgIGDx/BTcPGNtr+ubQzGCxBNTMdezBp6Wfhih1bl8vFq28/j+28E+mWZJNGorMLTq2d2IF7mHV3w6rhLpdAyhrNryqbqCNJ4S0KZe2BR6P2BPyCp3jyN1s6MGxQDl1TlPz7NUmHsPFXbe/jlW8jj6kJFTFIKfn4o3d4+sn/bnDVbeZdD/CR401K8nIRGrjvrgVXrWLvcrlQoqUDiaRyjGKZhypATWLPRAb2GdZE669fjp48yPbtmxECxo+/neSEls2289M+cblcnDue6tm2EqC1xLJ/z+56na2z6adZ9dVKcEBwVDD3z1501e8WgNPpAEtNHJpSqHBU1hOMCmzauo59m3ajqtCSr8zC5AjCSBCb475n6eJfNqw9p1RhtV3+ntLnlX+Xy41aXXOuRiNwOmtUzON6JfDi+2ksukfDvmMudp6PJ6WfCYrqj9c6/uNhjmw8TJg1BoATJSfp0CGOPj3qVhwASE7ozIjJo9izcwdI6N67JwP6DK33WACHw47CpUAl1ATKEM7Io2hVOvRRWhbOeMyXj+C6xFxZzqdffIDNaiMpOZkJ46a26O6P39lqB7ivqN8oELjdrjrH7dizmbTtGYTaPV+6XWu3ExeX0Og2VUrHLhwzHEVv8Qw0Zk0JfZPqasRs37MJmaoizO0JUNVLAyUUEGdPIeNYOmXjSxuU2+jWcQZP/fdLPL3EyfkMN2vXxzNltG+B6xoxmA8/28SsaQp27nORmZVCx2gLKmUgQggm3fQMb767ikpLHp0TRtOtEf2UimIzgSIS8KyEKSs1lFWUEBoUXu/xapWaefct8bq/o2+6hc/TVhBVnkASXcmPSmfxw0+0mnie2+1m3cavyM7OIikpmXHNSJUuLM6n1FxMbFSC1xmv9ZGa9iNrPllVrV7+cdYyFix6hJjopsce+rm+kEjEFcs1Qta9H6tsVj5d/gFRBUkIIbDmVvKp7n3unfHgVdtXqdQIA8hSeVH00onGWDce1OVysWfbdqLNnnEnxBFRrUZuyzSwZv2XTL9jTr3vEdG9L39ZsRaToYzwUAX/fMPN/KW+rczdec8onv37+/zPL9XY7ZL/fR3mPdoNh8OFWq1k1OTOfLCpGwv/U0BRgInoyZMgu+H2Tv14lEBLWE14gjWME6eONOhsAYwYcrPX8gxJsSnIGAe2jCoiiMFtdDJi0ihGDh7baslip84cY8fuH9BptUydMstnUWtrlYWsvAyCA0MJD4n0uT8ul4vX3/w3QRei0ItgTp87g8X6MXff3vTqKg3R5s6W2+2izFyK0RDY6AzHG6T0fUbSVgwfPJr9e3ejztWgQEl+WAYPja07o/jxzAmCbDVfOkNFEKdTT9Rytk78eIRde7agvXgTmwyBdErqRp+x/Ti8dz9IQUKXREYNv6VO+6VlJWhcNWrkOgw48NSdVLiU2B22OudcIqFDF3Sa3/C3f+1Arwtl8qgxPl+HIX3u5sTxDjy0YT85WXZyU0s5sfkFlGEKFj/4cwL0Bob3vcvr9jQGTa3yKE6dnUAfY+Lqo3Nyd2bOu48t2zYQoNXy+ORnWlUR/73lr1F5xI7RFcjJU6coLCpg1l1Nr1X4zXefc2LHMVRVGuyhVh6Y/zAdIn0rN7VzzxYizHHV1zy8PIaXXv0bjy99luiIGJ/avF6otJiR0CLX/NIK7vU0hqmUKqKSoyk/VILBGUSprpBuvetOgAqK89CUB1TbpsdAcUHtmoIVFjNfrV6OzWZj6OBR9OzmmRTed++DrPjkXVxWN5pADfPuW1ynfbvDhsJZW41cIT2r1yrUVFVZG7RBoVIRteAJXjyyhiSRyaKnJhIV7VtyUVx8KPMfm8s/3ttKWamdI7vKeXrNRjBW8fj/G07STRDbvxO9h8xmV+YF3DlXd2gSE1LI1G4l2O6ZvFVoSumR2PBKVVNRqdQsWfQ0X69dSWVlJVMHT6d7l94t1v6VHD91iG9WfEWkOR4LDl7J/CePL/1Nk8uLZeak8+H7b6EpDsClt9P7pn5MuKVumThvKCrNRxSpqkutBTnD2LN1J4GmYG4d4311gqvRps5WQVEey959BYVZjVNjY+zECT4rVVdaK3jn3ZexFleBRjJl6t306OK7yq3FWsnnqz7EUmGhY3Inbr15SqsNgIYAE48u+QVr13+Fy+XkoTGPERFWNyslLjae00fOYnR7HAWr3kxifI2A5dGTB1n7yddEmOOowsmrmf/kZ0ufQafVMf7mKYy/ecpV+zF44Aje3fd6tRp5mjhFpIylCguqKNHoSk1kWAyRYVdPd3e5XDicjqvGT4An2zE6rDNvbXyZ6PIkAOzlNlZ++QHz7q070F6Ne2c9yNvLXsJe5gSNmym334VKpeZc+mk2b/kepVLJ7ZOmExbi+0pUcmIXkhO7NPj/z7/+iPM/ngMh6Td4kM+letxuNwXp+US6PPF3JkcIWWcvNLmd8ooyju8+SlSlpx13vpsvv1rBkod9K8ERFBhEtshHj2f1tAoLQRWRfPb5ByxdXH9szfXOJU28grMFICE8JZz59y3xeZz46ttPOH3kJACJ3Toyc5r3VRnq69vGrWs4e+Y0ugA90++cg0Fv9Kktb5g7axFb4teTkXmeMd1vrnfbKjQ4HIehCuye53ZpwxBYs5pqs1fxymv/JCSrAyoC+PbsV7jucdGnxwBiouN58vHfXrUPel0A2nANtrIqtEJHmSxCgQIpJfnBGcwddXUtQKVaRZdJQxgbHESUsX5HS0pJhdmG0aS96rWJiw9l6VPTmH/HRxhPdfMEnefDi/+9k/9d3zSZpkH9hnMu7QxpJ895JstdExg6YBRVNitffrOCyooK+vQZwOB+vpcM0usCuOfOhidsp8+d4OtVn4EDTOEm5s15pMnO0SV27NxCpDkeIQRqNKizDZw+f5LeXZsW3/rVVyuIzPeUtaMCDu86wKgRt/hUpixAb8SpdsBFf9wt3ahcag5s2cvgASNaREC9TZ2tlZ+9R3h2HArhmX1sWruO/r2H+LTCtfyTd9ClBmMSGqSUrP7iM1Ke7Mrmbeu4kJFGaHgEUyfNRKW8uslut0f1+bW3/oUxLRytCOJU6o9U2aq4Y2Lr6eaYDIHMnFa3+Onl3DJ6CtnZr5GfloEUkm79etA1pUYTZteumtUFFWrUuQbOpHl/E3eIiOWeuXP4fr1Hjbxf1ABKiosxBZq4c8pDV11SdjodbN73Onp9DuYKDQO7P0xEaO3U6f3HV2F3byA0RHI6NZwJI3+NRq1toEUoLitEVVnzf43QYjWXeGXL5QQag/j5Y8/hdDlRKpQIIUi7kMrK9z4kqiwRF27euPACSx/7hc9ZoFdjx57NZO7KItzuyWw6tP4AiQkd6ZTUrcltCSGQiivrl9V+LqWkwmJGpVQ1uDVosVagctSud+Z2+C5wPPGWO3nxzF8oTy9GAmUUo0VHWUYhb7//EvdMn3dD1L+8nB17N2M+YiHS5dkqLT9azLbdGxk1rO6qcWMcPXGAczvOEWnzOL+5ewrYGfsDUREd2Lzle4RCMGXC3Y1qD15aGVu74SvObEolyB6GXdp5teB5fr70uVbTTBJCMGbk1WMnDXoj4yZPYON3axEOJdpQDXPu/ln1/1PTTqHK0VevLkRUxLF79zb69PA+03jRgz/ns68+oKK8jMjQcEyWANzSyn3jFhAbXbtY9MCUKPafzeMgGeSoy7Ce3E5V4U4uqC0k9T7D6Cm1Yw6z0sr45s2ddE6Ac5mSm6YPoGvfq0s1mEurCLis5IajQnC2qJCsqjJOWy7gztGRk1eGMdNJMvoG27nnzgdwT/WEligUSlwuF6+88TyGtFC0wsC21B+wWq2MrmfHorlU2ar4YuXy6u3fqnwLn3z+Xp1ELG9RqhSeurF47kW30on2it8Bu8OGtcpKoDGoQadWOqnOnARQOtRYqip9craMASZ6DevDvvW7MbgCKSIPE0EUlxfw1jsvMeG2O6pXWX2lTZ0tV5W72tECUNm1VFrMPpUysZqtmIRn5iaEQGXR8vHnb1NxuAqTM5h8UcTbBS+xaMHP6z2/oCiP9z98HWeFC5fajqpcX61iHOgMJT31XNMNbGEUCgXz7luCy+W6mIVX2/lRqpRX3MSuRleQriQ5sQuLFza8QnMl+YW5rPn+S6zu47z5opsuKZ44hQcff54JI/5aPbjnF+UQHvk9z/xcCQgys/P5/d+WMW5Iw6tUMZHx2EOsyALP1nCFooz4BN9jgC53tH/Y+j1RZYmeGC6UmArCePPdF5AWjzMz/KZRLVaS4kzqSQIv2/41WoI5k3rSZ2er/5BBHNl0CJ3FiMVUzoibaooIO11OXn/n31iyrbgVLlL6dGL61Lp1GCNCo3GHOnFmerZXy1XFdEzxXRxWo9bw+CPP8pd/PUdwfiQWKggjGpM9CMdhO2+U/YefL33O5/bbIzm5WeidNYWfA5yBZOf4JgF+Lu0MxqqaJBaTPZgjx/ZTlllOVFkiEsk7mf/HI48+We/46Ha7+WDF6+Sl5SEVEpurigS7p6ixWmgQhWoKS/KICm/bLd1B/YYzsO8wXC5nHbFmrVaHW+WqFmKWuFEomxYzpNPqmHOP99Us+iaF8daK98kqPsvcWXn87g8GIIAXP0jng03diO1foxR26O23+fBPAajVAiklc549QXbi6Ku274w9RdUxKzqhxyVdWENhl7UXqVnRRNt0BGRCnww1oG5UY+vyhKPcgixkrgKt8IzvodZodu7czL7dO8ApCOkQytzZixpdXPCG4rIC1BX6aqdHRwDlxQ2X0muMOybP5K3slzAWhOJUOjB00dUaCzdtXceerTtQOdQoQuHhhU/UO1GL65hAZmYOJlcwDmmHUBehzZADmTz+LkrKirmwJ4NIdyxlFNOdgcgMyTcrvyRwYfMm4m1ahyQkKgQrlQC4pAu3yUGgMdintowhRmyyCvDM7pwGG8VZRZicnva0bh2lWWWezJZ6+Gj5W4RkxBBVkkh4XgLl9poVFCllO4huq0GpVNa7ynTHlJnkR2RQLksoVuZj7KKnU2LTf9C9pbi0kLfffBn3fhVRRhtdUjyDp0YjGDqwirLLVqEKS3IZNthe/TwuRoXg6qtUAXoDs+6bS3lyPmXxeUQOD+X226a3SN81Wh3Oy+T188lCka4nLC+W8Jw4tq/ZQlZew9o0TSExMRmzpsbWSn05HZN8z9QbP/Z2pi+6l17Te3LvovmMHDoWt9vFzn0/8MJrf0Hxo44IcxxRZYmk787g9LkTddpQKpUsfvgJRD8H1i6ldL61E1OaWUdPrVbz+CO/QdtDiVNjwyQ8g5NaaHAVSyxVlc1qv73Rp9dASo0F1c9LDXn07eNbJaIunXtgDqi5R8p1RVRaLUSWeeQOBAJTYTh7D+yo9/zvN6/GfLiKyOIEogoTMZeW45Y1tRmdKgd6XdNn/K2BEKLeqhgpCV0xdQmgRJlPuSwhLyKDqVNmtmpf3nrvRdyHKoi22lg6t2Zi+vAMNae3pXE6L6r6z6QX1VmGQggig+FUVlitY678S/nZPIrH2sjomkXWoHy6/3Y+qVkdkBlazLuKqoVMmypmqtXocKtqanHapY3ygnJCM2MJy4ul6rCLL77+qEU+o5DAMBwBVbXeKyDQ93spIiyKpY/9gv6z+nHzA2N5eP4TKBQKzmWc4bPVH7Bz/RaiS5IIr4jFlB7Bys/fq7edaZNn0XFcItbOJaj6u1j80JM+Z8Bf4t67F9BlVFcKTJnE44mFFkIQUhbF/kO7mtV2m7oQs6YvYAXLKMnLR6lTsmDmoz5nP8yesYB3ba9SWFTo0VK6cw6rvliJSzo5y3HUaKgqt7BjzxZGj6i71Oq0uKqXJDVCi1PjJF9xAZVFiz28ktm3z2+OqS2ClBKH097g1ltEqOcmPn7qEAaDkV5d+7dqoO2O3ZsJLeyAQigpKVJitbrR6z2f4Y9nFQzqVjMbiY3qyKo1Om4e4Vml2rnXiV7beMHkpPhOPP7ob1q873dMmsH/pf0vupxAXAoXtgArwZaaWVGAOZBz588QG5VwlVa8Y8yI28jOziTrrGf7V2VUsGnDd+zavZWZd8/1KZYmKS6lOjFCSslr7/wbx2kochURJmqC3HU2Azm5WfVWvDcZgnjw/qW+G1YPwYGhLH7wSV54+a/I8zXJKi61A52m4W2S65Euyd0ZOWUUe3fvRCAYPmQk3S7b1m8K3Tv3JuPmNI4dOIwAOvXsgt1uo+RcBQUyBysVgMB8qIBxoybV2Q7Myr6A0VUz8450x5FmOEGwNRKX3k7XQV1bQYW96dgddtQqdb3jkhCCh+c9wbEfD1JZWUHPbv0wGVqnAgZ4siPLs8xEynjMlSb27C9n8m2ee3TvERdKXWKtwtC5hUEUFRcQFuoZ685kGggrMNJwuXFQoKP/g5ettDmhNKusWcWiAcJDI+nQI4a8Qzmo7ToKArMIs0RXf64B0khhnu+rT5ej1wUwcepUvlvzNTgEbp0LQ4WRV994njFjx9O9U9OD6U2GIEYOrpEt2rZrE7vWbkdUKFBRk6SlFhoslRX1tiGEaPYE8UoUCgV333EfRpOJM9+exSg935kqpYWw0OZJ2bSps6VWqbl/1sMt0pZOq2fxg0/Wem3MuFtZvvxdOtl7oRV6kLBrwzZ69+xXR31YY9LgynOiFCrc0k1kRCT33ruA4tJCEmKT2zze5PipQ6xe9TkKuwplkODBeUvr3U4wGQIZNnA01ioLuw9sQaXW0K/n4BZZTr4SrVaHUzjQosdxoifTZuxnxBgFeflGQk1313IKg0zBhBkX8uDjKzAaJDZrMqMHtU3tOPDs0T/+2DMcPXkAjVrDhcx0MjZlY3B5rnNVQAUJ8S1Tc1EIwX0zFyKlZOWX71Gwu4QAVxB2aeP1kn/z86XPIYSgzFzK1h3rUapU3DzyNq+lGNKzz2E9ZyPM3QE7VeTLTCJFnCd2K6iEbl16tYgdTWHatHtY/tG7aMr0OAJsjBw79oassTZ88BiGt1Bt0Anj7mDCuJqapdYqC//48Q+IfBWdhOcHzZJtZvV3nzHtigLXHZNSOHbiBIGOi0LIRjf3PfAgLpeTkOBwOkQ0XQm9JbFWWXjjnRewFdlwq12MHncrwwfX3YITQtC72wCklJw8c4Si4kJ6du/boExLc1AqVUjhcZWMFXH85b8KWbu5hABTAIfTkkgcOg5x2a5wTPfFPPDsm0QGlVFYrie0+wKfCkcbM5vnaF1izj0LOT3oBMUlBcTG3MXyt9+DUs//bFgJDGk5R7Vvz4H07TmQ9MxzrHjnPYxZnuuxKvczDA8aSYjtiNvtZue+H8gvyKV/3yFNqpyxb9dOIipjceLgLMeJlLGe0BFlGbFx1/7evWXUZM6ceZ6iCzlIJMaOAYwcMpbXP32+8ZMboB1tjrU8A/oMZfvWTWjTambU6godBSV5dZytB+Ys4v0PX8dmtqMKUHH/7IeJCIsiuo0HKfBk8K3+6nOiCz0//q5SJx+veKfBzDFzZTmvvPpP9DlBuBUudnTczKOLftniDteYkeM5cuQAzgsObFjJO6ol70wUBEhm3FM3kDc5vg8gOZu1GmQ+6dkn6Bh37R2BS+i0egb382S/9u4+gHcLXyM/PQOpcNN3yEASYxtfeWsKQghyL+QQ5PIMshqhxVUkMVeW43a7ePXVfxGS3wE3Ll468nceW/Irrxwut8sFLs9UMELEkCXPc0K5l9i4BCaOm0pU+LUv6J4Yl8wTTzxDXlE2oUFhrZJ4cKOj1wUwZsx4jqw8Wv1agDRRmJ9X59ibR06gsKiAzDPpSAUMGT6crsmtX1DZW1Z8/i76s8EEXYyD3frdRnr16NvgffHhJ2+Sf7gIrV3HjtAfmHn/3BYXyVWr1HTt153UnWfRVgWQke2gaEUsbqUgslMExtiqWscbAH3YfWRmriBAZ8FyeAMRCZMRomm7MZeKRbcEl69Yj5l0K5vXf49wCgwRBmbceXX9Ml/Yu387YWUx1StoYWUd2LN/O/ExSbzzwctYjtvRuQys3P8ht941kf69hzSpfZVQEyuTOcJO4mOSiO0Yz9RJrbuVXB9KpZIlC58mrzAbIQRR4THN3iW6oZ0tgLjERHIyCjC4TZ5tuGALHSLqagkFmUJ47JFft0EPG6fCYkZZVSPipxQqHJb6Y88AVq/9lNCcGE9Wj4Sy88XsO7SdYQNbZgZ+CY1ay8+W/IaDx3bz/bpv6Fk4GIVTgTRLPv/0I3759O9rHZ+Vdxar+w3efsGzwvGbP71GTv4v6BCZ2KL98gWFQsmCOY/idrs9MTKttP0qVKKWFpxL7USn1fP51x8RkR9frQUms9zs2LOZ4YPHkJmbTnBgCJFh9TtNibEpFBty0ZcZ0RGAAzsBCiPT7ppJYmzb1WXUaXUkxrSsw/pTo2tKT3YFbsdkDgbArC6hez2ls4QQjWYztyWWcgsGUbMSr67UUVRaWK+zVVicT+7JPCIcsSDAUBzIurWrWLLIN1mSqzFtyizO9DzF95tWk3SqGwarZzWo6FQuxmGFtbK93W43q3/4Le/820xoiJLtew7w/sdKRg+a3+L98oUhA0YyZMBI3G5Xs2OXGiIkJJQ8xZnq7TWbwkpISAIl5UWUnCslwh0HAiLN8ezY9gN9ew6qLv+WGJvS4Op2fEoiqVmpRMl4XDgJwEhETAT33PlAq9jhDQqFwmfdwfpol86WubKM8ooyIsM6NFvodNrke/jY8jYFmTlIlWTqpJmtGgfQGpgMgbiNDtxmNwqhwCatGEMb3ta02+0oqfncVG4VVVVVDR5fZatCSrdPCuIatYah/UexfcMP1TFvQghklajzpf8xbRP//oui2tH41WPw7J9+oENk875QVbYqPlj+BhVFZhRawcwZc+kQ5duXpLUUky8xdepMln/4LpoSPU6DncGjhqNRa5CyduSHQFBSVsSLL/wNTZEBl8FOjxG9mDy+rpirUqkkPq4j+WW5OLETTgewe7Ll2tLZ+qnicDrIL8oh0Bjc7LEmKrwD46bdxtZNGxFSEJ+SwLhRE1uop9eO8OgIis6VESCNSCmxB1mJamDyYHfaULguq6ghBFcLjHK7XVRaKzDoTT59fzsndWObZiPiMkFnvdXIhcy0Ws5WeUUpQwd5HC2AkUPUfLjybJPfrz42blnDkQMHkUj6DhjAOB91+IBWc7QAxoycwKlTxylKzwFAm6Tm5hG3UWourlNFQErJq28/T9U5B0hQxkuWPPwLNOq66v+9e/Xn2A9HOMcJAjDSid5UlJe1mh1tgVfOlhBiIvAfQAm8KaX86xX/1wLvAQOBImCWlDLNlw5t3LKGfT/sRmXT4gypYv68JUSGR/vSFOC58ebc0zJxYW2FQqHg/vsf5tNP38dtkxjCjNx3T8MaJ2NHT+Cjs8uILk3EjQtzZBED+w2vc5yUkhWfLyPjRDoCBSGJITx4/1KfBixdkA5Hrt2TeSZdqAOVdb70el0Y59Jd9Onhaf/8BRcBWt9TdS/x8cq3cB9VEiI64JZu3v/gDX7x5O9a3XHyhcS4ZB5/4tdk518gNCi8ejv7tnF38MaZFwgvjPNcsw5F2C9UVGvbUAHHdh1hzMhbMdQTP9i1c3dsZ1wEOUI9Io5BGXTq2HqZqH7qJ78wl2XvvoKqRIdTZ2PQ6GGMG90852hQ3+EM6lv3+3s9cfcd9/GR9S2Kc3JABdOn3tfg5C46PAZFNNjOW9EKPcX6XAb3r7/G6PFTh1j91ecobWrcBidzH1jkU3xa1y492XtiD8F2TyxSpamUrl1qb8PqtAGcTatxKFwuicXSfMfm+KlDHFp/iDCrx/k8VHyQqKgYenZtnq5Ta6BSqljy0C/IzE0HIC46EYVCQWhQOMZEAxWnStG7TBQbc4mKiKR0XwVhbs/vt+V8Bes2ruKOCXVjdWOi4tGFaYkqSqqO1Ypvg1it1qRRZ0sIoQReBsYDmcBeIcQqKeXl+eQLgRIpZSchxGzgb8Cspnam0lrBvq27iSr3bCu5c1x89sWHPqta30jERMXx+NJnvDo2IbYjs+c/wKYf1qFSKlk06Yl6Z9iHju0ld38+UQ7P511xoowNW9cwfszVlebrY96cxbz/8RtUlBWhClDxwOy6+lmDe93Bn58/wrTJebjc8M26DkxugVm6uchMkPDEQCiEAkWFGnNlGUGmkGa33RrodQGkJHSt9VpYSAQPP/I4m7asQ6lUMmfsXN5555Va25lKpwprlbVeZ2vMyNsoKy8l/cx53Ao3E2+5g/BQ32uF+fGNT7/4gIiceI9+oA32bd3FsMGjfBJavJFQKVU84GXlB4VCyZKHn2LVt59gNpczpu+4ehXppZSsXlUTy+oud7Ny5fs+ZS+PGDyG4uICUk+cRiokN428mfgOSbWO0Wl1SMc4/vTPDfTr7eDrtXp6dWr+NtfxU0cIurz2oSWcE6cOt0tnCzyT/4SY2slDnkzSx9m07TvyC3KZ2n86p8+cwOpy1pR/k3rM5aX1tmkMMDH93vv4ZvUX4IToxBhur8cpu57xZmVrCJAqpTwHIIRYDkwDLne2pgG/v/j4U+AlIYSQl+SMvaSi0ozKVrPEqBBKXParJdb6aYikuBQWzHn0qsdk5VxAbzfV1Fp0BpLjoyijIcDEIwufuuoxKqWK28f8lvOpaQhgyuiOLbL6pA5Q45KeTFIAl86OMeD62ioGCAuOYMZlAqQJKR1Jz7pAoCMEh7QjwtyEBte/EiiEYNrkJs9v/LQwbnttoWalXUOFpfwn72w1Fa1Gx8xG4nVsdhsKW81PmEIocFf5/ntx+4QZMOHqxwzqdSdFpSM5uK+IIT3iW+S6JsQnsUezhyCH57tdqSmjV3zduLz2jkKhrFWGLNAUxLv7XiWqJAmAgsBMZgxpuLBzp6RuPPGYdwsK1yOiMX9ICDEDmCilfOji87nAUCnlY5cdc+ziMZkXn5+9eEzhFW0tAi7tf/UCjrWUIW1MONAyoiZtz41iy41iB9xYtnSVUl6XdXv849d1gd+W9seNYgc0Y/y6pgHyUsrXgdcBhBD7pJS+yS23M/y2tD9uFDvgxrOlrfvgK/7xq/3jt6X9caPYAc0bv7zZw8kCLi9IF3fxtXqPEUKogCA8gfJ+/Pjx48ePHz8/abxxtvYCnYUQHYUQGmA2sOqKY1YB8y4+ngFsbGq8lh8/fvz48ePHz41Io9uIUkqnEOIxYB0e6Ye3pZTHhRB/BPZJKVcBbwHvCyFSgWI8DlljvN6Mfrc3/La0P24UO8BvS3vkRrED/La0V24UW24UO6AZtjQaIO/Hjx8/fvz48ePHd9qf6qMfP378+PHjx88NhN/Z8uPHjx8/fvz4aUVa3dkSQkwUQvwohEgVQtSR9hVCaIUQKy7+f7cQIqm1++QLXtjxlBDihBDiiBBigxCi7asrN0Bjtlx23HQhhBRCtNu0XW9sEULcc/HaHBdCfHSt++gtXtxjCUKITUKIgxfvs8lt0c/GEEK8LYTIv6i/V9//hRDihYt2HhFCDLjWffSWG2X8Av8Ydi375y3+8av90Wrjl5Sy1f7wBNSfBZIBDXAY6HHFMY8Cr158PBtY0Zp9akU7xgIBFx8vaY92eGvLxeNMwBZgFzCorfvdjOvSGTgIhFx8HtnW/W6GLa8DSy4+7gGktXW/G7BlNDAAONbA/ycDa/DULhgG7G7rPjfjmrT78asJtvjHsHZmh3/8ahNbWmX8au2VrepSP1JKO3Cp1M/lTAPevfj4U+AWIYSgfdGoHVLKTVJKy8Wnu/DokbVHvLkmAH/CU+Oy6lp2rol4Y8vDwMtSyhIAKWX+Ne6jt3hjiwQu1SEKArKvYf+8Rkq5BU9WckNMA96THnYBwUKIDtemd03iRhm/wD+GtUf841c7pLXGr9Z2tmKBC5c9z7z4Wr3HSCmdQBlQfwG4tsMbOy5nIR7Ptz3SqC0Xl0XjpZTfXMuO+YA316UL0EUIsV0IsUsI0fzK162DN7b8HrhfCJEJfAv87Np0rcVp6veprbhRxi/wj2HtEf/4dX3i0/h1Tcv1/BQQQtwPDALGtHVffEEIoQCeB+a3cVdaChWepfib8czUtwghekspS9uyUz5yL7BMSvlPIcRwPNp2vaSU/mrtfloM/xjWrvCPXzcIrb2ydaOU+vHGDoQQtwLPAVOllLZr1Lem0pgtJjxFdjcLIdLw7EmvaqcBpt5cl0xglZTSIaU8D5zGM3i1N7yxZSHwCYCUciegw1Pk9XrDq+9TO+BGGb/AP4a1xzHMP379lMavVg40UwHngI7UBM31vOKYpdQOMP3kWgbDtaAd/fEECHZu6/4215Yrjt9MOwwubcJ1mQi8e/FxOJ7l37C27ruPtqwB5l983B1PzINo6743YE8SDQeYTqF2gOmetu5vM65Jux+/mmCLfwxrZ3b4x682s6fFx69r0enJeLzxs8BzF1/7I56ZE3i825VAKrAHSG7rD9pHO9YDecChi3+r2rrPvtpyxbHtcqBqwnUReLYUTgBHgdlt3edm2NID2H5xIDsE3NbWfW7Ajo+BHMCBZ2a+EHgEeOSya/LyRTuPXuf313Uxfnlpi38Ma2d2+MevNrGjVcYvf7keP378+PHjx4+fVsSvIO/Hjx8/fvz48dOK+J0tP378+PHjx4+fVsTvbPnx48ePHz9+/LQifmfLjx8/fvz48eOnFfE7W378+PHjx48fP62I39ny48ePHz9+/PhpRfzOlh8/fvz48ePHTyvy/wEvDmw8EmOJMwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from scipy.spatial.distance import cdist\n", - "\n", - "def random_set(n):\n", - " X = numpy.random.rand(n, 2)\n", - " y = (cdist(X, numpy.array([[0.5, 0.5]]),\n", - " metric='minkowski', p=1) <= 0.5).astype(numpy.int32).ravel()\n", - " return X, y\n", - "\n", - "X, y = random_set(2000)\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y)\n", - "dt = DecisionTreeClassifier(max_depth=3)\n", - "dt.fit(X_train, y_train)\n", - "dt8 = DecisionTreeClassifier(max_depth=10)\n", - "dt8.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True)\n", - "plot_classifier_decision_zone(dt, X_test, y_test, ax=ax[0],\n", - " title=\"DecisionTree - max_depth=%d\\nacc=%1.2f\" % (\n", - " dt.max_depth, dt.score(X_test, y_test)))\n", - "plot_classifier_decision_zone(dt8, X_test, y_test, ax=ax[1],\n", - " title=\"DecisionTree - max_depth=%d\\nacc=%1.2f\" % (\n", - " dt8.max_depth, dt8.score(X_test, y_test)))\n", - "ax[0].set_xlim([0, 1])\n", - "ax[1].set_xlim([0, 1])\n", - "ax[0].set_ylim([0, 1]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The example is a square rotated by 45 degrees. Every sample in the square is a positive sample, every sample outside is a negative one. The tree approximates the border with horizontal and vertical lines." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[DTLR ] trained acc 0.50 N=1500\n", - "[DTLRI] change intercept 0.001126 --> 0.019908 in [0.001172, 0.038195]\n", - "[DTLR*] above: n_class=2 N=1500 - 749/1500\n", - "[DTLR ] trained acc 0.64 N=749\n", - "[DTLRI] change intercept -1.972404 --> -2.003562 in [-3.382932, -0.149398]\n", - "[DTLR*] above: n_class=2 N=749 - 377/1500\n", - "[DTLR ] trained acc 0.64 N=377\n", - "[DTLRI] change intercept 1.136431 --> 0.564497 in [0.399068, 0.831867]\n", - "[DTLR*] below: n_class=2 N=749 - 372/1500\n", - "[DTLR ] trained acc 0.77 N=372\n", - "[DTLRI] change intercept -2.481437 --> -1.962176 in [-3.275774, -0.156925]\n", - "[DTLR*] below: n_class=2 N=1500 - 751/1500\n", - "[DTLR ] trained acc 0.66 N=751\n", - "[DTLRI] change intercept 4.143107 --> 4.117942 in [2.662598, 6.063896]\n", - "[DTLR*] above: n_class=2 N=751 - 388/1500\n", - "[DTLR ] trained acc 0.64 N=388\n", - "[DTLRI] change intercept -0.412468 --> -0.999464 in [-1.346126, -0.659144]\n", - "[DTLR*] below: n_class=2 N=751 - 363/1500\n", - "[DTLR ] trained acc 0.75 N=363\n", - "[DTLRI] change intercept 5.485085 --> 6.009627 in [5.307328, 7.827812]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAEXCAYAAACat4H7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hUVfr4P2f6THqvJJCQEHoTEBAE6dLFgr137LrWdV2/btVV111dCzawoCAq2AAFpPcqLRBCQnqvM5l6fn/cSSO9UfzN53l4yMy999xz78y89z1vFVJKPHjw4MGDBw8ePHQNqnM9AQ8ePHjw4MGDh98zHmXLgwcPHjx48OChC/EoWx48ePDgwYMHD12IR9ny4MGDBw8ePHjoQjzKlgcPHjx48ODBQxfiUbY8ePDgwYMHDx66EI+y1cUIIX4UQtzciv0qhBBxZ2NOHtqGEGKcECKji8buLoSQQghNV4zvwUNb8cisCx+PzDr/8ChbgBDilBDCIoQoF0KUCCG2CCHuEUJ0+P5IKadJKT9uxX7eUsqTHTmXEOKQWwBWCCGcQoiqOq+f6cjYZ5znIyHES501nnvMW9xzrhBClAkh9gshZnTmOc4H3N+1iV0w7nwhxDEhRKkQIk8I8bEQwrezz+Ph/MAjs9p8Ho/MaiddKLP6CSFWCSEKhBANCn4KIQKFEF8LISqFEGlCiOs6ew5nE4+yVctMKaUPEAv8HXgSeP/cTqltSCn7ugWgN7ARWFD9Wkr51+r9zuMVyVb33P2Bt4AlQgj/czqjC4fNwGgppR8QB2iATn24eDjv8Misc49HZrUfO/AlcHsT298EbEAYcD3wPyFE37M0t07Ho2ydgZSyVEq5ArgGuFkI0Q9ACKEXQrwihEgXQuQKId4WQhirjxNCzBZC7HOvcFKEEFPd768XQtzh/runEOJXt/WhQAjxRZ3jpRCip/tvPyHEIiFEvlujf656xepeTW1yz6VYCJEqhJjW3DXVMfveLoRIB9a6379NCHHEPc4qIURsnWOShBBrhBBFbovJ1a25f0KIO4UQJ9zHrRBCRNbZNrmO9eUt9724o5HPwAUsBryAhFbe/z8IIbKFEFlCiDvq3s+2IoQwulfCxUKIw8CwM7ZHCiG+cn8+qUKIB+tse0EIsUwI8YXb6rBHCDHQvW0xEAOsdK+G/1Bn2Ovd11YghHi2rXOWUp6WUhbUecsJtOv6PVxYeGRWzTEemXVhyaxjUsr3gUONXI8XMA/4o5SyQkq5CVgB3NjW85wveJStJpBS7gAygDHut/4OJAKDUB5iUcDzAEKI4cAi4AmUFc5Y4FQjw/4fsBoIAKKB/zRx+v8A1RaKS4GbgFvrbB8BHAOCgX8C7wshRCsu61KgNzBFCDEbeAa4AghBWVV+7r4eL2AN8BkQCswH3hJC9GlucCHEZcDfgKuBCCANWOLeFgwsA54GgtzzH9XEOGr39drdY0Dz938q8Cgw0b1tXCvuRXP8CYh3/5sC1MSvuB8gK4H97jlMAB4WQkypc/xsYCkQiHIPvxFCaKWUNwLpKBYJbynlP+sccwnQyz3e80KI3u7zXScUN1FT/2LqzO0SIUQpUI4iqF7v4H3wcAHhkVkemcUFJrOaIRFwSCmT67y3H7hgLVtIKf+//4ciZCY28v424FlAAJVAfJ1tI4FU99/vAK81MfZ64A7334uAd4HoRvaTKD86NYrptE+dbXcD691/3wKcqLPN5D42vJnzdnfvE1dn+4/A7XVeqwAzikviGmDjGeO9A/zJ/fdHwEuNXMP7wD/rvPZGET7dUYTv1jrbBHC6zhxvARxAifsYC3B1nX2bu/8fAH+rs61n9f1s5/fhJDC1zuu7gAz33yOA9DP2fxr40P33C8C2M+5rNjCmse9anc8mus57O4D5Hfg+R7nnkXiuf1uef13z78zvUZ33PTKrdrtHZsnzX2ZVX/sZ740Bcs54787q79SF+M9j2WqeKKAIZRVlAnZXa+fAT+73AboBKa0Y7w8oP8IdQgkMva2RfYIBLbWrI9x/R9V5nVP9h5TS7P7TuxXnP13n71jg33Wup8g9tyj3thF1VyMoPvPwFsaPrDtvKWUFUOgeM7Lu+aXy6zkzW2ablNIfZRW9gtoVekv3v97YZ/xdDyHEGFEbgNvAfN3EeHU/i1gg8ox78wxKXEGD80vFvZDhHrM5cur8baZ1n2ejSCkzUe7PkvaO4eGCxSOzPDILLjCZ1QgVwJkJPr4oVvsLkvM16PCcI4QYhvKD2wQUoKxa+rofZGdyGsV82yxSyhwU7RwhxCXAz0KIDVLKE3V2K0BZJcUCh93vxQCNnbet1M34OA38RUr56Zk7CSUO4lcp5aQ2jp+FMu/qcbxQzO+ZKCul6DrbRN3X9SYpZYUQ4l7gpBDiAxTzcXP3v97YKA+SRpFSbqRloZDtHqNasNU1e59GWZ0mNHN8zfndJvxolHsD9T+DFhFCXI+yQm+KPlLK9Ebe19CK76SH3w8emeWRWVzYMqsuyYBGCJEgpTzufm8gjcR3XSh4LFtnIITwFUr67hLgEynlQbem/x7wmhAi1L1fVB2f9/vArUKICUIIlXtbUiNjXyWEqP6BFaN8iV1195FSOlEyNP4ihPBxC5FHgU86+VLfBp4W7uwOoQS4XuXe9h2QKIS4UQihdf8bVu2Td6MWQhjq/NOhxE/cKoQYJITQA38FtkspTwHfA/2FEHOEkll0P82sOqWURcBC4PlW3P8v3eftLYQwAX/s4L350n1vAtyf1wN1tu0AyoUQTwolKFUtlBTmugGpQ4UQV7iv82HAiuLeAchFiWtpFVLKT2VtdlZj/9JBEXDVsRDu78xfgF/aef0eLiA8MgvwyKwLUWYJIYQB0LlfG9yfAVLKSmA58KIQwksIMRolrmxx22/N+YFH2aplpRCiHGUV8CzwKvUDPJ8ETgDbhBBlwM8owYFIJTD1VuA1oBT4lTqrpToMA7YLISpQTM4Pycbr1DyA4u8/ibJK/QzFx99pSCm/Bv6BkqpcBvwGTHNvKwcmowSZZqGYi/8B6OsM8RTKyq3631op5c8oQuMrlJVWvHsMpJIpdxVKcGwh0AfYhfKjborXgcuFEANo/v7/CLwBrKvex318c2M3x59RzPCpKMHBNT9w94NlBkrQayrKqn4hSnBwNd+ixJAUo2TPXCGltLu3/Q14Tijm/MfbOb/G6ANsEUJUopSBOIbbIuHhd4tHZnlkVjUXosyKRfkcqq1VFhS5Vc19gBHIQ1GK75VSXrCWLaG4oT14OLu4TdUZwPVSynWdPHZvFEGsl1I6OnPsVpz7BZQg1xvO5nk9ePDQtXhkloeO4LFseThrCCGmCCH83abiZ1CCW7e1cFhrx54rlLo2ASgr2pVnW2h58ODh94VHZnnoLDzKloezyUiUDKgCYCYwR0pp6aSx70YxN6egFPS8t5PG9eDBw/+/eGSWh07B40b04MGDBw8ePHjoQjyWLQ8ePHjw4MGDhy7Eo2x58ODBgwcPHjx0IR5ly8M5RSh9tNKEEJVCiG+EEIHN7KsWQrwklMat5UKIvUIIf/e2+aK2YWyeEOJjIcSZFYg9ePDgoVNpowybKYT4TSjV4LeIOr0bhdKouqLOP6u7tIeH3wEeZcvDOcNdnPAdlLouYSgtH95q5pA/ozSCHYnSuuFGoMq9bTMwWkrph1KATwO81DUz9+DBg4e2yTAhRALwKXAPSvPvlcAKdyFRpJT31C3+iVJbammXX4SHs4JH2fIAgBDiKSFEittidFgIMbfOtjuFEEfqbBvifr+bEGK5ECJfCFEohPhvG097PUq68wZ3T7I/AlcIIXwamV8ASmXjO6WUaVLhNyllFYCU8rS7CGE1TpQGpx48ePj/gPNdhgFTUJplb3KXePgHSnulSxu5Fi9gHvBxG+fj4TzFo2x5qCYFpYmqH4oF6RMhRIRQ2mG8ANyEYk2aBRQKIdQoLTLSULrAR+FufCyEuETUaXrayL9L3Ofsi9JDDAApZQpgAxIbmV9/wAFcKYTIEUIkCyHur7uD+7ylKM1K56FUc/bgwcP/H5zvMgyUOl11/xZAv0b2mwfkAxvaeA88nKd4GlF7AEBKWddc/YUQ4mlgOHAH8E8p5U73thMAQoiRKF3hn6hTiG+Te6xNKGbylvBGaRVSl1KgsVVhNIoQTQR6AAnAL0KIZCnlmjrn9RNCRKG0qjnVijl48ODhd8AFIMN+Bv4hhBgHbEFp56MDTI3sezOwSHpqM/1u8Fi2PAAghLhJCLGveuWGstoKRukGn9LIId2AtA5WPK5AWWnWxRfFMnUm1YUEX5RSWqSUB1BWoZefuaOUMhP4yb3dgwcP/x9wvsswKeVRFCXqvyh9GIOBwygtgOpeRwwwDljUgXl5OM/wKFseEELEonSoXwAESSn9Ufp0CZQmt/GNHHYaiKkO7jxjvDFnZNWc+W+Me9dDwMA6x8WhNI5NbuR8B9z/113pNbfq0zQxbw8ePPzOuEBkGFLKZVLKflLKIOBPKO7LnWfsdiOwuYmG3x4uUDzKlgcALxTFJR9ACHErtXEEC4HHhRBDhUJPt2DbgbI6+7sQwksIYRBCjAaQUm6sm1XTyL+N7rE/BWa6BZsX8CKwXErZ2KowBdgIPCuUfmK9gfkoMRcIIa53rwirBe9fgF86/1Z58ODhPOS8l2HueQ0VSgmbEOBdYIXb4lWXm4CPOum+eDhP8ChbHpBSHgb+BWwFclGC0Te7ty1FUVw+QzGNfwMESimdKL3CegLpKKbwa9p43kMoadCfovQI8wHuq94uhPhRCPFMnUOuBWKBQuB74I9SymqFqg+wRQhR6Z77MZS4LQ8ePPzOuYBk2L+BEhT5VMwZMsodRxaNp+TD7w5Pb0QPHjx48ODBg4cuxGPZ8uDBgwcPHjx46EJaVLaEEB8Ipf3Jb01sF0KIN4QQJ4QQB6qLxXnw4MGDBw8ePHhonWXrI2BqM9unodQ8SgDuAv7X8Wl58ODBgwcPHjz8PmhR2ZJSbgCKmtllNu7ia1LKbYC/ECKisybowYMHDx48ePBwIdMZFeSjUOqVVJPhfi/7zB2FEHehWL/Q6wxDI0Oj23wyh9OBw+FAq9WhVqkoLi3CWmFDJVW4VA58/P3wMnk1O0al1Y4ViVanwaUDu7Bj0Nmx55dSWeRELw0I1AC4cOIXqSI41LvNc+0IToeLnMwynE6Jt68erwCly0O504Dd5aTKpgWbQC+b/wjtNgd6BF56bdfM0+UiPz8HlV2NBKTORWhIOCohWjz2QsFmt1FUUIDGqQMEDpUNvyB/jHpjm8eSQG5uFhq7MpbEBUZJSFBoZ0+7RUpKi7GV21G5v+tWzIBArVIjtIKQ4LBO/xxTM04USClDOnXQs0RnyC+Xy4XNbkOtVqPVaLHarBQVFqJ2apDChdqgIigolPbc9SprFcVFhbicEj3V302JU+cgLDS8HSO2HwmUlZVis1lRqVUE+AWhUp2fMqGwuACH2YGQKlxqB34BARgNbf9tn8/k5mWjsmkQqHDhRGUSBAe272dYXFqMvdyGCg0gsWtshIaGo1ad3RBwh9NBQV4eGqceACcObFShFTqkWhIQEIhBb+jUc3ZEfp3Vdj1SyndRaosQ1y1Bvvjwv9t0/NqNP7F73Q40FXpsAWZmX3UVK75YRhixSuk6CcXe2Tz84DMtjrU7JReAyhgTKdpSLLoMSv/4IzZpJZo4NEJRTqzSwqjrVTz8zLg2zbUj2O1Orp/yCcHFF6EVOsrJYc79kdxyzwhSKg6RaSlhXUESxzPCCbc2/5DOzi3FO9VBnMvI0PiwTp/rshWfUJxVjk4oX+oKeym9hyVx2SXNeZ4vLFb8tJScnwvQu6/R5XKhi5Ncf9UdbR7LbKnkrVdeJaSs9kFdEpjDQw8/3WnzbS3vffBvdEdqi1+XyEIc2AmW4VTZzAT39GfezOs79Zw3Pj49rVMHPIt0VH7lF+Xy4QdvoSky4TLY6DE0jvz8PHrn+SHcSm0BWcy/9kaiwmLaPL/X//NX4vMHkE823URtDc/yyHwWLPhDm8frCN98/wWnN2fgaw/EKi1UhZfywD1P1Vzn+UJpeQnvvfoGIXQDAdIpqfArYMG9Z/d+dSWWKjNvvvwKIfZuNe91ROa8/e6rGCsCal4XkcfMebPpGZvU4bm2hYNH9/DLwp8JELW6T4o8RDx9kQ5JkT6TRx/+Y6eesyPyqzOUrUyUtgfVRLvf61QcTgfbft1EVLkiRGSh5JNPF2K32LBLB1HEIYRAyNb9mKsVj90puXirHJSqbGgrjfgTTCpHiJf9AImlRxpX3zy3yXFcLhf//edGju7NJyTKxFN/mYTR2DErUsrxPKpOeOMndAD4lIez+ac0brlnBPHefYFDjA9W6uBVms/sFFEfobdSgZ6TqRZIye10hctms6Gu8zVSSw02q7VTz3GuCQkO5ZQmDZujijwycOCgv2pAu8Yy6I049faa1y7pRG08N0nBgSHB5B0uxCSUNm4lFBBKFAB6aaSs7MyWbx46wtfffk5wTjfUQg1mOLrtCGWaQvR4ES3j0AsjwqnG7rC3PFgjCAfoMWKmHIusxCi8KNLn0q9vY32OazmacogNv/6MEDB50kxio+Padf66nE45ha9dWQjqhZHy/CIqzGX4ePl1eOzOxO6wIaS65nVbniEXCnqdHqfWgVM6OM0JnDgRlS6klO1Sfk2+XlilFZ1QLEp2ryqC/M++sTo8NAqrj1lpmASYZTkalGevEALs59fn2BlSfgVwkzsr8WKgVErZwIXYUWw2K7by2oe4EALKBX2cw/AlkFMcpURXQM/eTTVbb5yh8WHEuYyEWcMoDC5Dj5FIenBMvZvSAfv4z1cziYzyb/L4l55czfrXKylfE8WRjwwsuH5Zey+xBh9fAxhsNa9d0oVaV/vFiffuS5TRn/HBR0kMy232X0J0DiLGSkUPDSdVlhqLXmdx2aVTyQtMxyVdOKWDkpBcRg6/tFPPca4ZMWQMIs5Blkgjjr4kMpC0I2lk5Zxu+eAzUKlUzJh1BTkhqeT7ZlAQlcE1V93S+ZNuBbMvv4bK2CKOc4Bjch/llGBEccEXmXIYNOCiczKv3yu52dmKouVGa9MRbU6gO704yREqZQUi0kF0eGy7xg+JDsOsLieB/uSQxhHTbi6eM4pJ42c0ecypjBS+/WwpusM+aA/58PnHH5FXkNOu89dFqiV1azg61Q50Wn2Hx+1sgvxD0EdosFCJlJIiYw79Bg4619PqVFQqNZdOmMhhzS4iiCVe9CW4PIpvf/iiXeNdNedGzHHF5PueJicwlRGXjSLAL6iTZ90yIYFhjJw0msOqXaTIQxxjP2Fuu08VZnxDmzdEnG1atGwJIT5HaYoZLITIQOnnpAWQUr4N/IDSDPgEYAZu7YqJqlRqKijDJqvQCQMlshAtyo/XVwSQp89g2KyLGDV8fJvHHhofBilgm3wVx/esRqgdJIzvx4Tbx+L0P0ZKRa7botSQozuL8bJ1B5RVZUGyxFxpxeTVfsESFR3A8LmBbP8yHcqMqOKLeOH/6vdbrrZwRRmPNTtWpr4E6ZKsX3oU66ECjmt8cDrnMDwxqt3zq0t4SCQ33X43a9Z+h0ql5s4pD+Ln498pY58vqFQqIiO6YUwOqFkJBpdEsWXHr1w564Y2j9c3aRC9EwdQZbVgNJjOmWtFo9bw+AMv8MOarzmy7zcs9krSOEpIYCjDB1/M4P7Dz8m8freoBfkyixARiVM6KKaAYCJRCzVhMhrZ18K91z2ORt0+h8P8ebewwvglOVnZxPsmcOWcGzAaTM0es2XrOkJLo2u+g4HF4ezYs5kZk+e1aw7VTJ02m6+XLEFf7IXDZKXf8IHode2Pnzl64jc2blyLUAkunzqXyLC2x8s1hhCCe25/lJWrllFSUszYfuMZOvDiThn7fKJvn0Fs/GE9+golFs3XGcjplPZ5xIwGEw/d9zSWKjM6rR61Wt3yQV3E2FGTiI2J56uvPsOnyof0qqOEB0UREBLI1VfcdM7m1Rgt/qqllNe2sF0C93fajJpAr9MTGBhCZn4qLumiglIGMLJme0BQYLsUrWqqFS7TpddQ0UNDRJgfyblVACTqt6P0G22IVVWBsa45VmdHp++4d/a5f0zhyE3Z5OaUMWhoN/z9GwrNphTA+hwi8z8r8PsmHF9HGGYqWWP7FLX65k5zKUaGRXPztfd0yljnKz4+vuSKQrQorl2bsOLj3f6gY5VKhcnYfCLH2eLySXO5fFLTrnIPnUOP7nGk5aeTIg9RQSkJDKixdLl0TqZNuLJDAb0qlZo5M5oV1w3w9vGlTOTVWDStqip8fTvu6kuM6809DzxCWkYKIUFhRLQjmaCalLRkvv1sGWFlMUgki7Le5a57HyTQP7jD8wTQaLTMnd62+3ahodfpkRpXzWspJVLdse4xLSnyZ4vY6Dgefei5cz2NFjmrAfIdQQjBnLlXs/KbZairtLiEg1xHOoZKL2z+Zi67bEq9/c2WSr5c/jHmMjOBYcFcOet6NJrmY6kUhSuXk6kWTHYwY2B9kZHM6CSifBoXQL3v17H5hS14Zfkjg0u58o5eaDSdo+n37htB774dq6IR792XgoPb8XUoAY0mvMgvKKA8SsfS1FPEuZrPuunsGC+Xy8mWfUsxV2US5JfEkD6Xd4llx+l0UlpejLeXLzqtrsPjjb9kKkcOv0xRmhmJQBXr4LKxl7d84O+MLTvWcez4EcLDI5kyfhaqs5yBdCFz5Zwbebfo3+gL9OhUWrIcqQRXRODU2gns60+Pbgn19l+9biUnjiWj0ghmz76GiJDOsUbXZeqE2bx54mUspyuQKomuh4rRw9q/aK2Ln48/A3oP7fA4m7euJbSsmxJPhcCvMIQ9+7cz8dLpnTDLhrQUapGff4jSsm24pIHYbnPR6xtXOjoqO8srSwGBj1fH3WE6rZ7+Iwbx26YDaCsNWAMrmTttfofHvdDIys3g53Xfo1apuHzKFWfV/XnBKFsAfRIHkPR4PyxVlZiM3uQV5pCVe5qYqB4NAvQWfvQGxpQAvEQQJakVfFq1kJuvu7fFc1QrXKSbARNSq+c44VQGNvGF7x5Gv9f64F1ykKFx6QxO9OmEK+1cDLr6yobT4MASo6bCoOEAjQfjxtv9yM0o7PSg+lVbXueJB1IZ0EfDmvWpfPVtPmMvuqXTxgfIyc9i0aJ3UJfrcOitTJx2OUMHdcw1oNVoWXD3kxw/dQSAhO69z6n5/Fyw4qelnNp4Cl9rEKmadD7Keovbblxwrqd1wWDQG3nw3qewVJnRanXY7TZOnDqKyeRFXLfEeouOdZtWceTno/jbgnFJF4uK3uGBB57sdGuoTqvngXufIiXtGGq1mrhuieedAm0yelFEBXoUq59dbcPbu2vk7O6UXE6qLIRFB5GibZggYkndz6TE73l+gZaiYhfXPPkfXKMfQK2tXch3VHa6XC4+/ORNilNLkAJCegZz87X3dHhROm3iHAYNHEZBYS4xUXG/u3CPlsjOz2TR++8SVhSLAxfvnHqd++57HF/vs5O0cUEpW6C4X7xMyg8tLDiCsOCGlh+7w05VoQ0/d7aEUXpRlJPV6nOcmalYgR6XtWnzvh4Dzh6jOWQMIdRyFDjUShdfLS6Xi7WrjlGYb2bCtESCQzpPmNz+xEW88eROZIY/9pAiBtzQC3WklajIpuPKThblIbV6Ku2mmpVeR5Uuh9NBZEQ6A/ooX7tJ4zSs+Olos8dIKakwl2HUm1q0TFaz7KvFhGTHoBIqqISV33xFcWkRFw8bg7ep/fdVrVaTFN98ZtfvmZNHjhNgiwABBoeJ5KN7efeDf9MzoRfjL5ly3qX1n69Uu180ag39kxrvbpZ89Aj+NsVNphIqdAVepGWdpHd8/06fj0atoVdc2+RVY2TmpHPi5DFiorvTIyah5QNayfQp83jz1MuoMw2gkuji1QwfPLrTxof6pYAqtHYqY/KIamSBXXRkF396Tlm8BgWqeWR+JW8WZBHarzYxq1p2VmeA9432w+VytlpR3rBlDZZDDkJciuu1ZH8BC51vMOHSy4nr4H2NCInqEgvphcC69T8RWuR+LqDCmSf479v/IDYmjrkzr+3ysI4LTtlqDRq1Bql11ryWUiLacaVnuhWbw4yB43olhkcpy9B6hUtKyYM3LSdtjQaNzcBnbxzk9S9n0COuc2ISJl6eRN9BERz+LQttZAlR3X1YV9K8qdzLVMpxwjFbAUydYuVSCYHZUv+BXNVMlYjyylLW7/oHg/pVcCBFhY9+OgN6TWrxPM4ql/sHpSAqVBxaeZjdO7Zx990P4+8b2O5r+P8ZqVJiPKSUnOAg3a290R/x4rcTh6ioKGPWtKvP8Qx/P+iNOhzSXlPvz2mw4e8T0MJR546tO39l0w+/4lXuxy7TDvqO7cvUiXM6ZWyjwcSD9z3N8VNH0Gq09IxN6lTrW11rljlaKZeTEJ1DlI+lwb77tHbsdolWq8ixwjKIi6ggMqxWnlbLzgr07P3lM3CdwM9LTfLOaKZe8hgqVfMW8ezcLExOH6or25qcPpzef4KvU77goskjuHRUyzLQQ0O0Wi2VmFGjJldmoEZFRG4C5hwr/8v5Fw/d/0y7k1NawwWhbNnsNr7+7nPKSkqIiY1j8vgZza6ihRCMnzSF9T+tQVtpwOZrZt6s9hVnrO9WbI5alyO0TeHat+c0p9YKAuxhIMCV4sPrL2zg34uuaNecGyMi0o+IyLrm0sYD/qvJ1JcQ5aMkCZgxUKHVdLhWl0qlRjhH8fZHvzJ2pIuvvtMQ6jetyf237n+Xd/5Vjq+PIpyeeGElFeaLG1inpJSsXreStFOp+Pr54hPsiyWzEiNeOKWDKiz4EYh3rh/fr1rermKkHmDk6LFs/H4d+nITOmGoCar2sweSdjxV6ZLqoVG27drIwYN70Rv1XDHruhYtrPPm3MA7+a+hLtDh0NrpOTShQ0HmXc22TZsIrVAKg3pZfDmway9TJszuNGunTqujb8LAThmrLtWKVkUPDT5hoIqoYlyYhUT9UaKM/g32T7gujode3MK912lJz3Ky+ZCJm58sR4jarPBMfQkAe4+UcP+s41w/R7GE7T+UxnsfLmfU4KsajHsyLZlf1v2knKNXEru9dxJcGQlADumEEIlvZQC7t233KFvtZNrkubyV8gpe2QEUU0CSGASATugRuVqy8zLoFtG9y85/QShb7330bzTJJgz4cvz4cSoqPmtReRo+ZDR9kgZQVFJAaFA4hna0VqmmNcpFXZfjmQpXzi4Dn/xvL0LA3X+4mIFD6gtNs9mGsNd+FAKB09GxTJGWaFkJrC0rkWkqJUcf3inFUS8eeDVpmYN5/6OTRIb1JT6h6QeI0WiuUbQABvR1kpNe3OBB9fV3n5O1JQcfRwBl0oIlvpTAocGknzxORVE5PeiNEAKVVOGw2848TQ1SSjZu+5ntuzcTGhzGFTOva1URRqfTyTfff05edi4mHy+uvuKm8yZTpzO5+KIx+AX489XyT7EUlJPmTKYbPRGIGquXh4Zs2raOHd9vI6gqHJu08XbOqzy04Bm0zbjFfbx8eXjBM+QUZGEyehHo1zlW7vZQaS5n2befUVVppntcPJPHz2yoRLnqvxQuFVK6EOL8jWusa9GqVrQSw3IZ738M8G9URsb3h75/6M/WTUfxD/Dhxf/r1YhCqRSdPu0oY9SQ2m0D+mhIy01h1Bl7Z+aks3Txp4SVKPXVtmVuYsCYwaQcSSYzI50QRxS+wm3VPOM+n0l6ZiorVy3DZrNx+aQ59IpvnXdl/6FdbNm8AQRMmDCNxLjerTruQsLb5MP99z7Bh5+9ieukg+O2A3SjJwZhwqV1dEhHaA3nvbJlqTJjzrEQiiJsfOwBZKS2rpikt8mnQzE6baGuy7GuwiVOVbD1kXUE5So+/ecO/8IbX0+nR3yt8BxyUSzGfpuw7fNDi47S0FPcfsu5LShZK2gO1azUqk3jHVW4YqMS8PMJwuF0NFvF2OXsxm9H8+iXpMXhkKzbqGfsEOWcB4/sYeuWDQi1iuL8AsIcPQClWnVZfiFX3HIdAsF/3/onqmw1LukiNyCNG8bf3uS8Plm6kIM79xAjEzGfcvDPoy/w2KN/bNHtuOSrDyjbbcHkCsQmrbxX+m8evLdr2u/kF+VSXFZIdFjsWS8d4XK5+P675UTkxtFNaCmnhOMcxC/An1kdrMv0e+a3g/sIqlLkgVboUOfpycg5RY/o5uNvNBptuwucdhYul5N3Fr6Ob3ooBuFPcspxrLZlzJpa3zoTkxBLVkEuvo5AKtXlBMcEt+gu60paG2caFh3E4IExbC5Mr/d+c4vR4BAfJkweQG5uOVarA4OhvtJcXQNx4qgyPlrh5M8LlO0fL7dj8evF7pRcLFUV7Ni0AqfVhtlWTnRJTI0cDCqOJD2nmFHTbmHj2iWoT7iQTkmJthBjeNPlZpJPHuGDhW8SYAslgGCWpn7G6BljGD+m+dZpx08eYfWyHwit6IaUkq9zl3DTXXd2iSXVUmXmdM4p/H0CCA3qWKZ9e/hlw49wQksf50U4cXKUvYRow4nuF0VIYOe3s6vLea9saTVaXOr68VdS1YJ6f45oTOHK++RHQnJ71vyQjKe78d2yQzzwZG2V9eNH86iqcpLrtR80Lh7/41jGT25bJfzOxuVysf6XZEqL7HQfZaxpD1StcB3ce4LkVZ/RLSSS4f3ntLo6tJSSn7e9Sa+EY3iZJN/9Gsa0MU836iu/ZPDNvP6WDYPhNOWVGgb0vA2dVs/RlEP89OVKQsq7IZEUa47jJ8MwCMWaVFxZwIHfdjNy2KXce8+jfPfTcux2OzeOu4Oo8BhS04+zZdt6vLx9mDZxDnqdAafTybHffqObTMBH+APQvaI3P6z+muuubFpBA8jPLCDApQhBndBTUmDHaqvqUBHHxvjp5284uPkgmkottiAL195wCzFRPTr1HM1RXlmKKFHXxBH5CH98ggq5894F59Tycr4j1AKXrI0jdGkcGJsoF3C+UVhSgCxUoXW3DvN1BJKeklpvH4fDTl5eLrma05wWx+nWozs3X/fEuZguUGuxKivK5uh3Wxk7ZBDdIrvX28dmt5JyciXWnCoiA64Fr9aXh9m0/hBbf/mFvgmSxQdVXHnzHPr061Zvn3jvvtAPdhVIbnwhAymcnNIPxThyGGUWHevf/piYzGg0wp88tYMMTtKdXgBYsZCdn05SlI7BN9/Ksc2/kJd5muC4vvhE9GHr0TSyU7ZgMVcyZtSEGhmwbt1PaG06woUyl26unmzbvKlFZWv7rk0El0eBUEJw/EvC2LN/B9Mnda6ylZWbweKP30VXYMJpspN0cW9mTL2yU8/REhmn0vFxKotntVATqolk1JWjGTVkXJef+7xXtjQaLQNHDOG3jQfQVhiwBlQyY3L9WCYpJUdOHKCisoK+iQNqshXPBWcqXFpdAFWiCBPeAFg1ZkIi6mv0//fwz/ge7Y2fUITyN4uOcNUNHa9P015cLhf3XbuUzPV6VDYdJOby5OI+NQrX/tQqBnh/xSsvasjKO8FDz+7mmsl/aVW24JGTO5gz/TCzpynCbfL4XF5/80vGXHRdg33VajWXjWhYLHXb9g2ElNfW3enmSCBF9xsRtu5UUIa3059NP2wgMqIbsdFxXDuvtqnB0RO/seLzZYSUdqNCFPLWyVd44N6nFFcYoKJ2Na5ChdPpbHD+BmhkPQudS+tAq+l4ba+6mC2VHNi2j7AKxdIh8yUrVi5lwT1nr2Gu0eCFQ1e/jZSPv69H0WqBWTOvYlH+OxgKfHDobET0jyD8jIyw3IIsUtOOEx3V/Zxbs+piMphwahw1r5Vko/qW6G9//BJxTE8CSkxVfmYGuQXZ5yTGrFrROpm7C+tPvxFU4c+n2/YzfMpwLhujBBU6HHZ+3PQir7xQQmSomudefZGyyJvxj+jWwujK9a//cR1v/Fn5fd90peThF3+kz9/varBvvHdf4mf05aJxh8i0lLCuIInjGVZyT5ThVWSsWbSEOiP5zbiLfIuSMV9EHpGZcexYt5QBt1xLzPyJVLclz8goYN9r7xGTF4UOHZ8f/ZCrbrqBuNhEEAJxRgc+Qcsxc/7+AZwW2bXPKLWFgIDOrz/17YovCM2LrckSP7LzEGMvmXTWSi8AaPQanNKB2p0xJ03OLokFbIzzq6BKE0ydMJvr77uVsbdeyp0LHqBPr9omwFJKFn78Bqve/5Ftn2zjv/99mYLivBoX1bmgut+id6qDgUOmkpNYTJ4mmzx9JtpRpxkyu/ZBLKXEVqqueVCrhApr6blNod++JZWMX3X428PwFQF4JSew/OXsmn6MQSdW89/ntZhMKnp213L/raX8sHVLq8Yuq8hiQN/a60uIU2Ox5rdpfiaTCTu1aYx2tZXA8CAkLoIJI1J0x7c8kMNH9zc4dsOGnwktVdJ/DZjgtKamxlCfAf1JE0exSStO6eCU6SgTL2u5cOKMmfPIDT5FkTaXXL90Ro8f3+m1iixWM2pHrTIrhABHMwd0ATqtjtHjx5Hrn0ahIYf88HSumNtQSfZQn4iQKBY88ASX3jqOefdew3VX1beUbtu1kUVvLWTn57tZ8vYifvn1R1wuFy5XKxT9LsbL5EPfEf3J8zpNkcgjN+QUs2bWdyEWFRTWJEsA6CqMZOVmnO2p1gt2L9+xn9jKWLyFHxHWGDZv2FLjWjyRfphbryukZ3dFhr3yDNgO/dSqc9jtToIDaj0rKpXA26v5z6luL9uE6Bz03VXYDbXyyyVdmHqGUGYoQ4uOBAbggy+2/AJUEVX1/pWVHSK4wA+DMKISasJKu7N2/SoAJk2cTpWukmKZj5SSXJFBn0EDmppWDVMum409vpJCXQ4FhmwMSWouHjKmVfejLUiHrJclrrZrMVsqOv08zXHVFTdQGJlJoSGbXN90BowejN9ZyvI97y1b1USERje6UjqRdpTyY2aCnOEgwDvPj1de/zOBulDQuZgybSYD+539+KeaLMZsB+NvfJD9eQcRkU76XaIhx3YMdYWSqSiEwDtM4kxTtG2HtOMXeW514IpyK8JW+9VQocJmddXEIgTpK5CydrvNCdkqO7tbEcfVI3oY7y1ay1+eVSxBCz9x0j1qZLPH1CX51Hb8QvZzNKQUr8J40IB3gpGk2OGcyEpVUqYBi66CyMjalarT6UStVjeID5MqWVOc9Por7yA2pgcbN6/F19ef+2Y9RlhIBFk5p1n61SdIm8Qn2Jcb599Zz23as3svHnjoSXILswj0C+6SH2+AbxAiyIW9woZW6CjXFBPdo2stIDn5WXy5dBGuKhfeQd7cMP8uLrn4MgYPGEZpRQnBAWGdUp3//we8TD4M6jOs0W1bNvxKaLmSyUdlAL/+vIZdm7ehQkVkzyiuu+r2c1rDbPrkKxg2dCTFZUVEh8fiZfSut71bTCwnjp3Ex+kPQJV/Bd27xZ/VOe5Oya2pkSVirOhV9VciUqUmRZghJRdvocJRRz+SUvnXGnQ6DTlFJkpKrfj7qUnLsOMQLVt2q2XnMM0BVq45iV/3QrIOWzHY/ajsXsyUZ8ez7rEN+GcpYzmkHZ9gJ4nukhIupwsElISXkqGS4J6/RFKq1OchLiaBhx98hqUrFpNrSWXs6EmMvGgsDoedT798n+LcItDAnDlX071bz5q5aTVaFtz1BJm5p5U+sKHduuT7FhsfR8rpk/jZg3BIO64gByGB7W951hJOp5PPl31AQVYBaCQzZs6jZ/dePPLgs+QX5eLt5dOqBKjO4oJRthqjvLKUTVvXUWwvwI8gNEKLChWaSj1hZsXw+tN3K0lK7Nfp8TOtoW5x1EhVNyo0Gk5kWREqUa80xL8+msUz9/6AuVDiG6bmb+/MbNf5ln++jy/e/g2cKgZcEsQzf5vc5h9NWamFyGh/1En5OI74oUZDaVgq996mVGCP9+5LSNh+7nnyJP/3B38ycpy8ttIPzcUJnExvOXA+LCia8srbuOOhb9FowN9rNAOTWtfwuNJSQbH5Mz5+S2C1evHTupN88EkPrp76MFJKTme8SV7aaaSQxPbpzsA+F5FfmMuiT97BWSERBsmYceNZn/UzAcXh2NRW9HFK1exqLhk+gUuGT6h57XQ6+eSThYTkKNawqkwzn6s/5Obr6rs3TUavFgOeO4JKpeLuOx5h2deLsVSWEN8jjqkTZnfZ+aSULFr8DiFZynVbs6r4VCzk9psW4GXyOaeu+t8LUkq279lIYWkeeumNt1AEv8siCbPEIoSgaF8RG7v9wtiRE8/pXEODIpoMaJ5y2SxKyxaRfSoTqZJMnjCjQUeP1lBYks9nn7+PvdKBzlvLDdfd2WJySk1GYYxSI0uqzYRxDPVgG2XZhXjbgihXl6JJCqIyTsvJVAsBRU62vmsnIkwQFa7mxf9oMAya1ep5PvzMdfz1v9+ilmbU+hDuf6x1x8Z792XRog188JQLP19fjiSX8MTfM7j/71PxD6wk9LFgvn3jN9QWA9pIM396dSh+vkd59dE9pO9wINUuel2uxzFEULpLi96lJz0ok/jhs2sWupHh3XjormfqnXfZt59g2esggAiklHzx+SIefviZes9ElUrdpWUPQOnBukb7HaknTqA36bl7zsNd2oXj6+8+p2y3hQAZjpSS5Us+Y8FDf8Bk9DonLu4LVtkqLS/m7bdfwy83lEhiOc4BesoBZKlOEuSqfdhrzDpKy4vPSeZDNU1lKir9Fg+BDzz7Sa25t4Q0SupYV1tTq+t4ci4f/fkwfnnKinLPyUI+it3Orfe2vk3Nkg9389nrhxHlBgiFoNk5aFVa7r9lJCPHxgHwxeL1jIwuYNAUP95bXMrG36D3M9dyMsdBhbp1mYo9YwbTM2Zwq+d1PG0XadmrKSgyc+08G6BHr1cxe6o3P6x2KrFbQnDHTQ9gqTKjUqlqBMnnX3xA4OkoVEKllHb4dT2337OAXXu34Ovrz8iLxjbr8istL0ZdoasxfxuEibLCvFbPvTPxMnpz83X3cvjYAdas+Z7jh44SmxjHrKlXdfpKtMJcjrpCW3PdemGgpCinU8/x/zsffvoWFb9ZiHX0JotUbLIKnTAgqY3/87b5k5Z+Elpv/D3rCCG4Zu7NHR5n8Sfv4nsqDLVQ48xxsOjTd3nw3qdaPK66GGm8r57Njy6iqECPyltN4CXZuLTZBPZMIGHWXLJLKigsrsAr/12Wf+jFV9+X8/TfnGjGPoCjh5FIUzKJ+qOAf7Pn8/c38fhzrW9cXVhYwcdvfw/Siiy34OerJEf0TtQzZQx00ycQ6u1L/K19uf0GJ+XlVQQEmBBC8N4bm8n7LoRAmzKn45+mc+PCy9l28AgZGWqGDJhOiCWo2TqQhbmFeKPEYAkh0JYZyS/KPeuxgUIIJo+fSeXFFXy6ZCEfvPcmeh8918+/o1P6P55Jfk4eXjKg5tzaMiO5hVlduihujgtW2Vr1ywqCcqNqsmRiZAKH2AFqSZhLcR9JKXF4Wwk4DwJ4G1O4muy3WIdE/XZaUxx197YM1LmBtVWHq4LYvz0LWm4HCYC50spn/z6E32nli+gqdmKNyuS/X82tt1/WqeM88IRyz//4WBB//18lEaZDqKPVDUpDnM5Yh0ocpsqqIiR4Hr6+oQ3vSQucyjyE2vAR77+hprjEyR9eLGP+3GCEEKSdduB01F9Bn1nfymmuzQITQoAFggKCmTax/nU1hbeXLw6DFSqV1w7pQGdqv+vM6XSiUqnarRwVlRTw3bKvCC1WLB9puems817FZS1kHLUVL6MXDr0NypXXTulEY7xgxcV5R3FpIUUpRYQ4o0FAD3qzX25FpVIRpAqriccrNRQwJmnsuZ3sWcJe7kDtrsulFhpsZU3XxGuMn/75Lj1SuitjlEGpSOGjX+dSrDvFupJ8vL1L2bd6J2+8oMbbW8XN1/gxbYKDGxfuJSG6L+ODlUKm1bL25Ilcln2yGo3GRa9+SUyfM6Lt12R38tpLi3n5aRd+vmrueqyCwiI9QYFqXC7JkRQVVwbXumW1WjWBgbXxb8cO5mO0htbIdX1pIKcOZTD4qiF45YbhyjZAC+FxRh8DdmmreVY6TNZ2N2CWUuJyuTpkkfp48dvokn3wF344pJ0PF73VKqW6rZh8vbBJKzp32z67yUqgX9strp3FBSs9XS5XvUwLgYpQogi2R5Dmd5QgUwho4Zorbm62eKBSffw7UpKTUWkEs2df02W9o85UuFxWA8k0r3BkmpIYH3yUjFNb+fqVbJxOyXV3Dq6xNFXTd2A4zsAUKFZcERZNGfF9Wv+DKi42ozLXMSsLNbZGYhft9vpKgsWsoZtPAF6ifmmIk4e2c+W0jVw/V4vNJrnx0fdx9nwanVsZam37n+RTv/D+f5RYq8AADdMmGJh/l5WIUG+KiiK5bETzZRn0vjocOUrbE5d0ofZRtan+j06rY+qMWfz0wwpUNg0aPxW3Xd325stOp5OPPn2LoowiXCoXQy4ezqRxLQffn8mJU8cwFvvWKGt+9iBOpiQ3qmyVlpeQkZNGWFAEwYGhDbY3h0qlZsbsK/huxXJUVg0qX7j1mvvaPF8PjeOSLoSsb1H1woeern4kG/dRGJKFABL79WbowObNWumZqXz/w3KkE/r278+loyd34czbh8PpYMUPX1BYUEBkVDTTJs5tYFFWGUVNVq9LulAb2/ZAd5lrlTUAUWGgsKCChEQlXipTX0JaoJ2yCheBAcp+ZeUuggPsDRStoqJKPnvvC/71nBatVvDp19tY86OWSdMa72XZFKdSCxhzkQ0/X+WB//Kfgrj5oRL69vGnrFLNNbfOQa1u2rI+7JJuLPkxE2+zoiRUBefSd9RlFNH65K9r5t3Me2X/wV7swKV1MH7SlAZxd61hy45f2bR+LcKhwivUmztuXtDqkj91sRRb8BLKs0kjtFhLGu/Z5nA6OJmejFqtpkd0QpuTjq6eeyPvlbxBSaENl8bBmPGXndPm2xessjVx/HQWJv+HkIJuuHCRTjLx9EODlu4x8dxx8wOtGmfdxp84+stR/G3BuKSLRUXv8OCDT3VZBfAz+y2aaT6W7Lg+HHNRBdvuW0t0eiICwV93beWFj9QMHVFrBu4/MIoZD0TxwyfJ4FATN9SL+x5rfVuH8Ag/tJFmnPlKoL5ZXcaA/g0tb6MuG8lLb/zMldMEew+50Ack0C90ECkVh2pKQ1QGJpJ9cCfXz1WUXJ1OcMfVFp45vIeA+ETCraGtbv+j0/qRnesgOlIZK9BfR/fwaxnYytX+jdffzeLP3qW0tAqNScON1zRM0W6Jgf0uYkDfodjs1nbH/n2/+itshyDUpcQS7l+3h95J/dpsyg8PjcRqsoC7bVsVZoICGgbkHz52gJVfLUdfbMLuU8Wwy0Yw7pIpbTpX36RB9Ok1EKvNikF/9mMef88E+gXjFWOk4lgpJqc3WZzCDyU+yd8QxCOPPNMq62dpeQmfL/qQsMLuCCHYm7kHvd7IxRd1fjZZR/hg8X9xHlZjkr6kHTvNktIPG2RlXnPNzSxZ8hEuM6i9BNfNb34hdSbBfWIoOpiGr9Mfp3SijqogJlZ5qFcHqF8z386Cf8Kfb6nC4YK/faLngeeDMBm19bwHe3elcu1MJ1p3Asj1c/U8+cqRNitb/v4msuq0oTUZVcQlRPPQH1vndr3m5qGkp5aw6+dUhFoy9Xo/4vt3p6ggteWD3XiZfHj4/mew2qrQanTtypQuLi1k0+r1hJV2B6Cq2MxXKz6rV1antQhDrVItpUQ0oq9ZbVW89e4rkKFBCokhTsM9tz/apoWy0WDiwXuf6tB1dyYXrLIVHBDKnXc/yKq1KzhwYB/dKnshEOT5nGb6iDmtHud48jH8bYqbUSVU6Aq8SMs6SVJcvy6a+Zn9FptX6kpPZ3Bg2ff0zIuvcYf55fRgyQf76ilbAHc9PJo7HxqFyyWbXS01hlqt4o3P5vDio2uoKnMxqL8fT/+l4Qr5knF9ieoWyq97TtCtRxh3zFcsbNXCbHzwUZKtflR6qykrd9a02zmWJhg1SEtYTwuZ5Qdq2v9U2k3NZjGOHHQNjz2fzLVXFFFRCT/+HMu0Sy5p9XX5ePly352Pt+leNIYQokNJFnl5uZhctatJfaUXGZmn2qxsxUT2IGl0bw7vOojKqcYQrmf29IYK5OpVKwkrclelLoftmzYzdtSkNgscIYRH0eoChBDcdctD/LLhR7bs2IA234i/DKZCVUpITEir3czJKYcwFvrV7B9QFcZvh/adN8qWpcrMJ0sWkn4kjQSpxKV6Of3ITc9qsG90RCyPP/InXC5nu6rPT7rvFj6xvUrByXSCfSt5/bXZ6PW1j7hqGXXt0wP471oT4ZoUHnqhN31DGtZZCgr2JeUIjHQnshcVO9G24/cfEuqD2ieJNz44QmIPyffrNNxwd9uaiD7xwgR4Qfk7peIQ7S2W0BH5lV+Ui7as9ngDJsqKSto11rx51/HFko9Rm7U4jTbmXXFDg31+/PkbTKcCagpVl50oYuvuDYweNr7N5zsXyXGNccEqWwBBASFcN+92nA4nJ/YnI6QgICyA3on9Wz2G3qjDIe01BeacRhv+Z6HuRt1MxaawWMopWL6aiLJQbFhrKtnYseEyNf6TE0KgVrcvHigi0p//LWnYJPVMesSH0CO+oe+7WphFGY8x6M6ePPBSFrMuhdM5kkxLMPMvKgVK67X/UbKWTSxNPUWcy9hA6dLrDEwf+2cO7DuBRqPl8jFx5zQNvr3ExHQn+egJfBz+AFh8y+kR274uATOmzGPyZTOxO2xNuwOcot59Ujk0OJwOdCpPqYbzBZVKzaRxM4gIj+bLzxeRZUvFbrCyYFLrC9UGBgRj11vBHd5kk1a8vc5uG6fmWPz5u3DI/Z2r87Ntrpdme9v8qFQq+t09u6a/YYx3wzCKahl115UA/ZuMhR00JIY313XnrY/TCQuWrNqs5/Hn29dp/aY7p5B6cij5eeU8/FwEPr7nx8O/LYSHRGHztyCLFIuUWVVOWHg727VFx/H4o3+iwlyOt8m70c+7vKIcXR2vj85poLysrN3zPx+4oJUtgD0Hd1B0oIQ4u/KjKT9VwvrNq1sdMDxvzvW8k/86qgIdTq2dhKEJDao7dyXNudCOpOQRUO5LICEc5wAOaVdKMSQVcOsD8aRUtBw4f7apmY839P/nIJKP5RA71Fhjzleo43I0+2LG0KxbUaPW0DM26SxdQdcwadwMiksWkXUyA6mSjLt0ImHB7c+Q1Wl1DWpcrd34E8cOH0atU+Mb6kdFbineTj+qMGMMNXhqYp2HSCn5fsVy4s3KAtFV7uLLZYt44N4nW3V8fGwvooZEknHwNGqnBhnq4IYZj3XllNtEZXElgcIPHxlAmkzGjyCsfhVMuKxzEzoA9lQex6sVGYWtlZn3PzaXU6kFVFRYeX5mGDpd+x+XPeKC6RHXOYla3o6fwN3apy6tqXPYXny9/Zh+xRzW/PQdOAVBUcHMvvyado+nUqkaVI7PyjnNyu+XIZ2SsOgIkn2PEVamhF0UB+RyxaCz29qns7ngla2MzDSMVp+aVZOXw5es7NY1qgbw8fLj4QXPkJ6Vyqat6ygpK+FYyqFWd0vvSkICwnD6WBHlggQ5gHyyyU6spNdzt7HdWoTJUlur63xEr9fQf0DDeiZnuhyTCUPorfUyGVuiq4RKV9FZ6fFN8evm1RxYtZ8Aaygu6SQvNI2ES3qTn5OHX4AfV8y6o8vO7aH9VFktqK11CggLFc6qtlWOnz/vFgon5LN1x6/k5ebw65Y1TB4385zHqACoDSpc0kW46EalLCfb7yQPLXiG4IDQVjeLboqaivFaO0JvJcGU0yDQvaN073HuM9nrEu/dl5SKQyTqt5NpSuK4Ppzw6FDA1Oqko/bSL2kQ/ZIGdcnY5ZWlLProPcIKlHY+qRmn6HVxErk5OaiE4PoptxESdGHJ/DO5oJUtm91G394DSd72BSGVykO9xJjP+D4TWjiyPhL4+psl+KSHoEPPiuPLmHq1lf692xYM2dkEB4YydNwwdm7eitqhweYNg8ddT1WOF8d1ipWibnHUC4lqhStCf5Tso1n4V5RRFDWACkxU2puPY+tqoXIhcvTIYQKsSsahSqjRF3jTp3d/kma03qXu4ezidDqVBuw+EmepE7VQY5VVeAe2vWDspi1rSducjq81iJRDp/g4+21uvf7cZ49efdXNLF78LqJCjdNg5/q5d9QoWidV7iyPNv6Wq5W0uhXjE6I7X9FqLVmZJWRmFNMzMYyAgK5vMF53sQqt8w6c7xxLOYypwK8mLjnIEk5Bfj533/bwuZ1YJ3JBKluVlgoWfvgfbEU2XFon0X1jKMjOAQn9Bw1gUL/G22I0Rerp46gy9eiF4iMOKe/G1i0bzrmyBXDZ2GlcOnoyNrsVo0EJJm+yOCqtN5GfD3Q39uZvz3/CyP4F6HSS91dsxDb9Xsyy+RYKF7JQ6SwsVWa+Xvk5lRWV9OrVB51BWy/20GGw43sO05w9NM833y8hef9RhBR4R3hj7lmE0+LEO8iH669puxUy9egJAmyRSssypy95aek4nA5FmTuHhIdE8vgjf8JcVYlRb0KlUtXrYQjUJMlAy1aumorx7kKmQn9uFa2Vy7eSd3IHg/q4eP9VNRPnzGDQ0LiWD+wgrfEOnO+ycf3m1RxPPoq3jzcDBgzFcUbsocloPLcT7GQuSGXri2Uf43UyEH93kbYMZxoLHnm8XbVDADQaLVLtAnd/UYlEdIEJPr8olx9Xf43LJZl82Qwiw1vuMg+gVqsxqpUVU3PFUVtbAPV84YcVu7n28mJGDlWubVBvG498sxLV5FuaPe5CEyqdjcvl5O2Fr+J9Kgid8GHviT10v6Q7yZGHUBcYcensdB/cg8jQ1n2/uoKtuzZw+NB+vH19mX35NZ6MxjocOX6Qk1tTCbMqmagV5aX0mprIpHHta9MFcEbJLqRwoerkRBKn08kPP39Nfl4uiYm9uWTEZa06TghRI5vrKloiRqmvVJ0k05LFuu6xPmGgiqhiXJiFRP25UbScThdH9uzkleeU2gVTx0sefemXs6JsgaJwxXtDVIWy0PYylTYoLH2+ysYff/6G5HXH8bcFUy6rWJP7HaEDQsk5lInaocEZZuX6mR3PIm8veQU5fL9qOdLl4rJxU+v1kmwvF6SyZSm34C1qA661Zj3FpYXtVrZ6RPdEHePieMoBdNKANlDDzdPaXo+pOUrKinj/3TcJLYhBIFiU+h633HUP4SGRbR6rrsIVZg/FbIVkwmoKoF4oCldJURmxg2szUbpFaghzZBAX1nzM1rkUKnkF2Sz/5nNcDkn3+DimTZxz1rMjC4rzkPkqdG5LrL8thIzUdB564Fmy8k7jZfQmJPDcCdm1G39k/6oDBFpDKZWVvJ39Lx685+nzIobofOB0RiqmqvpxpplZLZQBb4GLRozgp5Ur0dh0GPUm+g7u3+6svqZ4f/F/cR5RYXJ5s+fobkpKipgxpfVBy2cqWgnRSvun1rjBzjzWJ/oAUT5+jPc/Bpx9RQvAWmUnyL82q1IIgcnY+mKjnUW1latulndTstHhdPDVt59SkJOPwdvANVfejPc56HOacux4TcklvTBQng/Trp+DY4KDKquZqLAYNM0UI+9KSsqK+GDhm0r8GCqWpC3multvISaqR4fGvSCVrcCwIEpTKzHihZQSu6+F4ADlCyWlpLyyDJPB1OoPKy0jBUuhlRiZiFVYcPiZCQ9tuxLUHFu2ryegIKymwnFocTfWb1jF/HYUhYOGtbpScq2IGMWteKEoXGMvG8Cbi37j/x5XIwS8+p6NsZMHkeB/rNnjWiNUuoIqq4WPPnybkFylOXNKegqr1SuZclnrm9h2BnqdEafaUfNaSglqiU6ro3tU/FmdS2McOXiIQHf8mF4YqcgpoaA495z2Jz2f6JXQjwM++zFWKCUaSvUFDE+s7WFqqTIjpcRkbF0JB4fTwZ69O4iwd0eHgVx9GkMGta65e2ux2qoozSgl1N0Kzc8WTMqR49DKOrmNKVrVrr91Jc27wZo79lzKOJOXntN53uTmWwgL0bDvkA2tKeaczOXMOK5q2Ximi3bJsg8o323FWwZhlzbeK3uDRxY8e/YnrJI1hU0BnGoHep2BIP9z3+B+x+7N+BeEoXI/q8NKYtiw+WduuPrODo17QSpbV82+gU+qFlKcmw1aydWzb8SgN1BUUsAHH72JKFXj0NsZP3kyw4eMbnG81T9/T3ixUoFZj4HCDCsnTx/v1HIDer0Bh7DXvHZgR2donyWumrrCyFvlqBfHVa1wtcS5FFZarYbiSn9m35ZDZFQAM+ZNY8SIhinNDWlZqDRGcWkhGTkpBAdEtrnru81uY9EX71CUW4QTQYSMwdceROqJE9A6b0q7SD55hPXrVwGCiROmERebiJ+PP3GDepK68yRai56qoHKumd51mY5lFaX8vP57pJRMHDe95ZYXZwhSl9rRrrYev1dio+MYNW0M27dsRkiI792LkReNRUrJZ0sXknksC4EgqEcQt1x3b4sWwaMnDiJPafDBHwRElyXw0+oV3H5T29tKNYVapcalctV7r7laWXXZnZLLgJEJVGZmKu6/wCqifCx1lCUlu26dKanBAgo4LxUtUNyIMXHduOfpA3h56xgwpBd3P9T6rh1txWp1sGv7SVRqFcNG9ECjqW+5rKlz6ONHZaAvLquBwUEx7CUdr3QzW3f+ym8HD6B3GelGT7RCh7PYiaXK3GUdUyxVZpZ9+wnmcjOxPXow5bJZCCG4/PI5LP3sUwyF3tiNVhKHJHWZhU1KycZtP5OZlcHA/kPpkzig2f2NRhN2lQ2jVBY7dmz46Dv2rIYLVNnSaLTccn3DDstffrWIwIxI1EIDFbBu1WoG9hvacgVZWV9oCCmw2W2s27wKi8XMyGFj2924s5oxIyewf/9unOlOhBRURZVxw2Wd84BsLI4LqgPnm+Zcxnjl55Wz8N+LeeVpDRqNL0/93UJkVOvSrBtbxbUU93EifS+lVR8yb6aVbbu07PztMob1u6LV8333w9fRJnvRWwyhWOZzmhNEyu5oDV1Xuyo9M5WvP11CWKkS2/Nl1ifcdOddRIZFM2/WdaRflEphcT7xsb0a1KzpLMorS3nrf68QlBsJCP535F/ce+9jjSpcJ08fp6y8hHHjJ/Nd0XJMRX7Y9Ba69Y/F3zewS+Z3oTJq+DhGDR9X772d+7ZQsLeEMIdiHSk/WMyvW9YwvoU2S/JM+YXSBuXQsX2kpB4nIT6J3gkdy0rVaLQkDerDia0nMFq8qPQrYfylndODsSmrzMlUJRD+fMg4bIxXXlrCrXMKefJmL1ausXOySNPmzh2txWy28bfnPuTKqWbsdvi/p3157q+3oNW2zlV85NBm8ncm09s6FDs2UviNRDkIp9aBXtc1CyEpJW+//xreqUEYhB/HT56gquoL5kyfT1xsIvcseIST6ckEB4bSLaJ7l8wB4KPP/kfFQQteDj9+PLCS/Cm5XDqqoVJcVFpA2ukUusfGs6f7dopO5aGSKmxRldww+aYOz+OCVLaawmFxYBS1l6Sp0lNeWdaisjVu3BS+zlxCSGk0VmGBaAc//bQCXZoXWqnjwK5/c9sd9xEaHN7uuem0ehbc8yR7f9uO0+FkyIARGPSdl23RXOB8U5zLGK/V3+/kyXsEJpMinF58TMsrizZz3yOtc8nVFdBRPn4k51Y1GfeRevow2/a/w6v/J0hKMDJqGDz49K84nLNala1VaamgKteKj1Cq5geIEPLIpDgymzvnPtS+G9AKtu7YQHBpdI2FKKgkkh27NzHn8vmA0ronJrJjcQQtsW7jKgJyI2riwwLzIlm74UfmTr+2Zh+Hw85fX30Wc74FIQU+wT5cfd0NFBQVEBIUSnxsa6yVHrKyMzDZ68RyOX3Jzmm5ZmBSz/6sjv4OS3olOvTk+Z8m2tSN1Z/8iJfFnxNbviPt0pNMnTC7Q/ObffnVHO9zlKysdBLj+xAR1jbrcHM0pXD5hJ37jMPGMJttBJoK6NdLWWzNmqzj6ZdTgLaVHWoNuTllvPbXZVw2vJSJY3wQQhAWUsF33+xg7lXNNymvJutkMmFVijzUCh3+MoR0n2NMnjCj02P7qiktL8ZVADp380NfeyCnT6bVbPfz8Wdw3851d5+JpcpMwckCQp3dQECwOZL9u3c3ULaWf/cZ2zdtRjhUmAwmRowfRfi4KBxOB/16DeqUlj+/q4jVwLAgLFQC4JIunL5WAnxbtkglxvXm2ttuwTRKQ/SkCPQmA/mn8siXWWjQElYQww+rv+7w/HRaHSMGj2HUsHGdqmhVMzQ+jDiXEe9UBzJdjyvb0Oy/4xnhrCtIItNSQkpFyy7HzkSr01JRWbsir6h0odO3zUoU792XKKM/4/2PkRiWi0/8AUSMlYoeGk6qLOxOyWXz3k8J7/Ymr72k4vufzfzwi/L9CPCXOBz2Fs6goNPqcaprC01KKQmIDODhB57p0i7yvr5+2ISl5rVNVYVvC9bKzkYIFUolumpkg4SAdz/+N8F5UfRmCHH0pqKggnXr13DxkDEeRasNDOg7mFLvgprXxV55DOx3UYvHaTVaFtzzByInhWEapWHkxDEc2LuXIksBVVQSZAnn0J79nTLHhO5JXDpqcqcqWtXU/J6Dj5IQnUPUID2qiKrzTtECpZespaq+RdHeOnHSJpKPZvHhGx/yxB0VBAWqeO5vhUgpiQhVU1Fmbv1AKuWZWI0wSW6+/S5GDhvb+ZN2o9cZcKhrb4oSW9plp2sSSfPu7sPHDnBow0H6OC8iicHYqxzs2LKVfr0GM7T/xZ3WW/F3Zdm6eu5NLHF9RFFOLmq9ipvm3Y1a3bpPNyaqBzFX9OCL5R/jOqomSQzGJq2c4DcSGFDjapRS8tPP33Ly+HGEGmbNvJroyLY1E+5K6lq4TC38+KW2Ya2uzhBmp9ML+WThSgxaBwbvYO5YMLOBuXvG3BH89blD3Hl1FTqt4M1PtDzxwqVtOo+UEldWMFargzHdjpCrV3pnVa+KT5yoIEq9lduvVxIlevXU8fRfCuiTqCf5RBi9olun8Go1WgYMG8ShTQfRVhqpCqxg1ox57cqWKS0vpqi0gPDgqCbjJDZs/YUdmzaBS1DglUuoJRpUoO0uGNuI+bsruWzMFP578GX8ckIRCErCcrn20vqNY8vyyogQioVNJwxopQ6H3dHYcB6aIS42kdEzxrJz6xaQMHToMPq2smK3Xmdg1pSrOJWRwhcfLKaPTVHSUjmCRmqp25gwNf0EP/z4NTgFCb17MXl8+0tOdDZn1o8CGO+fw9nMOHQ4nCx883ssZXlY7Rquu20GMd3rhzjo9Rq8gxP57OtjDBuo4utVkosuGdfmcxXkl3M6vZjuccGNFkT99su1/PMZHRqNoHeijsIiF/t/s7L4G8H19wxu9XkGj5rGHstXGAp8cOhsdBsYQ/fotpczsNmtZOVl4G3yITggtNF98gtz+eSz93BWujDLMjIMJzBZfbEFVXL1jI6749qC0WAiIjGC4n0FmOy+lHjnM2rEJfX22bl7C91cCSCUjNJI2Z0M6wkcTnur9YfW8LtStjQaLTdc07GMgdzT2fhJxdyqE3qM0otsv5PcPP5uQElrP77+BH62YFzSxaeL32fBA0/gdQ7SZ5uifqZi09QNqq92OWZaNndoBelwOFn47yW8/rxAr1dxODmdhW9+x70P13dhmEw6nv3L7fyyaj8ul4unXhyAt0/rVxBSSl556Qv6xOTg4wU/f2TimqdG1HNDlNtV6NLqr2oys7T85ZXBTBl9Y5uua9qkOQwYMISjJw4S4BdEj5ie7uu1U2Eux9fbr0Vz/IatP7P9l81ozHpsfhauue7GBvVbcvIz2b56M6EVStyOSe2H91ADo0ZcSly3hC4z+TeFl8mHBfc9wfpNq5FIrr/kpgaBrFqjtl5AvFVYGDjw3BcEvhAZedFYRl7UfmvDth0bCSmLqvksomU8aaqjDElS3DWl5SV8+ekiwgqVhKAjmUcwGEyMHdn57q/2Urehfe3rs8cH//uBOWPTGNBbi81m5+EXl/D0X+5Br6//uLzt3mns3JbIzwdyGH15PAm92hZm8svqfRzduYGLBjj54Fs1Y6dNZdjI+s3pVUKi0dQqykajilc/9uLuB2YS3a31cZCBAeHc/8ATHDy6B6u9in6JiqImpaSsohSjwdhiEktRSQELP/gv2gIDDr2dxGGJjfZH/PTzhfinhaMSaoJkFHmRaUydNY1ukT3OSZmJG66+k+09N5KVncGlfceS0KN3ve1+/v7kUIARJSDeTAWmIFOnWbSq+V0pW52B1NTPpLLrrdxy+4NER8YipWTDxp9xWQX5ZGHAhFehL6cyTtI3cWCTY7pcTvIKc9DrDB0OtG9x/lKSnnUSLyrp0S2x+S9MnRgvl9XQqlpdFeVVpKTkExHhR2hYw5iw7KxShvZzoNcrP9w+iTqsKwoa7AdgNGqZMadlN0lj/Lr2MJcNzWHaZcr1jbrIxvufZzDxtu71FK7d28LZfziXgX00fPuTHR/DJEYPua5d59yyZT1pe9NRV2lZE/IDo8eOY/P69WiqdDi97dx4w51NulccTgdb128kvLQ7ADJfsmLFMh68/ynlejav5tixI1RWlaMpN9SL27GZKzq9EfeeA9vZtXMbKrVg1oyrCG2mKbaXyYfpk+c1uX3mrHl8teRzNCU6ytTFDLxoSIPgbw9nh8CAIIpUJ/GSym+zSlQSPziRK2Yq3/n1W1ZRVFhEJWac0kGctQ/Hjh5qUdkqLS/BbKkgJCi8XVXpt2ZmkqItReitRNJ8LGlOdinZyVp6xIcQFR3Q5nM1h8vl4nhyHgAJiaGNZnpWluQzoLditdbpBBcPcpJxupj4niEN9h12cTzDLm5fuZXt6zbx+p+U0IkZEyUPv7i2gbI1/JIhvPHBzzxwq468AierN/vw11dvbbEptpcpmeP6cDYXQrW9LDM7nQ2r1qIrNrHTezv9LxnIkSO/4SqQODR2howezqRx05scc/k3nxGcFaUkoNkheecxCi7OIzgwlMycdH5c9S3SJSktLiVAKKWTVEKFyqamd8/mMwDbSklZEctXfI7DaqdP34FccvH4JvcVQnDx0KYXMJdPuoL/nXqF0vQiHNKGPaCKZxb8tVPnCx5lqwGzZl7Jl59/gq7YiMPLxoTxU4iJ7A4oVbH9SkMIEsoKJkeepkSbT6B/0wpUlbWKtxf+C1euwKly0K1/DPPn3dIlc5dSsmbrvxk/NpmIMBcffe7N2CF/bDJT7UyXY+ahfZRlfs8qXzvoNdzykESlquN+OFbIpi92MHGkii2rXZgNEWirjAiVivk3TSAk1IfAQC9OpNUeY7G4qLK1vzidlJJd209hNlcxbEQcJi9FiSsqLGVgn1pBGRGm5uihU1S+moXZbiaw32kSBkwi+dr5/OGLbajzsrESw6CI8TUlIpq8J42QW5BF2r50QixRADhyHXz/7dck2RULjqvcxdKvFvPgfU83erzNZkXtqP25CSGQbjfvqrUrOfrLUfxtwQip55hqL/6uIFRCRYW6jO6RnVsJ/sDh3axdvoaQyihc0sUHuf/j/gWP4+PV/EOwKRLj+vDwo0+TW5hNkH9Iu8fx0HEuGzuNY8mvUJiuxCYaeui46WrFKm+z2zi4az+9GYIQApu0cpIj9PNpPlPxu5+WcXjHITR2La4gO3ff+TA+Xq2LHazXLNqdURjlY3EXI23IhrW/8du2X7j0Yic/LlHTrfdopkxv3YIsP6+cd15fio/RQlmljlvvn1fP+uNwOPnrHxczol8JAJ9/6EdsXBTFhaWMHNuPkZcoFg+7S4vZXFWTvHMiTTByZvtT/9PTCjl+LIfEpAi6xSjzcblc+HrXiaESAp3Gxl+efR9voxOhC+Keh2czZnxfdhi0PP3qXoxeJp56cXKzilaDAqcZSriIt8pB8rJlRBXGKoaEcliz5geS7INrAth3rt3B4IHDmnQPOmzOMxLQdJSbSxEqweIPFxJWGItA4FQ7KZWF+IkgXNKFxtS51nirrYp33/s3QdnR6IWJXae245KudltndVodD9zzJFl5GWjUGsKCI7ukUPX/F8qWlJJd+7ZwOjOdfn0GkRjXu8l9e8Qk8MCDfyA7P4NAv+B6lqiTqckEuEJrrA6BhFAS7mq2ZtO3P3yBKTWwpu9i1p4sjg89QkL3pufQXlLSjzBl4jGunav8eC4eauWhpz5m0qgHmzymWuEqO5ROkv+3vPxPDaBl5wEb//4giz5X1haR2r/kIz57wQu1WjC4r50XXz3B//4egs0uefLvH/HQs7cRGOhF32GjePJvW+jRTbLviJZ7HmlfTIiUkr//6VPGDs4n1B/+9pyOh5+7maAgby4e1ZuF7+zk709J1GrB6wvN9Ix28Ocn/AA9r72fiX/eFogZReXVU3FlG8jOLW2xyfXuJoqjVpjLUVvr/1z0rlqroUqocFmbDsQ0Gb3QBKqwlVrRCT2VqjJCoxWhduLosZpqyjqhJ0QTSZZvCgaVkZBuIUybOKd1N6yV7Ny1lZDKqJp5e+X7czh5PyMGj2nV8SVlRRw6tp8A/yB69+yPEAKjwXReFFT9vZKZk87OPVsJ8A9kzMWXNelO1qg13H/nHzidcwqBIDo8tsZ6U1pejMnmXfMg0Qk9Lp2DuTOvbXQsgLzCbI5uO0JYpeLWdmTYWfb1J9x6w/0tzrk9xUg3/7KR1/6oyK/xo+CRF7e1Wtl65/Wl/O3xKrxMamw2B4+8tJQ//fPumu3fLN3K7fPKGNzPgJSS9ZvSmT2qnMR4LR9+sZofiyqYNmsYN989m0de+oRBvW2kZ0KvwRfj59e+hKZV3+8i8+hmLh3hYs1SFdG9L2Hy5UNRqVSUmv3IzC4nKkJD8kk7hw6XsuJjLRqN4HhqFu/9ZyX3PzaX4SMTGX6Gxas5msrslBp1PSVCLTU1ihaAvsrI1sPHmTm6cWUrLqEnR9OO4WcLwimd2IMtRIZ249fNa/AvDK1pIt3D2Ydj3nuwGc2oTSquu/b2dty5pjmdfQptvhGNW/ELqArjyKGDrVa2nE4nB47sxmq1MrDvUIwGEyqVmujwro29/v9C2fp82Qfk7y3CZPNh5c6vGDFtFJdc3HQlSpPRi/iYhllUiQl92Lp/S82DscxQxPSpzddqqigvRy9qK0FrrQYKC/O7RNmyVFUQE1X7wPf1UaNSW1s8bmh8GAeOpTJ7ip3qr8SwATrKlpaSnFureOg0atTuyuVLvi7nzb+GYDCoMBjgibtcfPf9LubfeClTpl/EmPEDKCk2M/tW33bXntmyMZmJIwqYPkERdIP6OvnnwlU89OQ8IqMDmDF/Hk++vBa1WpKdq+b9v9UGZV87U88bK8u54eacehWqzS3eDhNLU08R5zLWU7q6RXTHEVqFM8uBWmgoNxQhjS6cxcrrKmnBJ6h5i85dtz3Ml8sXYa4oIjwygjnTlXgHoaGe61plECy4/wn8fDrXhVKNwWDAIm1o3b1F7VorPq2s05WWcZIliz/CqzAAm66K3QO2ceP8xltbuVwusvKU0gWRod087XraSXLKYb7+/AsCSyLIUGdx6PB+7rnt0Sbvp0qlIjayYX8+f99A7F5VyErptmxVkdA7qdnM6NLyEtSW2ixhjdBisVS2OOf2Vn33MkrqBvN7meqHdTSHj9GCl9uKotMJAn2tuFyumvtUmF9C/ERle3qGgxGD9SQlKNd2+7V6nvznQabNGkZYuC8vvHwPuTllTAswYTK1v5be3i3bedWtPI68CB79v+1MvnwoAI88ey3vvPUdtqpypAhi7nRnTXxWQg8tNnNRu8/bmMKlSwqjLLcEX6c/VmnB5a+htLQEP4c/UkqKgsooDwpocsE5adwMpISTx4+j1qm5fc4C9DoD3j6+2NVWjK7qIqBWhg0dxbyZ17d7/s3hZfTGqXOAO1HbKZ2oNa2TLU6nk7cWvowrRY3KpWZDxM/cc/ejTXp/SsqKKCotJCKk6YSm1tIqZUsIMRX4N0ri5kIp5d/P2B4DfAz4u/d5Skr5Q2vGtlSZ0Wp1Xdad3ma3knEsgzB7jLvORhS7t29vVtlqiuGDR5OVdZqUw8dBQN/BA+iT0Lwvul/fgWw9vpmAqjCklJgDS0lK6Nfey2mWuJg+vLfYxNABDgwGFf9d6CAyuOUK+gBhQbGs26RlpHsRefi4A6uMwJVda73Js8SyY/9hhg/U4HBKqqwSk/v7V2l2odPVugtNJl2HhBRARbmFPnWSgHx9VDjstprXvftG07uvkt2y/IvN7PltN8MHaSkscrFtr4NBvfo3qFBdaW5eIWqqVpdOq+fOOx5k+befU2WtZHCfIQzsN5TPv/gQu8WOT5Av1111R7Njm4xejRbjnTnjSj5b/CH6Ai8cBhs9hyR0maIFMGfGNbyV+S802UZcWif+Sb707tm6opc//PR1TXA1dsg9kkluQTZhZ8R8OZ1O3v7gX1jTHEjAGKvl7tse7YKrObc4HHbsDnuXVeAGWLv2J8JKFPePzqWnMDWbzNz0NheC1Gq0zLvqOlZ8uxRpA68gL268quH3sS7R4bHYgsy48lyohIpSbSFJPZsu51Htoq+MMeETbaJSn9em0g1OdQiHjuXQt5eWE6fsmO2BrXbplFXqsNkc6HQCp1NSVKatp5BeOmEw//kohWcWqNBqoaC41o0npcRZW90FtVpFZJR/q87bHEaDPON17TlNJh0LHlcW65UVVt5++R3lb7OLkjInNmfr2jU1xZkKV8STszgS/hMZx3PQBHkx7p7HSF60ivTDmbi0kvD5k7HqfJtsfyaEYMplMxt0zBgx+BL27t1BUUouwiVwdbNx0+T2taFrDRGh0UQPjCZjXwYaqw5bWCW3zW7Z0gqw57ftuFLU+MtgEGDK9mblj0u5vhHZvXbDT+z+dQdqsxZ7gIVrr+/YNYkzqw832EEINZAMTAIygJ3AtVLKw3X2eRfYK6X8nxCiD/CDlLJ7c+N2j+opQ42RWAvsuNQOho4ewcRLL+/QxTSG1VbFG//8B6GltT2rSqJzeOihxmNruoJ1m1Zx5OBBUMG0aXNqMtm6gsKSPHYfXoRa7SAiaDR9etZ3DUkp2XVoJWWVh5HSl9GDbql5UOw7+hNlltVodXZ+Ox1MwriHUNVJfXW5XGQdWIqJDApLVGgdx3jteT8sVS5efMvMQy9Pp29I04kCbaWkxMzrL73Pv55VYzAIXn3PRq9h0xo1qbtcLl567jMyU09w0UAdaZmC0ZMmMG2WkoWVUnGITEsJydYRzZ4zOTeMrKIyZLoe71RHAwtXV1FeWcap0ycI8A+qZ86WUlJaXoxWo+3UjFebXWlJZdAbiY2Ma/UD7X/v/AvTido4mEJdDlctuLbBg//nX7/n2PfH8ZbKirFCVUrvGUl8+O1/dksp25cVcR4R1y1BXtx3HAd37kflVGEKN3LXrQ+j7YLmuW+/9xqGY341n1GhLpsr77+2ywvaVpOdn8k33y5B2iXde8YxbeLcRr8vda1ZEWF+qCKq8DIlt6lGlsPhZPHCNRQX5OPjH8DNd01tEKN09FAm3y1fD0gmzbiEgYO7A0rJmff/s4xgfysFJVpuuHMOPRPrLwJ2bE1mw+qtABw5ksft8wWD+ur574cVXDrjCkaM6ty6cP966QtumplH315aDh618+n3YTz67NWN7vvL6n0s+fA7evUArVZNiTWS5/5yY4er0rdW9mWWl3I8IxyZrife7oeXO5u9NfLP5XJxIu0oDoedhB596v0OqqwWzFWV+PsEdqp1OyMnjfLKMrpHxbd6sbNx+y8cWHoQb6HIJSklDK7iluvvq7efzW7ltZf/RnhxbM1+5fH57EjZ0G751Rpz0nDghJTyJIAQYgkwGzhcZx8JNSkmfkBWS4MWlxQSk9UbP3cs0971uxjYfyghgcoHe+r0CTZuWYvRaGL65CvavXLU6wyExodRvr8Yk8OXElM+g4Yoaa+/Hd3Hjl2b8fLyZta0q7psdTr+kiktttxoidSMgxxPW4dBH8TFA69Cp23cahTkH8rkUY83Oc7WfUuYNX0zk8dryCvI4MGn/sqMS19EpVIxKGkqUk5BSonOkA+ZDX1uvQKV+Ctr8Ye8/GdfduytQqMRBIYaOF1ejMHYedXo/f1N3PnQDfz5rVVI6WT0+IuajF1QqVSYjCo+fiMEXx9FQXz+la0Uj+lHQICpQTp5c3iZSs96k2sfL1/6J9Uvl+Bw2Hnnw9exZFmRKhex/WK5em7ntHjSafUkxbXdwjpw8FC2Zm4m2BKJVVYhIpxEhjYM4C8uKcTgMtV4hPROI8XFjWelXojY7DYObzxEuEURxlVlZr794QuunKXUIKuyVvHDmuVUVlYw+uJxxMW2PubmTMaMGc/32d8SXBZJlcqCLkaJLymvLGXFD0ux2WxcesnEDp2jOSJCorj3jsea3edMt6EqsIrEsFwS9YqiFeTowf9eX4nNZuPy2aNI6NV49qtGo+bWe6Y2eZ70UwV8/8Uy/vakDiHghVe/wWC4ml69I+kWE8QLL99dz3V4JtXxT7t3nKR3928x6l2s3WRmxGA9p9PyOl3Zevjpq1i8cA2LV+YTGBrKQ09NbHJfo9HATVd6M2+68kw8cKSMLxb/ynW3NJ1p1xpaK/tqgupb0f7sTFQqFYk9+jR4/+dff2DPph2oHVoIcHLX7Q93WgJNe2KsBvcfzpYN6zHmeqFCTY5fGteMaVgGyFJlRmOvVRirLfkdoTXKVhRQt2dEBnCmivwCsFoI8QDgBTT6jRJC3AXcBaDXGGqCxgE0lXoKivMICQzjxKmjfLX4c0JLYyiinDdTX+bB+55uUsFoiZvm382m7r+QkZnOsL5T6d97MHsObGft8jUEV0RShpn/ZfyLB+99ql2FKruaIye34u3/Ke//R01aRjJPvXiUWeNeaFfNJZc4wuTxysceGqxh5PBSSsqLCPRT/HVCCIQQLf64KkutJMbrSYxX4hGs0sbu9J5k6MJpb3HUg/vT2bnlCN26hzJx6iCEEER1C+DRZ5X2NFJK0tMKUalUREX7N1hdq4W1RtECSOoJebllNcUCWzenQ/WEztlUuM7ku9VfoU42EoLy2WTsyuRo/4MktdLl1xWMGj4Og8HI3n078fX25qbpjzVa+G/40Ev44sAiQktjKCafbFUagQe6tuxJV1NXfvl4+RJl7lmjTBowUVKkxNg4HHbeeudlvNKD0KFn2bHPmDl/Hr0T2/e59U0ahOkWb7bv2kiUfywTLp2O1VbF/95+laDsKNQYWJryGfNumk/P7p1bIqQ1NBafVZtx6E+YjOfvL7zPX58AH2/B8//6ghnXKgpSW1m7eg+P3KFGrVZu/FP36fjHRzvp1bu2jl9rrCcnjp1mxkgNPWIUeS+l5OlXs9s8n7qUllr47uttCODyOSPw9zehVqu45e7ahXZxsZnCggq6xQQ2qNuVfiqXWRfX/pb6J2n49If8Ds2pmtbKvmqXY6XZt8mQitZSUlbE3g27CCtTlCJHuZ2lyxdx242d1yC9rXibfLj77kdY8cNSnA4bV4+5vlFPk6+3P6pAib1cCVs5zkEMeR2ru9VZgVLXAh9JKf8lhBgJLBZC9JOyTn8AQEr5LvAuQKBvsKwwl+DtUoLzbIFmosMVV9/69asJK1ViFPQYUJ828M9/P88N8++ke3TbM56EEIwZWV//27F9i5KRJUCHAZGlJT0rlbiYrlkddoTsgrUs/KPyUcXFapg9rZDTqelEhcWQmnEcIQQ9onu2Svkym1W4XLUlHXLyBD0j2m7Rs9uCST2dR49uSkHLn3eqGbpgAmba1/ZnzU97yU/ZwO2z1ew7fJR//yOFh5+6sma7krb9CQMTSrDaJGn54Tz+3DX1FC4vv2AOHTtF315aHA7Jlj0qnpjdtgd8Y4GlhUWlVO35jMoKJ9m5RiIjbsVkanx11pkKWXFRYU2hPQCD1YvcvOxzqmwBDBkwgiEDmndJxEbHMf2quaxdv4qCtCz6OoZBKRxiz1maZedTV37FRPaQFm05PiUBCCEo0xTRJ05Z2aekJ0OmDoNQAs9Dy2JYtPhdxl46od2ZpT1ietZ7KOw9uB1Dti8aoSgLYWUxbNj4y1lXtloTCP/Dit3cfa2d4CDlYfXXJ/U8+/pGej17DWmnCsnMKCapTwSBgS3HKPn6e5OV6yQ8VJGHWXkOfP3aXpahz4AefPfLXh64Vbl/azbYSerXfrdsSYmZf/35A566VyIE/O3Ph3j0+dvqVYX/dtkWMo7tpGd3WPy2hjsenE+32Fr5NGRYIl9+t48/uMPovvzOzpDhHf88nU4X/3l5OcKeh7lKMOqy0Vw6oWGs8ZnV+6uTitq74CwpK0JzRnKF2Vze4evpKP6+gdw0/+5m9xFCcNftD/Hl8sUcP36EhMr+aK06TnKk3edtjbKVCdT1E0S736vL7cBUACnlViGEAQgG8poa1M83gJCBQWSfygQNzL18fk3tFqFSIZEI97LRhROvnAC++HQRDz70ZKe4+1RqgUu6atJVXWoX2nZazroap5N6CpLZIgDJ9xte5Jq5uUgEX34dxuVjn2sx0aB3j+tZ8OSbXD3Xwt4DGirKxmDs0fr7WWmpYP3OfxERXsRjz5cjdCZcJl8YMxuDlxFzO02t+7ft5p9PKVaySWM17DqQSWmppSbl+stPN3L3NWX0T1L2Wbs5l9U/7GXK9FrX2233Xs47/16BfUU+lVVqrr19DkZj2y2VZypcKUuXsuJdiVYrqKisYP5ji4lOeqLBca01udclIzuNZV99irRKvIO8ufHauzHolYdS3z6D2Hx0E4HWUKSUVPgV07vXuVW02kLfpIH4+vmx9L+fn+updDoatYZp82az9uefEC5Bt/hYLhujuL/UajWoXOBeakokGouO5HXJ+PquY/TwjrmFAHR6PS6Vs6ZtpQsnas3Z7S7Q2oxDrU6LpU5Egs0mESo1Sz9Zj710P/0SXSx8Vc3lV8+h34CYRs5Uy8y5I3jpmSNMyy5Do4YVa7155i9tq7i/aOFq8k8fw2qxM+dWM716+eMflsDt9w5r0zh1WbFsC88tkHSLUuTNnx5y8MmXG2usWuVlVaQd2clLTyjy6+oZLp7613c8/WJtWEBiUgRZGZfx+F+3odFAt/hBXDWp48VAF7//M/OnZNcUan3x9XUk9o4lIrJhBl68d1/ivSHK3Su3pZAKh8PO4i/eoySnGLQwc+Y8evZQFMTwkChs/rXJFRWqEqK7dX5Pza7Cy+TDrTfcx3/e+Adac8d1g9YoWzuBBCFEDxQlaz5wZgnudJR25x8JIXoDBqBZ+6cQcPWcxvskXT5tLh9nvo1/YRg2qigkl0QGUlySR3ZeRqdYny6fNpdPct/HpzAQu8aKf6JPiz7gDVt/5rf9+0AFl0+b06DVSleRGDuPx//0Fg/e5eD4SSff/OBFdOh2nns8n35JyoM5LjaPDxf9wIiBswAlZVtKF34+AfWsP90iEvD3/TNrVqcQ6BfKyIFt+/Jv3vsO//l7AYEBaiCQWx53YRv/B3Tdm0+0aAlxhuVfrXYHL7rJyy4k6Yrar2vvnmr2rKmfGq3RqLn/sbkdmkc11QrXWP/DaCItaLWK0uftpSIstBJzI7etrSZ3l8vJZ59+QGiOYsW1Zlv4fOn7NTWMhg8ZTVl5CUcPHkIKyfQJcwgNarrS+/lIcEAodu8qZGHr0vcvJPr3Hkz/3g3708V1S8QQp6HkeAF6l5EMUoikO142X44dO9wpylb/XoPZ2HMtJScK0Li0VIQWcee0puvpAeQVZLP8289x2SU9esYzdcLsdn0mbc04vPSyPrz09HYMejMBfoI/v2ZhytwxHN25lv9zKx+XjZY89rc19Bug1GQym20UFlQQHuFXr6+qVqvm+b/fyp6daTil5I9/j23Qd7U5tm4+RpTPER5/Wg9oWbfFRmrpRcyYO7zN96EuLperXlsdtRpcdfw6RUUVdK8jM/R6FQZtw/6h4yb2Z9zEzl1QFeXl1ShaAONGuEg+mt2oslVNg+KoTShcy779FOs+F4FEIqXkqy8/46GHn8agN2LQG7nhpjv45hsluSI8JoqZU6/q1Gs7Gxj9TNjSrfVqkrWHFpUtKaVDCLEAWIVS1uEDKeUhIcSLwC4p5QrgMeA9IcQjKGutW2RLaY7NEBESxV33PsTbH7yKyNKSwACEEDhMthbb3ZSWF7N73za8vLwZNmhUk6616IhY7rn/YQ4e3ouvnx8DkoY2K3h27t3C7h93EmgJR0rJF4WLuPv+h/H3bX1/qvYSG5mETvMEtz/8EtMnVfH35+HRP64iJqo2Oy0mSk2VrdhdRf4/JCYcR6eFzRuimDbmiXr3wcfLj74J7etdZzSWuRUtheEDnKwpKUaHf7uvDyBpQH9e+d8m+idJrHYVeeUR+PsrFrejhzI5mZzKGwsdPHav4nb+4Esnl85sGJDZmVQLnO9LHDWWRavVRa7FRHBEVYP9q03ulXZTzQOpOaWrtLwEdaWu5nunF0ZKi3Kpslax7JvFlJeUExIewj33PtplpVE6mwOHdrF+3c8IKUjq15dJ42cwY+5cfvxhhRJg2jkhKOc1KpWKe25/lBWrl7Jz/XZiHD0xCBMWUUl4UHCzx7pcLnYd2Ep5WRlDBg5vUt6pVGruu+Mx9h7agcViYVC/Yc32nauyWvjww/8RmhuLSqg4nn4Cjfp7Jo2f0aZrq59xCKqIKhJMzZd20Ok0PPe3W3nxmU/RuTK4/yYTP29e466grndfj8CkVx4ZG9YeZNvadfSOl+w+pOaGu+bVyypUq1UMu7h9Lr/jR05z/aRa+TV2hJbV/0lHyQNrPzOuGMXz/3eEOROrMOhVLFulYcGTowCw2518/M735GaUcN3sEEwmFXsO2vAOODtWHt+AAI6nFpPQQ1G4tu5VMfHKxguX1qWp4qh15VtRXgFeKN9RIQTaMiP5RbmcTD3Okd8OotKquerKmwgNblvfyHNFeWUpn33xIdYKK17+Xlx39W1cd/VtfGh9i9LivA7Jr1ZJcHfNrB/OeO/5On8fBlpX0KmVBPoH89C9z/Du+69TWJSFU+Ng+JhRzSpbufnZfPj+W/gWhOBQ29i1ayv33vFYkwqXv28gYy5uXdXZAwf3EGhRvjBCCEyF/hw9fpCLh17a9otrBzkFyfz1WRUjhij1l/72nOS5v1Xw+ktK7NBfXoNePcbz2/FNXH3FUS6foJg99x48zYeLv+Xigc0XX20t1qpAMrMLiYrQIKVk4y4NpqmB1PhMWklqSh5bNvxGUEgAky8fiJe3kRNloNOp2LjDyaCLaq2XSxd/x2f/9eLHtWae+3sBR09Ibrr3ahKT2h5g21bivfsy7aYi7np+F/4+dnJLVMy8K4Gg8BX19ku2jqgxuRfmlnC6eB2V5U7s9glcnNS4a8THyxeHwQoVymuHtKPz0rHw4zfQJXtjEgHkpxTzqXkhN197T1dfaofJycvkp+XfE1amXO+h3EP4+QUwfMho+iYNAuDGx5vuvfZ7QqVSM2fqfFx2Fyf2J1PuUmOKNDJjypVNHuNyuXjnw9ewJUt0Th07N2/lxlvvICq88e+PSqVmaP+RrZpPRk4augJTTdiEnz2IkyeOQxuMbC1lHDYXhK3VqgkwlfGPZxT5PXyIZMaN+dx8lYHQYA0bttvwCYrF5XKxYdV63vizIr9udkge++v3PPvX5mvYtZZ+A+P4Ye0hbr9WefT9sNZOv0FtjwOuqrLzw4pdWKusTJo2FK1Og9OlRqV2kJ3nQq3zIzhEiSX75P2feeimMryMQfzl9SIKS1zo/RJ46oXOL3XUGDffNZV//WUJJk0RZotg0MWjatoGNYbL5eKHFbspyC1i9LgBREVRT+Gqm6lYJVRoZa3Vx+FlJfn4EQ6sPkCgNRSXdPJhwVs8+MBTXVqLrrP44OO38D4ZhEH4YUuv4mP729xz+6Pcf5cSNtIR+XVeL5e9jN48fP+zVJjLMOhNLdaw+f6nrwgr6K4IFBcUpeRy9OQh+jTRBNPlcrY6o8/L25syaanJoLTrrAQGNGxM2lU4nDZ8vWstbwP7Gjh9OpLbH9QjpSQhZjYCLflFKQzqW+uT699bQ1lli5U4Ws2YoXfz9ItvEBiQT0aeRNPzOtQ6HVlFeWzjNIluQ47L5SI9rQi1WtXgh71310k2/7SSu65TceKUi3/8+TA4ynjxESPHTti4/xYdL7+7jcnTlUrLvl4OVCo10yd6MX2iF398xcaIUWcvkWHCkDFMGDKm2UrWURWKyb0it5Sq7T/wzhOS8grJg/93ECEeYUSvbkgpWbdpFSdTkvHz92f29PnMmH0F36/8GmFTo/VTc9OVd/P+f9/ERyjfLZP0oSir5c8vLeskJSVFxHfv1ayFoys5fOwA3qUBNRl6/lUhHDq8j+FDOnUddkFxxczrsE6pwuGwt1gnLTXjOJYUG0GucBBgKPTih5++4c5bGncPulyumuzhlvD19sdhtIG7+LtD2tEaWh/P2FLGYUvZbi6XRK+vdXYIIeiVFMR/Po/Abq0kMqYXM+cN5eiRHMJDahduGo3Ay9jQ3dZehgyL41TKUP7wt4OoVBAY0Ytb7mroCgYoLKygsKCS2O5B9TIHq6rs/OWZD7jvhip8vVW88vcDGHzD+OdTkFugISYK/P2K2PTrMcaMS6KooNaq9JdngjmSbGNjco8O189qLVqtmqdeuL5VlfillPzjhc+YN7GQ6UPVvP3JUYaNn05UP3/GBx+l6EQ+examIKvU+I0ZRfj4aZyyLEVrBpfWyfhJk9m3ZxeBVsVyphJq9PnepJ4+Tp+EpmswlpYXk3r6BCFBYUSFNR+311W4XC6sxVb83UknOmGgsKiw08Y/b5Stbbs3snvHNgDGjptA/96Km0sI0eqmpy6nC02dVg/CpcZep+J4NSVlRXy06H/YyxxIveSKK+bXBPU1xZzp1/C/rH9RkavCpXYS2TeSxLiudWPVpU/8Jfz1tTW8+U87RoOKx//k4pIhtxARGoulysyarX/hsktL8fK1898PHPz1GUWwv7vIRVx05z3s9DoDUy/5AwBqQy7YoNLd7DSLMrxMpaSJIt594U3G9HNhscIX+eE89uzVNT/0n7/byD+fVNxn0ZGQkpbPtj0O/vRPC5eOMvLLRjMZGfCXZz/A21DF/oMlFBT6ExykpqzcSXGF6ZzE/zR3zmqTu++mtbz9ogqjURGkf3nMzBNvbUWj0ZF5fAOnNqTjZw+kiHLezX2N++/6A316DcTpdKDRKJmdLk39ytYt/UqXfr2I9N2n0Vh1/BS8ghtubtoa0hmkZ6ayfPnnSJvEJ9iHG6+9C73OQERENPv1+/CyKd89i6qSqOCzWy7jXFFYks/SrxbjtLoIj45g7oz5NQs5vc6AXtdy2rjdbkc4ax/AAoF0NYzGkFLyxfKPOJ2cDkLSs18v5s5our8hQGhQOL1GJHFs51HUNi2uIBt3znmoVdfW3tY7dVGrVdhEBLv25zB0gIY1G+yERCVw+73TAPj43VWsXPwh4SGwaWsp5bcE4+Ot4tRpOy5Vyy6vtnDF/EuAS5rdZ/mSjeSd2kN8rOTTd7Xc+fC1NU2t1605yG1XWRjYR/lMX37WxbUL0vjrG1UMHWBACFi/2YxdvYldG9aRdqqSZd+puXKGUYlr+kky+cqz30e0NTIz9WQB/eMKuGS4cm3PP6zmD//YxBMX38Lpk1s4/PSvRGb2RyI5ceprVLddTcKcm4i1axmWoDRwPnx4Pw5pr8mUdejtzbYDSz55hK+XLMFQ5I3dq4reo/syfXLneGIaw+6w84k7qF/oYNasq4iLTUSlUiH0ta3TpJQIfec9Z84LZetI8kE2r/yV4MoopJT8WLCSgNuDiI5sW9GysWMn8XX6F4SVxWDHhiPa3Ggbks+++ADfU6GoheIK+2rZZ/zh8T83+2U06I08dN/T5BRkodPqm+yM3lV4mXwYNfCPPPT0EqS007/nbCJClfuzZd/H/OfvpYQEawANf3ixlBvv1WMyGvD3uoSBSY2v3DpKdTzS7pRcvFUOKtBznHDSdm3mlVskST0V0/LqX7P5ZfUBJk5RVjYqVf0Vlk4HBYVW3n4vGLVaMHsq3PVYHs/fbyYoUENOrh+3PlrKgP4hVDm8uP+JzgmC72zivfvirT6MWl1bvFOnEVhD4KTKwomDR4m0K3EaBkyU5xax7/Au9u7dgUGvZ9b0a/A2+TD2sglsXLUObYUeu18Vsy5v2vVUWJLPqQOnCLUqCcOu/EBWrFzKvXc2X4SyvTicDj7/7EPCcpWWPVXZFpZoP+Lm6+6hd8/+/DZsL6kHU1FJFV5RJi6f1HVC83zB4XTwwQdvEpQVjVqoyUnLZ7n8nCtn39CmceJje+GKWo41vQodevJ8TjN91JwG+23ZuZ783YWE2hWFOm1bOgd67GZA36HNjj9r2tWUjC6i0lxBWHBEq2oKdoaiVc3DT81j6acbWbomh6R+Pbj9XiVO6nhyLj4c4Z77lQf8qKH+3PRwBUm9glDrQ7jvsVltOk9HKS42k5u6hz89osivedNcPPPqdzz1opLQ5XA4Mehq5ZdWK7A7VFx3hQ8XDVQSaZJ66vh2VR5/fiIQ8ObmhwrZss+ASqVl9MRL6R539rwibcHpdFG3bJ5iOVX+3vpFBUGZScp7CLrnxZK5fyO5xYLDBRaysy5m9rixXDH7et7Jew1NngGnzkG3gd2abS3104/fElakJAlhhkM79zPh0strsrI7m6VfL64X1L/0i094+OFn0OsMzJx9Jd9+/SUaix6nl435827ptPOeF8rWrr1bCayIAKF8uH6lIez7bVebla3EuN5cdfN1bNyyFl+DkeunPo5O2zCDwF5hx8vdMVwIgbpKi7mqEi9j8/VaVCp1o9WyzxZ+PgFMGtmwl5mkzK1oKcyZpmPFyrkM6HXxWZnX0PgwSMnlZKqFCvSUZDtqzOYASfFqlm8urnk97JKLeG3hzyy4Wc/JdAdb9/uS1NsLtbq2OVl8dy0O98vwMA0D+vny0HN3npXr6Qhzr7mUp/7+OX9+VEtFpYvn3xeYLu9HRZ4Gi3DWM+VXuSysWvod4RWxmLHzVsYrPHjf04wcNpY+Sf0pKM4jPDiyWfeTpcqMuk6lY5VQgbPJ3WtwOOzkFmbjbfJpUx/GkrIitJWGmmswCCNlhbUVXq6acxOWqWYcTgfeJp/fXQZiYxSV5KMu0aEWylPK2+VHTkbbC2RqNVruu+txvlu1DHNlJXMuvprEuIYN60+dOoG3rdZd61Xlx8m0Ey0qW6DEqbYmqaejPQ4bQ6VScc2NDWNc83JKSYyvteAlxuvolRTAI881rOx9NigqrKRHHTFvMKjQ62pdmeMn9ucfz+/gpccceHup+OO/bPQdEEt8bO3vICFOh6+3peb1I3d6sy9rOJfPavkzOpfE9wxhyYf+DD1WRs9YDf/92MbFlyot3/wCDdhFFVrcDexFFZW7jpCYPxgtXhzI+gWn084VEybw0IJnyMxNw2TwbtA39UyEq74rXO3UYrNbW1S2ikoKsNqthAWFt6nAd3F+Ed5nBPUXFOcRFRZDUkI/ej6WREVlGb7efu0qHN4U54WyFRIcxknVKbykEuxt1VYS0k73Q1xsYottKwx+RuyZNrRCh0u6cJkcmAwda/p5LgnxH8xXK08zb6YGp1Py/mcVFBV9T68eg1rlvugM6ipcloDhvPzhVzx1hxJP9u4XVgbMqlUIxl7Wj72+Jv701l4Cg/x45qVxfPzuT+zan8pFA7UUlzjZsMPOY/cqLhWnU1Jacf5U9s/PK+fjd1aiFjaCwqO44bYJNVWru8eFcv3dN/DqJ1uoFKVc+UQ0263FHDfoCZw1lvQv1+Nf4odFX4nL6CA8v6fyg0eHPsub5JOHGNB7KH4+Aa1SgsJDopChduzpyve5WJ/HgL7N1+YpLS/hvYX/Rl2kw6Gz02dEv1ab7X29/bEbqurF/ui96y9oLoRA2M7E2+SLQ28D97PVKZ2o9e2LxzEaTFw1u/GSONUk9erHxgMbCHDHxZSbihiT2LxbrC20J+OwI/QdEM1b/9AwdoREoxGsWFVB8pES9u5MYfCws+9u6xYTwKL/ablqugujUcX2vTb8g7vXbPf2MfDYn27l7f/H3nlGR1X9Xfi50zPpPSGdVHrvvXdRUBAQAQUUVFSK0gVEuvpi74AUG1VBKdJ77z0JJKT3OpOp9/0wkBBImYRQ9O9ei7WYzG0zc+85+/zK3j/uRqfT89yIVuj1Rj5b8RvTx1l+9wWf5dK0fpE20+FTIrVaPRmyLWazmZXf/01GcgImFAx/pQ9u7pYFnUQiYfKcoaz9aT+/7Miibaf6hd6TI8a24MD2n8g6oQVBQB8Sg3ekf2FxvJ8mgGs3z3AyqjaNgj0J8g216nr8Q4KITYjFweiKTtQid5eWa+mz5rfvSbiYgMQsReIFY0aOt3qus7FXYRAt4yWAQV1Q6KACFg29h6EyUK4R9cNCdb9Qcc5bSwEwmUx8vexjtLd0iIKIa6gLwwePeWir4nxtHj+u/hptlhaJUmDAcy9SzevxRayqAnuOr0Zv+gtvLxjczx43FynT59YkxK89V2O2I5WoaVFvCGqbh0sq7wzUKYZTeGnPYJSZsWlek2c7aMk4l8/ZrZGkpuRiQsk7MwcTFGyZMMxmMz9+t4OMlCQEiYoO3ZuxYc1feLoYSM6Q8+IrzxAc+vjbh41GE7Mmfc1H0y2aW4dO6Nl/IaxUP7c7JrC70yK4HueFQ6KMvKORGMwqso4fwTnKsTAikiFNpseo3kQEV8yzMF+bx4bf16DVaKlRoy6tm5fdYvb9j5/BOSWy29HdFLs4Rox7xerU+LHTB1n3y2oUJhu0knwaNmnM4Get6xYbOrHXv8aI+s74BbDnwDaO7T2MTKfA5Khn+IgxhT6vDwObt63j2vnLIECdRg3o0r5qujzvTRtWc3G43XF49KEQrTu4diWBD2cvo06ESKC/nBHPO/D6TBNvT3+ZVT/soECjpUO3JjRoXP2hnP9eJMZnsfK7P5BLjTi5eTNsdFdyc3V8vuRXstPTSEvX071vW54bXFQPe+JIJHu2HQSgVcem7N99BltZGhotBNWoy7ODH03nenn4/su/6FDvOs0bKsjNMzPhA4FZi0cjs0IUV6czcnBfJAD2Dkpm9TuBi9ZSGmEWzSQ0zqZN/1Ekx6VT3Wxjld6gKIrs3PcnN6IisXd04Jk+g8okTpcjz/PXD5txNVjmAx1anFvblbtIuYN8bR4LlkxHzJFgQI/aRcXEt2aVm9mCBxu/nojIllQqZczLE0jPTEUilRRjmQ8DtjZ25RqrPgxk5WRw7Py3KFU6ZEIwLeoPqjIXdG/XerRqs4+u7W2KzpcbS4H4BT98KiUzy8xr786he6s5JaZWqwp3IlzIG+Ie1AWNLyQpU/gzMhrbnWuQGHXMmeiEm4uUqQu+Z/gbIwgJ80IikTB8dHGz7voNx2AwmCokWljVOHv6Bn/8sh17WxM60YmnnutIiwYG7Gwt32HLxgr+2F16t+C9WjX5LmGoXZqSmJyNq1zFzfR1uGd5YJDqUYXKSzRzLQ+2Nna8MHC01dsbCgzYCEWkW1YgJycv22qydfXaRYKNdZAjR2KWEn8mjlutbpZZl/FvR/vW3WjSqBW5t7/Hh+2x2rtbf3gwb/v7UF7HYZC6Bsu/3kpmaiJGs4Lhrz6Fu0fVdL6GRVSjRk1X5txlzODuYmLBzGXMn2TG1UXK4q9+x2DoWaoZfVXC28eJd94rnsb86uO1BLol4FtPRpe2DmzecYgV3+YxbJTlh2jcPITGzYuErlu0qYHRaEIqlTy2dLomX8eni39DJc0hJ1/Ks0N7kpOWQPOGlqiOvZ2EZnV1JCZklykHcQdKpYyOXSzNZKIoEtjhBDE7kpDrbUjxi6POG8PRSCom8CwIAp3b9QIruWh6RipKvU2RyT025OZYbwOUkZWGo94NV9ELAQn6dB3rNq0u18LnQfFoek+tgCAIuLl4PHSi9bhgNBk5cGYBny+J5+uPMhjy/CEOnllVZcev5unHH1tVharrJ84aMRjzmfWOFIlEwNVFyivDsrl+s3LehRVBo2BPqpttsI3VoI4DMVbJxVMCng4mnu1jR0SoAjdXKV/Md2LTr3vKPFZliJbBYMJkqpjuV0nQaPRs/mUzS98z88EkCW8MTufPDfuIvcusSq8XKTCU/RgF29XCx8aJF/ySCPNMRvDSgq8WsZ4nIf0G49Q+kHYvtueVEW9XGfkuC4HB1cmRWdT3zaIZg4u2QrWIBfkWCRQTJq6JZ8kuyGD5si+5Gvnw760nGbY2dni5+zyRZvblobRC+A5OV29buNRi2ddb6VDvGvMn6njvtWw+WbAKo9GKAkEroTPZkZZuOZ5OZ+b0BRMDeupwd5MhkQi8M0bJ/p3Hqux8FYVSqiEtw8Szve1xdJAypL89qbeulbmPTCatMNESRRGdrmrkLr5eupGJI7L4YJKEpTPN/Lp8I/kFAgZDUUYrNkEotEWzFiaTRXbk0x/78/aKCDotNjD51yAaN7SknQV/HXlBMqIl2sL6v6pCzfC65LlkFs51GTZJ1K1jvUh3ZlY6sgIFEkFKHFHcIpJr566w7vfVVXqd9+KJiGz9LyA9M4X2rTXYqi1fecsmclb+ElVlx7e3dcTL+WVeGvcLdrZmtJoAnB3zMBhuobhdOpCdKzyyieDeTkWdqzenr0tp2+zBV3iR15K5eD6G4FBvatctIglms5mlC9aiJIkCPbhWC2fY6Mov/+PjMmlS11w4WAb4ypGY83ALqs/8z84QFiSy64iM4WPLV+G+k37Zs3EdtheiqKFScDrFE3P9l3CwqY/ZbMPpG2XLEz+IyXWeJpfjpw+hkCvo2LYHJtNmbkZFI5VLGP70q6UWo168coZ9+3YCAu3ad6ZmWF3Ca9TiVPRJ0gtSCKIGckGBmCGycf0vTBg/4x9JNv6XYW3HYU5aIk1u1yHZ2UpoWsf6iIg1GDv+WRZ8vBaFJI/8AhX9B7chN+/vwveNRhDFxxcfyNcpsL1n+LrjV1sR5OUWsH/PJeQKOe061iy2oNy94yyHd+3DzVkkIU3N29OGVJgIFYMpF29PWeG1Nqgp4hbahrfmbKNDMyPXbgp4VW+Ig5XniLmRyrIv1uHupCc1S86QkU/TqXsNOlGDqLyL1OQqUL6nYkUhiiJnLh4nLT2VerUa8dyQIWzd+juI0KheExrXL1ncN0+Ty6/rf0SXX4C3ry9P9bDIPPzpuom0NBNKbPATQsAAcUfjOeZ3kKYNHo4u4L+abB0+vpfD+/eDGaoF+TCw3/BHGs49fekvcgv2IJNBgSYCN/eigUKnM6OpAnPLuxHkW5cg36Li6JT0BMa8s4iJY/UkJpv5dYMfPds8nJqL0lCYVkyHRJeezP10PV94SXFzkTJrqYZnX+xboeNt//MkidcO0LMDHDwmcuZEHQYP74BEImHtTwfo3ymZxvUs3+vqDZc5djiYpi0q52Hp7e3I71eKfrO0dBOixJbnhrQjOakBqam5TOrhjlptOd/hA1c4dugSPn4e9BvY8r4oVVRkKjbZcXwxy1L8eTkyjZErNyEJ60e+oeyi8sqYXN9Bdm4mX331MfbJrpgEE8eOH+L1V95B3rVsUnQzLootv27CI8dCaDcnb8DuJXvatuiMTqdj744dyPWWzy4IAjKNkpy8bFyc/p3R6UeN9KxUVq/5HmO+EZmtjBcGj6zS7/bujsM8ueE+oiVP82TuB99irzaQr7fFZBTQ60UUt2UPYuKh3YMQgXtg76DinfeK5DLMZjPzZpzGyTGDah4SvlwtMmR05yo7X0Ux8rV+THv7K37akMtT3WzZtkePk2d4hY6RkZHPx+8vZ/TzBvK1IrPfPcKU91/E1lZJdraWs4f28n/vWZ6pjEwdiz7bxPhpz1f6mo2iDVnZWTg5ShFFkQvXYPygQOo3HE10VCpPtbHHw9MyHqUk57D+530A9Hu+beHf78aPX29g6UwRuVyBySQybvYm3ltkcbcoIubleypWFCvWfEnWhTyUBhtOHTjGM4OeZ+wrE8vcRxRFvvn+/3CI8UAtuBB/I5F1hlU89/SLvDDsZb754f/wzyzS17TXuRAVffU/slVRJKXGc+DPvXjkWSaK9LRsdrhspmuHPo/k/DHxV/AN2MKboy1f8frNJ1m7qTrT59+kZpiJrTtVNIwY8VCvwcO1Go0V7/HtsiMo5A70bNP8kaSp7kUh4VI2IatzQ4au3I6DVKRun5pIfdOJysu0uvD21KHjfDRdSU6uictXM5ArjrBg2kUat2lF3M0kGt1lVt2qsZTfj8RXmmzZ2ato3qkj42btxsneTEauHW9PtZBDTy8HPL2KBqPf1x1Bmn+UWWMUnL0Uz5K5t3hnZnGhyRtRSbRoUBS+rxEix12IR+Ovu22BUToqanJ9N7ZsW4dbsm+hyGDOTTh++iAtm7Qvc7/jJw/imuNduEBxyfbi+KlD+PsE0aV9L2Jjb6A/Z7HqEEURo1qHg71Tha7tP5SOVau/xf6GB1JBikk0sXL1N7z52tQqOfadaJanrysaX/DxVmKrjikW0Zox8ws+my0gl0vIzMpj4gI5b79vom0TI9dvCviENrI6IlIZSCQSpr7/Arv/vkjk1TxGj69VIgF4VPD0duS7n99l945zLF5xkxq1A3mpX9mdv/dizbK/WfAuODup+PrHbOzlSXy18FNMMh9692tH3Yii8cHFWYogass4WvkY+cYzTFuwBlcHDZk5Uro93Q3VbeeA2nV8CrdLTcnly8Ur+GCSZX6YtngFY98Zfl9NnoOtoTASJ5UKuDgY7lOmL89TsaLjV0p6EmnXMnA3+oAANpm2/P33FsJG3y+Lcjdy8rIQM4TCrkM7kyNJtyySLL7eAQzo9yI71mzFpcBSaJ+ryqBeSNsKXVtF8K8lW9Exkdjk2hcW0dmZHLkVe/OhnS87N5Ps3Cw83bxRKlTEp5xn8gtFD87TPaVs3CLDx3kOt25k0bGp90MtVL8DR3tnGtfuUeJ7mdlpHL+4ArnMgJtTU+qEdXxo11EoDZGgJS+4D56ejqQqClh169rth/KiVYRLo9Vz/rLIui25TH3TuVBfbNZHB/Gr3pgtO5Po3dnycG3abqZeuwdrHW/Vrhat2tW6LfZXOlG9fvECC9+x/J6N68nZdSiFrCxNoZk2QHgNH7b+ItCwjshXK7K5Fm1AarAjxCcRjbbsSeSOyXVlCJfRaETCXVpcohS9vhx2B7g4u5IiuY6daFF/1km1uDgHFr4/eMBLLNd/SU5GCijguWde+McYZv8TYMg1FnaqSgUphtyqqeO5O22Y759CNRcHghzjsEs8ikrpTrB7LbRaA/7eRuRyy7Pk7CTF09XMKxNf4WZ0GnU62BXKBTxMSCQSOnW9X5gaLHVDq374m4yUZFS2Dox4tWchkXiY6NClLh26VIxk3UFujpbIG3py8kRUKoEPZ1vETc9fSePPgxdIuCFhQB+L6X3kTQMq2wfrwHZ2VvPewpHljl+b1x9ixjgBJ0fL/TbzTZFl6w7x0pjiZRg5GhX5Gh1HThaw+6CG0xck5OQU3JfqLIlw3fFU/O3GTas7FQFMJiOC+S5nBUEAsfwMlY1KjVFuKHwtiiKCrGi/2jUacKvtTS6duQBAaO1wGtV7eNqU/9qR0d83kEN2+7DPdwIgX5KLv1dx4+Lzl09z+NBekAj07PZ0hUVU7+DkpT+wsdtB7QgjW3fZUC/0bdydQ9l9cA9Dn7Nsc/CYCTenYBztnXB8Alb/BTotR87P5+sPDajVEpb9tJ7zV7iPcBlNRjKz03Gwc3xgza67tbjUBtCg4rrSMpiURrhEUeS3VXuJuxnNpYsptG8h4cJlOHVOV2iJA1Cvhhn76v6cOZ7PgUVRGI1Qt0lLatb2Zfufp7hwJorQCH96P9O0Uqnk8nzMxHvq8Y0mkN4TRfTzdyG0QQeeeel3lrxnzxsjndh1SMe6vzYSNnB4mcd/kBqITu17sjLqWzwzAzFjIs8rnSYNWpa7X/tW3bly9RJpMZbVoE2ggrYtitI4Nir1Y+nq/V+BRC3BnGZGIkgwi2ak6uL3U25+Dus3rUan1RESFkGH1t3KvbdLqs9S58Rx64tVdGkhcO7odWK8NTw7uC3xyZLCqEVBgZk8rQobGzk1aj0ZelFffLSR/h3jqF9LQUxcFkveX8P0D4YV20YURVKSc5FKhUdCDkvClYvxbPplBxkZOagVGm7cknLgiJZmjYrG0zoRclZtzqDv4L68/f5WbNVmRKknr03sTXRkMls2HEKhVDDwxQ7FFnDWorzxSyKVFiuaNxhEpLL793n17QG8NOl7WtbTM3eyGxmZJibPWs70+SPvI7r3dWJrHNCgqnCU3tOtGnIfAW1UPipRTbptIq0alx+BUsiVNGnTghN7jiLXKtE7aRjS9+Vi2/To8gw9ujwaR5J/Ldny9QqgQYfGnDxyFMEs4ObnRs+7vtRr0ZfZ+uvvuOf6ISKyKul7Ro15A1cn62wUsnMzydPk4mDriCDbwdwpEkBB/95GRr61jG4tZ3DwSAuOnz6BXAYZ6RF0bvFoXN6twc24SIYOzEettjzwIwbJGDnuKFBEtpLSYjlzdSktmug4cUWGq91zRFR/sHx2YUoxVgOo8fL1IF/jwO60kgnXxrWHqO5yjvr+JprWlNKvl2XA7NhGzfsfpbNwhjuiKLL/hITXOrlRt14XoEvh/su+2kptv2vMe0vO3iOJfPFxEq+Nr1idmDWo36IxH3+3l0FPSTl9wYRW9MPe4X5y2rx1Da6e3ENEiCVi0LGlkr8Pmm6315eOu2sg7D09yI8rqrkpb8Dy8fJn6Muj2LnnL5QyOWO6TyjXFBmKJFkSU+IA8PbwRSKRcDMuiq3bfgczNG/Rmvq1m5R7rP9QcQwaOJw1P/+AKd+M1FbK4OdfKnzPaDLy9bcf4xTnhVJw5Hz0eQwGPd06lm5tczfRMnvlYp+jw9ksJ/2Pn/n8PRuUt4VY3196lszMxvQf2pvXZ27B3dlEcoaCV956smyyTAUp1K9leY4CfOW42mWj1xtRKCzTmslkZtHsNQR5pWMwQmquN29Pfe6R1u2mpeWxac06Fk2V8+772SyZZZlfBjxlz5CxSQzpb4lob9+rJ7xWELXr+lO7bpGMS+S1JDau/JnZ4xXk5ZuZNusmk99/GTv7qhWr7vtcS+bOvsqk0RYv4cXfSJnw3v1jvbuHPUFBrrw52qJq7OIs5alOWi5dSKBh4/uDFXcTrms6R67hWeEovUQi4dWXJ/DnjvVkZWXStUFP6tSwzoKuY5vuNKzXlKycDLzcfVApbdDpC1i7cTW5Wdm4e3nydK/nkUofvrzQv5ZsAXRq14OObS1ik/c+YIeP7MU916/Q58kx3Z3TZ49Z9D7KwZ87NnDxyDlkegUFDvkMHm4ALCkkuVzAVm0JXbZq+AJm82BARBL++LSiSoKt2p7YuKJryteYMZqKpzXPXv2OHz4xIpNZbpNRb/9GWGCLB677ahTsWawduKFtKKfy4ZrOER+b4qTjxtVoXpmoYP2WPIIDixoKPN1lXI9VMXUx5Guk9B7QvURyk5UcTa/hlv06tFSwfX/sfTUGVYHO3epzsZorK7ddwTfAk9cnlpz6kMul5OUX/5tOX1RcKooiJpO5BIHB+1eIUXIDdjeMFvJaBhoFe+Lj5V8pHRmJRFLM1DotM4WfV6zAK9Pijbgj4S9UShsiQismxPofyoe3py8T3pyJ2Wy+75lLSU9Ekq4orEdx0rsRde363WulEuHp64pJf4tLU1fjlGlPpH0uATW0KJVFgo4BPiKZGRrq1AukTr3XHrvWXWnQaCn2LGflCsWuc/0vBxnaJ4OGdSzj2t/7E/l76xm69Hg4XrEl4eypmzzX04RUqsDOtvhv6OFhz4QPBBQKcHIPY8Srze7b/4+1+5j3rhKZTMDGRsKrgwvYu+sCvfpWrS6wk5OaibNe4s/fLdIaE2c1LbUL0ixKMBhE5HLL956WIVC9etHYbDSaio1fdwjXnbG9MlF6hVzB0z0r1yhwr0XVdys+RX7VFhvBmeTIdFbnf8eLgx6uxhb8y8kWlO50bmtnRwY5KLHcUHqpDgcHp3KPl5GdxsXD5/HItUxAJq2RH1ek8vpIM/Z2Eo6dMmI2FqkcP46CdGvg5x3IziO1MJsvEOBnZuWvtrSsO7zYNg4OBmR35bh9q5nR6QseqR2LVKYiMyuHlk1UfPx1FrUjFEilAl+tyCYkIpi3ppVu0gxwr9yWyfTwVrW16vhRq07ZelVSqQSfkNp8vfIcTevDn3sEWnToBMC6n/YTdekMtjaQq3dl4vSBhYNWWSvE8joZrY2AWYPT547jmOle+Fy55/py9PiB/8jWQ0RJY4haZYtJVlSPYhbNxepRysLVHzdQPTbY8hvmeRJdkM3ewzratVCSrzFz6LScTgOLJqcnkWgBdOzVnmmLttGxpZkT5yTUadKs2HifGJdK7d5Fqa3a4VJObS1bXqWq4eHpxOWz0LwRFOhEbsUb8PORE3NLz7UoHd/9/HaZKT5BYiE2d8bhAj2Fi9+qhqOjDc+X4F15L/oP7sKEuT8zrJ+Z2ASRy7HV6DHUi+jIZFZ8tf6264eMoaOfISTMknJ+mJ2KFYHRZESTosFDsHT12or2pCeULkpdlfjXk63S0Ltbf764uYT8BDmiREQdoqRxvZK1Ou5GTl420oIiFi8VZDjZVOeNdyUolVqkQhCtGw4pdX+9QcfBU6swmrPwcW9OzZCH02ZqDTo1H8utxJvEx+TSsUkIKmXxlUxurifRMZFUD5CRl2/mynU7Qts9Wt+7Ya/24t05P9K6oY68PDMvvpFESKCCBnWURMWnlLt/9Rp1+f6nk3RvL2XPERNegbUeuzny8y925PLFCM5GJdJtQCD+Aa5cu5qMMeskS6ZZonOXr6ez6vu/Gf5KUYFqaSvE8joZQf1A0hF3w8nJGb20ALXZEgnRCVrcrVik/IeqhZODC6GNQok8HolUq0Dvns/QPta5CAj64otQe7kje8+7sPVgKiZRzuvv9CmTYG3/8yQXTl/HwdmRoS93Qal8PNNI81YRBIf6cP1qEl0HuOHrV9xLtGXbuiz/bQujh1giWyvXm2je5dFK39Sp58uR/aEs/ioK32oKxryTTL3aKhzsJIwarOLo4Shati7dQ3DAC52Y9MFKJowWyM41s2K9munzH+/CJijYgzHvvMSJI5E4etox/mkLcV/17UY+nQUymUUW4s05m5i58NVi+1Z1p2JFIZVIMcuKVuCiKILs0VgW/s+SLZXShnFjJxN96zoymZwg3xCrJuFqHr4YXbSYk0xIBCk58gyCw0Lp3PzpcqNYZrOJrQc+YMmcDHyryVj+8w1OX8ijQY0q9t2oAMqyWOnQ9DXmffgNClUy+Xlq2jZ8tdRt74VOX8DB08sRhAwUskBa1H++UlE+Jyc1sxaNIuZmBifPr2H1wqJU5/EL5avE93u+NadP+PDzrmjCavrTpUXxgS0vtwCgymsgykONWtWoUauoYeNGZCIt7xJBrhEqZ/mm9Pv2K2mFmK8pu5OxMkWppaFRneacrnGctMhEBLOA4GOmV9eXy9/xP1Q5nu49iMSmcWTlZhJQrbrVvqdKf1fyYnKxM9tjFA3IfTSMem2wVXUra9fsx0t1mgUTFNy4lcbC95KYMf/R6hfeDXcP+1Itgxo3DyEtrRXvLjqL2QzN2rYmopZPiduWhL9+P87lc1cQkfPCyJ7FpF4qglGv9yY5KYdPF69j4wo7ZLcLz/cf1ZJQoC9z32q+zox9dwR/bD2FUqVg2rzGxcitwWAiO1uLq6vtI/0NXF3t6NarfrG/OdkbCyPxUqmAk72hhD2rtlOxohAEgTYdOnJg+x7keUoMjlr69Cg7O1JV+J8lWwAy2f1edGkZKaz5+XuMGhMKOzlDh4zG0b5oxaSQKxkxYizrNq7GrDdj7yRF5XSAM5H7SEx0p3OLCaV27aVmJNOxnYVoAQx/XsYr449S5SZnVQS5TE7HZq9Vat8dhxexaFYKvtVknDibwJffZdOp+ZhKHUsmkxIc4o6Dmx9HT8fTrIGcfUcNKOyt6x5t0DiIBo2Div1NFEU+WbQeGyEOiQRydI++ePZuRNTyY/tagUb1LK8PndDjF1D6xHBvWrEsVKYotTRIJBJGDRtHXFIMRpMBf+/qj6S49D+UDG8PX7w9fAtfm81mfl63jOTYJESJSNsOne5T164z/HkuOf2CKSEToyqHcL98vlzwORnZMvoO6kG9BkH3nqYQsVFXGTvJEtkP8pMREZhLakruY9W/Kgvdezeme++K1zf9uekYKt0RFkxUkK8xM2Huj0x+fxRq28rJ9Xh6OdB/UDsWfPE7U19Xkp1jZuVGJVPnlq8B6OZuX2J678Cei+zdupPqfiIXI+W8Ov55fP2qRs2/MsjKU6LR6FGrJWi1ZrJyS1/AVlWnYmXQsmk7akbUITUjGS93H+xtH829+z9NtkrCytXf4BTjhUSQYkwy8uPqb3jj1XeLbePu6smrL48nJy+bqMSZLJ5lmaDjE5OYOf8HOjUbW+Kx5XIFWVlFr81mEX3ZC5t/JPQGPdUD0wtJZeN6MtS2MQ983NcnPsNvq/ezfmciQWF+vPpm+Wnf0rD9z9N0bBRPp9aWwXP/0SQ2bzhGn373F6k+TOh0Rn5bs5/szBycXOsyfu5VVEoRpX0gr75ZdnvzvWnF0hCmPMpudUSV1UgIgvA/bTr9JOOvvzeSeTIXF5Mlarrrj20EBgQXMxmXSKXUfb0fzX392PnhW3z9rgo7W4vMw+szt1Cn3thSo9B6g1CsKD07V0TxmNKIDxNXzl9lwUQLqbRVS+jbWcfFCwk0aVY6ES0PDRpXRyJ9mqkfH0WuVDLxva6VJm9Go4m9W3eydJblGnU6M5OXbGLK+w9XKLskHNx7iVPHrxFSI5QpH0ZhpyogV6ti9Jv9ytyvKjoVK4t7i+YfBf59T8kDQBRFjLmW9CCATJChzymdDaVlJNOqqZ47nYg+3lKk0vtTP3fg4ujG6SM1+WXjBWpFiHy3Uk5YwIAq/QxPAmRSGRmZRREiURTJy79/8E6OSydPLuMEILkt3ROvzaI0gVNBEBjwQtUo/N66mUTv/kURmUZ1ZOxcUXZX362YNFZ8vQk7GwM6kx1jxz9bYgektTAaTcybvpy3hmvx9Zay5OubdHu6Dw0aVy9/59uwTnn//hqJR1mU+h8eHRLj47AzFUU6Vdl2xMRFE5MhWmQf5Aa8sbyfYTiBt00GdraWOkxBEKjuZyY7uwBn55JrMzv1aMOsj/7iuV5w/ooINiGV0n160mFGhlZrLtTyi0sUqBH84J+zXoNA6jUIfODjZGdrCbqrF0eplKBWli16azKZ+eKjjZgKUsjXCPTo15mGTR5M9Pm3VXtxlp1h2kg5h0/FkpHqx+sTrZcIqYpOxX8K/iNbd0EQBCQ2IGZYVm4WIcHSUySebt7sOqCkbw/L9teijIjmshV/OzUfy5WL5zh2LJkQnwb/Sh85iUSCnaobc5b8RYvGOrbsUBHsU5xU3i1wmkg23lhWNvHqiAopylcEWzef4OLJMxbLB3tvfvrdyNgXLb/vT5sMNG1Rs9R9RVHkm6W/8uksAYVCIDUti0X/t45JM0tvhigP587E0b11LuHBlsaEmW8peHfxwQqRLWtQXlEqVE2n4n94/HBxdydZSEMt3m5gsNOQZVCTcZeQqcSlgDDPZMKUR7lltiEj04SLsxSTSSQyRoqTU+kWPE1ahOHl48aRE5H4VHdj1PNVe68+KXjhpR6Mn7uKp7vouJUgkJAbRN/wx/uMxN/KZMU3m1Ar9IhSR9JSpBQUmFGpJMTGGxClZUdqVnyzjec6x1O3hhxRNPPuvC0EhYwslVhbg1vRV3jttnNGh5YKdh26VWGpEGs6FcvDP2H8emxkK19XcvHc48aAgcP55ZfliFqQ2Aq88PzIUre1Vdvjbj+cl9/8GQd7E5mZ/nRqNrzcc4QGVs7q4Z+E+hE9SMtsxL59SUT4B+Bgd39dUWUU5SuLM6dukhN3kIXvWgaG73+KJC4rhHcWJCAIEF63OY2bl14/kZ+no7qvEYXCErZ3d5OhkOQ90DVJJAImU9FrUYSH1RdTVlFqVXUq/ofHj6d6PMey9M9JiY9FlJrxCq9DhrNDMcV4H3stHZyuEmzXinoTGzJnya/YKfPJzpPxwuiny61b9PN3wc+/6SP6RI8HXtWceGf2KC6cjyc8UM1TEQ9mm/OgEEWRrz7+iaUzuU2uUlj8nSNTPjRjo9CDzLNc0dnsjFTq1rBIYQiCQPvmJqKup9C4aeADXFfx12YzVLbstaxFYVn4p4xfj41s6RAfuNVTW6Bh2aov0KRpEBTQq0+/B9b78asWwMS338NsNiGRlM/Og/3rE+xf/4HOaQ30Bh1/H/kId7dUsnNkBHoNICSgaoXtqhpuzh7FakVKQqNgTxpxRwtKjShXcp2qJ1wnjlzi1WeKbvdBfeUsXG5k4qxRVu1va6fkVpJQzL4kv+DBTHjr1PNl7i9O+Pvk4u8j4ePvjPTo1/uBjlkWHmdR6n8oGX/9vZGLp84BEBhenf5PDXmgJg2ZVMaoYW9iNps4FZ3KDWlBMaJ1t9E0WLSVpr4/rJyjVg3W/3yAyItnUchBbufL2LefeuwyLGXB1k5JsxZPRuQuM1NDRHUjKpVlsefvI8fBtoA3p1sn9wEgU9iRlJKDl4dlHDx9SUqfF5zL2atsBNeqw/c/HefpbjIOnTSicqpegiBzBY5X6qKwdPxTxq/HRrbMSoiWPNgX9PPaZciv2OIuuCKKIpvW/0r18aFVYvBsDdF6lNh/8jvmz4jHz0eGKOoYN3UV1bQ1rG73fpQwGg1k5WbiaO+MXGadMewdVXk7iZE8qp5w+QV4cerCdTq3sfyupy8a8Quw/r4TBIE+z/Xg9Zlb8fE0E5uo4NW3n36ga5JKJUyd+yK/rz/K0uXncHVRsv2PQ/j693lodTCPsyj1PxTH5evnubz3Mu4FluKbhOwkDlfbS8sm7R/ouHdSw5oAW/LkxlKJ1qPE+bOxCHknWTLtdkPKsVg2/HaYfgPK9+h81Ljjp6hUyZ6YejQHBxU344pe63Rm8gsqNs+9PLYXc99fg5dLLulZUL95c7y8y+5kLg9PP9uSk8c8ee/zo2hzM3F1zeDY4Ws0bRFW6WOWtCgsC/+U8evx1WwpRIvr/APUjeRn5WMvWLymBEFAnq8iMzsDT7eHb5QqiiKiKD4yhXiZPB0/H8vPJQgCrZvpib6eTIDNk7HyuoNbiVe4Evs1jesZ2X9aSpD3SwT5Wpc2vTuteDfh8rF3BC4C1haE34+uPRvwyaIbHD0Th0SArAJvxk+rWOdhgyYh1G/8GlqtAbVaUf4OVkAul5KRmsGbww00rgeZWWlMeX8ls5eMfmir/mC7WgTbgU/exSrvVPwP1iMq+ip2Wke4/TM76FyIjLr6QGTrjv+hp68rGl/LRFQa0SrJBuhh4eqlWLq2Krqf2zSVs3nJrUdy7opApzOy8L2VRATmkpMnYlZWZ/QbfR73ZSGTSWnXvRNvzrJIPVyKkjP6rdJ9MEuC2lbJzAUj0GoNKJXSKvvt7ext8LBPYcZ0JaDhg0//wsHBtkKaZveiItI2dxfVP8l1qI+NbKkUBgR/XZl1IxafOCN5mlyiYq7h6e6Nr1eRtpKtkx36mwUoBBWiKGKw1eHsWHaRoNFk5KfffiA9MQ2kIr379CckKKJC137iwiYKTHuwUYmkpvrTteWbDz0SZjS4EpeQUiincOCogrrBZafoHga0BRq2H1qMUhVLWrqEFvUmEOxf9P1durGc5Z+ZEQQpoigy4o2VBPkutvr4JRGufBfLyqY8s+ayIAgCb77bn7zcAkSRSncRCoJQZUTrDvIzE2lczxIBdHaSUitER1pqXqlijVWF0mok/iNcVQej0YAIXIu2LBbCq9dCdjvaG1w9nGvq6yi1lnR0jjKDxsHlm3ofPXWAw/v2gigQFB5M354DgeJG0/aeIPEuIFR9P9GKjkxixVcbcHc2kJopZ8TY/gRWf7hjSXhNf3YdOknIbeWEA8cNBIX6lr3TQ8Ka5bs4f+IkWq2R6hE1GTepyJh+5fc7mPByPkF+lmf8p41RnDgaTeNmj39R27p9LZq1iiA7W8tAF3WlyZKNjXXZBmuxf9cZ3hguL1wcjhshY+lPpx+IbIH10jZ3F9Xf4RO2sZoHOvfDwGMjW/ayAkJ9k0qsGwGIj7vG6YNbMWoKMOoNeJn90So11G5Tk97dLYqvzz87nOUFX5Kdnoogh75PDSg3hbjhjzXknSrAWfRGFEXW/bKGcW9Nttrv71biDfwDt/PWK5Yb9uzFaL5Z9hutGpRtkpmYEkdaZgK+XsE4O7pada670brhy0ye83Gxmi1bG7vyd6xibD+0kM8WpuPuZk++xszAUXNwdlyKi6MlwujsZCx86ARBwNXFUGHj5zuEK9+gvv3wFFTZ9T9spXiNRs+P325Hk5dHw2a1aN+5ZEPqu6HVSzGZjEillu8oMUV8oOs8dyaGP9fvRKmAgJAw+j3futRtrelULAv/EbKSUaAr4LsVn5CfoiElPwEfU3UEBLb7b+G1VyaikCupEVqHmLbRXDx9DlGEoIggWjYp25suIekW+/7YhUeeJfUYk3aL/c47UXvULiRaxTsO749orfxmU6GtitEo8tb7G5i5sGwj3qwsDWdOxuDiZk/dehUnSXXq+XP9ciMmfXAWuRzkdv6MffvRpxB3bjuDm+wk3y+xLGTmfnyRzz6U8voES61kdkY2QX5F02LdGgKHItOeCLIFlki4m9vDHfe3bj7BxTOROLo48uLILigUZdMEFzdHomNNNHKyBByiY024ujtV+vz5eTq++WQjmPJAaseoN/qWMx5exMfekXwXB8yJlT7tQ8djI1tyQcoLfknszrrfVFc0mzm5dhtBGcFEcp5w6iMIAk56V84cOYtrYBNaRARgo1IzZuSECp03LSkVtWiJfgmCgDxHTXJaAoG+5Sv5AqRlRvNCjyKbmHq1ZGgK4srYA46dX4+v/y769DGw7g8ljtkjCPGvmPO8UqGiZ5spFdrnYcDOPh732w+7rVpCo/pSzl/fRrvGLwCQlu5CSloCHm4yMjJNJCW7IYQ/uUWwVQmTycyCGSuY+YaOal4yVvy2iy0btfR6uuzOrX6DujH+/fV0bGHi0nWBgBqNK736TErMZsf6jSyZrEAiEVi35RTbttgQEubPkul7MOpEWnXzZ/iY5oX7lNWpeDfystK5snc7ADU79iA32/RfBKwUrN34I4pr9uSQRzC1sBUs0dn8mFx27vuLHp2eBqB7575079y3jCMVx9WoS9jmOhWmHh31rhw7cwb/7sEldhzC/TVaTvb6wuiaTCbgaFd2Z3jMjTRWfPETA3sbuXke9v8dyGsTrNdSugML6S+d+D8KHD1wkY+nFpGVwf3smTz/CmAhW3UbhbNuy37691IgiiK/boanhlo3N/wb8MvKPfjZn2PhRAXRsWksmJnMjPnDylwsP9W/OfNmXOfS9SykEjh01ompcysvOP1/C35m6iu5eLrLSElL5YOFvzBp5hDmTd1B/PU8nL2VzFzctcILUrPZxN97t5CUnEj9uk2oW7Nh+TtVIR4b2VJKbQoH+bvrRjQ60OVrUBgVFt0rUVrshxYFGVGmHBSVHOTVDmr0og6FYImAGW0LcHFyt3p/b/dw/tgmo97t8Wv/ESOOtqU/jEaTEbOwl4ljZYCMFo1FXh63tsJk60lBWroUo9HiQi+KIkkpRpTyosGrQ5O3ePe9r7BRZ5Kf70D7JpWz6Pkn4kZ0Gi0baKjmZbm3hj2nZMqSS+WSrfCaPrw5bRSRkan0aurwQEWrZ05GM7C3iERieWb691IwfsFlvpx9HtvroUgECRtPJaJUnmDQS0XdrKV1Kt5BfkY6Z5Z+S2CSJY1/MOYrfEcPgTT+I1wlIDcrD7XgjEk0Iqco2q4UVeTnV14yxM8ngFM2J7EtsERm8oVcTK5OZXYc3ovsPBUFBQZUKoutSnZ+2ZPWLz9u5aMZMhQKOW2awdcrY4iKTCU4xPpx80mBZzU3zl5MpX5ty2c+ebYAuaLo9+nSowHrfspjyuJr6A3QqWcX/PwfnwXOo0b8zUjeuG3HVN1fRohfNunp+WVG02QyKdM/eJFrVyyR8OkDPR+oHsxOaSFaAB5uMuyUuUx9bTM319tiI/oSIxYwLmk9P2wcbPUxRVHkux8/xXhZQG2y5+9LW8nsnk67ll0qfZ0VxWMXNS1pkFeJUgpcdJgzzShRkS4m4Sp4UYAWTYAZfU0nom9Wrq5kQL9hfJv9CVnpOsxyE206dipRA6o0eLn7cv7aM4x6extqG5H8vFp0aFr6ytRoNODsJHJnKWqp+Xk0LuMPA83qjOeZ4XNo20LK9RsG4uM9eK5bj8L3bVRqurQc/xiv8PFBpZKTnVv02mwWMVgpJ2dnryIszIMfvvwTfUEu7t7eDBnRqcKDlpe3C5euiDS83ZOQkGQkP8+MMcoZiWA5ln2eFwe23yxGtqDkTsU7uLlpBwFJ/sgES0TEN9GH1AsHULTo+UQXpT4uuHu5kxKViZvoTQxXCREt6eRU5zh6NrO+Xf9ehARGENYqlEunLmDUi0iDnPB4tkuFOg5HjXuOSQvX4aDWkatV8cqb/cs8p0xqRqEoWvB6eUBubtWl9h8lho/uwthhF6gbno7JJHItGoaNebrYNv0HtQHaPJbre9zQ6SlW9pGTC8py0ohgEbKOqOnNH+uP8NeGvxGRM3RUr0rVnebmSwuvQRRFcvMl3LqkwUa0jC0KQUX6DXOFxFNz83PIic3F3ewLArhqvTl36tT/FtmCkjsPXD/qzM7ZO5HmQJaYjFDNgJ2PHd1f6cCNVD15QuUKeW1UasaNmYzeoEMmlVeKgdcJ6wh0LPY3o8nI4TNr0RYk4efVlBrBlnoEldKGa5FuxNxKIcBPxt5DRvS60HLPERlziuj4vcikDrSsPwSV8uHWGlmLQJ9wvNy+49TFvTiobGjZrQUKedUWjP9T4evnTEqeH+u2xBJWXWDVBuj5rPW6WYvnrGbGaxq8PGQcP3OZbz8r4JVxFeuEqt8ogG8OhbDoy2hcneD4RVueHdKBM+sOQbZlG4Oox9ax5DTl3Z2KdyPRsQAdRQObGRNurnp86ivRJMJ/4qjF8UzvwazWfEd6QhpqUU2WTQL2do4M6jQcb88HKwyvFtoWTWhDPKo5owuUk6RMqZC0g7ePEzPmv3zf3w/tv8zR/edxdHZkyEudUN72PIyoE8Gq9Yd5oZ+SrGwTW/YomD6/bJHP9PQ81iz7G6NeT9c+LahVx6/M7R8VpFIJX6+awL7dV0hOyuCZlyL+pyJX5aFTz7aFdkxnLorIHcOsbibatPYQbtLjzJ+gJC/fzIQPVjJt3ihUqoqVRPTs14W35/xJg5oiZy5L6PFMdy4eP1qMBAoqEzKZ9XO3RCJBFMzF//iIq1ueCLIFJXQeNITnNt2faovXRrFbKX/gzqmq0OK6A1EU2XpgETMmJhARKmXlr1GcPJtBo1qWibZbq8nMXfIjZjENO5sw2jUuu97hUtRBXNx/YtkUKcmpJt6cGk2vtrORSZ+Mn0ultKFlw+6P+zIeG/LzdJjNYomD0OsTn+Ho4SiO3cxk8KtheFezLmqam1NAgFceXh4W4tqkvoINOypX7dm7XxsunAvCu5oTvYZVQyKR0OJ5Z46suwlaBaqQPKYseK7MY9x5Hu+g0ZuuTD94FOOVYEDEUCua116tQZw8mWt4Eq3MQZT/18l4B1KplBcHlV10Xhnc6TjUBCnRecpL7TisKLZtOYku5QDz3lZwMy6F+TPimblgOBKJhJ59m7LjLxmTl1xGkCoYP6NnmRNobk4BSz9YwcLJYGcrYfbH6xDFftSu61/Zj13laNuhYh3o/yYYjSaysrS4lNDR2LRFGN637Zh8wzzo2iTQ6uNGXbnOqImWedXOVkKPtgVcvZJEvfoVI9oRtfzQFPTAYDDxZv/qqNUK3pwtY/5b+xCT7BHc8hk5qVGFmq7s1PZ4h1cj/UwqKr0dOQ5pdGrTrULX9aB4Mmbv2/inmurm5GVTv24iNcIsX+eLA6WMOX6MO0WXCrmCDk1Lt/25F0npe5g703IsLw8Zzz6VwfXLN60u4v+34I5RtaDUYavOvt3iW/WeidZCFEW++r9NCLoYFHKB1Dx3Js0YWGzAEgSB5i1L/50O7rvE/u0HUCnBwc2PEa92RxAEVDZy0jOLn0ujK30wMZnMJCVm4+SkxtauaOGwZeNRkiKP0LCWiQ0rDJyq2ZhhIzsxdX5X4sZmkptTQHCoe7kdRnDP82gHP22twa8rTyORCAwYOoJkIYpQ/v0Gsk8K7pZ2KK/jsKK4eOocCyZZ7qMgPxlNaudy80Y61YMtdVldejSkSw/rCooP7rvMyAEGHG8vRmaNVzLlo0NPFNn6X8XRQ1fYsWkHwf4il6OkvPT6c/fJfpRlx5SRkc83S9ehkmnR6FWMfrN/YT2XyVzk1QhwKxGa1y+9yz8jIx+D3oSHp30hcUpOyuGLxSvp01FHYqyZWRvtmbVgOM1bB7FqlzcxMelU83HCxaXiYt5DnhvJqYijJCUnUKdmD/x9gip8jAeBVWRLEITuwFJACnwniuKCErYZAMzCYu92VhRF66vXKoAnsVVdJpWiySl6LYrW1+qUBKNRwGQSC6UAsrIlyGX/W6m60gROH5ZJtTXYv/sSDUNi6NPFMimdOJvGup8P8txg6+o74m5lcu7gDj6abtl/18HrbPjNgX4DWiGXS6leuxGLvzpBvRpm/j4gpeczJa+8UlNy+WTBKhrVNhAbLxJYswlP9W+J2Wzm/PGjfDTDcvyu7UVGjj/Ad3odI8f2xNfvwaw5HBxtGPl6Ubu+HQ9uIPsfrMO9RKu8jsOKwmgsXquTr8EqQl4SFEoFOflFrwsKRCTSJ8uR438RoiiyfeMOPp1jiUoaDCIT5v/O9HnWBwK+WPILc9/W4mAvJTcvnylLfmHmAktKetCInkz4YA1PddJx85ZAjimEgMD7ZY5EUeTLjzdiQyxqG7h2y4nJs19ALpey6rs/WTJNwFZtIWnfrMxi0htfsfizMdg7qKhdp/LaXYIg0Khu8/I3fEgo92kSBEEKfA50AeKA44Ig/C6K4qW7tgkFpgCtRFHMFAThoSrk3VdU7xKGJhGi5AaCDaWnbR5WTYmt2p74C7VZ+/tZGtSFFT9L8fWovOpwreCBjJuylNdHGoiOEdl7MJgerZ+MmodHiapUlE+Iy+TQ/os4uzrQoXPtStXqxdxIYlCnokmjQW0Z63ZZTygunL1Jn05FzREdWynYtiQGaAXAMwNacSu2BvFxmYx4yxNX15I7gFZ8/TsfThOxs7UQ8NkfHyc9vS52diqc73K2EAQBX28Z+WmRFSomrSgqayD7H6xDSUSrqq13Ovduy8wlmxn+nMDVKDPxmT6VJudtO0Qwd+pRZNIcXJwEPl8pMGZi1yq5zv9VGAwm/t56Fq2mgLad6lZKa0urNeDtUTT+yOUCdjbGCh3DQW0hWgD2dhIcbYvEQ339XJgwcyQXLyRQu7otoWElz7MH912hQXAMfbtZIp9XInNYs3w3w0Z1RsCArbpobA70k/GUqoC/fj9O/+dbVehanzRYs3RpCkSKohgNIAjCz0Bf4NJd24wCPhdFMRNAFMWUylxMenoe44f/Tk6CGbm9mWkfdaRew5KLSUvzeCvLtDJPXjF7oPSsFE5e/BGpzIi3axtqhpT+Y3do+grnzp5k/8E4Aqo1xMutdHIUlxTJpRsbQZRQL2wAnm7FP6OPZzA2qhl888Nx1Co3erRu8kQbtj5MlKUoH6Y8ijVRrisX4/nj57W8MljgZpzIwtnnmTxrcIW/00bNwvn5jwuMH2V5bNZs1NOkRQ2r9w8I8uTEYQo7BSNvGnB0cSq2jSWEX3bBrkyix862aEAKry6SlpKHq6sdKVn2xCXm4+st49wlHUqFgGAWMZsfbgdsZQxk/41Y9/tqoi9HIQgQXrcmfW4LMFcWJ6OSyfdXkyc3VJhoGY0mVn63g8y0VOydXBg2ulup0aqGTYJxcx/CtsNXcPd04a3Jpd/Xmnwdy7/ZhjY/j4jaIfdJm8hkUqbPG8buHRe4mq7jzWm1KpX2+Q8WGI0m5k5dztC+ebgGCXy64AQvvzkUnwqSYbVaQWyiAq3WjI2NhMRkIwaxYs0BWblSzGaLtIzZLJKVW/x+srNXlWvenRCXSs/GRQu/8GAZyzdlAFCjbgQ//rqXFwfYodWa+WN7PqNecGDvxYqRwicR1pAtH+BuE6s44F5TuTAAQRAOYkk1zhJFceu9BxIEYTQwGsDH9/4bZeqYP9Ef8MVOkCOKIrNe/5v1B0sXVLu3qN5WnV2maWURGSu/c0qjzefEpQV89aERGxsJn333E1eiJURULy7WdnfoPaJ6I6BRqecHSEyJISlrKT98IsFkgtcnL0Ium3Gf1peLozsudXqWeaz/FdxNuDwNHmh0cA1P4tURVqUVf1+7i4WTFUilAiFBkJSSypVLSdSoVTEPzZq1fUmIb8ek+ceRSiEwrBHd2lsfWahRqxpnTtTh3fkXcLIXSMx04p33Kr7id3Dx4tT56zSso0CvF9l/QsY7T1nC9RNmDGHy+G+xlaVSu4aM9q3t2LTXq7Cz7GEi2K4WmrwzyPbsRKKrhtisB1LFvyf9fff45ep8v8bU0VP7iTuagIfestCKPBDJhcDT1I6ouKZeocehf/keh6Xh08XrGdIzidrhciJvZvHRvF+YPGtIsW3uHr/8A93wDyxbdNRsNrPgvZW890YB3p4yft9+hF9XahkwtLjyvUwmpUuPehX81P+hJOzfc4Vnu+XQsrHF1mnxNDNzvtzB21MHVPhYYyc8z9SPN2Ij12MS3CosTjtwWB9em7GR6n4mom9JeP4l6wV576Bxs3DWrD/NtDcs996q9XqatKwJQI+nmrBqWR4DRu8nJFDCmOGOfLJcwlvTG5dz1KqBKIpcunaW1LRkakbUw8O17K7biqCqRmAZEAq0B3yBfYIg1BFFMevujURR/Ab4BqBeA7/7ltq5qaZCHR9BEBCzlGRna8t0Xi8adCx1I2WZVt4hY/faA5VEuKJvXWTUixpsbCyhztdHynh53P5CsnX68p/kFuxEbWMmPd2fLi3GWeWPeDHqLz5fLCCRCEgkMHOiifkf7qJlg4Hl7vukQlugYd/Jz3CwzyQrx4YWdV/DyaHilkQAV6IPE5eyH9GspFnd4YUaaHcIF7EaQE1Usg7B37o6LqmkqP4NwFYtotNXbqXUuVt9OnerX6l9AQYN64TB0B6D3ojatnIdscNGd+OHL038tjUJnUHGsDE9CxXn1WoFH331Gru2n+XMiWvI4qrx9pTKqzlXBFlZGmYNOIPpvCeiJIv4up/z7HfPIVdWrRfb48Ld41d1v9D7xq/IqKs46FwKW8rtCpyIjL5aYbJlrcdheZAYU6kdbvnuQwLlqGUZheQq9mYay75Yh7ODnoxsOcPH9LPKHzExIZv6Efl4e1ru3ae6KpiyOBIo22boSccvK/eQcPMaBgM0bNW00s94SnIOq7/fitlspHnb+rRqW/OBr81gMGLnWDR+KZUCZrO5jD1Kh1c1J6bMGV7pawmv6cOsJWPJzSnA3kFVqYxL9RBP6rTsxsT5B5HLIbhGPbp1qF34/gsjOtCuY102/baPX3dKGTelwyOLjP609geST6ei1Ntw1OkwfZ9/loiQ2uXvaAWsIVvxwN05Md/bf7sbccBRURQNwA1BEK5hIV/HK3IxDh4yskUDstuRLcFZh6OjjVX7WmVa6cR99kClES6V0p5bCUU3Um6eGbPJMsAkpsTh7vkni9+wfH1nL0bxzQ+/0qrhoHKvUy6zIy3DhJ+PJQ2UnGpCLisu/BYZc5q4lLN4OIdRM+TR+4dVFHtPLOWjuQm4uUrRaPIZ+fZH9G77QYWPcynyIF4+PzFnhoycXBOvTpxL52bvF2qM3fmNTkYlYycxWl0436xNIz7+bgdvvqQkMdnE1v22zOxdrfIf+AEhl0sfqH5KKpUw6vWy9bs6dq1Hx67lRxY0Gj0rvtmKJi+PGnVC6Nm3bLX7svDF4gPIzgeiFpQggnBWSsHW7XQd9r/RRRsaUoPDZw7ipLdEvfJsMmlRvWIFuVXZcZivLT4RarRC4eS4/Mv1/N8MM3K5HKNR5M05G3hvUflSFWpbJRlZRa/NZhGdofh5khKy2Lr5GAqlgqefbVHpRcWjws7tZ6imPleonL7k671c9fMgvGbFxojcnAI+W/gjH06XYKuW8MkPOzgID0y4WrWJYP70A4QGmXCwlzD7Yx3d+j6++iVBEHCwcl4uDS1aR9CidenyG34Brrw+0bqo28G/Ijl75gxZojuuDQcBKqIlFe+Izs7NJP5SPB4GPxBAnWXP3zv+fKRk6zgQKghCEBaS9Txwb6fhRmAQsEwQBDcsacXoil7MvC97MvGl38mKN6GwF3n/o64VYs7WSkfcbQ9UWueUKDqzer0fGm00fj4Sln6joXntsQAkpUUxaKCRO19fvVoytLqy/RHvoFnd/kx67wJjXspEpxf4fpUHvdoUqdgeO7eeevV38cZYgd0Hj7P972u0bTzcqmMD5GvzSE5LxN3FA3vbytu+VATOzpm4uVrIg1otwd83D6PJWGFdsMT0/cx9z7KPg72U4YNyObDvGhHBdYttV9FOxdbta2Fjo2Ta/51CbW/HlLmdH1qx+D8JZrOZhe+tZMZrWqp5WVJCv63S8twLlYtSaDUGpHf5KcpEOWqj/WOT6njUaNqgFfHxsURdvg5AjXq1qR1Rv/B9a7qlq7LjsFWn1kxdsJ0ubQT+3qdDUAYXvudop0cutzxrMpmAk73eqmM6O6sRbENZ9ss1aoXBur8EevYrKneIu5XBsk9XMu11KXn5ZubNuMLUuS+hVluXTjYaTVy7koxCKSM4xP2R1KqePX6N+eOLoq/9e0jYfPR6hcnWyeM3GNLXgK3aQkTGvaRk8odnHphs2dopmfDeCJYu24Fep6d7vxbUqPVgwrj/Fqz7aT+BymgmzrAhKSWTYfM+RNpzSrmZq5JgMBiQmIvmLEEQEMTK2w7di3JnQ1EUjYIgvA5sw1KP9YMoihcFQZgDnBBF8ffb73UVBOESYAImiaKYXtGLcXGx5bv1A/lwzm4uHUvn07kHmLK4I4FBbhU9VKmoSOeUmO6KShWNUg6rPnfmxXGfcS3WB8hgw586Gta1RFyOnjRiaxNo1flVShu6t57Dtm1nEAQZvdrWLUZK9OIRRgyyvO7XS8reg2eK1VWUhISUaM5d/xpHx1xi4rJ5uoctl6/ZoBT6UzOkrXVfTBmISbjMtZgtiKKUhjUG4+Zc/ObNzFRiNOoK/RITk2XUrV7xDLXJLCum05KYLEGlKjl8XNFOxUbNQmjUzLoIi9ls5sfvdpCRkoiIihFj+/wrC3wtKaG8Qi9HS0ooisqmhIaPbcpbu7bgEBuKiIgh9Bb9Bz9Ygfg/Dc/0HsSViAvs/PsvbkZFse/w37Rt0bmoBsu37PR6ZQrhS4OPnzsnzGAyibwy1I6/DybwwYw1qBUaLl3MoqDABZVKgk5nJivX+ujTy2N6cv5sXa4lpPPC2CA8vYrqZNeu3sWiKXJsbCzP8KvPF7Br+zl6P116zY1eb+Tjeb+gFNK5GZNDSKCMAD8VG3/xYsK0gQ9MuPJyC1j+zVZ0Wg11G9egS/fiaV0vXw/OXU6iXk0LITx+1ox/9YrVcwLY2alIuWvNna8xIwhVU6nj7KzmtfHW10edOBLJnm0HAWjduTnNW4VXyXU8aYiNus6YiRZy6+Uh46mm2eySxCP4Kyus+efq7I6ympSCSA1K0YZMdTIN61VdrZhVd4Ioin8Cf97zt5l3/V8Ext/+90BYOn8fh78qwFbvh1408/aQzazZOaSwJqUqYG3nlO3VOIb0K2qxtbVJ5vNFAg72Ulb+BoNeycLTzY3s7DA6NSvbX+xuKOQKaoeVnK65d1gRBMokW6IocvbaF6z43IBEoiBf48rsJeksnqVm5FsbqcmDka3YxKvk6r7gh08l6HQir06aT/Pas4v5STaoMZphr39CzTAd12/ICPcfUalzNarxIq9OXMDoYRpi4wR27w2nS8vSO1uqolOxJHz/xZ90a3KDxvXkZOfk887clcxeMvqBzFUfNy5fTCQzM5969f0KRVBt1Aoy7hJStaSEKn+O4FB3Pvq1J99+fBipVOCNqc/g5l5xb7R/MlLSE9n08294ZgUgCAInEo+RnGuC0PDCGqyyUJlC+NJw/MgVxg5VEOBnGTvlEi09WibTvYMNcQmODBqTSni4C3laFSPfqBgprlPPlzr1So6u3P2YSCSWBVhZWPbVX4wdlEFwgAJw44OPM+jRQUa1S0ns232Zdh0rHxkyGk0sfG8Fc8cbcHeTsXrDPv5Yr6NPv6L07sAX2rJkbgIuO9MoKBCxcQlh5HNhFT5Xo6aBLNrqiSAk4+kOqzbKGTvp0TttXL2cwMm9W1j4joU8Lvj8LxwcbalZ+58bDUtNyeXalST8A12LdWvr9EJhdyRATpaR8EY5ZCtMFRZZFgSBV14ezx/b1pKdmUmbOu1pXK/q6l2fKAV5gIvHUrC93c0jESSYbjkQHZlKrTpVU2MjiiJbNp0gPjYF34Y2dAgvMsC+F3nIyNeYsVVLMJtF3N2khRojQ59z5ORpOU1rLq6S67oDKY1ZvW4/z/QQ2H3AjCavfpmTvMGoJzBAX7iNrVqC+vaq0tnJhNlsfiCScCV6K99/KrGonKsE3n1Dz7fLDtG4dpH5tKerHz1bL0KjzSOgqW2lz+fq5EGr+nP444+L2Kjs6dKyRrmr2gftVCwJ+VlJNK5nmaAcHaTUDdeTmpJXuIIXRZGNaw9x4+pNlDa2jHi1xxNdl/L5hxsIdIvB11tk0XtyXh3/At53VJhtQ1n26zVq304J9XimB7E30/h93QHkcjkDhnbA2dl6vazQcA8WfVXxDqV/Cy5cOot9lmvhfeui8eLSjbP4d61VWINVFqwphL90IY4Du8/i7uXCU/2aIZWW/LxV83Hj/FUzAbcrbk+f1/HRHMs97FtNzsQxDsTpO9Gh84MXcd9Bv+fb8+781bz3loy8fDNfrJYz5f26Ze6Tn5NJcEDRYrpZIxWRNwxU95ey+1LWA11PVGQq7ZpocXezZCGGPKNkypIrcBfZkkolvPveYDT5OiRSSYW9/O5AEATemTmIE0dvcitXy8T3qlvtK1iVOLDnLK+9KCu8B98YoeDDlaeLka1rVxL4fe0eALo/1YbadZ9cHcejh65y5O9tdGplZOc6KS7+TXmqv4UE9erfkcnzNzKgl8il62BWhNPD/xZrV59ElqAg168VBNWymnDJZXL69Sq/9royeOLIlo29FI1oRHon/Gqvxd2j4gJupeHjeb/Rs1US/VtKWbneSEZyEB3aXimxi9H7xS68OPMn2tXTcTXWTGy6sjDKZDaLZGRVfZdV83oDuHIpgDf2nMXDJZz2TctO6SjkSm7cVGIy6ZFKBXLzzGgLRBKSjMQneNIgtOSBWFugISktHmcHV5wcStdakUhU5OSacXaykMyUNBG57P6UmiAI2KofPIpha2NHnfB7lUXKxoN0KpYErU5STME/IZlig+aa5buo6X2RVyYqSErJZNbMH5m9ZGSl0h1XLiWSnpZHnXq+D1x0WhKuXk4iwDWGEQMt19+qsZlZX/zFxOmWAeXlMT05d6YOVxPSGTKmOlpNAWu+Wc37E+VoNGamz7nJpFkvPZRr+zfC3d2Ds4qz2Bosz0KBoEHwdSpWg1UWyiuEP7T/MpePbuONF+VcjY5kwXuRTH3/hRLvvbYda/Hp4qtcuh6HjQquxSpJTDbi7WkZW89dEajTrnJdw6XBP9CNF18byhdrjyBXyHl3dptidlIlwcHZlatR2YQHW8bTQ8e1jBziwNIfzDw/qmS9L7PZzPWrKSBAWLhnqc+eWq0gPavoPZNJRG8oZdsqWDAJgkCT5o/WBuZeuLo7ERVjwsXZMmZHxRhxdS+a327FpLNp9W8smKxAEGD64nUolQMJDa946jQtNZfLFxPxC3Cp0nKfu7Fryx4+mi5HEBR0bAUT3j9O72eaIZFIqFMvAE+vEZw5eQPv2i50refD3KkrGDs4l9AgOUuWrWeLJg+CmlVIY/Nh4IkjWzM+7MJrcevJj7VFtNXRZ2R1PDxL186qCLKyNDjbJNK2ueWhen24lEnzk0mNz0aXeQqtTqDz4Ib4BN6+MZ3AOLctackanBVaMk7YM+CdwzQMETl5Vo6D6mlOWsGWr9w4SkLq35hMEB7wLP7Vys6fR1RvRkR16wlHg4jXGf7617i6FHD9hgZXx+rM+MCTzs1fLnH7+OQort36jB6dCzh9Xs6NhB40iOhR4rYt6g1m7DtzeGNULjm5sHxNNXq1ffKUfCvbqVgS+g/pzluz19GxhYlLkQL+EY2LFfimxN3k7UGW114eMuqGa0lOysHLuzhhNxpNLF2wFpmYirZAoH7zpnTv06Tw/W8+/QNvuyiC/EX+7wMZw8cOwj+wagesrCwNPl5FaRy1WoKE4rIXdev7Ufe2WezShTuY/64cpdLSUTVuuI5dO87y9LOPz+bin4Ta4Q3YWf0gCbExSAQ5WdWMhI4cWCw1WDbKTh0e3HmERe8qEQSBpvWlnLuUweZNp7h06ixyuUhwjRr0fdbSwSwIAuPe6U96eh4GvYneQ5XMnrWKmtU1pGWIOPvUJiy8/EknLTWXFV9vQUBHNX9/Bg5tX+bCwtfPhVGvW68ROGx0d5Yu/A25mE5ScgEGswMfLnOgz4BOJQp3Go0m5k1fSYu6WZjM8NtKF6bMeaHECJ+fvwsZBQH8tPEmoYHw82YJTw/ubPW1/RPR55lmzJ95nUvXM5BI4Oh5J6a8XzRm79x2iomjpYWLyWlvKFi84jih4U/dd6wdf53i5IHD2KhE9Ljx1uTnCpuLTp+IZtfvm+nR3sjBLRJOuDTg2cFVLwFioypeRuPkAAaDGaXS8nt7eDrQtael8zo6KpVGNXOoGWaZ46eMtuHUe4fIrlvfao3Nh4Unjmx5eDqwZsdQ4m5l4uSsrlAKozyIoqUG6m7cuJHJxG42NG8ox2AQefv9U0ycNbrY5BruBFF5F+nfPou/IwZwOsELVaAHikQp0eX8cDfizqO2X8V30y3Ku+Nnfo6NagruLhVfRZQGb/cAvN3nAdDUiozAxegVfL/UjFSqpF8vGDdlKwZjZ+Sy+yN1tmp7ujR/n9//OI1UoqR3u3pW6Yk9LtyJcuUb1Gh0lvTwNZ0jPjZXicqzjnCFRVRj/MzRREWl8lQLh2IFwAAFeorVCaRliCV2W636/m9e7JNCrdtaR4u+PERsTHX8A1yJuZmOkzyKlwdZIk6tm4hM+7+tTJr5woN+BcVQp64PC2cqaN3Ukg5ftV5HzfqlF31KJBKMJrizxi/QiUj/87WzGoIg0KbDAC5pk8itJlI3PAippx4fe2Mh0XqQOqx7SU56ppHs2L0smWKDIAis2Xic3Tvs6NClKHV3t+3T7MUvk56Wh42NotyIE1hsYpbOX8WSqSL2dhL2HDrPqh+MDH25S7n7Wgu5XMrE6c9bvf2GXw8x8rkc6teyPDs1z2axad0R+g0oWSZnzNtPc/pEDFdSshgxrjruHv/uOkKpVMK0uUO5djUZROgyyKNYaYe9g5qkVDOet3V5E1OM2NnfP8/Gx2Vy4/z+Qq/Vq1Fp/Pjddl4eY1mY/7VxJx9Ps0Sc2reEd+efQa9vVWlPzdKgsPXi1PlbNKwjJzbeQEq2Y6kizVKppJgvsSiKOMry8fBNslpj82HhiSNbYHn4gqpXfUjS2VlNer4X+48mU7+WjJXrDbi4qGje8HYBqVygQzMj0VGp9xle3imq7+x1nWvOLlxLNhCtTkeUl226e+36X2xcbrnRJRKBt14x8uEnh3F36Vfln89a2KlNxUQ+fbxFCnTaEskWgEqpom74oxHGfFjIk3XHznifqUGpsLVTUreUAuBe/TszZcEm+nYxcf6KgK1bzRLTbBmpaYVEC6BNEzPXrybiH+BKTo6WandpSCoUAjKpyfoPZCXUtkrGThrK+1/+iYCRmvWb0L1X6S4HA4Z2YtIHy3nnVYE8jZlvflYx9YP6VX5d/2ZYCD9EZ2tJSs1FsNEBlkH9QRo3AFq0b8qiL3cwZqiMa9Emjp6VMm+SpJCEDeqrYMpHl4uRrbshCEKFmhZiYzJo1VCP/W1i1r6lgm2HbpWz18NFemoWwV2Lpq7gACnbT2aVuU+DxgFAwMO9sCcIgiAQHlGy+nmffs34YNoVnuqQg0wGa7faMvWD+yNS0ZEptGlcNCaFB8vI3pBW+FqtLB5xcnMWKNAaqpxsvfrWU6xetpPftiejsrVn0szSo6b+AS78Eu/BnkMphFWX8t3PJpp3qY3TPbZ+pUk+lYSqImRPHNk6eTSGT+ccwmyU0KCNB29NKztkXVGMnzaAzRuPs3t1Cs1a1eRmylFy8zKxt7MQoms3BHq3KnkwKskeqDzTXVOaGzHxsVT3t3zVUTdF1KqHk9u2FjpdACfPnaVRXTmZWSZOn3OgT/t/92qvNMTcSGXNsi2o5CYc3LwZ8Ur3+wr876g13/l73foBVPMZwbkzt6jZ2oXwGiUPaq6e7py7nEHdGhbCtfeohC7PWRo9wsK9mLtcQec2JhzspazdrKd6+MOxN/H0cmD8NOsiB55eDrw+5SU2bjmBUilnytwmFeoEzsstYNrrf5Iep0ftIuGDz3v86yMJd6NAp2XNrz+Qn5mHVgLVOvbC3xBQJY0bAK3a1cTJxZ6lP53F3dOFoSNduXD1LyJCLe/fuGXC0aXq9PUcnWy4lVj0Wq8X0ekfb6SzXecGfLo8mimvWaLJn60w0v6p+o/1mh4XDAYT3332BwV56ehNCoa/2ve+SDyAyWQuTLMqFDJmzB/OsSPRFJhFZiyoXiJBCg715I9VUtrdDhheumbAybVo7rJ1rsahE9G0bKwgIcnIjQTbh1LbKZFIrI6kCoLAxOkD2fHXGU7uzKRL/9oEh1rIkk+eRRKovHn78r5tpF64iiiAc406QLMqIVxCeW25Dwv1GviJ23a/Xexvaam5vNR1Aw43QxAEgXybNHpNdePl1x5eVCUtNZel81fRtI6e2ATwqt6A/oPKl0uIyrtIvDaL3WkRXI/zwktXstWFSa8ndfNHDO2SQX6eyB/bqjGo2/THKiNgNps4eGY1ZjEGvd6OlvVHYWtTdU0IjwsGo4FDp1eTmn0Lk3sNHLp0RVpNR5hnMk3cgrAzbi02wWm1BhbO+Jr/mylFoRA4dkbPnnPhDB/dDbCEoD//cCO63BhysgvIyrdn5oJhxdIyZcFkMrN04VpkZkvNVsNWzenSo2Hh++npefz49Z+IZj0RdcIeSL39ScFrg9eS9pcrCkGFUTQiaXqT1duGFr7v7TzhpCiKj8bo7CGiul+oOOetpff9/esfPka4pEIpqDCKBpK8E+n+9Kvk+6uJkmdXmYbW3fjio42ohRjs7eBCpAOT5wytUi/Mn1bsxJB1gdBAkR0HZbz46gCrrH0eJo4eusqBv48gitC+WysaN/93uBTs3nGWU0cvolDa8OLo7uU6qHz+4QYGdYsjIsTS0DL+A4FZi18pnF8O7b/Mzs07UUo1XL9hZvBLvejQpY7V17Nr+1mO7T2I2kbEgBtvTn4WmcxCtkVR5Ocf95B4Kw6V2p7hr/a0Wrz2caG8eTvuyDEylx3HQ2shVzftb+Lbsxv1nYNpFOzJ0Im9Kj1+PVGRrXNn4hFvOhdGsmy1bpw+mACvPbxzurnbM2vxKyTEZ9HO0aZcZl5QYGDDrwfJzc4nrL0THbxKl44AkABer77BF2evIaSo8Ah35/SN1MfSDVF4TRIpbRq++NjO/7Cw9eAi5k5NJDhQxtY9u/l4Zxbez5csQ3Dm5A22bj5Jm0Z6FArL6qZpfQUb/i5axv+x/igdG96ifUsVoOKXjTnMePtL5n3yWpl+nXcglUoYX4ZZrKurXaXMZO/Fzz/uJi7yElIp2LkGMPK1Xo9EebskpMXoUQiWWhqZICMnUcBgMP3PKPbnZ+TjKjgBIBPkKHTQIMjyzD9o40ZpGDv+adLS8tDrjPSr5ljub39w32XOnYoktIafVR6Ag4Z1Ij6uIampeUzo5GFVrdfDRrOW4TRr+e8S6ty6+QTmjIMsnKgkIzOTybOXM3PBqBKjTunpeWz74zhJt24QEWIZi9RqCbVC9KSn5ePuYY8mX8eB7Tv4dLYCcCAzy8Tr0zZgNBrp0sM6v86ybL8EQWDQsA6V/rx3cPVyAj8v+x0neyPZ+TaMnTgQN7eHs/i/V2Pz3nk79fI5vDUehYKXHjluJOdFE+1azaqUY1l4osiWX4AzuORDpiVUqRO1uHg+fJ0SqVRSTCitNBgMJuZNX8Gbw7R4e0hY9JWRmj3r0yGwZOmIu2FvL+V6nCv5sfLHUpz3JCI24SpXY9YhkYj4eXYnLLD0WqLyoC3QEB6aTHCg5Zbu3l7O6r8jS9z2j/VHMGYcZeTT8PNGLdy2mMnLN2MSi1JmUdfiGDHurpqr5mqu38hm59bT9H/+yejIPHE0CgfOsWiqZQLcvjearZtP0qPP4wkeye3FQnkUURSR2hn/Z4gWgKCg2OcXFSISiaTCFlMVhbWT0y8r9+CmOMuEoXL2HbnBt5/FleuzCeDj64yP7/2dgf/LyM/T8f0XmzEZ8nF0cWfY6G6lap5Zg0tnLrFgouU5dnGW0qNNAVcuJ91XO5qaksunC5YzZQxEnslDr7dBobCwg9gECgMGycm51AopMqx2dpISEiDl/IkzVpOthw1RFFnz3QY+myNBKpWRm6djxtK1TH1/+EM7592E6955O62mDVn7crE1WUhYvjoHm7rB5LncLqp/ADxRZCs0zJMuI735+6dIJHoFDiEGJs997pGcOy+3gM8/XItSmkueRs4Lo566L1R+8vhN+nbMpUao5WaeO0nC5I/ieeatemUbYAPxyiyACqva/luRmpFAas7nfP+JgCDA3I+WcfWGwK2kIyDk4+PeghrBra0+nlwmJzu7aEUviiKaArAH4nOzMZuiaO9kGXiunD3L4imWQS08RMdbM9KoXdOe4+cVjJtc1P5cu0Ew6/+M4bk+Fl2xP3fmExwoJ1f25JCHyxduMqhT0fV0ai1n2tIbj41szfi4E1NGbcWcrgKHAt6Z/+B2Uf8k9Os3mF9+XoE0X4FRpaPPU0XK7OVZTD0o4fpl5R7ioq8gigKhtesUSkDcjbjoy7zxruXe79lJwf6FN8q1A/sPJWPJ+6uZ+boGT3cZ5y5H8sXHWnz8Pbl5PQYHJyeGjuxaoXSu0SRgMIjI5Xe6nMGrTlEU8U6E+LfVu1nwrgQnRynjxzjz2pQUGtazIyZBTv2WrQrP6V3NkeVnYdhzls7puAQDMhlorLPBfCTQavT4exuRSi2f095OglpRtvBvVeDe+us7aDvRlfmRx0k5k4QoMRPUWcCrtyPX4yxF9Q+CJ4psAYyb0o6X39Ch0ehxc7d7ZIPAx/N/YebYXNzdZBgMBl5/by1zPhxT5vnvlLtZa4Bdkh+jNea0D0rIRFEkNz8HlVKFQv74UwAA12MOMnm8CYnEEjmaPE5Kt4Gf8Nt39ri6SPlu1c+cu6qjbngnq44nk8kx6Vvy6Xf7aNHYxI8bJEgcnsUUr+DkT79SxyODNVJQeZ1Acdfic0h/B85dLaBWm0H0HOpaWI8A0KV7A75aGs+It07j4gjenlKOXXRh6tyGJVzB40FErQB27L/AsOcsj/KugwYiagc+tusJr+HF2n0vkpGhwdlZ/UAr/ScZ+TpDKc+uLR36voJGk4ONjT1aqazYdnf8Ee09IYkU4E6HotMDXc+ev8/jLD3FG++qAZHvfjrOqeNeNGxSut3VPwmafB0FOqPFCPsJIIYajR4f9zw83S01SnVryPlieRTt68fx6gQFN25lsGj2ambMG2b1MfsP7srED35hSF8zN25BTLoffUPcWbN8L0f2HMDHS0KWxhFXD3dkMst3UD1AztuvOPHb7jBemdixWIpXpZLz7LBnGPjqavy8TSCK2Nrb067bkxGVB4tlWGyirFBKJy/fjEZfdXJPZaG0eXvZT3XIztYil0lIFCOJ1xbN2w+CJ45sgaXt/lHWBVy6EIc2KxZ3N4vwiFwuEBpgICenoFiBYqMmgbw/xR5/Hw3eHlIWfWWg53PWrdxL92Ms+8Z6UAE2bYGGHYfn0aBeNlfjBARjRxrXfrpSx6pK2KhcuREr4nvbhSkmzkiNUBOuLhayM/IFGaPeOgxYR7YAmtcbyK3Epvy6Lg5tgSv+9q4cW7aAaSPy6dPVopS9aVs6vx+x46dNOp7tqeDwKQNStS/BISUX/L76Zm8yMjqw48+TyBUypr7auMqKQH9fd4SoK9cxiTKGjOiBt49ThY/RpHkIP1+ryzvzLiEIZuR2fox9uwGrl+0iKT4ZmVKNRBBxdXfi2UGtq7wtuyRIJJKHVnPxpMCskJLvX/qzK2BPSevzPLkBe0+QeBdYZc1jDQwGE8u+2symH5wK/9a3i5QfNl+/j2z5Vq/B6g1n6dNZxr6jJuxcqz8R5KUs/PjtNnJTruDoAFHxDkyeXbUNAJWBUikjI6votSiKZGYV0Km1pfM2yE+Gr1s2uTkFVlv2BId68uqklzh5LArXQEfGDQjk+JHrnDq4h5++9EAQLGTk9VkZTFlo4INJMnQ6kaXLpEx4r12Jc2adegF8tmIKf287R2pSBs1a1SzszntQ3IhKYe3q7UgEM/Wa1rWq/u9eCILA4JHPMG727zjaGkjLVjB2wjOcPBrJnh0nEJGgslEjlYr07NucgCD3Krn28nBn3g+m+Ly98wGO+USSrapGclIOWzYcRq6Q8fRzre67+Tf/thMXJ9BqzdjYSBBFkes3zNjbF7955XIp0z4YzsbfDpGbk8czLzYmKNj6rpx7CVdujpqbuzbiICaSY7DFsc2LKG2LT1IPKsB24PT3fLogC3c3y08996OdpGW0xM2l8t1EtxJvkpufQaBPOGqb+617rEG98HZ89cNRomNuoVLCzxvsaduiqL7AaBQxGCqervPzDsLPu8gu49LlBNq1KCqC7NhKzZaLAukOYcz6UktQcDXefLdstX4XF1sGvlC16bDf1x3BmaPMn6BEozEz4YPVvDtnZKUsQ55/sQM/fmcgN/kyLupYXn5+MfMn21F/kJz9R5PYe1BD1wb2zJsezcwFw//RhtpPCswK0FTC11dQWvwRwzyT6eCURHmK8WDpav1jwzFSEtNp1b4uteoU97Hbue0c7ZrBkZMFtG1hmST2HNYRHOZz37EGDm3Pof1eLP0pktAIf0a9XrZvYXnYu/M8Jw6exGyGdt1a0rRFxQ2cy8L5s3G4yC8zcYJlzL5xK58fv91eIYX6e5Gaksvli/H4BbhVWs9RKpVQu0lzPvj0CPVrmtl7RIrSxqFYSjY7V0RRQVLo6mpH1x5FBelbfz9C0/qKwmPa2UpQKzS89MZwPlq1H5lMytsz2pfZsCMIAl26V62sTFpaHqu/+ZkPp8uRywW+Wb2X/bvltOlQ8UVDeI1qPDu0F7+t2ETdMB0Lpn9DnQgJCyaoyck1M3FWKnPedePDb6PpP+z5KiOL1uLuefurBzjOv55sJcRl8t3/rWTGmxK0BSLzZl5l8vsvYWdfRLjkcpE3Rjjz7tw0vNxlXI0y0KZHzxInJaVSdt/EW1BgYMU3W9Hk5hAQHMAzA1uVulq8+4f77dfdfDg8kVphcjKzMhk8eymeIycU2/6OAFtlfZ2k0mzyNCK6BAO+1eQ0qqfn6OG0SpOt3ce+oWnjMzQNMrHiFzX1Qyfh4Vpxk/CsnAykUhN/brfFYPCgb4c32XfyG9asu0hosMi3K1XUDRty334Z2amcuLgaQTAS4tedIN/aZZ5HrbLlj+35DOlvIVw/b8wjK7A9Xo0NNGrjXyWt95VB5OVrhcWwarWE3h0LuHwpiUZNyhZe3Lj2ENFXopBIlbz4Si9cXGy5fDERR+ESEyeoEEWR5ORc6te2pGfbNLNhxx4NNcMUtG2Uw5VLSdSsXTWm7neg0xm5eD4elUpOjVreT3ykpEogNyPxrnhtiSWatcfqaJYoiiyavYaB3dOp0VbG16sjyUjrXGxS02i09O2mZsOf+ew+qMFoFLl0w5YvV5T8bLRsE0HLNhHF/rbjr1OcP3UZmVzFsFd6lis5AHDmZDS3Lu1i4TsWz9i5n/yFs4t9pTz2SkNcbArV/UxcjdQT5C8nyE9GTlZWpY938mgk+/76k+7tTBz+S8JJ5/qVspgxmczE30ohMU3BhU1mRo97ipysXGZ/vJ0+nUROXQCPgDr3ReBMJjOrl+0iNSkFb18vnn+xfZmLH0cnWy5d0xd6tSanGtHq1fj4OTP27fvtdR4VThy5zvD+5sL6stFDlLy75Fy5ZCvyWhIbf9mJgEirjk1o3srSUbpu1RY+nS1FIpGRlJTDlDcsZu6ODlJeHODI+cs65r+rZsYnexg/bWCVf56oyFQy0vOoWataiRHCO/P2g+BfT7bW/bSHhVNl2KotN/S44Tq2/3WafgOKtLvCatdg58EjfPKBBzdv6Zn3hZJefa3vjFs0axXvjMrD30fO7kOnWf51HiNe7V7q9sF2tQi2gyPCUmrd9nBydpLSpHo2gl0syruiG7bqbPJdwtAkQkV9nYxGA3FJ8WzfW4DRIJKabiQxyZXGEZVzeE9OS6B2rXOMGmpJo7VsYuKV8T/SteXkCh3HZDKx58R8xr6US0iQgqycm3z29Qo6NX+NyKuXOXsmg4ZhdXCwK94pkqfJ5fileTzTK4eT53WcvnaatMxhNKnTtdRzRQQM4K+dyzl+JoXcPIELWSE4vtSKzbEOhHkmc+cBetSky4xFF0d9+768lQD1wstOKa9dsx9/h9OMnqggOyeHd+b+yIwFo4i7lUrd2369FpP04vvpDZbiQqORQouhqkJuTgELZy2nTwctaTmweb0Xk2Y8/68nXCqZ4fb9UzGUZzR9L+JuZRLhn07zhpYx4Z0xUiYtOFZsUmvXqS6fzT/JkmlOSCQw+2Md496xvrFoy8ajKAuOsGCCkozMLKbMXsGMBSPLTTnv33WW6aMtpF4QBEYNkrJy24UqJVtJ8WlciCmgfm0Tn36fRbNGdoTVrF/p423/fXehqXG7FvDuvLMYDK0r3DH7/Zd/EuR8mR5N5dQIlTN+7iamzX8FvwAvLp2PIay5BzVq3b+oWbpgLV2axbMnLp+Yi1GMf/UyH389ttTn5YWR3Zj9TgyvTErB3k5CZIyMj795s1KfvSrh5GLPzTiRhrcDo+kZJhTKstOlSYnZrF3+C4umKpBKYfFXW1EoZDRsEoyDranQBk4qESgoELGxsXwnmdkmXJwsdncPY1z57ostOMuuE+grsniWnJFvDsbX7351ggedI/71ZOteWH6r4kKuvZ5uxq7tKt5dcgkbW1umzrW+hTc7W0ugdy7+PhYC0qGlnB0HY63a16CzxWw2FE6AWRkGBnhFFzt3vDKr0GYgWplTzB6oLMIliiJrtrzLJ/MhLNhCWjZtzScxrh226sopemsK8qkRYuLObaNUSlDIjWXvVAIuRR7H2TkZg1HNb3/k4eUhRaa4hSAIhATULLz+rJwMVEobVErLKvv6zWO0a5VFchq8/64bJpPIyPFryMxuhLOja4nnqhXaHneXCJJSo8mV2GNnG0vuxp1E27qQ5CPjemM7eoXFURXdYBXBkBE9mPDBanp3LOBWAqQVBBMcUnY9wq3oKMZOtNxnjg5SOjTTcSMqjTr1Avj5G4GmDSyDkUIh4aOv8+jcRs7v2/KpGSbnyCkdxy650GXwgxV53osfv9vGvAkm3Fwtv5HzzmQO7L1Km/YR5ez5z4a9tIAOTmV3IJeMitdn3Tu/3Pva1dWOUW+9wJwvd2A2m+nevxU1almf47x64UoxyYEuLQu4fjWFWnXKjoC6ejhz/eYtaodb7snrN0y4e1adPMSfv58kLeY4i9+zPNv9etoxYqKOT76vvCn6vabGLk6gKzBUiGzp9UaO7D1DjYFKomMNrPwtl8Z17LgVm0lwiDu+t82zc3MK0Gr1uHvYF0mB6BPZ+GcuC6e7oVZL+GNbHmtX7+O5F0qOrrm42DJ/6ViOHYlGZSNnsLcTmzccRW8AJ2c1QcHe1GvgX+nvo7Jo1iKYj+dVIzsvETdnkT92q5j0XukBBoBD+y7w6hChsLh/4isKpn58koZNgsnT2ZGWnoebq5QBfe0Y/lY6k1+3Jz7JxNad+Ux724VJ8wwMG2t9Da81iI1Jx45IxrxoIYodWpqZ8cmfVe5RC/8gspWcmM33X2xArdBjljjw6lvPWFXf0n9Qe96dv5L3bqcRly6TMfn9+7vJyhJvKwtKpYzM7CLyJooiBTrr2Hf/wT14a/Z6WjUycfG6hKZtOhDmeK+6b8n2QOURrlOXthIUmExIUFFNQt2aCv7eVfa15Wty2X/6Mxzsc8nJsaNVg9ewt7WQNR/PANb+bk/ntloc7KWsWmvE0a6JVZ/1bsSnbWb5Z25IJALdOtgydV4a2TlFt6K2QMOOI/No1iibm7cE9Jo2NK37HHKZLUdP6vhqsYWUSKUCE8fa8P3yEzR27Fbq+TxcvfBw9WLviWW83PEYp8/n0LyxDaFBchasENjYvStPN04HLqK76cC6VX/iYGtCa7TnjUkDHkqzhrePE+/OGcnlS0nUC1eXS7QAdHpJsdbw+GSo4WiDl7cjbXv2ZsL8PagUIq4+TWjcohbHr8YT0lhNbHQcukQnpsxpUuUrwwKNFleXosWBfzWBYzdzq/QcTyKUUpsKkSaz2cz3X/xJfmYiGt1hnhrQldp1y58kff2cWXnThWNnMogIlvHNGiNN29wviVLN17nSArlGowSjUSycBFMzBALsy7/nnxvchnkzbtK4RhYGo8CVW268M7NqOnU1Gj37tu2hS+uiZhQbGwlBQU7l7rvy+x2kJ9xApxdo3bkVrdrVLHzP1rkah0/eoEUjOXGJRmKT7YuVlFiD9b8c5IMp9tSrafmOQgIVLPoinzZPF9Wv/vjtNvLTruDqLHAxypbJc17ExkZOQpKRft3UhRHtPt3smLzkJlB6KlNtq6R9pxpcPH+LdctXUz9Cx9U4Az2b2HH8rMi5U7UK7Wy0WgOfLf4NhZBFTr6EPs91pX6jqu9IFQSBt6cO4NqVZDQaPTPmVyu3acHByZ64JDNhwZbXqekm1HaWaP64dway6JMNyMlDb3Zl/KwhnLsQi1ypJKJJOj/t1PPyuMaVaiIqC5mZGvy8i+ZvlUqCVGLxg4zKe7C04b34x5Ctz5f8xEfTLGmXhKQ0/u+jdUycMbjc/ar5OjP67Rf5duNh5HI578xuVeLDpdcb+f7zzRTkZyJIbRn5+lNWPYQqlRyPgNp8tfI8DWrBHzsFOvfubNVniqjlw/iZo4mNycApRM+Gn/bw+7rDdOnZjL79LSSmaEC/WKpWV0m4eusCE16x5Yefchg5xBFRFPnk2wKq+5ZNjvae/JjPFqbi5CglJzeXsZM+omeb2QAo5AraNZrGm5OXI5Fqcbavj8lk5sjZjdQK6VBIysqDvZ1YLJ2lkEupXb3otzx4+gc+nV9U1L/o070kp7WmZkgTlm2wJznVhJeH5b3IaLC1Kb/I1Wg0YGd/hvq1QG9Q0r+XpRHhxw9Euk0+we7AHrRxvMSuZX/x1fu2SCQSklOz+XjpBqt9Ba2FKIr8umov8THxODg78eKo0oni3Rg4rDvj3/+FpzobibopYFSE413N8p03bBJMwybBxbaPqHknMvHwInatOjTg8xVbeX24EoNB5PtfBUa9/e+OalUGa5bvolPDGzRvKMdsFpn4wUZ8/UeW60QgCALvzhrCpnVH2Ho0g1bt61CnXsl1fTu2nubc8bOYjNC1b3vqNwy06tr6D+nKhLm/8HxvE9GxAsl5AQQElhwpvhtyuZSZ84dxIzoNo9FEwp/HeXPUF1Tz8+TNSU9VqtnjDlJTcmneUMqh4/k808MWlUrCoeMFOLuX/Zk2bzhKTe/L9BhiIWnvL92BX6An/gGWzzPytV78snIPm3bHo7K1p333UFb9sJPa9YOt/r6yMnKp7l8kduzvI8PG3qPwt7x0IR4n6WUmvm2ZP+IStXz/9V+Meesp6japz+XrR3nm9r5arRmT2bqo2p/r97DwXQVTPshl4QzLmFc7AqYuvIRe3wGFQsZ3n/3B64PTCfCVI4oib8/ZTFjEKw/0W5SEs6dvsmPLIUDg2cGdrOoO7dilNvNnniUtIw07NWzcacOUORaSaO+gYuL0QcW2DwqqXPNCRRAe4cW8HxV0aWvGzlbCpm16AsPqFNr6XNOV3TxVEfwjyJYmX0eAt76w5b6alwwZOVbv71XNiZFje5S5zaeL1jHq2RRCAuWkpuUzZ94aZsx/yarjDxrWiatXahEdm8qAkf54eVtvBKu2VWJrp+Drj36kdqiRCSPsOXp6Dx/Ou8mEqUV1FyVJR5RlgK00NiQ+NQY3FzMzFqQRc0vEweZ5PF3LTi+4u2fj5Gh5+B3spXh6FP+e7W0d6dLyTfQGPVsPzGLyW1k42AvMWbyXprVm4ORghRK/LpjDx0/RoomM1DQjl6/68VT7IqIgkeYUEi2AhnUN7N2biqebN60bvsLgVxcx8gVb0jPNHDwcSp/25a+mRUAuB41WxMmhKBIjkwkoDALX47zIS86hScTRQiLo6S5DMOeVe+yK4ptPN9O50U3eeE5OVEwGi+esYdrcIvsknc7ImmW7yMzIpnWHeoUdXkHBHrw5bSQXL8RTt4MDIaFV40+Xnp7H7u1nkCsUdO/dsEJt9c1bhaMr0DN5yRnMosDAl7r8TxlPW4uUhASaD7ZM0BKJQNfWJq5dSaZp86By9rR0vvUbcL9A6d04cvAqubf2sXCSpVh9+uJNuLq+gF9A+aQpONSTMe+8zOkTN/Co4UiXwdbXdAqCQFB1N2ZO+gFjfhyTX3UE4pk4ZimLPh9X4ajRHXh5O3LuqpRJY5yY82EGJrPIjQQHPvm+9PpMgKsXo3lpYlE07OmucOxUdCHZEgSB51+0WMz8+N12DMk7GNhBypZdF7gZ3YSnSxCCvRcdujbkw28iee9tC4H5+Ds9L7/Wr/D9+Lj0whpKAF9vGZo8S7R3wJC2vPLCcUwfZVAjVMGGbWYmzSpOMkqDRGJJISsVxaPTdrYCRoMJhUKGUZdFgG9RHV2TumZu3cokPKLqygcuX4zj4F8bWThBidEIkz74iZfGDcOrmlPhNnt3nufEkct4VXNj4NB2yGRSJBIJU99/gXNn49AXGJkx369KJDxEUWTn9vOkJmfQsk1tAipA0lQqOW9MHsr7X25BQI9jkDvt+zqxOyuc+Nxs8jVV1/n4jyBbNmoF8clFN5jBIJKnlZe6/bYtJ7l4+gJGo4Snn+9EWET53VcyMYOQQMsx3d1kuNrnVcjTLTzCq9I39LY/jlLNTc+UNy2ppNDqCiZ/EH2fRkvpWl33w9a3KasOJeGUdwq0DojGZrRs0Kfca0lPl2M2G5FILDUGaeklr4guXD/A+NcyqV/b8v7ni0y8NuknurYs38iybePhrPpFzQ+rozAaHeja4uVi6S1bVTi7DyTQobVF7G7dZhsahAUhiiI3Elaz9WcPLl0zIJXA0eMFVqXG5DI5SYnV0WiusX1PNq2aqHB3k/Hx13r0xvpIYpXEewdhuizjtdvt21nZJoxi1RMHbXY8LRpZ7rXgADmudlno9UYUChlms5n5M1Yw4WUNQX4yvlr1Fzk5mkINGwdHG1q0qjrT3eSkHL5YvJzxL0NOnsjcKWeYPv+lYoOgXm9kzfLdZKRl0ap93fs86dp1qkO7Ttab2/4vQipXk5pWtIg4f1VCx34lL8rib2WyZtkWZFITAcHB9Hu+fCeFQ3vOMu9tC8kQBIGXBghsPXgZvwDrXBhcXGzp1LXszt7SkJGRjzYnkVkTXKgeYLmvl8yQsvaXA7w40roo/71QKmUMHN6Pj5b9ia2NHARnlnzZv1zZEmdXF67fSCM0yHIdJ86L+Ne5f8IURZHUW1eZeNtJYvQQGe/MPwtWkK3wGtXIz+vDO4sOAgJdencnJKyoKaBu/UDWfCXQpL5lHPlrl57QGpbF5LKv/uSbRbaIZkjLMBERKmIWSznRPWjdqSmLvtyKh5uUrbvz6d7BlqtRBlKynYsiVxJbUtM0hffZucsSmvdysu4EVmL7lqPMekOJIAjI5fDmSxI27zzLwKGWVOj6Xw5gbz7JgvEKLl5LZtHsBKa+b6mBEgSBevUr16BVEkRRZPH7P9OteQotW0j4buUZ2vZ66r7U6YE9Fzl26BIeXq48/2K7YuLV7h72TJj+fJFJdVY415I9SciwwUtXdXaB/wiyJQgCXZ/uwrj3dhASIHIpUsqI10pue9236wLGtAMsmKjEaBR5d/5aXnpzRLmr7dx8CaJoLpy4M3MEZLJHo0dko1aReQ9fsLeTYDCa7tu2PCPNu+HVvysJGc0RY5XY3TBy0oouxjohoxj2+hfUDDdw+ZqM2tVLju6JZiM2d92HCrkA4v3XWxIkEgmtGpSemmtapx+/bdDy26ar5Gsk1Ax6ATu1PQajAT8fAwqFpJDkuTiXwjZLQOcWb7D+9y1kpl9n9Ns56AxZONjbY6ePwXytNgXYERvSl+fe2Yavm57cPBgwrkb5B64gLDV9RSNsbj6F91p0VBrN6+YRHGD5fGNfVPLuotOVEgy0Br/8+DeLp8qws7Wc/yWThp3bztLzKUs3roX8reSt4XkEB8iYteR31q2SUc1bhVniwuuT+j8SodR/Ol4a05sZs38konoByaki/uENS/Rj1eTr+Hbpaj6aLkGlkrBl5ynW/wL9BpZNmhxdHIiJTybIz0IyrkWbcfd4NF6GKqWcAi3Y2xYNYva2EvT6B/OFCa/pw7R5oyq0z9CRnVk4K5lqLlnk5os4edekVwkF5KIoIrvntq2I/FxJafs78PRyoEOfPoyftxuVQsTDN5QhIyxF/QX5Ofj7WH6jAD85WblaYm+mFRbVl4VmLcNR2SjZs+Mkp7fn8POfRgryNfgGCFy6EEfN2r6MeqMv78//CSfbXLJyJXTo0clqUVVrobKxIT2zqJQjOc2MrX1RvdrNa1dYMMkyftUOl+PnnkFGRj4uLpXTZCwLMTfTCauWTJe2ls/4/iQZkxbsK0a2Nq09jLLgGPPeUnDybAKvDDlKndpO5GmkDBzeh9Bw7yKilRZBvsYTc6KK6nFV+739Y0bJ5q0iaNQ0lKxMDQPcbEtd4Zw4fJ4FEyw/tEwmMPQZkRNHr9OjT9mppt4DujL+/c20aGDm7GWBVp3bP7L29WcGtOKNl0/wy6ZcBjxlx5VIAwmZ7jg7l5wiLMtI817cXVRvjVaXj2cw3u6L0RTk07V56d9zaEAzJr//B4vf0xHkL2fiLJF64c+UuK01EEWRqzdOkZufTJBvI1o3vL8bRC6TcyNWjU6nQamUcP6SjiuRIo42J4io3qjc30sikdC0jiW6t2nXQt4ak0S7lpCYHM3ICSuwk4+GoDqou7Um01ODnV0kuaorROVVbadimy5tmP3xDrq3Ezl6RiC4VsPC71kul6K9S75JFEVMpod3H5pMpmJpCbVKwKAv6jCNuZlB45o5hAYpyc0zo9UWsOxDNwRBIPJmCp99uJExb/XFxqb0SPN/sNSkzF4yioyMfGxtlahUJX9fVy4n0bO9AZXK0t3Zq5OCyUuigbLJ1pARnZg3PZ6W9fPQaEVuJHszflrNMvepKtjaKQmuVZPJH5zn8/nuCAJMXahlzKQW5e9cxZDLpUz/4EXycguQK2SlpqkkEgm5OjdWrUtg4FM2bN1jxMU7vMRtrUXMjTROnbhONV93mrUIKbEw3cXDk9MXrtKgthy93sz3awpo2i6RWnV9rdI2q9cgkHoNAjl2NIq/1/3KRwudEMVcpi1ai1o9mMDqHkyfNwKz2fzQxIuHDO/IzPdiGdRbi1YLW/Y5Me2DImNr0z0N6toCEflD8pPV602oVEXjlyAISO85VdTlS4Xkb/OOPL5d7IiXh4DJZOK16WvpPa45Wlsde9JrcD3OCzFWR7BBhW2spkqv9R9DtsDyIJUXoVKobEhNSy8Mo0bFiLhUK7+Gqn7DIEJCRxEbk8GwLk7lFq5WJdS2Sj5b9jZff/oXf01KJLx2ONPmdi6TPJRmpHkv7i6qv2MPVJ5Wl0Qiwa4MeYjs3Ez2nZrHwL5mVq/Tc+a8mgY1hqJUVH7l8veRz+nd/RK1wuGrFVvJ144hoNr9UaXmdd5i5FtfgpCBjU0+n8wTuBb1A+t/P0DXVm9Zda5LUQdxcjpPu5aW3L63p4yWDXNJSBdJuGFEbQANavIlYbfJ7FGqUhqiVbuaBAZ7c+VSPI27eBSrvfIPcOG3JC+27UkkrLqU738206WPdQX01sBkMiORCIX3Vp/+bZi66GfmTlSg0Yp89qOUSbOKVMXlcin5t83ub8QaaNZQVbhvSKCc1NjLfL0onsCajXn6uSfHc+1JhCAIuLqWbWPk4mrL0eNFz32+xoyZ8omsSiVn1qIRREWmolTK6GdFrVZV4u3J/dj2Zwijph7GxdWe0eMHUs330UTWSkJZtWKiKPLZkg2EVEtBp4dnXs6i61Ntadc5AqPRVCzFZC2OHLzK6X1bGdhb4OxlM18fD+aVcfeXbQx9uTNffpzPz5uTOH8+jalvOuBof5oPZ59l3JThuLmXX7aQm1PAF4t+4tdvXArrSyeOlvP9H6cZ8aplrHiYLhF29iqmz3uZY4ejkDlKmT4vuJhcUbN2zVnw+U6ef0rCmYtmTPKAKouuiaKI2SwWni8k1J3V39nRqomGQF8ZX67UU795cWkQ4z3k705ETioVqO6bx+HVOzmV4oqhRxuqmTxQG8A2VvPAnsT34h9FtqzB8NHdmf7eCrq01JKRBTHpvozrZ13rq529qsrVtUtDUmI2v6z8G7PJTJ/+bQgJ8+KtdyqmCFxRA+x8jQMaVMUsgMpCaTfb0fPf8+3HOuxs5YCcWYvTkUu/JFun4PSx2nRo+kqFPkd6Viq1a12hf29LzclHc0ReHreWgGoz7tvWzdmLHq1ns/3wXL5aLEEiEYgIhZu3rpOSnoiHa/mCiknpe3BxFYtZayQmm2hW05ezMRnk37Wti7wx13SUS2orCh9fZ3xKmIwEQWDCtAHs3nGBzUcz6Du0VoUKPu+GwWDiu883o8tLR6uXU1Cgx9M5n+xcCY1at6Brz0aEhHnR78VBzPn6ADKZnLdndMLhrhW2r58zcelebN2diJc77D2s49k+lgkhNc1IgK+EmROUzP/sBMlJdfD0Kj2txWmHVgAAzGhJREFU/W+CzqStdGt4Wc9tYJAbuwjn/76/RkA1ke0H5Iyd1Muq40okEkLDHo2Viclk5peVe0mMSyGidhC9nm5Kt5516dbzwex/HgWOHYmiXlAsz/ZWAUp6dFDy5ozdOJhP8sMZBW9OHVphb8+92w6wZIrFViciFD74NJrsbO190SqpVMLrE59h25bT9O28l5aNLSRk0RQTi5btYNw7/Uo6fDEc2n+FJvUEEpKMhAVbxszYBCMOTo/Oj1SlktO2Q8ldx2071sarmiu/H7mGr78HY56ufCnGru1nOX3kFKIISO1Al4RKJaI1ezB+6gCkUglT5w7jp+W7yEjPpm3H+jRuHlrsGK06tmD+ZzsY3FfCrQQjefmWzkNRFElKNrJwhhs34wt47bsDqEMG0MLHh3Ox1yt9zaXhX0e27OxVzFw4kmtXkvFVy3k6+NEYV1YE6el5fPXhjyyeKkWpEJi68Gf6DRtE9ZCqHyjvTTlew7OYBVBZKC3lqJAXFNb4ADSsI8PbS6BJfSk/rT/LtcsXCA20vtjWYNDjcBefkEgE5PKyq0blsuLyEY4OIik5BqvOZzQK9Otpx7R56XTtoObISR1aTXtksicjFSYIAh27PnjB+Zcfb2RorwTCg+XM+TCBEcOc8PO50xJ/kJRGoXh4OqBQSMnJyMDBVs/ni39i9Ljn8Lyro/btqQPY8/cFrl3OIKyhwLj3ziIXcjGbTMx+x1J3VDNUJDEx+3+GbOWaVOzOqnjaKUxZfpT0pTE9uBXbjKwsDVN6eJaacnyc+Gjer7zQK4V6zyvYtieZ5V9nMvyVqovAPkykJGXSNLho7KjmJaNmqIThA5T062Hig682M2F6xeRe5PLiYql2aoql4+9FQYEBB5+70vc2Ekz3hmBKgUIpp0UTNZ9+n0X3jraYTCLfrDHw9arKi71WNcIivAmLeDAngTMno0m+voeF7yg5f7mAv/cl8/ZEJwAuXk1l9bJdvDiyM3K5hOysXKSmFHZu3kFmVh5duhelNVu1q4mHlwsbD1+hdTd7Ji04iYMqm+wsDUOfc0AuFwgNlCPRpj3Q9ZaHf6UjrVwupVadalR/AokWwM6tpxj/soitWoJMJvD+RAWb1x98aOcLtqtFW/dWdHC6SphnMqG+SQj+OjS+lPkv319NtERbSLruQK2sybZdloFBpzOz84DFew+gTk2RnPzECl2fh6s3O/e4EhtnRBRFvllpxNmu7HoPd6c2fP69CVEUiUsw8ud2V7w97jfeLQm1ggfx468qena25dAxA0ePh9Cx2fAKXfM/AWZdGuHBlonabBbw8ylaWzWqbSI2JgOAHz5fx4dTjXwwScqid/R8++naYscRBIEOXerw/NB2DHyhLdMWvI5bQAOGPOuEg70Uk0lk12EpIVYIs/5bUGCUcy3Zs8L/dqdFEK/NKjcq5ufvQp26vk8k0dLrjdhKU6hX0/LMd2uvIDPl5uO9qAqgcbMwVq4H8+02wGU/5dCyiSXC5GAvRcD6pps7CAgJ59fNOkRR5P/ZO+/oKKr3jX9m+26y6ZVUEgi99w5SpQgIKiKK2CsqKBYsqCD2r73+REVRVFREehGkivReQhLSSC+bbC8zvz+WNEhPCKA+53AOm525c3d35t7nvvd9n+fMWQfxad74VxMdGzS0PR8sllFsFHG5JJ5/y8boCbXbhh8wuDW/b/Fm4mg9+QUuvvxJ4uW37quz5dCVjm2bD3PvLecLPhIcXNO/LErYrpWS3KwcAJZ8uYkbhqWz4Ak5bz0rI+XoVlJT8iu01bJVCDffNpixE7vx4hv3MPG22wht5lP6uy9d5UDe7NJWVP/jIltXA9RqNUXGssiNySyhVF36QbUkylWSx1VdJSNQpT1Qjw4TWbXWyS8rT5KTX0S/nno8dO6w7KIlSpqHda6yTZPFyK6DXyPITAT79aR9S7cR66j+c5n/xvfYnflEhvahU+vqV2ntWw7m9FkdMx7agVLuw7UDppZ6a9WEsODm6DTP88vyPeg0fkwe0fjK6lcCTFYFLpcduVzAx0vG0ZM22rd26zBt3SPn9pmBSJKEn5cNlco9cWq1MvTa6g2WBUFgxr0j+eIjF79uyMRskzF5+vh6aypdlXDIEDPq/nnj1SGYzHGX1ZezoZDLZVgu4COO2gWVrwiENvNm1A0TeeLVP5DJXCQmiCz9yL01vvUvOyHhLas8V5Ikflm6neSEFDy8vJh+zyg0GiWTbh7AxnV6nn77FL7+Pjz9UvU5tz4+Oh5+6nZeW7QBl9PJ6Bv60apt7RaLCoWcuQums3njUaw6G6++377KYqqrGSHNAjhxJoUu7VV0bKvmxxXFdGrnTnTf9reDyOZuzcicjGw631KmrTakj8jpk+cqrfYtQUzLYLoMHMVD89dhlWnJ8OxGQKcBkHbpPs9/ZOsyYOTYrix45hAzHGZ0GoEPv1Ew6/nG9XwqD5PRxqmTmQQG6YmNrF8lY3nCJQgCvTuVWYPsP76a+2b/jc0GLSNvwN+n8giH0+ngj93z+fB1E36+chb/8DMHj9jo3GYkKqWKwT2nlx5bYMhj3/FlCIJEl9aT8KukzbjonsRF96zTd3Es/k8y83dhNIlEhgwlKqztFUO01q7cy7FDibRoFcF1k3pX6NfGdQc5tPsAoggDhveld7+at7BuvG00j7z4M706ucgq0PHWFxqaBYkYzQLDrxtVWoqdZ1CW2rXYbCJFJlUNLbvzg+5+aGz9P+xVDpkddPUYmCWlGtGm4TTBpBcbzudTNq0vZ0Mhl8sIimzDVz8eo283GSv/kOjcu3Z6XvWBJEmcOpGJ3eGibbvQeiWwX4j2HSNp3/F2AM4mZvPkG2tQK134hcRw213XVHne15+tp0fLU9w/UUVKej6vz/uW51+dAcCwkZ1LJVpKctrSU7Pp0adtBePwEgQG6WuVo1Ue59IK+O6rtbgcDvxCwhhxbecrhmglxGex6tcdKFVKpkwfWqFfmecKWfz576gUTjx9g5lx76ga/Yevv6kvr76QyN8HC3C64FiiD7PmS2jUoPGK4t6Z7nvOLzCA46fzaRvnDlhs2yNj0PiaNS9792tFYCcnmwtb4coKRqzbhkyd8R/ZugzQaJQ8u/AO/lh/GKfTxZwXOzS6FkoJkpNy+frjpYwa6GDbbhmiti3T7hhOXSsZq/Nj7Np2NDC6xr6kZ6cyYUwRfr7uyfy2m+Tcu3sPUDHXo7Aon70n5vPeqy4EAWY+c5JurZ6r0my6tjgWv5WomJ/o1sPKiXgbbeMSWb/Zg8jAe4kKa5oy+aqw6OM1dIqKZ+FjSrb/nclHb2fx4OwJAOzbfYb8pD95bY47KvXKB2vx89fXKNbbslUoc166l/S0QvqM9ayQ+F4et907kUdeWo6P3kFhsYo7H57U2B/vHweZ3VWv0nBPWUm1q4Z4tXtCuBoJ1613DufA3hb8cfQcPYfHNDg/pyqIoshrL35P15Y56LTw0mIdT718e6mbSGMgOiaIp16aXvOBQGF2MkOmu68dGaYkOrS40kT4N+cvZdqYXDpNUvL9bxv5ZWlBrcRpq0NxkZXP3lnCnHtE3vy4kDYds9m+4iAbFK2564HaFVFcKsSfyuS3b5fy8uMqio0Sc1/6kjkv3oneS4PT6eLDN7/jf8+CTidj/5EEvvxkDXc9WH2f5XIZz7x8K2mpBchkApPv8al0YTztzmG882oBSikHi1WgY88+RDeB1U9d8R/ZukxQqxU1an81Br7/cjVvPysvFZ589cPjZGf1Ija4bpWMtTXArg5atZaMC5wAbLaLVzdH4tfyyrMO9J7nvRGfdzH35ZUM6lG7AbEqZObv5OXn5Tw138Lrz7sjZROulbjj4SVEhS0oPS4rLQ+jUkEo3vxFKiUFXjXpba1ZsYcje/ehVIJvcHNuv6f2CcOG7CSuneEexAf2VrF2a2ppteT2Pw8z7/4ydfAZN8j5ftOJWjkjaDTKGk2uY1qE8MLr91WozvwP1cNDraxfaXhCFqSYAR2SUk08Vy/h6tK9OV2612w31BD8seEoYwfkMLS/ezHao7ONb77cxN0PVm+/dqlgtQkVnpMCAxdpeRUXWQn0zKHLeeHlWyaqeer1E9SklVYT9u9NYspYB18uNfPacwF4nDez/nhxPIkJOQ3OUU5LzefLj37BS+fAZNdx/6wbah01W/nzVl55Uo1CIaBWw/232Pjzj6OMndCdc+mF9OroQKdzfx9dOyj5aW1mrdoVBKHa7UBwb6s+/uyUSsevmnIj0y2FpBcbgLJn+fCuxq9EhP/I1j8eapULVTnRyvBQKCy0EBRcc9VYdX6MFybNV4YLJ6Mg/1A27W7PV0sP06qFyKIlWjrF3XrReTJBgc1eltNms0vIhIbfqi6XmrwCF/6+ZdsQgiDg6VmmfN8tNhgSskhMspCBAUFto+RBrK6S7J3Xf0PPcd58xi3nsOaPU6z93Z9R47rXqm8XmgU4nWW/WWCwH6cS02nfyh0mP5ngIji0Zg/KuuI/onXpUfJM7EvIwlPmxMjVTbguNfJzC+ndvex5DQtRUGxofL/S2mLomEE8+8Yaxg0VOXBMICiqw0VFDDKZgP2CHDZX7cw1qoW3t45zZ9zPaAnRAogKk8jPMzWIbJ06cY435/0fP34WgFotw1Bk5IW3f+SZl2+v1fmCTIbd7k5FADBbpdLtXl9fDxJTyo612URsjsanHuXHrxKSVVPFcHqxgfi0EEJsGnRp7oV2DNpG19iC/8jWPx4hEdFs2n6Eof1VFBtFtu1VMnhy7bfjLrIH8ovDnAFQ/YqnKuHUob3uJyk5npPH8+jepi16j4tJX9e2Y3n65T08N9uITCbw0pseDOkxvtZ9rgo920/nsbkLkCvtZOc6CQpQcOiYE5Opop1HecJVLCrJOpJElreZ5G4tGB52hgsnxF3bT2LMPspdd5d9llFDlDz9dkKtyVaL9p34/Lu9jBok48/dIqHN25UOHjfeMoBXnkumU8tCbHZIzgnm8Wc7N/j7+A+XD+Xvsf8IV9XoO7A9n35+gIVPuaVe3vvSzuBhl35HoCr06BNHRHQwx46k0n5gQKV+uB6eaiRNNL+tS6Jrezk/rhLp2m9Qg6/dqWsk764Pw2aK55dVRq4f44nVKrJys5I5L1a9jZuUmMvZxGxatw0jtBKBb5dL5NvPfqZbRzlqtZvEeXvJ8VDVfpv8pluH8fiCxcy+GwzFEot/1fHsQnd1n95LQ1TbHrzw1h5io2DXAQV3PXLp8j1LrHdO23pxOqt60nQuX4uUoi4VMr1URAtAkKRaumA2Mjp1iZDWbX7sslz73wRJkli2ZCtpycmIkorp946plUrxhbjwBj6XX0SILajK4zOyDPgkpiAlr0YQoE3kOFrH9Lr4uOxkDp/5FrVKxEvX7Xz+F1isZo6c3oQEdIwbilbTOEmgVpuF00lHSTq3EW8vFzLC6d/11korGffEn+Ng/Ac8fEs+nh4Sr/2oI+b+cYyMSiJM61M6IX72/kp6tzpFZraLaZPdhGv3fit7Erty47SBte7bwf1nOXYokbg2kfToXdFsWpIkUlPykctlNAurPHehMVBksGC1OggM0tf6GqIokpVZjLePtsZcmlDf2fskSaodA72CERPRUnrp0Xcb3M6+hCwSZRaMzRUIkTZahmcSpvdmiI87n/I/0gUnjqWxctlmZDKJXgO60X9w03wnBQVmvvxoBYJkwdMnkBn3XXtRcr7V6mDRR6uwmQuRKT25+6FxpabQ2zYfJzU5i6494mjdrnaVhjVBkiSOHT3HhtV7cdkKQFBy8+2jCavCW/HXH3dgzNxL784i67fJ6Nx/OP0GVcxPzc0pZuNPX3ImoZB35wciCAJ2u8TshUqeW3hXrfuWm2vkj3X7UavVjBrX7aLt1YICM3m5RiIi/aq0UWooTuYf5kR6FgfohNXepsaK4YwsA55JTppZRNpH+OHl6V3tuHfr42PqPX79a8iWwWDh47eXoVGYMFlV3PHA9YSG+TTZ9f8JKB+aTS82YDLHVX3s4RP0SlnKG3OUCILAvDfsaIWZRISWqQ4Xm4rYd+J5PnrDHX5e8rOTo4evp0Nc1dVAlwIZOckkpf2N3iOU9i37lT5sB05s5rqxPzKgt3vwzMx2cv27sXS5qydDAk6WEq4/1h/Gw7aZtHMW0tKduETINATy6rt3X1LbjMbGoo9X4yiKx8dL4ORZPU++OK1GnafsrCIemvIrtnQNks7GlJltmXpH1WPRf2TrYpQnXKHB3shCrcQFZxGn3l2B1H+7aCM56Qk4HNC5d3dGjO7WKNf/DxdDkiReePxzXp3jwMdbzpGTDpZtCufB2RX9X19/6TsevDmP5hFKMrKcvPqZnrkLGpZbWleYzXbW/r4Xp9PJ8NHdS/OsRFHkzec/4M1nyxZAj74Ez7xyX4XznU4Xrzz9EXdPcbHo+yIC/OTsPyrx7ML7iIi68hLNq8KanZvZ+vMe2rZUseOwgpzQG2kX2KXaczJTc8ncvArbuTwEUYZnhAd3T38E+YUGi+fRELL1r9lG/Oitn3j+gWJ8feRYLFZmv/ID896om63Mvx1lq2y3Vld10hHnTmzkqUfkpcRlzoMKpty3linlyFZS2nFun2pBoXBX8twyScEdW/bSgaYjW/HJ+3DwFU/NEjl6UmLpsr2lHos2exHNQspWOQF+coQCG/FpFbd8rhnRkf/7MJWinESQSWj9onl9ft2sly43Du5PJtTzNNNnuFeCZ1ONLP58Pfc8XH3F0EuzNqA4GIP6fE7d0ndOMPr6tk3qLXq1o/yWYkml4pZ8LenhrUvvsTN/2mgZeJxZU89bWn2+nVPHQ2nVtmnsxf5tyM83EeKbj4+3DwAdWitZ8lv2RcephQKaR7gXJKHBCvTaoiYtNDGb7SyY+wWPTLejUQu8+fIhZj4zg4AAT5xOEf0FdrW6SgqSFQo5424czec/rMXP14e0PA0L3ptaZ8uiy4kE4zE2/7yXL+e7I/KzJInxd/+Ch6X6nC1Z0hnEBDNBDncqiflUMes2r2D0sInVnlcf1IpsCYIwCngXkAP/J0nSq1UcNwlYBvSQJGlvo/WyEeChMuHr42arWq2MIF9bvU1H/+2ojQn29oyzxCdpCfB3P92nEuwUyNTsK5fH5eUZwMl4OX17uM/Jy3eBVH8z6/ogJXMl//euDEGQE94Mjp5IIN+Qi593AK2i+/H6+3/wwasSCgXMXejAQ9MbKaUsxyZM7w0c464Hx1ASJb4aE83PpeXSuU1Zv6MjlBQbiioc43KJfPrODhJO5NJ/aHMm3twZs8GFvFzxglCsJSe7+D+yVUeUEK6SSsWQ8CDiz+t4DQk4yV97j/HBnLIo44QRMtbsS/iPbF0i7Nx6koJCe+lrl0vi7Nnii44rNskqkKtio6xJn/+1K/cy8zY77Vu7o++vPuninW/+4IHHrkOlUlBg9iUxxUBMpII9B+2oPCIrbadLj1i69HgQURSvqmg8lKW4aHWq0u9eEATC/cWL8q9OxB9h957teHrqGTtyMjnJZjR2HZz/ybQuT3Jyai7+qg9qJFuCIMiBD4HhuPVV9wiCsEKSpOMXHKcHHgF2X4qONhRFJgUOhxOl0l26m1Mg/49olUN2VhFrVx0k8fgRfL0FRHkAD8+ZVOV3VFMuSce4v1i+JoOTZ+zIZQIrNlhwdepOoqm8AbaevzfEkZVzmrBQiR9/1xEVOboCIbvUUCgqkiONWkK0iAD4egfQOvIJ7n50KYIg0iJiNB18AjE5dJht5xX49WUP5tVIskrQqWsMyxZtp1M798SxYr2dth0r5o3Nvms5qat0aB3BLF5/lrQUAy06+LBvdxE6lxeiJCJvZqyxVPs/VI5uscGlVb79/CPZkee+x07bvAkIS+PQ8Ww6t3MTrr8OiETHXBptq6sRFouD/XuTWfHTHzQLdFJkUjDt7gk0j606r7Q6FBcZad9axctv59EmTsWO3RZ8AqMvOm7UhGHMeWUtvTq52HdMxoARTZsC4XK60KjLxh2VUkAsV/r4+HM389WnazEaCgkOC+W+R4dU297VRrTKI6VIS36BAz9fOXn5Lk5n6tF6lM0lB4/sYcMvawgsDiefIj5OeZPrJ0zl8PaDaIvdi/x8XRbXdBh2SfpXm8hWT+CMJEmJAIIgLAXGA8cvOO5l4DXgiUbtYSPh1nsm8PC8n4gKdZCWJWPiLf9e9evyyEgv5O2FPxLik0/PzgoyFRZuGuOFUpnF15+v4877axYrrQzB4dG0DzMSHS5QaHDxw04tui7eGNMVFQywQyLv5GhBDgcSrTQbHIpLriCxikrGSwE//UDe//xn7p8h51SCkx27Qxk7qKyEOjggnBEBj5e+zq+F5MXViLBwX/qNHMPshX+iVkqERrViym09St+3WBwk7bXg5QwFATyNwexae5ZvNt7EAud6zhxOQaOVePnNMVekn9/VjhE3tmPJuxIrNmRjs4N3cCuGXVBE8W+EyyXy+UfrOPL3fiaPVdEp1olaLXD3Y948PG8ZL775QL3aHTCkAz98fpDZ9yjIyHJyPF7B6FEXF7t0792SuDbhpKTkM2OYb5NHdIdd2423Xj7Iwjku1CqBuW84mHZfWT9VKgX3PPzPnutKdlpueiSOe99LRyU5SDdpEAbcQmJmmS7k7t3bCTJGgABqtJjSFbgkFyMmjmbb1j8QJIGuXbrSuX2PGq9ZH9SGbIUBqeVepwEVysoEQegKREiStEoQhCrJliAI9wD3gHtwb0pENQ/kpbcewGyyVQg3/puRlVnEJ299TYh3Ea896yYYE0d78NT8XF5/PpCvf6u/C/rU269h2RIFm/5OxihamTyrBXtdOcTLQzBf4KsmDw9EDpQ48hmVigaJp9YFHeKGcCbFh7tmbsdDG8K1AyY22b2RmpLH8h+2Ishk3DhtSK20zy4luvVqQbdelU/gcrmAJKsoFmSx2rj/pmUgCtxwT1vGTbq0Rq6XG+XHL3/fpjXdlskEnnhuClarA7lc9o8zHa4vXn/pe5zFCSx+LwCt1h2Vee/zAs5lOokIkTCb7fVSm4+I9GfMlMm8+eVmBCT6D+1Fpy7RlR7r5a2lfYfGqTasK3x9dcx8ZgbvfvMHLpfItPsGEBHVMKeN2sLpdLF08Z9kZ+bRe0B7+g5o0yTXrQwlhGvW3EA2F7bCp9hAfJoMo7ZsLkGgwpavKHOxbuNvYBcICg1h0nVTUSgu3UKxwQnygiDIgLeB22s6VpKkz4DPwF2N2NBr1wclZbmXElarg/ffWIZaKKDIKGPM5BF06R5zya9bV6z8dQez74KVG8puA5lMQKkQSE5zovWs3juxOgiCwA3TyrRlEozH0FvOa3XVYIAtqG0NVquvC1pEdqFFZPVVK42NtNR8Fn/4LQufVOJ0STz56lc8/PQdlz0ptbDQzOmTWTQL8yG8XDm5SqVgwIQwtn11DmWRF9aAbIqzTXicjEMQBD4/cgy9l5rBw6uuUL3aUX78ioloeVnGr6aKGq74+S9OHTqAUgH6wGjuuG/UFbdALSgwE+aXh1EhLyVaAGHNFOTkOUnLVKLV1v/7atMunDbtLhZdvtIQEODJA481bUGOJEm8+sIS7rvJQOsWCr7+aT2r8ooZM6FuXrWNiVjPdrhcIqGHt6GwFSOG9iKBZqVzSVS7ARzMWoF3fgB2hZUcZQbNj7VBI+goOFPMN+bPmDHtwUvWv9qQrXQgotzr8PN/K4EeaA9sOf8whgArBEG47kpLkm8qfPHhSh6ckkt0hBJJkpg9fxUtW92Np/7S+B/WF1arSLFJ5EySnbx8F/5+cg4es/L3QRuZRRpeeLV+W4iVobw4anVVjGl7TqL+ax/5dh8csRNJzKTJthTrCkmSSNp5EpflJKohIURE1n5FuWLZduY/oUR3Xgn6qftEfl25h6m3V59TcSlxYG8q8+77AzHFG8HPzISHmnPHQ31K33/ixaH0G5bIycNZ5ORI7H43sHQC9sqNZOWPx//RZOvfgmNHUrHl7uaNZ9wL043b4ln9m/9lnUgrg8PuJDvXQasYBas2mhgzzAOLReTn340YrVoemzupyQlibq6RJV+sw+lwMGRkD7r2iG3S69cVCfHZHNh7mvCoYHr3bVnr87Iyi4iLKKRtnDtqOOMmNU++fuSy3iMOh4t7Jv9A7l4NIi5UnX+iw6uTSSQMI2oggF6jpyAWJ+Pt5cOmlevQCO5tXy0e5Geeu6T9qw3Z2gO0FAShOW6SNQWYWvKmJEkGoFSMQxCELcDj/1aiBWC3FBJ9vhxYEAR6dxZJTSmgTbsrI6FVkiT+t/An/DTn+H2DlexcF8++mkNQgJIAPzm/Lgph/mdejb6KrqmKcd+fybTOOsFHL3qQX2Dkpmc/wtDjEUyU2QNdSaQr4/tFPDj4LG3ayfhy0bcMnTCBjp2janWuQiHHYhXRe7rJlsUqoVBeXiWWd57fhj6hpXuCyobln8cz9a7uFe6DvgNi6DsghvWrT7BDcwpsboFcu2DFL/i/CsR/Ao4dTmL04LJI0dD+Sp5+O+mKIltb/zjC7s1bCA8W2brTQk6ekz0HrLhcEm+8EMg7i2S061B55d2lgrHYyrsLvuLNuTI8PQRe+2glkjimyq35y43tW45xYs9GbhwjcPC4xGfvx3DPw+Nqda5CIcNqKwvuSpKE03mpelo7fPXJbgw7/PAR3Yt5425PxLUbaTl2ZKnVXLAjAq8U96JYUFbsv6S4tMHqGkd3SZKcgiA8BKzDLf2wSJKkY4IgvATslSRpxSXt4VUIQe5Bdq6JoAD313vguMCdI3wub6fKYcOagwzrkcGwARpAw+79Wjb+aWLuY+6b0OWSkMRLc+NVV8X424H9vPq4uyrEz1fOzIlmPinIxOwbAOiqtACqD46c/oO8oh3YHTLaNr+J8JAW7Du+CpP1L5wuCPW7ljaxfas8P/H4GcbHJDN+uDtauWCOxJzXNtOx8+21uv7kWwbz3MtJPHaHHYdT4r3FKubOv7yTmWivWLYus6swm+2Vku7h17Zm7eiTnNmcCg45Xh3MPPrMTU3Z3X8sstLyOADuPYTzSLcU0lQ2Pi1bRbB19wFizq8b/j7oJDLmypGYcLlEtq3fzLvzVIASh8OTG+7KYt4TZZFlhaIRzAjriN27zjD9egd6T7fczZMPqHjqrT2XhGylpebz/ZerUcichEc3Z/ItAzmbmMP3X65Ep3ah8gjknpnjqq243/nHLt48H71sGQMvvZOIsdhaqx2YgEA9BdZwVm1KpX2cnG+XiwwYPrixPl4pajKSLo/TZ8+idoWXyjioXTqceYVE670x+XlxjiISUgx4ypzEiFoGDx/BltUbUJo02L0sXDd6cqP3vzxqtZSWJGk1sPqCvz1fxbGDG96tqxt3PXQd8xd+j49HMYZiGQNHXoOXdyVqcpcJ51KzGTGm7CHs3E7FC28ayct34aWXMe9/NkZP6tfk/RIlGQ6HhFLpfloKDCIxzYop9rGSqC5CUpblcdWE6gjZycRdNI/9hYW3KXC5JGY+8z7ZeeNo32ENM252PxLz3/6ec1mhNAtuflG7+xKy0BTa8O5ZjpjIBOyCqcpr/rRkK8mnjqBQSKj0Edz/6HU8Pu9ONqzeh1whZ+78rk2ST1gd2vT0Y9/RAnR2X+ySDc/mzlI16gshCAJv/d8EEhNysductGwV9J+USiOgVOA0LQ+jUkEo3pwmmHRd6ybzTezSvTknjrZnzoLjKFWAqhkz5/S/pNesC0xGG+HlLAmVSoHAIB1b/7IzoJeSzTud6Hyjm7xfWp2a/MKy1xaLVKkNWENhNtv5v3e/4+1nZWg0MtZtOcT3X4ucPnqMd1+Qo1QKHDuVyqKPV1cbqVIoKy6oPXQCDqdY6bFnTmew5P9+w0fvoNCo4b5Hb2TmnOvZ+scxft2Zy5DxrWkRd7FPZENQ3iKuNvAZ7c3eVX8QluUmt1khyXQYcQ3pxYZSD0TPJDfRcs8PwbSJa09uQTZB/qF4aC9tvuxVrSB/pQqweeo1PPvKjCu2fz37tWPxzyd5/F73z//1MgczHhjP+z8kYbfZufaGvrRq0/Qr2cm3DGf2/KXMmCySmiGx67SeW68rYoshCw+doTQUXF46ojLUFAFLydzJS8+5P7tcLnDvdBtz52/i9fllA+P0m0Re+9++i8gWuCdEMV5k6UpPRvY3ERmm4J3FNrzbhJJgvHgyPLj/LBr7AV4/v4rc+lcyv/38FxMm92HyzVfOJPbU/GF84LWN43vTCA/S8Myrk6vNeREEgdgWTVuV90+CKIoIgnDRd1yZony8ummNqqfePhRJugZJkq64MUzvpSEhVYXJLOKhk5GU6sA/NIpTuZGsfjuVlm2iuOfhpo8S9+4byyvP+aOQ5xHkL/B/P8q5b/bIRr/O6ZOZjBroRKNxR6BGDlbx8zOn6d/VhfJ8KkK7Vkq+XZFTbTuRsa35aeUBJo9RcirBRUq2Dz4+lQcFvvnsVz54UUAuV2I2O3jqzZ959pU7GDS0feN+uPMoIVqbc1tjMtdyJ8MnmOg5OpJ+3AZA8ynjMHi34FxaUSVEyw29hzd6j/oXgtUFVzzZ2rjmJEs/PQySxM33d2boqFYkxOfwzL1rsOYLaHwlFnx6LS3irrxB/0obpErQtn042ZnX8PjC3chlAm27dGPIsA4MGXZ5S/ejY4K474k72LPrNN5+nsyb1/L8ZOS2BwKI52LpiAtRk3SEQu5NVk4SwYHu2//UGfDUhXPo2HG6dHBvme09CL5eVed89GgZiijO5LZnf0HUGZG6dKBTRz82F7oV5aFsy/TU8RTG9iu7Fwb0UrLqrVSgTyUtXz7IZDJmPjWo5gP/Q61RZDTw47KvsVnsBDcLYeLYmxEE+Pq7T8hNzUWSSXTt1YNhgyvaInWLDaYbnM9V1CEpy1wLmopwVUYErwQIgsBDc6by/Hu/oZLbkKkCeGDW+PPb3ZfvmZLJZDzz8jS2/3ma7GwLjz7b6pLobvkHeLJtV9nvYjKLaLSenE6ylv7NaBJxStVLXkyeOoBN6/U8/fYp/IP8eXLekEp/b4fDRYi/E7nc3Z5OJ0OvrWEQbgDKE634tBBCbLUvLPMP6oD/Q2XzmJgBUpatUqLV1LiiydbBfWm8O2s/PlnNkSSJd07tJfB7D16dsxnFgVi8BBlisshzD6zl+41XfonulYTBwzow+DKTq8oQEODJteO6Vvhb+UpGaLh0RN/Ot/DI00mMHVVAfoGMAwfbMnrgvbz5/lu0bZ2G1SaQkdGBIT2rF7fr1SocheImt4mwTkF8mg2Tn7tvcerdlEyIrdtFsXH7Ae4+X1by5y4HLVpHVN3wf/hHQJIkPl/0Lj4pIXgKerLP5vGT8xs8PfVYjjgJEt1k/uDmA7Rq1ZaI0MqjqPsSsvCUOTHS9ITrSkVQsBdPzrvyxnyZTMbAIa1rPrABiIj0w6lqzVufnSSqmcSmXUoeeGICB/acYs6CnUQ0Ezgar2TmU+NrbGvoiM4MHdG52mOUSjkZuQqcTgmFQsBkFjFaL01l/YVES0pRo3M0rM2OKUpAedmLq64YslVksHD6VBahzbxLBU9XLTuGZ6Y74U0QBDyywlm17DjWAgEPwR0pkAkyzAVX3urrPzQuaisdAVTYcqyMcGnUWsYMfIn0s6molGqG93VXiY4Z9CRGczEyLxltImvn0Vh+yyfYEYTZxkU5Np26tOPMya48seAwCgXIdRHc83C9jOP/wxUKURRJzUgCICK0OTKZjCJjIRTIUAjuaKmH6EVOehYm72I8xLIFg8bkQUra2UrJFlS8x8oTrhJfzn8r4fo347a7R3IuvRcF+WaeHhuIRqNk1LgeDB7emSKDhRsCPRt1Z+X2+6/n0Zd/w9vTQUGxmtvuaXxV+sqIlmeSEw/R3KB2LzfJKsEVQbaOHEznubs34kr1RvA1M+FBt75PRHMf9iry8XT5AGBXmgiPDuB4UA6uBBdyQY5LcuFRjx3EA3tT+enrg/gF6HjgiQH1UhmuDPn5Jj568wf0WjMGo5IpM8YR17rm/Kf4U5n8tf0YIWEBDBvZ8YoM319uVCcdcWR3Ogc2HEOvA4tTRfPrJ5FERJWESy6XExEafVE7njp9nft1oYlwQpYNIbJiBGLSzQNwufrx5vyl+JHK529+jId/S+64/9o6X+9KRvLZPD5YuB1RlLjr0V5XjNzJpYTT5eSTL97CniyCBKooGffdNRutxgOnsmxZLkoiggoioqI5feIM+vPjmkVfTEx09fpkFxKuExYf/lq5kzXOAiZMT6Fvt8hGI12LPl6DITsJUYSIFm258dbBNZ5jNtlYvWIPTqeLEWO64+fXtIbyVzsMBgsfvvkjHioTRSYFU2aMo2Wr6p+dZmE+NAvzqfA3jUZ5SYRvY1qE8Pxr97Ju1V4O7tzJtpVL+SpNw6xnpzV4q7Sk4nBzYSvSiw0ViFZTb/05XU5Wrf+F3JxsWsS2YmDfYY02F182smVzWUq/5AXP7MLzTFv3h8qCZZ8ep9dNOnrfpGPjhqPk7SsEIKC7mV43RjBszBievmc1plwJXYDAwk/rxrJ3bEng1fv/wiszmnis7N+5lK9X3tIoFhifvrOM+Y9Z8NIrcLlEHnr+V+a9+UC1P9iu7Sc4ums9M26Qczzexf9eOcWsuTc2uC//RFQ2oeTnm0jYuomPXtAgCAIn423Mff1TlD4hWIbdiREfTI4yra7qUN8Hu+S86rZ8/vopi9vH59GhtZvYL/3tFH/vaknPPlemDk9dkZlh4KFJK/BKbAkIPLF7Pf/76VpatqqfGfDVgj93boAzKvwlHwCMCUVs3raW4YPH0mfIAP76YztKixq7t5VbJ9xFaHA4+XlfkZGUjiSD/gMGERpYs91LCeGKjy/i4LvfEZMahhJ/Pt8Rj+MDscZ0pdqQsfWr99MxMp7RM9z36Nc/HWLPX+H0qMaH0Wyy8cpzi3jsdgdqtcAbC47w8FPTCQis+8Ll34pP/vczzz9gxM9XjsvlYsq9nxHczI+RE4bTq++l3ZasLfLzTcQf2MFbz7kLfQoKHbz24QpmzZ1S7zbLVxyezgquomqw6bBo8Qe4TsjRSZ4cOnWIQkM+40c3jqTNZSNbxS4NmwtbAVBoPkxgOTLiMOt44p7jyEQF0UM60H6WW/DFN9yPTPvfyL3S+Wrl1ErbrQ2WfHIA78zmCIKABh0FB/Uc2JdCz96Vh/FdLhG5vOaQ7DdfbMCQk8Yr70qMukbH4L46osNcmIy2KrVLRFFk+dL1LHrD7dfYLETBsdMZZGYYCAltmiqJqx1nE3MZ0MOFILgniNYt1XSIU/DwnU6mv/sd9mF3nk+qb1gVY21Q1ZbPkICTnEk5w6NTyh657h1lrD+YedWTrV9/OMTGX+NJSs7FI7ElMsG9aPFKjeHbT/fy4tuN50RwJaKwMB+NqCvV99GIWvYf2k3imTN4+Xhx54MPYrGaCfIPQaV0T1RTJs2o17W6xQZz9o8jhKR5oxbclWOR2XF8/1EKYptWlZ4jiiXl/BULNy7EkUPJrPhhPW1inRw/JWfWfT6MHCTnm3VJ1ZKtLz/bxCPT7bSJc3+2hXNcvPPt5ia3kLmaoZab8PN1PzdyuUDf7ipm3CzjxXc30Klr7BVh7p6VUUT7creYr48cQbLUu70LKw7FDM1lSWbPLcjmt99/wG6zk5+aR7jkVtL3tvtz9nQiNNLwddnIltWp5HSW+8uUtQjHcKIAb4db3yfTdI72W3qgEJTE708n6y4vmo/tR242nGsEvRmZvGKUSZBLqFQXR7Xy8ow8eutyitJB7uHisZf7MWBo5YPO77/8RfuwE8y+xR9Jkljwv3wiwxQkn5Ph4Vm5fpIkSbw5/wc8VQYEoWz1r1aDswq9k/9wMSIi/fhxnZyxw9yv08450KgF/P3khAo5qMIzMZm9MFN9UmdjGWBXRbhssSp+XbuD66919+PXdRJ9RjW9nYckSaSnFSKKIhGRfg0Kk/++7AhfPX0ar8JwrJIdFXY050mtEwce+sbZnr+S0at7f5YcXESwwb0oTFWdwSPdC43kTTEWvs//kofumdNo12sdHkCyIMF5mSQJCaNNUzqelseRj5dj3JUCksAfg3y4/0UvKhs7CwvNrPrxN5Z+7I1MJrDvkJVPFxvw9tHSql3Vrghb/zhK8skDqEaWRbGUSgGX67/xqy4w29WYzGY8dDK3DViqA28vGbERFnKyi4mI9LvcXSQq2o9lX8uYPEZCJhM4ftqBh3f9DLgrqzjUpdU+md1sMVFYnE+Ab1DpAqY+sFjNfPF/HxCYFYkGHSYhtcL7ktB49/Hly9lyyBAz3JNOm+tu5JRrFakJ6TixE3I8qjSpNMgUQtrmM0R1GwrQKHozDzzVlzlH16FNicCusBDSz07HzuEXHffcw2tx7orE63xf3npqB712RKNSXfy1nT6exJ2PuycWQRAYO8KTx160MWvulCons6zMIiIDsonupOPTxQbunOrF8dN2jiX6MDHcp86f69+KwCA9rboPYPoj69B72NGoBF5+0p/kVDs5GU6mnU+qP031D3BJFWP5LccGbSteQLiatYnj150G/njlMIhy+g0cRFzrps1pEkWRWXcuJ2mHA0SB4K4SH303ud6CpOt+cRMtgBAiOcE+wolBkGSoO+Vw/+z6bzFcLQgPjWLC1BvZvHk9AIocOUH57klIjZai7FxsditqVeNUcLWO7cCmmDUUJRagFFWkeacTOvCG0vG0BOl/74VV+UTbYgDIX57LojiBO6cVcuHYGX8qi2F9Xchk7jGsWycNb3xcTM+B3ZnWt+p8st1bd/P2PB+eey2Pl5/0R6USeGqhjRkzBzTKZ/234K6Hruexl79DLmYjAHfd4oUkwY6/LUy4s/rq66aCzkPNDdOv57EFa/DQuJBrwrj/sbqHfSpLhC9OyiOwltGs3Xu3sWX9JpQWNQ69hZtvmUFkWOW7UjXhTPIp1Nl65Oej8R6SnnR5It4uf0zeBoYNGVWvdivDZSNbMjvo0kpf0bXXOOgFhTnnOJbwI5yPTrokF3KnvPTYxtCbadshlI9/v45Vy44REOLLxJs6V1q5YcxxlpI+AMmgIS/XRGizi7f3fPx9SEjOJTbKffz+oxIzn7yZNu0uJnElEEUJuRyuG+nJjr8tLHwvn0Mn1by3aNp/CfJ1xLCRXcjONBCl38P23VZefb+AYqOLXr17MTCwH2G1sH3w0Bkw+cVhzoDGsAeqrFJR3vcmJF0XhgScJEzb9FsDy388zNk1SrzsbpKXt9nAog93cc8j9RNXVXvIcUoOFIISuSAnVBfCmDleNAvzZdioYZddFb+p0Cq2Ha1i3ePQO+8tQMqTSp9hl9yJUtF4v7VcLueBu59g194/MZmMtPYfSo5RW248dcN44CzeVp/S7U1vqw8JfxWzeVSPi8bOsHBf1m6XMdq9piUn10lsmzZMu2NYtX0RBAE/XznzHvdj0fdFHDjmZNr9t9bJlP0/uKUsnllwBx+/+gEKzPy21sS3Pxeh9fCtdHF/udC6XRhzF9xV7/Orqjis7bahKLrYsnEDIQVuciVZJJYv/4GZDz5Vr/7oPfS4VHawu1+HEIkpNo9OnTvSonlrQgIbT9z7MpItFx4pF5d0euBDcnN/Ms6konaoKPItZmCXW0qPvTD5uKT8GWqXAFqCiEg/7ptV9erLbLaj8YNCyYpa0CBJEvIAC4FBlUv633rncF6bl01EoIEio4RPaFvGdqqaaAGENvMmPs2PfYcL6NpBzf5jMq6/ZdAVb3uSmpLPyeNpxLQIvaIUxCfc0JdXnj3F9IkKZDL48mctD5+vpCqpZLwQ8cfzMORZiOsQSFyApTQCdqE9UEMJV3WVihfet5Ik1YlsS5LEt/+3hyP7Mug1MJJJU7tUeWxyQgEqm2dZfpHTk5TEwjp+qjI8tWAo9574GeNpH9A66DRGx30z/93CqCOvvY4VPy1DVajD6Wmj14B+jW7bopArGNBraOnrfaX3mBuSJBKg9CVddZRghzvKlqvOQd+sK/FpF99/zcJ88IvszpwFewkKEDiTquWJ52suPOrUqwsffLWVO29SMrifB+cM/nTtVjsz9ssFs8nG7l0JqDVKeveNvWLEp3U6Ff5hbQnSnqRbB4Ff18HAsdWT3eysIo4fTSciKuCKGYsrG79qqjj0VxXzzQ8r0Ol0jBlxPRp15Ur2NrsNuaNs4SIIApK9/j6+0eEtCOoQSNbRc8jtChwhZu69+TG89T71brMqCJJ0aZ2uq0JMREvppUffrfL99MwUis1FRIfFVvji9yVkuUUkmysQIm008/MiLjiLOPVuwrQ+1V6zZFIrKDCzb3cygSGedOp8sbjkrm1JvPrYVly5ajId5wgJ8MM7WMEzb15Du47VM93iIitKlbzWCY0ul8ivP+4k81we/QZ1oEv3mFqdd7nwx/pDJB7ewrB+Ejv2CehDe3LdpCtHCd1qdbBt83EkSWLAkHZoq4keffzOb0T6JRIbCT+tVjDotm6ERXtXW4KcnpmCyWokOiy22lwBu8POjgOLcYk55OYXExSgI8fgRVD/adiilchCrcQFZzHExy1jEevZjl9/3EH8kQOoVRIueTCPPjW5VhPB84+t4tgPElqLHybPHPre6ckT84ZWeuzxoxk8eeMfeGe4C0QMAck8/UUv+gyoXxge3JPX4cPpeHtpa5R6CPWdvU+SpKteZKym8avIaCA9K4VA32AC/Bq3GlMUReLPnsBut9GyeVs06orbh3aHjY//722cmRL5jizkCjk+3v54R0TRcuJ4zOGU3n8l42bJ2Gi3O7FYHHjXwct1/54Edm49SmhYABNu6FOrYqLLhcJCM2+++BXTxtsoNsGa7b7MnX/bFdXng/uTSU3OplPXGCKjqo4Q7v87ga1rVjJ6sMiB4wKCZ+caZTpyc4o5E59DdHP/GguwNqzZz5F9J8jNNaPTKdBolUycMpzYlpUvPM8mZvPVx7/g7+0gz6DkjgcnExkdALjJ1ubCVucrDosIsQWhSwOPFDNesnx++fYHggwROLBRHJnLw/c/hUpZeb7n/96fj1dyEApBiRkjHt3U3Dblnmo/S01IzTiLyWKkeXiLarf7b318TL3HrysnPnkBwkIqt0q5MBdGtGlKRSTdUa7KUaLoTUYQs6auRDwTgORppeukI7z0TsV95/89ux19gtsqxkeKxOp1hiXrp9Wq33qvuuVlyOWyK8ofryb8vXUnbz/rJhk9u8Csl/cy7vreTbLtKYoix49l4HKJtGvfrNIIoEajZPi1nWpsK/lsHgHas8y40T2p9O4q8cz/Epjzwq1ARXugEq2uMxveZOSgBNqESXzxvZaQkAfQaSvmU5REwNbvfJ2Fz2USFaFgx99mdu+3MeFaPQ8u+JjA6JmlxxsVo/B0ruXU8QzseXt4c677/jl4LIvvv97CLTOuqfZzSJLE4T/z0VtbgACepiD2bEiEeZUf37Z9KLPf6cE3HxxAkuCu6e0aRLTAncvRu8+VvUhoanh5euPl2fgODaIo8umX/8Ma70BwyVnT7DceuPfxCvpwv636AU2iNxq0BBBKnpDB2IkTKJb8KW+V7qfszmkbFXTrVCpFnbetuvaIpWuPpi/0qA++/WIDrz0p4XveA1CnLWTzxmMMG9k0bhoZ5wykpuTTslVwlSbvnbtG0blrzdHBtSv+4H9z3VXs/XvB068exmbrj1pd+e+3a/sJ9mzewMCeLlZ8IyO6fX9GjO5Wedu/70FWvJNXH1dTVOzimVcyeH6WP8+9tZS7HruDwKCLZT2+/uRX3ntBQqFQ4nBIPDb/F55/7WISFGILop9/JAfSUgDY8ucGgg2RCIKAGi3mNA2nE4/RvlXlEfq77pjJD8u+xmgy4BccwA3jazc3V4fKNBcbG1cs2aoOVRm1llilVIbTXEdccBbbnlmM55lWyAQZmODgymTOPpJLdPOA0mNdljJPMEEQcJmvnFXP5YZWLVG6BwV4aOu+7VUfuFwiC5//lr4d81Ep4aVvPXlm/vR6l0QXFVkICSiL6qpUAgq5u/LkQnugeELISMvi7lEJ3DnFTTQH9nEy5cnfiGx1b2kbJTle7cK9aRGTQ1SE+/Hq11PH+i0WYqIUNA/JpriSaHL86XQG9Sr7Dju3U/L9mpp1wQAE2QXtCdVHqwePiGPwiOpFNP/DlYlDJ/ZiO+3CT3STeke6FytW/8DUyWV5NEVFRWgoExVV2bTk5GWh8fsvj8puteLtVTaeB/kLnIk3VXNG42Hlr3+RlbCbLu1EvnhbzrAJY+ncrf6LFJ264rjr5wM2q6NKsrV59Z+887w7WjRiEDz20q4qydbxQyd49XH3WOellzNyiI4TZxzceZPAru0nuO76i42+ffR2FOdzE5VKAW9Pe60+h0wmICEhnJ9XJEFELq+amug9vLhr+sO1avtKwlXLIrrFBnND82g8Uszo0kBKUSNmaKr9dzormPRijZtolcCiorjYWqHtoBgVtvP6IXbJSmDM5dc4uVIg14ay95BbFftEvAOzy79Jch5Wr9jHlGsLmDJew/WjNTx+l5kfvvmz3u3FtQph/Q41hQYXAD/8bqdl2zIRmVjPdoRpfRgScJKW4ZmInnm0iCorA/bSy5F72DCHU/rP2FxBoszCkZR8Cg1l15IkCYvVfa6hWFYpMW3dNoIN28te/7XfQXhUzcmZgiAwZFIURd7pWCUzRX6pjJ7Wsq5fR6NAFEUyzhkoMtRfe+c/VA+z2YTCVTYeKVBis1ac1Dq070KBxk3UJUnC5FtIm7grzwf1cmDo6F688oENSZKwWkU+/kag3+D2l/y6LpfIif17ePohNaOGaHntGSWrf97YoDY9/cPZutv926eec3A2Q49XNdu/HtqKMgZ6D7GcBtsF/RVl2Gxl72Vmu/DylJGSLuHjW7lYbWGxuvQcq1Wk0Fi74phrR04ky/8sFsmEQchHGSPQKqZtrc5tbJgtJvINuVyK9KqrMrJVHuWNWmsyrDSjQejYluzjZwgyhuGQ7GjiiolrFVLhuLe+GM+8WWvJSc0hOEzNvLdrNvT8t+CBWeNZungLP23IwC/An9lzhzfJdQvzi4juUrZtGNlMyc4/DzPhxn51yi8pgVqt4LFnb+P1z1Yjuey06dSKa0d14avP1pOfk0tEdDiTpw4AjjMk4CS2gdG8/7WaXl1ENBoZH31vh7YdkYWWEfUS6YizSXYU57rzxge76dPDwQ/LTcQ2V/LEi06s+jFUZmTSIi6YM6f68viCPahVoNBF8MCsgbX6LDOfHkS3vgkc2pNOzwG96N6r6ROUjcVW7rvxJ4oTVEhqB8OmRjDz6X93ovylQMe2XdkeuBldjh4ZMnL0qYzrM7nCMT279sNkNnL88BGQSUwadTN+3gEk5dYuUvpPRqcu0bic43jqrd0IgpwZM4cREFB50VNjwmZ14OddNoELgkCxIY99fyfQrWf9tmDvvP9ali3ZyuptqWg99cyZN5pd20+wc8tBlCo1t949qsJWpagI5NipTNq1UnI21YHB4lPlQnnK9GuZPf87bhht41SCgwNHbOh0avbHBzHn+coV7e96+AYeX7gMb087BpOae2ZOrvS4C9EsOJy775/JvgN/4eHpSe+uAxu9oKQ2WLHmR07uPYFcVKAIFLj3zlkX5UM2BFdsgnxdURsrFlOkjgSlgdykvxAPHyU80MjMF7vSJbxro/WjPP7edZptG/9GQmDCTUNpERdS80n/EFitDv7cdBRRlBh0TbsGSwAkJ+Xwy9ffsWCOCkGA1z8ooFdXDd+t0vL8q3c3Snn06y99zx0Tcmkbp2T7HjubDzTn3pnjSsuV/z4bR9Iv61DJRXStWtN8SMX7pnxSfazDG/vhJEK8bHh5+GOxmsk0KhDahFVIUO4R0BxP59qr3kx47syVnPnGA5XgHpwK/ZL535praNGyYnL4vyVB/lIiJy+L31cvQ3S56NtnMG1bdazVefsSsjBF6krvv97hEeQ79jLE51Sl919BgZmvP1mF6LIS0zqWCZP7NvZHuaJxYG8SyWez6NQlluaxDa/0e/HJRTz3oJmQIAUHjlhZu9mEKHjQfch1jVIYtX3LMdJPbOThGWoMRS7mvCrw9Py7Sn1/nU4XX3++HkNeDhoPb+64f3S1aRgGg4VD+5Px0GsRALVaSdv2ofVKGSmfIC9maNw5W4dS8EgxXxFG0WmZySz96BsCLe7KXZtkRd9Hzc2T7qhw3D8yQb6uqM0PVhIBo3lvhEFdiA7PpFh9kgRj/dXoq8LB/Ukc3bmGVx9X4XLBPU98jqd/DE88d1OVe+r/FJjNdl559kvumGxBIYNXnt3Nky/OqHPxQHlENQ9k+PUTueHeJbSNdTFisAcDemvJN1g5eSKTjjXIbNQEp9OFTp5D2zj3wNS/h4rVW9zCRSU5XBPbZMPc8kmbFQ2xyyfVm22gozkn0vKIsWjpFhuDMSGLC7NDPJ1rG9TvS42zSbl88uZOZILAA0/2JzzCt9LjCrOtqISynCCpQEd6WuFFZOs/NByB/sHcceuDDW7nr7RU4qoYNh0OF2+9/DWvzRHx9ZHzy6pd3HfrTh5/btq/YtH41adrCfU8yYAOMn79dTetug1lwJCGbTc+8fwtPPXU1/hqMmnRXMWcB/2QyeCpt/5uFLK1e9sBXnvCvaj19pJzw7UWDu5PoW9/t+uJQiHnzjoY33t7axk45MrwZawvnC4nqzf8Ql5eLh3adaF758or53PyslCa1aXpyGpBg7GouFH78s+e9S9Adb51lWkw1RXlCdvmdXuZP9NdKaJQwNxHvFm+JoXP31/BQ49f3+BrXcn4/Ze/eGyGjTYt3eQqJMjBku+2MuO+EQ1qt33HSJq3COf5WUaUSvdTkZsPoR0bLpwpl8uwWCuu2Gz2ste1I+NlSfUl9kDlLYASZRaMSgeC2kZLXSZx6pOAT4OJ/q5tSbzz3HZEq4zQVhpe//S6ehUOSJLEnt1nyUwvpu/A5lgsDh6etBKvpBZIwAN/LefzlZMIDrm4EKVrvzBWbcvFwxLg1qRrXkD7GmRS/kPTIystj2D8MaMhU52Nh85wfpFQcfxLPlNI/24WfH3c21DXj/Hg4NFclny+jCdfvveK8Oq7VLBaHRRnn2LO9PMOJ3Ewe8HOBpMtnYea0RP64+taz/CB7raLil0oVI3zXUqCHJtNRK12bw3mFYBvwJUvKmyxmvl6ySeY882gguuvn0J0RP38YnMLsjmTeJKQ4DCiwmL4/Kt34ZQKrejB9pN/UlRUyDUDLyacMZEtWe+/EinP3y2Jo8qjfYvGzeX7V5EtqJpwVScbURuUSEuUTJwenjqyc12EBru/4vQMFy1jlOw6nN+g61wNsFps+JSr+PHSy7DZbI3S9qSpI3h8wQ/cMl4kKRWS8yKY0AhifoIg0LxNJz5efIA+XWHdVug+oG45R+WrGEvEUctbABmVDoRIGy3DM88ryDecaBmLrcy9dy3WDCUq1Iin9CzwWc/L746pc1vPzlzF4V9syMxa/i9mP3HdvfBIal5qLK1JiOLlJ9fQZ2BzRoxrU6H8+46HelNc9CcHtqUgU4q8OO8a/P0vfS7Mf6g9LhTYLe/GceH4VywVocncW/ra4ZBwOKFPF5dbuqCqkNg/AE6HCw9dxYWXqpEsPgcOac2CZ/dgd+Tj5w1f/azkkbkjG6Xtm24bwez53zFjsp30LIk9J0N44oaGRfybAou//4RzJ84hICOYcH5c+g2zZz2PXF63vK2jJw+yetlytIVe2LVbiewRiSnNQqDkBwL4WoPZv3cPCBAVGUNsVFlBlLfel0k338Ka1csRRIHYuFiG9G+c36UE/zqyBRcTrmJbR06HWms+sRqkX2CQfcuMYTw3dxEThhmx2SR277fy/Cw/tuz75xvzjhzTg1feOc6bc2XIZAIvvuPk5rsbR/g0tmUw9z1xB/v/TsAv2ptHboxulHYBJk8dyMljLTiYkMGQiVEV5EAuhCRJnD6VBRK0bBVUmmhaQrhKtIs8dIbSbcWwUDUeuuRGI1oA3325B1emjhhaYsFEKmfwTqi7ae3ZpFyOrDHhY4kEAcREbw5JB/HBh5J1txMn+1caOLeigB8+WsY7P44l5nwuiyAIPDp3cIM/z3+4tChJtyhJqShZcF4smxNMtrETb37yN13ayVm1wcx9071Z9LOdXmOuDK++SwVPvYbMQl9OnjHQuoWClRvtBIU3TpqJTCZj7vxb+WtHAmfNNp58qQWe+sZJwo6I9Oehp+9gz6549H46nniuZbX5VdlZRWRkGIiNDWy0PtQVNpuZhNPxxNEZGXISOYa22AODsQA/76rH38rwx8a1BBW69bqw+hJ/6HRFuz1JIicri5O/xXNAu5+2g9px7bAJpe+3iG7Fww882Vgf7SJcVrJ1NvUMe/btxNfXnyH9R9WJyUqSxK59W8nOOkenDj1oHlm3sGNlWl21hSiKnF6xBvO5LAI7tyOib69KDbJfeP1uFn26idOHD9O9kxezX5Hx4OPX1amfVyNCmvlw+4PTeOilFeRn5xAa5kdmRn6pmnBD4e/vWSvh0vqgdbtmtG5X/faXyyXyynPf0KNtAXIZ/PC1N8/Mv61UZLWMRJWJo5rMJU4HjUe0AHatTyeSOBBAhyd6yQelvu5O9WaTHWxlw4FMkBEe7kexVwrFh4KRBIkU4TRtxG7IBQVioifvvrSNd7/+Z2+JVweL1cymP1djs1kZ2G84gf51i/acTUvg4KG/CQwMoU/3QU1qG6NxZJL65yZsnloCbxyJaLt4/AvodgsbT3dn2fuLGNRbz6tfu2jWJYxceSLeXN0FHTVhzgtTWfTJevYtPIq/v4a49k5cLrFRlOZlMhl9B1waeRY/Pw9Gjulc43G//7KLzIQ9tGsp8u5SOZNuvZ7W7cIuSZ+qQ8KZ/UQ5WqEU3EGIWKk9J8Q9eHnUY6fJRQVyqUJNSOsQcg5mobHryJAnE+KKxEPQ42HVc2TvQUYNHd9kPsSXjWyZrWZ+/HIJ/kWhZMviOXX6OPffObvWA85X331M8REzWqcny/Z+x5AJw+neqfroSWLyac4knaJ5VEtaNm99UVi9ttjx7ed4nVTSzKUn98BeXIkFqIf3qdQg+/6ZI3E4hmEwWJjq71H6wxYWmjl1IpPQZt7VWjJcrZAkiQB9EZ++rEcQHCz8cDU6Dw3tO1Z0BiguslJQYKJZmM8V7wlZghW/7Oa26wz06OyeoNq3LuaXH3Zw4y0VpRou3FZ0W/M0HtGyWBzk5RnxKicqKymdPDK3cque6tCyVTAerU3Y99pQCWqKfNK5ZXIrVBo5bz+3FYvZTrAxGrngHjIEBFzOy1PJfCVAlCQ+/OQNPNP8UaDki2MfMOOuBwgOrN6uqASHju1l3bJV+BYHkyo/x4mTR7jz1oerHfiLTQb27N+FRqOhZ5d+pQKSdcXeg7vYsnwjAcYwbFhIyvySFg/ORlbJYjda1wrp2lf5y56OsosMbXQu6ZaTiOJRzIneSKJE+45hV82zW1soFHIyUjP4eKHWXT149DSfvmvhgVkTKhzncLjIOFeIn5/HZYsO1RU2m5PTB/fw2jNugjNuuMTshWt4Zn79DabrC0NRHhKu0tciIlHRsfW6t6PjYjibnYK33R8rZrQhGsaPuYl3kueTa8jAbrMRK5QV7Aii0CSC3CW4bGTLWFxMe1sEgiDgKXmTm5xBRk4aYcGV2/SUh6G4kLwzeQS6wkGAIGMEf23fVi3Z+mPbGg5s3IeHyYcj2sO0G9SeUcPGVwir19hnUwFFRTm4kgrxFGNBgEBbMOcOnKRFix6VJt3HerZDqZRX0HI5cSyN5Ut+ZdRAJ9v2yVB4d+SmW4fUeP2rCVv/OMRD0+XIZO4b+fF71Lz0yd4KZOv3X3Zx9vgemofD54cVPDB7KqFhPpepx7VHXk4hsf3LJpfYKAXLtxoqPbb8tmJjVryaTTZmjF+K6aSObI4SLsXgUJvpNNqjRn/CyqBUyvns5xt544U/MOTnM2V8a4aMbMnNA34gKqc7LsnFaQ7iLfmjRIUhOIn77urdaJ/naoPZbCS4IBqt4FZNC86LZu3G35h+8321On/71s0EG91btipRTW5iOvmGXPx9Ks8/zC/M5bPP3sUrOxCXzMmePTt58N45KKpR2r4QVpuVrNx0du7cQqDJPXZq0OGbq8V6+AyB/hf7xJbAT6bF6KkgXqHA5XRRtGgJE/uJKOQyXv7ei2fmT/9HVVmbzXbCAo2EBLkJSZf2SpatrThHpKXm8/k739Ojg4uEFIjr3Jtrr7tYWf1Kg8lkI6RckbBcLqBT1z0a3lAcXP0zlmNZ5JFBhCSgQIkhKJv7bnysXu2NG3UDf3pt4MyZUwT4+TH+2nv46tuPaZbVAoWgJEWKJ0/Iwp9gTHIDQdHBTRpNvnKejhosRspDkup+YxzYvZcAs3uA0Vo9OLLvIKOGlYmV1iQdsW7TbxzecQi5VYnBlUeAFFI60Oq0CmJEbaVJ96J4lC/mHyXpgAWZWuSul1rz50/7+eg5BTKZkpGD4YW3jmAs7nPVrIxqAx8/L1LOuQgLdd9iKeccePuW5XoUFppJObGHlx93D2ZTrhN57r3feXLerfW+5rpV+zh2MIGwyGBuuGXAJXuQBgzpxAdfn+K5R9ztv/elg0GjKvfxgtpWMtYNS77Yi2NfKM0EPWbJSDZptBuu5u0vptR7pab30vDS/8p8QpMSc6HQLRgrF+S0lDqSHnyQXgMjeei2vvTu3zBPxasaAheMWRINWx8LSGLVY+DKtcsIyo50RxYlKDyby8Fje+jesXa5kOey0vhm8eeoCrQUivmYJRuhglv8VlBIdIoOITSo8jHw2MmDnFm1EhsS6h4tKI6x8/4UGd07ue+NNi1MLPt+G7fc/s9ZMKrVCgoucIEwXWDb9u3nv/PO8wJqtXsMe+a1XQy8phMenvWrAExKyGbFsm3I5HKm3Da0Uv/BxoCvr45TSRryCxz4+co5cNSOWt8wIeQEY/XV/OmWwgqv9+w9Q97BM8Q4YwkklBzOYfIp4IkH56GvzxYi7i3Ewf1GMLhfWdW71WhFL7i/xwhakKg4hqaFgtjmcQwfPLZe16kvLhvZ0uu9yNak4GcIxSo3o41S0yyo6pVVeXjrffGO8qL4RCE6l54Cz0z69qq4hSNJEkdPHSAnJ4v2bTqDdMFQKNU+hFhsMnBo50GCi91RGV8piJPCfqKl1hi9ChgyYHiVSfdb391C0WIv9I4oREnk5bvj6TVKjUxWRhgDApwYjbYrmmyJosjObfFYrXZ6921ZY1+vHdeNV547Tkp6ASqlxLrtnjyzoKy6Ly/XRGxU2eSi08lQyWuwAKgGi/9vA21CT7BwlpJ9h7N4Z2EWs+beWO/2qkOrNs0oNoxlzms7EAToP+wa2rZv2qofk9GB4vzjqxM8CZNiCA+3NGpIvFmYD7IgE1KB+zlxCnb6D4vhlQ+adpC6EqHTemLzMGJOVaFAQZ7/Oe4YXnvtq559+vFn9ib8ikOwyE14Rurw960Y1crKyeDYyYMEBYXiconIKCuukYlyHPbaec8B/Lr8e4KyIpEJMvwI5rRwCE/JG5fCgU9LL0ICK8/XycrNYNWy5YSeTzzOWncWa18rkXeWRXYjwhSkrkmudV8uF87EZ3PmVDpxbcJLCzuqglwuo3WXHiz84G+6tBPZvEvOtddXrE7TqJylMgsAMZEC+fmmepGtpIRsfvryexY8ocTugDkLv+KRuXfg51eZ30TDIAgCs5+/lTc+XIEkWsDLg7EzYkoJU10XhyWiz6dtvao8Jr3YgMnsFjTNyDKgSTWiFt3jl1yQE0IEBr2q3kSrKvgE+mJMNqE979vh4efJ3dMfQVnPLfiG4LKRLa1Gy5Rbp7Nn/078/KIZ1GdYrScKQRC487aH2LJjPVnZGfTtNIHWF2hiLPnx/8g5lI/armXPn7vxifCiqCAPvd0Po9JAs5hmtb6eyWxE4Sg30AkyAkICadGtOW1aX0d4iHtVUFnS/ekdebR0RJaepznnTZJJwR+7znJNHyV5+S42HfWg682pmIxpV6SSeElC+Oj++TTzhtdf2Mojc6dXW9ovl7urbo4dPYfLKfL8uIp5HRGRviz+WMFN49y6MAeO2tH71Y5sV4a8jATGTHP/Rt07KVm5KROHw4VSeWlySbr3bkH33i2adM+/PG66vTN//PwrisSWCAgURydy633j6tRGQYGZ40fTCW3mU+nko1YrmP/ZCBbO2YzDJBARp+X5N2tHtERRRBCEy/LdNAVkgsBD9z3J5u1rsdlsXN9n8kVkqTr06NwXby9f9h34i6jAlgzpP6rCd3X81GFW/vgLngY/DqkO4dFKQ75PJsGFUbhwYgk10Ll9j1pfT3JIFTxhfbX+RPZrRnizaLq071nl73T85GE8C31L3w+yBZN4NoUX34X3X5QQBHjhQxsR10RdEnHoxsLvv+yi6NxuBvWETb8LnG7Rj1FjqxcCH3d9H9LTWpOeVsiMR4MuIj4afSBHTyXTvpUSq1Vk71EFo2+tH1n4/eftzH9ciVotQ62GWXc6Wb/2ADdM7V+v9mqCt7eWx565iTPFR0m3FLK1uA1wsYRRdSghZ5sLW5WSqapwLl9LiE2DLg0805zEKHwpjvbBdKIYneiJQZNbwZu2NhBFF4mp8YiiSExkXKVb6jdeP50ljv+jIDsDlHDz9bfXmmiJoqtRbYMu6zZiZFhzIsPqtxUhk8m5ZkDlariFRflknMwkyOHeNtQVemL0z6XT2K4kJp2mbWRrhvQfVetrBfgF4/K14TQ7UQgKihUFtGrbttIwZPmke6vJhTHxHE4ptLQE1ayxENPtLt7YuJ33l58hDwXhk2/hz6LiOt3ojY0TxzLIzjLQqWskPj4ViwW2bj7BdYMLGD7QvW3QNs7Fa1+s45E5k6ptUyaT0aFj5REflUrBXY9M4em3VqJWOvH0DeeOOqgbXwjHBUExq53SfLFLgawMA5/87wf8vKwUFCm4Yfo42rSrP1msCmcTc3lh5npsRRAQqea1T8bi4akmtJkPHy4fz4evbkcSJV6ePaZOhRbHDp/jmRnrcZ31xelZTNw1al79cHyptUcJ2nVsxrdrb6l1u5IkMXfmSo7vMCDIJIZMivzHeiRq1BquHTqh3ufHxbQhLqZNpe/9sWktQQZ3NMnDoSc7OZXxN09mz75daJQqbho1G62m9kU9oZFhZKZm4yn64JQc4C8xdvjkGieTw8f2YsWFB+4UAItgoplPBKbikUx8eBNmmQNr17509PMkwlKWp9rUyM0p5ujhNMIj/St1LTi+fx9vPeuOxnftCLPn/10j2QIIC/clLLxy14S7HhzDFx+tYsmKHGwOJfc9Nq7ehQJyhQKLVUJzfsPAaJZQNoIFWVWQJInX3vgKTLkU2VWcktuJnXjDRRJGVaF8NMttwVP5NqTocnHky+8wnskhRS6ja5eh3DDAbfvUOfphVm/8lZycLHq26kWfHrUfJ1wuFx9/8Sb2JBFEMPoVcOf0hwgLqZjzrVKqmDHtgVq3C3DwyB42rF0FDgGtv5Y7pz9Up2etKlw5OVuNCLvDjkwsW8UJgoAgCQzsO4yBfYfVuT2FXMHdd85k2S/fYrY5iI6OZsyIqkveS/K/PlnyBS1tbTnDUTwlb6yYUQT6EmDyJSDCHYUwKg0oir05naWr9Y3e2Pj8g5WEep4hNkrig4UKpt59IzEtylYpFrOVwGZlxEXvKcNVjt2YjDaKi60U5JtpHhtQa3XpiEh/nnppeqN8ho49uvHuFzu5briMnftEAsJa16pMWxRFzibloVTKiYgs06cqLrJiMtkICtZXmvv1xYe/8MZTTnQ6FaIo8dDzK3jhjQcaNZIjSRKP374S9ZGWKAUZ2UesPPPASt5d7Ca5ERF+vPph/aRE3npuK/rEOHd/i4PYu/wot8R/w9erpuJVD2PvEnz9yW5OLpOjt7nNdTd9lk6PAYn06d9wO5J/EwSpYlRQJsoJDmrGbVPurVd7E8fezO+KnziXkoZKp+Ke6x+pkWgZzcXYs11YMXNWOokcJUWaPF656T0UCiX7EmJIlFlApSA+zS1afDnGr4P7k9i0/HfGXONi/yaBvbs6MuW2a0rflyQJjbpiPlz51zabE7PZTuY5A4HB+lobUysUcu6d2ThSPlOmX8PTC77ikdvtmK0iny3VMveVbrU6NzenmLw8E9HNA0qLFBwOF9lZRQQE6istXPhy6W+M6W5gaF93PtPnS4+yYmtnzrW/uMDrQpQQrc25rYlPK4tYVYaDq5fjudNBiBiJJEkcM69jSLcOeOj0yOVyxo2snVn1hdixZzPSGSX+kpsIa3M8eP+915l80y01qhJUB4vVzPqVqwjOd5NHe76Npcu+qjNhqwz/SLIV4BuEupkC6xkzaklLgS6L7l0aViXi4+XHXbfPrNM5Qd5a8nDQis7YsODChcLbC48Uc+kxnjJn6ZZjZVpdlxrpaQV4CAncMcW9pOrbXeKpN9fx5Iu3lR7Td2Ab/vfyTt6aK6LVCix438Y1o3qSnVXEB69/R7BvMWdTzLSI1rA0z5N7Hp1KWBUeepcKo8b14MSxUFbuTiCmZRjDe9esu2a1Olj43GJ6djBiMsOygmY8+tRkvvtqE4aMYwQFwKGTWp588baLctR0ahs6nZuEyWQCYcEuLBbHRZGhumD18mOs+O4EcgU8Nm8ggcF6HLlqtOe3f9SChpzU2ufpVAfRXnEy1+CBeMyH9179k2cX1j7qeyGOHcxEZw0q9RhTFvpwaM+5/8hWHdGuc0cOZB7A1xKEVWZGE6bE16v+EjEymYzxo2+q0zmSJCFIAtFCKxySHRERr2DP0rL8muzPmopwrfl1E28/o0QQVAzsDc++cQSzuX/psygIAi5ZMIdPZNGxjZK9hxwI6jAkSeLj//2GozgJk9FMsclFZIQX4a16Me76xhFhri38/T2Z9fwdbN5wCIVCwdxXOtdq0frjN5sxZB4mOlxiyWdK7p99C0UGE98v+oVObUSOxwsMHTeC3v3KPA4TjMc4dTKdOePLcstGD5KxZO4RlF6R1f6OFYlWCFKKGp0DPFLMmEyF7NnxOy67k5CoFrTrMABrUgbBors9QRBQFWrJyEmnRVTDPBeLDAbUoqZ0nNGgQ2PXsW3zpgaRrXxDLgpT2feiEtQYi3Ib1NcS/CPJlkwm4947Z7Fy3TIKCwsY3HEoXTo0fUnu0EHX8vHxt/HPDkOGnILgTB4cN71CEmA33LITWWkWpOZNP2AVF1kJCShb5SmVAiplxWpPHx8d98++lZc/WY8ouhgysiedu8Xw6vOLeWuuiIdOD+iZ81IOr86Blz9ZyZwX6l9VWF+0aRdOm3a1T1T/dtEm5txjpnmE++FauTGdn77fjcJ6lHmz3OQqO9fO+5+s5uEnKkYyLQ4tRcVGvPRynE6J1ExFg4jWprWn+OSJI3jnuQspHjr2G3PfG4ToYSnNC3NJLrTejRM56zIgmI37svBxBmOXbBRTSAiRmIsLGtRur4FRLFmdgqfJvZXjCMij98C+jdHlfxUG9xuJ3tObw0f3E+oXyJjh1zd5/pvewwvfaB+Kj7kLkQweufTqWfG3rN7+rH4J13WFVlUxbzLAT8BisVd4Hh95ajJLvvyDJauyCQ0P4aHHB7Nx3SF6t0lh1BAtoOXPnWZy8x3sO/I35lHdGvQ81wc+Pjom3lB7opCdVURR1mHmPuwevyaOFHn+/ZXYrWY+eElRmkbx8AsbS8lWCVkqCm/P8k2HuX64m9D9ukYi0rMdxUnOKolzZUTLM8mJh2imQ6QP77z3EQEZ4cgFBTnZp0iUW/Dz98SWZkUtuMdTp6eNAN+Gm9P37NaXRXs/IqTAnYZ0llMEEYZDNNdwZvXw9wnCobcgWd33lBUzPgGNEzi4bGTLUFTIx5++hVKj4obrp+Gtb9xIiFKhZOKYmxu1zbrCW+/Lffc9xqYtq0EQuGnI45VWWzSlQTbAmdMZ/PD1Kjw0LkS5DzlZKkYOcuHrI+eX1Tai4jpc1EZIMx8ee6ZidZ9GacdDV7bFFhutcucayJ0N7nNToKjAQHR42SPQKkbGJ/P+oEWki8+/tXH3NG+CAhQ4bBc/wPc+Opnn3voRvdaCwajg9vvHX3RMXfD7D8fxznOHrs+RhCNFwcIphxBDnBTEHkNh1aEJcvHSB3VLgq8KM58eBMKffPvBXyjNemJpR1GzRKbeXfdt9vKYfEsXkuLz2bMxEQSJG6a3onO3xs9lu9yw2qx8/PnbIEGv3v3o2rHqSqz6olun3nTrdHm1zGZMe5A/d24gMyudPh2uo00lY0Nl41eJ/U9JHmp1qCsZs9udfPz2r+AswGiRodL4smXnOQb3VXEu08nJJB03X5DMLpfLuO2uivd2csI5Rk8q20rt0VnD+18UEh6qpshgaXKyVVfk5ZpoUS5VSqeTkZ6cik7j4rlX4YkHffHxlhPgI1YoFjpt64W+azCfLpWzatMJXBYRX90IRvXqz75qiHNlRCtG1NItNpjElNMoc7XIBQVGyUC+LQfXNheSXsQWaELr0CMqnPQbPBgfr7rbiV2IoIBQpky/nc+/eBepWCCECCSlSFhMw6rCNWoNk26cyooVy8AB3kHe3DDxtppPrAUuG9myFtvQFfvhlJx8lv8uj818tk4CfVcLfLz8mHTdtBqPayqDbJvNyZLPf+a9eXLkcoGE5Gw+/yWEN74SEJ1WWnfoSq+eLVnz+36ahQfSqUvVE6Wg9CYlPZPIMCVOp8TRkzbiWmrwD7nyzU8Beg3owBdLN3DXzWokSeK9/zPw/nxvmkeqWLHOyPI1Rry8VETGXJz86efnwdwFMxqtL96+ajIkGy6ciIg0F1qDDVxnQwgYl82rH49F51E//Z7KIAgCjzw9mAk3d+C9BdtwOfOY/uAQ2neq2qpIFMVaaZc9MW8ozGu0rl6RKMjPp22OD4IgsOncerRaHW1aXkxErnbIZLJaGfJeOH6JNg2nCSZd17oWY1jdIvifv/87MyZk0iJaicvlYuYLmRxM6cDanelodJ489sxw/tjgJnj9BraqcjuuS49WLFsdz91T3STk51VGOrZTsXyjiuvvujQaV42J5rEBLF2k4LrhIhqNjM07zPToJDHr3gDyC1wsfK+AuY/6klWgrbQqO3jQTSjTwCfFXJpnXB1xTi82VEq0ADx0elxqBzjhHGdpSUcESYAiyPRL4qHHH0et0jSq9mF0eCwvPvs2K9f9TG5ONlFRzRk2aEyVx9e2QrpF89bMeuTZRutnCS4bu5FLChBAISiQ56vIycskNOjqmKQvFaq70euLC5PuM84V0r2DC/l5YhsbpURwFvHoc3cCsPevM/y8aDGTrpU4eAT2727FjPsqrxK855EJfPT2L4j2PBISCgkKCWR/YgtuvbNh0ZGmQr+BbVmVb+SmezeiVjoID5XxxZIiXn7Kn+tGejLxjnz6DunIbXddmvLr8pj9whDuPvQjeUcENI6yBHW5oMBmFBuVaJVHVLQ/b30+odpjTh7L5LkH12MvENAESLz+f2OIav7Ps5iqC+QuRemgHWgMY8/eHf9IslUXlFZiJ4CpXB5qbcawdMuOWnuGOiwFtIh2Eyi5XKB7RxftBnQguvkQLBYHC+YuYtp1ZgRBYP4z23nm5RmVPj/desaSntqLOQsPkZdrwGRVEBkdwiPPXNekyuL1hUaj5J5Hp3Lnk4tRiEVotSIKOSSnOoiKUGIoFnjpI28efnJCndqtijiLGVFIWYaLiBZAcEAo0V2ac3Z/EpKp4rau3KlEkqRL8p0q5Aom1JCL6HQ5+erbjyhIL0BSSPTq149B/YY3el9qQq3IliAIo4B3ATnwf5IkvXrB+7OAuwAnkAPcIUlSDSp3ZXlCTpXjfN7Pf6jsRm8ILky6DwlswckzZQ9CsVHEKZUNRBtWbeHtZ1QIgkCXDvDi/05jLB5SqYipVqtk1ty6Jd1eacjPK+bFJ/S0buEevP/YbmblBhMtmqvpM7gH0+9umofSy1vL4tW3sG/PWeY/shlXYihyQY5Rm8OAQU1jECuKIu8u3MqJvTno/ZU8+8YIfH11PP/getSHWqARBMQUkWcfWMs3a2ovB/FPhERZXqNVMBPi3Tgm61c7ytufleSh1jSGlUTAapun6hDVFBut6D3dk/fJBIHB17vnj+U/7eCxGTbatHQvWMJCHPy8dDu33lm5X+h1k3rDpKvXdspDr6ZlFMyb5dZ4s9lE5r2Zz/yn/FFoA5jzQs27KpWhMuJcqpF1AdEqweTx08jom86vv3+P6VQxHqIeh2RH7itDp218cdbKcPLMUbZsXo8EDBwwlHatO7Fi9Y84jgkESW5ZiL837qJ1q/YEB9Td1qwhqJFsCYIgBz4EhgNpwB5BEFZIknS83GEHgO6SJJkFQbgfeB2odhZ2Kuzky7Jwaux06NMJL8/6bZc5nQ5ESUSlvDQr/8uBC8VRGwJJeUEOmPYMXQcM4pF5f9IsSCIpXcPMpyeUHq9RVXRO9/UWsFodV7S6fUOQl1tIi+iyxyAuRsnTrxThFxLMk/OuqebMxodaraBv/xZ8utyPhU/+gcMs0n9wM+6e2TSVUa8+u5G9i5x42MMpkuw8kLyMb9ZMxV4oQ33+npAJMiwNy6H/R0CmlZHLOQRRQB4Go4ffU692JEnCarOgUWv/UQKwdRnD6lqJPeOB8TyxcAkx4TbOZUPvIYNKVdstJisBvmURFH9fGRaztcGf50pFQb6Z6HIbQmq1jOxciYeed3HL3Q3LI72QOAeKWmKonGiVIDQwjHunP8avK78nOyMLraeWeyY90qB+1BZp55L57ftlBBvcpGpVxnI87vAkLzcXnVQWzFEV6ziXmXLlkS2gJ3BGkqREAEEQlgLjgVKyJUnS5nLH/wXUSKeDgkOZeMNkvPQ++NVzVfjziiUkHIlHkAT8o/y5/ZYHrorwb23QLTa4tFKxIfCUXVxdEtnHh4HXPITZZEfvVZFEhUbFsnLjEcYOU3E21cmpZD031VJ3prFhtzs5fiwDpVLO7m1HKMgroG3HWK69rvbK2TWhQ9c4/vd5Ik/cr0eSJN7+1MDgcaMZN75ro12jroiI8OOj7+qnP9MQnNybj4fdnZ+mFFQUpajJyzWjDZAQk13IBDlOyYk++J/xjDUEAf5BTJ06HafLSVhwRL2Upk8nHufXn5cityqRPFxMm3Y3oUFNE8VsCpQXeK4euosXhdUQroAAT156616Ki6zoPFQV9PRGjO3Jwo9O8drTcgQB5r/v5KY7G794obZIPptHfp6JgrxCDvx9HJ2nB9PvHtFoaQHNwrx5f7uLG8eK6HQydu21YJX8WfDGfY02F5b8jjX5B5dALpczeXz9ImoNwd/7d+JnCCldtPgXNWP3nu00Cwsj+VQqHi53QMfmbSSinmLqDUFtyFYYkFrudRpQ3d17J7CmsjcEQbgHuAfA3zeQ6PCatZCqwvHTh0jenULw+cnBeKyI9Vt+Z9Q1DWPztcHh4/s5dfoo0VGx9OjS75Jeq7Y3eJWoIul+CCdABnoqDmhTbhvCquUePPlmAnpvL556aeRlWXEXF1l5fd5XjBpgITPbQVaSjbdfDGDVpl1891URU2+vfFugLkhKyGbXxs20jnZx35wsCgpdPHynD0tX/31Zydblglwj4ShnPyRpbOj1al5fNIa5963Fki/hGSzj9c//nd6IF45fDc0xXf7LDwRnRSMIAqJB5MefvuaRB59pjK5Wi7zCHLbu2IhSqWTowNGNoo5dFWozfu1LyKp0UVhThOvChSJAeIQfN94xhWff3QJITLx1MJHRl2eLd9HHq/HgNJHNRH7/rZhX5/qhVObywnNf88Lrd9Zbbb4Eoijy+ovfc+0gF3NeziG/UKR9axUDusLJ4xm0bV+RuJdIN6QXG9z2OdR+t6LB81ATwM/Xjwx5JirRTWStMjMRviEMGziG7wsXkZWSDnK45pqRjSI/UVc0aoK8IAjTgO5Apbr7kiR9BnwGEBPRslKL+83b13Em/iQenp5MHHdzlQNBWnoyOpu+VNTMw6knM/Ncwz9EDVi76TdObDmOl8WfnXt2cDY5gRsmNE5p6KVATWXZ6ZYdF52j7wc9+kUSpvWpVH24KbD4/9Yxf5aTwAC3Bs7v6438ucvC2GE6nn4jAaiZbCUn5bBl40G8fDwZN7HnRYPbz99t4K1nlSiVPgB890sRnh5yvD0buHd7leKJVwbzzB3rENO8wcfChLvj0Hmo0XmoWbx66uXu3mVHbcavtIxk1q5fAZLEkMEjiY2u3O/N6XQg2OSlxFYmyBCtlTbZqMjJy+KLzz/APzcMF04+OP46D9//FBr15UsTaGxx1JgWwcx+9vLmkqYk56GT4nn4Dvf3OmKghlfezeflpwIY2sdM/Kls2rSrfhvLZnOyavnfGIvNXDOyK+ERFSUT/tqZwMi+eYwdpueWSXrMZpE3Piqgb3cZ+xIqkq3qxEivBiJVGwzoPYzjJw6TdzYDJFBFui39ZDIZt9x41+XuXq3IVjpQvv4//PzfKkAQhGHAXGCQJEm2+nRmzcblxG+Ox9segEmy8lbyy7SIiSMkOIyBfYZVCIu2juvAoa2H0BrdiXcGTS59Wl/aKBPA8UNH8LeGgQA+9kCSTiQiXle7kvjLhaqqS05TtdWEh+70ZbHeKIHNYiEwoOz2jApXcjrRrZ5ut9ccaTt+NI11y37mkTvkpGeKvPLsSeYumF5hy0FARKksn58mJ7/AhcHUNMmcVxratg/l201TOBOfTXCIN6HNGiY78m9DTl4W3375BcH5UQgILE3+mojWUXh66Llm4KgK+kIKhRK5XsBV4EIuyLFLNrQ+ly7CVIK1G38jKDcKuSAH1DjTHOw5uIMBvRoeKW4IKl0UmuOIC86iqcRRGxP5+WaiwsrIs1YrKxUZNRRBpKb6qdfhcLFg7lfcP9VMkL+MNz85xqTpN9EiLqT0GIvZRlS5R1SrFRBFWPUHDJ0UXfr36sRI/ylEC9zbl/fdMZv0rBQkSSI8JOqKmpdr05M9QEtBEJoLgqACpgAryh8gCEIX4FPgOkmSsuvbmYRTbqIFYCAfMQvMO50cXXGMRd9+gCSV3byRYc0ZMGYwBeEZFIZnEjc4jp5dLy3ZcrquDrHOytAtNpgYUYtnkhNdGogZmmr/xaeFsDLlOjYXtiLBeKzU4b2p0GtARz5b4ubsTqfEh18aCPKXs+B9G/2G1qxIvvrXLSyYoyIkSEG3jiqu6VnI4YMVDbx69OvC+1/akCSJvHwXn3xj5OdNPtw/q+6r4tSUfPbsTsJgsNT53CsJnnoNnbtG/ke06oG/923HNz8EmSDDiYPi4iKse1zkbSnik4/fobAov8Lx02+7D0vLAgqaZSC1s3Lb1Pol2dcWLpcL6dIHz+qN8mOUlKJGzNBwOiuYb1NDSLcUNvkY1BC0ah3C2q1KzGZ31erPq4x46QVWrLeSkNmMmNjAas/fvfMM1w8vplNbFaHBCl57WsXyHzdXOKZXnxZ8/YuSomIXkiTx3GsFJKbriO08hOjm7nk0wXiMzYWtqhQjLYHFaub02eNk52U08jfRtJDJZESERhPZrPkVRbSgFpEtSZKcgiA8BKzDLf2wSJKkY4IgvATslSRpBfAG4An8dD4sniJJUt0dOuVSqTWJgXxa0B4E0Is+5CSlYSguqLA67N19AL27D6jzZeqKlPQkfvjhaySLgMGVh6QW8LEGYlQXEt0mBplMhsvlQhCEBv/AoiiWKjZ37tijgnbP6YTjrF27AkEUiGoZw7iRk+uUT1Ux6b76VbSkLCdMWGy45FGuk8fS+XHx73h7ujBaPXhozk3stQ7iqTcP4xIFegzuwck8J8MnxRIdU/1ABe7d5fJfjVIJoquiDdHAa9qzSyXnqbcOodJoePPTO/D21pKTXczalQfwD/CmR2+3p9/3i/ay6rvTCILA6JtbcvMd3Uvb+fR/O1j1aQpivhZF1FYWfDGcdh2rFge9VPjpmwP89NkxcAm07+/Pc69dnny7fys8Pb1wyFLQSFqySSeKVqgFtwRBQE4YGzav5IbxZSkH/j6BPHjvE5e8X06ngy+++ZCiDAM20YLdw0GEqSUunFjCDfTo3A9JknCJrkYRlj5z9iR79u0kwD+IawZci1zu3r63WM189+MXmArNaDzV3HzTHeg9KmpwXVjFeLk8Y+sKm83Ju6/9iFoooNgkMGzcNdz/+DTmfbQKGU78Q1rgE+mFy8ebx56Jq7E9UZRQlPsp3I9xRabsqdfwyNzbeW3ROpx2B4NHj2Bmz1hcLpGlq9eRVWxA0XkMycZgEo6bSHvvO5RFIl5eesbf+WBpOxnZaSz+6jNUeR64tHbierXmumtvaKRvpvbIy89hydL/w2lyovRUMm3qPfh6N1xt/kpBrZ4sSZJWA6sv+Nvz5f7fKCqWY0Zfz49LFqPJ1+OQ2S68ty7bxPHjj4sJPBeJIAgESuGkBZ0msnsEHaP7061jb75c8hE5yTkgSLTr1pExI66vudEq8OW3H2I+5sTDpWf14RXkjc6lf68hFBbl8+sPP7i3KASB5IwUNuvWcs3AygVHq0O32OAaqxwvlUF2bk4xn/zvJ7x0FgqLldx27wQiowP4ftGvfPiyHJlMTkGhiQXv/MycF6YxdETnel3nmmv78tI7vzPnPiVpmU5W/ann+VcvVsPv078Nffq3KX196sQ5fv1mGdMmiJxJlnh/WxTde3Vm6SuJeOW7K1iWJiUS1cKPvgNjMBZbWfVlIt7Z7mIP6UwQbz77J1+uaFqrqNMns1g8/wQ+ObEAHDqbx1fRuxk5vjVFBgsxLQJRqf55Dg1XEvr1GsLhw/vIT8rC4jLiy4WLgsszfv22+gekE4pSnaF0bSLaXnJ8fQK5ZsAdHD62jy0b1yM4ZGgDNNw5/eF6J83vP7ybTb+ux784lHh5AvFn/sf9d85GEAS+XvIJ8hM6vIUgnJKDLxd/xMz7n7qojYpVjHWrVLzUkCSJ//twFab8FJxOiG3fiYk39uOLD1fy4M15NI9wC3g+tXA9rWfdxePP1i/XsVffFrz8tI7YSDuB/nLmv29n9KSBFx0XEODJI3Mmlb52uUSeefJDpgxz0CtCxvz/fYN24OMkv/obrc7FIhNkWHPMfP/Tl0yfeh8Ay1f8QFB2FDJBBiY4tfc4hv6FeOt96tX3+mLxkk/xTg5BLshxZTn55rvPuHvGTLLzM/H3CcTzKtfivKJG3+aRLbj/4dkkppwmM+scR7Yewrc4GIvCiF+Mb6l/osvlwulyoFZd+qROURQRLVRIZPUQPEuT4tdu+g3zEQfBLvdAdnL7SVrFnaRFdN1dzYtNBgrOFhIohoMAAeZmHNjzN/17DSEpJR5Nvr60H14OPxIT4utFtqAW1SWXaLD79N1lvDLbiqeHHKfTxcPzfmbm07fSKkZEJnPfjr4+clSyuhmKSpKEKEqlOVlduseg1U5m4aK9ePt48sz8gbWq/lm+dCNvzFUilwt07Qh5i1P5ZSno8kJK50pdXgh/rD5N34ExFBfbkFnLyrgFQUC0N334ev/uVBTZfmV9tPrzw6ID/PpuElhUaGKNfLxsEv7+9ZfxyM0pZt5j6zEXumjRwYc5Lw9tcEXVPwkKuYIH73mC00nHMVlMbFy7GiFTQEBGQVAGN1wzC2h6ba38vHy05XSGPMxetGvbiS7telJsKmLL2g0EF0QDYC+w8uOv3zD95nvrda2/dm4jyOgevzxEL3JTzpGdl0lwQCimfBMBgnsMVwhKbAW2Ki2gyms81adS8VJh5a9/06dNEtf0c4sgf7ZkL4cPhmMzF9I8wv03QRDo3UUkJTkfnzrk4blcYun4pVYreObl2/lhyVZMRjNjb+5VIV+rKnz/+xqmj3YyuK/7ut+2cDFp1vfoC9VuMgVo0GHIKVtsSw6p9D0AuV2F2WpqUrIlSRJOo+t8LqHbOcOQV8h7776GqkiLQ2dl8LXDG5QqJEkSv6/9idSkFORqGZMm3kKgX9PlrF1RZAvAy9Obzm17QFuIi2nDgcN7aB0cR78egwE3udn/1x4UohJ9M0/umj4TpaJy76vGgEwmQ6mXI+aX6Aw5UHuVTa4ZGWl4uspC4VqzJympSfUiW4IgQ7ownHceQQGhOHRWOJ8SZMOCSq3gt9U/oNN5MKjfCFTKxjNOrc1gZ7U42ftnCgA9BkWi1tZ8OymVhXh6uLdWFAqBYD8bHh5q4s/KSreQi4pd2Fy1T1L/Zel24o8ewEMrYXIGMHvuTSgUclq3C6N1u7rpFikUInJ52QTo7wsRzX04ozHgaXPnQVg0Blp3cJf9B4fo0TW34sixoxRUmDT59Ond9KXm7TqH4vRLgAJ3rlWe4hyuc3q8rdEAOA86WPjURt6swZqnKoiiyAM3/YL8QHMUgpJ9u4uYb1/PvLfqR/b/qZDJ5LSOdW/9t45tz5Zt63CJIjf3vwUvT2/SM1P45tvPkZnloJOYfOM0YiJbXtI+hYVHkHQqGc8SnSEfM1Fh7u3x/MIclMayRatK0GAy5FfaTm0hSRXtWkr+L6iE0vckSQK1xJ87N2Aw5NOz+wCaBV8spVES5TI5dJhtYDJ7cdrmTZj2VIP6WIK9uxNJS82mS7cWRDWv+bmNP5HMHbPKxrnhA2Ss3H0WpcaLtAwj4aHu9/YekXHb4NptgSUlZPPVxz8T7OcgK1/JrfdMoEVcKDoPNbffUzcHC6vZTkB0GXHSe8pQyCVcSnvp3OGSXCi0ZYuk5i1aEJ+agLfDD6fkQPR3NCkJAfc9ItOW3R+iJGI0F9HG3t19/9hh84b19OjSt94LlN/XLSPlz3T0Ln9ckosvCz/i0ZlzG3XerA6XnWxd+GCWR0xUHDFRZfvbJxOPsnHdGvSiD0aKkQzuEPnkWhg9NwS33XIv3/3wBU6TE7WXmlunlq36YmNacfD4Ibwd7gfLpC+kRWzdiRaAp05PUMsgDIfz0Do8MehzGNjXrWIeFhJJ636tObbnKAqXAsnXhfFMMVlFOajQcPTYIR6+dw6KRiaeVZVlB8g1HH73a56e5q4QXDgvjU6PTEelq/7GTS7ahdVqR6ORIYoS2flKNBol108by8MvrMZb78Rg0vHQnNptxZ4+lYU9fx9vPesmwCfi8/j2i43cfm/N5rmVoW2ndnz9006m36AmO9fJpl0annt1IBln13DszwT3MQO9mDS1M+Am4x//eAMLntxAcZ6dPj2Duf/xS++leCE6dApj3MxwVn8Tj+CS4RfpxLDDt/R9haDEXFT/Ao/cHCO2dA1egvv+0rm8SDxcgyPXvwDVjV8eWk/GjJhU4dgPP3kdhVGDgNuk9+dlS3hi1rxL2sdRQ8fzg+ErMpPPgVxi+NBr8fNxE4sg/1DsXhakXPfnsGDCL6j+vpcDBl3DmuyV+BYFYZWb0cd4lk7c10+6mR+XLkZuVOHU2nAKDnYu34YWT07uP8ENt04lth6L1Pri/z5aRXO/eAa0lfHTD7vp1H9EhZSCyhDdMpwdezPp38M9zm35S6RVuyium9yXN1/5Hg+VAaNJxqBRQ/H1rV1U65vPfuX9eaBQqHC5JGa++BsvvH5fvT5T1wGRvPJmKl/ME1GrBZ55Q8K7+TDa2vJI2L8NuU0FXi5m3PBA6Tmjho1HoVhF4pl4VFo19058pFFy9+qKm6fM4PulX+Iyicg95QTYghFyyp4tmUOG0+Wsd3AlLSkZvct9b8sFOcp8LVm554gIjW6M7teIy0a27A47b737MqJZROEp59Zb7iHAr3qhsd9++5E2YjcUgrvb8dJh8nJy6nTd5LRE1qz9DSSJ7j360L1zH/7cuYEz8Sfx9ffnulE3XERY/P0CebiS3AKAAX2GkpuXTXJ8EpIg0bfvACKb1V+d9rYp97I7bhsZmekMbX9NBbI5duRkhg0ei91h48PPXkdWpESDjnyyUSQpOXr6oDsqWA5FRgO7jyxCIbfg5dGBbu3G1blPlRGuM7u38skjLppHulfFb/raeeDHw4ReW+a6LrpEclb9gs6SgQk9/uNuQhhxN5PmLiLa34Cx2Mm1t7n1cTt0iqZDpweqnbwqQ9KZDPp1K4sGtmmp5Kvf8ur8GUtw7XU92LxBxZNvHket1fLki6NQqRQs/HAcZpO7OvJC9Wdvby2vf1L3epDGxj2P9OPumX2RJAljsY1bRyxFPB2ATJBh9MhixLDIeret99Ii6coUXURJRH3plQquWEgSLPr2Q/LT8pDkEr3792dAn+rlE/Yd3oWvKZQgwV08USDlkGc4V6d73u6wsWz5txjyDfgHB3D92JvJzDnHhk0rAYFRI667SGxVJpNx8+Q7Km1Pq9Ex8cabWLXyV3CAT4gvk6+rv+9lhzZd8b7Tl/2HduPv35J+PYaUfrbo8FhmP/Y8xSYDiSmnWfrVYpoRjQ0LZoOZDRvXEHtXRbIlSRLJyauRclMxHtPjf8Okyi5bZxiLrTiLznDzeR2s51pKzF644yKytXPbCXZt/huXKDBy/EAm3tCHj97OZvXmNJxOiGzZic7dogF45uXb6jx+AXh7OlCcz4aXywV89PXX+fP21RB521TGL9iBzCLRo/c0fE3eeNjDmHjNNVhsZjy0nhdFHocPGQtD6n3ZRkGzkAhmP/p86dbyV0s+xpxrRCd5YpdsaALUDdrFUmgUuCQn8vP8wamx19smsF7Xb7IrXYD8/DxaObq7xfzyXCz5/gseefDpas9RoS4lWuDeew4OLROG27F7M3/v2okgCsS0bcl1oypWVOQbcvl+8VeE5LtVm7ekb+TQ0X2YTljwtgeQTT6fZbzDA3fXvkJIEASuH9d4go+CINC728WJkCXQqDWoVWqMuUbihM4A+BDACWk/klhxC9LpdLB13yt88pYZL72cFWvX8ccWFz07TKhzvy4kXFK+A299Wbjay1OGVOhEzCjbkshcv4g3bo+nU1sF2bn53PrCZwRPfBLNtc9yWpVFXEQWioCTJBjL8i/qOlC1bhfBumUC3Tq5X/+130F4VMMqAYcM78SQ4Z0u+ntjWWxcaiz9aj/HDmRw/V2t2bUhDZdNYvCwCG69u2e929RqlUx9pB3fvX0coUiLvJmRea+PbsReX10wFBVgyxQJFN1FF3+t30Fcy7bV+q2lpCbjI/mX5tV54UeWLKX0ns/Nz+b7HxbhNLvQeGu4beo9eFyQFPzF1x8gO6VBhy95CQY+y32HouxigvPdThpfp3zKnfc+RKB/7beB4mLaEjezbV0+frWIDGtOZBV2KHK5HB8vP7bv2Exrupbm6JyTkjHZjBcdv23f1zxy914G9FaSk5vNtPkfIc1tuAm6ze5E71mRcKiUFcfPQwfOEr9vPa8+oUKS4Pk3f8Pb+2YenD2hSlJVny0ug0mD2WxHp5NhsYgUFjdsnPEK9qHZzXcgZmgI948k55A71UMul18VSeYp6Yns/GsLPn5+qHqaKMzJQ+flwbRJMxvU7uSJ0/ii4APkBWqcKjud+nUtzQNvCly+bUSxLClPJshxmmre4vAPCcCSbkYj6BAlEYuHkbEj3B5yZ9MS2LVmB4Emd45OUt5Zdvn/SZ8eZWL2h4/uwyvfv/SBCDCGkXD6CC3sHQHQ4kFOZgFmi6nJXMrrA5fowlPjBeUWQDKlQLtWnSscl5GTzugRxXjp3SHv60YpWL3hMDChXtctT7g8gobx2PwjfL7QPUDNXiAQFDUUXTkpqzAhnU5t3bdYUICCzhEG8hJtKFRqUGqIFxqe8BoV7U/zjoOYNf8vNGoJlWck9z9aqYHBvwJzH17JyV8EtBY/jvlkMPKhEO6f3TjyKFNu78bI8W3IyS4mMsoPjebS5Upe6XA4HOjEsmIDdbGOtIzkaslW+7adWPH3LwRa3GNUljyV8WNvLH3/628+xS81FJkgx5Fh5+vvPuOBu2aXvi+KIsZsI0G4UxZ0kicnU07RwtyxdCz1z2/Gzt1bGD/68iqo1wSNQltKtADUqGnX/mLCJ1eeYUBv930WGKCgf2sj5gITNHCO9PPzIPGcN/FJRbRsruTXNTbCoztXOGbLhv3Mu1+FIAgIAtx/q5wfNh8hOmZooxY23PfoDTz15s/otVaKLWrufbRxondXI07EH+H3pT8TYAjHIGRja17Ew/c+VSof0hD4+QTw2My5ZOdn4qnzatKoFlxOsiUXEF0iMkGGS3Kh1Nc8cE+ZfDtLXF9QkJOBTCXw4KTHS8Ovp+OP4Wn0KV01etv8ORV/vALZ8vXxx6604XGe19mxIsiFCqsUUeZq9LynxoZCrsAv3A/zCSM6PCkS8mnTucNFiX4eOk9S08puUrtdwmpt2E9eWpZdBAbhbibftQYJCA4ajXeRDorKqgjz8irmtGRngq/NgSC4qq0wKigwYyy2EhbuUyvdsqEjOtdbIuJqRmpqAfMeXoe1SCI0VssLb43i2LZCvKwt3Pp0hlC2rkji/tnVt5ObU0xeronomIAa7Zl8fXW1zkX5J0OpVGJyFuFxvjjG6mWuMppTgriYtvQYlc6BPXtAgh5depZGsZ0uJy6jiOw8AVEKKooLKwrkymQyJEVZ9EWSJAS5DAd2FLjHLIdgR6u78n+fLl16sDV5CwGWZjglJ5aAIgb1vjjP0mR253aWqK+fy4EQXcMjzIIg8NSL0/j2i40U/FJA+y4tuXFitwrH+Pp5cTYtnZbN3d9tUqoLvwCfGtu22ZxkZhgIDNKjqyGHFSAoxJtnX6l8m/efDFF08ePyb8hOzQQFjB9/I9u2biLI4JZZ0uGJNcVEUlo8LaKqzuWzO2xk52XirfdB71E9gVIolDQLulgCqClw2ciWv18ABk0WLrMThaeyVurJKqWaGdMeqPS9yIjmHNMeQ2t1R6RM8iLimsVWOKZj227sbbOL3PhzyFxyaOZk/MAb2bRiLbpCb6xaM627tm2y6oSG4M7bHmL56h/Iz80jJrw51w6bcNExft4BHN/fg3c+3U2rFk5++s2Dzq1ub/C1y2QjgoGOVR4XoJ3Bg3M+ZeQ1NvYcUBLkdR2dWpxf+VfhhbZq8XdojDmEBMLnR7U88cJtlRrONhZ+X3aETaviCWrmyWPPDkGrdevkPHjrj+zfmgWCyNQHOzNzzuAGXeeX7w6yY/NZYlr5cd9j/UtLvPPzTbzx3B9YjA7G3tSWYaNrlyAsSRKzbv0N5aEWyAU5KQfNvCCuuVjKSVa9ZPhn7+xg5ednEYwaFBHFvPv9eMIjag4bWCwODIVmgoL1V5xSc1PA28sXz1YaclLTQCYxaPCQWlVwDeo7nEF9L64wU8gVCBqpQjWWTHvxan7wsOFsWbMBZbEGh7eFyWOmsXnLWmypbmImRtkY3K9+xSFNiR5d+4FM4NCBvShUSh66bk6l/oyto2/hrlkfcMN1DnYfk5Pq04eIRoqoKpVyZtxX9Xd1062DeeXZZIb0LMZqg/2n/HnqxS7Vtnn8aCo/L15O13Yix8/I6DdiGH0HVJ903xCkpubz/oJtuJwSdz7aC3W0++9p2w9y9I1f2SLKkfl4MGFcw7bgMnLS2bBpJYJMxugRE/D3cWvISZLEhi0rSUk5S0BAIONG3VDrKNRvq38kb3ch3mIwkiSxdMlX6P28KT/7SjKp2vbOZaXx7TefoyzU4NDY6TWkL4P61VzBKYoihuICPHSeqJRNkx4ilLfAaUrERLSUXnr03UZt87fVP3Lq0DEQZQQ1D+K2KfdeNBFIksS57FQcTgfhIVEo5Apy87OJTzxBaEg40eGxVbR+9SIzJ50io4GI0OhSscKsvFT2nfiIoAArWdk6+nR8BD+fxnFCt9qspGWexcvTGw+dnqyccxSZMsgr2oRSBR6qnnRrN5Z9CVkkyiwYmysQIm0EOI/S/exqZs1wS0Pk5rl4+WsNU2b2vugajaGxs/izv/llYSp6QzNsmNH2z+TL5Tez4Jl1rP8sk2haI0kSZ2SHeH3ZNQwcUrmpcE344LWtbPowH4/iIKzKYsJGG3n3q0lYLA5uHbUE6XAz/r+98w6Pusr6+OdOz2Rm0nuDhN57lSKIBQRUsCAWEBVR17Wt6/b2uu1Vd1/XLlZQULAAKmCh9957KOm9TTJ95r5//EJCSEIqJLLzeZ48TzK5c+femd+c37n3nvM9Lpx4Qkt54uX+3DS14bkVFVUwe+QKLLlJVY/5+p2l57AwdiysQG8NxhGWz+3Pd+SeBwfX2UdBQTkPjPmKoGzlmvdKL6ctu+g3NJYX3phYrybX0oX7+Oil/ahsBrQxDl75ZCoxscGNei9iQp7ZLaUc1HDL9s3lsF+nz51g6ZKPEQ4VwgT33vNwnceSpdYS8otyiAqPxRxoweV2cfDYHoQQ9O424LJK4bQFmw+nkqkrQtU1FEsfC12ichllOsqKV4+glfnYHYJ+w4dy482tc1lJKTl+NAeH00O37tGknszHZnOydtVmtCoHqM3M/fktdcZw/s/zb/Pv33urduKe+KOH3/798VYZ18Xk51mZM3EpptTOqFBRknCSJ9/vxGFNT96d8B493YPQCC3FMp/iyBL+9Nxfm/U6eQXZvPf2G0QVJSHxkReRzrxHnyLIHMJnX31EzrZ88EhcwoWlh5GHZz/ZqH7feOsljKeq5TGKtLkMuW0om1avI6Q4CpfagejkZd6cZ+pd0L365j8JPBVWdYx+QrWPsJhwxo2/kX6967Z7JWVFzH/vP4hSDR6ti2vGj2Xk0MZlB9z77KRm2682l35oTaZOvAPfjV58UtZIXa2wl7N5+1qEEFwzdBxxUTWzssJDIxvMhKwPt8fNxq0/YLPbGD5kdJXH356IjogjOqKm3tTuo6/xwX/saDQCh8PKQ0++yk2j/tzi1yooymHXsf9l+pQKTqRq2Ht0KJ0Tr8XmW8r8v6gUJenFqzh6IpSBKSNq7HAVFkTQ/4LLODxMTXqZYGF6TTG/1hI1XLf8LOZSZUtZj5GSIzoy0otZ++0pEuUAEMpxQ4KvC4vf3dtsZ2vr6kxM5R1AQIDHwtldBWRkFLNlwynyDkm8pBNEKKVFDub/e3ujnC2LxQCBjqq/fdKLwSL49V+v5/trjnJoTw7XXDeUwcOS6u2jqLACcYHGklqoUZWZKP0+mqfvX86HX9dO/Ci3OvjoxQMEpSlZst48D39+6nve+PTKl/e42khO6sJzz/4Jt8ddw2GSUrLnwDayczLp3XMASfHJNQQndVodA3vXXpA0lsPH93Eq9TidUrrWivtsDxgMJqITI7FFACjX/LcLD3D/5CJ6dlXep3+8vpm0cx1JTGq+bAUo7/U//7yIPsl5WEySFxYYef7Ps3jxLwv46zNOgixqsnLyefnFJTz3h9qSQ+bAakcLINTiw+PxXhbx3y8+2Y8uNaEq9i0oPYVl80+jGWIkzB2FplKmJUREkFOScamuLsmaDauIKEqodGhUhORHsXHrj/TvM4QzJ1Ip8RQRRjRu6eLUyfRa1299BJgCcEtFnxDAbXTSs0tfUpK6smvPFixBwYwcfO0ld86lmxqCrEavGVNGGN999Q0xMfF1LlY+XfIhoRmxVVmJm39cT/8+Qy57nPZV5WyBIip44UdTYbPy2hsvYs4OQwJ7d+/k8XnPtcob6/G4efWtf6I7a0Ijtbyz+xVmP/goURH1B8m2B3w+H9GRiqMFYDCoCAtrmmJ7few++gHv/MuNvvJI4G//3sHhVA3PP+VFVBqF++5UM/vx7aQkDqJ/xwg4k8/pM3aCQjrw3nI9o4dJ1GrBih/dOPTXYE2tPqrM0St1zuPMQYBSmLbZTpfKVyOmTGo8GAxaouLN2NMrCETJ3LFRTre+LRD5EzVrMpZV2Hjk+q9xWH2U+6z0FMoKLIxoUk/valSXGo2ax/80lFf/sB1RYUAb6eDvryjyExMmdmfCxIaPLpI6hKFJLMd7SFFuLpGF6DCgEVpKs6rfm6OHs5n/r+2oVIJps3ohrAFVfaiFBnuZ7xKv4qepXHyj+mTJfAr2FRPgMnFs20LGTp3AoH7DW+W1vvnuC05sPI7JHkzq1pWcG32aiROaX27sSlFeUFblaAGMHuLj5PGcFjtbG9YeZfygPCaOV+zX8IFu3nznOyKCbQRZFKcgNlqDXlWG1+vD4/HViHN0ySDSswpJiNVSXOIlv9R42aosmIL0eFRlIJV7mQc3ASY1wcmR2FU7q8rd+aQP2YI7vVarw4sDTaW74MHDlq3rObHhJFnONHozrMphUrnVnDpzrEZN3/q4/bb7eLv43/iKwKN1MWzMqKraxzffML1RY4uKjyI/oxiTLwiPdFNOGXEkE1gazInUI0SFx+Byu1i+8jNKS0ro2bMvbocHwwWqBhqHHmtFqd/ZqosqrZniUsIjw7l18t31irD9sP5bgrOjqgrCqrJUrN20mkmtYFAOHtuL6pwOExYQEFXYgW+/+5LZM+uOK2svqFQqcnIDcLvtaLUCu91HQWHrBNUGGNzo9dXubnIHL2nngth7UNCpMn74RKqXjJzjnMr6BfmFgpDASSRr+kAhZIU9yLSfLcUY4MNKVxJ6XY+4YFF2vnRQRagSmNxFv53m7nI9+uth/OnhDWjSI/EGVtB/YhCRURbmL5nBhL6vYyyKwSe8GDpbefyZpuuTneeueX1457eH0OaG4zKXYvc4iM/phZSSEvbWaBseaqmnl9pMmNSda2/oQmmpnZAQIx++uYPdGzMJjTLwy/+5jkDTpWMR9HoNryyaygu/+JE9m7IwlIcQTwpSSnRmH0IITh7P4xczviMovRMg+cuu9ajDJb4iJbnFpiqjd/f2n07e3ti0bQ2HDu5HpVEx9eY76l2gVdjLyTyWTZQ7AQRElCewddOGVnO2ju47RIRD6TvMEc2RfYd+Es6WOdzCwWNF9O6mOFzrtqm4/o6WL3KLi8ro1aXafkVFqLFX2LBZqx/z+SRnzlXw7z+9SqARShxhPPvbu5QF0C9u561XluF1leLFws9/dUuLx1Qf0+/uz8oliyjd4QWvCl2ffO5+sg+7ZBT64ZGkbj2MSQaRp8tm/MTZzX6dG8dP4bWTL2LMCkYKSbr+JF2s/dAKHXkyo8rRAjDKQKzlZY3qNzDAxJOP/YYKezkGnYGs3Azmf/AKEhh/7Y01NCbrY/rUe/hSvZjDB/fjKHaSTHeEEDgMFcRGxyOl5M13X0KfasFAIFtPbMEX7UAlrARKMz7pwxPkuCInUj9JZ+vdj15FdSwAIyEUnCplQcXb9To4Xq8XccFelwoVXk/zlbQvxOfzgbxAqwWB7wrEwO07tJPDR/eTlJjMyCHX1puG7PP5KC4rxKAPIDCgZvzN4J4/44EnXic8zE5+gYXhfVoWQHkeg643K1b/wOQbNJRX+Fi2MpAbRkzgux/TOXL8EKZAWL3Wyfuv6EiIU8b9m7+uIDFkoLKqSQWilYr0MQDpNTOyzmcx+pwGThBFprFbs48VBw3rwFsrg9m0JpXE5C4MG6mUMAkM1LPx+M85eCATg0FD127RjU71zs+z8uaLm/H6fDz05HDi4kOYPL03iSkhfPrRboyWAHZ8oNwUhBBopBabtGIUZuyinA59mla7UKNRY7EE8Oy8LziwzEaUM4U8XMw98RkLvrmnwXHHxYfw+qLpHNqfxe/mfYe1+ByqICe/f1ER6Fzw5k4s6SlVW/XGM0n0fdTFmdh03BXQs6eF3/yj/Qdktye27lzPzm92EOqIwid9fJD/Bo//7Lla31FQvsOqK1nA+gqE8BYU57F2/SrUWi03XHtzLS2xC6mwWbGWFyF8BrjAjk+8tw8fv3oU9QolZmvgNaNISGxceZxLMWxkd+a/up1//lrZXX/1AxfXjOuHEPDUn7+jRyfJ9r1eunaU/OEZxck4erKIhe/9yKyHrycgQMsTv2zcrkxL0es1vPfVDH5YdQyPy8v4G68jh1NQAkP/NAfrwXJSvFoKK/QE5zRu99nn87F20yoys9Lp3bM//XsPIdBo5meP/pKVa7/C7rDjPhuLNkuZeyQJpHGKRDrhkz4qwkvo3qVXo+cghMBkNHPw2G4+XfQRCRVd0WPgs4yF3DNnDvEx9YdBgHKSNW3KTKZOupP5H7xCaVY+XpWPbv26k5LUlYLiPNw5PoJQNhNCnZFYySNkqJmCzDxUehX33Tb3iigQtKmz5fN52Xt4JzZbBf17D2mU4JrP56M8t6bWTGF2Zr3tx42+kTcP/4uIfCU2pygymzuvqVuE1Ov1suDTtynKLERqJNdNuIm+veqPhevdvT9r41bjyAhAi468kDRmjpvT4Bxawqofl3Fs3VGC7BHs2bOHc2lnmHl77de02St4a/6/8BUKvGoPPYb04uYbFP0Wn8+L1wvD+zxTtW3bWgzuNZU161QsX3kQt0vPNf0eQKvRcu2QuZTbrHg8bpJiXyMhrlrlfehAF/t25xFsCW1UgezTZ+wY3WDDwEl9y7S6YuOCuePegbUeV6tV9OvftBThgoJyHpy8lIATyQgE89Z9xZvLbsVk0vPC0z9gOxCKVDnI12dgkkp1+2h9DHRPxxhqoUsnM7/8y9QmvabD4ebB2xZTtM2ETpo5yQE605vyVB25OWVExzROS6ZX31i+2Hw/xcU2goMDquIkAs06PLhQo+wMe1QukjqE8tsX/DURAdIyz5B69gQpHbs0unLEoUP7CXUo17lKqNDnm0g9e5w+3Wtfh+ZAC0FJFsqPlGL0mik25jJwQN2BvwDbd21k04Z1CJ8gukMsM6bNvqTD3bFbCpmlWZidoZTpi0ju3qlRc2gu+YW5vPv2q0QUJuClgteOvcjjj9Yd1vHV14s4sfcE0qXCEQ0Df/1IVaZaaZGTW+66lsSk0FY9pouOCeKWe27nly/+iFolGTh8JENHKLGaffonU5Bfjs98ghGdtlU9p6VVK1qCTqdh4pQLnJsLdGEDw8NJCUukbH8a0LgwkQ8+eQP7QReB3iDWHV5DYVE+142ZxIqVS0nfnY7WoSdXn41emDHJIIIIpSQkH3tECSqNivsnzW1QfuFivl79OQfW7SPCHU8Gp4gknsiSBDZvW8udt85qVB8atYZH5jyN3WFDrdZUKQrotHp8Km9VOyklqAUzpjV/p6+5tJmzJSX88W/PElwchQ49K1cs46mnfoPH60at1hARGlWnkVCpVKCtqTVzqVkEW0J5eO7P+W7NCoRQMW38U/VWM//qm8XY97kJk0ow+erlX9MhqVO97XVaPY898gtWr1mO3W7nvmvm1llMtalkZJ/jm5VfIr2S/gMGM3Rgda29o/sPEeqIBQFBnjAyT57D6/XWSo/9fNnHmM6FoxOVNQO3HmbQgGEEmUN4452XIF+DV+MmpX+nZingn0rbR1beASJDu9IteWjV40IIBveaAtQuX3PemVarEth/OJe+PTVIKVm9xkDfTo0rGD0wJYqBKAWywVh1rAjVDldLaEnQ/aJ3d6M7kVi1rW5MTeb9V7fj80nEvg6ECD14wWeXOPocJ8RiZszQCJ78zc3NFkl8//Vt2LdFEYYZBOhlADmkE6j1Nkrj50KEEISG1rzpPfrsKB7YsJjS/RFIlQ/LkBLuuK9pxXGvVj776kOObjlKuC+aTap19Bs/kNEjxlNWXkpUeGy9EjI6gx6PdFcFMHt1boIswfW+zpx7H+fHDSvJyc1iQp8b6d19QJ3tcguy2fDtWiKtyiKhuKCE1SHLuXF8/Q78tCkz2Ra7kVOnjzGs0zCGDmi5AK7L7eKL5R9TUlhCSHgot025uyoO7bs1K4gsTEQtNGjQYsoOZduujYwbdWONPtKyznBq+2miHEoyk/OMnV3vf0qHJ2/i+LsrWfJjAVrXKcydXby15HYsQQG1xnEpcrJKWP3NTvQGHVOmDa/xXenaPZbn/nBvrecYDFriE0Jwu5L5+stt9K4Mi1yz2U1y1+aXwmosqeUN27ZMewmZ1lKyigKQuU72ZqQRmNY4R8vhtFN4poBIXyIICHVEcXjfAQb0G8q5A2eJdCrHzWZnCGeCD0FoHDqjlmem/a7ee2RjXvPwzoPEeZKVe5oM4xQHiRPJRJmavhFwPtv+PBZTEIm9ksjcnYnOGUBFSAm3Xt82gr9t5myVWotJKutGmFBWeJ0cffj7y78lVtURVD5COocwe+ajdd6ERo+7jvWrfkRr1eMOcjDpxlsu+VqhweHcdVvDnmxBbh5GGVz1t7bEQE5+xiUvpACDkVsm3tVg342l1FrMwg/eJaowCZVQsSljPXqdvjqNtY57cl33aXuFDb2oXmFobHqKSgr4ce23mM9FVDlhp3ecJn3Q2SYV49xx8Av69l3DY3MFP27cztoNxxk14L5GP39k/3v5vzcqMJnSKStX0TlhRpPLSAxMiWJ3am4tcVQlcL4lND/oXqtT4aN6u96HD61ORWGeHS3VsVhGn4XJd8Uza17zM8jOU5RvQycDqq4LHQbK9YVMntGryTegujBbDHz4zQx+XHUcjVbF+Bu7odP9JKMPWhUJ7Nm2g+5yEAgwySA2rlnDsR1HUDu0eEKdzJ49r07trdumzOCtnH+hztPj1XqI6xNLUlz9kjMqlZoJY29ucExn0k5hKDNVXQsmbzAZ6WkNPm/YoFEMG9Q6VQYAPlj4OvKIlgCCKTlZzoflb/DgfUqYghAqJNVhHBJZI3vvPPmFuejs+qq56EUAIjsX645CylbYiK9Q9OhcO538+rmlvPpWbeeoPtLTCvng1YX8+jE1ZVYff/3tUX7zwhwCAhp3lNQxJYLkvmN55oVt6HUSU1gKc+aNaPTrN4fU8sNk2ks44Rx6yXaZ1lJOZkQj0/SYzngI9NkaPi2oRKVSIcVF58hCcYjUnur3RiVURIfH8+gjDaglNwKny4HaW21PhBB4pRdHUikTxjasvdkY7rztfk70O0J+QS7duvRqM8WANi1ErblAvkyFCoMzkHChxLOUHC5gz8FtDOxTOxB06MBr6NalVw2tmdYgKCyEUiowVJ7veixOIsOubGbh4eMHMBWGVMXIhNti2bNve5Wz1XfQQPb+sBtLRRg2fRkdeyajUtXc1aqwWQkKDyZLk0uoJxIpJa6wChLjktm8cR06Uf1+aRw6iooLmuRsuX3bmD1DuXTumKpm07a9SHlvo3dn1Go11w1/rNGvVx91FciuaEKAeX00N+h+5pzB/LBsMRX7YxCokD0yeOjJOzl3uojfbVhLUFYKEok7OZOJt7Xc0QK4Y1Z/tn2zqjKAHQojTvHXV8cz/vrWE1I0BuqZPK1+8dr/RqTPh8pX03yqvGoiy5RdJW+2l8+//JhH5jxd67nmQAtPPP4rMnPPEaA31pJlaS6J8R3YZFoHFYoorU1lJS76ymdGl+WWEYHyPhgwUpBdneEy8fpbePP0vwjJi8aLF3t8KcMG1Syv5fF6MAYYKQ0qwFIaihCCUl0ByfGdKTtegLGiehGhE3oKChw16qs2xOefrOV/f63FYFAREwUP3uFg3Q8HuWly3TuGdVFf/dTLwXlHa21BNypsl3acsooCqhytZF9Aox0tUE5qknp0JHtXDkaXmTJzISNHjCEqLBYR6cV1zolO6CnW59GnZ+vYA4spGG2ECqfVjl4EUKIpoHOvLtx3Z+vGUXVJ7kGX5Nar/9kc2szZMgeayXCewuSzoEbDKQ4RSfURnN4dQGFhQb3PDzIHN3vrsj6mTZnJe6WvkpddgNRIRl17LSFBLUslbirBQSG4tU7OL/5c0onZWH20M27UjcTFJHD0xEESEwYwoHfN4sL7Du3iuxVfoyk3UKrJxxFqxWIO4q6bZ2EymunSrQf7UvcS7IpASokzvJzkpM5NGqO4SPakLQXEL3a4fM6Wqc23JOjebDHwwYq7+GzBXrxeye333klwsJGQgUZ+984oFr65B7VG8MLvJhMZ1ToLhM5dI3nhw3G88/J2BPD8sxPp1bdlhbj9NIxQqfAa3JTYCgkWYZTKInyiesdGLdT4XPUHJeu0OjrGN+171xCxkQkMHD+YnVu3IbyCsPgwbr6+DTILNRftjlxwzwy2hDJv3jNs3PojOq2O0SMeqqEcb7NX8OY7LyPyNOiEgVOW/USHxdG5axduuu4WNh1OZZVlEyGl4QghyDfkEdq/M5n2Ehr7fZWy5m6aRlWZ7NQOudDROpkRTXQD9k3mOpvlaJ3nztvuZ1+XnWRkpTGh2/V0TFQWcY889DRfrliEraKcIT2GMmLI2OZMpxZCCObOeZovV3xCeVkZPTv1ZPyom1q19mR7oU0V5Ef2Hc/atatBQmxiPO5ML+EVcUgpyQ1OY9bcuW2iWeXz+dqsBImUkg8XvUnh0SJUXjUy2s28h5+pdRZdHy+++CcichOr+iqMy+SZp35Xo813a1dw8uhxhEZy86TpDdZ0u5gtexcz6ppNTL1RxZqNPr76uh9jhzzYpD5am/Nq9FHxLXOObfGKllfn+ByGBxyiY2gYnS2Nz67xc2muJgX5R2c+x+vvvITL5iTAbESvNhCZo8QjWdUlJI6JY8pNdzTcWSsjpax0KNrGhu05sJ0fVqxUSgpZnFw/ZRL9LpFodCEfL3kX23Z3VZhDgS6LWx+5g+SEasd09fbd7N26Gp9WBd3jiZ01nM7xOVwbfoy4gOAGHa6zp/NYPH8Rf3xKQ5nVx59fUfPrF+bUqQjfllzsaMk0PSnuS4dJ5GYUVjlaHo8bn5Q/ifJzPxVaoiDfrsr17NizmV07tyEEjB9/E11S2nbbr62QUpKdn4HL5VRKCjVyO1VKyYt//zORRdXBmgURGTzz3O8u8azmcSR1K1l5+4kK60avzmOu6ErE5/Ox/9gaym05pCSMJDZKcRaVoPmWcVplpyjSwdmPF2IqkWiM5dz1bAfmzGxc9t2i93ax6rNTSCR3zu3NpFv9jtqFXE3O1sX2q6ikgKVffozH6SG+QyKTb5h+Va7QG0NZeSl5hdlEhcc0KTtt/gevoD1cHb9ZKgsZef81dSrkX1zuqykOV/q5Qr5dthW9Xse0GaMva/3Vujh0IJ2dW44QlxjJhJv61bhOzgfCry3pWisGK9nXcBzmwJQolny1gDOHU0EKIjpGcP+MRxrlfOcWZLH084/xOX2Ex0Zwx633N7rW4X8DV025niEDRjJkwMi2HkabI4RoVmVyIQSmCBPOQuX824ENS2TrHFddTI+U4fRIqRlPdy7rKMfPriFAF8LQvtNbtKI6l3mM9Ny9hAUl0z2lOihUSsmqTS8yd/ZZunVS8co727Gdm02npAHN2javRWouhz9YRKcziVXZYp/94yBDxu+jd3S/ep9WWFjOK/9Yz45PrITbFG2Yt84eILFjCL37tU5Mjp/2TWhwOA/P/nlbD6NdYDEFYTE1PVmlZ8++bE/dSkilBpk9vIzOHeuOP6wrZhMaJwOTkBTG3CdqJh2UldpZvGAtDpuDm6YOp3PX5p+qFBVVsPrrnWg0GiZOGVxDYPiH1fvIPbmeB25Rs//oMf7vH6k8+byizXVhIPyJ3KhmxWDtP7KLzJ1ZRLkUO2Q9WMK6xNWMG1X/glFKye6D21jx1RI6lPVEJVQUZ1hZqlrAnbfNavb74KeaduVs/TfjcDrYtP1HPB4PI4eObbJWyXlm3/sYS778CGtJEcFhwUy/RcnSWb1mOQd27UVIQXynBO68bVarrrpPntuN0H3AO/9WkZ7l5Vd/PsrNY/7YrFXRvqOriUtYwe9nwabtm/j+x0OMGaxoieUX5TB86DlGDVMcuT8/L3nw51/TKanxwa2XYmBKFN87fFWOFoAsC+bb09EYTXWnXudkWvmfmfspTPXRmT5VGVSG3Gg+X74ZY6dqo98aBbT9+GmP7D+8i7SMM3Tv0otO9ThIDTF88BhcLidHDh0EtWDmxDlYTEGkZ53js88+wueQaM0a7r9nLiFBYfU6XE0t52WzufjnH97nz0/7CLao+NO/P+Wm22+nW8+mL5QK8q385+8f8NxccDolf/vdQX71lweqHK59W3fxz+eV368bpWHXgUxKSmwUas7UCIT3ZRuaFYOVnnEOo9NcnZXqCSIjs/6sVCkl8z96haIjJei9pqrkrEBpJj8rr8nz91M3fmerHeBwOnj1jX9gzAhGhZp9u15k3rynCTKHNLkvg97AvXfVTJk9eeYoh9YdJNKuHC8WlBazPvp7xo68vtbzfT4faVmn8fl8mM1BnDx1lIjwqHpXl+dJy1nF/P9TCk0nJ2mYNqWAk8dONysIuMy+nn/OVS7N6ZNhy44DeLweNGpFl+tCDUMhRIMB+g6ngwWL3qK8sByhE0ybdjcJsR3qbZ+YGE1pTjlGTEgpKTbbyRNdWFtSVGf7b/6ygpDUnrhIp5xSLCifW0WAFWtcV9aWKKKILSkt5MdPe2bpsoVk7MjE6LRwYsvnDL5hGKNHXNesvsaMvJ4xF9mmxYvfJyIrUZEGKPDw8aJ3efyR54DaO1w5WbGckVlY+8Yij64hSHWOGZPHXzIma/OGYzxwu5PoSOWY7n9+oefX/9pIt55Nl/VZ8vE6/voLFSHBiqF6cpaTVV/vYtpdyqnNxWtcjUZw2nqUcoOjRiC8MQP6pGkBLcXpu/jXsn0A9OjbixsuoZ3Wo1sfjm1ZTESFknBWEpDP6B5j622fln2GshMVhHtjOMvxqse90oO2kXIYfhrG72y1A7bsXEdARhCBlZIM2rwEVn7/VZ3aYMu+/ZTTx06BgMHDR3DNsGsb7P/02ZME2oKqVzquYM6eS4WLTmy9Xi9vvvcyzjMepE+SxVmSPF3w6F3EDdzBnbfdX+9reL0CKasNicMpaklSNBaVumYcoU6rBPwCRIbF8M2GGIYNyqZripp/vyWJCbu0yOaiJe8hD2kJFbFIKVn0yfs889Tv6911u/3W+/jEPZ+stHRsWi9xd9yCKDSzrtxeZ/ucQkEKKmJI4hSHKJK5eE0qxKBwchIGkntUEBtqaVFpoZ8C678/waJ3DiAEzH1uKP0GNv0o3M9PD6/Xy+nDp5RjKwF6Wxy7d2yv09lKPXeC5cuWgBuCo4K5566HaxXevhiPxw02UbUTrxYa3BXuGm3OO1zrv/qRrAMnCSjXs0CTQZA7GLPUs+z191m44v56tefUajUO54WvKZu98+/1+tBqq5+r0wk8nmoV8+79+vDOJ1u5b5qWfUc8nCrU0eECR0um6bGeKSSicjfr8PH9HFiznzC7kmV8pPgoMTHx9OlRu+IAQHJiZ0ZMHMWOrVtAQvfePRnQp359LrfbhcqrQiO0WGQIJ+VB9BoDAVF65kx/vFnvwU8Ra0UZS79ciNPupENyMjeMm9Kqpz9+Z6sd4LuofqNA4PN5a7XbsmMdZzenEepSvnTbVm0mPj6RDvH1CyICpHTswqHAgwTYFAkJq66Yvh1qa8Rs3rEWeUpDmC8cgAAZSDH5xLtSSDt0jtIJJfXKbXTrOJ2nf/8qz8zzcCbNx6ofEpg0umlZjufRicF8/Pla7pyqYusuLxmZKXSMtqFRWxBCcNM1v2L+h8upsOXSOXE03RrQTykvsmIRkYCyE6au0FFaXkxoUHid7bUaLfffPQ+oDMJ12jFmQDKRdbYP7DOBY0eWkVDWgQ505UzUGUbOmospOAxOK21S00oRiS0rLXQen8/Hmy9v4sThAvoOjmXWvKHNNgrpaUXk51np0jUKk7n5QcK7t5/jxSd2EpSjfOa/OvgDr3w1kc5dWiGOzk+7RiIRF6ktC1n7enQ47SxdvJCo/A4IIbDnVLDUsIAZ0x+4ZP8ajRYRCLJEVopeetCZaseD9usQzjcfHybJqsgVhLoiOcVB4kUKzoOB/PWvX/H3f8yo8zVGje3GX57fgtlkIyxExUvv+Jj1WPN25m65YxS//ucCXviFFpdL8r9vw/2PdsPt9qLVqpk4dQg7t4bwl7cPERDtY9xjUTUcrYuPDY8dP4jFFla1WA6yh3Hk2IF6nS2AEUPGNlqeoUNcCjLWjTPNQQSx+EweRtw0ipGDr71sGa3HTh5iy/b1GPR6pky6s8mi1uexO2xk5qYRbAklPKRu+9wYvF4vb8//N0HpUQSIYE6cPonNvojbbm56dZX6aHNny+fzUmotwRRoaXCF0xikbP6KpK0YPng0u3duR5ujQ4WavLA0Hry29ori+MkjBDmrv3SB5UGcOHWkhrN15PgBtu3YgL7yIjYHWujUoRt9ru3H/p27QQoSuyQxavj4Wv2XlBaj8xqqY44IxI1Sd1LlVeNyO2s95zyJMV0w6J7nH//aQoAhlImjmp+hOKTPbRw5HMODP+4mO9NFzqkSjqx7BXWYirkPPIkxIJDhfW9tdH+6QF2N8igegwtLI2PiapYHqptkdTzG8RM5fmgrGq2WiUMfwlAWAGXVZTIuVrpvicP1y3nLOfOVgQB3DF+vLiT97Gp+/88bG37iRfzn7xv47r1MKDOg7lDKSwsmkdK5eerKny88gCWnQ9VnbspOZPbNi1mwciYdU+p2aq8WKmxWJDT7hnEh53dwf0o2TKPWEJUcTdm+YgI9QZQYCujWu/YCKL8oF12ZsWpuAQRSlF+zpmC5zcqyrxfjdDoZOngUPbspi8K7ZzzAp599iNfuQ2fRcf/dc2v173I7CRDVR4VCCFRS2b3WoKWgxFav+KlWq+a3f5vNyuW7sR2z8/DTA4iKbl5yUXxCKLMev5cXP9pIaYmLA9vKeGblGjA5eOJ/hjP+xq6E9nYxqXcX1pZ0ZX1R7YzDC+OzkhJTyNBvJNilfDfLdSX0SLq0knxT0Gi0zHv4GVasWkJFRQVTBk+je5ferdb/xRw+to9vPl1GpDUBG27eyHiJJx57Hr2uaYu9jOxzfLzgXXRFRrwBLnpf048bxtcuE9cYCkvyEIWaqlJrQZ4wdmzcisUczHVjJjarz4tpU2crvzCXDz58A5VVi0fn5Nobb2BI/+ZlI1bYy3n/w9ewFzlAJ5k05TZ6dGm+yq3NXsEXyz/GVm6jY3Inrhs76bIZwECjmUfnPcuqH5bh9Xp4cMzjRITV3hGIj0vgxIFUTD7FUbAHWElKSK76/8Gje1n12QoirPE48PBmxkv87LFfYdAbmDB2EhPGTrrkOAYPHMGHu94mukTJYjkrjhEp43BgQxMlGixzEBkWS2TYpSvee71e3B53DSHDuuiRMpzosM68u+Y1oss6AOAqc7Lkq4XcP6O2ob0UM+58gPc+eBVXqQd0PibdfCsajZbT506wbsP3qNVqbr5pGmEh9c+vweDUlCgmjaxfFX7HwnfIWZSOVw8513eGud2aHMQLyq7WyR1WzG5lPEZHKIc2nWnUcy+koKCc7xekE1ygXD++45H841dreXtp83ShIqJNnBR2DCi7pw5sBOTH8D/P/MC7X7VeOav2xHlNvPzUfJAQnhLOrLvnNdtOLPv2M04cOApAUreO3D618VUZ6hrbmo0rST15AoMxgGm3zCQwwNSsvhrDvXc+zIaEH0jLOMOY7mPrPLYKDQ7HHegAl/K3SzoJtFTrBzpdDt546yVCMmPQYOTb1GV47/DSp8cAYqMTeOqJ315yDAEGI/pwHc5SB3phoFQWokKFlJLT4acZNuUaMu0F1LfI0ek0TJ1+aSdGSkm51YnJrL/kZxOfEMpjT09l1uRPMB3rpgSd58F/fr+VxBFusp2ljc44HNRvOKfPnuTs0dPKYrlrIkMHjMLhtPPVN59SUV5Onz4DGNyv+SWDAgxG7ril/jCRE6ePsGL55+AGc7iZ+2c+0mTn6Dxbtm4g0pqAEAItOrRZgZw4c5TeXfs3qZ9lyz4lMk8pa0c57N+2h1EjxtdZ1LwhjAEmPFo3VEaK+KQPjVfLng07GTxgRKsIqLeps7Xk848Iz4pHJZTVx9pVq+nfe0izdrgWf/Y+hlPBmIUOKSVff/k5KU91Zd2m1aSnnSU0PIIpN92ORn3pKZ9XEn7r3X9hOhuOXgRx7NRxHE4Hk2+8tCPREsyBFm6feun6XuNHTyIr6y3yzqYhhaRbvx50Tak2Gtu2bSDCGo8QAg1atDmBnDzb+Is4JiKOO+6dyfc/fAtAv6gBFBcVYbaYuWXSg5fcUvZ43Kzb9TYBAdlYy3UM7P4QEaE1U6d3H16Oy/cjoSGSE6fCuWHkL9Fp6w9aLSotQFNR/X+d0GO3FjdqLhdiMQXx5OO/weP1oFapEUJwNv0USz76mKjSJLz4eCf9FR57/NlmZ4Feii071uE+WkKySzliy1hyht2dYqkY3gWoDpy/FOdvDkIIxMUK3eqa6tdSSoqLbei06nqPBstK7Qhb9XurEio8jqbMqibznrmG7es/JneXESmhlCL0GDi6x8pTD3zJ71+6gZCQxgnz/lTYsnMd1gM2Ir1KbFrZwSI2bV/DqGG1d40b4uCRPZzecppIp5LEkrMjn61x64mKiGHdhu8RKsGkG25rUOT5/M7Yqh+XcXLtKYJcYbikizfzX+bJx35z2TSThBCMGXnp2MnAABPjJt7Amu9WIdxq9KE6Zt72s6r/nzp7DE12QNXuQkR5PNu3b6JPj8ZnGj/8wJN8vmwh5WWlRIaG485TcY4CoiZPoUAXwdqCnHoXOd+v3Mv+7bsRArr17cOkW2pW5zh7Oo93X11KSoKHs5mCW+6+mX4DaodKXFgw2lriwHhByQ13uSC1sIDtjt5Nyji845b78E1RQktUKjVer5c33nmZwLOh6EUgm06tx263M7qOE4uW4nA6+HLJ4qrjX0eejc+++KhWIlZjUWuUGrJqlGvRp/agv+g+4HI7sTvsWExB9Tq10kNV5iSA2q3F5qholrNlMprpNawPu37YTqDXQiG5mAmiqCyfd99/lRuun1y1y9pc2tTZ8jp8VY4WgMalp8JmJdjS9Grfdqsds1BWbkIINDY9i754j/L9DsyeYPJEIe/lv8rDs5+s8/n5hbks+PhtPOVevFoXmrKAKhVjiyeUc6dON32CrYxKpeL+u+fh9Xors/BqOj9qjfqii9jb4A7SxSQndWHunC6Nbp9XkMPK77/C7jvM/P/46JKixCk88MTL3DDi71XGPa8wm/DI7/nVk2pAkJGVxx//8QHjhtS/SxUbmYArxI7MV46Gy1WlJCQ2P+j6Qkd7/cbviSpNUmK4UGPOD2P+h68gbQKpkgy/ZlSrlaQ4eeoolguOf8NtYeRvzsDXYUhVeaBLFdC+MItRCMGkezux7P/S0BQF4Y0s5t6Hq28YbreXx2YuJfegD6n2MnxqFL96ofZNMDEpFH3HCjx7lePVckMh145sfnyVwaDlo69nMnXUfLQnErBRThjRmMu7kv2li8ezPmfhynua3X97JDsnkwBPdeFno8dC1gV1AJvC6bMnMTmqk1jMrmAOHNpNaUYZUaVJSCTvZ7zOI48+Vad99Pl8LPz0bXLP5iJVEqfXQaJLyYLVCh2iQEtBcS5R4W1bymlQv+EM7DsMr9dTS6xZrzfg03ihMvZd4kOlblrMkEFvYOYdNatZ7E7N5bTLTnmapkb91C767XjcB/nmtXwO7ctg9PA8/vm8cg+Zv2grO7eGMHh4dTb1wneW8eqfBFqtsqD/2R++pd+A6hqvF4qRnscTdwzHITsGEYBXerGHwjZ7L05l1s44bGj3/MKEo5z8TGSOCr1Q7HuoPZqtW9exa/sW8AhCYkK5966HG9xcaAxFpfloywOqnB4DRsqK6i+l1xCTJ97Ou1mvYsoPxaN2E9jFQKcO3ar+v3bjanZs3ILGrUUVCg/N+XmdR/TxHRPJyMjG7A3GLV0Q6iW0BeX1Jk64leLSItJ3pBHpi6OUIrozEJkm+WbJV1jmtGwh3qbOVkhUCOXpFQQQiFd68ZndWEzBzerLFGLCeVbZPpZS4gl0UpRZSJhH0UnR+wzkZ2bi8bjrVGT/ZPG7hKTFohIqXNJJmvpEVa1GKWU7iG6rpr7V6eRJt/Nu1msE5gfj0bgxdQmgU1K3Otu2BkUlBbw3/zWiCpKIGuWkS4qyc6HTCYYOdFBqLSY0WInXKSjOYfx1LkDJBoqP1SC49C6VMSCQO+++l+UrloIHYhJjufn6aa0ydp3eQAUutJXF0PPIJPRcFME+5cu6eeUGkpKSiYtKvFQ3jSIpKZmDhw5hcSs3yTJ9CeH6rhgzwIaBk/pLF9A+wRS6ROVyfjX+4BMjGDomk4N7shk4rB9du0fj9fpYtmQ/ny/cj2tbHBafctPYsiCTHTefYcjwmitwjUbNG0um8cJz31NR4mHEyBgeeaplgsI6nZYPls3kT099R8FGO2abYpy0QkdZmoayshZsnbVD+vQayPI9nxNRodiYksBcRvZpfCzhhXTp3IPUbSsIsys7V2WGQjx2J5GlitwBEswF4ezcs4UJY2+u9fzv132Ndb+DSK9yvR4WO/FJX9XK36NxE2Bo+or/ciCEqNMGpyR2xdzFSPGxPNQeLRURJcyZ1LoF66Pckdic1TVQj/xuCd71yfjC3Dzwf9WZivfcquWF+YdrOFuWQE9VlqEQgogQb1XQe33FolN+dj/7XUvwZBeBSUWvZ2ZxKlNTK+Owqeh1BnwaD1SG0bqkk7L8Mjq7+yKEwJZXzpeBn3D7Lfc1812rJsQShtvoAEf1axktzb+WIsKieOzxZzlwZA+BRhN9ug9EpVJxOu0kew9s5/jOo8TZlCQHt9XFki8+YvY9ta+DqRPv5Fvtl6SfPYsh0MDcW59qdgb8eWbcNpuv9IvZvWcbKVYlbk0IQUhpFLv3bWtR323qQtw5bTaf8gHFuXmoDWpm3/5os7Mf7po+mw+db1JQWKBoKd0yk+VfLsErPaRyGC06HGU2tuzYwOgRtbdaPTZvlWHSCT0enYc8VToamx5XeAV33TyrJVNtFaSUuD2ueo/eIkKVi/jwsX0EBpro1bX/ZQ203bJ9HaEFMaiEmuJCNXa7j4AA5T08nqpiULfq1UhcVEeWrzQwdoSyS7V1p4cAfXJ9XVfRIaETTzz6fKuPffJN03n97P9iyLbgVXlxGu0E26pXRUarhdNnTraKszVmxPVkZWWQmaoc/2pMKuSRA+w6cpDeM2YgLQ0X0D5BFJnW0qrA+t59e9K7r3KTl1Ly2N1LyFkbSLbbQRdRHZujtZo5eTS/lrMFEBZm4uV3m+cc1EdUtIXXF03nvomf4NtanawiDS4CA6+uGm1dkrszctIodm7fikAwfMhIuqU0L8O0e+fepI09y6E9+xFAp55dcLmcFJ8uJ19mY6ccEFj35TNu1E21FlyZWemYvNUr70hfPGcDjxBsj8Qb4KLroK7NUnRvbVxuF1qNtk67JITgoft/zqHje6moKKdnt36YA1unAsZ5h4s0G2AkNdeJNzKEvIOBxHvNWCvM7NhdxsTrFYdr72EPCR1qOkEVrkAKi6yEhSq2LrdIX8vRurhYtAoD/R+4YKfNAyWZpS0qFg0QHhpJTI9Ycvdlo3UZyLdkEmaLrnpfjdJEQW7zd58uJMBg5MYpU/hu5QpwC3wGL4HlJt5852XGXDuB7p2aHkxvDgxi5OBq2aJN29aybdVmRLkKDdVJWlqhw1ZRXmcfQggmtXKhdZVKxW2T78ZkNnPy21RMUvnOONQ2wkJbVji+TZ0trUbLPXc+1Cp9GfQBzH3gqRqPjRl3HYsXf0gnVy/0IgAkbPtxE7179iPkou1GnVmHN9eDWmjwSR+REZHMmDGbopICEuOSWyXTqCUcPraPr5d/gcqlQR0keOD+x+o8TjAHWhg2cDR2h43tezag0ero13Nwq2wnX4xeb8Aj3OgJwH2kJ1On72bEGBW5eSZCzbfVcAqDzMGEmebwwBOfYgqUOO3JjB50+WLgGsJkNPPE47/i4NE96LQ60jPOkbY2i0Cv8jk7jOUkJjRPuuJihBDcffscpJQs+eoj8rcXY/QGoZFOtr39Ol1vm43RDfbyUk5u24Barabz8LHoLig+fn4HDGpnMh46mEnmZg3BnjAcOMmTGUSKeMU5j81n5LX1p4hfLp7721h++/B3+LIsiBAb9/y8NxrN5YkXakuGDx7D8MFjWqWvG8ZN5oZxk6v+tjtsvHj8T4g8DZ2EckOzZVn5+rvPmXpRgeuOHVI4dOQIFnelELLJx933PYDX6yEkOJyYiLYtGWV32Hjn/VdwFjrxab2MHncdwwePrtVOCEHvbgOQUnL05AEKiwro2b1vvTItTeG8Y7M7NReTykOZJwBHZfijqTyev/2ugO83FhEZHUiRLYpnflMzWP6xZ27nb//+HJ2qArvLyCNP3VJnsWij++JXrokpo2WO1nlm3jGHE4OOUFScT1zsrSx+7yMoUf7nxI4lpPVKtfXtOZC+PQdyLuM0n77/EaZM5fNYnvM5gQ+YSIzriM/nY+uu9eTl59C/75AGJYkuZNe2rURUxOHBTSqHiZRxSuiIupS4+Ct/7Y4fNZGTJ1+mMD0bicTU0cjIIdfy9tKXm91nOzoca30G9BnK5o1r0Z+t3h7WlhvIL86t5WzdN/NhFnz8Nk6rC41Rwz13PUREWBTRbWykQMng+3rZF0QXKDd/b4mHRZ++z7yHnqmzvbWijDfefImA7CB8Ki9bOq7j0Yd/0eoO15iREzhwYA+edDdO7OQe1JN7MgqMkul31A7kTU7oA0hSM78Gmce5rCN0jG+7Qs0GfQCD+ylHZ727D+DDgrfIO5eGVPnoO2QgSXEN77w1BSEEOenZBHkVI6sTegIqtMTYPMhj2Wxd9j4xJQn48LJ5z3+4fuqD6HTnr10jUlu3dITX40N6laVghIglU57hmG4H3ftF8NRTg+nQ8cpLL/TqG8sna2Zw5nQh0bEWwsIuXybc1UqAwciYMRM4sORg1WNGaaYgr7YMydiRN1BQmE/GyXNIFQwZPpyuye1HOPfTLz4kIDWYoMo42I3fraFXj771JqR8/Nl88vYXoncZ2BK6ntvvuZfkxJbtLJyn6lgx3Y6uV0eytmditplIy7VT8nkERpOOsdMja52yWIICmPvkNN5/fQV64WDJ8m/pfWsi64u615BuCPTZ6nllhWRa7midp8sFGoNjbrqOdT98j/AIAiMCmX7LpfXLmsPO3ZsJK42t2kELK41hx+7NJMR24P2Fr2E77MLgDWTJ7o+57tYb6d97SAM91kQjtMTJZA6wlYTYDsR1TGDKTbe3+jwaQq1WM2/OM+QWZCGEICo8tsWnRFe1swUQn5REdlo+gT6zstIPthETEV+rXZA5hMcf+WUbjLBhym1W1I7qIxi10OC21b98+nrVUkKzY5WsHgmlZ4rYtW8zwwa2zgr8PDqtnp/Ne569h7bz/epv6FkwGJVHhbRKvlj6Cb945o812mfmpmL3vcN7ryg7HM//5S2y854lJjKpVcfVHFQqNbNnPorP51My/i7T8avQiBpacF6th6Fdk/hixScklHSs0gKLKPBhyz9C38FjyMg5R+mhPEzB5jq1unr16UZ56DL0WWYMGHHjIlBj4rn/HUOv3m23WDAG6unZu20Dsn/qdE3pyTbLZszWYACs2mK611E6SwjRYDZzW2IrsxEoqnfitRUGCksK6nS2CoryyDmaS4Q7DgQEFllYvWo58x6ue3HZHKqOFXtcR1bPNDK2rSVxXw/MJcFQAmvfTWfk+NMMG1m94PL5fLz4p4/42y88hIao2bzLwd/f1uMcdm2Ti0VfDoYMGMmQASPx+bwtjl2qj5CQUHJVJ6uO15wqOyEhiRSXFVJ8uoQIXzwIiLQmsGXTevr2HFRV/i0pLqXeeOOElCROZZ4iSibgxYMRExGxEdzRCjFnzUWlUhETWdtXaC7t0tmyVpRSVl5KZFhMi4VOp068g0W298jPyEZqJFNuur3V4gCuFOZACz6TG59VCXh1Sjum0PqPNV0uF2qq3zeNT4PDUX9wssPpQEofAYamp+brtDqG9h/F5h/XV8W8CSGQDlHrS3/87Fr+/TdVlaPx3OPw67+sJyayZV8oh9PBwsXvUF5oRaUX3D79XmKimvcluVyKyeeZMuV2Fn/8IbriADyBLgaPGo5Oq0PKmvINAkFxaSH/eeUf6AoD8Qa6CO7agSBG1eFwHaNDr0DOZOXgwUU4MVABm/fuI6BjSaPGdTWWD2or3B43eYXZWEzBLbY1UeExjJt6PRvXrkFIQUJKIuNGNV3Atq0Jj46g8HQpRqnUG3UF2YkKq1vGwuVxovJeUFFDCPDV2RRQhLEr7OUEBpib9P2tcrhUiRR4AzF5qrNB9WUhbNixn4i+1SW6CnJt9OxSQWilhMnIQQYMX5XgaAVHa82GlRzYsxeJpO+AAYwbfVOz+gEum6MFMGbkDRw7dpjCc9kA6DtoGTviekqsRbWqCEgpefO9l3GcdoMEdYJk3kPPotPWjt3s3as/h9Yf4DRHMGKiE70pLyu9bPNoCxrlbAkhbgT+D1AD86WUf7/o/3rgI2AgUAjcKaU825wBrdmwkl3rt6Nx6vGEOJh1/zwiw6Ob0xWgXHgz72iduLC2QqVScc89D7F06QJ8TklgmIm776hf4+Ta0TfwSeoHRJck4cOLNbKQgf2G12onpeTTLz4g7cg5BCpCkkJ44J7HmuVwGIIMuHNcaIUOr/SitahrfekDDGGcPuelTw+l/zPpXoz65qfqnmfRknfxHVQTImLwSR8LFr7Ds0/94bI7Ts0hKT6ZJ37+S7Ly0gkNCq86zr5+3GTeOfkK4QXxymcWU4grvbxK24ZyyD15mu59RpJ1plqNvsLWhS5RuQQMLMOyKZ9gewRSSrKiU7F2u5G1JQ0XM/cXyG498gpy+ODDN9AUG/AYnAwaPYxxo1vmHA3qO5xBfWt/f39K3Db5bj6xv0tRdjZoYNqUu+td3EWHx6KKBucZO3oRQFFADoP71y0YfPjYPr5e9gVqpxZfoId773u4SfFp5x2urJCOFOlTCatUaS8Oy8PddwxrS6rvPS6vi5LsLVV/e72SsmJNix2tw8f2se+HfVWZqPuK9hIVFUvPri3TdbocaNQa5j34LBk55wCIj05CpVIRGhSOKSmQ8mMlBHjNFJlyiIqIpGRXOWE+5T20nSln9ZrlTL6hdqxubFQChjA9UYUdqmK1EtogVuty0qCzJYRQA68BE4AMYKcQYrmU8sgFzeYAxVLKTkKIu4B/AHc2dTAV9nJ2bdxOVJlyrOTL9vL5lx/XG5v030RsVDxPPParRrVNjOvIXbPuY+361WjUah6+6ed1rrD3HdpJzu48otzK+11+pJQfN65kwphLK83Xxf0z57Jg0TuUlxaiMWq4767a+lmDe03mry8fYOrEXLw++GZ1DBNbYZVuLbQSJBRDpxIqVOVarBWlBJkbdjTaggCDkZTErjUeCwuJ4KFHnmDthtWo1WpmXnsv77//Ro3jTLVHQ9doE4ZiyekzdspRshhPEIVp3CTkuW9I252BTyXpcPd15Km7UUd4Ty2u9gLZV5KlXy4kIjtB0Q90wq6N2xg2eFSzhBavJjRqDfc1svKDSqVm3kNPs/zbz7BayxjTd1ydivRSSr5eXh3L6ivzsWTJgiZnLytO0jXsLrWSnp2BQ+0haEpfSoP6UnrR96fANJJf/3sLQ3v4WLJSD4ZJLT46PHzsAEEX1j60hXPk2P526WyBsvhPjK2ZPKRkkj7B2k3fkZefw5T+0zhx8gh2r6e6/JsMwFpWUmefJqOZaTPu5puvvwQPRCfFcnMdTtlPmcbsbA0BTkkpTwMIIRYDU4ELna2pwB8rf18KvCqEEPK8nHEjKa+wonFWbzGqhBqv6xL7x37qpUN8CrNnPnrJNpnZ6QS4zNW1Fj0WspspyhhoNPPInKcv2Uaj1nDzmN9y5tRZBDBpdMdW2X3SGrV4pZJJCuA1uDAZf1pHxQBhwRFMn1It/JmY0pFzmelY3CG4pQsR5iM0OIzwUHWVbpDRDam5ithO0IAJBFWKbfuAzH3117I8T0xUUL1Zjn6ajs9VU6hZ7dJRbiv7r3e2mopeZ2hQI8rpcqJyVt/CVEKFz9G8+8XAlCgGpsxSBFBVdso7aur+/oSOZWNJH45u8xBnDCFKb2xxjFZiQgd26HYQ5FZ2uSt0pfRKqB2X195RqdSMv+D402IO4sNdbxJV3AGAfEsG04fUX9i5U4du/Pzxxm0o/BQRDflDQojpwI1Sygcr/74XGCqlfPyCNocq22RU/p1a2abgor4eBs6ff/UCDrXWRNqYcKB1RE3anqtlLlfLPODqmktXKWXb6qg0E7/9+kngn0v742qZB7TAfl3RAHkp5dvA2wBCiF1SykFX8vUvF/65tD+ulnnA1TeXth5Dc/Hbr/aPfy7tj6tlHtAy+9WYM5xM4MKCdPGVj9XZRgihAYJQAuX9+PHjx48fP37+q2mMs7UT6CyE6CiE0AF3AcsvarMcuL/y9+nAmqbGa/nx48ePHz9+/FyNNHiMKKX0CCEeB1ajSD+8J6U8LIT4M7BLSrkceBdYIIQ4BRShOGQN8XYLxt3e8M+l/XG1zAP8c2mPXC3zAP9c2itXy1yulnlAC+bSYIC8Hz9+/Pjx48ePn+bT/lQf/fjx48ePHz9+riL8zpYfP378+PHjx89l5LI7W0KIG4UQx4UQp4QQtaR9hRB6IcSnlf/fLoTocLnH1BwaMY+nhRBHhBAHhBA/CiHavrpyPTQ0lwvaTRNCSCFEu03bbcxchBB3VH42h4UQn1zpMTaWRlxjiUKItUKIvZXX2cS2GGdDCCHeE0LkVerv1fV/IYR4pXKeB4QQA670GBvL1WK/wG/DruT4GovffrU/Lpv9klJeth+UgPpUIBnQAfuBHhe1eRR4s/L3u4BPL+eYLuM8rgWMlb/Pa4/zaOxcKtuZgQ3ANmBQW4+7BZ9LZ2AvEFL5d2Rbj7sFc3kbmFf5ew/gbFuPu565jAYGAIfq+f9EYCVK7YJhwPa2HnMLPpN2b7+aMBe/DWtn8/DbrzaZy2WxX5d7Z6uq1I+U0gWcL/VzIVOBDyt/XwqMF0II2hcNzkNKuVZKaav8cxuKHll7pDGfCcBfUGpcOq7k4JpIY+byEPCalLIYQEqZd4XH2FgaMxcJnK9DFARkXcHxNRop5QaUrOT6mAp8JBW2AcFCiJgrM7omcbXYL/DbsPaI3361Qy6X/brczlYckH7B3xmVj9XZRkrpAUqBsMs8rqbSmHlcyBwUz7c90uBcKrdFE6SU31zJgTWDxnwuXYAuQojNQohtQoiWV76+PDRmLn8E7hFCZADfAj+7MkNrdZr6fWorrhb7BX4b1h7x26+fJs2yX1e0XM9/A0KIe4BBwJi2HktzEEKogJeBWW08lNZCg7IVPxZlpb5BCNFbSlnSloNqJjOAD6SULwkhhqNo2/WSUvqrtftpNfw2rF3ht19XCZd7Z+tqKfXTmHkghLgO+A0wRUpZR8n4dkFDczGjFNldJ4Q4i3ImvbydBpg25nPJAJZLKd1SyjPACRTj1d5ozFzmAJ8BSCm3AgaUIq8/NRr1fWoHXC32C/w2rD3aML/9+m+yX5c50EwDnAY6Uh001/OiNo9RM8D0sysZDNeK8+iPEiDYua3H29K5XNR+He0wuLQJn8uNwIeVv4ejbP+GtfXYmzmXlcCsyt+7o8Q8iLYeez3z6UD9AaaTqBlguqOtx9uCz6Td268mzMVvw9rZPPz2q83m0+r260oMeiKKN54K/KbysT+jrJxA8W6XAKeAHUByW7/RzZzHD0AusK/yZ3lbj7m5c7mobbs0VE34XATKkcIR4CBwV1uPuQVz6QFsrjRk+4Dr23rM9cxjEZANuFFW5nOAR4BHLvhMXquc58Gf+PX1k7BfjZyL34a1s3n47VebzOOy2C9/uR4/fvz48ePHj5/LiF9B3o8fP378+PHj5zLid7b8+PHjx48fP34uI35ny48fP378+PHj5zLid7b8+PHjx48fP34uI35ny48fP378+PHj5zLid7b8+PHjx48fP34uI35ny48fP378+PHj5zLy/1GzDbkvt/1yAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "dtlr = DecisionTreeLogisticRegression(\n", - " max_depth=3, fit_improve_algo='intercept_sort_always', verbose=1)\n", - "dtlr.fit(X_train, y_train)\n", - "dtlr8 = DecisionTreeLogisticRegression(\n", - " max_depth=10, min_samples_split=4, fit_improve_algo='intercept_sort_always')\n", - "dtlr8.fit(X_train, y_train)\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(10, 4), sharey=True)\n", - "plot_classifier_decision_zone(dtlr, X_test, y_test, ax=ax[0],\n", - " title=\"DecisionTreeLogReg - depth=%d\\nacc=%1.2f\" % (\n", - " dtlr.tree_depth_, dtlr.score(X_test, y_test)))\n", - "plot_classifier_decision_zone(dtlr8, X_test, y_test, ax=ax[1],\n", - " title=\"DecisionTreeLogReg - depth=%d\\nacc=%1.2f\" % (\n", - " dtlr8.tree_depth_, dtlr8.score(X_test, y_test)))\n", - "ax[0].set_xlim([0, 1])\n", - "ax[1].set_xlim([0, 1])\n", - "ax[0].set_ylim([0, 1]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Leave zones\n", - "\n", - "We use method *decision_path* to understand which leaf is responsible for which zone." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzIAAAEICAYAAACES8HPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hm11WnDd/7hCfHyrmrc05q5RwdZMmyccDGxgY8mPzNSxpm5p1vgOGbAO+8MDAzDBgwwWCMsY2THGRbVpZaUqtzrqquHJ+cwzlnf3+cp6qrunJ3dZLPfV26VP2ctE/ce+211m8JKSUODg4ODg4ODg4ODg43E8r1boCDg4ODg4ODg4ODg8NqcQwZBwcHBwcHBwcHB4ebDseQcXBwcHBwcHBwcHC46XAMGQcHBwcHBwcHBweHmw7HkHFwcHBwcHBwcHBwuOlwDBkHBwcHBwcHBwcHh5sOx5BxcLhMhBAfE0I8c73b4eDg4PCjjhDi20KIT65gvZwQYsO1aNONyJX0W0KIk0KIB9e2RTcWTr9+8yGcOjIODosjhOgH/pWU8vvXuy0ODg4ONzu1b2ozYAAmcAr4O+AzUkrrOjZtxQghTgLrav/0AlXs8wH4L1LK/7JGx/kbYFhK+R/WYn/X6thCCAkUAAmkgX8CflNKaa5pIx0cAO16N8DB4WZECKFJKY3l13RwcHBwuIQnpZTfF0KEgQeAPwbuAH76+jZrZUgpd07/LYR4Dvh7KeVfXrrej3g/sVdK2SOE2AQ8D5wG/mItD/Ajfn0dajihZQ4OK0AI8VNCiJeFEH8khIgDv1P77aXaclFbNimEyAghjgshdl3nZjs4ODjcsEgp01LKrwM/DnxSCLFLCOEWQvx3IcSgEGJCCPFnQgjv9DZCiKeEEEdq39leIcS7ar8/J4T4V7W/NwkhnhdCpIUQMSHEP83aXtYG1wghwkKIvxNCTAkhBoQQ/0EIodSW/ZQQ4qVaW5JCiAtCiHcvdT5CiO7a/j8lhBgEnq39/jNCiNO1/XxXCLFu1jbbhBDfE0IkhBBnhRAfXsm1E0L8rBCip7bd14UQbbOWvaO2r7QQ4k9r12L62izbbwkhPg18DPg3tVC8b9TW7xdCPFr7WxVC/PvaPcgKIQ4JIToXuMc9wMvAvlnte6J2D1NCiFeEEHtmLbtFCHG4ts9/FkL8kxDi/1db9qAQYlgI8VtCiHHgr4UQihDi39baERdCfFEIUVdb3yOE+Pva7ykhxBtCiOZZ16GvdpwLQoiPXXp9av++u7Zduvb/u2cte04I8XvCHhtkhRDPCCEaVnL/HNYOx5BxcFg5dwB92GER//mSZe8A7ge2AGHgw0D8mrbOwcHB4SZESvk6MAzcB/w37O/oPmAT0A78RwAhxO3YYWi/CUSwv7n9C+zy94BngCjQAfzPRQ79P7G/1xuwPUOfYK5X6A7gLNAA/AHwV0IIsYJTegDYDrxTCPEU8O+BHwMagReBf6ydjx/4HvB5oAn4CPCnQogdS+1cCPEw8F+x+5lWYAD4Qm1ZA/Al4N8B9bX2373wnhbut6SUnwH+AfgDKWVASvnkAtv+GvBR4HEgBPwMdjjZpW3dhn1fe2r/3g98Fvi5Wvv+HPi6sA1YF/AvwN8AdbXr9P5LdtlSW7YO+DTwK8D7sK95G5AE/ndt3U/WzquzdqyfB4q16/4nwLullMHa9TmyQNvrgKdr69YDfwg8LYSon7XaT2A/M02AC/iNBa6Vw1XEMWQcHFbOqJTyf0opDSll8ZJlVSAIbMPOPTstpRy79k10cHBwuCkZxR6gfhr4VSllQkqZBf4L9gAf4FPAZ6WU35NSWlLKESnlmQX2VcUe6LZJKUtSypcuXUEIodb2+++klFkpZT/w/wI/OWu1ASnlX9RyO/4W22hoXsG5/I6UMl/rJ34e+K+1PsGonc++mlfmCaBfSvnXtX7lMPBl4EPL7P9jtevwlpSyjG203CWE6MY2LE5KKb9SO96fAOOL7OdK+q1/BfwHKeVZaXNUSjl78u4tIUQeO6TsOeBPa79/GvhzKeVBKaUppfxboAzcWftPA/5ESlmVUn4FeP2S41rAb0spy7Ou7/8tpRyuXYvfAT4ohNBq51cPbKod65CUMjNrP7uEEF4p5ZiU8uQC5/ge4LyU8nO1+/OPwBlgtmH311LKc7W2fJFZnieHa4NjyDg4rJyhxRZIKZ8F/hf2TNCkEOIzQojQNWuZg4ODw81NO/Yg1gccqoUCpYDvYHsywJ5Z713Bvv4NIIDXha209TMLrNMA6NjejGkGau2YZsYAkFJOexsCKzj+7L5iHfDHs84nUWtbe23ZHdPLass/hu11WIq22e2WUuawIwDaa8uGZi2T2N6ueVxhv7XcvbgF+1r9OLZny1/7fR3w65ecc2et3W3AiJyrQnVpvzslpSzN+vc64F9m7es0tohEM/A54LvAF4QQo0KIPxBC6FLKfK1dPw+MCSGernmOLmXOda6x6DOC7ZFayfPhsIY4hoyDw8pZUuJPSvknUsoDwA5sV/1vXpNWOTg4ONzECCFuwx4cfhUoAjullJHaf2Ep5fTgcAjYuNz+pJTjUsqflVK2YYcw/amo5cXMIsZFz800XcDIlZ2N3YRZfw8BPzfrfCJSSq+U8pXasucvWRaQUv7CMvsfnd3uWqhUfa3tY9jhdNPLxOx/z2vo4v3WcpK2y96Lmqfmi8Cr1MIDa9v950vO2VfzdowB7ZeE712ad3Npu4awQ8Rm789T89ZVpZS/K6XcgR0+9gR2+CBSyu9KKR/D9rKdYWEhgjnXucZaPSMOa4RjyDg4rAFCiNuEEHcIIXQgD5SwXdcODg4ODgsghAgJIZ7Azu/4eynlUewB5R8JIZpq67QLId5Z2+SvgJ8WQjxSS/JuX2gmXQjxISHE9OA9iT34nfM9roWLfRH4z0KIYC3U69eAv1/j0/wz4N8JIXbW2hYWQkyHjn0T2CKE+EkhhF777zYhxPZZ26u1pPXp/1zYuSM/LYTYJ4RwY4erHayFxz0N7BZCvK8WXvVLLOLhWabfmsDOHVqMvwR+TwixWdjsuSR3ZDb/DfhZIUQL9v39+dpxhRDCL4R4jxAiiG3wmMAvCyG0Wn7R7Uu0Aezr+59r9w8hRGNtO4QQDwkhdtfCCDPYhqslhGgWtmiEHzusLcfC/fW3sO/PT9Ta8+PYBt83l2mTwzXEMWQcHNaGEPYHOonteo4D/891bZGDg4PDjck3hBBZ7Nn0/xs7iXo6yf63sBPDXxNCZIDvA1thRhTgp4E/wq5P8jzzZ8wBbgMOCiFywNeBfy2l7FtgvV/BHsD3AS9hJ91/di1OcBop5b8Av48d3pQBTgDvri3LYifcfwR79n+8tq571i7+LbaXavq/Z6Vd1+z/i51PM4btGflIbZ8x7BybP8Duh3YAb2IP2C9lqX7rr4AdtZCtry6w7R9iG4LPYBsJf4VdU2eha3AceAG7lsybwM9ih7Qlse/1T9XWq2CLInwKSAEfxzYaFmr7NH+MfY+fqT1Tr2GHsoFtwH2p1r7T2M/L57DHvr+Gfc0T2EIB87xgtZyfJ4Bfr12bfwM8UbvGDjcITkFMBwcHBwcHB4e3IcKWkx4GPial/OH1bs9qEUIcBP5MSvnX17stDjcmjkfGwcHBwcHBweFtghDinUKISC3s7N9jiwu8dp2btSKEEA8IIVpqoVyfBPZgCz44OCyIdr0b4ODg4ODg4ODgsGbchR0m5wJOAe9boGTAjcpW7JA1P3bI3wedUgYOS+GEljk4ODg4ODg4ODg43HQ4oWUODg4ODg4ODg4ODjcd1y20TPWFpRZuul6HXzGtDb7r3YSrwlissPxKDg4Ob3sq4z0xKWXj8mv+6LFYP7UhcmNFZRc11/VugoODg8NVY+DEsUX7qev2NdbCTbR+8n9cr8OvmN/+1P7r3YSrwu/+1eHr3QQHB4cbgIHff+LSytUONRbrp/76fYuVy7g+nK7vut5NcHBwcLhq/MyW9kX7KSe0zMHBwcHBwcHBwcHhpsMxZBwcHBwcHBwcHBwcbjpurEDfG5DFQrBu9pCz1bbfCUVzcHBwsPnIV+ML/v6F6xRytj0+uKr1nVA0BweHtwuOR8bBwcHBwcHBwcHB4abDMWQcHBwcHBwcHBwcHG46HEPGwcHBwcHBwcHBweGmw8mRuUxWmzPi5NQ4ODg4vL250XJnFmOxnBond8bBweFmw/HIODg4ODg4ODg4ODjcdDiGjIODg4ODg4ODg4PDTYcTWnaNeLvKOC/GYuflhJw5ODj8qHGzh5wthhOK5uDgcL1Z1iMjhPisEGJSCHFikeVCCPEnQogeIcQxIcQta99MBwcHBweHhXH6KQcHB4cfTVYSWvY3wLuWWP5uYHPtv08D/+fKm+Xg4ODg4LBi/gann3pbUK1UOH2ql/hU4no35ZpgWRbHj/cwcGH4ivbTc36IVw+eJp/NX9b2UkpOn+rlQu/K2jE8NM7BN86STmUu63gOS5NJppgcm7jezbgpWDa0TEr5ghCie4lVngL+TkopgdeEEBEhRKuUcmytGvmjTjqV4dCxQerCHvbt3XS9m+PwI4SUFkKsfSqdlBKrmEHxBBCKuub7XwukWcUspFH90Ru2jQ42b9d+6vMHL3BowuKuFpUP3t59vZuzIJZlMT40it/vpVyuMDCe4ej5JOtbvDzy4N5V7+9L33yLc0k3ojxMq9/k8Ud2MDaeQlUF+/ZtQQhxFc7i+vGd7x/h9UEQVpwfv99g27buVe9jcGCUzz83glTc9Awe4yc/dNeKtksnklTKFRpbm3n2+WO82GMiLIMfK5TYvXv+WENKydGjPSQSaQ72VakID4fPHOXnf/K+Vbd5IYq5PJZl4g+FVr1tOplmaCTG+nUtuD0uCpkMofrLD92cGI9x/sIkG7oaUBWFwdEEWzY0E46GL3ufK2Wgf5TPf3+AiqXyjr1x7rpjB2AbN+VyhcaWpnnbnD8/yFQ8z96dXfiD/qvexhuJtciRaQeGZv17uPbbvA5CCPFp7Nkw1FDjGhz6xsDITIJQEaqG6lvdQ75UzohVymFVS1jVMq66dqRZxOvuZ+tlfOiuJqZhUCoUVvTxuZycoGuVV2OVC1jlAmCh+qIITb8mx71RqabGUTQ3llFGC9Yj1LW7HkZqDC3UiJmN24bCDXatpVHFLCRRg41UpwZQfLVnW0oU3Y3iCVzfBjqslhuyn1oqd2Z4IsbXh32gavzzQImHt6Spi6y8f5FSIqVEUS5OREwms/zhi+OkyvCJvQHu3tJ6Re3fHh/kD585w6sJH6KSRwTqKY+cxd2+leFsla3dI3R0t69qn6OJCgg30h1iMBnjS985QZI6AAqlU9xz184ravPZM/1UygY7d2+Yc22uF1OZKkK4QHUxmcizbYXbvXrwFC8cmaQprLNrfQipuJFSMjg8yV9/8TXu2NXMjh3rF92+t2eYf3puiKpUeXx/islUFSFUUHUm4iV2L7DNwdfP8J3jBcxcCjVQhwBSeQMp5YoNzO/+4DAnB7JsafPxnnceQAhBJpmit3eY7xxOY0p46u4Wdu/auMIrAYV8gb/+2knSppfoKz2ge0lUdO7b6rssY9qoVPiHp0+TJcDLJ89TTE1iagFCr57lN37piatuTPcNJ6kID6jQM5zjrjts4+YffzBA2VR45744d96+fWb9gQvD/OMPx5CqixfffJE7djczma6SK5o8csc6evunGE9WuHNPKxs2dlzVtl8PrulbLKX8jJTyVinlrasd8N8IGJkpjGwcM5e8+FsugRqoRwvWI43qmh7PqhTRgg0XB3mKSrG0tse4UtKpDH/6D6/w3//hOD984dj1bs4VYZULaKEGtFATZiF1vZtz3RGqhhqIokdaMAtrFz4gpYXQPQhVRws3YRZvvNAEs5hGCzUhhEALN2KVCwiXDy1Yj1UpXu/mOVxFbpR+Khr0U68UAGjSigT9vhVvG0tn+a2vn+envtjHM8cv2m+v9qfot+pI6XV8t6fAoZ4xTg1OXXYbi6USr02AmU+ghJoQiooabqIy2Y9HqRIMLdxm2zG2MHfvbkQrJ6imxlG9YaRpIIRACEG6YF52WwEOHznP5384yj89e4Gnv/3qousdP97HH//1i3zuS69RzF9eqNZKKBeLdNcrRJUM64Il9u3onLfO2TP9nDzRO++avXE6TkkLM5j3MTKWZE9jiWh1jGqwk8Gsm++8urRwQ99wkqrwgKLTM5zhrn1tNOh5OnwFbtm9sPGZKRgIoaAG6qhO9mFkptje7lrxwD6XSvHq+RJZGeTNYcHEyCgD/aP87y+f4isvjlBRfJiqj9MXUiva3zTJWIKU4QFgMl0haQURmoeTA5fXt5RLJXKG7YUvWToVU0ELNpATEVKx2LLb918Y4YVXTi0ZHplMpDh9qpdycX5/snV9I36ZRank2LUhCkDvYIIyHlBdnB/Kzlk/nSkiVRcAuarKc+dMTlzIMZTz8I3vHeWFHoPzCY2nX7wwZ7tMKsPnvvQqn/n8ywz0jy57Xjcqa+GRGQFmv30dtd/eVpj5JIovgqLpVDNTKJaJmU9hFrMobn8t9GTxj/PlYX8chKpTSYyiqCp79uxb8daJeJKeC1N0d9TR1NKwxm2z6eufJGEEwQUnLmR46P6rcphrhH3/7A5jre/lzYc0DaRRpZIcQdG9a7ZfIRRktYSUFmY2gepbfRjB1Ub1RWyPlDeMVUgjdDfKjNfo7RXa8iPCTddP+X1efnaPizcHxnjP3g50Xad/PMnrPaP4XDqhgI89nXVEgvONhYN9CQZlPXjg62dj7G7P8i8n4pTzOVymoKy4MQoZ/uB4CMUy+eXCGPdsW713ZnAihWkYCNVFNTWG6o9ilXLsXBfgwQfWE66LztvmuReP8/LxKdrqXPzEUwdwe+1vy6uvnWJwssCB7c38+194mGNHeyiUDda1d/L91wbQFMHd+7eu/kLOIpYqYRbS6JEWjvSneCCVJrSAl+vFo2OkrACpNJw8O8Ktt2xZ9bEKuTwTE3E6OlvQXa55yy3T5G+//CZj5QCNLpWPPrlv5lpM88abZ3n6cBaE4KHUCR6496KfpL3eRXISzGKWt0YEOzsUPvzeW/mrb/VjChdBz9LDu63rGzh8/jwVU7BzYxvd3W38UnfbktvcsX8d8dQZhsbT5MPNKJ4AchWjSG8gQIPXIG5AVCsTjkZ55VAfFeFFqGUo51A0nS1dc8crlmXxze++xXCszG3b67nt1rl+q7audva3jnJ6KIffVcWopiipQba0X57n3B8K8Y79UU72pVjXoPPyOdsjqKjasqHWsck4//CDQQzh4fj5E/zSJ+cPijKpNH/9tZNkLR/rjo3xrge28vTzPagKPPnwNtram/i/PhnFqFbx+Oz3e+v6Bg6dPUfJVNi5oXnO/nRdIWJOkMxLhOpBSAtp2UZ/yKcTzxuguvC45oZIHzoxSF/aNgBfemuYdbPuv5SS7z1zkDNDOTa0BXn8XbfdEB7MhVgLQ+brwC8LIb4A3AGkb/S448vBqpRQNDdoOpgG1fQkergJNVBHZaof1RtEuNZusAcgNB0jGwNp4aqzH7CVPkiWafL3Xz9O0griOxbjFz7oInAZcafLsa6jjuDhCTKGm02tK58xvBFRvCGMTAyQqIEbSxb1eqCFGqkmRnE3dmNVS5j5FKo/sjb7jrTU9hde05C1tUKoGlq4CSM1DooO0rING92NUB3V+puQm6afMvNJvnW0SHtQ4X8clZSUVqrHYzywocrvvVagUtKwSllUt8GG8wX+25Ob5vULhWIRsyhRPH7GEhn+83fzxLzrgCDvaZxkT4fC93pDiLyCVBUG0nnuWapNpomqzs8T626tY0djmjMZjW1iCmlm2bY9yi1PPbboLP2bZ5MY7iiDeei9MMaOHRsY6Bvmu8fyCFWjf+QcP+FS2Ltv88w2n/jg8kaWlJLnXzrOyFSJ3RtDNNUHaW5vm9OOA7vaeenoOACWJ8LkZHJBQ6Y5rDM1CZpVormhZdljX0oxn+ez/3KEeMXHhuAgP/nhe+etk89kGMlpKDpMln3EpxK0dc31hEylSjP5ebF0Zc6y9z9+K97vvMLBAQXF7WcqnaO1vZmPPlRldCrL7m0bFm9fLodft/iZxzdgVCq0rF983dmEIyE++v7bOXduiC89N4g0C2xbv7JQpUqpzEsHz9Hd7OHuehedXe1MTMTobg1w6NwQZbeLh7Z72LWjm0jD3P63r2eQt0YUhPDxg0Nj8wwZIQRPvvtWzv7lC+QD67FKOT50m86uA6sPK5vmztu3c+ft9t/NLb2cvpBia1fjvLZdSj5XoCp1hIBsyVww7G5qKkXWssdL/ZMl/v6rh8m77DDWg0cHefyRKJquo+kX+8b2zhZ+9ZN1VMoVfMEApUKB2EScYNjPV16awFCbUdQp9m8M0t0RQdcbyOYq3LL3Ps6eH2Y8XmT/jnVz2tEY9oJVQAqNaHBuv3b8WA8vnMqghxp5c1TSeax3zjt5I7FsjyyE+EfgQaBBCDEM/DagA0gp/wz4FvA40AMUgJ++Wo29nihuH7Kcx6gUQJoI1TXzgVG9QbTg2ns8FgprWGm+iFUpgSVQPJA3XeQyuatiyNQ11PHzH9pHOpmipWPp2ZzVUq1U+MELJ9nRbPHg7d00Nq3MuLjcnBpFd6Po7sva9u2IUFQUt22cK7oHo5Rbu30LBS1Qt2b7uxoIoaBH1/aZdrg6vF36KbOQBt3DZ49ksKplVG8Q1e/lB0MmPxhKII2qPQmgqFilHIMlP6VSCZ9v7iTS7q4G/ul4L0Y1gta4nsliGmFWQdFQhODPD+fJVyzC5iCN0SAPbZqfPAxQrlT47z/o50xK4R3rFH7y7rkDXrfLxe+8exOJVIaGug0XB2yJoQX2ZrMrWOVgDiIyy30uF03xQUZ1HUVYSCBbNPjsd4f5wN1ldu26eLye80OkskX27FiHyzP/O93XM8hzZypIw+D80DD4oxzoGOPJd906s05dQx0P7G3ijbNJOhtctDSt51vfO4IFPHTn5pkk6S1dYdxMsn/fZto7V2bI9PeP8tVnexAC7t4aJF6x70nflIFRraLpOrlMjmOnhmhpCLJ+Yzu3dKqcGEixuc1DS0crAxeGKZYqbN22HiEEt+/pYCx2FtOS3DlL6OfcuUGGJzLs2bWBdGWIqXSO+/bZxt7GTR1sXEYTqJTPUd9mG03JifEVnd9stmzp5Ffb6pBS4guuzOvx9DOHODblBTSEUubI+bMMFQO0eAr84od3owht0X1Fo0E8YowyHuoDC098CSHQVPv503Sdpva1+3bv3rWR3btWtm7X+g7u3RRnaKrMLds6FzTo13W3se3kGGf7pigXiqS8ITRdgrSoC3gW3bfmcqG57PHc33z1KLGKl03+80jhRUqJUSmTyFfY4XWzectFB/SuXRtZqPkutwufmUVTLG7fOzd/uVy1LsYeSBOX68YVvFmJatlHl1kugV9asxbdoKi+sO0dQaC4/AjdhZGZAgTCtfiDJ6VEVooIl/eaqq0oLg9GZpKWsMLmdv+aGxmz8QX8+AJrr5Jx6HAvBwcAFCov9/Kx9ztekmuNUFT7ubcsVP/8MBEHhxuBt0s/JY0qmFXUUCOaUKimxpFZOyZfcftRySCFQAtE0YpTvLPdz/95ZYzRvOSD2/3cVUve39bRwG89WOLPjhTIC8EGf4UdTRphd5V0xUtCDYAX9oSy/PrD3TPHP9E/xt+9MYGmu/nk7c1UKlWOl+vBC98bTPLxu+bPLquqSmP9yr8Nv/Lgeh4djtFe10BdyB64tnW28oG7ijzzcg9JlxdUF6NThZnB1/nzg3z+h2OguhgYPcYHnrht3n69XjeUc1QzcdzNtgF0bjg7b72HH9zLww/afz/zw6O8MWiHEQt5jve8Y/9MOJdVEfSNH6erfYR3PrANr3/pPu6tUxOkZRAkjKYMuv0l+mNV9m8IzMysf+nbxxjIeVHMND/tUnnqPbfz3tqM/YnjvXz51RhS0bh/MsvDD+yloameT33k7jnHGR+d5J+eH8VS3Jy+0McvfWJ1imGlfJ5CNoPucuELRzAqlUXXNQ2DU6f7iYYDdHTNNei8q+jzB/pHOHw+hRqxJ8ZKpTIDGR1Fh7Gil0wqP88bNZv6xno+8a6NjI6n2LZ5Ya+AEIIPPbaF4+en6G5poqnl+ghKCSF49KF9S66j6Tr3376BnokqrlA7RmqcRmuch+7dxvbtiws0TDM6OkW86kMIGEorvP/+Fg4e6mEw0sZgVuFbL1/gX2+Zn291KQePj5GzPFjlEsfOjvFw08UJ+f17NzA8GmNwfIpdm+rYvmNlXrvrgRMjsQou9boo7qVfZCktjNQ4qi9iqzRFWq6KlO1iaKEmfuHjq1cJu1HQdWXGLaurN25ewt6WKnu3tXD87ARvjarXzGA1c0k7cV7TUb1XJ8/EMV5Wh5QWRnrSDpeTJlpo4ZluB4eFUANRSiOnEW4/ai1UeXa/88H1Bl/tTdLlt/itn9jHoYEET5+zJ9K+fCbFXbNSOW7b2sGm1jy9k1m2t6/H77XXe6tvkmdGihho7Ki/OMs6NJniv75ewXR1YqQn+NOXx3is202zUJiQYXZGV6ZMdah3gtFslQc21xPyzw+31jSN3d3zvRw7d23A43Xxjef7UEixvrVrZlk8VYBaMnMqZyx43LaOFjY1nue82oaRmULxBNm9ZenvoqpcPB+l9ncsU0YoKrJSJOlpIDkGoUMXePj+pafkOxq9HB/JgJS01PsZS1SwXEHyswR6MgW77abiIp0p0AEz13Q8XgTVhQAmUosbF8ViCRMNARTLqxM/KOZyVCtl2jdtYbS3h2qlQkPH4gPeb37vCEdGVVQrxscfNfH7XCDlgvK/C1EqFjlzboTJsRiWaWHEBnCrknd+6DF47gQnhtJsbXHR0r6816utvYm29qWP29nVSmfXlSnxDfSP8vqJMVqiHu675/IU8s6dHeT8YJKt6+vYtGnh6zs8msTQAgggGHDziR+/nWA4uKL9d61roe3QMCNpwZ4NAXbuWE844Oaz3xlCqi68rpWNM/1qGWlJVF+Y8bG5CoqarvP+9y4VcHrj4BgyVxGrkEYLNyMUFaG7sfJp1MC1HRguFmZ1OTLIYHuYjGoF3XX1Q7Bu2b+FSvU0uaLJnftXXj9nsXO7KjLOpSyPP3IbLo+Xdd3tHPvzFzDdkbU/ziWYxQzC5UV1eTAyU1guA4wKivvmzlO62TFzCfudFwIjl8Ayq1iFNIrLu+zEh4ODUFT0SAtUSxjlwjwlzH8eCSJdJr2myqe/V8AslBGaRHF5afdZ8/YXDfm5NTT3ubtlQxO/H0pRrpqsb704gBxN5TFdtdAeRWWkYPG54Qg/3pJgW6vB5vbuZdv/2R+e5LvxKELzcmJylH/3jpVJ6G6P2wpb2yMQ2uLiz09JvvTCBP9XNsktG5roalVI9qWYKkk+snlxJbmmphA96QpSSg60ltm1dQPHjvWwfVvXggn3992xFTiHJeG+2+223r6nk4nYGcYLVcrYfZ5nBQPD22/bRkvDMEJRMAyDiRNVFBXOj+UxDQNV03j0ji5ePTZGU8TF9u3dc7bfv7ONC6NnKFVM7ty9+Oz3+o1dPDiaYniyxIEd3YuutxClXJZoiz3Q9wYCRJuXNiAmkhXAi6m4ee3gCc5nw0gE7709s6Kadl/8xmEuZL1YqSn0ejuXJixTTE4m2dhVzxOPdcwTOLjefOP5PuKGn5NjRVoa+tm8tXtV22cSSf75hREMxcOx/kF+ta1+JmF/Nls2tfLmqSNMpqtEAxblSpWVmTHg8Xr51EfvoZTP4wvaW3V0tfHh+yuMxfLs3bZumT3YtLc3cTxuKyNmKjp9fcOcuZBgc2d0TmjajY5jyFxFFG8IMxtDCzdjZmOoVyGP5lpSrVT4x6++zoUpi73dHt73ntuv6vGEEDOFoG5UpO6lp2eEHbs20dMzjKH6VqRp5VfLPLg7Sqli8tyJDKaySsPQMhG1mFWJsJ8vb4hqatweCDlcFxSXD6uYsfPbzCpmNm7LV5dyWKWcU3/GYXkkSMtEmgZ6TeRFSmkrZ7p8KLNCmVVfGLOQ5hd2wZ2bVjZ4AWhriMz77Zb1TdwzPMCpuIE0kiRDds5LRfWwo7t5/k5q5Islvnpsksl0npeGTPR6+1uWLC9+/N6xBEfH8uxp8eN1KYwmi+zrbkDXdY5MVDDVICZwdDzPLRvA7/Xwa49eNIpOL7LfB+7cyokzPyQbbqE/nuToN85iuYKc7T/Mh957x7z1XR43jzwwt2JKfUOUn/rwXZRLJQ4e6sWlKdx+2/JqaSPDE3znlQF0TeHd92+gw5NjMKuxp8uLqtlDrR07utmxiPFR31jHz/7E3Qsuu5QH79uzovWmkVKSmhjHNE2mhgbR3W5MY2HP1mzu2dvK918fZmebQt5qwMrbBl3fSJZ9tTz6VDJNz4VJ1nfWU984N+9xMlMF4UXqfjDKoLnxuySfe3YUVBdD46d48l0HVnUuVxutZrMKLHR99UNky7KwaqKnlgTLWNhrFo6EuGN3C197M8OYpfLtF87zkx+Y/4xOk0qk+OHBXjy6ysP3bsPt8cwYMdNs29a94jpEAFs3NvPGyaMkC5KdW6J88Qf9lBU/Ry4M88uNQULRyCr2dv1wDJllkGYVM58CbMNkNcngQlFRA/UY2bhdPOomrw4+MjTOhawfPHB0IMMTlQraArNcP0oIVePLr8R4/sgE8aKK0Fb2fNyxJcStB+zOcTJ5iOPL6CeZxSzSsEcGWrAB1R+1FdYEWKU87iZ7EGNVCpd/Mg5XjOL2YZXzGNk4ii+MVRNIUD0BjGzMMWQclkULzZ/wMtITaOEmrEIGS1pzPK+qL8y9WyOcG54iXTT48rkSYZfgl+5pJbqANPNi6LrOrzxsz7KPxDL8w+EYHg0e37l0qM5Xj07wjfEA4AcxgpGewK1YfOy+hY2fQrHI77+aIaME+ac3zqJEWpDuEHcPDfD/eXgTd3Z4ODSVRRMWt3fMn6M2TZNiLoc3MP9dskyDDCEEkCSKUY6juWAyvXz9tR++cIze0QJ7N0e57cBW3B4P988KLZpO2F+Mlw8PMVayr/exM5P89EfvIZ9OE4hElj32bN544wzjyRK37W6npXVt8jziI8PUtbVjGlVyySShhsYVKaDu3LmenTvXkxwfI1kwOTPYi2lZ7N5kPyemYfB3XztG0gwQODrJv3pqB30DMc71jDKeU2j0VNGrOdrW+dm7tYl0tkwuD6O9tXZlDaqVCvHJKZpaW1AWUMZbSyzTJB1PEGlsWDRM8v2PbuPQqVFa6wJ0b1h98chIQz1P3dXEucEU27vb8IUW97MImEk3WG4C9Huv9HJqQgEkPk8vD9x7ZYVhASJ1EX7pk/eTSSTIpnM8f9rur0xLYC5igN2IOIbMMpj5FFqturORmULRV/dhEaqGFryxk9RffPkk54az7Fof5o5Z1WIvpbm1gUbXIFMVPxsatR95I2YaS3UzWWZV5WUTKbsIlmkYJDMVYHHBCABZLaGFGmuGdRLVH50Z8CjuAGYuieKPrKooq1XOU83EEEKgeAKXpSJmG1MCLAO1VkDyRx2he5DFLFYph1XIYmDX5LnRVdocblxErX6F6o/YBvElIaR//GwvryU8iHwSUdfBUAmeOx/n/bdcXqhpe0OIf/PYyvLurFklt/Y0KLTU+Xl0Y4iNrQuHURdLFbKWjpGPIz0RdLd9nL60vfz2TS3s7iihCIHbPXdiKJkt8F+eHWGoNMK9O4LzqrZ7/H52tSucGMrSXQ9KwEuqmOO+fUuL3YwOjfD82QpCcTP2+gT7dnfPhE9XSmU+/9U3GIgb3L45yLvfsbAHoT6oIydMkBb1YR+KohCMri6U/Py5AZ4+kkMoKiOT5/j5j69svGFZ1pKGiappKIqC4nKDlIuuW8zlKObsIpLeQBBvwB6EG9UqXZ2t/Ox7FVweL4HaeZUKBZJFBVyQNdx88ztvcnZKRfGFEIpKIqfzax/cTHiWZHEuk2Mkfpxs0eKu3W387ZdeZ7jgZVO4n4998O5F+5CXXjnJc4dGEUaRR+/eSEtjkIbGOvwrVE0rl0r83VfeZCTnYmdzDx966q4F16urD7GuOU0w4ObgG2epi3jZvLlrwXUXY8/ujezZPf/3+GSMatWYyQnat28zucJJ0nmDuw8sXatIm5UnrGsX/54cjzExlWbr5o4F1fyWY2Rogn94po+SpbK70cLQTLrqfRw/P07dRIpduzby6sFTvHI8RludzgefOLBgmOb1xDFkluXtOTCbzhcx8ym7oKfmZvDNBN968+UF8yx++1P7KZcq7N0Yxq/Dzr3zVWNudFabF7SanJpGd4nGsM658SqGsrRRAnB4RBL/p1cpVSVT5bkxwtKoYOaTUPPgzU72lVJi5OzirNMffMXlwRLCzs9YRViZWcjY0uGBOsxyHrOUQ12Fx0BaJii2jLK0TMx88poN1u1imjFAQfEE5oTbXG/MfHImvM+Q80VCHBxWjWVhlQtY5fyCXr2XBgqofhemUNGkBLPKP5wq8f5b4PxIjGLFYHd381WZaPixfc3IIxNIKfnAvk0EfEu/i/XRMJ/ckuG7pwuMKI22t0kRPLH/ouHk9Sy8j5MjKYZkHbjhTE+cX949v3q9eO9dPFks8tbRPgYni7xrfxNbtiw9EPX7fXiVKiVUgm6JEAqlfB6P38/gwCgDeTsS4a3eFO9aoC4IwMMP7KGprg+XS2Xrtu4lj7cQhWyOYu6iylq+UJq3TjZhV4p3eTyUS0VCdfXER0dQNQ2jUiFY37BgzonqcpEYH7WNGFUjPjqCUARurw9/ODKzXimXpa7FNvoS46MzhkxjZxeZeIxgXR26++K98YdC7Gw2OTowhTSqTOJBuGvhtf4oPpnj8Mlh7r4jMDPIDoQCfPwDthEx0j/MSNGPEHB+yuL0sVO0drQRvUQFT0rJD98ax/I1IKXkG98/gda8mYg6xE+/fzfhyPJG99jIJKNFP0KF08OFmbylS/nKtw5zJu7CTI2iRtrATPFxBBs3X37OyNjoFF/67nEmkxUU3cOTd2e49cAWhBDcd8/KdJ3fce9WAof68OgKd9ZCHSfHY/zVN89REV62nD/MR3/sTgAOvXWOg6em6Khz8cS7Dixp5PYOJsiXDBSXTtZ088n338o/fOU1epJusPK4dI2Xj8XIK0HOJaGnZ4jtO1aW+3atcAyZZVB9oRmZZcW70lSsmwehubCqJVRNR1bLKN6FB7KWZfG5rx8lYYbwUmTjltINZ5XPJpfJ8c1nT1GuWrzjno20ts2f2Srl8+TTKYQiUFWNcOPlKUwFlQI/82P78fh8vPHGab51bH4HdClCURnKLexGN4tZtLAdlmHUpFeF7qaSHENaJq6m9RjpiTm5MAvVwDEL6ZqHxk4Gnj8Akhfd2oqGrC7f7ktOAkw7zlpWite0Bo+ZjaMGG+2k+szkDWXICM2NVS7YEwLy5nHPO9y4aOEmrHJh0RBladg1ZxS3j+LgcfRAPXp9O998s4e/OVlBAh8ay/KRu23p2uHJJMVKlc0dV66q5/d6+MRdK8/PAXjXnk7eubuDrx8eZDjn5z1bQ3Q3L++92NIcpOFMjCkZYP8SgQ6xqQTPHM+DojMw3sdvbrbreWRSabLpHO3rbKlfKSVHj/ZQNS0++sg6hsZStNR38ad//wrJosLDe6Ps391NVB8lWfWxvtm9qDEohGD3nssb4B093svXXhzCyqcoGxaaN4ihzc1hSU6ME4hEsCyL+OgojZ2dJMZGUFSVSFPzzDoLGTKhuvqZ8x05f5aOLXYmRWJ8dI4hY1kWtlI5WOZc8YhQ/cITMsFIBC1pf+f8Why3YlCsphHZJEkiPN9jUTRO8+5H9s3btqmtiS7/AAMZF0EzxRff8ON78zQff+cG2jou9m9CCBoCCpMmdjHY2kRe2vIxOhpbkSHT2tZIi2eIsaKHba2uBY0YgPFkBXAhldr4RnWRzBaX3f9SvHJ4kIQVRQvbfXrvSJZbV5ka5A/6eezBuW6eiak0FWHf7/HUxWiMH7w5SlENMzkq2X5+gM1bF5d0jseTCFXHzCdYv9X+HiTSJcANik42X6IlqtObBo8s0tiwOu/UtcAxZJZBaK6Z0LLFWGoG/UZHcfswi1mMbAyhexatsm4aVVIFAW4oWC7SqSzB8NWR/F0LXj/Sz9m4fS7PvzHAR56afw+L2czFomDjl1/k26Mx03n4fS5glQbBJQjNNTMQljVDQfWG7GJ4tTDFxe7TbKRZnQk/M7LxeYaM6gtTTU9hlnMIzYO+QGz+ku2shaQZ2bgtAe25ls+DmDWguLG8pqo3iFlI2yFACxS1dXC4HJZSJNTrO6imxrEqBbydO5HVMmYhzdM9RbSwPcN+cHiYj2DLL//R4SpVND4+NcQT+zsplkqkswVaGq9d+KMQgqduWZ0B1BQN8l8fU4mlc3S3Lm40aJqGgoUFuGohOeNjU/ztt85TtFzcs3GKxx7ex8HXT/Od40WEULh7Q4nHHtrLm4fOk7RC4IbjfWnuuyfAp35sH1MTMTq6rk49tmOnJ6iWK6jRLpTJC2jBBlqC8wfP094Qr9+P7nIjhEK1XEZKST6VXFYBLDUxjscfmAlFk7PjAoFoSyvJ8VEA6lqWlzGuVspsavNxqm+Ysgn33b0J0zD50mse2+DOTAJQqiw8oaPpOo1hnVQuT1n1IISgiJe/+OLrfPSJ/WyZpZz1iQ/czhuHzmJafoolD29dyNAaUVjfbXsn5CKesmncXi8/88FbScTiNM5S65NSkorHCUUiqJrGPXubeeHwON6QherJUxdys2fHxef06LEejp2bYlNHiLvu3Ek+m+fEmWFam4J0rZv7fLzxxhmGpoqIahEpfSAttGqevVuWDiNbKVs3d7D53FtMpA3u3XtxUiIa0CgWwU2ZaHRuv3zpdRpMWDMiIqFwgHwmSypbxrBiKGaZLRvuY9eOdZzvHaG5oZOGFRYmv5Y4hswaYBYzs2bQ43b4T3oCoWog5bKG0PVG9QZhGeE/3eXm0VsaONKTYkOrl/ar9EFfK0I+DSnLCKEQ8i3s+VB1nXKhgMvrXZGCy2JMlj189Vtv0tYU5PUzSZbLd1kMKS0OdEBHSysvvtnPVLYwxyhW3D6M9KRtMEu5xJ6md2jZ4V/Wwp2I4vbjblpYEtgs5ZCVEkgLNVi/qFCF4vZdF8ln1R/ByEwCynWVNTYyUyAUO39hlrS66hgwDtcQRfegRFrsnDdFRbh9VDOTpIwKeOxvy646e/ByJlamqtrv7OlEkVsTGX7v+Rhxy8f7O/r58Tu6r+OZLE/Q7yPoX/qb09zWzAfuKTA4nmP35q1IKXnhlVOUCCEU6B3N8xiQzhszXunpGi/rOqL4j06RM11sbLOP4w/48Qf8FLI5RoZGaW1rxrVI+NtivHnwGP2TFbZ0R9mze64RFlLzM+MEPRDhPXs97Nw+d7Cr6jqJ8VEsS1ItFSkXi0hp0dDRSWpyAo8/sKAAwhyEINLUTGpynHwqReuGuRLKiqJQ17p4YcrZ5FJJTMOgtb2JT7zHS7S5FUVReOvwOdtbD/hdsKHJ4sE75p6vUa3S0zOEWSnz5oiKEGGMwgiaEcMwTBRvI8fOTc0xZPxBPw8+eMvMv99VqZBOpamUyrx08BwHzyTpqnfxkaduRXcvHB2gu900t88du3z2c99nqBgmSIZf+Phd3HrLFm69xb72oyOTfO3Zc/zlF9/gqYc309gQ4ivfPY10Bzg3mCHq1zh4OkF/1oNqJfmZd6u0ddhjwcELw3zrSAYUnZA0+LHbgigCtm3fu6RoxGpwedz8xAfm5/p89Il9nD4/SntL+4zhkUll+MdvHiWRNXj01lZuu832ym1t93NwwCSiV1jX2U21UkG6w2iaG8W0xwBuj4ddOy/ew4nxGK8cHqQu4OL+e3de99xYx5C5AqxyHqtSwqpWZqRVpVmt1ZJoQggFM59CmtUVzaDfyFzMF/Ey2Q+vffYIcPn1aKb53rNHODWYZVtngHc+cmX7siyLvvMD1NWHOXBgKy5XL6Wywf698zX5C9kMZrXKZGwAfzhMXdv8j/fl5dRcfohTvV7giXfeixCCgFfj8y+l5ixXXF4Ul9cugnlJYVUzl7SNlllhZFqoCSOXQAhl1YITslK66M3JxBZUUrqeCFW77sUmbdGFCELV7QkMy7zplQkdbjyklLV8MIHqCyG0xUN6haJgZOMgLYSEqicCmRjSMvnmVJVvf+4cVrlAZ12JvAkPrAtycixHXIRBhTcm8vz4Ktp2tH+S4XSF+zbZxS/f6Bnny2fytHnh5+7rxH0dwo9natI0qyQ8Gv/4+lm+Gz9EX8ED1gS6y80717vYHh+kqVsjkS5RNSX3HrAHao3NDfz8B91k0xncPh8H3zhDd2cDHo+Lv/zimySzZVS9lwf3NfDQ/SuTQf7m069xsLeI5o9wenyKjpYIhWKVU70x1reHuOv2rYx8/zyTlQBbWwS33jpXdCc+OoKiKFRKZRo7u7CMKpVSacboWK4ezDTR5hYSYyMIoVDf1r6oYM+0XLPmchOsu+ilK+XzVMolfIEgmXiMto12qGI5n5/Jw9i3dxPx5DHSBZN7D9yyoPLaV771FqdjLjyygKdSoOxuoKUhyAO3tPHVgwlMBOvbljbKjp8a5BtvxNCExCoXMD119GXhwoVRtmybH0r1g+eOcKQnw/oWD+97/FYURSGTTNIfBy2kk6OeMyf7uOX2i+Fbb54YZbJiT5S9cWKUJx+tR2g6ij8CwOtHLjAUN7Dc9eDykEzlZgwZoSgICRJQVIU9e+1rNTo8TrFUYcPGznkGQLlU4tmXzlA1JA/euYlQxJ5gtiyLg2+coVKV3HnrRtzLGNGBUIA9O7s4d34YVVVobmngbO844+UAuOCNswluq6U5P3TfdgrZV1F0H5qmEQwHefetMc4NpNnWXb+gYMW3nj/HYM6LlBWi4V727Fl5nb+rgWPIXAFWOY8WasKqFKlMDSI0HS3UiFBUO57ZE0AaFVCc2dmFSExO8fL5CkIL8GqvwYGdEzS0LF6vYDm+8Z1DHB5V8YhxPvnujUu+XKVclrrWdsK12amVSFGahoGiqms2+yClxW1d0N0R5eCJSWJZlWw6SygSIpVZPDztUiPG3pe5YBjZ5Sff2x4faZk3WuTWHKxqGauQqnmprGtr3Cga0jTsSQppzcxCOjisJdM1yKbzwZZ6xrVAHVJaTIdeGplJECpWKYurcR1C1alaJvUeCKPQEHCzrl6j4dwUU6aHYjnD5165wMfv6l7wO/fM8WG+e6HM5pDFfevD/P6hKpbq5ej4KP/+nRv54qk8Q1aE/izsOT/Jgzvny9c+e3KYkazFo5sjtNZf3XDUv3jpAoerraCGEDKGGmrk4boUj++1Z/rrwwE++v75tcoCoSA+v4//539/m5zpRtDPgztDpArWTG7i4Z4UD91vr3/iRB/nh9JsX1/HtgWKEZ4ZziNEbZLDskBKvvDMWfIixBs9I/zC+7bwwUc2UcznCdd3z9nWNAw0XSfc2GQbGJMTRJtb5iTdA5SLRQqZtK0oJiW5ZBK3z4cvNHf8sZzHxTJN4mOj1Le1Uy2XScemCDc0kkslAVsZbqTnHPWtbWQTcdw+X+2Zs1EUhcce3rfkMUbidh5KSfh4bI8fr9/PxvUbCUVCNDdPYRrmjLLXYpwbTCEVN1UgoKTIASGlQEvL/JBDo1LhpZMp8IQ5Ni450D/Cug2daJqOYhSQ0sLKxmlv38mzLxyjWJbcc9t6Wus8vDWQBSFoqfOjahr7N4U4PG5CZoy+UCsiqOLKj7Gzq2FOkdPOdW08eVue4ViB/dtsD8+ZM/3884vjmGg8MJqaZwi/8kYPrw/UcpRePc/73m17oF57/QzPnCghhCBXOM173rH8JOuXnz7C+ZQbl5zkU09Ae0sEt4xRwkNX40WP1dPfeZMjQxbIDEK3j3nbga3ctkQOz/S3wSrneONYlol4nkfu33XV5bMXwzFkrohaorTmQgvWoYUaMTJTqKHGWt6JPaBczcBXSomZS6C4PDd1JfDkVAxfwIfbu3gIQCAcJOoukzJ1InqZ0AoS9pZiKFZGCD9lPIyOp2htW2JQW7snK703yQnb2DGNKh5/YF7ncDlE1QKPP2Z7YPwejb/9YZzPfu0kjSGNCzETVlMk07LDyKRRRazAKFsOxRO0hQYkqGskHz7twRSajupdmwGMVcrNE0a4VqjeIGY+iVEu2PlljvS0w1Vhdj7Y8u/27ImOaaNHcXmQ1TJCtUVdTlXs3//lRAJVEdRpFcrZBPHQer45Idlyfow7tswPH/6n0wXyrnqGkxI/YxjVEFYhzlDerl/V7IWhPKhGiZbw/FnjI33jfOaMDqpGT2KS33187nfg/GiCI6N59rT62Nq++HdHSslfvNDLa+MWtzYKfuGhTfPevy+/3svrk6DXJpSbtTwdAY2n9swdIKeTaU73jNHZWkf7LPGD8dEJMiWJokuEN0wiX6U5YDBZk7rf0OIhncrwzHMnOd6bRAk0cHpomF/taMAbmNt371wf5ZVTCdTcOO+6u4tQNEzFAHQwpUqlXKGla+F8IUVVqZbtGmL5VBKPf66nwqhUiI+NgIRANEpyfByApq515FJJCpn0ivur1OSE/YdlUcxm8IcjFNIpAKrl8oznJxCJEojWUchmmRjop3PrwmUbLNOklM9TKtj1SaYV0e7cWc+LRydpjri45cB+PLNyexqbVxaKv2NDlPPj42hC8t6HtyGEoLl5E8Hw/DB5VddpDauMlSGklaivjwDgCwb45I/dwluHe9lzz0b6htO8eN4OxT5z+vsU8KELhXt31XFnrTTFU0/eza2DI/T2Kfyw137m2lvqFiwQvn//ZmabHKOTOSzFjQBGYvMrxqrKxWdYUWwjtpjLUSybM893sWrN224hJlIVwE1FeJmcSrNr90Z+7n0ayVSW9RsvJuyfHS2hBRuQlkkmkVx0f+lUhqHhKbq7mnnyoa28emSQvoEqw+U6hvssIoHzM+Fq1xrHkLkChKJiZOOYhQx64/RHyH7Y1MtUODMzk6ihRttVWsxe9n6uJy+8dIJnT+UJalU+8cR2GhdJDnO5PfzUU3voG5hk/boNuDxLJyoux+3bG3j2rTHqAxpbN21ecl2Pz09yfAzTNGcS/pdEyhlVs+TE+JoYMkVTJRFLUt9Yx1TC/tCnDQ/pBKCs7tXUwrUwMlVD9a+udsFCKC7PmiqBSSkvejDL+TWrcq+4PDPvybQwwlLYM9TKmuWurcW1dnBYCtUXvpgPtsw7aVWK9vvg9s15vxS3H7OYsUMghah5WhWyuRxnsL0mbmGrHqlWhbBv4ZCjdj+cq0LAyvPg9ja+PzJOOdhCsqjwH75+mlRZ8nD9BPdubmJbx/xw1JJhIRUXArg0/7tQLPIHr6bJqiG+M5jjjx5zE1qkRshUPMkPYgGEW+f5tMV7J2J0tMx9n18fscVOjEwMI5/iEw828fqE4M2BFO+JXuxXP/+No0xWg7iP9fHp96rUNdr91avHxnDV29fGSI2xZ+cuPrC5k1Rsiky2RGd3B1/7zmFOxT2okVaMTAzh9yJqg1EpJadP9aFpKu96bD+37pogXBee6eeeuq+L471xNrSGaOmYn1g/OwIgWFc/o0h2aR5MJhGjeZ0dSpUYH8UXDFIp2x79QCRKcnxsTn9VLhZt40SIeSFp0rKI1pL8R3rOUcrn8daqx7s8HtJTk7i8PnLJBJrLRbmQp33TwonrmUQcs1qllM/TumGjXTNtYpxocwt33bGDu+6Y7wlbDbt3bWRjVxOqri45YQr2hOXH338Lff3jdLRtIDDL2NmwsZMNG20P3asHTwF22HDS9KOHmrCAsezcvqW9q52mlkay1ZNk8ib333oxlG1saBwEtHbM9yjt3trC2YEzFCsmt+3snvl9fGyKN46PUO9XuH+LjmFa7N3Swp99/lWmChq3rRPsaXNRrVo8dMfKlPHu3dfMy0cnaYnqbN1iP8fRhjqiDXOjNIJ+FwkTsEx2bmrgc196DYDHH9xKKOSnp2eIvgvjvNWTpar6aAmO8PMfv4cnHtvHF776Osm4/axr2vWLSHAMmStgOrlXDdRhZqawFAVxpRK0imonDtcqgS+XhH+9mV1rxcynbK+AWUWPtJCTLv7k84fn5GdcmncSjobZH12b0Lvbb9vG7SucEfCFwqsyRizLwjQMysUCmr5wJ385OTWf/cYZGoMaQ0kL1Ct7dm7ogovSQih2npjQPZiF9Grqhy6K4vZjlQsY2diyholZSKP6oghNx6oU18yYcnC4mtghy8uHTFqWhZGJ42rowMgmkMytCzXtBdWA4tBJUBSOujzo4RKKy0O2ZKAQQwiV33nTDW/GZ7b9wvvsb/hvPNjJof4EGxpCdDRF0PQ4ZcCoGPR4m0CHgWKKT3cunFN3x+ZWPpQaYLgAj2+Z+70qV6oULA1UKEqNUsVgMb9tXSREt36BAauOLjVNY3RujY8vv9HPhXgeAj4URfDoBh+fP20wodTxctygKzLOi/1ZTicgXrTAH6QkdSJDvWxX8gD43CogkVJyz676mVo00cYmorVPjTqrSGF7WPLIvevw+HxIKfnbz32f/kodSMkTuTK3Htg6p407d65n586FZXFjI8PobjfVUolgfT35TAqBwBucf0UEAss0UVSVcqGIUamiuXSSE+MYlQp1rXM9a7lkgvq2dvLpNKM953D7/IQbm9B03X6GKhWqlQrBaN0cyWV/OEK1UqZaKrFu525MwyDcsPg316xUiLa02vVrsItyzg5BWwt8oZWPj3x+/5yE9YW4/cAWiuVTTMV0TveXsaplhKrS0TDfUNJdLt7z2Nw+//Dh83z9Tdur8dRtOfbtmxve3tjcwC/85L3z9vXVH5xjouxDmmU+9mATm7es49ixHmLVAEKHs6NZfu1Td674XIFaeNjWJdd56ZWTJFM5vGqeh+9ax2i8Ql/aHoe8cqifXL7MqcEsqj+KCPiQmRiTRT+FbJZAJMK7H9xG9K1+Qj6NffuWnjy+mjiGzBogKwU7VEmyqELUajBzSaRZvakGWdIykdJCC9ZTSYxgVcvISuGa1ha5mtS3tZOemkR3z01+vFIK0stABnib54gLRUVK0zbOLXMmHGwtWKlyml0zqWjXTKqUbqr3y+FHByklZmYKFAWh6qi+sF1wNhu3f9M9CxautfJJFI8d0qQGolQm+xdcz8hM4W7dbKsalotUk2Oo3iB6XescURqrUsQq5xGKBtiGTMjv5aGdFz3Y/2pfkOcGskT9Bi9nilRVL11LvFZCCD54e/eCy6LhED+zPcvrY1kOtGg01cJ/FkLTNP7jY52cG02yqaUd9yUqVc8OVVEaurHKeX5xr4sHd2/h17/WAxIUJF87NMDhfARFd6GVk3SHdbZHBTu6Lrbt0fu2Ewr0oimC227dt2A7Hrl7C7F/eYWKqfK+d+6lpc3+rvWcG6AnLtFDCggYHImxe3snbt/KFB5VVZ0xEvpPnWDd9p1IKUnUcldmE2luITlhlw+ItrTiWeYY0x6jciFHW82bkhgboa61nbrWNkbOn8UXDM0zgMBWL9Vd9rVerA7LxeMolItFhKIw0X8BVddXLEqwFNO1f8oVg1v2bVzTenaqpvFwLW+lt2eYY8cv0NXu48DtO1e0/cBEDmoTdj1DSfbtW3zdUrHIyPCkHc44XbunUsSoVABY19lI5K1JkoabLR1XRxn0zbMJZLCNIuByuQn7JVLaxw/5XJwdys5EMACoGNy92UcgEgEgHAnxzodXJnhxNXEMmTXAqpRmZoOvNE5/OlbRlnS9OWPutWA9RnYKLdj4tjFkgMsumOlgc63rK1nlPFbZjt1X3H67ZlLJtHPXdDdCu7mVBB3enpi5BGqoASEUjEys9lsSNWQXgC1PXkBWS7bk8myPiz9CZWoApGWHO9cvEjIrFJSa8lk1l0SPNCFcPsxcHKG5Zjw3VjFrF+KsFOkbj7OhZX6I8F1bWrlrCxiGwW29w1Qocfum7ss+90d2tfPIygqd4/d62L/xYkjWycEpXhsqsrvZxc4oPJ+S+Kppvj/gpifVxy/eGuH5gRyylOWZ9Eb0kMDIxNjUFOD3npivbKm73dxz59LhT70Xxhms1COEwndf7uOTH7INGV3XUBQVvTBJc2OQ++/cRj6TmjFkquUS2UQchMAXDFPMZfH4/XgDtoehWqkgpbST6T12EU4hxIKiNEKImdyTleBye0iOj1HK52fvBIDY8BBtm7aQSyUp5rIz7bkcIk3Ndgia5iLafdGAKWTSlItFAtHojFG0Gt48dJanj+QRQiGWOrmixPfZjAxP8PQLPWiq4KmHt1G/SO2kjZs62LhpvljFUjT45Mw7G18i5MCoVvmbL7/FRNlHs3uIx+9bz9M/OMGE4uc7B8dobKqjoameT39oH+lkcp5k9Gqplst86wcnyBRNHryti84u+350NrhITUj8Som2li62bvaBcQJ/KMT+fZvRtDO8fHwKjzXJuq5W7nzPbTS33FgKpuAYMmuDELYLUtPXxCMjFHVGbcZWYrqx69CA3WYhatKfgKtu4Q/A7FC02VypjPPNyGLnvNg1clgdVrk4Z4JBcfvsGWrHE+NwAyMUxe5HVIVp9UDb429hFnPo0TYU3U01MQaqhqJ7atupuOo7MYsZXPXti8o0C0WhmpkC0wBFRXH7qabG0cLNyGqpFoIZtrONsUNBf+0rZxFCwdW03q6PVuML76snmcnzn54dZbTq58n2EndtvfbuZcMw+B8HM2T1CM+Nl/j9++t5sFDhL95y02PUcz4m2dFU4WfuXseRvnG+d9gEVaPdZ/KbDy0c3jUt47wUscwUYA/Gpbw48di9oYMPPFiikElz1322/NNozzliI8N2HZeJCRpryf1DZ8/QsWUr+VmJ+Q0dnaQmxvEGQ2i6TmJsBADPFRgWYOetKEIQbWnFmw8xcv4Mmm4bSlJKNF1HURRCdfUkx8cu25ApFwqouk4gOtdIKGTSSCmJNrcQGx6ioaNzkT0sTrZ4sfZPtrj6+m+vHhlmrGgblK8fH+bdD69dhEUgFEStXTJLn1/QdJpULM540Y1QYLzowedWyZUMzGqReNHgTM8Y9zbV4/X78C5TM2klvPDCYQ71VVC9QYxXL/DTNUPm/Y/fyr7eIeobIui6zl/+8yGmyh5u6chwQFG4564d3DO/TM0Nh2PIXAazdf0VbwAtUIdZSGOVcqhrIP9q5lN2TKKqz7j3bwYFM7Wmrf6jTj6dolwsYJkWdS2t102S8EcJKS3MnB1aMz2wQ1rI6cKhaxyb7eBwtVD90dqEkJwJmdSC9RiZmG2k1IRlhKbXPI5ixvMtNH1ezSirnMcsFxDYnknVH0WpvRfTXn+havasv8uLUfNiCmGL2Rj5JKovgh5pphIbRK9rn1Mv6dtHhhiIlUAp8Mqol49f4fkPTyYpV002ttszvy+eGePFoTK7G1Se3L/wwFdKSXU6PAeBlLBjXQv1p/OMlUAxK0RrAgb7NrTwc8VhRrJlHt3SQcg/V2Tm5OAUb4wU2NfiZd/6pfvze7e1ESsMMlGAHXfN9d5sXFdPuegjPjpCqZCnsaMTl8dLYnyUcvGiN0QR9n0IROtmhGQURZlJugfWRFwmMT5KsK4eyzBJT00SbmzCGwxR19KGZVlcOHGMQChMLpWklM8TjF7eAD85PobL66WYy6K73fjDkZll5UJh5rzUyywKefvebqaSpylXLB68fb4nbTnqQzpy3ABp0Rhe25CtXTu7efnNZxlPW5jSrguzUM2XYlXSKGIkijrbu3zUtzRTMl0zUQtnT/Vx790rdE3W+NYzhzjam2Fjq4cPPnn7zLjj6NEeXuqToKiYuSS+xovGqaKqbNzSDcCZU33Eqn6EAmeG0rz3Mq/B9cAxZC4DMxu3q50LBSMzhaJ71rSSt9DdWJUiqlev/f/aJfxPF1B0jJLLp1zIz2j1J8ZHV+X2d7g8jPQkWrgZq5DCknZRUDVYf7GQYPDG9WrastRFFE/wbRWK6XD5LFTAVgs1oAbrqSZHQSi2Mpk3ZMv1L/HcGNk4rgY7Ub2amURx++aHLQulJrduoXjs/mZazMbMJdHC9oBej7ZiFbMz/UPfeJyvDYAWrENx+9GLA1d03m/0jPPHR01MofKJjUM8trOVvzyap+yOcixTZVdzjPVt9mBvLJHlmXMJ2vwqj+3u4FduDfLKYJY9zS7am+xB+C/f08oLvXE6Qy62zxIgeGiB+jYAxVKJP3wjR14N8cPRIn8YzVC/RFkAIQTvP2AblqfrL96zdGwKt9eHx+cnE5/C6/fj8ngxDdub4PYHbC+LEJTLJdKxKaql0jwPxloihGKHcrkgFZvEHB+lWrLVzcxqhYa2dsxqFd3tmTGmLpdp4yU5PjbHkAnW1TM1NIim68hpb+MqCYQC/Ph7b5vz27TYwUp48L7dNER7cWkqW7cv7I27XDRdJ1PVUUMh4orKQP/YvOKc+UyWzz9zgZJoxufO8d537EMIQdgLScAsZsm5l1YnHBma4IVDg0SDGu94cA+VcpnXewoId4RTMclrL73F3Q/Y16hnOAOaB1WDVn+JJx9ZOFyys7OZhkOjTJU8bOtYeOJcSskrr50ilTO4c38X9Q03hmqnY8hcJhe1+tc+j0VxeanE4xjZOHqocU4C5tXEyEyhBurAsvMIVlsN3mEulmkibuRqkitkxgMpBIrLe0N6B4WqI4SYmc1WXF6Eot7wYZlWuYA0DbRgA9XUOErkypNhHd6+CCFw1bVTTY0jTQMjPbHkM25VSiCUGc+kVcqzkBTYUoqHaqiRylQ/WqgJs5BEj16cmEnlKhhSoNe+CZdTH6paraLXZufPxKsYqj1Lfjpe4p2KQkCTlAE3Br5Zs9ufOTjB6XIULJOod5xbN7Vw4JIJ+kjQx3v3rXzW3TRNqpYCKhgIDPPyPLmWaeLx29dECAVfOEJifBTLMFE0FWlamFJiVKsEI1HcPh+h+obLzoutlIrkUykUTVtUSUxRVZIT40jLxKiUae7qppDNMHjqBKGGRhRVxRsM4fZeWRkEKa0ZdTP9EhEGzeWisbNrkS1tsokERrWCNxCcuYaLH0vy+X9+nt5Jix2dPj7w3jtIxJJ8/dkzVE3Je+7bRHvnRWGZeCzJq4cHiPh17rlr6fwnKSUXegYIR4LUN65sLNTXO0ylYmKWUwTUKi0tGxkfm+KZl/tw6QpPPLSdSqlEyVJtdT5Lo1wq4/J4+fB79vB3XzpI3tC4/bbuJY/z7Zd6GSl4kTFJc10v+/Ztxi/yFAhg5pOcHXFxd23dnRvrOTs8gCLg0Qe34vX5OH2qF0VR2brt4nEURfC++zpxu924PB4mRsZobp8rC378eC/fO1lCCIV4+hyf+OAdK7ouVxvHkLkMVH94ph7FQrr+VrmAVS3Z4WGX8WEyMlPo0VaQEjOfvHbqSkKxQwYUW3byWnI5eSE3al6NL2R3WkhJ9DK8MZcj43w1MXMJ1EDdTO7WjWjISLOKWcxglQs3VW0Xq1K0Jw+wjTEprTkFDR0cFkKPtCClXLZ/EbobFAUzG8csZdAic79HUlq2GhrUwpnnDwk0fxjVF0JWS+jR9jnH/P3jOmY2hqwWEZqb/nKej3w1PiPXvBz/57keXhxX2B0x+I1H1nN3V4DXhmOUTXigO4SiKPyb+xp4fSjHjkYPzXWRmW2n6wJKoVAxqzO/p7IF/uK1cQqG5Cf317GhZeXfg4Dfzy/uy/LaSJb9zS6al1BOu5TZOTVT+Qx9w3berKJquL1e3F4v8dGRGQ9939EjRFtaiDa3MDk4sOwAfymyCVtSuVIqkonH5sgmTxNuaMQyTTund8yWRPYGgrh8fqSU6G7PsobDSqhrbScTj1Epl1BVbcHntJjLUcrnCNcMqGny6RSaSydYV0d8dGTZ9rzxymHOpwMIr8qJSZM7evs43pdmMGcbY68cHeJDnc3k0ml8gQDf/OEZ+jMepCwR8vewZ+/iksHf/t5bvD4o8IgxPvHODbR1LK+0efz8FAQa0ACRH+Ezn38Nr0clJu1vfNORfh6+fxfv2DvF2cEcO7qjBGsKYC1tzfzmrzyJaRhoy4TdeVwKFABp4fXYk3jvuGMdX3quH+EJ09Z80Rjdtm0dv9HdhFBsj9yLLx/nB6crICXvzhS54/btJOJJ/vbrp0gbbnbWFehLaZQsnYe2x7n/3oshbpYlmZ68t/++MXAMmctAqIvr+pulHEiJ6gtjZiYvT2ZWiIsxyNdQuUyoWk1xw0K4ro7c39ud9NQklmWBlDPhZdeaRneJlqiLM6MVqsrlF7W0ygU77MmoIirFmpTr9fEwWdUyVjENKAhNnxfKqUdakEYFxRO8Lmp/RmbKfm/V+W1bCtUfwUhP2F5XaTpGjMOKWclzLoRADzXaKmbR9nkhaGY2hhq01dCMzOSi/dp0/sw0tiJgEZAongCu+g6klBgZgZGNk8558bntAZa2iExvuVzm+XEVPCGOlqBvNM7WdS38rx+LIKWcCW1a1xSlqzEyb/ufOVDP02fStPrhri3rZn5/5kyMQ3n7HfzKyTS/sQpDBuDOzS3ceQUlMfpTGSZ8UZRKmU1GnvHuHUgpGT53GhDUY/cLqq7NyBF7A0HMahXtMqWEp6+Vy+Mln0otvl7NaKhraWVqaIByoYA/EqVaLq2JNPLs9vgCQbzBELHhoTlGWiGbwTIMIk3NTPRfQHe7EYrA5fFSLZWI1NqxktC28ayFmYujhZoQyQH++vslRDGJ9LeAotIQdPHdHxzmlXN5mv0Stz79zgiWG4cPTJURwksZD8Pj6RUZMhs6QhwbmsI0JZkyqJqPzMQYalMdUloEffa7YBcEvbidZZoIxVaqXc6IAXjykR28eXSQupCfbbXwuL23bCcSDZIvlNm+Y65rcnax8eGxNGYmD0LhTE+GO27fzsBgjIzlQyhwfiRH1d8KCvSM5ujqH+WtU+N0tQQ4sH8zqexxUjmDu/fPrZFzPXEMmTVGVssXQ7KUy0vyFpq7ZlDImc7DHshlAIFwLVxH4EpZyzyfH0Usy8IyTaItrRjVKunY1JIFw64GAVHgp96/D5/fz+HD5/j6W/nlN1oEq1KYCVupxIeR1dKcwcy1xCplZwZZ0/KWl7KYStPVxswlZ3msppZc1zIqVGMDdj6M22/X73DCyRyuIkKdLwBwkdky/ys3om1FQHvWvxIfsd9JaYFlooZa+PVvj1EuFfF6PPza3VG2tdfzraNDfPVcme6Q5Fcf6MLjdrErXOVEGbrUNJ1NtqdiWmp4moHJFH/40hQ5Q/LpW0Lcscl+Xza0RPmVBYyURp+CtEyEotLovfazximXn1BtEivZZ1eKL+ayeHwBgnX1xEdHyKdTNHWuY+jsaQKRKNVy+Yrqk6m6PhO6FlnAILFMk0ImjT9iR4kY1QqKptGxdTtge3SqlfJlySEvRLVcnknqv9Q4K+fzhBoaSU2MgxAzdXES46NEm1uJDQ+taDAPsGNjM8cuZDFSw9Q3RElIP1L3szOaZvuWTrZv7+b3/vCbSFeQ0XyJd93RQn1OEgno7N279ED8tm0NfO/1EaIBja0blxcVKJdKXBhO0xGoUkzFmaqzjWu338tDuz14XBp7FjjmW4fP853XRgh6BT/xnt2LykHPJhwJEfCqvHR0gv6RFE+9+wCKqrJu/fJy0aGAGy1se7pKVg6A9d1NRI+Okyjr7FgXpC+eJVcWBKjwV//8FlLVOXI2RktDgAfvu/51Yy7FMWTWGMXlxchMIjT3TBGh1aJ6gzArwd8q5aimp3DVdyA03e40HAnZGw4hhO2NAYxKZdmCYWtJm6/MvXsbiU2aMzOgfu8VHn+W6peiu655HZg5CAVpVmueixtMgUwIWy53mYkLaRp2McKWzRjpCTsM7hoKeTj8aCAtsxaSvALxCCGoTPTBksbOQtjvoJQSrCrSVNDCTRi5JEIIcnqEarZANRjltcEc29rrebq3TEaPcqwIhwfi3L21jd96dD29Ywk6G9vweRf2Hr82mGVCqQMX/LA/y56OEvFUlvbmhXNKHtrZgVcfI1uu8OC21dUBWQvcpRyWaVLJZagXkCkU0HQXRrWKx+/H5fWSjk1SzGeJNrfgD0eu2Iu8UCjZNNVKmfTUFOGGhlqivd0vZGKTlPMF2jZtppjLEohefkhuMZejmMuAlPjDUTyBILGRYdQFEvC9oRBjfT10bNnGyPlzVIpFXF4v0pJk4jE0XUcoCpGm5T0gmzZ38hvt9VimxZGTg3zvWA63YoBUefnoBBPjMYh2ogqBYlRZ11HPvettAyOfzfPym724NcE9d26bZzzdemALB27ZPO/eDA2Oc+TsBJ1NfrZv7eDZF89QqpoEXBaHRzQgQJPXQC0XkdLi8Qe2sGfvlkXP4fC5GFVXmIQJp3vGuXcFhgzADw+PU9YixMclu84PsvkSUYHF2LaplcNDIxhCp7vVHkdGomF+8SfuIJ/JEm6oxzQM+nsG+JtvnUersw1NIzN1w9Y2dAyZNUZx+xAuD5gGYg08HFY5j5QSd/N6qqnx2uzt/IGctEzMXAIA1Rf5kSj2t9rckMvJqbFMk9SkPXMUiETnuGgvRQiBx+8nOTGOqmlLdi4rpVouobncS35AfvtT+0mOj9kzYDvsStDhunpaGkP89qfmzySt9Lqpwcaa6heogbURfrAHPsaKBCzMUg5ZKYG0UIP1WIUM0jJn1JRuFFR/ZEYuV+iLh/KZxYyd+4Z9PStTA8BlhJ46/EhhVUq2N14oCFVdNgfMSE+iR1uppicxTQOhaSjuwIyU88x+qyWEouBq3oCRia3Ko6n6o1RT41jVMq6GrloNsRhWMYOhaliFNJZRheQYT+c9fGciTjVTRo9AwMqBKfjdb/cSdAl+9s5W/IsYMQBb693oA0Wq6HR5q/zWd0aZsALsEIfR/HXsa1J5z765ssx3bmllcDLFob4pDmxonBETuBZsi4YY6z2Oz+0iZVmYlRKyVKIzHyN1Oo9fGjzeVo8QBphZSGTnbH+6/vJzZXKpJJViASlt5TCP308umaSh3TboXB4PpmFgmSbrd+8nNTXB2IU+Gts7rmiQWsxlZnJ/JgcHaOpahzcQWDA/xjIMGjttY6Jt02YGTp0gVF9vh9cZBuGWRsrFIrlkYlEVt1wygZQQrKvDUysyevedO9jcNc7kZIJ/frNoJ6SfS9IcdDFZ8dPqK9LeddGwfebFMxwbs72Qun6euxcoftp7fhDDNNm6bf3MeXz5+2dJyxBvXYgzNDzFW+MeQMGTH0H62hFCoaHOz8fu24yiKATCC48DS4UCLo+H9c0+hjJVXFRZ175y73xjSGe4AF5Ror5h5WPNjZs6+JRXJ5stsHlr98zvmstFuMHu51VNo2oJULSZGonbW3XaO1sX2ev1xTFkrgJCKLBGYS5WpXhxJlyxKz2rvvkdmZGNo4WWj3V2WB2pyfGLUspjI8vmvfjDEfxrFKE3NTSINxAgPTVFqKFhSSPKNOzCYMVcjobWtjWR8RRCoIUa7RpJxcycAZRVqzVx6eBoKaxyAauUQ2guW6krtLShJyt2QUtbNS2+7PrXk5XMZqv+CEZqAsUTwMhOoYVvbEU1hxsDq5ybkT82sguHVU4jLXNGgEYPN82oT5YnL6AFG+Z4AGW5iOKzVcYUb8AWqFFX5ukXqo4Wbrbzu2qFkBVP0M4PdfuRRhlP4zoso4Is2eGtWrCBX99ZoT0a5o+e7aPfiKD6wmw4F+N9i9SHAdi3von/GkjxzIlRjk4KxvIC4TY4UY2giiAneqvsaY3T2XzxHewbS/CfXslTUn3cNTzAv37k2sXzCyFoq7e/v4MFE1/E/lsW09wWWlkyvZQSo1JGX0aG91IqpeIc6X+P308gEpkJ26qUioDAVVN/Czc0Ic3xy87NmaZaLs/8XS7mMapV27OygHHkDYaYHOwn3NBEJj5F59bt5FJJCtnMTLukZdmFYRcgNTmBNxhCCEhOjM/J7QmEg7xxpB/VMLB0P5GAxsffu4uXXj7FunXtMzlCUkpSsThm0YPqDWIukDDz5qGzfPNQBoTgkUSR++7ZWWubtFNFhUDUIhaMTIys5UJODSJcXnbc2k1oEQ9XqVDgtTfO8/zJDA1+yU8+tY9N6zIEgj7qGlbeb3/kyf2c6xmjpbGNyCwRDIBXD55ieKrIge3NbNg43yvZ2t7McibJlm3d3DOa5sJgjK1dIR565MEVt+1a4xgyNziqL0I1NW4XLEMsOJgzixmwTMxsHKGqrDYh2yrl7E7MG7o+eQZmhXVRSOZNMubl52BIaSHKWaQrMKdg26WUCwUK2Qxunw9fcBm50Nkf4mvsVtVqlZGnC6W5PF57UL9AUmi4sZHk+Biay31FsdaXYuaSCLfXLo6XmbINm3xyxqNi5pMrVgmzKoUlB2RmIY00q2BZqKFGZpTzpHXNNAakUcEspABbkXAtFQOFUOw6HNUS7qbVF3Jz+NFEKBpWpWTXFyvlMSxrUe+MUFSsahmKGbv+S7SFSmIUPdoOtaKx0x5NNRDFSE+AooFlzrybK26XEGjBhpoRE0DR3Qi1DjMXh1qIrVB1qrkkQnejuH3ctrmef3ztAoN6J0JUMDMxGlYQXlmuVHkmUQeqjrQmMbMxPMLE8oXxiiq+S5QUh1JFSjUZ5/7c6j4eU9kco4oH1aiwyaPiuURCeDiVIaV78VeKrI/a/UcqnUEoCuHg3O+Fr5SnUC5hFgu0XRISG8tmyZiSJpdOwHex3ysXCmQTcdw+P+mpKbtwpJSoLhehunosy6JaKuH2zZ9Eskw7HNgyzZnfdLeHYF09qckJGjq6UBSF4XNnsEyTTCJOqL7+iuud6S4XsZFhFEXQ2NFFKZclEK0jHZuyE/ubWy4WXxWCpq5uirksjZ3rSE2ME6yzjdCJwX7MahVFVQk3Lvw8SsuakYjOp9Nzln37h6c5PuHGqJbY2ZDl3Y/s5Qcvn+fomJfXh+N8RNXZum0dz71wnIFyHapaYkswzR23zC9fP5kszaj4TaZKM7+//9EtvHVqnNh4ksP9OnV6kpTmwvLZ3nU9N0xX98ITnt//4RFeOp2FUhbpixIzPPRemGD//tWrS/gDfnxenb/75hk09QwffsdWOrta6O8b5rtH8whVY3iil19dwJB57sXjHDwVp6PexYefPDBPJhtssYV3PXpjKsNeimPI3OAIVVs2GVga1ZmQlWpiZFXys3bommV3SOmJy1NZu0Ie3OHjgXt3k8/m+fMvHyV7GcaMlJL7NggevP9eDh06x7dqL/JsfvevDiOl5Kn9XvYf2M7o8AR/+I8n+cX3rkMgkNKa53EJ1tXPFC7zBlZfI2EpUpMTSMta1PioVspIaccNewNBSvk8uVQSl8dDtVyeSZIEu7OaXQl6KRYLsVso5ExKC3U6XKqmqCUtC9Vvd9hGTbp1JQjdg1nKobi8dk7JpccyqmihBttYy8VR3IEZ0Qv1GuXnmIXMHFGBqyF9riwRfubgcCmqP2J7RUs5hNs3I8CxmHdmWsFP1Hdi5ZMIRUHR7YkPozxX/GO5771ZSCM0l/3OLoBQtTneSLt2UxNmIY2RjdlqaQ2dyGoJs5TjI18FI1tBCyoI3UMlPcn/OtPAvdvAMAyq1Sre2iD15bNjnIlVuW99AE1KhFVFqjpSgh5tY7MeY3drkV3NPuojc42hW7vr2Tc4xFBe8N7tq1PgHFU8uLrsiYbhnpNsmjXIMwyDsWADvvpGBocHyQyNEgn6SbWsR5oWjbEh2sMX27KpLkRs+BwuTSc06/dULs9QpBVPpI4z/b3cClQqFRRFITrah3uTLXlr5TN4Q/W4vD4yo8OsGz7LyYqCUt+IdbaHnQ2ROaFodS2tJCfGEEKZY5joLveM50JKaU+KWRahujrqWtqoVsqLyjbDxTwbVVUXrFUTbWkjNjyE0Fx2KFtHJ8nxMYJ19SiaRnx0ZCa8DaCYzVAuFCjlsgihzEzM+QLBZfsx1eUiOTFu1w27JA+1XJV2+HK1xFBM59TZURLZKqCC6iKRtiMJBiZLCEUHl5/Wdhcuz/yB/IFd7QxNnMWyJHfsvujR6+5uIxpw80dfriK8LuIyQmsoxbgBupHj40/uJRhe2Dg/2ptBuIPgDmBkpgi7Lbo61i247mJIKSlk0vhCYY6cnaKk2eOSEz2TdHa1oGkKQtiTgJq6sBH/2qk4ZS1MTxr6+kbYun0DlVIR3e25YfNglmJFhowQ4l3AHwMq8JdSyv92yfIu4G+BSG2dfyul/NbaNvXmx5asLABibWd7hbDjnYWK0NyrC/eZE7p2fezaxqjdXn/QT9AN2cLq9yGrJe68dReqpnH7HTt49vAPKauRBVa0aG+1f29tb0KvvoU3sBtvIGB/zBNxQnUXO2bd5b4qMsq5ZGKm+FhifHTBWOKGji5SkxP4QmHcXi/JifGZziA5PrbmbVoIobkuSgvXvFxCKDOhZauRC1Y9AaxyAbOQRl0w9LHmgTENhKKhuH2repbXBjnrXly+4tFF75KJGmxY0kPosDa8HfspM5dESlvOXQs1YOaTtZh114KTAXDx2VNcXrRgPWYuaRs9Utp1ZVaIkZlE9UWxqiXMYnZVwhSzFTAVTQdNtyc9PIGaup89QTHd91wYT/L7LyfImwqf2u2mO+rmf5+QWKqfw+NxbmlWMSoWZjqG4rOT4z0unQ8eWDiZ3+/18G/fuZlqtcr/er6fL50+z+MbPPNyaRZsu1EBwKxW8S/0DTBNkhPjNK1bj+zqZvTcKSK1iZ1MXOfS3qKhVicEbGVLRVHIlcq4u+wJR9PtZjCVYiLUBEaVhmqSUmwCd30TSjoB9fa3UgCxQonAlr0AJHI5prIZmBXVqqjqsp6VTGzK7keEIFHrR8yqMaeey6XkEokl+x4hxIJ1cKYNlEuT/kv5HHWt7ZiGweRg/8xkoWsFoXShunos00RKOc+QeeSu9RS/+xaDwQYKisr335rixx/u5Lm3xgh6VfbtspPuD2yvZ+LlIQIehV2bdy54nOaWBn7uYwsbdsFohPZAldGSi2ZPkY8+cQsDQzFamjppbF580m1jq4cjY5KwVuTdj3bSsa6DQGjl75WUki985RXOTAo21VtsXhflzHgeVUi6W+1JiY6uNn7szgJDk3n2bdu24H466l30piEgijQ3r+drT7/O4f4S3fUKH/ux29FXEGqYSSTwBQJXHJa4Fiw7chVCqMD/Bh4DhoE3hBBfl1KemrXafwC+KKX8P0KIHcC3gO6r0N6bGqsW8w/2bNpaGTJaoM7uvKS16jyC6aTN66kG9dyRSQxTMhnPMZLVEJcx5hO6h9ff6uWB+/fy1ltnKCn+BaORhKLyvdcGuXV7ifMDMQpqHZVSEW8gQLlQWDP5yeWwLAtFtY0A2xs035BRFGVO/K/b6yWXTOALR6hWKteknao3iKw9p9PtUwNRrFJu5u/VsJRxorj99oBLKEtWGr+aqMGGmsCBuCI5cmlWZwZpRia27HtplXJ2FfZaXY7FZsAdFubt2E9J00CaFdsj4g5g5lOo/mjNO5OthV/OxSzlZmoZTRevVQNRpGXa4WirmW0Vql2zadoIuayTkPYEXqU0o6C2UMTAG8NZUmoEVHh5KENn2IWsyUEbFhQNezvFFyaY7CVVzpGqWhRLZbweN6+dH+erZ/N0+uHT93bNJPcfH4hxMFcHCnz1fJL37Fu+yZs8KsM9J/Ej6YrO9cJrmsa6TJoeo/btFgJRKVNMJsCyaJVVYOHB+Ml4mmywHlchw85QgGTPSareAE2lHGndS6AWSlUt5dhcTJI9P8b2lnqGxvrIqy7WYRDweRkdHiDU3oVhGgyqXlY71eMNBskmE4QbGikXciTGRlA0HbNapVIq4vEH5oVcq7pOuVjE7fXO5GMuh9vnIz46QjGXQXcv4tETAo8/sOoaNosZXU0tDXzwqTv4sy+fpIiXiE+yeWs3Wy5R9Nq9ayO7dm64bO+Doqp84gO3Mjw0QVvbFrx+P7tnGayL8dTjt3HbwAjR+gi+4OrHf5lEkrMxHcWl05uRPNoW4dPtdaiaRlPLxe/B7t2b2L3Efn78yQP09Y3S3LyeQNDPkf4CwhNmIA8jw+N0b7CN0rcOn+fcUJod66Ps2b1xZvsfvnCM50/nibgMPvHeXdTVX18BnpVMwd8O9Egp+wCEEF8AngJmdxASmH7yw8DoWjZyLZmJCZbWjFFxzZCWPbsGMzHEa8XlDrqEol73OhZTJQ//8oat3LKUmpUwK2xtVskUKowW5n4YhRA832Px0snnMV3BJffTk3TR80oK0BCqSTYRJ5dMoOo6Ld3XJnchVN9gz2wJgarrKyr+5QuFSU1NMtl/Ad3rmec9ulos9LG/KiFXy3hgpmemr6Z3Y1rg4IqpvefSqK6ovVa1NGPsGJmYY8isnrdVPwX2xBdCQfGGqCZHZwyApb710qigTC8Xip03KJTLe2ekxKoU7fpRq/DkXGx/CaTEyCZQ9KUjEHa3+Pn2YJGS1NjfrLGxrYFPbR3hTLzM/d0R2iIe5OEYugovFYJo/hYGgHOjCfZuaOWfTuYYI0p/Gvb2TnLvNtsv0l7nJyiTZEWAdYGVeVg9bveccLJLaQoFMONJzp07jaLprHMJ6nOTKIqCd1ZI0fnJOBPeMOVCni0uyAbrCLe2AW3Ezh9j93SCtjdEXyJDrlSkmE4jKiYlodPttcN8uiIXjYqJdJZ0Lk9FCho6uqgMXZhZlhwfQyIJ1tWju9xUSkVyqSQA0ebWme+4y+PFNEyS42PUt3bg8fttMYCWVhRFITE2MseQkVISqm8gE4+RTydXJIsMdn9VKhRoaOvEsizG+/tm+le3z89YXw/VSoVgZP4guFIqkk0kEAI8geDyuayzCEXCfPLxLQyMJNiyYf2ixsqVhlC5PR42bl44LExKyelTffj9HtbNypcRQtDevTJJ8OdePM6pgSzbOwM89IBduyUYjdAdqTCQ0+nwFRmfylI1IeBz8eqRETZ1htm5c3kZZt3tZuv2i+ttbNLozUCjq0Bzy1YAElMxvvlmHKm4OTsySldLmEhjA1OTcV46Oo7wNZK2oG8gdlMYMu3A0Kx/DwN3XLLO7wDPCCF+BfADjy60IyHEp4FPAwvOJl1tzFxyJszDngEtzhswWJUiVinPdFz+WsYLqsFGOxFSzj9/O4TARGguVO/a5mJcaxrcJToavZwbKVCQazcgu3erl4cf2INlmvzFFw4yXrrUmFGwPJFV5YV3BKp0bLHdr8eP9fDns/JELkeueTWsNKdlNtI0adlgz4wkxtd2HLba812t/PWVMBOqhUAI5YaTYL4UxRNanXfJmq7LYQHSDhXVlpbddpjD26afmsYspHHV24MeobkXLII87SmRZhUt3Gx7bDJTtZpGYlWhn5eihRqwSjkUd8BWzMzG7NBl3Y2ZT4FiG0iL5WSuRm3td98Eq2IizTJ/dyHC312IAx4+/94o//DaAN89n+OpHWG2tNWR/955Xs9Dm5JmfXMrU6ksuUIBwzBw6RotoYvtaa4L8bv3SfrjBfZ1zQ8rK1cqnM1XMV1uWs0SLaGVTdDkVI2mjXYxydRAL12++RNnU8F66ju6sCyL3hNHCJEB2ilOjNF1idz0hroQsZEeRqoS1zZ70DrUf45Lg55Sik7Xnp0kx8dInj/NHp9KKD7IQDKD2b0NVdNInT7GvpCHQ8JPfVs7lmmSnBibE3LmDQTwBuae6/S3xqgaGNUqQgjio8Pobjsns6lrdbkcAJVikbpaP5eOTc78bhoGjR1dKJrGeF8P5oiJ7nbP5N7kUsk5hTKRknKhQKihcUX12ZpbG2huXV10SrVc5hvfP0YqZ/LArR1sXCBJfqU88+wRXr0gETLOh++tsn1796q2T8fjPHcqh9C8TJ4tsWvLBI2tzSiKwsfefzuToxOMTKb52qEcQlExk+dQo50cH5qgrSlEtHHuBGcuncaSktAiXqOPvO8ORofHaG7ZNiOkoGkawjSRCpiGyYsHe3jyiQZeOtRPpWqhmgaakScaiHD4SA8b1jUSjl6fouprlRTxUeBvpJT/rxDiLuBzQohdUs6NVZJSfgb4DIC7dfM1L7krdDdWOY/qDWFVSgsOhqxSrib5alFNjaP5wmsWpz+t8nIpZjGDcHtRdQ9GJob0zA8zullwWQU+8eQeguEgZ0/38o8vp9fsXPxeOxZTUVW8HhVKy2ywAnJlSalYxOP1ks6uwQ4voVwokM+kQErCjc2LfoSrlTK5RGJGmWYxhKLMVGC2jIVj5NeKTCKOqqr4w5GrepyVIE3jYqjWMoOiGwHF5ZmRwV0JarC+ljdgnyumgVlIo/giyxc1dFgpN0U/BWDmUyhuH9VMDNUbRCyWr1XLnbFMg8pUP6o3tGr1saWY9qJUU+No4WZkpUglMYa7yR7UVmJDdm2nBRQvZ6utSXPhcCSzmEEaVWbny8zmpbNjfHMiiBCC5FsJ/ktbHf/64Q30jkzR3tiG3+vhz1/sJ+trRwNu902xqW3u97OtIUzbInU2hvMl9E270IGxoX5WGpugWRYV00RRVZRqGZhvyIiKLUlcLhTwWAa7g24mzh6hy+9bsG5OQyRMIpHBqIUZZ3J5ksIkGrioyBayqkxkMgTCYUL5OKGacpkxK/HdijbwejaDpdn92VK5L9NEm1tJjI1SSKcJNTaSGBvBqBq0bbST3DPx2IykMjCjRgZLT8iZpkE2mQDJzPqFbIZ8KomqaZSLBVo32kUnZ+feSOtirmIhm8Xj8xNtaWVqaHDBXJxyoUAhk8ayLIQi0HTXquu4HTnRz/FxDdD4wcGBKzJkJlNVhNBB6IzHc2xf5fbegJ+wbpCRENKrc/JodJeL9u5Ozg2nL3pal8hvPndukC89P4wlBe+/p2VBj42m63Stn3tdQ9EIWxtMjg/HEKpORdj3PuzTUENNmPkEd2318vVXRsmYPqJHxvjFj905r7DotWAlhswIMHsqo6P222w+BbwLQEr5qhDCAzQAk9xAKG4fViln56e4fYu426clApXaDDAzWvxXDctCTCeGCLAjIG5OQ0YVFm633aF5XHMfr7BWYse6IIPjOUbyqx+cvXgyiWmdJp0rcSEh4PInG5GmQWfYJF+Gv/zSYaIBnd6YCcraDhrz6eSK6tCkp+wEzHKhsGTIWKSpmXRsCtOoXpZHZ6Ukx8cIRKMYVYN0bGqeSs1aM+1xUQP1Cxq+QlHsQdEKQvBuRmy1p4uGmuIJ1OrNxB1DZmW8bfopsOvBaMF6pFmlEh/B3dS92IoAGOkxXI3dIC2MbGzGKDDzSbsmh6Yv6uk30pOgKLXaTo0L9otC1ZHVElalgDQqWNUSWBaKN4Dmjy6oeDmjtlbOLRquKasVW6nQqNZygCJzlgfcKsIyQdXw67UcPVVlS9es2iH6xe9FV/3qJh29SEYG+9FcbiqpBPjs6yal5EQiSyUQxp9Lsa1+riHUHQ0x2HcKQwg6A15K5TJnShaG20tDKUN3JMRO3aTv1GGUconbO+ywrY5l6oRsigQ4d+Ywo4qH+s07OHzhPLurSUxVJ666cRkW6xPDGJZJfeRim9q9Lo6eOko12oDb40VzuTENg/H+PnSXm1DD0oN6IQT1be1IKWvf+kZ6jx4mPTVJuLGJUj4/YxiYhoG0LKItrVTLpXn9VSYew6xW8QSCtG/awtiFXlRFIdrSSiGbwTJNWjduZuDUSTRNwxcM4/H7sWaF20dr6mtg54b6Qva5LjZInvbgTAxeoLlrPZVScV6/VcxlKeVy6G73gnXWIkEPmClQXYS8iw+N89k8L73Ri0sV3HvX1gUT4+/a00rq5X78bpX9O+1wumq5zMjwBC1tjXi8S0equNwePvHkTvoGY6zv7MLrn/9c37anm4n4aUplk63bOpjMWWzqaKZYMek/0sO2za14/X7O9ieoKvbxzvQnVhR6Ns173nkA/YUzVE3Jg3ds4PTpfs4OZWlRS9x6VwvtrVFeHRpDKJAoaZTyeQIryBVaa1ZiyLwBbBZCrMfuGD4C/MQl6wwCjwB/I4TYjp3tNrWWDV0rpgcIiyFcHls2spTHVd9hh6FVile1Tao/Ys/G1pShVhMOIE0Ds5C6YULSiiLAF58+QndbiKO9SaYTH6WUPHlnMxu3bqBUKPDH/3CIkrK6PIu85eF7J2teE+XKrP47N2i869HbKJdK/NWX3qInoV031Ta4qOri9vkoZNJLrnu1jYppdLcH3Q2lXHb5la8AM5dE8fhBDWJmphacUVb9UcxiFmlYC87cvp2QRtWuBVGblXdYEW+vfsrlwchMAgqqb/Hvum3sxkBo9gTALKUUs5hF6B5Ul7fm6bfm9S1SSlCUOd7Ohd4vWxI9gV7XDqqOmUtgVYq4m2sJwIt8Oy/N55kJEb005HJmAm8ut2xo4Rcro4xmyzy6ZWFP04cOtBE8MY6mwDt3rU5hMuJx4fOH8EfrMOrqOXf6TbZ0dDCeSKJu3otPCLJxL+VyEvcleTNBRRIOBlBVlf5kBrOpk0qhwKAh6AZCPh/7Fqj1AjCRzTGuelEqJbb6XViWRX/RnjiNCkll3XqSE+O0bN3JwNQEZrlEqLObcrVKvv80bZcUQPS43dzWqHM8lSJnSSygvq2d1MT4qia88qkUdS2tpCbHiTQ14fEHSE6Mz4SHAVTLJayaYp5lWiizJp5yyQQujxdPfQPx0RG8gQCt6zdiVCqkpiYpZtN0brMD5kJ1dURbWsnEYxSzGQKzcmUU5aJ8dLVcIjY8hKppyEU8k0Kp5f/UvOAuj5d8KjWzXEpJPp2mob2DQjYzI188m81b1vERCYlkgX27t8w7RmwyTjye5nR/kqOj9nukqOd54N75qmebNnfyK5svzquMjkzyV198HSvUTlRc4Oc+evtMCNds0okElXKVxtZm6hvrqG9c3PANhAJ85Knb5vw2NRHjL79xnorwcPTcJD/14bvZ2l3P8YEhLATbupf2ORrVKl9++hDDsQp37Kjn3rt38v73HJhZ/sXvnGKy7Af8CM1FS0cbd3ZPcG40z65NwetixMAKDBkppSGE+GXgu9iSlZ+VUp4UQvwn4E0p5deBXwf+Qgjxq9hfo5+SUl4Xl/yVonoCtkSkqiMrRaSqsVoZVmlUbLlKf2TFSZaXW7XczMXRws0XZW2vQGlprehNuUgWUjx5dzumafH1V8ZJG5fE+18y6R7VS9y7u55EqsDL5yuwRLL+WlBfk3x2ezxE/BpT5fnrLJYDsppcEl8owlhfD7rLRaR5fodSLhTIp5MUc1lMywRpF7e83iiqaocPmOaCxbJg7XJqpLQuhqVc4nGxZWPtAdFq5F9vBuxBnYFQtTnvrRZpxswlUDx+p+bMCnm79VOK249ySZHHhdezBTLMYmZG0nhmO8tETD8/igJSzvvuCiEwC/bEibRMVM/C75gWiGIVM4CtZGiaBq5w80yxZlZwGaVl1jxNDbakcyGN0PSZd3yhPvAjX40DbsDNV0cqgJ0T9IX3XfQAuHSd9+5fXlYZIJHLMyDcCCnZoFTxuVzIQh6idRSyWcb0MO6pBPV+D+PxKTwNTZBN4QrMnXU/lsggurfSNzrMLpeBV1gUMhkaOjrJu1xkspOEaiFhmUKBRMWgzqXNhIKNKh48nfbM+FDPCSqKCht3AJDsPYVnqBfVG0YIgb+phWR/LwCmUUVTFo7WUBSFvXVBErks41JD6znJXdEgxZFzXKhIJIJ1uiR4yQA6ls2Sr5gM+qKobhfnD79BqK6B1g12WNnswpupyQk0XaeUzzPRfwGP3z+ncGW1XMZfM0hmC9hk4nbEQbXSyGjPObzBEPl0yi4yLeWSxpbu9tDQsfT91VxuEuOj5JNJLGkhLTlTZBPs2mfT3hyPz08mHptnyABs3bpwHtDEWIy/fvocZeElWJkEl20QWNbF5z6ZSPHMS+fRFIV33r+VwKx8q1deP4/hjqIASRkiNhGfk/RfKZf5X5/5FvGihuoP88ieCR64b8+S5zyb3p5hTvbFcVl5KsK+v7GMbRhv2dLJv26JYFkmwWUMjd6eIc7E3SDcvHR8invvtn+3TJOvf/cw8akkhHwoVpn6aBNCCN712C22m/s6sqIp6JrW/rcu+e0/zvr7FHDP2jbt+qL6wlhl242+mhlg24jJoAUbqCbHZgpVXjVqhpLi9t1QuQM7u4N0b7Q/CtuHcxy8YPD1V8fZNZZnYCxLScz1xty3p4H9++zqtiOx1+jPXN32vXIyia6eJ5Mr0zNl2UOfKyQ1OYFlmXMUYvLplO2az2WplsvzXOP5TGom3Cw5PnZVw8VWQ7ixCaNSQSjKipIrpynmcpRyWdx+/4qVZuzZ5ylAzCliamRjqP7/P3v/GSVZmt53Yr/3+vAmvavK8r672lT7xvgZADMDDAYgCEejAQhJuzpcaSUdnZWOxD36suLu2SW53OWSoANBeGCAwWAMZjC2e9p3l/fpfWSG9zfiOn24kZGZlb4qq6u6u/7n1OnszIgbN9x93+d5/ibRyp1YagdVfhjgNmogySjBGM4dxiNCSPeXyvohxUdxnWpjtQtmi262ZtK/iXOZU82jJoeQVA0rN79mAui5Dk4l5x8rnMRzbOxytm0sIIS4Z8fL1QW8azVwzTJCUvBcu20jvRVuzmUZTZs8sz9Kd2LzRsdYvkQ+FKdienQcGETRNObHb3A8qHDYrPD21UskB/cxdPIUqesX2R8McqCaozi2xD5dW9OE8zwPM9pJVNNRhw+RvX2JznAQvTUN0MMRzOwsES9I07IYUSIEhwYYSc1xqlHD0HXkZdp6o0EUaN5Bpz2ajEKuSD6lINfKDNt1ypO3SThNuuNbvybJcAi/j+83oGYaDtJBX6UxM3mbk0C5XudKoUYNieS+YQLRGN70FAOHjpCdn0MPBDGrVYzQ2mLac13CiSThRJJ8amFNEQMQ7+klOzeLrCjrtDmu66JqOkYoRCgWQ1E1Islk26Fso1DorVBML+E4NvGunja1bbMMHUmW8VyXfGoBx7bpaGXi5BbmfPOYbbSp86k8jVaBgKzy5CCoisQLz6wEZf7ozTFupv31K/zuOJ/75Eoh0t8X58LoBJJl0hOw6BtaW6R8/wcXKAeH0YK+a+XV8Twfe3lnr4PdbPJn3x+joUSRbDiSrJCrwfNnVvYSoR1m1XT3JAmKFDUvQF9iZa9y8+YklxZkvGA3anmWX//5Jxk+sPf5eneLB8el+QDgbmgdy0XM8v09x9rSCti/Txnw7pIaJvzFynM2dY95EJhcqGDW67iOy1SqAhgUbYPXRld89qOigickym6QQsmn7zVMk5J5//NsCpbOX73nZ6Egb61B8DyXTrVG3ZE3dWHLpxaIdHQi35FiLCQJs1pBVjXMSplAOIznedQrZQLhyBpRo7vHltz3it0GXdmWhVkp+3SBXJZGrbammwfLLkveGmrJpt1nj1Wbr91pY3xtgIMcjG37/btf8DyvZV27Pi3Z89w1AaObhRs+wiOshlMrguet05J4rr1KY5Vt06e3m/R7roOsatiVHJ4QLVF/N0JI/rQ/2u3Tyspp/2e7iVMr4VRyuy62hST7TYlN3PzcWgEl1kMzO4vWMYjbrG/JMpjLFPjv3qzTkAO8Mr3Af/9zm2/W8qE4ob5BQn2+C1a8q4dCpUZKePRGw8RrzTa1KdSaeMRDQeKt+5drNeZtgWw1OZSMohWzuN09mHNTHAgF0HWdrvwixXoFpVJkVtGYsDWUTBr1qL8WaIlOqtM3MXSdo7rE3Ng1IrgMJGIkTZOJ8RsIYDjgX68ORAIcoIYaM1jJpvH/6zgOqXyRWDBAOLh2TUqXy0xXm+i2yenBAZqNRnujV6vXIWIwUrNQ+vcTbDYILOtPNI1qsYDd8OkJjm1hhEJU8jmsRoNwIoGHh9VsYDebyJrWbt5Fk50oml/wbTQ9SfT2k0/NI4REKJ70NY+ta55jO+1MtdWo5HO4rruhaD+/mCKSSKJoGpnZmfZjWs0G5azf0A3Fk2voW3c2CYvpJaKd3Siq6gdy3oGGafKnf/0e8zmLc0ci7A+bpIsWLz0xyDPnjq+53R/91btMLZrYtoMc7SKgrX0+Lzx3is54ENdxOH7q8Jq/VctVxmYLIPkaM89p8tjh9Q3NcrHM6++NEzIUXnjuxJqJl9catToeZPJVPvXisV1pYQDmZxdZTJf4jc8eIFesc/jQikVBIh5GcZewFYOBvo6HqoiBj3gh4zbruPVyi84i9qQLKgfjWIVUO8V8u46SU8kjtAAIsCu5XQcBPqyd25myzr/4/XdxETSl9ZvU4ajJr/38s3iux+9//QKv3BTMpt+mULPJNR+uDI0nBz2++LmXqJQq/IevXdn0dsvTltUpxuVsln0nT2E1THKtblB2fpZoRxdLUxN07Rsm37JRvrO79UFDs14j0JrChKIxKoX8mkLm//LlYf7nPzNxZAPZMfnHvzBMNJnYlHImBSJtncBucix8zU3Yp60Ul/bUxWmn8FwHu7joBxPm51ES/WuKGbkl5HcbVfbq2vMIH27Y5axPrxSiHbLqC/XlFpU54buD7cIlUg4lsItLeICW6GtpYbKtZtxK6OPyz061gBLrbk9nVn9uXcvENasIdTOr6BZjwHWRAnd0+j2vrbNZpsNJWgC7Ud3wvH/la1n/9QgnEMB40ePv/mUGIcQa2ln7eVZ9nZ+Zz6JPj5Gu1+h57Cnmc1ki1TSPx4JMj11HeB6HN5jsjLsK2oHD2K7L5Svv4CW6qIze5KjqYkT9a96BVnjmXA1KR04SAEqyhDF+i3osQaBapCPpF0uGrnNoFWU3YBicNKDRaKAoCjOFEgvhDnBsDpbLdN4Rnni5UEU/+jjzqTlEJo8UihIu52gEwsxXbbr2H8YSElfGrqEEAv5GXQj01nVUkWTqTZNwPMHixDiGLHBKJZqhML0HD2FbFonJGxi1DPXOfYQTSTJzs3QODFLKZlBUP0CzXUy0/rYZhBDrjG4kSSa/mEJWlHXFSjG9hBEKIynyxkwFz2s32lYzBsrZDMm+AYqZNMW0n+2T7B/YMKdNSFI7169eLpOXUkiy3NagvvrKJcZLQVDg/HiJ/9tvfcw/t3yRsZEpDhwcRJJlxsfnmaqEIBRCr2f41BmDZ58+tu7x7gzlXMYrb42ScZM4lTQxpcHf/flTDB1Zn2f3rR/f5GZawfMa6Nptzj3tF1OKpvGLHx/m1XfGmSzb5CM9/OCd2R0VMpVShT/71mWypQaVWgMR6eFwLMOv/9Lza27XN9DD3/+cy8JSiVPH1uuHHjQ+2oVMo7rK5/4uk4vvgJAV36bSauyIVuZ5LnJrJL2clv5hwVZi/sGeSNvtY6AzxEzZZrwAG9lYPmgM9cYRQhCJReiKbXx+RjjcXiw0fUXXEOnwXbg0I4BuBChlM3QN7UcIgST3USsVN3Uy+6AhGI2RmZulXi7h2Pa6zpwsK8jCxQFkyfPFm57X5tl7jt2mrABIqo6k7r4I8VwHobTep3vI0bgXONUCStynGApFw62X1jU1HhUvj7ARPM/Dqeb9SeWaAt5b0ZK1Gl9ypMOf7HkediWPpKi7aoYJSUaJdbcaBvgTRMV/TEkPrtfdtL5PYgPtqFsrocS6/Yw2s7Khqc5qU4HVGW5CCPAcv7ivF7EA4blbsgzkcBKntNQqgMSWNv+nwhoLI5fpVRVEV5LJrpbDmiLjeV5rSrJ5s6RQrqIupvzvcyhGbN9BAkB64gZ3nmEiHGRxYY5A3wBKMYekSDSFDELBsm3UO6i6pVqNYsPCtB1ynf1YjQa2LdHT0lTmJm5x50zCjsQxhMASMoljfoZ7etolue8A6tgIgbBfjNWCYRLCwUokUXQDr+wHZB4yZG5kU9QyixwzZPqicQgleK/qWyQL/PekarntYy036JaLjkat1i4mNpqorEatVPRtqMORdn7NVlQy13XRg0FyC3N4HmRmZ3ztqBBUcjmajQbZ+TmEJFA3sLl3bIvuffvxPG9Tw4NoRyf5xZSv60kkiXd1U69UqBYLCCHz+u0SDr6JUk/E/2zlMjn+w1/doOIF6PjBNRw1wkDMJSwUKl6QIwNhnn/25IbPqWk2+OFrN2hYLh977jCxVtCpqgiEoqJEu3j8kLxhEQPgOv73TQiB7aywN+xmk8NHBgkEVH73b6ZwgURkZ/uoqzdnma4GQA7gkEEBlkobW6UP7etjaN/DQX2/Ex/pQkbIKm6jhtACbavlPTmuEIgdZkgIWfHDxVqOZR8VXBov0985hnAdVGEyHHWYLD2cNrNvXc8QCcjkyybj6Y0pQIFwpH3BXw1F09qBXoFIFFXTyS3M+44yS0vbihgfJtTKpTZdbDP9y1ZduVA0wi9/cj+3J3McHd5HKBphaX6hbfnqOdaGG/7dQg5G/Y2ZkFYKmh3CbdRaU5KWw6F2d9NBORhr03HscvaBTIUe4YMJu7iIEu3CrZVwPXdFO6VoK1oyRQUh8OymP9HHRb0HDZlkRLDL2TXGE8tGAqshVK0lzneRg/E7DtIqcvQQTiW7rpDxHNunWzaq7WJpNZY1cDst8IUQ6yyfN4Omquxf5fSVXJyilDXotE3C8a0p3elCkcSRY6i6QT61QMlsEPU8HMsiuEE+TtAwOFavULh9iYOREBeJ4skKZiTBu4szPNff3S66ytUao4EEgaEe0uOjdHX6r8HMzRu+O1ijSY+3/jEi5TxFIWNnFjGDQYxoDK9ew3UckGWK6SUUWaZXuAzGY8izozRdj6HW1CgUMHh6gyybYddkaXIEwzIZSMawbJs3ZqZ9tsEG9NiZm9cJxeMbFhPLqFcquI5DorePzNwsejC44YRkNdTWuum6XntNyacWcF2Xjv4BbMuinMuS6Fmr0Yp0dJJbmKNprmT4NMzN8+ESPb00zTrNuk9tl2QZx2riSgJJDyMsB7cwz+e/+DQAcwt5qgTxbJO0E0ZWwhTyLr/6TAjZMLakXL11fpQ3J/1ojeZrI/xSyw3sY88fQ5FHAHjh3JFN7//Zl49gvD1O2FB44vR+blwfY34+x+sjNaKG4De+cJq/95khlrIVzpzYfGoyNz2Hqml093bR1x1BdvLYkk5cbeLV53j6sY11RlthmR7/oPCRLmTkYAynXsatPLiNhhyMtQPB7gwU+zCj7Bj8yetF/t7LcT75iXM0zQb//Pffpt4yAejU6mgKzFW0B17gLdZ1/uAnBf9/VuXMWM0GpUyGeqWErGr07D+w7gK9kYAw1tnlW1r29W97QX9YYDUbNOt1Ej29lLIZGvX6hvaR2+HQobWJyfGOBE71Gkqko5Ujce86L6Fod20M4DZq7cwLu5S560JGyApC1mikRpH0MK5ZeSjs0R/h4YeQVf+aJ/CnLHIZOdrlf37u+Dg61QJ2o4ak3ZtNt2eZ+GvQ1s2kLT/Dnj9p8Ser679/SqzHL3BU44E7EO5rFy/br7mKLOE2mqAbeHj0Hz3BwvgoBxol9vd0Ua7VmHYkhGNzKKihaxqhQIBQ6/qo5kvUwzGSvf143T3MjlxmqMO/zpUaDQL7/GKsWqkQbzQo5jJIskR5epIBq0Jfz/rX8nhHDMcxkfuSpHOzVJZmeCqssTR+HUMIuusNJCEItZ5nXyLGfLHMOw2BbVvo5QJnOmPod+ggOyJh/BXL/xyoikJXz/oAyvxiinAiSSiWwKxWtpyuNGorGTR6IIhjNZH0rRu94UQS13XJzE4Dfk6MHgrRqPpNJkVV2055VrNBJZ8n1tWNqukk+wZITU6QnZ9D0TQ0Y+vPtGYEfGrZYgqgXRz9wgu93JzMcXz/AMlu/z06fLCXoavzzOcaqMLBJEJUNhkcPrqtoH61TbW86mdV1/n4y6dZSmX43k9u0pUwOPfUMWzL4ht/e4lsyeKlJ/o5dmw/v/CzfvHzp197ixtZDc+s4yJRcMPcGl/ihWePM7yKUTY3u8Sbl2ZIRlQ+/vIZ3nz7Bt+9XEHG4+/8VI1jx/bzm59XyBcqpHMyP7rZ5NXbDQYHZzlwcPtAUNuy+LOvv8P4UoMnD8X4mc8+ue197gc+0oUM0LqgPtiL6m67xvcLnudxqtumtzPMuyMlSvb9n5A4rYuR7dhtwVp/sM7/7pfOISsKX/vWe1xO3ffT2BWWNR3Hu2x+5sUDhOP70QIBsnOzO5qwKJq2rpP0MCG3MIeQZBzLomNgECEEjdqK/iUYiVIrl+6qkLkTmm7w//jKc0zPLrF/6CihyPaWs5tpavYG/sjed+W9N2dez7XRe31hp1VaQlKNj1Sz4hHuDp5j+Q5eVgMt2Y/nuZuK6+8U/d8NnFoRoQWQVQO7uIS0QzbBndjOWEAIsacZUAHqfPHZbnRd4VtvzpNtaSt9y+b12Eg7sxMkIhHq6Wnyi+AKBaW3n6gsONDtP5cpR0Ye9jvp02PXOHJHcXA6rPFuuQS9/TTLJULqyrarOxphafQ6dihGzLX8wMhmk4EjvsaiNul36pvNJqqqrtXZtaheXZEIy4b9+43N37usbBAd9J1E86kFJqp5jt9xrqlimaoH3ZpCpGUicCI7ve5Y1xtNhOGvYfrSHCeklanHjY61hU+sq9t3MlNVXMfZsTuZJEl0DgyRTy1ghMMEwhFc225PZsKJBOmZKRq1Ov1HjpKemSLa0YURChGM+BQ2VTc2FPLfiY30qadOHVinMwmEQnzlV1/G8zwqpQrjk4sMDQ7vyBXs2aePYNm3aFgOz53dx+tvXkeVBU89dQxJkvjaD26xUA/ijZeIR6ao1ZpcWpABme+9PbPGGno+3wQ0hBHBLS0RMmT2D6yfBn3r1VHmawG8BZuu5DiTqRpIKg4wNV/m2DFf/9I30MPvffUtkDQsFN69MIppNjh+4uCWk5bZ6XluFwKgBXhntMRnPmFtGlp6P/GRL2QeYQU9Rp1f+uILCCGIhUb4y3fvr2ZHCMFfv7nEydkq00s1TOFvYjtievvL0JkIQmqDkJeHAI2mjW01290m+X36ApvVKvVKuS203EtYzQaKbhBNduC6LsX0EvHuHsLxBJm5WWqKgmNZ90SJqxTy2M0m8VaXKxwNc/Lk7sJR7xfkcEdLF+Bz8O8VnmPhNk1wbFzLxKsVN005f4RHAFDjvb6TZWsD4VnNNbbkew3Psdp0Mg/Pp5gp6kM/QTw+GODEab9RcDZT5/vXN6cQ3Sv641H6gXKtTn7kMsPBFSdC4a3oFYS7vvmhqSpnDJv0+HU6BCRXbXpVReGJRBhwKHdEuGn69DDXcXxxvtXgaq6B2dEP+SXOBJX2FMXzPEZzJSxVo1/2iG+Q/r4acq2EbVnYlkWjVsO7Y4OaLpVJde9DD0cYmRpjq956zGowt7gArst+LJYnOBshv7iApMgYoXBbH7NTSLK8Rt8STqxckzNzs3QMDGG3nMpUTcPzXNIzU3QN7aewtAiehx7cvjm2GVa7oMW7e9uW0sua2ccf33kTXFFVPv7yaQD+5nsXeWvKdyxt2jd48flTbQ0MQnDh0hiVhodwgniyQSy49vv/wukuXrm0SHdU5eWXD5Ps6iCWiK9/zGXCh+eiSBJnj3YyMTuGqsDpo2fW3PbxIx3Mvj4L9RLXnD6uvV7gk7lr/NRLpzd9Tl09nSSUWfJ2kKGk/ECKGHhUyLwvcM0KrmX6AVcPyfQFwKBOSHXINAIIScZywGpaaLpGo7mx4GuvUXEM3p5yWH0hvDHX5I23rmPoCm/fLrJiPflwYbyg8c0fj/Lk8QKartPdce+TvVIui2NZeK6zoQlAo1ajUa+R6OklPTNN19D6sf+9QFbUNl+4ViysWQS20r/sFKVsBs0IEAhHtnW6eT+wOmdDDvuZNbsJp3Ub1ZamRvIT0lcVP0qkE6eSx6mX0Lr8bppt742pyCN8uCEHIghJwi5nEJK859b6brPuu2qG4i3nskU8IeM2aujdB3Dq5bYz2kMB1+JUr0CWJS7POSCpzGXqVMtVNF1laqHETmhi94pIMNCeVCzjoCaYGb+BcBw822KkUGHIUDBWTUciwcC2vI9IMMgTto3pWuTHr4OAgXiEd2yVaDIJySTp25cY7PCf51SuiHXkDEIIJqfGOLvN8WVFYW58lGA0RrNaZji5tvCpNy20kF9oOKrGVhPpgXiEbqvG1UKFqXgn6Vye08n1hW9+MUW8qwdJlsnOz+24kLEaJqVsFiH8UOk782yWn48kSWhGgFI2i2NbJCNRJEmmXilvynqwLYtyNrPGeGAzlDIZOvr9dTi3MLdnxjy1hsuyQUWt4etuv/Dxw7x1eQ4aFS5n/ecRsRd4/vEDPHbyKNVylT/6xgUyRYtPPNnXdlHbCj/3yeO8fXmWzliA4ycP8OZbN2goYZp4pDMl+gdWJlGPP3aY0yeH+c6Pr/HOpF+cp4ubN5HnpmZZmF/i73/hJJlskaF9Jza97f3Go0LmPsM1K3iehxLp9EWcOxQn3m9EpDq/+aVTRONRvvW353l3BvJ2kN/7i/fojBtcnzNBPJgCwpYMvnu1ATR4WIsY8PM/xisRxt/1z/Wf/Oahez6m3WyQ7O3Htixmb98kFI21x+rgu78sd6hUXcd13T3V2UiSRCgWJ59aQAsEdrTwFNNLfhfRdQlGY1vex7Ht9qK0m6DN+wGnWkAORhGKhlMt7Cjz6U64TbOtx9nI+VAOJ0BRceol3/nJfX8aBI/wwcem+Ur3iJWg5w6sQgo13us7bTo2TitDRdKDNEtLD7aQcS2iSoOKpXKiT+GXWoJr5bvnOT8DS2aA/+WPLyBLHlX8a47neZzotBjoiXB+pEjeuv/rR8AwOGrAWLZA4/hZhBCMTtzitAFNy2KmYiK7DvuTsW0F0YqiEFYUwqvedq1aAgaoLcyyL7jx89kJCbZWzDPw1MsIITDCEZz87Jq/Dybj3Bi9TtMI0tesgb516ZUrldCOPY4hSRTTCu8W8n4mkZxvZ/I4to1YNoHYhRa8nM+tFBCp+U0LmVxqHqvRoJjJEO3wm0i+M+jmDb58aoGuoX2UclmosOV6JaRVJ72HYvafemaYxmtjKLLg+Sd9WuLgUC+DQ72Mjkxz9UeLAEQTcZ5/1i8Qzp+/zVwtBCq8czPNs88c3/T4y+joSvIzn1pprs1m6niWiWs3efWdEqdPDa9Zh2VF4dyZQeaXbmHbLs89trH5wI1rY/zJK4t4skr8/E/4r/6Pn3+get8HtpPo6wzyT37ziXW/v7/89/cfrmWu8IKlB/Nyb+Qo0RlViCV8OsG+vhjvzvg++3M1g7kaD6yI2Sk8x2ZfzKbacMlZ9yZ03Sts9tnd6HO+ETzPw2uFYhYWF+g7eNi/WC/MtQuZaGcXS9NTqLqO3Wzel4tHILw7CsCyIw34Hbit7qsHAmTn5/xQtUYTPRAgGN2dS9lOX89lbHpNaVk+C0XDc527smoWkozbrPval01CLZczpZxa8aFpZDzCBx+ebeHUiwhF35V43m3W2mvScuHuNmrtAEo8wHUeCLVM93yWQLYZ4LOnA7zw/DP+xm5kRSipSDLLWjbzjoyypFLl7/zci76+Ij7Gn7xeAvxr615rZ5bhui7X8hXKWhhaVr9ea60fqTaRDp+imF5isZAj6Voc6Vh/vcuUy9Qsh4FYZE0OGcBjUYOl2xc5EAqi6TrlSoVwKMT+ZIyR0Ws4qsYByWU5uqBSq1Oo1+mJRddYPZ/o6+XS7DTRof246QWCkbWTJUmSOJVsfY6CW3+eHMehbDlkx27RdeQEZi5LzzHfdtiZGuWEU+ZqtogSSTJ36T30UBjZsUiaRXqia9eHOzU1QFvIv+7nVVimdOcXUxx96hxWs8HU9asMHj2+ZcG4TH+KJjvIpxa2XK8C4Si51DxmtYasyJSymQ0DOneLzq4kv/qljanLh4/s4wvlOkuFBudOr+TRDPQlMc5nqGMw1Hl3+7OnTnRz7fYiRHvJAhcvj/HUk2szb7q6O/itX31hy+PcHEshtCCeWSFT9Xj1lQt87ONP3dU57QUeTWTuM5YDMoWsgrd5crtTL+HZFkKS9oxG4LkOHzuqcOxAN+9cmediauXtnsq6vPX2dTrjQd64mmErjuvDiGcPKPzMZ3y3s3//1fdYMjcXnnvNKkjaQ0XrA38BzKcWkCQJy2qiqCqe6zE/NoJjNelYXtBWCzwVhe59+9cdy242KeUyCCG970YCtmXheR6NWm3bKUswGiMYjZGemab32EEq+Ry1cmlTO+f7CdkI+65PzTpCUe/KHU8OxX3nw2YdeQvty0ZWto/wCLuFU80jFN3PeKlkUeO9uI2qH4i5w2JGDsRW1iTXbrEGXORwEs9u+AW5kDb9vHqeh11cbK1pnh/M2bI7x3XuulgPSXW+8sXjJDoSfPu773J4v79hPHxkH3/1wxG+8d3zyJLMuxP1Ne6Rq2G5gmajgREIYLYoOwOhBp97pp9Cuc5fv5PD2uMm3Vy+iHzkMRJCkJubwZ4aY4AmoOKoGhLgODbJw8dp2DbzE9fpX2UFvVSqsNC1Dy0c4cLV83QYGlFFoqMVginLMn0dSZqWxYVyA7lnP9WJ20RjMYJCcDSy8nwqtTq39SiBoWPM3rxCKBBEbtY5FgthGAan6yb5kcscCAV23QTLVapMCB2ERH5xkf6nniVcKlB+6xW0QIjswhzJ3n6UhokXUqlGO4n39uEJqd3oSk2N0QOkShXSso5q1vCSfqM1l5pHCAlV14l19bRz2VbrYjaC5zrYzSaOZRPv7tl2DXIch3xqAduyiPds/VkNhMM4VpNQLIEeCFDMpLGbzT3Xpt6JO4sLgJ6+Tn77SxLZXImDh7enlHuex43r4wQMnQMtp9ADBwc5vG+W0YL/uoUCK8/DdV0/OmQHk6dnnzzEla9ewG66aB1D/HDEobdngmMntg/hvB94VMjcZwhZQY1vvbH0PBfPaqJEO3Gb5q4WpTXHsZs+hUXzN00hKnziYx8H4GVD48LXJlY6cLLO31xZpm99sIoYgI6Ev8hqhk48qLK0ic7zULzJlz97lsWlPH/6o1nMh4iqVljyLZiFEKQmxkgOtRxlFlPEu3vIzs8hyzKasb07WDGTbvvr5xdT72sx0zk4RGExharrO+pWeatSmUPxBIXF1AMpZGBvXJ82+q56joVTzQMSQjM2TDp/hEfYDezSEnIoiWv5a8SyAYCkh/xslx26bwpFRY334nkuQvg6nPaERtG2dRZzKjmUWHfrvlmcRtVfc4wwnuvgVPJIoThOJYsQsk+v3PA4ef8cWsYCHSGZZKe/aR0e6uC18zM8a7vcnkhTFjHemxGAu3ER41o81g8GHv/5z16jq6uDm/P+2vbU8U6GDu5jCLg2+S63Mjt6mXaMsKaSLRXQYwkMq8GZiMbydGTQazIzNdYeKri2hXpHeGTV89BaE/dKIELo0BEKhRxyMUV81bQgWyoTPHoWgEbfEESi1DyP9MwtulpC73zdJDDkb4KdWBKlbwDP85gZvcJwMk4oYBDaID9mOzSaTW7myoRPHUTVdIqWgxCCQCxBrqOH5OFjWGYN88IbnB3y1zS1UgD6aOZz2Ikkiq4jNRuAyowaIjy4H8d1KS4t+gZDnd1tBkI4ntixHiXZN0Axk0ZWFGKd2xupdA4M7j73ZPkN9Lw9pZjtFonOJInOnZnQfP9Hl/jJmIvk2ny51uD0GZ/6/nOfPsU7l6dIRMIcbxUe42OzfPX7owgBv/TpI1vm4QD0D/by//7HP82//s+vsGQBQuC4mzfq7zceukJmz2gjHyR43kqYmCT7XbG7gF3J+Y431QKuENRkg5HbUxw5up/b46kHRm27H3jjWg5VGaFcaTCSdmATV58zRzoIRsIciIQZvJxiNPc+n+gOYTVMrEYD13UwqxWE6N2VEH6Zy6uoKt4Wk7/7ASHEhsnJW93ec512qvKdDmj1ShmzUiEYi++JxfNm15T7ee1wqsUV7UwpA48KmUe4VwjJD6yUw63Cxc9twXXuymFPtKiUkh5uTVi0LVkD7fspKm69ghyMgusgqQZOJYdkhHEbVYRm4JTSyNFOcJ01hdIynHrJt3zWDOxSBs/wmCl6vPX2dbqTId68mmamrHHpu4vgudtOS491wYtneujet5/JW2P87o8zCNkveMZncjz+mEsxXySXKxOTFApOqL2RvVfKWSISxsnPU87Os09bO/VPhkMkgVy5SnriFnHHoiuxtmnTo6vcHL+Npepoun/OeixBZXGa+KrLRiIcYmFmAmNwmEp6iWhHJ41SCUVZeW16omHSozewQlEa2TT0DeBYFuomm+/pQomqYhB3GvTFNi6EHcfhiumReOIZMnOzROIJGpUy+dQCjVoNtbX2KnqAeCjUnvScieikb19ifzRAbuY2TQ8OR30qoNSi4TrNBsPFFJ4Q5Fq6GsNqciI7vTHlbBPspIBZDSEEpVwWu9loO5uFYvENbxtOJCksLVIrFZFVdY0zl+d55FuTJD0UolGrAaAZxqbHe7+wVLQQQsGTVVK5OsveY5FYhE++vNaJ7OKtJWqyT3m8PJLetpAB/zX80qdP8saFGbpiOidOHtzrp7BjfHh2th9gCElGIFpiYe+uvPY910FS/YugFIz5wWORTv74RwtEfjJN0dZ3LGT2PBevWUNood11Ld5HFGyDr7/XsoeWN58oXR/LcvzoIJl0gfm8zcP0kU/09JFbmEdIAiMUoZRJowWC6IHArjtGmm6QS83jud62o/iHAZt128xqFavRINHbR3pmms7BoYf2M7glhP+d9Ddg95ZH8wiPAIAHTr2MZzeQVANpj4pjSTMQqr6jggHANatIRphmZhrJiPjrl2rQXJwARUYOxECS/EJJ3oS+5LoItfU3IQAPT1rNEvB1ax8/qnD6aD9vXJjh/MLG1+6IXCfgVAknfPHz8LFDGD+cAdnj8eEg6ZzJ//TvXyWkuvz9XzxHMBzkq3/9DtczG9ODDsQaHBqIMVsoMRjf2aS4MxJhq1U7GfELmnWJpkDQMHiyNSQZz5UozE6h1isMdKydZBm6zqlmk/zti3SoMoWJm3S7NolV56ipKk8mVDzPphILsDBxg6BtM5Bcr8vJlUrk+w6gBUPMLC7QZddRNqBlFUoltH3+a9vRP4Dz7qv0GgHqQhBOJGgszmFNj6E2agx1xNv3UxWF/tZzCN6Rb3OIJosTN7HKFWa7+xENE+PmJYjFGfYs4P43fpxmE1lR/WyaxRRGKLwpLW05KuBOFJYWiff0IUkSi1MTJHv72tk1qq5TyedACIxQeFvWwex0ihsTGQ4NxDl4eOdNzKZZR9WNNevk4kKGdLYMpQYdEZknTz295TEO9Ee5MpdDeB7DfSuf5MmJOb7+4zFUWeLLnzlOT+/aT3lffxdf7n/wcQIPz67uI47Nxu87hT/JsbDLWTzHamdVuLJO0dNhh/R/z7H46ceCPHn2JD/6yXXemPoAbiJX4XZO47//j2/hChXUu+/ua55JMgiLFQlP3ht+rBCi7cxSymYIRCKomk4uNb/rY30QipedoF4uEW/R4vRgEMe2H5g3/b1ADnfgtFzMpAecYv4IHw4o0U5cy0TSgzsqOByzgmc1kMPJbZsBQggQO1skfCpYBDkQwSostqjRDbQen6ZilzIIVWvlMXkbam3kULxlfd5q5AmpZbghGIpYnD6YYGJygY8vU6NVlfe+OrouUDYqm/yjLz9GKBLi+rvnGTw4zKVrU5hymM8/Hubc08dxXZd//Yev0xUPE24JzfcPxLmeqa07L8Mp8ytfeBbN0JlbmKPPaa4T399PHFy2MN7kmqFrGr2d/qRoM3XH6nyZAUUQ24GZitii2ZKMx5mZuE25owc1n+bx4X0slqssRaJowSBGNsWZkAqhnZu2xENB4sAFLUCwtx8AY9zkQFgHdGzbpphJE+3o3HUjq5LPIcnytiYyruviWk06+gZI9PaRTy3silkAwB0Nx/b3UggqhXy7YZdLzW9ZyNjNJn/4ndvUpQjvjMzwXyZDxJLb7wn/9gcXee1mmb6Ix9/78lMEW+5ub1+ZpUACojDQ57Upm5vhibOH6e1MISRBb//KJ+vtqwvknQg4cP7aPD/Te+9GB/cDjwqZhxye6/gbIiEh6YEt7TiV2IonuOc0eW5YIRzSeONGkaq7M15skBrPPfcMAOfO7uf1sfGHTiS/W7javekvZMfkH/zsQfoHe3j7net8+/LeB3RGOzrJpxYAUDR9z6cQuYU5hCTfc5jl/Uasu4f0zDSqruPY9p44xDwICCEengyOR/jQQFJ3dh13akWErCKFEzilpQ0F+K7VwK2XcZpVJC2EbISRtO2P7zk2TjWPXckhhxI45Ryu1cCzLdxmDc+xAA+h6ls6n63+fnTodb700j5q1QrdPV3EOzs4e2Y/59+8wJPPPcH1W7OwAaMgGhDt4sQLxPlnfz7WNu5Y7ZwrIbidanLp0m3CAY13b+XYyNrfQcY0G2iGjnAdJPXBWcreLVbny0xskS+TjEapLExQVQy662VGVB0BHAhq7dBN8K9lZztj2HYFpeVq1heLIKcmqNkOA7G7n57otTKu69IsFeiU/GLKNE2uOQrh/gTpmekNzW02Q34xRSgWw7GdbR3GOvoHWBgfA6BRryPfhYA/3tNLdn4OSZYIxxOUMkt+FpmmYzfMFWbFJs5ry7Btm6YjQIKmK/GX37rA46f38cTZwxvefmJsGl1TuTRWROhRUk2YnFrkZIve1R3X8aaq/s+JnTVw+wbX62r7kgbXUybCc+nvfHgbch/4QubDrqlxKvl2gWKX0jvOFTjWJfG5T51t/d91vndtZ5vvOkEuXrzN448f4dK12Q98EbMXCEgWfa3gqMGeGJ63uKtCY6e2zLvuBu0QjXodLRAkHE/g2DbF9BKxru7t7/g+wbYsStk0eB6J3v5dLVz3gg/7teMRPrrwHAs52OpIb6KNdOsllGgXstdBc2kCr1FDiXZu666nRLuwi4tIWrAdAGuXMzhmGa9ZR00OtH638/DX08NRBocHsZtNMotpAMqlKt84X+AHV39MxQ1sSI2eLUr88MeX6e4I8ZNLad/RzW3w8vEwZq3GD398kYWcScoMIITga+9WgSqb5ZNZcpDf++urDHUHGZmv8T+5G28CZaeOLiyqItJeC+7VxnknWCxVmFb892fYqdIV2XpzWapUuC5CRO0GgxtoYPa1aGnXHQNx8AQeMDl2nWMbbOrvpJ11b6Kp2Q1OJCKkxq4Q1DVireeSrtYJHn0cAENVOJGd3tGxljU1y+Y4ZqW87X2Sff3kUwvIqrrjplk5l8NuNnBsm2Rf/xot62pdjO9KOg9CENnm2EYwyBdf6OPy7TSjkxmm5EGm38myrz9OR/fa+7762lW+f91EwqFfrVOxI8QVk4H+lRy7Z585QTI+heu49+Qk9vKLp0nNfZ/RuRLXblQ4c/oA0vs4odwpPvCFzIcf3iq9xM659hXTaocl1uq7COGTVb72doFvvvEjLCVyV5a0HzaUvSDf/d4FDg938NaVFELc/wTpe0WjXkfVNCRZRtU0qsU8kKBeLqEFdm4D3KjXKeeybXrF/Si2iuklOvp9d53cwnybbvcIj/AIO0czN4dnN5CDcSQtiF1sWSJv2nTxfy+EQNJDqPEe7NLStoWMU8mjJvqxS2lcuwmOjZCUNl3Mc6zWUrXz9Wp8vsJztRqW5fCtV0aJxheZSTfw9DhVtmC9ySqvjDowWmLZffNEn8rHW2LmV1+7xkjO2/QlCAqTk0NB5rN15qv+/bPNANlZj430LP596vzDnz9KR1eSr33rPa4svn/bqKxQCQ8NA5CZHGEjdcJyvkzBNIkeOI4Ih1nMZukwswSMjQs4sTpD633UJAohiAUDLNWbOG6FZCRMZyjA0vQEev8QZjrFlUSCTqu+qRnBatTKJRRNw3UcqsXituuVHgjs2lDGapokW3S4XGq+/fOdkCRpx85rAI8/dpgTRwf4Z7/3DiagCG+NkcMy5rKmLyVAZmhfP589EKezM0mwZdddLVe5fnuO/u4YA0Mrk9hSocz3Xr+NEILPvnSMUGT7pnh6PsW1QgQRTXIrV+WHP3iPT33mmR0/p/cLjwqZhxxypBOnnAEhkIydU6Tmqgb/4U/eJBxQubXkwi50HUJWseU4H2x1zN5BSDJvTsOb0zng4S9icql5NCNAtZhviwyNUJh8agEtENhV2GWtWGh3nJapb3uNZcc1IcTaJOVHeIRH2BGsQgpJNVCSA1j5BUQgihLr3tI0RNIDWKU0TjWP1jnc+u323z8hyW0dZmNxHDXW3bYxV6KdOJU8CLEr05qZss4/+/338JCw5CikYLOpyXYoVxvtJl6x0tjyOf3MuS5OnzmMaZr8L3/4LlVv+81db0yhq8d/bkf2J7iyuH3nf6+g2w1qjQYeHlF74+gEIQRHk1EKJcFkyxLX85wtWQTDmmBy4ia4HvsMmUtjE8QiIYa7107uF/JFLNdlKBlnvlimLiR6VJlI8O71p9ebgtDh0+RyWeTKErFQiDOWxcilN+l84gUkSWJ2doqdtNCCkSiabiDJEq69iwbuLuC5foFuN5vIm7ilLqNSyOPY9o5d1TQjwC9/5hDvXhjj0GBiQ53MU8d7mE+P41gW8wsq+/qi7IusrOl/8s2LzFSDqG6Wf/Rzcvuz+uO3Rrmy4BesgXdG+elPPr7t+RihAJJt4skqrtXAFg9nFtqjQuYe4QdZNhGKdl+SkH2u/e5dIYQQzNUCUGPHQv+9RIA6B3o0ZjMWJefhyW75KEAgCMcTQIJ8aoFgJNr+t1uohtEOrLQta+9PFjBCYXILc3gerfN+hEd4hM2wLK6XtJXNo1uvovUMAyCHk7iNKnIwtmbz6nkeTmkJJKUdvCzpIZRIB04pgyskxA40OHI44dPGPA810bfmPJb/fjdoynvjVDVVNvh3f/wmhiYznpPaeTvLiMp1uqMqE1kHRfaviYos8+JhncuzJqn61q/BTM7h8qVbdCfDlLNZfvOT/bx1desmT7pcZlIOgRDss6rtdPvbuRLVYIRQrczR5Prr80KxzKwWRnIcDokmhxJRFmZuIYDeVnbMZohHI3RlZijlNAY9CyO6RYK9YXDCgOu5Eu8RxundT1EIGosZjrU2wlP5EsWhI8iqxtuX3iZw/DHUQJDRqVF2R9JdC9vwN8dGIkk5M0MsFEJTVboScVINEykQbNk1b79dVXXdZx8IgbwNLd5puZXJsq9piSR3ZpgTjidYmBzHtR2MYLBdNN+JUjaDZgQwgiGy83M7Zhrk81VuZHRuZyuEY9McPbbWhvrI0SF+LaTyb745xbSpkXpliqNHBtuOa7my7WtthE42W2wXMpoqAX5hqys7035FYjF++eP9fO/1cRJ9Oi89uz6o82HAR66Q2UtevNv0UxiVSCdOreg7yuxQjPlhhufY/J1PDXLg0D4yS1n+1V/cxFMfzkr+wwjHcXBsG7NaQd2ESrBThOMJqsUC+dTCfaN8LRdZZrVKrVSkaZo7XlTeTzzS1DzCg4ZrNXBrBSQjjFVItcOW1Z5hmulJpEAEr1lH61yvM3MqWeRoN0IIrPwCnuNn0ciRjjVGMRvBd0AzEbKKHIyhRO6/HuRuIYRgoR6A+npKmuHV+crPnyKWiPHuuzf4zjtLZHMVjg4nef6nztE3NsV/+tHWYWOWZPAX71SJeAv8X//RxwFQVYm/+5eptRStFv74Sx1kvBVKWHZqlB4gVyhiDh3GMALU6zVy82Mk42udttKKQXjQfy8nb1xCcSWQDQ5sskdPF4pIkkRH1KdhDcQi+Fft7UOvXdelHOmgo0XHyqcWyJo2Xkuo3pBVVN1o/xxpaVHsHcY6bIauap7CvItaLdK/qjjrjkWx5sepSSqHZI/ttqttLY1GaxJpwxZ5NMXMUpttsBunUD0YRNd1MPwmwdzITYaOnVx3O8e2MVouYhsVOpthdK6EJ2vYwOhsYV0hA6CqCrLwcABVZk3D4pNP9/PmtTQDSZWjx4bbv//EC8cJ6KMI4LlzR3Z8PsdPHub4yY1NBx4WfPAsOR4ieI7VtoMUio5n35+O9QcNnmsTi/qFSzQaRsZ5wGd0d1Bdk88/bvArL8Tp1M0HfTo7RufAYNuCci8mHKFYnERv330X+VUKeRK9fSiaSrVYuK+P9QiP8EGEa1ZQYj1Ieqg9aXAbNbxaCb3nEGq0e8MiBnzK8HLYsmc3UaKdyJFk2yZ8M3iOjWc12lSxxuLYlrcPUSVIZdvnonl14lJl4wDfZhXP3P4Yu0VQdYi2BO6JqEG+qfKjS2m0sF9AlCs7u84LIah5BhPjswCMzeQ2LGKWEXCaWA0Tu9HAaJqUazXmGjZmIQ+AXSoQDKxvOmlmHdd1sc06ZctGHj6KfOAo09b612wiX2Jh8AizPcPMFnZPd5MkCaVSBCC/tEglmyYqubxtwjt1D7leoT41RnV2kiMhHW/0Os2ZcQaa1V0/1mocSkR5Svd4LBltb/hd12UyW8D1PI5EA8RDu2uE7sSMR5YVrKb/fXAdl3xqgUrr/dgO1VKJSCJJsrefeGcPjXp93W1UXSe3MEd+MYXYRSFz+nAnilVGt4vsTwisxvrPZEd3J3/np/p4Zljm73726Jq1+cknjvBf/MYL/PzPnlvze83QefLMfko1ix+9dpOmubEBlOd5XLk8yq2bkzs+5weNj9xEZiewmk3SC0v0DPTiVPJ4roMcTqwTvsuBCHYpg2tWwfN2bbfqmBW8pv8FkLTAPQWceZ7Li8OC44e6ePfaApcXH5zbmKQafO2Ho5w5lOP2VB5bffhs+/oCJp94opNSocLfXKliy+u50Yd7VZ5++gQApZrFty7e2wX7/cTD5Eq2UywbChihMIWlxd3EEjzCI3wkIOkhnEoeKRTHsy1/DXEc5GCUxtIkshEGPJ9WdkfmihyM+bbJZsUPwIQtN9/L8Fy7bX0s6UFE3aAxP4IaSfD0QYPh4V6+9U4GE4PBkMmvf+lpBPAHX7/ITHnjSUBQmPzDLxyls7uDv/nbC7w9s/K33oDJz77cRTgW4+rVcb43AtIdGWCya2KIJhV81zDPc4lJNUxXpik212tkrSDf+M577OuL8/a1Bb78bA+Hh4/xw1cvU3V1xhYtEDubYruyzh98f5bIKxMUmvqG9tDLGE5EWZodwfU8epNxzlcsAieP4y4t0rx2noPhAEZ4/Rp0LBlh5vYlRqpN1J4VUbnsrC9kqqrRnphUpLtb/8+EVZZuXyLmWPR2d3KzFiTamgg1J5o8GW4dNxBdpVm5+33LVL5EU5LpUyXCq3Q2t/MV3CNncB0Ha+LmSr7OFihXKsiyTHCH4v1YVzdLM1MoiordbNIxfACzWqWUyxJNbj1xDEVjNBsNVN3AcewNs4bC8QReLI7nebuayJw8MczwYILM7BxDx09QWEwRisfbbmzLOHZsP8d2yfT63mu3uTQvAAfPuUJXZ4z+3sSaoMsfvXqFH9+2wXP5QrXB0089nHSy1XhUyNwBq9nk9/78bWZqQTqcS8iBLpBVnhpw+cJPb08t2Q2dxLPMtv7FLmfuqZAJOGU+/amP+S4g0SAX/2wESd1+nAx+x+1Yl4eHx+30ek7x3WCmrDNzscrDKo7/7Lkeho8cxPM8zMbbfG+DJuNSoUmtUiUQCjKzUGSvvy47tWX+oKCcy2E1TVzHJd7ds/sgSyHIpxZwbJuOgZ0nG+8E+cUUnufi2g6Rjs41TjVWs4Gianue3bPZ+/iIcvbBQW9Xnf/m/3B9x7f/7/71eorJXkKoOnYlh9uooiT7sXJzaB1+LpRQ1HYzrZlfQEusl0fLIX9C65iVVmClixTYumMgFA07PY1dSqMEo74GJhRDMsKMLBb43GcHGZurcGkehnojGC06677uMDPljVkKHWGpzd0/MBjn7Zli+2/DsTqBYJBETy8vdfcQjVzkG5cb2MJfz7qVEr/ys6eId3bwre+8w7tzy+vzS2TTOX73m7eorrJNVjyTziAsVQSurHN+Ds7PlekxZB577CgAJ44O8J9fye84FHQZjqRTcLYOnP6Vr9058cryd5+PchyIdnUTLiyS2KCIAX+yEJQFPY8/hed5ZOZmMeem+fj+9ZkfSafBzPwsuA52pcy7mkGnWWI4vnNtpKaqDHasTPEDlkm5YYLrEnOa7MaAYT5fpC4k+gyV4AYU57l8kdLQURRdZ2xqlNXSc1s3kIVAVhSsHURATBdKZLuH8CybgWKKnuhK8/RO++ZsqUzVdsjZHqG+fZBdRPH81zoQDmOmNp9mLRveaIbR1tiomoaySQaNEOKu1pVSNke0owMhhB/WuZhCMwJUShVGJ1IM9Sfp6Lo3+vXV0SzlKRnVTvGVLx6ht9//TGVLlt/gEDKZ4t5n5t0PPCpk7kBmMc1MLYgQgsWKjBr3v0S56n1wwPBcf6zuedsGJm0HUxiMjc5w+Mg+bo0truvGbYUz/YJf/MI5AP78r9/l2tI9ncoHAoWiP10xq9VNF69sM8D/9mcX0WWPTDP4frpSfiCxU1vKzZDoWb847xk8r30++cVUu5B5/c3rfP98hmQIfv3nHieeuLcx0IWLo7x+JUVvXOPnf/qJ3Rdzj/AIW8AuLqImenHNCm6jBp7AKi4haQFcc9UGzPGnNfImzTHZCMMOG2dOKY3edwTPbmKUZ/jcCz24QuF7V8rs6wmRX1xiIWcCBtemKuy/MYYkBFenymy28Z0terz99nV6u8K8eXWxfbukZvLCi08TioTIzM0iyzInz57kjZH3WGwxbJ49FibR5RdBZw53cHFmiQODvvans7uDrohCdbkushv82qcHiQUllhbz/Pk7JRzJ/+5n6xJjozMcODjAtdE0d7Udcpq8fCxAPBLg1atZCtbOmod/+94SB8OgNuoMJbe+5iTjca7fvk7y6Elc22J/NISqrD/X/liEXtdmKlfEPPMUAJm5aYZ3+FRypTIN26EvGW//7kBrkiQQdCX8gmg0W6SpGfRg0RHZ+DOUKpZIDxxCCwQZmRzh8Q0+Bk0PFN1/vZw72C59XpOpqTGE53FI2X5vVFQCGBH/dSyUsqyPf/WRKZeZSQ5gxOJkbt9gIJ6AeILx8+9gLczh1WqENliHXNdlbuQW0WQHsa5ucgtzu7JW3g0c2yYQDtOoVWnU62TnZlE1Dduy+P2/Os9iM0JYLPHbv3iaSGx3Bj6feekY+lujqIrg/C1/j2gpYf70r97hv/xHP4OsKDx/dpDcq6OosuDcYyfux1PcczwqZO5Ad18PByMTjOUVjvZpSLpJpe7y8hPDe/5YcqQLp5IFBPIurCo3PpjOH/1wntjr0+QbKmIXdstBY2WzZegKu/H//6Di6+fLLGbeQJIk3p1x2aylVnGDVNz31Vr/A4vVtpTSPeQP2ZZFOZtBCwTWBIzdC5Yd1+qVCuqq7tnFkTyuHiFjw8hYinNP31sh88P35ikTIbMEJ25Pc/LUoe3v9AiPsEMIWUUICTkQxS5nUJN9WIVFnHoJJZigkZ5E1oOoiT6cWmnHxcqWkGS/s6zqnHtimCef9Xvn8fANho8c5q23b7Bk+jvVkq3zx6+XWnfcvHvvSTrfvtIAGmtu15fUibQmCOl0gcH9A9y+NUO6KrUv0ZmiRWZ2BklRkByLLz3XyVvXl4iGFDL5GjN5r63+1TyTWEgm3t1Lsm+An6pc5oe3fM2mLXT+8/dnUf92FEuN3dU1/mAHfPJjjwHguA6zi2VOHerk4q0lbmQ2X4NzTYPHQyqEtm90SJLES11Rrl98gwORCPvu6MRbts1CsUxE1xB42KZJo1REj8ZQzRoY2+tL5gsllnr2owaCFMducLwjSrVukqk36AzohFr6ndlcgcahU0iyzOTMBJsRsEyXdl6Z6bpMFkpEZGlN4TMUDXF79Dq2pjPgNFhNUeuIhFcde+V1rNTqZBsWSV0hElx5XhG7TrFawbMter3Nm84V28NorSlGi4ZXmJ5g4MRp9ECA6tw0gfB6Knx2bpbBo8epV8qUc2vNIErZDI5lISnKjm2Wt4KsKDRqNVTdYPbmDSKdnXQN7WNhfIylkgsGlF2DXLa460ImFAnxM5/2v7+S8w4/uJwB1yYb6SG7lKa7v4+BwR5++1c3KwUfTjwqZO6ArCj8xt95gUqhQCSR2HO6yWqIXXrtbwdX1snb68fcwm3QH4Fs1cPcYHE5P1lH+/EVPA8uTjVA2kXmjNNkIOqSq0HN++A4tnlygDfnHvRZfLgQTiT90bsQ9zRdKSym6BwcolYqUi0W9qSY6egfIJ9aQDUMwomVjcDB3gBLUy5B0WDf4NC9P05EoVz26SzJ5N7S4x7howWnmsdz3Za1f2tz5bk41QKe3UQK+IHFWnLV5LOURgpEcRu1tg7mXiFktUVD80gXAriui+s4zMwVmMne4q3bNXbiirUTjKYa3L56m3BY58JIjj95PQ9qACGvHD8Y0KhXqwQiEQaPHSeUzjD9eo7/+EN/g+kJhROxIocHIswXwly8OM4nf9p/jaIBhZePSNyaqbBk6gjFwMa468y0Us2haTbQDJ2l+RQ///mXkWSZwYEurv/niwh9+1yanUCSJE4f2NjE4Xq5gXb0cdLZLKZZJ3r8EO7NiwSDQQ5FdiaSrwgZvbWBbwZCNJpNbkoBgkeOcmN2iscsC01VfT2S64Isb/maDUSC3By9jqMHcC2b+rHT5It5pPwCiVYxoygKJxPLxcv2BZ1t29xEI3T4GPMLc3SkFjja62tBh+NRCouTKIpMOBqmWqsBEAquff69AY0bE7ex9QD9jTKB2xfplmXGF+doBMIkqqUNrYkUzaceByNR5m7fItblFyyNeh0hJBK9fdQrFWqlIsHovYs7u/ftx3V9ts5yqGe8u5sXjue5Ol3hYI/BvgN3v77cujXFe2NlNLeGE+rhSLxJZ+/uixfXcXjv/AiSBE88cXRXWqC9hPDukdJ0txg+87j3T/7i2w/ksR8mvB98+Z99TOfcuZOk5tP8+2+MYMt3H151Jz53SuO5506RWcryb//qJk3pkc3y/cKD1M7UKxXA27BbtdfIL6bahVA+tbBtOvNOUMykkWV5TREDvkPL3OQcsWR0192tjVCrVrlxa47erigDQ3tDlbvf14ipf/qF9zzPe/q+PsgHFPsfG/T+n1//r+7b8TfT1Dj1MkJWkTQDu5RGjnS2m2qeY7enJBvft4RQtHYUgNuo+jQ0BELx7ZPvFp7n0W3UcR2PrL37TbrnOutMc1ZDsav8n3/tCYLhIAtzC/zOt2YRq0T0nufx25/ppm/fAJnZGbKlBu/dzDJaWCl0jnc0+eWf99PHs/Nz/On3x+lPahzqCxE2YPDIUcrFCv/zV28h7jARiCsm/R0qY4sWZsMB1djyfAE6tBrRoMJEqsk//PxB9g8PcPP6GH/8Wn7b+26EP/7S9tbWjWaT6VoTPI9iMEqo32/CLF877ZlxzgR33qfOV6qMouMqKgNmiYBrs3DgFLKiYDeb9E/doKMVzjiaK2IpOj2SQ3ITbc9qvNMQhFvnFxy5zP5V1LXdoFQuM941jB4K4ToO8yO36KWJqhvs02SChv8ZmM7lWerwN/l9hRQDse3XLM/zcBwHZQPKXjpfYMlsUE30IlsNjslO25igVq9zLdRFOJGkUathNRv37BRar1QwKz5NNNrZRXZ+jkgySTmXpWto/5401//gL99hNKfgeR7n+k1+9mee3/Vxl1IZ/ub7FxktBpC0AJ86ofPyi6fu+dw2w1eODmy6Tu3oky6E+GngX+D3+v+d53n/vw1u88vAf4vPS7rked6v3fUZP8KewfM8+rr8L3JPXycB+QZ7mUPc2+lfyDq7OwhrLrn7E6b7CA8QxUzap2MJQTG9dE+OaPVKmVqphJAEiqoR7dhgIul55FML2JZFvGdnXaLC0iJCkjYc7ecW5oh2dmNbFrO3b5Ls62+HgwohGLyHztadCIZCPPXk0T073iPsHB+qdcq1EZqB57nY5Syu3QTPRYl0rgugvBPLwcxOvYSkBnCbq01ltrZa3g5CCNKNjZtVnufh2Y1Ns9ROdTX5qaf3MTGT428uVWAT+rPruq3Ovwetvr/nueA6CFnllfOzPGe7jE1leXXMQUhrp0GJWKC9KXMcl7ojoxsGZ546A/jXA0fS8TyxZqqguTX+wc+dJp6Ice3dixw4eoiZuSW++pMlLGlztkG2GSTbBAyNP/jeND3haVJlEFvc525hNhqM1iwWqyaB3n5iXd1YVy5QRuBVS3iKSnlJ0NusQXDnjZlEOMQ5/NdZGBE8z2Nh4iZ5I0K1XKah6YSbTXRN4/A2mp470Vkrkp3z0Mwq/VuEcm6HaCSCN3GLXEcPtmUjKzLK4bN4wMTETU61Xu5pV6Gj5To2l0mxWsnieR7z+SKaLNG1qnE1VyyzoEdQaybHND8gFGAsX6I6dBTPthlITTJwh3FCMBDAcRzyqQWEJBHv3n69qlfK1CtlPNcj2ddPYWkRz3OJd/ciSRL1cpFk3wBWs8n82G3iXT2A2LMiBmCwy2Ak00DG5tDBfoQQjNye5tpYlsNDMU6fPrjl/cvFEv/pW7epeR145hJoAcrmg4vZ2LaQEULIwP8KfAaYBd4RQnzd87zrq25zBPhvgBc9z8sLIT543q8fUggh+OF7szxrOozNZCl5oT3Ve/zwQornLZepuSLZZoAduHk+wgcMruO0x+X51sj+bmFWq+1gzWUHmDux2wlMdn6OeHcPnutuOMERkoyiqiiqSigWx6yU24XMI3w48GFbp+RQAruUxqmVkCMdqK1CZFnYvx3s4hJyKI5jlvGshp9xJsvgrmw2PNfBLqV9l0rPRYl2t4IE72KBcJp8/myEY0cO8IPXR7iUWk8VOne6j+5+/987N18la68vZGwlxB9+8xoH+sLcnCkh5ABBYfILL/USDRtcuDzOieP7uDG6xBtTbDjxOD9eIxq4RlCD166kqbhrN963xhZ5d6KBpK0tNBThEIksN+aSBKMRjkUj9F7JMLPD7p8lDGar7FlCX9000TWtTdm5kStSDCdQEiHi3T2kZ6boCQc4rrugh3EcB9etoO7CqWw1lt97IQSnk1HebsoMnjwNwNLoFYY2cedaDc/zyObzxKNRFEXhQCLKAQDDf22blsWNahNbDxKv5OnUFWLRnZ3vE32dLBQLlCSVSmPjOATPsalXyoCARh1YmcjcypVwDp/GaZg058fbhUlaD7eDRxfGrnKwVcjU1IBvaa1DZZPCeztdjOu6FJZSKJpONNlBvVwi2TeA67rM3rrBwJFjCEkiOz/nB3S23oPl9cpqNohsYQfdqNWolgotGppflLzyk6tMLlY5e7STx86s12l+7KUz7O+fwTB0evu7aZp1/vxHUzTlMFdn0/T3xEh2bf6YhXyJqqsjBEiKypGEyQtP3r9pzHbYyUTmGWDU87xxACHEHwM/D6z2pPxHwP/qeV4ewPO8D5zv1eXLo5SqDZ56bJhAaG94rfcDwmkQFA0qhHY8th4vGIy/lgekHRcxwq6jYtFUtr7ATJd0pl/3LWLuZoz+CHsH13XJzs22+bw76Q7tBJIsUyuXEEK6Zw6sJElYDRNF03GcvengSLKMvAElYPXf0zPTCEnCCIVomuvDyx7hA48P3TqlRLuQjDB2KQ3QTlh3G7UWVQwkI7RxYSPJCEVDCSexyxncRsXPQ4uubLqcah4l1oMQAquUpkuv87PP9VOr2/z12+kN9ZSbIaE1OfeMT5N7+mQfl1IZAPqDJrGwys0Fm9HJLPsP7mNyfJZiU9l0s5+q66TGLcB/Xgd7NA4fOwDAk65F19AQQ8ODXPydVzCVKJ7nMhRuosiCiYJCQ9L5zrVm62h+EfPOhIn1nfPYtseVeQc2mJbURIQ//8Z7HBxKkMtk+czAALOziyyWXO5aRLMJhFVFwsNRw3f8vkamINMZj3MjW6TaPYhXzHFSbhIKGDSQ0QKhNvVWVTX2SSsWubIsb5hpcrdQqyVgADOzxIC+MwfGS7kyysHTTM1Nc0ptYOhrJ2bzlTra4dNowPysRDmeIJKaJCgJcopOsGlyILH5vqMvFqEPaBoyY6PX8STBAX3l+n80qDIyPYnsWjx+R/6MFQihSBJSIEhtVdaO3FoTzEqFtGnRXasTDgZI2nVmF+YQjs0BLMBgvlhmQQ0h202O7kBOnJufo2NgkKZpUsyk278XQiDJcju0cvl903SDxYlxJFmmc2gf2fmtxbzVYp5k3wCe55FfXKDW8PjBDRMhacy9NsPpk8MbhlkPH7x7Tejg/gGe2bfIRKrG2XO9vPj8/bWd3w47KWQGgFVxVcwCz95xm6MAQojX8Mf6/63neX9z54GEEL8N/DbQ7so+DLh6dYy/eKuAkGRSmev80hfPvW+PvRvdg1mtMreQ49DhIb7/gwv8ZOL+nFOAOr/x+UP09Hbwl9++wLWlR54QHwQUlxbpHBxCCEEuNb9nx411drVG4c49B23GurpbLi/5PbsGKKrmP1/PQw+ub0LEOrtwXZfcwjyWaaJqD4cphd1sUsoXSHR3bdkF36026iOaU3Nf1qlkf/x+nGsbm2XULGtnJC2AHErSWJpAqAZqvBennG3nxdilzMaFjGvjOTauWUbSgkj6ejqYpAVxagWUUAIci8GYx/DhYQBuzZa5vItLSLGpMnJ7isNH9nFjLA0IegJ1fvOXn0WSZX74ylV+fMvkwviPqbk6nux/Bz3Pw2vWEFpw0+/ATLpBLpsnHAoyN5+ha2gf42OzmK1cmSMJi1/78nMIIfjqN97l6uL6Y3iSzoVZAAFbNGNuZjVuZquAwbu/86qfXbMJVe5u0aHV+Y0vn0FVFP7oW1eYq/jPIyrX+fs/d4KZcID/8VuXefGxXg617IH/X3/4Bv/8cwPsC6jMygpL05NEkp2ESlmCnWsnThP5EiU9SMiscfiOjfxMvojtwb5YeF3Bky1XWERFbZoc6fCPeTqiszRymUFdIxLaXv/qui6NaAe6ohDcf5DMrYsM3lHIBGVBoVxGj/iTEj0cpqKHyEoKkYEhyg2TpdkRuuNbU9g0VeVEYn1x1RMJ07OJLKbTqjMzO4XkOByWV/ThQ7LDm2+/RsfhE3SdeoKl8euEgYF4lF6niaRKCOEfdEkNEhwaBmBh7Nq6nJpl3OjYB/gGUkII9ECAWrGAEQr7eWmOQ6K3n9zCHAiB3nJ5CyeSCEkitzDP3Mgt+g4e3vJ1YNUUDSAQMNCwsJAJ6gKxg+ajZgT4pY8Pc30iy+HB7g2nMbduTlKpNXjs9AFUTeNnP/vUtsd9v7BXO1QFOAJ8HBgEXhFCnPE8r7D6Rp7n/Q7wO+CL/ffose8Z5WqzPU2oPkCe33aoV8ocOuxX0ccOdvGTifS62/QFGzx9LMnkfIHLKeWuaAK9cZn+Qb+bf3w4ybWl0jb3+PAgqZk8fjDG5EKZieLehXl26XU6Yxq3UzaOtDcOP3dCNQzMapVAOIy7QfLzvWAvRf4b6mLuAZHk9sFgkiT5Y/uHBJVShd/9y4tkGhrnhmf4/EO0KHyIset1av9jgw98nZIDYeTA6s69/932JzQbf8+VWA9OtYDQgpsGI0t6ELuSwXYd5HAH0ws5bMuiXjOZy9RZnojsBK6s84c/nEf/4QSmHPEdnrSVbnMooCAkmSrRtqum5zp8+oTKU2fP8uqbN3l9UtpwvSo6Af7VV6+jeA4NofPardfIN2RoOZlFI0b7ftGwDot7I9S0te21IPvCNT72eA+e1eC98So3MttPLQ72hdp5VUcGoszd8icq+7uNdsjh0X1xbo6lOXh4H1MTc2Rr/vPrj0cxSouYVpNwpsq4ELzdlAmVspzqjFOr18l19hOMJ6k1TDIzt+hM+OLzyXyJyv7jSIrC7dHrnEj61/RspcoCGks1m57jxynXarw1N0nACDBIk4CmsmR7WOUqycjWbBVJktDyWdyubsy5KQ5scPvuaIT02FUWIl0Y4TCNeo1ArUgj2BLJuy7SfXKLXZ7m+JcCf/ubK1eZjPQwOHiMfGoBXddIrIqguLPgU5p+oJFVrxHbQVSFpCjkUvN4rkcwGiMQDq9xNgtG1q+tZrXK0PGTNGo16uXSOpOa1TBC4fbxY13dKKrKr3xqiKn5AicPn9rxHvDI0SGOHB1ianKOkVuTHD66osm5enWMr76RBUllfukqX/zpJ3d0zPcLOylk5oDVM6jB1u9WYxZ4y/M8C5gQQtzGXzDe2ZOzvM948vEDLGavUqo7fPLc8IM+nU0RTiR4882rHN7fyVtX5tnIsvCzz/QxfGg/Z8+6TP7uTyh7u9+AzuZdbl4fo68nwaWRDKt93Fej16iTiGjcStm48v3ZnL+f8DyPzz/Xx8EjwzxnNvgXf/A2Ne49hyEm1fjKLz6JEQjw5lvX+c7V+5OWG44nKOWymIsVIltc+B5hZ7CaDcpZnyITiifbIZp7gamZJbJ2CCHDjekyn9+zI39k8aFfp5YhhzvadshyeH3n1PM8nEoOSQu0ixinWmg7hsmh+MqxjCiea+PWimRCnfzz33sD25Vp3I37pGLQWGVlPJ4TfPO759HtEpemTNDWUl01p8JLL30cgJefO85rN9/Dk5QNp0eOHGzb4mYsbQ0t7fK0Sewn15AVwXtjVTaygla8Bi8dDyMrEq9eK9LcBW1uM3jNGr/42VNEE76OwXFucyOzfRE1OlNgbmwMVVVIz83ieb4j3UyqRGp2Dl3XMMtF+rvj/Lv//APm6yFQVp5TspVav5DJoh09iy4EtWCIWnkRVVHw6nWIg2vW0VdpWpqygtwK6LVXTaXHXIXIgUP0tqhJnuvRcczXxUyP3cSNdRDo7GJiKUXQLGEYW792Z5MRMmNXiMeiqMrG+4JDXR00hIYIRyjeuMLZ/X0slSrkJkeIOw0671Lj036ulsV0xURxHfYnY1tu5guOS6Clc9Fsi/6lKbq2cDo7FtaZG71KQkDvDs5zt9kynuchJP98ZVXFrFa2vH0wEiUYiVLKZihnM7iuS193nIMH1zfuPM/j8qVR3877zMF1r8uVq2P8xesZPCHziaUKH3vZ/xzkSg1oUfEK9yMc/h6xk0LmHeCIEOIA/sLwK8CdTi9fA34V+I9CiE78Ef74Hp7nfYVuGHzpZ5/G8zzMavXuBY/3Gaqmc/r4APVKmU+cG+RzRoBwPIHrOFQK+ZUcD3wB2G9/+Qz/41cnd/04ljD449fyeM7Spg40HVqNr/ydc6iaxquvXeUHN63dPYjTJKY0KVoKA1H/9Z6paIgH6BYghMCyW2Fpto3rij0RbRqa/xkDCId0/BC43WMzytBq6lF0C1HgdnAdZ0Mu7UcV5Wymnd6cW5hDD+wdHXb/UDfJd+fJNg2OD+1dgQSbU9E+5JSzD9U6tRnlbDVScw0Wl+Y5dgz+2e893v69XVxEifXgmmVcswJCAllBCcVxzQpuo9YuFlYXNQBV1D0TqgtZRXZNPvm5l3muUuaPvn6R+WaMiFynI+CSLza5cP4mTzx5nPMXR/m7Hx9gaKiLb/7gJrdy20/Dw5LJZ57sxHaCfPdCngY6dxYxGiZPHggRlmWef/4EkixTN6/w+tjuNmO9AZPeZIDJhRJPHuugWGny7qigkC8TTcRp1uvMZDYuou5ERzzIwCFfgP1JTaX35gzBaALJ0+jo7iQ9M8O5p45iNRoEAzJ//HoJgzr/+NszLNZUhKziORbPHpA4LY8TS8SQizkCUX8yFVtMsVDMo1gNtFW0sz5FMD41iiskBj0TUBnLl2gYMSKAa9uIpQVk18Hr80XjbsNECfvNPDkcxUyltyxkMuUKU3IQjCiy2SAZ3niLaRgGJ02T/NwIpwdaRhauhyTZRNXtt6XZUoWKbdMfDaNuoI8cqTaRDp+i4bpMjF7lYEd802N1aDK3Z6eQwlFCtSJ1XcNsrNf2LENVFIa30PAsYzPK2WZYpqLVK2Xq5TJ5kcJ1nB1TsB3bbhvd5FMLBMLrm7A//slVfnTLAjxK1eu8+LwfnfHtV0Zo1msUKha2KZCDMRZyZvt+T53Zz2zqKtWGw089Nbyr5/V+YNtPjOd5thDi/wR8B38o/B88z7smhPj/Au96nvf11t8+K4S4DjjA/93zvHvzeXyf4bouf/wXb3B7yeNot+BXvvz8Awv32QqWadI16H/g84spbMvynZp6eknPTBFJdpBPLSBrWmtTO3lXjyMkeUvxflCT2gnpoaAG7LyQ8RyLX3w2yZnHj3Dryk0OHT+ErCj86dff4WZm719zz3V4+bDC8GCCN6+kGM1vvkj+9ZuLjMxWmEvXMKW9MX1I1Q2+/u336O0K89aNPFslXj8IOLZNdn4WPRCkUa/RvW/4QZ/Shx7haJj//a88TSGbp6tvb/JmPsr4MK5To7ctxiYMjh4yOXB47fQ9vdDg979+EEvEuHZzdM3fhOwHF8qBKHY5i6TqSK7NT5/W6Oncxw/fmmT6ffK7OHagG0mWCcfinNgfoTRW57e+dJpoPEpqcpzUYo5/9e+/gxGM8JWXzgJw7lQn868vUna2LvCfOGDw2ONHAFjIXuLadJVYQJCqyNDKnnn5VIyXnjuJ53nkUvN09A1QqjRYlxq9BcKiyj/4hacwAgEmbo1w4Jj/mLnCa7zy7gSxa9Ms5EzmGxGiap3TB6LMLlWYKW+8EV4qWpQLJcKxCI5lc/LYEMm+flKTE6ia3momCaIdnUxOzGLQ4Ld+7jgdXUl++ONLvDLqcrADPvOxx8gvpnBti0CjhhD+ulINx+na5xdKc2PXONhapyPBAEOVKhlHotliJNb0IKF4wm+ALs7zwmAXnucxMXIFV0gcSkaYnhmjEggTNqs0FIWLNQfZanI0IK+Z+AAsoRIcGsZqmFybGicoOfQ2awzE1084DMOgr1UUpUtlMn3DaMEQY9PjLBNtG80mU/UmwvMYDgf8c0stUT94Ej0a48boDR5LrN/GuoqGhE91c+Stt7lp08bVPaq3rxE7dJxqRyfXx2/z5AMgmZRzOWRFpmf4IMX00poixm+0VzBC4Q0b7Y5l4XkeVsPctCFZqFit+woKFb+Y/8l7U4wXdexSGSXajaKBUp7jmdNn2/cLRUL82pfvlBw+PNiRRsbzvG8B37rjd/+fVT97wH/d+veBRDa1yO28jtBlbucdsqlFuvrvPYhvK7iuSyWfIxxP7LgT7nkutmW1f/ZDkvzCJtrRBXh7EiC4HaZLKt/4znk6EkHevFFgN8nOsl3l1Gn/UnXo+CFqpSLRjk7ikQDsYDS/WySUOp/6xMsA6KrM6PfXa4uWUXUDvDftspfFhhASFxeAhfqeHnevUMqk28VLOZfDbjZRNrHZLKaXkGRlR7qUhx3L00vHcTbUz0Q6OttCzNUcZduyKOeyRDs6t3RL2w6abtB9n68xHyV8mNapcsHka987jCVFuTqe57/onSIQXvlOZjMelvC77ZlCcK2rludgV3LgWEiBGJJm0CtnePZZ3x71+abTdprcDUKSSVdEYjrn7ZhKfPHmPLFoEKvZ5MpEiYiuE41HyaXmkWWZgf5u/t6xI3z7O28yM73AwEA30YDKb33pNP/2L65S8TYuZg4nmpwa9k08XMchlyvylS+eorO7g1dfu8IPbvrriJ9F4+PVt8YoWtNMFNRdxQSokofW6s7LLYKb67oc7JZ56eMvUi1X+TdfvYSQVb7wfCdHjx+kYZr8yz94lyrrm2ElJ8Dv/Pl5Pn4iRP++PurlKsk+yOQq3Jy9imtW+OSnfZc2Tw0TNxpt7cxATxRGC1RNm0J6qb32l1wXWucmtfYHdrNJeJWGyvM8xqQA4f3DZKoVAktTRFyPTMNE81z2x/y1SQixZoJxONkqogMRLtYc9CH/3GZHr3LojnVCsxqYlkUxnabzqG9YsTQ7yXYzhaZtoxj+e7268BivW3DQP87N6xexIjHKyT66WxqTkmZQrZuEAmvX1QGa3L55FcsDr1bB1Aw6rTp9G1DGMuEEsb4BbE3HaOk3rUCQzfRnm2E0V6IcCGPUypzouLvQWbvZIJL014TVe0K72SSXWiCS7GBpepKe/QfW3TfZP0B+cQFF1daY8vjmOhbBaIwXnthHoTyCEPDc2WMARIMynufgef7nx/M8PvvSYQ4e2pmmtJgvcnMsxWBPnIGhvXFK3S0e2VG1kOzuYig8xmwtxGC4QbJ7d7zG3cLzPDKz0yT7BsjOz5Hs69/RpijZN0BhybdlSfb2YzebZOZmSfb1U8qm37duupBk3psFZuvspogBcLQY3/3BBR471sflG7OEI2FkeYnz4xUQ22/0vVYWwk7tniu2wsLcIn0DPcws7H4B/7AjFI+3E6HrlfKmRcpysKTr2PccjLkatVIRzQhsWjzdD7iuC0KQ6OnFdRwKS4vr7KpVTW9Ty5bh2DaFxRQdA4NkZmfo6B94RMd7hD2H63g4ramB48o49tpN1eHjKsdHbrKYC/PM2Rzfebe//Tcl2t3WwwDE5BqGppJezNDV08nU3MbXwK2uq7pX5ytfPE6yM8m7717nm5d2Ro+9nAlz5WsjeAjQ4ngNm+/87bucO91P19D+tpvgZz72GP/x61f5xONJzj7zJEIIIgZUNpkcnTrUQff+AxQWU/zgzRHKlkRnt0+rHeiOwM08AK9eL1OqXqRUaXArG0IIaddZZzk7xJ99/R0eGw5hKB4zt24yM5dtBRX63eqoIShXVyyyl6M2PdehN9Cg0hRUVxVlFRHjr294cD1FVGnSf7PIZNqmgY7qefRcGSEZD3JhNE+qqvDKq5cZ6Iny2uVFQGfJDPAX3x/hZ15yGTq4z7dJ1vyi6WhAZm7sGiHPZSixdkPttooESdWwHIfhRJxeM4eiKCgbiM7vhGT577vVMNmIXHU4GWVu6iZUqzSTHWjBIHLDhMDWmqv+RJyZy+9hReMEq0Xo99cWT0jtGr1cr5M4eZbC2AjzoyMY4RCSHmCxUuXgHYVMMhxCxyK2/xBWs0mlkMcUMhu1jVTTz6PRgIW3foLW2U2P04ANipFq3WTJbBJVJDoiK9Staq1GqXuQQCyOY1ksTl6nJ5nY8jlvBD0YJJea9501vZUivJzP0b3Pz7mxGia2ZaGoa6e0kiSR7O1f87tKPoceCKJ3BMnOz9HdP8A//OW1Zjsff/kMscgIhVyMqxNZZElwcHh4zW0apsnt23P0dMfo7l17/z/6xmUWm2F0cvz2zylb5s/cLzwqZFqQFYW//+VzLM6n6envuqdO605QKxWJd/egqCqdg0MUlhZJ9PRSyeewGg2cFjdyoxHi6g2XomnEu3soZdJ0De5bd/udWLf6ybIesqLwz742s+3t7xVCCN6alnlzahEhNKDl+b+DIqZDN/nSy/twXZe/eGWWor39fWzJ4He/PU48MMZSVd40UfqDip1oZ7aCZgTwPJ+qmNximrccLImqUi1uXxDWSkXMmr9IGKHwhiGUuYU5gtE4lUIezTDWuLncTwghcFs5No16DW0bAesyyrksydb3MtHbR6WQ33MXtvuFzT4PX/mn7/OJPMK2iHUE+PwLY4xMBjl2qEY4fkd4oyrzC192gRLXLrmcO3yTs6dNOnvXXtt+5z8c4De/fJZAKMS3v/06I4s3yFmBdcVKZ+u6ajkOf/nKHCVn7eMFZIdEh78x60yGWdb5Pd5r8dTJPm6MLfH6JG2NY7dhkgirjCzauNrKBlnICm9MefR3l0n2QSWfx6zViHX30ZSCvD1moQbHWUiXma+oiDtrKsfiEycNdK9Go16j2vQYyynowuX8mxfQdZV3RiosN9csofPutAdodx0ELYTgZlbjcK9F975uhAB3Jssrl9K4HixmKsyWZIQM33prienFGrOLFaqEeHYYfuYzL1IpVfh3f3GJohNcc1yETNkNcCsNy3Q3Sxj82Vtl8IoISQcZfnjbgdt5VjcNF6w4//F78wSlCSpeCCGZa877j7+0dkMphGCgXiA33SBg1uhpTV22E+8DzBVKVIVMn2dRGr1Ko1LFDgU21BMPJGIMJGKkFsapux6HItsbR3ieh+juo7N/EKthMjlyheG+HvargsmJWwjP42QywujECHoohGPZJHr6MMslwrWNK1OvJQ1QVJVyPosuSeQcj2R47ZTslAaLI1ewLAv97NPY5RId1Y0ZpzccmdDh0xTyWZTyErFW5qCuabiVEsTiWKUiQX33e4xlTY0jOdhmFV3XITvNjY59hONx8qkF4j29mNXKjtccq9EgFPe/t5tJJSRJ4qknj/HX37lAoZWv9Pp7U3zxcysNza9+8yIjBR2dJX7zC9DV4z++53nkKzZoYHo6xVL1USHzoKHqOoMH3h+L1mA0Rnpmis7BfeTm54i3Aq6aDZNkbz+e51FYTO2IJqao6l2HH1byOQKRKHogQDGTxnMshLyz4Kt7xd0YKpzcF2Fwv98lPz6R562JndllN4XBksluqNEfKeiBwLauXLKikFuYw/P8ztF2aNRq7Q5RPrWwYSEjhB9SaYRC5BdT72shE4hEyC+mUFRtx1S5aEcnmdlp4t09FJYW6Wzp1R7hEfYap88qnD7bZKtlembC5OuvnQJJZ3xqnF/6RBeaOoAlrpEYLJMIqe2A556eTt6er244kTg1HGWgdV09Np7nnam1E6BCU+V7332Nzo4YF8ZrgIbbrPPpl04RjsUYHB7kvX/zY5pqjIRa5zd/8Sk0Q+fHPzpPExnLcnhn0gLJ1+98/e0cF26/RkfAJRjQufLaIg0RJlWHr77t2/2LDbQNA1GHn3rpMQAuvn2RvzxfRxEev/VLp0h2JJgYm2ayaO566rITVOt2W7MgT2RJNxz+8p1y61z9NbPkGC0jAX9D2N/tF3HhaJhTfYLXZnZmJLRc5GwHT9apeBqI7W2AHcch7ck01ADCrG17+2X4+pUDaMEQ09PjJBo1lNNPUZEkRsauczS5sfB9J45eyxBC4Fh+Q9N1XGZQGAZCAYNTq5alJxyH66k5zEQnmQtvcyIepCu2ds3wPI9buTKm42GP3qSUWWLg3ItIsszE9Dh3XukNw2C/Yfi0Od1A1Q3yxfS623me13Z70+NJyksz7UJGURQON2rkx6/TIwki29hUb4WNQk1V3SCcSPhrzsDOgyy1YJCZG9eIJDu2ZQ5Egwq+oSMENcHE2DTdXUlC0TAL+SYInQYGS+liu5ARQvDpZ/p572aWfV36PYVs3gseFTKrsDiXIhA0iCbi9/2xhBB0DgxRyqRJ9PatTIBa40THth9RVjbAxEKFWrWK63hMpWrsltb2UUetVMR1XcLx3Y+9dzt5cBzHp3BB+78b3cZuNjGrlR1PRfYKy7aVu4Eky3QO7qNWLNA1tP+uivHVyC5lcByX7r69oek9wkcDhWyT6zcU3IaNh4IAgsj0Dv0UALlFCXidsYzDT167Sixq8Pr1LJtp9Mbny5wrFinmsjRrFTxXXzO1+dTpIC+9+BhLqQx/c/E2CBCqzq3ReZ56KsbIyDQN4VsvB1XQDP+63N9hcOSMr3Ewv/UeV3xZGrZk0Nsh8dlP+m5rc199i3xhB8+77pHPFUgk42RrIKkGsl0mFPJ3u+GgDq4LO6Qd7wajSzYvtZwdFwtNdtIVe+Nahu6YiqrKvPzyWW79+Xmy1j1scl2ToGRR8nyanOaZ/NyzHcTCAb791hzz1fXrYbFcwXYdGpaNcewJDKBiGJi1zJppzJWZOZqxDkJWg+OraFWmtaJfsYXMgtlEZDP+9XqPwkKFEITzS+T0ALIsE4wlaFoWM5U6Kh77WhQ5WZY5M9Bq2u7fuMk7nyvgHD5DQpIoz01zrCPOTpLwwmaVSrWKUynRo6yvhIUQdFXzFGZttHqZgY61a2g8FCS+mye9CSzbZrpcQ/Zc9q+iBqq6QaJn58Ywy8YBfYcOU87ntqWCv/ziKcKhEQBuT2b5yXiWmDzLV750mpfP9vDKe3Nonkm9rq2ZxJ176hjnHnAM2qNCpoWfvH6d71+roEsOv/6ZYYb23X8RriTL6yYpgUi0LUJ+P0T74USSwtIitVLRT6B9n6Yxd4vZis4//4Pz4AksZW9cxT5oUJolbKHtehEpZTOouo6qam1NzJ3wlrMEPA9VM4h23P2YuKMlPgRI9vVveJvOgUFK2QyaEcAIfTDeT0mStgwo2ylu3Jjkqz9ZxEHwxacKPPnk0T04u0f4KOAvvxknVRtGdmucHbhA3Uny2JECpdwM0eQQTcv/3nmyzvdvWviukptfL2bKOt979Ro//4UX+NKBgzS//jY30jLCaRCSmgz2+vz87t5OItpNspY/Tf3GeyVeu/oTig0F0coMma1ofPM75+lMBikXaxw54z9G03JZ7e2syCs/q8rOCo+qG+Df/uV1ooZHqqohZAVLifAn37jEkX0xrowV2uex15ipGPzrP3oLXRHMlHdmGLBY11nImTz55DHqtRrdIZdn9ge5Nl5gurw7+pGOyT/4/CF6+7r4m++d5+1pONitcuqMf914Mm8yf2Ft5shCscxi5yCSpqGNXae+MEOgbwgpn0aPrnwebmby2Eceo1mt4CgK58dv8uQBv7s+mIxza+w6DT2Ikc+gnH4KSZZJT45zgCab5cwBFKo1spZDVIaubTQ4pwd6uVXIUZFVHLPGO7ZD8rGnqFsWU5M32Z9cP60v1mpMuyr1ZoOIWeVoTyeaomCbdbRgCMm2GUrGGR2/gaXqHBA2m217DyejFBfH0Q0DI7zxWpRQFWq2hSzJWLaNpu79fmm0bMLh07iuy9jYNWj1Dxu1GtViHoQgEI5sG1K92jhAsH3DbZliBvC3b/8I1ABFJ8DCQoZnnj7G3FKFywsJvnHJRFZGeOKJh2e9elTItDAyVwZJo4HK+EzufSlkNsJOPqAboVGrUSuXiHf37LpLvLqY+ie/ubuu+4PIprDkew+p/KDiVLfNl376BRYWMvzB3061shO2RimXRdU0HMtqT1VqxcKGty0spoh39fhdx6kJGrVq2xlntxBCrBMfboS91pg06nX/gu95RDu714kiHxZMzBVxJH8TMDZf4cmHKyz5ER5iVOr+58YWAY4cERw5aQIG9dKPWEorRPosQN5RHs0yirMr39WAoSK7DX7tkwMcPDzE6z9+E8fxmJrLkzH1FdaTrJG3tTXDCSHJvLtsBOM4FL/5HpblcDPtC+09z2MgaJJKu/ztDy5St1xuLrqwQwZCnQB1cy3zaqKoMXFl98YzG0HxGnzidBRDV/jhpSyVVXqhdCMADdYUMQnV5NNPdVOrW3z3Yh7rDq3nd87nWEi9wZkj3Xz6hUMousGxg938sz+5jtA2p+h6nodnmQjVz4fpCAn6WiL4w/s6eHs6z3yuST6bJxaPMjabZ3VI9q98LcvZAfj5g34B8GopwA9em+N/+FiWPl3lRsl3UjigS9RCMQItiu/i5ATBA8eYyS0w1AqTPN6ij802DAqu/15JnsdWHqOe53EbncihA8wWcmjFRWKbFAjgb6QHNIl3TZtQ7xChgEE5lyOSTNJcpe9Il8tUbI++gMasI6EMHyICZBfmuFkscCoZoTk/TlVWOCQBKBxu09+2/nzEYltTm2dRUYd9a+vp0WscTux8bXFdl4VcnmggQCS08r5PF0qkjSiyWeNEUMFWVBRWrKOXtTO3ilX0gycAcCZvc6KRX3P8ZrOJqqrc7PSbDqquU8yk/ZiMXe4Jnzoa582beQaTKsMH/MesNRxAQgiJSn2XuYH3GY8KmRYeO5Rg9q1FgqrHsdYb90FBvVLBapjEu3tIz0y33S0e4f1HUJgc7Q8wm66Tae49VerkwSSKqjK0r4/e6DRT28zMcwtzRDo6adbrNE2TUi6LLMub0hY9vPbfVF1/oAGld4tqIbcmyPJO57GHBacOd3FtfATbgzOHhx/06TzCBwifeTHNO5ctejsqHD6xcp0JRCUCUZc7aU+e51GYCyIRQY8tYEQ2cCaLz/CDH1/Bw+PSVJOoZnPwsN+VHx4eQNE0jh/WuDIzRcFav3UQjRKurCGUVdc9WeNqCmDFLWwwZPKVX34WSZb5m+9d5MKsaOe+rEbAreAg0ZTWbvY9z8WwSzREYE3i/Z3wPJfDCYtQUOXqrIUr7azIOdGv8cJzPh2uVr/O929s7dD29NE4J0+1NreL57mSWvv3pjDQDJl9R/zb5BdTVOp2Oyl943P3eH6/y0vPnubClUm+d73JQhnefec6/d1R3r6aAnRKToD/7avXUSWHmljfAB1PmcxMzhEM6lyfLOHJOoOdSW6WaoiDx8nMzVKwGniFNGqXb16CJAgnO3Cy8+uON5iMs3j9AvXuAYxkBzPlAj1Avlyh5Lj0GFqbruY4Dl4reFUNR6mlZ4htYEe9GiOuQt+xI5jVKrViESeziFFMs9/wX6tsqcxcxyB6NMb18VsEXRuv9Xrhga37FLjeaJibxRozukGzXKFnlcNYpVZnxJFxZZlBp77mb6tRM01SZpOQJOiJ+q+tcP3SzXVdZG939sxX8xWUo2dZzGY4WM0SbxUzC2qI6IDfLFwYvcqAKjMzNYbwXA5pK99T2XFwWpQuyV5bQl7NFql39CMKabRoA1XTCSeSWM1GyxhhPfuimF7Cdd0NNaKf+eRZPvWxtQHZn3z2AN6b44R0hXNPHNzVc7/feFTItPDUk0c5dXwQVdPuu2PZTlAtFmi0HJ8CkeiWUxqzWml/UNVN0mgf4f3BF57t5sSpQ1TLVf7ln1ykIYLEFJMTQ2Gml6obcph3g0u3M+wf6mZuPsN80V2TH+G5DlKziqtH2lM5Icmomo6q6TTrdYxgENdxCcXiGx4/kuxgcXIcEITicWqlnbCLHzKs7j7do4blfmL/cD//9Ve68TzvoZ0aPcKDRa1q8/rrKpLwePFFGz3gr03HT6scP12FHVBGAIoLGl1dX0KSJNKpNzEiY+tuY4RlXh1tbZAkjXxD8MYbVzi0v5O52UXOvfg0AEcHMrw9udZk5XSywseeOUQ+V+Srb5e3nBRHgmp7gxQJayw7oK3GgViDX/nCMzSbFr/39SukGwaGVyeoOBwbDPDpT36MkZFp/vSV1KYFyv5og1//8vN+2v2Pr6w8t22QLfr2trKikCnU2E4Ls5Cp4HkejUaDpWKDjSh8U7NZmqY/Aankc/zZj2cRyuYRD55l8uIzpwhFo7z04mP85MoPaahxvnm5gectIcTKc7bk4KZx1CXH4N9/d85fG1ZTkV2XYiZNoqcXWVGo5uLEb18gpqhMy0EWbl5jYJMeVn8oQCbZiaLr1Io5ilWTyVgPRqKDaxO3ear1MIqi0J3PUGzWMepV+u7QlEwtLuGoOgPhQDtY09H856UHgzi3LvP0/rVNqKrtoLcMYRwjyBHF5tb18yzaEI7F6XbqQISZQhlx5AyqEMzNTNDlutwoVLGMIFahQviML+pYnB5jM5ukW00wDp1mZmqCuUyJYUPhkCYxN3YdyXEYXmVyYJommqZt6gw2mS9RCUZJCEGgs4vi6CLxkF8QFUpFokCtXEaqVUkO9K0zGgA4GA8zMXIVTwj2R1eKe8/zqEaSPg28o2MNbXx57b8TlUIeIxRGDwb9UFXHwWo0qJYK4HnEunrW7YP7+rv4jS/f31iSu8WD37E/RDB24MT0fsBqmJRzWXoP+B2cXGp+y0ImGI2RmZvFCIVwrIdr5HcvCIo6YdVj0dR3nBnzIOF5Hobun6emqyi4mJ7HF5/v5dDRA9SqVf7lH57HlO6eGnc7p/E//P4lUHSEvLIwBSnziy/1sO/w4/zgRxd5Y3rFPKJeKdM0TVTDQDO2diZTNZ2e4YM06nVqpeJd08oeJIKRGLnUvE8t63g4L7zLeBiaJo/w8OKVVzUuTB4HQEjX+cQn7/JAnrTS3GCHRbOs8t3rNt7VOQYjNifLVWzHYSJVZfVmvdsweeGJAToHBol2drLvxpuMbJJqDzCWqvPemxewbIc3RjbW7gz3R9AMHc3QGeoJUput8pUvHicYNMjNz1FML9EZUYmqFgVn48fSVKX9nFV155Pl+VqAf/NHb6OpgrmKtq0W5kpKZv53f8TB3gD9SZ2l6SbeHRb/c1acb3zjTY4eSDKaalKSO7csQYVqcOHyJC+//DgXL96mIa1MMu6kjockk88/042qSHzrrRR5a+3rKWR1nfb1QFDjemoaUwhCHZ141TL9PT0sFYokjxxHCEE5m6HZLKBpGoulMgVU4tj0JWI0ZkYwZY0DkkOp0cTY52spbX1tkOSBRGuzH1xrqvLOfBqGDmFWKmQLBc51+69Xn1kiOzOBYlZ5cmg9vb8vGubGyHXsYJgus4Qcj3Kyp5OT7Vv4+yRNEpSbTRRdR3IdZgs1xOEz6EJgemA3GsiahtJoQGjj74Ot6hTTSyT7/GnkxPQ40XyWohogLq28DyO5MsWOPrxKgePCJHLHPnKxUKQ0dAQ3myWfWkCtV9kf8D+zl/JVeo8cZ/rmdQKhMP2BAKOLGeaNKM1qhUOiyYG+XorFIqFQiEMbZNsIIdCqJWCA2sIswfj2ular2Vwx1/E8XNelWsx/IJgMG+HRKvoQopTNouqGz5F13TXBSBtBDwTQ+gewGuZduVFth+VNbayre13HYadZJcvYqaYmItf5rS+dJhqP8p3vXeDNqV09zAOBEIJvvbnA2XSdyYUiVRGGVe4em3Vrdv04+vrx/HPDGgdP+EK9Z84O8/rERPu19po13/ZUUYHJHb1nO7Fjvlc0ajXK+VzbanKvzC1W2zmXchlC0Tjgh4pJskSzXkcLBMDzCMWT9/15PsIj7Bae51FctHFMadXvdn7/wkKDeilMvLdBICYR7a2zNPdtZDmGEp1gs0nOak2NWbapVyDWI/FPf+c0//wPzuMicNW1159PPNGN3toUSZJMvrq1Jf6nn+zkqXMnaTaavD32DtVVDB3Fa3B2v0ExV2RiZALbcbk9W6MjJJHsTJJPLdB/+AgAC5NTFJrauoFJr1EnHnAZnavz9e+cJxzQeHt0JVtmJ8hYQbDYkaBfCEF/V4TP/4w/sZK/e4F3N4hju1KMc+WiCyjbDoqFEHz/psVr135IQwrhCQnPaiCp65/D8cEAJ1rUtsczNX50s7nlsX/la8sZKRIhaYS+2ATTOZvf+4UBIoEAqWwao7MbKkXUkEq1VmM+3ouR6GA+nyVUXmI4sVKYxAIG10auY4UidFQLoG9voW8lukjEE4TjCVJXc+3fD8WjDMG6wmcZqqLwWLLVCDSibWczxfPWmAH0J2I4syOYQmZIlajJEvl6DS0YQvccOmZu03Q9huKbN4j7GmVGi3kiSb8wKJYr1JJ+1o1pWcxN3WQgEaNghAgnk5BMkhm9yp2xOZ7nG2N09A9QmhzjXFRr/d6jGU0S1Q32HT/J1LtvkO7qpqgKuoYP4rouN69dYXE+TeDwCaz0Iicsk1BgfeF/JqKTvn2R4VCQQM2FDdy1b3Ssakq6LtVCgUx1DtexcRwHIe1surtRGOeDxqNC5n2C53mkZ6ZRdR272dyy0y0ExHv6yC8uUC3kGTx2ctPbrtxHbNhtb5p1qoUC4UQCVd+9ZqNRq2FWK++7/qYjLBNt+dD390TZVgyyC3iey9l+l8HeGG/fyJI290bL4jkWugJv3cpTdvz3QgjBX7+xwKmFClMLlW2nMapTQ8bBlHdn+FB1FLLzcyR6+7h2fXJNB24rQemDRK1UpHPAz21adurbDaxmg0rOz0G60/GsmF4ikkiiaBrZ+TkkSWo/1uLU5Jp8m0eFzCM8bFgaCRMKPMunXxRob/0ANI8Xnt/ccWk1iotNFOtz7D84QC41SVP9EVZTQRbdeG4TWVmvobkT9aKLMD9Jd8cgi1M/AMBWN7525csNBnoTLM3M8OO3xsm4Wzv6GZp/bVI1FU2G1YrxT58K8Ozzj+N5Hv/pz95gsmQghEG12ODNt66TCAqarqC7r4eFVJ6A4lJfVeB1G3V+85fPoagqs7dv8c13cyhSg8f3h7g6VaHm3Z/vut0wqZWKBKOxdpHieR5es47QAtsa8HieB3hrNIlCkmlIcYLC5Bdf7iYWDfFXPx5n5g63s7m0Sb1WQ1EUphfK7LRgS2omp4YjTC5UaLYMCsLBAAeqOQpjS+zTNYRQsR0HofqPKVQNuxUk3LQspqomwnU5FQsjy962RUy6UESRJIyGg+cNUUjNMyjtLAtuI4xWm4jDpzEdh4nx/z97/xkmx33neYKf8JHelbdAwXvQAPSURMo7yrWk7mnfMzuzt3vP3u3OPDPPPXO3t7fP7dzOMzuup+1sO6lbrW65FkVRIiVK9AbeFlAo77PSexP2XmShCoXyMCQk1ucVChkZGZEZEf+f/f762X6DM9N9wxwbPx6s2VEqgki3IuGPrO9sdYWDdAGDw/0YqoeIIlKZD0Y681GFuUKJgiXidRyq6SRtyvL7qi0SojxxjawrItZrJNFoDjTKv/V8EjMSIT85Tsfh+1FUDWtwAADLNJAUBccfQfV4UXu2kx66tKIjI8sy7bGNK2kquo4ky7i4C3ML58ZHl1QyWIZBMZtp2I7z5WnJyQk0r5d6pUKktQ1ZvTeGi285Mu8S+WSCpq5uRFGkXq1SymVXzZ7o/gC5RBxcl7btO255VoVp1CnlskTbOkhNTRJt79j0bJpKIb8QKVferYvWNumOqYxfG6JcrvLW1TJ3cl5MTK7wzCceb9RO+0b5xuu5O7LfR/tEnv7g/VQrNf7rdy9QmHdmcqbOG4Mm651DWKnym58/gFUucOrSJO9Mbbyk7u0xm2RhnEr+ArNuy73cGrKAoutUigU8/gDWLZRE5ubmaO7uoZBOIQjCkiGdtm0tPGQFUUCUZYxaFUXTMaqNWnXb2ljN/J0iG58FQcA2TcKtbfdcVGuLe4N62cKj3Ue4pZXU1CQPPeAn2F5ko8t1JeuhvbNh1AQi7WQLBoK1i+a2RsYgmSih+ZJr7sOo6DQ3NRr9VaWbgy05uttDnBrILAv8/ORCgeHpEumiRc5afy7TS+fSFMomc+kS8Zq+8KwKiBW65xU0BUHAK9sLa58jqMylSrTubePk2xd45OEDHD1+GLQhfnCmvLDvqG4t3FeKqrA9Ch/84P2oukbXhUG+e3KpPPFmcSyDmG5SNCSs+SnoLWKGDz9xBMeFn774FqfGBRA1Huq2efKRQ5y/OMqLl40VB3wCKG6NZx6KEQ37+NFbk0zeVJa3vUWlb9c2AA72ZZg8vzTcHq9q/P43ziAJLiUWnU3XNtnVDKZpM1ZQlzhJjmXwuac66N7eS61a5T/+9SmgkXm4eR5KKBAgPDdOKeMhbFYJzzsIQ6U61ZYuquUSc6kMD4R19DV6dEezBYpdO3EMk5bEONK182z3e/G03rpqpSWrKDRGWVjrVDx0zB+3ZVlL5qDUDYNEqUJE1/B7lzu6u+bLudJFg8u5DHOlEsFKgc7OFgYKNdp37iKfTGAlZ4n7fRRzBXpuGgYakQRKLT2oPj+j0xPEHAdRFDkcC5GfHmTOtLHnncVApUDy3CkKtktrZwd2ag6nvZN6Ik6XdmfWDH84QimbwajVAHBsG93rW1CwtS2LbHyWpq5uUtNThFsaPTOyqjZURmON9ezdGBGyEbYcmXcJbzBIMZ0i1NxCOZch1Lxai9mtDepbiXIuR6S1caGFWlqoFPKbnn/hj0RITk7gDQYxjbVT1hthvbKmSrFAenqK7r2NLFQ2PsvsmTtrcNZskXKxjD/oJ19cW5Fmo7R4ajx4cDuFdApZUYn4JFbqk3ddF6FexFV9y5yUrpiGUyvT1NXNJ7p7qP3wNBfiy/exEoKkMpIH8CAI4BOrhHWBuYJFxCeSqsgLddurlfdttkzwdvGHI1QKeXJzcWLz2ZKN4tj2Qo1vMNbUyKzc4MiEmlpITU8hSRKKqhOIRilk0pRzOVq3bScTn0EQxHf9QXy9CfNeWgS2uLeo5lVaOhqZb1ESUP05NjJ88TrhdoOJgfMEI+0UMnFiHR+nVBiA1kZzseOub8x7wlUS06dQlFaK+St84dOfRRAEdnQNEOg+te77/80fr15FULC0eSUwZUnAxSdUqORzpGenwQXV44N5hVmhlufRQ33IqsKRA91EWtsapbo31duNp2zmJsZQVJVatcZ4ooo4P6/mxrk1m8Y2+fBBnd29XQiuQ8WW+PqL4/RERT7+8B5iLQ1jXPQEcEUT1zJ59IEduI7Nvh0tFIpjvD3Bis5MX8RenAWTqTJ5qrjk9cmUQTqZIRDwMTiRY6W5LVVhebnx/d0yn/3E/biuyze++w5DuUUn4/GdCj5Pwyi2LRsX4YaSs0V0avyPDymY3iCabdOqL362K8vUKmVi7Z3Q3snk8GV2reHIlFUPiu4B3UM5rbIn0nAaDNNkpFzHESXcUgnJ76dNchdUvW7Etm1mMjlKloOuqbRJAjMTw4i2taBsthbj2QJz/ihUDXbaFaIBHxcrFr5dh0kmZtldKazozADEAn6evF4oEWmsPSEs4oUcXn+AVDoJvbvIVSt4Z0doCi3acLZtgyRRSKewbGc+A9dw2MOhEEHHYXTwIq4gcKQthiLLmKaJINSR2mIkRy4S9HrRVzm21TAti/FCGcF12TPvPN1ITjSYGx1AswwORkMwL/WczmRh+wEAom3tFNIpwi2tmPWG45NLzOFdRTDovWDLkdkAplEnn0wuyNauNyF1JVTdg2M7ZOfi+EKRd6XJN9jUTHJyHFX3YNSqNHdvvixM0XSauroxarV3paysVi4RbGrGqFVRdU/jAbAJJMfg6UMB/F6Vn59LLmt8BKjg5S/+4QLNIZXhhAni7ZeWHdgWItrWMFLPn77IeJYVbY9j3Q4f/dDD9PeP8Q8ncnBDU+hwvM7hTJ5YR6PJLhTQIL75TIVXqPJ7z+zH69HIJNO093Rx9vQVvn+2uiy7F1OrfOxYG6WqSbVUvKUZRreDNxjCG1w/zX8zoiRh1utk47OYhrHwnV1HkuWFUrLrBKOLTZAbmW9zp7meAaoUC40enS22WAFv2CQ5e4FgZCcWlwmuIJW8Fpah0rFjJ6Koo2gakZY2DHOWROK7gEW40wAEHNuhMKciaxb+m/qDVY+Eum0Ax7mCq0O9WkT3BnFXKr6n4SDl5xw8ftADm1/bmpQyv/75R/B4PcTHx1D9IcYTiwpgUa9AbL6ioVKt8jfffZvWpiDnRovA4r1UlcM891ac7hYvl0YL5OsevvG9d+hqC3N+pMhaQ0HXIqrWeOzR40BDPrmnqw2/PMyu7mY0Xaecz2G7MDjZ6MURZIVz/VMc2t1MtK2Dj3+8nfi33ma8sPS76fTVeeqh7ZTyDWN4cCwNqASkGk8eilKuGLxyVeAPvnMFWbAx5Y0/n73zjoogCPi8KuQWX+toC6GoOtm5OC+9eQ1DXL5fwary65/so6g4C8/LqeF+ds1/hT2SSzqfg7aOhhzxOmt12Kwxm5wDy6KXxra1ep3T6SLRQ/cjAOmpSZq6uhmdGGGlsNqlfIVCoJlYRydVwBi6zNGQgus2hB1qtRqTVRPVdVYcoJlTvQTmzyU9epWgZVFTPFSnJpEUhavpPK2GSVwPIZk19sguPk+jXzmRyRAJBpcMwWwL+vHmZjFNi1poMUjs3uRgN0fCDFy7TGjfEcrlIjXDxOeRFrYdyxZwRYkev44ybxsqN3xOS3RzAejrDBVrsOsQrusyPHhpIbt0ncXs29L1KBoJc3F6Em8gRC45SgG9NgAA9W5JREFUtzDQ2h+OMnHlMrHOrnuqJHvLkdkApUzmtmr5r3O9CXkjFNIpLNPAdVw8gcAtZWhEUaSlZ9uSNOqtIAgCmseDadRJTk7C/ECs5q6uFaX9bhdfKEwplyU+OkL7jp3A2mUQN7KrVeKR+RkAVcPmR+dXXngzpodMChAlAlKNo30BZpIlhnO3dj5DUwWOVyrUDYvX+0sgrbxg3re3DUXVOHJ0Dy+ffY2cs+jIVPHw7dfneLpo4ggyJwc316B6nZAOkWiY7Fyctu6Ggb+jrw335FUEZelxHdsbY9fehiZ8Nj77rjkyhXQK2zRxHIdgLHZL/VtNXd134cjuHqGWFrJzcVRdX1X+eostVK+E1HGOcuEE0W0rGwtW3aIwswNV6cR0LxLpXoziu2Yz3nAjQ1DKpjGNGoIcJ9xZnd+isRbkp9pp7fgwtWqRYvIHBJqXqwmIoog/BsXE85QqIZRQkpUiNNnxdsLhhzErWarOy5s6X9e2+MB9IXzz8zzG5qr85IU43NDbZwsylmGi6hrJnMFIwctIweJmA8x1bDyqSKFsokoOv/5YCMGqYzo13qnWQN3cc0awDT5+X4COphjXLl5m96ED5DNZLgzMkTV1Lo/m2LWtifhsnO+/MUVFXvQIfz5gIjLHE20dOLZN1Vg+d2RHp5+Wrk4qhTxvv/IWj923nZaxFJLo58EHGuIt8cwprqY0TBpG730dNkf2tnJxYI7T09Kqa/vJ4RKachnDsrk4ZcANMtWvn0/yAVEgmalwOakt+0ldx2Zfk4Um2RjV+fIjx0GwTC5nipi6l6hh0mQbZPovELDrbG9fO8DbFQ7QapYQRAE52Pitx2sWNC1WpwjzGQN3lXMqiApGbTEg58gqs/kik1oAwXEwc0Uihx6gbpqMj11d5szUc2nEti7sWpUoDmemk+Qkhc6de9B9PoqWScq18Xc21pbESD/bPXA+U0TZeYSp6Qn22zU8+uJ1FPQ3zsXI5xm+MIuoaOQkgaab7C6tuVFOHLqp12UkU6C+6xCCIDA03M/+8K2Xj7muS6FYJOD3I4oijiwj0rDhbHnj+xUEgdbe7Q0brG8n9UqZTHwGSZLp2XeAxMQ4vlsIQN4tthyZDSCpKvVKpaFtvsG6etuyKKRTePyBDTsvS95vmksakm+n1Ox2nJgbKWbS6F7PXZXoi7Z1kEvM4ToO3Xv3b/rY0wWDWrWKpuvMpUrA+uUEH3ugmQOHdmJbFv/lr98iZ29eHnmyqPHvv34KFxFLXv33vnAtTlt3B1eujJI3lSULiGuZfOmpPnbt7mXw2jhVq4xwC3fobFnm56+cp63Zz/lLJ9m2rZXT/XNL5whcP+7ZHMcch1qluun+qdvBMo0l1/dKZValbAajXgPXRff5bylzc7tcd7hsyyLS1r5mJrVeraJo2qrqdIqqrTiYbIstbkaSJfzR1SOepYxEW9fjAGTiLvDWwmuCOkchM4Uo6dTstyiOOfjDMWqlPLp/8R6XpYY0ue4JkJz14Rg6kieFqltU0zsAFSV4DW9IINBiAxlWcmIc28Eqt+KGHKoFE2EVOeTVUKwS23fuJjM7jevCmStzoEaJKRV0RWCqpJLHx1/9w1naIjqXp6qsllnZ3WTza59/CICz71xAsA36jtyHKEnYnOU75zd1aLQHXY4fawTGrl0Z5j/82avkHS+CKCFIMlMlmf/83SEESUaQl6a1BFHi5at14oXT5It1ErXlv+eV8SIHds5hmhY792ynpbOTjp5OfvSDV4GGQlS+bHDdYROMIp/68CPIqkpPbyfn/uRVHC284rEb6PzsuoLZDU6M6zrU6ibffyNOTfAsqQq4zq6YzZe/8CQA8YF+8hdO0+pRkXExdu5HEwSmJscJdLcTVVXKk6MbWquVm/oC3fmZJZnZadxsmqBj4BhVejGA5euwaJlEOnsa2xcLHPIITLk6gfmBkslqI3ApKQrWTZJzo5k83v33UcxmkKdHsf1e9ANH2KHpzI2Povu2o1SLyK7bUBQrl4jScO5rgQiaKOLt3sbkxRPs7lj+HE9bDjR3EGnvxHAcJoYv0RsNL7zuKeWwrTbqiVl6bijRs2XpBsfs1gPDrutyLlNE6N6BPT3O4YBKp+gwPj6E4LpsVxZ/n2KlQrpuEdPkZXLRN6J5vciKghwKk5qeonf/QQB0vx/LMKjVDJ5/+SqW7fDRx3bQ1LK+9PPdYMuR2QDBaKxRX1/IEWrZWFlZemaalp5eCukUruvi8W/OOLZtG8dxsIz6QpTivUYUJUzjzvSUrMX1hrPrbLZ34z/95Zt4VJeZsrYh+UzbaTysbMvGcW/d6dtI2v/tcZFTf/QKluxDuOmhJVgVtvU2HpDbetsQrFGQb8F4FxVeHXJgqAAovDKWISiaxJQ6KcO3ZMG5lFCY+dobGI7AP//dxzf/WbeIYzVKC8x6bVUHyqzXlzrz74EjsxGHCyA1NbnQBxeINVHOZxEQVlRU22KL20X32xQy4wSjvRjW0iqBQJOLUf0pju1iJXV6d3yFUj5HLZHFyGZRI1caDo16lXRcpVyYJdb6CL5QC/n0BOXSBVrbG8+CZNyC0OiyzzdrNuWMjOa3qFcMunYfRBAEFFUlU8gskXFeD8d2OPlKlOMP7OL1t6+SciJ0eKv8zpeOoagqz/74NGenYaasMVN2Was8TFUWTZqK6RBQWXi+yIoKbK7PM112ic8kaW1vYmQqR4EAgtgwGiNyGcsRKCmr39+OpNE/Bzdnjq6TrOv8wfdHEQSRDx/UaensZHhokhMjNWa/+To1SyBZv2H4oexlYGCCA4d2cu3aBLbk2+BI1EXu73L5zMcep5Qv8OLL57mY9C7r11Tkxb8H4jVeHTBwJBHdrfLPWgqEIiGoVxd7lDYhDX4j270qo+PXiAHbwh50LUy5WmPCFEnlSnTrMqNVC1vRaHdrRGQRwR9A9/lRS1lC3iDJTJ5qvY5j28SMMsbECJJl0OVbur4asoIky4SbW7DKBQyjgjxfUSI6Du75Exxsa0IUBKYHL+BVZZpCjTVdyiSwmlrIJxMIWoBdK1S5GN7g0t/ipu/kQCRAZvQyfr8P7QblsS5NYWTsGo4g0YUBa8x5SuVyqLK8kAW6kXKlgtPWjdfjgZ17SV49Q0dz0xLhBmiU8w3IfnzdXVybnaI3l2Fa9uIi0ItBxN+4nvelJxguFsiqCm6lwoMegYmhK5i+IL5ChoNuiG+8M8GVpA+Q0E6O8cVPbTky9zQ31tdvBGW+6S0YayI7F9+0IxPr6CSXmENSlGWG/XtFuKWVxOQ400PXUDVtQUjgXiNne8hVNzYDwLUtfvT2NNPJKjPpCgXnDhudtkFAqlO0dZCURopXD6+8+OghfvCT8xza1cLFwQSyoqK5BUoEbiurtidQ4POffQhFVfn2D05yJbUYDRIEgewtZKBul3BLayNVLSur9pw5joNj2zib7JO6kzh2oxzEqFWR1lAZkxRlod9n8mo/HTt3I8kymdnpBRGCO5UZ3WILPSBT42WSaYVgh8nNS7nqUShngdq+RjbCMGjp3glAMpFC92cItFjAGYR0DUVrZDFkxYdVKuHMNwav1hNTnN1FW9cjFDLjKOpLpOLnaG6/j0zyPKHezT1DRUnkpQGbn148jaA2Ai3RoLagkhkLe2B6YwG0yzMWnp+cRVMkTgzVsKs5PmucQdU1fngqw0pR/rWoo/Nnzw3ila6Qd30L4gR7myy+/NnHMOp1/up754hXb73P8vpsmJ9ernHy2mu0BST++e88THwuy7deXXRSXdel1WPw81NTvHI+TqaqIMiLM0k2+nzZ1hFGEAQC4RBPPbwL8+1JBtINx6XNU6M5rHF1sjGDZ1tM5vgDu+ntzvE3L01SEz38+ff7aQnK/MsHA6QmB6kpGj12naEMuKJAr09f0keyFpqqsvcGNdR8pcKFmovoDxKMNXP+6kXChx9ABKYnRtinOYwPXUZ0HfrmZ8DsjIaITw4gCQLN7ddtpeWmbYciMDI+hCOIdGMQjQS5OnQFU9PYI9Rp7VrMsvTEIoxmCySKdZox6ZRhPJcl3NJKWZJwnOrC/LPrBKtFirKHucEBYkaZntabMnSCQCy6XKnWq2scXLh8Vv/ehrMFyl27cOo12jOztAaXXss+rxcSM7iBINWJUfrmxQZMy+JysY7pCxIqZYlho/U0MlhqtJmRuRkCRw8DMD12jWo2h4hAWyTEjkiQaiWNIsvIeoAmwHUthKZGUDGkLl57Pu29C7hvOTJ3Cds0ySXmMOt1wq2bd0QEQbgny1BabkEw4F7FJ9b4lQ914fd7+N7Phpkua+h2ARMFW7r9RjbXMvniozEOHdrJqVNXeO5seV055YtzChfnsniw+CfP7Ka5JcYPfnyKszO3dqv2+Gt85ImdCwPr2psDXEnd/azaesiqum7DfbS9UWYoindXXcxxHKrFwvwMiKXGQCDSGMInyjKhpuZV92HW64365HQKRdcXosC27ZCZnUEURQRRvGeCElv8YlEqmAxeE2hvt2nrbBi+ekBGD7istoxblWZ8oSip6SkqhQLh1jZMs4YgLcopZqcCyMJu5pIv4fG1Uy5NEWyvk0p9BwEVf0tu2f5d10WVG/djMNpLMq3ia71AIn2WYKeMuEHJ+BsRBAFBWzTMrs5avP7mZXxehRMDBTbcKyipnJoAsEHQwNvKP1wCVilV2giW5KEASxTWOlsDiKKI7vHQFtWJT9/SrpcgSAoFR+HDewL4gkF2BIN0XUwwPK/ctr/Z4lc++yiWafJX3zmFLLocaDHZ1qLQ3NrMi+9MMVla36F6pz9NU1BFVUT84QjyfPYlKFb4rS88gK7rnD49wHPnKhzZFcbj97PN7yf8+jgpEwq2TiELAZ+XwLzPOpg1sHY1VK6GR66wL3RrfR4TtkzTrobDnYnPoOBimyaSoiDaFppPZ7eqUqhUuFYyEC2DXZEAbZHwuvsOeDwcWfircS3svz5c8yYHIp7NU+rejaxpjE2O8WDMRzYzR92o0lQtIkWWl/rvjAbZZllIko4g3LlGeNOySOfy5GQPXt1DoVJhtFQhpClL5K4FQeBoUCd57RzRUBB1Xs45ni+i7T6CBmRmYbdqk5gYpOwN4q8U8fi81B0HQRDI5/Jw4Ciu41CbHGRbJLikH+j651znk0e70ZVpapZL9xPH7tg5b5YtR+Yu0dTVvRDV+kUlOxdfSB3/MkrF7mjT6e1rNPUd6EsRjBf40qceJ53K8rXnr1Fybu9hpDoVDh5s3NyHD27juROnQNvYYtoSkmiZ19ff0Rvj7Ez+lo4hGtLx+ANkZqcplmqcGcxzq8o97zZ3y5m/fl1bpkkg1kQxnSLY1ExiYoyWnm1LGzS9XgRRoJzL4dj2qmVwzd09DUnKQJBAJNoYwimJmPU6HTt2Ln7uFlvcAt/5fpCZ8nZUcvzOF0aJtqxv2ItqClEAy3CwhaskkxcRFYvg/C2VT1jEYp9AlhVwhjGtGXp3fp5SPo7gfxFvyGAlE0EQBEwukplzMIwpQl0OkioTbtuYOVFMSFC/D8cto4Yv4Qkuv6dsUeWlKwYNB2QDToxt8uGDHrZ1RnjtzDQDmc3PPHNdh4d6YW9fM6cuzdKfWn0fZwZztISHqRk2V6Zr3Mln6pXhNHv39JBMZJnJLWbb2pp9C+V7LVEPDx3wcejwbuqVCma9xoP7mpk8WVx1vwGpxn07A8wm6/z5T6Z5aKePWnUKTVI41OYwk7LQ5g1jj974zBMXZ/HoCqOTGVI1eaFFSrAN+vONbN12TcS5wc5xbsGRvY7gNrLvruuSm5tjry4jj13FkCR6tcXra9SRUbfvxHJdxoYuLRmEeTcQBIED1xW/9NX7leVNqNHOZPOYjkNPNLxqNs1xHC6UTLx77qM+PEBhZJBQcxueQw9ydWSAozfdGpIkYUgy4+UanbqNIsvUKhUK0xMEO3tQKiVQPeyLzp+DHsB1XcaHLuEKAm44gjifTauu0Dt1M4Ig8PTBhhDWlfdwOOaWI3MX+UV2YqqlEprHgzcYagzwzGY2PYPmvWKjPTWFTJpqqYggKwxO5Dm8K4YoSTS3NtEeGWNwuaz+pjCUAD/92VkO7W7lTP8MqBsvuZjKupw9c5XWmJ9TlxPc6kDQy1N1Wi5PoSoSPzufXnOy9b0yX+au47oLjvl4/6WFBsZAJEq9UlnS02LUqpTzjaGw1x2dlbjZ6bqucnj9GtM8XuxbGPq5xfuPybE6QyMetvfW2bajYVRk8jrIUHdDZDMO0RuqMV/8sUP/SBM7uzJ86jOLJUaBZpdK/iVEFTq3LTcyJBkso4osK7huHVVp3BP+UBuJpIo3tHpJZ6S7wKLAwOYMV8HcRbStociVTMTxBLOr9tSsNY/mRmK6sSCP/KjjMvCz1KaOCcBjF/n4hz/QmO0R9HL5u8OLpVu2tWQGTM7U+eab1zNbG3NiZKuMKLgY0trBrCtplWt//jY2MiiLz+tT1wqEfYPUTZtLkzUO9TXKlBRNo1zIMzSewXVEJKOIrQaWZf8/en8TBw/vwnEc/uDrb/LmiM3xXp2HDrYgIPDim8N857mTdDQHOHktB+j0p1Qu/3C6sa8bDNujPQpC314Afv/FM5wdN3h45DSiY3NhJEdBblq4DqNqjY8fa6XTK7DdqRINrH7+farAuSsXccNRth06QnlqlMO+tbM7N0sd3wnaIiEqE42yuW2Y3Go2bzXGswUK3buRVJWBocvsja7sHOULBZTuxr0S7ttN+Z1X8fTtAsBeQelzOpsnP59JGhy9hl2p4Tn6COLkGMrl041ZMTchCALbYmEAksUS45OjCC5sF9cv6XYch798c4zxksBnds3x4I7lFQdXYj3r7ud22XJktlgRSZaoVxqNkbZlIr4Lc2/ebYLRGJVCnn//lyewlAD2QIqOJh/pbJnxlAnCxhZo0a7hEU1K+JZMTxYEkTfH4I3ROIIgs5kWCVvUePZsFdetIAi3rmRiChovXr5eSnbv6L6/l1yfTVQtFQk2NZOZnSbS1kEpl102a6mczy84KKru2XSWNRiNUc7nKKRTv3By0Vu8+xg1k28/30VNbOb0QJ5/+tVhAhGdJ48nOH3ZpjOWZ/vuxedBOV/l1OA+BMXLhelWHpg4SXvvotHlDa0eJfVH5YascjmCFExglPxk4i6GFSfYUedumQeGNYfrutRrZQTl1jLNN1OoS0xOzNDd08HIROaW9lFHZ3x0mm19XYxMJEFScF2Xh3scjh3p5cKVaV4ZtNctD16JmFrlN754GKtWZmgkweWpKpPF1Z/rbRGV3jY//eMlcmZju6Kt871T88NMBZ0fn5jl/lyNyek0Y0mLIn4+tFvkySc+wKlTV/nh2RJ7WhzaYn7ODBdw3cY8lNTUFL1RkUzcRLEtgrFmZEXh4I4s3z5V53JiaYZppfO1b1CStm3YEYX797cjiCJPf+QYz//kDKcmGwvefTtCCxL/qdEB1gqHenWd7XWTOZ8f2zTw1ivgW258bxMtZsauIZkm21Yo87oT9C04F8t/J9d1GcgUMT1emq0abcHNOTo1SUaez36Z6urrcjgUYnRsEKu9F3duioPd7QwOX8HUvLTWS6AvFRgyEBb2ayFghWNQKmEqGrokoq2TNWkO+FksoF4/8HpyaJYXkkEEQSB3IbOiI/Nu8MtnnW5xR1B1D/VKlexcHElRNi12cCdwXRfXce6qLLA3GMJSGg+DiaLGHz4/DYKIIGwwyubW+I2P9dLd086LL53l7fHl29zo3LiuS0gqY9oiVWF12cPF995ig7ht0BuBXNkmZ6q3tPi+F1imSTGdQvP5VpUcL2UzmPU6iqbdUpYw1NRENj47PyywFcswyCXmaOrsXrFHJjk5gS8UwqjVbinLujUzZouNYpkOhq2BCJajYtQb0eYHjis8cLxAYwbM4jXq8Wu0+BMk69uIanEizZsLejRklVOAiC9cAU5g1k1E+e48L4pJEcdWGR34O0LtJsGWO1O1YIo6X3thHL88TNbUl2RP1qLLV6Oj2cel8TIVWecbL00SeXOcZFVCEDXcWpGnnjyGqnv4YEszb155GUsN47ou24J1msI6FydqGIJOWCrhugL5FQRjelq8hMJBMrNFHnr0CEdrNX7/b05RXsFY1JwSv/6ZB9C9XnYMjvG1VzIrrgOJms6PL1QBL67gcryjzuHdvaSnpzh+fD9nL/+Erz7zdGOeXOgqba0hJq9eoWvPXj7b04PnZ+cZma7w9HyQ0nSX/+Z+Cty/3cfYXIWJyqLRfGHKwnnuFIIgcHHa5vMPNyGJApH5odB7tzdxarLhUE7MFbEtC8c08DuLUtI3MpUrkFM8SKU8PlWldXYYWZJpvkG++EZCXi8N9+a9KZOeyuaxdx6kks1wNWPi5ou0h5arlrquy5VsY+5Ok1GhMxzEMAzaZRgeH8YRRbrdOqs1+QuCwH3RAKXMJP5wo7Tw8PVT9iz/vK6Al4GhfmxNp0swGZuZwOzcTri1jWQuSdeyd9weMb+O7NSwJZ2o/t6J2Ww5MlusSuAWp8neCSqFPLVyCXF+QbqbTdKrlU6tVmp1I1Hdoae30bS+qzfK2+PZNbff12TyK595lGqlxl98/zzp+t3Jknxgn4cPPnGYmeFhZF1nZDLLCxcqIN36sK13g2x8lubuHkq5LJVCfpnkcr1axXUbPVulbGZhvtNmUDR9Sc+XrKqr9uLIqkpTVzdGtUpLzy+P0MUW9ybegMYnnhjl6lCAnb0lYm1rPx9ESeSrX8gyPpqiZ5uM7r29OvXcjI4uPU3NyCMGTuAL37nyaLNmIhofpqO7i2qxSKb09wTWMUTXk3EuxHVE8yi2k0eLXkMPyBsuRwuKZX7jc8dQdY3O84N871QJU9RJ1FkcP6b5OHd+hOMPHeDihSFMsSF33KxV+M0vPtIoRT5xhaHJPL/6uUexTIuvf/8sU6WlDuXQbJXRoXGu/zwu8+2nd8j2U60Cn/xEoyyuUizy2ssnMNAafX2iiIBLU1s7GdyFYIzHqzBTD/DdH56iJerj5LWl/ZOubfGVp7vo2rEDs17nv/z1mxSui/lKCpfm5jeURK6OpNnR28zMyAieQJDT/XGgcbKDGZX//LW3sFyBCj5gac32X386xIw/RqC1HaNWpVCpIJUKHNXuXMnYaLZAXvfjrZTYHQtSKJWpGgatK6iIbQRVFCnnMoiSROuuPcTzWfz5OIGbpPanMjnYdRhVEJieGieRKmA1tSMW4xwNa/PKZ2tncwRBILBB1VtFljkYub6tn5rlUGlq9No6wQi3rJO9Cjs7YvyrB5OMZ2s81rdyH/W+9MSm9nkrpWhbjswW9yT1SmVh2GY2PrvO1u8diYrMyROX6e2KcuryHNcf3qvR0xFClCR8AR8dUQ/pu3RqzZHGA9Xj8xJpa6els5OTA6+Tse68I2NUq2TmZtE8XlzHvq0hqfJ8o6E/HCE7F1/myFhGHXVeRUXRPZj12qYdmc0iCMJd/4wttrjO4aMKh4/W2MjyPDdt8LffCVGuiDz1SIpHPnB7jozs9hGMtgFtJJNDEM7d1v5uxHVcxPk+C1GWsSoB4Pb6xkR7N9G2HQAkk1PogdWb3W9GEBol1ACyvLLDJggiP7pQ5tULr1JytYWeGQ+1hflusizR0RpAlCRUSaI95mGq5CzZT9HW+aufJwmKVQ72FZicK1ERVi7dqYt+/vrZC/S0+ekfL26oOsAQNEaGp9ixs5vBwUl+eg1EKcBff+8ULVEvF0byJAsmIa/MhSuzSJrOW1cLCILOpTkR5uosy25YNXRPwyGTZBnFra/qeF1Jq1z7xjksZBCTC9/TdQruUkM8JNf4+LEWbNslUyqDp7G9bTUcLznWQjkxSii4mJV3HIfJbAFFFOiIbLy5v1ypkG3uxBOKUK/XeePU63j2HUUNBMmODrA3tnLmP1soYDkukiwzjooAbBdNQl4vreEgmalhKr2N/hVBkrFtZ9k+dEUmU62gen249RrS9l3oqoYbjZK6do7Wprtb6dLsUekfHcT2+ImU8qDd+TK8Q73NHHqPY3xbjswW9ySSqlItFRf6Eu5ZJJXnLxq456cRxPWNiDPXsjSHRqnULK7N1rnVJv71eOV8ojHos1Yk0tbO2MgUeUNejDTeIYqZDLlEnO69jSjo7TqdruuQjc9imeaKsuW+UJhMfIZKIY+Lu66E8xZb/DJz5ZpMsepHDrfwytkAh49O4lujL2Y9THcS09yPUSsgabk7d6CA6lWZGXsHq34f9VqeYJvB7aYkDHMa1z1ItZxFVItU8zbbQiazeYf6Os/WvO3jG98/RWeLn3PDRVYtUxIVyigLR7q/2eQLn/wgE9cGGE/Ueedamd1NNpPDIxQrJpcmKivuSxAlivh5a8Ra/bPmmS5rTA+b6263sG9Z55svTxN5e4J0VUKUGuc+XtQZLzogBXjlmg3YNBYBY919C5qfN0+NcGRvldGJJEm3GXGNn8tWgxv+NY/sCLJ3f8MBzYxeY1u9QGZ0gGq+gNrajpqcJnRTA/xAroy76xC2YWBODtK7wd4YTVVxKhUIRaiXipidfUTnS+Vr3pUzHVO5Aum2bQiSRGHoKrGD+wCYGR3gugu1r7OdidQUxXyKqFUjHFp+PM3BAObsKBVRYo/kcG6gH7W5DSOdZOcqDtSdxKvrPKiD49QR34XPe6/YcmS2uCe53iRdymaIddx6hP9OojoVRNemJi2vTb25B0W3SziCiCEujeSn6jp/83pu/q+748QAJGs63ztZxHVsXrzwClVHxZHWXxRd12VvzKCjNcCZwQJ5a+33WEadWGcX5XwOXyiMbVm3ddwbyeZsOS9bbNGgs7WGMD9Q0dEi5LOjt+XIRLqK5BN/g6IJ+De4H8dxyE20o8jt2OIA4Y7qqtt27C9QyrxAsFlC9SrYpo0oi7fcCxjpTZGM/w2K7qD7XYz0Y/zWl3YyOT7Dn/14HEFe+/k1ktMYyW3cYQDY1RNFkmV69+zl9f6TyFh85jOPI4oiY0PjVN0727fR4a1x354mRqayXEmunlG3BI3k9bI422RPi0DdtBnNK0v6NG9Gcurs7VDI5OvMVpeWMp5NBjibLAEe7qQI61S8iGWa2LZN2DZoiQRpAQh6AAdWUPEyNR1FaDSz1+f7ZrOlMiOCji1JdNaLdK7QpyLLMn3FApmRPGbNItC9jczsNLKi0FwtgWf5Z5UkDdXXcHLcedEH13VRzaU9Pj3h6+9d/V7pmN+mVqvh72jBF2vGCAQoz42h3uK8nfUoVqqM2SIgsE2yCKxRUZAtlPnDN2fJG/CbR0Ic7F19XtpKvDMU59mBMj1++L3HejclQX2n2HJk3gMK6RS2aaJ6PFuNwGvwXn83N/bO5FNJNI8XWVXJJxMrOlfXe2p6A3W++tlj2KbN139wgbnbmPp8uwiiRJnggkKq67pQL4LmX3FxiyllvvzMY4iiSCw4zLffKawpyywpSmOuhGEwNXCFlt5td/Fs3lsysw0ZUlGS1hyOuRqnz1xjcKrA/u0RDh/acReOcIv3G7v2e3lobJir4y3s3panvff2e+6CN8yosQ2bYrwLSQwheK7hjzWy4/k5FwSXUItIYU6gteNpBEEgE9eBt9fcvz/aeB6mxjQ06TiOm0eLnEUP3NogzXA7gEQ5W8Pjn1cYFAz++8/GsOxJwj0ziJK44d6Zm3Fdhya1Ss0SKLtezg2m6Wjxk86UmMhYCK5EsVAiFA6SL9VW3EdUyPHgDi910+X8jEvO3Nia4LouH3+4i+7t3dx/xObf/8UblIXlxvrNHNsm8cmPPoDruvz1d95hJL960OyDBwI8/ugBTMPgT755krS5stHrOjaOUeX4Th8+r8o710rrZr1WYySv8V/++h1sF0ru8r4ZgG9+Lka6WKJouzRrCq22xdTkKKLjsFNuOL5JB7zbtwOQmRxhtTBYNOAjCgTFEpO5NLplsb1aI7rK/JmIazI2M4ktiLjBMImzJ9ju99BzC/NqcuUKw6jYgko1l8MXawbXvXUhnw0wWKxSDjUhSRIXUrM8toYj8/Jghou1Rq/Qf3ozTnt/kU/3qTw/XGGyCJ/frfPp+1bvW/nbiyXiQoThLBwanuPRPbcXeN5sTw1s0JERBOHjwH+iYQ79n67r/v9W2e6LwLeBY67rntr00bwPKOdzKJpOMNZEemZ6xWniW9x7lPP5BeN1vZ9rW4cfXddBh54WH3Pj6+uxvxu4rssTffDk4w9z6vQgL1ysLlP3sR0ByzBRdQ3DXP+4g7EmKoU8giTRtWff3Tr095x8MkGwqQVZUcjMTuNuciFKJ1L88FQWV1IZisfZua0V7xrzFLbYPL8M61S9avKdf/AylwnyyNE5Hn5s/SX6I5/U+QjXFc02RiFr8rNXGz0aTz1ZJhhZOTJcTPpoaX8KgPScDFwiN+UlGvs0rmOTnf4holqgnE/hDzdjOw2xE6NiUc67BJtEJGW5g1JMyniUxxAFCUHyUSsOowfKGz7+m3Fdl/xMN3ljCM3vRdV0Yu27cd1dJBJfJ3KL85wFp84XH/DR3t6GZTp88+VJxgse/vC5SRAlBEEnpNQ4d2GEcqnCuRkBbuppUZ0yX/7odlp7t1EpFukZGaHiKjx3urCuIyAIAoV556hQKDWUxdb6mW2DfW0i2yIsPKM82tqpFJ+38dsrqoquCCu2LalujS8+0UpLUxDHMoi2ddDddI23+7MM524tA7iSutuN5EplJsJt6OEoV8eGeCDop1FsLHFd5cvn2KQqZWRNR6mWwbu2o9ES8DcyP0isVRHRGvRjzc2R3X0USZapBkPEslNLnvnJbA5ZlogE1nYsEzZ4tzfkpxkegLFBmhyD8Hz2yDBN4sUyIU0l5NtYL+ZUrkhe0gjZdTpDfhKZDOFAgHy1Rs2yqdv2wiyzbK2y5r66QjLimIktymQNkWI9xF+dniDt7QENXhjL8uk1Rsk1eSBeA9mu0RJ4b4K26z4lBUGQgD8APgJMAScFQXjWdd3+m7YLAP8D8M7dONBfFizDwD+vKiFK0qYNoi3eOzKz0wiCSKVYJLrGwnhprMj2jglM0+bqVJn3SiLyZlyjwiPHjqCoGo88cpCXz/0cQwov2Sbv+Pir752hLerh8lSNjZS/3dyQ/8uIKMnYloWsKLju6rLYruty5uw18iWT40e34Z+fL6AoMrLoYAKK6CCvYNxtcev8sqxTQ4MO4/ldIMHJizYPP5Zb8rrrupw+YZEvaRy7v76qA7Ieb72jc2V2JwD6OwN8/OMrBy1ExcCoV1E1D9VSnQAgic3IsgIoiMRwqhHwyCSnJzHcQeplCyv/KK3Nu5ideIXYjqll+3WNDiItjYdoYmIYJVrkdhr48nGB3l0fmc8KzVCrTAM9lHLT6L5bV2ra0SRx8P5DAGTiMzQFFHIZFgJAruvyqYdb2bWnj1qlwqVvnFnmB/hkC2V+toeiqsQ6O+hraiaRfof+6TLpugri6r/js++kuDSaZzZjLCtVvplHdmh89OmjuK7L1EA/nkCIa+M58KyeQX75fIZq7QrJTIWpkspKVWg9MZnd87NgMvEZAKJhH7/yqR7+7V+cQBRFJLdGZ0uIdNEkb91+ZrBUN9BCjUyBperA8l7ZznAQbW4Mw7LpmB/qeCtM5ApkVR9qrcTeSGMuSnM0wtz0OHpPH+7cFL7w4nc/lC1S7d6DXa9TT0+tOUfG45hkqxUkTSdom+wNB7lxXe0vm2i7DpPOpNheShFex5kplEqkWrrQAiGShRyTw9cIHnmQ0ckxpGArvlgT7tkTVPM59GCIQL0MgcXvplKtMRjP0dcSomxYvDRSpcctsM0n8LLV6B1q8ysYdomi4Gd3cO3753fuj/LtszMcbPWy8z1qA9hIRuY4MOS67giAIAjfBJ4BbtZF/F+B/x34F3f0CH/JCDW3kJ6ZRpQkBEG4pbkUWyylnM9hVKtUigW8wRBmvU60vWNBAetOoGrawtDE1aR6r5Ou6/zFz5KAsOF5NO8Ggurl5LkRnnz8MGfODFCXfCsG92YqOjMVl7vZw/OLRiAaJZ9MUCnk11Qwu3RhmB+cLiKIEonsFb76zDEAgpEwX/lgN0MTWfb27UDVt4aT3mF+KdaptlYBnQw1onQ0L1fgunTO4MUzRxAEkXR2mC9/qb7CXtZHV82b/r3yOiSpZXKJOWRFJdK8l1z8PLI+TioeBlwk/xSU9uAPR/CHIySTAWrFHM3NjenjmrYd151c5vi7YpxatQiOgyWdIBy5vXVQUlyMWgXN48My6sjByyRTo6jeGp7grVfQZ0omtUoF3etldjrJaMoGcen+Fs5MFBvqtjc9VDOWnwuXxtmeK5BLxGnf1ujRaPULPPWbj3PqZD/Pna8t+Y52RgyOH2hheCLD2+MqV5MiGxlo7PE01jxBELBckbNXExh6bM0kTsHS+MnlGiCu6MQAzGRN4jNJmprDnD43yo7eAp3besnlSkR0l9/43CE8Xo1SJo3qC/En3zlPyWk8Jz1CjeO7A+SLdc5OuRueadYRCZEdvIzpDRAupplQVMKqRLVWI+jz4ZlXr2wKBnAch7PpIkYghK+Y5WBsc8G1IVNC9+nYkWZmZ4bpiEVQFYWDmGSunaMpvLRypqLqKJqGIEmMjlYQXZeWFfpzALrDIbTZEQzboXOF0jTTG0AD9GgThfTMuo6MKAi4TsO5qBZL1ENR3MQc6F4cy0IQBLzNLfRmZ6jMjS9x8BzH4X97aYIhK0aXOMPOgMO5ShTkEDu8Jf7lToV4qcKTu3ZSqhrEc2UO9vateTx/ejLNgNnO+ZEy+7vztG/yu78TbOQO7wQmb/h7Cnjoxg0EQbgf6HZd94eCIKy6QAiC8N8A/w1wzzRwvxe8n8/9TlLIpCnlsviCISJt7Rj1GuGWVgRBIBufXTIr5HaJtLWTm4ujeb2rZiBWm0ezGhuZU3MnEQSBn181ef3iK5iyD+E2Z8qs1Tvzy0iouWXdbaqGtbBQ141GlNtxHFKzcbZta2PHzjs9kmyLee7KOhXtCN/5I12DWKvKb31pnFRijL6dCgvNbfMYlrDQ22aat278P/aEi6ZdAODB46ubuZpXwS0ZRFu3kU8lMfMH8W0bRImen99CoOReIxUXcajibcogijA3+Ra6dzt18zL+FbKXoXaDUubbCAI0bbs9yWiAQJNAdur7mLNNyL5Zou0KjRqpxe9vvZk0AEbVppruxHVt/ujZMBnDwx///Vl8msh0SUEQlwZ3BEHgubfiHJytMD5XoiouL5cSRIlXxiUqdpEH9vbS3N2DIAiNOTLAjm0tcGYE5Mbz2HVdPvRAJx29XezcvY3+P3+NIuv3xQC8eaWI616mXDV5Z7iGIGu3VPEhu3Ue2+NHkgRe7y9SwcN//cEgMiaGHOTsdIa9IzkUEfZ0+wjNyyELgog/6MenwvV2oScPhnn4eKPsOPv3bzFe3Jgj87vPxnniQAgzUcSvqzzw4EHOX7pM377DTKcT7KzkCXq9VGs1xqbjaMeeQBcEyh4ftXKyUd69Co7jMJQrYcsqWrVAuHsPnkCAxPgo25RFs1hVFNpukEjOl8sUa3WCgsjk+CjlYoHeIw8yWyljx8dWHIoJ0HKDolmxXKFUq9EWjSAIApFSlsyMi1IpsiOwcrmd67pMZXJ4FJmmYIDW9Az5TAK9UiJy4H4AUuOjqPUKZduk3awQCQW4eUpOqVxmsOJFUGHSDrHXmsJ1G1vFdLivr5WhmQyvDaU53hPmyCqzYW5kugIoUBa8zOUq96wjsyZC46n674HfXm9b13X/FPhTgG2HjtzZyTxbbJhqqUitXEZW1Pd06OXtYhl1vP4AgXkpRY/Pj2UaVAoFPKtMhb9VJFm+o47Re4UgSlha6E7NYbstXNclOTmBoqpYpklz9+YHYd1r3Hekj1T2MoWqzQeO7cB1Xb753be4ltXo8o/wW184tlBmssW7x62uU72Hu971dSrapBFtWvm1++6XyeUuUyhrPHqsxHpzq+pVE6NqEogujfLKisTDj61/LLIqIwXfYeqaQbS9h84dj5BIDc832DfwR4Ho1fm/GkZqpG8E2xzEs0YJpT+68rHXijb13B4EFKTAFayyH8HtxJXGCLWvnoGKdLlAktsxa6qpTprbngbgYPtJcuUariswVdYQVtEeztse3hg2WSuD7boODx7sQFUkHNtGkmWymTzlusPJS7MI8mJQSRAEphMFOnohPpOg4igbrrqrofHzq0ZjP/LGnzOiWUbAxVYaJVJHejQ++MRBACq1C7w9auPIHoz5rFDFUTm6v42e7V2MDwwwNzGBqqkkJic43z9JvKItZHcMo1ES5jgOhrXxUQoP7PDx6MP7sEyTYrbRexVtiiBKEp6WdjLDaRy3wogWRDn6MImr/XTsOwCZJFpw7XMfzxWxdh5EEAQmz5+mZb7PRRMFov6VnZFsqcxYoBmtO4Y51E/YNpCaGsEt1euj6kK8UCIhaaj1KnsigWVOZK5cYdQbRetuJjV4iUOxEDujQcABbfWeof5sCWHXYdLlElZinI5QkA4ggcVMIY/iDxCuFjjUPO+66I1zmJhNEg54Cfob+w74/Xy4dY434lXui8Fvf/AgO67GcYEP7u8mns7z/32rTFXy8tzFAfZ0RNnfrPD0gdWD71/Z6+HHozl2BV0Ob187e3O32MgdPw103/B31/z/XScAHARenv/R2oBnBUH47L3WSLlFg3I+T1NnF9VScUE29xcRx3aItLYzOzyErKrUq2Xy6RTNXT3ovrUbCd9tSrksZq1GINZ0R0ve3itEo4gjyKDceolULjG3EJ2slkpUS0U8qywi9wKzM0mee2UQSYTPfmgPTS3Lh5kpqsonP7qYkapXKlxLOAiaxHTFR3wmQff27mXv2+K2eV+sU6Ik8vRHoDEHZG0nJj5d5+9+0EnV8vH0g8Mce/jWDHxPUKTimcPjP0AmcQVvxGYjpsNKTf4boZ5vo7mtkUwbv5aifdsTqKqHQqYTs/4Cirb687MQVxGcVlBmCDTfnshKk9fhC59+GIC//Yd3GMzcWgBCsmtogsmFgThPf+g++k+fIxoL0dbdwY9eHqA/peK6Ln5K1BwZW/Lwo3MFzg2+SboqoIiwLWwynbOp3YV+y2a9xj/64mFkSeIbP7zIdEHEL7ukZ6fxh6OUKiuUHroOqtr4fXWvh+aOzoV5b+mxHIK4KMH96pUS6eIZ8sU6MxXPumI518mXGk6rJMucPjdMX1+V+FSc+/1BrFyaLlUhVTfx9DTk+EMBP/5r59nu9y5xIEqVKgnTxic0mvivYxkGpWwjg2gN9WPpXrqMMnhXXoMKlo0+H2EwvQE0s44oy2TiM7iFHA/4FC67Kr6ubTiuy+TQRXqi4SX7yBkWek/D+TH8YRq1iOtjenxogoDmD1CaW/wtWoJ+lMw0lbhJR9PSz/q7d8b43rSXsJDiXz9h0dXUKI/7Jx/YyT+e781O5YsossSBzhCiKJIqVqmIHnAd5iydVC7Am2mDeukqx/Z00hxe/t185FAXHzm0odO4a2zkyXYS2CUIwnYaC8NXgV+7/qLrunlgIX4kCMLLwD9fb3GYTVXuSGnNL2sZy93CdV1EqXEjaF4f+WQC3y9Qr/ZCFF/TsEyD7Nwstm3R0dOoyc7GZ+89JyabQVIU/G3tpKYmaepq2Fv3einaauwIG3zpk8fIZgr8zYsjlJ1bW1x9oRCFVJJQcwvlfI5o+709H+ats5PMVBqO24mLU3zy6fWnMqseD3taRQYyNt2+Gm0dtyYBu8W63JV16heZ4RGNCi0gw9XREMcevnVVsMi2GZKJP8cXk1H0lc2GxLCM4h5BlGUEzxmCrSvIX62CUTVxHdB8Cg5FHNtGEEUQKlhGGVX1YJllFGn11EQpU8fv+Qy6N0g+PYVZfwlF25zz5mmaJjn3U1zXYu9+fcEg/sijFb7UNQzAv/nj/fjEKp96qBVFEnj+nTmyq8gpa9T4zU/20d7Zwg9/dJJ/88evsKPDw1cebESuezpC9Keq3N9h85lPPEEykeYvn7tGVfQwUwXXMvidj3bSu71rw7NxNktfm5/Q/KyTnV0BgpkKH3zqOABvvnqGi7Pust4ZQVL43stj7N+WYXomxac+HCQQClKvVRmdznOjk+26LppT48E9Mbxjea6k1g7kuW7DIbo4C8VvvY1lOUyVdV4fmUZwXV7oP4ugeBBECcWt8WVnjK6uFvyVIt2xm4upYMCW8PbtoVAooKQniQYD9IYDvDk8QGz/YWo+H5WxQQKiQJNnaXDAtCyGizVcSaLZtUmODmLpXpoqBVp1mYlSFtGy2BHUUBUFsdS45i2jjrKCx9asq/SPDeEGQoTLedA2VjkSq5eYnZ5AMg12K0t/jEjAv6yEDOBMwgZRIoef/tkSXU2Lhp4gCJQqVf6Xn6dIEqTz6jT/9jN9HOht5ZPTo1zJOMzJUAUcx+YvhlWenU7zvz7Fis7Me826d7nrupYgCP898AKNvPGfu657WRCE/w9wynXdZ+/2QW5x5xCERo11Nj6LbVnEOn+xavbzycRCFL9SLCCKErrPTymbwR+JYpkbXzzfLcx6HX+kUcInvcvDolzb4oEeiVjYw9tXcxTt+UXQNnlsl0os4uW1C+lVF+KV2Lc9iu7x0N7poTs2ydXkBo7DdSnnsngCwYXvQNU9uI5LNj5LMBa754UvokEFd9YE1yG2QZlJQRD4yucfIZtIEm6Kveu///uFrXVqOX3bDU5cTlOzfezuzbORuGUqYfDjl8I4Dnzi6RzNbQ3DThRFwm2rX/PVfA2VD9Ey3xicmMkC1zZ0nKWUhGx/CFFSKJReJtxZJR3/Fq4j07qnSjn7IuVEDNmXRJI3luVxb7EgUPVIqF1zAFQLLsn4CcBFDU1zY1ZiX5efffOT6Y8kq7w8YKy4vyYfdHQ1RIN397VwejbLcLLGuXPX8HsUTg1kAZ0dPVEEQaCltYmW0Ajj+cb7BbtOa2tj7WhpjSI5Qzh3OCtzbbrE4ckZZFniyliBpuCio1GyZQRx5cxWoqaTuGoAQf7w25fxCRWqrkZNXGroPnXAw8E9HYSamtm73+Tf/fkb1OWVo6chucbnHutAEAWefWOa8cJ8Q79e46sf3YMsiXzzxwPM1RrXgSno/PXLCQRzgm9+dduSfdXrdRRFwVYa17AaCFCOW0RpXM+e+V5XPRCk2tyB0NbO2HA/ezWNbKlM3nIo1etI+xs9KPHRazwY1HBdC2F+YOeBm45/p2gyO3KFWjJJIhQmX6jQq4oLwgQ+j86DrotlFlBWGPq5Gt3hYCPdrKusl4m9zqOdChODZZpUgyOdy/s7U7kCCdePIMC0oVOuVAgGAvzWY417+Op0mjfHy/x8IIUZ6SUHTKbLyxyZbL5AwOd9TwZhXmdDn+y67vPA8zf93/9rlW0/ePuHtcXdZD3VrXsZTyBIMZOen19SINregSiKVEtFsvHZe1JIwRcOk5qabBix77LUdm/I4jMfbyhnaeoAz51taMr3Rhw+/KGjAAgM8f3TyxWSVuPySJo9O9vIZgtMpJZOOl6N5OQEkdZWcok5/JEomqfxHs3rXVMF7F7iA48fJBYeRpZE9u3feC2wKIrE2lrv4pFtAVvr1M20d6n80380Qa1iE23d2D128oyXyfw2AN45dY1Pf9ra0PtEWcJ2TOqVCoquYxizGz5Op95KsKWRja0nOxGEUULtNmADIoEmF0ix0gCVQlxDMO/DcYqokYuUKi9QLjdKy7ybzMbcjCco4AkOXj/DJa9NJStUymVkSWZ8tshq/TGzBYGzp6/Q0R7mZP8coGIKOt8/fT071jBwT11JEgnqJNNFpnPO4qlqAb77wkUO7ohxeTiNo64eDRftOh1Bl1SZTZWgZU2dP31+Ctd1EBWd5JzJ954/g6aInBmrg7i+4WyIXgy8K864iYa92GbD0ctn85hrGOJ7u31s29kLwP7JPMPTBRwHetv9C6W8u7v9zA0uBiwFSYGbhGuuZQqkAzGqqQxqrULFtlDrFTojiw5Ua73E3PQ45WKJ8PaGUyq6UKlWGfGE8ba0k7jaz82dsWuJJwS9XsbTBYzuHQQ6OnGB0ZEr7NeXvl/ZYHl5sVSmWjdpuQVp6Wfu7+Gp3SU8ur6ik9Hb3sLHmoY5k4LHeySCN83D2dsZY29njFQmx4lMCsE2MK2lPdXfOTnGt8YUmuUk//qDLbRG3ptszVZ4cA3KhRKJRJru3qVSvpZpcvb8CJoqcejQjq05MO8imseDY9tk5+IEootRfI8/cM/2V6i6Z6Gc7N2majiYhoGiqlSqi0ZJoepQq1bRPR4yhbUHZt3MaF7j3/3NeRAVBHljPTKKqqJoOrGOTrLx2QVH5hcJQRA4dGjne30YW2yxQL1q4jouuk/l/BmDfFHh/vss/PNRdW9AI5U0eOk7OtFghQ89zZLMZ3K2Tq3qoHtESkWHSEBeKO2JBGps1ETQfApG5DRzs0O45Gjbs4IO8SoIyhyVUhpRVHCE6RW3MWsW1aJBsHmpQybaO4m2NYzQ6fEpFG+ZQNMYknp35zTFqxr/5W/PIgpQZvVSZkfS+P7ZKpwpI6zhEIwVNP70xXhDkU5Y6hQNZlQGM0VABdvgcJeMZblcjrtLBhp/6oEQhw/vZHJkhNMDGS7HpQUD33VsZKOApQYRRImAWGVbq854ok7B1hFk5QYZaYULswDuhpyY9fj52RTHdnjpH5jh7ZE6jrz69zUer1AulpEkAaOU55/86mO4rsv3vv8a2VQGSZYYnCqx3miAojeA4zq075vPmYxcYd9NGZCucIAuoCaojE+PIjgu2wM6+WIRtWU7AKH2TszLZ1C8XrYrG6sYqPuCdyReORLP8m/ezFNyVH5zd5FPHF7fhnDnU5HXbdKAf/X5NoIg8LtP7OR35/+eSOZ5eTjHjrDKY3vbF/ZXMW1EzYuoNTGQLS+Rgnxr1gYlQBKdSzPFLUfmVtls38BG+xJKhRJ//r0LZC0Pu8LT/NoXH1147aevXOKd8UYtZ90Y4NiDezd1DFvcHh6/H88aN+gvK7fSU5M0vPzlt08RDqpcnbFAaiwAWdPDn37rLGGfxGhaWBbRWg9BXX0xWumePNZl8/GWVvLJxPtigOYWW9xpcmmDoSGJ7i6b1k6V0SGT777QhYPE0d4hTk4cRRBl5pKD/MqXFiPWL74aI1nrxk24NEfPcPiBRhBh+JrBd366GwsNtzCLEOrkoR2Xeeax87gOHDiyOSM20OQSaMrN/7VxSy7QYlPJP4vruITalxuotaKNVXiUULiH9PhLRHuzC68Z1jSOc5haOYci7qeluY+5mZeJ9K7sEN0JNiLjfCP/5o/3g7CyY6VT5/A2L8lMhZH80u/bdWwe2yHR3R7ijQsJpkoaD25T+dS8mIj77EmuzJf1uq5De0uQQirB9j172L4H1BfOcHZqXs55t8wTT3yQU6ev8sMTKX71c3to72wlEU/xh/9wDeE2RFvWI1nXeb7foWFurmxydvlqdDT5uDTh8p//9iwCLsf2ROZL4QU8gTC//60rgIOrrrz2f/Uf0gv/PtJm8fjRxVyKu8b1OFuuIUgyHZqEIss0RSIkxwao+kL4y3n2tK0iIbgK4UqBOS3A7JVLNIkuLa5FpmATDW5OSfX8TImiGAARTs7k+cThpa/H0zks26ZrPlPVP5nkP7+dA+D/+lCYAz2rD0FdiX/74hBzUhOyAk3+FHu6mvjam6NcoQvXLqKXZjjetbSP9cFWkakpi4hYZX/be6eA+wvvyNwulWIJVdeWKUnNxVNk56fTjibquPMqDwD5sg1ICIJIvnTv9WRsscWNzFQbjaNISxfTrOkhm+PmURV3hROTIo+mkvjDYRTt3hkSusUWvwi4rsvf/J2fTDmMLtf4p7+dZGDYhyE1jJiJuRDC/KDGav36DJUGltH4t2tUeP01Ca/fYOcelalZDVtsDMW1JQ+yIDKTCvLUR0pMj1Yo5SEQXl+py6xbnDopIooOxx4SF8RkNoM31DDijYpFJbEXWWrCks6hB/IU5jx09TbEXFRpB3AKs2ZRSXYjigozU1/DtnR6+74KgCw1s1Sw7u5ycxR8Mzx9JMyDD+7FsW3+6BtvkTIWA0TNWo2PPPU4AIok8valOba3BSlk0gSjMWR58XsWBJGXTkzx0B4/0fZGebWmSIADRoXjDxxFFEWOH9vPT9/8IQF/I7Pl83sQXXuD2lmbw7UMBKu+IAW8GgGxwm987kFUXaPrwiDfPVkC4PRwkaBvAMu2OTdWwVU3XoJ8blZiaOwCD+6Z5IFWlYPRlY9hIpun0rcfUZIYGhvk6Pz/75ufhWLKPqZSGcJeD37vys6eYZpMlqrIrkNvNMzOaJDtto3kCzKdKxBv3oGoyBRmRtgWXtuZyRbK/IfXZpgtWjwWqxBwYpRsheN9S+3TMyMJ/uM5A9OV+Md7p3n6QCevjlXIKQ1n4vWJEgc2Mc3g70+MkfR0I5h1zGqJutn4vi6mXQRBRPKG+LU+hb1dSwVuvvrQdh7fliLsb8G/ziDPu8n72pE5eWqAH51K4ldc/tEn99Havuh5d/e0s80/xUTa5IFdS6e6fuD4NmqvD6EpIg/dd/ulJv2XR0jla9x/sAd/8O5lGmzLIhufRZJlBFEk3LK5un3LNCmkk0iSvKHhgFvcOVzXJTU1ueBwB6IxRFm+5xvkryMIAuH5jIxtZ3AdF28w9L7MrF1naHCSkek8+3c00dX9i9u3tsXd5dxpi9dPhshkJZRYE/VaianRSfp6BC6NFLFdiQePlphN9FMo6zz+UIEbG4J39uR562IKp14l33SUb71U5ytCPwf2CFwZnKBckfEpRWzb4uiBLC/8SOHM+AP4pCy//rlJYi2L+yrmTX7yMw+WLfHUk0WaWlReeVXm5HBDjc+yLvHYk7d+rtV8kJbORvHK1HAWj9KJ3yeQmh0iFOvGsBvKYZV0E81tTwGQnBPxdAwxN/0mshTDka80jjUpgrEN250j3HXrim1rUc6CXXwAUVBxtVMEWjbWU3Qd8fpsGkFAvClrUDJEMqkM0aYo6VSOX33mQWrlEum5OQYGJrgwXl2SGR/OqYy8VeJY/BySJHBqpAaCCqqXt05e48nHD3Hq9DUMTwt//8Jl9m+PcGUsu2KGo1mv8bFjbRRyBURVw7Thp+dy1G8o6doeMtjRHWJwJIGk6kxmHUKaQ8AjMp0x+eqHt9HeHuN7PzpH0RDIVlxqK/RTiiwqqUo3rGdVV+f58/Nlz8Ly4JfrurhWHVFZOTD20cd3cPjIHmrZNGYxAcBsvkjWdPAaVbZ1tGG7IM4H+IqWsxCwzpfKVA2DWUFB33OURDLOrkqOwAr9nENlA2HnQaqWxdhoP9uiYaTr+xQVtPlMTGkDZdjvjOe4WvbgmBV+lO/go7EcnzsaIRZZWsVwKVHDmB+++tOrU/zoaoZK1cChhuQJsje2uQqLqxkHQZQQNC+HfXkOb28EDj7Uo/LNq1miQplvX3T5qwtFntmh8OVHGq8Xy1VeGsji9VR45mg76ns0WuJ97chcGsnhKj6KwMBoYokjo+oav/WVx3Fse+FCv05bexO/9SubSzeuxtDgBN96IwWSwsTsJX79iw/fkf3ejOM4pKYnaJ1XlcnGN96MeZ3cXJymrm7Meo1cYm7TjtAWt04uMUesswtRFMnMzlDK53BsC93r+4Uq1XJsm2hbIz2dnYu/bx2ZTDLN3708hSXqXBga4H/8neZlz5kt3r9k0wZvvePFo5tcvhamSA/IDWNM1HxImsrufSqfsy8iStC3L8wRAGrcrGr08KMi6UKO0QlPI/IuamSzMDCooCgCTz2a5L4HFSADqLxxKoggiFScGJOT08RuiFmdPKUwMLcbAPXtQT73WZO6sWhGVOsSG52NsRKyXqZcTGJUbCr5PJ19DyAIAvHJN8hXfk60t2FIuq65WCXhGqgeGXXbKDA6/7qLW72Ppva9mKZBLvFNQi135v7KTfmQhZ0Y1gSSrNLc3phan04kgeF13+86NoLYOJaXzmXIFC6RyJSYqy+dsVITPPzZs1eJegWyhRqHj9apVcp079pN9y64OvsOI9mb9i2qnBh3cW0TbAtBVREEgVeHHV7rfxNX9SFIMpNFmckLFVbrNXlgT5Qdu7eTjc8uDIJOZM8zNFMm5leYSuT5yqcfR9N19m+PEIhEuXT2IvsPH0DVNd5+4yzbdzR6Oh7aHyHW3ETdgj97bhBDWGrQ5x0f33z2NB0tfs4PF2EFoQLXMlHdCobkRxAlXMfmQ7tl7ju8l7dPD/PmmHhTRsylOdpYW9RQhHJyEtt2mGvuQQsEmJiaxEzn6A14ePXaVbzBEFqsmZnEOKqmMRVuQ/EFqCbi6ICnuY3cYJLACkkHS1FRaCiSmuLSaywi2EwmZkFSaLNqwNqGfl9UR6zOIoYa3/mZrMzvRZav78e7fbw2maVaKTPqjYHiwSZLi1LnXzymsq1taeZkKpGlVDPY27OyzfbUdg/j59OEVfi9RxqpnHK1Rl9E5U+eaeLPXh3ijWpj3f6HoThffgTqhsH/9A8DZMUwTr2IKMAXH3xvhlq/7xyZG+v3rUIOyRfBMev89EyBl869jlOvAAKCrCB5VzcQ79T8mmK5ttCfUK6tP8DLdV36L4+gKBK792zb0GdUSyUqhTzeYJj42Aht2/qw7Y0PC7Mti+xcfOE9iqbjOJkNv3+L20fzeKiViniDIYxalbZ5lZXsXHxVR+Zem1Pzv/zZWQ63mnzuU22Ui2W+/sIIWXP2fTML6rU3LnHqWpbeZo1HjnZju41Fz7BcHMfZcmS2WOCll/0MJhvZ/ohzGUSQMQgySXdHiV17NU68afHSuQeRBYPPS8Ps3L2ykeQPKnzlywbD10q8ftIm7K/i95i8MHEUQRB45YTCfQ8uPs8P7cny2mkfUX+BHTuWTmL36taCA+HTGyVrjz1cwTCHEEWHRx4yuNFYi08bnDzjIxqq8egTNxuby1F0m/iVS/TseYxQ84eYGeon2tGF5EksafQPdhRJznwfAQ1PU5Ib62NLaQG3/CCurVHIpNG8OhtNXJs1k3rFwh9dOXpu1i105RGC0VYcex/jI39DwF9AklVs4iu+57/7wmUcWyTQbJEb78Hj2UW1epk/ebGJCjpvDJuAtmKDeMX1UCkDks5f/cMFHtrtI9rWgeM41Oorr+E6NX7lqQ4iIS8nTw+RrStcmXNADy7rFHHrZZAUBHmp8zs+nefY/Q6VcoWQ4+A6DoVsjt/7/IP4Aj5ee/kk1WodTddxHRtRFIkEPah6wzFSNI3xsWnCQR2v14M/HMGYnSGg2qRXqMYfzmkM50xWcmKwTZ55KMzRI8d47fUL/GzARrWKPPnkBxEEgScf2ccb184gaItBMUEQefHtSR7I1xgcS3M+LhMUMvzffrvRzyxKIgXNg6IohDUBX1s7tUyKoMdDwnbRw40SrXouS14UUcpF+vwrXxMdTp2piWFE26ZXX3oPtgb8RIwyjumgb2D+yo62MF/um+b56QRFNcbx1pXXhL2dMf7o8yFmk1n+5Rt1HAABIh5pmRNzbizJ/3HawBQUvpIc5/MP9C5plQB4fE87j+1uW/i/crXG//zTGabsEIe0SQ7HdF7LVxFVD36x8QMOzmQp+LqRANc2saylz4p3k/edI3MjcrAFu5xDkFVE3Y9VTCEHGw1SVjH1rhzD4YN9TMfPkylZPH5/77rbv/zqRV4ZtMCx+WzZ4P77d6/7nlq5tCBLbFSrC3M7Nko+laCps4tCJk1iYhxJlglE37vGrvcj3mCIUjbD7OgwlmFgmSb1aoV6tbr+m+8hzsdlJv/qdeq2SIV7S3bZMk1efuMK1brNE8e2E75pKvPt4DgOr55PYmlhLsRdjlbrfOxokNHZEgd39Czr0dvi/c31iiPXdTl62MDvP0dzs0tr5/UIusjYjBdEFQuVySmNnbsdMsk6+azDtl36Mqdhx26VHbsb/QepuIJKEZMgIf/SZ8hjj0scPzaJrEoIwlID96FHJVT1AqYl8sADABLhmMrnP3d9jsrS6/jHP4swW+7FnXKIhM+z//DaPTeVbIho814UtfG5ii9LXXhnmQiAKIrz5WJlbm7yc+tdxNr3ADAzdhrDHSHYttwgLKbqVHIaPu04tpMF7TKK8yS+QBvZqZ8R6Sose4+kiFTqSaCVcnGOWLdDxfweTt0l3Ln8Hi7EVYKBTyPLGpMDP6Bn1wcQBAGtHALjHGgbH94cr2o8e7bMYPw0pXKd6bK+ovPTHVPo29lLZnaaj378EQC+9/zpeSWyRbYF63zhI4fI5Yp882eTVNxFJ6I/KfOf/vJ1DFskoMdxXAdZkvEFGsfb3Brj68/109OsQ71EX1+V05dT9CQuEPJrvH45T7aWp00t889+58MAmA6k6p5lwzVvxHVdfBQxHBlLaqwPmlvhvqPHycZn2d3l52fnpzFUH+fPD3L06G7OXhhFWKF/ZqygkT2d4AOHm4iGarzcr/D9597m+IHWhjKf18sbiSx9so0xdIk2RSLg92GVygxNjuFqHjTbQHQdVMdCnRdEcF2Xi+kC9UAYfznHvmhoftLuys9wVd24aMYfvzrKa/lOdCHD/7S3yLF9q8v8jyQK/MmpPBHXwG8maItp/NpDyzMiA8kqpjRfhjZY5If9Z6mLKr92KLhECe3G58VUIseU3QiQXs7L/Iunu3AZYzST5Tc+1Dim7a0h2pgkTpRWscRnjr53w57f144MgOQL3/CXgGuZjaZoZ+MZi9v6fFnm0x9/YMPbJwsGgiCBJJPM1Tb0Hs3joZTN4A2GcGx707NWBAQc2yYYjWHVawvNhFu8u/gjUVSPh1q5TDmfo1osEuvoWP+N9xCCIJC1781yspNnBnljuHHfl2uDfPWZY3ds36Io0hqSma6BT6zR1Byhb1doiZTlFltc58MfKuM7cRWvbnL8EWXFBvqDewpMzCbQFIu9u2vMTrl847nt1N0Q9w3284lPrb7/pjaNX/3UCLOzEnv22NxcjqasMoNFEATuP7a2022ZNj/5iUy26MG4njVwXTaiASDJFXAhMzuNaRRRouN4Q+sLDtyIIyQw6mVAQPaNEWxbPqwyN+UjHPkCmlvBdQSi0V2MD6Xo3dnIdCuF7cD5Ze8TRREtcoZkagjZU8IXWPwuikkJ1+gEaY5gW71x2nYIVW0YwJ5AK5nEZWKtBylk+0HdvFKYK2r0zwF4VnRiAKYzBvGZJJK9GCHXVpAOPtAXIxAOEQiH6G2e40pi8TVBECi4AfxyjWP7IpSrJq/2F/nhi2foaA7wVn+KjKGTmQbX9ZI3Evj9Xl6/WsWVbEBHkCFliVy5PMyuXd2cvDS3IEixGodaLT7/ycfJpHP81fPXKNk6NcHHW6+8zfHHHkSSZR7dX+StUZfvn8jx47d+jutYIAdAXn6dPHogyn33Nfo5ZtKnuJDSaE3WefSRhixzVpIoVgvsCS7+FhG/jwcch1w+zsTO/WheL47TSWLoAq2xKHPpDPLuoyiCQCUfoFKcw3sb4wTi6RyVukVfRxNDhcaPWtOiVIX6mhnMF64VmHYioMDx1jK/9cjKZV2PbQ/x9lSCZMUi4epIgXasQpKfjhnLlNCu09cR48iVUS7mZI74CpwfT/OZY7uWHI/Po/O/fayb6VSe7e2H7v2BmO8X5EAMu5zFdWyk4NrN7HdL9nk1HMehnM/z8OFOMq+NoMoCDx7amOyzNxiiVi5TSKduaZ5JpK2dTHwGAF8osun334s4tk0+mcATCKL7Nh4Ve69RdU8jG1OpEGxq2pQCWD6VRNE0vIGVlVPutVK022F2JsHEdJa9O9sIrVBjvBICwkLK/W6MhvrVZ+5nZHSWjrZeguFfnL6mLd59ghGFj33MYS1Jwf2HVPbsm0MQBURR5fQJG4MwggBDEwFOvJ3jyBHQPDITIwY//nkMRbF55pN5ok0KnT0qHd0uF8/aVKoO993voHlu3yS4dN7m9JVuXNuiyZvkvl3XiAWr7D6wfmQ60OJSSL6EY+oE2yq3NA8m1F6nmPoWrisQ7lj5fCS6UFUPquohPjqCbVdQfWny6TE8gVZMZ3TV/esBCT3QcJSuYxkWkvUk4ZZuatUipcy38UdVVH+cVPwsoCJ7R9H8Bon0afztAv+P/3bj51ZKw8uv72N0rk7JWfuZX3E9/Omzg8hOhQf3ZhBEgTNjxsJMGL9UY2ebzvhEnEMHusnlSkymDFYq63pkX3hhvEQid4pTkwJMlpZsuy1o8BtfehhBEHjhpbNcHClQc1VsSccWVf7ujTTiy1O4+vrywzt6ooiShNejcF+3zOXpKhk8jGRcHpk3lIMBHaiCpHBsV5inPniUgatj/P1rc7jSUmcmk2uIBRi1OrlSY3jz0HSJB2pVbNPEAf7rOxmmyovn883PNebTBQMBrNQcWs926nOzhOZVuYI+LzPJOJ6WdpxcmrprkUtnaY+GN61cd3kiyf9+skYdhW77LLprYtUtZKdOV2BtAZieoMjrGRvBdegNrX4tdTWF+A+fD/H3J8b57kwjiOi6LntCK/eymabJK1fneHpHgA/j8h8v6Jy5pPDp5Bi/8ej2Jdt6PTq7ut97FdItR+YmJN+7Z6i7rsvAlcYDc8++7aveBPVaja9/9ySTBZn7uiX+2a8/tunP0n2+2zLYrzdo/7KQmp6kubuXYiaN67q/UE3n3kBwVWdkNVLTU0Ra26hXKxQzmU2VBuYScwiCsCmluh1hg44WH1eGU+zvayJfqnFumoUm19VwbJvU9BSKqmJb1i053rl0lq/9aIgaHk71n+f/8ptPbGiBOf7gbmpGP+WazePH9mz6c9fD5/dtDdTc4o4iyYv30+49Dhf6R0hkPWTrKi+dO8xc8hqf+YzFy2/4SJvdYMJPf3qZLzeUirlwxuSH7xxCECWSmQE+85nVKxHSCYO3TvoIeus8/gFWVUwsF0wQBBCgVLT5+MdcViu7KWdd7GoTop7GP/9ICjYLQJ0bnbh62SY9GkGQHJr7csirZIyuE2ha+fMqeQPHdrHFccqF7RiVMprPC0IdTwgk9RWKZZNI9+Yi7A3RgXnD0F00ED0hCU/oxrkzMuFNChTWinVU95N84ZNtzEzF+ZPnRhEVHddslASuNAPGVTyYeHhrdD4rM+/EuI7NFz/Uyba+HnLZPP/H//kKphyAVebI5AqNqg/bsqjk82D5lmU+dFVeeL62+uGj//hJZqcTfO2FUepoCJKCu8E5ZWcGUrREPNj1Kk89fYzjhRJ/8K3zDCVlfvKzcwT9Om9czgI6ruuyb0crgiCwd992Am9PUbVdjvZ6yBZrDGZU3h6xiP/929RqVXo7owRzVQazKv/uL08QUQ0syUvJFPns/V58XoWrQ7OcMFqQywUO+lX6rArDZ9+hSVPQWxsFZF6Ph12VPNmhNAHbZKy1Fy0UITvUz4FVZJ5Xoz9Rw5C8CMBYxYvqmsjBxueM5mrs6Fr9vc/c30NPOI4qSxzoWf+i+szhNup2nFzF4IFdHh7et3IG5+vvTPFiKgiOzTFPHFvqRADGi5s6tXeVLUfmPeTtE1d44UIjYvCxQo1HHl65xnB6ao7pqh9RgUtjOT7rOL8wsrv3KoqqIQgCwVjTPaGeZRp1ipk0AsKCSsydRJJlJFnGGwiSnVu5KXUlMrPThJpbcV2XTHxmQw5tWCrxa597FFGS2Nk+TM98uUbu799mvLi2I5NPJWnu7kEQBHKJuUYT/Cav9Xy+RNVtNM/mKo1GVWEDjfSiJPHBJw5t6rO22OJeIRBS+J3frvHW6yVevtSoGSmUVcDCrBmNeSeORaEgUCmafOdZP7PJMLaZRQ40Ua4qwOqOzE9eDjKa6cN1XQL+C9x3bOX7UvfruGYNOdSKWdeZmx68obdnEbNmItQ+RFNzL6V8nFrxR+iBlbM2mZEeOvsewTYtEsMv0bZ/81ZVMSnhkT+DKOsUhRew1e9jFo7Q0tUo7U6lQnhDRdRbyEpJioStvEEqMTZfWrZ4HvmEhSSBPzY/56fgYJZjCHKOQPP6Cm+W6eLTGgZyMOBFcG2atBpf/cweBOBvX7xGqr7BqLjj4NUbx6brasOBWUMW+MSYReV7r7OzReHzHz9MPFXm716LE/U4PLgnytRsgUuzLj988Sw+j0JncxBBEOjoaqXJN8r0JlWvJ4saf/rCLL/xgUYPr9fvRRUcapLKm6MuUOV6NkgQBE5fniEUDtB/dZKCqfHRI34eeWg/ruvyX7/5FrMVD+NF+NjBIA8/tB/Hcfivf/sW8VqQpAtYcLDd5b77G4GrsF8l0N4JdHLu/AkcWSF030MUyiXis6OUHBdXkOgN6PR4vYzkCgvCADXv5m2I4z0BXhyaIWvKgEBMh6RVo1mqcahzeeDw6sQcQa9GR1MYgPv6Nu4Ve3SN33hk/T7sZHX+mhQlmoNeduWyFAyXT+66d6sIthyZ95Bkrr4QoU7k6qtu197eRIs2xVzNw64OfcuJuQPYlkU+lcSs1Qg1b24C7t2gkEoR6+jEse0lkpd3DNelkE5hGXV038YfuIIgIs2n9IUNTut2XQHLslElCdtuPBQdx8Gw1u878/gDFLMZgtEYZr1+S9d6z/YuHt6WYnSuyv2H2rbUwLb4pcAybc6fcZAll8MPKKtmGe+73yWevEapqvLkw3lA4YnHDb79g2kcQeX+D1lcuSIwVdwBOuhMoxtXSGUD/OynFZ768Mr3nCAsGt2iuLIB/trLNleGfIhC414XND/pNLSu0FZpGQ6qHgZA1YMUa86qsxM1TwxF1VBUDUmOAEVKKRHHiCHqyYVszlq4ZgvecCPanZ3rxRO6jKtMUa/tpVqcQ/blgVtfWwPNDjC55P9yU36isU9imTUKc88TbLUwcodpbj9CtZyjlHkWf3Tt55M/qpObfoGRi/u5MppDUH3s7lKIzU9039MdIDW0KAUmOXU+fDiI36fx87NJMsaiEynICt97eZQD2zMMTxcb2ZibcB0b3S5RF73gWHzg0b00tzZRLRXp7tQIiBN87MEudu3tw3EcZr72BqcmVcBkZ7JMMOBhOp5ntnhrX6dsV3nh9REeLBhMzOTIO75VS33PzMhc+dtTfPaJHn7tSZ1CcbFv+MaPvn6v3Fw2LDp1OiMeklOTaF4vM7MpWrq6KKSSKDv2U0wlcGwb1ednrFwlePgYgiAwNNzP/rBCsyJzdWwIW/PQUinCBsrnbqS3JcyffiXEi+cnSNQEPr63HRkHv68F5SYBmG+fGONbU140t8S/Om6yv3vjdkupUmUymWdnR2zZfm/m8wfCVM9nyRQrnI9LPLUjwKeObr4y4t1ky5F5l1ipn8CplXCMRnr4dM3DuTV6DlxLwa5m+JXffequHeP7iaaubmzLWjDS32uEeZkiUZKolkoouSz+8J0rc4y0tWMZxpIhmq7rkkvMoXk8q0o4K7pOZrYxJVvzLi1NXKunJhufpSwIhEI+svFZXNdhprJyg+rN94bi1AjrDv/kyxsXwbgRQRD4+IfvXUnnYr7Iz98aQhThqcd24/0F6tHa4r3jlZclTgwfwnVd6uYFjj+yskGiexU+/3kLsLhe0rV7n8Z/25TAshya271MTxjIbhETPzs60lxN7EJwPbw90MrhA+doal9+TX7sqSLvnLpKwGdy+P7ln52eK/P65SMgqdjuLFFxkvbmMrv3rvyM9QQ1cjM/o1ruwWaScNcaWQXlMtm5KLZVQwuNUclb6NJn8DY3kUuOYpuvISlrOwSCGiefmkKSfXi83VRSJpGeEUqZv0WLyij6nVUOzE35cGu7kWUFWVYoFqNAAkloBJI0T5BidmPBoXBnlfs7T3P/o42/iwmFSqnhHR491M+TH150ZPIzYZqbG/PoKjWLH10fKjlPvKoT769zs8ADNNaEp/YqPPnEB7l4cZjvvDKBslC+KHDq5CUKtk6p1hj8mZlLsqNVYzJbZa7qYSirMvj8TCNAK25OpAGgw1vlU8fa8QT8nL80waXEosOuU2VXu85MukbaWMwiHd7VxN79jZLdl352kp/8/CKZfIWp8qKk9csX8xTKF0jnKkvWoT2tMg8/2pjAdPKdi/zwXJ1Tl1/kVz9/HFEUMUyLXDJBPp0mKDVK6BzHoVpvfN8Bn5djgOtaCNHNOTHXEQSBjx1dP1PSn3URRAkDDwPJKvs36FsUy1X+55/OMOOGue/qGB/q81Oo2Xxgb+uKTs3ujii/hc2/ejuAIEr85Zkpnh2s0uYV+L8/2YlXVzgzkqQz6qW7ObzJs7073BtW3PsUUfcj6huLjguyghyI3bFsjOu6ZOcaeozh5tb3ZdR6M05MMZNBkqW7NnxS1T1k4jNUi6V5JTKBfCpJqOnOZYvkm2Qg09NTRDs6qZVLlLIZ/JHlYU1/OAK34FCtlFEShMQKWy7HFHWSBpsSMvhF4uW3hzjb8A1RTwzx0Q8deW8PaItfCIqVxv0rCALFsspmB09Gmhfvp84eld9+ZohM1mV7n8jsX2cp2B4CahZ/cGWDPhxT1xQg8PkVfEqestNMJCzwe7+ZRdXlVbcHCHdUgKvrHrsnbFHNDINg4AvYGBWQPQ1nS5S82JazriMTaHJJjr5KLPIM/nCE9FwSYNWZMbdDIVkjHPkC1UKJ1PQUlpVD8k8DCo5yhvRcHtOeJdJza6oisl4hnfw7Ak0awdalz3XTzGHUKiiah3iqyFrf/824lsHRA42RDocO7eD5Nyf5uxcG2NMTYGAsw2zNhyAJ/OhUmuHp0+zu8PCpTxynVqvxR397moLjXbcPci16Iw5tfX2IosjjkSivXH1rIcvxmeMt7D+0k2K+yB/8/YVGxgiYSpSpVauIgshkymYqV0IXDcCPaxkgStREjTdHbG6e15MrNUYZyIpCImciyCpTVhPPvzxAX6vGAw8fBRqyDk61QuXqBcqqF1/XNq7MTbJv3nnZbJP/rfDUNp3xc2lCGjy0ymDLlRhL5plxwwCcT7ucKQkIkoeJ/BS/+/j2Fd8TCXjw1icpmiICAnklRt6Ed8ay9M9VeKcUxesU+J8fg97W8B04u9tjy5F5n5KNzxBubUcURaauXUX3+oh2dG6Vra1AJj5DIBLFMi0K6RTBWNMd/4xG9iVCltmF0q9q6e5210nz2ZnN9s1ssYjrupw5M0ClbnPsvj70DchwypLAdSNU3rrfttggjz1UpvbqCLLkcOyBpYMnb4XmDo3m+Za3X/tCgrGxFL29Lrpv43Mv6lWLwQGH5haX1g6NX/3sNGNjc2zvs1D1je9nPYzCDtq6HiExMYaV2YdRHyJTeR5Z7MaVxpEqGrXUEcBCDp7HG1r5vop2WhTi71AuRUAbuK1jcl2X7EQEVe6gWh9A1ZpwyRPurKGoImatSKiphfTMJE0de8imLGzzwrwc9JX5vWzeAC5lXFTn47R3xEinfow3tHTejcwOauUKmfgcQzNVYOOlxKKi8capYZ54SOL8pXGqgo9aVSY+0HAMrtvrpqBzOQ77tzWyLpqmoYgu3OZMxKGEw5HJSVp7e+m/PISr+tgbrbOzN4biNsrGPF4dWbSpA6pbAxf+8OtvYQkybX6H3/vEbtq62nn91VPs27OdYrnGt1+ZouIufzbPVj386TdP4NFExnMywnzWpT+lMpyq0d4Vp72zFdMwCNoGMVnE29fI/pTLRTZ7wm9cnWW6ZPLUrghNocWyvuGZFK4LOztXty1uHlq5UXZ3RDnQP8aVgkybUGCi7AAuU2s8PsIBP51+kSG7CTMXR3RdNKfG9piHHw43foeK6GM0UaBu1OlpCaNrm8/A3Sm2HJn3K4Kw4LR4g0Eire1k52Z/6dTJ7gSCIKJoOooGtbvsXIiS1JC6dt1lpVx3g+xcHNuy8IXu3Ua+zVLI5fm75y+Sr9h85KEujhzacUf2OzebYnAsSV9PjI75RswzZwb4wdkygiCSzl/hc5+4f939fOjxvajKIKIo8PjxXXfk2Lb45cKsW4yPWrS2iQTCDYeguU3hq1++3gOgYNRMJFlcolx2q0RiKpGNz0he4Ps/8DCc2YXi5vnNZ0Zo6dBoboOVypZW4+03LN650EJbrMjnP1udz+LcjEGtXMYXjuALhoBOEuk/J9hWo5J3qCb3097bEMtJJZMQWjkwI6kS4Z5ZYHbF1zdDfs6hpe0TiKJIfCxAc8tOLMskF/82wTaVUvqnZMf8BAOPISsK0eaDZHMnCTZ7l01W3wx2LYS/8SWjiD3ApSWvi6KfYKyJYKwJnzZLsdZwupq1CrIoMFv1rPnZJyZl3h7uR1A0BGltE/EnpxJkCwYziQIp03vbsvVJM8AfPTdOQBmiRADdrfKlTz+KrCgkp2d5483LTMyVKBNAsGv8+sd66e7t4PzZq1wdy/HRR3oXqgF2bm+jqa2FJqDvaopLq8TqkoYXDBBuuo3qaPz586N4uYii6vzHj3dQN01S8Rn01na0Yg5iGy8nOz86x+9fFkDycS2d4F9/rOHIvHJlhj/uFwCBf7x3mqcPrD6nb71r5vTwHLMlkyd2RHmxP8FQ3uVjO3z8Pz+5G9M0+f2XbWbKjcqLiJZec19RrwJFkIJNfDI8y1MHuuluCfPMzhrfvZahy+vy6rhN/7CPbfIU/++PdL1nzsyWI/MLxp2aX+MNhEjPTGPWawRjTVimgbTOQ+v9iiAIFDMZbMtEVu/ujRpqbrmtRW4zRNrab0kV7Fa53VlKG+X5n5xlImGC63LicuKOODJGvcbXf3SVsuvjzf4h/rsve/EF/FTqNsL8qOpKzaKYL/LyO0OossiHHt2Lqi+/XnRd5+kPbKmjbbE63/quh/H8LnxCnIgnh+5V+MiHioRjDQfh4jmTH73WjS4b/Mpn4rR3re44ZJJ1Snmb7h2rG7CO43D2lIVjC9z3oIi8TpnWdRK5RrDFFEIkU9ByC3GwExeaqQhtDKdbOfn6Wxx9yLdk0CSAp2mcQqqEUWrBFzxGJtGPLybh2A5O4SFUxYdj21iWgStkNn8Qa1DJm5g1l9BNJVyKBvVqAY8vDEIjMi9JMo4tAg7+mIsvWiAzeg7L2kXduEZ0u4fMWARNOUStNkq4e2zTs3IUX5bU7BVULYbF8LLXBf0S6TkDy07zW78RR5REslNemps+iyCK/P2zJ7maWjubJ6qLZYhrrUc5S+en/TVAvS0nJihV8aswXVYR9ACl+f+3bJN8rkisOUqmUOEn/XUEofE7aK5BV0/DaenpamIqWcEXDpOamgRR4mL/JNGWZsrlKpPJGrD5EkJb0imigw2/+cP5zJeVRXGvYchBBCHNNz+3sQhAoWbhihoCUDYaGflytcbXTidx/Q2d5Z8PZtAkeGxPx6ZtgIvjCf7dOQdX8vD22BiDTjOCIDJ1NsP9fQ3xgBa/AuXGb9oX03m5f5pvXa3S6XX5Hz7Qjc+z+Lv/7vE2Oq6miOkiHz54cOF4nj7YydMHoVKp8Ds/SCJoMGaFmUzk2NW98ZK3O8n70nJ1Hfu26jgX9jOvF/9uGJ0bxa6VEBV93UjK9bky1VKJWqlIvVol0rpJgfv3CeGWVsx6jUqxhGNbd/3z3s3rabNOTGZ2uqFkpqoEo7cQwr3LlAsFBtIKciCEYxqEpU3qf65CvVqjbEogQ9WWqZYr+AJ+jt3XRyrbT9WweeqRPn765jUuzDQMGV0d4gOPH7gjn7/F+wfXdZlOhECDQsVLJl5Bbe4leGpwvkcFLg+FsJUoZWBgMEd718olLlPjBt98vo+67WFn6CIf/qhErHW50/P2my4vXzwy339zmac+vLFjffT+FG+fdWmNlNm9Z/U1tZCpYRguTW2LxmQubTAyIhLRk5Tr7bj5cV4ZfISzo0n+0RdmiMQWj1P1SKjdOax6mkT6CqJaQ1I92IaNrIYIRltJTk2Qmr1EU3cH9fIQmu/2zZtSGjThU/iDYdITLxDpyePYDvnpGKIYIGM+h1qJYDgJZscyOEKSph0m10vGBEEg1hfHdWex4xqFqe1Y1Qhtnd1AN3OpMSKbFKj0hiScwCls0yasLXdIAs02Vv0i5VSU/KyfUHsJUQgu9ME2R7xcTZnL3nczslPj08eiRII6L56cZbp0d4J4EbnKP/7SEbw+Hz/6yVlOTCy+ZktevvbDATpjCqMJE0FYNLSrUoDnXjjN3u1NnL6SYCRp4z81jCAIvHY5B4JI06VhQgEPmiKupSy+OWQdE33dosBrM2nG0lUe2h4l5Pfy2J52xnPjzJThmX2NrMjVmRwFKYhbSIJjMaB6GbyiUjam+NjhzSmFpcsmrtT4fsqOhOwY2JKO/4ZL5CsPdtJ0JY4iCjx1oJt//uwwaTFCugYnxzJ8cF8Hhmny4qU4sgi/cn8n0ir9016vlyea67yecDkUqrOtrW9Tx3sneV85Mq5tYhXTiIqGY9ZRNjuZ6gbsUhbXtcF1EVQP0gab9hvHYeHUSoje0B01Wq38HKInhF3JIapeRM277ns8fv+aM1TerezAvU61XEbVdRRNIz0zTaxj9fTvLyv5ZIJgUwuyojTK3+4xHMehVq7gkx3KgCYYfPwj65d6bYRAOMxHj4boH82zuztAU1ujtEz3eNjVG+HKWIa5udwSieqt22aLW0EQBB7Yn+DEmTKC3oLW2oeZixPwmlxv3O7rLDI6Z6D8/9n77zC7zju/E/yceHOsnAuFnEEEgjknkQokldWSWm6pg+22vQ77zPiZ3fUzYdd+ZmfWM/bYbre77bY7SGq1JFKixKYoUowASCLnUIXK8eYcTnj3j1MRlYECCIn4/oPCveee98T3/cXvV67Q2V5hsX6ZoWEVQwph5ce4qu7jz36c5huf66W+aa5RWijNiBoWSg6VLoBlWJz8IAO6n127ZbRrhCj37lfZuz8z+b+FzYm+HoO/eX0jhq3z5P5L7L9bxbZtvvvjGtJmG1I5wZ6OQ1wRHRQkiZxVz/DgCJEa6LtSxjBhwxZH90t1KVilKP7wfWT6r+BvOk/Zeg9jootULEXr+nsIRKPExnO4fEuXzqwEViWEb5KeX5VbgAzZMQ/1jZ9CkiTiY278jRdhcB91zbvIJgeoFN7E7Z97P0rZKn7PZ/D4QhSyaYq5LJXyON6QQ54ghCA9GEZTmrDVqwQbqkselyzLyK7Fg1C5iSYaGp9CCMHE6E9wB0eIjx0FFI73lJnSYhFC4LazGELHvkZPprNWZfceR19lf85g+OjalVUrdpX9XW5MS5DOSdPMjY01bkRfYU6gOWu5yU7AtaQFkiRxfFjh+HAK0EDWeOvSpIOmeNlcZ7F3vxNIurtg8sqJwvQ5b4gY1PglGmv9ICucvTLBwwc6SGVKHDo9zsEdTUwk8xy6VEBSVGRtdU7c4ESa/+Vwiari4fDgMP/i2Y3IsszX751pru8eSTKULNKgVoi564iWR0h5nBLveGl1RB4A92+s51J8kLECvLgtStW06UkWeLBrJktiC8Gp0TI9WYl8dZB2PwznwG2XaA879uJfHx3mlfEAQgjK5hDP71ucUe0PH9vEd8plXC7Xx2onfqIcGauYnXZeRD6JEPZ0WchqIYSNGnAas8xcAlboyNhGBbuURfFFMDPjN+RMAdjVMggL2eUDWUXW3ci623HYXN5Vl6JNwS+X+fQ99aiKzM+OjPEPv3nvDR3nrzssw5jOQCzF8JZLJjGqZRACtz+AN3B9lIy3IyRZRojJyK9Y/UR7M2HbNt/94WGuJFWa9SL7N0bY0LGRQDi8ZmPce3Ab9x6c+1kxm+Ol90ewVB8XR+J8++lm3K4UmiJx74E7/S93cH147EmZYDDP6yccwyccrHLP/TOGwt33KnR2nEF3SYRrFmf327zZ5PT5fsZlZ5sqYSbGJeqvyQIc3F8ll+vGtCXuv6cIaJSLBn/6X0NkxDbMzAS/+FWZL72QYf2m1TXx9w64MAggsDh6TCXgq9C5TiJVCCG5wNbDnL1cw4H9CQ6dDVAXSNK5TuLUcYOfH9mBQOGR+Hnue9CZd1U2oLu8pPN1nH0X7n4gT2FimA27n8Uol0nHJrBxZA3yiRKeoL4so9li0H0pYiPn0LQQttI7+ak9HeATWJhVC7fXCWz5w60k0vY8c0CSJGzLcU6EXSGZe4Vwg4rL5zg82QlBXf2nkBWFxFiI7NhJsJpAHVnWqVkIsjQjGinjwRPM4wk65Ab/8Pdmtkv21VDf9BSFzAiW61dzSBLyCYlifh1ub5SrA0lulFxiNvZ3uXnmcYet8Yc/OcR7h87RWuumoznM85LMyx+lQbkxsoiJdJV8No8v4GNwNM3U8Te4S3zthXvJTIxP99OEvCrt69ppB7wumY1bnbl7U/N5/NE6fvDL7kVFR7/y0nyH2czGUQI1SMB4af5vBifS/C9HipTlEJs8cf7RbgtNb+PPTyTQZYlntqy+REvTNH7/oblZkX3XVFWfHUxyohQFDV7pSfHvn+/g4NUYxbLJR8MFBBLZ6kyl0WsXk3xmT+uiWRlwSqU/bnyiHBnZ7cPKp1D8EYRZvW4nBgBhISwTYRlIqyjPsct51KAT4Vmu/Gs5WMUMSBKSrGLmkwjLQNgWdimHrK+sHlRYJlY+CZKMpGooXicisLXNy+atzluwc2JtynN+naG73SRGhpEVZcnIg1mtTBMmpMZG19SRKeXzlPJZEIJI4+praG8UwZraaXYz3bN8tu9WIjUR40rahaQqjFi1PL8uSn3LzS+VlFUFZbJqQZYF/mCQZx5rv+nj3sFvPrZts7nU00M67+bR+1LI8lxDsr55+Tk+UqPze98p8NGRFIdP2NRGCmzcLJFJlskkq1y6GsIwFe7dX+aFFyqTc4ozzsiQSVbqRJJAUnUMoXL8jKBrY4nTxw1yBY29+yy8y5RwbVxf5tTFCfLpEqnoNn74lsGnK+fZv6GbD861ghCEwl4efszk3nuvons0JEljPKGArDvGYMIDVOnrMfjhz/ux7CGqFRMluJNU6TKP7XMYOF1eL+Mj79OwpUCyr4aausfIjHXjih69rlIzT0jGHTyBbdl4J0kVQs1VYsMvI0sBXOERdLdGKn4IY3wjVbOPSMd8A9wT1MnF3qAcawBtjIauucafqgsq5RweX5h8doL6lied7E0uQTn3Mu7ATEYgNRRAZQOG2UukI7XgOuAK9RMbex+w8NSMsRgFs651IMsygUgrsbgfQjOaM/4aQSH9M/7ov6wjK/yrzjB3BKvs31pLd3+Sk6Nz103TmqnzsiWdX56v8PtPh4k2NhFtbOLNE++QEzfmyKQMD//hB6dwKTZJc0ZUU5YcIz2fSRGqqwdJYqh/iHDIS6FQJJ4ssBEoFwvUNtQTrKllS/s4711ZvhxvCkogyuPRDD05eG7zfNKe0UyRsuy8v7GKPN1b8v985sa04yrVKh9ejdMUdLGheX7pd1vUR1AkyUp+NgRtNE1jY0OAf/ZmhpLs4c2+JH9vt8Ib/RNISMRdtYxMJGhrqr+h47rZ+GQ5MpobGyeDMuVMXC/UYD1WPgWKguJb/OEz80mn/Exzobj9yG4fZi6O4osgzJW/GAtBWCZqwHlY7WoJLdyIlU8huTzI2sq8ZKuQRg05D6mZjU9/PjhRolgooCoqA6P5xX7+a4VKsUgx65RBLKRzshR8oTDeYAhh20tmZCzLwrZtbHPte2lKuQzRphZsyyI9Mf6x9DTdrn1UkbpaOoNX6Mt56fCXqWm4NROv2+vlS492cqkvycb2FoKR8C0Z9w5+8+ENaPzW1yrA4qVjyyGXMXjrXS+ypPDtr0/gC2gM9dl8/9V1FDJV7GoBxR3k5MUaQu4UkbBNxXTzyH0pmltVarU+YpU2rGIGxReiub7AuVMWP/tgJ5KsEEtcnhTfXByt7Tp/+O0xfvhjL1dTICkayazOU88JOteNMDTmZtvmEpLkwuV1jNfYWBWXBFHpMqhe9u8pABrnL7qoSEEkl4aoOutVpuBCaN0kx4LYFAk1jyJJCrq6EU13Udu4nVj8LC7f4seZjZWwLQGohBq0OUa3JElzmOEkSSLSWgSKTDkIkdYscGxqiwXHCNRZwMIlub6IQi72KoVYGFdoCNt2MgKWIUhPhGnYXESSJCqFKn7PA/iCUWxrM4nYfyVUvwChSEDGHeib/N/c9cq2baqFKu6AG0NcJpuMUimP4aqZrznjC6vkCKzaiRFC8NTdLTR3tLJt2zp6/vN75JmhGz7Wb2L87BimLTg3aiMpCmcujdHQ0sS5s1fJGfo861S2yvhUg6y1cq2aIl6K1twy39GSh++99CH37qglE49hGQYbNq8n2tiEK5fnz1/rp3v0ENVsgs8//yC5TI7uoTywfHmZVcoijAoADx2o4/daF+4j3dfVwMPDvfTmZJ7dtHZBwT9+b5D3s2E0q8T/cDDOlta5dM71kQD/88OCgUSBXR2dAJSqVSrCudhFW2Z9Uy17akc4W4my3ZWkqW6+rWRZ1pJZmluNT5QjA44zs1Ijfzko/qW9Z6uYQXb5kDUXZjYGbr/TiC8r2MUs6g2WlUmKil3OgzxzG5c7ptkQQjj9NN4gsqozmxN9rOTi3373OLIExVXw0N/OKGRSRJtasEyT1PjYqo1ySZKQlnl5a5pbSI+PISvKqp2lFRyA88/sEq9bDCEE6fExBIJIQ9MtzQpVymWuXh2moSFKtGbucy4rCt/4/D1MjI5T11i/KrHTa2FUq7xz+CIVQ/DQ3evxB5d+/tdvaGX9htbrGmtiPE7vQJz1HXXU1t9+5Al3cHvBtm0ysRKhOs+KiDreO+Tm7JBjFLuOXOCJJwX9QzrFrIEaqkOYEczUCGp9J8mcICs7hs+7H9h887eK/M43c6RiR6kYKtVqinUbPbz9xgxZTv+gBiztyMQnqvzqnQBmtUSDuw+P12bvbkcHZ9M2nU3bbGYbiblUhb98uZ2SqCGqDvB7v5NxMjTDVS5ercOuFhCFEk2RBKq3wEN3pwjU68CHk3twjq1idGNb60gnunGHK9OfFzMVFFWeLutKDQWIhj/v6HZJMqn+j4h23nh/zWKwDAvLtNE9c53TQJ0NJAEv2Yk3yF7dgy9cR+u654mP/znhRhXNrZJPjOELRslnhnH5VldVYpQtCmPb8Yc2kOw7TLQzgVH5W4K6gnQt//ANQJIkYqkCzR2QiCUp2+pcH0nWOD1Jhzy1ph7qk/jgP7yNpfmQ1LlOg2qX+fqTbXSsa+XNt07ybs/KSptdVDiwwUeuUOXksECSnczQ5aRObX+au7boWELM0myTsIXN5aEiir+F/+1P3sYVrMHWViaFIExjOkj+/eMjtA3kOdjqZXu781m+WObcUJKNDSH+7iOOHs1QPMP//eUr5A34vf1h7upcXZD93GCc/3IijU+BRK4A7jCG4mE4XWbLrGWpahhcHErQVhPgwMYZ26S1voZvbhzk+HiJ+ze78Pv9/POnuhieSNBS34U6uZYKIfibD3t5rbtArmrz7KYAv33/x9fgPxufOEfmlsK2Z0UOZkV4FG1VDsdiULwh7EoRYRnTmZnVwMon0BvWY+WTmOU8anhuXWZZmjHg1or2ea1h2zaJ4SFUTUNWVUK1S0wCk0a3oqo3zRGQJGntHZhJuDxeUmOjWJZF9CaNsRymhFQlSSIxMkxty/UZ8NeDv/7pMa5mvXgZ4zsvbCcSDc/5XlFVmtpunITh8EdXeK/bKX04feEdNnfV8Zmn9qBqa1cjDlAqFPnzn10kL3wEz5zn7//WAXTXx19vfAe3J2zL5nvfd9GX2sK6aA9f/rKxoDNjWzZITkO4rs7Mc5pqAxKbNhi8c7jqlBNrOn5vkYptoUslLKuCpLiIBBy9GkVTqG0OzNl/OGRgZidAkrHU5Q3Kdw/56Y47Zcr3bj7PI4/CVIbJNCxeeklnKBZm77YJHnpEIZM2KdoRJAnShQBmNY3mUrnc46KitaBo0OhN8ne+KQMFFtOsiXbGScT+M94aDc3tjJcZdeNzPYtZrDA6cITGLXlU2id1wtykxkbR1Hbg5jgyhRRQvB9VC5BJv0uoqbzgdsF6i0ypQjBaQyEXYyr2KisyeuQosdhFFHcWxRbkE2X8S/RJzR1fob5lHwDl/Gbg0DwCh2vxz//g/IKf/8s/2rbk7175KEnfwPuYNliLlLbNhiRJ2O7wtKUkLBPVLGDqAYK6Scc6Z63Z2FHD2+f7kDTPspmZB7cFuf9e5zizf/MBvZmZ7a+OFnnyCYcZLHOhh1++fZarIzlKxTKy5kJUS0i6D0v1zsuxOZU2zrs11Ss9BWEa2JUCZ5UgFyb8vNqbRnaZoKhY2RhqqAHro1Ek3amcMXNxZx8q/KInN8eROdMfYyhT4cENtfi9C9/jn13KMWRHwIZqPofbGGdXvcY96+eynv3rN/s4UYpSywT/82P1RIIzztkzu9p4Zta2+VKVczGDvJmadsJOXB3nb0YCSL4QlhXnjUGbb9xC+YalcMeRuYlQ/BEnEyNJN9wPsxhWwky2GCRFQ5gV1EANprDWLFN1K5GeGKO2tQ1JkkiNLS1yprs9047A7GyMEILE8BCSIlNIpwlEokiyTLj+4+FEXwy+UBhfKHzdv0+OjSAhYRrG9DUDyKdTVMslEAJfOIprCXV6SZKnJy5ZWfsJTAjB2TNXKVUM7trdhabPGCkjSQNUp1xgYjw5z5FZu2OY+btgqpweU+k638/u3RvWdJxCLkfe0kGGjKFRyhfuODJ3sChiwwX6MtuRFIneZBeZ2ElOnnFzZSDK1q4kDz6i0H3R4CdvNKLINi88Pc6DD8rornPICO4+aAMqdY06X3khxmtv2bhcNp95oUK5eIJASCYRj5PJyOzcLbNYX8X6jToNp8vEC7Xs2Ty66HZT8LqdEmohBF6XyWyzY+BqhSuJnSDDB2ckHnw4Rkunl/3rztM3GmHnjsS0od3RWuGDcxkM4WFLV2HOuGdOVsnkNPbuMfFOatBIkkSofu76KFlteAMRCIBpHiQz8j6S1E8xt45yPodRrYD7yqruy2pgFmuoq3ecusp4B3Bp0W31yGni8UFkPYM/PHPNhC2BsZlyTiEQieDx+kkP/4JwS3HRfU3BEzRJxS4Trt1I1exddvsbQdQjeO5TdztioO+c4Z0rczN3ql0m5LJIlHVQ5gaJhGXw2f1B7rprP2+9dZK3L+scOnSadW019F4d5r//5l56+0b50eEElrx4L41pOc6GEALDnBu8LJgyhVwBX8BHPF3m/W4DIXQkSUYN1GLmEljl/LwgsV0tOcFoTwCrWqYy3ofi8SF7gqiBGqxCGquUnS7ZZ6qCwqiC7nFK+CUZUS44NpckYxtlJEVjw6yW2gsDcf7V0SqW4uH02DD/3VML66G1BeBYTiBMA9nlww7U8IXt5hxNGICLacAFcYL0x3NzHJlr8W/eG+Z8JYraXeZ/1BKsb6rBrSvItoVQZECgVrP8g5d6eGGTlyd2fLwsrnccmZuMG+3FuZlQvCGsQgqznEd2/XqWj6m6i2q5jMvjwbaXzrL4wwtnwdIT40Sbmqcb+SONTcs6Rb9uEEIg4ZzbVHnYVOaoWi7NIShYypFx+XwkR4edv70rS7evBsdPXOanx3JO/X36HAd2NKNpKpHaGu7bUcsH5xO01Oh0rb95+iz3HdiAYV7i5Plhcu4wkl0hHFr7npvaxgYe2jzOpcE82zqChGrulJbdwQwsw6JYMLh0SaO+zqKl3Ut7oIeBXBeN7m6K+SqHL+1BUjTePRtlz65znL0coaI4AZjzV3K0d5nce6/Fj36s83/8xwi7N03w1DMy6za4+IMNU72PM2U8oejyx+UPaXznt7OU8jF8oeUJBx571CB09CyaZnLX/rkmR229gl+JkbfqaKrJTgdXnnpGAjLMNlHau3S+86UeKkWbhrYZB+XCmSo/PbQDSVYZm7jCFz6/eO+pLQ9SLmzDtixUXccwZMKteUqZv0GvV3BJ0rIZitXAKJsU0jaBGgVFU5BdSSfD4vIjpOElf+sJyniCmXmfG8UIdc3bSY2NEog491oWbSzlFE3B5VOR5MNMJN4l3KEDNxaMqtFLdDX76BkpkqzONZxrvGI6i+336swuQVSsMt98uoO2jmYOHT7D6+fnOjkeUWLv3rsB2Lenk7cuXeSXZwoop+J8+fEuPH4f23Zs4N1TE4wtnNQC4N0LBdK542SLVQbzrjm9Mjnby5/+6BQ1AY2euAWKC2FWkT1OBlLxL/wySLIy3QeDbaKFapHdfqqJYWTd5fRn1bZj5hLY5YIT/Jt0KozxEfT6dQjLwCo6ApuqP4pVzPAvDqhs7+ycHieWL2Mpk4QAS5zjV+7upOvyKD85PUq3v52NWoq2+vmEM093qPxtf5JNIcHW1s75O5qFeAmQwZBdnBt0HJltbXX8/cIol2MZTFeeN4ptFGWVl6+keWLHkru76fjEODLCNLAKqcl0ugvFE1j+R58ALEVUcDsiOTqMJCsYlQq1rW0EozVk4jGKmfR1Zys0XceoVHB5vVimU1JkWWulnnV7QJKk6XMq5bLoXi8TA/1oLhe5VIpoYzO2ZSFYulTEGwjeVErpTMGYLhfo7RvnaG8VVbb5yiNtPHj/Dh68/6YNPQ3N5eKJR3Zx34H1nD43SH3UT0fnzYk4PfrQLh69KXu+g19ndF82ePkXTZRyFZRIG4pd4Leeu8xXv1Lie//tKH2lvfzkl4P4lRQF6gm5Unj8Op0tBS4MVZAlm86WEqAx3FemJ7kTdDh2SeXxx4evm454CrIir8iJAdBcKvfcDwuVgAUjLr7x4jBjo4OsW6+ynEkSrnHDNf5+oSQjTfaJlioaUxo4C/6+uUx84HvY5XY0j0WouQDIeEJrnwk1yial2F7qG3cyOvAeNev7CdQKiplXKBUFoZbrE5iUXRkK2QlkVSU1MYTL60MoA8v/cBK6R0X3ONfLXmVpUClrU801gJxGqhb5ree3EamJEBuP8+9+fBlJm3kmdmyoITEyjAA+OjcMzNgaPs2krcMJnnU2RxDnJub0W5YkD++99SHbt7Rx7PwIXg2+8XQX9Q1Rjrx3nK71bfT2jhAvSkv6Ypasc3IEwLUgYUHK9JBKAZMVM7LmxiyOYxoVp2Q/NL8qQ1J1qJacjE0pi6t+3aQ4ukAN1GIbFYdE6ZpMjiP3IWHlE5NtBzMHrnhDbO+cu/29Gxs4OzHASFHixa2Lr7mSJHFwczP7NzQwMpGgsbYDbYEy6K/cs44vH1yZLuCucJVXh+JgmxzXdT47+fkDW5p4YAsMxKIceTdLEZV1gY+nX3c2PjGOjFXMzGXnuuPI3FRcr37NQpjqtxHCadaLNDTOySpc2xczlU3RPZ4VOTf+SJRsIk4xlwUEqbFRgr+B0XF/OEJ8eIhKqYhtmrRu3jo9qcVHhlAUdToz83Hh7t2dTCQvUKlaWJafREHHBHqG0tfdUH+98Pp83HP3lhVtK4Tg0sVePB7XTXN67mBpSJL0DPB/4tQc/YkQ4l9d8/0/Ab6DExqOAb8jhOi/5Qe6DIQQ/OptL1W1HqE6zFyW7COdhuZ2mZFCJ7KmkhbreGb3EdDG6Fxno+o6e/bBxOhZBmI1ZHOOoVTXpBPRR0lVm2irSUw7MdmUwU9fC1AqazzxYJLO9XONH9uykWTpphN6hGt0wrOmW6Ni8t77KpYlcd+9BtmMxcXLbjraKqzbMN8Z2rNHYiJ2gWzBxQMHsyzWMzOF2nYPzu2HG81ILIVC2qa+cScA/sAWjEoPmkvFG5o5vnLeopLcgiR5kDxnCNQu33Pkj0Ip83OqpsAbkTCqNqGm1TlFZsUkO7IRl95OxThFtDO9ot8Zme3UNe6lWi3x28/+FW63E4r3eiX+8W9fxBOcOY7swF3UNLVQrZb40meH+Hc/mnFkMqaHN986yfqOGo6cGkGS5t6zeq/F7rt2UM5nqAt72Ndu0NRS75QL1tTwL//ju2gafO5gC7qu8LcfjpMylnZG7UoBu1ICbBRfBOmacjarlEOYFZRArUOiBI7m36QkxWwo3hBCCIRVpRLrQ9a9SJOimZKqY5fmi4da+RRaXSeSJGHmE0jX6OQspEcDYb73/MpsEdu2Gc6aGOToalokmzT5LvdPpHj9SpaOoMKTO+evqztaIryeVpFkBZeWnvOdEIL+RJEnGiq0h+DuzZ0rOr6biRU5Mr8RC4QEwp5iW/n4Pcg7WD0kScIynGhbIZPG7Z9fDpeJTRCI1qDqOsnR4RVnaYI1tctv9GsOt89HIZOmZcMmLNNkrLeHpq4NWJM9M7cD/EE/X/ncAQBOn+lh9NAIumyztWvzx3xkDkaHx5AliYbmuZG6N946xXs9NpJt8MX7q2zbvm6RPdzBzYDkUC79O+BJYAj4SJKknwghZncqnwD2CyGKkiT9XeB/Bb586492aZw/YzCWbkB2l8E2CYgBOloKbN6mIkkS2zpjnOwL0hwYYetuD27vzDIeHy1wrH83KDpvHs2zfdslfCEPX//CBBOjI7R2aEwt+6dOawykHdahI8dMOtfPKPd9dNjgrQ+bCfmLfPmFFKHojNGVTlTp6VFobbXovmxy/HwtzbV5PveCQL3BTA/A4cMKRy47DdqV6kWuDgbJ08xHF3N8J3SFSN21GiwKzz4ngDLLOTG3EoGowtjgIQLhbeRzJ6ipn29uVTJ11DU5JVTx8TJweUX79oQ0JkXguZ7W1kJKobH1PgCS4xZCvLtCh9Ux1lXVhcfjplB+nUJhUrgzOteZkn0niE/EsKU44ea5z4UkK7zbI3i3J85C96yz0UcgFMAo5di9dxu2bXP22Ak6NnRxpieB6Qqxq1Vixy6HkS8Wz/LL82VQFnfo7EoJNTgpYp6NT/8NTqBbUjSUQC2ViV60UL1Tel/MYFfLyPr8i2zlYtMZGysXR1I0zFwcbAslMN+ekF3eGcfIMpF9K6jjXAX+5P0B3k6HUapZ9gbHMCSdGs1kU6Ofh7fNdVb+/QcJ+q0IjJk0BsbZ2dmAEIKfnhwkXhQ8uzXCdzZmmSjaPL1lbln1G+eG+U9XXEhSlKfJ8sAak+BcD5Z1ZH5TFgineSsOAhRv+OM+nDu4TgSiNaTGx3B5PHj887Nq9jI6L590TJURKKo6TZAQiN6e2addO9ezZWMzsqKuOWPY9eDEiSv85GgKCcHzB3Ps2jXT/D+eqiJJGig6Y8kCS/P53MFNwN1AtxDiKoAkSd8DPgdMr1NCiF/N2v4I8PVbeoQrhkDxR7HLeZoiSb4zrcTuzGvPfhoeTp/FG3QjXxNV9ngV3EqeMlG8egF9kq3LH9TwBVRSE0VCqqOLUhOtglVFyBrRYJHZzJonL9ZguupIGNDdk2XfpM012Ffhuz+sxfK1oR9NkE/m0Gs7uZyE0ydPsveAc4zJiQrplMW6TZ5VZ3Rm5ySEDWXDBRqYwkWlcvsFIVODATS2UzVGCbb0oE722Ci6QmTdVarFS9SsX8TBkrMY1TKq5sK0bh7l87VwByxS8W4itRuoVPrxr/Aeyd7TxMdzmFacSLtAkipA34Lb+mvAMRlXj0tDBbZ29+OSJ8uhC0VePZGn8OG5aYKjkUSZcrGIqmlsXldLY6Pgu78axpIXc2acJ8vMp7DLOYQ36JSJ4ZALTGVeJEmCSSpqSVGn2cnmQZJnRNUlGcUXnhlJCGyjPIdASdY92MLGzCWQvaE1z3T2552sT6WY4SO90znX8ThvpHVc6ij3bJphOp0mtJEkrMne4ncvDPOXfV4kSWK8EOOfL0IukCyJ6fNOLtG7cyuxkozMb8wCcS1N3o3CKqQRlgnCRvHPT1XewdrD5fXi8i7O1BZpaCQxMuxQj7pXVsP9caCYy6IoKqquk4lPIMvKTWdJMyplSoU8ld4ebMu+OVo3a4zb6R72jeVB1hBA31iBXbtmvju4s4nEe314XTJ7tt1xYz4GtACDs/4/BBxcYvtvA6/e1CO6TmzbqZPNniWV83D3virXRqwlScIfWXgO9IXcfOXT/fQNjLK+00Bzzfz25Zckzo/cRVNgkK99Mce2nToe9znyedi+S2O2I9PRlCbW24xHztDabDHlRL36RoQqARSgIkUQhmN8C9PA63Gso9GhCn/1yjoqIsRd3ef51HOrO/97DloYxgVMS+aBeyt0tg9x9nKOdS1ZGlsXPm+zamLbYtpxuxbFvMGJEyrhoMH23WubtdGkHUQbuoD1xBIDhBpnXDFJknD5Fh8v1GSSnfgRlqEQbqsCMoWUhJXfiqCKK3IJt39lgblC2sIoagRqDRTd+Y1lWlQKBt5reoBcPhV4n/H4IcJtsBTzXLVkUUwFUPTSZJ+JQJJvzKH0SQXciiBu+BY06LOWm1cPD1HvN9mSTNPQWMemZjenxmbu71jJxf/13eN8em+ALXftphaIHh4gVl14TNusUhrtRo82o9evw8xMTLcbyG4/ZsahFJfdgckytALAotIWsuZ2WGlxnJQpCNvCzMaQ3X6M/ChaZGaNlV0+ZNfak+QAPNvl4t8eK6B4/LOqjwTICrnK3Ivy+wdqeO1Klo6gzJ4upxpjNqmbZc8tcRRiprfmmW21jORGKZjwhZ23R4/1ShyZNVsgJEn6PeD3AJTbmM1rpRCWuWiq8lbDrpaxK3kkSVkTjZrbCberhs31IjU+htvnx6hWmBjsp23zVkzDIDU2etMcC6NaIZdM0Lx+I2P9vTR2rMMyquSSSQLRtU1x/6Zi18Y6rgx2I0uwc+PGOd9t2NjGP9x4e5Tn3cHSkCTp68B+4OFFvp9ep6LN4Vt3YDPjc+8DKk7T+nwj+OI5g8NHg9SGcjz3GXkeDXpTq4umVub8tudShTOXGkBKMCp3MDJ4jHWbVNZtXDh6/eTTEluvHicYVQhFZrbRNCd6bWZjbGkbpn6jxfnLl9jQmWPLjslI+YhKlTCSBEMTISA7b/+nThicvRymqyXLvQ/MNaJdHpUnnhSABWjs2A07dhdZzFzpv1rlR3/bgmmrfOaRAbbsmO/MvPoLL5cnNjqRd/UcW7avnTNTNUaBLnKpIXSvyXJ01NciUC9wqvKd+2gVuqhtdNaw2EQatz++7D4KaRvdeoZIXT1jw+8Q7RykUjCpJPfhD3aS7H+HaEdqzm9cPpWV2NTFiQ3UN99HuZhlYugS7ZsOYNs2/afexxsxCTQOTGehlsKUHk12XCXg/TS6y8vE2Kv80c/nr3kBucjvfP4u3F4vydFhok0t7KkKTo3NzVoV8HFuqELLujTdPaPES+qCl9/Kp9DCjcj5FMqUZMWsZntZcyOvkvBBdvuR3fPL262CMxY4oYHFStNWioV7Z5jXO/PAlma+e76HpBJByoxwoEGiFFVoDmd5ZMvc0rL1TRH+XtNcO/GRbc30TFzkvVHB1YrKB91jHNzQyAfdY/zp8Rx+Hf7JA/W01ob4vz12ewhhTmFNm/2XWyCEEH8M/DGAq2njyqRZbwGEbWHl4iArTp3kAs1di/zQ+cesLqv4frNhl7OowXqEWcUqpH7t2Mg+afBM9vdkk84kpWrasoxhC6GUz1HK5xC2INrUvGi6Op9KEZls5I82NFLMZrBtG9dtlPG43bF+Qyv/rMu5xje7AfoOVo1hYLYn2Tr52RxIkvQE8D8ADwshKgvtaPY61bGr9bZZp3IZg8MfuDh+3IuhBBmKhXC92sNTn/ZRyle4eEEindXZe1d1uqfl/BmDsQkXF3tqUcPNCCHwVS7Q3La0IS9JEm3r52c/PvNUmuOnK9RFytx1wNnHw09YwMy2mzbbnL7QSyrnYd++JNeaGWbV5LX3WrG0GgYSVdZ1nKaxbfEs+3K4dMVDWa4DGc53p9iyY369S6E0qS2jaKSTNqnxIpGG6x9zNoLN3cTiA+g+A0/wxu0Ay04jhMCyTIQ0v2l8IZglF5FaJ7ugKQ3AIKWMh/pGpxlfz24EPryu4ynndEco1O129MYA06iiuxrQZD/jlwuEItuoGsMEm68u6dSkh7wYufXURh0PSlUWDmi7VDEtA1CpGNi2zbkrEyzkpZyd0Dj9vQtIqmteA/0UJFVDGBUUX5jKRK/DriZuDjOp4glNB7atcn5B5rObAVmW+af31XBksMD2PY3ctW51kgGyLBMMBqhknffizd4sBzfAG1dLZPUoWeBQX4Yv1a7QPr6FWIkjs2YLxO0KK5+aftjMbByrlEWYVadkbAF2iykovjBmLo4kK7eB4+BEFyRVRxTnR8Du4PZCuVDAMg0UWSE5NuKIUYZW/wyVclmiTS0IIUiNjy7KOhaqqyc22I/b5yefSuD2B3F5PEuW6d3BfNwOKsZ3sCA+AjZKkrQOZ336CvC12RtIknQX8B+BZ4QQE7f+EG8Mb7zl4cLoJqrmAPokzdd4OsGrP6twonsjZimP6q9hLDHIV79UZqi3zMvvbgfZhZQbwBQTgERTS3XREqzlUNuo81SjkymZDduySY4XiDb6CIQ0/s5vl4ASC5kYsiLj0SvkBWhSGbf3xt6pde0lTvXksITK+vb8gmM+9kCad4/0oktFjpxp5M3TNTy04zIPPHzjjofqUgk12YCCbdlkhmuQ5RCqvxdfePUBj1BLjNjY3yDJJuFm26E8LrjxhEro3oWP1xspMz58CE2pw5LPAeAOlEjFrhCqWU/F7GEqd1BIgZXfjE0BX10/mnvxa5CdEDR17kRzuZgY6MftL9N3/n1UJYrL68OsGqhy22RpXRexxOCc0rrZEEKgirsINDq0zKaZplwu8Pz+Vt45HZujQxOrePnxz47SXB/gw3MT5Ep9GHpwQQplYFExbyEEVm6y/BGwszHUQA2KJ4iZuzk9SZKqoXiDmLk4aqD2pgS9zMw4//0raR5s1Xluz4x5vqE5yobm66+w2FzjQusvY0gaW6POe7klKnMqb6ELg001t6dg80ocmd/4BUKSFSerouqAjTCr0/00S5WMSaq+5n03K4WwLax8EpCQPQEkdYoxw0ZZpKZzrWFXyyAtPomYuQQIgRKIzjTF3QKsFfXzWpSoFTJpquUyiqYRnGyqjzQ0kk+nUFSNhs4bZLdaaZOmLFPf3ollmitmaEunMlzuGaetOUxT8/zojhCCX/7qFBMZg3t2NbF+/a2lR14Jeq8OMTiWYcemJqK1d0roflMhhDAlSfpD4DWcsO1/FkKckyTpfwKOCiF+Avx/AT/wg0njYkAI8dlFd/oxoVw0eO99HSFgU0eamgY3/rALIaaCVS5ENQ+KxrZNJd78oBHJ5Udz+TFzCapVxzCtVEGgIgFutYRNAMkToTtbwwdvH0H3+dmxE3S3imlY9PdUqa1X5jCUrQRGxeS7P/AzlN3KhporfPFL1jzjbXiwyi/fjuDSLZ57KsuXPj3B5Z4MHa0VRxvmOjE8UCWR1vjCY+cJhFVqGxfOMDc0ymzdkGN02KQkNyMBl/rDPICT8Ugnqrx72IdbN3n4IQPdfX3FKtkxD/WNn0KSJOJjbghfXPU+ZEUm3OL0NJTzBlLpUepqO4iNnERrP7ugYay5FSKdvUDv9GfugEpVeZ9E+m2inW6meqDM/EbqGvcDEIu9Qqh5RnQzNRBEU1qxlR6CjRWnSmByPFXXkHQVj6eZmiZn3bp07GVCDc56kk0OzimtK+ctKul6bPJEWisO7bAVx+PvxDTzVLKX6Nj0Ih1AfbCKXnOcQM38c9s7rR3mxM//f/9hHbpkkhX+OdfCzMYRCESlgOTyYZdySEhode1IskI1OYKs6thGFbs8ctN6VeD6bENhzdI6VHUUz8LaMWY+iRKopc9U6Dmf4b9eGUHWZso/V0rXvBD2rKvn/+NLUawYbG7rAODF/R1sqR8n4PbSVv9xB+wXxrJv62/SArEYFH8EM58EYSO7g9hlJ6MhLGNOHeXtBCufRJ3sMzKzsem/Z8OuFLErRcBG8YanGTrWZPxCCmQVEFjV8hzGDueY4k6vjiRjZWPTTXW/icinkhgVZ9KfnRGxbZtKqUi0sZlSPkcxm8EbdNKy/vDaTAhun5/U2CiWZRFtWl4DRlGvLfOokhofQ9V1bMuiptnRQBFC8JcvnyRuBXGfivMHL+qEIuE5v7144SrvX7WRJJXUe7384W3myEyMxfirNwYxZTdnu8/x97754PR3s5sX7+A3A0KInwM/v+az/9esv5+45Qd1HXj/kM5HPVsBOHx8jGBE56ufHuCxhwxcRy7j3miyc8sAQpKpb/bQ15/gUrwO3Rilsy3Lw/c7NMRdm1w8NHae0biPfbtK/PKdLAkjgstO8cbJbcjuMIMjl/jc5yx+/GOV7uROvFKcb7w4SLRu5bokEyMVhvO7kGToHm+jnL+EJzDXOTn0YZCRvGMYHTtxnkcehYYWwew+ng+PmLx7tJ6aYJEvvZDDG1g6a5RJVfj+z9dRIUxIGeIPvp1edNuf/62L86ObwSqhla9SdTWzpTPNlNH9q3f9XBxzWAi9njPc/+Ciu1oakoWwbSRFwRaLC3OuFOW8oC7qqLS73C2Y1ZNoLo1S1sbIbAEUlMD5RTM/uldD985cRyEEpawJjUwKIBenv8uMm9TVP4skywxelJEML6Z5hUT5J9jlNkw7SbQjRn7MDawjHR+gcVsKzZUmlhhA984traukNlHXeA+WaZIY+RvCzRaeunNMxPrRvEX0gEq1XER3e9G0AHb2IHbkyJJZ71xc4u9+fjuBUIAfvXKUczHn3KxC2qFLLmVQazuQJAlb92AWMtMCy8B0472RmVh5C8EtglXIoAZnax1OfZ52AsKTvc+y5sauFFE8AYRZRZ7URLTKeYRRJpbWqQuvXicxm8tTLBsLOivb2m9Nedz1YkVhh9+UBWIpqP5Z0VpJch4kSVpAnVWAbTm0fB8rpEX+noFdKd40MgJhW6iT5XRmboFmRImZCeQ2dQbXCtVyiWhTC6ZhkIlNEKpzJiPbslBUZ6LVXG4KmfQNjbOQ8e0NBPEGFlf9XQ65ZIK6NmehnBISBefYUyVAh5JwkUnn5jkyXo8LSZggaXhctx/ldT5fxJB0JCBfMgHIprN896cnSRYsntjfzIH9a6tPYxoGbx+6QLFs8eDdXYQjt9dieQe/XpBkhZKIMjA4woF7ZJ591pz8Ziaa/MKLFqMDH1HT4MLt1ZhyDiRJor3dpCaapnO9zldq01y9miEVNzjSuw+AdN5DLpPicn8TcgCKopax0UGiS3DxDA9Wef3tCC7N5Lmn8tQ3u2j2XWU418GGhkHc/vlOUNhfghgI2yQSrHL5PLz9QQ0hf4XPPlfA7dU4fraGqtrIaBGudJ9i9zIJ8ULWpGz7kWTIlbxYRhLZtfBak8pOWoWKh/vvzrBlc5JI/UxZraLMUDapyvW3RYWaDGLDLyMTwB0ZZbWN//P216Ax3vc6utqJIS4RcTnrSTXXTF2jo7cVnyhAeMARiR72IEs63prUgiVjuViZ+tbdJMdGsE0LJZBlymJWXVAupTFKFq2bdiArCtVKK/nKX+Jvn+oWUAg2dzMR78Xtt3BPOpuhRnvOuWbGZxwmRVVBqIA1STBQximFt+n98F2itVuJNDSSSYyyXJuoMEKEJns01rWGORdzmMWQZYRtIbv9WLk4arAOq5RFCdRSnehH9vgmG+9LSIp2S4JYTnBcICwDNVg3x6FaEJI0T+vQzCWczIwsTwesZZcXq5x3aJxdPiRJngxYO8y8//KtUf73z81kqwzD4N+81Ud3Fp7rcvPpu2ZK0S4NJ/jjoynMcoGsEqIsufjGhkGe3f3rRVzzcVvjtyVkzTUnVTcFq1rGiPejeEJIsvyxZhkUb3CS+k+a5lWfD2dWEEKw7AyxWkgydrUEQiz4gsq6d/r4phRvrWIGYZlODekiadOPA7oo01GrMZo2yFs3UAMqxJxSL1XTHIdgfGxOtmO1KGTSlAsFJFlCUdRpR2kt4Pb7p5nLTGMmgqioKk/uq+f4lRTr6t20dc7PtnSsa+WL91UZSxTZs71zzY5prbBufTsPDKYYjFXYv81x1i5cGWWsGgANjl5KcGD/2o750fFu3ut2mkiLlct8+bMH1naAO/iNx/33VUFcYGjIZlitJyQPs36DxWIq9EIIonXapBMzgw/fK/DaoTZQ3NwzMsyTT2vs2QfloiCZv0K24OKBA0mGB8EWYOfiyGaBrg1LB54OfRhgdDK7cvzkBR55VPD1rxZIxY4RbfAuWEb8+BOC4OGjjI1p6Dq8f7SGeKWNeAXOnTnDvoPQUpchOdKMR8rQ1Lg8vW9zh4/7t16kdzjIzk0ZtCWazB+4O8VbhyVCvjJ79sp4fHPX98cfKeH74AJu3eTAQRnTsPjbv1VJZH3cuzfJpq3LVzNYVYt8LAQYBFvGkaQbD+5IkkR0XQxHZ9xBasiPKIdJjY0SbmjEstIApIe91Ne/gCRJxMbeJNQ2Om9/nqBKMTFMtHETibELeGZlvXxhlVz8NapVH1Z8K9GGTWRTV/E1zj131aUQboLFnLTUUIC62ucwvWUGLr+NK1Am1FJioee3cXOMzKAHcziO7Ls0j4HvWmi+JKdPXybkc3HsUgJw1mvFE8TKpxDCRiAwcwkkRUNUck5p2eS6bJVyiGp5wQqWxWAV0iBJq8/gCHumRWGyX2YpqIGaaa1Dedo+EkiTwdDZtoXi9sMsxjTbKE8f30RFwTRNtEnttTMDCT4qREGBl7tTfHpWgOBvr+QYFhHMqoUacLI4x0ZLPLt7daf6ceMT58hYxYyTTfCvvl7eTI/gatqEXcpirUFDvZPdMa9Lf0ZS9WVfRsXrsGdMCaytJVR/FKucR4IFiQ5kl3eOg2XlU1jVIrKqI4wqQjeXzWrNRCduHoQQPH9vHVu3byA2Huc/vnwZS3EiVAv12jjlhuqciI5PLrOzI8FwvMhgzsW1ImA32mtTLZWmnaDU+NgN7etaePwBirmsQ/3c0Djnu4N3b+Xg3Uv/ftv2rttW/FGSJJ54dM+cz1obw+inElRw01678vKZFY+5yN93cAcrhdur8fiTgmyywt/8cBRVlXG7FzbsExNVvvtSPbmKn8f293Pw3kn9EMPi7aNtqMFG7HKe4ZGZKK/bq/H5zxtM0TsXcwZNdWXGc3Uc2Dk2zyGawoWTWWRVI+wX09kVj1bg6kVo7dSpbZoxrIo5g1+948a0ZB59sEgwojE0EeJyfCPnJ6o0uy4CbUh2iWiNo1Pz3Gdstl8+RqRWIbLCd/PhR2UeJs9ymY8NmzU2bJ5iAJt/fr6AxuNPiOn9vPlakTPDO52/35fYtHVx9rBCyibZ70KWNiFLHtq3bGdi+CUircVFf3O9yE4YRKOfQtN0EqN9jI9/n0ibCUjIuGatS26qRZNSxovuLeMJOQ6C5tawQkeIxU/iipTnMYwFagXU5innjxCLn8AdLaNoqzMTVakBWVHQFR+ecJVQS5zFnHBPSMITGlzwuwW3D8ps2fcRQgi+tcU511S8yofH3Xx4MooSqFsy26J4VldyZebiKJ4QTDpHi2nKLIhJoUm7UlxxWf+1zo6kuqa1ahbbhxA2sjeMlYuBrGAK+MbPspNjFxziKllB8QRZF5g7j3QE4FDSQpJk3JUUhuzinvVrvy7ebHyiHBkzn3QEiRQVMzsxXY+4UsjuANKkZ75gORWTfSnVErLuWSJTMtW/kkdS9OnUI+CIMk2SD6ih+hsy5B1n5+aRESgLcKgvBqucR6910pXVxCCyHVjSkdlZb/DAvja6++K8fq4E8k0SGxU20bBzn6I1YTQMLBZuGO0KV/nU/Z2Mx7K8/EECQ3Je+ILt5kivBdycCUBWFCrFIoqmIey1p4y80fK0XwfYto0kSbS0NfB7n1NJp/N0bWhf83EO7NtIqXqRYtnkgQNrW7Z2B58sfP+v3cTZBhb87//6Ep//TJZte+Y2KHf3KOTsZtDg/JUwB+91DG6jamHJzrwmaTo7NqaB+e/40Q9MRia8PPFQnNqaGL6Qm4HuPJEajcAs/Zj/9qcWg7kdWOU8D+4d4tkDJylnixw62UlZbaYt2M3XvzYjunf4A53Tg87zrx66zHPPmeSKk4aYrLN1q8Ue10nCEUFHlzOOLMt0bbk9WBQvXg1ii0lldnNxEtZC2sLOP0wwKFHX1o5RqTBw8RzeqBdYG0fGKRkLoEghDOsqhlZA03QERSKt5rTh7qlJEBt7G3ChB69SnNhBfcs+sslByvIb02Vgbr+C22+wlPPnbGNyPSai5OolPhoEyUALjrGYE3MjmO2svPrLEP3pdSgBGyuXWGObR5rJiKwS8iRz2aokPXD0Ca1iGkl1OY7XEs7XtCg7AklzzxnHzMWRdS8gYVdK/NN9LvZ0dMz5/ef2dtAeHselhVhfH6RcNQgHV99f83HjE+XIIOyZkrHrYNGSEJiFNKJSQA3PF3ESljndl2IVUtiyvCijl10tzTR2TdED2pbz0PsjDm1gPvGxsaKtNeYq34oFS/emvxeCe3a3UN/cRH1zEx9eepeMfXMcGUlW+Pn7A+zZWODKYIqysrhBf9emWmobG6htbODY5SS96ZtySPMQqqsnn0pSLuSJNl1fedonGRcv9vPy233omsSXntpCS2s9NXU3h9lPUVUefXDHTdn3HXyyYNrKtA1oSx5eej1AKDpBS/tMZLaj3cJzOkHRDLK+Pc2Ucer26Tx1Xx8XukN0tWbY/8D8ea2/p8Trx3aBrDE0NsTf+90sP39FcHLwAD45wddfGKKmXkcIwVC6AdnnCAAODk7w8BMy/9f/EaTsdQhGBiciWOYIiuqMr6nm9Di65gRfHrsvxbsfCkK+MnftU5YsBVtLlPJVigWDmoaVs1Q1Nkqk+0uYxRQPP50EFg7aGUUVFR15ssfGti3KhQTR9WOslXmVGdWoq/sMsiwTHwtQMv6WYiyKEpiYU8anexT0NqcawLYEdt5p0A5EWplISLgXsU/TIy4UewOmPUykPX3Dx+uvtYDjk/9buZ2VGgqgSe2Y0lXCzaUV/86yp5waibUuoZcUdbqqZbVkSbLmnm7MdwLf83uuF4KVT6CGGrArRaxSbskskrCtmT7oBeikZZcXXF5ELsE9m+aTAUmSxN71M5UYbveMvWrbNlcGJ2iIBggHbh7D21rgE+XISJp7pm/jOrxsR3DSAG9owfSlXS0he5wJT/YEsYtZWMSRkTQXVimH7PaB7Uz6kqxgmxUUwC5mbio94K2G7PZNTwhaeGkGDEmSuNwbo7m9hZ7uAXKGdqM9k0tiIOdi4HiehUoOZuNyX4Jt2zqZGE8ynlm+hvta2JaFfJ3Cqf7IHerg5VDIFXjng240VeKhezajux1n+eTlGGU1SFnAue4JWlpXnomd6htStZuUEbyDO1gEz382x199/xK5ogvFE8KyDfoHdVpmJRIbW3S+85UB8lmTxra568Xe/Sq1NSl+9X6UofEKzz1VnMMEJsmS09cHZNIy58+Y9I05uhdFUcvw8DA19c583FE/QX++Dqkwzn3PVjCrOnmpFTM1CorGjo5BFHUmOHXf/aCoZ7AtibvvtgGV9i6d3+qaylLcuOkxPFClr19jw3qDhuaFjczxkSrf+2krRTPIQzsvcf9DK5t/P/1skY7Tg9RELbo2LV55EKgzSQ+dJzuiUy7kKebT1G4Yw+Vb+vxs2yY90ICmNiC0ywQbqktubxoGwrYBiUC9DSxergUOhXNVHCc5XqRqDBDuWHhb27ZR7QNEGzqwrZ0kxv+CUINKtWhRyrhw+cu4AzffTMxOVIhGv4im6eRSzVRLP0f3LD7nCiEopEv4wh6efjTD4Y+ucPpCCGWNK1AUbwjbNJAU9boJAuxKATVY59Ar51PT7GNTTLnYNopvFqus7Fxv2eVdgdaNQJhVhLBB2NMZINnlwyplwbKQ3L7rsnf/+N2r/CoZpoYJ/sUjtTREbt9MzSfKkbm2Qep6sNQDoXgCmJlxbDkPtrWkoqvi9jsedz6FMqvETfVHp1OCs7MYv+6Qdc+qzuetyyZHr7xN0XYhlPnZG2FbIEm3VJ/m9LjKlT99DwMdS1k5KcD/+Kcn2BCu8MTBNkbGs7xyLIO9wDlNYS30axbCubNXGYoV2L2lkcamuf1V7793kndPjhFyC373W0+iqms3Ndi2zQcfXaRctbl3/3rcnrnPQbFQ4P2PrqKrEvcf3HzdTsMv37/EyeFJzQPlCo9MZkY6GrxcGs+jIGhvXDntdfeVQf7mzR4AvvDYejZsXB2Ti1GtEhuL0dDcMI/2+g7uYDk0tXr5p//U4vWfxThyWiEcUdmwrkq1LGNUTHwhZw7yh1z4Q3Pnk6H+Ku8cCTE+6qKkNiHlNU6ePMt9s2iF29e52dVymuNXOpHUAL86LNizJcF7J1zUBrLU1Ri89gsXXpfBl78sGB+eYkZzHKaH9o5w9kqUzuYxnv7UNQ3hmsL9D0z978bn6ErJ5OhRBVWxOHBQppA1+OtXOymLCMfOjfH3vx1D0eY7Kb39KkVRCwpcGQhxP/kVjef2ahy4B5YzkRRNoWbdGDXrQIh+gHkGr2Va5CZ0VLeBf1JkMDsq09D8JJIkkRzz4Mj1LQzVXSWbGMblDlGpXl3R8QNEWnPT+7UMQXqiii+szGEzkyQJy3bKEculFJrbma9LsV3UNe8hk7hKVXlnDoXzzYDmkqgUk2ihRoxKGskt+MnPNfIFnUfuT9O5fmZ827b59/9OIcMO3NUB/tE/sPjcZw0+99k4joO3MvzLP1q4u9Mq5xHVMsKqghCOU2CU0cJO5sIhFbDAtlD80RX0OE8+D7I6tzR8CTKASqwPyTJRI0tLKqiBWqxiZmZ/wQZso4yRGMJV34VtGljZGFq0ma+8tLBTNKU7c6pvgqFMlQfWRwn5vZxJOMGOJEG6J3IUKyb/7oMElhD8/oEoW1pujV7hSnBndV1jLOW8XItrG+Lh4xXZvJ0gyQoFggtmYmpcZT57fwuWafPyoVEy5s1Tm/VKJRpCGoNJE1N2T5eeNXkrPLSnnrFYjrcvVmCZyezA9gYaWltoaG3h2JXDDBdu2iEviJHBUX54KIZQdK4MXOQPf3uuI/PLj0Yh2Mi4ELz22hGee+6BRfa0enzw4UVeO1tGkiRyxQt89um9c8d+7xJHL2cRloFZqfD44/tueEwxq8Lg3oPbaG8aRtN16htXzlZztjtORXVqjn956Ao/ebeX1qiLF5/bu6yzZVQq/NcfHmWo6KEr2Ms3vnj/Hd2aO7guPPmcjwcfSaDpChPjgv/wZ42UTS9PHrzK3gMLL+FvHQoxmFkHbrCycVR/kHDIZLZuC8De/QrnRjxYso9wYIL7H1K4594RZFXmxz8Oc2liA0IIPO4z7D84Nwj4wMMKDzycYcpRKeYM/vaXHnI5gddt4w9IPPxQFe8y2QmAcqFKMlalqcO34Hvy9tsax/ocbR3LPsPGLpOy5QMZchU/P/zBGJ96powv7JmjQ7JhncmHZyYoGAE2d6a5mSbPYu93driFhubHKRXS5OI/I1ALqsemXMzg8YWxxNLEQVaplrrmLgCqRie2fYHMUB2KHEH29uCPOpOdbdlkhmtRlBCKr5cpaTchBOmBLpraHyA+dhrqTk47M5IkoYeOE4/3I+sZ/BGVcr6C1+/0UgSj64gl30K/ya1LnpBOPvkGsVgILZjizDmFK7GNALz7IXSun1kwU2MFsvI+ZEWlom7g1Ifv0r4+gGnaNLXd+IEKo4warJ3T3C9mZUZs20Sb7Gkuj1xGDURBkhclkJI0fVKs3EIJ1mEbZczkKEwGxe1KcY4zJCkqWqgRWXdjZsaX7LUGpvtizJxTPSBrbpjsrZZVDWsFQbRLw3H+12MGluLhxOgI/49nNvBoq8qPrmbo8BrsbG3nBydjDAknEPjLK/k7jswnFU6aUIDgpjbhg1PmZpedl192+5H1m2fs32ps6wjQvs6pr9g8kOXDvrVvgAdQrRLf+twm6hpqOXXyEi8dm2nefHB3HVu2drFlK3SPHGa4sLRhe6U/ycbNnYwOTxC/xU4MQNWwsJGRJv++FqoCJoCw8XvX9lmpGDP6N+WqU5LX1ztMz0CKzV21pONpJNWD4g1xujvG449f3zhP3L8Z7YMraIrM/XdvnPNdS/vqe4u6WoOcGXIYYyYSeUSojQsJuNozxKYt6+ZtP1vnJzYWY7jkRZKgJyFTyGTwh8OrP6k7uAOcnhdwmvuL1IMKF3pC7D2w8GTi9xiQcZjF7trQz6YtMpu2zc8CN7W6+MozV5iIKWzbZgMaiqZQLZv09svgcYxd217eCT96XOXS+KYZgeYkuA5f4LEn5vctxEYrlEs2bV0e0okq/+nPgpSsIF61wLd/O0WkZq7DVa7OmCqVikJds4+Hd13kzUN1CEmjO7Obf/1HI7Q1V/jql3LTzGu1jTp/8M1RyoUBgjUfD5GAqjgVFx5fmFzMBxTwR2Vy8Z+Tj/lx16RYyhRT3CkK2Qk0dwCLYbKjLuobn0aSJOJjboieBSA75qG+8ZnJz10QvghAtWgQDG8HoLZxFxOJY4QbZyKEnpCCJ5Se/r/b7yIZP0SluImq2Uekc3W9IUIIytky7qAbSZIcR2owjCLXIHt68dcs3Mfi+AGOYxwJV8GqgqIT9s3tl4k0+FCKA1j+dYjsMEJy859/vBUbmacPXGTvgRvMHk2yjU21IqjBOuxSFhNHakJUy85m1TIoMmqgdtLeyiMvUPEzW2piajutvhMjPuAQH3kCkxmgWfIH3hBmNoawLEfs8xrB8YUgyQpmNo5tlEBzY2bjCMtA0ubfP0cKw0DxO85IPFeZrjJJlJ3784W7O/ncXQaq6pTVrY8o/HLMQCDRFbm9tAHvODLXAacRP7kqPRS7WkZS9Wk1VquYuanKsna5MEcM8zfJkekbzVMuFrEswcB4gSku+bWGSzapqXOiLLVhL0Lkp0vZxmJ5tgKZdJZMySl12xg1cbs1zg2bCGXu5PHRoMSFP32Xsq0tW5a2EO3z9WB2iVpnVytP7MgwFC+xf+v6edt+4zM7eP39bhrCLh565N41GX8K9+zvIlu8QLlq8/i968mlM3zvzQEquDl25Qr3bQrRe8W5rorr+sspfQEfzz6xZ85nA71D+ANeorWr7zHatXM9TfXO+/2ztyz68+ChRF1d55ztCrkCf/WT40xkTR7eXc8D922nvrmBTn8fV1MqWxsEvtAdYcw7uHGs66hw9EKasu1hQ3uGxZbwZ54q0XDiLEG/SX2DwqkzbqpGmR275xs17V067V0wO/3df9WgLDdiZ+MoVpa9K9BbCvrMeayKjtDkXCeo51KFH76xCRMXD+24QDgEZTuEFqyhXHbzV9+3qauzeOaJAsGIY5Q+eH8B691uVNXm4N0GoHHfAyrdvUWGC+uxCikUX4Sxspeh/mNs2DpjzOpuDd19c0uj3nvH4mJvhE0dKR56ZG4ZgVAvEh/TEHYab93MPQvUCiDHcmaYv0ZQyvyMUlEQbnWRHZcwzSqa5kKISaPatsklivjdObzBIIIZsgWXTycxdgzYRzZ9jnCbQiEFVn4rAgNX5BJu/9xjjnamgQ8n/7fyTLJt26R62wnX7CN59TiRdf1kx1TqGp6dJiug5tSy+9m0VeeL0jmyOZmdu6Q510hWZP7+76U5c/R9Nu3wcPRkBFt21o3+YR97DyzdbzSFf/4H5xf83DQsTp8cRdds1q2X+Oj9bt63DiArKkZ63CndysaRVQ1Zc5zjlUpFTPXLAJNOjwDLRA01IKpFzGwCWXdRGetGq+1AVjWMbGxFLcJTMhjCtjAzE0iaG2FVUXxz175p9l5PACsb4ysvSQhbw8qNg6wyJMt85aUE33u+ZlqLBuCRbS00BmKYls2OzttLMPOOI3MdsLITKME6hFFZlbcsDCeyICzzpuujTGkGOFhjMcxVQAgbK590en6WSZGuFIM5F//6L44BElXl5hEi5PHzk1ePsaEjytELMSRpJqL5zuUK3SOHyZQd+uX1kQpfe/EgkiThf/MUR3rnkgFIkkSBwE0lLVgOD9y3fdHv2te18e11NzY5FfIFRoZjtLXV4/bO3Gu3x8NnnrqLUj6Hxx8gORGnMsnIVLFkdm3vZCJ3lXjG4IE984U3rwfVcom33j/PoasCl2Tw9ac6aWufzzS4HOoanEXnK5/10909QlNjB5GauX023VdHGSn7QYdjl5M8cJ9DDvCNL95HPp0mEIncKSu7g1Xh/JkqgyNetm8p0tox43y0drr4zld6qZYtahoXn0/dXo177wfQ+ZP/4idWaUe6UiUUPEvbuuUDPw1NMkFvnryrnvWRBOoC/SfXYvc+FVk5TTZlUrXG0XS4994ZbZYpDI26sWRHaX1w1M/u3VncIoEhIohylqx7HdkEHD02k82J1Oi88PyUgTpjXH3xxTxXu09y5jRcze8mqg/T3Hr9Zs3IYJVL3W46Wst0bVw+E2HbNueOJnnn9N1IqpvYuXq2bz01hyEt2FgFjk3+7/qOzRPSp0UBgg2CxNCPUaQIrojDjpbub6Jry+Ok40Mk+94l2JRg9nWvWT9OOf9jol06kqRgjq+jrtEp8Y2Np3H7V95bMhtG2aSQtpAkC82tUi0bNLQ8gKwouNz3k4xfQla9WGZ1Mpi6MicDYMMWZ71NTFTp7bXo7LConRTn9IfcNHVIxGKCbZuKXLo6gmXL7NxaYDnSnimcPVVlPO6mpS6HJTQ2bZHRXCqqptDYaBGLySgKrN/i5shVA4GKJEvoNW2YmTEEfmRVm2mwX0H/tRBQjQ+g+KNYxTRaqAHbrGKkhsGy0Os6sKtlbNNA2KZzLraFkR6b7tFZDpKsoEWaELaFIi/QEzqbvXfSDpVkZUVtEVvaVl6afSvxiXNkhHCEjWR1ddzecyCrSJKMpHswKyvjipdUDQxlUnFWXdHYQgisrKMrI0nKNNvFSqD4otMMbQsJVt4qmJkJh0qwnMcq55fVnpnhRbeRXf55zo9dLYEQVF03RtqwEkiSxKkxlVNjWeZpxMgaI8WZCVPTlGlj1aWprGbC/k1AtVLmz358gnjVR4NriN/9yj3TDe62ZfFXPzrMlZjE1kb48gv38ak9CS4P5tje1UCwpoYXn1u7ettjxy/z6odjWJUyQvVQdfsZGE5dlyMzBbfHw46d8zNZAM2NYbzSBAV7rsimLMsEo3fY5u5gdYiNlvnpu1uxZQ9nL/TSXJNhXafJPQ86c2EgvDq9KsN0jBUbheoKp6VgxMW3vjhCbHyA9nUuVhKBSUwYvPdRHfmKh6fuG2bPPuf9v3qlyti4yvZtJqGozrYtFS50D1CuaOzZliEQ0vkn/6RC97nDnL3o43KqGSFsMqkSy2XbPT6N7bth606b8cGPiNa7cC3DdrVYUMEyLX7wSiNFqZHjF3N8O3qFcI0zfvfFMoYBW3a45vz+Jz9RODd4EFHJovjd+LQ0Pr+GbdtYhs3ZMxDwW9NG+Y3CKJvkR7fg0luomCenGcV01VGvj9S1YUqH52VYwCkZm4ItMgghELaNkBYX+1zuWEqx3dQ37mGs7ypeLURq4m2kwjB1be2M9Z8gusGNrEB69BWwQ+ir1JUxqybffamBnN2E71Sc3/3aEB6/zplTVX767lbMYo79Wwb5B3+QQgiBvEK9uf6eCj99bztWtYwsy0guP5u6L/H5z1uMDlX4y1c2YEoBLly5wle+bPDFxy/yF38dRQ01IGk6stu/bC+zoylYdAgBJis5JARqTStWMYfiiyC7/diZcfRoK1Yxi1XOTxMjmelxhMeP7PIhLGPJZ3chLBYsl2ez9y4jSv7rgt+Ms1gFqhO9jtdrVKe93CkRS8UTXBFNnSTJk1TC9qookldahjYFK59ECdbNGm/lkBR1OoV5s+CIehYBG8UbXpBnfYq2UPEEnB6hZRyZa3nRZzsyViEFioYEc2gMrxtWlS0NCrlilaGC+4ai5pfGBT/7xQncLpUPruRB+s0p5VsJEhMJYhUPkgRjBY18OkOo1nFOxkfG6M54kV0SF2MG2USSuw9s4e4DN+dYTncnsbQAaAGk1BBRr82WDTtvzmBAXUMtv/u8SjKRpnP92ots3sEnC6YhECgYmQkM20X3SDM94xrh0BU27/Tx0RGTbF7n7v3V6dKra3HxnMGlHh8bOgp86rE4x09XaKgpsH7zyuelQFgnEF5Zf8R7b1scPeGn5G4FDc5cyrNnX4HRoQo/eH0ztuzl8tU+vvXNInWNOn/wnfykYebsX1EVNu+OkMgZnO+PgwRpXw2wsoZCWZZp6lh6bTn8nsl7xxuoDRX48ou5OVTU4DTLV0wdNDCEi2rZKZM78ZHBqx/uBFnhwcQ5HpxVOjYwGkLWXNi2lx11J7j3AYmLF2VeP1SPKGexAhvAqvKCdZ4t21fXa3ItsuM6VmEbilRLuK6F1EQVOAyAwUXScT/Vyije+hLLmXahljixsR8iySbhltX3mFZLFuPdEuu37HH2V1sPCFyudiKNTaTGx5DdCWTFMeBDTRVggpU6Me++ZXHqci2NvmGylTCSBnkjRD7bi8evE4u7MfNp1FADp3pd7Bm6Sn2jwtVLJWrrFcI1S1/rSlkgZBVhVpEmHZJY2gdkSSbAlByq4UTGC2RYv9nlBK7zCYRpTNsziwWl7XIes5RDUlSM+BBquGE6CyJJMorbh12adCAnHQ7FG6QyftVpQfBF0Nw+7EoRxRPASI+tWVZfdvvnZY+mdAtXGzC/XfCJc2Rk3YMkKyguD1Yujl0pIiwDNVCz4vTdrbrRkqohjCqS7mZuqdjtgSnxT3D6cBYkMJjMgGGbyJ4VZMBs04kUmdV51MrCtlF9zgu4PL/68rh/k5snHtmNbdv8yfePMFq8AbprRePoIIB52zgxq+21uRHa58bWZnbWD3FpuMj2Dh/BmplMRG1DHa3ePoZLXjpCVQLRm/v+bGj2M3ChhEs2+ern76K9s+Wml3aFo2HC0fBNHeMOPhloavfw4NbjvHVmF7LudfQnSjmSMYOzpwx+eXIXkiSTzPTwpS/MV50v5ir89K0uTCXEpaEiv/vFC7z4QpmbUdcqhODlvy5wPrYH2y4hlXJIupvO5iygkMsKLMmDBORLOrPV7hd6J9tabdwBFwY+WhvmRu+LOYML52Xq6i3a163eKThxsRZTb2CsBN09p9i1Z+73mkvj2YcGOXc5Q1d7jvoWH4WcwXsfeKcDnPG0h9nZ9ru2Jjh8WqcpkuWJZ2Q8Po1XXvdjavWYZdkxsBSdVPrGTS25uofato1O8/z4GFVzYPq7SFsOy/wlHkVGkpYfS1Zkwi3znx2AQsrGKMoEG+1pR2QK5bxJOS9jFTbRuWE/I90XCDc0kxgdxh/xYauXSSdcgIU7vLDjcuq4QSKts3d3ZUGHwzItDp1qwnbVks02sqv1OGOZBjZ2pKlrdgLHe3ZV+PCkhZAkcAUZHVU4/KHO5dhOPFKCb744gNst84OXAiQzHh68O8b+u2euy8ZtLh6InWN0XKdYTFAy/dy3NwmobN6qsrnnErG0j3vuSjBVqtbVnmcw04VViKO6PAjVi8cep2j752U/bKOCrGoz9MrZOLLmQlInGcyEmBNoNnNxhGWieIOOTIUQiGppWktm9rZCCMzMuMN0Juw1CVhb2ZijwWNb01TQy9E13074xDkydrWEkY2BbSFpOna1OP2wLc8HfmuheIJYhRRmpXCbimM69ctCCBbrw1GDdcumRIVtYeUTgIzkDjqRAUWb5zBKsjyZAWJN9GN8HmcSlWUZn1udvcbewSohSRKf/+zBBb/TdJ3f/vx+JsZi1Ddtn0OPejPw4AM72NA5gs/nJRgJ39Sx7uAObgYO3u/lxJUsOduLXcpRo/Vz8JEgp47b03OfaS78HimKhCw5UXZZspCV1TVrf3TEplxVuPuAice39Jo43Fvk7NgOsEoo3hCuSh+ff3KMjk1O9cHGrS4ODJ5nLOHnwK40y/UvtHW6+DsvdJPNWqzbODew9NIrfvoz61HsAl//zGWa21ZXrtVWlyY90oRXTtHctPB6tWO3xo7dMxmNEydUslYzdjGGS61wYG+e4UF47VdRNMXmuacz3P/Q2OSc5pxbe2OWkcsWmlwhLPdREzXZvdviRvV0LOFo4JQLGbLl12joUubsU1Fv3FHNJ8Atf5pwXZiJoTeIdIxPf1fOmYjCQ9TXrGMocR5FVWns2szQ4J8S6VRQNAWfrgKnJ38x/3yvXKzws8M7kBSN0bFefutrpXnbKKpCfSjLWLmWgJLg4UdkApHsnP1F6zSeejjB20dkwsEymzbbHDruPHMlUcP42CBVQ2Kk0AUqHDtjs/9uR2+lkDN47XUfpYrCYw9laWrRSCVivPRKmHc/0nj6oTgvvmgBWWY/r8WS87dARUwSINiCBbkQZLcfMzUGgVps05jeZqHszewSNacKxTf9t6K5HTrlWbAKKdRQPZIkYxVSTs/1jZaIybIzryg3d22+WfjEOTJ6/Tqn+dzjnaw9NJ20naJO0+7dTvg4+1uWg0MRGAcESmBxL325aLiVT6JOioJOU3cuNJ4vgl0pgBBrkhV7/3wayz5PrlChO8bH2oj/mw7N5aKlY20a+VeCptalhcTu4A5uZ6i6ylefH+Nqb4zODou6Rsdo37NXIp09R7bg4v4DCzc2u7w6zz8xwOWrcda3FwlFV54h/uiIzRundiJJEvnCJZ57bvGyo2yqQjJh41VzlIQPV+Ey3/hagbqmIFcvV0ilFXbshCefVnFKxFYWKKxtdFG7QGFEOuechyX7SKcEzavkJnnuMzY7uo8TrVUIRVeW0QkFTCTNherysbP9Aq3tOj9+SWe86JSQHj9xkSeenGs3PPq4xIbOE/hDCtG6KWfrxoOkrshpYrFhZC1L08al91ctWRRj65ElH7L3Av6a+baNUTYoZU0CdTNl1VbVh7fWWVs1tRGY7cho1Nc5tPOegJfk+GWqxiD1Xe4VB6cqZaaV6yvm4gvulz+fo/fqSZpbIBCZ77Dats3WLRZ796cmP9HYtz3OkVMyDdEcXRsk0ikLF2nKIkRz3YxWz7tvVrk4shVJ1Xn3sJPVPHtWZ6zUCcCHpww2bJkf1Xz8gQQfHLeo7SzSUF+lf9jPtk0FfvCr+U3ysuZCq2nGyMacRvoVagPOCdYuck1lzY1dLkwy4BrTpWkLwSqkQZKW7cmWVH3allsJKZNpmgxNJGhrqEVRPn7D6RPnyEiSNC1yBJPiQytkg7iDuZBUfY30cKRF/p6PtcxMFWw3b5yfTK/fTtk4q0rEZZCuqAhlbZpEl4OZjfFf/voDtnWGOHj3luvax7mzV+kfy7NzUz1t7XfeqTu4gxtBTb1OTT3MjrDIisxjj4NT3rT4nLV+k876TfMFMJdD1ZCnjdqqoQALOzK5dJX/9jct5Kx6mn2X2LVjnPXrBcGIi55LFf76jW0guxgcuczzz5sL7mO1eOSeOIdP2DRE82zetvr5WpZl1m1aXfnwzrs0VPUspbLErt0yoBANlRGjAmyTmnCFa++DJEm0b1h7zRp3QMUdyKxo21IyTH3T/QDExyyouTjn+3LewszcS7RmAxP9vyTa6fTguoMZYiMfIsthhDb3N76oyfjgYTS9BZOzRFqdY8mOuRBWBM0/hje0tEOzbZfGROI8yaybe/bmWOz5rFYFV/s1BvuKCFUjlvZz8K40m7dp5DIG3/1hhHg+wn3b+3jkcef9uO9BhfsenCqH0mjwwLde7CWZsOna5AJk3nrT5vjgbqxyDjMb42pCcOm8QWO9QDpXwpbcNETzXJtNsi2bgUEVr8dkzy6D+madfKHEsdPBaervayEp2rRw5koxHaxl8SC27PJilfNO9sbtXzRQbGbjKN4QQliY+eSigp0w2b+9wlfDMAz+37/o5UI1yi53D//86Q03vcpiOXziHJk7uP2g+MLTLBoLRQOEsNeklGylEMKmI1BBVRV6EvKaMnt4pRL1QYXBlMCS5zspwrZ44e4wu/ds5tzZHn7wfmJFBBQ3AkfTKMxATqPvaIKfH31/xVTZQgisXAK7WkIN1SFrbi72XeQff7vhDuXwHdzBrxkOHLDIFS5Sqao8/MDiWZTYmEnOcrLoE9kwe/bFp9/3VFqBybnNyaLklxwzMVHlwiWd1qYKnRsWD9xs26WxbdcUw9atiwJv3TnX2H7oEYm66AlUXWLT1rnHWyyY9F+1aWpm2YbztUIxIzCymxAU8dUNoLkVJKWIUS2j6W5skZ33m3LWRX39ZgB0ZT3gODIun4rLdwVwjPfUQC2yHET19+ILK0S6riJEz/S9zsZsgv7n0F0+4mNnIHR63lizIctTjngF0BFCcPwjg1JZY/9+c1rI9OWf+RgpbsTIxlADtUiSxJuHVDZvy9DXK0hU25F0OHKyjkh0nN13LfycRutdROtn/n/ucghJdSiotWgrliTzw5dGaWzReXTnOaI1Ehu2zs9gnjphcvjybidT+XYfD94d5+0ze5BkFb9nhH/0+yMrXu/+5R9tW/oaTQZrZ/fCCMuYE3BX3P5liZOQnD5rCW1aHH0t8NXv9U4ysUmcLgT58vf6ULyhj7V35o4jcwergplzJry11IVZimHNzMZAksG2kD0BpxHuJmNDxOC3XrwXSZJ46efHODW6NvtV7RLf+uwm6hpqOXniIi8fn18fLBkFtm/bBcDWbetQ3x7AUsMrHkOYVWyzuizN9ZwxFQ3brKCoGsKoIHtW/lunSbAOcnGmolimJVZNFXkHd3AHHz/cXo1nn7VZLuPT3uWi69RlhmJB9m2PIUkzjsXOXTAwfJlMwcND96SW3A/A3/w0StJoRz6Z4uFdV+jaqFHffOOZ6EyyyquvB6gYCk89kqapdW0cC0mS2LZ7vrErhOD7P/AzVu4ioEzwd748ii+oUcgZ/Pw1H4WyxuMPpGnrvLHAVKVgUsr40H0lvCGZSmo9DS13AzA++lM80RS27WJ87IfoHi/+hizXmnqeUJn42DlC0Q1UzCssNONnxzzUNz6DJEnEx1wQvjR9/lOwLVBV51oU8jrjF6ps3Lqy6yyE4JUfFTnR04kaqCWdvcynP+1kAIvFSX0TRUMYZSTdg9/jiH+2tYH38DgF6qjki/z01QgbuuL4QsuXUFYKRYTLwCpm0evancb26HrGSyD3C7714MJOt6ZO9QFLKIqNxyOjUMVGxe2ypq9J96Uq8YTCrp32PFa81cIupFGDdY4GoWmsWkRdktXpcjFJW/37ZBXSCNucZPOduaeKL4yZHkMN1DrXL7y8/szNxh1H5g5WDCufcmiWFRUzG1uRI2MVUjhaNuHrG3RWKaCZSyzryFilLMI0nPrSyUnwWoaQ5eD36tMTU8CnA2tTGuGWTGrrnXOpjfgQojjP2Bd6gNfePM2erY2cvjiK6QqtWFfZLucRloGkeZbsNboWssuLVco5dJKaa3WkF7JTiqIG66hM9KJ4grzw7KaPPdV8u8OsVqlWqngDN18P6Q5+c/HBIZPRmJe9O/O0d62NoX7quMEHJ2toiOR57tPGgmKYqq7w5S+bQJJrsyMuj8qLL5o4qvXOXGJbNsN9JWobNDx+ffqzV19ViMdVhJrCMMr86sLdvHcuy9c/10Njy405M8dP6PSmHO2nQx/28PnWhVm6ppBNGRw97iIcrLD3wOqNUMuwGE9HwA1Zs47ERB++oMbJkyrd8Q0AvPeBxVc7HYNcCMHrrwkGxsPctTVFNgfnempZ35zgmedmZv1r14hSbAf1LfvIpUcoZV/HmNQzs22bYspGFrupb95NNtkPvl+huhboo/KpqPoxsplD1KxbZB2XrOmAlC2MBTcJN8r0n3+J4dgmjnfnKZRa+UfrR1D15U3LI+/bnJnYhxpwAmKlsspUKePjDyb40c81MGFP1xWiDR52bHNKJcM1Ol98tpf/+O8H0dt2I6sax09kePCRZYckXOdmJF7ENsuYqWFso4Lw+pEUN5HA/MAiQDFv4PVYPLrjBIWyj/17y4Rr3Lz46GWGRl1s3+Jkl179SZHj/TuQNTe9Az189StLP2/LQXb7MJIjKG6/41Cssl9a8YUniZgW7lN2mF8F2LZDyTxb6qKYQdLdKJobIz3usLJN2mKSrKCGG7BLOdRwwy2tllkMdxyZO1gxhLBmNZYtb16b2TiKLzRNwawuQQiw6JiWQ8dsl/PLRhWEbSHMKmqgFrtawkyPo9d3ImxrVeOfHTIIvXMaTVX5qLvAPDHM60QOPz999Shd7VGOXoghSfP3K0kSR4cVjg7HAJXVJDVsozzdVGhXli7nuBaKJ7Cq7acgKdp01EcLNSC7vPzVuwl4d+X02DdC+wyOQTAxOkYkGkZ33/yM3Y1iZHiCv3r1IkVT5rm769m3d9PHfUh38GuI3ssl3ji5G0lWGZkY4u91zS8huh68+1EdOdFMYhw2XjjBtl03Xsb1ox+pXEkcIKKP8ulHhzl9IUgxleNKbh9yCKTCCJrHpgoYcpCJcZnGlhsbMxw0ELYFkkzYX2a5NetnrwfoS3YhbAuP+8y8krLloOoqB3cNc+Zyhc6mJK1d3pnjsAwkRSPknzFu+7uLHO3dhyTJvP6uha3VIuk+Tgw20HTkMO+d7sSyJD79xATrNznHIoRAVZ053h9qYiIhobhyJMdGnO98Jdxeh1TFH24jnrIXrUBSNIVA7eLByFCTQWz4JWQpgDsyAqjYtj0vSOWpTfPWW1ks2YtLyq44E5/KuaeN4JAnxyP355lyfDdt9/HPNqaolEx8oam+2Jn78cGxIK7OLVi5BJI3hKouzEJ3LZ57IsXxUxXOXg5g6I0owua+rqO4PCptbQYwV+uvVDD48x/Ukaw00+K7wje+Xp3WPtq4VWfjVgHojAyWOXoqglrnZIUSKRWnfG4+fuczJ+kbVFnfaVLbOHNO15ac2dWSU8Kl6ljZGOoSJe5CCOxCGtnjnxOIXO5eTNND5+JzHBlhGdPZH2FWQPeAsKkmhtGizY4WzjXZoY+TrvmOI3MHK4bir8HKxpwovLaCSV6SVhTdtyuFSUHS0Lx+EDXU4LDM6Z4VZYCmShwkWUGI62Ohs2Sdd65YONGhtWu2lySJE6MqJ0azgGsmIgIrZjVZcv+aG6uYQda9cJ3nvlqsJtV9s/CTn3/EiVGFWq2Hb72wB3/wxrMcV3uG+OUH/QS8Ks8/uQOPb+1IJq70xilIAdDgtUN9DI7leO7xHWiuW0PscAe/Xihkq6QTBs2d3jmGiaJKSJPvuSpf3/tezFXQXcqcCHo0WCSXAVXkqFkDLhchBN0DXkwrTgyVV171kpI3YRbSqK4SqB7aW8ps25jnvaMyNaEim7fe+Lh3HdDweM5QqcDOPSrLOTKGMWmgSzLV6sLb2LbNkUOCQlHn4IHyPEHSRx+TefSx5OT/nP1t362jaWfJF+RpwgCAUETFTZYKYaIhG+QEiaqPoBZncCJITrSADGculli/yTGKJUnC5ATJ8RJVY5Bwh4RRGqScshBSmbp1BpnRQxjjG6mafUQ6rj9LJ0kSkdYSUKJSgr/4C52RRIgDO8Z49PEZ5zZa7+azD12hd9DLlo1FFG1l2ay79xVIpvoQAj71eG6OUQ+OY7hQZse2ba4MNiC5ZNRgHdujH3Lg4MoCWA3NOp9qNslmc/TEatGqIzS1SPz8/XX86myAB7Zf5KFHFMcxsGziYxWSFYcBcyjZgFHpRXfPPb9sqsL3f74OoZYxM+PIks39j0wA89eMQrbC915ppyhq+PDkGL//rQl098JmuLBM1Mn1VV7G3jIz46jBOqxCysmuaMuX2QnLcDT7qsV5dpriDWFmxkFWsC0Dd7Ad2zIx02POWP6am967uxp84hyZOWJCtoUaql/+RyuEXS1hl/M4TeueNdd+sQophG0jaa5V9UCsFSRJWtX1ckrQlq7RtCsFhG2hBmoXFCS9lmVuyfEms0VmLgFCoIXqFxSfWksslbpdCnaliKy5kN1+hFlddf3rQlDcfuxq2dFGCs69T07JXRVZc89T9b0VMLNxnPSSWBOnbTYuDZeQlCAJ08fg0ARbt934+b19dJDRkpfREpw4M8B996yBZTWJrvYIhy/1UTZlSgacGpVpPt3L3Qeujy3uDn5zkUpU+YsftZAza7mr/QKfem7mu/YuN8/de4HRmIfdO4qslqHs+Ecmv/hgPR61xJc/MzJdyvXCZwtcuniaujqbhuvsVamUTF59zU22oPPwvWnC3jIpyaEsLlcy4HKMpX1tRwlGPezYYeEPauzZl57cw9JG0vvvWHx0to7mmiwvPF9Gc82YMomJKidOeagJl7nrwMqvyZOPpDn8YQ9hf3nS8ZmLXMbgRz+UGK449NSZXDdf+HwVy7SoFA28wcWNx03bnOtoGRbJWJlKUdDU4eGrn+lleESlsbZMX7+CRIztuxRGhiXODZcQQqGtscBsUy3cWgCOTf5PxuUDy+zHtlRyI5uQqaLXfojfozDbeRNCkBkDRbMJ1K4sy2ZWTSolk6EhGMxvwKwmOHI0QG0kzokLdYQDZT71dIUtOzS27DBYDc10bb3O1782RXM8c59sy+aXr8sksx7u3ZehY/3ceyjLMps7YpwbjlDn6uWJT2kLlj8uhYfvzzL8Upyy3shHx7OUiSIpcHUoxL58ij//Sx+pUoR7dw6zIXqR3tEoOzZMzHNiAIo5k5IVQPF5sIsxfvuLo7R2LbwGFfMmBSOApEK2GuSd13t44jPzS8bsShFhlKnGBydtvaXtC0nRpmmezVxiRY6MGmrAiPWDLKPVzOUylxQNNeT0vgjLKa2XFRVZc6MGnd4Yp+H/4y8rg0+gI2MVUtMNVHa1hL2GYpN2uTBtMDupOme/dqU4yQ1uo/hr5qnALr6/PCgasubCKmWRNA+K7nYa4D8GY3S1WIlhblfL047KWrCDXasvcz1Gu1eq8NCOMBXD4p3zuQXZxQD8cpnP3FuPpir87MgoicrK9RokRZ3mi3fKDtbmVZR1N+hzj8OuFJxUcKAWMxtDcnmRJNlxwoS94ufxemGVcsgeJ0pkV8tY5fyaOuLb23181G9Q76nS3rZwmValXGZsZILmloYVZT4iAY2BPGAZRMNrq+XU1t7E3/+8lx/+9AP61TqEZTI6FucvfvghW9eF75Sa3cE0hgYhb9UhSXB1OATMpd/dtVdjF6unWQa40BNCqEGKBLnSk6SxxQnKnDsrceRkLY01OZ5vrKLqy88PxZzBhQsyDfUmrZ0uTp+WuDDmPMdvH+5j8+YCRy47xvS2TQUs6TJBb4X7HpzKMq3OIPrwTB1lpZGeVCO93cfZtH1m/nzlF2FG8p0IyyAQOMOGLSubl5tadF58oYJjNM43HH/1jpeBeAQ1OKm5YktkklX+6kc1pEtR7t95lYceWfxavfOWxfsnmzErZSRXiEf39nL/Qy4aWwT/6U/rSZgduEmyY08/23bp1NScxzKhuWPhbINlWiiqQmogSCj0OVLxQZrWOQGX2Pir6K3JOdunByPUNXyKaqVIdvwVgg2LawQBTIxU+d5PGskkq6huHbN0FdnfAK4afv4rFdvXynAO2k6f4q4DS+5qVTh32uBo7x4kSaLw3gCfDyc5f0HBrpRoaVNZt8nNZz8nCL1+kiMXNvBn3/Pw5efj1NSt/B0YGdWpqE1IQLrgJaCMkKv42bY+w8s/tkmJDeCGExeq/OM/TGEaY+SSFWzbM6+0rrHdxwPbLnB1KMT2g+lFnRiAVEbFLKTANBEIDl/aRjh6if33z5S02UZlutRLVCtIumP3LQVhGQjLdDIynuC87xBiTsM+OLawFm0GRXVK1xYJUssuH2Y2jlUuoIYbMHPO30gyWOaaJgOuF584R0bWvdilrMPXXS6sibDiDOwZtqZZpT12ZZaDs8Im7ClHSBhlLLOCsMxZDtdvDhuU4g1NCpJqIFZW53ozMJWxwLY5cKBlWkslkT3G6ZGFf7Ol1cumLU4z6a7xIr+6uPLmPknVwShj5uJIinZTS7SEWUV2Oz0wkqKBZWGbRexqCUlWEcK+rv6llUJSVOfaam6EVUVS5k6o/+Ofnrih/QshY1fz/P63H0BR509pRqXCf/3hUUbLPto8/Xzry/chLyPi9dzjO2k920co4Gbjpo4bOr6FEAiH+NKL93PsdB+qZfP6eRWhaPR+FGdTVz2BcHjNx7yDXz+sWydRe7yfeC7Mzt3zG+tvBOvbMgwkqriUIp3tZabKaA8dr6MgNZGLw5VLJ9i6c/kxf/wTPwO59ah2jm8+300wANhVkHWCvioPPmjj855GlgR79yvIirnsuSRiVSbGoGuDzPCQ4OIVL+vai2zdodFUk6U33YhXTlDfONewtKzJ/8vKoiVi1wvFH8HMTiAZObYdSNLX5yJttoEG53uiPPTI4jovpy/VgrsG1e1UDfSNBLmfArZpkyr6QYeSCJNN9RCKuGhoWbxc6vW/tTl6oZlaX5wXHmvF7fXjcjsGrBACm/K836hKA7Is4/b4yeXCwNJ9jD29GgUaQUuAtwbVC0bWsUukqeZ/u0IwuLZlzD4fSLYBio7HZfGjn0YYL3c4xvPJMs89NMS6LsGZi35sxUvGCtPTk6JmFUUXHZ02/hPj5IwIO7aWePChIkZlArdP5+hJD1Ypg+wJEnQlMas23/uBl4H0VjbU9vDFL1nzKjAeekThIfIsZ1LrGmiBCEYmjh5xmsDGYo7j89/93lmEJbhwKsdLh/ai6E6j/d//ylnC9fPL6mf31Kihhmm7dnZQ1CpmHKF3WYZr7d3Zzs0S5DyKJwCeACgKVj6JMKvoNS1Of2xu+V7YW9E78wl0ZNzYwnYcBbdvTaPRSqAOa5KeWPHPv0lmPjnZDxJwIudLQnIYunSPQ3EXqMXMToAk3/QI+q3E7SJIKozqtLhnMuGoBdu2TSZXBRa+V4MTJQq5Apqm0jfZ97IaKNdETm4WFF9k+tkBh1veKmXmZA9vJmTdg1WsOk6bqiNprkkxL9+KUuDLQZpULp7txAgh+MWbJxlPG2yslxkpeZEkGMjp5FJpQrVLT6Kay8X+fZtv+NiWgtfn48F7t1PIZnnn4lnKgK7YaPqt0Z+4g9sf/pDGt7+Vw6ymFyxrWSneecvi2Lk6WusyvPC8k2W5536V9etO4faoc9TT6yIFcrEKUinGiTN+6hoK1NYv/Uwm847RbcoBkgnYutPFi+IcmazK7j0CVVO5+56VH28qXuHPvt9EsaTRWT9GLN9ARanlbF+RhvqLvPi8Sl/PCeobpXl6LU8/muDD41VqwyW27ly7vrNHHyoy8t0eYkSQwx30jtjcf08B/7EYOSPK+pYUIHPkfZOPztbSUpvls5+dYX3raExxZqQRUUqiUWLH5jSgoWgKj+wf5szlEh2NaVoXYxGbhBCC4xfqwVND3K7hjbdO87Xf2glSgeGBn6C6TELNBeZlubRu4mN+oIwenGA5R7Kzw8B9JknOdJwirxSna/0gRTvHngcTZHJ5IiGL9Ztd08d15H2bZNbN3XcVqWta+nm1LZtSvoIvNNdh69rk4nOV8ySSOnt2V/kv320ACWSXBytfoqfb5s0PW6jq9ZipEQIRN+1tyzvGs1FTp/O7Xx+jkB2gptEJECuq8/t9u4v88r083tIAL3zD4MKpMr0jzUhqmSvjHRSz5+cd80rRucHFs9kLfPgBxIwoqlRh5y6T8WH4wSv1lKo6O9vLyJOl+D6PsaATcy2m1sBrISxzFuvr3HVenqruQZrud7ErRexqEdnln2ejCstEjzr9QtXEIFq01cn23Ab4xDky4NDNrpUGymxM0dDOG8/tpzLRhxpuQPdHMbMTyzsyQjjUgGZ1uhHr2r6H2xXCtrDySUByGs+Wddpm/fYWi1/OwIkqCdvi+NUi2b8+QtW0GCl6FmUOGy+7+LffO4EMlOS17Ydaa1z77EiKhl0pOhGZW0AMMHuSNdJjqKF67GLGYcG55l0UluFkkW6g5PPi+asc7hVIkkYqnWFzROfymMn2Fo1gzeIKxx8HfMEgX32ykyt9STat24Dbu/Zz0x38+kKWZXT34nPi27+y6RsJsnNzmr37VcyqxckTAo/HpqYGXvlFhLEJDXQv3clG+q8eY/0WxxCra57/jr34uSI/ffkSV9K76M/CO+/3TJZcLY5HD8Y5csqmMZpj8zZnvdq8/fqdiOF+g2JRRQlE6e+P45mMOwgkhC3Q3eqccrIpnD9j8NrbjXjdBg/dm5+jb7MQCpkyfT1ljpxpRVVsPv1UmppFnLZASOPegyVePdyJwKY+kmNiTObFJ3tR5D4a2pz39vDJBspKA5dizfReOcbGbc61fu4zNnt6jyEkk1NnQ6RSCqZhoWoKB+9TOXhflpWU2EmShF9Lk6UeK5/CataZSPwJvoiLOv/Usc/fT6DeYqa3Znmjv6lV53e/2k8+U6VYHKWmXiUUdQElYGqOmtnPhTNVfnVmN5IkE0/28dtfL87bZ3yiytlzbiKBPB+cqideqOHg1l4ef3Lu8W6bZozTefy+CQ4dq5JOVAkHVM5dUNGbnfVMUWV+50t9hKKrD4i5vdq0AOdsHLxPZd/+BIqmUC0rvHlsA2qgBrOYoSNwZU4vlBCCC2eqgGDrThfVssUHHygois3Be1iwd2f3Xo3deyExdg7dJRGIuHnnbciJZoRUJZ4Lc6DrPBMpHwfvyrCSviOnB9XRjlF8YaxCGkl3Y1eKWJoL5PnviuzyzVlj7Wp5mvXVzE4gafocW0xUnftpm876bOWTt0VZGXxCHZlbDVn3oHj8KNMaKMtPVmqw1uHyVjRk1/VR435csPLJOaV0K3VkptOUwnIiAjfB2VwMsic4S+zTTc9wDoSN4tdhif6VMm46QwaCEv0Z/dcmW6Z4Q9jlPHY5d8sdZEnRnJ4dX8TJzMy6z3Y5jz1JSmBm49NZstXCH/Ag2zGE4iJfLPO1z+zkC2E/mn57MoO1dzTT3tH8cR/GHfyaYbi3yPsX7kKSFcYPedm9Z5TX39A42b8FYVu0eM4Tq3SghCZ1uCpxgqGlS3hdHpWOToPLJ5wyabdr+ajrjj0qO/ZM0T/feCDK7Wb63Zf9UT772CAXe9J0tRWoaVw8Gn7yfJiy2kTZhPOXCjzYsPi5jgxW+f7POimZfqyik6E+fvISTz61eO/I7rs0aiNnsQS8dyRA/9mNeKQE3/rC4HS5UUMkT3+2ATdJaupnroUsy7St9/KDH7rojjklyT7vaQ6sIlN16bxB76CHe/alOPTBWYTbhyLK/PEPN9MajfGlL5RweRZfrwopCauwEdvO4G8YRnUtbQL6Qy78IWfOPHnM5L0fhKkNF3jhs4uPY+bijBfgR39dobFZY/9+e5qZ68evRIlX28EsYVWrKF4f53uiPP5ketFj2L5bY/tuR5n+rbcs3sk0TJajq3ik3HU5Mcthii2tWjIomgFQQXG5+dTTJSRpxh774JDFm6d3A5DJniNX0DnW65Slf/DBRdpbyjz/BWVBh2b2c9zRWuW9D4awFT+j8QCPPzJGU2uR2U5MMWfwizc8lCoK+7aMO3p5qoZVSKN4HcZXMxd3AoWBmumAobAMzOQIrsauJc/ZYTzzOQ5NtYJdraC4Zr1rsjbtMCne8E0tR18t7jgytwiKLzJNZyctU58//ZvbgNr2+nC9PTxiFq954tY6Mpp7usxptgG9nDG9rcHmi59xVqLvv/wRlxK/Ho4MXB8RwlpAWMYkAUZ+XmPiHC2c6kxETwjh0HBPMr0thGt7bSqJURRPAFsP8G/+8vi8+3ij+jV3cHtBkqRngP8TJ0z8J0KIf3XN9y7gvwH7cBoEviyE6LvVx7mW8AYUXHKOKmEC7iKyIpPNO8aPJCu4dAElA4HsiN7q9Vztc1HXtPR+992tIEmnqVRV9u83WQ0blW3bHH5fkC9qHNxfnlf6tRK0dblpPHaVkUwLu9bH2LjVxcat1WWPo7UhS1/CQpNKtDQ5QoUA/VerJJIy27czbYD39esOW5U6memxDGojZZIxm/ExWL9RWZAat6XTWSfGfhYEFUqihth4H+FJu+7F5/P0XDlJYyNEa+cHTmQEVimHbZS5clmw7+752iwLITFe5uW3NmPJPtz2OP/wDyeQlSL/279tBleYoUKY4f6jdG1Z3KyzC1uobdgLwMTEjwm3zM+aLIYjJ6LkRDO5FFy6eIpd10yfW3fqjAx+xIdXd1NMpDk/solLSR/5/AWeekYw1FchkwuDC4Ss4xGDlC0v6zuTLOT8GhWTC+cE0Rqb1g7nOm7sKnPsdJliQUFX4ZH7S9yIGRufqHL0hJeaUIkD98x/tgJRL4/tvcKl3jAbO9LUNs8NKieznumsRTLjmm7ztcp5cmUv///27jw2ruu64/j3zJuFw00LKcraTK2WQi2WZEWylHhNXDheJK+xXRuxa6OB3aYo2qJAgwJtkP4RBEX7R9GgroO4TlPUiesWqVIrVVvbrVDHsiVXli3KlqzdlCWLq7gPZ7n94w0pkiLFkTSc4cz8PoCgWR4498wMed5999x7PzpVQ+QXJ7n3gUufy9QvCbNgboym7vkkgENHOpgzf2SlxJ73gnx09jriHWc53rqJmWVnefyhZnp7k7z08wZShJheFaO9M+xfAA9F/RK1UARXfvGcqeGS6X36UvEBiMcI1swjcf7ciI5MIBQemuA/PAf7F4AN84KXdc463tyZK5HRN6BUEkSi21/lI1iZ/dITC3hDy9kVO69iuj8ng8DllQelkv6mlvFYRqt4DZ7cWjB8xRs6jtMQ/+cnE5ecBAdQXREZuhJXXRmG1slZsGDwSgippL/yXZZWOcuH0PRrSMV68apqLyojtFAZyb5Of37YsJK3xPnP/atLA30k+zozml/klVWkl4i09LLoUqzMryH6AXAH0ATsMbPtzrmDww57Bmh3zi01s0eB7wOP5L61V6+jdYDde8upjCZ55M5jnDodZvmyBGZhbrqxi/j/HifixSkvg0XuIL1dCT6vuwFSA0yvnng+QSAQYMOmwd/NkSd4+/YmONdaxtpVvcyed3EnZf97Sf7nwBrMjM6uozz80OXvcB6JBnny8V66Oz6kamaUwYtjp08NcPJUmCWLB5g99+LXvvlWj/r5+yiv8Jg1xz/5PXk0xss7V+ACUY6fPMSDD/ojLksWDbCn8Rx98XLWLjlJw0pjZo3x43++ln5qWHzwMI88khi3jTeuPcfeA466qhZSySS9PQmi5R7v7A5wprWSSOQ8NcNS/unjPbz6bzPoT1Tg9Z3Gm7mCEz21NO5/n9XrJh4pTqUcKed/JsmUh0s5LGgsvKaNI211zAh9xuy5E8xLcf7u9YlEHAtc3koIs2b00N4MIddJXd3F5chmxqYtYd5tPEeott5fqKivi96Yx5mmHl7esZRYIkE0dZLVy9s42jSDRG8HdbOSjNWR+cVrEQ6dW46X6uGxr33CgkVh5l0b5nef7SA+kCRaGcE5j/3vDdDdG2L9+gTRiovjP35kgHPNHisbUlROG/n8L/9zOk1d/qbZ7+w5xEMPDHDNqO+0X/Y39kT+L67voaXtBAAb1/cRKYPErkN80FhJuPZakrE+zrdnVrq9fHEPTfsGCHkxFi3oZ/RKhJVRf9+XwaWW2xPz+L+9Z7jlq+Vsu/kwpz4ro2FFH3/38tyh+dixM21+DpzgfMGlLyD687H9aprRe8sEq2qHNpgdPOdJ9nQM7f+X6Gy5sNhVjk14NlQqCcLfhX46mGW8spiMzbzgFZUredV1/vBmMJxRzz7Z2YxXVZO1fVgGXSgzm3gPm33H+6h4uxGXgvdP9INNUumSjdyFN9t7seTaeKNt/l44femlzC98h8wLYhbAIhUZrZQC4FXVkkwf603CxQmZUjYCR5xzxwDM7KfANmB4ntoGfCd9+1Xgr83MnMvjcolX6D/erOJoyxKcc1REP2DLlwIMnvjMXRDmicf6ePMN2H14DQCr5n3EmtkfUl2VGNrT5Eqc+KSff393FQTCNJ05yTNP9Vx0TGrYu5lMXflJTcALUF1z4e9EV3uMV3Ysop/p7D1wlt9+phlvjJKd+qUj/7a0tnu4gH9lub2rHOgCYPa8MM89eZZ4LD40efvjA/304//NP9taBbSP274tX/bYdGMzL/1DFf/y1ipq9jZx0w2f8dahDZgFaN11mqUrLqxi9uq/VtFbthRC4BLO75q5JJlWu86aE+Vrmw9z7NNKVi7rIpheFOT+++OcObWX2tlBopWXHv2K1hyh+VwHznqYPnf8TtpYtt07wOGP91FbC3Xj7C9UNSNCdVWCLgtBMESs+ThrlrXQ3hYlEajCq4CyQC/TZgTpOLUQyuDDj/vZsLHrop/Vet6/CJoMVNDSGmDBIv/x4RtlNu6P89o7q7GAR3PrYe67b2RMp0/GeGXnclJeOUdOHOPxx0aOTAx9P81o76tj994O7puXeQdv1uww33h8cFTLP/HftjXBJ8eNBBAIBlm/PrOOzMYtQRYt/IBwWWDMcrn1G0N43n5efz1ILFlNsuc8zW3+99bfxycJhAlOqyPefobwrHp/nnW8f8JzIwuGSfZ1YcEI8bbT/vGpi0ssxy6dd6P+z71MLuuWRoKwYfuY5KFHKenFEi7nhDPgYQEPC0dJxDIfIp/wxw4rM5vIgEV442D6D99kdWJg6I9Kqr87Kyt9TWWDq/WNluhqgVQq45I4f/GN8Tt8V7vs8yCVqE0J84BPh91vAjaNd4xzLmFm54EaYMRyPmb2TeCbADPnTp+k5l6d4Zk1NU6aDdiFx0PhABs2eVzt8s2JJDg8DEgkxx6tXneDR3d3I129YbZs6uNyytIupa8vQX+qHALQGy9nIJYgmsFGiCtXwolTh2nrjHLzxlaGX+kOlwVHlI8tWRZkyUefcLalio3XNzPRKVJXe4zPu1dgQWjpn0u89wSBVAznRYlGRnUULESyrwsvWsXsaW3UL+5k5rQYyy+jY+lPFL9QMgf+hPIFSzIrww6XBwmXd2T8esMFwx4NayZ+v794fRf/9W4nqVg/y+rPs+gL00gmUqw89jGft1eyZX0rM2Y6Ivs76E9VUT+3k7HK0b+0oZVd70JNdS8NK8f+jvf0ekMn132xEDDyPT/f4UgGohjQ2R2BUctS33l7Ozt2xmj6vBpvWh0zqs9ytXO8zIx772hm/0cDLJjdRcO6zFcnnTV3/M/RzFi7IYwjzmtvduBFK1hYn2T0d/Tbzx7kb344jY6k30F56PZGlq8c/5zhe8834EWr/U04k3GCM+b4q7hmMJHfq5g+dGHRguG8jMZAZh2ZSUkQ3hQb8bD05GL/9tScECyjmKU/s1TWNjWdqryKmf6S4aGyvM1tyadgVW0eV7STUuKcewF4AaB+zfwpeTHujtu6efudw1SWD7DuhrHT+ObNSZxrJJkMsHlLnGxMiV26oozbWho511bODdd3M9ZGnAEvwC23g39SmZ1ODEDd3ApuWX2Io59W07C0k2hlZnk6Eg3ywAMJ/JGYS49YhCJBvv5wHGgjk/drWm2U6+sPc/B4LdctaGX1phlEqg9z5lyE1Q0jy4O23t3Nr34VpzzSxT33RwiFU2Tz/ZkqNm0JsWbNUbygES7z4w+GPLbelwI6GYz56YeP092ZZN7CsRdvaFgdomH14AISY79Pa9c5mtsO0d0b4pYtnYz+fFesCrO26WOa2yvYtL79op9zzbwwTz+d4OMDZ4nHz7BqbXaWvl+xMsSKlb1kc9+nQes2hKiZ+SkuBfVLx+6g3HFzC3veH6BuRk/GI7DDqyTsMlaanQqT/nNaaD88QUTmLJtSCcIrq4QSPEEsZMHKmXmrycw1C4YKvpzsaqkTI5dwGlgw7P789GNjHdNkZkFgGhPtCjhFzawNcffdCS519ThcFuTW28Ev+cheqt/85SAwwESdgsmw5SaPLfQwGSeIV8LMuPteuMu1pPOQsbwhxPKGFKPfn0VLQyxamgKK+6IbkFEnc3pNZGiBhCsViQa5554k4JdVjRbwAtx1twO6uVSnccWqwtq769rFl+5oLF0eYunyPrKxgmAhyCTKy0kQFHqCkMJSCp0YEZnQHmCZmS0yszDwKLB91DHbgSfTtx8C3iio8meZspSHRPInk8s0QwkCv8PyKPDro44ZTBBvowQhIiXkcufaaE5N9qVLmr8F7MS/XP+ic67RzL4L7HXObQd+BPzEzI7g1w49mr8Wi4jk37efPTjxQcN87/mGSWrJlZuwI6MEISIiU51zbgewY9RjfzLsdj/wcK7bJSIikyejwlklCBERERERmUpKYyaQiIiIiIgUlcLdHlxEpABpTo2IiBSi8ebU5HPujEZkRERERESk4KgjIyIiIiIiBUelZSIiU9h4pWgqORMRkakgn8s4a0RGREREREQKjjoyIiIiIiJScNSRERERERGRgqM5MiIiBUjLOIuISCHK5jLOGpEREREREZGCo46MiIiIiIgUHHVkRERERESk4JhzLj8vbNYMnMzhS9YCLTl8vXwrtXih9GJWvMUtV/HWO+dm5eB1Ck4e8tQgfdeLW6nFC6UXs+LNrnHzVN46MrlmZnudcxvy3Y5cKbV4ofRiVrzFrdTilQtK7bNXvMWv1GJWvLmj0jIRERERESk46siIiIiIiEjBKaWOzAv5bkCOlVq8UHoxK97iVmrxygWl9tkr3uJXajEr3hwpmTkyIiIiIiJSPEppREZERERERIqEOjIiIiIiIlJwiq4jY2Z3mtkhMztiZn80xvMRM/tZ+vl3zGxhHpqZNRnE+/tmdtDMPjCz182sPh/tzJaJ4h123INm5sysoJc/zCReM/t6+jNuNLN/zHUbsy2D7/S1Zvamme1Lf6/vykc7s8HMXjSzc2Z2YJznzcz+Kv1efGBm63PdRpk8ylcXPa98VcCUr5Sv8pKvnHNF8w/wgKPAYiAM7AcaRh3zW8Dz6duPAj/Ld7snOd7bgPL07eeKPd70cVXALmA3sCHf7Z7kz3cZsA+Ykb5fl+925yDmF4Dn0rcbgBP5bvdVxHszsB44MM7zdwG/BAy4EXgn323Wv6x99spXylfKV1Og7ZMcs/LVJP8rthGZjcAR59wx59wA8FNg26hjtgE/Tt9+FfiKmVkO25hNE8brnHvTOdebvrsbmJ/jNmZTJp8vwJ8B3wf6c9m4SZBJvL8J/MA51w7gnDuX4zZmWyYxO6A6fXsa8FkO25dVzrldQNslDtkG/L3z7Qamm9mc3LROJpnylfIVKF8VMuWrkfKSr4qtIzMP+HTY/ab0Y2Me45xLAOeBmpy0LvsyiXe4Z/B7y4VqwnjTQ5kLnHOv5bJhkySTz/c64Doze8vMdpvZnTlr3eTIJObvAE+YWROwA/id3DQtLy73d1wKh/KV8pXyVWFTvhopL/kqONkvIFODmT0BbABuyXdbJouZBYC/BJ7Kc1NyKYg/XH8r/tXLXWa22jnXkc9GTbLHgJecc39hZpuBn5jZKudcKt8NE5Grp3xVtJSvlK+yrthGZE4DC4bdn59+bMxjzCyIP9TXmpPWZV8m8WJmXwX+GNjqnIvlqG2TYaJ4q4BVwH+b2Qn8Gs3tBTyBMpPPtwnY7pyLO+eOA4fxE0WhyiTmZ4BXAJxzbwNlQG1OWpd7Gf2OS0FSvlK+Ur5SviomeclXxdaR2QMsM7NFZhbGnxy5fdQx24En07cfAt5w6VlKBWjCeM1sHfC3+Emh0OtRLxmvc+68c67WObfQObcQv8Z6q3Nub36ae9Uy+T7/HP/qFmZWiz90fyyHbcy2TGI+BXwFwMy+gJ8YmnPaytzZDnwjvRrMjcB559yZfDdKskL5SvlK+Ur5qpjkJV8VVWmZcy5hZt8CduKvJvGic67RzL4L7HXObQd+hD+0dwR/0tKj+Wvx1ckw3j8HKoF/Ss8RPeWc25q3Rl+FDOMtGhnGuxP4NTM7CCSBP3TOFeoV20xj/gPgh2b2e/gTKZ8q1JM7M3sZP7HXpmuo/xQIATjnnsevqb4LOAL0Ar+Rn5ZKtilfKV/lt4XZpXylfEWe8pUV6PspIiIiIiIlrNhKy0REREREpASoIyMiIiIiIgVHHRkRERERESk46siIiIiIiEjBUUdGREREREQKjjoyIiIiIiJScNSRERERERGRgvP/WwGi6wUd46sAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", - "draw_border(dtlr, X_test, y_test, border=False, ax=ax[0])\n", - "ax[0].set_title(\"Iris\")\n", - "draw_border(dtlr, X, y, border=False, ax=ax[1],\n", - " fct=lambda m, x: predict_leaves(m, x))\n", - "ax[1].set_title(\"DecisionTreeLogisticRegression\");" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "6it [00:02, 2.29it/s]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAOVCAYAAACMLO0cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hd15XeCf/2CTenygmFKuRMAAQYwEyRFEUqUJkKrdStluXutj1je+zxN57pHo89Hnt63D222y2rp9VUS+pWllpqkSIlZhIMAJEzCkAVKoeb8z1hf3/sW7eqUAEFAoy67/PcB6h7wt3nnLXXWXutd60lpJTUUUcdddRRRx111FHHbyK0t3oAddRRRx111FFHHXXU8VahbgzXUUcdddRRRx111PEbi7oxXEcdddRRRx111FHHbyzqxnAdddRRRx111FFHHb+xqBvDddRRRx111FFHHXX8xqJuDNdRRx111FFHHXXU8RuLd4QxLIToF0Lc+1aP4/VCCPGIEOLfvtXjqKOOOupYDuo6t4466vhNwhUbw1UlWRRCZIUQKSHEXiHEV4UQ18SwfqOUmBDCI4T4YXX8Ughx17X+jbcDhBBbhRCPCyGmhBDvmiLSQgivEOIbQoiMEGJMCPFPl3nck9XnbVT/XimEyF3ykUKIf/bGXsGcMS05h4QQj80amyWEqMz6+2tCiLuEEEOLnPuRWfsnhBC/EkJsXGIsfySE+PYbda11XD3qOvftDSHEp4QQp4UQaSHEhBDim0KIyFs9rqvFlepcIcRqIcTfV+V0SgjxH2dt+7YQYrR6rjNCiC+/8VewfFytTl7gfF8UQrzw5l9JHa8Xr1eZflBKGQZ6gP8L+JfAX16zUb1xeAH4LWDsrR7IGwgL+D7wO2/1QKYN0GuEPwLWoWTubuBfCCHed5nf/yxgzv5OSnlRShma/gDbABf40TUc63Kw6BySUj4wa3zfAf7jrDF/dRnn/o/VY7uAYd4Zc7OOpVHXuW9fvAjcKqWMAqsBA3hLvNJvlc4VQniAXwFPAe3ACmD2IvvfA71SygjwIeDfCiF2XcOxXgu8kTq5jrc5rsqzIKVMSyl/BjwMfEEIsRVqK8o/FkJcFEKMV71Z/uq2u4QQQ0KI/1919dhfNVoQQnwF+Cxq0uWEED+f9XM7hBBHqqvv7wkhfFc41oqU8k+llC8AzuX2F0I8I4T4P4QQL1ZXi08IIZpnbf+QEOJ4dRX5jBBi06xtO4UQB6rHfQ/wXXLuDwghDs1agV43a9u/FEIMV489LYS45wqv87SU8i+B48u4RiGE+JOqNyMjhDg66xn6hRD/jxBioHrPX5j1DJe69v7qNRwB8kIIQwhxc/U6U0KIw6/TQ/QF4P+QUiallCeBvwC+uMS1RYE/BP7FZc77eeA5KWX/6xjTVWOxOXSNzl1ELYx2vJ7jl3puQogvCSFOVuX0vBDiH8zadlII8YFZfxtCiEkhxPXLOO8Xq+fLCiEuTOuGBcaWmuWZyQvleeytbvtdIUSfUJ7xnwkhOmcdJ4Xy+JytnuPPhBBi1vbfro4/KVSEpaf6/aJz5c1EXee+LXXuoJRyatZXDrB2kWtcVI7EO1vnfhEYkVL+JyllXkpZklIemXWPjkspy9N/Vj9rXseY3nC8kToZQAixUaiIXaIqb5+cte39QoiDVdkYFEL80axtjwkh/uCScx0WQnx0Ged9UAhxoirjw0KIf77I2A6L+VHTu6rbLieD/3wxffFGzr9rBinlFX2AfuDeBb6/CPzD6v//BPgZ0AiEgZ8D/7667S7ABv4T4AXuBPLAhur2R4B/u8Bvvgp0Vs95EvhqddtKILXE5zMLjHUIuOsy1/kMcA5YD/irf/9f1W3rq2O+D+V5/BdAH+CpfgaA/7G67eMob+2/rR67E5gAbgJ0lMLpr96LDcAg0FndtxdYU/3/Zy5znSsvGf9a9XiXvMb7gdeAGCCATUBHddufVa+5qzrOW6pjXPTaZz2rQ0B39b51AXHgQdTi677q3y3V/f/bEtd0pLpPA0p5ts0a+8eBo0tc259Vn0Fv9VhjgX1E9Rl/8UrnwdV8WMYcmvXdI8yfD3cBQ4ucu7Y/EAS+BRxeYix/BHx7ge8v99zej3qZCdQcLgDXV7f9b8B3Zp3r/cDJy523Ot4MM7qgA9iyjPv5fwLPVeXxPcAUcH1VXv8LarEzva8E/h4l8yuBSeB91W0PoWR5E8q796+BvZebK28HeaGuc99SnQvcBqRR8pUH3rvINb4rdS7wDZSueQw1/54Btl2yz39D6QkJHABCb8b8uVZzbNZ3j3DJfFnguC8CLyzwfbAqb19C6Zid1fu1edZc3VZ9btcB48CHq9s+D7w461ybq8/Mu4zzjgK3z3q21y/jnnwFOAVElimDi+mL1zX/3nQZuIZC8zLwv6AmeH72BQF7gAuzHrYNBGdt/z7wvy4maNXf/K1Zf/9H4GtXIfjLVcz/etbfvwf8svr//xX4/qxtGiocfRdwBzACiFnb9zKjmP8ctdqe/VunUS+otVWhuRcwr+rBLs8Yfg9wBrgZ0C65niKwfYFjFr32Wc/qt2dt/5fAty45x+PAF67gWrpRCtQ367v7gP5F9t+NejkYLG0M3w7keJOV8uXm0CXfLTQf7mJpY7iEUpIucAG4bomx/BELG8NX9NyAnwL/ZJbsZYFA9e/vAP/b5c6LUugp4GOAf5n38uHq/Zx+0f8lKoQ5vT2EMox6q39L4LZZ278P/M/V/z8G/M4lsl1AhU0XnCtvB3mhrnPfFjq3et6u6pxav8j2d6vOfaI6zx5ALU7+J+A8VWNp1n46auHwr6/F/b5Wn8vNsUu+mzdfFjjuiyxsDD8MPH/Jd/8d+MNFzvOnwJ9U/x9GzfOe6t//DvjGcs6LMur/ARBZ5v24rTov1l+BDC6oL97M+Xc1n2tZTaILSKA8PAHgtapLPAX8svr9NJJSyvysvwdQK4qlMJtzVkC95N5oLPabnagxAyCldFGrm67qtmFZfeJVDMz6fw/wz6bvTfX+dKNWRn3A/4BSphNCiO+KWSHeaw0p5VPAf0V5JCaEEF8XKvGjGRVmPLfAYUtd+zQGZ/2/B/jEJdd7G8rrt1zkqv/OTkqJoAyuORAq4eG/oQwz+zLn/QLwIyll7jL7vVmYnkNXiz+WUsZQC4EiavV9pVjyuQkhHhBCvFwNyaVQXqhmgKocnwQ+KIQIoDiCf3O581Z1wsPAV4FRIcQvxNLJfztR8vsRKeVk9etL5TOH8orNls/F5nUP8P/OGlcCZWh2LTFX3krUde7bTOdKKYdR9/67i2x/1+ncKooo4+8xKWUF+GOgCeX5rkFK6UhFm1kB/MMrGM9bhWulk6fRA9x0ybP5LIpnjRDiJiHE00LRytIoXTitV7PAL4BPVc/1aZSj4bLnRTkYHgQGhBDPCiH2LDZAIUQ3arH8BSnlmerXy5HBpfTq28LmWQrXKhv5BtRNeQHlmi+iwpux6icqFfF8Gg1CiOCsv1eiVvagVqNX8tsLVQeY/VmQc3iVGEE94OkxCNTDHUaFI7qq301j5az/DwL/bta9iUkpA1LKvwWQUv6NlPK26vkl8B+qv/HZy1zn7N9YNqSU/1lKuQsVclmPWtFPobyLC3G6lrr22mkvud5vXXK9QSnl/1U9/mtLXNPx6hiTqPu6fdZ5t7MwLzqC8gx/TwgxBuyrfj8khLh91rj9wCeAby59h94cXDKHrgmklBeBf4Iy8PxXePiiz00I4UUlHP4xKowaAx5FGY7T+FuUsn4IOFFVekuetzrmx6WU96Fe3KdQPMV5EEK0orzRvy+lPDhr06XyGUS9lIe5PAaBf3DJ2PxSyr3VsS00V94S1HXu21rnGizBh30X6lyAI1yZHC15j94OeCN0MurZPHvJswlJKacXBn+Dojt1S5WQ+TUW0KtVY9YHPL2c80op90kpHwKm9eb3F7lmf3X7n0opH5u1aTkyuNQ1X/H8e7NxVcawECIiVKLMd1Gh1qPVFcNfAH9SfWEhhOgSQtx/yeH/u1Cld24HPgD8oPr9OCojd1mQl1QHWOAzvXKaTjKZJnV7hBC+SxTocvF94P1CiHuEECbwz4AyKjT3Eiok+Y+FEKZQ5PYbZx37F8BXqytAIYQICkWaDwshNggh3lM1NkqoF5xbvc7vXOY6L1avUVSv0VP921c93zwIIW6ojsNEhV9KgFt9ht8A/pMQolMIoQsh9lTPs9S1L4RvozyE91fP4xMqoWdF9bq+usQ1bZl1nr8G/rUQokEob+HvosJVlyKNWsXuqH4erH6/C3hl1n4fAZLMKJO3BAvNoSs41nfJZ54sSyl/hVJkX1niVNol5/Gy9HPzoPhek4AthHgAeO8l5/xu9bt/yIxXmKXOK4RoE0I8VDXayijvlLvAdRvAD1H361Kl/rfAl4QQO6rX8X8Cr8jlJUh+DfhXQogt1d+JCiE+Uf3/gnNlGee8pqjr3Lelzv2sqBrGQiVc/jvgyYUu4l2qc6d/82YhxL1CCB3l7ZsCTgohWoUqPxeqjud+1EJ5wXv0VuNqdPL8U83V0ah8hfVCiM9VZdWsysS0Bz0MJKSUJSHEjSje+mw8ijIa/w3wvarcsNR5q3P+s0KIqJTSQuVlLKa7vgGcklL+x0u+v1IZnI3XNf/edMjXx60posIlaZQi+n1An7WPD/USOo+68SeBf1zddheKP/a/oCbLReBzs45dh+J7poCfzvrNe2ft80cswHNc5tjlJZ/eRfZ9BvjyrL+/yCwOEMqYOlG9B88yK9EH5Zk8WL1H36t+/u2s7e9DeSxTqNX3D1CT4DoUCT2LCs38PVVi+RVcY+8C19i/yL73oFb0ueqz+A5V/iwqEeNPUSu/NCpByb+Ma5/zrKrf3VTdL4EyoH7BJQl/y7guL2qiZlAv7386a9vK6jXMOyeLcIZRHLr/40rGcK0+LGMOzdr3ERbmDF/6jCWKf7XQ/g9Xn6N3gfP/0QLnGbrcc6uOd7wqw99CvTgu/d0nUUZK+3LkAeUNfrZ6T1KoObh5iWearz736c/02L6KCjdPz6EVs46VwNrF7i/wOeBoVc4GmeHkLTpX3g7yQl3nvpU6999V72+++u/XgaZF9n3X6lzgo6ikqkz1WW6pft9SHUuquu0o8Ltvxty5lnNs1r6PsDzO8EI62kDR1n5RfS5xVDm6HdXjPo6iI2SrsvhfuWTeofIiJHDDJd8veF6U8+KXKOdPpjoPbltk3BJFcZitV6cT75Ytg1yiL3gD59+1+ojqQN80CFWm49tSyhVv6g/XUUcddfwGoq5z66ijjjqWxjuiHXMdddRRRx111FFHHXW8Eagbw3XUUUcdddRRRx11/MbiTadJ1FFHHXXUUUcdddRRx9sFdc9wHXXUUUcdddRRRx2/sagbw3XUUUcdddRRRx11/MbCeCt/XA9EpRFtfSuHUMc7HJWxvikpZcvl97x2qMttHdcCddmt452It0JuAcKNjbKpq/vN/tk63kUYOHZkUdl9S41hI9pKxxf+9K0cQh3vcAz8hw8MXH6va4u63NZxLVCX3TreiXgr5BagqaubP/zxY5ffsY46FsFvr+9aVHbfUppER3OAP/ydnW/lEOqoo4466qijjjrq+A1GnTNcRx111FFHHXXUUcdvLN5SmsQ0FvIO/+9/efAtGEkdddRRRx111FFHHb9JWJZnWAjxDSHEhBDi2CLbhRDiPwsh+oQQR4QQ11/bYdZRx5WjLrd1vFNRl9063qmoy24d70QslybxCPC+JbY/AKyrfr4C/PnVDUt5i+t84jquEo/wJsttHXVcIzxCXXbreGfiEeqyW8c7DMsyhqWUzwGJJXZ5CPhrqfAyEBNCdFyLAb4RkFJS77z37sfbSW6dYga3Urzq80jHxsknF9xmZ+OUpy4ipXvVv7Pgb9sV7MwUbik3f5vrYGcmcQrpedtcq4ydncItF2rfOcUMdmYK6VhvyFivFG45r8bzNtELbyfZvVZ4u9zbOt5YvF1kt5DPMzo0dk3ONT4yTrlUmv/92BRPPfUamcRSl3t1OHKkj2PHzi+47fjxC7yw9/iCc+vgobOcPDlTPKFUKPDUc8cYGZ58w8Z6JbAqFQ4cPEM6lXmrhwJcO85wFzA46++h6nejV3vi2d7hy/GI7cwUCIERblpyH7ecR2g6RmMXQogrHpNrlZB2Bd0fueJjFx/XJGg6Rqjxmp1zMbjlAm45f9nfs9MTAOihBoRuXvHvSLuCnY3jlPLogRB6oAHN9L7ucb8BeMPkdjacYhahGbilLJrHP2ebW86D0JFWEek4aN4Amjcw7xxuuUBp7Dx6IAKOhXTdOXLulgsI04smJeXxfgx/ECPaNu880rFwCmk0X7j2LNxSDs0Xuvx1FDIYkWbszNSc/Z1cEqecR/MEsAtpEKI2N6zUGLJSwmxZiZNNoHkD2JkJXNvC09iFnZ3CCDfXzmVnJkG6SADXRegmRqR5zjis5ChupYDmDaEHomge35ztdnoCKV2cfBrdH8FsvPx71i0X0cNNVCbOo/ujaF5/1bAX2Pk0us+P5vGjh1vAtUFoCE2/7HnfQLwpsns5OMUs0iqjByIIw7PgPm6liJUaVTKnm+jB2BX/jpQSJxdHDzUixLXJ+3YKaaRtoQeiCOPK9duVYloujWjrotfg5FNIx0YYJnog+vp+JzOJa5VwrQpmtOWavqeuEd4U2f3RY0c4n9D40nsdVvZ21b63ymXSqQwer5fHnz/Dht4Grtu2ZsFzfOdvnuDUQBa7UuL6nev4xIdunLP98edOcyEb4NlXfk3Hina++LHd+ALz9Xff2UH8Pg9d3UonF3N5TK8Hw1xa7iqlIj95YQQDh82betB0pXNSiRRPvNjH+fPj5BydQibDe9+3B4BDR/p49cgIQ/EyQa/Bpk09DA+O8Vc/fAUnspLJZD8Pd82U2h3oH2HfsVFu2NLG/kPncTQfH75/Ox7fzLv60OE+fr23j2DQz1039LBpU++ccV4cGOG7vzxNMTnJys4YX/r8e5e8LoADh87zy6NF1p8/SsnRuG5tM5GQjx/8+gxRLU9nRyO+UIibd/YSa4hiV8qYXt9lz/t68aYn0AkhvoIKjdDU2XWZvS8POz2JBNxiGt0fVoaFlIsaudK1EaYPHAuQgNpPKdsEuj9yWcXoFjNovjBOIf26FdZsTJ/HKbw5KyS3XEB4Q9jp8aWNbyHQ/BHccuF1XadbKaIFG0CCGW1XRtTbyxheNmbLrR65snrzwjCxEqMIXaM8fh7dF8KItuKW80jHwSklQYLuD2PnU+iuPe8FZqXG0Lx+PM3dlEdOIgwT1yrjFrMIw0S6LnZqHEwT3RdcdCxWagLN9GAnR/G09qpn4g1gZyYxLrku6Tq4pVzt2btWkcrkAJo/oowgu4zQdFzXwmzsonTxGP6ebdjZKXW8dEHT0YIx7NTYjAEtJUL3UB6/gB4IX3q3EJ4gTnYKT3M3djaOdB2cXAJhetV9ERqaGcCINCvD3nOpgpRogSia6cWeNafsXEIZ2KYH3R9RRnmlhDB9SMeG7BTC8KKHG3FyCdxKESPWgbDKCMOHHmrCTo4iTC/SLmM2dFKZGkToOmZD5/IF4k3G1cjuQnArRZxcEteugHTwtK7GycbnLVpq+5fUQkkzfWohMWebijJcbjHmZCfRw8042SmMyLVpGiJtq7a4W2zs1xISFdlxS3n1rlpoH8fCiLSoReHrhGtbGNE23FIWaVXAf/lj3q64GnuhMQipVJrUlJ/E5DhbrtuC6fXynR+9TH/WyyrPBOfLrZy/eIZUpsQdt26Zc7zrOBw9MYi3extaepyGoDJE9+0/hW27bFrfScS0MTIXsQRkKgaO7cwbR2Jikm/+7CimsPlXv38/hXyBr/34GM0B+J3P3D5v/9RUnHAsim4YDA7HadALrOttRErJD3/2KkG/SXtLkJMTOpRLGKFW9p0vcl/V7ukfzjBSCrG+pcLate0AFEsVKmYMe6IfX8vc+XPs7ATHxzUmJk4ykpYYAQ93p9IkM2VS6Rw37N7IRDxHqgh5T4S+weQ8Y7hYsijixzJCXJwVuEwl0/z4ieOsXRHljlu30Nc3yCtHx2gLC8IhLxuabWJejZeHPISH03Q0FqhoIUbzFsMn43hbgniMIbK5MxwbLPGFB9fhWBYnTg9z73uun2OwXy2ulTE8DMxuDbOi+t08SCm/DnwdoHfb9quOmznlLEasA6eYBs1E2qUlvb1CN5QnI9I8Z3XuZOPooQacXPzyylZK5eXzLazQ1C4uTjaBHowh9KVvs+aP4GSn4Bp5PC4HPdyIlRzFiLYtadALjx9ZKb4uTw6AHohSmRrEqRSRSTAWeQG8hXhdcuvtWLdsuXVLOcrxIYxwI24hi/CFsTJToBvgOriVEtKxEIYXKz6E2dKDrBTBr7zGbrmIHoxiRFooj/ZR7D+E0dihjLmseolb6XGEZmA0tIHrgGbUPPnSdbBS47iVAmakBaSLHmrEtZWHGAFOOT9vzti5BG4xhxFrw8klQdfRTD96IIJTyiGtUu2l7ZbzVCwLPRjDzk4poweImWXuvq2DQ2fG6S/NGIt6uJny+HmMQHSOEWTnErh2BScziWZ4KI/34Wnsxsklq781BX4VcRCml8rkAN621fPuuR5uxkpPgHTmLvZcGz3couaaXxkn6B7MaGvNQ+1WSljJcVyrhBZspDR0Ej0QQToGTi6OFmzATo2AlDj5JMLjQ/MEcMt5NO/ii5A3AG+47C4GJ59CeAMIu4zZ0ktl4gJm4+KGivD4kOUi0irPMTqlbamP6yA8/iU97UI31YJIW9pR4RQzCE1f1rMQhomdmUQPxC6777WArJQwm7txspOwiC7UA2oO6cGG1/07mjdAZbIfzfChLbEwfgvxhtoLruvy80df4djJIdxwB3/7y9MIIdl6Ps1nHr6b8Ykktu3hRD5L2EiR87Vy4kKKO25VBvC+187Q091MW3sz69d303/+CDs393DvPbuQUvLEqyPYeLg4muFUIsL6TocPf+A+sqkkgbDSZ6/sO8Xe1y6weXUj77lrJ16Pge1t5vCB46zbuBoPFl5zbiRlcjzOvtdOs39QY9sKnffevpETZ8ZJGm0EgjrZZJqTYw4BUeD2m9bS8NKzTAXbuKEbenp7EELgui7bV3po92fYfeudNc/z2nUr+cBkglfPwsaNM7e+VCwST2RoddN4vT6afTa37QzS0t7Ktx99nrTjp7t9hOvWtfDcgWHMzEXuufXeefd8w4Ye/qAhwAuv2LQ2zdgTiXiGwYyBOZoF4Ex/nNODWc56QwRFnP/pK3chpWT16X6mElkOnJ6iNDFGV6PJhm3dCNNg17YVPPqrAzi5LJrQ+NYvjmEFOxBPH+CBB/YsRySWhWtlDP8M+AMhxHeBm4C0lPKah+umKROz6RJGuBk7OaY8wk6lFhp28knQjHkr8Nkh2dkQpke99JdhkC4Ufr4UTjZe9WRMXta4FkLM88qBMmSiWp60G1x2SFZK97JhRCE0NN1AlrNovsVDaPoyQueXg6d5fvvMWsgzcPmFwhuMN1xu7UIKM9qKdG1cq4y/fQ2lQqpq0PmQThajoRNr/Dy+7i1UEiOApDzRj3QdfO1rap6rwOq5CaW6P6o8u54AdnYS3RtEooFTQmi6MgwML24+ha97M1Z6HLNpBU4uDq6lDMr0JJpuKJmpThWnmK16i+M4hRROqYCnsVMZq+U8uj+C6zo1D7AZ68BKjqKHm+Z4tJt9FVqbQ8QmyzCquMOKKhLA17Fu/r3KTOHrXI+l6wih1wwnoSujZVpW9FADslJalA7lVoqYsfZ5Br4eaFDRkJqOUNGk0sjpmmdX8/jQDBMz1kp5+BSB1TurXk81P+1cQt33Ug7hCeAmhnFLWTwtvVcgFdcEb4rOXQhGpAUrOYy0LZx8EiPSjGZ6Ff2qUkAPNc2597ovtLAu0XVcq8rDvIzOWo5x6JRyio60zIXJYk4Av8xTkTqOtryQrOJrysvqXT0QwcnFlzTohWEu+o5aLoxgDGMBB4aia2lv9qJtIbyhspucnGL/6RR6w2p82X6MUAPSsRlLlnjm+aPctruHXx/NE/E4WLofw4hwyyYff/7/PYaGzZhYwarB83z+Yy389iXhfiEEH7h1JZbt4PcaHHv8FKfSGqdOD/KzV6a4c2uCu27fxtnz48TzgpcuGmwbneBLH9nBS6+c4O+PR9gweIhEsoAhXBLxJI1NSrYff7GPU0MlvFSwij7+6/ePEjUK3LuhmZdPxjl/McHn71uLx+vhO393kCwBPrgrzO6brqvNt3w6Ba7DmrUz793DR/rwekxuvGUHN94y9149+8wBzqW8iLyO0Jr5+O0RtmxVlJE7d7aTShdo6+rAdRxu3NpGNOgjEJwvP8Vcnkg0wkMfvG3O96vXdvM5adPSqmR625pmXjk8QiU7xa039tTu6arVnXz3yZexCmn8kWbSuo87b78Or19RTqbSDpbwYFfKrF8R4vzYOFs3b32dErIwlmWJCCH+FrgLaBZCDAF/CJgAUsqvAY8CDwJ9QAH40jUd5RLQ/ZF5IWWnmFEvqmJ20RX4Que5XDjJtcpIu7wsDpYwPDjZpRXf5bCxxeFTH76TH/xsHydmRc2kq0IxlxrI0/w9WSmgh5sX5J5OYzkG/RsFJzuFHm6mMnkBI9J6TYzuhfD2kFuBm08jXQdP26oqVcSHGWvHzkziaV2ljKn21diZKXSvH6dcxNvaS3HwOJXESO3FJqXEmuxHePzovhCaL1QzGDXTSyUxhBAaQvcgrSLCE0AzvQh/iPJEP04ljx6IqQWk6+AWMwihXtJIqTx0mo7mC2InxxAeH2a0Dbd8AbeYrT4nAUIozn24GbeUU9u8wTnzQreyfPKhPQz0D3FwREMIcItZNF8QNzOKUwxgxtpr+1vJUYSmUZ4axMnG8TTNeBqFYc5ZLOq+ECwiM3Z2Cs0bXHAR6hRSaKYPJ5fAqBruWiCqqCCz9ITmD+HkkujhJpxsYo6hJoQGHi+6dHAKGTzNK9+QBd3bQ3YXGZtu4Gnumfe9Wy5Uo2uJJfM2aucRGmbD0nzuGn0t1HBZY1MzvDj5xFUl6pl2nt/79A7O94/wk335OePAdRZ81nZypBbpWYou83ojbNcCKk9Gw84l0CrFeQuWa4m3Wnab2loR5TRW0uUz77+OZM4ml83xwjnJmYsZvvLZW9m2JUkgFOLV186SK1TIFFwmRDuVxBDt0XF2bdpQO9/TT7/Gi8cTvGd3F7fcvJnt29fWtt00MM7ZwRTZTB6TMh5TvZO7O2KcHEgTyvfjal2sWNHKdYUyE69epDEaQGh5EjRxYWCiZgxvX9dMIZVgxG2j5Jbw6xbRsJ/t163mpVMHcSX0rFoBQCx0Dolgy9a1c56jVS7Ru/U6JocHMUyTTDLJT/ZOYuSG6Tg4xEfeu7n2e4eO9PHSoSFcfxMhK87WrlbWr1tRO9f1O2ccFpqm8aH37V7wfucyGf78+0eIeB3+wefunLNtcnyK7z81wOq2MT754T2YXg96IELE53LPPTfU9jM9Xu6/oQ0h2hgaS+O4zOEHa4aGGWtn76unufvunXy8/drTmpalxaWUn77Mdgn8/jUZ0TIw7SG2KhX+zZ89i+YPz+Giap6A8n5xbSe7W0ij+ZfHFb4WXOKpnMuRw2eZyNhMPyrpOnx4VwAhJT85UKwZxHY2jrSVt09KiVvOqdDjG6TwrgbC8GBNXcSItiPL+UUNm6vF20FujXCzWpQhkaUsCB2zoYNKcgTpOIh8Cj2klNM0vUC6LuXRsxiRFjTdRPMGcK2SqnaAMgal6yjjODmq5DIQRjN96IGYig54/DXpF0LDbOlWlIZiFs301igyRiA6w7GvGhvSKiNMLxSS2JkpzGjbnIWVnZ2q0TC0qlE+5746NjesDbL/lcNciEuEUOFAzRtgW2OOU0YXTj6FnZlQxk5RhdCEbiAAb+cGnHxyWVEOUOF2dAMhBELouKU8ixfKmWUoaZpa3M4Kk1upsZr3bCEPmhaIYqfHsfMp/F0b3zC+6dtBdheDirrp850CApxcYlnJmMv+rewUeqhxWVxhYZhXvci3MDh6fIDJVBGYcTZsbbW5Y/dKvvfr8yQs5TVxSzlcq6wWh0JDeH3Y2fiyFgJvNoThwcmpigd6qHHZC5bXg7eD7H7gvh0UShWSOZupVIn33rWdnpWjxMcnee7F4+zZvRbDNLnl5s0AZNNZTp57mQHXYUVXO1s2rwLgiScP8fyr59EauhmuVmF47cBZnn7hON5AkJaISdpox/T7+FdfvRvHVpz4nq4YZqRAKpfge4+f5p99uZ3167vpaItx+MRFvvzRDiaTBbZt6a2N+dzFBGM5nZ6WPNs3drD9uhmj+3c/eh39AxPYloVhmjz8kfn0gOTYKPl0GrtiEWtVcyUci3HnWhhKdXIu6eH48fP0jVusaRacOBfH0gP4hUXO20mq4CBZ3kLSdRxcx8HweNA0Ha9u4/dcPnrd3tlKzDhM3G1l4Pwgq9b2cPr0AD9/7gJ37Gjnxhs2cuMCx91942qe2XuSk8kI4pV+PvXQW2QMv13xymt9M9nts4xhoRtXrRSdUk5xN6HmlXLtCrKYQV+CK3wtES/7+OneMVzdg5glZwKgauQ6+RROMYvZ0IGTT6J5fLiVgjKMZxnCdmYSt6JCkpdSF+yMCndPJxYtB9MhyfnJS5eH5g3ilgvY6TE0z+Le63cDNNOrErmyU+ihZpxsHHQDJ5fA07ZG0QYuMfqMcBN6qEF52qYNC8dWSZb5BE4uiae5WxnEVhE90oweiNZKlemBKFZiGGGYaL4Iui9Y5Q3nMUMzL0DpWOjhJuxcAlkpYVeKGLF2QIDroJn+eYaelBLpughDVwmS1eoYMbNMwJSMFHwYbpHb9+ziwtl+Js8nAQ+39kq83hDnRjXuXKfz0imTTK6MHmoCKTGibaqSQzCquLiagZ2ewIy141ZK2Lkp3EIWLRDBbOisybZTzIDr4lolRY2o3muhm/PC5UakRSUwlfOUx8+hBRrALs+J3gghVHJsPolbLiI8XmSlrIx+j6/2u57GLkqDJxWvvpoUNtvT/W6Firr5cYu5eZG0qw3vg4oQqIpAzcoLKzTsbPzNo1MZXh4/kkdzy+CZMeqFoPbsp+kg0rZVEmc+jXTKgFCLyCqkXaESH1IJlrHOOYnZbilXLbUol50QKO0KbqX4uhwtQjeV0a6bWFNDb0rC4FuJG2/YCMB/fuR5EpafnWOTnDozwkvHp/A0rSASvMj27TNe1XA0zO9+8T6yySTByMw7MJ4pYTR2s9o7wUMfuB+AofEsibzEG2xmhTfPp26Jsn5DL3tfPsmTB8b5yJ0rWbWyjZWxIRIViy0rZ+TolYP9vHjO5uZiEkOT/PFfvcTD965lzdoV6LrA4zG579Z1rFg5V5c88cIZTkx6KJROs2ePogeUCwUKmTSBaAyv349E0r5qDaN9ZxFtbSTHx5DSZeuGLtaWymxLZEgWdS5mNPrOnsPTtob1XQk+9MAuHn/uLIODo/yXb73K7316N/5ggG/9zdOcHUrR0xHiY++/gVhjrDaeR777IokifPUTOwhGwmxYEeDiaI5DR/rYMcuIb2lr5p//9q0IIfj5z18gGPbxnj1rGJvK0t2joij5QpmcDJJIZvjlrw+yoj1KKOhF1zW6V6rIUcBvEnfCRJ0EuVyUb/7NU6TLOp9/aPuccV0N3pyMrTcIq7qbWB2r8Ln3K8GfLuV1LepZSquswlrVc9VCqVIuST+4HNxyATszpTLbgY5AmQ9eHySsz69h6HEL/KNPbuX+62YpZU3nJ68V+MlrqmardB00f5jK5ABOKY9bKeJp7MJs7MLOTFYTnAo4hQxmYycsxD2WruJh2pVlXYNTyimyfvH1Vb+Qjo3mDaB7Q28pXePNhB5qwslO1V6WWiCKnRqlMt6PlRilNHFuTg1fIbQ59BHNF1JGQqSttpgRmo7mj+IUsliJYTyNnZe8KJWi14MNaLqGt2klbjlXkz+3mKU80a8S+exKTTY0jw890oyxQMi3PHG+Jlcet8Bnbw3z6d06D93cwpc+vhuPncExw3z9+wcwdMHvfeYGguTo6YqxfnU7F6bgqXMGRbMR6djYqVGsbILy8GmE6UcPNaD7gti5SUBSmRhAuja6P4oeimHG2msermlM04agGqr3BvA0dOCWi2pRO7uWsRDYhYyip+STiqYTmuGj6kE1LqF7lKGTTWBEmufUVpblPG4xg4NEDzeg+YJvywjMGwHNG8QtpEHO3HMnl5zh/l4lhK6S36Z1kXQstQh5HaUdZ8NOj6syf9LFkGXet83HhqaFa1y/d1uAf/TwNjzuTF3so+MGf/bzARKWH7dSwAg345SyWMkR3HIes6GzZmDW5le5gOYLYsQ6cMtza3Orkm4xlumIA6qJi6YPJ5+60suv/igYoSY0f+iq3mHvJDx01xo+fGOMzpVdZHJFhGYgJ07xi6eO8O//5KecPX2BE8dnaviGGxpq5csAPvrADn7vodV87osfwuNVuvt9d29m26owHWKMe++6jo2b16DpOq4ra9G1UCTE5lWN5AKKX7zvtdMMD42SyWTpNiY5eSFO/8A4ttSxHTWXPvi+3fyLr9w5zxB+5dWTHDk+SHH0DLlcgfGBC4z3n2f0Qh8N7R0U0ikA/KEwF08cZeXmLaQmxnEdh1hrO7pp0L1uHTtu2kVzg49KchTNKWBN9HFutEipUOZTH76BgClIx6f42jefplgokMxbOJqXoUozrx0dmjMmTUh0XBCqWsbzR+IMV2K8dnKKcrFIJpmq7WuYJi+/fJwDE0GeOjBFR0uIe+/aXkvuu37nev7gg92sXtnEy/2SFw+N8O3Hz/OdR0/huqpm/sXBCexSHmmXGS5FGI0XydoeypVrV6f+He0Z7lrRxudWVI2p56dwCinFRZ24gO4PoYdbXvdLygg3Kd7gNM9LaEi7AEs0NJBSIivFJRWNWy5UuYhxAFY0edm5Yx1HzsbJZi/ZF42RkSlS2RKz1y3T1Ii2QBkLi/F0Gc2vaq66pRzStnDtMiDRg404xQyelpVUJi9ihBpwihmkVVFK0fSp6gKFzLI9O0I3cAtppHtlzR2mPSqax69C4obnN8aIuDRJUtN0tFAzSImnqYvy6FlV53bqIrpVUiW+LuG71+gRVW4vgBlpxlzAy2M0dKgSZrMWP3Y+gUTDCDVQmezH07oaa2oQI9SIA0jHwc7FMSNz66BWpi4iDC9mrA3T40NrXU1l8Bi62UxzSyOlrMbZCxMc7ktR1oIIoFhxaYyFGO3vp+iafO+5MTRkLRIQ1Ercf+caXjs2xGjGhx5spDJxQTXvyE6h+2Jo/iium6rVVXYrJUqjfRiBaC0crUocZtD9ISpTA0jHAd3Azp0FJLodxCpmladR03HtMkKoa1oonC8ME90wcTVdRZz84VqioJ0eV+UGfWGEN4heVFU1nEoJI9hQK1P3bjY0hKbPWcDa2Th6MKZK/5leVULtKq5f84aQ0p05h5RIq7RkBMmtlBCGuWiSsZQShI7u9SErJQJ+yc7ta5Cyj9Px8rz9U7kyoyNTOLN1rhCgm3hkmTUdHs6Njat61L5AbaHk5JOqrFmkRZWCi7TixodxMoq/bmcmEYYHPRBV3Op86op5xG4xc0X3V0qJk51EaKaKNpXyb0ot+7cLeno7mWa3f/SDNzPxnb0kKisoCw1ZyvLjp/ooOF56Dw+xtqeJ2y8pr+b1+Whu82JVypgeb+27T39qfkWF22/dwp4bKhgeRQtrb4vS0ZdgYiLLgVGTNm2IcbeRVf4i6UqInhbBB7Z3Mjoyiet2o2kamqZk7uzp85w5P8Xdt2/h8NHzGK1rMJMXuG7bamQxQzAapVQoMDk0SCCs3hP+UBhfKER8dJhKqURb72rSkxM0tCnvqus4tMS8fPTWNk4NRejLBPFkh/EFvAwOjJCrgDT8xAvw3Eun+cpv3c6hVw8zlimTTmT5u8f28/57lRH70Qeuwx8I8OgT+7kwWuC9u1o43z+GSYj//BdPkC1rxII6q3ua6V3RyBOvjhPwWGztDdPYOr9YQHNHO41tLvenTtHR1saRU6MYhsahw+foG0zTFNLQwi2EcElnp9i5Jsbte9Zz6tw4yVSBjRvn5zBcKd7RxvBs3L3Rw6tHBVRGSWgqPOyW81eVnDXbY6R5A5fl4DqZSTRfaFHemJ1LIKWLFR/GCDeiu2XaG0I89ovn6M+EppkPNa6krfn44as5LnXgC6fCxg6djd2NbNt+E//5kRdIOkHcknrp2+lxNF8YFxXWnFZ+3jbFg5rmOU4ncwndmHOtl4Nm+hAhAyefvCKF7pYLb2pdz7cTpgv8C01HDzVgxNpxMpNIx6E0ehbXkZRHzwICo6WHymQ/uj+smmTkUyoBxuND2raiAYWbAakqIizQNEAIbQ5lXnhDuNkppGNjxYfRfSGVZBZtpTTah6aboJsYVcNGaAZ6uBE7l1SJeB4/lalBGjwlGn0pJtpXcNOGKJlEku89foq8pxXNLSKkxNQ1KkaEnzw/SKEicDU/0i5z+wY/w/EiPkPQE3G46eYtJHMW4ycSuIU0vs712JlJvG1rKE8OUJm4gBFpRngC6KYXkGheByPSWltMOplJtECE8vBpPB3rcQtJ3EoZT/NKFaL2hdFcR3kaDVNFdkwfrlVGaEJVRChWu+ZVF3dSupix9prRYaXGcIo5PM3duMWsWlRkptCDUYQQeJpX4mTjaN4AVmoMT0vPW92Q402BU8wiXZvyxAW12Gvsqi0IXi8uPdZs6FiybrxTzAACp5BakKaiGgwVcK2S0nPBGGs7HI68doRnjubAUJGU2RUh9g1q7BvMwiXVJFYES7RHBO9/8E4ef+ooL1+wlU4LK52mB2O42XitUg6AWU0EVWUQW2qUNLjyhDoj2lqr6CI8gWU5ElTyoXLsiNfZ8OSdinKxyHd/fpBo0ODD778RXyDAfbes4eDxYU6fH0NYJcoVnZaIj4u5LlLHR7lp11o8Pi/Hjp1naGiCi0mHiGFzZhIefk8vGzb2cL5vkFDYT2vbAk4Iz0y5tN7eTmL7z3BsxMZ1+tl1Rw+Jksb1W3bQf66fp/aPcOTgGWTregZGX6J3ZSs9K1uINcb47qMncSOd9P31rzF0nQ5fgu17evAIGz0aYXJokI7VazA8HsqFAsnxMWKtbUSbW6kUC3SuXV8tteaQGB1BaIJsPE5T1wp6TQ+96/wcOzXK7u13Y1fKfPOJi7jSpCMiMTxeVnc34/P72b3nev74kb0U8iX0oJdb40nKlstfPXaeda0aZwbSOIFWRgbHsI0g/dkQupPG1QwSeZvQVJZ1vS14/SbbesIkywYXB8YIBjz8zS+Os6YzhM+rc34kz8fv38SeKoe7WLLZd2KMofExRkpBbvMUEOP9dG7tZv36JnZdt5J8OsMvj+Tx5fv43cYQza1Xx4F/R9MkZmNoPEdOi5Ku+EA6CxrCdmYSu/oSfT1YqBbrtNeougNupbB40o/rqqQoj0/RBHBYu66b5taW2jE+WeRLdzdzU/f84t3TWNuq8ckP7mYqnuY7P36VpKMU4zTfdzqBTveGFvQCCNNb83otBOk62OmJJQu/O4VUjYNZu7zpJK9FvOeaL1jN9n/3es4Wg7TL6OEmpKvCOkJo6MFGPO1r0Awvhj+Ar3M9msdHeawPLdCgmhvk0+o+I3AqZVUtpGq0qW3NqvxZIY2dmaolo0nXwUoMYyWGkVKqZhmBqDIKNF01nkFDurZK0vMFcEo57NSY8j4DTjahFGopixUfxGzoICUjDGT9lD0NVCouttSwfQ1saCzz1QdX8lt3NPH7n1Qh5pGsRqakxvKR6/1s6g6yscPH/bevY826lZw6eIh950togRjrOw0e2GIS8Qm1WApE8HdvUcl7VWqJMLyARmXyApq3SlgVAreYw2zqwk6NqCYbUqqQMhK3kEavRjz0cDNmQ4eqtGL60IMqSuIUs2j+KHZmAuELIbRLFp+ajqexU5XFMkz0QBhvx1qVme+PUZ64gFPKYGWm8LatViUafwMwXWta94cRumdBnaLkclIlOb5OzNa7bknRfFyr6tEVGnIJisb0Alw97xgALQ0B1m9eD7OoF3etFXz2tgY0e+GW6bKc49Pv38amNY18/+f7OXC+2izEG1BRLl1XMqerKiuXduOb5vQv1dDJzsar3ePme6tnLshVJTurVCEppWp1vkird5UsF/+NWJxdikKuwFBaMDg5c282berh4Q/fwD/54u00trdj+xqZ0juxho+Rsv0cOKwoEz9/YYCXLjhc6J/gfP8oQjpommB8ZJxvPT3K9395inKpxI9/sZ+9L5+onf+pZw/zH//701y4MMzgxWGOnM+A6WdVzGXLdespVRyGx5McPDFCzvFhCR2tEKevf4If/Posv3z2NLZl0dmgEyyOUnZ0MloDH79/Czfecj2apuFULGItLbiOQ2JkhKnBQaItrSRGRwhGYxgeL0IIpoYGQYLQNKxSmZ4t20iOj1HK52hqbmT7+haSoxcpZFOsbxXs3tTC7/3uA3zlC+9h3XpFxdMMg+5Gk5UxePiONprbWzE9Bn5Rwe/VeeCWlbS7Qxweg4HRPMH8Rb76mT10NHgwIy3cs2cVW7as4l999S58oTB9CYMz/VMMD46StkyGxlKcPDfJSE4nk5mp3tJ3McGFlIdV7T4+ekOYyawL7Vs4O5Bk64Z2JkYnef7V8/RoY5RDK/jlC+euWl7eNZ7hh+7byrPP7GNgwuYTn7mD5tamOfWInWIGzR9WiR/XAFZaGYoqYU0lEhmRliW9GJo3UK0/rAzUihbgv3z/GDYG6FXlKSQ+vw/TWFx59U/aPPrkYU4N2mQdH5f+3OUSeXR/eMmSc24xo5ToEtw0PdhQC/vNHJed1SVqfihE8/jntSP+TYBrlVSzjcRIzQM/7SFyS1k8rauwMpOURk7jWha6P4i0CohABE1oyphwHXR/GCPcpF6qulFtGjCFMDxzumlR5bYLw6NaG9sq491OT2BG25COhZVN4GtbhZUaRwtGEBK8rT3ISgnNH8ZKj4FtoYebEULH27VR1ZQNNhLzOdy3K0Lf+VGe2FemIvy0N0NjRweDA/tJlzVsqfORG2NEvJLnD4/j9XeRzpV5+kSO1y6cIaSXSJS9SN1H0M3wwO3rae7sYiJj89rgwkRK3R+uUkdmZGu2nBkhlQxoZybRAh3ISglPczdOIY0wvThZ5Yk3GzrU34WMKofV3E1p8BiBnh2UJwdUc5JZUB3nKpgNnYp/X1IcfH/XJkojJ/F2bsLJTiErhav2jL6ToIebsRLDtdrTC0V7ZjqqXX00yCnlcHIpPM0rqs1dvIo65F2cs62HGuY9k8cPZXjy0BFsYya50mNq+P1LdLPyBPm7Xx/HciQX0l7mZDRz+TrIC7UVnwcpq4ZufNFOnULXq6UplYxOt6h2sokFdauiZ12bjn3vJLiui6YLfvvBVVSKM9zvP/3aY2RsH7/zgfX8wRdu5xvffJzB8XO4gUZWRS3WVzu23bOrg3PnRzheDFKJ9NAbLrJu/UrKpRIbWyTNDREmx+McGZaMJ5LccrM6f7HsUMJHpWJzvG9YBecKUwwF1/Bf/+zHFJq2MpWeorm9jRGpceN6Pw88eCv/4WtPoiNo9BT59197hpDh8s//4EFSiRSO4xBtiDI5eBGrXMQXChNpaiaXSNDSvZL+Y0dIjI5gejzER4bRdJ2Rc2fRNJ1QQ4OiSrR3MNZ/Dl8wSFOHilZkk3HaenpJT03xyYduWvA+aprGZz9+65zvWtua+We/e1ft79Wru/jW3zzNFI24FGhpa+YLH7+JTDrL3gMD/Oz5i3zxw9u59ca1NIQvEguZfPuZcVqNDOmiTs7x8cmbA7WycQDvuWU9vRdG2bSpB8M0OXJiAJE4T9oT5S9/sJ9CWYLhYWdPIyHNZUPv1VN/3jXGcDAcJOMEGHdDxBPZeS5z1X51kmuQWwcoJSOlg5NN4GntmfP9YliIT2jrc/8uEeC//eyC4sAt4mG2NB/7+l3gjenTrQcbVAb3El4MoekzVTbKKnFP2pYKF/8GGryLQdqW4nE7tjJeU6PIYINK6tL1Wikb6Vj4OjdQiQ+phDBhVKkALkakFc0bpJIYRjo2RkBFAGYny7lWWYVqq9uEbqD5I+DY2OlJzGgbdj6lFjhSonn8lMf68DT3KGMZlaTnSIlbyiGEhhQ6hnC5bkOUk5N5tq6JMjKWwqcbbNq8iqagwBEmf/HrSZ47Y/HauZfIEwaKoHuZGJ1gw527uMsf4OyFSXIFi5IIUirBBDMv+7wM8MKBIeSr57kQdwgJDzk5V4bcShG3Gpa/tJbrNAVF8wYwQo2qYUh6ArNlZe0+KXn24Zaq5aX8YZVQ5VhYw6fRPEHVkjoQmTdHdX+k5pGUTgVv80rKU/1YmQkkquqFrBTxtK3+jeHAQ7XyhunDbOys0Vbm7aObWOmJa1JqUlol9GCEytTgHMNyyY6jmj7fCDW82Mw1Np84YcGxIYSxsO4SQnAm4Vlw27WC8PhqNdgXw7TRLaWLnZ7EtS3IxpnnEfkNx6NPHOTAgMXqUJ4zUy67V4/wwQ/cSrFk4wiHQqGIZhiMFHwQDXNDW5HdN63nJ48dxpHw5c/czu7r17H3hYOcGkiyfYN6x3t9Ph7+8Izh+IlbyzTEZiLQD9y7gzsyGQaGEoxMFcHw0B4VpIsTZMx2vPGzvO99d9PcHGHXyCQrV61ACEFLSGMiL1TVFLdEwGeSGBtFui5WuUTGtfGHlAOrsb2T1PgYDe0dpCbG6d64qVaTNzk2SrlUoHPNOgZOHkMmXBo7OvGHwgTCcytFhWINjF24gDcQIDE2Qqy1vcZZnsbPf7mfvuEcv/WBrbTMooUU8nl+/cJp1qxoYMuWVfzjP/gIJw6dYOVqZWiHIiFCkRADPz9E2g0wPDTG1u2b8Ad8PLq3H5EYIe0PcPOObixXY8v1cxtoBMNBtmxZxTPPH6O1OUyq7IFgMyv8ZVzHJZ+vENYr3HX79bW6yVeLd4UxLKXk9MnztMVM8qUizU3qoU/XIwbVtU7oBkiJnZ7AiF7dalnoBjhgtl49cftSXOoV8FGiMSAZznuXVXf1WmA5NSildHHLBdUN7DeUC3xZaBrSriBdF6eYwde5ATszgR6I4FoVjGgHdjaBQFBJjuCWC3g71lGZ6Fdeosw4brmE0diJtCpIozwvBAtKZqRdRroOTmYKzRdE8/ixi1k8zd2UBk+oLnSZSRVWlg5mYxeuVVQeqaqxohZ5UpXNC4a4/zofHW0N9Lbl2XnLLhJjI7x4eIz/5xvP0x7RcTRT1RHWPeSZGVe7v4wRamTv8wdYt7aTLWvbyBQqHBqfW4FESsmmVpdMCc4nfHz1QaVMv/bo0NwKAtWWvbKc51Io72NzjYKjmT48zSvn3h9vQFVwEcxEb6SLMHyYjWHcfAo93DS3RXs10VT4gtjpSXRfEKF7FAXJF1aGd5WHebXVDt6JcIoZpFOZ15hkNjRfCLecV5VUGjquSn9p3qBKAIu21GpyXysITZ9TaUc6NiujNmNZgSWW8BhfQyzVTGY2pst+6uEmyCevSUm7dxv8PgOfyBIMmojxPAfGA3gee5F/9Nt3k8vk8Pi8vPjySW5YFyJfqHBqwsPxR88Q0F2SiRT/+eu/5Pd/+176h9NcGM1z446Ff2d1bzuuY3Ps2DkCPi+r164gEArxk+cO4tgukYDJpNbM7t4CR4Ys7r9jG7FokLNnh9m8ZVVtIef3ezFKFtu3ryfm76Nn9QrGzvexac9tTA0P4To2ut8HQpAcHyUUUwZgrHUmmbWUzyORlPN5Jgcv4lQqtK7bSCY+VTOkp5GJKzpjW+8q8qkEDW0dJMdHaWyf62jIlxzyjpdKxZ7z/YULYxwYhGRmnC3V69iyc27yIUBrg5f0hI0r1XWeOz/KpBXClQZlEaWSz3HvA7fX9i+XSjz38llWdzcwPDTGUwcTNAXH+dLHb+TAgbM81x/ixl6NL356Pb4FOuFdDd4VxvDhw2f56f4cW9pcfudTtyy9czVRYjmQdgWnkKnyBOd6Nt7MRIS7tsW48YaN/Nlfv0jcvnYCoMLHvkVDcpc9PjOpMv5t66rDw6qAfUlRKd76dqHXDELTa55M6TpUpgbR/SHcclHxfUt5xdv1R5RzJxBVVJpAhMrkefwrt2GnxtQCLqYoDpL57WScfArh8WElR/G2qk53bjGLa5WwMhMYDR2KPmB40Ksefek6uOUCQjdUcp9hovlCCI8fhMbd63U2bOkmn06RTV1k5Fwf8WSWsWSFgohw/pLqJ7KcA48KWW/uDXP7LVs4e+gQze1tvPziAV4eNEBc4nmr5PnQfbuYHJ/k/FNxXjs+CkjQDMU9t0oqgc8XUmM1PIrLrpsgXYxQI9J1qcSHMJco0ydMH24phxaIYk1eBF1DD8aoxIfR/SEkslo+MaKMZtfFKRfwtqykNHJa1V92LNB0tEAMmZlUHe28IZBgpycArnqR/U6BrCYlat7gZXXIlZa6tLNTqtzjJdWA3kya1aoGhy98Yg9PPnuUF/rsyx+wTLiVItKx51WKWS6cfFLJsuvg5BJXtQiTrqOaU2nGu67CxD13beeeu9T/zV/s5eXTE4yFQkRiESKxCH/y3x8nY7SyZ6XBJz++h589ug/bkdywpY2v//QEKaOFgfODnB7OY8TaSMZTC/7ON36wj3Qmj+VrJqQV+aAreeXoKNf3+olEQ8qrmS5w4w27+EBVln/yi9c4PCr4QPkMu3ersrCf/tgtSNclPTnBjj27GDpzmlhbOxeOHkJKSbihiUAkSiAy1w4p5fPopoHp8VLIpmls7yQ5Pk6kuZlCLktibJSWFd3zxu1Yltp3bBRNN0iOj+ILqPduIZvBFwyhaRofe3An6XiCs4MppHSZTOTYtKGbVb1t7BkcY9t165d8DhoCu5zj4nCKQGCA00MFyBYIeiBbyWNrSu6S8SQ/+dVJvE6evlIz+48cZXVPM2akhbWtBcKREKvXdnFy5DztTW34gkH2vnyC/tEsH7pnC6HI1Tf6eVcYw50djayKJlizoolyqcTRExfZuLZzzg36w9/ZyfMvHueJfWOgLe+ynWJmhof5FuLwqTHS2QLJsjG7KdJlsRR/2YoPI/xhZDGNZi7/BT638LtQBoYvsOwwqJRutfzcXIPXtUq1rOx3kzE8G0LTMaOttba1oKKbslLEKmbwtq3ByU6B0FTZsGBD1UPciJ1UpaukYyNmccJdq4RbyKiFhGOrKiSZKYTpQVoV1Wkun0C1UdbmPCeh6cq4dixFqZj9vZQUMilGBg1ePXCez3z6Pi6cOI4j/AxnrEspk6wIlfnMp3bx0yeOcCbh5YUTGZKTz3HnLZt48ekXOTwVoSLme/OEN8R3frKfprCGLg0OD8KKmMAspdi5NsptN2/lL396jIwTqHl39aAqS2VEWyhePIGndSVSUKP12JnJWsvo6bCyk0vg7VinKrk0dKi2vZUyZrhZtdL1uDMNZ1wHPdyMnZnESo+je4MI18UpqyYJTiaOVl3QuFYFNAMz3IhTSF8DKXlnQMmOrWg7/ohKGtS0eXrArRQRhhdpl67IK6wHYip34RrQK14PhpNlfv3Eq5yZdIHlOwuW0rnSrmAlxzBjbTil3BVVOrJzCXUvhIZbyiOEtmBexmJQFSj8cyMf+VQ1xyOxxJHvfDz4wM2s6OpjRedMtDPs00jFR+jp2sCFC8P4Az7uuGktXr+fj99doFCs0NrWhKgUcLJTRMK9c875xFOHuDCawytKxKIBetogFm3h3ECc8ymT3k4PuVyFeN8EH3pg1xyZWNfTQK40RfeKuVQfoeuUCkUKmX50w8AwPWi6QSjWgOmdL4PFXBarUqEUz9G6sodocyujF84Rbmrm/OFDNHZ0LmgIA3j8fi6eOk64sZloSyvJsRGK2Qy5ZJJwUzOJkWGaV3Rjejw8tfc0JxJBjGeP4TSu4fzAQdI5i8G8j/XrFcVuYnyKv/67o6xbEeShB2d6yCXLOp7GLl45dIbXRjTWBB06mpu4/7a19F2YZPt1qsJVMpljMGvQaUpEZgTDlNyzZzUrz4/x/KsXOfu1R+ntaSOTTPDUfotwwOD0QIqBjIeJiUTdGJ5Ga1szX/iEEqzn9x7nqZMVxuN9vP++HfP2FZqGWy5WEzB8S7YOrWUAm28sV2wp+GWBT33oeg4dHcDVl/cyka7DTSss1q1u4/vPjWNdUiLIKWbRgjGcQhJNv7Jrcwop9EBMJVO9Di+YnZ5A90dw8kn0YAOuY2FN9iM8IWUI+96dhvA0LuWNa94gRkxXHdNKWTR/BLekXK6apuFtW42djeNtW015/DyabmJNnAfDh2aYuHYZo9pVzog041ph3GIGaVdU4leloGqMzqptPRuLJVu2+grc/+DtPL/3BLfu6CQTnyQUCeLFAzI7b3/LganxKaajacK1OTQsWTM8yW333s7+b7+2aO2a5qYQH37genjsNQIejRu2tGFbNqf7RkjEU7hy5kBpW8q410xVdcNflZvZnRCli+aL4s6iVAjdoDzWhzC9WMlhdF9QLXTTE2CX5/A0henHig9iRNsQmkCLqGovTjGN2dStahR7A9Xa42XcSoFyPL+kZ/rdiGnZcQppNF9QJSReCikRmoZEU/da0y9PwRIaTiHzllKu7t3ZwuqeNl7+yUkwlmcMt+gZPnTXKp7cN0J/Zv4xTj6FEWvHSo2qBkjLhJ2dUgvAbPx16Vwnn0QYXlXvuCqjlfgg0nVV06YFaFfvJmiaxo4dcz2Yv/1b76FSKuELBvn2j17lXMqktWGY7dvXsn3nJuxKhT/965cwQlECosJT+0c4cGqc9b3NTGUsUskc43kfX7p/K909XTz34nEmkkXu2bOKrtY4Gzeu5E8eeZEKPu7L5eZ0tdu6dTVbt65ecKxevxdfsImRvjOYpgerVCIYjVEuzKeHaZpOpVDArVZ0qpSKhGMNTA4NsunmW0iMDi96T+xKha61G8hMTZIaH8Pw+MjEJ/F4vRRzmTkc9KDPpDw5gBtpIVQY5rWjeYQGK1Z0EolUy09WbMp4KFVmokCu4xD1WgwP9iGEQa+/wEc+uIfR8QS/fOECd93Yi9en9Pbqtd3ccGYQhxif/OBaTI+HQDhErCHCL1+6CHqQiakMRVun4gb4q++9RHd7mM/csZXVa+dS4l4v3hXG8GysW9XKyOQAm9d2zNt2+61b2L65i0d+9CqTWeVV03whVSLJ9M0L8y8rA/gaw08RQ5NkXTUWB8Ho6BTpfIXF3MKzmzAAvHeLhzUrOyhXKmhifohS6CZuMYPQjEWV6+y6m9Ows/Gqd0y87nClEFo13K28eFZ8GE/bWiqT/RiN85/ZuwVupYRbzs2hgUx3qRICjIZO1YI4OwWODbONs2r7Zt0XRDN92KUsTnqCQM82nMQwVnaqxht0Szn0cBNWcgxZSKMHYurvxMgVtbRNl3T27T9NKZehbJqUCiV+9VI/A4Xogi24x4tevvXUMGtaTJr0NF/57B7OHztKOGSy7+UjlOX8F65PFvnE7W30nR/n6eeOcW6swvoWSUNbB8f37ScS8jMwlCDnVn/PqlJLihmwCpiRFoThwSko49zOTKD5wmjhFuz4kPKoZyZwClmEJ4CnoVNVz/AGMCKt1RJyAiMYU/et6oWUVgmzqVtl6gdnnoMRblYeOl8YEMhyAalreFt6sKYGr6qm+TsZmi9UjWjM94iqWtk2diGD0HWolg1zq50BF6rC8KaH7J0KLX6LiZKvpkfT6RJjY3HkpSGQKlT5SFHz+K2KlPnwe7ZSyKRZvBCQRJZzmLG2RTnP8pLW7G4ppzjCUr5+vnVV506Tq5xquUH1DtDe1bWHX37lJMGgh21b1wAwNRHn8edPo7k29925BV8wiCFLNLpJ1q1ZVztO03U8bpFU2cLjFRQcH5N9/eQrMFXysrXV5dPXN9Hdo3IcDp1NkLS8JH6yl56eDjYBn3lgE2ODI/hDy9cLju0wNTyEZpiYPh+aYVDMZWlsn/9u9AYCmD4fybFRMvE4lVIR13XxBoL0HztKY8fC79PRc31ohk4unaqNzeP1omk6xVyOsNeLL6DsD9uyuPO2zfR0RnnuwDCThQCaF3w+D++5aSXf+cVx7tzVyfZta/j8PSWiDTF+9tg++s5PUJIeCpbEHw6zrivApz5+JwCnXzrN2YRB98AEnV0z0Y1ToxZZ1+SmUplok9IBhmmyY10TxbLDQ/ftoFgo8uePPIW3axPZXD/rN65a9r29HJY1u4QQ7xNCnBZC9Akh/ucFtq8UQjwthDgohDgihHjwmo3wCtHe0cLDD+1m1aquBbcnUzkSbgMRv0DzBLASI8rbtECIc3ab1+XCtcpz278uASnlvBbIH7+9gy9/ZCuyolaCFeHnu3szHBheWMO2+kr8g/d1sK5x5jyW5ZDOlnjksX7Kl3I0UeXghOlFaAZOLlnNkp87Zjs5gpON14rWV6Yuogci6N6gqpW8nESPQnpOG1tQnEoj0lwzPHR/GDs1dkWG2pXg7SK7bjmHHmrCSo/hTN8T11VJbLZFZXIAt1zAbOiYX80gEEVoGprpx0qN4mnowoy1YmcnVfKbL4is1hnVQ41UJgeq9Idqe1DXRjNMdH+42qRgBl7KRDRVekg4FUIow7IifDy2f4o7bttOrKWNbzyf42IhjDC9mLLMuiaHgJ0EZ0budq4K8PBDu+ls8nK2bwgHjaaOTobGczOlA2dBuGVa2xpZszLGMycL5BwvgynB8ePn6RspEAqYtDWHkVJiOAV+7yPreWBXI0awgWnah5UeA03DrZRq88nNTWE2d6s6yYYX17ZU17nkKMLjw2zowEoMU5kaxK0UcEv5OeF4PdxIJTGEW8pjV+eHk08pPrXQVA6BP4zZtALhuFQmBzBbrn0i7dtFdi87zmpXusVKeAndQPcF0YMNSNdSjYfSEyqp9BK9K6W7aJ3yxTCdyLvs/W1rDo/5hl4Pv/e521jdMMMN3jsg+NG+PK4+32iVdoVP3BTifZtndLIrIZ8v8vcvDnJ2kaoT2jS1rKIqvziX6EY7O6X0cTauqkVkp6rNXlZWS6Rd3jHjVoqK8z4LeiCKEWmuOT6E6cWtNu+4XEm414O3i9zGxyf45eEsP3vyJCdOqPrBZy9M0Jfyc+xckh/84iD5bJ6hhENaRrArM7pM03U+8r4dtLTEaIuYOIUMvo713H5dCy1anKMXK/QNz0TI7rquBT0/Sd9Qhhf7NQ4dvcDQSJJfnIRnXzg2Z1x2pUJybBS7UkFKSXJ8DKusamW3dK8k3NDI6ut2oOkaKzduItLYhJSSxOgwU8OD5FIzdcxTE2M0dnRiW2Uc2yI9MU7ryh5cx55XPWIarnTwhyKAINLUQjDaQD6TRkqJbpr4AkFsS9kDybFRNE2jt7eDWNBAAq1Bl83dQY4cvcBEIs9UPEt8Ms5fPzXK3z56lMl0hUS6QKGo6uI3+R0+/Ym7mBiP81/++6Mc6YvznrUuN12/ds643n/LSjY35LFcybd/9DJPPHkIgD27V7NxVSP+UIjm9jbuvXMb7doUv/3p216XXCwGcbnkBiGEDpwB7gOGgH3Ap6WUJ2bt83XgoJTyz4UQm4FHpZS9l/vx3m3b5R/++LGrGP7SqJTKTI5P0dUz1zA+ffICjY1hWtqa+d5PXuZUwsuaQJLf+vR7arWJnbwijONYc9qPLgmryBff281UPMPfH6nM23xdu8267hg/e2UKS/OxrdXitl0rOXJ8gExF4+iYwY52G7/PYO/5ud7e2egIlGmLeTg4aNMecnj4vnXs3XeWVT2tPH1ogsmi6ta1lCdhuvJDJTGMp9o5araytZIjaKYfYXpwywU0fxQrPogeiCyLq+YUMyrzvpRZ8CXpWmVwrGUZ1Uth4D984DUp5e6Ftr1RsuvtWCc7vvCnVzROO5vAzsXxtq/BySaqyXM5rMwEui+MMLwIw0SW87WkJNXVbG5CoV3IYGdUZQO3lMPbvpZKYgTN9CjvEQK7lMXbvJLKxACa6cFsWoGVGlMn0Iw57Zs/dmOYtWs6+U/f2s/NG6NsXRXjfP8YvnCUv3s1RWcULEeiAZ99/yZ+9fRRotEA97xnF5ODFznfP0EoFuHRVycRmsbWlQEO9heo4KPbn+Ou7U10rVnNf/2b/eRkkKBW4o5tjbx2Jsl43uCOXgvLqrBhQy8DQ0n29hXZvdLDru1dZDMlvvnkKNLwoTslPnZLM0NjWZ47GkeiKDf+7s2Ux87hbV+jws+xDpx8UkVLhI4z3XxHU6F3M9aOdG21aLUrSLuCp3GufnBySZxiFk/LSsrj5/C2rVE1tXVTNY7JxBGGge6f3/nvSvBWyO4brXMBhgdHaG5prIVAASbGpkilc6zf0MvJE+f43t403tIk//R37sDrVwt213X5828+gyvh9z5/B7qxvAXy5OBFApEIjm0TaZprMGbiU9hWBYGgob2DTEJRhVLjY4QaGvCHIlRKRRzbwuPz17L0L0Uxl6WYy+Lx+fH4fOSSCUqFIh6fD+m6tHSvVLVttcV17qv7TvHYkSKtTDBBKxuabD714RvmbH903yTvv7GVimXzq+Nlev1pIrEI77trI4FlZM9/+0cv05cw+Owdzazb0Dtnm5SS8eER2ro6r6oE4G+v73rT5RauXO+6jo2dHEUYJka4qZrfElI9AhwbT8vKKg3Sq/IEgjG1OHPdOR1Zp5sWqdrtJsLwYISbqIxfQA/FqomIKdWIJzuFW8phxjoUhcpxVDSguad2z7e0uXz8A7v4wc/3M5Uu85n713HmxFka2zv51f5xcpakI6pzdtTit+7pJJvOcPDUOF/63H2M9PeDEKQyZY6ejXMqbrCzW2csaTFW9GK4Re7fALtu38PfP36QA8MC6TrcslqnWLY5NGqwJpJnS2+UVKbEutUdfPvXA6xpNVjdZrDr5l18/Zu/ZtRWVKYbul3Wdsf44fOj5FNJXNdBM30Y/jBOKY8RbsTJJ1WCcyGjbCZNVxH35KjqtFpI42noqNkY5Yl+zEjznHe/Wy6o5O/2NVQSI+p5FTO1GuV6uInK1ABmuPmqbIaldO5ytM2NQJ+U8jyAEOK7wEPAiVn7SGB6GRIFRl73aBeBlBLbqtT6gy8Hjz51jENDLh+/tcTWLWtq32/YNONa37WtC/PMBHfdtPOSo5UxeSV50FIIstkCxdLCnuHmmJ9Vqzrx7J/Akuqm5TNpbty9nmQiw5HROIfG1CNZqmPQTZubue66NZz/xvOMF8P86Y/62NyusXZtFwdOTjBVEsyvNzAX0w0btFo3urkCZkTbwHURhqnqCBdTmI1dC4bIF4Lm8ePkEotmkrsF5WmbnUhiZ+NKKUWar1UJubeF7LrlgkokEqKWIAeqSYnhC+Ha6mWtByJQpZ/Y2akaz3e2MWwEVO1gzRdUVQwyk4BUSj45grd1NU4xS2n0LJpmIIWunm8ggizlq5UjKrXybKf6E8RTRSrCy9DwBHfcsplK2cIXbUAjzlBCsqXTIOZzSSUz7N7Whcdr8ORT+4kGTHTNZf2GXsZGJ3lh0Mcrs+pfd3dGicQinD3ZR0cEziRsWqOCG3dvYCp5iImi5PmLOrojWd1bwinn6W3ycN99u3jxuQMcHaogDXUuR/fx/VdygEAPNWAlx/B2rqM8caHaiGQSzaM86rO9XWoxV0RWKhiRFhWB0HQoVhtuzKpZLG0Lt1JA8wVx7bKqOxxtr7babQAhVLTEKuFt6J3p0Kjpij/sVD3w1ybp620hu1aljGF6lm08nTndz98+N8GmtiE++aGZRJrW9mZa25Wh2tPTzo6BNGu719UM4Wm4kiuuBS+EoFws4PHO1022VSHa3EpyXC0GBQLbqmB4vIuWk1oIKlTdSWJshFCsgUhzK1oyiTcQIDU5DrCkIQywdXM32cIFeto3cGYwxcZVc8PYN96wke1be/D6/Qz0j9DV38+N21exeXPvMu8ErOqKYDtpWlrnG/Uv7D3BkyeK3Lc1xa17VBmssbEp9h0e5OadK2m5yna205fB20BuAezkMML0I60STi6JHmpQ+TKGB9d1au+92ZQVaVto1QjadEKtEAJPSw92alwlJju2oq0FY6qrZyGNHm2lPH4OoXuRQq9RAQUWRvPKOY2oRhIV9h84w2jKpmxppNNZeld3q3rAR8YZzQpMWeSubVGKhQKmLvn8p+7i+Wf24ToOHkPjhj07CPsEp5+c5NCIyXSSZ9TjsH7zJgbOnEPYRQJCI2/Z3HT9NuKTSQ6NpjiXCXLuiM2eHkEuFUeW0nzovXczPjrBd3/6KiPlaC1BWrUmz4AeRLpx5WSZHMA1TLRp+l64WdUcj6r7KKXEyUwoW8F18DQoOReGiZWZVMnh1Xe+tC3QDdxyHk9rL+Xx86pCUKU4EyHVNCoT/ZiNndVa806trrxTpfpci8YyyzGGu4DBWX8PAZe2K/kj4AkhxD8CgsC9Vz2yS/DM80d54ViKj965gi1bVnO+b5BoNEhTy+L8srbGAC1TcRqiIQb6hzF0g67uuV7etWu7Wbt2fsalHmxQD2qJF1tEL1B2NMrVl78wfPxwX37Oi+PGbodgwMNTJ8o8ebzCc8cOYBtKEI5NmJwYmeTjN5YYm8ojFqA0LHgvDk1y+MwUaRlECFVjtm88x9TYFN2tfs6lL/82udwLe3bdzdmC5uSTqjRQsGFJaoPQzSU96tJ1cUv5OVUMQKKFGrGz8XldwF4n3hayaxcyyrDNTGBEWnGKmZohpXkCCA/z+KaaN6i6mtkVrMwUgipdwjDBtXHyKnt/uiW2k4ujGV4qyVFFC9BNzJYeyiNn0Bs7cEt5cCxlsAUihPUSLSHBsTEDMWEjdA/nM2EunDlHIp7kiafG2dLmctdNqxkfGmblpm3839/cz7Yug53rm/CaOr847nJnj81w3xkKJYsPbPdxoX+E9etWcuBsgpfOwIkLF7hxczOf+fhtPPKdp2gIxfjaN59ivBysUScc3U+xaHHbHdfzjb/+Ncf27Ud3y6QKgge2ari2w6+PpHG8MaAalg834hbSeFp658w3Oxuv8iAbavdxejHhlHLYxaxqmXuJ8rTTEyp8bJWrDT5yoAk0x8Js6FRtx6WLEW1FVFtfu5YysJ1CshpGXUd5/Jzy7F897ectl93R4XEe+fvTrO/w8rEP3UQiniSVzC6ZsBKNhmjxDtHe1EA6lWFoaJLNW+Y2IwkEgyph8hJomsbvf+FOFa5dxCtczGUpFwpz6qs2r+ieU8UhNTGO6zqYHp9qUDAxXuNchhsbcR2HfCrJ4KkTNHYsL5EtFGsgOTZaDS8rLmOstZXhs6cJxhrIp1MEo7ElzxEIBrnnTtVcYO2GhfeZXhz09Hbyu71qbKlEir0HBti+sZ2uFUtHKW+9eTO33rzwtmjER0SLEwnPGMqHTgxzYAi8xiDvveeaGMNvudzOQFMOF9dBC0QVbc8qY0ZaUc2MFqCdSLdWbk5aZYTpQ/eHVVKzbuAU0nhblTPNzk7h5lO4jo1bSCB0HTPWRiU+BIBbLiIMU9G1TC+4FutbNQbigl8czDNtwJ48N8F1G1fwX77+BAUjwj98YAWFTIaVGzfxvZ8fIF10cdwT9K5s5fvPjtAYdGg/eYKy1NjdaxAOuFQsF6FpPH8+yDd+fpKYX/DFT91G6JlDxHM2P/nlISYKHmDGxphK5Lnvnju4PVPhxedeo63BQz5XZFOrjz3XNfJ3T50m7s685z3NK3CyccxY+xynmKp7XarWWzcUpaf67pfSrUUlzVj7nKwnp5gF18atlFRznuQoEoFTzKpzeQKqylSoEd0XVu88QY1OmL9wEP+Kzeo5lAtX3fnzWnVw+DTwiJRyBfAg8C2xiGtPCPEVIcR+IcT+XGLhrkULQdc0BA5CaIwMjvKtp0b5qx+9xkD/6KLH7Ll5E7//+dtojAX5619e4DuPnrhszcs//J2dtWYdqgvcwh4R087yDz+5kw/e2IJ0HfxOZsGyOmu6G9iyoQvhVBC6p2YI12BXCMYa0C9TRSFqlHhwu58mb4mU7WM4I7ltnZeoWe1jL3TKFRvHuTzfLiDKbOuQaG75svvCXO60rJadcgqpZR27GMyGDoxo65xJJTQDe+oiVCfEm4Rlye5sub3iElp2BbeQrrm8pF1Rk76cU5nA9kwkwSlmVaWTaqKd8IWQpSxC06kkRxS3W2iqKYZhIh1LKW+E8tzrJv6u9WiGByc7hdnQgXRV2TCzoVO1IhYat20M8eCt3cT0HC3eAn5RUjRcw4vpC9MeEWioZIyhiSJ/+ePDCF+Eo2Mahj9IW4OXCBkyeYus5WUw6bJ9+1quX9/M1q2r6WjwInUPKTfEa8eGGTxzmlu3NPLB911PLBLktnVeblhRlatyjlwmR2ZqiuaIRiDo5+a7buWm9WEi4SDNMS///LdvptEsgGtxc7fFe7f6aWmsehfKinvplnJo3gDSmZFXt5Sr8Umnm8PM3j7zgFGREN1Qba8b2qtGtMC1StiZScXldJ0aB9Ns7MRKDKowaTFHYeAwZkMXTu5NK1V1xbJ7JTpXCA0hXYSmdNqPHj/Jt54a4/HH9i56TFt7M7/3+du449Yt/PLZM/zg5TTHjpxb9m9qur4kPaKYzRBqaCQ9OUEmoZKG1Fhn9K5j2zS0ddS2xVrb0PT5kbbZBvVCsCsVpoaHmBoewuPzE2trJ59OzcnSN71eXMe+rOfcsW0So8M1msbl4DpO7V119NQw+wZcXjt2dQ7U67at4Z/+zh21ZDKAm3f2simW4ZVTSZ67hNv6BuJ12QtXonedXFJVgMnFMUINuKUswvQBEiszCbpqYQ9KH9vZKWV4RVsRmqFqOVsql8gpZtVcwK0ljtuZKdXJ0xdCM0y8netUU5hyDq1aqUa6Nka4SeXI+COsbpS876Yuru82CIgizabSSxVp4vH7CYUDRM0yHp+fii35q++/zNkpwWTJx0jSJtYQYUW4glPKU9QCvHy2xKbVzezctorrNrSxflUruA5pN8RgxuDEawfojNh89P272Ll5BW1RnQd3BPCiKGKFQpmpkWGkVSIc8LBi9So+ePdaTF1iCpev/NYd3LxazcU1sQr3rbPZtDKk3tnlfM0ukJbSq9M2gar4U/1/pYTuDyM0Y77tJQTSVfaKEWlGM714W1YidBNZLuBkJtS5cklFdYm2YkRace0KVnoCoXkoj50H6eKWc1eca3AplmMMDwOzXacrqt/Nxu8A3weQUr6EipMuyPaXUn5dSrlbSrk71Lj8legdt23lX33ldjZv7qWhMUK7N0eq4PCrly5c9lhvIMDWFR62rIrMUVpSSl7dd5Jz54aWPY5pWMLHy/vPMnBxnJ2dkn/+5dtZGS4hHRuPPWPI/eCFCf6/vzsNnvmrFt0p8OWHNjM4nOSpU0sn3bXHdG7YvZGuRrWaXBVzuffOrWxaUa1MoPv55rNxnlvGe2fH6gAfffB61rRc3ntl5xI4hXTNkyl0U7UMvcYZ37LK2RIef/XFdU36Zl8z2Z0tt1caBte8Kkt9prawDq6lKA2FNFogUqtlLa2yaoedS6gqEtk4WqABp5zH07wSJ59WyTCRZsVlmxpE+KO1TH5hmNjZKYxwo1qdOxVwnVpTBCldfHaaUlkVXV8ZLPDVT9/Mfdc3ge7hsZcGOHx6jI/d1UNjNMh/+M5x9o5F8Jga927xsqHF5dy5QTy65KO3tHD//Tfxq9fGmbQbePwXz+ANBNj71Iu8cnyqpvySRYHX78eqVPjRL16jfyTNzq0r2Li6iZBW4J9+dgc518sTL5zh7juvx6lU+MVjr3C0P8ffPj/F/jMZBi6MULIFYb3Erq1d3Hr7Tq5bFWZzq82//MIuOgIlhDeIW8wCssrzu6iSq0pVRSkEdnYKO5fESo9jJZRxURo/j2srj7lq5xwE1wHXUV73Yg63UlDfVeGUcjjZOML0IUt5Aqt2YISbVcLoZcLly8QbIrtXonPbO1v4n758Gx95v+K1ru8OQ36SFy9IRgcXL9s0jfU9MdY2WnR2zf3N/v4RXn7l8o6JxTA1PEg2EccXCJBNqIVHJj6FVVGL+2hzC6nxsUW9vlPDQ0Rb2nBsa1GOMEAxlyPS1IRWLWmZmhwn1NA4p2pGS3cPsdb2ec0QLkV6aoLGji7syuUdEPlMlv/3kRf4q799DoDrt/Vy5wYPt1x/bUpITUNKSSQaZsumlUg0HPfqjIkq3jB74Yr0rq4jTC+a6VWVojwB7GwCT+MKpFVB8/iUpxFUGb9ws4oGQS2x0S1m8DStQFplNF8II9KqmvJUE871UKOqGe+PqA6Lpgcj3Izu8St+7Kx3pMctkE2miLa00h7VefDGVn734RvwOllODpf55k8Ocd8N7bz/pg7+5Aen+dt9FSaKJvdsDbI2nMPQYWLgAjdtauLLn7+XC6N5LmY9PPbSIFOjoxTyOb736BGoGoSu7qVsSRpb2/j5z57l2UPjrO/wsmvnOqIeh4duiPDAPdfxtz8/THNLIztv3slzz+znyVeHODJu8p0nztF/YYRkVuU+bV8TYdvWNdy7pwefk+WfPLyFO9dNUzqNan+AEE4xg5UaRXhUTXjpOriVkorKJUcoTyh7zUqPY6Un1H2tlmjU/GGszCSuVUB4/bilPNIu1xifUkqsarK967qYsWY8Ld0qIdaxuRw19HJYTixvH7BOCLEKJdSfAj5zyT4XgXuAR4QQm1DCPXlVI1sA0x4DfzDIFx++hadfOElP11xlNjY6yS+e7WPnhmau36lKpWiaxkc+cOO88w31D/Ho4QLNnin+YM2KOdumvcPTCXXzB2MykbL45Idu5YlfvsSpkxfIlgQ39hrce+fN/OUP9zNR8mNrPhbvX6SRzeQoW/aiHGG/KOLTJRNJycHXjjMwXkCzBXfdtJojrx7ktfNlqLYLXS7P9vCFPMXSAc5POnNakEb0AhJB1plF15BSCZ9jYSWGoRoCuZZtoZ1CulrA36p2+rKvKjFpFt4WsntpSF4PNWBPXqQy2a8USHXlK6XEKWWxixnMhg7V/VDTwbVVAliVR1yDdPG0rqIyNYBm+qnEB9H9kZkya+UCiBkj3EeJe68Lsm7NNp577hATA/1sWdPCU88fYyRepsks8/ufu4O9T71IY0cXof4xdnZJ1q4KMZFQIdju8/20d3Zw6uAh/IEAR49doOTooMH+eDN9L4zT4Bf8y6/cyo9/sZ+eRo3uFT3kUin6x0scmwjz3t0rMDTBr148h+MGmBibpFB22L1jFcVsmlBTKx1Ohv0jJTQTTifh9N4MphSEfRo//PUZGsP9XEjodMUEkxNT6G6Zre0ejrsx0D1UJgcwom3YmQmEblIZ78dsbK923NPRAzGs5CiVyYsYoUZlMFeKiCpdRZg+hF3GLWYRrgcj1qmqsFQNIVkpoYcbITuF63ix02MIlpfxv0y8LWR3tpf2ztu3EQ75SKYLtHXN8F2llPz4Z68A8NEP3VS7Rzt3rGXnjrkZ4wCPv3iB0aKfloYB1qzvvaLxmF4/oYZG4sODZBMqJyE9OUEgEiE9OUlz1woMj4eGBUpRzYZVLuILLpyIY1XK5BIJvMEgidGRGofZsWyVkDfLoBVCXNYrDBBpaiE+MjyveUIpn6eQTRNrba9xjiXgSMWffmHvcfYem+Rj96yl+dpwemv4y+88S74CX3n4Rv7V73ZiXJt6+m8PufVHZjMCavXdKxMDoIvaohlUBY5KahTpOIhiRi1mHQvdH6q2eJ85kVspqMTz+FDVKK6+tyItqhFNdQGtEp8DSOmyq9Ni18Z2hsYyDJw5TVtrjANHLjA8nqMsfHzm1iY6V7QRH5ugo7uLjudOcd8dO3jtyAC33nwjTYdPsHnnVl5+9mXWrGvn1PGzjCUtwMOUE+X7L2fwyQK/9eHdDI9MMdA/ynUbO9A1l9HRCY5OeumMwM6d63nyVy8xXvaTyZbQ9TTdXY2s7O3ixMEj3HHPHv7yp8cRwkPeaOK7e9NIV6cjUODpA2lazoyTtrxI3SQ+lSSXL7GxRWfU9JO2vIpeVikhTC9OTuVW6P4IuDZC6AhfGFFIVStu2eimFzs9gadZrZ0004cAxbm2ymjBmHKQTdsa0lVJzIb6LaTAyUziae29JvbIZY1hKaUthPgD4HFUodtvSCmPCyH+DbBfSvkz4J8BfyGE+B+rEvZF+XqX/ZfBS6+cwOf1sHPHWt5376VJbzA6nmQw56VhJM311c3nzg1x6NQ4d920mqbmGeO5s7uDPaumaG16ffVtx9I2+w+c5vQkvHxxits3hijns5w/P0jRuryCdHQff7M3M+dBdgTKbFkV4fnjGcp4ef8Nraxb182Tv36F3q5GRoenkB4/YxNJJjIulrjyVsp518fBYUCbUX6uVebzH1hPuVTm678aVxxKTVeeWsOjkgoyk6p7n+vWjGi3UsItZQBxRR2RnGIWaZdrSU9CN5COpV4s18YQftvJrpNTVQ6ka6vEguYe3GK2ZqxK6SpeaiBabavci5QOUtpouqHoKbl4NZlLwynlVemllpWqQ51XJeNp1brTbrlQ66BoRJpZ2WSw68br6D95gtamIKl0nryl8+I5l+u7NDY0ezj4ykHOjNsM/fB57r5lPY2NaRrb2nj85UH6hl/EssGnD9Ac83DxVJyEHeLGHh+ykieTLXD9xlaSyQzZRILemMO69asINzYSHx6ipz1AuMlDOpHiyPEiN1zXxf7Tab79QhrQuTAxjkmJO3cKsjlVKm1bm42UcHzS5PYtEW67eTPf+M7TbFoVpSmU5YULgnNPxblrYws3bl+J/OV+Dl2YQg83V70Iusr+DsZUw5dAFLOhEys5gtncQ2W8D81RiRhmYyd2elx5/mphVA1w0We9ECuJEZWUU0hhNnWrl6jQ0MKxayYrbyfZ7e8foa9/ittvWldzMMyGY9ucGVU0G8e2MUyTQj7PE8+dZtWKKNu3rZmz/57r2hkZz7Cyd/mNJ6bhCwVJT05i+gI0dXYp6kEygVWpLDvJr3VlzxxKWzGXo5hTerihrZ1sIk5jeyfnjx4iHG2gkM0QHxmmlM8TCIcIxa68uYphmjR1zi/3Wcima4l8iazDT585xy3bWvkfPr8HTdd54ukjFPFTKs2tTvTEU4eYSpf42Pu2z0tCXAxWucyTL5yiuy3Clq2rcFywXQ2kvKLE9KXwdpJboFYaVDoW0ipjNHSoxOVZi1ahCZAS6di4lTKepm7K4+cwAjF0f0TlEUxzUl1XJe2GGlUisuapdvGLK6pALjkn8Vmr5Ljv7htIT0wSCxr0D8ZZv66bkxM6Xl+Rh29pZWxwhIuDU/RN2OwYT/Glz91PKZdF8wb42ndeIleyOdT/KpViibMjJzmXb2RlBG7rqRDPVFjZANFYM9nJUUIG3HBdF82dK5gcukhLayObo2eJNcU4cKiPgN/Ljd0uz/TpQAHNFaR/dZoGH4RiSWxX0OIrsak7zMtncjSHXL78qVt49oUT2OUiG0OCJ48X+PYLadq8Dl/59A28uvcgjx/N4hQLqtOh6a3WYpcI3cQupPG0rsJKDFW7hybBdXGtMka4WVXucpTDB+miewNYuSS+9jU128gpZrCzCbVICTUiPD7VXCnov2aOuWVleUgpHwUeveS7/23W/08At16TES2BTCLB4wfT+GRxQY8DwI7t6wj6+ununvHGHTk9zrExjc5zY+yZZQzrhsH998w3qGdj2kMM873EyYqXXxwsAD5CepY7btnF8aNn+e6LKcQCrWcXwjyOcWeQW27axKn+lxnKw9HzCcbiBdIVg4b2DlpbRtm953r+5if7OJu4uiQdKd1ayEgYHl48MIArJUIoErzmC2MlRxTnx/SqOpnV8jK1c1SKtfa4l0J1PvIs2F5ZWuU5hpq0K5ck010bvNWyKx0bJ59SWciugx5uwk6PYzZ1UZkaxNs2U9lECE1VidAM9GppNVkpV73EyapnuBknqxYlnqYVNW4cmq5K3JgzjQOEXq0kUU0sODPh8tc/fJnNK/ys27qR//aDY9iGejarWgyCXpOezds4N3mAE6MO60biaFaBYi6nIgYVjRtWuPSuaKZn0xZeeuUUTx2c4NbrN2N6vYz3X2DF+g1MjoxQrrgMpAwqJ4c4feYlPvLROyFvc/P2tRw5ep4j5xJ88RPXM544zOiARDoW61Z4mUhr/Hh/tWasa3PD+hj+oB//4QG0isOLe49RtARtzVG27djK6A/3ci4NB/qytISG+NhH7+Tcn/6IXMVEWiV0X7PKILeVnOvBmApt+kK4uQRGIIowPdVarhog0HwRrOwk0rZU+TQ5E9txSrnqOfIIVPKq1vDGNIt5q2V3Gi+8NsS5lElLbIjtO+Ybw4Zp8qUPbQGh/g9wcWCMQ8OQzE7MM4av27aG67a9vrGYHi/NXXOjeO09q0hOjNPavXwawWy9W8xlagYpgMerGhkEQhEiLS240qWxo5PU+NhlPc7LQSmfxxsIIIRA1w1S42P4Q2GKk+PkZYDB4Sn2Hp1g98Ym3vue7dy0PUFDy9yIQ99QlqmSh1QyQ9ssYziVSJFMZFm1QFJ4f/8IL19wGBwfZcvWVXz5M7chXRfDc2070L0d5Hba8QBUy3IN4m3tpTwxgNkwt+umHm7BySXQqu81JxtH94XR/BFV1ScQreUjIDS8ratUSTbDg5NL4TqjGFUKh+YLKvpUVQdLb4S/+vFhOgIWD334dvb95BWeeyoJIsK6SI6oX9K1ewv9F+O8cDHHYMKmeXCUciaBsIpMFINsb5Xs2dmGrglCDU38h2++xrY1bazpCtPY3slw3xk616xj3zPPYxlh4henkMeGicRC3HRzL73dSTZt38T/85cv8NVP7iSTzvLqYBIhBF1RQXPYZP+AzaHxFODnhm6DjSt8tAQdhibz7H/1OGeGcuzq1dlx0y4wT/CzQxXGCyZPPfkK9773FhK5vbx41FaOBFmN9tplhKZjNnZW202byEoBpMSItqhutqGYKhUabsKqlsFzygWMS6pbSbuCt7VXOTg0/Q1pFPOO6kAXaWzkfTtj+LyLeyCFEPO6ktx18xo6z42xc9uVdysp5rKYHu9lFUaOMI899hJ337GNNWeP4vH6GUnZZOwrW3G/dCbP2aG9jOZNdnUUCHg1XjhTQmLwtW+/SDLv0De+j75Jd7GGdJeFx8ljY7Cr1+Tmnet55BenyTp+Do7MnFAPNeFWCqrrmT+MrJQW7JqkhxS/9VKD1ymkVTZoMbOgMYxUzQqmS3yJd2lLUKeQUmGjYqbGAUZouPkUnpb5L2/dF661y9arRqyTS6L5wki7oo7XjGp71imEpqawuYC3yhsI4NdssrLKV9c9XEjDQKKIfuR4zRCW0iUcbSAWC3P68FEcq8jOlQF+frDA3b0Vdty7h6nCYfIVQXeLRNd1+k8cZ9+JSWwzyrcfO017WOIzBSfPPU9fykMsqLNnaxvPHRhh1LuWr/3dWSQ60YOvkrd1blrt49SxU+w7kwFvmJAo8eB9t3H8+HkGX1Wce6GbPP3aEB/7wG46m4LsvHkn3/ruc+imh8efOcGD79FojeicS0PG9rLvbIZE/hRlEVLVN4INuMUsZtMK3Fntw91KET3UqF6A/ih2bgoQyGrjDjszgebxI7whpdC9wZmMZY8Pt1yqlmALqWiGXn2JFjNIq6KoRJdrOfwOwu27uukYiLNx43wDaxrtnXN18vqNq/hA4QxdnYsfsxhsy6JSKi7aNGDOvhWL1MQ4uq6TnpzAcexllUqbjWlD2B8KkxwbJZdKEow10L5qNempSfzhCMmxETy+19d1E6BcLFIpFnEdG8PjIT48RPOKbqItM06bbdvCdLSMM5nIc+qFSfKFCpqmzTOEAR5+YAu5XIG2zrnz/sdPnGAwa/AlXbBy1dxFw5p1PbQ/fxLDMXFdd9l1nN+JcJ1KzfsIKgRvZ6cwI021/IlpCN0AIRCGrzZv3XIBaZcxwi04+UQt0Wu6JOl05YRLeczC9NLid0hWZn5jouRjvOjh9NefpahHapRzIxCifdUaBk4c5+TpMe5Y386+syWmMhN8/O4eOlZ5GfzxQe6+dQeFdIqKbbH3wHmEL8rThxOcOTdKU2wEWcry7L5BBvNePnRTgFKxyPMXGxAJhxfPvoZhmjx78jXaW8Lksjme3j+IEGEAbtjUxJYtqzn1ly+QR+mxvaezdDUaBMMh3rN1A/v3n0VD8uhrKRqiJ2kIGkg7hzA8HBxyCb5ykoHJCprpRXp8uNWydNIw0SOttYWn0HT1HnMq2OlJhOnFSoyCJqhMXqx53jXTjx6M4uTi1TrxYZxyAadwDmH4YFbgWLqOymeSEvMqnRLvuNlw802brviYhsYYNzXGrvi4fDqFEILUxDjNK7ovyyMeyppcGIyjSYeHH9rNy6+e5PGjpSv6TUfzMl4Czc6yZ0cvLd0rGfnhK1xIexgvm2DA6TgLGsJBUcCRghKLK22Pk+f3P3kdfedHGBzLksvmWDBvQgiagxpxI4a0K0uuxBZqn6p5/At7i0s5NMMDQkOrtsF18ql3bUtQ3R+lkhjB29ozr7HJQnDLRcxYO+XJAbTGToRuzhSAv6QF9uVoKfdtj7Jj22r+y3deJcesAue6l9mPXAiNv31yiOu6DeIlnVu2rWDFyg6OfONV9l7Q8bxynDMjZSayLk7RYfe2GF3retg59jIX0xb9cZ3WmMHhEQtLUy+Tm9odmmJBNncZTPUV+eid7Zy8kODgiBeEKvPU3NqMEFNIwNVMHn10L2cnJMwaa3+xgT/+9mFMU+PU0HPcdcMKAgEvhw71cXE0w1h2xsPXn/bQny5DpJ2V/iJFW5C02nDySfRZ990IN6ludKA6+jWvpDJ+Hr2hQ7XDlhJheHGyceV9L6ikxXLhAsL0oRk+hK7Cy1ZyHE+zMjqkVa6GSKeWfC7vNPT0dtDTe2UvGk3T2L174+v6veTYKMFYjFwyoRLWlkC0pZVcKqlKNToO4YZGMok4kStIFBRC1AzoicEBejZtZbxfdSyLNi89x8qFAoVMmlhb+5I0jWwiTrixicToML5AcMHW1QAeU6enu5l//NEo0cbFk/uaWhoXLCu6ZkUUz3iGxqbYzBhLJYr5ApGGGEnLSzFV4FdPHeT+e3cteW3vZLilImZjJxTTl9W5Tj6JGWvHSo7WGnPMLtM1u0To5ZL4VkctPvfx2/jFrw7y2qwCc0JolIzonBSvV89XSMWfprG5AX84wt23b2UiuZ9Tkzp7D1zE8JiktRh/9+QJbl4fZt2OHUxlbMIxeO6UhoWXcxMWU+UYAK2eLCtXthHQLF4+N8XNGyK0Nbfzo5cSlI0gLWaFzhUd6PvUwKRjc7pvnIPHBsmJmbHZmp+/eTGDlA4ro6Ncv8rPB29pJ54scP5iCt0fgGq5tYL08sSxEhAlGivRHIT+TAOyUgIRnDMnNI8fOz2u7q2UGJEWrOQoeiCGXcyiGx7cfAo91KC6I4aacApZhDeEZlUQplfNc6sE1f4E0q6geYNIq7jkc1kOrl0W1NsMr+w7zXd/+irZ9JWX6CoXi8RHVBmcYi6Hu8y2zONFLz96JUNf2s9PHzvAvtNXWIJrNrxhHn3hPM88c4Ch5MJZvuubLB6+yU+vP4UsZvjyQ5v5+G3tC+47DQuDs+dGGJnIcWjU4BtPxcm5PtY2lGkPzCSGbGqT/OMv3c62LlVqarmQroOVHFGhj0hLzRsH1ErUOPkqryqXxNPYtez21e9ECMPE09hRLfC++H2UjoWdnsCtFFSHnmhrrV7llUCr5NjdafHBnX7ODUxx4PA5HMdlZahUzbhdGGUjzL5RP+eTHn6+d5SXXzjALRtDaBo8cyzDUM5DRfjYPx7k//v5Gf7ikSe4+bZdbFnVwOZOk098cDdbu2ciB6VymUhzC6Wyi65J2tpbCAdmvP/PHhrDrVR4zyaTmFlmz6YIH/jAbYT8M6s8KV3u2yh47/YwlvCRswy6envIxONcv2sLP39lkgspk+5whTvWGmiOkl+jkuaLH9/NgzcrA04PNszjlRmBqEqqMX1U4oNowQYqExeQ5SJGrAO3nMfbtgphmGjVRBqohv8qeYQngPBH0apJR04+jVMpURw8+Ya0uH0nYGx0km/96BVOnux/XcfHR4aZGh7CdWyK2SzaMjyX3oDiDjevUB7oTDxO+DIG9FKINrcy0ndmUS9wLpUkMTZC/4ljFHNZ8ukk0ZZWUtWmHotCSnLJBLHWdmJt7TR3rSCTiBMfGa61vs0mEngDQYrZLA3NTZdt4jEbTz9/lP/7L56hd0WM3/rYHkKRmQXl9352gP/249NMTsT5yO1d6OEWTgzkljjbOx/etl5V5sxcOjJrZ1USXGm0D2H6sPOpK65y8v9n7z/D7LrO/F7wt8PJuXIuVAEFFHIOBMAcRFKUKFGURLVSq4Ns2R73jMMd35kPvvd+mGu3Z+y2r7vdLbWyKIkUJVEUxSCSAIicM6oKhcrpnDo5hx3nwy5UQBUCSUhNsf1/Hn4gzq590jprvetd/2BqZRrsWZ7bHQBD4dz5a0zGKzS7Szi5RTNMstOfD3F8BC5MmLz2m6OsbHLhJcvAtMqpcQlRlBkp+PnpyRJ//d39IAjs3bmKgJHkK8/u5NFtc4W6WilblnyShGYPEAy4qK0NIc60Pq4lbZw6dpb7NzewzJOl2avw7Kf30LGsbkHRuqpa5csP1hFyCYxnbTS0NGICTc21REsyBwdMnILKQ912ap1zNcMDG6r46md3USVb/OobA7pEp9eiWzo8IEko0WFEpxslOoKjphWznMNW225ZV3qrLAqgzYaei6FrCpK/zrKr81bDTKS6mo6gxMdmPes/CP7gOsN3it7hJCMZG1sjCXwBH7lMFkPXb7nbzsQtQauh64TqG2ZyvxeLHm7FIwZAsnNhCq6bate7KnQ2uDgxUMKQ7pw2MVIMMDIIiAsHlWkauNUUDR4XHrvAV//oQX740jHOXBqlWNYwdRN0BWEJOzdTcvDq+RLXW8uCICArab7wqfsZ7B/hx0esAj6a0Tl/6gJeWcM0bp2It/AJDIvyYBhY2oi5H5kgSpZq3zCsVJ/qZkut+zvgCn+YIMj22e6EFd2ZAEFacJSul3JIvmqM5CQYuhW0cV2kqJYt2x9JRsBcstgK2CqsrDG4b+9mIuPj1DY18ubpOP2ZCvd2V/PQfev4yUuHKGoS43nnLbtYTUGRlV31pKIpvvxwM4ah8865OCMpgU2tMhPTdqZUH3/3wim8so5kVHjz7bP0T+TY1OInMp3iWgRWTEwxkhIomG7+6icXMCQngiRTbS/S6lKZGLjK+g0bcTnHcNsUhnt78NoNAuUcqYoNr1CitnomVMNMMFlw8vpvjrBn1yr2H+vDdFibi3UdAbZvW8Wl4cOkdAeq7OWdfWepC9oJ2Sqk1MX0HtHhxlBKyHary6HnYkjuIJi6dcw3rzMkyA4kj80SK1a3oqTC2GYcKLienlhIWH+P5bN5nTrxjwmj4wmG0nYCo0lWr16GpqrEZhTyN0Mxl6VcyOOvrkUQBfxVNZRyuUWxyneC+Xze6y4Nss3+nu4VrK0jOI+6MB/5VJL41CSCKNDStYpsPIogiKRj07i8PgqZNG5/YMnf1vVifT50RaG6qZlUJEyooRGnx8302CiiKFHMZm5r1zYfhYJC0XRRrize8Po9Mr5CCYfdRve6br7kHMfl/GjS0uZj/omllk/ORC7fEBZlYlGmrvu7SzKWNSPo+cSsQ4TkDiz+TesKm9vsdDYE8blEWruWcbYvyq/PFqix6Xz9y3s4caKH/sk84ykT7RZid6/dYN2qBtxuB3sqCp0tQfpH4rzdL9AW0PHaRS6HXbx9McfpvqM01vt55ZVDJCoOOgICkqkwHhOZmooxHcsDMr8+k0U8lcK0uXBQocVTwO3wkU/F+KPP7Obs0TMMXryIXSvj1EoYkg3BNHBJEs1tjdhPhhFkOy++fpmvPr2R4cFx+mMCggRNAbh3z1rK6iVig9aYO9sXx06FBr9AKnWT78Rfi6mWsVc1z/CKVWyBeoySRbuY/9uRPEGMdAk5YJ3uCYKALdAw0zUOYeoagmxHkh3ohRTyBzxd/sgWw594qJtoNMmKlZZy+O9/dhbVlPmLL23B4VpYJPb0jKBrKu0tVRiahq+qmkwsitN75x3RW2FDZ4Ddu1YzHD5KpAwdAYWda2t5/eQ0Ge3OhHbz0RVSeXz3aqobmzl59CxT6V6m8wJDGROQeHiNxOqVnXzrV30o4u1TWVRbgJ+8fJJ8Ba4X8EnFgcfn45FNazj790dQ7Xc2MQuSDdHhtQIcbujGXbe3geuTk4Ho9Nx29/5RgZqOzBi1ezC1hepw2VtldR9FGUdDG0psDFu1VUQYpTyy33JHkLxVKPFxJJfX4g2XspiawsrVAe7f1c10eJqLg0n6jiRRJQ8+sYhTg3f3nWRFq59tOzbwV989TNa8eb57bZWbUG09L709yMZlZfY+sJO2iSLpXIqHdqxDNwxOXxjncD/88Rc3ohQLjEVyTKdVnn58M4nwJCevxPj7fUlMwwmGAnaLx+tSEjz78EwimWki2ez0j8TYu62T2pYWlqcqPPfMJo4ePMXu+x7kRz87zFBKtrhiwMWYjdKpCfqittlzrf0XU1zsO0BFn4syz6vw+K4tDMVOk5w2YUatPH9TJ86jndwqzlNLW4uC5JjpEAvCrC/09U2OrboNNTGOvXbZjJL8g6Uh/SFi6+bluJ1jdHZYp1NvHbjMiRGdT+0osWnjQsFzPJqgf2iazkaXJYCLhLE7XRTS6duGYdwJSrksVQ1NpCKWKK6YzVAu5DEMc5EA706QT6cQRAl/VRU2u5Po2AhOj2e2AE9Fwrj9AZLhqSVdI5aCZLeTDE/ir7HGns3hxO3zzcY+v5di+MlHN7E3lSZYs5ge8qmPW7aiyUSKF185zbquGpav+OCf8R8CrjsV6OWc9dvMJ2atJ8Hi+KqJcZyNXaiZKJLTiyCIaPkkkieEkpjEUds2w2l1Wf76ho5ezBC063zy8SfoOXeBVNHBT/72Lcr2WgRTpbNK59iBYyQLJl/5zB7e2HeRE8M3P2F2ySaNbS28s+8s0Ty0t4h0dy/jrd4B9m5oIOCCPZttfPfNcdZ2NbBn12qmx0b5/msDfP3ZTRhqhVS2xA8PZRAEGUO1ND6mZDVgHl5rY+367cQnx2ns7OL44TMEgwGcXgfLahv44w6N6UiU5au6uNI7yn/6zkmMmWZDSqjmN4dHSOQNBMmah4eSEn//kyOUimVM3Ycg2UgUDFauXoFom6T3VN7y/xUEBFGcrQUEUUKY0RDdinKiZeMzTkAOjIIlEldTUyCIs/RAQZIxSnkcTSstLc0HxEe2GK6uCS2wUasLyCiauchLUdc0fnFgGBOJP39CQrbbkW222UlOUxQK2cxNuWO39SMGDvek6R87RrhoRxAh5LOxfEUr7nMRMjc/ub4p0iWTyakk2VSaSkVhX6/A9SIWoFRWSSbSGHfIghEEgYHU4oL0jVPTuM9Po0gunlhnJ50tc3zs9ve88XhkSRjGnAWN/f0LU/6QIAgCgiuAloksybO+Htqg5eLIgdrZwk0vZTG0Cka5hJZL4GjswihmAUtlK/tqON0TJlcWEEwdn8eFIlg2bdubNXY/dD8nj5wikSpx/N3j3Lu+mtfPZTEkB8v8FTQDJvJz3//BvjLHek+jytXsGzY5M3qEnO7AEDz8+q1L7NnahqLpYHPxm7d76GywM540GEnBq6+dpL7KwWS8Ath5qNvG8mVNfO+NETTRxd7NjdS3d3Dx0AHcXh/pos5w3kvvWzEc4hRuG8jSBXxeF5fOXiJdkUGeG08KTq5EWGALWMbJ+uVOOttq+MmbA6QIcjlsMv3Dw8RKdra1w84NbRQzaS72x8lqNq4lrXRJ0zRnDPOdC+hAhlq2+Gg2J4ZaQdAUZH8dosONlksgeYLo+cRMEpU1lm3BBkuJ/hESz70XyDYb6zfMOUdUBVxUyVECvsXUrf0nRuiJijxYLmJ3OHB5/bi8cxu0TDyGxx94304HvuoakpGpWS9hVVHwhqrIJt7foml3OsnG46Rj0zg9XoJ19QsCO0RJopBNvydqw1K8ZrcvYHGmAyESU5MIAji9vtuKCUVJWrIQno+RsRi9MQmEOGtWL7vj1/mHDNPQkDwBDKU468YzH5LLZ/2ms1HLQnRmE2tqFSseWCmhJCdBtIowLRu3XFP8taSyMX7y8ikKhSLdy2uR3X4EXaDGTHLPjs1oqsK+E6O8+9YROprrGZmOM1104JcrtNfauDShzR7vR8ou/r/fPUZF9CCIEt9/axJBMBFtbn57OsLODhv+YBDDNDk3kEHSz6IZAhXRwy/euUpXnUhelREEiVZvmWcfWcnL+wcYzthp86ts330Pg5cuo5ZyRMYnGE4IDF3LIWkxBMFgzyovIY9Ef08/k3FtthAGq6k1kFr4OxQkGadN4+mPreT8lQmOTthQJC//44VzlHWRaofJcx9fQSISJpYukao4uDRembWCtbIF1AUbE9M00fNJJG8IfSZ1VbA5kAP1M/N0DEF2oOVTCIBgd84WwuJtEnzvBB9ZzvCN+OJn9/K1L9yLIIqcP3+NWNSaFCVZ5t4NNdyzyoPd5cRfvXBCSceiePwBUrfjhN0CJdPJaG7O8urMmMF/+s4xwqXFRaBHLPPYehe1zptzjeIVJ78+kwO7B5XFi8WxUZGfHM2iiU7cQoWuKhWM987LTSpOJgpOREOla3kjzfV3p1MOIDpcM4XD3U2y+zDD6ipoOOo6kNwBSwmbmUbLRgHreF0rpEGUF2wQJJcXEBBkyRLXRYZmeW2i3YWaidHV5GLLigBbV3i5f/cqJK1IvaPM1ns2M3C5Bx0bjz++C6fTQfeqNmRBx6gU+cxjq3liV8tCnpxkQ5Wt71oQBLKmD1O0Iwgi1/J+vnsgxakJCUEQ6Es5ea1X5NK0jIFEVdBJoWwwWbDGparqVEplgrIlcLg8nGPfwctcS9rJCz5eOhJHEVyIdieq7CNj+ojkYMPW9VwezbOi0UWda+FvQTIUdi+XFvxGVFWntqWVjqaZ1y3JxBWPZedjgq7pSLLMprXNPPfJrUiKRQfS8wnLrq6ct4zcsdwmtPQ0gmRDTUew1y5DcHhmF0rZV41RzM7SIiRvleWaYnch+2vu2O/2o46dO7r5l1+7j47OFsZGp+jrG5l9bMuaejY1mbQ3+rA7nAsK4XR0Go8/QDoWfd/PLdtsVDU0zRaRgZpaysUigdrFTQ1D14lPjBOfGF/02HXYnS5qWlrxVVXj8QcWFb2B2jqqGpoINTSiqSrJyBSFTPo9v+7r3WaHy4VpmviqqlHL702EfTNsWNfBJ7Z4eGT38ttf/BGB1WAoYKtusYIxBAEtl0DLxiwhFqDnkxiqYlmHzkAQZUvjYerIniCmWkGJTyC6fFZCaDZGrU+gvcrkiXva2NTdSHPQ6i0++cAqitkcZ05d5XPP7KW6NsTK1cupcltjZvtKP888uZUW/0ItkCL7Z2uEiuCijDXfJCpOXuuT+MmxLKbsIlFx8GafwDv9lhjaZZeobajlyuRMvDQChWIZn6wg6ArTOYH9By9zpCeJ5qrljVMxhjN2BMmG4fCh2wOcGymyYdsGTLuHfFlnba2yiDu9skphba06++/pdI7qxiZWdMydMmQNN4rgxDRB01TLDcXv4hMf28yK+rneq6mrVuc9Nmr9v6GjTA9ahXAujuT0IYeaEGc2C4IgWFxjUULAOpEzlbJF8/TX3JWG2ke2M3wzXO0b5uXTOTqDSb7yrFX43r93PcnI1Oyxmr1h7oMVRYFsMn5bW53b8ojnQRAlFHHpwrLOJ3DPjm7S2fPERm9O5NckF9/fHwdBvJkwGYBd3X7u3b2Gb79wnIl5mgmbWabRB6MZeSGH6gb45Qpbu0P84OUL5A0nSO+d1rEURIdnacu1jzAEyYbksnhnpq6hJKewhxrRizOFWTGNvbqF8vQQaCpywFq4dbVi2doJAqau4mzqmv0b0eHBI+s8/eRmysUSo2NRfvPzCxh2H6lymdMXxxkZT7BxeZBjh8+y/3KeNy+dRzclbLLJz3/bi2aAIDiQzQrrWhz0T1Uomjenrswv9na2GXS2BvnZoSiKLtBcV42hltlQyHMxInNoCEJBhX/ypfv4rz84RrjoIzygAW6uJIqL+PAAZ4bLTD5/CEXT+fwnd3Di8Fl+26/NjtM6t8KjD+wkePwyr12xFoAD/RpT2dMMRNS5VEW9wsc2+okmC/ztG2EwDBr9Bs6z0+h2Sz0tuQKo8XFElxejXECwOTFKOUSn1xI9eqpQk5NI7sCMX7QD0e6adfjQCinL39np+UcrnLsT/Oyta+QNJ/8i5Ka6vo7ly1uo8soEauvIRKcXXCvb7WSTcUTx7m4qbuYwUS4W8ASDlHLZ296jrm0ZpmHMRMYvjWwiNruWeALB2X83DIN0NILT7bklBUJTFNKxKLqmUsrnF9ivfRDINhtbNq+8K/f6Q8J8pyItl8TUdcvnNp/AVEqIrgCGFkeJjeCos+xXBcmGXsziaFplCbwallvzwQylT/bX8tAOP/UBGbvbyy9eO8dwwQsinOuL4XBIyC4PF09d4GBfjjdOHSRnOHGR5VS/g2jqDBNZEVM0WR5SqGgwmb81XfD6vFvvqvDErib2nZliLOsg5LdT5ZF5aJ2P1y/kmcg72H9ynD/6zL3YfnuWM+MCB6+pgI/hkzlYooGWNbz87fNHyVXguYfa8Lhk+l/uQXXMaF1Mk/s3N+IL+bn0o8sITg9xavjBz09SUMAKEbSwtk6lo6mKv//NMJrgwCmqXI2c4dq0DsJ1HYyCkQpbcfamiZ5LYKtpR42OInoCmJpqCe0dHvRiBskdmK0X1HKBSmQA09DvZuLnP57O8HW0ttSzrsFkQ9fCidHucJKMTGG/Ic2nqrGZqoamW2bY300MpWT+9vkjnBq+fTdAEKWbdqHaAwqf2+Xn2kic19++wNQNxhb3rPTxtc/fQ3vg1jyNzjo79+1ZS0uDH/0uFcL/E6AkxpCcHirTQwg2u+VraRhU4uPYfNWY88zPJJvDkiGqFUTZMZdCN4Oi6OOlN3p4/vVefnWuREq1xrAqOtnfp5BVRFZv6KaoSqg2H2XBxXP31/PHj7UxFNNnKRLLaySefnwz2ztts4b1AB6hgM0oI2olZN0KxDANHb+Qw2UXqakJIQkmos3B828OUtfSSneH1fEXBIGekSxHDpxguS8PWoVmd5lOb4519fqSTiJ2UeeTD3SxvMHNvn2n2P3ADtY1zo1zRTNIRqYwjLmxq5kS/RNF1HnFtc3UWLOqhZZat/VbkW2UFJOiMpc+Jsg2JF8VeiGFqVspZoZaxqgUEO1OzEoeyeWb8ct2W6K5eRBlO/a6Dgzl7nTvPqrY1l3NljaZ0LyjfF+oyuL03jCHeYMhqhqalhQv/y7g9vlRK5U78hEWBOGmhXAxlyUZnqRSLJGMTCHZFgqu0tEIofpGysXCLZ+jkEkTqm/A5nC8LyHh/8TSqMTHME0Do5SxjtbdQQxVQU1NWR648+h9pmkguXyoiQlkX5VVCN9wFL//fIw3T0zyX17sYbgUAtH6vi9FbZwaE+hor6e+uYF4QaIg+tnWbuPf/MluvGKZS2ERJDtiJcfnn9rEx7Y1IBtzc4jNKOMRCpiGjkPNzHZjXWYBB2Uam2pxzvSwjg9qDE9l2bBpFR7JmhPDWZOD755BzoYJiTk8YonlvgIbGw084mIbMkEQ2Njp5wuPdPD6gV5c/iCfvLdjweO5TBalWEAW1Nl/m0goxEoLx3lLnZfuFY04JBNBktFMiVxRQzPnfue2UKOV+FcpWHOxIKLnk5gCmIaB5PQgmCZGJY9gc842fwBMtYytpv2u0ys/Mp3hgWvj/PydAe5ZV8t9e9fd9Dqv38uzTy32V7ydn+VSiE9OIEoist2xoOtwJzzim0ItESm5Ed4D92wpVHllVnUv4/DFaU6OGnCDi0XveB4OXSacA27RgLkwoZB/4SBZBeDu0ST+MeL6btcKYAdECdHlQ3R40PMpDKWEIDssLpXXGk8WR00CQcBW277k5kcQBIazDsBxfeO9AAnVw1/94AQl04HfrvOJe+rJpZK460LsWeXk2Ih13UDM4MjBM+zYsoJI+ipXExIuo8C/+OIWevrGcNokautC/M0v++lukHj24/dw5NBZfvrqJSqCHwdlBKeLv33pAqohcr1bMBqr8JmPbaGQTmEcPM+TTz9EIhKhubOT8PcPk9BuUGmbAhVFAVGkL2JQc/4a0xmV6w4o8Yqbt05OEknrXOfK71ou88Du7XzrpXMklZnNgOzh3YNn2dTdRK0UJaYHeWpXA23tTfzH7x7HsFtH6KZawV7XgZ5LApbQU/bVzHoOm5pi+Q4X04s+W9lXixIfw1b1+yncPkzQNY1vPX8ISYA/+/IDt6SH3L/EnCzb7XcsNruOXDKJWilh6MaSDg3vB2qljNPj+UChGtZ9KviqqjHi8SWDPzz+IKnpMOJtnHkCtXVEx0bRNY1KqXTHccv/E0vDErsaYGiWmEuSrfTTzDSiwzVDjzKRZlyN9FIODANTADnYcFOBd0pxkFJAXOJhQRB48dA0IibITh7tFrFTITYxwaM7W/n+vmmwuTCdfn7+ygkeuaeTJ7dV88pZa6P0+NYQa1a389obJ/jUJ+/l+y+dIJw2+Gdf2MTg1QF+/uop+lIeRFMlKFd465LGsd4TZAyrYM8bTqp9MrvveZSWc+fIm15WLasi1NDIO+9e4vDA4iaYphuoikK04uTchWHimTLzAw0OXMnh7M/PnqpV20v82Rd3cuBwLydG5+5z8kqUBh9sbBY4NgWb2u089dhmXnzlNL2xuc9HcnqtcI0Zb2G9mEF2VFsR2mp5Js3OxChmEN1znHl7bTtKbBTReXMR+PvBH2xnWFNVUrEY4QmLy6soGmXBSamyuNN07tw1Ll0evOm9kuHJ98cJNk3cvgCmfmc+xIv/3GB1MEeTw9r1hGwl/s0XN7LtvYudF+HsmMFffvsQU8WlJ9JY2cHBfhX1NrHRpuhgw+om/vy5e3AZtz9G/J+4OYxKAckTstKMRNkK4fBWWfQHrWKplT0BK1JZki1FszeEoVVwKklaXTlWVavsXMasZ3CTp8JD3XbsZoV1oRwPd1YwlSKmaSKUM5iGjqjkKIlekGzYJZOWtgYUVSedLpAtznWgddHOhXGVq0PTTGetMV1G5tzFEVKJNJJWYmQkjCnIxPMmPafPcf9DO9m9sQHTNHl2bz1//olucmWozDs2UwU7fZf7iUemuWf3es6cuMjRcxP87JXTxCuLVxLdFHhp3zDHhk26mx2MhzPEK/PHqUnvtEBanfvbTE5hqOcq21b4cDDnfRnye2hduZJVbdZkerInxpsHLqPLc10e0enFU5zgvrV+XELZ4gTm4oh2N7ZQI5KvxuKoGQamrqImp+Z8oSt5HPWd/2gcUQrZDCODVqFmGgZFTaSosYhfODUZ4+CRK1RuwnfNJZMkI1OolffWUTcMHZfvzl0WlkJsYoKxvh7rPZgm6WiUfDqFqlRu/8e3QKCmllKhQKBm6W6uw+2mqqHpjtwyZLuNxs7lFDI38aj6n3hPkLzVGGoFLRtDvH6qJojohQyOumUWR3jmGF4v55C8IdT4CMsDJYJClofW2PFJ1li1mdac2+SpEJRyPLVWoJoZYaZawNRURCWHhg1VdIFpUFvtpbahlonJGNFkHnPehuha2sG18SyDE+nZfxuazHLx4iBttS5GB0fIKyIqMleuDFJX4+fzz+zFqefYtszGX3xtLy0BZgvh6+gdzTAxPIyqKIQ8AofPjvDL35zm3NBij2nT0LkwlOOH+6dpq3MhyxK9U3O1lGkahHMSI1nH7Ka3ogsM9FyjzifR6ptzRzLVMi1dXazttgqZgUiFA4evMBpfWJuZeoVtDUWW1TnmTrl1HVuwAclbbXG8ZRsI4tycm42jZWPIgbq7nvL5B1sMf/eFY/yXH5zkW6+NMDUeZs3aDv4fn+vmsYc2LbiuXCjwq2MRfvXuKMYSUWv5dApPIIRpLnxM1zRLVDF58+CDqqZmDF27Kafr3//p5tn/loKfDJ995l4+ce8yy/7FgEQ8RUl5f8X1fAiSTEW680XDLZR5ZruP5aHFm4nz15LsP9RDybx5h8IvlfnSvUG6a1T0QnrWemopGJUiWjb+ns3N/9Ah2J0oiQm0QgpHbRuyJ4iWiyMIIraqZsvdoJybtZ4RRAklNkKNrYTkCdBaJbJpZTUP7VmD3bSOurpbfezdvYYqR5ktK0Ns2NjFwysM9raW+X/9+W4ebMvzb7+2g2p7iXZviWp7kf/yzf1s3bkZm9vLlejCw6FY2cGhC1GKM3ObKTr47ZUKpuxixfo1nL6WRZBtJCoOfFVB4pMTDA+MIAgC/aNJpicmeGSda8HvSZDs/OqSyWsXKxTKBqNJk5GkyZWo1aXxiGXuX2WbXWw+tqWKf/7Fnbj1JNs3LmPd8rlJT9RK/MmjTTy8eq6b3Oav0FUn4vG62bp5BQ0+67mXBSqYosQrvznO6RFrXF9L2jg7udBiTZDtfOrBFTz62E7q7EUr/trmnBXMzVIqBBHTBMlfQ2V6xOpW/CMSyx0+eoX/8+8O8b39CfYduoJst/ON57bzjT/atUhQ9u7pUfb3KVzpGVvyXppSoaqhiVwqueDfU9ORGapBccm/C9TUYho6VY3vLXJ5IQxaVnYz3t8LgK6pqJXKIivI9wN/VTU2x53TyaZHh4mOjWDc0FBxuNykImFst3DmMU2TyPAg0yNDpBIpDh+7QiG3NAXD0HUuXrhGNv2Pr6FhKCUKw+dwNq1C8gQxtQqmriH7a5HcfosC4bDWNsvRIIWcGqSxqZqKJrCpw82996yltcbi2ta4dfbuXkN3q48dbRLL2mr59IPLCOnT/Kvn1vLsNjv/9o+3s6tDwieV2d5U4WfvDBGJZdm2ZzvHe7MI80IiTNHBoZ4sk4m5tfdK1Mapqxk27dzCSKRIUnGA7CCZLuH2+eg5c4aK7GcqUaH/Sj87VvrwSws3lpcTbr53qEABL+m8xpVxlUtTGgXDialrbGsx6QxZE31Xtc6//Np9bF7moLPBy47tqwg45sbkng6Bf/LxFpwz645HLLO7y0nA76Szo551y6wurZMSOza28epvjvKbY5atYUZ18O5VhaK5cCxv63Tz5FP3sWtNFVomatEjZrQY1+dcU9cwMbBVt6KmwoBpCZYrS88PHwR39OsXBOFxQRCuCoIwIAjCv7vJNZ8TBKFHEIQrgiD8+O6+zMVw2ATsgkadq4LXZy1a/lBo0VGd0+PhkU1VPLK9cUnbG28wRCGTWjQRFrNZ/DU1iNLNPyJRFN+TF+SNyOoeThw+zaW+KRAlsrqL7x1I0hP7/Rv2e2wGq1e301C1uMM1lLYxEC5S7705v9gmmTS31ONxSJi6Zh175JfuahiVwkwC3Qf3BrwdPixj1zQNjHIeR30HCDLlyT70cm4BN1f21yEH6udNBCrB2jr++Tc+yecf7sTvdfLqiSjf/NnpWbeHQ705vvWTo2imRMe69eQSSbKaDa9TJJOI4XPA+MgUaqXC3jVePvPp+wh4RH7wyzO8eXp60ev0kucbX9jBxzc6eWCVjKlbk+WRa2X+y/ePEq3M+ee+dXKKC1fGuZwKELSVSSbzuHw+GutDMG+js7lJ46v3h/DbVPadjeB22fnXf3ovy/xWJ66jzs49WzrZ0WHDZlYYnMhw5vwQihTg27/q4WeHwvjlCh3erBVIoijo2lyxff+mBtZv20ilmCURniKSKBGylXh8ZwvdHTXEU0U2LfNgM2/ehZyM5rh8/AQ22VInL8UBljxB9EIao5hFtDswlfLv1BbwwzJ2r8Nul7FLJl49RV2Ntfi5PO4l6QU71zWwo11kVdfSNAibw0EyMoXvBlGbaRqEGpooZm+e3un2B24pYLsd1FKZyWt91DS1IAgCDR3LqW/vQLb9fudd07SsPp1eH6qy0HfcEwji8HhQlfJNO9amaWJzOLE7XRw9M8Q7PQrHzw4vee3Zc9f45ek8bx2+dtffx434sIxb07SieyVPEFuwkUpkEC0TQ0BAL6QBy+tW9tfMdoWNYgZHYxdPPbKOf/ZnT7JtpY9Dl+J8+4Xj9ExZ699U0cm3fnKUw705GlobCdTWMTU2iUPSKOfzuGSYHJsimy+zprrEY49s5ZFNVRzpK/LDn58gqS/2IP/4jlq++LEOPrHRTshmzT1x1c1fff84B6/OcXxPj2qcuzjCwd4isqnisRtMTUZZ3r0Chzw351bZy/zpQzWsDhUYS+gcupzgX35pK49tsE7IHGaJRx9Yy9Z2OzWOMrGcwdlz/UwlKxzszfPff3CEWFFmZVUJm5rFME1UdW79X9Pi4p49mxEFgVwqSSRqrWVPbvSwrM6B0+Wiqca5INX2RuQMNz2nTpKKTiP5a7C4gwsh+WrQizm0XAwTwQpIKqTvelcY7oAzLAiCBPw18CgwAZwSBOEV0zR75l3TBfyvwB7TNFOCINwd+est8JXP32sdBd9BZ2bv7rW3fPy6UCMTi6LrGpI0o3KORRftzNVKmXQ0imHo1Ld3LHW7JbEUj1iQ7bzZDyD/gzSYXEaekukAyUZMcfOfv3eMoumY3bWalTyCw4tpGjy9txWPz81/fuHqkj7CqbLI3/3oEEks7vUt/VYFET0Xv+ucn0VP8yEZu1o2Ztl7lbNggj3UgOj0omdjIIpo2ZjlVeuvXbApE50+8tkkBw9dplAociUqoQrOGfUuSFoBFZlwyY2o5Bju62MynOb0lIOPrRbIxmLodh+/PjTCl5/oYnp8nOj4OE/ubuPlk2kyqo1lwQqxeI68rQpBECkYNo6f7KexxkfXmkaOXDlj2fdJdgo3qJDDSoDwONR7yjy2vZ62jlamR4Z5/rejCK65o2KHXSZUFeDxPcuorqvl+y8epa93mMxMvXllUqPq+BUefGg7ydI5zk1Cb7wCkoP8zPz45EYn3as7Of7uCX55OMyqeoFHVrp4u1fljZNhnGcmKSkGPnuesi1EjZDB6XZx9ORVWptrePTB9cQzJxlY2Ii0YOiMpcDucHD/PS0M/uI8onMJDYEgWkEnSgnJ6VmgUjdNEyU6bAnynN4P7CzxYRm787Fj2yq2b115R3Nu5/IWOpffnO91XaNRLhTIxGKYhkFtaxtOj5fUdJhQfeOC6+OTE4iigMPtWeDQ8H7Q1PUP56hQzGUtet1MUp3L58M0jFlecLlQQLbZkO12KoXCbADHUhxkQRDQFAWX18fmtW2o+jjrVi32dAZY1lZL1/gg3cuW9su/W/iwjFu9nMdUymjFNKLTj2R3IFc3z4RwWB1YLRtHtDsXrEPSzGndpf4S2ZzCucE8uqfBcmKSwNQVZEMhXLKCpcbHowi6wjvXZJbVNVBIJXF4/bx4cIrHN/pwyi6mRkap8cssrzc5PyVR7yqhlcukdfdsIm3PcJJyPsu2e7YwOHWa1Ay3tiB4F2h6DJuHd4fBiYP7umTue2An8alJfvHKUWKVuTlHEkyqaoIsb06ybdcmfvrSQa72TzAZKwAyiuzjuz8+wJ9/5RFsnlF+fCTDr88WACeIkNLtrKip8IVP76bvzGkO9ZcZmBjmia117Duf4PyoRP6V0wxOZljZ5OJqzEQyDGwOD9miwrWJLP/iTx7m7LlrvHpu6dOKTNmgb0Lhk0/dw8XhdwhLizcJgiAgu/2YgKlUkG+YV9X0NEaliOhwYQsuPfbvFHcioNsBDJimOTTz4n4KPA30zLvmz4G/Nk0zBWCa5vs3iHwPuNt+npqqEmponE0tWor+oKkqbr+fUv4PO9u91l7kzz+/k/2Hezg2bFUcJdE3+7tb5q/wuSe28LPXLzGcdXDg7CSSYCX2XMf6eg2nXeTkGNy7ysV9e3fw9huHORa+tQL6d7Gruwk+HGPXNNGLaWSvJQ6wz9jBiO4ARilndYg8VTMpOgKCzWGZwdscEGzkyAiAB49cZnObxPnhAqZu8I1n1zIwHOa1CxXLExc7KjIbGnWKuRL9OYljIxJ1Lhl/TS1jQ2M0L1/OxMAAhimwul7k4W3NVDU28cLLJ7iadGCKDvZdVXFczWEXp2c70IvfktWZ3V6bYvO6ZRRzaY4cjJJTRFRHaIEm89iQzrH+Xna0mmyTwB/w8LPjWa4L7AxT4MSQQtm8wPBUhtU1HnonKzDPeu9CfxSbXuDex+5DOt5LR4OTqvp69p17l/Zl9VQUjSACj+zp4se/OstzT+/gWt8QJyadOIQC8fQpBuKACDatQL3fZGd3iLJqMh0t8vGn9jDa18tP3+jF9DchmAbVcoFkwUCtVBCdXgTbDF/ONDA1FTU1hS1kFSl6Pom9th0tl1jQ7f8A+HCM3Rtw9+dcBU8gOOvJ6/b5bxow4auqppj9wz3mN02TUi6HzeFAKZewO10L3msxm8HQdbKJOHVt7ch2B6lIGJd37ppMPIahaTjcbsrFArVt7USGBwnVN/CpJ7bc9Llr6qr5o0//XubdD8e4NU20YgrJFcCo5JHrOoGZYjcbt+bh2ja0XBxDrQDmbACE7KthqABDA2Dqbja1GEQzKuGig0fXeVm/ppW/fekSJcFNUZMxJQcNHo2Q3WQyoXP8dIGc5sQb8GGTRBBE/A31nOy7gKjAc091Y3c66R8M88o5q+vbG7PRE1E53n+YeGVpITRY3N56R4FHN3hxuj2cOnqGomIyeYM2KFZx8Z9+dJGgXaGxbpDlzT5eOVvkeslnmgZTFT+/eO0MmbxGV5VMJFkmN08kP5rQ6T13ieraOv6oK8iZExfYsHk1sfhxhpMCjTUuIokCD+1ZhefcKAGfk7ZlLfyPF86QI8QPXzpBvGACTtArOM0CT+xqJZtKoctu2mprqG9q5IUfv8m00ILkFvAIRUAgky1YVqTugGUfa5oIsoyWjSHYXUizGxgTW1UzSmIUG7/7YrgZmO9GPgHsvOGalQCCIBzBkh/+b6ZpvvGBXtlNUMgVeOPdPjqa/WzZ3PW+75OajmCaxoIdd1VjE+no9AI+mlIukU+nsDtdeIMhXF4fxWzm92a19n4gG2We2l7F4ESWS9NLf8UFVeDq1TFiaSsp7EZoBiRiSdSZ0+hryevm13PXbF1dR6g6yMnBy0xEDOITE1RX+SH8oeECfyjGruSvtcI0JCsmU8tEZwth2V9DJTaKLkqYhoktWIuzOMkndjTy0tE45rz0tTUtLp54aAP6aycIBLwMDYwSz+qAiC45+fHhNEGpyF/88b2kpsOMTRdZW0kiiS7+8tsnMGUbU6VzDE2XyRkuRuMVevqnaMiWydzgtlPBSWUejb7BVcEhw0RGoLtRpi2o4/L4EBSDxs7lDFzpZf8whOQCkmlDN0XLw9PhBkHAa9MYTdvorpiUtbnut6wX+ePHlzE4Fmd/v8HeFdU8fP96hnuuEE1XOD+qECk6GMz5GTpbYXPiHCPTFcKROG55El3ycO+O5SQTaU5fnKCSz9FeJXD+0giJdImntwSIJU2OjYoggtMo8I3Pb2B8ZJymhio8oWouXBjg3IlzBP1OTJsbTGj2VPiz5/bwzr4zHBnxWamAdie2UCNGpWCpnGd4a6amIsg2tFwcU1OwVd8Vl4MPxdi9jkNHrpDOlXni4Q3vm05QyKSplIp4/EEcbqsL5A2GyKdTi+gS1xsS15NAg7V1FPO5u+a5+7tAdGwUUZLwhapm3998CIKApiromrrk+iGIEuVcbnaj6atafDqhqwpVjc1Wup7bQ2xsBJvDgVqp4PJ+KNx+PhTjVnL50HJJBEHCVJSZeF/ZOs0RrKK4Eh/DFqhDL+UQZQfPbbNx4EqeSGmu4eMTizz9xH1cvniN6VSJSiHL+Pg0qimCACfGJY6PpfjCnja6VrWTno5waegSW7tbeP6tURTBSUe1gCRMMZD1Y8o6B04OsrItSDheZL5bgyDZSGi22ULYKVToqrdxZUqlNWBS69bYtnk5Fy4MEKipI1hXz4/fOQh2N6JgrbmGUprZtIs4bQJ5VSKe1ciWTOa3mO9fIdK9op3vvzGC12bwp1/YQXRslIGhMImyzNlJCVVy8+JZjY7AFLIYJpE1kA6c5PSIwu411ey9Zw0DQ/sp5/O0V4tcHE0jSyIdtRLdywP86ngMZUag/8RmP91dayjnswTdEjVNDbzx2mG2mjr2UB1CQsA0dL7wsWXIksjf/GrYmmeZa55pmSiiyz8rEDeVEoIooeWi2Ks+uOvA3bJWk4Eu4AGgBTgoCMJ60zTTN14oCMLXga8D79lWB2BiIsKliECumHjfxbBpmmCauLx+irksmqqiKRUcLjeh+oW7i0I6vSDjHvhAPOGlxHT/+7fP0eKt0FLr4vhgZdav8EY0exRcdmajZG8Gh6SzYnkLhdIIl6aVJa8pmi5+fhMDbrDieb+9L878mOcb8dLBSSRxEsHuZjAH335zHB1pgdeMaehgGJYq9CbQixlMTQXM2dzx3yPuaOzOH7fSe3yNgiDgbFqJoVaQPQFEpw9TqyB5Q7OOEqLDjZaJomaj2DAIBr0IxBawqC6MlMm/chqPQ+DePet5/pcnGY4bPL0txPh0jrOTEmndw/M/P47PrjGeEXnmvnbcHhcXJvoRZScXR/KogtV5KJoO9g0Cg1muf88+cnxiVx3XRhOcCs8t6A9tCFBd7eed4yM88+R2zh86jCj5+e3lAuHYPkJVIVYHc3z2mXs5dLSHeKrIo/eu5Se/vsiWFT6a65qIZxTOXBxD0eaJRwSRSkVB03RAoGdgmpX1MrIksW7dcuL5ISIzWglTdHB2HMBBMmG9XsEJ3/3VFXQDNrfa0XUNh9fLO30qkqZy7846IAqjVrWvmhLDI2FGpwq8ciKG0yZR1GU+tbMayemioKQRbJAsihw/foXJyShqRlrADRYdHrRcAsPQ0StFjGIGQZKQvVUI0u+Vd/qex+77mXMBzlxNkNGc7IonqW28vRvCUlBKpdm5VBAFcskkgigsogBoqoooy7M0ANluR7bbbxqa8X5RzGWpFArIdseShSdY3dpysbAoLnopiJKEJxBEVSpLFsPALal1Lq/3ts/hCYRIRcIEauqQZBnJZqdSLCzyI64Uizd9DWAFgPzwhcMAfOW5e3/fqYnvq154r/Ouo64dU1MxTc3SqOQs7oEgSpi6ir2qGUGULGGWw8AQJGw3VEQ5fPzwpeMo5RJ/8sUHOH9hgJdO5tncYqO13sVvzqTRRQdvn4lw5eoERd3G8o5GHrh3LWPTOYYzDkYSFQQMkK3nvhh1cTFa4XohbOoaT66VcNgEXr1QRpvxSt/Y5mTnunqK6ct84ZkHGezpwdQ1BqImxVMDVHmG2Liiiq72EFXVQb7983N87dmNnLo4RjZdYMeaKiqqSc9IAsWUMY054bCqGVTKCiaQqNjpOXMWv99DbdBBvSvA2ck5zv5w5vp6buftQUC0cbg3x5WRo8iylZTo8XsZiObpS5Z4cFWQ9vZGbCcjKDML2HSiiF2e4s0TkxiCjN0WprO+mrrWVnLnZ752QeR8TxjUAkIxuyjgS/KEUNMRJJcPPRuzfJ9F6a4UwnBnArpJYH6ro2Xm3+ZjAnjFNE3VNM1hoB9rsC+CaZrfNE1zm2ma27zvY3Jb2d3JxzfY2L7q/RekgiBQyuWIT4yiVioUs1bBWyktVii6A0GSkSlsDmtAxCcnSEamyCYXir8MwyA2Psb06PAdUSiUcolKaa4dt3llFY89uIGAfHPC+cPbGnjuk1uRlZuLSwAKpof/9pOzvHVp8euQK5lFzhnvF3nDRUabKxIU0Y1+g+niE+vt/MljTQjaYqPv6zB1Kz+eu+8ucdfG7vxxK7nf39gTbQ4Euxt1JurXEhia1tF6egLsLgRESoKbb/5mBENeePSlCA56YxL9Y1nG+q8RspXp8GRYsbyJriY3mxo1BEFkMOPkfMyLxyHTc22KH7x6BUG2s766wD95qoO9XYs3QPXOMuuq8mxoEuha201n0w3vURBw+QLUyhmunTtDe9dyzvVGQLJR0G1U+yRcDpGrl6+STmZQdZNMKkujR2Hbrk1UyhU2bFnLg/cs56EtdbNUAlkUGIkUuDBoHX8njCCnB/O8dXqKN9+5wJl5NkA+qYRbsMZRq0/haw9W0eiukNZc5AwXvoAb2eXjXL9FDNZlD3/zi15eOZ2evYcuOXn5TJFzYRuKHCBrelFNmenJMOFIeja9royDiXiJr3z5CdZ0BC0D/nQELRtFTYYtiyZJtroXhj6zmburBcXvZOy+nzkX4JmHV/DwKghWv/8TMROYGuinUqkQGR66qcWYbLOhayqaahXC123YlopLziWTRIaHyCZu7l4z+/ymuSAiuVzIW/HJt7BUqxSLVDU0Uc7nbnt/X6hqya5vMZe9qTvGe4XD7SbU0IgkW1Wbw+VaVAgnpibRVGVBA+dGmIZBrGASK5iLnCw+IH5n9cL7mXcF2Ybsq7Fif0XZ4hLrOkalgJmNoiUmZjqPAj85FGM8t3D9sjzcnUxUgpw/fhq7UaSaBO21NlYsb+L+LhE7ZeIVJ5cSXsIZi6/7/AvvMpSUqHaUeWargz/7xApQF66BTqHCqmCeLY0Ka9Z20NxSh1Oa+y4qxTzB+gbWtLnoP3sWv8/LwPA0giTTFzZoagjRHISRsSiD/SNogkwmk0NXFfZubcXp9dDR3cXWtQ187ukdhMTCzGdqkC/rHD47TsW0g2TjcL/C2WtZjvUkeePYnAOMbFaotuUxTRNJL/O5nV7uaTdQBAfTZTcuG9S3tnDq3AiqZK1X+3tK/NWPz1Ew52huZyclfnW2RNlWhSL7yZseirkco4PjlNS5z/rSeJkHHtjGJx/qQvbXoBdSaNk4SnKKcvgayA70chEEMCqlu7qJu5Ni+BTQJQhChyAIduA54JUbrnkZa5eHIAg1WMcgQ3ftVc6DIAiMTJf4+YkcA9eWtu25EWqlvMhWzenz0tq9llIuh8vjZ2rwGv6qxVxXh8tlJdBdD+WY6Sjf6C2cng5T09KKzW6nlL81r80wDLLxOIVMCk1R+Pd/upmVHbWkIlOk9ZtHFP/25BTPv3wKzX77SUGRvCAtLHravGX+3df3srZOn3krJlIlfdt7vScYKstD6qzXq6LolMsVTJOb2qHIvmqMcv7mgrv3jw/F2NXySbRs3BJvKGXste0Y5QJgIHmraKuC//e/fIL1TRKyvwbZV41gs3bFol7GaSwUIFS7oWV5J11tIZ56dDPDF8/glEx2raun1mmp0kSjwoObanjooW1sarPR6sjw6af3UFEUUrmFpwWGUuZzjyznod1dbN22iuPvHOLaSJxnd/iQZxwYpqbT5NMp2pc143S7qWpsYmO7iz9/ZiPL6x20dq8BtUz3+m46l9UTyRik8wrVtUESU5PsOzPF3//kKG8eGSY8FedPH6nHaZZoqxLZtLKKP/30etr9FatzEpGprQnxzKfvY12LnU9tdbOtOsHXP7WGz99Xj2ka2CUTm6HQ6Cog6AqiVqIq4KCUSfClT2yYKU5Bl9wgOSw3ikB5yY3ghiaBBx+/j4Fwka4ak64q6/OJ5zSuXB4iWTDwkEMwTUSnD0NTkHw1lgWeoSNXNSOHmhAkGT2fwtSWPo15j/hQjN3ryOVLvNMv8No7l+7oekPXF7kgCEDTipWo5SKt3WuY6O/D6V56vqtqaJrtGBuGbs25N2yWS/m8FXpks6Fr2m2LusTUJLLNTnom/tlXVU0qEsZ5C3qBw+MhGZnCdRMe84Jr3e4lC2HTMBZYyBUy6ffsr3w7ZGJRMjGLeiuIAkrZCi0oFwpLWopKsszXn93E15/dNFtY3yV8KMatoZTQslG0zLQlfHV6ZyOWJW8INIWvf24zzz7cgeTyYwvUITmtcWCaBh4js4j739RcT1t7C597dCVem07vqRPsvX87W5vmXBa2tos89MBGutv9rG+Ch7fUsXbrJob7BjBvIALv7vbz2J7lfPITe+i/1Mu7By/yyT3NtM149k4lVeKTk1RXB7G7HFQ3NdNY4+EbX97DzuU2GlpbcLrd1DfUsGXXJgRdZTycxkEFt8fFtYEI33zhNK8fG+fV3xzmucdXsLJKAaXI/VvbePzeTh6ZsagMFx1cnSzypc8/wP1bW9jeovPEapNPb3Hyz760hyZ7GhEDr9uG18jO2mDWhZwMXjzPpz/zEK3emd+7ZEOTPQi6wqpqDTuLx7rLKPDMJ3aQV8AwYMcyEdmsoJgyV/pGGQ3nsBllJL04a4cnB2qxB+vAUJH9dUi+aiRPCKNSQC/fvgF5O9y2GDZNUwP+BfAm0Au8aJrmFUEQ/g9BED45c9mbQEIQhB5gP/BvTdP8nflm1QZdVDkUvN7b2xrl0ymKuRzxiTHyqaSl5gWcHi/JyBSiKKAqFaqbWpDtC4vHTDy2aEKvamrGNPRF3DW7y018coJiLodsm7tPpVQiFQlTLswVNNe5Y2qlMps05w2GqGpsvuVOJ1JyMpxxvu/dUEE1GRmaIF+2FpXVtRr/69fvpd0/9x5Fo0KDszg7ETS4KjS673zibg8afOmZHexaZR33vdNv8uMjGTa32/lXz62hyrZ0h1jyhBZ4v94NfGjGrq4h+aowdcWiQ2Tj6KUsgtOPmY+zorORyGSYMg5MQ6cjoOCZmWye3Brin39+EwEzRZu3jGnojKRtfPuHb/HGyQhKuUzX5u1EpyZwe7201lqdjXZvmZraEKcPHGTz5lXU1AT4xW/O8Oqx6CLrPsHm4NyZXqYGrzHe18eWPTuorQvS1lbPujqDZf4K+4ds/PS3VzlxrchbZ2KcvzDAcEzj+JkBLgyXmBwZJ6F5+dEvTrD/fAy/02Tt2k4SaY0f/XaYcaWGyaKLa0k7ig6yTQJMrsXgyOlhSuUyxrxaZyqaZaivn1ImTVdXC52tQdLRCC6HDbeRZSKhUNXSyuY1zayu1TARKBRVkrEk5y8OgiQTtFXYvVzGZpZ5YEM1X/7MLqqkxRuyaE7j0qVB4jmNh7a38OS9KzDUMtGSk5+fzGLqOn/x5V08uLne8if1hTDyCSsW2x1Az8XQ80m0XALR7V8yqe694kMzdmfg93kI2crUBO/MSi42MUYhnSYdnZ4t0vw1taQiYRwuD6npMMG6+kWUs1I+t8hWLVBTi2kaVDcvPA51uFwUMhmK2Qy6qi6wW0tFwotO7wRBoJjNzF5nszsINTTekprg9vmpamjC6bl5k+JWkG02Srkc+szmLJ9KIkoymfhcJ9s0TVKR8OzaVMxm3lMgiaYos+uIpqpUNTQRqLVoFIaukZy6sTFrwR8M4A9+sACTG/FhGbempiA6/YBg+bcb2kzghmWPuLKjhnw6PdsYqHaUZ9e5riqNf/1n97O6RqXdV8FOGUGv8OPX+/j+y2dIxlMs37iFuoY6JgeHWNZhbdpEvcKy5gBjfb3UhpysWx7i4PkYP3/1FL8dtCPIC+uLiwPWqUbPscO0r1hGsCrA8hVt1Lk1trUJRFUP33l9mMOX4rx2Isb5i0P0DKc5eaqPS+MK42NhJqI59p2L8sOfn6BgOlm9soWW9ma+8+pV9l8ziSsuwhU/k7Eyss2GYBoIDi8v/raHXK6MNs+iMq/ZuHTmEsnpKI21Xloagjhlk3Q0QmPQjiq5SaTybNyxmd3t1gagomhoqsn542eJ5wFdYUe7QKO7wopagec+tZ1tnYt/OxVT5lLPKKORPOs7fDzx8EZagwKm5OD1ixUuRmSe3VvHv/zKHozsNLZQI3o+hZIKI9hdaPkkei6Goamzp3OG+sE2mMI/ZPDBsvUbzX//i9d/p89RyKRRSiUyyTj1bcsoZrN3xJtLTUfwVVWTjk5T0/z+OSmpSHjWoeK6GORO8L6inN8jWn0KD2yu581TYaIlqxO5c5nI4w9v5AcvnWAoJfGNJ5uw2+38118MLvoxLwXZrLB9uYerEwXLKHwGa+s0dq6t56WDE2T1u+fNOvofnzpjmua2u3bDO4Cjscts/Opf3fH1pmmg55NI3mprI5SN4vT6eHSDl3Akw9NP38vxk328ealEnaPIN760h+Mne3nzUpndzUWCPiea5GTXzjX89MX9PPXYZvr7Rzk7VMYlVljXYqd3okCi4iBRtqzyvrTXh9shMjaZYfXaTv7mhXNU5JsvfF3uOF947hF6zl/it+ezZFQb9nKSf/tPHyY6NcV335pGF2/+/XuEApopzSbPVdtLPLSpmncvJJguO7GpWTR7gAe7ZZY3+1BLFfom8pwYsxZx09AXbIZW+HL80Wfv5crZi/z6TJaAXOH+DdWEEyUOjztodZfYukyia+0ahkbC/OJ0iYCY5y/+eC8XLgzwqzN5di+XefSB9fzwFycoVkyaquycHdXgFrzeBlcFQbA6JdfhJ8u9qz30RXQGU9ZnoGWimCZo+QTO5lXouSSC3Yk5408s+2/tqAL/MGP39zHnAkyPDFnCLkWluqmZfCp52+Q10zRJhqewO13Ync5bcl5vhUwsijdURTYee09z7u8DpXx+1jWitrUNsNaaQE0t6dj0LKf6va4Z18Oh5q9VuWQSVSljaPpdi64G+JOVzb/3cQvvfd7VS1kE2Y5oc6KXcgiixNZmg1B1kNZGP41NdfzH757EdPj56v0hGprr+cvvnKQ1BNtWBugby/LZZ+7jwKFLtDcFKGdT9EcUBsIVHlrtJJ3JcXZCRBNslHGxY5nI7o1NnD7VwwOP7uFXr57gUuLmY9jUVL7xeD2+UIhv/uQIGaEam17k0W21bN++ludf2M9APnjTv5fNCh5JJWPMbOa0Ck9s9BBPFTk1ZUfSCmiCjRafzlc/s40Lx05S3dTCD9+ZwrRdD0YS5nztlQL/+gvrKOWy/OD1QVQd7ltlw+/38OrZAoIk8/BqG7UhF/Vt7fz1CxYV4rndAbpWLeMvv3kQj1PiX3x1L6fP9vP2uRSbO930jhfJajfXHjmFCu3VMv3TBubM3GzqKvd1qAiSnXcHrBCx68JzNTWJ6PAi+2vR8wnrJE4QrcS62zTUbjXn3tXzkd8XXv7NSRTN4NlP7FgySGM+PIEgLq8Pb6iKTCx6x6lndqeTbCKGKH4wTorD7SYZmfrAufd3AreZpWg4F9AjTENn7wqZUkXj7KRkdR59ZRI5lfFckB8eTMG86NyhSJFjJ3qZzhoIop23jo8jCNxRIQygCQ6ODWncKLy7EpW5PB1HEBZ/DqahW1678IG9Aj+MEARx1rbnevKemJ5k0+anqZy8yg9+dpxo3rKgiRVlzp88R43fi680zkOPPMnw4DjvnJ2mUL5MrCQxPjzKlh0b0cWrDEzm2LRnO7H9F+kf0mfFyWeuJnHbJcDAMxZdxOW+DtM0wdAYLfg4euwK/RNFMqod09BRPQ2cPXWR+qCDXW06J8YraMI8caSu8Mg6D9l0nvv2bmJiYpoXjmVZV6/RFrSzet1KroycZnWjwtqVnbxz7BqZXIBkpETn6pUMjsUBa7EI2hRkCRKKNT4GUxLnjp3E1HU+vbuW106neOkCtPtMtjUUCQV9rN68kp4rg0wlFEAkrTr55WtnmM5Y4+/iUBKHcJrxuIIqeS0h3g2FsKlr2M0Sz97fzNWRFCMxaK2xE86ps9fet7mBzZu6OPS9w1wXnIpOL3opi6Oxi0r4mnWyYeh3VAT/IeLCxQFO90R5fO8Kmltu7+hQ196BaRikoxGy8egtqQjXMee2oOH2356WcDP4qmtIhqduGZh0t3CdBnGj93EqEsbExOnx4vb5Scei5FNJmrtWLepEu31+0tHIrMe4bLcCSTz+hfe8FZZq2Piqqm7pxX/8RC89w2k++dBKaup+b3aXvzdILmsMGeU8hlLELBdZce9aWlob+eEvT2NzTmE6rGsu9U7gtIm0VotsWVnNus2rOXRpH++8e4m+sRxuO7TU+3lidRP/4W/30b1+M/FYgoOTcw3tgakSXleM0ZTI8OA4aeXm5ZWpqSDJHL0YweWIkRJqQCujOgL0D8VprR1iWZVIRqsQKy+cu1fVqKxsDVDMG9yzexv//UfHESWZ7avsdHe3MzIWYSw2xTOPLWdiPMKRawqDvf0sX72SZDSKOTMeZFOj2W8wlpVAtCHYPbx76CIrWvw8ttHL1WmTt4dteMQyO1Y4iU6n2b77EU4eOUO6PEHFkECAgxdiXOiPU5Z9lFSD375xjHBGQxF8nBjWubEWME0TUy1z3yonDbVefnkkh9vhwOfQyM4wTrpq4aFH9/D6OxcQJKt7LfmqURITOOo6KU9dBUwwmbW3/KD4gyuGTdOkf8IKG1DKZZx30D0QJQlRkpbcHefTKZRyCYfLvWBC8wSCH9jcHSzniffjPjHfdeK/fu8IeU1EE24ezVlrL/L153bz7pFeDg9aFAebUWZzq8D2jctJxNOcnUzT5FX46nN7mR4d5TtvjqNIC48wYmUnv71c5nqBPJi+dRHsEcs8tbOOc/0J+hO3VtLfbFI21TKSy/c7iVj80ME0kD0hiiWZ//6jkxQ0GR2JerdCoahgSnaKqki9x8vnP76B4d4e+seyRIoewtcqmLqdF8/qtPYfI5lVuafbz6H9JzkzZGCadkQlh+nw0zMtImhlsLs5M5nHNCXqHEViRduCgnBXu8mmNa388M1h3u5VAQdPbbZTXxfkO6+PcrSnwtc/34U3kCVWitCfsH6Dq6oV1FKR9au7mZyIcvr8IOm8Ash0tQbp7Gzge997jV0bWxDR8dfUsKZlkl/2SuRyFRpaC5bLhpahJPn41L3N1NZV859+eA7B4cWQXIiSSFNLCN0wCNgq3Luuitbaaqrqa/n1K4d5I5HjSswKrFlTb+Nq2OBSxA66gUfM0tXk4777t5AonuHi1NxX4BIq7Fzp4+JwjvtWewgEqvH6PPjceXas8rJzRzeRHx3B5zbRdZPLQwqZ3BVymgO7VMYr6yTxYChFjEISyeVDcvkwP+Ax3YcZo1NZxvNOwpHkHRXDgiAgSNJsoNF8aIpCOhZFkqRFnc/3EmR0M4ii+IFO88AqctVKhUDNzR0MrvsG252uWfcG0zRJTE2ilMs0dHRa1B6vD01RCDU0MjnQT0vXqgX3cbjdC7rgN3O2mP+80dFhBFGkprn1lml8t6LUjYRzjOVsxOLpj2QxfB2moSM5fRjAy8eTyCfilIQQ/koRl1CiZLpIlmV8oSCrm6O0NgY5d+w0yYqdwwMahgKvXVIJ9kVwSGG6O6u5crGXs0NFwAdqAVOwk8TBO+cTYPfw/OE0YMcvFlEMgTJzTaA6p6XReOfYMBej1vraXavw9MOb+PFrl7mWcbM5kWHLPVtxXOzjN1ZqOFX2Cp0NToIeF+vWLOPlV49x6kw/eVWiq0pi194tvPjC27Q2+LhnhQN/VRW1hRw2WeHlU1m+/LAHTdNxU6KsC2xb7uLxhzfy/C/nwoiKikldYx3FbBZ3KsveToGQy8GWXVu4euEyL7z0LsmiwLQCK0IiyUKZqYKTqQJ4yIFe4bHHH6Gvd4jRY3PaKdM02NJsUq7ogM4T96+mr2eQuroq2kIRPvn4Zg4cusLF4SydDU76xsocPtrDYLiIadiod1WIFWVkX/VMfLYHyeXHKN093/E/uGJYEAS++sl1GIZxR4XwfBSzWXKpOKIozx5RqeXy7NHU3Sh+r8M0LZXuBxUnZGJRvvGF7Vy8NECxbBBOluiLLb5nXhXo6RkhnCzjNYusaHCQKhg88fge9u07yelhDXARzYucP3URQ9fQ+OAcXZds0tnZwkg4C++T9SU6POil7O802vYfGlpm2hIs+mowKgVkXzU5E5Cgu1rluU/t4VdvnOX8JPy2R8W8MMSDazx01DvYtX0VJ385zBOrFBoba/jJgWkmCn5s6CxvryYSy1FBYWWVwmc/votfv36S9mobdY31/OTdKCVcrG4Q+Pwn9/DL185wcZ7I3AR0VV9g5FEsVoiOT2CYBgXTTiYWp1zMcy1cArsPUynx1EPryKQy/I+XLqIjY5OgxgOmKfLqyTiOM9MEPdXUNtRQ1dDIgV+/Rn1LK7KWYSJWRrQ7Cfkd/C9fv4efvnyCk5ciOJ0xBMHkkRU6VyfyVNcuQ7Q5+OaLZ+lorWb7tlXsf+sInvEYuuziM0/vpeXkJUJ+Jw1NdZjvXqM3Cts7bGxdVcflK6P84uf7uBaXWNngYTCqo4t2di2D+/auJZ8/jt9hIAsav3rlEAmjGrvbxWjkNOG0xhefWksuk+ebb0UZyWgg2Xl8o4MNm1by+muHsS2r4diQDoKAUSl+4NS5DzMeu381q0bCrOx+78Xq5LWr2F3uGZ92L/l0ilB9A5n43c9a0FT1rsQql/M5fFXVjPf14PYH8FVVLTrdEwQBXVMp5TXsTicTV3tweP04nE4MXScZnqK6ydKBlAsFirnsXbGHM00T2e5AttvRNfV9R1N/4uG1bI/EWd7V/oFf04cReiGFqesINgemaSB5q1FFGRWQ1Bxf/9xWJien+cmRDCNZB3/5o0usqJeprcnTvX4VlyZ7sOsJHniwg+MXJ7mY8IEGG0ImK7paebfvKnajyD95dg3Xrk2QS2VYv7aVA6cm6Mt4kLU8/+RLWxgdjfDigsIQNF3HmOc+o+owOTaGrigIkpNiRScbjzI4lgKs06bNXX727lrDt354gKM9JykYbkrkEAWBngj8t+8dIlWws2tTFW2rujh+4AjVIR8OQcfQTAbGMqzsqOLrn2tneGSaQ5dTuI9cYTKps6GmgssuIcheQvWNvHPwCr0xO//qy2sYHRzhxJEzDE1keOyBdWiqSjyeoaE+wFSsxC9O5QhKRb746HKS6Rw//9lbTBfttHod5CuQUp00yGkevXcX0ekY0ckwSrnIxFiEc1cThLUgP3v1DKMxhZ3dfu69Zy3TPz3GO70VwMmKYIkvfXYP+/edwuOr5eCVNAW9Br2cf892e7fCH1wxDFDfeGcfQCmfQ1PU2Z12fHKc2tb2WTUxzFmn3S5EIxOLIkjSHU9m0bER7E4XDpfrlp3hTDyGNxi6adHs9HjJJWI0BWWqW9rouzpGX2xxvGHJdPHL03nAxhfuqWfl2tW88LMD/OClE0xlTCozO1NddPCri5an640+fjdCNsp8bEuI4akcPdGlX19ccfGdnx4i5LXzUHcIWS8Rzgo3Dfu4Ga4faX0U4RXLuAMQrvitLviMRZCg5NnVKXNtPM+hfccZjxmAC0GUEG0SY4kKV8czIGUI2FRWrOzEX12DTZigDHgdEqHaGnoG4tiMCm21Dob7B1jW6KO1uZpATQ16eQi/S6feASeOnWciVuY6NQHgxKjAiZEIgji30I9EFb787E5G0me4PC3xk4NRBMHEtFtH3aLDzU9f70U2KthlmZzh5JF1LnZsX8Vf//AICdWDakI+D6+8dZlQzSTVoVZal3ewO3uNe3Zu45s/Popkt+PyD5EpwXTJ6pBsbpbYc/82ai728ON9UyCA7m3kWkLnr394GKdsIkkq4azM2wcuYTOKrN+wkv37zzAwLYAgEUlaHp6dzUHa161n/xvv8vCT23j59XOcn9Bpa6ljtK+PXF5l2bqdXD19mq/96acZv3aVkm7n1ycsc/cX3uxD10GYRw1BLRAZHmRFs5/Gzg6OX72MaXdR5xVIKhXMm9BR/tDhdLlYtbrzttfpmkYmHiVYW48oSWQTcWwOJ95AEE2xxErBunqLOua49fxTzGUpF/IE6xpuS4cDi3srShK6pi4ZX3wd160vbyWcMwyTTDyO3ekkUFNLIZtZkupW17YMgNGeS7StXkdsfHQ2Xnm+yLpl5apFf3szxCfGEURxyQIcrM63JMsUsxlK2SwmIEoC/uq62/oUz4fH52G57/0JAz/0MFQ6QgYTJR9KIbeAvrQ6mKNU0Tl8+AK5isn1+VB0uCmWS7x5MkzoaoaRlMhzO2pp7FxO1WBkttkTDLipqAa5MqxpNImMjqGrKmtXN1Hfvoyq3imEpMLmVoGzx88TyUvMpwrEKk7+x28mEeblCYzEVZ5qaGTvZjsvnczz+mWNmqEw06UQM+wZjvdmmAgfpaJDwXTREdL46rO7eOfdSxwe0EjpXnDCT/aNsmk0TSypsX3vGq6OHuWLz+zirQOX+PtXrvHkriamk0WSioP9fQpCReGpx3eRTcb51su99E4cJq1XIzgFvvnzC9gFjaY6L/0ZF/KJEdySwsce28nZk5c4N6YADgqqSCKRxuOU+cQn9nL1cj/rtqyn/+oILxzLsry9lkoxz7uHr/DZzzxANplg9+71uLxeBnuu0hsXKBhOTlzNMjl9iomcNGvv4LHD+NUeaj0GqzevoG/0NMMZ8LskTCoUzbvTRPvdk6r+AVHMZrE7neRnbG28oRDJ8CQ259zAvG6dZnM4iY6NEB0bWWRFk08lcXp9t/SjnI9KuUSlWLxtdGhqOoLHHyA1Hbn5NdFpysUCnmCIv/3pGV4/Pdd+XV9T4slVOqK60FbkyrUEl89eZighMpyxU7lFcMat4JB01q1pp61+8YS5s1XnkdUypqZyz6Z2nnhwDTu2rmB5RwObVt35bq09oLC1xeJufhRhmiYf3+zhM4+swq2m5sVIwt6VNh772D3cvzHEnvu3457HSFnfYucrn9nJ+mVeNMMkr9m43B/m5d8cIydZG7KyBiMjYRIFje1NCnvv3UK2UOHSUIbJkTFi4+PUVXt5YksVD3zsXtxGngc2VC2wDBIEwTKhNw18yjROStS5Kwxe6UEppHlsvQsTyOkuRKPCfV022gMKk3kbj9zTyZef6MJQK1wYTPP2gUskSwLt/gpOKtjVLJ/42GaqfXb29ZX5by9cJJbVGBkJ43NJPL65it5rU0zPJD41uCq0t9ZwZP8x9p2PURZcs8eLgigRq7h4cm8nzzzcRVkzOTKocWAA/tt3D3JiXMApGTgoM5538MN3JohlysQmJ3A5RBLhyVnT/WMXLL/aQtngyKGzBKpDTA0PUSkU6FjegnNmjZrMOxakUQEMTeVpWrGSkuDkZ785z9O761lbleeff2UPu5Z/dE827hTp6DSh+sbZOU222TANjdj42ILj/+t2lanpCMnIFPl0atG9yoU8ofpG0tGbz4/zkYnHyCWTS1qJXYeuaZTzOUr5LLq29JxTyGbIp1IYuo6vuoZ8OjVLl8gm4oz39RAZHlzwN/7qOqYG+tE1jUBt3QdKyhMlEW8wRKW40HknHZ2e9bg3DJ3GzhUIkkh1czNOj++OvJDBEpWnIuElP/OPCna2GTz96Bo21pYsK7UZ2EoxnnhoHQ9taWD3nvU01gVnH3NoWf70c9t5bGezFbkuypwfynNw3zH2D8wdnUUTRcYmEtj0Ak/cv5q6hlreuVJgaGCcycEBbDaZ5f4iTz65l7bmEPfv6KDavvC7vC70spUT+ElT4yiTjkUJT0Z4sNtOe7VAtOJGECVWVavsWgZ5VaYq6OGff/V+2v0qkxmTfe9epnc8T5WtRK3Deo77N1SzeV0b4zmZ//Ctw/QnJEZGJsnmy3z6nhpQCpwatdYAyVB4bGstJ4+c4cipYSr2ajKGd5ZekzPcrOms5pknt9JZLdETs3E64uH/9+1DvHUhTSJvEhALqKKTF0/kOHFhgkw8TiFXIBkJk0vEcAoVzvSniExGaGiq5RevncHQNdLxKKnIFCvWr6bKb026Bd3J1YS8IHhsOCUg2l2s3LSZv/vu63Q0ethUr/CVJ5bz3IOtdy034Q+yMzwfmVgUQ9eXVN0auk4ulSRQY+0KqxqauFl8tWkY2OyO2c6CaJ9bBN3+AMnw1Kx9ze0webWPjg2biI2NLugKWxY6U0g2O4GaWmSbnWwyfmuRnmkSrK0jPT3NX/zxHpKRKd45OcGVqEx3m481m9cTyZ3g7DxO5MWEh8FUjofWe7E57By4nCWnO+nwV6hoMFW8s+K4YHr47z8+Q0mXQVr4N+3NQerrq3j7Yg+HLsfpHU0xlShjF3TKOJkvyrsVdqyuobt7GVe+fZgyH8HusK5RVduAYRiUHdULYhkGJ/Msu3wJm2gwPDBCoWLg0DKUJT9DkQrHjl5gw/pO7J4YvzlXYP9VFdGUYWaeKOHihWNZTEPk410i4309lEoq65f5qQ45kF1uTET6RmK4nb1UdBM7SwtIN9ZVeOrxh+g9fZrmZSvwhkJcuRahq8mDTcvzm17o8Ba4f+8OzpzpwybluXJ1CkOQEGQ74aJAeEin0S/wx5/dxeGjPcTjaURDxSlqCJKdkENn8zI3lUoZQymzbHU3Ns8EF/dbi3JjtZ0Nm1bywxcPc093AJddYGBa5fSERKMzx33ra+jtG2E8LRG0a2R1FXSNLz29kWQiSU3IQ3h8ksGkweC0wKsXFbg8QVedk9pElqc+cS/hF89gIuJw2HHY4N2eIkPjaUYydkxDw3b6JKq8UOwVkMs8uLGGE70JLqUCpF84TqoETQEXmzZ1MT4R49C+E4xELRHkRx3XO7beYGhR51K220lNh2dDim6nmTANneBswbvwdE4UJVLTYdy+22suMrEo3mCIUH0DuRss1XLJJGqlRLCuAUEUUcpW0XAzekF6epq21WsYv9pLXVs7hqbN+BF7SUUiNHetXNTACNXXE6ipITIyxGT/VVw+L1WNzbPP7a+uXWTdeTO4fAGUcnkRd1jXNKoam0iGrZPMVCSMbHeQnp5GttsI1d+Z80SlVFyUqvpRg8vpIFTfSKbSv8BhQJU8DPf1I6OjIhHPlLDpJVTslAU3b+6zqBKf+8RW/s9vHqYvFeBqOAOOubXp4JAAVFhRKxObcfFo96l0dC4DScIQbUxmRUZ6r5CIJmjxBZd8jV6xyDe+sotCOkkum6NzdTeXrkXZ0OplRbOH5/dNoRoCe9bXU9vcyNDoIdJJFydO9RErgCo4OTSgYpoO/uyRWvxBH3/z/CnaGzvRlSKGKWDITssRwm0jkatQVd1M07IOjg8cJq7acEoqmzd2cvHSCEIxwdfu9xNP5HjtYglJEHhkjR27zeCXrxwjklBwShplXGxdVcXenSs5d/wMK1Yu493j/aQ1L5eSPi68PIzfZ8cTzLBqzQqyRoQTVzUcdht+R5mjGTflg0OkVBtFpYgsJlFEN4I0V46ausqDqx0UiiqnJpz87GAEpy1MUg+yeX0HoyOTnDjTj2mKCML7c525EX/wxbCh63iCQfKp5Fwwxgyu84Kvo5jLzng+atS1LeRJiZI0K4Cw2R2LHqtpaWW05xKaouBwu29pE+QJBJno78XuWPglZWJRgnUNs76b1ye76Ngo0bFRalpaFx0HCqJANpGgts16LwICn3x0PT3fPcnJKxqGeZHBcIUbY5XrfQJdyxuoamhiYOo0veMZnvvSLsIT03zvQJI7weYmnWVNdfz6ZAIDqLKV0AzI6i5+fjSGLETB5iFRgUQFwMaNtZZgVKh2aMQU16xaej5+ezrKkYvTlKWPYCGMlYD0/TdHME0QbC58YolP39vE2d4oblctnevW03f+Ii+9O0VXk5Onn7iHH/zoLWKqj8NXMoxGB2bcEZw81g2tzQ08fyBKZZ4rR42QYOOu+4iMT7LvSpH71tpY1dTK3754hrwQQJIExkejNDYGyOUzCOLCgq3BVWbnhmbGr15lKl5CEeMMHL5Gf1xih3k9ilhh5YomJvv7aK5xs2p5PRevTjM8leWPH2jg1eNhEhUn0bzIWwcuMTCVR1GhfizD8UENUze4p8uFTTZB19mzYwXnj55kNGEA1snDuVGN4e8dos4nsqyjCaVUol4twESFNXUmHV3LkCXo7vLidNo43Rvl1NUy2USCUiaN5paob6xj4z2dvLvvJJs2reW1A1fpT9kxLkwhYOJ3mog2Jw0dndQM5Vi9wsHaNe38X8+foSgEUed9Lqahs7xKw24qbNi4gtFIjqmsxnjejiCI9Cd0Th48zqoWLx1rupn41Um0bBzJe/c9sz9MKBfys8WUvWFhMbyU4Cw6NoIoyTPOPguP8X3VNWRi0SULuWBdPdOjI6RKEQzdoHnFkiFlAAiiSKVQYKL/Ku1r1i54TFXKVDU2k4xMUdXQRP2yTtLRaVLT4UXCaQC3308iMoUvaP27UpnTlVQ1NjF2tWdJike5kEe22Qm1NpJLWj7CmlKhqrH5jm3Ssok4uqrCTGeulM9RyucI1jUQrKsnPR2hqrEJQRBuaj1nmibp6DROz9Lxztcjnd13USPzYcO7/RUuDB8mqfkRBHhklYDH7eDtU0nW7XyQyOgoB85MMZkx+YsvbOHMqSsc6CsyGBYZjUkcv3YKze6n05PjiY8t563jw1zLzG2STUNn7+Y2WruW883vvIFh81Ld3Mqbb53l7LQTl2RnKqkTdMgouQylXB4c834rapkndlcTHhmiUDYIJ4qMhw9zdspG0DfN5s2rkIRJ6oMSdptIKjLN4zuaqWlt4b8/f4ZnH2qndzjJuSkrtvzw+TA2KUxZ9tE3nieSLKNJLlYF8zTVVaFrZR7Y0sTY0ASjo1GiJRuiPNPwev4UmlLhj59cQaihAbs8jUPMU+3UaG2qo6qhCZFeNq0IYHP7+dZvw0i6xtTYJNUBJ7qq8OTHdhCZCINsJ5XK8uolnV+fSvKUUsQlCKiVCk2dHQjOKF2xMH/0zMP86vWzXAiL3JjdWe0o4xYrbFy7kuh0gpPjadJlCUGzgQ3eeOs0u9Y3c8/2biamEpwemkKwORAdH6wo/oMvhsHa+Vc1znHEpkeHkWTbosnXmLHsKaTTS97ndq4Psmynrn0ZkeHBWxbD9cs6lrS08dfUkgxPLeAHG4aBbLdhszvRlMqiTsuN6mpxhiv27//Z/bMT7JHeo2RuELIPpmR++mY/QXsfFewYdh8vvnqesgY3Wp3cDLUhF50dTdhOxVAreb727EYS8RTfO5BEF53cSYjnzuUuHntwA9/72XHGck4a3RXu3VDDteFp4kWJ8ZyTzEeTITGL+ZwmSYSa2mqcQ0nOjpTQfvkO2zd38Oy9do5ejHL1wmW++PkHSERjCJLM3746jiQKrKhRaarz09Dail4eBNfcPXW7j9H+AYZG4/ybr2zlF29e4tDz5zFnkgq72/zUOmy0rFxFJhaD3oWdM1mEYHU1L5+LUKq46e8vklID4IC/+80ICDKCbOPdS2m2tgmsXxPi9ImLXIk7aArKNLY0YJesLpMuOjg6aBXvj640aKyyo1fKSJrA6nVriUxMcaF/mmeeXkcq4iZLEpIzA0CykTZs6PkyF6+M09M3Snt7A7taQHK4KRcKXO0P8+AjO+m70s9kTKW11sHK9avpu3CFxs4VvPPq2xzvTZGMJlm3ukx3o53+FHQ2euhcvYpcqYdfnyvy/C9PMZrQ6apXULVhyoYMEriEEj67yXTZRbW9xJee2cu5c9f4v779Dpqm86ePryU8GUURHRy8nKGCk1JFZWJ0isnpLLK/ES0bQ76Lwo4PG+xO16LkttR0BNM0EASRUP3C4zdRlHD7/RhLUKFsdsei6+ejnM/RvLKb+OSt00b91TX4qqqXdE+QZBvJ8CT+6rnvxNA1Qg1NpCJTi4rhG1+Py+uzBNbBIPl0is71m5bsqrr9ATRVZWrgKg6Xm0qxiGS3kwxP4qu+M8s9TakQrG8kGbaO+kr53AztJExVQ9MdFdTp6LTlWxyN4PJ6KRcKFDJpCtkM3kAAX1X1h85/+W7DFB2kdAeCYG0O/F4XPr+XnOHmOz89wq5OmQe3NXHw1Ci9V/pZv6GT+uppVm5Yw3deOMZI1kmzp8SyWpnallaqfZNcm58FIwhEoimi4WM8/tA6YrEsf/mdk+h2D4IgUOeD3Xs2MDnQT9PyLupPjjCszv9zk0AoQDiS5FBPkZBLYCTrQrSJ7B/Q2d97EcHhJZdSOXByhMfuX8vw0Dgn+pLIDjv1DbVMRHJc7z5dnXFy6qxRWNNRRTI1DNhZ1lJNQ8dyfvjdl/nM5z5G2i3jDIR4/Ur/bPWXx4spOTh7NUb8wBVcLhur6z247HbcvgDH3z3G6k3rmZ6cZGpqGlNT2LJlNdGJSbq2bGPwSg/7Tp+nUKzwyM426gJ2PEKSoF+itb0Jpz/IO1fO8v2Xz6PooBsCFy4MEE5b7kUYKi0+namsgCE5+Nj2BpavaOM//90bOBwO9i4LsmZlM4NDYXrDGiVcVHSTTCTO0OAUotOHXkx/4GL4Ixm6ERsfw+XzIYriogK3kEljd7kWdX/vBJmZCOWGZZ3vW8G76J6xKJVSiXIhR01LG+6bxH5e9620O12zYr9CJs2+g5dpb6tn3/k4GW1ht8IllPjKw83UtbTwl39/6JahC0tCq2BDQ5U9mKbB1hYoK/qiBLP5MDUFE3BRoiIHaHRX2NQV4t2LSYqmk9W1Ko/uascbDDE9OcXloRTHB7UFRyTvBX8IoRtgTch6LoHocCFggs0Syj2xokRLcw2Ny7v44c+OUucX6V5ex8RElLxm5/iowMYmk08/uZV3D5wmmjW4EpUXGKUjO0EQaXQrPLW7mXdOTzKcmRvf9lIUf8CDQ81SNh0kmHeCUs5hOryYSgGHoPHvvn4f1/pH+enRzI1vYeZ9GDy53sm2bd38jx8c4MFt7Vy7No7f7ySah77E3Bh8dotEc3M9h4/1sn5dB1PjU6zf1M2+Y4P0jubxOTQe3tbMSKTI8bHFpwaf2+agta2B5HSUrGJy/HwY2elkKKbNRqeiq3RUm0wnywS9NibzdvZ2Sqxf3UhkIky6BAcGwCeV6apSuTgFmm1pz1vBqPCx1TIrOhv58et9JHUfm9tlpuIK96yrYkVnM2PXBjEwaW5tJBbP8tbZGLGy9Z7n1Ov2OxKEfpRCN5LhSbyhKvKp5CI7NVWpoJbL78ti0tB1Jq5dpaa5Fbfv9l7Fd4JyoUAulSCfThOsrbtpMX6dDoJpzr4nTVGITo5hk2yIsrxkgNP41R5aV60hNjFO7XsMu7je1Q3U1iGKIunoNIah4/YFbpqCZxgGmlKhXCzi8njQVI1SLgOCQFVDE7lkErvTSSoaoWFZJ2O9V6hqbLqtaPxm+EMJ3QAreANdR3R6wDQQbE6a5SgPbKihfe16zp4b4MpgjHvW1ZJOpJB91Ry4mEZXK/zbP93D0MAow+EiZwbzKDPWpqamgqlZ865W5nN7a4knC+y/NldLCUqeWpdGoVCkMShzrVQzezJqqiUQJDANECWe3hFi08YV/NfvHZ4L0LgByzw5vvrcfbz+9nkkdEJeiclwEp/fz7EhbdZHfqU/yycf28jEyATTGY36kBO3HUqGjZ8fDiObGlvabbS2N/LiwWn0G0T0qwIZPv3xHUxcu0bHuvV889uvU11Xw7XJIorNN3viVecsoWk6DrtEvCBQ7YbnHlvJxfNXaW5r4GeHIpR1iY0NKtGMRlhZ+rdvmiZr/Bk+9uBajp8Z4Piki1ZfBb9LQtN0nvv0Lk4cOklzSz1ul41kIkvveJ6zk9brMNTyrL2a7L89T/9Wc+5HUkAXqm9AkuUlJ19PIPieC+Ho2AiJqUnsTgdNy7vuWiEMoGsqta1tOFweSrmbCyAMwyBY1zDLdwPrvezZ1sH6DStYKiXVJpggwJnj5yiLd64ynoXsQJWtCVgQRM5OircshCW9xJ8/0cIzm238L392L03uEvG8Sa6gzIrDeqIS3/xlHz/65Wky6QwP7FmNzVg6ovmjANM00XJx1FQYyVeFUSlhCjJ6IYVRztMTNhmeSPB333sLRTN57LGduJx2utes4NigiiAIDE4rvH3gEqeGVXpittlC2CMU+b9/fh33rrCK40jJwbfeji0ohFu9Zf7N1x+k1m9j0mxcUAi3eMr8P7+2jdU1KoLdjSL7eOXNcxy9dIPllVLE1K22hiCI9E0UOHy8j4om0L6skTWrGnjg4V2sa3XORmJubtKQ7G6OH7tEc5WMz++hZMicvjzFYFRj8wof921pxuV0gFZCNCpsbGI2hhogmy2Qz6S51DPGm2fS7NrSzlc/ew9+x7wNvGRjOG2nKPqZKlobDNUwKJcqvHGxyIEB67Kc7uRszDdbCJumwa42k81Nc93Kh9f56Wi3iqN7NjWBZMMhmqxusLywz5/r5cWTeV4+XeDQ8X5WdC8n6J6bQgW71ZkQbpFw91FFVWMzSqm0pK+wze54z4VwJhYlGZkiE4vS1r3mrhXCAKVcluqmFpweD75Q1QJ3oflQShbXd36/SLbb8fgCBBtu3s0WEZkeHUGU3/s6IQgCofo594xgXf1t46DjE+MkpiZxuFxk4nFcXi+GYWLoBqZp4quqQq2UsTtdjF/toWnFygXryEcReimHXspiqgqi04uhlNBLObRcgqTmJ5Yz+eUv9vP2hRRP3LuCkN/Jrgd2c3kwRdF0UBY9vPrbCxy9HOfYkDZbCAN8fLOHf/qJFYhaCcHm4sXjuYWFsFri6093s3tjIwVnEwPlujmKoFrizz/ewdPb/SA7QJQ53ZfgN2+dJ6PODzTSQJnz3Y8WbRw70ctItERdtYeGag+f+vRDbFrTiF8sYJomNY4yuza1885bx1EUhWqPgNvn5czVBKf6EtR4ZT7z4DLcThnJUMDU6AhUaPHOGQMUVYlsIkGhWObvfnyU2qYGPvv0TjasCC6gfkXLLpKal3DRhSo4MUwolsqMZSV+cDBtCZ8lOxdingWFcKtP4WPrnNhNa55v85V59tn7yedyPPDAFmxaDtMU6Gxw0VIlceHkeU6P6nzrrWl+9kYPdc1NNNfN1TKizWoECdKd8fFvhY8ETeJGyHb7HYsV7gSCIOLy+W6qPv4g8ARCxCctKx1DX0g8KGYzVIpFXD4//urqWW7dfAqGv7qW9HSEkayDG08I02WRv391CE32fOAFev5zmrqKqFcw7TcW2ALFYoViUaW/f5SiIlDvg4fvX498+AoHrioIgkhZ9jOWh+T5Io5LZ27aqfsoQM8lkHzVmOkIei5hedKW88j+GrRsnNFCDaODAE7IK/zy9XN4ZRVdsCHIMwpbw8mRGerBgntrKpPDIxQrGtej5248Ji6rMDE6RUFZeAJk04soikY0EkM0FP78kSaOXYpweVKzgn0EKx5Z1ot8+dEGdM3glVMJ0oqDTNHA5ZCRHG7+6sdnqfWKTMXPUUlH+eP7lxHLKMhaiaBHpCboYvO9e/j1y+9wOhbAoU6h2KsIBdw0NdWRnBxj756N5N4+z6ee2MW+g5c5dE1FNsqcGyoRrKkmbgTIG3aOXorRP5oib3oWjfX5ODkmcmI0jiC4rQWiy83xniRxI4hpGtTYisTzBts3rSOXzXN2MoEgCExG89gEjd7hBKMxFdOU6WqvQtBLBEJBDhwfApsHDTgzbdD7rXcpir7Z12KULQsnLRf/SHtm3ww3ajY+CHRdw1dVTTYev2v3vI5gfQPp6QgYOtlEDNe80zhd08jEppHtDoJ19bPRzvPnv0BN7awl5qLXrWn4amqR7babnvLdKa6f2l5/3mwifhMqiIlpmmTj8dl1RLbZkGQbmlKxrO1mvhtvMEg2EcN3F/yOP6wwDR1TqyBINkytgl5IgSQjuvwYpRwlnPz2GkAdSPDa0XGqnBpN0QrxgvXZCqLE+TDcqMUxTZNUNIbTLmHOFLg3fh+GIBKJxEllSixgw2oVbEaRZDJLLlfmqfUykijyqzMKiUwOU3TDzDi7rwtWL2vk2KUIl2IuipqIomrU+GReOZnGYRbZOVUgG4vw6b0dDE2kCPicOGWd5voAnas6iYxH+Ps3JrCZGoYosrxWoL2jhcTECE1ta9nQlOSh+1aTTef45ltRMA3SOZWBsSRlxU60YicTqfD6OxfpnZgL4loK0bKTv3szgiDYEQyFR9Y4iUwnuJy2fiMeoYhuCnQ2+tm5o5vzA0eZLkOmJHDl8hATE1GkkRyK4KSxysay1ipAYGw0TLziRJQgolfz1z+7hGZKs4J+vZBCcgfRi+n3PV6u4yNZDN9thOqtjux7OVaKjY/NeEVW43DdfGF0uN3UutuWfKxcLFDV0DQr/AjVNzA9Ooxss+Py+XD7/Mh2O6GGRv63P5vjgP3v3z6HkyJfeLQe0xR483SM8G3C3SSjjIxBRVzMu6m2l/j0va0cOj/F1YSdh1Y72bS+m7/7+SWK8zxrdcnJ84dTgA1hMAM4SVU0vvez44Szi5X2ecNJ/u64onxoIdqd6LkEgmxH9lkLkF7KUomNIXtu6JZJdi5HoM4FD24OMRqPEi3d/BTjia3VdHZ3sv/iCW5U4oMlRNi7vobXT4Znj/IBZK3ANz67jtHRCN/dn6TKJuHxuhFNlS8/0kolmyFYW83rR0YZT4mUCkVWbVxPY3+adAyaQja2b1vF8NQpelUH4TKkrub41197mLHeHjZuWsVY7xVqW9qIZyqcPnWFoaybHQ0lnvj4w7z12xP85qxK4PwUn9rTSCoeYzxt8MvXzjIYKeND56Et1azq3sDpExcYyVi/n3DRQbjIrO+maZpsadZRFYVsRWQsI81a8giGjoMC1W6J5R0N1Fb7+M7+JMsCKl/97F56zl3m9KleLkTE2Yjw3riN3vj1DakNQYAXDoZpchb46pfW0NiQ4lLC8soVBJGSFFgg/BDtLrRsHMF29zbi/1hR1dBENplYoAW5HTLxGLqmIsm2WybHCYIww5ldzJvNxmOzYjuAQG0dqekIxUwaE3PWv/hm94+MDCFKEqZu3LYYvu7JHKpvXFRQaYpCMjKFrmk0dCwnPR3BV1VNYmpyUbpeXdsyDMNYIL62imIN2w1CP7vTRVXDR3ujJogSpq5h6hpyqGn2s63ERhCX6CBO5B1MpqGtGVY3y5yZuPm9VwZyPPLkfRzcf9KiSdwAU1d4bIOPsUiec+GF5dXD631s2biev3nhHHnDxWe2OpFkiZ3L7ezZupJEPMV4xOoyF3NFqhvXsTKrcilWxIHCzq0b6O+foCeap4yDdwdMPrOtg+YVKygpV2lf0UFqOsyGnVs59M5x4hU7DqPI/+0Lm0hEE3zvUI7/z98d5NF1brLJJGVN4Oe/7UUzwIHByhqTZz71ICM9vfziZBpwUcHByRGd+Wt3o7vC6nYfV4dipFUHBcN6TBBEHFoWE5PO5lp27FjN9IuniObgT57tppDNEo1n+eYP9hFRQwgCZHUnvziVA1yAiSDZODWs0jt6jc8/vIzu9d28fPo0wgwtTrmhPhHdAfRsfG5R+AC4o2JYEITHgf+K1X76e9M0/8NNrvsM8BKw3TTN0x/41X1I8H46zaIk4QkEUculWxbDt4LT7bGEG/My6gVBwOZwYN7CSxPANAVK+TwrN26kpj91y2LYI5b53P11+Kuq+G8vXF7U8ZVE8Po8SDPzdaagEA7H0ExxoQwUFjlGCJLMaPYfbs/1Dz12RacX0bnw89TyKSSnBz2fmg3gmI+gS2BVdwfn+mJE551mmoZudQ5m+NXlUpl8KmlZ8y0xHKo9Ius3rGB4NIKmlUhp1jjUBJnBoTDRZAGQSKou/stL/TT5TJRchmwmQ11TPYKpo0tufnKiRO3Fw8RKDgQJLod1Ij84TKxkR5j5asuCk7ffvUI0UyZ++jQuSSNw7TCTeQdF07LaK6l5ElOTFCsaguwli4PvHykiiBXAz8Uw1DpM/ukXdnP66Glik5MzPrU6j62xo2g6+3vLSBiYNjemprBny3KKmSStK1fxs1fP0DNtUTRWNLhoX97Nt39+jr7+ccqaCIJIvChw9kwfAZtOY62XY+FbayYUwcVIQeKlV88wkbQEH6ZpYqoVRPvCxVB0eBBmju3uBv6hx+4/NN5rWpumKLPWY+/7OWtqSYYnkecXkaaJw+22+MO3gapUqG1po5hZmnN/HbqmMTnQT+uq1bNJdfNhYiLJttnusCjL5JIJRGnpsXWjC9GtNgO/a3wYxq0tuJDGomaiiLIDQ12aHiKjsWJ5E4IQ5szE3DWmaWJqCqLNakqomkky8v9n77+jJLuuM1/wd64J7yO9Le89qoACCt4SoCdFb1uU2C2p3zy9NrNmzfzR02/+aqcn9bSkliiRlOi9AwiQIEGYQnnvTWZVehMZ3sd1Z/64WWkqs3yBANnzrYW1UJk3IiNunNhnn72//X3j1+SX6tJk0/peLp6/TKpYZqSozcTrVLZKX98ohqMihMIPDpbRnBrv3hJkbHCESCyCR3UAweGpCBe/dYS6rYDw0VBD/O23D1O3VSTemQT/8MU8Y+kTHOorET40QXNIJ1sbYcp0k0dV1CmkMxTzRYRQcHxxXrrowIXUjKqQlJLPPhxHxeLyuT40TUMgWZUw2bomyfN7J6nWDKTP3atWdYXZuKKJ+3es4sK5y3zvQIUWf52H18fpaOvg4Klxdh8dZVPNoWYpoOkcPjlEs9+kq7OV10/lr2sTjqpTRufFfWN49fGZRNgx6gjdO++xQiiokSa4C7NvN4zaQggV+GvgWWAd8AkhxLpFrgsD/zuw/45f1V1EKZulWrx+YHorEIzGsIzGLbcObcsiPTpCdnyUQCRKvK2derVCdmKMWrlMU2c3vmDwhtbRDeHnmwdt/ts/vs7xUWeG8+mnxid3RdjcPkv5aI+p+Dwao4OjOIucnFN1P3/x3fOcnuYLHxlV+fae4jwe1fWgOA16ww2wjYXvt1rALr814u/v3LUrUQIxuAb3/HxG47986TVGshZLIg0cs4ZmlXjfFh+feDDuDnAAPz8DX3n+LD1tEQKivvB50ir/15dfZ8v6bj68q4UWfdoERvXywvE6B4dn/75HWHTENVZsXA+aj2A0QtlwuerLfSkMozE75KjoFBoKn32smft7nZmf7R+UeITDY1uS5E0vF0tRbAkfuCfEqoTJ6VyIv/75BGcmFbpDdaRtLZAgKzcUjp3o51xK8OVXC7x0VhKyC3S2xehsjfLeeyL8yQdXo1hVFN3L154/TbVaY+DceQan3PW1ojtG7/Je+s71UXd0fnFe5bV+gRCCsuXhTN8EsaYmwvEb81g9ToVP7PQT1xsznD6rMIljGdRGz2EW0zgN96RpVwvY1QJWYXEO6q3gnbt2b4xGtXpNHu5biXibq7pwO0oJuckJsuOjrntdeycer2+Gsxxva0dRtUX50FdjybqNOLZNKB7HnGPSNDl4mfTIMI2am2jVyiX8oTBTw0PovoVxVPd4iTQ1kezoQghBtKmZeFv7dZ31rsa1zEyK+SIHD52nUV8YM+4U79R1K1QdoftQFqnmAphakL/53kleODjFspiBlwa6WWBtssGf/8HKGUOLgWqUv/tpHyMZg57wwv3M0oL8zXePkS6ZfOzp1exaYs0YSp2c1PjRoQrm9L6pSJuwWmf9lg0YjkpLVydV042xCSdFQqvQkLP0xqIT5N5lXj79UAzVnn49BQ+nhuu8d2croWCQ88UQU2aY+3ocnlijYqkB/uHVAt8/ZtHur+KjjhDKvLgrhODCYIb+sQr/9EaeL7+ap2FB1GezbGkXKxIm/88/foDesLte9pwrcvjQOdKjw5zpc+dLWiM66zatJjU+wVTR4EwuxLf3lijbPoSicmakgaJ5SLa14/PcuDj2+JIaD60JMDDl7nV2JY9jNTAmL2FkRl3qy5V7nhvHLmdwjDtbzzdTwrgX6JNSXpJSGsC3gfcvct3/B/hPwN3/ht0myvkcutd7Uyf6uw1fMHhbHLrJoQGiTc3Y5myyesVetFYuoqjqohadc/EfvrCV//CFrSiKQkVEeGKNhz98qgPVrqEKh/aOVsL+2S/ZxSnBD98Y4QcHK9ckoise3/VPc9fBlh4vn//oTta2u19AKSVWOTt96jYRXj927ebck24Rb/vatSs5rFIaq+hyH+1aET3WjqyV0OPzNzYzP4FVSIFtUVOjPLQhzuc+spMnV0j+/JP3oDSKYBtsaHeI6m5y+ujGBLs2d7C+beFnIxSVkAdKEyO0LVnCu+7vXXANQG+gyL98zzKaQvCXX36dQsVm/57jpKoetiTyfPoz7+ajD3WxITFrA64ICAT9eOYEtqS3zgPrEyztShLATRADms3atb20N7lrtj1k8a/eu4wPPNzDEytMpGUirdnbXsPHz45UuJzXEarGqqTDv/2Xj3Po1Cjffm2CQqnBxGQWOc2RLhDlu/urfO11t+0XV8u8eXQI2zKpOH50TWFDmzNzEBP1Ap/40C4ahs0rR1IsjTRYEZvvLLksZvKuDR42JkpsiudZuWkjK5fPSilKo+7aavvD6JEmnDmDLtIyZqp5d4i3fe3eLiqFHOFE8reeECuK4mqi3qQ50lw0qhVire3kJt3XXC0VSLR1YE8nMtcbYLsa4XhiWh+4PEO3UFUNXyiEPX2QdQ1LfATC4WtWwHWPF02/vVmPfGqSWHPrvEG5XDpDvVrltf39/Px4lYNHL93Wc98Ab/u6dcwGVmESMzs6/e86QtVQdM88NzqYjc92tYChBumMa3zmw/fx5Dov//cv7GJpk8Ay6iS9DZZG3TjRErB47tHV7Fq9+D5cdXQ6ww6lXJannr6fZv9C51phN/jcY0k+/OgS/vqfXuPwhTTnTl/k5KUsol7gU+/ZyHuf3MD711nzHBU9ukowGOCKT5ewDZ5Y66WjJcSK1tkEd2lnjLWrOhG2CY7JZx9O8N6dbXzswSa8soZszM+J9g+pvNEvUVQNDYM//YMNdLcn+K//tJ+s4WNkaIzGdEpiKj7eGPHz5V+McCoTIK6WOTlc48Lx47T39nBxtMyGNoeINvu+718bY9OOLbz8qwPULYftPcId4ptGQNR5bnOAzcky21oqLF3Syuotm4hq9ZnPUJoN1xgp0YGcM18lHRtp3znf8maiRicwPOffI9M/m4EQYhvQLaV84Y5f0V2ELxCknM/h3IUbdaeYHLzM8LnTTA5conYd28xQNEZucoJ6ZXaD9YfCZCfGiDbdnsWnYzvu8J8QlGWQv/jGUd64OCt6KFSNyXoAeRcmMhdD/0Sd13afZig9fcorTaEGotP2uA5OteBK39x9vO1rVzo2ii8M0sGuFhCqB6daWNSYQSiKO/lsukGkUiySnRjDtAwGB0ZYvn4N9WqdP3jfTu5d5VY1izWJYTucHVt8T0kGBevuf4AT+w/x6yMLbW0ds4FHV0i0tVE3HPKmhy2bl9HT0wqKwlRVof/4ESzbYtMSP2ubDMJqnae3NfGjVy7y6vnZdbSszU/P6jUMXOwnb7vcrpwV5K++vp/XzlZRrCo4JkJVyaczxEMe/uTZNj71YAy/meeRVToxff7GkavanDt1AQ8GbUGTNy5JhseLPLouMFNxcTQ/tlR5dKXKJ55cQt3S+Nlr/ew5m2fHqgiPbWtnU7N7f6Qvyrd/doQX948zVNR4amc373l05YwKBsDSjhAre2I8uL2XLZtX8uYre/nZ3kmsYhqzmELxBnDqJXAst/3qnV67UiI8/quZQ7eLt33t3jaEoJBOXdMU4reFci7H0NnTjPadv67lPYBtmExc6psZLIs1t5KdGMMfur3hXoGYt2FHmppchaM5POJoU/NdHTqci2AsNu89p1Np/ubHF/jmT46wbkUza1tsVi69fcvo6+DtX7eO7dKVpuOrUy26PGLHWTDYKm0TNZREWm5iVi5XyYyNoqsOl/qH8fv9xJJNPLhjGR9+eh2yUcHRAkihcG5o8X1cdUx6V6/EqNf50U/3ka5fNYTn2KhWnXhzE5YDJRFhSWeS9ZvX4vPq2JqPoYv9pEdHiEV9PLcOHNvkoeWCXLnB/3x+AFNx30dIa7Bx+2aqpQonB2cPPt9/M8WXfnIeVB3VrICiUqtWUYXDJx9p5YvPtNMeqLGl3WZVYn6F20bj3LkBcpksPTHJRNHhlwcnuH9900xyKlTdPTzoGT71zDIeWOnlldM1vv3SObqb/Dz70EoeWe2dSXj3ns3xg+cPcWDEw+blcd791BZ6E7ORMu6XrF/dzn2bO9i8MkGtUuVbP9xDpq5jFVPIRhWhexC6HzMzPNOllFK6n7OizBjV3C7umMwpXJLoXwCfv8nrvwh8EVhUo/FuQvN4Fgwb3AxK2SyWaVxXDP5WkE9Nomg63WvWMzlwGaNWu2aQjSSbUFR13r3xh8K3FZT/wxe2Au6C+Y//cHiWI+QJ3dSGLW2Le5do5ComfdnbV6MoWD5eOVVCaNOKF4qGXc5hN6qo3iCKL7SoO91bjVtZu3PXrXoLhgpauAm7VkSNNCONGk69OM9LXVomTqOCGoyheENIx5rRqO0br7J5nUNTc5LvHajSfvIs5ZpNf+bw9MHCy+4Bld2XRhFqlJ5wg6jHQvMHOTPaoCG9nMwGGfq7X5JX4ija/KDskzU+/77lnD7Vx99+5WWmaEHRBV994QKOBCH8jBsxDEuyfPM6xi71oylZmkKCrVtXMpaukJqz7R2+XGf823sZLqozShjg8te9dpUvfmQzlwYm+e8/GmBDc40N3T7irS1MDh+hM6Hz6EMbqDWOc2Bw9v4safHTnAjS2rySeGs7L724l7U9CQKRKL851e9OiVs1PvdML4pdp6mzC8s6S182wppmQczv6sW+7727sH70OmP1AP15L2uaLZ5bHuD51/pc9yLdh+7UeXZHkstDWYxKgUcfv49fvPAaR4YlDUcFHBRvCDs/4eqECg1p1ODKQU4IsM2btm2/E9zu2n2rYy5wS638K2jUam5FOZ5YMPR1O5BSkh4fZcm6DUwOXF6g1HM1mnt7sS17xqRJUdXbeh9XEG9rx7asGYOlG3Xz5iI3OYFj24QTiVt63Fzo02oYV2ZLvF4vcd3Eq8LuIyNsXt1Ea9vNGYHcTdxJvnCzcVfxBnCMGtp04iulg1Mvo/hn91C7nEPxh1BDyRnFH4CCEySbLdLV1cbXXrqELTT2XjyMqihoyhjCG2SiBn/1w8sILUBQqbOhO0ClXCFTUxivenH0IP/fbx7GkQLTE1tQcnxqnU5HUyc//NkBBish8AR483yF0wO7SRtBFE0wZvjYuaqFcDxJev9RhGVwz+bVTKUyHB2bpX0WnRB/9619FBsKdWZnUyQCBZvH1wfYsmEtf/udwyhS8tR6nZWbNpEaGsSulnjmAw8zPjLJhddnaQdRr8OS9giat4mH2jrY/dphWprCtLXFiF9IU5hm2z2wVGFVewfJ9k708xOk6jphtc5TW5MMnjvHtp33ks69Saoq6c/7cDIN3n9vE8fOjfPdnx3iUhZQ4J4um5ZEjG/+4E0++4nHOXfyLG+cKTORqYHmJsA0akiz4ZqomA2kZ7ZzLqR0NaTvMIe4mUePAnOVw7umf3YFYWAD8KoQYgDYCfxUCLGosLGU8u+llNullNtD71B5F9OoE44nKKSn7vi5LMOgWi6RHhlmaniQerVMtPn6J/JQLD7Ppe4K0qMjpEeGsUxzkUddG0KIa9rDtgca3NsrwFrYyvE4VZ58eB3b19xZ0LSrBaRZn+FSaqEEWqQJ1RtEDSfntZnvMu7a2p27bhcberseVH8EIQSKN4AWaZk33GFXcyi+IFY5i+INzDNrmGiEOH4xw/lR97MZK8DGbp3xdHWGvyqEmJYQMnlwUwsP71jC+57Zytr2K4mvYPuGNp5e73MH8Oa+J6BSVXCK1AABAABJREFUrrB+bQ+feP92HNOlDEQDyoxr3sqESaFscPbAfhxHIm2DoEfyN199hZhfYVVidi06ipeRim+ejJ9PlvnXn9jKY+v9GOUSpVwOoekI3Y/X77rKCV+QvqzKz3/ya/qH50tp5Ssmk6kcJ09c5I03T9DRkaB96RK++cIpgj6F92wN0hG2qOUz5FJTPP/8bgoiSUyr0RGBVWuWU8wVOLLnEB/+8KPctyYGwNL2EJs3LqVoqIyW3XvpUW3WrOykrSXCG5dU/vIru9k/GaXeMBGKBrofp15B8UcQioJQNTzNvVilLE69jBqIooYSaNFru1PeAt6StftOjbmVQs41iMjdnFX8jVCYSmEbDQbPnMKREs8ivNy58Pj8i1oXF7OZa3Jvb4TFYji4fOHsxBil7OLvVUqHeFv7NZ1SbxZf+sYb/NU/76NWrhCOhvnTzz3M2pVtXC54uDz8ls3RvGX5wq3EXcXjR0wf/vVYG1q0ZaYqbJUyKIEIdiXnykdGZg0xHMXL/vMlTl/OU7J1yo6PiG4R81jz9NuFpiNtk9XtXu7b2MoH37eTR7bM7utdLSE+8viSmUrqXBiGDdLh8599hiVNKnG9zroOjUzdHQ6LanUimsXwwBipwQFGM3Ue25TkKz88wunzozy2WoMZ3XdBqhGgfpVS07PbYvzRe1fRHlcZu3wZS3gRHi/heBzLNPFHIpQcP9//0W4OHbs0r0DTsCTpQoNTp/o4sOc45ZrB6g2r2X3gIpfyOg8skdzbbSOsKo7tsOc3e9nXV0eXDbpDddauX4aJwuWz5+hq8fPRd2+GepFEADZvXk4yHuRsalb5p7s1zOoVnUwaEf7qawf48dE6E5mKe0Cx6q6OsKaD4+BYBnpTL1I6WKU0Qgi0RCdatGVeAeZ2cDOV4YPASiHEUtxF/XHgk1d+KaUsADPZkhDiVeDf/U5PNUtJfip1VyrDxWyajmUr0D0eVE0jGL091x8ARVUIxeLUSiXCiRu3167YcAL82buaURSBLxSeadX9x388yrbVce7ZuoqLI7vJ2e6XXZMNVrZoXEx5+cfvH6ZmCa6nMXgzuDLAN+/9+EKuokLoLdugfwfWrsCu5BFz2nd2JY90LECwuz/Jla/ptg6Lp55+hN7TF/jWvln+7tJog/c8vJyX3zhLzZBEoynOjRkIR7A07tAUjbob/ZkJrugRgztk+c+v59jQ6qAqoNp1Pva+BxkZGuOfXnU36h1rm+hd0slPf/Ym8bLOQzuWgxB87efnuO++tWhH+7iQdZN1aZtu4Jpz8DIcndNnhqib0NLTzcuHXBvbk5MaZ0YKrGnJMpATrIg0ePq5RxkdGOKrr7ulhweXSno7m/nl7gt84n3b+fW+S7x5rsorR9PUlTCbElW2bV3JVLaKrQdYtXoFsdExqpXLPPfsvWTTOf7y6weoOj6QDpniG/R2N9EVMvjlsQZvnDxEWc7ScyoyyH//xhEa6KB6KU3Lq0nHwamXUIMJbLPhBukSSMeikbqMFmnGqhZRcfnEajB6N4w3fgfW7t2Dx+sjNzGO1393qBWOY9O7fhODp08QjERvm7JhNepzpNZuLnanR4ZBCITiDm0KxLyhvlq5RKKtY56ls5SS3MQYmseL1x8gPzlO/A4q0wCaItCFg1Bm+4BbNq8g4B2gu/uuHNgWwzt+3QrNMz20PVsLlJbhOkg6Dv200583QPHisUo8vWsFsdY2zv3da1ieGAC6U+MzT/fQPzDJS3uGcOw+Cg0V8NHqr5H0Qe+STnyHxilcZU/wWj+cGc2wIXOa8SI8vinOvTvWMPm1N0kZOsvbfDz46FZeeHEfhgZNzXEefHA9/aNFVi5rpre3nTdOH8ViWm3ENmcS/ysYmijRqJRYv2k15y6MYCo+TAf+6Y0yvaET2BJMW+OZh9bQ1NXF+Fd3k3NCdIYaPLezl5fe6GPn5nYM02bfKYP+f9pNuqHR7cuzZd0GqtUGh8+lWLZxI7GJMaaKl1jRG2Hd5vv46jd+zWA1BKLMknCNRuMEO1f52TOg8FdffYOC6YM58fFnB3OoB9NYagALQIBQ9GlJUq+r5GH53Z97gxhTA6ihuDufYZvYlQLC40P1LTzM3gpumAxLKS0hxL8GfoG7k35ZSnlaCPF/AoeklD+9o1dwBzh1qp9wyE8iHmbf0QE2r2mn5S60fm5mavhmEU4kyU6M4Q0Eb1kq6Gp4fH5q5fJNy+YY9RqRZJJixjUVCMUT1Mpl92w+jVePZznVt4+sFZih3Gzo8vL+d23lxy8e5fjtqxTNQA1EkYu0MRSP/y01J3inrl27WsCulVB0rysEX80jG1Wk5sEsprFrJXztK1yTjjm4kFY4tOcIxwfKzPsQEViWRcn0MFr1kjSraIrCijadj7znHna/eoDX96QQ+sLKihAKp1PTn4s/xjd/fJiaCeAejJ7fN4nv8ASpehxZcDg93AdCpez4+fuvvYrf52Nze5Djlyt84pEWLNPgZ0cqRD0Olm2xpDvKS0cL2IrOmxdfx9AiCOFWNBxPkDN5QEDGVDh/8gznh4pACOnYaIpCNOTn2fu7aNQbOLbEED4MB7Z1GDy8czNnDx1m/2WH44Mp1lwcQagaH/jAQwxd7OPkYJWaCCGmc/Pudg9rNq1jIneUkbKgLGcrPXathDQblHFmbD2lY2NXXIvWK8mtGk5gldJIs46i+3EsayZoS6M+Y6aiRe4sDr1T1+7E+BTj41m2bF3F/gNnCQS8bNq4/I6f925zZxVFpTCVYtnmbbc9+Atu/M5NjBNJ3jw1Sihu0SIzNkrb0mUL+MpX9oS51Ld8apJYazv51ASRZNMN1YJuBl/49CNIKecNFCqKwpp1y+74ua+Fd+q6dYwaVjnnDtJ5fNMcYtt1pquXscs59HgbXKVI0BB+jp0awjx2GVOfryvuOA62I7iQ1fFhE9IdNKPIH376fsYGh/nSN14jLRfGASEE6YafV88ZgJe9Z/MMjB9ksqYjVDg21CDz3X0M5gWMVdHNMudH9jJc0inuuYyyb4DtK1s5OVhmXYfG+t4Irx9PMVn1oGPQ2xZmJGNzYsLLb85Nm1RobqxTdA/DDTdxlorBpcFJBkamyJoel/llGYSjQZ7c0YZhOVRNC6FqZCydmFbm/Y+vRlPgxTf6mDTCVL/1a7rak7S3hOloT7B/3wnG6yHEtClGIhpgybIOuhHsvTRIwQnP1GOklFi5MUyhuJXd6ftjVwsITUf1zTl8Kgp2rewmxqqOUy2CULGrhZmYyx0mw+IuTT7fFpZs3Cz/ww9fvKXHpMZThCNBSoUSf/vCEFG1ztbVSV49Z7CtW/Dep7fc8esyjcYtWza/3ZBS4tj2gtZcMZPG6w+gqAq1SmXRhPw//uPRef/2U2fjkgDHz0/R8L4z26pXcD2v8bcK3vaVsv1zf3lLj5FS0pi4CI6DFu9AmjW0SAtmeggl3ISdH0cKBV/rMsxiGquQwtPcg+oLzbhfWaU0QtUX1SaWZo1dq0OMD43w8Y89wYWLw5y7OM6q3ijLlnXxmwNDHBm5ue+6apawFN+C6uYjKwQrlzTzT78c5ME1EXbuWMm5Y8dYvm4Nf/uN/Xzg4S5WrF/HSy/t5+mnd9B3+jyrNq7ln7+/n8sFDxhlbGdaj3dOgiKlQ8ApTbu5uRv3uzdohEN+DpwY5NGdK/nha4Pk7dlgF6LMU2s1pso2u4eDhESNjz7WxZEzE6SKNpg1UkYAS3jBNumJ2jQaJl2hBi3tLezvq5E1pl2MakXM7CieluU41TxC97oVh1oZb8sSrOIU2hy+ollIARLZqCF8AVA9yHoF1R9CWiaKP+TahN4Ab8favZ2YWymWqdXrNLU08eXv7GWo5OXdaxxeOOMQpMq//+Kjd/y6bMtyqUR30er+t4G5vOArqJXLWIZBOOFaPYcTyWtSJq7AsW1ykxM0qlValyy94fVvJ/5wVedvfd3C7cVdY2rI7bIJgad5yUyBwbEMFF+QxkQ//u4N2LWCS4HSvehxt4ovpcSpl13lmHDTgkOVdGyWJ2ziAehpC7Nuw0q++s3fsLY7zKpVXeQrFt/cnb+5F2rVEdJG6vMHybuCdT70xEp+9lofdcPhjz52HycOHWXpsh5ePzqKqOZ47n2PcvH8ZRQhiPgVWnuXcODgOV48UXPVmqwaUvcviOceu4KFhjOduK5OGjy5cwk/+cVxHt+1ihPnJzk6rs++b9vksaV14tEAL50yqUofT60WxKIBfr5vjJYQpKoqlWnucpOnhmMbdEckTTEfk1WNU5PTg2+2iZmbBAVUbxAUd/7CMeto0RacWmlezJXSwZwaQugeHMvC09RNfew83pYlOLWymzzfBI3mejH3nfuNWwSjw+N8+aVBeqOST35wO/d0jxKPNrFhbRf1xmU2r1u8onvu3CCvHR7lsR3drFrVveg1V5AdH0P1eLAa6XnDJo5tkxlzqU/N3Ys7xr2dSA0NoKgajVqVjuUrZ6oBkeTsyfRmB1Nq+KhVG/z55x/gqz86xmT9rXUssutl5PSJ/E4rau9EOPUyZn4CxRtCizRTGzmF5g1hCwU90Ul95Cy+nvU0Ji9TH+9DSokea0MaVRyh4NTL2I0qnmQXdiW/6N+Iemy2r2uh2K4z3N/P+b40H/7gQ5w73c+bR0ex6hU+9WAHP9kzTtlZ/PMMqnWWxhyefHgjR04O8XrfnEE/KXEcMC0LiWAsW2Pw0iDJpjjpiUmqSojvvJlnZd8B+saq+N48w+h4juODhxnIglep8plnOglHo7y69wJSwrb1bYwNu6YyS5ev5PTR0+wdEuQNL450kFLSVwjS96sphCkI+eus7wlwbKCKIiQbdt7HwX3H+egOP6MDU0QjQZY1awQ0i0ce2cXRE5d46WSdNa0KH3v/vTz/y6PUGwHuvX8zA1MHyU6PBNjlPJ6mHoypy3hbl2NXskjLRvH4qI+cRY+3uxqW0kHxBlyh93ACMzOCUy2BECie6SlnbwgU5aaS4d8VfPP5Y6QqKl98H2xb00x8tMC6LWtoKIOEAotXdCvlCt/7+QnaEj7e9eTW6z5/vVKhnMtgWxatS+ZXLXMT40gkvmDoju2N7zayE2MoikopmyHZ2TXz+uZyj2MtN0dHUFQV3ecjEImSmxinqev6+9TdwHd/vJeGYfPJD+18RyfftwM32ZrAMWr4OldTHzuPkbqE0LyowRg0Kkijiq9jlVukUFRU3esOPFdyOGYDoag4jRp6Uzd2OYMWnr83CUVl++ooHrtMJBFi/75T7NjUxaYta/nRD39D1VT45K4ejp5PczZ9DdqUY7KqSbCqw0fPkm7+9kfnZhJiKSUSgWlMK10YgrOn+0jGAhiGQTpTYrASY+p7eynXJa0xDyG/oHh0komCA/h4eoOPJW1JijWT1w4M8uwjq5gan8ATjJCMxSgVihwbqHEu48WdQ5MYWsilyZkWCMnmHp1UwWS86qW5I8ny5V1M5Q/R3uJBFTaJpiAdoQY7ty2jtaODv/rmUWzH4QufupeRwXG+99oIf/7MJi72jXFq0pV0s2slhKYhdD9Oo+KqSWk6mHXMzKhbuQ8ncapF9/OyLZRAZJqKZ1EbPo0n2UUjdQnVF4ZG5aaS4evhd+obEAoFaPKZCMfiL/9pD4/f08G2rSsBeObxzdd83FiqwHjNx/hkYSYZPnt2kL7hDE/sWk1gWkOynMsCklJ6vl89wPilPuKtbVRLb4ke7h3DrR5CvKXVFYq/Bb7zFdUJmK0S1y3J5PgUpnN7LUYpHexyFjWUuO6Up5kbwzFq6MkenOpbY77xdsMx6nhallIfPYddK+BtXjqv2qA392DlJlC8fjzxDozcODgW7oibRGgeFMfGLmdhOjl2jDoIMWPxXLNVKqUyybZ23th9kpPpANZPD5Ip2xgWfOyRLpA2Hg0wIKrW8KkmyViQ8xMWtuLlgTUxHti5llOHj5Evm4DGsliD1qDNutXd/HT3CK/3TSEUH+fTcGkqwwe2R2hqa0YRaUypsrbLz7blIV47XWKkHKLLqdMUhFxVIZstomk663rD6LpKU0szimPR0tNL//FjrN20mlTpLIcn4eenLJAFFN3LhhaThzZ3c+bSFI8+upnSTw9xbkLhtdePU8xMse09j6DbFUaGRilWTR64fwMjl/oZHssTVASVcoPX95ymf6JBrq4y9tU3yJr+WaM4VXUl0jx+hKqhhpLUhk7jae4GTZ+2/EyBomHmJ9GTXdjlHELV0WPt7maqeUDz4mnuxZjoRwu9NZJZbwdaYh4ss8a3f3qE5mSQj39oFwAPPrD+mo8pF8sMFQQNc5bbXsgXeW1fH+tXtrB8+azKT2Z8DE3XqVcr858jn6NerdC6ZBn51MQ7LhkGQAhCsTjF9NQdvz5VVamVCnekUz05nsLv9xGJXfu1HDvWx8sHhrEtC6kHMOoN/KHfqVTghrArBTxN3dRGL9BIXUbx+NEiza6bnDeI4g1ipIdwGin83eundeCd6YHmMJgNt0Nk1LBLaRR/BDPv0l20aOtMtbSYSXPvwzs5degYb16sEfLWOTt4kLPZMO/fqBHQbIJe91rVadAZBWGblCydrOGlK2zziQ/ez7kTZxgdnUIKlajeYH2HTm+bn/5xyd/8fAyhuNXb7x2ocH9njUcfXYKiDSOEIBHx8vimABdHS+y+rBDWHdoiCvm0RalqU6+rqBI+/K4NBKMxnHqZ3nXrOLl3H0tWrwIxxrmMxYWsh/PPDyNUP2Glxqffu4TDh87w7LNPcvJEHz86VObYhTSpVJZlvc20tLdxfP9hVI+fzWs60KTF6RPnMR1Jd0Lj5V8do2wKDDXE33znKA1bhWlFK8UboFFIofodtEAExReiMd4PHi9C96EGItjFNEowRm3kLN6mbpcXbZtubHVs13LbtPF0dtOYGrzjNfM79Q2IxqP8yWce4sDBc/QfK1Oq3Jxe9yMPrKOnbYRly2dP2wfPTHI5r7P08gQbNricNylB83jRfb4FEkS+YIhGvY7ZWKi68E5AvK2d1MBlqsUinavW3PHzXcx6uPhqltsdnLNLadRwM3ZxCi16bfUMoajo0VbsQuq61/1OQ4BdzuBpXY4Q4FQLOGYdu5QG6bjyPraJEApWcQo93DRvMtZR6mj+8HSlooKZn8TTstR9/DQ8ioMAJkbHOTCqIzSVc2kV0El4agSjUV7dfYas4WdDq8WujR1ouo4vEEDdc5mT43Ckr0CudIzD/SW2Lw/R5q/z+D1dRONhaqUyqjpflcQUPr6zr4wi8+AJgGUgTYPl27YxWT7L8KFJPv2pnYyPTPJPr+V48XiNXeuLmOUilvDw41deZXl3kEuvDdOWDBBtqXA57VajhVB4bBXEIn4uXEgTadqAeWaIn/7kDcYzDlKNoPu8vPeDT3Lw1dfYcv9OTh87zS8vqoykDvHRjzzGZOkc61d6WL6im7/46j4aWhihQs4OIZRpzloxhWPU8bUtxyy6pWKnVsTXtQa7lMbT1IMQAtuoIxQVRffi1Apo4SasUsY9uOhelGgLol7GmBrE03bnHNp3Et7/3L0Uc3n+5gdn8FSvL1F2Ba0drXzhXQ6h0Ozg2vmLYxwdFTTMyXnJsKap6F4P4cSSec9h1KrEWtoYPneGnrXXTrzfLiTaOhg6exp/OHJNtZ5bQTAauyOucGpiii89f4lmv8m//PRD17yuVKlTEWEeXu2weeNy/KG3ROP9bYXw+LCKafRYC1owhlWYxK6VXE37RhUt3IQWiCKRWMX0gja70DxIy8Tb1OPGifwEKKorT2mb7uEX8Hi9pEdH2H22QE1GqdVhqg5COHgDfsoNyYEBm7jf4sMPtRH0e5BAKlfnu3uLjBUFP3/5GH3jNaIBhU1dGuGglycf3cTQ+fN4VGWeu7sQgr2jfvZ9+SD4pg88jsQfCnH/fT28eeEouzY1sfO+tfzt195k76Afw64RVC2qjpdf/OAwa7rDvHr0V6RrOh9vr9A/VuHKjMiyhMOj9yT55e5+7EadTZtW8M3vvIoUAikjVOo2Dz96L6/+4jc0tTSxct1KvvSzPvx+Lx/c1cbGLT2MZk7wwffdzw9/fpgLWffFl2VwZl7RpaWN4+9cg5mfRJnm+qrBKGo4gTE1iOoPY5kN7HIWLZzELKZdSoRQ3KKQdBCqiq9jJUZ6GC0Yu+M18zuVDF/BvTvWsKRznOb2m6t+Dg9P4vV5Z/hoew+cw6yWeWR5nDWrZykP4UQC02jMCK/PRSieoF4u0b7s7m10c9Ue7lT/0+vzk+x0rTvVOby7QnoK2zLRPb55ChS1cpl6pUysZfaUaxkGf/p0EqNe4/t7s+TNaV1ix+aebijVHC5epTfsGHWcWhHp2DNcK3BFue1y5oZyJ0ogBo6Fnnzr9U/fLlzdXlOiPkQlB6qOXUxj1Qbwti6nMdGHwNVR1BKdbhI2TSFRAxFQVMxpJ7vqwDH8XWsBaPdXKRsqX/31OJbw0uqrEfLU6K/GAMgafv7i26dB96M5deIBnVhzM6cOHmOi5uPCuKtZnGl4yQxJ4l549sktHDl6kZ/tGUERMJqXC4Yddy1x6GlP8oPXh3FsgaX5+cEJizcv7iZbE3zg/hYunjrPoct1wEtLWLBr53peffUwu/sEu9b1cO+Gdlal8vzicJq/ezmFELMtZr8maY37yMRDjI2mmCoYfOh9DzDYP8ix/hKXh0ooxhFG0zaBM31Mpks8vsxH1Qrx5msHuTRRR/V4yefyPLktwcvHS/MsxO1y1q0W2TaN9DDKNKdO8YWxy1mEqs9oM+vRVuxyBmkZqKE4jlFzxf0dG0/Lspk26u9TRXguIvEYf/rhdeiemzPmKeSLZHMV2jtdmsD42BSn+9JsTMJD962dd21zdy+O4yxwW4u3dZCfnKBj+Yo7GoK7GlfUHiLJ5G3r+F5Bx4pVVAr5eUPNjWp1RortaqpdfmqSYDSO1z/7d/OpSUq5HIFwmER7x8x7zacmcWyLYCwx73qAF355hP6xMp969waSze6aC4YCdIRtWuLXf08PPrCe1UsnaG5vu6v39Z0E1ReaN1ClRVuRUmJaBgiF+vh5vG0rsYtTSLOB4o9AteAOe9umq/CjewGfO2RXK2EbVTzNvaiah6BSJ+qV/PS4QD0+iCJUNjYXOD3lxVF9CKHwvb1FQCJUjYiSp6WjneELFzh7KctEzQd4cVQvB4ck4OPZjTGWLuviv3/5VdL5g5wbq4EnOK+z2hE0eNfOdn6xt0qmVKSuRjg6rtI3Poimj7Chx0dPe5gXX3yTVF1H2gYPbFtBvVLlH345Sjwc55lntjM2OMyx/iL/8OsphJidj/JpoDkGj9/bTd/AFIFwiOVLW7nv3rV8+3uvUbcU9uw+Rl16OXbsPEjJfct9eAMBjp0eJHgpxeWsZM+ekyxJaBTKdYZK82OG06jiaVtOdegkmj82+wshsEuZmTxCizRhZEZB2Ci6+xx2rQiKih5rw2nUUII+PE13h1L023c6uEto6Wi/qS9yo1bl67+4xNd/fm7G1vD8QJ7heoTujviCAKx7vIs+r9fvv6E+8K2iUasSabo9jmw5nyM7MTZvUjkQjiww57BNg3hr+zxbToBauUi0qXmeZWoxm6a5uwd/OMwD62c3ddWq8MyjG9mxbuFEtXQsFF9wgdGAGoyjhZtQg9eXI1J076yD1+85HLOOVXYly9Rg3E2gEh1u8C1nEEJBi7Vh18s4DbdlLE1XocCuuXJjdqWAnuxGj7ai6D58dokvfPQ+3rWjBUsLgarzvod7+fB7dxCtD+LH/dyFJ4AQgvfdm2DbpqWcOniEVZs3cvhylQbzh0WzdoB/+t4+fnN8io6ETiIgeHJTmG2d86uCPp9OJBri40/08rlnepGWSW/UQlF1TLz4vB6k6mWgoCMdm4GJEmcOHGJ5q48PbFJI+CTHjvezcu0KmkLKAjrNL4/kMG2BJxjia6/nuFCM8urrJ8lnsnzs/Tvoak/Q0dnMB97/ED/ck2J5TxNrV3bw5KObaY97uGdllBVdYeqmYPPmVQT1+a9f9YcxpoaRZh0hHdRg1LVmrWRRg7F5AxxCVVGDMTwtS1A8fqRju3J4QmDmxu+Yr/a7gEg8hj94cxJlv3j9PD84UOTEiT4ABoenGKoG0f1BmlvmFxsUVV3UdlgIV5LsbphwzP97CuFEkka1duOL58BxHFJDg6SGZluymq4vUPdp1KpEkskFhlj51ASJtg4qhfl0MMexae3tRdV1inO07R3HJr7I9QCFskHB8FCrzXYqg6Egf/jxXbznmevPtgkhbnr//F2HlBKr5B5ihRAongBC96BofuxqHqdWdGlPlQJ2dTrGVgszlAoAadRQ/SH8XesR03q8T21t4gsf30lYM7G1II+vC/LBDzzC/b02cbXs0hY1HaF5WNfi8C8+/QRvvvw6y9avp2D7GasuHND/+f4JvvL9g4SjYdqbAqxtEbx3axBdznbAdUWSTMRZ3eHj3/3hLtr9NSJag85mH3lDQ1XA7/fTNyVA0RGOyaH9J3GMCs+uhQ883MPzP3uNlq5OlnSEF8TcM2mdM+dHicbj7Lns8MJJk1OXixzcfYh3Pbae5x5ZQdEQPPvsLsbKOjVLYfXSJLt2bWL90gTrV7bwzLYkw+M5tty7kfbEwvcpzQZmdgRF96EGQtj18vRwuIYWaZ43b6H6Q+jxDvT4rMygEohgZMcQ+t11zP2drAzfCjw+P5uXBFBVMTNU9r4nVpNK5Vi+ask1H1ctFvAFQ2/pdHO0qZlCeuq2WmNGrUqstZ3x/ov4gqFFBeMBIslm8pMT+IJBchPj+EIh/KEwAuHy8CKzfzscTzA1PIRRq7J6aTM77nE3rf/4j0f5h+8fxrAX6g2rvpDr7hO49fdwBWZ+wq1ohxJ3Q5/1HQunVkINJbBKGbRwcponncfXuhy7VkTx+LDrJTxN3TiNGvhCCM2DVUyj+EPYlRy+9hWuAsV01aOGn5deOUGmZAJucLjQP0F8MsfH338v9YbJV3+Tmdn4suk87U0BJgo2r//oJHgWrhshFAZLPjq9BR7fuY5ctkAkHmd0dIojo7Oc+V+dMXj5RD+PrgmgagrSrPKJd+8gPZXhy69k+PaeHCAQqsb9S+G+bTuo5nPUGwa67hDWVc4Ml/nLr7xBwQ5wNbX8ue1RfD6Nw6fG2Lm8hVzJwcDD5u3rObD3KMcv1RmcqOA/OUFH0s+qzRs59MY+KqUS0aYmRD5HIujne78a4XD/fipi/nsVmgdvS+/8z6hRcWkrlfwMHxumhfq9AYypQbRYK6ovRCM1CJaB4vFjZEdQPUHUSPP/EknGjbBmaRLLTtPd5SaK925fTdB/mWVL26/5GLNRx7Gdt9zG2R+OuAnrLUpd2qaBLxikUauRS00Sv8ZwXCTZRCE9hS8YJjM26ibMzS14A0GyE2Oo6vxtVyCYHBrAHwzPqyR7/QFyE2PEWhfesw8/t4VKqUKi+fbUfs6eHWTP8TGe3NlL75I70zN+J8N1l0tgl9JokRa0cMI1yGnuwa6XUAIx7GoBNRiZKeio/ghWcWqOdq90q8rZETwJ9/M5ciHLeLpMyfaBCmcGCjQnz+PVVf71Z+/j7765l1TDXcdThQap4SHa2pv4m6+/SdpYGOsA8qaPmtngIw/EWbZmFXtfO8DG9Ut540SawvQs82DJy3/6+jGWNeskzg1SMRXuXxPm/p3r+ftvvsmxMT9Hf3ABRffT4qvx2Y9s4cLp8zR393B5JIMmLFrbW/mbbx5wu2TK/P18TaTIli0rOXHsPO0xlZ5mjYOnp9jxsac4e/QERwYaTBQs+NVx+iZNPvtkJ4GAh32/eYPWlijlfIaOji4Gh1L8X1/eTdmZrykM4GmeH3OvSFFaxfRVP59C8UcwUgNoobg7SCcEVm4cxRvALuddDrgngOK985jxe58MCyF477vumfezRDJOInntimUxk0bzeBntu0Cyo/MtHdy4uqqQnRhDIFB1fZ4SxNWIT/PVOlaspJTNXDMZ1jwe4m3tZCfGSLR1zOhbzhWBvwLd67umUsZU49qtN2mbN8WZk47tVkAVHTU0e/+FoqL4QjhGHdX/+5sMg3BtQL3uvRRCzFTOr1ApnEYVx6giPG6QUv0R8LuKFI5tQaOKGojOqG4IVePApQZOozLTok8morQ2hem/cJmarfD+7UleOZahbPs4POIQb6qTqvspOQtP1nFPg21LPNRNiWX4MBsNsuNjfO/Xl12XoznBUygqYb9CT2eMI+fSBLwamYlxRsZygDbvYFM3LDJTOX782mXKMoDXqfJv/vBBqs4QPzxYWnRzcByJLxBgVYtg8/IY+arDoVNj/OaXu1mzbilPrpcM5yQHhhQUp8GLvzpO/4QkMDTFR57roDo0xLL1G9m2vsavz8xW0GbWoaqDoiJNY/Z+6j7synwjGKdRdav31SISl16hxDsQqorwRFGDMZxcFaF6MKaG8DT3/C+fEG/auIxNG2eVIRRVZeOmFdd9THZiHI/PT25ygralb50Wrj8UZm40qxYL1CtlHNu5roqD7vWRGh4i1txCo3Z918xoUzO5iXES7R3kJl1zjWtxguNt7YvG4+txiKuVGpVqg5sh5Zw5c5mJdIlHd62fKe4MjuUZLnsZGc//XifDQvdil9zB4yu4Uki4Ei+llNjFKZhWuhWax60MOzZWMY20Giiaxz3oTifIg0WdS2MZFF8IRYVEIkI46Kc5YbHn9UPcuzrOhZEyF7I6U0aA0/1ZLFuSscILY51tcP8yDa/qMJKq09Sc5OKxI1wYrbLnGwdmpMpm3pMnyLI2Qa1ao9BQUcwawxf7SBUMtwM4XVm1HEEmneXcmMGLJ49gKEGiSZOdOzew9/w+LLGw42JLtwvu9yrsWhejo6udvoEUP//Zq7QlQzy0IU46W+WXp6qYwserh8fRNcH5UcnnOgP4PT4adYOHdm1g/7fPonhm9wC7nHNzBX8YWa+4987jQw24HTnFP8dO2rZwrAaykkcgsGoF1GAMNZRwCxZ+l8qmBqIYmWH0WPsdexb83ifDtwNFUajkc/iDIeqV8m91itmxHWLNLTe0JRVC0NzdQzmbJRC+cYvWHwpPJ8K3/l6uqE1crUcMYGbHXI3AWglP0+KJtDVNeLcrBTyty7CKU8hiGsUfdmkSHr/Lxfw9bTWb+Qk3CKAgfEEco4a0rZn3a5Wz7unW43Nb743KgudwzDp6pBmrlF7AQXZqRYTHR2NqAG/zEgZH06xauxQxmqcnrLF8/UqOnU9TLkPZ9vHjw2WuVJHBTQ5jWpW8FWBpi5d1K1tJtHXwnR/t5+ixi6zfsIKNtRHSJYcLVy1LXZF0dLZwYTCPI0yqpmCqaPHcxgCVaoPX+t0N5uiYxpGRDKqlIT1e6qqXv//2QaqWwmJDmmG1xqvnJT8+cIR/99kdlAslXn7zIn/2hSfpO36ClrYWxusVWiIq4OAoXg4MunJCGXz8l68fR1NguHKc/okazKGC2OUcati9lxiurqWRHsTT1DuPa2hXC25ANuoouteVvIu300gNIMoulcJp1DBzo2jB+DSnsGdRGab/P24Mo1pDCGXRg9FbCcuyCEbjlLKZG17bvmwFuYlxdO+NdehjrW1kx8fQbpJnfbNwHIf/+fU3qDo6/9vHNVraF9L3KqUyX/nBYZJhjVxFkjICFDKvs23rGnqXtPP4rjUs6Rhl1areRf7C7z7scg7HMnHMGloghrQb8/TCnXoZ6diogajrEqh7kfZ8qzi7knMrlovEXLuccRUm0kN4WpYykbeoN0w6lvRw+ZW93PfAFgzzHBeyNkIovHEJrmalBqhgSBWvYrJ1dTtNXd2cON7HT146xvvftZW28XP0BiO8caGCVOavt2Q8SDAYQDplSqZOsS5Z3e5j85ooP9kzQVX6yRo+vvKbLIphYWsuTe4XR7K8eTJDVSwsnqlOg7Kl81++cYont8RZvnYV3/neq9y3tZfOZj+OZeMJBFCkhVctYzjQn59e216dL7+SQZgVVnQE0ZSxmaT8CqS0USPNGOMX8HasppG67A4oa/rM/ZWOjZWfwLEMtFgbZm4MX+tyGqnLWIUUSiiBovuximnUUAIjM4K3ZZnbPf1fJRkeGhzn1MVJHtqxnHA0vOD3e/adQdcUdmyfr6RgGQaKql6X7rBv/1mqNYPHHtk049SmebxUS4Vbch66G4g2t5AaGsR3E9y8QDhy04m6PxRewCcuZjNYRgOkvG3XPSklnljL9aVNHBs1GEM6FmZ6CMe28LUtd0+DunfmpP77ClcbUUPaJrJewpPsnmkJWaUMSOkG3FAcp1FDDTdhlzLYTHOGw00IVXe/8L7gnMfZSNwhRlnOoye7MHNjHDTiTP5gH4kA9Hat5sy+PXQkvAyVF399a1slH3vfw/z0Z7vZsKyLwwdO0dyWYijd4Iz04/ONsGFZgnzVYfTgFMmA264TQiFn+vmv/3zYDbaKnyPnM6zuiREP6QQDHuTFAsKsgTfEjh7BE4/cyz9+7whpw0/aXLjGpWPT5q/ygUfdKuLfvjDCV58/i+MICiT48YuHqVXqHO47zra1bUSjGo4xwcq4iVcD3eejbkou2xqGGppOkN2NxDHqOPWiWwkqTblal7aDKe0Zx6SrX4vii2DVy0hHA0XFmLyEnuzGqWRdTqHj4G1ZNn29My3DtDA+/S6iUa/z6p7zLO1KLKrPPnB5lPOXMzx03/IZeUqYduYyjetyfYeHJjh6Zoxd25eSbHK7I11r1pKbHMd3B5Sr20EkkWTiUj+a10ujVlswrDYXiqLc9LCzEGLBtY5tMzUyBFLS0rv0tjoIo4PDNIKd6JU04ejisdMyTSqWjrdus3N9EwcOX+R4ppPCwSE+v6Qdj8/LmrVvXfX97YZ0TEAiALOYwtu8BLtamPm9Vc4hNB27XsaT6ERaJmowilnKgGWghZtQfGFXaWKa1uI0KjiNGlI6OGYdMz+Jv3s9Zm6UsXqIb/1mhE3dU8TbWkkNDuC1q6iOxFYWfg90u8yffmIb589eQqgaZ88OEBpOcWG8xuVGkudfOc3j9/YSCAU4fvEUiZhgNCcxhDvT9L3dGSCNovs5PlintUnQFlXp6W3He2CCarmM9ARI6A3++OP38Pq+C+wbgJr0UzMW3q+IWmPHqgAPPrSFf/jWm+w+V+Hc0B7GqhFKZ9IkA2A5kpBq8uhj9+DTc+hmgc64gqZ7qVQbZKoKaS1Kf95N+q8sbauQ4soPrMIktmnRyAy7dLRybr63gJSuBbNQcKpFNH+YRmoAaduooQRmdgyhe9FjbSjeAIqmz/uM7gS/MwN0B0+NcXBQcvr86ILfVUslXj6S5ZcHRudpNJYLRf7yn/fxlW/vXvQ5K6UKr715mlcODPD6hTr59GxlwOPzMZmp0ajXmRy4xMTl/jvSf7xZ1EpFWnp6Z1aSUa+RHhlmcvDydR9nGQbFm6hszIVtmkQSTTi2c+OLcSvEV/4D3IlbRaWRuoweufahQYs049QrqAGX9yM0D2ZhCsX7+50EX4EQCnqsBVQNPdqGVUrPVIUVjw/HrKEnOrEbFaRlYBVTSMfCqZVwzDr1iX7Ana69cvqVjoN0HKxCGm9TD2BjF1MovjBOrUQipFCsOrz04l6WbdyE3y6zOmm5skBXYapocfzYReqmpKu3g3hrC5t3bCYe0hCKQlNLAhOV5/eN8+imJB9+chUf3h6gyVdHcRq0RjVXlxDoaAqwft0yfvbGEN9/M83OJQr/5lNbiKhVSjWbkcHxae75LKR0aPZUUZ0GHcEGX/zkg0wOj2BWS6xptsmbfoq2a6F6ckKjrxTifCFErlgnmy+zqVvnmV3LeHhHL/euTfLxD97PZ5/ooDc8XwZRGjXUYNwdVIy0oPnCqLFmpGksGAAFt40qGxX0ph70eAdCqHjbV2JODWE3qu4hTgichtsy18LJBQMgv8vo6xtl32WHN4+NLPr7PcfG2HfZ5tyF+TH5xy8c4j9/5QBjI5OLPu7IkQv8+o0zHB0VnL0wPvNzIQRVQ1CsGKRHR8hOjN1yTLtdeAJ+kh2dVKfVfdIjw2THR2fUfq4FV63Huu41c+HYNh6fH93rva39RErJT3/Th6c4zIceX4b/GvzqaCLOn31kPZ/78Hb6xipMyDaWBYs8sPn3lxIxF2oo6Vq6x9pQAxGcenmGegbTRYZoq6t6VCviWA23mlwtILwB6hMXcYwq6hWuKuA0aghVxamX3JZ9MI6ZH0c6DorHT8AqUKwYHDhyGdXjIZ4Is6rJIagslIA1pc7xUwNcGs3R3pYkFPKzZec2utpdelYoFCDZ1saLr5wiGQ/wifdu4X3bQ2xut5FS0hS08epuzAr7JOs3LKNsafzXfzqIKgT//jNb2dopMRwYGZ6kVF24RkNKjbBSRUrJHzzSTXezl6ELF9nY7cEUXsZrrsHQWMXLySkvZzM+iraX1MQUwqrzB4928+jOFWxbGeVD79nOx57o5YnVixQdhUAJRBGaB6Eo+HvW4tQqrqW9b/7wvFA1hDeA4guhx1oBBW/LEhRvADM3hpQOaiiOWXBji+INokWaZj6jO8HvTGX4wXt6SfZNsmn9wgpFIBzmPTtb0DQFIQSObfPr104SDmiowkFVFj99Hz4xwKvnDJY2B9m8Nkm8efaEsmffaX511mLbUJYHt3Tg2M6MLe7dQL1SoVoq4PH5CcVm+bORZBO5yQn06S+uZZr4w2Fq5WuU9aaRn0oRbXIHN67mIV8L8dY2ipk0ifbbDJBCuJO5gkUJ7FJKl+Cuu64/UkqXj6l70KK/3Yr72wkt3uHKeAVj81pCLgSgYIxfdLUcbRNF87onXSGmhcXrCN03M2gArv2yGm5CUxQaE/2owQRCUbGKUzi2yaHzfqRQ8XlDDI+k0CNJPv6ujXz5u/sYLgGOycpYg1xFkm6Ep6kTIc7/wx5Qvew79yZp048QCt96PYWQEqmHOXIhh1Eu8sAjOygVDlIwPTz75Ga+/sMD9Ofg1TMV9p/bT1XEiXqqmI0GU6kMthScz+ic353nalpEh7/OH3/yAV7bfZo958u8secsExN1HunuxCGPlA7doQbZqqAq3ccKofDSaRPMGvGQTi6TwTYbtC9dzu5X3iQSnP83HLOOdEwaU0PoMVeSUTo21Fz+mbbIYc7MjoKiYhemUOLtCN3rtuf8IfREB7WRM677EWBkRlADUdTfk6owwKpV3TxeuEhP5+ISlo9s76FjIM36tS496tSpS4xOFpGOhSpsxCJxN5ua4qcH8/gcyRObvWzbPNumLxeLfOXnl/ArBp9/bgX+UATjBtzcW0V2fBSEINE2P+b5AkFyE2PE5/w8GEtQr1w77uYmJwgnkuQmJ2jq7LrmdXOheTz4giFX2WCRA9jNQFUgGI1e003VqNfQvT5CUffAvWF5E8g0T+7act1Zmd8nCEVFDUSQRhU9On/QUUqJ4g9jTF7CatRQNQ0J4I8gHQtpNsBxEJoXKzeOnnQ/W8UfxsyN421dTm3oNGogjBJIYhVTmPlJRi2DKQccM8iZC6PUaiYf/eCj7Nl3lpdPuwlxq14k5IX+gp+XzxhAmDPP9+FI2HPxTQqGBoqPo6Nw4iv7cTwxPNT59StHePjBTYRDEwyPX+ZPPvkYR4738cLRKmMVH3/x5d1UHB+65iEgKqQm09QbNhXHzzffLHB1qielw8ce7cbr9/I/fnyJA6fGUWyDNStacBQdkETUGn6deQ605zMezv1yGNQAw8MpQrrN8s3bOLrvMFIKpDa/wGUVUji2hVNMuR3RUsYdRvb50ULxBQPzTr2MVZhECyWwayVX4ac4hZQOnkQnjYl+V73HH8EqZZG2Mc8E5U7wO5MMt7Y10dp2bR7ePdtWzfz/6NAYb16ySWol/vd/8fA1b9SGNR0UK4NsXbeazq75X5izfZPYJYeov5lQPHFHwQtmKQmhWByPz0+tVCTR1kFuwq2M2JaFdBx34G2Oe1wgHKFaKhKOX39UQghBKZfF61+YlJpGA033zBwUrlBGGrUaRq3GVLlEa+/Sm3ofp05d4tUjY3zyoV5WrtrK//tLh645PGflJxAeP2Z+HG/zEtdtLbb4xmrmxt1BOn8ExfP7UVm7AjHtFGdXCy5PVSiovjDSNrEqeTzJThqpAVRfENUfwUgPuZXiah5F9SCLUzi1Enajgob7HVB0H04ljxQCNRgF6SAtA2/rMuoTl/A09VCf6MfyN/GtN4vEPA0y5WPUqgYfuidMaqrOE089xOTQIH/3/ADS69JtHK+7gWas2TaXrsIjG2KcGywxUvYyeqZGR8tZuruaObpnlL17TpJPZ5FKM6geqnhQzRJf/Mw9jAxP8rXXc8C1W8/ZusqRQ6cZm8hhihCvnnc3ibMvjqMhadWy/OHHnmTv7sO8fNacmU6+f4nC/Ts28Y8/PkWm7LB9x1ZOHDrOb45nqNsanng7dsUd2mB6WE4NhLHLaZy6q4ohdB01EMMqZ8CRKF4/ijfoVu+jrW5bTkxbhpsNEKCGE66gf7TNpf6UM2jhZszsqGvXfBcMGN4J0D0eHtp1bbOLzu5WOrtn4+abx8cZr/n5zMMdfPA93YtS0+LNTTyydpyQP8KOHfMpbecujtIo50lGFRIdndQr5TuSs2zUalQKuRmN9Vq5jC8UplGpzFRlzUYdj89PIBIlEJmdWYi1tFIrl69bWNB0D8XMFMoiSb/jODiWhebxzIu5AJVCHkUR2JZ5U0pCxXyR77xwkq4WP88+tY0vfvYxkHLR+3vx4hDf/OUlmrx1Pv+xhwiGg6xbt4R165YsuPbY8T5+fXCUd93fw/r1Nxf/f5eg+kJIy8QqpkDiVicVFbuSc90mNQ9C1fA097r81USH23L3BRCVgkuLmNNJc2oFtFCcRuoSnqYuN36XMnhblmJkRvBEW2cGnV8fbEJxNJxfHmFgrMxTa6IU01M88a6HKOUy/GLfKBemmx5S8yNwY+6VXr1QVDb2+PHqDvuHPOwfVfDsO8l9967F5xnm9TdPMjGRRbH9OKqPCmFQ4fGNPu69Zwf/4+t7yVnXliwVQuHkuVECXgVUjVMp16DpeLqElJKwqPDueztpa43zt985RN3rfg+bPHU+/5EtvLz7PKeHS3zqD+5n6EI/py8XGawEkbbL3XWMqtvFFLgGGboPIzuConmRRhVPsge7NIXQvOC41V4pJXajghqMY9XKrlnKNJ3Qk+iYowvvUmBQNLAkZm5sRuXjTnBT2Z0Q4l1CiPNCiD4hxP9jkd//GyHEGSHECSHEr4UQbysrv2tJF89u8vPsriUoinLNZDiRjPOep7csSIQBOtuTtMR9bNywZLqtdWcJmmU0SLR1zIixB2MxchPjeAMBtyU3MU5qeHDRCnAgHLmh3FCyo5NEW8eC4FrO56gWi0wND5EeGaaQnqKYcReYbblV56ulfq5GMV/kq9/dy8svH2B0LEPaCDCVmU4mrrPxS8eeXrgKUl6fiiEUxa0uOzffcrwZvBPWrpQSu1rArkw7l5Vz2LUSVimLEIJG6rLrLlevYhVTKN4gTrWAHm5CC0TQw+5BSJ/DrZKO7eoyBmMgp9uCpuE62IXiWKU0eiiBY9SwCpPkqgqHhyXdSY2NW9bTGlU5fvg0R06N4OjX0XluVIh7TR64by0ru9xTv+Lx86P9Ob73xhhSwrLOMH/2x8+wMjG7cViKnz0HLnKyb/E2t5SSpF5Bl3XMepWNG1dy3+YusE12LROsSroKJc/dE+PTH7qPX/zkV9yzYwOPrJ1NqmumTXoqiy0FA2mb/ksjvHxoEifSjTSNmfukhpuxMuOY2QnArb5Ly0CaDVdZoprDadRRw0lX0o5pVYliCuHxInS/a58dioN0UHQfWqQJ6Zho4STSqOFU8yAtrOLUIu/29vBOWLu3gqfu7+XpDT6Wrui55oyGEILHHt60IBEGiIZDJOIhtm9ZiqIodzy4XC3kSbR1YBpuVc4fCtGoVBCKQimXJTM2SnpkZJ5W+xVoHs88k6LFEE4kSLR1LDpvMTU8SCmXJTU8SCE9xdTw0LzfB2MJLHMhZWkuXvrVUb72vTcZuTzIREVlPOOuTUVRrnl/VaEgLZOJouD8xYWUwrkoleqUZJBi+db0lm+Ed8q6dYwaZn4cxR/FsS2k1cBID6IGY5iFqRkDByM37hoa5SdQ/GFUTwBPUzeCaTWfK1A0l1sciCEt053lmOasKv6Qqw0vBJovhF3KYDVqHBl2qT/bt69m65YVHNh7lL7+cUay13ZylLaJNKpsXdPC/fcsBdNdv3sH4Gs/O8VIPUTCJ/nAc/fx7Nb5Q+cXhkvsOXCekrn4nu6nRlR1P+/WlggPP7aDJr3GsrjBQytVhGOxpsnm337hYQYHJ0hPZfjCH9yDMNwOjeVAeipLw7BJN7xc6h/lwLkMQ0YSp1FF9YdxDNfhzyxmsMo5pFFz9zejjkTiGI0ZNR9pmQhvALtacIt1jQqOUUMomutfoOpuccy20MJNSMdCj7Zg16vIRgWnUUEIdYaqdie4YWVYCKECfw08BYwAB4UQP5VSnplz2VFgu5SyKoT4E+A/Ax+741c3jVq1ynd+doxExMP7nr2+oPj0a+a+e9fd0d987ultd/T4K8hOjAG4ElUTY2iah1q5jD8UwtPmbuyVQoFAJEK2Un5LJJlsy6KSzxGKxTFqdXzT9puBcIRqsbCo496895AtcnnKYHDSpjmi8PnHltG77MauL55kF2ZxCtUfmifuLR17QRKtBKJgW3d1mO6dsHYBjMl+1JAbOOsTF8F2kI6FXS8gFA01lECPNGPmJhCa5krOzBUeX8S4ZK7bn7Qtl34SbQbHBttCDSURQiCLKRRvCMdqoGo6R0YF6vOvM15SGa0awOKalwABqvzxx9Zz+OQgf/v1NynVHNqCKuM1H0XbXbtBWSedKVCq9ZGvznIghaqxu89iSdQiqFhUnNn3syxu0BmyePTJB9h/8BwnLloU0imy6Sw+6jx8/2Yu9I1wIVMkO5XmbH6SlSvaGb40QK1YwItGAy/HxzWOjWawKxXKZowLmSIWAZypIZTpw6tQVBqTfSjBCHq83aWaxDqwK64shuILu1rZRh27lIErWqO+EELRXL3hWNK1yi5lEIqG06iieAPIRg1bZFC9rh60ot29jsY7Ye3++tXjXBqr8AfPrCV+E+31Zcu6WHYHM1krV3Xzb67R+r8VVIsF6tXKTMxVVI1iJk0k2TQjYVZITxGIRKiXSzd4ttuElFhGg1rFpQp55hRTYs0tN6w6A1waqzCWyjOQFTy3NcyaNTeu3i5b0cUff1jn0nCaDetmc0zHthFXFYYe3LWeVUvGaOm8ezzid8K6BbAKU9hGDT3RQX307HQlWAcJRnoIoap4m5e4Zg+KCkpwXuKreHwLOpRz3SWlZc7Mfkij6iZvgRiKx4dVTKGGm7FLbtGprob4zg/3Eg15OTKuIVQFuLYayXObA3R3NvOtn59Cah7aIwqZWgNTeJmsuyFqqtggODTEcKoMzFINLud1CtUCTQGYmHPGCSp1HlgbozUeob2rjf/2z4cIe5KMX75Epmzz4JY4G9cv5ejFvdTrklP7DxHSTLBNLp7tI+F3yNiQt3x89dUsdrWGUHW+s7eIY+oulcEy3DjocfXYkTbe9pVYxSlUfwS7nEMgUDy+GaqgVUzhVAuo05runualbkHI5xqCKB4fjmW4ibbmQRr1aRdW6X62Y+enmYZ3Pv52M89wL9AnpbwkpTSAbwPvn3uBlPI3Usorqfk+4OYIVDeJaqXGaFEwkr67J9jfBhzbIZJsxuP1EQhHUTSVarEw75pkZxdCUehcuRpf8O66sYVicaxGg7alyxG6hqqr84JwIBK9YdV5ybIuPvFoO3E/BDyCJctndVSvHqq7GnqkGTUYc7ms9TJWKYNTLS4Q2FZ031uhKvG2r12nUQWh4dQKOGYd1RtE8QVRw0n0SAve1mVIs+628hQFLdyEUytjFaewimmcehkzN0599BxGZgS7ml/wN1R/2D0118sut0FRpnUzQfGGXA7n9L0Vuo9Dk2FGq9f+zH2yhk/WcKQgk85Ra1hMGUHuX5/ki598gI7A7EBIxfHx/aMO33izTLoxf/No9tX53Ed28tD6+YnUhmVx7r13Pfv3nuTCcIlMXePcUJFjgyZ1Nczff/cQLx5IIS2TVb1N7HjsYVRNpW9gimff/SBPbgy6fF+YkTGzK1l3bdUrqOE4YlozFEVDCyZw6hVXUs0XBOmg+qMIoc7cF8XjVnvnbnhOvYRdL2FODWFMDSJ0L0Lz4DTcdYyiIh3XuQ7bdIfn7lDeZw7e9rU7nqkyVlYpFhdK/b2TYZkmoVgcVdNJtHVgmyaBcGSe22a0yTVHaVu2Yh4t7W7B4w8QTiTx+X3oumeefvHNVJ0BPv7cOjYtjeAVBm3tLQQjNxcfO7taeej+9YyMTXH2zGXKxRJ/+ZU3+Oq3X593nRCC1q7Ou12AedvXLYDdcA85Vn4CzR9BC8QQqoYaiOBtXY7w+KY1hE2EJ4A0Deyauy9ZxTR2JU8jdZn6RD9GZuEA6ZXZD1kvT6siZHFq7r6uBhPY5QzqnNmQS9UYR1P+a5tK2QZh4VIUKjWTXL5ImQAhr8IXP/kAD62dP4uwe9DL1/fWOTGx8PnevbOdz39oK0pj9qDXFVd5YOdaJiezvLn/IrYa4ORgjcMXcuAL88vDGf7+2wcoE2Zpd5yuJV2s2rCaXNmks7udz39wE1rDLSDYtSJC8+I0yjhGDadWBMdGT3RgV/IuVUzzIG0Lq5hCKCpC1dyfe4Pz9nkt0oIWbZkpjjmNCtI0MDLDGKkBVx/atlC8QZeypunIRgXVF5qhqAih3JWh5ZvhDHcCw3P+PQLcd53rvwC8eCcv6mokm5P80XuW4/df+zTV1zfM+csZHt25kmD4nWPvm2hrp5TLEm9rxzJNipn0AsrArbQEpZQUplJYhoE/HL4pzlm15JoF1EollmzYeBvvAtasX8Wa9atufOEisEvZGbmwK8na3aZDXANv+9oVmgfh8YJl4m1ZijOdxCmKioOrZal4Q25rzGy4lQpNR1oN1GAMIzeO4vHjaV2GbFQxchPolkvoveKQdmWwU0oHWc0DCkKf/a5cCTTSNrErBVeS5hqOPdIy+dy7l2KYJl/+VYqv7y4A7uPPD5cQe8+AY7OjV3DoUh05R5IsrlUomyrCsTHRyNQ1fvHKCQZTszq/Mb3G6bMZhocmOTzuQdE8IOCVswbgRXUMBJKK40Vogv0nRrBsm/6RPIfHdLqPnWbl0la6L/UzUlFxLJPG+EV3Uly479ttuU13HoRwk99ABKFqONPDiEII1Mi1ZxAA7EYFxRfEE+/ALKSQjSoSiXQchOrSehzHQZqGa/XeqNzNZPhtX7sffHoT+XyBzu7FK4eVUoVX911k9dIkK1bceUX3biGSbKKUzRKbwzcuZqbwBubvC1dLTV4P1WKBSrGIpus3lTwbjTpWo0E5l6V3/abbSjgTTQk++uGHb/lxV/CDX/VRlT6+8IzAQeDcnGjQneJtX7eAO5NhuQYPmj+MY1soqjaT8Kq6H9uoTevfZxHCNd9RQ3FX1rJWdLnAWVfBwMyNAxIt1j4da92YK1Qdq5R2KYHTsR0hEEKd+cztcs6dNVikw3cFu1b5efzhHXzpW3t5vT8A/WVQfWRrDXbvPcOFwQz3LYlyYbRKzpxN/HzU8SoORVNFx8JQg+w5MUng/BS2J4gAdNmgUq7y8sv7ONJfo667B4OTM2dDSVC3ydY1UODo+QxJrYYjFF48ZrCtq8KOTYJHtrbx6zMGIDDSAyj+KLJScPcr28SpFVG8098x6bgUPlUH25rRanbM+ryCw2Kw62V8navd4TujCgLsah7pWGjBJJZto+henEbFpbrcJWHyuzpAJ4T4NLAdeOQ613wR+CJw03qNAK3TwuJSSg4fPk9bS4yuntmgdPDUJBcyKh1NY2zduvKmn3difIqfvXqRzSuT3Lt99U0/7mahqLOVWE3XXdm0O0BucpxYSxuZ0REateqCZPiKSkWspQ1FUchNTtC1ei2FqRSRptuz7rxZXMucQ/GFsEvpaUpA3A1S7zCDjRut3bnrVr2OjNyCx6nuIBe4X3IzMwqqOk1jUBDegGs3GWlCSmdWfNwycOruEIFdytIopl0XpEBkxl5USomVGwOhoEWaFgwnSilxGmWEquMoGk6thBZpcu2vPf7FN2hV5dSFCWzHWRBkxipexs4aPLOhmZ33rWXo628yOa1eFhFl/vSTOzl+7AIrV3Zz/uIIPz/RYP/AHJ1fs86HHmoC6dCxYiWdb7xBX9bmbMaDUFSkbfHcZj9b772XL31rD+O1ANs2L6NrSQflyhmsEcEbZ0qsLcNkGRDuYUNRdYTumXaU01DmHARUXwjpdSWC5tp+3igRBtDDTZjlHPXRc6iBCFp8NilspIfwJDqxUgPoLUuQZXNRRYrfBm5l7d5KzA2GgzOFhYGBMfL5Clu2zMbWC32jHBqSFMrjt5QMSyn5wU/3YzkOH33/zjsaTL4W5lZeb+U9L4Z6pYJj20jbItzaRmEqNW+wT0pJbnIcfygy4wSqCIVgLIbRqKPpb4+r5n3rmijXDDp6evjzz3VeV2v/7cCt5gu3EnevfBelY1MbPefGAem49Adf2DVw0L1IR6L6wjPVSqucRQ3GsTNDNFID2LUiergJxeND2jYg3a6mEK5iRSjulgrmvDbXAjo5rQsfAlXDMRsIy3AP/4tgZKrOseN9FBvzvwuG8PLKWYPesId3PbEZ3xunee3CrFDwe+9rZtmyDg4fOMnmbVv46+8coz8fnL537jUPLFPYsmE9ZqPOqq4yp/uznE7pVKUbJ1dHinz8I4/w+punefW8yereBBt3biY9Nkrs/GWOjmv4I0UujpQBL9JqoAUTqOEkZj6FFoi4kqlzqI9urJRuNy6UcCkSmo6qXf+7oPpCKL4QxuQlJOBJdM3QVaxyBmnbCCFn3tzdNDe6mWR4FJgb6bqmfzYPQogngf8X8IiUsnH1769ASvn3wN8DLNm4+ZaFFvsuDPD8sSqBWh/RRJyPvGsdiWScR+/tpWswNSPzczOolitcvjTCaNlDYqLEvbf6YnAD5d2mNiwGx3Eo57LoHh+5yXHqlQrB2MKEsloqEG9tJzcxRqK9E28gQG5ygnqlTFPn7MdYLZbwhYIoikIxXySdzrNsxc3fu6uRS2eIxmOLBtyr+VfiBl+Iu4i7tnbnrltv+8pbWrd2regmpI0qSiCCHmvFSA2geAI4hms8gmO7bmeO7VY4NQ/qdOC8wmWzyzkc25q2dA65FQnbRvF5Z3R+579mB7tRR9FsNH8ExRugPtE/PRw25SbEijJ7msedMn7zMrT6TN6/PcHrxzPkrfktqN1n81wc3kNH0ouTrTNV91G2dPYevMDIeB5F0xhPV9nRDYlogJeOFYl5baRTpX3pdtKjw1w8epBYPMqHH1jPX39jH2VDkAzCsqU9DJ4/x46lHl44VmLfaYMLlyc5MWIjCTBZ8zJ+PItZTCPtBhIFzAYoKv6utYve/yt8dcUfchPhqzQp7XrZNYa54ghYSLnamN4A3qbFkzzNH3Y/B1XDruTcyea7i7dk7d5OzAX46W/6mSqavHZ4mIe2dbNt60o2rOulUu9jee/Nd7mllIwODHNpooYtNGzTmOF33yyMeg1V01G1t14MqZzPoekeqqUS9VptuqgwfwPOTY67MXdyfCYZllKSmxjHH56tPhuNOkiJx+fHcRz6LgzQ09uO7zomH9dDrVLFcRyC4cXpEw8/uGHm/9+KA8c18JblC7cSdx2z7g7IWiaK7sOT7KIx0Y8UCmZlFC0Ux66XEdJxuz3T8fNK1dLbutx9nitGG47t8lerBbdIEW3FMRfqBwM4loEs51A03ZVjLEzgmA2wDWQwAUbNHcadg8GizvDBLE9tjjI0Webs1Pw9cjCv8I0fHUCaDdY1ezmd0hBCcPpSlslslXzJoa9/lERA8sDmCL85lqJUB6/q0NPRRDAa4/SeN4i3trFheQI1YLPvYhUFm+3r25gcvERLwKLTk+P8aIDA68e5MJBmqhFDURReO1vFzKVwjDqoGrJRwSpl0KLNi1I/3EKL2720SmkU7/w1Li2XlqKGEgihYFcLSMsdKL1WzL0yWC4diVOvIO9yq+NmoslBYKUQYinuov448Mm5FwghtgJ/B7xLSpm6q6/wKvT0tnPPQI6hUT8TFY1ioUIiGae9o5n2jlurzHzr+WOMFwXv2xJi6dJOfvTCYXraI9yz7dqV5V/8+ij9o2U+/tx6Bkcy/GTPBE9sjvPQrg3XfMztoloqUq+U8Xh91CsVYi2tlLIZku2dJK/hGKcoquviNN0CnOtSNzU8RKWQJ1to8O3Xx9m2xM973nUPP/nVGfqzKp+RkuUrb71yffHCIN98dYItXQprlzXx7z66imA4uKh98xU4Rv23IaH2tq9dd2JZwypnkZaJdKAx3u8qF1TzKLofBxM1mEA6Fo2JSy4H1bFnhuQcs4E060hpowVjOEYVp1FFjzTTmBpESpduAQIlEJnhTzmlNHq0BceoupJCZh092oJVSuM4JpoviNOozEuGr6A9obNl80pO92fJ5+f/rmL7KNYqfOYPtnPw0DnGp0roms6vz9QRIsCFI1WkA597OEKypZk9R4f53HNbSU9OcebYKRq1Ouu2rOPN3cc4NHAMW8L/8elt7N13lteOjLKmTWPNxrWUykf4zZAHctAVbvD0fU38cv8Y/ROT6E3d2OUMeswdinOsa+6nM1B0dypZWsY8xyJp1KZF3cdn6CVqIIpZSKE0qq5GtmUibRM1EMWq5HHqVbRQbL570t3F275252LnxhZOnRlkyEgykXEVb3Svlwfvv7b02mLYs+8ML5+uc2+Xl3vuWcnBo5dI52s8+/hG9GvYFl/qH+H51y9x/6ZW1q5s539+9xgRr8MXP/Ponb6tBZBSkhkdQVEVNK8Pj9dHOZe9bkfPHwqTmxyfNyR85fpCeorcxDiqrvPPPzmBIVX+9afv4/iJAV44XuWeoTzvvY1hbSklX/r2AQwUPv7EUlTdQ3vnQlWkuWjUquge71tdIX5HrFu7UkAJRDFzoyi+CI3JS26ny7Fdy3vpIFQVxRPBrrjUCSEU9KaeGRqEXc4ibRs91uLyix0b4QmAZbhaudOHa6GqMxQIu5JHCyVcY45AE9I2EbofRShI256WZ0tilbML6AJ+1WLr5mWoJy9zduqqRFvV6cvCZx5uobu3g/Q3XmXb+m5eP1XnzJQN+DiRqrKrR2fd+mWcOD/OIxtbaAqrDA9PUq8ZBJNt1EzB2dE6FycMPnhfgvb2JC+8cob2kMVT736UYOAc//hqgdcuOqh2gE8+GGVkosirx3MIjw9vsgurNIX0+FA0HcV3Y6qR6o+6ShtzWK52tYAabsLMjKB4/EjLQIu1YuUm3Huqe1G8AXcwPBifHljMoHoDeKLXX+e3ixsmw1JKSwjxr4Ff4JIHvyylPC2E+D+BQ1LKnwL/BQgB35tuvQ5JKd/3Vrxgr8/He5/ZRqVcoZAr0tya5Kv//Ava2uK86+lbq+0mwzqm2WDl6qVMTmY4Pg6Z4tR1k+F0oUG67qFcrqFpCjom9VqNffvPcs+WZTflWX81CukphBBEkvM31nqlTKKtY3oiWqGYTaPpCzeMK9PTmu4h1nLthaKoKqFYnHR2AC8mHo9bUVjSEcZ2ijQ1xW75tQP4fB6Coka5YPHN3Qob2jL8wXuurfphFVMIT2BRz/e7iXfC2hWax+UBo6B4/WjRVtd/vTiF3rwEMz2IQMHIDKF6g+CYqL4QZmFW7smpFVD8EaxKztVkjDTj1Es0UpfdAS5vwBUqj7e7WrhXhgmEcJ2XphM/IQTSaqB4/K7EW8kdIDELkyiad17FdHSqzJe//grDjRiLsSmm6j6+/sMDlMs1ntnRgj8URnOG6exI8v09GaSUeL0+RgdHqIgI584NsvOh7fzq1ZPsueTj5yePI71hkA5PrQkx2tdPviY5NSnIZybRVUGhMRuedFWQTMTRlFFXuzo9hHRsnHoFxRuaGYS7ArtamB7amGMT3KgiAVkvz+NMS8fGqrrVe0X3IUUDx6jNSKi5w54Oii+CkXFNG/REO3Ypu+hB4m7gnbB25+Le7avZcc8qhi6P0NHVym9+c5iBsQIffvd2IrGbl0CLRQPElAxdPZ20tjXznZfOkTV87Eilae9anJucL1bJWgEyuSqKUNAVB02BAwfP0dPdRNt19OevhVq5RK1cItrUMq/CXMnniDQ1uRVhTaNazC/qFOc4Dtkxdy00dXZdk39smwbxtg6y42N4NAG2gyIUOtrjdPVl6Wm//Y097Ie6afKNly5iofHvPx/B41u8ypxOZfiHH5+hO67wqY/suu2/eSO8U9atdEycSg7VE8IzbZphlbMI3YdTL7mVRcA2s64ShDcIcw7Udint0gCyoy7dYXoozMyOYtfLeDvXYKYH8TQvxS7NkVNUlKtkvgRIGxBoiU6ccha7kscxa5i2iRZpmaGrOah890e7GSz5QV18puPF/eP4Do6wfU0zq5e3MDmRZuvGJD/fO8ZEzYvi8ZOdGCNbkZy9nOGxHT10LunhS78YB8cEoSI0DysSKhG/ykD/MANFDyMljZbdu9ECYcR0l0vgEI2FyeRroGg41SKNWgmMaec4VZ1HSXOMuiurdlWSfyWhdSkT7qFBKNq0eo86E2PtagE03f13KY1t1tAiLe5wOa4m/BUZNvUtoFmK34bF8LWwZONm+R9+eHPc+UOHL9I/mufdj64lNGeqdu/uI/zirIMoj/Mf/o/3Uq/VyGXytHe5VbVKqcJr+/tYsyzJ6HieRCy4qMC4lJJjxy/S1hK/boW5UatRyJdomeYwO47DX/7PF8nVNZ65t5UHH9yClJLs+BiKosxI+VwLRr1Go1rDMhpEW1pRFIV8ahLLNAnH41SKhXlctMWQnRibSZqvdlaai1q5hGWYhBOJu+qmdwWTE2l+/tpFNq5sYvs1DhT/8R+PTnOu4Eob5U4w+J/ec1hKeWO9vbsIb/tK2f65v7zp683cuMvfreTwdq3DLk6hziRZEsUbwq7k0GJtmNlRHLOB6guix9owUgPTWs0u91oNRt1AbtTRE51Y5YxbkVJ1hKLcMEhc/bk3Ji/hbV2GkR3Dk+hA2gbvWdWgd1kvo8PD/OTctZO9kFLn/lUBHti1me98/3WW9SRJRnTSRYsDF4pU6zYSQV34kVISVyvkTQ+oswc6x2zwr97TS6VS4+tv5K+7Jt3pZbdiIlT9mu/VpaV4cOqleTxeaZmuuYaU86TpgJkNSgjVPWzUiti1kntvhdt2VTxBhMfnTk9L6VqB3sH6fTvW7q3E3MmJNL/ee4lt69pYs3qWQuU4Dv/nf/8VttD42KPtbNi8luGBEdo6Wmaqu3v3n8G2Ja1NEUYmCzy0c/Wi3NnhoQnyhQobNy6/7msZHRqlvbMNRVWRUvLSz/ey52KF9gj86R8+BcwaG4XjiRvqwl8dM6904XyBII1abd6sx2KoFgsoqka1VLhuzLUti2J6imhzy4zl992Mu1JKfvzCQSxb8uH37rgmHSKXzvKPPzxOd7OXj33wgTv6m3+4qvO3vm7h1uKulA7GRL9LdwolUBTVVUCoFXEsw6VNpC7hbVmGWUhhV/MI1YMn2YmZm8BuVFwTKM3jdobMBggFu1HB09SDMXnJLR5IiRqKX19vfzrHmkl6G1XsesmteE53ntaG0jy8czmVbI6XTtZIm4vHXcVpsCpW52MfeZSjh09z+nKe9z++jlNnLzOatTk7YRPWTPJ2ECEEPmogoS7mH5J2LVN4ZNdavvSdg0wZ11YWkmYNxzSQlgFSokWvbYJjFafcpLdWnJcQu8msgvD45hUt3PtQRAhXaQJFwarkZyTapNFwTZA0j0uraJRRNC9arO22jY2uF3N/ZxzoTl/KcLmgs2U0xeo5yfDS5d0kLpxi9Xr3hP3jl05wfkrw6cdNlq/o4dzFUQ4OOoyPnGbYaiKhZhdNhoUQbN1yY7UEr99PyxyOl6IoqB4/muKlo8WtkJRyWSLJJKVc9obPp3t9FNMuIf9KIHMcm0R7B4XU5HUD7RVEEk1kJ8YIRmLXvW5u9eJuBeTUeIpAMMCbBy5wtC/PJ961mt4l1x9YcYfF7n4y/k6FY7qJq2kbGJOXUYNRt6qoebAbVczMMHpzL04lj3faDUmPNM8mqukht5obbcHKT7gOP7gDBUJRrzm45Rg1d11NV4qvuN/NDVSKN4CRHpyhHHsxSDZFiba20n/h8sx10rFp8TdIVzXkdDL7oYfaCXg1vv+TvZzPejmbrbCmyeLjH3qA8ewRjo0KQmqdD2+PcORcmks5P+KqFq2ie/nKi5dxEAhlNoFp8tZ5fFsLrx2dYrLunX6tIZx6FTWcdCe0rwFF97vOc1eptghNRw3GcGoll8em+1wheCHQ/BG3VTcd7KVtujrZ+QmkZaInu5G1spuATyfhjll3W3pXBfnfFwwMpbmY1QleSs9LhoUQrOzwUqoYrN2wiuPHLvKjgwXu6U7x3ndtw7Ftfn04hY1CWyTHRCNIZ/MIqxbRye3uaeNmRu86e2ZjihACzetFDflojs6aFF0xNrpRUQBA1XSyE2P4Q27MblQqM46gNypggCtJWUhPoXmu3wlUNe2mnu9WUClXKOZL1A2L7/zyIvesivPU41uu+5h4U4J/+8eP/i8Tc3FsFF8I4QlgZkfxtizBqRcBieoPu1KJqndG814LNQHSlUxUNXwdq2mMncfT3IuRGUXRNBR/CLtRwS6l0ZOdi8p5ScfGaVRm5zxqJaTZcKlvc7i1TqOGUy3gbXdzjs6YINbUSqNSI1s3rwj4EFZr2A5UpZtzbF/q56mHt/Hrl/dzcswhb/r5q6/t59/80UMkhiY4nSqSt3UeWeF+zq9edJ1nr/7U37zY4PDFfdTVOR0Nu8GzWyOkslUOj7gvQOh+MBoo/ghOtcD1IabVkeYn8m51dwppVHEU1TXK8ATdDp3uR2jeaX3mNJ5YG2ZhCumY6PE2l24y3bHUcGPzlWLa3e4q/84kw+9+ZCUTqfyCgNrW3sz/7Q8fm/l3a1OAXLlAJOyedjas66FS62fFkq30D6RIxG6s73ir+MOP7KBWrc1UiyOJJNmJsRlnt2I2g6IohGILpVWEEPM0KMG1+ZwaHkL3eucljdlxdw7BFwzNsw7VPJ5rBn+3Mn6RNUub0FXJt188zbreCO9+7trVgQsXhrk8kuXRB1aTy5U4eHKUnVu6aW6ZXwWbmpzi75+/RHPAoiPpw8SDY8/vNHz/p/vJFeo8dX8PS1YsnVGcKBfL/Kd/3IsajF5be/H3BN6WpVQuHkQJhBGaO0yoeINulXO6einrZYQngJEZRWhejPQwiu6jPtGHoupIs+FWI8JNOI0aajh+TW1Fq5RxKxmax239xdrArLsDe43qvDWlx9pcXtv0Z2CoIX765hjtRy9zrtpK0FOnPaZimiaf/+gufv6rYxwcdAdOclNpyrrOqcEa+CMgHc6Nmfzt13ejOBY+vIR0ydo1vUxO5njqvnb2Hh/j5OT8sGMqC1u78YDCmrXLePHVc5g1BS3a4upO4pqM6InF17vTqGAVMwjdA7hWnY7tuhYpus/VIZ6ebnaMOmo4gZkZxagVATETEIXmoZEaQAJ6KIE5NYS3za1eSsfGLmewG1W8zUswsqNIo47Qvaj+m5freqfjnq3L8XoHWb5kfitfCMGnPjorAJBIhGn2TtKSmLYKV1Xe92AXtiMJBnyMThRYtvzuSsk+8fhWVl4aomfZlpmfebw+shNjRBJN1CsVaqUisda2RRPAq6u+/nCE7MQYpmFi1GszdINyPodRd/Xtr46x16sc791/BsuSPLRrPX//lV9imDZ/8oWnUa/B1y0VSuw+eIkNq1ppb0/yyhunaWkKsWXTigXX/uDFEwzkFJ5c58GQGoY1383s2PE+dh8bZ3Ovn/t3bZ5XkT95oo/Wlhgtt0Et+V2CUHXsagmnNIWi+5FmAy3i7s9GZtiljgnFnaWounKTdr3iUsKEoDF5CeEL0UhdQmg+pHTd0bzNi3PHnXp5miZQQY20YObH0WPt03+3aUbJBtwChCfZNc8o4tUhPyM/eJnxRgibCCsTJmOTJf7ow9vJTOX459fdw3+1VGJ8eIQLIyUKjQBCF9hagL//3nE8skGTx8tUTWd5bwtSSkLeDD6fjx8cLM+bk0DVqTN/39WwWb2ik6k9p7CKVYTHh13KInQPVj6Fr3XJou9dSukWDYwaQvfiOBZUcgjNO8c1VaAGYpi5cTzNPS4tol5C1kozNBY1EMHIjuLyVwy3AzfnNduVHHajiuqP4JgNzELKPRjfJRWf35lkuKklSVPLjVuSjz20kccecv//9OnLpHNlHnpgPYqi0NF57RL/+NgUJ89PcP+2JYSjt7ahhaPhBY+5EjirxQK6x0OtVIRFkuG5qJaK1EolHNtG03VizS3kJsdnnktKNwCX87l5yfD1cPbCCAcHJcXyOEFRp+pp5fRAindf5zF7jo0yWPKi2ce5OJBmtOwhM5nh8595Yt51gWCAtpBNS9zHu5/exlO12gJljfFsnUxV4SsvXuJPPhQg2RynmCuw59jIgiDx+4zgyh2YpYwrlVZ2T89Oo+xWjHMTqF4/qi+IbJSRUiJVDU9TN2ZufKalb1fy2EYVNRjHqZVQdJ/7s1oJkEjHxtuy1G1nxVqpjZxFC0QxUoPo8TZkowwstCe/+jCSU1vJ1SyEpnP/Wh+7dq7la995jf0Hzk1rBvsASTSRwO/z8Oef6mH/sQEiAR8rli3juy8c41/9iyc4dPg8Lxwp8t++sgePLtm8Xl/UKEi3y5i2wrpOLxMFi6zh5UJW47986TWKdQ3VF0AadRTdh5jmRyuV/AJVCHArLsIbcDWapy7jSfYgSxlX2ifW6ibCpQxWJY+ieTDLGYQt0RJt2NUCjtlA0b2o/ogrxG9UXa1LRXGHakoZHNNAT7Qj5ZRbbbct1HiH6zj1e5QMa7rOls0Lk7Gr0d3Txp991pX1y6RzHD45zD0bukg2u4WHVddwlTMNgzf2nqe7PcbKW3SeUxSFJSuWzPtZKD5b6Chmpoi1tpOfnLhhZTY1NICiakjHIdnWTiE9NSPHZtbrRJta5hl23AiO4/DK4UksqbJja5XhvETxRUmPj9Patfih4PS5EQ4MOuSLlwmKs+zvq+ARFps3Ll/wfW1L+KkbZdavX8PWLeqCmDuVrZA2A/ziSBpDnOWJRzYxNZEily3ygwMFukMpvvDx3/+Y6+tcNf2ddSXO7OmYIXQfqj+CmXHlkLVQ3B2UCydxprWGZaM8MxRnpAYRwQCyXoGQ2953NW5LrvxXstPVz4000RjP49TL2LUSiuabY9c8Py7MS0wBSwlwtt4BikZ3uMGnPng/u/ecZu+hS9QbFldSNW8gQHtPN/evy9Hc0cmv9lzk45/czndfOMHODb30LOngP//jHr72sqsH/Ny2CJqu4WaYc/6+3UDDJhlWCXngYs6DpQb4m++folYuokXa3KFB6aBHmrFKGZfKt9jwmmO7BRufq61s1ct4El0YmUGUafk5oXsxMiOuC+t4H0LVEJqOovkw85N4m3sQmgctEMVu1HDMmltR90fcIXTp7m96vANjoh+h6eiJzunB8buD35lk+HoYHZnktYOD7NzUMa8C8esDI2TtIEs7R+hZen3ZsH3HhzgxphDwDfPg/Tdv5Ww2GlRKZWLX0PD1BoJkx8du6rmuOCeVclkUVSU/NUk5l0c6klAsTiSZpFIsXHdI7mpsXN9LrdHPiiVdNDfHsJ7fw6b1i+spT46N09LexmP39nBpMM2+U0UqJRMt0UR8kTw+GAryR5/YxaX+Yb7/whEe3t5L21WB+XMf2MKvfnOCghEgHAnxs18e5+S45LFVGquaHB5791b+7oXhhU/+ewR7ur2k+oLY5QxXjB/VUBIrP4FAulXKIDPBxsynZhySrkCoGtJo4CglhOLK0QiPH+olFE/QtYAtTCJUD3Y5gyfe4bb+/WGkUZupjFyBlA52OYviC88bhDDTQyh+1w7zaJ+PYvk4AwUvl05eSYRdubJvvTZJUKnxngeXUKtU6ErGmBgepWB4+M3rpyjm8/xv71/Nz9+4xKWCl//xkwFQtZmBPNko43cq/Nlnd3HuzCW279zM4SMXeP5oBSEUamoUxVN0JXj8kemKTT/BZffMDFXMvcd2rYIWjmMWUpilKfxtK6iNnEEoOmogDIjpSkITtlFBi7XTuHwMT9Qd2PC1rcBID+FpcmOFFmlCVAs4loEWTs7oh8rCJHZpCkXTXd6fP7LAcer3HZZp8sLLJ4iGPTz60KyRz5FTI+y9ZAMjPP3Y9btw/X3DvNFn0Tk2fMvJcHpikkRL8zU5skIo5FMTN2WsoSgqgXCYarlEMTNFrVwmNzGOoqrE29rJpyYXyKld//kU3vdwD44t8QUCPHdvK/WGuWgiXMzl0TweNm1wO5iTKZPD2QAer4lf9y1KJ3v6iS3UqlVeeuU0nW2RBfr4Tzy8Ab84wsnhIB0tUc6dvcx33phiY6vN+lad3va3Vm/+nQDn/8fee0dJclxnvr/IzPK+vTfjPWYwmIEbGMKDAOhJ0Iiilyi32tVSZld6K/NWu9K+lX3Sk5YSjSQ60RM0IEgChHfjMd6299Vd3mdmvD+iurvazfQYmBnUd06f7s7MiozIunHj5o17v1vMY+fT5YQtOZPEBSo0qxQbRfeG1DUVTBBCE5iTgzgbZ3egbWkhChkkKuzKLmQUU0U2ge5wYcbH0H0RRdsYqMEu5lSZZtvE8C/0WlrlXajKXaRSfFTFyZpFhu0Ij/7sIGdGs0wW3FSaaXv6LA5//nluWBvAGo3SUetk8PRZihbsOTbB8dMjfOieFYyOJ/jpcZvv7c8D+RmHhzRLyGKKt9/YxMqVbQz29LP+mg38z//zNKYrTFHzIjwapdioSm4LN5I9sw9X21qYRyVnF3OY6Ul0Twhp2xRjI7ibVkA2ocJQDMdseXtPgFJ8DGdNl2L2sEzMfA5vRwfFqUGktFUlObdf7WhKW3E5G07sXBLhcCMtEys1gbNphaJjS8eWxWaxXFwxxvDo4Ag/+PkxbtvRzaq1XXMUxOleFdtW0zc5xxi++4Z2olNp2rtmFe2+/ad46cg4D9yygo7OWY/BjVs78HtG2bbp3NRiUkpOn+ilvbMJt8fDN390gDNRyUfvLdDWoTy4jzy6m56RDB9+2xYmpzJMxTPs3LFu0fbMUol8OoU/UkOwppZ0bIpQfT2OciyatCW+UJhSIY8/UkPoAjk5XW43t9w0S3/0zncuzm++e88Jfrg/xW1rJzB0jWePTLKuyUlofT3b1jVR27j4VsSpU/18+censEomjREPTc1zrwuGQ7zrnbfM/B8KuAhPxFm1ah23znjqr15jWNoWZi6DnU8gbHDUtSKMWcNTWqbyRBSzcz5n+CNYuQRGePbFx8ql0dy+mQQD28wiSgXQDIqT/TjrurAyiRmOTCh7MYpZdL9aAKdjbacrLemBOlXpZ7oyIGVPsS0ppcYYLQYYj5cW3f43NRerGoroWOi6zsatm/j+j/dTcgSUkeNzqGIF5esr+aUDIs0nP7CJ+PgomViUfC7PN7+/h5G4SSUHj13Mge4o16fP4ahpIzd0HFfTrMfSyqexCzmMYC1magJHuBHio5SmhtA8QQxPCCNQg7RKFCaHkEg0p5dCtA9XXRua4aIY7aeUnFjgsdG9oenwPWwtg5WaLCfvBWe4hYXhfFVZUV4vSCn5+jefIhBwc/+918/RufHJGAcGTUJGhttnpzfXbWkHBrh206wenpqM8a3HjrGqLcBbbp01nFet7uC2yRO0L4MSc3RoHM3QaGis48DB03zv5SluWjkyEyt74kQfjzzdw23bmlm7qpmDp6fYtql9SWM4ORnFH46g6TrBujrMYpG6lrbyuIcINzbNODEuxPkwjc2bZufgjTdvXbwPsTj/8O2jBB0m775nA7uPT9HgLXFNh4/ta9dSV1+zqLFvWxb/8K/PMJksMRbPLzCGNV1n1+072FX+v79vmKCRp66ulltvvjAqvCsVdj6NVchSjI+qECmnZ0b/CKGhGQa6N4ydn405131hVXQjOPuyIM2iKu2uOxCWiZmcUPzCWYkQWjnEzFAVQcs7nCqMKjZTyGOaq1j3hZG2qbycZhHTLIK0EIYHaZkIzYFdzJObGuX5jG/RHVOhG4QMm7ZaFwdOjPG2B2+mr3eIwbRymgjLZsMaOZMDUploJqXkHde66OrsYqTvLImJcZ49MsWB3t2UnKGZuGJplpBmEUdtK8WJfpz17ZjxURyRublAdj6N0ByKMKOUxd2yitLkkKINTcdwlmnqirERZDGDcHtVCJ9VxNW8htLUCIXxXnRvaIaSDkAznGgV6560LVWCOVAuVCWmnUnn3mm/UFwxxvCjTx5lqFjDt358COuJHt55ezcbNqi3txuuW0nA18/a1XO/rPXruxa0MxJNM5Z3MxFNzDGGm5rrFxhyi2HfvhN8f3+Wa/tivO3eawl6Dfx6GpdLJRXZlkUilSdtuSjkSzz6XC9TlpfWhiHauhZ6BuJjowRq60hORgnW1s3Z6gPwhyMzhvCriYDfTUCMEvQHyWaLSDTWr21n06YV5/6gBF0z6GqQXL/9PNcCd962hTvn2ePTccSwsHrdlQ6h6chcHE/bBvKjZ0FzYGcTaKEGrNQkjpoWSpMDC7y26PocA8vOp1Vihr9G0bK1rMHKJGYUpu7ygm0jnF6lfIs5NJd/TullaZXK5YllmTPTg5WapJSexNOyVvH1ltTnzGwMI1A7Sy22iDHc6s3z4EO3MtrbQ894kS9+/UUGEoCmjNmhjIu//8EgQncRceTxOiRDWQ8RPcOulRrZZJxSySSZTnJyAgZSOmZSec4Vvc4kur+W0mS/io/WBM5wI4ViBjszhVUsgOFA84UVabu0sQs5LD2hKNKKBTRdVyWacynsQgbDF0JaNnYph+7yIZBYmSk0bxhZ9uiYqahii3D755RX1lw+NJdPMU/kM6oS06vEeflGwOkjRzkSdcFggsN9T7Kyxcu7H1KVdeuaGvjAbTm83rkJZJGaMHffHp5zLBHPMJw28E5k5hw3HA5uv+X8/Oz5bJbPff84DmHymU/djs/jwidyBHyzMplMpMhIL+lMnpf29/HCWZOS2cvdt29Z0F5sbJRApIapkWHq2tpxuj1zKMlqmluWFV5xqXA4nYScJiGvYsiQQCAY4F1v3X7ezxoOB2GfzQO3nD+MpaOzhf/08fMnYl9NsAsZHJFmRTuZmkSv82Plkip+2CwBQrEeVLDBSCnRfZGZlz4pJcWpYTSnSxm+mqZ2f1KTGME6jGADxakhpSOkVJShhgvdG5pjyKoX9boZz7GVias+aDqOSDPF8bOKb76YQdomzvqu8g7iQkjb4h1vWYPbbeDsS/LP39xDwdSY3rGTupt/e2oShIaDIt21OmeiFrqA6ztsgk4v2VSKTM5mKJVktBjEiieQZgrN41d6s1RAONyYyXGkbaL7lO0hSzmKqQmVmGg4Ff+9Wf6xLWQ+o4pLZeM4m1ZipSbUumaZOBtWkh88ih5qRPeE1EtFIYUwPGCb4HAv4GyehiPchJQ2ZmxEeasDdQucFpcDV4wxfOsNK/nRz09Q1+jhRMyhysWW4XK7uXbb+ZkgAO65dQMbB8foXHFh23LTaGqM0OaboqNJGS8P3DtXcX3+K8+QyMPH7umiua2RW7almIxlaOlYWhll4lO4vItTqbi8XlzepalPLhS2bS/qbVi3rpN162a94jfuLGIsQYJfidVrOvi9rkYMh/PNk6l8gXDUtFKI9oOZRxZSMywHwuGc8SBU8t5amZiqriOtGSO5lBgHXVdbcoEazOTknKo+ujekCnF4g1jp2IzynVPYRDMURQ7KSNfdfih7L6x0DDMdw926Vm1F1bRhpiYpTvQtafBN5QS795zg4KkJYnaQWArCrgJrWjT29uSwNBcecuQtF/fvaqJ7RRv/65+f5Z33raCmNsIr+47w41POsjw6sYt5hNOrKkdJG90TUIaq248RqMdKT1GcHAA0Rc9mSFUsY7wXI9SoQh2aV2Mmx9GDDZixYexirrwVGkJ31mFO9oPQZ8j1QVWc0/01WNm4MoaTE+r/TFwxdxSySLM4N0Z5HiWltEpY2emKSlfHPFi5fh1d+57A4bfpz+iY5twxr1m7vAI93Svb+IRDIxK5OG5Qp9vNqkYnhuFC0zRWr2nnMxVhFc+9cJSf7Yty1+YAN9+yhYnxKQqlfq5Zt7jO1R0OUlOTaPpSIRbishrC86m1puHxefn0h2+d+f+3P34T+jJKN2u6zq99RH3utajCdyXCEWmmGBtFlnJobh92Pq3idnVdeXYF6BWsOjO0i7aFEWlBCKH4iItZhG5gFVLobvdMqNTMfUINqphGIY0eqFfcufMgdGOWq1hoOMJNMzq+MHoGR20LMp/GEWzBTE5gTvShLUXZKDT2HxsB22LviANN08Eqsr0L+sbzRAtuDEro0mZTu5eH7tvGt3+4j4DP4M7bt9B7/Chff2aUhFXBs26WZteLclK20EDz1GAE6ihGB0GAI9SIlUuj+2spjveoCqZCwwg2YOeTaq0SE1j5jMrrmAm9U4nMzvrOGdYdKxNDb1iBnU1gBOsxkxMzv2HWu677wmXDdzq2bq4OsjJxhNMzJ8zvYnHFzKSVq7r4jVVdSCnJZzLn5N09FxwuF10rL77scGtbI5/8wDm8QQI0TRCqiSClZNvWc7+5VzJJJKITON2ec44tk4gjNA1vIEg+kyGbjKPpxrK28o4e7eE7T/Zw+7Ymbq6Ii7Ztm2ef3suBnhxv2dHK5k0rl2UIT8NxHnqhC8G0l/hq8hDr3tCinLi6JwiLcORLKREOF7JM3m5l4jhq2lTxDq8TZ7nqml5B8WUXZsnOhdOtqMPcc1+whBCL8kTq3hBWLoEjUIOVnkToThAC3Rs8JztCHjePvpID/AT0PCE3rGgL8JZdmxj/5kskMxl++UPX89xLx3nu0DiHjw/TEHbyzL5h3M5RPC6D+ze7+fEraYTuVPQ6Za+symJ2Y2YTaA4vxfFelYghdPSQ2i7DUBnjRrhRxVeXChSj/Sr5rZhT26KlAkLXVQnVQB3OhoW7F3qgFisTB2krA7js/Z1eLO1CBs0TnCF7131hta05L9NZD9Rhlb1GVwM0Xefjv6g4fPPZLE73xVeMbDuHM+C8/dA0Hn7nDee+RkhCNWGEENQ31PDQPUvHxQZrZs/l0mlKhfyCgkeVKBXyZBKzuRrRoUGQkprmlvNWc8tns3z2ay/jdcInf+H2Oef6zvbx42d7aajx8M4Hd16Qzq0aweeGMJy46hdf5+dzjCtItYtXQccoSwVcjSspTg4qo9csoPtr51SoU7tHbmUwpyYWZUZaLNFX90VUFTpfCJlPq906KZVHt7F7TjXDOeMSgt2DOqCjyyIrIjbZTI4H77mel14+xo8P5XnvzfXU1kX44ndfwfXEAVLJJGNR0J86TN9QlHt2tPP4vnGmimXDt0xrhiiHnBWzKlRCgjQLOGpbVYl6VLKglZ4sh4gJzGIOa+QUjvA0JaWp+LSlCnHTfZGZHIz547eyCRCKh1jzRdSaVV5vrPTkTMGN6cIkRqQZpJwJ/VA0bn6sbAzNsTQ5wnLxmhUsv1wQQly0IXypePKZQ3zrB7spFWYr1cwvWvLxD97Kb350F/l8gb/4pyf55vdenHN+dGiE0aER4lPxOceTk1G8gQC51NJcfoVcDsuyyKdTSCnJphJEmlqw7bnUOqVikWefP8JA/+ic45ZlYeKgZJpzjj/7/FF+sm+SKctHdGruVmYVlx92IVtOolgchr8GO5dWyXFQLvQQRzMMDJ/axp/m65VSUpocxC7mFBWYbaG7/RiBujlb/FYmpuhsKvh5lTczgTAcGIE6jFADRqBOcfGWK7gVov2qGlAmhpVNUIqPzpQmBQjoeW5aoXPfFi8ffGgLZjLK93/wPL1TgqypcexEH6NTBfoSTiI1YT75gZvJleDQuJOORj9rVjYh09HZsQfqsPJpkDalxDi6OziTiGFnYthmASsxPkNPJzSNUnwUzR3A07EJzektx+ZZaC4/INHcAaxskuLkIOYiXJlKuUr0QD3SMtFcXoxA7awnT0r1PBxu7EJ2pliKlU1gJqPKoyR0rPRUmdLt6oPb610yWe3VRE/PEF/69kv0943MOV6pd2++cQP/9ZduYfOmlXzt28/xV597ao5+TcYTTIyMMdQ/tKD9XCqBx+8nORldcG7m85OTBGpqiY2qPmi6RqC2jmxq7hw+fryPvftOzO2nLSnZGuY8ysmJsQm++MOTjKR1xmLnLyVexaVBWqaquLlEkTFhOJUhqxkL5r2jplXldNj2zLlSdEDxjCfGZqp8GsGGOVv8djGPmRinFJ+3DmfiSMvE8NdgBOsxgg0YoUas1AS6P0IpNoyZVJ+zi3lK8XFKibGZynbSKnFtm+TmzhK/8K6dbGw1+NlPnueZw0q39w7FOX5qiDR+zg5n+MX338aWtQ08c7pEMOBh3fpu/HJWdnW3H2mbSMvCSk8BAs3hUiEPhQxmKoqdTynPtq7WCmwLbAtHsB5n82rEjEdZQ3N6ES43SCiM91KcWpxAQDlzNPRAvfIQB+pmPdOGqxw24VQhEskJNX5b/W0mxkHTsbLxC5KDc6H6enkBeOVMjHjRzS1TcRqaG8llsvzT118m6BZ89AMqEHZ6wbAsmyIGRXP2TfPIkTN887lJrNQ4NRE///Hjt8+cc3l9JCcXjxOahsPpJDExRqlYRJucItzQRGxsZEGSyImTAzx+rEjXUC8f6WiaOb558ypWr2heEHZRW+OjocbL1g6TXbu2sVycOtWP2+WkveIe8zHYO0RTa8Oi1aem8cijexgcS/Pe+zdQ36je8K7mOGK7kFZvtPn0osUarEwMI1iLlUmAJ4DmcM/hFNZcPsxklPzQcaS0cbespZQYw1nfgZWeWjSZS1qlsudydtGf3oaaLpMppa0Uvm6o+Nt8CiEpxymPI4Q6bgRqKY6fRfcEWLe5kbvfsoVDL+1h5Oxp7n7r7bzw0jEYy5PHwXf3ZKDMZ3lsIAXPHGZ4LIbtquGbjw/hDExhC8ect3LN5UXzRdCKObBMbGnhrG2jOHYWzRNAFmezmnV/DVY+BdIiP3wC4fRggOKoFEJt4RWzSGnjqm2jEO1X9D25JLJURPeGlLEtdBUjV6woyZqJqzYqvOnTVIDKg10uWjI5iJQWntb1Fy4MVZwTp3qjnIk5ae2LzuR4/PAneznck+DDD2ykpU15a6c9pYWSpGjr2JZ6WbNMk89+Yz/ZXAnb6eMDt5dYu65rpn3bliQnJ8+ZkyE0QSI6TiadJWTbOJxu8ukUofq53qjvP9NLRnrobBmjrkn1y+P38Rsf3qm2syvg9XhoqfUQMEo8dN+OZT+PyWiMoaEom7esWjIcZyo6ha5rhCLhJds5dqyPx17o44b1IW648Zpl3/9KhZWZKocxTCzMzyhDWiZGoFZ5bP01c3fRnG7sQobiRK/iui17e511ijNXW0SPS6uE5vbPSdIzU5Po3qDS0xUFfoTuUNzI6SmwJZo7qKrl5dMITeVQFKMDaPk0Yb/Bg/fcweljp5gaHWblyg5CdXU8+8U9CDe82K8DFkI3mMxbPPnMEU72TmDldA70WJz+h5+RKoCjcrNSCByhRooTvejeCKX0JA5vGM3lR2gGwuGZYXwA0Dx+lZ+RGEdkEjjr2pWTRGiKwcjlJZfsxdu+URUyQSUjWrmkiqv2BFRV1rInejoUT9HWZedU9VOx1mrXzSrl0fy1FMZOQ6KAq3nNZQmRgCvIGC4VCjz21FGa6/xsX6LUL8DuvSfIZAvctmvzksqimC+w7+BZVnU3LIu7eBrvvWcd6XSOhnI9eduyKNoGhZJSvFOTMb7+6BFWtfq56y1b+a0PeedsLQYDXsLGINIDbbVztxxdHg8OZ9NMyU5QvMO6bswYr5qu09DRxde/9xInxqb4yL0ddHQu3H5ctbKFnaMpVnS0MD4WZWAwyrZta9A0bQEnJcDGDd1s3DBLJTMyPMHB4yPceG0XoXBw0WcRi07y1Z8P4xV5PvOpxY3hfftP8sieJDu7x3nrXUsb2UPjacYyBt/4wX5+9RP3LnndlYxpKjDNHUTadrmyzrwa7tlEufSywExMsCgpL8y8GTtb1mLGRxXhuW3OsEPArFIRuo5wepAISlMjc4tVCLCySRWSYRZVMojbD7aF7gurZAppK5od20RSxMqnVYxZoB5p5jnQmyf+nd0MjCbojlicGEhzZEzDkIKgo8RkyTczD8fSGn2PH0T3R7DjZ9F9EUqpDMa8bUTN4cbOJTDCTdi5FIbhUKVRPUGV3FGx8AjdUPHEmRiaJ4DhryM3eFSV7QzWqa3PUgHd5SM/cmpmIbRyaZw1LeSHT+JuWYNdSJcrISnFapcKIATSMucsAiApTg6iewII3UEpNoK7ZQ3FxPgcWrarBXv3nWIkmube2zbgcC2+6AwNjrH/2Ag3b+8iUhNesq1jx3oRQszJTTgfbr1hDQ2RQdavmw0nKxYtirgwywbvd3/4MpOpEh982zZ+4d03UCoWcVfozHq/xlSphNtnEQnPNVpqW1qRtj0T7mAWi+TSaQI1s3OzpqmFw4fO8K0Xpri+N8V9S+iy269tIp0pEIyE2b33BCu7GqipjeBchAHIF/TzqQ/umvm/VCzy9AsnaG0MnvP5PPr0SU5POTCMs2zYuLCEdT6T4bPfOYJLs/iPH79tyTVwMpYmbvv40fODdLY30dx29SWCTutToekIzaFCwIy5MmyXCti5BKApD2RibIZ5Z35bpeSkSrjTDARCVQ9NjKJ7lFUppcQq63kj1IgsFbDMIkZgVpaE4VBOjvL3UhjvUawWpZza0fNFIABmNo6VSyMMxaRjFTKKzzdQS7xg8i/feJGpjEWddobGhhCDsT5w+ag1MsQKBrauxmkKF4/vHijz8Qp0X5hUEXTP3Hmge4KYqShGuFnpXE8A3eNHFlXxDTObnBO64QjWUxzrQXN6cDWuoDB6eia5TQqB5vLiCNRQjA4irSKOcBOl5CTOmmYKY2fVS0Ixh7RNNHd4TqlqvUxjOVOkxOOnNDWk4pMjzeSHjuFuXY+VnlTsQaGmy5JQd8UYw0NDY+zpt2kcGz+nMfzk3hEy0otm7mbP2TxvvXk2MayYL/DTZ46Sz6Q5POlnYLyX9z60fGO4uWXuG6UvGOA3PnjtTKW5VCrLWNZBYEp5ruYbnu0dzfzmxxfGK6WTaQ4ePMm6VY1YJZOGjk6yqSS2ZZFNJBZ4cgNeBwE9hdu1+Jas2+Ph/ru2AvBv33qJMzEH4+Mvoru8vGXXBhzniU3b/cog+4fA6x7k1psW51wORcJc027g96htodGRCZ7Z28fOTa10dqkx1kT81DnHqI+cW9G+6+71fOlbLxJLG3zhK0/xsQ8uTv92ZUNV4LELaRzhxV8ephMZihN9ymAszKVbU9m9tvIieIPKy2uV0IP1cxITpGVh5TO4GjrV23o+rYjTk9E5i2Olh8RMRVUNeKuE0J3Y2SRayK2obJBovogiR29ciZ1LgbTRPEGKODhyepjNbS7uvG0TDreHF792nLu2BLn5xvX8w5efJ1pU86AUG8URaS4rvLpyQomYQ7kGzMRCmynlhS2MnsHKxDGzSVyNXchCbv6jxQg3UoqNUJzow9mwAis5gZVPoXvDikYuPYkjWK/KogJmYgxEuVJVPgMSZCGLXo4nFIYTu7wFJ0sFVZ2qHALhrG1TSXbeEI5IM4WxM1j5LM66thmv0tWCl4+MM1Zws2lojK4Vixv6+46OsG9A4tTOcHowQ1uDl7fdf93M+b37TjE6FmNvTw4Nm/+yqnXZMa9uj4etW+fq+7e/9TruTWfwBtWO2MhknqmCg1wmh8frndO2EIKPfOBWFsOBAycJOS1CkSCeQAiP3098YpxATe0Mu880PB4XPpEl6F86NnHHdkVxtnvvCX50IMvKM4eJRAJsXd9M63mMzd6zgzx72qR5aPCcxvCG7hoMPU5raz22ZfHo4wcJ+d3sKutph8tFc0DgdDjOmch5840b6O/9CWeTRf71B0f40AOStvald/iuREizUPYGR5esUiYLWXRfzUzOgOYOqCTjsrdx2qC2S0VcdeXy7JaJ5g3ijqiXEbuQVZRhZgnhcCIQygPsC0MmPmdXrzJPRJpF5f2UUjExlONodW8ISkWcDZ0UY8NohhNHbRul2LDiLvYGOTM8SUAmuffd19LY0cWXvv0yraLAJ99/M088fYhnT6sXRTM9BdLG2bACMxXFEW4q55PMNYY1pwfNqby/CIFdzJfDymLo7jAO70KnmObxg6ZC6dB0HDVtFIaP4Ygoh4vuCiCNEnqwCwCBpDB2BuEOURjvVXrbG8bMJWYq1QlNV/SVTk/ZgSQQugNHqEGF9AmBu3WdCgksZtHdiuP9crD6LEsjCSHuA/4GVTH7n6WUfzbvvAv4V2A7MAk8LKXsveTeVaCzu52Hrs1RX3vuLN8HdnWSzRVJZQpMxad4YfdJ1q5VmeP9/SPs7pPUawW2tHjZvOrSgq4zyTSZbI6GJjXROrta+aW3aoQji3tTl8Jze85ysCfPutU6oPgCDYeDZCKBZZkLrr//7mu5f5ltb11Tj7cvRm/UYqxg090yxOp5Ja3n48ZtHXicg+TSGXp7hujqbl1wjabrvL284P386UPsfqWfnKcFv2d8xhju6mrh17vOnzjT2NLIr37sLv7+3/eTKy4c76Uk1b0RZBeYqTin+yKKPDwTR/MEsIu5maQ1zenBTEVVckFqEgzXrHJUvcXw11KKj6C7fHNogQBKsRFss4ARqEVDUkpMqEIfuRTFyUE0z6xcSrOElUvMFNzQXH6KuQxoAk2CVcqrlGLkTH+FppUNRDGzTWimJnFEWjgyMkHn8V6Oj9poTj9nRtIYu4+TKOgzicBCN1SGdqmIMIuKVF2oxWSaAs7MxJHFHJrLq7wVyaiKQXO6MXQHdj5T7tcsdE9Q8VQG66FMwWPlUzjDTdj5jFL0nhDSLM5UmHOEm7DN4kwsoeGvxc4nEYYyeIUQCIdbGcu5FI5Qg4rVNpwqhq5UwExOoHmCCKcHb+NKCmNnLltp0HIfXnfZfeDWbiYmU3R2L82+c9O1nQR8w3Q2+njhcJRUKsNN45Mzu24vHBplouDm2hadYE3kkpK/pJQM9g3S1jlLU/kLb99GPl+gpn75jo3+nkG+uzvJAxsE4VpVmGEai7H7rFzVxmdWLa+k9KruRjaMnEE3Nfb0Syxr+LzG8MrVnbxl8jjFnMWLLx3l+p3rFzVmr922mmu3QV/vMF/42rPEtTpCRpRdN6nzumHwkffvWvC5+RBC8MEP3st3f/gyhwZNiovo3YvFG0FuQRU1stKTM7rKysQUXzBQSikjUXd5FeWay0MpPoEsr7fTicPSLGIE6ylG+7FySRzhphkdAWUe+eQ4UoKzvlOx7/hCCKdXlX2e54m20jHQdXRPUBXZsGykWVA5B9m4YqbIp8FwqXbzWTR/RBn0/pqZPBDbLJINd/Hjn+yjsX2Ms5Pg0gQv7z5Bz2gOKOsx3YGVTSLTk1j5TJkqrpwwp2kqP6WYx8rEFK1ZoH6mfVdDN1Y2gSPSSHG8Z0HytebyYRdzOCKKHjTX9wrO+nbsfBYClNkmvIrNxxNQIW3RPoSVB2yEFGjeELo5G5omnB4o5dQOucOj9LXTo+gsrZJy6BgONKcHZ2M3xcnBGS/7peK8WkkIoQN/D9wNDAK7hRCPSCmPVlz2CSAmpVwlhHg/8OfAw5elh7P9YPu1i1dOq8Q097Bt27xwaIKBjIdsKoUvGGTl6k7eGs/R1LhxDsfwxeKrPzzIaFrnlx6UNDQrQfH6vHz5kYN0Nfu5axGOy8WwaXUjk1NJHvn5SbZtaKGhA5xuDy6vj1IhR6lYuGjGhs2bV7B5s0pEGRqJs3LN+bco6xtraY3G+caLSYbjA7wr7OcrP3iFjgYfD9x77YLrz/RPkRFB1nii3LLjxovqp8fv49ce3oZuXL4knTeK7IKKLaVMn6ZiguspjPdghJpUeWWzqIjOy2EM0szPxLjNtlEu4RxunlOzfRrSMnHWdVAc60H3+OfEYRmh+pnkObuQVYkHQiuXdXahOd0Y3gBWVlHV6MgyGXoMR6QFqxy/pgfqZmK5pFSGcmH4BAiNH+4xMYL1CAOG45LuJkmdTzBSdnA7Is3lylCqfLQRrKM0NYxtFZVh7vIpvt9SQXmoDcXXaWUT5EZO4Ag1IUsWzoauBWPXfWHlmTEcqtRqYlzxD6djmAnlUdf9YUqxETSnayaj3EyMI80ipWgfzoaucqJgUpVZDTdipaew81mKlqm26QJ1SCkxR08rD0oqqgzq5ATCcJcTPhZWDbtQvFFkt6OzhY7zqIzaugi316kdonUdwxyf8nCqZ3zGGH7rrm5iiQzXbltzyc/luReO8rOjBW5bE+cttyr9GggFeOrFE0zETvLwg9fg9S9OU1mJ5tYGruuc4GjvFMMJi4fuUy/2wdpa0vEyteFFIlIT5r0PbieTylBzoJdNa8/vcdV0nVtv3sj//qcnSQMr2kd58eAQw9EcH3zoGoLzwtVGx2LEjUYC6V7e9Y6L07kAb7tvO3emUgTC4YtuoxJvFLkF5WWczp9Q1Tq9lOIjGIF6hJRovjBmchx3s6JlNfzFGXaCaej+GvWyHGpQO3LzYr8lEuHyQalAKTGmCny4vJjJKK6G7nKyrUJxog/hdCPzReUhBhzhesz4BLpPvaxrLi/YpuIjTkVxRJqwS4U5L9lWJo6dTVIoZDkuNM7kFD96HhgcS9IQ0BhMKR2kewLongBmYhzNH0bzhLBzKWzbxM4kwbaVR9zlA01TXtZAHbonSH7gCMLhws4mEcbCUB/N5VUvBpqGq6Eb3R1QO5uTg8px4HAr6lBfmPzgMdxt63G3rEVaJYrRAdAEZmIMw18Op7BNNJcb3VtDYfQkur8WWczhCNahhRooTvRj2zlkIY3QHeVEbhPd27iA3edisBzLYydwWkp5VkpZBL4GvH3eNW8H/qX89zeBO8WrSLY5MjxO79nBc16jaRoP37uW993egi+oBE8Iwc6d6y+LIQzQVOOi0Wvh9c2GMSSSaYbSBkMVBPNSSk6f7CWdTC/WDK3tjWxZ20Rfxs+Rs1Mzx81igZrmVlJT506sKxUK/OCx/ezee3LJa7q7W9l108ZlZ4SvXNnKTSt1dm1tJZvNM5l3MhHP8/0f7+HfvvEChdzsVnVXsw9plahpaMAfvHimD4/fN4f8fj7+8BPbZn6WiTec7NqFLFYxRykxhhA6dj5Z3norzfE46L5IucSvqgtvpqeUopSK6stKTixo2wjVY6Wm0AM1ytCdTtwQAiulSjsr9oOYUoqFHLKUpxRTWfKGv0aR0heVMVqcHEC4vBTjo8pz4PKreLcyZDGnjO5gPbovXDZIFY9xndfi1ps3sL5jbnKnLOXQvWGm3cXSNgGB5vJRSkax0pNY2YTyADNtrJZw13aqDGbkDCG9XcqrDHGzqBgvChkKo2eQUqI5XNi5lKpGp25EKTqkkg8rxqC5/co7EahTLxu5tBqPw4mVTWIVskgB0irOUNUpb1MIZ02rYuIoe56E4SjHbi/8bi4CbyjZzedyHD50hlKxeM7r7r19I2/d4mH7NbMUditWtrH92rWXhX+5vtZPrSNDQ81cuRqcyDOU0shkZkOLxseiDM5j1JmGw+nkwXu2MZ7ROThok4opAygdj1HT1DKHMWgp7Nl7iu8/to9ifvFrfQEft9+y8YLyUu7a0cYd613UNzcxkSgQzTs4fPgM/+fLz3P69GylzlVd9VjJcaQ3TOcydt+Wgqbrl80QLuMNJbeg1l+7kMVMjCOkxC5msYpZzPQkmmc2i0z3RVRyszuIlU8rQ1ba6J4gdjaJGR9dwEahleOHNYcL3elRHMYwQxMpbXMmx0M43GVvakaxI+TTZQeAHyktrGIGO59CmhZWJo6VTakXc3OufEnLxN26FqHpuBo6Z3SulJKdm5q49fqVyHmlkxGo3bFSvmxoT6qcjXQMq5DBTE9hxkbQ3H5V2j6bUC8AhrNcrMQ1MzYzFS0XMcpiZmLKSC1k0Tz+coJxPQgNWcpjpmLIMtvGDMe97kBzenGEW9FdPvVZpxtnfadyXqQmlFOhlJsT2yyFQPMG1a7hdLU6lw8rl5zhJ74ULMeUbmVuvdxB4PqlrpFSmkKIBFALLM1Xcwn490ePkbRd/LrfRU3D0tuSK5e5rXWxePDe6xYc6+hs5ZP3CcLh2Ul24lgPX3tuinX147z/HTsXbWvDxhW80zpDW9tsnJrhdDE1Okyg5tzKdHhonD39Fg0TE+zYvrziI+eDy+2eU73pl9+m4fd7+dw39hIvOcmks7g8ynC99ebN1Nb2s3bVG67K0RtOdu1iFlddh4rfqle/PW0bKIydRY/MPr9pCptpRWEXc7OKWMqZ0INKTLNOVGbfqoIVSn7MxJjaMszGQdoY/nCZPmfWgNDcPhA6di6JM9I8E2fsbFpFvv8ojrrZkBmtXN1JCB3N7VWFMsqxaMMZF//0tReIZgSIipg5X0R5C1y+mf8RAjubUokugKtp5RwKON0bxM5ncJX5hKfbkLY1WyFPCLAthMujPNgVvM6OSLOqJjU5qMIxCrMvpZprdhsPQA/UUJoaRHP70V1uQKo4u2R05hrN5cdMjlOcHEJ3+2buZaVj5UXosqzrbyjZffL5k7zUa3NH6tSc8u7zEY6E2LHj4oprLAdr13aydpFiHx98cAu5bJ76irLxX/r+YbLSxW+820moZvE47ofvXUOhaBKqVXPEH44wNTp8zpfyaew+Ns5YzsXm4aXjqS8UWyt46T/w4Fay2RwHjg4xknMzMpZg1SoVrlLb2MAvPrgBj+fycbxfJryh5BbKnLXhphmvp9K56ylODWLM41GfpkarZI1RXtzFC6cAM4le09zvViauEpDd/nJRCDd2NlnmJy9h+GsUi08uhYaikyzFR3HVd2OmYwgBVjaGs3GF4k13zPXKTvMCOyJNigmo7P0WQvDNpwbRBXNoNUHpLFnMzYSMaC6f8shODuFu2oyZGMeoacUuZMpV58JY6Slc9Z3KMx5QetYuZGf0ryhXPdUMh2KEqKBG0xwupJS4HW6VjKxpc5w9RqC2XFE1grQt8iMny57hgIoPdiruZb0iVlkznFjJKJrLg+70gFOFUdjl9exS8Zon0Akhfgn4JVCZvBeDDd0hkukigfCrp3QvBa3tc43ChoYwXaExulrCS35G0zSumZcoElhCgc9HR3cb79iRo7bmwmKVLwTTi8yH3raFfHZufJ7T7WLb1qWTGl8NTHuHP/7nr839KuVWv4S4UM1RLogxzSGsGZjJCZx17Qu24EDFUFnJiXJ8rZhRHotdO3MPj1/FHM/bBdADddi55BzqNSufnpNMoTm9FR4NVTXJLuYojJ3B2boabR6p/Py45Zl+azojWc+idmFlTXndE6AUHwMpcTWuwC4VymTqnplrp6l2ZvpcrgI1zYEpHIqqRyUBuhYtFCKEwFXXjl3I4mqYGzNfOX7d7Ydwk+Jr9oZmtuMqt+A0p3txIvkyPd1ShPmvFy6Hzl3RXsN4bIiutle3RPHFIhgOLgglWN3mJ5s38QWWLhwzn43H6fZQ03R+QxjgwVtXEp1KnjOe+lLg9fvw+n3cHgnR3TJE96q5Mrd6GSFvVzouh95VORgT5UIR5ZfZVBTdE5pT+XPOfQ017zWPKj28vHvLcvGdWZ2ol0vF6/6I4jF2uJCGUxUBqki0FZqhkvBKeTRPYKbKm+4JLMhDqKwcqs0zlJPW4rJbGaYHYIQaKE704WnfoEJIXD6sfGqmT5XjmOH8dbjQHO7yzpyG5vIqZqRibibsY84zFEIx/+jGgsIjwnCgG+Hy2HVc9d3qmYQVWweWyp2q1Ltql29u7L3mcCGWoMq7UCzHGB4CKmd7W/nYYtcMCiEMIIQKjF8AKeVngc8CdG2+ZnEG7PPgnju2XszHXjfU1NXw0fddfFzX+SCEYOvWy+MRPh8iNWG4cpLlL5vsVsqtq3n1RcktlLflK42vRaoTVWKxqnHnMoSBBbzElZ+bX/d9Ps+x0I0FbBfOJRaMy4WZUAZYwBkpdMccL29ldbf5CngxfuX5WGrxq0Tl/aYT+5aLy2gIvyqye7E6d82adtaseXWMvlcL03HArxbaO5rOybF+uWA4HKxc0/Wq3+cy4VWzFy5W7wpNn8Ocozndc8vUL4L5FUOXM6+XSp5d0JbhRK/wkqrPLtRdhjd83nteLHSXF71RhTJpi7DfVK4TuicAFQ6Gymepe/wLaNrmY7G1aME1876TxSqlLoXLFWGzHM29G1gthOgWQjiB9wOPzLvmEeAj5b/fAzwhlyr1UkUVrx2qslvFlYqq7FZxJaIqt1VckTivZ7gc0/PrwGMoqpTPSymPCCH+BNgjpXwE+Bzwb0KI08AUagJUUcXriqrsVnGloiq7VVyJqMptFVcqlhUzLKX8EfCjecf+W8XfeeC9l7drVVRx6ajKbhVXKqqyW8WViKrcVnEl4o2V6VFFFVVUUUUVVVRRRRWvIarGcBVVVFFFFVVUUUUVb1pUjeEqqqiiiiqqqKKKKt60qBrDVVRRRRVVVFFFFVW8aVE1hquooooqqqiiiiqqeNNCvJ70fkKICaBvmZfX8SqVa3yD48047gsZc6eU8uJLwl0ELlBu4c35HUJ13OfDG112q9/fmwtvWLmFqt69ALwZx33Jsvu6GsMXAiHEHinlq1tS6A2IN+O4r7YxX23jWS6q476ycbWM40JRHffVgattPMvFm3Hcl2PM1TCJKqqooooqqqiiiiretKgaw1VUUUUVVVRRRRVVvGlxJRnDn329O/A64c047qttzFfbeJaL6rivbFwt47hQVMd9deBqG89y8WYc9yWP+YqJGa6iiiqqqKKKKqqooorLjSvJM1xFFVVUUUUVVVRRRRWXFW84Y1gIcZ8Q4oQQ4rQQ4vcWOe8SQvx7+fxLQoiu16GblxXLGPNHhRATQogD5Z9Pvh79vNwQQnxeCDEuhDi8xHkhhPjb8nN5RQhx7WvdxwvBm1F24c0pv1eT7Fbltiq3FeevGLmdxptRfquyu+j5S5NdKeUb5gfQgTPACsAJHAQ2zLvmV4F/LP/9fuDfX+9+vwZj/ijwd693X1+Fsd8KXAscXuL8W4FHAQHcALz0evf5Er/Hq0p2L2DcV538Xi2yW5XbqtzOO39FyO0Ffo9XlfxWZffVkd03mmd4J3BaSnlWSlkEvga8XQjRK4S4q3zN24F/Kf/9TeBOIYR4Hfq6bAghviiE+O9LnF50zK9d714/SCmfBqbOccnbgX+VCi8CYSFE82vTuwvGcr7HK052l4E3pfxeRbL7ZtS5UJXbpXClyO003ox6tyq7i+OSZPeCjeGykswJIVJCiLgQ4nkhxKeFEJfDsG4FuiuU2GD52PxrBgCklCaQAGqX0e8bhBA/FUJMlbcPvvEGmeQz4yljsTEDvLvs+v+mEKJ9qcaEEO8vb58kylsK/yKECF7uTr9GmHk2QggXEABOCSFGhRC/da4PCiFWCCF+UJbTqBDify1yzWohRF4I8aXL2dcylpRdIUQvkAJqgAVzSAjxqBAiXf4pCSGKFf//oxDidiHE4BLj/mLF9VNlmV+3VKeFEH90ieO/rPJ7FWG5z+W8qOrcVwWXTW7LczJd8VMQQqRejU6/BrgonbucZ1Bem44JITJCiDNCiFsuZ3/LuCj5Pd8cO59Ont8pocIUnr0M41sMVZ27OC5J516sMn1IShkAOoE/A34X+NxFtvVaIYKi3+hC9TsFfOH17NAF4PtAl5RyC/BTZt9yF8NzwM1SyhBqG8UAzuUhedUghDAuY3N/BHiBh4C3AL8jhLhvifs6Uc/pCaAJaAMWM/j+Hth9Gft4IXgI6AG2Mm8OSSnvl1L6pZR+4MvA/5r+X0r56WW0/b/Kn20Fhnj95+aFyG8Vi6Oqc197LEtupZSfrpiffuCrwDdew37O4PXSued7BkKIu4E/Bz6GMrBvBc5exr5eDiw5xy6DTn6tUdW5F4hL8ixIKRNSykeAh4GPCCE2wUzA+v8WQvQLIcbKb42e8rnbhRCDQoj/WvbY9QohPlRu8jpgFWrSpYH/ilrMAbYKIV4B1gJfFEK4yxM/BEwuo6+PSim/IaVMSimzwN8BNy91vRDiSSHE/y2EeK78tvgTIURdxfm3CSGOlN8inxRCrK84t00Isa/8uX8H3PPaflCooPY48N+A9RWnPwh8uPzZE0KIO6WUk1LKQvn8PwPbzzHOASllZY1uC/VMFxujEEL8lVAe5KQQ4lDFd+gRQvyFEKJPKC/zsxXf4bnG3iuE+N3yd5URQhhlD9Hz5esPCiFuX6r/8zAETL/RfgS1mB6XUh4D/gkVF7UYPgoMSyn/UkqZkVLmpZSvzBv7+4E48Pgy+3IhfQVlgA+d4xoNJbu9i82hywEpZQ74OsrgvmCc63sTQnxMCHEMpWQ/KIT45fKpNuB9QogHK5pKAINCJTT8M7DzHO1+VAhxtiz/PRW6YX7f4hWemYwQQopyYowQ4lNCJVFMCSEeEUK0VHxOlj0+p8pt/L0Qs1umQoiPC+W9igkhHhNCdJaPL5grwJpzPL7lyMMFo6pzL13nCiGeL59vL5/73XLfPjWtc8v9X7berbiPD3g3SxgfV7HOPd8z+GPgT6SUL0opbSnlkJTykucDF6h3lyO/S82xywUhxDoxu2NyQgjxvopzDwgh9pdlY0AI8UcV5x4VQvz6vPEcBO4FhirbBZ5nNnTin4HrhRBHy/NjSAjxmSX6dlDM9fDLadlZhgx+RihPdEKohEV3xfk5808IsaXi3O+W+zRj81zko700nXshAcblIOVe4K5FjvcDv1L++6+AR1DbwAHUW8r/LJ+7HTCBvwRcwG1ABqVwDdTk+3+ZDQzfWL7ny0AL8NtADPg0Khj+ByijZqmfDy4xjv8IvHiOcT6JClJfA3jK//9Z+dyacp/vBhzA7wCny312An3Afyqfew9QAv57+bPbgHHgelQg/MfK59cCm4AicHv52i5gJdCMMpLj5fuai4yzo6Lvu1AGiCxff88SY7wX2AuEUUHn64Hm8rm/L4+5tdzPm8rf15Jjr5CPAyih9JQ/P4kKbtfKn5sE6svX/xvKYF/su+tBBcRHymPZV9H39wCHlhjX58vtPgpEy+PYXHE+CJxETZY/Ar50ofNgkXsaKE9HNxWyO++aXwP+sfyM/jvw9aXmUMWxL1KWnYpjtwODS/Rj5nrAV34OB8/R70XHv4zv7QGUbBrAMJBDxbIdRM3fL1e09QvAsfLfn0DJ+4J2y/1NAmvL1zbPf4ZLjOF/AE+j5PGO8nd+LUpe/1/g6YprJUpnhIEOYAK4r3zu7ShZXl8e1x8Az59jruxg6WSOB5ibzPHyJchWL1Wdezl17kfK4ztblpcB4Eh53F3AyvLnfrViTIvp3Y5FxvCL5XbFm0nnnusZlMdSBH6v3O9B1MuH57XUu+W/3888vbvcObaYjj1Hvz4KPLvIcV9Z3j5W7vs2lL7aUDFXN5e/ty3AGPCOiuf6XMWY7y5/Z6+gXmor2717ul3gneXnf0u5nQhw7TKe7S8Bx1Hr5XJkcFpf1ADHgE+fZ/65UDpoAGgpX9tFef4t0acuXiWdezkV84vA75c7kqkcEHAj0FPxZZuAr+L814H/q/z3T1ET9wzw++VjceAvyn+7y19QovzwV1zEGLagArFvOcc1TwJ/UPH/rwI/Lv/9f1ExocqCO1Qe260o40BUnH+eWcX8D8D/Pe9eg2WB6APSwF0oY+lt5fP/E6WsDwI/B9Ytc5ytKGNnzRLn70AZhTcA2rzx5IBrFvnMkmOvkI+PV5z/XeDf5rXxGGpCfBUYQS1cgyhD6dPMTiKBWiB6UYr5poo27kZ5VRcb10/Kbd6PUpC/jVIe0xP3b4DfLf/9R1wGY7jc1lvLz7NSdv+k4nt0o7YOS2UZXjHv8y9Of67i2Be5cGM4j5ozNmpx23KOPi86/nN9b0uMO41Svr+P8jQWgPeUzx9GKcOD5WfzvSXkwVfu97tZ5kKJ8t70MrvQfw61hTl93l9+3l3l/yWwq+L814HfK//9KPCJebKdRW2bzpkrFyC7Z4BDwHWXIFe9VHXu5da5J1ALek/52XwetchXztcL1ruonaY/Osf5q1LnnusZoAwkCexBveDWoYy6P73YOTHvfsvVu6eXkl/OM8fmHfsiF28MPww8M+/Y/wH+cIl2/hr4q/LfAdQ87yyPeRLlPPj9crt982R3Chgty+4w8MtAcJnPdBdKZ6+5ABn8hYrz/4vZF5Cl5t9tqLViHGXzOM7Tp1dV517O+KLW8sOvR8UZ7RUVu4+oN4JpxKSUmYr/+1ATBtQDfklK+QcV5+OohQopZV4I8TVglZTyFy60k0KIVeW2flNK+cx5Lh+t+DuLWlgp97Vv+oSU0hZCDKCegQUMyfK3U0Zfxd+dqK2X36g45kQtwl8VQnwQZaBsBFYJIfZIKf8L8F+WO8aKfg0JIX6MyjZdwLknpXxCCPF3KAHqFEJ8G/gMSnm4UUI1H+ca+zQqg9g7gfcKIR6qOOYAfi6l/MB5+i+BXxNC/AFKtk5XnA6iPFqLIYdSRI8CCCH+N8rLt14oobwL9bZ6WSGl/BHwo3nH/lvF33nUs+gFfl1KOT9mbnoOXSr+t5TyD4QQHcCPUW/fr5znM/Ox5PcGIIS4H/hDlMdAQ8nwX0kp/7R8/iCgCyG85ba2SSlPCyH+P+DjQoUIzWlXSpkRQjyMksHPCSGeA/6zlPL4Yh0UQmxDeZjukVJOlA+3APumr5FSpoUQk6hn21s+vNS87gT+RgjxF5W3AVrnzxXg2ygPdnKxvk3L7mLnLiOqOvfSdO6AlLK7rHN/FbUoP4baveFC9W55vt0OfGqpa65inQss+Qxy5d//r5RypHzdX6J08u+fq73lYLl69yKbv1w6eRqdqJCFeMUxA+WtRwhxPSpeeRNKRl2UY6+llCkhxA+B90sp/1wIkQA+JaV8XAjxO6gXjX+t0AEGikbuV4QQO1DP+8/K4TS/J6V8YbEOCpVs93WU4+Nk+fByZHD+3J3WL0vNvxYp5VNCiP9I2eYRQjwG/JaUcnh+v5Yru+e65ly4LNRq5QfdCjyL8g7lUFsV4fJPSKrA82lEynFF0+hAvbmAeoO8kHt3zItxmf/zoYprO4Gfod5S/u0ihjqNYdQXPN2uQG1RDaHeXFqFmEPd0lHx9wDqjThc8eOVUn4VQEr5FSnlrnL7EpV0gBDiQ+cZZ+U9KmGgtrMXhZTyb6WU21HbKWtQXtQoyru42OfONfaZZueN99/mjdcnpfyz8ufnZyFX/hwp9zFWfq7XVLR7DcprsxheYWk5uh211dIvhBhFLUTvFkLsW+L61wTz5tBlgZSyH/hNlIHnucCPL/m9CZVl/i3gfwONUsowajGqlPmvAh9AhR4clVKePl+75T4/JqW8G6XYj6PiFBdACNEAfBf4NSnl/opT8+XTh8ocX07s2ADwy/P65pFSPl/u22Jz5XVBVee+IXXuh4HnFnnJnYOrVOcu+QzKbQ3O6+MFydzrgVdDJ6O+m6fmfTd+KeWvlM9/BRXu1C5VEvw/soheFULciHp5+vly2pVS7pZSvh2Y1ptfX2LMnvL5v5ZlZ1IZy5HBc435guffa41LMoaFEEGhEmW+htpqPSSltFEL2F+VFyyEEK1CiHvnffyPhRBOoehVHmQ283QMxYKwLEgp+2VFFusiP1+e7gOKXeDvpJQLqFAuEF8HHhBC3CmEcAD/GbUt/DzwAmrb7T8IIRxCiHehYimn8U/Ap4UQ1wsFn1BB8wEhxFohxB1lYyOPWuDs8ji/fJ5x9pfH+aFpJV1eiP6UJZLEhBA7yv1woLZf8oBd/g4/D/ylEKJFCKELIW4s9+tcY18MXwIeEkLcW27HLVRCT1t5XJ8+x5g2VrTzr8AfCCEiQlGFfQq1XbXUPW8QQtwlhNBRsYpRVBzTZ1ELztbyzz8CP0TF8r3mWGwOXcBn3fN+FnBnSil/ilJkv3SOprR57bg49/c27bGYAEyhvMT3zGvza+Vjv4JS8NNYsl0hRKMQ4u1lo62ACr2wFxm3geIL/ZKUcr5S/yrwMSHE1vI4/gfK69l7jvFP4x+B/yKE2Fi+T0gI8d7y34vOlWW0eVlR1blvPJ1bgV9kaZ1E+ZlcrTr3fM/gC8BvCCEahBARVHz3D87T1uuCS9HJC5uaq6NRY14jhPhwWVYdZZmYTkYLAFNS7cbsROUKVeJHKKPxT1Be32kdtGS75Tn/ISFESEpZQoVWLKW7Po9KmJxPRXqhMliJi5p/rznkhcfn9JY7nELFkL2Ack3rFde4UYvQWdSDPwb8h/K521Fvib+PMlD6gQ9XfHY1KhkgDny34p53VVzzR1xgnCdqS1eiFtiZn3Nc/yTwyYr/P0pFDBAqKP1o+Rk8RUXQPiqYfX/5Gf17+ee/V5y/D0XpFUe9fX8DNQm2oGKaUqitmR9QDiy/gHH+afn5Zsq/PwvULnHtnSgv6nS855cBf/mcBxWvNFQe49OU4zjPM/Y531X52PXl66ZQBtQPWST55DzjcqEmahK1eP9WxbmO8hgqkwjfhdriS5a/y0UTsS5Gli71h2XMoYprv8jiMcNykZ9VS1z/cPl7dC0x/vntDJ7veyv3d6wsw/+GWjjm3/dxlJHStBx5QHmDnyo/k3j5e9uwSJ+7mE0OrZzP0337NGq7eXoOtVV8VqK2+xd9vijP1qGy3AwAnz/fXHkjyAtVnfu66dxy+zeW5TFwnuuuZp275DNAhWn8f+XnPwr8LeB+LebP5ZpjFdd+keXFDC+mow1U2NoPy9/LJOqFcWv5c+9BhSOkyrL4d8ybd6i8CAnsmHd80XZRzosfo5Jgk+V5sGuJfktUiEPlnJ1OvFu2DDJPX/Aqz7/L8TOd7fmaQSiaji9JKdte0xtXUUUVVbwJUdW5VVRRRRXnxhutHHMVVVRRRRVVVFFFFVW8Zqgaw1VUUUUVVVRRRRVVvGnxmodJVFFFFVVUUUUVVVRRxRsFVc9wFVVUUUUVVVRRRRVvWlSN4SqqqKKKKqqooooq3rS4nBXoLhiBmhpZ29p+SW2MRLOXqTdVXIkojp6OSinrX8t76t6QNEINADTXeV/LW1dxFaHv8Cuvq+xWUcXF4PXQuQDhcFg2Nze/1rd9XZAznK93F65KnEvnvq7GcG1rO3/47UfPf+E58Mef23/+i6q4atH35w/2nf+qywsj1EDzR/4agD/8xGWv6lzFmwQfX9P6uspuFVVcDF4PnQvQ3NzMF77whdfj1q85jtUuVVC2ikvBuXTuFR8m8Yef2FY1SKp43fDHn9tffSGroooqqqiiiisYV7wxXEUVVVRRRRVVVFFFFReL1zVM4nJiMe9w1WNXxWuFSlmr7lRUUUUVVVRRxZWDZXmGhRCfF0KMCyEOL3FeCCH+VghxWgjxihDi2svbzSqquHBU5baKKxVV2a3iSkVVdqu4ErHcMIkvAved4/z9wOryzy8B/3Bp3bo8mI4nrnrq3rT4Iq+D3FbjiKu4DPgiV6DOraIKqrJbxRWIZRnDUsqngalzXPJ24F+lwotAWAjx5uBAqeINizeS3GaSKYqF/CW3I6Ukn8kseq737CA9p1+9RG+zVGLf/pMk4skF52zbZs+e4wwNji04VyoU2L//FKlEaubY2GiU3XtPYFvWq9bfC0EynuTs6f7XuxszeCPJbhVVXAjeKLJbKpWIJRbqqotBLpfDtu0Fx6OJFE8f6adUKl2W+yyG06cG6DkzuOi53p4hDh48vei5U6f66e8bnvm/VCzy8u7jTEZjr0o/LxRSSk4e7yGfy73eXQEuX8xwKzBQ8f9g+djIZWp/WTh6pAfDobNmzdK0JGYmgZWJoRkOjEgLQogLvo+0LaRZQnO6L6W7c/uVnkIIDd0XvmxtLgW7lMfOpRC645z3M5MTICV6oBah6Rd8H2mVMJNRrHwG3RfE8NUg9DdUmPprIrex6BSf/e5x6r0WH//gLXPOmaUSmqbR3z/K0TMT3LpzFf6gf0Eb6WSaz//rT4imJZZp8pH33ThHznPpNP/yWA9mPktAf4Ubt6/glps3LmjHtm3Onu6ns6sFh/PCuCz3HzjDj17JsXnkFO966/aZ46dPD/DSvh6Oj9mE9LN85D3XU99QC8BPnzhA38AEg6Vato+neejebby4+zg/ff4slq8Jj6uXTZtWVtzjNOlMnnUr6nl6dy8rO2vZes2qOf340U/20j8wQWNTHffdvh6Pzzfn/HMvHOXlwyMUkjEeuGsLm69Zc96xPfL4UU5PGdx0ZphE0cE9t6xmz4EeXjk5QXtE0NAQIRAMsG3b6gt6Zq8i3hA61y5ksAs5dF94ybktzSLFqWE0txfN4Ub3BC/yXlk01+Xj9bbzaexiHt0fuSj9dqEwk1GQNnqwfsl1x8olkaUiwulGdy/UA8u6TyqKXcyBbWMEatEusp1XEa+J7P7tk70cTHr4w5tKrGyunTkupcQ0TYqmxbcOjHFNs5druhanTf7Cz4/w2MkkxVKJeze38su3rZxz/nMvjbIvE+H/PPsiGzub+MwdnTgX0au9ozE8Tp3GmguT/WI+x1d/1oMubH6vqxlNV3KaSWV46qVTHD4+TLKok0ok2HWr0sknTvaz++AAp0Zz+Jw6v/PLLYyPRvmXb75E1tPChtGzvPehWf09OhrlwJEhdm5pY9/BsxRsg3vfsgnD4Zi55tixPp566RRer5tbruume0XrnH4OD43z3cdPkIqOsaKzgfe++9bzjm3v3hP84ECWjSdGkZqDjStq8fvcfPfx40QceVrb6nG5PWzb3IUv4Dtve5eK19wyEUL8EmprhNqW1vNcfX6cONnPD546zY3rQzy2dwqX0+C/rG5foGymQyX++p+fYMoO4ndDFgnMXmdlE2ieAEKc22FuJifQnB4s27xohVUJK5dEc/mwc6nzX3wZYOfS6N4wpdjIeYxvge6PYOdSF2Wk2/k0eqAOCTiCDZjJCYzga87VfllQKbf6MscwHSphF3NEjAxuh5vxoSG8Ph/+cJhMMsXfffllPLqJx+NkIKEzOLybt929iabmufd44flDjKYkroYVmEPH0TWNUqHAy/vPsLKzHsu0qNOmGC3apBwehiYW9x4/88wBfrp3gvXNZ/nQB+7g4KEzPPpsH3df3872axcaerZto2lqPqRSaSIyzvruVUyMTfL0nl62b2jixVdGOJMK4EwfJ9Owjmd29/GuB2qxbZvdJ2KY0sXqhhzrupXxPjyWpmgbMNlH2Ld9zv1+tnuQdMnBky+cxgp3EM+Oc82Wlbxy8DRNTREam+o43pciloJRqbFxYJw167rntDEczZCQASxd8sKBgRlj+PjxPvYdG+POG1fQ2FTHi7uPE59KUlsXpKXGgWkVGZoq0ZdxsrZvjGOnRonbIcZPDeEassBnE/Gf5dEXBgl6ND703l0cOXgcp8vF6nl9eCPhYmT3XLBLBazUJNI2kbaFq6EbMxnFCNYter2VTaK7vGje8AIdZxdzgDivY8FMRtFc3suqQ+xiHiNYd86+X1YIkLbEyqcxPIFFL5Gl4kyfuMi1RVolHDWtmIkJ7GLujWgMLxuVstvU1HRBn/UZEp+ZwCoIBkdGaW1qRAjBX/3kGHunHNzgj/NssYPne4Z4b6bEnRtb5nzetm2+t38YV/dWiI2iYwLw0ulRTFNyTUeEiEyhJXKUpMbJjJt0Nk/NPGM4Gkvwe48N4pJFPv/hraSyef7op4O0eOF37lu7oN+VHujxiQRhPUt7cwiE4Mc/24/P7cDndbK7TyKyOXR/A08dTnDzLRIhBEdOT3Am6aXNn2ZFt5orU1MpUgQwo/046mvn3G/3KwPsG4Ce3r0MJ0H3Rdg+HqVkCdLpHOs3dNMzGGMoJjEsH6GT4wuM4alYivGCB9P2cXRg1tObTqb54ZPHWNEaZMf2tQwOjLHnyDAtYR1NM2j353Fgc3DcDXKS1hoHMRlkYqLA8ZFhXHXtFM0eSqUSR3uTfOD+DRi64NSpPq6/advM2nQ5cLmM4SGgspRcW/nYAkgpPwt8FqBr8zXyUm+8Z+8pUiLCY8/14PSHuH5N8Jze3mvXNzI0FOXu29bz9z+Y7aKZnkJ3+7GSUc5boUlKpFlAc537bcVKx9B84fN6nzV3ACs5ARfhpb4Y6L6yIeyPYOXTSxr0wnBgZRMYgdpFz5//PhGK431YxRxFJLp78QXgdcRFya2refWy5dYuZClGB0kEg5i5Sf7my3GsTIJf+sXbcek2qUyBRCkPhonPTjKkdXDk5BhNzfWkEil6+8bYuLGb1Ws7eOqF41ijx3jgjrWsXNXG/v2n+NmRAr1DZ+mfyFIyA3zqfasRQqOuPjzdbx758R5iEzHuvWsbWBZGsJ6JTIzkVIxivkReeCgU527z9fcNs/dAD8eHizx8z2q6V7Sy70yGtAxSH3Zz7Mwoh0c1nMY421cFOPGTHtyeANd2aGxeo+ZPNhHnrddFkJZk2w2zcfsP3LmRqfGfk9dqCNVEZr+MgTEiHmgwYkxKDS0/wP3338ipE718Z0+KzkCUjz1cx7pWF88fzdDlmmT12oX5AA/dtYnOAyc4cErnzptmvconeiY5NeVgZb/yKj+zf5REOocj5GBHp8FH37edyYkpzvaOMjkxyURWYEUPs2ZVG+GQF49fJ1IbJho7TimvMTI4xtce70Nzefidllp8wYvzeF4kXnXZXQpWJobmDWGlpzDCzRTGenBEljZUhOHALuQwE2M4a2e7LC0Tu5ABaSMcznM7ITQNu5g9r460CxkQ+rJ27YSuKyP7NTIWrVwaR6QFOxeHJYxhze3HTEXRlji/HAjNoDhyEhwe9POsUa8TLkp2169fvyzZlVLy7d1nOdgzQcHfyO/+qB8pJXeumuA37t3MkZEUBS3Mz3qyhPTDRIPtPHomx50b1WdfPjXMioYgdSE/nfVBBvv2s6klyCdv24yUkn/YkyQvXNw0NMBz2Q7e0jrCu67bTNG0qQkrHfDMiREeOzLBTV1+7tjYiq7r5L3t7D12lu7WRtLSSdoszun3VCLDM8cG+V6fYOOqSe6/+1r2Hx1hSm9kS42TxOQUL50p4BUJfv0XdvLUS08y5a1nU4NFR3sTQgiklGxpdxJxJLlp1624PB4A1m3o5taBMXafdtPdPRuRUioWKWRzNMkYDkPDI0xuWCVoam3mb77wDHHTxa+EPWxdW8cL+3txpHLcdv1tC575pk0r8bl6ePrlBI31s3pweHiCY+Ma+UKMHdth/7Fh9p1KcMDhxq/n+Myn3oJZKtFxuAerVGTfsQny/YM01rho66hD91psXNPOz548TDxVoFAo8MUfvELe00Qqu5t77rl+OSKxLFwuY/gR4NeFEF8DrgcSUsrXZLtu53WrGfnxAYyAG4/f4PbbrgFgfGQcl9tFKBKac/2tFVvHf/iJWaP37NlBvv34aRLLMEgdkWaklOc0cs1kVBmbyYnzGtdCiEWvkVJiFBKYrtBFhXMseT/dQOgGspRDcy29EOje0JLnlgtnQ+eix61MHM17ecd1EXjV5dbMJtADEUqWRTSewdO+gUIxy1Mv93DPrtU0BGBS68AVO0Oxdi21IkZTuIb/84Uf49AN+os1FEun2L59Hf/9jz82p+3VK5u5duIUazubyTx/nP6MxQuvjOJxwOnhU/zi2zbj93t4ee9ZHE2r+f6TJ/nk+2/E6TvO/iMmf/et46wM5RGxEdLJWaMxFYvxr4/1YcbHEP46Tpzo52s/OcXmdidQ4l9/dIJdm+u4b7ObmqCTbz41SFedzm03b2bV6tk1Lj4xQXdXK6ViAVCK9/CRPlataOKTH3/rgmf1jR/sIeFswUwUCAVc/NanbgfUluDmpim6WpT3bsOGToYTkhuubVtUftweDztv3MrOG+cev+Om1XT2jLJpYxcAXWGLAwkbOXmW9XfcAEBtfQ1n+8Z56qyGUUgg2jcTqdd5x1uvA2Cwf5iSdAImPr8Hr1bEo1sLQjVeA7xuOtfw11CaGsQsFNBcHgx/BM3pwS4VkMUsui8y53rdG1pclwiBNIsg5+7QLXXP8+lcu5BFSonMJ5dlDM/v50y3ShlsYSAM13nbuBDo3iB2Pgli6ZAMzem+5PA7I1i/qPfcLmRB09Acly+87yLxqsruyMQUXzmSRw+uwJkYQPPXgG1xejLLTw4NctfKAN8Z8RIKB9EMNw6nl7d15PifjxwAu8QB2c22vnF+7+4Af/PhucaWEIL3rPVQMC0iXg/PDIzwRAK2dab5pwMZ3r0uxf1b2nnubJxjSZ1TPV42NCX5vVvqeeLYCH95ooFbRgbJx1NYESfxVJZwQIX+fG73GC+NajgMjWQyzV9/7ilCjiI3ddZw5PQEo2MJ3rurCbfbyde+t5uCJbhnS5Cbb948Ez6RSyVx6oJt16xC09XL5elTAzidOnfdewN33Tv3WT391F4OTzghrUGgkffdHWLDRhUKcu26GqbieWrqa5G2zYbVTYT8TsKRxe2C7tXddK+eu0O2em0X7ylZNDWquXbN6jr2vDJIITHBti3KKDccDjZv7OTP/vkliuk47kg9BY+btz90PU63MuZjaRPbsjF0jeaIk/7JMbo711+khCyOZRnDQoivArcDdUKIQeAPAQeAlPIfgR8BbwVOA1ngY4u3dPmxenUHn1k9N0Y4Fp3kn39whqCjxK9/9PyxKwArVrTxmRVt52QBkLaFtEw0h+u8RpzQdax0DC7Bjb8yXOSD77iFrz2yh9Ox8ytmFb+XQZoljGADwnAsea0j8vrl2pipqArTmOjDCDVc1jjASrwR5FZaJrKUR1oWzvpOtjRLCsEmTiT9nOqd5Fc+dhfDg2OEalbz6JMnWd3RwRN7+pmUDViDx+hc4aSjffaF4sv//iSxrOQX3nEt4UiIh+5RntHmpghf+c7LmNk0GZebnHRRKpm4vV7q60NMTA7iczuxTJMbr9/A8FgSc7JAtmBi+Zp58WSaO+8w0Q0DbyDAuiadQdvDlK2TKxQp4qSuPoImBHtHMmTyFm+5dSMjQyphrqYuMscQTk1NUd/eQTI6QaRJydrufad57JUM4eePs3VTJ2+5bcvM9T/6yV4mJlNIo4+OsMWWzbNt+QI+3v3gbDhFV1cLn+yau6U5jSNHenjk6R7uvK6FnTvWzTl34vQIT+0fwetxsWZtB6G6WhxJiy2RJN3ds9t+q1c0sXksQ9PGNew9laQ2XDNzzmVoCIeTeN6ip3eU3/0PD1zWrbppvBFkd8m+GU6cDSuYHxlp5xLo3ghWOobuX9zQnNOOpuOILP49zmm3lEdzuM//4qzpyGwKaV98UqZuZvj0u9bT1z/ODw4uL+G1FBsBoSEMJ8Y5xm34a5Y892rDLmSRtomdTiHd3iVfBC4HXm/ZbWmoRc8fx0LyH26q52wSUukMP0t08Hhvkj9/aAM3jExSH1rPI4dGiOcKpEpw0G6nODlAW2CYHS2zYTOPH+zhmycKvH9zkNvWt/DgtlnddHo0yfFogaGpNCnhJ51X3t7OsMHLwznCmQFczlV0tURIFy2OHEhhaJK8EeKMVs/u3inu3qzWv21NbsanxuiVdZQsmxICHDrXb1/F3t6jaBmLDRtXAPDUy2dwuH1su2bFjCEMkM+kaVu7nonBfsINjaTicb7yxADEh1izrpMHbl9PIKR2HY4f7+P5fX0UhY+gTLCmqY6urtkdnltunJtz8oF33rDo886mM/zzN3YT9uj84vvn5sTEJmP8fM8QXc1xHrqvFk030AL11HqmePvbds1cZzic3LQhhJQBRibSmJY6Ng1bSvRQAy/vPs7bH9ixpEF+KViWMSyl/MB5zkvg1y5Ljy4AUkp6TvfR3jk3Gcjr89IakoR8F/4GPB1bvJhRbCbGVaywVTpvrPDlUDbZEvSeHSBbmD0mpc0969XX9pNj5szWopWJY5cKaN4gdjKKmYpihJteb8/rohCaXg7TqMHOp181Y/iNILeOYB12PoNEIotZ9p8uIZxuHrjOg1OHgYFxVqxUyvUD79gBgLAtHnvmJFl/PTdsaaW+oZZCPs+/feMFeoaSGOEGkok04UiIH/10H2dP9tLR3Uq8AKNFL7/2li5cbheBcBiAjkYfca2Oo6MTPPHMUe69cyvvftsNjI5MEI3GWZfM4Av40Q0lV8VCkYl4Hh2LzhqNm2/YxL0+J75gECklIfcxIvVqsWhubeS3P14z81kA27LIJOIkJydwebwziRgruxrYObqfPRMN7Dk+gc93gtFohu4mJwePDCANJy6Xg2Grhps8S7/InQvFoklBuMkXFmZ3J1I5UraXVEbFtK1uC/H0wZOMVmwlP/7kQXpH0rznvk2EIiFuvnluG7WN9Wxu76d3IMV39qTRxFk2z0vwuxx4I8juUrBySYSmLxomZmXjl3U+m6kownBh5lLnjRXWHC60UOMl3c8WBsPDUSbjWSrJllbXlNixoZ4fvjhKwlTril3MIUsFhKYjnB5kIYOVib2qhubFQugGVi6JbRUxXA3LfmG5GLwRZPc921tJFW1M3YVTL/GJt2xg/clRDOniiSOD3LauGV3X+eD1ypM5Gkvx07Nn6bdtVtQFZ+KHv7evn6/sHoWGVeztG+e29S28dHqM7+ztx+Px4HdoDLs6MFxZ/v5OL7VlJ9PWFj/fH3AymYrxP5+e4G/fFeHG1U1sbY+w++wEm+tzjJWy7Fo9uyM8kiyQMHVW+rKs7mrjvZs7MRwODIeDjz2wguj41MzuyEcevgVp23P0bmJinGwyiWVZhOpUu75gkO2tFuPBFo5PGHQcOs1gzGJ9q5uXDg6SE34cDoO0rKdoSrwXscNl2xYFyyBfWsi2kc8XSZguEhkVb93W0UxIHmBKhOg7O0DninZ6e4b48XO93HhNE9dsXrmgDYAbr+3kxYMD7B91UnrmFO9723UX3M/z4Q2V2n+hePHlYzx2KM+N3XHuvXPrzHGXx8NH3nfTJbVtF7Ll+DNtTsystEporxEjwmjWxb89NQnCORsqJyVNDSGklHB0EiufwsolMQJ1CKuILGQBG+Z5R8zUFHY+DZqGs7Zt7rn0FNj2BWUwS7MImn5RWdiaJ4hdyGKmVCLi1QzN6UFzetTLSUAlxmiGi2eeeYWkqw2vNszvrpz7fWy/bh2bN3UzPhalrVN5LNPJNCM5Dy5nius6bDq6WrEti92vDFLSfESHdN66uYZQbQ11TY185ZvPkcpbfORd19Hd1czJkT68LovmhtlYxG//9AQTBSefvK+Nnz17mv1Hhvnww7swzRKpkkHAG+QT758XawB877kRTBHlP/+iH7dXGbuZRByzWCRU30AqNkVdWzvRoQFcXqVcJwb60YCd162jaTCK19fCT/eMMmX6eOlQH45IOw/tkOguPy8fHuWHT59kbDLD3XdsJZfJ8P/927MU0knuumU9O6/fNNOX8bEoX/nBEdZ0BHjr3deyZlULG072EI3rJONJguHZ+LU7btvC5jVjeL1eHv3Rs2zY0M2OdfU01c0uAIMTWQZTBn19w0QPDbBzaxfjY1Fa25twud1ouk5NyMXJQReRfD/HT0d46cgIbQ1+7rvr6uczt/NphGZgF9ILjGEjeJ5ci2WgFB8tt1WvdIvQlK45TxjF5YLUXXx7TwakpDKEOeg16OxswbVnFDtXwM6lkNJC94axzSJ2KormDlD5IWmVKEUHkJqGs6ZtDtvGzPqCWHbynpQ2slS8qDAKYThVeJzhohRXjoirGe/b2QXAf/zOKUYIs7lxgsGpLN88mkSv7cClj3LzutndoKZIgL9++BrODEVprpldAw9PlJC1XXSkj/LxO1VtkD3DOU4kNVyuZnbpY3xqVY6bVzfw3Kko3/r5BJ+8NkxnTYBGxxBJvci6yOw8+f6hcb495OXtLTYBJ/zeo/386s4a1rbWEs/bZFy1/KdrXbB1bgjAi/sH2D+s8WDpBNddtw5N0yiZJZKjE/hranA4XViWScvqtfQfO0xtcyuJiXEsy2TnNR0kk1mGx+LkTB/HxuGVw8dxNKxkXVuMe27fxA+eOs3I0Bj/8C9P8Yn3X4/T5eZb332Ww6cnWdcV4sF7d8xhdPjqt54jlrb46Lu34w8G2bnKxcBwipMnB1izZtZz3tLWxK+9w4HH7+XpJ3fjC3i56boVjEykaWpRL7djEwlG8x6GRmIkk4dpaQoT9KudoLoyK1FzfZBcURCyYuQykm9+51mSBY33vXXLouxLF4Mr2hhuagjR5I7R0qDexsxSiVh0ivrmS/MOALz3lia++VKcdXUW73/HNuJTcf7iX8axzeIlZTPbxbxaUHQd3RehzpVny4oQLxxLkGOukjPsHB96Swtn+qd4tkcdE5rOl54ocwdqTpXI5/SqrTokhi+Co1aFjVjpKZC2StDLxHA2rqAUXyQ0y7bQA3VYqcllZTDbhSyyVMAu5S8q3EKWCipeuOhED7wGWdxvAOi+CGZyfCYOcbLkgvwIE4lJ/vtf5di8Msy61S00NdUQioRwul0zhjBAbUMdH7uvhMezhtp6tZBpus4771zNY8+cojWQZMeNb5nZCYilTdKmg1KpxLatqzh6ZoKeKR8OLHpOD2A4HdS4S4hSmseeLTI+mcFwe7Eti0AoxK++dxOGsVA9fOs7z5IYG0bz+EnH4iSjExRyGVweL5GmZpKTUUJ19UyNjmAWCzjcbpKTUXSHgcvjRTccbG9TynL34VFGe/sRVoHSaJqT3gY+8sHrqI34+Py39vLSoVGwdnPN5i6SMoAlbH50MEdH2zBNrcpzU8gXSVku0lnlCd77Si+HRgRGwEnDsUFu2rkWoWkIIRBC0NDSxD9+8XFGiwF6hg/xq5+cWxvg3fduJh5Psu/oGPuHYGxsLycSfra3TfHQfWoxPHZymFxWgjB5ZcjGcDlRu71XP4TDhZVWHqppWNkEmst3WWgTpz3OspRHuHzKEBZccvLtDE1ksB5NFrlljY/e8Sz9yYU0WLesULsYX3l8kJKmXtb39Nsc+MKLWM4gdm4CPVBHYeQk0iyBtHE2dKt45UIGMxlF6Lry4nkCOPw1WJn4HKeKXcyi+2uUjl7uGBLjaC4vVrZwcfkcUuIINyrv9RXMMHEh+NCWICPJHKva2vnG/hGk5kQbOcqXUy6+uneY37pjBQVTsr5drUMrW+euR796YxPDsTQbO2eTxj64tZ7hkQmS2V7es2sFTXXKwz6RKTIlQsQyBa7truehNT4+ezxM2JVi96lhuut8ZLJpuu0pDoy4cNsFxuwmpjIqtOLTt3Tw/lSW+poQxyr6cPjQWfYdPEvR0ohOtjMx0E+pWKCYy9O1aTNTo8PUNLXg8njpeeUA3Vu2Mjk4gO4wiDS1EBsdZuXG9azcCAf2HaUwNYAo5TDHz9LjEBiGzic/cBN//Y+PMjI6yee/9CSf+ujd9I9lKQkXxxMh6vf3cMets06IZNYiVTIwSyUmx8b56d4JHOFmCvsGWb26DSnlTPhYpL6W/QdO8sRpDSvRz3/68HXsvG6WRWPnjvXUR/rI54t8/aU0TT29xLISA4v//Mlb0TSNsz3DpHIlQqJEbzaAMzpGyRUmmUhVjWGA7u5WPl0R6/fo46+wr99iR/sZ6utr2XHdQtqS5WLjphUYRg/NzWpyWKaFcHoRdvqS+mzn07PUOcCqFh+33LSB3pGXOBufe60ADMOBrmvA7OIjDaWgw0aeUqFAIi/QnB6MUANWaqJ8kV3mCK7DSk9i1LRQHO9F8wQquEFDCN2B5glipSfRA8v0FgiBtNQicEFjL+XLYRG+sifa84YM43g1IDR9judM2KAHG0CCFWzh8Jl+9o+7aTbOUFMX5tbrumhsmquY2zoWvnhs2bqeLVsXJhJ87N3bMU2TQEgtmiG/g2Ayw2Mv9JIgTNCKknA00uFJ0Z/x8MB1QeprfOSzWfyhEP4KZoRD+49huFys37CCwz1xHM1rqS32YTh0PDVhUlM6uXSSxMQE4Xo1RgE43V4SE6MEaxvQNA3LsvCFwgDk0iluv66DupCbV/qy5LUAZn4CKSVjw6MITcP01PL0wXE2b+zg/bfUcuxkAdtOs/fIKCtTJdat66S9s4Vff6cLj8/DF770OAGPxuZ2N5OxMdJxH3/ylz8g6LLw1TZx5/XtHD4xQnQyjdNZZNv2hdSO/qAff9CPbjgwjGG6G1tIvjJOc309Tzx5kIDfje4OYNgGViKDpMDbrw/R3NHCy7uPs3Fd+2vCifl6QegOjIpQBCsTQzi9mPFRhMON5vFfUoKWcLiRVmmOsae7A8hFCh4sF7KcoKe5vchijpDX5rZbNuLff4r+AwtfYjQhcBg6okLnCk3HcgbR7AJtYcFwYgLdE0D31WDnyoUdpL2Arq0w0U+xOIQj0qKM5PLum+6vxUpPXTCThSwVEBf4fM1UtKznA1iZOLr/4tiBrkTsWDkrq5++bRX/9UdnibpbmTDcyHyK/+epUWLCy87IJNe0Bbhzw9wY9kjQRyToW3DsTx/eseBe79vRyc0dk7Q3q52+iNdJRCY4OZLkkfEIK+1+zmgtbDIGOWTVcWMwzh+vNPG71QuZw+GgvkbJ/fjIKKfOjLPjurU89+IxRP1qXJNn2bi+C6GZRBqaGB/oY2JwAHd5980XCuPyeomPj5LPZWmo7yI2NkK4QcUBSylpjLi5f0cdZ0f89GaDEFfFPCbHJ7HMEtLlZzAJTz59iI+/dydPP7WXjMxRSOf42c8PcOft1yCE4BfftZ1SscSefac5M5Rk18Ya+gZH8DsC/N0/fp+pjE1TnZ+u9lram8P88MlTODRBV6OTcN1c+RNCsGJ1F6VikV3RY7Q0tnLw+CiG5uDkyQHODsRwGgIj2IDHLJFIRdnQ5uLm6zuZjGcx7WE6Os+fe3A+XNHGcCV27z3Bmf5JXPkSe4/bWH2CtStjBCMXFxclhGDd+hUz/9c21PI7H74Gl8vF//jS0UU/YyajIJTiXCxuzMrEkbZFcXIIwxdCWAW8hpPHHn2WM5OuBUnGJc3DP/9kSIUjzNt+6wjbbF9Ty5ZrbuBvv/gsMdNTNmjrMeMjCMMJ0sZKTaqiGUKgN3bP9LNSYWsOF5pj+ZnTmtMDhhMrNYmVSy6bRN/OpV9bXs83EGbI9A0HujeEo7YVMzmBNEvkR05jmQUidi9mwM3RMR3XnpO87cE6bMviwMHTTEaTJAoQj6dBCD7+gVtACPrO9tO5omNBEpc3MHeRvePm9Zz58nOMT6YIBm12bmtjKm1y8/bNPPHEXp7ZnWMqbWH4w3ziwdUUTZsVqzroOTPI158cRHe5ad/fT3PAwnKmefDO7ZQKBZJTUaSE5u4VGA4ntm1TyOUINzYxNTKM4fDg8fsxi0US0Qni42NYlkl8bJSVW7fjD3hobEqTTGa57db72b3nOD85qeEUEn+mB19DI36/j6aWRqRw8tUfH8MIh5mIj7BuXSfPvXCUpw+MsqXJpDcTQkQTvP3GMEcn3UweGUD6mphKjTM1lmRkLEkmZyGCDdy40kkyZ2OWShw93s8Lr4xx544W9h0fpzbo4s7br6G5vI0XTRQY7BvkQDSAX8RYUydIRUe5bscKLAy27NjMz585wtPHMpw+O8QH3nfHm+Ilz86nsYp5ZNm76aptU2FAl2AM6/MoxYxAHdIsLDhe2Qe7mEPaFo7wQnq36Z04u5QHTcPw19BcU+KlZ/bwzKkciIW666kzNk+dGkLoc2Ofa5052sKCdzx0N489cYgXe8wyN31QhZoB0jbLdG3KQHHVq106MxWdwx8shLhgykpHuAkzE0eWCktSs82HlY6he8PKCPaG3ghMEq8ZSqUS//hMP7U+jQ9e301NyM97Ntfy8zNJjo1EMcwseZdBszPGS5m19B6d4Pa1jei6zuH+CfrGExyJa4S1AvunDH59Z5iNHfUMjMfwu50LjGRN02iv4Iff1t3ArpEU3z2mYdt9bN/kobmY4u5VbewYneLREwn+x9kRsr5W3tY+ybb2CF0NIfxeN5/9971YgRYOHfsZGhYRYmy9ro2gVyeXzDB85hSNnV34whGkbZNLp/H4/QTr6inl87SsXI1uGGSTCWJjoxhOJ1MjwzR2dbPR42blaoN9R4a44aEbcTp1/v6bRymVDIJ6DmEYNNWHCNWEuf/BW/nbf32eo6k8mtfBlrWjoDn4l0cOsabVx8HTk9i+RiLxUXS3j+NxP+TilHQv/WMZbKnRUOPH9NRyXZuNpXsYH5vE43byrceO0N0SxO3U6R1J8dCdG7jrLYoNzONxsv/YKM/s7Wc47+eWthzOqT4617XS4Qpyw9Z2zEKebz4/iS8/yq9+7I5L9hBfNcbw8d44ca0W04yyY5WX+obQAkP40KHTuFzOc1aoOxf883hErUxceV+nExGkjeYJYecXL54hbRNHuFHxSLr9uGSaHddt4djJQcSwKpLgsPO8/YZ6Tg3EODhiIPSFiUSr6uAX3nUDP398N999dD+xkhuh6xgzIQcCIXRwLR4DLAzHDIn9ov2UNlYyCrqxZAa0nYlhBOtVaEU57FdaJaxcasnPaE638lJcgOF9tUCWChjBerVdSzmTPtyEEaijGB3A4a+lEGoklRvBTJ/lQL6GezIZTp4e5vv7s4jEKHlT4nc7cXlVOMPzL5/kieNFbh9JsW5VE7tfGeSGbR3UN6iCF1/55vMIIfjge27ie488y6TlR9gxbr6mkRXdzaSPj2AYDg73JDENH9KMIQsZvvrDQ6RKDt5/t0kw6MWws/jNNP3ZdtbVu3nwtjUEamqIDg5Q19qObZrExkaR0qaQzVHT1IJVKlLT3IKUEtu2Ge05g+F0UshLgjW1BGpqGTh+lLq2DrZf28LI2dNM9PfhdQpqjSy77trItq1zE9PcHgdBv4tG9xR33Ki27ArFEkVctHS10J0ZJFZK840nMjhcLjatrMHvtXmur4WASHHzjeu5wTTJZ7P8y/cOES15Wb9ihLO944zk3Lzw/CHOFhuomUpwZ8V9nzs8TgE392x2UFvXzTd+coyiu5X05DgPvOte9u0+TCGTImAlOZlq5ODBU2zdev6qd1c67GIOZ6SZUnwMWcrNMQJnrrnEKm/TNJAz7RWy2IXsTMU7aVsqdGCJgkWVO3HTemlVW4gN6zt49tTemeuu77BprPXx/d1xMFygz325lIU0H33vNYwMDPHDnx7g2GAOcM94sO1CRvVT0xZ90dfc/pnwiaVgZWLKK+6LLKr31UUmuj+CmZ6aGY+VUUmLwlgY8qF5g0pHvwqMJ290TMbTvBDzUBvL8MEyQ9pdm1q5a1Mrx/rG+MuXEiTyJjlPCDH4CiN1K3n8yAj3bGnjr16MkZFuislJIiJDtmYVybzJ8ESM//pMhlZHlP/7/i6+vmeI9oiLW9epXbsfHRzg8b4Cv7qjFocG3z6aRPhrWVU6y/3bNvDIK2NkSzbP90wxYIYQVglhFdndM8V3T5vc2pnmN+9YSdgjiaeHidoW0lvLJ+9poqG9k2R0gtrWVgyXC93hYOTMabLpJC0rVzM1MkRNs8ol0XSdqZEhLNPC5fWRTSXo3nwNAyeOogmd1jVrCfmdxEZHsNxumgMSX10N733HXMYITdMIOCW6s8iu60I0tDQzNDBKUTrIl2x2ba7nlaN97I850EkQcsd419u38Z3HT5H0t3LrtX42XrOa7vYa9hwe5rkzJh7XKO31LgaSBqViFNOymTCD7ByfmjFoDx4f49CIxnXNBhtrXPT0xijWrONUbx+f+PBWMpkM+w7306pHGfa28P3Hj/CBd14a5/BVYww/cPsafvb4XoZNix3b19LSOjeZIzk5ybeen8Aj8/zuRRrD0/jDT2zj8OGzfPvnUXC4+Z33r+HPv3YSPViPnU9VGKVzIRxuxT9cruaWF37+/mv7yNs6CPXG7tQturqaiSXzMLJ4vfOhuM3Tzx/hyIjFZMFYEKtnhBvBspakVjtfvJmViaMHarEyS9cw1z0hrFQUKhY4KxND99fOJIvNh+b2X9HVkC4WUko0b5hSYgLdq16ozEwMWc5GdzV2U5gapjB6hrxZRHN5kLkcf/bV4/yn96xmY3+CoZJGKecgb/i4ZbUbw+mkoT5I/dl+GuvaOHBshH2D4HENc1dDLbZpMhS30ITELBYZHE9jl0wcgTAvHZ3kxUPjZF0NeB19aL4aDNvm1z51F0Ojcb63N4PHHqWnZ4j9vQXuvnElN964kRPHe2hprkMTNlOjw+QyaUyzRFPXCrLJJA2dKzh7cD/FfA5vMMh4Xw+FfA6H0403FMYqlfC4PRTzOYq5PMHaOjx+P4noBIbTRX1bO87REX7jo+sWfY4rVrTx2788N9nwLbduYefWJP5QiG3b1vHS7uP88GeHEMFOilaSu+7dRdepfnTRyOe++gIt9R4euOda3rqrm6lYmrODcfb3l1jtm+BUqZVGPcq775tbFe/dd6yiWDLZuHEFyXgSjyhCdpQ90WaO/MXXyfk7sbIJbt0QZDBRoKmxnTcDdH8NxegAVj6L4Q8vagTapctX5U0l3U7hrGubaU/3hpTBu4TO1X0hZaRXJJ09uneKnx+YICtmDfeGGh9dnY3ou6OYLPKy7vTyxPMnKRRtjk44YH5+R6AWaRYRS+hWzeE+r1dWWhZGsOHcz0ows9sH5WJRHpUTslgCo9D08xeRukrRWBfmv15Xwuea9cD/9jf2M5p38Kd3N/Fn97bwlz8+wumpOEV3HStcWdaWaSDv7XJydGiKQy4PKW8jaxnmxjXXks7mWOmO0hbQODM8ySOjPtrG49xaVln9iRJDpQATqTynR+Mq7j3aT3/zWn7/G3sZDqxj9WSCSCiCodewqz7Pr9y9ik998wyGcBOxonziy4cIhlz8wS/fzfDQOKZp0tjexOTQIKVigXQ8RsuqNSSi4zSvXEXfkUPkUik0TWNqZIhCLoe0VC5DpLGZ0bOnCTc2M9pzBqfbQ22zCg+LDg/SsmI1iegEH3345gXPD1Reyqc+fPucY63tTfynD/pxez1ous7GDV184UtPkPO2UrBSdK/s5CPBANFogjODMZ7/8nM8/MBmrt/Whds5QEu9l6/9fIhmI0kyo5EynTy4XWflqlm77PbrV9B4aoRrr1mPy+2mv38MER8goXv4P195gVTWxNYNtnbX4CyW6G4JX7K8XDXGcE1tBOEJktQk+VxhwflATQ271njwuC8PP91PXxqgWDDZ2ipxeZWHVQhxzpAB3e1fkKCWlr45idIZ6eNvvrKfonAg9IVv+gB56eLnx4qwmNIGFVJhXLwnQPdFsFLRcybECMMxk0hoF3MqDtk0IR1DOBbv95sR0jIxk+MzMY/FiT4ckSZkLoPmj2BZantVAM6mlRSnBlVFLsOFlZri2Mkh3vPQdYwMT/Dzpw6SsewZKrZ1aztYt1YpkOamBF7XINs2qf8Np5NfevcWrJLJyy8dIutqwMgOEAmEmJxKUbIFXS2CbdfcRGeHWizqmxrQNB33C/10tQY4O5zEctUzPDRKLt1JQ8RNIR1HCEFtSxtmsYjhdCKlJFBbR3RwgM5NW9B1HSEEY71naepeRTYZJ5tMIHSd+nbVv5qm2RgvbyBANplk8ORxPIEg2WQCb3DuPM1ls3ztkQPUhhy87f7ZeD0hBMl0kRf2H+Km7Su4fsc6VnY18MqB49z2FsVjuWp1BwO9AwwlBdGpMR64B1asbKP/mUMcOzWKTKVw1IXZVCNZ2b5iQaz26jUdJOJJnn7uCCG3IOVupc45jm3kiVsCO5egI6Jx1z03zuH8vNqhkt28OCJNilN9iWvMZBTNc+kvwXYxi+7xU5waxKgIQzvXC7bQHQsMS1Nzk55Xy+z7e+Poe6JYxuLx3kJo7B8CWPr7XcwzeyFQO3bj54zpnTb6pZQzYVaWbfFasW1cKfjKSz083ldia6jIy2MWb181zntuWsdIVqPoCjI4meKG9TWcLYWw/A7uCE7wnhs6+Or+cUw5wWfuXkVpawvfeOksr4xPsXOFWuv8Xg9/9IAqWy+l5OOJQVrLeRAAH7uhjbsmEhQsjeNxsIpZVoQ1xrKTnM268BdO8r67V9FW4+OG4RjXr9qMruus9JUYylo4nA4yug+jWCI5GcWtm1jSJDkZxRsMkk2naV6xaiYWeHJkmLq2dnwhVel2cngI3TBoWNFF7+FD5NNpGrtW4PJ6CdTM3bENhCOMnD2N2+MhPj5GuGEh8cDjTx7kzFCK9963kUjt7JxzOB08+exRuttr6F7Rymd+85288NxBVq9SoaW19TXU1tfwg6dOkZR+BvqH2bhlHW3NIZ54sQcrNkIm6GfLqhpypmDbjk1z7huuCXPDzhC7dx+ntjbAWEbHcodpcBcoFYtYtoVbmOzasZWm1ksnTICryBge6hsi6DEIOVJ4vAuNRCEEq7sb+M4TpxHiKDfdsOGS7nfnzjYSiRy7bt6IEGKGnxgW5yi+EJQM3xzVZsgCfqNE3HptvKpCiGUzZkgpsfOZN20s8Pkhy1ueJlYhg7O+CzM9iRGsVbsEHj9WNoEQUIqPYOezuJtWUoz24aht53s/eYXvP3kaR00LnlQKwytpbFwYjx6OhNh1YwDLNDl06DSrV7USqY2wd98JfnZKJ2JOMNWwDq8vj3C4yRQkD79tG4VCAZ/XRW25Xr1pWpiGj6INb7vnGuIj/bS0r2as9yzdm68hOjyEtCxiYyOYxRK64UAIgcfvx+Oflc/k1CT+mjqGTp/E4/XhD0ewlyiGkIpN4fH7CdTUkpyMUsjlcFbwEwNkMzmGU4JccWEhhBcO9HN4VCPgHeCGneuoq6/hjrvnUiuGwwEoJLCFOXPswPEJYnkntuHhSG+CP/6dubG+46NRTvWOc93WFXzr+y/TMym59ZpGHr4pzO5DGfqTDh5+23aamusIRcLLkoarCXYhg7SKWJnEkmWSNU8QMz6KlSogIi2XFEutOT3YhRyGr+byc5PrLqwK54KUNjVGlnjRiVzCKXG5sVyGCClleReuRnmE3ySMPBeCQkmSw03ezJGTBt8YjaC/eII/ubuZoWiS9R0tPHN8mOvrSsRyBQ5ng+x/IoomIJFM8399ez9/8s6tZAomZ1PwXv9CU0kIwT2bFXPC0f4JfC6DzsYIXY0RPvGtXkpFSa3PxaCzhdu8QzydaODdXQXWNIc4OxLjxjWz88HWneQMDztXurDccVbt2MbgyROs23kDk8NDmMUimq5jFgvExkbwBkJomkZdy2wScCGXQ2iCdCKG7LWxzBKd12wjNjYy47CbRjo2BULQsnI18YlxgrV1xEZHZgokTWNkMstIxkEymZljDJ84Ocgzp036xwboXtGK4XBwy+0LuX9r/AbxaBbLVuvL0ROjDGR92DZM5gROYXLP/bP0nWapxO59p+hqr2egb4hHXhyjPuDgfW/dxKEjPTx/1sFNa9xsXttIc9ulJ81V4qowho8cOcs3npvkmjbBb35sYd3saaTSORKWm1hyoed4MZSKRV7cc4oV7XW0ts99+9iyBDn0q4HbNwa5ceda/u5LLxAzL1+mul3IIhyui4rlA0X1g9DK3s/oJZURtQtZ7GIWzeW7qriHhe4oL3IC3ROiFB9Gd3mx8xmcde1YxRx2LonmCSKEhu4uZ3x7QhQGj+Pu3IwZH6OUGMeULkQiUy5fOxcD/SN86UfHqXUVGbEb2Dl2gpDfydhYjLW1TtZv38jIZI7OlhZWrWhGShvD4eR/f+4ZbCn4zx+7AYfTRWNLA7/2LgOv30t8bBRnQx3SlliWyVjvWYqFAv5QeIHSBOaUyzWLBepaWsnEY9R1dNB7+BWauxcWp0jHY/hCETKJGJquU8yrghj6PFq32vpaPvXgSvKFAkePnKGpqYZcNk9rezPXrI7gdUyxef3S4QmBcBgtnyRnBDh24AimMJjKSZqMKUadEaxciXh0kkh9HceP97Hv2BjpRIoRq4ah/mfpTzrQNJMta5tobGngVH+MaCpNTW0Yn9/HD3+6n9qgmxuuv7wlQt+okNLGLmTRDDea2790tUtpK/YDaaufc5QinoaVjiFta8GLtebyLVro49VAu7/Ixx/exU9+/gov9lw8k8V8SMtUVUwvUlda2QTSLCHtkooFvgQ6OylleQfQMRO6d7Xgozd3855MBr+vnb/+4X6em5riwAS884YGVrQ08FvfOMSwo4V3NeX5zXtX8hc/OUnBtrm/28mfvmhxWm/g8JlBftaTB2+EwYkUO1Yt1Hn/7ZGjTKbzxN1N1BLnN26U/ORkkuvrTHxuDx0RJ2OpDO+9bgsfzuUI+P189pkeHp/w8WvZYW5dr4zZ376jg2y+SBbJimvWMtJ7muYVKxk6dQKzWMQbDBJsbSNYM3fXoFLnZhNxappamBobpb69k2IhT3Swn7q2hWGhpUKBmqYWYqMj6LpOfGJspvRxJd55zxamJmPEUwXikzEmJmJ0r2xn9cpmdgyMs3btuUPCXA4Vtz86kaJ+aJRTA1OIdBGnU6fg9JApqLUsnUzzwyeP4ShlOBQP4dm7l7bmCI5gA+01aZpbGkil8xw4ewa/L0RzWwsHDp6mbyTJvbetx+25dJvhqjCGwyE/9e5hGmtqsC2Lkyf76O5uweWeq3DyBQuPlWJF+4olWpqLY8f7eeJYkZ6RXn6xffmu+Eov8TQuxVt8ZjCOJo6TLhmXbTfMTE2C7kDmkotmYS8FRfxeKBusUsW3msVLrrpkF7OzRSmuImMYZrdPheHAQZ1KKJr2Alkm0ixh5sdxNnRhp2MzHNSaN0hxohfd7ccqZBXVk22hVRiKhXye7zx6EAdFLHR8XgddWoGVHa088tQZMnj56O21HDgdZ213LevWzZZ2llLSXutAStArjJlwrdpOyyTihOubiA4NUNfWztTIEP5whGDdwl2D+PjYjOe3pqkFp9vD4IljBOvqOLn7JTo2bFqwTQeKDmi8v49CNkOwpo5IYxPpeIx8JkMmHkMzdJwuN/5IDQ3NDfw///AYKQL47ZPknRHuXHmW587ahF1yhtJs775TvHB4lLfu6mbFChVjPNQ/hF2zAi0xzNdfTFLnLlAXdLK2exXXezWKVv1MVb0TPZOcmnLQLLOUUhaOej8P3VjHZDTOF775EtvW1jMZt9DNHD9/4RS7tneyu8ekxjHxpjGGQSDNIlKUVJJWNqHCJuaFLEiziLRKSKuEscyXbiktRQN2AUw1lxuTGcnu3cfoH8/DgsLTFwcpbVV50xvEltYFGfZ2IYtwekBKNKcbK29eciywlZ6aod682iCEIFDeqfr1ezez8tAoG5pnZdMpLKzEGM0rvfSNx9nQ5OXuDU04HA5+IXGKVCHK2o4uhDWEbRUJ+ebuNj+yb4Bj0SLZfBHb4WV7IE2j38mzPSmejQd4uENHQzKWKvLwzq45/ekOO+mKJWkOzepDj9uNx+1mfHgMyyXxBoJkEjEKuRyhunrcvoW7woVsltTUJGapSFP3Svw1NYycPUO4vpGjLzxLTUsb9e3/P3v/HSXZeV15or9r4ob3kRGZkd6W91Xw3hMgCXpRlFqOEqWWWm1Wv5nXM8/09KxZb9bMm+6nVre65Si1JJIiRQN6ggQIECgUgIIp79O78N6ba94fNzMyszKrUAUUJZDqvRYXC5FxI25EnPvd852zz96Dm44DkBSFhUsX8AZDeLvC5gC0rpNPJTF0DV3TCfX24XQ7ef6FU5xM27EW3qLln+DQTIpipcVMXmbPLpOOmcvm+bsfXGA06uTRh/Z33idXMy3XX33zCq/PqkQVFWfEw+N3DnD+cpx7794DQCyW5mJKpJsGeqmGJmncf3iIyHSSixfz/PHnv8/QYA9W6pyZzDIymOatCymWqjZ2zCeY2D78LqJkI34ukuHevjC/9yvmwnDstQs8f6HJbbESH1jnSgemHWtN8pLLlXn51fPs3d6LL+C75uuOj/ZwW6rK2MCtLcffDGxGnQcO93FxOk1buHEVhgM9KoNRD995I4cmbdwUmM5HoFdzN69ZWUwh2szWvuTpwmg1bioRXq0mr0qM6bpOOzmLsDJtLVp/vhLhq3H1EKFkd4MgmK5ejSqizWk6BQKirGAND5utULubdikNCPzJX/yIfTv7abRUJEHlckYgZIX/4VcPYyDw4rHLtFsqH31wjFq9QaGqcSomUGmkNiTDgiDwix/fenCikErSN7GDXCJm6koDTq8fm9OF2m5vqtwauo7dZXJ/wRy8CPYNUEjEGN1/CK3d2vJ9BEHAoliIDO4iF1/GMAxkxUouvozaahMeHKTdXOvkqK0WWjNDWZRwaym++3obh92G3b2WNKVzFTJNO/n8mia4YrVgKS1QaQtQTjM43MsHHz/E8Tcuka80eej+PZ3n3ndkkMoLZzm8dw8WCfoHerBYrTz/o9dpKF2cvZKiIgVAU8jPFjh3YZG79vexY+ett2V+v0IQBCwBs6ql1csIshW9Ud6cDGuqeZ3XSx01hXdcLwzQ60Uk97s3N3qvuG3UTtBrI1kqXo8mvAEhW4OHD4Y5ejpDrLo5gVYLSUSbE62SN4ecbxBqJYdosaKVUsjeCHqzdlOJ8Go1GUPvHNfOxzB0A0rp91Rd/lmAxWLhwwc3VjD/X09tJ1+u0RcO8L8/N8vpqgevLc3d26J89PZxVFXlf/jWFaxWK5JW4geTDk4nLnKo18VSWediqs5k28//44id7f1dvDyZJllq8cEJHxFXifvGQvyL7y5SF+x8YEcFr2dNCu/RPb08uufqszRR8gSx22zkkglcPr+5jkZ7KaSTm56r6zoWm20D/SzQ00NidoZdd99HNrZ83e+lZ3iEcj5HIZVEtlgoZFKIokig2+zorUIzDJqpWTRnCGcjxesnCwgIeLu6kC1m7JTLNZI1GVd+jcZmGAYBm8ry8iwYElG5yqc+cjflcp23zse4++B4p4Axvm2II9NxZEuAj+wZQrHIBEIBIhE/L729iKDaUeczZKogiXb+0589y+hAgA8dHGN829B1P+eN4ufuKuiP+umbn2MoujmBffC+PUwMLvDdFyeJlQQqtTZPPrKfxHICr8+N/SpfbrvTyQce2XdLzutGq8WS3kA0dNrrNC4ViwXpJqRx7hk2GO/z4/S4sQhpNjM1BbNlKVpuqiqsVQvorTqCKCFYbAiCiHCT3D3D0JFsLgzVTHDamXmUyBCtzAKy/73v7t6vMNQWWr20gQaiVQtojTKCKCP7us2hmKI5bLeZB2ggijKS08dipsLsD97AMbgXVyvF/dtC7Nq9A6vdwZVLsxyf07k8N8NYt429u4eI9oapNS7TG7lxXVOL1Uo5n6VVr6HYzDZ3KZ/F5fdj3aIl5e/uoZBKggDZeAyH283S5QvYnC7SS4tEBjZXKOqVMtVigUalDIKAxWqnlEkRGY6QXV5CsdnIJ+JEx0yZMsMw+O1fuptXXr/MxZkMDUPG4vXT61Pp7fHyxa+/zkce38Mj9+9mpHuGnv4of/O112hWy6RLGi1HNw4xw137e3n4IVMx4uiZJFXDzv4daULdZoKSSBWYKntpnknwG59akxrauWuEM/Pn2Ld9kPGhIOlEiq+/tIASHkMS6wwO/cNtmv8hISq2Ta50q5AcXrR6Cb1RNSfrNRXJaer/Glpry8rv3/fcgaGpOIUqVcHTaTnLsohlZTj0RtDnavLYkR5cThs+R5YVpczN0HUkd/CGu196s2aaeuiuDi/7pvnSho5odXQkP7V6GdHuMTfd15HP/HnA65NxXIrM7kFzY5UrVvna6QSy1uIjB036gMuo09sssis6vuHYRlujrosErRbm9QBXLs8wW4aE7uMBV5anxuzsGTHXtW9frpIwvMSSV9g7EMBpt/L7t/kolDYmwu8ES7NGpVRAFEV8XRGW8hdJLczRPbyZlml3uRBEkVa9TqWQp1YqoWsagiCwePE83q6tN0yphTl0XaeSz2O129HRkQUBAYFWvUGlkMPuWjvnDz5xmHDgHG9eyFBXRbC5scgSH39knO8fneaeAw22TQzwaw+3CQT9PP/iKaZm09RUgXzNwO500e238Fu/as5kHH1zllPL4HMnuH/FblkQBC7FVcqGwv5dKoGQee6yojAaddJoGXz88X2UylW++NXXEHp3k87Pc+jguzdWuxo3lGEJgvCEIAiXBUGYEgTh32zx9wFBEF4UBOGkIAhnBEF48pad4U1iYLCHz376Tnbs2HzzNf28IakHcCoGB3b2cuXCNH/0lbf56vfe29DbrcIn7uricx/ZDi3TGakh2Pnj7y3wyszWvDW/pcFn7vYy5F2rvHk9dmweL3/2jdM0xM2tONHqMLnCFgWtXkYtZTCuGm5qFxKoxZR501JbtLJLa+5J7tA1RfDXQ1sRxF8PszJhdKpDktWJWs6A8NPRwXy/xK5WLyG7Q7TzcfSm+dsauooS7EdvN2hl5jGaVZTQwCZtaMnpNx0DXX5auTiyJ4Ts9KMW0zTqTV44V6LZMDcXYxOD7PKXyWZLHDuT4q+/fwUMg6mFAl96bp5samNLtFmrmcMUmMMLpZz5d6fXh2KzEx4YxuHx4HB7mTh4BJfPT7NeJ5eIUUin0NS1gTRd1wj29NKs1ahXylisNrqHR9A1bdMAB0CtXMITDCGIEv5ID+5AAKfPTymbRpJkZMWKzenEMAzqlTK5eIx2tciD9+5GsVgwbAHCQpbDu7p5+/QCl5eqFPJFTp6a5ktHM7zy6lmmM7AQL1JtGjSzizxyez8PP3SIs6cu8+//6HuEHRofPuLvJMIAY2P9HO5tM+AXWZiP8+VvvsnCfJxob5iPPzLBnu29DAz1sXv/ToYiDnqI8/Bjd276fO8V75fYfcfzXHGlu9bGWrJ7EOxuZE8IvVXDMAzauSVTCWHVve0fEAf6RP71Z+9j0L1W1Xr+Ypu/+FEMXd6ctBpamw/stnDfyFqibJOhu7eH7//kAudTW5eSZXcIA3MdV0uZzjqwCq2SRy1nTM60YaBWcmiNMpZAHwjCltJpm85NbaPVihseM9da04oaTIUPvV7CaNVuaB2/Wbxf4jaVzfMHZ+A/vBLn8pLp+PrqbI4Xcj6+O9PiD16cpt5ocqZgISZ1bVjLZFnmn97Rhd3uxCe3UEtpbJFhPjii0N9e4IW0g+nyGmfxI2MK9vISR5fafH7Oy08uxsjV2vzJJYnvnVrccF66rhPLZNFXFIYy+Tztlfc+GPTg83oZO3CYXDLGxOHbO4lwPhGnkEpSr6x1vOrlEsFoL816DU1tU85n6d++E7XVxh3celOpqRqeYBeCKBKM9uJwe2jUaiCAbLHgDYVpN8xrIbUwRyWf5eD+cfpCdtqKj5BNZf+wmxOnZ5mLVZhfzlPM5fnyi4t89QdnmY5VWUiWyFVUtEaNgF3jc7/2GMVCiT//yx8wNZ/lrgGVI/uGNpzXo7dF2eWvIMsWvvn9t3jlVdPc7OknDvDg7UMEI12MjA9zx+0TuBoxPvmhW1OoXMU7VoYFQZCAPwIeBZaANwVB+LZhGOtt2P6fwN8ZhvFfBUHYCXwfGLqlZ/ouoOs61VIJt8/XeWx4bJAPlppEunrpiXbx8htTSJ4etEZmw7EL8zG+8eMpDm0Pcu9du27o/VqNOsV0Gk1tb7mTM9vAZqJhczrZFmxxaHsXF67EKbdlpgsKC/ECuWIdQ1I69OCrJXv8lgZBl8hkTsahwPBoP9NzKXYO2Tl2Ps93324hvpnDsF67zWi0W1g8XbRyplWoVs5uqMgIgohoc2LoKnq9huQK0M7FkWyOG5oI1xsVBECvlzdUQcxqshPD0EHXf6oamO+n2BUsNhrJGZRgH3qtaG5IJAuN5AyS3Y0gWxEkGbWU7nxfaiWHqDgQFRtKsA9D11AMUPMJBMWO3qygRUZxNFJgGCSWE1yczhDPNZGCgxjpaXb0KkgWCxZZRDYa1OtVYK1CXM7ncHp9VPI5GtUqhmEwF1vC5Q/iCQap5HPIsoVWo06tXKRRrSBJMpGhEVLzcyxn0jh9PuxOl0lvSMTwhkI4vT7azRaJmWm6h4Yp53K4AwFq5RKNagVZseINhVm8dB5N1cgsL2HoOt5QF7lEHF93N+1WC5vTdOsyVlqCmqpyeSpGriEiVS6Tje7llbfmqNqjRKQivf1R0rkaCi3CkV4O6xler3mRbE6cNon9+7fRatT55qsJWi2FoKhwYP/GilAuUyCZrbFQ95DKXGCyFiA0m8Fpt/BXzy/hFut89IERBob6+NyvPXarQ8WMl/dR7N4s9EbFtFpfxxEWZQWtkkcJD6NVciiREdq5OPI6kw7DMFDzMQBkf88G183rYW+3yr7xEF9/JU7N2Ji8uqUGD+wL8talHPGaFYdQ5yN393BlchnR7uatmTqZMly8MEupsbauCaK0QUNd0lts75GZSrZp6Dr9vV3k80UesDRJZOtcTCv8f/78NbD5ryWsgVYrYvGEaSZnsEZGNhkfGXrb5PCWM2jljKnjnJ5HE8Qb1mfXqnlEh9dUm1gvP7fCTzbUNqLVcevVOFbwforbkN/LUz0Fjs5L/LvjLf4PS477xkPEi0u8VYMr9PLSlRS/f7uPeksl6PcSzxapt1VGuoPsHermL/tCCMIo/9cPznMhk+TNmJ2y7EOy+fEbaaaW0yyVWpyYy1L3DCAbSXoaC0xERplNV7HqTWq1jd2FqUIFdWI/lanzOASDRU83pdkpQj1RerU6EUFgKhEj2N1LamGOVqOBrmlExyZMreFmk0o+h2Sx4PL5yCcTiKJIz8gYtXKZyRNvMbJ3P7l4jFBvH7quk4std5JfXdfIJ5YxMKXY7G43oiiYMyTbd7J46QL921fVtsyOndpWubBUo1GOIXiCnFg2cEmmAczOQR+iJGEVNKyyhUcP9fIXJQO1lEHxd3Nwt0nv/NHRSZa0CEYpzr49e3C41q79arlKIpbifMFD46WLzBTtBNJZ7rkLvv3ji8zkZZ7MFdi+c5RHHz7Mow9zy3EjNInbgCnDMGYABEH4MvA0sD64DWC13+UFYrfyJN8tfvD8Kd6ebfLpB6JMbDMrxYIgcPjQWml991g3LS3FY3cf3HBspdqgqNrIlzZWNq8HXdOxOhw0a5v97lfhDXVRLRawOZ08cjiKYrPREw2SzxaZ+nGG1+YlQL2uxu8D+7vYs2eUP/iLoyxX3fyfnz/G9j4nTxzezszyWxQzEsY7DH0IkoRaSiNIMlo5u2lxFB0es6Vpc9FuVKBZweKL3PgiKlnQa4WOvu7VUAsJBNmKqNg6C7XpwKQiuUO3ys72fRG7eqthOvrpGnqtsPbG7Qay3YWuthEMA9He1aGdqJWc2WKuZDuT54IoIbsDgI7k9KMWE6ilNC1V5a+eW0SqpWm6+tGzZVrNLA6njd3jEV565QJPP7GfP/7Scb78/Bz/4p9EsCjmAmXoOtViAXcgSCa2TO/4NnRdx+Xz06rXCfT0kkvEyCcTRIZGaDcbCIJEYnYaTVMRRIFAd5SFC+cY3LWRCGexKkiSRDGTRGurOH0+GtWKOfGciCFbLAzt3ketVDQtmlMpLCWFnpFRYlOT2F2ujt6ww+OlWa/j9HjxhTVePbVEzrGdCXeZI/u2c3m+wFDvEAD7942xb+8ogiAQW/aTa8wwGlbYvXs39pVK88FRN61Ggycf20hfyqWz/Nn3ZrBpbbZ1qzx4ZCcTiRK7tvchyzLbwyKlfIv/9mKW+yeKdAVc2KwW7HYrr59e5I59ffT23RLdy59K7PaEHFtStm4VZmeW+MJzdfZEDT7y1NbvUyyU+N4LFxnbP85th9fWYl3T+IO/LKEj8C9/de8Gab3rIbO0iMsf4LefduO5qhqWiy/j744y1B0j0NNLMZM2ZfwUne7hUW7fFetoXu/afW2FoFwi1onbQHeUWrmEpDcY3zZIOZvhF3p6r3ns+s/90uvTDB7YyeXlKrvuGGPXrjVqmGEYxBdj9PQfZHJyke+/Msd9H9jLwQPj13nVjXjuhVNcWSrzqY/upSuy8bt4881L/OCNEh847OXIyj0wnytw6twSB/cO4PXd2LDib/wf1/3zT23NrVnKnO4+ekPnCPDtZ1Quz7oYH6rQ1CrExqu8Pm9wshpi154k5WYN+6EaRlDBBpxmiv/ybQ9V1cvnfuFtvMG1jdXjnzW4/F/9XGpYuP/IHLVGgmNphb96zYvQrqDpbtTSFKJiYWxvkm9kKoyPtdndlPn6zARq6sfs3Gvek8uiBZIihC4gyG3audtx9A1ij/ZyOfUdfH1lyEE+34VVGUGr1YgMbiOx8BatRhtBkBjcfieJ2UsowR/iHjSvkxZQqYtEBh8hn1yiWjuH0ngRTW3hCnyKailFy/JFunaYsVaYH0HTZDK579Ld/SvoNEknf4x/bJmWxeyUe4Z02g0Vm1Nh33id04lDhKQL7N8bRxAEiiWR0PhFRFHkn/62qWyhazPsuiQh0uTAviy9QzZaXGB8XKWpObj94Sy+/gLrp0i+9pyVuUw/Ect59uzV2SfoeLzQsiwwMqzRqIv86NwAb82+wIcfK7CwJLB3r8ELL1oI+FVuu+O9M35v5BV6gfV1/iXgat+7/wX4kSAIvw84gUfe85ldhdffuMgrp5N85IFRxsb7ScVTOJ0OnNfxo7ZbJWw0sCgymVQWSRTwhzbyo3btHmbX7s1c1Z07R/hdnwN/17V5lpVCHoti7bSAbSuc4/V6q5kl86sL9ERxeHxUi4UOlyfQEyUbi7E0tUC22EQQboxHduxchsmFAkXdgSBC2+LlwmKZ3ecv473RXPUdhlhEiw1W7kXr25/mMEZzJWG9duVGtFgRvddJCgxjRSJsLek1dG1NO/PW8NjeF7GrVgtmi7KURvaE0RsVkxqCgGjzIKjNTRqjomWVh6mj1csY7eaapa0BrdQ8ks2J7OnCUNv0eVUcQT9Ol07O6mQ5p1Cz9/Ds86fJiiG8bgWfQ0TVDURR6lRoQ339nY1HdGSM1MIs9XIZh9tDuZCjXq1STKcY3LmLTGzZNFbBHKDrHdvG1Km3iU1Pomsa2dgytUoZp8eDJMnYXR7qlRKIIuGBYRKzU8iKldT8LJ4VTpggCDi9PhYuXSAU7SO5MEc5n6dRq+Dv7iE5P2sOYnT3dLjKkizzC0/tY2Epw6ED44iSxNhKTjU9tYiiyPQPmDJI0d4ufuXjZockm8nzje+f4MCOCE89vnHze/yNSxw9neCJ26P0unVK+RaJWIo3Tgt8+Mk1k49PPX0bly/P8/zxRZwWN197JYXQLBGwtslZogjtK3y0N3wrNnP/4LGbTmb44vfOM97n5qnHDlItV6mUK0Si176uLRYZq9DEbrPTqNdJJ3P0D21MFL0+D5/52GbrVFGS+NwnD2LANRPhVqNOs1bfoEwS6IlSr5Q7iXAxY3bnrHYHvkgP+WS80zL2hroo53I06jUWL13AH7mxmQm7y0M+EcdqNxdYh9uDw+1h6cpFrHYn9Up5A89yK3h9Hj78hLlB2Hdw898FQSA6YH5XExMDTKw4pVbLVd46PceuiW5C4evz/h99aD+PXuuPooAg6IjrYvP4qQWOz2po+jyPPHCNqa6bwz943K5ictZJUwyxbTTF6Ha4eAHyOcg2e0Eu8MFHVa5WChnqLVGp1hAlnVNvtegfgGBYIZdqozVr9HclOXKnWZx45eUWlXqK0WiWdEoj53KTbkS5PFUkXoyQSufp62ngFDM4nAJaS6OcsWP31rCG12iZ8cQUijHI7JW/xNcLuSt3US2XGd51kPjyt1C8bZKLBnanB2f3Cdo1K7OnT2D3OSnEAghYEUUDBPANpCgnfkJLNRia+BTJ+FEQ01Rq38PhX6tQC4JAs7lIT+8hYnPDxGaO0qrbcUeWqeU8NPRxNPlNfN0yVqf5HT32pEL45BmGh3WC4bXvLZ9ts7xosHOvqTkvSiIfftoATM79C8/rWBWDu++T2bW3BZjXSTbV4ivfDDLSV6I3XCeXi9FoCLz2hpWPfKjeeY/b7pDYs6fNV59JE/I3+O6P3CQbI5x/8ycsC/dgm4yxf38exXZjm+dr4VYRNX8R+G+GYfQBTwJ/I1wjUxIE4XOCILwlCMJbldyNS7qUKk2qOKjUmqTiKf7kO9P8+ZdfI5nIXPOYh+7fx//42w/SE/bxZ9+6yF88c+aGByIAuqLd11yUK4U8kmyhnDcHRyor05c2pxOLdU2hQZREXP4A9UoZm9O5gdQuShJ2t4vtu7exf/cA//azBzr/uxpOscF9ExY8cpNU3crFuMb+PgmHYHJFJVkiFOnC537nhNpiNBnxtRG0re2erwdDayO5u9AquZs+dj1kfxTJ5d9YaRZEkzurqR1Fhb8H3FDsro/bqzl57wSjbWoJr0JvNcCAdqWA1qpvUPTQm1W0St5sZdrcCKKMWskhyBZamUWT223oWAI9IMkYuoZWzTG1XOFC3sVr57NMNyPsGQvxgd1WSlIAyVCZGO3m1z9zP7/1y/cjybIZr4bJQytm0jSqVXRdxxPowtsVQW01aTcaBHtMYfhKPk/P8CiBnijerjCCKFHMZrBYFERRxGK3E+iJojab+CM9aJqK3eUi0G0+FpuapF6p0dU3gKQoVPI5MstL5vezck3WK2VqpSKyVWHi0G1UiwUUq412s0mjWqWUzaC222ZVupJnx1gEUZI6x1eKRb7040X+9geXOt9nvVqj1TT5b5en4pyNC5y+nNr0G5WrDSqGk7Ym8PHHtlMU/eSaFqZj5vfy51/4CX/2Nz9B1zS2bRvk937lHg7fvgdrM42qqjTKeVqJK5xeVHnuhdM3FR/vATcduzez5jabbcqqlXLVXCf+7vtn+JPvzHDs5beveUxffzf/4+ce5PGHD/C9H5/n8z+KcfHCzA2/p8vrwe29doWylM1iddgpZTPUyiU0VUWUJJzrXMA0tU2gO0qzVl2Zjo92OiFgupG6vH66+ge3kuzuQNdM+k4uEcPucuHv7qFZq5JPJjrPsTlcuPx+tPb111Jd18nFlzv3iZvBibNz/ORyi1dPLNz0setx5NA2/ufP3cuhgxOdxw7sjDLmLnFqMsPxNy5d5+hbineXL2SvNZW4GXPTTWp1Aauep2/QyttviXz36DiXp2186Mhx7ri93eHsqi2Ni2ebNOsqTz4FTnubP/qrMb71fA9f/qqDTKqFqhpoSheiYt6vzp5SKZQsfPoTRQaH4UphP1arxMNHZnC6rUjuIAF3kTvvkfjnv1NgaNRCJe3BKjxAORGlXiast9AAAQAASURBVNIopc33t7tsBKNDKHaFak7A19WHzeEilfwu3miF4ICK3V3B1zVCKW6jVqzhCroxpPNY5R34fHdglfdgV3aDDr7eFu5Ik8XLJ8jPQzj8URyOnRi6THFpiEZZwzAMDEOgnM+iNhUEXEQGtmOVHkBrOhDxYxOeID+/ssGMW0ldDjPW5yQY3jhY+vyLbr792n4unjWvAV3TqRbNNbdWanD84jCvnw5tyr2aDZ2KGqBUVbjvQZFQSKNo2clyxkcmrXPsqMZ//K8+5qdb2J0WfuWXGzz5FHgd5pxTQ3fQSi/QrLX4/F97byq32wo3kgwvA+t1SfpWHluPzwJ/B2AYxmuYxu1bsrcNw/hTwzAOG4Zx2BW4/i53PR55YC+/+8FB9u8bw+F04JVqpEstvvfS5Dsea7Fa6fcJ9HdZN1VsLlyYIba8+eb4zq9po1LIUy+XyCwtYrHaTK0+w6BRXbtoFZudVqO+YbFeRb1SoVmrkYsv4X6H72IwpPDgvbsZ6zYX9dEQfOQDB9g3bFajW6KD//y1Czx7+p0XjMOjDv7Jx29jtOudq1da1RzqUMvmTVQQJZPPdoNuSdeCIAibzD5kVwDJ6kSyezYN9L1L3LLYXR+3N/vZRcWOqNjWhO0Fkx9oi46ZVBK1ibqyudCbdVO6rpoHwRy8EyULWr2C0jWIVsmbkna6hiBKtFKziE4/qxV2QZIZ9LTYt3eE2+/Yzd5hFwfGPDjWdStqpSKtegNfOEI2tmTafJZM6k61WKBaLqHrOqIskZifZWjPPiRFIZeIUc5mSc3P0qxXKaSSRIZGcHp99I5NMPnWm1isClOn3sbuWktoZMWCJxhEEARyiRhqq4Xd40GURMq5LPlkHMVmXk+9o+O06nVSC/NYFAWr04lksZjDLYJAOZvBYrMRHRun1aiTiy9TSCYoplM43G72DVjYP2Z2Pc6cOM9/+uKbfP7LxwE4sGeQx/bY0etF/rf/9Bxvv3URgPNnLjLS6+H3PtjPgQPjeAIBfvHBXp6+O4rHqvMnX3iFQqVFuSV0bqDZTJ6/+87b3H+on3t3eqn6ttMfDeCwgM16S0R6fiqxezNrbt9AD//so+N8/Mn9AHQHrOi1PD86WyEVS1z/YExKRo+zRcC/MblNxjOcOzd9w+dxNfLJZCepzMXNDnuzVuv8Nk6vn1wi1uk+XI3UwjwCUMplttS+XkWlkMe3rnhRzuVw+vzmvMMKvOEwuqbh8l+/k1VIJfB3RzumMtdDo1bjT794lC8/8xoAu7f3cnhA5NDu965WcrUkYqQ7xM6JKBXDRaF845TA6+Cnly8Eb85wxeb2sm9XGbffyvCwikdaJmdsZ2bOxh/+xQDf/pZ5/zl+XOCbxw7wyjGz8FUptGk3m9i0FCVpguNvOoj0Wvm9fzLNow9XefHH8OYpF2cWJ1iaUwl1SYx0LTIx3uSOuyR272gxHJhj3/6177pRaVGvFrG73ah1N+3CPlzWj1LJtpGcM8SW/hqhdQDqh8mVv4A9cgxXuEg900dqRqZeKzF/8SJGc4Legc+AZZqu0SaN9tvkE8uUC3mK1ecQZTOls3tEEKFv+25mL/4IXb5Mu9xLKHwXjZKN7NQgdusOCsXvY3O56Rk+QCp2kpZ2AW9vnHL9eTS1CYIZ61ptjEDXYSzcSSnTprJ4G7lZ89rYNlplIjxDb59AJtniS18Q+KMvTDA/08TusvL0/Ve4d+8c//7/5+SLf23e13OJGrGFJp/9+AU++mEz7h59sMKj+05w244Fnn25h8V5nZoRpLYuLJ/7oYHDbvD0I/PU6cYR9ONzt7BZbsxI7Xq4kVX7TWBcEIRhzKD+NPCZq56zADwM/DdBEHZgBnf6PZ/dOoiiSFeP2Z5zeVx89lN38OxLFxmMbkxMspk8zx+bZu9EiB07hgBzAfjlT27WU11ejPHVY1lC1lhHp/hGYbXbEUWRvm07WLh0AckiI8kWsstL2N1uipk03lDXdRdJQzen7HVN2yRXtVodrlcq/Kcvn2YhpfPGa6e4slhG1GSObO/izBsnOT3bwPy6wbA4b8iT4+JiDfnlcyzkVNaHgM2oYwDNdXQNQ1ORXAHUUoZ2PgYIyN7wu3at2wpao4LRqoNhIDkD6O36e062V/C+iF3ZGwFdXbFlNqfKm5lFWqk5c5hQbSMIoukI1SihNUrI3m5TaF9SEJ1+tMrKUI3TjyAISDYXajmDtXuMZmoW0eqgnY8j2t3MlxT+/Icx/m+fcrF9OMjE9mEEQaBRrZKNL2F3eWhUy6QXF9DaGqWM2V0ppJKEevuYOXuawPadtGbryIqVQjKBrml09Q+QWV5iYOceFi6eR7FZqRby2N1u0+788BGysSVki0KjUqaUTVPO5XB4PJRyJuUj0B0lG1umWa3SrFWRFSuKzY7WVnEHAlRLJRSbDUPXOl0Uh9uDrmm0Wy2qrRateoP47DRun59GrYbT66aYTqJpKk8+sh/ZYmFpfomvv55DaFQIu1z85CenOHouxyceHuH1RA3V3s3kbJJGo8EPjicwNJX/+XfW3CsHByP85etzpLI1rJ4Av/ahPTg97k6naH4xzeWMjChqJOMljKrAtgMRHnzglvFx3xexu54m9oFHD+JynidXbGygmxmGwQ+fPwmCwOMP7+8UHO66Yyd33bHpJfnWTy4Tq1hxORYZGrm+g9XVsDmdSLJMNh6jXi5jGAalXBZRFCllM3T1D2C127eU/1uFIAjYPZ4Vys9m6JpGMZ3C6fOTnJ/trHX1lZgWpbW1z6JYN1SdrwW3P0A+EUO8ahak3WxQKRTwhSOd763VbJFryKham7fevsIbF9J86P7RW8VF7+Bvv36MakPnVz5xhGiXi67uWzLM/L6I26FRK//qd5aRLOZv1d2r8OQjBV54+TK9kRrT8RaSaFYSa+U2QjWGU6mSTcp0d6tMl/zsiMaxOi6zd1cdUHB4bJx6Ref1yZ2Mes/z+M5TGO0mqaTML3yy3lnD7XaVDz1RwuU1K6ipKSeSfhDaSTLL84CHYnYB3ajjCIvUU4fp6opSyWUJDAyyMHccRThMJjHJ0PhDxGZO0Te2n9lzx/B1jVFILyAoJuM2Mq5RSp+gXhSwybeRmcrSqC8hMwqGQHLxPOFtCeoFBx7fTuYuP0/PziaFORuK1YWiduPxDLM0eRp/aBjJcxzZKtMzAbr2Mk5RoJDQEawXyGWWcfgayKKE4vDTLCyRX7IxNlJj74EmhmHhv/2Nk8WYgtNZopRr8h++G2FioIDP2aIpR4hlRdrNAn/0+SA6Fu6vJ3jgUfOaCIQsnD4tcfqiDc0VZGJbgscHzuKPmNV4TdU4dTmCjoTTuUCxBD2hJJ/9rLYilf3eqGnvmAwbhqEKgvDPgB9iyo//hWEY5wVB+F+BtwzD+Dbwr4E/EwThX2GS43/NeK8162vg7NkprIrCxLYBPv7BzV7Ys/MpLmUkJCnbSYaXl5Kcu5LgrkMjuL1rvK6uriB7ojEiwXfHT5UVhXwyji/UhdPrM9vNtQqSLCPdwPCHw+OlXilv4K2VclnUVhO7y4Pd5aJWKvK7n9rHyy+fZHw4QiKVp6GJIIoUG1Azbt7Ws9C2cnSyzWoSDaYO7q8+NUyz2eIvXzQTLxAQFMeKwUZwxR1NBl3rTFrr7SZ6vQiChOy+8aqT3qyit8wqKGrbHBarFkwzjmtZu94k3i+xKwgCSJY18XsB0DWU8JBZ6XX5VxZSHQQRUbGjFuIooUH0Zg2tmEC0u5HdIbRaccW6WTCl6xo1lNAAajGBINvNyvLKJP+zL13ibELgo80p9u0fp1Yu0ju2jdjUpKkWIkl4QkECPVFy8Rj5VIpiJo3T4yY5N4MkW2hUKnSPjJCLx0wDDgxy8RhWux2L3Y5/5dhcIo6uG+hqi2a9Qd/ENpILc3T1DeANdZGYm6FZr6/wiktIkozFooBhYFGsOHq9lHNZBNG8Llp1cwg1FzeLSoGeXqqFHN6uCOnFeQwEcsk40dEJWo06it2Oy+cnPj1JsSXztRemCDkl9u4ZYGwozOe/dY5WtYyh6/zSR49w8sRFHn7sHv7yr36E5AoiFxewORz85OhZllJVnrh7hFxdoNlqcUe/RLh3zYr11MnLnDm/wJ6AlYfu2ce3fljFkHVuP3Tjg07vhPdL7AIkEhlm51McOTi+pbKO1m7z1pSpYfvI/SqyxUK72eSl1y4z1OtnbHxjwrtvLEgwWaW7+8bXi1VYrDbKuSyK1UYw2mvSfFIpHNehVlwNf3cPrUa9U6ho1utUiybtzRvqopBKEOjpZebMKdwrFLdsbJlWs4HT7cFiu/k112K1EdhiyK6UzeKPdFNIJig34ftHZ7htV5jf+cg2FEXhhVcnSTWsZHIl+gfW7hPHXrtAplDnyYf3YFFuzCFP1zRePX6ZaLeXkZFesmWVqmqh1WgSWRff7wXvp7iVFZlquc3RYzaGesucOimTbo9SbOr8y98zN1AALc1CqyVw+pyDs1MuMo0I273HMejioQeatJoGrUYbxWYhFGjQZzvPPfc0uTKp8L03o8juEB+unWH3fiuXzrV45pX9TIRn+MTHW1SyDSI9n6CYTqG23DTqMSJ9+yjV3kZ25mlkdpNPLFGrZFGcGWIzCQL+J5BkG1ZHnGTyGQRHlXQqg+SMk8vP07fboJySSV72YYglGlkfstWNZFfQWh5k9tEzPEJybhaH3UP80iI2uxucC0iSSHE5iHfgIpqq43FLNErHsbot2F1jNDSoZEW0ehf2QIxaXiEU+iSZ1FGsziaVjBVvXwnd9l0km42url9g/tJLiKOz/NlfumjXq+wYb/GBx2v87d/6qNcFmo0Wdz3lwDDOMjouMHkBUKKIrTr9/QaLc21ePObl9gNFShWFtj2Kp/IW+w95EEVzo5mOt3n5Jwa93iVuO6KTLys4PVbuuauwqdvxruPlRp5kGMb3MeVP1j/2/1737wvA1lZWtxClfJ5vHEtjo8H/fdtmv22A/XtHkMRZhofWdtHHzyxxNi7idixy1x07O48rNisfe2pzQn2j8K6zpc0n4gR6omSWNHyR7hseoLl66EJrtTqe4XaXC0PXaVaKHNjZg7+7h4M7S/SNb+OL3zjOZM5yq1QXQJI5P5lE0zRWd1iSw0cru2RqUbYaiFaH6YW+TupNb1RW5IA2c4i1esmsbCqbbx56s47sMe2XZY+Z5Emu92bpvBX+oWPXMHS0cg5RsWGobWSPqTUs+7pppeZRwkOd31AQRARJRnIGMDS1o66hhAY6GqSS3YNWSiNIFpRAn7mBECUMBIxaEWRLR7P51FQeDINvHKuyb/84To9vxVEO+rfvoJzPE46Y718rFcHQGNixj3wyjtPrp5LPoRs6S5cvEYj2YlEUEvOziAgM7d5LPhGntDKdb3e7Sc7OMLhrD7nYMpqm4vKZr7F05SLjB2+jnMvg7+5BSJmfd3U63xMMoes6aqvVcblzeX2orRatZgtJklievIxh6Oi6YRp0KFZ6hkdILy3S1deP2mqRjS3TPTzKc1/8EZrkxibVeOnNBV55YxqsHg7uiLBz1wiVUoWy4eTc+TmweSGV5zc/cw+SLDO1VGa5LBOLZ9gVbvF2O0TTWNucVQoFvnk8i1o36BckfH4vv/rp+8zr4lZdi53YeX+suz9+dZapvIzTNsfefZsTfllR+MxjphLDauV8cmqJY9MaC4mlTcnw7Ue2b5qoulFY7XasvX2d/zYw6B2fILO8SHhg6IZeQ7ZYNsyCVIv5Tiyan8dKPhFHsdvxRboxdJ1gtJdcPIa3K7yhMvxeIYoixXQKxW4nvZwg0bBxZSbFG+dT7N8W5PEHdrJnOcXAcN+G405czpJr27gtlaGnb40+Ua9WKZeqhHs2V3mnJxd4/kKD6FyBz4308usfP4TabuPy3pIuXAfvh7idn2lRq0GrJXBybhuTk1eoWCboc5zl8EEdUVz7/e+/t8mleQlVcrNzsIAv3ySe7qdU7GXf7Jt88yfbcSslPvsbdY6fCrFYH6RUOEEkrOO2lLDJdUIrlMNwRGDQN89wXx2QcIfs5Je+T6NqZ3D7B0jEvoNmfYZgyEb8ghuL4CY6MkyjsYCnf4ncnMkJSM5dQPEUiGxXSU3ZgSh2yzjucJBq/ssYzUM4HRH8kR7i6iTRsQkuvfky7i4HajPNzPl57C4vod4jNKfTRIcPkUh8nmDkkzRrJUT5GJJFopyS0Q0V/3AKtb6A222lsDCA0ewhN+NAJ0umeRZsORrZHoZ23EZy8U3cY1OIYpv5Kz9hcPsDXDhdJ18Bm9wgn63zn//IjSypeD0GT37AQLZISDY7Zy7IuJ0tBIudO3YvMLrdyWuvaCyXh5ifv0B/pMrklUXwDGFo2Q6R98dH3cwWR2gXk9zvWGRsp8zh2zIIwq3zjfuZcqBz+3zcvc2O3Xbti1e2WDhwYGLDY3cdGMDnSrJv19Y+3dfDjd7kfJFu0+s71EV2eRFRlrE5XTjcN16xALA6neQSMdz+ILHpKbR2k+jYNjS13Rnk+M6PTjKXe/c3X6NdB9HC3ijsGw/yjWMJath5ZcYARAQB06GoWUGyO5GcPtM0YguFB8kVQCtnEa5KeLW66aym10tbJsMYBq3MYkdC7hbRIt530Mo5BMWGWskjyApqyaQkGPUSSqhv028ou4KohbhpbGJ1mBuNFXk1Q2uj1Ux1BtHpNeXaVhJfxb+ZTyg73FiMNm3Z5NpZHQ6sDseKkkSVYI95jK7rODxeFKuNpUsXkBQrhm7g7QpTypoi7qmFOWxOJ4IBTp+P+fNnsXt9dPX2kYsvm/rDFoXpUydwB4I0czlkiwWrw8Xgrj2UczlcgSCFZBzF7qBaLBCfme5w6YupJIGeKPlkfEOLu92oExwZIzU/S9/EDuKz0zjcHlOX2NBprvDzPcEQaqtJOZdhbCRKY7bIgd0DLP5kGt0/wMGoyoc+YKpCLC4mORcXqNUzfOrJ3bz6xiWS6RJvnU+wd8RNJF3mmy8v0sbC00dcDAz38ewLZ6hVqmTKGof6RC5MmnQlTVWRZBlBEIjH0jz/2gxHdnVvsL3+WcehnWHcczlGhq9dPRwZ3ZisjY/3c3/uCoO97671fqPrrtpqkVyYQ5YtlHJZdFXFF745OoE3FCaXiGG1OyhmMxSTCXzhCH3j28gn4lhsNrKxZSxW67tOhDVVpdWo0261UFtNDN0gGO3F3732nR486CXgW6SQr/Ktk1Xi6SoWq5XBLagkH31onGK5uiERBvjq988wXxD4jSc0evs3/l5DI710vzaJHXPo1Om+Me3in0U882yIclHk3oMLPLD7HLLYYHJhjnvv0PEGNnYenV4bd+5ZpCukM77LCbSJL1Uolwt09zuxW8o4bCYn9cjeIl1LlxkalbE5ZHbsbgNtVlUpgmGFDz6Uxx1aKxj5++qoXWVSqS/h7VGRVu6HdreLcPc48xfOoQnTGGIEe2CZai5LoOc+RHmU7PwP8bgex9A1Cuk0xfxp+g/YqOqXKCdjNBqzlPIlmhcn8Q3E0Gp7QWwwfHuRdj1DoTKDp08il1/A7gxSLSVoaudwrVxbRnMX4cguUum/xt9jVmEl1wyaGsHt68PlO0g+ewaEChbfGRIzHnTDTrupojhkvL1xcqnzWJ0VomGJvduKvHVSQbUGsSslfvc3M8gW83VPXgxS1UJ89iOnkIyzGJKD14+p1GoiD217lWNn+qg2QuwdT/Dgg1WOHbOgNutMLkcYCqco5i5SsypohpkzCII5w/G970rYrDqPPv5Tpkm8nyAIAo88uP+mj+vu6aK75+Z97s3p9hJqu0Vk8PpWwYIg4AkEMTSNeqVK37bt5JPxm06GVyV7yrkcFquV6OhYR9sy0G0mCR/q6eVDVx337z5/EkmrYRjClq5Jq5C1Gr/59DjTs0nKtTaRnjCyGOdqz2ZBtmKlSRMver18TakzQRC2tE8VJIvpcrRu2ARMnjSCaDoquQOo5TxavbSlLevPA0S7i3Y+iTU82KmCXw96w3Sha6bnEEMDCIK4hTWziXcyLHlkt5P9e4b5r1892bH+/refPbApJkVRRBAFCpkUDq8PQRTwBLuoFvL4wl3kE3FsTieKzY4giWhqm8FdJm+4kEriDgQRRQmnz3StA1i+comuoRHmzp/F5fPSbtYxGhCMmq3iZq2GPeBB10zeptXhZOHieTyhjddp//adFNMpXH4/y1NXkCQJtdVC13WT++le66ystqHv6+ll364UksXC3r1jLMzHGRiIdpKr7TtHeKpyjhOXi3z7B28zXfMinj2P4R9muFzF71TQ7QF65Rw79mzj6JtTHJ/VcTSL1GUvT903yJVYncVUle/84E0+8iHTfW5+KcNMQcE3n/u5Soa3bx+86c9jURQeuHf3u3q/1MIcssViFhM8198kuwNBaiVTVUJtNTsdjXcaaFsPSZY7WsPzF88xsGMXyflZPKGuDcnqVmi3mtTL5U36xlcjG1vG6fVSyecIRvsoZzerIAmCQDjkIRrtIhjIEole+zX7Brrp2+LxLp+NWrOKy7XOzMMwMHQdSZbJ1CVimSqvHDvLvffsve45/yxjW3SZkxzm7JzB7/92EXBw5K4aHb3QdZibbPCTCwfwiQtEokU8fgs9fVZWf/nf/uyab8D23Ra279a3fB2A/JKVrtCnSS//CP/AWrdUtsr4eg1M5ogJm3+Bucvfxer2YxguusKPkE59n9BQnvj5i1isCr5ekdzia7SKfYzuP0R8rklh0YanO4HWKiNZC4RWmjXZBRfdA4dJLcxRSr2IVhtAEr1YI5dwBQzyiz7CvTtJJaeAimlKVrlEvTFJ1+ialoI7IFKXj9FuquTyYap5Ny73vRiNBC01jtXlRJTMtdQVAAJn8AC/1N+kWbFz8PYWmcQ0ilXsJMIATz+W4s3jab79owhqs0VWH0OsxTBsXTxx4A2achiXdZldOw0KWZVXLh5AqVyh5epl3JpnaBCOn/Xw3R8KfPoTZQIhC/VyiwsL41iFMo8+Xrjh+NgKPx0P3PcBzp6d4ds/PEF9nbLDjaLdapKNLVNMpbDYbDdcgfVHuvF39xAeGCSfiCFdxzjjneAOBGjVqyTnZrA5t97B55MJ0ksLLE9dQW9W+a0PT/CJu6+fIBmIFPJl6o0Wr83q/PsvnKSkOYg6Gvgsa3ak4/4W/+Zz97E9ItwUfcEwdNr5OFo1h+Tp2qBRvCobphbiSC4/7WIaJdSH0W5d5xV/tiFabFh8kU1uU1fD0DXUYgqtVaeVWUB2BWmlb15KydA1doXbPLTdQjJdZHY2RlvVCMqVTRuT9Qh0R+nftoNgtBdRlFi6fIlmvY5id+AOBAl0R3H5/Azu2A2GwfyFs0THJjAMnUohj7+7Z4NsVKNep5hJYxgGrUZjkzWooetk40tklhapFgs0qmUGduzaoCJiGAaphTma9RqeYBd2l4vI0Ai1cpHI0BCKzU4wahop5OLLtFck1Eq5LA6Px+QSW22MTQyj2NYWZUEQmBjvI9uyUWzJHIm2aGFHKi7itrQ5NVPkA7slfuc3HsfpdnJk7wD3jFlwWgwa2WWajSaffGQMxR1kJmlWjPLZPCfOLLDNkeKhuzZ2pv6xIJvJ88z332Z29mrxgBtDPhHvOBFarPaOOsT1YHe5CUZ7CQ8MYugG5WwGxxbKPTcKl8dHfHba5LNvgVq5RC4RY+HSeZr1OqVMxhyYTr+TIpGpMuTrCtNu1AlEe6kU8uTiy53PWSnkESWJci7LwEgf1pvgJr92/CL/9QvH2Lezl9/55Xvw+tc2EV955jX+r88fJZ/N8+ShEJK3m+MX35s05vsdH/iImyeOnOMDD1xbehXg/BmVK1MyQ+5zZIoOPv/XN29PbRgGpaRAaXEn7aZBPj2JINUoJqBRubYqks0lEd1dJDgyhzOUZHHmeVo1L+VMG1dkgdDYIha7hchEBd/wWRbn/g5NE+iKPEJ8qo7P+1H06trAbqtRIxdbolkt4QnbkKRunJ4JWnXzHLzRHFdO/ZBGoYfMLJTiVgZGP47NFunwpwEKMQft4gEk2YYzmCHUs8OUL/QM4gzVCY5O025AcamHSnYtN2oXtxMKfIpKRqK7304gvHGwdGBYQZedpGs97Bgt4GxP0tIUxjwn+PHbE4z5z/G7v11lbLuF/lEnD+w5x/bRCs30PKVii4cfVhkM5yjog6QT5md67jmRgHGJjz8Zv+nf7Wr8TFWGbwZvXkiyULYyMZ9g+85R1HYbw9CvO/lbzpkLRLvV6LRsbQ4HrptcXFfb0etft91q4PYHNmgQvxN6x7df82+FTJpiNoOsKERHxvhnH7RCu07Aff02nibZ+PJrJUA0O+xWF5Z2kV//xN3MTi/ypWOmhm65CZdOn8MhtTGMm+Ama9pKS1/DnI1Yd5xhgCiCZkq0Wfw9ZpJouznJnJ81iIqtQxUxOcQZBElZk1rDlLCTPF3ouRhGo4YmljumJiY9oohgsYOhbVlFtwsNRnwqdx4colmv0zPQyx988QRnMxXuGvfzyAN7+OsvH+UP/+oV8qr5fV/LiazdamF3u0wnRUFEazdxuD24A0HyyQROX4CI308+GadVr6/YhepIFgv5RJxWo47d6cKiWHH5fHhDXRQz6U61rpTLko3HMdAZ2bOf9NI8rUadRq2GKAhmtTkYopTNdK4XTVXxhbtZuHQep8dLKZmib/uOlb+1O055ge4oDreH9NICWruFYjMH666GN+Dntz88gUWRcXncSMpp3E4rtXoLhBKB0FryHgz5efh+PzOzMazhUc5eSfP0U7fx609aURRzCT322gUSNQuJfJkntVsiC/gzh8tTcc7ERRCSDA/3YhgGzVqtY0a0FZq1GtVSAV/Y3DT7I92UMmmUd1CE2AqrXQcwzTkqhTyK1XZTVeJg71b1VhP1Spn04iKSLNE9NEI5l0MQoJzLdsw4roWt+MztRgN/d5RCMoG/uweLYiUTW0JXVRrV6nW/t6sRz1RI1q3k8mWiV1FTdN1ANwQMAw7evg/ZPoXDfmsG5t7POHhkrXo7faVNIiVy513ChsTvtRN+krVedvpex2iUaBpm610URZbm6rjcArmsztCYbcNxAFpLo5L20ygFQHPSv20/qUQcd//bFOIQ9H2aTOoNGsV5HIEWiv3a92bdELFIURSrn2pKw6L0EU9N0b0jRSVtQW3ZCY/VqOYmWV6YwqI4iS++iM3ZpJRQaNXbWGwtREC2NREEAav/JI32KVwBK42KSn4JRMGJiINQ1ydYuPwSzfw5NK2J6Gig2CR0VUdrRAhFd5HJXcLph9jCszitD1EpLhMcywESzZKPrshDpJNHMcVBQGORxLyEIdmBxpaf80NPVslnz9DT7yQYbjC7kGfbsMTcCxIOtx2rfXV+RuCueyROHW9zejnCTExCVsp8/KMNUolTjGyzo7U1zlzpwjBgdnKe/uGbWy+uxs9tMvz43SMsx3NMbB/GMAz++Auv0NYEfu+f3IFyVUI6P7dMu9UmHHShqSruQIh8IoZis3favu8FaqvZGYrzd/dQSCXRde2aN+p3Qi6+jNZWGdyxi6UrF82k3eXuaGbeOfg2w31+/u5oElV85+S7Jbn43nOnKdZUwNwsJOtWLHYXH3pqF+f+9GVUxXdD5ybIFgTVgiArmxzqRJvLNPpw+tCqBQxNRbS7ES3vLE308wC1lEJXVSSH1+Rtr4PkCqKV0yCAtXecZnquwwPWqnkkdxdq3qyot7LLSHYXksOL3qigtxvs2+3n7kPbqNcanL6Q5pnXUrQkFzajjlhr8Pqrp9gx7OHgoV384d8cp2xc+0YrSSKB7n5iU5NUC3mGdu8hn4xTSCexu1wrldwKLn8Aq8NJo2K23AxdI9AdJRNbRrIYWB32TkyuDptmY8u0m0184TCa2qacz1IvlfCGuwn2RM32dDDE4uWLREfHyCwv4QmGOgNPwZ5e0wykby1pUaw2UvNzWFeSB9liwWq3ExgeXRmK2voaC65z83riEXNjYBgGD9zT2rBp/tq3j5MqtHj4tjFeO58mGnbzN18/zu7RIAf2jwHw8IP7OTv9E1qBAWbmkuzf//NJ+7keDu0fQRDm2DZmcnZfeOkMr1wo8cn7e9m5a2TDc0uFEnPzSaJBK8HefvLJOLJipZhJdSgL7wXVQqGz5oIpUVkvF0EQ3tXr18ol1FYLl8+HbLWSWV5a6UyYcVhIJTvv9U7UilWIkkQ+EetozFsdjo5RTS4Ru6lk+KmH93Akkd3k9gfw6Y/diaa2aTbafO+5U+wYDTEycu2k/+cJC7Mtnns5QCXfpGodoyf8NiMTaxuXR+7Nce5UnDOpO+nuWeCjT+UQRSvzMw2+9IM9ONUZKso2Dk+eINorsmufgtbWOf66gM8KBw5+iMX8KWxOG4vzf0VoQEDXBEpxO9XUa4iWCoPjnyad/DFK37W1uVsVhcjADpZnXsbiLGJhBJf3EM3qt6B5BKNhIT9dxtF9EpttG6HIHSTnpzGEl7AKTyNKLdpqDmv0RZwWCRCxuc30zjAMstN9hPuOkNfjOD0eYjOv4QsNYmg27N4e6uU+8okMwZ4xBOMKmcIX8PZIgEBkRKCcvIijq4jFZib0jkCBVPK7NJsJ3LoVURQRrUUCwd0Us1bg1Jaf0+aw0OMw1/Jde2V27VUBJ/9ybBlZWdssnDvd5oVXu7j/SIMdvQt4XG2e/b5AW1V46oPm8ySLxEhkmcX2bSTLDeC9aQ3/3CbDvX2Rji6jYRhYRNP+V7wqQdNUlS/+YBJdEPiNR6LIioJFUTr8Q13Xadaq72i1eT1YrFZy8eVOq1jXVPzdZuX5Wjfq60GUZGrVGsuTV9A1neBVkj37J0I4PB7+5acCnQGlVc7oVhBEiVNxWM9nAvjJyRRvXUzTEh3cPypQrLY5k3jnkBFt1x7MWNXaNTS1oybxjyUZBlNjuJ1bRHZurFaZ3OswWr2EWspg8XR1VDv0RtV05WvV0NIlLF1DGCsOfXq7gewO8db5GKohk82WsDtslHUJQYDD0QYPfeBB3jj2Julsi7dfO8mhMRc/udTk333+JBF7g198dHSDM6LT66ecy9K/fQe6rpNPxrG73FgUK4m5aQI9fdSKBawOB8n5OdRmA6vDicMdIDE3g9ZuY3e7UWx2UgtziJKM0+vrqKOEB4e48Nox7E4HNqeL7uFRVFUll4gjKwrx2SkEUSC7vITD7dlgWLPV5tHlD1DKZqFWI7O8RKi3D5fPTz4Rx+XzrwzbGbQaNTBMXv76hOXSxVlCQQ+hsGkMYlGsK7rGTURJZmY+RV1T6Ory8mufHOHM6Umm8xaU+QKiOEWuUOOBe/fwm5++g9mFNLt3Dd3CiPnZgdVm487b17pZsiRhEVTkLaSPnjs2ybmEyEOjBXZtMWxcr5SxOpybqnE3CpffNN5YLWY0a1W8XRGK6eS7ej1JkqnVixQzaSw2G6Hevg3na+g6drdpXnOjWH/NrcLmdK0oCbnNjZxhYHd7sbuuP+xmtdm2TITBnAkQFStnzs3z1oJBuRb/R5MMp9OQrPUx3HWRaM95Bkc23muGRi1EewXkFy8R7W4Tjpp/Lxd15GYCv6eKXl9kasHLWwujyNIJDERevnCAXtccvdHnwJrBkHvwBEQkRWTpYoNg+FEMXaNcPcr02RdxeX1UMmlcIY1aUaddcePqKiGtJIC+3ibpxBfxDeoodoly5iWauojbZaVVOYdWGcET6kbXQFCWic2ewEDD5ZKo5I/RLIRQXCqKzUIpoSC0D6LLp/D2NCgsKwzteIjFy+eolao4PW7s/hIW7xz1ok61KaK1tqM2VbLL8yiuBr7utWtWUiR8/RtloC02Cd1oYhcfJ3HxNNFdRbxhhUL8GSSnSjkjYNQOUS0WQCji8Dex+3MoDvN1k7EW5ZLO2HazWGdZMSpqVFvYnApXLukUCiK1hsTHPqZhGAJ/8EcBWoaT/XOXuDDl4ciBJp/+FTunTpxhaEjnamvtm8XPbTK8HoIg8LlfebDz7+nJebq6/Hh8HkRJYt+oG62tYnU68F7lWpRdXsLl93dMNN4Nrm7TuQNBszUW2VxBqFfKNCoVZMV6TXckXziCrCiIkkStVNr092C013TQcTrNikil1HEsuxnEalaogaxXuP3QbpaWEpxJbH6/dwPBYkUtZZCcP58qEltBtHswWlWsEVOGyjB0UxFCNIfkDF1Dq5eRHD5E61pVSLS5wdBAlJFdAdqp2Y6msyArtEtpevwKUb+F7dEg/aNjXPyL1wm4JG67Yx8LlydBtPDUU7dx5o2T7N+7ndcvvUmtpfFLH9uB2mxsmN5fT/NZtbNdRd/EDmqlIr5IN6Io0jO8VvHTNQ1RlBCta8eIooTd5aK4IsEmWSwUUgl8XSYH2KIom66PVbpDenkRTVMp53IbroV2s0E5n8Oi2DqP65pGeGCQ1PwcYDo/KisDpxgGnmCQWlFGVVXcwVDnep6dXuDLr2QJSLN87hfvxGa3o2saX/i7V4iVRR7e46bu6CNsKRNYMaDYs3cMi2WG3mgXn//GaYqanW1DMaIDvXRFbl479+cV99+7m3vvNlvO6WSGZrNF34AZF9sHAzRbaaIRHzaHc0NiWcykUWw2sstLdPVvLaH5TrBYbRvi1heOUEglcXo3b6YMwyAbW0YUhS21gGHjNeH0+dGumnPwd/dQKxUJ9PSi6zqFVAK7y33TRZTVAWqAermEL9zduXbeK3bvHKDWmGZs6B9HIgwmVSLoO0nvoKWTcF2+0GZ+0cr99zWx2i3ksy12T1ToG/V1jotnXLTEAJVqmgohlMIso8OX6R2QURSB25IXiHg16iUXNut+XM5eqtUqdm8Bl/1OauUCxew0O277BRLzp4gMHCCdzAAZ2qUxurrvJJX+Kr6oGUeCIODrgdWClDkzbXLJPd0N2r4zaO1T2N0Kdm8TIqvW2RZaVR1X0I7sOQ+IaKpMINDH8twZXEENq1snmzyBoCzSNbCHhvYqwcEmYGGVcVeITTI89Mtkk2fAkie/5MDftzY4aD7HBrqIb+XxRqXCwHAUI1HH9FoBb485EF1KiHgCA7TqBrpuoyu8j3TyeyiOAgDfejZIth7h6erb7Dxk5gBvvdbgR2+M8/CRWeLFMLIvzEDfPGDSNH/h6SSqanBpysOJme0o8gUefAgOv1udxqvwjyIZBjo3+iuXZvnS0SzjwQS/9LHbEQSBpx471LkBr/7/+uPqlTLyDbgM3SgsVts1W2n1SnmD5uW14PL5qZWKeEObJ44lWe4IUdcrJQLdUf75h8whqdUKsaA3CShtMm3HJjrDetiFBrvHPfzFV9+gZliB904bAUztYvu7r7b/LEK02MCyyh020EpZJHfQtF4GtHIWiz9KMzGJ4Qp2El6tXUO02EFWMNQWSs84RsM0OZDsHlxKic98ZC8GsLyY4q+fOYFh9VBpN5icy3BhOsl4j5M3j5/l6NkiL154mzpWEAx+cHQSVTWYzCdAazHWJbKQ1fiffnML67AVrJ/wzywtIogiTq8PQRRRbHYqhSzZ2DLBaC/ecJjk7CyRoSFK2UzHYOZ6rWq7y0MuEcNQVfzRPhYunMfl93eu4WImQ6i3j9TCXCcZDkTNlrjLv5bstFtNiuk0uq7TbjQQRBFBFCkkEwRW+KXhcJCwdIVYUedHL1/kQ48d4E/+5iXS+QZWq8TQ8DbuV5P09QyTS2dxuhxY7XZ27DQ3NH3uNuXZJLmCh+i7y9t+rrFa2f3i985T0Wz8s49a8YWC7No9TF+3y+R/5zIbYkoUJeqVMsK7rApfC9eSXKuVirj9Aao3UNX1hsO06vUtecirn6GQMgsdqx2VVRiGQSGVxO5yX5cCoWsa+WQCTVUpZtI3LRV3LVhtti1NU36eIQgCQxNr9yy1pXL8lJfl0hAD0RP4/Bp/8cxO2qUsh3eleeoj5vq8Z0eVk6dT5G17cTanafh30d19HrfX7Gw+/AiUlw6it714QwHii88RHC4BEroRQ7JZcQV0lqdPIDunSKUu4wg2aZRVROsC6WQTu78GyBTjCqKs4e669qyBxSav3joopyVo7sGQL+LpbiJoXYhGN9VEDdkyjb+vxsLZrzE88Yukkz/C358F7yXMvPf1LV/f0w2p2DexOOsY1dtRRCfZpWcI9plHGYaBpB7C7vJTL30du8dK9zaR9NIPEK0b+cHFZTeGFiJb+BvsXRKthkw6WUBx51jVbBgfyJJ6C37wSpQdByscfUnn2MlBjEYaWRZ4+K4M+UIWf8hKPt3A32Uj2q+s/IYl3j5xhcRSFbh180Y/t2oS10JXl48hb5vh6MZETFasZlvtKj5xqK8ff6QHT+Dvp+LjDgRX2mTvzDl0eLzXHMgrplPkEjFa9caKPvHGz3vXuIPf+5V76HNen2ezo9fGk4/so7fbQ+MWJcL/HdBKzWCg04hNmqYZugaCQDsfx+IJY2jtznMli8McPlSbpnZzJYe4boiuJjj54SvTfOW7p/nqazmWa2ZMNLHxnZM1yk2J2+4+SK0tUBa85FU7H7/NzS/dF+R83GAyby4y28Iiv/TRIxwakllvCFUp5Gk16qYJRsPkOq/e2BEEXP4ArWYDq91OvVwiPDiMIJqJq0WxYne7WZ66wvLUFdRWi2ImTXJ+bsMk/XoYugaGgaZqLF6+SP+OneTia5tDXVXJJWK0W2uxa3e5cQeCG5KqermMt6sL2SLj8gfwhSPYnU6UFSt1AKfbydOP7SHi0OjymhtIXdeQJIGPPjjKq2/PcfJKlna9zn/55iRf+e6pDeeaKOrogRHeOnPzyh//mDDe52I0xAZt29WOAVeZj7kDAfyRHkLXGWa7lXB6fWbB4xoKEuthUawbaDvr0ahWycWXadZr5JPxTWpChWQCb6jrHakUxXSKQE8Ui6LgvwkDp/+O6+Pt16r87/+hi0q2xIN7zjK+w4KiGFjbCQTJwmJqbYOTywk0xSAu5vnQByrs7p1k57aN9t2G5SJN7TSF6lfo2VntDMgFhpP4h+ZxunfiDw/i8Ffx9WpUUiGk9sdQ2xrevmWsTplKto7X/RR67TCt+trrt+oq1XwLwzCol9aSzVqxRa0oEQjvRGubiaA9OE2rHSc6fDe14oq1cVQitXiS5EyGYlKlXtLJzArkF53US5vN/kRRRG/50Mq7KBZfR7FZkLW1kqtpzJSnWizSbuidY9zdWTzdG5NhQe8j0HUE2WLHGbDhCggYYgzFsfa+9z8oM9abI+rLIAgCAuY9Zfd4DpdL59mXwsgyfO2bHv78a+Ok42trfWJZRfeMMZe4JfbhHfzcVIYX5uN8+yfT3Lari9sOb7vm8/xBP7/2qTs3PX69ZPdai9Fq9fbdDsJtBYtiveEBjOtBU9smL/mqSveqgkAhlSSfjPOZp3bx//3qzDVf5+xik+Yzr7KcbwK+93xe/5hh6BpaOWsqaiCYTnPtJqLdg1pMoTerCFYHhq52dJ21Sh4EEBBRuga3rOILosS5JID3ato3AMmGnT/661cotCw4JJ3HDoUQ2lUcTolDfQYnV+Y6ZjMqb75+ijsODPM3X3+d2aKNf/2xQSSLQimbRddUrHYHhm5QKeTxdoVZvHQera0SGRoypaMiEWrFIpZ1Ris2pxOb00mtVGL69EmGdu2hUal0ePNXV4lVVcXh8aFrOg6Ph2IqucFy09/dTTmXxeVbu3lllhZR7HYEUexcy55giLlzZ5BkGcMw6UPNWhWnL7BBi7bVbJETg1xeqHLnHQK37+3nuycrnLhSQFc1qroVSRLxKy187o2qAZ96cg9HX7vIww8dudEw+LmBrml88euvIYkCv/jxu66btD312KFNj61K422Fa71WtVigWTPlMq9FaXg3uBXV10a10uElb9X5sLlcFNLJ63biwDRwyiwt0Gw0cAeCyDdot/zfsTXOnlRZjCu4pBaiww9imTvuVvnxczrHz0a5fccCHp+FaK8IKOTSTaxWg48/MkO0V8AXdDC2s83V2sKeSAtPpMXq0Pl6CIKA6HqNhgYul0J2JkqjJCFTplXZTtN3BqvTgjNgI3nlx8jiduqpHSiDkwDUUztweSeIX/wx4Z4PUYz/CNleQdE/iF6/wtzk39GzvYWuQb2iYgtdIJ2exhs1FZycQY1yvM3E/o+xdPkU3h4Jm9xv0s+SR7F7Nm/eJdGNw9WDbn2TWmUBTc9v+LvVP4euxfGGVnjVaQFJfYRG8wyBoTWpPtU4z/IVwOLFGylTTXcT7n6MVPI7+PpMmqUoiZRaHnLNLtLxC9x9r5VXT7S5sDRGX/80NQLU6lkCngbNVh6bfW09uPNBL8XSW/QeEYHrq7jcDH6mk+F2q0WjWsXt95MrVMm0bKSym3WFJ68sIIkiI2NbVxryyQSiJN00J1jXdHzhCOVc9l2dv2EYxGemUKxWQn0DlHJZ1FYTXdPfc1XE5Q9QSCbwbcFLhhtf/NuCldEhJx98op8//MLb1MWfbxm0nya0WhHJHUQtZ0CQqMcu4YiuDBwZOqLViWh3m7bMsmJaLVudaOUUdr1BQLFisyl4HRJnEyKCIBK0NhnttvPWTJ1Bb4uwR+b1RQuCJK/oCguga2RVF4jgttbYs2eUN199G3tL3cAjbwk2Ts028PmKVFY24pJFoVYq0qiWMXQDA7C73cgWC4uXLjC0ex+5eAzDMBNkxW7H7nJvkBaUFXP6vt2sY7HaSC3MYQD5RGzLdrPN4SCfTHZktgRRJLhug2ix2rZMhGqlIoIooFhtnTa0ZLHQv20HidlpwLxmy7ksvnXDS8Ggl1HPNLuHfNQrFXbvGqRcn2ZiuItw2E+9WsXj97OYrrEQL5NYitHVHebZF87gc9v4xMcfeHcB8TOKfDqDLxREU9vEijqSoW1yjMtm8swtpDiwb2xL17ZqsUCzXsMbCm/Y6LwT2s0mnmAXhXfU9b02CqkE5Xyevgnz2kvOzZgxFu3bYNN8s1jlJdvdW89B3CiHWBAEJFmmb3wbufjyLU36/zHi7bNeYtUBRmxvsD/6JgduswFOBAH0Zpvjc7fx6IGz9A6YcfiVb/jIt3sJNN/k4QfDiGoDoz2A4l7C7hVo1TTquT4kWxrdaFBLD2DzLeKLSh0zIF3VcfhE89+ajtUygC1kIb08gye0VngTBAFvb45mtopmFDqPa0aBUm6edjVAvZxHsBrIFoFKYgmbrZuu/jvIZv4KvRkl2PUwufw38fW2WC9laog5Cuk4zXqdas6FbLtMe3kSi2szBdMwDFThBC3xFJLgxRArOILLrK+u+HprQI1VQoGBQatRp1XzUE6VcIfNynaj0qZ3dBeFtBd4HcmaJ5s8gewob3jP4d4i2zQFUXUiSjofeDCFpgkcOGxndPgs3i47CzMt0sdg8lKT/bfJnDutM79k4+FHrDhc7/5a3Qr/oMlwPFPboHJwLd3TrfCFr77CzEIOyR3iNz84xv59YwS9S3RHN5bOG9Uqf/vjeWRU/s1IdNN0crVYwOH2bOKLGYZBdnkJUZauyW/0dYWpFvIdHuTNIhuP0T00QmZp0dRB1nXsLjeVfP6dD34HbBggegf8288eoF4pU6+UEUUJXziy4XeZXipSa6g0jGuHi1Ns8NjBEKen8kzGG6Cp1zTr0NsNjGb9psw8fh4g2dy00wvoahNb73bEUpp2IYES6kf296AWEuiNCrLH3JQZgoCaWcCp6GhWL+NdIoPDXYyND3H5T4/SVrzsG3Vz7527WPrCUe7a5qZ7aAgLp6lpFu48OMSJE5PsO7CNv31+FpssIOtt/vDPfsQ//bUHWJiL8/Zyg/VFuFjNyjdeWaapW0CC//MrZqXi/gmF++/Z2ZnQV2x2aqUSuXiMbNzkB6utJo1aBUmS6R4eXRvIs9vpHRunmEkjCALNWg2r09mp4Jr20JWOokApayar+dW2crnYOb9GtUqlkEfX1I52azGdolrII1utRIaGqeRy2JzOjhFCbHqy816hvs3Wtm6vm/v3henfvpOp8xeYz2gc2tOPL+ADTDc1gPl4hZnFAn/87Rke2DbHW/MyHinD3ZsbTT+XeOvtK3z/xYvo7m4e3Bnn/nv38Fsf3Y0oCJvW1eeOTXE5IyOK0xzYv9mEpFWvbzmjUcyk0dotXP7AlrKWvnDEHH7senfDzADtRpPu4VEWL1+gf9tOJNmCJEvXNaW5UdxshTm9uIBhGIT6+jd8hxarnVwidt1ZlVVTGkEQcAVCXJmKsWP7wJZmHYZhMDs1T7Qvgu0m9Zt/1jHWn4YLi0zX70JLpbm03OZf/X6Bhx4R6Q5nOXFeo7d37bev5/LoLZWaPcprpwM8bof+sQdIJ5/F7s1SK9gJRx4ikzxOPl4m1L2deqmHWOUoTvkRKqUl/OFhGq2z2P1Zqlkvou0l2sXtTBx8gETib7A61xI5m0sGTqM2YTUlCwylKSznGNv3C6QTr+GLmJXpQjuFy9XD/MWT9Oy1UErUySfnaNYGqNoncfrXFvOenXl0/VUMdiAKFmTfGRxuK5JiJu3FJR+S0sTT3aSw7KC7+zOkU88iEiQUuY10OobNZSa4ubkuZLEP2fsmDq9MvaRTz/Yg6FV8wW006lbgMo2yjt01xvzkc7iCJtXPTJIvbvpdtkcdjGx/gtTSOV4/doKA32Bip/m9+MJmMSWeEFlKuYjnd3F5ahZV9LBYHGRi/gTbdt3aZPiGOMOCIDwhCMJlQRCmBEH4N9d4zqcEQbggCMJ5QRC+dEvPcgvUmgY65oCXZUX4vn+or3PjWoXV4eC2cRe37whsKdPj8Hgp53ObeGvlXBZfOILAtVt/sqJsKY9zo3D7/cSmJ6lVy0iyjDfUhWEY1xV+/2mhXinjj/Sg65tJ/OdTMscvF/BYr32zcFp0du8eodtvxWg3EG0utGphy+fq9RKi3Y1a+em7IL2fYlerFVEiwyAINBOTaPVKx3FNEEQs/igWX/datVZr4+3u5l/93gf59CNDuN0KP3wzyX/72hu0FbP69PrFEl985g1ams7Y/gNmLFucdHtlrDY7QadhRrCu8cgeJ7/wwb1IFgvffPYMPzmZ2tSOdlLl93/xIB/ca+HIgCmBB3Dscpl8Mr5RAUWAWrlI7/g2KoU8hq7jcHuwu9zo64wnsrFlcvFlWrW6yfMVBOxOZ0eXtVmt4vYHyMaWTU7ySpXZEwzRrFWRFSu1UpFsfBm13cLhdiOuq2hrmkrvth0YQGphAU1VqeRztBoNHB6TW91qNmjWN2o7r4eh68yePc2ZSylemVJ5cwsO8Mcf30W3s4XWrDMda/Dxu4J87KGxG/rt3w3eT7ELUG+0aItW5HYZu91cZwOhAL7g5k3tnrEQO8M6w4NbJ4eSxUIuEduk7rBqoFItFK55Ht5Q13XNk94JzXqN5Pws3lCXOcUfDuPyB97Ta74bGIaBZJFNt8SrYtMdCOBwe1HbLTRV3fp4XcditWK1O3jp1Ut86+0qr701veVzT5+e4q9fyvLsixdu+ee4Gu+nuG3VWxw9O0681outchlqaao1iUvnTBWHnXut/PIv1jvDWZl4hYZnD08/sp1/8bnH2TfsQhMvkU59D5vflOVzBWukU99Gck3h6xrE5Q9QqxRplixYrA4EPKysumTngrid99AqjOEILpJM/ABvZDNnt5nbi155kOz0INW8eaw3qpLOfAVbYKrzPHtwmWplHotnBq2to2tNKqU5ekeP0K6t5T6VrEBpcT+ZOQeibQbD/hZ28eOUYqb6TynVoivyFLXMMJWcgWxtk0tdRrI0UDxXSKW+jjNQJ7+k0Ki0EXDg9ETRVfPcWqUo/aOPYHUEKaaTNBvmoHJhYRRa/Th9LkTRQiVzbQUru1th/vwZ5qdivHBmDy+8ulkM4LY7Re7fdwmtUWFqwcODd6Z58shpJnbeuHnZjeIdK8OCIEjAHwGPAkvAm4IgfNswjAvrnjMO/E/A3YZh5AVBuLXM5i3wa588QrvZxum5fttJEISOoP61/r5KSShlM2jtNpKi4AmGyCfiiFe18NR2u3MTf7eyP6uw2h2dVt0q1ksM/bRRLRawuz2Ioog/0kMhmcCxRYvPMHQ+dX8/Dped//j1SVMV4Sokaxb+458/R0kIAIZpFOG6lvOTgFbNX9ee+Fbg/RK7ajkLGBi6amoI+7oR7W60UhoEwfy7oSG5uzYkp6LioFYscubMNLVKjRNLBlXdTm5F1cnQ2lRFhamciNhuMHn2PAuLKY4uuXh8h0RycQ6rL8xffucc/+TxUXLJJPVKlYf2+Hj2XIuyaiFsr5EqNhHsZlLS1CUuXV4kEPCx52A/p2dep4UbVbBu6pD0jJiJYCmXpVmrEezrJzk3h9Vm29D6NgwDTzBEMZPB4faSiy9Tzuc6A0Z2t4fUwjz923aQS8Q2VG9XJaWS87MEo33MnD5BsG+AZr1GbHqSyOAwAqYmsSiK2BwOfOEI6cV5gr39JOemsbs9nSrkVq5mhmFg93jRNZU77wgjnZzjwM7N1UyX20nFsCHT4o4D29m1a3TD359/7nUuLFT58MM7GBp6b8YR75fYXY977trFnm09+ELvPEy8a9cwu3YNX/PvnhXN9VajTja2bFZHe/tQbHZy8WW8XRuT6DXNXc970nwH6Nu2Y8N/34wr6HtFq1HHMMxuiSCYlB5d17dUl6iVi1tWz1chShKtRgO7y8X28R6ylWVGB7amxXWFvEQdKfoi776ifiN4v8RtPtviq98KMBQtc9eeRSTR4J77Jc6d0pmcq2C36Tz/nMThg3V8wbUkMtjt5IG9l7DIfgqZJtGBSbpG3EABkE1zIcDba7b8l+fnqRQKOLpPIdNDenGBroEB6vqzNEvjGC0r9WqJds2B2nDiH8hRSouo7QbeLguSxUwWNT1Fu6rRP3EP6eSz4M+aG7WoxnqqgqfLiqdrikZFIzcbpX/sUdLqAnOXn6F3zxpNQm3KBEITJOZKRPrvZHHuG1TbCYwVZzhvxMrcua/QP/xRink7nv6TwImVdxGxe5vkF71Euj/K1MljuKOzpDOXkYxtIMwiuxKkkz+mWJ7BF9iO5MzRqqk4XGFAp96YZ6jvV8kmTwHnt/yNrJ4SjeoUh+77CMnaM/QNV7ialy2KItW2H3SDicE8vUMO+obX7pHz0xW+/0M327drPPjQe9ODuBGaxG3AlGEYMwCCIHwZeBpYv8X8LeCPDMPIAxiG8a4IXTdDmVCstk3KD+8Vaqtp2rrGl4GtnYSatSouf8B0M/oZRjGdwupwdrQ8BUHY8Hn/+Qd7MAwdQRD5w+/GefNCAkkUEOS16smYv4Uiwfm0hbtHLdx3zwP86IdvcCJ9/bVtlQbw94C/t9i9LnQNrWZWw3W1ieIxEwHJFTCd+HQd2RVAq2TBANFqN/nDVgdYHfzwggZYUWiwq1vnUkwFQ+NXHh1gbjHDi5NGh96SqxqM1SsUC3WqVQvHZip0uxW6BwbJJpKEenvBMJAvLLEtbPD4HcPYnG6+9sPzzBatqKKN75ys45by2N9M0pLXEo/V63P9tTl9+iQ2u4NWo06zWsai2PD3bLxuvKHQigNY2aRDrLhsrcLmdOLtCptyappOLhHDE+zawN/U2m0WL11g4vDtHaqGL9JNemkR2WJBsVkxDKtp1hFbwhPqYnnyMn0T22lUK+QSsc5Gr1mvUysWaDXrGDqo7Sa949tZvHQBmwOe/qDJeyikkih2O9OzKSYm+lCsVqJBJ2qrzanLKWaW8nzoicMAzM8u8cqMiFptk86U3nMyzPsldtdBEIQbSoRvBo1aDXfAHGiEFVOVrYaRDQNvV4RSNvOek+F/KBiGQTGdNjXiRQHLVVbR9UqFarGApraJDA4jyaa9uc25psBRzuVotxrYXW4a1SrBnl6S87NE+wb45Y9dm1vc2xfmc5/5qdeo4H0St7WKTjKmk0j6iAYL/ObnzERp934ZQajx0itO4q1t2Kzn6Yk00XSBiR2KaQN8rwSUgJJpOrTkwWKr4wpp5Of6sNtGadlfxOmXsXuseHyj5DKTlGsasr1KufZ9QoMSNb0XDAlNaxIZHCWbiVHJNZFaH8AiiJQWZ/GPmJX8wFCGVj1JKrWAI1hhy0noFeRjBuWl7VgdbpanT2AYTXy9rQ2FFF+0TT71BQSrhcRsAK3hwzu+ll8JgkDPtjb5xKsYQpn8kgWru4nDu5ZQSvYSsZmLeEN9OBw7KSXfZnzvPSxMNnCGsoCIJ6ggqBGahQqi4MFicVJtPktkWCKV+AGS1RyY01SNWqGJVttLrVTE7hYx1H7C3WEmT/8tjzypIykW6kUVA0imNJxOgXBUIeBTCYV0PG74wpecfPCJAv6VDcx3nwtTaEeYm56Ch95bzNxIKt0LLK7776WVx9ZjApgQBOGYIAivC4LwxHs7rWuj2Wjw7I9Pc+nS/Ht6nWImbUpDrYMnZN6Q11cl1HabXCJGvWLuBJ1eH2qrtWGBer+hWauRiy93kvqtIEgStXLxmlqehqHjcHs7PLozCZmTMWnDBXffgShPPrQLo1UlX6hQzmQYiPpu6Wd5j3hfxK7kDmIYGrInhNaooBZTGGobrVpE9nShNyto1TyGoSN7Qji0Ak/utWKoG2Xv9g3a+cRTh9gTNTgyYqVRLqNr5u+jSg7+yzNXOHY2yS997HaOHJ4g2B1mOGzFaVf4D395lG+favOTo+f5xovTFDQ7iaLO9GyCQjZP+yp2TFmzkWqsVVF9lgZhWx20Ftn4MkuXLpCcn8UwdHontmF1Oumd2NGhJazHauXN6fPhCXUhrouheqVCZnnJNCzojiJIpmHH4uWLxGanKK0Mp0bHJvCFw2Tjy0iSTL1cJjZ1BafHg9sfQBBEkxbh9lLO56mVSljtDgqpJPWyqd1tczqpFgu06nWqxQIWq43w4BBWh4vE7Iyp/7qSaOUTcdyBIFNX5vnGm2Vefn0SQRD4lU/fx0c/sJ/ZnMBMfG1Y1+f3MOBpc3DEyeFD11azuQm8L2J3FSdOTvLiS2c2SO7dLOqV8iZJPE8gSL1SwX5VR6yYTnU437Dmivhu5zP+PpBZXloZFG1c8zlq25Qn3MoAydA1bI413XdvqAt/d8+GbmG71SDQHaVRqWBRFAqpBDaHs3N/eh/gfRG3vYM27ty3hGT3kc8LfOkr5jAWwHPHIiwVutkfPc2ePS2+9r0oX312mOTFccqpjfXBYkInHP4wWm0n+cUQjbKGrqmsDlp4e2dpid/EbjvI8Pan8fjG0Q2BSrIX1fIigud5DPki+dwxwhMF7C6ZSvks9VoO3dgYJ4pdwtdb70i0NSoahZiTdkOjGJdJXHRSWTxCOeHHF47SOzaBLr+Np+8yorzRBAZAsRrYvA0Uu4TVubFwmJsNU4kfxupdRJDKhMOfpJG6k+WzXeQXzKKBJyTjHTxOm9OUy2/gCGZYvPImVl8MvTlEV+RB6gUrdmeEViWMqhbQtBx600c1uRObL9UZqivMjyC3n0SRh3A6RgmE7iGfvmiqEkWCJo9Z09FK96AV7+Nvnx3n6983N9633yXxT3+rSKnhYrHQSza9RtccH6oSdS/y9IffmxUz3LoBOhkYBx4A+oCXBUHYYxjrxiNXIAjC54DPAUjXqRBuZR/8bz97gJnpZY7P6cTSMbZvH3xXJ2sYBrqqYnO5qZVL6KpKq9nA5nRtakeVsumOx/1qReJaznDvBauDI55Q+JoTzas0jneSXmtUK3iCXZSy6Ws+5510kwPd0U6C8m8/u7nK9e8+f5JvH1tCFpcQrS4uFmD5R/O0dIGbNebQGhWMVgMEoWM08feIG4rdG43brSCIEkpkFDUfR3b6kZw+9FYNyeFFLWWQXQEkh5dWdpl2KY1saIyO9CC9nUNfJ9tzfqEOz5/GKks8/sgh/vaZ40ymdR7e7SGWqXIxbaekyXzz+2/hVjRmMwYfvGcAp8PGv/+7K4iKjZcv1UHyIghQUq18/wIY5zMIgvk+NqPKB/Z7uLJY5HxubcP35KEA/qCXF16dJtjTy8V4EqfixuH1MnP6BJKiEJueIjIwaGrHAoIoYBgGjXIZQZIRgGohj3fdkJGuqTg8HmpFs9PSrNWIT0/hDvixO90buJTr+crrufr5ZAJRlmm3myRnZ3B6PIR6+6jkc1isNiqFtYFUQRBoNepIFgsYkIvHcLjdZtLcbHYGsyw2G4V0Er1ZZtgrMtK/9pv7u4L80kNVlpazVCsV/vaZN2nr8LlfuvemlBFuAW46dq8lZfZO+MmJOCXdwc7RGJG+d/cajUqls5a6A0GKmTSSLG8aOlPbbRAEBEFAbbWQFWWDA9ytQqNapV4uodjt19UOrpWLOL3+LSk26yGKpuZ2vVrdknohCEKHWrQVHB4vjWqVQM+1K992l7tjLmOx2pAsFlPS8CYH9wzD4OvfeQOAj3/otr9vLeN3lS8EbrLQ8siHAmybPMWFaS8n5obpWzzPwAg8eGeSWlXgjrtlU7nDKNJsGdTb/SitGLDG0fZ0CaQSz9KolhkY/SQ54QyOnmMUY0HaxQCO8CQOr5VS/TyLUwsoTg2rZZiuyP2k09/C5a+ge/IYuoEkSSBBZHsaw1ib19B1ndTFHgzDSnBkFsVhJsPNQj+KsJPU1Av0Dn+YdnEWp6+PauMtCrmLZBPn8HT30swNYbP7yC0/i0W7m7Y+i6qWMJr70PUagnISi50Nii+C4MTpidDQBBw+jYVLp3D5wjQrEWTBxao5h8VmITRSBlY3W1cAiWphknQqgcMHqcUZ7C4/Fv9ZXIECxsIY3sBuCtWL2Dqh3KbdKlPXXseiSBRKFgJ9TtRyE4vDrB4LokCztUi1XGeiK4NpBrxWrHvq8Sqn3z6B02Xl2FGNN8+E+PBjSR57QuBWSKzdyMq9DKwfwe5beWw9loDjhmG0gVlBEK5gBvubV7+YYRh/CvwpgLVn/KbLDBPbBnkof4lI8N1za1dd5SqFPMHeXuqVCl39A+QT8U2c3VU3rFVB9utpC+cScXRVxRMKbTkJvR6rFZbV4FwdHLkWPwzMVvF6K9lrwdsVvqbET7vVvOFBkfUGBlsh09y44Jf0zQF534hBKODkG6/lOu5rV8NoNZDcAbRy5obO6yZwy2L3vcatKMmIwT60RoVWPo7i70FrlDH51UX0dgPJ4cZoN2gJVv746xfQLRt5hDXDxpvzOk61yOi5C1j0OmEqHDl4gLmpOTStyJWcwpkEgEzY3uDEmXniRQPBYmfEUeSBw72cni7w9vLapS8IAh6pjt/aptsrsPfwXuy2C5w/vrbb1tptFMWCXyhw6cRbeDxefvTqZT75wUPobRWrzU6r1SCfiNNutVBsNlz+EAsXzzF+8IhpnrFtB9nYMlprrYohyRaKmXQn0enqGyC9vEgxnaFeLHWc4sDkuIuShN3lpphOoWkqkmzpVAvVVguH20MuYf7ELn+AUi6L3b2WXDg8Xuxuz4abv2EYxKenNiQULp+fZq3G7iNHGMikCPT08sLLZ5iPV7hjVxc/PnqBZNNJtQW1lkDbEE2zjlsn0PNTid2hPfveVWn3ybsHyaQyhHvfPf3DwCA+O40sKyQX5oiOjlNIJjY9T7ZYaDfMqpknGOrIsGEYm2TGauUStWIRm8t1Q1rv6xOCermEv7uHfCJ+zWS4Xi51Evh3SoZtLjf1SmXT2qy224iiuKXE3KbXuI4zHWyWZ9tKrm11pkWUpGsOeGuqymS8Dob57/ciKXcVfmr5wuDevpuO3f5xP+E+Fa/jTfqHIJdRuDztostb5D//aYAje3J8+AMtEqkmnmAMX9TKenkyySLh78+h6zozp15GFEWaehOaPYS6txOfKeIfTOHpbuDpbtAo61TT3SzOfAv/QJFKTqIwN4C3qxsl8FpHRUIQhJXKr4yh2enuu4tqqUCtNIeychutlUr0DQeJzQaZP3cSu8tPbOYojnALxT2Pmr8HvdGmridp1ioofhG7I0Ijs4zVchuGIBDq20lmKUhX9wjp+BfxRVfcT40E2ewikTEzJu2hBYqZOJqYo6EZuFeS0HZDpV4y8IQtNKttGpndaEaWwFAGfBXyiz4Gd+5n+twzDIyZn80auEShehlveC3eg6MxDGMZj7AaZxrLF+q47FYESeh8J7bAHB7/Uzzim8E3NMXCTIvnjwbZvyPN3HSTcwvDvH2xwa7xKnV8NJsbu/vvBTdCk3gTGBcEYVgQBAX4NPDtq57zTcxdHoIghDDbINd2cniX+HefP8n/9ldnyZfqfOWlOHOz16YBvBNsLhf923eSTyYRRJHE3DROn2/T8+wr/MbVgQ9DN/AEu2g3N5blc4mYqQYBHf7btWAYBsm5GVILc51JYVmxmoMjoWvzugwMCskE7htww/OFI5v87PPJBPVKhWxs7XtT2+2rD70h/NvPHtiS123oGt22GpJufj8ej52ucABRuPY6JrmDaJUcov36yfe7wPsidrVqAbWUQasVMdoNlGAfWq0Auo7kDtHt0vjdT+xhPGQge8KInghtyVwRDbUN7Y3a2T0egbFdOziwrYvPfOJOLr7+KnYZHjrci9ey0nrT2jx+sIsnn7yTAb9OtyXHL33qXiwWC1ebvuntBr/02AhPP7SN2w5v5/UXj3HucoIn9tg6v2Oh3KBVrzM63ofD7iAyOMTBERct1aBQKGF1Oqnk84T6B7C5nFidTtKLc9jdHnIrKhDZ2DLNRoNKsUAuvkytXKJeLmG122k3mxRSSWRFoWd4FH8kQv+OXVQLBbKxZaZOvY2mapSyGQzDoN1qgSCQXpxHXdEbr5aKZJYWcXr9qCsJtycQxOH2UCsVTU7yVXq4YFaHh/fuB0GgWixuSCbK2QySbKGcyzEfr7BYlHnh9WkSDTui1U5v0MrnfvE2fvfTh7AoVnKp9DWn/28S74vYXYUowAsX6jz7/Kl3/RoCAj3DozRqZYI9vSxeuoDFuvXGPNTX3xmkbDebeAIhdH3jGtKs1VBbbXRNo91obFAw2QrZ2DL5ZJxS1tx0O7w+M8m9TsXZYrOZg5fvkKSCOfx8dSLcqFYpZdOkF9dofWq7/Z7oJluhlMt2KEWapuEKBNC0a8ehbLHw6x/exa8/vetWJsLwPonbWlXlK3+n8PKLOopN4vjZXv72OyPMTraZSo8wM2flydsmCIhjTOxUuO8BiUCvrbM2lNK1Db+RIAh4AsOE+/Ygth6mnGpx+Y2jDE48QXZ2rVNcXO6hp/9R0ELUsh706j4Gtt9FKZvn6uJ7szCK03Y/g2OfYP7ScZLLryKpeyklzcKbaKlSSCdxeXuxuQKE+gaQhDDh4K9SXOrF7nSjtZs43GF6R4+gqTrJ5aPUShVk2UatukAm8wxN/RQLk88hqocpxJxU8w0c9ntRjMNkZ8xumy9awdOdYmjsE1ilveQX/KQuRclMTuB1fobMvEG7AVZrP/mYSK1oXmtqS+TKW68ytP1DFJbNOLK5ZLxhCa2lUVi20qyqne9wFZWcRqTnUTSSyLYWxSU/rbqGJAvUKkk0vUyz2mZx3iBR6+PcBSvnFkaxeLsJuMo8+IjB7376Ajt2K9TKLarFa1OTbhTvWMYwDEMVBOGfAT/EZHX/hWEY5wVB+F+BtwzD+PbK3x4TBOECoAH/g2EY786J4gZgkUUU2kjSO+fytXKJRqWMpmo4fT4kScbqcKBYbeTiyx2JJm8osqmaWy0WsLvcG3b03lAX1WJhE3dNVqzkkgma1cqGoQi11aKcy/7/2fvPIDvyK8sT/Ll+WscToQNAQAMJkVpTay0qi8XqUt21PWvdM9Y7wnq/TK8w27W2mZ7tma2e7q6qrioWWSSLmkkmVTIzmVoBCQ1EBEKrp7X252I/eEQgAjoTSDIzZ48ZzZgP/vx5vPf36/d/77nn4A2FNs5v2/Ylbcu1zORm7J6vVTG+WQiCgG2aGzdlKbOKJCtYprmlulYvFQmt2YCuJx83a0gy5O/xZ489wFPPnuGFaYOfHK8hvF5mT7/M3XvD/OCFVerm1u9ZEARk/5WyKreKd8ratc0ecqAPo5ZHUN2YjTKW0UP2hjGrWbbviuH1upA1N3bDJuFqU+6I9AQXHznoZdf4Dv76B6dwazLFnpfJuo/vff8Zqi2DzwT97Dx6FxOvvcr2O+5gZ7+b1xdshrxtorEgp195jUfffze935zlyd+cIV1ss1DfWqEXZI2JC7OE1R5IEnc/fB+n3phg74Ex5hZfo6rDLy6IbFuZIRJQqdeb3Cm6ydVMmhdXWV1pMjBiEEqkKKVXncpet8Pgzj2k56ZBEBjevW/NCc7eSFi7nTaeYMgZANo+voUj2uvqpOdmaDcaDO/eS7WQo1YqoCiKM9jmcqNo2kay7Y/GCMbiZOdnsLAIrN2n3XYLbzBMp9UkFE9SyWauoBmJkkStkF+jTtgomka33d64J5zKtZv33xFDdHlo6yl++MTruESTnbuPcOzkLH3RAAIFvvmbDIeGJD7zsTtvbc28Q9buOmRZQqGHIt9cOz23OI8oybi8XmzLxh+J4AuH17RzVVr1Kv5I9ArTFb3TxrbsLQnqtbSFJUWhU8jRbjZAELbE6Wo+h6QoW6rFtmXhCYQ3HOw0t/uG1V7n/W9dD10QBMesZi2xatWqdNttet3Ohk42OGvM5fU5luaNBu1G7aYNSQxdd54jto3R6xHtH6BeLqGoTiJ/LROnZOr2DzK/U9ZtpdBjNj9Mq7PKw0KL4VQFvWNz4JCM5j6JX5QI+CQsy0ngGiUb25Dwxy3Kyx4i4S9SWPoZktzGHeyhuEU65gvU0zaSvYddd9/L3OmT5Bbn8fq2A2/Q65gIdoqlqQm8/jFsuw9TPEcxn6Vv5xKqZ+umwxZXyc1BYXmZ+NAuatUJIvGDLE2vYhsWsZEitfzTWHKYnl6kXjZALlDMnkfxFujpDQRZB2WeXHYRzWcS8NxPq16kJzxPeKSDe20grrRkEIw+SjE/i6/fTWbyaSKR99Nu+QFn8695IT13Esuq4wsPI2h+6vUi9VIBvR4iNlIlNzHP8K57WL7wKmP35pAkD5rHz/LFNwgOG5i6ST0bQ3bXMLs+4vHPkM8+g+bdavQhyTbNygrQoFcfoy/xALncjwgNNHH5Tzm/4fxhju6NEg3+mPiQxg+/v0S51eLIfV3mpmVyOZW77zP52jfD6LaL/+qPM6iut76xu6menm3bPwN+dtlr/+Om/28D/5e1/73teG1JxJaD/M2TGcBps11LfcLsGbj9QYory7j9fmewxuO5qvPVZlQLeVweL8XVlS0SarKqXjUxvFYyWysVNsnjOIFXFEVCiYQz1f9btNoMxROYhnEpwF6lSlYt5Ndah6uE4kks03T4mN3OVXlwl3/vrXqNF185z/RqE9AQJBUk8KgWfYkYirTqhL/fEt4Ja1fyhDBqBSRfBEGUMPQOqkvj4d0uSmWTj3/yYV544SRTJZWY2uSf/8EDvPzqBE+e69CqlVma7XH/3ij337+fb/zjM7zv7m3ML+XJLps8e2yB3f1ppvMmp56eZqUqgqhy/8E4jVqNetummM1zfrFOSwwCV+cyruaa3PeFR7h45jx/9e1XybcEnn79Gf6bf/ZBMssr/Jcns8w1A8w1AVxMvVABPLDSA0JM/nAKS1SwJBf/5s8OUysUyM7PorncRJL99PQuEjL5pQU6zRbteh1PIEAgEmVo1x5qxQKR1KXNnmWZpMa2szR5gUa5hKSomEYPyzCJDgxRyqQprCwR6x+gVavh9vmpFQrsOHIXlVwGURS3GDsIgkglm8YbuvK+37yxLWVW0TvtKza02flZvP7gRlKhvTBLuWXw3NMv82I6RExZ4DPv245P7OD3hG7LunknrN11bNs+yL/eNnDT3FJRlPD4/VQLBaL9/RvUrutt6NfVFhTNUQXZXJy4WsyVFWVLQrmOWqmIJxBwNLc3JbLRgUHajfptsV6+WWgez9rfc+3CTbWQxxMIUCsU0NwDtBu160qqXQ5JUTa49QFZXqtiOpxsbyD0lh1S3yreCeu2f8TN73/kLMGwY7H8vke6/M23B3jp1yZ3HNSQxVHc/j4anacAH3bjLryhARqlf6TXlVmdOYcpwtjO3yefeZ5mz0+v1sQTLaK4L7JwwaLTKaDJ59C8zj3RzPfj8UXIp08SiBymVpsgsWvdte3KJM0TbkL/AG6fn0L550RGeuQL/4Dm3kVf/C4W575DcmeP8EAVJ1U7hdM7zRFApNt8CakFgT4V6GJ0VcoLZ7HsGoldOoZuYdsC9ayKS3qAi288RaQ/id7KkdwF7epP8Pgl1tNAQzeJD+6nXinR4ylsQcJmjFa9iDdWpNMQMHpdCsvzDI4fpVF8gtDQInUhRqjvMNXGeep5lXjy4xQyb6AEzlPIvoKoXSkW4g7IuANO0tsoQT7Xxh2qblyLZVlUC2l6/hbb93pRXAoj2wWyU4NMTBQoNiPku0Mk+o7h96joxs0VR6+Hd6Uds1HNYts2cjBxw+Dsj0RoVMpEUs5A2PVaR5shihLNWuW6QexmoLocJyFF3ZqEvB0C7/VSCU8gsKWaYFkWpdWVNbvRAURJorCyjOJyLG3XB1TWIUoSlVwG1eVGlCSn6tDt4r/B5mEdHn+AX5/rcrlf+7FlOP71E6BdqcJh25ajuYuAHPytyP/8ViHICvKanJpRL2JbPVy9No++74O8/NJpfvDEcZZKPUCjqsucev0kQbeG1lrlwUc+wPzcKifOFpBen6SlS9iGzkOP3o3r2CQXl+vsv+dO0u3TXJgxN4hP0ysNvC4Fy1bomTY9rr/pWmj5mDg/y+mFDpmOG0SoqwlOHz9LMu7nSErnRBps6dJ5bNPg/u0KtXqT9z+4n5WVPD845iiZNKs1hnY7usFLE+cRZUejU3O5MXWdYLyPZsUZmhPW7Gfr5dLGptIbDLI0cY5Os4nL6yXWP4A3GKKczZCeuYjb53eqyYUswloQjKQc/ud6hdDGZnlqgmAsft2h13ajTqtWw7ZtXF4veqe9ddMIpLaN06xdklP8/Y/v4zs/O82LS24SUppW14WiyPy3//SRm1wV7y5MTi5wciLPB+4bIxa/cRcr2OdQyRRNo1Epo7lvPOAiCAKm0cO2rZvi/14LHn+ASjZzRewWBOG267h3Wy0sy7qCkrbOaff4g7i8XhrlEu1Gk76hIVS3Z8vaUl1u6sVL8xKS7BiS3KyEnCAIV9W8X+9ibt5kbsbJ09NMzlX46CM7CYZ+e/r2vy2M7nCeuZWiznd/FEav19i1/SDh6CDZ1ccxBDehAYf+Uq/NYBoiluRGEbbTv+sQK0vnKGaPg5RFNCP4Q0NE+u5leeU/kRj5BK1aHt/QS4BT9RfVMpaewRNuYtsmmvf6joaqW6HSu4hZd5HcZiGpKm4/ZCaWya+kaJeDNEpFfJGtlJrKqgfBTNBtdYkP3E0t90MkRaS63E//6J3UygsUFo8hdu6nUVskOFCk2+4QTe6i1+2wngLJmkSzJBNIWIiSiDfsYvnEiyjqIHp3O4FEmeG7FmnXFmhkozSKDcZ2P8zi5Mu0G1nkkO3EWnmaciGDPylh2wbzEz9H9tSIBwUIXt0EBhxXO0kIIYfOAm0sY1NnZ9XHjoMfIZf9NcpatfehB3vUymeZLN1JSjiOqyeQzml89Q9NnArbjTn518O7Lhm2bRtECVHWsHtdhLUk83oaxeuB9WqyT616jW6zicvn2xJ8bpdixK222cBJcjWP+7pDedVCHrfPRzmT3uDaddttCsuLhJP9dJrONGg5myba72hTKopyxZDc5fSPq9nXbkarVqXTaiII4sZ717//zb+JIIhXTYQBrG4L0R3A6jSv+u/vKdgmcjBBrZrjP//DS1S6Eh1bxWd3sZExRA1LcjE4nOKL7xdYuniR2aU6CzU3C2c7QJC//nWevRNVsuUuu1MqLz1/nFNzOuDa0IY+viKvyeIJPD+bBUHDY1ZpCb4tsk6HUia7x8L88KUOPzjeBjTetwMiYQ/fe7nEC+c7fGWoj7sPDlI3C1xcKzIN+roY7QYP33c/iwtppucylKttQCRT6jA2OsTMyeMomguj12No2w5mTx1ncHwXRq+HLxKlVirSqlXxBILo7RZuf4BWvYbHHyAQiVHOZAjFk9gI1IpF9HYb0zSIj4yydP4srVrV4dHJMqXMKv5IlGj/AJZlbfBCB3fu3hh6Xce6QoDqcjvUDMFZ9+16A73T3hiYWlc0AOf+8gZDdNttuq0miWSMA+N9rOZbyEKEXEGmXK6/La3ndwLOzxaYKEiMzudvKhlWNBeK5rrqEK5lmpSzGWRFuWLAKzm2/Yrj3yxkRblh3LoRuq0WPb173aTctm3qpSKKpiHJ0kZ8Xu8uJEa2Uc46nOR2s4nb7yM9c5HU9vEt53H7fFuS6ZuhpOUWHQ7y5TbOl+Nag4EA52dKTBVl9i7mOPAeTIbXUa1aFLopRkeX8CVeo9Z6g8ROi2a5SrcBLr+MO9gjFt/O4uQqHl+MpYuvExgw8IYnATB7b1DPaxSKKi7XANnFN1D9OXw4BSdBEAgkdGz7HAFBwOw9hUeRaJQMZHXdctlBPS9C5yiWeIH4bqdqWlnxI1kHsdXjREdrrJ6ZJz5wB/XVWXyROQCaZQGjFUQw40QTR5mfeJxaeRYlYKM3oozu/hCz536MZXsw2oNsOzCI3tGx7TyC93m8yqcppRfROwaqS6SZH6Qv8X5y6R8RHmwBILkquN37EEQVs2dRWnDRa/oYGn+AxcnjLE7/GNlfxT8sUk27sC2d4EADaNAo9eg2YXj8w5TyE8DJjb/Ztm0qywEE0cAyBGQOojfy9A3upJBbYGj0U+SzL2LZCxjNIIJcopg9haRUnPdmTAJRgbvuEmi+PM9gxGZ1Jkmh1OJ2tZrfdcmwIAgIkgKWgeh+c+LrnVaLeiGPIEkb7c5us7kxUfxOFHOvlYpobg/VQsGZSBbFq0qrSZLkSEgJTuLQrJRRNI2B8V0sT14gsPbQcfv8ZOZmMHT9lqvewCYuZvotn0Ny+TCbZQT59nqNv5Ng1HJg24jeMGajjBJMkO06idb2cIevfv5hfvDEcc5m4afHqkivZvnwnX3E/TL33DnOqz+c49HRNv3JEN992WayoKCaXR64bzcLi3maVp3RQJeP3DvE06/MMhSGaDTA48ebdEU3O8JdvvK5R/ju469xYZNFZsCrMDCQQBEzdNcKGT6vhibZYFk0TMWRR2s2mEu3QA1gdVs89qUDlEsV/vN33kC3RHqmgF81sW0PP3sth+dEhsc+MIoNBKJ9nHvpBSKJBJ1m06mEFQqIooQoyZTSK5iGSaNcxhsMsXjhHC6vF384gqyqVPN5vKEg4WSKubOnaNfraD4fgzv3kJmbAUEg1BenXio67eXVFSzTXLsPKhtukutyVPnlRYZ27SEzPwcIeHx+Zk6dYGB8F5Ikr6nHaMiKTLfVIpLq30iKc4sLhOJxFifOs38sxCMP7kfvdnkgW2Rg5K1Jjr0b8P77xhmeTXNw/7Vd5a6Fdf6wPxJFczsbkEiqn/ItxIy3G/VyCW8wxMrFSVxeH4FY7KrdPKOnY1km7kCQpYnz+KMxZEWl1+lQWFkmurZ2Os0G3eaVespvBZZlIasKiurC0Ls3VC66Fj7y0Dj7lgvs27/tlq/pnYiFGZ0TZ308cK/OH3/yLMGIjMenABbNSheNz9Asr+LynyY0WCef+VtcwTgYPaKJnbRaKyyvtFA4hK1MkNzVBQwq8ztJjR6g0vwO7aqNUbufTnuZdrOKLI3iCs4SGWnTLHdxCZ+jWVrE5Tu7cV2WIROKDFMqXqqa2raMJPtotU0CCRlVVTANg3b30j1iNnfQl7ibpYVvUyhcJLXfoJ49i6RYeKJZcrnv40uVsGvvI7F/B9OnnkXWAvQ6NsGUTXH2NL7gDiTrY9RWlpE8ixSzJ1B9bTKTKpal4HKFiQ0McvH04/iDaSLBf0K2OcnSxeMY1hLR2F2YvR7FixlcrmHMRh7CZ6nlbWh+CL2ZYa74E7xRg1pGRNJMvGGB7HSPROKDNKoZqvlFRnb1k1l4lR5n6BvVyGefQXZnMerb6EveSy7/PQJDjnNdaclNIvF5lmZ+RcDv5YufmMMd9LBz/hSxhMrtSmPfdckwgOS5vurARkXS6CBiYcke/s2fHSY7P0tq23bKm+R8XD7/Fneqa6FWKiJJ0nV32puRW1xAXDv+8hbaZvS6HWRVuybdQ1E1mpUS3VbTkSLKX11KZDPHcXXmIv3bx1k4fw4xs0ookdyocKxL8Vxtqv5ydNttmpWSU/W9hrZxOJEiPX0Ry7KwrGVatRq+UJBIauCqPO6r6UcDSN5bq56/k6HaHXyqQU2KYvc6G1rKtt5hb6xLrmpw6vg5CjUDkLBljZ4g8vpkGY8ColLDp/TYf2A7kUQK76u/pooPTZVoN9ssLRcRLJuhiAhWjz3DPgb7o/ijMYRXXsCtCoTlDudOT1Fqbm25PTvZ5YULJ7fIuJ2YKvEHnz3CrilHqu3bT88jiRKG6jzIRc3Dj548j2X2aPYkeqKbDx3QuPeuXfyHb7xMyfDS7ML/9kSWA5EGwVCOg9vHCCdTZBfmCcbiNKplNI+Xdr2GIEr0DTmJ5PLUBMN79rE6fdExwLBthnbvoad3nYQ2FEFRVVSXi3I2jWn06N+xi6XJ88T6nQ2uIApIooIoSyRGx1i8cI4dh++klFkl1JdAc7tJz85gGgbx4WEunjjOrrvuJT19EU8whDcYdCTa0itbqsPA2lBeE7On449EadWqeIMhvG4Zo9e73ZP57xgEQwGOHrlxIufwfnME++IIgkCjXMK2IRCL0Wk00NyOc2ApvXpNJYl1dFstWvUaofiN6XBwiZqw7sZ4LayrfVxvOM22LJrVCpLiSPfVioUrzikIwkYle+H8GYZ27yO/tIiqaagu95aYObRrz03FXIBSegXbdirEV5spEUVxbbg5j1xTsUwTSZEJrq3tm0U0FiYae2/GXVM3mT7n4cLyCPHpSe5/4NL3mJ4SEQSZtn0OJEeFQBAEwikXtVwNvfMK7W4KT6RBp7Sfod37mb+QB5wOk96xqOQX8CQtyqtexJ6OZbnwuAbo37GT+ckspt6gmg6CcRZXYKvyVDClU81/g+CgxjqvTfPnEdpdJHsnMEFwdJJOdYWh/U3W2/+ia4bsagVRbhLs16iseInHP08h+yzBoRVCAx3AQ779MtnlPIq3xPD2h1m4mMaufxBJe5WW+Ss08x4sq004oQMXaBQ7JPs/R71com38nFw+x+DBNpLio5Z5HMnbQ5F9RKJV6pkLdBswvPMDrM6+gRJYBEBSbNqdOqoSJZbcSSF9jujoUaqlaQifwu0ep1mtkF99leHxT7A6PUUseQ8ur4/02XNERip4oyYNe558tokn0mQ9PdUbCiu1Sdo1N0PbH6BQKOMO1giHVSzdfrO2BtfErZcG38H45J0h/qvP7UYynRaANxgiv7S05Zh16TSX10t+aZH80uIVsjfNagVF1eg0b66NbxoGnVYTsDF7VzrDrKNayNNuNimuLF/zmHa9htHrEYj2Uclnt1hQ55cWWDh3hk6zseU9Rq9HZm4GfyRKJNl/1VbfzQTlVq261qa+UgaosLxEYXkJyzRx+X14QyEiyRSeYHDDnedmkHR32RXtbTjdvddg2zafOuzmK5/Yg0svILkvJRQPjNl8+UuP8uCeAGPb+hE2yc/t75f4P//hgwzHFAp1C92UmF/I8eTPX6AirrVRbejpBrotcme/zvs/cDeLy0XOzDdYXVohPT9P0OfhE0d8fPzT76NXznDHiBvbutRWEiRlIxGW9Bqi0Sbm7rIyN4dgtHlgu0xDl8l33WD2ODoESU+Xi2WFBw8P8ccfHcU2dKZXGrzy+iTVrkhUbiJZXWSjxcHdKQzTJBCL02400NweDL2Lbdvo7SbtZmODXlMrFVFdLhbOnUGQRAKR6IakoaJqBOMJZEVBVlUkRSWS7Cc2MExxZZmBHbvWKthNov2DyKqKIIjUyyV6HZ38yhLlTBpBFOl1uxiGjqKplNKrBKMxKpkMhtEjmuqnu3afR1IDVwwwCaLI0K69eAIhSpk03XaLlelJAtHYFY6W/0dEKe3QVcqbqCm2ZbJ6cWrjtxQEgWj/AIE1zfRSZpXWJj72OprVMsFY301/r/VSEbNnXFcu0jJNiqvLFFaWrinF5ki2Ofa2vlCYSj67QedolEssT01skUoDxyEvMzeD2dMJJ1NXLR7ctLGFIBCIxWjVa1terhULlDKrNCplbNtmYHwXgigQHxlFdblpVsvXOOFWtBt1ypn0O8m17rYjNx3hnsMP8cmDGY4eufRsKS43iQQ/gtS7G19wO6J4aUNWL/QIeD6HbB7BFiqO+YWSZv78S/j65zeOE0UTQTSo5ruEAu/H5Q2iRE9Try6xOjsJNuTmXIyOfwFRiCBLQ9QLW3/7QJ8bURTp1HWquS6NItSKFZqVEtWlFEbbQ2S4jaxJVFY9lBcjeMIGgiiRSv4x1VUN1demmD2OoBRolCzqBef5YbZTCAQJpKrkil/HEy7R01sIgo3d2k2jmiE86uRBetvEaI6zdPFVGvXz9I25CPXrSIqTgAeSBoo0Ql/8szRLQSKjWRJ70+Ry/4A7fgJPuE690MMbEvH2v0Gteo5Oo0mvY1HJ56nmCnQaJrZ0kXp1BU/IT7HwHC6fn2atSr1UYnD8KBhObPDFTIKDGVTPpY2qr6+F5tEYP/wAF89+HaPjoTjng+ajGNX7sS7XCn2LeFdWhjcjKLWRJSjqV24PiuUWslTAsqWNiqRtmWucyRNbKpeWaaJomjM01tO3tMQ0j5dKNnPT2pCLF84xduAOMvMz+MJbuWsOV07d4CRbhnHd5LHdqOMNhqiXiwzs2Ekll6WUXiGSGqDbajGy78BGJXgdw7v30qrXKOcyZOfb+CMRPIEg5WwGSZY3Hko3QjiRpJxJ4/JcqbEpSiLeYJh2vYYoSlimQXF15YY8u8urxeVMmlAiyf/0V8/Slm67zvDvHmaP/qExLKOHrm7loS/lmyxcOIcqGrSaLSzLxu42ETQvq+UeJ984z11HxglECjxxoslPz9mAb+OhWrfc/OWvMiCIfHTMZmV6Css02DvkJRxxkRrbjutslZXVMvG+RWSXi2QsBOeyXD5ssDvU5MMP7mL+4hxD23YTjPVxYTrLoR0hPFKHJ6dg2FPnEx96P2+8McmxiQJzS3lESQFJZq4iMlfpkvDa/J++8gDPvXiefL5Eqj9Go9Hi3357ipDS5fN3BxEkkV67zeDuvVRyl7o0ht4lPjxKfnmJTr3OwvmzeIMhYgODlNYe3obexRsIbVRhBVFEUmSyC3OomotqwWnBu30B+neMOxJWIyP09C6p7TvXBqskPB4f3TXnrnI2g+pxE1TiVAt5Qpfx5tcl2mRFZWjXHkrpFTz+wIY1bmZuxpEplN714fSm0G21aNUcabTLK5eiJFEt5JDWKE++sBN7rkXJMo3ehnLC5fxiQRCp5LM3RV+rlYpoXi/R1ACV/Nbp9fXfb93B0LYsJ5ZfI+7mlxcJxROU0qtE+wdo1UQq2YwTQ3NZEiOjVyTosYFBLMsiv7jA8tQFvMEw4UTS+ew1KtnNmG6AM1DXrFSu4synO99VegW3P7Chh51bnEdzuwn23ZxKRrtRv8JV9b0GVYsQSfbTbJlo7kv3pTsgkZmYRG/2UN0Ktm3QaeiobhmXT6CSfYNOy0cq8Wkqub8nuRssq4QoXlrn0fFZbMsmMxUkn19EUhVM0Y8vMIA/EqPdrGCIaXIL83SaFVLbjlKpnWSzsx1As2xh1z9Er93G1lsM7T7IwtTPEMw9mN02rerLSLKNoB8kEh9mZebrCHaNUv4CslfHGxIgNIlt2zSW70dzByku/gBV3obbG8RAxBeG/PQgLk8LSyzhch8ktmOYfOabhAagVYVY/AFE4TTt9jyl6TswzDKhoTkEQaA4N4SAwGr3KWRviU5dxOVXsI04cm8/6ZkzBCM7WVp9iVBKYfTOGtXsLwmPujCqEaKpPXQrArJnAVUN0et2ie+fZ+XcC/gHZCxbp94S8UVtNqejlmlRXU6B0CU8XKFmvk6hcJLwoE7Qez+10jzNxgKCaOK7Te6J7/rK8GcfHuRPPnsQu9u44t9eXhD50fEWtuwktpLV5ZOHfRxIXqkoIUqSE8AF4Qpu2PpARqfZZHVmemM451pweX3kFuaxLxOJrxUL+MMRerrTmgnG+pzE1LavWpEG54Ggt9tbArl/bfjItizSM9NXDWidZgOP109idIxOq0mtVMQXCmFcp1J9OYqrK1iWtfFga5RLNKsVAFS3h267hS8cIRRPEEkN0Dc0TP/28S3JttHrUcllr7mREGWZb/7wNVrie3OAQ5BV/uEX03zz1wuguPEIHT5/t5/xSI/+gQQje/bh9of5xi/nCHlE/oev3kHS1aTWtvjpq3l+c2yB1yecqbWHhts8dqeCYl0SGBdEiYhV4OhD92ELEs9ctOghkRjZxl/89a9YqLuYqcgcf+0sqgT5xTmHc78JUa3DXfuTNGs1ao0u+VyZX/7yVc6sguz2Egw5Scq+nf0sT14g4hH5ysf3omgeZrNdvnBPkKDsXFO5I/LKaxPMrDbItxUmJhZ54UIN2zK5Z5uMjYUoCLgDQaer0WptXIc3EKKUWaXTbBCKJ/AGghv5SmF5kfjwKKrbg82lISy93UbvdOg2m3RbLfxhpxtSXF2mVa2gd9pE+wfQu12Kq0t0Ox1Ut5toagDN66VVrxPtH0SSFGL9g4TX9LXBqeqXMqtUC44lu9HTkWSZSGoAfySCPxJl7sxJmrUqkqxgGj0W565+H7+X0KxVCCdT1EpXxsFwIkkk2b9lMK6UXnUMVzZZa69j/TcPXSWRCydTmGu/c3p2+rrXZBkGgiCwNDlxxRDweiJcyWYQJYm+4VFcPj+VXOaK6is4g9Z6u43b69DbOi1nrqRVqxKIxsjMzaJ3rvxbWrUqiCL9O3bB2hrotltEUgNbNLSvh0a5hN5pb2weuq0W5bVCjC/k6DQHYnHcPj/hZIr48CipbTuIpAa20D5qxcJVrxEcV9VyJo3rOvS9dzs8fTPkct9bsxKG4kw/pdkxWhWR8cP30TcyjG6dwRVeQWh/nOLsIGAjuKdxhecoFZ7EH9PIz4nkzh+mMH8pGRYEAQRQpYOMHTxEzz6F2yeT2r6T7MrLeJMT+MIijeY5Os0OSxPnseytVfhex6Bd3EmzWsXQG/SsIvPnXyAwlKHTWSKcHMToSnQqIayeSGFlFlG/k2jsYSzlFazmXspLoY3r6ZnTNBqn8IQVELMUC8/jDUkU5jUUIYlLiyL2dlPKTLI49SKeiNM9CSZECqXv0bVOoEmHSQztxaWN0GlCZVXFrY0yuP0+unWFbuFOepX7MQ2TbkOk19UxdR82kBr8JEb1EJW5vRiNcfwxGyV0jFJuhkapi9nrEO0fwhtKUVnxMLrjD7B7ASL9CpEhaUsluFGyyc1aBMP3Igs7AQgkeoQGWwTjbtILv6Sab6AoCQRU8ukOrcZbMw/bjHd9Mvza2QxPvTjBhochcGTA5BN3aAjmVq6OJhrs3TPEUNwJAv/3/3JiC4fVH4lc1/xCUmT6t++gWalc95riwyN4gsErfOi9wZBTtdj8sBQEJEXB7fejd650UUlt30FsaBjPuqXs2oCcPxzBF46Q2r5j6/k2/pYonXaLhXNnMfQevlCYaj5/1WOvBUFY4/q1mrQbdURJ2qCK+ELhm6owV/M5Z4BpbVhmvdW3Mn1xQ3v0Dz5/D/+3f3rkmlrR73aUem7KPadz4VYsdo0PEQ9rnJpv8Yufv4ht9vj4kRCmoZNeWuTzj47xRx9I8U8+up3j8z1yDYmUu8X2kShju3Yg9rYGVskdoLiyzPT0Kn/w/gEmFqv8r//wOjWXw6E9ujPC9tE+th08xNjOK6f1/RqMjm/jlfMlTucUfvpGjeM5H7oa5n///gV++LKTjL88UWW12CXen+CN108zsVSnL6iwb982Ai5nXem4+NXZDkt1lfG4hMetUO9aKEaDo3cfxBY1jp3PkxwdI5JM4t2k8KJ5PBuJVK1cpJReoafrrExP4fb7aZRL1IulDVMBURI3qskun4/BXbsppdMUVpaxTANvOEyt4CRstmUyuHMPAja+oJOAub2+DW7oeoWz3WhQLeQBqOSyhOJJVLeH7MIs3Wab4uoKyxcnKKVXsEwLbzCEy+tDkmVePrHA3zyV59XXLtzO5fOOg6xqV3SM1ukO69/dZgiiiD8c2dDC3Yz13/xaVdNWtUJq244Nc6RrIRRP4PJ4Gdq95wo6giCIlDOrGw6joihimQaRZP8VFDNwzI1CiSR9wyPONbo9ThXVH8A0egzv2Yc3ELrifb5QGFXTWDx/llajQa/bcQYy0yt4bnLWZF3NZJ1e16isUUWyjtxlJNl/Q156tZDH7fdTL5U2zllcXWF5ylm3qstFOJl6z1aFAdwBkdBAF0mRsG0bRU7i9Y3hDdlkMo+TX5oFfRfVjEatmEGVhylc3EvY/wdAj/BwhUZBolOJMrxrP0bzsq6lDabRZuHCcdzunVi9OIXy1+nfU0JxyXRqfrbt/QSxgRG2HTxCZWWrtGCvaxGMbMPlNwgMncXXl6X/jgW8AY3w6BS11rcJxMEdrtDuniWSHKbVyFMuv4YgqATCuxDsS7lKZLRAZDSD3ggiilFE2Sn4ebw76B/fxcz5nxAbOEiobzvR5B4s06EWCIJAqN8glJDomYtMnvwRzdZxOpUA3YYXdyDI1BvPkBo7hCgJdLs59HaPWOoI9VKZ3Xffj95pUMg8R9c6g6bFEawkzbKJ0fEQio0ysO1hEATKlV9gySeQVZ1yfhpRcfIzy7KorNr0Og5tyWoeJdn/ZbKr36XRepbiXJzK3CFyU33U8xIuv0QkMYgoSeRyNf72h3v4wY9vfWP3ru/rXcive31fem0w4Wf7WIpfHT9Nb5PebQsvf/GtE3QtGaQ3r/Pr8nhYnb5IfC1IXguSLF+VKiDJ8hVOQI1KmW67Rb1UJDF65VSvsDbAsz4c4vL6NrQyJVVleWoCt89Ps1rZMtynqJqjM1kuE0okqZeKb1puyO0P0qrVCMb6MA2DUnr1pqpetm3TbtTx+AOIokg1n9vgOht6F0lRiQ+PUM3nKKwsE0n1X1ce6L0Cs1Emr7r5919/jbatgaQRcbdxez1s27aDE7Mvc362zH1HI2TSedqWCqLEvoTNFz/1AM898xrn58/RUSKsL3fbtinoLv7Tz1cYikjcm4jh0lZpNy+t72fPFIj7Zc5efIq66WKz1J9t28xVNf6nv3oe04b/9o/vYXZmhe+84lTM1m2hASo9jZ+f62EL89z78L2c+uZLJLYF+MH3nyGiiogBkYXapc8d7Q/SP5hg/1yW7duHeP2F19l/aDc9ochffO15PvdgHGyRwvLSlrUZiEQJRKIsTVxAVlQsw0RRXbTqNcKJBNV8juHdexEEgW677ehiaxqlzCrjR++knM3g8QdZmZ7Cu9Z6D8biLE2cxxeO4vJ6ca3Z625uzRu6TmFlCY/fT25pcS0JSSNJEtgq/rCf1hotSNZcjhOe20WwL4EoiQyPpJgrpImG33ta2ZtxtYKBoetEUv2U0qtX/Js3GELvdN6SXGVq+zhLk+cJ9SVveOy1jJQurxTrnTa9rs7C+TPXpBaIorghwbd5gFgQRTLzswiCQ/G6nBscTiRplEsM7Bgnv7xE35uMuaG4Q00LRPs2rqOSz+Ly3vhh314bUFQ0bYtucafZJBCLYehdIqkBFi+cIzY4dNs1l9+JKBe6dNo2ofBrmDZ4AhrFxRKqq5/+7bsppFt0zTPAPeidDpXCFLK3Ry2vE/A+hh2aJbf6Ev6BrV0QQRQIj56hXdfR+DjtVoZQchMdI1Qll/sxlWqR1qkJBg/orBtv2LaNJ6jSrPwMLQZ6+QCxvjsoZr9JMCGiuGSUtdEg1SPTv7/G6oXHGT/8JfK5pzA7CbKV47Tri+idMKGhAqrb2Sy2qxKDo9tZvtikOFvG6lmsXJxgaOc9VJvfx5QhvxLFFzqMIJxG8zrXrLhk+nYuYVxQ8HkfoFkpMbZnHzPn/gFfn5tK47sER+S1Cq6LysozqGGdfG4J30ANS5egeye5lXPEhw5imgLuUIvywjkazQrJ3R5g88zVsY3/t3peJJ78BPmZ5+nfV8MULlIpplFcQZLJz7A4+TLxwX66rQitUhbZswLeJ/B6VZKeHrGpLvFoB7g1usS7Phm+Gn76egn5WIGefCXXtS14r9BmvprCweYqZWF5CUEU8QZDRFK3Vz7J0LskR7eRmZuhXiygXSN4mkaPcNKRI1oPYoFI1Alwa5y7y5Uuuq0WCALZhTmSV0m0b4TN+peSLF9V2H0zOs0mjUqZZqVMfGSMSi6LJxjaMtjhj8aoFQtU1oaPUtvHqRXyG/y4N6NA8W6B2ShjmwaSL4TZLNPyhDDbVUTVw2zRRlGLPPP6Eh1D4iuff5CV2VkGRgb5y58tIcgqy6UOL796gRNLFpWehrC2b3DR5kuPpDg/W+T4so/lJvzbv30dW/NvbA6T7i6ffWQbT76yxOna1gd3wtXlUw8M8NTxVeYqAWyzx3MvTVCsXwrcwJYpeEFSWMx3Uc8vINoWhw/tIOKFbXt2M3XyDAsnnIrD3rhBvdXjxWePEfPAtm0pTtQaTM0VyVQthvpcrOS77NjWz8R0hv/wszQ7YgKf//DujYqVIDpmHNV8loGduzF6OsGYI6G2fj1Xs9QVBAFvKAyCsGHhG+qLE9rUurdtm+LK8oYZDTiVYJfbgz8ao5LNornd1IsW7ZqzMdDbbdw+Lx5/gFo+x+Aaf3j98/fsHMK2bAYGbo9G+bsJ4WSKcvbK5BDYsvm4WdSKBYeWIskM7953uy4TcAoQ8eERsguzjnNhsXDVLle7XiOcSG0ZBnTWm8fZKF1D2UcQJYf2dpXB4xtBlKQt3+G1VHw2I7e4gN5xqCDrjqmdZmMjBgSiMar5HIIosnJxktS27dTLpfd0MlwpdrFt+M6PolT1KP/0i5Ok0yKaSyfZr1JdMpg88SPi43U8rUdp1Vts238/xdIPCUTA6EpUsq9hK3XCg1uHOwvTQyhyFC32OsGEl079V/iCIusxs9vs0SncjaGX2XFPA6hu/Jve6tHKHaHXq9I37igxdGqLFPNt3FGLzc36zXE3EDcp5c4hyjXo7UIQ3QwefJByZpVW6TnUAYtGUcTj3cb5136Ax59C7vURiiUpZE5gCyYSCqq0B0Nu4PGPoOun6NYVBNHCH3eqsoom4fb5ya/Mks/9mGBfxElUs0+iei5RfUID610eJzZWViVCkQG6xgR4fo4/6ChlJPdupQfVcwqWnkQLzePySVRWFYZGP01+eYHkwKM0St9HVtv0mlG6dS+rLYfK0jLP06gF6B/+NLWKhDdUASAck3j0vhJujwA3MJa6Ed6TybAlubh5ZuyNIYgivnCEbrv1poP6jeD2+dcE1IUr3PHWPer94QieQIhyNn0Ft84bDG+pJGxGOJF0aArXkOh5q7BtG9uyrmhtWqaB2+ejWa3QadQRZZlmtbyRrINTsY6ubShqxYIz8HQTlqPvVhj1IpIniFHNYjYrgIDZqiEHYhi1ApOVGJMVABXJ0vnVM6fxSj0ssQlrreGq4VAPLnf1E20DlyKhKZt+B1dgy/5YEGwURdmiVAFg9zqILpNgJIhPWuCx+2Mcnyjw4kXnzhHWIoNkdfj8XT4EBJ442aBpaiyXTeIRg47o5f/79VfpCwjUmufILq3w+TtS5Os2IcWkv8+L0VC585EH+cn3f8WJUhjLbCGqbh4a8LJtLMXc2bOM9KfYnS7xe59/eGOoR++0kSQZvd0mPjJGIBqjlFmlkssSiF2fnhNKJOm2msQGBqmXSpQbaVSXm1A8sSH9JasanmCQbrO55aFjGD3KGccQwrZtRFlCUhVcbg/tRoPw2lrd4G9uuu9efWOapy/o3F2c5mMfuOMmVsd7B6Io3tb72NC7hJNXrzTfKkJ9CcrZNIbeo1kpbam62rZNObPqrJdEkko2c4U2cCieoJLNXLNaG0mlsAzjmpXqtwrLNK9KJxEEAbc/SLtev3Sc6MzA9LodFM21weFuNxqOhvJVaB7vFViWxde+k8CyZXYOpAl2dMyezo+fvwM3Ff7Vvyjji6xr/EpUWicxLJVywUD2OvFP1iRCw1dXeeo2DTxxH+sCSC7/1rhs2yCJCoawtdtpmRatuo6qBbDMLoXpYQRBJDQ6Q69VQvVcOk92MoZgDIA2SXxHB5evR6OZA0tCC75Bowy5lTLl3Cqatp12uYxtufEFwshymPjgfgrpWXTpCWLbnYH3WiZKPHGA7MKvcXvqdHthwtGH6LZq2PYLAAhqnvzyWQJRidBgk1a1TSH7MpL7+nNSoX6dWv4bREfdGF2Z8sIAejdPYqfzfbaqBqIIVncbfcn7yOWyuHw6kmJRKy/RM5apVct44gLtYhJVHsPdp1AtzhAZNgAvgbhJNfcDlIDFekWzmGnznV/vw6+U+Bd/XrnByrg+3pPJ8O2GLxSm225dl098OYqrKwDXFGtfx7ru79VwuUf9uvzbun6xy+u9amUMnGGOcjaNJDsT9zfSn1y3oL3atdRKRQzd4fdEkv3klxZQVA3V7d5SjfYEgrTqNfp3jCMrqkPs73YorT1cLsfNqlq8myHIKmazgiBrG5bMZruGXlxGdG19mJqiyqvzNmHF4P79QSKuNmX92lzJR/b68Po8nJ2eAunKtRmQu+wfC/K1n16gZl/6XUWjzT/9xDYWVwr8z/9whj4ffHJskOmFMo89GKLXquMOhHjmRI5czcLn1hjetZPzK8c5m4HtCY1HH9pHsXacsxkX9RqsnKzwr/7wUVanp9l3eB8zp04QHx6hXOtw8cI0y90AB+JdPvK+Azz9/Dl+8lqH2MllPvPwKJ5ggELd4slnznDvHQPUSkXa9RqBvj5yiwuM7T8IcEWyZdu2M+RpGsiqSjAWR5JlZEVB9AdoN+p0Wg1EUaLdqBOI9VHJZQj1JViZnsS27A09XLi626KiuqjkcvSP7SC/fEmWUVbVK65n23CMhcwC4yM3rub9/3F9rHfBLqc4XA/1UglD7yKr2nUpGaIkEUn2XzV5r2QzG5/tEwTCyZQjgdmob+gXC2uvXw2rMxexTANJVm+YDK872F0tDpqGQXF1GduySIxuo5rPYVkWtmVe0Z0MJ1N0W01HtWPT8Kehd1Eu+x4ud7t7L0IQBFLhGoYl8rFPSoiSjm372d8/iUMb31oYCg3W8cYMmlk/ZjMMkWtL1OVnFBJDd7G6+BzDh67kbhtdg05pFMM6R2SszuZKb2VpGJ9vL03zJ/j6Bbr5+xFEmfJCFZd2B6VsHlssEd2Wptu0GN29i3IO4BTNikWk72EqhSncwZO4gwCT2OZeosm9FFZn6Bscp7iyxM6j72fm1LN4Il16HQO79jFajRzRnWfIZf8er2+no4ZTkWk0XwLRpNs0qGf8JAceY6l0ElfsPIIg4Q3ZEJrd8jfW8xJWN0HPXMQbFnEHnL8x0OehXe3Q7QjQGyYSuYN67peo3g5i50O06zW6Ro6Vxe8RGW4DEv4+E3gN/0bolbHD8zSLaaTu3cSHDtAsn8MbdngjwbjA5tZ+MKqyf2gOv8/kVkfgburdgiB8VBCESUEQpgVB+NfXOe4LgiDYgiDceUtX9Q7A5uE6zeN5U4kwOC3eQDRKu3HlgMbNQtVczqDKpgrEOl1jPTm9FkzDRFIUkmPbb3hsq16juLpKT9evOl1t6k57ep10D44KxNX4wx5/AGWTiYiiua6pdXyz+Dd/dvgtD9f9rteu5PYjB2IbiTA4tAlBcWE1r9RWBegPK9x5ZCf94esPyqiSs9nwua5+Gw9GZO6/dy9jMQkXrS3/Vq01aLV1BNVDQffyP//dK8xmmshWF1PvsG3HMF7VwpA8/O1Taf7uOy9xbsXpXJxe1vnad1/Z+G+ALiqvvTHD8Zk6f/ntV3h5qskTP32RX56o8K2XG+Q7LhTRpttuIWFjiC4yRpi/+sUi/+6bZymYQV6aNfi7JyZQPV5atRrNchnV5cayLHKLC+QWF7Bte0NXstftoLk96B1H4qy61rYurq6wMjWJoeuO9nC7uaHsoqguSpk0lul0Nm5kfeuPRBgY37W2oXNd99iBwQRf/fzd7Nhxa1bA6/hdr93fJQRBuO5g3dXQ67YJJ1Mbaj1vBb5IhHJmdcvAnqHrhOLJ6+oXr0PvdIkNjqDcoBNnWRaLF87hXjN9uhym0cPl9SGrmtOJs22HP29dGXNlRcEbDG0ZHAwnkjdFsXg78Ltet4Ig8OXHLL7yFQNRcmLjwnSLk5Nxjp+6+j3cadiEooeQuP6929MF2o0aqnx1ikmrZhKK3oNojOKYjm76vWydTrOE6lFQ3SpK+GVM9Vl6rQDNchFvYBDBDgEweEeBXPY7SIFTAAQTKqXyDxG9J7d8nuhaoZA5huB9jdXlH9A1Jsms/IDhu1bo21HEMsHs9TANC0mWCA/IRMcnaRrfIbq9THi4SmigTrdwN/R2Ucos4gv0YRsy1bSX2tIeWlVri5av3R1Bkw8Qi3yJbvEAAI2CSGl6B73Kh7A6g3T1CTqtCrZgImsi7eYCrXodj7YNydXe0DG+GjSvTGTYxJbPUK3+Bk/o2sVEWZH41KdtHn3/rc8c3bAyLAiCBPwH4EPAMvC6IAiP27Z9/rLj/MB/A7x6y1d1GyGZLWxELOn6D7LbDZfHkW26GZ/5zbAsi1J6FUmWN6oi9VJpjRMcxh+J0uu0b1h1cCojNvmVZUKb2sqteo1Oo45ts8GV7DabiKJAq1q9agANJ1NU87mN64kNDmMavetWvDejp3epl4oblbvNyKTz9Ho9hoZvP1Xinbp2bdtG8UfpGVd/aJ9N22S//gLVlk2fRyTb0bANnQ/tc+NyyTxxsoMgyTx+SidwZpJUX4B8vkNP2LrGz6ct/vM3X+RDd6Y4vNvgB8+vUiOIJbv59su1LQ/PLiqHBzW279/L8ZePUysWKDcdHlnAqpAuhbAVp7pviRrLlQ6fvSfKfLrKiRUJJJWnJwxGgzL7x7w8e77BXFNDsbt8cL/G1GKd4zkfJ78/gSV7CGsNSoYXSw1u2ZHrhsDi/CrRaAy3348kyZQzq2heL2ZPJz07jeb24AkEcft8VLJZTKNHdn5uyzBcYnSU9NwskUSKvkGH6y4IAv5IhPqMIzN4M8IqrXrNmRkQBIZ27wXgmWdP8/qFPAcGFPyxGEcOjODxecmk8/zjLy6wbzTAB9936MYnvw7eqWv3ZtDTu7QbjTddQLhVBKJ9DmUs8uY7TtVCHrOnE4j2EUkNoHfaji23qhFJ9VPJZYmkbhyjBsbHqWSzuP1bO2y5xQVEUSTY14eiuWhWKngCASqFHOpV4qjqcmP0eiiay5n4jyfQO2184ZsvKlTzOVS3+4puX6fdZm52lV27R9/UZuNm8E5dt6psIrl96JbFOs91M/wxhVruh0hek8qKhiuoIwgm7XIEyd4LrmP4+yxSu7tUMk8heTTqORl/fCu1MdCnUcv+EIsEPvmTrJ57jtTemkMjGsth21mENfqE4hapFy2Gxu8nu3gKSVIwbadAUlhq0euIREfdrA+Ghfp7lObjVBt9aJFTuHwyocEqrWqFXm0vnuACgYSjIFJejIGtEhpcoVV7ikhKpJpR0XwmLp+C5t1aaNF7eSTVhSv+GnobZFWgkYuTGjrEwtQ8wfBdmNKrBFNdZP8MuekOgeAY7e4qIcDs9JEcuYeliTOowR7JvRVs+8W1Z4yEGpmjVR8lnExRKN04cV09EwE7SHT7FIKgsLKo872f9BH35xkZtRkcEhgeczac3/lHkWZb5Q8eq6O63roD6M3QJO4Gpm3bngUQBOHbwGeA85cd9/8E/i3w37/lq7nNEHot/vnnd5PJFPn+6zfnHnc5bjRcdy1cLiB/s8jOz5IYGdugWQAb4v7rdImbtdz0R6L4cUTZJdmpHvQ6HQLRvi0SSL5wmEYZ3P7ANc+9WTdUFEXEm0yEAerFApHUwIZZiPM3dVFUjX/46TnatsZ//SU3gRsE+qt973/6b6/7lt/52jVbVWyzB4KI7Itg9boo0QHMRhElcJmofi0HNki+CAXdywcPqtx/716e/sULHDy8i/zKMoFoiBH/HPm2QltycfcOP7vG+/GdWubY5QUmSUHX2zRzq+y+6y4+jco3nndagJsT4aRW5bMfHGNiapm//tbLDIRsOufnKbQV9oSKfO4PP0Z6ZprnzxaZrjldClkwGRtN0mz3YMXpPPilDg/vCRAfGuTEhWOU0AiqBvfdvRvbnmDxfJdw0M3nHkjidqscOzHDy6tbW7YNy8W3XlyvmOcYCXT5g88cJr+4SLCvj163u7ahcjLZ+MgojXIJQRRR3W5qxQKdVgNJlvGHwkiyRDnrcOplRaG2pqpSKxQQBMHRwLasLZvASi5LT9fptpqUc1n23f8QhU0UiVyhShMPL1wooEb9mNY8jzywj1azQ7WnUbkNmpe8A9buW0U1nycYi21IJ/62IKvqW66GdhoNEqNj5JYXiQ8O06hcmnUQBOGm6RqKqtE3NEwll91wPAzFE0iyjCcQRO84HF5/JLKhW30tutjlA25Xo5pdC7ViAU8wSL1Y2EiGjV4PUZJ46vkJXl+0+Uhjkvvu2XvT57xJ/M7Xrd4x+O4PvHhdXT77eYerG0u5+dMvzuDUYi49u2Yv9njtRICH7q0yMKxSXvYQj3+R5dkXCcf2UMueZnjXIKuLJ7FNm0CyR7cBPtdDNHM5/PFzV3y+N2xQWdLALDC689PkM98i1O/Eq/W42+sYlGcPARLLC9/EtmQqRQvRvUKj1EWzP4bLLbD4+kVG7k5vnFsSwnj9I3R0p2JsdE1KM6NEk6M0qjokHGdEWdiOJxCnXZ9Dc0tUF/YjCmEatTakTuDyX0pIBUGgb3ydH61hGTpi96NIwjLF8jfxhDwoqhvDcK7dExRI7lmiVVsmtUOkltORfQssTpwi0JfCUl6hshJD9TXwBJ33mPVdjO45yvzEr/H2GVRXYniiRRTXmgpGzUKvbaPTXMWyBVyucRIj21mcv0Bqp0K1bNC0IkzOtJhr7iAxt8SfjTld93LdRcsI0OtWbikZvpna8gCw2cN4ee21zV/mEWDItu0n3vKVvA2wRJn5xSzp3FunKtwuVPI5libOkV9acFQergG3z09xZXnNztmB5vZQyjg2p28Foijh9vsxjR7BvjjNWnULp07RHN3J2z0cuA5ZdWSvFM0J5q+9PsH/+69e4fgbU+wa9rMzIeL1vy2al7/ztWsbOpIvApaB2Wlg9zqYtQKyP4YgX37jikjeEFbX+e27zQalzCoiBu1mk0R/ktzSEn/y+w/zwN6Q8xZZRfP5mctcfU2NRGX23XcfU2fO8crZq0+/x3wqiZERVE1muSrwwD17GBvtxxZlWj2J1ekpLMvk7u0etoV13EKH+/aG+cYPj/OrU5eqLPuGPYzt28fi5EVKPadKndc9/MdvvMRzZ6vYpoFbskgMDlAvlRiIufiThwN8Zr+N3Ktx57CAV9xaLe/21gwEum3a9TqxgSE6jQbNSmXDTtcXjuANhsjOz6G322guN5ZlomguOq0miupideaic2woTC2fRxQd3qdtWSgu1xZDCOe9GoqqEorHWTh7GkEUOHV6mn//X57h/GIDrbbAzkEvB5Im+8adREnVFFx2E7/7tlTbfudr91ZQL5duSBV4u6F3u6xMTbA6c/Gq+sdbjtW7pOdm8KxR0gKR2DVnHW4GpmEQWJOkBMfIw+zpW2Yswonk2zY34fJ6qRUKG92PSrHM//J3L/HN773E2GCYkYDOUP/bUrn/na/bbscgXY2RLji/5bf/UeUv/qYfTYO+5NYizuy8ylxpjPkFJxb3em0Kq8v0WgJ6u46i+GjXG3i9R/FoH6Zd7eByewjG4pjC1eNpu95jaOdhjG6XzNIzeEJXbo67LZvYwA4U1U0oZeDxjtA/dhRJ1JBVkXJ6mVImjSxHyU72Y5ompYU+dGOVLj/CF3HqmI2SwNj+hxxrbfnS1y54X6HZ+ymeoEa3beAL92NjYZsqjdVDZM4eoJqVKS/7qKa3rnFRFmg3cnTbTToNE2+sQaP7cwRziGbFOUb1SISSIoV5sJsfoJkfwhWdoWu8jNEJEfR/lOriKL3OWuVcnaOQ/Q19O1YRre30xT9Bq3SpYNite/D7DiHZhxB6e2k3aqws/BItaPM3f+flyWd89Ko5Bgd7jIfPcfcdlY33uqQWXqmE6rq1EbhbHqATnJr//wL88U0e/+fAnwNIgbe3aiBIKk+c6vJm9ec0OiiCScO+enK4uVp8M1XiWrFAt9lkaPc+8ivLtOo1NI/nqseG4gmnohK/VIn1BkNXyKa9GaxX1NbPcbPVmnXKhqwoV1iDvhlcHvAFAQTBYnk5hym7+fj79l1Bn/ht4M2s3be6biV/DLNRQvJFsfU2lrFV58S2TGy9jejyISgaVqeJ5HMq5PO5Dgf22ISjYf7L00V2RgyqjR4F4zTTq03Axa/OdXn67GlMOUTc1cEn9ZA0F7MFG1NUeSOtUPr2b1ioqaBurcKqdpsvPJBgYqrKf/rbJ8kYYURV5Rs/m8QCBMHFQidErdHlwN1Hyc7PEc6XEQWDh+/fR6t9itz8JS7Z8dkWpdrrTKX1DRMcQRAoNm1Eu8effHSAxZUS//avX2Q8ZnNg1Mvg9jGatROMRQU+8aFDyE+f4pW5S+fs84t02x0CkSiheJLV6YsggD8apVWvOcOtrRb1cglZUYik+skuzJEaHKacSdNpNGhbdZJj21i8cJZo/yCxwSHKmTSVbJqe3sWyrI3zNKtl9G6HXrfH0K7dzJx6g2BfAs3rI39xjoodIKg2SQ0mqbRAazVQVOdB2un06Age2rp50+vjreKtrt11atTbicu11G8Ghq5TLxXxR2M3NJW4Gdi2zcrUBUb330FhZXnDxOJaiPUPYBrGxmzD1QYk3wwiqX5qhfwGteLNGFxUC3kMXSd4CypAqst9xW8tAr1ej3OzRe4/1M/g0FuP6W8Vt5IvRPpDN/UZ/pCLP/78LIriyG3JoolMF0m6lAfUSy28IRcPPmCSiJ1g914JkAnEbJqZOt5gP4byLL6URqe7ii1ArSYRHtZwB7uUcl8juUelXYNurY9et4Y7aOGLmfiiLvLzP0AKmkRHFC5Ps4qz/dhmkFLru0SGbVx+FduaJpdbxR9vIykqwaEGCvsJxuIsTh6jVe4SCt9Ps5rBG77ELAkkILf6I8RAg0jyUm1T81j0ugaluRHcrh00jJ/REwWamRF2HHmQwtISzVKP/uHP0CitAK9svFdvy+gdBY93O9H+h1me/Q2yFMIdGqXdzEDIUS0pLfShV6L07xtmaWaWUH+bVtVGL4+zcP4EO48+xMJUDU+kRTCl06ys0CntpqsvUMg9jStUBSTKS2EwfCxmHmfH/t9jdfYMWngOSy7S7Urkm324pQxDgxYe1aJWMfF6LcCZW2obPrqmG8u8taLnzWQgK7CFVT649to6/MB+4DdrLYAk8LggCJ+2bfsYl8G27b8E/hJAS42/I31LP31PHyMjKf79N9/AkG9t8tayLOqlIrVSCcuyaNWrbDt4/QT6WslqKbOKZZhE+gfelEmForlQtKtzpmulIka3QyAWv+IhVM3niKT6qeauvgO+WawuZ/n2LyfYPxbkw+8/xF137ubIoR1888fHmckJ7FzIsP/Ajhuf6M3jtq3dt7puBUFA9jsVGMHlQ9A8G5wxALNeQHT5MZsVJG9oy3uX6hozyzXyZQNRlJgqmOyP2ZyZrdHA2agJkoq5Nh39wTuThP0qsf4BfvTzNzi1Cogy/Ykwg0mBF+asLZ8tCdAXjxDwyIiqi//w4zkGfD10E0pdZ70M+XVqDYupk2+ABeVSFUSFv/32CwzGXAz7TRbrzuf3BBdTRUC9FFZUq8U//70DnD9xDlUwodfBUIN4AjZuj0o1n6NnwExZ4Wc/fY7prAVcqhiYNnS6PbKZMqZhonm9RJIpVmeniaacNrah9zCNHvVyCcu0iA+P0KiUaTcaJLftYP7sKdLTFxnctYdaIY83GMLGJhRPUi3kN1rg7UadYF+Caj5LOJ6ilFlldN9B/vKbL1Hryfzzz+4mFUkzuZLCK/U4t1QlZ8TJffdVvvr5O9kxPsS/DHsIhrf+jm8Rb8vaHT1wxzsy5taK+SuoVLeCeqlIT9cdK1zTIpK6Pn3iWslqo1xC73ZwebxvivomCMIWatlmdFstmrUKmttz1SKHafSIpBxFi1tJyP/+H5+n2bX5sy/fRSga5l/9yQMcPzHNz0+3gTy7dl5fN/4t4m3LF0YODt702o0lLlWAv/R7FrZdQRSdOHXxgs73n9rL4e3zfORjIgc2PY5dfpl2ZQ6JFKpXwOU3yU63EGyJ+HiP9cJaMO7ER72eRBX2ExuIUc5PAW8AoGpeRHM7zco5R5FhEyTRi2UF2L7nj8jlvk+TLr2mD3+yjiRLNCs23bpEq7tKrVSkZy5gdbZRbv4IvenHXEziT64gqRKiKBIebHF5k7+Z2Y2qDmC289TbNXz9KmpPwiVso1WrOcYfEYOVuR+DLeAd3KQlL4CiSlRL85hmGQGL/rEjLM08RXSsTGk+DoKN3pQQRJX5C8/jH1hGb1uUFl1s230P7dob5JZmMToxAr79NErfwmzH6UvcQz7bJDCQZl0VQmKYQN8Ykm+aQuHb+AdMXn/D5oVzh/jY3ef5k89d4MxpCUkRef0NF7o2zHceL/HpDxfYe0Dmj79SxjSKaJ5bmwu7mWT4dWBcEIQxnEX9GPCV9X+0bbsKbJT+BEH4DfDfXW1hv1swsVAmX25jCDfmxd6IU1zJZejfsRNlaRHN40FWlCvsQt8MQvEEjXLpptpr3XZ7jU+59nm2jScQ2kKHWHclWucjgyOz1qiUHfvobBpJubV2Z6ej07A0Gq1L7SJJlvnIA9tZWi2yd9+bNwS5Sbzj1q4gXLmJsbpNBOXSWjPbNWxDRxAlfnlWYz1oHIq3+OxnH2Xq3BTffvUSLWLIr/O+I0leP7WIKEAgXOJiWsc2JeLuDjuGUri9Hl6YXgb50ue3cfO/fecsd41pyLKMaLb5o8/dz+pyhq896wxiPHxHnLHtQ/zsp88Rjcf42KN7QBD4+k/P80dfvp/jJy6yePLatB8TkfRqAUlVSY2N8ZuTjgj7sUWLc7NpDm9rMLGqM+zp8sEPPcSe+RX+/gWHenHnkMVgPMhPX1rmkw9v58ljadIViz/9mEx8aITVmSnG9t/hUEkkibEDh8gtzLNycZJI/wCKy0U1l6VvcBhRllm+OIkkSYiyjMvjpZrPEdrEBQ3FE5TXdGU1j2ejexNwi4CB6nLRNhTOpHX2xmW+8NAAT72+TMF0ceL0HIcPwsJykTtuTzL8jlu7byfkNeWcdSrVrcLo6YzuP8jS+XOEUyk099U7cTeC3r00r3GzyXBxdcVRf1AVLNNEkuQtiXGrViWS7KecSW9JhsvZDIqqOoon6dU3JSt3NdTbFi1TwuiZqC4n5h6+YxuCMMf2sbfNJfEdt27XXVzXoWrgEqq4XJdMLgzd5EePa3g9Bh/7eAWoABL1go5H/TDBWJxy7usE406cbtcM9MpRuu00pusUjWUTzetQvGo5aFe8DG47QKEwBaGtXQlv8jyVVRelXB3V18Ws7yKevJNc9luEBiyMRorh8Q+wNPMkbm8/hj5MX+I+cvkf4vXvJBgZo1r9JoG+a9OxLLtBtbhEavQgldIU3rBzbE14mkouiiBaeFw2Ps89RAeGHfe7pGOKQfcObO0k3tAollUjPLpCLvcDQkN1CksWId9RDKMN3gmS/QcoZVap5/K0hQFGx+9kbvIfCfQ3kBURQwixNNXBHUwSGiyQy30Xd7jF5tRTDpyg1jpFIK7hzIKIeD0GHiGPxwvRPpVjk/0gwD95bIYnf9VkvjDAc6/42b23yeQEDI+I3CrJ84bJsG3bhiAI/wL4Jc5T+W9s2z4nCML/Azhm2/bjt3gNbxlmswySgiirmK0aosuLqN56MD2TkSFjgHTr7TpvMEw5m0Zzu/EGgrfEEZMVlXqpeNNDIu16zaFdrElOBfsS1EvFLcmwrGqU0isEYpeC4+bhkdtRpdm2Y4h/GfIQCG19mMSTMeLJt09r+J26ds1OA6vTQBAlRF8Uq1nC7unYmkmvmsVq1dH6d2LWt/IcF6sSF06d5dR0BbjUsXArNsOjAzz7xioLdReechXdktidgMc+8xDP/OolXpvvIVxNDkj18fpa3cbWgjz+q1O0dJt1Lc5fHcvgOZVhoR6GosnZhTkEoGL5+Mu/+zWSqrIj5OJi3uJThz1YRo9fXTBxCT0sy2Yw7uF7L5WwEHht5nlKPTeC6Lh0ddQYLy8DaMiWwPLMLJPzVcDZ4ccjbraNJhHaZQaGkngu5mlYzpBUZn6WQCTK7MkT9I/vpNftsnJxElmRSW4fp7A0v8aFv1SkKq0uM7hzN5n5GYKj27ckN7lMgcefmeLAjij33OUkIbZtszy/zO9/4f6NTswd+0cwzVk6zRay281gVObMQp1W282TL8wwUZAQmOHQoZ23sELeuWu3Uq6Sz5UZ3zXK2bMzuF0a23e8eVrE5bjtyhO2Ta1QYOTAHWDbb5l64fEHKWVW35Q0pCBAINZHbmGe/h07tzjYgTNcXc6kUTcNK1cLefyRqFMhv03mJX/6pbuwTAOP/1KsUFSVu+7cdVvOfzW8U9dtp9Vjea5DruRl50749IdzTM9ptJtdshmT+ckGM9kj+OQKm9UmXD6RfHqWRm2axJ5La8gywetPYVsNQiMzdBomelugUezhd/8elrbA4sI3SI2LXE7TVFwKfdtM1mcK6/os+UwNT6wHSKiBVfLZnxEaKqB5c7SqNvlcCW+0Rmn1RTrZ42jaAO1ajlYphl7rQ/ZfxBfpoXdMMKJooSyRMZtafgYtfMmkItDnJtDnFC+6TYFaM4c+WyI44hxj6Bp98XEWLzTwhSPYtJG1OUIDbapZEZfwCO1mi571MqGBHoszT6DIMSRSeLxD5FZOEx7S8QSdGN6peogmdiHJIgg/IzSgszntfPxHoPcUPv/5Husbk2Kuw65dIkfvrrDu3Pe5Dy1RLBjMzHt54J4ys9+r02pYnDvd44nXDjE+P8uXvnB9Cdkb4aaImrZt/wz42WWv/Y/XOPbRW7qiG8DS2wiy6iQTqgerXcPUOxuOXrcjGb5VrFeL/82fHb6mKcZbwZtNpEPxhKNT7PMjCCL1UvEK7u/VHkLqRpXm9snRhWO/XZmldbyT1q6eX8DUOygh5zeQ/DF6hQWkYIJeeRWz3UBLjNITc3RXJ1AiWzUvi1WDb79YQbrMrGOyqPL/+o/PsH97lGQ9w1e//DAXp5c5fzHDxOnzHL1zF1VzwaFNXAeCIHAurzjqF6LTNst3XLA203b3sMVIso8fvpLnwR0K9x69l5mz59l96AB/8bXniUcTDO3YTr7+Kh983z3MTk6z++Be/v57rzBX1SgZHrhGVyTXgK+/3GU9EX50BwiWyS9/dYyPf/xe/vobz5InhiA491dYavCBvRoet4bL68U0egSiUSzTolEqIojSRmXNNAyqhRyK6uLiieN4/QEalfJGgpPNFPjpz19l2UgQzNTpX8zwwhvL+BWdY2mNh8fLvP8Rx/hD0TSSUTd/9fwCMiu4PF5UX4hdo1F6loQgFBkdvj1Vt3fK2jUNg163i8vr5ce/Ps9cReEzlTKPn+rhFdv8d7chGb7duB2beHhrVtKax0uzUiG1fdwx77hMBnNz12Ed3kCQSi57qYt3G+D2vrVq+K3inbJuASbPdXny1xp+v8xK5yhms0KuXKGQF8g2khQWXmexezd6s0EyuMAHHqwDl4oG9YZNQ7rIzr2OvfA6vGGZZuXHmIKH4pwfwUwSSe5ndeU71PU3cLkH8LnvRBCu7BxfDn+8h2WtYK+NGrgDIu5AGZCoZVVE/TDIp2lXXMT7vsjS1DGCgwfo1E7QKncZ23uE4qqbXhWsrkZidAeFzDEIT+KPgW1ffU3ZlkXfzgvImgxIVFY8SPYeps58g6Ftn6KQeZnISA5RVNauyya9MIuqhfEPWqgeCUX1IokiovsirWYOd6SwkQjXCxaWkKVSOo1lQsCMEBxYd0m0ePppi8nZCILmpVWb5ZnnvXjUNidmdxDQyvz5n10SERjfo/Dz/9VNtRNkNAFqYhuDwVMMDQvsnp9l1/YmtzoC965yoDPbdcDGbFWR/VHMRgkQEDU3Rq1wlen8tfetyVsJsorkvr4fe1Rt84n7BnjuRJr52qXWtW1bHB6w6eoWFwq3XjG+3cgtzmPbFpZpkRzbvtEW2lxFvlnnIV84QnF1BaPb/a3IIxULZX727BR7xyIcPTL+tn7W7wKW3qZXXkVQNNS+EbrZWSTNjVkvoIT76aSn0FI70QuLdNMXsQUR2RfF1ptYkozVrmHpbZRwCrNVg8uSYUEQCPg0PvTANnJLKrnlJVZWCjz2xYeYPD/D6cksRqfNZ4/G+dUbBVr21Tc5Kh36PR0+eP8OTk/leG1xaxAN+V2k+qNIQo5mp0elWCSeiLA8t0BTDPDtpxfZO1vhwnKb+JlZFleKzOVPsVQBlTafu8uPP+DnxZOrGKbNXXvjrK5kcPt87Nq5h3Nn53hp1qBpuYhFfIRCPn5yvMbZv38DQYuj0WFHQmUybdADxg/eQXF1ifTcDOVshh2HjpCdn0MQBGJDI1QLBWIDg1Tz2Q0+atST2mQP7iTDL78+xXzdg9qe4RNf+SQvH5vj3GwR0TYQ9Aaxe+7cEJ0XRZFsqY0SSpCSSyTjAY6dnOdbPy9zdHuQpZUGjeYgodvrxPs7xTe+9wrpOvz55/YyPhREEmuMje/gnsYcfs/VY0q30+Envz5DPOzh4Qf2Xff8vW6HSi6HZRokRrdSpqr5HKZp4PEH3za1m7eKSi6LaRobKifr17eZ+nCzVV5ZVXF5veidNvmlRfqG3hY+7xY88cvjdHSTz3386G3XG/5dw7Isjr/Y4Oe/9iEn92BXzhILLhOJ1Dm83+TkCZuVrIc5+yhB4zyGqGAaMt9/9iBf9U9w7oLG/IofyW6T6e7gMekk23ZtLWp5QxpG7SCtmoXmcVPKnEcV9pPceYT5iV8gGR1Y2o8tzhMcuPpwl2Va1DIu2uUYvuAASuhFXP5LtESzJxGKjlAsnkdxd6kVV1HkKO1mjZ6YJ7m7w8r8T3EHdYyOH9N2kVmZQ/E4NLfizABmO4YgN7CUc7jke6kVcrgDGpIYw+i1UAPzhAZa2KaLYGwUSzpFT/ohiV0KCBLlZR+Kq40vBqFkDH9oG6vzSzSzfShKCLc3TiY9gc8zilt6kGblcbBtvMoXsVvLyMlXCfn+gGrxInASgKXZNi8dG0QQBT71wBTNpsTpuQHsegHbyjIy3gTUNXMkkV7XoC30o6g6+/a1yTx1nql6Es/T86xkvARcBvsO/h8oGRYEAUtvY/e6mK2qk9x6nQfa5da2m2EbOnKgD6NWgLX1bLZr2D0dyRtEWKNDuOjwsbvieBUbj7o1ERhQq3zowbso5Ipc+M217Ro3461qFL8VCKKEx+sk+pVc9pb5ZrZlofn96Jskp94sSrk8kfj1E+mf/vIYc3NZinIKRa5w9Mhb/rh3LKxOHSUy5FSGO4so/ghYJvKaKoUS7l/ranhQwkl65Qzg/Aa22UN0+bBtC3NN18bqtrC6LQRJ2lj/DV0kt7xCuK+PU6eneX1Vxf71KXIVnXLT4ksPJXG7VLyqSasLLtrItk7Er7FYk0BUeHBvgAfvvZeZs+c2HNtSng4Jr8Hu8UF++eoyT54oYas+TqVhOpvhc/dGiQ8OIItlmniJeAQ+cjjM8xNl8h0fkVoTjyzQNUBTZKKJPg5vr6OoCgPbRvC7RRKj25g6fozx7UnKzSWOpeF7LxURyCOqHnZGe9x/IMzsUpH3PXqU7zx+jKmswolT0+RXV/n4Zz5As1x1uJqCsDF8JAoCrXqNbtuxBJcUFbfP58gUbqrWjab8nL5YIpWK4vF6eeDu7Vw4PUFeSuLTLA7s38Zf/v1vaLQNHjmc4MiRPbi0BRp1iWdOFTBtGxQvx6dy2JHtnDo5yeDQrd1/7ySoioBid/nhz07QFw/y1S/cC8BHP3DtWFbIlziXtsmVKzz8gPNaq9nk5WOz7NmRpH/gUlzILy0hyhL2JpcrcAxP2s06iZFtlLPpd1wybBoG4UQSAajms7i8tzb7YFs2qstNS7/SFOJm0ahWUV0a6nW6ehcuLPCbY0uUax1M2c3Hmi08gbdF2vJ3htdfsXjq7D3Y4gxifYFI0iZX0/jkh8v0D2kMDJr09Cz5UomK604ODE4hiz3mVwq43ALFikax08ehobP49XniSZmnf21hWfCBD13iIFdyqwxuv5f88kV8A5OYXTf5XJnk7jz5i2P02j4ELQg06HUMmkUZyxLRfBbeMNQyLuLxL7FSO7Vx7a2qTasQRrCTiGqeSuNrhAYd8xUz+DLN2iB9g/vI5U6huE1Uj0SrsA1BWSW+M0+nZtOpq459ty2ieXwgerDNBJH4EJ2awMDYPmZOvU4gEqdTBgbOExwsUC18nVC/i2ZZobF8N5XiBNv3f5pi9gxwBtNeoZip4/PuJRhLMXv6ZWTNg0vZh2m4KGXn8KdsWjWZtn4cUekSiatU0j9A9l1S2Yn3qwSUPD0pSmJAJTGocf/OUzx/ageCAA8+UOeFZ01eOplk/9BFHnyfl698aoFWvcuvXx7Apo7giTA7t0QzMM7ZizN88GO/BZrEOwWiy4egeYECki96BafyWpA8QYxaAclziSPoJMgxjLqj+QqgiBapoRSvvnaBc3l5S0d3/64UervFU6/Msl5ReifB4/ORXZxHVTWSO26NrwgQHRik02y+ZUm1l189zy9PNvjIHXnuu/fawu6LmRYVMcLH9ors2fu2KEq8I2C2ykj+MJLmxdLbWJ0mRs1Zv5I/hiBUsS0Ts15E9kcQlUsPM7NdR/KEEFXXWpU5jZbY5mzu1uBRweXSqNdqPDcrIsgKx5cAVPq0NqnhIZ597hT5rpfxSI9HDiZQXRpev5+fPTfNuSxMLNSxzPM8f6rI+KCbsNLjk/cPEQj5EAUBrytD2bx0XU3LxTefLyILeQzJg93rEAt5Gd+/j4Y5wZPHsvzTx+4kvZrn68+V+eazee5ebeISuwiSxi+ef5KBmIv0i8skwy4+vDfCUnEWcIOscc+IRcCrkEmX8HsG6DUb/OxnL7KU62GKQdq6xYc++hDHn32e/XcdYWlyguHde8gtzDO4aw+VXIZOo060v59uq72hrR1JXqrwzFxc4JXTGezgAPccdhKCRrVOSRvEa1T4Z7//IABdvUelYfDDZ+ZQNDd3HBrn1dcuoHcM9o0EePSh3WQKDaZm0nz4I/e/Tavod4Pf/8IDFHMF/tPj07SvoWd9OQaG+nnsIZ1Q8FKR4uz5JV6YNijWFvjypmRYdblweb0Y+lY91k6jTiDax9LEOQZ37rk9f8xtRCTVz9Sx14gODGBaty6n549E6LZaxAbfmp13KV/kL388Sdxr8adr6/ZqSOdqZLse7hwWOHhw7D2XCAP0p2z6Z5Y4eKTCoTtd/PQnMis1N0/+UkR2Kzz2eyYf+rBJq2ny4usz7N7RZsduBWgAGp/9VJNa9TzxlBfb7vD8s/Dq6TiirPLIIwsomlNA01whWvUqgnsCXwSgDbSxTBFfMAUIyMEZmmUNvXgXihbCNAzMRg3Cp9D8HfKZl1AjKxiGiVGNINoR+ocfIrs4h2DrBOLFjb9LUiSS+1fIZb9GsF8CRATbgzeQwBfaRbP0LczWHcQTd5JPf4vI2AKFmRJ6SyMc28Hc1New9AhzU+fxxDv4A7vQe3OA0/XCClFf3k2rcwpRt1GVYZbnfoJltQgAolwjnvgwF17/Oao7QDi5jY75C9yxMFbzEL7wdkq5FQZHP0M28wThoQoAwdSl+6OY03n9FYO2707G+y6SGnQ68OnKALI/ysO7XiE1HOXirIluyrw+MUyxXuEP/0ikUrTp9iR83h4PHXmewfEYv37qHHceagO3Rgt6VyXD4FSHJX8Us1FE8t0cD9UydETVtUGjMBolzE4TyzRQNp2jbnn4/3z9OD3RtVEtXsczZyqcnCqR7YauRXu8KWyuFgumzkO73dyxM3bLQxPeUJi4bYMgIG/S7K2Vihh6F9Xl3jIEonfadJrNLTxkyzQpZdLo7RbBvvhGu8+2bYqrK1ssotfRbrX43hOniARVPvHhoxuvu10qHqGFx339fvFXPnWQdqtLavC3r3n524Ic2MohFUQJ2+gheoIYlQxGZga1bxizkgVRwm6UEEIppxPSbWH3uhtceKOax7ZtWvOncaWczUNQatMxJb79bIaWKeOXdDShSd521na+6+bf/e3LdAQ3oDMY1YgPDXHyxVdoikEW8jrgYrWpsTqpE/aK/N5n7uaNE1M8+doykmCzVOiiK1sHII8MmAz0hfnJKxlsuYuouPjm8yXGzr9Itm7zgYNBLp6b5MJqD1AZirv40Afv5OlnjvP8tMj940Pce3CQufkMvz5d4eTfHcPWLtGYUhGNeNRLrawiyC6aHZsPfOAAo4tpXj5fIpMxOHt6grlch9DCCrPpJtPpExzemyK7OI8oiEiKQmFlBUkSUTRtS3VxcX6Zrz+Twai0sFjG7Dnfpz8UYEcfRPwJQlHnnvnqZ4/yn7/1KoIqMjgYo91qMTFfwSW2mWoNcL9hceTILo4cefuGk36XiMZj/NnHLTTXzSnLdNptNFUikXLiS7FQZm6pxJ6Izf2Htm56/ZEoptEjlNgaK0LxJJV8lvjw2G1t45fSK1iWTagv/pZ1fMF5Fo3uP0irWiE1dulv6nU71IpFBFHYEtdt26aSy+KPRLcM9NWKBRqVCm6vdwutrVYsYOhd/NEYymWOn888f4a5lTpf+Mg+gmHnvlRUBa/Uw3cDF66H79/NSGqFsR3Db0qi892EoTGFPx5rsJ4gffLTFh9qzfFXX4vRqHv43tenmK3vJ6KucseBJs+8HMHrK5Aa1LAsi/PnbIaGnDXXbes8/YwXS1/mD/+JgKJptGsWvbZIcOg8Ru8CoajF0mmJxLiB6lYQJRE5+BLYNi6/RmYShsZ2szx1Ft1YJhh3Nn4OP9hJRhtLdxGK72B58WvkszqWNk8gJrM5TavnZOzuAUTlLO1aDW/IjT+5RGFxGavpwjbjCIafpZmnCQ/3MHWLUORheu4GWt8zBGU3If/HyS9PIYnztO3vEtmusD5gZ/a8CLoP2d5Ht1fEGwpj2zEiibtYmfwekmqSWTyB5rOoFmexTRNbHkDGTas+SVdP4wo1ya2coNsKUMu2CCS2qml863shqmaKbuY8Xc8lRY+RwQYIyxw86jwDHnpEZHVpgblMH9tGOoCHU6cUFNpU7B2k6yoH+yy+/BjcaiIMN+dA946DIIiOg5d44wBpGzqYhkOvsNfacLaFGhtGlOQreMaG4r8iEQZHQzWne25JFu1y+KQuj9yAT3cttOo1SpnVy2yVI1dMPRt6l0iyH72zle5QL5Vw+/1U87mN1yr5LNH+ATSvl277UgWoms8RTiQvfX+b0Kg3mS8LLFxWMTp0xw7+hz9/lDvuuH61NxQJvacT4c2wTWOD3qOEEvSKS8jBJFg9hxfcbSGIIkazgtVzptasbgs5ENugSBjtKkpkANkXRtQ8aGaDf/7YET5xZ4y67cUUNb74SD9/9IU7cTcWkUznPF05gCApfPywn+0jUc69foz999zJc+cqNKytLdWS7uK7P3mdF88WUGUBy4Yj40H29hlbjkvFPGwbS/Llh5P8waNxbNMg5pMpdwSahsrQQAxPMMSFvHOfzuV6nH3tGNuSLj6808Qj9Th/YZ6DR/YyFNW2JMIAvzqWwxeOEY3H+Pffm+Jkwc2JU7PUSgX+7LH76IuHCIWDfPpTD/Gt36QZHQhz16FREiNjtGrVjTUvyRLxkTFa9eqW80ejYdy9EoIgMhBWGRpKcPbsLM++NMGXPnGEj37wEg0g0hflX//Lj/Gv/+tPEY2FadSbLFYELEFhd7RHIvEeIglfA8n+OOFI6KaOfeKpc/zdU1nOnpkBYHI6zUTZjer2XGH2oHk8V5UtEyWJSLL/9tMjBIFQX5xW/c3REWzbprC8tMWaW3O7CSdTW54LzWr1qh21cjZNsC++JeaCIwMXSfUjiCK1YuGy1weol4qXn4rFTJOlmkylUt94zR8M8C//5BG+/LnrdyZkRWH7ztH3bCJ8OfKrTSzTxu3T+MT7lrEti3wtSK/dJp8zePqVJCsLPaYnnOrlxBmdXxy7g6eec+JROW8guXxoqb14vc4xveo+gv4vondt/DGR0vwIo+OPkZvso5Zzkj93QMYdVKis+Okf/BIXXv85qbGdBOPWVTnElnqKfO4neENO4cPqBWnlx+k2L8VdQ3cRTeyhmY/i4svUMhJ6W0B1ufHHO2D5CMVHcYdyaF4Z1aOSWXyJZqVB+twQQu8Qs2efID64E9HehjfsQpIv5VGBZA7DyhCOj+FNTuFNvQ5ynpXZ44QC78OrPoTirrJj/6fxRAqIah2Xsofk4AcQGURVhjGb2+l05hgefwi7dyVdLBGuYtULBIIWe/dalAo9fv4LmW3bTL7yWJtA2Mm/BEHg976q8H/976s88KiT7C7nPDSEfqLSNOPbbo0WcTnedZXhNw1JdhIL297QeBUUF2a9gOS/dmXZtu3bmvheDXX8/MdvvkxDl+jgyJ/dLKe406gTSQ2Qnp3G5fVdU7HCFwo7Mj4uN+VMGk8wtHFsvVjAtUls3hsIUVheottu4ts0ARTsi1POrCJdZUCxL9HHn33cxH0Lgte/ef4M9abOJz506D03yLEZZqOE6AliNstI3jBq3yhmo4wSG8HWW0huL4KsocaGsTtNUN0IkuzwiTUPZquKGhvGqGQQZaei1UXlldenyJU7rMvQrKZLtNpdfu8TB+kaNt98obKxlnutJqroYynf4aUfnLwiAQUQJJnzOegT63zq/UeplCtE+2IsL2U5n7+UUP7sjRry8SLvPxBAlnvYepM/fuwohXyJv/tNib9/csm5j2Q3RwZM9m9L4fe5HGvphIbd03n6RJ7Tiy+zWpdA2vpwfmCXl3qpwIvHl7hjKEy1ZVFp23z4wYOcPn6WyeUGhUqbC7MlEkGZXYcO8sYLr9Bu1vEEgpg9A9s00Tsdytk04cRWSUKv38t//88/TKfV3pCf+u4vL5DpuNk2sMKOXWMbx37r+y+ykG2zb8TLhz9wmL5EH/sTE7x2pslcWuGFl84RigS56+h7szL8ZjGY8FGsFYnFnPV19NA2RHGO3TuuLwv524i7qstNo1J+0xSwXreD5nGG3KqFAsHY1dV91vWqVZfbsaFXXfgjERTVRSWXuSLG2ZZNfmkBze3Z4t7n6A1vlb1cxxc+sp9SqcLw6FtT8pidWea1sxkeuWuEVP/bOyD9u8SFMzo/ev4ODo3M8LFP2GzfG+RP/Ut4fQJzs6sU8yavTLqRXCanZvp56IMVhkcl9i1cZMdoB5D5zSsxTNMkIi0SWkvULGGFcqGLZ20JCEqRwsoCtq0R9P4+lfQPCaac4pFtdagWcrjcEcqVJ/DGmqxXYjcjkNDp1Fu0MkdJju5nYeJFUjvvpVCaQ1vbD4YG6uQyf4s7GKVVzyO4bPTaTuKJu8lnvoM/uUy1+k2CKY16XoLOXShSjuT2cZamigiE8ASCFMvfQ/PD5bJv+TkXLinOyuwLBPt9NLIhDHuBwe2fZGX6NFogg+qtks+8hOSr4DHuQ0Bj5vRLiIKXRqlE3/AOuoUCudw/4go53+FmfOn3FZrVLJ6AhiDIvPCczcn5nQjCFKmBS4n/qRM9fvlckv5gjkffZzI4onL/oRwX/9GipAU5e6bK0orNnUcMvIFbFzV4zyfDgiCihLbuTiSX74qJ/M3wiR2++FCSTKbIryeMmzLfeKso6FurHpVcFtuyUDTtCkmezQj2JVicOEd8aJRmtXzNZFh1uVGT7g1TjVJmFc19pVUnOBWaPs+VU8yCIFxXqkhVZTzuG39Htm1z7NgkfTE/o2OXzvfGVIm66eL+QpFo4m0Tg//dQwCrXd8w2BBECTmwFk01D7ZlYjQroHc2OhbrrnRWt+Vs6iwTyeW5RL2QVH5zoYvVbW1w4lWXC7/Pw9LiKh1D5AN7A7x0oUYHF8fmDRJJk4rlJd+9skXsFTscGJBp92w8agC93SS3tMKPfzNL29bYmEAFbElDFiw8Xg+nZkq4NZn04gLZojMJbEqXNkiaIhGJhfmHx49TNTyoRoN/9ecf5H5b43uv1q72bCDgcxHrH2BbbJL7Dqco1XVeOL7I80+9xuBIgnvHZOZLcHxFRLEVXnjpPBeWBfyZHF/67ANMnzjOwF33XOHkZds2r752gWQ8iMejUa02GV9Lhj9y/yiZfJVt4yMbx1umSc+waRsCr5zJMpSa49CRPcTCXiTNQ1eL8tKpRUxXG9nscPjuO97MqnhP4p67dnPPXZf+W3O5uPfu6/N+V2cuOtQWTaVv4K3xZm8Gl3fP2o067XoN276+XbXqcpNbXCQQjWLcwN45nEhSyWUJ9SWorOm8r3PWL0e0f4AoV37utY4HECURn/fmJDvn51fJ5avcdefujY3GxFyByYLEwHzuPZ0Me33glwsEgwbrQSY15MSlO9ZYfXffM8nzL3sJ+J1jfEGFz3zawLJEzpzoMtTXQlODfOj9bTx+Jy6HBmvkV9OIsnMuzeVCNFUkyUd67iSqZ5hqOkcw1SLY36WysIIr0CM40EYQtgY7UzeppOP0mha2UCMS7Wf+3AlsbZ5CYZFgv8160ioIAuGURnHGh84K4X6D9JkmvcYFlEgDSXVtmHHYpoDHF6PTuUCl8R1S+yzqKyGGdnyAXPHv8YauTP/MnkyoP0W7laZbHiSa3E4mk2bu3BMIQgC53U+z4yXQP43LJ1GqTYIt4etfQjE+Sret021VifTdA96foHkvPWPmpnuUirD/IMzPC+zYaaK5ZQ4fMoBz7Nvr0OnAidE93cbAy/SCD37T5Kt/BP0jLhTZxHYPcHHRppsdppQ9wcc+BS7PrSXE7/lk+K1AFCwi0RAeTWIkl2Hm5sQjbgteOLnKxz94B3/33VdYajjB7mrVYkmWiST7addruLw3lkzT3J61RPj2ak9Onr/IP/ximtGEiz/9g/dd9ZipqSWefHWBPUmJ5xZUYnKOe4p1Dh3chqKqfPGD47TbvfdsImxUc1i9LoKkILo92HoHUxA29ILNVhVR8yBICoo/ilEvXkHVsbotlGACo1a4lECvwWyUEFQ3veIySnSQYqnCgcN7WS22SWqw6+A+5lZfZa4KFcPFP7xQYT3ogBN4FL1KTw2yd8jDXfv7iCT7+c6PXmFycom9B/ayVDlHsS3SrG/5aLyKxd69o+TKLVbLBsFYnLnMIo/sEGjrJq8tOtXel2ZNXpo6D3IIQZToyi6+9r1XqHVE4MqNlGa3+fGrbXjuF/zLP32ERqXG06/M8WdfeYjpM2cZGx+jlF7FFRA4k63TEzSentABjTQa/+6vn0FA4r7eeSaW6vyzxy4lw7MXF/jFmQ5JV5lqrUVbDvDFZov9h/cwtm2AsW1OYrKylOVHT01SqVRJxbyEVIOqZ5gLk8t4fD5GR/uJTtUYjVQZOryHF44v8uOTOoHIItt3vP3SWO852DbugJ9Wo37jY28j9HYbfzRGrVC44bHJsW1U8zkk+caPTn8kSimTRrrN3S7btvnf//YpmqbKv/j9o0TjV1aoO60W3/7JScJ+mZVij1zXRSn/AoeP7CGRjPHIPeMkIivs3/veXKezF3u88IqfsF/nD7+Y4dXXXBx/zeDo3c7v1qzqGKZFMOLCF/Zw5+EOrRZs3pVPnNX5ySuH2Rad47EvX+q8AUxd6PL9pw+yPXCGL33Vjah0sXs6/WMHmTr1BHvHv0Ah/QYwiSRLRLfPrL1zE52moqOoAs2qgCocILmjn2L2DLnMM6SGPkQunQZLweimUVyXrsu2bRR5ENXlx+jO4Pa7cHl8NOshavo2lMA53EGBQNKgXf0e4VEZSZYQBAk5cI5cbprQwJVrstcx8EYbpDN/i+rZT2r4IHMTP8YbOIDo6kMQBLzBEK1GjW5jEZcPIiPryZGbRvGXGLqNIPbTbEmE+7Y+w371XJRit5+zp0+wah5l29mTfPkrNt6AwoMPAzgKGN/7jkwmbaNLKXZFTjOl3U+3e44XnjW5/yGZ0VFoVi/yvkfbvPRynQulI2i/meTjH7+Sxvlm8K5Jhq1OA0vvIHkCCPKVFS2jXkQQRCTfm1d6MBolsKyNJKNmeviLb59gW8rHbMG+atXq7cKxeZ3e4y9gc+PBjjfjiuQNhrboX/7/2HvvMDmu68z7dyt07p48g0EOBJgDmKMoiaQilbMsS7JlyXJYr3f97cppbdlr7669yau1vJJsybKCFW0FiqQoiqSYIwgSAJHTDCZPz0zn7or3++NW93RPHmBAAGS/z9PPTHdVV9+qOvfUuSe8B1SnObtSRiCW3NVuJg4en0JvWUW5Mj+zx+h4jnErxjYhuaSjwshYnnteTOL7R7nu2gtYv2FlOi6drZCeC7qBdCp4vkuoY61igogk8ApTSN/FKWYxWrqUhzfeqgxcI4Rvl9GjSYSu19IlALxiJmiOYeBZBWRxCrN9DW5hksf6U5z47qPENIfbX3s5B3Y8RzI8v6LY2mbzoXe+hn/98eOs617Fjuf20dUzzvFxm32jJhXrJa6/tJdcWfK9x8dIhVzSdhwhBGk7zv/+p6co+SHQY9z1i4NsW5tky7oOihWbZ/qzKvSt6Vy6zuTGK3r5zoN9ZJwo/fnZni0pJSmyvP/2rSDhH+4f5lv37MWTMGYnefDRlygVShwd2klvVxQ0A9+16TFzRMM6RjhCxfIY8VP42rSBDFAuFrnnoX2s6Yxw/UaNkBTc359HNyvc/WSGS7Y3ei7Tk3nGnRjCy+Cjcdt1G3jyuUPsz3WTf+Y4Ha0RLjuvjdteqzzBFdvjyECOzs7WlRGcMwzXcXj6uUOsW93G+g2z9cPw0DhH+sa57sotmOHlRc/GRtLsOTjCNZdvINmiUrU616xjanSI5DL02kqgpaub4aOHMcwQjm3NKlarh2GaC3qP66EbRkPaAyj+2/RAPwBd6zacVErIcP8ghXAvopgmPM91LxXLDOYEJcviqvPb2PnicZ480c1o6Qgfe28n8WScq648ddahsxVHj4foG05x9JhAeGPsGr2c9oFhrrpW5Yn/0zeSZIoR3vL6Ya64Osb37+4ka3Xya+/ZiyZ8WruirFuvccGRo5y3UTV0yE05PLMjzPmbCjz9dAR39ACHxXaefHQPV16VxeIxhvvb6ezdyFjfMXKZLJFOl0hitplVzDiE/DvJDR1BM3zSoy+Qz/ShR0ZZe2mZ4QP3EY1eQTTcQW78bnRNJ9ZmEYoZCCEwW5/GkxCJhQi1HcbJ67hWB71rL2Niaj+RlIcQAteJ4I/dguXspX3jBIkOH8V4IWaMx6eUXk/vultJe98nlOhTFHHnZ8mn+7CKaXzfZ2LcoqP7UjRdZ2q4jJWPo+shpKgQa4nQswWgaiCr33jqcY+JKZNrL0kzkcmyf4/ArgxysLiB/XuOceGl0xFE3/UZmGjDlj4aGpdfZeA8/wInBiM88tIFWOWdhCJR3n5nhWRLknjS5ueP9LFhjUX9YuVkIKSUp3SAU0G4d6vs/djfLGnfKgVaPRVaFb5VAqQyHBIdNQXj2xX8sqKsMttmG1zSdfDKWXzHwkx1qe8HoWYpZZDjmeL2C8O4ns/Dh09/PpthZfn9T93MsSMn+OZjGaTrcNslUXIFi7e+8ep5vyelxLEqhCJL73Y3OTxIa08vUyPDS1bw9Rg4McI//3gnyZjBu9+8nZ55Wiv7vk//0RP0runif37tOdxSlgvP6+X1N2yho/PUHny/um3NDinl/BfmNGA5cgtgjfcT6lyHMzWMHm9DWkW0SAItFMGrFPCKWUIda3Bz6cDA1cH3kK6NRN3bcOe6hoJRRasmcbPjRNZdhDV4ABGOooVjSNfhlotbKVkupYkx3vDG6ziw/zj7x3UGCqFZhaerYha3XdnD7v2DvPPtN7Frx0tcfvUl/ON3nqQvH+Ljr+skGjH4zv1HuO6iLi7c0s3eg4M8dahEpqKR0ivkZAIhBG+4JMx111zA33/tISbdKBf2mlx5YTffe3iIzd0GN1+5nm/97AhT7gwCe5mn6Efojjl86kPXs/e5ncRiYR7bX2xoflOF9D3ed20CXdd54WCa265do5S/bbNq0xaO7dvP/S9kGC5Nf9fNT6An2lgbt/i1D93I57/6MJmSR1fUY9WqVt7+5mtm/U7/0QE6u1qIxGL8y70vsHdUYzVDCCE4Ybchyln+w6/dTDy5eHRmJs522a1GIeaKRkCdTp6x3c2OgtAQoeisbokAXmEKt5wn3LV+lj73KwUQGltXmVx5fgf3PDNG0T/5eoSl4s7tyjj82396jAk3zrYOh/PXt/DTHZM42vy/7zsVhBFe8nNBug6feutaHNvlHx8YW1IR+EzY6RNI10KLpjBb5o+meeUcQjPwrSIiksDLTaBFYhiJUyv27PurO192uYXlya50bZz8BEayEy83jjBCCMOsPd+toNGRkx1FjyRxixk03cAr59FiSdzsOOHV5yM0vXZvq4293MwoZtd63MKkYgayy+jJTnqNLBvXt9PfP8Ibb7kATdd4cMcIw6UwtmiUIeFZvOPaNk6cGOGmGy9j4MgxLrlmO089s5+f7alw7QZ44+sv5667HmWqovORd1/Hruf3cGDY5eCEQYwiFc/A18OsS1T4lfdfzwO/eJFdR/Pops67b1nLk7tHGJx0+cgbNvPkiwPsHGqUNdMvI5BYIsrHbm0Dp4Ruhjl6fIyH++e2Iy7tcbn9pq18+67neetNG4jGoziWTaqjk+zEBLsOpXmyr7H2w82l0eOt+OW84s2PtWCPHUVPdKBH4mjhxlRRv1JASolmRlSDtVQn9uQQ0rXVQqBTcfaHuzexXCwku+eMZ1gYIeUZi8yuLBahKF5uHIQiw5ZS4uXHkb6vmnFYxTmOyPSFTp/AK2XR65Sym09jJNpxMyNsWr8d27LhsOp4tyLwHc7vEhyf8LDqwsRuuIWv/+uzlByACJpvcdlF5zM8tDCncnrgBJF4gkqpNGeL5bnQtmo1mbFRUvMUgiyGctmiHOpgW4+Y1xAGxV+48bwN+L7Ptt4wQnTz7juvOu0Li7MFoc61qmAzmkQPRyE8rWiEZoD0sEaP4Lsu+M604g4n8F0bv5RVbBKajlHNIXYs9EQbekpijx1DiyURRhivOIUvJY+8aIMRJmIm8KSGHk3wax/azj986wkGS1Gk79FjZCh6IUZKSbXwkjGOfvlRLF9j57Gn6MsaCF3jWw8NIgBLJDl4Io/hV7j+hu041nNkKhp3vvEW/ul7T9GXj/Dg7iw79j9B2m0jQoWIIUmmEmhC8uKwzos/7kMYjYq2O1zi1z90Ew88sofnj3rsfOEwAyNl3vLGS4kffxFy0GYUKTgGjpjOt/7eUzmklPQkBbmpDJ5Vom3VanY+9RwdHa3EQ0BAciJdG+m5XNiS59abFYNLPAxIeNvtF9G7bvZi8MSR4/zo4WP0dkR57zuuZ/sF3Zj6OJ7bxp6xKOHiMfxwAtuyqZTTGKZBS1vrygrPGYQeS+HmxhH63I8JoZuBTp5O95GuhZQ+erQF6c6u9vZKWUQ4huY5uPl0w4PQt8uq059TorOlm61b1xHbOUpxBYvGV8cqeL5gtNK4wHp0zyQH+54hbUcQGqztinHJxZt4dNc4mXkohDtCZT7yjvN58Kkj7B5dmldKGCZf++lxJCC0pTsuqlBGQggRTSBCC6e8Vbut+nYZWSliJFoXbE71SoIwQujhGH45i9k+2xGmRVNYY8cCvvc0CB2iSaQALZJEZtN4+Qmk5xDqUN59LZLAzacJr95Guf8l9GgcPdWNUy7gFTIMuCWG3VZ8O8HwWJ5CqczHPnQrjz+1jwf2KiGO+zmiusO4aOWHO0pAipd+sA/H93n22FOkCwARnjnqsPf4Y+RJktAtHn9kBzfctJ2uzkFGHzrOb3zkRna+eJT79lj050y+8M0nSJd0JCF6jSItLUlCxig5L8rn7+oHvbFvgpQ+H37dakKREF+6+wT7jk2iexaXXLKJju4O6C8RoUxIl+S8aTnbNaLz4j/vQTdjjIyMk4oIerecz96du4hEo7S3xqCvUtvfzaXxXQuZG8ds68XNpdUiLRzHSHXWSA2q8O0KTi6NHokhNQ0tmsDNjSM9m1DXBipDBxDZcbRwHN+xkXax1njqVHHOGMN6NFVfu9MAIQRG3QrZK0yiJ7vwgtQJEWud83taKIKbT6PHUg0NOQDV9tb3kFLy1fv6lKG9gIdgMcS1CmvaDA6MSYRucl6H4IPvvIYHHt7DY4cbyeb78tO/I0MJvvAvu/Gkzh9evDBNmWtbGAuE+Gbt79h4jkNmdHTJ7T8PHjzBEy8O8bpr1rN12wZ+uyVKS/vcwnj/gy/w3L5xrr+wlde9/ho0TeO9b79uzn3vvm8Hkzmb9995xbzFgOcqhNAwUl14lQJuPo0wwujRZI1qLdS5HmvsmGq2EUngZkYIdW7EmRxAaCZCM0FoeMVMzRgWAtzMKJoZRo+1In0H6TqEerZgjR3F7FyHNXIYJ9TFF346zKqEi+W/RLnicMcFcSanCtx55+0MHT3CP9w3hAwpz26BJOjQl1PPBwBP6lx3XpRDQ0WOZiIcGSvS03GQTevauOfpUXa9eIhMpgB6BFdEmHBBd4t8+v2XMHBilL/53gG0UFQp4zkYSYqOxt6XDjMxmadCnLtfKAEJdn3lKXwtQqsY57c/fhuPP/oCDxzyat60K9YKLj+/m395dIjRyQqXXLKVwb4T3PvkICVvGKN1jYoMuTZoOlo4yr6BEvrTh5HaUXo6k4xnLL780xN84s0GpXKF7u52ki1JDh3s45sPjeBlC4RNjYnxSZ7ePcwlW9rZsHYzXfsGWde1nVKpwv6DA9zz9AhRUeEPf/ftL49QvQwQRqjWJXEuzNSZ0nXQk1242TGk58zaDsqg8PJppbNnRPi8ch4cC993eOpIGy8eeYqKfgoNITyH87sFA1Oqxbdvlfjgey8hN5Xj738+3rAYzzphspNQfTb/Ym+Bp/c/TZEFOpsiKJUqeMtMVdzQYbB1fYqf7ZzCEYs/U3zHwi8rFhcj1Y0WbQHpo5mzdb1XUpFO3yoSal+LMEyMeViTvOIU0vMQulEr1H0lQY+1qKLk3BigYaQ6kVLiV4pooSiaEcYVGuGuDVhjxwh1rMHJjuKXsghdV2lqdY403yqABGu8j1DHWqTn4OYmCK/agjUxgJ7oVhSZrs1PD7QQ0iMYj73Ewb4pblgfJT81wVvuvJlSJsO9Tw5wJKP0WEVEQYcT9WxrusnqdompO+wZC/OL4wJdf5ErLj+PVExj955j9A9MIN0wwjAZs2Kgw+svCHHtVZfzt199lLzRgRDMoo9VEBztGydsgtR0nj2hAVGe7juGLwSaa/O2165h7ZoOPveN5/Ciaq62hSq8+/XreXLXMHv6yrzrjZcyNnCCff05Dk7YSG8MLdqCX87XHJfVeWZPDqEZJtK2CLWvwQvS/qTvqXslJV4xgx6Jg2YgPRe/rOoHzI71ePlxjFQ3spJDj7Xh5dNI6SN9f14ZXw6WRDQohHiTEOKAEOKwEOL359j+74UQe4UQu4QQDwghNsx1nJcLerxVeYo1DS0cm1NpgFLMRrJzTqWtBwVNeqwFT4/inYIhDHDjhS186J3XsDqhDN++CZd7H9zF7uN5zu9w+NjNCe68CHArs75bEXEcLcKffXnnrFcVXevW09LdM6sCuZTLMjk8yPiJfiaHB5kcGaIwpfqWW6USibb2RenMSsUi37/rWZ557gDHBibpy4XoH1LH6OjpbiCQr0cmV6asxXn4+WHl8VkAfSNF+jKCfH5uL/7J4myRXd8q4RWztVQfJzuKPTGAdCpYEycQQse3CnhZpbi9fBqzfS1m2yr0ZDvSsRpD1UKgx5Lo8ValTJJd+HZReaAjKbz8JEaiXaUC5dOMFAwePmizqSfMjTddzsbuCIf2HuDQsXF8fX7ZllLSnfC443WXcfnmVvXToTg/eWaCHz85RtmB1qjPb33sNWxITsuup5nsOzhI/0i+1jBkJqKygPAsyhWbzZvXcuVFvUjf44pej/VJGxlO8aYr4nzkXVfyyANPcPnlm7lh47TKioR02ttb0JCM5CCXL3H34yewk+vwbRVSUwZaB252DGv0GH4oyc69Q7xwYJxHnzvGgb5J2kM2Q4NjfP0X49z14F517EgIzcrhI7l0Sxv9A+McmjA4cHyK1vZWXnPTxfz82UG+/3Se9PgkWjhGMV/g7p/tOHkhmYGzRXaXCqHp6oGV7ECPzm3ECk3HaOmZ1YgGFKWfFkmgRxII3Tw1QxhY1+rzwXdew3XnKw+pCEW5+6H9PPj8EEnd4sM3JfnwNSbdkdk619fCCxrCoPi4v/SzEfaOz9Z/N26QvPvqGDF/ig/ckOLCrmmHx/pVCS6/dDMxY+GudW5uXBXflnOB90sZFVooUqsdmD1wHz3Wgh6O4ZWzc+8TQHpqbkhvYWaM5eJskVvpeziTg+jxdqTv4ubT2GPHAB8vn8YrqetjTw6BlNhTQ+iRJGbrKsId65BOBS3SKIN6NIEeiSN9R3k2DUV9qYeiSKcMSIxYC34ph1WxeeSgQ6bkc/vrt3PTteexb/dBBgfHGS8snJ7q+z43X9HLm269ABzFl/74UZ8fPnSYvnwUv5znzbddwhsubdStQxMl9u7vxzISc0Zedb9CRJYRQpBIRLnhpitpN8usjttcuVbiawab2wW//2vXMTQ4xtjAMB+788KaXaILaO1owTQ1JuwQuVyJF47kOJhN4FkFtGgKv5yvpVe5hQl8x0aPtagIBeDbJbziFGg6vl1GGCG8iloJ+E4Z37FVimpU9XzQQlHwHIxUN0J6hLo24pYyipXJc/Ar+Rov/6lgUc+wUDwgnwfuAAaAZ4UQP5ZS7q3bbSdwtZSyJIT4DeCvgQ+c8ugCSM/BK6ikbGOBHKnamDV9SfstBKN1FUj/pHK66rE2YXHV+R0899IQk7mdDE15YDg4RoRnjnlAhEtbNdZsXI/vH0fIEiebxT0XibrnesRSrUwODeKbJtFEEsdWyi/R2lZrvrEQhgbH2TXg8NLhw6zrivGea9dz/vmLUx+9+85raH3wWVKt2xYleP/Q2y6jXKrQOUdl9MnibJBdAGv0OHo0gRBQGT6EQKCFYirnTOjoibYg93IcoWnosZYGNglzjlWv0boKfB+hG2p+5McxO9YGn5m10LabS6NFk/iVAnqshZ39Hi2/eJr+tMPhbAkII+YR8Qhl3veaXvYeGedr33+KkUmLpK6Rk3FGK8qATullPNdnbGgYq64nh9BD3LfHotOsYEgdt84DtiZuszrhcNvt1/DMjiO8eNiiODVBbjJDVBZ52xtv5sD+4/Q/laOcz3J8zwQtCZPspMo11f0InhbiqT7Jk4dewncscl6UXaNj+DKOPzU8vcAVAnu8Hy0SJ9S9CTc/gZbsxC9nEXoYPZLkNz/2GiYnptjYt59Nva0ArFvfy299OMKRY6Nsv3wzumFg6Efp6oxjWxVC4QieVcQpFki2dPJL5yX59qNg2afellcN+8zLbjUvXYsk0UKLOwNOpni5HkaiHel7p6xzTVnhDVe2c/hYmbvvf4FDQ0WkDSIU48CEKkzuCpfZuHk9U8NDRIyTZ6+YGeatoq01Sm9vB6+7pEBbwqAtEYJxpdkf3J3jqb1PU1jE2AZRqyGwp0Ywk4vn+uqJNuyJAYQemjNfu3HfDrz80ju5LgVng9xC0GW2lMFoXa1C60In3HsebjGDmx0H3azlrAsjhIi3NKTsaOHYrAWHkexEeg5CN/HtSqBbU4BUBpsQCKHh5sYxUl1q/kSTVPQUP77rcVKJMI8dBamHmItBp4pbN0t6ulL86BeHMUJRUiGfgmdT0cMcmQKhSzzPIZueJFdo5PHdP27Qn04TMyBbp4rCWFy5Oc76rg561/Twf769i9ZIGyP9feRKHq/b3s6ll53Hoa88iu/AoRd3Y7oFfC9OemSUuFahSIQJO8r//OZufN9HGCb/8MAY0tXwyxnwPTQzAp6rHD0CQl2b8AppNa+FWs6JULQWFXIyI2qxF9R6hTrX4xWm0OItKqqvG0H0wgXCeHYFmRtX1zwSx7NKGNEELOJsWwqWkiZxLXBYSnkUQAjxbeAdQE24pZQP1e3/FPCRUx5ZHWoV9qWFV7orCSEE81oJy8DqjjCXXbaFHfvHee5YhY+/eROZTIEf7ZxeyTx20OKZfY/haFGkuTzqs6p3eL5mHcn2dvr27iEcixNNJMlPTbBm6/kN2xfDlq0beNtklod2OVgeXHLpliWNTTcM7njDDUgpObDvKKt6OxkemeKex/t47ZW9XLl9a23ftvZWFqBVPlmcedm1K6CpQhsVOm4F1wIkRqIdLZrCy43j5dOKQzjVpf4XGkipwkieg5MZQwuF0RPtynMmtFqTiqrh52RGEEYE6UwhdBMj1YUwQ6qhR5BX5ZsxHjwCLMBWornKE6EZkta2FNFolmNDklvOj/Pamy/ii996SoXlgJwX5WtPlBCaBTQaTJ1mkd/85Zt46pn93P/SdOLndRd1sHljFwf2HWUoXaTkhjiRrrB3xKOsJfnq958mXxFIV2fzug5Wb97MaH8f+w8N8uY7b6H9iRe5b79qouNZJfREO15+HKGbeOUCWiiqUiMAzQzj22VVGGNGA4+lRE904pem0KPJughLhI9fP80ocbx/nAefOsKOXX1cvLWbq7Zv5f995wXipsdtN2ymsyWKGdHZumUdz+7qI4LNDXUyfYo447KrrlM7XjGzJGN4JXCqhjBAzPC4/JJNVCouD+yzuXpdhFuu2cJXfvQS2SD/sdqi3LIciK+cMVjFE7tG6IgJNqztYs/hNI8fdmsLXF8PU1jAGKpCmGF8q4AR70JznVmFRvOhmuPqlfN4jqWOU8oFheTTrCANPOcrh7NAbqt0k3H84hRaOI7R0oMzMYAeTWGkunCmhnDzaaRro4ViKh1CykBfa2ihKE5uAulW0MPx2nWr3kMtFFFplrkxRDiJne5DM8KY7WvQoqla0VgVL04kYYJ5mamk72F6JVwzSSwaoqUlQcaJ0m56/O7Hb+Thx/fyyCHlbRBCcN9hEw5nEGK2CffOm3pZvbqb//n1HUjVWYPNXQZveN2lPPv4c0wVHHw9xNGxCqEpF89M8MALE+w4kCYnE2xfa9C7vpOu3h7yRZeWKPzauzfyuW/vQkZaa41x/FIWLdaCX8riW0VVrFjOqZTWUhY/n8EzwioNJ5rEt4pBis/0WGf2gJCOhfRsrMlJNCOE2bYK384AEZzMKELXkU4ZPRxHWmW0UBTPKhNagbzhpRjDa4ATde8HgLkTPxU+Adx7KoOaCT3o2iXmCbeCmvjSsZRXbc4cmTODZ4467O9/jKyfABxy2QKl8oyKEN3E1pduCUqrQCIMlm/gLiF9QwiNWDLJxNAgGy+5bJlnoCbfNddfziWXltCN5bfwPLDvGN9+YoptHeNsWZMi58fI5suLf/HUccZlV2g6QtPx7SKR3vODcE4KzQwj7TKyklehON9Deh5eYQKhGUjfRU924EwMIMwwoa71SKeCPTGAGbQin+WJ8z2kXaK+UkILRSFgjJHSx8tPokUTagU/B6Tn8LE71mE7Dt94ZJLPfX8/GGGEpjOQLvHi7iPgO1zY7bFvxAfNrBkwEa+AhalSYvQQWcfkiaf2c3goT9X4jlDm2RfGOXJ0kJ3jCTTNBEzuer4ImAjfIZ1zKWtJ0CU7XzqBpunsOzzCjgGNDfsOcf6WHnb3H2O4HEM6NtboETQzgtBd9EQrfrkAstr9yVOLDsNEGKaqwg9FkZ6tFiYLYHBglHzJw4qtZvC5MTatbiVieMRCgvuf6mOsEuVXXt/Nqt4O7OeP4YrF6RCXgTMuu1o4rvLU58nHk66jCuLM8LxpEWcCWS/O577+NCXfBC2MZftMTWbxZGPY2DJSS66akU4FHZtoSKcoFzdKDV3Q3t3Fs8+9xBP9YYS+fNnQo0m0SBxpV04qp1eF+RP4xYz6a5WWfYyTwBmXW1A1Rl65gJZsJ9Tag2+VCHVvxCtl8fITSi/6LkiJV1Z0a37ACuHl0ziZEcLdm7CnVIqfkxkBZhtvCA3fKiDqCuuFEQp445VweaWsSmuLzu72WcV1G3Vuu+U6/uH7O7hnlwsvHEeYEfJWhRd2HeHEcI6LeyIcTzsUvSp7iUD3LXSCInzPRphRdh8c59hgFt+MKU+sZzM8kuFn9z7JCwM2ZU1H6CGe7gdQtJeOU6bfCiF0wZ6jU/RELTyp8a/P5rlpa4REROM1l3bw8CFVR2VPDKDHkshCBj2awC8XkK5Tayil6QZ6z0ZwXaTv4BYmVW2LXcJomb8OQfouXjFDZM2FuLlx/EpBGd5B06lQx9qAFagdt5hBD0Xw5al7hWGFC+iEEB8BrgZuXWCfTwGfAtAXKM6YifqKQTc/EeRNTSsl6aqcyrmo1xaCb5XwrdLcxsVKQDfJSTMoHgrxrzvKp8SisCpa4aMfvIrs+AiDEzY/eUEZlTXvlmcT1y2KJPnTT2wnOz5G94YNTA4N0dLVdUq/HY2fXMOOnp42NreOcd66Nq65ahsbVg/Rs+bs4hZeTHZPVm6FYRLqUCklnl3GHu9DaBpm+1qEEUaLxLGGD2OkupB4Ndn17XKQN5XCrxSwx44jTFMxUiRVeBPAmRqCoEDPbFeMCNJzVXhJSkUHpBvosVa8Uqam7OczhhEaA8OTuJ4M6LGm7/mxTIhjO4q88dIerr/2Qr74zScYqaiFZ1wU+a1fupIXXjzClk2rOHBkmAcP6Dywz6JqCPuOxftf244h2undch5dDz7MwYkwfcVYwALjc8eFBtddfwNf+s4zjFsxLrpoE11rV5Mvlnly2OOxlzJcsgUylWpr9TCGaSJCcaTvqRzhlq5alyc91oJXKaiQcCkzLz1jFfWRlmuu2sbOoy8Qzh/nmot6WbN5A799nqLzufueJxg/nOep5/N8/WdHeeO1vbz9jvVEYivb1GYpOF2yWx8q9ioFcJ0GHVll46mGg5eDqnFhtPScFlaZAolaRczuUYNdIxMIcXKFub5T4VfesBbhlOhas4b/+62dVLTGFARFDRiGwOi9dXsPjlVm9ap25KAz12GXBCE0xHz5wYtA+p4KQae6kHY5COmfPTid9oLR0o3R0o2UksrwQXQzil8poBlh9HgrbnYUWTUow3FV0Cx9ZShHkrjlPPbkIE5uAiPeghZNID1H7VNQ9TJCN2t6RCbaa04ILzemCqELk7X5I10bKf1502oyRYfjxwepuEIZ0YEhXSHCXc8X2ZDSee+dV/HwYy/xiwPTOd5vu6aNjRtWseO5l7j0sm38w48PsHssRtXIBbh+o+S6K6/EsSw2r5nkhcMZDk6Gasw868MZPvL+m3jkif08dsRjY2+Ki67ZzsTQIF0HKjzbL2lpr9A/rhqPSNfCTHUExbLBPG5fgzBDtfPT421Iz8GXrnrmFJTNxiIRJj2awo3EsMf7kK5NqGPNtJ2X14IGVhU8oakIazi2LLlYCEsxhgeB+gTRtcFnDRBC3A78EXCrlHJeMhwp5ZeAL4HiDVzWaFG5QHq8FTvdjx5J1PLZajQ/y1DK0vfwylmMllU14+J041QUv/Q9HE8yPjrO+MgUR9IeM4mmb9oa4fWvuZovfuspAHTTpDA5iec583afs8plctk8XatOPs/a9/1584LbOtr46Huvr71ftXb5nMYniRWT3VORW98qqTyzUg491orZ2oM1dECl/pRziJCiOqOuxasWitYKz3zDRLT1Kv5F11UsKeEYTm4cEIGn06kpv3oqLOm51ZNEhKK4mWGk4+ASNPDQtAbDWGg69+/3aTMr3HZxiqf352bxvD6zP8Pw2LMkI5KyZ5F1wliezv6DAwyPF+hoL1CpeFzS49GWCPHIQYuwsNGFxer1lzIxNMTx3S/Q293GNa+5kL/75+fIOCG6ow4Xbt3M8PE+Ll2t89DhCnuOOIyNZ9lxRDFM9OdDHH9mUhVmVArK6e17QJrouovmvP7V3EktFFPhy1ijUVDlKa8qXTeX5p++9yTvuP0iPvOpWwiFw7OKTNeu7ea5YwPqGkuBkKy0IXxWyG7tGHZFeZCmhlS6SaINLZqsca8uB55dQugGQjcVd+g8Bc4riZPVu9L3AI1MpoBwKwxO9WPJxvPtNEv8+odu4JEn9/HoIZWoOTpRBs/jyX0ZYG5PsleYQoulTjo1pNojYL5zq/diipePUu2ssBek5yJdC98qoxkhQl3rsYYPIUMOTmECI5oC18F3K2itPcGYtFraSLhjXRBV6gj0roMwTNX8q1LC7FhTq2OCxvQeVSRWVlFBI4SXn1DFY46F0dKDbxVnFe0fnDA5+Giam7bGGJqwOJZplLETGfjRvc+TyRbYmArVuNdPjOaxHA/LFWSmcrSGPa66MMrjezPkLTCFx+Y1bYRjcY7tfoG2nl6uuaCdxLDHU0cdkD43XtbN1PAQnVGHDqNIf9rkuWdf4uCxccYqCYSmc/cLRdzMuEojQS0QFY9zx5x0fYoeNIQIxRR7zAzni/Q9tZgOOK+rkX00jVD7OqTnziI+0AIvsPActfAQYt7i7JPBUozhZ4GtQohNKKH+IPDh+h2EENuBLwJvklKOrdjo5oAWjqlQshFuyGebixFiMbjZMYQZUrlE8VaV/6ObC/LWTReVJJB2RSlLwbK80UuF7ttcstbk0LDN2jbB669Zy7/8op9/fGgS5faYbXwOTVrs3n2Ugq01sE0AXNB5kNuuXk3Bknz350e4cmsbt7/ucv71py9yaFzwsTc4bNi4fEP1+LFBvvXTg1y5rZXLzu+hs7sTM7SiIeOTxRmXXWWw+bhBTrDvOlTKOVURmxlWhoRtYXSuw/FsKsOH0aMJEFqNUF+YEZVL5Tpo0aTicg1ytOx0n/ICu7YytuOttQ6NXn4cYUYCw8OAiguajjAFvl1SaQMVC61l9mp986oIt9xwMYOjz3JgxjpxyolgZIr85kdu5tkdBzg6kMXQdH60o4gQUXaNZwDJx1/TTs+aVbyw/zE++s4rGB0You/wcSrlEudffgnPPvY8ex/Zj+P5/ObbNvDsC8fYeSDNhg6D6268HKv8FI+PtMIo9ERNPrA9xUPPj3NiZAijvRfQCLX34ubTNSW9EJTxrzekkVTvkQipnDSlgCXHMib//R8eQTPC/Nnv3EalVKJSrtDa0U52coqoAb/zwUtp6+hYtGvZSeKMy24jfNxCjvCqzbg5xXmumeF5mXrmQ5Va0KsUMGKt+FYRv5RFn4NztAqvnEe6FkLoiHAUv5RFem4tErLS2NRiYbswUfT58O3r2HNotK7GwwK98ZwLjsael44zlJ5u2fvoUQE4tJoGd1wc4an9GSbH0qBpGKluFaWJt+HlJ06q2FtKiTs5qCgDI3GEpi85p/g046yQWzc7hhZLqc60oTDW0CFEKILQDIThgRBIITCSXSpaJwRoOqFORTFa1Y2eVcZsCYrhNF156kNh7MkBjHhbbTFYtT+8cg4hdKTnBgV3btCB0wBNV1Su8Ta84tQsOyOhVXj9LVexa/dRju0oNGzztTAvDMFHX7OedRvX8P+++hAXbevlmcMV7AFVr/H0YIZbNka49poLOD7wBFvWtdHTYjA0NI6u99PSswapGxwYLLHvRJk3XxKnu6uFp18coDc5ya1vuIVk4iW+9liBu3fZCC/C26+KMzxe5Km9EyB0Ql0bcAtTiHAUoRmLpkcJIRRjyQz97BVU4aY9MahSBn0Xo6UHNzOiFonhmKLBK2bQ4q3guXiVAkIzaoXiLFKUv1wsagxLKV0hxG8D96HSv78ipXxJCPHnwHNSyh8D/x1IAN8LVqn9UsrTQripmRE0MxJQVWXQE21YI0fQIgnMYIW3dEjVhjnZoYr0Am7ixb6jx9tUnlFAY+PkRpXHKdk+r0JfCDFRRkoozyBSPq9L451vvpKfPbSbqWxJeajmcAKY0uLKTVH2nihxLBMJJtJsA+eKbZ20dHUxvPsAFcKUg/L/jlSEyXyeRPzkVlme6+MKk9GRNF866nD5miHe+Zb5GxTteP4gDzw7yFtv2sjFlyy/i8xScVbIrtDwS1n10ApFCKVU6M6dGibUuR57cgAME2v0mJLDch4j1YWdnk67c3OKZNyzCiBVkZ0vJfZYH/g2ItGBV5jEbF+tWCOq7cqlRI8k1IqbIH823oYzNYzR2qNaOru2UuhmqCGn7VB/hq9962GOFaJzEjCOl0L88N7nGZ0ocMf2Dlo6Ogk9e5Ceng7u2ak4umPRECcOH6GkJRnoG+CK667iwUf28MhBnfiuZygSB+Fz88YoxakJ0EweO+yRHhnF1CW+Pi2PLVHB+Rds5vn9aQZ0HTczgnQsrNGS8lTOMASqirO+8Mu3y0i7gudUGgqJpO/iV4pq0WCYKhRazKAZEYxUJy/tOcbTe0cYK+h84JZuvnHvQWS8g/M6JvjIezpOhyF8dshuHYxUN3qioxZ9c6aGkZ6D0dKzTINYIF0LPZJQDoh8Gj3ViVeYmj832anU0nuE76tIilWqtSefl2ZsAWi+RYvpMOnGGz2rVo4P3nktI0NjfPuhQUIhE32Oh66Ukgs7HSwXjmUj/GhHgbnawW7sCnHj9RcyMPYckxPKG45UjC9eYerUHuiaBprAtytouonUQ/N66VU6YAHpNRbRrTTOGrn1PcUnHI4Q6lTMbW5+UoXy3XBA7WWoxi+RpOok51q14jA3n0YLxZB2IGehCMII4UwN45ZyhHu34k4NE+7ZVFscBheg1ll0+n1UOTJiLchyvsZFLD2voYCx4pt849sPMVKJMV9ThQefHyG6a5grt7ZxxRXrKGRf4vzzUjywc4x0JYJmmEwMDzKRd4iOZdm0diMbz0vwd3cPEBY2HhqeFmFdUqOjJUS5kONAWuNI2qP76ScDParmg4HHls2rgSEQU/hWHit9QhXChaLo4VhDVFG6Dr5dmuWYdLNj6JGEamxWY/nRlPwLMFKdOLkx1eQEMKupV1aQ3pYfJ2jFighF8CvF01KjcM60Y1YE4W5QIDftdbTT/Rgtq3Cnhgh1b1R5g06ltkquFXmEIkinUuMOhmqYSVWlS9+b9jgv4GWuPlCruXNeKatyg0Ix8L1at5u18QqWB+OVhXNkfMfit96xiUrF4isPjCOERke4QioMfVOCS9eFODhsUfIVp179uVextd3hw++6lvsf2sUTR+endoqJMhETJu0oXqXAZ3/jpkUpz5aKSqnExESOf33gENu3tXPzjRfPu+8jj+/mwT1l3npVimuuvuCUfvdsb2kL4GRGlefWKgSFAWNo4QSeVVR0NOF4zVPkZtW+erILI9mBPXZMeReQ6OEYRrILr6SMWKOlG68wpRS50BCa1tBqVUqpcgXrjAWvlFX8jcGizR47Tqh7I/bkEKH21UjP5fb1Obacv5HhEyPcdWh+Q8P0K9xyQYxbbrmcf/nBo2zd3E1Xa5R9xyZ44XgFU5O4vmKckL7HmoTNeEE0tLf17Qq/856tFPNFvvLQxHQrdd9F0+rSPaRP1MtTKLuArDUumQt+lbPSKjV43XzHUg9B35vlVfTtCl4pA6h8Q79SVBXphvIUS7vM6jVdvPu2LXz7J3uwHJ+brlrPLQvI+WI422W3Vk9R5/kCdS/czCjCDKv8wdZevEoBLTxtWLr5CdR9CqnC5mRnbVt97qTS66pZx3zh/mqeph5NBY0QStgBfZ5vlQh3KW9eQqvQ26pzcFzM2zWvilvOM3jday7hS//8BCOVGIa02NpjcHjUZW0r2C4MFsNI1wm6dzWOTVoFPvPRK0mPTfCVhxZwoHg2a5I+g3ldFZYGxtJKQHkdFWcuqMZT86VceOU8QtPwyvnZRWDLxDnRjllKrOGDIMBsXxekUkl8q4R0bcyOddjjxwi1r1ONNioFhBkl3L0Be3IQr5RXnmTpq2YdjgWoQi6zYw32eB9awOqjx1INz2XfLiPMcE3GfbsCgprh6NsVvHJW5dUGTFkbwmnuuG49lWKRe14sMunOndYiPYeNsRwf/8jt7Nq5l33Hpnjv26/j0Yd3cCILA1M+HTHJUFH9fquhaooybqNxfes2k1tvvpgvfvNxRi1lK/m+pzzfdbIe8opUbAffcQCxIPuIm1MNN+rZiyBgOdKMWQ4X6bl4hYy6NqEIwgir1D/pIfQQ0i4jgqiHen6W0Myw4hs+SZKEhWR3Zf3MpxGqsUBnrfKzCj3eilecbh3kBnmUVRo2rxwUeWRGlfC508UMIuAFhCrNTPei6RZaKNpQRKLHWtDMiKr2DWRIVHJ85B1X8NbrFy8SE4bJzpcG2XNwrDaW27Z385H3XEeYCi8OCcoyosY6hyEMcHhc8u0fPsuOowtXC5dklElbTQo9klgRQ7iYy+NYFk/vOMq/PniI99xx/oKGMMAtN17C77xr0ykbwucKfKuAGRQC2GN9gKYmdtBlx8kMoye7kHaFUPcmhBFGCLDGjhLq3qhai0ZTmO2qklYLxxBmGK+YUQZwSzdmqrPBEK6inoHFK0yp1XVd9EIYpjLWg3zliCyybsMqejZswvOm54qUkpifn85BBt57Sw+bVye57/4d7J8w+dHTkzzxwiCvf+12tq2OMOlEcTzBmy6NsibpMVSKNhjCoJTgV+8+wHceHmxQwu1hj7dcEaM9pLzaQmhUDNV5S090IBciWddN9dDzGxeGmhlGj7erPL7CVFCkOKU85MG5mq2r1OLYtQh1bajltppdG3j367fQu3YN/+7Tb+T3/82bufbKLTz59D4mJ6bmGsU5D98uKUOgTmcqCNUmvJxX3uLCpGq4kVMRb5U6pvSVb1dqBTS1b9fJnx5vUw+3BXJ6hdAwkp01/aeFY2ihKOaMB/NNF7fy4Xddy6rY4k0k+kZLPLfjQK0Q88LVId7/tqu5dF2EY9kwg8Wg7bdhzjk2EU7wzbt28ZMnZ6XDNkIPMViKgG6qtJIVMISl56r0EruEX8op+WzrXTD3WI8mQcoV6dR1TiBwnJlta7BHj6oCXacS0FUmcCYHEXoYNA1hRgL5MnGmhkFoRNacj3RKhHs245ULqIhwa+A0m8RsXYXZ0h003mh8LjcYwlZRGdp1vPH4rtL76RNogb1xfregZ8MmwrEYeXt6IRfySxj+tK67ar3Bh95zI489soPH9mbZNxHmf33hp9x483ZuuLgbmwhDxQjXrpNcvdZjyonMMoQBHttf5G+/9ljghVbQpM+t2wwuqmsQY+txfM9HT7TDYh0QJPjlXOO5onSqRNUd+EEbdt+xVWdAAVo0qTpTlrKE2lerbqW6rp59QmAk2lUjlJ7NmO1r8Cp55dRYYZwz7ZiFEQ4IwhvzbPRoahZliW8VawnbWiShUhgSbUohn0Qaw2LQo0mkXcJsU8avH07yw/t2UXEkEMb0SvhoeHN0+hJC46k+qCcgfGzXOHsOpynbsiFasiFls21dkl/sydUqQUGReKu8ztm3s94zju/jFpUnMdSxdlZOMagq+hP9I/QPTnLd1VvJ54vs3DPAVZetp6W18TpPpif50g/30x33aUmGmbTC5PONBvm99z9PJl/hjhs307lqVXDOgngqycH9Rzlv28YV806frTC7NlI6ugMtmkLTw8qjEHTPccs5jEQnspJDmFG1itYNpOsihIY1fChgKhdYI4cIdaxTnrRIYt4cQa84hW9XVOTDszE7N6hVthnCt8q1UCCA0bYarzhFKPCgWkYLP3+qnw2HBnl6JEpIs+iIeRhC8vEP3MxP7nuBnUPqd3KTE1QMg8eP2OhmBHTYM2JR+penmZoqoMs47QnJtdecT7m8k1t7Wnj+QJoD6UZlWfBne597W3Wuuep8nnn+p7h50FPdOIGX3Pc8zNa58yx9u6yal+gmQjNwsqNINMyU8kz6lVwQcp9AVvLoQdpI1YCrQmgGVvpELcrkjR3ji/dpCDGGlJK3bY8xNjrFM8MR9h/ZTSQa5bYbNtG9auVrB84U9GhKhYvDjQ9TIQThrummYVJo+JVi7foJTVc0f75iNfHy6UVp7JYLs6ULN58m1D4d8t9xKEM6s5PRkgE4RKjM28WuPx+i/8Uy1XSyg8M29/z8BfYeHUcabdN0gVS49ZJWdh/NMlRqTAcZLM1v2LqFyZrxaY8dQ0qJ2TW/rpOujVfKKQ9ZOB7wZofmpFRz82n0aBK3OEWobXVDIReAV8zgey7SrmB2rKnNdS2SUJGkUGRFC4/ORgjDxC1MQC6NZkZrXTqFENiTg6iohQFCQ5ZzSDOC79oI6SF9iTV+HN2IYI0dV6mZoTh+OU+4Z+60vmoUxbdLiFAUEXhRfatcY1ypelW1SEI9qZMdtXvzWH+Ywj0PcCyjY4sOVkdLpDM2n3zvZUxOZPjWE8oJaJWLjJ4YYvexPGNOEqFpFCOr+cfvP4fn2CSESd4zufKSdfieTzw0TCQc4qcv2Q2LJU8LMemGGsonTFnhhqsv4Ykn9+AeUSlIbmESNA13bJLQAjn6TmYUaRUR4RieXVH877GWWgqVEKrJi50+ofKOc2P4lRKIUo3lRIskcKaG8V0L6dj4drmhA6BXyuJViuixFL5dwc+OKSfmCi3wzhkrRI8m1Spskcpbs3UVRqoLPZpUfdrLBYzAa2akuuctdPOtUo2Ee7nQIomGsIAQgv0TQcWnXeKT7zif99y4OP2H4Vd4y+URWuIaIVPnM5+4vqFV6Hlrklx/7QWkTHeBozSiSn8k7QpuPq0eYossCB546jg/32vx5OO7+MGPn+ahHcPc9dPZbWZN0yCqOcTCGm+/4zJ+/S3rOP+CjQ377O/Pc2AUPv+9XYyPplW+rOPwwKP7+OfHMjzz7P4ln8u5Ck3TiW2+GiMcJ9SxGr+SQwiBV84R6lyvuIeDYgRB4FGzCoS7N6HHWoj0nk+4awNm6yrcnCoW820V/vLKeZzMKNZ4H/ZEwG7geSrUX86BbmKNHUUKodIHpN/g6aquvOs/G/BX8fh4F66e4OaLknzyQzdi4rJ37zHGc2p+SOnT3dtD77rV/Mrru7ii1+XmTZIP3drNVKbIb3z0Fm67LMVAMcznv/44e47l2LBxNa3x2eEtP/AYbEhWiGtK3veOSD7/9ccYKWhokaQy5sMxjLZevOJkLRVi1rEqRbRQDKPy1OJwAAEAAElEQVR1FW7Q2QjPwZk4gZRBE4l8GreUwSsXsdMn8CoqVImUNQ+xHm9FD4UxEu0qNUtToXKvMIWbGeWunUWOjjtc1ivR8Dg4aXD8RPrUheUsgjBCGMnORQuz9Hir0rGp7unOXJGk0reJdtX8ZY6wppQ+bm4cr7z8DnBVWqt6L1S6EmHHCUAPccu2MP/uo9fRZizOrbt9tcutFyXZfyzDb/3SDdx83rRToSMmue7aC9i8eul5yVKqdAhhmHh2GRFOqEXnAvUoXimHkerEqxSwhg/hu+4sI7cevlXETHSo/MkZDiLpOWrxZ5h4QT6r9FyVzhdN4FdOvuPeuYTo2osJ92xGi8YQRrh23sIIYbT24hWzCCHQYi1oRggtHEULJwj3bMKMtRLq2Uy4eyO+UwoMsWrLYAu3MIU9elTpVt+ri6LYCCOMW5hQTihND+ZD4xzSIo1c7yWR4ImJVQx7XayOVfjkh27k5su62HdwkOODmdp+yZYU67Zu4apNYd5/fZI10QK/dnsnhqHx2mvW8evvvRzDt/jGfcf45v3HWL2qjdWrO4I0kWlI38N3KrSaFXqj6lniGEm+8J2dPLJ7Uhnydgmkj9naG7Q9nlvnKipPXTGj6Ipxw0h1Yg0fqkXohWZgp/sBgTV6FGmVIRRVRY65UXVNQhG1UEh2BVGUmGqaFHjXpetgtvbgTo3gV1TLZ1Ywzfec8QwvBN8q4lvlWeTvMuDFdAuTc4aQG49RmrWCWwqklCzUtlnqJoeOjlAsWiy29ojoHpddsgnPO8qxoQLDg6P0Jl0u3mDy0N4iD79U4YXDj5N24jML4ueFFk3UKl7N1l610p0nVCc9lz/78k68YokbLozw+N40+WwBs2sj4cjsRUKyJcW//dVbGRke5/5H93P99vWz9vnwWy/mp/fvIO9FCYdN7v7ZDl48WuTGC+KsjTusXnX6ijnOFlSViJ5or+WlggoRu5kR1SCiGqYPiluczLAiHXfqWYeEasYR6UBaxSAPUFcFRrEWfEd5RRFC8WXGkiAFRrxNsU+0zC4wdau5mHU5lk52VFXuGyb7+iIg93KiGOHo0zmqbUSF0Pj2gwMkjAofeNOl6HKM7pYQISEpOYIdO48wNjrJx167joeeH+FEPs5//+ozuFq04bcissyvvOs8Dh3s58ZbrmHHzoPcvVNR0aVtE6Erj5keb0H6PtboEWIbrwi4bafPw6sUkI6FFk3g5NK4QwcIdW3EGtqPZkQCrlYZ0Cd14Qdes9LRnZgtnXj5ScKrtmBPnKjxQuvJLpyJE1ApqK5S+Ql1ne0SXj7NiND5rY9dSS6T4+jxES65+PQVg55tkNLHywXsCHUOhuqDsFp0tBC8/GTNS79cnuLF2jaPTlU4eOgEFXdxRblxTQubN67myd0jjAyP4VgWb72ijSf3TjJQDPN3X3+cyYoxi0ViPgihgfQVlVbQYdK1ioS7N855HgiBFomrha5jYXasRToVpK7PyU1rtq6arnHRzFlhaT3WgjV2TNWxaDpeMQNIpYd8D1jiw+MchvQcpTcS7VDO4ZdztZQETTdxJwYwEu3quR94Fr3CFL7vYKf7CXVtnD5YULSJVVRvS1lEJImHRNfDqm4pWS0ubcErTqLHWpCuM6ct4VtFQDTUcrilLNKxEAImZAuPPbGXAwMFhoph6u2Gpw9XOHjiMa4/P0XINFnXCrp0MTQ42DfJyMgEd17byUSmwmPH4NuPjKrAotEYCbj9QpMtG9cwOTbOtksu4K+//ARuqIWsH0OGwM2Oqt4L8VYqfbsxV20Cu5EBT0UzVA0KUuJMDmF2bUB6LvbEoLr2QUMMPd6KW5gg3LMJa+y4ekYV0oQ3XK5aNwfRSj2aDOo6fEVBV+0uaoTxPQcKE4S6Nyq5zk/MilqdCs4ZY9irFBRZfqx1VujIt8u1hhtQp1TFNIVH7TjFKaVIzUhD73ZhmEFIcHEPQD0/pJsZUXlldQU9bjbIhYkkkZ7DvU/n5q+UrjOmCzLO5775HBXPwNfDHHx4inddvYpt56/jyb3PUtESTDizmKEWRJV9o4q5FDKoghdVSOiCEOzrz7KhM0JoXSuXb21j3ca585/7+4b42l0vYTmSWNjgtbc0eil6VnXysV9+Y90nAiFg86ZeXve6l41v+IxB+h5upYiXUzR+oc4NtYeX0PTpHFircdWtx9pUrnEdobh0LOV1yIygRxKKAUHTELqOle4nuuYC3ElVSFqFVykg7XKQ80Vtpa7HWmrpQ24ujdBEUOkO0iqjt63GHjtGn5VkcMqd0ztYJsq6SIXh4TQSnUuvupy77n0Oy2zlvj0VNqQM1m9cQ2y3Imb3zGTtMRwTZT50ay/lnERaJYT0+OkDL3JivAJ1rWql54MQ+JVirbFOefAAkbpwpW+V8Ct5tHAcNzuKmejA9myc3DgiFEczoxgtav7Z431IBMIwsEYOq2iTGcXJD6MF9QZVCCFqVEvVa+kVMwgj3PCQS7WmuOKKs6uhwUrBTveBZhJqb5z/fimrmr/MyN0ToYiiTws1Fkn6lTwI0WA467GUYojQFn8MVbunKWrNKSQSfBcjpdJlvFJW5TZrGlo4zt7jefaPSjRz7odlvTF919MTmM+MUdbb+eZjWS7s0njzVdvoH9nB5IhG2onP20Z3Phh187ZehhrOyS4HHi87eKb5yogO8t31SHxOdiIpfex0P0IPIczZQxNGiHD39PxQxjBB8dHKNCg42+EVp/AcC7t/kFDXRjQzNB2yN8Pq+Z9oxytO1Z75eqINmUtjxNumiz19D4SGW86i6WHc3DjSs8HKg+uCGVWLDjHd2lp6rXjFbO24Sv4L6Ml2pOuoBhyeg+9a4LmIcBw3N06oYx1uboxCeoSfPVec04En9RCOXSSkC5567gAf/uAdHD3cp6LQORBOid94VxeINBwrI41oQ6bvHVs9Nq5pJZNO41lldhyY4vDILhwj0bBEknYFo60XZ2oYPdWBkx4k1NH4vFbpOA5UiniVImbnetzChHLy5McJd21AC0VV9KeURwtHcbKjeOUc4VXnIXUDa7xPMU0Up2rnq8fbGiLt0nORvo85o0B0pVuJnzPGsJtLE+7eiDV6JMhFm65wruYFzzRk50qJkJ6LkepSHrQ6Y3ipPMVukP9W44cUIlDmdSInQI+1qiIezw2K/GbzCgJcs85n+4W9/PPP+yjKKCUaFe/dz6Z58PlRKvrLQJpetbJ9j5wXY2owg5FKsWcsC49n+dNPbJ/1lXyhjBdqYXUsw1WXza306/HWN1zJm1wXwzx7WmafVggNLz9GZN0lWKNHVC6vk1EpD/kJRaM2MThrYmuhSCMtmFXCLWVUQUj6GKHkBqVAAhnXwgn8UgYRCquHrFVEj7aoBV8g59JTJOvIwBgwFL2Tmxsnsu4i3FxatSuOt2IN78do7cVMdQVza7Yx3BMu8b5338Lk0CCP7hrlez/ZwaERB4Lub325MP/1S4/ihlqIa2XCumTKjRGVBW5Y79HS0YqGRz5X4OiE4MiUxM3nQagHgVecUp7eqSE0I4SUPuH2tVhjR/FKGXzXQdMNtHirylmV4Ds2nlVEMyJIuxR08IooL0Y5jwjHEfiK6iicQCDVtYrEAsqvuMqT8z2V411HG1a9ll45V+Mbr+9Y90qDPTGAnurBL2WVvpR+LbqgVzlWZ7A21MtbFTUPT9C5qwphhJZknEnXVjzbvqNo1YLuWvXFnNK1AmrM8VoI1c2l56R96wiVed9tm3j42X72pUO4WoT6xLO9I/D5rz1G2gqtOJfpbARGl+eiRVIgl/CQlzJo4e4uaSGhx1trXSlfLfCsMkZLN7oZxp0cwGxfg++5iCDsLj3VInimjTDz2tvpfrRwHC0SD6IeXbXosZHqVhzFZjhI+UnXotP1x/Er+Ro1oJ5ox7MrSN8B1yXUvhpr7Ch6rAV7vA+QirYtN3fKlfQ93nvbZhKxMMNTFl/7l2coOVDNfZdmjP/3gwNIoYGm05twGc4bCCRXdJfp7ewklkoxMZbm2GCWY6UU3mRBMWTFWlRjEasIuolbnMJzLcKtvTXqOSs9VaNU8z1P0dEF48JzEFLx24c616uOf6EovlUm1L2BysA+lcaaaFPNS0o59FAEfA8Rjs3ibK7CbFsd0JEOqQV1S89JN6pZCOfM7NDCUez0CaTnKZ7funyqmd7PBY8TTSqDdpG0ifkgdFOttIMVu9HSo1Z3QU6cMzmoQgDFDEZLt1oVFSbn/T0BaPr8CtcWEeyVab29IIxkh+pipiueVb+YXdLK6+KLt9DVFqe9a/uSDFwhxKvHEEadr9m2BmdyCGlbKh2i2jlKN1QoL5poSO+pebnqmrk4QVGYPX4cLZxQNDZ1Mq/HW1XIyowEXMVzpPxoRi3tQhPaNMUgEi+fxitOEe7ehJMdJ9S9Ba8whTXeP6tqv4qio3Fgfx+79g8x5rQwNgpxHbZ2+uwd8UAz8YQB0udtN/SwcdMa/udXn+Z9t62ns7OF/bv2c9eLFbRoC0KY+HZlusGI9BFmFL+cRY/EMVLdaMUM9tQIAg0RTiBkAS0Sxx47hpHsVuPv2YxXmMBo68WdGsJ3LEWLZITQ4+04UwOAppgiqjRgubHAkErXjLxaC1EzjO9UVMpVcI+qFI/1XlHf98mkJ2jvfuV43oyWbpz0CaRnE+rehF9qZPJZqmemagifdFMITcd3yrV5YyTaVW1HUHjj5tNIhApvt68JiijT83e2E0r+5wuwCd0g7RinvaJGC0UVE0HAauSVcws2fKqNT9PRA8fPUjmWX02GMIDZ0qPSzOwywoyqpi1h1cxIOpZi4amn+/Pc2oKvSrvoWSWkY+ELTfGOx1twc+MNz3KjpbvW7U5PtuPlJ2en/NRC+jGEpmO29QbUg2CNHcOIt+NVCoRXbcHNjWONHsWYTw6ExpG+SQzh8eQxTy36PYcLelyGMx45N4wvdIT0uXytwTvffC3fu2sHiajOm267lsEjh/jq955hylxVW+dJu9L4vJASzTDQoi3oyU6ciQGQHqGujfgV1ezJSvejaTpoBlqsBaEbAY2lxHdsxaBRM1h9FbHrXIcRPHPcwiSR3q14xUmMVHftt6uLACllzW5S90jl4CP0IPVCHdsr5wP2iVOX73OGZ7iKmW38zja42VFEKBZ0BFpcUUmpwn1CNzG8Eq7UwVggN82tIKXqSiY8m6s2hugbtxivLJ7PNpeRVYU9NYIWdCqbq4J5Js4WT9jZztU6E/VMDvOhxn4SRB+8Uhb0EF4hrTrTta3Gy6drXjXpOappTLULUimL9By1SFxCG1bfruBbBXzHUp60wFCeqyXmfAhjETc9Lt3cymtvvph/+v7TTBU8Pvnuy3j06YNkSy4tEcmBgRIbe+NEDEGx4tKSjPLoIaemzNzcmEpjECrc7UwOKO9X1cPrVNDiHQipCkJqXozceE2pa+E4WiiGV87il4vo8RRC6LMKjWr3xLVxS7mAA1adv7QrtSY6bnZMdZz0vZpB7JWyihUkUPhudixor53nP//u7Uu6ZueS7HrlHJoZmZfe8UzCzY7VupEu1UCXngOagfBsDFxcY35DXfoemlNEhpXxvanFJmLC3vG5adcavus6itVA+jW2oSq8Uk7xOGtiznz+sxXnAs/wTCymd327orycjoWeUqwTbnYMEUngTA5jtiiKQb2OAcIrZhRne8CD65UyKl1iCewGUkrFaCM9RfsWNEPx7cqS6fek57IqboPn8umP3srTz+znp7vLvOuqKG3tKf7154e4+sJO9h4aQQqTK87v4qUDA1xy4ToeeylDzlW6vWoXSCHQwzHc/ISiRIzEVY1KrFXxiBshRDim6lVKWYQZxc2PIzRD0Z+19eIEzZCqi7yFOK3dwqRywAlVfOeXc6poLhwLHBSdeLl0jSvet8sBNV6sNm5hhPDLuSXPn1cEz3AVQtPPmCHs5tO42bFZ/KX10GIt0w/I3BhudrRhu+8o2pGqh04IlasZ9ov8m/dfyhsXyD2Urs3H71jL+2/uREpJd9zlrW/YzpXnNYYVqiEbP0j4n/6+KijEb3Q110Kgqc5aNX0TpwdCCHynUsuBnAtGqlPxYAbFAcIIIa28Sg2KplTBUV2YyB4/gVcpYo8dV4wJsRbFAlBnCHulLG4uXcsZBqWQfcdCCymezVD7GoykYl5xs2NIu4wzMYibV9/zKwWc/ITyxAWL6AgWl/X6vPWKKJ9492UU0qP87P7n6J+SuFIwMjxGqeKyP21iRqL8zq++ltGMw1MnDC4+r4vrrz4PCtMdWY1UN7JSQPqqCEOLtSpPjFC5zNL1cLPj05SKmo6bHcdIdhDdeIXKD060K09NrBU0qbhwSzns9MCcFdHCCKmIRaoD6djokYTKJQ6iP1L6AVeoge9Ual3Yqh5I3y6raFA5d1rCd2cDqg0vXm545by6xvNUsgOqI2OQGuFkRnCzYzW2FQh4eZ1KA2uF0JUh+6btKX77/ZcS8uefj9ds0PgPH7uaNlMd89Yre3nHGy5D2I2sDF4pO4sBQnqOakYyI53BrxTwKjm0eMtpoftsYjYW4qbVQpHp1sl1zWFkpYDZvko12/Ld2jZ7chDPKmGnTwSNaUIBW9W0ISxdGzc7pmqI6uAHHOlGqhOzpQcj1R14i9NK700OKdshN4b0HJxcGieXrn1P+h7b2m2uWVXi0790E9u6JA898AzPHMgAkM2VmUhnmXIi7Dw0xSd+6bVcsLmDe3dXaO9s55qrL6ArNC3vtQihY+FmFfuIHkmgxduUrWKXgpS8DvRQNHCkqetgtq0m1L259qwRmoYIxxRdmhBYY0dxZpx/FYrFSEdPtqsUlGRnzdAVmqm87LqhUiTyacXQYqq8ba+YURGjBfTCctGchcuBBD3ZUQsXKmEfVUTdATQzovpqe47KAatbjXrFKdUFKzs+a2J66BzvG2F8agEqIKExls4wOVVA+h4jxRDf/NeneWxvpvFYhUk1Tqvc8LmR6lQtEWeuXIPuZdbokSV5hasYHhwlPbZw++pCNsti0YefP/Qi3/j+kxTzKyfYZzP8UlZR28xjEHulrAq/BQ90LRRVCrN1VUM+mp0eoDy4X/VqB8yuDQ3NDeohXbtG/VOF6nZn1QpsZnwD6TmqhXOyUxnwdlkxVyTasceO4ubTXLYhyrvechW6dBnvO86d73w9yVQcXwtT9CN847Esu8dUWkzfaJnndhxkYqKA9Fz+5f4DfPH7L+KJGaT14bgKYWoC3yriZIYxUt14joUWjiL06TllxFoRuolbymGNHFbhdFSOtZdLo8c7cPMTKtTfuRa3oM7VrxRUjnSwsBWahpsZmW6jijLEvEpB5bm1dKv8t3JeFY7lJ5WXOpLAGj2KW8hgJDuXNX+aWBzSsQKap2mKSWUojNfulRCill4ghKa8+MGiXvqe2jc3rvL3Z8h6erLE8b4RvAUq5IoVl6HBMRxHycrdTwzy9R+9AOFGx4V0HbRIvGHBqYVjir5rZuhcaGh6CGdyYFmcv75TWZByTe1jzdEopRFeKatYV/KvLDrA+eDlxtEiyXlzcQGQHkairSYj1Xmvh+OB7k3hZIaxRo7UUnbC3Rvn1eO+XVYMFjNsAOnatQY1jRAqRcxz0WNtgAjsBImRbK8Z1ilyfPCd13LB1l6mRoa56KLN3HjjJUwEtJcPHoIf7awgjBB5W+fZHQc5emIS3yrx/P4JPv+Pv2D/UCM7lPQ9VSQrFbmAV87hl7No4Ti+LxHhuKIMDKBFEvh2CSczijM1qApnC5NIiWrgJH3s9IBqhR1cK+m5quFGnZPOq+RwxvtrRrB0bdVYqkrXmGgPSBDa8a2iatue6sLOjmGPHlFNe1YoqnLOJBLVqGR0c8G8Kq+g2CIWCpepY00prr9ldASqFhxNV42qVb9vq8mgqoPzgKYMz3IOLVrvtRUqHOG7CL/x0rtahB88V6S+eq7WyanaJU83uGe3GzRmMBGGyeGp2Z5kLZxQLTo1fbqYKtFR45SdiZlhnSp5uBZJzhsm/5PPP4oQGr5VqFV0z0yd2LPnKP/y6DA3XZDg9tddPudxAPb3TZGuRPjm9x7hU7/6lnn3O5ehVrY+ekwVs2CXEDMKBbxyLjBWRdD+c+5FhFuYxJ0axWjrVowp+QlwLbzceG2hU61gFoaJFoohfR9ncqihPTEo5SN0s9YRSYQiqiNTSw8IgR73cDJjitHBKeOVCkjpYySVYb27v4Tz050cPpGlJ2pzcKjE3hEJniAiLCratBHQnzM4/PN9quB15BBuvI1ypjQrlUPoBl5hArNjLX4ph5bsUN7reAtoJqKe8cEIKe7J/IRK8Ul2UBnchzAjmC3dICW+7yLMiFrsBc0f3HKOUNtqrLFjhLs34ZULiuc5SNeQrq0aR3guMhybruoXmqqwjqpWrM7kINF1F2NPjeDmxjFSXa+oojr18A7Cw/N4vavUllo0sWDtRj2TyVJRK46O1smIVDnyVa9Q1fOmx9vQYqkgvzvQi0IohgbfUxzU4cbxPTeo89xgCTSl51TamteQg7hv3GTPsWPKGPBLjLd0QyPLVPVKqKLPREdtzPOlKmlhFQ6uzkfVVnkiKMCaPzqouv61q+LbOcLxvmPhV1SnSKOlZ/4W166NmerCTvfjmYUGZqVXChTdYkWx5GgaXikzS4al5yiDU+ggwStlGho9VOFXCtiZUXWdNE09++wSTsDsU4Ub8DobqS7V5Co3jtGQniUaFip2ur/WsU6LJBFmCCNgaZGB/vHtoO7B99HjrUyVCnz/rucYz1RI6H10tYSZKA8gIkkiXo6KiIKmHBC2iPCTp0YUdZtdQk+0MzxZnrUA06MJxdbVqrzgRrIjoIsbQ4u24kwMNDCbmC3dqkDODBNZdR6VkUMgNEId6xTTTDSpcovH+6DKD5yfwGztwRo7Trg7rqLj0kers0m8UjaoMZiYLg4PxXCmRgGJ2dpDeXAfkd5tuEHxt9G6atF0paXgnPEMe8Up1bLWmz9FAUBKL6jMPF4L79a2+R5ubkxVSSc7lk0+rsdaGozsakFIdfL4djmgcVNGjD6zGj3eipFsJ7xqSy1JH4L0hfwQ77suyWWrgrpmt8JHXtPOGy+ce70idKO24poJLRTBSHUpHsVKQXnyJk6osItcvBpPcS92Lnh9tGD1KIOUC98qcc8DLzI6Mr3yDoUMwlhEwguvue68eSN6YZh03ue7P3xy0fGdk5CqA49XKWC2r8Fo6ZllOEjHVtfdKqu0gFnpLGmcqREVLoopBey7NlokRqh7k/Imuw5uKYebHau10vVKWczWHpUOUPeQN1tXoQdNJbxiBi0SQ4vEkdUubkJThrJTAqHh2zbh7o2K2SFYCJb8MM+8NMLGdsmbbruU667aymTB5zXnR/h3v9zY9MCZGEQzTNVgINGpFlvh2KwFabVBjl/OBaHvUeyx47iFKeVlm6n4fI9Q+xpVIT41RKh7C0IzlRdIaCqlIhRRXoTAgHAzY9iTg0jXrSlltziFFg4ehEFKhPScoHVousbTarb11rzCRmsP1sgR1VHJdebxsp+7kL6HnupaMMRco7YsZILUsEavl1ecwpkaUot7318wzWwmlC7rnFEs2oZvl6ZzwIPGCb5dQjMjDcWoQmgYbasxOzdgtnY3GJpeYYob1tq8fXsUXGXdXrPO59NvWUNcNEbVoFqENn+Uy0h1Y7T04Bcz6AHv7FzpanNBRfM6a23R54dQxYihqAof58ZqxVigIhzSdVRR9wIGgh5vozJ0EN91lMdtBcPNZwukXQkW7Y5K/0p2zqobUJHSTkBOy2XdM9ILIkhuOac6sPk+BN3rQj1bVPt2M6z2y4wqHasZqsFJJB5Eiqfz0fV4K3pCeTOlayN9iZHsxC1MIT275mWWnlrAV+sYzLZe5dyyFNPOruMFytlJ3nDjebz5ztfgazo94RK/9ys3ct2m6QJ1r5hRejQcQ4+mCLX0KKfBjAWpVo3GmWGQEs+uYI33Y2fHcXKjDVSJtXOJpjCSnaqjn9AJd2+icmJvLYVPj8YxIgnCvefVzskaO4owQljpE7hTw2jRFpz8xPT8DhobCVNRNLqFSaTvYiRa0QwDoelEVm3FGj+Om1WRvJmpqCeLJRnDQog3CSEOCCEOCyF+f47tYSHEd4LtTwshNq7I6OpQI1/WF8/J84pTioJH0qAolFe3W1Xu5ieWREuzEKTnqnBXsMoygiKOhaqm5+KN9EoZIqkWNmxYRXtqhid2Dn1mtPSghaJL87BUGzCYEVUxP4PeaM6vmCGcoBJ3PiUpdEP1Z29dhZtP42THePa4z99+a7rF87Zt6/nMp1/HzTdevODvbTxvI7/zq7eixdsYmpzT5XLSOBtkFxT/apVLsZoDJX0P3/exRg4rFhKocV37rqsiGDOuv9HShVfOo5sR9GgLkZ7NNTlwc2msiRMq1BWK4GTHEaGI4iWdHGroAiZ9T3mrA4NbC8fwKkWciRHQNEXllktPzx/PAaRaIElZy+/yCpMYLd3s7LM4cfwE9/5iL8KMMDplceBAP+W6pgdK9pVf16/k8C3VKKPaVQ8IcuRUCFyxZqjuTXqqE80MKa/XjAWdHm/Fq+RVt7h4O87koDJsQ1G8SrFG4aVHErXv6sk2QIKQiiA+SIOoKn0hNPRIAj3RjgwaSfhOJYgOTQQG8jiaGUZEYkTXXzrLkPmzL++svU5KZs4C2RWajpcfX5B9Rxhhxd4AIHQ8u9yYs+t76C2r8EtZxa16ijmyvms16D4tFFVer3n0oRBilmGoFn8JOtvjrF/XjR6Qq81nPuqJNsVNm5q7DXg9tFBEFUcFEcqZ6WpzHj/WomjhnHLDM2smFKVXl5rTY0eV86XOKSJ0E6N1VS11aj4I3SDcu1UxtVTZOVYIZ4PcwjSXejWq4JXziu5USpypEezx/qCQbVIVYrk2vuvi1qWhVItyZdCBTYulCHVtDOwIgfQ9ZdhlR9GSHbj5SaT0A2/m8KwaHK+UraW/oZtI6WGPHgVdD3JzJ3GmhgCh0tTsMkIzlJ5NdtSi4r5dJh9dx8OP7+axR55nYNKn6GjsP9DPWLbuXgbFeQgNr1zAnhwCNFU/EizcpfRxixnFDx40jMGzCXetR0gfPZqc0zGmBbRoRrCYKB17AaO9t2bQG8lOFakMFhlGohVctUiTdgWJikrr9Q7DWAvCDCE0HWGE1Vh0E7+cx3ecoDFNBT0cJ7L2YsXxvEJY1BoUQujA54E7gAHgWSHEj6WUe+t2+wQwJaU8TwjxQeCvgA+s2CgJVvhLUERV13rVS2O09OBbJbRwLGgwMKaorJZAYbMYlOESx6tMh5m0iOphXu1otxQII0RmMst/+7v7EaEEeqoTjAg/eGyYnhYN6ZsN4R0hBCyxmKV6PbzClHqoLeG89WgK6aYx2teqB79uqNa+MOc9UNzNnVgjR2od1BrGugS0tLfzyXdcgGGsXAHS2SK70Mi/6uXH0ZNd2GNH0SJJZXC5tgpdBs0NnKlhzPa1DXzYwgwH9Gcb5/wNzyoS6dmMPd6HForW7oW0yxgtXfjloJ1o0Jpb0QSqHCwt8Bz45JAothJFFZRWrWRLGfRYKqi0njZmpO9hDR9GCMH3H/VUyEoXHBr3ScaLxEIalUA3mx1rcCtFNCEUFU+yE2dqBN+1VSe8RJs6tucgbaEM4FAENzdBefAAodZuVXXdMlsG69N/jEQbTnZMeecyI0GFcwUtorob6bEWwp0bap41fB979CihThXic0tZRb0UbwtyU4t4VhFhmIQCRoDK6FHFOpEbB8cOihrFiuUMny2yuzR9kazRSdmTg4S7NgQd6IICUKHj59OYXRvmdAYsB2pxpKgFq7qo+l4xerTN2fp5JrRwDK80xfd/dhwjdBStbS0CeOa4RzrXhydnj3OpzCpaJKFeVmxhirc6CN2sUUzpsRReMVMzULVYy6zf9q0ioe7NWMMHMFONOZNL1bkqba5DFS+tUFH62SK3oNIaq89gL6D6crJjytnglBRLQjFLOGjg4zsVjERHg8NIj6Vwc2nMOSJ5oAxJPSim9QoTmC1dtdSeUNeGWtoEgD1xIkhJcwiF44p2M9WpdF8oYG6IpFTOcLIdNzOqOrpZpQaPtlfO45UySM/mBcfhpUxe5TP7sPPAOKYmpju6xVpUt7zsKGaiTbEUFbNIJO7UMFJKpF0CTUeLJGo5uVokSXlgHxhhpOvO2X2xKucAkZ4tOLnxIPXmhEpXlR5+uYAWSeLk00TXnE949bZaTrvvO4pjP9mJPTEI0lOMNZEk1uhxRCiEAMLJTghFVQG0a4NdVMZ9fgLpWoQ6Nq+IvCzFNXotcFhKeRRACPFt4B1AvXC/A/hs8P/3gb8VQgh5mnjb/GqHngVaeGqGia/rqvtWMCGEpi/JoF4ypEQ6ZbTwdM6Qb5WCnJcZBXKBx3guRa1orByMttUNBQ03X9LBDdddwBe/+TgjlflXQEvJp56PVmo+aJHpvGNFyN2GV1JhUBXyb5/Or/RcZWxEU2jh2JyesKXkT3Z0LU5Js0ycfbIbsIlIxhWlTDiu0nbMSEP/+mpnOD3eFuS0aUE6g1crApm52DJTXUqxxltVrqw9nRvmFaeQnocMWr7qyU5FHSQkbnYUo6VHhbqlDwhc367x9zrZMWQ5j4jE8YrZWg6cb5XQI3HlffA9lcdpl9CjKXoTPm+94woeffIlHtxb56lwKhiprtr88F07KFxpxcmOYrb04JULaEYYaryTklDHGtVYQ4BfzKpuUZ6DF/zvl3L4noOsFAn1bFLpGIVJNaeyo4pqraTmoJOfxAjok7RwHISGoeno0RR2+kSQs5fBqxTx3QqaCHI8gwWoV1BeZ7N1FW52VLWK9pQiV7nhs+/NSXiHzyrZlb6nFhKJjgWNLaPmjZvWzcvVPQtCU3UKs73LGno8peTPUB5i3yqpnMQ58mGr1f8IDRFRni89mmJ9q89H33cDjzz+Eg/tX9hbquaUo67JHPnU1bzg5UHWUia8gmrr62RGVeGoEaqleQhNV3IdSZ7S9RWGiW6s4P05y+S2Cr+cV7nj0lMRo+KUCsfX5c6aqe7pyJxVCp7lbejxFtz8BJ7vNaQ3gmrt7Pk+mhFStRlBIxhhhmrRv6pBLPQQWqxFFR/nxtHCceV4Chbq9uQAuI6KPpULip2kUkQzzIZ7LB2L6JoLqYweI9J7Xq01vZSS265eS7I1yf5v7gla0IOmafi6GeTZ59HjrarwurUHJzeBZugII4SdPqHqJyqFIMWkQxUiV3JoRrjWh8ArTimvrdACUoAyZttq9HC8xhfsV4pKdieHwFB1HtK1EYbqBCgMk3DLGjWH7CKaaaInVmENH0L3PYShqGm1hnmuaNWka6kiWauMHkngZEZU+tqMe7NcLGWZvgY4Ufd+IPhszn2klC6QBVbcsqnCt9Qqb7E8J5V7uLIt++phtvWqZgB1Cm86VWJ6knmFKeVBXiDvTo+1Bh1YpldgOw9Pcd+DLzJWWthb6hWCfOpl5OItBs2czjvW4634ViFI/9CC99N5cFW+Wz0yf3rIGcLZJ7uVAuGujQihBewPk0RWb0NKtzH0a0amqe4Cb4KUUnkP4i0gZ99rLRxT7ZulbCgwMlJdKqynKxobzQyBU0EPRzGSXY2GhW4iQmF0zSDcs0WR1QuIrL0QXLshjFx9aAghVAqCXak9rAcLBv/8g2d5en9jo4bqQrGajqDHUhitvUF+tIZnlwmtOg8tWpUliZ5oR9NNIqu2YERTtYr9Kq+sV80rS3aAGao1L6gavEayQylRoWO09jTkTeuRBHhObQ5rsZRqsY5EM8NoZoxQ7zbwpu+PMMPgOjhTw8pAibcpKjZdR4+2NOQcngLOKtmttrX38uML7qcFtHRL9aIuF0aivZb/WQ8RitQewFX4lYKiD1yAxlBoes0QBhjOC3720C52HcvN+50qpOcFqWcLszssB0aqq9ZhSwvH8a2iYpOZkU9sJDtV7ufJNjI5fTir5BaC9MiWboQRJtKzBa+YIdy7FWGE0WONxYoq/SuuDOFkR60gXzMjQUOq2fa62dqD2bpKFeuFVC1NNZ+2qh8giKA4FcxUl6pZCgrv9WQXbn6cUMd6tIhymPn5CSJrLkALRWZFFoSh6iHMVGfQQKzKpCL48eMn+PY9e2ctwoQZVvnR8TYlN5FEUJ+Sx+xcDwgiq7fh2yXlQAz4lMPdGzEiKUIda5SDIHDq+VYRfFcZ9OGESiEJx9TcD0UDBpgSesda9FiLSqnQpx2BqitvBj3RodJZ8pPBAiGGHhTvabqJFq+LWOg6fnFK6eJwXP1WNLliTTdedjYJIcSngE+B4oc8GUjfD1Y4K7qiXTHMqvI1zICQe/7vCN2YZbiPVyKMH/Nrlc7zQYWzxxH66eMBrV7ralV2/UpVGQ0Lj/FkvcVnC1ZCbkF5pKqhUyGEMuzyacz2tXNGDYQZwcuO1vIejWSn8tAtMAYtFA0e0I0Cp8daa16neuJ4UV+cFEngFibwPVeNMxQBq6hahsbbZ3mh5m2nq5kcmoSZKkbx+U7LuRFvxZkcwvdcRVPkVPALE7UHgBZJKqq56pySUinReBt+kHstjBB6rAVr9AhaJDGrGl/opuLyDsfxCpOEexrDavUGlBFrQQRFXnq8VTFb5CcaHkhaOEaoa3brcSMZUBeegnycDqyI7GrBdVioIdAZxFxsCNJ3kVYRIzG/nTXzGeKKME8e9ai2t10ISjbGgwKslYcWjkE4FtBNpdUiuA4zFwSvRKyE7Koo50Rt0W8EneL0aGJeFg1R1zVOMyP4vq8aXS2UgiJ91WK4TkcaweJfiySVQRiOBSkVk0GxvdKJmhlWqQ92WaUfxFJYY8cBaqlzVTTmxjdGx0fLc8vtzCi6kWjFHj9GuHcrfmEKzQjVmLJU97cJxRXMtPEtjJB6HpUytevqZMeUcRqdnWajx1rQUWkdRmt3w7XTQtFpRgvdVO2brRJ6qlUtOgLGjXojNzSjaU31OL6UDc+wk8VSjOFBYF3d+7XBZ3PtMyCEMIAWYM4qACnll4Avgeoos9wBAwt2NTkbUZ8vejqw1HzqlcBCqSlnIVZMdldCbkHlY1PHarNYrp6Yo4vPYovA+cKzwgjNeoDOzHEVhjn7904z7VK9sp85bi0UaWCbqKeG043Whn3DPVsW/J2ql3gxNCz06vLiloLl0IYtgrNKds/Wjp8LYWbHt5XGy8UpPde8PYtx1tkLwjAb9IYWji/aGnzmon8p6S7z8d3OOla9IVj97hzP76XoqpOFHmut0UzOtE2qTpfpfWcwT5jTY52rfmPWby3BZpj5zFqOjbf8VKR5jrOEfZ4FtgohNgkhQsAHgR/P2OfHwMeC/98LPHg683+aeGXgVCrtl4im7DZxrqIpu02ci2jKbRPnJBb1DEspXSHEbwP3oTpCfEVK+ZIQ4s+B56SUPwa+DHxdCHEYmERNgCaaOKNoym4T5yqastvEuYim3DZxrmJJOcNSynuAe2Z89id1/1eA963s0Jp4teB05hM3ZbeJcxVN2W3iXERTbps4F3HOdKBrookmmmiiiSaaaKKJlcbLzibRRBNLQb23+FxinWiiiSaaaKKJJs4tND3DTTTRRBNNNNFEE028atH0DDdx1uNc5yhuookmmmiiiSbOXjQ9w0000UQTTTTRRBNNvGohziS9nxBiHOhb4u6dQPo0DudsxavxvJdzzhuklC9ry69lyi28Ou8hNM97MZztstu8f68unLVyC029uwy8Gs/7lGX3jBrDy4EQ4jkp5dVnehwvN16N5/1KO+dX2vksFc3zPrfxSjmP5aJ53q8MvNLOZ6l4NZ73SpxzM02iiSaaaKKJJppooolXLZrGcBNNNNFEE0000UQTr1qcS8bwl870AM4QXo3n/Uo751fa+SwVzfM+t/FKOY/lonnerwy80s5nqXg1nvcpn/M5kzPcRBNNNNFEE0000UQTK41zyTPcRBNNNNFEE0000UQTK4qmMdxEE0000UQTTTTRxKsWZ50xLIR4kxDigBDisBDi9+fYHhZCfCfY/rQQYuMZGOaKYgnn/HEhxLgQ4oXg9WtnYpwrDSHEV4QQY0KIPfNsF0KIzwXXZZcQ4sqXe4zLwatRduHVKb+vJNltym1Tbuu2nzNyW8WrUX6bsjvn9lOTXSnlWfMCdOAIsBkIAS8CFwHHgduDfX4T+ELw/weB75zpcS/hvL4K/MVyznnGPh8H/vZMn8dpuC6vAa4E9syz/S3AvYAArgeePtNjXuBclnIfzznZXaHzfsXJ7ytFduvu3wDwpnNVbhfSsYucd1NuG7efE3K7zPt41svvaTjnpuwuU3aX7RkWQhwXQpSFEHkhREYI8YQQ4tNCiJXwMl8LRIBflVLawLeBd8zY5x3APwX/fx+4TQghljDui4QQzwkhpoLXz4UQF63AmE8V1wKHpZRHFzjnJUMI8QUhRKHuZQkh8is22hWElPIRYHKBXd4BfE0qSd8JXBDI3YgQ4t8vdGwhxGYhxE+C/dNCiL+u2/YNIcSwECInhDi4QqvmpdzHdwD/JIQ4Dvwj8L655pAQ4t66++cIIey6918QQrxWCDEwz3l/tW7/SSHE/UKIC+YbtBDis0KIb5zm837FYTmyK6V8CmgVQvQu5dinWcdWZeQvgrfXAocBN3idtM49i3XsXDhpuRVCXCKEuC/QK7Mq0E+TflkRnIrcCiGuEELsEEKUgr9XzHeQGc+gghDCE0L837rt7xdC7AtkfK8Q4p0neUpL1rvB/3PK72JzbjGdPMf5f1wI8dhJntNiaOrcuXHSOhdOPk3ibVLKJLAB+G/AZ4Avn+Sx6rEGKNa9Hwg+m7nPCQAppQtkgY4lHHsIeC/Qjmrd92OUEJ1p1M4nwFznDPCewPX/fSHEuvkOJqX8tJQyUX0B3wK+t7JDXhqEEMYpHqL+2nwWkMDbgdcB/1EI8aZ5fjcE3A88CKwC1gL1Bt9/BTZKKVPB8f5CCHHVCo4VFpFd4G3AMWA7M+aQlPLNdffvm8Bf193TTy9hLH8dfHcNMMjKzM35sKLy+wrCUq/LfDhdOnYmliW3i+jcs1XHzoVTkVsH+C7wiXmOfTr0y0nhJHTwnNcl0Kk/QunRNpRx+aPg81mY8QxaBZQJnkNCiDXBcf49kAL+A/DPQojuZY513vHOt88i8jvvnFsBnbySaOrcuXFKOveUPA1SyqyU8sfAB4CPCSEugVqOzv8QQvQLIUYDb1Y02PZaIcSAEOIPg5X1cSHELwWHvB04D2XoFIB/V/dzVwghdgEXAn8nhIgsc6wZKeXxwMsoAC/4rTkhhPiFEOI/CyEeD1aLPxNCdNZtf7sQ4qVgFfkLIcSFddu2CyGeD773HZS3u/7YdwqVx5MB/hKlXKp4K/Dx4LsHhBC3AXehlOtlKCPvn1gChBBx4D3z7S8U/rdQeTg5IcTuunsYFUL8TyFEnxAiK4R4rO4eLnTux4UQnwnuVVEIYQghrg9W2hkhxItCiNcuZfwz8DGU8ZiXUu4D/h4VCpoLHweGpJT/S0pZlFJWpJS7qhullC9JKa3q2+C15STGtBLIzzWHVgJSyjLqoX3FyXx/ofsmhPgVIcQ+4OvA+4UQv1731Q8LIe6se38PYKDuy/3ADxY47seFEEcD+T9Wpxtmji1T55kpCiGkCHIBhRCfFCpvbFII8WMhxOq670mhPD6HgmN8XohpL5EQ4leF8lhNCeX92xB8PmuuANtO5rouByutY4UQnwJ+iWkdW59veAVKH31SqBzLV4SODWTtsrptnwG+CHy0TsfOhTn1rpTygJTyy8BL81yHJesXIcR5QoiHAx2bDs6luu1ioSI7k8E9/sPg87AQ4m+EEEPB62+EEOFgW/Xef0YIMQL8oxBCE0L8vhDiiBBiAvhbVKh9OXgtag7/jZTSklJ+DnWPX7+E774HGAMeDd6vBTJSynsDL97dKCfYmdLBDZhvzq0UhBAX1N3XA0KI99dte6sQYmegY04IIT5bt+1eIcRvzzjWi8DVM48L/BHwe3Wy+xOhPPB5IcSgEOL/m2dsL4pGj74UgX5eZD4eF0L8f0IZ39mZ+mOx+RiMqd7meflxEnkbxwnyd2d83g/8RvD//0Z5BdqBJEqp/Ndg22tR4bj/BYSBW1ET4XzgBpQn6y+Cff8geB0HngFWAw8E7z+NmpyTQGaB14dnjDMT/L4P/PEC5/kLVF7ONiAavP9vwbZtwZjvAEzgP6JCjaHg1Ycy5E2Up8SpO6ftKMVwHUoh/Tlq1RwOrkEG+C/BvhuBLcH/H647JznHea6f4xw+Chwl4JOeY/sbgR1AK0qxXQj0Bts+H5zzmmCcNwZjnPfc6+TjBWBdcN3WABOofB4t+N4E0BXs/3XUQ3OuezcBfAi1WJDB71TH915g9zzn9ZXguPcC6eA8Lp2xz98BpeC4zwOJ5c6FGce7Abiv7v0fAH8wY5/7gv2OA28IxibqttfmUN1nX2VGLiRqDg3MM47a/kA8uA4vLjDuzwLfmOPzxe7bW1EPrxtQc7OEyuf6A5Ty/Wbdsd4K7Av+X4eae7OOG4w3B5wf7NsLXLyEa/9fgEdQ8vj64LpeiZLX/ws8UrevBH6Ckvn1wDjwpmDbOwIZuxClW/4YeGKBuXIN8+evfRH4UN37AwSyeyZ17BwycgNKLo8H9/G/oHTSPuDTwT4PA3mm56XPuaVjPxacX1XHnkBFZu4j0LEouf02Cz9LcjPGfx4g5zm3JekXVOTuj1BzIQLcHHyeBIaB3ws+TwLXBdv+HHgK6EbNmyeA/zzj3v9VcL5R4N8G+68NPvsmyhitv1/VlxVc9+r7cdQ8/HfAvTPG/hOUwbWYPD8IfLbuvY6SqbcH/78T5cWLn069G/xvMEPvLnXOzaVjFxjXx4HH5vg8HsjfrwRj2R6M56K6+3dpIA+XAaPAO4NtHwUeZ3rOXhTcoz8G/mS+4wbX2AduCY7TBly5hGv7KWA/ynu/lOd+1UZrp1F/LGU+rg723Uhg88wzpo2cBp0rpVxRY/gp1KQWwUXbUrftBuDYjMkar9v+XeA/BTcxj3qAVRPDLw5+8yPBvr+FMra+gEqG/+5JnEMclVT/1gX2+QV1ijzY/6fB//+p/ncDwR0Mzu01qHBhvZHzBNOK+v8RKK66yWmjVqEXopT6JwCzbp/euv/fBTy1xPN8gDolNMf21wMHUcnm2ozzKQOXz/Gdec+9Tj5+tW77Z4CvzzjGfcDHliDcb0UZtOtQD5Vn67bdARyf53s/C67jmwM5+g+oRUFoxn46cDNKmZhzHWsZMmUEv7GpXnZn7PNbgdweB/5ipuwSzKEZn32V5RvDFaaNlmPAZQuM+7PMbQwveN/mOO+focKeL6IKsfJALNjnX4A/Cf7/GjA+13FR8zKD8iRFl3jdPxBcz6qR/mVUCLO6PRHIwsbgvSQwOIL33wV+P/j/XuATM2S7hAqbzporS5TdajHHM8uQpeOcJh07U6bq7t9AcA+qOvevmS46+i0aC5AW1bmcRTo2+OwAalFwHurB/AYWn68L6l0WMIaD7YvqF9R8+BKwdsbnHwJ2zvOdI8Bb6t6/kUAXBtfHBiJ12/cBt9W9vwY1D4ylym1wP749Y99vssDzJdhnA8rZsWnG558ACoGclhaSk0WOv2S9u5D8ssicm/HZVzl5Y/gDwKMzPvsi8KfzHOdvgP8d/J9EzfvNwTn/bTCWF1GLpkfrvtdbPW4guxbw60Bqidf15mCebFtsPtZdv4/Uba/XH0uZj7ezhGcwp0nnSnkSBXQLYA3KS9sFxIAdgUs8A/w0+LyKKSllfW5wH2pl4KKE78OoCfxdKeVLKG/MpmDfL6NWJr+EevjOohVZDMFvfwH4mlg4T2mk7v8S6sEKavXTV3c8H7W6WRNsG5TB3ak7vyo2AL9Xd23SKKPlb1Ar7X9Fre5yQohHhArx/k4QnngR+B3mTw+oQQixHqUYvzbfPlLKB1ET6vPAmBDiS0KIFCrfL4JSujOx0LlXUZ+3s4HpQrHqOd8M9AohvgU8CZwfhPY+IVQIu5qDdQ9q0j8SvP/DuuOmUAbXXCijFNG9UhUY/A9UjtiF9TtJKT0p5WMoj8lvzHOsJSGQ3d9GGXY12RVC/LkQ4u3Bbl8OxrEG5c2aKbvVOXSq+B9SylaU4iijVt/Lxbz3DUAI8WYhxFMoRdaNWpz8Meq8f4ry8H5WCBED7gR+OZDf24DUXMcN5uUHUFGfYSHE3WLh4r/tKPl9l5RyPPh4pnwWUJ7nevmcb15vAP5P3bgmUYp1zRxz5TBKVy0mu4dRKT2/Of+lXjJOWcfOPGCd3Pagcl2rOvc6oHrtvwx0BOe8JJ17NunY4PqsQz1jDgO/i/KkdaEMiYPMPV+XrXfrsUT98h9RMvZM8Fu/Gny+jrn1L8y4Nsy+t+NSykrd+w2o1KSMEMIGng4+71+G3BZQOrceC+ngKn4ZpYuPVT8QQtyOMpZeizJgbwX+QSxQkDcflqN3lyO/dVgpnVzFBuC6GbL5S6i8aoQQ1wkhHhKKFi2L0oWdAFLKPHA38D7UOX8Ktaj7LkH0NkhtyKCcIL8G/BuU7P4SKhrXJ1Razg3zDVCo/OLvohwfB4OPl/LcX0ivLjYfP4vSq98WdWltM8a1VHvhpHTuqRY4VQd5DeqiPIYy7sqo1dngPF9pE0LE65T1eqDKHTeAosT447r9M6iLgJSyIoT4HnCelPIjQoj1QuW+zYdfl1J+c47PNdQDZQ3qgb4cDKFCGYDKJ0Td3EHUinuNEELUKev1TCu2E8BfSin/cqEfCIzSLwJ/JaX8ZaG49b6ICuk9J2YXc18kpeyve//LwONSyqML/Y5UuV+fCx5Y30V5Uf8U5V3cgnpYLPXca4et+/8EysP4yXnO8wvAR1ALnv9T9/n/APqklBcH74dmfPVy5snZA3YBN82zbS4YrEC+mpTyHtSErP/sT+r+r6AMzOPAb9ffmxlzaEUgpewXQvxbFIPFT6TKIV4q5r1vQuUn/gsqbPcjKaUjhPghasVelev/gXrIvQN4QUp5XfDdPwA2zycPUsr7gPuEyn/9C5RSu2WOMXQDPwR+S0q5s27TEEr5VveLoxYg8+mimef8l/Poi7nmyqNSyv80z74S5ZFaEaywjq2fn0gp7xFCDAK/JqX8efDxQ0zn+3ajoiygHtq7Zuifc0rHSin/GVWwVdWxrpTyL4XKq/73we/N/NoW1AP+ZDCvfpFSjgCfDH7zZuDnQohHgnP44DzHq8p4Vf+tDz6rHXbG/idQ0brH5zpY9fkZ6NyZeAPwXPBbvzfjml+GWhwuhI+iitHqcQUqdem54P2zQoinUd7BFxY53iwsVe8u97inQyej7sXDUso75tn+z6hF95sDW+dvCIzhAN9CPZ8fQemBtVJKXwjxIeDBBY4L8H0hhIkypL+Lmk8NCPTuD1G54ffWbVrKc38+LHc+/hXKfpm534cW+pFT1bmn5BkWQqSEKpT5NirUujtYMfw98L+rHgEhxBohxBtnfP3PhBAhIcQtKM9RlfFgFBUGWBKklP2yrnJ1jtc3gzHcIVTRhR5c9P8FTKFWk8vFd4G3CiFuC4Tr91BhiCdQRruL8iqYQoh3o6hQqvh74NPBClAIIeJCJc0nhRDnCyFeHxgbFdQDzw/O85uLnGe9IQxKCX11oZMQQlwTjMNEhV8qgB/cw68A/0sIsTq4ZjcE41ro3OfCN4C3CSHeGBwnIlSRx9rgvD69wDldXHecrwF/LIRoE8pb+MkFzu8bwPVCiNuFEDpq5ZkG9gkhuoUQHxRCJILxvBEVknxgoWt1ujDXHFrGdyMzXrOe4FLK+1GK7FMLHEqbcZwwC9+3ECrfaxxwhRBvRj006/Ht4LPfQCn4KuY9rhCiRwjxjsCAtVDeKH+O8zZQFEnfkFJ+d8bmbwG/IhQNVBiVA/u0lPL4AudfxReAPxBCVBdgLUKI9wX/zzlXlnDMU0JTx559OjY4ZgQ1D6rzsFrAtiz9IoR4X1UXBtdKBuP5CSp69rtCFcwlhRDXBft9C6ULu4QqOPwTGtlyZuILwF+K6WLQLiHEO6obFznn/xLs9gtUusPvBOOpFnI9ON+PCiFuRBmTM9mMngVuEYEnWKgIzy0oJ8YZx6no5NmHatTRqPu6TQjxy4HsmoFuqUYtk8BkYAhfi4qS1+Me1ELoz1F8yVUdNO9xAx3wS0KIFimlg4razae7vgLsl1L+9YzPl/vcr8dJzceXHXL5OTrHgwHnURQlT6Kscb1unwjqIXQUdeH3Ab8TbHstyvv7RygDpR/45brvbkWtDjPAD+t+8/a6fT7LHHmOi4z7fahk8ALqIX43C+dS/gLlKZkzBwiVh7M3uAYPU5enhKru3Blco+8Er7+o2/4mlELIoIokvoeaBJehktDzqNDMTwgSy5d5rjegHtjJRfa7DaWACsG9+CZBoQeq8OJvUCu/LGolGl3CuTfcq+Cz64L9Juuu/ayCv0XGGkZN1BzqYf7v67atD85hfd1n70aFS3LBvbw4+LwrGEsm2LYb+ORyr/GpvFjCHKrb96vMnTMs53idN8/+HwjuY3iO4392juMMLHbfgvGOBtfx66gHx8zffQBltKxaijygUjAeDq5JJrhvF80x5o3BOIvBfa++qmP7NMpLWJ1Da+u+K1FRpTmvL8ojsTuQjRPAVxabK2dCPmjq2DOmY+vkr/51/GT0CypdYDC4ZkeAT9VtuwQ1h6ZQIehqbnsE+FxwXsPB/5H6ez/jNzSUx/tAcN5HCIq0l3ne21FFpGVUUeD2um1/yOwCuy8yo+6gbttvo/RzHiXDixbinc4Xp6iT59jn43PIiERFCc4P5sY4KoXrQeCK4HvvRaUj5APZ/FtmzENU2ocErpnx+ZzHRS3afhrIUS6YFzfPM26JioDU69Vq4d2Sn/vM0B+cZptnJV4iGOjLBqFoOr4hpVy7yK5NNNFEE00sE00d20QTTTSxPKxkAV0TTTTRRBNNNNFEE02cU2gaw0000UQTTTTRRBNNvGrxsqdJNNFEE0000UQTTTTRxNmCpme4iSaaaKKJJppooolXLZrGcBNNNNFEE0000UQTr1qsSNONk4Uea5FGy0LNiRZHb2dshUbTiOH0yfKrN/Fywh45nJZSdi2+58qhXm43t57cFCoboZUcUhPnIPr27DqjsvtKx+l6NpwKXgnPlTOhcwE6W9rkhu45m5O94mBHcmd6CLOQp/1MD+GUsZDOPaPGsNHSTe/H/uaUjvGnn9i+MoOZgT/78s7Fd2rijKPvr+7sW3yvlUW93P7jOztO6hj7Otav4IiaOBfxq9vWnFHZfaXjdD0bTgWvhOfKmdC5ABu6V/P45759Jn76ZcfA1vvP9BBm4VE5X0PEcwcL6dwzagyvBKrKZaUV31zHeyUosiZWFh/84QQA316mUXzhxMyGgU0DuYkmmmiiiSbOBJo5w0000UQTTTTRRBNNvGpxznuGq5jLa9v0FjfxcqHqIYble4mrqPcWN73ETTTRRBNNNPHyYEmeYSHEV4QQY0KIPfNsF0KIzwkhDgshdgkhrlzZYTbRxPLRlNsmzlU0ZbeJcxVN2W3iXMRS0yS+Crxpge1vBrYGr08B/+/UhtVEEyuCr9KU2ybOTXyVpuw2cW7iqzRlt4lzDEsyhqWUjwCTC+zyDuBrUuEpoFUI0bsSAzwV/NmXd9Zepwt/+ontZ2XVchNnTm4/+MOJhrSJYCzLOsaFE/2zXothdGSc9NjEovudLKSUHNx/lEppbnqo/fuOMjE++3L7vs/B/cewKpXaZ9lMjv37ji77upwuWJUKY8NjZ3oYNZyrOreJJs4m2T3d+iVbLvPc0NBp/Y0jgxbHhitzbjs6bPH8obm3HR606B+1au993+fRPWUmc/ZpGefJYPjEIK7jnOlhACuXM7wGOFH3fiD4bHiFjr8keKUsAHqsZd59JsYnuPvnu0il4rzzrde+XENbFF4xA5qGHk2d9t+SroNXyiDM8IK/5+YnwPfQU10IIZb/O76HmxtHWmW0aBI92Y4QZ1XN5ssit1O5Av/pZ4OsS0g+86YL5tzn+OgUOwcKvOnibqKR8KztxXKFr3/zZxw7MQW64JffexObNq2pba8Ui/z9D/Zhl4t0JQQ3XLWFq6/aOudvjQ4O0b26d9n3dOfOg/z4+SJXrJ7inW+5qvb54MAoz+w4zM4Bn3ZtH7/yoVtoaVVy9eRTezlydITDpVauPZHhLXds54Vdh/npw4eoRLv5gJRceNGW2rEOHjxBsVjhogvW8ujTh1i/uo1t29Y1jOPhR/fQPzBG76p2br3pIsxQI2fzjucPseOlQSq5Se5849VsPm/x/Osf/HQXB8Ykt10wQN7WufWG83hxdz+7D46wuSdMR1criUScrds2LOuanUacFTrXt8v4leKCc1v6Hk56ABGJoYeiaJHEyznEeZGZyjI0lObCizaflH5bLnbtPoKbS2OkOufdx68U8O0KWjiGFj45nmSvMIVnFRCagR5vQwtFTnbIpwsvi+z+0TN7eThj89WrN3Bee9us7RXb5muHB7ihs4VLu+eu8/j6S4f4vy8dpeB4/MpFW/gP289v2P6fdh7mPitB62M/43Ub1/IXV23D0GebVaO5LBHDpCW2vHtqWQ6/e9caTGnz/V/PoGlqjpUrLj94TnDXizFG7RSfuamPN16rdO7u4w737tZ48PgqWsMu3/5UnuEJmz/+vs5x7XLuOH6E37/Tmx7bpM1D+zXefKnk2aM+ozmdD9+sN8yJF47afP3ZR4lFTG68egu9qxupetNjE9zz8EEyY6NsO6+XN73xukXP7cUXD/ODZzJsXz2AGQ5zwaZOotEwP3loP51Rl3VrujAiES48fy3hyOmX4Ze9gE4I8SlUaAQ9deq83V45h2+V8CXo4Ri4NlLKWcqt6h12JgcR4ThyOMPb3+zXhAvUyqn+/Xz4/o+eYmCiwsffeQWt7a3AqRXXeZUCwgzjVwoQXdJXTgleKYuR6sLJjqMv9HtSoic78IpTGInlE257xQxGSzdudlQdJz+OkTo3Cf9PRm6r3mHfKpIyTCpeo2yWyhX+6O5jtIVc0A32FOK8NHSYT968np62ZMOx7n7+OPv684S7t1EZOkClbON7Hrt3H2XD+i6k75HwJxl3DUYLBgf6Jrn6qllD4umn93LXY/1s33iY97znNRw40MfPnuzn9Vev5eJLNi14PsViiVY5xYbVG8hkcjz1/HEuv6CXXzzbx+HJGEZuL9nui3joycO8881X4vs+Dz4/iiMNehM51vcqo/RgX5aCa6BNDRCPNl7LHz98hLxr8tMHXsRu28Kx4RNs27aOI4f76exspaU1xTP70mQLLkdLknWrBjj/ws0NxzjUP8WQlcJzHB547EDNGD5+fIgX941w63WbaW1vZfeeI+TyJTpa47REoTNic6CvxIDdSm/XMDv2DpH2Wjj23HEi8Twi1sYnwhoPPjNAMqbzzrdey/CJQTTDoKe3Z0kycSaw0jpXeg5udgwQoJsYqU68/MS8Rp5XmECLxAIdMNlgDFc9d4sZo25hEnwfBBjJ+Y3J5eCeh/ZzcNLkffIoF1+yZfEvnCLufrwfEY7jVQro8ywIfLuCkerEzaVP2hj2XQuzfS3O1DB+JXc2GsNLRr3srutenvO45PmUhInreQ1698+e2cP9ExZvbfH4qt3N+mMH+MwlG7l9Q2NDD9/3+dNn9xLatB17coixivKy7hgew/Y9ruruoNUpIPIVpjC5O2/yu4UCq1paG44zls/xhl/sJyFtHnv7zWTLZX7ruSNsiuj8xbUXLXgOY1mfTm2czR0eQuh853GHVFQigK/sv5RQcS8iFuHvnlvHG67JIITgrj1RHhzdwsbQS1y4RgM0Dgz6HLU34pcGMLsL1Bsa33kuzI/7t/H4gZfYM9WDlujk+o0vEA6b5MqSizZEePhQmIODFYxUAv3FAd45wxg+MTTB0WwYtxxiat8kb3qj+rxSLvPAo/vZuKaViy/exPjYBC/sHWJdVxTpObQbJayy5IWRELniCOu6IwxVEvSNjvLswSOEu9aTyR1B02B/X4b33HEhsViYE8cH2HrRthVdxK6UMTwI1Ltv1gafzYKU8kvAlwDCvVtPOYbh5icJd2+kMnQQz7UQmo6xwAUSuoFXzKBHkw2G76GDJ/juA4e58aIOXnfrZQv+ZsnyKHsmrustuJ/0XMQcq8SZ0EJRvHx60f1WCnoshTV2FC0Uw7eKaOH4nPsJTccrTKKf5MNHT7Rjjx/Hdyz4/9l77zBJzvLc+1dVnXOa6Z6cZ3POK2kVUTSSyDljjDHm2Mb2h9PBNraPj21sjI0DJmMyQggBEsoS2rzanGYn5+7pnEOl74+andnZmZV2pRUI+dzXpevSdlfqmrfeet7nue/7QUC0/AIi/SvDyz5uNbmCnIkheWxkKyXe8J8HEOQS/+cNazGpFSZqVsayVXTAo45yXOziyf40b93qplypMhzLsKK1ns56L9rBSZRoPztWhVixsoNjR/u5/1Ce5cMpxuMlanh49+1hFNFKU1Pd+evmqWdOkE6muOmG9eSyWcy+MGOpFJqmEU8WSCpO4unCgutOziQ5cnyE0+MlXndzDy2tEfadzVHU3bSEXRw/PcH+YZVabYI1bS7ODI1gMTtZXqeyostY8FQKeW5a40YHdl63ee7Yt1/XQ3T8KcpOH17vfNCfmEkSsOuEaimma2YsuVFuvH4TQwNjfP2JGB3+Sd7zph2saDSz51SGFnOCru7Vi+75HTcsx7/3BKfGBbZtnM/kHjkd5fi0QH3/NDu2+Xh4zzjZfBmzL8L2Diu/9e6tTE7EGBpNUM6lSecqyOlxWlrCuBxmnB4Bq9XC0HQejwVmonH+7bvHMdns/MG7nTjcv9CM5y9xzk0iugKohRQCUIuPYvZeOsgWJAtqpYiWGMccms/S65qKko2BrmPyNz7/i03TEO1utPLzd+bSNRUE4bIqUL3tARDSNDVdneD6hbA8YuK54YLxOy8RDItWB0o+gWhbek6+LAgC1elzCBY76K9Iw6gXNXY39ay67LH7g/4RxtIp/JKDX3vkEIqu8xu9TfzR1rU8PJ0h4ajjP/rPETLFGA6085nh1FwwfGQ6SqfPi9tqpc7lYmb8BJ12E3+zZRO6rvOR41OUBAt3TyS5T4vwzkCcW9t7QDTNBcLPTET5/tAUdzX52dkUQRYkEp4WTk5P43c4OCVbKKnVBdecr1R4enSMz02W2TWt8K5dJu47Ymdc7OGWyBmi8RL/dWI1XpJ88R1JQvsGiVob2eYbo7dRQBBM6LrO8kYrOuN87EYNt9P4+1+/xsqdg+d4aKSF3qb5MaFpGkpVZrlwDEmREdQqr204Tmezkw981clkLcQX7j7L7cs1HjhqwZwrs+OunYvu97q13QhaH88ehHD9/Jw+MjLNwTGdWCbGqlUd7DsyxsH+PKKUx2ep8TsfuIFqpULD4UFcNoFjp6NUJqbxus3UR7yYnBU6WyM8tbefiUSNVDrPl7+9m4KtgRvjh7n+hiUyPi8SV+tJ+RHwUUEQvg1sA7K6rv9CynWS1Uk1NohgkpCsDiSnDwCtWgJRQjQvLDmbvOG5H31h5lYtpEEyoajaC57zbfduoVqp4PJcmmJw/PgAolzklrX17Nw+v/pbKlssiBIm79KZpcsNqK8EgsmCaLYjmm3wPJwqybW4tHRF5xEErPVLZxt1TUUQpZd0/KuAl33cKsUsotlGoqwTrWrYG3qpTvbxwPE4b9tYj786TsbTgjk5RLmuh7ASZ3nAx6d/coyaLnC0FuGjpSmuW9HEtz7kxW63Gy/T5BhBd41JT55tYRvfjFfJllWODZfwuWWePRbjzXeswm4189izZzHVdZB55DTvev1mhD1nGRis8Y9ffIbeiAlrahyzsGLumgu5HJ9/4CxyNo7uaeT0mVHuf6Kf3rAJVavwgycH2djj49puE811dh7eP0VnnZlNG5axbs18hi0di7JuXS+VYh4wJt7Bc6O0tjfw0d+4C0WuYbFdkKF48BAJ6lGyVQIeGx9777VIJhPZTI5O/xQdzcbz1tvbymBcY+P6Bkxm86J77vV5uO2Oa7jtos93bWmnbiDKhrXtALS4a2QyMmpimNadxqTa1BwmGkvzwAEFqVbGVN9Je6uLO281BO/TkzE0XcJqkjGbJCS9gk3TsCxBbXmZ8cubcx0+I+tYK2Gta0OQJESrE11V0GplJPvCqobk9M3Nywug6wiihK5pgA5cOhg2eUKo5dzzLszPUzZ0pYo50HTJ7c5j88YeNi/hY6AqCoIoXlaV8ErQ0lLPkckZ9Fr5ktu8FHrEeZi9YcxLvE90XQOEXwgl5AXwso7d4UScPzgZRbQHsVRy6K4AEvBMNM2GkQlu9pv5dqGC2xMEswmrycR76wT+7OcHQdf5nhLiVkeKz25fybP37kLXwXLBPPOmejslVaPVbkWNxfmWpnJDq8DfDiT4YFnm3q4WvjE0w2MpmUdkhR97C/z9qggPjUd551GRt9WZcefjhJw2CtUqLqsxd3zy2DAPzhQxOXw0zAj89jeseMQsdzWc5rlRE4m8nd/e2IfHDp99zIxZUHj7qgneda2A3WbECIWSgupoZvP2eiymJwCDc2wxwR+8zsVHilGczvm56jtP5vhJdCtSfgrV3cAnX3OY69cbz+/W5jxTuSohnwVN02lpqcPnMBGOLH4GRVFk/cYVrN+4YsHnvcvauT13lpZG43lc3R3g4PFRajWFcI9xHKvNxo7NPfzfL+6lks9hcboxOR28++27MM1S4EpPnkZQFbxuO067iXw+gd/XfhVGyzwuK8oSBOFbwA1ASBCECeCTgBlA1/X/AH4K3AkMACXgfVf1Kp8HJm8dJm8duiqDDoJkRquW0DUVvZJHvESQeTEklx9NrnDLjetecFuzxbKIp/hyoMVd5e7r2vnxsyOM5l74ZatVS2jVAiBgeoFyqMlbj64qixYLvwiohTQ6Olq1hNkbRjAtDmiuBl4J41ZXqui6hq7ImFwBeoQYUoON5yp1tI0W+Me3rOfkRIoW32r+/WCKrY0+vnYsy6TQANE+mhqsNPmNTKvD4eALT55hqiTysV0t1PvcfPxmY+ISlvXynR8dQa8ViSatxIomCvki/kATwYCLVD6JzS1gMpu55Ya1ROM5smmNaDxP2RbhsaMptm9XkEwmrFYrjR6IVwRypQz5goWU4mat34JJEjl+ukpHXuE1N61jfHSKnGwh7LMuCISL2Qz+SAP5VBJffQSAg4f6+OmxEuFn+9i8rp2tW+b500///CTTU0l0qUCjT2RZVwTJZExPXp+Hd79p+9y2vb0ti3jE59F/bpyH9oxw/cYG1q3tXvDddCzDqaE0zREv7R1NeEJ1WEqwwpNmxYr5DHJzU4juuiwNPa0cGihiNs0HRaKgIYgiqaJOOpPnz3//dS9qXLwQXglj91IQLTas4Q50XUeXK3MUKrWQRLR7UUvZ59VtnIcgmZBcBlfzcjK5vwg9RbmQp1IoUKtWCLc9P23oPB569DDJXI033bkOq/3S1a/Nm5bx4IHkVaGqXCk0uYJWyqHJVUzuwCWrgVcDv+yx2x4MYaoeQZFM/Gm7k/05hVypwG5rO/82nOZHN27j1rFJuryd/HvfODOySkmB76r1KMlxWh0J1kaMcWk2mXlyeJTPDqX4aHeYm9sa+f1Z3rCu65zJHONMvszxZJZ+XJzLGwudTocEKYFQaQaXOcRdnXWUVZUnhgpMF0tMST7ilhA/HZ3mzb3tACx3WTgaTzNRyiLXVIaKQVrtAr+9NcX7728jXUnxv243xMvfPWIlb/Zxz4ZR7BfwaY9mugm2LSM49QOsITOZXIWP/bgdsTjDbWt03nvN/HN2fLjGd49YqdaGqZeSrApWWNU2Hw98+BYJUDkfJn7wbdcueb+r5TLfeOA5vHYTb7hn+4LvCrkCp4czFCsKTS1hBEFC9DbhkxO89U3Xz20nmc2sbrUDdqbjeRRdhAsWbeWKjOD0c/jwGd77tl3YnVd//F5WMKzr+tte4Hsd+K2rckVXCLWYRnT4EKQLAipRRK/kjZLZFUA02/jLLx0FluYA3//jA4zNlHj3vevxz3KFL4W1a7tZuaJtUebqwuNeLqf4wnW8rutc02F89uzwPNdOrRTQq0VEpx8lG0NOTmAKNF0yCyCI0i8tM6ujoysyosWOUkhi9kVenvO8Asat2R1CrRTRLRqCrnO2ZEcQ3by5q0SHRySZr7C91yjP/dVdRiZeVRS+d2qKqiPI3b1OOiN+ZFnmnx/rZ8+0gtkXZjKVx+d28MPnRjkzGmV5Sx2lssZMzcXfbFMRzRbKbcZqvKPBTXasxumJCk8+c5ybrl/H21+/g1Q8QSZTpH84ii/gmws+dQx+ndNmxmKys3VzN9t1lcZW4zq9tjO0tBmLzJa2Rj5yrwXPBXQHXdfJp5Louo5kMs8FCI0RP2sGRjhZCPH04SkcdguxRJ61KxrZfXgIrC7MDjczCtwUfuFgaikk0wVSioN4srDou4lojumynemZLO0dTSxv97L3+DmS5vlM3N59ZxiJ5njDbatxup3ccvNC/UGwLkRHnZlYvMDXnozz5qrCylVXn2/6Shi7l4JRdRMRzTajFH/hd5X8os+eDy9U9VIL6VnqwwtzhUWLHcFkWfASfdG4qGKWjk6jo2O1O3DOlsKr5TKlYomhqQKJsplPf/4x3nnvJlov4p5efI2/FOiAIKIrNUC47AXLizrVL3nsCoLA27ubSdQ0WgN+zA6Z13et52t9I9Rb3DwzNsF1Lca78Txn91wyRXD8HNOqykqfmw/Oinq/PzDGnx8eQAn38MD4DDe3NbJ3KsbXzozis1mo6nDO3sRdZplv91pZXW/MuTfVe/l6tEK8XOI3nhvjgZv8vLGnjdsaCxxNpNmQyjCulbipaeGi3mYSaZUkVjaL/NbyQVw2CZ/HwT/dfo58vgb4APi7N+QpV7PUB+YD4bGkRD5fxaL301pvPAMuh5nNgWmGbBF+OOqj2fkck0ULty4r8q3dAkkliMUfIlWw4jAXCPmvPMlXKVeI5iVKleqi77KZHOM5CUEoAtDe2YxPPUZaczI5Pk1zayOTEzM8sX+YrWsaWNbbuqSOYPOaFvafjLJn2ERRP8sbfu3q0SPO4xVJKLpcKPkEksOHmotj8s4Ls0SzDdH70kQD+WyeR589x7L2AKtWGRmCQlmhoFmRa5dnBbJUCfdKMJ638q8PjiNIF2RvNZUVXY0gwLODU2hKzSgf2j3ogFZMgyDCRYGuWs4bXDSLA7NvYbZcLabRVfWqlOguB5LTh5ycQKsUfqXFHZeD8/dUySeQXEHUfBLJ4+Hw4Dm+pzfik2L855t8C/Z53ZYObl5Zpm8qw+ZuY6Ewk85xuBTAok+xzTrFqrYNqKrKd46nqIkejk54eGtLDJ9XpbOlic8/PcDYmT28+bWbaGgIcXwiillScDuMsSRKEvc9PkCsJPGhOzvZfWiE7z+wjzfcvY1Kscx4TsAtOfnY+65bcG26rvPYczHkQwn+17u2YLU7CNaHKBcKVEtFXP4A2fgMdS1tpKJTuHxG1jA5NYld1Lj+ulW0TKQxiwGeODhOSnXz5IE9mHwRbl6pougSx0aK/OyZPpKZEtfuXEWtUuWL33qGcj7PnbesZfnK+YxvKpnmvp+doafFww3XrWb92namxn8OWoBKqYTtAvX2zbtW0tM6RVNLmP27n6O1rZEVHX4a6ua3OT2SZjxvYXhwjJIssG5NO7l0lmB9CFGSMJnN9LYHmclUcZXHGRiucOJcnIZ6N7uuWXVVx84rEUbVTUGvlBfNsZeiel0JlNyMIdz11CMIArqmIjm8qKX0Ze3/Uhf4dpcbi82OKC08jqZp+CMNZGaiWOwO4rE4j+wdZTIr8KZrGjl4fIzBXB3VmjK/j6ry3fueRpQk3vi66xaKtWsVtEoeROlFiZOvFKLFhlbOg2RGySeRnC9PIPxKwSc3G0HuHU8cZ0hws8w1gwmdjx8dQwu28i/aBLe2zweivcEAu+/axtNjk6wI+uY+fzCapxZqpzF+ho/faOge7ptM83CqgrU+wl1Skv8VVHhTR4T98TR/vbuPT/TWU+924TKnqNQEIheEAd8YjvKZpIXf8ttY5bbyscMjfHJlA8uCAY7nqwxb6vivHjvtu+JcGJ490WfhvqFV/JFylpvXWXE7LThsGsPTCm1hg9IzUuvGvWwDzv4v42uyMZaUmKy18NZtIxwoNBIbOUOyYuP+0V7u238WMbKcrc2nuWflOJ8/2s7ZcYVPfNfKp15Xw2yW+I+Hy/zsrJ1bu7O89xYnXBCG/Oihg2QKCm/5tfV4A35uWmlncrrMxHiM5pb5eaClvZn33ybi87k5dfQ0NoeT9atbmYwXCQSNMTgynmAoY8E/nKBULBOu9+Nx2xAQcHqMJEtvZ5gj5+I4K2nKBZ2HHjlArgx337LqqmWJf6WDYUGU5izJYFaZrCkLs8QvEn/3pX2YPCGOnBvAtC+DVqvQ5JRZHoD6yIsvc1XKZXYfGKCnPcQnP7CBQjqFXK1ic7mxu1wLssWSWuGe7UHGo3kOjhu/UZBM/Pdjo8YGggWtWkSQTCj5hGGD5g5iMlkAAa2UQVcVJIcXJTeDNdyFnF5MzdJV9YoUzFqtglbOoqvKZXHzFp2vVsbkDqFVS0juF9e6+FcNksOLmk8giIbI4UzODlqMiXyS3/xmmRva7WxpDxH2O3HabXicdrb0zGeRmuqDfHxDFI+tnZ5G4+UpSRLvWuPmW8fTtGkV7tm+bu6FeyKpkdWhafwca7u9jI6bGE56Cdc5mYnGEQQBj1mhpuV4cp/G4GQOyWJDlWU8AT+//mvdWCyLn6NHHj3IzPgoJpefYjZLZmaGWqWExWbHG6qnkE7hrasnHZ2ilM1id7rIp1OIoojV7QYE1vr92F1uTgw8QXR0BF1XEZLjzATCvOWNO2k9M8w3Hh3m2efGMUka7U0hYjUPSk3mO88m+YjfTd2se0M2XWCqYMIxY2SCDx4Z4siEgCkrYXeOcM0FfH2zxUJXbztf+NrjjBXtNJ47zofft5BZfM9Ny0gksvSPZzk8AaNjBzidsrGtY4rbbzGqOkdPjpIt6LgklUNDNSSbhUwpw65rrt54ecVClIyqmzof9OmqDKLp6nBRBRHR5kSrFg3HBV2llhjF5L90tvVycOToALKssHXLcuRalXwygWS24A0tnstT01OIkoTD48XuMoRunmCQbHwGf7iBnzx6lEMjCg1iCq1kYnBc4G1vvoFCJoMmSPzo4SOsXR5G0BROTiqY3D4mRido7ZgXD2qVApLbcOG4XMiZqFHRs9gv6UbxvBAELKEWY0H+C6CcvBLw/hYvw8UqK+pb+PTJEWqSBXusn38rWPjC2XH+acdKappOh9+PIAjc0Na8YP9PrmriTCrLnTfeOje+P9od4cjkNPnMGO/f1sOqiDEXneif4oTu5kymwOYVnfxJV4Y/7tfZ7HdwYnqaLr+fQqlIZyXFvpQFKZ7hOamO06kcy4IB/npdBx/K5lgbCTPBqblrODRQ48EDKlVhmqFpBX+wjoliCLVaJLj6BnLTP2FdU4EOSz9HjseodL6RoxNPUjP5USLXoEWTvKF1P47lJp54rkQtNYmuaZgSwwxbBHrudPP1jXne9p8uDo7ofOr7Bf78LVaeGvGRUh3cF12G6+Bp2i9gSYzFymRlM6VCiVKhyE/2TSF5I2T2DPGBtyxcFLe0NXLy5CDfP5BHzQ3xe+/dwQ3Xzb/3t27qxu0YRUTl+wcLNDoS5EoqJlHjY+/dhSiKnOsfYyZdxW+CwaKX8cQMNWuAnfEMLf8vGAbJuVDgpeZmEEwWw7rG6npJAjDJ5UfJxefKWrpSJVaxIppeWGD3fDhzdoJnBxSiqXHe0dZArVohEGkkFZ2am3jnrkHQaG0JU6ooMD5fgqgKxjU5hDI1vUxZkRBMVsy+MEouPjfRKeU8Jk/drLdlmOrMCKLVPu8N6vIjiJKRucwllha5LAVdRbDY0atLN1+49G6yUZ6ze4wg3mR+JYg5fiEQJPNCHreqILmDWHSdtKOFh/tH+eG0l15TPx31Hu5aEaDOt1CItKlzMZ3kzs3d3Ll50cf86Q0RyjWVoN9YfYsmMzoqP3rsDGnNg5c0aSFIkwv60jZuWmulq7MBabaaceGCb2oiiqpptLQ2sudYFHPDcjylUTRNI9DQSC4Rp5jLUsik8QSDCIKAKJmwu1yU8nlcPh+62YxcqeCtMyo41VKJnesbsdssDEbLVCUP6Yzh06/WylDOUAm289DucX77nY3cttrKmX4Bh0fl5LlpOqsqbe2NdHS38AGziM/v5b77n8ZmMdERlChVYshFL//nMz/CZwdPXYRdm1s53T9NPFlAEmr09C4OhEL1QUL1Qaz2Scq1KB3hAGPpJB6Xi/0HzuBy2lDNTkweG0o6g26qcut6F22dXZw6OUhPd/MvQ0z3C4Noti7QYailLOgaajmPaHEgObwvSQMgiCa0WvmCbKmAOdiMLi8uwV4udF3nob1j1LCyenmOarGIP9JIOra0ZksQRRweL6o835zAbLXhD0eQa1XsQpWAucrGFS389HiV8YSMKIp4AgH27j/DkUmQ1Wlef+dGNrQNg1CiqbWJkycG0KolRKsDyR1AzSevqDImCMKsUPHKmhScF4eLVocRCLtf/kz0KwVv6pnXAvzphh7esfssKVeIUxYneiXPe/eeIyE6eL1vgh3h4CJ7tU6/j06/b8Fn7X4fj99746JzfWxlG9dEZ9jRbGScTZIJQRDZMzXDPyTMbFGOc8gcYadpmj1CgJvsef6rWWJHozGve+121s5SynJFmWPDMjtX2PjKU1ANrcaUHGRTl5m01IaztZPpoT5cUyfw2QyecktQ47mEj2I+h6Wgsr55jMnoj+gK5LFaDfqDK1DHHat0puM6p5UOMtlJSpUEhWINu1pBszTzTNTFd3dP8Od3lvnakzEqlgKCUmH/gTNs22oI5N5591qqlRoDw9MMjibY0OFhYmYan9nDF7/yMDPpCi2NQdpaAjTUe3j46XOIskC9V8TjW1iVMFssrF3XQ6VcZv3kaZrCQY6eiWEWBcZGpxmdzFBTRczeesy1KZR8gp6IyOb1IRRVJx5LUBd+6Y4wv9LB8IVQC2nUWhlR19FVFcFiM8rwL9LgXRClBcGL5PAil3OMZy/NqTl6bIBnj0W589p2OjubF30/MR4jmSmwtUVlZW8zcq1KuVBkov8s9S3GQ3sxV7mQSfPQkRyCaf4Fq+saAVOJa9fWsX79dv75K8+SlW2zAa1/NoMgousYwbErgCBKSHbjXii5xKznp+ENeqX0CNHqRK0UQeeK7rFazM5loJ/PeP7ViPNm+oLZgmT3YKlrQckn0FSV6swQpVKBkCqTd5p4OOZCUKd5z7VudF3n6FCUWK5CrAzJfAVNkPi9W7oRRZGZZJq6gG/RoiIcWJj5+YMtAf7m4X5Oxkp4nQrXtpk5B1y7oYv9h85x5lyex/aPYLY5+fCb16PrUN8YYWx0ii/84ASixcaKhiHq3Rolocjr7lgPus5Ufx+IIvUtbQsWc55giFR0Gmk2w6apKulYlFzS+M3p6DQ9a9cTDE4RGUgRT2a58+brOHq0nx/uy6ALEpZkH1ZvAJNJYsc166mrD/Lf9x+kL93BSGyU97U3cujwOfYcj7E8VONEwgvFFG+/uZlv7i3w7OEJZHcjE6kpxFKWprok04kysjPMzSusIFmMrnr94xw6GeP6zc0c74sS8NrYvnXFXFMT0dxPfDrK3gkbLiHG6iYT+vAkvRu7qcgCm7ev5dl953j6bJn1A+Pce+8NL/NoemVAq5YMPrymgipflWf74gW56PCgy9VL8lsN0XDRsGfzLvYwr1Yq7D00yLYeN063E4fbQymXZfzsGdzBpYNCbyhEtVzG5V/4fT6VophNc/NrtrMhOkUg0kgwNIbX66Kvb5SfPjvCjlVBbl5pYXlXBEEQeMPrDZHQ6VODfH9/bi4YFgTxiu+T5J6t3pkun9eplrKINidqKYc0O9f/T4Gmafz90X4aHBbevbyD7lCQD/ZE+O54hv7EODa1QtFmISBk+G/LMvb2x7i51WhGdC6RYjiTYU9OJSjIPJ3T+IsVDayuD5Io5HFaLNgtCxe9NouFa1rn3/t3dDQzWazw6b4MqjDJmiYHFqXAezua2ZnJ8dhEgj+bmmDaGuPjrU5ubqyj1efBYrbw3i9YyDpWsfm5Iwi6iE3NcsN6C3UBkcl0BXP0R+xq1mm9aD2/2j9FWimxtrOE1SqRqlQ5m/DQ6MpxbNSE1n4Lax1J7iw/zQ+ODnDnzjRBt5X3fytCplTELhiUSY9DYnmrnb98h8qHvwpfOdqI7izS0TyNyWLlOw+dpqvJxf4TUTRXmM3BFC6vl5NpJ2QyKJKLM0MJsiUVsyRSsIbZ2FrB6fGQyxWwmM08+MRp2hvd2KwmRqdy3Hb9irlmTs0NQU70RXl87wgTZQfXd1Rx5ybo7g1Tp9jZtbEFswn+/cERXHKcj37glpfcmONVEwzrmool1EYtOYGAgFbOL1LtvtQubxfvF52Ko6oqTS3Gyi6ayJOo2UkmC3R2Lt7/6UNjDKRM3LPJS1t7I9n4DJH2DrKJmTmLqUqxSCmXASDQ0ITL518QCAO0e2q8503X8szjB3j8qRPkVBuCyTw3uQqCgGhzoyu1JV8igigZWQnrpcUcSi5hqL0vkS3W5Qombx1qIT0XDOu6ZmScL7JWmjuv2YKST7xs7hGvZFxopo/doLuYfRFj8ZKcxBxopOjyY6lMoceHeaLk4s3lMsfGU/zTKQumTJqSbsZtEZEsFhRF4fEzMb7ab+adXeNsaffz9ECam3sDBL0udF3n358aQBQFfmNXF19+4hR9cgOiSeG1vU6u6QlRiguE6gKcGEihmt2ocgbBZuZr9z9HtmbhHbdXsFhMaHIVOyXOpFrpCtXzjl1d+OrDJKcmaejqplIqUchkSEenqZZKeEIhHB4voSbjxaDrOpP9fVjsdqqVMp5AELvHw2T/OfzhMLuubSQ+MUYulURXZWx6hWt2tnPtNWsXBPmapoPNS1iMc816I0ORSBVJyXZcAQ9101OUKfHVn5zDYpZY2RlAkTOcllpxqFl2bOlii6ySzxX43mPnSMpOWhvGOTecZCBtQnzmMH2levzmONu3zlsE/WzfOBWsXNOtEwo18dDPB6hKIZZV89x9142Mjxo2Y/ZqnGMz9XSfGmT1yyCqe6VBq5awBBqppafQVGGWZmVftM15OtSLqQKJZhuY519ymlw15vbZjne6UkO0e9Bmu49ejJOnR3m6r8ayINx8i0GZESWJpp5e8ql5ikJiYhwEAW8ohNlqw2xd+GItF/JIJglNVUlFpzDNBkLnG7oMjcyQ1ZyUq9qSPvVNjSGWhVKcLlz6HqjlnBH4zyYvLsZ50bNodxle+bNzs1opGOLBJfYRrU7UQur5XOtetRhJJvlKxkQ4mePds8Y1v76yi19fCY8MjvJH/RkS1SoWhxv75AnO+Vv4wcAob+hp5wOHx0jqZiqFDI1ilbi/k/5sHr9F4nXPTdNrkvn6rjV85ewQXW4nu5qNGOCHg+M8MJ3nT1Y2YhUF/q5/BsHfxLL8KL+zYTPfH5rCa7OwdzrOQdWFINeQ/D4eGBnlH4ZzvLnJzV9vWYlJUJEKUxxXnGiuJv7uln56Wy0MpVx4OzfinE7gdyR4oK+bfFHGH2mkWzzGskgVmAEkzkZtnCmvxuYLMpM8g23NTsbPnqZJ7GfdMisd9TVOTIUYT1dxSyVaIhX+5k0qVqsJmF9w1XQJDxk2Lm+iriHC+OgU8bIZd7rC2k4354bH2JPQMQk5vPYkN+zq5tEDE5RdbWxdLrF563Ia6iboG0nx7ICMoo7R1ezh7IxANjeDqmrMKB5WjEbpXW7os/YdG+f4lMC6ELQ2SkxO5cm5Ozg3OsFHPnAbsqxw9Pgw9VqMmCnMjx45zpvufmkdhV81wbBgsVGNDSGa7Uguz6IgUKsUEEwWQwn9EgW9f/HFIyjFDLpSNRTV5mH+4sM7uGXXalZ2RmlpX5wVBti5rpHQSJJlPbOq/Lp60rEoVvv8ar1aKuIJ1pFLxuc+uzhb/Omv7OXIkX764jrTJQ3EhcGl5PSjPU825YXoI0ohheTyoxYvLVoRbU7UQtIQ681CzcURHV6UQmpJUcj/FJ7aUhDtbiNYmDXTV8t51FIWXZWxhDuoJSeoJgpEa2UEiw25IvPeh/J85no3q+1xposaVdVEWbTwrjYVi8WCy2bCpeVx25z87GyKn8ZcaHqKt251IcsyB+ISIirvl2VOJlVUNYMZld2jBZ4ZKRCzNFJfOATOAIIG7713HTOpIo/3i5iq04yNTHF0uMSvXdvKps0rOXpimPaWdqwOC6noFIV8DrlWJdLeyUxhhMbuHkbPnMLmdKJrKrHRYarFIlanE3cwhCrLmK0i5UKBWrmC2+/H4fGSSyVB1wm3tmGxTPOJ31y6K1PvslY+0RLCet5rGbjl+tWs7pmhua2JnTvX8dTPT/D4s+fA10ZVzfK2t97O0WMD2C1+7nvoGA0hBzdet4abNpWIpwtMxQoc64vS6dU4mw9QJ8W564aF9op37GylVjP4puVikSd3n0atpHh2xM/Jz95HWnOjqQo7l3sYjFfwul8+26pXEiSHl1pyHF2RkazOJTOd5wPh5+tQd7nQahWU3AzmYAtqPoHJU4fk9BnZT8fSc8uK3mbimQGWd8yXv612B7lEHH9kvqOZIIq4/AEqxdKiQPj8PsmpScxWG4HIYv7y5s3LaGkw2pwvBa/fy9vu3fK8DkK6XJvjEV/6XmmohfTcHK4WMwhmq3E/lhAwCpJpyYz5/wR01tXx9+1lgrZ5etn7Hj/AuQp875pevulx8ccHTnImUyRr89EmKXR5jWf35oCFo4ksJ60OZkw+NlcnuLf7GpLFIkGqBM0Sh6em+duYiZ5ofC4Y3pMqskdxciqVZTyTQbc4UabOEQtFeP+jezjk7GRzPI7T4cVs83O9vcbvr7LzliN+BNGOrZzjtof301On8if3pjk7oVNRhljbY+e5CR+KLGM683XW9IoMJewEereRO3Ucu7+BauoEZ6etnC12EFBHkRw+Aq2dVM4+RHd9keGRZ2i1ldgYyQMmnhxpxNN7LaMzo3zxfYcwVkwLQ0KTSeIL7zYaxewzGYu81vYmPnSXhC/gxWa3Mzke5Qtffwot0E5JzrJxyyrCDSGisTT5ksy37j/APbeuxuVxoTFOV7ObHz41TLNUJpMXKSgmblyr07Osfe68O9a34LJH2blpPU63k+/f9xRCLEoWM//2ladJZopogpmNvQHUbI2Qz/eSx8urJhiWbC40W+GSvrnCXJe3q7REVhVQVdRaBnNoliNkNtPasbT/KUBHZxMdnQsFZ/7wQh6ot66ebHwGh8d3yeMUVBsPHimyQN55AQSTBekKSmkXQ3L6UHOJRY4UF0I024ysDbPZmkoeTVWhXPgfmfm9FIwuWzOzhvegJFKYA00ohSQmb9jo4iUICKKE2d+AnJoCSUJyuFELaQbiHv7s9i5OjSf4/uEpkqqJniZDfHDdsgauMywvmUhk0fQM13cbixCLxcKfXedFAPaeGiFhrkdM9uEJ1TOZrVGRFbpCU2zvaEdtNl4AvSvaCc4kOHD6MG0dXsMf0hxhaDTOhg0KXU1u7A4zpXyOYEMTSq2GyWxG13VcPj9TQwMEwmFEScLucpOcnqKutZ1SPkshlUSQJJq6exfdI6vdQSGdYrK/D4fHQ7VUwupYWM6Vq1Xuf/gYAY91gRe4yWzG7nSwd98ZNq3v5Ibr1tDR7OO5I4PccdsWANav62ZseIJzMzA2Nc2N161h1eoODh7q48jJUcrlKtawmw479LS2z9EjzmP9um5KxSKHD59DElTythb8lhgVTSGTUxHcVuptMre+Zitm66uXL3wxBJPZEHIJIrpcWXojUZytQr308vx5SpacjiI55qtPz2cR5nA5uf2mhYsbp9c3Z492Hna3m2q5hCewtKBXlCTqWlqX/A6Malyk+crFxAuOIUqo+TiS49LJigvb2Sv5JJpSRbxAzPj/YOCLpwe5L1riOpfO46kKv5lN84YVyzlU1KjY/RyYnOLuFcvp05zITjOvteT4823d/GvfFPeNxvnLzSvIVSr87ZE+9heqbAmHEQSBkMvFQzevB0BVVX4rOUSPZ/7v9YmVLdweT9HkdPCdiQxKKcsyu8CYLrK7AO7KCO/c1MUKr4vrYmne2LkJu8XCZvs0Y7UCXquJkYqDRNpEtpwi6AWrVCObLZPy3k4ln8fT2sRI/D46gxUq4/ezzZsjUDpEqMnBcxNesNchNK6ncvI7yLmfcV1HCqfDTEfd1OxVGmFfk7fC2MAhOuzjJJJlQsHFWcIf7FM4PGnjd28pwQXrzfpIHQefO0drc4imlgif+L17+dmjB1nWbTj9NDWHaWoO84+ff4yc7mZsaIIVa5exbrnCk3vPkUunkdxWelt9FGXYuWP1gspRpKGOSEMdp08P4fe5GcsIaBY3XnMNuVpGEy2YRNi0tp32JSipLwavmmBYqxRA12d7kC/+XhAlBKsTvVZByScxXQUXA0EyYfKFEQRxwYp/KY/iK8F5kdF5yNUK5UIBTzC06PiX61V8JRAE8YqyCVo5/z+WC/yC0FTD1kiRUatFI6tVTGH2NSCnpw1RS8VolKLm4iBXMHtbDOpEuJNPP9HPP+1NYPZFaNd07EKN3gbfotM0h7y8N+Q1nCpGo3Q3BulqCPLMmUn+bcRPY+0c020babBmEXNVCrqV37vOi9Mi8RpLBbfTAckxBmMJiqKHbEXjthtWkolN0dW1jMn+c3SuXc/U4AAms5nk1CS1SgVBEBEEAYfHi8MzH5QUsxmsNvscPcIfjqBUlxZBVQp5XP4ATo+XbDxGMZvGZLHM+R4DpFMZzsR0/Okst1y0/1P7hzgZFRGlEbZtWUZbRwttFy1KvR4HWjGJKs4LYPccj5IsO0CscWo0x1/84c0L9slmcoyMxFizppMfPHiAczGd69eFuHOdnYFhJ5MZlbe8dgNuh5WWztb/MWLQ89DkKppce14Oq+T0oWRiqKUsgsX+ku6RYLbO8ofdL85N4XngcC/OLGdmYrj8gZdskXm5uBLBt1pMIzk8MKvD+H9YiMFijWEchHNxRmoSfzwloWpn+ec1DZxJZXlNzzJ2T0yxyakzUy1xWrHwur3DlDTIlkuk8vv41xu30+S0UcwW2R5aTP2TJImPre0xzpdM4TCbaPB42GWzcs3jp6lWyoRdTkatTdymR3movp13OvPc1trIdCbNu5bPN3XJClYmJRvbGmwMO5J0XbORx8/uo2HjzWSmp3CRpMf5GFNFM1o8TsgpY7FIrG+tcj4pVq0aDgymiadJVNZRUxppXH8dk9Hv0utYKPxP5jScpgr3LBvmuak6jjvuoi32E7rCC7fbPerkaLaF18+cWBAMnzkzwkPHy3SMDvKeN9Vhtdm4+7ULbTgB3FaddDpPTTXeDcfOTtGfcSBoKqmqia0ukbtvmKc36LrOyRODNDUFmRid5rtPjRH22bj3hm76+sY5MqqwY00zkZCL7p7Wq5p8eFUEw2ohjWCxgSAYauZLZDT1WmVOxXs50HVtLqtxcceeX+QElE0k8IZCZOMziwLlXyaUXAIAXZMNjrH5xWejz2eXRZv7l9IV7+WCYLIgqDKSyYogmQzHE7MVrZzHWt+OJldnedcORJMF0epAqxQR7S4q4yext65ByURR8kn6qyqiVkbTNKSLfFBHZ9J8Zk+CoFDkhNbMPdOTtPisDM/kWG61sLWtkeFcgRV1Dja0RFBUjZDXxf+6vx8Vkc/e04HJZKKrMcSndiRItfVSyaVx6B50AQRJZGZ0xDi3yUSw8fmzYNVyifq2dqqVEk3dy+g/fIBIR/ei7YrZDDani2IugyCKyLMBs3BRK9z6hjDvuqmGKOqMDU9QFw5QKZXxh4KsW1aPKM6wrOvSPrfeYACzUqAsOBgbGETRJTKZInXWEglnBKWYJh1P4K8LMTIyxbEzUZLJLONVH8PDzzCQFBEEmZ72EK3tjYxMZqmhEgh4iTTW88yzJ/H7HKxd8+rnCsPs3FhMzyYZ7EjmSwRyqrEY1DUVdA2EF/YBVktZ0LRFwaFkd8Ml9AhXG+noNJ5QHelYdI77/kqAWimg1yroqoyuyAtoai8GhobD8qqjsP3vdV28O5Ohw9/Crz++nz2lLD+cEfnmjcu5qQPe9NgBjpvC/H7IzQfXLOPtTx6homv8TrON3++v8ZhYz4GxcT53boqaxcmxmQQ7mha7+Xx09zGmC0WGTEEaqPLPG1r54ViCrXYVq9vFcq+d0ZLMJ1Zt4NdzeVaFO/g/h8/y9YyJz3RWuLXdmEc/u6mDZKmMyWlmbZuXydGThJdtIz42jlIr43KodNYb/0E/sPg5GknZyTXcRW5mD80dK5nqP4N7/Id0NMiLtj9T7EYLb0GKfR+rWCOZmcZi0Rcd8+M35xmbOYFJ1KmUy2SSKcJNjXR0RNgwkaG7+fm9xd12CXU6SzJTJp/JMDA4jViQES1mZJubRMZwpKqUyzz+87MItSIHog486jCRejdmb5g6V5rOrmZKpSoHRqPogsiK1T30nRtjYjrDrh3Lr0pH4FdFMIwoolWKRktPQZw1FfctDooFETkTRZQu78aphdQch+tK2lcula19KdliQRDIp5LYnIuzIUsd93KyxcakWkbX1JfQAU5DcgZQS9mXnGm/MLv8agqGgbmxI1odqJIJXa7Niw7lCmgKWiGNFGpBl6uGGNIRQrS5qcXHEC1GRkwwW9E00wLzflmW+dq+CbRamajqx2cq0yJlaPU7+fqJAhkhwN9sVjkYU7ilx8Xypnkut67r+M0qiq4tyNh1NYboklPszSSpa+9hvO80vrp6sokZXP7gImoPQC6ZQJFrCIKIPxzBZLEyOXAOp9fHmf17aeruWdLT1e72kJgYp5jN4KuPEGxqIZ9KIggCqelJEIS5rl+d3S185vOPkFYd+ISTlE1eXrvezpPHM/icEr7ZrpCnTg1z4HSMW3d00DQ7WUcnY6ieFqRslK89OkXIXsPisNPREWaFKKNq9fhCxhg+cjrK8WmBeiWPUlKoeG3cuNZPPpfnJ0+fY81kAl2HgJjl8KkJNigyT/bV8Inp/zHBMAigKuiaiiCZjcqcKC3qsKZrClqtgq4pL9hBbm4fRTZEYuX8JcW4LzdMFivZxAyi9NKCzYshpyYRJDOi3f2iutHpSg3J6UUtpF8yF1gtpJGcfsN67ZfUGO/lgs1iYXm9cX8+d8MW/v3sODsvyO4WZBW1HMcVcjGVK/CutiB3zFZ3jmWPklMzrK7vRdMHkJwBApaFGdMfDIzxXLrEuUKNNC5WSSVa7Ba+NTLDN/M2/lfIS8RqoqhqfGqzMSesmtUGBa0mgmoBr2X+esIuF2GXi2fTUxDppEM9STp2jlpJoz7oYJ1vGFg4Fstlmb2J5Zi1PNe1zdDkLTMz/Aj2+hX0H9xNtz/LupYywhIL0AZpnMFzGZyBIr0NKnWJvfgcAtGUxKnqWsIMsbqhSGPIwo8OFvjexAbc+QfJuzrZ1RUjV6zRP11m61qjApfL5PjR46fpaPIs8HZPFgTM3gh7Dpxl30AZn67i8bq5eUM9J/tnuO46g8I0MjLNwTGdkJpFLeYpIrN1zXJcA3FScZVvff8ZmhuC1EsZJuIiyXiKZ56bYKpkp7l+gmUrlnAsuEK8KoLhCzljSi5uCDZyicWTha5g9jUYmbZcAtHumuO9LgXR6jSyyOLVnRCvBKV8DkEATdUWlKFfCCtCMk31Th4/mUcXFwaXWq2MVs6jq7LRvvQKoGRjIIgIZpsh1KvkrygQVnJxQEAwW+dedHJ2Zva7BMKrLBC+GJLds+DFIzm8oOsIJjNarWwEvBWjdaVkcyLZnKilLJpcMUSbqsLf/fQU1/SEqNQ0VLnMozMeGiSFv7/OQsDdwyOn4/hsJt61xkW2XGOiKPLDKScjuSyfuCAYFgSBv7x7abFaNJvD2tJhBKS6jq8+AgjYXS5qlQq2i4zOlVoVX7iB1LTBS/MEgtidTmJjo7QuX4lkWjojKIoikslE++q1JKcmAfDVhxnvOw06NHb1UMjMCzkLxQpKtURSEnFaU3zzoQI2Xwibef4ZHZ7MMJq1MD6ZnAuGzSYTpvwERUVAL2YJNAT40N3bOXV6mGKxyvZt8/fh2s1tlJ84xpYNqylXVLo6G3G6nTz6yD6mMhr5Q4MULWFQ7MTOJDlydJjNKxvp7Lw0p/TVBkEw/H8Bw9oMY0G7KBiWK5jcQdRSBqWQMhxqXjALqaGVsovcgH6RKBfyiJKE23/5nryFdIpatYJkMi+58PvRQwdhtqse+uX71auzzz1omDz1hpPElVAqyvlZn2Z9zi5ULWXRFBk9n3zJ2eVXOtw2G3+4vmfBZ1++ZjWj+QLbmhr4yN4zPF51IIkT3NbRwp/vWI+qqrz7meM4RKgkRviJ4GOgdILrw0H6ixUejhc5orn5TIeJ9ZE6zmSKTBQr7Kj345xMcm9LmLv3DJIXbdzRlCPomh/zH1rVzYcu0axy2OdAS6ZI52rQ2I5JzOJoW0EyOkbEv5BmVqlp6N52KrkoMIPLIXFdZ4qnzh7BueIGgoUnL0lL8phKSM23cDY7jB4/TZ/9XlJjI1i1DO6uHgozM4DxXM8ULMjxUTJWD9ZKiqf3pdFFCYu/AUUx+OqJRIaBpISiZrlm+/x5fHaVyelxqgoElCJveeN2VFXjRF+Mu27bhNs722FuWTubBvfgdIS5sy2C2SzR0tpAW2s9f/mZhxFMCvGMTLwoIYlWPvv5n9LTFuKGZV66e67OvPuqCIYvhCCZDSuZJagSktOPko2j1sqYXXa0cgHRbEOrlhDM1kWZZNFi/4X3kq9VymiqNhdsKLKM0+snn05d9jE2NausbPVQ1xBh96kTlC8W2mkqkt2NWsotbATxAlDLedRaBbOnzgikJfOixicvCF03nCpmrZCq8VEkuxutlMVc3/ECO//qQtdUgw5hn6eBqOUcasnwkDY7fWi1MnImhvHSms+i6apiZHBKOcy+Bg7GK5ya7EeuX0GwluJNrQqr2+pprg9yZHCab487aRiJc3Oric2ddbgdVl5XmGF90+UvpkRBRC7kUWQZh8dLOjpNKjpNpLMLd2BxlcQfaSQxMY4gimTjcVRVJjk5idlqJZ9K4o8sziaftxGslIqkY9PGtskkOVFEEEQ0VSE2OkxTz7K5fd73xq08tfssI9M5dF3HEmyizpxjZWeI+3/6HHfetIpbrl1G18g0ba1h7vvxIaqlPNPJCrKrGUs+xsZlAe557U4AfrZ3goLuoLs1SqjBuMZkIsu5go/qsRjve/OOuXP39rawv7+P5e1NdHeESETjPLx/Cuo6ESmwcmX7Zd/fVxMEyWy0dNcWB3iS03ClUUsFRKvdGMt2D7qqoKvykvPrhSKxXwR0XaeQTuMOzAe+Rgc6D4pcw8oLi/+y8Rlq5TJWpxOltjQ3vlhWEe1etGrhsiuNulJDKWUx+8Jz9nGX3RzpgmNITh9q0XiHaNUimlxFV40K1ZUe71cJB6djuM0mls9WfXKVCl/vH8OqKrxluZFN9Glluoop1gTWzO2nahqDVShZXDTaFPaJIZ4eGuKptMyIycfbxByvDzu4vacLQRB498FRxiQPb433cXNLmAaPmz/pCVBUtAWB8AtBqsko1TIVwY3f7SExdByH6TgrOjUuzgz7vVbWZx4mrupk8gIH4l3kqxaKVR3r9BitnqUXXIfGvRRUF6p2Go+pgKbUyCUTVGUNSbSgTh6iwzPOeXu137lDoN6V4oE+CybRRMXuQ9JU3rIrwu6jU2zXDIvBd2o6oTofe/adZmhkhkJVZzKlY7E78dkFPvYbNyOKIj9+9CjPjelIpjFumG1hL4oi/TGVnKqzeplEfZPhymK2WIkEHVRUgXtv7iGRyPPjx46hhVcwER/nne+8xKriReCyloSCINwuCEKfIAgDgiB8YonvWwVBeFIQhCOCIBwXBOHOq3aFVwjJ6cPkDi2ZrRQkM4IkYq3vMBogmMwohRRKITmXnXy58BdfPLLov6WQjcepVcpUSwaXxhMIIlcreENLlxgL6RSp6BTZ+Pz171jTQKS5iXwqwR9+8LpFVArR5kKrlUEQ0OQaSj5ptLK+AEo2ZrggKDV0XTOyOqJkdEzStedVcJ+HrtSMLMgFuDibLMy2jn658EoZu2ohjckTQk5NoytGZytdqWEONKFWCtQSY2iVItb6diTbwtKwyR1EToxhDjQZojuLgwJWlFyCUqnEd4ZNWGfXcataQ2yxTTOZzPHFY0X++LEYVrOJWL7K5/bFSWQKC45dk2UKRSMDoOv63Eq/3uNiWTVDuLUdqyixVivy+p5mdkpVlFqNVHRqbtvZ+4goSQQbmyikU9hdbqwOB22r1qDrOnbX4nJ3IZvBE6pHEAT84Qa8oTocXg9mq41KoYDd7cHuNhqPVEslklOTWKjxhnu24XLaqNnDBLQZdm3vZt+RcY4MFYhNJegbnOaBn4/x7J5THJ/SOTeSJl0yFl63bG/hntfuZHhghP/88qOEXRo3r7ITjMxz39rawqyLKLSHTMSiCR782RFi0QRt7U188N6V3HDNMlau7GTT1tXUey14yuPc8pptL32QXIRXyth9wes0WTB5w5j9S9uKSU4/osODyReZC+iqM8NGUFYpLLnPLxLJyQmsDjvp6HxHOncgiK5pi1wnAFRFYWZslJmx0bnPFFkm1NJKJj6DO7j0XP3629eiFNOINrfRcOciBw61mEHJJ+YSBZpcQS1mMPsiBvXvMhYJuq6h1RYe1+QOolXyC10qBIxg+GVowvFKGbfTmTTvP53j1w8MMpo2qks/GJ7mX1I2/mYoy8d3H0VVVZ4oSAxa6xG0+fnMYjbziQ4nWOzYtBpyYgKrJ8RbwzZ68yN8o+BgWp6nl70vYseTHuOr0TK/PgIPDoxiEUX+dTTDff2ji64tkZ/3xZYVee79+3ZrHRGbi4YNt+AYu5/3X5Nmc7cRLE7EVbIFZcG7uiyLTEXexJHcSnTJQVUR6Fi3BbtYZXnD0ouyKbUDpX4TDZxje2sSt1PCbhPwm3IIaglTyzYyNWNcHBwPcDC3nrdea2Nlm5eStY6gpcbmXi+nB2KcHs5xdjBOPpvjp8+O8NATJznan+b0SJrJlIJayRN0aPzOb95JtVzm2995jMlohg0NNdavXMjF37m6npWBEk6Pi0efOMqRowMAvP+tO3nrbctp7Whl45ZVrF3ZhqkwzZ3X9yz6bS8FL5gZFgzCyeeA1wATwEFBEH6k6/rpCzb7U+C7uq7/uyAIK4GfAu1X9UpfJAx3iflgS3L6UfNxRIvN6CqXmsQcaKIWG1qw33mhAgKXz3VTZW5dY6dQrLF3dPE6o81bo6XOzu5zJXTRSjo6jY5OpVjC7nLhD0dQFZlqqbSgm9fFnZCK2QzVcgl/uIFapYw/0kh0ZAhNVbHY7XOtRBs7FwuW5iFg8kVmf3/jYm9LQUS0uw1KRa2MYLKiZGMIFvtldZzTqiV0uYomlzH75305BZMZyTQ/KVv8DeiqjOkltM6+FF5JY1cwW6nGRzD5w6jFDCZvPYIoUY2PINmcc5UJJRefo4qopazRrUoyY6nvQKsUjEYnxRSiyYZWK1Gu68ZRnMYsaOTyefaNZImVBMT6LsTJU/Q2SEiSRLamk8dORV7YyvV4UUb01dFZmGGiphHTJOzFGdxeL70OO9bpEZyALIgcKmm4ckmSBY361rY5KoPL78fu8mCyWEjHpvHW1aHrOpLJxMjJ4/jqwxQyaVw+v5ENzmex2h14QyGmBvtRazUSkxMIgLeujunBQcLt7dQqVcwWG4IgIFcrODxeSrksJ0+PES/oWEqnyTSs5ef7BynYGqiTsrR2NjN94Axl3Y7L42Z9fYJDWQtmZwCbRWL9ul7kaoVvPjpCpaLTWmfiumtWL7gnsixTKFU4NmUnljhJX96LzTrFZpPAFx8axmeWefudK/GFgvzOR+662kPFGC+voLF7pbh4zgUj06rm41giXaiFNJa6NpRMFNHiWLCfkokCYPJFLtt5YllIZlVHgJ8ejFNhIe2tlMtSKRUxmS14gqG5f5fzOexuD+5AEFESKWTSSBdYQlrtdqz2+ay1XKtSSKWMboqaisvno1wokJyaRBQNnnw6Nk1z7/IFnP4LceLMONZgM9XYEJb6dkOLcgFNT1dlTJ46lFwcJZ9EMFkMpxlBwORc3GVyKSjZGUObUFroM39hBU+0Oo1GTu66q+6A8koat3VuN3e6pnm2onPv4Rnu3wC3NoU4mBzioKTyjKmV7w2M8Wc9QXKyTIM/QLpUpCzLNHp93Luslw11CXz2Tj748xOczWc4lfeSsfmQzG6CWonpTJr+fIUz6Sz5QDum5AT1uUk6vCs4kc6TklykLnLR2V9Mcqa3iZUDUwQQedgN0kSUxqYmNpSgS1c4O7OHZS06z4y3g1ahXhsm1vQ2UhPDmPQKQWuJBnucekcJU+IEHhIsDydJ2Ss8dSiDt20VxyanWddUQNd1Tkw5MYsaKxoqOCpD5BI2RLmepybr2eg9S2t1L4N6E8FVN6Cf/T49y2VApCR4EbxtFEpHODqcp5ofJ+fxcXgCXFIFyeZiZZsXRVYoaSbKVY1btzTyjbyCUsxiCbWyqtPIUP/0ybOczftRszHuvmE5Pv/8+JRrNbRqkdMZF/JDh+nPuQiMTbNhfTf3P3KS/ji8cVuBnuXt3HvPNdx7tQcLl0eT2AoM6Lo+BCAIwreBe4ALB7fOvPGGF5jiFQAlO2PwW03muYnBaLM8v8IWzDbUQmoRv3jeeSJx2ecTVJneri7iMyn2ji7OeKzp9LFhfQ/Hh3aT06wcOj3Djo2t2JxuKsU8uq4T6XhhAU61XMJXHyEzE8MXbiAdM9re+iMNpGbbhF6M89nhuYy0IBi/TRBR86lFnaNEq3OuDapWLRnUCk/d5VsaCQK6KoO+WKEKIKenZ7spzQtJjCYUylWxvZvFK2LsanLVuIe6jl7Jz55y9uVnc6LLMrquIXnDCLP3Vy2mESyOOaGMIEpIDi8SIAsCJncIOTWFmk+QV+HPdxeRCiNkPJ1oyUlkdQCH08Mb19bx2MlJPn59M3/ywCk+/UyBv7/HjWnWtkxUFeRCDkkQyecyhFZtIDsTQw9HyE+cY2XAx1gmx0gmj2vtMmLVKsg1ciMD2G0OtEqJQKSRsTOnaF2xsGRVKRYwW61omko2mcDp9VHKZwlEGklHp3F6fYTbOihl09g9PvKpJPl0itaVq5jsP4fN6ZwrXbv8ASOg9gdY4fbxzHPjZO29tNmybFzRTt9Ega4mQ8yxbesKlncm8YaCjIxMES0M0xHUWL9+A26vG03T6I7YqJQ17r1jYbewTDLFf9x/FpNcpslrYvumThqm86xf3YLNaqbRpVMtFPjnHwzymrUxmsJeLBYzVquZg8fH2bymmVD9VRm/L8vYbQg5XrL14/NhfGyabz50hnVdfm6/ZenzJOMp7nv0DMtWdXH9tfMLEVVR+Icv5tGB33/3akyXqRBPTk3iDdXREnHjq1+obq+UigQijaSixq2pVSp4gnXI5crc54GGF/YHzqeS89tHGimkU8iVCvVt7WTiMURJWnLevRDtLSF6x4ZoW9ZF31SZNRs72LxxPrsl12oMD03S2bWas33jPPDMKHfctIId25fm9cPSYmldri3p7KMUUrOOHuJcUyRNrhh0QftVc/F52ebc6vgQw7/75su+kC9H1nK4cQ3LUuPEvWEyP76PMZuXZNf1/Nr0KfrDvUR+/ARtShmAYeDDG95O0tvAfz75aQKz64QU8H91nbdc8xF+lhV4y9Efknb6eUo087dTuxBqJWqCiVplAMnu4dcOf5snjz3Ihtw0d/va+eyqO/B88yNsLRuxRHb5Smof+DCZ//53qpkM6h//BXp3O6XGJo797V+yevfTtLvcnFm3nspbriUbj1Puuht1zx40QaDqcKBvvY5jR57j1j/7A3ZcsKDJdnTh/tO70WSFxHdOk3n6Maqqysy3HqA2Pkr3r3+M63SdnCBw8jc+hnp9D8O/+bck/+3LCKVxTN/6Ksu//21UWUYF1gsCJauNUKXM9c1beGbzW2g59yzXJgeRdI2Yw8+9D/4ciyBwjaZjFUD4JvQtvwOxnOf2xDl2lOLwGUgGOim3bOb1Z5/gpqc+PXfNT9zwOe6vjTPodeBNJ2iPeWkjh0+wUPr0WYLVInGKPPB0hdDDo7xWCxFVi3Rbg+yrRfELZlZaXzq16nKC4SZg/IJ/TwAX1wT/HHhEEITfBpywyAr0JeP8g3zeBkarlgzbKun5foKOaHWgK9U5WsDFgrlLBV6SO2i4STh8lz56rQSSGUGazShYHHz+h2fRBBFE4zzd/ho2s8CJmInHjqQ4eHovWdWJIMCegQrH+g/zpl0GV/GFJtPzEATRsP4JBhFFkUCkkVwyQXR46LIZBy8UcF5YPjP7G9B1DUEQ5zLmL9ReVbTYEZ5HnCiIovG3uYBGoSvyLLctfeVc5KXxihi7WikDgKDrmDz1aLXybHc/AcnhQ6sWFv9eyYxWzhn7yxW0SgHJNX/Pa/EhRIsTk6cOTa7gEwu4PRZW+XLkNIm+rEbZHuTfnhxgwtqC3ZxGtDqRNSNrVSxXyFUqbAz6Zk9oYq0ABwb7qZUKdNfyxCpVTksq+VyZ5hVrEY/uwWxzU5bM2GSFdR47z04lmBkbQdN1gzohK5jMJkwWKzaHk7Kuo9RqNLR3MjM6AoJAfHwMp9dYnJ7PwA2fPIbL5yeXTlEuFMinU9S1tMyVoutaWnH5jHtkBd5w6yqGxpPs3LIBq83G+o3Gr4hOxzFJ4lxA2t7eyG+2G89VPpvnkSdPsGZZhLe87gKVB3Ds+AB7j8e4YWMYl0lGUxT0ao6BsfSCJh/ve+tOjp8Y5OE9Y6BY+Ooj44hynjqHTox6FHmYX7v9qgTDv/Sxm0ln+f7Dp+hq9nDjdatRZJlKuYzLc2kOpKqoVHUr1ZqCpqpk0xn8oYX3I1gX4ENvv2bRvpLJxPvvXYWm65cMhFVFoVYpL6DdeIJBirnsXCCcT6WQaxVsTheeQIhUdArnbBMjX32YbHyGcqnAxLk+fJdpVWlzOElHpzFbjDnN5Q/g8geY6DuN2WanUiwuEpVejFB9kLe9zrgXO5f43myxzLWjXb26k5Ur2xFFkVqlyvFTIyzrbpwTHF0KZl9kycw8AJqC5AoanUPPf1QuXG0Xn1/6uD2PhyOrSHkaefepn7BzOM1z9gCnvc0c7bmW3vQof3nmJ4svPjuNVali1TQOOYJ01XL4dZUZ0YI7F2fd6GHemTgLCfjPpk34c1E2jx8mbrIx4W1k3OZmT90yTrdv5fqxgzRlo+gmM5ogous6o+EGWs+epucPPjZ3zr5HHiK/YTP6v/0TDadO8OD//mtK1SotO6/D9bd/iU+WGXvt63BrKtf+x7+QCAY5arXhcrk5tXELosuFIBsUjxV7f071Pz5LoVJF/au/41QgQPDQfhx//1c0Zw1qhigI+ADbM48zs24DyvZrUX58Pzm3h+UPPUiss4fjN72GZd/4CqFcFkfFWCz89vghmlWZbclBemv5uevPCSJnLW7W1nJzn32q7+G5//9hoAe7VuOu1BB3peYr8DOCif+75l481SlcOliKeSw1mQFLidukCB6zEYNcZ21ko1zim9UEDlXnx2KCyUiItr4DjC5biyOd5NLLxcvH1ZKRvg34iq7rzcCdwNcFYWmJqiAIHxIE4ZAgCIfUS/STXxKaguQKoMtVIyDTNeT0tBHkXgKGGllHsDjQaxW0UnYRN/ZSEAQBkzt4SbcFSS3zm6/r5fa1xh/s/HFlyYEqzgeB166LcOdNqxGqBSrYiFUd8xOVZEERLNS1tpOpmZ/XEq1cyJOKTlHKZfGHI3iCQQrpNOVCYfZ6RfyRBsyW55/QPvmBDfzRO5bzsbsi/Ol71lx2luj8n3MuY154YUGfIAiXDJjF2UXGxZnmWmIMTZGNTOovBpc1dl/0uIVZmokFffawWqWArmrI+aQR5F4QCGu1Cmo5h2RzIdo9xjhPTSOYrNRmho0Xna5jqetAECV0XUcr5xguiJymmadHKxwX2ri+zcUb22QS5jpMSonlEQ9/d88y/vHebkwmE30yjLjrmUplSOVyVKpVdF3H29SCv6EJk66R1SVCbe2YdR3H2ADL21pZ6TARaGyh6PAgaxr+QABB04iUjYxvKZMiEGlEqVVxeLwEZ7NusdFhitkM4bZ2RJNEuVCYy9aBEQhY7Q6KqRQmk5nezVvJxuNYbDZqlTKp6SkK6RSapjEzNoJZKbB9QxtW2/yzVsrl+dKD5/jqAyeW/DucODPB3iGFfUfHF303NZMnWrGTK8i8+7WrSRFgPCNypD+Nrut8677dfPP7u9F1nbVruvjD37iR7TvWIJWTVKsK2fgM1ZlhjpyN8cyzJ69ofLwEXPHYLaQuz2MdIJPOM5k3MREzXnzffuAg//yt4xw7fOqS+7R3NvPxt6/htbdv4sFHjvAvPxig/9xizuSlUBcOEY5cWtSbmp6aFbyl5uZcs9W2wL1BrhlZ30qxgMliIRBpXNDR0FtXj9sfJNzejvo83dt0XSc5NUlmJobD48UfaUCRa2QT8blt7G4v/nCEWvUSHfguQDoWpVzIv+B253GebnHgyAA/OVriqf0Dl7XfpeZcyV2HVsohuefvlWC2UE2MomuKkXD6xeBFxQupK+i012dxk7O6sOoqvbUCPwr28ic3/R5HXPX89mP/xFsn59+1uq5zSnKg6jp/NvQkaxNDvO+aD/OJa3+DP152JynBRMZkJda8muKs4Pygow6LrvFf+77Aa+LnOLzqNoLVAm8feBKHpiLa3dSnxnhP9Bj3Pfa3bC/NcHb1WgY+/a8cu/NuiqJIcjZ77/R4qN+0BXc2y4zXh3fteuyRRiz/+mlWHD7IpkP7iAz247jhFoZ6lqPb7PgbGvF9/5vE3/Zu0h/5Habe9yFm3v0BBGDVwX10jQySPPIcZ9u7iH3mP6heez3WSokjd95NcdajvurzY3a5yHV0oARDuLds5+yf/hWJVasobruGQ3/8FxzfuQuA8eZWjtxwI9dJqQWBMMC/dN/MH97+J+x1LH5u05rOf259B59f9dpFsVfcZOds83omJZXX2FpowEKitYt+h5lJJcfhaowv65NM1TI4zQ5+XWzl9dZ2zLUqaj5FxmyhFp+gVErxtergZcd2l8LlZIYngQvbOTXPfnYhPgDcDqDr+l5BEGxACFikStN1/fPA5wGsDT2XffXn/RAldwi9VjZEBoJoNGq4hOODIIhG1zlVRpUrRmb5oolCLWYQZpsdXAl0HVKJDMVCiW6/zq6NDTz47CTx6sJs6IN7JjFJk2BbvKIX1Cq3bAzy85+f4NCEDsKlM6nlQn6uTOfweMmnU3PlZrvLhTsQIJ9KLSn4uBiFdIpAQ9MlKRUXQi1l0RXZKNO7/HP0CtF++c4ES0E0W+GiTITBWdYMkV25AC9d3HHVxu6LHbcwmyWXzBcI43R0rYatoYdacnzWq9WE5PShVXKINo/RsUsyz5Y8zailrMEzLCRnqxZpMFmpRQexhDuMfwOIEi1ilu3ddaxoDjKaHUBAIOh1LRj7pUIBV6SZ4aGzuNZuRp+ZYr3HiW/8HHlZoy/cgpSfQD6ym+vC9ZRkhf5cCUtNJn32OLLbz55qhUA4Qkd6mkhzA08ePoAjFGbw6GEauub56roG3rowtUqFVHQKVVZw+f1Ui0WD/14qIpnMxMfHaOzuJR2LIk6MY7JaMZnNhsVVIEA5nyc7E0Mym6lvbScVnaJSLBoOJRYLTo+X9pCIfZaHOtw/xINPj+BxSrz3bdezblUrpeowlVyKf/iPR7nzug5WrupmemKSjcvrWdYm09HdhiAI3LM9RDppYjJe5Gvf28NUooRgMqPKMiaLhXw2z1P7B7hpWwuZTIGDE0GaxRRxxUuldlXa474sY7d9zbrLHrvtnc28/1aBwGz1wG4RkUs5frCnSlNjHaHI0llV52zm2OWw4BTT2G0Ln/NsOksmk6et48qbWei6TjGbncsQK7JCfWvbgm3sLg+p6NQlbdESkxPomkYqGiV80b4LrjM+gz8cmRMnF9IGZ7iYnbf6c/n8VEqXbuN8HulYFG+ojsxMdEkx6YWoVSt878dH8DjNvPb2zfR0hJmcGWFl14v1gzcgCMISjUw8Bh3OHULNxy+x5xXhZYsXVtvslz12s5IF/E3sOvkQ9bpCTylOINpP35o7aCtn+O7K29g6dYKPTBzk/lAvn7/2Q7xj/9d5V/Q4gzYvabsXR2yYkeXX841Kit8e2c2/PPI32BWZH9b38kTjWvo7t9P7swm6qxm6pk6zshDl/VNH+VGwm8zkcW7ITSAIApbZeVcplRFFgVhzK5UPfww2bmHVRz9I93e/QfSxnzHy4d9G0TS6f+uDtJeKhPM5+q67AfvQIPLZ04yfOI70prcSqAvj+/zn2LrvWfapKvH3/DrlfI6uL/4n5tlzhfI5BF2jaf1G0j/9EV379zB0211YXvdmJgf7SaxaixqOYP3ff4h89xuw77iO7FOPUx+PsfqH93FycADlE5+k6jfGy5m3vwdWruZcIY/r4x/l1G9/HO+h/ax/6jFWpUdJjhykqZYnJUh8vmkLx1rX8xcH/5teucBH9n+NiqLwvvVvY1VyhD+Y2EdJ01BrFf7xkf9D37Y/B+Ba2UFoKkZJKbPX7cZZLBGvayQ1U+B8lLK/MkUYC+0lE895AzgtZkyCROUq2ANeTjB8EOgRBKEDY1C/FXj7RduMATcDXxEEYQVgA67Kk3UegmSedyCwOgwnhEqei3kBWs0oKS/gCUvmJZXO51uEauXcFQfDmsnOgTNJ3nTbKnbvOYE/4EMSJ1kWrLFtdZgHdk+TVWwka5e2ZjOj0NvdzIA4hTJpZLjPZ4fPZ2xrlTJKrYaAyOTAORxuN9VSiXKhwER/H97g/GrsQmug54NktpCOTmOdNQE/f65yoYAgCNiczrnr0JUqkrsONR9HPi9u8YavqvBCqxZnM8ECos0zSwm4KjSJV8TYldwhQ/zmMcavyVNPLTFGLTFm+C07vKjlWQV5OW/8fm/E4FyLIiZ3PUomOrcIEUQJkzuIkktgDndSS4wiWh0os90SJ3Q7nzoMX40ovHGNn85GY4yUKxVOpPKUHW6oVMglEySRsCZmsCsysUyNfNdqpo8eoiXSQKZSxKXLDFR1NF3E0rWcybERQh0rmB4cwORwoAMOuwOzycSuiJ9TsSmCJjPlbBprdJSJRArRF2BqKAWaQQVKTIxTSKdR5RqiyYQ7EERLJPCF7ZTyOSw2K5quzTX3sLs9lHI5nD4/+XSSar5EdGQQh9tLrVIhEGlgZmwEpVblrfduQxRFYlMxvvLIKIKqYTZL7D9wlj0nYtx9QxcPPDJO0RLh6MlJKuUqP3hqBEFX+aMP3zQ3rtesaufbPzzA6EwFwWHlHa/pwu3zzpXvzw5McXgclodkMoksWlGka009797cNUcBeYl4RYzdlvZ5Pu0b7t6O87EjpPJV3L6FVImf7z6FKApcs2O+YHnz9Wu5+frFx7zv4VOM5028/zaBlrYX5uteCJffjyLLpKNRXD4fipwz/H1nLSlDzS3YXa4FAuSLIQgCnro6YyG1BHRdJ5eI4woEmezvQzKZ8NMwW82YXlB9szocC7LOl4LD7SEzE+XiBKiqKBSzGTwXOFAUc0WGUwKeXImTJ4c4fDbOrdd2EYlc3a6n5+fz89SJBW4TLx6viHG7tZzkvx7+FGFdAUFgVSXD7594gC/VCrSnJ3ly9Z2k0mMApEUz5vgw9kqelCCyMjXC4bV3snVgN+KpFNfFzgDQodX4XngFX7rmA2w+9hPetefLNBRmqEkSnz32nblzr86M85p4P3bRmEuOr1zN8N1vwNZ/jmo8QaW7F+noczhOHccq1zj4sd9H6OhGr1YItLUjaipTb3gL08cOo//hnzG291lCO67F/vTjOFasRpdlHIIxjnfs38ORqUnUYJDia25j78pV2I4eZuKmW6iWSlR+/iR3/NfnmGnvoLTzOirf/m829J1h4t43IXV0Yu7vQ9qwmdSRQ/j8fnq/8WVcmsb2Y0dIvPON+BWZmNVK6/3fZWRygsjwADWHA3HjZgrxGMNNzdwUH+Pe4/0A/MHq13HU34bV5mLCZOPv172eLVMnsZYyRFvWknEG+N3xvbxh6wep2b385vH7CczSIRqsPsarZY5LVaq+ACvKGjtjJVrsxntA1VSedYIu2tiVlcmqZXxlmXfRgFmyvOSY5AWDYV3XFUEQPgr8DKOn35d0XT8lCMJfAod0Xf8R8HHgvwRB+F0Mcvx79Zeas74E1GIaBBHJ4V0yI6xV5zlQ85+V0KolJIdnAe1BMNvQytnzeqYrhqxCMpVmNCPw7NeOsqLZRsCuE2mowyJNwwskiGqSk8997wSKLoI0y0UTK3SELdQqZSw2O7lEAofXSyFrZH1zySSlfB5vqI5KoXDZAfCFWMoQXqnVqJaKaKqCxW5HySeMZhCzjUdEhxetnDeylUptzvFAV2VD7HWFnsNarYxWLSLZvWi1CpIrgFpIGtZtlktnyK8Er5Sxe178dt78XjBZDI/cujaUfBKtWsTkDqHrmsFBN1lQsjHDhaOYRU5NYHL6kVz+BaUgrVZCS1ewBJpQcnF0xFnfYguCKPHlfRM8FXfyO2um2d7bwERFxr1mE5WxUaqahsdiJRhpZJNTYkjWGcgVKRXPUee0Uxk8gyZIDMs6Dcu6MZ08hDh0Bl+1ij6ap66Sx2O10CZYGJNVopMxTLpMFjO1bJGWVRs5c2APnrZuAvVhqoP9c/ZolbKRCRYlw+miXCziraujkE6jqRqBSMMc/ScdiyIIAr76MInJCbyhEHK5CiKkZ6I0dS8jl0xgttpwB0JMDfRRE53c98hpfGaJrjYXG9e28rUHTlGqyuTzZV5362oOHhngzls38Z37nsXka4DEEGaLmQOH+piMFbhuczOjKY1aucL1KwK098x3OBrqH2N0eJLVAQvXblvODx8t4vKY2Lm5G5fvqgTCr5ixC5BJZRifTLB6ddeSojilVuPJo0Yss21zDyazGU1V2X+oj9bGIE0tC0VtHU1upFgRv//K75UgiNTKZWxOByazBbPVSioWo665hcJlerG7/AEjmzsbgMq1KvlUErPFhjsQIB2dwlsXZuzsKdz+oEFRm55EUWTCbR1UK5em5l0Klwqa07Eo3ro6MjMxKqrIo3uG2LQyzPvvaMdms/DMwRGGMmbGJ5MLguGjRwdIZopzWo7Lga7rqPkkgsWGZHMZAmarE5TqZTsmXcY5XjHjthmVMgLfi6xhfXKYR+q6GeraQSo9xhd+9il86CAIZJwBymY7z4aX8fPWTQyHl3HLM1/AbXXwwbHdiLMXKQgCndlJVp55gjdNH+GMO8Jv3PR7mFwh/veT/8yO0gwH7UE+edPvsuvs43xi8EkSokj2z/8PUjJJ1WRC6O+j4YabCfz7P1OXTnH67e8hHY9jl2UajhwiumY9xd/9BOaWVjzRaeyf/htaZmLUBvtpP7iPiudnbDp8kFRDA4c2bcM9NsLUyjUooRDWtevJNjRR2raT5mUriA4PIja1cHD9RoRQHaZYFL1SYmjDJrb+w19Tk0xodjvjDgc2rw/prnsoOZwkRInoipX07N/DeGs745/+V2xf+xKR0WHigTo6cll6P/AOUsE6pv/ty/R/62vc9M2v8vsrX0tCF1mbGuajJx/kcz23MOIIErb5+ePJwySf+x7b0qMcsnpRfQ0Icpk6ucB0LcceMc8G1cGUqFLx1OEZPMa2wLY5qlBOLnGwPEE7GsvNPrKShOhvYEeqhnOJqvuLwWU13dB1/acY9icXfva/L/j/08BiRcRVhpHxtc51PFoKkt1riAEuCKi0amkuQL7QPkw0WxHNL16FOFm08sXHEgiCDZ+9xlvv3cqxo+f4u68+B9bL+wPVxIUT5OZeD9dfs2qWwmBH01RKuRyiaCIQaaSYzdHU3cvkwDnqmlsucdQrhyhJVMsldM2gkvQ0exhKS2xuqLC/H1DVOaHghUILtZQ1MseFxVzE817Oi9piA1qluOBvohRSiC/YmerK8cseu7quoxZShlhQrhpew+kpwzs4Poo51Dp3fwRBRAfM3jBKehqtnEPXNSz1Haj5JGohja6roBsWdWZfZC741XUdvVowjjX7cnxspAbIfPo5C9/rhXqLxORIH+VUlsb1W3CcPUy9348gmBmt6ZQlC+2r12EdPE3EKnHOGUJPp5k+dojNATdmk8TxVImM2Ubbhh2UxoZI5fJkIp1oqsLM2Agtq1aTiU6RiUXx220UU3EGzxynbccuCjMxAg2NpGPTCAgL3E90XUfXtTlBk8vnR6nVqFXKCMDUUD+qLCMIAopSw2p30Lp8FelZN4DMTIyZ0WFCTa1849tPUJTCNFkynBvLcnbwALItQk+oyvr1PVQrFTyjKSajGaqSGzUV4wNv2ozZauXouQRTRSu90TSr66s8J/vJ1ebHbyGb5b8fG6NWlmmqtxKOhHjfm7eh1BQc7st0Wrn8sfOKmHcferqfvqQEDLJmzWK7RpPFwut2NRsWYGZjjug7O8LPTlRoHRni/W9ZGAzfuGvNomNcLuwuFzancy4LVMpnaVm2nMn+szR0Xp7v6MW2aRc6RQCIksloxSyIBCINJCYV/JFG4hNjyLXqC1IirgSCIJBPJbFYbYyOxBjKWDCfmULWJdb2BHnNtcvoHokuaujyzJEpUqrTcJu5QAytayq6UlsyUaQWUrMOSSmwuRAtdnRNuYyOgFeGV8K4HZHslCQzk3YvX9/+Hh4Z3E+0cyu9px/nltgp6gU4X1V+29Bunu7cyYyvhR2Tx5B0jePt25hpWc32H53ms5veTKiQ5P/2PcT3e27iVPdOKmP78cllbKUs9loJr2rYp4XkMq3TfbTnYwAEVRX3Z/+BfKQJ39vfjeOf/pbGL/8HkVKJZ2+5g9jGLbj9fhyHDrB59zPsjzRS3XUTsZ8/hX/gHGv6+zjRvYxYRxf6tbvw+AKU3/VGBt/8TnJr1lELN1AZGqCxq4dzzzxBUJDwZNNMjg7jcLkJ7bqR6I23Er7+JsJvvZfp//wK44k4y3/3N3GpKlMeL47+PpafPkn2+98mUi5x4B3vJbpzF+MrVuPuP0Pl7Gn88RkGbrqFwKatHA7Xc+MX/wNbIsbwjx/A/fo382Ayyyl1BfZqkZboaf6/DW9Bt9jxiCK/2f84DglWltMMexsNgynJxN2nnuT6UoK/okh/KIBzJs2yosqAFkWub0OTVcRZWdtjQpqBlmaUfIIteZGVtjCrUzk8tvDiP/6LxK9UBzrBYjd8WJ8nHS6YzAv9cmc/U3KJl8tgHICs5uSxR/bR0+an0W+mXC2Qk82o4pUpdJ/rz5HKPcddN65kZnSEarlE87IVVEslUtEprA47qegU/nAEi+2ldcdLTRtULpvThcPjJdw23wHu127sJRZLceRsEsltN+znlsgeSK4Aaj5u+FZeAK1SMLqulQzT+Iuho1NLTcz1TT9v9fNqg1pIIZityJkYosVmVCw0Db1axBxoWrRQMHnqqcWHMXsbEK12gx+cN9pU64rRsUurFo1W4YUkzI4/S3Ax/1JyB40X46yrh9fhwAvUoVIeP0drs1Gi1jQNmy+Ay24n2neGsFImIdjpIcn+TJbgyjWcHerD65TI2t24fH5GTx6jW9KoqwuQnBwmrYNN15g8cZSIpCPpKnmrk5WSRtP6VUxNDRERBAampzDbbJTzWSb7z+EOGn/3zExs1i4wuoDHXi4UaFu5munhQVqWrWRmbAS3P8jM+CiqolAtlwg0NOGrD6PUapRyGVpbQiTORFne28gjh+OYfO0sc2d5wz1GN7mBgUn2D2tEk9O88bYVHD06gKrBE0+fYEO3j3A0xf1PJ6jpZm7f4KSrp4Vn95ymXKowk62yrE5neKyIXbCgaRoWqw2LFZKJNM8cGGLDigjtHVdW/n8lY3mHH0jT0nTp7OHFQXJHZyNbJnO0N700nutSuHD+l2s1xs+dwWyxUi7k0TTtioNVdyBIKjqF2WKjkEmTS8YJNrXin20vLkomUtNTmC3WOUeTF4vzLZvBoAwFG+fHyZZNXhy2YQo5+NlZHftohnVru1m9ZrHd5u3XdJDOFHjo+MJ3oZKLG3NDOT/X7v48JLsbOTkBmgqe0GX5xf+q4pMb30rM6uZDR77H6w99B1spyx6zhXdPHpqzUjuPRlHn1w/8N5Fani21PEwc4Ig9SGz4Gdq0GmWrh8qsoHvX1DHctSI9lQz+cpLbDn5pwbE6lBL/cOirOAUBZgXk6599mh5JYrzvNK2njuOY7dRoCgRo6u5l9PRJzH1nOLXtGpb98HucOXsK22/9HjO9yxn41J8w8UefxGa1MjM6jOmxR/HoOs0/up9zMzMUG5uoVWukjx1h5w++w+hrX4/r3BnuPLiPtNNJ8r5v06DIFJ98FJfPi3L0OYJPPDb3DPW/70OYr70ex3veTMts2/vGxx4msXUHph3XoN11N85HHyZ09Dmk4QH6fAG0ujCyruOtVFj74A8429aOJ5clpExz88h+nmreSDbSizs5zr8/+Y/Uz77ivr78VlKhdj774J9i3l/Arak84WlGUBS2j01zwqZyMGBldc7MDpyc0BKoqky/QyJUqeCOT6IpNSwmr0F1snnRdZ2fV6cwI7DDdnluXJfCr1YwLEpLBlYvhMvplrYURLXCa7cEmIwXODT+/KUoQZSYyilsCgRxm6b4wFuuZ/e+MzxxpnZF58yrNo5PwfEvHeDDd7XR1Lt8Lvv1QtY9tUoZUZSe15+zXChQzGZQFRnJZMZXV08hk8bhWXiPAkE/TruVxsY6NkzFWb5i44KX0HlOsSCIS7dPFUR0uWSop5aAgIDkCiJn42iVwqt2YhYtduRsHGt9+6LKxFLQK3ms9Z1U4yNY69pn7+88rUWrlpBmzfJN3udfFV/XJbJ2RRdf+kk/b/2h8dm37w1Sd1EGUxRF6rMxJlIi9VYzJU8YPRTGOXaGbqeJqcQMAYsZHyrT1QqqXKN9zXoSRw/gzJfoCbiZzuSIRPxYZjODe+J5AstX0XfsOXzlCgmzHZdS5VqrCnqRg5KEtaWBpqkBZgIhrHYHY2dOLaLwtK1cTSYWxWK1MT3Uj6ZqiJJRwbA6HAvGZGi2UvKahiZ2bEkhmc10dYWJxgv09vRgthoLtmXLWrk+dZLhiQrP7DnNyYSDg6eOoHjbafdU8bqcKA4nAXmaVWs2s+/ICPuGNezVBGWTj/e9poWRRI3BqQKPPPYct9+6BYCzA9McnxYRxJlXVTC8YX03G9Zf2T42u527bn1xfsbx8bHZdsje5+X+Arh9fmx2B9VyiVq5hN3tpZjNXJaQ+DzMFuvcAmzs7Ckau5cRHx/F6fEsCFaXgqZpi5okLYWZsREkk5lqqUi4vZN0LLpoG1GSWL6sGQQRr3+cluZLVy17e42x/vCJpXyGywuamcxBMs06K5WQM9EX9S79VcGKscPEtr2d+1ffxdf3fwGAd6XOLbntKbOLf7vho7RPHGPlke/gFGBDOQnlJIjwpWf/FWk2uL0jPcwd6eFLnnegq5fxP/sUwf/4F9bue3buc6eqsvzE0QXb9v7kAQ6aLQQCASwWC/k//Usm/vYv2Przp3j4xFHMokg4nWLqh99natsOOtdvojQ9xaltO1m1fw+WfBZbpUxgtltt37IVuN76TmIjg8SOHWF601aq4QbWf++bWMfHOHrTrbhvfA3W/XvnrsH02M8Qjh2mPjMvCm2ORTH/2R9SNkmktl3DRLCO5Kc/h/nwQcyjw1i9vjlmaXN0iuY//X0AtksSWZebNxz9NifO+qnXZeqFefbLR088wBOBDr666k5Sgpmh7h1Y46NUg15uGY9TCEawpWN0mb1U1SqPNniwxMaQA+3Uy2k6BDjicfBQKcEbZTNus4NircB+nw1LtcSOl0i0+ZUKhq8EhgtCDcnpfwEv4sXQNZWV9RqJdJmO9giKOgnjS7c2vBDDWSufuW8Aq8nGgYN9DE0VON/f+0qhW9wcOTVBe65Kc8vSk2I2PoOiyCiyjC9UT7mQp1YpU9/a/ry/zeZwUC4U8IZCc/6c2fgMktk8l/lIR6ex2O2olRIrVr5wI5C54+s6StYoEV0stNOqJSNjrGuYXEFqqSms9W1G1v7VGgxbHZi9dYuoOxfD4PPF0eQateQEksNHLT6Gpa510fFeCF1+mZDXTKVcoZAvoisaViFHVbp0ObS7PsT53N5gOsdUXxyT1UJPwEOLoCM5jX2DDhtnonGyR+I4Vq5jemaaQr6Mumw9w4OnWeYzguFKPkd8YgytUiJdNiN1riI/MTJ3vrp8kuFshlK1jKVQoFzI07p85YK24rquk5gwbNBCzS2kY9MEIo1M9J+jvqUVWa4Ram4xfGWrZbx1YSSTyegmZrZQymVpbG2hceEtxGQ2s3ZFCz/vG8BdrrA6VOVoRsKWm8BX52dgtMAtK3xcs+tOBEFg7fJGKrUJJicU8tFBTOZW7r22mW/vTnFipMjtQLlUov/cOCs8ZnZtefmaWrySkc/m2XdkmNW9DTQ0Xtoe7VLIxmdQZBkEAZfPT63ywnZlDo8XuVbFHQyRnJyYdcp58Rkim9NFYnIc6RLvjHKhQLmQo1woEG7rmG0e4yWXTCwQwS2GIUy22u3kU0m8dXWU8jmqxSK+sNFtr5TPIVerVEtFVq66/DkXZn34NQ3J7kawLFwkypnorK+7C62SxxJsQZ31Pn+14v+LHqVln0K4+vxWdkftQU7b/Kzq383RyDJ+a/1b+MoFYjgA2yU6Cl6IWDDEyB13Yz52GDmdQpJrRJ0ufMUCl5r1A8UCt33jy8b+gSBnfQGqkUbyNju3fO6fsM6e9/of38/Q/t1E122ksn4ThT/9FCfe/3Zyn/1P1KOHueHvPgVANZNhemiAajJBqFrh1K6bsKxaQ+6B+6irVVnxxCM8Go6QWL4Cx9lT6C43wif/GvEbX+HCuu5Qdy+xXTfR+91vUPeTB0h95TvUZBl1205av/pfrNj9DDXJRN/O62g4foRQzhB/H3v3B1DveC3tv/UBdsUXGYOwoxjjJ61bONR9Hffu/jJpi5O4N0Lv+CgHvT6WTYxzs6Mdl9WBoilsjsco1ASOTw+g1EzscrQzVZoiXtfARDTHCrODQ3Kchukc2+zNXPJGXyZ+qcHw+W5Iz+ev+2KhK+dbW75wNu48zJpRPnGZVN58z3UcOXqOz33vJDISSJdHdxDNVmTgZycrnA+EnWKFsEdkMCUtyZ9dCoIgsH/ayf7pEhwYAUYWeALruk42MYPZaifYZHAmBQRU5flVew6Pl0qxiD/ixmQ247XayKWSODwe8qkknC8DCgKZmRk0RXnejnYX4i++eARUo5Svq8pst6P536trKqLNmJANzmv9CwaJrwaIVseCIFbJJ+aax5yHYZlWh56enrVVM6HPvs90XUMrZREsDtAUQ/RyEcxahUZnlW3rmrFK0NLZyqe/vJeDU2m2drq49YbVfOk7e3nfD4qURWP/b9+7dDlZ0HVUt49pVSGeraJoKissAhGPi4lsnmafB6/dxsDYIGqliKxqyONDhHSV0VQWl6DhtZqwNTQhZxI0+b1ogyfx2a2AmUyhQDSdoeIJEVi1nvxwP5VqjUSlTF0pS6dWYKixB0WWscz6CKuKgicQYvzsaSw2O9lknJZlhnOBXKsssAq02u2kotPUKhXseTcO9+JFQKAuxLtvqWC32/AHPPDwUTxOCzVZpSBZ8IX8cwFFQ2Md9zTW8e9fmEaKLOPg0RHu+bXtvM08itVqTKFPPHmEoawVYTrF3XddleYFv3I4cWaCPYMq+dI4r7/MYFiuVSlmMvjqw2iqij/SQGJiDLlauWxx8Hl3h7qW+VWPUquRSyUMCtgSf/9Lob7l0lZruq6Tmp7EZLHir4+QmRV3VkrFuWYcl0KwsckYj975RX8+lcRXFyYzE8MfjiAIIqVcjmqpOCegvmxo6qw9WhLTRfODIAiIVhe6pmCpazcs1MRXbR4MMH7zO2bm/bD7LG7GbF5uyY4vWCj81/JbGWzdyJ1P/htH/e3E7D5UXUcSBGKIeDWVuCjRwuIKp6brDPauYHzTFgrtndRfswvT1ASv+Z0PMx5ppP/L38J0//doeujHRNLJOYu1pWCuVCi2dyB193LAaqWwbiP1j/yEax77GbG6enC62PnYw4wMnGPm509hRUf46Y/wTYwzEY6gqhq+VAKvy0MtOo0kCKz97D9Qttmpq1WpAuMuD5X6COaODiZuvp3897+FcvYUNrOZiqZhFgREILVxM9z7RhJ7f86yM6fw/cPfMPHh30aKTtN+aD8mQaB//UaK/9+fMfL1LxL67jcBcJ49zVRTC6lgPS1LBMMAHzv7MGPDe9hUTtKsyxwML6POuZ6fOJ1EZHDNOkuYRBM3WZo4XBnmjD/IuWKO2yQ799TqmY7lWGarR1UV9joFVNXB8nwGbC9NBPqqfSIMnnAcyWko8JXUpGFT5alflClWKwVQZT54zzJkReHLj07zvQcPMpNVkKWXzjO+ZqWfHduW85/f2EO0YqfOVmVNh4fdZ3JUufIXZzoWJZ9K0tSznIlzZ8mnkljtDjzBEIIgkJgYRxBFnF7fktSKiz9zuNxk4jMLJgl/OIKmqXhD9WQT8SUdKJaCYLJArbykcE6yu1HLeUSHb9ZZoYLk9M138HuVQ8kn0OQqksOHLi/krUlOP2oujqap2JpXUJ0ZwewzaBBqLoHk8iNnYpicPuRM1GjKYXMZ2fZaie2rA+zY0INktXNg3wkePhSjavJg0atQKHDm1CCr2xxs2LiCz337CEUuTbnJWxzUt3aSP/QsebuHptXrSIwOoqYyJCPtjKcS1OdKtNgkzgS7KBeL2CsFaghUe1YzMjJEvbWIf/AE4YjRNa81aCyyZpIpTksO9MZ2LKpKZmoSNZPE2tpDsKGR3GAfx60B0mdP4fIFKBeLuPz+OWGWtz6MWqvh8s9zN01mC4nJCRxeI+gxW22YrVbCbR2GL/clgqELfW7fePdW428ky2yNJ6lvnC8h//TRwyQyVXZt6+HJIzEidT7u/+lzrOgM0TZrPbZz6woO9+9BC3Vwpm+SDRsuT8z1asK6Va0UK0Os7jXu3e69p9l9YobX39hFd89CsW+1UmFyIobbZojU0tFpREkiHZ2mrqXtJdsknRfFpaPTONweqqUSxWwaQZTmLPuuBOVCwRC62eyYzGay8RlMFgt1La3ouk4+lSQdnUYQxUUtocHorncxlUJAIDMTxekzgn67y0Upn6Whs2tOQH25EG3u2QX14gWE5PSjyVVEs33WTcKxqNnRqxVDJidf6r2RcZOTWMcmIj/9FGvk+WzxWweeYXf0HA9d/yE6Jk7w0TMPIQkC58xOfv/G36Nu4gST3Tt4z88/z8pSgnXVLJqu86ivHZvHjOXT/8r/z95ZB9hxnWf/N3CZ78JdBu1qJa1YFtiSzExx7IDjMDSpm4YaapM2DTRp0jDHTeKGDXEMiR07tmxLtixmWNAyXmbGme+Pu1rtaleyDElt93v+kfYO3LkzZ855z3ue93lSXccwGg1oP/sJ2rvKhj+DtXUkd+/EmM0y+evfE/reN1n91F/OdJn4F7TjPH8TiUcewuLzUbTbyb/r/aS2/IWe2z9CvLqGoZ7jbLzj+/gu2Ez4M58ncPQwC/5wDz3fvYMcIHcfY+3t70BXKgfulfEYTGVtt735rWhuegNiIICoqMSeeQr9+RtRLTb0197Ik82tCH4fupYFaI4cpP6jH2DB0GBZlq7nOOqzW7H0n8CSL9M+G44dJvuj71Cx9xTlouLYYVL/8nnCAF+e33ioWi1SnQ2DIHBDeJAbwoM8fcn1uEJRrNpT781ALsRz2iznS3oakxmsJQ07i27yqsLFuvpy/yCJuKIxQi2LGBFCrH0xDWQGXhHB8BmzjC8BM3nCqqoiyBqQNHM4rKpSQi1kAYHefjeIEoKspdsv8HLdnkMDUWLJI/jSIoiwsN7EhRs7GZrczUj8+Y8/HaqqYLRY8I+NIgjCtMvXNGYsMz4fzxjK1eCV9XMLsARBIOr3YausIjgxjiiJOE//rhk4+RzP9uxOFnUUM4kXnLl/1UMt26Xm/cNIJvusTYIoIduqEVLR8j2xVExXhJdyZQkltZijEPYgV9Sj5Mo8ayWfRrZUcqTXjV6vZ3jYjaAzEsiVJ3FrqpNcfs1F7N15kFA0S8+xXpY26NgzWuAtD4WwSmm+fLGdauupYptmoUC0/xhLWpvI5fOMD3Th0ogYTQbGRgawd3SS9U6g18ko/kmyiohRFnDqZfoGeikpIIoCNU4nXeEEOY2ORXIJk8HApKDF2dDMwKH9GM1WKlpaqVUyZON+clEvNkXBF5UQs2kQnLSpWTIzCqLmK46yVlQy2X+CXCZNzpLC4arFaLFNBUK2aaOPQj6HIAgYLVZsM2x4J8bc2O1WzFYzskYzKxBWFIXjvROkFAPXXtTOh965kMOH+zjqKZAtBJBEkVg8xdq1i3nXzecxMBqic8nLp/LyaoLJYuLKS04pRaTSedIYyGbn1k089nQXh91wRXuRTllCqze85OK0mTBay89dnsoap+MxHDVlJZMXBxWtXk/E60XWaamoa8BoKb8zgiBQzOewu8pB/bnCUTNX+16nLxdI6wxGon4fSqmIye6cpX4xH0St/owrbIKsRZK1FBPBU7Kj/0eC4WPWWg50XEJn79Ocd/gh2nNxEE9NtC5MTLIy4abU42BJdJyV2TJ31i/qEJJBTNkEpuAIT9ev4teta/nSlm9QEgS+c8mHWDq0k1t/+0uqeo4jVlezsLcLo1Kix1lB+oMfRcrnsf35Ica3PIa1rR3f4UpcoSBxrQ5/fT0LhgYRpyZ9bccOM/ypD7NkaBBbPsfgQB+qVoNZFHE99jDp178Jzbrzyfz8J9i6jzN45BCyoqIFzA/cS+y89VjzORz5AuNNLex/67tovve3tIwMMdDahunWd+A50UMmm6V15WrMDz9Aw12/xFdRjVwskH/3+wjrdJQ0Gpw6He3DQ9PF2QZVZd0f7p51Xy2FAubhQQ7865cYf/A+Nj23jfpEgvjn/wVzKIjf7qDnfbeTTCSxjg7hGh6iub8X3ZSCXkCQiUsa2qaKGSsM9lnn7y6E8BgMhGSBt8pNqJLK98QJijoDneEQA3KB5YKNt5qXsM8fZgHmspDfS8ArIhj+a0MQBESjraybK2sppWOIWmM5QBZE1GIeVVU5OCSREq2zdBuXVhdZ21nNg9vdxEsvbjk/kNURGFFgSlli70CKMe8uxuPyTBYBAJKSZ3mjln5PlpQy//eVjQsmcNbWkYrO1da0OCsoZDNYnE7y2Ux5GXKKl/ZCcJIeEQ+HsFVXl2kULxOmFT4ML49G4KsBos5AKRVB62qbfhbFeGDKfW5KQ1iUynrYM9rgtHOdICJZHRQCY0hm+9RHMsV4EK1RRFTybF5dS8uiRfznT3dgN2tYt64T/8Q4Go2WG2/awLF9h7j6ijUcvXMH6XyJd79pMcP5NFUz3BntJiN2UzmY1ut0LNSdWr3YWK/HPzGAxaBDkiTWV9lRlFPHmnJJTCgscpYnozmtHqnShW+wiwX1BsyCStzvodqgQ3TYsQ4dx1U/m4ZTiqWRVq2j1HMIRdaQjsdmFXgWCwXioQB6o2n681KpSNPipfhGhsrXbTJNTwRTsXL7T4RDlAqFKUpQGIvTyfjoJP/z+AQuXZq/e+vm6Qz0/X/azUQwx0XLK0gbGqiW41S5yqsjy5a2ki8M0tpcxe8e6SZaMlDvmqSpuZ6m5rkBzv9VXHHpCtatCOOoqiQRS1AoFHBWljOXDTUW/NEA1dVVmKz2WRq8iXCYQj5bNtGYZ5J+Ljhd19fuqiHi86A3zR8Ehj2TZ80aG8wWJFkmn81ir66eMuw41Xc5aurKdIeaWlRVnbZwfr4g9nSYZ7jmhb3u8nl93hd8nvkg6s0U48HyuPd/BNeF+rE9+W1WJb3YUUAU6NLbOW6t4xZfV9mxTVH4ZN8T0xxdgGOuRWRttSgTx0k66iEeZMnQbhrySYxKkauOPcKCjI9spJXkTW/AsHQFo9ksy3Y8y8QHPkQ2GqPQ34vta9/FsONZTFddh294ENeWx+h901sp3fo21I/9AwuHymYVGkGgo7d7+vvbRoem/995YC8NRw6R12qpKOSpOHKQRYcPoAKiIBAfGoAqF4v+cBeCIBCvqUO76SLcO7fTPDyIORaluG83rkP7Kdz6dpT//Dwr9+9BFASqEuUsueanP8Zy511kn95Cw1NPMLSgnQVDs+2/R5paKGk0tA2WrzkiQGXLAhLX3ADPbUMQBDoPHwCgv60DzYWXUhwZIlzfgOZDHyf/lX9n2e4dAHxpxRsYrlnMV7Z8ffr8PVk/TxryXJTV4jEZkcx2FiTSoCvHcDdmjRSzCsfkAgerHRT9US7S1HIhL0+f+4oNhl/ubPFJealSKlKWnklHypQJQUDjqGOZq8Qt15/H7x7Yw2D01OCv1wpUVjqQhNMdJV88ioKOiRRzAmGABZUiN12zmi3bjrJzsDRr20x3usqGBhLhMEarfc45ZupoJiNh7K7asu7rjExEMZ8nFYvOypDNh0wySSmfJ+rzoTuHLPPJ6zsdpz+7F6vw8WqGqDPN4vuWkpGyNF2qnI0oJQIIOjO5yV5kZz3y1D0q5dPlrI+kQS3k0Lpap1YzQDLZ0ZcSvPvmleiMJtwTHu59+CCKzkqulCUUy3K4x0OtQ8fxI70815Ng98BuspIFQVTYeXCEQqHEd7wa1FKROnMBb0rk7lvOXIRUPcMsoT+SIC1p6NCWV2DSFWUOpDEcp9VppUMscnjoBGrrEoLBcRY6ygGEoq8kn8+gr5/7PXWSSmD4BEKxSG7JapS+LpYUYtPbn8tLVNTWExgfnQ6GHa6yZvFMFYFSsUjE56VUzE8ZMqhlrn0gMP0u2GwWbEKCiUCBJ7Yd57orV/Pre7Yz6okiGuxUVztY2+SnubaJYr7smCdrNKxftxiARrtCemScTPb/yOrGC4AoijiqyvflVw8eJFHU8MFblmBzOli7poOOlgp0BiPJSHhW4KooJYwW28s7+RaEM1rPl9UnHKTi0bOeQ6s3lM2OZhh2zDz/yUA64vVgq6om6veiM8xeSYuHghjMZjS6sxfTRrxuCoUCEa8bu+vlGexFjX56HPy/Ao0gcEnSPeuzXy28nGNtF9D4xH/RkIvzwcs+RjYd5R19W3nXlOLEleMH2VK1iP7lV2Od6CbZvoG1u35JrVJe5fj40DNs/6d/Ib5oCXZXDbk776DxwF4AdOOjVCTiyN3HiFVVU7f1SXRPPkbjFIXCuX8PQa2Gqilp03FXDZpCgZqztHdrsQDFAgCeqmqG33AbDY88SNPEGIHzNxO57EoOFgps+v1v6dy7kx2f/xf4zBc4Wiqycud2ar72RQBSjz2McUrybSYafV5S3/gKtaPD9H30U4h1DZjf9SZORgeqqnLiY59GU1VF9dvfiEUQWNXTzeH/uQPnacooA4s7ibUtxPWet9BQLJFyOomNXEXViZ7pfRYGB+m3VPP1lW/gvarKgbyX7bocWUTSapH1OQ2RQJQqvYtiqYAsaWjTTTm4pnwc9Y0QzSigffmSDy/d0PlVBkHSUErPdZ0LJop0HR8kkp69Yf+4wDd/d4RI8aXPzM8FQ0GFBx87wOGhMxuLnITF6TwjDSIeChL2uinkcuVO+TT3o1gwgNnhfN5lvUwyjqOmFkkjv6xi8//XkfcPUypkyHkGOGUpLqJkE8j2mil76jIknRFBBabsmZV0bFZQnRX07Dnq5o+P7ue+5wIMRMrWlGnVwN07YkQzAhdeso5YRiVQtOJOG7hqicgNK3TsG1U54i1nihZWKnzgrRs5r2l25iiXy1EqzZ6YARQKBeIaA2JdM7FMBqPBgGGoh9r2RQSMZZ6u2WjApteT8E4wODGBoigEEwkmQxH86SzzGU9pRIGUKJMVRELHD0FVDYORU3yiQjZHyDNJLnNKbcDicOKsqZuVWUuEQzhcNWh0ehyuGpw1dVgrKjFYylk+AKvdyuuv7MRhULAapXIgkiwi6MzccoGD7sEA7kAKs17km7/Yxb0P7Z51rZPhAgVbC8/s7j/L0/7/cNl1VBsVdPoZVsZ6A8lIGFWZTV2zVVahlIpUvMis8AuFyWYv84nPwclNZzSesR/MZTKEPZPk0mmiAd+c88UCfgwWC7FgcN7jT6KcYa5Dq9XhrK2fduH6/3hpeNZQyXWbPkQyk+CN++5hddKPVlUQs3HQmXmmZf30vpOmCpLOBuz+QW4feJp1fc+wJjo263zVTz2O9S+PUH37u7jskQexTamfXHTXr7j4R98h8/o3Yly8hAX7d7Pk8EFGVq9jy9e+gy4e4/xf/BR7Jk1EEBj+5o849k//QmlGX1hSVXLK3KK9gqoSaGlDvP51hJYsBWDRH+5G6unC+I73MNnQhCgINIUCZHu7mcwXCMsyKVlmqKISd/siktq5KwNaQSBnMDB+1bUY7r+XYixC93tvn94uCAKpSJhkOEJGI08fs/7Pf2Tp/j2zzuW59kYKf/9hJFlDUyJGx8gQ9X+4m+oZwf4HJ/bR6e+jPlIuaExQpGBxsiQUpQYdB3UFqtDyYGmSH2v8RPKneN7eYpyiq4Vey8s7sXvFZobnw9kyjqVsEjWfLRfJncXAQZwqPDod3rSO+/cmOF2fQxBE0M2/tNZoybOs1cbWoxGyL1XXYwolUctRN3Ou44WiWMhPuyrNlxERRIFY0I/2LBkKAL3RhG9kGFF+aYScvwYv/NWGk/Jpglim52jsteSL+XJxXHiy7Nin0QMC8pS1dSkdK3O3BBFtRcP8xYaiht0jKjB/oZg7peMX9+7CnxTQARd2mqm0SVitJpa643SHyhM9T0zhyIEu1nQ4+OSTbiaSOn5yuY4BoxMpFkZRVRSNjhVaBU8mj99WRd7XhzkepKauhmKxyOLGesaGe3FIAkzRO5q1IgmtjXSDjuf6h7EuW0M0GKCqZQETA8dorJjNFU3lCsgNzZRUhYZSDm82O2vWvl5TZChXpEEqcLIMMeSeRBAFtDr9dEBsr3YxMpWNEUUJe7WLZDSCyWabRb2QRUhpKxjxptksCKxb7ODxoymOjGbJZwt4UhqSyQyioCKKszMqN1yykG27BrjqkmXn1gheQ1AUhYce3Y8kwk3XrT/rvm96/flzPjuTRTEwR/f8JDLJBJlkAkEQX1Qh3JlwtlqIc0U6Fp3mJc/X52p0OhLh0PPS1WyVVYTck6TjMWzVrv8fDL9E7DNWccJSQz6bQHHUk0hHed/AE9zr6uRPLefznoN/IGp1sSxZlgSNIVKXCvHhA3ezLOGhtZDm8u6H55x30dFDLDo6/xgmCAKLv/1flDQarILAvquuw9/UgqmljUNveAtVP/wWesCqKAgP3ENy3QXsfMd7ufC3Zam1XW97N/l152P67S9I3Po22n/4HRzuSfb/x3+R7TqO49//mSWH9qOqKoZ0imW/+inhbVtoGh8FQaB5bJSj46PoP/wJnjy0n6ZggMDmi6mqbyB25x2sfei+OdecWr4KcdkKmn73KwbCIcTTbMfbnnqcXGUVjkIRBAGvs5Kuj36Sqsf/zIqd26f3q/rDPXSLEmJrGy0BH8cuvozMJ/+VxL9/ms7DBwGQBYGiwcpw0xo2pOJcKNewL9hPf42LukiKkL2CgD+CqIKoqMyQK+Z8cyue8QHqRQNnqQN/wXjVv2UnM0tqPotkqSi765yGUjpGKXNmvUG7lMEivnC/+RaXkXVrF+EwzG8scS6wlsJocuUlYJOY4U3nW2l3Fl70+U7CYLYS8XqwOudfvnXW1M3JpM0Ho9WGpNFgcVSQCM/lJ/9/nDvK1d6VKKUCCBKZ0aNonA1TXHZdWYLNYCkrRWj15UBYklGyKaR8FKuco0qfpdV2KqNqlrJ0VitQKlAtx1lijaKeViQqiBJjST1ZdFQYFTZesJRgIEIxl8NhOxWMpBQ9h4cSIOtQpjofURRQ8nky+TwpUUY0mSkpCgIQDwZwnreRlLUCVVXZn8hxICdSZ9RSbzvFpxQEgUI2Qz6TJqk1kJwcR0pEKY0N4jTOXXGpspqxDR6nQ1bJl6AqGaHVcSrQNxn0LLfoabGf+kxVVURRIh4KkZ/RiUuSTMvS5aTj5cyyUiqSisWmDTgAjCYD1Zo0rRUiuUyG5cvbWNtuZG2nizdcu4IPXNfM8tVL2LyiCkmSyabTqKrKM9uPEUsWeO87Lqe+8f8OV/hk2yvmc/RM5ugZT6GclsVKJVKc6BmaN/MP5aA27HXPOe75kEkmsFfXoM7Tz58rktEI7ineo6qq+EaH8Y+NoMyz+vFCMM1LNs4/Qhuttjmuc/NBlCREUaBh0ZIXVJD3/zE/fttxGb+74F3ENQau3/YTPn+oXAwW1FvxGxz899WfojafZF06AMC/LXs9H77m39ihMeNpaCKgN3Ds4suITxVj5oBjmy/BV1FJWKdj69XX4zHMndQ1eiZpGRuhpKrErnsdmlXnMfL4o1jbO8hPTYgkQWDZYw9jKZUQZuhqC/kcpUyGyWUr0Da1UphKWiklheKatZQ+83miBiNHN17E9jvvImsys3RfWfbsJHTxGNlUkmyxgM/hQHf4APmHH6Byitd7Ojq++190/OP7kO12nDuf5by7fz1r+8qd21n/pwfKPGsgZzQgLWhnYvFS3DMUVFKSSMWGCwi9+W0AWDxucrt3YDltRaQpOslyyYtiLCFLGi7CzqZ4kXXGRt7iSXGRpoYLsFNTFIhQjokGcyG2l/y8zriAC0xnlkF8MXhVZYZn4sFH9tI74KGo6JF0xinP9dCcgixlilupFnKoetOcpSs1l+S9b1tJ0B/i189GZ21rsWbJFsCbmT97uqMvRffIcwQLJp5nsj8vjGqcf3zXJnxjE9y5LYpRq9Le3si4N87AS4w7DWbz87oizUQ2lSKdiCHJmjkyaqqiPK+rUzoRJ5tKIooSqqwjk85S1zB/5qaQzxOPxObd9lqGaLSTD4yiFPIY6hchaLQUox60FY2IehPFeADyaYRp22uBQngSWVRRdDaW1wm0tFTTtrCFr/1sOwWNjQ2LbGy+oJOf3bWDixcZqV/YgXnrAdKqhvNXNHDw6AhLFjfzp90+ZFElX1T42a+e5LbXr8XjDvFcf2GW1OBIXMd/PzwAsgFBApvJxDpF4bjRBHWNaPqPY6qtxmSEfm+MiM9LweuGtiZQVLL5PD25JKtcuukMmMVk5CJVZVKBcNsqhLEhllVVTW9PZbK4cwVqdDIWg4Ej8SxqTQtMDpJuW042HqWNcqCSzWbpLghoCjmWO8vBcCIcJhEJI4oiDR2LiQcDaGsMxMMhFKWIb3gI85Rm7XyGNM4KB9efX0Pj4k5G+/rxRotcdkEHJks5qDn57/GhKGPuGD3D27lipZOtfQJWMcLqVe1zzvlaxPHjQzy6rYecquPKDfWcv34J77p2IaIozMlePrq1hy6/wBvyCstXzr0/mWQCh6t2Thb1pIGKtbJ6uphxJhxT9Q8m24tXnkjFolTU1TPZ10ttewcarRZJo6VULCBKL34F7Gy85DMhODkBqkpFfcOsjLGk0RL1e6fpPGfC6roikiCwd0xFSUWRzI4zatmXUlFEg+Wcte5fK9g8tAdtaJzHLngXSjzAnlSI3+z7BbeP7caZ8LOtbTN12VM0LF8xTyEyyYH28wk3ubhVGsd069sZ+fZXWbH1ScYWdZY1dh/4PZO5LKYrrmHPRZex7GtfpPdf/h2hpwtD20Iqt/yFlv17cC9aQsd//Ctdb347i25+I9bb34V1xiTRkc2y6V8/QX5GP7zxvrvpO3SA8Hd+QuquX7OwvxcA+blnkG9+E76u46zPpAkoJUq5LH2XXYXt7t/gTJ+iV151728p3f1rtn7xa4gGI5s+/ZHpIkFVVTmxdAWmWJTGyXH6Fy1h4l+/RNUPvk1i+SqEm9+Ie2iQhQNlDvWRCy8lvmoNK/77h9jyORIambFFncSPHMJ4yeUM6nTU/eR7JDUalLYOUg8/RNXYCABt/Sdo+8/Pz3ku610K8gffSuDYMF2PTNAgGGjQld/rJmOZrTwqZBgwSgzn4yxJhYkZDLidTuo8EToMZ3dgfaE4p2BYEIRrgO9RFq/4uaqqX5tnnzcDX6DMxj2iqupbX8brnAN3KEu6IGCwGnj/TYuprjkVwM1cfhdkLaVUdOoa50mEa408u6efXK4EnOp8hWyMt71zExOjbn71zPyRqSLqCBV1LyoQBsiWNIz2D5GIp0AQCeSNfPuXu8iJBhDPXPE78/fNRz94MUgnYtO6nKejqrGJdDxGsZDnTOsS2VRyenC7++GjRPJabr9JprJ6bmb6j385TLdX5R2X1bGgvfGvSpf4a7TdmqoMn7m9e9ZnX72j83mvRUlF0VW3kpnsJecfRlVPqfyIWgPaytlWaWoxj9XVwD+8oZPR4Qky6QzbDvk52BskL1sRgAP9cULRg+RyBRau2Yh3ZAib00GNVKKuuQn/2CiNLXXo9nm5eqUFR6WT3zzSzTN7homkCgjSbIdEPWn+/i0r6Tnex0SsyK0PBhAEEb2Q43MX5WiqOrWS4FRyJOJROivtJDIZqjJx/NWN5C0WSqUM8tRAPhhJkNDoqSwWMPQeQtEb2VOQaUhHaLBbmSgoFJoXcfz4QdbWahCUEvl0CpvNRsk9RIUokCxqSORy6CQJqbqZfLAs6r4kNMbeLNQv7CA0Mc7kQD96k4lULEomHsdaUUU2naSYz1HI56YNGmbdZ1VFEEXGe7vZd9xLV8xBPD00SyYM4KZLF3HPA88RopKu0RjXrKjHavnr8ehfaf2uL5QkXtAi6/QUCuXJSUPT/BPe1gYbqWyImtr5g1ZRlIj4PBjMs6k9Jw1UIl7PvNJjgiDM+/kLQT6bIeSeRG+2IooiBosVVVXPWtT214CqqoiSiN5oIptKzUpe2CqrKORzJMPhcvucZ5BRSiXO66xFq9Oy69heZEcdpUQA2Tq3KLqYCCEZrZQSwee1cX+peCW126yi8Ju1b4ZEAMk7QEkp4THZ2W2q4oJ0kNuiw9x24JS9skcVSSzYwI1LtXQub+PYkRPY73ocMRSkcUpTt77/BOnvfZOqY4eJfOSTGCxmIpNFRtraMS1YSEirw9rYRPbQAQ5eeyPp61+HvO1p2rc+SdTjpnWeMXbf7R8hvbgT2zNP0fHUE1QkEywY6EP53KdZODw4vV/Lvl30rF1Pw5OPI6kqpv4+xGe3Yn77ewjs3I6zp2w0ErDb6Xvru3Fu+Qt1d3wfQyrF9q9+G9Pe3Vzwxz/gMZoI/+e36N+5HdMPvoVUKFAIBpAKORY8dB+B7mM0DPQx4qql1uchuaQTYdNFJH/7C2z5HANXXofmHz6K5Jkk5HVTMzaCqqrsePv7yK1dj+vZp7D4vAQcDqoikTm/F0BntjA5OMDE6BiPVtlxxqP8HbP7i/OkCpLBEQ5WOzlWCPHmnIzfF2GB7uyF/y8GzxsMC4IgAT8CrgQmgH2CIPxJVdXuGfssBD4DbFJVNSIIwst/pafhHTetJJPOYrNb0J+Bd1a+NvGsHuyCILJ/HEDEpslxXruVvX0xEjorv3/4IJmCCjOMMVSlxLomgXROoTvw0hLrimzgrj05QJ4OqHPyubslvVTM7GRtldWEve55pYcURSGbSiLr9Gd0RrJWVuMbHsLuqqGlxoQ1nsdimT9wtpm1WOUYBuNf16nrldJ2S8kIqlpCVYplGTS7C0FrPKUikYqiKkVky+yJg6jVk09EGR/zkkln2TOsEC3ocaenJSCJFnQcdoNUEBno6mVs3MeOcT2XtJXoP7APo7OK79/5NG+6vI1UJIJlYRsXdVp5qi9LWtFjUuOkME1ni0qKiN8Xor6+kg2bWxj46bPkNTayqo42x+y2eV5d+VZFEkm6izK6tmXER4ZpV7PIdacG3KRGh6ahhbGJUfQuB+JoH5oa0/Tvd0lwvPc4FavWMzjQxeoK61TbNGGfOsfuSBpDQwfB/TvpyGaJ5oocScisqKnEnk6QGAxjzWbQOZyoLhdRn4/q5hY8gwNoDYaz8+cFYbpNr1+7mNy+ITrb55pmVFU7yCMhJDysuWAla9Z0zNq+d+dRusYSXLV5IfUNL60ZvVLa7kxcunkpbQ12qqvsGK1n76fWrlnI2jVnNh45aUxRyOem+d7OmjpkrY6wZxLLaWoNUb9vWmXiXLTTz4aTzoUnYTD/7eQdT9JGhKmKfknWUMjl5lX1SYSCZQ6y1z0vp1mUJH73lxNImjLFqpQIIcjz96mCJFNKxeAcigRfCl4p7TYsSHyj83qWBwe5ov9ZZLXE+8f38mhFO7tql2HKZ7ivupOr/b1YZ7jLuSjx+iMPYTYsQzEUuGjbHznP4wbPKUUKo1Ji5ZOPAXC05zjBRJw1P/4umeZWDvd2UVnXgPFTH8F9+dXEauqoN1kItndQ6O1i3UP3ETQaKRYKWAun6JByMEAuFkX4uw8ymUxS8dTjaASBJUcOzvpdraEgrV/+HBlBYMfV16P90MdJDg8hffcbtHcfnx4YQrUNiNfcwIgoYr/qOpJf+ldEmwN1ytHTlU4x8K2vYr39Ixz98Ce45Ov/Qes//cN0PODa/Rxdy1YQ/89vs2/Lo6z53S/J/fF+hjdehHHrFlz79zJ2z28wHz+Cfe0GWvfvpaCqiCtWoVVKSPt3E/nOfxN64lGqfvjteZ9R287tJEslqj7yKUb+Zxu1eS2ne5BpJS2yzkAhNEErehYYq2mbMTEMZiJsUQO0SxbW6V7aJPlcorn1wICqqkMAgiDcA9wEzEyNvR/4kaqqEQBVVef34nsZYbXbsNrnL7J4scVarVVaLtzYiS98gC6fQH9EO2cfsZDmkk3n4fME6A7MP+P5W2Km3NoLQTwcopjPoRRLVDY0IsnyrEAhFgxQKhaQJBlbVTXFQoFioThLGD/i86IqJZy19YTcE5gdDgKT41x/9Xln/e4rL1vFlTP+/isW1/3N2u7pmWI4lS1WlQKlbBJB1gPFaZMRwVpFKRlGKRaQzXaKyTAoSrnIU6svF3rqzTxwIAvISIpCsyPPaBhEFG4+vwK3P8GuURFRlHA11JMqiNREgsTjGQSM7DgUpNJmpGVRB1179pBNp2lqrsMwOEqNNccNmzvI5Qo8urtcMFcQ9dy9M06lLov5oJ/cVAYa4C0PlauBZ9o47xuZIGy0oRSTGPJjWGSBesvs93KBWCI21EU8VyKay9Gs11MT92KaCq7tJiPtJQXP2BC2Qp6xYJgGp31WNkxMp/AM9tO48RKiY4NETFoqGhoZObYHyWShUidT1FqIyjoqB7rI2avxHNzLxhoH8UKCQe9sjdl4OEQulaJULFAqlnC1tDLR243eYuFtb9oMlLmlerOFseEJWhY0giBgMprQa3WMeaLEnj3GpReVs8eT4x4ePZqklE4wNhl8ycEwr8B+V5QkWtqann/HF4B0LIatqpp4qMzXPJNSg6KUpleeXmow/L8FVVXxDg8iShIVdQ3ImtmUtFw6TSISRimVqG5qRhAloj4v2hl81FQsSi6TxmRzkE0l+fs3rqKvd5hHuzQgzR2vTuJvKGX5imi3btnIPmcbB+zNrHUf5z+Ht4IgcFN4kKZMlHtaNnJo2dWUdv2S88LDlBBZXEggCgJ/P3kA7j8A95efWf/CRdiCAaqjEfZeeyPJ1WtZ/e2v4shmsegNmFasJuesIGwwYgv4qf7DPawYGyG4YSMVskywvxdLcyvBmlrCkszBr36XXLGIY+9ONt/7WwA2PnAvsT//kbH1F9A8w9Vt3t9mt7P1Ax9GW+3CdOgAcipJ20Av0oz+sqP7GKP/8G4MZisTzS1oW9vZ/MH3oBMEEAQkQWD99q0cbFmAfmKMMVcNjkh42mEOwDY5yeDQALpFSxj/2neJbX8G15vfymGDgcXPPIVxbITmgX76rryO0II2Ri/YTC6Xpe3rX6fF56Xrzjuwnzj12DOiyPFbbiUTi2HNpHBfdR1iTR0Tv9/BVckatDot+WIWFZVYKYde0GDVmpBUEZOlElc8xx9Lbi5XHVimbJsflMOELA5y0QjrXqLe8LkEw/XA+Iy/J4ANp+3TASAIwg7KSyNfUFX1zN6DLwHFQoHd+/pprHPQ3PLif7xZLFeHx0unOpoj4wVCv9/NeFSY7lhUVaFKmyGclVEkHarOwv88eIRCEeBvI7f2QpHPZkhGwmcVkVcVBb3JTCoanXd7MZ/HWVtHeGpGPB/XElXFaLWTjsco5LLktVpeJGPkr4VXRNuVjA6KqRi66jqy7hMIgohkqSjrDFsqKQRGKaGiABprFYa0m/VLm3imNztLPWJ1i47rr1zF/X/chSAKVDpNpLNFIEdBMvKj+45hIMNH3ncZEZ+HYU8ShyWCgsIdv95GIlPkEtFP/0iQcNECmSzuST9tixeilWfraAdzeoK5UxloAxlkUSVe0DIaiuDPl5B1OgKilpbFnfgG+7jYrieVTqPVzh6ULUYDJr2ObDRBbkEHhcFuTFOrOelslt6CgK6ostoq01U0ILQu4snD+6k26GnQS1RazKyvr6Lf7SE5NoyjlCcci+GNhFiu1+GubSUbj6JPRNDVNjDqmUBvLWExmxjIltApJRxTfUU6ESeTSJCKxzDb7VQ2NBJyTxByT2ByONFOFdbFAn70ZgvHDxzjoWMqF3niXHbRCv7h3ZcS8vn50cOjWMQwl140dX8MOhzaPA6LhvXnzc4Yv0i8ItruSfT2jpJIZFg3pa/8YpDLZEjFItgqq6e5sLaqaiI+75zVppPFupYprrfeZCbi8+B4mTR3/xoIe90oJQV7tWtevjOUbZllrXZOkSuUs+RlmbcowLx9dy6TnqazSVot2XSGlqZq7H2jRJUzB8N/Q7wi2u2yQoKrux5ly/nvoCcd4Rttl/KGsb0sKKT4xqo3ETTYuOTwn9gY6OdjF7yfnN7MP7Uk6Hz4fur8p3RzJ5wVBL75QzzPPk1g+zbCrloM7R3kNVrIZln1i/8mcc9v6Pnop5DXrEPr82C597ec2HQRbZ/7FEVBJL52PYmuY6z78x/LE/yD+zFs3EzxNMdFWy7L8u1bp//OiCLuhmaaR4fwVVbjbmgie9kVJIaHsLW2YXfV4Lz9nbR5vShTQe5JiIJA88Q4UVlDzGxBrW/AOIPXf/iSK4gvW8HqO35A2FnB+E9+waH+E9i3PkmNZ5JFRw/REAlh+vRH6brqOiSdjrr+E7jbO1i8dxcjN74B4eY3MvyFzyJt2MioLOHoOo5OFEnU1XP04stZ9oe7MRWLAOx6/ZuIrVyFpmMJ2YAfuWUBybt+hb6iEovFgdanRVFKFK6zoIjwm6cmcOQSvBcTF+nr2VxSuM/gYdTpoNObmA6GXSWJYjLOlcrZhQDOBS9XAZ0MLAQuARqAZwVBWK6qavT0HQVB+ADwAeB5q2rnQ3/fGE/15GgcG+G9LyAYnpl9VFWViM+DpDXwnXu7MegkOmo0dLthPKGbZevXYMrxvrds4ulnj/PcQPnBhvMvfxBslXNUGGEopjmj3qVJzKKVVCKFs39/KhYrG23MeKlPh62yikwyeUYtT2dt3RyjjvmQjkdx1taX7U89bmyVLzwjFgpG2LJjgBUdVXQuaQH+plJs59R2Z7ZbZ539nE48M1v8le+1kA+MIpmdSGYnSjqOaDBTSgSRjDYks4N8aIJiIkiREutXt7Gj+wClGcHwgDvDMzu6sBglrrpyPfc8sIMTPpULOsx4o3mGo0byJZmntx3BrCnS5y/xugsbMRr1fPv3fYhaPY8dy3HSOSuc13P/YQV1zwGEKflAuZThsiU6BjxphhKnMqm3bKymosrJY9u6SXesw9/djcnopCY+hPv4ETSlPL3ZOJnGdjR+D2ZBIaQzU5eLM5EuEBIkHKKKvGcbrbWn2lQ6l0dytZALlmWNhHQK/+gwppp68jo9/niIkwvmC+tOHqehxX5qaTvuHsYugjeRINx9nEpnJedpFcKZEp6GdmIBH+tCZY3QfZIFg9lMIZ9DLSkExscwmC1E/V6KhQINi8rBniBJpGIRdFqJam0cV2X9yXZAZY2LWzeliIQi5HM57n9kP8WSyoffdeFLKsB6EXjBbffF9LkAj+4YJa4YaaydpKbhxZ0jFYtM01XsVS4iPi8anW5O0FcsFFBK5b62mM8ja7UYLVaMlpeXQnbSnVNvNp+RKpHPZkhGI1idlcja5w827dUuUtHIvLSHab6zqs7LXTfbHSSjESxnUfjRGYxlc5kp177/fmgnDgNESi+siFtVVUrxckJWmjKf+hviRcULtc9TTHg6PhU+wbKnvkNvZRtPrHsz1ekoCzyHuGVgKxGNifdNHijbIWdi5GQd/s7V1Bw7NCsYro6E8f7yZygBH/HPfRnj1i0se//b8S1fyWjLAlY+9AdqkgnCf3mEMZ8XayhI+NIrEN/1fuR//2cWH9oPjz188scAcNWvfkryVz9Fo6ogCKiqyrNX30DeZuXC++6eFlXtueZG0n/3DwS+9K/kP/FZkp5J7IuWUPHkp3B3HcW3bzfWxmaee+u7EapcLP7K5+j/h4/i2LUD2euh581vRY6EqP3Of2GaUVgHkFzcibDxQpK/uRN7NMKB3m50VVX4LruKvACLPl0eax35HJsfefDUgVNScu4/P0RwZBCze4K9Rw5iqm9kwXe/QfWf7mf3P/4TwtXXE9j6JKYp+/Oiw4Ghth7zFz+LVpCQdRpsKvQtaINxPaAHQSAfSVOkSE0yTQXyNG1CFESuKFnpGZukylDDoZyPg9oC14h2XifbX5ZI9lxOMQk0zvi7YeqzmZgA9qiqWgCGBUHoo9zY951+MlVVfwr8FKBl+cr5dXfOggVt9WzwJmmZx7nqXCEIAtlkiuHJCVRRZkWLgWsvW0Hh4f30nLZgE0oL7Nnby5AnBejOqi2s5DPohTw50TSrQv9ccMlKJ6tWLuT7v3yOqDK/CsRNF7hobKrhm7/eT0lzZp6bvdpFxOdBN4/cy0ycTW3iXApVTt/urJ37TPxjo4iiiK2q6owFKsOjfk4EZSQpNB0Mv0x42druzHbbvKLhBbdbUWdEW9VMKR2jEJ5E46xHySQAgVIuhaoUkQxW1GKWoqDljvsOzXnG0aKebb15zEqc+oNHKOayWEtJrrjkAgZ6Byl2hRlP6NgxDCBj05TYf3iIeF6DqNXjkiNctNJFz0Sa475T7VPQmdGpGcxSjtYquODCjVR19TC0+5TUTzoexWLUYC6F6Dt0GI1Bz8NPHeeLl9TTH02Sq28h7ndTisdRcznSeh2Gukb69+2k+vwLiff1YutYTHBijGFUTi6Gm3RaGDlBjUYCs5MFDguxeIKCfwJJkqipcHCyR0yl00iiiF6vxxtP4pV01Co52qdUJQJaMw1V1WiOH0ByNFPldJAf70cri5ycAJjtDtKJOJV1DbOCm3Qijq3aglIsgba8XB/2uqmtd3FbXTUOVw279/Yy6k2wfqmL53Z1MZo0kij0MBnKU0KiWMijlV62ifJfpe2+mD4X4OLVtcQTmTnW2S8IKnhHBtFotEQDPirq6uct2JVkmVymLI9nrayaVqqZT1u4kM+RTSaRtdoXzP1NRaM4amqJeD1nPDYZjZyVbz4TWp1+2ujlTJgvCJ4J82nZwtNhstlnqfqkVQPp9KykILXGHBuXV7H1kJ9w/gxFgUoJQdZO/58XOF6dBX+1eGGZ3vCC2+61uRDnu6PUPBtlY2iQkCjhNlfRFBrj46tu5YbRPdw++CwnrLWs+ta9LJwcn3UzdcC6h+4jD/z5oT8glkqUVJXJK6/DcP4mdiUSbHj6CToP7KXzwF5SssyxzZdS+sn3qe86SthgZOfNb8JUWc0F3/s6+qlzmylnfnsrq4hXVCL9/YcohIN4ntlK61QwnkqnSYVDRBcvQzh+GMlqR/PrO1l1/AitXUfZ+a0fMdGxGHFoACWVJGsyI27YSMzvI/HmtyHLMtUbLySwcDHF9g7G3v92mgLlAMe27UlK256kNlZWdWr98x8ZX9xJ1f49uJLJ6d9fUlXioohDVckIAoff+i5Mw0Os2PksdT4PRy67mpYNG0n++LvUZjMgCCz+9Z1EHvsTzV739L1c/z//TfaXP8M2Q0XjwEWXUblmPaGeLsiVA1793izq6yq4fq2I/ZgOXz7GdjnFipzMeDbIPpuWLiVAi6IjZLMT9id56QrhZZzLG7APWCgIQivlRv0W4PTKz4eA24BfCIJQSXkZZIi/AnR6PSIqj2wfxmLSU9/44ipj9WYTmy5eSJOrG1GU8I+O8LrLltBzT9+s/bLoefx4lpMDcmtNWVv4UN9OvKdiBWoMWW67eTHZZIK9PSEOTJz5u1VV5eJ2AY0s8mRPAUGU2NsTZsJ/iGhhdmZ6Jg6dCDI4EaMoGefQEU5XmJiv4z7JAxZ46RXZZ4KqqkT9Psx2OxqdHlGSMNls5LPZMwbDq1YsQJKGaW0++7OcmS0+xyzxK6Ltjg3l6ageZOOGBMk4/GHrEoqJEAgisrUSa2qYG67q5Jl9I0zmyxml5FSfUS64UWetFtTbRJauWYle10V1bQ1HntlGZX0t11/QwK+fHCOtGFCVEtevraBtcRsPP7wdh5DivbduJhbwMxkuMNOCUSnkeMd1Teg1IgoC+7fvYtSb4sJ2F8+dSKNKWkpIaHQalne2IEoSzupq1rSE2Cs58afjNBQK5MIhXIuWkUehKp+k79hBJIuVsGcSKehBlRS0mRw5ReWQzUa7WMCXV8i4mhhJJVFjCeptFi7Q6+mVZZT2Trw9h3ErIulQAKVhAcVkgs16iClQdFbQ132EKpORfD5PJpIiFI3hrG2mWCwiyzL1U9bRyXSGRC7HkpM/+hQ1jh0FGZ3RSCYRB1Ulm06VuZyqiiRrKOZzFAsFjg+GmUhqCfm7cMe1SDodlRaJ971hFYqioNUbUEqllys7/IpouydR4TDy9P5JBPE4l1y4/PkPmAeCIFDT0sZ4bzd6s5mJvh4s8+igC4JAddMpDdFcKoW9uoaob3bgnM9mSETC5FJp9CYjOoPxrPc+4vWgoqLR6svunWYzEa9nlub06ZC1OsJe97xFw6djPs32fDZDPBikVCzgalnwvOd4sdCp5clDTjBQYZFZunQBh074Cefn37+crBFm/P9lwyui3WZUuGPBhbTHPdwQ7OeJBRfw8JIruO3YIzy28vU0nXiGZa/bzNh4Le/95fe4KjZaPnAqeFNUtZw1noJGVdGtOx+9zcaOFasIB4PITz1Bx8c+zV4VLn76cQAOXXMj8t9/iPQf7sbfvICJG1+P9YJNxHp7KQjCrPTZsTe8hcAV11BR38DEow+jnxjDf92NaLY8RsPkBPpoiJQoIqxZg6zRYrbZiS1eSu+9fyJx72+RdHpyYyM4bXakNevQZLMUf/I9chotmIyUDu5Hf9cvsRqNpGrrGXrHeyk8/BDO/l68n/53UuEgxSceZe0Tj7J657PUHjlI3x2/IrhnB127thOtriFaV4/50qto/PgHMaaT5K57He6tT9G6byeWQpFsPsvQtqeoue2dDHcfp3V0mIpkgopkAgUYnVKj0AkCuhmBcMhgJHLD6+H+e9DGVxOvTGHy6VAlkDQyiAKKqjCsJBl2Osl6JxlzGtHYXBgmhrnM0MBSb4wGYw2qqqKiIr7E4tDnPVpV1SLwIeBxoAf4vaqqXYIgfEkQhNdN7fY4EBIEoRvYCnxKVdWXz1j+NKQyeTKqnnz++c0pMskkYc8kwckJSsXitMi7rNES9kyi0euxVlZhnsfaeD7B+OdOpPjhr5/Dk5ndORZLkEykCIaihBOnrktVSliFJOrUst/UpzTV2mhprISp6/GmdRwcF2A+h7Ep9AQ17BnlRetElooFrBVV09a6EZ+XiNdDLBiY3kdRlFl/J6MRkpFzFz2O+DzYqqpJTFkvmmx2SsUiuUyasNdNMjq36FDWaFi9qgO74+Ut8niltN3eAT19/jYGBjUYTGCRQiCAoNVTiPpZ0GinbWELjqmCMjNJBCUHwIUL4J0XOZHzcQxKecbeGzKw5fFd7DvmIZNM0rFmDUGPD61WZnlTuQ3X6RJUVljoOXiY66/bSHuDnT0HB3h67wg7Bma/N4IkMz48iWdogOD4KGs2bWBhex2XbO6k2ZTCJmf505Ec23YNMuLNcKwvQCqVIVWU8AciTAbSWCurqKpwwtgA9nyKuCpSsWodehGq01E2tjbSaTezobYCo9WKXNNAIpenWitS9E5ib2ohWTr1vgn5LIGBE0TjCYSWDgIaI6lUmpwg4QtHsSsFlGKRUl0zg5EEmXwBc1ML+WyGTCiIIAjE0mkGIgly+TwDikywcRHuSHTuA1JVRFFEo9VRKhaRJIl8NoOzth69yYis1ZGKRriw08qtmxxsXL8Qo5LAKURZsWox45MhMpkCI8OTfO1n23n8qZdO53mltN2TyOWKpNGTSp+bIVBwYpzg5ATZdJriVFGO0Woj7HUjyjJmuxOj1TZX01xV5/S7dlcNMb9vjrawIAiUCgUK+RyFXA5hBicyEQ6TSc42WiqVStgqqynmy++WwWzBUVN7VuMhq7OibE70PBnbM6FULKI3m5Hkcr+eSSYJuScJjM+29k1GwtP3KZ/NlAP3MxiWnA61VODtVzbztssbUZUSxzzwrTufxR1VuGWdhYXO4rzHSSY7ksn+on7XGa/lFdJuh7UmHl9+A483rQOgJu7DFZnksugoH9j+U94aP8biehtNrvKYE9Hr8U+tDvQvXsKW7/+U3mUrmbRYyU0pf1T+4meUfv4TiukUSy7YhFxXR2B8jNTFlwHlLGpw3flM9vWiXnIlw+98H/Y9uxAe+SPrv/gZTl97sPT3EXJPMHBwP9Y1azFUVqK+4S0MrVnPic5lnHfoALX/+QUcB/djue9uCAUxjY+QGx7E0n8CvSRi0umpfvIxdL/9Bfp4DOG9t8MlV9D80x+z6d7fsnrndi588nEaDh9Ad8kVxNoXYldVdHf+GIerluTSUxNbUzZD5MBeMgE//mtuJPK6NxBpXkAqk2J05WpqkklSzz6N/eJLefbdHwBAaVuIXF1NpK8XbTaLoqr0LF+Jz+HkxIpVeH72G7quvXHeZySIInpVpbhcS827ziPlymHEiHhfCOthmdiGEkuub+DKySCXqg6qolFk/zjrBQfBUpqoWEJRFH6VH+LO0ijF0kszKxPO9YX7a6Bl+Ur18w889oKPU0olEtEYtornJ03HQ0EMZjOB8XH0JiOFXG7WDL1YKFAqFObYgp5UW9i2f5JjvnObOc+nB7nQWeC216/jgT8f4LjvVBArlbKASunlW1adg/l4t7GAH2tl2fAgODmBw1VDLOCblu4JToxjr3aRCIewVVUTC/gRZRmj1fq8S3xQDp7z2cycJc2Qe3I6SH45bVTf21F/QFXVtS/bCc8BzSsa1M/+6aPnvH8qUeBEL3QuBb1Rw9FDBZ7e7uCGzQZM+jjNC9/IM0/tZuuwBqcmyz/cto5de/vYeqLAxc0ZmhqqGPUm2XR+J7+7fycbV9UzNBag2yeypFqlrUZH72CAnL6SIX+RHDpev0pDhd1A/6CH5mYX9z/rJi2emXO52Bziphs3MtTdw8HRIpPRIhYSvO9tl+Cf9HDnU8FZGSRVKc2alAmpACWdFVHWcc/rK/BGIoyUZOrUPE1VpxQCusIJvJnykkqDQccip5VSqYQ3EqPGYUOayux1+cOIS1YR6D1Oo1DCG0+SqahByqXZYNPjicYZUHXIBgPabJJNLgd9E25yS9ZQ9Iyz2qyhK5FFbOlAM9CFCiQ1etrFIpZ5XO8KhQIajYbtWXGOCULY4yGbTqLR6qhqLKspfPvOZ4hlBS7vEHh6xECVLsu1m1q4a8sQqxeYuP6qsyuqwP9O232xfS5ALBjC4nSckz1wyD2J2e4gODmO2e5AlOTpYjhglh32THiGBpBkGUdN7Tn1NzOlyk4iGY0ga7TT5honUSwUSEbC07JufyukE3EkWYPOYCAZCSNNXVvlVL1GPBxCpzeQCIeobGgk7Jk8q63zTHzxzkOoqsrmBYCq8tywMH0vKjQpPnDrerbv6uW5wZfmrjcTo/91w9+83UKZJnFfS8s57/+MuY66XJyFhSRhQeKfV99Gpz3PpcUggWtuQK12sej2d9FcLPL0v30ZuXUBy9//dkaXLGPkvbfjeORB5A99HPlXPyNTWU1SKbFw13NoSkWOvuv9pNzjLNm1E2csSsvwIIcvuYKJt7yDwrNPo191HpY//4nNzzx5xutLKwpbfngnOpMR2x0/ZMHxo8Sbmpm89Ap0170Owyc/wqq+U3UnJVWdpRgREQQKqspJdnpRVdn+xreiC/rY+MzT0/uNNzTR9/4PEj7RS4VGw8Zf/Qw94DNbMOayWKYk3sIIHL/3j8QDATq+8jnSNjt9t7wFQ2UlS77xZep9Pp56/wdJNbdi1mrZ8IXPYEyn2Pnpz6FfuZqF772NpKMC/x2/pPSXP9P++98y8Pb3UPfnP7Kg/8Sc319QVWTg4Ru+CR1GpMMZDOqpvnlyaQhbvQvNowl0soEn824OVtlZOjZCwGLFb7dzqzfNk5okBUnmvaoLrXT2PuND/335Gdvuq9KBbs++ExSLChdufv5g2FpRSTwUxORwUCrMXTOSNZp5K39VRUFvNKGRz72wYL4ihFBS4dixQfzxAjP5DyXp5Rd4V1VlrsOeqhL2uBFFEUdN7XSAa7TZqKirL1vqztCwFGWJRDiEpNEgiCKFfA7yOawVc5cz50M5gzI3i2KtrCQVjcwbCKuqyrbtxzDoNJy/Ycmc7a92mCwa1pQTFPR2Fdi+24KkauhcfhWe0Z08/vQRhv1lzetUQaT3aDcWnYCUDnDeugsYH/PiixY40TeOooLTqmfRtZuo3N/LibE41605j9HYUQ4PlTjZxoKxPLmigM5so6K6mhJnVy8aSxnxTHjocRcYjOoALRlFR+/xXmqqbHQ6U3SHT3HhBVFCVRVW1Cgk0zkuu3IZHk+YR48XGInGcefAsXQpmeET7Hf7iIh6mtQcBZOVgqxgtjsJhv0sAiRJwmrQk8hksE/x2J2SSt/IILlsjpjNSmeNDknNk1Bg0B+kTmGzrQABAABJREFU4KzG6aiilE4hKOX3ur7CSb97FHMxD2iw5NKMHj3AYpOGKrt96pfOfddTmSwDBTAls5hqmuZkFJUp+cB8Jj392c2XtfPwUz1sHdBRLXop5g3YrEY+/e51f3Pzhr8FRkfcHOvzc+F6DTb78xeyGa1np0bNFwirqooky2i0OtRztGmer8/VGQzEgsE555A1mpc9ED6ZyT59gnAymWK2OzBarKQTcVKxHGaHk2Q0gq3yVH8qyzKp2KkVM1GSz6nm4yQEQZiqExBmcYdDBRPf/fUeMqpu3hXHUiqKWioiGsyImtdem704WVZCiggy/7Xoaib1Vq6+ZhnJBS1Yvv5ldEYjjYUCCALFnmNk9HrCNTUkzt9EZWMT1tFhInt2Yh0bJbnpYgSTmcANN+N6y004WtowaXWs+ckPpr/PGPBjdE9gGBtFedNbMeeyZ7q08v6iiOHQPgS7kzV7d6ITBFwnuvHUNxBevZbi2vU0uMepnOqPTgbCw20LCXcuIyVKlG54PaVPfwRtocDhzReju+0dZI8dZuTYUY585JNIRw6ysLcLWtvQmi0kUElLMvpSkYpEHK/ZgjmfL7snohJ/6nHUpSs5cenVLD64l5u+/G/EtFrcS5ZyvLKayhtej/rMUxjbOlAEEaOiULlzO5nxMWyZDJacm+Ff/pyK/m5qggFqvvv1M/7+7gsvI1tfh2ZSJDuURKOeaqMxR4oFV2zA+9AxzHI5QN4g2IlNjtPV1IJrtB9jKUdA0PNuqblMaXuJdJ9XXTCsqipPH/RSQMPaVclzshw+GciVisVZS2lQtiHOJOIYrbZZ2WFbZRXZVIrrr1rDjacd80JUDcJ5HQ/uSwAvvrNR82mQdWelR1ilDLde2sSe4x6OesuPtZjP4x0dorKuscyHpEyNMDuc+EaGqKirn1P1fHomYl5JtRnIJJNkkvFpPeIzQaPVnXF7IhzmmZ4UBnKvyWB4JoZGdcSFBaxfuAef90H0FRkubVdZG8xgrtAjCALx8RUYLQsQi3l846OMuxOcCOk5EUoAdn72cB8r2oKMBbI02FT27T5K73iKmW3suWEByKOW8jx19BiKxgTZOKrOMiuAWFxZYGGjjccOZvn19jig44JmBZtFz2OHk+zoSvK6TSYuWd9Kfr+Pwakxu0KbQc0muPGqSxkdniAeT5LOljMMh3IGWlpriOzfQUmrJyVoaFyylJ5dz3FthZ1CMoexppaQ+9RScbeqRWOx0ZH0YzaZqK2ooHt4Em2Vi6RGx2TQjWixEtRaMC1cQOzofrQBP+0WPSaDgbFQlDqbmVUGGdBRKpXIaHRULlpCZLCbmYvxmWyWiWyBKo3EQCpHRgFr2yISvknkkB9H0wLMA8eQRbG8gqK1kopGMFgsFPN5cpk0ra31tDf5mAxkMGidDMT0uD1hlle9Nq2Z93d5OO4VqbC7uWD98wfDJ/tls8NBqViclXBQVZWI142s08/SFT5pZ6yqykuaUGh0+ums64tFsVCgmM+fVdP4pG6wJGtw1NRMZ7Kjfh+5dBpXSythrxuHS08yEkFnNOIbHcbV3DrrPEarbdbk4FwC9uDE+HQgfjYliIx45vFRLZU1z4vx4GsyGD6JEa2JIx0X0Tm4m5XfexjMFhae6CYhCOQp95o1Pi/plas5cc3ryC7qRHdgL4snxlnx9f8AIHb8CCNLV6JaLSjNLaSeeYrarqOzvqej6ygdU595d+/AVcgTF0V0ilLW952Cp7Ka/nf9HbV//iNX/eKnAAwsWcrkLbey4Bc/ZfX2rTy6bAWmiy7lgNXC1XeUA+6w0USgpZXAJVcgXXMD6Z//BMnvQy6WmNywEdM//hOJO/8bRYCdr7uFphWr8JjN6PbuovoTH0Lzg58S7Tk+zd09dvnVZD7ySZKf+TiLe44DUPXsVtxLV8D68wkKKlmrFffSFdhueTOebU9R+cNv03bkME2eCSLVLqIFA6ueLWehS6qKz2BA/5a3E9+/B47Nvj8nlixFl82S1xsYv+kNZEslbGvWEr3vKK3v2YR/SzfKsQx5u4KQUYj0TSCnyteayEcxa2ysUiqJRMPUiAZ8lbVMhiKsfZnsxV91wbAgCNx0UQslRTmnQHgmFKVEzOdFlMTpoC+TiE9XFJ9OlXgliLvr1TTvf+NijnaPE4gXCCdKeDNzlwIEAXR6HZIIaj6DU5MhFgrQsHAx473d0xMCrV5P2D2JpNGglF760lkmGZ+utn6xsFZUcPP5VWi1r7rmeM44tL9IJitw8UUFWoYOsnipCVEqZxqjk3rs9jcQmXwCR0MCjfUQP/5dgOsvaEArl1izYgG7RkdZ50pQX2PnkSMGDkwIaAt5br/tQvr7RokUStQZc1y6xsWzB8apt5RwVth4oluhKJlotmR569vWc9+fjzAQPdV+GqpNLO1s5pkjAeJTibR6l5WaGifCoR5ieQlHVRVRv4/JYAYkDUouzTtvWUosGucXf9hPtgjhjIhBLIBo5smDfszH/fzdGjs+o50au53jTz9OdU0tiqJQJwsMTU5QNJjYnZeoSUfQlEAp5pH0EnuGx6k1GzDUNyHr9EgDx5GdlZRaF5E9vJ9cOoVFr8W0Yj3DfV0U0yVMje3kJ4dod1rpDcWZVCU0sQg2aYAqSoyHItTYLGhkmaPhJNblaxgb6CapN2Ow2kjtepr2xnrSgkRidACDoDJWUUchk6Gipm464PCNDmNxVjLR18uGZS4q6upJxBJMTvpZtOSvVyD1v40Lz2umatDH6mUvzHRDEATioQCqomKtrESj1RH1+84o/Xgu8mV/C4Q9bowWC96AD422LP82X3GeKIplzWRVxTsyhMlmR5QkFEUhMDGOo9pVVi9KJedQi14sFEUpZ9D1etTiJMKLDGQFrZ5iPPiy84ZfKRjUmHmyZim3TBzgS1u+TmMuQe3UKlJckjj47R/DYD+XfP+bLN6+jfGhQZTFS4mdtw7ZtZzgwkW441EG3/E+Wv94P6uOHADguY9+GsflV2H/0wPEZQ0HP/YpdD1dFIIBghsvZOljj7Cot4uoVsuRb/8Etec4l/z4u9PXFauqRr7oUhLdx6C3bJ+crK1DXn8ByYcfoNEzicFiw2CxkBkfnT6u7023wRtvQ/evn8K8fSvrjx7GvW0L1kQc/fatjGYy1B7Yy+H/+h4L2toZ3fIYktlCWqdn+eQ4j217Es2adWz/3Jcw9/ZQffwI0X27sUTDHFvQRt5gorhyNbUL2vHd9StcD92H+zf3kzl2mPzhA+iGBshfdR2Tl1yB7+hhMhdfhqXrKBf+4Fv47A72fvLfYHQQx/13UzE8jMdux5DJYs9lOeFw4vvCV8mOjpAe7Kf6gs1kvvN1zL++E+vSTxDY1gsjOZQ1BmovWYzn5/sxPpYFjMRsSSrfvhrPnw9TLdt4R78ZrUVLq9dPrfziuPzz4VUZfSxbdm6DjqIoqFMdB4BnoJ+6hYtmyfloDYZyIPw8gW86HkOUZPQm0zlp4C6vKVJXaeKJo3FU8cXbDisIhMMxCtkMb7zhfHq6h7hvd3zOfrGige8/OIgga7llnYbl513AXfc8TVVNiN7xFB95Z9kNzWSzozMYKeRzzytFVMjnSISCiJJ8xmyFvcqFZ2gQpVggpKhkknHMducLXo5cufK1mVEDyKUK7NxpIybWsmThUTpXlNtaqVTC26uiM+VIhCcRpHKhi8Em8aHbJ4m4h3l2xxJkbRKjmGfDukVU1Naz/ejjhDEia7WMDozQP+wHRaLJXqK2xsGqBRHqax2YHU6eOboHQQKTmsA94SNXmp1Feup4gp3d+0hzamK584iH6yw6WitlhmM67vrTQWRJJiuVM4KC1sBTO/sp5At44oDGwGVLNWxY284d9xwglDMSysG/PZ1mY1Mcqz1CZ1MzpgUdHOs+DM4qKsIeSpJMyWqnmIywpqJ87n3jbiznbWToRDdt6QhqGpraWkllskwO9bBAK2DWgqC3MuYeI6eoVC7uxHf8MLXm8numqAo6q4NYLoek0RPz+ahav4nhgW7arAayZhuZkSEsyQTW9kaGDh2gccV69o+NUmfT0SYrmM12AgE3JmBxuDxp7KloIpNMkk2lKBWLVDU2l3Vh7Q4aefk4ma9EVNdUUl1zblSpYqEwnQlOxaIUc3kq6htIhEPYq11YKyrLphHPoxtbyOfIJBLnTNE6SU2QZM2cwrwXClVVyKbTqKp6Rs11QRCobGhCVRTcg/3Uti0k5B5H1ujQ6HSzstNNS5aSCIcxO55/8I54PZRKJRyumnnv0UlKRtTvpcFaos6RI10Q6fZy1gLs0yFNOVy+FqGqKg+0ncdTHddhzyW51d81ve1EtQu1UESdGEeekhrTCgJt7gms0TD+gT7SF2yiZrCfpz7xGerP38REMMCqqaxvKhGltHM7q7xu+hd3kqxvJCuIJGtqqF+4mJGJCRb2HOdEazvx4UEcoeCsa1vUfYyx97yFmhmF6a1bn2T3xosorF7LkmNHWP2jbzO2fBXn79o+vY9r+zYCmQzVfd00Z7P0L1xM4Js/wP+zH3Penx9i2c5nAQj/7EeEr72R2u7jaD/6KXxdR3G/5wM4tjyK4dFHiHzqsyg2Dx1dx+joOkZYkgj++g+kEnHaPv/PqAP9rNq3C72qkv/iZ3GmU2iVEs2DA+zR60mYzZhvewfpvbuw7d9Tvt+AYjTAyjVEVZWERkv4I59EObiPS779VWJXXUc8EkHc8himW9/K8JFDaK66hrE33krkuBt7v4olbiTRn8Zf6kEXO9Xus+Y8vrFhUhVFmi5Zhu/uw+jcAi0a22xNwZeIv65R+f8yAmMjxIOBaQ6g0Woj4vOSn6omhnJw6KipxWixEnKXVSdOLyrMJBOoqjqvEsJ8UFWVFqfAwmYHOs5c4WiVMrz9QjsLnWfQvwFMWgFPOMPhSYW7HtjD1sOnuJ+N5hzL7WGUqSpKUaNDEAQi0QyTg0ME0xK7hkpECrMzB+eqyZkIh3DU1KEocwf6sGeS4ERZk1FnNKA3W3DW1mGwWOfd/0yIh0OEPZPnXDn9akR4aBG3XbuCy5d24XCdmnR5uytoWfhOsuFGQEWST7WVmNtGTfV7MWkV+n0lFEEi4Aux8+mdhITyQK8VwdVQg1ZnYHVVhquv3cTRI310j6YIegL4J9zoDHpuWGXgjW++ksDYMM2Vs92vVFE3HQgrhSxqqYDToCCU8hjFAqvqVHxZE2MZC6pSYlFlEacuzxGPyPKF1bzj8jrUUgFPKE3viTEyJQmDkkAt5ZEoUllhxRfO0qETsI30oDea0DmrQBCJIFM8vn9aJziYSILehLe3C1shTaPdStMUP9Vk0NNuMeB31DBmc2HRaDjPKLHcrEXXf4yLXHYsGolisciSChs1sQCyoKIzW4jm8gQnxgmHQ0iShCUZhnQSs1ZD1u/FXFFFMZ9HEQS0rYsIpXMIgkCn08pi52xKgFoq0bRkKSarjZBngkI2i2doEFmjJTR5Fj3F/yMIe92kYtHphEOpVELW6xnv652eIEuyTEVdPfZqV/n997rJzNA2PYlYIIDBYiEWODe33lggAAjz1oachKIo+EaG8A4PTisLnY58NoOs0SJJEqaTZkJT156KRZnsP0FkSubtpKOczmgiNDlOMZensr5hXpqGxek8Z3MLh6tmWpHnJBLhMGGvm3Q8hopKQ8cSrlxby3XXbOCK9Y24TOdWTS8peRY6i0jKme/Tqx07Lr6Mzo+/jzflDnBVoHf6c7dWx+jXv0/3Z76Aotejn3L7AwjpDfT8+Bd43nQbVc89gz2bwdbTjWf/Xpbd9avp/eSKakzVLtxaHb7PfglRq6XjJ99DGRzA39+HlE5xcOkKlG/+gExlFUp9A74ZiiWCINAcDqFTVRRVJamqRM0WslYbSb2BoxdeAiYzm7ZvxVQsMtLaRteq82gZ7EcOBhn71e8Zbl2AJRqmsOs5zGMjRHR6QlMc83RDA1I+x/JnnqTi4x+k9shh9As7EA1GgpsuIvnYw2y44/sA5IChy68iuvs5xIP7aPd66Ny7E/3UeLz42GHSK1cT/P7PGFy+is13/5rLf/ZjHJ/9BBu//TWW7txOUlWpiUZY94XPwM7t6G120jW1xGJRIok4GUGg+sm/IPT34kin0D76CEaLFUUQKBaK1G/qRGwvX7slbsR8WEA/g/JnShjQ6Qx0bN5A32+2UZCLRJ0JijfZyV9tQpnHzfHF4FWZGZ6JVCyKUlJmVSrPhDpDT9VZV08yEqaqoXHOfkqphCTLiLJMMZ+bxVmTtVpifv9Zg7yZ2eLR7mM0LVnG0YPdZE/jbJmFFAVVIocenQwNTbV0D51ZVeaixXoa6m2MTUQZiOpwaDK49Fl8WT3nLzSwZPUG1Ie2czx8KiOwbVTPcyMBVtbqEaUihydKfPHOQ1jFNO9//ZKzSgnNhMNVS+RMGpuCgK2qasYEQcU/NkIxl8M4QxT++VDK57FX1xAL+P/mVd5/CxRyBRxVbRQLRZavOW3uKcZxD/aRz4hYHPVE44eBcnZY1mYJTHSzeUMH55fGsDaWq3HbgCfvKGf5oyUD3/r1AYqSgataS3iHB5FFaK83YHUaaVi4GGdvjFg8Tdjjxmw2Ul9Tzfb+SZBnX0urOcU1G5sYGRyjZcECKhsaMHSNsWF5FQ69m61DUK+L8ZabLufAwRNsO+QlEhXQaGQQRHqDEr3BFFXaEu+/9Xye2dlD0B+ms3MFmr4R/uHJLCYxy9vO0yEeP4RBErAvW07Cd2qpPKDKmBd3Yhs4TjCnss0dpMGgo91hwRuNMZQpUioWMJlMqAYZVVUxaGTCiow/EKdkspDx+umwmaizGKkqlQiPnkBXU0W0VERoW4I74kGWNWgcleQCbpbJJUYlBXNokkoJtAPHaXLMDoBj6TQTJZHqRDcLqswMDvfSriqkESjV1OIdHiQdj82pR3itopDLkoxEsFW7nldZwuqsIBkJ09A+v0V1KZ+fplmdTnsTBIFEOHROhWTJSBi90YjFWUHytCAyk0ySS6ewV7tQFQWNXg+qWi6wm+f6/WOjGK1WUvEYDR2LySSTxPw+zA4HEb+XitoGYsHZAbqruQVVVQlOTjB+ohtrRdW0y2cmGcfhqj3nQFjSaokF/XPqNwr57PS90hmMRLwenjk4ianLA7IOX0pzRo36mVhaL3Pzdefxx78c4vDpdhivERSXLKOith5bIYJDPTVum4oFwgP9pHJZHEuXkR8Znt6mz+dhz04Srhomvv0jjG9/A1c8cA88cM+sc2/45ldQEDjRsYjA5BgaWUOgqRmhrR1bXT3igjYMh/fjcU9QzGaQL76c+MMP4TpNojRkNLHn379CVpYhHKaucxmpHc8w+c6/K7vZffnf0OVynLj9I1gWLaHnXbeSL+TIDfajzWTLBWr/9SVUVeWpL30dyemk/dMfIXz9zVgqKsnfeQfNfb1sv+XNxJ/dysKD+/F/8Ws46xtwHz5Aq3sSd5WLwoc+QeXWJ7E+9Ree/sgn0U9OsP7B3yOqKrtuuJmswYDp/nuxj41QUFW0gkDWWcnBN91G5thhihs20vSj71IfjXDd735J/9YtNAkiwx/7FNL68+n2eqjb9iTqgnbC2SzX/fDbHBrsQ5PLI2czHF/5XkxxAzNrXlRVJdaUQciCLWAksS2E3xTGPKml+hMriQxMUoikUQolhJcpjH3V9965dApZqyEdj83ZVt3ciq2yejoLWpzSowx75vYAoiQhCAJKsTineEOj1VHZ0Eghl2Oi7wTp+Fyawkxo9QZCkxP0DM/ulOVikn9482pet6FcSBbIGfj6/+wlHM/R7ph/lq5KOhRJy1CwHCS9blM977p5JeQSHOkLMto/SDA9tzEsqJTYdF4z112zjsW1Gsgnef8bVpLPZs567TMR9XlRVaa51OlEfDqDI2u0JKPRaR3OiroGXM2t1HcsnqUYoSjK2XWKBYGw14NlRiHNawkanYac+iwleQdGm5ZMrER8vIOYx4jFXkN9+yIcrlrck78FVSIxfj5xnwa9NY1k20Wh1IcqlwvNPN0OvMfbkJVTVcqK1oJNCXH+pRehIPBMfxGNVk9t60J+/j+P0h/WsH+8xM4dRygU8vQf70aQZy+l2jQ51i+tRNZoKJVKZLNZtj25m67JEgabg9ra8jL18o5qxk/0YBIL/P0ty8mWZPYPprlmpQmTWL6mVEGkt3cMbzhHSjUw3DfIzmNBVFVlQ4tIUaeHqloUgwlvTxfa6KklxHpZQR7sIh6Jom3tQK50EdGV295hfxRb50pUm5O0rGVvUUNvJEkmk0E1WcnKGpLpNFJFFemFyzkaSTIoGhFNJpY7rZjjQZJeN5l8Hq0k4aypQzKZGcwp5JzV2M0mFtW5aHXaZgV47kiU0XgasaWDoCqj02rptJlosFto0GsY6+kiFY+jqAqCKJKMRv8q7eiVhEQ4hN011wQDygW4J1fbTiKXyRAN+CnMU12vM5kIe93zvv8VdfUIgkTU58U3Ojxn+0zkc1kEQcA7PID1NIpEJhHD7HAS9fuQZBmjxYaqqMSCfrKp1Jxz6YwmzA4nkuakNnC5riQZiWCy2gm5J6e1imciFY2gKCUaOpagFIvTx5YNQ+byo+dDKhYtJ2O05TGomM8Tn1pmN1rKOs0Wh3P6Ho+kLHSFTXT55VkUCTWfQj1D8mbAW2DLtmP0e86udvBqxtJ7f4P5q19g3dNbANh31XXsvvnNhBxOmtefT017B9Kv7mTB73/Hk1/4KntuvBljqcjKH3+Xtsf/jPY3v8CRz9PX1MKDn/ocJ6Zs2gHMqopFKeF7+3tYsGI1jj/ej16WaexYQvxPf2D1T75Hi9eD4b67SXk8DOx8Dutp0mI54OgbbyNvMCAUi4iJGL69u1j22CMIJ7pxLltBuKKS4VVryBqNBI4f4cRHP0nmtney4t//mbGrrqNndVm+URAEDEcOotm7G1OhgDwyQP7uX+FKJTnWuYzIpouxXXgJ7utvIrdrB9GnHqcy4AOg2e/F9rlPU33vbxn7+49ivfJaElddR8BRQd+SpcSvuQHbre8gViyw8x8/zrZP/1tZT7mlBc3Cxfha25EtNiJf/BoHP/4Zdr/nA8Q2bKLDPcHK//wC2RM9hAFNMoGtsgptYzMDizuJfPRTCCYzS0aGqIg50KunYq6MkMYv+Ki8cQmaC8pjjyVoxDZqwK5xMv7gfuLhIGgEhLRCtpih9AJWo8+EV31muFQskYxEZlkBB6eWK22VlbMC20wiga2qmngoMOc8wFnVEAAESaJ+QTvugX6M1jNXVFfWN5BOJHjLGy+a9Xkhn2PHnhNE4nlOTuFLWhNXXVCDyWTgW/eeQNTODsT/uD+OsC8K2vL37TrqQ9fjR9WaaG4x0NLRjrrXN+caBgIltu0dRiMMMu4roMoWduzr57xF58a/g3JW3eGqIR4KojeVUIpFsuk0BrP5nHl8Yfck1srKctFMtYtEOEwhnyWfyWCyOV5WzeFXKmy1pwbOXFJLZfV5hPwFJPMIY4NPE/cIWKo6yaV86LQa1ORKEvECklbEXLcfQRSIuBW0Uhu2mjrede09VLeeypZFJmVC7kmGhjxcv6GGHYcm2dW7h6BazkZtXlaFRdXQtmI10YCfbZ7ZHLZqi8DiZYt5+JFd9Pokcn1eihozgtbAHfcdpqSKgIHDQyn0C40sXbGI/c/tYSKqp6Vaz/nrl9A3tofhGKRVPQ/sSwAaVtfkSWQV/GkZjRJn00UXMjk0zJETfq665nwUrxt97tTkzGo0YjWWvVr7PBMoPg+WCifHYypGq5Woz0M+6Kdq3UaSJ7oRBJUIErLRSNHvpXnZSvp2bcchKJDPoatrZKT7KM02SCgidctX4B88wRKNysRIH1WCghsVJZ+f5p5lcznSuRxOqxV3JEqocREF9yi6vmOYSnkOiSLFZAKrXkeLUYvdaCCtkXFU17Dj4a087TFw44Yq1qyZPxP6WoAka4j6vGhnZGxP8nVlrW6WQgSUb62tspp0Ij4n0WC0WDFaztyXxsMBmpcse95g2FlTR9Tvo7a6fV6ebTzox2i1A+XC6HQihrOmjojXM6dQurK+gUQkTG1rGwAarX66riSbStLQsWheG2mzw0k2k2astxtREKb03EWiPg8Gy7kZCuUy6VkFydGAH9tUAau92nVORd1mMc37b1vOnoND7BwGSgXOb9MSCMVJFyTcGQM7B4u8FIWjVzqqolGqdpb5tqqqEr34cuTqGmwP/p7oT76Hz1VHdtNFGNwTlBwV+M/fxMMNzdg2Xkjzv36CFbuew2e10XfBJmouvJiRwT4WnThFtygBSknFc+QQlvYOUuEQ1R/5AMvGRzEXi/SsWoP5Y5+mcmiA2gXtHH52M1fP4P+mJBn5iqsxDfSx6iv/TsZipS4SRhYENn3/mwR/+0taPJPEg0HGnn0ay9vfy/gTj6I50U3KWYF6y5sJGwxwqFzUt+mBewEYaW1DI2tx9ZWD78zlV9OwaAmD3/gyrR//DLnxEQxWO0IuD6KIKAh0HjlIUpQYHujFvfs5qsaGiVS78NXVozdbGNnyF+pvvJnoyDBMjJFWFLjoMkaPHGTpRZfi7unCsG0LJo+HwjveRzQeJfz4n0k4K9F1LMaw8SKKj/4R80++jzOZQCwplJJJJKU4/XziagyLYEUURJTLbdS2dDDxq73oi3oKzVrEBgO58TgGr4xBMmJe1oyaLTIRGeZBY4aGVIA3ak+5Vr4YvOqD4ZMi+DMhigIWZwWZVGpW52urqibi86I3vbiiAUmWcQ/2U9lwdtkejU6PbR5pII1WxzN9p7RgASxSnuO9bobdCQR57qAgyOWiIIcmy+JGE/sGshRFPYIAx4biZFJ7aa83ExlKk5/RuSmijm5/jrddWM2ll9byvbsOsnvEzNWXz6WInAk6g5FowIfDVUupUCAeCs7im54LBFEkFY1OZ1kK+SyyVofZ7iAWClLwZHDMqNZ/LSPkzWByyATDd6N3FNGbZQJ9Kq6WhVQ1NOLz/Ym47wDNi6/HPXgIDSCIAjGPnerqGxgJbEMN+XA2za64d9QX+c6PRnBZRTZdtoDuoTDHffJ0bcGu7gi1DhlfcAeRrAjMHpj7ghI//PVzxJJ5PvaODQwOTfLg/nLGLKmeGnx9GR0PH06Tzh5n+drV7LrvAI2VWu677ynIlagxWGcpnaxYWElNfQ2T7t3UNtSyc9suli1fSDTt5Zf37uC2JTrisoa+gkyH4xSHvcFuoQF4tlQibq+gWMghFwtYgh5q9DKaE0fYbDWh02pJpNNkgh4ahCIM9nBVk4vRTJ68vYLJ3m6sUwFbnUHG3XOMBqGI3V6Bfeq7qlUVVS0h6k2oqkp3ukjGYKMlGMRqNOL3TmAtFYgJEhFbNUga8iXAWcHhgIfaYg6zXkNh8BjNNgMGd+Y1rYoC8ycNirksztr6eVfd9CYzyWjkRdGgquqbGD/RfU4OcGc6/0wddShnW/OZDBN9vThr59rSC4KA1VlBLpMhFQ1PSafVTm0T8Y0Oo5SU6QB1JirrGsjE4zQu7iQ4MU7lPJS8s8HirCDsdU+77Z2kipyLHfT071MEAr4QmWwRkDGJWa685DzGB4Zp6mjjzw8/xxG/hqLw4gu7Xy1IqJAVZFb+15coSTIVwHD3cQybL6F+xSpS8ThVX/4csS9/g2gkQt4ziZzPE9Qb6PvRnWh6ukg98xTLtm+bdV5ZELjwq58nKgqMf//n5AZO0P7Ig9Pbm44fZfC7X0dQFHwLF3HZ7udmHe8sFWn/2O1o8nlO/N0HUS6/Cun2d1MfDmHJ57F43WUqYi7LVb+/i10jw9R/6t8w/fg7JBe0k7nnt8j7d3FowyaW7tnByRFhctESTJsvpl+nI7/rOVLZLKmuY7jWrKfqEx9CazYTaW3n6Hs+wKpf34lxihtsVkpc84Nvc2DpCrwf+ST+UIDazuXkv/4fdISC2O/+FcsTCezZDIgiVf9zB45cHungPtYfO4yoqPS/6++I7NiGddPFpM0mqjyTDO3bgzI6TE2pRM22UwYkrR9+/7TdddSRoOIty/E8dBiXt4LCYIJYOIdWo8N88wLC/ePULm8kvSBBciSA3Jsn8fNe5JKMvpBDq8uiVV56zdFrstfWm8ykE4l5K4pfTCayXOAFjmrXC+qUzgWr2yxcdtEy+o8eJ5AosaV3/mBzeauFSy9chie4m5EploY3o6NVlLnq0uX4o3vpP42NYNMUMRm1uIdHKajnXmV8EiabHdMU/1fWaqluOvvMK5fJkAiHSMWiWJzO6arueDg4XV1ustpJREJkEnHy2Qz17Ytes3zhk0hEMkQicPdfOmmrnuD1r8vS211iQZuK3pYmNDlEKnUY2ZCkpfPNDB/dh7O2Ar1rF6IkI2vThHzHsdb6sVSXBziATKxEIb6akjpOVrIyklT55s+fIYWZk94rFboMV6+rZfsRH92J2QGFU5vlqrXVPHc0wETSBJLMkeMj+CMZzkQ+VEQdwUQRt9uPXixx8YUrGOjqobWjncGeE9x7oLxc1WrP4/HHGBuewGGAtWsWcuTQCTyBJJGsjM0oktNoMTa2kgz5KRSLTMaSVBn1mAzlSZ2g1aM3mfAdOcGKRhcBq5OUq5aayQF0UxJcFqORpQCWGStABQFDTQOOE0eos5R/c3uFg9P1SgbCcSQBWqc4wsciSUKKSKXNgTudoN5owByOE89kSSCikTTUp30gi3jcKRydK8kO9dBkLU8YrnTYqTF5EDpemsbtqxHWiirCXjfWirl97uk6uueCZCRMIZdD0mppXNT5cl0mAPFwkJrWNrzDgxTzZVe6+eoo0rFoOcCfIRtpMJvJJhNTNJH5qQ+CKBKcnKBYnN8G+WzQaHWzuMIzHfTOhKXVRZorZSqcVrqGIxycNLDlgI9yqCGTxMzP7tmNSaOwLJHhyivOI7e1h+Pnxtx4VSKjlKuFPrvqzXgqWvnx1m8R0FlIaM3UZDP0xaKM/f4uNj3+Z7r/+XMEPG6qO5fT9h+fpcHrJi2KCNu3UjE6wtonHp117l03vZF8QyNrf/xdWlUVy0ffj7ZwqngxA+y//aNIPg+vv+8u2LplelsW2Pf3H0YK+Nk4lc11HztCXBCwnmb2cxKCINA4OcGJEz04ojF8r7uZTLUL51vezqTXg8Xnpn1kmIDDgVrfyPiv70TncOK/6DJMLa0oTz+BORTClEwQvPhyClYrpfUXkLjvbiJmM2KpSG2oTOlUbTYcNbWEe7owb/kGarFE9ps/JPntr9G2dcv0CtrKndtnXWPP0uVoNl9M44+/S9PHbqdm6rdc/bMfzdrP7aolsGwlC7c+gVFRGGluxXB1PcGJcaquXkL6F8NoPAIlXYmMvYgUiyD15wnuPUqurkTTGzYQ0Y9j2pIHCUySmVsyEXQv0XADXqPB8AvteM8FtsoqUvHYSw6GT5dlS0YjPPjIHpY0WVGU2dXAgpKjxlTCndSypy/HZGAvI1FxFtP7wGCKQHQfAwF1TvwSLBj5w7ZxIjkR5HKwMFMCbj6JuJeCQjaD2e4gHY9hstpJJ+LEw8HpZb+TxiYnOchRv4+w13NOHf6rFf29ee5/chGLa4axaoPYLHkO7Fd5+uhqVrp7ue66OFCe3WTiCuHAPnRmyBeiGKVyx1MOgI/OOXchJ2KxLyAWSfCZ20/Zdn71jlPBg0kDC9oaOXwiAKf1tRYdLFzUSu+gn1ULjRwdyLOl+xSFB0As5bh2hR4B2NKdJafq6PGWEOUEMcXIT+/eRaUJVGGEwf4JruuswxvJ0eAQaWisYqgvyaqLNvL4n7dxKGChJBYAHReutKJrref4nn3Yql08uNvDW2+9mJGRPpZSXjqrSEeJ5W201blosllJhxNkvROY9WfPaC3SqCQnB6huqCOcTNGVyFIrlHCay0FrYor3HnM1UkglaVGLCIKACuh1WnIhHxbKhgZBs4OsJo9Wr8Pkn6S1vjxpc2WzeAaOU2c4laX/85EJfjti5HX+3bztghZ6Kl6YJu+rGbJW+7zWwS8E+Vz2JeuXnwlWZyVhr5t8NofOWEQ8Tdv4JCXCWlk1Xaw2E7ZqV7mw+AyFffaqakrF4ks2/jhXNFSbaG2wotEbMboTqEqRmy9uRqvV8r0HynKb3qwRsjB5JMl4+AR93pN2E689KKrKP659JyVZS7v/BKogki4p/OslH8ES83LX7p/y1ikzDQDfow9TrG8EnQ45W6a0GRWFzT/78bznz7UvRFjUSU6SMBWLVKbTs7YXRBFhcScF/dz7mxNElNXnURgeYtdNbwRR5PwH7kWYkkU7iX2XXYV7/QUs+OMfWN7TRd3kOKHHH0GfTND5w2/jdtUSuuXNlIaH6LrmdXgGTpB01cIFmyk9tw3D5ouJ9nax6qN/T+1Uzc7RS69AuPmNxB+6n9LEGBNLOol/8GMUQyFqPvVhBEGgffs2tl58GbVaLSuefgJPbR1DWx7DMdh/1nu++PhRJt51K65oGEFVOXjltZg9k3R0HQMgo6qIqsrYdTfCLbcyMTFKx4keVAFkrY7CgId0QkKDRKFDh3a5DZemjkjPOFVhe/lLJiH4yyNIOREov3uRbIy7HArmdIQP8PwKWWfDazIYfrmhN1te8DJfxOtBURRsVdXz2j2fhNnu4KhPyxFPCgRxFl3gvBY911+5it89uJeBsI7BCHS6CtRVannqeAJV0pEXdAyEmRMIy0qWq5brkSUrz/SkiD2P6s6ZbEWhHLDnsxlEUcJe7SI4MY4gihgslll8P7PDWVbraGymWMjjcNWQS6cJe93I2rkBzGs5G3wSOi3oSGB3Crz+jQlAwD2h0DA0QHtLFjg1EBusIgbrEKmIQDHVTDYhY3KcefknHayjpPVQlHuYb2AzCFkaXGa+//OniMmV07QJsZTlDRsr8QYUvv7TZ3GYJW68biGh6BGWNUuUchkMVic7ukLEUkXqXTZqW1sZCx/kqAeW1Om44apVFB49wFGPiC8L/f4AH3nLZvwjw6w9fz0Dhw5SWd9AJJoi4PXjzphY4Mhz+fo6th8Y5c97sriOjHLt5jasLhdP759k5+4erq5WKBQkDsfS5CvqyPZ1s2FRWVd8sXNuZzcciaOqCvpSidrKsnSVUa/HODUQ+fIlAhod/nSOS0wqE7EEgepmksP9aCJ91FkMCFPybSscZgqFAlqtlpO2zY3pCIOBMI4NF5JJn5pNGPV62k4b7BZUGFgwEaWt8rWp3fq3hLWiiojXg+UclW+g3E8Vslk0ev1ZaRUnA3eHqxZVUWaZaUT9PqyVVcSCfowWK86aumn5N1mjxVpRiSiKc6gXJ+EbHSGfSaM1GDmXlIyiKPP2uUqpNFX7olLd1EI8FKRYyCMgzNE7fuJonGePhcnkQdXoEUSJp/aOIwCCPDvQz6Ln4Di8VgNhAAGwZmMURA2fGd6OLAiURJWNPU9TUZhbMLnm6cfJA0dveD2J2jqYh+pzEl0di0g3L0DzwD0458n8l1SVwUsux3THD1jUfWzWtr3X3kj8gs20fuafqIjH2f+17yJotRz2evBccwM6zyS2wX7WbnkMb1091RsvxCvLLP/y53BbbWQ+/Tmie3ZyyVf+nZpwCL5ynCc++im0F1xItLmFyqXL8Y8O03LLrYw98zRVE2NoEnEe/tp3Ud2TXPmDbzIxMcbELW/B3raQbH0j5vvvRcrmUIC+JcsY++inKB0+wJJf/QxBEKjzeqj7/jdn/Q6fsxL/suU49u/Bkc1hUkrl7HW0HHRPWmxMvuEtCMUi5v/4Vxw+L7u+8k2y6TS6vl7s3/gKzSd6AGgdGabvF26qJROCUAJRj3I8S9o7gXZjFVXLF5B+rg+jptynWuOz+1ajRk9Dwo9VEeAlsn7OKRgWBOEa4HuUQ66fq6r6tTPs9wbgD8A6VVX3v7RLe+Xg+Yo8zgR7tYtkJPy8hXkzM7QzM7cjvgw7d/fgiZU4OTi3N9lZsqiR57r2kz3L09eJJZpqHbiaW3BHD7N/7MxBVTaVIjA+it5kxuKsmFOkkc+kcdTUEfZMZWkEAbPdQW4eZYrTlxtnZoL/N/C/3XabFmj5pw9FmJnOP7hfZXjSQo0zSkfnXMetYqqCKtcmAr4kOIJztk9fM3bM9kqCQQPMkBA8mSWOTVRQ5bqAJS3j/PKJPCVpagBUVRwOK4lkjpxGxJNV+f6vdqAWC7zxshZS8RKLVy2kfzxGIKvjN0+MsKDWzwm/CoKOrokc+UcO0OctwBTvsIjMif4JfP4Uz/Xtxihk8UT20O1T8WUygIHz69I4qquwGSdIh/UMZ/T88vEhisUB8lonnq4se09keNtVleQzMQxWCami7OB1PBRHFKBzhu5vNpsl5Kwj7PdQ37GM1EAXCytsDEfijKdzaOwVVGczaHRmJKOpHHggkI9HyWj1qCI02091roIgTAXCp1Bvt2LVyoyMDlKhFoAzrwwtbariq02naAJLQmNz9nkh2eL/7bb7vwlZo5kT9D0fCtnstJvouUAQBITTXOUMFitRvw9BPJWUOBsf+nRkU0lq29qJB8/83kI5+TBxogeTzY4ginPoe4VcDqPFQj6bQVVVioU8tspyzcucc4k6MuhAByevuj/8v+fk97/dbgVB4Lvdfzr5BwADGiPbGlZRH53kA55Dc44JGk1k3/0Bkgf30Xlw3xnPHXbVYXTVkFwwv0mUz2Ag/Y8fJ3N4P8mBE5hnjJFFmx25th6TomIvlVj5xc+QF0SO3PZO1MoqpLZ2ojY7bHmMy377C46f6GXRVJtriMeIf/5fsARnF/9XdB0jpNXS+vu7iDe3YGhsQnzgXt749BYkQWDAbEFfU0dGVTGoKgv7+6j8/jfwmEy0BYPoKLfFJz/yCZJGC0ZZRrdiNQVnJcN6PYHzN7Po/nuwzfgdozfcRPyKawh+4MOwazuX/ug7+O0Oeq+9kdiiThqf+gv67VvR3nAzea0OUVVRgkHSZjNcfR22L3x2VuSiOW3CZlD0GPx6ogejxAxxLNKZ+1ydpOPN0gvj5Z8JzxsMC4IgAT8CrqRc6L1PEIQ/qarafdp+FuCjwJ6X5cpeJhRyWQRROmt29q8BWasjHgy84A5dVVVarDlSeQjm9GzpymISYXFlkV6fyqP7Qzx90D9Hv/h0pDDxi78M0VAxyWhUmg5aZDXHxZ1WBt2nslyZRBytXo8oSfOaX9hdtUR9XqwV5SpxW2UluXR6TtX4maAoCjG/D7urZk6hXDwao1go4qx6+aXVXqltN5US0NhcBMJhZgaxJ2Go8OH3P4BsihHzi9iqy69paLAG0OBoGUWURMy1R/G5j2K0mMinM2iNpw3sTj9+35/QSm28ZZPA/c/5yMp2FNnAfz88CKKMIGkQBIGYYmZju0x1XS2Hxz2EPJN4QinASjZXpNtdRNWUJzV5QUePJ8cVK6yM+5L0BDQoko6HD+eoNYo0VRvYOyiiRrWISo4L2iWGPGl2Tejo+p+niQlODGKcnGwlLdpnJsdBVSkWi9QYZCpTAXRGLZlslmxlLcVclgOBEKrBxFK5hEGvx+AZpqRqCU2M0zalnRwwWHE01xIcH8NoNLBaLJtoSJKeeruF9KSHUmU9QmGuPNacZ5XJciiaxqIqtNSXJ7WPHhnnqeEMV9SrGE0mzm+vRqfV4gnF+cmeAOvqtNy46qV10K/UtnsuUBSFQjb7N58EG212Il7PC9I5P4lEOEwhl8FeXUNFXT3FfJ7wlMa6rcp1Rj706XA1txKcnJiTmQ5OToCqYnfVIGs0JCJhtEYjGp2e4jwmITqjkUIui85oQhCEabWMmapJzwdNKUkRDao0O2miKiVKqSiS+dxNQM4Vr9R2WygpYK3EP4+lNkBdOkX6Ux/BFIsw7qygOhxCRzlb6r3+Jhb+8mfUBv1sevZpDo2PUoGAu6KKutOUqeqyWZKf/TieJUvp+umvGfjBt/l/5L13lGRXdfb9u6ly7py7p7sn5ySNck4gEYSQEDkZMMaE1xheeDHGGGNjjMEkk6MIQhIKKKeRNDnn1DlVVXflXHXrhu+P6umenqRJQoLvWWvWmq66de+5Vfues8/ez372pVs2IAgCq3/7S/K/+xVHt/M12Sz9DY14b7mNyPNPoy5fha3nCACartOwewetkxJ+giCwYOc2dl1xDaPX3cjSX/wEh6Gz4pknSK1/kZ7XvYHWDS/S/OLzAOxffTFlp5vFzz8NH/8g3nyesNOFL5fFXyjgLxwXyNIMXJgs+eA7KAaqaYlOsOXu92De9Q72jgyhXnMDs372Q9qH+ml54hE2eXzI8xZgn2yIM7bmMix3vxtjoB/N6eLae35O6je/xI8JosjK//0Wa9/+PrwrViOcQRH+REsCwytRtduGKEpMqGkelVPU5gp0iC5qFDc1lkqm8PHSMDlR4I1iPfJZdGA8HmcSGV4N9Jqm2Q8gCMLvgDcAB4477svAfwCfPufRXGAUslnUQp5SIU9ta/uf9dqnagLycvjwtT5qW9uIhcaoaa5EkV7asJ/LL1nAT363kdGcjewZFk6WZD99KVjaqFNXZeWp3WncljKXXDwXaeuhqSj0Z982B0PXJzvTnehki6I4w6lXrLYTJJJOh3goSKChElk+nh/8swd2UTAU/u6OBbi8F5zr/arb7tiIytr1PlYuTjFnfuVBvf0OiX17d9PZBUcj/gBbNmlk0hJXXyfgayqQHJmNP7CK4d1P4fV3UsqV8NfWEh0cxFOr4fQrpIP1KOZckmN7qO2eWUFpcUjkEgniwTgdC5fz/iqB7z5a0RYVlOnddpWc5rY1TRzqC/HAk/txizr6kSCpso0uZ5w33bGa8OAAz+1NMVasTOU2QWP5kllYDwxxMJKffK3E1QuctHTOond4MzHDQo1d54arF7Nx80HG9xURXVW8a3U1fq+DdVt72RmZSX1I6Q5+8EQIQawsWo3OFG+9sgXL6AAdbjsjdieSL0AxHsRus7GgvgZ/Mo2kZalxO8nmcijxDElBwlHI4PLYieSLtPgrtpVIpcl3LcCMRvCpeUIpAdM0afRNR5xD6SxxDYR8irFoirrLriZ1DHf18ESBUcPLD3eNYa2pJlkc5w3LWwgl8xwpuPBEc9x6Cns4WbT4FHjVbfdcERsbxe5yoRaL5zwPngusdjtW+7nVdOQzqSlHtrqpeUatg8vnP2M+tM3ppHFWF+lYlHg4OFVELEoiLp+fQiaDOxDAE6hCKxUpZNOnXJuOz7KdDa3MauT46J1LOXh4hMf3ztz06ZkYkqcaPRNF9pxf2+qT4FW327Jp8o3Oq/GVMnxorCI9ttAs8W8vfBurMZPacNji5k8tK3nL0Ca6BnrpmdVN5Bvfpee+36LPX0S+7wg1l1/F8PNPYYgCTRPjWFWVoS/+G/3DQ7zhK1844fpdhw6w59obEaMR6j//JYY+/B7aw0FkQZhyhEvAU5/6v2hWCy3/9BnqdYOEKFK7YzMp4Llv/QAkiR2bN/LG3/x86typ5auQLlpD+g+/wZHNopsma++4G/u1N5B1e2j+2Q8ACN5+F9b2TpIvPEtrMsmLH/wo2cXLUEaHueK/v4q7PP09CILAtd/7b0xAEgQyiRjPffHfYGiQlv/zd+R9fvJLl5P3+2AIGiYmuPon3yfS1Exnz2HSQNszT7L20isQHQ66Hn2IgVld1IbGQK1s9A7c/R5qb3sT8Yfvpy2b5fD8hXQc2DcVBymZRdQ5MqVgGhMD2/IGqttaGdm/njqjnlg5RyTgZVRNsr+2kfpkindNcoSHLZCzO8ininjOwxk+k6YbTcDIMX+PTr527Je5HGgxTfPRcx7JKwBRFCmrKoZ+/oLM54tSocDIoQNEx0ZO2/hCsVqJBcco5abbk+7sTfOnp3YSzJzbLr6twc3Cea0ogk5cc/K9X2/g+b3TTUqsDgdVTc0nVd+4EJAVheREGMVaiVDs3t3L13/8Anv39dEQsFDnMrCepNjgAuBVt92RYZHhZDuDo1bi0RLf/YGbJ56QWLpCwe2d+eBu3l3Nlt7ZxEIV+yikCqSiEcp5CYerHpvDx/hQD00t76SU7AbAavPgrqrC5ORdDEvpGrqXX8zESA+6OXjSY9pqrLTO7qLa7+RQqMwVly+io6MBTZBBEknHogiCwOXz3DS7SihmiQUdbn76+408sX3aAV/a7qB78SJGe3uIFSv3Fi5Y+fm9G1m3v2JvfjvMmtNJPp2mu9HB2y6yc12XDuUcc2t0LBSnHGEASQTF4aSslRHKZeZLGkL/EcKaMZXFaPR5qPO62RqKsd204rPI+NUcTXaFQV0kUtfGnpFK6tzldCAEh6kq5ZjnczFk9xH0N1AsTjcgmBCtZKvqCLlrMJtamDhyAH8uwba+cT7/8BG2BQvYIofo8kkssiVY2FDZQFZ7bNSToP3sGVUnw6tuu+cK0zQnm2C8+uMID/QRGugjHT/583EU5VKRieEh5EmajNPrP2Wtw5mgXCrhr2tAm3QGLDY7hWx2xuYg0ND0igVpNGT6+oOEYxWOrFHKo6UnKCdCIEro2fgJfOILhFfdbhMIrO+6nHVNFfrhv3dczgdWvIu2QpKFpZnNuZ6vX8Azi17HuurKfKqWS8SDYyQC1dg6u9CrakiOh4nd8XaOfPW/yZomZnUtgYZG7KMn39hGFAt119yArumUH7qfqviJlJmE3YHvkstRmlrpPLgPVq7Gf80NCHYHpiBQyGbIJhMUFy1h/a1vwjAM9l58Ke4Xn6fjo++nfrIIeKS+kbo73kYhk8G5a5ppMvdbX6fp/36KgGmSFyWUNZchAGpTCy98/B956P/+M2MNjfTMmc9gWzuiICBNPrCGKCK43WgOJ3JwhHmb1+P8yHvJdXQRn8z2+Ap5unuP0NfcwvPf+gGHr7iKrkcfovWRB4l0zSb4X99l3VvejjY5R1dt2YBw/++5/Fc/I3zDLST+41v0L56mh5ZqdPzXdyJeFUC4IkA+nSb84gGsRRt/0EZ5SUiiR4ao0iUaIuPML0+7rv6iSk0ygVM5v0zUeRfQCYIgAt8A3nOGx/8N8DdwZrIx5wOrw4HlHCIFpXyeslo6I23LM0EmHieTiNE8Zx7xUJBcMoml/uTjCjQ0khwP42qa5hb+/bvWAPD6yb+P5RWfCR7dFkfZHkUVHQhArOycJpdxaoUJ0zRJTC4IZ9pk42Q4PqKRyZXImk76+8P4vG5uu7F7ylH+c+JsbPdYuw00+s74GitXC3jcO5nVJZJKmuQNH9lCEZiuaDRNE0EQeN01E+SyEWqaKpxtyZZEwMRqd1Iw/oBgbcNZkyQ6vgVBqXAHHXUHSecPUdctko2JFDMGsmLBWZVHscn42yKMDTyOozaGt87C//3wtPNazGiUEot5bl2en/7qaUZyTkSLnfuePoxugCBY6c36mDs2wYrL1jA+NEBLMo3DqnLLtUt46vk9bOyf3mjuHcpRfnIbewcyYKl8R4IoMZgC0VB58xonwbDGN3+2jiZXmYWzvMxeOBd53z66/XnuvG0lTzy7m82D02k0h0Vk8EgvNQ3NhGtqMI/sJWpzUd3YRiI8QMDnpVgsclAVyDvcBOobUQ9PsNBtYyRZJpXNUihpVM9exN4je2irCbDY72QkmeFwpoCjGEdWLFj9boqlEn0lAymfRc0XaJy3kJEdm1ngc1HndnJP/wh9RhUOBplV70WyOKi3Fqn3VZ7liVSRMH6CJ+lqdqFxrrb751BuqW1tm7LpM8XpqFTniv7dO+lYvJT4KTrGHQtfbT2Grk/Nc+cTZYaKhGdyPDzFBT6btSQTj6MWC/jr6mcU950NdNHKQzvyHF3iTdNAtDrR8ykwTQTFgmS/MLu2s8H5+AsNJ2mmcjLUCvDVtf+DY1KdKWHzkfDWUxJFmOxUdtQ+3zKyjZp8guujFbWEhmiUwVwWqb2dqg+9m4aaOjLt7ZR1E+wOHMCC3dsZ/sDbWT4xTkaRGZu/BOIxAukktakkdVqZ0S9/nk61zPKD+04Y39YbX0eutR3xs59kfiyCv1ym45E/Euk9QvvB/ViBzqceI/au9+OuqiGczRJ9+I8kP/kZioMDLP/Mx6fO1RgOkvrPr9AWHGVJz+EpjnRzcBQD2HrT68msvIjWz34Cj2LhwK1vouPmW4mMDhOsqqb4T1+h1N9H+2c/MXXOksNJPBxCmT+f0Z/9juFf/5xiWzuWiy4hFBwjsHk9ALsvvZIjay6jpbObdFMra375Y5J2B/tvezNDmzfQ9bZ3sGFsmI5DB5izbw+J/j56b7kV+dB+jN/9irq+CiUkXZdHd4sMPrCF7rddwdiBQ9iPgHtEJmToDAY8WJMl/JKTpkKZoqrSrFRN/Y4xmwXVYkXNl7CL5+4Qn4l1jQHHEuCaJ187CjewEFg7OYnVAw8LgnDbyUjxpmn+EPghQPuiJeevlPwyOJeJNZOI4/R6yaWSUzq75wrTNElFximpKuHBfnKpFLMWLz3l8YJwYrXwUSQnxtE17awXGk20cSrFS5dYpMoJg2kLgjAzUVARla8nNckLOldMjEd58NnDzGv3cfklC7h0zXxmt4d5fP0guyI6DVVjLFp88oKE88QFs91j7bZtcfMZ262sSMxfXFnQbA6FD93Zg90pc/TRe/pJk309Ad562zizumdGarwNWYrRODa3jrvaiWFMEDxo4ggcwumrfN7mkrBNMluM/DIU00FNbSuR8SfwNsewOmSsLgt6oQHTjM6wG7Uo4vJ2cfnKKKZk4UePjxGQ8yRyIlmjEqmvthZRNejfu5d8NsfQaA4EmXsf2oJN0qm1C0xMNtrIGTa2jwKKb+oailHg7qsb6T3UT7XHQj4tkTZdzK8ScDhk4uEgmUyewYzCM89u4/Bwhad8FA6rSHVjPZFQBIuhIXiraGzpoLB9PUpdDQfSBaz5NBlXNdnYBB5To626ikwuz5hmEFiwlIG9u4iPDlG9YDmD4TEWA1GLE2tzG/6ePbRMFuVFsnmE7sWoIwMsFlQivfu5sqGKrz7ZR0yV+MJVNbQ4EwxnA1jNEvf2aijeBg4/1sP/vbGLlV31fNk2QWPVBZEYe0Vs988x58LZz7uJcOiUVKpzQSYRB9Mk1NeDWihQ9TIyZ6dyVvPpFMV8Dofbe0bd345ClKRTzuPlUpFMIo7d5cbuOlEhpawWCTQ0khgPnZdcXTlZ2TDL7iokmwujWIkmyp5qtHT0dLWg54NXzF9YaLOfse0uUKcjwF/a/zC5A49QNWmSu21+/nX527itfx3vDO/h9uh0q+RAIU/tM0+QWb2GOrVEVc8hjqSSGBaFuaMjU85m+0Sl6+vBq29g4u5343C6CO/YSu1X/xmAqlSK8JXXEB8eJHBMlhcgN38hqdZ2qm96PfpnP06iVCLj9bBg3dpK/YbNTra2nlw4TGJigrqnHmXi0svx//PnSFbXsOvyq1j84vOIgoBFEFjy4nOVEx/zzK2/8x1kFixCLeQRa2pwqSqKrOBZspxkZBy1UKJmeIjxb/8XSnmmd6BarXjnzCfVd4RcJovicuG7/may99/LrK0b2bdqDYKuEemcDTV1xJ5/miXPPI5qmhyYMw/pHe/Fvms7sZEhcqvWwAf+Fte77mBs0RLK7/8I/OT7rL7n51PXk5f6qZrdROSb2wj/cge2pMC+bJJ1TpObVYU7oiZjuoRNlHlezqNX1TKST/DmkkG7NcBdqh+9bGK3vPKR4a1AtyAIHVSM+i7g7qNvmqaZAqbChoIgrAX+4UyqQ0PR/CmjnBdaA/dsYOg6uVQK9xkWiJ0OyfEwjd1zCA/0EahvQLFYTyqlcyYwDQNfbR2ffINygkLFSb9HvczKDoVQTEUUobXWzoaePKY4HYW9ckmAFctm8+1frCOhV7wqrVwmE4vi9AeIh0MnbW96NkjEM4RyFryRSsRMEARqGxu4ejUMjsaZO/cV02N9xWz3XOEJzKSDlFQRFSdaeXqeD4+prNvkZsWSMh1d0/I8Y/scdMx+I+Oje3H69k+9npmwgDqPfO4wpmEhEg4hOeOVaFtQQxHmoNjsaOoTKNZpaoanRiQduR+TdkQUxLLKB96xmuDoBPesSwJw46p6OjpbePapddQ31PGm69tBELjnsQP8/XuvYueuHh7ZcepIqICJYlGoqvbT0N7OS7vCgJVNfSX6BidYPrfMnoEi9dYyl118Ma31o/x2U4WDvKBWo8pr5zcP7+XaS7t5YNM4OdXkE6tzdDbVs3c8hnPpRRQGe7CIArOWrSR06ACH0wlKLZ0YWhZrzz6W2kARNHp7DlLWDcZNO01AuncfTf5pnnpzwMdg7z7qFAmv24V3cm7VTNAQsVktlAUrj03YWO1Nc/dslccGgvSZdp4+EOKGBQ3kywaOl9FBPkO85mz3lYSsVFo8y5YLk7ovFws0zZlHuL+Pmta2c57DivncKds2nwqJcAhd16eK4I5vUZ1JxKf4yMc6w+lYFMVqRZJk4qHgedPWBFFEtDgwNRVBUhBtLgTZgpaOIlheMWm115zd2kRhhpCcKkgUXFXkpWlb002T77WtwV/K8Y4nH4UnKwyOmNXKkX/+Kp6aGvzveAt1pQqdKivL7Hr/32KODuF67GHKkkh1Xx9QUaYYXr4Ky1vexsS2LQT2z9SIX/Htb3Bw2UryN96CM5nk4N3vQrjtdoSPvJfOsRH6r7ke53v/BuGXP0FfdTHi8lVkX/9G/J/7P6jX3kh+6XLCWzfReAy163iYikLJMKhZtYbSpvXUp5KQSqJ/7lP0X3MD9mIRby7L7ttux9/ewciH30tLLMJoYxODd9xN/Vf+Ceuay5DKPSx6+H6GhoeYt20zYy434x/5e/RMGu/jf8J1x11EvV7CNfXsv+n1OK+/Gf1r/8rKvTuxazpDKy9iJJ1kaOlyZm/dTP+/foHmPbtmjnVtgtjGGD4pAJOMEpMkuiRjCNAi+7jPpWIi8Jakl2ejYSIuJ8/KGd5n+knoBerk89MYhjNwhk3T1ARB+DvgSSpSKT81TXO/IAj/AmwzTfPh8x7FOSIyHsVms2KzWzl0aJiuzgbsZ7F7PxVertPa2cDmcpOcCGN3ulALRXwvI7N2OgiieFYVxV65xC3XrWLX7h403WTl8tkcGFxHQp9erHceSRCJ7SahWqa0itPRiSkpoQshHD9nXgfvs1uorvHNeL21rYHWtrNT2zgbvFZtN5cqkoxrJFIKN98iU7PhCPmCgmma9B/McOCARE+0E1fvYTq6pmkIDp9KePAw2gxKHmglF7V1C9Dow98cJ5cMo1hFUkEftbW30bf/cbz1cbxW5fih4KlRoKYSuDGsc3hhwxGyhTJHC/te3D3OjsMRDky4EUJFOn1DACR0N7++fzP5QokGu0wwK3PNHAVDLfLigIRkqJgC1HhlfvjoMKIIO4Y2MZoSK7+EZCFCDU8eAnDTZE0TD4cIhhIcFYzsbvUyu7sJaznBgoWzGJnIsHUIuqu87IkkSLp8RHdu56KAg5yqcnjvTmyKjD57EdnxEB69TGf1tLO7L5ykYckyhnsOsCrg4tgncSKZ4Vfbo1zcYqdj9rTMVSqd4Uuvm41hGCiKwppOiXhhAqeo014bYCw+wtpxSOYs/HxLiPVJN39fCnLp3POLbr5WbbeQy5FMpGlobmCwfxSL1UJj07nPaUfxcvKTZwvDMMnGY9S2tIIonDQCeyawOV2VhkHuMy/uNTHx19UTHuijqXvOCY1D7C43iXAI5RiHNBOPY3M6ySbip9QwPluIViemYSAdTR1R0R2WPedOeXs5vFbtVjNNgqbIYV8zyzIh/uXZ/6Y30ELJhHHJwj4sPL7gZvyJMd4xPh2AsJU19L4e0kcO4itNO59ZuwPjiqtg4zou+c43KAJ5WSauKBz4zo/I9xzG/ZlP0Ll/z4yILYBbK7N660bYurFyro3riReL1E5UIvnNG15kRJSY/dxTBP7wG4K19YyPDNF4aD+2H32XVKCK9Jz5uA/sYWjlGgZWrGbu/b+jcTyEKopEWzuY98C9eHJZRjs6cacSU9eelUwwa7LzXVqW0TMZUocP4slUGj8l22YhX3cTvTY7jtY2pFQS132/ZdFLzzPmr2L/v/w7pXCIzt//mlk9h9np8yO1tRO59HK0RUsReg6zdO8uapNJAIKAffUaIhdfytz33MnCzRtmfBc/aVjGkVSMG6zNU9TNYrnAcqWaZXkTyyR98vqsRFYvkpat3Kj6+EUhRQ6Bw+YED9e7mBOL8wbO77kRTial9eeCtaHbbHj3N8/4+GOjxfFIjO8/eAS/TWNxVxXPHiixqk3kluuWvAIj/cvEP/94B23uIomCgGaAz2YSzNteNoVZZS3x9uvakCyWM5ZPe7XwvtlN203TXPnnvGbb4mbzcw9//OUPPA4vPF1idEwnUmihkFMxHE3csnQDj21fgZkKcuWaGC8dWUU5GWbxrCDX3iji8U1vXMaDRWw2EW9gZvRML+ukxg1Mw4OuZQj4X08u3U+h2I9VWozNUUVJ34avJXH8kF4Wx3azW1yv01zr5ImdKZa0yCydXcNEcJRFK5fx7Z+9wN03z6GxYxaPPLaRay5fzEDvAAuXLeTn925iKHP6aKlpmmDoCJNtNS9qNXBaRdLpNDfeeAm/+t3zDBd8MFktXCunuWllFQ7B4Ko6H6l8ngFTwVnMUxZEhHKROTVViKJYKaSKxZlQdSK6iUsSmet14nNWQr+RZIZfrO9nq9rEak+Gty4J8MShJB6hwB/HnNzdBbctn878Do6N8w9PR7Gh4rDZSJsWPrFUIatLrBsp8oFV1TRXv7zztGbNmj+77bYvWmJ+8YHHz/nzv75/E31xkTevcPDg9ixOscSn3n/lBRzhXz7S8RiaWsITqCYdj54RxUItFkhPtsQ9mwDE2daPXAgM/cfr/+x2CxWaxB/a28/qM3utPn7WvBKXUWbrvOvQ1SI39q9nyBHgcOtyrnvpp6y76K3kyxqzQwf4m8F1LFHTU59PITIu25it5U84d8jjJeUPYHo8RFdchHHlNfg/8wnG3vZOSm0deMfDXP0f/3Je9zza1Ez/3e+h9b7fIhaLHPqHz5HfvRP3DTdT9aufEq6qwvWWuyns2IaSy5KqraN2wSLMRx7gklN00DsK0zTRqexYBEGgd858xl7/BrSX1iJ9/NPoDz/AsofuJzBZ8J9RFJ746Kewd3az5Mv/j5aJMFtvej2aP0Bg60ZSs+cx+08P4pvMfMetVmL+KnpufTN6OsncXdvpnmy2YZomDwW6+MX8mym5qvnbtI0tpLFrGls8FnzFEu9U2meM9QeFQyRcDtrSeUYbW2gfHeEaWzNPyWnmlmWWW19ebeXvfnDtKW33L6oDXSwS45cP7aWjwcGNVy+kwaUT8FjpaK6iIzhEZ2v9ST8XCkbYtHuYNUtbqW84feopE4+jqSUEUZxR+GWaJvFQ8ASZsdcKIiPD6LqGKEpTkW1BEBjOThPDCoUTNqknRaw02UhBLZGJx19xeaR0Ms0zG3qY21HF/Hntr+i1Xg2UCmU2vaTywtY6RGcVPrMPr02hrq6PzvkuxGd60H3d7N6XQykdxmYV6Bv1k3+0zFveXOTBR5w4LTkOBOfgt8X44PtmctAkRUIURXy+Wwj1HSJVnqBsJGloexOJ8UOU9SClvEpqpAuL9wh2z8lpOmpeJz4GdssKdEYItM2swG+tdzF3dgvP7dqJRbbg8bgQjRoGD/eQEz3cv3aIpWNZBsdVhofDjIbSJAr7CWdAMoq8bokdj8fJ+n0xdMNkWaeHsWAEh9NJR7OfvqEoW0d0SqaVzhY/gYCXb/9hH/t+toGiVIMkqDR7SgwlRHKCRE1LO/poP1siKZIT4zRdejWh3kO48ln05lnsTUZZ4nfSl0hT6l6Cte8ALbKM0TGX8YFD+Cbv68FdITZGJNzqQd519VKeOZLgif4SilZEL8WwH2eTh2Iqsq+eWi1Is0dky8AEP9xi5bZuO8VciWOywH8V+P0fNxBOqLz3zcuoD9jJFrLUNdYyP1jAdYoirLKq8swL+6mtcrJi+ezTnl9TVRLjYUzTPCErd9SxdPn8WGyvDMn1XJGKRtBUlVIuS01r25Tc5LEBhDPl/FpsdhweD8VsZkre7ZWGlp4A00Ty1F5wveHXAjZKTr4y9xa0tiVU92zEHx+mMTbCJeMHyVd1sz8b5fmL7qJqcBuCI0BZkvnyRe/l6xt+yKaqDvZUd1LWyuzvupT/fOZrLFBn9rNvSKc49PF/JFPfgJpM4OntIXTn23FfdhU8eB/yRIiN7/sQNRteouvQ8cpyFZimyVBdPX2XXYXY1s7qb34N5zEBymRDE8rlV5HavB7vQD+yv4rSvAUI0Qg1gwNc9PTj7CmpNPX3kuzsxlYsYezZSc2uHQBsuuU2gitWE+jvY+4Dv+fQe/+GXDyOq6ySmj0bMZVmwVOP0tHbQ3pWJ5Yrr6X2iT/h/9C78OZy2AyDnu45+GIRahIJag0dbHaGuro5dO0NlJeuwNbUTHLDS8S655D7xvdY/tlPYmCy939+hNF7hEXf+xYjv3mA0a7ZdH/lnwA4YHHxncVvRCjmuCGaJyUJbK52YMTHIKNTZVqPVR2lrKukfX5ETaUdB8FQL4MuN/uTQUo2E810/nk60L1W8K3f70cQJLbuH2d7TwpBUhjJO9kdDvLF968+5ef2HAqxJyjitoennOFwOMrIaJQVy7qnKnYL2Qy5dBLFYgVjpjB0aKCPQH0j+XTyFbu/84EoSbj9AQq5LKloBG91zUl512caSXhpZ5BbrlvMT+/byt+87ZJzGtOZFPo9/+JeevrGCBl1FEsTf5XO8AMPOxmc6MYoj2FVx7BXO/B5ytx+exmw8OY353j6xXEM3UnZ2cpNa3bw3KYWBMqkkhoDkSZ81gmafGEC3hK5TJl1G63M6SzR3lmZMSyOEqOH9+LwVFEsBamaFSQR2wJKHNmdQimuQMJPKTOI3aNRzJRRizpG2Ya7RkdSJAqxTppbLiYyOoigOIAYf3f7IXIxBaeri18/Os6zO6MURSebhgwODO7hjqtbaZvdjbJ5GzHNjVpSWd3l5MltE6Q0O45QEhBRBJ3aKjd1ra1opSKKItMxby4NVQPUtc9icO8eFs2pp1AKsn0c/vDSOJIQRrB5qPOqrJ7nIRhOct21K/jdg1vpj0gMDgYZHohw823XEC6UiAwPYuo6RsccCqkUklYmXyyiFfLkgyPUSgIBRSDct596y/TUN8cv8NyYQsAVoMbn5qZ5EpsO7iDk6sCjwPWLmvjq44fIlgzettjLlbNrMcwIGC6eHNTQkMgofu7dO4ZeM5undg/zvmsXvRqm9oogXzLI6wqPPLmD+voqPvyOSwG4/fWnpjaEx8bZPKhTHZyYcobLpRI7dvfTNauequrpgrXIyBCCJCEwc64o5nLk00nq2zuJh4METqHA82pBU9Wpor94OExdW/t5n8/lD0xFiM8FRzO9p5t39XwKQ6tIvkk2N6ZaQLC+el1CXwk85m/nfy7/CGq4F1s8SHs+RsTh5u8H1tKqFVmYnSBhdTBu9RBZcD2v2/UAOVEmYVY2YztrZ7O3fRVXbb+POaO7qS4XeTDQjSYKvCV6ZOo66f5exPp6LHY78//nP0m2zSIbiXDl737JurvfTWH5KoRika5DB9BMk3G3B8NiwV0o4Cvk6ZvVxcQ3/5fczu34qmsoSxIpSWZg3nxSy1YT2L+HhvfcRVMsgiIIeN57J5s++kkCN9+KUF2N/7BBTX8v/VdeQ92Gl7jxvt+SURQSvkoAq9jShrWphWJtPS/NnUfzkuVEjxyias48Crt3YGtsZU+gio5//QILnvgT4a0baY1ESDidbPk/n0PfthnbJz9DeO0z1Pz3f2AdHCArSuTe8jbcre1E1z6L4PWSvvtd6NW1CNkMmAZxqw12bsMWDtGcTZP9wqdxHdOVsaOUoSYxQqq2m7qcjXqLn+WjB9hW7QN0rsy52F4aZ6u1zPJ0mcWORm5Li6iayE67gVAUwV/P7uR+So2L2DIxwqk9wDPDX5QzLNndGKUcgigjuycrYs8Al6zowGUfZenC6UKtp9f305eQcdgGWbCwE6hIqlU1NhMdHZ5qeHEUdoeTQjpFPpU6rwrfVwqyRSHY34PF5qD2PCdlgB2jJgd+uoGSfG7yOzt2HOHxTaPcfHEzy08TGdrblyRe8nJ5t8biRZ3nOtzXNPzuEql0lCvfEKW53coPfz+LYjTJPb8xmduVYcVqJ93zs2zcYDI4PEpru5W/WxxDlEQEwc7bbzmIwyVSVWMhn9N46I8wmJ1LJtdHe2dFMkotWHD5arDYbSiBg5NtsCf5vaMW6trmERxYR1W3SirkpJxehqw4cPuryIy/gK85hSlFiEd2UVZ2IBgesnETihdRVe1DlCz43HsZTFeiX4IgkhF8/OaFCSximLLshnKBzsYq2ufNwbQe4sntET70tsWEQ1F+uyHNL58aZmFLmDq3iNVu5557nsbnEklsDVPrEbh+/gLGX6pod5ZFG/MbNFx2gWK2TF3AxshAmmef2cpoJEdZ9BKM5rn8ylXsfHEd3YsXEDu0n1W1XnoHe/DMXoAQKnCwLCK1z6MrNozfW7Fl9zE+1ch4nGeHVTTFy5vnVaqq1bJKwtmKpxTlc9c0VVrnZmGiKPOFZ4J85kqBW5Y08+D2QYKqlRXVGtfMFwmmG9kRnuD21e1/Jsv68+Adb1pFcGSMnz8fJZpPcu0ZsCKa25u5dUWeKv90Fm3XngGe2Ftk/kQ/d7x+xdTrFrsDh8dLNjmzaUw+k8LlCzBy+AANHa+I2sx5wVdbR8+OrVTVN6JpJ3aRO1t4qqpJx2N4q88ts2CU8hilLKZWRgmcmj9pamUUTw2licHKWur68zVG+XOhppSjLtzDdb0v8OZYD9/svo7Rum5+1Lgcl6TwD/1r+fqRJ+mxuPmhKLAgMcLVqRH0/heRBYH/s/9PhHueZ3EpBaGdPO5t5ceL3oApK7z+6a9gm6QCmK1tuALVWL76zzSPh2keD8OWDeimibh8FXag+957iDtdbPnoJzC756IVC3gG+rjyG/+OLxoh/NTjdLz4HEp0nEhHJ6lFy9De+0HSw0PIFoVFWzZMpXQDgsC13/8Wo396iObhAQCyc+YizF9I8ZLLib31No7c/W6MN96B8dH3s+pH32XniotINjXjv+Fm8v/8OWx19WiPPUznQC/Fr32b0p5KgMxqmphONxvf8nZcTz9GvKkZXZKo+/H3USavVbdrO9rd7yL24P2YThdKaxsdn/80QkMDPW99B/bqGo6sWE358/9C1Ze/wMJtm0AQmHdM0VwKkYcDs0h0rOTSXQ/R3FGpr0x5PMg2B8tGQjRVtXGoNEra5eGp4jBD6jB3OLqJl1I87VCx5xMs7htklrObpydCLC87Z3YyPQf8RTnDUCkKOFoRK9qniyJOFvE8GhkVBJOlC5pxuiu8rd6eESQ9z5IGF+1t09QKX21dpUCtvvGEqmbFZkMt5Gno7L5g91JWS6SjUSRZPqvuQieDt7oWEBAEYYp0DpBNJlCLBWxOFw63Z+o70cplSvkcTq9v6rszTZMqOYdklkma9hmO8LHdlGbcQ6nEw0/vocpr46rLp6Nhmm5QRkHTT9968Y4b55DLFenqfsUUJV513HSLAGSBCo/0fW8ZoP9wiSf3rGZ8/TDDA3EOjjZz3UVDuB0S6zdauOV1lc/mMmXyOWhqqzyqG9eVOdzrw+PYyaW3CoCFbFzD5jbJltZhiiqKaCER0vA3VD7jayoTCf8Gb4uGIEigNdLQMY+Dm57HYAKrt0K78DXmgEMYQTs11W8lNr4L3TxAKgWSLcGddzFDCSUx7OVIfzvP7suCZCIodn73Yph5/UkGYjpruu30H+5lOG4AMs21Tm59/WqeXbubx3aXWdNZz2UrWtm3f4i1+1Ps+dk68sK0zc1pdhHw2tmyM4HbX01ZHGTF4lnU1kR5fucE6ZTA6OAwfaEsNU0JjiRMNo0meMtcJ7lwELdaRJBkspEQA6qG1VLEcUxzl75glM+vL6Ili5iSjjgp6ea0WWmxlmgMOJjVVLH3T1zk5YvPx7BZZRr8dkqqynBKx1uMsMfVwe1umYvm1fCmC28+rzoUq5W2rlm83ZRxOM5MhUDXNNoa/VTXV6LHmVSGsXCSTo/O0tnHBRrcbjRVPSEA4Q5UkYnHqGpsvmAqEwCJ8TC6puGvqz8vpRxJlmmZM59CNk1926yp17VymVRk4qTzeiYex+nzzXiOsskE2VQSu9M1Y37NJip6w96auhPGuXnrIQaDaYyyjqgc/U1MBEnBfJkmU5LDg5aJYgk0Icjn3rHrtYxV+Qi/2PLjyh8CfOrI07y9by2fvej9pNw1KKlxXph/PV3jh7lpeCvPNK9gdi5Ks17ENE0G7V5mFSvybAVd5+tzbsZMjPG5gXXYRJGcJJG12bn4f/+HCZudOaExDjU20zk2gjLZwGLxlz6PKQpUaRoHu9rwXX41Y3t3oxw6iG+gF4DqTJrLvvsNAJ774r9hXbwM16c/ivkbhVkvraV1UsLtKIL1jfTffhdtD92HxTRBEFh472/Y09OD29SJLVhEprEZHnsYXyKOoGmUPvJxLNkUl37o3Uw0NDH0uX8mvnUTc0NBGt9/N/7sNP0jPn8hiWUrSFstyJEI3to6xKEBtM9+kb2f/RSiAJkD+3FPjKOPDiMVi4zPnotLkbHu3I5eV4c3GmF4x1Zyc+bgC47QHBybcQ//sOStDDfMRQ32UBCn7bpKF0hn8yx3V+aBq5UGhkb3EqmpJ5CorFH95HGl0iTqWlCTBRotft6N/7wdYTizDnSvOQiSguypRlReniRSVkv87727+OEftmNMUh9e2D5KT8bLvA7/lIN8FL7aOqyOE1NGLp+fQEPTecuMHYtsPE6goRHDOPsOeYVstqLRGp+Opnira05ojlEuFgnUN1I8TuswOR5GkpUZnZmqLXk++q5LufPGOVy9aLoAKBWZwFtdi66VOR7xaIJ9QZO9fckZr69eNZfPvGsZq1fNPe19NDTW/lU7wsfCNE00VcNfbWX5JW66vTspSPUMDisYoo0NGy3sPuRj5zaDQq4SaXrmeTv3v7SMvTsrUcvERAHF34AuemhoqjjCDulNlOJLqG4X8NdbyY0tQy5fR7gnSbmoIQgCvgawOGRifS2oWSu9uzfTuXwNimcPzqqZ9ucM6ETGnwelD0EuoTjyoFeTDs+syJeEFlYum8XrFlm4dYmCaegoFplDYZ1kQWLJvGYCtTXsGK1ENQaiGnu3bqfFq3F5h4FiFuk5MsRFlyyhq9E5wxEGeGrzGL66elram/j6LzazbQgGBsNk4xE+9u7LcHvdSDY7N950KT99aoymOg/XXdKJOH8ZsVSKqAaSIGITBOzzlhLJzez86HPasJaSmJJCjVWjqdrL3qEIzx+O8OXXdfLRa6Y3vt2tDfzg9g5+9vZFtNX6GY9n2JRwooo25tqz1Hj+utLMJ0NXd+sZK0c89sxuvvfwIIcPVbITew6OsHvCitNpp3t2y4xjHW7PSesSFIuVQH0jDvcFbg5hmgTqG8i8TFe6Ez9mEguOEQ9NL+52l4tAfeOMdSETixJoaMQ8jmqXGA9jczqIh2aqS6iFPB5/FYahz5jP1VKRQEMTqeiJOu/7+xMcnBAxitOyhqLViWBxIHtP/xsJsgXZXf1X6wgfD9UwsAnQbmp8eMe96LrK9sZF5G0eDrjq+M7CW9nsb2WDs/K9bXTW8k83fIbvzL4egIQoI9rsKI1z6M5WnNOdH/hbDv/gl5iGzuLQGC/c9U6G/+2/ePGWN5CepKrUZlLUpZIcWbCYoQ99lJH7fkfVrC46ew6x5KXnTxhn44P3Y//fb1GTSGEfGkKWLRy54Rbyx1BeYh2dyDe9jgNXXMMz//ltRhqaKtHb4Cjzt28lNX8hrosvpePZp/AV8jhEEfXh+4gnUzx359sZfstdxO/5BdWXXE7wjW+hMZ3CfoydznviTyi9R3BdeiVz//dbrPjsJ3CNjZLevZPwpz9P6KOfpHbTS/g/8WlmPfYQVQf2k7j7nZQ//f9ILlhIsWsOExetwfX4n3Df9S5CV1xzwn36shH0Ug5nucDy7DiZcp51aoiloo/3ic0ELJV1RhQl3u1ZxMdybq51VTJDhxWDVG0T7kiIRvPCdlD8i4sMnw2+9JOdmIaOlsqAafIvP92FIAjo+RKmlqGre+GrOj5vbR2JcPCcCkMK2TSB+kZC/X3YXa5TRk5skzI+VpudRDiEKxCocKKBfDqJ1eGcihYXshliY6MUc1l6RjMc3W7990MjLKgd5LrVLSecv66pnruvKuF0nngPdpfrhNdOhq3bD5PNlrjqikV/lYUcR/H4YwL7+5t4263DNLdbue1NCj2HD1JTY7B7zxChCSf5tA/D4mTDxiDXXmfS0VIkmx+ksVEgGSlweKILU43S1Z0HJCw2yER70M3phV038uhlJ5JxGdmgia9j39T3apQtOF315LKbSKXG8DWd+LspNhlfS4jooIbP8yZy6Sj+miYy8SEqMqKTx3l2kynsprVlKZIk8/ezN2IVb2c8lOZXLyX5+RP9YIIg2plfqzGvNUBzQxXFXIZ5AYViJs2T2yY4MLaNvogG4szN7eIOJ+GhYZ7bMkRLlZtMyWQ0WuSGSxdyeN8RRiMFSiWV4ESWKqfBvKWL2L1xC8V8DsXhQpdEkg4HrpFeFL1Es2+mU1XldfH927uIpfO01FWcsc/+qY+Bspd27ziLZk2n+H/4Qh8HoyqXNMq8aVUHrfVVXOzcy9q4xkRGZVNvmGqPg1Vdr73i2lcDXpcVtxTH4ajMIUsXtFEsDbBgzsmLnP+ckCwWkpHxs6a7qcUiVocDtVAgm0ycslGHr66eRDiIYrWTnBhHsVpxen1IskwmEUcUZ85xuqYTC41hsdlwN04X30myQjw0dlK9+9uuns1EJMm9G2fGs84kQASgF7OY5SKixYH4V8YXPhbbHNX8y0Xv5Y2HnuZ9oV1cpSZwb/gxVeUc60PtTMh2nrz4bqTYGE/MuYa3bv05s4opVvS8xMpIhRv8g3k3Y2hlAtFBnGYlcODsOUTGasNVqGywnRPjZFSVYnU1O35xL52f/SQtk5J6qiQhBaox3G6qvvMN2rZtOulY5+7eTk6SeOmzX8R38aVEn3iUqhtvIbRrB52TrZ/nbHiRkY+8F7F7DvmbX49usbD/rndivOVt6B/7IAvu/z2RF56ldTxMsKaOI3/zUUrFIq1LljGRiJNfvBT3vb/B/5lP4E3ETxhD7+x5lGprMX/5ExxWKyNdq6javoXURz9JdP9eGnfvIHD4MGNPP45/eIjR29+GZJiMbV5P2e4gmctie90b0X79c2q/+FnqT1I4+J99z9IzsJ52vYAiCHy5O83GWh/5aJIbmPYZjpSiPGcp0KAWuZR6qi1uLsrB77URCopMSMuTL4VZIPuxSuev7f5X7QxDpR2s4p856UmOStRTVk6+M86lkuTTaYr5LHVtHa9YFbMoiidoSqaiEQxNw+qo8OhOBXegipHDB6hqbCYdj55yYre7XNhdLuKhsYp2cDhIoL6R6uYTHdtjOyINrJ+mnQiCyIGIyB2nUNFob6tDUs5sl3bwQD8Bv4e6hukI9todIXKmk0Wzx6luePUXy1cKAiaCYEzpKVrtMguXVh7BG5oqGq69B/ay80gdLY0lwMLiZTKLlxUo5GCoT6erJYPXqXLT6ypFnxaHjNJyEE3VOfo4C7JKMZ+jVEwhKTriaBNW3wg2t4TVN4Beqsdbp+BrSp0wxkLaJDvhQ5BKiFRRyGRIToygsQ2Lc2aky+6VQDDIZdMY4ig20UI8NEI4pAIKRexT91rns9M1u43f3b+euGpD1nN87AM3cKVg4w+b0iCe2Ha2ud5L6+xuOnb1cOVlbUSTBdZuGWTTht14fW7m1MJw0mRn0MCGlZ27+9gXFvFGw7zhDVdwZNtmujs6MYo5ujwz0/ubDgdp8Nvx2Cwce1dvnOOkP55jbsvM52k0axAsO/jtvghNvhCXzGuh1W+DsRwxaz337Bqi7JT5rDbAsrkdZ2YQf8W48vJFXHn59N9Ot5Nrrzx98CE82I+hadjdXvx150cbOx2Ol4ss5fPkUgkE4fRKQVa7nejYSEUzvlgATu4MC4IwGdGN4PL5ScejOL2+U7a0r2k5eWbsdE03AlU+vD4Xwqb0KY85iorjW0J2T9+3qRanOtH9NTvDgmkimjrCMQoNK4oVJ7A9dhjTNLnx4QPc33k5tYUkAPWGylcOPALALquXrkgfBdnKJw88SjUVZ3jZc0+jPvMkiiCAIOBNpwgl4ohuD5mBPoYuuRx95zbaB/qYvXsHQzu3ExBg4UvPnxDwMUyT/avWkJVELJk00ux5jO3eSdPap/C8tJb2kaEpzrBFEOgcHSY+Zz7mL39K62A/B6+4Bm3fHlpjURyGTtvEOAgCOZ8PZcVqqn/xI/wP3c+i/h42fe5LOD7y9zjecyeNJ8mMTLS2UtU9l0Q4xI6Fi/GtugjtEx8h9/vfILhcJFrbKUsiy7/3TZy6zvDGdRh2OzXPPcnAv3+LXC5LYWIcx61vpv0j78ZxDB2oV3ExYXFwcXacvCgjTiYk5wsu8tEki42ZdpgwVdK+AFF1kJIxwVtx02SrQiqGMRq62JOKolbVEhnu51pXN7J4fu7sX70zfDqcimesqSre2lqEqEg2mfizVjHrWnmqO9HpnGHFYsVbU0cplzsjZ12x2omHg1isZ8b5O9MOgEMDI/z8gV10tnh4x1tPXlkzNBhi7bZhuutknjpoUGsb46oVjcyd14Eoitx6eQe5fPGv1hHeslFnZAQWzFNZtWKE3fvsOJwqgerKZkwtllGsMnanwqJVCtX1UXyBmRu1Z56zs3d0Ea+7aA9Lls/ceDz1BOzqaeSOmwaZNduBmivRtWQRE8Gd6CWRmvqlRCIPY3Nn8DaY6OWXkJSZzme5VEaxKpQzjditcwnUNzI2/AhqdoSm7qVMhJ/B4jhRk7yYVmhovZTo+EYMo4+alk4Uxx4+3J1i/XYveycq9/H8wRzrD25DlSZ7ymPjD49sJZEzOJkmjlAucO/aKN4NA7z7rZeST2dYv32Id95+EQMHDtC1eD6JUIi6oknP+hRFbPxpZw6wYJoy4794lrJukpV62def5N+vnratA0Pj/Pd+mU5LjESuRFL08rnleRZ1NnNxdz0XTx43Ek3xs60TjCcytHhkfOU0yep2dg4OUe110tXgw9GjsVAYYdZ8Ly8MpvjP/dX8kzPC3Jbz6x72/0cIgoi3ppZUdOIVdYaPRz6dwldbT3Ky6cHpUNvSSjoWO6MMlsPjIRmZOCESfCHwvR89TkoVMWQPovVEDWNTL6NnJ3XFBRHR6aM0PoDiq0O0VqLBlbqbM8ve/aXhoMXDH1tX0RIf4lfPfp3H6hewztXAZdkQUGnCYZgmFlFkvqlS37eWrDBzTtxkr+afr/80lxx6nq/t++OM93bb/HxhzQe4+dCzfCS0A0E3sDpdBK69kch3voH8qc8y3NBE+3e/gUUQuOm//x2BmSofqmkiA8OBakY+9FF8tfXk1j6DeN9v8d35doqds3GFwxw/65qmSfKGm5ECVeSfehSH349QW0+kfRZjy1cy997f4C0V6e49guNdd1CTzWCZvG73PT8n9cJzNMeiJ+is6qbJvGefZqynB8dll2O/851kfvJ99FvfiDZ/ERbFgquqmlwqyfim9cwKBbn4kQemPm/5h48Rra1BnbsA02rDdtz5v77ojQw3zmflzgfZsvIObtz8Gz4Z3olfcXH9ZETYNE2eUEcIajnKVgetPfsZ7l5IPjTM7mKYxdY66qw+suPDXG542FEcYHdzK1IkzHXW85Mj/Itxhg21gFHMITl9U8L8x0LPJUAQp6K+ZwM9n8I09KmqWm9NLeH+XkRZxuX78y5qTq+fkUP7cflevsL3bBpinIyTl0+nKOZzSJJ8zh2g9hwMgq+ZePzUC8nASIzBlIUaj8bsKpV4LM29G528vnCElSvnMnfuhev491rExh1eUmkL+w7nWbkky57gPBAOce21BiMDJX59Xy0BV4p3v7vMeMjgN08uYlb1CHe+VcUwDERRpKWxSDw1wlEfYWSwzPg4NDUb9PQoFKIT/PGJRt5fNU7LijDDPX+gkC7T0Hw9Qwd3Ix0T1T3eEU4G7dik64klX8JqcREJ7aCQD2HxxrHUJBnrieL1rYBiCTW/iWIWPLWVZ9DbWCYS+h02fxmbS2Ki908IZg1O5wJWzC+zd2IyFSdZaA/AynleHtkYJoOdg5ETo8EAsprkrmvaQYBfvRDjwWcPoRkwnHOwY/cA2XSZyPpd2GXQRQuGYWBTYzitMlabhXxRJ6R6ECRl0kGuOOQlVeUP24O0eEQuC2j4RZX7w2VEMc73t8D3OmdOpj3hDPuLfoRyCaemcNcyL0/t62Gt1kZ4R4w5VTJ3LXDw+mXzACgzwK6JPD7nhe2m9mrBNE127e6hqSFAbd2JUc1EPMng8ARLFnVOyVOeKVLJNId6gixZ1I5tsqjR4XGTmhjH6f/zqhv46uoJ9fUgyhKGrp/2XhSrjarGM+t0pVisJ+gFm6ZJdHQEQRBOmp07E4RGg0TFGkw9AfLJHW2jlEd0eDEKaUxTpxwbRvE3YBSzU87wX3NE+IX6+TzffhF67VySgsyjl7yPpuB+Ltv6cwA+Pv82Rt21fG73/VxUSvL/lr6VYFU733/ma9SZGqIg0FbKsGhgM4ti/QCkEXiqZi4XRXt5qHou+XiYh+ZdT3sxwc07t+L40hDDi5bgWbKMyNAg5XSSvCjiMAyk4xzDlKKw7StfR9y9C3s2Q+mpJ4g2t1C7dRNrXlrL1vEQsdtux+iYhf0fBlEKReqScaxUHOqF//4lDFHCJQjM/vH36b/1TURWr8H9pjuIrHsB70ClNbSiKKz7wleoev5plqx/gfbBfhjsP8ERTssye2+4BeM9H6Tp039P09NPEgmFWfz8U/RefBlaIY+hG0RzORxLlmEvl4lKEhN1DZhWK5ZshqpslrYjh+HI4cpJJ6/xrLeVUbuP64a2MpQYZr+7AS0Z5vG513FpanjGODSjzEGHgma6ECwOLi9IiCODjEk6T9a4yAcHaLDauNzSgFNx4C/FeSqVpIrz57//5TjDxdxUWuf4dpKGWgBJwVSLM7RtTU1FzyUwTRPFd2LU0TT0yvt6GckZQC9Mp5zqZ3WRTSax2O1MDFeKQC5km+ZToZjN0Ng1Z6poQtc0EuEQCMIFF2Iv5rJT1IlzwXg4ysBokipZ5tabTt3579LV3VT7Ruloq+F7v9+JmtNpa1Jpbjq3xeAvDUtnh9nQtxqbOszFF+vY9hxk2ZIKlUAUwTAM4sJ8DuzfTWurSa0jTLU/xzf+y0YmZ+WqNQmuvN7B0hWVyCfAMy/6GR13EpCHydgXoigHwdT57X1evK4yF8+tYzRqY3zsGbrmrKKQ8pIMZfHWn0yD1KwUR+oO6ppXo5d30NixnImJIazOHFV1C5FkO7niRvTobKyWTiI9+3DUBLF7QFBy2FyV7ITN2k1V3QqGe3/H/evamFsts6gzwJ+2TOBz2Wltb8S6NUzmOCUqUc2gyw6qbSXe/7aLGDhwGItVoclZpj85mc2Q4JmDZcCOaei866pqJFmiKzjEjRfPndSqharGJg7v3sez+7JES9OZkEOjMR4Ju+iMJfm313fxTw/vx2cx8VgMWvwnZleumt+IwxKi1lFDjd/NL7eOM2CbTVepD7lg8EiwHamQ4Oq5RZx2G2+/uIO3XxCLeW3g0MF+HtqWZZYvzrvecqIz/ORLPRyKSIj0s2TpdLHh2pf20jOS4fYb5xGoOpFKMDocYt3WXg4nXZS1fi5bU+ly6PZXYbHZEURxsgmHgc3hPG2G7EJAECrtmv31DVM0ssR4GNPQcXh8L9s97mygqSWsTid6ufyyjvep8OLmfpxqktUrWlnbc/Lia8nhRc8lECx2KOUrUqTZBOIZ0tn+0vGWkW083rycUnUbi7aMUrvhpzRN0iAA8piojfN4MHsZq/Y/QldsCEe5yK/ql/D0nKtoHjvAT3se5z/3Tkc+H6+dx0+Xv5XHezcxOu8qhNQ4EiZrAx3cM+c6bs/uYWDVDZS3bKStqgbb8tUcefE5OoOjuMvaCWM0SyqFUgHpjrsxD+ylds1lGNkMyroXUFraqFmyjMzPf0TO6yf9vW+w/5E/0rlxHbMP7sOSzeAqVwra012zkd7xXpy/+xU1n/gwjlSKtZ//F2offwRnKIhlwUKKB/aecP3s5DrgNAy2fu5LpBQFy+gIhZUXccNke2eAxRtehA0vArD9dW+kMH8R44FqBj/9BRS/D6vdgWAYHI5GaHjiT6x4emaHy3tmX0uwcR7/88gXEAR4oWU5HaED4K6hqlzk2NJ+RbJwZ96KZoi4chJRWWGwvh1/JIQ9NMIOq0Kuxo99JMiVShdt1gAfJHDeDTfgL6gds55LYuoaotV+QlrINE201DiCICB7K6EzLRPF0DVkuwejlEX2nBit0dIRJHc1anQYyWJH8lQjCOLk52OIFjt6NsHfv2MlpVKZpramGZI45wOtXCYdi5zQqtMwDOKhIJIs46+rJxOPY3XYJ+kapy74iI6NIkoiFpv9lIUdx8PQdZKR8TNqF3oyHNjfx70bEiysN3nLravO6Hq//MMGRAHe+dbLLkix3F9CO2ZN1dmwQaS5SWNW98wdbDGv8exTGiVVJjimE5mAmjqZjrYSuwY70UslfJYJTKuft9wao6m1sphtXZfmqR2LUYwkipGje1aWZYuL/Ob+OlzOMom0jTI2Am6dj737GsZHttE061Ki0T/ga9IwTZPIYB6n34LTp2DoBqZukolYESQVtCoc1VEUm0Q2BqYJ7mpIjPhQM/W0dK9gpP95LPYCgerrSCQfxtdYIpcENWvH25CjlNPIR2dRVbeadO6POP0a//W/7ejKTFWKKiXPB+5YzrMvHeTgWJHXX1zHQH+Im265lEee3MnOMQGbnqWIBaTpxVzSiwDUuQWuXejA0MqIFitlDXx+Ny/sHOdgtPJ9m7qGlolySa3OTYsaWdBSzWcePEhaV/jKNVUE/Cc+M6lMjm+tC9LmkXn3pR1s7AnzwmAeByobcjVIsV4Mi5tv3NyI12lFFEVs1jOflV+NdsxnM+caahGjmAFBnME3PQo9m8A09Kkoo17IYJZLmKaO7AxgFLNIrpnfq17MIggieiGNIMmIlun53CgXMUp5TE3lmpXNXH3FQn702w2EChcugumXC+gmpPWZm58aW5HmKis7hzWQFG5YaOWiVXP53q/WE9NOTiXwykXecGkjm/aGORI/cyfTIxUAgbR+ZpS1Y2GaJnomgiBbEWQrouXlz6GlI4CAoFiQTtEx8GzwarVjPhvbhaP2WUZy15yw1pQTIQxNrdibWgCrHdnmwdQrGs2l0JFKFloQUSa1so1SHi2XwBJoojC8H9HuqATRUuNI3jqMzASSrwmjlOeuq5uJRaJcfu2lvLThAGsPVxxXSc0gm0WKlmowDRBEfHKRsl6mrcbJWEIjrVmRDJVqu0a4YMVr0bh0lsjKS1YwOjjM758b4sNvXcHOfYM8f0gDo0xHwGQsaVDSZeotad5/9+U888J+tgxXrqlJ9hkZddM0uGuNF6vNws+fCXH1HAXBKLFw4WxisSS/3ZBGMkpI6Khi5fkbtN2NqpsEdR8+scD/dP8nZXctTqcTIzpMyVFNhxHkPXs/NXWd+5NzeKywgDXyYd5fvY9vxy/mm9K7+U/969xe1X/Cb2aaJl+LXcY2cz7f8fwC3RT4YvZ22tVefuj/OM7gVlKudj4n/ZqPVG0lURSpsp+5Dyt8Kf2X345ZcvpO+Z4gCDMiv3o2geT0QzaBaWiI1pNPZoJiRc/GkO2eEyftfBLT0DAx+cUT/Zgm/OP7zz2Smc+kKeay+GrrEUWRdCwyxQ0+1hEVRXFGBNgdCJCKTLw819c0cXr9lPK50x834yMmhqaTTSbO2BkeHgqxeW+Qy1e0Mn9BJ++1j1Bbd/K05roN+9l2YJzLFtexcvUCREniPXddftJj1760l1iqyG3XL0Y5C4fiLwGyReKKqyAegaefkli2pEB1XWXx3LcX9oSX0yjvIa42odQ5iGZiZMbbuH7Feoyyyda9HjJGHQf3hqec4dFxN1Z1hJVLC7R3CIyPS7ywpYays432+i0kjOXY071ctrpMpvgbbL4A8YmdGBSZ6GlCVzO0dN1NePAworARu9cKEviaNCqKiwkqXevB6tTIR+vJxuP4W5JkE+OEBrzIYjOIe8nEhhCslVCv0wdOX4FCWkcs3YSpDZPO/w5PrQWQTnCEAcqGSHAkRD5XJGfY+f2GNKbp4MBPXiKt2/AoKh9950q27ezn2YPTIeXuOokFswI8umWC8XieWe31aLrBHx7ZT0EXwV2HqWYr3bZME9HhZUc0Tu1wim3DGVY3WuiZKPAPzyT48tUCuq5T63Nhs1o5MBLlKy9GKRVVMqqVRDrHnlCRG7vdVDkteHqSLJ5Xj26YHBlP893tWQJCnv9955/dR3jFIFpsp3W2jp8zzXIJyR1AS45jlHInvA8gKjb0bKVwR3Yfl+HLpzDLKoZeZv2RHPsH1xErO8+ohfzJYBo6zS6ViZxAWbBhqAXe/aZ5pFNZfvJsZIaDFCnaiIwBUmXztHZfip1HNhI9zfUtkklDUy3OnshZjcvnkJjV6OSlgzl08eWdaFMro+cTk5uSakSLA9M0T/rb6IUMhprHLBVQqlsQRAnZc3Kqn55PYWrlC+Ykv9YgufyYpoGeicAxzUVMrVzZwCk2NEwsTXNRI4NYqpooJ4KosWEQRWR3DVpiWkbPKBcxdQ01NopS3QSahpFPY6nvRo0MIdl96Nk4pq5x/7owFkXB4T/CQDDNwhqBXCrFG998EaVclkc3jDKUqfx+Kd0O2DkYgaNzri5aUBSTWVaNgbSVxw6bGOxk/vx26pwwOjpBMl3ENCUEUWEgWRnj5d0Cq5ev5vs/f544AQRJRre4OdGEBWLxNFZFRBAlXugTABsb+w+jmwKmYOUNFwVoaa7lO3/Yhy5X/IOg3Mhzq77AnJ7fszr4R/as/Ad0XWdgcJznJwx+JX2VogOeys7iaucgPy3fyC6hnaBWiz2mM0gdn8n/N/9o/yTR+M+53bmbgiHRYi9hmia3BP+GA2YrgquGUPk+NpS6mE8/H6vbhD1poTswSipX5np3iOWhzxMzXNzn/SYXuU+UHzxbnFGYUxCEmwRBOCwIQq8gCJ89yfufEgThgCAIewRBeFYQhFeVBCraXeiZyoQr2T2n5EZJdg+yu/qkk7ZkcyHa3Eh2N3nTTgE7X/rJzhP+nSmKuSz+uoapIg2bw0kiHEJWLCTCIYL9fYz1HKZcKp7wWW9NLa6X4dH56xsoFwsnVCwXslnioTFiwTES4RDxcJBcKglALp3CW1ODKJ3eDErFIo8/s5P9+wbY3zPBgXGRQ30V42ub1YL9FI70SChNUnfx6Is9UxrPp8Ke3gT7gyaJWOK0x50tXiu2axgGu3bLbOufwwMPWvnVPTZ+9EPYtVtgTvUBWltKzKoP0+AYZPWiMJfO3cuKSzxcfG2AFcsNXNoAs+dNR5XTeQc4G1i82ODZdX6e3b0IjyVOe2CIxhYFhxDj8it0VE1i8w4L7rosnpZD6MV6mtuvo1xoIDo2QFmNIVtP//vn4g5q6m7EyFc6BLr8ViTnHiTnXhRHgVwyi1S8glRoehMjyVDMTyBIBTw10wv+//3wgal/gprF1DWyRR1/lZ95ndWYpkmXv0StvURWcHPlbIk3XNLArs27aK93sKRhOi1c67PS3d2MXTaJFxXc1TX8/pEd5CzVlAp5BFHCUIuINhflTBx1fADVFuCBfTEeOpLn17sSbJkwkE2dI2MxPrNO5fvrRgHQDQNNUDAMjTX1IjtHEjwfd/NcX5bWGi/vuaSNR/tLfHO/zMGxGIK7hlimyB+2Dl0Qe4HXju2eMQTQM1Fkd9UpgxeCJCN7605KW0OQkHz1SDYnhmglrrnOK3vU7FL5wNsu4dK5FUdPUGy8sKWPLfvDOIQSb1pu5U1LJPzKiXOuio2I6jjt9SMlO1/76RZ2jJ14zLJGjRsWWLBqGV6/1E6Hb3oTN7/dw+WXzMdrOX3XOi0TQ0tNoOWSSK4qjlZSiTYXkv3ETSWAqZUqDrPNMV1AdwqYWhnZU41ZLp32uLPFa8lutXQMyV2NqZfRMlFKkQH0fAotm0DLp8CsRIlNrYyaCCLZPdjqOrFUtVCOjyLIxwRmDA1LVXOFaqJrFbqmJKFnYohWB6Ze0XSX3QG0skZRh8d2F4ikVN5868Vcu6aT4EiIRCxB5mW+ctM0uemiJm6/cT6mmkcQBDb2azy7ZZiBjI3x0Dgr59VwecfMdTVb0AiHIxQl90lrq0ythFAuIAgChiCzaOlcvHKRKmuR2QGVommh3iPwoRtqiU1ECQ8N8YbVVZha5RlJyFXonZeQcLXTVh7EX11FQ8/DPB8KIOVitFtS/Dh9MX9v+1euG/84t5WfZJYxxBH3Sn5RuITfG9fSq1ajaHkUdO5KfYzXlf6NiUJlDYrjQpOczE++yGJnnO8Yt/Nd6e2ohsCnqtaRMl18vuo/+M/ElWQcLSCIfDHxOvIntkA4a7xsZFgQBAn4LnA9MApsFQThYdM0jxWQ2wmsNE0zLwjCR4CvAXee//AqMA294twK4gl84ZOOWVJeVnj85SC5Ahhq8ZwK8o5FKhpB18qohSKJ8RAOd+V8Do93igsXD41R397BxNAgarGIcoaKDzPGK8sndZjVYgF3oIp4KIhpmniqaijmsxWpn0DVGUWdhwaDbOpV2b7vALMaPdy0uJYlC14+Sv6GGxfzp8c3Uz2n42XpJW+5YS65XIHaxgunKPFasF2AF54rsmFrFR5nHqd+kFheRtTqEXPDWKwyctHCoYk5vO26XTgcOjWNzhnf1yVXWLjkCp1j2+zceXuaYj6Or9rOmuVJQuEsV15pR7YUAQdLViUBmf/5vp+cWcWyxbupqndi8QUZObIFqzuKb1YfPoBTFB8UUjrl9FK08jCR8cdBiZKJlnFXW/E1VfQ10xMiFrsXxWZH06adAotDwdK2j9SEhloQsNinuZGZiExmQuFTb1/K5u197B/MUs6lKWXT2PUsd7/pSg4fGuD3G1IopoqeTyMKBt6AH4s+DLodJIUXD5fYfHgrRdNKfNhk+y+2UzZ9UMwiO49ucE20ZBjJYkO016BnYpWITy5RSTNbHfzvWzoYi6VpHIzS5KpMiYvaavkSBrvHFW5cVIsiS5T0MIsap5+xTDZHMa9R3+LkPd4Iv9Q7GU3nz9VMZuC1YLtaNg6Gjmj3nJF+7fGR3rOF7KlGzyWQThHJPFNIhsoV810MjeV4Yd1+Dg5nACuCILBzrGKHDXaVRUvnEQ8F8Q/lSCTP7VqmzXOSqBu0N3lpb61HzyWZ1eQlk9cYSFZW7Of2JNlxZOMZRL1NTNMEU6ccG0Ny+V52PLK7GjUyiCBbkZwnd5iPQnJ40NJRJMfLn/dM8VqwW6hEyLVMBNHmpjh6GAQBW9Mc9HwaBAETsNW2T0rL2cEVmBFpl2wuJNvMjLLkrqnYp7sGUy1UvrvJgNmxOFrXpGWiiFYnOcHDs09txOOy8tQBbTIbcOo1d3WrQY3fzmPrBrBYLcjoaLpGGit7gmBKFnweEbvNhnRcIGtXSGLfWIXLfGyoUzZLzGu00Fnnoa6xhh8+eJgap5tYOES+qHPr8joWLe7imz99EckANZeCcgnF4kcWJRSj4gwvK+/D+5urqTXjOBQI3HsFum7yc+MTLFB6abCpXKr38fvEVvqEev7D+lHuLD/EnfySz5hvQADq7Br7q/4RSRTYPtGOX03jchoIgsAzNd/gR6mLudLdjygI/I/1e+imiEOpPCjFsoauRdmrz+JZy6d4T+4DjHkWkdVEHMrpA24vhzOhSawGek3T7AcQBOF3wBuAKeM2TfPYdiqbgHec16iOg5FPI7kC6LnkhTztaSFICpL95SsUTxcd/uL7l6GX1akiNbc/QGJ8nOREmPqOzqnjnF4/E0MDOL0+nF7fhRj+FLzVNQwfOoAkSXhraokFR2meM2/6/TNQkeia3c5Vo1E29HuJ5nTuXjXnjK7tcDl56x2VDjRjI0Gqqv0EgzGe2TzMpUsbWDB/Wo/1TDtbnSVeddtVi2XWb3ajCTZ0o4Qm+7Dac7zttoM894KLYLqWtuo+vK4y4xMCz+1ZwSVzD1Jbo9E3aOfqK/LkcyaH9+cJRV287vUmTreCzVH5BzB/kcz8RfC73yqEow5MU+PqS7MsXSHzumvHKeTHqaqvRO+9NRa8NT2nHbNe1kGAsiri9nWSiufwNveTHG7CXbWG9PiDeOoqE4+n1iArPYdpEfC5Z07w6QkBn/NOEpEdWFoHpl43i/Oprm0mnxplwZwwy1ZGMXINNHeGKBxo5N6HtpDMm5iaSHODj9qGBjzxOFs27OK669dg27CPlwYASSGXSSFIOqamYsgWDLVQ4f1POhmi1Ymh5ivV9VZHZeEyDRRfA3ouhuz0cffDRyNoft560TQ3NqnC5uEUA+E4l3b6uaKrli88OYxfCXHn8lravTKqLNPd4GfXWJZaIcWb5p+fQ3gMXnXbxTCQ3NXo2dgZN3M4X0jOM6t3OB28FpXL1szDuu0wT+wtsqhO4qbVfu5/KUjWqHCFg3k73/7Zi2iaSloMnDMV41RYuy3E9eU88+a3c6h/ghcPFaaayqiCjYnSCQX9J0AQZYxSHtlbj1nKnTGVwVLTDlQ4rnoxiyhbJwvJjRkReUG2nFFw6Szx6tstoKUnEC0OBElBtNhQAo2o430IVheC1Ymo5tEyUUxdxTSsmGoOTAOjlK9w2a0OypkoRqmAZHejeGsrUd9JqoVwVJ4uE6WcLmEW0ggWG4q/8RjZuoqTLAgC60cnOeqnoMWYpgl6GUG20FjjorWllie2x/GaBv/w3tWsXX+QzYNMne+hHQXMLYfA6kI4TqP9zZfUUN9Qzbfv3YepVOb97jqZN9+ynF1bdjIxEccUJcbTBqlSlrLkYN2+KIeHk6QMJ0saLNidTrq7mtFFhUKhxAdum8fEEyK1NgOnnuHq7D/TpfXzk6pf8bHU3SjFBHvsc+kruFjmjHBpZi/FfJqspRuvXGapK4GSdyC5AizIjSJNyg1+t/bBGWMvmlY2m/PZEG1mRWaEj1dv4eupa/j8xLv5tuU7pAUXc8tHuNrRQ0j3olmcfEj9JbW+83OE4cyc4SZg5Ji/R4GLTnP8+4HHT/P+WUNy+dEy0dO2jzRKuYrhuvwnGMerCYfHRzwcxFtdi1YuY7XbUYsz03JWh2OGc/xyME2TXDKBxW4/I41hi81GoL6BsZ4jtC04+y5voihy9XWrWRKJIStnTzPv7RnmnufDzK0bpanGSTBvYyycYsH8sz7V2eJVt13TMLE7FUQ1xEf/ViKVGEOSBLwBO26Xjj2XZd58kwNHNLSyiVsax+sx2HPQRX+sg6pdW1m7pQXD4qk4Jw8fQPE4WDg3f2IxXklGNe2ouo3UZISyc/b05GuaJqP9eeqbrSjWk/+OelknPbIUw9Twd+wnG/8DzjoBkDHFHOn4EKqpkRxz4KnPI0oirqqKDeZTJax2GclSef4Uq04qfhDEaXH3QrpMOr2TdKKfhvkpJFkCBAhsnxxkA4eDJUyrGySTg0dC2B0O9h8eY2dQonNolIVdNRwKjhApOTDUEnopjihbEJVyJZNjmpjlSuTa1FRkbz1GIYUgKZi6imh1YZZyp6wlOIpdw3EGkzrB6ha2bRvnq84YOUPBoqv8aFucYa2Of1llMqelhj8dThHFTensO6ufCq+67QqKFT0TRTpFxNc0dPRs4qRFza8mYmUnP7hnI8mSCIINm0WkqiaAJEyr5giCQML0gMRJI7vHo+KsqChoaPLL36vFItK1aD6b1u1gXT+Y4tlvJiSnr7KZOwX/+uVwVEZNy8aRHB6MYvblP3T+eNXtFkCwODD0MmJRx1LVjFHMYq3vqhTVFbOIlsl10zQwStOO8FHFKjUexFrbPlloV0ZLTYDAiYX4poFodaGVi4iTfsfxsnVGMQuCcNpnZEmDzpWrZvHrx3t4eEsRaUsUXXZS0ooMDwZJpAq0e0SCaRMVGyg2BMWGqZVBV0GZ9gMGxlLEU0UMwYJApXh4YDjO04+vZ+eoRkEEZBtrewE0BEkmki4ykVcQRIme0RTNXh0dkfs3RLlyvgevS+GFjg9wR+iHmIZJMplhj62Zl1J1rLNdCqUQWBrIGZU1aZ84l0zdPP5ofIqnjOW8mGnm2+5f0FN6hBtqQqf8HoJlBy9kmrA2XsfGdARvRiBtOkhbq7k/u4T7qj7AB/I/5bOBF/lDYg4jzgWkCpvPxjROiQtaQCcIwjuAlcDJuy9Ujvkb4G+As0qHHZuC03NJBGVmcYdRKpxSeu10qFRMZxEk+bRFeueCmVHjSk/zz75tDg7PuRcrpKIRyqqKVlaR8/kT5NZ0TSOXTk1pEKfjMWTFwlhvT4UffB5qGIGaM9c1PhYej4Nau0p9wMslF8+jLjBI+6wLKxN3vng52z3WbgONvjM+r9Vh4aN/k0IURQzd5MEHDAxT4r0f0Ln6ShWn1+DB32rsH6uhuTrKxz6UBGSamjLMHt2DxyWhawayNobHZeCvltk80I1p9jCru8xjj0KpJPKGN2i8/W15tHKWTFKlpsmJaZr88pcKmibxnnfl2bdH59HNy1nWfoSbbzlFBa4AhqlhGhX+m7t62uH2N6eB7aRG5lJds5LI+L34GiuSQdmYjk18I4mhvSiWGjQ9TNWsEHbvdHa0XCyTHVuORZCo6eikd+PTVLWnCUwybkzT5H1XJahrvoQf3rebuGqnvaMJt99HS2OG9cEy6/dHWT63moJWsWNRsVb+2d2VyvByCUFWpiKMktOHnk8h2ivOgOyupC9PldK/68GK4/67N1ZxRVcVzwYTKIlBLmq00d5Ux3/XaciSxC/X9RIOx3j+kM7/bE1ze7eVdyyx01T759XIhbOz3bOZcyW7GyajW0YpX5GgPIY2pmcTx3QxOztnWEtPgFkZz4VuwS4IAhOqY8rL3TJksqV3N8LLbH5OBVMr86bVbmyCRH1bO9+7b99Uhf1RHJUGPBqIWdHpYqz3CH6fE1U4UVbrjO9FVpBk37mN29AxSjlkVwBDzb/mdIVfSX9B8dVhlkuIFjulcC+IMoahI1psSFYferrS6RVRRrI6kOyeiuLMZEc+vZShnAxRTkWQHG4EhxtTK2OaBkYuhWnqCLIV2VOLUcyiuPww2bRDS0dAEBBEeYpLbOplBIt9Sq3qeJiGSbGoYgKGZJvqipkzbPx2fYpWt8B733oxa1/axwtHpgmytyx10tZWy/bth+ma1cAf1k2wdcQGlKeCh6tbDdYsXwqmSXPNGFt6kgxl7VMbtHo5yTveupoXNh5m6wjU+Ox0LVlCPBSk2ptl04BGVa1Jdb6yx9mitpF3t1L21tKba+M+8XPY/CVcYpkGRyUa8FPvD0loCkHDz387Psay3Hr+6P4uHfbTF/gvcSWZm4wzkBhmXvEAV9Qf4cP2TXyu9Cj9gocn45ewU6/hddrHmMMgj0ofZp4/y5ltaU+PM3GGx4BjCaLNk6/NgCAI1wGfB640TfOU9HDTNH8I/BAqUilnNVoqjrBodVCOjyHaXFN8NkGSzqm1ZEV2rbJA/jlgdZzfhGQaBg63m+joKJLrxAh4IhzCW1NDcmIcX20dAgKiKCLJMsopKsMNw0AtFrGd59hOhdq6aj7yzsum/u6eO+sVuc5JcMFs91i7bVvcfFZ2q1hlBEHggftFRuM1yJ4avvbvhzGUBuZ2RNjXV49gM7FLWaDyG9Q2KNQ2ACh80BXCX62QThpkMwYuz166ugwiwRKHB5oo46KY78fhtqJYwe6yHB0zhZKVsmFB17NUVQl4xTEOHZJoqCuyeKmIIAoznBFJlvB37CefEEiPNWPxjGL3zJxoBMsgkfEsaskknzJxeAVEGfLJcXS9gNsRIJdJkBx1Yeg2fM0TqPkyxRz4a9uIhYKMHj6Azd6E13U1yfAD+Ool0mEJu30uqcg48+tE1g2WGQpnUNUSmw8mATe9CQs9G5JouQJ6Noipa2DqkJrA3nLyVMOUA3d0sTuOC2jqZTBNBLnyvWmZGN9+Ps27V9fzzRsVfG4HTnvl2VEmW7i31XhQkxYm8kGi1JIpFy+0I/yK2O65zLlQmScRpEqRkdWJ5PAi2pxo6ehZZ+JM0wBBQlCUSkGPcvY1EmcDQZTgHB1hqIzX7bKjF00Gh8LozLxfv1zgA3et4MWNR9g8WT+pmwLIVnb3hoGTX9tQiwiK9YJvBo7iqCQYgCS/slrNx+A14S8IggiKDS0TA1HCWttOKXgE02pHS01UvndRwijlEH2VaK8gyVOBNMVTh2ka2Jur0PPpyiZbkjHVAoaaR/Y3omeiYHefMJ9gGoh2XyUiLEropVxFclDXUPwNmIZ+wjOzd0Jhz2PDLGuzMZ4sEcrPzCSE0gLPrN3LaChBrU1holh5ZjK5EtFIEofdUmnRrYywYJabbb0ZcpoMRpnOBhcWm42eHdvw19Vz1RIL+0c1tk7G7y9fUk0+FafeZeCTy0QzAkcO9HF4YIJwXkGQFP6wKc1nzCd4KuNnW7kWZ3GEdC5FvXeCRa7UCd9/rVWl1qoyS8/yydS3WWYZmfG+aZqkSwLeyUe/v+Div/Kv4y2W9TxQ8wMyukKb42gGXSBgMymbWSSHj2SxhrC1E2upxEJPjgvhCMOZOcNbgW5BEDqoGPVdwN3HHiAIwjLgB8BNpmmev8bFaSDIFvR8EmTrDD7buXDNyokQmCZqPIhkd6GlJyqFB6cpmtMysUljd1cMXCtXZFhcZ7YQvpwCxbFtkMulIplEHLvLQyFbaQgiT4qmt8ydd9JJVBBFMon4lOPrDgQwdJ1AQyOJcIjo2CiqKfPg830s6fZz6cXzeeBPWzkcUnnPLd00tZx9AdvYSJj7n+lhabefVUvbsTmdr9gEf5Z41W03nSjx03uq0UpFWupyWEwdtxYl6ZuDmA1it5koYg7cbQxH8jx0X5xo2sPqFTkWLak8nvUtFQf597/wkjd8fPjOQ/T0yTy5dRnL2/axaPE4hw7JRGJw7TU68iRNYesmA13TufnKUSw2J1BG0yCj+RkdCbJ+mxenpcB73jszciWKInqhgZq6q4hMPIrdk5zxvqdOJRkM09R6F7Hx7SRzw2AI+Np24AGKmcfweCVyY5dQVdNKqP+XOG03kp4YRneF0Mo5mmcvYLR3O5nMbkxFJz28inyuB6crjJpzcOXVK2ja/SdmranQPVq7JQb6lrN+X4zw8AiyrwHTYsESmEU5HcEsvXzhmmhznbhwUSl4EWQLCCBIFjBN1iXdPP/7I4iKjT+8YzaGYWAYBrIso+s68+vsfNlTpKtlMSPjUVrrL3gDmVfddmfANNGLKay1s6YCB6LFPp1uPkNUivIM9GIOyeEGw0ArZJDc1aecM4xiFqNcnOR/2iv8V8OY4exdSNTbi5R1k0xJ4A0X13J4KM4vng0jiCKCpExxf49CNQTGRifI5MscLUZ94oABZgqXInPJLJmd/VnSiTggIHtr0fMpBNmCkU6fU7G3aZpoiWCl66rLjyBIp6UR/hnxmrBbNT5W0bPOV+hRpXAfWB0IslKhT0gKmDqyrx51YhBBEBEkGaWqkrE8GlQ72otAz1TmCNOoaANr6SiixVqZOxTrVBGdUcxiIlJOjGGtnYVp6BWRdkFEkCTKiRCCbKlkoo/zMzxKmdtuupi9e3r547aZlJayYGV9n8Y7Lm+hubWB7/78Rbraa9jYV0YfyGLqAmsPH+Ky2W6uvmIh0eQmmmtsNPg9RCMJUtEYgfpGJIuFvrEsA5Eil8+yUuVz0DOaJJPKctGVa3A7d3PP5hK/35wFXeaa+XYmEgV29yZYVv4qoqcOQ8ojiHlcos5lzhP2OTOgSAIfD2w84fVvxS/h2/K7+Vr+P2gQ0/QaDTzqfAO2bJGyvp3l9komXdVNLJKAaZpIGPzc/ALtgRJZTcJtv3CcNDgDZ9g0TU0QhL8DnqQigvdT0zT3C4LwL8A20zQfBv6Tyvb3D5MT2rBpmrdd0JFOYkrgvZhFz0QRXVUVp1a2oJxEGP50EEQR0erEBEy1WKkWzcRO/yHTRHJXoWfjYBpI7hq05HiFl+X0n5MTKOkVEXZdmhkhySTiU1rEhm7gr6snHY2cIJ9WKhTIpRLYHM6Ttgo92uXIxMRfV8/ubbuZKFgIRysOhCwJKGhI59ANCSCbLZLQrPQPhlm7L8nKWQ5uuWH5KY/fv2+AtTvGuOHiNrpnv3Jd6F4LtmsYUNLtlFQZd0Dns+8wME2RgSN7aGq1sGtbmY42kYBnE9v653KkJ0PZN4ut2w6xaEklEPLIQzAY9NAcmMCQszjcFpwOA2tpiL5+gd6xagRdJSW0M3/2DlpmVVLWsYRMymyhpFU2UrGYSU5sYl7LAa68oszP7xXRDJPd21Uam6CmfppfrDNEcORhPPVJ4ES7cPhUohMvoeoh9ORc/HVNhA6+hM1ehbthgHJBwzSthAcO4W6xkBmJ0rX4MiLj66mf1Ucq0kvdPBXFJhI+VItVtmB3+vC0HKF/qw056MTh9QEVG9WLXlYsn03/2DbGx2T0bBxDLVCa6EeQrCdGezUVRGlGBMYolypt2w0dJXDMc2LoGJqKIEpHM52VxU+yILkCbOkJ8kxfhuGcxP9Z7eKrz4fIO+q4yF/kU20ibQ0XvvjztWC7x0L21iFp5ansm5ZNVPjY7kDFQTxTGPokHc1AdgXQMtHJ4ujEKQMKhlqcomOYooRoc2OUsujZRKWQ6RyK+0y9jI0iJek4xYVShne/bSXjoQj3vTBKW1s9kWQeMXwi1aHVVUTVBcIFG79Zl+RYVRZBEECQmNMoc/3Vi0jnt7MrLSPI1krKXBAwy8XzCmoJslKJPGbiCLJcWX9O8VtU6IBpMM2pxlSvBF4rdisYBoLDhaCpWGsqym16IVPh7ir2CpVBtmCkxxEdPgRJnGwYU+lge7ShjFHKAzEExQqChJFPUM7EsASa0DNxLJOKFEfpRKZWRnb60Cd18ExdQ7K5MMolBIsds5hDECX0QhbT0GfYfFpT+O29LxApWjmV2sTm/RH29cZY1unk4jVd6M/toaXJx/r9CZJlBxbFJB4OEk8X8doE5nbW4vJ6+c4jI3gUFc0QKGCn1g4tNTZsTicPbYlzwCxRW7Ubq9OFaRQQJLCgsmrZQnr7guzuTSAaKlJqmIbSMLWWIi2WHLVWlaNGbJgmhTI4LTON+ivRq3jIvIKfOL7NImelWNkplHCoMf5UXs5z/jfzr7l/5T8KXyZnwAet/8Gbsg+wKn+IfzY+wJfFH7Ou3M0j2sW47Rae1v+RZscF0FI7DmfEGTZN8zHgseNe+6dj/n/dBR7XCagIhKuTD7xckT2xuVCjw4g2F3o+BZPO8IyWzFNFHo6KnqKsTEmmSM4AplZCsrkwFWuls494+oldtNjQM3GkyWvp2RiGmkMUBbTkOIq/ElkNWApo+st3GTK1Mu+5qY1SscSvXkrwpZ/sxCkWcSoGqZLEis4Y+4eyJFWFT77Rgr/+xGhILpWYcppP17pUViykohMsv3gFtQ1j1NRV7uGNr1uNYRjnzCeeM6+dD3tsZHIl7nuuH0U+/XnCsQwR1cFELE33aY88f7zatuursvLGqw7x4JP1pMdTgJvtW3Re2trETVeN89ymRjTRya3dh3j/in4O7Miz/dBBVl1bAOz86YECgyN2Mio4WgWuub7IY49bQFcxbbWkc1ZsFjs3XhJC1TM0d0xTXa6/TmNJaBeNbRXnePFyBb9vJw3NFhSrg799f5wXni3w6JZV1Cj9fPADJQzDoG+jB493Nvl8mOpZmZPel8UhY5r9aOMdNM1dwuCRR3C55yArARLDOVy1MbBtxu4Ep0/GYttHZCKI4k4iKRK+Rh2QKGZLVNVcTCmfxl43AMh0rCwQ7v0TdXO8HNUHctVGmJi4h3lziuzubUVULFjsrScdm1HKVwTyy0UU/zFdG00DUbFhlGcWsMqTjrGWDFc4lp4azHKJcjKMBnxtg4GhFqgNeDExMUUFpZigzvXKFo292rZrlIsYhSyCxYZkcyHISkWX1jQx0hEExYqWiaH46mfMucCk8k+FemKoxakOdrKnBj2XRHIf5X8K6JnY1Hx6MkhOb0WmyuasRIYLGbR8GsnuxUyGsUw6O1ZKBOw6wbztlNzMo7i4U+Gay5by43u3ElEdYJRp9eqM6BYefXYfxbJJ1nTwzXt2oInWqWYcR2GWstx153KikRg/fe7UAZQ9w0Wyf9xKb1Sv8KpNE1GpFECZpvGy4zwVBEGoFIKaJmapUKELncazNrVShTefT5/T9c4Gr7bdAkj+BkrBIyAIGFoJdA2zXMA0DAy1hKWuAzUyiOJroJyawFALiLIFwStUnvtsHMXfiGkaiBYbRrmEWVYxMbA1za00jlEsJ9CuJJcfPZ+aylSLihVDLyPJCqLVOVm8m0eQJESrs3Ksw0utGOPGS+swygqP7jm1CPGRmESdEOO2913P/t0HMRBZsXw2yehGBuIltvSbjMbGCOUdhEcUBqIVFR9BspIxpt29he0euhfO58e/Xospe1Gx84u1URBSiLaKY69KLr5/7y7yxTIg8DXXb7jTf+i4EU3b3Kejt/GYdDW/s3yZJa5pjeuk6SRpqadwzPU/GNjBB8ztPJCaSzTbwAJ7lEX2CX4UW8Kq5FMsVQ6xId+CaQMBEx0RQSvRXBrB6bywEeGj+IvpQGfqZWRPzQnFL5UfblpWo5wMVyI8ig3J7p4q8iiND2Cpaq5QLCaNV5CVqdSSICknbdl8PI5Ptcru6sruz1WFlqg01KCU4f13rmA8FOGXL75MEwlRZGAkilbWOWpYN6+qZc6cVv7rZxvZ0FfZJQriqWXQHG4v8XDwZZUljo0oN7fNjCCfqyN8dBEcCqXY3x/j/W9aRE3d6QsYr75sAZ3No7TNOrkz89eGQ0fsGJ4uDgdt7No8SqHgpICfUmmCtsYkiXia+cts9B2BzaMXUec/xEvb68llhtkTXEkpNYLVBjtGltKwcwMHRzqwkKXWF8FdV+SWm2NYHSem/2WLNOUIAwSHVax2aUpJQlIkEGS0dAR3UwawkBov4/XOpnnOPA5sDs84XzZWwBmwTTk9xegKKEuMj23A35zEZDuZ8SpaOm4hMv4svuYwxYxBarQD0TKGtynF8Qu2zWUlnXsawWYiT45LEAQ81X6y4XYkxxBOv4lkkfA1wUs73SiTUUJOZe6CALpWSU8eA9FiRzcMKOUrRXUWB4ZaiTybWrnSrWsyZa2X8lhqO6b0zZVAM59dI9DRVMeP7qpBkiRM02TD4SALmnx4Xa+t4qQLAaN4TD3FSegl6GUkVzV6LjnpjBnInlpMQ6/wIiUZvZCpzNvZ+FQU7NhC5ZO1eT4egqTMmPMluxu9kEHx1qBGh6dev2KBlzUXzeX7v15PRD39RiWWUuntHSE/WYi5sFHi9tet5qHHd7ArOG2jmnIKrrHFyQNP7UXVAU4dmdYEK0figCgjHtdZ81wdYZhUtzANTLUIihX5NDQTqPDmjxaS/v8Bgmkge6oRbS6KY0ew1rYjWioZZdFmp5wcB1FBkC0Vuo9iq+g5J8OYZsXhLY7sx966CDURQpTkCl1iIoVRSCNIFpRTFOofS38w1CJGuVhpmkJlbjNMHdMwKCeCWKora+CyZmifv4Bwfy8F7ZjNVbmAKYhTzT8W1RvccNkqtm3Zx96hPCNJidAPH+dvP3AjA33D/PqlJEdiJgvqNaDMgcjJbXP9wQy9oxsZLbiYMkOrl5WtIomsSn+ykiXMGA60UkVR5qHcpdzJ8c7wNGyo2LQMsnWmzNm/V/2JVdG97JGbWGVOcCjrZLYzxzvH30lKcPNA9bexygL3JubxNc9nuTX3R0aFeh6tehcfy3yXO6sOcIe5H824H4sksDVTjUU1WOKKn3Is54K/GGdYECuL9vGKD7LLX3FGndPpBtFir3B1YErzT7I7Ky0tXwGIVgdGPomlusI3MhUHz607RL6kAZbJdJg4VaAz874knjtsAMKU7uSOw1FGwmkKWGe4Dj/4zSZmNTjY1JPHkCpG/sX3L8PmdJ6ynbJWLrN7bz8dbbVYFIn7Ht7KknmNLFsx76THA0QnYowF4yxe0kU+m2f/oREWzm/Bcdw10skUP7l/J3VeBcliYShtZSKSmuEMv7h+P5lskRuuWjjVZlmUJFrbmxkfC1Hf3MhfO25+vcyhr29HL7tJJWDNVQaLFu7D5bHSc1gjUWpm/foQXR1lzGyUoObGdHgZHVOokfbhaC4zlqhDzh9m3lIXvto+ZBkaW6xUnMuZdjU6rJJJ6Wzb5UGWNN52t0k+XeSeRzqxCDk+/reJqYXzqusstLUO09ZV+W189RYGRvZyaGuIwKwh1LxIPi2CYcXneROJkefxtyYByMYTCKKV6tYjWCY1uUUpSmT8SVR9lHJRpph2UVt3GeGRdaRLTgxpCF/jzIpiT92JO30tV0VN3aU8//w4iivD6ktk7vmlRjpZ4oaLdrJkmYxsmaYbfvV/K8VzRrmElo6BKCIotkodgKhMSVOZ5QJKoBEtE0XPJRAdnsmCGhumOs07FsQKv09Xc4iyFS2f4rOb2xEmZeL+cVGZnokUfxyvZmn/MAGXjTcvrqLae/pGB39JEK2uKU7ksRAEAaW6pVJ0KEpo5UJlDixWsgiCKIFRUSRBlNCz8SnN1QsF2V2hWBzLtz0wmKak7iNelDHRoVw4pYJEb8JC76Y0R9PRgxMqL67fT994iWNT1IpZYnWXk8NjWaLF6dcFQaA3cWon+GhkXHL6KUWGEAwTS137KY83da1SHD4Z/a587ydvk1xOhBAkGaNUQKluRs/EZkblj7ZZlpUZjpnk8KIX0pjaydeivyYIsmXS4Y0i2ZwIk8Geo2oy6GVE2QKCWFGTki2YCKAXMPUy5dgogtWOGg8iCJUgmJ6JYamdddJNh1EuYRQyFXqWXHGyZYcXo5ip0CozsaniPMnuqTw7km+KxrV5VEFY+yJ942WKZhUeMUOmYPK+W7tJJjI8sG1y014ukpiIsv1IjHHVCxJEzXrueXALhYKGrAmUBQtXrWrDMP8/9t47zJKjvPf/VHefHCfn2ZyjdqVVzhEJkUEEAwIMBoxxti/XAXzv9cU4+/6MjQMYMCBAZFAWKGdpV5vz7uQ8Z06O3V2/P6pn5kzc2STtrs73eeZ55nR1qOp+66233mgT3N2F2+XmqWNTrRAFPHSloHw/5rEz3Hr95bz0wl4OdSmNt+m4i1iZY/xFw/fnfN/3jK2lt+DlA76H6DUjPBjbyG+Fn8RtCHRN8M/aB+j0rSPd/yX+MfoHfDz2X/RYEcYIUbIFHuBSXxc3Jn/OvmIVz5XqiWR3cmNkNwCaEHQWQxzNBPht/XP4SgneUniaK12HuTV8fM5+nQzOG2F4vrRn5WUHx02cuj+IlU8rv7YFpFqzSyrFmu6PzlrGcN6+TWNYQtN5pRfGBeGP3tZGLJbipztmlv0sh2YXuHp1gK6hEslMiY/f0syPn+5htKCY8MZlES7btpojvc8ytMAKmrv2HOcXO7Ks6TmK28rQWahm8PmueYXh+588wrG4i2JuFwePD3NwUHKsY5D3vntqBhzLtCjaOkVT8u5b17K1f5hlK6ZW1nxx3zBp28vOf32IT33waqpqlFDy6BO7efaoyZ1bU2zdsrAiHucr3D4Xv/8/NPa8PMxD2zcxmBzgPe8pcmBPniPJLQi7l6Dfpm2Jh0XNKfIlg/aql3mp/1qaA8f4wIcK5DNjxMdM/t8/R7A1H3fcFKO5DQq5EomxIj+/z8/GdTkuucLPzx6sI1GqQya6sUSEe/57iLe/Q2Nlcz8ejz2FmWu6xrI1k1pNIQRLt5WAfsBNonsRtXWX0338h+hWP5qufCdt2yZStwiXy0+q143m6UOabnStlhI7qa1+L4nBVwk1HWVo+MeU7Bz1dXcxOpwCZqbXkVKS6NfwBC18YQ1fzRCDQz/m2QM+StSzbt0Bjg+0ItxB9u/eSUurn8aWmb7Mdi6F5vFihGopDB7DXb+Y0tgA1mgGV3ULuj+KmRzCzCr/Sa2YwyrkMXwhZM6aMF3rwSpksoTmqkHzBTEdi5OVTyOLOf761SradMmmQJJspsSrhTpaO+LcvukCEobdU9NXlqO8sIkRrFa5cMP1SLOElVNm4hMJXFJKFQDtPvk8xZrLq7R5ZejNuOk9bILm4dI2yVWXbuKrP95Nwppfa7+6tkR1yMcL+0a568ZF7Dw0zPbxSnUhyU3XbcCYltJq/nHZk5rxYl6NzxeilBjGFZk9PZiViWOEayklhlRAt0e5g8xaaEMIlVrUcCsXwGkbjfEyy8Xhron/ASdoz6OedZoVWs8H+BdtwMoqTS5SIgFNN0AzcFXXUeg/iCva6AS/CaxSHs3tV3O/kMXlBMmXkoPI1AgCTfl6OzEGZnwAkLjrlmDnUo4F+iiucC3FgSPOHNGwUjFV5a4M04Pn4naYBx2ZrsGb5TfedyWPP7WHkeE46czkYh+titK+cgUb+kbY4nfzysExbri4mcd3DHHZ+nraWuv48g/28b1Hj4KUvPnKVnw+L08eOj5jUwvgI4fHgLjpo2iE+doPXmFoOIERblCbBmnhqW2l0HeQ7fk2Vvj2zbhHyZL8mfkRCh4vT0mLULKXsdrNfOP4er7V9D02BmP8gXEvr8Ye4/vW1fhH9zGgeajScxwTy/hVooW31PWyyJvl98xf8Bbv35HPJDA8AVpdadJFlZ3ls+mPctC/iZtG76Wkuflm7d0czjzGrfzH6ZIKcB4Jw/PBLuaw85mJ4DrhRILKYh49EFElFE+QbcIeN+edZJ7iE0JoxONp0pn5BWGAoF7kmisuYfurR+jsTxIMBWgKmCxrhBeOlXhqT54Dnc8xmPNM7OhOVAFv6aJ61vYcZd3yWhprFtH3i1fZsGF+Rrh+WTW+7gRPvDpEIp7GqF+Grc2M1q+qrea3P7CVVCrDyzs72Lpx0Yxd8ztvWsGDj+wkFVDFEH75xC52H42zfpGfqJ4jEjp7wRznCrKpIlJK2pYHCO2JEwoUAMGyFQaX9u9heEhSLKr39oFfswCLhx+oxkqN4A5kAR1vwI05LMmVvGiRFkZHx4iPFviv77ViZ0bIGa30P5XEcI+ycXWMeCKJmyQv7G3jyEAbx4528bZ3zKzSk47nCES8U77byy9Y7D4Y4fYbY3j0EWLDu4g0F/BHnp84R9M0pOdZxsYEjc1vYahvBFmM4o7WY9o2qfgxcuk4+tAWNNd+6pfZjAx+G38tlAfkZRMmZnwbmXQ3bctuJDa8A1/4IG6fjrsly61XJygWB/GHvVx3cRf79ul0m1ew7+B+Glsm3SB+59deRTcEpil45mnBsWN9DEeWUeg76OQk9wHSSZ9Uj10q4qpuIde1B1e4Gjsdw92wlGKsF48TUa4HayiOdGFmxtC9AazMGMLlwy7lMTMxjiP4m7ctoW80yctdCa5deXplhM8nSClVkKFmoAerJoRZM5tYcL53Kz2qgudSsTNetCNfshgdjmHKE7sibFhew9JlLew7+hT+YACfMci1q3xsP5KkM2HwjXufpy8hQSwsBZwQGtgW0jbRfWHMeBY7n8Fdv3jOazSP0gbbhQxGpA5sG01zzepXbITrlN97IadKik/bFGjeIIWh405sjJzQFKsqjGoeXOiQ0sbOpdD9ERVDUMhOVoTTNEojXejBWic405m36RjSLFGK9eKuW6QyTHj8CFuih6onLB9mclhZkhBohofScAdaoMrR5vsojfahB6qQpcKsc8AuFRBCTNks2vk0dlEF0ifDQXbsPEr3SJ6njk7l2S8eTtM19DwXr4hS31DD8MAQ9TUBwj4YGEmTy+a5YUOYsVSRV3p1vvtYLwLQXFOF8SsWS1obwphFFytWL+Vvv/kylivEQM6LZZjI5AjCG0BDI997EKOqiX8zb+euyUKCWLZktKBR74P/ZfwXv4o18mDk7ZRMD1Z8gNHgcvqsEBuJ8ZboEZ5LN9JXfxXukUP82P1mPKMH0Bc18OWxO3kLXwFgXTDFd+J/xOfzt9Nmxqmpsrhp6PfI6CHu4iGW5nr566YH8eo234x3sNXbc7qkMoHzRhi2zQKlWC9GuAHdO5VxqqCX8Vrg5VoAqQRh/6QgbGUTSKuE5p5aJUboLnX9HJqQKc8rFVR6FCEwE4MgNEcQdxaE5AhgK/8s2+IHT/YvqKBHwg7yr995jlTRIC/d7Pr+Qd5zdTOrVrWz69hz5AjNMG2cCNHqKO++c+vE709/9OZZzztwoJP7nu7gui3NuFwaY+kCtWE3dVX1bFzpY/my5bNeNxbP8M2fvkq6IJASrrt63ZT2JUta+I1fb8K2LAyXi0TqKEnLy5L2Bm668exlkjhXYNs2X/t2NWM9o1x6aYFPfzzJuErN5THYtCHNv/9oEwPJUa68Jj5x3cWXSNBiXLTRZlx49Hgs6iNjNFT14Pf76DhmYWgFqhosRgYOkQ1fxCs70vz6xy3Ughdi6fJ++ga9rFil7jE6VEQgqa73sH9PkZ88voZtq47RUFciHAbLFjz6RAQ72MKuV7rxhAQXbYnjj8wMLA3V2aRjgtGBPUCRtlWX0Nf5MLXLPcAu7J4g1fXrGBrsRogi0cZyIdiiMHwxqbEEjYsayKTGGB1+AakPT3lGY32RH/8iwvZdOm0NRcbSQdYue4FLtnoZj97PJAv861erKJQ8rF82TOdgFVHvMNZYHOHyIYxxc7OgONqL0DSktCj0H0EYLqRUPsJmagRR5mcsNB1P/WTJcCubcEyqninxBc01Yd5Sc2H6YhZHexCGC9e0DAR2Jj6RBaIcwuWeUS1UmZCToOlToufHTc8LqYUsLRXEI3Rj0kdZTBZjsnKpiVywmjfI9sNxdvaC0E/Mz3/x/CDelweIa7X8fz86zIYWg3fdtI5ESvkPdySNk876UK559cwhBNulAnY2jrQtR1ljIyRQKio/U19odr9ioWElhsDwIBAzcr1obi+e+iUTrhKqAl0EpD0p+F3gsJLD2KUShaEOvC2rp2Qc0QNVKpNDqBYrNTqx5uuBKqzUMLo/MvHepZRIaVMa7UbzRzCTw0jLQmglZCGD8PgQRkhVwHTWeCufxi7kEM59pVnCyqcwgtVqU5JLqaJGbj+YBTR/hFJ8AFfdYqzkEImRYX76TGHWFK8lzcvgWJJMNs/Dj7zMBz5wC51HOzk46kbEBFopxWffu5HenmFe6U1SEFOF4KsWlVjaEqaUz1LXUMUjT+xhMGFiat4JElcWjRyaEEpAN1yUxnr5y/pvTbnXH4/eyfcKV9Cmx1hlHWK/bzktuaP0+BbzqeLXeEfVUdaGMryainIgEyKn+zHH+liT3cke19XkIkvxx46x11jF/pSfNSGlcLs0GufB6Hec9w/V9ihemeczdc/j0serzQk+Ur3zlOljNpw3wnAppvL2FQaPIkuRsgUONLdTC3yaIDvbxB83G00v0LHQ6nNWegx0HTubcBiemMg5XPYU9GCNynBhW2i+8ETU6HRsqC+xdlkNP3tukJzwMeIEfggBwu3loZeHeHrnIPnpKYAWgNm0xuV5jMuRSudJyQDJVI5cyaIv6+NNG6u4dNv8NZMHh+LkXNXU6CNsWDO7/6+maRMBenfesolrYnFqGy98Mx0ot4N8bBi9aRPPvnKcw30+2huT3PlWOHKwyI8fWsyKur1csk2j3Pe3utbFLbdajAt82VSJr/2XFyu8Ejmyj72xDYS0QT7zG2MIoXHsgORbPxvB0yjIZUp0HLNZucZg+Rofy9cAGFgli2/c24RA8tnfGMblAo9MEB9M8MLhSwlrA1y1dQTLW08jL/Pc/uW4Ig0UzP3cfPNMbVJyUKe+/g5SsRgljjI8+Bi+2iHGJYdwc5Khwf8m3Ai5JFglCNboZOIlBvbXsWzDEjRtmNhAH67gEJG2DEcPFhg7Iliy3M1Ad56v/3QNMjtCJALdPTp2dAU9A/u4/yE3jbVpJAaXXirwiBxFTy2Z3ChF6ccT8NNcPcpIzCBcoxHPOxodwwW2pfKyerwIzVBBoJoBpqnSNmbiqtpaIDolVdX4/LXyabXhFfDen6i2777t1KoznssojfWjB2uwcwmViopJnqoFolip4YmqW+OYzayv/CZrZ6StnM3VYTZIq4SVjikBJtrkBCxXTbmfLOUdy96wStPm/D/bGhA18tx+aQMv7B3maNxNDh85c7JP+/qLfOPe5+mKMyOn8BmFbSI8AShkkaX8hNLmhJZJZ02R0lLC8xwY35AYwWong8eFR6NzwS7m0IM1CMOg2H8YI1qP5gmqDCiJQexCDlPKKe9aCDEjiL443IHmCzmZOOIT1mM9VIMRrqM43InwBpBWCTMdQ3OpzCt6WcCplR1TAfbJEfRAFGkVVVU6J1d2aawXI1xHaagDaRdxN67ESsdmSWipsmO9++omohE/2QL86P7tpPMSIdTaYbsCfOWHuzFtDYmLiJ5VbkJSsiKcZEV7GzWNDXQdOMihg8fZnwhjD2WwC1mVr1rTVcYRIUA3sPMZXHXt2Jk4f194KzfmnuG4vpTfDDxClUijY5Nx15LO9pD3NnJn5l7uyRp8O3gX66xvsJZDvH/sU2SqVnLd0D20h8dYFcxxwBugfeQ5NnmHieo2Ia3EX8Zu5C2e7RPp18a/yb1N30RKyWeH304Jg3+puxftLNQxOG+EYc3lpTjaO5G5QVV/cdqm1QKf9z7jAXXzFNaYF0IJ1OPQA1XYpdzE/UrxAbAtzOQwrmgjZmIIO5uYU9iOhNy0L2rE9cIAuZlWbFKWl9TZySQyBZdcvIr2xl7qW5oxi0VWtPWxfOXiE163adNyQv5OWtrW4vWdOAG/y+1+wwjCoCbzTbfo3P/YMPWROBmrgWw+C5jYNljCQ3Wdh0XLJid3b3eRR56o4uL1CdZvVlN0144CedmEMXaEq29LMBDfS1U1CKHal67282uih5o6jSef8rK9YzXXJ3dx2ZWTfdEMjdbaMTRNoukay1fp/N6qMR56MIrVG0N4YzzyXBPXrHmVFWs8/OQXSVxGnPVrCkwP0lM3tMikBsnm99O01kKIPnJJSbzXT6gurTJANKpsI6WBjQTDi0iN/gA7dRnNS+o4vvtFAs0HCbZqBKq8FLIl7n14KYbM83ufGcYX0KgNxGhZnOKWW2FwwOLxZw4TG9E5OtxKZ18cSw9hsAfLVc+aql0cGFzJ9VuPsPUyD//+X9VYmk3eCgDS8f0dBATuunaE0JBmETM5gq91jTLth2ocE/9k5hppW0qAdsyaspRXwlh6qnB3OukJz0VogShWfACrlMfbuHyKFng2wWEuKFeIEcRJFugoh7RtlbQbJSxa6bGy9JZjSASF4S6nDG9+spDKLPC4JIsWt7D/eAziszxLd9ORZDyr31mD5glgFzIIX1il7MyMoXlPbGEQuqEskzBR7OFEWKiy50KBEa7HzIwhi1mEJ4Bw+5XLiVMAQ/P4MMK1kxpgZ80GcEVVelTbLCpNrihiJo+rvNjJYRVX5AhjRqhGWSlsG90XVt9wuiwiNJUT2+VRhT2qmp3CNUKlhtUNzNQIrpoWzFSM0kjnRHqzGRCC0XiOZDLDM4ezSEONqy2YYzQjyOElJ30gYH2DxTvffDXf++lLBHwGd9x8PX3HjnDPvU/Smw8jDS/C0LEL2SmuTVLazkZK4mlaTmmsH2kWeKnqWhIxwaHwNdQkB3lIXsxtPMMLhU14dclTgT/iH+WN5EtNlDxh0pbaSF4kDvFSNsTHa3ZwVfRhpJRcO7ST32n+WxZnfsm/1H6Nr45t4T/8H2M0E+bvAz8GIFOUEzmLbQnPspmS7qVo3YvXkVxtKc+YYHzeCMPj+UKlWVK+Zqe4yz0ZwXk26IGqKX5cqnZ8WbJ1TXN27Q7jPkGgwlOHijx34BUsV2jWQgHTIR0zrhACaZVY0yjoG7NImifWYFi5JP95z7NctqGR9eunlkTu7Rnk6e39XG5ptC9qYsWqJXPcZSqEECxbgND8Rsbmi91svngMCJAaO4wv4AZ0Vq5x83uLj+PyTnVBGOiDvlQ73f0HWb/ZZmSgwNO7l1MbHWHDqiw/efEKti47zEWO94uUklLBZOkqpWVb3F5gON5BW/vU3ZUQgvfcNX5skoFcstXE5YohSyYvHgoQqg7S2GrwyU+Ob/pmFyqU0u0FwkAhY1HMgZ1fTn3DlQwN/RDDm0dmL6dkHQLRz9hIAtwWWAMUEzF81aMYLMIfGUIIgdvnYuvKHnQD8uki/qCB246x/5AP28rTN6zmyAfeWyCZ2E+hKEgnenjk6QYysTFyAwI7XMTt82KWJLWRLA3BOOlSlJ5YI7o/gl4/la6F4UYPKn8/KW3HDcLlZK5RmjozMYTm9iLMIpo3qDbj6Ri6Pzpxnx+93MnPjhT47LYoW5ZeGJs93e2beF9WemzuBfoEEEI7LfO80F0Y0QZUxh1Ft+PZQQCkbSqTN7Yyh5+gCMdgzsdff/0FTN0PTN3ozIVynt/oK+AxoDN1Yp47m5A10WaZ2PmMKgTh9p5UFdWFCsFvVGgeP+7x2CGrhDSLE26MKp2fmOKCMt4uS/mywhsxjHA9VmYEd3WTshaVpbCzSwWEJ+C4E+SxMqrC4HSUpwUcx8QGUXeheQOg6WhuH+6amUWzyiGExoP7FQ+XupegTOJ3CT5619W88OIBHtqT5+bVgkjIz+OvDrF71xFiY0myOS/79x5j+87jLF+5hNjhFDmpaF5ourJ06YZTmt7GzmXQvEFKTqYNdIP/yP8Ri8OjPJl7iSezDRwiyvHsKoK+AppPI+SB6nSCa0rPoZdM+h3++O22HwI/LBuD4G31fRiJPyNopHki0cTbA7uIp/+VO3zK9eGesbX8Cb/J59P/xoerd6Frgh+E/gZbgtdQ73h/Nsz707/PbTzLF+sfOgFFnBjnjTA8DmG4ZiWu1wKqKk2pLGH8TGieoPIH0t2YSZX6aboGpVygFboLS3fhtrPcfcdSDh4b4onDs6iIUZP6nZeEyOWL3L/XoilQ4q63XMnzL+7nod1TA/TM1KhK8l3mOiJLBXoyIb73yBF++EJiyrlWLo2nfhFVx4ZpX3R2ypxWAKEqnypa4GgR3b6Zi/BFlxho9nMsXekG/OgGeLQszfUmi5Ya7Dk2RFXUZHz6/vj7efYfr+XKi4a47tYAq9a6WLU2S7kQ29tV5LmXQ1y2NUXroqnPrK5zccONNuDliisP4Qt5+dlPoGcoxDUX93Ows4YrtqWJhCXFfJFCQaOhVS00+bRFIREhn2iktmkN3YOPYhWfwl+XpZgXeLxhShmD6kVDxLubqar5EPHEj4k0WSQ6LiZc3c6xA19n2bowQghuvhUevS/L3/5zI9vW9tA5ugLh8XKka4C8GSCfNXnxuQFuvVM9v+tIjnzGxIjWI4OrWVF7lC2XGPQcz3F0dCm+4nHyvpVctHwnbpfkkm0QrVHjH0/Hprl9StvrjU6Y2KdCIi1zonqYlU2iB6uRxZz63x/mO3uzCI+f//tsgh9cIMJwOcqFz9cSE8FP8ygx9ECVoyCpxUwonqv5IzMq05UXBrFcIQRw3QqNFUua+fqDHZS02TXXGxpMLl3fyPcf7yZp+bjtsmaamuv44tdeBM+kJtfOq6pi5VZHWcyh+8LYhakZVOxCltJYP67attekEMYbGUJ3IXSXyvCh6bNW6VPp7IbVOeOaRmmDXVQBt/mM+u3ATA6pQhymCsSdLfOKcu8ZAyFm8BS1QVR8wi7lMbxBJV9Iy/FJFk6p7eoJ+tC8ATUOKWkN5Im487zrHdfzwE9+yTNP7WB/XxHw4PO48Ps9jOQNHn91iN9431U8/fxBfvBiiq1t9Vx39Xr6+5/gUMrxlQ5WYaZj2LkUVjaO0N1o/jB6sIbSUAd6dQ3FoWPc3KiC1VbwCl9J/Y7K0+5bTNHj4kvufwTgAftydnqX4fL46S8cxNOfYKN/lOsjvdPGL7gzeow7hz/DHv9Wflr4HX6/+qmJdrew8JTSuA1lFt+dCtPuSRN2WXwrtp517kF0YZE3guTNM5Mm8LwThl9PSNtSvm/p2IR5ZNxUOl7icpxhjwfuWdn4xPVWNoFtFrFySXSXd0pJWIkgl81PKb4xswPg9rgwbRuwGMgY/OSB7XSPqEkwDjM1ih6IqvyeZRN0PN9huUbLGRhGMEph6DhX3XXrgt9HIjaG4XIRCM2RmH6BeO75/QzGstx+w3rc3rPoo3eO4L+/aZDK+7n7fSMEwjPHGxsq8uirG2g4OsyHfi1PVa2Hz3wy4TBpN5/+RIKD+yTfvseDVw5zcHgdlp3i2aMXseL4q7QsmSk0HDri5vDQMmqO7KPVyX73q0clew9Heeebh2luUwzFF1L0ks65yJoRjhwf5dDwMuqO7GHPwQjxMQsRbKYtuJ+LNkNrTRt1DTdybOAlBjs7WbnxHQwPvIg3pOENQSHzC6I1BqAhtBSJ0SOUZBYp3ew+8goHHhulrbmaZesmy93uOtqEEa7HcPWwcUkH2bTJLbe7uefbMQo0MhRTbg8ANQ1+wr4UY8kiLitB/YoU4GP/IS/N/iPc9KYUyfQOHnjIRTG0nmRqL+98DyTHSk4p4BplZZGSUmJQOTajFi67kFULWbQJkAihYSaGJuYRKD/iXN9BdI8fly+MHjy9uVDBVJSbcMd5q0r5JJ2KXn6VIWRcQSLERAYBXB6ktDHH+rEdzZ/m8kwRVk3TIp8rTK/PMgWGBr6Ab8Jr4pcv9+Ex+pHu0BRObRdzKigwl5rQ3I5XR53hIuIUhSiNdJ1UmjNpqawQp+zm58DKpZBmYUrszYUMMzkMmq7KUc9lVZZyIhez7gs7FejUBkr3hbFLeazUMFY+ixAghY6nYZmizVl83+1c2gkyjU8cG8/sMV6gBpi4dnwjVYz14K5tx0qPYSVHQIIWjFKK9aG5fURDHj561zUcP3iE+OAAF120nEhdPY/ueQXh8fCzHTmQGYThpWDlOXK4h+FYFmlqbN8fZzT+LEd7MuiRso2cWcRd20Zx8BjCEJipMeXXbLgpxXrQvMEpLglv9uzgKwnl9nFR8QjVTRa/TC5GkyX+XP4bm8QI34m38/ctf0gg1cG+yJ9hS8nDiUVs9Q1Q5ykCoOfjNOZ3sKhBCfwlS9KZ8/LO6EHeLv8ITQieSTbwQe2L3JR8iF8zHudPfP8TY2A3l1nbeantd/G7BadV19zBeSMMT6TyMdzzMgIrm5hR83vWe6Vj6L7wlKjnE0LTsFIjE5phu5hTjvX5tPpdKmDnEiB0jFCN4z80mflC2haaN+SYxqY6pJU0H998UplZ5nKBEYaLe56OKX843UBz+9jZ52Z6BSTN7cNKq3tJs6iYZyDq7EZnatWNcB1WPo2nfgl/871DZTmXIwjdNWvQXSqR4Cs/2k/AKPGZu6+d0Q5w6FA3P/7VEa7c2MBVV8wdiPfS/iFiJR/Jex/nQx9cuDB+PmHvLpO+AYPrr7OwpYFlz5x6w/0ldu5xs3q5ScQdIxqc1PaXpz47drjIE49ZDKSCSMuD25OmvW6YuqYk9c1KqM1nS7zyisGK5Sa19Tr1VVlu2riddZsMxqd9JquRkdUU8kPYts3377Eo2AHe844M736HSS5zBN2l035gFytWFOnoMMhRRLcEx0eXIPfGWHTbIMODT+Ot6SIzZtDbEcMbGcK2bHKpIoHo5CIRaUlxaN+L3HtfM4uqu9iwWbDSdYz160zGAwUBrt42SiIZ57rr/ezbY9He7iFa48b21WN4arh8Sy+gGHkg5OKu9+W553sGNjovHV5BPneAfYerKPlaCAb3UbJsUlk/erGDdZdngCC/uN+HHqzhxvUv86u9l2DnMxPaXnCEjlIebBPd5Zn0LRQaZnJYCWZSUhzpwt++nmKsD2kVAS/v/YkSlC+EoDq1eBenmIenwy6W8Yt5+KmVT6s0T7NVs5sD4ynHpmiFpZzIZKFiQIbVsVDNhB/uhMuBlAjDhSY0lWd1mtT71DF46lgMoc/tz7y9T+fF/37FoYEM3SgeOuN1SBs7l3TcaMbQfEGE7pp1vdK8QexiDnfdYoRuTOZcdnnnfT9WegzNP3e6UGmVlMlb2lOULTPOc9J+FYY7EJpxWq6D5yrsQha7mHWqt6kCMapS4iSkbWGlRx2Nq42dT6GVFWqZcIkoZJUw6g0oDbHuhlKeUnxgyrsznU2yEaoBTaM0NoAeCE95nu4PT/jfF2O9CE1Hc3mVL3w2gbtusVKy6S5kKafGIU2kQ/eJTIwHf7WTwdEMAfcwIbdFzh4EdwAKaXD7J2JJstLLvc/HMeOjmJkEeqiGw13xGVps3ROglFRFbKRt4Xb70ANR5Udc105huHOKb+7nG55gR6GZA6VGXqq9kz8dHOSo3cTO2qt4c+4ltoWG+Wz8fRRHOrnGVhkgfhhbwR/4/4KLRx/ih83fpGTZHLaasSLNaM68/PzY7XzX+27+LfEFbo6o6pLNrjSrUttZQwdbA0Nc3/vf/Kr2vTyebeQ/0ml+t+bZUyeSMpw3wrCVjjkamflL8EmzhOYLURztUX5+hmdilz4uUFvFPO7qZqz06IKDQIAZArbuC03Z9auo6bpJrdE0ZmUEq7GyCVzRhimmGmlbaOlBbr9qKUf7UhwccSHNAm+9OEIskePp45NEKHSXmjy+8MTCPR3lJkUzMYQeqFLvw+VFD9XMuqiVR7/aufQJc4W63W6qfRZBx5M9k8rwyu4ONq5uIVodBaBYLJHHS75QnPUe47hhawM/ePgwvTnBfQ+9wh23bp33/PMRz++oYjDbyrLFr/ChDwpsaxjDPXUT88ouHzuOr0Rar+IyJC6XpHzHu3dnif5BjR0HmsmncxiRamrEIa6+2mLtBheqLLlBaqzArp02Tx7YxNDoERpqczy++xIuW7EPf2DyfrffbnJ1bC/Rej+vvlziUI9KQP+Vf+9mySKLt73DCd7bJbnv0SbWLupnJLIcn5Hgmk3HaWqGYLWL/b2HsVN1tLdswu3zQuAY8e42ItFLSA7/gnEL4SMPFXn+5Simmea4bKfnWT+/fffhCW30OC65TD135ys29790EdFn9uL12Kxs7mZ3h0YsM3XhdmkmBf8yiB/HbwzxcscGPGKQTW37cHld1Ptg3XpJe1OK1ZsUnfd2pCjRw6OP+aCmhLRNzOQARthJISY0lSFG2soClE0qLSS2kylGRZZLKSkMdWAX0mCrhfZC0rRJs6T4rmMNmw3jZZtL8QGn0tfUTbeVTahUUy630rS5ffPGRZRDaX+nptLUvEFVOGLCXU6gB6NKEA1UQXnKTE1H84YnfH7LhQArm2DLYg+11SEe3ZtB6G42NJqsX1bDT54ZIOdEaAshEJqG7o86SobZMW4dNFMj6IEqzMSgMjl7g7Om7NTKtMVWOua4e4ydcLNg51ITabuUYkSfWGukbatqalZpilvIdOj+MIXBoyB0rJxymbvQBOIJq0JqRJUJN4szfMNVIGadEohnqyznuOlIq4iruln5CUsLTXejVzdPCcCz0mNOthobMxNHc3nQ3FM17+MygB6qRZolpGnirm8h338IaSnrxXg/ZCmnFG6G28lGMYSVTWCE6nn+YJpqLcmNNyynfdUqvnHv89R68nz0rot49OkD7OhzxpdNYKZjSg7yR3BHG5ysFlNlE90XQveF1IYgHcM2S5iZuHIFKeVnna8+v580y6hLHOAe8zq0+hW8qftfWNeohNj3+l/iqGzmS5FfAHC8WEUx28VzchUPjdTx7fzVJLwN/E76Pwk53WnVRmnNHaLOl+FXyVbcwqLNGKPHvYQXiml+1/UCX255iHcPNLI338C/G5ejYfPbNc/P6N/JYkHCsBDiNuCfUAlP/1NK+VfT2j3AN4GtwChwl5Sy47R7VwbdH1EZJMSJmKiN7fi9CKFjJUcmhOHxwDt7pMfx5Tn9cOEp5S6dLBfzRU3PpiWw0qOEI2E2bViKaR3l4EgBTVq0tNSh66NwfGrBCz1QhV3MLixCWOD4AbnQQ9XzLmoTlxguSslhZLGAXcjOU9gjyOc/cBE7dx/lmZeOMizrSGc7uP2mzQCsX7+U9pYqQtH5+7l+42qiQQ9ff7Sf/Z1J7jjxqBaMc4F2AW66apTBoRhLVvgQQpAcyxOp0RFC8PiDSXpGa7h8axyPaz+Lmwu8tNdHbNRm2yVJauoVA3/mlWpGCq2sadxBKOpm49od1Db70TQ1jTuOFvjOPS70YAtBb46LFh1gzao82bRFrauT5uZJDayUkuG+HPWO729jk0QrpSkkh3A3txGL9fDd7/vZtC5NrhhEeINomqTKFyPoK7LlEnWfge4sP35yE2SGufuWEfR8P/V1LjKiRDY5iBacFOhzaYnwRvCYKcKeEVathN5+jY7nBVddWcTrV/fsOpYnHNFoXwQrOo5y+HgNlh2me0cn0iiRSU99t3UtQW7ZsodAEGzT4sf3GejaCC/tX4zbN8wNN0ne/c4C5cU+Nq4v8tKRAF7yBDhArGoV5Ef4H5/tQNM0vviVtcp8LbSJUqoqnZoSHsazUOjBKmQxh6u6RW2CrcnUL+MaYjg1LfE5QbtCKGtYYG5Lmwo4HEHaJponjJmKofvDk9k3zBJ6uBYz1quEhdPku5rbN0WQFIYLK5uck6/NJoiOV2Nb1hZhydJ2nti9A1N3Ew24aW1twKX3kyvL4mOEapU2dgGB28KpDGeXiniqmmdN+zmjj94gVnpUudFl4nPy9nGXCruQVdXOahdhl5nhlZ+0cumZSxAe76O7pt3RBjY4hU/OjDB8TtAtqOwxZVYFpRUWEwGydjGPcHuxUsMI3Y1dKoDQMNOjE8F3dlEJ1IWhTkRBrcNGsHbie0ppUxw8prSpdYspxXrRfUE0XxQzOYiYJq+M5ykXmo4UGtgm+b6DSl5x+TBTo4hcyqmCWYM90gW6mNjojSutrFySeLSR3Xu7GEmWGEhKPDoMDY2SK07mpkfaSpgO1VAYPEZxTEMz3DPKfduFLNIsKCHZtpClPJ76JWQ7d4MRnbB+l+N3vT/nquIe3hd+nhtHfp9i11P8PPJ29qR7eTr8D/xOzXNTzr89coT/GExQqlrE1+JXslNfhxFtwj02SaefqnqBT8gXyJYE78z9M4FSgoeDn6e22E+NHee/x9Zzje8Ynww+yW/V/AWp5CD99ty86WRwQmFYqK/5ZeBmoAd4SQjxMylleV2+jwFjUsrlQoj3Al8C7jojPRzvh1M56kQYP8cq5lUFmkj9RACG7lMCteYNnFAgXAhKY33KxOQNKq2R469mZeOYZnFeV41yCM1FLJbmr/6/X2B7IohADdLl56s/3k3UB1JGpjA2lcFiYT5j4+/DTI2qRW26v/As0P0RZGoUo7oJKx1TQX5ZtXmYLXjxhV39DOR8tAdHuGjt5ilt4aqFBd60Ll3Ch2/14HKdhNvKCXCu0C7AomVuFi1T/29/qcQDz69nWfQgA4lqUrkGpGWydlmc629QxTJW7R7l0OhaDh7awxUO2d941SgjI2Nsu9zj0MNUDdLBvRYyug4z2U1Vncltb7IBN9/8lo9YsYFIKAa4yGdLfOvbXvpii7l22xDXXg+NLW6uvCLHoQMaHm8PK5YWePLAegLHDvOhD8T5r//KMJKO8usfy02hxVgMSHZiS40XD73MW97pRQiNUMMw2VEbo+zcN7/dxaYje9mzP8iSpRprNxh8+zshjhz3MNzTxzXXl/jBfY0kkxHaWkvc/cEs73pngV0vx3n0oU7SviUIq8Q1181c5C++bJxuXKxen+L/+7cmdFFFbfggjz4c5XiHQbbohWKK97yrwK1vjXB1qpM9u0o8+FQ7YX0vb36rRl8X7N9XoJRQGS6sfBq7VFBJ6HUDV5UKLi0OdYCTEskuFSA7hpkew9c2d5nzk8G5QrsL4ZPlG/ziaA+e+sVTrUoC7HQMV3XLSZe6nw4zNapcHcoKbuj+CGZyZMKfeyFaZ2F4sHNJvn9/Fy7fMWRYuRQ8cTDHkY7nyZqBGW6IC832oPvC4FNCuErxdmKeprk8aK56lQvb7Z30LZW2U9p66j2sQgZ3/RIKA0cxpgU3LiR3MzjB6MHohNX1TOBcoVuYmsfaLmSQtkUpMYTm8St3CF8Eu5jFU9sOqMI7rmjjlPzVmkcJ1K5I3aybBenkfLaLWaW1DdeqqoPJYVzVrSoXt4PiaK9yrZESraZVpScM1WDmEghhKGVdoEoVBQtUURw4ih6oQnNNdQ21CxnsbBJTaDzdG8Pdr1xr8hY8/GIfujZJuIpmBcVYL65QjbLyZMZA0ymOdOOubcfOp5C2rWSXTBwj0oBWyJLvO+Q8O4qdmRnkuS04xDZUXvmXW/+O/x27ia8Hr2Hp6PM8lWrh/+TfQ6AwyGFtGR+1f8jvtu5j/6Iv0pfSuMH1BUrFEn+Y/Gs+UL2Hvxu+jDUc41dyGw9xBc3J3eiuXjbrB2isM3nM97f85/AaPlf6JLcXHmctxzFLMdZkd/K/F93HmfAZXsgWfRtwREp5TEpZBL4LvHXaOW8FvuH8/wPgRjHftvQ0YZeUxnI+6G5VYlYWMhOaWmG4VGDOmUo+LjSE2zeRRg3Ujk0P1U3kxJzoczE35bwpfQ1WIQwDWb0Uy570abt6cwOf/PB11Htmd4cYh5RSJZvPJuY8xwjVYITrT5hCaByax69MgkJg5VPowRqQOIvOoMq9iirs0dkziizm6Bi1+fcHTr08YtuiZhqbz2iFpHOOdksFk5HBEj7GKJgGWdEI2RHsQo6iPek2ccMNRa7fsJstWywGegoM9xdYttJNc7Pka98MsWuHOePeWy81aA13ccetKa6/JkU+q1KjNdVnaQoN0t9v8f0feDi0N89QaRk6RXq6bJ5+Un3L62/QcAWC9KXaaKzLsbH+Ja7YlqD7eJGxmGRo2E1P56TLSy6V56dPrsTwuPH7Yf/wRsZGFK1mYn7q6u/ATC+bOF/TNEzLy86+TTy/IwrA0qZhbLPIkZGl3PdzScauQZdZIp44ALt2mBzpDnPTrQK/GGR5Yzejw2pctm3TeyyNlJKjh4p8+StBHrk/h27oXHvpKJev2s/6iyP0D/sZTFWRTLuI56v53vfVHPCHPKxcIXAFI+BvYPlKF48/5eaFA8vxiDThkEnApyLQjUDVhDbIyibAMV1Ky1SVwtAwwtWYqRHMWUzp7/3J6Iy/E+Ccol0p5bz8ZRy6PzzDx9cI1WJE6k9bEHY64vhtzox400M1UzIzSMtU6Spngeb2Ki2rvxrbXzcxttawzcc/fANXrDqxX7OVVcVI5BzRd5o3qISjkwl2kxI7m5hwDdFDNZQSg6pUc5l2TkjpaJx9p5Vdafz6M0g25xTdjsPKJlW2D6uoFEISVRWx7LGuqiZl2XW5Vcn11CjC5VE5xXNJSmP9M+6r6S4wi2iOUoyJlKturPQo0rYxk8PqXoYLPVxPKTM2oZnWA1F0tx9XdRNoOmY2gW2VwCwiSzmsfHJKAB6AXcjhaV6JmYrhbV2LXVSxJVJK3nxFG++5bc0U+UgPRDF8YfRwrbI6+MIUYz2q0Ed8UPnbe4MUR7rA5VHCdiGLEahCaAbFoeMItw/bofNjGR9jRZ10SfCewbt5Z8/7yVk6d/lf5gOZb/OF6gc5XKrlQPBijhRrGRUR/rr4LvKmxNAE7RHJZlcXNK5hiTvOg9m1/IN9F5/y/hXHsl4Kws2r2kpygTbavZPj+H7pGgSCF9jAWyKHeJP2Ip+KPsPHRj/E7w7dedo0shBhuAXoLvvd4xyb9RwppQkkgLMWPWJlxpC2eUKB2Ag7TPgszTMjVIvQjSn+thOuEmVpfcbLh46n/ZkN47vJcl/iQ90pnn5+H/HC/JqOcfcPVbL0zEBz+zDCdWohc4JVxsekqlJNLjpGqFZFcZ97PmfnHO0+9bTBKz0Xc+mmUT7wAZsG1wH0uuVsWBljw4bJRbWqxs1lV6ro52/9ZDHf/lEDUkqGhiWD2Vb6B2Zqm2ob3Hz4Q0UiYZtv/HwjP79PfY+bbxF8+INZegejHB1ZRlH6eOe1u3nvHd10pVfw8u7J4d523QBePcdPH25i19Al7Nnv46cPN2M0bcS0BKnk5FzyBj1csqqLy7YkeOdbkrzt2n3UNKhF3F+VZXjwEQx/x5Q+Llnl5aZNu7nxKiUwLl8BnupWpGWSzroojPRAZDGJgrKq7Dsc5MDAclwegz/4I52caOTrP17FyECOp5+UfOOhi3nxOYuBQZ2EbOP5XY0kR7NcdLHB9TeqyodvvzPJx+/qYXlTH+7qZupqJjcS0foA77zhIG9/k5qbl27NYmdi5Is677uzkysujuFpWIqViU1qBjVdpU1KDaMZHmejWeuYNqsnfIdPE+cU7VpO0KAqNT83dF8YI1x71vxPjXAt2NbMVFWGS7kxlGlJzeSw0uwX89NvMwVWNo7mmItHsxrPvrCfI70zzcLTofypa2cUXzkdGJF6jEiDKqzh8qggQbcKrrJLk+PQw3UIMdXv+BzBOUW3gONfXoPQXXibVlIa68FV06aszWX+vMJJgab7wsqq7BTWGc9BLHR91o2Pq6YVV00rMp9GCDERTDohH4RqnOwnfuxcEne0CT1UO7G50YPVlIa70P1RdI8fTXNhjvXjW7QJzfDM+MZC17FSMVzVTco/3R+e6P8jL/bw00cPzJh/QjdUJqlgNcJwY/jCuCL1Ktg0VIOZjuFtXYMsZLELOTXPhMDTuAwjVI2rpoWvxLZxMBPgTdbf8snERxgtuXnZexkvuLdxT3oLa/wJ/rLmPpb60nyk6lV+UPgM/xH+D4xAFREveMrEmC+Fvsff5v8Xb4oc59bAQWozxzCzCVa7h3gx+LvUBD1ErBH+Z/iBiWsWi0F8hSHW2wdZ4s3wn7Xf5lp/B9vdW3iF07fIveYBdEKITwCfADWhTwm2hSzmEf7XN1BF6MYMbcf4hJp2cFq55lnuZbhnXNedctO9rwhi/nRjuj+q/Km1s/c5x7UPlm2p4KEybcT0HKBz+xjPXQ76XEc53VY3R0/5Pu0tJbr7O2lpsTDcLtZvsPB3dXLzLTqB0EwB1+01WNI4iNtlI4Rgy8UuqiPbnVzBs3/vcFij1j9IQ22B8v3udVdnWHR8B2vXGxguD+Dh7eIgXq9g3Je4utaDz51HMwo0Vx9j6WKTvq4Yg2MF3nbHAGs2Tq5ZqrreuHA8dcPm9um4W2du/jRNY9sVk32qaw1z6co95LKSi7dpjA4nGI4dpLVZlaK++bokfb2vsmqd0uY212dxjQ0SCOrUVEuqXP1URW2WrzYY7X8J7yIPoeqpi0cw7CIYdvHu91kcPfQKy1ZOtY6sXDv5e8VaH3ekU2SygrqWEKYssa+jjy03J9h66aSldzxHcTnG0y7O51/7euCM8FxNU362Cwx8O5uYLcBsVu2rtJVmeB7BfLpWtYCHR/cWmJ6hZ/aOaFip4bP2vVWsSwi7mMNMjUwZ98lUADyfcSZoV7h9U7SrRrhe+eB6Q3Nr7YVQftRur8rOlEuhuf3zKtakbamsNGX+3ko5Norm8SltvzeInU8rl0XHjVJoOsLtVVmccmnlc+wJUBjuUnmMncDMiXvO467TkZydbqf7oAtPgMJQB+6aNuxcWlmCkyPqHUtbWR28SrEhdBdWapSV3kGqjBIrs3tZKTpZ5C/wxeEv8StrEzeGDkx7fYJLoipjxo9Sf0RdVXbKu1vmS7PMdxAQVLtN/rvxW3wvdzkfj7xMxKNxZXI7GhKfa/Kaf2/6CfCT8ScAUOu1+Zn9p3i8p6+AEHOZeMoGdTnwBSnlrc7vzwFIKb9Yds5DzjnPCZXTYwCokye4uadphWz68D+e3gjOE8wX2ftGwpkWhj+6suUVKeXFs7WdLdpdtLFV/s+f/faZHMY5hfKiMBXMjtmE4ZNF55fe/JrT7huN50KFjs80Xg+6hQufds91GaHD+/7XuwunDfEXyTlpdyGqxJeAFUKIJUAv8F5g+lv5GfBh4DngXcCvTkTYbzScy0T+WmI2rfFZ1BZXaPcUUKHVE+Nzn9w35feZEI6noUK7p4kKHb8uqNDtKaJCr68vTigMSylNIcRngIdQttCvSSn3CiH+F/CylPJnwFeB/xZCHAFiqAlQQQWvKyq0W8H5igrtVnA+okK3FZyvWJCTqZTyfuD+acf+vOz/PPDuM9u1Ct4oOJva4grtVvBaoFxTfKa0xBXareB8RIVuKzgfcfpVJyqooIIKKqigggoqqOA8xXlTjrmCNxbKtcXnawaKCt6YmO5PDGfFp7iCCiqooIIzhIpmuIIKKqigggoqqKCCNywqmuEKznm8xhkoKqjgjGNcW1zREFdQQQUVnHuoaIYrqKCCCiqooIIKKnjD4oRFN87qw4UYBjoXeHotMH8t0AsTb8Rxn8yYF0kpT7Gs1qnhJOkW3pjfECrjPhHOddqtfL83Fs5ZuoUK3z0JvBHHfdq0+7oKwycDIcTLc1UOuZDxRhz3hTbmC208C0Vl3Oc3LpRxnCwq474wcKGNZ6F4I477TIy54iZRQQUVVFBBBRVUUMEbFhVhuIIKKqigggoqqKCCNyzOJ2H431/vDrxOeCOO+0Ib84U2noWiMu7zGxfKOE4WlXFfGLjQxrNQvBHHfdpjPm98hiuooIIKKqigggoqqOBM43zSDFdQQQUVVFBBBRVUUMEZRUUYrqCCCiqooIIKKqjgDYtzThgWQtwmhDgohDgihPgfs7R7hBDfc9pfEEIsfh26eUaxgDHfLYQYFkK86vz9+uvRzzMNIcTXhBBDQog9c7QLIcT/c97LLiHElte6jyeDNyLtwhuTfi8k2q3QbYVuy9rPG7odxxuRfiu0O2v76dGulPKc+QN04CiwFHADO4G10875NPAV5//3At97vfv9Goz5buCfX+++noWxXwNsAfbM0X478AAggMuAF17vPp/md7ygaPckxn3B0e+FQrsVuq3Q7bT284JuT/I7XlD0W6Hds0O755pmeBtwBPgVauDfBd467Zy3At9w/v8BcKMQQrxmPVwAhBCPn8RObBtwREp5TEpZZPYxX5CQUj4JxOY55a3AN6XC80BUCNH02vTupLGQ73jO0+4p4A1JvxcQ7U58P+AQ8BLnKd1W+O6JcQHR7TjeiHy3Qruz47Ro94TCsBCiQwiRE0KkhBBxIcSzQohPCiHOiCAthPi6EOL/OD9bgO6y5h7nWDkmzpFSmkACqDnBM/5cCCGFEDediT6fYSxkzADvdFT/PxBCtI0fFEJcL4R4TAiREEJ0TL+o7Pulnb+Hz/gIzh7mfDdCiPcLITqFEBkhxE+EENVz3UQIcYMQYrsQIimEOCaE+ERZ2x1CiKcd2h4QQvynECJ0Jvs6/RznO6WAamDGnBJCPFD2vUpCiGLZ768IIa4TQvTMMdavl50fE0I8IoRYPc+7+YIQ4lunMN6TGTfMQb8XMBb6XmbFa8h3p/dzZJZ+njTPdZ5xIfPdPxRC7HG+z3EhxB+WX+Tw5GGH5+wUQpwvwsq870UIcaMQ4oAQIuuMcdFcNxJCbBZCPOWsTT1CiD+b47zToZMzIjOcaL6diCfPMqa7hRBPn8J4FoIKz50dp8VzF8pY75RShoBFwF8Bfwx8daEPeT0hhFgGvBvof737chr4ObBYSrkReITJXS5ABvga8IezXejgTill0Pm75Sz2c14IIYwzdJ91wL8BHwQagCzwL3Oc6wJ+7JwfAe4C/l4Isck5JQL8H6AZWIOaPH9zJvp5AtwJHAc2M21OSSnfNP69gG8Df132/T65gHv/tXNtC9DL6z9X56PfCuZGhe++vpiPbgXwIaAKuA34jBDivWXtvw00SSnDwCeAb4nXScN6BvluLfAj4M9QG/mXge/Nc8l3gCedc68FPi2EeMu0e55LdDLnfDsDPPm1RoXnniROSssgpUxIKX+GEig+LIRYDxMO6n8rhOgSQgw62iuf03adsyv8n0KIEWcH9gGn7RPAB4A/EkKkgd8Bxncwm4G/Bn5dKOd3r3O8d/wcZ5JHgNF5uv1lFFEX5xub068/cHZSiWnPRAjxcaEcs2NCiJ8JIZrL2m52dssJIcQ/oxhl+b0/KoTYL4QYE0I8NL6bFkII4F3ABx0Nwm5gqzPG8vc+KqUsOD//0zlnvO1FKeV/A8fmG99CIIS4XQixz9kd9woh/qCs7a1COeInhRBHhRC3OcebnfcRc97Px8uu+YKzK/2WECIJ3C2EiAghviqE6BdC9AK/P0+XJr61g1bn2AeAn0spn5RSplHM+R1ido1uNRAG/tsxn7wE7AfWAkgpvyOlfFBKmZVSjgH/AVx50i9v7r7OdY6Got2O2ebUmYCUMgd8HzWXThpCiMscDUnc0W5dV9b2ESHEfhSTfb8Q4jecplbgPUKIN5fdKgH0CBXQ8J/Atnnue7dQ2vtxjdsH5uhbvEwzkxFKs7TYaZtvrkqhND6HnXt82ZmH4+1zzlUhxD8IFcAxPldXzvP6FkIPC8LZ5LvAN4FyAWUjSqNUzgNPlufChc93/1pKuV1KaUopDwI/pYxvSCl3OVpIAAm4mEoP5f3cJoR42enLoBDi78variqbK91CiLud4xEhxDeF0j53CiH+VExqMe8WQjzj0Oso8IVyWkG5wjSP08o0zEe37wD2SinvlVLmgS8Am8TclqfFwLellJaU8ijwNLBu2jkLopN5cFJ8dyH0O9d8O1MQQqwWymIXEyoI7j1lbXcIIXY4tNAthPhCWdsDQojPTBvPTuBWoLf8vsCzTLpO/CdwqZhjbZ/Wt51lfDXt8MvrnLa3CCH2OrT4uBBiTdl1J5rHbxZKfhjXum8sa/tjp08p533ceIqv9vR47gKcljuAm2Y53gV8yvn/H4CfoQSPEGpX8kWn7TrABP4e8KB2iBlgldP+deD/OP8bKKGuBzVh9wKXo4SXTzrn/ClQAOLOfYrO/+N/7y/r47uBn843jmnjfBGlIaye9swbUObDLc4Y/j/gSaetFmXyfheK4f2uM95fd9rfivKDXuOM70+BZ522W4FXnGcvQS1Ee1EM43+UjSlR9n8GMGfp/00owWq2cQ0Cw8DDwKZ53kE/cLXzfxWwxfl/m9OHm1FCXAuw2ml7EqWV9aKErmHgBqftC0AJeJtznY9JLW0AqAdeBXqd86+a9i3TzvVx5x3vc877KfDH0/qeBrbOMa7vAL+JCjy4HBgC2uY49x+B755oXsxy3TjtLmEyqGHdtHN+E/iK803+D/D9ueZU2bGv48yPsmPXAT1z9GPifOcd/zewc55+fwH41izHW1ALxu3Ot7vZ+V3ntN8BLHPG3QfkHDrZiZof3y67168B+53/P+Z80xn3dfqbZJI3NE1/h3OM4f86dOhinrnqnCuBXwBRoB1Fr7edxFyNooSuNcAlzB3McQdTgzlePEl66uA14LtMpdsOlJXlOsp4IIpuv8XcPDfOG5TvOvcTwI7xfpcd/wWQR9Hcg4A2x/XPAR90/g8Clzn/L3LG+D5njDXAZqftmyg+GEIJnYeAjzltdzvv4recsfuYSivrUPNsnFbamZvnmuPfFvgn4F+n9X0P8M555uVfOX1fhVrXLzkVOjkTfNf5/71M47sLnW+z8dh5+nU38PQsxwMoU/5HnL5fhKLxtWXzdgOKN25Erd1vc9o+BDxTNuabne+0C7h42n1vHr8v8HbUnJ2xtp9gDJ8ADqCUSStRc+Bm53v+EWp+uRcwjy9CrbmXotbgDzvnexy66AaanXMXA8vm6dNizhbPXcALmYtIngf+xHlwpnwAKIHjeNnHNYFAWfv3gT+bjbBQi2TJIYI/cY49Azzg/O8F7nU+xIvA0jn6HQIOo0wFc45j2jh/rez3XzM5gb6KMouMtwWdPi52CPT5sjaBmvTjTPkBHCbl/NZQC84iFLM/hGLkh1ARouNj/l/AW5z/v4hi1juBx3AE0Wn9n0sYvhLFDP3A54ABIDrHO+gCfgMITzv+b8A/zHJ+G2ABobJjXwS+7vz/BaYKIg2ojYzP+X0PMAbYzjv7GGrxHZ9EAqU5OArsBi52jv+SmQtPL3DdHOO606En0/n7+Bzn3ez0Z+XJTKJptDvfdxyn3RKKySyddv3z49eVHfs6Jy8M51FM0ka5Ymycp89fYHZh+I9R2vTyYw8BH55j3GkU8/0TYLnznd/ltO9BMcOdzrv56Wz3RS0UceCd4zSygHd+F2rujgvpc85V57cEripr/z7wP05irl7mHL8HtXksnQztngQtdfAa8V0m6baEIyig6PaHqM3bgniuc90biu865/2Fc45nljYX8Cbg9+Z5B08696iddvxzwI9nOV9HCTdry479BvC48//dQNe0d5NBbV7H6XacFy6Ybp3v8VfT+vIMcPcc47rCoRkTNe/+4lTp5ARzZaF8d076nev5LJAnz3Ld3cwuDN8FPDXt2L8Bn5/jPv+Is/Y67yzj0PDtKCVCEsUP7gI6p9FuDLXeP4ZSWMxY2+fp/1Uonr3S+f1nlG0iUPNpYs1l/nn8r8D/nnb/g6gN+nLnOTcBrhP06azy3NPxJWpxXnYdStB6RZRZG1ETdhxjUspM2e9O1A5iBqSU9wtlPv91KeWjzuFHUC8Nqcwz715A/76AWsw7FjIYBwNl/2fL+tgMbC/rY9oxP7U4bd1lbVIIUe7EvQj4JyHE35UdE0CLlPJXjnnvw6jd1I9Q2g+klH9eds/PoRjjSUNK+UzZzy8KIT4MXI3SIk3HO1EalL8SQuxCCQnPoYTe+2c5vxmISSlTZcc6UbvUcUx/Fy6gv4xWNJTWcLr5DKko/DdneW4atVstRxilyZgCx4T3XZSJ7xFgBfALIUSflPK+svMuQ2mQ3yWlPDTLM08IKeX9THtP075jHni3UAF0n5Eqgr8c43PqdPG3Uso/FUK0ozRSq1Dag5PBIlRf7yw75kIxVoQQbwI+j9IYaCitzD9IKf/Sad8J6EIIv3Ovi6SUR4QQ/wJ8VAgRn35fKWVGCHEX8AfAV4UQzwC/L6U8MFsHhRAXAf8M3CKlHHYOzzdXO5zD0+d5sGzMJ5qrX3bO+xFKy5qcrW/z0O7p4ozz3XG6dejy351jf+6YaJefBM+FNxjfdczWH0Jp3QrT26WUJeABIcRvCyGOSGV+n46PoYS3A0KI4yih8Rcovnt0lvNrUXOms+xYJ1ODhcrfxQStlB3LALqUcooP+gno9mT4bjWK93wGxVcbgR8IIQallP/CqdHJrFgo3z3F258pnjyORSiXhXjZMQNlwUMIcSlKm74exVM9KEEeKWVKCHEf8F4p5ZeEEAmUYueXQog/QlnSvlnGDwxUGrlPCSEuYfa1fQaECrb7PkrxMb4WNlNGb1JK25lv5TQ31zxehHI3+a2ydjdKG/yEEOJ3UPSwTgjxEGrj2De9X1LK983W37L20+K5pxSZ7LzYFpQP0AjKRLpOShl1/iJSOZqPo0oIESj73Y7aqYDaMZ7Ms9un+bRM/xv3MbwR+KxQGQIGUIzl+0KIPz6FIfehPuh4HwIok1UvaqdSHmUsmOq30g38Rtm7iUopfVLKZwGklP9PSrkVZc5YiRMIJ5Sv35zjPIUxjEMyzbduokHKl6SUb0W5L/wENSHGx7Bslkv6gGox1Ve3nal+OuXftxulMawtexfhcUFYCHH1Cb7t1c599gKbxm8qhFiKYhqzCbHrgUNSyoeklLZU/n33obQ149dfhDIhflRK+cvZ3s3ZxrQ5dUYgpexCBfL8k5jdP3A+dKMWq3K6DUgp/0oI4UFpDf8WaJBSRlGLUTld3YMy774V5d5y5ET3dfr8kJTyZhRjP4Dy4Z4BIcQ4jf6mlHJHWdN8c3UhYz7pufpaocJ3zy2+K4T4KMqt4kYp5azZXcpgMDsPRUp52Fno64EvoYTGcXP6bNeMoLRji8qOzcd356WVk/i20/luwOnf3ln6uBSwpJTflMqvugellLjdaT+TdHJWcDZ4MuqbPjGNLoNSyk857d9BrUVtUsoIyjIzg68KIS5HabwfW8h951nbp4/Z57T/o5TygbKm6XNxfL4tlK/+5bS++aWU9zh9+46U8irn/hI1B15znJQwLIQICxUY812UaXW3lNJGLVj/4CxQCCFahBC3Trv8L4QQbkegeTPObgdlvl660D5IKbvkZBTnbH/fdk69ESUIbXb+xs0EXz6ZMTu4B/iIUKliPChfqBecXe19qB3NO4Ryzv8sahc8jq8AnxMqA8J44MO7nf8vEUJcKlTGgwzKvG074/y/841z/OZCCE0oR3WX+im8Qgi309YuhLjSee9eodL/1KJMW1PgnPMBIUREKm1GcrwvKPPYR4RKq6M533e1lLIb5aj/Ref+G1FajllTdUkp+1F+y3/n0JImhFgmhLjWaX/qBN/2KedW3wbudITnAEqr8iM5VUM9jh3ACqHSqwmhopffjKMpFSo44kHgt6SUs2nLzypmm1Mnca132t+MTY6U8hEU7X9i5h0moE27jwf1De8UQtwqhNCd49cJIVqZ1FgMA6ZQWuLpWUq+6xz7FIrBj2PO+wohGoQK1AygNk1pJmmwfNwGKl/ot6SU05n6fHP1RDiluXq2UeG75yTf/YDTn5vlNAuPUIFMbxJC+IQQLiHEr6Hy5j8x2yCFEL8mhKhzvmncOWyj+NxNQoj3CCEMIUSNEGKzlNJCCTN/KYQICRUY+HvMzXfnpZWT+LY/BtYLId7prDl/DuySs1tuDqnHiPc7fL4RZcoft1CdSTo5ozgdnjzzVlN5NMqPfKUQ4oMObbgcehwPRguhrK15IcQ24P3T7nk/Smj8Xyit7zgPmvO+J1jbp+NrwAEp5V9PO/594A5HBnChAt8LqPX/RPgP4JPOnBNCiIBQgYIhIcQqZ232oOZhbp6+nV3IE/uOdDgdTKECCp7DCUYqO8eLYgzHUC96P/BZp+06lH/Hn6B2qF04wQJO+wpUEFUc+EnZM28qO+cLzOLXeDJ/0+95ovbpz0T5phxFmUx+AbSWtd2GmvwJlNn2CRzfNaf9gygfliRql/Q15/iNKOYw7m/5bSB4kuO6DrWbKv973Glb59w/g/Iv+iVz+NGgBJwHUT6zSVQAY7lv5dude6VQvle3OsdbnfcRc97PJ+d6h86xCMqHqMd5XztQZp+T/Z7vd2gpgwokqS5rewD4n2W/34PyW005z/0STjAL8F+oyZcu+9t7OrR2JuZU2blfZ3af4enfXKJciWY7/y7UDn42n8YvzHKfHqftUoeWYyjB9z6g3Wn7TZRAFUeZ+L47y3N/ifIXbJx2fNb7orTBTzAZuPQ40yorOdcvdvqZmfbdxvs231yVKNP/rO+XszhXzzSNUOG7ryffPY7SzpbT37iP5BrgBefbxVG89O3z3OtbKL/JNErL+raytqude42P4cPO8SrnumHn+J8zydPuZpq/6ny0cpLjvgllscmh5ufisravjL8D5/cNztgTKBP6fwD+U6GTs/3HafLkWc65m9l5tIFyW7vP+XajqCJjm53r3oVyR0g59P7PzFxDv+rc65Jpx2e9LydY26fdQ6JcHMrpejzw7u3APuf9PEFZoOL078fMeXyb89w4yqpzL0rw34jy404xOcebXw8aEE5HzxqESsvxLSll61l9UAUVVFBBBUCF71ZQQQUVnAxOyWe4ggoqqKCCCiqooIIKLgRUhOEKKqigggoqqKCCCt6wOOtuEhVUUEEFFVRQQQUVVHCuoqIZrqCCCiqooIIKKqjgDYvTKbpx2tD9EWlE6l/PLsyJplr/692FM4r+kezr3YWzguLAkREpZd1r+cxwtEbWN6m4pGxi+ARnz47hUPQM9mh2tLhdZ/0ZFZw6Ovfses1p91zmuRWcH3g9eC6A3++X0Wj0tX7s64LXYn04WVwI68l8PPd1FYaNSD1NH/7H17MLc+LzH7vo9e7CGcVffHXHiU86D9H5pTd3nvisM4v6plb+5r8eBmDng/96Svf4yrVvO4M9mh2fb60IPecyPrqy5TWn3XOZ51ZwfuD14LkA0WiUT3xivnTpFw5ei/XhZHEhrCfz8dzXVRg+lzGb8HihCcgVnD423aYKB52sUPzJJ34y49iZZoCf6xmaceyLFwBDq6CCCiqooIIziYrPcAUVVFBBBRVUUEEFb1hUhOEKKqigggoqqKCCCt6wWJCbhBDia6i69kNSyvWztAvgn4DbUaX87pZSbj+THT0XUHGdOL/wWtLtuLsEnLofcbnrxNnyGSt3nai4TJy7qPDcCs5XVGi3gvMRC9UMfx1VW3ouvAlV634F8Ang1KSBCio4s/g6Fbqt4PzE16nQbgXnJ75OhXYrOM+wIM2wlPJJIcTieU55K/BNqSp4PC+EiAohmqSU/Weik+cyxrXFFQ3xuYfXi25PNaiuHKcSYGcnU6BraIHAgp4xPcBuIZri/u5e6hrrMVwz0+z0dvcRjUYIhGY+v6+rl8aWRjRdByCfyzE6HKOlvWVBfT3bsG2bYj6P139upFSs8NwKzle8kWjXsmxSuQLRoO+sPcNOJEETaKHQzLZkCvJFtPqaWa5LgG6gBSf5sdU7gFZXjXC7z1p/Twa5dBpvIIAyFry+OFPZJFqA7rLfPc6x15S4rXwaAWje4NznFHNYyRE0l4dzKd/m0MAwLpdBVU3VWX+WtC2sdAzN7Zv/XWXiSNvECNWe2nOkxEqNICVohoEeOPtjO0m8JnSbL5Z4JFFPRGa5pr4w6znJfIn+nMHysETXZxpsTNPCeupV6BhCC4TgqpWIMgYo8zlcj3cicznMsIBVzWhLm2d9liyVELMIsyfCrl1H+NHzY1yyeJA7btkycXx0ZIxXXjnIM8dM6o0EH/u1G/D6fBPXHDnax64RP5cvHeLWGy/i4KEufvHLfaT1at53bYmVqxZP3Kuna4BcvsCy5W288NIBWpuqaWtvnNKPV7YfortniIb6ai7dthpNm/q+9u/vYPveXoqpOLfdto2mphOnRP3xfS9zoLfAm7ZWkynBZVuXs/dgN/sP9bO6LUykOoLX56W5tfGE93qNcE7wXGkWsfJpjGD13OdISXGkG83jQ/cE0DznxobDLhWQxexrxpesTBwp7XnflV3MYRcyaN4gmst7as/JJrCLWYTbj+72I4xzLj/sa0K7L4y46LMj3BjuJ+yd+Q6klBwas2n0SSK+2UWhY3GTFwdtisLDxlqNzdXWlPanRrwc92/Ge3Q3SyM622pKswp2tm0jhDhpoU8Wi7if7sGWNtbtaxEOr5NmCY70ox0aQisZFDelMJYvVs8aiSOODeDqKyFdYN+xAZnOwJN78YtGCtHjcPmqyWdkstAzAksakQMxRLaIWN0+tf9DMX666zh+t8GWzUupqZ06ZxLxJI8+fYjE8CCrV7ZyxZWbTji2ffs6uPfxbi5d6cfv87JiST0ul86jTx+iMSJoaa5DaBpLl7VNKFHOJl7z1GpCiE+gTCPo4dPP223l09jFPACa4cI2CwjP3DsNOzWK5g8jzRJS2ghx8jGEZmIQhEDzhtHcimGdjj9xKh7nP39+GL9e5Hc+et1J9+dkYaXHMMJ1mMmReYVhaZnowSqs9Bh68OQXDCsdQw/VUIoPIDxRzOQIRvjUBOvXG+V0W9fYuqBrxjXEw6PDxB/djV0cBiaF4VLJ5KHRCH4K2FqALu9Sugf3cmVtAd+0BOe7hy2MYgpPwzryfQeRiSyyrhrZ1Y+or1IbnHwCzXLhThtYXSnk0pl9sg91ob/UjbU4hHblRmTfMNqBUewVVXxuljGUa4sz6Qx+O0l1pJlsOsMruzpYt6qZh586wqGYB230MMON63j4yf285dYt2LbNz5/upiR1wsYYNdFFAOzYP0g8r6HZw3hcU4XL7z9ykKTpJvzAyyQDS2g7foyPtTcy1D9EOBrC6/Pxy5d6SWaKGEN+qiMdrFozdaDbDwxxJOGnlEjzi4de5eN33wzAQP8wew4OcPnWpQRCAY4e7SGbzVMd8mIIiUuYbN8/QG+pmlCgm2d39DBkhtm9/yCeYAg9WMXHb5c8s6OHoN/FLTdsppDPgZR4fOeGgDcbzjTPlbaFmRwBIRAC9GANZmpkzk2zlRpG83hxjfOcUxCGxzfmQuinxItmg51LoAeqMdOxeQXUMwVpm2ieAHY+PSfftfMZjHCtek+nKAzbxRxGpJFSrBdKeYxIw+l0+3VFOe1GIpGTujYhfSR8jeRKfYTLXuX2Yei0qlhs9rCj+hrCw3u5sjpDU3CqwCWl5OF+D57FF1Ea62fEjAE5xrIlbKDaZyAKSSzipIwo+7xtrMk+Tzgwlb5zhSI/HKrHbWZ5z5IixZLJk4koYZFnW4057xhkNo9VTCEDHhACeagL6XYhCiV8nTq5ZBotWId7bxJrmUQIgX5wGE86RN7sgHBY3agvhrsYopQfxPa7p/jHin19eGM+ch27MJI6rmAN2eggWjCELBbRqqPox2O83KVoM2t28Nbbps7BI8f62TOoUxyDrhd7JoThUrHIMy8cYlFLFUuWtpCIJ9l3sJclzWGK+RwuYTI6kuCFjEbfSCdtDT4OxjzsOTaAfKEfV107Nw6l8frcHO4a447r1xCOhEgnEoTOcAGWMyUM9wJtZb9bnWMzIKX8d+DfATxNK+TpPthMxfDUtVPoP4LUddBdGPPtvnQDKxVD8wamCMJWNqF2W3Bigc0RhKVZAPepMaxyeH0+2qLg9549U0s5NG+Q4tBxhMuDXcyhued4rgArNYp+igKsHqyiONShtEeajqafG6aZMpwS3S5fs2nBdFsoFth1rIdAdhCZH+PfU2EMM89bW3OYhSxD3g1Y2TiyUMCd2E938yb2pfewtbqEbdsks3miQT9Bt42dSFMcOkap2sC1og37SDe+w5J8VydGogguH4W1PnTbDU3VEwxP7u/CTiTRNi1DDo/hrllEcXQYCYjhNJ5SiPxwGtomF007k4Hjg3zt6aPccd0KGhpreWbvGDktyMrFNbyyq5Nf7S8ST3WwvMnN3uN9uD0BWkNFFjUrgauQzXD5Sh8SjRtvumbi3jdevpSe7ufIuSIEg5MLRyKepMpTIizjDEg3erKHSy9bT2dHL994uIdltZIPvOMy1rR4eG7nCC01BouXrJ3xzm+5Yhnup3ZyMAsbVjdNHH92Rze7+wUBXxeXX7qGHz92lEQ8gx5t4OrlXv7wE9s4erSHI50xtEKGsdFRrMIA1VUBAj6NYFgibZudnRkiLouLN8b4x68/g8vt5Y8+fuVrLRC/fjw3MYQeqlECsaZRHO3FCM0jTGoGspClMNSBu3ayy1LamPEBkBKjqnlerZm0iuihOqzUqSWvU2AAAQAASURBVFV8nB0CKzM2N/87w7DyKaRlIXRjTmFYuL2YqRE0z6n3Sdo2hcGjaIYb5YlwzuGUaLe5uXnBg+lKWshCmnCpk59nQlj9cHE0y9Z6nX2FCMVoO4NdSbzpl0k0ruW5fIx3BAcBSGRyBDxuNE3gNnQKfYfwWFmuWpxDSoMHM4swdR/LUsc5Ht7MuvR2agI6hjVCOKJ4wGDa4mhaZ7kvR8irU3AFKFUtZjT1PJoGPZ7FhPJDbGPSVc22bQYSWXZY7ci9nYh1i9APD+Hxt5JvLCJjY3gPW1h2gtI1iynsPYjLW43pykF0UgG4vEEjKcfIXrEJLeTQ2dJGCh2v4iGIVeUpf7/IYo5cfgRbltDtADnXKFr9JvRH96ObHgqXg93kw3WkHyOV56I1F8943xvXLyGb2c8zO0zqqybdOY4e6eGJQyVa+7r52NIWnnrxGC8dTiEYojYAn/vkdWTTWZ584QhN1V72Hx6g0D9IwOchEjXQ3BmaGut4dnsXR0ZgS/8IX7/nCWJ2FW/aEuayyzculCROiDMlDP8M+IwQ4rvApUDitfL/0QyDwkg3GAa6P4LmUf4xUtrATLOEKzq7mVNaJnogipWOnfiZjiCs++feqVqZMf7sHx4BwRSNyWzaYpfHwwfffcUJn3umoLm9aJ4AmjeItErA7Iz3VN0jxiGEhqdhKdK2ENrZN3OcAs463T6+6wA/e/UYCA8edwOu6nYKfQfZFbfZEjbRBjugdgnmcAeyYTW++DEafAme6zXICTdd4cu5NrGdFTVeqt0JIr4shqHDEz8hlivxbLaBJflRnpJNaHkNIy4goqPtG8Te6gZNIF7sxFvdTOm542hXrKKwvRM5VkJ/aC/FsE0mNgStixj/QnYmg/uJbsxUnK5IC3//1E6MnIsttQalUp4HnjnOusVhLmqRLGsO8eyeIZbU6KxdtZrLL5sUTseGBrj6motIxybn1EBPH/VNDXz67uvJ5fLU1E26enzvpy/Rb9ZgJ4tEwz5+/d1bCUXCxEZi1HqL1EUUk128uIFdXXk2rmnG4525Ga1rqOHd77phxvFLN7YQ8A6xfrXS7Dd6MsRKeUSsm5qq9QghWL68jUw6zw+eGUBYOrovyJaNTdxwjWK6w4Mj6HaRgCGxLBtpW0irMGG+fA3xuvFc3R/BjPVjF7N4mldiZcbQHeFuNmubEayG2TSvtoVwecG2QNog5uYReqgOKz2KHpzpGzlxu1IBOxtH2hauqtldhKb06wxoyU8GuieAHqrFSo7MfY43CPNY6xYCd3Uz0rZAaOeEL+YsOKu0m8jkeDi9DGnoaEjsgI0mNI6memj0WdSWhujJ1WKEa9E0C6wiy60udvSZmOjsDV3CorGjXF+X4662DJI0Qa8bUNa6ZjlCydRxCxuzkOMA7bzJ08f2Yh1acoTFYY1Xs1G67DCHZIi3WTu5xNVLb3KYR4x2VtJPIL2fiJbFqnZNuMU9PerjUKkFPdqEGE7DE/uxzBx5TxE5YoJpUWgCPGHE/j5sw0bWepCbliMcbbRdLHBtczXRDTX8TSKnjjm+w+Lmi8n3D6I1lSk9Xj2APxWlVCzgCTSSXZrH2Lhatfk1ZK6A8LjR3C6q62qI+gXtiyYVDONwud1cffUmrr56qnvEsmUtXDWcZlGzig1Z1R7mhe1HsSwbf7gKIQSBUICbr1nD3339ObLxOLrLQzAc4FMfuQHdUCLqE88fxigWqK1ZhZQCu5hF107OUnAiLDS12j3AdUCtEKIH+DwOZUgpvwLcj0qTcgSVKuUjZ7SX88BV1YxdVKZKkAjDrfyu8imkWcJVvbAAHSNUo5h6aG5mOw7N7T2hRlhalnIxSI0u6PmzITE8hGWZaJpOtP7Epq5MKsP9j+1jcUuES7aunPfccVcR3Rc+5f4tFNMF4XGTJ5y+wD3vc88BunXLEsLlwcDi17Yt597n9xDW0nRWX0w4+yrvbEnRldtPdW2WpwphFnszvJivJxFZjt2/H58xhMenFCI1IS+vDpWI4+eKqgzVPhdv9sUAweNrVsKLXchSDn0YXHkf+bEUWlsjMmBg55LYPhvN64UrVqE9ug+94EYbGMLtboBDOUqrTYRuIHQNWxSxrSzFsV6ky43brCZareMydB47UKQ2UuQtt23h+JFuetMullWHpgjCuXSKULSGke4uog2KeW7fcYifvZxkkWcP27auYN26JRPnv7z9EN3dg9hGkvqQxqKmWkIRRZvVtdV8+kNXT5y7Yf0y1q9bOutC39XZzy+f7+DyTc2sXr1oSls2W2Q4niWZyhGKhIjUN+IpClaFxti8afnEeTU1IZrCQzS3VrNz0E0mW5pos0oFTAuGEiWkZfK5T92E2+uZNaDwdHAu0O5c0Dx+XNVNSMDOJifmcCk+gNAMhMu9IL4idNeEK8CJNstCiBPzCttCeAJQyC5oHLM+xyrwtm1VDIykea5zYRscMzkEEvRgNUKfe0lVAn3sjLiqnAjT36c0i5jpGEh7QRuF03r260y7IZ8HBlNotYvZlHiGHuooFnJkWrbxYrqLty0e5FD8MDV+m+3pEDnLRpMlXg5fhRnrwZ8ZImCoOR/wuhhM5Hkm4WdDIEVzUOfa+iLOWBjt6yUtXfTldIbCy6jKZllMnqCdAi2KkRnC49PYWAMiVmTA28rg6CiJYDuZcC1Hki+yyvE48Agbl5mlNNqNXWPgseuwdAtzcwPeF5KY/RnsO1SmOu2BPehGDYXVVWhlbhk3lLLUNjXyrSNHEfWtSrHxTD9mJg4rG9DWtkzwTXsoBgf6KZpeTLLIqgBaWxltXLVGWQ+dv89+5NpZeW6pUOBHD75K2O/mTTdPVfaVTJOReB6/J83yFaDpOnrtYgL5Ye5+//UT52mGQVu1gR2pYSRlYmJg2xa6I6LGE1ksV5R9uw/zybtvwLZs/KHT2zROx0KzSbzvBO0S+M0z0qOThLStmWYuFbEFYn5/nOk4USCFmRgCAZo3dELTmhGuVb620xhfuW/xiXyKLbNEpK6B+NDgxDEpJaO9PUgpqW1tmyBOyzTp7R1k75DGoY6jHO0c5r3vuHLOe2suL5yiT9rpQlomwuPHTscoxXoXvGE56eecA3S7alE7DcdH2dRch2Z4+O233Ihp2fzslw9QryUQGKyrkoCP9zAAgDmUYSw5gB2oZYurh+aQgZSSpwc0DshFGFXNLMs8Q1vU4GAcRjMlbh57jJdL7RRELbcUnsY2vNzX9m41zlovcthG9KeRu48jNizBvnIJ+bE4dqGN4tFhRFVociE3DOywG0p+NBlELKsia0seaVXaPZnr57GWGp7oGeKLy9u4WxfU1ESnjDsxPIzQBJqu4wsqphUJ+VlsHKAj38TI0x14vS5GRlOsX9PGI08dRHrCuIJRxnIJ7lg5U/tQjrk0Xl29MbrSXpp6x2YIw4c6Rzk65mZx9wgtrfWsWRThpT0HSbonF5NXdx2hpz/FR9+9FY/Xy7Ujo4SrJsdWXVdDQ9RNKpHnX3/Ryfuva2TFyqnPORM4F2h3zmfbFuguNCEgONX1SRguRzGxMJzIf3jcfU1oJ/YV1jx+7EIGcRobfE2atLTUUTJt6MxPHG/0F1i3JMzTe5MUUGZmKaXSaKOh+cMUh7sxIrXovplR/zAu0J9Y2XI2IC3lr2wmhjGTwwiX56wpQl5v2tU0jUX+Aun4AdoiburJ0BLUeCW+k7CeYyRtsqrKC2jcEsgBOQbSXvRUPyVs6gyTbbVKduhISh6LVSOa1qEndtMczDOcNTmUNPBqNm5dkKpZj0i/xDX5Z2kJCsBgkTfH4VyRfKHIL2NR3tyUYX2VpCH5FDJoE83lySSHaAqbjGucw4ZJVMuT9IQpVQcptAXBV4NWFSG/rgiuwITrm3l5O2ahhFY9aXEJZVK4czmG4glGA1EAhMuFS8/QEA0wOuAmq3UhpI7VXoPYcQSX7cdV14ocPoYd1NCq5ta2zsVz08k0hwYlISPJm6a1DQ3G2D+kkcqOcfllsHR5O9FH9zBmuRkcGKGppYGRoVGefLmDKy9ewqLFzeQyWaSUuNyT7hwbVrfy8oERHt0NY4X9vPX2rQsniAXiNQ+gO5Mwx10abGuKyUvz+BG6C+ZxYzgRpFnEyiYRhmvSHUKA5gsjSwVYgJ/Z6QZ6VDU2kxgeorppcrdmmSYuj3Kmt0wTaduMDo/yzfsP0Vpt8JbNVdz/rEbvaAkp5aSwXMhixgfQvGFckakalvEFR/MGJwICzyb0UA2F/qMIlwvN5TnxBecxmuvr+bP33Mrhzi6+/Eo/S7wD/PbtV5FKJHgkvIFgMsV7vFNTnF1RL1mX76Yv52J5yAZ0YukcRyJXwkgnNUPbaW13Y9s2T6cbsAwPLk89azPP4tH7aa4O8krMgGcPIC9djoiGceVcyFIB27YBED4fxjPHMYpu8tuWII4PI188CJesRKZSuBMuLD2I+aa1U7I1SCnRjsbQjoxh3aI0wYuWtFLM58imkvhDYRIjw9S2tpEcHaa6UdHu2EA/VQHBHTdfxL7jY2gWPPDUMUbMAPc/8UtEqI7LFhcpWhZ7+308/NR+4qk8F29ZgWWafPvep8hn0txxy5Yp6diS8ST3PX6ApS0RLr1kFdu2LGNs6Bki3ipKxSKushRC11+xgtb6ftasbqPjaCfhSIC2xgjNtZM0/9LeIXozXpYcPA66m9WrF03xu3R7vFyxuZXHX+yATC+dHTYHO2I01ga5eMuKM0Y35yrsYh47n5zV6mZE6hUfOY05baZGQEr0UC1CCOWOdhK+wuNucqcKywjwLz/aj4WOMCbHsaI5yFWXreVgx3N0p5WfpZWNIww30jYpxXpw17VjZRMT16gsGl2AwFM3NTpfrS8JhO5CdwSXswnN46cUH1CVBTQDHD5woeLmRqW9/dFwO0l/E2/OvUCVBk8nqhC1S7kh8QrtkUnxpzFo8EF/P4cSggavxbhotLdYg6xtQ3S/yob6JOBjby7KwYIbT8My2mKvsDKzh2VBk0RJ54lkNVv8o/hdOpqoQkiwhHJXEEIwaAV42buFLXIHTUaalzI1XEyMiNegy4wQq1nGdfnneOjS91AueopYFldnjuImC21JE1o0jJQSfSyGGVXuBjd6DLat3MQ/7NlPrqqWcCbFaiE5urWFG9wBnj7Qw7GchnfMR/7Vl/HUryAfHaBYNYynEMUcGIOnDyAvX4HQdaxXD6F1jGG2+jC2TK2d8uhjO0lkirzllk1U1dVw6/ouYrESI0Oj1JZlOVq8tI278iXqaiOMDA5jSVi5rJGe4RyBgJKh9h8ZYHe/hksfpFQsUV0TJhoNY9v2xNqzddMiOvoSDI/ESSc0nn56F/GsxS3XrMXtPTMyxHktDIMyB42b3KccP810MlY2ORHVC4p52aUCVr4PT/0sYfoLhLRMrEwcze3lL766Ax95lja42d9fwtY8U7TFxXweyzQZ7eultkX5ORouF8JJM6LpOv/8zacomZJSyaK7P8X1V6ziU+9rRNd1Ojv66OgZ48pLV2KO9eNuWEopPtM1S5olNdbUyIKE4QnfPCnn9MGe9x0UMrhrmrEKGXTfmfX7OVfRUlfD5ugAS2trkFLS72qhlEngcRX4UY+PlZ4EiwM2fq8bTdOIeF1EvIDjyVsT8nPF2HZ8UZv2sM64P/x6vZfdpRaCIwfY2uzCMJSv/GG7Hm/M4B0P3UvI7+XLejOuoBe7pQotm0XaNoICpXwK7UAeY7CIMDyUTBOtqprCxhK4ozPSltl7jiMGhhCBKKTi3L8/hbdYosrnobWunr86eJQvrFhCrL+P1OgoVsnE70Q0+0JhrFKJzas9ROrqOfKtX9LX1wGahpEcxmyu5R3vuJJlOw7yw2eHeOz5owQDHkJenWPpEKV4lq/d38FvvtNLteNrPDAwysFhjZI5xqWXwMuvHuPF4zbGqADjKJdfumai7/5AgE2blvPN7/ySw0OSRVWSj3/45inje9OVS+kfitM5lOOlrjwbj73A3u4iV66v4fprld/wC9uPMZqyiRgaj+9NY4Tc1A8OviGEYZDMVatJCA1xBja3mjeEnU+j+0JICcWBwxinaT2yMmNIKTGC1UjbYnWdzWDSJl6a2d81zW5a6wM8sjOJrav25w6nOdzzDP1ZD1ZqCM0TwMqn0QNRpFnEXdOGnU+heQOYyRGE24ss5dE8fozgzIwVan2pm1hfFgIzOQQIFe9xChk5hG7gqV9KcbQHd83CMuKc71iqjxLPpYlEXTwfc1HyRNBHjrELjf0puL6+hC0lXo/iu6uroFwsutg7zFBxjHXLLDRNCW9rvXE6k0Hs0Q5W+TO0VtmAwd6sj77gChpzSTZW6VwytJ3tsoXlrji5fAmP20UhX8Kd66RPeOiRNsM1q2jJvUjEC5cHR4jlR1gUnSq7yMFR2N+JJcLIwVFW1HpZbhbI5gvctHkz3zh8lCPhal7MFUnv2M576up4KDVGq8vg1uXL+cb+g9wrTQqbl2Id7qJ4pAekTmmsHzwm2to1mFs9iPv2oXUnMMV+xJXrMToyaEUX3pFq8ns6oCzF5Z7jcRKml2tjcQxD577n+xHhBvofP8RH3nP5lP6vWbuUQ4e6+NYDh6GU4w8+eiXh6klF4SWbl6BrHYS9gm89PkRbqJdMLo8h4FN3X48Qgv37j9M1UqDKJTiSraJr5wAFTw3regdZsmzqRvNUcV4Lw0awGmkWEY7mVjELDdsqqmCF09AM64HIhDkJwC5kcUUasbLx0+qzlYlPps7xBrloWZCbr9vAt3/8Ikemxe4VcllC1dWkx6Y2hKuVIJBJJtHsEj63i5XtUV7pNTh4dIjrrl4HwI8f2U9X2ktdVTd6sJrSSDdC15VWIpdSPm5CoLm9mMkRdP/CzGbSLE4sWCcDKW2sVEz5UmfiaJqB5jrnMkycFfj9Ae6+YdvE7yuX1PHMQI6xTBzqV7N96BDbPc3U9x+m0QergrkZ6dVWVQlgqi/gpU1utpr96LqOKAtAutHXTcnuJuzsvl2uEIbpwX7hKC4ZomSncBvVmMEs3kwVmeYYoq0WzfF91VrLgiwSSbAlWlUE985+RFUrxVQvVZbJbavWEh8aoGd0lP54XGUN0TTcXi/+cAhvMKg0q0KQT6epalTuD6VCnovX1GOjMTiWp6BH6B5MAVBbF8WV30c2upjv37+bz37oCi5rNTlkWoSjkiNH+1lkSRoaa1mxajF32TYNDdX88tEXQdrUB2wscwhKdfy/rzxANACh2nquuGgRh44O0j+URtMCNFTPFCha2xtpbW9k//5Ohsb6qavyY/eYSCnZt/cYPr+HovBgRILkh/aD28VV7UWWr1xK57Eu2ha3zthAXEjQ3D5ldRu3OOVSyuJgFtAMD3qw6vSCZYWGnU9PZPQRQuCuX4KdS8Mpan2llEjLQvP4sAtZagM2733b1WzfcYifb8/MOH9Jc4h1a9p5ctd2co5LhCk8DOQBLHx6kVxRB92N7otgoykLolE1kT7STI6gB6soDXdSLGRxV7dgpccQHh+ay4seUKkmxUnyP90fwS5k4CSE4XENtHApPu+Knr+p1k4WKi9wFtC5OJLlwXgS01fFoHcRdj7Fz4aHKXjrWJM4RpOfGenVGoI6DdM2gPUBgw8uyiJlBl2ftBBvDiapyTzP0hCAjubyUQwupnNkjBeNi2ga3k9/7TaaRrYzULeVxtRBrsi9wLIwgCDsNSZSwMlSEXtwFK2lEe3lIxj+JopjfYiGFi4P+lnRuJSug/vpGhgg5/StLxThcjNHTVU1kaGDvBSsIn7wCIdcXmwnU1V7TQC7PUf/iIXb10Ix3o+ZziJCQaSWQ/MEcffbFPcehw21WDuPY9subMvFvr3HWLtOKQLvum0N2WyBkdEURzsGWdHsZ2Ckn0hNhO/94En6BxMsWVRHW0sN9bVhHn5iP0JzEfZJvIGpVnWv388Vl60lnUyz4ugeWuuCvHq4gBSSwcFRevtGyZkGrnAder4LMznCkhqLdesCBAI+UokUocjsrkknA/F6pl7xNK2QTR/+xzNyLyubULvvcD1mcghXpB61iz5z6Y6s9BjC5Z7TFGdlxlTmBMMzq9+YXchgZhIIzUBzudB8YbY0FgkHPTxztIQpZmopAmT4zbs2T/hdjiM+NIhlmoRr68jExzC8AfYd7GHjunaeefEw3UNZtqysZjBe4JrLVvJX394/ca2ZHFJRzanYKef9tXJJ7FwGPVi1YNcK9Vxl8jTCZ6bgSeeX3vyKlHJmrpeziOVrNsm/+a+HT+qaWCLOU/s72La8labaWvL5HP/0wHPEYkOkbDcBM4mpufBpJXJ161mXfIlLnFc0ksqTMjVS0kPa0rGl4Mq6ojIjl7nCzIdcvsivhrz0mEE8/gBLrD4O1K/CWh6GY4NYmQxGWkfzeDBvWoXmdSPcHqyhGO4nVBq+Ur1G1WCMIiH0dX5ammpZmkvTbdoci9aQ8ZfRaKnE7+glzGKRluUrkVIyNtiP2+PFlpJYXy+L128kNtDHC7sHGBxOcudN6xgcyfCjXx0hny/gNjNowSifes9Waupr6Ors454fv0Qu2MaSSJEPv/sy9u45zgt7B1gWNXms0wu5MT79rvX8633dGMleisFmzNFu9GAN111Uz7HeJD0pg1tWCwKRKjZtWk5nRz879g9w1cWL2Hewj2jEx8YNyyaGsnfPEcZGY/zyIAS1HJuX+Dl8bIimphrSRXjX7Zt58ZUjPLqvwBXtJW699bIF0cRHV7a85rR7JnmuXcpjJoYRbh8yn8ZdvxgzOXxGszTYhSx2KT9nHmDltpECxAxe9vmPXYRZKrFj1zFGhsZweb3ceN0mRvt6yafT+KNRqhtmWrbymQzFfI5wzdT7ZZMJkrFRGhcvZbSvh+qmFnbtPEJtbZhiyeSR5zrYsiLKSMpkw4pGWspSFR462MF3nhjGysROmffZpYIqluTxL1jRY+VSCN3AzqfOa54LKrXaJz7xiQWfL6Vk95iGX7NZHlU88sURg4OlatL5EkYpg0+X2JaJ1baVSPIY72hQiqd0vkgmb9JjR/HYWXqp5ZLAMNU+14J5LsD2gQKv5mqx3CFWyi5inmbW6T0kLC+j6RwZy0Uy0Mqlri5WRnGUGoL7EyEGXSu4sepVhpIae9LtXNEa59M3WOwYacfODLKy0WJFY2nK8/b1B+hJermidYBgwEVfTJAqGDSG8uw6XiK36B2YmVGi8Se555UQt60Y5boNXj77vRDdwyVszUXJgt+6NsW7LnNh2zZ/9F2NXYMhbH8dn75zER6fj588uo+lzSEef7kb01/P9YuLdMTheNyNjPdiuwJY2ThNjTVctKqOX+4vsLE2Q2NjDRvXtmMYGo88dYD2pjBej5vu/jjXXL5qwq1teGCYg8eGONyToDPp5ablFjsODLGkJcxA2uD6bW1EQ16+8tPDRLQMn/7IDQtSQszHc89rzXA5pFXCU7+EXNdedF8AK5eawZStXAqhaafsVzbdB9guZAE5mc7NMh3T1zDMKgzncFc3K61BoAq/neTON1/Dvr3HMI8lARBWkatW+ekaztKZcJMhMEMQjg30Ea1roOfwQQCC0So8fj/bLlEpUTr6M/SkdG6qDrFx8ypmQGhYqdi8Jk0zHUPoxtxBFralggSzY1OE4fkYhTA8WKlRpVl6g+HFw108PmBStLp4d20tXq+PP377DcQScX70zMvsGguhuf0wdgRr6CgHXLVsLg3Qn4VfGZcik50U3SG8ukQYXi6zDnA0rfNCaRHbjE4WBUyOZ9wsDZTwulXA3UujLjQkF9dabB8qMli9DS05xGp9iI1VFvvag4iWenjqMF5vFVYhju6vwXp0J7rpxbyiDWFaSNPENvN4E22ko1C/qZbeqjputrJsWraBpw8dx1PI8WYzRzqfx1NVxU9MnYYliwFFE90H9+P1Byjm8wTCUTx+H/3HjhCMVvOmm7cQHxqkVMyRTacxDT+XrvZz8/XXISX4nHKiyVSOrLuGKnuYzauUsHq8L05XysPSOheBwgDSLvDP33wWw9BZuThMMjFId8MyvMUYl160hM1rC4zGUjz0XDcjxTi10V5ePTDEzj4oPfoCezP1RLXYFGH45093kbddbG4zqKmp5akXj5PXg6wPu3jrNVsZHY5hFfK40308d7SKpYe6WLHyzJjuzmXYuTTu2jYKQ8eRluloOqdujO1SAVnInnL8hObxT1FoSMvEyiUnhGPbqSBnZcZmvX7XnuPc/2qW1bUGd71ps7qnrtGychXxwYGJ82L9vdi2JFpXjzcQwDutpHk+k8EyLUqFArGBPgyXGyEEmzYr15hnnttHX9bH4lSJ227YPKMfNdVhWkJ9dGXmFqJsp4CUHqqZlYdqLg+2rnyZrVxygjfPx3M1l2fCReSNhrFUlle8V+PLDLCcPgC21ZpcIgfZO2LxMsvJl4q4fT5E13bGom0cTQyzLKJzf7KVrB6kmM8RtAyK9SsYyo3hEUV+kWyjSia5pSHHkTGbsEtS72iUO5I2HaUwWwJxNCQ7rEVoja34+nZyeZukJ9tHjUfj+ECebv8KZGYMV7SZvT3dPJtvYp13jMtrS2SLGrIwwuOxAHa4jf9903HWLtLoSoYJLr8cX/+vaI32c9+BFjJ5SbSugWWufaxtyrC2KQO4ODpksDO9Dn91Ez3DezHWXs7wof00iuNcscbDliVZDvQG6Bw2SVl+2muT/N+3xfEYEHFU1KZp05WuwmWn2bBIp6a+lo7jvRyL6dh2kiX1bjoHenj0xTyGLogEPGy6qJHn9sUw65dw0VKLyy5ZQTTURc+g5OE9eVLZYyxuCvByl6RvqB/bthkshWip72G1U0DpmVd72NkLa6MlNjV76OqLM2JHoT/JZz5+G2apxJ7dhwmYI4zYYX7+4Cu89fZLToteLhhhWOguCkPHcdW0IJAzMkPYhSxCCFXq8jSDLADMbBJZzCoGpRloLg+aL+yYx2bXYghNd9wj1PMzIsQ37n2eZB5AEV9IL3Dd1Zew49XDdO5QKYKmV7f73be3Ex8eJBStmjA7l+Ndt60jkUjR2j57Cp0TpSiyMnF0Xwgrk5grBTHC5cXKTl2AzOSQym2pGbMGhZyO28r5jstWLKZkHWfbcuWrl0om+X8PPktb1M/dN1/Loy/t4LGjQ4yZLgyXTlN1FZvf9DaSP/sK4UwfOYpYmqBoWWy192EYbiwJpsuHZQt2pYPs928kl36VrdUlLMtiv7YcYZtcZB2jW9ZgZWJohTSjGDw4EsYndbbsvo8XA8tBCoprI5hmgWBqCcV4H3bvAK4RSWl1BLG8mcKxUWRDA0P+ANtyKZ6Jj/H0aIJkQzN3ZuJsXrWSjkMHqK6tx9XTz0/3HyBUyPG0bfDp9kZkqYRh6+TSKUqFIv5wRLkBxccoZLM0LF6CYfTzeytaCEWjMxb49euXUVvlp7a+diKV2U1Xr2bZ8T5WrV7CdTdoPPjoDp566Rh69WKKdpKPfuwtPPPcPsKBRfzymYM01gbYdvEqxpJ5hkYz9I8kOdIxxNKgYE8sQK0+yA3XrJny3Ks3NVIolLj+2o2YxSIvvHKUYinNr17JsHv/T+hPu7AlbF0W5sCAeUG7SZRD8wUpjvRMZNaZzcpk55LowWrM1OhpZ1KQZpFirA93bdtExTvDufdcPH3p4gbW9R1h3dJJxYjh9jA20EdVYxl/FIJoXR2ZZIJI7UzNtuF2kxwdwe31TgSFluPyS1dTX9XB4qWz++LW1FXz8fddMWul0nEoQbgaKz06N4+WUr1Th79auSSyVARpzVppThju87oC3emgKuTn4rHt+F3jCcLgsT7BqAxzR+0oVcWjPJfxkjBDWL5avJTwOFO3WiaR2Qymt4GsrVM39AorWyWZAli6F9PMMpjM85TnCqKZHt4eVEHQx0oRugKracq9SCaXQ3pD5Hv2EohU81h3kr7mq2jIHAdfHlekgUimk3WJX/F8ZC2aO0wh0cXP8lEuXZHl7mvz7O/XyBWPcfk6N7v7/JjFPK6D32LdYugY8xNedR1j+/fgbVpDsu8YR4cKHE63U2Ueww41UbdkDan9j9IcTdDV9QqN7jQXNyQAnUeONOJffhWFkS6+9r7ncRkaHs/UzazbbfDldw8hBOyPqAwOS5e380Epqa2NEqmK0HG8l//81hPI2hWkC2PccOM22tu76R1M4HJ7ue/R3dx2/VpqasKk8120N/j51cs9tLlyJFM2qZLg0tU+li+frMNy0epGYIBrLtlIdU0VP/rh41BIkcgV+MrXHmZoNENRGly0sorCoInLOH2ee8EIw7o/gv3/s/feYZadV5nvb8eT86kcO0d1UCflaEUnOYBtDAZMZoCBuRPw3LkDwwQY7p1hYAAbsE0ytnFCDrIly7KtrG6pc3dVd1dOJ+e88/3jVFd1dVcnqQ2ymPd59Eg6Z59dJ3x77fW9a6331VvtHuJVlB4EWW1PKt8gOEarzVKYOsriDl1UXFecpL6YHREEgZnqysVXdvz8+WdfpqKJnE+QL8b5nuHLIRQJEbqCRMrVILr9bfORK5SCRNWzdBM8PxToWCaSJ7jk5Pd/0HYV+sz3DyKLApbl8PWXj/Jj993KkdEzZMQg+VSRjygKXZEgTZeG3GryE7dtZ2N/L3//0nGCpsh7O7JMVRyOlB3q7jgdrjYLsTUC67STuFwq6VqDev0MQ54WICHLMvfJ5xBwmM9XqQe3Ys2fwh3vJ+140Q2dSGGcvrCFsaa9VtTNg9iFIq3nJ7B7XMjJJi5PPz3FNPMeL/5+jWokwrp6hfdu2cjC9BQ1QeQvHYfnHZHMiRMcNxywkmiBEMOVHBvWrWO4WOKp6Vl0QeSn91wqJyjJCqZhkJgYJxCJ4F8lEbZMk6e+e5JIyE133/IG0O3xMNDfxemTk2zbvoaH37ab3piHYyMLPHr/LgRB4I7btjE9OcuRQ2W8U3Ps37uJ/Xs3cfr0FAdfO0ehAf1h6PALbBroZdvWNSv+9u23bsXQdc6dmUI3TOreAQJagipBEpl5pI4e/EaGRx4+wGNu95vV6OCGQ1TcSN4AtqldQU5NwKoVb4hKjdWoIHn8mJXsCmnLKyXZ4UiI9799pQzTavFTdXuolYqX1XOXFYXOwctL6ImiyIbNr3+wGmgrBFXziJeRZgNWJLZWvYRttBDd/uue33ir42wJJswYXVaaKWIohSSDUR/TQg9OsJPJ/DxbewJUqzEcxcNAfZz7Ijanq25Sebi/s0ldN3khp5NROom5JUTRJuBReb80jixL2LbChtIIEVlb+rt7fQV6m4focWk8b/RgVXOEnBp1z0by1Sau3BTD/iJxj8FM4zg39Vu41SBTCylqRgm/oDMZWs8LySo/IxfY1mvidYtUqy2SgUdoVSr4u+Mky19jONKkNPMk21w5oukjDPTKHEl20HL1og3vxTr1eYximXvX5PF4FLYwsfgu2/ePqM8mMT3KkGsWn1dZNW5957jB8YSbn79LX/H42vWDjJyexLJthtf08W/+xaN849tH2Li2Pei6fsMA6zcM8D//4hkqhNg4NsOWmzZxryrz7IujLCTLRH0Cfd0Ryi2He+7YtkKrfWi4h6HhHmanFxCAqaKILbuRFDelWhVT8SEJIts2dvO+x9bfkJj7lkmG26UiEL0hHP1S0fV2yT+ArTXb5hpX0RS+GgTaCfYbHhi5+LyCQFpb2efs2BaYGsKiHur1aBW/rvcgyciha+8vs+pF5GAHRjkDooTkv7Fi2D/M0PUWp/IasmOiNRuYrgD/39ee49++517mSi8xvH6AarWKgIPbbNAVcvP46XkGJmY5Z0dx17sY2LmDd2/cwLm//mu8Zp7++PIu2OVq91h1+SW6/FVAolxrEPR5GAhKTJUtnvXdgz9xlMaafYTrkxR0GVcwxj3ScaIeD7+YOtwOJukjpCoa31IOoOtNzI1+7hSbbN64lZPJOR7cv5+xkdO8YMHnz5ylV2/RUlSEgIeSP8hBlltq3M06BxtNCmdGCSsK716/jly9zsfmMxd/RXzMKxHq6MAbCJKZnaZeLtE5OIwoLV9X2VSGQ9MmESW7QiEC4OkXz3IiIdIyxtm3dxM7dm9mx+7NK44JB31YlQy6uCwp9Z1Dc+RbATCyjM45/Pa/eXDFa1rNJgtzadZuGOKr33iFEws292wPcdcGmUw2QKagceejOzF0nV17Hloh4/bPAY7jYJsGsvfybQpSIIZZTmO1ape1IL5WCLLSlm5zeW+4Rq4/fOn9oFGt4PEH/tE2N9fDnFuNMoLqQbDaGszXE6//OSBh+Un71mBkK2TUEM9IfdyVP8x+aYpcaZbNPT5y1SZBu0JTa9IUVL6R81FXI+i6SWtuijsGVQa8JjXDYIO3TTIAqIuDzaIId8TbWtSNlo4kCgTdCn7V5gv5teh6C59LRo/tpCP1Mtn+uxguHGJrRMRxJDp9OudTsKYaoertJdZKsSecZ8/t+/ju2VeJb72HYmKemJRlwPNdFiouHHEIv8fG45a4dbi0dA7LsnFZJYTU8+QaWzCtXnpuupu51BfY6FkppVepWfS4C9w2nOfoQohvpW7lJuUgA/GVm9onRoOcqA5w5+xxuCCknj0zxRdfKbE2nOUj77+FUDTMhz94qeunV7YplIoYZnuD99qJOU7mPEhWk3wryB09XvbdujKHmZqYpbMzRmI+yd988xy9HQEevKWPyckEk0mN3Tt6URSRzRsHiHXeONOut0QyfF4n17Gsti7lZRJdW2uukEu7GhzHWRxY8F3CbPxjBp9b10gc2L2FT39tlKp94wYC3yjMah4WJ7XNSg5RVq9qRnI5OJaB1SgjecNXdHH6YYPb7eVX7tiMJIpUq1U++eJpMrbA4XPT/PhD96HpGv/hC98B2cXvvOcOZtI5/uLQDNGgSvfCNIlgP184MomqqMzoXrDaLRCyvPI7KjdNXqh34tIKzIVuZVfhJHHVIN+w8MlphgMOudY0PUqN2wIalpOmw+vh8VQQB5HHuoqIokh30MX95df4xoG3sVO18bbquCSRfq+b3Nws8WgUX6nCMX+E41f43HdLDvfs3cP4mRHWbdrCCy+9yEi0EwLhlQfWqijhTpqLGsXSoiTixT2O3f29vPeWBl5PF4VsjnAsim2ayKrKxqEY9Waawf4BLodwPIbLqmLgJ5/JohkO9XKZDlEjF+rHrOYo5fKE4zFSySynzqZIpYuMV33cOj7PSMpBsAwG+qJs2DjE3335FYqOi2gsxOBwH4ePnCUU8LJ+w+Xfw1sJjuNgFhbabGarennnTstAVD04lnnNtuxWqwa2dUlb1T9mm1U5m0H1eMkvzBO/wrr6x4at1bG1Jo5tIBhtRvL1xlxoExmCfPmh8B9W3BIosq7xMh1dAt9MLFAQ+hkx47yzr02UPbGgkAnvZb/7VbbGJL6ciWOKCju10xwSNzMW3c+60sscLMQwPTLzVZMu/6Vr9/mMSs2wKXrX4jNK3BfMMNlQCBhFBFkkKlWotJrc0itS1F5msFfmcF7itN3Lva4pBoLtOH6XP0FdT9DVEWZ4bQwtO0583S3k02lsGwx3mC09Cbb0aMBJ4NIN2lhGpTTwfpqll+hbv5PEuRFc808x2LGcdJ/HycpazK4D2KkvYTsisieAZQi0pROX8ct3lBhLl+gOmUxZFpZloqguenvibIrlWD9wZVIx4pOYS1coN/T27MhsErVmYChuJF+EuYUi+wBD13nx4DkcvcmzkwJx8SyxaAA53INPzHHT9nUYhsXRdIWWJXLPvbuZnUkydnCE/fs235DWtLdG1mHbiC4vlt0u09tao71rvnhHLwjohQVE+dq0MK1aAckXbifE/whmFJeDZpgUC2Us58YxFLbWaEv0OM7rT+wdGykQe0OqFOfRlpzruOHT6G8GDPYsTqx3dfLTkszhmTSbFqXLcvk8Tc1AMXQURSXgcfOrtw4x2DdAJruWTz93hB3DMTKFAqInhGAbiGJp6dyO43C0IKNrJpnwMNFWHVcjh0uxeVEboBXs4B3mC6TtIPvdOWIemfOOR47jYAkKtiCtSD4HQzJiLMw6vcbutcN88dCr7OzuYjyRICkrHOnou0RpNlyvcp9L5qWWRsof5pRmETh7luFQmNPHjjIajjF9cSIMOB4vtWKRWrlEtKePcGcXtVIJSZYpppI4OHj8ATz+ADt2rOfjn36alO6jR61RMV38xMNrOXh8npBPoau7vQbHx+c4Mprm3gNr6FgUgM+mc1iBPqhm+OSXjhH3C5i+Dnq7RXqMBk48uOQ099LROU4mBWJGCaupkau62LPOT6vV4uCpFI26ht8F/WqeqTkfsghfP1wlIqf5l/9MkuG2/7DcdobzBHAsExz7kuFYx3GwmtV2nLlG5tPRm4guH/YNYJNfLwRRpFmrINzg/m+jlEIQ2o514utwALX1ZruvuJp/w3HSapTbesmL/34rwaMqDC4Wah7p1TlUKzDgqnM+iaxaKma9iGGZaAYcUObo8isoio/UQgKjWiAYErBVP0q4G3dtasX5pys2WcPFnBVEdwXwayXcNDlZD3DOt51dHCUqa5iOwC0hE3Av1c0sR8CWPdgXRNGoRyHqAc3rY2jfrRjjT9PMnkarWMQjKluVSWBl3qJpJq9mhnDRZN9AgR6/RnL6eeTgAPOjJ4kKCfb1FxCES9O8qJBhZuJ5/LEm67otEqkv0xHzkSsLjDQ20SXMsqlbY0O/i1cn6nz0azvo5JtkzSAP7+ukWtcoVXWGB9rXdKNe58nvjzLcG+Lm3ct66/l6u+Lx0kunOHg6h2zbSP4od69XOD1Z5Lbb26zwxPg8z54ziGgprJZCwda458A6GM8jWi6eeOow3R1B+lmg0eqlXKrw7ZemmK+7iYZm2Lh5zSWf8XrxlkiGJX8EW6sjhzrbwxSqZ3X5LsdGjfZhlDOLig6hKyobiKoHq1a8Yu/sDxqSrdEVC3FoJEvDaTMA19IaUUy1pzSD8fgKW0NoSyK1J4xZ0pW9ViwLv3sRPYH2huE6ynvn2WTR5VkKwFaj3GaaqjkE+a1dat62Zohta5Z7D/t6evn5u3cQ9HppNOr84fNjeAWd337fEN1dnfz7H3mY2WSav3vlNFYxSTzo4cUUrAlYGLZDq9nieOhu/PYCDxqvEOmA+UaTqMthu5ai0cxQlHy86tlLX32MBzylpb8tCALv6Wg7e0nSStbjo899jdCBu3lyZJQtssTWtesoeDxs9fs5lCmBd+XNs8s22De8jrmzY6SAhUCIx1st3pHNEo5EmFvZcrb8HiSJr1fKfHjDRj49coZ3BX0E43Hmzo4AAn0bNlHOpPH422W2bLGBqVVYEAVcPvjjT30XV9damvpy397psSyjGYn+yfRSMiyJIFQS6Do4LpFul4tfe3QD2XwFzbDZvn1ZPeLAjn4apVMcuHUL2YrB5g09RGMRvv30Kxw7VSE1N09F7QXTw+zRFEeOjHHTUBdDg5fKdL1VIQhiW+fdcdpVOVPD0lsokZUDvXarhhLpwaoV2qV9UbpqguvYVlsx4p9wU6w3mzhAKH7tm/x6uYTWbKCobgLRS4eov/O94zi2iaC0mXKuMfSer3wigOSPtckZ97Xrqp5nk7nADvr8fI1laFd59Q8/vC6Ze1w1LmRTH+wok29VWN/h4rv5ILPe9dzXfJUhVeChfhvHqfNMNoLYzKEt1Eh6XJgZkz6fTcmQOG10UPCv5YD1HJ0eBdMRqFsifsnBrI8w5GnyRG0YwxWku3kUr2d547MvZrBTP7XU4nYhlI5u5o4fIWQXsPvuRpWrBNZvpJIq0tZLXka1bqJHd1IvLwAFQgGJewMLfHe0SCN0E0Ni47ItPl3eCgueWxipenAYZ9T3I7w8OYXHLhHYfDPFVBOYB2AkqaAVEswLDorX5KlnjmPJKkKoj1qtRUcXzM9lOJEUKVVzK5LhoMtiPlGkaNoE/CIfeHgbkqQwmy7zEx/YhtvbrnSvW9fHzrEEkVAPsVgE1aWwceMgmzb08jt/+CQIZWLhMrmah4W0zNk/+wZrhrrYN+RhaPhSEYHXg7dEMgzLNpyCIGLrDVZzSRI9AYxyFqtRRgl3LbGRlz+n94bqFF8LzjN05xexRzTYtWMNgjDFmVzrms6RTyzQqtfp6B+gXipdMhTimDqSP9o2vrgOBzh7cWhQDnRgazUkX+T62Q3HXtQ4bk+A6/k5BMWNrdVxdb7x3d2bFY7jMDE7y3Bv79KgQCqX49zsAkNdHQz1dtNo1AjpReKhlWXPVLFEGj8+v4+KEqZohxnPJBC6N+FxZtlWfJEuv0pfUGWupPOiez+hyiS75AXWB2RsBNbVTjOo1Lj4urg4CV56v4KIP96BVKrQ2dlJfmGO4xMTnIp1I0QvvWbOeEP8jxOnqRomXkQecysUcguE3C58qgtRa17yGlFrcadtUG01SWZztBBo1qvt/n9RwtQ0EmNn6du43Kz2oXfezPdeOsNCroVkNZG7NxCys+zZtIanv3ece+/Yyj23rqd3IsnWjb089cwxjGaT6WQZOzyEVEyyIWryY++7G0mW+eQ/nKTueOnpCBDram+e67U6440Q9kiej7x/WTN4zWA3L0/CQIePNf1hCrk8zx0vUI4P4Zab7L1547UthrcIBFlFYDmxwrnU4lcOxDCrOcxmFVFxI0hXT4Zfj6vlG8XF8mSCKBKIRNEaTVT31dsQKoU8zUoZXyiMrq0epxdyDeRAu/qlXitLbltYzWp7Q1HNI1yQ0F4rbK25WMHLt/9fb7ZJHsdG9ATe0io/xYaOLELA3U48TdNivAKiqbEu1q4ey1oFb/MswQv6ZS3LIiF04IQgrOWZj+9jMj9PpKpRDQ6zMf8MQ2KBzXE3oijyxWw3NW83O4ovsD3QIuL1saOVRDdTeIIryShBEFZNhAEUrx/B5aJWjxF2e0ieO8GAcIb1AxUuTtfiUTeb8t+gbug0mhKvpgcoay6KNYtQSEW3V69qnEz4KGtuDDGFjzq6YVAu52iZEqISwjX5HJvC05xnon/1QfB9v8TT0734pRZldwTB1PnA/gCnJ3N4vC42bBrm3S2Dnq4Bjp0YZ2Y6TbVlcy4Nsqrg9ir82gd34I9E+MbTxzg866AbU9x1W9sgTHG5mCnYHM/Y/MqWILGujsXH3UTCPnRcPHigi1SuygsHz6DFNjCVTPCxD95/vUvisrimZFgQhIeBP6TdQf5Jx3F+76LnB4G/BsKLx/ym4zjfvGHv8jog+SOX1V0UFTe2WMfVvQ6zlEZU3VjNSns62eW74UH4agzuajI7D2wWCAU8fPHlEqLiooafP/7sazQtmd/6uUvF/BuVMq1GHVlRl0TiBVGgY2CA9PQUA5u3XvIayRPEqGQXjxXbUmoXSaGZlSw4TntAUFKwtXqbnXAcbK3+ugcQRXcAq5ZfZpMFAdkfRW9WXtf5roY3y9p94eQoX56oc8fUAu+58wCSJPGl184x3pQxXnuBn7tzO6Ygk/P2EFNWqnHs27KRl0e/xZS/G6k4i6kECPl8bO5QOJxqMBLcxAZ5DFDp8on0ZI4zr6k8416L37T5QEcS2TE4qcXo0DJ4XZeWsi++Xly2yfjffZJ7P/RR8nMzZI68wkZFYmNigo/f+S7UchEjsnxTFiSJPlniR7dt5gvHjrFpeDuJZo3hzVv5m9cOo3df2j4QrlV4aMc2xifG+TNUCKo8U8nzkd4+/uHFF7hj/TqMRTZHbzWpFgpEfAI/+cE7+bO/fYGCECVYG+f++3by7efHKQkRNgwkaJlw8HSGarHEy9MKlDKYogurOs6Dd27g3vv2k02mefqFs3T7bWJxhUjHMgPY0xNnYzRNd1imVCxz5OQcN980wIZNw/yMIhDtiOANBKmWKxw+9yxCbYF777lxQXnpO32TrN2rQVTdCIrrsiyUHIjjODayP4aenoRQF1pyDNHlQ/KF/9EJh4uRTywgiiKiJBHqaG+IvMEgWrOxqvKEbdvkF+YRBGGpn9jUWnQNr2X+3Bk6BlZXnXjfQzfxu3/6nXZiWy8iuv0rKpNWs9JWQ5LVpQFBs5JF8oXbknKR18eASYEYVi2/tAlxLBPRG2ybSF1jy+D14M2ybuvNFt8wduBqFngsmkRVFc5WJF717kMvJphbmOG+AYF5dQDdHUG2D3GerpdlmR3WWQ6rO3HqOnp6EklRGHLSTCWKnAnvZS9TnO+iWU+CE9kKrwmDnBD7uad8lLBi85rWQ6yaZE1w5bVxuRxFO34QZeN2unffiTHyZX7qgIPLJQMyuaKG3yPhdi+nbSI28/H3ksyP0JCDNFo2a/ZsozR5jB3rLyUgAKbNTfh6hhhKfI6ta93kigJhXxR3pozeqODafh/FVI4uDI4tBKgInfzKQ2fJf9vFsXwnQXueDWtCTCYqvDrRQhTgnoCXo6M55hJlZnMayVQJ0eXBbFTojij86i+8Hdu2+da3XiBXstkUUdi0duU9YfvaMOl0CV/Ax8sHR4hG/GzaOMjP/eh+auUSPUNDbAWSmQrnFtLcsWd16djXi6s2RAltj9c/AR4BtgIfEgTh4gzrPwBfcBxnN/BB4E9v6Lu8Tlxp+lfyBrEWy/FtsfYSSnTgEmkaW6tjVnLtHfQ1wrEtbl8rsKvHWvX5cjZDPrGAsVjS7fFqvG2bi153hajaZhM8LgV/wIdwQSN7zfFhictBq1mrUsqkAWg16kS7e2nVqhRTSZq1Ki6Pl2a1umoifB4CTlsBophCdPkwa4VLjpD8EexWHaOUwmrW2rrDsKqG8MWw9RZmOY1RWFjxuKi6kQPxpd9IifRhNyqonW9QlmgVvJnWblc4SFTL8kqqxV9/9yAANw/EiOlZFLefz59Ms64zym0dAndsaF/kutZaCpo/9+jd/Nqtw/zobTtRVAVT9hCRbcyuLWA0UMT2TXqhDprkRu7dil0r4jUrCIJAzvGTd/XSNFeyd9bAWlx7bkc3TYxIHGfzLiqeIEasG5/PS+b4YfTUAi5FRt6yE011s6NW5Le2bOBDxRT7MvPsb1QQW01KgshYIkHCF+T3xqb5RqHMyWNH2ReL4G60ry9Ra7G1VsLdrJPzBZg4e4ZGo87djTJbq0VGvUE+8f1nuXPTZuqGwZfLdQRBoNVoW5OLosCpkRkyVQsxc5qKbx0vvTZNVekgrtQZWjdINl8lp/sQXV62RSoYhoUciOMJxdm5cwOGrvGpr44wMtekZik88sDuFQMYvoAPRRJ4YcLiye8c4/kxg0PHZqmUynz2u/N85qvHcRyHQCjI//3r7+Tf/8a78d5gBZU309q9FlxNcUEQJKxaHrVzDVajjBztx3HsS9hko5TCKKWuyyRiOGTw4HY3inMpI9usVSmkEkuW9s1ajUIqQXJygkIqgWW2rbZdXi+2vfxePP7AikTYMk2KqSSG1qJVq+KPRBEkkXxigXI2QyAWp5BK0D28FpdndSZ5bGIBJT6AXphflK9ceW9xDL29cTB0rFoRs5JrkxB6E9kfuabBYrOcxqxk233ai2izyfGluZfz7qhKuOuGz8K8mdatKsvEtRS6ofOl6nqqTZ0ej0G0fBZVqzLbcYBzRZud8gI79BH8Xje2bWNZ7fv3rm4Pj0oneaSzSljSwLHRULD98bYtud7AcRyydRPNsHC6tyFICmJpDpfoUDIkyr4BCsZK8kH3BvDd8TZ0jx9dEBF37KfoCsDgOmxJRk8nUEun2LfB4XC6j1dmY6QKJseVd/PN2e18a2yAg3Mx5vIiHhXs0jRuu8JtoSPs87zE/NHvIbiCjCSXN5lnkwqTmUU1jPos5XyGjB7jxYUBvG6Rruw3MOtFolvuxhh9nLWx9rVUEnowY9sp1hyOz2hoiTNolsiJlMTEQgNJUdkyFKLZaJKsCSQKGvfu6sDlURH0Bq6uNWwYiiBKEk985wQH5xQmkk3u2DO4NONxHt1RL2MlN49/41WeOtnkqZdmAHjyuTN86qkEszNt45QPf/A+/tP/9Q7uvOeNmWxcjGthhvcD447jTAIIgvB54N3AyAXHOLDUHx6CRbuXf2KcV40QlGV7ZEFSVvQSi6oHq1m+xCjjepUnAASjyf7dOzGbVd79aN8lz9uWRbSnl1I6RaS7h/ffM4DbH2Dnlj6KhTKfeibH1442wKmvcHK6mGFu1qoEYx2UsxmCsY52ULcdOrt7KKaSqxpxnD/HMhsttOWQBKHdy3eRPrKguNoufv4oTjmN6A5gq27kay2pOXbbplW7VOYO2kEbBERvaEl/2W7V2lrF15BsXyPeFGtX0zWeOzvLYNjLeMVEldqJg207bOrtpNZq4TgCoXCUH7m9HSCmEkn+9Pkz3Nzt4UN334LX42PtgI+1AwO0dIPH5yzGCzU2BVSGB9bwzbMCTq1Ao2cXVvEMlj6NGohyp3+MmbLKvf4U30mVedkT51FPeSn5k1U3nlCYigM2Mn2btuKNdxLt7ePc3/4ZvoUpDFHGDITp3b2faUfglmaV3NQEfdEIkXyegY3rEQ4f4WBXP38F4G+vpS0ehR63iisYwjN6jpbXzyajxU9s3sg3JyZ43uXjb+smqqHxbzYNcjaVxmrU+Kn77+PoyGmmEUkFY0tybKHkHC1Z5tfXdBM6OEvNvZZupcy29d0oC3XW9fciCAK337qVwZ55Bob7GR+fZ6YoMBypcfP924jGItiWRWdAIiDBY/etlGCrlit88otHsLUaQXeAHZt7CKQa7N7WiyxJeGUTvVbjv338ezx0Sz+DvREUVUGWJI6dnmXn1gGC4Rsi+/WmWLvXC6tVw9GbgLMizq4o7YsSYVVnw7ZO3vn2A8uvNU3++1+UsRH4dx/Zdsmsw+VQSCUId3azeSh9Sexr1qpEu3spppKL/18h0tVDZnqKaHcvhVSCWG8frXqdyCrWzOdRzqaJ9vRRSC4Q7emjnMvSqtXoXb+RYjqJorpWNeO4EJ0dEfp8edYMDTKaaLF7+wB33LacJzbrdc6cS7Bl82ZOj87y9dfK3Leni3vuvOmym43Vqoui299uW7kIVr24qOixbIr0A1Dx+YGt215F4bd7rt1A5JPzLdZ63KyXm0xj8m+7O8mbDqKjMhCo86yR5GN9UXaEl++17zltksLLN9dWiHjcsLicdNNk96ibKWULPy7NkSZF0Bfnc6kYtiiiixZGZgrJF+aOgo4718U+yYuRmWYqOMCWGT9DrnaOUe5o4It2YtU2IzQchFCUvgO30zEwSDrTQWBCpTiu8WR4LdF3bSKfTDBbGUS0srRMEdPbgb9/Iy+fPIv/WwaSJFNikFcYpOyv4n93P75ojMOPZ5me9tOyGgR+bTu1ZI6xv2lg2DqmmKBw1xYia4f48h8adP3sHiwzR+7QBNLLQ3xvcT6pRQtdOYlh7GOwdoaZ/s14ktMMNxqIjkNZqhP+hwouSePHNQGP6EVdaNGBg90y2KmV2V3qpnHmDH6tjE81ublmEf1SlQZnAHh3WOG/FSd5VoSg3uSeWpBbqTIoqTzwqQlOlWokzAZf+1KZjfZJ/mOgn1m9xlZvjK9XE/TKbvZ635ihD1xbMtwHzF3w//PAgYuO+W3g24Ig/CrgA972ht/ZRVi6kBU3ktt/jf7gNpIvujSgBZcyGJfrGZb8kbZc2BVKeJe8B5efT/7DSX7+PcsBrphO4dgW0Z4+FJeLQjKxFLC9wTCVfJap6QzVloUguOFarIodh3I2gz8SRVYUot29VPI5EuPnkK5xIO5qwynSBcLvkj+KbWjI3hC21sAxtKvaq4ouL7bWWLJNvQSCgOgO4pgaLCbitt5qD+U1yjeqj+1NsXbnEvMcTxRx2zq//1OP0Wq1yGSzvDCVIWW6+PX9wwxfJN8kISALNhICmq6Rzefp72nfbANeP+HGWW7ZtZ69WzdTrVZ4djyBKkv0NCYwhBpZy8Hy9PC9jJtSx07uaR1D83XQFFVsu4jtOOiWjevcSbJnjuNWFJrJGRKjp2jVqpReewHH60PeuQ+jXmfNpi2c+Js/J7T5JiSfj/KZE9j5DI1wHE+8g4AkclOtxIJhMqQqTCBy2HEotSq4Ewl+becO/vjMBHlD4xvnxjhli+AC3RdA9wV4/uRJ1kTC5CtlRsfHGM/mODy8kV2Vdp/jsUCUcigMtI0U3nX/Js5N57nv1l34Aj5uX/zeKqUykiQxtLZth7xx4yD/etEaudVs8uIrI2xe38NHP3zXiu/77LlZXj2Z4sC2GKYjoEgSnT6LSsPi7Q/sWjruV37qbl597SzfPJSlWq7yZ4eyyGaNzrDMvBalWhvj0QdXmjy8TvyTr11bb2G3qouDV+1N2tXirmPqSN7wku6w49gIwkV96m4//2qVFjJJlvmxhzeA41wxEb74PXgDIcqZNOHFZPb8IJsvGMYfjlBIJZYGMCNdPRTTSRr1KomJMQLRKIIgXGJ5fzFUt4diKomktHs9Q/EOgrE4c2dHUV1u9NbVe4v7+jv5uQ+1Nwir/VAen4/di8NHe27exFBvmlhXJ45tc/bsNGvW9F6WdT4PKRBvK06sEj8dy0AKdGBVs0uP/QBUfP7J1+15/FlaICmqfLyjyDv63IwWdb5VVXlcHObnxQm+ts7iYmMrBRvZMREEgdFSjSGvC6+qUDFshq0S66Qsv7O5ncf/m3EFU3UxXKrSdAwKikS1WWFcFpkLudnWKOPxBKkFg9QX530qVolAOkDjT84SVNtrbuHwDPJgkPoLCbyzErm7QLc01t1+K7OffwVEAWG/H2O2hutQi4aSZ8bS8YWDFEN5VI8brHZ+4825aB7MspA6xoafuIfi98ZhHNKPn8Blq4AXRVRRUMkcTmKHBZxehcyRcTSrSeiIhBVWqK13kI638Dge3Eb7O3rENciL2SKbxC7WuJbv66ZlkG8W6fAs5wQ/yRAsXlIjrQyKIHGrq5dbARZTi7rR5NtCAaOqYgCGJLHNMEjKJr/g7yaktNf6b4SH+TGtys+YJZq6xm/XFjgYCPPgzEGeGtxER7XA4/zjJMPXgg8Bf+U4zv8QBOFW4G8FQdjuOJdOVAiC8PPAzwNI13HxOZa5eNHmsAURW6thtRqo0d7LKhBIvgh2s4rkCbaZSMtEjvZdk4i6IEpXlAsTzSY/emcnC+kKz08Kl+0PdhwbfyRKrVjAH4lyYQ7p9vnQGnX23LqbSj7L2x68PLOgNRrUKyU8/iDRnj5Mw6Cab7PWLo8Hx3HoHBymks9e9hzQZohNw6BayBPu7EIQhCtahEKbTZcWk/R2v3AYq1a8poT48s/525rQFwZtx8YsLCC4vAiK63VJD70OXNPavXDddnSvbrl6OZycSSJ6gnTK7enev37uCGdyde7oUri/L7IiETYMnVaryWBvN7/1ziB/+ewRfu/L36aAn4cGZnj0jluZLlQpebupGe23eHo2yY/t38q2NUM8dfgU356tsqF6EpwZpn29iPU8sZDFOzxzgIMsuxDWbKL3pt3Mfu3zyI7TTjBw6Nm0mXouR2n6LOqazfRt2c7YKy+ReOlZQhLUjx9i3Y/9LBWvj8oLT9PRN4Ct6zxwooT9kV1MHzvG8KatfHdyiqdVH68B22yHXDLBPXqNPXv385cjZ4iIIv5qiYVFubXeYIC+nl66JieJ9/Xw2C23II1Pcns8QqtcZpPZ4Bu6Q93r43+fGkHRWsyvjfHOwLKqRbNW5xNfOolbNPm1j95zye9w5Pg03zmtkS1O89gjK9fuuekcEyWFtSWNj759I3/0+AS5ZIO5cpoD+zfzjSdfw3Yc3vXIPvbt3cS2Tb0oqsoLR5+mZgmIWgndanCyIRCPnmX/3k3XtUZeJ6577V5PzLW1envQdrGcbxSTbacBBJTLyDHK/uiSqZFZToMotePHNW5uh9dcWlG7EJnZGWRFxu3z4w22z+n2+XD7lteB3mwusb7R7l6i3csJpCAIbQbXcQh3dlPOXTleFlKJFfMYlXxuKZYLgoA/HCYY66BeKl41Ga7kc7i8vqsmtOcR726zoK+8dpanTrbYv1Dl0Qs2ZqtBECWkywwotpUo8kj+C3r9ZRU9PweidEPMqK4RrytfGFxFoeNyGKu0KAtuXG4fNwVd/H2yyb+truOu+ij/PjbCeztX5gypWp0un5e/36rwp3M13j3mYdKOcoud5NPbYKphMOJfj89KAQ7HSxqbXRa/nA9Qlt18NmTSk8+zVgxQtSqIsgtPM8f9vrXsypbp8HRSCdWIfeRmck+MEBj3YFg6iqQSjnYSv3kjC4deQZNa9O+/mdzcHMmnTuBPu3Gbbmo9Lfru2s7MuRfxKEH8vb1knzlD8G39+LuiNKtVBETEv80SHJeR1C6KswkKvhLrf2EfpWOziIfqVPpbeGZFFFHFCYl0rB1mJlNGEhXia7owB5rYc00Ce3uoxbNUTlQJZrzUlQbNYJ07GyF85koloSetNKPxAO/L51jrXpkz1bUqT4QlFK3Bv7SjK3KvrFljrCvE92sV/ig8TLE0yaHetZjVHLubJUStyjftJr+ihlnjDvFFUUHxyPx67ixmo8Q5WcYopam3qvym5fC7kXVvyCDnWkQUF4ALaav+xccuxM8AXwBwHOdl2tutVTNJx3H+3HGcvY7j7L0e9k/0BNpyaP5Iu89MVhFlBateuuxrBElZTNictl7kKpqRVquGbVybSsOKcwsQDAXwuBUGAzqFVIJKIb/KceJS8LwYhtbC0HVSk2NXDaT1Solody/NWnvQrJLPEunuoV5u36hC8Q7q5RJu39V7F8vZDKGOTorp5FWPtZrVdu90o7z8WL24quX19UB0eS+5QcqhTkRPEDnUeaPsRW/Y2r1w3QbD1x6UAaq2gm20uHtD+0bf4VMRLIMXy27yxRK//7XnmJxvVwo/+cwh/utTx0nnsmiaxrlUkULTQtSqfDstMD47yyM3b+ant0XY3NPBs4cO8vdnS3zlxAySLONxKaitEoN+h9vjGkGnQZwqIY+Kz63ic7cZt1ZLo1YuUbcFom97F87getxuN3NPfIX0qy/iu/MhtFKe0//w91ijR7CzCYxABMnl5tx3n0TTDewN25F8AdLf+xa3tbpIv3oMbyTIyWNHOWgs39fG6g06urqJ+/wcmZklrel8uL+Hx0I+lHqNdxl1Xi3X+OKhQ9y3bRu5bIaZZJKqKPKZQoUZ02J7fz9+QyNcLvChSJBfuHk3dzom5WyGYipJrVREVmSiHpuov73HzyVTfOqzz/GFx18GYMvGHnb2gVdo8ieffobpybZ0kGkY3L13De/ZF2DfzeuJ9nTztp0Rbh72MBgV+MrXD3F8qsKp2Ram0S4/i7LMC4fGuP/AAPs2BjE8HfQEHZrubjL5+nWtj8vgB7J2ryfmSouJ7dKmVhAQZBcCi8YYl3udL4KwaJ4iyOolVs2OqZNLXzkJvRJcXh/1aoV8YoHc/Nwqz3spppL4guFVX19ILmDqBtm52au0RmQIxTuxjPZAa71cQnV70FvLg0lun59asbA0eHfZc+WyePz+pd7lK8E0DB7/5qt897kTAPT3RBnwawz1vrFqmSBK7XmNC4xPJG8IUfGgRnpxrNVnXa4TP7B8oeM6+vLHGxZNb5x7rHmGg156VAF/NcELkd3Mtxx+fsbF/5pp3/c/l2hyS2KYP59rIQgCL5UFJiw3amWeV8Pb+R8LsC/m4+/C4/z37jpfTzb4TykXv2NsYs6qoQgS7maTsOzhHUofg0oIX6POJjWGKEp0eNr3C01vUUqmaHhaVPbY2D8So+k0EF6rs/Bnr2DtdGPe6mXm0y+ifX2e4EkZPWJTlSuUzySYOn4M62Yv8i0x8k+M0jEVonJ4nlq5RLmQp/jkGNJiq4tP9+LYNmv27iZ14hz2TB17l4fuD+yiEdUprW3hiocY+fOnEHSb0OZeSlNJjGQN+bhO+hsniW9bg9DZvl+Yt/sIP7YJ6bFuGlad2gGBck+7BTLkiATrVbyCjG5pPNOY5NPOAlm9ilf1c6DUYnfV4q+b5/hefer870qPHOCxTIN/54ogCiI/7orwUCHDI/UGT6DxzWaBVwJhTuntWONR3HynnuNWycNP4sJ2eYg7DoI3zFlZxLnIMOR6cS3M8KvABkEQ1tBe1B8EfuyiY2aB+4G/EgRhC+3F/fqj3SoQFfcSUyi4/di1PIgSFzumOKaO1aggqO6lHfL5YTkQVuwcrGYVQZSwGxXE0PWxkJbk4avPnOHhWwdo1OqEO7ooZVJLRgGq24M/HLlisG3WaoTicURRWNUOFBYtTy0LQRCYOzuKPxzG0Fo0qlW05gS+4HKAvFpAPg9RkihlUiiLwxPnWW3LbJeHRElaYosdQ1vqnTbLGcBBCnbeUItSW2+2k19RQnR52trF/jde9uBNsnbff8t2bsvkWT/ULte/7459WMaLJCp1KmaQhOUmVSqztr+XYrGA2TKQpO0IosBg1MeM5WePr0nNsemMRPB4vOzYsI4/+taLTDREbvZrrOvtxTAM7rppM/fuasvVHPvWn/JgJIfH7QIELMtCC8fwD63DTC7g9QdQB9dhak0cy0RzIH77fcydOEZ8YACjWkabPIM8sAbJ7WHojvtInjtDuLeP3Pws/s4eIh0dVI/I/J36PNopA7OzlwO1PrZvhLWvJpjS8tTXRjh14jhjps3xYAcH3A2S83O80jIIqW72r1uPYTt0dHZg1WoYssJIo8mZYHsNPKlrPH92nGooilivcThfpLPRZNx0aBUrvGvDOj514hQpSaZ+92Z+t7+TbDrHx798CltQibZ0jp8Y5+CpNI/csY4vPnGMqtrFi69OUq83+Ow3R5EFm3//q8uWyrffspmvfuswE/NlbLeL993eQyAcXirfnzw9y3PnDDbHLZrlJoYpMbiui/ds76Gz54aUm//J165wQXsEtFur9Pwckuq9pL/UXJTturA3WAp24pjaJRUeq17iE1+b5KOPWPT2X5+Cjy8UppRNo7ea9K3fSCWfbyvq1Gs4DsR6+/AGQ0us8eUQ7e2jXrr8cLRlmvijMebOjKKoKpHuHhqVClqzvuSSCOANBPEGrt4jrrrdVPKXkiWO42AZBvIFVt6VYonjCw5Bschg7xzHz2Z4zwObicZuLGt7Pp6L3jBmNXejDE7+ydctwCPdPr4sT7Mp0P5e7457+GOryu9mpuh2a3yGLkJamwyaq+sI1SymbKAZCvvdTV6QNnK3UqShz3NLxAQUbov7+PR8i98xNnKXOcpPuybxSWtxSSq/LASWPDF2CUFudbyIrjb5VnQXsXa4sfMSLp8PZShIa6GOqhkICGh7JNRYEMvlEOruJvfyMVzbIuTmiwx95HYWDo+wce8BJg8eJjrUiz8awzxdRBIlumYjJKvjyF4X7sEwpXALc7xKay0IGYXSfILuw0H0sI1xE8x+9yjBoop5SwBfXxwtXyG0tZ/8+AwevKhHWngEL96Ul+z/PozH9GA4Fs6IQbnRQM6D6LKI719DUZymmipxixLnTlRwwReMOSbdDpLfTypV4mm5zLAgops6mYFe8pU8dzs2/7NxAk1186jlY8DVJon2emOkLZ1PWxrpYJSfKuR5R7XB3YF2W6lpm/x3QcPyKPxb3WHOsQiLCn+sRPDLbkThWrjdy+OqybDjOKYgCL8CPEVbBuXTjuOcFgThd4DXHMf5GvB/AX8hCMJv0M5Of8q5nnHg60A7gRWRL5MstcXaFwffFi/udu9b7ZKyviDJ2M0qq1Rnrgkej4uuni6ePZKgnMviOKC3GnQMDFG5SvkNIBiLU85lV7C5jWqFVr1GMBpHVlUys9OoLje1agVfKEStVKBRqbRZ4mplqXx3PVgtQTcNg0IygWNbdAwOY9WKbYF41dM2w3D7cLQ6guzCMbWlAT/HtrBqeQTZdV19vuc3LecVKy7UHr5RbkhvlrXr9fhYP+Qjk88zlsiyc7iXs5kKBTnCuwY72T0E6weHsG2bnA6GoHLs3DjfntMZlE12u6vs3biBzcODK8474JOQHZ333rGXv/7uIb746iidAQ8fe9+DiKLIK3mVs8pW7tdPMRCUsKMdbHnH+8knFyjMzdKoVukYHKL2wtOYXj9mMEq9UsElCaRPHsN2QF27haFdN3Py7/+K2eefoVmr0krOUV6YRbRsKqaO4PVRa2lYhoEkiEy7anTu3s+LpZdQNm4k3ttP59lR5FqNejmPzzLwx6J49SINWeV/nBmj4vaysdEk2Khx/6ZNqIUCrwGxagmAfDjGgUqeOzpi/GWyxWYbrEqJgx09jJ8aZZPbxUfXr+NPRs+SFAUef+o4HsmhL2xyxy3r+dy3zlBtOaTSJR64bS2HTszw8L27+fq3DqPGBzFz0wiCwOlTUyQyFfZs7+XUvInRrHH3lhDbdi7PAaSTWXLpDFuiIgd2ruXr36+jqgJ3HlhPJH5DNnFvmrULYBta29TIH8XVMXzpe7WMJac2xzIRJHnRyj6/qlWw49hEXToe7/W3QQmiQDAab6/DRgNREskl5uldu4FSNnNN5/AEgtSKhSX9dduyKGXTuL0+vMEQxVQSUZLaKhHRCK1qjVImjW3bdA2vpVG5fhnI8y6KFyO/MI+62DZhIvH9g5Ps2tTFj93dhcfj4uCJBU6lRPonMxy4IBk+d26OYql2jbMzyzBrhTax5PKCICJ62sN2F2563gjeTOt2f9yPYVp8LtHkQEDgmbzJmH8NNdHmHwITDHgVQCUp+jAkFy/VRJ6fEBmxB/lg8zC9fje/tsZCEJbX8CbVZGd5mp/skkjoJh9jGlkN8b66m7XuGDOtPF8MO2wrF3nENUDNrBD7yA5qlRJGuEbm9ATDt9/M3PdfxjmRx97ipmGUCThujNNlstkq6gOd+Nf2oH9XI/vkCFauQlYfxzlapXxuivrcOKrHQ95fRC6DhYkhWnTu3UYllcFc47Bh5y4S4+cASI/P4Qp5iHcMkxsfQwurSE8VqUoF/LIH80wZVXTRddtG0keOIGgttJCFv+Cn6dNwv6cfXk7gmrJpCHVirRD5PzuGIZp0//Iecs+PETzu8DVthrzdIOS4eFuqyjGxwYygAALv8vWTTM6yHi8zpDBjfQhaDTSHhFbj81qRd6hBnrd1EqEO1s6c5if69uBabIGtmS2eKi1wp61xkytIQnSwYn18uFpnre/GrN1r6hle1AD85kWP/ccL/nsElmZYfmCwtQYIArZWv2zCJLr9mJUcgrK807ZbtaUE+cI+YFH1vCFf9+mKC8vU+ckP3LGk4pBfmKdayK+q6LAaQvGVLFKrXluafl46hyCAbRPt7qVeLtG3YRPz50aJ9d5o61dnKbiu6fEwU3FxW7/G86MgILSZeMtEvGC4zqoX20MZtUtZjyvBapSXBjeWE+Ebrzf6Zli7c8kE8XCYrx8b51RV4jsjL1IT3Ozwa/T19uBaZBsFQeDAQJRXKm5mKxpeQQcBjmkhCqdncIAvH53kgc29rO+K8lLWIiJaBHx+TNvBucivfnDDXmZncmy+9THqp7+OUy4y98oL1EyL7Q+/k5N/82d4FBm3KKIMb0RR3fRv3c742GkaJ1+j710foJrPMfnyc3hbTYypc7RUD0I4xo4P/jQLB1+gduYEAw++G8PQyM3NMbB1G8V0kkIqQciQKOZKTBwdYeiBe/DPLbBj3RqOTk3zZLHMT++8icD4BN/ztRPInNZi2h9hZC6BIUo4qsQHPQo4No9nk/iwMUyTqNHitliIR9YM8WfjkyxE4oSrJc6eGeWxcJhPfPV5BGWYlpQiXzY5/vghPL4hBmJV9u7dhGWalOoG9aZBxXKjl9L8+MObUN0enj+WINXyMNBVZHtHkyNGhGJruazcqFT5i6+eodWo098ZYGi4h4885sXQzRuWCJ/Hm2HtAtjNCpI/ilnNr2r4IEjKUon9PGPc7k2NYlULl8RqJdzNL3/k6i6aq8EbCNKq1/H4/ciqSiGVoH/DZhITY3QNDV/TOS5OTEvZ9FKP8XlGWRBFLMtst0noBoFojNb8LI1K5ZKY/Ubh2DaCKHJ2PMXJpIihzaO4FLat7+DeW9bSP5Fm900rP9uTL05RsHxYteI1m3BYtSKSJ7jU+iLICo7evOF9wm+GdZtuaDQtm6M1m49pW1iXPsuEfwtbymd5YFhgZ3h5Tf5cqM5X9TinzSi3UiHiNHjWjpNkkNvSJ/j9YoQu0eCPN6l8suTjhKsXF+PojghCOzacj7yyIOLS6kvGyV7RR/H749RcDQbv2Ik5WiH78SN0anFyQxXkTSqdwQ00z2aJTwaohmxi+9cy9cJhPAnwN7xoskNjuIb/kUH8oQitv5jAvjWMu99FON6JPTtFz/qNnHnlRQKeCGLT4dyLB/H5A/Tv2sZkrsbQgd2M/5en6PuXt6EVqri+XEVwBBp2A/N0BU9DIX3sMCE9SG2Xg7I5QO7YAk5aRzYNsB307Sq9mzaRe3mM6PEgDaFB8ugo/s0djC+cY7QkI1t+NtRNnpHKaC4PqifIPXUbv9/LHruDumMwJzpgm2yqNNgd3Ma39SxfCYagWuFdhsOLrSSpWO+KTd7vN9I8Ew5jNkr8iKCy1RfjtnqebaEblwP9UDnQCYoLa9EM4nK4sJ1i6XWS1FaGuMGaisBSe4M/GiU1NYFtmqgeD5V8Do/fj+K6vr8pK+ri9HOwrWupG8R6+3F5PO1hDtVNMZUk3Nl91Qnoq6GYSuI4Np5ACI/fT7xvoN0XKAg8dPs65hN5zs4stklUc6uyB5I3hFXNXmJrbWuNtlSabaJEVhkMdAT0QgJEEVkQrjis+MOMM9OzfOLgFN1CjXu3rEWVa1SqKi4DfuSOPUuJ8Hm885ZduA8e4e49uwgHgxiGzrePjjLc0UG+UiOHl0ylwa61g6z3Q8zbXgO/+o57MHUNWXUtyaY9emAXj+xvb26OnwYVB3tiBFlxM/mNJGFVRhAEHMch2NmNKxBg4ewIpmEgeXwknvgy1uA6ujZvI1Mpo8oy0f4hfKEwUyePYSbmccsyyddeRI52YGkaC2dGaCVmsWtVNgW28NArBr3yekb+YRRJs/kDa4ykIxCwHV4+eZLXRBe4wVcu8isb1nA6meALUrj9ZTgOJ1NJHtm3l/vOnWPrxo184vhJpoIxXpufZ7fj0N1ssBCMMh4I013Ns8/tQokGaMzOYQ+4URMCSmgda9xF3veuAwiCwNmzs3x3VGdoYZbH7t/A6Og0kY4YBw+NcvOGIHOJIl/9fpqGKXPfTUG2benn6LExWi2NdL5Fn98kUavjk9X2dxduJ1DVcpVXjk6xfWMPPb3/dFbCNx4CVq14xfh58fUruvxtx7M3WLpcDRcOyxktjYWJc8iyimmY6K0SvkXVkWuFLxShkFxAkhUa1Qq1UpFoXx9D23ZQSLZ7+cvZNKrb/YYT4fMmSaIoEe7sIt4/gGkYyIrCzT4/MIXWtHl2QsQ0M/zouwZXMMLncdfuXvKlOs+Pr3zOKKUQRBFR9V7S9iConraG8+Iw+lvZee7D0x6mWw7/OZLhvc40Ho9OWSvwa70Cu8Mr1/HWeIjfqU7S7ZZ4W08IsPlaSmNOH2fA7+ZMOUzJrAAO+z0ajUaKIY/EHR1uyolBZF1BWjTC6HNF+BU7jOBqJ3KiKBE6J+ESHErlMfxzKi5cIIAa8dGzfgPTI6dw8nUIy8ivwczcS/jv7MOOGxS/XcD93gEC0SjzZ0epjKbokULUzlRotcAqaVTLeazCSbwHbazhOkLGZKAWo6E0SZ48gku3SSeOEw51UDw5izlZoVNob6Ccu0LEtg9Q+NNjhPR2u4890UDeFCS2fz2qz0Pp1Rl8ExLFTIlSMIXhs7FsC6/oxTpRR1nvRlYVBKPBxrrOpCqihbqQKgV+vCjR7W/HhqddTeqBEB9aqOLoLeJiiEktz1qXyQfzWQ7aLb6gunjYVniP6OfVZhHdNHhWsglqLaJmE7XVJBCJIokS2wPtttAvVRbwChKPBt6YadoPVzIsSq/LJe5173wtnfu3+UgVmpzOyFd0lFNUF6rbQ7S7h/mzo/Ss30A5myXed33KA+fbHmqlIlqrSdfQcJtp7uq+ah/ctUBrNKgWCzi2jSRLhLt6KGfSePx+xAuseXv7Ount62RoIMfsfI49u+9b8fz5nuKLdZuXsKQzfJlhIqHdX2gUk9h68w0x9G9mhP1evHqZdKCXZF3jJ+6+slD4d46P8b2SB9fpszx86z4UReXt+3cC7f7CwdgCfd09SJLELzy0TK5IkoTkWcmszxSmsd0icTvIzod/CYDjT34c1WiB0WpXHGgz0tlXX8C1ZiNUS8R37SfcP8DE5z+NnZxD3r4bWRSwink0jxfV7WHdzps5NTOJKCko6QUac9N4VQVBEPABzvptKAf28/zzr/HOUY1ih0osY/KJF9pr6Ou3B5DX9vCznz7Ju94Rpq6oPHPyJFmvHwLepff1bGcvsyNnsAyN5OgI+wSbRyWLFwyLUEcHrtqyjvXz/ijPV1pw2w7EbUUktwd9PoVZbXB6eJDRcp3fDfhYv66X/akyuXyL06OzHJqTOTr6Mq3AIGvDOj6Pj5Y7gKc6x46b9nD41BwvT9p49DwNOcxH7l3L5592ODdX54Xnj3HnXe24cHxkjpcmLGrNWd7zFkqGX89GVVTdr5t8yCfa81b+cASX98rVIl8oRFBpDw83KmXcPh+NauWa+njPw+Xx4PK0+xbnzo3SOTRMbn4O34bQdcfvyyE3P4cgimitBj1r1lNMLUvrnrdnd7nd3HpgC4au4/VNsnb48jMgu3atB+CFiVV0hlXvqqYlgqIiqh5svYFRzlxWEeStgAE9x1hgK3/SkHhhmwmE+K/oXCylBnCy2OC3jM3saqa4t8tGEkXedYECyRN9KbyiCLj4pQE3v4SzdB6XsvK+VfM1kN7WgfFylmBmee26HTfu2ZV/Vx7VmfUcR/GqmLZI98/sIfW5Y8TnItTKOorqRjAVmqNZKl1Z1t+8l9SLI1SjTYI5L1KujuzUGBTbiW056qfnPXtIT09S+0Ieu0sCn0Ro3IVYkqiuN+i/4ybS6RNLHdrlE/MYuQY+070kpxCs+qh9LU0DDXVzmEotj/WeTuxzDeyKTqizC9vJIyERqPnQPz3PsBTj1wwPlsfkNltgPFcgrsTovkBu7Y6WwlhtgeOeAHnH4WA0hFzJYftj/EYhz2RHP2oxyQ53GJdt8ysemWA+Q7lzkPc7Arfi8PWQl9+vpfnvsoeA4qbQqvC/3DI+rcGjr2ulLOPGb9vfJGirIGRfVz+w4zgM+ptExBp7dq1hw+C1JaGx3j4q+RzR3j6qhfwbGjLzBoJojSaldOqy2sGVQp5CKkG9UsHQWmTnZklNTVzxvIau4Q+3HWG8wfCSPme1UKBZW3YtKmXSFFNJXKLFvr2bVyTCV4LjOJjlNLbWWJxeXi7h2UYLs5zBLGcQPX6MYhJX5zB264ZM378p0R2P88sP3sLOkM2OwSsLxh85O4ZbdPA08zxxLsOTL7+64nlBEBjs60e6ym+RKaeYL8xi2RbucAjTMqgt9t5eDp5mDXHkCOLcJJXxEWZfewUxFMNvm6S//nnkTAJVb6JOjJI/dYRzzzzJuvsfwb9jD0Ywwuaf+mXM8PJvXS0VSM9MYZSqLLia1O/bwvymZUZv7StZqq+d5lxYQ9Ra3G7r3LttK1ln5TVzU6OCD4e5WA8zyOzZsRPZcXh44zp+7/AJXvQE8NZrDJby4DgIqgu5UePXezt5v2ghrV+DsHsDYmQ5OXJ5POzd1sdk2cPIXIu1IY2aZiNXk4RdNulMibvW2vzrf/EIsY4oG4fjrI+ahBQNMmfw+708sieOFOzkpZH292roOsn5BTYFK9y6a2Vv9z8XOKax6Jq2utHO1VAp5JfMMYLxOK3G1eOCPxLFMg2CsRiWadCoVFCvsxp3IWRZpZzNrBiSuxBas0khlaCYTgGQW5hf4XB3WQgC/kgUXzBMMZ3EF4qgNRorpN1a9Tq5hXmKqQT7920m3nHtqjVWvbSoi+8DQVyhE2+WM5iVTNvZrl5CDnUt9Xi/VfHn20N8RJrlJ0PVKx53qtziWFljo5HiUFPinSe1S44Z9HuIe69sANOUmtQ2WzSVJoG+OI4q0DRq2PblFTp8upf4Ky4i3xXwpCSSL5xGU3UcwSH4tI3riRo+OUD8pBfl5RZzTx5FVyy6fmoXWSGN76fXY9yznHA3i2UWxs5SzRZw40beEyX+6BZqTvs7UMcsJr91iLq7SdksUvHWGPzgAQTTQRGX20prvgasc+FrelEOtei9YyuegJ/Arj7ss3Wcr6QREKjE6rSEFqrctmI39rsJ/uI23D6JW/zDrHetbN/Z6e7C8AQYiUeINnVchRRNx2BfdoFvqzJvyyzwGV8v7w32MuAO8kC9xm7ThoWz+Jo1PuqKMqy1ONHRyyvN9vDrs40C+3MJfp03Tqb9kzLDPXEvv/Uzu6+qc/t64BjaUi/qNTMbixJrEZfBT/3onRw9NobRarJxXQ+/tfPS4YeLIQjC0lAGLO+ImrXakvPRtSbIoiQxtHXbFY8pZzJ4/D5a9SqNio3q8aCvbke+BH84Qq1UXGJd3D4ftWIBxeWiXi4t9dLZlokoK1QLuQs+0zJWY8n/06eO4ph6mxE2DQTVvUJw3zE0RG8Iu1lGVNwooY5L+rt/GDBXavAbj7+24rE/eGzvZY/v7+rkp7qWWZgz07NEAz46Y8vBYnp+jr89XaCTOlFqVPFyLl3i4cXnLctCFEVs2141GW61GqTzCxByYYgm0eEBpDNJAnmHotVA6YxQTcyx9rYPEgi21+bxJz++6vu1KhUCG7dDbz+tXBbBcTCmz6HaFqasoBRzSIUsqVegnksjWhbZsTPYrSYNB1TLRLFtuobWcO7MSb4vneOWL4h0NGTAS9PUqDoNGp3d1G7awH84Mk5dtKgrSf7LkQJ7NYm9DwVwDIMHF0vEpxoGk6qb50+cYNitcDSRpNU/iCCKPOASObBxM//z1Ci5SBxblEkWi1iNOrItYV4gW3jezQ4E7M0KTVecX921ns9/9SgBr4QtSmQsF7dFAkuM3fCaPobX9PHHf/YETnQdrx6Z4O2P3gLKGC5X+9p45pnDnMq4Eapp3vfut275+UqwmuWllqpr7f+3LYt6uUwgGsXUNULxTnIL89fVm3u+Va1zcHjFeUvZNN5AaEVbxdXQs3bdFZ8vpBK43G5MUyczO40oSngDoRVya6shGIuhNZorPlM+sUAw3h6iDsU7sC0TWVUppvKYur5CYeJqaLc+tOdipIvvdwJI3jC21kDtWoNVyf1A2lfeTFBkif+8djlOTtc05loWd8ZXrsuPpXyckNfxi+YrHLcGOG2pWHabHbZsG1EQsGwb+TIERMVVwegXcbpVBm/ZRvrxk5T+8CSiR8DzCxspvzyNeKKGXw5e8d6vNCR0F0TvXU/ePYbY7cU5XaMjG6UhNHAZCoHTHqqxBon5Y4i6QG0ii5lpUhdNBEdANVRi3X2U9SSyZKF9t0D+hTxBKYzt2Bi6jhiWcXeHCd4aY+E7xxEWFmjRJOgoy+9vo4fO+7aQTh0hkPOS+foo4oEIktZO2j2ih0pHg+6P7CHz1Aicar/MrhiUk2k0VcNvrH7Nvc0KkkxX2B7cxCt6inHB4W6Xw/8bDBOpVRh0tUkLn+ziPwYH+ZJh8ow7zNdbdX7O5eP/sTs5Vqlyt68TwzL5fdHAUmQe0upLZh6vFz9UbRLXA0GUsKq5pb4oo5gABORQ5wqdRWhLezmWyU8+OIhlWXz22QzfeuYYiZzOzbs3vuH3cj4RLqaTRLt7qRULGJqGJxC8rkB9HuVclko+R9fwMAtjZ+kYGMLU9fY0dCCwXGaMRFcVeL9Yxq3d45zHsZdZ9GhPH9m52baRRyFPMHptQxqi4sLSGgiieKnzlDeEVS8huvzYWh1bayL5I5f8Hm9VHD47zvHpBCdKDv1egX/9zmUXtJ7OTvbHU+SKFhOeIbYHSjx2680APH34JN8+lyEq6WiSi5/av554JIrf76derzGeSBLpUHG6ffjCEXJjk7TGU/R0DqBpTQqpNAEPNFsV6A5iF/KErjB049+4hd71Gzn2xc8Q27aLga3bmZdEaudG6H/7+ykn5mmMjyLMTdD3tnei6Tq1qXEcBDZ/+OeYPzOCefYkZ/7uk6iWgSBJ3FRrB7mSXuOpO9w0XZ0ItkNpYQGpUkbat5FIdw+pos7Xwip7M/Ns6+jkm/MJSh4fQiCMJSscNdx4XS4O28oSu3W0qVMan6TgaV9LjsfDWL3C+2/awezZMQ5fhjUQ17ZL46rLzUd+9Fag7VJ303yGteuX2d1nXzhFttjk9n3reOpQgki4g6e/f4INw3GGh9v98DtuGubgyGvQsY5TIzPs3rXhda2RH2aIqre9uV1kVc3qIlsvX2q6YVsW+UwOwdLbCWE2g4BAMZ0i3tePJL+xW1Mpm16KuW6fD0NrUS3kkVXX61Lg0ZrN9nsUBGzLRpJkTNsg2tNLq15DFMVFhzpl1fOrbs+qWvLVfA5PoP3deIMhqjOTrLlp55Lt87VCdLW/+9Ws7NvxttF296wWEN3+H8iw8psRMzWN/52ROVqBSf9aviJMsDu2fM/9QKBOPD/KX3j3skVI8K86dSTRw9lykw/MhxnQcpxTu/ntYIr9QYF14bb77bPZBrZLpPOX9pCdnEH1eZn7/CH8Cy5cSpAFeQFrPonuaPT++k7yXx0lNH959lLrtOjft5OFV04jo+Lti+FaN0jr4xM4j4YgKFAYLxM8puB0QfQ3DpA8fhbX6RbKh4cwLB1nLE/lk6PIjgR48bW8sGihkB4uErtrA06jhtHUyCQniO1fh6049NxzE0n/CELdwtsVozVfJPW3R/BmFBAhlPVh5CSs+QYeu/0ZlLxI5plRmGoBi2tpsknHYzsomCI8dSnDDtChBuhYzFpvc/VyG2075qFalmHPMmF0rFHgM1aN9yluhvQGA8h8rZqg5Tj8WHD5uuivFUn2b+aZcoGHrn95rMCbIhm+HMv4RnChjJrjOAiS3JYFs4wVyZdjW+1BLwTS6UL7OdnFo297fdPOq0EUJYrpJB5/OyEwNI1Idw/FVPJ1JcOmrhOMd1DKpJEUFUV1rUhwBQECsTjNavWa3I5Ut2fV3jhBFKkWCoTiHeQW5pFk+Yq6yed/xyv9dueDtVnJIQVi18fcv4lxMVMMl7LFL06mmGx56BdS3NQztOI5l+riQ3ft4+jYJK0z89y3cwvdi+oE89k8JmDZNvVmlU8cnCIsT/Cbj93L146c4WDO4aFei23b+8gdP0PQH6E31p6ynUyP0bFtA/nJWUTTpjA/R8NRCfgi7Hz4lyhXCpx9/nO4pOWNS+PsKcYX5gi1alRfeobxuSmcQhbZtkgcP8y62+8m1aqjlXKUFmZRwjHUYAgrPc/CqeO4I1E0txelXsGIdiJFYnxi/ClkWWZN/37cQ91kz4zgC4XpGF7D5herVL8zT92XxK3r5B7q4ta5OWJbotz1SpafuTW89N6S/jBfAvAvr+vZQJjeQpofweIrmoYRCjOKyBPjE4wisaZaYpsIhmVwQrOouD3UA8vJ2b87eRbB60VwLZZCPR5+d5ElcRyHg0enqOPnjt39/OYvbubo0TGeHq2RLS6gSCK1WotNW4b50Dt3cXYqx4a116Yk81aD6PKuTLIca6k6dzG+9cwJXpsxeGizwEZZQlHd16yTfi3w+AMU08klE4JasUi0p2+pDeN6YeoavnCY3PwcpiwTjMYId3UjiiLeYGgpeS0kL/aXuDxivZcmu55AiEIqgeJqD2GbukYgFr+iPTWs8t1f9ByLyfJ59vifSzL8nZLDl4Q1bJfGecBJsMa/sv3lx3vdPBgW+NXZNHuDBm9f7BWea+jUHJmWZWMIIn9dUPh/WoN8xpxGcxx+srqRW4tz7D44QeXsAqriIZxsWx0X7Byhd67H0S2s6QbJ0+cQY9BMNvFYHgxbp6k0CVrLMciTlkn//XFcSQuX4SKfnsKleAipXspjFcQdQTpu20j52AhOWaY0n8DXFcaU09ROJHEGXbjiAXyWQcPTpL5bwjlWxd/0UvHW6HnwJnJzs2hai/W795D+xknMoymafp2GMUf04XWkxscJdLpxtQIExllqonUJblwHHbiAVPDYbqoTDbQDKs2jBTqKUYJOkMxXTiBUHJoiWHs81OsV5CJIOZugHlzSAtZMDc3SCbraifEu/8oq0DfrWV7wuNjsOHw+sh7HcXi4Nk3D5eG2eo5jls693iif6NzOpyt57pDfuEb2myIZ/kFDEARElw/HcRAVN7beRFBcbeZSEHFMHceBbx8vIXgiK8oZheQCCMKSicbrwcVtBi6fj2IqiT9y6fkMrUWtWMTtD1xWLSLa08v82VG6htdSKxUuGTLxBII0ymVCHZ2YhkGjUn5dbMj5BLmcyxLu7Lqq1fP1oM3c5xHdN0ZT+IcBj+3awGwuz23b3r6k+HB8bBK/x8W6/vaNcfeGtezesHbF66ZrNoauEQmJJFsKoWqOrv72mtrcHaXQSNEbCmLUW9gBGXVNJ6W5LLYIBFTqpRKCAF03bSE1PkZ061ry51IE/CGqQYvQrffSPPj9pXWv2hZUCiCK+DweyC0mEJII8xOMfXEGydRRJQnGR6jrOrIookoSzZkJKudG8DarIAj4htcRW7+J8bERZMBrilQzZaJFG6nLR/ffHWYt3aDR/gf4zsEZ/A/dhvSVg7jqEkqzgXHBcKBj2/RWiuRdHvTFx/tx2LVjF5MnTvIq0PD5eWHx+C1GnduGhymmkww1W0TjHfy/8ymsQAg7k8f1ahHDNYdz/01L38G3nj7CQq7JLVtiNNw9dEgVuvvbSe7WLQMUq+NsXNPLl79zjqLh4pdCbjZuHGDjxhstd/jDC8kXact5BeI4loljW4hKO6kL+VUCYoVwpJtANLYi2auXS2jNBjjOdbGjF+Ji+bRgvINCcuGyTp+lTBpBFC/bmuELhRcd6Nx0DAxRLxWXrmGAUEcXhVSCwAW2zd5A8LpaHYAVFbhCKrGUwF+rVOeVcJ49Fq5x/uOtgA90SgjZMR5YKzDgEwGVcxWN4zWL9/d4EASBTq+Lv98MFw7XPa/50UQXEbuBKcgkaw0G1RxRVSAoS9xbmudmd4P8eA7v1k7iO9ZS/OpZlAVwbgnQqtdpZkus+ekDZE6M0/+23aQbp2AMWrtkOu7dQ/aTRwnW22tUEVWU+cU/LkJncXkdhGY8NObKlJQiATEAC2DM1jAcnaAcpDbTwLR07NMVBCWM1SHSfdsGksnjMA2iLdDIlNDHq3TevoHxzz9P53wYRfThb7Xvv5kvnmHjr99J5rVzWIeK1Fwqfm3lvbmu1nEElh6vC1X6Nu+j6ErAt0xEUSI4015bpXCNnjs3IczN0SpV6blpK6m/O0oo3Y7XXxLSZIJePlzSYVEU4ZV6jj+xavyM6OWES0V2+bm12XZ/FASBf4WHpmbzNVp8NhgkU8nz0WAf/0a9MRu7N20yfKPZ4vNal1aj3PZhL2dQwt0IgoAS7WNjVOf9j+6iWsy3vesXYdsO4c5OqqtYLb9eXMm1qFosLGleXi4ZFgSBgc1bKWXaQvEX48IbQSmTJtzR2f73BUm5bdu0atWrKlRozSaWaVBILuDyXNuiu5bf7mIDlLciLmSL/+CxvQz2dDHYs/wbpDIp/vpkmpDT4rf6+3jh5ChfOjqFqpX5vz/wCKFFO9n93V6entIYK2i4ZBnd28U7b94MtJPn4Y4ABXeDQDyOk87Qms0RC/dTqubxBULo2TKSIFFOpvBZbppjCXpiA9i2jVnMoDpuNj3yyziOQzafJByKMfrMpy/7uTy2uWRtbviCuHojWHOTGIZB7+33kpufQxs5hsvUqB47RDGRoPOehyk8/21uTfkgZdCwItSmC3TKl1YaNqVEZp4/h7tmM/ORffy3QxPce3p5EOZdt+j8yrbNPDs2zlOLj31PVHAmJ5i6QMHAsW22VYuc1E2OnDiNJIkMYBMyU1iuxaRIlbGMKmJZwzoyAXvWw/MjPJ8sI3linKs32NNpM9y7HBNcbjf33bUdgN7QGRpzKQzjnycbfCUIkrI0QGtUsoiqG9u2EF1e7rhtG7u2FtvmFpkM8f7lTYTeahGMtStfNwqSLF82sT4/K1GvlK54Dl8ojCCKKww7Vpx/8b5RyqTxhcOUsplLKm6NagW313fVgeS2rKZOIblAMH5jGPMrscdvVfhVhY9e9LP/dsrNi3I/kcwoG30y75jwUqnX+E99Jj851L4vvy/Q5PFckpeD2wlXFij17uSX5DE2Bttx4682wGe6t6OFYsR6+5h68hDBVJt1FgURxVDRzxkUYgsw2yK9cAJ5xgJknFSLwrEZlNZi1UKsIdkiHi7/23ht7xJZ0JSbWLs9CKMmtEDY5id4U5yseQ7fuIV3WmLyMy8QvGOQcjNHKO2DrzbwEqF8bpweIb5iIwcQMcJkvjWCk9ZQH+nB3xOn+vFRfEo7j3AcBx6J44sEaP35NG7VS6wUIfviOcTSSta47m+CDxKfOIRtWdhegZwxiXyBV41PN9GEEl/B4GedLp6spfmEWSHt8jBuajyCzGyjzjr/clx9aFE67eVKiieyc1QtAYKvb7O8Gt7aXfSrQRBwVpkyaxoOC3PLZbXzCHV0UC8Vr9gecCPh8QfaZbJrkCUKd3ZdNpmtFQsUUgks06BSyC0NA51HIbGAKMmUr+LaVC8XiXb3IqvqDS1j/nPH3z79LH/w1GtsFEvcsabNJrUME8flp+mO8OLI5NKxaUPEtCz6Q24ODHeyPiDgu2AT5HH7kHWB/MgEMSvAQHQQURSJhjroFzoJuIP03LQFFZk1vRvoiQ4wXZxipjLDQHCQNbE2E50szKNs7CRTu/YkxLd+M4N3vQ0dAVVVGfvGl+nfso3wzQcAcAngcSkgCJQXZdAKZp2y3USTV9cLD2sSpuiguURqL50g36ky6q8tPW82W+QSC7j01tJj+XCML6sBcv7l68FbzPPhLZu4LxYiFetkIRznZW+Yp1BgkbETwyHM3d04qgxS23RGLJpIrhDNYRuxYmBaNv1dfv7oL5/lq99cqfCRKBho/gG+/dzZa/7O/lnCsXFMfcXgliTLNKtVbHul4k+kq5t6qUio4x9Hns4bDFEtFq6oX790bCC46kAxtJV6CskFWo3GqmpClXwOQRCWZjouh3I2QzDegaKqRHv6Lond/wevD8+lK2w/4tCoFXg/09wcUjEch5rsw3CH+GR5maCa1kXyrhghvci/7NbZYSTYfhHv1J/P0DiTYf6TL9N1OojXaiezoVckPE+2iN6/juBAF54JgcC0ihl3qN+vIpXB96yBx/LQMOv4fmId9kPha/4cZo9I532bsQcXY9ixOrWZHGvecwt1XwNZUvC2PChuN3Wjhm5pmJZBxSyDCpZjXnJORVJxajr0uagcXaCYSKLvXK5qCIJAo1ymUixgCG22VhFVosfdhGdWVluEfUF6P7gXwXCIaVHihTB8O4+vuZzsv0MdIGaCa/HSH3F0cuFO7itkuVXycgSbe2QP/191gQ9XJslcINE63qpS7hjgK+qNTV/ftMzw9cLWGm05L0ledYjgPCRPEMd9qYXlXNXFXz9b5Ld+ZnjF44rqumwSWM5lsUwDjz/4hg0wzuNytp3XC11rLTHMFzLd5yGIIo1qGfkqvWiqy01+YR5B+ue3b/pB4ODps0QCPsZydfRAN7Fgk/t2b+fTT7+IobV4z4CbyUaQvRvaPcXVapm713XT6XNz3/Z1eFepBLjdXobcgxC8VNJLkmWi/hi5iSQByUujWSOnF7BUAcmlMp+dYqi7rVnqUT3kZ2bRrRaay4NLa6KZFsF9d1BPLiBIIrLXh3nmBJbXT2j3ARJHDlE4dQyf2L6ewoLN1Le/hqNpnA+l5tQ5tJ5+eu5/lKdemcF8dAelcp7o8DDm50dYY62skmTlFtotu9CPTrF+qkZiXzeto8Wl50vBMFO6wZi0HKw3VIvs8rh5QrNoLNqbN6Jxvn7kCHHHQvHHMAJB3mu36AuH+NNCFfu8DbpHRXL5cSoGCAJGr4x7XkQti6A3GdP8bE4WqJoqlfrKG8nde/t57rUZ7tz/xgdtf9jgOA5WJcP5weQrQYn2XWIdfKVYd7mY26rXaVTLSLJyw5zgBEG4IXrCtULhim0NoijSrFWvqijkC4UpZdJXVaj4P7g2HCu1OFWzmazoVMODLFTh8bUCn00YfK7i43fF03zfFeGhmAx40E2LXV6LfxUscEfAYn80yM9icbFG8T1Gg9PHBgAvF5p/ioIIkkjjuxkMKUNA9VPua6J3wsBNQ0znc7gOG8iSgiqolE7MYUXA2GwTPtP+G6VNLZTBII1DKXz7e7BfKKLURYz7fNTmG9T/6nkiuQAIMh7Dg32oTmr6BJ66C0QIln0kDo8TemAN6XNzhIwg4qYu4oODZL95GmWVvbu8JUxwXTfa/z5I4N4o9eJKWThlzkao6LjFdvLblJrYdwSxRssrNJWbhzJM1AtIHgsMqPS2iLx7O8UvjBIqtO9fsqTgs2TyQR8ZvcYveDr4evosL0XibNFqHI5GGK6USQsOGZeHlm0snf+xcB/PZabYKtxYFaofqmT4SuV3W28sDQdcDFurA8JSiejiYORyGjgI6MLVh80uhGUaV21puBoquRyqx9MWi190JxIE8Q0z0W7vYl/yZfqcVxveWA3+SJRGtYLHE6Revn53p/P4QQxJ/jDhNx5/DbNWQPKGMGsTvGNDnGq5yGN33I1lmUyUNCrVKguaxMce3YfH4yOTz/H73zmF2Czwvp0D6EYLrdLEsAw6I+2bbbVepq7ViAc7yRdT1Bo11g5uXrHGVdVNr9q+2acKCwQ39DFz5CiuSBivdzmgRAJxmvkG4eE1hIUgvbF+Dj7xJ/g6u2nVKrjCUfyRGInTRxEVFcUXYOs730fm5DGscyexhzYge7zYp4+skH+zEfBHYtTLJUb6TQLJKfRmnXhdJmQqXOQizVonjPV3J4jqMmk/xD93mF1m59JxLz1/nkmU2bs4QjygyKwPBdg0OcVR1QVKWyqoU1W45aY9VI4f57lAkJpuUKzXcC5UMBFFMBv0uxXmDQNhXT9mM4XV44eon2a5xpf6urFy5zjdtPnNyXl+b20/rx0+SzDg41d/9o3OMf9wwjE1BNW7OHNhr5RRtAzsVm2F4dGFa1JrNmlWK5dlWS+HRrW8FHNfL1qNBlq9vsQ8Z2ZnAIj3D1xSPr4eXK0v2R+5Nt1gWVURRZFQR+d1q0r8H1yK30l7Oaz08avCEX60fJAfH/ABIY63ZI40ZE769/BHkZklo42PnLV4Rejng9oJ7FCMsmEw4vJyk9bEr8gYlsVh2cWw3kKzNfKRIpFcAI+ykqgIlNr5hmVbeO7oxoXNqe88y/q9N9N4bQIZpZ0QH6vj/Ym1VKuppdeKQRe+3iiF3iQD24dIHykgNmy8fVGsoECks5vKX4yiddko++M4zzQITqgrav2Kz4MvGCLDJE1XCynrkCtM4mQN4NJqg/DdEoXn8vg8IYrPjOOdkeECK/XwxOJmYJGEMDwW8Z2DzBaOohSaeMz292fYOj27tlPtysLXdQTDppbKIV5ESCuOQ4eryZnBJMMBDw9OGJhOmlu2SajZBDcNKmTqBk+kFcb7HZywi7FCi7EafGyLiiRazHDi9SyJVfFDS/d9+5lj/MGffgNj0eBB8oZXnZK1DQ3H1LG12uoGHHqDn3/XZt5/x6XJZzGdonKFXuHzLQ2h19nTVc5lUd1u8ol5bMui1agT6erBuYJQ97XCGwwR6e65bGC+GHqrLSZfLVwqHu84DnqreUWh9la9TiGVoJLP0ag3KOUvL0LvOA6mYVz2+bcqRE8QPT+HVS3yVFrk+4kGTxw6iiwr/Nq9NzEU9uATbaTziZrj0CgkqDYN/uZEhucmRijJDcTBCIVCu72lZFdxb+gmV8kwW53Hu6GHk5OHmUqcY6wywej0CWbrc1SqRcrVAqIjkD8xRri/D0UQ6VRXDlb2RAcQZyr0xtrJs1sSSXzt70HXCfcOMP3dJ3GrKkq1RGLsDJVcjlIug+M4uMIRvF09aP7winO6FZn0N75A4ZVn2XrP26BeQZ0+x0PHICp4aFgap31VGla7Ke7ZwTqj+8KUW1Um37GB+bsHlxKplqXz/XUar8WXy2aeepVKLsfE9Azv372b9YsmLsF6lflGizNTk4wvOhw+HYzxd7IP5wKVFTEe4R339PIv3ns/m8o5yJexDwwjrutFjAQRF+XTlIyFPNtEfOIER185xjeOVPnG81M3YGX8cMCql9Ay0xjlNGat0La9t0wEUbpERtGqFRHd/ra82iqolwoEorFL1B3q5RKF5MIlrRPnEV4cVHP7Xn8lrphKoLhUkpMT2LaNoqp4/AFMfXU5qGvF+b7ka0162+8luboChSCg1etLLpGXw+aYzpa43u7/rxVWdZ47D8cyrvj8WxUPqyX2l0/xR8JWPu8M8q8W2jnCf+x3+Kg3Q0QvE5CWv+ezxQpatcBfNXv4zVYfj4c6OHPPoxxajGvHBYXRe9/OSz1DZDaU6HjPdmoPqZSMPMV7bJLritTvUqh0NjBsnZq/TuvrC1QmM2y9704ynzuOV15OMn2Oj8anJnC9vLz+PK8YpL54nPUPHmD6O68RzHnxCl4WvncSUZXIzc2iOiqOWyA42EVjjYXmrFy/0UMKlT8eoXtoLdH1/YS+6+D/nkmw0P78FW+VutJuXasGGvCOOEJAxLnZx8CHD6B3LK+VSneD2h4HffFvGLZOQ2ky98pJOvdvwN7X/jyGoyP7XGRPTKCfbVfzgjkf3scbBCorNwt3dvr4yM8+QG7dTZzKNLinw+En17tQFZlben34XCrHqgovGD381wk/nxur87mUj8+0NnE0feOrJteUDAuC8LAgCGcFQRgXBOE3L3PMjwqCMCIIwmlBED57Y9/mpRidLVNoirh8YX7hXev47Z/fx3/+jQf4T798+4rjBEnG1ls4psElFBTgyC7MVo2QV1rBXlYKefyRCJauX/Y9ePwBot29r1sTU1YUStkMxuLfiHT1UEqn8IX+8YfLaqV2b/BqN4SuoTV4g6ErlvfOMzaWYfC3X3mNj//DmcsmxF9/8jV+/1Mv8tEHuq9ocX0j8INYu90dTT72iyMr/rkW2PUSanwQx7HQ8ws4psG3T8/wG4+/xu+9MMO/fu9D/Lv33LfkoHVqLo2/a4Bf/rG9vGNvjLDfhdqA5myG4KJxhsdWqU4nMTWd4Z27KGbTqAE/DVGjY80wVauCv6+LltFkrrlA2Wug2DJCzcBlyLjdKzePtXqZsldjZO4Eifw8Ox76RQ68+18y3L+b5Ivfw7vYuyUIAlKzQatSRsqlMC2L1LNPo2sa3bfehWUtb+h0jw/X+q2IWouTf/VxWpkU7j23M622+4BH+mwWPrCT78Xy7Y2SV0HqCON1+eh+eox1h/M0LZ20WaFAk+Yta0mvaydDrz1V5d/aIm/fvo3+eIy50dOkW03czTrvk2weXL+Wp0tVbNvCsVbfZDqOQ1hRmJ8YozmaxDshIpyeu+Q4a1scU2qgqDE+d3yOVqdOZsh7gZHHjcWbLe46lonk9iEHO8Bq0zySP7J6W5ogYNXLCPJlSpmCQDmXuUQJR2s2iHT3Ur7M8JwoSUS7e6/LbvliGC1tUXNYQRRFFHf7ertW4uBG4Xxi6vYHaNZqK56LdHUTjHdc1gkP2lrNd+3p54Hb1mGVEm0d9+qllVEAq17EbtUW21p+sHgzrduWYfDHzR5GdAVqOaxWjTO6yvO5Bj5V4T9vDnN0u869He3ffr5Sp9qxmbfd3MWv/PgB+jpUOpLzRI4eZEO9PQG2ztKJH3mZjdkEoQ29bSUUl0ApVqFj2xo8W2PEbh5G6HFT3qjjeqyPVr+New7yL40Tal0656PvVmg8qFAYqKE5GoqkEqtFyH11hMDYsiGGt+DCblqYo2UUQcUZazL95KsMP7wPLb5MvTbFFs29EkJUofKVcapfnER7wEtpbXvOoupUiP30Dlr7FTS7haM4BHrj2IqAc6pG6msn8ZRVKnYJ27aQ1geI3r6eltp+fXMDrP3onYTWd1FMJaln2hux4nYN7/19uJsq8pxNk8snrWrcTz4xx9T0PL+bX8f/nr10g3t/p8AdzgQtbydfzwd4IFzhYXmCrbEbb9R11SxOEAQJ+BPgAWAeeFUQhK85jjNywTEbgI8BtzuOUxQE4Qc+afWhR7ZRLBSJxsJ0dF2+d0wQJZTI5Se9BVGic7Ddn9molNEaDVw+H/5wZHHIbOV+wXEc8okFJEl6w3I3vlB4qWfu/HTxjZDQeT0IRGMUUolVbwi2bdOolJEVBVlRUFaxOw3GOpYYm0hAxnZM1OuUFbrReLOsXatRbrMylolVLSAHOxFsC0ug7XDUrMAqidq67jhDiTRuSWIw5qPL3Uk8vLKsHF/s1SxaWTJzc+j5Mut7NnMuMcrY0cN4vH4qJ6dpemx0TaN3Yw9z2VOsU9bjDwUpl3IEQ7GlYGvbNrLPjRoN4O7vojCeJhbrJhyIIeWScEH7gye7gJVdQLIsXDftYcPwOtLTkxQOPY//wuOG1tF38wES0TjecITkay/TsWEz1eMnQIferMPUS8cIvud2Dn/1BHee9tA4MUtY9dO9uJ/65rYm9q6N8OWXWf+5k9REk2NelV2NMLGpKsVsFW+hTEdvF7Woi2G9ycatmzl+5gxrvW7esXkznxo5w3jwUtZOEAS+WG3yzliIB/Zt42+fO4fT2X3p1rk7hu2YaPlpxN3DCDetWfH0+Llpjp/Lc/f+YeKd12ZSczm8WdbuhZC8IcxF29+raYPLwSv3856fY7BMsx1PZZlwZxeSJFNMJfCFV/5OlXwO09DxhyNvOGkd3LoN0zCWBtNer2TmG4UgCEsM8Gpxv5hOEe7sunwPsiTxlWdnEQBB9WLVigjiP23n45tl3ZY0nd+el9njNrlFKuKKSPxmb52/TRh81/Tidky+nGjyaIeCR1n+zjq9bt4upQgrcQKCxWNCkYcDXsRiCuR2LhBRZN5ZyoAAX0yU0FpNnOeL+P1hpkdOEensZvJTz2N1itgxkZ5onOpAAeGoSeA1oa1djI5ywUZRcEngVen70W2k/+EUrslFubXplZ8r1orAEyaWHSTbU2Tgg/tZGDvH1D+8QizrW6I3jahF931bmFGOMnDLHcx/5hDxdd2Ua3Mw2VanmP/WETrv3kxdyhJ8zqb0v04SVALtdTkG5XCNjp/cw8T3DuF/UWD+1RRKzIOWbCGmbdIHz1GeTBJa34OYcWHbFqGbBkCE8rk0wz9/J4VXp+Cl1UkIddSioi2w+V33sOnzz7BVqAMrZ5iCHoW+oBtrapS1QYkD3R5uvaBCXW1pfHZGYGvA5s7e12/DDtfWM7wfGHccZxJAEITPA+8GLqTDfg74E8dxigCO4/zAt5+d3XE6u1cPyNfan3rxcVqjQaS7h0IqgTcQXCH3cx7VYoFQRwe1VdoJXg+uJrHzg0KtVGwPaCxqeSqqa8WgXaWQx9J1JFUlEGlbpVqmsaIEWM5lcWy7HbDT7X6nUjrNjz522xX/9jsf3sujprl0M/oB9hP/o63d1djh3/3EVgAc08DSG+1SsiShLCYKkuNg1fLYegvJG+LXPvsM2Dai27/k4vUHj92PZZqIPgnD0MgUEkSDHZimTtrIIRowEG1v5qJ9fdQVNy2tiWA7qEjExAiGYtCzaR3nXj1EPrGAtyNKvVGl1qrS8Jpk61XCppd4uItQMIqr1aCsmzQnk/RElgeLdj78S8BKG+eKIOPbtQcTgXI2gyIIOFoTLpiAb4ye4NzkGFJ3P44oIdSqjP71x5lVFQ66BX62dT+7p2ucic3iqdmknSoD6soExaq3yMxO0/OBO8m8NMHCsIfo4CDjH3+FjqKP3rxASw6xgMgXv5fl+J4AhWde4WemAuS9Fp91TZO+4OYTrFfZhkW51aJpWvzE9s2MjozwPUlFe2A7giAsDXzZuRxCLAaOg+KO4rgdLE2H0VmELe2hxX937Azqcws4ukZ33POGk2HehHFXkBWU0I1VeKjkc0S6e5aY4MsNzpmGfsFA8BtncP8pFBocxyEzM4UgisR6+y8xMTK0FuVcm9mN9/UjSiLVfA7pAlKhWavRrFUIRGO0anXeeWs30zMZMo0AgnT5zyT5IjiWiSD9wJPlN8W6PV3R+VI9zD/kHd4TaPC/trRJp9/cCO8sN/jjpMK3XJvIpMZ4R9TEth2GAh5UWeIP14PjFLHO5ZElibO6TVSw6VBkvqP6SIdjPLowQURR8AXCRHYMs/DSQXS7iagFqH5/mo5iFPtdnSAKzJ44TbC3A60rRzPXwHlvjKbRQhhvEh5rJ3DBVwVqYpHMxGmkaZ0rpWYNoUF2bx1fd4z8zByCCd6Ciiwu//6+tIvkXx7GETWKfQvYEZHKX4ziclQQXUiSTGTcS70vi5ltUnV03LJ7ZfW3aVNMpQit78azxUf21CTDj+xl9huH8Y4LGGeqRLJ+GATb7VDdYGIm0vBqjWgjQv7FcZy5Judl10zLoLHRQavVUUwVYWeQYLiD1ivf4zcGmgRU11K1pFRv4VZlPKpCxRJRejZxk3iWv5my+ZF+E5+rfU3819MOk8SYaRS581KdgOvCtbRJ9AEX1gznFx+7EBuBjYIgvCgIwiuCIDz8xt7W5eE4DkePnSOdWr0cdK1Q7Ca1UnHFY55AkGIqiW9R3/U8Spk0xmL7QDAao1YoIL5Bu9AfJEyjrQtczl3eJMPQNILROLa9eg+ZqbWIdPdg6hqCINA1vJbOweEVLSGWaeDytgf/9GaDQCSKbV8q23IxBEH4x7oZvSnWruj2g22hxvoxq3nMcrvH1qrlkfzRtjV1o4RtagieAK5Wij39zlLvuCTLCIJAtpFF3dDFQmGWZHEBKeTDUtvBKxLuQJivIZZ1nMEggYFuwpFO3G4vbslD8dQEcTmMbEs4+Tqd0V5kUaZeqRAbHKBlLbfHuN1euiK99EUGlwaK6vUKlWoRx3GomxZ6tAuzoxd13WaGd+xGdrswX3seZ+QI6kW/rUsAt97EKeXo27wVNRbH71IRBAHTNPneeo2yX+AdL1qUOxRO/8wuPrcmy8uxMvnFMtvbZ0NsP1TCHlvAXzaxFnKkj5/CbYqcfdd6jt0RI9UlYe1bx/FIA7mvg2Aoyrlui5bi8P+z999Rkp3XeS/8O7FO5dDVOU/PdE8OmMEMcmIAmEkxiKIkW1aWHGT52rrX9y77XtvXlsNnydZnJSaRkihRzCAJECAIIofJmDydc1fO8dRJ3x/V02GmJ2EGIsD1PWtxEVN96tSpU/vsd797P/vZ31U8lDw+pHqVnzHKPNKocF/Qxy/s3sWhSJBsKkVvWxsFuVmSjJTy/LZosHtyCu1IGc5MI0gS1sNDmLvCaEkNabK47ns6ElhemwN71w9NeZN4W9juJVjVwlX5vzcM28DnlNbxVkNt7eQTsXUBHzSrdNViYeXfqua+pf6Mvw/kkwkyS1fnOwPIqgvN68Myr+yZqFUqBKNRxGVllkhHF+GOznWDOGrlIpGOLsrZLLZl0trRxvbhLlpc1+c7/z0EwvA2sdt7ol7e25jECffwdNnFf5w1mCs379GvLvh5qh7kPn2ae30WH53y8ehsC1/1tjBvNn87QRCQJYkpvcFLD3+Qp3s3c8wWmdK8VIdGyC+bsPhqmdRn38Bzfye9v3AXwa52XHGJaqtB+ZvT5L8zhisrUpvKoJ21ER2BSiJHuLsDuWuVFiCKEgEC+C5ITU1hmo13BSHf9LmUyXqyVO4UyQ1UiG7uo2PTJqrfnyPytLDSrHcJkiQTzHrxxBV8kRb8g234BD+q2My8Fjqq6PsV1BfrSFMNwr+9g9J7ZZLtGUqBJo842AjAt5I0JgpUp7MIKZPY+AQs1XHu8NL5D/dTjFZouXsz1g4NfDJtw0NYqoM+LOE60sCfaAbC+cEapYckQu8ZwnNfJx2/uJdMbBEk0Lxe/KqMbdscDfXyWrCX35vu4D+PNdeRX9wk8wddE0zZYZ6xN3M2s/rshFwyfqHBJzuqt2wzt+vpkIEtwENAD/CiIAi7HMfJX36gIAi/Dvw63LiiwVqMXZzi8WNlBgJZfulTNz5VbW320XEccsvdyPVKkwNZLRXwhyNXlKNy8RjB1jZyifjK9b4VVIZLShLh9s6rcnOrpSKWYeKPXLtBo5RJE+7oIpe4+ujRcHtHc7LcVTIxgWgbuXiMQMvVM0GO7VDJ52jp7sHl8bI0MfamJt2VCiWePzzBzs1tDG5q3uO/R/WJG7LdtXYb6Qrd0InXZov/wx900UjNIvtbmmOoy1lE1YNVyiC5/cj+KEZ2EauSxcbmvQ/u4I2/eH3d4I5WTedgoUyfKtC2cwuZMxO0+tpYyM3hEly0htupaT7iczF0vYKmBCn6G8ghlc5aCO3StL9lHxwNtdPitJEei9EVaWaAa/UKc+kpfIqf7vaBlc9OODm0oI/M4jjb/sFvsjh2kVBrO1PPP82Cz0d5cR5HlGk9eB/FiVGcchHP4BYqF05heANoPf0YiRgnv/RneLCR1aajMxCoHhpkfmKMk+Vn2VHcSza2hLxjgCVZxj6d5t6pplzRIbMDDjuAl31pDw4Ogs/L4gtTKCbE6zkWzp6he6CNe769QMYoMvFbd5GcWOTY082hHQ/cbbF9oIdzxiJPpPN40nmWZIXBWoGAbZFq6USkmSUIeL0oioxlFcDV/M0FrwfJ66Fen8WuCkiOg3B4DNG0Md4/giAr/D/pIrA+UP79nrckiLtp25WuQ1+4GhzTaHJSK/lrSldeC/v7Fd7/7gN86euvr/hgVXNfoZZgmSZ6rbkJUt0eZEVZpjLcXjqDaRgUMym8gdAV3OXLjwm1dVxXacK2rWaWO5XcUA1IEAQ8gQCO42xI9QhEWihm0mjXkNaUVdeyelFTlu5/fO4Z2lt8ZBpuhJtshzeLzWTJ9SgtbwHeVLzQd51177L38fk72vlv4+eY92l8zt6Kmp3kX/ngQ54SaUvivw6KSKKb+kSVkuBwoWWEDqNOb2O1OTcqigQunoZMmlOPfADX6DkeeP4JCqqbZ1QN1VJx190UJoqkGlWoOAjb3HR+YB/xLx+nJR2Gs8snWy4Ctx6GypEJFEsCsZkZTrZmQRNomQ2sNFBXNpu0f+QgM194mY6P7cbOZGgdGaL45TiVeI7idALNo5HfbCD5VMTnS3BXAGe2ipmpYx7QMAompa8cR2lIeFn9neXhIKE9vWROvYFsyKQXFtGiAep3isiyF77TvAde04v3TPM9QdqwH28gCi2UR6ska+fQ8gqTx44T7OxAf2aG0okavoc7iN45RGz+CKF6c5Mrd3oIjHSz9I0TSKKM6coRKniphnL0lZLgboaigqohiSJBa4GQ2lS9EEWRtqCXn3OqnEyeYmvYxatxnedybn6+x6THX0OWrj087EZwI8HwIrCWL9Cz/NpaLACHHccxgGlBEMZoGvvRy47DcZzPAp8FGNi156ZbW3t6OtjVkWew+82XIQVBoF6pUi0VaR8YopRNE+no2pCbpWga+VRixRFeT1u4Vi6heX3X1ZK8HPVqhVBbB/lk4qqyarVSCW8wRDmfuybPLdjattwxfe1y4rV0OmVFuW7Qv3YzI8kyvVu3X3FMenEBHIdQe8dVs8EXxxc5MQ+1emwlGL5NuG22u9Zu+3f33LTdyp4QeEJY5RxmIYUUaMXRy4CAY5mYxRSi5scx6ziCyue/cQxLvUx/t+7iiZMV/vd72pl54xRe20WpnMe7s5fs7AJCPkE01M6gu5mZLJXzLMRn8flCuMJRFuPT1BQTj6DRFWneFkEQaI12Ua2UKFeLJIoJeg/uIT4+vu6zi7kM9UaVfGKRslhHdWmYi3kC1SLl0XP0PvQosVNH8bW2U5idQmntoOuOg5yZn2XXRz7J0uQ4Q3feTWJ6CqtUwDjTvL2qAONPfBvKBXyyxM68l4WlPFamSKAhsSnn45IM0KWMoiAIxOQaE0MqwxMNDiWaQf737g3QN9RN2xdfJ6x0EVa81L9xFq8pcGkHUA2E+O8zC+iKCzu06kAfdatEAn5+kCqArJD2h/jK7ALv7etgKRwk5g/iTCwiZGtYQ2GcmUW0SoCGM4GcbCAITcklQbltPPm3xHZdnVvepJyAg1XJIvlvfrN7CfFsjdHz41RqJvlEnFB7J/lk/IrjREla0diVZHlVW1iSN6RRGHodBGHdSOcbQTGTWqFeXC0YLqaTzcTC8mjka0FWVPKJGOENdN0v4Xoa8tdLJqzNEgMUxCiF3LpZJrS46tw5HObVC3mK5sb3ZJUyIdxu+sRbFi8c6O+/KdsVRZH/fSTCbFmnNzPBz0Zsig3QRJFH1Bq/NR3gk8Eav9MBx2o6D0wc56Bow5rqZ0CR+VRmiYpp8uevPI9sGnSJAs/3bsLZso3ExAu0J6MEZ90wC6ZtkO2osvTMaVxZEd2ukxuq4okE8RyxkZepLF7Hi4VFtpFB1+r0/ux9VHJZSl+fI9Ro+qWaXiU9N0clUCU+NY3q0Zh54gitiQj1+QrGpyO4elw0shWUsJeqmqb7ns2kGEO5O4SsiPTe1UNqapZwdye5z5/FbzTtr340wcLJJdrtZgxQPZ1H7ylRPZNAECO4WfWNl+hipmVQ3eYg5Ez8KQ+chdIWP1sO7mT2iWO0Ks1zVY4UiV88SaDmX9EsUF6pUXztAh3OasxR3CLRffcurBcWABNRFBmaPcP0wE5+6WCInY088bLO43GVB0N1ZjNFHs+3c7wuMOi1OCf1Mlm6yEDo9lBNb+QJOApsEQRhkKZRfxr4zGXHfAf4OeAvBEGI0iyDTPEWwOv30hbWOHI2QU9n+Kq84etB83kJt3eyMHoBQRSxTAtv8MrdxeUZiatpCxczaRr1OqahU8nnN+Qbr8Xl2pYCAvlE7IrGkbWwLYtyLkuw7dpZJlGSNnTcpWwWo1G/6qJyu1DMpPGFwoiShCg2NWbr5dJVJYd27xygbkwyPHhtzdG12eIbzBK/LWw3vthg38AoB/fXKRUdvvZkD/VSCgQJORDFXZziPQ/t4rWTM6ScNiwgdY2q53fOjPLpTz3M5Llz2H6H0ed/TFt3N4JPxFUp4PcGcRyHhJUhumOY7NkJEsY8Un8LTi6Daa5fUxqNOgkhh+V38AaizJ46jdSARWmeVk8bquLC7fXhb4+i16sgCsgejWRqjuj9H4Bsmnq1Qikep6HruMMtlE8fZVSvoYXCZONLxM+cxIgtYIkSpq7jHhymMXEBJxSl7753UYwtUj19FL+k8cmzcCJsk/jANuLfOcucD8xUjsU7WpGKOh8f9bPQLlK7dwtn46/RUfSgWwbGQo5YPo5+R5Q9b1hIosTOStP516wGJUfn2NPQTNGYQDNb/PF7LCSfxtdn5vC5fVAqUPYHCcgyQ52d+IrNjYE0U0IxfdSXxpHrLgRNwpFsjEOdCDYI12jsehOKE28L270EQdFwDB2rnLtu89zV4DiwbecI2UwJo6ETn57cMDgUBIH2/tXmxKtpCxsNnVxsiXq1iub1XVcnOJ9MYNsWLrcHbzC0osUuX2MDIykquUQMeYOm4cuxUSBrNHQKySS2ba80ar8VEIxac7qqrNEbdXHo4Faml45QvAqzRZDk5c2lc7vpE28LuzVMiz9cMNnudvhAm4sXZyyeKqn8SrDMH9nbGUmN07G/nx/Xsvzn1lIz9QxcjTnqkSScoREkv5//z+wMmVicYDLF0D98kJmvvEp7orlJyQ/UGPjkvcz94DiyJmDt9dC5c4hSMoNxOIO8Rt+3ss1C3dVNV28fY8+/ChWb8FCEymQVb8OD07Bo6emhVinh8niQVRclXcfcEaZ4skBAVSlMx3ErXtSQB9NUmf67VzExiA6NkJuYxziZwZQMGvESyl4vlQs1hJxJ8B+MUMqkKZyqElxwE531U5mr0PaLd1E6H6M4WcFwWRgBG//2DqzvpQCb1vftZ+HIOdzx5tCQRqHCxKtH8A5FKM8V8VU9eHUPpAABinYeH35coobLWX2GatQQ+/zMPnGUe1015hHpVgQQJdSOHgzTgGyeI1mBF51BYotjnNN7UcKdOPmzfHqLxr78efa33z4FmOsWVhzHMYF/AjwNXAC+5jjOOUEQ/r0gCB9ePuxpICMIwnngOeBfOY5ziwSzqyOWrpCoq+Ty5eseq9dqZGOLVzhSUZTIxZdwuT20dPXg9vluSK7natrClmkSaGnBqOvr9Hgdx6GQSq7jyV3SttR8PixjWVato5NIZzcu99V/3NbePqI9vTedAbmERr1GuL1zReO3kE6Ri8eu0Ba2zDUSLeUS1dL6ku+1kEvE8fgDZJf1Q10eL7Vyucljji9teC6XpnH/3Ttof5Mbm6vh7WK7p8+6OTkzwplzzQXIWd4uC7KCUUgx1B1g794t9HQ1v79klHCs5m90oMfiYwe8CEYF9Ka9j2YVDr98nHOjMXBsNu/aQyGVAgEKVjPAi6XnETSF+MQ4kR2bqMsW9Uweu1C7QltYEmUqxQLFVJJcIkHvrp24o0E8g53MLU1SLOVoFcKkx2dQHBmn3OSba5q3SXcwbKLdPfjDYUozE9RjiyitHWx974cQHIfi+dMES1mEuQnkmVF84TA9dz2AKcpQKpCaHKV7xy6k8GrWy9YN0hOTxKwyhffv5OwON2bER6XLT8wu0TVXJzM5zdKBDk77SxTsOq47h8Gl0hBtHBxKVp0LWgHDNnl1h8Cxz2xhUShd8fv4HIuBzi4k1cUvBtz8WmsIp6FzLhDh350fZVGU+SVHZ2iTSr3PxBlqx2zkaRgZhB2boGHgaApOIo345FmcNyZv2WbeLra7cj2mjuQLw0Za7Rtga9Tg/iERrFV+X6oi8NIr58iVdVp7+3G5PTc0XOhq2sK2ZaN6vCguF5ZprKvGVYuFFarF6vEm4fZO9GqzBHxJi/1a2dhgtJVIR9cVGdkbRaNWwxsKrfRa6NUqmaXFZsVsDSzTXFkjLNOkkLrxzZNjmfz8I5185qF2HNvijTmDP/3rV5hK6jy6U6PPv7E8qOyLIPtunHpwQ9fyNrHbE7kqf2xv5o9zTZuxHbAQeDQi8tviJP8oWuLgnn76h5pZ/GKjQabezECcsQU+17+Nk0ikqjVs20YQBLpGzyAcexULh+33PoDh85NeXMC1t/XSd0fY4iE2MYHvjm7Eh1swEzUKFxcxHl/CvUZbGMApWVSKBRYnxmjdtgmPz0/7+3ei9zsU3CVa42HGvvRjrJRO5sgMHm8AoeagBjyY+ToefwBftAVxsUH1bBJbN+n60D5C+/sxj2YJnFOJTHhoGw2izFp0PLAdp09Fk72knr9A60A/8shqAlC0RdIzs1SrReRDEdwPd+P0qmiRAJUOnQBBZn58DG9vhNy+5r1ybQrhigYQXTKO0BxnX/SUqAk1CqEK0X++n9LQlfx4S7Dw9beiBfzMRbqpvvvjzKIQ0VR6j/yQbYlJTnraiG4b4FPKBT7aWqfdzKJmp/mZboeaZaNJAoIg8F/OGvy7szbmVaQzbxQ3tCV0HOdJ4MnLXvu3a/7bAf7F8v/ecnz4vbu4N5Wlu+/6JfVaqUiwtZ30wizphXksy6S9f3Bl8pFerWI09CtoB5fUFhzbWUcHuNoI0XB7B6Vslu7hreuyE7n4EsHWdrKxpZXziKKI4moGtBvJlL1ViHR2kU/EV7LCZqNBpLOLbGx1o3BJ5kgQBPyRFmqlIqIko7o05BuQSpMVlWI2vdIEcmliXTa2uMJjvhWN0Eu4lCX+5f9y7ePeDrZ75/4amnaOfXtN/EEXH3xwjpePhHlkn47XV6On/5O8/PxhTs6LBGWDX//F/bx2ZIKXp2yCmkNHq59Dm/Lcc2gbX/nOUQ7e0c3kVIzJvI/AeIze9iIz8QqztRTn52tU7DjvG7Hod4VxqgbZhSVCtpt2X88KX3gtJFmGqkG4r4t8LE51KkYAD6mTowRH+kimU2wKDhAJN52+bdsU5zLs6NyFZZv0buokNRZj7973oyouTo3/KVXTYurVFzEWZ1EFZ0U1xQi1Ui8VGX/xx4g+P2qliHnhDUZnxpFrFT6vNVUFdmkH6NixnWLpNIPfPkVZrFEIlVHKJn5UlsQSgixiGw2moza7S0E6vnUGPrkX5fQcsihzZpNN5eE7ML5+Ck9eoD6TQLOkK1IAX3pVIfbCG3xdDfNP7ykh4oAvgiAINMJRPPks7b4IXR0tjHuCCIA4U0YWvJRPncWXCGPKWcwtYWR82NVbG95wCW8H270E2R/FKufWTZS7FnYOtTC0uZti8RjbtrTw+GsJarj58cUGjqNxbyJOpPNKOkFidhpBEIl0dq3Qqi5pC18Ol9uNY9u4fT5Uzb0SDF9qvCtlM7jWjFn2hSPkEjFC7X9/8pXeYIhyLovb31wz9HoNfySyLgFRzucwdB1D12nr61+VVEvEb2wSqSiSSBWbwbQggiiR1FXa3FUO3jlCw7zA3MWr6+Xfbrwd7PZg1Me/rY8xEhQQBI2/2mzyj2dF/kfRxQcGNM4M7EUvlXj03DEI+Pl6/1acllY+fuxFkrJGJRTh4qzI0Yc+SPfpI9RklXq9zkP1Mrn4HC+7PVAsUb3YQNNVwEOxu47k9VKaSCD0Qu1civb5MEwCXLnp0GbB2u9CVlRKL8+hLQkkEqcQuzTaP7CVhT9/nf5CHxwH8FH581Eigobx8gx9SjeVL00h2wJuPDAHjhom/uxZhKpDWyzMJXpZxVVFGPYy+uTLaJaG29bonIuS/cJZZEMElhv2DIPOXbsoJFLUn1jEDDhIOzwUkylcOQnLMpE0lXq9gtLtp3a6ivy6gPmgin9TmEo5TdFVov03DpB+bQLpVJnCxBJi+coNtM/xUf3cOG5UfIcy5C+eotVqgCgR0pqxUV1x4Wnv5N2ZabxagP01ix/ZmxgtvMETeTcTUgf/jzjOkhWkLmqYZhb5FtS53r6SCNfA2MQSlmnT3Xf9Yy85FdnlxuV2rzTMXYLL49mQL2Y2GgQiUfI3sUPfqLFNUlSK6dQVEmo3M6XoVpGLxxAliWBrG+GOTsq5LJ5AcLkxcD1P2nEcRFnGsSwEUcTQdRAaBK7BL16LqzX3eYPh5mddZSE6emwUTZPZtXPo5r/g2xzhqMoDDwIozEwavPSaF8vwsH33oyzNvMprR0aZSAsgKjQck9nxSfyqhaCX2LZ9J/NzCSoNgVQyg0cV6O/wsW/vgxw5epGLswUeevceRuM2R2cdoLm5MpBQRBU12oK3PYoSu/bEnvZQJzVJJKAG6Ak3H6yQP8L4/ASiW2F85ixbBnYiiiKiKBKKtDapGIUlHMtB9ziUCvMMRTfTUFwo3V1suucBZupVKvksas8gjfFzBDs6sTw+vKEw+clxqBSRJQmhVml24S8/J5FUg8nZWUzRohZx865xmcpzdSzHIisKzO9tQdRctARDSOVmUmnQDJKciOPPNgCVyEKNxWePsLOgsrvog7gD4pXPes1uMLXFQzFT4bASxF+vrcsy7pVBN0yOGKuZB3NHC/bZRTwLGnV7CclyQTRA/UAdIdy1wXifdzbsehnHtppjl2/g+CcOJ9COx9ne56O3twPl9Ti15eKYIIgb9iM4joMkK6huN9YaHeBrQfN6r3hNUlRK2Qy2tV7ZRtXct0WW7UZwKZkSiETxhSPotRr1SmWlSe7ysfZr1wdREilmUivDd64HQRB55uKqCsIlJHQ3f/JXr5BvKCBeWU20akUco4HkDV5Tlu2dCEEQ+JXe5m9dbBj8m1k4XHOx8z0jnB/sJ/zSM7R7fYx4m/7AzKQpCyIxIBttw+3S6KpVuJBOoDYazA2OUDZMXmlt5d4nvkYo0kJAFLCPrrExy0FTvDRKGdq3D5G4eO3KtUtxU842kEIuQlMaqqzBIiSVPPlknFqPhT5WxyU07cArL/N9fQZ6tE5DtPHsbKX6gyySLZFpL7Dpw/eRHZ2juJhAv0/DmCngNXyEd/ZizoPsUqidT+MjgL/mpW5UYDnH5VX8LB2/iKcnTK3LIpj0IP/IoeHksNwChbYqfffuZ+nkeSIjmyhKF/BZPvRYnbIZR3UUZN1h7pnjSDGDlloEnqxxKdi+HGaniOF3aLd0hPkxPPKq7c7bIq7eQeQzr+NdDo7f126SnDzHD5QRtlRGCYoWS174d1sqWE4Z7RYTi++4YNhxHL774iymoLB1S+eGTWyX49Luulpq6jOuhaHXKedy+MLhdVnaUFs7xUz6qmoLN4prNandTmyUybYti6WpcaJdvdSW6QmFdAqXx8vi+Bhtff1XZFxauroxjcYKFaN94NoyUXqtRqWQQ1Zd1ywlXm3T0bymDN8/lsUt1H8qg+G1OHvBTdYZZlfnURLxH6CFixzcMs2dy00KAMX5vQyFt6LXXqOQTJLNlTmTUDiTyOE4Qf76+xfZPZxmOlHDJxmcOnmeuZTOWsHyZy46PHMxhew0cAmzVAUvjjPD//jYneuuJ55fwpAsou4IAV1EbWtjPjuLLUKXrxO/46agV3F1Bojnl1ZUJ3LFNIVcBv/uAQqxBKrHQ8NsUhDa7nkPSsDHhR88DpKEZ2g7vTt2cr5conbuDezOPvq27SRx8tiKA1J2HcAdDJN78WlUReEF72lKF5O0bNnOoseLtjiH4PMwsS2AqyOK/dRJvEmNHXMQFjzMCjp9Upj3LWdRAEohmeAj+1h6/DSda4qwum0wHqjTV1Q4022Sdpm4HtxD9fQs/zleo3FoiC1/exbNEJEQ+P27FWqNBixrPzu2jbipCxZz2AUbyRfAZYapxbIIwzewQ38Hwm7UkQNRzFIaUbk+TauGm5oJL483eH30BJay3k/nEnFUTVsXFAqCgDcYwnHsq/qKG4HL7V6XEX4rkZiZQhBFIp3dK8F7MZuhXirR1j9ANr7UnCyajKGoGqVchtae9TbiC4UxGvoKXWOjLPjlyMYWud5kZUEQyJi+q5IhHaPR/E1vYIjKOxkn8jpPqtvYZc1z78QZpKVxHrB1KOmwXMXdLDrMbd3BK4UcKUXDuzjHFhEenGpKQWw79RrHNR/i0iyG14c1OUpvvcrcGtW4YMKD/Y0CUYLE/ugwft2HI642/V5CTa5h7/finC8TesmF45TRww7GHhmOFvHPuki1zBLZN0DZn8F1ovk+3alTdzeQ7wjTcdcWJp54hWhbmLKYwRqQGPro/cw8dRSnZlHeUmbXXQdZiIwiPFNi4YuvM/Ab95O8MIF3WcGi2FMn+L5hil8bJ1D0NjXV38ijt2j4dncgzFvok2X0Tpn+x/Yz+eIRFp8+hTleoPh8s2m1YesExzQYc0B0UaZExz3bKV5cghfX0xaKnjKiLYAqIuzwYmou2ndu4cKzY7ge/QTFE68yUIiRtZsUQqtWRRNFcJrVyA6fiwfabCYSBTrcAhPaICdqMzz45l3FOrzjgmFBEHjPnV2YlnVDgfBauNwe8skEtZK8QpMo5bJrxNzXO6E3IxN2u1EtFqhXyisTk2SXtmHQaTYa+CMtFFIpbMuimElj2xbdm0eYH7uAb3nREUWJUjaDorlo1OtXLDrCTXZlVwv5DZtbbgaBlgjv2R3Ard3yoIK3LcbON6jXBe67u0H7+Gl273HhcjdLpcW4C9G4E1M8Qai7iug9yee/muQjj2xDMKps3xbixal5dkbrdLe4+OGohxcnbFSjxi/9+oNMjM2SqOm0ajr37Ijy6qkl2r0GLS0hXp4QqApeur0677+7h3h2kY7IqgNvyCa+3k5KEynaWpr2b2oCnkiYWqKMV/GidrWQjccR7eZiX62WqQTBkjXqUwl8korHVNHNZpbOrSs04iVU2yK4ez9un5dzLz2HpmmIOFTnJsksLaK1taNt2kzx7HHkWhVdkhEFgaxlo9k2nTv3oWoefM+cw/YGyX9kF/prx6kLJq2SAo/sYfSF89TdJvLBHeS/P8qeYoBT4QpnBwSC0wWk09OESw6LepYuNYwgCLzYUYIP3Un+R+eYHfLjDYdxf/lFNgstpEICyVOzaFWb4x/rxS5XeVl18bLtIHhV7i1m2Bnw8YNkBntPJwuBCHauQC2eh023qPr+NoagqJjFdFMz+2beJym0B2yifptTSw6CKKFZJfyRnU1Zs8sypDfr098qJGankRUV27KRZJFwR9cVCkGO4yApKqqmYZkmtVIJWZVxbBvLNEktLhBsafo0vVqn2Vq/cV79Znxuk8Mq4vK4sRt1RPXNZcQEWcEsppE8t05beztitqzzZA4+3arwX41RdkZFdrg0sHQKjQZ/N7QTdyHPL5ZSHCpl8f34CaZdbuyhLVQrFRbmNTL1Gs91DHIoMcdHbB2qOn81uBX31p0M/OAbTNhR9LtcWPEa9WwJNmn4ZhRCxRB1oYb1qIdGvET49Orva4QdOu4bJlk6h1SSAIlah0D7oc3Exk8QTLjxt7jxt0TJHJ2kZXlohXGHi/aHdjP7l69izVdomfSSOnGCFnc7+qxO6onziOeqaJ/uZ6Cnj/FXDyOqCogGXbUuFo+cJbCli8pDGYR4HQoOtUwBwYaskMVWbNxbW+ncuo3xZ15BOWnQ/Tt3E7swRnJqGqdm4d7Ugd0bpDaZwbe/E32ujPo6VMUq+v0uKjEd+9QsdrJB1bKQBRlVdJGxUrT+wj7KsQylxRSD9wwz9rUXSBwpsndYZH7sLKFKnumWHqTdh3A//zj7x48giiILlkBs+E48E2dp6/HwR60lZHwMxy+wPShy+dS6N4t3XDAMcOjg1jf1voWxi/Rt20FmaVXpRXVp5OKx6474NPQ6gijd8LCIbGwR23YIRqO3xAu2bbvZhJZMEO3p21CKCNZkstvaWRi7SM/wVuZHLwAQjERXeML+SARV02jU69fVK242ciSaWd+rbAz8kRYSszPYtk1maRG9WsEXjtzURkIQBO67Z8cNH/9Og9WweOLpIDW1i9/uOcOdd61uQFLTZURJJuANYNSaWQpfROBXf3WJ1OwFjp/ag6RqaKLB/fv7aO3t4/jYD8mgISguxs6NMT6bxbFV+gINto10Y9eKdLYH8YXCHB87Qdnx4zJz+EPb+PozF5gqrOpPq9T53x6QaY2slq3loknZziCg0RbuYGzsLKqo0N7VDPY0zYOVSSPj0BUZQBAEZrIzuLrCZFMp2kLNSkyrr5XJzCSiYRPy+ek9cIgLmSTR/k3EX/kRktvP4Ac+RnH8AuL0KIbjUPeH2f3hTzL7xnGyR18BUeC3KwfIVGqM/fgi+6ctQkYF0+3j5EKKekgmctceksdOsUNv3r+y5iB3RYkpDkGPwKi7hPiZe0h+5wy7sx5SwyGYmaYtm0fb18H0qVNU37uZsaU42/Ie7j1p4JYDBM7GEU2b4wvNIP/Ao356TR2pAg+INoP9vfyH2SXEcBAnFLhpOcV3EiR34NIgqZuC4tR57M52ejYNMvmFF6kQoI5GIZVEEK99v2zbplGrbUiF2AjlXJaGXkdRtev6tutBEERUzU0pmyHas5l8In4FtUMQBHyhMI5jk56fI9rbS2ZpCUVVkVWVaFf3ik30jGwln4wTars+B7iQSmIaBpHOKwNwaPacOEA2vkSL26TNX0a3ZabzCoJ445xJyXPr2qxvZ/zhvM63XTsQ0hP8Zs+qz52tVNBNG8Htxao2hzX4FIVDmGzKxjn69HcpbtlKj23y5bZ+Ou64k6NHDQ6VmrrMRi5D5Y1jbBIc8u4C/k1D2D6Q3S46B4dYaJzCW9DICRn8riCCtj7M8iZcxD57FK2ogND8vaTzdRbbzkFYhATYL+SIzxRpm1nl6DvzdTKvT+LLuvFmNEqRCu2fOUT26TFCM24YBZ/cQeLlGJn9oKYEBj66n7nEMSrdClwokLswRsfP7KZMEt+YhfOtMnULPL8yQr1Wofr4LInyGaLjXlTRRfo755FqDcxMkTbTT9VXxhAN+j5yJ7HzY5CsAxqWbKG2+VE7g1hVnXq2SPAfjVAeT6C+BsreCOVCjsyZaVoODjF16gTioAdhb4Bzi3mGY5O0SzBbzFK4eIoOx0JctuWkLVM3bRKim+F7Hyb2ytNssqo80n17+61uUqb7nYXk3AzpxQX0ZYP3BkPNgK2yyuXxLQ/a8IXC5OIxcvErB1XUKxUqhQLZ2OVyiVdHOZ/D5fFQLV5diaGcz5GNL234mWtRzKSbzR/xWHOk7zIK6RTzoxdWupADLVFkRcF2HDLxJTSfj0hH1xUyai6P54YWi0I6SaSzSZu4HLlEvNlspyjIioIkS0Q6u3B5vRsefzVUCnnyy6NYf1oRvzDAL7x/J3dvukCwdTWiWDrro6PjV6ik2qiW51G01Sk6+QUP0cgvUddNTsyaCIKAXm9w5sgJ0k4z2+SVbYZGNuEP+tkeKfGBD97PscOnGFuqkM9myaZSiLLMB3Yp/NzPvpsTL75CyCev2AtAA422yPpFt2bWcWSBUq1ILLdAf9sQQ90jze+SXaRcLdAX7qfhNJjMTzbHRTtQLxSQRIliIYNlWTiOg8cbwGVI6BPnGP/OV/FGorSO7MAxbUSvjxNf+nOUQpPDYCAg+/3ExkdppOOolSJqqdkM1YKbQ1MSYw92cOyDnbTVFT7yosG9oyKR757mEyddDOrNrOJdi27aX5pDtiE40MesVye7uEi2XkQSJTpG88ixAhFdwUnl8bZECLa24nhUao/uZNanIwoiD824eWBhfSCWqtXp3jKC4/Hx7bFx9krQmYnz25LJjuLtGdH+Tka3V+cX7g/R7m42EbolC6/XzZFXjlNmufFYUmjp6ibS0UWlkCcbX1rRFV6LzOIClmlQzN6Y0EAhk0aSFYxG/arHOI5DYnaaxOz0uudgLcxGA0FoNl97AgGysSX8y5v7WrlMfGqSUq75W2teL26fH0ESKabTWEaD1t7mpnXtMyWKIpGOrusO7oAmvS3c0Uk+sT7xcele1SsVcGx6hrfxwbs6+dmfuY8P3z+wcs+vC8ug01MD6++vqe7vGz8wBbo+dD+fCC7wvtDq63PlCt86+Ahf37oPJZ+lc80zm9QbfOeudxEfGOLQ/CRdskjQ1ElOTXBnbHblODPajqt3gPlSmfDPbsM2TIwXU+jpIrlYDLtqkvJlGPzdhymV8wgm1KRV+5ZEiWDJv8IFBmhIDeSoBi0ShWgFzdFoGwugORoVrUoxUMafdmPOlZF+pp2Sp4JgClTiGQTdoWHW0a3mZ7gkDTtWwzMmEf+bkxA3aNk9gBp0I7doTH/vMMoLzd4px7GpddukJmaoLmYJ1YL4JxRcQnM0c3DBjRz10Pm7d1ONNggelgi+IpL8xmnUH1UITTW/g7/hp/b4HLlzM4R7upC7PZTLOUq1ApZt4YxV0GNF1KJEfSKL5vXjiYRx+/1ouw6QbmnSmvppsDs9Q0hZ3dRFZQdRgIE77yL7/FPUGw3mTDga6edooPuqz/HN4h2ZGV6LWrnZ2OEJXLnLFUUJj9+/Mvoy1NpGKZela8vIFcfayw1joixj6PV12VxBFDEbDewblO6YO3+O7uGtJGZn6BravO5v5XwOWVHRvF4a9Rqh1maD39WQi8dx+/3UK2Xa+wcp53MUM2kCLVGK6RStvf0sjF2gd2R14EXPlhGqxTyVUonE7DTh9g5UzU05n0OS5esKv19CMNpGZmlxRfliLRzHJhhtpXRpoXKapUWjXt9Qr/kSLtcH/vihAFuHe1e+008bDN2gpW0rpmly8NB67phNnfTCHLahEe3cRTI5CTQDYkGyKGZjPHz3EA+JiwR7p2lUR2nTZIRzOwHIml7+518epmKrvGvAITU3i6ZK9EZlAkE/3VtG6BotYhkGhXSSjs42tnf1cHx2boX/CvC73zlGt7vCowc7mZlaYMtwP9HOLhaWTuEEVQrpCbZ272JuaYLArkHy8zHMvIEgSQiyjINDX8sAAJl8ErPTQ35xgXq5RHj7JgqLMe58769TrhY5ffEFLj79PUTNQ9/Be8l199I4+hIAau8g/Q++h8knvgWWRb2jD7GQ4fM8i247DAZ3Y01LeFUPqtS0yTZd5ULE5gVXjXzUQkwW2b+ocHcuxOZjdaaPv8SW3lZyskz2kc3MPZVElVUYbKMeW+LhV2pc2KJR/+uX2aK5CU2cZqikrUyLAijadUa74QdPV9EsP8fro7w3aXC/Wyb3wS386Nw5wn4/av7GJQjfyXBsC80uU5euzIZ7XAIDm3rxnEpADYq2ly88MUHNVhA2aOJq1GpraGrrU8+CIKDXqjfUSFYtFpAVBc3jWTfGGZqSkvVqlUCkBcs0cbk9OI6DbVnrxstfQnxmCk8gsML7bdRrFDMpgtE2sokYgXCzCc6/pgm6a2gLlUIeUZJYGLtIqLUNXzhCo16jVirdlK67KEnk4rEr1DbW3ivF5SaXiHH8fIzxmTSWqJCqXamUshF2dEl84oMH+faTxzl97TzMOxbxti5a+wbom7xI/5pgSZMliok4lVKR6L79ZCccSDenRyuCALkMcdnFs/e9lw+++AN+3UpjFJK4fauZ5Y9OnsGYgHOqm2x8EVlxYSgWrpYw4Y5OhCGLcmqBXDKOIAp0PryDpZljuC/bK9eFOvV3aZgY2DU3A5uHmDzzKpHHNlGN55CeqSM7Cs67wrQMdhP/H6/jiC58XjeGCL6yBx5vBs6VRxUUn5vCN+aRDrUT7uwk/8YZfEsuUj01Jn90BPF8hcCnh+ls30Pms2/g0jWKrhLdP3+IzMkpjNczFPepOLkS4Wk3CALprgKWCcLJKZRq0ykqokq1UUW8J0BsLoHU64GXyvgbXoKnZBZmjyAaAu5PdCAOy5RLOYRpcPdGsBoW4dcUCpkKlWKRqmkxsLVGh1kDeb3xTjkqimPRJ5rUZi9gJufoLSUpvf/nSc1OIdoWjmngFJzbUpV7x2eGq8UCtm1TK1/ZuXlpN38pUHZoOsCNMpGiJGHbFmZDv4LW4HK7aenuwXEc5i+eR69dew62ornIJxNXzJ+vFPJIskw5nwMg3N5JIZ3Cse2rBsSa14vH70dZpnE0alVUzU2lkMe2bcr5HG7/+uBTVhRMw8ClaSsBdLVYQJSka2aqL0d5Oftx6f4ZDX1Fo1gUJYqZFIGWKC1d3bT19dMxsInerduvGPhxrZ3bmYkM+VRyRXropw2KS6FmvYYpHMEbUamXLQrzvRQTKv5QlPaBTQRa2pgZ/0tEyaI4v5dyWiLYqeOKvAJiHEdo2mtuPkxytBfBXs0AVQQfHrPAoQfvxXQcXh5r4At4aO3r52//9mkuxB1eHq/z8kunKRbyHD98AkFeT/XxCHUObQ0RDIfwuiQkWSJ27iIByUcgGkWNLP/+msPi2CiFYpZKBCRTJNBwEaslKFWaAYgkSdRyOUQE/P4w6fl55EpzEzmfmyU4sImOvQcQFJWlC+cozqxq8jYWZpj58VOUcll6H3ov0e278G/bA0A92oX8obuweiKYssDXDpqcaKlQNCrURtrI9nrJu0wqI62M/fIdPN9TZnS3n05XmEdmvYRemaW2lKRCA6VqEu7oxPKqnO2xyUUV7qCTh/VO9mW9uNZ01ifMIucjdfLv38H4oIJf0nhoQmVH0cumOLx27ixUSoynUsSF2zMJ6e2Ovd3we796P33+KzORYxmF3//zl5gqrMowtgZU9vWqOJepO0Bzwmc2voQ3eKVkW7SnF1lRySXjpBfnr3lN9UqTbpReXMAfWb+pLmYyaB4PhXQKWVFWdIkL6WRzet1lcHmaA5ku6YGXl/tKCukkbq+XciGHbV6ZGHEcB8sy6do83FThoTnoyBsK33D1q1YuYVkmLo+n2dBk2yuVTZfH07xXgRD+SIRIRxfncz5eX3RxdF7EWbPZuJbPnc8YvPr6eeZSP72Z4fvTi3Qefon3LY9Wfk5x85TqJYdI97YdtG0awn30Fe6eH+fLnYM8pXoJqwq/tjDO3mKGwPgFQrLEpA2fC3Vy1lkNttpUlS5V4eLwTgZ27qFyMobqd9O3bSczL55EeL5ApBwm8+w4qYk5zjz7HOplLTW2bVEaNpHDblxBH6IiExudQJtwqMcKdO3eSt3boNxWx3LZxC+MYT0cwH+wl8KfnodejVJoNQ4xclXq6SKiKGLXTOafO4nP9pP2ZJD2Bhl4eD/yziDpM9Mkz0yg6E0f56/7SHzzNPWjScT3ttD77r347u+m5CpTCJXx3tfF0EfupjCXoLTXInenge3Y2F0yoT19lMN1An3thH9hBOO9Pqo7wd0SpL3WRuVvp6kmclSNEpIu4PH4cbf4KQdquPZECIg+ukqdbEcnsiYQrjQMprN5ane9i8RAkz454tTZUc3QFfBRefVHlNMJzEIOVzZxQ9WWG8E7Phi2TINaqYSyRgM3G18ivbiAJMvrMsblbJZwRyfOVYTjIx1dV+3kFQQBB+jdup30wrUd86U59j3D67nNistFpVBYyTALgkCwtQ1JUVA1bcXprYUvHMa2bSLLihi2ZVPOZdG8PvzhMJHOLqQNjMHt81OrlJm/eAHLMFA1N9VCYd1AjevBskwinV2UMmn0Wo1SNkNmaWH5O7ZfdzwpNHWL84k4hXSTb+UR6hzoEwgJeVzUGcsoRLt73vQgkXcCwj1lQj1Np1wvaLR2PIDT6EXS0sRmXiO1MIFgd6GXXShyG3puO/FzQ1QSW/F1XSDYXaSQrCIxQiS6B81YPzgiFHSTTyWZn0tyz64oR8+n+MrjJxmtRBEkhft3tzM8EGT3Pfew/8DOK66vr0Vh1x07OXxsjO+fMfjz71xkuG2Egf6tCItlQkZzI+aX/CiSQs+OHWQXF1FFGV2x8A90UjGam9GQv4UBrZeeSB+mbWAVq3SEu8lkE7Ru3YwoiOSnxtj+wY8R7unFsyYIUnEQYnN4PR6yCwvMH32N9PlTVAQJd8DfpDgl0sj37sAOeai7BGJtEpYiUisWGdy5h8pCHPPsNKZlYt85xOmB5nNWDIl07t/L2J4AfSUV6fAE3WkHw68gdUYwaPoE27GpGc1AZkEscfwzw+TbNQJPnaN7usrzm3VeiOY4FSjhdxSi/gBbW1rZN7gJeWIJ6btnsKfefDPpOwHZssnY2CzlNbGwT6zz4LCCX9KxtNC6TM3B7VE+8J49uNnAv4XCRDq6rjpsKJ+M0zO8Dfs6fivU3okkS0S7ezfUQy/nsisVLm8wtKJdXM7lrjg2skxR6Nq8BVieQnepr8Rx6BjYhDd0ZfXLGwxhWzaL46MUM+nlMbbNkc7qNYYprUWtXCLS0bVCG8ksLmA0dIqZNJ5AsHmvrqO04abGP3wowh3dzXXGsS12tlt0qUUCYpmi6eKZczp58+9P4/7vG5tFeKySJag0aWHn+7Yws/sA3oZO+PQxKufPsqS6mbGh3N7NuZYO/lQL8idDuxiqFPhUPk7Zsvix6sN74C4OK+vpUqZtUxNEYuPjqD4vjiKS+OuTRM668Dgeah0mw7/wEH37drDzkYeId6bXvb9iV+h8906EqkXjK3OIPyqgfrdIWGxBeb5C7IvH8Vd8KFkBfSpHz54dSLKMvlCAkETb+7Yj7mw2PgqCQPiESvAVAdGvYMbLKOPN3957Rzu9I9t546tP0vfYAVq29xPa1IW4nKeTJJnArAt30YVRqjP2/KtknhnDkiwqrjIur5fx144w8P4DeHtacEV96I0q2pYWJo4eY88j76KSL1C4uERlPEXonkHkfSF0R0dwifi6o/R95CAN2yD3yhTG2QK24hDoa8daY341fXVjNto9QumBD2G8+CRts+eZEt2c9ndwwZQomDZelwv/8A48W7aTUoL8s1MKf3IbdLTf8TSJtr6BDV8Pt3c0RxevKU+F2jvIxZeu2yx3NYgIxCbHrxsEun2+DbuiVc1N9DLJn3qlTDmfQ3VptA8MXvGeS5SGFd3KaHTl+gVRIj41gayq6NXqOifp9vlplWWysSW8wRB6rXrdEdGXQ1E1srGlZhbNaGAZ5g1TRS7BsW1cfj9f/u5ZkvUF9ve6efDOfh48uIl4LMWPjifWUSfWjlz+aYPZMPG3WyQT38QVqOIOiqQmSnRt2klLVzeJ+OMkFl5iaNdHSM5dRFFEHNuhEPMTbfk00/MvgVjht399CdW9qn9t2zaf+yJEvQI/94kRllIV3lgUuBSPnJzI0xuWqR9/g0zJBNZn4S8mLL709cPE0jX+yaf3Mj2T4Pe+f/qyq5/lDz96AG/Vy/zZiwSjrbjKMiW9QvzkeUTTQRVVIoFVKUFdg/b+YcbfuEiwtZXM6TN4W1uIRAYpjs2TnH6j2QnvDaJWVkvbaq2MefwlvP1bCA+NYDQaNPJZuo8niSwYkDrFSKJKt6uFrKiTvpgmumBRf+4Mnx4PMB+tsNDiYWn0In5v0+P2ZEUmT51ny8UynXYLnWcBvHSdaVA9NUNEbT6vP95UpzgU4Z4fpnE7EswkCOZNqprAiQM+hN4oeiZHvqOVxaPTvPuZApog03jhOB/O2nzB68E0bnzD+U7EfMnF371a4JKmNcCmdpWH7t9Jrnyc05ftBX54LMkrpxPUpZtXLQi1d7I0MYbLc+0mukuc3I1wuc+1LYt6uczixBjRrisl2CRZJtzRidloUMykUFxugh1Nu65KEunFeRrVGkU1s07ZRxAEOgYGmbt4nt5tO0gvLtB6kz7XG2yOL7/k9wVBwKjXkW8iWSAJEAz6UZVmoO8TKvzMBx5gZmycvqFNfPM7L3Mx68aRrj9E6Z0O27axHId3j76BIYj0BPxMzU9jDu2gd+duZs6fYuTZ7zP53o9SaDQIhKMYokRS13n80LuwlxaozUzyQL24royvSBI/O3uBL52L0vVrByjPJfE8tbo7VNMiyR9eIFNdoJEr05ZpWZd69MsBcl8+i2iIqPe2EtzXR+kvLoIFHsuDJw8I4LE9aCcsZuKvEXygH/3lJLLfxcwTR2iM5tBDEUI5H+JyL5He7dD7yB3Mh89QuFijnjfRL47S1tdP/Csnqcs6VV8C1y430rnmSGUAt+jB9SMLy2fj/fBmqrk8g1sOsPjESaTFKqmzp6Bi4jbcKKqH0okU7rpI7OkzCDMV3HUV50Arc0dO03nHVipaCrUuU57LUDq5QKsaRji/ukHO/sFJgkoQhKamcHLfI3jOHGabZCAXc1iOg89xSPVvo5bLEtmxl2IuS2Z+mq5CHO/RZ3E5Fmq5QUXqpWxfvU/gRvGOD4Y3gqJqFNOpDbt/bySbeTly8Ri2bTfLdjcwhe1mUK+U6R3ZxtyFcyRmp2nvvzIghibv7XJuXbi9AxyHcEcn2fjSFRmDcj6HKMkUsxnCN9DFfDnWNtmJLu26wbTR0CmkUlSLRXzhEIqqEe7oJDE3Ta4qgAin52pUKqN0RDQ6QyK//PH9/Le/eB1T/emU97mE2ILOV77Ty5aeFB/+SI2Z8To9mormt0ktzFEqjCJ7Kgxu+zhjx15GC0l4OkeRFA1JNsinpwl1Zwh0LHHpsa2XTBr5bThinKzpI5Oz+JO/fplkVUFYXuhCcp1D26IcPp/h6OL6TWBA1nlgV5gjF3Vmiy4EyWF+IUU6X+VqRSOfJ4Cn7kWUFQrlLJG9W1i8cIHo8ACx+TkiNIOGZCGOUS0zE1tCFmT8g100HANJUfF4Ll2HwMA9D5C6eJbGmWPUHFAdG1mSEEURb1sHvlCY888+jR+LWsceZh/Ywh1fn6TT3dzktuLh4XMAUSgAEhzvA2lvPyN//TqbrAAgc7Ac4eAxWCvDc9FTQrYFNtebgfBrHRUWIuBRBU4O2rxv1sfg+RIlu048LONp66D38YvYqsTcUBXPI3vI/+AcB5eaQeFQKMSuzAy/Mbzr1ozlHYgziwalb7zOTI4rBjwUTI3CTe4PqsUCerWK4nLRvUGPx60gn0rQObSFxOwUlUIO02hcIfEGzQl2kc7udbKRHn8AvVKhdbjvqo3PoiiSS8QwN6BgXA8ut3tdljza07ucYb46J3JzxKAnKBCOBBibL3Iu6eaL334DSXUBXsr4+Mq3DuOVLeq6xYce24/w/Bjnf7r7lgH4zEWLacfL9wdL5E2bOVEg6HZjNwxir7/Mhys5XrnzPmITY3g9HvY+/yQ7fW7yAkipOO3VIp9Iza4LhJ9y+ShpXj6UXqDVaaf4pQuI1uokN9MyaNypYhd1Nk32NifQLWv7WpZJeR84ZZPQVNPv5PN1ijMJJHtjnyuKEp6KC9nloi44KHe14A8p+B/ZSTGTofT9OMFqgJpYR1Qlzj3xHG63H21fC939nSweO4fakFGzNtJIED1sEd07QubiSSRBRkDA43gQRQm51UO0u4fR6Xlyz0+glEW6/vFDJL52imApsNJLERzXAA3mAUIU2qp03juM8f0qla9OEdSbmzn3ywDqiqJgTa5hRMG76EMQBMruKnrfdoqJGObQDkqjR+gx0qRtk6SgoAXCBKcvoj73OJbLT+uDj1KYGmPf4nlAok1T+TfONGGPizcld7MGP5XB8K3K6lwOB4dweweFdOrGxmPeBGTVRXJuBm8wjGOvz7qajQbFbJpweyeq5t6QW6e63Ss8sssRjLZRSCVweYK3JGJ/CdcjqddKJYLRKPVKmVBrO1/82mEAfvXn7uGeRZ0XxgwMQeNiFi5mHYbCdUZjZzFk74r65uUNdvDOzhbPTTX45pPtbOlJIDg2ouBw4ojJ0yf2c2DTRd79nhRmPYbqUankHfLZ8wSjIRS3guJqPp6BjgZw5Ipz61WJcHQf+fRJ/vVvnl95/ff/bLWZMuKDPXs2M7NUJH5Zw36rT2D/HSPEk0fZ4Ve5MKvzneOXBcJWg4dGFLBM/uW3XsUSVSS7zlAEJtMO/8LnQ7Vlyuk0tXSeKXkKsWFTsqp4oiGccoFAXwczR46zuWMEvysELpipzbP5XY8xfvh1wm2dBHe/i76dm5h94YewNAdA9vRxPC2thDwupMQi0+5x3HNlvFx7Q3rHqRq5c6fZbHWSdWoc664ztAjhNd3bJb3K2CcGMXNlhn7UnDhXCyp4W4NIuoWGhOM4XLgrSs1poHo8BJ4b5w67A+owdLbOZPosQzFh5XY9Xorx3yIh/vHXL/DLwV4OPPrTyYPfCI7oYrrAbSPe6dUq4Y7O6yrtvBn4Qs1pmI1anXBb5xU9IIV0Cs3jxReJNJvVLtPx9bdEr9pYDE25Sds06Rzacluu93p+d6QvwKauAJ5QiEJlmrPxGj//vq0oisL/enwaQVaZzDevdTqXZ1/BYjbVYG1m/6cJjuPw0XMGBhJBwUTEIVur8TPpASJmiZd2WAwlp/CqKoIoMBZfpC5KqJ1D+BYnAYeQqvLLS5Mbnn+hrQuns5dsbAYAX2N9Fbjh6AT3DVOeS8PE+vJ93akRunMrlaU0ebsAOAQnNIRJg7WT2vLdVfQucJ1tEKqF8BU9ZL43jktXsV/IUvHWcO7upjibQBiERiqPGbRpO7iV7MspAiMdZGcXsZ/P0F5ZHkI0ZND+6HYu/vAlEhcncII2nvf30ShVcL7X9IHqmMn82fMEgy34XreoBhRyF+YQK9dWbPDFXcQ/ewxPQUERfBQ6q0gV8JXWxx32Xg8dD44Q+8Ixgnkflssm0tNP/exJ5OVpgImWboqdg7hdLspj57hDbCC4ZYacKpMvPUmHZawE5dlynf+UHKTFLvL7u26uan05fiqD4dsN1aWRTyWuOkp4I1zSigx3dF6T4B2ItBCItFAtFa/QMC6kU0Q6u8jFl5Yz2s0SWimbIdjaiqK68AZDG2Y19GqVTGwRHAfNe2tC9tVSkXqljKyoBJYXAmhy5NZqgAZaohTSKYLRKMVMmoWKhkvQeenVc4wulLlcHHsyp0AOhHc8c/3q0Bug40dx5fjnv5VAlETmpx3a3At0thmIoozqaQZ33pAAofOU0gaNYgdGTUK+RtxXz7aSzI3haKfZaFesODpeTeaPv/QsaSOAIC3faEvn/XcESKVN/teXX8Il2fzaY3dimacZwQKjjuoLcXSsQNUy2DbYQVtfP9n6CU7HYHevxocf28e3nzxOV6RZLSiV8yhbPWQW5xncvY/MqZN0t3diVuq4fX7UoEWunCFOFqVkEfCGSJ0Zp3VwkHBHJ4WzU5QX45i5LCpgtPcS7ulj+vlnCNaKIEnIyUWM5CIB8V0r33FSLSPg0FISCLqadt6CmxazeT9GuxymdviYDBf41FmHGa3CG/dEEMfSyK+O0VdVEYTm++45D8WzSSKSG0loNjCNHE5zTsnh/+C96F0hGGt+bljQOJBgXfAXlWTaygXaNlBN+P/j5uANhcjFYxuqBF0N1VIRvVJB8/muqZhzaSxzIBKlXq2sU7EpZtJ4/H6KmcyK/NslCcxL+sWyoqxM+bwcqYV5qsUi3uCtVbocxyG9MI8gCER7elc0lCVJvkKZ4pk3cnjPpqk2HHRHRZBUXj+9hCgKcNmY5ZKl8eKYwU9rIAzNe1fAhSHIfHvYRpZ0LNvPwXSaFpcFuPCt2ch8vJrDsiyeOJrBkETg6kHVG7pJWZRpefU5ujxX+lzHcTC6RRJfP42/5GFtgFvoryENhEl/+QwuS8X9iS4kRaZQmUPY7sfK1JByDsFFN/VWk4H7DpAOT8MPDYrk6flHh8icncH7TANfxQOP16nd6SK8r49KKkvf8BCJmWm2vf8hli6O4TE1pLxB7n0ORqZK8IRE4m9OIm/20L1rG7HYaSrn4jiGjUdwUQpUER9qoz65gHRWRhBCeEtueKq+7nvUxBpGxEZedHApbiRRQhIlAqXmtMOCk0N9pA+r1qD6vRyKLlN9SKFRr+NkDczvn0bLySBAMO8j+qOvM+x2QWEe2aXSllnCKpcodG0isHkrlWPz+LSm1NtmGuuUflyySNTO0yo1gFsbKX5DwbAgCI8B/5PmZXzecZz/fJXjPg58A7jTcZxjt3RlbyP4wjefab6kFVlIJq6ga2wEj/9K5ynJMrlEDMW1/qHbiA99OWrl0gpHORtfuuaiYuh1YlNTuDzuFRm2tahXyldMmQtEo1SLxSsE8YPR1pXsriAINND48YUGtzIl5tL53kyG+Cdtu1u2qvzTzlHcfteKiPj4mE0iblMcaLDRI2jXu+jsfS+p5DO4g8kr/n4JkthFS+cmYgtnWOvAL2WJCwsttLY/Rnzpaf7s+6vZJdkxGR7qRpFiHF2UcRoWn/vbVymUavzCYyNUigWGdm4jmTvBqSUXX392ii29acbiBuBidEnnqWdPMRZr8Lvfad4qya7zqXujxFI6bRNLqKZI/OIYETWELyviax3k/MIZOvu2ET97gYFAKyFfC4uJaSrZOQa6hhEEgcAd7ycvV8klFgl392LqOpw9RiMYAdtGLeX5vPYsAIZh0PW+T5NJxIn29rHpB5PsLPsZd5e5GKwj9kTpP1pC2x1BiIawHR1DBKU1TMqs4tVh75HV+69JKtplPModJR/tiJw4O0db6tqZh/u8bdy35t/Hni5dcczNZIt/0rb7k4SquVE7bq7sqVcqK9nkG5GPlFUV32W0N1VzU8ys1zVeS1G7HqqlAt1bRm5IPWJh7CIujxdV0whGW9f9Ta9W8QaD6NUqjuOg12pEOrvIxq68hgYaDZN1G7PT8aZd/yTmwPyk7VYURZ4cbuA4Oi6l+ftOlqu8WpDZqm68Fk3XG6Q+8FFSU+Psm7t41XNfUN34B4fIFnKQv7JqUbDzdHzmEJkLs0jfL65z72KbRnBbF4VX8vgcH+XvxdAdG3O3gr83iHdnH4XxGCw2CJyQmCsebQaNePE5ARLfPoVQsIHVNVcqQTWZp/ZKjLmxHE5QJHahgPaGgaZ4yYg52jYNU/KmcZ1s4IqBkCozffIlIsUgqqjgOA65fTq6y2FgUy+CR8aciVG2q9DvQr1gogqr98ze58a/rwOjrlM8lyB8UqIm1qkOWIhdGuKESmU8RdfdO0i7M8h1B1fIh20KeLd1U/vGDC5hNd5p863PHrcoIi12hTOpBex8Cu0ag868msp/2uVwq4Ew3EBRSxAECfhj4H3AduDnBEHYvsFxfuB3gMO3fFU/BRBlmVw8RuhN0CpyiTilbLap2NDRhawqZONL2JbVdNbp1HV1K0Nt7VimSWJ2el1muFGvkY0trnPW5VwOTyCANxjEbFzZlRloaW1maZYl3LzBENVC4QoHfjU4joOtXyl9B+CYBrZx6+T3jfB2sV1v0L2uOhCLK4ihfqZmN16wXcE4qcQPkD2LlDOr9yY700J2ph3bbiofyMETLM1/D9WrY9SvDNRcwRTJ+A+xahE+sV9FajSDM1P28iffOMv3jjYbbARRYqnqZs9wG4GQn3g8TWpxgbl4s6ktZfh4ddqh7jQdYtVxcXiyzv4hL4OhZluyJWr8zaslTscERFFgpGcn29t3EPG2ULBK5EppNkWHSB47R39wgHK5gCiK9HYO0ds5tFIKNk0TbzSCkY4z8e2/pXHuBIZh0HH3w0T2HaLR0o4wtA3TNJFlmdBLU1iORaVUQLab57h4Zxj1sQMUIypu1c1DP8jw4HPNgRvDNR8df/E6bpd7QxWWy1G1dF7rqRG6mGFvrrkIPVVO8DuFGV7JzPF6MY69rE6TalT4v4pzPFG69dL+28V230nQfH6y8SW0G9RRX4tqsbDSd9HS1U24vYNsfIlauYQ/HLmq/NvliHb1EJ+evKLKl40vkV6YX3l2S9ksqstFS2cX1gZDijSvF6PRQFLVplpARye5RIxA9Ma12B2jdgX1Dpb9cX1jf3yreLvYrUdV8LpWNzrJco1aoIszQsuGxw95NEZeeIq7Z0ZZrFSxln+ns47I11p7WTSb//6YWSXw9Hc5sDhNfING2aAYIv7VN6iMJ7F+Pkrcu5rMcB1ukP+zc/jM5nrsq3uxBZuuu7aTHp2lUihQnWvKmboFD+ExN4FlnyOJEsEZN7gESjtMDLtpM+GLGur3inhaQninZdqOeolccGN1yJQ7ddqkDhJ/+QbG9+LUjAq2beEzfXSU21DXVLDUVh+hzg5m/utzNL63hL/sQ9juoe0DOyh016g8qFB2L9OJxmokLkxiNPSV6zA3y/R+bD+uniBii4vgYZH0/zpBoORDlV2Y34pRnIw3k36NjdW81uKsIVKp62zPLyJLEomyzn+5CN8YyzOarpCrrjYrfnVK57Njxspv9mZxI5nhg8CE4zhTAIIgfBX4CHD+suP+A/BfgH91S1d0G6HXapQyaSzToH1g09/rZ99ooHg5UgvzhFrbyKeSK9znS3I7zea5jTumN0J7/wDQlDerFosEW1sp53OEO7rIJVYXbJfXSyGdwrbMDdU5ZEVZl93WvN4NR6RuxPcF2BJu8LH37OWrPzjLfHl9ec4sZxAVF7ZDU1ngGrja+a+Bn7jtpuINXjnsY9/OMv1DTef8sU/YHHntFLv3OLCG/3rulEGxJHDXvRKaP0t+boBg+E4Wzz6LP9iLWVUIRttJz00T7nAR6pCppQO4uJf8wklaN68fNqD5RfTaAuV5D4PDW/j1jnn+9KmmA2+Iq7txPwU+eLCN0ekUz75m4dQcZmYTlC2NPneWD9y/mXwyyQ/PFslYzR29V9J55P4DnDkzxfTx5sKq0ODdO1wovS38t795mbQVpEOr8hs/fy+l2SXCWpTOtj4WGjFwqQgLi2zpWb9ORsPt5BdS3LH3A8iyQrqQJGMmWXjlOSS9hn/bbkJ9g8xePI0sCDyYjdB2toxsptlyqWnj1CJx1cI3mqKz7iMt1ukTmhu5bKNM4ucP4OSyRGI14oAjOHQ6qxvGJalKPGjji1U568qh3P8QkwsxDjZng/CqVedYIMzhxDRSZJB/Vorxs4FuzutFnvcHaZTyfOAq9rA2W3wdnYGfuO2+WezptNg1FOGbL8ep3WJTy83gaio+N4JSNkNb/2BzxHFnN/lUYp3PvVG/e4m2Vspm11EroJmgKOeyBFqi+MJhauUS8xfO07fjSrlDWL+GXEstYyOodpVf+egwo+NL/HhsfZBgFVOIbj9mKYPs3zg4vAX8xO3Wtm3+44xBVHb4rb7mmnJfVwu/b0wSCSusLflPlnW+nhH5B60293kEzjrw5Hs+iu/4YfTWNirpNJ5dd3AutgC6TrdLZUu5xo/uuJfDmRSus+s/WxAEgktuFvfW0etVen7pINnPnSHQ8KOKLtTlrLRtW6T310BViH3rFGKlTklNIsUs6maN4mMijgTmxSTds6uJL2lHkND2XjLnT6I4Ko7jkBop0/3gTgonFvCcaB6nPNiKvztK/g/P0Gq3kN1ZR9/spxyvEnrdQhHVddcsP1XEoUiH2kOjWKfyoEQ9UyL+t80mu9YDQ8TGTkINvCU34pEajZY0LYvNAUXSRIOF8xewTAP3iRo1t4DbdK+kW51DPjbfvYfF4+dxGVBwF/HXVlUw6qbJohZELmYRcMhtvoNwTx9TP/wmIyEvU0WTU+IwRxIm37J6GbET/N87mnb9UilASQ3xM5Vpov433xt1I2zNbpZ7BpexsPza2pt5B9DrOM4Tb/pK3gLYlonm9SJKP3lqtNlosDA+Sja2uDK4YmM45JMJ6pXVRVOS5GW5nTfHQxOE5vS9WqlEqK0pL+dyrxqNxx+gc3DoqjJ1twrDgkw2h7mcubMqOcxSGquSB9vCNvS3qp73E7fd8XGZC7HNnB9zU8o3+NJfenj9NZmH36PQ0ra+RPvsa608d3oHqcWmJnG1aFJMZzBqbgKhEUAmNnWejvZfopJqqo5o3g7C7R2YZuHyjwagnu1mcNd+colFbGfj0u1wl8bwru30d4U4NlXjoQd2093dTgMVnyrgDYVRXCqP7PLSqtURbZ3+dg9f/JsX+eGJVf3M/YNutt2xj4WxMTLNr0C8ovD17x3DZzeDoopRoW3zEIZeo2hXuJi6yOjSeWq1ConcErVahVC4FXl5MEjDrNO6eQTHsRErRconX2fy6ceRwquL+LaKjy26nx+3ZPnrAzW6iyJdcYvhvMaxYTj5ySGOSM3yskdUcY3G6Joq8+CMm9ceDnPkfZ0r2sIAF7a7mXukn5ffHSF9qI/C2BRt4zneqGb5vfw0R2oZPPPnaRclthQzDMvN77ZZ8bEll2CPdVvGg/7EbffNwqtJtHW0Iou3Z0zqrSC1ME9idppKIX/N44yG3hzssTxcwe0LkI0vIb3JtcPQm9SKS6OhZdVFaTkQhmYA0tbXT//OXbdletblsB2BQr5ETW9ufm2jjllMYhYSIAjYegXhrWnW+Inb7VK5xl9YfXyx1Fwv/92UzqcuwmNtGu9rXx8s/VVa5M/sIb6Waf4GJaNBPpViVpSwNm+l7PGRmp/jQv9mvn/gAYr1Ojl/gJaeXtzmxtq2RTPP0EMHMRoNsmdmUYwrh/GUKNH34D78g+1oCwKBoQ767tqNJMqYjoHicSOKMsrWENneZka2GKlQO5Ek8xenCTjNzX1RLbHlQ/dSLuRpLK0O1DKfT5H52gV8aoCqVaHt3hEUTUPp9JA7aJA+pFNVa5Q8FSpqBZfkRpOafszEwjvYitLmRZo2Ccy6mP6TF8EloNO0Z7fhJhj3UPHUSDxYQ++wEcd01AUwwxD57T2kh0srw1/suE7+zDz+IyDu8NPx23dSalnt6F6SPOgHHmK8bydjfTuplUpUxi/Qooj8+YTF9xcdhKWzhCSLTj3Gds9qxXREyrG1MUvEe2s8+FuOEoXmE/UHwC/d4PG/Dvw6cNUmhNsFt89PrVwm1HbjozABTMPAMozbosAAzclzuUScjsEhSpk0pUz6qjziS1mJljUScDczynMjuDxeKoX8ynluRl4ul4ijqOpVedM3kq2dLbn4wo/SCMu8I8cykPytGJkFRFVD8kUQxL//6V03Y7tr7TbSFbrhz7hjv42qnmF42KZUtImX2pGkGHAlNeRdd6coltK0djez7opWXh5F65ArfhXVN4QjZcinzyOIzXKaK3KGdPYinVuhkrdp1BwER8Df5iDJEv7OOImF15ADi0R6Rf71b64GxI2qRTW9mR++oPPNb73EaNpGUPw8+eI4pgWCoHKuEKLjpVe47/2PkZybYaSnTDJX55MfPMAPnzvN4tRqGXZ0sYb7xdOcGs/gaMv3SFI4n4R//8wY7929RDxdInV0mrBS5+BwKx1bt7A4Ps5SapaWfSNkpmP0uFerDoIgMfb6a4R378fj87Hw3FP4RnbSuWWEqb/5PJ/XnsWyLLb2PchSm49gfx+146d45KzArAoXGyUKS4vwoR2c/sZ5NokR3n3Bxaxi8Ea0RmisDLKMS9ZoWCanug20mQppuU7vHTtZeO0oB2dUhqth/tBc4NVQC3K6yrDoYtDlp1+vsXN5euLFRpnxcDvdpY03JrcTb9Z2pcCbq1jdDF6ZtHj14hvgurksbbVYuKmGueth+uwpureMUEgm0WvVDRuNLyEQbcM2TUJt7cCtZZmhqTiRi8fwL+sQr9Ujvh4qhTx6rUq4vfNNB8qm5OYrL+dXAl7H0BHdAaxKAUEQEBUNUbu1xuo3g1uJF/puUCWqJ+DlT2vTBGUR0DipuzgvRck05mi5rFDxi1EbLTPJJ1uaQVuvKKBKEuVgiJHv/x1DHh95U6dh6DjlAh5F4R6jhv/Z7zFsNvii7aEWaOCULVRU3LgJyCHmv3UUDIdAPMLaTDRAsbcGIR+TX3wBl+kiKrRQvlAhWTmHlpVwKV6WXlki+MggwdZWEs4MxfEckU/vpbiYwvP4qvqJR9eIP3mWerZAazy8kt705z0rnyX1h0n/5Wl0qYExLDPyyL2k5+coTy7S+Ym9lBZS8P3VwFRQRBZPn8fT04Ln1wfJPTeF1OondGAzxScmcTXnblFqr1HsMdmy/wDTuaN0nNbQnTqVzQqTR44y8qF7mPur1/BkXQSXfOiLZRqDEvpSgcyRKdRS82LnHYmaIJJ99cf0PfQY8bGLRIpJdpaKnK9YvGAN4BaXcLX4uE9ewLFrPNS6HEs4DuetMDXJR6W+gH+DpsYbxY0Ew4usr+j1LL92CX5gJ/D88oPbAXxXEIQPb0SKdxzns8BnAQZ27XnLUwdvxqFlY0toPh+WZW7Y2HbT54vHsEyLzOICpXyWgR27r3rspclIG6GYSWMtK1TcDK61CNTKJerlMqH2jiscbyGdwh+OUMymr/LuG4OtV7H1KggCsr8FydeCVc4gyC7kQCtmMY0cuHEu3E3gttnuWrvt391zw3areWQOHAKQCIQVfunDF/AFJS4R/l963uL8VJiPPpZmx571mWJfW55GNo8/4iXc7QIWSE3XcEVKuLzNR9cTFPEEmwGpVdwPDY22/k0kYt8n3FvAE5RplMo4BIH1DV21kkA4eoD7902j2zJnXsrgocZUSsRY1sUMSHU8oSiL42OkEkkuTtQRJIUnn3mDaqlESFHIG03HlDdcPD9uAaGVz5DtOh8+1MLsZIpNnR1oosnphM3QZh+O1ORSVvN5ettGyE7Oo12WRTEli9aBASq5PIYkEdm1n46tOzj9za/gkWXMSBvVRIzY5gDVxSWC5+fYYgYxBZPRbRr+A7tJnT5JOZVi5jN7yLyxyMNjMLrHh7BnE4N/cZzNtgcEmFWK5D+wH/uNSR44WWUhcY67F7z858I8SVHk3yphunJ5yoIGgs3nBAOptZ3XU2P8fmQzj/g7kMtxtmu3pfT8ltiuq3PLW+5zBVG66UA4G1vE7Q/eNBXsaqiWStiW3aSIFYpEe66dALhasFqvVKiWCvhC4Zsa1qSorqv6acs0KaZTeIKhDSfv6bUqobYO8on4Tfv6dZ9TTOI4DnKgFckTxKoWcCwDJdSOWUy/VcHwWxYvHOjvv2HbfXRNBvhz/TrpxhzDweZrp/I1/reYn5/zl/mVHo3/Y81t6FEV2qfHUAa3MKCq9Ig2M0vT2JLEJrfWVLUBDmCDIlMbAu9Dm1BUF8XRGDxvIggCnpQKmzT0uI7rsoY9aSSAFRDoOngH5b+boOHo2A2DwEUPCBINR0cKazTqOvMXLmC+kcPfGSL1rfMYYgMjqhJINdVuFFEleBGCRNfV+fNb6gidGg1bwNuloVgKsqQgb+tqPhPlEnLCJv2jUcyajmeNzzYUk469I2TnFzFrdYjI9D20j4WXTuOdb2aoccDqU3G3h1g6NYpnWsRxHCptOj0fPcT82XPk4jEaQyKtHxii9vlJjH6Zjo/vJvmDc3heNrikgJTq24qnfzMD3/9r6q8+w4he5kKizj/LBPmlthq/7RslI5mElRyfTQSxtDCHR/P866EqAyGNf9WXx7TztxQIw40Fw0eBLYIgDNI06k8Dn7n0R8dxCsBKJCMIwvPAv7yR7tBYunrVzOJPUlvWsS0atdpyVu7WUEgl6RwcIjY9SUt3D4pLvaK54kZhGg0CkaZs2Vo5oKvBMk3yycSKHqbZ0PG3RNeNPq6Vik3Hm0ysaCg7TpOq4QtHyKeSTYmey3Az/F1bryL5W7BKzaBaECVkfxSrkm86Zfdbpsf6lthua0HiN56++kLy549evTmlo3e9TaVzLrK1NkrFFO3LMUAu3eD1o2727GzQ2vkakiwCIovnFLr7P0568Syu4dGVc5TTEnZ9M5XyJDg+0vEystbkKRQSFWQeQFZcGPqTKK5V2wu2i+RiX0eUBvG7VQSzxm/83F7i8TRffbVZcvvQ3R1097Rx7LUT9A8N8MlNCggCf/vUBX7nlx/mxMkxvneictXvK2HT19sOhk57fz+vnokDKq+PV4ktldm7VeTkdI3nzh/n5z68h2I6z6WW01huAcs2YalGuDWMqyGD6mXy6e/hr5ao+0Nsf99HmXvlecxamb79dzB1/DBTjsPk/V1YpTKD3z3NvTkDt1Hk7C6TTLVEQvAwdMYhO3+WPsO3ItUzaPoofec0LUXotL10LgEizIkiSZeGJsi4ZZn/rz/Eg4Ucn9B1nrKSHPF4ebyS4uO+dnpElVb12tPSbhBvmd99O0IQROrl0oriyq2iVirSuWmI9MICXZu3bNhIdiOolgpXDDu6Hi7JanoCQWrlIqrmxhdabb4rpJMr51wbDJfzORSXhoCwnFW+Rb18QUJye7EbNSTNh+QJIsguzGIaQb717vur4G1nt60eF61rkrNLusOE0sq4vpphdRyHP5rTaVHgMx02jTOvo6kKab3B1/fcgy8c4SMv/4Aurem/q6bJUy1d6Jka9rklHFFASDQl62pmBWNIpvuxHSTSJ3FdJggk/LhAvUdHPaCCJaAfUGm5Zxvpz54iqPvRt0gMfPgQk999la6Hd5OtzNB1/y5if3Ec312dRIZ7SfzBUYJC6KrfWWrRsIMSfVv2kDw9id/04xgOmcdncbZpOLqFy3ahb9JoG9hC6Yuj+EwvVbWGtNNP5u/Oo/T4qM+k8M0IJPVzuMctKo0KwY9sw6jUqZ5I0PvALhLTkzQwSG0tEdo3wMw3DyMlTEynjqdXawbLYQHPkkLi8bPIs6uBMEDHzAWq8+P0BH0IZhkkeKEukFbbyDbyPNTp4lfOteMg8Bvts/xdUifp+Pn8gpv/N+SgYtMTuHU5y+sGw47jmIIg/BPgaZrLxhcdxzknCMK/B445jvPdW76KN4lqsYTsUlBUFzOTc/T0daLchglxt7PZTtE0itk03kCASj6HN3RrDi6fTBC5QXpJMZ2ipas5QUlAWJmmtDbzIggi+WR8Xaf0pRHMuXjsilGmbwbNQDiD6FofJEje0C2f+1p4u9qubduUCwaZtM37H1PoOn5yZYOSiZc4flzmjfkRcEZ53/tXF3FFs8kuLWCY66WfzFqEto4D2HyfUM8SljGPKIvkFz2Egj/D7OgPCXXrBF1XLoChTnA6pgBw5GFOn5ujWGlwKc1w/GKa8fkChycVnIkF9vY09SFzpodvP3mCdLZMSJLINVTuGgCjWuV40gOOA9hoqs0f/d1pRBzOLxxjPNk8tSm4mKy6mDzRAPwMeArUKxWM+ip9pOFy8LZ3Mn38OFv6RqjMxunx9xDLxKlH2ghs2c7Esddx5iapJ2OUcjkUSWby40PUCkX8lsiBlBvwggCvCyXaHr2LN14+x6OjGkMJVgLhnFHjC7U099Xc9HvXbzT/yN2B7lhEXX7uFkQ+VMyy2bTZ42ujXpjju4LAktngD8pL/MDn4z+Vk9znuzVq09vVdh3bwjHqiC4vVq2EIEqIrlunk91KBnQjWKbZVLxpa8MyGm9KHhOaGvPZ+NJNabVblkm4ozlGumd46xWDQzSPl1w8hrQmIC3nc0iyQimbuS0+F0BQVBxDX+dnRVW7bqPyreDtarcApmXxWqbGfWEXf26cI+so2LZMXm9wOpHlD407iJZz/EKXjrasNCMJAmYhT7VUICSvhktx0ya7az8eYR7vc0ZTocOWqVFB/cV+arMxFr5yFH/cdUVnlsf24Jnz4MyW0AQvhaUq+ZOzqI3m+cWFBukXxgjNuqn98SiuFomkcQE1J2K8liX2RhrBJ2CUG9TbTWqdFq7TFn7b38zOalWEl5vXHm8/gVQG8DY1q6sRON68jqpURVRFiskkkrXcz9Mp0v7QVqquOv5N3VhVHXWyiHhBpCJZKJ/uIr2wgHy2hifjYv7F00itbuytGu6BMI5t4onJ+PQm3SlfrdBysB95j4L9hUX8EzJrw87D9SVa56p8bMC1rjL9iQGFQ/nz9EeaibKPBdPUTBOvpvK7A1X+zwmVTKXByaTFf89u4d7UHL81fGv2cUOcYcdxngSevOy1f3uVYx+6tUtq4nqTyArZHH/2zXO0eGx2bo7y1Jk692zK8d5H9t6Oj79t8PgDt4VqAdx0+TAQbV2ZlCQIItnYIsHW9nXHbLQIyYpCIZm4IoP9JtQcgOVu1beGBnFd/CRs92pZ479ZrPH1aIXpWIRiwcT09PHhg0d59uRenFeSPPZQlqeP7sMoJNix+RSHDsJa/UR3pIKsvkTEu37D522NkUj8HZZpkZ430IQH0PUFDGuJQmOJSPQApnkc2Lhx85IT+j//8fjKa+9Z/v/f/7PtkAFR0RhuMQkHNV68WGVnp8hIX5AOV4W9d+3lj7/8EntHRujoH8T87qvcs38TSwsx9h48xBe++hqLVTcX08BVMn/TlQB//t0JTDWIIBxjV7uJV3VQzs/w4LsOkjhxnv72IQD2PPZbzC5NYPiak/Es26JRyuMyG1SX5mkp+XEVdA6mfStjQIuNCm1LOsljpwhnahQch6DQzE7kjRp/kpvmB209ZEoFBvUK328UCBoNvqA4/CYuPuJvPnutqpfPGDU+babwlBfwKSqqKLJDUskIAj2VEi3K7eG9/iRs93owiykktx8jt4TkCWHr5dsSDN9utPX135bzvJkgWpKaspqtvX0bBtKeQPAKbrSy3GBnW7c2RWvddbh/MiPu3052e75Y5wsJASyT7zZaqAkhfrGcZUIPcljpZebsEb4qj5Cp+dgjTvC7PRJrs5YeQeAfTJ2nO+CFNcHwJk2l+twTfGu8HcurYA+oaCNRSt+YQI2nECIqiuRCiV9d7uuS3w3GPBCzVj7XW/fAcQfwUPFXYacP3ihhqw7ywQjFqUV6P7SXwjNT1P0OXfftJNs6T7HYwPQ5dO3aR+aVCXzHBbgGw9EjeuDxMjIyquSh7KtCm5vRv/4x/R87ROK1i3jOgyg0k1iiJVIrVmjfNEjxlVHchhsjXsPOVVALFphV7GN1fFLz+IapI2QtSrNJ9FSJUNCDuqaIeL6W4GWPhVPp4T21eV5JC3gFg+/kQrSLBr+3c7Vi/NEBF//HMZtvF6LsZxHR306nPkFIVegw03T6LG61Be4dNfurkCvw2a+8zNPPnkSSZDyyhVsVaYsGaNNqtLduXG7PpHM88/xpctn8dT+jUsiTi8coZq60olw8RiF19SEIP0lklhaJT0+RXZOFkGSZlq5uAi1R/JEIkc5uJPn6BhNsbUMQxeYc9XzurbxsAGxDxyymsapvfePRTwK2bfPNhRK/tyBz5GIf1ZKOokBvaJGuQTd2bhpbDnP4sIRTnEWTdJbiLl54UcFsWDzxfZFnf6jzua9u4qvfvHKBUzQZQW4QjX6cWnI7liliNGzaOz+EZRVBLNOoWhQWeqiXr77YmrpJarpOcX4b+YUrA7odgyHuPTiMW2jQEnCxaaiT3r42pi5cpCwG+MErc5w8cYFU0cA0TPLFGm+8MUGuBqKl8+5hm5/Zr9LtbdCu6TwyDCO+DHd01PjZu7zs7nUhO82A/Y5tbdx9cISXJmpYUxmG+3YiiiKJzCKWaRLyhVFVjerSPHpLB0WXl567H8CzeRuuhTzxrUFe7Wk2hZz3lnjh5wdosV1sySgoH7mL8e7VLMRflGJ8VxbwL47xK0qAb+s5Pi8a/FEjT6ZapOSsv2evmXWESDchQaJLEBFKGb7QyNHRsOitV4iIt16dejvByMcxC8kVPXBbryIobux6Gecq2p6OY2MWk1iV6/sP27JIL8yTXly44m+Xpr9dW4HnJ4NSNktmaZGlibF11xdsbaOlqxuX20Oko+uGkiEujwdvMISsyDc03ON2wCylMYtvz/XsdmCyUOZT5wy+prfyUt4CSWHYSnHAbeKxapjZRb4obEHMzOIyKjRsgf+Y8jFb1vnbpTr/YtLit8YavCvex6ls9Yrz71RE3A92Ir6/DaNDxMFGOBggsqUPM1GmFitQ3mE1g8xroGgXyG4qU7rTwbDWK1SYrQKt92zB7pKxVIfgcDfapiC5pSUa6TLaGybJI+PYYxUcy0YSJNLHJnEWm89qob9G6p462S1V6k6dwm6Tpf4UqZ4imUN1ynsdGr5l/9bnov2BbQScILkvnSdwSsZreCmqRWrUcONBytnU00Vqcp1EfxbpjjCRd2+hnMxRt6tY7w2g23XqVg3nU62wx4f6UpXN778H8d7V6vNiLc133DWMWp6f9UyRqhp8uTrEn84oLBSq5C973Ot6gzm1Ewno8UkI2VmmrQDTmQptZoY2+UrN55vFT15z7Cbw3//6JILiYi4W4+UzaQTZRdb2MvF8iv/7V+696vuOnZ7j9WkbgQXe/VAIgHyuwNJSmm3bN63s0PRqlUImjdvrw2zo684Rn54m1N5OtZh/q77eLUEQBSJdXRRSKUrZ7C3zzWzLbOoRx5f4d9+cuT0XuQHMUjMIdrUPYRZvrVHv7Yp/Mm7ydKMDy87jtuocVEQGVYv/0KrCiSizjyZ49rUKhuNFCvbwgbtP89ThEQrlLJlEltNzIwTlBD6lgN+to9dMjh2TGNpk0NHdDLwUt8nchRP4gm3Uq2mCvdMUcz4ENYUcTCPVdqNKXdQLSTRfA6NuYlkWtaJDqKNZoion+mltPdScwCXoQIF/+qmzVLMymjbAV54o8MKpJDXRx4ujdS5Ov8pHHtrM8O5BXMdfZ7bqozVZYlOrzFeenaXquJGnkziIuCWTob4O2vv6kTiLIsts2bmNxMwU7QObmB+7wMFd7SAkOJmAb764iCQughbhyyem2bs5Rzpb4n3vvZPE+BI+xYfVaKCFuug7sJfx40dJzU5jOTaL7x9BViT0ZB3TNjH0Bka2iGwL9C3ajD+CDDQSAAEAAElEQVRznsGl1V6cYdNB8fnxCjKbtSCqIPBM8gLx7mHC6QV+3t/Df8xPU3Js/rES5L2eFrKlLK2ih2dkh4aishRo5f+NT2H0bKUzM8c/b9/2E7K22w9BFBFcPoxcDEnz31CVxypnkfytWKVVSo/j2Fil7BWNW7HpSSRZvmKj3qjXKOezdAwM3bbGutsJo1FfoaFllhZXdN3fLPRqhUC0jWL6rQ1QrXoZu9HcKEouH7ZeuYLC9k7Hd+M1fifTRc1OoToW29w2ulziv/VDr8/NPUGdhdE6yapOrms3vyLOMGO4eJkQJbPMN0pejildvNs4TRsF/IrI9+I1LBw+2rFaCcnMLBDc0YU3GqL+nUXULo3C2QUCRyTyIybizgC2VoHjTV5y3ahgKQ6qo6KKLkreMi2/tJfE2ASBvm7Kr4/iOFDylJA3BXHiJrHPHsNTUFFEH/H/cRjngQBddw2TOFPHX1QpTVSp9wsIE2Ui+SAWDeoYILoR+jz4ewNIgyKZ9gU2HdrLwthFeoa3snDhPK5uP3pLDd/zoJ4ziS0cw5fTMCQT46BGbjpJ76cOkj81By9bYIJVa+B7Tx/hni6mXjuO5FVR7m9Faw+gufw0KGI0akjFKnbNIOgESHzjFGKpme0GiCo+PLUURrSPQd8EAxGN+xdO8WJ4O45e4WfbF3l5SePpnI8PBVLc0RXgH0XimIbB2boPTdLRw/18bSFHqWsX00uT3HOL7KJ3VDC80hHr2Cj+aDN4uoHmq/27eoFF7ti1yrV94vlRxjMSPytMsW17s/xaLRboHBwiOTtNqH09fUDVXJRzWWql0tvOKUOT+zt/4Txuf4BAy613s/vCEfKJ+PJ9uHnnbJVzOLaFIEpIvmtMbnJACXfTSM1d+7h3MGQBAjT4N+0FHgopPJrexJSepzBh8Ji/wR2Petl3MM+Pn3GYmE/T2e3i1z41hcstoXk8fPT+8/iD0NOnYugm3/uOxWhuN7H0JJ/4WHPTZlQUQq29uH1eSvqzuP1e3P5mk11+0U3X4B6WZg4T7q9RSmpUUzuQFTeh1m7yi88S7injiCWKuSmqxlFEUaKat3HK9xLwh3BpHlpCZ5nMLdM2JIWk1cLfPR/Do8ZoyH5oVNmzqZXe4WG8r5/nmZM5fuNnRkgms3zjSIW/enqS4dZpBroCyKrCd779HJpkUzuXocVtc//DBykcbjael203W0INBlwWmuiwqdtPLh7jtdfOcGdrBwF/mGw6h6ctwsTRo7T09jB/8jhKagEjnyUwsAVfRedH2100+vp48MkELXIzCIvOrf42Ob3M8wpYOPyq0/xuGgK1cAeB1Bz/xt3k/h4WLFKKix+X5vmf9PCb/m6+WFzgjEfjQC7OfWKFmL+dI4UUn/TfXv7rTxqiFsAsplBbepva4DcAyRfBKqUQxFWaj1XKIPmjK420l+D2+fCFwleMGi7nc3j8QRbHR2nt7bvl73G74Q9HmDx5nEBLFHODKXI3i1BbO/lkAk8g9Kbebzfq2LVic30MXX3yqWPUUQKtNBIz2PzkKGxvJSTA5Zh8KlLnt3tS/Id4kOfFbv7r9FnavfB/Dbp4dp/Aa5ka/zqRYiBo8S+7BdL6PL1+D/9RrDJaGeXDg2EEweSHCYvfTbbgyCqPRtK4l3uT3D0h2gc3MfZXP6ZX74ZpYNrBdhRCe1oRFYXq0UV00U35kIBroB3HNGkkDNRXbMSGSGFiCedshfTzp1G8GvagRM/77iGztIgT1vC+bK7U8FukVhov6yTGT+JKSCCAuMmDb8SP91CI4v86h73fS+TeXWS/cBblJZlMyyJ2WKL/XQcY/7sXsVwO86MVqks5tvzaI8QTzfHTquDCaFjU9ktUx3J4+oI4kkb6tQka80W8hJHHTITNCslzE9iCheR3UfrWJK6Ij6pQwHIZWFGdyMd2Unh8gnDaCyIE51epJ5ZlcqoWQ+/oYlN8iZ3bmwGyqQWRdZ27xRl2d0b50pTNpNLNf52uc3++zu/s8rJQsPmbpU4CwiT31I+zd0jmL5OzvCdapSlU8ubxjgqGoRkQC4q2LA2zupu9Fsc4EgnynodCKyNxF+YTyGaNzRGNzs5VRxD6/7H33gGSXOW5969iV3UOk/NsDlqtVquEspBAJAMGTLCNwYCNs699bcC+tr9r+9oY+zpgAybaYDJCBIFBAgVQllZarTanyamnp3Ou/P1RPWl3NknCSPJ9/prprq6u7j51znve93mfp7OLwvwckVTbaZI3ciCAbTTpWnf+zXXn4th6rsOWdodXXb/hgnQo18KiEoQgCKsMNRal0z76nQkccXXHped5CIKwmoudXcA2TSLJ5Co+cUqpY7oiFWd184XnOn72RxSRI20rHrf8he8c2V5BVnCNKmr782+xe67w4Y0Krmcgif73c5swzSOFJh8UdvJYeoLXfLjBbUY7f9Ve4LDVQP12kN8b9L/nj9xYJBqx6R3wf9NHHrLYf7ydWOgIl11sAgqNskkwAYWphzAqTSLtAWoFi1DCD0QiHXUyma8T6mwgqRKeMUz/pks48tiPEMQmStQvqSX6ysA+3LREW/znyS/sw3ZHaZZF6maeN7y+gRxYnjKKMyH27h/ksTELRBDUILc/MMPO2SpHZwwu7pOYnZhkoQog0JkM87qfvZJ7frSPh/bluWw4zvUvWc+je47x8AmDgzMPkTFCS/4rV2xJEg7KPPL4CRKd3aBO09MZZ+9CmnvuOcJFAwF2b+ni6bEs13d1Em/vIda7jemjDyAOrue4OI1o6wTrcKC9yUtyAQIrgrPRRpF3UcNolsDTUER/MpUQCTo2Q0qIq6P+PfABL8AfWE1UNUBElLBci7JjkczMc6RrmN91FDYFn2X3//MUoqqhtvVjV7II521CISCFU0v64Z5t4loNvNI8orx6HlIDGo1Kha7h9aseD8US1EoFYu0dFyRrdi4sznHJ7p5nZXihBDS61q3HaNTp6FoOPl3XpZCeQ9G00+b1xTl3JRrVCvVymUAwuKRzDH5yplmvrak3fODAKJNzJTzbWlKG8BwLUQuf02pZDISxK1nkZBei8pNrpvtp4tVdOq/oqCKJPt3rg7LJL1eO8Rv1TkpmCOXoUW43O9mtuPxxe5k7KwFuti36Ww5mjmNzc8qvmNUNg/dMBnGbGf5sUEZXg5iOQ9WyUB81OPHEffQUOimJBaLEfR1nUcL67jweHjExTjlVo/+63UwdPYKRLhMqBwCNkBWEuwyCRKm/PEB0fRezX9hL9tGT1A7NE64GWalTXFcaeDt0xEN1VMEPyKUnm5SyBQzmEZMSThQyh0bRbAnJEuh6zU6sWpPCR/YTCeokfnUH6SePEJ9JkPn4k2gNBfDHgTccQNkeR5Sa2DWTtuFBKk9Mk7x1I7kvH8P1POJ6ADdn4housihjyTZS00IoiUhtAq4j0CxWMFMO9VKDoLX63v28PU46EcTOTuAKy/NxQPAI0+S16yIIgsBb+12eevIgmeR6NM/vZ5moi/RUR5iMrSOqT3JZX4DL+jyebSAMLzDO8CJEJYAcbUNUzz1B2pbFRz73Yz7+uR8tuaHc9fAYR0oRLtvSRjyxzI0UBOGMHK9oMkWyu3eVLNmzRVyu89bXX3kaJeN8YDQa5NOzq5yVEp1dqyZTgGa1SqKrm01dqxexy/pdfvmmFDrLYtvFzDzBSBTXtqnk80uPi2aZ97x5Nz9z1epzAzj1ElIkBacoQEqRdpxq4Zwi/1IwtiqIfjFCEAQkcflWuzih856hGNdWDjEXaONbZYVSuJMPTjp8JB/in6csbNvnQP3g7gCf+94lHHrazzzl5g0kPYxjCQytV6iXbCTzVdTSW+ncZNM+LFMY3YGZv57CnL8oSopEvNdAj4rkx7poVGxG9+9haMdlKPE9RDpW8630iEs28xieOIWs5wnEMoiCSr24ulFKdDdw8/XbuWkDvHSTgOe51B2Vh44bzFdFrrtiHe2dHTw44vNKpwsOB5/cR7tmsKsPJLfJ+MgUL33p5WzqD7Fghla5Yt39yDgdfQNs3LKOf/7cQzx6skm93sRrlPiDX74KQVTIV5rccOMVdFpxhICCnVLZ/Lq3kF/I4AZ03EoRq1zCesOVjOqruXsBUcJr1nADQTTbpksNcaxR5EmjzNciw/zf5IalY6+O9/OlQBvfCQ9xUTDJWL3I16NxalqInmaNiPTi4gmvBTnSdt4KME45g1svL2WSnXoZNTWAIMmnVYDCieSaxkIBXSfZ1bNKluy5gGv7ag/FzNqOjGdDIT1HYT699H8oFifZ1bNqXShm0iS7e3DM1dniUnaB4nya3OzMqsdrpRKqrmM2mqvm88VAuLji/Rbx+KF59kx6q/osJD2C5zqIwbNzlEVVQ460vWgD4UWsnHPbdZVrOsL8j+ActmFwWzXKXKCdu0oifzAb4isFlTvn/bXw/mydn8lt4P2T/usrTRPbA6IdvLwVLnwz1cvtV92C2IC+cg/ZLTXUXxgg019ces9wI0ikEaISq8OuKCfufZRUby/hdIDYidO/e/tIkfwDIwTLKvbRMlozgN3j9+4swukRab9pC7X1DrWXqdTUGpIrok+IxCeCiBuC9F65HWl/k6AbRJEDzD90lMLCPPUNDmwPMnrPowxcfQni1QmijQgay9eiHLYxF2r0XXcx5t1pzK9OIboi1XwR/bUDhG7pp/yjMba9/WV4jxRxj9eIvmKYvl++AjvkYUkutKlUfjTJ0GuuwN1++ud0HRvXMRE9gW45St20uHu6wVsG4F8vbtIf81+jqwp/dUmAv+sb5707/C/+B8UwU7FthEqTdGjPrWT6Cy4zfCH48888hefY2BUDXIc//8xTCIKAU63juWWGhy+M1/dM1RTOhKId5Ovf2UOm7LDQ9Cfm89VXrpUKJLt6mBsdQY9El7Lep15vUDDY2jfPyTmDqOxScnQEUUIRBULhIALe0ufSaPLqy5K4ZoPe3uUg9o9/5RoK6TmePJplpboBgBxOrqlbKbQMNs4Hi5SKF2O5biX+dtzgu7UQH++rsi2m8Y8bA3w3P8uGuMO/Zw6TjsSYVdqxVI1/nsnx+4Myb5wXMawM7z6q0zUi8A9jvSBbdHU7gIAoQqOWxfWWAz1FVVp2sttwqhKpDaPLmSUnSbJzmOmT91EupYn3nz5ZBUIygdAYuWmDqPyz1Ct5kh0DlHJj+DKiPsTQPnKFA2zfshtJDrB9510o7muZna3xlUfKfOGuk3iegCBqrEuYbOoJs27jINVSka5+hVqpyHcfTTMyb3F01gRh9bUMdIY4eego9zw+hx4M4YkCB0YLvOKarUyPTZGvWgQWatQNhy8dyvDet17J0SefwjINAqEIgbZ2grGdjHzn6+yYDzNc15ek1AB6AxG+LoiMmzUujaeQRIn3lMc5Eo7RXsuyK7IcoH2yPMV+x+BWT+E1iQE2hdu5af4gd8oikmNyvFEi55hc9CLNDl8oTs2AioFgK7P8E9O3PW+IkkR+bpZk94XR3YxGA0XTMBsN6pUKwcja2ahYWwf5uVlkVaWcz6GoAfRwGM91UXWdRnV15tZ1bErZDLISIJJcDvwFQaSQnl0le7mIW69Zx8xcnu/vXz3epPPUbHeNOq5ZRwyEf6JSaz9t7Mk3+N10lLdHKvx6v8Y71yWJzGXpUzy+tnCScsjj7shmlPw0X6kneBce3arIFnuBbSELkPjzjA6uQxgXoaW5HzCbeLkFJM9fd0VXIN7eSS46Rv21Qbw7FwiZfuXa1j26d6ynfF+Gyv1TKLNrB3HRKR1rwqR2Y4iey7cx8cBTDF53CXP/+jixur/B0cYE0p99EiUpk9jaT/bxPI3NEqnrLyH3b/tR9ynMjT1BJK/TCDRwrwijEGTwsl1MeE8T3tBN9fs50l/dt4rDu4iaXkcgwMjtD5LwIlgRD+mESfj6dnKT00gLNkpdJn9kArkhIl3Whm2YTB88jBhWaNhV+m7ZwvxdB5n/5n6kqWWVjEW8U9/ESD1Lj9xOSA3xg7kst5lbmZkd4R3rl+eMg9kmt2XCbBJzvFI1SAYDvDqS55+mbZAkGpbBnrkal3bqqzY+zxQv6mAYQJBk5FZ2cnFyXsxMrOX+A37Zqlos0qxV6R5ej/wcaBeveW2ixKEMrPwZKvk8ltlED0fQw2ee2ELRONMnjhFra6eQnjujtXXdC/DklMe2LpWfe+3lfOVbj3MsJ/HwuMdDJ08iKss3QxON25/wg6r/7/Ll80myTFtfP8fuWpvycCFBrFMrIsjqKjkmz3WQQnGcWgEp9OLkDQPM2SKzSpKS5RtatOsqv9wLEOC6LpipG3wnfZivOh2sC/gT5jt6A7wDG9NWOZgrsS2kUela4E1v9seyFpHRIvtWvU+jOUV1rICqB7ENh9JMkmAqi6pLONIRLKOHeHeQxECWJe2xFoyaQ3k+iCA2EdlAo1yluDCN7e1H0VerKoSTAkbAojQzjiBnCOq+JF8xbwIyxRXlsfU9ES6/fDNfu/1H5GsgYvOrv3QLN7kBbn+sfFogDLBlfYp1WzZz8PAEN9y4nWyhzj2PjnP40AlMy6Mr5DKZ9ZgeFwiJKuNjcxxZEJkvp3n5K6/h2J7HSPX2kRhaz+WjwVWB8P5alk5ZJyrJDMkaUquc/xpBZV21wqbg6kzlYzgcDcd4ND9NrKJyfbSbDZKO6NQZ6ejjLzMT2FqKz5TSrI+dma/53wVyrBNceyn4FQPBc0qwZSYnMI0GsVT7ko3xTwKnZqHNZoNqIY8oyadV1lYioOtkpyf9gLZSPmMwvKjiU8nnUXWdaiGPHg4T7+jEqNdPm6s7BobWPM8i9W0t9PV30tffyZ0Hzp2gcY06nm2uyuq7Rh056vfdvJiD4bzlkVZSzFn+BkQQBN7U44/Dq9rBcV2+P7efzwRCDCkuEGBjVON7UQfQOFms0SPA1miUj/TkGYz4fQevrxehXuSjbAYgUJQ49tAjyIqIGg9R6ElDuk6oGSQ0JTO19yDx9k5CP7AQhNVxh+d5lBM1TKuJBySGNzN95CjWsRLp+acJVZY38YqoouRU8nKFsa8+TE+xg8xAldzENDRdNE9DKwIiGGGH7is3MPvD/Yx//mH0WZlqIMe6t17L/If3EHFPVwwyul3WXbSZGdOh1m/Re9l2Jj/6ILU9RzENAz0Qwot66N+roIhBCnM1BE3G3pul/e07qBbzFGfTxHb3I3w1iyovf9aiVaXqGPRpKVLIBFuxx66Yy0RmnMvjNisn6RNVgZNKH4cyNvOOwe9vh03JAN6xIvW+HdyenaMR7eMN5X28YVPsWVGe4L9BMAws8dbOF81qlVR3D8VMmnI++1/aMGeZTZJdPRTSc2cNhgPBIJFEEtswzotPlynb7N9/kmzVARQEQUR4DspkTqOMXcogKBpqau12TqdZxbOauGYTOdqOUy/iWk3kcCurIQh+9/k5KBUvVNyRbnCgYvG2KLxdPMbeps7GhkmbvnqT1RsM8GvrAryhViaprabj/MWkwxfdbXwsMcrkW1bvgn98n8uB40l+9pUZegdUcMNs2n0985N7sS3o6HwVCwvfQdXLtA97lBe+Q6wzwFosqWaxF13eQrK7l+nxb2NZYfo3X0Z69g4C0dMzGo2iTt/wy8nOP4ptnaBzYDPTuVG2tlUwbRgp+p/xvoNlHj/6MCXH/809x+L79+5noWQCp282PdfhG/fP0LV3kle//ArMeoMnD83yC6+/jPHDh7n86svJzc2yru7wxQeL1FydrzxcAgJ4jk3+th+zxR6lEAnj1FZn4g7VsvxWQOCi+gIls8FcOManaxbrQileH+nh9a3j5owan2xmmWyWGRAV5upFSp3DPDk7zmAgxEYtiiQF2D4/yTopwCPlLO8Np/hIPc+W/+YZYkEQ4AKzwD5NrZdCevYnGgyfimqx4CvnzM+d89i23n6qxcIS5e5sUHWdSj7XMqDxEQg+N5rM//65uyjWXVxia9IFl3o5BBFwEfUYZnYSJd6FIKsIaqvv5nmoEf1cYKRq8MUMbJIa/LDtOE/WRR7LuVyZWv1dSaLIa3rj3NJu0XBW/6YPZRu8vbCO1zDDPdscYFkFZV+hwW/MRRk0Zrk20IOrCXRuXEeiq5unP/Mddv3K68g8ehweclGVAJF7GwhUEKTTf6uyVEZ7zSBt8QT5fRMU906SvGwYt6OKm7GQxNVKH57noV/TRSIWxvjEGKH2JNGeLuZDaar9DuphG1UIEM0HSX9sD6GGhiokQYbKU1UWJg8RtPXTpn/P84gf0xj7woNI7TqDr7iMse8/hnpJCrkvRCykkejsprSQoZ6ZJNZQSexfXKc6yX/lKGbEQemK0NAMIuLq8PLbUpGFWJhNM4c42t/HS9ITXBceYjCu8btxgACe53HbmMnxko2lBNlSfZwjqUsp1E7w1Hydne0aHW0hyvlxXpMq80Cxxjf0DThjM7x53bOjsL5ggmHXMnAbFaRIas0dgNMogyAiXYDf+iI9wGlUoJWdBH9QDOpHGOyJ8fiohcGFc8ueKT7+3Qk2t51gIi9S8Xyu2JmoE7G28w8es4bGN/dUYCU/yG1y2YYQR6dqFKzVgfH5UkKcapFA1waMzNgZj/HMJnK0DTM/4wfCjSpqx5DfxBFpO286xQsVf50NM2VJfCJX5R0pm8/Lm8hnRnjfIBwuNXn7qMJmsc6/bw9yrGLy5kwftwjzfGTT8iZuSHUYrGTpUAVeeVeYE+UmI3WH7RGF2482yVpN7vlqgm9tMPniLSeZOJ7DaNbp6n0FU8cPImrLvPRo++oJuZwOIFg7aZhPIaGSzRzAaOZQI2UU7QiTJ6aIx6/CqTVxInto1mxCCX/iibQ3yGS+SSBSQ4+JzJ34Bj1tYbZtuoZSscbIvb60li0EiIcFbtgQ4u69OeqSxhOTsFYg7Bg13nhVEgjyjSdq3PvoGLbjMZKXGZ9IUzIEnnp8H2aziYmK58lgNQkIBpoiUbMdjpaiHBMugYdMYBhFuwfXdYlkt9LtiVzqmPQ2DW4THYR6iT+2bL4SWj0OHzNL/DCWwPUM6qLMu90g35s6zte6hhhp5LlGkPldw+CN7VuQRZkPFcd40DZQlBePTJVdzSOq+poBl2s1cZs1pHDygrMyjVqNkdE5tmwZXDL3kVSV/Ow0oeeYI3wuxDu6mBs5AYKwZoPbSgSCwfMOaAO6TuAUNznP88jNziAIwhmreefCQjrDeCOC1yhDYG3dcLdR9hU9akU818MuZZBCSZx6ETna4a+TF7BWvtDw+azIZ+op7KrIr9eKfCZwCevL89yb8vm3v3S4wdEafHKdzSWpCD8/IjEuJPjP/izdIX8tbFMFhq0cwyEbkGlaNt/LGlwfk/jSbIPxkkBak0gYGbZNt5P55gnK7RN07txEdmaa3PwMmtuGLCpopwTBhtvEujmMOVuBukTmsWNUepIw0SA+qZHLHkXZHid+Uz+lzx5BrHmE5AiiICIIAvadGapShogaonRvhoXJIuLGEB0v3U569gnUUgBREFFNBev6IMbxCpF5nUhW9404TgmEHcemPNQkdE0foW/PIDQEMj84TPxQgMYGF1OtYrpVMk+cIN7fhWSI2I5NTajiyiCaHqFakGRDWxafar3HiJGj6JkMAHq5wozqzysPajYDzRyXrLgOy7b5brUDy3MRxBDv6iohFo4yYYj8Q34D72oc5vJggJcPOXTEEgxmmnx0toYmPXv+8AsnGG6Ul2R55FMyiK7pd8N7ZgMvEFqazDzHxqn6jWBy7PQGDc/zcGoFPNtGCkZwmlUkLYwgCEw2E0yOguepXNxl43oehzI/eb6ba5m85hVXMjk+y5ce8mXkstNTiJJIsvuZTZ5nQl9C4OU3XYx8/0EeOHHhovauUcfDw8zPnHUTIuoR7EoWSY/hmTUQWous/OJvOgJ4rZzhE8FLiJctfi5lUy+O8ZqEn6Gv2i4ZQScXHeZbmaPsCgvE7Qox1eKmJ03GbIW/6mrwnsEY78FmkX/1/rkgjxs6OyYnOd6+C23+OHklya+NZqnfHeCKTW2U6lEKT91D7+DF2I0uypnjRDtO3z27tkwyNUR1fJy+jdfhOXvpHr6YTOYkerRGe/elyLJOufoE5bkhAupG5k/sJdaVR4tIhNvLyKo/lQS1zbR17Wbs2Nf5/p5ehuMSWwYi3LO/SF8qyM4d63ns0AL15uprWJThiysNfvHVm8hnMkiyRIducHC+FVxKCt96sg4E8FyH97xsCFkWGZkf4dbLOlFUFUlRiLd3cGDvQe4/2qRoL2/yZso2d0cibKsU+FR0iD+yT9JuNPAUkbhy+vfyimAbbjlLO0HWBWJ83ihwtH8TG2dHkGyLj/RvRi03eZ3nIgPvjw/zvnMEUy8k2JWcT19qBcSnwm1UWhJquVVUKbuSBc9D1MJrv65Z5ft3P82BrM7Laie4+qptACQ7u0i2qAGl7AKObaGHo+jhn2zQJooiWji81KyW6Or2379l4/xcKlnYpkFAD+LYFq7jIEoXVrUEePSJUcJ2kU0b4+zLrH1tUijhc7RlBSwHlABus4LwDN7vhYhfanP5UrGO0TbIFrHAe4Qx1sdcFpNBx2oumbat/F12jC+mICnYFJ06H5+q87maxi43yzcvb+OebfbSa/4j7fB/aoNcNHmEg227EJtzOLEUB+am2aOYXCOKqFuSjD8xwpDaQ/KSdSycOEG724ksro4dHMEl1Jugks3Rf8tOZg8fZ+DSHSwYx1GmXIIdCTp2bmX8nieQVJuO9+xi5u59hGcDhKtBgpUAotiSVuvQ6H/dLtL3HST9xb2IZahdI+McKYPh0H7pENnKcU7N6Xmeh4eHgED1RglTkgmKUO0y6R5LwAFA0AiMACP+awIXtdOxczNTTz5CY3eASGc/iqbjmja1fJHm0zViM6vH5D2BBsVYgl+cq5NwPB7QQ8QqZexIYskGehGqovC7XWkapk0qIGJ4KoebG+l0J+iuH+db9SjZ6DpC80/xszHY1aHxqfY6who0uwvFCyYYRpRwKjmENSZXQVZw6kX/79ZC5NQKuKaBFE7gNsprntKpZJHCScyFCQTBQ1qhauDUCniOg2cb3PjaK2k2TQ7eNXfBlIszwfM8ElKVohWAFZ3othzi7h8fply3ABXRrBJtu4jpqTnOVnjNz82AIKAFQ/zdbaPndQ1jeZEvfONxpgs+V+pC4Rp11LaBNTcoKyEqAUTFD2DsRglRDiBH2l40QcO58NvrojRmxriy2+biZJC/T8IiN2pXLMBbZ2coNMt8aaHOHzdhR8igQ7IZDW7CNup8fL7JbQ2Bv+tpsDHq3/Q3iTn2KuuZ9DoJ5Ce4Vqvz7sgJ3rnQRedJma+N1qhYVXr0CJfftJHJE2li4V+gOPcNYt2+ukO91EBWJGK9HoWFz5IaVlnI3IGgVViYL6HFq4iShCM/jONB+3qb/HidSj5D/6ZXMzN+D41SjYB0GXXhQaJdFlLwBAvz83RurPGubSepzKwn1b6JoaGvEkzY/NPnSpTdMCt/+rjc4OduGuTR/bNMZKHRNJiYK/LSW17C8Mx+spOAWcOTtaX7TxAlvnjPBAICHTEVs1mnUa0gSjKNepOB/g76c2mKrcr3vzd2YzfnubEywyt1/z4fkwTceAdfEqLE1zAdcDyPpz2TdaLMdYEI28wKJypF+tQwd/d0Ic+P0gxGSBs1hoL+PfxiGtOiqreSCWf4TIKIUy0scU5do45nGeCxlJU8NRh2jRoesPd4AUGpcecTAX54yK9CebaJXc2D6/Cylwxzw7Xb+fSXH2amvvoc59tkvBaqhTyCKBKKxVd/lMVmtbg/yzq2RbK7t2X2sXbAWS0WMJsNBIQ1be3Xwl9/4QidWhPXgwXjwp3mPM/DqVQQ1Ah7p+FsZoeLKj12yfCNU2T1vNVAno84YKoMjZ2/BKctZKGa4w8juxAECQz441YB02AKFia527ZouyeHrIURA3DETaK29fPwdJWeJ2UEWUFprW1Os4pTy3Oo/VKMqUOIgSBeMc0J0UQNB/l6eQ7xoSBuU+XtaoTRsRku/a1reeCRozw06mekP/TKi2g26/TEklQrRVLbL6E0XaJTb6M6NkeiO0XbOzuo1stUTs6xbfslVIbLzIycZOhVV1CYnSNg6lRDNna5yXBqHc1mnfxYmu51A8QuTjCbnUTf1EOtc46+aD/ZsTSDW9ajXbKiT8fzOFk4gSCIDIYHqJfGkJoWiqaSunKQnhv6Mc0mtmURDPl0zT87dguCJRG+r4PacJZbnQ9gpS3UUADDrKKpUeqX1/jywAeW3seYb8eYW48ol/n2TYeoj+zCMX8OZeDraH2TfFcQ+O4pv1vd2ojTGCDYeS+upeDlXkM6eJy0+DaMzNPILPD1xH7uko88g1F0ZrxgguElfukaEERplci4Uy8hBkJ4jo1n1s/IjRUkxW/aCsZOK9U71QJSvBvXbPKlu07geiCIzzxDIDoGEcWi6PiZ68FIk3e++TruvOdpHp9YTvELosQT07BYPvYCUT73jScxXIHf2jh0xvN7HsRSbRdkn+yJErri0BODsfN0QnabVVyriagGkSJ+VuhM7kV2JYdrGQiShBLrRBAl5ITPvz41aLArWXBdnwbzHG04ni+IqAp/OQyZhsvHpw1en4SuoL/5uG3e5Lbwbq4sH+IJpRchGODxZoWn1D5+r7mHWcHjYTHMU0oPt6cP8oFWMJwTNdprs7w67vCWDomT9QCfq8Swwh3caj7Np+0hgo0sb0+IXHfn7XzzMo1S7iS2YJE5GcNzTOLxV1CYmSHW/ySxDn+iVHsrraueZTFgDyUMqgtR6iWL5FCOcnaW9HgY0esF95h/WOv3DKUcoECz6mGkd1OvpEH5MrFuEASJihfh1HhRADRNRfBcyo7Op+/OgKdx8suPkqnLhGSHX33bDvbsG+PBkeV7pTuusKkvwr0HiiwUGvT3dRAIBvnsN/bRMCzsUGdrQ2viORZSKMUTpXkucgy+UJ7idTYcbub5Nd3gHwWPqCARVDREQeRIo8D7mgsseB4bZY83WE3SnsvvKVE8BaiUuF5tQ3JgmgbvzM/TazT4YvczD9SebzhX09upc6Zr1JBCcexS1p9Xw6fTnwRJxa3lQeA0SUW7VkQQZTzH4uFjZUZmHmG6qiI8w0Zxz/MozqcJxuIEdB2j7jcHG/UawejqhptTm9UCepD83AzxjjM3sZnNBvH2zlVSa+cFQWCoPcDCuLkqEXLGz+E6ONUcgqgghRN+ttexT3PyA/83cBpVPLOB0j7oq/rEOtakfziNCp5lIKramud6oUOOtrU2DzkEWUEK+g1jnm0hB6N4rgM1G21oF2Z2AjXVh5mfwZg5gud5KPFOzNwKi3DHBtvGKsyhtg20tLMNAp3rMBfG/XiiMIMniHzj/gkkWSHWPsNC0WAgZNGoVpmhi4ZbJVVo0tlaCzXt9HssHIzSNJuUagXa410kIimOHDlEsD1JMZ9HDi3L52lakJ7WOSby47gRCePpEbrbfYpOW/L0Mex5nk8LEvy1eENqEwCFfBZJCoIGM4051FgYt+oSDvvfneqF2N3zJo5k7+ZA4U6uXfcOFCXA0yPHeXI0T7z/83hJD3MhgpKqYKRfim30Ibn7ac5l/Gy092GMhdficTd69xiu6yGpot9I+PQt2JVB5PggduVRXCOFHNtLoGuMxlgEfXAGvPtQOucpPPYWXDNIZNs3UFOV0z7jBY+X8zlIEIRXAB/GX/Y+7Xne35zy/O8D7wFsYAF4l+d5E8/66p4hRFVfyhSfTZ3gbLtkUQ+D1UTUguTMZ18mu35bmOuu3sa/fvFhsmaIfF1g376TTGcNekIel63TyRSaPDIhniZsP9vw3/9sxiIf+e40ujhKQ1g9qYmOwQ1bw4xnajRNj62DER48UsZEQzIrvPbWq5mamGXs/jMH0UuTsRzwJ5Jom8/3DQTPqiThORZKohszM4oXbfeb9s6UOfNAiqRw6+Xn1Inu+TR2P5sR+Ji7gR+cPEa3blE3LSzH4abAKLtDFqVKgXxT4hKlSpfX5Fc3pAiqCn9zosJncuNcNby8qdtjBilGU7y9fZLfnwuxT+7ijc0DbJFV+kI6UkPnvTGZAQ3uz7q876CLIJzkG4E+Ste8lOnHH8HRm+gVE1E6ezazktXp6Hg92fnHIXaCSEqlWD+CIHqo4QqFiXHC0Z1UMvuIdLToNp6HLGuoepBY1/L5/+jXDi/9/dcf24wgShQbHrVqnf7uCPszBj0hg7opMG8EuXzQobc9wvixEwx3xciWChzN+iXH4e4QV1y2iSeOPUzZjtDRP8AnP3UHhWYYt2EQiKo4tQyCFvHdKis56Bjmn7PTSHoU164iakHCAZ2nqzn+LqhwS93kj+PD5B2LQjiJW5rnekPkR+T5j2iU8XKRv44OsENP8oHCKE+qCjdV8thdA4zNneTrlVneFHluGm6fT2P3fOHUikiRxBk1bAVZ8ZUm1npOAEEL4dkGJhpTVZ5xIAxQmJ8j3tFFcX6OgN6LEghQzmV9W9xajXI2g22ZxNo6CCdWJ1tCsfhp2eNTsdhMFG07fQ7Mzc7geR6BYBCr2VilVLF7c4LLd29m7D8eJGudORj2q5MWnif4jccta+vFoG4tuEYDOdbh29yvoK+sNe96trGsKPEcBsPPp3Hrb8p8yohXsXCadURVxzXr4LkIgoRVmsexDKzCLJIeQU32YtdLfsV4xVrsORZq5xB2OYNnm34fTG6mVR3RESSlZXwSodYwEDWZ2x4toztN/uA91zE7cgLbMnAsC0k9e8LH8zyqQZNAOEytUCYUitIV7KLZMEkk+xibHUGMaoxnRxlqW20EJgc0IjEdTTs9SeUHox6iKCLYoHfGKReKiKJEw6zTlewlV8ow0ZymVilRbVZoKkFUM8CB3tewpxzmwOZX83JRZcgY59G+QYTD93HgEEhOlTsGLuOuaZ2/yl1J//Qh3jKQ59OTFTKBGxjOdHDE7Obnogf5pjrA72i7uOf4Tcw7Ub5/3VESQZlL9w6woIXZ3NjPXTtvZNt/bsYUAjyxay/BYYVvnmjn94/v4Ofl/XxW34btlrh4+hV8cWsVVTl3Ek3g4BmfO2cwLAiCBHwUeBkwDewRBOEOz/MOrzjsKeAyz/PqgiD8OvC3wFvOeWXnCX93twCifNYM8dI1yypy9HSO8IVA1KJ4VhP5WUp9xRWDLX1BJqbzBPcep2L6X3nV1bhjbxVQuWV7gEsu30p6YozHR6dxpWfgpiKpNNZoRgrLJtdevZXY/uMIrsPmrcMcndjHbB3cQIzP3f4kTQdWNtadCqfqZ3ms3DSIInYle15e9qIWxkyfRNDCq8wU1oIgKzjVwnOqNfx8GLsAX5yp8aF0gCHJZJCTHDFF9un9aI0Z9IDGJs/k771tfG1ghIujIgFldUbtAxsjvM91EVfwzj4x0KBgTrI+FuRNtRobGhP8780RIqoDxHhjY46wpnHFYY1MIMVLS8dYF4+wtZTle4cPMNSs8vOHHkcUBD4ZXJsL36w6GIUt2PYsC/M/QlDSWIaNEpBJDPilhNKcRCjSS6q7j4XsYcAPhrWIiqU+gF0ycExt1eRfKwiU5yXefUsH+49nOD5tooguolVHc2q8583XcvToOLc9WiYZEuhsC3Pi6AKbd17EyGQOz3MRBJEfH6qw9/jDFOwQuZMm+0YfoWxEEQPa8njzwKnkERUVQQ5jFeeRoimcSt6vGIkyX/KC5HWVoFVCb1ECrgl38P7sCAelIK8PdaAJEnPlLFcry0HDtFmjImoMSCpvmRnjS8ku9lgWb3q2A4bnx9h1asVWRj1xXs5zZ6NKnQ98o57cmv0dFwLLaFIp5LFNk2ImvVRpEiVpydY5n56lc2gd+fQsZrNxttOdEYIgnFGKTRAgkmpj4vBBOvoHcezlnoz79+c5MvooC4Z21mDfcx08BDzHxMpNIelnN9MAkCJJzMwYghxACsfPeqwYCPmBsP6cBsI/9XELfobcKmUQVZ3m7AkEQUDr3YzTHPepk7kqavuQT5UMJZYql4uQgzEkPbJq3ZJamvpSOIVrNvy/9fCqjDMCOLXSUsJIVHXqQojHHniCcFBlZ0cP4bbhNX0BFjGVn8STQGhaOBUXJdKJ53mkYv795XkeaBKxzk6amfyq1/bHBygXCyjK6jm92axTbBYomRXUUJAOEtSsKl5FQnNDlJUm4Q1dLJyYo2HVcEI6nuuh6kHkYIhysQgaXBapoD39cQZ1k2hUJHj049iWyUfCF7NdyzCYUNhas2kbm+JII84/jid4c+c013ZN8w8HwoBHf0zmvuEfMZTSefRei6DTQBL8ysVtLznOR4/Gec2AgSgK/Pnmk1gOBDX/82RqNpbR5JFsiK9d+ijvfTjFfnEz2dpj9MSfXUX5fDLDVwAnPc8bBRAE4SvA64Clwe153n0rjn8U+MVndVWnwKnmkcIpnOr5UwCeLURVg+dAf/GiwRA337CD/7j9Mf5zb4WX7whRr1s8NL68U3/gUJmRsfvJNURc9cIC4XOpPpTcMN+64yG2DscY2ryO79z5ODPV8NIkPFM/92eUQnGs3CRStBPPqJ+3Y5ykhZG6NwI+vUJQ9ZbmpYEgKasyHGfLdjwL/NTHrmHZ/OWsQlVLILtV6koYySnx77GTfN4U2eeobKEEnsDRmsvb5pO8L5LhoqDAg1WJ3+iGqu2yJ1thb0Pifesi6IpMX0ijr7UfeXuPxtuBPzxp8HTTRRI8frsNXqUL/GmqyIJVZDjmL3hbtQBb0y1OeWtCfu9dpy+Gn7i1ilETiacuoZQTiPYdJz+Rwi5cTEO6j8W4J9btUpy/j3TGINUfYiW/tFGWiGhvozT3JInBZdctp3oR8XgPeCa7t5e48so0krmBnoEFGgfa+M8fPk2+auE5Am2JCJIAm7cM8ciPH+XKK3dhOkd5YlbFEQPkSnU8NweCQEVW/dKl2VgygRH1KE5pHmwTOdqBaNTxXAe1fQC7vIAUTvIGAUDG85L8nrA8DruCce5uZPlsfpyXh9p4e7Cd99VmSDWL/LKe4iJEMkgMBcN4apDNjSq/rD5nVY2f+tj1HBs52o5dzv6XGOL4Rj3P/n2qBd+QyOf79pCfmyGfniWgB5eyvbG2DjKT4zi2RXv/0LN+z1PhOg4zJ47R3ttPo1om1rYc4FddjWr5PLLegohn1lASPS0N9vg531cQRAKdfqbQvxeafqKhkvOpKSuSRGdSCXmW+KmPWwCrNI8UCCMG47hGAyXZizE/gihrPg9elHGqOTzb9jd9tuFXJhtVBEX1NwqVHE6jghJO+vQUUVq6DxbVOOxqHqucxW2WEdUgSrwLcVG2rpWZFUSJH5yUAI/rXh8/57U7GuipJIF0ExePtFxEKDTpTw765xMEBsL9lMfz9JxCgRBFkbxUIRAKQc3PKAPkm3mC67vJHy0iKTKYHkEthOhAJBTDrheojc3RGe2gUbMw6nXcgIikyDRLZdxwkGrFJKyr9AYavOX+AYb1Kh9+SYk/OZJi2Jmg5saZKtlc1yfzxtkZvjOukNYuwhYzvGzY4u+OxZD0NvqC+xlu82kdX3ppASggtKyl28MKpqDxzRMG00WDX7xI4SMHdV5xdxv/sGMM0RPokCpc0u6iKRK9CZ1bk0/RE3/2zsDnEwz3AlMr/p8GrjzL8e8Gvv9sLupU+B3LCwjimdUcXLOJa1SRwmtLr/20sOdkjfn844znBHBMNgwPUciXYXy5qc8gwFj9wn5MzzZBlM7JrxUEgY7OJJsu2sK3vnU/B/PhC+4oFiQZtX0Yp15CeAYbhEWjDbu8gCDKS6W5/wL81Mduw7aR1DCJ0iR37dKYNetIAlwUD/P5gkVTDPLmzjIP15pULA/JdREF+Hg+yP1yH+0z+/lgKUVT6QBRonr0OG3RGK+KOeyIr/4tDpoao3Icw4X9zXleBbz2lOaf2UqVrlDwjJkJx3X5j7Y+sidMUhvGKGVuQ004LPKHXcfBaNoULYVYt+tnxzoVQDlNe1WSPWrFGbwVlt+O5VBvHMItTRPvnyPRFfBdIe37CMkSgtTFk9OePzmKLhOTGa6+/jIee/gpnp6GjZsL7NyQZCy7QM7UcYyafy/gVyJEPeJz4UyfH+qaddRUH3bZ57EKkoykR5dLmyvmilPnjbsbBR7xLNSuAb5VmOVTVYcTmk7WqPMXZoHjbV18ouGyLdTO18sTjMTaqDdWW1s/C/zUx64gK0sbhrXgeR5ONfe8czGLtXeQn5tB1f0Fd61+CkmWz2h2cSa4joNjWyiBc39WUZIY2n4xU8eOkOruOatm/Jkgh5O4qu5TT9bgX58LdjWPqGg49RJyOIFTX7uR/DnGT33cAoiKjmubWAtjBNoGcZtl1I51LWUUzafkiBIuJgJ+Q7HbqC6tTWYlh9o+6FMEzQZe2VmT545jI0fbsKwmQmtOFbXwKtqJazZ91Yez6PrP5CexggIxUyclRrHmGsTj7eSLC3iOg+s4zOdmiAbj6HqISChGJNTKSJ/KBzdsDGpILYlHz/NQLJHppw7SGWonLrShhFXWu2E8z0OSJDqUrqVzyGUBBNCDIcIVkYJnY5hN7jTW8SZ9mrrhcixrM6UGeXgiw22lLUjNeRylk3Rtmv4Y/KjUzXysi38bvocZO8b+eZe/vWSGg4V53rR5uYJ96px7Iu/xjVEFtftqvnkyiymNcqyqc9zp5TNH57jdupr39j/JH13a4PNHFA6wgV1uDVitJf9M8Jw20AmC8IvAZcANZznmV4FfBc7bZEEQhFU7WqdR8Qf0ClF3t1lpSa/lLiiL4dkmTr2MoATO28ryfLFW1/Nff+phXE8A6ZktHnHF4BWXtREQLMYzBj8+ebq+3qJMFUBQaNAZUZk+egQpFEcoPfONwjPO3ooirlFDEASkUKxVmntuv+tni3ON3ZXjdiB5/oYKcV3jrvUVVDFIm67y1+Mlao7HJ2IaH98g0rCy/NO4ySeMXl6iFDm0tYws6VxSqHNZ5SRdskjNFQjUckQkh0hY4V/d9czmJ/hwHP5xoknVEfiTYZXPDxmUzWlmDJcrU34g8GvHDJqeyGc2SfxgoclvltbxK8okfzS89vhzXBczlqTdsnjPnZlTgmYD29nDP+zYTCp1Bdm5rxLv8ReSWtHFLV9FozFKQO/A8RZIDi5A4smlV9umTWliJ4Il0dU3zOihu2hbVyHepSDJ/nj95RtnCIe28x93zlFydJJtKUqZDN3tcX48afHw/gxX7ejC9t/WVylRNKRgDLdWxLMMPDykgL8YyeGkLxGmR3BNv6phV86c6bwWP2B4kCjXSzp3iBJidoqLPIHhRIpP2wYBLcqnylNMOgb3WB7/4NV5kyfxSw2bS8PPrsT/THAhY/dCjG1W3u+ebeLZ5qpF3qnkkCIpnMqFu5jZFX8z/Fxkgk+FKEmrZCijbW3UyqWzusudDbZlkZ+bpVGtEO/oRDEMgtHVc+GpMmm1cpliZh5V08/JPT4bnlX21nVwrSZSKIHbrCEozy8py59UvAB+85zbrKGm+rCK8/7nlxSkcBLPbIAa8jfHsgKSihxpw7Mt7HIWQQkgNCv+BrqcRQzoCHoYz7bwPBe3XsZzbMSAjhRt8wNsLYzYqkYtjm1BVv2g3KiC6yBEz5zwcvAIpVLY0xUSK+amZLydmG2TEdOoGzvJjs/Rry9TFEeyJxE0BadUR4mF6BCTrGvbsOrck7lx3LhKONXBzPQMtXqVnq5B1Jac5Nz8BM2YgFz3/OyzCJFUkkohjyBJdCmdFAMNQq1o8WBBwdASuNEOnq4W+bctjyN7FnFtlIu6/O/go5dOkKlP4Lgh/tfENVw2P8rtN81xSZfLGdVpgMt6FfqjIrPFebrceS5Omvz8hiy/VcqQbwr88IkRDrsev3R/Gxv1Kv+24cdc2Q3PRSh7PmeYAfpX/N/XemwVBEG4BfhfwA2e5xmnPr8Iz/M+CXwSINC98YKVkp16CUFSMHPTfhk+FPeDYkFsKRtc2MThNMpL/B74yQdo1rNQpAAIKS4bNw8zevgIlu1wqnr2jk6Ll+zs5Wv3TlC0dRTBo2d4iKmTo8zmTZ6JhNqzhaRHV9mT/1eUXFt4zsbuynF72eDgBY3bvrD/4T9wvM7Xmr7JyKWPHsdQgvxsxOTzpTBoEDEryJKfAbosoXFZAjxP4UtKic0hGRFINwSCtRFeEXOwHYXPVaJU5DC/3ZylLajRFgyw2E7heR77rBANKYBhFQhLAhGjwPcqsCvc5BXtpwcwqizz1qNPsuC4/CjZzqWVInFleZqQJQlPmiOXeRzTtGhWPLSIjOeCqkVo1BUisfVUig6luTKurRLvKyMIAo2yi6q20ShnmR0bRZWH0MVBypnvE+0QKWcEVHkbshplQ2qGJ9IOpapHSJd45EgeiHB4QeHQPVk8C5zaHE7TzwjY5Sx635Y1v/9F1QPPsVquW2e/B51agX9xSrwr3MHHmmV6Ix10tDjyfbJ//wwHwvxnJMKhhSmORhLMlEu84rkNhH8iY/eZzLngfycIEna9jKRHkPQIYkBf4XJ2/vA8f0EUZMVXpnkOnDDPBkUNXJBB0alwLAs9HPGlIU0DJbB6Di3ncziWhW2aS5xkTQ8SSaaoFvJrnfK/BEpyhS79GjraPyE8L+IFQVJ8jexaAadRQeveQHPmKEI17xO6XcenUFWLqF3rW46svgRo6wLBddD6t+HUir4qUmucu7aFEmvRhwKh0zd0LVUkp1oANYhrGb4Dq+ue8Xp7Y32UJrM0McmXF0iuCPwlWSYcCFOcTOPWDPLuAsl4e+tzCihBDaNWJ9qWoDi+QMEuEpdjhIJ+PFNsFghH2pg5dphoWztlyUCuztOX8MdqzisT0zsp5uaIVaPIgky1UkOomsSSvWhaiLjn8TL9Nsbm6xxfUAkZeSrpMn09FW4cVDk1rtiYktiYglrT5pcyT7M7UTvr75WuOPzrsTiv7S1x2w2z5BpwaY+MH9+IbNNgumhghjoYtUQybgdZI82fXt4863kvBOcTDO8BNgqCMIw/qN8K/PzKAwRB2AV8AniF53mZ00/x3EGQZD/LKAdW8dmeiYuZXZrHsy3M4hyiGvR3hap2VgMJv8PXRgrGca0GnmX6pdfz1G88l0bmSg6w59h0h0zm6xLdYbh8a4p79zX5208/QEMIIq5hdyoIAoqiLO29Sm6Qf/j8kziSTlcY1sUNTqQtPLMJgoAcSWEV/SYTQdUvyMFvEW6zulQK+klkep4FfupjN9cw+IURlbppMCzbSGaV9lKVTGoTQjVHxTVwPQE52sbeYp0Pnigz4QV5a9Lixja/jH9Dux+I3XxIYEHq4O6BNI+UPd40GeataoYbk0UerwqcWGjw632BpWzuN+cNOl2L30llCQbitBtNUpicUNu5p5jhE1mXNsHmU1tWZ4xigQAPRVLMX34t0oN3c4O5eiJ7/wGRg9Ysj93yC0QP72Pr/AwWsNG6H11R+Kf2b6C1QTNzDW1dw8yM/BuKexWVQppkl4ckC3QMrCM9fohmcwJXsSlPXUKjPoGmV8mnC7z6Ndew4anbWXelv062Dwkc2L+TPcfL5GamkUJJPNtE696IWUgv0SLOhjNVNqz8DIgSYiCEIEp4jsNXowm+UBxHVDQeCZweSL1eb2NdpcBFifUcKJfYHT6zBNczxE997K6E57p4dgO1fWgpcSAGQufVSLsSflOejWvUl2Tb7GbtrPO3a9RxjbrP5VSDfP2Ox4mEFG69+ScjY1fKLiBJEpKi0qj4jaJaKEwk1Y4WCq1JMZJkGds0l/6PtnfgOjYBvZdCeg49EuWH9x/GKmaRYx1L2UV45skBq+hLusmxjnM2KP8X4nkxbq1iGlzH3yyLqq8MoUURFRWnUUSJdvhc4lQf1sI4gqQiSDJKwr+PF9dBu5Txs7+VHGIgiFPJ4tlGK4OsLm2uF+8Dt9WTYC5MoHYMAx6C54GkIEoK//nYUzw1U+Sd12ynr3N58yxJEjYO+sYeytOnewpEwnEixBkTJ7FSOrOj4wiaTJfagWhKtMfCNOcbFGSXxHA3+ePTzDcy1Kzakh14vLMTPRjBbTRRBZWJ/DjIIroUYP7kKOsvv4zxw4fY3radTlnGVAzS1XmURoGTU1Xet6cXM9iB6zpISo1wwGN399krzSFN5i8vP53C8OlDMv86PsDfbh9hKNTk/oUInyvupGIf4h2D82xtO53K2R1R+MqOx0mGRIrGBEkNnktywznvIM/zbOC3gLuAI8DXPM87JAjCXwiC8NrWYX+Hb9x9myAI+wRBuOM5u8JTLzgQQo62I2mhFp8t4RPd6+cplLsSgoAUaUNSg+DYSJGkHySeBZ7j+HSMegnP8qVpXMt4Zu/fgmU0sYzT33dDyuW9v3ANlw1pdKcC7Ny5gWQQDDm2OhB2LIaiBrJn8PScxEe+PUbBXs5+uWoEQZK5eXcnv/D6y5HrWaRICjy39TUIfvnTXdva81xwzaavOdysYpez2OWzz29OreiXoM5ghvJc4fkwdiuWw0k5yagYpzsc5OTlMo/sUvjH0Aj3DOV5ZdThjVqOn2s8TU6N8uW8zJ3KOv45vTwZfHDc4GeOCgw4ZbZSICLL2J5A03F4vOry4WyQv55T+Vt7E3vzyxPPIzWFfeH15Fw/2H2i7DISGuAacYFfa7MYF2KM2ir3L9RI11cnZ9bNT9PxyH1sP8O47sYjcmgfHQtzfLtzgId3X8uDYoA7Qwn0qIhrO7iuwszJQwTjAQR0Nl36cmx3lMSGvVQad5PaeIzYwFGaxQSelSSgdxIbOEDTmCMzOUEoumxkYNdSXH/1doY7VARZwbMauHYTIzMOjnVeFCfPsbCKaazC3OonRAlBVnGbPv/Yw8MuL4AgImphHqlm+PPCKO8ojXKyusDPZQ7w8maau90mIUXnqmgXyln6GZ4Jng9jdyWURDdyvMtf/BWtda8vtLK85w/PMZEiKcSA5uvAWiZSMOpnns8A16gvHeuadQ7PuxwZL5PPLGBbF+6cCeC6Lo3q6dqk1WKBgB7EbDYwG3WiqXY8D4LRGMFIZFUgXFrIUM5liSZT6JEIbX3LCdGArqOHIzSrVRJd3dQrJQ5PVnz9e8vEcx1/c3aB398iPM9DEGUERcPKTWMVZn3d3DN9XsvALmf8cf0TxPNl3HqugxhOIigBAm19KG0DyFoQXBs51oOZn8V1TJxiGjGcRArFQBSX+h6cegm7nMU1Gr7yjKSA5+F5wpJsq91SP3KN5Z4I16wjxzpaShSCTy0KRn3lGlkmVzfJexqT6TnGZlabrsTCKYqHxwhZZ87iy02P5lyOvFlE7I0zV55lwcpj2ibxWBu2Z5NPz+IYFo5rE+3sINbdTZedoFvpIOWE2dy2FUWSqTl1CAXoCLTTG+pi+tgRApEIpuWvBdVKieBAB6bmUazVaQg6NMvEahP0izkujRYZiJ87GP3IfpVX/bCHE7nl8VkyJfJSki+cDHLL3hsJYPIHnXvYrmd53YHr+d9PJbhjROAl3xviOyMCf/q4zpbbe3nP01vQJY+LO2X6Ys+tTcZ5nc3zvO8B3zvlsT9b8fctz+lVrQGn6QuJS5EUgiAuZXnM3AyCovqKE2tkfpaaPLQwnuWrGCxmJEQt4neRBmN+QFvJnrPkJyjqknMdnuffMI0KeC6uY6G0MqNB6tTLpdO4ZafCNk3KuRyObdPW18//9+5d1CtlLMNAVhTy6VmuvbQPPRLhw//+IEU3dJppwfo2+MU3XMVd9+7n0TEHzmBzfN/eeZ44PI8TH8Ct5hA1P4CQwimfW/YMOcF+Schv1hD1MO45NgaeY7Wy+gur6BM/Cfy0x+5QNMi/5I/ygWIYQaigyl18K93gE+U4fxqo8D/mdepKH/83NMVrgnM8IlT5xMIor+moAyofHclzVzXMuKjxu3qe310PfzvhgGOTCsicrEWRxSR/FD1JRTzBpcnlzP7/6nN4ZfEIN3X4WYu39WikMke5skchqUX5nrrA12YqvL18Cbsyk3xru3+/fKJuMTe4mUi5xKvltaeIlCLzpswk34m207X9YuQf/4DJDVuxku0M3F3larvJYe0oiudw1WycD+38EZn0GGo0ixZS0UI1QKJZNWjreBXNWhk1dQxQGNyVZ+7EvXQMi4AfZOqpeTIL32T71jx7j/QiSArayjLwCrhmE7dRwnPsVaViz7aQtDCusTqLLIUS4Hk4ZgPXavr8QcfGKsxgI/I/PBc8m5gWJ183WVB1P5g5dy7hWeGnPXY922oZGPnmG6KiISoanuf52TQ5gFfOoqwhheY0KoCHIKl4VnOpcrbY17HcEOa1pBvPzMNftHNfzMC9/cZ2xkan+McvPMnWfp2f/zmfcmrU60u83nMhPztDKB6ntJAh1t6BbVmUcwuEYwlK2QUEQSDZ3UFpIUM4frpCSL1cIhAMUW9ljhV17QAmEAqRT8+ihyO8/dXb+fg3j/gmF6rf2CY9w6ywIAgIqobn2n5pX5RagfXazdGeWUcKJXBqxWf0fheCn/a4Bb9C2Zw7jgB4KRGsJp5j+s265XkCHcNYhVnkWDt2rYBlmYCHEutoJXQWULvW4TRKiFrIpzkYddxmFbV9GM+xEESplRleNs2QwimcWmFpbRUVDadlbCLpUd5yzQ5uyi7w4Xv34wQq/OnNKslkGzPpMeaMDAgiMS1+xs/VnxwknZ0mtGMLubEJZFEgMtTN7NOHsRybVCBJo26QSvYgyTIz81OoqkooGSG0ggZaFQ16tmwmv/8kkd7NRKIJ3Lkx1EYAvc1fL5LJDjKTc2i2hO3B32w5ytsvPjW2WA5G/mKPzp3Zdj57xSibUsvrxpFKkKNeH3O1KTa2bvvfv6TJ20oP8IPZCEcn5umPCLytr8l/7HfY4IyyTqtwz5TIrNzNfHOaiUaQpqeQcG1E8ScjkPCCcaDzrKY/kVZzq0rxvntOBG+JO5gBBL/xQAsvNXmY2QmUWJcvgbIYDKs6tJoTfMvgc3P+1uK/eq6FHOvEyk5CpA2MKr/6totp1qrnDIYFUcS2TFzHWeqsbFYrRJIpGtUqya5lAf+SFz4tEAaYLrj86IGDHJuucTa94Ll6gLm6r6glrvgOBUlGkp651qQgCH6ZTpR8jcXY2fl5UtBvojubIcqLCT+sByh1buVzuWlunMlyzApxLNDFWLPMBqnJvO3wyg6dp6oun2EjN+nTfNdIEh3P8CF7G1ZtiojW4J9CF7Nh6ik+ZWwmZFdpp84mrckHu6cZip4eTMQDKi/tXJ68pmsGl0Qkkpr/WHdIo4yNU82jCw0gzGi9ycLmSxjatIWTD9+/6nyndi3/e6qPrCDSdfQgN5l17JFDPD4bIXvLa3jisfu5tVagbNn8MNaGrNYId52eldLCAYqlexAUCIT8wFdSJFJ9Io18F044jR4TUHUJVa/z4zsiKPHOs6uReA6CquOdEvSKgSBOo4JrNf0mXC3kN8U4Pm3Ip17594VTK/g6pLUCeCKoET5Yt9md6OfLzTJBQSKqBtlXybA5GEc/DyexFxqcxgq91FVOdB6ioiNIEkJLrcBr6ej686FvYy+IMo7RUjKoFf3+DkFcRQs4H21icSWXExhe38dTh6aRY51UqsvjoFYqEO/oojCfPs1R7jQIAo1qBbkVxJazGd9+eW5mifcLvjLFWtDCEfKzM0sKAmdCMBIlGPHlrfRwBCm4nA18tnKSgiDi2Tae6yHp4VUN5adCCiV8dYnnXkrteQlBEFBiXYhamObUQQLtQ4h6FLdRXlLYEOQAQiCI0CgjqZqvoV/O4NoWatcGmtOHCQ7txCrMIkgqcrQNp15s2Y43UVL9p6khCIKwygvBsy3wXKSgv9YF1ACyrGBYNqqdI9IaGxP5cbZeex1zYyNIK8bUYqZ68X1m8pNUAybS9CxRMUQ8mmDyicO0XbyBykKWIc2vTszmpxEEgaGu9Wt+PxFXpz4yR1/74NJj3Z2DzBWnyRTTdLQcfTsS3ew/McL9GRdDGeDtnNltMWsq5IQkVXNs1eMf2p3luhNpiqYOeNQaFkFN5oMH2qk4Mg+8fBRZEvnWCfizzI28KXGIoqvzLWsX79Du593bRN5qzJOtOwzEVcYLUDUtBhPPbTXuBRMM+w1yWcRThMflSAqnXkJpa01gnq+L67aCY1HVfL6PHMBtlvHOQmJ/phAVDaeSRWnzB5Yna+x9eoyL1vs3xVpWmItYlPhZ+bzrepSyWaKp1Ty63/vZAWyjSSSZWpL3+fPPPIVBgB8ft1grEF6ZGUcQl8Tbz7YIuWbTL/eEk0vZIb9RUT79uEbZN0EQ5aWsz0r+ml3JgecgRdqXPqMgq0iRVEtv+IUzBJ8p3j8Y4I59h2h6MicNid8fkHhp4TCXJkMcr1T4Sl3jywsm24MepmVyX13BTrbTV5pnyBwlLDc4JnQSKUxw3UVRPlacQpcErm/TWSu1PlE1yBs2/5ZT0ASXv9uoUW4avG66g7BT44Htyxuv/zkU4KJcjptTflAwqKlExkeYrJT5mdwcpqYwb5iUtCA/2nwJO0ePcJ3jl9EKlgUBjTdOHiOs+sGg3ijz5BMPMZhN4wYUDqs601fdQO/eR1EkmQ25eXayWn7sE7eezikzy+20d97CY498GzVWYPtOhTtuNygsVLl22yF273YIhpbpOB/8+Dag1SRXLfpl0oBPpVpspgHfdUtJ9eNUcthGDVHVseslZD2K01xRNhcE7FIGx6ghiDJ4FX6nrR+BMmjwmVqTO6sZ/jmZ4ObCBANykDfpSeLKiyfYWOqjkFcvOoIg+mVlz0MMBLErWaRwYskhDUHEc+wlTqxTLz3ndr8vvXYLsQNT7N5x+coLo5hJo7VkzM4277b19q16Xgno5NOzyKfIphmNBrVSATWgrXKpE0VxFS3iVMzNZvBcj56+Th68/ykM0+LmW6444/GL87SkRxFkFadaWNK7PRV2aR4EAdc0Udt82cCVah5+FbV5mp22P5+bS6Y1L2YIsopVSiNWFUQ9hqiFcZtVv2muXvGTYq3GTc8y8QQBUdBwjTqOaQAeohbCKs63Nhu+drDaMbymnKnnWDi1Ep7nIAjSksX1sgNebokX393RyW/csJNwUENpKXx0R3oZefIJZFsktnEzhcICsqKy4OVxTIuNLbvkWr2KG5EJNkS6u3y75Y2D25mZmEZxoUkdSZKxEwqe6zKeGUGUJfoTg6vuhXgkSfwUZnI+P4++sZvJwyc4OJ7nJZuHODI+xQ8OjXJNKsLv981yJmbtD8ZBc6r8ZvtT2Ah87rDE27f4WdywJvPx2XWM08185QH+ZnY3v9NzlMcLYUq2Qs3IEAuqbEk47J4a4WjO4UnDI+Ed55VX+huBsCZTt2HfTJN3HNiF5tX5pb45Lm83uarnuckUv2AikbM5z60ybwjFcY2a7zLTIrOfT4OC57SCvmegU3xqhlOQZO4f8bjpxgHMZoPSwgKObdE1vPYubfH9LNOgnM0iKwqu61ArFjHUBpGWlJdtGn72oiUmfz5YKX/kNHytRSs/e9bXuM2y7zhXSOOYDWQ9gpmfJtA+tOo433qyNckEgq3y56nZXg8xGMecP4mS6F2anJ3KAoKiYxv183IVfCGjM6Tz1OUWX5+p8OFqJydHq/zjpij3zFf5fGAHTnMeiwbXpHS2zlaoRCPc0nySz0au4mpzki9vCTNRqVI0bN54JEBd0PlQ3zLHN9cw+cDJJm9qg1u7o7xnMsi45FuQOpKCdCjDn28KcxFFwoqNICxn2YKqws92Lwc7siTxP7ChNAchjTvCSeYvvozu+3+IGIlgLXZUuy5abz9oQW5zLTaV8tRlhUIyyo7pUX501c0cHj3KrcUMzYfvoVmuMnvraxl9eg8786dwdlsoLzhoIQ81KBOIzZOZv5N79qlYwgaGho7y9EgfQiBCdPwJjO1Rgmv0bjm1EqIaQI60YWRGUduHlsaxmuj2NYYrWexaGTzLtyc1GnhaGNdsLgVIcsTXG5VDcaRwEis/49uteh5uvcSvqDrrTZvN1RJztsW9yQjRcoE3v5iC4VOCqVXPrcgwypG2JaqD5zo4tQJytP2cGujgZ+AFRb9gabZ4Ms7NN8RXPbZyTsxOTyFKIqqmn2a1vIjFebeQnsNxHLSgzxXOzkzT1usHGrXSsoHH+cJ1Xf7jO4exPZE/fGeUu56cRwxE2LFl+oyvcSpZpEibn5k0m4iSilsvEOhYt8bRgp8UEuunlenBr6LK0TbM7ASiGV4KwpxGZUluTYk/5w2fzzsEB3ZgV/O+okS1sET1cYQySqofc2EMRRARWrQVt+Zni9VYJ9im32RnNnAaZexq3udorxjTRnYCwQO1fRCnVkSOttNMjxDoHMaYPoLaMQSCgFMrIZyi5rF13eCq/4f7NzHc+nuhkIb+KMWJOaRwANde5toG4zHCg13MPH2Q8cI4YXTqqklI0ikKZTJymZQRJFB1fNvxeABR0zDq9TXtmev1CpZtEoumSKW6mBuZZu/hPAcqGoIwzkPHp8gp7RjTk+TafeOQU2HZDr/19BYaroJSgrbJBebDm/jUgSf591tqbExJvLN/liP5NF8bi+E5RcZKLgNag8crYZ6ad7lxGLa0Sfzp1mnesP9arHoWORhlODKF5/lrzq8+1schq5tdHMERRf5+4UquLJ7kqz1nzlZfCF4wwfDZsKgVLGq++LvU4sy6xuJOsHTOkpRTK/h2oJXss7YVXXVtroeqaRiNc2ekq/k8ye4eCvNzuI5LvKOT+fFRzGaDRGcXakAjPzdDNLV8fWdTp/jzzzy1lBlHEJFCiVYgfK5rEXGqeTzb8BsOom24efO0oyQ94k+wiopr1JGCsdMWQEGQsHJTKIleX5qoVd52bQtRkF70GQrwsz5hRebqpM4/NFSc1iK8O67yluoYJblKu+ybT3x3u4jrNfnQaMz/3cQGEGIwEiRt1jjuhpES3TxePckW3eCtYzqNmsF0ZIi7Z/J8VGpyvSYwYBvEAyW+KgzzBbuXG3MLfGFriDNxClfi2+kG36no/Em3QURpkJmeZAc2Nzz8Q8KBAAgCoihy7dGnGXc9ci99FRNPPkpaUVH7h6lOjuBWy1QbDb7XM8zO9BQbZJen7r6DIdeGFVJtectGf3oHysI84pXXEj1yiLdkZ/jErVW0SI5rLrUxrSzBqMbuLTOMnBQ4WruO2L5j3Hzz8jj+wHsPIQgC5YLFPffJzE7PUwj3YcydRJRVn1/puS2r9nZcx0JNrKc2sR85FMepFQl0rsMqzKK2eMaiHsHMz2JXCohacIkO4Jp1PMfiiCjwaGSQw3KRe8tlbtZe3Ju6U2FXcj7FKhhb2gTb5YVWP0BmlTb8WnCqBUTdz54916YdnuehhSOrFB7OeCweic4u0mMjdAwMkk/PUkjPEQiFCMcT5NOzqNr5b3JEUWRzXxDH8ZDVAENJEcOqkOrqAtZuYBNUX6bOM+qILdUDLHnNLK4YjOFZTfBcP5A7JRgWVR0jM44cbcczakuZYtesI6rBJXWBFzs8z/Wz4Vaz5bbZohwgYuamELUonu1THD3bRAh6uGYTp5hBSfX6Y1tW/axuoge31Ti3qOIBgKxgZsYRW9Q/RBGrMIsU8RvrzjeWyBWLfOOJo1zcm2JzX5LiQg5VUGgX2hAjy3N2jBDV0TRKOIjaFmPu+BiJDf0YuSae42JUa8w7VQKCSm9ygHxpARoeWmx1IDyZH8dVBIxmk2hvF0I2TzSapCfZzw2bRYJjaS4e7CGlK3x37xHmhAgfPNbHy4emVp3H8zwUWeK3hsb58YTFY8YG5g2w3QVGxR4O5UfZmIJ3brP54wdFTkSvQC2M8vXiZvTSKHSm+Mejndw47HPvd3Ur/FP5Af7P00l63Rk6owHe8IMkNU/lJYkCWt3lY1dU0RWBfzn0JFe21TmbbvGF4AUTDHuei7kw4WcXTxEPd+rlJeeYVZOq5/kcoRXUCqdZxbOap7smibJf4r9APcYljnIgtCwVVM2Da2M0m9iOS61h0t7VffYTAbGOTgqtiVePRKkWCwQjUeKdXRTn0yTO4xyn4lQ3HM5QrVxc6AVRQpBkv8yJh6hqWMU0cmjtzYQgijjVMlIrWDg1Cy+FEwiBIF6r49+2Gn7zTK3oP/ciD4Y9z+M1hxymyjXe1+3wxMYiaqvsHA+o/GZbhRsWtvBkIc9bekzklnD/G7oUMtk6v5xcngg3BmWuZYHO8izbO3T2Fh2yUgeDukmjMEaxewefzIzwrYv887tugm1jI4yLCV7S4lcVGr5qSULX+PFCg/8xH+NXo2V2Bh3aVN/g409nA5Ti/eyc3UtX0eQttTIRVQF5dSB9ieDTLUr79qDXqyRuvJXQQ/dyeTjIZSMHeEANMXLRpUxUK2yqF9kN0KLFZG2b27vXka1VSQ6ux7Es4qMnaC+tVhXYtcvh699Q+eIXBAZ6LRxXYWviKXZdLLHYXNesW3zyUxp1S+fSbQVy5TCJeJ7sTA1ECU8QkAIhBEHEruRBkvCaNZqzxxEREUQZu5X9wVmmcIhKAK1zeOn/xaDNc+1Vi9w2Pc42Pf4MR8jzG1ZxHkGST5M+c2pFXwXilGZZQVKwK1mEFRxqv4Tsu1CuTEoISuCsKhJnwtRkmu8/NMKVF3Wxc4dfbVvI5HjgiXF2b+tmYLCbhg0hIJo6d1VQVgOUshl6N26mnPdpXomubgrpOYJd3SS7Ljzb//pXL1Mi3v2Ol695jGdbOLW87wIWiuPh4gEiHk4tj6RF15wfBVnFKswhyqpfwj+FgiIGQqjtQT/BE21frthVXaRI8kU/54IviWZbTdx6Ba1no9/X0uJUL65Ri3x4OdKGoATwJNlfA7XgavqeKGFmRpFDcexy1v+99CjW/AJqogtkrWWO4iukWKUMOPaSW6vnOrjNqt8rY1v8w3d+jCIK/OJ1u1golNg82M9nfvAAs0oX7lQGxbVpT6Xo7Tp9MxkJxxFrIvVmg/zhEbou3UopnWEw0osiqxSLC1gDQWpZX986eUr/zsn0MUzJxnFd2rr6aZwsYWaLJAPL7zXU3cXIXIaP3bePlw6nsDyRdWqDP9y0urLxF3t0PjsSY1vCYmuwTENO0u5UmVeivCV2iNeuhxuHZCaLNvkGuG4ANzfBsDTNYVujFuxFq83zlJtiJLvA+jZ/znjdZpXXbfapc54HVVelhsYfXVJDCxgshq3v29XguQqE4QUUDJuZcdSOYYz0CHI47nc2tyaBRS/wUx125NjpXcWe2VwzcD7fUv1ys4jXWhAFn5rRqMLiDt11kSLtTE+muXfPNJm6xHtfp9HWcXqgnZ/z9cj1SBQ9HFnlnBRra6ecy5KfmyXZfX60iGcK35u9HaeyALSaXMrn1sB0jQZqqtc3QTmD1rKoBJZE30U95gfNz0AX+oUIz/MYL5Qpxfp5X7rA1w2FKwJN/nhY4/F8gz9MJ3ile4zXdgRYyfneHtX4lyhLj9VNi5v31sh37WBz8Sh3VDfQa2W5dyhNSJZ5MCfwzswCiH7Zan+xzqWpMO9evzwZ2o7Dq8ciiB78eKtB0/UoKVEO5ab4kHExw1aWd0UrFIIdXJR7mr8Vu5CUXkbnTvL+1VU9AI7bLvdsvRRHlOjIzhPbt4ed9TJIAoIgcEWjTOie77DZNqgCDcelXQtQNQy+JukEtl1MYD7N/NQEuwo5Xuc2OFhscLSVOV+YM/js7X3YTYtQSKB60KAe2sZ87iAPPaLQ09HAEyS2b/cwbRlX6yK90CBXa0dP2H4DneMgauGWtXDO1wZ3bEQ97Ds1huKtcrkEjt1qsivjWQZSOLmq0iGFErhmA1EL+/ONKEE4evoX8yKBXcr4NKhGuSU1Jyw1L4t6pFVxWr0YrTUH+Jvk9tOaHs9Gw1gJz3V8nqznISd6mEsXmK3pTM+V2bnDP+boyTQH5kQUaZ7J6Tz3HDW4eWuZ66656LTzVYsFzGbDD3o7u4gml+eiaDLlV+DSs+g/4d/WtQ1ELYJrVP3KWjjF0tzLWeZd10YKRn2pL2dtabmVjVyLaj9SMP7fIhAGX45PUjXEcAxj9gRKvB1Ri/rzQGke12gsZY4XIYgS8inKKMbCBKKioiS6lyiHXimDgEdwcAfGwgSSFsKzGji2gaAETlNXcSrZpQZG13GoOyKy6/Lxe54gJ8X4ZaPBghBFLU4yUbQ5UhJoE2f5kzfefPrncl3Gq5OImkowlaAxmSUoyChhP/aJx9vJzWRISCE8zyOfnyeZ9OOgsamjOAmZZHs/U0cOkZuY4qKBi6nUqoxMz7F13TCCIPDJHzzEsXQeIdrJ2OwseSFCuVnhu3MJas15xppR3r2pStUWsaQgJ90QXtliTO7nzak93DbTwaPGMK8SZxAEj9f8sJu81MZ16hGCoTD9wQjH7A4Gi/vYFgdUnaDi8cmDKi/rrTOcWA5LBUHguzfP4noeH9ofxnJF/vKK2gVTWc8HL5hgWJBUrOKcPyG2+HxLwfCp2c+znacVOIv6M2vo8A03Yji1fOu9I/6ub7FMWMrgWiZeaZ7P3w92qYIgiOja2mVAz/M7lquF/Jr+9eeT2TgT1qJQrDT1WIklyaNQEs+1W2oP8XO+hxRO+NzKSOq8OpVP7Qx/sUMURX67T+av6hLdToWD0hZ002/8mjc8JtV2bhTrvLJjeSN3otzk7zMB3hI3uKnNHzd3ZC3mtXaU7Bjv76pxtz1Jf8SlLeh/57d0yXzYy3FRWOTvplw+4W3lr5rH+cW+5WBDFAS6vQYiLqKgcGtnkMfCk3xsLopdLeFYJT7tRfmfyjFeMqTy61MGofIYN/SvTauxBIFgNEbg4FO8XHKR8rOUXYf9rshFEmiyzG5cUBQ+1zmE2dnD6x6/j28NbqGRbGNuz6O8PDNFpwDDmkrddnjzXCea0+SJ7zeZqsl8x7S5mDz/p1PlWE3mrxammJI09k8NcWQ0hy1GwD5IOByhI/QoE/kBrrvoADsvD/DJ/+igVvYIRIMYhuXbrFoNBElCCiX9CohlYJdzBPu3Lhn42OXsmso14Jeg/edTOJXcKvvmFxuEQAinsoBrNAj0bsapLLuprRU4nAlSMO43Mp5B8vGccF1fp7WVtb/88i0kYuMMDPqVspMnphidKXNFN7zkyu3MzOZJygWSZ+AKm82GrzqRXpu7roVCaKELMxN5JpC0cEu6LoSgBv1G5/NwUBUkxQ9qBc4rqSC0zJX+O0GKpJbk0MRAqEWJMJYUUCRJWZJpBb/ybJcyvtpJa1z7us0eIGBmxnxpukoWKRRbar6TQ/FWo6iAoGi49RJi7JS1XhBw6mUEWUENaLz/1VcyOTvLvzx4ggDzfO9QkS1BmdfcdANfe+hppooZdm0eYC14noemh3BxSKkJYpEknueRyc8R1iIEg2FScf/6p3OTBNd3MTc6jYtLaEsf2Zlp0k8dZLBtcMmh7huPH+apIrzdstm9ZROqJBAJBXnbjgQbh3eT//4DNCSB79W3cawgMhLYgnzsEU7WdV4bOcoho4P+iMG/7NzDp0dSlNR2amoHI+V5XoZFr96k5Cm8fYvNZwcOgCDw2X338UHxZfRLJ/jydfN85nCIv05fwfHaQf7vlcVVnzmgSjiOy9fn+7AElT+x9qOpz33o+oIJhtU2v6HBDTX97uUzlO3PBUkLw7PobF5Ur1j0SRdVDVbSLQQBOdbmc5AEYalRIRRd+z3DiSS1YuG8tDFPhes4fvd0KHxOCTeAdDrrZ7TWcMzzzAYIfvOFqIXP2yJVEKX/SnvlFyR+bTjKO8wsupriSHGCTk0GVH6mO8imwgnWRVYvgA+V4U5pkHhljJvaYLLa5MP5MBup8NqEwa/Wt/AbwTS/0b/8GwmCwJt6/MB3c63B5mKa9bFTuIaiyO3bVz/WHgrypo4mVbGOYrp8Ue0hpla5sj3I3qWk8to84+2SQO+DdxLTNAzHIW8YPNI5QHb3SzDu/U+6LZO7hreybn6KULWMK4BpmgQaNawFh8vLWZxYgo12A0EQkASBl8kLaAqIYoD+kMrVZDhkKnwh47Df0Oj2arzkjQb5/CFsW6RanuX+PW0UF5oUJRGnrQtBLaOqMNSVh3iJphdlZGHQtxBuSWktlkyFQBA56rVc1Txcs4EgSv6i1yrpW4U5BFHy74tA0DeYqeQQVzSkfKMyy1c9kw/IEXYFXxyBh6SF/KyX5/mf9xnyegVJflZ9GIKstDbaQkvGUWDj5mX6yvGJHONljfV9KvF4lHg8yvZtQ2c8X6Kzm2Jm/jS1nvNFOZfFdZzzmrNd1+V7P3iKoCbz0ht3rnrO81w8y8Bz7LVtfc+C83U8/e8KSY/gKVorKDZ8s5fW/by4tq3MkntmE0mPtDLGfhOtXcogygHsWgElnMJzbaR496qs5OI5XaOO21hbX/9U7ryuh1g3MMhLN1bQBYd7Z03CgkdnWxu//brTs8GrPpck0RfwY4pAQKeYX8DwTJQNHWSn0gwQZjQ3ApKAhkI5PY/ctECVqOUKkK/T1tNPSIkuBcMbO2JUjBy9bf7m8aKeNuYWjvDQWJaxXJWaI/CGy7YwmP8eg3qD+7N1TuYcHplXUBph1FiQtojKupTB5rkKLws3UZzjyKIfXn7v1RXqzb2E9OVG7fdcGkA++ijrQg0OZeDWXpuT1f38bH8RELljROAvjg3xRxsneONGF0kS+ezuYzguS4HwWMHmvXuGuLkty/svffa2zC+YYHgRi4LlPw049ZJvGHGWSUtQAnhmoyXr5Iton+34gK4T0HUa1Qr1chnHtukYWKMmDTi2TW52Gs916RxaR3FhnkSX33B3ajA8P5MmnooTWJGRHhnPIEfbuLQPfubW5azxocNjfOsHs9iRnlUZ9/+H5w56S3psa3x1WXhz4vTv+m1dCoG5Q9yYkAEdy/MoyxEuVyx2JwS0+SaqsNwE8zdjTW4ryPx+qsIvDCZ4Y7fOG7ttVtIuTpSb/Ede5peSNhujq++f7VGNv4uC64Z5a/4wO1IR/mq0yVOmxu8ly/ygHuKX22wGgr6aQsOyCWt+UKkoCvsceCzRjbdpK5FH70c5+BS9jkVJEHAHhiiWC7ypvMD3HYvv3PAqbnziAbZK8LEN21H6B9G//kWu7EwgiiIf3hjgU6NFtu4ReVe4yG32IGIkQr44S1GJ0TAN3v/tDP97g1+J2Tdf4NU1FTkawQluZF3iBFddIzF5ssGRzKVojTGM4Hou23yI9pTJ1oskgiF/2luUYxMDITzHRlACuI3yaYuXIIqIgaAfvHgubqPScp5sLlVQ/tatI0VS/HqtwKO8OILhRQiC8FPb8LpmsyWJdeYN+o0v2Uhv2yzbtg3yyKNHmM/XeNVLd6Bqa1egBEFY0iHOTI4jyQrBaHTNyhxAbnYGQRSW5NVsyyQcT1At5FcpVVRKFSzLItm24rFCgb0TFrpQ4aU3rv5cVm4KtXPdM+JN/z+cG4uSgIK6WoJyLWqOGAj6PQOtzZb/Qt+ZVVU1XLMJK2RZnXoJp1nHs2qobYNrUn4812k1QUunZeYVReUNV18KwKULC0TCQY6MT3LH/nFu2djFbKlGbyLCpZs34DgOptFE04MIgkAgoLOQn6OQHiGxfR2zT44QFRuEBP/9hYCMGg4Sr2k0m00a/UHshQrr9EFm2iVCw10cf/wwu9b7HKOrt29mU1eWf/rPB+mKR5irWZSdINl6gEI5Q1pI8MUf7eHAzzmAytUDdS7/Voff/KqFEQMS/3fHk0CIL6d7OViPogSjnJieoy8wRnfYY2fXanlGSRJ593abN97by9NWP9/Z9SgfvKLMonRbwRDJSu3km1OAy1yxyc4OFVkS+cGYy8a4S7YBo24nw/Ua8N8wGP5pwrMtX0+zVkAKJVqDPetng1sLqNRq1rNbLktOdXmim5nO8O17j9GsFOnpTvLWN1yz9Jxj2+iRCPXSmd3bHNsiEAxhmyae5xGKximkZ5FO0QEdOTnFF+6dZWvnBG9+3ZVLj19+yXo0dZxN61fzj7P5KoaaYF0gz9h5cPiWvg/H9ieP85BQOhsWGw6lcOpZn+uFgF8/ZjDnqnxhnUU4cHrpeMGw+IdyOz+slfm3LbA+onP/QJqIqqLKOgdSdZ4owu+NOHQaOT5l9tL0HP7E3MIlhRG2rxFgf6Mo8XlvHaHCCB9oVfQ/OdXgu7UQf99TZ2NUQxRFLm7zn9xnauyT2vnKQoXvBIeJ509w95jDeN3BinbySneKN3Wp1Pu7mL3qBtJPPI43PUPg1tcR3f8EPbJIDxC65w46FBlkGcVxcMslFM8vPRb37OeuJxa4sRHlyhXX+rFqG/VYirpT5gbSFAqT/OWGIP/z6EmOK508aAT5ndaxPZEg0WaevCMjew26tjgIgszUXIA+7RBXXdekVKvx8AMOT4V3MTVziNe/wW+68+XA/KDac12c0kKrOY7WY76kkRRK+pmlQAi7NI8YjLfGrIsUTtCcPowU70Koly8ou/f/cG64zepyj0crGN63/yQnJ4rcev1mIrEIwVCInZdsBGDv8RwLzQCXz2fpHezF8zy+8o2HySz4WsdvvnUbnd0rTJtECT0SwbHtNd8f/NJ0NNlGrVj0/3c9ytksyZ7VDoif++ZeKrbCb75xG9FEHIBYKsVbb6yiaavnaM8xkRM9mJnxC6IweJ4HjvXMKSctuEbN57+v6L15McPXu/daFKm1zZ48y+f8Os0qkhb2nShtEzGUQAx6vmpVZQHXNHBtA0EQCXRuWFJQORVOrYgUbVtFL5pKz/OVPce4crCN6y/2N+Od7f5r5wqjzDk6h6Zm2VsL0bMwy3y5xg8OjiLocTaEHDb1dnLJUDvCYAJ3skKlkCPc20EwmSKc8xMknUISt+IQjEQwygZmrY7Uyp0YhTrfP7iHmZnSUjAMcO+hUWrRPmaLM7x0Sz8PHBnlmu4kIbmNzz92gqIWxHW9Jfe3K+MFvn7Sl1TdGHLojAZ4fM4lKdb5w74p1icEHhir894TNxEz59n/ugkA9s5abE4KhDQ/9HQbVZLNMdpbYYfneZiWwzu2wY2dP2YgqfHErMPP77+KV0ZGectAjl85cT2h/HHe1J/nzssepici8VyEsi+oYNhuqT2c2j27Ek6zCou+72fBohD8hQZfiyR68CdqMRj37ZhZ7Jou+CL/4SRONbfUUQqQy5fJGDoYZeTi6sk3HE9QL5eIdZyZh6dqOrZlsffAFOMPTPCzL9u2quFuEZGwTptm0RaP4joOtWqVSCyGqgXYfenm046/7urtDPdO0zfYhyiKmE2DifFZ1m8aRBTFNXnGrtnENap4lrHK8nbVd7XYbHgOzprn+FrQZvokge5NZzzuhYwHc00O1Tx+pS/AuKMxK0ap2WnCK5JXs3WD7+bgmqCJd4qeYyq4nNk4WjH50HidR4nhOZ2owSAbrGk2YTEQ8k9o2Q7fzBhcE5fo0VVeIpfQvBO8ecWcvd9Q2S93Mtk8ycYo/MnREiVJ50ODAv866LFgTBBWAmzKn+TNKfh+ScTFRrQafEPqZy5b4c8TJYoHn+LaQpppDwTbYLDgy0d5nseAvjz+b7HqBB97jDdO69wqLvDSNpWGOctbkjYrqRi/FKtyvF7h/eujPFFsclEsSjygUo3FULUUb1cPAv7n7AgG+OxWm18aUQhYBicPdnPzyVkOFiOUI338zuGT5GyB/6wFEc0ZBi6pAyG+813fOvxVu/fwvScvx7MtlGTPUpbOc2yfOuE6yIluRLlFiRAEnEYZUVZBEDEyY2j9F2FkRpFaDbsvJh6xr75jnP3+bUlbSuHEWedT12wAXJALmqAEfGrXinn0wIkcIwWFrVMZtsci7Nt/kkKxzo3X7eD1L91IoVSld9Cfk1zHYSpn0bBU8GQq1ToryQ2xjg6sZnNNy+VFxDs6GTk2yv0Hcly+rcIlOzeseVxHXEVvOAS0AJVikVA0iiiKbNp8eqVP0qM4jTJKsnep0ulrLmtn/X7s0rz/vNlYc43zmw0zgIeSOHPTtWs2kCNtmNlJZFF6UTrTLa5Roqr7MUGrkXAlfApQdnlzsUJ2TpDkJVUJzzYxF8aRglE8x/RtyV0Xq5he9d3584ffVC/IKlZ+dlW8slAqM2MFmCrUANh7+CgPjmV49c713HTJRfQnJxnu7WXg4DG6E12MpHM4SKiuyWi2znErwvpUDWnGRLMkvJKJUS2jWiJ6tB/P8wiGlisciWgbEdvmH++/D6PyOD9z5S56RPU0GtHFg90s1CZ4+Q2XEAkF2TbUR09HB7c9tBe9dzOb5dIqG+R/vt7gaFFlqtLksLuOf366yNMFjYel7Vyr7eE1Gwz+z9PdWGaaofA8AN8dcfnNkeu5WdrPv91cw3VdTljtNPQYqujL1f31kzqfTw/xmUsOc02f/72GFIGkm6ctYLElKXCZuZfHI9v5zEyUgdgU72k780b2QvCCCYadaqHVuFY8K+fXa3V7W4W5Ja7ZShcfu5LzJ/doS1N4DcWJM+E02bBgzHcKamVmnVoJOep7my8K96/ExRdvIB6eIqD2EowsX5PneaQnJwmoMka9TqKrG8s0KGUyuK67ijYRjESZyZtMlBSyuRLxZPy06+zoauM3f+laAL753cc5NOvwuivihMNhhjec7pokiiIDw8uE/XsePMxj4x63lhq85MptZ/5CVpSNPNtq+bgvlzOXMunV3JnPga9kYeZn8UTpvPRJX4j40EKI/WoP2xYO88V1Kk2nQWdo9QL0yYzEZ711/HrhMBfLVS4KOKuefzDX5FjN5l8qKUq2gtzWSW/hJO8KFnnX1giiKAISjuvytfkm/8vcys+mx7lUbfAnxk5+Xz5J94qg+q8HXN5dPcGuZJg75up81uhC1mMcPXCS6xIKf7bO364fmKjxT/NB3hYqUAl30e5WuTlS4fKQx1ZRo370KPvCMYrbthFUVbalx/h+JMlY7zCvOraPIcUPkD4xWeVv0xo1x+TLWg93lEM8Ppgmqq8uf//eoP//d+bq/FZjKztnjtKjNHmDZPPthoN5SnNTu+RiJAexcpOEzQZ/IawnJWR5p3OYdj2CYrsMDkkMdGW59Cr/tZMn61hk+M87VbykjdMo4dQKKMkVAURrYVxcMEU9AoKIAEt0Kc+xsfIzfma5lQE622b9hQbPbCKF4quy6KfCqZd8w4jSvG9PLKwuC7vNKq7RaClPeAiyet5JCEmPgL6avvCK6zYwPZtj6zafN3zfE7OUnCBbhmfp7e+lt295TpdkmXf/7A4sw0IQoLN32WyiXCzSKBWRZBlVDyIriq/uIwjo4cgSbUJWFCpNj5maRtdcmUtWU3+X8ObXvwSAo0fH+eqP57h8SGZdf5Lhdb2r6GrLn22F5GetgBgI49QL5wxMPcdeCtKcagEkaelcnm35lB7bOKsDnxgIYWTGQBCxq3nkcPJFFxAvVRUqWT9D2zLGWAmnmltqlkWU/EB3RS/AIk3Hs63W5kLAc10EQIq2IbUqqZ7n+XrGCOB5OI0ygiAiyuoqfvelmzcS1yfp6ejAskw+/9hRSPRx+yP7kPVR3nP9TmRZJhbS+dT9+4nKLpf1xtmft3nZ1j5UTWdoYB3FcpmRhTGCXSq9l+6geSJNqZanrBnIFZe+lL+ez2QyfOwHj1BqOngo/PvhIm/aEOYl21cnxbYM9rNlsB/XdfnTr9+HYRhsiqsMJYMkjBKqvnrOFUWRjkSYo14C3arzsRPt0L6eV1n38pKUBwR4eb/F0XKVT15dA2QOZ/3+izvtGA+OLfDV8Shlw+E3O58kGvQ3I5LgIXoOAvD0vIMseCQDHiIwVZVJhmQ+/dIar/rhJBOmzMePhpHFKu/c9uwD4vMKhgVBeAXwYfz0zac9z/ubU54PAP8B7AZywFs8zxt/1le3AqIWaik4nF1Sw3OdlvalrytolRcItPs/pF3NIwVjmPlp/5jnQJ5j5QLhKytkEOQzqyUMrDs9GH3okcM8cTjD77zrBooZf4dkNhqEWtniU/H6l13EwkKB4fVntgNdhBZQCFDnof3zzBsV3iEKDK3rO+tr+rtiTC3MIQsyjVrtjMYeruvyF/+2D6dWxK4VCXQMrSpnLkn6hM4uW6em+rDys4jxHjyjds7PdCF4PoxdgN9KVdlfO8lVqSCKLC15zgN8Y7LIg2aYnwnXaTTGuCRo8dFcF0/VCvxip0mH7k8Uf7kQ5qjazc3uIeJxlTeEDnH5QIiA7GeIDhSb/Noxg6oapVNUeGVwnFfFDSzbo6c5T98pP4MqwK6kH7j1agKCUcYszDLWvZFAdYY/HHV4fczigB3CCqWYNQsoskNAhN8d8Mf48WKNNy4MIU4VeNdwg/bZKTRZxhJlxGgMe8U9dqDqYYbb0ZoV4laZ60M1RhouT2SbvKNbQW3pGI+VaqQ0hc0hicvKszwlJHlKiaFkTtIMChxuCLxxxecYiob47dIYHX0ekt3gfXkVuV7gE/Ig+lyePxgM8GgQIAF3+a85Jtf5uhpDcUw6tQNMd1yEV8vyR78zgSiJfPDj25DjflDlV4PafEoULX5hreQvspEUbmEWNdWHZ9T9BbEVDC9miOGZZYmfH2O3pXkbjJ/5OiVfo921DeRIO3Yx7RvwtAI212wi6hE/WJZkeJbyXu0dKdo7loPtV149SLFUo6tv7Uxoqv30rHYuk+MT3z7GW6/vpH+4m3q5tKTcE021n6bus3v3ZmKRcQYGzu3cpqoyOk0Wsg6PT0lcOVPhlS+75KyvERQNp17AtSycRsXfBKwBJd6F5zp4toWRGUNJ9OI2ykuUWFHVcF0bIRA+q/yUqOoo8S6/OSze3WqQfG6C4efHuG3dp62qgtAynVqE0yjjNuutsbsAogyerwphlxdQU/7a6hp+QG1mxvEsBdexkUPxpQSb53mYmVHfvCPagVMvImkhxEAMp5I/za/NskwGe3uRJAnXdQnJLrmZY1TiUeoIfO+JAySjEQzbxQ53UCpNI4kCsuixeaCPoR5fQeVjP3ycBUJcV8ujKCrtahLbsVGDQZzqsq18vlKjbEvIyS68hZN0U6U71skP9x7kov5OulsUjXqjRq1epz3VzpZUkONzNY44Hex7cj9SrBMze3oc8s7BDJvDNd45MM+tP96Emz3Cd6QNHNtncG/PPH9xRQNosBhm3jgAHx1rQrKffzs6yyO1DsTUEIIwuXTOD+w2+INLjtEwbK647xJ0mnzrmqPUBY26K3PXqMvlnQJ/fnGGXz12BbOVAvuKHnBmeun54pzBsCAIEvBR4GXANLBHEIQ7PM87vOKwdwMFz/M2CILwVuBDwFue9dWtvA5ZPa+M4aJ6g9Os+QM50taSV/EJ7k4tjxQIPScNIVYx7e/+9AiiqiOIUosnnPP5QufZ8RsKBmiaDt/8+g+5bPcmkkAoFic/N4tlGqcdH46GCZ9BneJUvPJlu3glcP9DhwjNlUmlzq06cdFF6whqCp+/d44TMwf5uVfv4r4HD9PdHmXHjmV7UFEUEQQB1zaRIylfa3jFJH4hkj5KssfPskvPXbHi+TJ2AW5t17m1lZT4drrO/1pIcKuc5YAT5ojZjieKXBmo86FhCUhwSynHveGN3J49wa+39jy/Ga9wpFnj97eGUGSJlQ1yAN9I15mMbkSq5+lTRD62QUAQdN5xzKEsR7g45E+STcvmPcdM7m8G+bOuBu/p09md0PnFpMGjcoCB5gi7QvBPwg6c0gRfHa7z7gMZzGiE+7aYiOIy/zFrOIiVeWxPwLr7Yd6+JfX/s3fW8XIcV77/Vvcww2WWrnTFaMuWbZliTuI4zEyb3STLb3lfslnI8mYhC9kX2mSTbDYMTuwYZZBly2KW7tVlnDvM0931/ui5DLpCy/L8Pp/5fGaqaqqruk+dPnXqAEJRuCc5xnMv7MSLwYRTxF+vcHDX4GmOqCq3Vjm4KWzj3SdsPJ6xcTzawyeWBfiVPgfH8j5u9Gh8Y5Xguz6Df+uO8u99g4z7WlAMjd9qnBsl47daJ+6Fk+v947yzrwbV4aFF9vBvfW52JSVRbIhcii+ssfP3m2oIbTrF8WMaj+9uwaMc4c67YHwMus/oaNkUlHIYxSx6MY+hFRFCwRqsxyhkTQ2o1YGWiiC1AkY+hZaI4Gxe5CTlHHCl0O5SokBMCBmqDFMa78deu3wyTJ0JAyOXxBpsmDxFO1/omRj/9JWneNW1jaxfb/Ki1atbOXy4i53PHOaWm9YvKQap1WbBo5Z4atcx1kaTbLvB3PC7/EGGO09Tu2zZjPazI1gshuXLm/idX2qit2cIbVc3LQ1nF6DNpA1OU5miqKZ5ilYEXTNDgE3TpJv1MWxVLRTHelBnhQldqg2wYnNikcZUUo6LgCuFbmFmHGujmMPIpdDzaRSnF2MiaUwph70s+BbH+7GFm2bEw54MpeirmvfER+olFLsbg7wZ6s4TQi0n57D4q2c4R5Zig/zu1/tpCrj4zTfcjaIovGn7Zn669wR2VXB3q43vd2WxjI7yZ2+4mejoI3TZrdy0diVvr61GLSdkSqRS6IUUmlbi1Kkst6zYTCBkajoG+rtx2KfeCxval/EJdDoHh3Et28Stm9fx9OHj/PjEKLsPH+XjD9zDQ/uPs69nBN3u5bduX8d77riBvuFRvvbk8/RZHajeKtY4k8zG3W2Su9vSgJudd5/hc4c9fCO7nrC+j73DBn93og6XnuR4xscn2rp52wYXBx/op3OsizfuXoNRSPMR73N8ZH2Jrx11cF11nm/3BHhkLEyDMYiSGaPDn6ElYOOZ24/wg06VDx/bxpsGT9BiT1DKpmgXg3xma5qlZFY9K70soc11wGkpZZeUsgh8C3hgVpsHgK+Wv38HuENciqjIZUgpkXLxlMKqw41AIAuZSXszxerA4qu5aOmWJwTh6YHP9UwMi68GaSxdbb9l8wpes6ONQ8lqnjowOq1GUt3UQmzk7Lm3jx3tYnho/lSfALfctI73vPkGvP75NQ6z4fe7qXOXqK9y0dczyLNdBk8fGOLQ4U6e2XVkUrP5qQ9tYetyF7KU5/oNdXzmk7ctqf/5oHqCFztk0BVHu4ZhcDKRI2N1c1KzccLVgiym0fMZMnJqI/A7jZKPKZ28qUowlMkzli3wujonrwtJPnpG5eGx3Jy+31jnYrkW5f+EEnyprYBRfkY1qkaVnuREqsjvn9H4xXCSp1yrMBQLu2Il/mfQ7OuzK+w4XD52uldzvUvn3YVDfKIqTzRf5FTJytMFJ8dThUlhI5Uv8MFoMx4hCSk6X7Vu4EzCzBx0SLXTdc8beLpumomPzUrIaeM/rBv4q4ipWblBiWIUM/yPWMlvH09x1NaAouXxlUzB/bGxHCPSzh+0WHBmxrimNERWnzIfiWXNse+N53njUZ0vdsdpD3h5fyDDO5ReXt8U4KGMi8f1MPtLHl4kxFuOmCl6/+hAmD8bcWLxBHCqdXx+NMSJb3r4+c5mHMV+nD47Dqd51Gnx10zaFUpDM0OwSWkmq3H4EChYfGG0VGTe6AA7SM75nAVXHO2ejecKIcwsk8nIjHi5Fl9N+f5dmCAMpvAR1dyMRdMzyh99YYDHjxcZ7BlYUj++gJ9f/eCtjBY9PHgwT2LcNOXKJuM0rOwgOb64aRfAyFCEo0e7Fqxvaa3nQ2+/gXXrliZEg+nIaeTTpk26YaD6qijFhtCSEYxCdlo7vZwO23pBZmVKWTF0ER2Xrzi6BTNLLarFdJD1hMyMs4Us6FM0bQ3Wm5uRcgZWPRNHsbtRvSGMfNpM/DILQrUiS0VQhGn+MxG2TVFNnxnDQEuOmTxBsWIEGohHI/zwuf3kclm2rFzONcsbGbRUETfsvLrNyxvXNaBaLPRF4kTSeZ49dmpSEAb43gtHGbfX0WTJMexqZW/3IFDWUgdVStU2stmp9bGqfQX7xjV+0J2lu6+Pja2NEOtnSHfxuZ88wd7+KAWbD2tqEJfDQSKZ5LnT/bxmy2rCbju2WDfXrGyb7C+VLaLpBoWSziee8vDLj9kJuiy8flmee5zH+L9bUuwes/NMqYNnx9105j38+t5GCkUNv9PC1hYXGwI5lLo1bK4q8fCAk9872s7dz2xmz7CgT9bwWCRE0t1CS8B8J7odVr7V7UVmojwVcXN3q2RbIMlH1hb49L4Af77nwiOMLUUN1whMT0jdDzOcv2e0kVJqQogEEAYiXAJosUHTHtjhXfRoZ6lB4c8XisuH1IozbL9Ud3BOgHk9l+Rvv/A4G9oD3HPH/CYHba21bOxL0NE6TVAXgkRkFIdr8QDwfd0D/M/T49S5hvjYuy+OoB+uDvFL7zKjXUgpuSeapbaqhh880UXScNHePEhdk+mkctP2NUhrD5vXXtoseeeBK452/6WvyL9YN/FbxiHeu8zNe44c5WBwOXcUu7grNCUsrPY5+D0fZApFbjkTwmXk2blO5/mU5HFLC/XpLu6e9ag3BBw8GZDsi1q4ZaCJ+5RhPrfSxt+ssAM6v9nl5XuijQ5O8Be2E/jDGT5eXM/eaIy3NZgC4meqovzaQJHfTjgZCK2iLn6Sf4v4oKWNwng/x7KwLmBez22z8hrLGK6AwY1eiJS6WB4wN1vL9SKDe59jeWxshmXT9WEXH8+dZnPIAJzcHhL8tWxGy0bp1OwUxs2U6xExDhh8Oe7mKUsTn7cf59SNLt56zMkdvUF+0jTMQ3H483QTn/X1MapZ2OtcxovRQe6vTvLLzVNRUT7XlKM3l+JzvSX2hjdSPS1iS1vQx1/nuvH5BeDgjb4Cjw8XyRpO3nf7YXp7FHae2EJpvA97zdSpiFAtpje+xTapAdWSY+WEQAtvSs8BVxTtakkzag7TMpvNh0sd/1b1VvOhO6onHeQmcPf2ZsZjGRqmlX/1W0+SKcCH3roNu3P+KDnXr60ikyvhDZqaUbvTRXxspGx/vzh+8NgJhrJ2Pui007Jsfific8XEySaYocH0VARhtU/avk5oOi3+avRZjoVXCK4ougXz/au6fGipCLbqZaY2vezbY3VPvbvNmPmmzKAlRiezxilWx5wYxJP/EQJbtWmfO+FMZ0hjKglXOd2zloqgWG28eYWHg4PLeGJYoyk4wDWrVnLb+pWcGXqaXV0GGV3S7HdxuLufSLADogNk5MxN5Oq6AHktyu3tWzgTy7B9ZevkWKxpiZ5J4QzOTNpx75omRuJpWptMJ3mH20fJX0dq8Ah6eBmW9Bj5YDupdIru8STPRgwyWow/e++beHz/Ef5jf4T6FpVba/M88PwmtjqH+OP1w/w4swY9m+K6k6f5wFqN6+rHAYVVwTwtrp0UapL8xuA9WISG1TLlvPiZDcM8N5bg7haDSE7Hvy9KUq1hpSfDn7Y/xbv2rkUpjfC76yKAKUs5LCqqLFFjLbKuWuUHrxpiOJHnz3o3EjLi/CHdF0Qnl92BTgjxUeCjwGTiivPopGzjM9si5/JCsTpgVuxLc0HNmpehk9IdPLV/mHsWiKnt9Xt542uumVEWqluacFlTG2J9/SD11RfnqGs2hBCTjnR3ZgskknlqG6fGVltXxZteM2V2spCNMSycAe9Kx3S6bQktLXX3fGizS5bFhllb5SBgt/GqsIHMjvOZZTaaPXNtze0WlRUiicuiI4Sdd9baCI4d46bAwlo2h6oQ0FIEHDM1eZ+sKbEmfpK31Fjw2KyAi8RAN+ZhgbmpXOG2UbJ5sQMbiwNsCEvayXA62s2nfGO8qX5qg6koCn+3cv4QTyGrhdfFR+aY+NssKr/TNqXlWBMK8MbRk8Qtgg+vUDmezXHaGOQ6lw44+J3qLLemT3J3lXlvqpQS41oSp6LgUiRuLYNLEXykXmHP0UMEXFbCsxzy2jx22jx2NvqK/Gz8BK9eM/M+v61hakP9hiYvvaU0o4bCZ840sidW4KQW5wP1GupHpk56/+JfViIVdYbQpHpC5eyWV1YUiYvCczEQVlfZSeilgxCC5mVzfSXWrGmbU5YpQFZT0TSDhbw4btkxM12z2x/A7Q8saSwb2oOEIxlq6s6fHyyGqYQOGVOYsk0J9NMzpV3NuBi0K1QrRi6FUK0oFiuWcnY6i8uzsHmIMB1DhdVeNq+MIyzWxU1wDN0MzzbNZ2hSOVYWqHdsWEtDeIj2oQjry07rTqcTv89HZ7FEoyXJirAbj9XD0aP9bKlx8Jbr1824zA1rV3FD2Rpr9awhTDjOzcY1q2ZGQHnLtat4/Hgf9925nZFMCa3oIaMZ1FXXUBUKky+dZl2L6TPhtltxGRmCdgOLBTwyg0fVaK9y8Bvh3TwhQmyrLjLd0MBmVXlNO0AAl+c5Gj1yBq/cUqewpa4AqDRa4Ys7xvlyp8EH1xqsDrlYcSyJAIKuqffc/9yVQNOjWC3q5HOo8zv4+oY9mM0uTJwV8iwCpRDiBuDTUsp7yr9/H0BK+dlpbR4qt9klhLAAw0C1PEvn9vqVsv59nzvnQUtDN1N0XoRjt8sFPW+GePn0R659qYfykuJiC8M9f/XaF6WU897US0W717a2yj1/8HsXcxpXFGK5PHZVxWW78tfXYh7zFxv/cc/U0eNEwo4LwUtBu+fLc6HsCHcFaCIX22xPRzGfo1TScXuvnOgeL1dlwHS8FHQLF0a7Vwr+4fXzv/91XSeVTBBYIIX4lYA3pD8HXF6ee7Eh7vrLBWl3KaL0C8BKIcQyYAB4O/DOWW1+BLwP2AW8GXjsbIR9IRCKCi+z5AxXU7ilC8F8L7JL+IK44mj35YCg86UXeJaKy8mUf+mhqTX8S8t6Z9S1nZlfI3MBuOJo90oQhM8FNoeTl9mQrwZccXT7coCqqle0IDwdL1dB+Gw4qzBctun5BGZQIhX4kpTyiBDiM8AeKeWPgC8CXxNCnAaimAugggpeUlRot4KXKyq0W8HLERW6reDliiUZWUgpHwQenFX2f6d9zwNvubhDq+CVgkupLa7QbgWXA93TNMUXS0tcod0KXo6o0G0FL0dcWPTzCiqooIIKKqigggoqeBnjZZOOuYJXFqZri68Gp5MKXjnonmVPDJfEpriCCiqooIKLhIpmuIIKKqigggoqqKCCVywqmuEKrnhc5ggUFVRw0TGhLa5oiCuooIIKrjxUNMMVVFBBBRVUUEEFFbxiURGGK6igggoqqKCCCip4xeKsGegu6cWFGAN6lti8ikuUu/wKxytx3ucy51Yp5fnmmD0vnCPdwivzGUJl3mfDlU67lef3ysIVS7dQ4bvngFfivC+Ydl9SYfhcIITYs1AavasZr8R5X21zvtrms1RU5v3yxtUyj3NFZd5XB662+SwVr8R5X4w5V8wkKqigggoqqKCCCip4xaIiDFdQQQUVVFBBBRVU8IrFy0kY/sJLPYCXCK/EeV9tc77a5rNUVOb98sbVMo9zRWXeVweutvksFa/EeV/wnF82NsMVVFBBBRVUUEEFFVRwsfFy0gxXUEEFFVRQQQUVVFDBRcUVJwwLIe4VQpwQQpwWQvzePPV2IcT/lOt3CyHaXoJhXlQsYc7vF0KMCSH2lz8ffinGebEhhPiSEGJUCHF4gXohhPin8n05KITYernHeC54JdIuvDLp92qi3QrdVuh2Wv3Lhm4n8Eqk3wrtzlt/YbQrpbxiPoAKdALLARtwAFg7q82vAP9e/v524H9e6nFfhjm/H/iXl3qsl2DutwBbgcML1L8a+BkggO3A7pd6zBf4HK8q2j2HeV919Hu10G6Fbit0O6v+ZUG35/gcryr6rdDupaHdK00zfB1wGngMc+LfAh6Y1eYB4Kvl798B7hBCiMs2wiVACPHEOezErgNOSym7pJRF5p/zVQkp5U4gukiTB4D/kiaeAwJCiPrLM7pzxlKe4xVPu+eBVyT9XkW0O/n8gJPAC7xM6bbCd8+Oq4huJ/BK5LsV2p0fF0S7ZxWGhRDdQoicECIlhIgLIZ4VQnxMCHFRBGkhxFeEEH9W/tkI9E2r7i+XTcdkGymlBiSA8Dz9tgkhpBAiPe3zxxdjzBcZS5kzwJvKqv/vCCGaJwqFEL8hhOgSQiSFEINCiH8QQlim1f+pEOKQEEITQnz6ks3i0mDBeyOEuEMIcVwIkRVCPC6EaJ2vAyFEyywaSJfp4remtfmkEOJM+R7uEULsuJhjnd1GCNENpIAQMGdNCSF+Nm2sJSFEcdrvfxdC3CaE6F9gvl+Z1j4qhPiFEGL1QoMWQnxaCPH185jvucwbFqDfqxhLvS/z4jLy3dnjjMwzziXx3HK/r3i+uxSecwVj0fuyVL5bbrtZCPGUECIhhOifTQdCiA8L80g7LYT4uRCi4WKPd3abhej3bOvtbDx5nrm/Xwjx9HnMZymo8Nz5cUE8d6mM9X4ppRdoBf4S+F3gi0u9yEuMgJTSU/786Us9mPPEj4E2KeVG4BdM7XIBfgRslVL6gPXAJuBXp9WfBn4H+OllGuuCmC6kX2A/VcD3gD/GFCj3AP8zX1spZe+05+8BNgAG8N1yX9dj0vSbAT8mXX9fCKFejLEugvuBM8BmZq0pKeV908b738BfT5vDx5bQ91+X/9sIDPDSr9XF6LeChVHhuy8tzovvno3nXG68FHy3jG8AO8ttbwV+RQjxunJftwF/ganNC2Hywm9ejHFeABZcbxeBJ19uVHjuOeKctAxSyoSU8kfA24D3CSHWw6SB+t8KIXqFECNl7ZWzXHdbeVf4B0KISHkH9q5y3UeBdwG/I4RIA78OTOxgNgN/DXxYmMbvjnL5wESb8iL3A+PnfQfKKI/rt8s7qcSsayKE+Eh5FxsVQvxo+i5WCHFXebecEEL8C6bNyvS+PyiEOCaEiAkhHprYTQshBKYQ9p6yhuEQcE15jpOQUo5LKQvln/+v3GairlNKGZ+4FCbTXTGt/qtSyp9haiLPdg+uE6ZmNFl+jn8/rW5HebccF0L0CSHeXy73CyH+S5jG+j1CiD+atpt+vxDimbLWZBz49GxaAf589v2ahslnXUZTueyNwBEp5f9KKfPAp4FNYhEN6DS8F9gppewu/24r9/WiNA2P/gszz3nNEvpaylgXaqNg0m73fGvqYkBKmQO+jbmWzhlCiO3TnvmB8gtsou4DQohjmEz2nUKIXypXNQFvFUK8dlpXCaBfmA4N/w+4bpF+3y9MjVtKmNr6dy0wtvg0zUxGmJq3tnLdYmtVljU+p8p9fL68DifqF1yrZToenbZWOxa5fUuhhyXhUvJdTHp/3bTLbcTUKE3ngZeE55b7uyr57izM5jmz78Fl5buYpjANE7QyC4vR7bny3Tbgv6WUupSyE3gaWFeuey3wv1LKI+Wj/j8FbhFCtC/Q10I4J767FPpdaL1dLAghVgvzxC4qTCe4t06re40QYl+ZFvrEtNNcYWqnPzFrPgeAe4CB6f0CzzJlOvH/gOuFEEfLfHVACPHbC4ztgJh7onFbue51QogjZVp8QgixZtr/zraOXytMR74JrfvGaXW/Wx5Tqnw/7jjPW3thPPdsRsVAN3DnPOW9wC+Xv/8D5k45BHgxdyWfLdfdBmjA3wN2zB1iBlhVrv8K8Gfl7xagC1O9/QJwBLgBOAZ8rNzmj4ACEC/3Uyx/n/i8s9yuDZDlm9EPfBmoOss8nwcayvOYfs1XYR4fbi3P4Z8xmRuYglMKk7lagd8oz/fD5foHMLWza8rz+yPg2XLdPcCL5Wsvw3wRHcFkGL83bU6Jad8zgDZr7O8EkuX5jgGb5pnf14FPn+VZ7wLeU/7uAbaXv7eW5/iO8hzDwOZy3X8BPyw/9zZMu8MPySkjfg34ZHnuTubSyiPAWLl9y6xnmQZK5e8pTDspgH8E/m3W2A8DbzrL/ASm48H7p5X5ys/gekzHhE8C+yjH4F7qhynaXcaUU8O6WW0+Dvx7+Xn/GfDthdbUtLKvUF4f08puA/oXGMdke8ANfA04sMi4Pw18fZ7yRswXxqsxBfe7yr+ry/WvAdrL8x4Ecpi2bAcw18d/T+vr3cCx8vcPlZ/pnH7L400yxRvqZ9/DBebwF5gaKCuLrNVyWwn8BAiU6W0MuPcc1mqgTEdrgG0s7MzxGmY6czx/jvTUzWXgu8yk224gW/7vJA/EpNuvszDPjVPhuwvx3Tk85wrgu+vK456glel8dzbP1aY923Piu5jr8i/LY19Vpodt5bq/Bf51Fr+RwAOXiu+Wv7+dWXx3qettMZ48z//eDzw9T7kb8yj/A+Wxb8Gk8bXT1u0GTN64ERgBXl+uey/wzLQ531V+TgeBa2f1e9dEv8AbMNfszeV+gpinGme7tx8FjmO+Izsw18Bd5ef5O5jry7aEdbwFGGXqHfu+cnt7mS76gIZp/KN9kTG1cal47hJuyEJE8hzwh+ULZ6ZPAFOAPTPt4WqAe1r9t4E/no+wMF+SpTIR/GG57BngZ+XvDuB/yw/ieWD5AuP2lAnEAtRiGs4/dJZ5vnva779magF9EfNYZHrfpfKDeS/w3LQ6gbnoJ5jyzygzqfJvBfOF04rJ7E9iMvKTmExzYs6fAV5X/v5ZTGZ9AHgcWL3AHFZi7rDr5qlbijC8E/gTZr28gN8Hvj9PexVzka2dVvZLwBPTGELvrHszSSuYx2IRTCbYjykofYypRSSAz5fvyyHg2mnP4y9njeUZFnnhlNvcjMnsPbPG9Afl56mVx7PtXBbRLNpd7DlO0G4Jk8ksn/X/5yb+N63sK5y7MJzHZJIG5vHjxkXG/GnmF4Z/F/jarLKHgPctMO90+d79IaaGrAC8uVx/GJMZHijfmx/O1y/miyIOvAlwLvGevw1z7U4I6Quu1fJvCeyYVv9t4PfOYa1uL5d/Exgq971k2j0HWurmMvFdpui2RFlQwKTb72Ju3pbEc6fd7wrfXYTnzNPmsvFdpuhWK3+WTLecI98FbizTjIa57v5kWt2dmPxiI6aw/h+Y/Ood57JOZtHv2fjugvTLWdbbrLKvcP7C8NuAp2aV/QfwqQX6+RzwD+Xv3vJzbC3PeRxzU/OH5X57ZtFuFBgu0+5gmUZ8S7ynOzB5dkf59x8zbROBuZ4GgNuWsI7/DfjTWf2fwNygryhf507AepYxXVKeeyG2RI3lm10NuIAXxbTTRswFO4GYlDIz7XcP5g5iDqSUDwohBjCZ2iPl4l9QPoKS5vHMW842OCllGtOmCWCkfLwwJITwSikXMhkYnvY9O22MDcDe6X2Xj58ay3V90+qkEGK6EXcr8I9CiL+bViaARinlY+Xjvfdh7qa+h6n9QEr5f6f1+fuYjPFscz4lhDgC/Cvmkda54kOYTOS4EOIMJvP6CebRQ+c87aswd4k908p6mGm0Pv1eLEQrGSll0zzzkZi7+tlIY+5Wp8PH2U1B3gd8t0wbE/gQ5m56HSazvBv4iRBii5Ry8Cz9zR7vg8CDs8qmP8c88BZhOtB9Qpoe/NMxsaYuFH8rpfwjIUQL8HPM3ffBc+yjFXOs908rs2IyVoQQ9wGfwtQYKJhamX+QUv55uf4AoAohXOW+tkgpTwsh/hX4oBAiPrtfKWVGCPE24LeBLwohngF+S0p5fL4BCiG2AP8C3C2lHCsXL7ZWu8vFs9e5Z9qcz7ZWP19u9z1MLWtyvrEtQrsXiovOdyfotkyXXyiX/d/yEe2KpfLc8v8qfHcm5uM5s3HZ+O60sgygSiln2KCfhW6XzHeFECFM3vMJTNvhOuA7QogRKeW/SikfEUJ8CnPD5cMU+lKYQs45Yal891z7LeNi8eQJtGKaLMSnlVkwT/Cm+7Csx+SpdkxBHillSgjxU+DtUsq/EkIkgI9IKR8VQvwO5knaf03jBxbMMHK/LITYhnk68pdCiIOYCoBd8w1QmM5238ZUfJwsFzcwjd6klEZ5vU2nuYXWcSumucknp9XbMLXBTwohfh1TKbNOCPEQ8JvzvXullO+Yb7zT6i+I556XZ3L5xjZi2gBFMI9I10kpA+WPX5qG5hMICiHc0363YO5UwNwxnsu15/PUnf6Z18Zw2nXOZ86DmA90YgxuzCOrAcydynQvY8FMu5U+4Jem3ZuAlNIppXwWQEr5T1LKazCPMzqA/1Pu5w8Wm+ciY7VgagDOGVLKU2WCqwH+CpN5TRzrzNdnBHOX1jqtrIWZdjpyVvsFaeUcnu0RTIcVyv9zl8d3ZKG5CdM+7i3MdSTYDPxESnlSSmlIKX+O+UxvXKivS4FZa+qiQErZC/waplAwn33gYujD1AxPp1u3lPIvhRB2zJfY3wK1UsoA5stous3mNzGPdx8AjkopT5+t3/KYH5JS3oXJ2I8D/znf4IQQNcAPgI9LKfdNq1psrS5lzue8Vi8XKnz35cV3F+E5M3CV8t3lgC6l/C8ppSal7McMAfbqafP+vJRypZSyFpOfWDBPka4IXAqejPlMn5xFlx4p5S+X67+Bac7SLKX0Y57MzOGrQogbMDXejy+lXynlC1LKBzBp7AeYwu58c3aW6z8nTV+jCcxeixPrbal89c9njc0lpfxmeWzfkFLuKPcvMdfAZcc5MSghhE+YjjHfwjxaPSSlNDBfWP9QfkEhhGgUQtwz6+9/IoSwCSFupmw8Xy4fwVw4S4Kc5ak7z+e/y2O4XgixSgihCCHCwD9hHiMlzmXOZXwT+IAwQ8XYMW2hdkvTIeKnmDuaNwrTOP9XMXfBE/h34PeFEOvK4/ILId5S/r6tPE4r5k49j3lUhJTyLxab50TnwgxPM3Hf12JqMh6dVm8VpiG7AliEEA6xQKQEIcS7hRDV5WcaLxcbmN6zdwoh3iqEsAghwkKIzVJKHXNR/bkQwitMB5XfxDTJmIOz0cpSny3wfWC9EOJN5bn9X+CgXECDWMYbgBhTzGMCLwCvEUIsFybuwnw5XhamPN+aOof/OmZ95jgiSil/gcnIPrpIV8qsfuyYz/B+IcQ9Qgi1XH6bEKKJKY3FGKAJU0t896w+v1Uu+2VMBj+BBfsVQtQKIR4ov2QLmJooY555WzCP378upZzN1Bdbq2fDea3VS40K33358d0yFuI5M3CV8t2T5mXEO8u0UId5lH+wfH2HEGJ9mee2YJ5I/KOUMrbYvbocuBCePLermTwa01+hQwjxnvK72VqmxwlnNC8QlVLmhRDXYdqlT8eDmELjZzC1vhM8aMF+y+v/XUIIv5SyhGlasRDv+hJwXEr517PKv435nryjvG5+C5NHP7uE+/CfwMfKa04IIdzCdBT0lnnFq8rrO4+5abssfHUO5NltR7rLA0xhOhTswlRFq9PaODAZVRfmjT4G/Gq57jbMo48/xNyh9lJ2FijXrwT2YzKBH0y75p3T2nyaeewazzLud2DaS2YwtQj/xTw2XbPmueA1MW1TOjGPTH4CNE2ruxdz8Scwj22fpGy7Vq5/D6YNSxJzl/SlcvkdmMxhwt7yv1nEtmyBcX8Z88WWKc/hbwDHtPqvYO62pn/ev0BfX8e030lj7vZfP63uZmD3tDm8r1weLP9vrFz+fwFFLmA3tRitnOO878TUHOaAJyjbhJbr/p2yvdK0soeYZbckp+yMPlOmy1R5PO851/Gc49i7OcuamvX85rMZnv1MJaYp0Xzt34a5g7fP0/+n5+mnv1x3fZmWo+Xn+1OgpVz38TLdxTGP+L41z3UfxbQXrJtVPm+/mNrgJ5lyXHqCWZmVyv9vK48zU6bVic/E2BZbqxLz6H/e+8slXKsXm0ao8N0rlu+W28zLc+bp66rku5i22S+Un88wplDkKtcFys8gU677LPPwv8v14QJ58jxt3s/8PNqCabb20/KzG8dMMra5/L83Y5ojpMr0/i/MWoOYttuSWb4tC/WLqbz4OebGLFl+JjsWGLfENHGYzlcnHO/eABwt358nmeaoyNnX8b3l68Yx+cL/Ygr+GzHtuFNMrfGGl4IGRHmglwzCDMvxdTmPTWgFFVRQQQUXHxW+W0EFFVSwdJyXzXAFFVRQQQUVVFBBBRVcDagIwxVUUEEFFVRQQQUVvGJxyc0kKqigggoqqKCCCiqo4EpFRTNcQQUVVFBBBRVUUMErFheSdOOCobr80uKveSmH8IpBfZXrkvQ7FMlekn6XiuLw6YiUsvpyXtMXCMuaetMvKZsYO0vr+REOzxvd7qIiReiSX6OC80fP4YOXnXYrPLeCC8VLwXMBXC6XDAQCl/uyLwls4ct+e18RWIznvqTCsMVfQ/37PvdSDuEVg099aMsl6fdPvrjv7I0uIXr+6rU9Z291cVFT38TffPlhAA78/N/Oq493v3t2IqeLj6fk2y/5NSo4f3ywo/Gy026F51ZwoXgpeC5AIBDgox9dLFz61YPWd70y5nm5sRjPrZhJVFBBBRVUUEEFFVTwisVLqhmuoIKXOzbda2bRPFcN8de/npxTdrG1xTeLb80pq2iLK6igggoqqGAmKprhCiqooIIKKqigggpesViSZlgI8SXMvPajUsr189QL4B+BV2Om8nu/lHLvxRxoBVcmptsiv9T2w7NxOel2QkMM529HPF1bfKlsiqdriyta4isXFZ5bwcsVFdqt4OWIpWqGv4KZW3oh3IeZ634l8FHg/KSBCiq4uPgKFbqt4OWJr1Ch3QpenvgKFdqt4GWGJWmGpZQ7hRBtizR5APgvaWbweE4IERBC1Esphy7GICuo4HzwUtHt+doRT8f52BTruoEQoChL2+POtileiqY4n8lgd7kwlTszEY+M4/Z6sNrtc/+XzWJ3Oif/p2sa6WQSf6gS/m0+VHhuBS9XvJJoV0qJYRio6qULlakViwBYbLY5dYVcjkK+gC8YmFNXKhYQQsFitU6WxSPj+ELBJb8jXkm4WA50jUDftN/95bLLStxGIQtCQbE5FmwjDR0tOYpQrFh8VZdxdIvDKGRBUVCsC4/9YkFKyfGjXTQ0VuMPLCxgDfQNk8kW6FjVet7X0lIRhMWGYncjlEsfW/cccVnotljSeCIexC9yXF+lzdsmVywxmpW0+K3zCppSSr69M8kje/N4wlX82l0lWuumhM5CQeO9X3KTzOjc0JrmddcobF4+l3leCI4f7+bbj/dxwyovd71q82R5Opnm4MGTPHq0QL0twfvfdcckA+483U9n1wC7The5Zb2f22/ZSG/PED986ABxArznzibaljdN9hWNRMnni9Q31nLkSBc11X5qameu02PHuhkZHqeqys+69e1z7lf3mQEOHhtASJ0dN6whGAqcdW4PPryX471JXn1DE9miweaN7ZzuHORU1yDrV9Tg9rix2qz4Q8Hzv4EXF1cEz5WGjpFPo7r8i7bTkhEAFIdnUf58OSENHaOQQXVe+jCHAHouCVIueq+MUgEjn0J1+hEW64LtFr1OPo0s5lHcAYSizstPXmJcFtrdH1UY0r3c4ovgts+9l1JK+hMlQk4Ft31+UWgopbF3KEtO9bIuJFgza/k/O2bhhGghlOqkPaCwPigv6v3WSiX+5b+eQRWSj3/gtkkhVkrJyeNneOy5Lsazkvfd10HzcvM9HY/GOXK8j12HR/HYFT72vtvJ53J870e7ORm3c90yO6++e+vkNUqFAt1nBmjvaGNoMEI6k2PVrHf+eCTGwcM9OO0q69ctw+PzzKjPZjI8/XwnmXiMVR3NrF23/KxzO32qj+893sn2NSHcbjvLWmuwWiw8tfsUTdV2amrCCCGpqa+7LDR82aNJCCE+ink0guq78MDSRiGLUcwihIpEgl5CWO0L3rzieC+qO4zUikhpIMS575C05BggUZx+FOtcLdi5wihkkXoJmc+j+C/9i+LI4U6+szvJ6qpx3v766xZs951HTpIoOfhln4Pq+tpzvo6eiaE4/WjJMaRWAsDiDZ/3uF9KTKfb6rqms7Q2MaEhHh4dZfDJE6TzI8BUkg5dN3hq3IVTlMgpHrpsy1kx8CLbawU268yleXiswLO9Ddhr28l1HePoILTWQfdAhoZqk2ZymkLWsPJor480GTYvL8wZ07PHi/zVgzbetiXNO2/3cGqgyLdedPHGTVlubl08+kQynkLoBSwWP6VCgcNHe1jZ3sBPHj/G8TEFffgU/fVrePiJw7z6ri0YhsG3fnEKzVAQWhaLamqBn90/wGgaFBFDyvoZ1/vajw6S0qyEjN2MWppo9Y7ygbdVkc9ksDkcKKrKj3eeIZUtonrBae+hvaNtRh9P7xugM2alGBkiEs3wgffcCUAsGufE6SG2bFyG3eFgaHCUfK5IbY2fTK5EVjrY+cIZBrUwFqWLpw8MMVby8swLz+H0+rF4Anz0gQ72HOzD67Zz4/a1S6KDlxoXm+dKKdGTY6CoYGgorgB6OobqmX+joCUjGHoRW7ABLRk5L2FYzyaQegmhWs8qeC+5z1QExeVHz8RQ3Zd+kyNLRRS7E6OQQbG7521j5FJYfFVoych5K2uMQgaLr5rCSBeq3YU12HAhw35JMZ12/f5ze+5Dhp8RVyuJwhjuaa/pYzHoLXlpZozdnhsJjh7ilnCOkGsmz5VS8qNBB7aW6ylFB+ktpVhDmkze1NS6HTZKmo60KYwoVcRszbRkduH3zExwVSiW+PFoAJue43WtBrpu8FzMiVcpsjEkF51DsVBAKxawOy0IITh1sgeHw0YsluZ7L6RQxqPozjDffqSL3/xIC0IIHt3VyeFhBWsmPbnRO36in+OjIEsJctmZguxjTx9j1xmDjgNPcnq4iHQG+WWvnVB1GF0rYXe6eHZvD88fGcPiq2IseYr775mZt+Do8X52dekUx1Mc6DzMp8vCsGEY7N13isb6EPUN1eQyGU53DrG8rYZMJksWJ2d6x+jOh1jT30ljtZsX+gTPHuxBaiewhlu4d2MMr9vJ6f4Yd960Crd3/rVzobhYwvAA0Dztd1O5bA6klF8AvgBgr1+5OCUsAVpqHFtVM4XhThAgLDYW0z8qqg0jNY6wOmYIwhO7aYRYksCmuoIYhTRcBGFYqBZTa2DoF9zXUtDQEMZbOEFk3EE2k8Hlnp+4Nq0IEk8VCITP70WhOLyUxvsxDB3F7rps8zsHnBfdrlizacl0axgG/aOjhFNnsBQTfDHpw06J+xtzFLJZuhyb0DNR1FwcVemis/YGPKn9bA1pk/9XFAWBQCtkEJFeVocT3LPZz3PH8/zxk+u5q6GLvphC0Jrjg1vijOWcXL9CAKZm+OmjBTLZIndsdrHvdJ6Uew0/PtHHO28v8mynlSdH26npPMG6acoAKSVPHSny7dN7uGtHO6FwkGeORJFWF1vWNrJ7byePHi1wTeQ0jSELR7pGsDrdBKx5wgEzw1kpn2djsxVQefV9OyaPEndsbeZM9wgFmxe3yzl5zXw2i0ct4CglGcypCGOI9VtWMtA3zFd+1snKGpW3vn47HXVWXjw8Sm3QQl396jn3/JZrmintPEy3zU5r0xTtPrG7k4ODClKe4Ybr1/Ctnx0jGjc1g6/a4OPuHU30DcU53h3DadXIRCNouRFcLjsum8Rp08gl0zzXWcItEqxf3cjn/t/jWGw2fvuXXoXNflk1ni8dz42PYPFXU0qMgAQjPorqPot21ZAURnuwhaYEMyklWmIEpMQSWFz7I7UiFl/1pIb5YsHIpRAXgYcvBVouiaIVUaz2BYVhYbGap2kXMCapFSlF+lFtLuCK0wrDedJuQ0PDkml3LFPCUYgSyud4JO+iOKxwQyjLuioLe7NBiqHl9HQlsCUPEa1Zxc7MCK93mYqKCZ4rpURBoTDajVpIcUNzGimt/DTZhKY66Uj20G9pYG3uAE6HDWsxij9kCsKxnEZfRrDMUUSoCglLEMXfTjT9PFJKTjm34s4Os5HhGeNO54s8nwmz9eBpNm1cwZPPnSZtq2H7KjuJ8SjffGIIl8jzvgc2YM93kbb4qHNqhALuyfXTGlLIpdPcc/8OqqpNBcSa1c20HOilN+UkFA7MvFlanoAWJZk0KGoWljlTBKtCfPU7zzGeFvzSm9axpjXA3v2dWNMFVi3bNOd+r1/bwljkCM/HNML+KZ5+8kQ3P9mXobUzxgfeWs0Tz57iuVMZlCe6qQ9a+bU3rEMKhUd3nWFlo5fu3jG00WEsFhWXQ6DINF5PmBePjdAVt7Gyd5indp9iMKnwhlta2Lx1Lv8/X1wsYfhHwCeEEN8CrgcSl83+R0AxMQoWCxZXoCzkLswALMEGkMacI3tZzKN6w+ipszNbxe4yjwYX0IRAWZOhlRCKumg7MAV4a6DurNddDOeSYS4UDuIJBBjOWEjEUgsKw7fdvOGCxiRUC9bqVoxsHMXuQlgu7rH9RcAlp9sn9h/muy+eBNWHzeZB8TeQGjrJgfEcWwI25HAnSqiZYjGH3enBHjlBrS/HkRGNhOHgtHUZr7J1sq7aht+WotqVwWGz8I1vpBlNa7hyIwx3phm01jCed3A6prO+WfLwMRvtdQUwDP7oR14UTzXP9gzwa3c56PxxF2h5fvd/PWytHqeluJ/11XnApNNMtsQnvuUhlrKSdqts3f899mcCNPirKRTzPL77DMvrPawMa7TU+DnSFaMlpNLW3D7TfCIR4/7X7iA2PDQpCBfzORqbavild91AOpOjpn4qNfC3frCbfq0GsoOEvQ7ecf8mqmurGBkaw0YRm9Wk06amavYPW1m3wj2vlqCltZ4PvKceQ9dRptnybeyoRRqjdLSbay1kzTKWSyN1Dbs9jD8cwh8OoSpn+PojZ5CGE4sD7rihjRu2rwEgFoli105R5VfJZPIUsWJgQ9cMuDwy1QReMp6rONyUYoMY+Sz2hg70VGRRba3FV4U09LlmUrqGYrUjDR2kAWJhNYbqDqKd5TpSK6Fnokgpl8RPLf5zP+26EFicHiy+GrTk6IJtLobW2xZuRs+lEEJFXN4N2lJxSWk3lc3zo8QyDEVBqFZ0mUNRVY7E+6l1aXjzI4ymAhBoRGhplOw4jWKIM+MFcprKXqWDZQxxU3WJNzZngAxhlxWwIaXEZ6TQZI6iUCk6QpzIN3G/Z5SDRR/BdIwGj8qeTIAzBQ/7hYs3uI6xRvQTSY6z01pLhzKOP32QEGlk1ZQfxa6IleMZP9SsxHIqQvdAAi2fpcWtMDySwaLC5mYLbmeQQ8cHCHsErY0BXn3bagJBk24MXWf5sjpWrbJjd5l9a8UiFouF973jZro6+2hf0TJ5r/bvOcyuHgW1IEi5qrjvOis37tiKEAKbCjZFQ1Ut1NQGcYbr8ds1Ojqa59xzh9PJffdcyz13bkFMs0duballS0+cZY0mn29t8PHMCycpSQXd7SNYbZ5+vPE+H//41WdIxuNI1U5DtZMPv+f2Sf794qEe7IUkdTWtJDMlsIdJpbMXi2SApYdW+yZwG1AlhOgHPgVYAaSU/w48iBkm5TRmqJQPXNRRLgJrqAk9HQVXAIRAsdpNu6tsHGkYWIMzj2GFEPMyXdUbRk+PL4kZKXY3LLCzn4DUCqjeavTU2KLtFkPYnueWDVU8dShCpHB2plbI53nsqeO0NAZYt7Zt0bZvvXctyVSW+qYLE8LPBiHEnCNIPZdEakWEOPtG4QKv/dLTrVZAsbtRpM79q6r5ybFBguToCt+AN7uP19cn6MoV8drHeV7dTIujyJ6Uh4hnOSLSiRqyIBEIIWgO2Dg9XiQqLWwNFKjxWHiLx9QsvPu6CJ99OIChFfnp0RBHM03c3nuArR1OwvYc44UMWrFIyGfj798l+fjX/RyO1jI6luFMsZG/eLLED9eMY7GoGIZB1nBg5Edx6KcYTgieii3nxnYVq6ry5MkiNlued75+GyePn+HEuIVl/pl2xPlMBkPT6Tt+lFC9qQ08fLiL7+7sZ3W1wXXXrGDZNFvho0e76eoaQbMk8TslVYEA1WVb4dr6an77I7dNvjSuvWYV7S0RAlVzT3CGhyPsfL6b6zY20NY283jYalERikQaBgCB6hrspTqWu6Jcf92ayXZ2hxWPQ6HeITldqGEokpmsy2ayZLIF+vM6VVV+PvamDThdDpzumUejF4orgnYXgOr0mrzW6TV5ptd8Tlpi1Cy3OVEcM49i5/MXEBYrlCwIxXJWfwKhWrB4FzcbMLQCisNrntidL7QCd2/0MhbPsW9waT4OWioChoHqq1rU7E71hE2B3n3pnUZVp3fGb6lr5jjhghUvZ8NLTbtOmxVZzKFWL6Mj8jR9Si1aNk+m4RqeyfTz2rYRDiZ68CoZjijV5FVwa3keV7ehpUewugSGNHlN2GUlmSvy9KiV1Z48VS6Ve+tygKlBHu0+RMnqoSdno8e7ClvmCA2eLI5iCoQPWUijegQ31sL+aJH9rvWcGd/PuKuRuLeK+thuOkImnWlSQbc6UUdPYnGH2B8NELTA2+9p519/0kfP+Di/9eFbAPjcl54koQf4lRvaJgVhgPHBAYQQJDNpGkMryWWy/Ns3n0fVMty0bQVbt6yctDsej8R47NkTlLIWLEoej9fNipUrJvnse956M1JO2UB//C0bsNrmioyGrvOzR/bjddu5ZcfMSHqKqqIqAkOaPNdqEVhqVmDPjfGhd9062U4IgccqcQadJIsq0aIVrVTEpppa5rFIimzJRk93Px97322MDg7TvnrlBVLKTCw1msQ7zlIvgY9flBGdI8R8Zg2GhmJ3m05p59TP4sz2XGyFVW8Vemr8vBnfpz60hfHBAUL1DTRWuwg3NE7WjQ+aJ0rTy8B0HNrdY3Dg5Em6eiPcf++1C/YfDAcJnqf5w4VClgqmLXFiGKOUu2Q2bVcC3S5vasJ5fIgNdX6WNTXyqbVriCRT/GDnk9QoaXxWC9tcGuBnpX4aRVF4YsTCWCGN5ghxnX6C5pAFKSUvjhrs01uxhpqoSz9DS0ClN2mQyGv0P6KQLdl5eHgVtxV2E1AG2doRQAjB1uYiO3tLHBq08OCLRV59jY0/fnWSSCKKguRfnxiiOSxQVZNJul1Wbqof4bhQOa23sL39CBu1Q9yyWmBI6LAIbl8jqRHHkavexls0g7rambSUGBvB5nJhly7c/gBgRrmoUaIcjzbQ+8hJ3vUaG7FYilWrWvjRY0cxHD5s3hAUI+zYtmxGf7NPeyY0CrNxsnOEY2MqntOjc4ThgydGODioEPYNc0tNmDVtAfYdO07JNrWWT57sY2A4zm984CYsVit93QPU1E3xl6qaEH6/h0I2w2e/uJv33reCcG0NFxtXAu0uBnWWsDsBxelDFpfOd2cLbbOh55LIUhFhObutsOrwoOeSC5ogLAVWNDasa+VM9xD7BqeE6pCtwKomFy90ZtHELN4vTWVKceQM1mDdwiYQinrWd8ylgizlUZ0+SolhtOTYvBuWi3atl5h2LRaVKkuOzOgxVocVVikx/HbBc4kThNQchWKJLSEFcNIuUxhGgqGMA3IppJTUySg7qguAYCit8/CoF9mwkXzyEHe68iTyGmdSAqeiE/J46PKthdRursvtodVTBKy0OAt0ZjWMQppn4z7urM2zMVAilHyGoF/jhUSJdCpBlXfK8qPBliOezjFetZGDqoaxykLO5eEfDAW5QpBzBPj9fvNUwdhcA7kif68B5TJHLsOtuSQbmpr4SipPun8Umc/hKGUJWm38ZF+Gb8eeR8ECrdWw+wRKwYG9uoFM9AzpsIXPacZkf7Px2ab5+VwsMs6eHh2PMs4tO2bW9fUOs6dXMhgZZfPGFbSvaMH/6GFShoVkMk2Vw04inmT3vm5ed/d66uqqiEWiGFJic0yZW7S31XCgT+MHO/vYHje4766ln4QvFS/rdMx6Jo7UtTl2vordjZFPo1yAl7DUNfRMHGFzTGP8ppbTyKXOaisshHLB0SqCtXXERoYI1Ewd52ml0mSIFa1YxGKzkYgl+PqPDtAQsvGqDgePvahzrCfFa6ft6rKZDI8+tpctm5bT1DJTiB4ZjnCic4Trti7H4XRyqaF6wxSGTqM43AjlZU2CZ0VbQz1/9Z77OTMwwD/v7mO5S+cT9+3Anh3jYdsK/IUMb6yNAUyaEtxep7M+c4a+goOOsqwQTeU45N2BHOvBPXKQpmYLhmHwSLoOHSsWUcWK/AuoYozWsIsjcZUvPa7zwdtV6sJ2tFgj+cQow2Wby7qQjX96xMaJWIDPv3mEJ48rfPtZg7fdZGVoLMeP+9fjl6N89U1HqK+eerlLKdnbK3i2S+Vv31ZEWATr1rebIYbKZgnJ6Dih+gbGhwapajSP1BJjo9SHHbz51Vt44UQUVXfww8dOMpJ3oPzsINIdZn1jDk2m6UzX8MiTR7j+mgLr1i1DSskPfvgMxXyO++6+Ft+0iA65TIZfPH2C5Y0B1q9fzraty0lFX6AhEJyh1QDYcW0bId8Qmze0EB2LEAx68fvdeL1Tpy5P7OllKOeiLtSF2+2iua1pRh92p4u7tjXw+HOdxNMx+nsG6e6PUlvlY82a84+68nLB1KmbPmcTq7qDGMXsBTmj6ZkY0jAm+bksFc7JVvhCI0OULG7+9dv7KUkVlCm62NDm5bab1zEY2U1POephKT6MUBSkYVCM9GCrXY6eGp8hDBcjfSAEtvBMp1tp6OjpGMJqP+uG4GJAcXgoxYdAShS7G1ma61x7NeGBxjwAPxxrJu6s43XFF2mzZ3gy4mSPsoq7tcM0eE2nNFVVafLBu53dHE3ZabCbp5YAe/PV6FWNGINH6QjGAQf7MgFOZG3Ya9tpHN9DS+Y4bR6Dki55Me1nk5HEbVXAV4ORtpIQBSCPoihkpZXHCqu5ztVFwBrhWNbHZiWB227lVClMpK6dbfHHeeq+d6Co096NJQPL6XF0RUE01aDUlNeHriPK7427LbBtzVr+fv8h0vVNOLNp2gyNsesbuVV18dzxAboTAmfcTu7F57D5mym6xkhZB3F5aigNxpDyJFyzEiEE+vFuRNcY+oog1o4VM+7vc7uPEU/lufv2jYRra7h3wzDZtE4qkcLrn6Ln9pWtvCaRp7amnlwmi1Yq0dxYTV8kj6qYfPXg0T52denkC71s26Dh83txe2ZuKG+7aRXjP36RvrTO+FiEAwdOEksWuOXGtTNM4S4EL2tJROoaqieInhqfU3ehu149E5/06sXhQeoljEIGPZ/CXrPs7B0sACkN9FQUxeHmT375RvKZDNlUAl+oak4cQV0rIQ1JIjJKqM588VisVpDmblK1WvnPrz1BIV8kpjvJ9Se45YZVLGurRVUURoYj9A+Ms3VrBz/92fMciXk5PnCU//OxmcLwzhd6ODqqYLf1cv22VWedQ6lQ4Ps/30/Qa59xNL7ke1DIYgs3oRfSCNul8Qy9kiCEIOzzsdyl017lNcPiGPXoJQNFFfysT2GVJ8+ywFRYtWq3hWq3xsQSDXmdbI7ux+XXWBVQmMiX024McVJpxpbo5vo6BZu1BAgOlurZc7KK/MnncDts3BF4kTOGldduBLCQL2gUiwqlfJYf7DH4/olahGrlDduGaKx184c3HsfnFDMEYYCdh4u80OVAcftJJvtwZH5GMg8F6UHx1nKDdzd7vW8nPjpCLpUiNjyEOxDE0HUcHg9FVeWGDTb8NbV8+WuPUoqMAgpqLol/eTV333kNu57eyy+OeYjtPIHH7UBF50DESSkao/N/D/Mrb15HIGyeuHT3DLO3D8aTo6xfv5xDh7rZdSqLZcRDUR7num1T5g+BUIAbtwf43+/t5GB3lpW1Nn7jQ6+aMb/br22hfyROz1CG53rSXNfQx4mhEtvX1UzaDe8+0MN4TiHgUPj5i+NY/DVUd/e9IoRhDB1hd8M8p27CYkW1XJjNqzR0FLsHPZ9GdXiQhk5hpBOr/8KO9k0HZQPVHUBKSZM7TywnyMq55mcNIRv1IQdPn8yBavLk3SdT9I89T09coKVNmtXzOayBamQmjjXQgJ4eR3H5zIgZdheyVDCFXXdgTsQKPR2ber8sURjWUhFTmHV4UGznrrQQqhV7bTuF0W7sNW3n/P+XEyb4aJ2SwJEv4fKrPDtiI+8Io+SSHCkYdKd0tteZJmhCmBF8Nod0mOaCv8EeoaaUYlNzDls57OkKW4IuI4geH2S5I0d7WAIWnom66HKvw5fdx+aQxrbRFzhSDLLWlWTCmTmbLyKVIn2aSrfiYDS4jmD2BdbaYZtrjNF8jFW1bp6eJggb0QTiSC+KrZZS/witATutuTRFXeempka+H4vR4w1yJF9CO3qUB6oCPJ5KsMyqcE9HB185doKHdZ3UNcuQnQMUOvtBVzAyCaRDYLlhPYVsFsvODJxKoHEcce0aLMdjqCUL6mkrea0bpmmGnz08SspwsXXNKA6Xk4d292O4wvTFj/Det2yf8Ry2bVtNd/cgf/WFnQg0fvODN+OdFhlk87oW8sUz1Pgs/OdPe2j1a2iahlUVvOdtNyOE4NjRHrrHDUJuldPZMH1P91Cwh2mp62P5yraLQjMva2HY4qtCS0dRyxpYk1mYAqdidy14lLcUKE4PWjKCKBOlnkthDTehp2MXNGY9FS076pkCfDaVIFTXQHR4cFLgnUA2mcRfXUNyfKbdsb/aJMp8NkMqp4FqZ3WgxJFogAPHBnjVzabdzle+/RzdSRtu1xk2rmul67GTrFtuCibjo5HJcGnXbajHdWqUtR1LM1dIxJMcHwF/NMld5zB3KSVGJo5w+THSEYRQUB1XvzAM4Pf5+MR9U2dIWxqD7BvJkMiXMGq3Ehk7ya6Sl0Z9kHqHwXKvgdUyxZSFEGwJG8xOGnlrk8qmTBceuxWLZWo573D0Uij14Q+aL82oEaabRv7u5yfpy7mpsiTpLDbSUTXKd/o2c3/bi2xaZsNW3pDdtmHq5CObK6HrBl6PnT990INuc2NJDTCStJBrvZf0yBClxChe1YzlabFasTtdGD4Nb7iKYj6HlAaZRIJwQ6Pp1FEqsb49SCKvk8trFCx+TvYmuM9iYeWqZezc9zRpXxtf/9E+PvneHawNdNKV0vDYdHp7RxCqBX/Ax6rVy3h15gRNDc3sfeEwhWwWr1VHlMZQ9Hq++NVHCAesuP1Btm1sobN7jDMDSRRnGJs1N+c5rexoZmVHM/v2n6ZqcBir1UrSsBBP5+k504/D6SCrWVG9PjIjhxGOMFuqM6xa1UJyfBxf+OUZOnCpUOwujEIGUdbAGvk0RjGPNDQz7JkndGExQSUYueRkCDihWLDVLENPx1DOk1dIKU1TC5sDo5gj5ND50Nt38OLek/x0/1yhfmN7kLVr29h7ehfZshCTx05nDKSQqFoew1ONKGuxhdWBYjM/EyHRtKTp7KeN9yNLeayBevRswoy3rlpQy0KzUM/hFSxB9YTQM/FzEoaNfBpUC0K1oiUjc/xormZsryoBCcDCOneKkZQZdaHXvwmjkCHSN0DeHmCDMkitR50TXq3Fq9BCiemiUpNX5R22cTRjDK9z2umBK4k39yIdniJgQVqcZGrW0zO+j72jddSWBugLXEfD+D6Gaq6nJnmCLdm9rPCaSo+wy0LYBWBGspCJBEoggPLcSSzCjxbtR1nbwR1uBx0d7Zw5fBCb1Tr5Ruj0Btg4nmVlaxvHDxzkgPCgn+7kjMVO0Wv6NIQDTgjbGE/msXhrkIlRtPEESlMdmu0UNunB1q1R9PXCSh/6oX4sJQW94KDnTD+ty8wTjgduayedzqMDhw6eosZvJZqM4K0N8POHdjMwGGPZsloa6kIEA24eevwwuINYsyNYrTNjPnv9Xu66bSOJWILaY4eoDtg50mdgETrxWIKx0RipgjRP2nM9aKkIzf4iK1baqKkJUSoU5k30dK4QUl5wpJ3zhr1+pax/3+cuSl96Po2WGMUabqI03ofFV4NQVDOk1wVgepSGAwdOEwp6+NIv5nd8nYiFqdic89qNGcU8r93q5sRAjvXtYTZtbGfg5AmsdhvecBUu79wjvtjIMDaHY9LucgK5dJp0PIbN4SKfy2BxejlwdIBrN7Zy5Hg/A2Np2urc9EXy3H3zqhnHDj996EX29Oi85aZq1q47Py33mc5+irksbStasDtMhvAnX9y36H+05JjJzNPjWHwXx86y569e+6KUcmHj6EuAFWs2yb/58sPn9J9MNsPuk91sXdZMwO8jl8vwlw8+Tzo6Sl514CrGKLpqcBfGyFWvY2v2RTaGTKeDXL5AUlNJlAQZw4KBwtaQdk5CRzpf5JkRlR49gDVYR0P6NEptLe/eHOH5HitubYznxxqwqAr/8u4CPrfJsPpHC3z46wGsdhtvXzfM9w/5iFvq+diaw6xdWcXJaAC3pcCqqjh1fh1b2cEimyvx44Eb0AoFWtauAyA+OoLN6UQaBmMD/bStXU90eJDHdvcyNJbmgTtWUzLge4+cIJEqYDFy4PTzK2/eSE19DUODY3z7R88TU2tpD2q8583bOX26j71HR2gJ6Pz8KCiFOL/6rmv5l++dREkPk3PUosf6sfhquHVjFZ0DCQZSKrcvK9K8vI32FS0MD0c4fHyY67e0cqprCL/XRfuKqWPtA3sOYeiSnxzM4lUKbFzmprM3itfrJJmHdz+wlcPH+nhwb4x7Nvm5YYnxhz/Y0XjZafdi8lyplShGB7B4w+iZmKksSI1juQixjCeg51LIUgHVG54/GY1WRM8mQChzfEc+9aEtSCk5cfwMx04No1is3H/vNUSHBinmsjjcnknnzunIJOIUczmCdTOFxlIhT3xkhGBDI73Hj9O2di3PPneM2iofLpeNJ1/oYU2rl86hLJtX1bBixZTX/ZnOfr726ACldOy8o1gYhSxaJobF5V/yyaeRT0/+1+J/+fJcMEOrffSjHz2n/5yKGTgskmavqVh4eszOSaWJUjqGUsziclgpagbUriKc6eF11aaSqlTSyBdL9BZd2GWRQRlgszuBz7H0zYuUkr1DRQ5mvBhV7bSmjzJqb2K96CYlPBRSMfJYidgbucnRT3to6mT44ViaAct23txyhJPDFg6W1rHG1smn3yR5YaSBYi7H8qoCHVUp7NMSiuzt99ETc3Jrcx+hgI1IQidTUKnx6RztyhBpfDN6NoZ19Bm+8nyQu9uGedstTv7w+04O9hjoih1NKnxke5z33GL6qvzFD+GZHg+as5qPv34FDpeTnz9xnNZ6Hw8900nRWc29axU6hwuciqjIxBCG3YOWjtPQUM2mjjCPHyvQ4Y6wbnUrq1a3oKoqTz13guY6P3a7lYGhGNdtWzXp3Dc8MEhPb4QTAxm6YlbuXiU52JmkMWSlc1xwzw0t1FV7+Y8fHKPGZfDBd968pGeyGM99WWuGp0MW89hqlpHvP4zi8JmBx2c5KywlQ91i2LRpwm7GFIbNRBJyMmSY1EqTWoF5heF8ip8esvHm7VWsX99ObHiIxo5VxEeGJwXhUrFAMhLBYrXir64hWDv3eHBCqMinU6iqgi8YxOnx8qpbzGO4Q11RBjN2tq3zcu22uS9mv9eBV43gdi+8m+rvHcTlchCqmt8B0GpV+fqjUZafGOddb7phwX6mQygWU7O+SAilqxVPHe3kof4i0Wwnb75xC06nm99/zXbGYjF+8PxhTmU8CCRKtoSMdHHUcLDOn2I4Y/CI3AixQQr2ADZVgNXORu0o/TkLe4oNXGMboMlp0J+RtHgULGWN8qGoQEGyLgRHRwoM1twGsWFasyfZUaez6cYIWzuc/OMjJVLKOmQhhSXUyB98/QjDmovPvDZNJGWQLSk49SxfOrGODcFePrmljx2rPewcXUFw7Xpax76JBYOHOltRjDz+gJdrwp00tE/ZmfWfPI7d6aKQTeP0+rBarAyf6cTp9fHmB7ZTyOVIx6Oc7I6SUQNsaE1z+83XoigKVTXmOh4eiTGu+/EY46xsMU0Sjp4e49iYSsBWwpIbQzWKfP6/nkBqkpZGH9HYMNGa5diKMbZuaGJ1ezWjY3F2HRrjye5hPuqwsvvwMAcGIBN9gX3jPgLqML8+TRh+6MUIOV1lZbVCKOjj+UP9ZHQbr+7wccONm8gk0+QzKUiN8tiLGepq/SxbNtMU6WqEnk1gr2mjMNoFmoaeis4Jnyh1zczydp4hw1Snd4YZgZQSWcxNKjn0XHLSWXk+HDxwmu/vSbGuxsZbXm2+A1VVpb59JfGRqRivsZFhdE0jVFeP2x+Yo3wo5HJkE3GymRRqZJRgdRWKorDjRnOjt/OZI5yKWgn6irz5NdfMGYfDacOn5pl/lCaMYs4M8blAhB3F7kLJp0CISTOSs0KxYOQSZvi6VxhiqSzP2G7EkR3l7d5BAG6qyrM1d5gjupPDrmVkChlcbgv60CHGbD56kzotPpUfjVeTUdzkNQO/kSJXtZpwbg/LRZFfJGsIyCy31BQYSJbwWAV+pylKDaV1eopuNnlSIOEALSjNLYj+A+xoLhEvnMFnV3huOMFpx0pkNok91Mq+/kGeTftZ605zTVhnNFeNbknxvYNupL+FT24+yk1rLQxmg3hW3oZj+HFWhaM80VlFpqgSrArT7uhka1OSrU2mWUbfuMILsXU4ww2cHjiMsuJGIp2nqKaPuzbZuHNjmp4RJz1DBU6nGqkOJPmT10TRShqrWs31VSzq7B6uQSukWNUi8Pq8nDkzyMEhiKcjVHkEQ9FBHnm2gNQ0PG4HK1aGOdSTRq1pY21jkeu2LMNu6SGWCPH9FzPcFD9Fc62LnSdLNPT1IZEMZp0Efd2sWmMm63jh8Ah7+6HDW6A9pNAzmGIgLjH0HL/+4XvMTe6hE6i5KH0ZKw89uo977rgwp7qrRhgWikop0outepnpdDFLS2AUc2aWt1J+ScLwYnF7P/WhLcSjcb78nReQqo1PvHsTn/36MRSHe8FYmJ/60Bb27D3F0a4o9WXPe391DdGhwRm5w1Nl56PpjHruXBUKmQwun59Q/dyX7gOvWsX4eILW5XPjAQLsuHEdO25csHsiI2N8+aFeQvYSH3/v/Dsul8tO0F4i6JsS+u9e5+CF4xEiaWNeR5ZLGUbtSseWtkai2TNsW2ZqogrFAl946Glaw14+cs8t/HDXHp4fSBGTboSw4gyFWX/nTUR+/J9Ys2l0DISioOcSbDTGsAatpFKCtLuBZHaEA5rKEddmNib3sTVk2ly9yGqEobHG6KKLarTkKEouhnTbeHhU5b93rmfbg8+Rs3egSMEblw9SIsKD0evRMiMc7h5jz4CfT24fZttKlR8f1ti+rMD6ZpWjowHC2X2I/uO0tig82r2cwOobGOk6iauqmXjqNJ7xnzGekqwNDZMKvwa9pFE0dHLpNJpWwuZ04q+qJptMEB0apGnVGjqApjqDxpbNcxwjNm9eicdppam5Bmc5Nvat21dQ3znEpnVrufteOz988EV2H+zFXt0GliS/8ku38+jOIwT9Tew91Ett2MOWLauIp4uEx7OMjScZHIzQZlfY31ci5Bjlhq3tM6+7Iki+qPHae7aClBw8Noiq2nh63yCnO4c4PVoCYWFdm59jUSeFQulykNRLDsXuojjej+rwgTTmdRjW09GLluVNGjrFSA8WXy1aOorFE0L1mCZnYgGe3tgQYnlgnPbmaQ7Wqkp0aHCGY7KUBqG6ehKRsXkVEIoiKBWL2OyOOeZsANuvWYHX1UPHyvk3QfUNNfz6h2oWPT0z8mnTvniRbH7SMDDymUnn8MlkURjznrZNmG+8EhHwOFkbPYzbMrUReG7EYFwPcHdNhmCmkz1ZN5mSD83qx+oOoUszkoJdFskVJcIeIp0rUD22j456jUzRIGGrgeIoY+kkv1CuI5Ae4PVO08HzaCFIn3sVgczzFPM5DLuPYv8R6r0udg/FOVN1A3XJbkq2ErZgA85sPyuiT3PYuxzd7iOWOswjeQs3NT/PjhWdxIx3kil288ANdk6P2FBLSZxnvsPKmgJd4w6cq+8jcuIYVQ1riAyNIcdTdKYaCBtdpJ0rqG7fQOzYTuq9MQYHTxC0JLi2NgKoPHjIh639NkqlXv71gd3YbYKqwExasdstfO6BQQTQX3c9ACtXtfGGvEZdbZDa+ipOnezhy99+FlvtSnK5KK9//c0sP9RF/3CCcHWIp3ef4vYda+nrG2Ek3kd92Mvug0M0WfOkEnkyBcGmFRbalk2tq45lYZLZEW6/wYww8d3vPoHitJNMDfO1bz1O30CMjK6ydUWQoxEbmeyF89yrRhhWPUEMbSKv+1xBTCgW9GLiomVB++8fHyQay1AdAqUcI1OxORe15bp260qunUoJjqKqc8KjBWrqiA0PzggrMhv+quo5nvLTUVtXRW3d+Uey8Po8LA9D2Lew5iFUFeIT7zMFZSkl/d39jMWzRIsOpBY/72tfbZBS8oNde7EoCi6LYO/pHlrqanh23z66DD/dZyI8sMPBusZanupNoqgqr9vQyvWrlvHQ/hPYELyjup+TCcHepCAfWkbYMPVLG4IGdamnqA456U+XGEt3Uu8oACoWi4UblVMIRRJPpkm7V6ANncBRs4weKSmV8ngSvVR7BB9cN4yU8O5baugfybH3uydZ05jg58f99Kqryfed4U0353mHPUNV2MWRITfxutcwduYEbpFnPUdp9/TT2bWTFcYZgokXqa+xsruzAVtNM/vSw/hyz2KzSIrL3zj3JgmBYrEwfKYTl89Pc/1c2pVS8tQzRwj4nZOCMIA/4GPjOhsDAyO0LW/mNXdtxKMWODEwxqtuXI/FauWeOzZz5nQ3D+7P4Tl+hvXrl3P7zRs409XPzmePMZxSWVuj4bDbaWvxsu2amU6kd9+xGSklQ70DJDIFMrYq3Ll+Mp42jp85ibWhA1t6iHvv3MrdWmne+MdXIxS7C9XQy3F9F46va2Z5u/CEO3p6vBwyM4NS1kALIRaN2lNVE+a9b575PCZ8LqbDYrURHx0mOI+gC2C1O6hubpm3DsDmsLNlS8dSprEo9Ex8UROI6fa+ei5lnoB6QujZ+AVf+2rCmaTkTMlHnYwypAdpzI4TcNk5LpshVM/JsSdYV+/h6aQNHYV6Y4RbbX0MlpwciQleW58hni3x+HiehH8ZnmIWq0UjYFF5XfYQdqcAVBqTnYSUKd+DTc4Yoew+Wl0lnijVm74UMkvUu5rBpIY9MUStM02No0hX5ghbmjQ8djtj/UMkC+MESHDIfzsj4028/prPsbVex2FXSacLnHHdR15P4gx4SeQeosGbZ6TnSRq1YeqGD9IS1jgUbSBhbYOqbSinvkMpkeCu5WM4HVY2c7g8SlNecbjsjA/0UKd009g8/4Zp94kiR4dsvPNGSX+5TAjBps0r6T0zQCadYWVHKx98c4mHnz7F6vXm2tq4YTkbN8A//L/HSBCguaqTVetXEQ752PnMYU4NpgnZdQIBD+Th7lvWTppbAqzqaGFVRwvjY+Nk0xl64gqlxCjWYC29o3HyihfVamF5axV33lKLNxi4YJq5aoRhMDWmqjs0b6zJiTiVRj6Dnk1ccKaf5hoXboeFt7120wzN7oVCUZR5tb2zcUFOKmeB3enkXW/cfvaGZTyz6yiPHC1w83L4pfsa+MLDVxVZXRAK+SxP96exGEUKhRw6KieHHuST99/O4aGdLG+vQtc0pFCw2F1U20rsGUrRM7aXIyU/toiLO/Q4HX4Hw4UCheh+lrWYgocQghqfeZzV7FVp9kYBdXKj1BEQ9CUNfqhtwRs7TbZ1C1WZM4xpdqz+am5hH7UeF++6eep5RVKSIesKvKVB7lg1xrFslnWrt/CzgwdwrH4jsaOHWOnuxTr4BCJnR3Ga11pWrbOsepCJNGzprE598RC9fQkMCdZlt5HJjjOfC5Q0DHyhMC5/gLG+HnLpFNXNrZP2YwBDfYM8diyPX42yccNMze3DTxzlxX7JA8k8W7Z0cMc9N3LHrGv4fW60+FFyytRm+MdPdjFe8KBnhzk1KPjD33jdjGtqpRLRsXFqGur46YO7eP5MidvXe7l2mZVcsppobITNd64lmUyz4+bbF8zkeDVDlgpY/LULZu5UfdXoyTFkKQ8XGPZMqFZTmSFUVHfggvqaDV/47MqDS8lzgXOytdbzaYSiIoSCUciiul65p27zoavkp8+9iuToAcasAXrTAe4unmKd6CMSGWJVnZNSqYRNVUCRCAHPpMKMWasplXSKAyfY0uhmQzHPkVQ3GwIJJiJC+F1TG7u7qkyb7AnfqyqXSshR5Htj9eQLBbwOB4ZrFYGB54g33Ujj+F62hAxApZEs5VwkZO1VZNxN+DPjrPVE2HrdRg6Ovo7B6leTHByk3hmhWn2aoaQDTVmGxQY+j8qtnin/JSkVXIUB5GiUaKodXaujbu3t9I98m5X1M33D8nmNVb4BaoMjnIj4+cXQJtbbD1A/yyryv/cGOJppZnXNfpgKzMPpUz389xMjrAz38843Xs+K1StYsXpm+DUAu6KjJ8bIlcwN3q69Z9gz5MBS6GVc+rljbQ0bNq2ZsbYiI2P4Az6Gh0b54vcP0VTr46YN1fT2wVgsxeo1IfKaZN2qRlqXL7xBPVdcFVLLhJOF1EoYuRQWz/x2rkYhY9r0LpJyebZ5xHD/EMGq4IxdC8Dr7ptpgz39f2dzJDtXjPX1olpUbE4XnsCVw/SOHuvm8Olxltc6CFky1NU0Ud/cCCycbnQhSGmgp6Nlb/SFtUwvNzicbj68rQ1VVYgn4nxzfx+96RIHOnv55OvvRdd1/vgbP0GqNj517zZ6I3G+cmiMepdKdayHkfAqdmpJ3r9uPSd6ngXpRNPG53jkZgoldqdD2ApJuqytbLX0UWsrMZ4zsChFGtySSGGEGmuBrZ4Euhyjyevk58MuHvxbg/tqUwghkFJyY34P77jbCbYw9pEcqs1CytJEITKGLdRMUU+wvXEYFtmzHYwvo9SxHXH6MA0dG+l5/hE2NBfYJPZMtunp/TyZrCBd+0Py2SxOrw9bOX2soeszBNP65gbu2ZDA5wujaxrqtMgZDTVeBsdHqamaGct1OkI11XjUAnnsJKIxiiWdYiZFSM8SDbdRSI6STiTwBYPEonFOnB6ibyDKkTErt6/sZV93AbQSVeFGbt+wgq/+7y6GZTU1NUG237iJE8e78XgyNC4QmP5qg5QSLTaIBGQqgmUhYUwvIcopl+dNyTwPjGIODH2OhvRCzSzOBcnxCFqpiDTknNO7lxJGMYeRT5vxZRUFKQ0sF7Ax0HNJhGq76kwptrnHacrtprZK4+ejkHY3szcT4P7GAiB5ZNBGr72dHfbDtPkUvhdvwlAdrM4f54BYwT7vdpqSL/D0eJCC3U9fKkH1PAr7PeMqmYLBqKUal57hjnCS3jQoegmXVSWkJEiVdG6s0xnLv8CKOoNDMSvHtRpudg5Q5zHXw43OIZKFYVrCbpY1OVHSPfhWvIlkIoWhOkhbGtjReIAtpIH55ZfTwypjzW+jlHiW+lWbGTx5BMvgTuqCM6NhAOwdb6NQdS2l6A/I6C4sNcvJRA8DM0/O378tzrGhFFuWW3hhWnkw4KXBPUBT7eJKxWq/jYFohkzW1J4PD43hzBXI2dxYvFWcOtXHxs1rMQyDvXtPYmglHjyYpcGWxudzgbcWURjl+uvMSExHYjlapOC1921hdCTC4cOdrFu3/KJsVK8KYVhqxbKtVfQsdqmCYqRvyQv/9KlevvH4MGvq+njL6667OIM9Tzi9PkrF4kXrLxlP8qNHj7Ks0cdNS/R+n43DpyIcG1NZ0WTlV9+/NG/OhaCnIpPpqy9WpIkrBWuWTcSfbcYQKnv6orTWmBu2/qEBEgUDi1rE7fbQarHyyyq0NjfTOzTEV589ytoaP73DIyieIMLQUdX4ZN9SSo7FIFOQ9ARW4cseRXc50Q14LNtMzhXmAXYTtdrZ7BjC67AwsewNwyCu+jGEBcNIoKoqQghWBWFtq43Hh1qpXr+B1IHvYfU2kxw8StiRY+OqNLNZx2hc0plbRrOth6awJCDGONN7GMUZoOfwXtbUZ9jUMDeUmc1mkEulMAwd1WLB4fEgpcRitZIYG0XXNdy+AHaXixu2r+XL//0o3320k7awSrKo8M7XrONUb5SWGheNzaYN6ED/CAeOD3HTtcvxB0xtZCwSpaB6IBvjq997kYBLIWOvYVW1xJOMgsM+aX7xxO5ODg4q+HMR9JKLnkGVjgYXeknlVF8cu62bOr+KWhwnlvQzMjDMt3aOErQV+NX3X120uzBMx2FFsaA4PGZq5Xkh0DIJhJALKilmw8ilEDYnRiF7wdGAzheGruPy+knHohe1Xy1hKgpUd3CRe7bIuPKZSYfBC03qZArCVoxc8qoThn0OKz4HgI37atM8nRyhzTX1/hzV3BhWnUTJPI29xXIKj9OBN+RgqH8MLZPG7pVoDj+2UBPWVO+M/ofTOpGiykm9hrzNiUMW0JUi+9JuTrg2slnuod5eQpfQ4C0BTkxjHZWUYSXtqiNTGpjsr86jUgeU/CHab30VscNfpjDQSa5QSzhoY43ax8Sp2wR03WDPYDUOpcimxhRBV4nu/r3grmXgxFGc+ijbG4ZQ5kls5RYJspGTeNwGjcEhIolv0lDnIJHSOZpuo84yxLJqja0rbAyNZ7j/C820Bh5iLG/n7u3NpDMF7FaFjWtNBUSpUODxZ4/TUh9g9eqpeOuReAFFVXlhzykOdiXJpIpo9iA3Ltc53D3CtdtMJeLJE938ZH+WUL4XreRkMJFjy/omUoVxqtwennzqEDVhD8ssnVhEPblMhp88foretA2nrYf2jrbzppUJXBXCsMUbnnQ60NMxpNRBMpdZSImtqplSMoKWGkf1BBFCWdBZzutxEbIXqQ6em0nFYs5354piPmfmGo+MUdu2fMn/S4yNopVKBGpqZ2jRAAr5PN/56Yt0DRfQdMlNS7eI4Lnnj3O6L879d6zlzpvaae8ZZeP6pYdn09MxM7C+wz1pX20UMoBAT4+bR6FXMbavX8v2aenbWxqbefu2FEGvi2KpxN88chC3KPEH7StY2drGn7W2MRIZ5xvPHKAUHSTktnFgVKPJp2Dokkw+x273bXj0QXbkd1NTbRBJj1PtsVDKjJItxBkTNp5xbac5c5I7HcnJayuKwv3eHiSgqjNtOr/0tSTuLYKqxEPE9TAtK66nONiP8PkoFn+A3T6TpoZzfrS67QwPZ2lilLX1OepTh9jZv4xqr5OOcAqw0NP7+Rn/s1oEtam/Ihb4NZSjv0I28IcIAeNDAwgUGld2EBsZwu4yhaLeoRSFkqSzYMHiCfJPn/8Ron4NfmuS+8p9vnBogAODAp+7nx03mBs9KSVGLkGxJBkvOnC54UN3N1DSNIRooG35lFZ5Y0ctyfETXH/9GvoieTasqqeuvppf/OIFdh6OceZ0LwlrPWh2Op/upd5dpCPko7Huyjm1udQQQimbokmk1NETUaSuYQ3N1KLq2QS2qmb01Hj5aN9yVsFLGhqykMHieelsrw1dIz46TLhh4dOG2cilU+TSKexO15xoFADPPncUo1RAcfnNTH1LTFAy4SQnFHUyyZRiP4c4w8UcRj6DUNVJ7brUS+anmEdKY8l9vRzhd9p4jTM9o+z2UJyxfJIN9TZ2jrs5Y9/EXaX9+JyC1zcXkbLAs+N+SI9SLGSIWiSnx/PUuhVSRcGeYh3j7mVcE99J0GHDjkZJKkjFQipzinp7kUezbZTsHt6aP4jTMSXIXh/IsSr7HOHA3HUgPD7OPL8LV+4YjrW/jZFK4VveTmr4J8DMOUTjRbI1O4hH+9jEXqr8Knf6TvHocR95zwrW2KMzTtemo80bZSjZzpF4E2tlH/uLO3juyChOJYNn9U0MDz/LMswNwM5OG4VckdOpHGr1Mn760B501YnmaWBsNEYg6Kezs59dXQa9wwMzhGGnHQytyEhOw+mw8NbbVuBxOYini9x253VYy3HtW1tqWXNskNpgI3aXG4fdxpbNK9i0Psdn/vFhhIhRFfIwlrLTrSscO/ozmprCrK2xUld/cUI5XhXCMExFKpBSR3F4MbKJOW0UuwstGUFPj2MN1qMnI4vGXqytr+IT79uxYP3lQCaRMKNLjI0s+T/R4UEyiQT1y1fMyF43gVgkRn/GTdBr8Pq7zk0rfKo3TmfMwsjwOB2rlxEKn5sAIA19KvyczUlxfABhsWDks9hrzz+z38sBkcgY4XDV5JFOIpmkf2SEtS11hINhcrks1kwEj2fmi65zeIxe6SPg9ZGzeXlRD3N4ZBi9ajk+OcSa9F6CNlgZUBlM6Ox03UgocYab3KOE3RqpAjSlT9FqSc4Zk9sxv2OToVqobl+F1juKI9REpL+PWPcR2lszeFvnhuRbFYrROfR9wrYY0aSdw5nVxEdGSEkVZ20zucJhvLNMaoslQX/pPrIFHas7jBG3kkklcbrdqIpKIZ+j/+RxGldMOSa97s51PLW7i9FUCUdqEK1uLd78IDu2dPDsc0e54fo13HRNK37vEJvWtfD0s0fQiwVO94yBvwklPU6tEuEd99+F2+PmH774JGnDzid8ToJlxzchJd05L5YTUd71pqmdYn2NH9UNVT47W+rdjI/l2H88yoCtheudOrfsWM8rCRNaW6OQRVgdSDlX828mGIqg59MoWhGhnl0Ynp3m+SWBEFQ1NpNJJvDbz/6yTcdjpKJRfOEwhVx2XmH4eHccS7AeLdqPrbptyUORxVxZGxxBKOo5a4SNfGYq2x1glPJoCTORk+oJYrnAbK1XMrL5IqoisNtMJYuUkr54EZsssCHsRQhhmk9me7BPu626rnNKNCKCBoH8GGdqdnAi2k+4mCXla2Nt/llqRJo11XasFpXvjdWTdNZxXfIZ7qwDRbHSnh+lVIzg8M3ksaqqEPbOvwZctQ1YXW4yI9fhVBRigz3UyE6WN8aZLa5Vhx20jvwYaRTQdZUXBmqI56yMpXSqG+pIpk4Bc6MsnBqxE8m4ER4XhmYhl9PIFiBruJEWJ5ZTj7I+1M+EJvpjtxvoD4+wJ7kSV6aXhPChFAu8aauDgbEMVdVxOla18ar4cZrrazh1so/e/hGSGY3ucVCQWD1uPnBXA83LW/nZowd4vtvgjtQpdtxghiZ0ut2MJQ1OR3V+5YFagtUmL7Y5nHi8LkqKk5s2+OkbinPoxCni/hYKfcP83q/ffu5EsQCWZJwphLhXCHFCCHFaCPF789S3CCEeF0LsE0IcFEK8+qKN8Bxh8VYhtcJkBqPpUOwuhKJiq21Hz6d5853t/OoblvFvX3uKhx69uHa+54uRnjOM9fWilU0iAjW1JMZGcbjmd87JpdPEhofmHOfVLWun/8RxgrVzsw3VNdXztpvCvPrGJnx+L7l0ek6bF/ee4uHH9mPopg1ROpHin7/8JEYxzzt2hFi5qu285jexIZkyZ5FYfDVILo124kqh3d1HT/LnT5zm5y8cmCz7xq7D/OfBCJ/53uOc7u7ieO8AcU8TDk9gxn+vX7OS+uIIGWcY0mMYpSwuu401AZVMPMZJo446e5leHApV8aOMpfJ8L1rPdwZ9eGwqVUqaXs1LoaQtabyf3vYA17x4HDW0FSVbYMtgjE/VX8driibzKRZn9mO3q5Skhf2WBzg06ELWbCFjb6V18/VYBx8nl/7CHK3waLoJy6rfp+C9m5aR19Hi3Uuj8U2qm1owRn5OoCqMz6sgFAWtWGR8cIDWOjcfec/N1PhtFEMrcaS6eNXNa3j6xV4e2p+ip7OXdCZP91Ca/XuP88jRAk/sG6Y7CoXh09zQ4eZjH7kfVRH89KE9hBwl1tQqeHxTsWwDQQ+NHo2GKhfZdIbnXzhONp1h/aYO3n9nHW+9/xpedetG7rp9C1aHAyUzyg3Xr14yLSwVVwrtng2K3YWw2ObV5JrRHqpR7G5UXxVaJg5AMTaIlhzFKOUv82jnIjY8RHR4kGR0KgqwzeEkHY/hr5r7HpFSEhnoJzo8OFlWzOeoX95OfGwUp2f+9MoP3LmGUqQfa7gZo5BldsIrI59GS0UmE2UAlOLDSCkpRfpQlpi2eTZUT3AyRTSYTo+qrwoU5ZL4Z1wpdJvNF/lBdhUPxqZC5R2LwaOOm/hRYS27+k3aG7Y1oQVacEwTHC0WC2sLJ5CqDU3XKIyeQdU1amUMx8gRDikdeJXiZJbQRjmGGDvNzmIr/xVppT+l0+LIk1LcDKSX/m5LPf8Uyd4zVK+6g+yJL/Luawe4bUUUl9NCsajNoRmPrchpxx083d9IzNJGQqmnZeut5EY62dQwV/kBcKK4jmLLq6ke/zm3NJ7BaRcEa+sIe0EtxHCsvINE2eHt6JCTEbmcP32bnc21JXLeZXjVEuvbPAyP53j8QJRde7splUoMjKQ53T3GQ8/18Nj+cfadyVFIxgk4DH77w7fStKyFF54/QjSaoNmVobVxJr9oqXXR7DNweVwcOtRJX68ZXvajb72Gjz7QwbXXb+ANr7+ZhtoARjbOppUXL7kPLEEzLIRQgc8DdwH9wAtCiB9JKY9Oa/ZHwLellP8mhFgLPAi0XdSRngPmC602AWF3YWSiKKqNTRtX8IMfPs1gJI8sZma0S8aTPLm7kzXtVTMyCS0GwzCIDg6gqPNHhEhGxynl8wRr61BUddJJw9B0HG43nmAI1WLF4XZTKhax2GwIIeZkQirkchRyWXyhMPl0imBdPaN9vZQKBVw+P1abg3R0nLb1GxYc68HTEY6NQPvhnXTGLbznrjaWtU8dCT59YJiY5mTdimGOnh6jsz9OKqfjtNkmA2MvBqkV0TMxpJRYA1PMSLG7ZtgBWoP16OlxMy7sRcaVRLtuuw17NsKTp20kc8/ztluvY2WVl75IN2nFxldeOMOv3baJjb4o6xtmMglVVfnwPTfRMzxGNOnmx6cTGJrK6ioXR+rWIlOjCExtc6qgoag2LE2rKfQewvCaWuYePUjc2Ugy/zzV1qllr9U2Yw+FyR3aA8Eq1Op6Mj1dPJuJcE2olmORGAFhZZXLyYN6ko6C5NSgmz7rNoqRLmoso3g8VlaF4qjCQMulaQzpKGP/g9QkfQfThP3tZPJ23I4CJQ1GcusJWk8QsHVz5PQR9ILOgHI/jtQATc5HOfjEEN6O36aYGaS28DWMhn8mk4hPpiY/frKf0aTEXjpKPriC/Uf6SShBgsRpat3KU7tO0Ju00xiGDm+MIwMxrI2rUZBcd/16DMPgn7/6NPF0kcZaP++b5Q8QCgepDVjZdSzKeDTBkaiHRKaLm65Zxo8e7yTg7ua9b7+ZQDjI7/3KnVhttjmmSBeKK4l2l4KzpQcWQmBk49hrlpm2qooFWSoirSWwTmnJtOSoaeJ2DtnS6l0Flte72XUyg6HOPLUo5HJkEjEcbg8ur49CNksmGUcraVisFoK19ei6Tqiufsbp22xHZSkl8ZFhfFXV5DNpvMEQmWSc6NAAFrsDty9AdHiQ6qbmBcNiDo1EsVU1UhzrweqvQUuMzOCNRimPxWs6eEtDNx3CC1msgVqk1Y5iPbtdr5YcBUSZz5oKlNnaZNXlR88msLiDF90m+0qiW1UROEsJ0vkC3x2t4T7/AFV2BU+yi0SuxIma7dQm9rJSGSZfiODyzKSdbfVWwoljuEMaj2U8ZIULqzCQLj/C4SOf6wLsJHIlbFIi67ehjHWj6zq6hLGSnRF3O1XZFE3TBO2i3YFv/TUkD++FfA776o1ET53AXxVGDPdjJGIY8b2sDO7kWOSTqEKnyRPnxcLN5MYHCTgKBCwpGrwZLAoYuQwKOtc4dzOWL3Lg0BDuQBWdYw5W1ppKkp4xgVWRNIRByQ4SG3GDqGbviI9NVcPUDnyPrlQVvo7bKJx8kNbWPKAyQhtKzXqGRrs5NqRRTJ3E6nbRGXfgSSVRFRsrGj3EowlOjEEkmeKmdWF+snOcUrGIo2El7aEEHp+Pnz+yj13H4hiGwYfvX0lzy8x43mtW1PDtR7p48OEXODDiJGwb5JPvr+OZPV0c603xntea8bo/+J47yGdzuLwX90RjKRz8OuC0lLILQAjxLeABYDpxS2BCAvUDg1wB0NJRkAaK1THpmaxY7ShWk9H+yRf3oSXSYHUwmND5ky/um7T3PdE5xN5+yOZHliwMZ+JxfFVVpOOxeev1YpFwQyOx4SGCdfVopSJOjw9DK1HImZoCtz+ANHScnoUfdDoWxRMMkYyO4wkGiQ4PopeK1DS3TPZ9NgR9dgLRJE6nFXu8iMU608v7NTvaiCUyNDQ38PCuXkbyTt51e2jJoUwMrWiaq+Tnap1h6qWnuoOTmQLNxCiamXXq4uCKoF1d0zgyMMaWpgB7YoJUWasa9rnZsaKZztEomhSEggE+eIcZ2Lx/ZJQvPn2YzfV+HrjxGkL+AKHy0aumP8/Ph/3s7xunwWFhRV0jT3SXMEYTxKpvwEidQC/1YfVVca/7OJGMldvcQzw1FuGgM8CrPNlJUw17uIrQsnb6Du1hTfMaksuaKDS2cKaxica9p3lzsIqBQooXinGSGzbx0MFDMNqCpVaCv5VIsgq9roNdJ37EbauzrDWeKdupCUZkC27ZhDUUInrEg9tRYDC/HbH2bxg+9c+0u7/NitQfEk07sF773yQHd2EkFapu/RzDRx7Hq5ymybsf+kznzMGTKwiqMYyGL+K2d5GzNxNW0zTV+UkP5OlorsFitbJjewe14T5WtDdx8vQApyIqLfYo192wipraKrRSCYfNQsBZ4r6bZ27ssukMX//BXtLJOFLxs6wxiKHmWdvegK7rFKSF8fE4//jlp3jVtgaWtVQjJYhSiWPH+1izuhmHc+n2nIvgiqDdc4VRyJYzfTIjA+iMsGHFLA6nk+VVLt75linHW13T+OwXnsKQCr//nrVYbQtnyJyO6PAgwdp6tq4emmMSlknECNU1EBsewuX1kUnGCdU1MHSmk+qmZmIjQ4Tq6kmOR+ZNpjGB2PAggdp6okODVDU2ERseIptM0rCig/joML5QeNKufSF43U4CljzLN9RytL/ItVvrufP2zZP1iXiSA0f72bJuO0eO9/HzQ3lu2lDFTduW4/XPb188X+Qi1RUw+e6s8KJ6NoHUSpNhRmF6FJ/5012fBy4Z3VpKXqqHb1nyQA4WRqlTS8RFkZjFg3+4EZ8iWCWTCFngeDpFfWET2+1lx85R+N/CGdIWlXfIGhwWBxNbsuValn+3j3PUvomOaJyUlsOSX8H3e6PkLE7yBpTGelCdfm7of4iwSLBcFCmIXoY8LWQHD1KrmoJpevlaalatpfDMw5CI4bzlHuqraqltW8bA1/8D53MPkdkFe90baPjlbYz39XK034e7ukimYEe3hbE0d/DEi89h++4XQTxJUQh2AelADe533k2wvoHd33yWI0eeJ2cYhH/370iPDKD+/T9SEApFTwD91tdQ3bGDr//pb9Hw0f9DIRehdPQgpR8/xMMl0+QpZ9+F7vETiwwRZjWjy1+F2r+f2kQ3qlFCtYdwf/WrWC0Kr9fsuNBwHyvhCN2LMxNlbWI/13b2EH3xGxREC2pwKxtHnsXzxW8RLdPbx9//Wf563wkeG81gFDS2FTys8RVp9zh5x+lx9o7nOJTXefRH+9nodfCZazoYTaVoDIZ4oneQGqedtdVL8y/44GL0tYT/NwJ90373A9fPavNp4GEhxCcBN3DnkkZ2DphYyLM1i4vCMMo2a+MLBjJXfTVIzXRqmI5N69ooljpZ0bZ0DYU3FCI+OoJlGhNPRMYwdN3UBlssjA8OTAZ9d7g9JGNR8qnUZHzhxYTgCUgpSceipha4nBEpOT5G/8njWJcY3P7O2zdPPqT5EnisWDm1AXjLfRtIJlI0NNeTy2aJDY1SU7/4fVEdHvRcapEA8gLVHTBTtVoCgJmuWrF7lp5q9Oy4Imi3u6+Xp8+M4pAl/uj1t+JwOikW8vz8aB8jhotPbm2nvbV1xn/yhSIp7CTyJaSUZDNp3OXj14aqMOHeE1y/tpXr168jnojz3GAaS0EjmB1A2kpES1k0i5+dUS+R8EZuL+4h5WwkbrGh66dQVRVd1yke3EPfwT04LBZ2GA6+1dODyOVpjRdIovOfpTESepZQexttzx8gF/KQNHTW945Rr9p5JDHMuM+NXQQ4NqTjs2aIlzzUudPUWQbJp4qkjmewtf0bI4OfRMuewTjzDfzabgDC3nFCHsnze7+M8K3Bnh0n1b0XW3YXa+p+RnfyOkDQ5nueBt9pAFI1Ye67eQXHu2Pce8smAkE/d5Xvm65pqKrK2nVmLOL165fTsaIeq92Brmkc2H+K9uX1fPwDtwFMOpj0dA+y9+gQm1aEiOQsOC1ONtQLrE4nb33dlC3wJ9+5lRdePM2jJ0oMD0f5ybMDWLQ89WEbnWk/Y7ET3P2qzReDbF5y2pVaET2bQCiWJWePNIpZVG9owfTIYGomf+ddq2fwSQDVYuGNt7YiJUsWhAEcLjexkSEC1WY0kVw6TS6dxBsM4fL6iQ4PYnea7wx/VQ3R4UHymQwj3V24/QEUVZ2RjW4+WOwOEqMjkzHlg3X1+KqqGTh5HNVioVQsnHXMrW0N/PoHTYH7/nl4rj/g45YbTR+O669bQ224l+bWBlSLhf7ufhqa6+dkZZwNxenHKKTnfV5SK82wHYZLEsXnJafbCTxlREnYHbw6AStxYlWt7DKi7K0JsnU0xq/QMDtAAymLStphR8to5IoZ7FYnilBQFZWqTAZ/Ks/rPSsB+L69j7i/jdrhfZSEhbjFSz5r0Oes57nGN7Fm6BkUDMbrNjHWdYJaipQ0Hefpw/R86pN49QIAoy8+ja2pndwLO7GcPEB8x2soqRY67nw1nV/7dxSXm/Ct9xLdvRPx/OPEXF5Kr38vjppG4t6QGfa1nEzMGo9Q2PsMh4YGaHnt20gi4ciLDD/4v1i0Im7ALg3sqSjRXb9A83ihqobYicMUDR33w/+L9IXIrd2McnA3zkIOCjkQgrv10zw95GJVsYsOUfbJyoJUBZpu0GwplO+iwvtiP0cIUBWFPunGohncbOnlpkgPilUAgqJu8LR9Na1d/XTnNMYsHu61jOBUA3xifRvOsnPdX167ig+MDPPuY2mcuQL/Z/dxHsrZeL/9OF8u1dCgj/LYXRfubHuxzvbeAXxFSvl3QogbgK8JIdbLedxUhRAfBT4KzGvXuxBmLGQhMHIpDK2INVi/YOxKxekxsxa5/JRiQyCNOd7OQgg+/bEb5vzX5rAvGnKskMuRio5j6Do1LVOCzGymqmsl3P4g6Vh0jv3ZxLFd9eo1JEYXd5ArFQukouN4AkGqGpsmj+2sNhsWmw1d02loX7kkRzvDMEjHY/hC4cl7sBg8Pg+ecja67/z0AGfigg/eo9PUsrgGejENr7A5zfSj05i2NAxK8RGEzYFisSEsF561aglYEu1Op9vquqV7mAMc7R9GdQcJijT+QJAv/eIZjo0m2dHoZpvPwfKWmdp2KSUrWpr4HYeVnx04xV9/+0GGdDtvXh1mx9YtHB9OMG6rIVUy7cf6x2O8e3Mzy5u2s+dUNz89dIYV+gAlRWf4/7P333GS3VeZP/6+oapu5VxdnfPkoAnKki1byTlHsMEYG2NjDCywLLsLC+x+gWVh90cwGGPA2Bhs42xsOciWrKzJuWemc6yc842/P6q7Z3q6J2nGrGz2eb30eo2qbt26VX3qc8/nnOc8j+jFys/jjcCr7DMYWMiyHaNrgPCW7aS/9w2U5T+/IspERkbRC0XuaSp8hiSerVuoHj9GLJnjJf44vZk0z+4Z4Zwzy501GxGfjaRuMPvdZ3B/6Dc4cOQgQ/tuo5x8hi7tNxiS4Zz0Cqq1raSrb6f/1jdhG/slTFEgXe0h5llo80pDtxDo3cn897sJ9nUjDr6P8ZSOGn0PtUqNRnM/3dYn8Tnr2E++mV2qwCt2pkkGn1j93lqNOn/5mQM4bRY//9MXBitW2taHjkzw7VNN9iTHed0r1iq+HD+b5ERCJBqs8677Yvztt+Y4MNFgbGmeXTuHeeyJE1imxcteuot77tnJUO8ioWiQp088TlW3MJplVLPOqaZJPOpdZwzyQ8J1x+71rLlGo9we3Kq2E1utmARBQJAdl9W2lTzh9pqreNHLGUBAsDnWrQWXoxJs235lClZ2YR5REnF6favcXJfPj8t3oZjRqJYJxbvIJ5cIxbtQLjJDkWR5tQIc7OikkEpwJRSXE+CVtbJaLFCvlHF5fUiyjDsQIBCLU8qkN7Rxvhi1UhGHy41ss111zRUEgcGR9n3l4KGzfONolbuGsjx0/y1XfJ1oc4Bt46RccvnQK9k1hlOCaEPLLwLCTTGjuka8oHwh6Ln2ZL2gVWnYZWSXn86GxYxV5xuKwXAqya2WyW5x7edcKQj9hBnlWD7Flxw1EnaJoVKFN3m3klBLpDp7EQtFALJqhSFN4NapTyJIMl8KP0hPcQLLFcQ0NKxaHrFV4l4WGB2fpk9uUQvGCfzUhyl+4/P4Jk7CcgwE/QHit97B3DPfQrM5GHz4dWTnZ1n8/jdxzk/gqJWpROIMvuYtTI6fxu1y4Y/FyTz2Tfxv+ik8XT00KxUEC7SP/g7Sc48SdAfQmg0qsT6GXvU2Coefgie/RS3ej3NpBlEUINpD5/bdzFXKYGh4BkZQ3/hexGyS4L0Pku8ZpHb4KdzJOZqSDcvl4sHmKRRh7VDeY9IwY5E9vD79DXqkNg9bltpFhrqm89XeN2BvFnl/4Zvt913GouniVM/L+cxiib+9fYT3P3GMb8h9GHM5+j0JQorCvy4V+cXNXWzr6uYrriJeu40PPn0Krany/WoTTShQ0cv89sEz/N6tL0widgXXwp5fBC7mCfQsP3Yxfhb4PIBlWc8CCrDhyKtlWR+3LGu/ZVn7r+eHJzpcqz9ky9AQFA+CICwvuJd5jU1pt+osA9HuRJBs6wjolq6uDoldD7RWc7WqUMqkySeXNqZHWBaVfA73BmYZuqahaxqL58eQ7FdO/Cr5HKF41+p7tNt2cUrZ9ucPxDooZlLYrkEvMp9YwunxUEglr3psNp3jq48cYXGhnWRHgwpRRcPtvjFdSknxrKte2AJxJKcXWyCOUd+Y/H+duGmxe3Hc+gLXppe6gowqYTSq3NXfTkRkUUDVdJ7ISsiWzse++xwLqbb+6CcffYbf/eL3yRXy2GwyRxIlFqttm/EvTtWYWVjkod2jvGXEwy19nRw5eZK/O5riq2eW8Ho8NDUD3eGl22nw8kgFu92B1yEQVCQCLhvhZfckTRBQVY06Io69d2HEewh7fdwykWBwMctfqClclTrikRO8QXdzr6Vwpl7E7/KgHjhCsV7lY+V5dMvijoUi4cQ0C8cO4QpFWBw7Qrf9wtcsFZ/AH+1G9G+htnQIs5Wj2PN/SPl/i2rDxnjrPciZL5I6+Gf4t/wEuYWzYDaRBAjmfh+HPoFr5B2UW92kSxEW/X8Cez/HrP5Wyvnccsu6hCAIiILFynKrtVp8/qvP843vHAFgoD/KSEjDLTX55D89Tjp5Ye14yW1DPLRDYf8tQ/QMD3LHFj8jUZH+IDzyncM8dSrL02dK6Jradv7rinFqbJ6X39rN7mEfkitIh0uj7OhiamG9ks0LwA8ldq9nzZU8obaCgdxOrgRBRFR8mM1qmwqxAQRBQPZGlhUjrNX1eu31mKjN9coT1wRBwB0IUSsWyS0tkk9c+pWAza5QSCYuO8hWSCVpNRqkZqY3HDBeQTmfwx0IoLbaN/h6pYwoijQqldVj7A6FYipx1cpyJZ9Hkm0Ur2HNNU2TRx87xvMHzgIQ9LsJyQ0ioRtzOBRkO7I3skbfWPIEEe0K9nA3lr5eeeAF4IeWL3iUwDVfxJJRRXcH6Mqk6HCGkCwwGyWmhrdgai2+L5Y43Gr/Lc600vypuMDRZgrF5mTCZrCgyGiFBNN9g/xASzDgjPKqVIUHNTezjTTfkUp8uytIWXJhIKDZvdjsDt7YOEhE0pBsDoYo4ZBE+m3tNaMliDTqNVqhOLX996G98b00ETCffZT5v/kTWiO70Pfcw+Sn/pLyV/8J5/e/gm530BQl8gceZ/b0SYzbX4Z9z52kvvxp3IefoHTiMLVyhVI+T/a7X0Fa7nS5a0W0Rp3B2+8iPzuFkUkh3v0wvR/+L9Rj3dSGdyDLEmOf/msamQTOoS20CjkETcM6/ASL3/wi3Xe8FHmkrfZgveJthN/7H7C968M0DYvmbfdT7xoA2uo7IgZYFpZlccyM8iXXbRQNAUWW2JI5xGjhFF9lE4f1C/f8AbnBfdNf4D9vjuOyO3j3SDd3iwUe8qg8lqnxqYlFvlx38kSyvRnvCwQ4mSvz+q4gb+vy4nU66ZY0Wq4w382rmOaNDeFfS2X4IDAqCMIg7aB+B/ATlxwzB9wPfFIQhK20g/vyWeoLwMX0CEm2oeaXwLpw41uBZehtf/eLjhdtCqZpINgca3bkH3nDAB//0kn+8YvP8lNvuz4JNU8gSGJqEgRQm006h4YpJJcoqiqmaaC43Lh8/itaK9eKBULxTkpZabXycDkIgsjc2dN4A2F0VaVWLqOrGvZlfqIgCFfkvF0MURSo5HPI10CpOHU+ybElAUlOsJQs4Pc6+OADN09HGcDUWm2hfUlGsDmWW3c3RWP0RRG7b9i/md2JNHs2te0q3/3yOxG/9xSJSoPFssT5uo3JZIaejhgLmSylpoVhmoRCYbp9TpasGNvsJcqGgdfjwu/1cveOLfzlt57mfNlkq0enP9b+vl5x6y7u3VbB47mP49/6K94YSiCKAqLYtmmuyA78w5uhVCDU1U2ys49wdx8DgpNEvcyJgJ3GbBLX9ltIW3PcbygsonNWUincsonnpqZxDGxHSqUwY2GMzi5CtXl+5T2/z2w5x2O5EgvHnuD5/iH0w3dRrlawb9+HYT2CmzG2ex5hQrmfwvxZfNoPKMk92Le/F1P6IpIQodyyYRc1lNTHGV6u+gaakxRPfZEu/yT1lh1Kz1Mw0kSMCcTcP2Mb/TDG6V8nZB3kj+7Xme97gkKuwMc+8wwtWwCfrcHIuVkOn0nxwJ1D/OOXD1G1d/DdH5zhzn39/P0XDuOQ4T/+4qtXHfBe8cAeHn3sOM+fyWAUDV51SxBvKLjaCj9+cppvHm+wNWqgaTo1wc1gj5uHRgP09V05MbpG/F+PXUEQ13B9RZcPLTuP5F6fUBu19ib9Ypc4yR3CbFbXmW3oxRR/8qk673v9VqId1ycT5nC5Sc1MY+gavVu2Uc6m27SISglBEAnGO/GGrrxZtSyTjv5BSunUFSu0Lq+PxfFzyMuyXPVSiVajvqYT6Qle28ZYkiVqpeK6YsxGyCXTPDWu4RGK9HQGmZzP894371ntzt0s6OVse6bG5UevZG/WMN3/9bgF2OqIQSFNj62dl29RYry+YfCDbBJJ15gMxlALRfYBabVC3QaV5c1AvyGT8EXpqjRpFAtEaA+y71DiHGkmeDTup2dpjs05gQ6hgVuCn1n6LA5JBFHgJcY0ty9MoCwPKpdtCtb+l2LlMgRiHaibtmOml3B391ESJIydtyMGI7hj3fiiUZL/+7/i2LKbgtpk6Fd+h/lnn2DnXS9l6sAzRAaHCca70GbGsYngP/oE+VYDya5gd3upDm3HPHeCxsBmrOnz5KfHCT35DQR/mNbQVuYf/w62fBr5oTfhHxhm5p8+QeS2e6kkFhFSC4hPfQsFC+XEM8zPT2IrtRNRffwUJVFGSC9iefz0veatZJ59nPr8FPcywUsyk0iyyDfk7Uw4BxBCPSwWT/K0a5Se5hLllsbcllexWFhkb/HrfEzaT90R5NWlp9m5cu8a6MEmiPzx2DzToof3euAlHpM3DLTzGt3Q+cjpNKYgvatzEwABAABJREFU8ccjHr6+KKIoLj6+xU/Q5b6spvK14qrJsGVZuiAIHwa+DUjA31mWdVoQhN8DDlmW9TXgV4G/EQThV2iT499jXcuv/gWgPZwhYg91bch1NWrFCzq2K1IyuoapNpAukf4RBAEZE/kaLEI3gl1RCHV2kZyZarfbBJFWo06sb4BCKrGmdbcR/NEYhWRiTTV3Zdo5EIsjiiLpuVkkWaZVr+MNhGjUytRKRTr6B6gW8letSGyEjRJ00zDILMxhmSYdA0NMTi4wt1hk745uJDHB9k1d/OXnjqILNvbsrKMsD4tYlsWJ4xN0dASuS/zaMg2MWhHJE2pbaC//zWR3AG7SAN2LJXZXht9KlQpzyRTbh4dYrBmkTBdvHIyxtaWze3iorUaiCujA5PwCH33sOJ2KSVyu8tLdO+jvXNuGjTlFGprO2+7ey9cOnOBX/+5L9IV9fOR19wNwOCdxzujmPucsXV5QPQF2vP5t5BNL5BOLZOZn6RzZxCsms2RNnQOtMs2uATweL/VkEkHXeURuEN62jdBzR3FNzmKr1hEMi1i6jEOSGSgYCAjMFrMEbArBVplxh4vhB1/HuCkQ2babWG8fc2fP0Kp4WSyO05BGCPZswRj/Fl5lifLpD9BpWyBt3EOzESO4/R00MiHgCfIVP4IA3YEpJisP0PC+it7m/6DWvAWbvkBIPkXu9FlaVi/poa9Tn/4w+WyBf/3uCSzZSaejzIP3buMr3ztLoSkx1JXhjt1dHD6d4N7bt/P4U2eQo0O08osYmsHkwgKpdJltmzp45nwDo1blns1+br3rwgawVi7TrJYY9mns3tzDI0/XsJolXrJ/J7Gum6OR+2KJXWgXGMxWDcnlx9E5um7dvbjyaxk6grTscLjsJLfBGZEwXtDAliBAtLePerlEtZDHEkSyC3N0b9pC8SqUhxXYFSfFdHK1KrxCOVM8XpweD6VMGtMwqFfKeAJBmrVqW3ZNEJa1268/b7uUyrGC3NIigihgsysIsp1nDk+xfTTO628N4HHHee7EAqeSIn7PAnfcdkG+b2EuSalSW3e+q8GolxBsSptOISwP26mNNcOON4IXS9yKgsh2ZxzLshhvpInLHjKCQSUSR9DzvCFVJyoHQIKy4kCQDVJCky+1Zkg4TLbOzREVHdwu9KzhFfstkWAhyy45BAZ80v1SbHaF1+Qfp0tskdDt/Gv45Wwpn+Fea46GaRH78G9RazTR8xlmDjzLwB33MPnIv6B/51+wj+7EDETwD4yQPfwsrVw3jle9g/Cu/aS+9SXSjz2Cnlgg61TQn/kOpXMdFGYnsbfqlJ1e7JUiYmKOutvP5vf+IoWZKcq77mLz3n0kpyYxDI3SqcNIwTCDu/cx+/XPIbh9GF/5FCmbA5cA2tR5bKZB58NvYO7EQaRSjqYngKeQouHyYbzhpxCf/wE8+10M2YGnVmThz34PTdPo+o3/Re7xR3AefIzHhQFSggcbJnef+zQz9jjnXMPUBDsPGoeZnj/AUCvBkmbRGt6B0KpRKTnI1Wp8bjrJa3ojfH6pxKQUYFNpgp+//S58Sjs30g2dZ2bnuM+l0+93crSi0nIG+NmQxh191zbUfzVcE2fYsqxv0pY/ufix377o32eAu2/KFV0BbbUBDUtrItqVDRfTFR3blQUZwKgXlocEsvz3X3lozfG/8rMvecFTtKHOLoqpJB39g5SzGTzBEJmF+fYwR+zK/LEVXKr8UCsXV7lsoXgXoiji9HqpFgt0xUepjOXp2byVpfGzBK7Q4rtemIaBXXFiGgaWZfHEkUXmKw4EYxJddOByK7z67j4Mw1hNhAGmJub48qEyPe4M73tnOxleUeTYaNJ5BUYlh+RrC8lLnlD7b3YZrtuN4MUQu6VSAY/Hx5cOjnG8JBA78k2KusiQ16C7I86I88L3uTvu5VjDw8lUhRY26mqTs5qHwtEJXmtafP3EFC8b7aY37ONwziAomQT9fpLVFqrsJKdamKaJJEn4+veiJZv07d2Ffv4RaFRZOnGEaqPJtodeQ+/BE/R5w8S8Ab7YTFB2uYjIMqPYGaiIPDI6jJHNoJ04xd3eKC7DwTPVLEfVOsFbdxOaXsDVFPhmX5B6rUIxkaBzxzZi8RD55BKCrtIsFzn+rRNsv/9hctMi2vAnsCb/FXPij/Hu+0PS43/FiPufAFArz9Lpq1Oe/AF+sYnmsJhx/SGaZtGd/x+UxX580a1kkptQuz9ARRawMr9Jn+840xU/idlz1Fwf4Ptf/iiz8msZkR/BLlg89sghyq5X0eErsm/PMLLNhsuloCgK+aaEWlziVfsCOD1uvvuVYySbTmLhMjtjKsdUP8XGhYpDo1rjz//5KNVqnb5OH5s39xP0u2k0WzctEV7BiyF2AYxqHtHlX3X5XLdeivJqi31l3dWreSSnF6NWWGeyYQt28Ws/s/sFVXI8gfb8hdsfQHG7yScW6RgcYmni/DW7xbVl0y5UsAupxOqa6/R40DWNYEecfDJBtLcPXVVRXC6q+RylTJrAVbjB1wPLNPFFYtRLJU6fT/LslEGxNE3A7yQc8nDXnj4C4yl2bVuraPTl74+T1xSMRmVNNf5KaCfCDsxGCdEWQxAljEYF+eZ04S58phdB3KpGC8M0mNbL/GvcRygxS9HtwZuYpUeKMWS/UNG/RbVx1utgwSPS0dTRFRdzRpkz4TA9ySQH7BoeCx509HJCUil5vPjzJrM0aTmDmJ4w/bs/wP7eHk4lEmjnC/g7Y9y5dwearnEmWaZVLxLaMkqgOYfr+CyvfeDDnGokyEcUfA4FIVPhVZteyUmphG1TH3PPH2C0+1aG/J0sOTPMmQ2Cr3033kCQ0dkmE16NksPC4wtgpBP0DwwzceQQAX8QxWZn5vgxnE4XvVu2sfDgm4nv2IH6nefofuB1qHfez61FF4IgUG3WaBgqsihTPDTBA6/6Nc6KRYpBB9JMmpgOwvAmBMNNVtbwhINIc2nudveRa5Q4tZTEectdGJ4Rjp+pIVkaD4YcTLsfImnasTl8/My2OLv638ZwKk1FbTFRbmIuFNik5/nIe/4znx8f589yNnJaml8YCPCDZyaYcYXblfZl/Lcj5/lCUcZsCnx5s5/BYIC9S2nu67l5v8UfKQc6QZQx1NLq5ORG2FBtQpDaVr8bJFs3Ulq/WAPY6fWRXWybZbj9fprVCorbc9Xp30shSTKFVKKtNJFrtygs0yTc1U0+uYRks1FKp/BH4+u0MK8XpUx6dcDP4XKhuNs8bFEUeem+HuYWC8wlGsxUZWLBRfbcMrLuHF1dEXbGM/RfUhWulavopTSWZa7R0lyBJYBeSgHCC3JV+lHB1MIif/H0OH1SlT0jfTS0KlXLjkOy8+779uB0ro3Vt957K77nD3P3ru24FQdYFl87co7haIzZdI7ppp2+TIGRrggRWSfsbLdwf+HBO8jlc4SDIaTlmHvTXXt5sFLC7w9y/Dw4TAP91GFEl5e5fIZ3j9yNKIqYpokQDBJ0KlRyOVqGTsPu4K7JBI+0ClT7uvn2XIqQ082hiBun18f82TP0mU78ih/PUpK6TcAmSRQW5glV6vRi46nEPK6nvkWPCEsL5zEbddSHOwgaZ2gJBskTX6JffhIUyJZ9FIc+QzrxA7b5/ggAywItc4TOfT9F6vyHCQzcTvPwLzISG+Pw4uN4B+4n2xqlkykGvU/Qaowgx9+Mx/04emqRzsgs38+/BdkbpkfO8sbX3IrNbmfs9CRfPVRlKJDnFfeMMDW5wPY92zlzepI9Q15mlvJ87dEEVRXu3hpj184+xs9No6omC6kSHpuGatZxi+31JBZvx26z0eDI8Wm2jHZetzPjix1mo4JwGVqVIAjrdIFFm4JRK8I6Itvy8zew7l5MTdBUlczcHJLNhmxrd9CuJnF2KZweH4XkEoIo0arXMXSdUjZD37YdlDLpVfUeh8t9TbKVV8KK0oVss+MLRwjGO9sud9EYuxU3teYUaBrPTBkUyou8/fX76exa33HbuzlMttjg6PzaLppeSoMAosOz7j4oSDaMan5143KtSfSPIv7ZSpJD4yFVpj9vYDdF8naFuxr2NYkwQJ+7g5elp3DLTjYrXegNlZNYFHIlHKKLab8dV73Gg0DAAn+1ilMMcLctxCt3Gyh2Oz2Rdvzv6OzkzzwufK42pcUm29hNmIJkJzWfJy4HCCwrJVkuha6hEWbPnMKvmyy0MvRKCuefOYKjK8JCQ8VVzjDRKRPp3cbkscMYhQoORw/uWoNCo0ETiWalSn5mhpGWi0a+QQQng6F+krUSpeOTdOoK5vl5eqI9nJ9ZxN0yEZbtQMe9GrbuDuKnUwy623HmrBuUgiBv6UcXJRonz3Gb0oNVWKQaMKja2gWXsNPPYF2nMtJFarGAZWjsdJo8ni7RVELYWjl+Y0sXu3raneg/P7tIUXLzm312GlEXO0MRprJZumSTNzlKnMpU+cfpDK+NOnm4P8K5fAlT1/lmpgp6C1erhk+v4rUP4LY7eHCgvUF8ZHoepyxxX++NFSN+tJJh2bZhYnU5rFQoXyh0VaWYSbdNNK7Cx3U4ndgdCh39Q8yfO0u0p5fc0iLR3usr4a/IrtXLJaqlAh6fH11Vlx+/8cVLazUpZbMIgoAgCgTj7eq2w+VaI+s2PNzD8HAPszMJpuZzbNm8cdXF6Xbz5tfsX/d4rd5AdHoxm5UNXgUCIpI3hJqdw9Ra7bbdjyHssoxQyzMb6mOoafKhh+/C0HV0XcOxwUT9D05P8ETeRkciw1072m3Rd76k/f0ahkHEO8Om3m4cDoVffd19q6/zeDx4LpHlWyouYNhBrkvsfsUHAXhlIb3uPUVRpC+Z55zXTqchMBX1MR0O8/Bkmu2WncVgGGeuStAQEaplNIedwd17KD97mLKs8DZnjEKtgt8bxrRM5FAH/6hm2fK+X2byO19HfvxriA4nUiFH/VMHqQPmOz9EbMtOzv+379LxgXkUW43m/HdR9DFYnu8RBIFbAp8gcXYcd0OlNpOn6ng5x1o/ia3xDZyeN2FeNGE+KP099al/4mfubPLawneJR1R6TtdYrHXxspGT9DWqzPEkvb0d7JgqoNUbpFM5jixJnP7049RcvYwENRTFS8Xhh/o8u3cNcPp8gqcmDFxajpoc4t0vGeZz35thbL7G4YOn2Xdre8jk8PFpHj3dIl2Y5g2v/PFJNK7HAGMF1yWBeQkKyQSmaeILh7E5rjyo6/T62lXbQp5CKoXidmNZ1hoFiavB6fGsrn3z58bwhsJUcjmCHXEi3denHHM55BOLWBaorSadg8Or7nWSLK/Oi7i9bh68byfNeh3JMcXmocvfc+6+sz05f+zS7psAotOHpbXWvUawKwiqA8s00MpZbD+mBQgAoV5Gi3fzjFTl58Ru8ECzWkdR1sdkqlXkqZif7kqdbaKEJDrZz4W1+R3FAnYhAHZ4maOXlwEs7wtHLulGpBpFlmIy4XyRPueFintQ8bbv3heFc0dLZnLsHB6vD6lSpHrbCK2jk+xwdXGMJvZAAKlcR640mDl9gtF9t1EbmyRVKzHijtDdaiAXJQT7ILJhY8aTxbZ/hIWZKULZEqpgIBomm9ydCILAOXeeyI7tiCenVq9BLjbQzBRO+cL9d9AVRVrKUdOKqBEvarPJE84kXtHEqDbxxeOoCRXFodDnCpM+MsdmXy+j+1xEvX5miiWenV9iqH+A3T0XKJkPxDyMZXMcLQWYr6s8WpNxtSZpOXz855jEl1rdWI0lRkN++lx23nSiQKCeJefr4Sd8Fq/osPhCzsn/ODbFn9/tQbHbyVXL/OpkHa/R4PkbTIZvvhfjiwRmq8aZ05PXNLCwEQrJBNmlhevi5PoisTZFIhKlUS3fkIi53elCazYxDGNVguVSVIsF8skl1GYDXVVJz82Smp2+4nkbtRr+SARBFNr6nMkl/NEY9XJpzYR3OZcln1wi4JF52b072lqG14jnD4wxu5DHMjRE5YIboKVr6KU0ejmD6HCh5hZwdAxhNm6KcsSLEj3xDj700O0MOlqMxNsJkiTLGybCE3PzCKaO3Czx2edO8dSxk2uelySJnSPDOK6SIORKGZZy8+iSiTMWotm6uuXtq/xd/GzLxZsFH7FKE3N2ngW9xcvDPbzs9BwPSj72uIL8nLODrkIV9eRpklsGedwNB2s5vjIU4mCjgLzcJi/lcySnJ6kVCzQCYXre/UHkux9cfb/Kd77CzGPfQg91YBgWS9rDENiLnxNrrivdugXJLLEl8gwB4wl69r4d2dOHPPJBzGPvpk/8DNWGg0SpG4fdIuhrousS+dgfcabxCzywa5afvvNZ+qIXzF88Pg8v2dfNubKXA+fLxJQWlbqOXEvhtRmUi2Vu79H59Z9/OfHOKD2dATqdDXxyC6W2QCgc4KXbPMi+KI8ebm8uLMuikkkz6q9xy9ab17r7UYJlGujlLKb6wiyWa6ViuxKLRbAjTrVYvOprfKEwzVoNp9ePaei06nVE6YXf1kRRxNT1yzoKamqLfHKJSj4PtJPcfGKRevnqCiL+SBS7QyGfXMLp8aKrKtVCfvX5VqNBdnGBSi7Ly1+yg+6ea7/3GI1yeyBOVtp2yxephujlbNvkyNAxam3KYJuq++OLd7o3s6lYY1S7cO9UbOsT4aJWJa2WUWoVJo0S/1Q/t+6YLkeQiP3KcyyVVo1xLUemVUHp76ImX/377XQGuEMPszstEZc91CZnKat1ZFFiV97OpiWdqC/MXXIXfTU7pTPnqRktirt6mczMMdYlc8JWQl5WB2lVa8yfHaOcyeKQHKQjdvTdQ6SXh+DimoP80dMUGhUq9QqpRpFWXxh7XcN90cY12yzTtAkMKGFGyzK+HZtxRsI0u0P4ik0GF5rYbXbmKxkaapOYL4IsyRT9AidjJhGvws/s38NLh9Zq579h6yi63cM3qw5cVhOlXqDUaLDHKvJEQeOVQobP3j7AB3aM0uF2c4dDZZsCnuI8XZLJzwxF6aPFk2KMR+fb8wGn0wVeKuT5ud7Luw5fK36kKsPXiv/2s3v45Oef5fPPFvkJaYZNWwav6XUriXMxncIfjVFMJ6nkc5fVxLwUss22YQVZbTaol8vXlVjLNhv923a0TQQuszC36nVEUaSUybQlh/x+GtWNHd9W4AuFKWUzq/akLp9/dSEvZ7NEetqtB63Vwun1kVtaWKePfCWozQbfOphBwkB0eNdMXrd1hUOrah+yN4xeyf5b6QnfNMwX6/zKVw6teez/vGF9dXwFwz3dfOSiHfJSKoXH5cLnvbDAzieW+OjBBbpsKh1UmPfFOTi9xD23XN5S+2Joukoms4jhkWlJOqGBHqxTc9iWGtStJtOtefxNhW/4I6st6kurxL5lysZIQ2TMI/CcT+F8KU3FqPM63U6HbKOitniNo11ReixdxFdtICBhVCrICCyUcnR6AkTdXozBYQbKLV696yH+9JN/jpBeWin6oqtN/Jt34Ni1j6ee2YLp8hIK2jj1ra0E8wFu+cAYum5Rivw6AJ21dxKWjzN28ksU1V6C9imGO5NIksBZ7edQht9MYuwn6fQvYgmAZKdpBmm2RBTHBcmdvmU3uz7gXX0j+J11PPv+nr//wiF8LhFdUphvudgVceFarhZu3tTH5k19/PlfP0LNtHPg0Hkeeug2TOk0Tmd7g/O97z7PM3MycmWJd7zprmv6m/24wagWLgwvX4PE4wpM00QU28PH3lCYfCLR1u29RkqCL9yOx4s7W5ZlUUyn8AQCV60uX4zu0c0Yuk4wvjG9rZzLorg9VAt5WvUagijij0SpFgtXHJh2en3USkXCXRfWgeziAt5lJ1FfKIzWbODy+kjNThPu7rkuKomlqavfvbRBxVfyhDHrZeyxQYxK7jLklR8f2CQ7b5Qu8KyrWp2aodJxiTzb16UiyXiA26aneLYrxmyjjGkaiNc4VJ+tFkhLLQo2g8iu7dhOTuI9MIWAwMFgDVe+xlY5ctm/pSzJyE4ZqSUxU8/h2trHsXOzqE6ZaAV8Li+1Vp1uu5eg4GfCyFEbX8Ah2DDqDSTdpKJVEQQBhyjRMThINZFEqSvEc3ma2Sli/nY8uGQHTdNAjHo457TTOj+LbPVS1utrhgRTbgt58xDJI5MMOEII5+bJ21S8Xj/dso+Q4mWqnkG9bYTKmWm2LZe7LQEsSaSoVolcRsLxrYMxzhUqvGpoP58dm+T5QpP7YzJ/kHdzn6PO3ni7kBBwufjbe3bwt8fH+P5Mlc/M5Xjfri38910aT2XKvKSrB03XeN/pDFpT5Z0DNyarBj+myTDAtqEQymKJzs52IHzj24dRNYPXv2r/usA0DQND18knl7BME3+0g0Iq2aYR3IRhiUq+rfpQSCUJdsSpl0u06nXcgcBVE+2NEuFyPkcll8Hp8VJIJRjYsXvVbMPt919oM0YiG7oiXZrcSrKNSiGPYeirjwXjnaTnZgh39VAtFq6Zn2xXnLzmzrYSxtcOr6VISJ4geiWHYFcw1SaW3rqZNqAvepydmef49BzPp3X6PCK//OoLVrThgJ+tPot6uc6Ms49+Pckbbr8NgKdOnuV75xMEJR1VsvO+e3fg9fiRZBlVU1lMphDdJmpAINwVpzp2jvpkgs74AKZlkEql8Md7SaSnKTmahDUPPu/l/54nfHbiw/2oTzxNujNKdOc+DoxPs6NS4PsDIdRkirs0Gw8ILj4bEimrTbZky9hMicd29FOcmGC/KeE4Ps4m2Y9dtuGaaFe5VdPCfMNPY3d5UWs11EqZhgXxnXvwRqI0bnsJutPFmcw3EUJ3IMz9FV5nGdknIMst4tqjOKPvJlr7OpLUjhtn8wCNWYjY285aHqeBo/AVvNt+i6XzhxlyfHvDz/nybW1Huzm3iw/9dNvmtVQsMzKTYufOC+YPBw+fI1eos29HF989UUVxKjz7/BijI3Hiy3zhwYE4Txw/iRkZ4dTJSXbtHn1BMfKjDNGuLA8vtxMJo1rAMg0Eu7LOUdKyLAxdp5hKIskyks2GZVqUMhnCnV3IV9FdvxqKqST+WAfFVIJQZze6plHOprErzqvKoW205mpqi2IqRbNWpV4uE+rsplEp4wuHqZVL2ByOtjKQw7Hh+Z0e73rdY8uiViqgLD/uCYZYHD/PwI5d5BNLaxLnq0GwOdqJsGt9hUywK6vKPW0TKh+i7cZ04n9UUNHqHLKKTJtV8qEoP5kv0KlcWPuGNBErvcThvl78hQz78SHaJPJqhS/KBTz1GkWPl5c1bQzJAezLdIJkM4/oMrHt2kcplcbuclI/NsaA4SHo83I2N4vNF6aSLXAo3CScqDOsXJ6WsmTViO7aTu7seZyKghH1Uu91Upuscc6vUxV1vPkldjhinNfzJLfFaM4vsl31cr5HpKG1cIsyHSeX6BQkcEKPciEOT7fS5IM2JMGHWqlQrtZxj/TQUlX820Z5+vQ4iiAh+zxY5Tq2E1PERTeCIDBiD2P5dRyVFiGlHasB0cHC5DzBJqwwSjpqIgmPm3KXBhvLkLMlFmNLrE27eveurbwb2GPT6ZieZ3v4QiHxbDbPp2azvDbiJqKoRG0y35tbpGWY/MfltdWyLCLNHLnoFj6brPCSG/Q5+rFJhi/lB9+2fzO3LRfrLMvi9EwZFRuvqNfXVBBM0+Sv/uEHGKbF2x8cQpSkdfzZG4UgCpSyaRRXm8fWqtcJxjspJBPY49dWdb4YequJJxhGEEQku4NyLrumIt2oVgh2xCnnstdUjXa4XOuGTkRRRBQl6uUSvnC4Pbwn265YJV5Rj1j5W3zt8Ho1iZXJZb2cWbXK/nEYnru0Ugzrq8XfHptjpuUgaGTp9a/lmrmcbn7uwbt45tQ5CmcXeWj/bga72pWxiaUUBcGF2cxTNQ3+5LvHCDoE/sPrXs7XDpzkqZTOK3tMNu/oJnHgBH5viJ5Qm6s+sXgWW9RHeuw8itNFq9UkW63j9QR4JBijXqvwQCmH/6JBvh01ncUzk9wRHWK2UGDszHmGdQmvbKc1O0dg924mZubZ3BQwNBVdFMi77IzUoJlIQsBPtdTkTnuQQ/U8+Vad97/r97DLNn7/uX/B29VPM5fBpjiJD25G/fInKWYXqYRiaJUyfe94L1OPZRjd9TCLj55j+8NPrl5bj/ckPfxHuOjn2e99nvFKgJON97PD+mu8Lo2wfJLczD8R5ijJ6ih563YwdXza9/E5C/jcF+TAumfuQRQvODHuDMOcdOE9H3t2nKoQ4AOvHeTXdw1xbjLJ1w5XGU1O84p7ROr1FsObBnjzwzpjUwV6en704/mFQFQ8a+zXLVNvO9hVsnBJMvy9x4/z3FiRh3d72Lp9GEPXryv5uxrszrZ8miC0Cx+VXJZQZzeF5LXJr12KVq2GJxRGbTaQbDYalRL+SBSbQ8G/TH1Ycb27Vqx04S6GJxCgkGon1dVCHrXZwB/tuGx3cAWS03tZSUpJ8YDiaSfL3jBGJfvvJhk+Y5Y41BEkkKrRUanikdYqZ9zt6GKb4OUL9QK9optbHe37aE6tUvR70BtlKr4Az1bneMRr8baqA90y+XxYpr9U5q1LGaTFNDZBZruvB5vdRqqSI9nlxlhcoLOiU4jqZMw6sVYNr8ONZuiU62XC3gvJaofgZPH0NKMtB17BwemZFIrDhUuJYK9nkfx27Lt6KR6ZR1AEtFYTqSOEOt/EyJdR7WDzO+ms+yi0KpwWi3TURSKKj1SjSCnmxFBbVMtFRvfsxzg9hTfRIKVVEJbKeLYMsjQ2RiQSRxYFNmmB1WvzKm72tljlSQOEFB9qqciEvUmztMiov5ugy0d2Oo1Dt6ggMu9QqVVKBCU3XlWgI3BhXbSsC6pHgiDwyqG1s1X/PLnAv+QFIjaR7790EzZJ4q7vnaEmOrg1WGCsXOOu7jife+gO/nAswas6AtwofmyS4StBEAR+8lXbMExjwyR3RTfTF45iczjWVI4LqSSWZa7SCl4ILqVOrFQRNmqr6ZpGJZfF5Q/gcG6cKPujHSyOnyMU78IbCK5LeO2Kk2ImRSje1mLWWs1rpnpcjBWb6VI2gy8cpZy7ibrogoBRySM6rv+6flTx8NY+prMFHtj9SmzLk/mT8wu4FAed0fYm464dm7lrx+Y1r5uuaOiFHF1hOyfyKpIMtuV2X6ffTTyXJu6PQEUFvwNbf5RyMoclQksy8Hn9VOQM3r5OCouLBHZsITeRxOsJkLVX+YrH4Kf0C9qxm1wBNi2/95ZQB1tgdSH8oOXiyPFx4pIdxWnnvWaQhWoJn81GwO2iWMyRa9Z4ib+dyJ/3ObB6u5k/NsmwP4ysuHC6nKSOzOC9ZS8Tf/H7hOtlhNkKzJ7DsiwWvvkltrzpJxn/1F9hW5hZR3UASBajBJx5FEdbWSan76dr78PMHhtnh+vbhN0pwvw12OCc/k48g28hn1wiVbuDWjCMkH4PXrfBUlbhD5/9ebYFTvDz935/9fw/ePIUiWyNvZtDNGwxInKZ7r52sjY6JLA3Nc7mwTj//M3T5Js2Pvg6id27Rti962ZEyo8HRKe3LaHo2bgSawHecBjZ7ljTeapXyjRr1baJxgvszLn9Adz+wOr/e0Ih8olF5A06ZdCmPwiCeFnDDs8yncE0TaLxLmrFwhr6hTfYlhN0+9ufQ202sDk2lv+8ElYGqIF2gt3ZvZpo3yhEu4JRyYHwYzsqtA7bRD+NTJGtQowOyQ8SlNQaWaPGsLP9XQftXt6Pdw1VYNZuoWsN/NU6hUKKolZB0DxIKDhFO9FKiZgu4k6UafpcyFtHmDuzwDBhpm11RMmNphs0d/RizC0S2b+LxKlpvLg5RxF2d9M6laDL1Y43t8PFJlyrA3b7HBf4tjvkKOlsiWZ2jqgvQhSoJKs0TY2oN4LcLJNoVYnrBoJPICdryFuGyZ+aJgIYlonLH6Z56gyhwV5yzx9htz2O2+mid3nI7+yJGfru2Ettep6OgkFeLhG6hOpQaFSwLHP18WS9iHvTMKlEilEd7DY72wmDBNONLNK2EbSlReYKRTr3bKF2bJohZzsh/l/PH2OmafF7+0Yg3C4SHkll+IuJDO8bDHOoYmKTndwXUnAv5y4f6vNRNww+M5vhY0WFX6nM8oHtw3z0jptjIf7vIhkG6O5tJ4yJpTT/9I0zbO338qqH9iGKIh96z33kk0s0qxWateqaBdgyDYLxrraJxgtMhi/Fldp05Wx6dQG8XDIsyTK9W7ZRSCWwbzDYdrGOZnZhHsXtoVGtXhf3dwW6qqJrKoXE0g23Li/GzRJ5/1HCloFetgxcqAZlshn+6sAsAUHlv77pZRw+N8FnD5zDbVb5T297LcpytXZP1MUPak3OlTRssgxuPz9x9w4A7t6xhR19MRLk8fb2YiQSNJdyhLydlCoF4kNDZE6PY7fZaNWqODSZ2mSCzuVkVavUCTQb4GhvEhdKObq8wcty3ARBYN9F5jVnm2Uyssk9NgeVRp3jgzEKiwuMqjUGbQHuLOv84PAxno1G8FdrOI8+SenwDwjKNponnybSqKwZEBUEAfv0WVJPfBdyKbp/838xO/dZNvOJ1WMWS0No2/6O6YlPspVPAhC3/oXSbICoMrPmeufLO7Cp30I9/ixeSaJqbUYjjk1uJ9cWAppp58DCNvpPpnjlztN87uCtPD03jeqKcsuoQV9AZ6DrwobT4/Pw2ofb3Y/jp6aplbLAtc0l/HuCaFNWK5BafhFBkhFdfkSbwv337ea23Tn0VotyNo3SN7D6uvYa3EnhOqqsV4PN7risG2i9UsbmUGhUrjwE5wuFEQWBajG/zsbZ5lBWE9aVxLqUyVy3mtAKStkMuqaRTyzivYo76bXi0sr9vwd4bS7uY23X89tSkZmInzen0sRkD58hSbVZ5lVilG3udoxsMh2cLC8x19uHrZhB69/Oy1Jl4s4AAO/BS+WlAtl+F5GeXlKHj7F1+Z4r+zyIkg0lXUcN1vGYEuaZaTpUCRSw61BO5bAJbTpRpVFFEkRcGyhdrCDmvJDwlZs1kopGtNVO35Ie0OPdzJ6cJGIF6THdjD1/kkbQhb2aY8AVxnuuyA7PMIm5AjGlB8clMol9vhiT00uEG7DYoWAP+pAnKvhc7W6DZVmMhy1kjxtlro5LcTHqjnJyPoG3Za7ZSGSbZVRdQz4yQaDZRBUtagsJ/FzgYeuGSUE1+N/PH+PBV97FY/MJ/vDsEtOWi23ZCneHFDrrGqORC3nCe7e1qWuPTs8TXFii6bq53Y0fyWT4RiTTNE2nYTmoty5oFYuShCiK2BQFrbl2EtrtD1JMJa/oYX8z4XC5VykJV8LV7JdXqiumqaNrKpJt7flWnI9ku+OKVtDlXIZwZzf5xOI1D7RcyWzj3xMupk5cSpn4ypPPcmQ+T69DYCDeTrSSxSqaJ0quIvDY8TO88o72a/KGhGaadLoddAa85JoGinJh9bHbHCiGjcSpMeK+LiLBdsUjEuygtJQl4Anh3tJDeWaJwZ6tAMzmZwCLoeAQgiDwLSCZX0TeOUhzNs37ubaF5oTPjtnfw8Ths2wOxIieHEe+dSdPpjIMqjDo8nNUgVokTCW/hCgIyAgYugb1yoYytLZ8CiObRLDZWDz4FEpgF89+/WU480kA/G9sUUguoTf8rNznBkLngV9fQ59IFzwY2/+CxuJzbBf+0/Kjz65xUOuONHj35k/zicmPUFWdWJbF08m70O1u3tP5B4hJPyHfL7N9pIO/++wz9MRcPPTyW1bfI5HXaLi6+ddHT/Ked90UG+YfT4gSgk0Bs70JEQQBWW7zhHVNW3NosKOTYiq5WmX9YUNxe8gtLlxTFfdKhQxD1yllUqitFg6na935VmgPpmFuSJFYQTmfw+X1YmjqZRP4/4frx2I9x1ekHL5mkwEgIgWoGyrlgB/dJvKE1mLb8rFVS6fpDWBvNdlnejhdLuIV13YVjEwDwa+jL53hTmcPtmUlnW1lB7ppcHZbHw6vl5EUePGyQIEFW4mepp1NNQ84odaoMdnnRC+W2a9dmxRhSmpibR8mdXqaIBCrWEwKWYJ37WHh4CS9nggBXUEZ6qd+bALLsvC4PKiaimIKGzruuuxOPLU6TcnCyuQpqU1mRJNdtJNhQRCoVkqIepOWbseFC7fi5g7caxJhgMWAgGNwC44DEwwH2nRAq2ohOC/8Hn5571b+w7NnaErtz/x4psqcI8YD2jyvjI/y97N5PjAc46NnZjlT0/jTfUMEl6mcM+UyBU8nn0gs8UvX9I1dG34kk+GNUClVeOrgFNtHY/T1Xz5p6+vv4pfe6sTlXcuvCnV202o01g2KbcSnXX3PfB5NbbZNKy5Txb1eXNree6Fo1qqrHDZ/NLau0meZJi5fELVxGab7MmS7g3xyCfk6JrL/Hy6PM1Mz+D0uDs0Xqbk62OKu8bo79/IvTx7E0DXu9dSZk53sHGxXlCzL4s6hTpyyxCt3byLgX9+dcDrdDOAGT/+65/yBCI6mk+x0Arel0GzWyTSyGE4R2elgITVDb0e7qimLNkrJFE29wnmtySZXgFKrznccOsGGiiVAUxB4pexnqlXlqM+ObWaeYK7IqK/dTXlFtI/vT8zjMYDl3809NfjH2Rk+7xKohXuJPvx6ms0msZHNZP78d3E31iqgND1++t74LtLPPk5r7Bgd7/1lFg49BcvJcMiToabP4rOfXX3NYmUHVeVeuvVP4nG2JQLDvgpLJ/6KStNFNSzjceqcrLwfXAMMq7+Fy9lOzIZiRQLjM9RVB4IgcH/HN/jSwrs429hLOhdjSocO7zwLZYlLJ0P2b4nw1IkEe/b++6wM6+UMIFyV9y97QlimgXiRPbPL50drNddVPi82M7oUarNBtZBHdihX3MRfD0RRfMEV3ItRzmZWeckbrbmmZeH0+qgWClc8j+JyrWrB/z/cOHJqhazRYFrLU+/qx8gl+IjUzRk9wxmbyssXapxQdHbIwVWN8z7Jy55mkSHTySZPhPtgXdIXmFLYszm+ZgMOrFZ4w+kcRqqOxxVhppkjKasERrZw+uBR7jRcyJKMJMmouQJVrcEZQ2ebvd29HVMztFw2vLkGtYibrgp4BDtnXXW0Uhn52eMMOsKgtKvGzUqeytgMYXubcjDkivL9Zw4i9XWwtHSWTneEjAei2/rJnJllm7S+S5wLOXB1dxB46jTNrV3oqRyoF54PmXYMU8a53O0pt2rMuXR8NYO+i4b1nJkq89nD9GrtL2yqmSPbodCZbK7SMlxOF0MKJFTI1Wp8eLSTrz16lOdcfnanivxr3YU3UeRMReW07iBdq60mw68e6OGzT4+x3X9z09cfyWT44srjSpX49LlFDsya1JpL65LhVqOOIIrYlxM6b3BtwtuoVhBF6bqdizS1uZpwvtBkWG02kO1tnvKKO9HVBtWuBXaH0uYle/0btrzD3T00qpU1HLWN4AtHSM/NYJkWjWpl/UT0/8M14Ve+cmhZUs6NXi/w2iEfyUqZN95zJ4ahc2ipQr2cpzMc4D+86g4UxUm+WOSPv/Ucslrn3Xdvwy4LVKpFVE0lvFz9bTRqlGtFYuEuCqUs1UqJvt61ToGK4qZHaS+SqcIS3pFupg8fwROLorgvdAwigRit/ByhLVt4cnyJyWCMHXPnaAx00VpcouaQcYbCFCeypCWDoteFfe8OxES2rR7SzKCJEq+XfciOC0uLKYC/r5dasYi87z4cdjemalKZnkC8pCoI4KkWmf/oHyCVsmCzM/7Hv02okASxnRxMf7oH+BRVgA+0X1Nz3IUQfwOTJ06ws/MpRFFAkgRUqZueW1/LxMk6tzg/B7If2RnFbF5INFq6RJUoNTWMaVrsG1ridOUsm4IzPDT8PHP5Z7i3b5pgsY9yK0DP7H9kof8pzo3N0NfXwX+8Z/dNiJAfPZhaE8GmYOkqlmWuDqsBWJaJpTZXjTcE2b6mCaBrGvVK+boT2mqxsEoje8HXbRjomro6R5FdXADLItzdc0MJqCfU5g3LNvuGa64vFKZRrVx1UNCuOJFtNizTpJBM3LDr3Y8LYq4mv7BnvQ7w1fDWcyIH5E5+2zpHZzHLO3scvCyu8SuTJucrLpZiNv6yq8790TJQ5oNnm3wPF7/hnOO+Tj9driTnkNgmWtglCcuyOKGZ9IsWx/Uw59KzbIr2Yb+EejDsaMe2YRhkujxYhsb400/Tt/sWKmeyBL0BFLuDoXKDxLYh1EQGlpfDlsuG1B1jJnOKntGtlI5MIGoWUncHRVEnGInBZIm5Zp580E53U6IP/5ohN0fIjy/eydTCIlmjBrpCLZEibG1MgevN6TRzcwQCUeZPTDFiD8JF3jW32DpAZ3VTkNcbSKNDzB85SbDpwLt8j9FUjeCuEdKZHJtUMDCx+3wYqbVd95olocs6408lGFEivFT0oDV1Hk55ERoF7lX95FWBL7eK1I4qZB1FZltlzrdq/LN3MwIC2R8UrzseLocfWSa9Xs7QSk3xqX95lmq5yq7tvbx0s5179q+tjqmtJh/9zAH++jPPbmjA0azV0FWNSj637rlyLku1ePldvMPpIp9cesGcrnI+R6NSYf7sGUzTpFEtE4p3tVvINwhPMEQw3nlZJyZBENZwoHVNI59c2lA8XhBEnB4Phq6ve24FarPB7i4Ln9xq3wiNyx/77xWi4kYrJdGrRR7JODi6mOPZsXFk2cYH7t5M1O+mZUlYVrtiqesapXKFnC7xZ09O8Nj4CTKUMLpdFEttGbGsnse+qYN0fomJ3DjScIhTU0eZT00znj/P5MIY85UFqvUytVoZ0RAojE3h6+gAVSMorq00x/3daOfTxIPt9lavN8h955ewqxqi30/01AQRr487HQEyY2eolEvkS3ksyyLndVGMhXimkFx7To+fByZS9J2bpfPee+jU4SPuHqR/+WucegvDNKl4ghjLLfTGtv049t5Fq1oh8nO/QfD170RcToQN06S+8w5qPRd0dGpNG7X0GKmx7+O/7fdZrN4CQLnuQayeoLh0jqCtXUXeIv8vBsrvx+O+QJPqj1V57+0FXv2Tv8ZU6Q5qDZH/9LJ/5r4tEwzEKrxkywyCIPB0+uV8de6N/NY33snZ0+f53JNpvvDo+ZsVHi96GI0yrewcWjGJUSsg2hQsvQWCsCYRBjDK7WFbo7bx+llMp3C63ZQya7WuG9UqhWTismZJvlCEfHLpBQ0Er2Bp8jy1Uon03Gx7ol2WUTwe1EsoctcLm91BKN61qnu8EZweL6J0oU1dyqQpplPrjjNNA08wiGleWT+1z9diwNd2m7OMG79v/DjipfYSe6rj/E5rE982onw82y4A/KdOjdfIaTSHl8aF5YBnc3Vqgo3/WorzAbWHL3pCHH34jTyzLCt21BQ4/PAbeSzWyzOlKeq7+3nSSpArF3lGX+JQcZpTUjtR1QyddDVPdLGCls4zsHcv8rEJgt7A6vtFPAE6xzKMVi9ksqM1O9bhc3Ts30X68HH6bQFCHj+lgyewRJFCJo1NslGTLRz9XUxoeRqXmN3s0YPIT5yio38Ab18vt9V93FbzribpmXqRcrMGQLJRZCksIwoi8y4d+a6dFLhwvrlmnjNmnqbajjXDMKhWSqSPHMc52s/0sjqPZuiYpkk9kcJWbb9+xBFh+GyRAWVtnvTmTT7e/667OXdniOlGgQ+5O/i94DBem5M3+7qI2d08a6p83e3mF6pLfKE4x5+0CvyO18mz1fW/mRvFNVWGBUF4BfCngAR8wrKsP9zgmLcBv0N7SPi4ZVk/cROvc6OrQlTcTOZE/uiTB1Z91n9wbp7/9rMXFiNRlHBIFrbLaGhLNplyLotlGmseX/GirxXzcBmN3RulNAhAq9lEFMW2vnEktupOtBE24uLeqOX0Csq5DKF414YqF8GOOM16bcPrWrmmXm+L977tDp585gzffnoKweZAtG9syaqX0u0bqN25Tn/0ZuOHEbvxaIPf/Pkzax77g49tu8zRF2DUy9j8cYzUJFoxgWD38oUDZ/j6XLsX9T/f8PK24slym+3sYgZnOM4bb/WxlC7hsAnITYtmIk9geRLabshU55IImkb/jh1kFxcR3XaqYpPO0U1MHD7EcP8o1fEUOb2A3ePCWRTRdQvZkPFcokvabNWoKzrjS2OEPGEeCcYhGEMtZehPFrh1efBRkiR6XF5Kqsq+ZaHJ+9N1vhzWODfUyZ15Ddsy7/1cvciiQ+S+aB8Th89gWPCFsEzD7cNZK9PatIv+93yEyb/5/xGcPYPcM4h/x16a3/kiuW9/CVpNnJaFYZg0bQ663/guCmdOwBcmOfbXW9He8DO4t25BaDaZP3WSQSNJrengvPUbKJt34pn7JRSpgmVZ2GwCl9Dn24mXZ4T07BSHTvdzsPYTvCn/CV6ze60D4OtGv8unDz9Iwn4HR5/4FPdELCLOAn3z/4W53ie52XixrbuWriLZnci+6DI94kqDsAJmq45wmdkHQRCoFPLrktpGpUSgo5NiOrWhkoRst9+wsoKpGxi6tmyuICLJMoau4wn82yrbWJaFaRg4XC4a1eoapaNQvItyLoc3fPlCi2kYvPGlg0iyjRNn5nj0eJ3X3drNnj3rNa5nZ5b40vfGuXVrhHvu2n5D1/3e/3nl519McdvSND7diKDVM1j2Cppp8qTq4UC+wm0hFx/bbqfQWCDkav/tk9U6zfAgd3bD0GAfE9MZvPks9dPH6G3WQYJuU2fi1FF6ClnGu0YQJRFTsXMyMU103z3kFubwDPRROTdLrpKi0R/ANpelQ3FRX0oz7F7f9U3YVapyk1ClSL8jjNvhYpgO5iYTDAu+VWfPqMNLRpKRckXcnhgDTTh88BiR2/aQODrF0PKsR61VZ97WJBKJ4VtsoJpVxiMKrnqDUXuYfLVEcnuM2twC+3UHNUvD2d9PrTSFvwblc7OEZBeNVgPFrpD3yyhDvWQPTNBjjzKh55Hu24MtmSCfWMJX0sAb4Eh9AXNTlGBRI6baaNDEaVfwutfnDobPRTWbIZda4E9khZFmib+xr6WbvdIR4ERxigOxPv4iv8gvC35ClRLbnNdvEX81XDUZFgRBAj4KPAgsAAcFQfiaZVlnLjpmFPhN4G7LsgqCINz8K730umQbZqOF1aoheS4/aCHbbHzoPfddtv1lsztWJcQa1SrNaqXtd+/xUkwlN3xNPrmEJMlXpRhcDd5QGFG24QmGVnUkb4aEzguB2xdYbfFdCslma9vqVtr6xRupSsyXRL74jcPMZpZJRld0o7QQnX4s9cp85RvFiyV2jUa53Uo2dIx6CdkdwDJN9EoOSXFjtmpYho79EtmnjoCXDnGO/sFthDwOQqKfjkDnJce0/z9vZMilM6ilGkORIc4vnmHq5DFEUaR8aoYKDXRLo6t3Cwv50wxLw7jCnjXDZNB2snPGguiCgRAPkJ9NEwrFCPujPFSw1qwY7/H1ggmG3+BzrQy5mItWIsHeXANb8MJ1nvbYaA318bnTp1GCXsL5CtpgH0awA2plhHSCmacfI/6WnyL3uU9g/+4XyDz2dbx6C04+D0Dl9gcJ3HYvuU//BQt/+QcYpoHNH8ZTyqHOT6GpKtXkIsG+QYL+PHl9J7Gt95E5/xSivAe2/wrzZ36RPv9au2doJ2YD2h+Qtn+EoVtex8wTT9LtX98p2tO/yNeOLZFPuRjdXuBN+9aeK7GU4cTZBHfsHcAfuDHlmRdL7F4M0eHBqJfRComrqsHI/ti62LoYK1QBy7JWJc984QiCIFJMJXB6127Iq4U8aquJLxS5YVWb7k1bqBTyRLrbQ2xXquT+MCEIApZlUq9sTJ1Qmw0QoFEub3ivESWpvY6oLWS7gnCFRbdaa1A2nJQqN1b9vhpeLHHb0HT+ZNFil0Oj26rh8Cl8srPM38zXeNKKIRgGT6Sr3BNxrSbCAH67jX0UGI520dnfxfbiIq9RbUipWVbEEDpsMm/LzAPweL1JNZWmK93CFogxfuIY7nCE6lNHaFoaeUljNL6VdKlCd0NmsxrAcljr112nDcMObB9k/sQkozhwO1xsvUhuDWBzoIfNdbDcfiaqSfJ9AapLFsrRM2wXL2ycUlYDYccw546eRBnpxDG2iNw/RG0uCRq47Aq1s5MInWGOFwvsdUZIPDdBzBNEtslgwryRJTUUpHZunJFKkHL6NLpNoaWpOC2J1OwC+lIKV0eIuKyg6xriYBdgoacTpG7fztJskt3GxvNGw4aHs8kCfS+5na5PPc0Wc33FMu5wc48S5Pn500Rtbl4T7OAN4oWbUMvQ+FQtxQ5J4U73jf2Or6UyfBswYVnWFIAgCJ8FXg9cXBp7P/BRy7IKAJZlpded5SZDcvnX+K9fjBdaQW1WKwTjnau6jhtN/JZzWbyhMNV8foMzXD/cvqvfNK+kznCp0cW1ol4u0azXEGgPq1w6KFgtFtCaTWyKgtsfwLKs1fb96jGFPD6pTtlwMRqx2DHgJZdfohzsAstcY8V8MSRPGLNVW63m/xDxbxa7l1aK4UK12NJUTK0Fhobg8mJbHjazLAuzVsRoVpGcPj7yz48BbTrFStv5/7zxFVQKBaLufmTZTjaXIByKo2ktko00kgHdoT4swyTU24NdtmOpJjbZjiBIhOxBDMugZ8c2xg8+T3J6CnvQQ6VRoqZWyZgF7LKdED5CvigBX4RSOofaEqjPp+n0XajOPbLMU77YxvloIcEjZhWby4lL8uCPx9lWXvs97K0ZLJ4YZ0ywqBg621sGg0fO8Y6XvwdRFPnoJ38T88jTNLv6QNcwNJ1LyT2GzU6lXKLvfb9K8btfxbnnToJ9/Sz+7i8hnzmCcOoQHqcL02Hn6Fe3INz7ANrMV1AOPk4rHAX/E8SkC9ddrnvJmvuxWikEU6XW+dsU548z5Pw+Dzz8vVV3OwDTtBBFAdOEvLQNf0jEY69zcKqbW4cWAXCceIBPPvZBaroLl1Pi3jtvrPrGi3DdFe3KddksXwv/tphKEox3rRYeLjs417own3GjBQNJlgncYCHjhSI9Nwu0DTdEUVyjFqFrGsV0ClESVz+jZaztWLYaDWqlAv5IjEa1gq5rNKtVbt2/hX17hpEvbXssY/v2YWIhD+HYDz3xf1HE7YF8g49Vu7GnMvxssMZ/2eQH7Px5yM18tcGfLUp83raZ31LP8/aohGlZ+BUHTruNz2yBemWe2lMzRJ0KC6qGX5Lw2mSekhyk/UEeTC3gtcm4fQGUoV5sudOUmzVsXgUlWWS7p4sT3SJRy2L60CFc0RBpTcXfqHHCXaela3RqNjYvD8xtrSksZfI0WrPEddsVM7Nqq8YTpUnEgJewHMYdDhPO6jgv+m12iR4Wjk3iblmoukbdZtF/fAG3rIACit3BjkaIsZaOoJvUtTodnhDSRRQeQzdQm02MkJeE00UjWSG2fwenD59mVAxAuk7I2cWcpiIKMGWWaCQbdNREOr2dTC6mcTWMVR6zYRhMaXmslooiO1hQNJqiSOdTZ/k/Siexi7rIpmUiICAIAhOCidCzlYfyWT5TTfIOdwcOqR3nv5I9xxFFYWuzesPJ8LVwhruB+Yv+f2H5sYuxCdgkCMLTgiA8t9wm+aFBr+Qw1cYNnaNVr9OorrULdrjaHGDFvbZ1X8nnV7lb3lCYcja7Rhv1xQbTNMknFqlcIWFv1msEYvF1Ce4K1GaDYLwTtdlAEARi/YNEevrWVGXUVpP3vm4bllqn0ycyNDrAXdv8CIJw2UQYQJDky25kbjJeFLErOlxYhoo9NoBeyqGX23xfo1ZAdHqwWnXMRhlLa4AkY68ssCWsrvImvb4gDoeTRGkRcSTCQmaa+cQUjngQXWnHYTjUgT6TQyi0aHU4cMXD+BQ/PlcAl81F9swkXtGDw65glupEAnFMy0SUJSKDAzTNCxUjvy9Mb3SAvkAfNrn9924269TrbdWHdLnIU7UMT9azfMuq0XPLHgTZxk9mDd5ZkQi71rbEBpw+7naF2GTZCfb3U/G52e6PIopie6HedQdIMnziD8EXJPif/zfZvS+l3NFHa1mL0/vUN6h/7+s0MimsVotGIU9mahJDbRH+4G9if+v7ELftofPVb6E2tI3IrXfhjsQwOroQWi22Cb9FxJOk2ZI41/o5zrd+hkrwg0i7/oqq/ydAVnDF9+ASppAkgXw1wmnrD3hs8jV86Ou/weNnR5Akgf9yz1/xvi0f47OLv8A/jb1p9TM2VBumEiLumGXP9vWqHi8AL4rYXYHZrGLUijd0DssyEVtrZxL80diyzOPaW1GrXqdVv9A5WlG18V7FSvn/Jsq5LPnE4mX5zpZlIdttuLxetFZr3fO1YmGNgVKkuwdPMLSmKlwr5gnFuyhl02jNJoFYHMXjpZROXTYRXkG0s2MNX/mHhBdF3N4bdXNH7TxGdJh/LLv5+HyLbKPdtXzXnIcv131sb86zXTF51Xk79427+ZrDS1prz7q4bDaiToWZpsojL3kVX+8aZEwzOOMNkt++l8RyPtBbslAOT1LqcMO+Lbg9PoZML9lWBd9UFvtEgpDiRWpo9LYULEC1DELDA9T8FzqBToeT4WA3Oww/EaVdILMsi0KlCLQl2ObLac4KRY43EngGeugc3YRybIZdSRh0rk0EFbuDEXuYPsGD4vEgxSPEPeHVIbfZZo55e4udJQe9qsL5QSdPkWSsME+q0X7PAV8HvfMN7E0Ds9HEphrklhaxqyYzLpX6bSOcqyURtwww79JpOCVCm0cxTYOU2GRH3c1me/u6zreyHLJSNLZ2k+nyUNnVS7FawBEIYJPtxCwXlmXxndEGXx+p8pbyFL9WmATgF10dfKyuc9Ju5298Pp6pZVc/p+FwotgU3i7cOMXpZqlJyMAocB/QAzwhCMJOy7KKlx4oCMLPAT8HIPlegAlEJYfkDmBU82tkeq6Gi6urlmXxttu99HQFESUZQWhXQn3h6Dq+bCmTxun1kl9aJNLTiyAIN9U2dAXNWo1Wvba68G1YDdZbiBiY8pVVL0rp1Jpqy0ZY1fIMXMZxKRCkkEysSs1tNB1taDrPn5gGm8ITExqF0tOUdCfrNGiuAktXMeplBLvyQ+cQb4Brit2L4zbUFbimE19cLf7vfxRDzcwieQJIniB6NY8o29sKE4oH2RdFzS8iNCtYWLzlNfv4w48/tUaruMutcq/eImRoxPZuJnP8HDFfnKXcHIrNSUeoi1q9TDKdpVWv47B5yDtryF4HPa0elI7luFkO345gF0opT2s8RcTbjjtVazG9dJ6AO0RH5EKcL6kpbG4X2VSa9NYu0rPTBDo6iZ/Ok5+fw18ssygLHPe76K/kiVoiE4rIrarEqWqOabeNaLlO/LmjbHMFV6sFC9UyXW/+aYSFBD+hOfn/nvhH6tUq0bvvRxAE6k9/Fw4/gSQIRBbHsf7hf+MWBNSxQ5gIBOx28j/4NlazTqVYRD97Gv/oNnJ/+rvUdZ2R3/1zcmMnOfbX7d9C9zsS2Ebfgn3hGWzZf6JW8BO0jpOePoIudRELTgEiTTOAM74fYWkcTXCjG9Lyd6YSC1i8qfYJvHJ7M/2Vo7egmxL/4/bfwesxUUqfgUvmUH8YnGJeQOy+kDUXwFQbbUe5RhnJ+cIoILs7LV59/5188kuHgba7p8PlItK91prc0HVqpfbgnWy3I8nyTZNRuximaVJMJ/GGwtgu40xnWRalTBp/NHbVSreuqVfkOwuC0OZIW9aG6kP+aIxCKrmqegSss2GWbPZl9SIXbn+AhfNnsTsceGLXX+k+emwCgD23jFzlyJuOF5Qv9F3GHXAjiKLIp/eE+Y3x01SdMr+vb6WcmeTX+uBWe51+SebjQxYO2UVmSqUiihztHsG3NEGseaFI5pME7PNTWIUcT73sNdjPnWb/Y/+KJdt4SrARcvgICwKVWppiMomkmiw4DFx7t+E4PMFW30W5wnK76/aWTO74Ai6bk+VxC84W51FNk53BvtU4O69mUXd1kzw8SWtTJ+VijY5NA8hP5KjXauRKkwy6vUwrLUyyjNTtLLh0PE1wqBYTchXZMvEcLuMTZQhfuLfmA3aUgW7yB6dQZBu1Shkp4CWhNKgqNjqWv4Jeb4RewNItCIbIzxUI+3uZreUoj88RkzycPnoEbzyO73wed2mJpXgAcbiP5PPj9Hrb603NZ8fd00P90BmcNhnKOsO6h2QqT/dcE3BhWiaNTh+mJNA6nKIltDeVLtnBTk+Ud9VzbC7kudXTwfP1HN/Sa/yq7Ccg2omFbtwQ7VqS4UXgYr5Az/JjF2MBeN6yLA2YFgThPO1gP3jpySzL+jjwcQBH5+gVmaUbQbQ7Map5NlTrv0YIgkA2XybgtHD5/KvDYxu14ERJplosrFYufhjawgD1chFfOLq68G6EN9wepKszzF99+RyW7fIJsTcUJp9YumKl4EpantCW97HHr/z5or19HPhOrv3jlR2cLKy/oQwHVDxOiWOLXLZabNTLyL5Iu2J6c5Phmxa7F8dt/66e647btg5rBL2SbVvUesNYaoOVONbLGSSnD0trIEgyn/7SQXTH2o3ZUs3O554p8Rv3djJx6BABwUdLbeLc1EVhbgGhLBD0RRjGBz6o16vMpCdxeXzYAxGy2QRVuYUTxyrX2O9v32AMw6BaLTOTnqTn1l0snT9Px0UFnXIhh9SsUllM4ZUaSEjoCwXeH9/E9wtLTG/fypHxaegaIj0xS1kWKG0e5NGnD2DesY/c5Hmcu25jemqSjCHwjuXz9nsDnHruCJsUL/idKFNj1FNLNDIpPIYK46fWfAcrNwrT4cTathft9BFch38AgPL2nye8aSvnv/IZYnp76G7hH/4CoVZepV1E/UWM8fcQsZXx+S/oGxd978Pr66K1+HFsNujyTXD++EeIxd/C7979N/SEFzg1H2MqH+dlI8eplVt8Kfk2mubX+M78A2iCm1dvO4jiuGkCPT+U2H0ha277JCZmvYTkfuGV2UpDZ3FuEVU1KGXS7S5bLrPO2VMQxVVlh/a/G1SLhasaBF0viqlE21102fZ4I+SWFgnFO694zOp1CyL5xBKhK6yrl+rYX4qr2U9fKrnZs2nLumNW+NWKy72uuLMCXdP4+tMLIAjs3N5/1arydeCHli/s7++/rth12m382XY/p8tNItlpXhcwaekGu50mw7Y6v7vg5A3+Jj8TE3m+aXDLxCluMRtw0QYkZLPx04lpSprO3z7/FEqzwQ5Z5JM9o5ijW6k9dpA9sRF22mOgg4nJsdo09fPTRAU7uq5xsrqEzetmK0EkSUKxO+i2t+/xLbXFXH4J9c7NVIsFFuey9CwnkNVWnWoiQbOcxJ4RsSwoHDzBHn8var3FkXCLdFgBVcfm9ZI6l0Dct53C+BxVSceQffjinRQXFjFiHWTOZoguUxO9iTL1RI7OQH97k5aao+azIyeL+HwiKGuJaoIgYBgGOYdBo5mnXwmDDuf9JoPb91E4coqBaFua0CgVKR+fpEO5EHuDJZF6foEdwaHVx8ZCIvHtgzSnj0MRJFFi/6NpTtzi4j+PRLkj5Sar1vliq8BDNg96vcLX9SJnLI24zcl3fQF2lqu8Sbk51J9rSYYPAqOCIAzSDup3AJdOfn4FeCfw94IgRGi3QaZuyhVeAtHhwlTrYFmYrfqGagXXAlO0Ex8c5jvfeR63y4Z9tshTYyV+9T1rk+FLvep1tbWhtnAln6dZq9Kq13B6fVetHm+kbVnOZfirb8yjC5euHW1k8lVMw8QUxHVbgUu1lzd6/2qx0NY1ttl/qEMjlqEjLE+/3rEjRl9/F6f+/jkM+8a7N9HpQS9nETYY3rtBvChit5BTuWfbaW7ZrVMuWXzlW1HyxRwgIvsi2PKTvOTubRw6OUfJ2YEGzFYuf74vHz3DO9/+ciZOnaZKgeKT54nGo1guAUddweVqbygW1SThzUNUzs6TNZKoMRtqtY5orZW90zSVmeoslk1E6Qgyf/oMVl1lSZynw9eFJEm4ggH8HR1oWgsBEyUQID+7yF96bJRsJu5CAWepQiGVQsJkf83k6UPHqdtF6qkkciKDgB2b2qDWVHnUaXKX4OKUViW1fYRMIoW3UUHBxPjCxxF6R3C+6m1Ux09T7QvTSidx3PsKzFIB34FHsbbcQvdbf4Z5VcUxdhjDNClPnKNQKOLaczvmE/+KKAh4pk4DbcMDwzQ59tdblz/1hYW64yd1LEceYfzjWG4H5ZqIz91A9vSgDDyENvY4sMCXzz/EjHEbx+ceYby2C9HuRFUNPnTLP2CYIk7n5RPhvvl7rzdsXhSxuwLR4cZUmxjNCrLnhSXEjZZJ/8gA2xcyNGpVGrXqhnbyoigSH7xIOq9YXFW6uRiGrpNdnKdZq2JXnMQHh69YvS3nsuiaitPjxenxYlecFFPJK7p9SrJMMZNCuoa1aaNE1tD19nULwroK+M2EucwtFiVpDb/6csmwbLPx0K0dberGzUuE4UUSt5Zl8fcLTTa7BO4KOUgsqPyXBZk3+xr8lraNLdkJPNsG+Jdmjj8eWKFcaiBunBL5ZAlraBOWz8fvnztDKZXGn88Tvfd2Th84w85gmxp1upbAde9eqodOYYk+Tkol9M09tFotKgsVAp7A6jnH1AwJp07H3dtYOHoUByIVR5Bis0pA8SAh0DE4xFyzgeRyItnsVM08p/wa+mIaUQ5TWVzCpbgxHTZ6bW5mnzuO2mpiDnXSyGRxllqYrSallobpEKFRQjFFSps6KGXSzDTzDCphbnX3ki+XmBrspl6sk2gWqektCkYDM+pjpCTRarUw7xwlOTNPz/JXZlTqLB07hsOlkK2ViTr9dCoBVraDzVYDh10hoHgIXOROUmvVabgstIPHuTMjMycW6JOCCLKEtWuAyvklpIzAI80Cn/Z5OZld4oBgYIv2kUvN8F/dXeyslHjFDfKEL8ZVyxiWZenAh4FvA2PA5y3LOi0Iwu8JgvC65cO+DeQEQTgDPAb8umVZ68exbxYsC8kbbifFV4OhcVufQLdHXfPwXKrOkWPj9PVE2bd/G48ezVK9zNTjxbA7nRtqC2utBuHuHmyKE+sSbUhdXfveq9qWbjdaq10BCXV2E+rsRhcuTzF4elrka8eaCPILc4NTG3VC8S70Za3Acj5HIZm4opayrqpo6np+2+UQsjX44Gt62B5t6w5+47kkf/elw4T9du4ZkbFdxE1dgWhTkH2RF9x+vRxeLLF74JDCU2e2c+SoTL0GFT0KFgiShF7OMtLj4567trFpqM0XtAxtlXe4o0Pnwe0OBKO1+thMUebk0VNMzyRR7DZ6hgco5/JYWOT1IgCZQhJLFskuzOPd0ktNaKBVGxilBmExsO4aDcukXi1TKeTo3DSKOxLCOdzJ3OJ56rUK/paT1LlxZEHCqGsEYnFExY4j4MXSdaL9A7hCIUK6SdQSWbSBtX83DpuDoYrKT4UHeYcY4INKJ75QmPS2YaYbZTpEG1oiiWvrFiak9g1dEkV0C5qqTsXloff9v4Z5/xvxb78F1+5baYgy+thRFk4exbrlTmqxXhqCTM9Dr8MZiaH0DWFZFrppUna4sSyL5m0vx/ELv03dtr7b0RBG8A/eh6y4mHH/EfOBP0NVLXqV7yCffDsB6yhjxm9yR88ir4n+HVvji8hqmoB+llfsmiDorDAYybKUc/H733sH3x9bL211vXixxO4KTLWB5A3DJRKUl8OAX2Vvt7VGsrLUEjh6bALDgPjAEHaH45qG4byhMPnkErZLEmet1cLl9eP0eLHZHWu4uoaur9Po1TWVULxrdVZkRYv9SqpAwY44oXjXCzZBalTKeMORVZ1srdUkt7RIPrFxwQPaiVyzVrvm9zANg8zCHJn5WUzDwO0LUEgmkG1tnnUpm9nwdXfctpU7b7+6JOT14MUStweyVX5X28T/yLQTsFnTyQwebvcKvNWa5k3uHPffvZmBne1KpWma6MsbivMGfKZrmDOmsBpTgiAQmB6neeIIli9Az87dNBQXhVSSUvhCXObckJ6bQesKMhOWEA0Ts1QmOlVYkwgDWFhYgkAusUiwvw+X4kLcM8qsUCVTzbPVGSf1xLNITY3mXAJfJIJdlHH1xGk06vhCUTwdcfzYURoautrCtnMEoydKqGaxXQhxqxznXvcAXaoN565NZJwmTsVJbXKG+KZNFEKO1c8niRK1Zp2q1mAxJJPqdpP3irh6u5hsZOn0R0keOELd0nm2OgOAGvEi+X044x00rPY9P1XNUVcbzDdynOlzMK6u/9PWtCa2vjiOgJ9jQxZn3nsLZ5xlukQfuz57jjsONflBbw3XNjdvLxV5teQi2Gog5Rb4OVcHTlFkl6SgSHb+v8IUv1WcwrjGtelyuCbOsGVZ3wS+ecljv33Rvy3gPyz/90OHqHgwqnkkz9VbZj65xSseuJUjh8fY3DKo1FQOzotMl+xMH2tgtxo4DqXRbe2hn5UKq4MW9+8OMNLjX0MnuJy2cDDeRTGdQnG78IYu7FYKqSSSLK8uxMAFbUvDWKezuaIKcSUFiavhcgoTvmUdY8/yEMrFVW5ot09Wqi+S3Y4nECSfTCCKIoGO+IYVhEvfo5TNoGrm6nxhUVdAh5dtsfOSu7czvfQMiz9cRbU1eDHE7u4dTSzrHDu364Sidl5ZOcrJ8TB3bDXw+g3CodfzzA8OcHjGxCOZ/OSrBjh8aolDixIDcRdbNvWQy51i99YwX/nBNHt2Rjl0JslC1UXAlybeESCRrZAxyxybLFPQkry0r8G20U70co3CwhJB3HS4e1gn0wDYbHbUQgVvb4xSKk1jPo1bk8meOIdnqIvFXIqRyDAdQrvboGotiuMZRoOjWGWDaO8t5M4nUaLDBBQ3D5ppZssFzp04xV5dYqfkW5UlOlgvUG2VMPI5dNlDv9PHu1o2xk5OsFVUeOl7/gCA//n4P9A1ugltbjOLn/0EpsNN0e/HaqnYLRMDG4FYJ5VSEbV/lEB6nrmP/zEdP/kBCoeewSuKNG65m743vZuFj/4+gqGj1WsIrB8YLXxqipr713DXSijvOoYl2JBdIIoCXYElEqVeHF3306dl2az8DQDPpu+hKG7nxOTX+fjUf6LPfpqHBn7AhHY7oXyBlzN+w3HzYojdFUjeMEY1h6hcmwPl7dsjjIz00fjaM4wMxvn2kTwNFP71aA3LENibXMIXWZ+ErqotdPesDntdTltYcbsxdA2704XL612da1iRyFSbDToGLrRlnR4f+eQSvvCNuXteDzzBEKVsZnWdry/LpJVzFxLUeqVMs1rBNEwiPb3kFhdwer1XpMxdCSvKQCu0vxtx63sheDHE7d6giw/VJtgaMBEEJ//YV+b3lux8tirzk/0SBwdeSi2V4P4zh8Ht5B9CXWj+IO8cP86S00dtcITjiUUeG9rE5rlxVFHG12pyv1rjeLXIeacLvdXAmSrjFR3gaNsOG4qAkcwiBgLIxTq7vf3QBELr6TF9uoslq4KhGyjZHDFNRj09jSoLpLZ1UT0yw0ujy5sVBVLHFhm0+ak+P8WW+A6SYylsokTEGQUVrJDF7Mlx3ILIdl//qiRbvlmmZDepPHcYj2BDdPt5iW+E2eOzRJBXecuWYRDs6aWWy+JLlClZKqbTIjE1Sb+otLsILiemCE2PnWqzRm8TyrYmglvHLzhIVHPkd/eQnFkiUhXQ1SbCBgOlMU8ITiVxSQ7Mskn57Dw+rZ2O9uADEUq9IkoswLumZgnavYxJAl/y+ZkplflyPclJl5u/ruV4XoKGzU7TUHGLL5y6+iNpx2xpLQRBuibpnpLp5u8//yyFUoP3vXU/iaUsB+cvaD+pghN1A0EFn91g395NFFOJ9U9uAEEQLsv32mi6+N9S27KUSSNIEr5QmFC8a/V6VobkfBcl74ZhEIh1UMktKx7oGpYoXrNNqT8S5Xc+fgBEeY3gxjNnK0wuPstC1Y6wQT9Cr+YRBBHJHXjBn/PFini3nVd0G4CNxILK4RM+mmqQrTvuZ2n6Wc5NLDGbFzBFB9CgUS4RdOoIaoNIqI9TJyeQbA58fi9RN+wciXDH/lGePzTOibkSe+/exJHJKsfOqqysgKFIEKfbhw0b3q4OmFvvLHgxot4YUjAE5Ra9/j4Agq0GU+lZBFlkYvo0o0M7ALDbHMQi7eQklV+i1qzRsGu06mn6lUHm6mUOCk3su3aQHZvkmfwSZ2wmD4peZrw2Mg4XLp+P4/kyuwGfw8ntrF3E1NQimYV5LI8fIbVI8NBjqOeOQb2CBThf8jC1apVwZxeVShEOgruYoZlOIjbaXGAzMc/097+No5zHlZrDPPwEzo3iWBCQ+oZppRbZqfw9tYayWskDKIv7aCydoLP+udUbzGuGv8N3z+7h02PvwGeeomnobOlK8mv236UvWl7/Hj/isNTmajfjWvDtA2mePJZiS2+YnTsGefJEGnW5cCNItg2T23bLXsbhcqM2m5d1z7wYlzM9sjbQ3HV6PGuMLX6YWElwA7E4/kh0WZrSWh2SU1wXPpuuabgDoVUXVEEUURsNpGukL4iSRLSnb/XfKwhEOzZUR1pBOpllbjHH3ltG/i1UJv5NYZMlfmOg/Zmams5fJOA7LT/ve2CYQ/09uA48hdftZZuj/R3XWy1qmkZKN8jYHaj5HLF6maLPT8MSmN+0g1q9TjEQ5GXf/ypJhx1vMMQu/UKhTBNMOoaHaJwYx7d5FE5dmfnhcXlwSS0cPh9bSipufzsmnm/MUM7lyOlFOtUgyvJwZ4e3XfxroTPdzNGSTJp+GblUxSHKjBUX8N29m/piimK6yEmpRLAl4HS6sY/2YsxM03J7yC8UiPjC9DvXFhP9bh/5qSlsAR95rcGQM8KIIaBWdBBMZpo5fNsHKMzMEBsZoXpsnrgnjEdvoFfrSMi4ZYWpsXF8LYFubzedORNR2ZjK2hKhSJ37iy5CT+WJSp5VrsKko4phDxJ6bJygvX2dr7H7mM4s8M8OhZFqCbdaY8kR5M/tYXTLwr1B1+968COXDFuWhWXqCDYFU21eVfdSEATmq06QnHzsi6cwLBHEC6+xDJ2grUlBd64Z8Eq3nPz5p56mrNowl/VJX4jbW7Ajjq5p183Luvi9rqVKrNDkgT0hTk8XmS62+W2WZZGYnCDQEadZa7cGy/kcWrNJrVSkc2h43RBdKN5JpZBffXyFu3e5ZFhTW1TyOeyKc3U45Hd+7rZ1193CwVyFDRNho1FBtLswm9X1T/6Y4fAxNyl9lNHgEVJLj+EI5Nm+eZrtt144pjwfoH/LbVRL30M0dDTd5MCcwPOTZxFkD/XvnGH35g7mUjUUVCbOz5Cvrt3RfelACeH5AopNwC3PkNPdwDz/5w371xyXKaZoCSoRX4TGYo1efx9LhXkMy6TL34Nbs1FoVXB1BkjmF4mH2tXhSrVIuZjHsbWLcjKFMxCgVWgngd8MORAUL95jpyjqBvN+B4HBQf7pwAHeK/Wh6SbC5m6M+eSq8MhnW2k0u4O3aApOu4Pfevt/5q+nx2hEArgfeD2FdApZFpBf/Q48Xb0sfOML+C2Tpc9+DEVtoGl6O53+7F+uLmqW08XAfQ+yOHEKFsYRV4bvLIuaN4xSydMa3o7q8TP81p8m8/wTHD5zC9GXvZIzf/a7iPUqgmXh/6kwrlA/cv3C+vCyLRMcS2xhoj5ClyPHOfPlHJ8/xD2bZ29WqLyoYLbqq0Ou7WHQK6OoKxR1SIxVef7c89RYm5CVc1lsDmVNcioIAg6XG8s0rykRvhycHg92RVkn1/bDwEaV7FqpSL1UItLbRyGVINjRyeL5s4iSjOL1ErqkaOILhakW8vij7Yp1uKv7ioYl0O44Ylmr6/RGyawoSVekoXznmSkm8jIOeZqdu//NFSX+zfB0vsnn7dvYpM+xffoM7uwcD7bKSFp1dVhuk6WzsGU7TxTzZBQXitpisyRy67PfxetwMH70aQ64fNhzHlqyHWNxnqjaBO+F++cme4T80SW8zg6WDk4Qlz0bCiuVmzUWnCrhusCupoJZbFITTGbEEl11kVE5xPPz87j74pzIZ7lteZC5pamUmhUSYRuO4WEyh48R6u6lkU+QllWc9+4hf/wMNtXkiNag+947mD97mm0lk+Lzp+i6dx+Z8QkCy0N0k80s+ZiTrmSLblcIURSJJlvMGzmcXQFSGoQrOgtWGe9tO1k8eJjYgoNY3sRfmcMrOdENnT1yR7v67YRCrYR3uA89lQN9rQpVpl5EFkRUTLJuKLgMwpuHeebk05TfdRu+H4yzf84ia9ZpuUQc3TFspy7Iw25S/Dyk1jjmEAk36pyM9vGtcpH/qWzMi79e/Mglw4IggGlitWqIvutrITVwMhxqUWq0yLXaUbqjU+Atr72Xz371IOcuyNchCAJFw7Pa3r0R3MiAQqNa4Q373UwtlEjkVWqaSN1avwHwOkz27B6hXD3DVEHDUhsUUgliA4MkJs7jXJnYtizsioKmOmlUq9gca88lStIaftzVKsLVfH7D4Zbrgai4McqZF7V2841ifqaF2oLb9ml43Ge4db+E29v+zippCat1C5Z8Cn9nC0E5wac+l+E1L9+DWivS29sB55IMB3XiAZNn59wsnGhh1+r8+s/ezcTEPHMVOwFbi/2jfp47kyXiN+iM+Hl2SqWJQlRp8sC+OOlikljgws24YVPx9nZSOp9alVJTneAOR6gs5HHJLpwDXeSXFrGM5TZ0o0bRrdIywJxN4RQkXDkT3zIX2d4U0FstekQ7R2N2bLKN6aNH8DocRGxOtpaKPJNcwnDIfFGqsbuiozntWB4Xek7jfD5FRHFhDQ8SdCgsPPIFXD4fve/9JaaeexK5XkMCnENbaCYWabg8dNz3MMXPfAx3ao56vA9j5+00J8fInz+D0KyhGwbycsJQGtnJ0Ht+kaUv/APKrfcSCUU5/7E/xlPJYXb0Uhwfw2w08P7sr6FWygxJH6a5+En8XoPxyqtpuW7Hm/8Eb99zFL/966QrAU6lptnXP/dvF1D/xhAkGb2cve6BZUt04LBD3NViomBDEEQcRhXF7aaSz6+r1N6Ivf3FuFSS7HqRmZ9DlCQEUUAQxA27fiuVbLviRG022/rqgoDWaqG2WuQSS3iWP48giShuF1pjY46Y5xL95Cutu6Zpttdxp7Mtoeh6YUPkezZFcc3lGRjouPrBP4LINlQeLxg8HLTx6+p59sThLpsCzTI1w+CL8QFctQpvqRXYVylge+pR5mU7oW07KaSSZGQbakvnn11B7i5meJdaBbXKP45uR9m8g23f+iJpZTMTchVFtbDKNWpRN/FGnQF3hEarwRG5gNzU2CVfyFUyQhNp6zC5sWk6rPamb8kqIG8ZJH9skmF7GI9XJdjZRWL2EDja6/KEXIU9vXB4DLOls8sMoh5fIuYNY2uWSU0s0FGxSA4H8Tq7mTp8CNFuo6EL7A0P88TJ0yidUQ4nMgQ0GwgWjlAQI5WgUC3RsnS0mJehHZuYef55nC0n+dtGqU7U0ZMJJLudhqFSD8iolQYzHTKuaoNbiFBu1hizV2nVczgzJo6GhoaKJMmIokginyS1sxO1WEYrVIls2QHPHMZ2dJI+y8fxmQTuqsGBIZHq3dsZ/Zcx9v/taaIOPzOOKidvDdB5PMOwy8MXswbu8Cgj5Sy3227enNGPXDIMbavPa8Gl1dVee453vekBzp2Z5HPPtSul6bLOsWPjZMoGG30dL6QaDO2du6HrBGIdN5QMa6rKlk29xLwSkZ5ezp6d40sH10sNpJtO/vQfnqZiOLh/2GLPvh186V8Psmt7jaPjZX7mrW3ukS8coZBKoLjcV6VqWJZFIbmE3em6rCSQyx8gszCHZZgUkglazSYevx9PMLThd7dRlVsQRGT/j+eCvIIvfiNGkxA//7bT3PcyG7Dcnis10VpBYrFNZFITQAtv1OAnfmqBSm6KseNbkBQnNkHjoTt6CHf1cP5T3ydHB5Zo4+yp80wvFrEsJwO+FrfvG8YpNIn47Ti9Pk5NjFEmiIcqI5v6+fxXD3Iuv7B6XW6xyYfuFoiHLlSQxKJKqZUkIHqJBDs5c/o4oiQT72p3Cew2B3oxjWha9IbbU9Rz+RkMl0SootEZbE/NZ+xVtPIMst9Gj8uHsn0r3zp0HD0WYHg+S1USUQf7WDo1wVu0diL8XDXH1GgP5sIS27IODCqoY4doOd0kv/s1OPgEpXIJZziGzeNDHNzE4N0vY+bYYSRjWSUj3odn0zbMUBRVbdF0evD/yu9T+sLf41yYRLntPjKzM1SLBUKyg4kjB4g99AaKc9O4Z87C5z+OC4vq+BmsVpOx59pucrd8YIyicCeC0EeO9xMf2Il34Q0MdpQY7Dj+Q46g/7t4ofQlyVR53R1R+kaG+JO/fYIaPlRslHM3f85vxVXz4i7VC4Ugirh8fnJL83QOjW7I3724kl3MpNoyndkMdkVBttsId3atJrXhzp62hOc1aNRX8nl0tXVZ6UtRFLGwKKaSeCNRiqnk/5+9/46S67yuvOHfTZVzVefcjZwBgiDBrEQF0pIs08qvLVnjNA5jv/bMZ4/HcYI9tkcz43GQZUu2ZVmyqBwoijkHEDmjc6yunNOtG78/qtGNBhoEQJAiqXn3Wlwkq27dvlX11LnnOWefvXG43YQ6Oq+azgawddsQW7cNXfXxbzb876TAP7ORQm6MX+pbKfrUNY18U0Pr7sNMJ6FWIKLI3KXVqFQLPPL4AyjDGwlbJv8a66Pjplt48qXn2VZt8bzNXJbakYP0CzYHiwnqW3uoFMtU3DL+sJep+TQdhEiW0gj9vej5Cugr19Ur+lk4OkmX7VqmXXXURc6ePIvfan1/7dkm2cooe30rKnVOzaIcTzHoDBMRAiyKBRa6XBTTWTa4YsRMsGMB8guzWAMyYUPGv2MLxZNjnFLKhKugjcVx7t5ELZlld8NP+WQaWXZxvMtCa9p0JTWMs9PsV3rxelycG4vTrTtwjeWJ+qKcU0yamDj2baU0NYVgmKBA1WxghL042oM08kWERoMT/X7IF7mBdrIhiWq5hD6fQOyKMH3yOIaoobo0VF+ZvS+KdJo+jopVKpOLeHWJ9qX5hElfA72jjyNtswy99Q60b5xgV8HJJwJX/i1dC177PtLriMz8HNn4wrJiQ3dXS3/33OSKGUVGdfLtw1XympOYQ6XNeanagaY2yMzPkZq5evWXarGALxxe5oGthXql3Jr2zVzejVJWFDJzszg9Hp567iwnJlfaBkFZpdvd0jgRBIGy7ccWHfi8jpbMmyXy7cNV5sqrezXhjq5VTkeXw3mrVE291O2vlM1QSCZwut0IgohNSzReVpQ1j7/s+7NUPFz95PSbEQvHY3zg5i62dU8QiKwE5cRZN07rQ1RTXlLzB1G8xeXnSgk31O9iPtvkqXMaTsnGtgWmz42SNUMAhNw2W3dtIRwNM+Ir8WPvvZ0Xnj7EVLKKrhsYpoWBzNs3WHz4J27jsW99D2xrFYe9Zrnojvauamc1jSaS10VNr5LMxVnfvZlNPVsRBIF0PkFDqzMYGsTGZio/gWma2Ng4vB5Ma+X8sizjd/px1QRutVz0nZpACwaojgzgNS1sQyfy1IvcJPlwO5wYQB4DrVbDpxvc6YnxVk8bgiDgUuvIT34X7z0fJvLJX8OVT1L9H7+F/MIjLH7tn3De/xm82dagkHL0GQrPPIwsCHTv3EujexjTsmhYraE47fRhatNjyNUi6Cq+cJS2gSE8Xb30ffJXUTv7kEQRz1PfxfviI6u+S60cJ9zZjccjoE1+npy1l/lcL6f5Y+arN/J/O9pcKj++10d0KY76FY1AwMvJQ8epLlXBbMlJrKeXWE8vjWqFfHLxEsUdgOzCPPnk4suq3VyIYi6Dw+lCVy+N4edh2zbpuVnSc7OXdYqzTBNdVSlm03gCQYrpFJ5AqwLVbDRam/5GK8Z5gyF84QiGrqOrKpZp0d4/SMfA0KrE1OX10t4/eFlzjwuhayqBWBvFdGrV441qlXxycTm+dg6vQ61UiPX1gyC8rMnSxe8vn1zENIwrH/wmxVO6jWPfBt7lXuD2wMr3kKw3+OvNe/nn4a24psbpTax0c/Kazr+MbKcWjHLP5GkGZRGvJJKdn2VLasVUr97dh3P9RpLVKoWN7TQrZUKJKma13ip8qU2miotU928kPjmOUKlTUVfucU7FwYgzSuACLd+mpmL6XVR9MvO1LB3OILe6+gi7/BTUColannXOGMGixnREJNMoYWHh8PkwsZc56YIg0Obw403XWC+GkM/N49JslPX9iH4PboeL8rOHGSq0uhgBX5CFZhG1XMJSVQa8MbbaYQIuL5IksVWOYcsi1Vs2UBQ0dlU9bK+4Ec7OsqEksVNp5RHd3hjBmRyl6Rmiw8PUwx5U06CmNVpc+QZItSZR04FDs3E4nQS7ugh2dlC9fR2jG1r3xd15H+950aLLXul2xAwX9XKJrr27aTx2BE1tMCOVeWijysMj9cv+jq8Vb/pk2DZ1LH1t6S9RkvCFwsu2nodmNL72xCzHUpfSDGzL5L639PPhu9dhGxdJoZkWTq8XUbq6Qnp8fIyOgUGyC/OXJJ3Nen058KvVCuGOLkxDX+s0AOQXF3D5fJiGznNTFtNZE4fVej/v2O7lA28ZYNhTXPWa757Q+Oy3xrGR6HKWsc3W+RvVynIQvxr4IhEKyUXENcwyTEPHF4lQzudaUnK2TXp+lnq5hGVd/eK8Z2+Ef/vB3TisH82EWG/qRNt3EW3v5s47TERp5SdnGS1+IYTpGrgJo7EyqW9bAm5vhHfe0s+dm13UbA//8HCcL71YR5BbN9R008PffPE5nj5VYiDYssr0ehSiPgeyQ6Gtq4vh3iBuh0i1WGBwsIu7b1sH5qXrLZlbYLQwxtGJgxBy4QuFKRXzVL0GU6mWMsJCYhppKELeKtJUG4huB5LPg2Ua9IUGCFda1zWrx5nPzzKbnMQ31EXDabDJG2Kn5KacSSO8cJCiCOVNI0z3xHAudU4OyRrWzXvZXVDZJPv4Wn6OsXoRgKYgkutdT2VxgUZioVWVk2Xc+QymKKFuuYHqW3+c3OYbaVoQOv485ve+zOjn/oKwIqA4nATe+X7qLg8OUSS0eQdyKIr+pb/CW8py4rOfpvzsYyz86+dwphZWfTa6DbW+9dRUJ5u8n6c+9wNi9kP4XDXErf+Tgnw3ns59qMJrpyP7RoJt29iXkbVsD8hs37GOiLe1zguGl395aIIHTjTWNN1pVCtEOrsp57OXPAfg8QeXNXRfDo1qFcEWECXpEkk1yzSX5dRMXW+pLbjdl00GFycncHo92IbRklVra6daKGDbNvlEHNM0Sc9Mr3pNz7oNCIKAPxplcXKCerk1sGroOtVCfq0/c1kICBRSyUvkOxvVMpHObqrFApKsUMqmaTYapGam0ZsqLt/VKX0UUsmWpXMmdeWD36QY7+ihd/sObu1S2BRY2YCYAqgNlVK1SmPHDaQ7Vn6zpm0jeH0sBsN868a7yKhNPpGL81MnD/BW70rO8J7xE7zlxceZlV0UcxkazWbrHuh2IjucuHq6qBgqlXwO2eXGu2cLGS7doNWadV6wkzxtxTnnUWkfHMLMlVgc8HPCWUbVWnKaYyGD7NZOUsUMDcHE1d1Owzbo9URZP1FloxLlJTvFQSVPvlogHhGRtg2jWwYbxDCGYZB68RBCPEeh04f/9hvQlrTm45Us1s2bCTv9bGv6OWvlOFtZxFoqapzOzZGrFmiksjgECUVxEPQGcDctMj6Bo5V5nqxPs1hIMeJp51alj/qh0/iSFYJtbRgBN2NaFskApSNKLeZhnxGlrSlhjc9TOXKWtmNphicuzUtGXRVmlCo7y37aT2Rwn4yz7WyT3Ad2ceLmMM2+MI0u/5rDsq8Eb0qaxIV43w0+wmE///jwAoKyOsn1BALozSb+SITf/1QE0zAoplPIDgfBWNuqlr0gSjxxcAFRBKTVtIbzwxy1YoH5c2foGln/stQHURKo5PPYtrWqOlCvlDF1g0a1Qnv/AKH2TgqpBKZpUspm1tSydHn9+CMRyrkcv/+p3eQW46C4+MuvnWNqwWR4wzBc9L5t0clAl8i79/cS6ezm/u8c4g8/8zw/92MjKLaGs7fvkr+zFhrVKrYNgctobJbSaaI9vdfkCnUxdSK7MM+J0zPo9pt+Ka4J2SFTbhzCsmza+hxoDZN6thPZncMb8hHt6GntdEfvxxMxKM9vQvKNEuqpk49/BcV1C5vXLXDLWwsU5jyYRoC/e9AHkgNBEMhoXlxGjr2376eYSfHStMatW8N09g/y4IPPcybtZjrRYOPiCcJOg9PjSQR5ddL2H775LO/a5mLj5iFS6RR+WSIzNY1LbP1OKnZrDddlncLEOFZDQ2uzsQo1AoqftDNDxBHG4/GhlhrILhd2tYbb6yOfTEBJ5cHeIc7FT2J2RnB7/SgTs9TiccKqDv5WS3tEE9HHZ6iUiozu3kyjWkFtWvzSJ/6Yv0mM0r5/H6nTxzGmx1Df8zE4eQBhdpzoW++hlIjT0DV8g+uI/sTHmfvqP+GNxJBPHsQxdZL5VBLX1j0gytiZNN0dnZRdHqyBjYiiROfiFM7zsmsXdJp1w0TdsJ2Bn/k1Tn2zC+fhp4EHKAENpxvXTz6AWqnB5HdoMy4x0PqRxJaYzrvfso0vPXCGZGN17DmVFJj//NOULC+C2OpYybLMkF/gXM5CuGiCVna0tHDdvku5f5GubnLJBI1yCdMwCXdcvpvVqJaRZJlSNnOJ4VA2voAvFKKSz+OPRFpqDfU65VyGQLTtklju8niIdHYTHx8FoJhOEe3uoZBcRHY4WhbRF72mRZnwUCuXaevto1LItarKqST+aIxyLntVCkLNeh0bG28weAnv2eF0LatDnHftuxqd5ouhOFufuXwVVeo3K27OJTlz6HneotVAkTkgKGiCSK+k0z4wgNPnQzz4HDcXM9zfO0RnMc8dTvj4iRf4XqAN1TLxSCJZQeS5tm72ldKsW1q6A7KEbds8NLKJ/k1bST7/EqbLz+CWrSwcOsJOKUYo2MfBsUlKhSSnUmneHd226vps2+ZMM43d2YZk2ZilMumZGbpNJ8lylY6tW0i9NI5pQN0F1YlJUrKGzxui47lR1IiHhFqkyx1qVUYlGdHpoGk0kGQP6eMn2ewfZDw3Ryom07dxB6WXjlOfX0Ro6vQJrSH7mCtA+ewMnlqT0aiD9pGt5JOLLM5k0QXI9weI9fVTfP4IY06ZRaPJLqmdrMvGu2GAs48/yuD2nczpGvO1Ov6aSdgdYF0oyukXz0CHi2K9QYcSQ0LAdDnIFCsYETcjeg+9rgj9L6zunhuWQaJRYOqjO2nGMww+pXN3OgppMJ1Rxp8+Q8Nl4lUhUBcQhdCrsmbe9JXhekOjWqlhX3AH6/I02RzTcHq8qxzkytkMka5urMtUBEbzDs5mHWvyrlzelnh/36YtpC6qClyMYKwdQRToWbdx1eOiKNFs1JeF6EVJItTeiSwrSLK8ZtXW5fPRrNdpW0pgTcPg3PgitqTgC4Vo1hsU65dqwy0WLM6NJTj00gnmMw1sQSSVyr9sFfpiGFqTSFc3pXQKXWuSnpslOT0JtIJwrLfvihy1QjJBPrlIJd+qjpxv9RWSSdRajVhvHw+f1rClH83ALAgC0eEibetalaJ6wU17591Y6giio0R64QTZxXFsy4mhRnA5h2hkNpA604utbsbXc5RwfwHTMNEqI7iUzbit1dJdsaCTeqlAMpFn40CQl05n+Pajpzmc8mKLDm7b0c7GwRA33HUnt9y8/ZJrXNeusOfm3Rw5MsY3jzT5woOTDAeG2DC8A2M2T2Bp2NQnu3EoDgZ276RZq+J2ezHcAt7hLkrNIgCRYBuxupvecD+SIFGanGOgYx3FYobIhiGcsoInlcW4fT9yOEzogiRo2BPgPYKfSDBMtVDAmJ4lvJBktJxBcLsppJJUczn63/8R3MMbEDt7sXqG0HSdai7D0PbdFBKLlGYmweuj6577sG68E1kUkbx+Bm/Yh+OO9+AoZcgcfgExs4jcP0J4140YaziM1R1uXL/6B9ht3SQe+CrG2WPUt99MqWeEaqi9Rd3w9eDouYfQpvt4KX4Tv/PQpzg5d+3asG8m6BYUCyXMC8KOkyY39IFLNCgTWFUFvnNnGx96/z481qWzDuflHteSPBMliUa5RO/GzWiXGTxbPk+0DdmhEGrvuES7HUCtVZe7MoFIFFFuKS1cqPd7HsG2NgrJxLJGsawoFFNJFKcbWVZwOF1ryp65/QFMXSM9P4t2PpYLArVi/qqly2rl4ipjkOzCPPlEnGohjy8cIdLZfYl99cWol0vkE/GWyymtxCu3GCefTFDO5whEY0Q6u3+o8p4/bGwTLD5YztCmyNi2zcGRzZzacwuoKt6JUZpT4+SbGoumRW7dZg5GO/gHxcf9I9u4qVbkp9OzuCSJR10BsiMbefYifW3Dsqg6XGTmZvDKbkBAPDnNHqmNNleQeb1I9M6badu6mU133cWh3Grd8Vw5h+eGrQhNg86pAtvKTrZmBUYivWwoy4jHJul2hQiITqSKSu+O7ThCfkQELKeEvXOEVLC1ngVB4AYtyI6iE6fLDfNp+iutjVS13Uffxi2MPfwooZt24enpxBON4BRa69HlcLJFiNAptmgRc8eOwvgClm6RqmSRnQ7mThzHd+M2xM4IRsRHtVGl6VGYOPAC2+56K6VcFr1YoZnLY27qJR1VqGsNwt4QrmAQz54tqJqKkCzgrupU0XEP9lCV1q7oPrLN4uh7+1AePMbAyQJn/DWe7W1wXMlSRSMguVC2DSPevoX5Xhc/W57mL0rXr+Lzpi/HPXLOAuqIykoydceudjZsHKSUSa+aAg62tZNPLKI4W8e+nMHFWsNftmmRnJ4k1P7yNztPILimDabL671EMkhXVcq5HC5fi1N2Mc4PgtQrZdRalUhnF7f2D3DrLZBPxJmaSdLug3xWA2nlhl63nTx8Tuf9uyQ+/PYh/uGhOb59VOX3P7X5kr9xOUiSTD6xSKi9A0PTcHm9K0H+KmGaJuGOTspLLkiNahmXx4tlmZSzGZqN+jXLyL2Z4Y00yKQfQPaW8IZtpl6I07NuJ9GuHpKJb5FceJbhLfeQS8wgO0QsY4py1oODm2k2JnG4ZH7hkwu4fCs8c1Mz+devyvgUi5/88b3U6sc4PG+zFO8Yna8wEBJgYpJCqcHy1MYSxlImX/veYSbjdT7xnhHm4gV++wdnLrrylixbuVpg4dRZ3H4/fsNLvpYnfWoMn+ChVM4TDERwLXHhai6D/ptu4NyRYwRj7RTOzCF5nYiih+b4POFGiZpuckox2eZZGXja54nQm87zhMPNZEeUUb2Ju+GkeehZhMPPs7AwjjozQaBZBU8AbXoUcWacRdvE9+g3UWOd0DlAcmoSKdTqWsjlHIlzp1FPHyVcLcK3/hEZaD7yddKPfxev0Wpj1nbegmPDdsxvfB7BttGqFSRNbbk23nI3sRtvpRSfJ9DdS+KBr8IXvwyCSMPlZi4jkhi8nWTlGbZz+TmANzsmCg7GH80iCCvraFO3k3vv3o354BGOXeTx8MSxNEdHs9TFwCU28leCLxwmOT2FJL98Mikra2sXA7T3D6z6f9u2qZfLaPU6wTVmJxSni3BnV4tbm4jj9HiXVS6qxQL1ahmtUW/NhVwwqCeKIl3D61gYPYc3EiOfXLxmC+bzxiBO9wpn0huKoNauXnZS1zR84cjykGIxlSTS1c3i5DhtvX0sjJ6jc3jk1bZhfsNCEARuGz+NLggMBfxkps4yNrKNri3bmDx9jMHvf42Fez9IdnqS8OA68rPj+JtNvrZ5D2omDc0Gm2plUFZWryJJvG9ujBedAxg3baaRzLCt5lvOqMKii4WxWeqpNBkLNvlXD0PGgjHKJ2YJIZINuii0eRmOt+ieba4g53uxMVnhZt3FyReP4+oMEc1pKA4H6QPHaDcdzMsavd4o8pKl+AJFIvv3MHvqNIKao6aVKI1PEA1G4eQUSqNCM1NmTnKx3nQiLW3Sgp4A27IV4hWB3EgnY+USsYHtGJPz9JUlnKcXcDd1YooPj9ODp5pHFDw0xmfoLVt0KSHiITeJk6cJDA+SSxRxyQ6ahRJ2Ks/mYBedtgwK2LLN4osTtPuWJN5cVU7eFGbkaIHtZR+CZkBDo70iEt/tp9yoErpxCwupJOOjCbbM2vhyc8h1nUC1wbjbi6t+/TTLN30yvFZl8rHDKQ6eSfHxD9y86nFRki5poV0NStkMhqbRNfLqi5PXSgUGtm5j7swpMvNzlwTu82glwt3LrkLQsnA+dC7Hhz5wK1/65kuMX0RN63DrdLXHMG0Drvk2xKrpaUlu7bBfTv/TNAwKqSRqrYonEMDhchNq7yA+PkrnUKvK4nR7qBTygI3WUAl1dCy3L3+UkU1p3P/tGOv6i9z9riKZxRruoBt3wEF+cZFqeRbJVaNz8D1MHH0WwaESG261ZUFAlGQCnVkC3bOIYmvTo9UNGrkhBCXLXMUFls4Xvn6AuTywdIxXUlnfG+LIeImnZ20uTIQ9gspNGwMcnVQ5nRKRBCemaV3CubwQAV8Yn1nB2RYhe26O2J6NzJ86hRT2UiglCAZa32OulEEtFVu2sKJIYH0vzUkdX3sbdqKEQ3TiamSp37iT03NxthkQL+boCoQRRZGeUJS6rBBsbyf+7DPsbh/gkMtF+8/+BtW/+1Milg6CgNyowHf+ueWfeO4QAPoNt9G7/y7G/upP8FZaw1ehqdMwdXrVNqDuC4Fl4a23Ku214a0YgxtxhqKo2/YROv4c1W/+M6YoYe29na6de5n/+08jejxo225k+EOfJP6lz+I+cwgqcKtlM3D2s7z97lFeye/tzYSL4+6ZeBPzgcOMJnS4yFI+o7rIqNemnHjeRc7l9b0iKsDLoZhK0r1uA+m5aRqV1nfvXoNvW8ykiHT1kE8uLifDvlAYXVXp3bj5sgNrNha61qRRqcLaPkyXxcXGIJGubuqV8svaQRdSSRrVKg6nc7ninZydblUJadHc8olFbMuilE4T6eqinE0T6Xp1p/HfiPjF0SYzposvDdfRTYuiJGK73BimzuKxw7yzmObYrpuJnzxBUJZY/4NvsMfrIieALYrERPjw6ZeQlJUm+tOSi4rTxd2VHIXYIHMn54kJK05uhmmwqGg4ahb3RreDCSwV803T5JyVR7EENrhblfmsnm5xji8Dh+IgqnupdXehFWcphF2Ibj8pTcOybUjk6PPFqDXrmKbO1AsHcEky6Y4Ake7tZMYncIdCdKsuJI9IRtGxN6wjfWASn8ONiIDX7SXg8TMvN2jr72fq0EHExRz+JtR3DeCcyLAuuJLQ76IN/G1gAX6Y1HLIm0eIntAIz5To8UYRRZG3EFyltVxR6+TNOn3+1vOZRonZ7W4KegVti5uB5xrsGxOYSxVZ8OgYw+20PZHHc/9BKlEB/9v2Mj06zz3PL3X33fDZapY29/V34970yfBayDZdZJvwR58/tvzYy0mkXUk+zTR0Il3dFFKJVz0wS7JCem4GbyQKFw9+WBaVXLal0nAZbt3+nb3kk4vM5kwQVu/00w2FZ0/lWcg1MaVWpeHCyuu1ysZdSQi/WsgT7ugkNTNNuKOLwtLkc+/GzRSSCaLdPavsrLPxBcq5HKELku6rlWN7s2BxXuO7D8cYbM9QMSJUag2OH6nzwAu7uHnTGLffuohanccfc1DNQ72SINjehdPtRHG3dIhD3Q305g8IOWUuZDbVixJtHbeTSx3ht39hpZL7x5/ZsvzfPSGZW2/eTKF8jPz86rZUb0Tmjlu3UqsdxhYFJhbhC09mQbjAcdDS2dtng6nz6994AUQFQavR4z3LQt3Nbwb9yLaEw+miUk0y75qHuk6ZOr6edhpTM/h625k9dJSB2BByHnzRfmYa84g37uTcc88SjnXyGdPCu32Q7rEZ3rbkjNSTKjLrdrO3e5i3KCHKPZvJWwK1K0wPG49/l/nDzxNLzqCLEvWBjcizYzguGLRoGibhf/MfaBSy2P/4P1rc1qEN+HoHcLpdGP4gtm3jue+TGIKIJxhi/l8/R1umNVWuJuZIpOYRxk8vn3OUMI/1vZ3s37azR0ix6+fPXsNKeXNDF5ycSnJJIvxKoVYrhDu7KCQTV6QFXCvc/gDFdBKt0STW3UetVFyVDFeLBZweD95gmHxyEemiwWlfOEw+sXhZLWNfqKUu0b1u/XVf6/kh8JeDbVu4fT4C0RilTArLNHE6XYiShK41URzO5SJQOZdFrddQnNfn1vVGhm3b/JtRDd0WKVgKi3KAVK3IxzI9RKwaj2yx6Zgfp8fpQBZFxkp5/IqDwLad+PNJwCLqcPCp0aNIgrBKaQdgtHcIevpIPvotAPo9q+km5XoFa0cXlXSei4WSSvUy9s5eyukcE7kstm2zw9mGmTeRL9CLnlZzLJoVhkwf3YEYg54YJ547Tps/ijfbJKllcG0aoDQ7T0ZRqJfi5G0V1/b12C8dxrFpPfn4Im3ZJvvEEIokMylXYPswtedfRDt9BicKi10yltpkb6OlRNHRkDg9MUEwHGW7GmRetihVqohX2Nz3Ci25uHW2D7/Hw2wjhweZNvfqDvmcR0PaOML8oUkGvDEqtoZv+3qaJ8/i7YxhMM+Z9U6SW9uRZQX18DnuSQaQRAmzYnLowVP4qzYsmfgUtBq/ZVXpqhb4q8j1/d5+JJPhVxuy4iCfWLys7uNaKOdzLa3Ijq6X5dWer75WC/lLeGjnKQoXVoOL6RS1UpFwRyeSLC9XVDXhoslgU2PfgACWQU2XrqtQ1ahWaVTLOJwufOEIhWQCy7LwRyKr+HnBtvaW3JrHSzGVJNTRRaNSpphOrllRv9YW4psRpSLk1A667So/d98ZfEEHszPgE7P4fSaKS0ZxtT4bXwSIHKWYalIuhQgFRM6vCMV56U+1WQ2ykD+K5D/OWlZHgtVE1ww+/6VnWKgpIC4dY+rcudlFrtDkH+5/EUyNT37kDp567hS1moqgN5A8AU7MVDEMjX3bhmnr7UN94DCnkrBj0MP7330bX/veYXpCfXQFeijkMjTaImTKKQa37iB96gTtwRCNSIRody9K2aRar9BwGbhTeXxOD5mTo3SsGyHS2U3uxDjVbBbf0rDeo/UsCz4nobFp9of7QIH3uWLYms1f2yuc/7rbD7aF5wLpIrdaBbUKgoCxeQ+O295JdfQUjqe+Td0XwvnO+6ifPor63KPI5SLe87/Px79N5bmHqTXqOGwTQRSpPfUgFX+YyL334eofgniL++fSGnDoqUs+81dnrvn/g9sfWNr8X51CArSGz+rlEp5A8GWNKM7T1bzBMLVyaVUHrJLPozidlNJpYr19ON3uZQlMp9uDNxhCcbou22HMJxepFPIEIrFr0vy9GOd5vqIoEOnqoVYq0mzUkRXHJVzflulHg3Iui9sfRBBFdE0DTbtEkeJHmSd8HrZtc8r0oQsyDw3msEgRUDz0pCpEBB1wMOhZuW99vJxBMwwefGgGj3PlHqyscc8aberUNY3oU4/Q5/Ewf8kRUJEsxCPjDLhCXOgyP6nlqIUkPEemiMlu5vt8CIrM9HSGsl+GqkpQdDLkijJHlejOLczPx+luQqqSRbp1JwvxFHsafvrdUerTdY5YNmp3kHpDJdy/gcz8LH237m/JogYjdNQ8HJYLKE2DTVKU1KkpLI+Dru3bKJ4cwy5VEXQDQQ6SUIvMt4vYyTT9YgghKNDvjtBXtBEukIGrNevk9Bq9nujyRsGpOBihtdZS5SyLAx7MRgO5UMHvcHNSLNLUVCTNxDU6Q89ScW7IHcP4h8PcqMrY4jwRxUffXI2Gvkh6wItnfR/1s2n8ogdJlLgp+cqdKa+Eq0qGBUF4F/C/afmx/b1t239ymeN+AvgacKNt24detat8nfFKAoipaYTaOiimU2u6F12Mix2IACRJopzLIMkrP1Dbsoh29yxpAK8k5xfzboOyxr4dw0S7erAfPcbB2cvfpg1dJzE5gcPtItLVfYkW5nlJn3yyRQa0sQl3dFLKZi4ZVrl4w3BhJfj1wOu9djdvdxAMHKet04Gy5N6VTTdo1uoogsZaP0FB76V/6G4y6UdWcYMvhiKOEBtez/z0GK1eXAvnq8SlhShtHe8ik36Ev/7uSutVtlT27dnKzHSCrx6ogCny5W8eJJ4u8dP3bqVeKTGwaRPNh45xZMHFA09PsnGoxGxGA1zMZDSeef40c1mNX/9W66NSzDo/+94N5OM5otMJBM0iOzuL3/ZijmUYaB9hNHmGzuFNJM+O0hsaIugLM5+eppSdYqhrA5IkMRMocEyqYpk2rr5BssIMfoebI7U8EgI7vWF+6RN/DICqNfnHkEUpn8N0e1C/9yW8mTh1X5BG1xD+gWEazzyK7633Ely3EesJG9sbILrjBoxgBKFWxvGVzyx/Lk7bwqnWWhvHJdUD39RpJKeH0sZtiNmXl6LaLBbZkL4faekGcexvL+XnX0u1+PVeu68n1pqvuBLq5dJyNflqXNmcbjdO9+r4JSkytVJxlXZps1Zbjn9XimXVYpHu4fUUs5cO5l2MxclxFIcTl9d3CU1MrdXwBAI0azVs26bZqK+KwReiVTleXT2+HN3uh4HXe92Kosg3BytYQJu3tQ5mq02S9SYxpwZcOiw739TI3vMhslPjbJo7d9lzH3L7CWzeRl7TIHdpKpwqZ6ndMEAjnqKtvnootOZVkAY68ZTm6PRF0Bdz2DYsukyESBD/un5y8SRDNdho+Jg9M07UcoALwq4AmbF5gjrLdQ+Py4PH9CC43JgzaarVcSwMmpNzrC+B3+1jPp/Af8tmqtkswaqXIF5cmknmhaOsd7YTkLwgw3E9TVFo0DmyE8PtwFpskFPLFESdPsGP84IB4xm3hraug9lUGm9FZ4+zi1qzzoxWoOFTiMgCdr5MbMtGSvlJnLoEfSGMahlHJEJwNIN/iS8sCAIjdnhVLWdA9zIwBw8pdUyfhSJcPk0NO7zcLzsRhevXgrhiMiwIggT8FfAOYAE4KAjCd2zbPnPRcX7g3wEHrvuqfhQgCOSTCSLXUE0+j3Iui6woy4nleaH3UEcnkqNVpY50vTxdo2h5+e4TY/R3pzi70GSZK2rpbOuSWCysqEqUcxk8gQAef4BmvX5JMuxfqga7vK0ft8vjpZRJE7qKJP/1xBtl7XYPrL4xj445MHwjHDs9yq59l2qoKv4UmdQTyL4EpsHy8FBhwQ+WRKivgCAI2MoRFianUPxlLMt9STtP9uXIpJ5BLbu4e73JQ6dVBIcXQ/HzmfuPoVki4AJJYSwP+zd04HI7GT21iMvjZnqhCASZbQSZPaNzfg2VdCePnaqzq9dBptxkseZElzz89TfH8CoWW9oldg7cgCRJGIZOppKiUivS7eth8ehpukKtjoAiOxjuXq24ouoNvL3tOE/lCR0/R58nQM1qcLQ/iqWqlFIZag6Zt4k+nIqDwnMPYG/cgb+rB3UpYDvv/Rgd6zdTK5fQDj1L9e//DAFwiwKe5Cynf/9XiH7slzBVdY3b4moYlo3avx79oW8QKLU2JpOmnwl3PzdWTmICbc7W564aNs+7NjGgJRkRyy9z1ivjjbJ230xwuN2XDJ9dLRrVKs16jVB7Bx5/oOW+mUri8QfwBIKXlX+7GMFYO6mZKTzB1e3hYjqFaRhEllzpqsUCsuIg1ttHPnFpguv2+SikWh01QRAIRNtayXggdM3v7YeJN8q67fauHhKeKJZJ+jaTaVaAS30JBt0u+p9/nIimrrJuH7fgXLidm7OLtCky9zZKfOvJh9hZzlN0XJo+Rb0h8mdnsdQ6B9oMwvMVNsRaSlBDFZnysTm6fa3iWp87ynwlg3u4n8zZc2iqiiNdBK+PTl90Fd3coTjYRpQ5O885Pcc6MYgsyeyww5RGixQ9AaKmk5CrdY9edBbIWQ02dA1z7Mgo7YIDwq312+9ro58VDrpt2zRDLnzOIOrjh4gG/HQ5o4w6qigbRxh74SRCJEBnTSDmCuCvW4xOTRMZ6ENVWwWCBUVF3r0VPblIo9Bkp+ol99IEvUvc4b6pPC9V5/BGYwjmlftnx10FpLTGOybaEGWZnFbnM2qW/bbCJoeHoOLEK7e+429W0xRsk58N9F5XN+Zq0ul9wIRt21O2bWvAvwLvW+O4/wz8d1hDXfp1gm1q3L3FwU39lyenv1YId3QS6+m95oG7QiqBw+2hViotP1Yr5gm2d1BIJQhEokS7e172S//9T+3mD/7NHmYbIZ6ZFIh6RXZ3W9iWScyp8RP33sDNm8P84eeO8oefO4rT7aHZqFPMptfkp52frj7P3fMEgoQ7X57+seo9LcmrXeyoBPCPX3qKv/qHJ1Hrq6WTzl/bdfKFX/e1W8xpPPywSDK+YuTy3vfqbIyd5O63r1bmmJ7QOXlMwxMUCfYu0ix2oKbuInnOTWl+GKO6Dp9nP7n5MqZuEh0QQLRw2u8mN3WpNJU3BJJ3HF31sHXLAL9wz8oNomJ5aC4ltw6jwnu3CVQLWQ6eWiRft0mmCjRw0inn+Td3+fnAlvoqaSy/2OB9797DzVsvGOyRZN6x1YljMMYfP/AUv/6tQ/z5oy/gXtdFiRoBf4je2CDJZoZT2dNMxccuueb2SDf2dAGlfQPGhhs5Eozyfa9FbHyOXekas2Ev2ZFeMvVKK0k4/hzSi48z+7d/hnexJXlYOvpiyzHy2Udx5RLYtSruJRpF04b+n/sPCJKIlU2hItK4KAyqipNKWw8VTScebKPrA/8Pjvd8cPn5s94Rxnru4J/8b+HLG36BE3br5jYrBDjd9zZO+DZddj0c+9vNy/9cAa/72n2l2BTTef9eLw77h3tJ3mCISGf3K+pElbJpvKEwhaWhuEIqQbCtnVqpxR++nPzbxQjGYvRu3IzT7VnlnmdbFqH2jmVVHY8/gGWazJw6cdnOYbijc5nCcV4t42oq3tAyM8ktxknPzVzy3AsvnuVP/vYJzp27fjmqNfC6r1vbtvnMnMr9iyvx9a09MX5enOT3wqs1bZP1Jp+LNylrBu/QavhMg89s3cfXZQ9fae/nMW+Y7A37OSk7KTY1gk4n+0o5Xtqxj39uv7T6Lksym+UYNUujKdk0dg2SXjIO8rs89CwlwrZt83xlmhmxBuPzhOs2RrFMRHTT1Jo8rM3wfW2KFzOrY2Q2omBvHyJdbU3Ly7LCGS1NZV070xe458Y7HJS2dFGoFtkVHqSi2Dxqx3m+MYt+kbyqIAhsyAgMx5vs7FzHoBLmrFymWanCySlsh4yycYCC1HpdvyvCTjOENBpnu9qiMYWbEsnxccqpFB1Fm6bWpNsTXi7QJLw2PTffSHF2DlmQSJVXm+zolsEpb4VFrcCiVuDkXj/19+zgmNGamzmklngwEOK36ot8RGzwn2orG8gv0OQLXjfJRvFlVsWVcTXJcA+sosYsLD22DEEQ9gB9tm0/cF1X8ypDtHQ2beimv/NSmbMfNizLIjM/Sz4Rf9lpfaOpUc3nUGsrHEhBlCimk7g8r4wvc9OWGPfevQuXXSWjOrj/Owd5/uyKxak3GKJ7ZD1dQyOv6PxXgmVZeAMhrCV95ZnpOF/8+kvMziSo6zYNS8a+Bte6a8DrvnZPn1E4PLWJIye81KsGX/2awtlRhQ/cJ9Hdt7ou+b3H2vjuc1vJxJcSt5oCOGiWg0Tb9qGrBvHJE0TDP015sfU2PO5BYj296M21XRiryW7augepFLPYl7G93tnvYPdNu9gwGOOp0xVuv20X0ViUhu2gMyDR0T9AIBDgPbs8hGQVTJ1wwMEXv/IMjx9daQfvHXSwc/8+FsbOUai1eL3pusSDjx3Hbbbea0Wv0LFpHQ6Ph7xRZDR1honEKIZhkM4tomkqsUgnzqUBn4bRwBjqx+tyc6M3wp0lg66jZ8lLKxsx39wobbk4pcFNVN/1IcSFKeRiBk8+hXbDncR+688oekIASLZNPT6HMX4Gz7PfR/nIL+L55G+gX+ByJt75Htp+5texf/rXCd/zYQpzszQnz5E2FR6V1pNSQZg9jCQKeIoz+JaSvk6rRDT+Ev3liataG1fA6752Xym6oh42bezHI//wixAXo5TNkI3PL+v2Xg5Gs0kpk8bQWjd8l9dHMZ28xCTkanGe1nDeOlmUJIrp1LKBkShJdA4NM7R956uuUAQt171W4tz6nTRVla999yBPP3sKtamj2i407eo1568Br/u6nStX+ZPmIP8937rv/59ZlV+atPnVQQ+f7F+9oflsWuQ/a+v5wlIYy+sGhqwwrriob9tN2eMjMzfDibZu7t9xEzVNYyEYITY4AuLaayNTyhLdtY1qoYiayyGvUTRKlbKEb9yJ3NtGr+bE1R6ja/s2FFukUq/gjoRw+3xU2jyM11sdqcV6HvdiCefRKboCrXWUrOYI799DOZvFqq7E90hGxXEuTtgXolAt4tgxgjscQgv7eLExzwvNBQpqhUytSKFRIeTxE3a3il21Zh2hrwMr7GO9EGK9FMZ68TRmU0PVWveZdleQXf4+VMHkKX2OsqATati0y34agkF8RwfHGisJq6xb6Nk8OzQ/RQ/kbhhgtr6yMRkNNIh/cAcP7Jf5/m0O1FqN5myCbtvH35bnebiewblwDlkQ8dfL9Ngrn+k+TWN/Pk2nO3RV6+NyuO4BOqEVLT4NfOIqj/854OcApMDl5WJeDdiKl8984wymLfLVl1rB8FoVFF4NNKoVsvEFYj19qLUqpXTqssN44c4uyrnMKhvnq+Ecr4Xz77WSz/P5+w/QlIIIwNkMXPjVv5zCRDmXRXY4rmuiO9LVTa1UXB4CHJ/NMVlUCJ2dZ9+WNjZvGsDt815yLa81rmXtXrhuI92hq/4bO3YYGOYZtm7WyKVNxlObqTbi3HLbpSYCN+3IUa4UiHa2EkHJUcPp8WLZOsnEv+AJb4BamWpxAYTWTVYOnSKdnqRri4FaNTE0G1M3CLS7EAQBTzRFuTABzimiwxa/fcF+R1cNapk+HnxS5tHHDnF8uoqgBHjm8DSGYSEICkezPkIPPswt73oH2fg8O0YaJDJ1PvrjN/ODx44zNbOS8MxmVI4cPsvhszksd4sDaYtOXpqxeGlqklvXzZPJV7GOz+LWsuzdMkDHlo0kpyeZXjxHbNcmMtMJehwrDomiJTL+4gFm/F6mlCp71Cqn/AqLw920nV3klz7xx5imyaePfhdx8y6igyMsPvco8rf+Ed3lo+KPYMzPEfzoz5P/7J8SFEB54ItYLi/1jn6YHkN0OnEJIpZtU+9bjz56Cj0QYXDPTYy/8AzS0ecILk7xhGsjZ3vfipmfJ1pPMaxN056fZ8htAgJxMUyuZx/xpM0NjWuz4L1WvNK1+1rHXIAnztR48exBGuKVK6mvJebOnSHa3UOzXqdRrbzsMJ4vHMGyTCI9rRjl8QeuK+Z5g2EKycQyreHCIb0r4ULKxpXwcvHS1uotp0opj1krIrq8GOPxZY27bx508c2DP1ylnuvJF/qvUn5zIOjnv1SniQQEwMWDdQ/n5HZ+qTbBVsfqIfX3h0zK+RneE2zFsU6xpa9PIMTQ979GzOmmKkCz2cDOZXBIEvubNY4+8wibGxXOdg2RqubxyAou2YXL6SLqjzB1aoyYKbJPCa0aooOWUkTNY6MfPI3PtIiGBmjUC5RGZ4mIbgIhL8L4GcThDmK9/cSTSaK5PNmdnTSzBTZXV4pifsVNYnIeT6XGNtdKTjHibA2zTTZzNIIizmPTiLUiqgeG9t9CZmGexXgZY3M/eqHI3gvqJIqskDlxGt0j80JYIJisUHZY+DYPEx9NMLJE8J1T84xqaTq37iRxapTb5UGausY5Ic3ssWP0bt7C6Nk43Y4gm91tNIsacaGCXW+gxlO0LXGBXxo+Qc4Syb6QZ+CWt5CcGCXYKLGrOsuhWIUvlLbhpIrp6eC94ih+ucLb+rzMOirYts0zNTcNOcypnpcIeF+5SsrVJMNx4EL/3t6lx87DD2wDnlxqm3cC3xEE4b1rkeJt2/4s8FkAZ9f613z4WhOvnT+WmplCUhz4QuFrHuJYC7nFBURJolrIU8pm6N+85bLHyg7HZfUfq4U8pmFcU2AF8EcixOtrLxLRauISdepceuOq5PM4PV5qxfx13RhqlRqPvjDN+v4iW7cOcftN62kPxzl6NsmhuIzbnWLrttfkxvmqrd0L1+3Ajt6rXrf+oMKdd8H5oY0Pvu0k4Yi4/P+HDpiMTvl49zvK7Nt/PlC3blbuaJpSJk6ks53gQA6YRM43cXoKKK7WT9cXsSFSBwSa+V0YqoeO/mEy8e8R7q0SaJcpmQvYtoOLO5LVgkBb+13csuUMZRUqNkiWytFZEeRWwHMKGuGuHnKLcZILCU6ca4Ao89Rzp8nni3gEB3W7RbfIqC6+e0wFVjoxotnkHTsDzM+k2LFuC8mMzDeP6ty5YQATk3xykXIyxYauLZTmFnFbq29WumIR6e9tac62tXHSMIn19+E4dIxgoIeDtRzuuor3LfeQm5uhMjOBt9rqesh33cPGW9/K1LGj6LpB26/9IdUXn8T90uMob38/3Tfdwdwf/3s89TKIAhVviP6f//dkDjyN/ug3ScRn8B18mufop+rYyf7qCZzTNexmGRB5qecdiF1vZWT+Sd5jT7FBKKBPfY0eK98aHbo+vCZr94cRc5EcNK7Ixl6NQiqJbVuIonRVSeCV0GzUMZpNasUilXyO6BWUay73NzW1QbVYIBCJLWl+Xx3WGs47D9u2KaZT+MORNc/ZqJQIxNopplPX9VmYag3sClKgDckbwqjmsbUmjrY+jIva1K8iXrN8Ye/AwFWv3Y/3rHz2f9FbJ9GcYmu4dY8ZL6v8XtLNB/x1frLLzZ+H4Pw8xJBDwX32ONLmnQzMjzIkGFQTU6imRczlBElCkeB2vQ6yxIRZoLq5ZTVspwvsNlyIosh6MURO0WloKm7Hav5yPuKgIVrItovOrImma7gN6LVC4AJN13D4vaiiSHp2mmBGpeIOIY3FkTSVObGxLOfmdXrYbXvAt1o15JyWpeESKAoVPJEuIiUTZ6Adet2k5+eolYr0qiKl+TSOpg4XOOwV9DqBzesoJhL429oo5su07d5B9tRZ+i0/i/XWRj/lNhB8QcrJFN12K89asCq4btqG5+xpmmqdJGUa/Z2sn6uRlFSMPSMIp6fZU/ctbxLiA1vxDIww8MCXqB9+lpFqgcVMnd/LeflQu8xHnaMYQp2wnOLvs23oio+HThb43Y1N2n1Ofrm7SNMqXFciDFeXDB8E1guCMERrUX8Y+Oj5J23bLgHLcguCIDwJ/OabeapZECWcbs9yW/96UM5liXb3kZqZontkPZIir2kXejXQmiq+UPiqTSps26aQXMThcvMbHxhAUxuE2juX23J/+LmjvHVbgL27h/nrLx+ibK0k/mqthsvroZTNwhV0Xa+E6ZkkxxcFKvU0W7cO4XK72blzHTbgmS1y/zMpxAPXN3B0Gbwma9c/luOOd33+ss8//YOfuexz6zatDozTCx5mC/2kE8eJxFqJYLWkc/iozLYtIq72F1AcIiCTHFVo73gf2ZmTtG+aWj5HrSBg1vuol+MIdpBCxkZSWhxl0zCRrZuRZAd68wGUC6SDQp0iqfmv4Q9tJupwIRzM8vP3bSOVzPGNQ63K9fv3d9AR8zN6Zpx1m9fzkwM6giDwlYfG+HefuovDR8Z44NjlrXKdgsGu7YMEnBbtff28eOIA4ODAWJViVGWH7OFk0uSRc0e5723rqGt52mlVONKlJEaziVDU8fm9NCbTKG430Yk57gr1clQtMrt7M6HRKZRGg/4du6gfP0nOFrDe9SH0ZpPFb3wREgvUqyW4+wNUVQ1RUjAPPUsiuYCrVl6WHXRX8ix+9R+xF+fwlPNw4DEA5vyD1H0dOKpHCVh1ntj0MYYWnmFd9gjToW2Mt+3lWLbKbtJsMhM4L6M/e434vyru2pa5JHVWfFXOV8nliPX2U8pl6N24GV29NufM86gW8svGG1erMX9eVtMXClMtFnB5fauKCYXkIuHObvKJxVUSbZraWFYOKmXSr4IKj4DoCWKpVSR3ANkXwVJcGOUswmtAzVjCG27drvO7WHdBU+BUzeR5uZfO+iw/ecFxX4o3CCsCHw3rlF58lC63i4Km8XcjO/BGonzwpSdoc7Y2L03D4PFAlHqzjpa0EUQRj2qC3LrvLrpNlM0jJI9MMnSR42d/zmLSKuLZuh4zk2BUriKs70Q7naTLG2GaCv692yk++Qz9d91O8eQ5Gjs24D08SaM9TKWrjezROLHA5XOAhlem4rDp2riT0tQM3f4YumlQmUmSD4h4DAi5/UybJTydMfKJEhF3kKJapeaT8JyaR3FK2Mcn2CAHSJ+bYX3Tg2iaJNeFMFUVOVmgb+tWFs+dQzIFDlfnsNpD2IdP0d0ET62O0xshNztDxPATFTzEz80QU4VV1fLowjhqco7egAepngURnqqJTMg9zNRHeVePws+d7scWBD4UmudbBZ2U5eAzsyK/txXWBwTczuvXN79i1LZt2xAE4ZeBh2jVOz5v2/ZpQRD+CDhk2/Z3rvsqXiFs214e4jJrRURP8LqmCc8j0tmFoeuvSlVYlCQa1TLeYIhiKnlNupkXwzItytnsVesdt+TXWmYhAsKaQX0hXcV9Zpa6uaJFnE8u4vJ4qVdKr4oW8NatQ6jNcfr7+lY9vmvnOnbtfO2oEW/ktdtsGJSLGu96u07f8UOEo47z18zR4xLPn9tKrT7Ge95jXPAqgUqhgGmsvrEbtQ7aOm7Htr9PsHcGmAGglHAgGfsoFo7gjRiEnaurroIgEO3X0RpHsC0bW97EwkKGYnmlgjw6myddqPP0OZPHx8bZM+xGAEqmm0efOslCsozDgqbgZmenSa1UZKLR0li1LRPDNPnLLx9BtA2m0sc4nWy1I1WcHM85Of58FfCxzl9BVkRUe4V20XAaBAcHmHjxRTbsvoXqTJIufw/vLqR5qpLmeUnDf+Y0NxgufKrOkcYUnrY2Aj/7H1CcTtT4LI4nvrUcdwvlEhs/+FPM/8CP99kHITm7vOY10+KIMsjg0SN0Sqv51+8tPI5ekAg6RCyjxEDiAD31eUaEIs6cyqm2/RQsB0/Kw5zuvIkfi3+bAfmVJV/n8UZeu+fjrtWsgyghKtd/I4p09VAtFl41UyPT0NEadbx+P2qt+rIObi8H2ekiv1RQuFoYWpNgrJ3k9CQ96zdeYhzicLkpplZrr9crZQxNQ61Vae8ffEXXejEEScZq1pF9K0mT6PQgOq+9W3q1eCOvW4Bz+Qr3trlh8QSyKGDbrS7WdKHMf2xsJFYscKi9iWdJ89+wwbQs6rkszgtyi1ndZHHfHdizcfY3/C0nNhmqao2zIQOtVCV6YpKONTrTbe4gUctP5WSaoD9KVctSS+dxLZm7+E2J7EycHYF+ODCJx+GkODlPu+jEKKg0y/PUDR3TNEnoJRaNCiN2gKi/Nfyeqxbps210TMqFSXosEVygSDJbg0v3cwcU9CJ43FgXqKOnZQ1x6zCp4yfx9nZhNpvE8i7aLZG8XeJwoIE+X6RDk+kSfUycG8MTCTHfSGNH/ETa24hkdLpDrUp1s56k2dtNSpLpiFtstXyrEuFnpudolkq8rde9ioN9X5/AltxpdrZ7EASBO7w5DMNiS0Rmc6jK707HSFWbnM5a/GmyhzudCX5m/fXFoasqYdi2/X3g+xc99nuXOfau67qiq4SlNbAaFWxTR1CcSJ4gZjmDHHwVbPkcjmtqib0c1tKAfKW41sTUF4ksOyUJokg+Ecd/gWbyeX7wH37uKAiu5f/u9TX5wJ0Dr3h45GKIksSNN146Yf/D4Ae/Hmv3clXjZ31dPPMrb2Ni1ks2LaG71/P+W4/x5PGtPHO4wj1vy/DtR7swakXWj5xm986WQPx5tK9XqRV+QNfQ6gDrDMXJZL6LZmUpJi0EbR+mmUY3s0RCAVzVDQjC5fVtHe5WGPiPvzy5/NhtS//+489sgYQBDj+9fg3TEjk0a7CuTSTkdeAI69z37r38zT8/yy3bN9PefyNf/eZz7NzcRSFX4IZ9+/ncVw+SUoMcnl9tB30hxkseUt8bo2T7EKVDrAtrBJ0mobE5brrlBlLHz9ETaW2mHgy3M1nL0TYwgFkssUH30d1UqRlVgskSLzQWKSzM4j93GMQLNse5FPMnjlLPJHHYAorQugnopsVzdhenBu4hnXyJuyuHOCe14zRqHIrezL7SETYKRQDCsslbyi/xD+H3cNBUcZgNBL1O1K5RQUJu1hCFV4eJ8EaMu3oxiSBK2ICoOLHVCmLw+mkNwBWd1q4FHYPDr8p5AheZVlwNBAQKqSSh9s5WIu1cvebX0pQXBAG92Vylb3y9kLyhV+1c14I30rqdrTb5Sk7E0Jt8vR4kLXTys6UCE00/TzkGSU0c4XONdhYbHrY5JvipDokLs7WYQ+HnJ47jVRScF/CN17scFJ54gAnPOlKyQdZh0PA7iKYr0B5G8zqo6SYe+TL0RFEk6A8BsMkRgzrLobHbFaJbBTxQUCsU3CY9ZQCbmt9BZTGBtW8HjbML5EQN9+ZhxhYSuPQUJatJdNs67OkkO4QYL1c2C3tDbM0XUAo6YW+IdKOE6rAoP/MSgd1bqE5MM2z6EJekCgVBQFRk+jZswHtoknZ3kEotQ6WYJuR0U21YBA5O0x1b2dC6RQeNXAGhWqckxWi/QLb17GKCz02maUq93BSNc6pk48Hg2/kAbZLNL2xcoU5+Yp2TPzha4z/OtLNfWsSWZMK2jiRIOM0GzlchVXlTOdBZuorVKAMCotOLIDuwbQtBlDDrpctOd1qaiqVWEd1X5qU2qhXUahXZ4byEilDKpBEk6RUFyNcahWQCTW3g9geWTUIutOG8FixUnYiyjGno1CvlV90O9WLYpoFZKyI4XEiu13fo5rXCQU8bf7T1vVgvBHA5VARJJOjIEIoqmIU4mhLkuWcsDFME0U2xWOXECYWOTounngS3o8nB051E/VU++rHV9B2XT6JZLxDzfZC50WN0D/dQLjSIRneRnD1BuG2ESs2mtBDDE0stO95dDNu2qWQb2OpWbClFqHs1/eHGzVG2bB3m7OeeZbArxp7d64hPWEyfPYOqBHjq0By7GwY11aCnp4N8Js/0VBzVEMHS2T8IQZ+Dw1MqugUb2kTi6SI+l5P1Ix2MTdWpFFqV4Tt2dxOJhflfXzjA3t4Cw53rEQWJTHaRWLSL9lAXqUKezmyBx+wShVoV/a5bSIyOU/364/jfci8GFs6xY9SiXbjv/TCOR7+NqDXY+P/8Igv/8hmUs0cAeF4a4GhgJ575o+xpnuGIc5CX2m9HykyhCQFyoh/s4vLnMC53IrSPICROISlOaFQ4LfdwR/00TV0jJrxhVM5eFRhL+srnkyvB4QZdxdZU7MtQyWzbxqzkEGQFyfPyaj62bZOLLyBK4iXzEvVKGbVWbdG7LhPfXy+cd4Vr1up0Do8sdyUv7Nx5g1enZOT2+RFEiXqpQCGVfMVD09cCs1rAti1k/xvvfvZqIK/q3HdKI+HpoKueIh9to600S1/Y5nRFRyvN8Gm5DcwGpuBCw+BrZTd3hpocrdocrYukVZ2nzQhf7i2yMbiSLgmCwE1YHOzwEpdtjLpBONZBvFDEpSigaugGjMl5woZEm+vy66Cu1pkTahiKyEYrgHKByVZW0hA3j5A7NYWjYeIcWUdaK9OcnqK3YTMgOJhdTBJoQtOr4FScqIk0Ac0EJ0yqWRbtGmHbwbAUYlqo0CiXccsuam4BQTAZFlvXlnVbOLeso/PIBNJokgEhRNjtJ1st4nE4CbsDeEpxihPTSE2VY9o06kAMb1svwrNnscIK+U4f7TUVy7Y4E2giGjpbqw5ye9azEE/SvnRLmc6k+P0TM0jNKu9rV8k14C8KGxDTE+iiRn9gdRdTbWqMSz1g6bgUCaNWJ624UZsV9gnz7Apefxf/TZUM280GkjeCUcliaXUQRGR/DEF6+bdhqVXkQGzV0ECjViOXLdI7sJqzVUgm8AZD6NrqG1pmfhZfOEq9UuKNimhPH9mFuavys78QF7vXAbx0KsE77trBF752gJ+676ZX7Rovrgab1QJGLY+zY6T1/fwIJsN/0X8zj/fuwRRkHLKDPedeYEAt8qn0Kfg6jP/mh3jubC/VZhmnS+Lu22Z56OgNzCezJOeTvDC2l4CwiGlLmJaAoZucOm4xMGQv0ytkh8HsmSP4w91k5sfwdp+mVvbgCeqI/kcRy9txKUPUco8T6lmhATTKTdyB1m69MNuOx7MbS7IxTAcwyq999AT1IihSP19+oMyB02lqgo8nT1WYnHqKd922jm0bNvHAsac5Uwhgj+YIuuD/fPEATdkPZ9MgyPilBnu2DBPr6cXnPoUsimzcsYXk9CQdg8PEx8fovqEb56k0JzPw7efmUcQ4hivC3x+YZutAlnKpwo+95yYSk3E8sgtvLMp0oYy+axuThw8SnJ9DMDWin/x1/OEw2UYNxo6BouDv6afucML0KIkffBNhZkW/M9hII3VHEW2NXqOBoiU4lR6j2X8DzsRZbjbneEYaQBMc3GmMsc7OkY0/RawWZ8E3SMrVRSYwzDfmJBi4AXn2Ae7i8s6BbzoIAqI7gJafR3QFEUQJyf/yrpxmNY/kC2NWVyQcbdtuPe5evblOTE4gyhKKuLrNaWga5VyGjoFhCqnEq0aheLWgNRrLrnDp+Vk6rpPe0CiXlmltryWsZh2zWQMEJKcHq1lDdL52NrevBx7LNPj1ZIC0aeL0htloxNluzvHftwq0uZ3cEWrykXGBggWmv4tfkuc5aXo5IHWyqE7y2UKAI0o3N9VP0HTJmDY8n2tgWHBH20q1t7SYQOiI4AgGUY5OEQx5aNYa3KCHOKtnyXY60SoGbRfsGetqHYfiQJZkFut5ksMhSokibSNDlI8nCLj9JMoZan4HTtVAPDpJh+3C6/Ew8dwpxKBA7/atCCem6JEjCLUicatCYLFBlzeCz+WluWQsUgjIKP4OGpLMgbl5unfvpnjuDP5NW6hOjCMAp9QadxKkV3WQOTpJj+jHwmLG0WAhPwO7N2AuJNllupG8bhzREBmHRLCri/Kp09iKRCYi4mgL4giGaIwWkEUJOeDHNMuEbR/Zc3MEDZad5tp8Aby2iRobYoN/lO6Akz0zZzjStRO7kuUDoTmOZrw8nndzX0ed/qCLH/elsE2dvO3GT4NaeDOfmTxOueMGDk+O8zfX6TT+pkqGJV+4NRFrGiihzqVBgCu/BcHhwqhkES6Y6vz2I6cZzcDH7jJZt74fgFqxSPe6DaRmppf1IJfPsaQGodaqRC+j9vB6wrYtZs+cwBsIr7JvfqV4aaLOXOpF5kuvbNBiYnyeJw/Nc9fePtat77vscbZlIoe60LLzSO5Xzqd+IyPrDmF7w3zw4Je5MT/L7977+0zm59GdHm7OTnL7273s3jvGE086mVho0tXv46d7z+H2igTCXu7ec5JQCAYGBQQRHn5A43hyLxvnJ/nAj7eCnl53EOsexhMIkSk8QbDdDRwHoBj307vuBhIzhwn01ajmHJQWBpBFB/5YH8XKs4R6VBAsjGaVSu0FZKeGWgW9cDMeJYjLFyIWOsVYXkYQwBQczKgRvv7sIn5ngqYcAK3O7Tu66BwY4vkDZ3nseImfvruPTLbI90/K/OvD4/QFR1k/EMHh8vDYw88jWBonp8oEnSb7btuLfqxlepBruun1NVkX1mjzSexcH+HQ4Rxj56ZZ7woTCsRIj59C8TiZPnYUbygMs3Pc5opw1MiTzmZQ52fQb3wLzr5hFv7o1whJrYoOzz646vuJBzdgqxX2Z58BJ/jsJorLjb5wnDvqJxBkOBPYhuqOcCLfxX2Ng9ytneE51yAzXTfTPfkEncXj1BUf8eIcm8zMmyyyvjxEhxu9mMQRG8SsFRAdV+bPSp4gZjW3bGsNYFZySwnyauMDl8+LPxIjPTuz6vFyPovL4yM5M0W4/Y3ndun2B5g+cRx3IICpa1d+wRUQ6uikkEq8Yj15S29i1VvFmpejC1paHSXQRjM1jWBbPxS5vR82crpN2R3jPXaOjzqO8wVfjMfkPv7H1AkG/RY/3+fk6a0GP8hU+J2Cm6BX4S/aDObrk+yOePltqpyoj/GJHX4Mu8iZssXPLEaxJAcnQrlW9RcQYkG61q8n/fQBNsc2tOKLCqbDROjuRFFkwoUaDZfKCStLwyMjBWR8zTq7iSEJIkajQahh4Tk8he3wMk4JYf9GCukknrrJrubK5nF9pI9OtU7y5BSdhhNkyPtEDH8E1RvAHs1zxsqh90fpmS4y1BAYXZimJgu03bCD9IuHwTKonBxFTmdpf+stlMamwISAy4uhmswqNSjWyQ8EaNQNook0roYJDmjPG0wbaWr5HGqzQVNv0jeVJ+DxMJ9MYWSLeC0HhS4/wck0A54YDsXBVqKrFHZOpjM0nAF2m2l2d7ZoGGGfG6W8yA5rkZv6onxuGo6IAxw4McY7YzU+tcXHTF7nd9IDhJzzbK6fZleXwVdKi9wSarKWzfa14E0Xsi+ciBWdVzfUILl8yxXHP/zcUaxmDb2UYaC/ndAF5fVgWzv5RBxvKHSJ25CiODAFnfaBoVftvbQsPxM4XO7r5ssttxcFYdW1N+t16uUSvnAYxbk2X/NC/OZ9Q5iGwae/Ps1CVUZYWsDlfA5ZlvEEVrd7bNvmuRfOEA552Lpl5bOZTxSJ193MJ4qsW993WX6wIErYzSpK9PqsFN/I+I9nH6Q8+jDtWCDC7z3xF5xxh7n/jp/nhblj3PvBx/j+utv5ldPfYsobw/W8zb35Fn/3ye9/go3rdfyRVsB4/pk6L53qIOidYMuGGqBg2za+qEl2+jBVtUZsQKFZ03F6WwHbG62RST+Aq62I4pJpZNYztGUv40deQC7nkAMtnmJkIIdlPYuVFQi6Poj44AN4Ks/T9PkJnznJH7/0Ip4L2uKT6zfyN2/5JKeSAoIogNPLA88tsDvTYHyhxrqYTa2Q47wfiNfr4n0f2M/jTxzhpaM5NnU7eOft23nsqeM8PmVxLvkiU3nH8pp7654OPA6Bp58/TaRzH7IrjqbpPJOe5Ymz57h9o4f9I0McfGyW227tplqpc8TpZ0Mxy/T29cRED1VZpBELUeodxl6c4sIlVjBE/jVyN2qjhmBqOGhRNEwbdHeMmDnPdqUKCNyafpxHOt8DnihWQ2gNkekq7pmXKLdt5u7U94jZCaiNL1c/flQgunw4nF7MSgbEq7tlCJKMHFhJyGzTwNLq2BUL4SK6gyQrVPM5etZvWPW42xdoDR8Hgq/KMPN5VPJ5DK151YPIl4PL6yXW24euqXgvoDVca1zXmyqNWhXF4VxV/VZrtSWKyKWc7ImJeRYSJWzLRBBbPxhbV1vqEY2XV+YRHR6MShYl1PGaDtO9nvhgt4e9xTGGgn4EQWC42uR4+Ry/W+2gUvfjmDjDV9Uoe50Sn+/K82hVQRJsdkdb62zQaXNDyIUkihi6zn0zHnQ1xy90iTiXbIBt26avLJB+7jD7AoNUahUCS5bdkiTRudjiBPQE2plSc4T2bKM+MY5aqRCQvCBDhztEW8FC9Hg5HC5RbY8inpymObeIO5mn2xFaNXBWatZIODU6mgp+V+tau6sC5yo5kKvUBIUSGna+gCjIeEUnrm0bkFWVyLEF2qUw6W0dFEfH2RDson54gg2ia5mvnHZblGM+zGYNwbKIjgwjT6WoxXwkEhmagkl4ZAgrW8DhDyAKIvpciaCoEA4GcUTCaNNp3LEI+XiGdlPDqaxOUv/bswc5WdYwdRU7spKrlE0Z0R3kg91lRFHkvm6Nw0fPUIoMUtRGW+/fVBgsn2Va6eZdIY13DER5Bzotxb7rw5suGYZrm4i1LbPFebMt5HD30hR0A0dbP2/bGyXWvsKXEiXpshq/16rtezUoppKEO7qW2mLXlgwbmkY5n8Xt8y8rVKx17fVyiXBn1yUqEtn4AqIotGR/lhLcci6L4nRRyee5fYPCs5OtJKlayON0uakWC5ckw4m5OI+eUQmJuVXJ8G03b6SrbYGRkZcf+pN8r97QzBsVLlHAxYpKwk2NLDvrWU6ceYzTQ/v4mqFT6tvJX1SyxDs3IqsV3p0dRxJFHn1Y4PDEVn7ibaNs2Owgm9CRHE5MvcqmrQqNsoFe2IduJOnc1HL8SRzfjMMVohl5mkCbG8UlEewpApCfjaBVa8zkj9I5vBFN/Ab+6Eq0FUURh9vEfuoJfOfO0n72JJJhUmlrp9DegSe54io0f99H+In9ewk89AKW5OTFWYF41UH8aA3btvm1n9hIU21y/4OLiJJMumJz9tgpQg6NobCFYjdZmJ3j3ntvo/nAYU4lxeVEGOCJFyf45Mffztaqyd99+XkyRZVP/FgfRr3Mb3xoM488O8rZczPs2L0ZV0qn4XJR88PkwAbmDxxA8PoZFl1MNRus/6XfYv5//C6+4gp9wbQFNHcYW3SBZeKWBIqmQFlw8rHE/ThEYGnif5tTJZD+Hm5Lo80JSVXg0Kb3IebncVjGqzY090aFIAirktsrwSinARFBcSC5A5i1Io5YP0Y5i3wRxeJySg9un++qLJCvFbqmEoy1U8qkrzmulzJpEITla15L4rKlD9xJ6SL7+fOSawLCqkS8kEqhOJ3oamuA7vyMRr1cvKze8JMHF4jXXZjVAnKg9XlKnmBLVekKlIfXWlHijYLh0EqCNOxzMuxzMltN8GcNmb/SAmSDvYzmZ/h+w0USN0Niio/2OXgpV+fj2V7eJ6f4sxGRpqbTNGUEd5BPtrds4L/hCZHu6KE/72TE18HB8gxaXwzv/By7Aq1Oc7+7lVsk1CJZl0ntyDECwwOEKiIj8gV5x9Lm0FVpohtpeiQ/9UwTjyNEGR3LspaPSctNhK3DjB06icth01eGoOJlW8Mm4A5w2lUitnEryqFxYp4gtm3TmJqlKlvIiMgOD8lTp+m78QYW5xfZU1+9fjsbMoVKjfCebehPHyXqtci5HEh+L9OajoyEfPgsgd1b8J6OU7JUyhs7cfb1k3/+eVyNGh2ik9qzxwi/fT+L52YJXWREmVJ1LJcPW9foCPjRjQrHMiqfGpAwrTnCvqVKsdvBH+2wiVcm2NUZAuDrGS8z4Y2QnkR6lanub6yJhNcCloWouBBkBc5LiAitll1n13WSTK4T59UeXolqQzmfJdLZ3QrOLwPF6aSQTOB0eyhl0qumlX3hCLq20t4TRZFasYDeVKnUVyS9nF4vlXwOy7x0WKarv4e3bnLy9n2rk17F4WDT5mGUq1DlMOsljOpr69j1RsDX2jbx6zt/kgXJhUuAfz/5OB899T1+ZvQxhs8+juyPIIW7MVwBvt7RMmZxuSzcQhGHQ6BWUhmdDiM63ERirX2sbYPD5efCFpHTEyTY1klpvp/c5GqepWj10t67F7UxR71+GG/o0jKmyy9xx19+msiRg5z+0//Dkd/+Axb/26c5929/bdVxI1/4HF/46nNs3tjLnq092GqFT97dx/v3BRAVJ199dJxvPzOHKMn0+DT2DTkZXDdI30A3b79lHduGI/zgQIrHnz7FdPrSNrPf6+LUoaM8/tIMNdVGcrh59NlR+vu7qJbLGJZAQ7Oo1eogC/jaIpSSCYqZFEI0RK4twtjWYdpLdRLf/hKO4urfSkwx+cDsl3l7+lE+kfkm/bLKw4H9fHvoY5RwoVwgfXWEDk65hqkt1Q86nDYD04+h6jqh8iyqaVMw+P9wHraN5Alim60PRXS4rprW9lrjvNrDWqoOL4dmo4GkKJi6TrNxeW1tX7jlPocgUCsVly2Zz0uumRfFUcs0aFQqq3SGz6OcTeNcgzZxxw293L5OvkQxQvKGrirRtTQVo5zFNq6f3vFGxqmSyvtGJf5lsTUD9KvrwvyncJ4/6jW5pTHGDS6NXKAfRW/w5VLrc3NLAiGjSkhofU//JSEjAE63n/pSYmfICoLXh7UkBWkpMtHuHvJWgyPuCrnGymxRSdAJbtmAoes4U2XC9to0xq2OdrZpAcZ8Tap7hzktlmjuGSFeW6EVdZsuxOOTOB0unCN9FK0mZ+0805vCJGp5umoi8rFJepSWZvAZqYTuEBncs4dyQMYc6SSkCnBmlnD+0u++otXR6nWyzx6kz9uGbVt0VVtFtabRxG5qBN1+9EoVt8NFM+ymUS6SmpgAn4caJuzZgDMUxDw7Tbh2aZHgj2/dyU93KvyXPcP81LaN/CCu87+qW/lOUl5OhAEmi02+GHeSrJvU9VYcebs/j5CdIkidiGIzlqm8agosr39keo0hyAqC4kQQXMtJ5/nKhC+wdtVBrdWoFPKo9So96za+ZlPMa6k9nJ9Q9gZCS97ya8Pt87M4OY7HHyCfiF+2on0+4OcW44Q7OpeF3oNtbajV2qqqjC8cWT6+bxO8f+nx8xSHtaysBUHgjtu2rfm316JGmGoVQVJWaZPaht6qatRLV5w8fzPjXKifc327WRx7nN6GSrfZ5BPxwwC8c+xBpmQvD80f55H1d+Feukn9pz/5JwDs79ikLJvYTT+DFZzkYx8RAAVPUEZTHiEUlThPymqoExTOzhKIdGHpBsWFAu/82b/Gadsc2baDzG/8R7YfnueG737zkmtsCAJz/QNM+fyk73kvDU2jGZ8n8sgPiBRWb1j64vN8+l/+kEPJdxKZHOXL0zM8e+ufkFUFQCBRX6HlbB8Ksu/GjXznW09Q00RUzeBjP3kbd2gS3zpUYy3JtRu3dDC4aQNnJx7grXdtJp2r8/SROOlsmZn5DIotcnzGJDtqE5SzfOgt/ZxM2kQrWe54yz7GD7+EJxDADvpxPfTUqnMXdBu3AL1O6KGCuGQNOlCbxWGqhESNZRFi4IxvM/nwOk5n+riv+ixDcoM2vci4KJEauJ1vJaKIgQ4+Hv9XfMqPfo3hSpD8MaxGZVnjVnT5EK8wHJtbjNOoVgh3duMNvHYKNhfTIwxdp5xNIztdL6sU5HC5yMXnESUZK5/H2bN2fD4f12ulIqIkUc5mifX2LRcvLlaK6BwaWfM8l4vpABs29LFhQx/PTFxZntLSm9iGtmom48Kh8vOV5R9FTNRNjildbFRn+Bitgs8v9rdizT1dUNN0vrJ4is/JHiJSK7HdHnLzUkgDXNSaGgoWYafE/w5Osm7J6OIniikamQVODNwNQLvp4MwLL6JYoHTGmEmcQxAEIq4APYaLQ+fO4G+LsaXuR3RdGh8Wa1maahNNsBHWx8hMTeGtNLHOTBNzrnxvXoeH9XgYrSxSfuYIN0SGeLE5D4U8WBYRr5/zW7y4WUHeNILv1CjVQ6cYbsrEHRkC+3cQOb5Ah+/Stb4g1OjctpvsuTGO1/PEtm3G8eI5xJoTI5NH8vgwBNiTcyK5PCxaKRxOH+7FEr6dQ5QyGVLj47jDLjZXvTjdK0WaaqNOVW3SGQ7zrk2blvOqDX7YmJxnc9DgwpT0aFHksDjI8ymYbDb45S0KWyMO9NEypf6dfG4xTs3fzSfVMd7Rd2UK6JXwI58MA9fcEjpvNpFPLlJMJV42KL3aOD+hXEgmrpgMq7UatmUhKVeuvkqyTCmTRlpyx1IcTpTI9ZMbi/kiX/zqs2zc0Mc73rJzzWOsZr3FFzSN5Zap7fJeIKNmYdbyV5xQf7PiiDvKvOLhwxNP8J7p5ym6AzRscF9EkR42avxi5jQ/nzp5yQbscz038O3N7+R3n/87Gv/5x1bxq48elzgzHuTedxRo61KwjTCbbtxPau4Iuq7T3vEBpncdYNPRQ+w+eZz53/wVOnKZNa919B3vYuEDHybS1Q1//l8hnSRyyx0ID36PjjWm3OfXb0T51d+k+o37qZS/SWznbuaPTTAQyKObsFhrrbGnThY4MfkC8VqwtSk1NV48OE6yoHK5MPTgS0l6x1PcdccedE3j7ESK9711AwvjY7z73jvJxucp1Uz+5dkiZdPNZx9OIogOsHSq6gvc44WarqNc1HlJGRJf6/8wXflz6IZOydvFh/MPEZDhJuKgxkESqJs2Bx0j5E2J9tIEZbUJXVuJ55+nXYCo2ET2xwguHCKoFUlaOv8afRc/nn+MqHz97pVvZgiidM06t5ZtE+vtJzs/gzdwecv6VxvlXGbZkOjlIAgC4c5u6uXSml2yiyHJCtViYZWT6atFt/vq15+mVDOxdBeicmki0JK2W+J4mwaiy4deTCIH2hBECUFWWpV6x/UnEW9EJOpNvpu12Cw2+Ir/LEXdZrTsYGNg9fv1OhR+ZlDhk7bNxR7qh/INPp7s4McdGY5vNxDFlU7CRFXjPyS87NKmeOf6YZpOiXBfP+H2Tma//yiD997N3MQsER38Xj+7ajZCTUB0X5oIJytZ5vo9uAPdGHOL2Kk8ru42xJJGoGbh9q2+Ztu2KfUEUQI9NMarOKMRXJ3tVObGqOo5+vHjVBz0yQEWDk+wUfDh93jBA1o1R30qTsCxNpVmixRj9OBJbAw69u4iffg4Tq+Ergh4Ngzi6+omn0rgmS3Q529jHx3YTRsxFuHs2QV0wcD0OBEl+xLawZ8fHWfGVHiba5KHijY/PRjlHeuH2Rhx8XsRk/MFkYfnVcaKOqroYrhymInQNtLqBJP5OkMhF+GYn2puhlv8RQ4WVf61GkSzStwzcH1r+U2TDNuWiVUvX5Zjai1JxVxL4nu+cmk169i2heTy8fuf2k2ovZP42CiiIhGI/HATNIfbzcLYObzBK3Npr0WLcq0hjGajQa1UuOKgx1oV4fN49vkzZKUummfml5PhiyvCVrOOHIih5eaxmlXsZg3BE8Co5pF9kWviIr4Z8ent7yfpjuCspLl38TjfufnjfOTAF/mpxDHmJSf/bdM99Bfm+P/FDzIne/jtm3+K/YvH+dW5F5fP4bAMFK2Ggs2+d/8DOUEiJbvp1ut8dcM7mW8P8Oin6/zpiW+w0eng7Lvuxb8Yx/zlXydx5hQetdXWFQSB/osS4bn+QWY+9DFiX/8KFa+f+pFDiH19bJsco39ynGO791L7td+kmkjwlv/2+1i2jbiUjPeNnaP55/+V2OlTdGZSZH/nN9jh8bL5l3+DXLHC5x9vtfgauAjR5G1bXDx7towmuXhybHUl4Dxs2+LuzTIQ5KEzGsqZBJphcjYtsLPWwJScnDt2nGKhTM10YNsOsC1srY4i2uiim4OLLg4C9ugigihx7hN/jG3b/Mrn/wSX2SBYnset5pkObEFUPHxP2cpH7dOrrmNM7OBE/zsxikmCZo0biscZnS1yePj9ZIqjbKpPcNvst9kml3FJAg/YTmY9A+h5EfjRSIbNegnR4Vmima2GbRotq99XYO6gaxrx+QQDw/3LGzsRyMzPvAo2xNeGQLSNxNQElnXlduu18JhdXu+ag3/55OIlvOFrQS6T43RKxGzUEJwirJEMt6Ttostawma9hCA7MMoZlFDnj3QHDuCzaZG/r3eil9P8ZqTMXwtbWV/K8FCg9bv8jXGVU2Wdv10nMhj08qlRg0nTydeH6sQ8rc9TEcBpazgFG1EUsSyL5zI19oZd3B+vc7DmYWwmQ7vHzbbONupT81TnsgSGB8gnFqkvLmJG/EiSRPgiOUG1qXLOU0eu60iCSWUyi9ZWIVA32SGGGJ1KUvaI0N+OcDZNlzeyXCARBIGOlIqZVvG6o3QlMyRSo9SCCsEdIyQPTzKgRFFkhZjhZtajE6jn6XdFWOeMttiia9TPJppZim0uhrIB6oJBeXyOHWKMWalOwzDRiyWmp6YJRNpwCa0TVOtVmpaBV3GywduFJEnYto2t2YhLHbKJTIZcQ6XLJdGsabyUqaA5I/zj2RmGQn5GLigKabrOPxc6MAwLPEE+GjsFpSnSusQfJfv55foob/NK3Dwg0xcOsynR4C8LISrmyw+NXg3eNMmwWckh+aMYlUsHMM63gWxDR3C4l4OrbZmYlZa8z+VaQVazjqlWkJzepYS61Urp3bjimJZPxEEQfig6l7Zl0dY3QK3Yaknbtr3sIrdWQns9qJUKyzqZr8Qlr1KqkC40cDZr3LHv8iobosuLUckieUJYagXLMjHVKqJ0/RJwbwbcNP0iD+z/KRS1xL7CDPGxp9hdmAUgrXiZaBtmet1+9laTDDQKNLwhqpKTXx95G5PBHv792Qf4qeQJPp44vpyE/vctP8axjo1sm3yBiS1vQ144w1zXFv60lqe3WWZzJEL85ruwv/0NnLfdweLb38Pw6VP41qD8lHp6UW5/C4sLC/g++lMEnnqc0K4baATDrDtzirO/9QcIvgDep/6FA/e+n+xNt9Hxna+z+ehBvIbB9qceb51IEFBvvRPl3vdjfPpPeKT3Lro9sK7by3NjNTb0+rlt/xbOzb7A4mUol36xwXv3t+NURERRJDy2wIE5LyCDJPPFZ4oIghPbMviFd48gSTITyTHesSeK0xHE5XYjORycHZ3l+QmD2gX0iwPxBI+MfITOzEk+XnuaR8QRPNUkuq8d0xOF2upr2WSmqM89gEst0iWqjCq9lLr3E1g8illN8MjG+5DKSfYUvgvAu5onaMwdx+d4ZXKEbzSYtQKi04tZK6wp1WVW80je8PKmduXxArZlILoDa1o1W3qTR588wYE5gffk6uzbtxmAaE8v5xu3lXy+pdIQDON0X70V8iuBrCg43W6CbR3Lw2qVfB692SAQbXvV3EihpRyhOFyYho5lmqssma8WR49P4TIr9Pa4maytTSeRfBHMSgZBVAALS1PhR1StZy38eMjknwtlxEgv7eJJ7rUX2OA1OF99fLxok49u4feT0/xTECqWRFV08YX5DH9bUbhTKfLZnVGOBuuIYus1/7TY5PdqI+yfOc6B2F6k2iINXzsPTc3xUDzH2we8aOu6SB8+hceM4FvXz8zYAkNtfZd0+up6E6mng9zoOLGdmxHHxmnfsAF9fA6v4cHp1vBuGiR97CR+S+RQVMWeSTHsiNDmDjLgXqE4NB0ivj07qJ2ZQDgxhdsQOC0WCddtDMtE3jhCeWzusvtz27Y5ZKWoSBptnb1Mxc9wU2gYlj6uEL5lC/bTMQ/ypkGyL57mtF5F7Ajg8fpoVmoYtSL9qpMhV3RV5/JvzsVJCF7+64Y2UqrGv0zoeCsJ9PAADcOAC9IAh6LwM9EUlaZOzJUkqDj4qj5ItDZPtD7Nv6pBEr4hPLlj9IU97O9ys947SdT/f5PphihiVgtrVigEScbUVLCt5S/BbJSxmjVkfxtmrbjmKY1KDtHhxqxXwLaR/dHlqqZZL2EbOrap8xuf2IemNl9x8LocSpk0vnBkmboArWG1Unpl0KeczRBsa6eSy651imUUUkls28LtC1x15cIbbA16OFxXd7O5sOL7+5/azeR0gnktwvpunRtv3HpZ+TTR4UZ0uLFNA9toIntlJH/0VbN7fqPj49lzlM49xs7cFDc0i9xw5rvLz+1p5HjbmR+QjQ7xtK+b8e49bDvxENtLc/zl2/4dZrPO5wZu4QkMfm7sMTqtFpd4XXKUE93bmO7ahJ1fYENumo8c+TL/5Y5/y1Qtz2MTIvnJCbrlGL+4fiO540c5+E/3M/I7v0n/4sKq69vy/DPMf+LDhCslZtJJ3MkEajpJ2+w0kiAw8Jn/jSXJbDp5jBfe/5PoLgfG7/0Xjn72r2ibnWbhJz/Chr/9S/oW5uh5+PvkFxfY8dTjvMV6hBd+5hfgjvv4ya/9LO0/WOTfzf0OibrzQvlZfJLKj93cweFzWTJl6O7r4sBzh7n5lj1sHijz4rS5HIzP/74FUeIrj88iAFGfgoRBo1KnUasSbu9g40g3mWqKY0ud741PzqIXEwyVxlhnZUCAOf8ItifKR6f+Cb9DBnn1epRFG82W8ckOuoQyC1YDT2WBdrPM5Jb3YSXHMdwhsrpAuxMkUcT36uVNrzsESWk5e172AKFVcVyiaVm6iq03sS0TyR/DrOYuSYYtrYGtqTx7tILo8PC9AxUePNkabrJNA6OSBdvinfsHuf3WrXz+Ky8wX11d+Xy5TtWVUK+UEQRxzRhZyqRw+1sVU11Tl6kTlyuC1Msl1HoNUZSuulChOF1UCnkEhDXvJVeyqG/RH4qITj/jeQHxMky3C9U/jFIKOdiB3ay/qdV7TmoOBqf7r/p4Q0hDvcjv+na28gYT/ny69VzTnkPIxXnYgI4nC6A4ESWLPxOjONv6+U58lAeOOBAUx/JGz6yXMOtpXozeQDM+iuT2Y2bnOGiZKLEoxw5MwMkClmnws5tjTE8vIu9Yx7cPTXNooRVb/uf797YuoCOKI52lL7ae0mwWv+inOpvEKXtIRaPIFYHaVIL+tvVU1Ar1eonYni2MJVMUbZG8WEFsWvRHBqHhpDaTxO2OEAy0kcjHca3vZHEmQY+3G208gc/TRsqzwj22bZup/CSCAP2BQQy1il2zKWUyKINdpJzR5ePOx9zfG307suYimh4iq01zj/f3EIp56tUSLpcT3E4SUY1q3wPLf2dhVsMXsdjud1O80+DZxxWyro28bd88mzadhqibUxd9b4mjBvGkg567NJJ5E+/3ckRH6pxNb0EoTmBWsozuEBl42/mKikiSxlWvi8vhTZMMX1wNvhCCKKGEV1pOZqOMICkIgrTUHlq7AikIIpZWR/YGkS8SHjcqORxtA+jFJF9/dBzLhp/7yCvnDhuaRr1SXrZKLiQTBGJtFFJJYj0rSgyKw0msd8WkIhBrI59YvGISbtvWspzP1SbDDpeLasHC0K5+ovg8/7dWqbF1yyCqNslQ/9qmGmatgNVsIDhcyL4IgiQjOn0gcEki3Kom6Uj+th85veGwbfKfxh6mZsPDoX5uKc7jW5LieiTYz5P7f5odJx7ghXW3giiTbhvmULiLe5/+W+Z9nSRDnTw/cgd96Uk+mW85p/lEm3Bmip2FOX5y5kXKTjePDNyIoLi4c/Rxvrnzx1GqBfZlTtH27x7E1TdANrsDwzA4vXEztm0z+0v/L8bcDO/4H/+NwXxrs7XzsYdaF336xPL1rzt9kqnhEUpOFzd9835mHnuIU//5z7BvvgVPqYhz8zZUb2vNDU5PMjg9SQN46ld+A2Nhnr5//ysMT08hCgJJ1cPFeyCXZDM42MPkfImxnMKf/9NhLFEhXjnDXMHCJVh86C09nJ7Mcmh+5cVuRWxVnUdrbOlq0tEeJhCN8tl/fhIDBc3Vhm0J2EYTy9CQfVGSzU421NOctsLsyb1AMh/msdid3FN+YZU8cNaU+L73FrKeLmJGgS3FR5FFk/flH6MiuGikjzFcGcVdh6ao8BnPbUTrCX6Sc6/q2nk9caWht4tjplUvI3oCmGodKjkk/xpqDYKAbWoIonRJt86oFRAUN7ZW58BYmUTuUMv05zrqD6VsBm8giOxwoKkNDE1DbzZxeb2r4szFcyGyw0k+EScQvbwhhVqrthzjrsA1vhiKw4XebGDoOrJy5e5YKwHOIsgOJE8QQZKw9Oaqavx5WFoDs1HGNjQc0VZclgJtLTrLRYmw1axjNes/slJr57sZRjWPICnLA4S2oSN7/NiWhWFqKG2DWNUCjvZBmpk51IUzmKaBM9SBnl+A85+zICx1m7MooU4svYEgyUhOH1p6ClFUsGtFbBu++dg5EGU6uitohkVMqdOoq4yXJlCbDboc7cRCrQ2U13dpdT/kj2CXLerNOm2hTjw1L7OTUzhDAdLpBP71faiplrujx+3DQ+t3Op+fQ3eYqCcnaQt1IYoiHdFL8xbbthHdDkRZxrZMuuU2LH+MWrOKKEgtK+fcBIJToVOM4vG0zi8gMBC6Aa1Y53jiAW5Z91GcHi/jU2d55mSF+95dwo9ENlEl2unloScjLKY9bOpLEJ/XcDt0bh16keOjPfj8RYIXzfB9+1s2Z866sQJDbBw+hmHKvPXWLANDIvr35wgPq/iDSTZuMPj7v3NQLot87CMNOrqvvwpxVcmwIAjvAv43rbD097Zt/8lFz/+/wL+hVVjPAD9j2/bsdV/dK4QgObDUMrZtofgvz0eVfOFVO58LIbp8GNUcgqQQr7UqE2vt2q+2SlHMpAm2tS234SSHg1I2jSiJlPM5KrksoiTRMTi8qqUiCMIlihNrwe0LUEqnCF3EI9abKuVcDkmWEWUZU9PwBII4PR7K2Qyh9g5K2ZeXZ/uDvz/SCsYON7amIgdi/Mnnnl/ZoJycB+YveZ1laCiRbpqpSSRvCEEQES8zsGFb5hLHLY/sf/UEBN9Ia/cb3bv40k0f58mTD9LbLKPaAg1BZPPUAXZmp4n7O6m4/Qymx2lLnOSnijMEi1P8T/MGvh8ZZLi5UqV7sn8fpY4NfPDE1/irne/nbO8ubj7+HfyVLF5JhlAH75t6lhsLs8xLTt4y/QT2U4/z0jvvwf6V32D28Ufo6esnWy5hCkJLo+0ymBpZT+Z/fYbc/V/ipi9+nqFyidzDD4BhMHDwRZ741ldpfOCDeP7xs/QkWomBKsuwdTuSw8GGb96/3KJ98Fu/uXzed7//zwHI1QVOHzuFW2oNsYS8Eg0DJosK2zoNuiNuBFNjXZebXKXCdLEV+LYPB7l53ybOzT1PUXOza3iEL/zDd8jrbiy1itPjwKykEJzelu13JYPQuYEfZBxIriBmo4zk9iK7fMzlj/B89E7WV8a405ohZ3sodm7Hzi0wWDjFOTHGs0M/wVDiBe5VjzFUP8DDrvXEPf10Fc6hd2xiISVztppis1jg1cAbae1eHeyWgoQ3eNnkSlRcCAHnmjFXoOX0aZkGNcvF2QzLOs+vBIVUEn84QjGTJtbTiyQrqLUqtmWhqSqF1CKmbhLu6LhEP/3lVCXOI9TRRTGVXHO+o5BMYJomnkAQtVZBVhwEojH+8HNHuWeXl703bOCvvvAsWf3y7V2zXsI2daClzmFWWvx7yXv56q6l1lCCHeilDEYlh7zUgbvYAhtaTnTnFSVezWT4jbRuzVoRye1vOdcaTSxNRZCdoKvYltlKcI0mhlaHwiKyJ4DU1o9RzaMXEmCtiOTauoazfQijnAXbxBHpQcvOYQsSouJCcvmx9Caiy0e20uD/z955h8lxlPn/U909eWZnc9RqlbNlyTnbOGPANsEGbMBEA0e4AL+74w6OeMDBcRxHOIOBA2OCTbbBAeNsyZIly1bOu9LmODs7OXR3/f6o3t3ZqJW0tiR7vs+zz85013RXdb/11ltv1HxefvzYAD47zT+8+zw6DuzHVxrGjgus/PQxBVJKou40nmCA1FCcQCBEZb6SrGlRWt5Ay449iKCHVlMyt6Jp9Hc6BKurMMw0gQJN8HhomkYuEsf266RcXjRNJ51NUV1eRyTWR2uqnVQmibB1usgx193E9obXszEeZteqd3L9gXoaky28OH8h5o4neXpDP0nLzTv6B9i4y82XW8/hDGsH76pt5YdaI/sHV2H8aSc7srW8KbSLdTTSsKeX9RsF3Xk/v76olZDP4NvNCzDdARYnXuDLpDnt4aXkhJttV77I36+N8XAL/PNzC1h68CC9udVY1iDNf4jyr1fE0PUjW5o/NM25IwrDQggd+C5wFdAObBJC3Cel3FXQ7AXgLCllSgjxYeBrwFuP2LOjwHCOypkEa2hu75RC13hMpYXUvQHsXPq4084Mp0rLZ7PEIwMjLgmFzHawu4uGxUvpa2slMRgZ0R4fDaYK7EgMDlJeV09/RzvZaJSaefOIRwbw+P0z1jpbiQG0YDn5/laEZmDG+2dUklVzecl07Udze4/sEqFpWIkB9NDslQY9WWj36UAtP1xwMXWJPmoPPc+O0ka2NCxH7zmI1+1lRe9+7rngNr7+6H+yOJ8c8Qsext92buZtnVuoKyjs8E9bf8uAy8cCO8cZPXvw5dN8vGMzpR3PAXDenz7HXDvDuy/4EIMVc1ly/2doEDZlO7axZ89OSnq6aHrLdayxLIJTzIGUprPzTTfh3r8P8dt7qNisAvqEEJz9wH0AHFiwCN/FryFU30Dksb+MCMNlpsnqj30AzZzI9CN+P+01tdx0bgl7DkVo6U4zt2kenZ29eKwYH7z1bPbtb+d3z8WZV+VmwYI6nnv6ea664Wr6EntpiaqSdk/tGGJn87P0Zr1E9mXYdXgdXVE3RkkVppP/U0qJTMcRLi9CE+QH2tH8ZZjJCJo7AGjcdOhuTMMg668inWwFG5boMfr2/pr+QAOniQEM22J5+xMsyLaNZGfv0suIBepY0bOB+Xv/yP6GS9gjF7E8vekYKWUUJwPtWukYMp+dsUuTEZ6Zq8CUPDdQhpWMYoSPjwcMp0ozc3likX40Td1PNwyq584DFM+tnbeQwe4uMqnkBGF4JtA0bcogOImktLqGgy9uoWHxEvKZzMi5Z3dFaO1+nv6se9pM/9JUgrCdy2Dn2o9YTANUnuFsbwtCM9COsFZqbt9LIQifcLoFpfU2h3rB5SY/1KdcCBuWku07jKukklxfC+7KJicWqRLXuCBuI1iOlY6PeTa6vwQz1o/uD2Pn0+qzLzSyObGzSXTDPRIwPpy2LoOXXVt3EvC40LpSVOh+KqumDp7sjLRhCokw8+RTFt5S5RpSXaoUXVJKtBIfVfOaSPaMLW1e66sm0RGjNDxWhsibOQZj/cSsBLrHTa27ipyWJ1xeRT6SJ+lOEGiqpr+1h7SZgnAALQIur49AZRXp3gTocIZ/ELHjLuYbQ1SGJcb2O7FTcazA2azSulhcYXAgJvFnetmYruSwWcqbqjtYVNbBz/d5AJt5pRr31D7OmXUGNz4WZkCWkLeVUvLONXv49p5y3rIgj65rfLTpMDkbfB4lqu4flAyIcp7u6+ZbS9bxqc3lPB04nc6hZ2gsf+mzSZwDHJBSNgMIIX4F3ACMELeU8vGC9huAdxxXr8bBTEScmvazo3GZCTRPYEbMZzofr8++by3ZdGokSK20qkbl0ozHqWoc9X1yeb10HtyPy+M9JkF4OoSra2jftwfbNKmdv5Du5oPULVgETK91LhyX7ish138Yo7QemUlM67JSCN0fHolaHtbA29kkdi6NMDxj8l5OZvKbBZx42pWSby69ikTVfOKxSnK+MCIZ4ROP/w8by+ZxqKKJslgvdf3NNHvL+OJZ7+SWvY+wJNHH9pI6Xt+/F0uq2K7fB+u4IdGJJgQLzSQLTRXxdWvPDujZwZ31Z7C/pBbDtnhL+/O4Ulnesu9xIu4AdViAYElnO4s++TGlhRNi2qCanuoazHe9n+zDD3DRd/+LbRdcwqOf/yorvvV16iKKCS84uJ/8lz6DLSXL2g6PuV4uEGT7Z75EySMPcc5Do37SO9//EeKrVrMoGGLFtmeo2/wYzW/8Bqs2PclvtXNZv3EfvdEM0hIEvT4yyQRnnLOKdY89w9wFTZwWSbK92yCDh9b+IaSVxNZ0evNupCXJ9R4ambtGsJxcpBOkjatyLnZqCKSlNDxDPejBMn695HZA5cC+KrcLNA0hBIuMJAmZY1/WyxIjzmXZnfzFcxqtVpqz881UJ1oZLGmixOvCJ7Ikovs4N7F1tsoxn3DalfnciEby5chFq0o4H/994gP9Y/x9B7u7iHR3jqnWGSwvp/fwIcx8boxb2mzBMk3ad++kdv4CEtEIobJR5Uck5yHSDcwgf72dz+KqaFDvYAY8UugGnurRYGZVkEBixfonBJLPdI07SpxwugVVAVHz+tGDFeRyh3GXN5LtbQFNxxzqRWg6VlIFelqxPqRlYpRUO9lTvAhPACkluf42jJIKdG8IYbhHq/0ZLvApzXM+1o/tBOEb4WqkbTqbDEdhpLv4wzaQMst/v7Fpml4r5HwQrKpCb0sgDI3WbAeutKShXMkMQggavLVE93ZSUzFWqHa7vUTirQylM9RqFfh86v32xXvwL67Hbk4SKCvBHMzhC4bJxpNU+2vIpXKkOnqp9lWQSKRIRwfJaRYet4v+5ha8gSCZnInXbbDCNcCHN9Qyz5/k82el+MbBEGfbO9B8JfQnTV4732D/YAv3HPDQ7l1LlDi3LBvih4dKMfzVVLq3c16jYpK/vrSDrNlOWUBZ+9bWGizphb19eZ4gw4dPk9y1x8U7n6rh31d3UmnkcKd6mVOjs7JScFqtiwtLNh23IAwzE4YbGGsDbwfOnab9+4AHj6dT46H7w8pENA3zkGYeO5uY1oR0IuD2+oh0dxIoKSWTShIoLSWTiI9pEywtm1EN+2OBpmn4S0oor63n8O6d1C9YeNTR0cJw46leMGUA45EwrGGStqUWvFClCpSZhXriR8AJp92khKy/HFfXAf5rx2/p8ZagIzkr1c9jjWfQW72If9z2O9Ymuuh1+RiobGKgJcBPlqzi+cWX4Hnkv/jhyutIBMvBHaDzuV9Qp8G5g4dpsDJj7rWxfhWdVQsxbYumdJQzUv28cUD5GA8LqbIgLdpksKVk/dvfhTDznH/vLzA/8VHKeroByJZX4lmyjLjXjwzlqY/H0IRgedvhMfcYuZYmED4/0hhreQiue4psdwfz7/s91Zk0HsD/gVspzeURb7yYpw5YgAuERSQSY+GKpWxav4UdnbDmnDJOb0pyuG+ImOVTmyszD7aJ5i1B9/oRoXLstJpjVjqGu6oJM9qlXH10A80Xxor3oxlehDbaN90bRC/gMVv1Bnb4FuBufA0b+w9xU+/9tDSswZfspcesoa90MTfs/ynzA4LfBM6jt+p0cvt3MUtp1U447QpNx4r3T5uGS2WcCB4TX3ipECqvINLVgeFRC6SUtnJp6O0eEYZdbg/VTfNesj7ohsG81WvoOLCPkvLKY0oXZ5RUYmeTjvby6JUF+UgHQjeQUmKEKrFS0aO+xjHghNMtOK6S+Rz5zn24Kxux0wnclXNVBpRQhcMLXEgzh3D7IZfCSg2NaHStoR6MsnqE2zsSTC8QE/yupZXHVVJFzswzHAyh+0qgwHA6XCFtOutKd7STrNuizA5SKv3k2qJUltXRP9hDoLacdMcAA5FuQsFS3G4vZSWVlE21cRQCzdCQ1qgl0W/46di6k1KjhFBUI1hSipF2I20br9dPvbdAAx5XPvMhjxd/FGy/H+F38XBnLTdU9tOfsni628WLRpDXVvXx3b7z0FLdWEY9eyO9VAbg931z6Cht4Gu1f8XrcXNoUPBvKzt5MRLh7StHeYXfY+AvUB5s6ba4Y28YT8VKvtMR4av5Fp7uL+Xp7EL+58VefmNeyvsbN/Kps3LctdfDc3I5C+U24CRLrSaEeAdwFnDpNG1uB24H5dg/o+tq+pjUPsrXRxtjbrNSg+iB8hE/qZlCWqZTz933UuySHSF3dALFIgO4fcdulkpEB0knEmSSCTw+P9Vzp99ppmJDJKKDJCKDBMLhI2aOmE7TfcyRyFKqrB2ZhPLFnmXT3GzgSLRbSLd1xsynTVgTfHPjD/HYFk12lid8FaQ0jbNS/fzLzj8xuPthniydy0/Xvpmz2l/k+3/6NI3SYmOyl9pEP4a0GPKE0DMpXIkBTJebO8+/jQM7H+Qf9z/K/eULSelubu7dxWdfuJcBzUW/t4Rz4spd4btzziFruPm7lqd5PlDFV9e+jZv2P8bbendN2l9TSnLnXoCVySB//UsW7x8NCFtz/2+JPnwfB99yC71vvJn8395Ok+MWMej1svWjn8C/ZRPWnLkEDuxj9fqnKP/QbbgdDbQpJU/9zd8RLa8kvHARezo68G94Bo9lUZU3QQi+1PlbYle9lu/u1kjixdLctO3ZRSjopdd089fHt3LV5WtxvbBdyZxCR/O4MYJlmLFepClUUJBjddCDauHTvCFkXhXJUObLyWMJvj3/wwB8rOV/acx2sqvqLKxIO2XZfsrdOm9suxe3sNmozWVABOkxytjmW8jy6HZWxXbRZKQprFz3cuBoaHemPBfGzncppcrWU7B5MOMDSlGRiEyaem06WMlBkMfBU6aB4XaPCYjzl5Qy1NtDWc2x5fW1LYv+jnbS8RjBsnL8JeEjBiknhoaI9vZguNyEyo/d6nVc2luhIXQ3mtuLlYoitJMrXv6lkhdApZazs0lc5Q0qC0QyivD4nCwnEYQ3hDnUh+b2YufSasMnpXLHNFwgNOxMAnOoV/kD+0pUdilpY2cSyHwOzRtAD5Sq9cxwjWRVUbmdLYRLFUQxY71g2xjlU8f+5IVJqL6WTHM/1eWj2Usqy2qItveRN0EsLqf7UDdz3aNW5cORFqRLQyayaEEvNa5K5ocXYNsWLo/qT0eklbTHxl9bQV9bJ8KW+AMlI1rj/kg3cU8OT05QX9aIYbjIp+MITUM3goRNP1mXC/xhoJ9DcRemK0A8XMumeJyvz3sO7Dzl3mYubFSC7n+sPkxXso1Kj5tbdl/CeV0t3HNZN5c1ZpnON+j8RhfVPotIIkIw10+D3+Lf13TzrsFusiY8uOUArULwj8+VMs+X4muN67i0Ps9siLIzuUIHUGhHmuMcGwMhxJXAvwKXSimzU11MSvkD4AcAnrrFR11U2sokkPkMViqm/HVG/NmEIvhJ8lpOe71kVO0G4/0viTA8HjMJzJgOuXSKyoY59LYemtT3bjgnstvjJVhWTjadpn7hEvraDuOaxXyZRwPdH1Z+VOFqFUQ3SZL4lwizRruFdLvK6zsqul2SV+4MP6xbza8WX44WKGPTwY1Y3hIu79zKr+dfiACM5BBzsUEIzkv0cF6iB1tKxLbfsCTZT20+RTcu5Lb7uKxrB1JK/m/FdaQD5Vz7wGdptDI0WhnIx4f7zJNzzyTrLeGDzU+RFzppfymPVi5mWbybNenIhL66NY3T//UTJHWDfWvOYN62F/E5mg2XEFTlTXoOHiCycR1pyyKtafhsm7TXh7bmTOKDEdzXXEf02XW0tR4iHQyyZI8SvAfdHuLLV5FLxOnv6yF71bU8f+u7Wf2pv6d2KEpnZTXtb38X5XPmsqBrA9sGPLg8brwlZWza3AKE2NofYNvdLyLdAbByWKkYQtfJxPvx1i+dMCdUiim1iFqO+fJIVbesdIxN1LPGaEPrfogKUlTpJhga9Sg/ziqyNFcvojk3wEDtOVTmBrjQOsQsCsIvCe0eC88FMKNdIFW+fiNQiubxIwy3Slt5lNlfpLSRto0wXCrg6Ch59tFiquIXM0U2nSZYWooQAm8wiG2ZY84nooPk0imkZMTtzBcI4qutI9LRPtklXxYYJZVI20ZzeWYU4zFLOCnkheG4ISs1hBnrxVO7mEz7LkW3QodUDD0QxowP4KldOKK1LXxO0rbwzT0NO5tEZlMjWZBkPjfGJ3i8a4+0Tce9qB9cHtB0lTYwNnWgerW3itjBAWwhicYjlBZYAkrLqiA+wFBnDyKTZygWIeyUhZZuDU9ZmGiyg6q6RiL7e8BnUO4tw+UI533JfgLeUjr27yVYVk6fFseOtjPHcbvoTHVTO3cx/QdaKEmFkbZNSXUVsbYuQqVh/P4g8dggr/fsR0pB+5CJNx8j2ZtmTkOMNy91M16UPKdOPc9IUuM6/x7OKR9rDR+PaNrkZ/sDXNuQ4u4LO+lKaVwzf5ivGNSE4FB/mmxwDluzHvqtWhYmOnnkqvYJ9z5WzOQqm4DFQoj5KKJ+G3BLYQMhxFrg+8C1UsrpUxMcL6RU5SRd3jH+bOPT/MwEZqwXO5clP9SDZniUG4DLM63WUplMcujBcmQu7USnul6Sij5SSqI93YTKK0jFY1j5PG6fn8GeLrz+wKSmN9uWhKsqSUajI1pev9xP2nZT4unntmslmsfPX9ftZ/mCClYsn8dnvvkwqnpf4Jg0tsMpeoSmT6npOUGa4BNOu0kJX1p+HUkgkMtCLos/3UrnoguwU0M0x7vJuH24S6o4WLeU3ya66Q3XcVnPLpZnh9CE4KohZXX82OqbGAhVc8e677ErWMO7z3s/lx94iiXpQdoC5Wz0lHBV9PCIQLgxWMv8nv28vmMLAU1jfjpKU8d2DjScxl/TEf5oeAlnE/xd67Nj+lyRSnH4uhvIffjjHPzyZ1n17DNjzq96bj2th5o5/J0fMnjf72h66M/Yhsay999KKJuh/77fEUjE2fSZLxFcuhzedTPt772dWEc7JWVlWPkspXUNDOzeidHeSl7aPPuu96Pv2YknFqNtyybeeOOlXP7Vz3Pll57ClJJLSsJ8632fZ/vhLENDfQgjip1N46lbpHyENeOIKfmmcqHKD3aBEOjBcoSmI/M5Nsy/gaeHetE8fv6u62cTfrPG6iB48Jc0mAO0H2hmIYOgz6pG+ITT7lgIpJ3HXTnXURz4lc+/7+hcnYZNznY2qYKchYaVS08bGG3ns9jpOJrHh3D7ePCRFygJerjw/JemZHNiMIJmGOiGi2Q0oiyTLjcurwcB+MfxXSufJ1RewVD/aC74QDiMbVnUzFtApLuTYGkZ657br/zUS6qxM3FkPgdCHHP2HHOoR7lAhGsmz86huxAvf/2Xk4JuzVgfdj6DncmgeX3kBzvRA2VqA5caxF3WgJWO4yqfQ77vMMLtH5Pub3g9N4d60bxBpKar4lFDPdi5DGYMMNxKK+wNjgTs27kMdj6L1XcId+VcEBoyl3XGrfPYizvZ1hHhlvNWUF0x+t49Hh8korgXVhPr6KaUsdaE0lAFpVRwSLaSCgtyXV1Yuk2FqxR7wCIYmkO2LUbObVO6sI7+A51YqT4S2TiGy0UgXEqwrJxguIxcPIEudDoGW7EE+Dw+mp/fwqKzzqJl3z5W1pxGNpGmrmYF3bEOEvkEh7sSrN1QTVSGsA0fhhbDLyxOq5re7708oPO/F02M9fr1Pp07D9fzxZWHObMGft/i5Ru9Z9OS2sn/W9bFqqqJG+R5lT7+b8VzlHpgIHOIav/EEtrHgyMKw1JKUwjxUeBh584/llLuFEJ8AdgspbwP+DoQBH7tTMpWKeX1s9bLAui+kDJX2Lbjz1aqTG6aMSYga2bQVL7AbFKZ8n1BxwduasFNmnkVrR5TjG94hyhta4wJcTYQ6eqkvK6eSFcnQhMjgXjjk8DblkW0r4dgaRml1TWkYkNOEnhlwk6JIOjwunPDhMor2LzhBXZ0u8jn+1ixfB6Aqg6XTcAxCcNJ9FAl+f425cIC0wbCKB/iHMLtRZ8mj+nx4mSg3X7dzYvzz8PMJrmmZQM/3fADyqTFH6uWMX+oA7+0KR3qItFWxdNLL+PnCy4k3bSWA3sr+MbuPwFwb/VytpfPx0jHCLi8qmytO0B39WIODrTRH66l3VdG+9y1ND7wOZabKgH5U3Ur2bbqWi6NHIBMhE2ljRxacjHL9j3NG1o28k9XfoJwrJfmji3Umln8Betp7aZn6QiXULtz+6TjCiZi2BvX4z14gA0f/hilTfOp+I8v0VVZxer1T5EAMgE/iV07aNI0EouXUnv1dSR++gPW3v8HEuddyOnPb6IiEefZs88jeslrCHvcXPvZf+IPt76bgab5GGvPwlj/NIYQ7DvvQq678nRyD25hU7+G5vKDmVfZIdyeGc09aVuYMVWK2lU6moJQaDq4vJjRbkdLKVQ720RoOq2ml2Z3PRF3OZcPPceDvrUMltSzMrGbFVqUMFFm2zXiZKDdQhilNcps7JiRh/ON68GKI25CCqH4ZyVmbJh39qH5SrBSQ1MqFOx0fITPCsvkuRY/QS3G+efMbhEkUEU5NMMgHY+j6fqIr/Fkrg6xyACaphGuqiYWGRhTeMMfUqnMhvl1pLuTDTuV9VHmM05wYrnSHh4DpJSg6QjDQ36gXcVihKunnAfSyqt1UmgzDoA+xn6dFHQrLRMjXEPebEf3BhWNJaPYmSTusgZyg91ouoGZ7XGsywI7lxkJ9B5eo6xcWrmbaDpYJpongJlOoaFcMz2VTUogHhaGMwnlmhEfQGg6di6DHizDzmdA02jpj3M466alsxOBpKogYD4cKqOnpQuPNGCqZThjkjWH6E9EqDt9Bf17W3EF/JSKEirLahjo2aPKfafSWH6dQE0lZiZLbl8v1SWVuLIGVdVNxBKDtKY7KK+vJ9znxxM06Dl8CG9JkEwmhd8fpL+/C9/iOuKd3bRGhhiQKmWiJ9ZJwAM1JTqLyo88/+7eY/CXnlL+fU03jWElcu6JedhLI3fu7uVdz8/jiwt38e6yrTToUS7ecCG3lu/mstoU39hfzyeWdPLigIf/O1BCTVDnN5e0s7pm9nd5M9IvSykfAB4Yd+zfCj5fOcv9moAxzNdwjeym84OdygyRjU4pDFuJQTRfEJnPgu4aMctpbu9IMnI7l1bM4giLmtB1zFif0mQ4PkZmYhArk0D3hzEczahupcgkk0c0z1mmSX97K7ZtUzt/IUIIsuk0+Uwat9fHYE8XumHgC4aIdHdOmgQ+2tutoqe7Oiiva+Cbf5g87++GnX3sbhnk+VaJnepnd9bH53/0ApovrATaYww+VKU/B1Tqu2DZSD7MqVBoZuIlFIbhxNNuk53jE4/8J3cuvpyK3oM0YLExWM3W2uWsiXfxL6e9hXiwgk9uvIvzoofZ6S7hgXAdq3v3AvC4t5y/1K6mrXYJt6/7EW/a38HvK5eAmaemcyf7S+cgK5t424afkOg/yMJ8asRsfVvz06zuP8jlg4dACK4eOIB4+g7OGmyljhz/9cR/s9FTzt9c+xlOP7CO/9ir4lj+unI1na+7gbLDLZwdm7wCWXkqxaXf+Aqbr3091avPIPmLn9D/zvdiLF3OpqEIK3fvpvGPv0fPpJgTHyLz2X+m75rXsfi5DTRls+CUcE7YNpmP/D1iKMryu34MwNU//wlb9u1m+YtbRu437+knOJzN8M7NL7Lp7Pdg59NogTIlQFl5KCjtLc2cihSXcozQO+wbaGcSY8aieYPYI5tZoea2EOT6DyN0N7+pug6kjdsXoi+yhZ7wAoSvhGSmDWZer+aocaJpV9rWCO8c9pvEpwSxfO8hcHmQ8X5ck1jl7GwKkE4gU2aEN+uB8Eh6KmcQ2KmhaTXDmjegBGGXykDz5nNL6Ovp5QvffIDVi8p5040XApDPZUknEjNyRevvaEfTNQy3h5LyihErXKCsnKFepXEtr6sn2tONNzCRR6XiMQyXSwVDl5ZNeU+3x0ukuxOPz8/NVy3hp3/ehx4MIlzekXLWxwIhhAoAs3Iq+4FugG3BFMKwlYo5edxf+oxMJ5puQWl2M+27EUKg1yxQwqi00Dw+8kO9GIESrEwSI1SGlY4pnpnPIsJVmKkhzMEuPHWLVdEubxCcHMVWagjd40e4PAgzM0KXI/cNqbVwOJOE5vZiJdJougs9UMpbz1/GRT19/N+zuzF3R/j01aspLS2jf6Cb/X370FwGy6qXTjmueRULGIj24ltZQV9zCy5No2x+HR3b9lBr1VLhKSOdyVNRphRmnT3teD0+5sxfNuY6Q6SYs2w5fS/uo75xOeHSSg517MPI6/hrFL1XVNTSdbADr9QJuHQ+v3AnV881qQ55MZxqnYU1Eb611cOj/eV8+4w2mspGRcsn+8M8mVvC7oFeGp1p/0+nx7mu9wme6QvwVFoj7NP53Io4927PUZLvo9Rl8kCLwQ65gJ2D/Tw7GCZCCFt6yJitzL4d/hSqQGc7pSQnFGUQOkaoknxOuSUpja0cMfkPB3nkBzowwpXYqSiakw+zsLrScMngI2E881J+WXmMkmry/a0QLIN8mttvXEIiOnhEYVjaNi6vF9scLTkbjwwQLC3DzGXHaIE9/sm3i26fn0h3p0r3Mg2ao26Igma40QpT7Lg8yrfpGCE0XTFjJGasFyM4veZhJIjuqDX5pyZeqFpEbOlF3F3RxNpn7+TF8ia2LrqQHd27CFk5bDPL2kQvff4wd624lkv3Pk5r5SLWD/Xw1cs+jhnpIBTt4s7LP071g1/izrNvxZeM4LYtGmPdfPTR/2RlPg7RljH+mzV2nmujo+nOTCm5sm8/Pifv6gIzzZ8qq7HScTKON15XIMDge25nydLl7C1IOD8ZnrrlNiI1tYR2buO0Z54kt2UzzWechf0f/8O+b3+DM/7yAFlg5znnU7N7J4t+NdHdICAEFf/7P+hmjrKsyo7hB05/cQutZ5yD+4VNhHI5SrIZTnv6Cb6+8DW4yxuUv96wAGWM9YW3zRyaN6QsHQXQvUGs1BB2Lj1SeWsE+SzobvSQcpUwY724K5ocwdkG4eba5l+wyG/z1r77sXM5arwQyUtK3dq0GTpOVViJiGMF6xvn5y8RXj9CcyF0XcVx5JTmywiWqyCjbBKhGUoIC5SOaH6F7hpjNZpJ4N143rxq1UJ+c6AHUTaHzv6+keNDfX2EKysZ6uslXHWE60qJPxQmm1L+/IVWuMK0l1PlEfb6Awx0TnCFnYBg2ahGeWG4FD2o+iuOwz1iGMLlQabzSMtEc/sQxtQxISMKC9crqF74NBC6gausHs0bJHV4G57KRiePtapIK1xeRC6N5gupgDjLBMOFGe/HzmVwVc4lfWg7vvmnY0a7R+jWSkXV+hUfwF0xx1n3Cu47Ln2dlDbC5R6JRwoGggR9MRLZPK58FK9Xzau93btYecmldDUfwJqG73YNdjAk47h6vYS0AKX+Ujpf2E358nkM9g8yL6TctfuiKgPQorplk17Hb7lJtHQxp3KU1uc1LKE70kFkqI/ysKoEW18+h237D/Jwh0nUNY/3V3ZP2bft8QA7zEY6k200FYhJXzq9h0taugi6NIaD59wunfs7AyRMg61XbsPndfFQs+SfOi/j7dU7QQjuyZzF2z1P8eGVcFOqk339eZZW6OgaRFN5Sv2zm8HmlBGGEYo5jy8PaoSrsRIRXGXDGiCpJn4yOjbIQ9eUI/wRFvhjgubCjPbgcghLCoNDh3tpqj2yy4HhdhMIlyHE6C5L2jaJ6OCEdGvJoSjZVJJwVQ16QUaD8RkrxsNKDqrnpunkeg+hB8tHBYlJIM280sL7w0hpKw3GJOZQpYGLqi9CUwtnvH9MmiWVy9EaY5o7mqIorwTc3L2dv3bsxkKwrbSRd7RuYuVAK+ckukjnsjww7zy2VM6nNJukv6KJZ/N5rPpl+COHCXftx52K0Fe7DHf/YVZYaT668af4LJNzo624BCpbQwGGEKQQ/GHOGXgsk/d2vUjKlnzowg/hT8f4/gu/GHmX7+zZRr2V4bL+/YDS+FrbXqAtk2HZH36tcm1KSd+cRg68/yPU/e5XLN2hSjUPNsxBKy3j3H/9JMOz0heP01xWTvX2FwFoOW0N8c98ieiv7uZwfIjq5zfR2DFqtRBCsHrjugnPrOWiS0n9w6d49OtfZ/5zGzk9M8hPy5eQTMW4fstvualtE5VyNJBpuJqdtC3sdFxpIz0hzPiAKmM7XIrVtpQZMxFRZds1XWmMS6qRqaGx2RKSEax0HFDC7p8X3zZiVbpt33fYa5Xw2KK3sqztcapkkhV2D+7Z9Rs+oRBOUYbxWQiE0NTiLqWq7hXrGw0YUi2QZg4pnKIRmcSsxwxcfN4SjC2HOO+MMwr6JZyCQkcOliuvbyCTiI8IzYbbzWBP14TyyPmcKpbk9QfGFObQdH2M0Dwe0UgUpKS0ooztL+4hn89zxtmnTdsnKzGI5i9RKe1SQwjDMymfVK4+Ejufx13RMOK3OoyRMsuORh+GA0lf+lzRJwuE4cYc6oHEAJpXFcYwExGlsRUa2b5DuILlqvKm0JR2V2jY2Qx2NoEQOpo/qIRjM4/hWCdc5XNA2niq5425n1onHcuytEdKXJtDvei+Eqzk4IgiraGunneet5zSgA+vk92pIlBJy7atmIk0y5cuJZfNIAV0pDrBkiyoWAhAPDWEXu7HE5PMqVH0N79+CV0d3RgW4IN8Pkc6LJC2TVtPM8IwaChvHLN+V0xS2GZgoBv3wiq6Dxzi4J5B1i6cT0tHJ0/v2M/Z4RC310wtCD/fZbHU6OWMyj4qfYIHDtq8doFACEFNyOCnXXNo6arli9H1fLNtKR9uauP+nmqGbA//ag7gA2r9knmygz0RyfY8hHMHuWYZ6LpGTUgj5Ia+WI6bNp+GX2T44LwO1lRaLK+cHZeJU0YYnsrPafwOW/MGVYaIUAV2PqvMJDNgAlLajrnu6M1WrnHXF4aLB3fk+Oy5KzFzOSLdXUhpU9M0f9Lfe3xqQlimSbS3B08ggG2apOMxLDM/EiiXTafGJJOfCQrTH1mZBK7KuZiDnTCNMKwmbilmIjJShSff34q7amwaNzuXRvOHsdMxhNurzJ+BsQYMaVtovhKy3QdwVcwZYc7DPtdC10+63NCzjSaZ5xebf8JDZQt4bO5ZpHwhPtS+mc3+Cn5x2YcxExE6+/dybaSZitYXyZXUceHTP+ThC97D2Qee5gv7H2LnoWdA2nx58VWk3X4+tv9RAo6GNy3hJ9UruCxyiOVWin85/WY6K+eTymdA0zHScW4e2EcwNUgwmxzDFMukxVv6do9890jJ2+760cj3zVdfx9Cb3or//76P+4yzSD2j8uXbUuJtnIseDPPCTbdSt+0FcoEAyTmNNN37C3b/v0/Tue5Jlj3xV1I/+A7Z3j7yn/48XWW/pPGnP5z0OUV0nYBl4QHqNz/HoR/ewd3WQrIXn8ndD32Rn6++HuEr4YZnfoghJ9/UWolB0F14yurI9rbgKm/AjPUhc2mMcDWa24+ViGCmY5DPY1Q2qiw06ThmYhBXqbIaGSXVmHGlfdaDFeQHu0YEYSsd4+7Gd1AW2Yc/1kmvHmbP3GuRzb9lLS9xHNvLCN0bnNKNqdDXX+VtHUDzlSClxEoOqhytM9CWW+kYmst31HmKa2orufG6sXy3sIDQQGcHQoBnikBjlX9d8aqhvl7MfB5fKEQmER/DX+ORgRGf35lWqbNtmx/99kVMqfH3t53Drx9rQXiCzG2YWpgw4/1KcxkfAKeKGfkI7prJ1ww9UAbJwUmzowxXQMv2HcLwh0crpGUS2LmUskYWuA+9UuFtXIkV78caTpHmK1FuC+kEnppFmJFOFTBr5dGD5ZixXoThwVXRCEj0QBg7n0HTDaVV9/jGbE7ykQ6ktHFXNKr4pVAl2Z4WPDULyLTvxlMz3yk0lZpA3+euWDLm+7J5q0c+R4b6SIQlZncUT20Z2URq5JyvpITQnDq6tu2iNXKYEj1AXMtQogeIWFFaEoep1Ssx4llsCWaZB5fPSyaRGkmlVohMJoVp5gkGw5SWVtHZ3MHGF7vZlvCTzu3nqb2tDLgqqeruoKTRZrK0aHnT4h2blpCw3LgNwS87emn1Lua0bZu44/IMc8IG19X0sW8oyq8PeOjRg+wcgGXufp4dqqBlSKMsCGtqNb62qpm37L4MK9WLHihlaUkrw0mb37u+lh3ZWhrMQ0g0/qn1Ai7qPcgvLuk5BuqYiFNGGJ4Ow7mCdX/JGJOa7Zg0rEziiIFaVqxfTYh4/6wGGORzOfwlJWSSySO2jfX3UVHfwKAjPJfV1tNxcD/ZVJKy2np0w0Wkq4NA6czzVhamP9J9JSoXqzxyhhorFcNKRpF2HldVk6riNQ66P6wECd2FdAIFJgvgyA+0YZTPQeazmNkU2DZ2PoOrtAYrNblP6isNFdLi7Hgn99QspjMTBWB+Nsa5+57EjEdYPtSBEILvbv8tJhq/qVmOmYmRcCwZK/NxnveUsbVhNa5wNesHW6nveMq2J30AAQAASURBVJ4vrrqRwVyWtvln86doJ1/a9jvmDnVi2BYlA61sWHk1d619E0s2/Jg7tt47o75u8lexrmY57zy0Ds2ysTNpmloOIt5+I9WppErqLgSN/3cnvVXVGB/9B3p+46OvooLSc85nYPNGjLlNxHeUsff6N9P42COURvo5+LlPUb1/75h7JXWdbe94D/JQC+Z7b8f14J84/1c/ozIeo/KPv+ba+jNIGR5CmuDC5mfZFarhj6/5CL7N9/Cezi0T+q55fJiJKNmeZjRfiFx/qyo8oBlIaY9YJWwrj6t6Acnm53EFK7HSQ3hqFpCPdo8ICponQC7ShZVJIISGlY4j81nsbIqASFNpDXHV0PMctgPs7rCYZ/fPZnDzSQ9lcTPQvcERraMZ63NM8n1T5nIe+b2j/bSSg0edp/hIkFJSUllFaujI/MWyTMpq6+jYt4f6RUsY6OxgsLsLX6gEfyhMpLsTwz1zNzIhBLWlBpYtMQwXlX5JzopRUlEGdE3+G92FlRzEyiYgKzBCldiGS5nZxxVr0DwB7HRCualMkv1IuDzk+lsxQlXIXFIVpsmmsXNppSTKTJ/m6pWCkbSKUqJ5A0jbHDluRtoRLveIpchOxTCCFdjpuLI0l9YgDDeax0+25yCuikYnpkhlmJC2hW2aCMNFrq9VBd/HIwggH+1ynnNixiXKY/E4f35xL6fVV1JfFcDO5XG5PYQTbjRt1EUohI9kSzfC78FTV0777v2UL5lHsj+FMDSMgI+unk58Hj9zyhvoj/ZgJ3P4ysa65HREWrEMyOTSBKsrYShKMFRKY/lczl4gMZu7WVxXhSFtHtrZTGfO4J+3N/Fo3cRYJEPXuKm2k/XtFvsy9bRlJZY5wAvmXJ7taeGmsOQf1mT5t3U5HgpdiLtvL/fYiwgOHcasquY/dgxwT4MS+M9qcPHp/qf5en81tVoPDWU+3v9ECSnboMadpj83yF2XDeLWBV/ZvoMLK2ePlk8pYXh49zxe4LKSgyO+bYUp1qStfNc076hv6rAJSfeXjPWxEpoj2B3dIzHj/U4mitCI1tNKRpFWDjOfx+31EhuIz6gCUaiikoHODlweD95AgGhPN/5AkNKaWqK9PZTVTL2bn6pYxkzTHw0v9MJwIdxeJ9uDB4GPXLRryuBE4fI4ATElIz6GhTBClWhuP9LMovud4JlQBTLWrzQYL2Fk88kAKSWfXnItXULjg83P8L8Pf5kyOw+aoEJafHD3g7zvDV+iOdLGBevvoBQJWFw41EFz337e2jn6XpenBjhr/1MErTyn9+9nv+Fnf/1KKvsO4unZjznvDH4Wv5D/2nUfAFkJP8rG6C9vZLEjgI9WQxLs9IT51qobuL5lHauGOghaeRIuD99Y8XqG5qxk8UALdc9s4OK/Poh3OFCiQNu34oXNhGrr2f+ru/G0t1J709vJ/OgOTuvsIPreWzh8wSWk//kzdCYT1Dx4Pyuef27ktwmXi+dufQ/9ukbddTeQ2Lgez4H9+AfGRte/r+N5vj7/Ur624FLOiLbT4Q6xbPsDXNy3f6RNxpYs3v0YPaEqbmx+lp01i3EnBnhq4UUg5UiuVSG0EQHMzsTJ9mbQNB3N7SGfSGKlo9i59Mh1NbcPb+0C5f/q9jsWkzBIm1h4LjGWclXLAZq0JE257a9IQdjKxEHo6OMELis1hHD7VKW/QkWDU+aWAtcKKW3HX9U7ho8ITcfOxFDZi2eOnu5+Hn22mbNW1rFkifKRHIrG2PjCIVYvr6e2thK3z0sqFjuy7zCg6waRrk7mLF3OUF8vlm1RXVvHYHcXZbV1R52jWAjBrTddNPL94x+6btJ20rYc1xKhtMKpQUDDCKniUbovOGnVMs3jJ+dk9RC2OUEY1n0hNI9Dr07QnB6qgPgAUtroMyjrfKrDjPWrFGepGO6aeUjbGlGIGeHqkdLUw8ovPViGtPJqDYQxsoHQPWS796uiXgmVm10LlJHv3oe7tAE8PjR3AM2lyjXnIx1IO49mjNLN8KbGsix+8PA6XDq87aIziAzFmFNby0//+gzNoop4todrfY0E8l6qKib6lJeGKvBmkmTiSfq37aNq9WLiff3M8dSiaRr9HV34ljeSdNL8VZaOFcYP9RwgaWcQHp3K+rlEd+zB5fWiG6Pr8KoFTSQyGe7dtJdLF1YR9nooNbK8Z+7Yjdz/bHXzw30lrKnIsiKYpjropTthEXGFeK1/P1c22ty4QDKYskhkJdJ2ISOHadL62ZcPEPPX4U5F2GhXcSiyn3nlboQQfGCNztuXduM2NKTU2JMuJYmXOy/YScCbBJSW/WvnHn/VuUKcMsJwtrcFd+Vcst3NGKEyNLd/hAkMC2RCH2uKcJVNDH4YNiENJ8wexkz9qYZTrozkh5SOmTAxOCIMD9c5bznYxroXO+mJSz74plX4JlFOD/Z0I20Lf0kp3kBgjKnPXetjsKebwe6uMWl7XgrIfHY0wwPqeeSjPRih8gnPtRB2Jom7spHcQPuUAnMhs9Y8/pHc0EeTkulUhQS2+8tJlTfyL+E5XBxrY8XgYW7u3c1+V5DvLbuGc3c8xJlDY4NxTssM8rXtvxv5bknJ3yy9lu6VVzF379N8YfXrqB44xH8/+nXCtskOd5gvls8lg4aUkj4J1Zrgbwb2wMCekWt85PSbEVLy3W2/pssTorVhJS927OCOK25hbu9+rmx7nsHKJubufoJvL70a6pdxy8af8a7ubRPG1l1eyfZP/DOUluH/4R2Yf3mABVs2AVAqbVwbnubQ5/+Vudu2YEuJhSrcYds2G15zJYE33Uywp4uu5gPUb3+Rix68n15h0IdOFRZdmpt/Xvs2+oNV+GyTg+4gbUsvxbXzEZ6qWkj/YDumbrAy1k1LWSP56gVsTEfZN/8clre+gJ1NKX91X4ny30sOqmAZM6+0ZlYO3ad8NIWUYEt0j39Ekzaccmk4+MVwYhGGXYKOduN8qsGMD4CmY2eiSCcgbjiPuObxT5qZwJhE0FIlcFVO+MKNueYNTogBmQzStjCHegGJq6ye5kN97I+4CDb3jwjDW3e28WyzRTbXRnVrPw8+P8B1Z1VwTuVE38hUPEYmmUA3XIQrq8YIzKXVNbhjQwx2d+H2vbSFKuxMAs1fqrSR6SH0UBWSfoThmeCTWghp5Z3gY1utRZNAaPqIomE4w4/mDbycxTdOKOxcSrmI+UPkeg7hClcgDTfoBma0BzubVhuDgnR+QndNsFDk+tsQhhtv/TLy0W7HutqPMLP4564m29uC7g2qYF3LjXB5cY2rNGcO9YBmIDSdfD5LW9LGhcV3/7KBbtvPe1cO0Zz1IlKtdERzfGMgR60nz6duvHzCuKSUtERb0IJevFopme5BPLaON6TW2Po58+k53ElI94BH+Q8PF9/oj/aSDwiqa+fTvG0rVi7P6nlnks1l6esfYI7jRvHTR9ezva0XM1xPyd4WDmXceMwc+xI+Hm8Z4FDaz80LMuxPlhLRyliXC9HR08wh9yJuLX+W+3qq6KCKptIeXIbG1fdV0kMF57sPYoRrqTOiHLAbmDP4AovCkoRegl+X/G4fXNxgUhUwCPpGZY7fXnQQ04af7guQt+Hjp2dfEtnh1OHmmqa0sKg668OJ32FiLfDpIAzXcZUDHp8fUvP4RgLMwNmRZlPkh7r5+dMW5tAQQjfQ9MmTU0vboqy2XhXSmEQDMZ02GKYvn3w0GE55pPlCYFtqsxAsm1YQBka0vUawbEYV/IYDC14t0ITg2o6t3Ne0Bk9vM88tvoSh1i3c3LubZn85uxecxzVb7+MNg80jv+nRXNw79xyu6NrBiqwy8z5aOpf2OavR+g7z9oNP8pSdpTbZz3xLJXS/IDPAB7b/keXxbn5eu5qfn3kzn3jm+1wZG62AJYG84UZIiQSujLUz58+f5bHKpWTzWZK5LE/WreKmzfewPN7Nv595C4HuvSyOT+6TlQiHKZm/iORD97P2ufV4Nq4jC3SESmiIxwhYFis3bwDgyffcjrlkGWd+5h957v1/Q3zFafRsWM/CP/+eBQMDzO1oI2PbfOzSD+POpvnpxjvJCo1YWT3LDj3Px1qeodlbwg/K5jAQquGelVfjj7SRC5bziSe+zaKBVqr2P8Xh+pW88+kfclmsjY9d+CGG3GHc3iD5XBohNIThcYoRuNDcPlUZKhHBN3fVyAZZWS/KsRIDEywXeqBUaZMcrVJh+eZXGoRmYGVi2JkkrvI5Y1ImTiY4TAXdV4IVnxiIN1MMZ0uQliqH+/C2BFYqyvMtQV740QtY6ZgSbswcmzNl2PkBQHL/ujQPbktPuN7cUIb33Hw+f31iO+sOnrgKcSqWY1BlG/AGVdlwl+eIFfkUT5aAmFThM6F9QTGJVws0XwihG1iJKJrHi+4vU1Zij1+lojNcY6zMUkqsWN+IxhjU2iylhaYbZHuaVVaU5KByx3TWMCNQqjJRaLoqOR/vn9QfW+gGSBuv188nrlxNV28v31+/H0NP89jeNKeHBZdcfB73rHsRLTnA/JrJlV+2ZeErDWMjKcl7RjS/g4N9+P1BPB4fNU45567BDvKlBp5BC1OaZAKQS2Rof2E7DaE6Qs5G4LfPbmVTv8V7Tk+zetFCElkT4Q3y1vluVi++iI4HnsHG5q7o6azr2cNBzzISufWksxbX+3fQalawtCTDVxZv4NdtVfS7aokalWzqH+KChixeTSK8ZbyxIcOX656mImBwx4tP8L9cSpOrmd9f1s1du/z8W+f5vC26na+eM9a1qSbkwrJsvn14Hnnh4vblL+LzzG4mCTiFhGFPZZOKEPeGlCDsPba0XMdbKU5pgUfzQ05WO95VVuekFtJxldUr/7XSye/rC5Uw2NNFWc2Rmdp4SCkpNxLE8i5McWSftpFKcS632kAUXssyVYpl2zoqgVUYrlcdoz1afLhvJ9fe92nmyxxbDj5KXU75R10dPUzFQ19meWZwTHrrdeULeGDNG8lpLlY0P0FE6Pxh3vnU9h/ivM5t3HnW23nz/sd5c/+o/60hBDc7gXAt/gpCQ10ErPyYfhhCcMfzdwOgOzvrZVaG3FAbXT27Ccb7eOLMt3Bhzx4uzA7y+2e+jVuIKXfhi1oO4n/XTVSmkrikxAa2X/8msu/9EKlPfpSKrg523/YBKtY/g5QSaSn/Zy0YJJhJU/vQ/ZRnsyxpbwXAEoIFfQdxmzkE0GSmuea5e2gpbWBbSR17w/Vc3P4CFww0c7j1ObK6QUxz8X9LrqLV5afWzDG04Bzs3j1UR/Nc2PwsuUySXLCcZ1Zeg+YJILLq2Y+nbzPerwLBzbzKXBMfGOEx+Wi3yqDgL1H5dp0N4HAuUYDddhnbQ8u5JLaZWv0lTD78MkIPqCT7shQlzE6Tums6CMN9TBVCh6G5PFhWHk03lNuAPrZwhDRzuEprRquBeYMjaSonw+EhFz/4xXp6kxpoR59S0kcaQ5PE7SPzyMmErMJz0jYRYjgl18yf0WQa+CJGYQTKsNJxtWGz8iP1BACVT1h3jXG3lLmUyjeeTY0W3nA2cNmBVlwl1WDm0McFho4JTsxOHhekl1QjzdzIJqeirJyAz8/ZnUP4MFkf0ZhrmCxoqOcf31SNRPmaT3otw6AqG0ZKSbAsjGVZDMb6oDFMT0cfcz1zOTzQgtQELktD2hoIgbTBFwiQ7uilsryeykAFXq+SW2pCPqqiEUqDykpz8cIass/voC0eJrevmYpwCdcsb8TV/mfmeeI8GTE5MGDx5+4QvkwWq7wO8gnOqe/i8FCE/mgMn9xDnUcF3D36un6aI10sqxkNPvz4GSbarhdYW5qge8ji/BqdqyJ7uKpGCcKPt8J/7GvgHxZ1cvU8ia5r/M9pe7EkI4JwR8zkky/Uc1n5IB88bexadyw4ZYRhYMQN4URpFq1MAsz8tPkhhW5gpWPOgtmL0FxTligG8AVD+IIhMskkyaEoUkoqG+ZM2ta2LPqdWvfVc5uI9nTzkXdeyPoNe3h099jy7nYurRKDF/icFbqIFGrSrdQQZjKKp6rpuLTmRUwOIQQLyIMQnJkZHHP8rOxYQRjg6r595Nf/mAsHlLY4qrloq1vBsrYXWZ2P8+eyBiLu0Q3YvVXLebxmOe/e+wjn5uNcHznA9esOjLlmn3DxcM1yrunZTZUcyzhWZyKs3nU/WQmX9e/nrFQ/99SsZH94Dm878CQba5by2p5dlBekMhtGVTJBV1kF+695HeZZ5+D+429h43pKBgeJllcirnkdg7EYl/7kTl688FI2fek/WfJfX6G2p5unvvxf9Cxdjnj7G1ls5tCF4Ct7HuBRfzW3nf52rjv4NL89+21ovhKau/eQLG0gn8/SGO3gxojyGd6Di3uWXoWh6QxWzOHsbQ/wtu7t7HCX8PDZb6OkYwfxOadx4+Z7OXPgIKenBvA4z3s4HZvuC2GllQbNSkYmBL0ITUPzlqiiPS4vaIbKL27lVRxDsIKHqq5AD1XyS289fz/wm6OgjpMbwnAhAO04hNnjgTRzTq7i8JRWKs0TUAoSX0j5dNqmstRNUYtYaDpdaR9ocHqdSUN1kIe2DGHrkwvG88I5Vi4o5dEXImTw8uaLaqmqqeSbv9gKnlE3D2mZKntOgWbXzsRVxp1xQWvSzJHrO4y7ZsFIYFYRs4sRt71xmvbJ3PmGaUhoeoGwqwIZNZcPNAHWKP+z0nFVejk9hLtmwaQuP1JKrHgfQndPKCrj9Xp512vOBeCMtjZKg0GaO7t4aHsLly1poDcap7Y8zLKmxgl9DQRKGIz20dKxF6oCxPs6CBo1eG1F77ZfxxMKURLVyMayxLwZjLSkNOZBVtYRmF/LgRf2sWrucgCuOOM0zl0S49v3P05DVSX7+uIMmQHaBgQ13R10G5X0P7aeLW/OAC6uJ8p599WieQJkDDcl5PnP05oBH3e2N7EzGcAIlrHtUCdLSg9S5mWMIAzg9xj849o073iimhf21vPHs7dw50Wj8SJ7hlzslvPYFe3janJIKblqnnovL3TmaQwLWqKCZzPzcQ/afJBjq+RYiFNKGD7RkE4Fq+EE8iO7fm1UUzFM9MrUWoWVGDUt9vUO8OBT+0kNDVJfX8n1rz175FwumyFYVk5iMDLl/fPZLL5giLxTNtIbDLJx0x4OdsaBUa2NlRpSAYGpoTEmG80XmqDRAkezUlJJbqAN4wSkOVMBh3n00KvDj/g7jefS5yvlX/Y+PCKYFSIrNB5vWEObr5xPHn6GBVaGb//lK5TZecLYLP7zv5E0fNw552xq+pr5xaLLiOtuvviav+O7f/0aTXZ2wjXvbzidX5/1NnKbf8V72zcD8FDpPNbXruTD+x6hzs7hEXBuegCEYH3daexvXA3pGOvOegv2hrvYHarlsDeMDJRx6cFneM1QG6kLzyP99/9Ez7PrcOs6tX/3jxi/+RU1kX7kgES//Z2UDw4oTUswiKdxLtLjwaNpdD34OFsP51lcu4bF7aPBdT9Y+QYGK5vo7t7JwvZtxITOx1qf5fs1p9Fav5In5qzl+j0qu0mZkBixXjKahhGsYE4+gS4Enf4y1mz7M6/p2UNPx1ae9lVw3zWf4ppNv+LvOjZjSqk2rY6FRNoWZiKifIzHGXE0b2g0AHSoFzRtJCWTFqwk3bYdV2kdVmIAPVQJ0xdgLOIoYKWGJgRHj/ALf1hF/BdmEErHlX9yIoIRqkRKiTnUg8xlEB6/Ks1bsNlvrAmxbEkjj76whSyTC8ON1T7OWLOYTTufJZODHQcjBDpjSJdvzD52uDiJLe2R/ui+EiVkjRPM7VwaV2Ujub7Dx22tPBaowjNJZdl8FfgRWwmV714Yrimft3J3sEcK8mi+EqSZxSipwM6lkZaFFe9DWiZ2JoUU4KlZiBXrm9RlaNRXfnRN7xkY4A/P7+OMuVWcvWwRAAsblcD7fPN29qfd+Pa1sDUVoL49Qs9QnL9sO4A0vCwr97CssY7F9WXk632kWy1KvB48teV4wyHCcbVZrDBD2BGLYEkZ2WgvvtJSsukIfn+QnrYenvnrixxoGRgRhgEeen4XPd56hjraOWd+Dc/ub+fMUIDaQJh7nt9LrzeIbUs0J53nYl+cQ71JdE+AqoBGQ4nB7n6LOfogl9a1UxcSHOhLc/3z51Nl9fL89UqJ1zGYobbEje64jcYTKYxMFwHX2IXwgytzrA0/xtkNLnb0St65aTGvq+zijY0xbt5+AeHYPj6weIhfrljHwjKYDVH2lBKGVSS4e9rJq8wc9hFTqcmR8qtHASlVCjdH02unhlRwgpMeTJUvjaiyoY5fcaFpsa29n+aoGzsmScmxJpWS8gpiTuW5qeDx+8lnM3znly+SZweaN+TkPRxnvhRCabHGYSp/NOULNYSrtE6loZI2dnJoWo22nc9ip6JIy5wQMDCM4cpUQtOnv5aVxwhVkus5iKd20ZTtTmXsdwU57A1zRaydLbXLGSibw9C+R6hmNF9uDMFzJQ3Mj/XQWz6XUG40v+S8AgFX13R+NGctzzWdC43n4iqrpbJ9O3WxdsK20vpKKdnsK2dpJkoJkks7t5F+wcWV3TtHrrOxZhnPLb2Mq9o2U5fs4Tel8xkIVPDe9k38vx1/pGfvI5SZWcpf0HhN7x4eaTyLqOZCltXzm9Nv5EDPHj7UtpOhdU/RtO4pBsOlZJetoKxZaW2FEDT1jvobn/Hwn9n0xNN8ZeUNXJxYz9LnnuFwv8kF/WO12Bd17eBAopf3dm1lsG83dXYetxD8d+0S3OUNXL7llyNta6TJP+55kP84+x2EB9t4oXopT/Q28+PFV5CoXcxHm59kQS7GT898J2Kol3pnc/rf8y7CJTQ+++CX+exr/wVsU1lGnFgAFbTVA1JilNUX8ByJcHnBzINmkOs5iK9hhQrwLW9ACPGK8iO2c8oXdzqBTdqWwxfLp93MSic39GQZEqaCMNwTSt6qAOWqER/vYeHYKKlCGC6suLMpAeX2ZXiQhkulJBtXAOSB5wf565Z+strU68Uze1Ns3vEIsaxA07O82FUGyInrh7SRVh4hxq5Pk2XMUWkpB3GFq0c0iirnsndadxRzqHekSMRkGk5pW05RDqbNJWxnk4rn9rdihGuO6Kd8KmLYqqB5g0g7r5RT8b4J7cz4wEi2Gc0bQjruZZrbC05eYaG7yA10YPhDIwVNpKV4hGaMPjsrHQOEyujhC2JGe8dU/Tvc08/upIG3K8LZy6C5tY11Bzp5zcr5XLZ6KVXBwyyqW0LlroPMKW+gpS9K3HahG362dvTxQtzDx/0GQk/jMQ3SXRFy2RRZ24U7qHyFS0Kja21FaTVDPQP8YcMhpH2Qq1YuQCQk5zSNdctc3FDD/sghrj5nOYvm1HP56SsoDZfy62eex9uwjCY5MCIIA/zgkhiX/rmKgWSaBOXcu8/gmT4vj7OGM4KbeO+qLBf9tgzLHqLUFQXg8cM279t1IW8M7uAbF2eRUnJANpDyBfDrHYDBd7a5+UVHHd9Z28x5c9VzzVsmabxkbI36oGBBZjd7PPP59z1RvrG2g/MbZ6eQ2ikjDFupIYTLi50eOoIwnEC4/YohOJHghe2tZBTbzCmHdis/4zyAMLF06HAwzfCu30oOjkRNC99EH7A1axbjdrXgNsKUlo9dXLKZNGY2g7QsPH4/lmky2N0FQoxxmwiWlZPH5fguD0xaoUj3lSC9yu/JHOpR5kKhJvRki9r4EqmWk/5sfMaNMbAthNsHTioqtSAOjpRcBUeTPqYy1eSQuTT5wS4kYtbzPJ8s+M7K17O36QyqHvgi//78L0hoxhhBGOBXjWfz+zNv5tZ1P+asfY+zeBzj3u8K0uEKcOdp1xOV4C6vJ9C2g8uf+znv7tuNv0AOeSQ8l/96zce5etv9rB44xDfPvoX3vfhb5pqjAUV/s++vXNm+hQsSPTwbrOX7a9+CHqpkn6eEM5O93NKzA4B8Psvfrr2Fa/c/zabGNYS6dzMfk9Mjh1kY78Dzta9w6Nzz4TVXgJQs3LCObRdeQuTSK1j1vf+mMqY2iw+XNvGDBZcyaHhpOe0NhIXg/574JkFtrAD1sfaNADwbquWLr/k4a3b+hcZEP1fsfZz12bOp0MYKU8vSEfRQOXEzR9Yb4MuX/g1lg+3c8OzPqMOm2zZpyCVZ3rqJm4daANjsqySbjvPVBZcipY0ZHyAf68NV5hSzkTbC8IC0VGqw5JDSImsurFQU3R1QpYfNnBPMGyA/1KuEm1eQm5GdiaP5Rq1hk8GKD6CXVCq3MCEmmIXtXBo7l0E6mzujrG7GAvGk/Mrldgr8qHtIy1Q54hORCb60QjdA05B5EzuTHAl0BiWczykVlPjcbO9Rqa/mhnIsmhPkyZ1xLMefWGoe4lkNV0G2ncngKm9ASomdjmGmE0hpjfDcyRQvhcWGxuZcnm5NkkoQy2VGf6cbI3Er0swp4S+XntZvWnP7yPW3gqaRH+rBXVp7zD7hJyusVGw0IDZQNmq5KWyTUAWmrMQgUlqY0W5VZc7BsEAtzZzKLuP2otm2shR5S8YoeaSVB9tC2jZWJu5k+rDH0ORZyxbjNpqZX1eDaeb53uPPY4XnMPDsiwQDIW65cDV+f4DFtZX8bP12KtwaZ9d42NsX4cwF1WhuN02N88hk07SmWrGCFrUrl2EfHiSZjjNkpHBnBHVlagy9AwPc+cizdA6lsaXF3lyQty8t5dyVS8c8h9MXzef0RfOxbZsv/O5xsrksa2uC1IYDVGT7qK4aOw99HoNFZQYdshLLKONLOxPIigVcJZ/m8qos4GVNtQZ9vfziNRHAzZYeSTYR5ZcDZdwyv4X7WwPkkkO8r3Ev4YCaa91pF91aFYPZQxwezOPSBHNLYL7oQrct6koMfn75IK95pIRB4ebbe8K49SHeuOj4BeJTRhgWhgc7PXTElJTSspCZxEju33ysF0+lqpym0iL5sJODaiGzZsHpumBy6b6w8hHSpvBt0zRWnbZwwvFNm/ewcUszH/nAaxnsUbn8UrEYJZWVJKKj/mTDmSM0j8/Rfkzju+wwQSkluteHmYxieIPTLmoFHcVKDmJb+Sk16JrHr4Lx/GGsdBwz3oenegFmrHck2X5hZarp4K6cS7b/MK7yeuQUQQjHCiHEtcC3UFlgfyil/Oq48x7gLuBMlIH7rVLKQ7PaCeDawxuZF+1gSS6OTwD2aJDVVm85mysWsKrvAO17H6c60cPPzngLW3sPct2WZgLOevbN066nuX4VK/Y+SaO0uHLXA5yd6CKMDQIOGz7+e+6FDAbLKcvEWdW8gdMih9CQ6GYOY1yxlSppUpXsBSHw2iak4+Qj7exedjnpthfIGB4u6dvHs3PWkqicx/7+ZmJlDei6zkdf/BUA7cLFB6/6Z/TcELchcB/cjyEE6Tlz0c84i2QgOCIMbyydT7JmEe70EO5klIWJHgYMLxsClVwea0dzaDZj27iEoMxMU9t7kBcbz2BzsAJv6zZSJbVsqVjA+cnRSm9VWFyz4yHC6UG0dIK7zn4bMjHIb894M6GtGrf27uSuF+4eM/ZF0XYiC87CLK3loufu4Zkz3oxM9PPnh7+AIQSvvfE/1SZaCOzEoLIAJQZAgqusHjPaA8kortJacgNtqnSuMyeGheFhDTGcwlpiiVJAeKeZw5qOFY9gZ9O4yurID7SrssKOwGtn4gh3QAnDQnNK4B57lyZkDxJiRCCftL0/PCEFtAomTnDRhQuYv2gee3+4jrw7zLKmEs49eylb969jwBzV+OmBUidAb/qMOUIIsFU53ny0C3fVPJVK8giZN4RuYGdiSNMcQ0MTxhKswM6p87m+w+gl1djZ+IgwrLl9I4qj6bT0mieAISVmKoancs70io+jxMnCczW3VymrDJU9pnCttvNZlSMbHFdGDYSBcPvIR7txVyrXhWGBOtvbgu5yKzrzl6D7lGZVSkl+oA0rl8EIlmGn42huH8LtQ9qWovXCPmkaa5Yo66dlmhhWnlTXfgZCAVrtEI9s3kZ1RTk98TQpfzWpwQ5K/B7SvgpWzZ/L4rmqX995cD2dlpcrF9t4/AHKjSA5M0egvopU6yhvbO8foCun46qeR757PyVWnFJ/LRt37mXxnBrKnfoHlmVh5nO4PV5q/AatqQTPxv3kdm5FC1eT6pro1/7Ghghl7jw3V2zk3fE1iIFD/EU00L7N5MHaXr5zccJpqTZZZ9ZqiOYsRtU8fryznccTNeQqFqBpo9bDz50V5/2DT1MdNDj/8ZUEZIafnXuAQ9pcfNlutnTGWF6p84Nz2nnX5iU058p5pFfwxkVTu5fOFDMShk8G4h6uHHUkDKeasdJxFUHqL1Nlg90+hOHGTg+hD2uLjyCkHQlmTBGd5gsrM4vhGtEMF/ojHvE6lk1vzs+f//BXzlyrdmyh8nIi3Z3k0hNTA02WwWIqGOFqZC6Dpruw0zE0z5HzehqhSuWr5wmoMpMlVY7Lh2eMID3MsPPpGHqgnFykE73AH1lMEkE9FTyVTZP61h0PhLrYd4GrgHZgkxDiPinlroJm7wMGpZSLhBBvA/4DeOusdcLBawdbeO1gCwjYGKjm+ytex7mHnuNgRRNby5qwfSH+36YuvrD7zwA82vwc21ZeyQPtW7jJyRJxzaFNHBxs48MHn8KnTVzoHiidz/YF52FYOfR4Nz/c9FOEEHx5waUE0kOcHVVZG2wp+VrjeTxXu4LbDzzOtdFDrE0PcFHvXg4EKlm49T6asnHuveh99O98iC89/wu+Pudswnae7z3xTdxCjAgzSSEwk1GywNDXv82be/aCEJx+78/Zufk5yvtHGd3ftj7DksHDZITggmQPy8wUn17xejbUrqJ1w0+5Pt3HN5ZezfbSRs7qb+ZzBx7hx5v+j/+tPZ0HK5eQrl2EsC1uObRhTFVQlxD8bet6QC1Oq5+5g6+f/mZ0w0NJIsJDpfPYEaol5ilBSw3yz+0b+VL38+z46342h+q4e/UNlLVs4oaenUQ1Fwe8YbVYZhIqSCaXwrbyjiBci5WIgKaheQMq165pIrwh8oOdeBuWzRrNnAx8dybp04YDivVgGfmBdhUUFu8fsYxJ24ZsEi1QqtwAjtY9rQBWaki5ImjGiGbYCFVgpYaw4pGZC3TSRugufv/Qi/gDzeTdapyPb4/ywvZH6LPLKeym0I0ZX1sPqjRewwUvmMF4h3l6PtqNtJVALM2cyoUdqhoRbIVujOS6dZXVkxvsnODiMFMfZM0bRJfS0ZzOjt/yycRzC4Paht36rGwGzevHjEcwfEEkAreTiizb14q7snHEVQpGaxgYwfJJn6uiRR3NcKH7StCcXNzDxTnQR7Xt+Vgv/3LX75hfVc4HXnsZumFw/Tmn8eetByn3CK5o0PhjSxqjo43PXX8eA73P0BvQuGbNEm70uKmsUPMpk8mQSiWxbJNduxJcOH81ZWGloW7dfRCff1Q2WLtkMbekM/REotTNX8l5a05n3fY93Lurh8ZtO/nIja/l0W172LCvFdMd4B+uXMuHr7uUfYfbuHvdVvrdAfSSGpa6JgrDNy2xuGlJFCjn4cpm7tzt5dfZ8zCyW9g3YPO9fRX4rAT7Ej4+ubSTy+YH2Vh6iJ3dB/nA9uXYyQivK9/CB1dZPNwsObNGcs9BP4/21TBH9mAno1QH0iyscPPgOZtY16nxxh2XcmvpDirFEDnhpVG28OlVQ8yGXveItqoC4n4tsAJ4uxBixbhmI8QNfBNF3CcUw/5UMpcaMf9oHj9GSTVGuBphuGchWEug+0uRBVWrhp3mpTnz9Ernn7uCN11QxeaBcp54YbR+vW3ZlNfVM9Q/0c9pPKxkVNWzH99Doalxh6sxSo7ChKvp2Bm1s1NjqkJaeZV5Ypzbg51JgZVHMNb0d7QYrgQ0izgHOCClbJZS5oBfATeMa3MD8FPn82+AK8RLHMXX4g7RWb+cLTXL2L7sciyXDyuTJF5gUXhn2wau2PZnzo+0kJOSvJTcENnP2w8/x/8ueg3bvBNTK10Y66AkFeG1Ox7gPx1BGCCnucn7Smgx/NxVt5b17lKeOPMtxEuqeC5Yy4aAMst+tvlxfB4/G856CysHD3P1pl/xxpYNlOSStJQ28syctaR1N8FhQdiWfPqijxBODVKajvHrs2+jQyqW0r5gEblv3cGut9wy0r8yabEiE+Heyz7MHStfD8Cirr3YiUF+ecF7+EbdGl5Yehl5oZE3lY/0Lk+YMmnynkPrkbEe5nTsoFRMNA8dcvn50oLLecZXzpp8nEs7t3Fe8zquTHTyp/nn8/DS17Bh3jk8veB8Prb4WgBW5WJc2rsXw1+CLKvnHQP7+Nai1/Dpc95NVfNz+Nxe/NJCD5bjKq1Fc7lUEQ6XByudwIwPYGWTCI8fmU1hBFXg1mQlxr89/8MT/qbDqch3haaj+UIj1eaG4SqtxQhXo3sCxyUIgzJbG6HKCVY9aeXHCiFHgOYNItx+YrKEPjM4wuvCHsl733Ep5zQduZ92NqVKUk92fU8AI1CKUVI5bfahCZC2coEQmnL/CFWRH+waqag22sx0xiqm9Q0+EnRfSBVAOkI++aPASclz7Uwc4QmAreJTNI8fNH1MbI27rNax7OrK3SWfQfeFVMXUfHZE+VUIobtGaNF2NnyAskx7/CCVD7eVUlbtVKiRQx2dPP7CDvL5HBesWsb5ixtpNaqJSg/Xzg/w+uXV+P0BIskUbTGTZ3c3jwjCAL9+diuDRhl1eoZO71yeO9jh3FJiVrjIVhik08rCKoTggjWr2R2X3NOcobWznSUN1TDQRnPK4Jv3P8ZTB3uIeyrID3ajC0EqnaK5b5C3nbscvy6h7yCXnXHahLFbls0XN3n4wnpYXKFzXZPJGdpBPrUmycMdPv6QXMl93ZU8G6/izU/OIZe3aCgxuHqJh2WBJHr9Kl43N8UTXW7eu2UZ5z68mIfbPWwx53NvdwOx8GIWlCkhd165mz91hLAGWnmiw+CSOTZztAjvWJzlpwdC3LH9+Ol3Jo5bJx1x5wc7MYd6xjCHyeAqrcVVWnvcDHgqaE61qkL/OOUqMVbDaWcS3PGzZ3hq3c5JrqIwt6mehaV5FjWO3X0mooPo+vT9HymNOosuBro3iFFShRGuUf5W8T6E0JFmHt1fOiYdkBGqcPyzTzpfyQagsJh6u3Ns0jZSShMYAo5i9To6/K5iMT85+1ZufvIOPrfzjyzc9Vd0M8dpfQc5MzXKbFdlonyy+XGq8ik+cM57+djpb0VKybPl83hk9ev5a91E5rQ6N8Tv1n+P1w+28OELPsR355wDwGf2/4WfPf4Nnpl7Br8891Z6Q1W8Y8NdvHv9//Hs6tfxzdPfNHKND2z7Iw3Nm/jx4st5+Myb2B6u4yPn3IY273RyLi/bwqOPzyNgSc8eVg+18+5Dz3DL5l9RjwVAeU838k9/oGzr2KIwi7Mxrtl2P9e0qkp1F0SacVU2Is0c+0rnkus9hCypJu/4dt69+DJ+ev57qMDmr5t+zFw7x23nvo9+NB4qncfNF36EJ0saeLpyCetWX8dXznoHUVtye+cWPrf3IXya4KM7/8T/e+5umg4/j7tyLpprlHHO0yTv2vRL3r37IQDO6NmLZrjpqZzPvzz2DW7Y/TAAuZ6DI2VspWWiewNo/lI0w4WrtAZXeT3CySojzeN3v+Ik47tmfAAz3n/ENGBGsByjpHLKapTHCz1QptLZjUtVBY6rRIH2Lj/YpTStU7jDaS4PApVVRDhxJTlL0H64i1jqyO/QziacssfRYxzNRLjK6jHC1coKqmlYsT6Ek8qvMD2b4WTe0WdgLX2ZcdLxXDuTQOgu5cJXVkeu7xBoBmYyiu4vKA9uuJWyLFiuMpCYORWc6eQgRmgj5exHfiME7qp5eKrnI3NprFgvdi6DEapAaIZjUVCKJM1wcVmVpK5hLvcdzrDt4CEALl4+n8X6INvb+3j4QIStHUP8/C+P0+FRAbmD1litZ0NpgAa/4Oq1y7igxsUZ8+pH+qKnLKyBBJ5xGaMunFfFeZU6tVXVVJWX4/IHcJfX0dvXS0Z40ONd2FULyJl5nj9wmIfbczzXFuE/P/A23nrhWr775A5+vU/QMWRy8YON/N0zQQ4O5Pjh4Fq+372MX+zVec1c+N3lXVzQILhtSYrP1z/LR+t34yqtwR0sRS+wZn5qZTfvLXuRS+ot1lSa+M0YeV8l891R7lzwJNVei4qhvfz9stE1cUgq64nm8nFGjc6zb+jkzfPj3Nm7gh+2TZ6O9mgwE93yZMR97lRtpJSmEGKYuCdEGwghbgduB9CPMXel0AwleFn5CTkEX05ongCMc1dQRSjGjss2c3SnQ3RsbOeSC1dOeq3yijLe+ZbzxhwbDpxTvsKHp+yHcHmwJ9FGzRZUBSNlRjRj/Y6meJR3qYXvpVn8ThYU0m2dcewmGZ9t4k9HmWfnqJMmy1MRBq0sf9/8JPOsiS4xCIHbzOByKs1d27cX8fQPOG/w0JT3yAmNtL+cpKOd04XAJwQ3tm6iIhPjNYMtlElLJf1//h5K8pmR3y7IRhmsWoAr0U9Vz34qc0n86RjJ/lbevvPPXDnYAo68ZQjBv+99cEJ/AcpTSS74wXcm9C0g4O9bnh75vgiT0/c9Tkr38Mb2LTQHKmgva2RNv8qx/JbmdSwc7OCseBcIyLg8ZD1BbKERd3mIh2tJ6i7e0LWN9bsfJ2jlxwQSAizLxVmWi7Mm3s1f4+1c3bO7oLuCW3pHN6lvjLXSvOshhrxh1uYSaJkof9ANbmx9jvdvuGOk3dVXfwaZTY7hYbq/ZDbzdM8a350NnottjRQcOpEQujFpgO1k2leh62huP9LMTan5HB+sFrO8/PyZKBMy9EwGCVYqOr0/9XFgOPBKxWT0j+TZB+c5zLAC4KmMWaFdoSHNlCqY4wlAoBRpWeih8imDtYUQI3SjeQKYici4HMST30cF3TrFhdxehK5jxvoQhhvdH+bGi85iZ8thajsHWD5X7RHCoRC+QIhITlIie6jwl1BiuLC6elkYEtx45pIxt7l87SouX6s+nzWuC00V8yft2qWnjzUqXbtqPs8c6OaKC9YwkBXkMh7StkZ5OMzpPj/9iYOc3qTmhmnZ5DQ3WUuQNSWDooSImWRJtZe3+57j6Uw5i8MmhbrVEq/ObSsspAwT2L2RecvMkXRqAJc1Ci5rTAAGYR9866xuvr0nzTvXaKyp9lC2X0cTOvWhUUXgLy7ppjvWSkPYheZYUetLfXxv6WaChmRmut2pIcbvdCY0EOItwLVSyvc7398JnCul/GhBmx1Om3bn+0GnzbRpBDx1i2Xdbf991J22cxmwzRnVtT9ZYCUH0TwBPvfB8evZkTFbJZdfiTj8H69/Xko5nicAIIQ4H/iclPIa5/unAKSUXylo87DT5lkhhAF0A1VymomxyuuTv54375j7PF2U91Ttnb7O+Dcx2yYgxEiluaNBm3DjwabaKbJhO9XljJMgB7TpuIz4NKWl6ZNQPYn/9Gwiadv4x1XiGy7YcTw4Au2+JHz3WHmuyqgRVSVsTwI6mAlmmmaziKPDieC5cOy069z/qOlWSvuo0gBKJ+C8cNMyHt+8cdLHRjqdojcySFPDqBI9n8/hcs1gU/YyIJVMcKv8IQAD8Rwhr47b9dJY3AFyeWVhnO17iKu+OiXtzkTF1QEUlkGZ4xybrE27Q9xhXsLU8zMJpDvZcLS+tEUBeFawCVgshJiPotG3AbeMa3MfcBvwLPAW4LEjMeXjxdEy5WMRPkq0Y98lN8qx/u6aEMe55549GEKMCOVCCKpfBrksMMmzfPAPnxzzfTaE43E4qfiuENopVwL4JHTbejXgFcFz1W+OjusJ3XXMvtc+n5+mhrH0erIIwgD+QBCc5BAVoZe+Xy+loD0VZvK2R4hbCOFGEfd949oMEze8TMRdRBFHguOP9lHgYWA3cK+UcqcQ4gtCiOudZj8CKoQQB4B/AP75xPS2iCLGoMh3izjlUOS5RZyqOKJm2PFFGyZuHfjxMHEDm6WU96GI+2cOcUdQjLuIIk44pJQPAA+MO/ZvBZ8zwE0vd7+KeGWhUFM8G1riIt8t4lRFkecWcSpiRpFAReIuoogiinh5UeS7RRRRRBEvD06ZCnSvFhR9hYso4tTGeH9ieEl8iosooogiipglnCxxMUUUUUQRRRRRRBFFFPGyoygMF1FEEUUUUUQRRRTxqkXRTeIkQNE1oogiXtkYdp0ouksUUUQRRZx8KGqGiyiiiCKKKKKIIop41eKIFehe0psL0cd0dYbHopJJyju/CvBqHPfRjLlJSnmMdTqPDUdJt/DqfIdQHPeRcLLTbvH9vbpw0tItFPnuUeDVOO7jpt0TKgwfDYQQm6cqo/dKxqtx3K+0Mb/SxjNTFMd9auOVMo6jRXHcrwy80sYzU7waxz0bYy66SRRRRBFFFFFEEUUU8apFURguoogiiiiiiCKKKOJVi1NJGP7Bie7ACcKrcdyvtDG/0sYzUxTHfWrjlTKOo0Vx3K8MvNLGM1O8Gsd93GM+ZXyGiyiiiCKKKKKIIoooYrZxKmmGiyiiiCKKKKKIIoooYlZx0gnDQohrhRB7hRAHhBD/PMl5jxDiHuf8RiHEvBPQzVnFDMb8biFEnxDiRefv/Sein7MNIcSPhRC9QogdU5wXQoj/cZ7LNiHEGS93H48Gr0bahVcn/b6SaLdIt0W6LTh/ytDtMF6N9Fuk3UnPHx/tSilPmj9ABw4CCwA3sBVYMa7N3wB3OJ/fBtxzovv9Moz53cB3TnRfX4KxXwKcAeyY4vx1wIOAAM4DNp7oPh/ne3xF0e5RjPsVR7+vFNot0m2RbsedPyXo9ijf4yuKfou0+9LQ7smmGT4HOAA8hhr4r4AbxrW5Afip8/k3wBVCCPGy9XAGEEL8RAjxpRk2Pwc4IKVsllLmmHzMr0hIKZ8CItM0uQG4SypsAEqFEHUvT++OGjN5jyc97R4DXpX0+wqi3ZH3B+wDNnGK0m2R7x4ZryC6Hcarke8WaXdyHBftHlEYFkIcEkKkhRBxIURUCLFeCPEhIcSsCNLjGFgD0FZwut05VoiRNlJKExgCKqa4tl8I8T0hRL8QYkgI8dRs9HmWMZMxA7zZUf3/RgjROHzQMYdYQohEwd9lzrm5444nhBBSCPGJl3JAs4gpn40Q4gohxB4hREoI8bgQommqiwgh1gghnnZooF0I8Zkp2v2b83yunM2+jm8jhDgExIFyYMKcEkI8WPC+8kKIXMH3O4QQlwkh2qcYw08K2keEEI8IIZZN1WkhxOeEEHcfw3iPZtwwBf2+gjHT5zIpXka+O76f/ZP0c8Y817n2q5rvOueH39/wub+8VAOZZUz7XIQQtwghDgshkkKIPwghyqe6kBDiDUKIHc741wshVhScWyWEeNihkeOJ4p8VmeFI8+1IPHmSsb9bCPHMcYxrOhR57uQ4Lp47U8b6BillCGgCvgr8E/Cjmd7kBOIHKIFjufP/709sd44Z9wPzpJSrgUcY3eUO41kpZbDg7wkAKWVr4XHgNMAGfvtydn4YQghjlq5TCfwO+AzqvW4G7pnmJ78AnnLaXgr8jRDi+nHXXAjcBHTNRh9ngDcALcAaxs0pKeVrC97Zz4GvFbzHD83g2l9zftsAdHDi5+qR6LeIyVHkuycWx8R3C/CGgnNXvxwdngyzyHdXAt8H3gnUACnge1O0XYziXR8CSlHP8r6CvuSBe4H3zUbfZglTzrdZ4MkvN4o89yhxVFoGKeWQlPI+4K3AbUKIVTDioP6fQohWIUSPo73yOecuc7Rx/+LsAg8JIW51zt0O3Ar8oxAiAfwdMLyDWQN8DXi/UM7vXud4x3AbZ2KFgYHxfXW0YdcDt0sp+6SUlpTy+anGJoR4QgjxRSHEOmd3+BdH6Bo+f70QYqeza3xCCLG84NxaIcQW53f3AN5x1369UE7swzvO1QWnXwO8w/ntXpSw1jHuuQ9IKbPO1x8CZ041jiPgXcBTUspDUzyDc4QQm4UQMec9/lfBuYucvkeFEG1CiHc7x8NCiLuEctY/LIT4dMFu+t3O8/ymEGIA+Nx4WgH+HeXjMxlG3rWDOc6xNwE7pZS/llJmgM8Bp4upNaDzgJ87NHAQeAZYOa7Nd1HMLzfFNY6Eqfo6VRsNRbuHJptTswEpZRq14Kw5lt8LIc4reOdbx2m+3iOE2I1isrcIIT7onJoD3CyEeH3BpYaAdqECGn4InDPNdd8thGh25kPLMK+YpG/RAs1MUiiN/jzn3AeECqKICCHuE0LUF/xOOhqf/c41vivEqMlUCPFeIcRuIcSgUJqrJue4cOi415kf24El0zy+mdDDjPBS8l3gLhSfHMZqlEZpqIDvzojnOueLfPcoIYS4Tgixy+lLhxDikwXnbnDGEBNCHBRCXOscr3doO+LQ+gcKfvM5obSBdwshYsC7heLTPxJCdAEbgGohhD5Jd6aj21uB+6WUT0kpEyhlxJuEEKFJrnMN8LSU8hlHG/sfqM35pQBSyr1Syh8BO4/poc2svxPaHIl+nb5NOt9mC0KIZUJZ7CJCBcHdXHDudUKIF5z33SaE+FzBuQeFEB8dN56tqGfdUXhdYD2jrhM/BM6disbG9W2rmGhJvsw5N91cPCSE+KRQmuhC3jF8fsq5KIT4J6dPced5XHGMj/b4eO4MnJYPAVdOcrwV+LDz+ZvAfSgtQAi1K/mKc+4ywAT+C/CgJkMSWOqc/wnwJeezATSj1NubUBPlfGA38CGnzaeBLBB1rpNzPg//3eK0exew3elbv/P5zdOM8wmUU/oSwOd8/6pzbolzr6sAF2oROYByXncDh1HaDxfwFtSud3hMa4Fe4FyU4/ttzjP1AEtRav3DwHxgsTPWlcAtBWMaKvicdJ7nXDnqKJ90xrgPxaCMScYnnPG9e5pn8CzwTudzEDjP+dyEMuu/3RljBbDGOXcX8Efnvc9z+vC+gr6ZwMecd+tjIq38Fehz2s8d9y4TzrOMOvc/4LT7FvC/4/q+Y6r3C3wZtdN3Oc+8HTi74PxNwB+no/cZzJNh2p3PaFDDynFtPgLc4dzjS8C9U82pgmM/waGlgmOXAe1T9GOkPRAAfgZsnabfnwPunuR4A2rBuA4luF/lfK9yzr8OWOiMuxNIo3zZtgLfRm0+hq/1DmC38/l9zjudcF2nvzFGeUPd+Gc4zft9ynm/l6PmwhmoOfZt1AZwuK0E/oTSVs0F+oBrnXM3oOb1cmdcnwbWO+euAZ53fiecNmczdTDH6xgbzPHcUdLTpHTILPNdxtLtIZS27zLnmrtRmr2PAHczNc+NUuS7Y/iuc68eFH39BTh9mmfQBVzsfC4DznA+n+P04SrUXGkAljnnnkJpZb2ozW4fcHnBnM4DNzq/8wG/R2l1AyihPgV80Gl/EVPzXBO4yGn3R+CfxvU9AZw5yZg+CjxQ8F0HMsDfjmu3CJBHy2+Phe86n9/GOL470/k2HU+e5HfvBp6Z5HjAob33OH1f69DQioJ5e5rz3lY7NHRjwdxaVzDmq5z3tA04a9x1rxq+LvBG1JydQGNHGMPtwB6ghGnmYsHzew6op4B3HMVcrHfazgMWTtOnebxUPHcGD2QqItkA/Ktz42ThAFACbEvByzWBQMH5e4HPTEZYqEUy7xDBvzrH1gEPOp+9wK+dF/EcsGCKfv8LauH7HGqSXIqauMunaP8E8OmC738DPOR8/gwFEwhFqB3O2C5BCQOi4Px6Rpny/wJfHHevYU3EIodI/gXFUA8WjPkLwPXO56+gNgZbgcdxGKJzbgGKEWioSbQL+NQk47vYGX9wmnf9FPB5oHLc8U8Bv5+kvY6aZCsKjn0QeKKAIbQWnBtDK8AvURNWogTU96EW3w8VtP+u81y2A2c5x3+Es2AWXHsdUwj6wAUOvZjOvT5fcC4E7EeZlOAYheEC2p3uPQ7Tbh7FZBaM+/2G4d8VHPsJRy8MZ1BM0ka5Yqyeps+fY3Jh+J+An4079jBw2xTjTjjv8l9RdJ0F3uKc34Gi863Os/njZNdFLRRR4M2Ab4bP/K3OOxsW0n+EMmEOnw86z3v4/Uqcxd35fi/wz87nB3E2cgXzPIXaDF7uvNvznOO/RAkx+aOh3aOgpUnpkJeA7zJKt3kcPoei29+iNm8z4rnO74p8V52/ECWE+lH8sxsoneIZtKL4Zsm4498HvjlJ+0bAAkIFx74C/KRgThduAGtQ89HHKN2aKD4xY7oFHh1uV3CsA7hskj4uQ9HnZQ4dfAbFjz41rt1xCcPj6PdIfHdK+uUI823csZ9w7MLwW1Ea8/Hv+bNTXOe/h2kAtVYlUfzoOpQSIYbiB29Fbe4KaTfi0N3jqLkygcam6f9FqDmy5EhzseD5vaPg/NcY3YDMZC5eCbiO0KeXlOcejy9Rg/Owq1AT/nlRYG1ECUrDGJRSJgu+H0btICZASvmAEKIDeL+U8q/O4UdQDw2pzOI3zaB/aUY1BSbwpBDiceBq1K5lMnQXfE6hFlKcvh4u6KMthGhDPQML6JDO2ygY3zCaUKaWjxUcc6N2Qk8KIf4OtQBUoYSC/3Pu8W8F9/sUiqFOgFRR4MPYLoT4AvD/UJOhELcBv5XKvDUV3odiInuEEC0oofFPKOZ7cJL2lahdYuF4DzPWab3QoX0qWklKKedMMjaJ2tWPRwK1Wy1ECUqTMQZCBXg8hNJU/AKoBX4jhOiRUn4PtXD8TE7hOnI0kFI+ADww7ljhe8wANwkVQPfRce8ORufU8eI/pZSfFkLMRY19KUp7cDRoQvX1DQXHXCjGihDitcBnURoDDUXT35RS/rtzfiugCyH8zrXWSikPCCG+B7xXCBEdf10pZVII8Vbgk8CPhBDrgE9IKfdM1kEhxFrgO8DVUso+53A9sGW4jZQyIZSLTgOKYcPU87wJ+JYQ4huFtwEapJSPCSG+g2K2TSif9aVSythkfZuGdo8Xs853h+nWocsfOMf+zTHRLjoKngtFvvsV5/y6gvNfEULchlJI3D/J5d6MskJ8VQixDbU5exbFdx+YpH09EJFSFvK7wyjt4DAK+W4Tao4VxkOkgDapXBUKxzUd3c6Y70op9zhj/g7KwnM3asMwaeDv8WCmfPcYLz9bPHkYTSiXhWjBMQNlwUMIcS7KirkKRa8elCCPlDIuhPgz8DYp5X8IIYaAD0gpHxVC/CPqOd9VwA8MVBq5DwshzmZyGpsAoYLt7kUpPvY5h6ebi8MYP4+Hec1M5uLngJVCiIeBf5BSdo7vl5Ty7ZP1t+D8cfHcY4pMdh5sA8r3sh/FAFdKKUudv7BUjubDKBNCBAq+z0XtVEBpEY7m3pNlSCj8G/YxnGzxP6p7FaAT9UKH+yBQjKoDxWAahBiTqmVuwec24N8Lnk2plNIvpfwlgJTyF1LKi5zrS5RvFUKIW48wzsJ7jB/jGB9cofwIb+IITvRSyv0OwVU7/fiN897aUCbx8ehHLXxNBcfmMtZPR45rPyWtHMW73QmcXjC+gNO/yfzPFgCWlPIuKaUppWxHpaK5zjl/BfBxIUS3EKIb9V7vFUL803TParYxbk7NCqSUrcDfogQ831H+vA21SSik24CU8qtCCA9Ka/ifQI2UshS1GBXS3S9RbjU3ALuklAeOdF2nzw9LKa9CMfY9wJ2TdU4IUQ38AfiIlPKFglPj52oA5dYzE9+xNpTpuLBvPinleqdv/yOlPBNlelyCEn5eNhT57qnFd2d6Xkq5SUp5A4rv/gEliAyPYTK+2wmUi7G+utPx3TaUZriy4FmUSClXOmO++Ahjvti5zni+uwAlrO1jEkgpfyOlXCWlrEBtnOeh3B9PCbwUPBn1Lp4cR5dBKeWHnfO/QLk+NUopwyjLzAS+KoQ4H6Xxfnwm152GxsaP2eec/28p5YMFp6abizMZ81HPxZcbRyUMCyFKhAqM+RXKtLpdSmmjFqxvOgsUQogGIcQ1437+eSGE25lYr8fZ7aDcIRbMtA9yXIaESf5+7jR9CmV++pQQwhBCXIgKmnj4aMbs4F7gdUKl83IBn0Axl/UoP1sTJVC5hBBvQvl6DeNO4ENCiHOFQkAoJ/mQEGKpEOJyR7jIoBY32xnnz48wzlZQGjohRI3zeRnKnPHHcf1/IzDI6MSZFEKIdwghqpx3GnUO26jo2SuFEDc7z7JCCLFGSmk5z+bfnfE0Af+A0gJMwJFo5Sje7e+BVUKINwvlpP9vwDY5uQZxn7qNuEUIoQkhalEmpeFF+wrULnyN8zdsTvrudM9qtjDZnDqK33rH/U1YbKWUj6DGdPs0l9LGXceDeodvEEJcI4TQneOXCSHmMKqx6ANMobTE46Plf+Uc+zCKwQ9jyusKIWqEChgKoOZXAmc+jBu3gcoXereUcjxT/yXwHqHS6XlQ/sQb5cw0/3eg+MWwkBAWQtzkfD7bmcMulKkyM1nfXgoU+e6pxXeF2jhc6Dx3rxDi/6GsaIXaYpy2bqEE8LCUMo8yew/T1Y9QtHyFw7sahBDLpJRtzjP4inP91Sir3lR8twvlt/wNh5Y0IcRCIcSlzvmnjzDmp51L/Rw1dy925ugXgN/JsRrqwrGd6czxKpTF4b5hHu28Ey+KlwzzMs9k13m5cTw8eeKlxvJoVLzCEiHEOx26dTm8ZTgYLYTS+meEEOegfNgL8QBKaPwCSus7TCtTXvcINDYePwb2SCm/Nu74dHPxSDimufiyQx7Zd+SQ08E4ypn/WZQqWi9o40UtOs2oB70b+Lhz7jKUaeRfUdqMVpwgLef8YuBFlPD1h4J7XlnQ5nNM4tc4g76vdPqbRJlo3jhN2ydQrhnD399Ngc8PSqDc5TyDJylw0keZp15wntE9zl+hH/S1qB1xFKXR+DWK6FejfJjiKFPMn3AcyY9ijP+JWtiSzvP/AuN8b1AL0RdncK27Uf47CZQW4MaCcxcDG53324bjO4pyxr8bJRi1oQRTbbJneCRaOcpxX4nSHKaddzev4NwdOP5KzvfLnec/hDLl3An4p6H3Y/IZPoq+H+IIc6qg7U+Y3GdYTvK3aIr2b0Xt4D2TXP9zk1yn3Tl3rkPrEef9/pnRAKKPOHQXRZn4fjXJfR9FCSy1445Pel2UNvhJRgOXnmBcZSXn9/OcfiYdWh3+G+7bh1BuPcNzak7BbyXK9D/p80WljdrOKJ3/2Dl+BWoDNewb/XOm8b9/OWiEIt89KfmuM/5tzrkB1DyY1H8RJQw+hFJWxJz+XjRu/Nucvh4ArnGOz3H6HUHR+ocKfjPhvaEyKPyvQxNDznN72zG821scWkqihP/ygnMPAv9S8P2Zgmf8fcb6r89jIt859FLNp9mYbwVtf8LMfIYn49EGym3tzyjeN4AqMrbG+d1bUO4Icef9fmeSd/kj51pnjzs+6XWPRGPjriFRLg6FfHU48G66uXiIaXgHL+FcnK0/4XT0JYNQaTnulpP4hBZRRBFFFDH7KPLdIoooooiZY1aqGRVRRBFFFFFEEUUUUcSpiKIwXEQRRRRRRBFFFFHEqxYvuZtEEUUUUUQRRRRRRBFFnKwoaoaLKKKIIooooogiinjVoigMF1FEEUUUUUQRRRTxqsXxVKA7buj+sDTC1SeyC1OirtJ/VO27+lMvUU9mB9ON52Tv+3TIdR/ol1JWvZz3rPQLOa9U7SM7qTmma/SFSmexR5Ojwe16ye9RxLHj8I5tLzvtnsw8t4hTAyeC5wL4/X5ZWlr6ct/2hMBd8bI/3lcFpuO5J1QYNsLV1N323yeyC1Pis+9be1TtP/+jF47c6ARiuvGc7H2fDof/4/WHj9xqdjGvVGPz7arQ1+emrWUxNe649MZZ7NHk+OycotBzMuO9Sxpedto9mXluEacGTgTPBSgtLeX224+N355qaLr11THOlxvT8dwTKgyfzJhMQJxOoJzs3KksZBYxM3yObzr///6ofvehJ/8w4dhsC8ifau+dcOwrRQG5iCKKKKKIIsag6DNcRBFFFFFEEUUUUcSrFjPSDAshfoyqa98rpVw1yXkBfAu4DlXK791Syi2z2dGTAa9UbXFhP0/G/h0rXk66HdYQq89HpyUeRqG2+KVyoyjUFhe1xCcvijy3iFMVRdot4lTETDXDP0HVlp4Kr0XVul8M3I6qgV5EEScaP6FIt0WcmvgJRdot4tTETyjSbhGnGGakGZZSPiWEmDdNkxuAu6Sq4LFBCFEqhKiTUnbNRidPZgxrUmcacHekdq8kzeyJxomi22P1Iy7EifApPl5NsW3baNrMPa+klCglURHjUeS5RZyqKNLuywcpJVLKGfPdIs+dGrMVQNcAtBV8b3eOvazELaUNiCO+bDM+AEJgBMtfno7NALZtv6xE2n64g8rqcrw+39R9yiaRlonuDx/zfazkIMJwo3kCx3yNlxAvC92apsWz0QBhLcfqcnvKNpF0jurQ1O/D2teCuf8w7pJa5OoGtHBo5Jw082gPbUemM9gNQVg0B616dum7+UA7v33sAOetquLiC1aOHM9mMuzb3cwDG3uYVyG4+S2XjtByV0cPLc2dPLN7iEtOr+G8c5fT093P/Q+9wEBG59brljNnbt3ItZLxBPlcjtKKcg41t1NeXkJJacmYfrQe7iQyMERZWYim+XMm9LOrs4+9+zswDJ21qxcQCB2Z9h5/ejv7WmO89vy5ZPMWi5Y00d7WQ0dXhFVLG3D7vOi6jm6cNDHHJwXPBcV3hZh+MbYyCWQug+4PI4yTJ+WftC2Epr8s97KzKaS00b3BqftjmVjJKHqw7Jj7ZWdT2PnMSbW+jcPLQrt7o9BlBjivZAive/J525/IUOIxcLsmPz+YyrOnO8GQUcaSUpsFJWPpfMuAxg6zhup0K4tKdRaVzm4YlmWa/PAXz2Bo8N5bLx0jI3S2dfLwk3vpT5i8/y1rKausBCCVTHJw/2GefrGHgFfjtrddSj6X48GHn2N7a5bzV1Zy+WWnj1zHtm16O7uondNApD9COp2jobF2TD8SsQR79rUR8OgsWDwXj9c75nwuk2XziwfJpdPMn19P07w6joTWw1386almzl5RSYnfxZw5Nei6YPPWQyyZV0kw4MPt82K4Xh5+8bJzdiHE7SjTCHrJ8efSs3MZ7GwCYbixM0mwLYzyhikFy2zfIfRAOdLMzYiJTwYz3g+2rRiWrl5UoUb3aNOypZMpfnDPcwRc8Nn3XTbh/Gxri/fsbuGeZ/pZXtPBzdefM+bccN8//6MXsLNJNG8JVjqO7gtNdqlpYaWGwOXDjPcjMgk0w40eKJuVMbzcKKTbueGZbVqGNcR70n7u9n2PYKqb1fSMnJdSsiniwicsonaQ/Z5FrOrYyFl13gk7/T19afRDbfhrFpHdtweq/BAOIbMZcHvANNFNN0iB7LCxc73ISYRh2dEHzzVjL6lEX7kQe3AI7UA/9oIKPjXJGAq1xQORKCl8JJI5bNvm4L5DzJ1Xz5/+up3tnZJcbwe7rLk89uQ2rrjsdGzb5q77d5GzBabUSaSyADz+3CEODZjoXjfZTHbM/X76uy0M5XTq3FEOZatYUNbGu246f0ybe/+yj6F4GiNYwbuukMxf2Djm/GMbWzgQcZHr3U9Laz/vfPtrAEjGkzQf6mLlivlouk40EiWXy1NdW0VXX4rupIuHn9pDh1nOTXmLp1/ooDsb5P6H/4Q/FMQTDHP7TWvZtqudYMDDmtMXHYECTg7MNs8FMGP9CF1HmjnQdITumnLTbMYHsPMZ3OUNmLF+jJLKo77fsDAtXG50X8mRfzAD5KPdCN2F0I3j2vDPFHY2gXD5sLMpNM/ked+tZAQ9VIUV78MoOTZLjZWOoQfLyXTtQ/eV4CqtPfKPTlIU0m44fHTvaL9ZTl9gPgtT62ksEIZbYjYd+QB1YpCn3edS3bOdSyqzBL0Tha7ftPrR55xNfrATslkWMIRt20gp0XWdgayGFaricCZDl9FIVWID4eDYd5vPm/ylL4jHTnPlHIGUkhciBkHdZEnp9GuJlc8zlLJwu3SklHR19OB2u+jrj3Hvun7EQA+mO8xdf3iRj7/vCoQQ/OWpvbzYAXo8gV2m5squXYfZ3JxD6C4GIvEx93jiqe08tT/P6VUH2dmWRnrCfPgGncqaUV7xxIYDbNzZix6q5Jzu3Vx31VgZZ/uuQzyyM0uuvxPPlnb+7RM3AGqN27vnENXVpZRXlGHm87Qd7mTewrkMROL0Zjzs2NPB4XQpq2oi1FcFeHRXloef2YCwTfRAGddf1EhJyMuh9ggXn7sUt9czg7d/9JgtYbgDKFyR5jjHJkBK+QPgBwCeusXyeG9sxvtxV8wh230ANA2hu6dtr7t92KkhEGKMIGxnk9jZNELXjyywSdBDFVipodnZfUuJJQWWfdyPY0YoKwvhS+9koN9DNpOZsMsr7Jedjh2zAKu5feSj3Ugzj6usDisROY5evyQ4Jro9q16f8YuSUhLPa9Rk9qDnYtyVqsRvp3htfYZkMs1Oz8VY8QFcmQG0VBs7qy7BPfg8ayrG3iJj69iZJPnBLiyPRFtYi93eg3tLhFyNhpbKkzdSWJVudFtHzi0ZCQiQnb1IBFp9FbK5HY9RSX7/IKwE7VAEb8RLRotARenYvrf38qfdnVx6zkJC4RAbdw2gZdKcv/ZsNm7aw8PbM5zbPkTYp2El+/F63RiahctQGi3LzDOvUoDQueLCJVTUqMX9rOU17D/YRS6fwe8fna9mPo+Rj1EiDVoGDbD6aVoxl96efu6+fweL5wR5w7Vn0VShsb0/TlmJm/LypROe+Vkra4k+tYuekirKwqML3KPr9vJChyCd2c85Zy/jrj9uZWAwhcfj4rK1NVx6dgUdPWHcLYNUlAbIDg1gpQYxXB50IUAIIr19/HVHigB9LF5Qx7d//Bhut8HH33/ly6bBcHDieO5QD3qokvxQD9g2QpPTazGlhebyke1rxVU6KuBJKbFiylXHCE9fvEbmMhgllZixfpjaeHLUEPrLpw+y0gmEmUNz+acUhoXuwkoMIIxjX/ClmcMc6kUPVSAs65iv8xLimGi3vr5+xrQbT+coy/ZAeoj1pp/MgM5F5UkWlrnYkKgkU7aAvc0b0P0H6KlYwWPx/0/ee4fJeZb3/p+3zDu9z87O9qZV78WSLPcCBtvYBpsSAiSUwHEISUhOyjnJIT3npP6SQEIIgQQwhI7BDeNeJVmyetveZ3Z6b2/7/TGrlVa7arYAQ77X5curmbfP/T7P/dz39/7eM7zNtnB+MgwDzQQzG4Vaia2BDKZp4XuzfjTJyipplpzsozfxAqLNhb2WxxNoGGepphKrCPR4RKqqTlQMITo9ZMsH0DSDQ/ZduMpRlp8TDK/WNQ4U3dQGJlm+vINnXz5F0bBya7+DQjbLFx4dxSXWue/Nq5CqA1REF36bgM1yxpdpdkGrrcCt168l0tp4r5b1tdL86jjRdAl/oG3BOfV6FUc9QyKvUK0btDiLuD0uvvqtF0kVNX757Zvpa3dz4NAIYlmnPbJ80fNe3tfKqvEjHM3KOJ1nxoLhgXH+64UUvf5Z3n/vDp56/hgvnCpje+QYnREPH7y5G0lu5Ue7J+huC5BKZtGTUwiijIyOKQhgmrzw6hRjeSvNwSkOHhlnNKlx7819rFrdd6kmcVFcqZHg+8DHBUH4L2A7kPuJ8X9MAzWfBElBcvoQJPmCdAPR4UM0tEVpe6NWOTPYXgSCRUEvZhZEOM6NBk9PzfL03nF2rGthWX/HuYdYALvLySfetxPhPLyfK90wozkSwu33M1tRSMymaO9qW3K7i01QF4MgK1j8rWilNHopi3yFolJXED92u/1Keg2/U/wFRMWOXbKi2sMkcjEOxUusDyqosVEkbzNVzY1NAjk5SNCrMZ1VmVUVhmjlOvsU65tkHEoFvzRIyG1HeOkRZgoaT9Z7WTsxzWFLJ6JmxZQsmO1+xHQZs60Omob4zAiiKKO1JzDX9qK9OIph0RFfOoXmhHIlih5s57QrZ9ZqiM8NIhQq7He28nz5IJIuscpmomBhz6FxIkEHbc4qzYEgU7MF2nwSkXA3d7112/z7V0ineNe9N5CJRfFHztjSsv4OPnivhXyhTEt76/zn3/zeS8zQilycpMlt445bNtDd08b0ZIyyaaVc1QBoaw1xLO1i9TIJr39xtGjF8k5WLO8kGY0RPOu8fR1+ssU4ne0NaoWTEtFiDlNppa5DW0crbR0Q8E7yuW/uQxdcyHKNt926mg0b+jANg2KxhNsYIeSRyWRylHQLVd1GvVr7STvDP70x12JFzcYwqiVsrcupZ6IXXDBL7iaMchZrU+fCL3QVwWLDNPSL0hVEuxstn0S0X4BiYOjohSQgcCld9mRvc+Ma5AsHUK4UJLvnonPMlcicKaFO9FIWQ1eRnL7XfbwfA36stlus1PhWphMNEdHhQs3HESwKrybKNNlVLOUkRcmN4evAohYxCrME5TTpcp18VecVvZseMcnWINzVXkHVJmhvkZEkpcHPRUc0dTK6QsHVSblc5W5/muMVB6lKnZBDYk8xwGDJhrMicI9/mm4jRrZcYLfoZ7mcJpg9SJNQ4uyV3aspiRMlJ2p4NfUjM0zOpCkVS4TsBplchbHxJH1BAafdwVQ0Q4tHxAz5ueumFYTCQQRBwNB1Vq1oY+0aC1aHHcXWOL7T7eSD79rJ8VNTrFl15j08cfQUL46YKLpJogQ3bQxyww1bECWJcs2grMnomkYk7EP0t+CV66xft9gBdXvdvPOeq7ktk0WxnnmfmiNBlodm6W33Nf4ddKInT1C0ukjlqnT2Nsbi97c189kvPUs6W0IXFPqarfzy++5EV1VkReHkUBRnLU9bpJMfPHUc3d7C9FTyJ+8MC4LwNeAGICQIwhTwKWjMnaZpfhZ4hIZMyhANqZRfvmJXeBFYAm3oxQySzYFg6khWD6amopcaq7xzHTrRYgUWr7oll78x2Nouzi+U7J6LRidGJpIMZywEx9MXdYYBZGXxgFzMpFFrNWTFijtw8Qi0aejoxTSCrFw07XfXTf1kssXzOsJXCoIkYzkn3adXi5hqFUGUf6yD9RvBbiv1BudaNFR+2fwu/2p+BJdRZqDpWhzl/dzmjzOi1nCS4Jj7atpqIxzNW5my9CLnZxBamylr04iiyHI/zBatHM8IrPabtLpl3uscQxRF9jW5sBxOQB3koRwWzUVlKo7Q3YZBFcnajFCsIPm9mHdsRH78OHLWhhGdQjHdGAfT6B2tCJKMWa8jqQr1UpyaMYkpyVj1FsI9ThRZ4rlBla1GlY+852pOnhjh1WmRTo+Lu28/Q7mpVyto9ToTJ4/jDzfStIMDEzz43CirIhJbt6xk1ere+e3Hx2Y4MRBFtxSQZAGb3Up3T8M22zoi/Pq9VhzuBlVn5/ZVtDZN0Nm9mC+cSWd5af8Ym9e00dK6MD3cFPLQEipitzfe/2BzmCmjhRZmuP6a6+a303UDbF7apDQzYgeDU3k2bRJBFClkC2SKdWqVKu2drbzzhiwOlw2H+/xO2mvBG8F2zwfZ4UNHQJStaIUklrlFrpZPACBanQsin4IgLOnkCbICtTKCIF6UHytarHNj9/lhVIuIDh9GpXDB7c6+Ls5xhE1dZdcyhXRR5WTi0mJFeinTqK1why4YiJEcHrRCEvE1UM4uF5LTx9lP9HIXCq8HP23btUgiuq4jhzroir3ApNKBXi9TiGzkmWKUOzqi7MlM45HLDMst1BQPwdow3ymshUoeMRCiUC8AZVrdMtU6HMtb6LLX8Nos3BUpAAU0TWd64iCC1clwycpJ1zrU0jGudZSRqzkE2YMmyximyS2tGq+mSxx2bEJNHyFuaybl8BPO7qfP1/ilcqaVqrUJOX4SqyPE84MSPknnPbf18y8PTzM4G+O3PtwYp/7u358lr/v42C1tNDWfCcqlY1F0TUNX87gD/dRrVb7w9T1IRoXrtq9g86bl8zZazBd54vljqAUZyawgKi0s7+9AlBrX8/57t6HWVJyehr3+yp39WK2LF/ymafLsC0dwO21s2bwwaux0OWgNOQn6Gn6V0yZjaVmBXI7zS2/ftOAYqiHgsIkIipVoWaFerWC1N8aR6dkCOVVmejrBh+7bxujwNFftWkjxfL24VDWJ91zkexP41StyRZcJQZQWcdAMtYpo92JUL21QPN9xzoVWSIGpIzn880Ug54va7tiyDLdjguX9rUt+fymo16oEIq2kYzPAmShwh7vBs5wsLJwcGtHqJurpGUy1dsFBr7UtTGvbT0dn1qxXkVx+1NQkhlr9sXHa3gh2u8GVxVKuckP9Bd4XOsn9wsfZr3Tyu0U/YZtKq8tGJzXAQ39pHy6fhScSDiSbk1rNy9bsy/S2NQaE44kaL6tdiP523LmX6PQpJMsGpVqNd5f28yOpAzVvY2f9VUqCg5c772hEC8JutFgCvSYgDM8g9rWibWpBK5RB7kPfP47pssGcQyK4XNT8NUTdjSI3ozXXqBp1npobdMV0gefCQV6YivPnK7p5S+EU7a0LF1WZ2Vlcfj+iJM8v5EqVOhatzL5pH6diR/jlezaSz5fo6mnnW08MYNi8WNxB3GqU265bSH9w+884U4Ig0N3XteTzPnR8mn0TJqY5zR2tCzMRew5N8uqkidUyyXW71rCiy8fhUyexNzvmJ4jJiRj5QoX/+b5NWB0OTp0cpf2s9yQY8uN0ezFqRf72357m3betWlRsciXwRrDdC+F8i23J6Uev5M9LA1i8ve+C3xvVIsYlcoUlh7dRsGtpOLiXW7sBkE8lsbvdjaxG5MzYXcxmqFcruHx+/vKBkwv2MXUdyRWgPjuMJdCGqCwdKRFkBdl9+XzpKwGjVka0e9GyMbR8YtGC5Urip227VsWCT6hSSg6zOaizRZpAlkReKMgExSI2q8L1EQ1QWFmLoRtREoIDUXCjVoqE84NcG6kAEqmKxmMzVtS2zSTyR7jZVqVS15kpm1hR6fTYGHCtwMjvYV35IL2OMmChw6ExVChjFrMcwsU19jpr3VWcxb2EPTVezhoUqeA+6yfolbOUclkSkas4SBWzyyDq9PH3ugitGlWna14ByFgVQKjW+AdThrnPxGqFt6hlNnd38Y9jU+Sm4pjlMtayhk8U+NoLKcrxZGPx2d4MB8eRSlaUYCvFzCi0SXxGlOaPN498BTi/2lAyOsszJ2q4xMwiZ3h4cJxnB1QiE5P093fQ1d2K76kTlA0dw2yMudVymf2Hx3jvHWvx+b3MzmYwTGPeEQZobw1QTEp8/5kBrt7cww3XbnntBnIevGFKo18L9HIOU1MRRAnJdWaylOxu9HLudb3spmmgF9KI1rP4XaaJ5A41nE538IL7W6xWNm7sf83nB3AHgqRjM7j9Z6LCpq7xtmu7Afj0DyYQJEujiLCax9Q06ukZEAQQxQUyKmq9zp6XD7Ju3XK8Ad+C82QzOYZHY2xY1/sTSfVKTi+16CCi0/cTq+T+aWG7O85L0u8R153cqv09u2ov8YWmB2ifneXJbBP+Qo07WsoA+JwN7vabmiuMpF4h7gyxytWY2NOFCnvsO9DLU9iTA0QiIoZh8GiulRoSFtlPV/0ICEV6A1bGCgacnIQ13Yg+LzY9gppPoGca5xKb/HAqhljQ0G5dgzCTgcFJWN6JkUziyLhRNZXKZgWprZFWmyfxVKcQj05jXuNGFEW2X7VqwT0Xsxk8wRCpmSlCbY2sSD6doqfNS+DGHvaczGFB4puPHSNasqAU96JKDnr9BoaQZkpo4+kXj3ONZtDT23Cyn3pqH7quc/NNW+cjFwBqrcbzuwfobPOxbFkHW9Z1Ui2eoLt1seN01fp2rJYoG9Z0YOg6TU1+LC7/glHwsRdHmC7Z8LrjRJq8i9JwdpeT268K8eTLOdJlnamJGaLxHE1BN13dr33h+7MCU1fRi2lM01y0iBVtbvRK/nXVUejlHJjGfCTZOM0VLlycvgavn2bgCYbIxmfn08unUa9WCERaycTOZPO1XBwEMHWDenICpbkPvZBa4AyrmSggYPEvfFZn5hf7T0RpR7K7UdMzGLqK7PRhvM758Y2OO8MZTNPkR/l2skqYtwlH2GBP83zKzim9mVsdE4RdMva5SKfLDu7sHgbcQdqVKvJc3cOeUphqMIIRH6HDmQVs7Ct6OV5QsDb30ZHcR1gcpd0JFqnMUMXJarGMQzYRAl3oJRcz1IFZFIuMLJr8sNLLVtcMfiXKeNWKV61itcgc1yMk2/pYn3qGvTe9A8Fm43SewXQoSGNFdHcKoTmI2LmYwnibqLOprY3PHj5Orq0TqVqhVa1Q3uhhp+hm78kZKgkBR85Hec/LWGQPmqJSNKewOZrRZgqY0gjC+kbGzpiIwtAM5pZ+JO/C8fTwkWHyhSq7dq6mqTXCratnMQ1hUQ1ST18H18XLtEaCjaJDi4VgyEsly3yN1CsHR3nqRJ10boobdihEWoKLVHtuu34l5Yf2MFp2MD0ZZWTISzpbZsuWFVdMhetn2hk2tXrDOV1ioHy91cF6Id0okiukEK2ORpqpVkKvFlGalo5KXSrGRyZpbgnx/756EvQ6IZtKomZDEKUF0QxBEDENk1Iuhy9sm/8uE4tiYvKpj2zjD//2EQxNRfI0YWoNJ92sVUAQMOsV9HoZyRXk+w/v5vCswt4Te/nkx9604HqefGmIozERwxhm29aVwIW70jVSbnPydK+BB2xq9QavrVoEy3mK936O0OLQ0aoqHfkhOsTZRjVx0YXh9iFVTvLclEi/16TF3XB8RVFkWZOTZVQ4/Yr6nFZWpI9jtdfYEDCR5waLZmOWSakdqRTn6rCBTSkBInvqbdjGTd4+9lWsisK/y91gqSL0dSPSSEuJVQOhYmAeH8cypSNIMmqPihgKUe0qgbUZsW3hJG5MzWIfiyO6gnzd+wiTUwFKVYEyHrAH2OE/wl77feQSCdRajUImBYBWr2FzOHH7fNyy3Ys7GOKLDzxNPV2mLsjIFivdXS6uvnotzz17gBfHXKR+eJj33GNFr9d4btiknpzmwHCR+9+zDdfc4Dw4NMXzQxodsWmWLetgaDTGC0fi7J4UuUsbYNPGM5GK5kiIN0VCPPzIy+w5kWFNt5Nff/cWrPYzNnjVmjCTsQIT01m++uws1/VbGIrV2La6mU0bG+oRe4/MkK5b8UslHtqjInnCNFkT/Op/A2fYUGuINjdGrbjoO1GxISqv7302NRXR6mhQHmwuMHVq8RFkz+urX0gn0+i6MZ9SzszGsDld2F1L01tq5TI2p2s+OKBYbaRjMzi9frTCUTBBr5eRvRGMQhKLN9yYKxyeeW6zqdZAEBHtHvRybsGctHB+uTRnWCumwdAR7Z6LUkaWgiAr2AKt1OIjKE09l73/zxKsSuN3c5tltFoSiw2ez9jISD5kxcvJtEq0ZLCh+QxNJuRzEaLG2b3I+uU0Tq3Cen8S/5xEY7ulyAB+9HycNluNVcEUIPFC2s2QYw2W0gE2BjS2xPcyWLay2lXlNDWzrAmU7U2MZqYZtDiZ9a3DVnyF1X7YaE0QLedZ32zjlbMcSqNQhIMjyPYOtJEoTU4LLeU8hgnbm8M8WqgQdXsZr6ko4+NcH/DyQjFLvyzx1jWr+Pzxk+w3TbI7ejCHZ6iPTiGqIqLDCUId6aZN1BNp5N15OJ5BZQBp/XKkAzHEuoTwxCjqugCcFRn+0Z4pCqaT/s4ZXB43z746Q83iZTJ1kPfcs2N+O9li4cbr1jI9Ncuf/cNjiKh84peuR5KkeWrZqv4WkrlR2oM2/vHrR+kJikgiyKLAO+5qHOvk4BSjaQm/UmGw1MLk46eoKgGC/kl6+s6pRXiN+Jl2hk8PJqdTbXoxg2noIIqIiv286apLgWh1NBy+uaI2vZRpOHDF1OtaiRw/PsI3XkyztiUGyFzVa+W2m6/iS9/azVh+YZS0kErij7SQi88u+NwfaWj4qbUaSDKyxY6amkYJtWNUi/OpOC2fQHIF0Itpeja3cXxijPb2xgutqer8QL+mL4SuJ+jtvrQJx6jkkVx+9FLusu/f1DUExYGejyMIAvJPgD/3RkCHrcITttMtmwWutZzg2aqTUs0k1rGDycQp7FU7rWaCFqVOp9eywM5EUeTqkMq5TSNv6xCYyY3gt0vYlDNR/a3KFLXaNB6/vfGcNQeKNUzl1VEE3YpBBUqgO2QcaS8V3yxCswfhdGZgTff8sRpZzTnu53NDaBYXUmaSmYxErvtuMrNRjHIWj6eJmnoEi8OG3e3GNA18Tc2UC3kMTaeczxNobUOcy1r0tTqYzmpIWoVqtczhYY2bbrazcWMfr554iZynm//89j4+9t4ddFjzTFsEBFFmZjpGp0XG5nDQ39/BdalTdLWHmZyYplYuYUFHrqVBt/HN7zxLk9eG4nSzcW0X45NJjo9mEF0hKqX0Iq7vhvXL2LAedu85gd3MUSrpzJTtTMbytM8msVotFFURyemlFJ9BUPys8hXp72v9byFoL9lcc1m3xjhi1MoN/VxAlM8vr3bJMA2MauGMBJwgoTT1NMbiS6jnWPKQpskXv3uYminxyfduploq4gmGyCVml3SGDUOfH3dPj7Wus7Nzag3ZF0ErpDDrFUSLbY524GyMuXMBGtHuwSimMHUV2RPC1LWGDJ0gINpcC+aXS302jcxk6rKcYdPQG+pJooSWT2Lxtfzc2+lp3BCuATVAYZm1xEzZDdkpBj0bMOoVYlNTqIqXdXKUgEPGfY68Wr8P+qkAZ2yv1yMQtCSoG3GanGd+h1X2PJbyYZY5K4AFZBuFli2Mpw5yPBEgrEYZlruJzO5luu0amnInWFU+Qo9LA2RaXBItaDDH9j49nggvn8KCl3p8BHp6ud1pZXn/BkaPHaGnpQVXbgCAY24/y1IzbOnvJ3rkKAOmgmt0lKikUHY27NzpsSE5FQqlMka9gmRa0WIJxM42VOcE1rID62CNmmsa2uyIp2axOEMYpRKJ2eT8YvLNOzrIF6vYXW4mxqPYZAG1lsUqenjxxcPMzKTo7W2hKeTB43bw+NNH0F1hjPwM4lmOMECoKcA9bwmQjKewH0xglRVOxTRkdMqlEtlMnnxZa9BYy+NohSR+j0Z7l0jbFaR6/kw7w4IgzvN8jVoZrZTG0tSDGh9BcAcxBAHxNUYeF9AjAMkVRC8kECTlvFy06EyCgyeiXL2lG69vcZq2Vq3ywEPHES1WDg2C7AmRz+Y4sP8EiWLD4Tg7CmuaJl2eUe69ZeWS58vGZ/kf96zE0HT+7YeWhi6w4piLIGiYhoFeTCPaXGzevIrNmxvp7CeePsjuExnedWsf/f2drFzZxcqVlx7tlpz+ucYll9fRRiuk5qLd2utWqvhZQ0WDHxb6uNE5ilcx+HT4QW6o7KJo+NCycTzlGXL+Xai5KifcK9iW2c/awBkloVxFo6BCUZcwEFh9Vja41bt4YjyjX9n4/zvVY+xPmIwZIaRgJ8HsEHHfMmoRmWomh+4UkUfimOMpuHktgrVxTD1fQHr0CILFwv++Osa/2oPkrQF+cc04FpuPzInnkCWDHmeMiKkS8Clcy39RtKg8VL2KqYGT9KxrCLzn0ynUahXDMEhOjXPjrbtYt2qSR18cI5aqcts1PUxOxPjuj45R0O1IqXGKipNiocKH3n8z8Wic7z2yj6+9kGX5qTTvuWcH8dkM5ZpOMZ3i23uLyFqO3/zw9fzzt4/z+PNDlCwh9BNjSL5WqqrB4ESOguhjV0uR9Vs2ApBNZzkxGGPT+i4mJuK4XHZ2bF/Fju2rME2TtlcOY1dk/u37g3gsddZ0uRmbyiB2tJFXZW6/dRNDo3H+8rPP8ObtbYt4cz9vOO3wmoaOmo0i+1oxiulGVLSQuiiF7EI4t85BkC3ohSTSeY7ZaFKRaWgFn4ciMT0xQ5tPQhclFJuNUi5LfHIc5TySkhbFRnY2ij+yONKfmY3xux++mtHBUVZ94O089fxxImE3bc0+Xnx1gp7NnRwczrJ5xzLWrj1TIDo5EeXLj5yiXKhg8UVeUxRdsNjQ8vHLKjqeX6xoNSyBH2+x9BsRU3kNqwRNTpmVIYWZRJVxSzdqLo6oVUg5gtQ0mafsOwgXJ7n9LHk1TdOZKIJN0JjRPaxxFbHPBRy89sV0wqBdJmivMVcryGqPSi3xEsdLCrq/DUcqgWm30uSUsRVPYqvFqaoyD1bDXOOI0+47E6Xe8Mi/MljZyN3d3+JIbSUD7jfRaZ3gd7r/N0OpXyCWcNAqncR+9H/yKX8FYY5/e1K8nanDSd4p/jUhV5lS1cJbdRseLc9U1Ep55X+gdUD82Nf59tCdbA88x3sje/n887exL70MDR1DELkv+xDv2LIPc7PJV17ayu6RHfzbrIX77xFxOJ1Mxwt0tvj45y+/QFUJ8bZtbQzNVDg6a3J4YBRdcXNg8Djt7WHW9PkZrwXotSbZelMvdqcDwzDY/+oArRE/VkVmNp5l9ZpePvnhGwCYnJgmHk3y4ONHGUgI3LJKoknMEmnzUonB9m3L6OsO888P7KbJY+G99+163bbyM+0Mnw2jVkYJ91CdPIZodWGoNWTrwlX//Ar5NTTaEAThoiLoew9NcnBGwGWfXNCh6zQeeuIoFl8YvVJAdgWwG3nuu+cajh8fpWTY569xeVAnUTTIqjYmCvZFShK5ZAJdU6mWiji9XmwBH5ItB3OdjYxauSHcXkwtWbBhmmAiwAVUG9OJFFabFed5quQFWQFDQ8vGsPgv3m1m7swNPvN/Q3wxfxV/5fgNPlz8An8QeAK/zeQh8w84Zfr4x/KbONB8DWIpjUUtIGQmOKUrrPZVSJYNnih3oVWy1K0BZFHEtCj0q8eJV0VerTezUYnT7hKI5atEPLb5xclQttHVsM8rMJkqMdl0E0YuTlv+GG9u1/nnfg9yezvGV59GwQl6HUuok/Lje5AEF+b2HsgUEA0L6CJ/tW8Na31j3LB6mtvXuXkpvRb/qjW0z34Vt01j92QT1hkDt8fBxqYobf1niuCmhwdRrFbKuRw2hwMTiI+PYXU4eP+7r8M0TbKzMY4NJ8kQoL81y7VXrUQSZVo7GvY1Pp1huubBqmdoDjY+e+XoDIdmQKgVMcspBOp84WvPU88VaY94EbKzlJu6sdRzrO5fRWfESzSe48SYwd6Hx/jo2yRePtB4b7OpV9k7ZcFvqfGJX26864Ig8MzhDKW6SYtHwu+xcfDkLPm6zJ07I2zdvg5D1ynm85SLZZ7aO0Ek7KWt/ed/sacX01ib+6jGhjF1FdFiRZAWZrdM0wTTeM21AReLNJ+WbDyfXNmxYyN888UUG9rs3HP7VgAEUaC5s5t86sw+uWQCrV4n0NK6pHKPWq+RiUUp5XJ4m5po74hgURTefPNGAJ554RgHp0GWqrz/3h2L9gcwzQuPfaZWb0TrzlecaHNhVPKN5lIW/dI5v/89h1yyxQpPCNtwlJO80xkD4BpfntXFVxiw+RgS2ymWcrgtVerJAZKSwkxBo9Ut81DUSc6wUrG48agZysEV2Ev76BdUnsn68YoVtgc10qUaNlnEMcc9TpU1pqpWVrlriILAMbMNs6MTbeoo17eXqdQO4A7a2DMT54jQBbUK1rZ+XplO8lLRxWpnmbV+g4FsH7rTz3ePXYfg7+XetkfZ1LqflLmD4MYPog5+mh7lCY7O3sR41I8v6KNJ+z4rfQ8DDwOQKQcZ0D+Bp3kVUzPfxbruvWSnZ7BVDnLL2kFuWft3ZIpOoik7B/PX4HLE+OD6/8AwRVa3N4roVBVeSN1GrVqgu9nA7rAzMjLF7lGDydlp7BaTcjHJM3tr1AolLIqTjlYXQ7MVpKZOukM1Nq/tRNPGqVe8fGNfjRsKx2htcvLwwTIdrgyiAOMFhV9Uxlm2vBuAw6fivDJu0uco0uywMTmTJ5o1kTH5/Y/dhCiKTI2MUqrUKBQrPPfiMa7btdjnuhz83DjDCAJqegaluRdzTjP4bBhqDaOcw9TVK7JCrpRKfOmbL2Mg8ZH3XoNssbBzcyduV4zN67qX3Kc5YOfg4AzCXESggp0fPn2YRK4ONFaFfrnML7z9Og4cHOT7+xfz8gAMXcfl82PoBoGWxfdyJpqydOXyLTdu4MZr1CXl3KDhCH/2wQGCNo2P/uK1Sz8AQcA0FrYWbkSkDQTFtmTLUdkdwtTV+a59/51wjXWYV4qPcYP1OACGafLX6evZrEzyxfB/8QeJJI+43k6yVkXEQs3RjKYNoxqgWj1QymIiIJRTrLLlsfgtzBZkUs4eZktZEmmTQ45r2ZLZz/qAiaZpvGCsQjDq9BijnNQiDS5jKYnHBU9EZRwVnWphBEUJggAVpYzKFE5LD1o+QW0qilTUqXdaMZvd3Jyf5NoelWtW6oykrLToR6hFx+iKCDw5vgzX6qtJjA8jhbtIZL5KWp+hUiziCTbh9jW6D2mqSqVcwjRMTEx84WYqxSLxiTE6V61hhaoS8Kn09q5c1Cp804ZeZEmgt7t5Xl/4mi2d+Nwxrtq4nDe9ycJ3HzvIgWPTWMMrsTkL/MZ7buYHTxwm5GtlfCJBKOjm2l1ryRf3I0lV0skcyWSWdqvAwaEiPquF9csWvlPdzXaqdZ133XUVoiTx/z7zQySbgz1HZpiJpjk8mscULaxsszJU8pFKF/5bOMOiYqeenkZ2eAFzSTUeLTeLKFtBFF83hcI0TdTUBKLinIsE++YkMRPn1Qr2+1yEbTM0B884uAICmdkYntCZ69U1FX+khWx8Fn/zYnUQQ29UtwuCSGCJiPG2Dd1I4hjrVi2W+wPo6Gzhdz8U5M++dPS896eXsogOT6Md8/miv6YJZ427pyO/CCwZ+BCtjsazuRw6xs8JXDaFnswwTrE+/9mprEmi7uSGlhqB7CgHLQEqih9VL6IE2iirGQBqohVdtGMaJgUVmpJH6A3XKdZ1ZmxdlKqzpEpTPKxvwl+OcmdTY7+DlQCTzhVYi3vR62V0xUN95hSdLpETSZWjnu205iaoWHQUfxeWyf10pPYw5uxAs3qZKQ9QrKrc0vkMXf4E05UuKtoAt61+kUSpDbE6hHbyT2gSdjOdX4l32x9THDyFbdlKMqdimMW9pMSbsBcfo+x7By0rbmLm8MMEiFFKTWDRZ+mxPQjAgeid2JZ/iHr6KL+z6a+wWjTaQ+UFz1BRBH5j878gAI6djf2Wr+jmltwp2lqa6ezcwbEjg3z1+wewRlYiVdP84ntvZffek0zECvR0Rzh2coqbrlvDwMAEI/FJAp4wh07O0q5UqOYrFKsGy9tDtLScqT9qb3YznZjl+l2r6exq4dvffhbJ7SaTm+DBH+xmeDxOpgKb+twcy7iJJpb2lS4HPzfOsOwOomZjjYHE4VtiC/OKrZD/+N8PoGZjjUFJsvBnXzjAH330KsLNIW5qXtoBPU1/WDBhiBb2jsNpRxggo9r57sP7iWbrwNJpNH9zhGImTfAsOasLFbydC0EQzusIA9jsNkJ2jaBnoUTR2ceVbC5MxQ5zUXaj1miFPV/QuIQzDPy3dIT/Nb0Fq6CxUzzKSbWZa5jhyzPdPBj4AI/mJvgl5ff5gHM338/uRDZU3m8+yoete3mytI6ibRf3cYBBr41DJQU9vBx/bR8AG7x1goUXafNKTJYFPMVJvFYdEJFlmU0MIYpQrtYo2LrQ05NYw72c0uuoWhl7cZY7hyZ4qH0tmCDvuB4jlaH6zCkMN8iTGjZrGzZxluyyHv5P+wiCYOFY1E46chfxwcO45SIbpCLdzlmGxvYTqQ3QlDxIW4uVfSNpXL4w5MbxqONYJBO19+5Fz0fXVBweL4nJcRSbndVrli6IOHRkBK/HsaDRRigc5LqQn3Q8gSPSzJ23rEWo5RlLxrlqw3IUm5V33LGNseFx/uPpFB6ifLKvndvfvIXZaJInnj3MeFZkdaiOZgvR2ixyw7XrFpz37XduBxoSQOPjMcqiC0clRtrXR/TYCaytqyA3xZtvXMd1VZXOnqUdop83iDYXEqCX8+dtGARcsXG3QVOzIFidmGpD7qkhiXn+It7WtjD3v39hRu80D/hsiKI01xxm6SyX1W7HNAzs7qVrHJxu55LZwLMhK8pFKGWNjp8XKqiT/a3zkXajXm1kGT2hC3b3/El22XujYLqgM6G66JSzRA0fpVoBp1Vmn94FgVZOxJ5mTYuL/bkKdRWayLK1NoJpcTKSM3hbIE6yrPFMLkg1uAxbdQS7YsGuWHhL4QA2F1hEEX85SlA444itVDLYS0fpdOk8p0ZQS2mcQo24bz2TU6BIGVxKjT5XncHSINs7VHx2meLELLlykpCU5FDoRoYSPfzdlr9hh3UfgiBQKkO29Z8oF3JIlPEUD+G1TjE++D2U1Ck4PktEOUhUuIeC427M9g9QP/oHVEsl1tn/C6dNB56Gs8xXdLZTzGaw5E/Q15Jf8jkOxbxM50LctOoUU6f3kyR27VxNOpFE1zTWbVjBvdUqz7wySX93g6q046qV7AD+4QvPkDE8hLwjrFjZR3dXM889e4DD41VC1go2pxskmTtuWo3TfcbuG7Uby6hXKxi6zmTObHCmg60cG89RM5xIDgvtrX52XhUi2PT6OwH/XL0lgigje5vRi4uLLUSLDdMwMM0ierW4ZOTysmAajUFJVuY1h68EBEnmcAzO5wifxtkFHVcaDpeTX3nveSLCZ+F06lPLJxuKG1odvZg6b0T6vyNKdZP/J34Im5qnrBnopsTzU138Q/hBHog9yUZpDIAcLizBDtrSexm2ruQfc3a+E/wgzugB3hwusiEAFTVNKRlnWXvjuUuSSNccz6zHAz3McnaB3YaAyUxB4weFHlylKcqRXpoq08waDizeZq7R99PhcSDsOMNJF8oVbK4OVLGA6tVYby2zfmU/uyeH+YF4NUZukj5XFGZ2I2DHlByYpsny5jrLGZo7v0atptFU2cdkcQXoNZS+6ygXZ1kqsWtRrGhKHYfHQzYeJz4xTlNH5wLHITo5zQ/2F/BJs/zGsoVNbB5/6hB7RlTecXWRtWv7uPe+Wxadw2lX0HIxSoI2/9k3Hz9BsmJHL84wqsl84n1bcJ4lIWSaJppax6JYefqpV3j6cIZbNjexuk2BWpBSOUH39m5SuSy33nMt/nMkC/87wKxXGq3WC6klv5e9zWi5+CL6xGuCIIEkYBRSWEJXdsHhC188km9z/ngl0C6ljkIQGu3NjVoJU9caEm2lLKLtv0ch8qXieC3AtGs50cQRUpYQwykXb3VN0K1Pk06kWRZpzK+i3YciWnBXEoyoQSbNFlQdrisfpr/Fyy6hwJHcMTZ5C5zutNXsPjPfn44In0abW6LVLPNQzEexpuKUZXC24J7eC21bCaePsDOkAgK95DjtglUdYWrOdqyZZ+izpli/YzlHErdjbb2JcjZJ2LIXMfolatUuAn03ohdkPPYS6/i7RjPrOcixJymnrFQLGzGFq2hb8x5yx5/HaZtYcJ26btKqfhZL+fMUlVWc0H+XSO1z+B0L7+ebx29nUN1Ok+NP8Z9VVjQ+OsWXnphiRVjgnXdtZ8v2DWzZvmHR7yDpNfRigkKx8eye3z3IS1M25Mo4Cc3Le3Y00dXTist7JsCh1mvIFoVEdJbPff0Vutr8rO8LMOM0qVQKdHW6SRV11i2PsHbDikXnfK34uXCGTwuzG2oNiikk13mKLeplLN5wQ7PyEp1ho15BsFgX8IwbkdLLF3Q/Hy4mDp+amUYQwOZ04fBcPNW4VCT3x4HTOs+moWHUywgW6+sSlb8ii5Q3GJyKwN+W/z8sikZUV/gL26/xZO1anisf5vHOL2CaJjdMfAxTUnjQeT9DzhY+6fgT3qR+h+7ojxgO7OLl3Ak+b36Ofy3/NoJpcr2RQjwnEleta7xacKFoJUaldtbLM0SsGqmyQdURolOLMqtV8FhMVlmT6EaKnoCdZ+JWVnzzh9zQVG406DAMDpVlXt5yFR0BO7tqo4hOhRvqMorTS11UqKJxbcsYlYqKKAoIwuJh5NVEB7W+7cjjJwkv38n4/qdZ0ayyTTg4v834xGcoVwSGA99GrdUQJXm+qEnXtAWa182tEa7uTeD3LXYY3E4rLjGPw3H+CvtQSwSPRaWmixTzeTTdRC0XcdcKFJqWUcrGkCwyssVCqVBiZCzKxHSKfcMV3rrVz8snC5i6jsvl5N3XLecLX3+ZSc3DdZ0Bbl7Zw/RkFEwTf/D1t9P9WYGajTUCDIUE0vmcMV1FVC6t5fJpmLo2H2g4G6+nMO9yUcykqdeqAEvSIn5aMNQaRiWPaTTqAQTM1/VcjHqlEW3/OYseb3KkCZdfJeIr8URWoerp4OV8mjvadaDKizELQ0IbO6RhWl0C36cXQ7bRUz7BCTp43rWDYOkgzyY9lC0+WsoVmpYw8WMZgVJdZ5YATqHKdYES0/k6ZSmC6BRp0jLkDQs7Q1US1UOsDNc4lZUY1ILsdCQIOhrvwxZlhmw5zrJmB/2tJlYhidL1zoZCi+6mag2xzvwEfQ6T8sw/4lriWqL5bvT1n0M48gjtq7YzdcJCdezbhKzxRdsOVd6J2PeL+CY/RsWyFkfX7RSP/QA/C53hm7uepzM9zvKWFImzPrfarLjFGh7nhRvhtIQcxHJ5amojCJFMpLDXapQtLmRvMydPTbBmY6NQ+dTJMTS1zneen6HHDza7gmYPU8qluOmd1/DS7uP86FiNZsHkPfdtJp/NMz46RdcVysT9XLwBRr3aqDYuJC/ijAnUEuOI1kuTXNPLORAl9Fz8x9Yl7VJgmiaeUBPl3OVLmZ0P5VKJHz57kq4WD5s3vbbmIKclg7R8EskVfF1yPVo+gWhzo+UTr0m7+I2Me3wN6Ru8UIx+jh9wPZ1y47c8mncyqKxAlkT6HBVWS0P4cr/NpmCSV0shfq3czVqGebHU0Xguho4oLhywxnIamYrBgG8dzvgxiqEWCpU4h4sRqjY/t9VexHRZudo2PicyP0dtMQymhSYMUUbXh5BlGVEU2RQ02NMV4RqtQtPKW8kc+B5OR5Do4adp9sDq5SVAxn5WRXWmoDNSbKPdHqXZJ+AQi6TiYxiKh4kTR+nxFdjWsZCPBiBJBvVKBV1rSP2dpu/IFgv5dAqtVsUdCGKx2njTzRv5xnee4+lXJumN2CnWBO57y1oy+SpXrQrRO9fnPhlPcXwwxtaN3TjmonmFXJ6qYUGr5Pn691/FqUDOEmZZcwAlPo3pllBsDWf6yRdPcWBawFOeQTM8HBtMEPEqmG6BZK7C1GSMniYLDjONZgZJzCb4wqPjBK117v/AdYvu8ecRpmkgSDKiYkFU7Ofl7CJKjVoChEtuxqHlEwgWK6LieN26xa8Vaq2GNxQmMxu7osfV8om55k3B11RUaFQLjYLBwusfc41qsRFZLud+qvPbjwMhh0TIoQM2bmWWZ7IarWelpUZVD7o/RCY/ynKbhVu1YRAlAh6JmWgRvWIgiDpVWwhroBUpN7ng+OmKRqYGB+qd1CQbiiShqhlezRkcc2xnQ/5l2q0qslPGb68gCA7a0AGZeN5OwtlLspIgOHdN3R4RMND8YfpuuZ3Usa+hRo+TLAi4HDoh28MQAFEUcM0lKEzTZLRwA4qQo919EJuUJxHdj+BawczgSajP0m//RyRlsY1IZp5KbhxJqNMhfJ300Wdo8U5TrlmI6bfjMfYSckW5qm8S0azxPx/7NXoPP0OyYuHGbe1UqiodzS6u3d5QzjF0nd2vnKIt4qer+wzVKJWtIGDy6oEBBqeLRBM1arKXDV1FTkxOsv7ajQAMDYzzXy+kCGrTqKqT4akCN1/dz3QmTVfEx75XB4gEHfTZpnDbmlDrdb77o2OMZSXef5NJT1/Honu8XPxcOMOSO9jQXpzrPGfqKgji4sHXNLE2daEVkhj16iUNtGa9Ov/3a2nv+Xr3Ves1DF0jOTlBS9+lO635dIqPvyVMoKV10YCpqSrf+cErnIyqpPP1S3aGP/WhTRw6PMTIVI6DE/U5qZ8kksN7yYPy6WiyaHfPa2WapgmC2BDyfw1KHz9L+M2WQ/wmh+b/vcZT4lcr36DdzGACN6X+FwEjyYPK57lFiXGCTzFTs/K/krdTL0Rp1WMMCxLNLhnDMChW6zxjvQaXGGVzZT/NgRq5/NN0+B1U81lKtTIlyc7zlu10FQa5yXqG3yaKIrc5R8AUkM+h+nzw6e9iW72Reu04VdNNy4pr0dxTyB4Phv49zh06JooBypEbmIg9TbNvlg2tBSLZA+yOdeOxwebWPCAzPvGZBftZFYHWwh+Tdn0Yy/G/QA38Gbquk0vMYgLt/SsXcDmPj2ZRDZmj5SqiM8g//tO3qYfW4JYLXDunrvPC/nEOzQiI4jjX7FwNQK2mguxAE2tMFm1EXBrvutqH065gs/cSjpxZgC3rChCPD7HjupWcnCiwdV073d2tPPX0fp4+OMuxoyNk5GbQZAafHKY/qNPusRMJ/nxlNS4EQRAXOMBabhbTMBYpy+jFDNZwD1o+ianVGzq7F3MCTaOx7U+gM9t5IQhER4YId3Zf8i61cplSPovd5ca+ROju4KEhjHoF2R1saLVfYre800VygiQjObxo+eRctvLSxtxGNLmAcI4OtInQmN9M4wJ7/+wj7LbzTvfChfguT4aJbJqtEYmXUlaGhV7epAwgyxLv6ihhmkUOpl1I+RmqaoUKZaI5g6BDplTXeKnSSsLRzfryS3isVtxCGd0CNclBoDROs0PgqUovquHiPuk4NuuZd2Wbp0B3+SXa/YvplYasMPLy87jrL+FY+ynI5Yj09lE/cQpYqJiSziqw8g/JxI/Tbn4CvzONR/89DpffC561tFq+jCQtbSOt8pOM1LeQMG+kRX+UjOejTKVmUcw4gc2/Tnr4y4T4HABPD2+gYPg5NJBAaurj4R/up4aVmqOFNZOzrFzdy+DAGI8frdI+OsqHz3KGFasNwWZlMlXCJkvcubUVj8+DLMHd7zhDhYtEgvS6J2gPt7JcF3E4Ily7ay3bt1b40394HI7GaQr5iedguAoDJx8m2BSkywuB4OvUNp/Dz4UzLAjCmUYTlcJcM47FUjui0nDe1FIG2Tyzyj4fJIf3py6kX0inaOroInsZEYpsfJZ8Okn78lVkZ2OLikLisThDBRcee5bbr192Wddz8FSS0ZxyprnHZdIa5qPJhSSixYqajTZSrWoNa3PvxQ/wMwzDNBHPsqWyCtGanf/Z9DIWSaBQh1KlglvUFuz3VHk5zwTvJTK7j4J3Bc8aFuyxBIa/HY8Wp9cYwCvXWO83mC3AS85dNGXHud6TxGW3kq4IBEsTNEmLI7NBx9IRPd2i0LZpG9rYMwi+dlLRGRJjp2htLeHqWbxPnzfNSOwxOlwpckU4XuimkEyS18DduZ5scQj7OWtPXTeZLO8kX/bgWbmdyvHvUcznGo6EIKBVq0wNnCTSfcYubtzWye5DUxTqAs7MCNXQapylSa67ZiVHDg+zbn0fW9e2IctR1ixv4dDBQXStzsDILJphIshW3PUZ3nnbDQRCAf7pi8+S1xU+/nYZb6DhnLgcCtGqi6Ojed599/b5c3ucNiR3CLfNSl/QSiZZZGAsw3GxjZ3dMm+5dfPFjeDnCJK9kSI93S3OqJUWb+Pyo+Xj6LVqg0olWS4qxSj7G7SEn+a4a5oGrX395JIJFNvFo6blQn5urG2lUswv6Qy/cjyOJdhBPT56WWOdUSvPZ+AEybKkascF958rsjvd0trUVOrpRjmUxRv+ibSD/mnh7IZBp5EsVGh3yPR4G85otVZHN0tn17Gj6zqHhGWYQR1/OcaJ8C0cTk0SLpXIubtZUT+AkxprQjI2ReB78Q7y1jDXV3dzV1gAZCKVDKqaR7EsdLNsikzHeRIpnp5+7D4f2fEbsOg6qdgU1urLLLMspjwG/Sqlwd+iSSyBC4bzN1LSmsjVQrS1bqE0sQqYXLRfvNhFutyM0r8JNalTytso27qpWZtAKpM88C90WB+dfx53r3+FzIsK055rcBRGSOtOUMvcsU2iUFYpFUp097SxfaZAV2srUxMxYrEkmXyVqWQJrVjEYnNw304vq9et4EdPHeLFEZ03J0vs3N4IVri9biqawCsjKv/jHavx+H0AKDY7NqcDTXKwodfK+IzO2PQw084I6fE4v//Jt1/cCC4RlxSGEwThNkEQTgmCMCQIwu8t8X2nIAhPC4JwQBCEw4IgvPWKXeFlotGhJ7Mkb1i0uRBkC0qwA1OrAQJGvYqWTzTSV0vgjz68mU99aNPrigpfDhKTEyQmJ9C1hkPkC0fIxGawWJfmQ9YqFTKxKOX8GQqFaRi0969k/PhRPKHFzn5rRxt3bfNy7839RFqWXgycPDnOS7uPzw8mlXKZL/zXi1ioc+cmB9IlpjzPhSBbG9Fk+2nhfhMl0PZj08J8o9juo/le1iX/L59Pb5z/7Ddy7+Jm49NsnPo9RktW9lbaSTVtpcNWWbDv211H6E08R9q7EiM/i1ErE6qOsq5+iGIhT1xz0ueoAeCwCLgLE8RyVf4r0coPZmz4bTLLpBQ5XUHT9Eu63o8XryXyhZcxxBUIyRItL0/y8eNdXP/U2iWdFJdDQqbK7uIOjsw40CK7SMp9dG3YgTbwMPXy5xZFhWP5DoRVf4XmuwnHkbfS43mRFv1bhFrbENLPE2wJ43Y1+tkbuk5qZpoNK1u4//3XE3ZbqDetRk4Pc+Ou5ew9nuBbu9NMjEwhCAKVmsbAwDjffSXHQy9OcnRao56OsbHLwsc/8hZ8AR/Pv3AUl1yn3WNid5zx1G02Bbdcw+tUUGs1jh0dRq3V2LJtNfft8HLv7Rt521u2cPubNyPaHAiVHBvXvb4W7UvhjWK7F4NoczXae1sXL4wbag9hRIuC5GlCrxYA0HJxtHy8EQE+dx9B+Ik6wrlEnEwsSjFzRpFBVqxkE7PnLaxLx2bIntUZtFoq0rpsOenYDFb70vq/b722r6HL3tS95PdGrdzIWtbOLFq1XBzT1Kknpy5dV/gczEeTZevceYpYAm2NhlTmBcTmXyPeKHZbq6t8Mx7m4dgZuxzIGPxAvJr/nG3lSLIREU8qESS3D7d8ZmyUZZm+6gAIMqoB9cQ4ol7HYxaR08MM0EKbXMSmNBzdIAXM1BiPlLp5YDbCbFFjnauMRRJJVi79Gef2PEv8yEE8HTuoTnyfq/1/wgb3v+K01Zbc3i8NkHB8hJP5d1D2vYuq9620b76T9NgrtCs/WnKfGcdvYdv4V9QP3E+v/jdYpCrBSAtOWxmhOkJo0/+gajQWrNHiCkTP1fzRXQ+xvqlGxdOHTVLpb3NSrgs8/GqO5/cOIUkSmmaQzZX5/jNDfO+FaZ4/WaaUy+J3Wfm19+9k9boVnDo1TjqdIWQpEg4t5Bt7nRIeRUNWFEaHp0jMNhZvv3TXOt7/5i6uv2Er7/+Fmwj6nBi1EsvaL8xXvlxc1BkWBEECPgO8BVgNvEcQhNXnbPYHwDdM09wEvBv45yt6lZeBRpT4/HwsQbZiVvMN5QlPqJHeA/TawqiZqdXR8kmmp2aXPM5SME2T1Mz0eXlmpVyWdGxm3sEsZtKkYzNk4jHKhYa0iSRLuPx+apXG9YiiSKClbYF6hKaq89uXc1n8kRbKhTyZWBS1XkOUJDKzMbrXrEOSlw7+T8xk+NoTY3z7e8/z1//2DJMT0QXf//DlCR4/WmFmYpoXdx/nG9/fz3RaJVcV2LJl5UUbl5i61pjwcgvJ+5LdjewJzStwWDwh6pkZLL4rX6TyRrLduiFSMi38W+1N/FWqodTRK8SwFqbICw7en7ufTinNVeXn2S4PLNjXYYHPhr7Kn5uf5iPWJ7C4Q2iOEB8Rv08t0EdWl1BPa48aKm6LidixAa1aIi/7MQyDU1qYQcdqkmV1wbHVQDNCzwo0TaNud0LPSkqCxClnkeW6H9JFgnWZzWk3ezvrzEhlTsZsPDqzlUdORTgwKnEyakHXDWq6BWugjYDLIBT7DoH6SaaP70f0tVOuNezQMExmsq3U6gJOaZLZsSFqmp2SvIHZUj9tyuNkX/o41qb1lBJDuLJfRhAEcok4/kgLpmEwPhlntqCjpAfQfV2cHImTLBr4tATNrSFODs9yfFYiXTToceQaPHSnH4vbz66d65EtFj7z7z/isZdGKZt2PvDOq1FsZ+oIws0h1vZ4GZjK88gP9/GtPXme3z1ArVJh9+EoTz53AoBQOMSvf2Anv/OR62npuNTGM5eGN5LtXgokm+uCzpogCBiVPJZgR4OraugYuo5RX7jw0wqp+QjmpSKg1NjYaoK+2LE+3SyjWirN/zsdmyEdjZJLNMYmXVPxNUeoV89ciycQJBBZSDErZjOYpkkpl8Xp8WEaBpnZGKVcgxqRjs0QbGnD6fUteZ3lcg1RsaMmx9HyyUVjo1EvI7tDGPUyeqWAlk+i18rITj+S3XlJzrBWSKLlEwueqyA3osmSvRGtlpx+jHIOQbYgXuGC5TeS3ZqmiSEpZFSBhxN+qnUVp2xiKUbR6zX2mb2M53VazTSt9ekF7ewBdoZhuzTMLl8OhwzYvPilGpKsULf6yVYbAataXSVACaNlLaIoUZXdlHSBsaqdMecqRmsLf7e6rCCv2UxdVqgbJkLfagqSgurxIxoG1KsIapw+xyNkzE1MFjZTKNs5Yvw5r6R/jZO5uxlLryZfcaEZClZ/L4YlSHP+T3HH/i/REy8jiTqZevf8OdNFH7ly47fW8qOkY1FMx0pi6jX43UXEox9Fje/G2X4DqYOfI2AdAiBjfxfyit8jnm9mKK6ixYexSCLxuosTg1HEao7OsJ1ELM6rEzr7TqTY0OfGbpagmsfasoLOZjtNzSGeef4IX3vkJEdnTO7Y1UVf38LCt52buqlp8Ozzh/jSUzN884eNcfbE0CyPvjBGMt5QrPnge6/nE+/exH3vXKwa9HpwKTSJq4Ah0zRHAARB+C/gLuD4WduYwGk33QvMXMmLfK3QSxlMQ28UYswNJOe2wRQVO6LDtyhCcfsWH48cUnhh/yTvukQB/UImjScYpJBZWvOxVinjb26Zpy7Ua1WcHh/VSolKoYDd5cbqcKLV1SW7IJ1GJhbF6fVSzGawuz1kYlHqlSqty/pJx2Yuqfq5EX0xqdYMKqaNem1hav6Gra2kMyVaOlp59KUJpgo27r7KTl//pUXAjFoJ0eHBqBSW/F4rJMEwkNxBlLm0qKmrmLqGqFxageMl4A1hu6ZpMqKH+aXKA3w5cD9HqnHgeW5QTtLOLP9ZuxFVstNlL/FNV4OnNVZx8hulD/AmcR/3B/ay3J5nuf0w+EGY+SyfDf8WX0olCFui7OQV9pW3oqeKxHzb0HOD6OoMsifEbcoJyjWZq+1R9qcSjNg9NJu1+Une2dFNoGcZowNH6fOvJd8dwtnSwWhbG55/P8KdB3xkjDpHAhXKb97K87sPYg524NveRRY748kIwe6VJAe/y67+PMn012hqbfx+ObONKi1YwhEKJ4I4rLNMFrfC2r9nauDv6fN8l878H5PJK4g7/p3U1Eto+S/j3PJXzA7sxylN0uN+HiavpcM0mTixlRYxTtn3/2GXTcpCE26quB0KSk6npyOE1WZj59Ze3M4p1qxo5+TgFCNFF2EpzeZrumltb0at16gLdpwOuHHLwnelVqnwrUcOkYinyEshAj4LnZUqXe0d1Ko1ZksS2Uyaf/+vl7l2czvLlrUhCAKaqjI6PEVPX/sCFYzXgTeE7V4ujHoFo1pCECUk1xlO7NmyYXopg+j0oxcSCzmsht5YZIsipqYukqw8X3buNKf82iXGvkI6RSDSSjo2g83ppJhOE4i0MjM0QLirh8xsDHcgSGY2iq/5/AuaTCyKw+sjNTNNqK2ddHSaSrFIpKePXDJOINK6JDXiXCgWgdV9PgYyDjZ3WbjjtjP3lIineOXINFet38LJwRhPnqhx1Uo/W9e10dK+9LUtUgwyQXIFGnJr54yjerWIWa8iKLYF9MArrOLzY7PbVouFP2q59GY2TyQqWNQC+yUnI3KQj/p1XBaJbyerxJwaX6tL/GLAz81Np5+Ti98ZqjGry3y2x5hvvQwwXqhy25idI5aNXK1PM2IUuMXt5htjNfJSkIoOan0Kyelj8/SP6DFn6RcF6uI0OYuX+vQxgnOR5/LyjbRt3MrU4T0YmRS21jcj+gK0r1zN9Ff+BfsLD1N/zuBVsYX23/7fpKcmGI1FCW9cTbESomDdir27h6N7nsP+g69QNf8Qi2kyI3koeII4f3E5odY2Rr8zTfTV56loBt7f+gvKsWnkL/8LmvwUetMJ9K1vxbv6Gp7509+i6f33Y+byVFNZqg+dYLDaB0DF/QRp70HsE36c4ilq3ddgRI/izseQtTp2RxPuB76BVRZ4k+7BbdbwnSwjttyLLR9nWeEE19ZPkT7yTRLSMmi5lhUTT+H6wldJi4056Fd/6S/53LFhXpjJktGtdGVUPDaVZU6F9wyleHEqR6Io8OJ397Ml6OZ/blyOroNUSnFkNkHAbqXNc2lR4g9e4LtLcYbbWEg8mQK2n7PNHwGPC4Lwa4ATuLIuO2deZNHmuuQKY1PX57lW51tVS3PFDMo5XenWrGwnUxhmZe+lV9l6AkHS0WnEs2Rqipk0hmHgCYYQBJF0dGbe0VVsdnKpBLVSCQSBYOv5owoL7ss0qRSL2F0ubE4nNqcTMZlk8tRxLNZLezZ33raV23UdQRAo5HJ4z3G+N6zrm//7nltWkkrlWL6yB0PXqRQv3u1FcnjRSxkEy3mux5wrfCzn5gsdtUIKUbFjmMaV4rG9IWz3cMbO36r34hUT/ED4JBFvI2rzf6q/yCnXJr4p3c9mTw5ZPBOFmqi7OWTfRnMlDexdcLxdjgkeT7/IPba9vCvwANMVheu0e5Aq01irGQSLQKFewpBt7M27mfWt4RYOkrK1k5CsbNNOYJlz2IoHd5M/tBe7xcLqU3WeCWYwsgW6ThSoiQbf6y+QlzVcna2Ev7cfZVWAsmRg+8/n2eDwsd+eJd3kwSo0MRKbxm+XGYhKRNx1glKSbEEid+RVCoHfx1L8UyzaOPmJx/AajVV/xDNO2GWyb/+/YVo7sdfLFOLjuNXnWOt9lJnCSkwE2twn6fLsB6DaHubm7T0cH8tw100rCIWDGLo+3/jB4XRy1daG/uSWzStoC88QbtmKIIoMD4zR3hnhY+/cCAg4PQ0HJhZNcORUlOUdHkZS4JRsbG+v0draxrXXnYlgfOyu5bxyaJTdExIj43F+8PQAFuq0hj0cSzu4brbAjdevvxJm81O3XVPXGu+wrFxy9zijWpqr2VhadxgakUm9nMPiXTi2CqKEaehg6AiOS19QWKxW0tFpPMGGg1erVCjnsriDIWxOF+nYDLLSoAi4AgHSsRnUWo30zDR2jweL1XbRAIIoSZRyGUSpYWOBljbUeo2ZoUEQTHxNzYgX0VLuX97J7/e2IskyuVQKt39hAV1TOMhbb27Q+7Z7XXjdkyzrjWB3OikXGjzki9FHRKsDvbQ0TdBUq/Pz4elaj4aKjwstn7xsLvJ58FO32/mTTIqMiV7+3D3BzlCZHo+DvxlX+bSxjA8rwxzpyaLICxcMe+sO4rKXXH1qgTMcsVtYZ6YJ6kn+ebULMPjwkIeZUCu+2CHsogVNl9HKGinZy3+2387a2Asg2Zhp28X0yAzBuQI466kDjP/V7+PIJRGA5JEDKG0dTDzyHYThE6Q27EK3OVh++zsY/tq/Y/EFCF59IxM/egjLiQNobi/6ne/B1tFL2mLDplipmyZ1QCnmqR8/yPGnH8W7djOlfBbpxKuk9zyLUCkhAzatDtFx0i89QU22YNqclGaj1CsVLI99HdHupNS3FuvQEeyFDBQyIIq8WR/gqYSPVdVTrBeSmKaJmQVRbtjkCul04w6JX4h+B1EApyyQMC1ImsGNxiCbhk8RsEqAgGYY7JO6WD8VY0+mwrDk405znFWuTt61vAdp7n36v5v7eGVikl+bkCmnqxT2HOXBVJ1PNJn8Tc5Ft1nm0VtfP431SpXuvwf4D9M024G3Al8WzpNHFwThVwRB2CcIwj69fOlSYWa98SIb1SKGWpvnnF0IotXRcIQdHtRsrNE17tzrEaUlq3odLidvunE9nV1Lr8jVWpXk9BTJ6akFnwda2hbwzOq1KorN3uDONEcItrbNp2RdPj8Wi0L7ilW4LuIEG7pOOjaDpqqEO7sItrah1usYc+lxXavTvnzVvE7rxWCaJpIsI0rSIkf4XASbAixf2QPANx7cy98/cJCPvqXtojxqyemfT82dC0G2oJcyCxU/TAOtmEEr5RqT4k8Gl2S7Z9ttonx5PLsXar1I3jAhucpqV4G/zd3Mruhvcqv6FL9S/gKb3AsdYYDrvDG+pf8GEW2aX5i6ly2xP+CJVGOyf1S/ipHALrJCAEEQyBgO/kX9Qx4P/Q1/YvkCssNLryVPi1IljRM9G8MiwC22EW6VT2KxWFCbWrFuvQbTBBuN+/EaFkK9Pfg7Org66uTYSgXndRsxbDLOyRzb4k5WPzGNv72V1E3LWFn2EGhvwzBMRh5/ianwfTx4oodY870cL3Sj1P6OVcrvYrOOYg30czR9N9mOf8Fd+g6KmSBT8gENuSApuJXm1bcylYog2YLUm97DaH4X6eAfMqV8klPl91CqNio6XMdv43rlfj6183cIhRuTvihJaPU6n/vyc3zp688veJaR9lZESWLfvlN8+bk0Tzx3AqfHM+8IA+w5OMlLwzoTsyXetctPoWrwwsky33mqkS58Zd8p9r5ykkA4yM03bOBdOz3s2tJLoaIRz2kMjkZRs7McPTnBwMDiopUfEy7bdi9nzNXLWWRPU0OdB9DyjTHXUKvn3Udy+dELKUSrfS5ln8SoLl48Sw7vks2KZE/ogk5ZOjpNOjpNrXyG1ubyBwi0tM3L8pVyGfyRFvKpBA63h0CkFU+gYScWxUog0oo7GKSpswu1dv57gYYqT7mQx9sUno/+nj63RbHi8vloX75qnnJxIRiGMU9b8waDi7TCz4ZFUVi3rg+708nhw0P89ZcP8+wLRy56DtHqQHaHlnSaRaurUbhsPysKLAhoxTSGWlnyd/ox4TX5C4lLCMKcRrJSJynakZ0+NnusTNYFth1VSGYSvMsc5e1+HWUJCuFXukp80jLCH0zJbD5o8IcnGtSY3akye1wrmZF9CIJAsqryTkeOe0a/zF3VfdhkiWWFQVqEMropopeyqPUaO8vHuGX4a6w245Q9QfRf/ATVrhW48ykkQUAUBHx2K70bt8LgEXRRZtm97ye4cTuxvS/imBrG8dJj5I4dYOU73w8uFw6vF6fPT/7Abnzv+hUCH/tf2N//CZzv+ziyVsP2zIO4Z0YI9i2n0NKL41c/hWiayId3U3D752maRNrp3LId+/VvhloVR1cfpTfdB1uvo+mdH6J6092UfXMLTECRdO4uPM96IXn6t0EUBV6inS94biWmn3mf3RYBpyxQVnW+1XIP3w3cgiAw5wg3MGE4eaX7Dj4zkuIvNnazUUvwkNLLHw7leXx8isPxJH9zeIi6pnNjfz9fWePjnzZ3cjRbpCxY+PpEinopTzKf4R8OD16ybZwPl+IMTwNni7i1z312Nj4EfAPANM2XabRPW3JEM03zc6ZpbjVNc+vl9KoX5pQgRJsLs15BdHgxNG1JB/c0RKujMbAaOqLV2Yg8XKGCgWqpjCcYRBQF8ukU6djMgiK20zA0nWImvWQKzTAMNFVl8uSJi0YVMrMxApHW+UG3QZXwkY42Mky+cIR0dAbpErrhpWamySXilzSA57J5nnjmyDxfx6pIKIKKJL2+dZTk8C7ShLb4W5FsLpRAK3oxc549LwtXzHbPttsmx+UV9xyQN6IX09wnPAlAzAwyYbbwBccvscYc4vdyb2es2oiEfyp5C29L3E+8ptAsFfmC+HZeNNYR05zcL/4BJ0puPuJ4ht8sf5o7bQfYm3Jwr/GX/LX+XnrsJYb1ZgrONlrtOm8NphHsPpx2K01OiRa3hVb3HHfX5kByuKgA8upNqIFmfIqLth8OEt4f5eHNBo5YgcqLR7j6kMr1R2BGLNIu+ig+uodsvcDXOmcRazr9T00QjI4SPX4ER7iZ2MBRQtJZXPv4w9SrdcTAFrRakWpZJdHyz0y5/oxqDUbKdyHOfpuZV76IrfOtxEeP4A+3oMtNuFKfQdEnsa+4n0ytj2TBz6j7MxRXP8xw6W0UsxnSsRkqxSKaqpGri2RLjYWUYRg8/PirPPt8w4loDntpdVSwyyrf+d7zZLNn3tftGzu4uk9i45pOlq1cxppuDxEPdPhMnn/hCI/umeaxvbNz3ZEsLF/Zw1QszdWrfSxrtePw+AlZa6TlNo4OXfy9ugT8WGz3csZcyeFraP7Ot1AXEO0+1NT0Iq7vaTQK5kKNzI5pIrn8F3SeXws8oTD5TOq89RmyRSETi563kC2XTFApFElMTuANhZfcBhpZPavNTrXYoHpVSyW0ukohfSbqLVkspKMzeJvOfxxo8I2z8RjxibGL3p9pmuzec5xjR0cb9yNLWIQ6VsulJHLPD1GxIbtDjcK5OTT+bUUJdmDUr8jv9GPzF5pcl07leCajUVK8rCsNs67JS1qFqGryNfc22s0SX0nKPBhr2PBTiQo3nrDw/ViFdqeNJypOHqv5iBVKfEno5x8nqlzT5OR/Wwb4vVCJ0VyB356w8LHKKgAqpkza14vm8PPe4nP4FAHJHaKHHG4ZVolZZFGkqtgQXF7qkS6Ka66iduu91E3Q9z3H1Nc+j9q5HH3tVka/+zXyT3wf20NfxqhWMEyB7LOPMXXiKLVN1yD1rCD5yDex73mKwvApyqUihVyW9MvPzKsVOXNJZo4foeOqndTr9QYFcdeb6fiff0kpGKHU2guVMkMPfZPs6BBCczuCYeBoCqMd3M30kw/TefPtWDbsAMC49T7c/+N/I777fuq6QWXNNiqBRmanILsoedqomg37PGn6eUxZS0kHqyTQlj1Fe3Gcp7QWTqln3slOscS2sR/w8d4gzS4X9/S0sFJLc41SYW+6zD+fmuLzGYXHphriBhsjYQqqxns6A1znNGhye+kSa5QcIb48U5oPDL5WXMrb9QrQLwhCDw2jfjfwC+dsMwHcDPyHIAiraBj30vIMrxGSzXVGxkuxUU9NIlrsmMZCrqtpGujFdINOMffSi4odvZJHUOwLVsxGrTxfzHFa7udSVSPcgQDRkWFM00Cs1Yh0985HbjW1jt3lwe5yEWo/vxh0Lj5LsK2dbDx20cFUki2MHzuKJxTC0HUKuSyapiHJDSdaFEWCrW0XPMZpmKaJxWpFqy8uODkXB45M8uKwRrU+SW97nv6uIHffvu2KVnubuopeyiFYFARJRssnLlmD8yJ4Q9ju77ge4urqCd7rPwzAZwJf5X/EyoxVe3hK3Mz3XfexujLOh2yv8kKllxG5k7RmYaWzzorCCEPhnWyf/R4z2nKsNoMee4lft7/ERxLv5hlpBxtKe1hraWQofsf/FHcUX2Gdv8AfC5/kbe7GhCqKjahZtq7hW74aajVC7R1EI52El69BVr1kpqskul3kRyfRW9opVIpcfwrSVol97Qalmzax/8gAtvAqKuUc5oo2hPYOAoMH+UD3bzO8J8MrKwpkBl/kVV8A89hWtEKeWt8q6vpTeKzTrHV8m3HbTnLRYZzaq6TEPuS1v41j9HtIuo2iGUaRp6ke+n1WhPchSQL+8nFyxx8l4jpOtW5Hzw1QMOv4yCIkvoar/36ME79Pl/N5/nSHSKzzEfLZPF/82gtkBD9OMU93xwwHT8S4982r+dK39pKTw1R/dJgbdy7jXx94EadN4jfvv2Oe73vv27bz8p7jPLVvhpPZCjeucOAKBLDMpdsPHRrkwf0l1kYknDaRsYqHlW1Orulysqzn0nmNF8BP3XYFSV7ALRWtTuqpCSze5kXatHplrgDYfoa7J9rd6KXsopS9mo0hiCKi1XnZdCiLzcb04ClMw6Bz9Vqy8di8vq8kyXibwniCF073G5pG67J+MrPR8xYYA1idTqIjw/Pp2mImPRdJPjP2Xexc8zBNZIuCVlcvumkiGuOxw2VcQoLmsId0rsInf2knNvsVq6UAGhrQpqE3aBKFhnbxFcBP3W4B7gxbyRtRrvE0ft/7Wu3kqrP8c8kkb1F5QOlhKDfNXRGDVzJ1BuoSx4s6bwM2WmvstodYb8QY1wu4JZBEkV/psPOdaIVfyPRzVXWI7fYoPup4ZJP3jH4Jl2iALHBD/SQbhgdompMmKxoC2oYdGMU8vuYI1eVrELJJ/CvXk3zyQczuFeD2oXT2YnN5KX32z5E6+8m4AnT+xh8x+fJzLN95LROHDxBZva7Bef/uV7CaOtLLPySv64iKBalSotLWi3VqmLyvmdLECMVkAt/zDyK7PNSvfxvRvS8g5zMot7+bSFcfw//xaSK3v5NKLkvlyH4s+57FJYG++3EmZ8aQ4lNYAC02ieELYiSjmJ4AXe/+MIk9z2H+4CvcXD/OVSPH8SsiT4l9HHcswwj10DE4Stzeysr6BMmawb4V7+FkdpoVuYf5ormWnL2Ju4ovcU17w6l+Z38XvS47f350nK+VnPyCXed+u8rtnQ0Kk6Zr/PKrM+gIfHpVgI8eiiFZ/fxttw2f03nBTMul4KLOsGmamiAIHwd+CEjAF0zTPCYIwp8A+0zT/D7wW8C/CYLwmzTI8b9kXqkQ7LnXY+ggCI2VbLW4iJOqF9LzOsOnneHTPDTpnNaBpmkgWh1L6mNeCqx2G4GWNqIjQ6RjMwgI1Mplmjo6ycSi2C+ykvU1N6K5p9N70Kh2LmYy+MLNjXTM1CQIAmqtijsYoF6tEhsbobV3GflU4jW1Cg22tlGvVnH5zjichmGQnJrANE3Cnd3MTMeZmkmzflUL1fokG1e38u/fPYqGzLK+FmyOMys8rZhGtNguS/rHNE2MWgnJ5kIv5ea5bFeIt3b6HG8I220Uvx2grMKRgpt17gJZazMxpZc/N/6DzZVR7nMdxjBNJqRONAMmyzZ+u/xBluvDrEkP8PHQc/Q7F0bjmswULdoMf+P7Jv9R3MGWiU+yXRnmM83fQxAEjmREBrV2rnHM4AJqdhfr3v0u0rEomf0vExsboWXlGtY/cJKqaHDYXkVfdxVyoYCoQU3TeWatRGDLRpRv78E4No6cqyIKBTqPxkGRaX0ujasuURCq9IhekiNxZgWRZfe8lyG7G0f/Kjr7+pk4eZxazk2yGKakbCXUtY3ygW/h9Y+QOvF7NImDxPUbESpZ2tbeTSnZhGTsp1BWECnT6d7HeHEnJfstLNP+gWKhF7c8jmQcJHUyRl21ckT6HBHxT1F1g8d+dJCC6MNvpnnTNSv43uNHSFUthPxR1vQGODAQY8vVy3ny2aMIoT5ymUYRaiKRJZHM0dXm57FXcxjFAldvcHP9LTvmn7thGAi6SoezwrKOZp7aV0IvJNl100o6+rqviM28UWx37lrmsmsOrKEuTF1d8K6bugq6Pve3Nt/a19TqSHbPooWzIAiIVteiQMalXQu09PZRSKfIxmNgmiSnp+ad20uBpChkYjP4wmc4y7lkArvLhWKzk08l0VWVaqmIy+ulWipRLuQRRJFI77LL0nw/DZc/QL1aWaAKBI0Mn4mJ1e5AstrYf3CEFX0Rbl5tw+308ewrYxyNicjyODu2rZzfL5VIUywu1g2/GIxaudGwQ5QwTR3J4Z1XsbgSeKPYrVWW+GB7YxFzJF2kz2VFkx2knBF8Up6/lE+xLiACNqKSC0EQma3p/K+hGgfLCm+3HOOqgMG7u2rAmUWIX4ZQNcUdIYkWpcIn4juwWCy8RX8Zm6SS0GUe915Nf3GIJmaoGga+X/0/1AzQsylG9r5E58atjDz5A9THvokUaUfpX4Onu4/YvpephjWMW+6m5eqbiP7g62QO7sVMxchPjGLufY782ADZ2CSW2SlKkozT0JCO7CUrKaz97T8hPTpIKplk2badJCbGqddrVF/1IwSbWbbrBka/+wBWUaL60H9Rsdpw6Tpkk0jFAp3veC8ToyfQM7NUJAXX1BAVqx3tzvchHnwZ8bGvg2LDXsgw9fm/p17I4v3AJ6nufxH/sb28QgvjlmZMxcnWwW8wI/g44l5HojbN9fo+jsaO0lmZJl5TyfVtwaiViBadlOo1Hh6LcnNbE58bTXHMcLK8MMZHt2yh2XVmsRzLF9lmq+O3O3gqWaGmOHmfV+Uty/u4ErikvItpmo8Aj5zz2f856+/jwK4rckUXgKHWMOY6zFkCbUvKwoiKrVG8cZa0mj7XulI7p12zNCcULzlfm2auJxQmHZuhqb2TciGPzekkOTVFOjYzX8xxIQhzRXNnI59M4m+OkJmNNqR9RBGXP8DM0ACRnj7Gjh6mrX850eEhvOELR5MvdF7rOVEGXa1jdTjRNRXTNHn8pVHG8wp6fRyP00oo5OO6DWF0Q1+w7wdubOI/n1Tp9GpMLC0csST0fALR7mm0FXV45nQwr0gV/gK8EWz3dOOWP8zdxbft97B16nFGBT896hFWBAtcbT3dkU7gWmMvT4XezVezN3PSuRbUKkd91zBb7uCPxG/yD5W38H7lWZbJCZ4Ud9KpjdNtL/Ncdi1xew8vmj4M83tIAvTpp9jvWMed2r+yh3sQ1DqJoVPksln6r7sV1w8O0IyLdinAN9eWyXuduCenWTWpETg0waGPrKM4G6f47AHenHLj3Gswpqrs7olhvHUNgVemCaV1XryrhVwmTTERI7J+Lf7Z0JyEoIGuaxx/7hmWXbWdzIRAoevLaCOPUT78Z3i2/3/EBj/NMtc3AJCK36bHpzE79AIhoYhmNxmy/j9qVYPe7J+SE9fibruR6VefQOv8DZJqifbSH9Hjepoh4zaqdZkZ6Zd45lt/xUnhHXTrD9PkKnDwmRfJWu/Db0+xZX03NoeDns4xmpoDJEuj1HPTXLPChsPj5isPHWamZOWXbrayKlTlWM1NvnZmLKlXK/zTf7xAJlempzPExg3L8HsdlEq1K+YIn2U3P3XbhUZ3OVG2giguzfUVZQytoYMqij4A9FIWQbGhl9ILlCSgoXbwyXv78QQuP/vjCQTnHFc3Do+X1Mw0gUgLM8ND+C9xPDzNHz6NbHwWlz9ALhEn2NqGVq8RaGlj5NBBfOEI9Uq1oV1dyJMRuKDqxIVwtnzfaRiGgb85Qi4R5+SJKE8cqxFNDNPS5KQl4sPrtWOR4qxctvCcX3/0GMmqgl6rXHJxo17JIwgiWj4x135ZQC9nkNwXn6suB28UuzVNkycTFT6S72fj5BDjgpdQfZTeTpG3hM8E0e6w5fmuGuaH9SaW12uMWIMUyjEelDvYmB7igayVJsngE102Hs6JlEWFjU54JCuSd7ciuYIE169lZ083B6amSI+VEVq72bl1LdV6jWOlEtViFn9PN47j44hHxrj9ml/mVD1JKmgFzaA+EuXWyE6OKnlsN29hbPcelrVvp8/TQqGrh4F0GtdNd+HxelkVFxi0VcjawBAEhGKRlb19DO7bg8cbwO72MX3yBLLFQufK1Uy96d00r1lF6Ycv0Xz9W9C33sjWggNBEKjWa9SqVerWILkDQ9zwpl9nQMgjBG1YxxJ4NBC3rsNwtZGWVCS3E+t0ml2uTuLlLINWAce2GxHDm3jpeB5BrXJ7yELSfQOTVQmL1cs7l/nZ2f8OtmUzlOp1DiTzGGMJWrUcn3z/7/LA4BB/l5QZLM3w4W4/z+4eZsTqxmc9M8785asn+c+ZEqYp8ODqJoIOB8tcCW7vvHJtxH/2OtBdJDsv2lyLnWRBQi9nz+K+nbX961AtkC2W+cisYrOTnZ1F11UUm/2C6bcLQRRFsolZFJudcj6HJMvUKmWCbe1kZqMoViulbBZPKLRoUL9c5NMptFoVdyCIxWpDrlaxKAqiKHLV6mZCMxkGJouMl8HlGOfaXWsWHSMY9NLrn6SrxcvEyTO0C1Oro5eyAMjexZOUKQjolRxgIsjKFY0Iv5FwtOTlA8VPsK36MptcE6wsHyIth9HtzXxe+VuC1oXRsf/X9BifLRS5232A/8VDSG6dvyiV2Smf4OnKCh51vI1wKcsnLD9CNlVksxGR+6Lv3zhS8rHamUeaK8b7Y99DvK/yLOu8BfYAilanuu8FRE+AeKnAWyvdKJKMYRrQ7MXrsiNLEnUpgd1mo/fBAfa11rCs6mB3ehyfqHFohQOnr43Y5ARNdbAhw0gcW5uXurdGPpnEGsvTcrJAdOQglie+Q9hmZXZ6EK1cxCV14DEPYcoJYkceotPSoI5kii4SbV9Em32O1Z5/AsAwoJIco33LvUye+iTOlk2U9n+SvtAxDsb20bzmLcweWU7YNUmf61Hq1V5s3W9HfvkwaipOyBvn5dSdSC4/LWKSO2/bgM3hYPDUGA88l2RZIMa1W7uYnIpz/U3rmRybYlWHE/t0loefiFOumWzrD7FxbRuxqWkqdZiaTmAKIpJgYBMaDmBX91waT1U5fnyM3p4WXJ6fs9bMFxh3BUGYc67O+kySzyurKEiW1+QIn4b3rEZCmlojm4gjSSIOz2vrGKrYbOSTcQQBtHodQZTIxKK0LltGMZvFMHQqhTxWh5NAy6VR0c6HWqVCKZdBsdpw+QN4gg3n3h9pYaViZzYzgiLoPHGsxtTsGO+6ays9PYvP2d/uxperMhBf6GA3mkeZiHbPAm4wNFpo69UiptqwW9n9+uaPNzLee6LOaNngU+EyK7UEDsEg5Yrwx8oAbwkvzGDe0ubnDycmcLpF3hQQyavTfDcjMFKfRjANvqp3EK6k+QQqEiCZOiLwG+0ylqYQTqvC2raG4sym9nb+TJmlxecDwKZY2aJZSSAxGy8QsQcJ2RoZak2QiPT0EhsZRlBkksUM7YqFoT0HsTYHmSnW8JYyHHFXiSxfx/S+vaBqCEIYpWagG3U8nR3ksmnysSiddTtaskyzodDqjzBbLpE/MUoTdozJWTq9EU6OTeI0ZARnw+85YSsh9YRoH8ywzNGYg5WyjiiAuaqTqmlS3nuQbfZ2qrkZ5I52Cul8I4Ps8JGankLYuYbp+CF0TWWV1eSH8TKq3Y+lkuJjvU3s7OkG4K8Pj5IWHHyyU+HGsJtrwm0kCnm6rCa3yHmGUwV+MJngrSErOyJ+EqUyulHkh9EsmXKje2WwFMcl9dDkdPLu5Y172Dszi1US2dD8+hZ1P1POsGixIkiX/wJfzNE6H0+4oeAQRbZYztuJ6DRsTiflQo5wVzfTQ6eoVysYmn5BzvBSON06uVIskJmdxWJVsMryGcf3NdAizoamquQScYQ5hynQ0jav03m2rNuatT2sWdvDqYEJgmMp+nqWjoa4vW7ed+9OAJ4+eUbz0qhXkJw+zle9LiAgukOo8VFM15nU6s8b6oZMUrXxaPiXWVH+DI81/T3pmkRRl2m1L+YPfr+0mgfM29iojnOnbxiAz7sfABrtm/3FP+MW1yBBq85zwb+g8TMKdNkrdNkX0ij2B24iFt5K56l/4I+kvwdgqvoQnK6TmQt4ioKI93ic2eU+lMkM0TVBYhEfV393mjZJp35tBDGYQU6q1ItlZKuNrrXrMA69jC54edsJO8XDOaq6jiRV8FsCPLKyyuq3fYqhh74Nu3+ImUujpOLUvniCGqC/+36alq9m6E8epuWjIIt16plTWNRog0FIQ2Vio/czRAcmsZZK1FMWiqznWOVWbIWnKeV2Yvd1Aw2HrEv4PMWBb/OB7QluTj9Lb3OO0EGVmXI7b17+CiuNFBM8T1PYT48vhqyXQXNxMi4w/uVnycphlodM7C43IyUvhhpj87ouRiYSPHWihsvIUpQCvOfaTr799Dgnp6ocPzrA6rXLAdj36hA/PFplc2yQO9/8k+lY+ZOA7G0GQ1symHA+LBmUuETkEnE0VcXbFL6oZrPN4WpU1qcSxEaHkWQL3qamJaOw54PD48XhaURXJwdO4nC6qJQK+CMt2JxXZlGTmY1hGjpqvU5zVw/pWKPw2WK14W9uLCT8AR93v2Uz+Wwefc8wq/rOP+fcetNGYAmdYUByBhoLkXOdYcWOoFYxdb3B5Xb6rsi9vRGRrGhMO9r5m1yaH63VMAwnxzPHWRNYXMg+WqjyL3k/VytF3tOmELTDJ+cZlV4+p4/itQiAnf/bp/AXZhlJbNjXjvaFKfpUNU+p3U4mX8bOGQ52k81Lk8782AbQpFkYHxlBQEBL50hfsxXrgRFWWUIclUysES/1wSyCZjBy+AD9W6+icnSIYr3MSmeIfl2ncCJFq+4hrAQZdRjUti5jfGQEf6aGLAg4KwZdrjYw4JQ7TXjtRsTDI/PXINc0aqkMlrMy6f2OMGI0SVHLoIW9GGqdva4kbt0kOTaKu6mJarSK3WpnpbeN6b1DXG2PEF4r0xsIciyR5NmJKCv6WrluzhEG2OKzM5zOMFYKUFI1/m68hHMoTtXi5HebJf5Ia0MT4nR43GwLebhz/yzecpKYp4NfcLu4Q6zyoNTG3xwZ5u+u9SGKIulSgQ8dz+I2Krz0pv9GzjBw3s5y58JQq5j1ymsuxMqnklSKRZo6Osmd1XbzQnD5/HPi7m5sThelbPY1nRtAVhqtYJvaOyhml1ZWKBfyVEtFPIEQoiSRmmkU7TZ1dJ73uKVsg4+cS8ZRrLZ5fc7TOq2noyqFdBq1XqU15GLF8vMfbyloxTQCAka1tED43dQ19GIaRAlRsaEmxlGa+9ALCWTPa6N8vNGx2Z3i0/XP8vfFd9KvNOwoYNUJsFg6brjkoKDJ1CQHv5N7B5LxVd4aOCPd57DAu/1ntOslcekI2JgQISsHGW+/icraO4kNPoB3UUH3Qrwp6md2qoADB3uWlShodZJylRvyYUb/8wBhzY5LdNNxuMzzy4uUcqco3NpHabJAx1CRUzuCLN+bYnWxsVpPpxPow0NUKhUUT5DOj/4O8ZefgUe+BkDpuccoxqaQvI1FXkK/GkQ7TcIzC64rV+/CwSH6moaZKCTw7fgHElMTmO4VKCO/S4t/impNoFR1EvQWcdpmqVRF9MjHGa6Ocd9VDwBHFxzT5/fy1l3dfOahSaYOJbEJJulMEYtTwiZ5KZWqrAsrbLtpNe2dEVK5Eh4xg4saYj1Gc3M3V/UneWHEyUMvTc87w1olR5dLp79rYWeln3UIggCX4AibpoleTDWoFJfhOJ9GpVhEq9fRdY1AS+s8VexC8DaFyczGsNodaPU6is2Gob/2qnLTMHH6A9RrS7e/1TWNXDKO1e7A6fXNO7l2t+eCTTdM08DX3EJqpkGjU2z2Rt2Ers9nEdV6jVwigSAIl72YMqpFjHoVQVbQK/kFkpVaMQ2GhuQMNHTdvc0NeuBlneFnC19ZDh+dSNBn0wAroiiyNri4MUOmVmekUKEmBHgsC584XuAfVy/8HW8+K5IsCALSEpmHSr1KVC9S1eooy1aTOzrCxcJW7bYAgUKFcr1GyR0iPjlDrV6iyx1gVaKEbpYJ+ZqIGAaHqlNkh0ZRqRNd3U751XFmW+3IZo1NcmPRpFdrTJ44SqVQRLZ0MRUUcLS2Ed83TtgboqkuM3jkJEq5hun2k6zmqYUceNJV3LYzVJtstQiCwCprGD2jc3zNcupqjaJPIziTJVIpY3f4ieWTBB1e2udoNnKTlZNelX58XNW5OAj4vvWr+NM9R/lGTmFVJY6p1khV8mzw6xzIytwiVrmh183bV/WTKpfpFGu4ZR21MEO738eG3gh7DozzqBnmtrEpbuvtZLZQZJecp9f7+lszXymd4TccjEoe0eq6oETXpz60acmo8OliCkmWyc5Gkc4qcLsQFJudQKSVYEsrgiASnEudaKpKIb10V7rzwaJY6VixkkqxMB85OBfVUhFJkklHZ0jNTOPy++fVJc4Hb1OYfCo5n6ZriMfXG7I/46Pz26m1Cm5/gELm0lujfupDm/j9965EkGRMTESHZ0F0SC/nkDwhME1EmwvZHUQvphDEK88V/nHiiNlLd/WrC/67EO4MTvJU099yh7cR6U1URGrawnqRwZKD2/W/5gVhExvzz1BuWse/Fa+/5GsyTZNYWeLRlvfx6OY/45W7H2Dlwc+y41v3kPb08cXNn2FMaKXddsf8f+eiWXLjlmysHtbJ200O3hLhmY4SR0M1zDktYlk1ueOUnVv263imCnhmy9QlE0skQF2GmlbHNE18Djety/pZE1zHL/jfT/TbX0Ld++z8ufR8lsDG7Vjv+QDPvvxBJmd2Yguu4dCj6zj4rw3JIk0zSYX+hFToT9A0E580ROLEY6SmphDKg/Q2DeGyVxkzP0J22TeJ5xvviapLWPyrqcnLUc95zp2T19I5eS2btXu5s/lLvL37P/nwO7fgbm4lHLCjClaGix46WgJ09DS6LW5Y18cnP3QdNVMiU7Ow/9UhbrplO1f1WrlqVSPr9Nwz+3j8mMb02CQrV15al8afNzRqMwLopdcmi1jO5xoqN7X6ogK3C8HfHMHp9TV0gN1ubHMp4Hwqia5dXpFe58pVaLXqeQMKuWQch9tLIZ0iHZ3GNHR8zS1UL6KBa7U7yMZjhNo6CERacfn8JCYnyKeS88GOSrGIJxiklLv852fM6fCbmrpQux3mOn02oZdzKMFOzFq5UYn4c4wml4PvrJb462WN6GxN1YiXF8sB3j9m4WPFfj4hnKLqaeXBshv9MiS6SpUSI9UkB80k6pZlCDYrtr2D+Io6r9ryDNQvPH86FDshl49W2UMtk4H1yzhQmuKUWKA4J1+o6RrLLUF2akFChhVtehZFkrF43ZiKBU3X0HQNdJ3W/pWEmltx2BwEUzXEY+OE3A178FvdqDLkwi72KBlGiwmszSGy5kJJvWmHjrapjxm9gE2xwcgMyclJjEqFVtlLxOFnrJwks62HQc5kflVFwhIOkq7kOR/e0ubnza4an7x6GzubXNh8EW4O2nhQD1IRrdy7ZgWiKNLkcvHgjevZ1dLErCHz9ckUWyJhfm9lC3c5K2xpDqLpGm9/ZZrH4yVuDr1+pZWfucjw5UAvZ+c5wY0+8CaSJ7wkp8wwDBKT42CauINN5FMNLcnXyhE7W0kiG5/FGwqRSybwhpqoFItUink8gdACJYlzIUrSktI9xWyGXDKORbGSzczSs34jmdgMar2OYnfMpxl94eYlucuLnWuTczXPPcEm4pPjuAMhyvncfBrxYrBYbZhzuqLnRvElVwC9kESQFUxNbcgNXaEq5p8FHCkFeLLQxeet72Vj4TBfCX9p/ju/rLKyfBS9WuSoayf90Uf49XCjecT3s8v4gvZmWmoTVBUvn/Z9Befc+sE0TWIVicMdd3Og//00961A3fsw7S/+A2ulKRTd5OuOG9GXXcNTE3citK3hjld/nybp/AoqJza4aVnVR+a7TzO9oYtw73r2v3CKFQNF9twdoTY2w7YRietf1fnhRoW8WKf1e6/i1tw8fHeI+ug0q4cM9AeP0pOw4JCs2A6+CIBqGGi3vB3R30wmOoNitVJz+QmuXEu1UsG2eRcqMJh4GNN7FebUf+K0VpE9Ah45TzD/OErnRwlmv8DpBlEWdYja7G6a5IZD4nGqTA7/O641v8fU2C30uJ5cdI+CIHDP5oMATHg8fOIXr2osLFM52kZnWb/2jEN77Pgo6UyZVX1BUqMipixx9MgwV2/txRfwARAKejD/f/beO0ySszz3/lXs6hwnh52wszlKWq0CCiQhgsgmGnAgGY7tD9vHPs7h+Ng4gwETDDYZhBAZgQQSSkibc5jdnZw651Td1VX1/dETd2ZXqwAWsu/r0nWtpqu7q6rfet/nfZ77ue/SLEZoPadPjbJ12zPT4fyLBEFxNCs/QvO5Nyt57EZTeeJSSjOZ6GxTHcihYZkmpVyWQFvbk6I5LGD5XJpLxHEHmpnbSFc3lmWRi0fR3J4nnMsuVnyAZkIjG4tSKRYoZtK09w1Szmdx+QLkE3EcbjfZWBTV6VzTRdTtD6z59+VyUL5QmJnzZ2nvHyQTnX1Sa48gK4s6/Gu9ZhZTSN4IVjmH5Ak+pcz9LyKKdYO7khY/zFicUjv5dsccQ76lsbVZqZMszPBReYju0jh3hEASvUQrNT4w7aC1UWBSDvL7kTI3hpc4DolyhZwkcX6XC71kIjl9lE6eo7eh0eLxcyE1idrVQ648wWF3mUhaZ512aYrndKNAy1U7SA6fx+l1YYVcpFWN1skKwy6dstsikMmxzd3J+XKK8S6V+vlRtokRjoQLVBo1wj4HnhOThAQZNOhf9n3naylibhtTkqgXCsg+P8pQJ9GxESL93ew/P45LUBHdToxcBeHMOGFBQxAEBsUAViSAmqvQ6mw+O25BITM9R7AhLEaRkWyDqUAOs9O7RMW7CNd0d3HNfOHs3bu28I66zrUuEffIDFdHluKSqXyer0+muCnowp0ERZQ4Ek0QUiX+fl5VxbZtnOU0VtsG/nM6z9VPjpG6Cs/ZYHh52d22bRBERFXDrlcRlssC2Taf/crDmKbNa160AQEbzeXC5X1in/kng2ImjTovAq+XioTaO8nE5p6SNFpdr+L2NSfXuq6TjUcJtHUsTqzZWJRQRye5eGyRg3w5OD1eFIe2wvhDVtVm816lgicQJJeII8nKopX0pSAIwiUpD83XmiWVRj6B5AnSKGVWZzKeo/ir6i9xwH8z4fh+Iq6V2Z+Iw+BbLR/n05mrOMlefjN8kFu9TYrEj/WNHPXfwIzhJye2cEc6RB8x/qP9a/xd+hY+5Xgb747/AM+QjvKNP+b6ygn2CCMgwV3e1zO95c14fvivhFpbiAaGOKZs5cVW0+LZtJqW3OKyzVDXaIVkZZjrU22MP5xkJm3QHa0j2wKF2Sgd1+9mVBujY7+O3epDFE101YNwvNgUd++JUKoWuWFM5YKrxAVXEWvMRhQEyoPb8a7fglEsoLnctPUNUL77M5TySfRwO/VMgr7Xv4PJQzn6B96Aeu7P6HM/vHhufb6D2I0DCN6lDe2g9wHGizVGa69ms/QVNIdJq2eUVPwnBIQLJEudpBs7ETBplR7HoxVQlJUbYnXexrylLUxL28pF6wc/GaYoBXnXS7rYPCiQzJT5xsEimyZy3PHCLdSqOlu2b+DlVZNTo1laIldubPFcwnKNYaCZpZyXTLw4GH70sTMcPJvkBdt9bN21lWI2c1l615M+F1mhmEkjzlOJ8ok4wfYm9eJKN/bLUSnk8bW0YFkWsqpQSCXn7Z7daPOBcLC9Y9EM6UrQ0tOLaRgrgni3L0Apl0WU5EUaXLCt4wmbAi+nKLHwWqPYpLCY5cxzlpZ2Mb6WMPm/xgZ6zVEijQLaRdSyPxtwMFqs8tppgd1+B3+0vvlbnCvW2Ceuo0PXmQt28s/Tw/x+XOHTXUV00+JNyW5uJMrO7RXMmQRqHa5qGURwCqRKOWY7XdTPnqWnomCsDzIbO0eb4Eabn2caZgN5WZ9MRNCYHp5gsKLiQeH0TArV4UJTwwj1IqLbiXx1P4kD4xgeAXdrC6gK1bEipiliySLViJttRTfFeoVzZoY2QyWgeUhW8yTDEqIkUkynWL/ramonLuDJVbHMBozMoG0ZYurUSbrWrcNOZNmie1mgPAecXq4p2QjKUkzU4vRDOs+ko4FUStLraSHk9pPKl1FrFlV0psUK1VKJkMNDq+TGoa7UsRZFEafmQpFN3jbvcLuAz5+f4fMZAQub7+3pQJMk7nhslLLo4NGAl9likc1t7dx5217+9PQsN4Sffrz2nA2Gl0MQBARJwm4YSJ6VHGLbsshWbCwEHJqGpKgrgsJ8MoFpNnB5/YvltyeLSNdKDqGkKGRic2tyzGzbJheP4Q2FL5k19gZDxMbHMOp1NJd7VUC94IoU6rjyQHutRpW2dc0BWsikcfv9FLOXp3qs1cxxSQhC02hDvTL76Gc71qJKTGgrtebfrtzPpsoUv991L16lWYobrzhxSyatjqYSxztDR3hb4zAOeWnSPsJGrPQE1xuP8M3a84l5OnHO67oGxApBfY7dxj68x2bY1/c2qv3vp+/bt9NQ3Iy230K4pZV8oB87MoAZPcfkaz/J2FdfSJfycj67+2M0yu288pRjccHdVHGzaRSQYIelseMkgAICvPlog5OzJ2gpCDgVFy+4N8uUXKYVNy14qf9ojqRqsKPkBxEu7PIjb17Hdcn30C8G+VzbEQItbcRPH8OxaScXPvNhQqUc4umDAGiWxaTDRd+r3sjolz+NdCpK93tsZGnpfgiCQCbvwOvWUebvU9x6PsGhGxkZnmNb2wO0uCdp4W/BDecaH8DV/1oysTnOZ27BrXoYqPwOLqdJKqfyqR/+B5uCw/zy3scXv+PuxKeJJctsH4pQkQOEhQJdfXsRBAGXL8emqQtsGQjzxW8dIV2Vee+rN3DdtZu57tqnN46eSxAdLhqFFJJ7daCWL+kULCeCw025kF9RrWrq+uYXTTSeCi7etLv8AbKxOcRLNOo2A1AJl3dt7qEvHCGXiFMu5GjvG0Avl1asBy6f/5Jz+qUgCMKqOX558iITmyPY1nHFSY0n/D5ZmVf4ec6yI1fhRQGBc4kJXtfbYG+o2cFWrBtMlWtsDTaz6INeJwc3FFGWZcsf0500qiV2WEkSGZVpG7LuACUzj1cSCTaKdDss2mZKzKgK2p4tjJ+YZMAZYUwsojiDTffZoIvSyWE6917F1MkxNqBxupag0u6ld65EmzMAgM/hZqvFYoPddSyNrd1iG7OJDHpynFZfmIhlMXNwnLBToyvYhqtUYKqepV2WETweYlINtg+QOD1OAKhaBoHOXmJHT+BtC5M6cpLtQgif5maA5sb/zNEReq/ZSXliht6CQEkR8TiXzkEQBEp6Gdu28c7bec/V8tDfzWQsTi9N5YwdtgNUGNPT2LsGKUdnSaezxNt9tE6m6XU2v+/fDp1iqmrwh7uHINTM1J9LZ/j3sQRvXxfhUKGGKmjcHHTQM6/M8bpWJxXL4stjUT6UVvjD7Bi/snmQr94UeEbGyn+LYBhYbKSzamWsWgXmOZCiJPHuN1xFLpGgXtORTHMFxcE0G4tZ3KcaDF+My7kWZWNzBNs7yUTnLukopzg0ujZsIhuLrhkwL//89NwsgiigqNoTZnXXgmVZ1CsVauXyE1pGPxksd7b674I7/CPcwcji/89WFF5ufJCe0jj3tn6InxR7+D/FN9NeHuYbg99Cms/0P986wJd5EfdLNyAiI5k1Pub8JADvDR3iNY2zfO6qjxHafDXi9AieCw/gFQ1G5BYiu2/BfOBTBAQLq+MldJ75Ns7qMB1CjmbBRIZlgaZhNlAuo+yhiDJXpZZez2k2plMjUnBSMiqcf/UAuWicTfsMPDjYeDTPyZmDnN8ZIHJcR378PqIHHyIkSRhnjxBOR1dkvSRRRJkZIX3sIKSidPzhPzMa/RIbXUubjVihl/L6T5Kc+E82yk2N4kjjHsr5fsKuJatcgFi+F6VxD5WTwzgFAZMhbMvBwvNfqqkkzAGSU256/Elu2TTCPSe28OML59Fd7axrLRJ0GAx0RhbPMxgK8KZX7wHg1PAs+VwW5Wnakz8XsZweYWSjCKKI5A4iyCovfeFOdoxP4nI5qFdXcjkrxfzinPtMweF04nCuPZ9WS8V5HeHiJYNhgEBrG6IkUS2u7uNwuFw45o2IStkM9ZqOZVqrEiFXilI2Q8NokI3N4fY/I26czcz9M2ti96zHOo+Dv/fA8gv/3UmJHzPIl81xNnhkfmVEIF6u8OEBketampuZG1wGX5mLco9zPUqtRNzVyp/KI+wJNTd2+/wGX/P1MtGq0dK7kbljJ9hMc+wIET+iZeGcTKFevxN3poRxbpLWurR4GqIkY89zdRtmA1EQL+ug1uVcWrtrZp2Gz0nIakbOcx4LoWc9c4fP0e4J09HQGDlyBl2TmNEz9LojxI9OsU7qIJXRaRHCuC+q1PR4WhiZSxKoi8yFJRJ+B0PTZdzzAbFt25z1G4hOja1xHc2hsU72cyaTw1kHloUhOb2EpesIJ0bRyiUU0cY2GgjL9BljtQZTpsLHDh3n+bddx8Fogr8+NclZ20tEzbHepSJUG6wPL133/969EYDvjk7hm05Qqz6zibT/NsHwAt5xWy9feCDGhpalBgKPz4deLBBoaWu6Gi2D5vaQic1d1sP+mYTicJKLx55Qp/iJ7JcXsitmo8kdrhZXan4uLDQLjXSXQiY6R6izKb92pXbP/4MmlmeLL84Sfzqxhbv06xmwD7HR2cy4P26sJx7axYzUySeT47yv7SQAebWVqu4kIubZIc0yIfXjXjb5yJh4ZYPyvm9yY/L77KnsBxm2mRdwfPU2kkoHZ37piyg/+RRvLtwJBbg/8nJMQeFXD78bURCQnALHHdt55MZ/YMehf2Qg8f9d0TWevsqLuK0P72cO06cE0B48S+glu9gvJnjF4xaDuofRoAtzWzf5k8PIgoDHrGM3bBS9jLDGAqBFJ6mdOoRg2STPn0FkN49/exJnoXmffK+pkUulMattLCRQ1oePgPXrsCwxl867KQ99Cj12iK3inwDzzocWSM7mxNzXVuKVrZ/m7vj7mCm0YdsXuGfiJdRUP29o+Qfayzab+/6Ua3f2cOe3D9DV6uF5129Z/I5ssU7V2cG37j3C2978wiu6Z/8dIYgSoubGatSR5Gb1LRgOIKuOVWo5/nkzo2dK1uyJoGpOMtE5rsQE7XKJDNu2ycaj1HWdUHsHhdTK5qlKIY9eLmHbXHYuLWUzyKoDUaw8bV3j/8ESJgoV3jcuEDDLbHbKtGsS01WDE+oghpHlD+YqPDSfo6maNhlnBIcg8GZfma9ZAQKOlYknuWFgFEroR85yvdiG5mzSADakRRpWg7Et/ZTzWbbWXfgdfqJCjtNijm7bhTNqo7qCVPQKp4MN7HKVa7kyG/dZoYK1c5DZU2NswkWoYjM+GyV4/Xbmjk3S6Y7grZZxbl5P6WRTRq1tvjdHa6jIa5hbeTU3LYUMVWwahSKlRpVJW2TL/AQrCAKFSgHRrKHXNTSHRsDj54aLAmGASb+FunMTgcPjbPA3ey/MlIm0LKD/zW09/O9955hzNFVVvjmb5Zzaxk31Ge7oGOS7czbvHArz9fEYw6U6f7WrH888xSRXKVNwtfDxmSjvueqKbtkV4TkTDNuNOmalgOhwXtZIY2B9L+9yKATDK0t3oY5O8skEwYsoBy6v75LZgkohj14pN00r1GfE1/0pZW/XwkJ2JTU7Ta1SXVVutC2bQGsbhfTlu11lRSGXiF220e9/cOU4VfIRkmt8vPFK0q07eF36M/xT6/18JL0X1Szz0ti/c8qxk2u8S3J+L1ZOUMbFH7u+QZ+zjGWDvIz7FpZ13nv4nWvyCofEOCGjSPzgf9CXfwTdFDjou5nT296N4A4SvHeYPfbw4vG2KHG07SWo2QrdhouKWePAZhFfuqkSUXMIXDfnZE7VOb/JiXZyDsd0iS7LiyAJ3JwK8djRKZwFg4VIddfhIvdYZ5jdq6KnWvHd/CKqpk2gq4fqFz+Ks7bSVrbiDbHu7e8nse8h6mcO0/X29zNz7jjMB8MBV5ayVEFVl+Ti4uV+StK1tPMN3FpTv9njrDA5/FVMS6TmE3CoNsOlN2M5ehhs/COaoxn87B2a5bHEKWSxiiAIPL/tB3xn6rXEG0McGulhwjLRGOFsXCBfyfK865fd324fmbNRhjb/9wxaGsU0CMIT8v5FzYNtmUjOpd2KJxiilM3gC6/kaEuyfMleioZhUEglcLjcV8zNfSJIsvyM8JVz8RjBtg6y8Si1SnUVtcGo1fCGI6uC5IuhODSK2Qz2k1A1+B9cGqlqnemKwZ2xOmd8OwkWZji62eKRtM33Chq/bx3l82aAVwRgIXW7wyfzslKVF7t03tAZ4M8beVR5ZVr9tZUcP/XuQNBWzrv+eRpBKp2kIYDXHWa2miGqGng3beT0gWNc71hq0LUFKAsNRupp1qvNZ2GklqaqCfgLDYp+lc6yhFt2cE4q0dCryCcu0NlwgAadWpBqOU1pfBbv/DkOOMI89NDj0BkmmjxHhztMTK7hbovgn02yQVtdmY2HHbh6OvA/cBTP1iH0WAqWTc0+VFCdKPOKVeVahSlHjYAu0KEFFo9T0yWSxdO4Gs2YYUrPkAqptKcNOp3NKkeLP8xVAQeJuk1B13nPYBs/fOgkZxwuHorn+Wxeo2KmOFGocc528Wu5PNvamsHw9R0RAhOjrH+GGZbPmWDYrBaWNWusDoaXS6h19qycpMxGA0EQLilhdinolfLTaoS7GAvuRE+V0rAcsqKSjTWbRdYK5v0trZSymSe85kBrG6mZaWzLRi+XnzGqyH839OlfxqzkEWQHZj7PHzY+yqPpCf536CEM0+ajvIGKXuEG5wgPRP4FRRJI1hTenHkPWj3NXR2fQ5VF8qZGRVDpopnpr5oiUTvIgJymUBfI1wV6PCsX0bBY4TWj/wzAQe9eRl79CeoPfQ2GbmR8wy+x59z/BWBn7SSzRz5O/KX/Dz35O3TnfsC+6peo7tlK6dw0ukfG1dFK5rPniLcr5DeEMbuchM6mUSWZxzrKNGSBW89piMLS5skUoGXHZgqZDMKWWwn0bIJkYs2sMICrmGHmcx9FiM9iVitc+NBf4E/MwPzxU19qx7L+GVMU4D3N9+QdL0Xueh1jR86zvavJXXeoNpYYROt8HmenM+xq+RamcyNqcDP1mIzmaAbN+YqLuLCFqVQz2N69LsrBTIpWV5o93WcZT5/gpX0nCBX7aJgKPVN/wHTvo8xMRbl69yC33bbnmRgiv3CwDH1eGaaObVurFGmW4+IGOtu2MQ3jslWptVBIJwl1dJGJzT1jwXAmNodt2U+78uXyB8jGo4iitOb8vSBr6YtcXkHH4XJRq1Yw5w2Snipv+n/QxG9PqTwu9vD/lGOM5U7yuogIePlaTuWbZS9tqHysv8x182oRfzJS4YcljY+057k64sWyLMbrBhskaTHhMKbX6JgPCqfiU/S09qxKRmxUmwGnaZrMdbmpGTXiBw7QtXkjmdNpwr4QLs1F91yc9O4BitHUogpD0SejdrczcugoXZuuI3NsFFM3EHZ1khkdxe9zocZt5vQsaa9El64w2PAtNr2JoojaHiHQ389Y+iBpdBS/HwThkm6Sbeka1fQoHaF2xvafoc8TWUGruUZswy7ZiM7mc540K4hb1jN+6DjBmrbYHGg3Gig9YcYzedYBVcHE2dtJNTW64vuihkS8YXLmgRnWuyNsszWMms2tc07y9Twv0r28sCFwTyWJfMJJSs2RrJeZqVf4vq+pKJF6KPdkh8Ml8QsbDDeKaaxqAcHhQnYHER1uGsUUwkUlANts0Cgk+PQXcvz6L9+6asDW9SqFdJpGvUZ7/0o5pFIuiyQrKzjEyyGrjuak7As8pWsoF/KUshn0UoneLdso57PPGFfucuU8aGZ8l0+ylmWRS8Rwenyrr1cQ8ASC1HX9ksFwo15nMGgwmzXReW40xT3TEBQNs5zDrBb4h7a/wJ88yuO1QV7jPMdHlH/lD5W3ck7dSrkhEpBscg2Fs0IftjrAUGwLr98usKNHw1x3NXd86+W0KxXu7Xs3yeveS/mbb+Sbg+/HP7Sb/h/9MesaUxxZ90YGZ35IsfMabpz8Eg5bpy17kskHP0S681a02CmuP/eJFef4/OS3GP7aebbop0CCbsFP/c4znO0BobsH7XvHiDja8MzVOXDsFKGNA2QEHdt2kdjgRwz7ODkzzE57aWx1yH4GvnySY0Kc3l97Jcb9x3jtBZnvTP0NTlHEtm2KgozXbm5K9cGtyB091IaP0vKBv6GSiiN9+aNAM4gqD25FLORwpZrPSd2wqSceI57W6NnzL8wMv49u3xnKugLFU9B+PR45AUB/4//RiMr4PEvuf+s7C/yqdY6uPb/HxHAUn+MoH3zppxZf39qdBAQOpG5mND/AmfQhrrtlgi88ECOg1vnNX7n5ZzVknlWw9BKNUhZBVhBVJ5LLT6NaAIRVgXAjnwBBRJCVNZUOUjPTqE4ngiiusJWv61X0cvmS85fbHyQTnUV+GpW46XNnUTUHsuIg2N6BIIioLge1SmWR9/tU0OQlX56Ue/F1FTMZbNta9XejViPU0ewduRxaHDqiAHH9f+bcS+Fqh066MMsfMIjSKNBVNXkj8IE2g8RYgn3uDUzVLnDd/PHfz9ik3CFeO1pjp+DlHR1QffmriT98LzebNU42bPa96NW0nDjEWG4UYWsP5ydGuV7u5KSVwlWzUIJ+ArpAu8NPqVIkEG0wZ5fo3LAB6fg44VDf4vl1Btrg1BxOUV0MPvtyIuOzpwhdtY3ksZPsEdpweFXOPn4UOoPUzAYgkddAHeplZP9xdkkaqrKUhNhWcXHm/n3417ejev30nM8Q9jlQHM0gPVfJo8oqLtVJspon65cJF0QmXHWUnbsoHxlnYUsX1XMUJZN+0Y9Ic862ixWi+w/j2zjA+bksO9CaNLSqgV1roFqABENKmMT+UdoucgJ+44Ab+9oNXDg9S/homb/x9aLJzef6XVqzgvT5wizf9Ac4VJziNxxBvmNVOeD28S+lBHs8z+wm8YqCYUEQbgc+3Lw0Pm3b9gfXOOYNwF/Q7Ew5btv2Wy4+5mJ0RFwrMrZPSo0AG0HzIHtCmOUcsje8wu1s6TAbQVaprHa+veiwlXyxSiGPJMtUCvlLBsPLJ/GnAqNWwxsM0agbWKaJNxQmE5vD4XzqE/JTRS6xVOK7+Hq9wRB1Xb9strqYSfPLr72WbCzKP33xCIIoIzp9iGuoRTQKSWChweZnm2n+WYzdoewMd33r91b87aWv/scnPBe7XkGQFWzLpFFIknH38778L/MBbRBU2K++g5otEpgv3x+r96A43Ny+08Vs2k3dUSeYOEDFqOAVmg5Zkfx58ucfpGyAt28r+WSCib6XMuFw4939Yh7c10PPdS9k5O5jPNL9Zhqhddz+0LvJRXbgKYzQQ3LFOdZQOd//Gqbm+tleOsiA9gq6AW92N6cu/CU7is0qgyapRCQ3uq6zbdpCEASuejDNwzfVGLt9gC3fyy024s1KZXS/xh2JQUa+cQKhbHBoh4t60o2zVqW8biO97/wdZj77r3jGzuDYehXBXXuZeex+svsfwtYri73VRVGh91d+i/Spo/C1T3Lsk5vRX/JGnENb8Ikik6dPMGDmqdVFztR+F+eGa/FOvQ+foxkMu7UGsNKIwbZtpMAusvEoR0/28NPCm3jzuk/z4q3nVxx3a89jJPMa53gJ0v2fZLvHT0RL0zv9x0z1PPKEv/+Txc9i7F485z4Z3PPj4zx+smnusGedwMtetOuSx37vh4c5MlXnzc/vYmhoNQUhOT21pvFDMZPBF4lcMiN6uUa4K4UkyXgCIXLJOOK866ah63gCz0yj2pXCtm2Muo7D6VpVdVuUxrxM5c4yTd784n5kRWV4JMpDx5O89IZ1bN3av+rYP/vow9hGDQR+5truP6t44anAME3uKToolVKYmhMTmW+UNX4tV2R7wMkXt8gM54fZPi/NlarqGO4WtrfW6bt6IxOzWcRKDmFkmLBRBxGCtoU6foFIucjpQAeqYYDPxYGxs7Tf/nySk+O09feTPjdJMjdLvsOLZ65MWHNRyRXoc65eRwuKTUzRyWQL9HpbCTq9SILI1GyaXsuNQ2sGuSGHh6zLjTETx+tbz7p6lSOHjhG6ehuzxyfoV5q/rV6vkZTqbGrto5I3qKZSpEIa1VqRfiVMrpJnaihII57mqoaTvGigrl9P8dQY7opNcXwWr7S0dscDIs6BPuL7ztPta2Wklqa8ZwCtVCQdncNXboA7xJHCJPWtnXhiRXpqTgyngSIrtPtX0zKssItKoUAmH+fDlsyGqs5HAgMrjrlJ9fBwborhtnX8dWqat8teGuUivY5nfgw/YTAsCIIEfAx4MTADHBQE4Tu2bZ9ZdswQ8IfAjbZtZwVB+JnXdQRBwtKLNMhc9uEWZAVR8/CeN+9ck1PZdI3rAEGgVq1SyedwBwIomkY+kcBag7eVS8QRZflpB8OBllaSM1N4ggEkWUbi0ly5nzWcHi/ZeBRpDSUB1ekkG49SKeaJdPWs2dzn8vnJxppufYIoNcui1qXcn+ymNWi18DMNhp8tY9eqlbHqVexGA9HhRNa8WKYJ1SKC6sSq62CbtPlX7tj8Uo3W2iw7d9/B4OwYe859hluLP4YEi0/u8woP8LzjDzBhtyDUy7gSZ7k9+hm+67qdSUcnliDT/833csh3PSU1SPfQNvZNvo23HPlt3NLq3yct+ClsfxUzwZ0kOv4E9a4X0a0U2a0fpeW0yPK62evP+SidquBVW3hgXZlEp5tGLEPbmSKKFFg8bni7G+vqQUYfPYrT4cSTsjBu2IB1tg/GzyKWC8wcOYjz5pdSqZQQf/A1og/eg7+hw/4fA1DYfh3O3ddjfvNzzPzHhzCKBRyqC1e9glkuoCei5GanaBncSMBKkajvom3by0mMHESUr6Ix+JtUxj5Al3eYiyEIAn32R0nUf43I5lfhevQkHnW1avxNG0Z4eLib82kfrX113nb991feu1SW4QtRrt7Zh/Y0Mozz5/SsGLvLsXdXLzINnA6Rq3atv+yxL7ttN7fk83iDaweYke4ezEYDWVHIxqIoDsciZaKYTqFdJFG20J8RaG2/bNf9lSDQ1koukaBzsGmjHWi9ssalZxqCIGA1TCqFwqJb6fLXbNsil4wjq4411xpRkrBMk1qjQqVmUcJDsbTaZQ3ANmpI3qbp0c8Sz5Zxa1oW/z5bZ4tmYggefN4QX2jN8YnpKoelbsqGydlMkc0h72IgDKCKIp1Cld0DPfRu3cBWcz+vrto4ps8vKtJ1KxLvmG2qAj2GiKXXaEnV0PztjJ08hsPlprDvOGa9Rkqosb5nK8lqnY1lldbK2ooeVZ9KRbJwbx1i4vgoQ4TxaW62NdXgFrHV30M5XsbpGWBKzxANy5RTJtrZUXqEpSTWnFXCvGqQ08dOoYWDaJMFpE0byU/MQg0USaE8NYPpdHDUiLNNDhM9cIFW1YemOaAOUXIMe4oIsSy9uo/MwWFMq0n7kBCo5fJUZqO4OttoqdZpNAyswU5EbKxCkaldGxCmE+xg7ThpwPZzPpGj47qr0C7sJ7DG5rhf8/PaWoi/njuPQ3HwJm8Hb18mgWfZFt8sRtmkuNjqfHqb2SvJDF8LjNi2PQYgCMJXgVcBZ5Yd8y7gY7ZtZwFs2048lZN5MlliyRNcpRl8KYiKdtls64Jk2HKaQqi9k0j3akuTYiaDy+db1QH9VNHS/cwJzT8ZLLjgSbKCP9KC0+NdoZG5IPiuuT04PV5k1YGsKFhmYzEYrhQLWKaJJxCkUixQ13XERoM/es/N1Gs1PvTNiTW/W3T6mhzvn73Zxs9t7P7gokwxLGWLrVoV2zSwamUESUEOdTYXwrqOVSthVvKImpve/L8jqK6lTZsKE763MPGNj+OnTECskq5JhDWLumnzQOdbCJYm2Ft+HLPRwN3Rh1CJ0T46QVunRkMV2T39ZQyrgePF70c/8FOmTx9HWX87Z7MP47Yr3Lfht/HW0rxg9OP02VEGxTjW3a/kTPB51JLrCAlLHRQLFs4z+veYv5+ktQZfWxdFawvj7mhFdjvZeDYLy9hK/cNlkqnTFNtd1Fr89By6gPjVY9xsvRRH/yu5c/zvKB18EP+v/CYxVcNlGnCRjbrQ1o3s9uJ9w7uoPXovrhteTLCnj/gHfxf58fuxbQuP5qSaS3Hy1CCNa66Fme8hH3qYWrgVX3gMD0uBQllXSde3INTjCNikg++nmBhjs+8Qt7/0mzjU1ROzacKccC2aUmd9cIrhuTCbOptSbu7Tz+cfH3gn+UYEG1YoTjxF/NzG7pUiHAly24uuvqJjRVG8ZCAM8xq7ikI+mcAXaSGfap76pXi7eqW8WLl6ugkDl9ePy/tfY4ySmp0B2ybc1Y0gCCvWGMuyyETnkBWFQGsblmkRaG1boe/eqNcpZtIE2tqplopYZoNapcpNN25l02Cc1o61M8mSN4xZyiC5Aj/rS3xWjNtHkmX+urQO58w0v9eW5dfXeZElN7e0OJnKxfhSRuLfhU38TXWEt3Q2o01BEPA5VO7bYpPNjJJ7aIR+h0reNJEEAVmSOCLIxF1ebs0lcCoKbo8Xrb8HV/wcZcsg2NaBPZdiixLh1IBM2LIY2b8P1e8lqgr4ajonHQWq9RpdlpNBrZnIG8xJzFTzVBtTtDekFfPnxRBlmZ9khjHcDtZ178JUJALRCt5lusCtaMyemcBZt3C0RqjMJGk7Mkab1Gy6cztcbKk0GO9wYzXyKJZMr2dl9rZS13G1riNayCLIDRrZMvINV3PiwCk2qy24ZosEtV5G0wVctsJ0o4A+VyZck+lwtzKazeE0zEW1Cdu2maykEYwGmuJgUqmStwy6j03xMV8H3Y21Y7TDggUtfdyRTnJvOcnLve2LJlH/JznMQ6rC9mqZTz/NYPhKtthdwPSy/5+Z/9tybAA2CILwU0EQ9s2XSX5maNp81p/WZ1iW1czOLYPq0MjE5lZZgS6nULgDAQqpFLb17PV2t22bTGyOcj53yWOqpQKh9k7Mxtr8kVq52RxYK5cR5jnDDpcbxbG0TV2Qa6uWStSqFVrX9VEtFnC6XfhDlx6YoqL9vFznnhVjV1A1LKOGo309jVIas9wM9GxDR3R4sGpl7FoZU6/QKKaQC9P0epYyk31SmqCk85D/Nr7+xn3s167msXo/M7f+EWc2vgOAASXD5nt+k/XHP82XX3EfU5G9dE3cx9Wl/fSXzyI9+p9smf4OrT09BKcfY1v1OBmlhXrrRoS9v8SFluctft8Qc7wq+zXeMPYPuOTmM2Lb9uJzYNs2ZzwlTnmK3Lu+Sut1V1Fp6Oz48jA335clrKyk2QzobvbOaLSNFZF9biqDYbaVvThEBcu2KA9sRapViP/lb4IgYf7K75LaeDUFTwhj/jFT7vsasfu+hTcYQnC6qes6uUSMet3A+97/g/z6dyHvvpGeN7+T4sAWOm97Fe6WdmzNiZBOsN16P23eSWp1gQvVX2K4/A7yrX9KfesXSLl/DXf7Flyd1+NuHMWh2uQqfs6a/5tHx2/h9+95D/tGepFlgd/d8wl+fctn+cz47/DpY29avMZM0UVJ7Scoxdmy4ekbJPAsGbsLKOaLZBLpJz7wCWA2VlYj3P6mZfLFWD7eoEltyD6N/oyfB0q57JrXsgDbtpEkCafXu0pbGZoGT6GOTiyr+cyFOjqpFAsrqBL5VBJ/axvZ2Bx6qUikuxen10s+maCt89JOdYIgIHvDCPLPXBXoWTFubwi72J4fpt62iX/J+vlOQqdcN5BEkffFAnyx4KGzGqdDsbnjpMEtx03uFx3kjOb4DCoK/Q6V2VqdO/c8n6+HOpjS6xwJdxC99ibGzebY7MjZKCfGSXpFShva0dNZhgw3JaOKNpGEyRiRYAs+t4/WEtQadXSHRGjLRnKhpbXUp7nZEuxhV81H+7wRB7Bizs3oBS400pwozyB2ttAyOED2h4+wbry0GFQvwKO52UiALkOjlM0gdbWwzt1CSGvS3Ob0LHG5Tt9YkY6czX5XgUdr04zm5shU8wAM+tqxHzuNW9aQva7mZi02B40GI2qZ9O5ezhRnkHatZ9JtUPDIRLZvRTQa5KhxdcnDVrWZ9B/X0xzUZylu72am00Fyaxs5UyfQ14tomHQ3XNi2zYO9Ze7rKfLO3Ch/lW3Kwr1fC/M3usEZl5MPet08WlzaO8UcDlSnjxdbT98D4ZlqoJOBIeBWoBt4WBCE7bZt5y4+UBCEdwPvhstrLa7Fa/vLzxzFLGcRVFeTJ+y/8urK8kyzbdu8fJtMX1eAQGsrgihRTKcItLXjuWgyKaRTmIaBaZpEuroRRXHNjPHThVHTm9bHl+muXgjg13KLW45cIk6gtZ1cInbJjutAS9tlHZOcXh/ZWBTnvBLFWo1zZsNolvg6u/AEQkyeObWCd3ep3/Bi2GYDs5xbIdL/c8QVjd3l47bjCTSgF7A8W/yiW36XemoayeVD0rxNJyixSfWRNDeyv416ehbJ5YN6mbe/bg8f/PdH6WNJq7hPrfGCZI5z3qsxXvPbuL/3V1xbfpyj6nbC9TjPKz1E1PJxOhsHW8Yhwddv+ARoHt7+k9fjlAUyd32PgMNElARuKD+K7543UopsYmv+AMhg2TY/snez2Z6kV1rKzn5+4E+oe9vZdfZT7LuxTqFsEWjvwrv/HPl4DOdMEUX1cGKHi46pMoEyzHRIbJmCUSFHfL0Px0iezntHWZ+RFrfhk1ae7l//LYyzk7z8cZNPqT/C29GN9OJXAjb6oz9COfZTNFGkY/QE6b87iiaI1I/vxxRFAopE8eQRrEqRwuw0jfPD+DZsI/GRv6JaN+j7gw+SO3eaY59s/pwdb4ijbH0/ytRPIfl9Klk//sZBYvsPI3l6iQTGAIGS0YFrwx3E41VS0npS5ccAGOwo0tdqM1b+BgGtuRl84MwQhiXxx7v/LxFvFX/l31dIEgE/E04xT2HsPlXFhC985xg5XeY3XrOBYOSp0cPSc7OLc9eCsoLD6VplTGGZJompCQRBoKVnHaIk/cwUFfLJBN5Q+LKGQka9dkXSmXW9ii/c0gxYI6s5koIgICkKDcNYc14OzAe5C82BoiStaqwTJYlcIoaqOXEHgkwPn0HRtKeULV/YlC8YUv0c8ZTihd4nobCkyhJf3OnjN84PI8kWv6Nv5QOxEX67F9qEOqKmcudgBbfq5L1TUJE1Hh/YjjRzjlv1JU1+RRCwcxlqus69t74M+cJZtjzwfdySyFGTxcD1aCNOtVRCVlUmhRLOqzYTOD7FTlc3erWGXbFw+ppr6fZsnkT8Am2aZ5ECMZGdo2aZbAwvxRajeop0m5PQZI5sq4uSVaZz+zbMRw/SqNfJz86xIdRBzimQttKsN9xMSxV8poRmwIhQQMLEP1bHpzhh2RqeCCpofX2U9o+gygpq0IchwZReJaOKhMrN43a2r0fXa1gVE8XbR3IiT4d/HWP1DIWZOEE0zh07iqelBc9IFjU3TrrND+t7mTkwQo+3+Rxkgyre3j4yB48jyzJW1aYzaxI3x9ky0wz4TdskNxTGlkUmhrMwv3EOqS5uVV00SgnaiwV2OCOcqea43yjxR5If0RTZEFkpfvBUcCWr+iywPPrrnv/bcswA+23bNoBxQRDO0xzsBy/+MNu2PwV8CqBv+84nnV4VZBWrWniyb1v9OSKLOo4LO/JsbG6VyLlt2yiahlkqAVDO56hVK8+otjBAPpXCGwxRyKQvyUVOTk2gak40j/eSTX0Abn+Tv3s5bp0oSZedQDW3+wll1Fp7+xb/7QkE8MzbJi5HLhHHbDQIdXReMmthlnPLZPGe0WD4GRu7y8ftNs35pMetEmxmCxuFBGY5i+QJYpsN7IYAkoNGIYnk8mFWsogOibvvOYKheFeo4EwUHPzHAynuChzmB4/cwy25k1joHHnDPVhnHuCOo39Ch1TgfQfeimFB3YIvGzIujwdVhIKp8vj6t9GbeJzt9TMIgsB2ZxrKPwUZTMvm266XknvtP3Py+CP83un3LH53VIpg2AFOV0PoshtHZZZ1D32WXdnf4kguQ+z1ezny4Am0PYMkjHNkTBH9lo389JuPYd6+m9jEBD23vIAzx0+SisDt80Z860Q/I19+hCHbC/hQzh1j7tw1UC3hNA2s6bEV99E1H7QIAlh9G2iMncH5cJO2ob3hPQT7Bxn5/ldpLeVwWBbxb30Ju5BZbMBrDaSZPfsbdEtJQt4l/mQp8Akcvm5qU/+OQ4Uu31nOHfpftIZu4nc3/SNbeqcZjweYyoa4cf0ondok3xp/DW65zNcuvAZDcPPRwT/F6XzGnOh+JmP3qcy5AG0BFbVo4HQ9dQsz27ZBEJpawekUmttNMZNZU8FBlOTF+aJRr1PIpFA15zPa5LZgppSJRS/pFJeJziI7NEpG9omlN227mYi4TOB+OZUfQRCe0GTj4nPo3bx11TGVQp5apXLZdcI2Gyv+LVzGdfJJ4mcWL1yzbt2TGrthp8bXdsL+TBVneornBS0sy+KNQYNBh8EnYwovDda4w2uyr2bRN3KazUYRlKV70aoqvGdqmFTd4D+PH8ZTyLFXsflc3yaMgQ2YDx9ne8d6dsttmGUTyzI5UclSmYkSEeYbiK0ihggbbQ1BEAi4/ATmFVZs2yZZSJHd3k2lWMAzk6JrvgcqWy9TqUEhG8XVsR7TtsgePslOdxdW2eRMt0TUZ2NbFqrfy+ypGXjeNhIXJinadUzVQyDSSmp2jpJbwxnLE5r/Xnc0TyWeYcjdhSRJnDl5HqEzDPEsLo8A6lKSTJuPc2zbRpdtEnqeQWcYdDgfaNC3bQupY6foDXWgSDJ2MUPpzDgtyz6jJ2NRTo9zo2++Qc6GM50C3Vv6qc2egAzIoszu+6KcXa/wJ+0udqVdlBs691Qz3Kz6WW/ZfK5e5h/MGg7ZwX0+P+2FEr/keWb6rK7kCTgIDAmC0E9zUL8JuLjz81vAm4H/FAQhQrMMMsYzjIVM4599+AFsq4FV19dUK7iSz0hMTeILh0lMTmDNUx4upkcA+CMt1CoV3F0BAOrV6prawuV8jko+T02v4vb5n9BLPhObA9temvxsm3I+u6pxZDmapUPrkkHlAlTNuWYGaIEH/ESuc88kLMtsmnukkvhbWtfkhYsOF41CCuEZtHuex7Ni7OYQ+c2HPsotmQlSipMPbX0Fp0QRbBvJG0FIj7B3zyZOnJ2jGu6lDpxNNgO+tfD7tV/lbTe/gB+cWIcgCugHDtLij/C16z/BOx97Ky4ZVAm+tOHPETbcTO93f4Oo7eEbN3ySqham7O5g+7klCl/DsvnC+j8l7t2Ao1GhPnwM/9whDjqu4hr9MIIg4ApE0Pq3M1x7B1qhhLdnK+fzMapt9zNp+KhP+gnEciSHz+PXq+yeEDmpH6asgZHJwEyKamMMWVYp2CUOhS12JjXOeyqUbt/G6VNThM9XcWEh3P0pGq1dyC94JaZlUQp3YGZTiHtuRagU8Zzch7X1arrf+OvMfOmTcPYwtm2TO3+WfD6Pq3c9dmoWSRRxndy34t4d/9QCl7eFKZpZi65fLmGLY9ixT6P6oKqDUxNQfT3IQ2/CNIcRhBm+fOoVjDau5fHR73A6ux3B4SZVdPGOLV/FsKTLBsK90zc92WHzrBi7C3jh8zZx/2MjTE4n2bhx3RO/YQ1IsoyqaRTSKWRVpVoqrdmM29yodyz+O59MLJOcXAqGLdMkNTtDtZhHc3toXdd/2blxwSbZ7QvgcLmQVQeFVBLpcvOOIGBfRKe7FNYKZC3LIjM3iyiJPzc3ueX695dMmojSItXwGQyE4Vk0br8Xq9DnFNkbcnJnqsanEyIvLFf43dpmtiRGob+X2XqKf964sDGorgiElyOsyAjdfTQ8Hv5++BTFbBbP8SP4b9jO2SOjbA72IEkSFypxnM/bTf3QGRxKiOONBIWwiuZ2kRvNE/QGFj/zQj3NtKzjHYiQPnceRRQpiS5KtTIehxtZkukYWM+UrlMxdFyRMJVUhhGPiRFLUS65MFM5nIqDmlGjS3YxfeAk9XIFs78FPZtDrzYwqxUaDpVpoYKgi6i2SHGwlWxsjqiRp1sKcb23j9RsilhHO3apTrKaR7cNsvUyVoufvqJMtValtneQ3NQsbfOVL6tYIXbyFKogUDQqhCQfvdp8bLEsV9ji9LO8VqLXa9Qkg/rBE9yQEMmYBUIOHyIC9vM2Uz03Q+CAzZcKs3zc5+Wn6Rkeb1QRPSEqpSx/72yhu1jiJWsoczxVPGEaw7btBvC/gHuBs8DXbNs+LQjCXwmC8Mr5w+4F0oIgnAF+Avxv27afPsHsUudkmci+Fqxa6YqO3dJiEtFWdocvyKapLjcdg+uRVfWS0mEO11JT06K28EV+8bVKmZbedTjdnjUVKJbDspoC9arTRW2eOxbp7iHU0XVJtzuAtr4BAq3tT9n4Qi+XCLV3Uq8170UplyUbi1IpPv1M+wKKmQyZ2ByZaDMZIEky+WQcQZTIxOao66u5cqLDheyLPOPlumfL2P1azzV85Jb/xbc7tjPp8HN23TVNWSlBxCymGerxc/sLdrBj0+rM02DQ4IYBEcwlbnesIjM2fJ54IovX7STSEqacz1F1BHmkq8ljPSeuI95yNdlUmpOv/SIH2l+NIxDGO3eUG4ZXagsbFpTadlBXPJTUAIGe9UhdWznx2i9w0Oih2oBrD/8/cod+jFOycZdmCLV3ovu7yG19NQ1RpWNoCEdHC15Jw4NMOiggv+RqFE2jZU7nlVNBXnUAXv8Y+P1Bsq/eybhSwt0Qqc7G8dy0i9HO5jPmFACPDzHcSsEXofu3/xz9xa8jfNOLcFx3K7ogYwwfZ+rIAcwtV1EJtlFCpO+OXyI4sAHv1ddjWjaWbVOc5/aVtu/FeMN70KXVnMmicBWBDXegOl2cl/4fo9o/Yxg2ndIPEM/8Bn7zUc4b72FH6zS3BO6mzVeERgV3fYaX7TjJlvYprusfI5lX+dijL2f/6NNvin22jN0FjIzFOBUTOX4++cQH06y2pedmV/B+FVWlWioiiiId/YMoDvWSGVlZVRddL13+AJll9IEF1KoV3IEA7kAIRdOe0LHNqNUItXdSLuSApjRmsL3jsomLUHsnnmDoSRsyLaCUzeBvbV3c2TbqddJzs5flFj9ZWJZFfGKM2Pgotm2juT1kY1FkVSUTm6OYyax6jyAIyP42ZP8zq6TxbBm3h1Il3l8e4v9E3di2zSOGh0fMEJs1mxeY07xISfHql+yg/5pNq947YVrcHeli1Fwau4IgoM1NUR45R6O1A2/3OsqyQjGdJhVeoi3GnQ2y0SjFNi8XgiaWJOJ2eXANR1cEwgB1CSSPE9O28HV34BQU2LOJSalCvpxnveBnbt9BTF2nnkgRbGtHUVUc/d3kqyUi3T14uzrxqi40WcVo1JE2rcPoChI0JDbYfvbardys9hJK1dCu3kLU2UCWFfITk3Tt2EEi3HymHIqKprnRVZG8UGMqLDLZppIIKTgGejhfiRHxBEkcPEqhXuFIeaZ5Da0+1HCQ0I4t5M2m3Ge2mKNu1InqOQ55SozWVv+0uVoRx6Z+1JCfE10mj799Axe0Ij1SgPVfPc1VB0vsbyuj9am8pJBlLwqKaWKXs7xD8dKjuHiN6sOnaPxbfpJ/yU1ckZ365XBFW0Lbtu8B7rnob3+27N828Dvz//3M8Ztv3s3kbJqrd71gket1KfWJgFzhl155M8mZKQQEUrMzRLq6FzOnpWyGYia9arJbVFuQ5BV8tUsFzIHWdjKxOSzLJNi2NLnmk4lmo94yh7tFbcta7UmV/QRBeFrZU08gSCY2t9hJbeg6wfaOplPdfBCeS8SxLQvF4cAdCBKfGFvB3XsiNIw6vlCEXLJJcl+4d9lYdFlGvZmBv1JO8dPBs2HsXp+8QPzsj7g2PcFgvcD/uv9fONa2mec3polYdcZ++R/Z9+ghjowbOEWbV13fxqnRDKfiMruGQmzc2Esht5/NQyF+sH+Wrf0B7nlsmnSPjaIwAADpT0lEQVTDQ1tblUgkyHjJJp+q8Y3EbbxHv4PrOstcK5qIIz+lpudYlzvKi77/FVyyucLKGcApC6iH7kK7/p2UoykCZ75Jx/RDRGPHOPrij3A0Mcp7zv4e143/XtMgw1QZGf93XqxP0zjnIGJmOJr7MZvzBwjHS8zWvs+0lePCI0fZMm2zxRCAZil8wldDj+VpPJBFRKSv7sG3r8rI9GnWz9pc2/8HAPy7cTfhzi7yXb3Evn8XiCrJmSlUVUUQmqXBlvUbSMdi6Os2EMzEmPiPD+G99eVUzh4nIIlUNl9N5+veQewTH0TyBfD19JGWZTBXNt+mP3+BWstf4ojHUd6ewBYdiA5QFItuxylmc/04+t/KBu5ko/IxAE4XryIvbOXCrIdPnvsA67TT3Nh9hMPl2yAKewennva4eTaM3QXs3N6PbY0x0H9lwZNlmgTbO5i7cA6n14vLF1isRtUDVTKxuTXnvgW1hVBn1yLN61JmFk6Pl0ImjW2ZaD7f4vxUq1YpZtKYDYO2dUuauw6Xi0xsDu+TrIqtlb2+UvjCEbLxGPK8GUIxmyHY3kEusRQMV0slqsVm01Koo4tMdBZBEJFU9YrkOy3TRNWc2NhYponL68Pl9S1WL7Ox6FM+/6eCZ8O43exz8Ib8JNt8DQRB4wudWf4tLvKwLvJHfSYP9z6PzMQ4t4yfBYfMVzxhai4PvzRzgXFviMKOazj0cJaHOnoYmh3HFEWGChmuauj8oJCleuPzycdjKOkSblsCtWk7bGoSRiyBw+2iUaixy9VFbaqGO7S6mtJdlZkR8xi1Gq6qRbgmYg5PUjYNJja203I2xvN9Q80gzwEzh8eJoKLvH+HW1i3MnJojIkp0OluxyzZ2wMPE2VGctsQOX+siH7lkVKnIFuXDx3HVQPUHuNUzyMjREdqRQWsm12QEXAE/FcvElSxRo05NMYiOjdIqOlAkGdXnwXS7yOhZqnWd9qrFmXyGTFlnu+gkXs6S2NqKPRnD3wCtrZ1GZnrVtbd7IxjHJukQVRoG1OMZFLO5Lg0ZzVhk3wYZZ/sA7/vSCGGfl0Rhhrt8PvKFIn9cnOGY5uCTFYPvChZVh4N3GhW86lOXav2FdKAzLYuOFv8VBWe5hos7v32Am7YFiXR1r5JEuxRdoFoqLEr5XAkuxcE1Gwb+ljZyifiKv/88tS2LmQyiJOL2BxYDUVhqknMv4/ou8HuzsTlcdgDFoSGKIpZlXdH9Dra1U0inVm0uFE277EI0NTmHcokS1S86tutZtp+7F4A5WeMnHTuY2bqHF/zqLUx++25SmTxzeRtD0HCKFYJeB+1uk1NGAyyNfT89RiDgY3B9N73DM1y/s5Nbr1/P44dG+cmxFG98aRtzZSdnpios1Kb61nXg8SjInQPYW2/Ec+zP8KkWl/Li3G6c4WxnF20zD/HGsb8FoFTcz6f6bkP3reeo2ctuaaopPyQbXNU4DfJ8BtqCRHAbZTXE7em7SdsVzneA/6bdlEqnGY6mGekS2TvjYGKTl5zHidPj5ayWZv1ZCAlOrp1beWr1bJp0dBYp0oZ57DFCE8Poo+uoJ2ZxmQaOW+4gMT1J5+BGcpUSwrFHcCZmcYfCNLR5W9BykfT5M4h1HeXhH5B++Ie4pNXXL2FhqxoNr59r3B/CMGwkaaloVhUHKI38hI7Kl1iwZLq563EeH0/x1TN3IOpR8obA7t4p3sk/MtQWX/Udv+gwDAOvWyUYujJJMlGSyMaiaB4vwfZOsvHoYkWrqe2+Ori1bRtREtHcHmqV8iWbe5fDFwrDRQGj2TBwejxUSysrhy6fH5fv5yOpVqtUqBTyBNraV8yFC01yimPp+uvVCr5wC4V0M+tuWTa+cIBK4coqdrKiLNLrlgfuCyZOa9H/AKx6FatWRvKEn5B694sGt6rwD4MAMpZlcXfC4BuNXn7t6m4e7O1EOnWEiNfHVqFZTcioGhXNScIwKVg2pZFzdBbzFK+7hVQyRnTDNorFAlNeL7c9+kPuHjlHt6awU1hKfFVkm45NmykcOU1gy2bsU2PIooJ8kSvuAvwePx7NxBkMMjRSwuv3ggX7GjnK5QKlRp52K7y4KezxNLnEBb3MXDWLIUPeLeCtlNEkleHUFL4bt1KLJimnyxyvxehUvJiKhLp1PZmRC8jdIZJjKVr9LQxpK5s83ZqLwswcktdNUS+zyd2GYZpUEhVatRCT1TSO9W0UozG6tm0jc2iMLk+EGQzEYACrUEEVJSqxBJ66yTpnK+kjswS9a2/oZFEiR51bMh62/KiIJrsX14BppYxguPHce5qw2rzum2QXJ5MzfFPVCFcLUBeJOiJ8UPHRMG282tPzLPiFiz5s2+bz3zlNA4nffbtvUdz+UhrFgigxnJJ44+AQ+VQS1aGt+rwFt6PlE0KgpW3eje2JJ+TLIdTRtdig97PEpTLZiakJ3P4AtUoZtz9AKZelWixSKRXpGhxaVSL0RSJN56P2ZsObJxgC276kgoXZaJBPJVboFK/VJNLMAq2dBS9ms3z+3kk0ocafv+tW4JnPED9bcOe66ziz7TauPvFdGt9O0XvkELf95ydXHPOjLX/N9bfsJZ2+l86OIWp1iweOljlw4SAGLuwHh9m+qZ1MoYamQKlUoWauZDzd9dMEEhaa6sN/Zh9/Vf8nBEFgQltJ3zsvDzDj28rzkt8l+JXb6bISHPTupaz4uSV3L1vOfYF9Xa/nBzd8GPHYn7GzdhKAkiGQqDt4+K1fozF9Crl7C9mZE5C+m6N7Z8m1bMP5+BkqeoXxG0O4ezr57mOHuO04lPtNPDdvQD8yxYIC/QPrKhhumVtPCjgkhfe1vIu79l+g0e2m5XW/QvaLH4NyEfkVb0Xq7CH90L2EQy1Mffzv0Cp5nIDL0Cl+6E9xCIAogtlAi7RSdPmQC5nFyc62bUqSA3ejRrVrgKrbx9A73kfi8Qd5bP8OfM97EcX/+GeUch7BtvG8cwvermuRRpc2g6/ceZwzqSHGa9vpDx7mgvUCDk8e5XkbJ5/J4fKswY8eOcfRGXh55QJ7rtn4hMcvzEHVUnHeSW3lPFPO51AcjhWBmiAIyKoDo1ZbU43hSuHy+qgUC3ifpinSlWCtTHa1VKKYSRPp7pmfSzuYuTA8L1EZWsUd9re0kk8lF6l3oY5OKvncZRMmhXQK27IW7/Na3GBFdSxL0Eyset3SS0394WIa2bd6zn6u4MFkhU8pO1hvTNM/O0agnOTlxRRqJQvzVJz+cp74rmt4JBUn5fHhbmlnw8hJNt73DTodKqePPcYhbwi17KFsgYqAq1pZKHgBMIiP5IEx1jkiRI+N0mprK3izCyjXKsxKOpGGzJaqQiOdx5BEztlZOmsOBsUAB6dn0Vp8HCtGuWrecdGyLEqVEhNBG2VwgNTRE0TWbyd/eJyoqCM+bzu5cyMousHhep22G/dw4cxpthYE0gdO0H3j1STOnScy36A3qafJhBx0phu0OQPIkkwkqTNayODv6WSuZtFWgIxYJzvkoXB6Dn/WQShbx3V4jE538/na0fBTm9RxO73kq0VEh0qt2qT1hf1Lz2CuUkAWJGqCSUptkPZYBAb72H/icWKv30Lb4zNcG3dRMqpkvSbalgHUqSrM7wmvcoW4rVHhw14P6/UKZ1t7+W4hxwddP78GumcVBEFg8zovRsNE1Z5c85w/0kImNkcpm1nMCGeicwTb2lcpSTyR2sKT+t6nIQtUq1Qo5bIIQpOvrDi0NSe+tTLZuUQcf6SVxPQkmqu5a2rU64uTbCmXXTXhKqpjRYC8VnlyOfKpxLJmjae2cXD7fGzqkHA5nt7G49mMGUlFF2ReMnsM0bZ44+R+2sceAmCurYOxN76V7m/fTd/kOAN3fomPzVq85IXXk4vO4VQFbEEk6DBp9eicSLs4u7+Eaup84G17GRubYzSn4hZ1tq/zcHSsgN9h0h7xcHymQaHhIOSocdO2MGcvbGCzsWQzfHDjO6nveg2Rr5xlhzUCEhze8VtI3VtY/4UHWWceZvYV/0hqZgrDaDYSVQybL9/8BcxsnPaDn8FbidF3+M9w2hUQoHvmJ3hKswix3Yxc3Yqt15g9N4zD46bLcJIdjnN6aBYjJPOw32LwQpVShwepxY9+bJaipeNERtg9SIvHSfTBe1FcHvp/688YP7QPBwKibSM6NESvn3KoBeW6W6ndcyfudJRqqB1j0y5qc1OsNaKy3UMMvPt3mf3qp9FufDGRSAsjX/gEWiaO3d6DWa1gNgwcb/3NpvWn+SdURj9PxJdnvHQrurqLQOlzvHXHj5CE75CpBjgeS7Oje+bnMJL+a9Df5SdbSNLd+eRkJZ0eL2ajscIso5TLIskKhXR6FWf46bp6LuByvRdXgtRs87dsBuv2mhv8xUy2y02tUsHp8dAwDKqlArVqeV6a0ttUJFIdOD1eKsXCmoH+8r+JoviEEpumYaBoGrVq9Qnn6EtCEDCLmf8KOcufCyp1g4O5Gnv8Cr9WGWNPi8nLJKBYo2bb3OVvw12r8DK9yFWlPMcOPEJMlPEMbWbu3DBlUaZVsvmKqHFzrcy7ymkop/nSxu1oG7Zw3Y+/Tax7iFE7j6shoOoNCn4FrdZg0BGmZtQ5IWRQ6hablaXxE6eKvWOQ2NlxttjNDdAwOYQt/cSPjbJeDeNzNAj39zP5yKMwHwyftTI0NrVhnxmnYdkMGR4ah8fp9kRI6Hli03EiaYPU+hCibTNx/BiKU6NqG1zt6+PRU6dRW8Icmp4jLDkxZNB6OymnRtFrOrVGnVrAyYYdu5g4eAilphHd1U9+ooizXMZyqVjlCjW3SqlY5VFPHF9dYKfSRs00OGrGKWcSOFoHVv0W6XyGifU+rEIJu6Lj37YJa99hxFMThAUPcxUd0YbHuqpkr+tl63cmGPrMYbosLzOOCqd3uug6nWe34OZTeZ32QB+fK2S5SX7mHGx/4YJhgFe+9Jqn9L7ZkQt09A+QjkUXJxtJlskl40iXKGU8VeRTyWbDRkfn07IP1csl/JEW0tE5PMEQpWxmzWA40Nq+mMmeHj6D0+ejWixiWSZun28x0A+0thEdG0Gadzl6ImTjMRwu1yUXF6fHRzo6i4BAPpmgXq/j9vme1GIkShKvv+PaKz7+FxF/dNUvk/e385kf/Q2/Pb5Sczbbuw75xS8ld/oETI4zeP4sZ7e4mP3WKfb2yyhOF7JV444bugh3djH35UdI00rDEjh/+gJTsSLgYjBQ58W3biWkHaU1oOHyepmYPU/eDhFx2+zePcRsYgubU0vB8J5zn2Ym+jibjGYgDLDxyEcYybwS3dPJpsY4D/zkswRsg92N0yAKSCJI+ShqLc+rZz6JIAj8OHgH0+tu4/ajf8qLMt+BDBzX72I8V8HT1Y4wm8G7ZxuPjp/Abg3SeiiK7hKpvXCI2cJpbvppGZMi5zxVxl7Qgzgep/1MhioNIkcepOoJktz3ENJPf0ypWkFzuQls+lUqlTJD191EfHIcFgwFBjfj272XXGcfhdFz1AHnL/8W1fvuxhmbwXHDC0nPTlPRa9iVKrEjhwhedSPFyVHcY6dp/Pvf4RKgns9iVis42xu4nE1OZ1Z+CZJnPSN5P60DW+iKvZHOSIJtPT9T87f/cuzYPsiO7U9ey9Oo6VQKTRv3pv55G7KiUsplV5kePV0sVMcudtN8KhDFZlUsPjFOe/8AhXRqVUC8mMmu16mVy5SyGfRKGdXhaGZll8lJOj0eirkskc61GwaXo5zP0ajXL5lEEUUR0zSp53N4Q2FSs2kUVX3SSRfZ+9zNBgP80xx82trMX9bP8ef9DpbbuuUaDXIbtpCPzcH0OdoVidtLGdJGg3se+TGtgxtRYzb/4W+j9fqb+P7+R/lflWYjYiOdpnziCO0CHMjMoV89QC6eJK9W8YU9FKIZrsVLvlyEwXaqyTTLzC9pw8nsiTHaG/Iir7elIjB89CSBRpN/7EuUiRVOsNu1tPmULZtKrkCf7KfF9JNU8syFJeqZNANamNYaWBE36dlJAldtQ5hL4+hppVCMck4uEMiZVAtzuK/ZRm4uzo6ik9T+UfwONwc8RUwsOlINyufGuFqI4Pe5GZ6K02Y6CE1WUEU/4+Fmo5576xDC9BT2vEFMpl6m0upG7dhMaS5KsGhxqD2HUqqzU2llVjOoVMs0kilMl0L21AmMeoWqS0KRStx4r0ir6GF/a4lGtoiKSLcQBAnO+/PUNwyyPxOl5/k30n7XccJFD7/juLS87FPBL2Qw/ERYoEwsdDMv6D4qqkI2HkMvLYlqLw8Ii5kMNvaq7ESjXicbj2Hb1gpt3cuhnM3S2tdPLhG7ZIZ5YfKWFfWS+pMOl5u50Qs4fYHm+S3rmKwUmuR7f0sroiiu+B5vMMT3fnKBSV2fvydLWe+OgfVXdA3ZeAxfOEI+GV8V3JayGcxGA39LK8VMCqNWo6V3HfVEgmqxeMXBcF2vYtRqq0Tofx7NdT8vPHD7K3jR5k7G7tmHD5sFYtTBq/aQ+LX3Itx3D86776Rv/+OL73n/a0agvo27fpQiXjPwKU2qSnxqiozpBRlavQI7rtlBef8w3fkYL7v9Wh554HEKVZuOiAdZc1E14IaBKtfs7Ofer3+XGeNlvFN/w4rzm2i8ZTEQBig5IlQGbuJc4QzGnMH7on/fXNRFgQkzSNgu8utnfp9vtv8ad3e9l9fOfoK8f4DGwF6Kx710zGvnb1Vfz8zEK/CdnKIq/zHZfVNU+iNw3QYiX9hPsWYifXU/W4s+3JJGxawRd+RwB4PUzs9x81yT33mnIOAq57C/9yWkl7wRxaGhfPuzRP/6A9gt7UTzafSHfkhAaj4b4qGHySkaSt8QPTe9kJOFAv3rN1F42INLgMb4ecr5FuRClkh3N3WjRtfW7cw5HHS9/DVM/cuf40lH0b7/JQCO/6Qpx7brPWepFuK0dO2mqsoYs/eQaQxQbuTIet6Jr/I9Or3LXWf/+6GYyWDU9UX5xlI2i6yqRMdGaF3XB6zUMK9VKpQLOQItbat6EhYUaTS354q4vsVMCm8ogl4qXjIYtm2b9Fzzcy+lZGHbNnq5Qk3Xcfn8FNLpxeSJUa9RymTwhEIoqmNxrZhJpwh3dVOrVmjrW50Z84Vb8IWvjPqxoGN/cQBeq1Yp57P4QpGmTJ3TSSGTItTWQSmXW9xsPBFs20apFzBU33OOK7yAg3UTtvdw4/Ac291LyaiMXuNTfVugUmLdqaO0lwuLmlp5w+B73UP48xnecP4YDkXB4XKTic6xMRUDV3OzXe7tR2tpIzMxTGJzAGNujlBSJ+exCLS0kbswx5QeZ67fS+LoEXocAaqqinNeBtbtcLEB14roy9BrWL1eSg2IpzIMahF2OFzggFK1TM1qsNHdwlQqw1xQRszlqdoNtK5O9MISNUsURXoVP3OPH2Ojs4V4vIBpWEib+7GHJ2gpGWQeP0GfpwXFKdPhb2EkPY0Y9mEbBt0ODx7LzYIw+w7CnLeTzKxz0zWnszFuUaobpPVp2rNV+twtINPMTk9OEpd0+vdcS2pkFHfYT6WeBBt8lkSl3sCvQ60zQtnQcQ8EcXo8xMJlhIkKrcOwN+HBjtcQhKWMr6+hMBuPEd65mdLjJ6jpOjFb4GyfiGjZ3DL9zGSHnzGF+GcjBAH8LS2L0mHeUJOM3t6/erKyTJOGUQfbxqjXVrxWr+m4/X7EK9RjjE6M4W9rZW70AoGWS09OC5bIDePS1tLJmUlcXh8CFuHOLnzh8GJjSCYepWEYREcvrHhPqLOL5PQUWV3AY2aw7WaTgGVZT0p+xOXzk0/G1xS8rdd0NI+XUrYZoMuqSmZujmqpuMpy9XIopNOIknRZ6+hfZNQti/prfonI5g28e/px1GX3stDSiiscobRzN87XvZHU1u2Lr5mGSqh1Iy+7JsL16wSKtpsv3T/DFx/NYcvNsmi04uBzdz3Oo6ezDAYNSrksPpeCKkvUazoOTWXjuiBtAQeSojAw0MFrXrhpTSvzc0IP/7r5Q3zW/RYubHorDoeDWMHk+y/6HHf7Xg3AGbOTH/3Svdyz6fewbJvYwEtIbryDugkvG/0It9/5QjTqfObqT/CQ/yX8SLqO+B3/wJmrfpMtJQ9XjwnUJucwv/U4eTfEblrH9AYXbrG5yJzoA+0Nt+D73nF2zCo87EkwKzWtkBqWRcoTxrBsRFXFtsFjN/DGp2kkY0j9Q1RueAmF9TtQrAaBx36A8aO7ufD1L+CTRTKxOYQd16GrLjTTILR1F2oozNyH/wJPrcLxr/wH2SP7mP3+11EyzSyvIAgIgtDUOg61oddEBpXPUo0fJSI+hlsch52fI2q9Eue6V1CWd/4shtAvFIy6vkK+0d/aBraNv6V1TZOiciFHsG2lusICbLsZRNZ1fdVrF6NWrVKv6Ri6fllpS9MwUDUNxeGgYaxtRR8dvYDD7QLLJtzZRaijk1q1Kayanp3BNE1iY6Mr3tMxOEQ2GkVze0hOTaKXy4uvPdkMuG3Z5JNJnN6VAX05nyXU3kkhk0KY1z+uV3XSc7PU9eoV0wYHgzX+8D03MRRa+/qfCzjW2knXNdfykm6ZqwNL9yXfaCB6vBQRqV53M7PdS2ojFdOm3t3LhXAbn9t8Ddl6nbfGxnndiX3c4VqSZHz+hZPsffx+JkSZUqVE3TJxNGxMs0E+lUTraSddLyEqCmrQj+va7UStMhdDr9fYZ8zxU2OGc1qF1t4+jGiKiT43h4QUxrwxymmvzszGENlyjpIDHAM95O06va4w4cOTDOHniBnnMEmK1SJTIRHfTddQaxhstQPItQbJfYcR5lLMtcjYm3ubDxcQK6ap7d2IU2+wMQUT9SyjhdhinDCSmiJZys7PuTZep4cOfwuhik3dpzFciXPYSlDSy1zlX8f1chfZQyeQ59IgCBQbVUZqKRTDxtHWSrUtwKa4hbtYp3x+nPTRkwTH8nRPLqXOFzZoU1KRmFDmqpwH/2gGZTLN7qNVkq/bwYHrvRS2tpEdCmFaz0yF6b80MxxNVfjLzxxdMwt4pYiNjyJKMsG2NpSLmuNUp4tKPr9YPtLcHqrFAnqpjBJaOTGLkkSjXqdRr69qvHB5fZTzOYyaztTwGbo3bLos9cFqNKjNT4bLsx16uUwpl8U06rT1DeALRcjE5jBNcwWPeTmcHl+T6zyfJSmkUqguF5TArDcIre8kMb2yaecf7xqjz6fzttvXE+7s4svf3M9ffOJx3nRTCwGXQHv/lZU7jZo+Lwm3WofTMi2K6RShjk7cgSCWaT5pCaK//MxRru212LOFK5KYW2uc/NrfPamv/LlDEQRcP/geFtBRLlETBEb27KV15DzhUolETUcMhal/6O9wT4xz4C3vYOC73yTQVWTqwn/gCdzKTu80z39ZkkJMwzQ8fPw7IQRJRhAlJgoSci3LVddfQymb4cRMnWs2hmnv6+Lxx05ybk5kbM5ga+woSqPMseEYgryygWeg8p/ctklix4ZNnDKCtDpD6OPH6CicwwpFiG19E+z7Nge7X0tsappcReXjV32athNfYX3uCIciL2Z3+kF6lCKnxDbsvj3kYodxSQ4y0Tl6R++nW7uTr/jfQmbLm3C6vdg/OE2jUEarLG2cIkmD8uFRqNY48+rN6JUyxXSNN5p/wNdb5+i/bQ/J08epnjqC/PxXUT97FKJTtL7mbRTmpilUKjj6NyPe+lIy938Xp8eLMHwYQdfJlct4d+yhKkpY8SgRj5e0IOLo7MXKJuk4fQBFWHujqPdvpvddv8vRr38W57HHgM9TAipuPy75fqrFNMLpL9Bm3b/QD/icRiY6C4KAJCur+K/eYKipGjM/h4qiiOJwUq9WsP2BVZlISZLnlSZWlzx94TC5ZJxKsYCkKngDl+bRlvNZFEWlWi7gj6xMQCSmJpEVGYfLjdsfwLYsjHqNYjqFv7Vt1VyuaBrhji5mLpwDmhVGf0vLvESZiNPrxWysDCQlWSbQ3k4pl8MXaaGcy6K53SSnp5qaycqldeyXw6jXEEQBjy+4avMgK03dYIfThdsfWKzMPVlU6gLjo1OUa09Pl/XZjF25NCdOHuWFtRKoCictAUMQiSgqmkOj5vNh7P8pN2ajfDfSQXupwB4NXvHTH/NdXwTaOhBtsESBM+F2pEycXrm5lm+WAGz+rW+I9oEBYoeOUXW4Gdh1NTNHj9ErhIgEeth/aoRSNsGpmTlub9ux6hxPV+YQhroQGgZmvkByaoqwqZIulmjftYPogQsgCpQDFoXxUdL1GprqoeOnZ7A0lZReoM0XwbZtTJcT2amRH8mA4iF24iQbfT1MpGeZaVFYt2Ub+Z8ephpNIncrCPPVSa/qJDE+h6tQZyQk07JhG/HoLM6pNA3RZrbXTbhjI+XHjzLt0sgZJlvkCDGXhXvTIGceuJ+Wtn6OKGU0o0QYiS7ZS0+kl+PHR3CvbyMzkWKTEiZW1TElqEk2msfNDstJhxag9/HVOsTpepFTb12PEU3xqkdNXjkZhEmoKQGGD41So45rPIG/KiKJz0yfwS88TUKSFVSnE8tcygYU0ika9dqiIsICFlQScpcQPG/pubRYvtsfIJ9M0LNxM3MjF+ga2nDJY/3hCPWaTudFdATLMnE4XejzmQtZVQm0tpNLxLBt5nf3K1dT1emklMsult7MhkGtXMbpduPy+UhMTuBYw4QjUxGYnkmRzlXJVmwEQFVlBOHywvTLUder8+cXxxsKk41FF6kiF5cYLxUI5xLxxet2+wOLpT7N7cE2GxyYknnpi5+YR/eLCkEQuPlbdy38D1NDmyj+2d9Q+sbXCB7Yhz03Q+38MEImQ/qavZRe/iqO+Pzkz7nQHCLurscWHbIqiUGcnhBua5iKtBSEdAZk6pUyyWSeUMDNgTMpJhM6BydlkFRu2ugl4qjQM7SHYjbDmQdWSjZtbJPZe9M1HHj0MD85XSYwMs33rf+PkFTmgfv/GE89B0BHfZakYBB+/ptJTY2h+oJMB28ndfMH4Lvv53mFB9hmjuD76q20iUVOOTbT+sg/89ra94iZbgo3/QZiIgfnZpF/5YXYM9OEzKUN7Hrdw/pjcCgYYDqXxZxJ0jauE2t4MTwKRipFuVhkw9veSzo6S72u07CtpnlMdJaB629m7NgRApFBhEgHXa96I9P3fRf3w98lWykTWddH9Hm3IRx+hNz4BeRyEcfu6wjuvo7o/odQ6pUV90WXHSiv+1Ua504Tf/BerMkLlAa2YOeyCOUCnnIeydmC2vtGgj3rOHp/hhPHJF676T6GOnLP9FB61sAyLbzhCJVCfvFverlMpZjH5fWvooUZdZ1AWwf5ZGJVGf9ywZzi0KgUi3QObiA1O3XZYNgbDFHMZnA4XatMiQRBQPN4MY3G4ndmorME2tpXNPYtfVZTkqx1fj0QJZFSJoMoy2huF7VKhUZ9dVbV4XSRjcWa0mnLAllJUbC5ssCzmEkvNiQ7XK7FjYfmcq+i0l1qzl3ULRaExWtrdVQo1mzKdYkYGl98JMeaUgfPEeyhwZ7UNKgKtm3z8NAOxGCYF/3kO7hyaSqZNEY+Ta7eILZrL+fPnmIsE8Pu6+NlM6N0TuYQHSrfUj2kuwdIV2u83ViiVxqmSc7tQYrFCFoqqihiDU+ygxBtWoCJSorIzXupnR+mdV0fxx45wo3d2xbfn8qn0K7ZSn4uSmAmT1jzYpdM2iO9zOWy5E+O0qp4yVs6QrVE785dJEZG0VwerGIK4+r1zI5OE6nPiwpkJCy7hu32Io5HGbDdCGGBbESjc6Cb4fvvZ8Ott1KfnkZRFNzza4rb4WKH6SJjC2Q0genTp9FyFWTLz4yeQu7sJXrhPK3X7qCUTlGVFcqzZSp+iB04wNB11xOfHMOruSnn07h3bCWZSNGRbdDpjnCubuDetp7KiSjkTTTdJCcYqOsHyZ8cZS27mx/1l9EjHpTHztFqKow6bDJeCMZ1OvHiNxXKO9oRfX5mzo7zBw9MshWRt/ueXHPvxXhWBMNXygVdKzMYaG3FbJgr/O1NwyDQ1sHffeoharJ/8b3eUJhMdO4pi6ibpkliauIJRdsv1Qns8vrQy+UVDXBmwyAXj+MOBFfo/S5ggZO2wK1bbn4hiCL5fJXHHptkojyFIC5loQsNB98+0eC2jTlesDPE3Y9n+PxPEvzZr199xdcrIJCNRfFFIk1hcJ9vRfnvSmCZjUWdUbc/wH0PD/OiG4fIpnO8YqeDH50orvj9n06V4BcBnWMXKH78X2k9cZTumSlOHT5E4LaXIr/2jUh/9n+wvv113G9+B+b0FI6GgNWYoZxSEeu7MM0MDpfCu94+g8u/5ARm6Cbfv8eFYtd4zStv5J4fHePglA3zbmuzqQpiwMQVjZHLlbj4sR9NGvzgx8c5M1HiZdd3EU0UuXry080XF8VJ3s9E+i0M5I7yQOzNBJ1erp38Moe8N6Pe/2EC6TNkRI2QpNOrNBeNn+75K7SuIe6+u0I4oFI5/TC429mY+gq5fWdw2buolKpMqU5660vP71UZN6EfpznXYjF3Uy8z9QZqRqR+4STK/oeZS0epTI7izsQQPX4oZJFTMVJnTiD/8E6SqoLR1ktyahIh0tR4VWyT9OwU9elxgrkkfPFfcQN6fJrog/fgmQ+Eyxt3ow5swvzhnViyhKd7HfXpcYzxc5ibrqLzRS8nOzmOp62Tua9/FvnOr2OrDnS3m+GpOud7XsyF5OnndDAc7uqmnMuu0M+tFPOLQdzqYFRcVO15snB5fKRmp7CfYA+vOLRL9maEOjqp69UVmdlKoYBRq+MJrq5ILXCabdtuKkJ4fItzdiGTxqrXaBh1KsXCit4ISZbpGtrA3NgItiCQS8SJdPfQqNdWVS0vBYezaQyizPNLbbupNFHMpK9YI7lWKeNvaWtS3GgmJN7z5us4f+I0rd1dfOU7h0jaLc9ZvvDFEASBXePDGJMi6z0eKueO883BbYSu3svZM8dp+/7XEV7+eqbGHIQ3bCYancbb0Plm13oKhaZEX3e1tGLaVCSJl8yMcUjtRrp+B6VonGuK7sXKkFtQyE7MUM3myDmi9LpWxgRhX5jM6Uk6bZGyR2MmILM+3fw9Op1BOgEk0NDw1TXOHDqJ4nXhmcqgqQ4Sh47TZrlIYNDqDeNxNp+5k40kweddw9jxk0jVDOVaFmYg7PBhDU9iVws0pDKzDYVBVVscAyGPn43xHMmyQXpdmOPFIqEtGxBiGVoqKtaFKHK1SovsQXN40AwdBJV6NE4kZ9IvC0RVH7Mnz+Bb101Mz6NKMo16neLUNFu8EdoNFWQwMJg7eIE22QsSTCllTu/20n+qyKaKm4ZPQ2oL0nswTWybn8MtVQJ7tjEyN4vzdJSNk+AoNxCKk8j5Io+5PeTKRd7+NMfJsyIYfjpQHBrKxRtcQSATnUMXPSssBmRVXXSeezIoZjIYtSrdGzY97Qnk4oWikErRt30n02fPkInOXbKpo5zPLgaVC5N+pKubg2eP8ytvuZUv3L2PsdzKBpRWTWeovxfV5UYkhSVpV2ScsYDlEmuK6qCcz+HyXboxzrIsMtE5DF3H4XahuT14giFmL5xbzGyPxXT2HRymo8WL3ynw3tdt5WN3ncJ8BiVSno2IiQp/v+1VXBM7y1vu+TambYMg4PS4ySSiWFOT9FWK1K97HtmH7kebGGfnT37EyJ2vpWQohFoG0OunsF1ncPmaA97QTcrJdiRHjrMJCcmSsb9/mPNxg4Wsj4MaIb+bfRMlSqM6yx95xdbZ1efkzLTNgUkL2ZToaA+j1xpAbfVFAOvNCQ45RUrbb+fohW+ReO2HyRy6j+gL/hM1eY7fGv7/AJgQ2pHOPch0OkvVs4HKKz+AduJ+fNuuwzH7DfaOf4nH6Md4042cPTlB70ELw2ygSDKiIDJAkCNbJMJd3Yz86AF2Sh2MlDO4bn895tc/Tcie54kVs/DljzYVrI8+jANo3PbLtF53M8Of/jDeQrMEFxo+jHnmIMFl47+qaGBZeEpNI55y1wCNDdtwtHdT3bSb4NnDzHz4r5BFAfvml9Gz9yZGP/dvyG4P9Q3bGfr132bmi5/ANXwEgBtNi+4LUW57wSkuZW7yXMCi/vgyaC53MxB2rX6On0oQXKtWqeRzeILBp2w/vwBJllc01OUScdr7B0nOTFGrlJEVdUUyZfG4eAx/axu5eHQxGPaFwuQScXo2bia3RmMxQKNeo7W7l/jUBIHW1fS9y8HtD6xoJvaFm1brl7uH+VSSarHZiN2sNrYRnxhHdTUjM3cgwP0PnUKlhjdY5O2v2cN3fnKekdxzNzO8gD8ZrTFlKvxbXxmnLGEDBUWlbhgkLgxzUz7D+YGNzB7ej9+GdffczdUOiaRpYbR1EDAbvODer9O9bAweFGQKksILjAp6cB3jxyfwIcJ8QGrbNhmxjj8nstu/pakkMf+42LbNhVoKFZEN86YXJ4QMSjhIPZla8xqcqkawoVHfMIB5apyoV0Vwepgrl0GRMWNpOtxh9HqNerXC3OHDCHqd2e4Aoa5dpCcncLW30FdUcUo2CZeNMTRAbP8orZ4QgiAgiiIRd4CoUqelf4DRw4cQcxW8JZN8l4+WhE6fbyk2uYYIuCPNZcIfZLSeRtq1gdCJc/jnSnS4giiSTKhaR5EVBKU5H1brOtlaiV5PBEEQyOpFxjdL5LQ6pU0yvQdq7DlYZ+JEktmAgLGrm8CDZ1C/cxghCI5bdzJ+fpaX7bcAJ6hBgqUknY6nr4zyCxUMP9kM8l+8a+nHW3jvU8k8LpT5FgTUn0mIkkR6bhZfSwR7jcaPhmEgKwqSrDS5dRctNjfsamZj4oXVZbiULnPwTJypWJGG1MyAPJ0s7MWKDxcjn4gT6ugkPjG2mCUSBJH2vgFyyQSRrm5yDY2Hx8AeLbOnxyKrz2EuG4Zr/ca/yNniSdnJxzfdzvr4MMPdu3AZVR6tZPiHa97MW07/gJd9+bNkAyF6kwlm2tuZkyTc6/pxDG0k+I07AQh0lUgn/pPwgIYgLDVylNMSre23kY4f5Q/fu6Ri8Lef2LL474EWmduevx3zx8c5MLlyfA22KrzsRbsQ7z9KoWIylZb4t2+cxRJkBLm5UNqWydZWA6Oqs674BQRRQjxcof3UI8zV3sNHHvkQDbkTWlqonPsRP255He3xgzyy4T001t+C/+j30He9BvmhL/L8+F04jvwp/XKG/7zmU9iD1xL94edpc9nMub7DgVv+ia4Defakm4FL4HSctFtht7OXG0cVqpuvot7ZRkoU4TJNScbDP2Bm+BjhsZPYgkAp0omWnEVeFgjXTBPv+36fWj6L/cV/RRAE1G178PRvwO31YHWuwz5ziOBb3ksNiPT0Mf7Fj9M6NQxAdeo88XwKYWqpeXVaCPBw6Dpqn9bYJqTZ9Z6zT3a4/MLimXZ3q+Rzi1bxTzcYvhgLKgyN+d6NfCK+srLYaCBKEprHSy4RW1Fxg6Z2cjYeQxDX3vC4fX6mz52ld8u2NV9/MlAcGv4nCKbNhoHD6VqkfVimiaI5EBBo1OsoqoPHxi1A4Wwsys07TXL6c5cvDPAHIzUaNhw3NGbkEFPFMX4jGiREjW9slQlFx1gngluWOW9buLw+/Fu243nge4iCRZvm4FX77sctSbgvGn9H121E7O1j8p6vIQgCA86VgVimkKFxVS/FeJKBlSaIZAoZjKt6ySdSiInmRn2j7KV6NkXAE1g8bkbPMFfPMygFCbsD9DsjnHroKB3OIKqhE28UCezaSurCBWK2hZ4zSNkVHLs3YT1+AO/GQbKxGIG0zjZTRZFkZhUde/sgxcf2UamWcQlODjsLWLUae+02BEGgpQLnJ8bwBoLs0r1MyHWckRBG4vIa6u12Uy5uoOEiqHmJltNookrQubIJdFStIG3vxzwyTo87Qkao496zlerwedyDvZQOjDCyyUF0Zw+KqGAcOsfLJp04JZVawuCAMYI3bwDNzWnRqPJvZpF2I8/fOK5MJetS+IUKhv+rIAgi2Vj0STUrlHLZFQYXl8LCjj+fSiJd1DCRnptFVpqcp4XPKaRTpOdmFzUsFxpYytZKC1jbbLC1DYolnUTd9bR0Q+p6lVIui+ZyzytMJGgYBr5IZAU3LtDWTiY6hygrTXpFKIJeLlHIpBAvWjgEQeDQjAQzNZCfuxmKUWeQY4M3ENQL/NN9f0tHo8pJbxumqGAj4DUaeJNN9YLuWIy233o3UX+A2OB67Hk6jyAI+NtWd2bVKyoTZx/HETzHcg3NRVgGmVyZr3xzH+NpQFgKcPf0iuSLNe767iGq5Qpvf9PNPPTTUyTTFWjUkDSV4WgN0apx69WDtHT3cOd3DjKchM1dKq+/40bu/PYB7pj+FFVTYHz4X/nBDR/hkcZeum7+I+bOnKJT06i3DNDa20fLqU9j1nV+tP2PufbcJ9l67gucnTuNtvOVKJ1dRL95cj7oaI6To+EyWb+Eb/8UW1I+EBRuOSWgn5jhh+YSX1OXZLAFNGvpb85CGgppEEXKG3fhev4d5I/tJ7jvPnSnG+nml1M6c5za8UNI1SLu+WqP+cC3KB58kGKpgGLUEASB8uGfUnL7cfkCyJF2mGwGw85yAR787oq7XhZUyoE+SvnTT3G0/A8W4HC7L2slvBaMmk4pm8UTDF42G+vyNnXQnR4v+UScwLKsazmfo67rGDWd1t4+nB4Perm8aCrk9HhxuFxrZpKhmXUu5/OEO7sXuf5PFdlYFEEUCbS2US0VqZaKi5J1yyGrDgy9SnpuFqfHgyCKGHqz+flinnG8qnHXvgKLArfPQZiWxb01H4ao8O3OKAZlup1OGoKEaTcVYrY6lp7cX09OUzQMHpo4T6ssgNKcd1vXUOeYrBvU8jnC999Dn8fN3BrfX5dBOHKBTtW9oqF2Uk9T9gvIx0ZplxzEutwIigxjGQpehZnCHAFZo9sZYkyqENi5kQvTc4QbkC7nYO8mpmaTXFUPMkiExJFpcmKdancrpXKVQPdmktNTdOy5mkq5gD8Qpr/s5aAdRWsI9OEndnYC06XSu2snqZNNvXlBEMGGpJ5nJiRhTyfoV8MIXoF+Z4TM8RhBzzKJP6NOVi/QvkynerlcXLKYYaLHQaNUZVdJxKVonLYzGPUadsNEHp+lXWyuRb2Sj9pXjrG5YCJKI7TKXgqxMml5jnRQwNnixbabShMOUeGmCVjOda9ZDaIODbv2xIozT4TnZDB8uQzyU8mMPpUyX12v4gtFyKeSV2QteqljBFHEXpYFMw2DUEfnqiz1xXbUQaXKC64dJNTRxffuO8rh6Ut/t2VZzF44h+Z0EersWsWpLuWyi5lel8+PaTbWPAdBEFbRUDxqaPGc4KkZEzydrL4gCLcDH6appPtp27Y/eInjXgd8Hdhj2/ahp3Sia+D5hVlc9/0tm6o5AjQzszVLIBQ7T39h9VSqCAK5q/dg/c4fMvLPf3vZz1aE7XRu3MDEuXHoWcr0LGSJc9NBWttfRjJ+L//2vaWNnGqWefGt1zM+NsNXH8sjWirf/eFRRqYyvO2V26gUcvRu2Mh37zvG4SkHDx0YZ2O6QiJvAjLxfIOjx86TKFj01b+8+Jn/q309pZExvMfuwqW7Kc8obJq7j3Vn/p5NxgU+P/DHOK5+OYeNMu8a/XN25B7nHj2FeNTg9uI9CPd9n7zg46Ht72fadT3uoY0kz54jmNYYVYuINvQbXt7Y/wfN+9io8+2XqBTzOepA48ffwJVNUlWcVMIduPsG0E8ewu9wENx5DdZj99IIttHxvBci9A4ilApIX/nY4n3RjBpkVm4qPacPILp8sHsPcq3K5bBDSNF5/hOEVQEEgWOf3LzqmP9O2eKng4WA9cmgmM0szlNX4h56KXOOi6lw1WJTArPJH768mUcxm6Gtr59COg1cvss9PjGOKEs4Pd5VajrVUgmH202tXMa2baql4uK1XYy1XPvW0jr+eeG/es6VRJEvdeWwgPWB5u8Vr9RwV9NscJrAynstiiJZ0yZx2yt5cHKU/unzqz90Hj91+vHsvobUyaOQnFr1erqYJb2zk1o0yZbqyvGb96uoA924D4zQ7QpjRNPY2MRdNmbIiX/jOuLTUbrLsK6qMDs2RbAuggM8ihNrMoZLt2C+ONjqCzMtgOIPUJ6IU6wZmFadWjRBR7JGyOXjQmoC3y07KCQThApeQjbItSq5gydYLwXw4UJA4EwjSVao0bJpO0bAiT1TIaeXyNo63a6VKjAjcon6phbOz84R0kW2aW3o9RoT5SQ1v4ZfsDALDVo3bSB9ZBSxDmZ/hFqpSKCrC++hMYLeZryjyAqDFe+KSHR9xc368/DdLTp2QFhUvlgLEYeXz9dAcz2xGtUT4YqC4f/qwf0LCdsml0wsGn48GZRyWWSlyW9u1JuasAtB9QKtIvQEdI1sw8UDj4+xrivLeLzGwm7Ktkz6Aw2SpaXgKReP4vL58AZDlAv5VZOr2xcgG4suZmlUh0Y2NkdgDcm1ZxMEQZCAjwEvBmaAg4IgfMe27TMXHecFfhvY/zM4B66rZlb87ftdO0huuJGv2AZ7z35v1XtaTp5g6q4v03ryODmWFE5ycxq2JRLsbjZ7NTjO1Pk53C0lFlXSl0F250nFDqGXFG5dL/DAOQNRkjEUH5/5+iH0hgg4sEQHR2bh2oEIiiQwMTKJJMtMzGYRhACns15OH6qwMIZSNY1vHyoyFBKAGpm6g7rk5qN3nUC0TH458B3eZJxGmBWwbZtjylbygpcXjH6CnzSqvGDy8yCDSzZ5fbYZTDdNPwSm1H4Ke96O88HjSOcPc43hpmLonHpVD2ZJp7QvQdUjcU3MiSLJ5M8cw+oeoGf7LqYP/ASySZRXv43eoc3U9RqNC2cofPbDYNu4RAHX7CgXPvgHqC95PXa5xBMV9i3Lxgi2kvv8R/BVCiAIzJoa42on19RGkQVrkX5RN21GtHXojSTd0tPPVPzPvPvkoDq0Zjb5SXB0F2DUdKrlMr5QmEa9jqS0UkincHl9aB7PJfnQF8PtD5CcnsThWikVV0inMA1jMXlQKeSbZenu3vkAd+Vi7vR4FpUkBEHAEwg+Lcv7nxeeDXMuwNbAyorCkWSBYfcmLtSL/COrddY7VJnWY/sJVlc2iE+bFsPeINfm0/gVmVtLGb677xF2pGMY/z937x0m11me/39Om95ne5dWvcuSq9xtbGMbF2xsigMhTgIhIdSEBAgl+aYHCKRQguFHN9Vg3KvcZBWrd+2uts/u7PR+Zk77/XFWq11p1WUw3Nfly/bMmbPnzLzneZ/3ee/nvh3HV/79Li+xvjG0UoHt9QKtaYMGdwiAtpxFfmsfrZNV1rmuKKOFJOLcBrKH+ynnsrgzKvi9dAYa6YSpIqjL6WKl6WLMzNJbSdDtsjm3i6se8rtiqEqAes2D1+kBAxLuHGWzxqKWbjZv20cQGYL22FngnzlvW5ZFuc6LwxGk8NJr+F0eGpQofa4K8qJ5HHp1N2LQR7OqEHL5cNUsYoMDNHTPozgcAxMGxSLCumWUx2PIOY3lZZnUtj5a5QCKrNDal2FPdYws4D+JDvgR9DnyNPVVWV2WkWUnRV3le+UEl8heljr9yKKEKNjb3Tu1MjlT5y7lzPvBpuOUyfAbZXCfDSxD5/L5CvmSxu748bf6evJTj9gfnynyqRSSIpNPTuDyzkF2OEiOjhCqbyATHz+tKvWRe/j8A9vZm9FodMOCSI2DKZk6h8q7717Ha1sPTt3/R+/sJJ9OoJZKtM47XjLu2G3BE6llnAjZiTj3XBrgue0TJNWZE5WWiYEgIvujCNLJLbHPwoHuIqDXsqzDAIIgPAjcDhxrE/YPwL8Cf3Wmf+BUyCPyRMMirkj20mzaQfjPetfzDVHmnQMbZhzbp3jJS05WJydo/u4D7LziGvSX5xJ8+BdYXXNJ37AWf7iRUuaneMMe6ufpjO3PYhauJVXbTbRzpjSYL2KiOnZSzq5lcVeA7rZhHlhvB8QJ9ehkIWhFrlnoYCxZ4sCAi4IqUi6rqJaTMBluW9fExOg4z/Q60CYbHf2UeOedV7Bnz2F+sdmWaqvi4s2Lamy9/Cfc/71XSBt+6h0l/uyedfRu+S5v6/kXIkNf5eHO9/PLwHwuOfh11pm7Zlzz6upOxJ/cTUe1n6hUYVBo4sUVX8fxai9Ry8XAqgjKvFZi/7edNkcE/ytPUFx0AQc3v0D9wEEQBIoH96B5fBR3byeasPW5j9B0NAuCN99DTXYglQrohoGF3R1+BFVBRHP78BSzjHvCtNz5BxTHRhB+/n8AbPcupr/5ErYO7USMtHF9/CkWi1n6hSBbum5lLL6VtvLmWcfDzGrx4ROOm9/luHtEgtHtD85qHf964Uzj0nQkR0eJNDdPub5lJ+L4QuGpXofTTUIjTc1EmpqpFAs239nnw+3zY2ga/ujRnUKHy41WizOwZxetCxbOfq5pc4jD5SbSdPqUEbVUopTLYhrGcZKheiEFloUgK0ie88fznsRvPeYC/DxWIaTAdfX2d3ZTRx237BugzStwhG8KkK9prE9p3FDn4LZimsO6yf91L6V1uA89ECGhqoiXXIVr/eOs01Va3C5uSIzw0wWr2JdLs+qYv+tQHCwnwotCDk0y6asXESdy1HmCRFwBpo/Qzbl+DMHEHQN/2aLk1InIHjRdY702RM00aC2JrGo4yoUdi0h4OjsZ29hDS7ABj8PNjswgvktWku0dYRX2PD1YL+GM1OHel+CS4Bx250d4Xh/Goxpc6OmYoa0tCAJdcR2DGk3ReWi6xkEhR7VQxnVgAM0h4l4yh8TOPkL46HZGcaoCo/v66NY9EAS/JtLb20u5kKO7GsLn9RGUji4eJxQNd0snpqHjkB0Uy0V80xaMlmXRK+VoqbkQgJcvUvA0tuD8+SFWSC28VM7wg0CQ74734fGEuMQw+cew7Zfwn2aZrCfApeUMLedQIT4dJunU4LYsqwYcGdzH4sjgPveSyHmCZKhcunY+y+edH1Hmc8WRAHkyF7hyIUcln0ctH92SFUWBfDqJ4jw7bu3Vq+p5+x0X4TYKpKoKjz+zg62HslPv+yMRWuctnDURPh/QNY1Fi+cSmMyDjUoBPZ/EUIsIoozo8mEdI2J/ntAKTCeIjEy+NgVBEC4A2i3LevT1uIDHGxbz7cv+iJ91XEzFtPivznX0B5r4jwOPcIE6s2L8j6vu4dPXfIjRSW/kxPyFyCtW0n/pZWh//H5K2QKxvh1QvpH0gB1WXc75NM+ZRyU/+/eXHW7GF2pAVGTk42RXbKztlLnimotZOr+Bx7amufDS5SguLyXTydw6kc6Fi2lubeLWVS48goplGjhk+NmvNrJh91GJt1WtAhdecQkjB/ZTLNphIKNKvPzqPrpGnwNgd/QqjKvfh9W0kGfmvo8f1N3PU97rME2T/qqdcKzW9xGV7PHfH16DftkCIoqPixI+lr2Wxf/zbZhue+EkCAL+g9tpGNhHpX0etevvgsP7cRg6nmKGytK1iH/yN5R9k5O+hc3NT4whPfpDjDv/COEdf44+TaecK2+h/oOfJXnre/C85R3oahkjGSdriLxCKzm1ijC6B9PtB1OfCqLNeoa64Vdpz810hDxL/M7GXcsyCTU0zbC9/23B0HXS4zGq5fLJj9NqFNNpKmW7Mig7HLP2OpwuKsUC4cmkGMDCmtJrP3L+1vkL6Fq2YlZnvnOFVq3iC4URJpMey9DRcxPohSSYBpI/MqsT5XnAbz3mDuWKfLw0h0/E7Wf+BzGVzw7o/OdCD5+aN3Nx9l8x+Et1Ed8at6mIMcOCtk72ekOkLriYtNdPYuAwW11+vtk2H1XT6PGHqF+4mOoJdiDSxQy+hXNs3WuPd1aF6Xg+iXftMuhsoiUv4IuEaVm8BJcpkMqn8TY34auvJ9HoZqBkx9hEOYdrNIuws49Gnz2OJkoZfBcvJzMeQ1OP5gy+tIrQP4bf7SeVTyOs6sZZH6HaFGZDupfXysMU1DK5cp6iWqLeE6RpMpHMlQuwoA2rPsJSM0S3GMLcehCzVEGbnKfbXBEu9nYgO5zslLPogoW7ohN1h6gJJtuiVfbVjs4NlgAOh4P2oTIZxaBngZ/RaTume715Dr9nNd9fWeJ7F6poWg3KVepFLz/Jj7C5nMITO4QpO7Esk+k1+cvUKutS4zRPVuDPFqdDk5htcF88/YDpg1sQhJOu9ARB+FPgTwGkwOl5tZ8tTIePr/9sB5opcLrWUOfCTz0R1FKJxPAgLp8PxekiOxE/YYU30tRMMZshWH/0uznbKvORe8glE/zol5upSLYX/ZYhmE5CPxmPupjNoDicJ2wYORmOnNcyDTxWL2UxgCCApVWRA3XUMmMIlokIiM4zP/+5QhAEEfgi8IencezUuG0+A53qK5O9xHf+ihtiOzjkDPDoqtvpGdzGjTsGjjv2quGtTCQPU2/ptuza0AClchkln8P9yY/h/4s/oFSoIMkKaPYkJ/v2Ex8fpnmRiqZaGJqB5JBQnPY1uoIpqqUEqraXpgUaf/v+o2HEqBnk43X8+hkPm17dydaeLILsY/eBGDXdRBBEXht3EXjkES667lqksRhrF1QZHi/yB3ddwaNP72B8mnlQsqDRc6CPbftS1Nz2+NVFF8/tr/Gs+UFWtwpk82XCj72Go5ZgTbuT2o0fZ8dQP8ZLBWLv+RYdT32aN6V/OXXOUOYQEy/8lJG6RsZaW1iyWaV/sYvc/G68P+jl3jmfwLIsvsXDGCsuxdXajr7lJaTvfwVZcpBZuBq9UMBx072UH/wqbknE+O6XEWUH1WAUoVTA1Go4BLs6UYo0UevvQa9vYdFlV3Bo06uUN/2SwOAB1rsWsaftWvR0jFBlnEXZg8wzEtQ77eluWIqQbL8Uz7jM2so5sxXOW9ydPnbPRlryTOH22022obPotTifGDl0AKfbDQiU8tmTxjBPMIhpmDS02VVUm8N79lUmty8wg2N8OhzmI9CqKmqpfFqOdSfbLXOYJTRkLDGBUckj+aPoRTsB0bNx5NBv/vc5k5g7efzU2O04je8DoD3g5S+zA9R5LMDNd3I+DjoauSt/kJWRmcnwlX6DQ5lhLpv8qZsEi42pBKbbS/uzj+KWFUpOB5rLhSXa0mxrq2XY+AJvyqcYbJ1LppjF7/IiSTKiKOJ3+VD7Y/iqFouGqniOqb6PqGnykkZl1yEUTach0ElJTZE/PEKT5CIc8bN3z3aErhbCjY0MShmCmQyxxXXUMiIXlo7uUrglB9WROI5CiaXK0ZxhkcOmYgypaYpeC3n3AFopS9kBc664hGRslOFYDm1uI1o2z9ppSpoel5vEaztRFdgQrSNa1skaZQJrlzK0d5hu2U7Ex9QseyvjeFs7KBQSXC51omk6+7QR4iNpwk3NDMWTtLhCLJPrKQ2VSTtktFoVrVBEnCwjbOvaTkIXiG8p0XXROsb7evDkUqw+vImtkQpflpahUED3dnGLupUFdT4ubvEyKO7CsiyeL3koy0F2tW4i5D37POKcG+jOdHBblvUN4BsAzub5r7u+S8E88y/nwnaD5OgI/kh0MpieG4q5DIrLhTcQZOxwL20Ljm+sOYKTbYeVC3lMXT/j7cBgXT096RFmk0i2DA3JqGI6jt/OLOWySLI8ucI9h2TVNCiUNQQ5j+QJIrp8kxUKHTncglHKIrpel+3UUWC6LU3b5GtH4AeWAesnGwSagIcFQbjtWO7l9HG7zOU+7XHbbFb5y/6XjpyDj67/bzorman3nw+0saVhIff3rec945OUgckfas5L69ly8+0E2jpZ9aPvke9ag18zMIwnCTfIgIC/QQMygER+ZAFG1YsvFKVkvEKotUKoRaQwsQ/FEpDkmRy3QkqkofHNXLFsN/GCxUTVC5bJS73WlJyUKEC0tYNCKkUinmL3wRKWILFtew+ZdA7FdKKJdoVktOjkwVeLwLTGEaPGugUuxofHuGzlCuKJPD/fWuWqBR0UFA1xbJRC707myGlGejcSqsxsEBrsejNi56U4TQNXUwv7TJPIgnb053YSkEIclLNQUInc914S/X3IpoF3UltYvPY2Fl1xPYP79uBraqP0hx+jvGsT3l2vYt5wFw0XXU7s3/8WT6WAIIoUPAHaP/w5EhtfQHv+YWLpON6XnmCHXk9JWcTSch/GsIUrN4ogOdjUfiObdZXliU1cI8WYT4b84KN0aBNwPJ3wvOJM4u70sdu1fOXrHnPdPt8Z0yNyiQkMQ5/V4vlsYJomWBbuQJD4wGGiLSd3uTxRsqprGvlUglBD03G2zSfDqb6DXDKBPxKd9Zy5ZBJ/JDpF2ThblEsqWAZyoAHJG8YopDCrFRx17RiF5OtlunHeYi7MHLtrOztPa+wKgsBHOo9Wbf+pqcCwmp9KhEdKVf51XOEtgSo31Lu5ImpxpDg0zyHjGezHWrSMzpEerhd0zJEeNMOwrcUVBTdwQzkLssSz1STZ7iBmVUPOZFlDA4qssEwNkpSdyNLxKdZE1InqcCKXaszJi1iWRZvkR6k5wGWP3VCkgaJDIRufwDdRpCIHEIcmkKoqcUuncbKK63d5uVD3gntmTtCnJik7RJJiAX9rO02Hknh89Yy0ekgMDVLKZWkpS6jJLJKqzRAjStSKBJbMR8xmCLZ1MJE/QMPa1Uzs2ccSy0einEMAxgMWePw43R7chn2C4VoW1+WrcO7dQ6Chnl1DW5locLI0LRMXKugXzUfec5gLsx4Etz3+BjuX4Wrvouupn5LZpdCWSVDJFPlK2sNbIlVukXtQPHnqHWN8q9jOYzGBufECn1wi4nc7eE9DhqqZOadEGE4vGT6vg/t3Aa0NfiS3j3//7lY+/b7Lz+lcxUzalmjK5QhE64g0tZx1YlkpFPAEgpRy2VNq/h5BZnwMp9fLX71tLmq5RLixeSoIfv6B7Vy9yMnaVUv4+s92UrRmXpfscFJIpzBPoul6OjDKeeRAHXreFhUXHS5Eh8umShTTiM7XzXBjCzBfEIQ52GP27cA7j7xpWVYOmJptBEFYD3z8VOPW1djA4o/85Qnf3/+lr8z6uiAI3JCb2YH8fOtKNi+4movH9nJVybYJr1jwbGQOl2aHuOjv/xa3ai/bJ3oFPI7rKBYP0rRkyhqOSs6kVmyiUswiWGAawSnPB9MwEbUrkWQnWvUxlGmSQoEGi/HRh4nULaaxzc3zuw7zrus7SGUKPLHX/s1vvyhMOORicGCUBcuWEGzIIIgiv3i2jw/+4eVs3d7LE7tPvEPvEVWuXncBvftk6lvb2LRzI+BkW18erVFjiT/IAbWOe4of506hASl6JReO2Hzb/cp8lImDrBzdRsrdQccL21Gj8xgp38/VowEOBlVi91yA5/n9GGMpGufMp/LiDrRaFfPqt6BXKow//TDayCCj2RRNd72HCRMcloB2cCdJtYyzWp56HpzlPONP/hJjqBdvagye+yUA+wKLKfubWdu/j5ZqnGeW3kf3yIs0p/Yw3riaHfWXUJd6gRVSmkvNofOVCL8ucXcsWT4b7v15x7E7UPqkSk56bDaxqjPHxGA/DpebxNAAbQsXn5ImcSLkEhNEmlvIjMdOe4eulMtO0RQK6RRuf2CGVnImPo4/HDmxyZJlUcykcfvPtVnOQnQHMco5JE8QOVCHoBYxCikQzkFr8+R4XWIugBqfOGFsPRm8wCLgiI7LE6FOfn31B8lteoL2nmemjtvgbcRr1FhrFMkHguipJK+JIk9+6u9xhcKs+8SHCOq2pbdpWey99HKK13ahpiwUlwvBtKaIp8MeDXlRN6Pb+pijzKRpNqVqDFDEv3IJpe39jGsJqs1BOodz1HuC9GoplGVzqWzcQueVl5Ot7SezeC7B3UMkIn4mGuqQ904QnaZLfCzyYSdlh0BT0zJyA4O0+uup6RrpkQSFkAOnIBF2BxguZ3EEA2QyBcJuP4VqCdUh4Dw4hqWpqCNZupwB0oeH6a558AoO9nUpGKqKGEvTftFyBra8xgorzJ78CGrUi7FzH/VlA23jXurr6igW8mRUhaDTRaxnkLqagOA6uhALjA9QzSZo9rrozI+BBN/JKWwTOphfPsS9HRIf2NcBGtzkGeXJSjN9mp//GajxN4vhipbzIxN4Osnw6za4zycsy97WPR94eHMaeUvyvLiimZaF0+XGFwqhloo43We/ejF0nVI2Q7Dh9BQqshNxAnX15BJxBEEkPItxSK6oMToaR7PEGZ8zTQNRlE7oiHcmkDxB9HwSQZ7ZICcHzt015mSwLEsXBOEvgCexU5RvWZa1VxCEvwdesyzr4df1Ak5+bVQtiz899CzLR3ezpDgxlcA+0riYb112PwM7fsFfTGuyM3QngkvCNGY+trVCC/WN14H1OMG2Qxj6fjyyRGFCxqqupJTbjdNvEXbM/JwoiUQ7ilRyG7AQQJqPZZkYxtECzHiyiK6bPLOvxvqe3Vw4z3Z1LFpOtmzr4fBwFmoWluJmfrhGPl9iwoxM3WNRd/CNBzeDpTGe38uBuH3uguFiQ8zFhlgW8LIomKehqYFCbYFNCAA2Lv8o1qKrSD/2daK3vJ/Uhv/ltv7/YiT2PnaFKmycoxPcc5CuCR1B1egXDZxLO3DO/xi++kYqY8PIP/7qlKJqYt9OFtzzHkZ8Xnwbn4GBA1P3qZsmB4QG2l58loisz/iebk6vR83IhBwSNaNCQ2IvLdUJljHBUwMJDjZcQsp0skFsY19wKTen1tMiz+7gdwZ4w8ddyzIB4bxUGMNNdmyKNJ8+neBkEEQRh9uNBZRzubOSxwSQFdvsSD4DhYpquYQ/Wkd8aIDWeQuOMw6RZJlCOoUoHY25lWJxsuFNp6Gj66yu9TgIImYljzyNjii5fPD67MIBb+yYC6CaJtem+6k99xUaS0c5q2OWwP+76i8IZUb44atfx5+yCzeqokAwhKnMnLtGIlGKn/w8DIxyRcWHkTcQJT+VaoV93gpasYR//wAts9AzW1xh6jQv6S39NAXq2FObgGkKCy5LohhPs9jdhLilD1lWyMfiNKDgyVbRKuNoNQ3LsoirOeJagflKBM+kA161qtJeNshrFSrpKo0aCC4Bp+JgldIKGiBBysogRgJ4ovXoaft+x6QqrJhHdvtu3AvmYFSrtKactKsiOavIq3ICPWZSp8s0yn4G+voId3XQMzCK0BAm2tKKf8cg7UH7OT5UHMdoCzFSJ7FyXGCF5pwhcb0zFqOWTbO2oQLT6Id3tph0pfdxSYMDSRJZqmSxLLilw8mqfIx/HIoymqvQlxH54nCQK3157p17btz7UybDb9TBbWoqZjlvJ8GywzZxt8wZD/5Zn1tyTYmvnItjG9gakNVKhfpg6Iy22WZDQ0fnGR3v9gfITsRtpyRBIDMewxs6up0yXXXiyAj9/APbmRus8va3rKKQTs122lPi2MqTICuve+J7IliW9Rjw2DGvfeYEx159Pv7miarGm9MVNv78UTY3LuKQO0yufg6feemr/HDNvfyslOav9jzMv658K1q5yPIDz3Pl+IEZn29cUCY9+giNSxxMLz86/DESE0+jmzGKaTCKyzGsNAhlGhoXUMmqSI6+EyYt7qAd6P/2g/2YRh8dosDaq+1j//lrS2BQBTlAwKkylq5xICnRHpRQqwatUZkbr+zmmz/ZzI0XL8MbCvOzx3awdF49+UyWVSsX8IPHD5HUgrxwqMaJxP4PpN3kfvEasbLCl5w/pNVXJXpIpy2zjWVX3Ye4/musiv0EgDbXrbwmv5nGRZ+nlkyzoKTQmdewakVcyTL7VwiM7duOb9erMwKchED8cA/lZAK3ZSFNfh+mZbFJC7Nt0duYM7aJG0uvMWAFUCyNrcELuKC4izmi3VjVINW4I7eeB7zXssOcj2LaW9F+QScnean4mqimz700/EaNu3puwqbxiCKYBpauoUTOnYcsiuJ5dfesa23HNI1Tmh6dCmditHQElgW5RAJ/2JZDkxXHjPdnoz5YpoHb56Ocz5/1tR4L2Xf26hrngt9GzD0RMoLE+kg3mmXyVOeFjPoauLfneYa89bx6xbV89Jkv8sv5VzPs8tPVt4kr0zMVXqLVKpf/3cdRahrBaTukbekUuX/+HMq17yAjGUwoNSpOhYasitTVSEmyqBWr+F2hWa/LoThoUuxxsFSpx0gayJP22R2uCB0lwO+loJYZd1TpTgsgSJhuBS2dJbFmAYX9o6QcOvKcVraPjhPSyuSMCs6OFhyjNZZ7Jp+nE4SjqD9MR2wcY7Cf+rp20moeVaiR37gV75J5FPuHaTfciJOSqjVTRwkHaW5rx/1aHy3eENVUguz4KB6Ph4Kqoby6n/a6o+olkiSjFvIIBZWKUIdzWq/SaDrFl/ePUZXa+Jo/xlDJwCNa/GrCTZ1i8q7uo4XDDy128O87C3zgQB1XKWNYshOXVaasWxSUEAX9GKu/s8BpcYbfKIPb0msY5SwIEoLiRHT5MNXipEyMA0ubXRTf0jWMSg7JHTyuOnksJLPGsjaFQ2NVKtbMibuQTiNK4mlTFI7gfPCOT4VcYoJqpUIgWjdVhXC63TjdZz5RHc45SY+NobicqKXSebdDPRaWZWIU0ohOz2+lke43gW1ZlXt7JGpr3oHLqCEAjloFp2VSLqTJu318v3E5hfq5GLkJ1FiCPYFmlldSPBydR6Ba5Dvf9REJiNzx1pnndgdFdG2coPw2hvZvpWvJEnKpHiTZz/7NTzB/9XWMj/aD6cNXn0OaRR/zCPSaRSXZiuBIEWic2W1+9aoGFi+ZyxceeJGlXQ1cfNEiera/RqzvEDUlwMYdg6xeZiJhsGxJF7u37aFcVrGwsAydVc0GPrfE7lEDw7RoD5nEJkr43DILFzVwoLcIiv3733RRK5G6MP/z/Y3ck/s8axNP4BU1UlWRqMvi8uJ6Hux9leBomJ2iQVaqUrvjKlJbD1D+1VfwXX4TRtscGDxEOViH8/o7cLz4OFpyjEV/+OeMfOe/8fTYHO1NVjOvRi/AP7qTRWovW+UONrZcjzKym5q7lYZqnDnG0UlyPw2YLUtRY3vB5UGolhjGx1XlQzgOjdHqKsFJhOJPF2+UuKvnk2CZSJPJlegOYBQzdiwV9BN+7sgxp9MPkB4bRRCl4yq41XKZciFPqKHxjCrQkiwjvc6eUpViAbVYxIIZuu9n06ToCQTJTVYjT9eo6VxhlHP27+o9d8OCNyIqFnxk0c2Mti6lbryXTPsqxPFDyJZJWlKoZcb4xpI3U/VGqUgyhlqgL9xKLnGAQVeIQ756Eg4P25uX8rntPyXM0WRYFASWv/oyz979h4w5LMyaRaS9kb7UXvSYiShLaIpAXzVFxHIQdp2Y8iIIAsNajqphsUCOzCiajUsVzGXdjO85jLNqIi+aR2r3ToyDB+mqOWhURWLZLC5DQA04sBQXRkVFmNzcG6qkGDWK1ItuOpQQ/XqWWqGES1EoukREwWCOz/79424T5+JFNGw9hHA4SZvpp94VpFQp4XQ4qfeG6IsNkMqXaa9a7C8NkO+uw9vQju+VQxiaSCXqo6rVsCyL/a4SkmyyOCmSWrOI/liC1ZOMuuF0ir/efAhRLXJdfY20avJPifnIEwcpSwatfh/v4qhCUrVWYydtmIJGRXRimCYVS8AnatymbWVtc5RZXVjPAK8bcej1gFEpIPnrsEwDS1MxqkVEt9/WqJUV5MDsq3ijnEX219kP/yQs08CozFyFW4bOujlw3cVdrOyamQDK1QwmMD4+Uw7rjQLTMKhrbSMxPEC5cGbVhc/ev3rqnyPYPVAk0tTCz558fa1ljXKOWqIfyR/FrJ4dr++Njn8bqPJHAy6qohPJE+R6R5q/iBbYs1bg7r/8E24f2IjiixL31xMa7+GPN3yL3vlXsr59DT2Sk69e8T6+veQW8gkf+qYClmXRs69CuXA0WEiKyeDebYSiHYwPHsR0bkOSFCItXtLZbyPoTXicV1FInHhhlhkKUx67BJdjFdRsB6uPvWcnH7hjBx94yzjrt47y4C83U8TH+j05HnroBcINTSy76CJkS2Nr3MvTm2Nous6Xv/sKj+7V+MZT46RqbgJShSvWtnP99Rdy/XIfb14d4N4713HvdXO4/11XMa/JyS3r2lgStaPlU1ti/OzJPZQdUT4Yfyvvbvoub/Z8iwfv2cxrrgvIiUGciy6lHOhh/D0XsXuhQjI2Sl7UCNz/CRqvvRnHIns8m/4QdasuRAjXI40PE3/lOYT4UfqtUi3gCDVhuYPME/O06ikc4wcw516EUk5xca2XrVYTG2nFsizahTzt41u4qLiL5soopuJmsP1KfiAsZ2v3nWyyzq0a+UaE5I9SSw6CIGBpKkq4CckdQA7Ofq9GKYPo9mHWZhYojHJukl5xFLHDvWi1GtYxYvymYZAeHyNYV082Pn5+b+g8QC0WCTc1o1WrJEZHzvl8pqZR396B8frITB79OzUVLZfA1GsIsuP3Mu7udEV434XvYTDYguSL0lqaYN2uR3nw1f/jvvge3j+wgZBRpeirw2HUuGPv47hNnZcWXc+A08+3Fl7PN9f9Mfs8dYzVzyMnKRyWPfTKM4s12UScqlpB9nkxthzA5wvgD4fpTphY6RyJFi+j3hObTCQqOV7zFRlwVTGWdJAqpLEsi0w+Q281iVzREXYfpqnmoM0Rwnx1D5IsM3fVaiSPmzmhZuZnROSqQXAoy6Jxk7U5D8scdi40EZIQOhvJzInwam0U1iwg3uTEuGwp+bCTRERhp8POFxorIsLuw7SKPjoEP2lZ52BmmJ45bvaIdtO3IxrG39HGcKsL7eIF5BIJ8qkUfQGdYnMAcW4zRbVEVasiNdeh+Z2EvSHMgXE8+aPFFZ/DiYKJ2dDNsqBFg9fJ/PJBak1LwR3idv84B9JVvtlnkijVcCgK13gS3OBP0eCW8NSyZCKL+Pf9Jj8TL+A/Dp77btzvlB2z5ItgFFJYNRWlvgM9n0R02JO7qJyY0yXIDvRCEmHadpVRSNrNBaUskjcEQIOnyjXXX86B3QfYNVBi+pbuVSvrqRYL9A/G6V7427O6PBEMQ6d/zy68wSCzChueIbb2FUnlX6Pv7JgSGJU8llZDUBxI7hPbqlq6huxvQMuMITrODxH+jYbtVSd5TwNvLe/jGiXGx+TVbC2ncI4Wudxv8YHkXm586p/4Xtc6tjUtYCU6n3/+S0S1Cl1GlXdt+j4tlQxL8zHchsGXn7ybDf0Xs6SllztutyfOWlmioX0+gUgdsdEXiLa60Gvrccsi+bF62hdcytjATrzNZUpZicxAM4riwemOIHp2E2iqguUkUNfC+MhTOLw5NFWgNL4aWQwSiDYR9u/mUFpGEKCKk90ZJ5mXBgn7x6lJPqiWuOnaVqKtrbyy6SDr9xW582Iv2VyF53t8PPx8L/XufSzsbsTl9rD5la0YmsrghIpL0lh98QXIe23L7uGCgzqnSqtXpavewQVLG9m2vZdUMo3TqtItjLPrsU8zVn8RY7u34Az4MXYdZknKweEFAmMTO6n27EFZfglKczu9n/8Q4VrF1o19/MEZNYS0rwUzN8alqZfBAfVWmaBskRnZzZrKfhRJYHN4LTV3mC3jB7jb3Mkdldd42TWHnvZrqR/aQKhwANXpJl7O0GGkf8ci68khKA601AiOuk6McnbKqOFku2yi04tRyjC9Qq4X00guH0Y+MeNYl8dDIFrPaO+hGZzh7MQ4To+bxPAg/nNQVXi94PR6Gdi3G6fLRU0994QyUFdPemx0yunzTGEZGkYxA4JwUrqgqRZRgvVUJw6DaSAHz5wK8kbHgCfCROsyVu17hiv2PsKmzgvZMP9yGosJ5tZKXJ8f4v82P8Bz/jYeuPxPcClOPn7wSYYGNrCymuOevhfZn+zjrqHXKPY9jwV8ZN37MWUHP3ruP3BOVm+laJimRQtJbNzKsnAXgiBgJHTEYAOxuhCiJOHLqNTcbnapY6h+J7ppEjZkVioNaJaBM1qPlcjh2NqHU/FxoJZEW95KuZjHVayxqhqYojosDrYRKaRJ7e2nWVdAhnhApOQNY7rcNPaVOGSkKfpdzEkatFXg4PBhdIdE/arlTGzbhaVVKRw8jD42Rvs1l5M+1Ac6RFwBZLXEuFjBKlVJzwlSVDME80Wcmm0DXZ+oMFgaoFQqUlEr1GoqodEcLslNfHwcbTyJT/CRrpfx7RtiriOMy+1khemcspEG6M/m0FBYoY2xpsGNKIosCOr0p0eYa6ZZ1x7igUGRl6w5PLftILc1lbh/vo/eZIHPpJcS9MRoLRxiRajKr6t5lnirzPgDZ4HfqZAtCAJyoA5TLR6X3J4Mx7rsmDUVs1oBQUSYlkQnyg4eenQrI2mN8jEUid6xCkgSmwbh+nO/lSlkJ+I43G48/hMnjKeDaEsbWHYe7AkcPZdWVSlk0gSi9cjKqbcRbEMQC1VwcSABTEpslXJZZMUxqxLGzp29BANuuuYc3R60tNpRBYlTxHarVkEJNU7Jef2+4b86aoyp/SwP2xO6ETvMPqPGv+or+PnwAHd6Gvh11yX8ycFnWB3fR9Lp4/LipFqEIHDf2M6pLeLH/C2s39JMwD9AV1uFI4+wJ2SS6d9HsVSkebHNy5InG+Y84RKJ+LO4IglcPpnc8ALmLr2Qvp1b8UdC1Aw7sAfbYpRzD+JvcOKR30pubCemVkS3atSSBzmcDIB4NGREHCqyLLFrXLJ56U4vz24eYs1SjbFkhXafhs8Blt+FIKjogsLNt1/Bc89tY/dIkdawxJsunc8T6/cwklc4nNzK3rgyFfhvvrQFj2yx/qW9RK5bg+QeZ2Q8T2/4YpaP78VoXYFj7b1E1z+AeMV7yKd309BvIezOM/HONcSTg4ihKIHFy8lvfAHhGBpVQYefBa8ip2ogO3BZduWiYgrkIt2E88NcqqUAgTXxF3m5+U2Y4Q7KE/uAGp5qFk//Kxi+Oq7M7iIkWJDfO13C+/cCkjtgJ7dnoEIgyI4ZO3WWZWGoBSzTOI7uIAgiucQEHYuWzHjd5fWhlku4vL5zjo/TUc7n0KrVs+IDT4fHHyDc0ISu1Qg1zJxjziSuW5aFZVkIojhDsUKrVakUiwQix5tGjY7EGRvP2J87wn1Xi3bBqJQ96d8TFCd6PmlLrr2OzXS/TdyW6mHOY59nUa2AQxBY3FNgb3wf319wHWqgEeGZL/LcnItZnh7kc0/+CwPhdup0lTbD3pm6tDDGZcVxkAQ8Ro27Lnkfmlri2uROHNPGb13OILFlB6scTUiTLpaiaOcl0TG7z6Ar0Eh/JYn/4pUUD/di1XTMybmuxRPBvWeCgKeJHf4c5TofYk8ONZVGHEvSoARntFmUamUKDov2qgu/y56LGwsW2WIK0+GmaIokrQoeXwQ9kSMke/AvnoeuVgnsGaXR8hHrbqPUN8AyTwv5nX106/LUHB1zaxQbw2g9A2AEqFswD6Unhhbxkc0V0WWJ6PIFyFt34e7oIjcxDr0pmr1BjMYGlHCQQm8MT+d8MmNJWmcxrfnvTTvYksqjmyCIzilayJDmRvc3cV99CUWRuKOpypbdPZQjHfTlD9kflhTmZXYy5mjk2nqT69oauBcVW1zn3PA7lQwfgejynbYurWWZdtOHZaGEbV6XqRZQoq2YlSKSe9qXKCnsGofZZrPBnMJgrgqi67Sb6k5l93zEkSiXiJ9xsDcNg2wijjcYxul2IwgCdW3txx1XyKSJNLWQHhudEWjT4zFbh3OaZWohneYvbm6knM+xe7DMayP2A1vO5xAEYVa94bHhUR7anCUsx8g+NzH1uuQJoBeSSJ6T39dvq7HuN4k6t4M699GF2z0tHtKqzKZDveyR6vnWmjtIRRfw1WCAg3IUryJx//IaoijyqR8+z6+6r+BT2x5klZqmxxtGcrqxtCSr1shUSzpqagWGmaJxSRyA0R2dKEoAX+sWPCEXDo+Ew2NvM2dHAqj5PEO5XUSbmylWf05Dlz2Ri5KIL+KmnDOwdu+jddMWul98FsmyyIciXKGq1OWzU/ex/m8/h+OSdfz61y9jSG52jUv0FPz0biphaiYfvnsJ1UqV774wgOjwkK8K9O3vwa9ohJw6bsEgl0ryjnuu5ScPb2HPuAjS0e9pw5Ye3nnvdSxbqfOjh7Zw+4ImhLYge0dvpX/RuxDyNSoHenDMu5m133oz+y/8OC/fvBivL0z86RdprTXQOiYyqA4y/+N/z/B/fAp//uhWR9mSyIfmYKkFuxFMkqjoJoYgce/Qj3AK1lSEvMiZxzfxJIJeo9tVI16Fl+ffjZiLIXqC1LIicG4ShG9kCKJ0RhVEvZAECwSHy64GF5I4oh0YheRxdLYTKT14AkE8gfNuF4xaLtk6vunUrInmyVBIpxGEo9bPs3F7c4kJfKEw+XRyRlwvZjPU1AqiKM1o7Bvv77P7XkSRUEPTVI9GLpEgEI3OyiF+4uXDDBedGMUUst+OoZI3jF5IIZzAafIIJLcf3OeePLyRIQgCK7TilGb74lqexck8KUHip8tu5euLbiQ/dy07xg4R1SuMN8wntPH/48bcIIccPj6z9g+4ZnAz7xvdStWyKCtuREHgjw+/hCAKbH3TmymuvIA5SpClLi/b80MUwlWiYyWWhux5uNtl/y6JSo6UrFHauQdPayO+3jjz3JEpimvYHwJAVnW0dI65gg99rIpLqSenV2YseGKSirm8mwNbd+MRa7RVFBpcQeot21BrTyhH/cLl6Bt20RjqwDRN1FiMIhpeQ6YgiyQGs7SsWkpsNM5qNTCDaltXEUnnckQuWk3lha1E/WGyPhdSc5Td5UGcDhF54y7EtjrYvA+naJJe1ITQ2kbixZfxp3zU6wqZZzcQvOYSBg8Ns+QYydYDRZWqtw4jGyPsq8eySvQmi7yvSyGr9tEVto9v8jn51GKVPRP7uXG+/Rx9b9xHb3ghRi5OpnZ+dbJ/pzjDZwVDR3S4ESRlBlfNKGVPGTReb7j9AXKJ+NQDeybITowTbmwmn0qc9DhZcZAZH8PhcqPXpjVEWRaBugaqk/aj9ksmLo8HSZKRpq3oZIeDcj6PaRzfLFPf1MDFXRKXLJ0ZrAXZgeyvs5U+TgFDLc7gc/++4qfjKn/aazFarhJxOfj3TpN3uDP8UaBAU+oQqieCGGmjWi7yozFbmqskOyj76qiKEkULNkXmIroCeIN2uUCvWXj9XUjC0SYYr7+Zho75JHrrSA8c87sYc2nuvJxyaYCq1ke05fhFpScoce3/+zQdzz/F1i/+Lxv/9vP0f+l/2fWhj884rv1nD/KLRzZz4epurr6oC6ta4q1r3Fy/UEBUnDzyQi9PbRpGdHioc6ksqIfWjmbmzG3htqsXsHJhA79+Nc6mLQeJZY4fW7ops/WVTby8PcZAskYoUEdpYBzN1PFEQkiyjNPrxenzEvGIVKJzKcRHKRSzVJsCpJY3EHvnGoJjZeLPPopSzM44f6NicP3hB1k7/iL3TPyauXKZx/wX82DHfeiI+KaVCvabYRJyhHrBrhxFFZO24ZcxSjkaB1/GYWqo+u9vMnzGsEwkXxhLs78vQXHaleU3wO6PZVrkEokzNgapTdrd1qoqun7ixkGXz08umQDLQtc02wAEqFXKhBubj4ujoiShuD0IojS5M3cUxUwaxXF8DF2zpJ4L2jmOgib7ozMLPCeApWvo+SSW+fs9ZkckF59dfDMvBuxC0Hsn9vG2nvW8Y3gzbT0v05aLkei8ACk7znMNCwGoIVHyRCjJdrn0R20XIlkmsj9KZnInudI5B3HFKlTDpqlVXRKNc+aSkGvsUnJk1aPqBhlFx79yMXqtijOvUu/w45hlV3ul3MCaapAeZ5nE6nZ2kqK4Zg6jpaML+HrNgbW3H9npQl7URcpS2V9LsMVfIlHO0VACdh9mjqeeolriEFlqgknHqlUkgiLW0jmE8xrW4VF8+eO56aZuUM1kSW3YylxfIx5TpDFnMNHTi+j3InjceJ0e3PURgoEQWtBNMZ0iNTyEEAmQFXWEy5bjjUYx+kYIVI7nS39q1Xxu9Kh8eHE77146l6eGq3w2s5QnxoSpRBggVqjyfEqhxS0gSXY+crkniyvTT0O+j8UBk0zx/PHdfycrw2cCQXaAVkV0uKZ0iE8pv2bUuKBDJjaeYdw4eeXgXATsZ1N7qBQLVIoF/JHoST3rXV4f8cHDWKZFJj5+wurKERmf9HgM0zQxNI1wUzOeQIhSNjOjQhGI1qGWSkRbW7mh281Nk9sXJ7Oo/sfv7pn8rxMbL0yHZWggSjM0oa1aBdHlty1DT8Iv/l3HEwUXz0jtvDV/gFaPk2VBF/8WBKjnz4GNKZXvje3hkchc8obdkPOlt13GZytjhJe+g4lSBWGkgSB9vOseDXDgDSuUMr/CXS9w5HEuFneRGNlPtGUJ6BqZ0SS3/tE3kQSBTRdeSub9H2TZznHW/uLLx12jblmMhsKkLYuB2++igkAtnST4ix0EEskZx3b3HOCfej7F5quuJRSL8WDvQTbd9FVGMYEah7NHx+9FiyJcuGYhzzz2IhVDpFCqcfstF3HZSotHdpSZTXLt6jWtdC6cT9jcSHheJ3Ethc8TQPLD8OadhEJRAq4AvrKLTet+jLfJCzU3lWKFhRdeTM/WLShjYwQ9HpwvfGfGuWu6gSyJLHWqTB+70WqSWr4fjzAzSXgttJpMZD6vjfXwttIrdMhVGrQUh71ziLXfwo9ju5F8Yd45/is8yu9/jeFUmOrH8NnxU3IHTkmXyoyPUS4UqG9vP2ve7OngWLUH0zTJxsdwuD2TNsyzQ3G6SI2OoOs6eq12Qj3gI3G9XMhTSKeoqRUaO+cQmtR59x9TjY42t6JrGpIiz4j5J9N4X7ViHqtWwPbTmH8sywTTQJCOlgCNchY5UI+eT5wXOdI3Kvb4Gti04Bq8msqV+VEcgsD7RrYAcGdukIwg8YvcMI/NvRx1UvFhWS3HD576B3yCLUma9gRQnG7+Yv1/0z1Jo7jgW1+j9P1vIX/+BwA0qhKHXt0EuobS3c7hl7cxn2b8Li/1qsiu3l5c0TDLy15E1/HxIVnMYGgaZcHA6AqSiY3iKtXQe4cJyUefhZDLRwjoyY2S37iDFZ5WXtPHcQXr0cZTtHiiNABIcFhNISzrxr3nALld+2nOmyTlUfwXLadpX5x67/HSe31WlpYLVpM60MPOQpLwsoV4th4mFKkjfbgfl+XE4Q5St3OciD9KwpnF4/Fg9QzjWTWP7ESc4d278DgdXKR6kF3TxpxhoOkazdEo740efQYa3dCSH6fNN3Mh+FJS4jmzm8eH+rm5XOWPFkqsjEh883AZtf1SvjI4StEV5f3hofNivPF7nwwDp7VSno4mr8FbbrqY9Ngov1g/yGj59ZdGO4JKsUCkqYXM+NhJdTc9gSBqqYgkK1OVh1NhetXB5fXOKpl2pjJqpqai5xOIivuElAdTUycl8OztVlNTkUNNR7mDlolZyU1NnL9v2JNTSVRq/E2dyB2VvXgFMEwT6Rjd6UuiLi6Juvh0YZAmn/07CIJA2OPmf4ZUvlMI8s/hYQ7ca+HyHK0s9A0I7O/1csM1BcJ1DkTaWHzxBYwPbUerlunoeAc9K7ayaPcO1mzeQH86SdNQ/+zXevX1DL/9DwiEwshf/U+EbIbwJevw/NUHmTMRP+74gYWLkT/+KUo//zGZQg53SyuVdD8Nrgq6KZCu2UHq5T0Zeoc3czBhV8BEQ2b/wWFGEyVOJIS5fluMObEMi+a2oGtVxKKB6hcY7+1n4RWXkYqNUMakwe3H4/WTiyWJhjqp1lSG9x+iYaiEZ9FSTM9MDcqUJvLTpjtpyfcg6BoZdz1vzb+MT4arzX4o9YMMNcNkl9RKxpBpyRwgV64gNSwgnrJocpuEhSqSN4x7bDeeWpZsER4KXskt+Q2E5NN7Jn9fISpOxDPceTNNk/r2dsYOH6ZzydLX6cqOR3ZinHBTC5n4GHDiZFgQBIL1DVTLZWrV01v8My3mnkhLWXY4kGep/p4MTz2zhXRBx9KlEzYy6vkkgiRj1ip2g7kkT82FgiTb7/+Wd0dfLxQsgU3+ZlYl+/mbZ7+Ir1ogIcjUWzOr8mHL4P74Hu4Z34PDMm39bCAgivQpXj63+h1cMfwa337u32mYtoGbQ+Frc65l7cAwl3e1U/UqBOrb8YUjDD32DB1vvo7DvcOsNCDsC7Mwm0FCRPQcnwgnShl62xw4XEGskThivowUCeD0VWnKmvj8M+dky7LIdIZQfF5qvSWkcBALKJWLHJahXQmiSDItoo+RHX0sML22tFsUzHICNTaBW5p9vM0jSN/OvdTKKvVrlpPcdwDVYe9QeOa0423vYDw+hjxYIioILM07MXM6vvp57DgwjEM2kQN+HB4XesKckWD+2+ZdHK6K3BYReCxZ477uRtZ1trOq3sWq+qMa9BvHK/RldfKmTHt+JwPB+QwU+5goWNR5nXgCTtT0CEtcabYVNH6s+dCtIte0nltC/DuTDFuWZVcQT6BDaxkaICDM4gV+KphaFSxzSplirKTw5BOv0tLgo3SeeSmnguJwMdp78LS0jCPNrRi6jiSf+p4jTS3omjajiU6v1cink7h9fty+mQuG0614a5lxZH90siHjBMlwpYgcqKOWHEJ0emxZvEIKQZKRvKETyjP9vuDPR3z01STCtSz31cH/Cov5uNrDBztdjJar/O2gwEKhwKcWRRksVnn/SJBr3GX+uuvoRJXQBZKOMIKU5UMveSjVNBJqjUa3k3fsqXDA8hIeNPjeQokXfvhv9N1+N+ED+1D/+M+YOHQA3+QWrywIzO/rmXF9sYYmBm5/K80PP0TB7aZ8cD9SRyeLBwdp/vbX2bdoKYMf/xTp0RGu/sI/zfhs8+FeCt/8X+q3vUbbWIzkv/4/VlQrLP3rvyORKfDt520pwrzuRC5UuWSuk9cOqxiSk0d3qsyWCFuWxYeuigIR2v3tDBdHsEyo89ZTCli4/QFivYcop7P43QGY5MoHglG0WhWPx8dCz2JoWExuPIm8ahn3Dn8CgH/v+U8wNES9gmno9AcWIHqCPFWM81Zmfi/7xEZenXMHWi5OwCiyMn+QwymLDV13MF44yLLiQdYNPcpiKYdftviVcAFDkRUUc5sJUeP3AWZNRVAcs7p7WpaFpdfOOOk98tlsMkW4/mjM0HWN+MBhWxHnNwh/OMLEYD+6ptmm1ieBJxDE6fEiSqeme3j8AZxuz3HHZifiU4n12SCXzrBhXw69qiI6vUhy6LhjjGIGyRe21SWwMA0dq5LHrJZQQk2/t9rCR/Bg+1p+tvwtaKkR3rf/Cb5w7cfoih/gv3b8GIBvtlxAn+zhEwMvExLh63MuJ+Zv4PO7foF/csovizLZSBu5xKGpRHgAmQ5L48lAKy83LmHn7iHSO0s0yR5ycycoucYQww1k4uMk9g1g9M3Uxx7BjsOaWaOyUsJK1zDyVcp5k0B7A/pQBfchgfK8POkw6Mub2P/dHvzazPm53FQGSeDgiIuKp0g5MkS23k/rBd1s+OZrBHI2BahmVRlbIiMMJ/EWjxT1DHpQgcKMcxbqyohLgwjrqxAVyLiGUV40KK90IkVcVEsVDjz/Cj5PgP6XqyQnd880o4Ys5hEEBS9QNXJUrSz7J2Xo0rUCJbNGSahiOSR+NZGm1NrN1147QHFHhRvWHb2GmqbxPxNN6LqJ4A1xZ3gXRi1FSlP45FALH6sf4A5/ngURB4vrQjw/UuH/Sp0MqTPNUs4GvzPJsJFPIDo9Uw/5dFi6hlHKYJk6cqh5avBZloVRSIAon9SNxyhlEB1uTJjkF8tsHJVhVAdctHhUTEtgvPL6r6JFybZNnu5ElImPI8nyrM5Fp5MIH8GxahL5dNJurhuPHZcMnw7USgXBArNWOamyh+hw2c103hBGuYBp6EgON5Z+zpa1vxNYYyUY8C5GNVSWuYssy8dYNvlT7i3oPFuN8IJ/DivHe2hU4JAUpVWr8We7s2wpy/z3XJPPdPm4v3iY9oBdJfjzAYmXqnVcboyyPbgSR7yHrf4OPtnXR1hppLWqMn7727CeeQpr7YWM3XQry3sOznp9qUWLEW+7i75KBd+99xF49kmC3fPRFYW5PQfo/eDHEAIhpCceZds1byK99iLqfvETFh/uxa9prPnVz+0TCQLGqgtQbr+L6le/zCvNlxJ1mnTWO9k2qLFqrp8r1i0llnyV4RMYBnkElTetDmN5ZBCgUM4yJzxn6n0xlyNSvwgsGA9mEWSJ8cQoSdPW55ScDpy6Cy1XpC3UQTB09JnZWUzwqznvoim1jz/OPs4rtDGSGkQ328kGO6AwMxnuNpIkR57HUcnQLhSJSRGKvmbc2SGq+TF+veDtKPkxLsw9AQjcWNxKrrCDRuX3oypslHMgiBjlLEro+CzRyE8gONwYtcqUPOWRz1l6DckbmrE1Px3Pv7iLFw+q3H5RhtWr5gPQOI12UMplqVbKp6SLnQ8oTheS4iDc1DzVrFbKZamWS4Qamo5LZs8k5h57rFZVkWQFQ9cwDeO0kupjsWffIAo6TVEHcSs06zGiJzDJ0RZBVDDUAkqgHrNamvX43zesTR3modwERFoRjCpLh7fTlYtNvf9E4xKKrUv5ksPJ53ufZSDURizaxZO+Zn467xquGN3GXyQP8M3HPkdUsEAQeCLUxZfW/QmXbH6QzRe9HTkTo9owh02jw7gFHxfEHQTumUP/U1sxvVB38TzyfcMEZ9ltUAWVyBUrGH1tH613rCK29xD1c7tIxXpwWwKGx6L9isUMbtyJKGmUr3dR2DqCP+HBY3kIjk8WBQXALTL37Zczun43E0/ug6xJYZGOOFjDcJo03bySxMuHYNOJ41JmSRUjKtN2wRwGel6lKRaFuAa4UTZr1DZl8AhOHGvraLhkEaMHtzDRUUZqcOHyBCnky+j5Mp4DAr78zJ30X8o50j4ff5AKUKyZPOvwYg7uRm9bQi41c4fFoSjcFZggrWo0uxN0e508OerCKxRxl2N8N+Zh0DOXPy3tYnGdh6tbXbQm9zEndO5mXb8zyTCCvd0+q/yWcIQXdfTHNmsVWy3CH51cHR8Po5jBsgzMir1Ckh1Hf0SjUsDSqmAa3H3bWmrVKl99fOy8yn9VKxUcLteMlaPidJJPJjEnGxvyqST+cOSU1si5xASGoU+pS5wO3L4AmfExfvD0EOna8Vvgx+LYarGeT+Jo7ELLJXCcxJL1iPqHpWvgNCbts43fml3obxofm+theDjO5fVVbmnxc0uLwZEtoTc1eLglNkK/WuW5UoUDmsKt5laui8j8hbIcw1XibwbGuaxo8tGmo4lFo1HAEPxsM0OY+QQLZJU/lfbyt9ZSwstDKMkaI4/20hWMcv/CxUzs3MbT//RFln7pX2hJTMy4vgUvPs/QyAhd8TFGKirR2BA10ySUjCMJAs0//A6mJLHilRfZeN8fUW7rRP3Pr7H9K/9B/UA/o7fdyfzvPUDzxATRjRtI16pc8uyTvKn2azb8yQcQb7yL9374fYTWT/C5+N8ynJdmtO66hQrXr65jV1+Wd67qRuqMMLxzF/Xz51KqVWZMJT7f0aqhK5MFDAzZxDIEtKpGrVijfkknOUkgV83jw+agb7ljAVv26jQ8+wydRgJREDgQXI7lbeDunm8TcErHRUOvZBLQcoTFCnPEEjEhgiVItNTi9C28DSs9SMXpZ6IGjU5wyQIufj8SYWDKYONksHRtajfONkOqYhmazUctJKeUDo7A1KqY5SzPbCghuQI89GKJh7cWpz6vT2oQ33hJB1esW8q3fvwqw8WZ258nU/A5FfRazdbhnUVmsphJ45osClQr5SnqRKSp5bhjASrFIpViHllxzFqomA3/+L19LKnXMS04mIqd+gPHwC7wpBAcPsZUAfEE64Tp6h96fgJnfSdaJoYSnv1efhfQE27jzXf8x2kfr2XHQS3wrWs/hCA72An86sK3A1CdGETIJ3ipYTHXRLvtcVzK8tUL7sURbePnDj+/XHorosM1tdAzShmMzBgbL3o7tYkBRIcbKznEIZ8TORBiX6oP63tFDEvkz65sYmRohMBtTWw4mGDPhD3eBlzvnLq+/b+cg0/Psr94FW1qkZx0DYvzT7OuaT2HUnM49OL1vGXwhww2LeDFui/S+tZVmAPbuHfr/Ty+/NM0j73KtZlHGSfMS5vfx+3JR1le3c3G7kvZf+u3CL36DW7p+SJbHr6G6wt7aW862mxvWRYPtfwxhuTgrUP/wze6v0uuYpIcGaT5Yj8fePXO477P5XM6cGlBWjYuZahpJ29p/ByiQ6ZQzBBsqsOMeMm1jfH9sb85+hvknZR6lyPKYX52+dNUBi7FMm5Hkh/DGf4lz65QefaYv1P116GLDXg696JlA5R5LyVvD4jXoKV7kYwU3xD28qC82/7AeXJx/51JhuVAwwyJkekQJGXywRcQBAFTLWJZJpapYxTTCOLst2lZBqLLD6Z5nGyQXkjhqO9Ez8V57KVeTMvWxDtbWJZpJ9eTyE7EkR0OCunUjEYJh8s9QyLNF46Qjo0iSidvyjEMnXBjM5n42Bkkwz7UUhHzmA7mk+EI/1dyB235tHwS8QSVG6Ocw6iWkVx+JLcPQVYQZAVJcSA6vccdaxnacZPn7wNaPU5+utBC0xXWTxS5LOLGIduLqkfjFZ72r+DK0n4e1BrAMtghhHjYbODWyi721xSqosIPmUt9bDcf6bYr8Eu9EtFUjmUug7+sjyMLAg/l/PjUNG8VRvmm1oagl1hhqSxc/zhCYoLqjZ2UFYXDTc3gcHDgzz4M/X1c9/X/Yv5huyra9PMf2Rf96itT17980waGwxEqksQFP/g2B154lqG/+hTmuitRBBHlquvIPvUYzRMTLNi7E/bupGpZbHj3/VRjo9T/w9/R0deLA+jLKMdp2AScFqtWziOT30NDuJnUYJw50W5K6QoB0UehlCNFDqkK7ZGjvveyKKNaKiElxERmAofbTbSllZ987xF8vih3XbYWy7IwTZPR8XF+sD+DU/IT1frptzxcOPEKcTnEjsgFXF/awXSDiLwh8LhzFbHQQiK1JN25Z4hqGd41+hMmHBEy2T668ntxiwKiKPEtx0U0qHFuFWfnYv8uQnIHsFyzx1wAOdiIZZlTFAo9n7AXvVoNPZ+YfSveNBAUF6JlHUerMoppRJcPUy2yrS9PvryD0ZxwIkr5aaFSLOLyehEEAa1WJZ9Momt289v0+zq2WU2SZDLjMbyhEy/YK8X81M7a6UIQBAZTBnVesCxpVvrJbDgimSa5fHbxp1ZBmoWWZmpVjEoOTHOqmi95wpjlPI7oTOlNW2+/aBcrTmJa9buKI/dvlHMIhj5FsbQMDcntA8vC0FQkdxCzVsFR30ktMYAaO4ihVXGF51NLjRzd9ZAUezFSziJ6I6DZc5tl6lTjhxFEEVHTMPQajzy3D9MSeNcdC/EMpPFSoqYZfG31F8mJfu48+E8s1vtBhPb0L+3z731m6toX6P0EBn5MVVBYo27H+6vbeXLtP1KtW8BGxxrKi28irtcg8yhNZHhbz78A8FLwOg7XX07To59geWYDDklgXWH9cd+NBYx3XY/g9KEN/C93bfxzDCT6A8txGbZCw0Mtf0whOJe7dv8dXtkuzlUp4VHCuFw+9o49ycq2W4k2t7Jx2/NsO1SmYf5m8NuKLYIoUBm4FUvrAuVpzLIC0gAYD2Cp87GMHMc23pd6VqCOLUOpW0418c+IioWr+VtIgRKVvkaUyCCy9xCO+gNkt16BpYXxL3kCOXDutLTfmWQYOKk3/YygIohY1TJgnbRTVvbX2QoGsxwjOjy2VqZp0ps59226te0W69YsJJ9KEojWIYgiWrWKIAgUsxlyE3Fkp4uGjs4Z9ymK4qz6wcfC6faQiY8Rqp/Jv9U1jVxiAsXpRJQkNFXFFw6jOF38w1df4BPvvYRbL6nw/ZeyJz2/XkjZVJJqecpMQw7UnVQn2NSqOMLNVMd7EV3dCIJwQn1oS9dsGsUsNJhzgSAINwFfxp5Sv2lZ1r8c8/5HgT8GdCAB/JFlWYPn7QKm4WujGl8wl/Dm5D6WemWqlkm8XKOTBBd4YWtBpyx7aS2N0qDrfGZhkCaPkw/sLzKYm6ApenSMf7sUJhlo4OOhA/xLMsAWoZ5LK31Unc2IogvT28w93h7e2wD5iRzvXthF6qUn2PzOdzFx1Y3ENr5M89LlJJxOVEnCeZImzMOdXYz959eJPfg9Lv7x91k+PEhxw0tg6HQ+9wQvBQOULr+KyOgojWlbcaKkKBjX34R16ADL/vEzU+d6/JdH5dmOVHk+dNUaenfvZXnUnpAlUUKRHbR4IsTSw5T0MnLYR7FSIJGNUx+yx3hZUvF3tlA8NE7IFyXU3c72p19if9ZNc7WCzxPggadfpidV5rIWD11CjoGWZWxQ60mbDtyGSmM0zGBF5vChA+wIXkR36TAXM8oIAeJtl2CmR2lP72O/EOLZ+e9g3tgGbq7uYmHheV6UO+n1tDKRc1BqXU3PRB/9hQnmiL8/W9Eni7n2+9PirmVh1cpI3uBxi90jEJ0ezFplxi7ctLOBaWBpNbKai9eGLJDOPvbmkgkUh4PU6Ah1be0ICBi6jmkYaLUq6bFRTN0k3NR8nMza6fB5A5E60uMxXN7jY1ouMYFWqxGoq6OYSeNwuqa0ia9aHubCtQv5n+++Qko/ccOyqRaxDM2m/0zGRly+kxYMTLWAEmhAy8YxShkkb9guQMwSU021OBXLz2cy/EaKuUYlb8v6lbKYtTKWpoEk2YUpwU4KJV8YfSyJnhtH9oTs/88l0HLjYB1VlbE0FWfjHNvwy7KQ6tqpJYdQAg12P5MnbBtI+esYThWRvCG++IMdOCWTD//BWoYOHoJ5KxHzRVL9zaCfeOFsWRYPXfIVxGAj73z8ZhZ58mSHfkKPcifLjENkHv17xuvX8LL/ai4vrJ/63FjDxdRW3UnXz75Dm5A84flFQaB+z88Za7mUrBjCbVXI4uSy0isMCC38vPvjxMRGyr45PNH4du5Mfp/drbeyqRhm39L7CPU+T1uxjz0LF1Pdv4EDe00qRpSvhefRU1jKJ/bP43L3EEvqqnx7pEJRegdzB/aws9rE3cGD/Eq+nD+wgmQGBeI1J9+8NI7LIbF0azeaz09HdivPXb2ONU8tpIaD7ct34l6g8fJIC3+/v41bi018wX0Fup7i2pjFfy8yTxmrAAT2nPC900qG3wiDWy+mESTltJQhRKfnhI12x+JEUl6i042lqUjhc6vBK5ZKW0ikqhoU8kXCIfv6g3X1mKaJKIqkx2O0LlhEYnSEfDJxVo0V3mBo1qa7QipJtKWV5OgIlUKelnkLyCUniDS1YCg+HntuFyXV5GRWhnoxjegOoKWHESRl0v3v1JOUIMpU432n3dRoFNNI/vOnKCEIggT8D/AmYATYIgjCw5Zl7Zt22HZgrWVZZUEQ/gz4N+De83YRwMZUmX8etmhWTJqNIdarDh5zdUNyAI+3jmvlDP9Xa+U7rTG6/FWi7iMTl/0df2Gei/fmEqyNHp10/7GhwEg1x/Kon/k5lVw1xT92O/CIMUKuAJck9rM27OTGXg8TSpjnHP10BLyEKyX2DQ0SEGHZrx+kTRLJnSARrgoC+6+9ASk2irX+WQKHDgB2IF334+8DcGjBYpw33IyvqYWJ3btofHk9ABFdZ96H/hRH9fgVe1GWiQVC3LzCTc9InmwuSbiznXIqTS6fotroJJtM04WPqsMk2N5Gz8uvsuS6qykOjU+dx295KPfGqA82olYrFHvHKdcCKCEfS+rt3Q7TtKjoFk/2JJlfH+CqkEZn00K+s34bZaeX25e20f/TLyAoAqnIfAJ6HqqjLBKyjPQ+QsLTzHIhiYxJV3wLcyrDU5Xtflcb2dB85iR3Uup9huH6lWyzljKnvPmsx8p0/LbjrlktYVYrSP7oaU00ymnGSnHWRNg26jHK+XM24jkilabVNAxdm9Jxlx0O6tvtnYVsfJymrm4y42NUivkz1hw+cr4TUSgMQyfS3MLBza/SuXQ51dLRBdLOviyZwi7SVfmkVW+zVgEEjGoJq1ZBkE8dcyV3gOrEgL1IOYW9/REnOuEUx50J3igx19Sq6JkxkB2YWgUMA1fLAqqJIZyRZqoT/cj+KEKtglUt426fqV4iB+sxShkEz9FFhOj02QsHl2+yCTyN5PKDZaJEOzDVAoLLi6UWJmXr7IJRzagx2DeI1+9n1c/fiWJVuUAZPaG/wGvuteRcDdQPvYTp8uORTEDgkuJLXLLzJSzLYmjeHUQXr+HQwSCX71o/9dkbDnyR+KHvsFAYnXFOy7I4ZDZxsOkaKr42bu/5D0bbrsa96BJy+708t+QjlBa/met/cSv9DReRWfse3C/8H3rdHNJXfYiJH/6UJmC5I4W6/2d0E6cxoGPs+T5GboKC5xLmWTGWNSocyEHNcvBEsoFDao23Nw8TcMd5ZgCwLDoDBv8VeYkrWwzufLGLCStETo3hdsr8y8ID/NehBt6xVEdRJO5qGKFmirgm3VRfi8NBOnFPZPnrlg18KR7gEc9a/jr9Ip3Rc1P9OmWW8kYY3EYpi+Ty2w0dvyHnnPPl0nPRPB/XX72c7/5sEw88m+CDbxapqRWiLa1TNoSy4iDW14skCQRaTsy9PRsE6uqJ9fYwkciy9ILlPPf0Jl4dkbHEOIIgsnPs1Nt0osODlhpEiXRgqvnTpjLI/giyf+Y2o1mrYFZLiA73jOrR6+REdxHQa1nWYQBBEB4Ebgemxq5lWc9PO34jcN/5vADTNPmzfoGktw1frUBV9oCY4W+lg+zx6gxMduQ70OmvwecGvbwvXGK5V2BXQefWJg9uRWap38lLsTRXtEQQBIHLokcnsM/NdQEWXx8W2FO2cEoGf1Cn4Hco3OkpENfLNHvs4y9zSCzcswmPJOL22QvGlo/85XHXvf9LX2G0qQX1w3+N/tRjXP7lf+PA6rW89JFPsPiBr1GXt01Sug7uo/RfX8AQJRbs2DrjHIpusPOjf0PkpfWsevG5qdd3/PEHyC5ZxuqWNtYM/5LG//0GfX//rwRfeAbnje8mk0giahaGrlPIpilXSzQtXUj/a9sINTQSywzTEm4n5I+SjtV44LVtXLOglcZQkJo2yhwzRXBSv/vdV1/Itx5fzwgSA4afKxuD1PvcCHWdyKU07a2tzP2r/wage3SU0o8eAElAFAXWmuPs0ySyqk6XU+PW0mu8qHSTNzxcYAxTl+0j7e/A43Sx3BrHynu4sLzvZOvK08YbIe7aiXAEo5hGPo+L1BPBtnA+9ziQm4hP8X3Djc3kkwnS4zE8/uCUdKQnECQ+qSARbT6/MRdA13QG9+yidf4i8skE3uDRpCpWchLrN09d9bYsTKOGs77zpGo90yHIDpwNXcecxsIoJBFEeUaF+HVyovutx1wAPRdHdPmQ/FFqE/0o0TaqiUEQoJYes/nwhg6miaVX0bLjyIF6jGIG0eW15ydPCD07huWNIDlciJP/AFMLDaOSx6ipWIUUotOLHKjDMPQZsnWW5OBHrxYRjSp/FzhSDT7x4nL78g8gzr2Ia/+/S3E6FX648j+YO/AI6wov2J8UBG4/8E/09MxhdXXHjM+GJJWnWu9gY6CVu3d/Cq9sFwVe8V3Jodu/TqFnO96mDrIH/gvJ6aQ41EObEWMouRPzkIOQVaCsC4z37KcWXo1f8VPd9BDPLv049+gpPA6Jixnhb7ZG6PSofHhFmu8MOble3Iri9pKr6Ny9QCae2873B0IMO1cRN6v83coMD402I3vqCUh7eEu3BMj84NIBVM2iKWh/V7fMkxmulnEaJcYyJp+9EH7VJ/DRjRE+uSJBt6uCmY0RqJO5fa7O5ozAEu/mc06E4fQqw7/1wS26fBjF9MnGj83JrZZP26b5N4X9wyWEF3YzkjURtBq+cIRyYabbWiBad9oNGGcKSZZx+bysmjef557ewOZRCUs8s9ladLhwNs6zK8LCmRP4DLWIVaswKTSM7K9DLyRPuJV6HtEKDE/7/xHg4pMcfz/w+Pm8gFRFJSOHkNJDfGOexZiRxxG1uKPJw10HBfaJjfxDpI/7jCTbSxK7HC3sqvTyi7yTZ6V5aCO7+dcJF2OmA8u/kI/0HKLb7+SykEK9e+bv+IOCjyFHHYZaxpvNsDIEf9V1fNUn6jrxJGxZFo94QmRuuJkLnnyUyt9/kvCgXWzMz5uPeOW1pH/6IFIhT9iycAgCq3ftmPVcqtuNsnQ5au+hGa97DuxDF0Xq/99naMkk8Ws6jg+/n7p8lsHb/4wulz0uDF3HxKR9/gLG9h8g4grhbaonOTiIt5Am6I9waDTBnlgKQS3Q0dTI84M5RHeY/GCaay+AvpEYh6ijyZPhjoU+vA6FproGrmyM0xCYizJNBaWztZXD0tEgs1XpZKdnPo7OmxDjh7g7+RS726/AXYwzqjYSD83jpv6fssit8VP/OsbrV6D1HAKOd3Y6C/zW4y4CGIUU4kkSJlMtIjg9p819/U3AGwqRGY8hSjKCIMzopziSDDs9Hho755ziTGcPWZGZs2IVsb5evMEg/siZNwvLwQaMSh49n5yh1nG60DIxEES7YdBfh1GavZH8POO3HnMBECSMWgV99ABypAWzWsYRbplhNiKIEpYAosuPWS1iFDNTtBEtO47o8GAJIkZ+Ajx2467kmSn7Z2k1lEAdWu4onWK230qQFKwTKKsAbHdfQG/7TVx58H+4bPu/kt8TpcuZZ5e8mOriG5jIDRBPbqDeUUMUBJbovSzRe2c9VzG6AKNxPupOCS+2rnJDdZSePU+zat/36dQGaHJWuWfrR9ER8SrwptRDkHoIJBAFC3cogj8Y4oKXP8nuFR8gFe3i2aGnuakux2he4+exOsJWjivCST47egNSYQxDaOWu+Itc0wU/zcxjNNjMJ0LPsSgCqZLEhxbE2Zou8PYlR2NFc2BmCvrqqME/7GnAEVqOuT/FV1YP8avxKOvVBTi2vMyP1eu4v3ULH16t8dPDbl4wl9Mk7AbO3cH2dJLh8zq4BUH4U+BPgVm5urN+RpKPa3A7FkY+gegOTPGkTheWZWIU0lOrwfOJ6V3P111l/zuXmEA+B6mgciFPKZtFLZdxe70n5RN//oHtKKbKmxZL5JJJRrOgC2f/t8+6uU3XkDwhW8LO6ZlsuntjNWwIgnAfsBa46gTvT43bjjOY2Oq9Hv6/1ixuUeLiqJsfDhcpVXXAw5fbVEYqfWzPa/xdrokbnRl+VLePtWEPv06quIpDlEwYEfxIDhkhN07Ma/EVdTF3j/XzH3PhsbhK2bC4u8XNl5oLDJQypF0ObokASHx5UKViwie6nGzJqHwi7ue9gQLvbp19rFd1neHuRdA+l8WL57JMFOFy+3Hv0HViTz3EK2svYvyfvkD3x/+c1kkjjoKisOs9f4J39070xkZ8gwMs2rkNxx/eS3DSBtywLF591x+SaGzC1dJGprGJ7rhdpWnP2nrE4hc+zMSV1+JcfCV+XwgnDvp37sAhO+hqWcD+/bsIz++iGrMVCPLlMiBwoObj6rCba7rr8Ekmc5rthqiFnR28OVuiI7qIfbEELx4sclehwlvXrZn1/ud+5AEADn/pfurVccTIBRjZcRymRsAh8ebBn+MUdLZK7RjFDGXRyTPOhSzJ7GResY85kn095wHnLe6eTcyFUz/vRimDoLjQcxOzSq+d9LOT9uvHJhfnAw6Xm8i0aq/L65u1n+J0YZom6dgo5XwebyiELxTG6Tk5Da+YzZBLTCBKMsG6eWf1d+H0nPtOBEGUbV13BIxiCk7QSP7bwqli7uQxZzd2fWHMahkp2opZLWNUs4huP5IvMlmI8aHlxhGdXoxKwW6oY9KoRJQAC9HloxY/bHOuPUEsQ7eLbrUKZrWC6PYjum3qBKaBMDmv29KCGqLTY1NRchNgmcgnUfIYarqcwtr7GBp8ggur2+z1tCCw0jiA58EbyEoRfvX2V2h7+YvcnHhw6nNPRt9KLjiXxtENFOoWcd3Q/8fd2z5G1ZKJOuxEeIPvSnbOexd5JUwtdDHLxnaAAo2SraI1boV4funHmDP0JJcUX6a+Msz25BiW00fYyLD6tX9jyw1fo+JvAXIkqwqYJvnwIjZkCnyiaQtaVKPRN8jVnXai+8kFQwwVR1kZFrl3z6VcNjLI969KcCdFTpZ2XtIqEVY08pUCYrWALFp8Zuk4tyaTOAX4xfYhUg6J/93noslZ4a8at3BzW+mk5zxdnNen43QGt2VZ3wC+AeBsnn/6MgaTsHlsZXur3embxmcTMNXSCd14TgSjYPNUjckGsdcbZyu0fgRqqUh9eweJ4SEE8fhqTGZ8DAsLp9sO1kGnwdp1lzDa14fJ+fPxPhNIvrBNdZls5jhdPvd5wCgwfbXQNvnaDAiCcD3wKeAqy7JmFT+ePm7Xdnae0bi9ut6+3/8dLPOPcS+CJ8ivNh8Gl49bAyZfSvkRFIFapcxl9fZ29F1NEncBVd1P2sxwgcfk8gY/vQUvmfgQ1wU1LEvkExNBioqP60IjrAm7WTNtHWhZFt8shCjLbv5cHWOsatHvaOBHySKrfSrLg8cvSFyKwo3bN1DTdXbLCkstA2VSC9Ury8yXYXMuS3HwMGpNQ7csZEEg6w9i3XAzKZcL9/U3Ed/wEqGhAaoeDw2jtrV0VpZJXXwZtXIZHE4O3PE2Uve8i4v+9fPUF4vEQ2H2vesPaVi8lNiOAyz0hXAG/fiDTRQHbK5wd+MCCrEs0YhtIlMsFrCqRSStwPy5F7Nw3sxnQpJlblizHICCWqU1FaMlcnJ5qbFkgr1GiOVKGjP5Ag1GjhZJRVRE5mEn4TFRZbhhHvu1LJnWtbiHK1yuHz4hD/D1xKni7rnGXJiUqTJNLED2RezFrCDaMfcM79myTCxDQ5AUTK16VqYdZwKPP4DHf/Y272qpiDcUAkHAGwpTU9UZyXA5n0MtFUEQpjjE3kAIbzDIWN/s1bvfBESXDywTyeUF1+u+C3cE5y3mwtmP3SN9Q0algJYdwxFtpzrWi+T0guLALBeQfWG03ATOpu4pydQju5VHJOxcHcsAm3ZhX7eIUa3MaCI/tvnQ0rWp9yVJRnS4MGsqeiFxwoXNlb3fYGD4GRx6iYTpp148aogxX4zTKzgxY4dQ1Az5mkTAYVeiY+3XoHeuZUKM4l77Fg5993FqgWaWlXZMff6VhtuwAl1kxkYoNl/Ol+sv5PrR73Fl3lav+FHrBwisfCs7qrA4t4Wcu4WmJavJv/Y49XqCZWKexsffStNl9wAisbyOqKtoiQFaWorcvUTBLgBYHCkE3NBlATqxvMAFyhBrgkd9E2ZDVTN4qE/mihaTr10yznAxwTsW6EiSCEh0RywOJ1S0YCevlJ2k9BbmWiM8f+Mw5yuNPZ2znNfBfa6wDN3e1tC1ST5bCtlfd8rK8WzQC0nMasmWB5JkjHLONt2QT0wjOLLlL/nrJleIZZtL9DrRM3LJBP5IlHIui1atojhdtpSPIOALHV8BtyyTUGMz2YlxPnv/atu6MT5GpLGRu2+o4/8e2kdGFTErhakVr15IgmWvhM9mQWBqKmalOHW+2XA223znAVuA+YIgzMEes28H3jn9AEEQVgNfB26yLGvi+FOcG1RN55MDBvmqRllQsEwdV63AtsAijGoJTylD2hBxRuvpzxV4eDTPkOHkxpDF/IALpyzxoTn22LpvX5UJy8XP59XYW4I7D8ncIk/Q6ckxocGOiRLXNByd9LZkVC6iyC1+C787wGXUWDp2kJ2OVr6VSONO1ghL5nFUim5F4slghNglV1N44QmuMGY+zu9atZjD8UGe+Z//Qzuwm0vScfxAxwuPUS/AKx/7c/yZNLs/8glcCxZh/tHbGb37XWRGhwk3t5Aei+Hy+6hl07i8PiqCxNbb7sIa7scTCDCw8RU6L7oU7bEfcb9DQLNAEkUeDEYIOoI8v7uPzYObUCsVxIa5YKXwu1xTHPwT4cJF87hw0fFVup+/vIWSpvOuKy9CkiR+sbWHnu6307U8wl3dc+n/zz/m2GrvCm0YaeCXtFXHGRkYZZEeOycJsFnwhoq7giBiYuKItEzt7JxNVdeOnypmrYwgOxAlx2Rl7sRUDMvQMEo5RJcXQXHx0it78HtdrFp19hXXk6FSLCCKEqIsUUglkY4UWCwLTVWPozxUy2VCDU1kJ442dzrdbtRymbZFi8mMj+GPRNm+8zB6PmFzUye/B0GSztoNTs8nwLKQAvWzLkh+g0WH6fitx1w4MreXMWsqosOFUc4jeYMIigujlEGJtGJWCijRNrTkMILLhyCKU9r3sj8C/ohd9QVE2Yno8qHn4piaip63+dl6PonkCUzlDJZew6xVqCaGcESa7Ybz1KitpCT5+Fl2Ic8Yq/is75c0O48+rmFJJVVLsf6eJ3Dtf5z79n5yxv3MM4eYt+k+vr34XxhY8z5ueeJess4m3rz1k5R3eJEEi9TwjxhqvZbkDZ+m/NhH0VAYdM9D8Ibx19WRSyYIRCJo+TQW8Ir/agqOKP5ggP7NL9K28ha+iYsP93yMge+8wBwly0b/FWSqcWKFGn/wWJSxmhfN4UMWcjgwWBA5+UK4JSDzs2uP/4mfHBD47lADf7NojOUNIj/ucfCZ2KXcndvDv1+UQRBMjtXgnFvv5otzNxN1GcTLQ7T57MbC84XTSYbfEIP7CCRP0JZLkaQpPptRyU9tCZ0RLFCibbYOoShNSbCcLLG2aiqSv87edrI4Kk3zOiTD6fEYgWg96bEYoiROaVoe28FsWRbZiTiBaB2+cIRcYoJwo93ZLUyrVqTHRnn/Pav4t68+jRjqmHrQsUDyRTBK2bNLhqfslodtY41pQWXW49WiHaTOQPXjbGBZli4Iwl8AT2KnKt+yLGuvIAh/D7xmWdbDwL8DPuCnkxPKkGVZt52va+grqvxCmI9u5HibJ8ev5teY64UvjYwwz1lhdVChbSjLcKnKy1I9fzeqk6ufz4aRPn64xD7Hj8cqbK0oJHSBrOKlZqrsKllsV1pwFnMImsgHhx30uJr4tdzHsoidEH8/6+JZbyfXCDZn95GUyd7wUhblD/NWb4H3FhYQUXPcX84RdDmRpiWTbcU86b07aK+pIB0fcBTLwkwmcNaq/HTOEhzhCGtee5mcy838vh6KlkXJ46XQ20Orw0nm4suoa+8g+90H6H7xeaqXrmPlSy8QTSXYtuIC8m+9B9/GDVzyZ+/l6fv/jOxEHLV9DqGMreH6jCeEe24TmcNjbB1KUnUEMTQTpTCB6QmzrOvUDV6mafLLV7fjcyrcsHbF1Os7xnJUBBe5R9ejCxKXdDUSSBXZNzrBj7b1c4vuYEiuJ6MEuby8m2eVJSQCLSwvHaLJYdFknfdEGN5gcVf0BLDKNn9VkGRMrTopo3ZmiZxVU2dU1fTchN0TcpKE2Cjlpj4jaCrP7vXjFZKvSzJcKRbRaxrVchZJlk9qvFHKZREliXBTM5n4+AxN4iMyaumxUSLNraTGRnlqS8yWlquWZ3wPZwPLsl3RRIcbPT0CkoIcbDxhld4yDYxiCkGcXWbtfOGNEHPBLpop0TaqEwOITg+SO4BeymCpReRwC3p23N7ZqJWR/HUI2LrLR7wMjsxRhlpACTfb/6+pNhVz0ojGKGVx1HdMLXAAjHIeR1273V8jKZg1FTlYj1mrYGHxuH4hz3jfzE3FDVwnDOOfVndrMNMEt/+IxuT2We7IhrOcwEy7ebHlbko3fprOX7wPhzfAisRzdFpxtrtuIjM2Skshx/DCt1FoWQXZCeb+6D66G7rwDhZYm3+JvOjnm0u+QGThBVz3/XX0OuaztaEduWUZpX0i3c48fVqU/bd9A+HQyxx+6pcMGvWIvgBCegDZoVDvV1jWcOrA98hhkecm/Pzt8hT1XjvlfDnh5ZXafP53T5pdtVY+0tnLrd59dDvSrHp0Hu9uHeWKpgpf7W3iA/Pi7MkoPHDIT3tA4JvrJvA6Rc5nIgynkQy/UQa3HXxt20/JHZiSRNMm+ThWrYKjYfaGCLNaRnC4wTJBEKcChiArU6R5s1rGrOSxS/0ngSBgFJKI7gBYFno+iV5MY1QKyP7IVLXE0jU+940tU7JiJ3JNMg2D5OgwlmVNCcEbuo5eqyHJCvlUAkmScPl8doUhfHySmRmPEWpsJj0Wo661DYdr9oTWNC2KmTQf+9Nr2LJzmOd22NuTotNjc619Z9cxLnmD6PkkliBMUk5OHuDNaRPB6129sCzrMeCxY177zLT/vv71/PtLwz4+nd7N1/MWy30CF0br2JyukBddXBYVuPeQwITYzn8FJ7iSBNuNIo/mE3Q7y0CQHRNZHkgF2a808A+uXdzZYbE+a9IgaCwo9LOj5mCzp4N3i3tZaOl0+Y5G1w/UVVmY6+H2Ojtg3VEnkp3o5cY5JksCYb6tDLErXWLN0HzeZMX4xmJ73DyTzvFcqJHFqSRdsyTCAO0OmfcP7OMpxYMVjkDPPrYuWIHY0cW8bIZLvS5GckkUXeeW976b0n/8P9Jvvo35u3cyb2IcJi2cS5ZF+UMfw0inmffgd7j4ox9ijlrl6UN7ubScA5d9P0vyKbTNL9M8NsLWrm6iHoWQv4mFc7pJpJI01B3lE2pajR++uI2wR+G2S49yg7PZNC+NVfFZWW5Ye/Re3nflCmpajR9uOoSKwKp5HVy81M0Pn3mFmuAgdOfHeX7XICnDSefBA/Q3LkX0hhk3sqAeV6w9L3gjxF3Lsmy5Q08AUXEhTqPVVOOHERUXlmkdpxgDdvyzV9kKWObRbWi3b0bxwLJMTLVox9MTQHS67URYVhDdAW5a7qJUMPnnL/+aC5Y0ceObLgTsxY52DIXhRDhilOFwuad22MqFPIrDQTGTxjR0Ii2tZMZjs8bTSrGIZVmUcjncPj/hxtk50/LkTp7D6eYtl3fw0+f6kf11U7JmovvsiiiCICBMNokJDrfdoKXXTih5aZQySP5626L5dcZvO+aCTXeoDOwE2YncONd2mBNEBLcfM5+wZfzUMrLHb+s3T2oPC8F6zJqKlhnD0TQPvZzDrKkIigurptpJruy0qQ9adXJcHo25kjdkN+dN/g6iwzXZeC4i+6N8lp9zW2UD/6Tew99ZdTzv+zR1LoOk5uS/Ix/AVQ1yeXbLCfO8dw5+gX6hmUeu/hbVHS/hDSygcsNfkfj1p7ki8wTLUy/S73WzStvDyt17eCr1BwQo8SbHPoTc/smLFHix+300rL6CwC8/QbevxlxrD+rO/8ZvFAhMDqEuKU3nk58kVBpCMSt8tGUPy8JVVlzuQgQEwUKc1oz/3f0yLyRD/OOqOE3+o0nyz0ajPK8u4Lrxl7il237t48uyrBt7ka1pD4+nGpGVAf770jSPHdIoCl5KusAj/Q6ery5gebzAS+kQA4aPiaqHTHkMr/P8899P64xvhMFtVnJInvDxDXKWiRxspJaye030YhpM21lOdNhbIoLsQEsOITq9WHoVZdI6ePo23+lWKY+VGBIdLtvRxh9FS4/a59QqvOdNbaRSeR7dffLOcsPQcbo9GLo2tSpNxUZw+wIoDgfBaZO82zd75UR2ushOjCPJJ/85p7ssXX35Ul44aK9Az7VCK0gKguJEtCz0XBzJEzrp8VNNdL85HttvFYeqMhOty/m75BBrQwUeKbh5WOhkYfYQKC7ckpMVXglVgkdKDdxVG8Z0BHh1PMvbU+3ouXHCjlE+F1xJe2o/HykswKMVsZwuGsQcn/If5qbG4xcyiwIuFk3LMcIuBx85auDGFXVuHk5oaDWVoUkXwmG1yoZla5m/aAn7N7wE+okNJH7pCdEvOVB0g6vKeYpDPewcG2bgzndhbniOO4tpNMNgi6DQMTrK8v/9z+PO4REE/D/5IeFajYZsFoAGl5M7awX2Ol00aFV8ikKLLNFSTPFXCQfPCzJ3Bt0sXbAIgOammfq2mWyOXVmDUK7C9MwwEqnjvavy5AsFiqUivkmzBL/bxSMHh3jT/EYWdrXhdnv58Qub2Zk1ee/qVp4+MEJOrXLt0C9Y7DVxTDxJ1dDpklVMAUTx9eEJ/7bjrlFI2VS0QhI5cHS3zLJMRJcfQVFs+a9q2S44SDKSN4RlmejFFIIoYmoaosOJoLiQJp3OpnMsT6fxTnR6ZyjPXHLxEn7y0MvUfG0c7I9z4+TryZFhPIEAVbVCIHLyhb1lWgTrG6Zs7tPjMdy+AIV0akqLGJjRiDcditNJIZ3Csk5uvz39OlZEIjy0xeaCCqJ0zjJyosuHVc5h6jqSpJyUey35IhiFBIJ0HnT/fgcgKk6USKudFA/tRQk3TRZq0iDLSN6w3XfkCdlyn1oVJAmjmMGo5JD8dVQGduDuXIGWiyNKtuyfUckh+6N2shxpOY5SKUjycUZf0xtRO1wVirVxhmnAUTNwiPb4+Urz39B1w73E+nrJjwRoJjvrfW13rWZD+9vB1FmUeomViad4+XGd1BUf4tej13L/jj/nogMb6RHtMfzu8f+ZvLCZMap79Bn6NsEVxedBnJRrKz/BHmk+Q0IjHVYcSRS4Pv0rns228mnfv7Gu1stHF8VP+J0/mwizXp3Hfak4TdNSlU8tGWfdyATdfp0jupNBt0xf0YFgGTy96nnmN3pYP2Txlz1reFfkAA1Ok3+Or+Au3wbet6jGW0pFtsQM1jQJtAQdmKZ13uPuG6u99BQwytnj5LjkYANGIYVyZMCZpk1jKKSONnlUbfFyRPH1aXARRPRcHEfUTjYtQaBSVqlWTy2xpDicKE4nDrd7ivNoWRbVShlvcCYnr1IsUCkWCDc2z9gOO1XgL+VtUXlRFNm5ZQdzF3Thn8Wg4wgsy8TSa3blx7Iw1cKs5iSWoU9K3tnXrQTr7U7daUoRRtm2Bp2+Nfd60yPeaHhbvcwPDw+gazWeTFv8eavB/MxB7qiXcahxflL0cEBzYFUN9ijN9OQqVL1z0OPbcek5FFMlJwVRiim6m718SB/F67N4U9DCI0nUH1MJ0w2Dmm7w7biBS4T729yoNY3bD8n4BY2fLT0awD/Y7iSUyvOOqL2SD0sixkScEUFkRTIOPpsvOWBYbGjrZunYICuxmzd6PQHw+rhv6wvUe72ATlAtsOngXprUMgiwXXKy99pbsMaT+GKjNOzbTWPq6M6BIAhc+NSMfA+Ajd4Qg+uu4+CTj3JhrsDCoJsHh3JYRY2VbZ0sbJ1dGcCyLLLFAusiBovbOxkYGcXv9RAN2+PP53Lw7Z1l9kzspCPs42Aiz8oGL6+loVwrcvEK+5mTJQnJrLHp0ADpdB63JDNXKgEi3XIJU7LoN3w8WX8Dy1ObaDTyzBMLr1ti/NuAoDjs5OEY2TRBEBEVh81X9YaPUh6mtvwFMHQsUwDBTvw4A8v308ElF3RT2tDLVRcunnZdApqqnpZaT7CunlIuO1XRFQSRSjF/nEScaRhkE/EZGsUAsqLQ0NF5wvPX1ApgV56HDw+h6zpzFsw96TXZFUinvU1ftTnVsxkW2T0eJpauo0xyuKcXdsyaiqkWkTzBqYZyQRBnLGh+7yEpdoVWyiE63ZOLAdvSWpRkKsN7UYIN9m6xKCO5FCxBtBPjmooguxBdfru4ptUQHJ7JcV5vO9Edo+UMkzQLvWorSbjthZ+ei4MgzeinWewv8Xfaz2iVMgQc9nPRnd/J0MHlWLEDLGQIAN20eKjrL3GqWW6b+B4AvZ4lVNrXcMGLn+IabSOCIHBH4ns8fKAZb8EuCNYMi6ev/yqWZZLe8BmQHVxc3jTjWleqO1nZt3MGLXdI87PxrgepHdrAipf+nnXBCQ6X3DySn8tbXD/l6mUzLcun43BK4wrvEBd5xlgUgS0xnQtb7LE7Pyrx4e3NfGG8kX/r2szXhufy3o4Y3xhqoygGeP/ijQA4RAu3WeFATuFQuoajFOPaJSZel8x8F8yLiFRrBtc/0YxHrPHhBRMsikJb8DfXQPeGwIkeZPshP7ryEh0ujEISyR/FmmwKY/IYy9DgJI1cRzqczxRKaObELMgufrKpOHlSk8vnyTz8+Ba2x2Z+3UeoE57AJLXCssiMx/AGQxi6jjq5FXekE/pIInwiDtts6OkZ4kfPjbCmy4VTqPHSYQhs2cDHPnDzrNSNzz+w3ebxOb0YWhWzWrSlecr5qWT/CMxKYYprLMjK5LbfzOq1pWsILh/VeB+OaMdUcLYr+OZJm+5+X3BhvY/1zgo/GNfZUHPjTJr8ZYebTcky/ySsoCZmeK1c4LNdTj71Wh+qN8Kdhe383L2Ym4UxvrImypPxPC4M/n1EJGdKfLZdoNNvb98apsn/15/mxgY3bX4v7zxk0WcGSGgWoiDgNWK8pclHTnRhWUztQAB0+Jx8atpOrU9R+Lyeh9E8+BSeUdwcbp1LY98+1EXLiOUzrCxlME0TVySK4HKzIdzIArVEWRDJuF1cf3g/T89dRDwxzrJynpEdW6C5gdx97yW96zWuTs6kFuz/0lfs+7CsqWubWy6Q3vUa/3wQVKmBDY4Ef51uAKePvxrbwLt9/XhGjj6rD618KwCvHejhO5t7UIKNxIoD9KkO5EqaW1bO+//bO+8wSa7qbr+3qjr3dJqcdmZzlFarrJWEMhJBAUmAjG2CjQEbDBijzzh8JhmDjD+bYGyCyBgkQAKECBJISFpJK2mTVpt3Z3Zynu6ezqmq7vdH9aSdmd3ZpE31Ps8+z8509XTd6lO3zj33nN/h2rWrCPp9NLt1AorJC3sPkPI1cLEs4svFyU9J/L3rqouQz2/j6fYhtMACamSC1fd+G4Ch0VG+8MunCCR7MVUHnVot2xbexjUdP2EtJ38b+tXicLJeU+9Za2t4SsqTaaBFpkRUTX3OeVUaOijqUStSLGip510t03cEqpsXTNhPfHAAKU08FYFZd9S0KbtuyVgUpMRbESSbHGNseIhQjTWnj40MTdRqTHWGD4dpmnz1hy9gmIIP/OkVfONnO8Dp5cOhud9vpOOgOTCTCYTLh5FNIks5XLWLZx4sQa2oohQfnEgfmfb55TbLheFONH944ruyIvjWc+lsd4yFELgbV6AnBjFLBUt61RtEcbgojQ3iql1sRcoV1Wql7I9gJIcRqhMtXI+iOlA9fsvBdXrQ09Fp6ZkApbEhpJQ4w3WW4+30oKeiuGoXkevdjbtuqdVK2+1F6oVp5/aXlZumne87ij+HLT8HoFPU8/gln6Vxz0+Jr34T5mgPlJ1hzReksr6RvsAKnjQjrIht5JUFd3B12zfYVHcrP1z+cW7b+Slad3wHpMmmyz+J4gux+hdX43fOvMeklJgSVEVQq6SofuGr/GKf4D7XF/hs/DN8K38NbTVXs3bwF5xfWWQ2l7GkG7zp+aXEdA8+h8kvhobZry7lmlc28R9X61T6VC6oSODLFHlwL+xw1LJpeISLPP1sSRWJFjQifljfpPANczdv3Xc9RmYYNRjiglAn45PQe54J8EqmElFIUVBU/uzAVVzbe5DvvebElEucMc7w4bBy26KovrCliFDORyvF+qyVoNODcPkO6+jqiWGE5kRK87DFX/NlfHKXpTyXXLCG0eEY2/oPLww9NjRIuK6BsaFBJJJIXQP9B9soZLOEa+sQQiE+2I83EJr3eTg0FZcs4Hb5qAmHUHZ3UVV15K0yWSpgZMeQpSLu5lUUYzNzI1V/GD0VBU1DGvocbVtNjLEBHJEmayIugDQMTKOII1T3quSwnQ4sCXh4QynLd2PNePKDfBCod6ucpw/hLg1zk8+DEE5+vgIKRpSHhh3kshk6KQFObq718vuhFD8vVuMIVPFgvJ2/cZe4t0vQk0jxsncpn989yE+W53Gj4JFFLjdGed65gI/G62jwxnlicQpVCIQ4/IJv21ieJxIq76mHrDeMqKtnyf7tLH7sYRYrgKahKArLO/fTj0L0yuvZsWML3YUiwXWXoj76Ewoti+lLJpGag/VD3fiBjRv/wOJ0YlpBXlbX2Xz7XYjeXmJv/WPaEqPckR2jVRW0jvbxgrtAysjhdzm5WETZn4zx+cil6IPd01I+xqkNB2nwaaRT/ewpGCANihIe3dHD1WuWUxkK85E3XM3HH/gtCV8TvpE9PDjqR3FoJEtudh/sZNWiVgCuXraAvsEh9sd6aW4KMzQa5ceb97Io4MBQXXgVyXsHf8RBEWbXsIMGM3kyCulOW4xcCqGoKC7vREBivDGPNI3JIMUc866RS4JhYJby827lfCQm5t2yqk5ieGjO9LJx9GKBYFUN/W37aVq+kmh/H/HBAXyhEG6fn9hgP+o8W8qPn4NLlZgKKKqKz2Ggm1m8h2v5LKxnhVHIQC6DGqhCapqldHRoZN7pntTGd7hnpEcIzUEx2mcFgIp5K9qZz2AWczhCtRjZsXmP5UxGKCqOcCN6chjFE0CW8lC+VnrCKqCTUuIIN1ipEYEazEwcmUtDoBLF4UVx+ykMtuGsXTSx86EnRzCNkhXoUTWK0V4rXbKUR5oGxcQQqi+MkY2jBWusovsjFJpmSoKvpq7iGuc+vEEvonEVZk8lr/31W3HK4kQEd/nQE+zf6KK95TpyrWsY+N3nSF/612h6lmjtOvTG89jQcyONqX2sLbzCC5v7MRRthiP8gv9qohWLGFarKNWt5s0b30PYoXN73zcw9WXECg5WuYe5vbSRr0cjbHWs46+3Gjx200w/QFMVrgiMsnVQMlQMsa8Ihm+M3+kt/K6ni3tWSD5zWZbPbMzwdeM63CN7eTDXjC/bR9Ln475tHu6/0dpFv6TRwXsHNvK14SqqGaUp4uFjG73kTJWiqVIUGj97TR+aqvLPOyTXVB1/s41xhDzB21dHg6t+qax/xxfmffzUbaSp6MnhcnHAyLQVr+UMl9soltMrJraQ/OGJog4Yd4YdSCmPyhk20nGkqaN6QxMrdCOXRJYKVpWqEPhFFt0U5MXsYZbxCG2pkCcZjVpd43x+sqkEhm51T8qMxY9Zo3hqJHAuRoejPLuli4tWN+B0anz5R1vBMEARYEprq2mWCK5ZKlCKD6BVRJClwox8KSjLKelFtLLguVZRRWls0Mox9M/mQM+frvveuEVKefGRjzxxXNzSIjf/w8fmdayUkr89UGQwm+PjzYI0Gk0ejVqvNSn3JDNcO7iQmlKcjasn02r+MJrnMyN+PhJJ8/paK+2kpOu8c/sYToeL99WaSEzellxBbW6YwUwWWbecy/Md/GiFNcmPFXX+6UCOAdXPFxfoLPBPf2juTub59KCHPwpkuSJg6QjHSiZvaXPQH2jlc869XOAuEnA5afDPntbSXijybKCaimyK+A1vQH3uSd5RTNNVKLG/IkTf1TdR/+IGbsnEpr0vq+s86o/QnckSvuF15PftQglXUtfZxpuyk52ypJT8a0cBA1jnlfxw2MTQXHykTufyyPh1MXjfvgIHdQfvqSywpeAmk8vyS6MGmU1w5eI6li9o5sLlSygW8iiqxqd++AuSusBbSpN0hFALCWSgnlZXiY/c/bppn9/V28OCxia27W/j+3vGuCAIb7vyfDSHk84v/sW87GA2PvrjX73qtnu0c67USyDEjO16I5+25NYK6Wlzrl5u+ysNfcIZHg9WHNqC3cglrUYGpcJROcMffNNCNmzq4IIVdSwoR4ezmQzbdnSxelkDoUiIQjZLNpkgVFt3xPklPjiAYRiEampJRkfIZzM0LFo6q3LP0TDbvPvJb26b8rqJkRwFoUwEFmQpjxZuoDTag+rxzRnBLY72gKKhqOqs6kdSL2HkEpYMaT5ldf0sK4EIp3uGNu7RcCrmXDg629VTUUyjhJnP4AzXW3U9U55fetLaPR6XZgXrWWZmE0hpTstlL4x2I/MZVH8YxemxUgi9IfK9u3FGmkBVLf1iVUUIxfpukFZ75kNqjP7fbRfyw6deRFMV7lq/jnQ6TSgU5v5f/Z7depiVfoM3X7SUQj5DdU0DqjpzdV0sFegaOUghmyOyopX0aJQmVz2YkpFoPxXnLyQ1NEyLa2ZaQ89wJ8lSCs3vprK5mb5XdhJuaKCy5Mfnm4x6b2/rYHPXMFcvrmPDvm4S6RR313XxobWTEe7v7tG4f38Fl1blWRUssHlY44mxBtJFk6sCg6yvM/iLVQXcDgXDlPzrSwrf7l9Ii9HFQZoxAKfHj5pPsOGWThqDk4vmrlgRn1Oh0qdyya8XkhFeXnjNNtxOFZfz2GO44qbPzWm7Z0xkuDjSjeoPU4z1oHnDEzk5AEJ1WvlAyvQIhBZusDrDTJnIzXyq3I5xeq93LViDNPRZc7SmMi65IhQV1R9GSmNCam38ppKl4sTvpF5kTNVQXH6UWVLZajwFYgN9+MMRnG4PlQ1TOyf5iA32kxgZJlB17MUW83E2dx0YZHu/wOEYQi8ZOALVFKO91rU+TNtkM5fCVdNKMdqLOoe83NTfC4d7Ivdq6mLkbMWUkl9GDTKuajbsGeNPGpxcUNR5qxcOpgt8btDN+mIHF1WowOQD6roqN9dV6RO/k1Jy55YYO2ouZnliP38+VscCI8EPag5SU6eyI57nr+OjxDEmWmZH3E7++7zxXQAV0zT5k70GipB8f4WDl1Mmz2tNBEd38rF4M6sY42a/QY8jwsL4Pj5d0EnXrOZjjnb+cpavtl83eHTxGoxgmODOLciOA6wt5RFC0Op24s8lES88xZpEDBzTv+tfCifZ9dchBvvp27+HJdER7ureh2FK8kLgdjoYyhZ4b6fGDiOCU1HYEO9nj3sB6/MH2ZP14BVZ8iYscMGTeT9muJEfJDrZ6V7ABY5BFnsEUakhXH7OW7SAnoFBPv/r5wk5BXl3BJ8sUZIBVBMWuAvEKFJXFSGZSjEcj7NkwQJrLOWCqguXL8Xj6KAqFODx7fs5r/ns3mrWs2PIYgGzmEN1exGaa8KhUDQnRmZsRgGZVlE1I93MSMfKOZuxaXOJ6glYaRK+w88DUppWFy+sgrvd+/vZ1gumHJxwhrds7+TJPUViiQ6aayt47MVebr68iXDdzLkvn8mQTSXQnC4CkUrCUwowI3UNpMfixAcHcLqOr0vmkeZdM5u0rkt2zNK+DdZQSgxj5pK4auduFS2NUnn300QW87N/tuaYeB4JRZnQhj5ZevinG2YxB9JE0ZwURrpwBConUnL0xBCymMPqMje5a6A4XCiHLCyKsX4UzYnW2FQOroUnlKe8rWspDHdYakzSnIj+Oqumd4XVkyOAsCL2hRyvjBbRKDH8m2foKbp41/k17EqpKPkeRjMmn3wsS7MX/va2md1lpZS0jx5ADXpxOx0UYklcpoa3rEqywLuMgfYePKoTDvE3xlJR8l6T2volHNi6mWI+x5rmdeh6CV1OBmIeenYTmzsHyfvrka/sZXtC4jGKiAbBzsECHWknt7RKnosGOWhU0ZsOsmlkP92e5bwtvIHfRuvA6eWGphg+t8Zrfhagx6zkElcPBOupFWN0iwU0xl+mQR1itKIKTUg2dBa5sE7B59ZoiUzuXv/vZW2UDPhtvwfdgD9eefii1WPljHGGpdStik/TtIo1UqMTzvBcDR2EEHCIcytUbc52wEdyhGG6LBhYwtvjOcpg5cIa+TRSGmi+iFVV7SjLus3CRUtDROob+e/vP8tIcfJBMR4tPp7IxNFwydpWVKWT320bK7eczKNVVB5Rd3hcKkn1BmYtsjsU1e2Hc2RCBqtZxBsCJX7urUdkRvkhy9mdHOCt9QYbEyaPOxZyp9bBh1smHYJ4vsj3huH1IZOlActOHxnMskWrR4n1ck8gxSO6ixatyPoqy2YaXCrvMxNc6jO4vzfHF8fC/HtNnJtrJr8/Q0rapB9FmpiywD31bqpH9vJM0SSRK9Cn59goHPyZo5dVfp17Y3V40sPUzdHFtk9oVCxdQf6VrVyv5wl07cU0TUbyBaq9Hqo0jZuyCXCo/NQXIRUIcVfXPh4JVnMwXIOxbQsro4PUYbDWKCGE4LVtHtyyxO9WS0YKBjsdTSwtdPKJBYJdKfhsMs8B088LhUUEY4MUnBV8LdTBVc4Enng/UWeYD5k7eW2ti7f2Rkjg5aURnatHR5GmBKePlAJ/c9UyXE4nY5kcj2/fy0FzIXcs9HDN2tV89bHn2JdW+EsJy1omczGEEKxavIiNu/bxRH+R4XQXfzalffNZh2mCNJBGEbWiZVpKk9Ccc+qxH5qOprh81ntncQ7nM+dKvWi1FdaLSGnyu+0pjFySbQe9bP/mNsx8Gj2XBFOyKVfBS7tHUDwBHnryIL/YnJrx9xaGirz9rst48pmdbDjQfYRP7zri+R0rqi80EUlX3H5rO19zHrFBkVAdYFpFrI7I7GoXhx5/vMoVZxqKw4VwV2CkY1aDGH8lRjZhKZo4PUjVgeoLTd8dTo5O08iXpoE0SygOP4XBg1YOcS6J6qmYWFSonsBEwM1IjSANY+Yuh5So/hBGNonb4+P9Vy0jNhbnmy8cQNPyPHdA58KwwgVLLuDhTXsw82lC4dmfpaZh4KkMg5B48wo1Acs/SKfG8HgrUFWVhkprzhoaGyDvMfDlHOgYpBwFCoU8PS/voN5XR8ATQlVVfrZxKxv7s/zFpa2saG2hK54jr3p5Xa3JuqXrOPj4FoSE/xi6mF927+GAayX/mHkOPxle7x4kZgRYUV1gfd0LPDFSy7BSQ4wqHu/fwnk1OTLShRmo57rIPj5c8wwLKuCrO5/jexWXstjTyTOv6eVH+9z8fc8VvH1kO5++JD1tzMurNAzD5O6XllASTu5ctA2P6+hru47EGeMMO6sXoqejaKH6cm/xY5PlOtZuPxPv94en6WTOKDIxTZyVjZj5dHl1XjnRp3w2ntkZZ2/3iwzn3YcWbc+LxOgI3ooKHPOIYmRSGV7c1sF5K+qprjlEIk6xonEoKqrDO2+H9VCpJJuZ/NtyP7dFd/Ga9X5+PrSf5REFcPOWWifukb1cGVSZmmz60KjJfxrL6Bnt4N8DMFYo8qMxJ/V6itd40vzYaOAdwTT3NExed6/TwT+1Ajj4cneOjOYjb05PTXCoKr9stXKsVMV67021PhRF5eWoTr1h8rhrCX+rHuCtC/xcHBilye/Bpc3+/V6smHgee5gFAgIOayp5zBuk54rLWL/xCRqNEk/VNNIaHyXrr0CvriPfsYdMZQ2RigD1bbtY4dRYrQlQNEqGgV8WcGEADtaEvXxgcAedikpM9zMinfx1IMYij8LeXDs5v0lST/PpARe70gZLNY3eyFKuUNpZHdS4Y2CQZDGPKAzj9a4iHAxy740qiqrQWGM5crVVltDBps5BVjbVIaVkcVWAopGgKmQ9kB7b/Ar9iQz3rF+Lx+Nl7cImRjNtrGmadEQOmn52e5ewPr2TiKYfu7GcRmj+iJUX7K7ASI3Oy3GdDcXpnjX4MO/3O9wYpYIl4SgU0JzT5KrMUh5nuKyqUJ6PjWxi1pQtgI6o4H9/tomemMGM8Nk8UM08ijQpqfNTxDnUyZqGUEBRypJc899pONec26NFC1RjZMasnQxpYGTikzZTlgGc6gibhcxkQ5RyeoueGgUTitF+S0tbmmiB6VKA42kQRi5laRGb2RnnolZUYuaSE8e2NNRTFaxgZXcMryyxPeelyVHg/CULWVhbhW4ahOdQe1I1jXDKupeCldbfi42NUKhxEh3soSXSSm+0GykkmOCvqaPQMYKBSaS+nr7tO6nyV1EbbsBZviddmoqLElo5JeN1Kxt55uVXMB3VdEcTrGys5IqWGtKdT9LqTPBUYh97Rkv8aKieiiIUa1aQyo7wmcW96MYIsXgcLyorfHnAwe9v6eflwT6uXeiY2C35yLoShZ17WF+ZQkpYHSpxYf9BLgxb1++lAZMv7bcabqxvFKiqwieWtVMymXCEoxmdT75SzVWVSd6yzDgq+5iNM8YZFkJMyqedIsxCFmmUDj8RCYGRiaP4K9GTw9O2FmcjY7rpGAMhi1y7zEV/NMf+qGNabtk4//xnFzDa24MQgqqmZsaGh/CHwoyNDE/TEJ6LrTs62XCgxB+2bJ02BiOXQk/FcNW0YOZSh9WrtDl6nJrK9bXWdtzdDZMPUIemclf9zAfqGyOC/uF23hQ2AJXOTImXHItZGxphfQU8nK9jV6Fj4vgHBvL8JqFxb1WGNVVBPtDs5u35PoKeyb89Vijyq1GDN1SphFzTCyhvqHZzQ7VBLO/ihtg+3lil8UB/nl0FF+9TizydhFurNSqc01fjQghWO1QGMlke94cYraoj0tWOPjKIS5p0CpX4BZeh79jKXb1tPDfQy6+XrGF9207qBTy0ci3P1TfieexhFgUDOFSV36yWbBhKc+dOyZ2+FP9eaEX1R3iqv4eEpxo9n+F/HMPc22rdUy8Px3kg14TqK9EpJDeld/O+5S42RTP8wLWGqlwnUe8iqp/6LZdW5LgjUmFNyAOTChQrWhdQFfDzxSe2sSjk4l03XcVNU8a5vX+MwZKDG8fGaPZ48Xp93HrpWkzTZGCwn/q6BoYv+VM6YnDBohuIPPH/jslOTkcmusIdpl3yycTqnBZHrYjMKCQbRymnXiluH0Y2gdQLqBWzO8IAqA7aYgAay6tK1Ec8PLUnC3No8NZ7C6xYUMGze1KUhIu719dQVR3iKw/tBefhHWIjl0TxWHm708Zl6BRHunBUNWNmk3OqdtgcO3NF2Gf7veLyoSeHpzflEorVfry8mLN2Jsod6goZzEIOs5jDWdWM6qko7xpPD9JZTTqcM4JwPp+f999yFQDb9h2gKhikf2SEJ3Z1ctWyJjoGR6gKBlgwy7ZcsKKSVDJO/1A3Ob+kMBLD7azEUe7UUfIJPMEQ3mGdxK4ejLATRw7oTFBZWYdvYT2d29tZ1rQMgFsvv5DXrsvzzV8/yY7uIbb1jBArutnbW6SmNMCwo5LB/m08f2sSELyLEa54tBnF6SMlVKqyfdx3RQ/g4n+6W9iZr0BVw+xo7+O8qjb8LsF1i6bfWxGfxucvS/K+Zyr41/1VPLR+Pz+7fmDi9eeHPTxbWsbakRTrGy2ZwnuWWw5vT7xAlVfl5WHBL9KrGC228ZZlc+sfz5czxhk+HTALaRR3xbTWoXpydCJ/GCZXinpq1CrqS0envD+LUchg5tKobt+0bUaPKHDFJRewe283+6PTtwnGKWSzeAMBirmcJenidpOMjszQNu3vG+aHv9rF6oUhXnfTpHzaeauaefzFF2d0KZKlAlpFhGK0D9X76j/0jFzSKrA7xYudV4v/7MozqCt8plWdWI1PxaUK9hU0HokZnBeCCyI+fmC20+jWWODz0BrdQ0gVfL3HZKlI8tmRKkZK8KLZxGOuIVoqvAQ90yNx3xgUfMVcTt9gO/+nLI/62EiOJ9NO7q0zqPI4ibidvLWclfO9pJtdznpiXTv5le98Rgfb6MwX2JW2ClHe5BzlphovB0Mh2m6+hYHdO3F7/IgrrqNx9zaWqgLTNDGeeJRmo4jP4aBQEUJfuBSz6wBVKsR3t7GlPc1w1ME/ldeLQgjuHQrQ76xkSSFPQzFKcniYj7VofLljD+2Oar4dc/HGclA25HZCchgDiVbdSqWWxe90ENWLrE/t4cqQQT8H2TqS5H5zLe+O7eH/LrVs3DTNCW3vQqFAJp0iqRVnfB9vX7+KeDJNc30DT7+ymw3tw7ztkmXs7hvi970Flqg7uPmCFSyuzLNu2UJ6nzh+G7GxMNLRGcXREwXKvjBC1aYpCOn5zMS8Oz6f6IlhzELWUl8ob5OPs7I1xMrlLby49yVyzO4Mr2iu4Or1q9jb9TwDOegeGCOWzCJVx7RGYaVYn3U+3uDEbpnirsBIjczQajZzKRyRRvT4wCnRXJd60XLU3f5zYmfPyCasXPZy85dZkQAmZjFXLvb0YubTlgJHPl1W8RhFYrUIF4pACzVMtGM+dPfDSMdRvSGMzNjEYmcskeRX2/dzQXM1qxdaE/G65UsB+O3mV9g6JtB3HGB7xkWjY4BrliR5Ymc7hupgdZWPFc31NFT6yVaqxLrHaGhcwWAhi8PtphLLjoIFN+ZgjkC4loJZRNQGyfaNUBmspaOnjZef38nuPUPcW3aGAX794jb2y0o693ezpiHM5s5BVlY6WVjl4eFX9tHr8k5rdFHnyHBwOIvmDaB6g7SG+uhOGLQoMdZWDRHyKGSyea55/mLqzWGev3UQYEazjJ6EQSJfQMrpPsx7V2ZZ7NvA9U0GbVHBX21p4ebqEW5uyHDXtsuoL3bxoZUxvrzwWVaFTU6EjM8Z5Qwb+TSK5pzR9WUq0ighTfOkRDelaVqR03Kk18iMofqCVmMJylXT5WYfqjdU1jGcjKaZhSyOQDUl05gxOeaUCr764GayurWFPhv3PbCfsJbjypUVDO0Y5PqrVszaIalULJLDTS4/mRQ/HmmeLaqteCowcym0QNXEdZN68YjX2UjHLGmaObpIja+ej6QlbJYfbIWhg7hqDy9Mf6bSnS7QndO5qtrHTzIVDDkivD9zkAVTIgkF3eClaJYqp+BFpZFUcZTx9uDjucEAqwNuPrwvw6PFIJQUHFWNhGIHqZRZHMqkXe2KpVga8OLUVG4OGnSMdnFzeDJ3/cExD09qC7hybA+3eZz8djhHZx7e2+zmX+sytGX30xx0wlg314V13pUMMSpLoNWwPeXkKT3PByt0jIE+WqJDjMajGC0L8eqWQ6koChdjidoD3BQfYuPPHuS+WIA7PEkud0i29Blcfkjm0gWuIo7iKB9aqPFptxOXpiGE4N9iAVyuKm5RdjB+j7QGfHyyMcYn0s1Uj+yhuyrCS8NJ/nGwgpi/ns9EDmCqJa4b9GKmRnF7rfF/6mCen+78Dd+qj9Nz/Z/QG08hw014fVaKg2mafPv3z6MKeMeNV1JXLmAdTmaJmm7i6QxhrwfG2tnn8NP15Ev8090343Q4WXQW5RFLvYipF+d2ILDmPVnMHnPq2uEQqsMqjp4StZWl4rQi6HFVCs0fQSgqRmpkorW8VRTtsBxUtw8zm5zmDP9mc5Sntg2TU+Ye37N7k+zY/wQDCQNFK7GxKwjMop2sqAiH28q1Hj9/IWZNf7DUI0ZR/eGJWguplyYUCeZivBhLcXlmvd5SSozkMCDmzOkGMLJJS4t4pBNnuHGGVvHZwMSugjeA1EuTtT6H2LKRGbMCRAJUbwizkIVx5ZPyNVZcPoqjXSgOD0Y5b1iaVkOqQ9MtrO/Hi+KpmNaUCmBPTz+bY1DUh1i9sIXReJyN+7u5YtkCXrNqMR5nNyvrW3Dt7qQpXE1HNEFfDjS/n2c7BtkwIvngJTVI1YETjb4du1EUhaKaRi0XA0aCk7si1eE6ot1DPLO1E0Xr46bVixjcN8Li6ulpkg3VlfgGurhp7UKuPn8Nb0OiaQ5+8uwW3A3LqSsMTHNiv3FllBseb2IsNUbIdPJMr+Cxfg+PmRfx0dAmPnBeget+4qQockjFiuy+0Cf5i21L+dOGHv7PhQVLqYcGdK+XkLMD0Pj+Ho2fDFRz3/m93LpEABqjUYN2WUd7NkOFK0Mw28MBPcIHXnJx//ohllSemEZHZ4wzPK5paWTGDnuT66koiuZCL2RBltsyT3GMjXwaWSqUOyLJOfPKZuNQp0/xBjGSI1ZnO8ajGFbVtOb2z5gEx8XpMU3EIVvO0jSoCTkYShgUSlYF9Xl1JpmCScfY5IMgrnt4pTNNd8rNwo5+Vq6aKcresrCJD97txR8I8NSGHezuSGBkDYTmnDV3T3G4pl2j8fQOmU/PKTMnSwUUt79884/LJ8UsybryzW8Wcod0ppodM5+xCgzHJy//8eV1n478TZ+brWotP1Xa+J8GlbFSYpojDPDFPoOvGKv4h/xe3lTcz3l+BZhcRPSk8/TldD42VMFADpzVjTijndyQ3ckn1vio9RqMO4mPDmb5QHoZfzLWxVX+Iv88EuSjkQRrQ5OOwMdqC1yX2sfrqt08F83x3r4ABGvZ9MorXF/t5Y/LKR3PJ1L85UEHf+wf5CndjS+xk2AwzJXeIpdJN6v3bGWzw0O0th5V17kmk+AFp5fO6nqu722nppxP/HSsyD92CHpKGZ51+mnwufjD0gyeQ4o0v7bCssXnogo39FRyi+xhravE7Q6Np/J5zmuY/jC7udrNfSU3cV8t20SQOwf81MkU7zD20Rqo4ECqgN9bwVpzkHuXhgD41UiBmM/FX+7N8PfXSZ7dsQdvNs/6tZcBoJeKtCV1VNNASkkiEScYDLOiLkx73258nkYuWtFMJpfl0QMxcqaXHz39In907eUEK05NSsHJwMiMobj903bDZhyTHEFx+yklRxFYneumFtNaDnXBSgfAUvmZr5zibDUeVhH0yMQCW5aKqN6gFZw4ZO4Yz3OWpTymaaBWTJ/Pgm6Bz6USH7O2v2s9BVpqPWxqzyPLDnhJuBlMpHEEag47l2n+iFV0ZZQmjlNcXoTTM+t4p+6EGbkUmDpm8Uiay1bXPyOXtAoT82mrAK88r8tizpJTm5L7OhvC4bK041UnxVgfzsqmY84JP10x0rHyomkExVNhLT5804MyRmbMUoPIJpC6QTHai7N6srPguEMtjaIVVfaFAIks5RFOr9XFbvxYw/r+kBIJyHwKaRo4wpNF8BctX4RuHmRZYzWGYfAfv3yaXKCJrqEtVIdD3HHpGlwuN1cs1fnhs9updqtcXuuiMzbM4roApkulsb4ZRVEZyfQTZYxAfS2eMUmxVGBIH8VV0qgNWTY0lkjyg6dfZv+gFbjaNFTi7esaWbdsut9w2cplXLZyGVJKPvfwExSKRa5sraSlwsO+3m6WNFQB7RPHV/kdrA6WeMaspcNVy0e3QCnUwnXaC9xYmwWcNER8DMcSfO/qQcDD830QNzx8aXeQOxq7+F2fG7Kj3NOQIOC17rVtYz626620J/pp8pVQBKyKCC40dtGglWgJaTx0/QDXPhUmh4d/3xXGrca4bhbN+aPljLF+oahWN7Qj9ILHtKqfTV1Hq4hYbZKrrCtl5JIIRUPPxHFWt1irtuM5JzF99a24/RipURCzh+ytIomZkVk9HaPSmeee29/A1m37+eXWDEoxza03Xk5vzwAdz1i6q+MKE709Q/T0RVm+vHXOcwtGIhPd5CwB8AFUXwgjV5rzoTblTJGmcdgWquMPSMVlOcSlxBDO6laM5OjENVF9wemdqebAWd1CaaQLrbIJWXauTxRCiFuAL2Lto9wvpfzcIa+7gO8BFwFR4K1Sys4TehLADd4codwAC31WOsJUdiXzbExKVjhN1ib7cckcD2gr+cNwD/c0Gjg1y57e3+tlh1LFEr2bFqfkLm0fb1ip0OSzHvC9mQKf74euvCSowEJlhEUVJtESDLsqGS5NFyhfFnCxrOyzpHWJIQWiezu/azqP3lgveTPPDSHBd9NhYhXVPJPYzYFAE9V6gh8usRzvvkyeGzoiqGaGP2r14MxbBRC94SoyK85jsLeD8TvkgWHJULAVLZdCFDMEzDyxfImuRIH11TMjcyoChyzxaKmSh0SA6ngbIz4/j6TSXD7lNqpyO3mNGCLgyeDRB/guLRi5NN9yNNHcN8K7mz1sW5XDqU46aPVmhj5FJe6tY9sD99OtrgAxxt/FN+FIbuVna+/kw9euRgiF7W0H+d72Ia5r9uBQNYZc9XQMRakN+HjtpRcSTz3Ni305dqc19vX0c+mq5QATEWI4c6PEUppWepjrcA0jrPbBZj6Do7KB0mj3NGfYyMQRmgtUp+WcSXPOOXI+zMz5lBiZOOocC3fVH56xiWoWc5i5FDeuX8ziZQv57NefQXeGuHBZmEsvXk7HwLOMFCbvU9UbKM9lcyf3Cs2JAPRUBtUXojTabTlah+jfz/5ma86VU7owzobiCWLmU6jeIMXRLlS/VZw17gwrLi9GOm4ViB1mwWE9AyRGLoWzpnWG1OjxcLrMucLhsnJ2VceMQm9plDAy1nxoZMdAWnJ0iuagFOufkEcbd6gLwx2ongr0sSFLOWlKYKw0NmTdI57ARM2NcLoRLh8c8jxzOpxcff4KAHS9RNGEwnAHAx4XbXoFwc0v01RXx76hOKPOKoZiA6ys9BJ1VnHn0vqJhkBf/MXv6cgKXn++G29lGHCSKWaoWFJPunMy9/ZA/yBtKYmzfimFwXY0I4dTU9ndfpDWhlq8npm7C6qQZPIFfj2kone/BME60j0xuHD6cdfWJtGFwq3Brfx9bDVqaogNZpjUjhA/vWGU710bRzdMXOVgx/IqgXFgFEfNEr62o4fHkg2kIgtxi2cnAmifXBfjj0aeZk2NwvVPLsVLgf+6qJOtyipyqQH64u00Bt38YN0u/mzzIvbmwvyoR3DdguNv3jUvZ/h0MG7F5Z1XbpUj0oiUEnJJjHTcSgEo5VEc7gmHWnH7MfMZ1OPMUR3vEW/lrlk3nNBcGOlouTp1ntuGhs6YUsl3vv1LkiIABJCuAN95aDMFQwLT/05Tcy1NzXPoXR2C6gtjFjJWd71S4YhSaWBV4uqZBJglSmODaMHaib7uUx3p8f+XylEaPTEybbttvpI+Qggc1S1Wbh1zbxEeLcIS3P0KcBPQC2wSQjwipdw95bA/B+JSyiVCiHuA+4C3nrCTKPNXzeMTsZMXYzk+P+LjJkecHSUXjycdZJ0VfKl6hEeWG0hZySM7utlatZzvDe7j3U3Wd3adJ0tlYZD/XKnMKIID+E5vjp+kIjjcfurJsXFFESHc/N/2PAvH9nPnSuu7kVLyrweSPJ7x8HcNJq+vdXNzrZd1vcN0en1ckXmFVq+LT5dWs2u4i/9qSPLJtgFWhFz8W10fHlUwHoHOFIpkikVMQ+B9egPvbwmjaBo3DnazpbONJS4NyrmYH2/VqOlpw+cocGuTm3XVQd59wM1v80G+kD7IjQ1BPt4l2ZAS3BCUfH6Jm+3hDB/cl+M38QQjFQsQ0uR9VdPbgrodGvcvAwhS1P1cNhLjs0MBFNWJLOV4fAS2JQ0SOIjoaT6yNMzDl9XxUM9Bdilwf6GZSLKD10cgb7jYk8hTKBb4/c4OnOhEx2KIgoYDNzdesIKmcA9bO4b4zJN7eN8lLewfSWN6IqxxJli3dG592KPldJh350qBmooWqLbazvqCFKO9OKpapjlX0jRBL1r5tOV5+FixdvbyVlFS2eHWAtUY+TRGLjnvhknS0FHcfh77wy78WzopOSII4JkdUXa3Pcdwbrq6j9Cc83YWtYqqyWdPMct85jTV7Uc6PZjxASvS7qmwUv4OqaVQHC5wuKw81WCt1QZYmf4Yn+/OmiULZlpO/gkqkDyd5tzpuxMljEzMSkXRnJYylTeIFOAMWZHb4kgXjsom9NSUNBfNadmyL2wtwg65TKZeQpZyICy1EEMI6/vPjGFkkwjH5Dytp6J85kePsKi+hj+69nI0zcFNKxr51a4eqj0Kr6k1eKy3iNbTxsduvpih4Y1kvYI3XLSSW0yDhU1lB90wiCbTGNLFjh0xLm1YTihchZSS7lfa8E1JA7lw2WKGYnES6QQtF7Vy1SWX8eLuffzvjmFWe/bzF298LRt27GXD7nak08P7b7iYe990I9v2t/Hgpn0UnD5cwTqWKDN3RN6zRuc9jAIBltV18sB+Bw/rl5NKv0xvQuc77UF8Zo7OrJO/WxPnDYs8PKIeZGe8i4+3rcJIjXKpbw9/fp7Btv4SyytVHulys2HYz4LOIVKZHBXuAiuqnfz4/BfZE4OrX7yKd1XvoUJKsr5G6lL7uHdFjFclZ/h0Mu75IoRA8wYpFTLIUgFRzqVRXL4Tm9cmsVbm2eTEBGRk4lYkNh2f92epgWqKI510RBoxs2NoAesmros4ufS8Rn74uw5S5uEXArGRKB6fB4/XO02JQmgOVC2Eyvw60U28TwAOJ7Kgl6Mu1pgMIcAoTdu+lPk0uHxIo4gjND8nfebnzZ5bd5xcCrRJKQ+WP+MB4HZgqu3eDnyi/P+fAv8lhBDyJLZm3JIRbHY2EUuVOFixkJI2jFlIEy9Y+apCCD7QIPhuvJvLI5Pf19+0uBnJFfn6oOCN4TyrAtNTXq4IOfimDHJdvo1/XuxDCOv1Nt3FQKCRvcl2fj8maVUKfF1bg65E+dXoELVOyUVhD79YF+C1+5w85lrKV53buCvfzl1hg9VehX2Gj7a0hw+pBep81t/NFUu8fbCaeiNOXmh8RV/FXemDtAR89AiVg6+7i9T2TdyRsibSVr+Lu2t03hJfwY7YED+plrQYCfRUiQ8X67k1McBvghdhyF56yhHmg+ki1wQFq5xF/mU4Rh05FlTMzD/vzRT41pDk1kCR2+oDPJUqcNCI8eZGP2/r8LC94EJxWqoDG7bG+MXFVby5JcyKkTG+E/ehKiE+t0zn/fsK/DwdYE3b92kLr0LJjpLFiSNQRV04gMPhpLG6kh9seJkCDvb0OFhSE2asa5jL1q/kV1v2cPHCeppqp9vy1CjxBD+e29E80+ZdS9PdYVXVZ8emLYpPVKtlwNI/H0+98kz//USqxBF0esFayBu5FINFF4p0IUQO4fLiVOGWqxfy/NZedgwfoRmIXrTqHWZxJMefB0c15yoqQlGsXGQprfQPfxh9bBBUDdUbnMhTlqaJkUkgTR1n5czmDPNlPtfqKDkt51yzlEPxBinF+nBVNk00hhmv9wHQQrUY6ei0nO3xVBw9OYKeis7oKCdU1VqMSBMjNYoWtJ5/0ijhqGpCTwxbRfZON9I0GHHVkmk/yJLaCBctX8LNl19CEQdPDuosECo3tLpwqA4i4RAlw6QzY7J5fwd3XnvlxGf+9LktJFUftWTo0ZrY1DHITeFyF72Ii5xHJZ/P4nZ7UVWVN155Gfc98jSbu00WNg/QVBWG6Iu8onn54s9+y0BBpeisREZ7KJaKlPQS2aLOn1+5mv967AVKwx285qZLgL3Txi6l5Bs7NVxmnnesdTCUl2w90MtHL8jxUJef+2Pr8CQ6SUo3D/9MpeOdKS5p8XBJC3y/P0V7cA3vWbSBbaMa73t5GSGRpcWTYae2iuKwF1ftIlb4diGE4KIGjf/e7aQQ7ePJvMqnLpQ42vu4vSXD04MuXo5K3nyc8mrziQyfdsZdGhtECIHqj8wsYpjC1Fydk4FwuKbrFzK+TRWbJjBvFrJWbm151Tjj7wiBI1CNmU3AlPpkIYQ1kR5hMh0eGOYbj7bTUCF51z3r5z7fo2h7rHqDllRM0A+GYaliCKX80AlYAubliUL1R6yuSIfbSj01NAI9U37uBS6b6xgppS6ESACVwOETnY+RB/tzfG2sgnc7tnFbk5t/7N7DroxOs9fBReHJvO3rq9xcXwUlw8Ftuwx8GPxwlYNfxCT/bS5huKxBPJUban1sCwwwWvTwvl4fN3sz/E2Lm6+1lojmu/lytIKHxUL+SdnFn3IQnVF+oq3lpf4Em8JFFEXhQ8EEXxpK8R3FzRZHhEsKQ/xtl4KoWUwxHeX3Y3n+pLzGUxVBRObwezWu9BsM6T00lh3lECaOzjaqstOVURb7nFwXHeASbwFw8/qI5BuyASOX5Lm0g0KhE81bgVbW6v2XITdPqc38j28Pu8/X+Uy/i9v3CL69MM/GhOQLMT//UJ1mW1bhW2Ip3+/qZZMvy38sm4zE/11Vml2ZND8YLNJfcx7x0cmty9WVAd6e6qXSJQE3i5QciruW3QXBl9x7ealQ4kGjiYVyhDWLzgdgNJ4gK1yogWryUuGe667gbr3EUzv28/RgiXyph3tqj3thd1rNu0YmjjQNhHr4YtiTrQijegOWzrzn0LlGTizax9ETQ0gp5+x2qXoqrI6i+fSkkyNBVdQjzrlgXRNLXSg5Z8Oho201rwVqQJoIzWmpD6WiSAmOcjvl8ei05g9b+a6O006T7bSbc81CFlnKU0oM46ioojjajVHIY8gEjik1Q1NTKfREWWbN4UQoKorLh1mcmYcthFJ2gCV6KoqeGELxhsodaGOgKBNtn4WicIG/QNLZwP/uTaAp7axbvpTLly2gY2gzB4cURrNFWiN+HnrqWTrMMNIcYrAw3YZ8LgcVDoWrF7VyIF5gZWNN+VwEMldCLxg4AtOd9jW1QSqTWSLBEB6PB4fbixJqpqt/N2a4GS3ejRJpQkGwae9BHmrPsC6U4r533Maujl4efLmTtUvg4hqd97zQyNpAkrc0x/jMwPUY6ThB7z7uWCq5bbHVxOa8VIaSuYWcGOR+83WY0gAm5QU/uGyEJ0dKXFhjMpxTcOgZkqEFtPAcd9c8wxcTtWhju3j/BaOMR30PFkMovjBJ1cmVTUl239nNcKrAlS9dQ6UR5c3LDh6XnczHGT6hxi2EeA/wHrAioseCUBSrSKCYR/WcuipYKyIwPSowWxMKs5C1bojU3HktU+WBxtnSq7Clu4dPvGduBxfA7XGRTyVpT5qz6hMfKxPFdpoyEbXVE8MzClUO93A8W5hqtwsi89uKnY2EAWPuShZ6U5wf8bAoWqLN3ciXawc4PzSzuFE3TIaUAF6zABjcHhHEhtt5Y1mD+FBCHjd7Mhn2a1W0FC1Vh4DLScDl5E49j0h08tpKJwv8TgyzDq2zj4jbZDzt4eKAoCvdxGAugWKaKAiKJshMlDcrfdxeHZr4LKem8evVwCySVM2ayjt7D8z4fcTt4FvLmPi88yJBVvb3kTIl72pS2ZXP0SEV1nmKgJu7A3mqMp1cGnQS9jhp0wUHlDDJYi/78wr7XfW05/bzlkrJT/YewKNInIfI1V1T5eGaKrgpLPjeaDvvWjl5voqi8KlFk4uQv10aYvv2bqKKk9fW+nA5SzyQinAFXbxl96OT77v+InK5PMsWtlqLWYeTS5e2UNA7uGjRCVmEn7B590TMudLQrQd86qT4K/NGHNJwY5xZC6GFiurxldtJz75QPzRqHdc9fOWXXaBoR/SHpZRHzqc+SqYWsY07vkY2YeW+TtlyP1wHwLOJE2K70kQ4vaimieoLIaWJVlGFmU8dpoBeWqkqxSyKJ2CpeEzRIJ52juVdEKGoKG4fGCWEw4VWUYlZKlgNaxQN1R/mna+9mJf2HqCiP8bCsoZwdSSC2xvgYFrBUexFEX5KhomeS1HnMnnD+dMVlt542TreWJ4JrjnkXBZVziyoB3jDZRdM+/nqpc1s7BrlmrXLiRoOCnmNnAl+v5flTRoXRpNc2FKLx+MjnisSxUt3WqPFV2JHqQE1Jfnn2iw3KVt4zowQdE1ff9dVqHz0ghyGUYFn+xYWtxTQ1MmI+x1LJHcsiQMatRXwyVW9fHl/nrdeqrC+3uS/+wIoSBaHJ32m767vY99INytqVBTFgVNRaYp4+ZeWrQSdx9+iWRwpiCCEuBu4RUr57vLPfwpcJqX8wJRjdpaP6S3/3F4+5rAzp6t+qax/xxeO+qTNfBppGmeME2YpLUStNI155Oweynjh3OE4kU7wmUTXfW/cIqW8eLbXhBBXAJ+QUt5c/vnvAaSUn51yzGPlYzYKITRgEKg+XHTt4pYWufkfPnZM5yulpD+dobHCeoAapkmqUCTkmekIjxPL5VGFIOiev1zgnrE0zV4XfufRLxY3xbL4VYWlfgeaqhLPFygYciI94lQSyxdIFg1aA14M02RbLM1FlRVHHYE7GvbE0yyu8EwUMsJkw47j4c4r6g5nuydl3j3WOVcaJWs3yBc+rpzfVxNLocE4GakA5zSnYs6FY7ddsAJSQnNM7CSbhQzC6Z1z3pCmgVnIzBnxn/UzijnLLzmMDOF/3jHrZWMskaRnZISVLQtQNWtBNDA4QEP9yd3dng9SSnr6evlg8KcIIdg3UqLKC5W+kxeIHExasrB1gRP7GeKmz81pu/OJDPcBU5OSmsq/m+2Y3rJxB7EKOk4Kh0ZQT3fEHOkRh2M+DjCcu07wPNkELBVCLMSy0XuAtx1yzCPAO4CNwN3Akyczd00IMeEIA6iKclhHGCByhNdnY2Xo2O+RSyLT89PDR+GEn2wibheR8uVQFYWLq+b/sDpWVoZnXss3bX942s8nwjk+hNNq3hWq44xrinNk1Rybk8BpN+cCM4rvj1TPIxT1qBxh4JgCXeOEggFCwemfdzo4wmA9sxY0NSPS1sJhefXJ340/0U7wfJhP6f6EcQshnFjG/cghx4wbN7xKxm1jcySklDrwAeAxYA/wYynlLiHEp4QQt5UP+yZQKYRoAz4CHFvI18bmxGLPuzZnHPaca3OmcsTIcDkXbdy4VeBb48YNbJZSPoJl3N8vG3cMa+K2OUnY0eD5I6X8NfDrQ373z1P+nwfe/Gqfl83ZxdRI8YmIEtvzrs2Zij3n2pyJzEtn2DZuGxsbm1cXe961sbGxeXU4cR0ObGxsbGxsbGxsbM4wzph2zOcKhyucs9MjbGxOfw4troOTUmBnY2NjY3OCsCPDNjY2NjY2NjY25yx2ZPg04EgyanZE2MbmzGY8WmxHiG1sbGxOP+zIsI2NjY2NjY2NzTnLETvQndQPF2IE6Jrn4VWcpN7lpznn4riPZswtUspj69N5jByl3cK5+R2CPe4jcbrbrv39nVuctnYL9rx7FJyL4z5u2z2lzvDRIITYPFcbvbOZc3HcZ9uYz7bxzBd73Gc2Z8s4jhZ73GcHZ9t45su5OO4TMWY7TcLGxsbGxsbGxuacxXaGbWxsbGxsbGxszlnOJGf466f6BE4R5+K4z7Yxn23jmS/2uM9szpZxHC32uM8OzrbxzJdzcdzHPeYzJmfYxsbGxsbGxsbG5kRzJkWGbWxsbGxsbGxsbE4op50zLIS4RQixTwjRJoT42Cyvu4QQD5Zff1EI0XoKTvOEMo8xv1MIMSKEeLn8792n4jxPNEKIbwkhhoUQO+d4XQghvlS+Lq8IIS58tc/xaDgXbRfOTfs9m2zXtlvbbqe8fsbY7Tjnov3atjvr68dnu1LK0+YfoALtwCLACWwHVh1yzF8BXy3//x7gwVN93q/CmN8J/NepPteTMPbXABcCO+d4/fXAbwABXA68eKrP+Ti/x7PKdo9i3Ged/Z4ttmvbrW23h7x+RtjtUX6PZ5X92rZ7cmz3dIsMXwq0SSkPSimLwAPA7Yccczvw3fL/fwrcIIQQr+I5nmjmM+azEinlM0DsMIfcDnxPWrwAhIQQ9a/O2R0156Ltwjlqv2eR7dp2a9vtVM4Uux3nXLRf23Zn57hs93RzhhuBnik/95Z/N+sxUkodSACVr8rZnRzmM2aAu8qh/58KIZpfnVM75cz32pwOnIu2C7b9zsWZYru23VrYdmtxptjtOOei/dq2OzvHZbunmzNsMzu/BFqllOcDv2NylWtjcyZg26/NmYhttzZnKrbtHiWnmzPcB0xdwTSVfzfrMUIIDQgC0Vfl7E4ORxyzlDIqpSyUf7wfuOhVOrdTzXzs4XThXLRdsO13Ls4U27Xt1sK2W4szxW7HORft17bd2Tku2z3dnOFNwFIhxEIhhBMr2f2RQ455BHhH+f93A0/Kcvb0GcoRx3xI3sttwJ5X8fxOJY8Aby9XiV4OJKSUA6f6pObgXLRdsO13Ls4U27Xt1rbbqZwpdjvOuWi/tu3OznHZrnbyzuvokVLqQogPAI9hVUx+S0q5SwjxKWCzlPIR4JvA94UQbVjJ1PecujM+fuY55g8KIW4DdKwxv/OUnfAJRAjxI+BaoEoI0Qt8HHAASCm/Cvwaq0K0DcgC7zo1Z3pkzkXbhXPXfs8W27Xt1rZbzkC7HedctF/bdk+O7dod6GxsbGxsbGxsbM5ZTrc0CRsbGxsbGxsbG5tXDdsZtrGxsbGxsbGxOWexnWEbGxsbGxsbG5tzFtsZtrGxsbGxsbGxOWexnWEbGxsbGxsbG5tzFtsZtrGxsbGxsbGxOWexnWEbGxsbGxsbG5tzFtsZtrGxsbGxsbGxOWf5//ml1TyS18JgAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from tqdm import tqdm\n", - "\n", - "fig, ax = plt.subplots(6, 4, figsize=(12, 16))\n", - "for i, depth in tqdm(enumerate((1, 2, 3, 4, 5, 6))):\n", - " dtl = DecisionTreeLogisticRegression(\n", - " max_depth=depth, fit_improve_algo='intercept_sort_always',\n", - " min_samples_leaf=2)\n", - " dtl.fit(X_train, y_train)\n", - " draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 0], s=4.)\n", - " draw_border(dtl, X, y, border=False, ax=ax[i, 1],\n", - " fct=lambda m, x: predict_leaves(m, x), s=4.)\n", - " ax[i, 0].set_title(\"Depth=%d nodes=%d score=%1.2f\" % (\n", - " dtl.tree_depth_, dtl.n_nodes_, dtl.score(X_test, y_test)))\n", - " ax[i, 1].set_title(\"DTLR Leaves zones\");\n", - " \n", - " dtl = DecisionTreeClassifier(max_depth=depth)\n", - " dtl.fit(X_train, y_train)\n", - " draw_border(dtl, X_test, y_test, border=False, ax=ax[i, 2], s=4.)\n", - " draw_border(dtl, X, y, border=False, ax=ax[i, 3],\n", - " fct=lambda m, x: predict_leaves(m, x), s=4.)\n", - " ax[i, 2].set_title(\"Depth=%d nodes=%d score=%1.2f\" % (\n", - " dtl.max_depth, dtl.tree_.node_count, dtl.score(X_test, y_test)))\n", - " ax[i, 3].set_title(\"DT Leaves zones\"); " - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/faster_polynomial_features.ipynb b/_doc/notebooks/sklearn/faster_polynomial_features.ipynb deleted file mode 100644 index 89bb9308..00000000 --- a/_doc/notebooks/sklearn/faster_polynomial_features.ipynb +++ /dev/null @@ -1,1741 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Faster Polynomial Features" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Polynomial Features\n", - "\n", - "The current implementation of [PolynomialFeatures](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html) (0.20.2) implements a term by term product for each pair $X_i, X_j$ of features where $i \\leqslant j$ which is not the most efficient way to do it." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy.random\n", - "X = numpy.random.random((100, 5))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['1',\n", - " 'x0',\n", - " 'x1',\n", - " 'x2',\n", - " 'x3',\n", - " 'x4',\n", - " 'x0^2',\n", - " 'x0 x1',\n", - " 'x0 x2',\n", - " 'x0 x3',\n", - " 'x0 x4',\n", - " 'x1^2',\n", - " 'x1 x2',\n", - " 'x1 x3',\n", - " 'x1 x4',\n", - " 'x2^2',\n", - " 'x2 x3',\n", - " 'x2 x4',\n", - " 'x3^2',\n", - " 'x3 x4',\n", - " 'x4^2']" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.preprocessing import PolynomialFeatures\n", - "poly = PolynomialFeatures(degree=2)\n", - "Xpoly = poly.fit_transform(X)\n", - "poly.get_feature_names()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "114 \u00b5s \u00b1 12.4 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 10000 loops each)\n" - ] - } - ], - "source": [ - "%timeit poly.transform(X)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The class [ExtendedFeatures](http://www.xavierdupre.fr/app/mlinsights/helpsphinx/mlinsights/mlmodel/extended_features.html) implements a different way to compute the polynomial features as it tries to reduce the number of calls to numpy by using broacasted vector multplications." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['1',\n", - " 'x0',\n", - " 'x1',\n", - " 'x2',\n", - " 'x3',\n", - " 'x4',\n", - " 'x0^2',\n", - " 'x0 x1',\n", - " 'x0 x2',\n", - " 'x0 x3',\n", - " 'x0 x4',\n", - " 'x1^2',\n", - " 'x1 x2',\n", - " 'x1 x3',\n", - " 'x1 x4',\n", - " 'x2^2',\n", - " 'x2 x3',\n", - " 'x2 x4',\n", - " 'x3^2',\n", - " 'x3 x4',\n", - " 'x4^2']" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import ExtendedFeatures\n", - "ext = ExtendedFeatures(poly_degree=2)\n", - "Xpoly = ext.fit_transform(X)\n", - "ext.get_feature_names()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "68.7 \u00b5s \u00b1 10.6 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 10000 loops each)\n" - ] - } - ], - "source": [ - "%timeit ext.transform(X)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Comparison with 5 features" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "from cpyquickhelper.numbers import measure_time" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
averagedeviationmin_execmax_execrepeatnumbercontext_sizenamesize
630.0378300.0055770.0312480.044832510240ext+fit100000
640.0726710.0053600.0675590.082539510240poly200000
650.0757120.0182710.0604760.100143510240ext200000
660.1067550.0198610.0798800.139184510240poly+fit200000
670.0740900.0091420.0639250.085899510240ext+fit200000
\n", - "
" - ], - "text/plain": [ - " average deviation min_exec max_exec repeat number context_size \\\n", - "63 0.037830 0.005577 0.031248 0.044832 5 10 240 \n", - "64 0.072671 0.005360 0.067559 0.082539 5 10 240 \n", - "65 0.075712 0.018271 0.060476 0.100143 5 10 240 \n", - "66 0.106755 0.019861 0.079880 0.139184 5 10 240 \n", - "67 0.074090 0.009142 0.063925 0.085899 5 10 240 \n", - "\n", - " name size \n", - "63 ext+fit 100000 \n", - "64 poly 200000 \n", - "65 ext 200000 \n", - "66 poly+fit 200000 \n", - "67 ext+fit 200000 " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = []\n", - "for n in [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, \n", - " 5000, 10000, 20000, 50000, 100000, 200000]:\n", - " X = numpy.random.random((n, 5))\n", - " poly.fit(X)\n", - " ext.fit(X)\n", - " r1 = measure_time(\"poly.transform(X)\", context=dict(X=X, poly=poly), repeat=5, number=10, div_by_number=True)\n", - " r2 = measure_time(\"ext.transform(X)\", context=dict(X=X, ext=ext), repeat=5, number=10, div_by_number=True)\n", - " r3 = measure_time(\"poly.fit_transform(X)\", context=dict(X=X, poly=poly), repeat=5, number=10, div_by_number=True)\n", - " r4 = measure_time(\"ext.fit_transform(X)\", context=dict(X=X, ext=ext), repeat=5, number=10, div_by_number=True)\n", - " r1[\"name\"] = \"poly\"\n", - " r2[\"name\"] = \"ext\"\n", - " r3[\"name\"] = \"poly+fit\"\n", - " r4[\"name\"] = \"ext+fit\"\n", - " r1[\"size\"] = n\n", - " r2[\"size\"] = n\n", - " r3[\"size\"] = n\n", - " r4[\"size\"] = n\n", - " res.append(r1)\n", - " res.append(r2)\n", - " res.append(r3)\n", - " res.append(r4)\n", - " \n", - "import pandas\n", - "df = pandas.DataFrame(res)\n", - "df.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nameextext+fitpolypoly+fit
size
10.0000680.0004020.0002380.000275
20.0000660.0001560.0001660.000213
50.0000310.0004270.0001650.000196
100.0000480.0002370.0001340.000306
200.0000700.0001880.0001090.000153
\n", - "
" - ], - "text/plain": [ - "name ext ext+fit poly poly+fit\n", - "size \n", - "1 0.000068 0.000402 0.000238 0.000275\n", - "2 0.000066 0.000156 0.000166 0.000213\n", - "5 0.000031 0.000427 0.000165 0.000196\n", - "10 0.000048 0.000237 0.000134 0.000306\n", - "20 0.000070 0.000188 0.000109 0.000153" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piv = df.pivot(\"size\", \"name\", \"average\")\n", - "piv[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEpCAYAAACN9mVQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3zN1//A8dc7gyS2xF6xBYkgdrVUq9WiKEqprdRoUS1aStHS8eu0VVGrRktRyrdpbUrs2EJIrCwie57fH59LQ5O4kXHj5jwfjzya+5nvz03d9/2ccz7vI0opNE3TNC0tNpYOQNM0TcvddKLQNE3T0qUThaZpmpYunSg0TdO0dOlEoWmapqVLJwpN0zQtXTpRaPeJyBQRWW7pOFISkV4ist3MbXNd/DlJRBxFZJOIhIvIWgucv6aIHBWRCBF5O6fPr2UfnSiskIj4i0iMiESKyC0RWSwiBS0d1+NQSq1QSrXN7HFEpJWIJJvek3s/m7LguEtEZHpmj5NFugKlAGelVLfMHkxEXEVEPfSeTUpnl/eBHUqpQkqp7zJ57h0iMigzx9Cyjp2lA9CyTQel1J8iUg7YBkwExls4Jku7rpQqb+kgUhIRO6VUYhYdrhJw/nGO94g4ipp5zErAzxk9d3bI4vc1z9N3FFZOKXUN2ArUBRCRsiKyUUTCROSiiAxObT8R+V1ERj607ISIdDL9rkRkqIhcEJHbIjJbRMS0zkZEJorIFREJEpGfRKSIad29b6n9RSTAtO9QEWlkOv4dEZmV4pz9RGRPitffmva7KyKHRaRlZt8jU7zjRcRPREJFZI2IFE+xfq2I3DQ16ewSkTqm5W8CvYD3U96hmK6vWor97991mO5sAkVknIjcBBablrcXkWOm698nIh4p9h8nItdMTTrnRKRNKtfwMfAR8JoploFm/h0GishV4K9Mvod/Aa2BWabz1xCR/CLypYhcNd3ZzhMRR9P2xURks4gEm/4f2Cwi5U3rPgFapjjWrBTx2qU45/27DtP/J3tF5GsRCQOmmJYPEJEzpnNsE5FKpuVi2jbI9Hc9ISJ1M/MeWDWllP6xsh/AH3jO9HsF4BQwzfR6JzAHcAA8gWCgjWndFGC56ffuwD8pjlkPCAXymV4rYDNQFKhoOs6LpnUDgItAFaAg8CuwzLTO1bTvPFMMbYFYYANQEigHBAHPmLbvB+xJEUdvwBnjbvhd4Cbg8HD8qbwnrYDANNaNAg4A5YH8wHxgVYr1A4BCpnXfAMdSrFsCTH/oeAqolto2pjgSgc9Mx3MEGpiuuQlgC/Q1/Q3zAzWBAKBsivevahrX8cD1m/l3+AkoADimcrx721wDAjGSmks6/9/tAAaleP0NsBEobnr/NgEzTOucgVcBJ9O6tcCGdI51Lxa71LYx/X+SCIw0/b/hCHQyXb+badlEYJ9p+xeAwxj//4ppmzKW/rebW38sHoD+yYY/qvEhEwncAa5gJAZHjKSRBBRKse0MYInp9/sfNKYPqTCguun1l8CcFPsp4KkUr9cA402/ewPDUqyrCSSY/rHe+wdfLsX6UOC1FK9/AUaZfu9HikSRyrXeBuo9HH8q27UCkk3vyb2f7qZ1ZzAlS9PrMvfiTeU4RU3xFzG9XkLGE0U8puRmWjYXUyJPsewc8AxQDSOJPAfYP+Lv/sD1m/l3qJLO8QoCXqbtSwHrgG3pbL+Dfz+4BYgiRVIDmgGX09jXE7id2rFMr+/Fm16iuPrQMbcCA1O8tgGiMZrIngXOA00BG0v/m83tP7rpyXp1UkoVVUpVUkoNU0rFAGWBMKVURIrtrmB8i3+AUioO48O/t4jYAD2BZQ9tdjPF79EYHyyYznPloXPc+7C551aK32NSeZ1q57uIvGtqSggXkTtAEcAltW1Tcd30ntz7WWNaXglYb2r2uYOROJKAUiJiKyIzTc1SdzGSMBk4Z2qClVKxKV5XAt69d35TDBUw7iIuYtzxTAGCRORnESlr5nnM+TsEpLWzUipSKeWjlEpUSt0CRgBtRaSwGecugXG3cDjFNf1hWo6IOInIfFOz2F1gF1BURGzNvLbUPHwtlYBvU5w/DCOBlVNK/QXMAmYDt0RkgZnXlSfpRJG3XAeKi0ihFMsqYjQtpGYpRht8GyBaKbU/A+ep9NA5EnkwGWSYqT9iHEazWDGlVFEgHOMff2YEAO0eSiIOyujfeR14BeMbfRGMb7akOGdq5ZejMT4k7yn90PqH9wkAPnno/E5KqVUASqmVSqmnMN5ThdFsZQ5z/g4ZKR99b1tz3u8QjIRfJ8U1FVFK3fsC8C7GHU4TpVRh4OmHjv1wXFGm/2b0fR3y0PvqqJTaB6CU+k4p1RCoA9QA3jPjuvIknSjyEKVUALAPmCEiDqYO04HAijS234/RXPN//PduIj2rgNEiUlmMYbmfAqtV5kehFML4oAsG7ETkIyArvgXOAz5J0dFZQkReSXHOOIzmMSeMa0npFkYfQErHgNdNdyMvYjQhpWchMFREmpg6WQuIyMsiUkiMZxOeFZH8GH05MRh3O+bI1N/BFE9NU6e4M/AdxvDX8Eftq5RKNl3X1yJS0nS8ciLygmmTQqZruSPGwIHJDx3igfdVKRWM8YWmt+l9HQBUfUQY84AJ8u/ggyIi0s30eyPT9dljJKFYzH9f8xydKPKenhjfiq8D64HJSqn/pbP9T4A7kJEH2X7ESCy7gMsY/whHpruHebZhtDufx2hGiSWdppMM+Baj03W7iERgdGw3Ma37yXSua8Bp07qUFgG1Tc0bG0zL3gE6YPSD9MLoqE+TUsoHGIzRFHIbowO2n2l1fmAmxjf0mxgd/h+YeV2Z/TtUwWguigB8MRJmzwzsPw7jWg6Ympf+xLiLAKOj2xHjug6YzpPSt0BX02ile89kDMb41h+KcRewL72TK6XWY9x9/Ww6vy/QzrS6MEYiu43x9w3F6IfTUiGmTh5NS5WI9AHeNDV9aJqWB+k7Ci1NIuIEDAMWWDoWTdMsRycKLVWmtuRgjLbilRYOR9M0C9JNT5qmaVq69B2Fpmmali6dKDQtBcld1WA1LVfQiULTrISI9BWjUOJdMQoPfp6yiJ6mPS6dKDQtm+Xgh7UTRrkPF4znQNoAY3Po3JoV04lCy9NEpL6IHBGjhPdqjIq299alV/q7gfw7m9taEVktmSslXlZEfhGj7PZleYwZ4pRSc5VSu5VS8abyIyuAFo//7miaQScKLc8SkXwYT00vwyiFvRaj9DUi0gDjyeYhGCWx5wMbxZhjIR/GU+1LTPutAjo/dPjSpnWVgDcfcTwbjBLcxzEKNLYBRt0rdyEir6csGJjKT8U0LvFpjBLzmpYpenislmeJyNMYM7KVU6Z/CCKyD2MSH2cgRCk1KcX254A3MYrPrQLKp9hvD0YdpIki0grYDhS+VyVWROamc7xYYK1SqmKKdROAGkqp/o95bf2BaYCnUirkcY6haffoji4tLysLXFMPflu6V5a7EtBXHpzlL59pH5XKfg/XnEqtlHhax0sCyppKYd9jC+zO6AUBiDEL4UyMyat0ktAyTTc9aXnZDaCciKQsm33vW316pb9T26/CQ8fOSCnxAIwJfVKuK6SUeglARHqJMSVoWj8p70RexCh210EpdTKzb5CmgU4UWt62H6Ns+dsiYiciXYDGpnVplv427ZcEjDDt90qK/dKS3vEOAndNnd+OpjLadUWkEYBSaoVSqmA6P1cBRORZjA7sV5VSB7P4vdLyMJ0otDxLKRUPdMEo6X0beA1jXul0S3+n2G8gRinx3hjzh8elc670jpeEUZbcE6MceAjwA8ZESRkxybTPlhR3G1szeAxN+w/dma1pWUBE/gHmKaUWWzoWTctq+o5C0x6DiDwjIqVNTU99AQ/+O/mOplkFPepJ0x5PTWANUBDwA7oqpW5YNiRNyx666UnTNE1Ll2560jRN09KlE4WmaZqWLqvso3BxcVGurq6WDkPTNO2Jcvjw4RClVImHl1tlonB1dcXHx8fSYWiapj1RRORKast105OmaZqWLp0oNE3TtHTpRKFpmqalyyr7KFKTkJBAYGAgsbGxj944j3NwcKB8+fLY29tbOhRN03KBPJMoAgMDKVSoEK6urjxYHVpLSSlFaGgogYGBVK5c2dLhaJqWC+SZpqfY2FicnZ11kngEEcHZ2VnfeWmadl+uTxQiUkVEFonIuiw4VlaEZPX0+6Rpec/dP9KuaZmtiUJEfhSRIBHxfWj5iyJyTkQuisj49I6hlLqklBqYnXFqmqblZeG//ca1UaPTXJ/ddxRLgBdTLhARW2A20A6oDfQUkdoi4i4imx/6KZnN8WmapuVpkbt2cf3DiTg1aZLmNtmaKJRSu4CwhxY3Bi6a7hTigZ+BV5RSJ5VS7R/6CTL3XCLypoj4iIhPcHBwFl6F+fz9/XFzc2Pw4MHUqVOHtm3bEhMTw8KFC2nUqBH16tXj1VdfJTo6GoB+/frx1ltv0bp1a6pUqcLOnTsZMGAAbm5u9OvX7/5xt2/fTrNmzWjQoAHdunUjMjLSItenaZp1iTl+nMB3RpG/enXKz56V5naW6KMohzGZ/D2BpmWpEhFnEZkH1BeRCWltp5RaoJTyUkp5lSjxn1IlOebChQsMHz6cU6dOUbRoUX755Re6dOnCoUOHOH78OG5ubixatOj+9rdv3+avv/7i66+/pkOHDowePZpTp05x8uRJjh07RkhICNOnT+fPP//kyJEjeHl58dVXX1ns+jRNsw5xly4TMGQods7OVFwwH9uCBdPc1hLDY1PrKU1zUgylVCgwNPvCyVqVK1fG09MTgIYNG+Lv74+vry8TJ07kzp07REZG8sILL9zfvkOHDogI7u7ulCpVCnd3dwDq1KmDv78/gYGBnD59mhYtWgAQHx9Ps2bNcv7CNE2zGgm3gggYNAhsbKi46AfsHvHl2hKJIhCokOJ1eeB6VhxYRDoAHapVq5YVh3ss+fPnv/+7ra0tMTEx9OvXjw0bNlCvXj2WLFnCjh07/rO9jY3NA/va2NiQmJiIra0tzz//PKtWrcqxa9A0zXol3b1LwODBJN25Q8WffiJfpUqP3McSTU+HgOoiUllE8gE9gI1ZcWCl1Cal1JtFihTJisNlmYiICMqUKUNCQgIrVqzI0L5NmzZl7969XLx4EYDo6GjOnz+fHWFqmmblkuPiCBw2nLjLlyk/63sc69Yxa7/sHh67CtgP1BSRQBEZqJRKBEYA24AzwBql1KksOl8HEVkQHh6eFYfLMtOmTaNJkyY8//zz1KpVK0P7lihRgiVLltCzZ088PDxo2rQpZ8+ezaZINU2zViopietjxxLt40PZmTMo0Lz5A+vDYxLS3Ncq58z28vJSD89HcebMGdzc3CwU0ZNHv1+aZj2UUtycPIU7a9ZQ6oMJFO/T54F1vx29xuXNMxgzec5hpZTXw/vnmVpPmqZpedXN777lzpo1JPTqwMGWJQk69RNB0UFcun2do9f8yZ94megK8WnurxOFpmnaEyoxOZGQmBCCooMIjg4mKCaIoOig+6+DY4Jx23WVN36P5m8PYW6FLbBrKwC25CM5vgDVk8OpkhiBi4sXhzid6nmsKlHkhlFPmqZpOeF65HV6b+lNcMyDDxjbiR0uTi6UdCxJKz8Hnt8STViDypSbPIj5hUpzNciOOX8GI6HXWVvwG0okByOd50LdVxmf6tMLVpYolFKbgE1eXl6DLR2LpmladklWyUzcO5GohCgmNZ1E6QKlKeFYghJOJSjuUBwbsSHq4EECJgzGwaMetRYtJiRBmPb7GTYdv07HYv78X6HPsbezhR6boGLa5TvAyhKFpmlaXrDs9DIO3TzE1OZT6Vy983/Wx549S+Cw4dhXqEDZuXNZfuwWX/xxjrjEZOZ6XORFv+lI0UrQaw0Ur/LI81lVotBNT5qmWbsLty/w7ZFvaV2hNZ2qdfrP+vjAa1wdPBibAgWImfZ/dF15ihOB4TxV1Znvyv2P4ge/BNeW0P0ncCpu1jlz/XwUGZFbH7jLqDt37jBnzhxLh6FpWi6TkJTAhN0TKJSvEJObTf7P3DGJYWEEDBpEcmwcm3qNp+Pai1y/E8v33WqzzPlHI0nUex16/2p2kgArSxTWQicKTdNSM+f4HM7dPseUZlNwdnR+YF1yVBQBQ4YSe+0605oP4vvLSfRqUom/hnnQ4cRw5MRqaD0ROs0Bu3wZOq9OFDlo+fLlNG7cGE9PT4YMGcKVK1eoXr06ISEhJCcn07JlS7Zv38748ePx8/PD09OT9957z9Jha5qWCxwNOsqPvj/SpXoXWlds/cA6lZDAhWEjifb1ZWqDXtyp6sb6YS2Y1tKRwivaQeAheHURPPMePMYMllbVR2Gujzed4vT1u1l6zNplCzO5Q9p1U86cOcPq1avZu3cv9vb2DBs2jJ07dzJu3DiGDh1KkyZNqF27Nm3btqVGjRr4+vpy7NixLI1R07QnU1RCFB/s/oAyBcrwfqP3H1gXG5/AvkFvU+bgfuY36sELg7vRp1kl7K4dhB96Ghv12QiVHr/qtFUlitzcme3t7c3hw4dp1KgRADExMZQsWZIpU6awdu1a5s2bpxODpmmp+uLQF1yLvMbiFxdTwL7A/eUHLoVyaPwUnjuxg/2tuvHBZ+MoXcQBTq6DDW9BkQrQay04V83U+a0qUZj7HEV63/yzi1KKvn37MmPGjAeWR0dHExgYCEBkZCSFChXK8dg0Tcu9dgbs5JcLv9C/bn8almp4f/meCyGsn/AZg3z/JOrlzvT/8mPjcbmdX8Df06FSC3hteYY6rdOi+yhySJs2bVi3bh1BQcbsrmFhYVy5coVx48bRq1cvpk6dyuDBRn4rVKgQERERlgxX07RcICw2jMn7JlOjWA1GeI64vzwgLJqVMxYyyHczjm3b0vDzaUhSAmwYZiQJj9fgjfVZkiRAJ4ocU7t2baZPn07btm3x8PDg+eefx9/fn0OHDt1PFvny5WPx4sU4OzvTokUL6tatqzuzNS2PUkoxdf9U7sbfZUbLGeSzNUYqxSYk8cXnKxl6YAXi2YCKX36BxIXD8i5wfCW0+gA6zwe7/I84g/l0mXEtVfr90jTL+u3ib0zcO5ExDcfQv25/wEge02dv4YX5k3AoVZI6v6zGNikUVnSHO1eg4yyo99pjn1NErL/MeG7uzNY0TTPX9cjrzDg4g4alGtKn9r9zR6zeeoSWi6Zj7+iA29JF2IafhZ97gkqGNzaAa4tsiceqmp6s5clsTdPyrmSVzId7PgTgk6c+wdbGFgCf0wEU/Ph9iiXGUPPHhdhHnYKlHcChCAzyzrYkAVaWKDRN0550y04vw+eWD+MajaNcwXIA3AyLwG/EO7jevUnpr7/GyfYS/Pw6lKwFA//M9PDXR9GJQtM0LZdIreBfXEISfw4ag8f1M9iNnUCpUqGwpi+U9TQepCvg/IijZp5OFJqmablAWgX/NoyeSsPTewh7tTe1GtrAr4OhYlNj+Ktj0RyJzao6szVN055U9wr+ff/s9/cL/v3vq0V4/LmGq16taNuptPG0dZVW0GMV5HPKsdj0HUUu9DjVY3fv3k2dOnXw9PTk2rVrdO3aFYBjx46xZcuW7AhT07QskrLgX6sKrQDw3bCd0gu/4lKl2rR5szby+xio/gL0XJ2jSQKsLFGISAcRWRAeHm7pUDIlvUSxZMkSpkyZ8p/lK1asYOzYsRw7doxy5cqxbt06QCcKTcvtUiv4d/PICeInjeNm0dI8PbIBdn9NBLcORkkOe4ccj9GqEkVuHx6bXWXGf/jhB9asWcPUqVPp1asX/v7+1K1bl/j4eD766CNWr16Np6cnq1evzoGr1DQtI+4V/Pv0qU8pYF+AmMBrXHlzCFF2+ak7tAGFfD6Hul2h65IMzyORVfJmH8XW8XDzZNYes7Q7tJuZ5ursLDM+aNAg9uzZQ/v27enatSv+/v4A5MuXj6lTp+Lj48OsWbOy4io1TctC9wr+Dag7gAalGpB09y4nevfHNjYWl/4NKXN5AXj2ho7fgel5CkvIm4nCAjJTZjw0NJQ2bdoARjHB+Ph4NmzYAMCyZctwd3fPmYvQNC3LpCz4N9xzOCo+nuP9h+B46zqxHWviFrEWvAbCS1+CjWUbf/Jmokjnm392yUyZcWdn5/tJZMmSJfj7+6faT6Fp2pMhZcG/BW0XYG9jz9lR7+J46hihLSvwlOOf0HQ4vPDJY81Il9Wsqo8iN7NUmXFdslzTcp+NfhvxvurN2/XfpkaxGgR++RX8byuhHs48Ve4faPlurkkSoBNFjrFUmfHWrVtz+vRp3ZmtablEyoJ/b9R+g7CfVxO56AfuVi5IC7eT0HoitPko1yQJ0GXGtTTo90vTsl5iciKDtw/mTNgZfun4C4V9LhDw1jBiS+Wj/tOXkRemQYu3LRZfnigzrmmallsppZh5cCY+t3z45KlPKH75NpfeGUVSEVs8W/jDy59DkyGWDjNVOlFomqblgGWnl7H63Gr61+nPi/kb4Ne7O9gmUOuZGyS98jX2jftbOsQ0WVUfhbU8ma1pmnXxvuLNlz5f8nyl5xlZpR9XBg5ERd2h8jO3iOz0Ta5OEmBliSK3P5mtaVreczL4JON3j8fdxZ3pXh9xbdgwEgOuUv6pUK68/BXFm/V59EEszKoShaZpWm5yLfIaI/4agbOjM9+2/IrQMWOJOXackk3C2dtmBm7P5f4kATpRaJqmZYu78XcZ/udwEpITmN16FvFTPyNy115cGkbwc7OPeLFL7m5uSkknilysVatWPDzMV9O03C8hKYExO8ZwJeIK3zzzNQVmryB881aK141kfsMx9O836P7ERE8CnSg0TdOykFKKaQem8c+Nf5jSbApVfv2H2yt+pmj1KOZ5vcXwISNwyvdkDTjViSIH+fv7U6tWLfr27YuHhwddu3YlOjoab29v6tevj7u7OwMGDCAuLu6B/RYtWsTo0aPvv164cCFjxozJ6fA1TTPDDyd/YP3F9QytN5SnD4QTPGsuhStFM69xPwYPHU2xApYpFZ4ZT1ZayyKfHfyMs2Fns/SYtYrXYlzjcY/c7ty5cyxatIgWLVowYMAAvvrqK+bPn4+3tzc1atSgT58+zJ07l1GjRt3fp0ePHnh4ePD5559jb2/P4sWLmT9/fpbGr2la5m25tIXvjn7Hy1VepvfV8lyfPp6CZWNZ0KQHvd98j7JFHS0d4mPRdxQ5rEKFCrRo0QKA3r174+3tTeXKlalRowYAffv2ZdeuXQ/sU6BAAZ599lk2b97M2bNnSUhI0KXFNS2XOXLrCBP3TqRhqYaMT3iO6+Mn4FgijqVNO9Bx4Hiql/pvZegnRZ68ozDnm392edwOrEGDBvHpp59Sq1Yt+vd/ckZLaFpecOXuFd75+x3KFSzHF0X6c/PNYeQvHM/PzdvSvM+HNKxUzNIhZoq+o8hhV69eZf/+/QCsWrWK5557Dn9/fy5evAgYExE988wz/9mvSZMmBAQEsHLlSnr27JmjMWualrY7sXcY7j0cQfi+whjCho3ALn88G1u0oHr3iTxbq5SlQ8w0nShymJubG0uXLsXDw4OwsDBGjx7N4sWL6datG+7u7tjY2DB06NBU9+3evTstWrSgWLEn+9uJplmLuKQ43vn7HW5E3uC7mh+QMGw0NsTh3dILp1c+4tWG5S0dYpbIk01PlmRjY8O8efMeWNamTRuOHj36n2137NjxwOs9e/Y8MPpJ0zTLUUoxae8kjgQd4f/qTKTgyIkkxcZw8Jk6hD43iQ+ermrpELPME3FHISKdRGShiPwmIm0tHU9Ou3PnDjVq1MDR0fH+3NmaplnWrGOz2Hp5K2NqDqHauG9IvBPByRbVONriI8a3s665XLL9jkJEfgTaA0FKqboplr8IfAvYAj8opdKcyFoptQHYICLFgC+B7dkbdfZwdXXF19c3w/sVLVqU8+fPZ0NEmqY9jvUX1rPgxAK6VexI62lriblxG78WFdnSaBLzu9XDxubJeeraHDnR9LQEmAX8dG+BiNgCs4HngUDgkIhsxEgaMx7af4BSKsj0+0TTfpqmaRZx4MYBpu6fSvOSjek7x4dov1tcb1aKxZ6TWNbbC3vbJ6KhJkOyPVEopXaJiOtDixsDF5VSlwBE5GfgFaXUDIy7jweIMaZ0JrBVKXUkeyPWNE1Lnd8dP8b8PYbKhSoxYXUw0SevEurlzGd1J7O6X9MnrjSHuSyV+soBASleB5qWpWUk8BzQVURSHRIkIm+KiI+I+AQHB2ddpJqmaUBITAjDvYeT3zYfX/yZj5gDF4j0KMz42h+xZGCzJ7I0h7kslf5Sa8BTaW2slPoO+C69AyqlFgALALy8vNI8lqZpWkbFJMYw0nskoTGhLPGtSbz3YeJqOTGs9iRWDmz+xJbmMJel7igCgQopXpcHrmf2oNY2FWpWlBk/e/Ysnp6e1K9fHz8/P5o3bw4YBQpXrlyZFWFqmlVLVslM2D2BU6Gn+P5SbWw2HCapSn761Z3IvP4tnujSHOayVKI4BFQXkcoikg/oAWzM7EHz8lSoO3bsoF+/fv9ZvmHDBl555RWOHj1K1apV2bdvH6AThaaZ6yufr/C+6s2MW/UosvIgVLCnl8eHfN27xRNfmsNc2Z4oRGQVsB+oKSKBIjJQKZUIjAC2AWeANUqpU9kdi6XldJnxLVu28M033/DDDz/QunVrAAoWLAjA+PHj2b17N56ennz99ddZeJWaZj1Wn13N0tNLGRVWmyqLD2FTypZenuOZ3L0ZrWuVtHR4OSYnRj2lWphIKbUF2JKV5xKRDkCHatWqpbvdzU8/Je5M1pYZz+9Wi9IffPDI7XKyzPhLL73E0KFDKViwIGPHjn1g3cyZM/nyyy/ZvHlzxi9W0/KAXYG7+PTgp7wW7kqLH45jU9yGPl7v8VaHpnRpYB2lOcxlVQN+n4Smp6wuM96kSRM8PT0ZNGgQGzduxNPTE09PT7Zt25azF6ZpVuRc2Dne2/keT98tQdeFF7ApYMObjcfwSpvGDH66iqXDy3HWOej3Ecz55p9dsrrM+D///AMYfRRLlixhyZIlWRGmpuVZN6NuMsx7GJXD7Ri+KACbfDa83XQ4DZA6/JYAACAASURBVJp5Me7FWpYOzyKs6o7iSZBbyowXKlSIiIiITB9H06xJVEIUI7xHYBdyh8mLQ5BkGz5oOpiyDRrz2aseVleaw1xWlSiehOGxuaXMuIeHB3Z2dtSrV093ZmsakJCUwHs73+PGjfN8uSwKiRFmNu9Dcp0mzH69gVWW5jCXKGV9z6Z5eXmph58/OHPmDG5ulq3o6O/vT/v27R+rMCBA+/btGT16dI5UkM0N75em5ZTQmFDG7BjDqcDDzFuRSIEgmP90D07VaM3aoc0o6mS9T12nJCKHlVJeDy/PuynyCaLLjGta9jkTeoYev/fAP+Ak89cmUeAWrGrRmYOVWvLTwMZ5Jkmkx6o6s80dHmspusy4puUuWy9vZYb3JF45pGi3LxpJgG3NX2BjhdasG9iYMkWsuzSHuawqUSilNgGbvLy8Bls6Fk3Tcq+k5CTm7P+KoJ+W8M1BcIxJpkBlO2Z7DWUj1VjRrxHVSlp/aQ5zWVWieBSl1GMPT81LrLHfStPuuXs3mJ9n9KfRNj+KRINT2VjydShPd5tRBCU6Me+NBjSomDdKc5grzyQKBwcHQkNDcXZ21skiHUopQkNDcXBwsHQompalkuPj8ftpHmHzF9AyIomIqgVwreyPr+tT9A7pS+2KJVnarR5VShS0dKi5Tp5JFOXLlycwMBA9V8WjOTg4UL583ipRoFkvlZDAnfXrufb9N9gG3+ZWRTvsO5WmccIRFktnZt7uxuh2tRjcsgq2efQ5iUexqkSRXme2vb09lStXzvmgNE2zCJWURPimTYTMnkNCQACXygr7BpZnWIFIygUdZ0LCQE6U6szG7p7ULK37I9JjVYlCd2ZrmqaSk7m7dSshs2YTf/kyoRUKs6CbDSVbNOfDE7vJH3SbwQlj8WjdlQ2tq+XpB+nMZVWJQtO0vEspRcSffxLy/Szizp/HpoorP/epyPqy1xlaoQP99/7E3SR7Piw0g9E9XsW9fO4tHprb6EShadoTTSlF1K5dBH/7HbGnT5PP1ZX4ScN5x2YNsSqeCQVfptvuBfgll8G7wWy+bt+S/Ha2lg77iaIThaZpT6zEsDACR4wk5sgR7MuXp8yMGfyvViyf+nxGGceyDAkpR8/zczls64FNr+UMq17J0iE/kawqUeT2J7M1Tcs6SiluTJxErK8vpadMoUCnDnx+7CtWH1yNe7FGdD0ZQpeE1Rwr/hK1B/+Io6N+yvpxmdWLIyIFRMTG9HsNEekoIvbZG1rGPQkTF2maljXurFtH5F9/UWLMaJJfeY43dwxj9bnV1HVox1Cfs3RJ2MlVj3fwHLlSJ4lMMveOYhfQUkSKAd6AD/Aa0Cu7AtM0TUtL/JUr3JoxE6dmTQl6uRHv/N6TkJhQKtztwmS/X6huc53Yl7+nYqM+lg7VKpibKEQpFS0iA4HvlVKfi8jR7AxM0zQtNSoxkWvvv4/Y2RE+tg8Dt/XDVhXA5XIHliYvoVj+BGx7/IJt1daWDtVqmDuAWESkGcYdxO+mZVbVv6Fp2pMhZP58Yo+foMCE0Yw6NZ3EhAJUPf8UG5mHcyEn7AZtB50kspS5iWIUMAFYr5Q6JSJVgL+zLyxN07T/ijlxgpA5cyn48ktMdPyD0Jg7tAiowTK7OTiUrIbNYG8oVcfSYVods+4KlFI7gZ0pXl8C3s6uoDRN0x6WHB3N9ffex65kSda0L8Lhq9txu16fWcmrodpz0G0J5NelOLJDuolCRDYBadacVkp1zPKIMkEPj9U063Xr88+Jv3qV658OYcnVHygZ1ZAlcVtJqtAM254/g22uG4hpNR7V9PQl8H/AZSAGWGj6iQQeb+LnbKSHx2qadYrYsYM7P6+GHh0ZH7WcMvlq8v3Ng9jld8K222KdJLJZuncUpiYnRGSaUurpFKs2iciubI1M0zQN4+nrGxMnYVe9KqNqHcVJFeSNc1HUsrmOTff1ULiMpUO0euZ2ZpcwdWADICKVgRLZE5KmaZpBKcWNSR+RHB7Okq5FuR4fxPMhdXlD7SO62Xt6dFMOMXeI62hgh4hcMr12BYZkS0Sapmkm4b/8QqS3N+d7NWcjB3mtWDfeu/gd11yaUe75CZYOL88wd9TTHyJSHahlWnRWKRWXfWFpmpbXxV+9ys1PZxBXrwaTKvzDyxVfps/OFUTYFqZ0v2Vgo+eRyCkZeWiuIcadhB1QT0RQSv2ULVFpmpanqcRErr8/DmUjfNDqBrVd6tLjmC9lVDBX26/FpZBu+c5JZiUKEVkGVAWOAUmmxQrQiULTtCwXunAhMceOsapHaSKLJfEJbniGf8W2CiN5oUEbS4eX55h7R+EF1FZKpflMhaZpWlaIOelL8Ow5XPQqw29VQplXazTuG8awQxrTvNdHlg4vTzK3kc8XKJ2dgWiapiXHxHD9/feJK+LIJ08FMcZ9CO5bP+VasjMJ7WdRyDGfpUPMk8y9o3ABTovIQeB+J7Z+MlvTtKwU9MUXxF++zBc97WhZ60W6H9uGTWwYi8t9x+QGNSwdXp5lbqKYkp1BZBWl1CZgk5eX12BLx6JpWsZE7trF7ZWr2N7MgWhPVz5WxXG8soPJahCDunVCRCwdYp5ldlFAESkFNDItOqiUCsq+sDRNy0sSw8K4/sGH3CztwC+tHVhW7XUc173J+qQWlGnzFhWKO1k6xDzN3KlQuwMHgW5Ad+AfEemanYFpmpY33Hv6Ov5OGF++nMC0Ju9T8fcJ+FOWpcXfYWDLKo8+iJatzG16+hBodO8uQkRKAH8C67IrME3T8obwX38l0tublc/a0P65t3hm30LiYyMYHPsen/VrhL2tfrDO0sz9C9g81NQUmoF9NU3LTslJcOOEpaN4LPEBAVyfPp1TFW2427kVQ0KC4MpexscPoFGjZjSsVNzSIWqY/2H/h4hsE5F+ItIPYzrUrdkXlqZpZtv5OcxvCQcXWjqSDFGJiVwZO4YYFcf6HuX5tOxz2Oz9hm0O7diZ/1nGvVjr0QfRcoS5ndnviUgX4ClAgAVKqfXZGpmmaY8WGQz7vgc7B9g6DopXNmZ7ewIELZhP4nFffurkwJQ2H1B4VR/CCtfi7aDXmPmaG0Wd9DMTuYW5ndmVgS1KqTFKqdEYdxiu2RmYpmlm2P0lJMbCgG1Q0g3W9oegs5aO6pFiTvoSMns2e92EdgM/pvq2KSSrZHrdHYZXtTJ08ixn6RC1FMxteloLJKd4nWRapmmapdz2h0OLoMEbUNYTev5s3Fmseg2iQi0dXZqSwsM5P3oYt50Uke/04sULu+H6EX50fg+/hJJMe6WufmYilzE3UdgppeLvvTD9ru8LNc2S/p4BNrbwzDjjddEK0GMl3L0Bq3tDYu6bCSDG1xffju2wuR6M9xu1GeFcAw4uILDWAKZfqsqw1lWpUqKgpcPUHmJuoggWkfvlOkTkFSAke0LSNO2Rbp2CE6uhyVAoXPbf5RUaQac5cHUfbB4NuaSOp1KKKz8txK9Hd+5G32blSDdGvvoBdptGk1yuEX2uvkQVlwK81aqqpUPVUmHucxRDgRUiMhujvHgg0CfbotI0LX3eU8GhMDw16r/r3LtCyHnY+Rm41Eh9mxyUFBWFz9jBFP77KKeq2KImv8Mnnj2xWdQWbO35ofRHXPKLYOWg+uS3s7VorFrqzB315Ac0FZGCgCilIrI3rH+JiBvwDkZhQm+l1NycOrem5UpX9sP5P6DNZHAslvo2z4w3ksWfU8C5Gri1z9EQ77nhe4hLI96i6M0odrUrxwuTF+JaxBV+GwFBp7nefjlfrI+kc/1yNK/mYpEYtUczd9RTKRFZBKxVSkWISG0RGWjGfj+KSJCI+D60/EUROSciF0VkfHrHUEqdUUoNxSgd4mVOvJpmtZQyPvwLljaandJiYwOd5kLZ+vDr4Bx/IE8pxd+LpnKzZx/s7kZx4aMeDPq/bbjGx8HyLnBsOerpsYw+7IxTPjs+fNktR+PTMsbcPoolwDbgXmPoecCc+9klwIspF4iILTAbaAfUBnqaEo+7iGx+6KekaZ+OwB7A28x4Nc06nd8GAQeg1TjI94hCefaO0HOVcdexqgdE3MyREIPDr7NuSFtKf7GK4PIFKbl6GZ06jcT2jwkwtzlcOwwvfsYvhfvwz+UwxrerhUvB/DkSm/Z4zE0ULkqpNZiGyCqlEvl3StQ0KaV2AWEPLW4MXFRKXTKNnvoZeEUpdVIp1f6hnyDTcTYqpZoDvcyMV9OsT3ISeH8MxatC/TfM26dQaSNZxNyGn1+HhJhsC08pxfb9y/Hp3Ja6uwK50bExz/7yN5VvH4XvG8ChhdCwH4w8ym33AXy69RxelYrxmleFbItJyxrmdmZHiYgzRkc2ItIUCH/Mc5YDAlK8DgSapLWxiLQCugD5gS3pbPcm8CZAxYoVHzM0TcvFTq6DoNPQdTHY2pu/X5l60GWhMWR2wzDo+iNk8XMKITEh/LTwbVr+eBQ7bLD77EOedS8PS543YnZtCe0+g1J1AJix7jh3YxL4pLM7Njb6mYncztxEMQbYCFQVkb1ACeBxy4yn9n9FmmP4lFI7gB2POqhSagGwAMDLyyt3jAnUtKySGAd/Tzc+9Gt3yvj+bu3huclG/4ZLDWg9IUvCUkqxzW8Lp2ZO4qU9MUS5lqTWZ9NxPDMPftoMRSvBa8uhVvv7yWn5gSus8Qlk6DNVqVm6UJbEoWUvcxNFVYw+hQrAqxh3AObu+7BA03HuKQ9cf8xjPUBPhapZrcNL4M5VaP+N0VH9OFqMguDzsHMmuFQ3htFmQmhMKF9t/4j6s//ipatg06ENDVoXxWZjF7CxhzYfQdPhYO8AQHKyYuYfZ1mw6xLP1irJqOeqZ+r8Ws4x98N+klJqrYgUA54D/g+YSzpNRuk4BFQ31Y+6BvQAXn+M4/yHngpVs0pxEUaF2MpPQ9VnH/84ItDhG6P0x4ZhUMwVyj/eQMJt/ttY8/NkBq4Np3CCHaXeakfxhA1w8BbU62kM3S1c5v72sQlJjF59jK2+N+nTrBIfta+NnZ5n4olh7l/qXsf1y8A8pdRvmFHCQ0RWAfuBmiISKCIDTR3hIzBGUZ0B1iilTmU8dE3LI/bPgegQaDMl830LdvmNpqBCpWFVT7gT8Oh9Urgde5uxf7/L7pljGLM0nGJFXajWowjFb8+HIhVg0F/Qed4DSSIkMo4eCw7wx6mbTGpfm4871tFJ4gkjyoxH/EVkM8a3/+eAhkAMxrzZ9bI3vIxJ0fQ0+MKFC5YOR9MyLyoEvvWEqq2MD/isEnQWFj1v9CEM+APyP7q+0v+u/I+v/ppK71/CaHAxmYLuLpStcRLb4qXhuY/Bvdt/msUuBkXSf8lBgiPi+Oa1+rxYt3TWXYOW5UTksFLqP7eZ5iYKJ4znIU4qpS6ISBnAXSm1PetDzTwvLy/l4+Nj6TA0LfP++AD+mQvD/oESNbL22Bf+hJXdoMaLRhKySb18xp3YO3z6z6ec27+Fcb/ZUOxuIqUaRlGsWgzSYiQ8NTrVRLPfL5Qhy3zIZ2fDD30b4VmhaNbGr2W5tBKFWfd/SqlopdSvSqkLptc3cmuS0DSrceeq8eyBZ6+sTxIA1Z+DF2fCuS3GaKhUeF/1ptOGV1C/buXT5cmUSEjA9dkgir/8NDLyILSZlGqS+PVIIH1+/IeShR1YP6yFThJPuMcduZQr6VFPmlXZMRMQaJVulZvMafwmBJ+Dfd8Zw2YbGA/yhceFM+PgDP48u5n3/ueIx4lECpSJpWyH0th1XgCVW6Z6OKUU3/x5gW+9L9C8qjNzezekiGMGnvnQciWrShR61JNmNYLOwPFV0Gw4FCmffecRMR6EC/ODzaOgeGX+tklg6oGpFAgIZd4GWwqERFCiQSLOoyYiXv3SbKKKT0xm/C8n+PXoNbo2LM+nnd3JZ6c7ra2BVSUKTbMa3tMgX0F4akz2n8vWHrotJfaHNny2dSDrnPLR7awT3TbFY2unKDesJQUGfZF2pVogPDqBIct9OHApjHefr8GIZ6vpWeqsiE4UmpbbBByEc7/Ds5PAqXiOnPLS3RvMcCjB7VtxfPm/WCqeTsSxQgHKfTcLe7dm6e57NTSafksOEhgWwzevedKpvp7v2tpYVaLQfRTaE+9eGfECJaHpW5k8lCI5PJzE4OCHfkIeeB0bdBOb6Fj+vXexw/nVNpT4+BvELv2PiCNXbzN4qQ+JyYplAxvTpIpzpmLWcierShS6j0J74l38E67shZe+hHwFHrm5UorY48eJ2r+fhKCgBxJAUnAIKiHhP/uIoyN2JUpg4+LMRZckfF3icCxVnpe9euFcvhr5KlYgX6VKjzz31pM3GLX6GKUKO7C4fyOq6rmurZZVJQpNe6IlJ8OfH0OxykY57jQopYj1PcXdrVu5+8dWEq/fAMC2aFHsSpTAroQL+V1dTb8bP7YuLqbfS2JbsACXwi8xdudYLty+wSD3IbzpORw7G/M+DpRSLNx9iRlbz1K/QlEW9vHCWc8nYdV0otC03ML3F7h1El5d9J8y4kop4s6e5e6Wrdz94w8SAgLAzo4CLZpT4u23KfTss9gWLmzWaTZf2szU/VNxsHVg7nNzearcU2aHmJiUzOSNp1jxz1Vedi/D/3Wvh4O9nufa2ulEoWm5QWK8UUa8tDvU6QKYksP5C9z9YysRW7YSf+UK2NpSoFkzXIYOoVCbNtgWNf9BtpjEGGYenMmvF36lQckGfP7055QqUMrs/SPjEhmx8gg7zgUz9JmqvP9CTT2XRB5hVYlCd2ZrT6wjS42qrr1+Ie7yZe5u/YO7W7cS7+cHNjY4NWlM8QEDKNT2eeyKpT1MNS2Xwi/x7o53uXjnIoPdBzPMc5jZTU0AN8JjGLDEh/O3IpjRxZ2ejfXkYHmJWbWenjS61pP2RImLJH5afe7eKsHdWyWIO38eRHBq2JBCL7WjcNu22Lm4PPbhN/ltYtqBaTjYOjCj5QxalGuRof1PXQ9nwJJDRMUlMbtXA56pUeKxY9Fyt7RqPVnVHcUTKToMkuKNss9anhIfEGDcOaxdSlyAHXAbxwaVKfXBBxR64QXsS5XM1PFjEmOY8c8M1l9cT8NSDfms5WcZamoC+PtsECNWHqGwoz1rhzbDrYx5/SCaddGJwpJC/WBpR2Pi+w7fgkc3S0ek5YCYk76EzJ5N5I4dADi4JFGybUUKT1iGfZky6e9sJr87fozdORa/O3686fEmb9V7K0NNTQDLDlxh8m++uJUpzI/9GlGqsEOWxKY9eawzUUTcsHQEjxZ8HpZ2MO4mStWBXweB/26j7o69o6Wj07JBzIkTBM+eTdTOXdgUKYLLiBEUKX6BfBeWwlu/QcmsSRIb/TYy/cB0HO0cmff8PJqXbZ6h/ZOTFTO2nmHh7ss8W6sk3/esT4H81vlRoZnHqv769zqzG5axgZPrMj0ncLa5dRp+6ggI9PvdqNr593TY8zVcOwzdlhhzGmvmSYyD3V/BzZPQaQ445q6S1tFHjxIyew5Re/ZgW6QIJUaNoljvXtgm3YHvGhhTh5Z0y/x5EqL59J9P+c3vNxqVbsTMljMp6ZSx5qs70fFM+PWknrJUe4B1dma7FlE+gxyg/xYo19DS4TzoxnH4qZMxJWXfTQ8mhPPbYf0Q4y6jw7e5N9HlJoE+8NtwCD4LYgPlG8Mbv5r1VHN2iz5yhJBZs4natw/bYsUoPqA/xXq+jm1BU2y/jYATq2HkEShaIVPn8rvjx7s73uVS+CWG1BvCUI+h2KZR5TU1F25FsHifP78eCSQuMZkPX3Jj4FOVdWG/PCZvdWYXrwwFk2DV6/Dm31C4rKUjMgQehuWdIX9h6LsRild5cH2NtjB0N6wbAL8MBP898OIM3RSVmvho+PsTODAHCpWBXusgPtJ471b3hp4/G8nYAqIPHSJ49hyiDxzAtnhxSr43lmI9emBTIEXyCjgEx1ZAk7cylSRiEmNYcWYFC04swNHOkfnPz6dZ2fSL+N2TnKzYcT6IxXv92X0hhHx2NnT2LEe/Fq6601p7gHXeUXh5KZ/fl8KitsY39v5bLf9he/UALO9qVAPttxmKpjMOPSkB/poGe7+FUu7QfSk4V825WHM7/z2wcSSEXQKvAcZ8zQ6mD7Yjy2DjCHDrCF0Xg23OfReK+ucgIbNnE33wILYuLjgPHEix17pj4+T070bJybB/FnhPhYKlYMguKJDxQnqJyYn8dvE35hybQ1BMEK0qtOKjph9RwunRQ1cj4xJZ5xPA0v1XuBwSRanC+enTzJWejStSvEC+DMeiWY9MzZn9pLn/HMXZLfDz61C3i1EWwVK30Zd3w8rXjCGwfTdBETPLMJ/fZmqKSoCO30HdV7M3ztwuLgL+Nxl8FkExV+g4K/WZ1vbPgW0TjClEO84Cm+xrY1dKEX3gACGz5xDt44NtCRdcBg2iaPfu2Dg+9OXk7g3YMBQu7QC3DtDhuwyXEVdKsSNgB98e+Ra/cD88SngwusFovEr/59/2f1wNjWbJPn/W+gQQEZeIZ4WiDHiqMu3qlsZe90No5LWmp3tqvQRtPgLvj43Owqffy/kY/P6GVT2hWCXo81vGnpeo8QIM3QNr+xtNKv574IUZYJ/6MMXk+HhITHzwG6y1uPgnbBoF4YHQdDg8++ED/RBJ4eEk3b2LffnySLNhEHcXdsyA/IWMeaGz+EuCUoqovfsImTOHmCNHsCtZklIffkjRbl2xcUjl73N2i9GXkhhr9D816JvhmI4FHePrw19zJOgIroVd+brV17Sp2CbdfgSlFPv9Qvlxrz/eZ29hK8LLHmXo19yV+hUz/oS3ljdZd6IAeGq0Ma3kX9OhRC3jm1xOOb/daC93qQ5vbICCj/FEa5HyRqe891RjXuPAQ9DtwaYolZxM+G8bCf7qKwAqLJiPg1vmR9HkCtFhsO1DOL4SXGrCwO0kO9cl9uQZYk6eJPakLzG+J0m4chUAWxcXnLy8cGrYAKcKvch/YB6Sv7CRWLKAUoqoPXsImTWbmOPHsStdmlKTJlK0a1ds8qfSJxIfDds/BJ8fobSHcWdbokaGznk5/DLfHvkW76veuDi6MKnpJDpX74y9TdpzUccmJPHbsWss3uvP2ZsRFC+QjxGtq9G7aSX9PISWYVbV9JSi1tPgCxcu/LsiIRaWvGQkjIHbjcJr2e3MZljbD0rVNpJEVsxUdm4rrB8KyUmmpqguRB8+zK0ZM4n19cXBw4PE4GCSw8Mp9913FHwqY6Uacp0zm1Ab3yX2+h1ii71ITFw5Yk+dJu7iRaOtH7ArXRqHunVwrOuObZHCRB89SvQhHxJvGM/S2Dja4VQsEqcWrXHq+g4OtWsj9ml/wAIcDTrKZr/NVClahTrOdahZvCYOtg5E7txJyJy5xJ44gV2ZMrgMeZMiXbpgky+Ndv2bJ2HdQAg5B81HGjPWZaCDPTg6mDnH57D+wnoc7BzoX6c/b9R+Ayf7tO8Yb4bHsuyAPyv/ucrt6ATcyhSmfwtXOtYrq6u8ao+Up/ooPCtXVof27sW+bIrRThE3YUFrY2L4wX8/3rd7c/n+Cr8OhjKe0PuXrB3XfycA1vUn/uwRggI8iTh+A7tSpSg59l0Kv/wyicHBBLw5hDg/P8pMm0bRzp2y7tzZTCUlEX/5MjE++4jdsoiYi4HEhedDJRnrbYsWxcHdHUf3ujjUdcehbh3sS6b+nEDCtWtE+/gQfegQ0X//TnxoLGBM2uNU3xNHLy+cvLxw9PB4oKnobNhZ+m7tS0JyAgnJCaAUjfyEnvvtKB8YS3zJotj1fY1qrw8mv2MaQ3CTk+GfucZMdY7FofNcqPqs2e9DZHwki08tZtnpZSQkJ9C9RneG1BtCcYe0v2wcuXqbxXv92XryBslK8XztUvRvUZkmlYvrIa6a2fJUoqjr4KjWurri4OFB4bbPU6htW/JVrAjXj8KP7aBMPWN4anYMnzy+2uiwrNAEeq012sizUFJkFKEL5hH244+gEnFuVBDnT5ZhU672v9tERBD49ttE7z9AiVHv4DxkSK78sEiKiCBqzx5iTvoSe/IksadOkRwdDYCNXTIOVcri0OIFHD3q4eDujn25co93HYnxJP7QjeiD/xBdpB3Rl24bhfeUQuztcfDwwMnLi5i6lRl682sSHe1Z3m45CTv2EDZ3PvYXAwh3dmBDCzv+qBVDkq1gZ2NHjWI1qONch7oudanjXIcqRatgHxUGG94CP2+o+ZLRmW7mqKaEpATWnF/D/OPzuR13m3au7RhZfyQVCqc/fHbuDj8+++MshRzseM2rAn2bu1KhuBX2U2nZLk8lioYeHmrbyJFEbNtOrK8vAPlru1G4bVsKVRby738fPHvDK7OytpPzyDJj2GbllsY4/ix86EslJxO+fgNB33xNUnAIhTt2oGRHT+z3TACVbDRF1en87/bx8VyfOJG7GzdRtHt3Sn806ZHzH+eU5KgowpYtJ3TxYpLDwxF7e/LXqIqjUzAONhdxdKtJvr5zkDJ1su6k8dGw/FUIPAg9VpFUqgnRR44Ydx0+PsT6noKkJJIFbGtWI5+yJe7cOewrVsRlyBCKdOwAdnbciLqBb4gvp0JPcSr0FKdDThOREAFAfrGjZlwcdeLiqFuzE3W83sK1SOVHPviWrJLZ5r+N7458R2BkIE1KN2F0w9HUcXn09W85eYNhK47QoV5ZZnZx16U2tEzJU4kiZZnx+MBrRPzvf0Rs20bMsWMA5C9ThELFAyn02mDyd/soa75tH/oBfn8XqraBHiuy9LmN6EOHjH6I06dxrFePUh9MwLFePWPlnavGqKhrPtBoMLzwyf07JaUUwd98S+j8+RR85hnKff2VRUdEJcfGcnvlKkIXLiTp9m0KPvMMzoMH4Zh0HPlrijEMuM0kaDLUaCLMarHhRn2t4HNGk6CrMbNbXFIcIzYPIvb4CcbataPomeskRUVS/I0+FOnQPt0Em6ySCbx9Ed8dH3MqeURPIgAAH91JREFUcM//t3ff8VWW98PHP9/kZCdkMpKABmRKQPYSUFuF4lZsVdQKreK2Vn36q09b25/1UWtrq6KIaClatxbqQtEWkRUIW/YOkEUICdnjjOv5474TDpBB5CQn4/t+vc4r9zr3ua6c5HzPtdkWGcv2YAcV7ioAwhxhDIgbwMCEgaTGpzIwYSA9onoQIFZ31NU5q/nb+r+x/dh2+sX245fDf8m4pHFn9De56fBxbnw1jUHJ0bx1x2htg1BnrUMFiuje0ea1z1/j6vOuJtRxov7ZmZtLydf/oWTxYsrXrwMDwcldiLryOjpNnkTIgAHfL2jU9NvvO8Wap6me7qtNVZ2ZSd6f/0LJ4sU4EhPp8sgjdLri8tPT6Kq2ugCnvQTRPaDfFOgzCVImQFAohe+9R+4TfyT0/PPpMeeVs1rb4PvwVFdz/IMPOfbqq7iOHiVi3Dg6z/wpYfFOqyfXgW+ttF794umj1X2tLB/+McUa03D7J3iShvCrZb9iccZinp34LFN6Tmna/Y5st0bR5223uu1e+nvcAQ4OFh9k67GtbMu3Sh47C3ZSZQePqKAozo8/H4MhPTedpIgk7h96P1f0uqI2gDQm63gF17y0kvDgQBbeO07XrFY+0aECRVyfOJP822TiQuOY1n8aN/W/ieiQ6JOucWUfpOTJqZTsKKIsLxjcHoK6dydq8iQ6TZpE6ODBZxY0VvzNarQccLXV9dFx9iNb3aWlHHt1LgXz54PDQfyddxA/Y8bpA7hOtfsrazDa/m/BVQGOMOh1EfSZREluFFm/expH5870mPsqIT17nnU6G2OcTo4vXEj+yy/jOpJHWO+udBnfifDgfVCcaV0UHAWTnoBh05t1YNxJirNh3mSoKuEvY2/mjQOf8cjwR5ieOv3M72EMpM+Fr34HodFw7SvQ59J6L3d5XOw7vo/tx7bXVl0VVhYybYD19xkSeOYf9CWVTn48J42s4xUsvHccvbv4th1MdVwdKlCMGDHCvPLZK8zbOo8VWSsIc4RxfZ/rue3820iO9BoVffwwvHYJLncEpec8TPHSlZSlrQanE0diIp0mXUbYBRcQGBdHYGwcjvg4AmNirKoIY+DbZ2HpU5B6A1z36llPF2HcbooWLiTv+Rdw5+cTfc01dH74lwR1bdpiMzgrIGMl7Flsje4+fhCACk9fDi9yQkAQPebMIWxYM0yYWHIEk7mBoo8XkP9xOs7CakLjq+k8qISIrlVI/HmQNMTqEZZ4ASQNPTH9Rksq2M9b717BnyIdTOt5Jb+e8NSZlyZLj8LH98Ker6yS2zWzm7cXnReX28Odb65j2Z583pgxivF9WrZ0qNq3Dhcoatoodhfu5o1tb7Bo/yIMhkkpk5gxcAYD4u0BaYfWwBtXwjlj4NYFuEvLKfnmG0q++pqyFSsw1dWn3T8wOprAUA+B7nwcXZMJPP8SAuPjcMTFERgXjyMu9kRwiY1B6utn76VsTTpHnnmGqh07CBs61GqHGOSD8R7GQP6e2qBRvS2dQ99E46oIJPnGfkRdczP0vhQivscHTnGONRtuzibI3oTJ3kTxtkLyt0ZRXRJESEIAnaf0I/LiS5CkIZA42Pr23Qp8ffBrHln6CD+orOa5iiACf7b4zCaP3PMfq1dTZRFMehJG3dmiU8P84ZNtzF+VwVPXDWLaaF23WvlWhw0UNXLLcnlr+1t8tOcjypxljEkcw4yBMxibNBbZ/K71zz/yDrjiudrneMrKcGZn4zpWgLuwAFdBAe6CAtybv8R1cBvuoCTcAfG4CgtxFxbWDgI7VUBUFIFxsThi4wiMs0smsXH2sVhK/vNfSr7+GkdSIl0ffZSoKVOarztrZTGujZ9y+PEXqcwsouuwIuL6VFjTsfedbH1DTrzg5A8/Y6zFoLI31QYFcjZB6RH7tFBa0pOjGwKoyi0n5NwkEh78BVFTrkRaqjqpCTbmbeSOxXcwIH4Ar6feR+hbN0CnZGvyyPq6sjorrXag1bOhy/kw9XVrwakW9GZaBo9/vI07xvfkt1ee3+j1SjVVhwgU9Y7M9lJcXcyHuz7k7R1vc7TiKP1i+zE9dTqT96QRlPYSXP4X61tiXTwe+PJ/rLrpUXdZq9HZH6jG47HmG7KDiaug0Cu4FFrHCr23C8HlstIdHk7CzDuJmz697nmCmoGnooKshx+m9JulxE9OpfPAY0j2BsBAZDervj0q0Q4Km6Esz3qiBFhTaSQNwXS7gLLMAI6+u5jK7TsIPvdcEh54gE5TfoQEts4eOPuL9vPTL35KbEgsb055k9jQWGvSxremWvOB3f7p6VVheTutBusjW2HUTLjsiRafjXjprjx+Nn8tP+jflVdvG05gQOsbF6Pavg4RKGrUVaI4VbW7ms/3f878bfPZX7SfxIhEbqvwMPXARsJvXWA1AnvzeOCzh2DDG9Z0DJf98ayqHIwxeIqLcRUU4IiNJTCm5VdlMy4XuU8+yfH33qfTlVeS+H8fIuDQMquaau8Sa32Hzv1PblPolgrBEZStXs3R51+gYtMmgpKTSbjvPqKvvqrVjNWoS35FPrcuupUKVwVvXf4WPaK8BrLt+hLev8UeKPkRBIdbJal1f7fmmgqOtFbP6zu5xdO9K7eEqa+s4py4cD68e6yOlVDNRgNFPTzGw/LM5czbOo8NeRvoZODGsiqmXfsOCcn278vjtlYj2/wOTHgUfvBb/01Z7mPGGI699jpH//pXwkePpvusFwns1AncLvC4TuvqW75+PUdfeJHy9HQcXbuScM89xFx/3Rm1w/hTubOc6V9OJ6M4g3mT55GakHr6RVs+gn/dYbXZXD0LPn8Ydi2y9q+ZDVFN7FTgA0dLqrj25ZW4PB7+fd+FJEbrIlaq+WigOAObj25m/oaX+W/OKoIQrjrvKsYmTyAgfS4Bh9Ig9QYCUqciIghS+zNAAk7sixBAQG0bQ825mv7xJ+0LCEKX8C4khPm390rRJ5+Q/ZvfEpKSQo+5rxKUmHjS+YrvvuPoi7OsdZ8TEkiYOZOYG39S94yprYzT4+SBJQ+Qlp3GrB/MYmL3ifVfvO4fVskxIMj6MnDp/9oDAFu+raXS6eamuavZlVvCB3eNZVD31tERQLVfGiia4OD2j3hjya/4OCqSalrm99M7pjdjEscwNmksI7qOaHCG0OZSlpZG5v0PEBAZSY+5cwnt15fKHTs4+uIsSr/5hsCYGOLvvIPYadMaH9PRShhj+EPaH1iwZwGPj32cH/f9ceNPWvMqbFsIl/+5ZWYaroPHY3jwvY18viWHObcOZ/LAJqxjotT3pIGiqdbNo2jRIxwJDMRc+AsY/BM8xoPBYIzBYE7bN+b0Y3Vd432tBw+Hig+Rlp3GhrwNVLmrcIiDwZ0HMzZpLGMSx5CakIojoGXqpSt37uTwzLvwlJcTPmoUpUuWEBAVRfzPZhB7208JjPTd/FUt4ZXNrzB702xmDp7JA0Mf8HdyzthzX+1i1pK9PDalP3ddpMvgqpahgeL7WD3HGl8w6Iazv9cZqHJXsTFvI6uzV5OWk8aOYzswGCKDIhnZbWRt4EjplNKss8E6c3I4PHMmzqxsYm//KfHTpxMY7dtqj8ySTJZlLiO/Ip/RiaMZ1mUYQYENrxPRVAv3LOTxVY9z9XlX8+SFT7bKGXTrsmBDJg9/sJkbR/TgmamD2ky6VdungaINOl55nDW5a1ids5q07DSySrMA6BbRjTGJY2of8WFnNo11U3iqqzHVTp+VIJweJ5vyNrEscxnLMpexv2g/YLXZeIyHcEc4YxLHMKH7BMYnj6dbxNlVtazMWsl9/72PUd1G8fIPX/Z5EGou6QcKuPX1NYxIiWX+jFEEO1rfOBTVfmmgaAcOlxyuDRprctZQXF0MQN/YvoxNHMuYpDEM7zqcMEfraD8oqCxgRdYKlmUuY1XWKkqcJTgCHIzoOoKJ3ScysftEOod1Jj03neWZy1metZycMmtluj6xfZiQbAWNIV2GNLjs56m2H9vOjC9n0COqB/N/NJ/I4MjmyqJPZeSXcd3slcRGBLPwnguJDm8bwU21Hxoo2hm3x83Ogp2k5aSxOns1G/I24PQ4cQQ4GJwwmNGJoxnZbSQXdL6A4MCW6bpqjGFHwQ6WZS5jeeZytuRvwWBICEuwAkPyRMYkjSEiqO5SijGGfcf3sSJrBcuzlrPhyAZcxkVkUCRjk8YyIXkCFyZfSJfwule1A8gqzeLWRbfiCHDw9uVvN3hta1JU7uS6V1ZSUFbNv++9kJSEttUWpNoHDRTtXIWrgo1HNrImdw3pOelsL9iOx3gIDQxlSJchtYFjYPxAnzaMlzvLSctJs0oEmcvJq8hDEFITUpnQfQITu09kQNyAM54+21tpdSlrctawPMsqbeSVW6PD+8f1Z0LyBCZ0n8CghEG1+SmqKuK2L24jvzyfN6e8Se/Y3j7LZ3Nyuj3cPi+dtRkFvH3HGEb19MH66kp9DxooOpji6mLW564nPTed9Nx0dhfuBiAiKILhXYczqtsoRnUbRb+4fk3+ED9UfKi2rWHdkXU4PU4igyIZlzSOid0nMj55vM/bTYwx7C7czfKs5azIWsGmvE24jZuo4CguTLqQ8cnjWbBnAVvyt/DqZa8ysttIn75+czHG8NiCLby39jDP/fgCpg7v7u8kqQ5MA0UHV1BZwNrctazNXcuanDVkFGcAEB0SzciuIxnZbSSjE0fTK7rXab1snG4nG/I21AaHmuf2jO7JxGSrrWFo16FNakc4W8XVxaRlp7EiawUrslaQX5EP0OjiQx6PoazaRWmVi7IqFyWV1nZpzU972+kxxIQFERMeRGx4MNH2z5iwIDqFBflsrqW5y/bx1KKd3H9Jbx6d3M8n91Tq+2rTgUJEIoBlwO+NMZ81dr0GisYdKTtCem56beDILssGID403iptJI4iUAJZnrWcVdmrKHOWERQQxMhuI2sbok+aK8mPPMbDgq3ppB/MIdzTl5JKKwiUVrkoqXJRWumkrMpdGwjOlgh0Cg0iNjyI6PBgYsOD7KASXBtYYsLt/bATgaZTqOOkILx4Wy53v7WeywclMuumoQToRH/Kz/wSKERkHnAlkGeMSfU6/iPgBSAQeN0Y80wj93kCKAO2aaBoHpklmbXVVOk56RytOApAl7AutW0NYxLH+GXEeH2MMSzdfZTZ3+xlbUYhAQKRIQ6iQoOIDHEQGeogIsRBVIjj9P3QE8ciQ048ouxrAkQoqXRSWO7keHk1x8udHK+oprDMyfGKE8cKy6spqrB+Hi93UlJZfyAKDBCi7VJKTFgQO3JK6NctivdmjtH1rlWr4K9AMREoBd6sCRQiEgjsBi4DMoG1wM1YQePpU27xM2AwkACEAvkaKJqfMYYDxQdwup30je3b6gZ8uT2GL7bmMPubfWzPKSYpOpSZE3tx48hzCAv27weuy+2xA4eTonoCS81+WJCDp65PpUtUy0wtr1Rj6gsUzTovhDFmmYiknHJ4FLDXGLPfTth7wDXGmKexSh8nEZFLgAjgfKBCRBYZY+peIUj5hIjQK7qXv5NxmmqXh39vzOKVb/dxIL+MXp0j+PMNg7lmSHKrGZjmCAwgPjKE+MjWP1miUmfKHxPbJwOHvfYzgdH1XWyM+Q2AiEzHKlHUGSREZCYwE+Ccc3SJyPakvNrFe+mHeW35fnKKKhmY1InZtwxj8sBuuoCPUi3AH4Girv/sRuu/jDHzGzk/F5gLVtXT90qZalWKKpz8My2DeSszKCirZlTPOJ6ZOpiJfRJaXXWYUu2ZPwJFJuDdXaY7kO2LG3stheqL2yk/OVpSxd9XHOCt1QcprXJxSb/O3HtJb0am6EA0pfzBH4FiLdBHRHoCWcBNwDRf3NgY8ynw6YgRI+pZ9Fq1ZocLynlt+X7eX3uYareHKwYlcs/F5zEwSRfsUcqfmjVQiMi7wMVAgohkYo2D+LuI3A8sxurpNM8Ys60506Fat715Jcxeuo+PN2UTIHD90O7cdVEvenVuG5P5KdXeNXevp5vrOb4IWOTr19Oqp9bLGENZtZtjpVXkl1aTX1rFsdJqlu0+yuLtuYQ4Arh9bAp3Tuyp60Ir1cq0iZHZTaXjKFqG22MoLD/xoZ9vBwErGNjHyqrJL6niWFkVlc7TO6xFhTqYPi6F6eNStEupUn7ml3EUqu3KK6nku8NFHCs7uQRQ8/NYWRUFZdV46vie4QgQ4iODSbDHE5yXEEFCVAjxETXHrJ8120GBrWMMhFKqbu0qUNRUPUUn9+bBdzcS4gggJCiAEEegte0ItPe9jgUFEBwYQEhQzTUnX5cYHdah+uofPFbGnG/386/1mVS7T5QAIkMcJEQGEx8ZQkpCOMNTYkmICLYDQEjtuYTIYKLDgrT7qlLtSLsKFDW9nqJ79L9zS1YRVU43VS6P/XDjdDe9mq1v10hemjaMvl2jfJ/gVmRHTjGvLN3HZ99l4wgI4IYR3Zk6rDvdokOJjwjWuYiU6sA6VBuF22OotoNGlctDldNr2+UVVOzjx8udzFqyh9IqF7+/aiA3jezR7r4pr8soYPbSfSzZmUdEcCC3jDmXn4/vSddOOv+QUh2NtlFgzd4ZFhzYpInjpgzqxsPvb+axBVtYsTefp68fRKfQtr2WsTGGb3cfZfY3+0jPKCA2PIiHL+vL7WNTdJ1mpdRp2lWJwqt77J179uzx2X09HsOcZft47qvdJMWEMuvmYQzpEeOz+7eUmllXX1m6j23ZxSRGh3LHhF7cPKoH4cEd6juDUqoObXrhoqZqru6x6w8W8uC7GzlSXMmvftSPO8b3ahOLzVS7PCzcmMmcb/dbs64mRHD3Redx7dDWM+uqUsr/NFD4SFG5k18v+I4vtuZyUd/OPPeTC0hopf3/y6pcvJt+iNeXHyC3uJLU5E7ce3FvnXVVKVUnDRQ+ZIzh7TWHeOKz7cSEBfH8jUMY1zuh2V6vqY6XVzN/VQbzV2VwvNzJ6J5x3HdJbyborKtKqQZoY7YPiQi3jjmX4efGcv87G7jl72u47+LePHRpHxx+HDyWV1zJa8v38/aaQ5RXu7l0QBfuubg3w8+N9VualFJtX7sqUTRXY3ZDyqtd/OGTbXywLpMR58byws1DSY5p2bmKyqtdzF22n1e/3U+Vy81VFyRxz8Xn0b9bpxZNh1KqbdOqp2b28aYsfrNwK4EBwrM3DGbywG7N/ppuj+FfGzJ57qtdHCmu4vJB3fjV5P6kJEQ0+2srpdofrXpqZtcMSeaC7jE88O5G7vrnem4fey6PXT6g2UY0r9ybz5Of72BHTjFDesTw8rRhjNCFfZRSzUADhQ+lJETwr3vG8eyXO3l9xQHWZhQya9pQzvPhugp780p4atFOluzMIzkmjBdvHspVgxO1kVop1Wy06qmZLNl5hEc+2EyVy8Mfr0ll6vDuZ3W//NIqnv/Pbt5NP0x4UCD3/aA308el6BxMSimf6RBtFP5ozG5IblElv3hvI2sOFHD90GSeuDaVyJCmFeIqnW7+sTKDl7/ZS4XTzS2jz+EXP+yjazcopXyuQwSKGq2hRFHD7TG8tGQvL/x3N+fGRzDr5qGkJje+BrTHY/j0u2ye/XIXWccruHRAF349ZQC9u+jyoEqp5qGBws/W7D/GL97bREFZNY9d3p/p41LqbVdYm1HAk59tZ3NmEecnduK3VwxoVQP6lFLtkwaKVqCwrJr/89Fm/rMjj0sHdOXPNwwmNiK49nxGfhnPfLGTL7fl0q1TKI9O7sf1Q5PbxHxSSqm2TwNFK2GMYf6qDJ5etJP4yGBeuGkofbtGMmvJXt5MyyAoMIC7LzqPOyf0atJ06EopdbZ0HEUrISLMuLAnI1PiuP+dDdw0N42IEAdlVS5+MqIHD1/Wly66aJBSqhXRQOEnqcnRfPbgBP746XbyS6t4dHI/BiTqlBtKqdanXQUKr+6x/k7KGYkMcfCnGwb7OxlKKdWgdrVqjTHmU2PMzOjoxrufKqWUOjPtKlAopZTyPQ0USimlGqSBQimlVIM0UCillGqQBgqllFIN0kChlFKqQRoolFJKNahdzvUkIiXALh/dLhoo8tG19Z2v6/ipxxra995OAPLPML2N0bz75tqzyfupx1pb3hu7vqnnzvS9PnW/Pb73/vi772OMOX0gmjGm3T2AdT6811xfXVvf+bqOn3qsof1TtjXv7SjvjeTX73lv7PqmnjvT97q15L+j/N1r1VPjPvXhtfWdr+v4qcca2m9KGptC8+6ba88m76cea215b+z6pp5rynvdGvLfIf7u22vV0zpTx1S5HYHmXfPeEXXk/LdE3ttriWKuvxPgR5r3jqkj5x06dv6bPe/tskShlFLKd9priUIppZSPaKBQSinVIA0USimlGtTuA4WIRIjIGyLymojc4u/0tDQR6SUifxeRj/ydlpYmItfa7/vHIjLJ3+lpSSIyQETmiMhHInKPv9PT0uz/+/UicqW/09KSRORiEVluv/cX++q+bTJQiMg8EckTka2nHP+RiOwSkb0i8mv78PXAR8aYO4GrWzyxzaAp+TfG7DfG/Nw/KfW9Jub93/b7Ph240Q/J9akm5n2HMeZu4CdAm+822sT/eYD/AT5o2VQ2jybm3QClQCiQ6bNE+GpEX0s+gInAMGCr17FAYB/QCwgGNgPnA48BQ+xr3vF32ls6/17nP/J3uv2Y9+eAYf5Oe0vnHeuL0Spgmr/T3pJ5By4FbsL6gnClv9PewnkPsM93Bd72VRraZInCGLMMKDjl8Chgr7G+QVcD7wHXYEXV7vY1bTK/p2pi/tuVpuRdLH8CvjDGbGjptPpaU993Y8wnxphxQJuvcm1i3i8BxgDTgDtFpE3/3zcl78YYj32+EAjxVRocvrpRK5AMHPbazwRGAy8CL4nIFTTfsPfWoM78i0g88P+AoSLymDHmab+krnnV994/gPXtMlpEehtj5vgjcc2svvf9Yqxq1xBgkR/S1RLqzLsx5n4AEZkO5Ht9eLYn9b3v1wOTgRjgJV+9WHsKFFLHMWOMKQNmtHRi/KC+/B8D7m7pxLSw+vL+ItYXhfasvrwvBZa2bFJaXJ15r90wZn7LJaXF1fe+LwAW+PrF2nSR7BSZQA+v/e5Atp/S4g8dOf+a9xM07x1Di+a9PQWKtUAfEekpIsFYjVmf+DlNLakj51/zrnnXvDdj3ttkoBCRd4E0oJ+IZIrIz40xLuB+YDGwA/jAGLPNn+lsLh05/5p3zbvmveXzrpMCKqWUalCbLFEopZRqORoolFJKNUgDhVJKqQZpoFBKKdUgDRRKKaUapIFCKaVUgzRQqHZNRJaKSLNPsy0iD4rIDhF5+wyvny4iPpuL5/uy1+w432v/CRG51J9pUq1Pe5rrSSmfEhGHPbDpTNwLTDHGHGjONDWkiemtcS3wGbAdwBjzuM8Tpto8LVEovxORFPvb+Gsisk1EvhKRMPtcbYlARBJEJMPeni4i/xaRT0XkgIjcLyIPi8hGEVktInFeL3GriKwSka0iMsp+foS9IMxa+znXeN33QxH5FPiqjrQ+bN9nq4g8ZB+bg7UuwCci8stTrg8VkX+IyBb7dS7xOt1DRL60F5/5vVe6PheRzfZr3GgfHy4i34q1attiEUn0+v08JSLfAr8RkYyaabVFJFxEDotIkIjcaed1s4j8yz43DmvNij+LyCYROU9E5ovIDfbzf2ineYv9uwqxj2eIyP+KyAb7XH/7+EX2fTbZz4v6nn8SqrXx96Ic+tAHkAK4OLHA1AfArfb2UmCEvZ0AZNjb04G9QBTQGSgC7rbP/Q14yOv5r9nbE7EXfwGe8nqNGGA3EGHfNxOIqyOdw4Et9nWRwDZgqH0uA0io4zmPAP+wt/sDh7BWH5sO5ADxQBiwFWsluqk16bWfEw0EYS1A1Nk+diMwzyt/s72u/xi4xOu61+3teK9rngQesLfnAzd4nZsP3GCn8TDQ1z7+ptfvNMPr+fd6vcanwIX2diTg8Pfflj5889AShWotDhhjNtnb67GCR2O+McaUGGOOYgWKmvVGtpzy/HehdgGYTiISA0wCfi0im7A+bEOBc+zrvzbGnLpQDMB4YKExpswYU4o1nfOERtI4Hvin/fo7gYNAX6/XOWaMqbDvNd5O+6Ui8icRmWCMKQL6AanA13Z6f8uJxbgA3j9lu2bZ15u8zqWKtZbyFqyFjAY2ku5+WO/Jbnv/DaxAW6NmKmvv92ol8FcReRCIMU2vBlOtlLZRqNaiymvbjfUtG6ySRs0XmtAGnuPx2vdw8t/2qROaGaz5/KcaY3Z5nxCR0UBZPWmsaw2AxjT0nNPSZYzZLSLDgcuBp0XkK2AhsM0YM7ae+3in9xP7eXFYJaAl9vH5wLXGmM1iLehz8VmkG078rt3Yv2tjzDMi8rmd9tUicqkdHFUbpyUK1dplYH3ggVUl8n3U1POPB4rsb+mLgQdEROxzQ8/gPsuAa+36/QjgOmD5GTznFvs1+mKVWmqC02UiEme3x1wLrBSRJKDcGPMW8BestZJ3AZ1FZKx9nyARqbNEYJd00oEXgM+MMW77VBSQIyJBnLw0aol97lQ7gRQR6W3v3wZ821BGReQ8Y8wWY8yfgHVYVW2qHdAShWrt/gJ8ICK3ceLbcVMVisgqoBPwM/vYH4Hnge/sYJEBXNnQTYwxG0RkPtYHMVh18xsbee3ZwBy7yscFTDfGVNnxaQVWtVRv4B1jzDoRmYzVuOwBnMA9xphqu4H5RRGJxvq/fR6rjaQu7wMfcnKp4XfAGqyqry2cCA7vAa/Z1UW1gdgYUykiM4APRcSBtf5BY0vJPmQ31ruxelF90cj1qo3QacaVUko1SKuelFJKNUgDhVJKqQZpoFBKKdUgDRRKKaUapIFCKaVUgzRQKKWUapAGCqWUUg3SQKGUUqpB/x+UOc8bO0a09gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = piv.plot(logy=True, logx=True)\n", - "ax.set_title(\"Polynomial Features for 5 features\\ndegree=2\")\n", - "ax.set_ylabel(\"seconds\")\n", - "ax.set_xlabel(\"number of observations\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The gain is mostly visible for small dimensions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Comparison with 1000 observations\n", - "\n", - "In this experiment, the number of observations is fixed to 1000 but the number of features varies." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
averagedeviationmin_execmax_execrepeatnumbercontext_sizenamenfeatnumf
370.0093310.0016030.0082800.012519530240ext40861
380.0226190.0028680.0187930.026324530240extslow40861
390.0131880.0003700.0128280.013888530240poly501326
400.0128170.0001020.0127000.012951530240ext501326
410.0303840.0007170.0299550.031813530240extslow501326
\n", - "
" - ], - "text/plain": [ - " average deviation min_exec max_exec repeat number context_size \\\n", - "37 0.009331 0.001603 0.008280 0.012519 5 30 240 \n", - "38 0.022619 0.002868 0.018793 0.026324 5 30 240 \n", - "39 0.013188 0.000370 0.012828 0.013888 5 30 240 \n", - "40 0.012817 0.000102 0.012700 0.012951 5 30 240 \n", - "41 0.030384 0.000717 0.029955 0.031813 5 30 240 \n", - "\n", - " name nfeat numf \n", - "37 ext 40 861 \n", - "38 extslow 40 861 \n", - "39 poly 50 1326 \n", - "40 ext 50 1326 \n", - "41 extslow 50 1326 " - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "poly = PolynomialFeatures(degree=2)\n", - "ext = ExtendedFeatures(poly_degree=2)\n", - "# implementation of PolynomialFeatures in 0.20.2\n", - "extslow = ExtendedFeatures(poly_degree=2, kind=\"poly-slow\") \n", - "\n", - "\n", - "res = []\n", - "for n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 40, 50]:\n", - " X = numpy.random.random((1000, n))\n", - " poly.fit(X)\n", - " ext.fit(X)\n", - " extslow.fit(X)\n", - " r1 = measure_time(\"poly.transform(X)\", context=dict(X=X, poly=poly), repeat=5, number=30, div_by_number=True)\n", - " r2 = measure_time(\"ext.transform(X)\", context=dict(X=X, ext=ext), repeat=5, number=30, div_by_number=True)\n", - " r3 = measure_time(\"extslow.transform(X)\", context=dict(X=X, extslow=extslow), repeat=5, number=30, div_by_number=True)\n", - " r1[\"name\"] = \"poly\"\n", - " r2[\"name\"] = \"ext\"\n", - " r3[\"name\"] = \"extslow\"\n", - " r1[\"nfeat\"] = n\n", - " r2[\"nfeat\"] = n\n", - " r3[\"nfeat\"] = n\n", - " x1 = poly.transform(X)\n", - " x2 = ext.transform(X)\n", - " x3 = extslow.transform(X)\n", - " r1[\"numf\"] = x1.shape[1]\n", - " r2[\"numf\"] = x2.shape[1]\n", - " r3[\"numf\"] = x3.shape[1]\n", - " res.append(r1)\n", - " res.append(r2)\n", - " res.append(r3)\n", - " \n", - "import pandas\n", - "df = pandas.DataFrame(res)\n", - "df.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nameextextslowpoly
nfeat
10.0000260.0000590.000152
20.0000550.0001000.000113
30.0001610.0003810.000237
40.0001480.0002210.000219
50.0001850.0003400.000236
\n", - "
" - ], - "text/plain": [ - "name ext extslow poly\n", - "nfeat \n", - "1 0.000026 0.000059 0.000152\n", - "2 0.000055 0.000100 0.000113\n", - "3 0.000161 0.000381 0.000237\n", - "4 0.000148 0.000221 0.000219\n", - "5 0.000185 0.000340 0.000236" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piv = df.pivot(\"nfeat\", \"name\", \"average\")\n", - "piv[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEpCAYAAACN9mVQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeViUVfvA8e9hR0BQcENR3EXFFbfcc0vLFjXLNDXNFt/eyspsr7dFs8yWn+WWe2qllWYuWZqiZiog7rui4oaKKMjOnN8fz2ADIgLOMCz357rmgnm2c2Z4mHuec85zH6W1RgghhLgVB3tXQAghRNEmgUIIIUSuJFAIIYTIlQQKIYQQuZJAIYQQIlcSKIQQQuRKAkUxoZR6Tyn1nb3rYUkpNVgptTaP2xa5+hcmpZS7UmqFUuqqUmqJvetTWJRSWilVx971yA+lVEel1CF716MokUBRyJRSUUqpJKVUglLqglJqjlLK0971Kgit9UKtdc87PY5SqotSymR+TzIfK6xw3LlKqQ/v9DhWMgCoBPhqrR++04MppVyUUkvN55NWSnXJtl4ppSYqpS6bH58opZTF+mZKqXClVKL5Z7O87lvSZA9mWutNWuv69qxTUSOBwj76aq09gRZAK+AtO9enKDirtfa0ePS1d4WUUk5WPFwN4LDWOt2K9dgMDAHO57DuKeBBoCnQBLgPeNp8PBdgOfAdUA6YByw3L89136JIKeVo7zqUeFpreRTiA4gCuls8/xT4zfy7P/ArEAscBUZZbPce8J3595XAf7MddzfwoPl3DTwDHAGuAF8DyrzOASMwnQRigPmAt3ldoHnfJ4DT5n2fwQhmu4E4YIpFmcOBzRbPvzTvdw0IBzrmVP8c3pMuQPQt1jkArwHHgMvAj0B5i/VLMD4orwKhQCPz8qeANCAVSABWWLw3dSz2nwt8aFkPYJz5mAvMy+8DIs2v/2+gicX+44AzQDxwCOiWw2v4n7keaea6jMzj32EkcAoIvc05FQ10ybbsb+Api+cjgX/Mv/c011lZrD8F3HO7fW9R/iiM8zUW4/z1t1ingeeB48AljPPdwbyuDrDR/Le7BPxgsV8D4A/zMQ8BA7P9zaYCq4Dr5vfxPOBosc1DwG7z762Brea/3zlgCuBiXhdqruN189/mEbKdj0AQsMG8/z7g/mx1+RrjfzIe2AbUNq9TwOfmv+9VjP+hxvb+DCrQ55a9K1DaHlgECiDAfOJ9YH6+EfgGcAOaARcxf/CQNVAMBLZZHLMpxodo5smvgd8AH6C6+TiZHwIjzP/UtQBP4Gf+/UAMNO87zVyHnkAysAyoCFQ1n/SdzdsPJ2ugGAL4Ak7Ay+Z/Xrfs9c/hPcnyj5lt3YvAP0A1wBWYDiy2WD8C8DKv+wKItFg3F3MQsFh2u0CRDkw0H88d46ovBmgDOALDzH9DV6A+RmD0t3j/at/idWR5/Xn8O8wHPAD325xTOQWKq0Abi+chQLz59zHA6mzb/wa8fLt9cyj7bowP+Rbm9+T/sAhs5tfxF1Ae41w8DDxpXrcYeBMjaLoBHczLPczv6xPmc6mFuYzMLwFzzXVsb7HvMaCHRblLgNfMv7cE2pqPFQgcAF7M5Zzogvl8BJzNf6c3ABfz640H6lvUJRYjGDkBC4Hvzet6YXxh8sEIGkFAFXt/BhXkIU1P9rFMKRWH0XSwERivlAoAOgDjtNbJWutI4Fvg8Rz2Xw7UVUrVNT9/HOPbWKrFNh9rreO01qcw/lEz26AHA5O11se11gnA68Cj2Zo3PjDXYS3GN63FWusYrfUZYBPQPKcXpbX+Tmt9WWudrrX+jH8/TPPCXykVZ/EYaF7+NPCm1jpaa52C8YE7ILO+WuvZWut4i3VNlVLeeSwzJybgXa11itY6CePb8nSt9TatdYbWeh6QgvHBk2F+jQ2VUs5a6yit9bE8lpOXv8N7Wuvr5nrklyfGh2mmq4Cnua8h+7rM9V552Den1zFbax1h/hu8DrRTSgVabDNRax1rPhe/AAaZl6dhNMn5m8+3zebl9wFRWus55nMpAvgJo58n03Kt9RattUlrnYwRdAYBKKW8gD7mZWitw7XW/5iPFYXxZaNzDq8lJ23N78fHWutUrfV6jKA6yGKbn7XW27XRrLiQf//X0jDe0wYYV28HtNbn8lhukSKBwj4e1Fr7aK1raK1Hmz8I/IFYrXW8xXYnMb7FZ2H+h/wRGKKUcsA4aRdk28yy3ToR42THXM7JbGU4YXS0Zrpg8XtSDs9z7HxXSr2slDpgHtkTB3gDfjltm4Oz5vck8/GjeXkN4JfMAILxbTADqKSUclRKfayUOqaUuobxTZ98lJmTi+YPnkw1gJctgxjGlaC/1vooxhXPe0CMUup7pZR/HsvJy9/hdEFfBEYzSlmL52WBBG181c2+LnN9fB72zS7L6zAHvctkPW8tX8dJ8z4Ar2J8096ulNqnlBphXl4DaJPtPR8MVL7FMQEWAf2UUq5APyBCa30SQClVTyn1m1LqvPk8GU/ezxF/4LTW2pTtNVi+vhz/18xBZQpG09QFpdQMpVT2971YkEBRdJwFypu/DWWqjtGWnJN5GP883YBErfXWfJRTI1sZ6WQNBvmmlOqI0V4/ECintfbB+CZ6p6NlTgO9swURN/PVzWPAA0B3jKAUmFkd88+cPtgSgTIWzytnW599n9PAR9nKL6O1zvy2ukhr3QHjPdUYzVZ5kZe/w52kdt6H0SSZqal5Wea6JtmuEJpkW3+rfbPL8jqUUh4YzY+W522Axe/VzfugtT6vtR6ltfbHuHL8xjz66DSwMdt77qm1ftbiOFneG631fowP8N4Y58Uii9VTgYNAXa11WYxmpLyel2eBAPMXMsvXcKv/yyy01l9prVsCjYB6wNg8llukSKAoIrTWpzE6EScopdyUUk0wOhEX3mL7rRjNJJ9x89VEbhYDY5RSNc3DcsdjNFvlezRONl4YH3QXASel1Dvc/K21IKYBHymlagAopSoopR6wKDMF4xtsGYzXYukCRh+ApUjgMfPVyD3cvgliJvCMUqqNedioh1LqXqWUl1KqvlLqbvO32GSMq62MPL6uO/47KKVclVJu5qcu5vMm8wNwPvCSUqqq+SrnZYz2dDA6ZjOA583HeM68fH0e9s1uEfCEebitq/l1bDM38WQaq5QqZ25efQH4wVz/h5VS1czbXMH48M/AaNqpp5R6XCnlbH60UkoF3eYtWYTRcd4Jo48ikxfGAIsEpVQD4Nls++V0nmTahtH8+qq5Hl2AvsD3t6kL5jq3UUo5m4+RTN7PjyJFAkXRMgjjW/FZ4BeMtvI/ctl+PhCMMcwxr2ZjBJZQ4ATGyfvfglQ2m9+B1RidlSfNx72TppNMX2KMpFmrlIrH6NhuY14331zWGWC/eZ2lWRj9B3FKqWXmZS9g/KNnNmcsIxda6zCMfoopGB9mRzE68cHon/gYo6P1PEaH/xt5fF3W+DscwghOVTHe/yT+/XY/HVgB7AH2YozKmW5+TakYw1+HYrwPIzCaQ1Nvt292Wut1wNsYfQjngNrAo9k2W47RqRtpPtYs8/JWwDalVALG3/gFrfUJc/NrT/NxzmK8t5kDDHKzGKMjer3W+pLF8lcwrjLiMQL/D9n2ew+Yl61vLPP1pQL3Y1ypXMIYbDJUa33wNnUB44vSTIzz5iTGF5pJedivyMkcMimKIaXUUIxhjB3sXRchRMklVxTFlFKqDDAamGHvugghSjYJFMWQUqoXRl/ABbJ22gkhhNVJ05MQQohcyRWFEEKIXEmgEMKCKloZZ4UoEiRQCFFCKKWGKSNl+DWlVLQy0oNbMwOuKKUkUAhhY4X4YV0GI6WIH8a9Jt0w7iEQ4o5IoBClmlKquVIqQikVr5T6ASMTaea6+5RSkeYbsf423y2fua6FUmqneb8lSqkfMpuslDERU7RSapxS6jwwJw/H81dK/aSUuqiUOqGUej6/r0VrPVUbk+6kmlOcLMTIsCrEHZFAIUotZUzUswzjDunyGGkf+pvXtcC4e/ppjNxF04FfzSkvXDDunJ9r3m8xxvwHliqb19UAnrrN8Rww7oTehXGXdTfgRfMwaJRSj6msmXWzP6rf4iV24tY5moTIMxkeK0otpVQnjJw9VTMzoyql/sbIeeQLXNJav22x/SGMCZE0RnCoZrHfZmCD1votcz6gtUDZzEy0SqmpuRwvGViita5use51oJ7W+okCvrYngA+AZtnSWQiRb9LRJUozf+BMtvTZmSmzawDDlFKW+ZdczPvoHPbLntcqp3TltzpeBub5OCzWOWLM/ZFvSqkHMXJQdZcgIaxBmp5EaXYOqGqRcRWMFNKQe3rxnPazTKUN+UtXfho4kW2dl9a6D4BSarBSKiGXh+WVyD0Yiej6aq333OkbJARIoBCl21aM1OjPK6WclFL9MKa0hFzSi5v3ywCeM+/3gMV+t5Lb8bYD18yd3+7KSIHeWCnVCkBrvdA8H8OtHqcAlFJ3Y3Rg99dab7fyeyVKMQkUotQyp5Duh5E2/ArwCMbc1bmmF7fYbyRGmu4hGHMopORSVm7Hy8BIfd4MI+X4JYxpcPM7pevb5n1WWVxtrM7nMYS4iXRmC2EFSqltwDSt9Rx710UIa5MrCiEKQCnVWSlV2dz0NAxjKtE19q6XELYgo56EKJj6wI+AJ3AMGKC1PmffKglhG9L0JIQQIlfS9CSEECJXEiiEEELkqkT2Ufj5+enAwEB7V0MIIYqV8PDwS1rrCtmXl8hAERgYSFhYmL2rIYQQxYpS6mROy0tU05NSqq9SasbVq1ftXRUhhCgxSlSg0Fqv0Fo/5e2d3xtahRBC3EqJChRCCCGsr0T2UeQkLS2N6OhokpOTb79xKeXm5ka1atVwdna2d1WEEEVIqQkU0dHReHl5ERgYSNbs0AJAa83ly5eJjo6mZs2a9q6OEKIIKTVNT8nJyfj6+kqQuAWlFL6+vnLFJYS4Sam5ogAkSNyGvD9ClFImExxbd8vVpSpQCCGEsJASD5GLYft0uHz0lpuVqKYnuY9CCCHyIPYErHkDJjeE1WPBzRv6fXvLzUtUoLDnfRRRUVEEBQUxatQoGjVqRM+ePUlKSmLmzJm0atWKpk2b0r9/fxITEwEYPnw4zz77LF27dqVWrVps3LiRESNGEBQUxPDhw28cd+3atbRr144WLVrw8MMPk5CQUOivTQhRAmgNxzfC4sfgq+bGVUTdnjDyTxi1Hpo8fMtdS1SgsLcjR47wn//8h3379uHj48NPP/1Ev3792LFjB7t27SIoKIhZs2bd2P7KlSusX7+ezz//nL59+zJmzBj27dvHnj17iIyM5NKlS3z44Yf8+eefREREEBISwuTJk+34CoUQxU5aEoTPg6ntYf79cPof6PgyvLgHBsyCgFa3PYT0UVhRzZo1adasGQAtW7YkKiqKvXv38tZbbxEXF0dCQgK9evW6sX3fvn1RShEcHEylSpUIDg4GoFGjRkRFRREdHc3+/ftp3749AKmpqbRr167wX5gQovi5egZ2fAvhcyEpFio1hvunQPAAcHbP16EkUFiRq6vrjd8dHR1JSkpi+PDhLFu2jKZNmzJ37lw2bNhw0/YODg5Z9nVwcCA9PR1HR0d69OjB4sWLC+01CCGKMa3h9HbYNhX2/wpoqN8H2j4LNdpDAUc2StOTjcXHx1OlShXS0tJYuHBhvvZt27YtW7Zs4ehRYzRCYmIihw8ftkU1hRDFWXoq7PoBZnaF2T3h6HojODwfCY8uhMAOBQ4SIFcUNvfBBx/Qpk0batSoQXBwMPHx8Xnet0KFCsydO5dBgwaRkpICwIcffki9evVsVV0hRHGSEANhcyBsFiRcAL96cO9n0ORRcPW0WjElcs7skJAQnX0+igMHDhAUFGSnGhUf8j4JUQxoDRHzYPU4SE82Ri+1eRpq3Q0OBW8oUkqFa61Dsi+XKwohhChOUuLhtzGwZwnU6gp9PgW/ujYtUgKFEEIUF+f3wpJhEHsc7n4LOrx8R1cQeSWBQgghijrLpiY3Hxi2wuigLiQlKlAopfoCfevUqWPvqgghhHVkb2rqNxM8KxRqFUrU8FiZClUIUaKc3wszusDen4ympiE/F3qQgBJ2RSGEECWCnZuasitRVxQlRVxcHN988429qyGEsIeUePh5FKx4Aaq3g2c22zVIgASKIkkChRClVBFpaspOAkUh+u6772jdujXNmjXj6aef5uTJk9StW5dLly5hMpno2LEja9eu5bXXXuPYsWM0a9aMsWPH2rvaQghb09pI3vdtN0hJMJqaOo0tlKGveVEq+yj+t2If+89es+oxG/qX5d2+jW65/sCBA/zwww9s2bIFZ2dnRo8ezcaNGxk3bhzPPPMMbdq0oWHDhvTs2ZN69eqxd+9eIiMjrVpHIUQRVARGNd1OqQwU9rBu3TrCw8Np1crI/Z6UlETFihV57733WLJkCdOmTZPAIERpY6cb6PKrVAaK3L7524rWmmHDhjFhwoQsyxMTE4mOjgYgISEBLy+vQq+bEKKQFbFRTbdT9EJXCdWtWzeWLl1KTEwMALGxsZw8eZJx48YxePBg3n//fUaNGgWAl5dXvrLMCiGKkSI4qul2JFAUkoYNG/Lhhx/Ss2dPmjRpQo8ePYiKimLHjh03goWLiwtz5szB19eX9u3b07hxY+nMFqIkKaKjmgAS0xJvuU7SjIss5H0SwgayNzUNmFWkriLWnVrHh1vHs+HR9ZJmXAghCl0RHtV0/vp5Xt/4PmEXN2FKqXzL7SRQCCGErRTRUU1pGWlM2PItPx2fRYY2oa/04dF6g3mHpjluL4FCCCGsLUtTkzcM/RVqdrR3rcgwaWbv2Mi0fZ+Q6ngah+QgBtd+gdGPtMa7jDPv3GI/CRRCCGFNNzU1zQDPivatUnoG3+84wteRU0h0D8UBLx7wf403Oz+Cu8vtw0CxCBRKqQeBe4GKwNda67V2rpIQQtysiDU1xSensfCfk8yMWE5y2Z9xcI/nrgp9+aTbOHzcyub5ODYPFEqp2cB9QIzWurHF8nuALwFH4Fut9ce3OobWehmwTClVDpgESKAQQhQdWkPEfFj9apFoaoqJT2bOlii+C9tJus/POPkepLpHHSZ2nkqTCk3yfbzCuKKYC0wB5mcuUEo5Al8DPYBoYIdS6leMoDEh2/4jtNYx5t/fMu9XosXFxbFo0SJGjx6d63aBgYGEhYXh5+dXSDUTQtykCDU1RV26zoxNx1kafhK8N+Ee8CceDg78t8UrDA4ajJNDwT7ybR4otNahSqnAbItbA0e11scBlFLfAw9orSdgXH1koZRSwMfAaq11hG1rbH+ZacZvFyiEEHZWRJqa9kRfZdrGY6zeew7nMqfxq7+CeNMpOlXrwhtt3qCKZ5U7Or69Gs+qAqctnkebl93Kf4HuwACl1DM5baCUekopFaaUCrt48aL1ampFBU0zfu7cOTp16kSzZs1o3LgxmzZtuunYkydPpnHjxjRu3JgvvvgCgE8++YSvvvoKgDFjxnD33XcDRoLCIUOGFN4LF6Kk0RrC55nTgscbTU12SAv+99FLDPl2G32nbCb0yCmaNf8L1+rf4O6WzBddvuCru7+64yAB9uvMVjksu+Ut4lrrr4Cvcjug1noGMAOMO7NzLX31a3B+z+1rmR+Vg6H3LbtZ7ijN+GeffUavXr148803ycjIIDEx66324eHhzJkzh23btqG1pk2bNnTu3JlOnTrx2Wef8fzzzxMWFkZKSgppaWls3ryZjh3tP1RPiGIpJcHc1PQj1OpivoGucJuariam8d6Kffyy8wx+Xi7073SJ8Pi5HEuOZXDQYJ5r/hwezh5WK89egSIaCLB4Xg04a6e6FIo7STPeqlUrRowYQVpaGg8++CDNmjXLsn7z5s089NBDeHgYJ0a/fv3YtGkTzz77LOHh4cTHx+Pq6kqLFi0ICwtj06ZNN640hBD5cH4vLBkOsceg61vQ8SVwcCzUKmw8fJFxS3dzKSGFEZ3LEu24kLXnthBUPoivu0+hka/1s2PbK1DsAOoqpWoCZ4BHgcfu9KBKqb5A3zp16uS+YS7f/G3lTtKMd+rUidDQUFauXMnjjz/O2LFjGTp0aJZj58TZ2ZnAwEDmzJnDXXfdRZMmTfjrr784duyY5HMSIj+KwKim6ynpfLTqAIu2naJORTfu63Sc5VHzcFAOjGs1jkcbPFrgzurbsXmDmlJqMbAVqK+UilZKjdRapwPPAb8DB4Aftdb77rQsrfUKrfVT3t7ed3ooq7uTNOMnT56kYsWKjBo1ipEjRxIRkbU/v1OnTixbtozExESuX7/OL7/8cqNpqVOnTkyaNIlOnTrRsWNHpk2bRrNmzTDGBwghbislAX5+ClY8D9XbGmnBCzlIbD8RS+8vN7F4+ykebJtMmZpf8cOx6XSo2oHlDy5nSMMhNgsSUDijngbdYvkqYJWtyy8qLNOMm0wmnJ2dmTx5Mjt27GDLli04Ojry008/MWfOHJ544okbacZ79+5N48aN+fTTT3F2dsbT05P58+dnOXaLFi0YPnw4rVu3BuDJJ5+kefPmAHTs2JGPPvqIdu3a4eHhgZubm/RPCJFXdm5qSk7L4LO1h/h28wmqls+gZ+dNrLuwhqqeVfm629d0qtapUOpRotKMWzQ9jTpy5EiWdZI+O2/kfRKCm5ua+s8q9KuI3dFxvPTjLo7GXKND8+OcMP1IYnoiTzR6glFNRuHu5G71MpVSJT/NuNZ6BbAiJCRklL3rIoQopuw8qiktw8SU9UeZ8tdRfH0u06TVb+xK2E9IpRDebvs2tXxqFVpdMpWoQCGEEHfEzk1Nhy/E89KPkew9e5HGjf4h2rSWuLSyfNThI/rW6mu3vkUJFEIIYedRTRkmzazNx5m09hAePgeoFvwbJ9Mu0b9uf8a0HIO3q30H6JSoQJHn4bFCCJHJzk1NJy9f55Uluwg7c4yAur9zhV1U8qzHlLaf06xis9sfoBCUqEAhfRRCiHyxY1OT1pqF204xftUeHMttolzddSQ7OvBKsztL4GcLRacmQghRWOzc1HTuahKvLt3N39HbKV/rN5LVWToHdGdc63FU9rj13NX2IoGiCOvSpQuTJk0iJOSm0WpCiIKyY1OT1pplkWd4Z8U2TOV+o0xgGOU9/XmzTeHdE1EQJSpQSB+FECJXdmxqupSQwps/72b92d8oU30Njg4pPNH4SZ5q8pRN7omwJvvN0WcDRTmFB0BUVBQNGjRg2LBhNGnShAEDBpCYmMi6deto3rw5wcHBjBgxgpSUlCz7zZo1izFjxtx4PnPmTF566aXCrr4QxVeWtODXjKamzmMLLUis2XueHlO+Z3Pi/3Cr8jPNKwWxtO9SXmjxQpEPElDCrijyauL2iRyMPWjVYzYo34BxrcfddrtDhw4xa9Ys2rdvz4gRI5g8eTLTp09n3bp11KtXj6FDhzJ16lRefPHFG/s8+uijNGnShE8++QRnZ2fmzJnD9OnTrVp/IUosOzY1XU1K4+3l4fx+dgEulTfj41KWV1t/yP217y9W+dZK1BVFcRAQEED79u0BGDJkCOvWraNmzZrUq1cPgGHDhhEaGpplHw8PD+6++25+++03Dh48SFpaGsHBwYVedyGKnfN7YUYX2LsUur4JQ34utCCx8VAM3aZOYV3CK7j4hvJQ3YdY2W8FD9R5oFgFCSilVxR5+eZvKwU9QZ588knGjx9PgwYNeOKJJ6xcKyFKGDuOarqeks7bK0NZfXYqTr4HqeFZi/EdpxSZeyIKokQFiuLQmX3q1Cm2bt1Ku3btWLx4Md27d2f69OkcPXqUOnXqsGDBAjp37nzTfm3atOH06dNERESwe/duO9RciGLCjk1NW49f4IXVX5JYZg1uXg78p/lLDGs8BGcH50Ip31ZKVKAoDjfcBQUFMW/ePJ5++mnq1q3Ll19+Sdu2bXn44YdJT0+nVatWPPNMjtOCM3DgQCIjIylXrlwh11qIYuJMhDF3ROwxo6mp48uF0mGdnJbB6yuX8XvMNzh6xtDCtwMTu7xjlfmqi4ISFSiKAwcHB6ZNm5ZlWbdu3di5c+dN227YsCHL882bN2cZ/SSEMEu6Aus/hB2zwLMSDF0ONQvnvoS/T5zkxT8+JMn1Hzzd/Hi/wxfcU6tboZRdWCRQFANxcXG0bt2apk2b0q1byToBhbgjWsPuH2DtW5B4Gdo8DV3fMPolbCwlPZ0xK2cSenkuyiWZHv6D+LDLi5RxLmPzsgubBIpCFBgYyN69e/O9n4+PD4cPH7ZBjYQoxmIOwMqX4eQWqBoCQ36CKk0Lpeg/j0byWui7pDgep5xTfb7q8SHNqzQolLLtQQKFEKJ4SUmA0E9g69fg4gl9v4TmQ8HB9qP941Ou89zqjwmP+xWFOwNrvMJbnYcWu+Gu+VWiAsXtRj1prUv8H/ROlKRpcUUJpDUcWAFrXodr0dB8CHT/H3j4FUrxP+xbzcfbJ5DucIVKqhPT73+HOn6VCqVseytRgSK3UU9ubm5cvnwZX19fCRY50Fpz+fJl3Nzc7F0VIW4WexxWvQpH/4BKjWHALKjetlCKPhN/hufWvsPRhO2QXpkR9SfxYseepepzpEQFitxUq1aN6OhoLl68aO+qFFlubm5Uq1bN3tUQ4l9pyfD3V7DpM3Bwgl4ToPVT4Gj7j640Uxpfh89mzr4ZZGiNv36Yb/uPoXp5L5uXXdSUmkDh7OxMzZo17V0NIUReHV0Hq8Ya90Q06ge9PoKy/oVSdNj5MMZteI+YlJOYrjdidPBLPNuhFQ4OpecqwlKpCRRCiGLi2ln4/Q3Y9wuUrw2P/wK17y6Uoq8kX2HCP5+y+uQKTGk+VDONZtojQ6np51Eo5RdVEiiEEEVDRhpsmw4bJoAp3Zgvov3z4ORq86JN2sSyo8uYuG0SienXSb/ShdHNnmF054Y4ltKrCEsSKIQQ9nfqH/jtJYjZB3V7Qu9PoHzhNBUfvnKY9/7+gD2XIklPDKRq+gtMGdSbBpXLFkr5xYEECiGE/Vy/BH+8C5HfQdlq8MhCaHAvFMKIosS0RKbtmsa8/fMxpbuREjOAp5sP5L/d6uPiJDMwWCpRgaI4ZJA1+YoAACAASURBVI8VQgAmE0TMgz/fg9QEaP8idH4VXAqnL2D9qfVM2DaB84nnSY0LwT9jAF8Mbk/TAJ9CKb+4USXxJquQkBAdFhZm72oIIXJybpfRzHQmDGp0gHs/g4qFk/7ibMJZJmyfwIbTG3BMr0L8mQcY3qIrY3vVx825cKZFLcqUUuFa65Dsy0vUFYUQoghLSzKuILbPgDK+8NAMaDKwUJqZ0kxpLNi/gKmRU0nL0KTG9MbP1INpQ1rQtpavzcsv7iRQCCFs7/Ix+HEoXNgLrZ6Eu98G98Jp5om4EMEH/3zA0bijuKY24erJ3jzaoilv3huEp6t8BOaFvEtCCNva9wss/69xN/XgpVC3R6EUeyX5Cp+Hf84vR3/B09GPlOhhuNOM2Y83oWv9wpnxrqSQQCGEsI30VGOeiO3ToVorGDAHfAJsXqxJm1h+dDmTwycTnxqPd0pPok904IGmgfzv/kb4lHGxeR1KGgkUQgjrizsFS4bDmXBoO9rI8upk+w/oQ7GHGL9tPBExEfi7NSQm6h4UVfnmsWD6BJeMaUntQQKFEMK6Dv9uzFutTTBwATS83+ZFnr9+nik7p/DrsV/xdPaiStpQDh1oQPegyozvF0xFL8mKfCckUAghrCMjHf76EDZ/DpWbwMB5UL6WTYu8nnad2XtnM3/ffDJ0Bs29HyAssjnx2oNPBzRkQMtqpSoduK1IoBBC3Llr5+Cnkca0pC2Hwz0Twdl23+LTTen8fORnvo78mtjkWJqV68rxw53YuM+dLvUr8NFDwVT1cbdZ+aWNBAohxJ05vgF+ehJSrxv3RjR9xGZFaa0JjQ5lcvhkjl89Tn3vJnjGPcWmv32oX8mL+SOC6FSvgs3KL60kUAghCsZkgk2T4K/x4FcPhv1m0zus91/ez2dhn7H9/Hb8PQJo5PQC//xTGT9PNyb0q8fAkADJ9GojJSpQSK4nIQrJ9Uvw8yg4th6CB8J9n4Orp02KOn/9PF9FfMWK4yvwdvGhpecI/t5Zl5PKkf/eXYunO9eWG+dsTHI9CSHy59Q/sOQJSLwMvScafRI26DBOSE1g1t5ZLNi/AK01zbz7ErG7BVcSHOnXoipje9Wnirf0Q1iT5HoSQtwZrWHrFCMtuE91ePIPqNLU6sWkmdL46fBPTN01ldjkWFr6diPqSCfW7XOlba3yvPVEQxpX9bZ6ueLWJFAIIW4v6Qos+w8cWgkN7oMHvwE3635Ya63ZcHoDk8MnE3UtiqByzSgX/ywbNntRy8+DmUOD6B5UUYa72kGeAoVSygNI0lqblFL1gAbAaq11mk1rJ4Swv7M74cdhcO0M9JoAbZ+1elPTvkv7mBQ2ibALYQR41qC5y0ts2loBH3cX/nd/PR5rUx1nR5lMyF7yekURCnRUSpUD1gFhwCPAYFtVTAhhZ1pD2CxY8zp4VIAnVkNAa6sWcTbhLF9GfMmqE6so51qOdt6j2BRem6MmB0Z1DOQ/Xevg7e5s1TJF/uU1UCitdaJSaiTwf1rrT5RSO21ZMSGEHaXEw4oXYe9SqNMDHpoOHtabt+Fa6jW+3fMtC/cvRClFe7+BhO9qztprinubVOG1exoQUL6M1coTdybPgUIp1Q7jCmJkPvcVQhQnF/Ybc0fEHjPmjejwEjhYp9knzZTGj4d+ZNquaVxNuUrrCj2IOtKJNXudaF7dh2mDG9KyRjmrlCWsJ68f9i8CrwO/aK33KaVqAX/ZrlpCCLuIXGRMU+rqBUOXQ81OVjv0vsv7eC30NaKuRRFcviVVku7lz9AyBJR3Z8pjDbg3uIp0VBdReQoUWuuNwEaL58eB521VKSFEIUtLglVjYecCCOwI/WeBVyWrHFprzaKDi/gs7DN8XMvTxn0sf231pYyLE2/0qcOwuwJxdZL5qouyXAOFUmoFcMs78rTWts8fLISwrUtHYckwY5rSji9DlzeM2eis4FrqNd7d8i5/nvqT4HLt2BN5D6eS3Xi8bQ2e71aX8h4yiVBxcLuzYZL5Zz+gMvCd+fkgIMpGdRJCFBYbTlO65+IexoaO5cL1C3SrOJLfNtWlTkUvpjzTgjoVbZPuQ9hGroHC3OSEUuoDrbVlY+UKpVSoTWsmhLAdG05TqrVmwf4FfB7xORXdK9LN538s3ehIp3oV+Pqx5ni5yXDX4iav15cVlFK1zH0TKKVqApLLV4jiyIbTlF5NucpbW95iw+kNdK7WhdRzA1kado3H2lTn/fsb4SQ3zRVLeQ0UY4ANSqnj5ueBwNM2qZEQwnYOrYFfnrbJNKWRMZG8GvoqF5Mu8lyTl1mztQ6Rp6/yRp8GjOpYS0Y0FWN5HfW0RilVFyN1B8BBrXWK7aolhLCqjHRY/wFs+cLq05SatIl5++bxVcRXVPKoxPg205mw7DoXrsXzzWMt6B1cxSrlCPvJz9CGlhhXEk5AU6UUWuv5NqmVBaVUEPAC4Aes01pPtXWZQpQo187B0hFw6m+rT1N6JfkKb215i9DoUHrU6MG9VZ5nzKJDuDg58P1TbWleXW6eKwnymhRwAVAbiAQyzIs1kGugUErNBu4DYrTWjS2W3wN8CTgC32qtP77VMbTWB4BnlFIOwMy81FcIgTEDXcQ8+PNdyEiz+jSlERcieDX0VWKTY3mjzRs4J3Tgmfl7qOHrwZzhrSQFRwmS1yuKEKChzv8sR3OBKVgEFKWUI/A10AOIBnYopX7FCBoTsu0/Qmsdo5S6H3jNfCwhxO2c32PcYR293biB7r7Pwa+uVQ5t0iZm753NlJ1T8Pf0Z0HvBfy+05mv1u3mrtq+TB3SUhL5lTB5DRR7Me6jOJefg2utQ5VSgdkWtwaOWoyg+h54QGs9AePqI6fj/Ar8qpRaCSzKaRul1FPAUwDVq1fPTzWFKDlSEmDDBPhnKrj7wIPToOmjVksLHpscyxub32DLmS30CuzF663f5oPlx1kWGcXDLavx0UPBuDjJyKaSJq+Bwg/Yr5TaDtzoxC7gndlVgdMWz6OBNrfaWCnVBeOGP1dg1a2201rPAGaAMRVqAeolRPF2cCWsehWuRUOLYdD9PShT3mqHDzsfxrjQccSlxPF227fpXvUBnpkXwfaoWMb2qs/oLrVlZFMJlddA8Z4Vy8zpTMotTcgGYIMVyxeiZIk7BavHwaFVULEhDPgdqre12uFN2sS3e77l68ivCfAK4OvuX+NmCqD/tK2ciUviq0HNub+pv9XKE0VPnpMCKqUqAa3Mi7ZrrWMKWGY0YHkLaDXgbAGPlYVSqi/Qt06dOtY4nBBFm8kE26YZw14Berxv3EDnaL3+gUtJl3hj0xtsPbeVPjX78E67dzhwJoVB87cAsOjJNoQEWu+qRRRNeWpMVEoNBLYDDwMDgW1KqQEFLHMHUFcpVVMp5QI8CvxawGNlobVeobV+yttbJl4XJdz1S7BoIPz+utFZ/Z9t0P4FqwaJ7ee28/CKh4mIieC9du/xccePWbf/Ko/N3Ea5Mi78Mrq9BIlSIq9NT28CrTKvIpRSFYA/gaW57aSUWgx0AfyUUtHAu1rrWUqp54DfMUY6zdZa7ytg/YUofU6Ewk+jIOkK9JkErZ606hzWGaYMZuyewbTd06hRtgbTe0ynrk9dvv7rKJPWHqZ1zfJMH9KScpL5tdTIa6BwyNbUdJk8XI1orQfdYvkqcumYLihpehIlWkY6bJwIoZ+Cbx0YshQqB1u1iEtJl3gt9DW2nd/G/bXv5802b+Kk3Hh16W6WhEfzUPOqfNw/WOaPKGXyGijWKKV+Bxabnz8CrLZNlQpOa70CWBESEjLK3nURwqquRhtXEaf+hmaDoc+n4OJh1SK2nt3Ka5teIzEtkQ/af8CDdR7kalIaT363nb+PXeaFbnV5sXtdGdlUCuW1M3usUqof0AFj1NIMrfUvNq2ZEMJwcBUsH22Tu6sB0k3pTN01lZm7Z1LLuxaze82mtk9tTscm8sTcHZy8fJ3JA5vSr0U1q5Yrio+8pvCoCazSWv9sfu6ulArUWkfZsnJClGrpKfDHO8bIpipNjTkjfGtbtYiYxBheDX2V8AvhPFTnIV5v8zruTu7sPHWFUfPDSMvQLBjZhra1fK1arihe8tr0tAS4y+J5hnlZq5w3tw/poxAlxqWjsPQJOL/bPGfEe+DkatUitpzZwuubXic5I5nxHcbTt3ZfAFbvOceLP0RSqawbc55oRe0KMhtdaZfXQOGktU7NfKK1TjUPbS1SpI9CFHuXjsDmL2D39+DqBYO+h/q9rVpEuimdKTunMGvvLOqWq8ukzpOo5V0LrTUzQo/z8ZqDNA/wYebQEHw9rRucRPGU10BxUSl1vznnEkqpB4BLtquWEKXM2Z2waTIcWAFObhAyEjqMgbLWncvh/PXzjAsdR0RMBP3r9ue11q/h5uRGeoaJd37dx6Jtp7i3SRU+e7gpbs4yskkY8hoongEWKqW+xki3EQ0MtVmthCgNtIaozbB5MhxbD67e0PElaPMseFp/puHQ6FDe3PwmqRmpTOw4kT61+gAQn5zGfxbtJPTwRUZ3qc0rPevj4CAjm8S/8jrq6RjQVinlCSitdbxtq1Uw0kchigWTCY78Dps+g+gd4FHB6IMIGQFu1s8qkGZK4/8i/o85++ZQv1x9JnWeRKB3IABn45IYMXcHR2MSmNg/mEdaSeZlcTOVlykmzHmexgP+WuveSqmGQDut9SxbV7AgQkJCdFhYmL2rIURWGemw72fY/DnE7Aef6nDX89B8CDi726TIyJhIxm8bz4HYAzxS/xHGthqLq6PR77An+ioj5+0gKTWDqUNa0qGun03qIIoPpVS41jok+/K8Nj3NBeZgpPIAOAz8ABTJQCFEkWLKgN0/GHdVX4mCCg3goenQuL9VczNZOn/9PJPDJ7P6xGoquldkcpfJ9KjR48b6P/Zf4PnFOynv4cJ3o9tQr5KXTeohSoY8z0ehtf5RKfU6gNY6XSmVcbudhCjVtIZDq2Hd+3DxgHEvxKOLoF5vcLDN5D5J6UnM3TeX2Xtmo9E81eQpRjYeSRnnf6clnbPlBO//tp8mVb2ZOSyEil7WmT9blFx5DRTXlVK+mOeNUEq1Ba7arFZCFHdRW+DP94ypSMvXhofnQtADNgsQWmt+j/qdyeGTOXf9HD1r9OSlkJeo6ln1xjYZJs0Hv+1n7t9R9GpUiS8eaY67i4xsEreX10DxEkYq8NpKqS1ABaCgacZtRjqzhd2d32NcQRxZC15V4L4vjD4IGzUxAey/vJ+J2ycSERNB/XL1+ajDR7SqnPVe2Osp6Ty/eCfrDsYwqmNNXusdhKOMbBJ5lNdAURvojTHhUH+MqUvzum+hkRvuhN3EnoC/PoI9S8GtLHT/H7R+ClzK3H7fAkg3pbP17FZWHFvBmqg1+Lj68G67d3mozkM4OmS9Sjh/NZmR83Zw4Nw1PniwMY+3rWGTOomSK68f9m9rrZcopcoB3YHPgKnkMte1EKVC/AUj7Xf4HHBwhg4vGhMIuZezelFaa3Zd3MWqE6v4Pep3YpNj8XLxYlijYYxqMoqyLmWzbH/kQjxz/47i54gzOCiYNbwVXetXtHq9RMmX10CR2XF9LzBNa71cKfWebaokRDGQfBW2fAX/fGMk72s5DDq9avU7qQGOxx1n5YmVrDq+iuiEaFwdXelcrTP31rqXDlU74OL4bzadDJPmr4MxzP07is1HL+Hi5MCDzfx5unNtydkkCiyvgeKMUmo6xtXERKWUK3mcRlWIEuVqNETMh+0zjBnmGvWDu9+ySVbX1SdWs/L4Sg7EHsBBOdCmchueafoM3ap3w9Ml64f+teQ0loRFM+/vKE7FJlK5rBtje9VnUOvqlJeZ6MQdymugGAjcA0zSWscppaoAY21XLSGKEFMGHF1nNC8dXmMMe63bE7q+Dv7NrVaM1prIi5EsOrCIP07+QYbOoLFvY8a1GkevwF5UKHNzWo/DF+L57p+TLA2PJjE1g5Aa5Xj1nvr0alQZZ0f5LiesI68pPBKBny2enwPO2apSQhQJ8Rdg5wIInwdXTxmpNjqMgRbDoJz1OoRTMlJYc2INCw8s5EDsAbycvRgSNIQB9QbcSLVh6WxcEit2nWV55Fn2n7uGi6MDfZv6M/yuQIKrWT8FiBBFbuTSnZDhsXa041tQDsaHqEMxHptvMkFUKITNhoMrwZQONTtBz/eh/r3gZL1mnJjEGH449ANLDy8lNjmW2t61ebvt29xX674sN8gBxCWmsnLPOZZHnmX7iVgAmgX48G7fhvRt6o+fpAMXNpSnXE/FjeR6KmRbvoI/3jZ+929u3Dvg38y+dcqv65dh1yIImwOxx4xRS80GQ8snwM96XzwyRy5ZNi91DujM4KDBtKncJst81Imp6fx5IIZfI8+w8fBF0jI0tSp48GCzqtzf1J9AP+vOmS3EneZ6EiJnEQuMINHoIWhwH6x5HWZ2Ne4h6PqmcU9BUaU1nPrHuHrYvwwyUqF6O+g8Dho+AM7WS21xPe06606tY9GBRey7vA8vZy8eC3qMRxs8SoBXQJZtj1yIZ0bocVbuOUdiagaVy7rxRPua3N/Un0b+ZbMEEyEKgwQKUXD7f4UVz0PtbvDQDKNZpk53WP8BbJsO+5fDPR8bH7pF6cMtIw3C58KOWUYOJtey0HK4cfVQqaHVirlw/QIbozey/vR6tp/bTpopjZreNXmrzVv0rd33pualyNNxfPPXUdbuv4C7syMPNPPngWZVaV2zvNxFLexKmp5EwRzfAAsfhirNYOgycMnWDBIdBr+9aKS0qNsT+nwK5QLtUdOsTu+AFS9AzD7wb2HMAdG43831LwCtNYevHOav03+x4fQG9l3eB0CAVwBdA7rSNaArLSu1zHJFoLVmy9HLfLPhKH8fu4y3uzPD7gpk+F2BMqxVFLpbNT1JoBD5Fx0O8/oaI3+Gr4Qy5XPeLiMdtk+H9R+BNkHnV6Hdc1btEM6z5KtGDqYds6CsP/SZBA363PFh00xphF8IZ8PpDWw4vYEzCWdQKIIrBN8IDrW8a93UXGQyadbuP883G46xO/oqFb1cGdWxFoPaVMfTVS70hX1IoBDWEXMQ5txjNNeMXAtelW+/z9VoWD0ODv4GFYLgvs+hRjvb1xWMfogDK2D1qxB/Hto8bdwg51rw+RcS0xIJjQ5l/en1bI7eTHxaPK6OrrSr0o4uAV3oHNAZP/ecJwFKyzCxbOcZpm08xrGL1wn0LcPTnWvTr0VVXJ2K8WgxUSJIoBB3Lu4UzOoFOgNGrIHytfK3/6HVsGosXD0NzR+HHu/f+mrEGq5GG+UdWgWVguH+L6FqywIf7mLiRRYfXMzigz+QkHYNV1WW6m4h1CzTiuplmuHu5I6jgwNODgonR4WTg7rx3NFBcf5qMnO2nODs1WSCqpRldJfa9AmuIv0PosgoFYHC4j6KUUeOHLF3dUqWhBiYfQ8kXoInVkOlRgU7Tup12PAxbP0a3H2g54fQdJB1O7tNGbB9ptGpbsqArm9A29HgWLAmnSNXjjB//3xWHl9JuikdU0JDkmPvQifVIsOUv3q3DizPs11r06VeBRm9JIqcUhEoMskVhZUlX4W598KlozB0OVS3QtLg83vhtzHGxD41OsB9k6FC/Ts/7rndRmf12QhjBNa9nxWoE11rzdZzW5m/bz5bzm7BzdGNOmW6si2yEcGV6jDz8ZZULOuG1poMkybdZP6ZoUk3mbIsS8swnrs4OVDDV+59EEWX3EchCiYtCRY9avRNDPreOkECoHJjGPE77JwPf7wDU9sb6bk7vQLO7vk/nuWVSpny0H+WMSd1Pr+1p2WkserEKubvn8/hK4fxdfPl2ab/4eDhxvy6/Sr3NanCpIeb4uZs9CcoZW5mku4FUYJJoBC3lpEGPw6DU1thwCyo2926x3dwMO5fqH8vrH0TNk2CvUuNq4A6+SjryJ+wcozRh9JiqDFpUD77Pq6mXGXJ4SUsOrCIi0kXqeNTh/fvep+2Fbvz/OI97Ii6wovd6/JCt7rSZCRKHQkUImcmEywbDUd+h3snG9/ObcWzAvSbYaTMWPkSfNffSN99z4TcR1UlxBh3gu9dCr51YfgqCGyfr6JPx5/mu/3f8cvRX0hKT6JdlXZ80P4D7vK/iyMxCTw8bQcX41P4v0HN6dvU/w5fqBDFkwQKcTOtYc1rsOdHYyhpq5G33WVnzE7OJJzB180XP3c/fN198XH1wUHlI9V1rc7w7N+w+QvY9Bkc/RO6vWPcFGeZaNBkMrK6/vG20TTW5XUjq6vT7RPjmbSJ2ORYjscd5/tD37Pu1DoclAN9avZhaMOh1C9v9JP8dSiG/y7aibuLIz883Y5mAT55fx1ClDASKMTNNk40bpRr+x/o+Equm55LOMenYZ/yx8k/blrnqBwp71YeP3c/yruXx8/NCCB+7n5ZAoqfux9lXcw5jJxcocs4CB5gdHavegUiFxn3Xvg3g4uHjTu+T26BGu2NBIQV6gFG/8LFpItcSLxgPK4bP2MSY278fjHxIuk6HYCyLmUZ0XgEgxoMomIZY4pQrTWzt0Tx0cr9BFUpy7fDQqjiXYA+EyFKEBn1JLLaNt24Oa3pY/DA10Y/Qg5SM1KZu28uM3fPBGBUk1F0r96dy8mXuZx0mcvJl7mUdInLSeafFsvTTek3Hc/JwelGULkRRNzK43clGt/9K/BNjMM7oD1xZ7ZxwdWdC/V7csHHnwuJMTeCweWky2iyns/uTu5UKlPJeHhUomKZilQqU4nKHpVpXbl1lnxLqekm3v11L4u3n+aeRpWZ/EhTyrjIdylResioJ3F7u380gkT9e+H+/7tlkAiNDmXi9omcij9Fjxo9eCXkFfw9jfb7WuR+E57Wmmup13IMIpm/X0q6xKHYQ8Qmxxrf/r1dwLsipB+BSuZO6gubKHulrPHB71GJoPJBNwWDSh6V8HL2ylPn85XrqTy7MJx/jsfyn661eblHfRzkRjghAAkUItOhNfDLMxDYEQbMzvHmtNPxp/lkxydsOL2BwLKBTO8+nbuq3pWvYpRSeLt64+3qTW2f3OeZNmkTV1OuGkEk+RJx1y9QzqMylcoYwSB79tWCOhqTwJPzdnA2LpnJA5vSr0U1qxxXiJJCAoWAqC2wZBhUDoZHF900D0NyejKz985m1p5ZODo4MqblGB4PehxnR2ebVstBOVDOrRzl3MpRB9vMWrjpyEVGL4zAxdGBxU+1oWUNG6YUEaKYKlGBQqZCLYBzu2Dxo+AdAEN+yjLRkNaaDac3MHHHRM4knOGewHt4OeRlKnvkIRFgMbBgaxTvrdhPnQqezBoeQrVy1rlCEaKkKVGBQmu9AlgREhIyyt51KRYuHzPuWXAta8wp4fFvxtOT107y8faP2XxmM7W9azOr5yxaV2ltx8paz6nLiUzdeIzF20/RrUFFvhzUXFJ7C5EL+e8ora6egfkPGvNEDF0G3ka7fGJaIt/u+Za5++bi4ujC2JCxDAoahLODbZuZbO3k5eus3HOOVXvOsffMNQBGdazJa72DJHurELchgaI0SoyF7/pB0hUYvgL86qK15s9Tf/LJjk84f/0899W6j5davkSFMhXsXdsCi7r0b3DYd9YIDk0DfHijTwN6N65CQHlpahIiLyRQlDYp8bBwAMSeMPok/Jtz/OpxPt72MVvPbaVeuXp83PFjWlYq+LwN9nT8YgKr9pxj5Z7zHDhnBIfm1X14694g7mlcWfohhCgACRSlSXoKfD8YzkbCIwu4Xq0F08Mms2D/Atyd3Hm99esMrD8QJ4f8nxY7omI5GpNABU9XKngZDz9PV1yc8pHCo4COXUxg1e5zrNxzjoPn4wFoYQ4OvYOrUNVH7qwW4k5IoCgtMtLhp5FwYiP6gamscXVg0i/3E5MUw0N1HuKFFi/g6+6b78Nqrfl20wnGrz5ATjf5+5RxzhI8svxusaxcGZd83eB2NMa4clhlERxa1ijH2/c1pHfjyvhLcBDCakpkCo9ydcrpYTOHEeAVkOVR2aNygb4tF3taw6//hZ0LONLlFSaknGDH+R0ElQ/izbZv0rRC0wIdNj3DxHsr9vHdP6foE1yZ1+4J4kpiKhfjU7iYkGL8zHyYn8fEJ5OcZrrpWI4OCj9Pl5uDiacrFbzcqODliquTAxsOXWTVnnMcumAEh5Aa5egTXIXewZUlJ5MQd6hUzXBXsX5F3W5iO6Ljo0k1pd5Y7uTgRFXPqlTzqkaAZwDVy1a/EUSqeVXD1fH22UeLpbVvE7/1/5jauBuLrh/Dw9mDF1q8QP+6/XF0KNiMOwkp6fx3UQR/HbrI051rMa5XgzxdEWituZ6akTWIxCdnDSzm3y8lpJJhynp+KmURHBpXobK32y1KEkLkV6kKFJlJAU3aRExiDKfjT994nLp26sbvCWkJN/ZRKCqWqUiA178BpJpXNap7Gb97uXjZ8RUVnN40md+2fcpnFf2J1Wn0r9ef55s/Tzm3cgU+5vmryYyYu4NDF+L54IHGPNamuhVr/C+TSRtXKObAcS0pnZDAclQqK8FBCFsolYEiN1pr4lLi/g0g8aeIjo++EUwuJ1/Osr2Pq89NTVmZAcXXzbdIznp2aPMnjN83kwg3N4J9G/Nm27do5Nfojo65/+w1RszdQUJKOlMea06X+hWtVFshhL1J9thslFI38gg1qdDkpvWJaYlZrkQyH7su7mJN1BpM+t92dncn9yxXH/buF7mWeo0p617ihwv/4O3mwf/avMGD9QfkbxKhHPx1KIbnFkZQ1t2ZJc+0I6hK2dvvJIQo9kptoLidMs5lqF++/o0ZzyylZaRx9vrZLM1Yp+NPc+LqCTZFb8raL6Kc8Pf0J6BsAAGeWa9EqnpWxc3Jes0oJm1i+dHlfLHjE+JS4xmoPXiu/zK8varc8bG/++ck7/66jwaVvZg1rJX0DQhRikigKABnR2dqlK1BjbI1blqXW7/IrphdWfpFACqVqZT1vw+uvQAADz1JREFUKqTsv7+Xdcn7N/Z9l/cxftt4dl/cTbOUNKabvGkwbA24F7wvAox+go/XHGRG6HHublCR/xvUHA/JiyREqSL/8VbmoByo7FGZyh6VaVW5VZZ1ufWLhEaH3rJfpJpXNeNKxKJpy8/dD6UUcclxfLXzK5YeXkp5l7J8FJdEXzxQI5bfcZBITstgzA+RrN57nsfb1uDdvg1xcrT9DXRCiKJFAkUhKki/yKn4U+y+uJvfo37PsV8kJjGGhNQEBtfqy+jtS/HSjjByOXjdWSrwSwkpPDkvjF3Rcbx1bxAjO9Qskh32QgjbKxaBQinlAf/f3p1HWVHeaRz/PiwN0myySrO1CC4clAYRo8KIZhyXKIRoglHHqCRqEs2o4xmdk8yYc+Ykzh/jRE8mEwfUtGbilugESNRoHB0BFyDabCpKoEFsoFmbZl/6nT+qSF+x+9J0375L9fM5556uvX51oep333qr3pc3gPtCCL/LdTytpTn1IkO6DeE7I6Zx8nPfhgN74cYX4fjSFsWxsnonN5YvYFPtPn5+7ZlcMioZ/U+YWfO0aqKQ9BhwOVAdQhiVMv0S4CGgPfBICOFfj7Kpe4BnWy3QAtBovcie7VB+OezcCNfPgv4jW7Sft/68hVt+uYiiDu14+uZzKBvcs0XbM7PC19olinLgP4AnDk+Q1B74GXARsA5YKGk2UdK4/4j1bwLOAN4H/JjNkfbugCenwaYP4ZpnYHDLOhZ6/t113PPcEob2LuYXN5zlZrjNDGjlRBFCeENS6RGTxwMrQwirACQ9DUwJIdxPVPr4DEkXAMXASGCPpBdCCJ9vLKgt2FcLa9+BNfOifq6r3oW6Q3DVYzD8i83ebAiBB//4MQ+9+jHnDOvNw9edSY8uhd1RkZllTi7qKAYCn6SMrwPObmzhEML3ASTdAGxuLElIuhm4GWDIkNZpUiLr9u6AtW/HiWFe1Dx4OATtOkDJWDj3e3DKZTD4rKNvqxH7D9Zx73NLeP69T7ly7CDu/8rpWWka3MwKRy4SRUOPzhy1HZEQQvlR5s8AZkDUhEezIsu1PdujxFA5F9bMh/WLo65K23WEgWfChDuh9DwYfDYUFbd4dzW7D3DLfy/i7VVbueuik7n9wuF+ssnMPicXiWIdMDhlfBBQlYM4cm/PNljzVlRaWDMP1i8BArQvgkFnwcS7oXRCNFyU2fqCtVt2c0P5AtZt3cNPpo1m6phBGd2+mSVHLhLFQmCEpBOBT4GrgWsysWFJVwBXDB8+PBOby7zdW6OSQuX8KDFsWEaUGDpFFdHn3xMnhnHQsfX6Vnhv7Ta++fgiDtYFnpg+ni8MO/YOi8ys7WjV1mMlPQVMAvoAG4neg3hU0mXAg0RPOj0WQvhRJvfblNZjs2LX5vrEUDkPqpdH0zt0jhJD6UQYel50W6ljdh7qenHpeu54poL+3TvzixvP4qS+XbOyXzPLfzlpPTaE8PVGpr8AvNCa+86JnZvqn0iqnAebPoimd+wSJYZRP4ChE2DgWOiQ3U6SQgjMnLuK+1/8kLLBPXnk+nH07prQjprMLKMK4s3spsr6rafajfVPJFXOh80roukdi2HIF+CMr0aJoWQMdCjKTkwNOHiojvtmL+dX76zlS6cP4IGvjaZzx+b1bGdmbU+b7bioWXZU1dcvVM6HLR9H04u6wpBzoieSSifCgNHQPj/eQ9i57yC3Pfkur6/YxK3nn8Q/XHxKk7osNbO2xx0XNUfNupTEMA+2roqmd+oeJYaxfxtVPp8wGtrn31e5vmYPN5Uv4qONtfx46umt1mWpmSVb/l3dcmn72vr6hTXzYFtlNL1zDxhyLoybHpUaTjgD2uX3rZvlVTXcVL6QXfsO8eg3xrnLUjNrtkQlimOqowgBtq/5bGLYvjaa17lnVFIYf0uUGPqPyvvEkOq1D6u57Ul3WWpmmdF26ihCgG2r6yueK+fBjnXRvON6RQlh6IQoQfQbCe0KsxmLX769hvtmLeO0Ad3dZamZHZO2V0cRQlSnUDm3PjHUxi+Ad+kTJ4a/ixJD31MLNjEcVlcXuP/FD5g5d7W7LDWzjErmlWRbJTxwKuzcEI0X94ufSJoQlRr6ngIJatNoz/6oy9KXlm/g+nOG8s+Xu8tSM8ucRCWKw3UUY0uKoHRyfWLoMyJRiSHVptp9fOsJd1lqZq2n7dRRJMyhusD8lZv5/m+Xsql2Hw9OG+MuS82sRdpeHUUChRCo+GQ7syqq+N2S9WzeuY++3Tq5y1Iza1VOFAVgZXUtsyqqmFVRxdqtuynq0I4LT+nHlLISLji1n5vjMLNW5USRp6q272HO4ig5vL9+B+0E5w3vw+0XDufiUSfQvXN+NBFiZsmXqESR9/1RHMW2Xft5Ydl6ZlVUsWD1VgDKBvfkvitG8qUzBtCvm9+JMLPsc2V2ju3ef5BX3t/I7Ioq/u+jTRysC5zUt5gvlw1kclkJQ3u3vMtTM7OmcGV2HjlwqI65H29iVkUVLy/fyJ4DhxjQozPTJ5zI5LISRg7o7kdczSxvOFFkSV1dYGHlVmYtruLFpevZtvsAPbt0ZOrYgUwZXcJZpb3c/LeZ5SUnilYUQuD99TuYXVHF7MVVrK/Zy3Ed23PRyP5MKSth4oi+FHXwG9Rmlt+cKFrBmi27mF1RxazFVays3kmHduL8k/ty76WnctHI/nQp8tduZoUjUVesXD71VF27l98viZ5YqvhkOwDjT+zFj6aO4rJRAzi+OHddoZqZtYSfemqBHXsP8IdlG5i9uIr5KzdTF2DkgO5MKSvh8tElDOx5XKvHYGaWKX7qKUP2HjjE6yuqmVVRxasfVrP/YB1DenXhuxcMZ/LoEkb075brEM3MMsqJogkO1QXe+vMWZlV8ykvLNlC77yB9unbimvFDmFJWQtngnn6c1cwSy4miEQ01wNetUwcuHnUCU8pKOGdYb/f5YGZtghPFEdwAn5nZZzlR4Ab4zMzSabOJwg3wmZk1TaISxdHeo2isAb6/v+hkN8BnZtaIxL9H0VgDfJNHl7gBPjOzFG3uPYp3Vm1xA3xmZhmQyETx4YZaps142w3wmZllQCITReeO7Xjo6jL++rT+FHdK5CGamWVNIq+ipb2LmVI2MNdhmJklgu/FmJlZWk4UZmaWlhOFmZml5URhZmZpOVGYmVlaThRmZpZWohKFpCskzaipqcl1KGZmiZGoRBFCmBNCuLlHjx65DsXMLDES2SigpFpgRa7jyJIeQL4UobIRSyb30ZJtNWfdY12nqcs3Zbk+wOZj2Hch8znRfCNCCJ//pR1CSNwHWJTrGLJ4rDNyHUM2Y8nkPlqyrease6zrNHX5pizncyK5sWTjnEjUrac2ak6uA0iRjVgyuY+WbKs56x7rOk1dPp/+D+SDfPo+EnFOJPXW06LQQJvqZm2VzwlriaSWKGbkOgCzPONzwpotkSUKMzPLnKSWKMzMLEOcKMzMLC0nCjMzSyvxiUJSsaTHJc2UdG2u4zHLB5KGSXpU0m9yHYvlv4JMFJIek1QtadkR0y+RtELSSkn3xpO/AvwmhPAtYHLWgzXLkmM5L0IIq0II03MTqRWagkwUQDlwSeoESe2BnwGXAiOBr0saCQwCPokXO5TFGM2yrZymnxdmTVaQiSKE8Aaw9YjJ44GV8S+l/cDTwBRgHVGygAI9XrOmOMbzwqzJknThHEh9yQGiBDEQeB64UtLPya9X+82yocHzQlJvSQ8DYyT9Y25Cs0LRIdcBZJAamBZCCLuAG7MdjFmeaOy82ALcmu1grDAlqUSxDhicMj4IqMpRLGb5wueFtViSEsVCYISkEyUVAVcDs3Mck1mu+bywFivIRCHpKeAt4BRJ6yRNDyEcBG4D/gB8ADwbQlieyzjNssnnhbUWNwpoZmZpFWSJwszMsseJwszM0nKiMDOztJwozMwsLScKMzNLy4nCzMzScqIwi0l6XdK4LOzne5I+kPSrBuY9JWmJpDubsd1Jks7NTJRm9ZLU1pNZzkjqEL/c1hTfAS4NIaw+YhsnAOeGEIY2M4xJwE7gzaauIKl9CMHN71taLlFYQZFUGv8anylpuaSXJR0Xz/tLiUBSH0mV8fANkn4raY6k1ZJuk3SXpPckvS2pV8ourpP0pqRlksbH6xfHnQItjNeZkrLdX0uaA7zcQKx3xdtZJumOeNrDwDBgdgOlhpeBfpIqJE2UdJKklyT9SdJcSafG27hC0jtxLH+U1F9SKVEjf3emrF8u6aqUeHbGfydJek3Sk8DSeNp1khbE6/6XpPbxpzyOf2lzSjmWECEEf/wpmA9QChwEyuLxZ4Hr4uHXgXHxcB+gMh6+AVgJdAP6AjXArfG8nwB3pKw/Mx7+K2BZPPzjlH30BD4CiuPtrgN6NRDnmUQX4WKgK7AcGBPPqwT6NHJsy1LGXwVGxMNnA/8bDx9PfasK3wQeiId/CNydsn45cFXK+M747yRgF3BiPH4aURP8HePx/wSuj4/hlZT1e+b639+f3Hx868kK0eoQQkU8/CeiC+zRvBZCqAVqJdVQ3zfJUuCMlOWegqgTIEndJfUE/gaYLOnueJnOwJB4+JUQwpGdBQFMAP4nRM3cI+l5YCLwXlMOUFJX4Fzg19JfWgrvFP8dBDwjaQBQBKz+/BaOakGov/X1RaKksDDe13FANdF3NEzST4Hf00CpydoGJworRPtShg8RXdggKmkcvp3aOc06dSnjdXz2PDiy8bNA1KfDlSGEFakzJJ1N9Mu8IQ31A3Es2gHbQwhlDcz7KfDvIYTZkiYRlSQa8pfvQ1EGKEqZlxq3gMdDCJ/rwEjSaOBi4LvA14Cbju0wLAlcR2FJUkn0yxjgqjTLpTMNQNIEoCaEUEPU8urt8cUWSWOasJ03gC9L6iKpGJgKzG1qECGEHcBqSV+N96n4og3QA/g0Hv5Gymq1RLfXDquk/vuYAnRsZHevAldJ6hfvq5ekoZL6AO1CCM8B/wSMbWr8lixOFJYk/wZ8W9KbRHUUzbEtXv9hYHo87V+ILrJLJC2Lx9MKIbxLVEewAHgHeCSE0KTbTimuBaZLWkxUx3G4r+sfEt2SmgtsTll+DjD1cGU2MBM4X9ICojqOBks/IYT3gR8AL0taArwCDCDqRvV1SRXxsbjL1DbKzYybmVlaLlGYmVlaThRmZpaWE4WZmaXlRGFmZmk5UZiZWVpOFGZmlpYThZmZpeVEYWZmaf0/WnCWuJRVKHsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = piv.plot(logy=True, logx=True)\n", - "ax.set_title(\"Polynomial Features for 1000 observations\\ndegree=2\")\n", - "ax.set_ylabel(\"seconds\")\n", - "ax.set_xlabel(\"number of features\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is twice faster." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Comparison for different degrees\n", - "\n", - "In this experiment, the number of observations and features is fixed, the degree increases." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
averagedeviationmin_execmax_execrepeatnumbercontext_sizenamedegreenumf
90.0019600.0000670.0019150.002094530240ext6210
100.0031310.0001180.0030090.003327530240poly7330
110.0030760.0002330.0028450.003393530240ext7330
120.0042990.0000460.0042430.004367530240poly8495
130.0041570.0000350.0041140.004217530240ext8495
\n", - "
" - ], - "text/plain": [ - " average deviation min_exec max_exec repeat number context_size \\\n", - "9 0.001960 0.000067 0.001915 0.002094 5 30 240 \n", - "10 0.003131 0.000118 0.003009 0.003327 5 30 240 \n", - "11 0.003076 0.000233 0.002845 0.003393 5 30 240 \n", - "12 0.004299 0.000046 0.004243 0.004367 5 30 240 \n", - "13 0.004157 0.000035 0.004114 0.004217 5 30 240 \n", - "\n", - " name degree numf \n", - "9 ext 6 210 \n", - "10 poly 7 330 \n", - "11 ext 7 330 \n", - "12 poly 8 495 \n", - "13 ext 8 495 " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = []\n", - "for n in [2, 3, 4, 5, 6, 7, 8]:\n", - " X = numpy.random.random((1000, 4))\n", - " poly = PolynomialFeatures(degree=n)\n", - " ext = ExtendedFeatures(poly_degree=n)\n", - " poly.fit(X)\n", - " ext.fit(X)\n", - " r1 = measure_time(\"poly.transform(X)\", context=dict(X=X, poly=poly), repeat=5, number=30, div_by_number=True)\n", - " r2 = measure_time(\"ext.transform(X)\", context=dict(X=X, ext=ext), repeat=5, number=30, div_by_number=True)\n", - " r1[\"name\"] = \"poly\"\n", - " r2[\"name\"] = \"ext\"\n", - " r1[\"degree\"] = n\n", - " r2[\"degree\"] = n\n", - " x1 = poly.transform(X)\n", - " x2 = ext.transform(X)\n", - " r1[\"numf\"] = x1.shape[1]\n", - " r2[\"numf\"] = x2.shape[1]\n", - " res.append(r1)\n", - " res.append(r2)\n", - " \n", - "import pandas\n", - "df = pandas.DataFrame(res)\n", - "df.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nameextpoly
degree
20.0001400.000312
30.0003040.000363
40.0005060.000579
50.0007150.000789
60.0019600.002032
\n", - "
" - ], - "text/plain": [ - "name ext poly\n", - "degree \n", - "2 0.000140 0.000312\n", - "3 0.000304 0.000363\n", - "4 0.000506 0.000579\n", - "5 0.000715 0.000789\n", - "6 0.001960 0.002032" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piv = df.pivot(\"degree\", \"name\", \"average\")\n", - "piv[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEoCAYAAABGqrb1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3wUdfrA8c+TEBIIHRI6CaEmEAhNQEBRARtFQRBEBVHsnu1sp556Yrn7ed55djgFG0VBEDhFbBQpSu89JCR0AoH0+v39MRNZliRsQpLd7D7v12tf2Z36zMxmnp35zjwjxhiUUkqpovi5OwCllFKeTROFUkqpYmmiUEopVSxNFEoppYqliUIppVSxNFEopZQqliaKSkJEXhSRz90dhyMRGSsii10c1uPir0giUk1EFojIaRH5yt3xVBQRMSLS2t1xlISI9BORXe6Ow5NooqhgIhInIhkikioiR0VkqojUcHdcpWGM+cIYM+hipyMi/UUk314nBa8FZTDdaSIy6WKnU0ZuAhoC9Y0xIy92YiJSVURm298nIyL9nfqLiPxdRJLs1z9ERBz6x4jIOhFJt//GuDqut3FOZsaY5caYdu6MydNoonCPIcaYGkBXoAfwnJvj8QSHjDE1HF5D3B2QiFQpw8mFAbuNMbllGMevwK3AkUL63Q3cAHQGOgGDgXvs6VUFvgE+B+oCnwDf2N2LHdcTiYi/u2PwesYYfVXgC4gDBjh8/j9gof2+CTAfOAnsBSY6DPci8Ln9/n/AQ07T3QzcYL83wL3AHuAU8C4gdj8/rMQUDxwDPgVq2/3C7XHvABLsce/FSmabgWTgHYd5jgd+dfj8lj3eGWAd0K+w+AtZJ/2BxCL6+QFPA/uAJOBLoJ5D/6+wdpSngWVAB7v73UAOkA2kAgsc1k1rh/GnAZMc4wCesqf5md19MLDRXv6VQCeH8Z8CDgIpwC7gqkKW4SU7jhw7ljtd3A53AgeAZRf4TiUC/Z26rQTudvh8J7Dafj/Ijlkc+h8ArrnQuEXMfyLW9/Uk1ve3iUM/A/wJiAVOYH3f/ex+rYGl9rY7AcxyGK898IM9zV3AKKdt9j7wLZBmr8cjgL/DMDcCm+33lwCr7O13GHgHqGr3W2bHmGZvm5tx+j4CkcASe/xtwFCnWN7F+p9MAX4DWtn9BPiXvX1PY/0PdXT3PqhU+y13B+BrLxwSBdDc/uK9bH9eCrwHBAExwHHsHQ/nJopRwG8O0+yMtRMt+PIbYCFQB2hhT6dgJzDB/qeOAGoAX3N2hxhuj/uBHcMgIBOYB4QCTe0v/eX28OM5N1HcCtQHqgCP2/+8Qc7xF7JOzvnHdOr3CLAaaAYEAh8CMxz6TwBq2v3+DWx06DcNOwk4dLtQosgF/m5PrxrWUd8xoCfgD4yzt2Eg0A4rMTZxWH+tiliOc5bfxe3wKRAMVLvAd6qwRHEa6OnwuTuQYr9/FPjOafiFwOMXGreQeV+JtZPvaq+Tt3FIbPZy/ALUw/ou7gbusvvNAJ7FSppBQF+7e7C9Xu+wv0td7XkU/AiYZsfYx2HcfcBAh/l+BTxtv+8G9LKnFQ7sAB4p5jvRH/v7CATY2+kvQFV7eVOAdg6xnMRKRlWAL4CZdr+rsX4w1cFKGpFAY3fvg0rz0lNP7jFPRJKxTh0sBV4VkeZAX+ApY0ymMWYj8F/gtkLG/wZoIyJt7M+3Yf0ay3YY5nVjTLIx5gDWP2rBOeixwJvGmFhjTCrwDDDa6fTGy3YMi7F+ac0wxhwzxhwElgNdClsoY8znxpgkY0yuMeafnN2ZuqKJiCQ7vEbZ3e8BnjXGJBpjsrB2uDcVxGuM+dgYk+LQr7OI1HZxnoXJB14wxmQZYzKwfi1/aIz5zRiTZ4z5BMjC2vHk2csYJSIBxpg4Y8w+F+fjynZ40RiTZsdRUjWwdqYFTgM17LYG534F/Wu6MG5hy/GxMWa9vQ2eAXqLSLjDMH83xpy0v4v/BsbY3XOwTsk1sb9vv9rdBwNxxpip9ndpPTAHq52nwDfGmBXGmHxjTCZW0hkDICI1gevsbhhj1hljVtvTisP6sXF5IctSmF72+njdGJNtjPkZK6mOcRjma2PM78Y6rfgFZ//XcrDWaXuso7cdxpjDLs7Xo2iicI8bjDF1jDFhxpj77R1BE+CkMSbFYbh4rF/x57D/Ib8EbhURP6wv7WdOgzmet07H+rJjzyfeaR5VsBpaCxx1eJ9RyOdCG99F5HER2WFf2ZMM1AYaFDZsIQ7Z66Tg9aXdPQyYW5BAsH4N5gENRcRfRF4XkX0icgbrlz4lmGdhjts7ngJhwOOOSQzrSLCJMWYv1hHPi8AxEZkpIk1cnI8r2yGhtAuBdRqllsPnWkCqsX7qOvcr6J/iwrjOzlkOO+klce731nE54u1xAJ7E+qX9u4hsE5EJdvcwoKfTOh8LNCpimgDTgeEiEggMB9YbY+IBRKStiCwUkSP29+RVXP+ONAESjDH5TsvguHyF/q/ZSeUdrFNTR0Vksog4r/dKQROF5zgE1LN/DRVogXUuuTCfYP3zXAWkG2NWlWA+YU7zyOXcZFBiItIP63z9KKCuMaYO1i/Ri71aJgG41imJBNlHN7cAw4ABWEkpvCAc+29hO7Z0oLrD50ZO/Z3HSQBecZp/dWNMwa/V6caYvljr1GCdtnKFK9vhYko7b8M6JVmgs92toF8npyOETk79ixrX2TnLISLBWKcfHb+3zR3et7DHwRhzxBgz0RjTBOvI8T376qMEYKnTOq9hjLnPYTrnrBtjzHasHfi1WN+L6Q693wd2Am2MMbWwTiO5+r08BDS3f5A5LkNR/5fnMMb8xxjTDegAtAWecHG+HkUThYcwxiRgNSK+JiJBItIJqxHxiyKGX4V1muSfnH80UZwZwKMi0tK+LPdVrNNWJb4ax0lNrB3dcaCKiPyV83+1lsYHwCsiEgYgIiEiMsxhnllYv2CrYy2Lo6NYbQCONgK32Ecj13DhUxBTgHtFpKd92WiwiFwvIjVFpJ2IXGn/is3EOtrKc3G5Lno7iEigiATZH6va35uCHeCnwGMi0tQ+ynkc63w6WA2zecCf7Gk8aHf/2YVxnU0H7rAvtw20l+M3+xRPgSdEpK59evVhYJYd/0gRaWYPcwpr55+HdWqnrYjcJiIB9quHiEReYJVMx2o4vwyrjaJATawLLFJFpD1wn9N4hX1PCvyGdfr1STuO/sAQYOYFYsGOuaeIBNjTyMT174dH0UThWcZg/So+BMzFOlf+QzHDfwpEY13m6KqPsRLLMmA/1pf3odIE6+R74Dusxsp4e7oXc+qkwFtYV9IsFpEUrIbtnna/T+15HQS22/0cfYTVfpAsIvPsbg9j/aMXnM6YRzGMMWux2inewdqZ7cVqxAerfeJ1rIbWI1gN/n9xcbnKYjvswkpOTbHWfwZnf91/CCwAtgBbsa7K+dBepmysy19vx1oPE7BOh2ZfaFxnxpifgOex2hAOA62A0U6DfYPVqLvRntZHdvcewG8ikoq1jR82xuy3T78OsqdzCGvdFlxgUJwZWA3RPxtjTjh0/zPWUUYKVuKf5TTei8AnTm1jBcuXDQzFOlI5gXWxye3GmJ0XiAWsH0pTsL438Vg/aN5wYTyPU3DJpKqEROR2rMsY+7o7FqWU99IjikpKRKoD9wOT3R2LUsq7aaKohETkaqy2gKOc22inlFJlTk89KaWUKpYeUSillCqWJgpV6YlVQXWAm+bdUESWiUiKiPyzkP5eWV5cRP4iIv91dxyqYpRldUylfNHdWJdN1irizmXH8uIXda+KiLyIVZPo1ouZTlkwxjjfs1IidvmZLcBsT1geVTw9olDKJqUrKx4GbC8iSRT0L1V58bJWyuUrL+8Ca9wdhHKNJgpVLuzTQX8Wkc32aZdZBXcRi8h4EfnVafg/Hh4j1gOH3hOR78R6iNEKEWkkIv8WkVMislNEnAsT9hCR7Xb/qQ53LCMig0Vko31D1Ur7rnfHOJ8Skc1AWmE7UxG5VETW2MuxRkQuLYgTq5rsk3acA5zGewn4K3Cz3f9Ou/sEsWpinRKR7wvuOrf7vSUiCSJyRqwHCvWzu1+DdTNfwbQ2OcQ/wGH8P54kKCLh9nq9U0QOYN95LSK97PWQLCKbxOGhR/a2ibVPpe0XkbFFbF/H+QSJyOdiPeQo2V5HDQsbzx5+NNaNfj8VNYzyMMYDStjqy/teWAX6fscqqlYPq5jfvXa/8TiUJ7e7/VHqGatcxAms8tBBWDu4/Vh3EvsDk4BfnOa1FaumUD1gBWdLhxdZJtxh3I32uOeV87andwqrQm8VrLvnT2GdSiqIdVIx6+FFzi0vfgPW3d2R9vSeA1Y69C9RqXbOf77JH8NQSLlyrLu4k7Cqq/oBA+3PIfYwZzhbQrsxdmnv4pYLq07TAqwyKv72dqtVxHi1sO7eb17Y8ujLM196RKHK03+MMYeMMSexdiQxFxrBwVxjlYfOxCpnkmmM+dQYk4dVgsH5iOIdY0yCPa9XOFsGurgy4Y5xJpjCy3lfD+wxxnxmrDLVM7AKzJX2CXz3AK8Zq+R0LlZtpJiCowpzcaXai/KiOVuu/FbgW2PMt8Yq0f0DsBYrcYBVP6yjiFQzxhw2xhRVDNBRDlZya22v43XGmDNFDPsy8JGxapupSkIThSpPRZU6d0VJS50XVcq6yDLhRYzrzLkceMH0zyv/7qIw4C2HWE5iVTJtChddqr0ojssXBox0Wh99sR6ok4b1hLd7gcMi8j+xiuhdyGdYtaZmisghsZ6xHeA8kFjP5R6A9dQ3VYl4UuOW8h1pOJT6FhHnUt+lUWgpa86WCX+lmHGLu+vUuRx4wfQXlTjCc+M5ryqwnC3VfhWwzRiTLyKnKL5s+jnrkvPLpjuPl4D1JL2JhQVnjPke+F5EqmGd4psC9CtugYwxOViPe31JrAcWfYtVsPAjp0H7Y50OOyBWkdsagL+IRBljuhY3D+VeekSh3GET0EGs0tRBWOeqL9YDItJMROphNfoWVAgtsky4i9P9Fqvk9S0iUkVEbgaisEphl8YHwDMi0gFARGqLyEi734VKtR8FwuXcZyNsxHoyXoCIdOfcp8AV5nNgiIhcLVap9SAR6W+vu4YiMlSsZ0pkYT3A6IJlsUXkChGJFhF/rDaOnCLGm4xVXTbGfn2AVU326gvNQ7mXJgpV4Ywxu4G/AT8Ce7AeCXuxpgOLgVj7NcmeV3Flwl2JNQnr0ZyPYzX6PgkMNueWsXaZMWYuVsnsmWI9bW0rVglruHCp9oIb9pJEZL39/nmsne8prF/1xdb+stsGhmEl0+P29J/A2hf42ct5COuU2OVYhScvpBEwGytJ7MB6vO95pe+NMenGeljREWPMEaxElGmMOe7CPJQbaa0npZRSxdIjCqWUUsXSRKGUUqpYmiiUUkoVSxOFUkqpYmmiUEopVSyvvOGuQYMGJjw83N1hKKVUpbJu3boTxpgQ5+5elShEZAgwpHXr1qxdu9bd4SilVKUiIs7lagAvO/VkjFlgjLm7du3a7g5FKaW8hlclCqWUUmVPE4VSSqlieVUbRXFycnJITEwkMzPT3aGUi6CgIJo1a0ZAwHnVnZVS6qL4TKJITEykZs2ahIeHY5c49hrGGJKSkkhMTKRly5buDkcp5WV85tRTZmYm9evX97okASAi1K9f32uPlpRS7uUziQLwyiRRwJuXTSnlXj6VKJRSShXi0AaYNrjI3j7TRqGUUsrJmcPw88uwcTqmev0iB9MjChfExcURGRnJxIkT6dChA4MGDSIjI4MpU6bQo0cPOnfuzIgRI0hPTwdg/Pjx3HfffVxxxRVERESwdOlSJkyYQGRkJOPHj/9juosXL6Z379507dqVkSNHkpqa6qYlVEr5lOx0WPoPeLsbZstXJETexaiq7xY5uCYKF+3Zs4cHHniAbdu2UadOHebMmcPw4cNZs2YNmzZtIjIyko8+Ovss+VOnTvHzzz/zr3/9iyFDhvDoo4+ybds2tmzZwsaNGzlx4gSTJk3ixx9/ZP369XTv3p0333zTjUuolPJ6xsDmr+CdHvDLKyQ3vYzHQj6k34YrOJJdtcjR9NSTi1q2bElMTAwA3bp1Iy4ujq1bt/Lcc8+RnJxMamoqV1999hnxQ4YMQUSIjo6mYcOGREdHA9ChQwfi4uJITExk+/bt9OnTB4Ds7Gx69+5d8QumlPINCWtg0dNwcC1ZIR15v9nj/HtnQ+oFV+WFIa25pWcLgp4qfFSvShSORQHLWmBg4B/v/f39ycjIYPz48cybN4/OnTszbdo0lixZct7wfn5+54zr5+dHbm4u/v7+DBw4kBkzZpR5rEop9YfkBPjxRdg6m/zgUOa1+AtP7e1AFf8q/OnKlky8LIKaQcXfqOtVp54quihgSkoKjRs3Jicnhy+++KJE4/bq1YsVK1awd+9eANLT09m9e3d5hKmU8kVZqfDzJHinO2bnQn5rPoGeKf/HE3ujufmSMJY+2Z/HBrW7YJIALzuiqGgvv/wyPXv2JCwsjOjoaFJSUlweNyQkhGnTpjFmzBiysrIAmDRpEm3bti2vcJVSviA/HzbNgJ/+BqlH2N/oWh48PpRte2pzXXQj/jyoHREhNUo0STHGlFO07tO9e3fj/DyKHTt2EBkZ6aaIKoYvLKNSqhhxK+D7Z+DwJk7V7cSzGbfwbXILerasx9PXtqdLi7rFji4i64wx3Z276xGFUkpVdif3ww9/hR3zyaremLdrPMG7hzvTrlFtpt7Rnv5tQy6qeoMmCqWUqqwyz8DyN2D1++SLP3Nrj+PZo/2pX6cOb4xsyw1dmuLvd/HlfTRRKKVUZZOfB+s/tRqr00/we62reejYELLyG/Ln61tza68wggL8y2x2miiUUqoy2fcLfP8sHNvGgRqdeST3UbadbMWE/i259/JW1K5W9s+k0UShlFKVwYm9sPg52P0dp4Oa8qJ5jG+SujGqewveG9CWRrWDym3WmiiUUsqTZZyCpf/A/D6ZXAnkA79beSd5AJdHNWfxNe1oHVqz3EPQROGBkpOTmT59Ovfff7+7Q1FKuUteDqz9GLPkNcg4zf+qDODF1BsJDwtn+nXt6RZWr8JC0UThgZKTk3nvvfc0USjli4yBPT/A4mfhxG42B8TwVNZocmtF8drw9gyIDK3wB5V5VQkPT/f5559zySWXEBMTwz333EN8fDxt2rThxIkT5Ofn069fPxYvXszTTz/Nvn37iImJ4YknnnB32EqpinJsB3w+HKaP5EhyGndlP849PM+E4YNZ9HA/BkY1dMvTLPWIooLs2LGDWbNmsWLFCgICArj//vtZunQpTz31FPfeey89e/YkKiqKQYMG0bZtW7Zu3crGjRvdHbZSqiKkn4RfXsGs/ZgMqc4bubcxl2u55+r2vHNpeJle6loaPpkoXlqwje2HzpTpNKOa1OKFIR2K7P/TTz+xbt06evToAUBGRgahoaG8+OKLfPXVV3zwwQeaGJTyRbu+I3/+nyAtiS/yB/JO/giGXdqJX/q3ok71op8RUZF8MlG4gzGGcePG8dprr53TPT09ncTERABSU1OpWbP8r2BQSnmAjFOw6BnYNINYCePh7JeJ7NKXrwe2pWmdau6O7hw+mSiK++VfXq666iqGDRvGo48+SmhoKCdPniQlJYU33niDsWPHEhYWxsSJE1m4cCE1a9YsUSVapVQls3sxZsGfMCnHeCf3Rr6pdQv/GN+DbmHFF+1zF69qzBaRISIy+fTp0+4O5TxRUVFMmjSJQYMG0alTJwYOHEhcXBxr1qzhqaeeYuzYsVStWpWpU6dSv359+vTpQ8eOHbUxWylvkpEM8x6A6SOJTwtgaNZLHOryGPMfvtJjkwRomXGv4gvLqFSltedHzPyHMClH+DB/KJ9UuZmXb+rGwKiG7o7sD1pmXCml3CHzjHVPxPpPOVgljPuzXqJBu94sGNGJkJqBFx7fA2iiUEqp8rLvZ/jmIcyZQ0xlGG9l3cSTN3TmlktauOV+iNLSRKGUUmUtKwUWPw/rpnK0agvuzXqB/GY9mDuqc4kfQ+oJNFEopVRZil1iHUWcTmCG/zAmpQ7n7quiePCK1lTxr5zXD2miUEqpspCVCj++AGv+y8nA5kzMfoGkujF8MS7mgs+q9nSaKJRS6mLtXw7fPIBJPsDcwGH85fQNDO/Zhueuj6R61cq/m62cx0E+on///jhf5quU8iDZafDtE/DJYE5n5XNL7gu8mncb79zeh1dvjPaKJAF6RKGUUqUTtwK+uR9OxfFdjRt49MQw+kY2Z9GITjSoUTkue3WVHlFUoLi4ONq3b8+4cePo1KkTN910E+np6fz000906dKF6OhoJkyYQFZW1jnjffTRRzz66KN/fJ4yZQqPPfZYRYevlALITofvnoZp15OWnccdvMjjZ8bwwvDuTLm9u9clCdBEUeF27drF3XffzebNm6lVqxZvvvkm48ePZ9asWWzZsoXc3Fzef//9c8YZPXo08+fPJycnB4CpU6dyxx13uCN8pXxb/Cr4oA/89j7L6txA96SXOBVyCd/+qR9jKtm9ESXhm6eevnsajmwp22k2ioZrX7/gYM2bN6dPnz4A3Hrrrbz88su0bNmStm3bAjBu3DjeffddHnnkkT/GCQ4O5sorr2ThwoVERkaSk5NDdHR02cavlCpaTgb8PAlWvUtmcFP+HPAS3x1ry58GtOGBK1pV2steXeWbicKNSvuL46677uLVV1+lffv2ejShVEVK+B3m3QdJe1kXOpzbEwYTWr8+c26PIaZ5HXdHVyF8M1G48Mu/vBw4cIBVq1bRu3dvZsyYwYABA/jwww/Zu3cvrVu35rPPPuPyyy8/b7yePXuSkJDA+vXr2bx5sxsiV8rH5GTCL6/AqnfICW7M88GTmHkgglt7teAv13nHZa+u8p0l9RCRkZF88skn3HPPPbRp04a33nqLXr16MXLkSHJzc+nRowf33ntvoeOOGjWKjRs3Urdu5b55RymPl7jWOoo4sZsdTUZwS/z1+FerzdTxnbiifai7o6twmigqmJ+fHx988ME53a666io2bNhw3rBLliw55/Ovv/56ztVPSqkylpsFS16DFW+RW6Mx/6j3KpNjwxkY1ZDXh0dT3wuvaHKFJopKIDk5mUsuuYTOnTtz1VVXuTscpbzTwXUw7344vpP4sBGMjh/C6fxq/H1EFKO6N/faK5pcoYmiAoWHh7N169YSj1enTh12795dDhEppcjNgqV/h1//TX5wKB82/Tt/39Wcri3qMPPmGMLqB7s7QrfTRKGU8l2HNlptEce2cyxiBGMTb2D//io8PrAN9/X3/steXeVTicIY47WHj974SFulyk1uNiz7P1j+T0xwCDNbv8EzW5sQERLM17fH0KmZb1z26iqfSRRBQUEkJSVRv359r0sWxhiSkpIICgpydyhKeb5jO2HOnXB0K8ltb+LOIyNYt9VwW68w/nJdJNWq+rs7Qo/jM4miWbNmJCYmcvz4cXeHUi6CgoJo1qyZu8NQyrOlHIXPbsTk57A4+l88tL4xtasHMPWOTlzRzvcue3WVVyUKERkCDGnduvV5/QICAmjZsmXFB6WU8gy52fDl7ZiMUzxd9w1mranLNR1CeXV4NPWCq7o7Oo/mVS01xpgFxpi7a9eu7e5QlFKeZtFTkLCaVwMeZOHRBvzjpk68f2tXTRIu8KojCqWUKtTaqbD2Y36ufwv/PdSFTyd0o1+bEHdHVWl41RGFUkqd58Bq+PYJDof04a6D1/HQlW00SZSQJgqllPc6cwhm3UZ2jaYMPXwHvVqF8PBVbdwdVaWjiUIp5Z1yMmHmWExOGvfmPA7V6vLW6C74+3nX5fEVQROFUsr7GAMLH4VD6/lvg6dZklyft8d0IaSmbxb1u1iaKJRS3uf3ybBpOptb3cMrsa14fFA7ekXUd3dUlZYmCqWUd9m/DBY9w5mwgYzceTmXtw3hvstbuTuqSk0ThVLKe5yKhy/HkVcvglHH7qBucBD/ujkGP22XuCiaKJRS3iE7HWaNxeTn8lL159h7Wnh3bBe9oa4MaKJQSlV+xsD8B+HIVn6MfIVP9wTw5DXt6BZWz92ReQVNFEqpym/lf2DrHA51f4L71zRgQGQoE/tFuDsqr6ElPJRSldveH+HHF8luN5SRW3oRWlP458gYr3ucgDvpEYVSqvJK2gezJ2BC2vNwxkSOpWbx7tiu1K4e4O7IvIomCqVU5ZSVAjPHgvgxI+J1vtudwrPXRRLTXJ9OV9Y0USilKp/8fJh7L5zYxa5+/+H5ZWlcF92IcZeGuzsyr6RtFEqpymf5G7BzIWn9/8a4JcE0q+vH6yM6abtEOdEjCqVU5bLzW/jlFUz0KO7b14uT6dm8e0tXagVpu0R50UShlKo8ju+Gr++Gxp35oNafWLbnBC8MiaJjU32qZXnSRKGUqhwykmHmGKgSyNre7/B/Px9gWEwTbrmkhbsj83raRqGU8nz5efD1RDgVx6mRs7nv62OENwjm1RujtV2iAugRhVLK8/3yKuxZTP7Vr3P/8mqkZObw3tiuBAfqb92KoIlCKeXZts2zrnLqchv/Tu7HqtgkXh7WkfaNark7Mp+hiUIp5bmOboN590OzHixv+zRvL9nHTd2aMbJ7c3dH5lM0USilPFP6SZgxBgJrcuza//Lw7B20Da3Jy8M6ujsyn6Mn+JRSnicvF2ZPgJTD5N6+kAcWHCIzJ493x3alWlV/d0fnc/SIQinleX58AWJ/gevf5I3ttVkTd4rXhkfTOrSGuyPzSZoolFKeZfOXsOod6DGRn6oN4oOl+7ilZwuGxTR1d2Q+SxOFUspzHNoI8x+CsD4k9nyex77cRFTjWvx1cJS7I/NpmiiUUp4h9bhVNrx6A7KHT+XBWVvJyze8N7YrQQHaLuFO2pitlHK/vBz4ahykn4AJi3h9WRIbE5J5b2xXwhsEuzs6n6dHFEop9/v+LxC/Aoa+zaKTjfl4xX7GXxrOddGN3R2ZQhOFUsrd1n8Gv0+G3g8S3/R6npi9ic7NavPMde3dHZmyaaJQSrlPwhr432MQ0Z/M/n/lgenrEeCdW7oSWEXbJTyFtlEopdwj5WAitMwAAB5wSURBVAjMuhVqNoabpvLKd3vYevAMU27vTvN61d0dnXLg0hGFiASLiJ/9vq2IDBWRCnmclIhEisgHIjJbRO6riHkqpcpZbpaVJLLOwJgZLNiTyWer47n7sggGRjV0d3TKiaunnpYBQSLSFPgJuAOYdqGRRORjETkmIludul8jIrtEZK+IPF3cNIwxO4wx9wKjgO4uxquU8lTGwP8eh8Q1cMP7xPqF8fSczXQLq8sTV7dzd3SqEK4mCjHGpAPDgbeNMTcCrtwBMw245pwJifgD7wLX2tMYIyJRIhItIgudXqH2OEOBX7GSlFKqMlv7EWz4DPo9TmbbIdz/xXqqVvHj7TFdCPDXZlNP5GobhYhIb2AscKer4xpjlolIuFPnS4C9xphYe8IzgWHGmNeAwUVMZz4wX0T+B0x3MWallKeJWwHfPQVtBsEVz/LC19vYeSSFaXf0oEmdau6OThXB1UTxCPAMMNcYs01EIoBfSjnPpkCCw+dEoGdRA4tIf6wjmUDg22KGuxu4G6BFC32GrlIe53QifHk71A2H4VOYs+Ews9Ym8MAVrejfLtTd0aliuJQojDFLgaUOn2OBP5VynoU94NYUM+8lwJILTdQYMxmYDNC9e/cip6eUcoOcDKs8R24WjJ7OnjP+PDdvKz1b1uPRAW3dHZ26gGIThYgsoPid+NBSzDMRcHw8VTPgUCmmo5SqDIyBBQ/D4Y0wegbptVtx3zsrCA705+0xXaii7RIe70JHFG/Yf4cDjYDP7c9jgLhSznMN0EZEWgIHgdHALaWcllLK061+DzbPgiuexbS7lue+3MS+46l8fmdPQmsFuTs65YJiE4V9ygkRedkYc5lDrwUisuxCExeRGUB/oIGIJAIvGGM+EpEHge8Bf+BjY8y20i6AUsqD7fsFFj8H7QdDvz8za00CX284yKMD2tKndQN3R6dc5GpjdoiIRDhcqdQSCLnQSMaYMUV0/5ZiGqaVUl7gVBzMvgMatIMbP2D7kVRemL+Nvq0b8OCVrd0dnSoBVxPFo8ASEYm1P4cD95RLRBdBRIYAQ1q31i+hUm6VnWY1Xpt8GP0FKSaIB6avoHa1AP49OgZ/v8KuaVGeytWrnhaJSBugoJzjTmNMVvmFVTrGmAXAgu7du090dyxK+SxjYN79cGw7jP0KUy+Cp2dsID4pjRkTe9GgRqC7I1QlVJKigN2wjiSqAJ1FBGPMp+USlVKq8vr1X7B9Hgx4CVoP4PNVcfxv82GevKYdPSPquzs6VQouJQoR+QxoBWwE8uzOBtBEoZQ6a/di+Olv0HEE9HmYLYmneXnhDq5oF8K9l7Vyd3SqlFw9ougORBlj9EY2pVThTuyFOXdBo44w9B1OZ+Zy//R1NKhRlTdHxeCn7RKVlqt3umzFuo9CKaXOl3kGZt4C/lXg5i8wAdV44qtNHE7O5O1bulI3uKq7I1QXwdUjigbAdhH5HfijEbuUd2YrpbxJfj7MvQeS9sLt86BuGB8tj2Xx9qM8d30k3cLqujtCdZFcTRQvlmcQZUUvj1WqAuVkwN6fYOMXsOtbuObv0PIy1h84xevf7WRQVEPu7NvS3VGqMiCuNjuISEOgh/3xd2PMsXKL6iJ1797drF271t1hKOV9cjJg74+wbR7sXgTZqVCtHlwyEfo/w6n0HK7/z3L8/YWFD/ajdvUKeRCmKiMiss4Yc94D4ly96mkU8H9YVVwFeFtEnjDGzC7TKJVSnueP5DAXdn9/Njl0HAEdboDwfuAfQH6+4bEvN3IiNZvZ9/XWJOFFXD319CzQo+AoQkRCgB8BTRRKeaOcDNjzg3U/REFyqF4fom+CqILkcO7u48Nlsfyy6zh/G9aBTs3quClwVR5cTRR+TqeaknD9iimlVGWQnQ57f7BPK30POWkXTA4Fft9/kjcW7+L6To25rVdYBQeuypuriWKRiHwPzLA/3wx8Vz4hKaUqTFHJodMo67RSWN8ik0OBE6lZPDRjPS3qVef14dGI6P0S3sbVWk9PiMhwoC9WG8VkY8zcco1MKVU+stNhz2L7tNJiOzk0KFFyMMaw9eAZZq9LYP6mQ6Rl5zF1/CXUDNJ2CW/kamN2S+BbY8zX9udqIhJujIkrz+CUUmWkIDlsm2v9zUm3kkPnm63TSmF9LpgcAI6dyWTuhoPMWZ/I7qOpVPX3Y2CHhkzoE05Uk1oVsCDKHVw99fQVcKnD5zy7W4/CB3cPvY9CKQfZaXZymHc2OQSHQOfRJUoOmTl5LN5+lDnrElm+5zj5Brq0qMOkGzoypFMTvbrJB7iaKKoYY7ILPhhjskXE4+7J1zLjyuf9kRzmWlct/ZEcxtinlfqAn/8FJ2OMYV38KeasT2Th5sOkZObSpHYQ9/VvxfCuzWgVUqMCFkZ5ClcTxXERGWqMmQ8gIsOAE+UXllLKZdlpVkN0QZtDboZDcrgRwi51KTkAJJ5KZ+76g3y94SD7T6RRLcCfazs2YkS3ZvSOqK+F/XyUq4niXuALEXkXq7x4InB7uUWllCpeVirs+d4+rfSDnRxCoctY+7SS68khLSuX77YeYc66RFbFJgHQK6Ie9/dvxbXRjakRWJLH1ihv5OpVT/uAXiJSA6vsR0r5hqWUOk9xyaHDjdCit8vJIT/fsDo2idnrE1m09Qjp2XmE1a/OowPaMrxrU5rXq17OC6MqE1evemoIvAo0McZcKyJRQG9jzEflGp1Svi4r1aqptL0gOWRCjYbQ5VarzaEEyQFg/4k0vl6fyNfrD3IwOYOagVUY2rkJI7o1o3tYXb0HQhXK1WPKacBUrFIeALuBWYAmCqXKWpHJ4Tb7yKFXiZLD6Ywc/rf5MHPWJ7Iu/hR+An3bhPDkNe24ukMjggJcn5byTS4/j8IY86WIPANgjMkVkbwLjaSUclFWitUgvW2uVYAvNxNqNIKut1ttDiVMDrl5+Szfe4I56xJZvP0o2bn5tA6twdPXtueGmKY0qh1UjgujvI2riSJNROpjNWQjIr2A0+UWlVK+oLjk0OFGaN6zRMkBYPfRFOasS2TuhoMcS8miTvUARvdozoiuzejUrLaeWlKl4mqieAyYD7QSkRVACHBTuUVVSnrDnfJ4WSmwy+G0Ul6WnRzGWW0OzXuBX8nqbZ5My2b+xoPMWX+QLQdPU8VP6N8ulJu6NeWK9qEEVtFTS+riuJooWgHXAs2BEUDPEoxbYfSGO+WR8vMh9hfY8Bns/NZKDjUbQ7fxDkcOJUsO2bn5/LLrGHPWJfLLrmPk5BmiGtfir4OjGBrThAY1AstnWZRPcnVn/7wx5isRqQsMAP4JvI+VMJRShUk+ABu+sB4VejoBqtWFbuOgw/BSJQdjDNsOnWH2ukTmbzrEybRsGtQIZFzvcEZ0a0ZkY621pMqHq4mioOH6euADY8w3IvJi+YSkVCWWmwU7F8L6zyB2idUtoj8MfAnaXQ8BJW9EPnYmk3kbDzJn3UF2HU2xCvFFNWREt6Zc1iaEKv76aBhVvlxNFAdF5EOso4m/i0gg+uAipc46us1KDptnQcZJqNUMLn8SYsZC3ZI/yCczJ48fth9lzvpElu3WQnzKvVxNFKOAa4A3jDHJItIYeKL8wlKqEsg8A1tnWwni0HrwC4D210PX2yDiihJfsWSMYf2BZGavS2Th5kOkZObSuHYQ917eihHdtBCfch9XS3ikA187fD4MHC6voJTyWMbAgVVWctg21yqjERoFV78GnW6G4PolnuTB5Azmrk9kznqrEF9QgB/XdmzMiK7N6N2qPv5aiE+5mcdduaSUR0o5Cpumw4bPIWkvVK1pPfSny+3QtCuU8P6E9OxcFm09wmy7EJ8x0LNlPe7r34rrtBCf8jD6bVSqKHm51rMdNnxm3Rhn8qzaSn0fs+55qBpcosnl5xt+23+SOesT+W7LYdKy82hRrzoPX9WGEV2baSE+5bE0USjlLGmflRw2zoDUI1aF1ksftGotNWhT4smdycxh9tpEPlsdz/4TadQIrMLgTlYhvh7hWohPeT6vShR6Z7Yqtex02P6NlSDiV4D4QZurrYbpNoPAv+RXGe05msKnq+KZsz6R9Ow8urSow79u7sw1HRpTrareLa0qDzHGuDuGMte9e3ezdu1ad4ehPJ0xcGgDrP8Uts6BrDNQL8Iq4d35FqjVuMSTzMs3/LTjKJ+simPF3iSqVvFjSKcmjLs0jE7N6pT9MihVhkRknTGmu3N3rzqiUMol6Sdh85fW0cPRrVClGkQNs44ewvqUuGEa4FRaNrPWJvDZqngOJmfQpHYQT1zdjtE9mlNfy2moSk4ThfIN+fmwf4l1WevOhZCXDY1j4Po3IfomCKpdqsluO3SaT1bG8c3GQ2Tl5tM7oj7PD45kQGRDvWNaeQ1NFMq7JSfARvuy1tMHIKgOdLvDOnpoFF2qSebk5bNo6xE+WRnH2vhTVAvwZ0S3ZozrHU67RjXLeAGUcj9NFMr75GbBrm+to4d9PwPGqrc04AVoP7hU9ZYAjqVkMuO3BL74LZ5jKVmE1a/Oc9dHMrJbcy2pobyaJgrlPY5ut9odNs206y01hcuegC5joW54qSZpjGFDQjKfrIzj2y2HyckzXN42hL+PCOfytiH46V3TygdoolCVW+YZ2Pa1dfRwcK1db+k6647pViWvt/THZHPyWLj5MJ+sjGPLwdPUDKzCrb3CuK1XGBFac0n5GE0UqvIxBg6sto4ets2FnHQIaQ9Xv2rXW2pQ6kkfSs7g89XxzFyTwMm0bNqE1uDlGzpyY5emWlZD+Sz95qvKI/XY2YbppD1QtYZ1xVKX26FZ91Jd1grW6aXVsSf5ZGUci7cfAWBAZEPGXxpO71b19c5p5fM0USjPlpcLe3+06y0tgvxc67nSfR+BqBsgsPSngdKzc5m74SCfroxn19EU6lQPYOJlEdzaM0zrLinlQBOF8kxJ+6wjh43T7XpLIdDrPuvoIaTtRU06PimNT1fF8+XaBFIyc4lqXIt/jOjE0JgmBAVoaQ2lnGmiUJ4jOx12zLcapuN/teottR4IXd+AtteUqt5Sgfx8w7I9x/l0VTy/7DqGvwjXdGzE+EvD6RamhfmUKo5XJQotClgJGQOHN1rJYctsyDoNdVvClc9DzC1Qq8lFTd65cmuDGoE8dGUbxvZsQcNapbufQilfo0UBlXukn4QtX1kJ4ugWqBIEkUPtekt9we/iyl/sOZrCJ6vi+Hr9wT8qt46/NJxrOzamahUtraFUYbQooHK//HzYv9RqmN6xEPKyoHFnuO4NiB4J1S6uumpevuHHHUf5dJVWblWqLGmiUOXvdKJ9WetnkHzAKsDXbZz1IKDGnS568qfSspm5JoHPV2vlVqXKgyYKVT5ys616Sxs+g70/AQZaXgZX/hUiB0NAtYuexdaDp/l01dnKrb0i6mnlVqXKgSYK5TpjIOMUpB23bn5LOwZpJwp/n3oMcjOhZhO47M8QMxbqtbzoEHLy8vlu6xE+1cqtSlUYTRS+Li8X0gt28McdkkAh79OOWze8ORN/q2xGcIj1qt/K+tvycmh9VanrLTk6lpLJ9N8OMP23A1q5VakKponCG+Vk2Dv54/Yv/WJ2/ukngUKufPMPhBqh1g6/ZmOrLSHY/lzQveB9tXoXfZVSYYqq3Pr6iDD6tw3Vyq1KVRBNFJWBMdbznFMLftnbp3bSThTy/jhkpxQ+ncBa9i//UGjQBsIutd7XCDk/CQTWLHXtpIullVuV8iyaKNwlP88631/ouX6Ho4GC5JCXVchEBKrXO7uzb9LFYccf4vQ+pEwakMuTc+XW1qE1eHlYB27s2kwrtyrlRvrfV5Zys889n3/e6R6HhJB+Akz++dPwC7B37A2sX/chkWffB4ee+756ffCv3JuwqMqt4y4N51Kt3KqUR6jce5mKkJ1W+Pn9wrplJhc+jYDqZ0/r1GkBTbudf56/4H21um475VORtHKrUpWH7yWKPy7xdDy/X8zVPjnphU8nqM7ZnXzDDufu8J2TQNXgil1GD6aVW5WqfLwzUWScgpVvF9Hgexzyc84fR/ygeoOzO/nmLYv+1R8cAlWqVvxyVVIFlVs/WRnHkt3HtXKrUpWMdyaKU3Gw+DmHSzwbOFziWdDIG3r2CqAaodYpnzK43l+dpZVblfIO3pkoQqPg6V+ty0H112qFizuRxke/7mfO+sQ/Kre+NTpGK7cqVUl5Z6KoEmgVnlMVal38KaYsi+X77UcI8PNjSGet3KqUN/CqRKEPLqp4+fmGH3YcZcqyWNbGn6JWUBXu79+Kcb3DCdXTS0p5BX1wkSqVzJw8vl5/kP8ujyX2RBpN61Tjrn4tGdW9OcF6c5xSlZI+uEiViVNp2Xy2Op5PVsaRlJZNx6a1+M+YLlzXsZGW9lbKS2miUC6JT7IaqL9cm0BmTj5XtAth4mUR9I7Qu6eV8naaKFSxNhw4xZTlsSzaegR/P+GGmKZMvCyCtg312Q9K+QpNFOo8+fmGn3ceY/KyWH6PO0nNoCrcfVkr7ugTrvc/KOWDNFGoP2Tm5DFvw0GmLI9l33Grgfr5wVHc3KO5Vm9Vyofpf78iOT2bz1fHM21lPCdSs4hqXIu3RsdwXXRjArSBWimfp4nChyWcTOejX/cza00CGTl5XN42hLsvi9Dy3kqpc2ii8EGbE5P5cFks3205jJ8IQ2OacPdlEbRvVMvdoSmlPJAmCh+Rn29YsvsYHy6N5bf9J6kZWIWJl0Uw/tJwGtf27CffKaXcSxOFl8vKzeObDYeYvDyWvcdSaVw7iGevi2T0Jc2pGRTg7vCUUpWAJgovdTo9h89/i2fayjiOp2QR2bgW/7q5M4M7NdEGaqVUiWii8DKJp842UKdn59GvTQPeHNWZvq0baAO1UqpUNFF4ia0HT/Phsli+3XIYAYZ2bsJd/SKIaqIN1Eqpi6OJohIzxrBk93EmL41lVWwSNQKrMKFPOHf0aUmTOtpArZQqG5ooKqHs3Hy+2WjdQb37aCqNagXxzLXtGdOzBbW0gVopVcY0UVQipzNymP7bAaat3M/RM1m0b1STf47szJDOTfQRo0qpcqOJohI4mJzBx7/uZ+bvB0jLzqNv6wb846bOXNZGG6iVUuVPE4UH23rwNFOWx7Jw82EABndqzMR+EXRsqs8DV0pVHE0UHsYYw7I9J5i8bB8r9iYRXNWf8ZeGM6FvS5pqA7VSyg00UXiI7Nx8Fmw6xJTlsew8kkJozUCeuqY9t/RsQe1q2kCtlHIfTRRudiYzhxm/HWDqijiOnMmkbcMa/N9NnRgW01QbqJVSHsGrEoWIDAGGtG7d2t2hXNCh5AymrtjPjN8TSM3K5dJW9XltRDT924ZoA7VSyqN4VaIwxiwAFnTv3n2iu2MpyvZDZ5iyPJYFmw5hgOuiG3N3vwiim2kDtVLKM3lVovBUxhh+3XuCyctiWb7nBNWr+nNb7zAm9GlJ83rV3R2eUkoVSxNFOcrJy2fh5kNMXrafHYfPEFIzkCeubsetPcOoXV0bqJVSlYMminKQkpnDzN8T+HjFfg6fzqR1aA3+MaITw7o0IbCKv7vDU0qpEtFEUYaOnM5k6sr9TF99gJSsXHq2rMcrN3akf9tQ/Py0gVopVTlpoigDO4+cYcqy/czfdJC8fMO1dgN15+Z13B2aUkpdNE0UpWSMYeW+JCYvi2Xp7uNUC/BnbM8w7uyrDdRKKe+iiaKEcvLy+XbLYSYvi2XboTM0qBHInwe15dZeYdSpXtXd4SmlVJnTROGi1KxcZq1J4ONf93MwOYOIkGBeHx7NDV2aEhSgDdRKKe+lieICjp7JZNrKOL5YHc+ZzFwuaVmPl4Z24Mr22kCtlPINmiiKsPtoClOWxTJvo9VAfU3HRkzsF0GXFnXdHZpSSlUoTRQOjDGsik1iyrJYftl1nKAAP8Zc0oI7+7YkrH6wu8NTSim30EQB5Obl8+3WI0xZFsuWg6epH1yVxwa25bZeYdQN1gZqpZRv8+lEkWY3UH9U0EDdIJhXb4xmeFdtoFZKqQI+mSiOpWTyyco4Pl99gNMZOXQPq8sLQ6IYENlQG6iVUsqJTyWKvcdSmLJsP3M3HCQnP5+roxox8bIIuoVpA7VSShXF6xOFMYbf9p9kyrJYftp5jMAqfozq0Yy7+kYQ3kAbqJVS6kK8NlHk5uWzaJvVQL0p8TT1gqvyyIA23NYrjPo1At0dnlJKVRpemSiSUrO54p9LSDiZQXj96ky6oSMjujajWlVtoFZKqZLyykRx6HQGXWoE8ux1UQyMaoi/NlArpVSpeWWiaBUSzNf393F3GEop5RX83B1Aeahe1Svzn1JKuYVXJgqllFJlRxOFUkqpYmmiUEopVSxNFEoppYqliUIppVSxNFEopZQqliYKpZRSxdJEoZRSqlhijHF3DGVORE4De9wdh6I2cNrdQXgYb10nlW25PDFeT4ipjTGmtnNHb72FeZYx5m53B+HrRGSybodzees6qWzL5YnxekJMIjK5sO7eeuppgbsDUIBuh8J46zqpbMvlifF6QkyFxuCVp56UUkqVHW89olBKKVVGNFEopZQqliYKpZRSxfLWq55KTESCgfeAbGCJMeYLN4fkk3Q7nE/XiWfw5e3gUUcUItJcRH4RkR0isk1EHr6IaX0sIsdEZGsh/a4RkV0isldEnrY7DwdmG2MmAkNLO19vICJBIvK7iGyyt8NLFzEtr9oOIuIvIhtEZOFFTMOr1klFE5E6IjJbRHba+4repZyObgcXeVSiAHKBx40xkUAv4AERiXIcQERCRaSmU7fWhUxrGnCNc0cR8QfeBa4FooAx9jyaAQn2YHkXuRyVXRZwpTGmMxADXCMivRwH8OHt8DCwo7AePrxOKtpbwCJjTHugM07bQ7dD2fOoRGGMOWyMWW+/T8H6AjR1Guxy4BsRCQIQkYnAfwqZ1jLgZCGzuQTYa4yJNcZkAzOBYUAi1hcBPGy9VDRjSbU/Btgv5+uofW47iEgz4Hrgv0UM4nPrpKKJSC3gMuAjAGNMtjEm2Wkw3Q5lzGMXVkTCgS7Ab47djTFfAYuAmSIyFpgAjCrBpJty9lcBWBu/KfA1MEJE3sczbnxxK/sUy0bgGPCDMUa3A/wbeBLIL6ynj66TihYBHAem2qcA/2u3HfxBt0PZ88jGbBGpAcwBHjHGnHHub4z5h4jMBN4HWjn8+nVp8oV0M8aYNOCOUgXshYwxeUCMiNQB5opIR2PMVqdhfGY7iMhg4JgxZp2I9C9qOF9aJ25SBegKPGSM+U1E3gKeBp53HEi3Q9nyuCMKEQnAShJfGGO+LmKYfkBHYC7wQglnkQg0d/jcDDhUilB9gn1Yv4TCz+X60nboAwwVkTisUxFXisjnzgP52Dpxh0Qg0eEIdzZW4jiHboey5VGJQkQE69zjDmPMm0UM0wWYgnXO8A6gnohMKsFs1gBtRKSliFQFRgPzLy5y7yIiIfaRBCJSDRgA7HQaxqe2gzHmGWNMM2NMOFasPxtjbnUcxtfWiTsYY44ACSLSzu50FbDdcRjdDuXAGOMxL6AvVqPpZmCj/brOaZg+QLTD5wBgYiHTmgEcBnKwfiHc6dDvOmA3sA941t3L7WkvoBOwwd4OW4G/FjKMz24HoD+wUNeJ29Z/DLDW/n7OA+rqdijflxYFVEopVSyPOvWklFLK82iiUEopVSxNFEoppYqliUIppVSxNFEopZQqliYKpZRSxdJEoVQpiciLIvJnd8ehVHnTRKGUG9klrZXyaJoolCoBEXnWfqDNj0A7u1srEVkkIutEZLmItHfovlpE1ojI30Qk1e7eX6wHdE0HttjdbhXrYVEbReTDggQiIoNEZJWIrBeRr+yCmUpVKE0USrlIRLph1f3pgvW0sx52r8lY1Uy7AX/GelwmWA/YecsY04Pzi8pdglUaIkpEIoGbgT7GmBish+KMFZEGwHPAAGNMV6yyFY+V2wIqVQSPLDOulIfqB8w1xqQDiMh8IAi4FPjKqmkJQKD9tzdwg/1+OvCGw7R+N8bst99fBXQD1tjTqIb1HJBeWE9YW2F3rwqsKvOlUuoCNFEoVTLOxdH8gGT7SKAk0hzeC/CJMeYZxwFEZAjWQ6PGlDxMpcqOnnpSynXLgBtFpJr9TOYhQDqwX0RGglUqX0Q628OvBkbY70cXM92fgJtEJNSeRj0RCbPH71PwvGcRqS4ibct8qZS6AE0USrnIWM9zn4VV/n4OsNzuNRa4U0Q2AduwnoMA8AjwmIj8DjQGThcx3e1YbRGLRWQz8APQ2BhzHBgPzLC7rwbal8OiKVUsLTOuVDkRkepAhjHGiMhoYIwxZtiFxlPK02gbhVLlpxvwjv3kxmRggpvjUapU9IhCKaVUsbSNQimlVLE0USillCqWJgqllFLF0kShlFKqWJoolFJKFUsThVJKqWL9P1rIHgEcqb9iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = piv.plot(logy=True, logx=True)\n", - "ax.set_title(\"Polynomial Features for 1000 observations\\nnumber of features is 4\")\n", - "ax.set_ylabel(\"seconds\")\n", - "ax.set_xlabel(\"degree\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is worth transposing." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Same experiment with interaction_only=True" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
averagedeviationmin_execmax_execrepeatnumbercontext_sizenamesize
290.0106910.0000730.0106180.010764230240ext50000
300.0266120.0007940.0258170.027406230240poly100000
310.0250520.0015830.0234690.026635230240ext100000
320.0587720.0013450.0574270.060118230240poly200000
330.0547710.0045550.0502160.059327230240ext200000
\n", - "
" - ], - "text/plain": [ - " average deviation min_exec max_exec repeat number context_size \\\n", - "29 0.010691 0.000073 0.010618 0.010764 2 30 240 \n", - "30 0.026612 0.000794 0.025817 0.027406 2 30 240 \n", - "31 0.025052 0.001583 0.023469 0.026635 2 30 240 \n", - "32 0.058772 0.001345 0.057427 0.060118 2 30 240 \n", - "33 0.054771 0.004555 0.050216 0.059327 2 30 240 \n", - "\n", - " name size \n", - "29 ext 50000 \n", - "30 poly 100000 \n", - "31 ext 100000 \n", - "32 poly 200000 \n", - "33 ext 200000 " - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res = []\n", - "for n in [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, \n", - " 5000, 10000, 20000, 50000, 100000, 200000]:\n", - " poly = PolynomialFeatures(degree=2, interaction_only=True)\n", - " ext = ExtendedFeatures(poly_degree=2, poly_interaction_only=True)\n", - " X = numpy.random.random((n, 5))\n", - " poly.fit(X)\n", - " ext.fit(X)\n", - " r1 = measure_time(\"poly.transform(X)\", context=dict(X=X, poly=poly), repeat=2, number=30, div_by_number=True)\n", - " r2 = measure_time(\"ext.transform(X)\", context=dict(X=X, ext=ext), repeat=2, number=30, div_by_number=True)\n", - " r1[\"name\"] = \"poly\"\n", - " r2[\"name\"] = \"ext\"\n", - " r1[\"size\"] = n\n", - " r2[\"size\"] = n\n", - " res.append(r1)\n", - " res.append(r2)\n", - " \n", - "import pandas\n", - "df = pandas.DataFrame(res)\n", - "df.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nameextpoly
size
10.0000420.000086
20.0000340.000104
50.0000680.000089
100.0000320.000092
200.0000400.000103
\n", - "
" - ], - "text/plain": [ - "name ext poly\n", - "size \n", - "1 0.000042 0.000086\n", - "2 0.000034 0.000104\n", - "5 0.000068 0.000089\n", - "10 0.000032 0.000092\n", - "20 0.000040 0.000103" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piv = df.pivot(\"size\", \"name\", \"average\")\n", - "piv[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEpCAYAAACN9mVQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUZfbA8e9JBxISSuidUEIvoYkoSrFRFAVBEZAmuroWxL5rXXVdddWfuggiiHSxgaKoKGChCygQektogUAaISHl/f1xb2AIKRPIzCST83meeZK5bc47k9wz733vPVeMMSillFL58fF0AEoppUo2TRRKKaUKpIlCKaVUgTRRKKWUKpAmCqWUUgXSRKGUUqpAmijUOSLynIjM8nQcjkTkThH53sllS1z87iQi5URksYgkisinHnj9ZiKyUUSSReTv7n595TqaKLyQiOwXkTMikiIix0RkuogEezquS2GMmW2M6Xu52xGRniKSbb8nOY/FxbDdGSLy0uVup5jcBlQHqhhjBl/uxkSkgYiYXO/ZPwpY5TFguTEmxBjzzmW+9nIRGXs521DFx8/TASiX6W+M+VFEagNLgWeAJzwck6cdNsbU8XQQjkTEzxiTWUybqw/svJTtFRJHmJPbrA/MK+pru0Ixv69lnvYovJwx5hDwLdAKQERqicgiETkpIrtFZFxe64nINyLyQK5pf4rIzfbvRkQmiMguETklIu+JiNjzfETkGRE5ICJxIjJTRELteTnfUu8WkRh73Qki0snefoKIvOvwmqNE5FeH52/b6yWJyAYR6XG575Ed7xMiskdE4kVkgYhUdpj/qYgctQ/prBSRlvb08cCdwGOOPRS7fREO65/rddg9m1gReVxEjgLT7en9RGST3f7fRaSNw/qPi8gh+5DODhHplUcbngf+CdxuxzLGyc9hjIgcBH66zPfwJ+Aa4F379ZuKSKCIvC4iB+2e7WQRKWcvX0lEvhaR4/bfwNciUsee9y+gh8O23nWI18/hNc/1Ouy/k99E5L8ichJ4zp4+WkSi7ddYKiL17eliLxtnf65/ikiry3kPvJoxRh9e9gD2A73t3+sCW4EX7ecrgPeBIKAdcBzoZc97Dphl/z4EWOOwzbZAPBBgPzfA10AYUM/ezvX2vNHAbqAREAx8Dnxiz2tgrzvZjqEvkAZ8CVQDagNxwNX28qOAXx3iGA5UweoNTwSOAkG548/jPekJxOYz7yFgNVAHCAQ+AOY6zB8NhNjz3gI2OcybAbyUa3sGiMhrGTuOTODf9vbKAR3sNncBfIGR9mcYCDQDYoBaDu9f43zacUH7nfwcZgIVgHJ5bC9nmUNALFZSq1rA391yYKzD87eARUBl+/1bDLxiz6sC3AqUt+d9CnxZwLZyYvHLaxn77yQTeMD+2ygH3Gy3P9Ke9gzwu738dcAGrL9fsZep6en/3ZL68HgA+nDBh2rtZFKABOAAVmIoh5U0soAQh2VfAWbYv5/b0dg7qZNAE/v568D7DusZ4EqH5wuAJ+zflwH3OcxrBmTY/6w5//C1HebHA7c7PP8MeMj+fRQOiSKPtp4C2uaOP4/legLZ9nuS8xhiz4vGTpb285o58eaxnTA7/lD7+QyKnijOYic3e9r/sBO5w7QdwNVABFYS6Q34F/K5X9B+Jz+HRgVsLxiIspevDiwElhaw/HLO77gFOI1DUgO6AfvyWbcdcCqvbdnPc+ItKFEczLXNb4ExDs99gFSsQ2TXAjuBroCPp/9nS/pDDz15r5uNMWHGmPrGmPuMMWeAWsBJY0yyw3IHsL7FX8AYk4618x8uIj7AMOCTXIsddfg9FWvHgv06B3K9Rs7OJscxh9/P5PE8z8F3EZloH0pIFJEEIBSomteyeThsvyc5jwX29PrAF/ZhnwSsxJEFVBcRXxF51T4slYSVhCnCa+bluDEmzeF5fWBizuvbMdTF6kXsxurxPAfEicg8Eanl5Os48znE5LeyMSbFGLPeGJNpjDkG3A/0FZGKTrx2OFZvYYNDm76zpyMi5UXkA/uwWBKwEggTEV8n25aX3G2pD7zt8PonsRJYbWPMT8C7wHvAMRGZ4mS7yiRNFGXLYaCyiIQ4TKuHdWghLx9jHYPvBaQaY1YV4XXq53qNTC5MBkVmj0c8jnVYrJIxJgxIxPrnvxwxwA25kkiQscZ37gAGYn2jD8X6ZovDa+ZVfjkVayeZo0au+bnXiQH+lev1yxtj5gIYY+YYY67Eek8N1mErZzjzORSlfHTOss683yewEn5LhzaFGmNyvgBMxOrhdDHGVASuyrXt3HGdtn8W9X29J9f7Ws4Y8zuAMeYdY0xHoCXQFJjkRLvKJE0UZYgxJgb4HXhFRILsAdMxwOx8ll+FdbjmDS7uTRRkLvCwiDQU67Tcl4H55vLPQgnB2tEdB/xE5J9AcXwLnAz8y2GgM1xEBjq8ZjrW4bHyWG1xdAxrDMDRJuAOuzdyPdYhpIJMBSaISBd7kLWCiNwkIiFiXZtwrYgEYo3lnMHq7Tjjsj4HO55m9qB4FeAdrNNfEwtb1xiTbbfrvyJSzd5ebRG5zl4kxG5LglgnDjybaxMXvK/GmONYX2iG2+/raKBxIWFMBp6U8ycfhIrIYPv3Tnb7/LGSUBrOv69ljiaKsmcY1rfiw8AXwLPGmB8KWH4m0BooyoVsH2EllpXAPqx/wgcKXMM5S7GOO+/EOoySRgGHTorgbaxB1+9FJBlrYLuLPW+m/VqHgG32PEfTgBb24Y0v7WkPAv2xxkHuxBqoz5cxZj0wDutQyCmsAdhR9uxA4FWsb+hHsQb8n3KyXZf7OTTCOlyUDGzBSpjDirD+41htWW0fXvoRqxcB1kB3Oax2rbZfx9HbwG322Uo512SMw/rWH4/VC/i9oBc3xnyB1fuaZ7/+FuAGe3ZFrER2Cuvzjccah1N5EHuQR6k8icgIYLx96EMpVQZpj0LlS0TKA/cBUzwdi1LKczRRqDzZx5KPYx0rnuPhcJRSHqSHnpRSShVIexRKKaUKpInCy0jJqmaaL7vuT0GVSD2mJMdWGBH5VkRGejqOvJSWv011Ma0eqzzCGDOhqOvY5+O/jXVdQgWs0x0fMcas8VRsIjIDq4bUM8UZg5Ov/RxWqZDhOdOMMTfkv4b3sC++/DbnKdY1LqcdFmlhjDno9sC8lPYolFMcq3Z6UDCwDuiIVWjuY+AbceJeG3b10f2uDa/oSsj7WuoYY34xxgTbV3q3tCeH5UzLnSTsiwZ1f3eJ9I0r5USkvYj8IVYJ6vlYFVkd5xdUvrqDnL8j2aciMl8urxx2LRH5TKzS0fukgLucyYWlt6uKVWY6Qazy57/k9U9tjNlrjHnTGHPEGJNljJkCBHD+Iq5iIXmXBZ8oVknqIyJytz0vvzLj+b4PYt2Fb6GIzLIvAhslIp1FZJXd/iNildUOcFinpYj8YL83x0TkKbGu+H6K82XFN9vLOpbedqbM+EixyoCfEJGnnXhvAkXkLRE5bD/eEuuq8QLfqzy2s0VE+js897djaFekD6vgWH8VkRdFZBVWb6OeHV9Ph2VesnuFOc+7i8hq+7PYJCJXXbzlskcTRSlm70y+xLr6tjJWqeZbHeZ3wLo69x6sss4fAIvsf/YArCuzZ9jrzgVuyfUSNex59YHxhWzPB6uM9GasIoO9gIfkfMmGgkzEKmMdjlWw7imcqEFk71QCsK7+daUaWHWeamOVPHlPRCrZiWo28Jr9Lba/k+/DQKxKrGH2+lnAw1iFBrvZ69xntzEE64rm77CK/EUAy4wx33G+JEewMaZtHnGPsh/XcL7U+Lu5lrkSK9H2Av4pIpGFvBdPY1VcbYdVer4zVvnuAt+rPLYzE6tkfI4bgSPGmE12uxMKeBTlBlx3YZVbr4j1N5YvEamLdYX+s1h/908An4tVvqRM00RRunUF/IG3jDEZxpiFWIdmcowDPjDGrLG/gX+MVYahq/3wA96x1/0cWJtr+9lYJT7S7eqzBW2vExBujHnBGHPWGLMXq0TCUCfakYFV2ru+HcsvppDztsWq9PkJ8LwztYcuUwbwgh3bEqwS7vn1Ypx5H1YZY740xmQbY84YYzYYY1bbVVr3YyXgnPpQ/YCjxpg3jDFpxpjkIozJ3Am8affEUoAngaFy4eGu5+0YNmMlt7wSTu5tvmCMibPrLz2PtTPO4ex7NQu4Uc5XbL0Lh3piuQr55X686mT7AT4yxkTb8RRW42oEsMgYs9T+bL7Dek+uL8LreSU9Plq61QIO5dqpOpaVrg+MlAvvVBdgr2fyWDd33aS8ymHnt70soJZY5Zxz+AK/ONGO/2CV0f5erJvkTSloZyDWXdIWA6uNMa8UsNwdWPfiAOtLUXCu+No4OeAZn2sn41hSPbf6FP4+XPA+i0hT4E2sez+Ux/q/3GDPrgvscSLGvDhTZjy/UvFF2aZj2XOn3itjzGER+Q24VUS+wKrB9GAhr30pilILrD4wTEQce9b+XFyHqszRHkXpdgSoLfbe1VbP4feCylfntW7dXNsvSjnsGKyb0jjOCzHG3FhYI+xvyRONMY2wiuk9Innc7hOsY+RYh9sOYR0CK2i7c3JiAdpg3djGMb7iOCsmr/eosPch9zr/A7Zj3SSqItahN3HYXn5VUgs7POeKcu95bfPwJW7rY6zDT4Oxelnnyt3b4y75PZwtigh5lyvPr1R5DDA912dXwRjznyK2y+tooijdVmH94/9dRPxEZBDWMeMc+ZavttfNAu631x2Ya928FLS9tUCSWIPf5cQqBd1KRDoV1gixBsgj7KSVZMd1UclnsUpCL8QqTz3CWKWsPS13mfFLeR9CsNqdIiLNgXsd5n0N1BCRh+yxoBARyalsewxoIPmfzeOKcu9zgWfEKsVeFes+3UWpLOzoS6zbwD6INWZxjsPZS3k9cpd6L4pN2IffRKQzMMhh3ifALSLSx/7cgkTkGnH+RlFeSxNFKWaMOYv1hz4Kq1zy7Vj3Rc6Zn2/5aod1x2CVwx6OtVNKL+D1CtpeFlZvoB1WSesTwIdYA5uFaYI1YJuClcDeN8Ysz2O5K7CO2ffFuo9BzjfMHk68hqtcUGb8Et+HR7FukJSMlYzn58ww1t0I+9jbPArswhqcBuvkBYB4Efkjj+26otz7S8B64E/gL+APe1qR2eNenwENcfi7dbGngeZYf/P/wKGOmT0+dIs9/ThwEOtEizK/n9RaT+ocEVkDTDbGTPd0LKpsEOvmU02Nw0WDquQp85myLBORq0Wkht0NH4l1HL/MD9wp9xDrznZj0DL2JZ4mirKtGdbpf4lYXezbjDFHPBuS8jSx6kVd7iByYa8xDmvw+FtjzMri2q5yDT30pJRSqkDao1BKKVUgTRRKKaUK5JVXZletWtU0aNDA02EopVSpsmHDhhPGmPDc070qUYhVjbJ/REQE69ev93Q4SilVqojIgbyme9WhJ2PMYmPM+NBQZ67xUkop5QyvShRKKaWKnyYKpZRSBfLaMYrcMjIyiI2NJS0t7eIVvUBQUBB16tTB39/f06EopbyMV15wFxUVZXIPZu/bt4+QkBCqVKnChZW1Sz9jDPHx8SQnJ9OwYUNPh6OUKqVEZIMxJir39DJz6CktLc0rkwSAiFClShWv7S0ppTyrzCQKwCuTRA5vbptSyg225F/p3asShYj0F5EpiYmuvoWyUkp5kU1zYeHd+c72qkSh11EopVQR7VyK+epvxIblfxNGr0oUrrJ//34iIyMZN24cLVu2pG/fvpw5c4apU6fSqVMn2rZty6233kpqaioAo0aN4t577+Waa66hUaNGrFixgtGjRxMZGcmoUaPObff777+nW7dudOjQgcGDB5OSkuKhFiqlyqSDa2DBSOLKN+W6oxPyXUwThZN27drF3/72N7Zu3UpYWBifffYZgwYNYt26dWzevJnIyEimTZt2bvlTp07x008/8d///pf+/fvz8MMPs3XrVv766y82bdrEiRMneOmll/jxxx/5448/iIqK4s033/RgC5VSZUpcNMwZQmJAODfG/50bOzbJd1Gvuo7ClRo2bEi7du0A6NixI/v372fLli0888wzJCQkkJKSwnXXXXdu+f79+yMitG7dmurVq9O6dWsAWrZsyf79+4mNjWXbtm10794dgLNnz9KtWzf3N0wpVfYkxMAng0gzftx06hE6tmjKK4Na83o+i3tVoijogrvLFRgYeO53X19fzpw5w6hRo/jyyy9p27YtM2bMYPny5Rct7+Pjc8G6Pj4+ZGZm4uvrS58+fZg7d26xx6qUUvk6HQ+f3EJGWjK3pj5NnYbNeWdYe/x88z/A5FWHntw9mJ2cnEzNmjXJyMhg9uzZRVq3a9eu/Pbbb+zevRuA1NRUdu7c6YowlVLKkp4Cs28jO+EgI888gk+N1kwdEUWQv2+Bq3lVonC3F198kS5dutCnTx+aN29epHXDw8OZMWMGw4YNo02bNnTt2pXt27e7KFKlVJmXeRYW3IU5spkHsx7kaFgHZtzdiZCgwsv+lJkSHtHR0URGRnooIvcoC21USl2C7Gz4fBxsWcgLPvfxrX9vFt57BbXDyl2wWH4lPLxqjEIppVQuxsDSJ2HLQib7D+eLrGv4dEzni5JEQTRRKKWUN/vlDVgzmc8CBvJOWj/mjutMRLWQIm3Cq8YotISHUko52DADfnqRFUHX8tTp25k6ohNt64YVeTNelSi0hIdSStmiF2O+fpjNQZ0YlziKt4d1oHtE1UvalFclCqWUUsD+XzELx7A/sDlDE+7lhVvac32rmpe8OU0USinlTY78iZk7jON+Nbkl4UEevKEdQzvXu6xNaqIogRISEnj//fc9HYZSqrQ5uQ9m3UqKCWJg4kRuv6otE65ufNmb1URRAmmiUEoVWUocfHILaWfTuTl5Ej2i2vLEDUW7EDg/mijcaNasWXTu3Jl27dpxzz33cODAAZo0acKJEyfIzs6mR48efP/99zzxxBPs2bOHdu3aMWnSJE+HrZQq6dKSYNatZCYdZVjKI0S06MDLt7QutjtfetV1FM4WBXx+8Va2HU4q1tduUasiz/Zvme/86Oho5s+fz2+//Ya/vz/33XcfK1as4PHHH2fChAl06dKFFi1a0LdvX5o2bcqWLVvYtGlTscaolPJCGWkw7w6yj21j3NmJBDXsyttDCy7yV1RelSiMMYuBxVFRUeM8HUtuy5YtY8OGDXTqZN1F6syZM1SrVo3nnnuOTz/9lMmTJ2tiUEoVTXYWfD4W9v/CY1n3c6LGVcwZ0bHQIn9F5VWJwlkFffN3FWMMI0eO5JVXXrlgempqKrGxsQCkpKQQElK0KyaVUmWUMfDNRIhezL8ZyR9hffjUySJ/RaVjFG7Sq1cvFi5cSFxcHAAnT57kwIEDPP7449x555288MILjBtndYRCQkJITk72ZLhKqZLMGFj6FGyYznS5hS8DB/LJmC5UCQ4sfN1LoInCTVq0aMFLL71E3759adOmDX369GH//v2sW7fuXLIICAhg+vTpVKlShe7du9OqVSsdzFZKXcgY+OEfsPp9Fvj14x2G8cmYLkUq8ldUWmbci5SFNipVphkDy56HX//Lt+Vu4uGU4cwbfwXtLqF+U17yKzOuPQqllCotfn4Zfv0vv4b2575Tw3jr9vbFliQKoolCKaVKg+X/hpWvsaXaAO46djuPXd/isuo3FYUmCqWUKulWvg7LX+Zg3Zvpf3AIg6PqMeHqRm57eU0USilVkv32Nvz0IvGNBtJ37xC6NKrKSzcX31XXztBEoZRSJdWq9+CHf3K6yUCu338HNStVYPLwjgT4uXfX7VWJQu9wp5TyGms+gKVPkdFsADcfGclZ48NHozoRVj7A7aF4VaLwtjvc9ezZk9yn+SqlyoB1H8K3j5Hd7CbGpkxg/6l0PrirIw2rVvBIOF6VKJRSqtTbMAO+mYhpej3PBjzKij0JvHxLa7o2quKxkDRRuNH+/ftp3rw5I0eOpE2bNtx2222kpqaybNky2rdvT+vWrRk9ejTp6ekXrDdt2jQefvjhc8+nTp3KI4884u7wlVKutnEWLH4QIvowvfbzfLLuCPf2bMzgqLoeDatMFgXk2yfg6F/Fu80areGGVwtdbMeOHUybNo3u3bszevRo3nzzTT744AOWLVtG06ZNGTFiBP/73/946KGHzq0zdOhQ2rRpw2uvvYa/vz/Tp0/ngw8+KN74lVKetXkefHU/NLqGZW3f5MU5f3FDqxpM6tvM05Fpj8Ld6tatS/fu3QEYPnw4y5Yto2HDhjRt2hSAkSNHsnLlygvWqVChAtdeey1ff/0127dvJyMjg9atW7s9dqWUi/z5KXx5LzTswbaeH/DAp9toXTuUN4e0w8fHfafB5qds9iic+ObvKpd67vPYsWN5+eWXad68OXfffXcxR6WU8pgtn8MX46HeFRzr9zGjP9hIaDl/PhwRRbmA4r2vxKXSHoWbHTx4kFWrVgEwd+5cevfuzf79+9m9ezcAn3zyCVdfffVF63Xp0oWYmBjmzJnDsGHD3BqzUspFtn0Fn42Ful1IHTybsXO2kZyWwbSRnahWMcjT0Z2jicLNIiMj+fjjj2nTpg0nT57k4YcfZvr06QwePJjWrVvj4+PDhAkT8lx3yJAhdO/enUqVKrk5aqVUsdv+DSwcDbU7kj1sAY98sYethxN5Z1h7WtSq6OnoLlA2Dz15kI+PD5MnT75gWq9evdi4ceNFyy5fvvyC57/++usFZz8ppUqpHd/BgpFQsy0MX8hrPx/mu61H+Ue/FvSKrO7p6C6iPYpSICEhgaZNm1KuXDl69erl6XCUUpdj14+w4C6o3hKGf878vxKZvGIPd3apx+juDTwdXZ60R+FGDRo0YMuWLUVeLywsjJ07d7ogIqWUWx1cA/PvhPBmcNcX/H44k6e/2EKPJlV5bkBLtxb6KwrtUSillDvE74G5Q6FiLbjrS/aeDuDeWX/QoGoF3r2jA/6+JXd3XHIjcwFvvO1rDm9um1KlXupJmD3Y+v3OhZyiIqNnrMPXR/hoZCdCy/l7Nr5ClJlEERQURHx8vFfuUI0xxMfHExRUck6nU0rZMtJg3h2QGAND53A2tCETZm3gcGIaU0d0pF6V8p6OsFClYoxCRG4GbgKqAe8ZY74v6jbq1KlDbGwsx48fL/b4SoKgoCDq1Knj6TCUUo6ys+Gr++DgKrh1GqZeV55a+Cdr9p3k7aHt6Fi/sqcjdIrLE4WIfAT0A+KMMa0cpl8PvA34Ah8aY/K9XNoY8yXwpYhUAl4Hipwo/P39adiwYVFXU0qpS/fzS7DlM+j1LKbVrbz4dTQLN8TyYK8mDGxX29PROc0dPYoZwLvAzJwJIuILvAf0AWKBdSKyCCtpvJJr/dHGmDj792fs9ZRSqmT7Yyb88gZ0GIHp/hD//m4HH/22j7u7N+Ch3k08HV2RuDxRGGNWikiDXJM7A7uNMXsBRGQeMNAY8wpW7+MCYp0z9irwrTHmj7xeR0TGA+MB6tWrV2zxK6VUke1eBosfgsbXwk1v8tay3eeulfhnvxYl9jTY/HhqMLs2EOPwPNaelp8HgN7AbSKSZ30LY8wUY0yUMSYqPDy8+CJVSqmiOLbVuuo6vDkM/pj3Vh7g7WW7GNyxDi8ObFXqkgR4bjA7r3cq39ORjDHvAO+4LhyllCoGSUdg9hAIqAB3LuDDdSf4z9Id3NyuFq/e2qZElAy/FJ7qUcQCjrdsqgMcvtyNikh/EZmSmJh4uZtSSqmiSU+BOUPgzCm4cwEfb83kpW+iual1TV4f3BbfUpokwHOJYh3QREQaikgAMBRYdLkbNcYsNsaMDw0NvewAlVLKaVmZViXYY1tg8AzmxlTi2UVb6dOiOm8NbYdfCb7q2hkuj15E5gKrgGYiEisiY4wxmcD9wFIgGlhgjNnq6liUUqrYGQPfPQ67lsINr7EwuQVPffEXPZuF8+4d7Ut0aQ5nueOspzzvsmOMWQIsKc7XEpH+QP+IiIji3KxSSuVv1Xuw7kPodj+LAm/isXkb6d64KpOHdyTQr2Tcoe5ylf5U50APPSml3GrbIvj+GYgcwLc17+Ph+ZuIalCZqSOiCPL3jiQBXpYolFLKbWLXw+fjoE4UP0W+xAPzNtO2TigfjepUYu51XVy8KlHoWU9KKbc4uQ/m3A7B1fm987tMmL+NFrUqMmN0Z4IDS0UJvSLxqkShh56UUi6XUzI8O5ONPaZy94J9RFQLZubozlQMKtnlwi+V96U+pZRylcx0mH8XnNpPdJ+Z3PHlKepXKc+ssV0IKx/g6ehcRhOFUko5wxhY9AAc+JV9V7/Fbd/6UDMsiNlju1K5gvcmCdBEoZRSzln+Cvw5n2MdJzJgRS2qhgQwZ2xXwkMCPR2Zy3nVGIUOZiulXGLTHFjxbxKaDua6P7pQMcifOeO6UiO0bNxV0qsShQ5mK6WK3d7lsOgBUmtfSd/dgygX4MfccV2pHVbO05G5jVclCqWUKlZx22H+CM6GNuKmY+MxvgHMHtulVNznujjpGIVSSuUl+RjMHkyWbyBDUh4hyZRn3rguNAoP9nRkbudVPQodo1BKFYuzp2Hu7WSfPs74zEnsz6rCrLFdaFI9xNOReYRXJQodo1BKXbbsLPhsHObwJp72eZi1Z+sza0wXImtW9HRkHuNViUIppS7b0qdhxze8GzCWRWltmTm6M61ql+0vnzpGoZRSOVZPhjX/4/OA/rx/pjczx3Smfb1Kno7K47RHoZRSAH8txHz3BL/7d+Xp1GFMGxlFpwaVPR1ViaCJQimltnyO+XwcW/1acm/qBCaP6MwVEVU9HVWJ4VWJQs96UkoV2bavMJ+NJdovkjtSJ/LGnVdwddNwT0dVonhVotCznpRSRRL9NWbhaHb5N+X2lEd4dVg3ereo7umoShyvShRKKeW0Hd9iPh3FXr8Ibk2eyPODu3Jj65qejqpE0kShlCp7dn6PWTCCA/6NuCVpIk/e3IVBHep4OqoSSxOFUqps2f0jZv5wYv0aMCBxIg/268QdXep5OqoSTROFUqrs2PMzZt6dHPGvR7/ER7nnuo6MubKhp6Mq8TRRKKXKhr0rMHOHEedXm5sSJjL8mrb87ZoIT5yoV1wAACAASURBVEdVKmiiUEp5v/2/wtyhnPCvyQ0Jk7ile1se7dvM01GVGl6VKPQ6CqXURQ6sgtlDOOlfnRtOTeK6zq34R79IRMTTkZUaXpUo9DoKpdQFYtbC7NtI8A/nupOTuKp9C/51cytNEkXkVKIQkQoi4mP/3lREBoiIv2tDU0qpyxC7Hj4ZRJJfFfqenESn1s157bY2+PhokigqZ3sUK4EgEakNLAPuBma4KiillLosh/6ATwaR4hdG35OP0qp5M966vT1+vl51EMVtnH3XxBiTCgwC/s8YcwvQwnVhKaXUJTq8CT65mVTfEK479RgREc14/84OBPhpkrhUTicKEekG3Al8Y0/Te1kopUqWI3/CzIGc8Qnm+oTHqFU/gikjOhLk7+vpyEo1ZxPFQ8CTwBfGmK0i0gj42XVhKaVUER3bCjMHkuZTjn6Jj1GpVmM+GtWJ8gH6nfZyOfUOGmNWACscnu8F/u6qoJRSqkjiouHjAZyVAPonP45/eCM+Ht2ZkCA956Y4FJgoRGQxYPKbb4wZUOwRKaVUURzfAR/3JwMfbj79JNlhDZg7tgth5QM8HZnXKKxH8br9cxBQA5hlPx8G7HdRTEop5ZzEQ/BxfzKz4dYzT5FSoT4LxnalanCgpyPzKgUmCvuQEyLyojHmKodZi0VkpUsjuwQi0h/oHxGh9VuU8nrGwJJHyU5LZFj2KxwPrMeCsV2oERrk6ci8jrOD2eH2ADYAItIQKHH3CtQrs5UqQ6IXwY4lvGcGs8+nHrPHdqFu5fKejsorOXs6wMPAchHZaz9vANzjkoiUUqowZxJgySRiApvw/unr+fxvnWkUHuzpqLyWs2c9fSciTYDm9qTtxph014WllFIF+PFZzOnj3Jv2AOOubUpkzYqejsirFeUE445YPQk/oK2IYIyZ6ZKolFIqP/t/gw0z+DTgZhKCWnJfz8aejsjrOZUoROQToDGwCciyJxtAE4VSyn0y02HxgyQF1eLZhAH834iWetW1Gzjbo4gCWhhj8r2mQimlXO6XNyB+FxOzn6R7ZD16t6ju6YjKBGcTxRas6yiOuDAWpZTKX1w0/PIma0N6s/JUW37s39LTEZUZziaKqsA2EVkLnBvE1iuzlVJukZ0Nix8kw68CE47fxt/6ROipsG7kbKJ4zpVBKKVUgTZ8BDFreCPwQUKq1GD8VY0KX0cVG6eLAopIdaCTPWmtMSbOdWEppZQt6TD88BwxYV2YfLQzM+7WAWx3c/ZWqEOAtcBgYAiwRkRuc2VgSikFwJJJmKwMRscP47qWNejZrJqnIypznD309DTQKacXISLhwI/AQlcFppRSRC+G7V/zReWxxByvwfR+emNNT3C21pNPrkNN8UVYVymlii4tEb55lOSw5jx2+CoeuLYJdSrpALYnONuj+E5ElgJz7ee3A9+6JiSllAJ+fB5zOo6JgY9Sr2ooY3s09HREZZazg9mTRGQQcCUgwBRjzBcujcwmIpHAg1in6C4zxvzPHa+rlPKgg6th/TQ21b6D7/fU4pMxLQn00wFsT3G2hEdDYIkx5nP7eTkRaWCM2V/Ieh8B/YA4Y0wrh+nXA28DvsCHxphX89uGMSYamCAiPsBUZ+JVSpVimemw6O9khtRh9IG+3NS6Jj2alLi7GpQpzo4zfApkOzzPsqcVZgZwveMEEfEF3gNuAFoAw0SkhYi0FpGvcz2q2esMAH4FljkZr1KqtPr1v3BiB++Wv490n3I80y/S0xGVec6OUfgZY87mPDHGnBWRQm9Ia4xZKSINck3uDOw2xuwFEJF5wEBjzCtYvY+8trMIWCQi3wBznIxZKVXaHN8Bv7zB0Xr9eGtnA568oQk1Q8t5Oqoyz9lEcVxEBtg7bERkIHDiEl+zNhDj8DwW6JLfwiLSE+ue3YHAkgKWGw+MB6hXr94lhqaU8hi7TIfxL8+447cSUS2Yu7vrAHZJ4GyimADMFpH3sMqLxwIjLvE1JY9p+ValNcYsB5YXtlFjzBRgCkBUVJRWuVWqtPljBhxcxfcR/+CvLYHMGdeSAD89C78kcPaspz1AVxEJBsQYk3wZrxkL1HV4Xgc4fBnbO0dE+gP9IyIiimNzSil3SToCPzzLmTpX8sD2FgxoW5MrGlf1dFTK5mwJj+oiMg341BiTbA8+j7nE11wHNBGRhvY4x1Bg0SVu6wLGmMXGmPGhoaHFsTmllLt8+xgm6yzPZo8lwNeXp2/SAeySxNl+3QxgKVDLfr4TeKiwlURkLrAKaCYisSIyxhiTCdxvby8aWGCM2VrUwJVSXmL7NxC9iJ3N/8aCvQE81LsJ1SsGeToq5cDp+1EYYxaIyJMAxphMEckqbCVjzLB8pi+hgIFppVQZkZYE3zxKdrWWjNvVleY1ghh1RQNPR6VycbZHcVpEqmAPOotIVyDRZVFdIhHpLyJTEhNLXGhKqbwsewGSjzC72kQOJmbwwsBW+PnqAHZJ4+wn8gjWOEJjEfkNmAk84LKoLpGOUShVisSshXUfktBmNC9sLMeg9rXp3LCyp6NSeXA2UTTGupL6CqyxhV04f9hKKaUulHkWFv0dE1qbR+MHEOTny5M36gB2SeVsoviHMSYJqAT0xrpeocQV59NDT0qVEr+9DcejWd/iGX7cc5qJfZsSHhLo6ahUPpxNFDkD1zcBk40xXwGFlvBwNz30pFQpsHsZrHyNzMhbeGBDNVrUrMjwrvU9HZUqgLOJ4pCIfIB1G9QlIhJYhHWVUgqMgV/egFm3QpUmvBc0jqNJabx4sw5gl3TOfjpDsMYmrjfGJACVgUkui0op5V3Sk2HBXdZZTq1uZfeAL/i/NYkMiapDx/qVPB2dKoSzJTxSgc8dnh8BjrgqqEulJTyUKoFO7IJ5d0L8brjuZUyXe/nHh2spH+DL49c393R0ygle1d/TMQqlSpjtS2DqtZB6AkZ8SWbne3nmq62s2hvPpOubUyVYB7BLAz3FVSlV/LKzYcWrsOLfUKs9DPmE1PI1+fusDfwYHceEqxtzZ2e9HUBpoYlCKVW8ziTA5+Ng1/fQbjjc9AYn0oUxU9fwV2wCLw5syV3dGng6SlUEmiiUUsXn2DaYfyckxMBNb0DUGPbHpzJy+lqOJaUxeXhH+ras4ekoVRF5VaLQwWylPGjL5/DV/RAYDKO+gXpd2HjwFGM+Xo8xhjnjutKhnp7hVBrpYLZS6vJkZcL3/4CFd0ONVnDPSqjXhR+2HWPY1NUEB/rx2b1XaJIoxbyqR6GUcrPT8VaC2LcCosbA9a+CXwCzVh/gn19toXXtUKaN6kRVPbupVNNEoZS6NIc3wfy7IOUYDHwP2g/HGMN/vtvO+8v30Kt5Nf7vjvaUD9DdTGmnn6BSqug2zYWvH4LyVWH0d1C7A2czs3n8sz/5YuMhhnWux4sDW2ppDi+hiUIp5bysDFj6FKydAg16wG3TITicpLQM7p21gd92xzPpumbc17MxIuLpaFUx8apEoWc9KeVCycfg01Fw8Hfodj/0fh58/TiamMao6WvZHZfCG4PbcmvHOp6OVBUzr+oX6llPSrlIzDqYcjUc3gi3ToPr/gW+fuw4mswt7/9G7KkzTL+7kyYJL+VVPQqllAusnw5LJkHFWjD2B6jRGoBVe+IZ/8l6yvn7Mv+errSspV/QvJUmCqVU3jLS4NtJ8MdMaNwLbv0Qylv3tF60+TCPLthM/SrlmTG6M7XDynk4WOVKmiiUUhdLPGTdP+LQBugxEa55Gnx8McYw9Ze9vLxkO50bVmbqXVGElvf3dLTKxTRRKKUutP9Xa9A64wzcPgsi+wOQlW148ettzPh9P/3a1OSNIW0J9PP1bKzKLTRRKKUsGWdg5evw63+hciOrXlN4MwDSMrJ4cN5Glm49xrgeDXnyhkh8fPT017LCqxKFnh6r1CXa+T0seRQSDkCboXDjaxBkDU6fPH2WsR+vY2NMAv/s14LRVzb0cLDK3bwqURhjFgOLo6Kixnk6FqVKhcRD8N3jEL0YqjaFkV9Dwx7nZh+MT2XU9LXEJpzh/Ts6cEPrmh4MVnmKVyUKpZSTsjJhzWT4+WUwWdDrn9DtAfALOLfIn7EJjJ6xjsxsw5yxXYhqUNmDAStP0kShVFlzcA188wgc2wJNrrMOM1VqcMEiP2+P429z/qByhQBm3N2ZiGrBnolVlQiaKJQqK1JPwo/PWtdFVKxtndHUvB/kqsk0b+1Bnv5yC5E1Q/hoVCeqhQR5KGBVUmiiUMrbGQObZsMP/7TuZ33FA3D1E9ad6Bykns3k5SXRzFp9kKubhvP+nR2oEKi7CKWJQinvdmybdZjp4Cqo2wVuetO6C10uGw6c5JEFmzl4MpXxVzVi0nXN8NcS4cqmiUIpb3T2NKz4N6x6DwJDYMD/Qbvh4HPhzj89M4u3ftzFByv2ULtSOeaN60qXRlU8FLQqqTRRKOVttn8DSx6DpFhoPxx6vwAVLt75Rx9J4uH5m9h+NJlhnevy9E0tCNZDTSoP+lehlLc4dQC+fRx2fgvVWsCt30H9bhctlpVtmLJyL2/+sIPQcgFMGxlFr8jqHghYlRaaKJQq7TLSYPX7sOI16wymPi9A1/vA9+JifQfiT/PIgs1sOHCKG1vX4KWbW1O5QkAeG1XqPK9KFFrCQ5Upp0/Aug9h7VRIPWGd6nr9qxBW96JFjTHMXnOQl5dE4+cjvD20HQPa1tLblSqneFWi0BIeqkw4vsPqQWyeB5lp0KSvdcprw6vyXPxYUhqPLfyTFTuP06NJVV67rQ01Q/X+Ecp5XpUolPJaxsC+lbDqXdj1PfgFQduh1iEmu8JrXhZtPsw/vtxCemYWLw5syfCu9bUXoYpME4VSJVnmWdj6uZUgjv4FFcKh51PQaQxUqJrvagmpZ3nmyy18/ecR2tUN480hbWkUrmU41KXRRKFUSZR6EjbMgLVTIPkIhDe3roVoPQT8Cy6p8fOOOB5f+CcnT5/l0b5NmXB1Y/z04jl1GTRRKFWSnNwLq/8HG2dBRio0ugYGvAsRvS6qyZTb6fRM/rUkmjlrDtK0ejAfjepEq9qhbgpceTNNFEp5mjEQswZ+/z/rYjkfP2g9GLr9Lc9yG3lZv98qwRFzyirB8UifpgT5621KVfHQRKGUp2RlQvQia/zh0AYoVwl6TITO4yCkhlObMMbw/vI9vP79DupoCQ7lIpoolHIXY+DUfohZC7FrYedSSIyByo3hpjeg7TAIqOD05tIysnhs4Z8s2nyY/m1r8cqg1lqCQ7mE/lUp5SoZZ+DwRisx5CSH08eteQEhUK8L3PAaNL3+omJ9hTmamMb4T9bzZ2wik65rxn09G+tpr8plNFEoVVwSY62xhph11s+jf0J2pjWvcmOI6A11O0OdzlAtEnwubQxhU0wC42eu53R6JlPu6kjfls4dplLqUmmiUOpSZJ61EkHMmvM9huTD1jy/clC7o3W1dN0uUKdTgdc8FMVXmw4xaeGfVAsJZOaYK2heo2KxbFepgmiiUMoZycesQ0c5PYbDGyEr3ZoXWg/qX2H1Fup2huqt8izIdzmysw3/+X4H/1u+h84NK/O/OztQJTiwWF9DqfxoolAqt6xMOLYFYted7zEkHLDm+QZAzXbWmUk5h5Eq1nRpOCnpmTw0byM/RscxrHM9nh/QkgA/vYBOuY8mCqWys6zyGPt/gX2/WLcNTU+y5gXXsBJC5/HWz5ptwc993+QPxqcyduY69hw/zfMDWjKim9ZqUu5XKhKFiFQAVgLPGmO+9nQ8qpTLzoa4rVZS2P8LHPgN0hKteVUioNUgqH+ldVZSaN1Cr4h2lVV74rlv9gayDXx8d2eubFI84xxKFZVLE4WIfAT0A+KMMa0cpl8PvA34Ah8aY14tZFOPAwtcFmhuGWesb5V7V4DJtu4WVq05VG0GAeXdFoZHGGOdwnlip3VDnNA61iOwFBeUy86G49vtHsNKKzGcOWXNq9QQIgdYJbobXAkVa3k2VtvsNQd49qut1K9Sng9HdqJhVeevr1CquLm6RzEDeBeYmTNBRHyB94A+QCywTkQWYSWNV3KtPxpoA2wDCq6EdjmMgWNbYc9P1uPgKqvOv4+/9W0y62xO9FC5IYRHWqc35jyqNAG/UnaXsKwM6+KvEzvtx67zv+d8u3ZUrpKdNOpZP8PqXvi8QniRrwVwGWOsduxbaSWH/b9Carw1L6weNLsRGvSwEkMeN/nxpIysbF78ehszVx2gZ7Nw3hnWnopBxTswrlRRuTRRGGNWikiDXJM7A7uNMXsBRGQeMNAY8wpW7+MCInINUAFoAZwRkSXGmOw8lhsPjAeoV69e4cElH4U9P8Pen62fp+Os6eHNoePd0Pha60wWvyCrUNvxaIiLhrhtELcddn4HJstax8fPOk++WuT53ke1Fta3VV8PH907k3BhEsj5/dS+8+f4g3UsvmoTaHUbVG1q/e5f3ro2IDHm/M9T+6wd8NnkC1/HNxBCa1uHakLrOiSSuud7JcV1bD8rA9KT4WwKpKfYP5OtAed9dmLI+Twr1oaIPtCwh5UcKtUvnhhcICH1LPfN/oPf98Qz/qpGPH59c3x9dDxCeZ4n9mK1gRiH57FAl/wWNsY8DSAio4ATeSUJe7kpwBSAqKgoc9ECZ1PhwO92YvjJ2uEDlK8KjXpaiaFRT2tnl1t4U+vRYuD5aZnp1k73+PbzyePIZtj2FWC/vG+gtdOtFnk+eVSLtL6FX8637+wsa8fo+Dhr/0w6cmFCyNlhgtVDqtLYiiWyv50QmkLVCAgqQpVRY6xeR04CSYi5MJnsWWYlYnJ9DMHVL0weYfWsnkrOjt5xp39BEkix22c/z0zLP7aQmtbn2OBKKzlUauixMYai2B2XzJiP13MkIY3XB7flto51PB2SUud4IlHk9V978Y499wLGzCjSq2RnWxdE5SSGg6utQ0i+gVCvK/R+HhpfA9VbX9pO2y/QquyZu7rn2VQ4sePC3seB3+EvhyEW/wrWXclyeh/lq1g7wfQkh51m8vlp55KBPS8jteDYgsKs7Tft65AMmkJY/eLp4YhAuTDrUaN13stkpkPS4byTybEtVo/soh2+QECwNR7i+DOsbq7pFXMtE2L9DK5WahKDo5+3x/HA3I0E+fsyd3xXOtav5OmQlLqAJxJFLOB4YLgOcLg4Niwi/YH+retWhNcjzh+XrtbSOr2x8TVQ7wrXDkgHlIda7a2Ho7RE617HOckjbhvs/gE2zbpwOR8/e0cYcv4RXA0qN3KYZu8oHZcJcFi2fBXP7yz9Aq3xnMoN855vDJw+Yb0vARWs2P3Ll5xxDjcwxjD1l7288u12WtSsyNQRUdQK03tZq5JHjCn0y/zlvYA1RvF1zllPIuIH7AR6AYeAdcAdxpitxfWaUXWCzPp3RlqJoVFPp0s2e8TpeEhLsA79BARbO1hP7+SVyyWlZfDcoq18/schbmpdk/8MbkP5gFJxtrryYiKywRgTlXu6q0+PnQv0BKqKSCzWdRDTROR+YCnWmU4fFWeSAKzDQYM+KNZNukyFKtZDeT1jDGv2nWTBuhiWbDlCWkY2D/duyt97RehFdKpEc/VZT8Pymb4EWFLcr5dz6CkiIqK4N63UJTuWlMbCDbF8uj6G/fGphAT6MahDHYZ1qkfrOnqrUlXyufzQkydERUWZ9evXezoMVYZlZGXz0/Y4FqyLYfnO42RlGzo3rMztUXW5sXVNygXobUpVyeORQ09KlTV7jqewYF0Mn/1xiBMp6VQLCWT8VY0YElVXr65WpZYmCg87lHCGjMxsGuhOpNQ6nZ7JN38dYcG6GNYfOIWvj3Bt82rcHlWXns3C8fMtO2dyKe/kVYmiNI1RGGOYvy6G5xdvw0dg5pguev58KWKMYWNMAgvWxbB482FOn82iUdUKPHFDcwZ1qE21ENdVnFHK3XSMwgNOnT7LE5//ydKtx7iicRUOJ5wh/vRZ5o7rSqvaOrhZksWnpPPFxkMsWB/DzmMplPP35aY2Nbm9U12i6lfSs5dUqaZjFCXEr7tOMPHTTZw8fZanb4xkzJUNOZKUxpDJqxg+bQ3zxnfV21uWMFnZhpW7jrNgXQw/Rh8jI8vQrm4YrwxqTb82NQnRon3Ky2mPwk3SM7N4fekOpv6yj4hqwbw9tB0ta53vPRyMT2XIB6vIzM5m3vhuRFQrxWW9vUTMyVQWrI9h4YZYjiSmUblCALe0r82QqLo0qxHi6fCUKnb59Si8KlE4jFGM27Vrl6fDOWfXsWT+Pm8T0UeSuKtrfZ66MTLP0yP3Hk9hyAer8fWBBfd0o34VHeB2p/iUdKKPJLPtSCIrdh7nt93xiECPJuEM7VSX3pHV9RakyquViUSRo6T0KIwxzFp9gJe+iSY40I/XbmtDr8jqBa6z42gyQ6esonyAH/Pv6UqdSl5+oyQPyM42HDiZyrbDSWw7ksi2w0lEH0nmaNL5IoX1q5RnUPs63BZVh9paf0mVEZoo3OxESjqPLfyTn7bH0bNZOP+5rS3hIc7dj2HLoUTumLqaShUCmD++GzVC9QyaS5WWkcWOo8lsO5JkJ4Ykoo8kkXrWupeIr4/QpFowLWpWpEWtirSoWZHImhWpVKGU3YhKqWKgicKNft4Rx6RPN5OUlsnTN0Yyolv9Ip8Ns/HgKe6atpbqFQOZf083qgYX001/vNiJlPRzySDn597jKWTbf+IhgX5E2skgJzFEVAsmyF+vklYKNFG4RVpGFq8siebjVQdoXiOEt4e2v6xBz7X7TjLyo7XUr1KeueO66rdcB1nZhu1Hk9hw4BTr959iw4FTHEo4c25+7bByRDr0ElrWqkidSuX09FWlClAmEoUnB7O3HU7iwXkb2RWXwpgrGzLpumbF8k31t90nuHvGOppWD2b22K6Eliubp2KmpGey8eD5pLDx4ClO24ePqoUEEtWgEh3qVTqXGMLKa1JVqqjKRKLI4c4eRXa24aPf9vHadzsILe/P64PbcnXT8GJ9jZ93xDF+5npa1Q7lkzFdCA707stfjDEcSjhzrrew/sApdhxNIttYt+poXqMiUfUr0dF+aE9BqeKhicIFjiWl8einm/ll1wn6tKjOq4NaU8VFYwnfbTnK3+b8Qcf6lfj47s5eVX00Iyub6CNJ53oL6w+c5FhSOgAVAnxpX+98UmhfL0wvcFPKRcpUoqgV0dLMXPQT3RpXoYKLvn0v3XqUJz77kzMZWfyzX0uGda7r8m+1izYf5qF5G+keUZWpI6JK3CCsMYb0zGyS0zJJSc/kdHrmhb/bP1PsaSnpmcSeSmVzTCJnMqzDSLXDytGxfqVzh5Ka1wjRonpKuUmZShRBtZqYGiPewt9X6Fi/Ej2ahHN103Ba1KyIj8/l7cxTz2by4tfRzF17kFa1K/LW7e3dehX1wg2xPPrpZq5tXo3Jwzu65AIwYww7jiWz81gKKWnnd/I5v6c4PtIufJ6VXfjfk49AhUA/QgL9CA8JpH09KzF0rF+JmqF6zYJSnlImEkXOYHbjxhHjPv5uFSt3HmflrhNEH0kCoEqFAK5sUpWrmoTTo2nVIlf4/Cs2kQfnbWRf/Gnuuaoxj/Rp6pErdWetPsAzX27hhlY1+L9h7YvlG3daRhar98azLDqOn7bHXXAGUY7gQD8qBPoSHOhHcJA/wfbvOTv94KBcvwdYP4MD7Yf9ezl/Xx1TUKoEKhOJIkfuMYq4pDR+2XWCX3Yd55ddJ4g/fRaA5jVCuLppOFc1Dadj/Ur5HsrJyjZMWbmXN77fQdXgQN68vS1XNK7qlrbkZ9qv+3jx620MbFeLN4e0w/cSekpxyWn8vD2OZdFx/Lr7BKlnsyjn78uVTarSO7Ia7etVomKQPxUCfakQ4HfZvTGlVMlWphOFo+xsw7YjSazcdZyVO4+z4cApMrIMQf4+dG1UhauahHNV06o0Dg9GRDiccIZHFmxi9d6T3Ni6Bi/f0rrEnHr5/vLdvPbdDoZE1eHVQW0K3ZEbY9h6OImftsexLPoYm2MTAagVGkSvyOpcG1mNbo2qlLixD6WUe2iiyMfp9ExW741n5U6rt7H3xGnA2nl2bVyFH7cdIyvb8NyAltzWsU6JO2Ty5g87eWfZLu7qWp8XBra8KL60jCx+33OCH6Pj+Ck6jqNJaYhA2zph9I6sRq/I6jSvEVLi2qWUcj+9H0U+KgT60Suy+rlifTEnU8/1Nn7Ydoxm1UN4fXDbEnur0od7NyE9I4sPVu4l0M+Hp2+K5FhSOj9tj+On7cf4dfcJ0jKyqRDgS48m4VwbWY1rmlVzuu6UUkqV+R5FQYwxpeKbtjGG5xdvY8bv+2lQpTz741MB61TTnF5Dl0aVCfTTQ0pKqfxpj+ISlIYkAVac/+zXAl8f4c/YBIZ0qkuv5tVpWj241LRBKVVyaaLwEj4+wj/6tfB0GEopL+RVl7yKSH8RmZKYmOjpUJRSymt4VaIwxiw2xowPDQ0tfGGllFJO8apEoZRSqvhpolBKKVUgTRRKKaUKpIlCKaVUgTRRKKWUKpAmCqWUUgXyyhIeIpIM7CimzYUCzl6YUdiy+c3Pa3ruaQU9d/y9KnDCyXgLo20vnmUvp+25p5W0the2fFHnOftZ537ujZ+9J/7umxhjLr6+wBjjdQ9gfTFua0pxLZvf/Lym555W0PNcv2vbvajthbTX420vbPmiznP2sy4p7S8rf/d66Klwi4tx2fzm5zU997SCnhclxqLQthfPspfT9tzTSlrbC1u+qPOK8lmXhPaXib97bz30tN7kUQGxLNC2a9vLorLcfne03Vt7FFM8HYAHadvLprLcdijb7Xd5272yR6GUUqr4eGuPQimlVDHRRKGUUqpAmiiUUkoVyOsThYhUEJGPRWSqiNzp6XjcTUQaicg0EVno6VjcTURutj/3r0Skr6fjcScRiRSRySKyUETu9XQ87mb/328QkX6ejsWdRKSniPxif/Y9i2u7pTJR1irnJwAABBpJREFUiMhHIhInIltyTb9eRHaIyG4RecKePAhYaIwZBwxwe7AuUJT2G2P2GmPGeCbS4lfEtn9pf+6jgNs9EG6xKmLbo40xE4AhQKk/bbSI//MAjwML3BulaxSx7QZIAYKA2GILoriu6HPnA7gK6ABscZjmC+wBGgEBwGagBfAk0M5eZo6nY3d3+x3mL/R03B5s+xtAB0/H7u62Y30x+h24w9Oxu7PtQG9gKNYXhH6ejt3Nbfex51cHZhdXDKWyR2GMWQmczDW5M7DbWN+gzwLzgIFYWbWOvUypbG9uRWy/VylK28Xyb+BbY8wf7o61uBX1czfGLDLGXAGU+kOuRWz7NUBX4A5gnIiU6v/7orTdGJNtzz8FBBZXDH7FtaESoDYQ4/A8FugCvAO8KyI34brL3kuCPNsvIlWAfwHtReRJY8wrHonOtfL77B/A+nYZKiIRxpjJngjOxfL73HtiHXYNBJZ4IC53yLPtxpj7AURkFHDCYefpTfL73AcB1wFhwLvF9WLelCgkj2nGGHMauNvdwXhAfu2PBya4Oxg3y6/t72B9UfBm+bV9ObDcvaG4XZ5tP/eLMTPcF4rb5fe5fw58XtwvVqq7ZLnEAnUdntcBDnsoFk8oy+3Xtp+nbS8b3Np2b0oU64AmItJQRAKwBrMWeTgmdyrL7de2a9u17S5se6lMFCIyF1gFNBORWBEZY4zJBO4HlgLRwAJjzFZPxukqZbn92nZtu7bd/W3XooBKKaUKVCp7FEoppdxHE4VSSqkCaaJQSilVIE0USimlCqSJQimlVIE0USillCqQJgqlLpGIGBF5w+H5oyLyXBHWf05EHnVJcEoVI00USl26dGCQiFT1dCBKuZImCqUuXSYwBXi4oIVEpLKIfCkif4rIahFp4zC7rYj8JCK75P/bu0PWqqMwjuPfHyKIBoPJ4t6B+AJUxDfgwGTZgqyurSvDIggWk6gw29IMC5YNFl3YGHsLLogYxvAGw2P4nzDG3Rl4d7kg3099nnBO+nFOeJ5kqfXfTrKTZD/JYZIHU7yDdKH/aXqsNAvvgIMkrzs9L4G9qppP8hhYA+612l2G3Qk3gL0km8Az4GtVvUpyBbg+veNLFzMopAlU1XGSNWAZGJ3Tdh942vq3ktxKcrPVvlTVCBgl2WZYSLMLfExyFdioqv3p3kLq8+tJmtxb4DnDq2Cc3t6Es8PWqm00ewh8Bz4nWbiUU0r/yKCQJlRVv4B1hrAYZ4e2jrRtnvtZVcet9iTJtbaJ8BGwm2QO+FFV74EPDPuSpZnx60m6HG8Yxj6P8wL4lOQA+A0snqp9AzaBO8BqVR0lWQRWkvwBTgBfFJopx4xLkrr8epIkdRkUkqQug0KS1GVQSJK6DApJUpdBIUnqMigkSV0GhSSp6y/9XHDMJ3hixwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = piv.plot(logy=True, logx=True)\n", - "ax.set_title(\"Polynomial Features for 5 features\\ndegree is 2 + interaction_only=True\")\n", - "ax.set_ylabel(\"seconds\")\n", - "ax.set_xlabel(\"N obs\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Memory profiler" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "258.02734375" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from memory_profiler import memory_usage\n", - "poly = PolynomialFeatures(degree=2, interaction_only=True)\n", - "poly.fit(X)\n", - "memory_usage((poly.transform, (X,)), interval=0.1, max_usage=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "10000\n", - "50000\n", - "100000\n", - "200000\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
memorynamesize
3699.679688ext50000
41243.664062poly100000
51205.515625ext100000
61952.316406poly200000
72029.765625ext200000
\n", - "
" - ], - "text/plain": [ - " memory name size\n", - "3 699.679688 ext 50000\n", - "4 1243.664062 poly 100000\n", - "5 1205.515625 ext 100000\n", - "6 1952.316406 poly 200000\n", - "7 2029.765625 ext 200000" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def pick_value(v):\n", - " try:\n", - " return v[0]\n", - " except TypeError:\n", - " return v\n", - "\n", - "res = []\n", - "for n in [10000, 50000, 100000, 200000]:\n", - " X = numpy.random.random((n, 50))\n", - " print(n)\n", - " poly = PolynomialFeatures(degree=2, interaction_only=True)\n", - " ext = ExtendedFeatures(poly_degree=2, poly_interaction_only=True)\n", - " poly.fit(X)\n", - " ext.fit(X)\n", - " r1 = memory_usage((poly.transform, (X,)), interval=0.1, max_usage=True)\n", - " r2 = memory_usage((ext.transform, (X,)), interval=0.1, max_usage=True)\n", - " r1 = {\"memory\": pick_value(r1)}\n", - " r2 = {\"memory\": pick_value(r2)}\n", - " r1[\"name\"] = \"poly\"\n", - " r2[\"name\"] = \"ext\"\n", - " r1[\"size\"] = n\n", - " r2[\"size\"] = n\n", - " res.append(r1)\n", - " res.append(r2)\n", - " \n", - "import pandas\n", - "df = pandas.DataFrame(res)\n", - "df.tail()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nameextpoly
size
10000392.445312396.347656
50000699.679688718.839844
1000001205.5156251243.664062
2000002029.7656251952.316406
\n", - "
" - ], - "text/plain": [ - "name ext poly\n", - "size \n", - "10000 392.445312 396.347656\n", - "50000 699.679688 718.839844\n", - "100000 1205.515625 1243.664062\n", - "200000 2029.765625 1952.316406" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piv = df.pivot(\"size\", \"name\", \"memory\")\n", - "piv[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEpCAYAAABbU781AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUZfbA8e8hlRJ6aEkg9BpqAiiiIFIEERFpCoIgYkHX3nd1betPXduKUkQRlY5UG4qCCkgJRZpUgYROQg/p5/fHHXSIAZKQZJLM+TxPHjK3njsT7pn3vveeV1QVY4wxJjcU83QAxhhjig5LKsYYY3KNJRVjjDG5xpKKMcaYXGNJxRhjTK6xpGKMMSbXWFIxWSYiz4vIZ56Ow52I3CYiC7O4bIGLPz+JSHERmS8iJ0RkhqfjyUhEXhKRoyJy0NOxmJyzpOKFRGS3iJwVkdMickhEPhaRUp6OKydU9XNV7XK52xGRDiKS7npPzv3Mz4XtThSRly53O7nkFqAyUEFV+17uxkQkXEQ0w3v2T7f5ASLykYicFJGDIvLwRbYVBjwCNFLVKpcZVwcRib2cbZic8/V0AMZjeqrq9yISAnwLPAs86eGYPG2/qoZ6Ogh3IuKrqqm5tLkawLacbO8ScZS9wLzngbqu/VYBfhSRzar6zQVii1PVw9mNLbfl8nvudayl4uVUdR/wNdAEQESqicg8EYkXkR0iMiKz9UTkSxG5P8O030TkJtfvKiJ3i8h2ETkmIqNFRFzzionIsyKyR0QOi8gkESnjmnfu2+8dIhLjWvduEYlybf+4iLznts+hIvKL2+t3XOudFJFoEWl/ue+RK94nRWSniMSJyHQRKe82f4brm/gJEflJRBq7pt8F3AY87t7ycR1fHbf1/2zNnPuWLSJPuC4DfeyafoOIrHMd/zIRaeq2/hMisk9ETonIVhHplMkx/Bv4F9DfFcvwLH4Ow0VkL/BDDt6624EXVfWYqm4BxgNDM4ntOuA7oJortomu6W1dx3pcRNaLSAe3de4QkS2uY94lIiNd00vi/D2f29Zp19/0eS3GjK0ZcVrvT4jIb8AZEfF1rTdLRI6IyB8i8oDb8q1FZLXr7+yQiLyZg/enaFJV+/GyH2A3cJ3r9zBgE85/foAlwPtAINAcOAJ0cs17HvjM9Xs/YIXbNpsBcYC/67UCC4CyQHXXdrq55g0DdgC1gFLAF8CnrnnhrnXHuGLoAiQCc4BKQAhwGLjGtfxQ4Be3OAYBFXBa4Y8AB4HAjPFn8p50AGIvMO9B4FcgFAgAxgJT3OYPA4Jc894G1rnNmwi8lGF7CtTJbBlXHKnA/7m2Vxxo6TrmNoAPMMT1GQYA9YEYoJrb+1f7Asdx3vFn8XOYBJQEimeyvXPL7ANicRJgRde8cq55ld2WvwXYkJX33/U5xwHdcb78dna9DnbN7wHUBgS4BkgAWl7os8z4OWSyv93AOpz/D8Vd+4zGScT+rvdoF9DVtfxyYLDr91JAW0//vy4oP9ZS8V5zROQ48AtOInlFnOvaVwFPqGqiqq4DPgQGZ7L+XKCuiNR1vR4MTFPVZLdlXlXV46q6F/gRJ0mB8+39TVXdpaqngaeAASLifjn2RVcMC4EzOCfxw+q0rH4GWmR2UKr6marGqWqqqv6Xv068WVHN9a343E8/1/SRwDOqGquqSTgn51vOxauqH6nqKbd5zc5948+hdOA5VU1S1bPACGCsqq5Q1TRV/QRIAtoCaa5jbCQifqq6W1V3ZnE/WfkcnlfVM644MjoKROFcumqFk1g/d80710d3wm35E65lsmIQ8JWqfqWq6ar6HbAaJ8mgql+q6k51LAEWApfbKn1XVWNcxxqFk8BeUNVkVd2F09Ia4Fo2BagjIhVV9bSq/nqZ+y4yLKl4r5tUtayq1lDVe13/kaoB8ap6ym25PTjfGs/jOoFOBwaJSDFgIPBphsXc7+JJ4K8TTTXXdt334YvTiXzOIbffz2byOtMbC0TkEddlkROupFkGqJjZspnY73pPzv1Md02vAcw+l2yALTgn88oi4iMir7oujZ3E+cZLNvaZmSOqmuj2ugbwiHvCw/lGXU1Vd+C0pJ4HDovIVBGplsX9ZOVziLnQyq6T6WpXAj8EjAK6iEhp4LRrsdJuq5QGTmXczgXUAPpmOOargKoAInK9iPwqzmXa4zjJ5nLeczj/WGuQ4UsG8DR/vTfDgXrA7yKySkRuuMx9FxmWVIy7/UB5EXH/Nlkd5/JGZj7B+bbbCUhQ1eXZ2E+NDPtI5fzEkW2u/pMncC7NlVPVsjjfjuVytotzsrk+Q8IJdLWabgV6AdfhJLDwc+G4/s2sDHgCUMLtdca7nTKuEwO8nGH/JVR1CoCqTlbVq3DeU8W5dJYVWfkcslPG/NyyoqrHgAM4l0XPaYZzqTUrYnAuxbkfc0lVfVVEAoBZwBs4l9fKAl9x8ff8DBd/zzOuFwP8kWH/Qap6rqW0XVUH4lyS/T9gpqs/x+tZUjF/UtUYYBnwHxEJdHUGD+evSxoZl1+Oc6nmv/y9lXIxU4CHRKSmOLcyv4Jz6exy77gJwjkpHgF8ReRfnP9NOafGAC+LSA0AEQkWkV5u+0zCud5fAudY3B3CuR7vbh1wq6uV0w2nT+BixgN3i0gbcZQUkR4iEiQi9UXkWteJNhGnFZeWxeO6rM/BFU99V4d/BeBdYLGqnrvkNQl4VkTKiUgDnMt4E7MY22dATxHp6nqfAl2d66E4fRwBOJ9zqohcj9P3ds4hoEKGS5DrgO4iUl5EquC07i5mJXDS1Xlf3BVDExGJch37IBEJVtV04Lhrnay+70WaJRWT0UCcb9v7gdk41/a/u8jyk4AInJNAVn2Ek4R+Av7AORnef9E1suZbnDt/tuFcyknkIpdvsuEdYB6wUERO4XTat3HNm+Ta1z5gs2ueuwk4/R3HRWSOa9o/gJ44J6PbcG5CuCBVXY1zQn4POIbTuT7UNTsAeBWnf+Mgzjfnp7N4XJf7OdQCvsG5pLURJ7kOdJv/HLAT5/1ZAryumd9O/DeuLzi9cI7lCM7n+BhQzHV59gGcy6/HcFqL89zW/R0nYe5yve/VXMe5Hufy5EJg2iX2n4bzGTXHeW+O4vQvnktU3YBNInIa5+9jQIZLll5LVG2QLpNzInI7cJfr8osxxstZS8XkmIiUAO4Fxnk6FmNMwWBJxeSIiHTFuSxxCJjs4XCMMQWEXf4yxhiTa6ylYowxJtdYUjGFRsb6TQWViIwRt2q9xngTSyrG5DJVvVtVX8zOOiJSSUSmiMh+VzWApSLS5tJrGlOwWFIxXi9DrStPKQWswqmhVR6nWsGXUkjHucmqAvLem1xkScUUWCLSQkTWiFPefBpO1WL3+RcrB99SRNa61p0hItPk8srLX7AMeiZxu5eyrygiC1zbjBeRn8WplXYeV1HHN1X1gKto5DicJ8ezWgwzYwznjvFxccraHxCRm0Sku4hsc8XytNvyFyzvL9kfjiBbJfXlEsMomMLFkoopkETEH+dJ809xvrnPAPq4zW+J80T4SJxS92OBeeKMNuiPUw1gomvdKUDvDLuo4ppXA7jrEtsrBszHeSI7BKfW2YOu26ov5RGcsvDBOMUInyYL9bREpDlOUtmRhX1cSBWcRByCU8J9PE7131Y4FX3/JSLnSsg8ANyEUzKmGs6T6qMzbK8NzqBb/XFK/D+DU/OsMdBPRM6Vmxnq+unIX2X138uwrWuAhkBXnFbZoHMzRKSZK+avcnjcxpMuVRvffuzHEz/A1TilYsRt2jL+GnfkA1xjwLjN34pzsroap2yK+7q/cP6YJcm4xlnJwvbaAHszzHsK+PgCsU9029cLOMME1LnUMbutXxrYADx1Ge9fB5w6YD6u10E4yayN2zLRONWqwam83MltXlWc8u6+/DVuSojb/Digv9vrWcCDrt8XAfe6zaufybZquc0PAOKBuq7XbwDve/pv0H5y9mMtFVNQVQP2qess4+Jepv2C5eAvsG7GGmBZLi/PpcugX8zrOK2NheKMUHjRIZtFpDhOq+hXVf3PRZZzHxe++gUWi1OnhhU4CQYuPITABcv7uy2f1eEIslVSX7M2jIIpJCypmILqABAiIu5l691PnhcrB5/ZumEZtp+d8vIXLYN+MeoM3vWIqtbCKVD4sGQy3C+AOJWG5+C0skZeYrul3H72XiqOLLhYef/syklJ/ZwOo2AKGEsqpqBajnMiekCc8cJvBlq7zb9gOXjXumnAKNe6vTKsm5mLbe+iZdAvxtX5X8eV4E664vpbiXQR8QNm4nzjv12dkur56WLl/bMr2yX1NefDKJgCxpKKKZDUGZb4ZpwO32M4ncNfuM2/YDl4t3WH45SXHwQswCnNfqH9XWx7lyqDfjF1ge9xRkJcjtNXsDiT5a4EbsAZF+S426Wtyx0iN6suVt4/u3JaUj8nwyiYAsZqfxmvICIrgDGq+rGnYzGZExtGoUiwloopkkTkGhGp4rr8NQRoijOglCmAxIZRKDIsqZiiqj7OcyUncJ4VuUVVD3g2JJMZsWEUihS7/GWMMSbXWEvFGGNMrrGkYowxJtd4fYXQihUranh4uKfDMMaYQiU6OvqoqgZnnO71SSU8PJzVq1d7OgxjjClURGRPZtPt8pcxxphcY0nFGGNMrrGkYowxJtd4fZ9KZlJSUoiNjSUxMfHSCxdCgYGBhIaG4ufn5+lQjDFFjCWVTMTGxhIUFER4eDjnV08v/FSVuLg4YmNjqVmzpqfDMcYUMXb5KxOJiYlUqFChyCUUABGhQoUKRbYVZozxrCKZVESkoYiMEZGZInJPDreR22EVGEX52Iwxee/HrYcvOC/PkoqIhInIjyKyRUQ2icg/LmNbH4nIYRHZmMm8biKyVUR2nBuqVVW3qOrdQD8gMudHYYwx5hxV5b0ftjNs4qoLLpOXLZVU4BFVbQi0Be4TkUbuC4hIJdfIeu7T6mSyrYlAt4wTRcQHGA1cDzQCBp7bh4jcCPwCLLr8QzHGGO92JimV+yav4Y2F2+jVrNoFl8uzpKKqB1R1jev3U8AWICTDYtcAc0UkEEBERgDvZrKtn4D4THbTGtihqrtco/1NBXq51pmnqlfijHv9NyLSU0TGnThxIkfHdyG7d++mYcOGjBgxgsaNG9OlSxfOnj3L+PHjiYqKolmzZvTp04eEhAQAhg4dyj333EPHjh2pVasWS5YsYdiwYTRs2JChQ4f+ud2FCxdyxRVX0LJlS/r27cvp06dzNW5jjLmQmPgE+nywjG82HuSZ7g15q3/zCy6bL30qIhIOtABWuE9X1Rk4AydNFZHbgGE4l6yyKgSIcXsdC4SISAcReVdExgJfZbaiqs5X1bvKlMnKiLDZs337du677z42bdpE2bJlmTVrFjfffDOrVq1i/fr1NGzYkAkTJvy5/LFjx/jhhx9466236NmzJw899BCbNm1iw4YNrFu3jqNHj/LSSy/x/fffs2bNGiIjI3nzzTdzPW5jjMlo6Y6j9HzvF/YfP8vEO1oz4upaF+2XzfNbikWkFDALeFBVT2acr6qvichU4AOgtqpm5yt4ZkemrjHAF+cg3FxRs2ZNmjd3MnmrVq3YvXs3Gzdu5Nlnn+X48eOcPn2arl27/rl8z549EREiIiKoXLkyERERADRu3Jjdu3cTGxvL5s2badeuHQDJyclcccUV+X9gxhivoap8vHQ3L3+1hdrBJRk3OJLwiiUh+Qx8+8wF18vTpCIifjgJ5XNV/eICy7QHmgCzgeeAUdnYRSwQ5vY6FNifs2hzT0BAwJ+/+/j4cPbsWYYOHcqcOXNo1qwZEydOZPHixX9bvlixYuetW6xYMVJTU/Hx8aFz585MmTIl347BGOO9ElPSeGb2RmatiaVLo8q82b85pQJ8ITYavhgB8bsuuG5e3v0lwARgi6pmeq1GRFoA43H6Qe4AyovIS9nYzSqgrojUFBF/YAAw7/IizxunTp2iatWqpKSk8Pnnn2dr3bZt27J06VJ27NgBQEJCAtu2bcuLMI0xXu7giUT6j/uVWWtiefC6uowZ1IpSvsDiV2FCZ0hNgiHzL7h+XrZU2gGDgQ0iss417WlVde/jKAH0VdWdACIyBBiacUMiMgXoAFQUkVjgOVWdoKqpIjIK+BbwAT5S1U15dUCX48UXX6RNmzbUqFGDiIgITp06leV1g4ODmThxIgMHDiQpKQmAl156iXr16uVVuMYYLxS9J567P1tDQlIqYwe3omvjKhC3E764C/athoh+0P11KF72gtvw+jHqIyMjNeN4Klu2bKFhw4Yeiih/eMMxGmOyburKvfxz7kZCyhZn3O2R1KtUCtZ8At88DT6+cMNb0KTPn8uLSLSq/u05QKv9ZYwxXiwlLZ0X5m/m01/30L5uRd4b2JIy6cdh6l2w9SuoeTXcNAbKZHwiJHOWVIwxxksdPZ3EvZ+vYeUf8Yy8uhaPd2uAz46FMPc+SDwJXV+BNvdAsax3v1tSMcYYL7Rx3wlGfhrN0dNJvN2/OTc1LgtfPgTRH0PlJnD7PKjc6NIbysCSijHGeJm56/bxxKzfKF/Cn5l3X0kEO2BMT+dW4Svvh2v/Cb4Bl95QJiypGGOMl0hLV1779nfGLtlF6/DyvH9rUyqueQ+W/B8EVXVuFa7Z/rL2YUnFGGO8wImEFB6YupYl244wqG11/nVlcfyn94LYVVm6VTiriuR4Kt7k+PHjvP/++54OwxhTgG0/dIpeo39h2c6j/Kd3E14KW4P/+Kvh6DboMwH6jM+VhAKWVAo9SyrGmItZuOkgvd9fxumkNGYMrsvAXU/C/AcgtBXcswwibsnV/VlSKaA+++wzWrduTfPmzRk5ciR79uyhbt26HD16lPT0dNq3b8/ChQt58skn2blzJ82bN+exxx7zdNjGmAIiPV155/vt3PVpNLWCS7KwRwLN53eHHd87twoPngtlQnN9v9ancgn/nr+Jzfv/Vlz5sjSqVprneja+4PwtW7Ywbdo0li5dip+fH/feey9LlizhiSee4O6776ZNmzY0atSILl26UK9ePTZu3Mi6desuuD1jjHc5k5TKI9PX882mgwxoVp6XSk7Dd+7HUKkx3D4HKl/4/HO5LKkUQIsWLSI6OpqoqCgAzp49S6VKlXj++eeZMWMGY8aMsSRijMnUnrgz3DUpmu2HT/FO+3Ru3HkfsvXybxXOKksql3CxFkVeUVWGDBnCf/7zn/OmJyQkEBsbC8Dp06cJCgrKbHVjjJf6ZftR7pu8Bl/S+DFqJTVW/891q/A8p9xKPrA+lQKoU6dOzJw5k8OHDwMQHx/Pnj17eOKJJ7jtttt44YUXGDFiBABBQUHZqnhsjCl6VJUPf97F7R+toEXJYyyr/Do1fnsbmtwM9yzNt4QC1lIpkBo1asRLL71Ely5dSE9Px8/PjzfffJNVq1axdOlSfHx8mDVrFh9//DF33HEH7dq1o0mTJlx//fW8/vrrng7fGJOPElPSeOqLDcxeG8tLYWu47fgYJMXXuVU4l+/sygorfW+l740xhdT+42e5+7NoYmNjmBkyhVpxSyC8PfQekyd3drmz0vfGGFOErNodzz2fRROVspoZZT8k4PhJ6PIytL03W1WFc5slFWOMKWQmr9jLq/NW82LxafSSb6B0Y7h5LlRp4unQLKkYY0xhkZyazr/nb2LDyh/5tuRYqqbGwhWjnFuF/QI9HR5gScUYYwqFI6eSGPXZSlrHTmR24GyKlagCN82DWtd4OrTzWFIxxpgCbkPsCf49aQHPJL1FC7/t0PgW6PEGFC/n6dD+xpKKMcYUYHPWxLJq9jtM8plEQIA/9PTMrcJZZQ8/FhEdOnQg463RxpjCKzUtnbfmLKX47CG87DMOv7BIfO7N/arCuc1aKsYYU8AcT0jmw4/GMuTI65TzTSCt04v4XTnKo7cKZ1XBj9BL7d69mwYNGjBkyBCaNm3KLbfcQkJCAosWLaJFixZEREQwbNgwkpKSzltvwoQJPPTQQ3++Hj9+PA8//HB+h2+MyaHtsYdZ/OZgHj36LH6lg/EduRifqx4oFAkFrKVyaV8/CQc35O42q0TA9a9ecrGtW7cyYcIE2rVrx7Bhw3jzzTcZO3YsixYtol69etx+++188MEHPPjgg3+uM2DAAJo2bcprr72Gn58fH3/8MWPHjs3d+I0xeWL5z99R5fv7uUkOcKjxnVS+6eUCc6twVhWO1OelwsLCaNeuHQCDBg1i0aJF1KxZk3r16gEwZMgQfvrpp/PWKVmyJNdeey0LFizg999/JyUlhYiIiHyP3RiTdempKSz96Akiv+9PkE8K8X1mUrnvfwtdQgFrqVxaFloUeUVEcrTenXfeySuvvEKDBg244447cjkqY0xuOnNwOwc/vp12SZtZU/Y6Gg0fR2DpCp4OK8espVKA7d27l+XLlwMwZcoUrrvuOnbv3s2OHTsA+PTTT7nmmr8/+NSmTRtiYmKYPHkyAwcOzNeYjTFZpMrRnz5ExrQnOHE3S5q8QosHZxbqhALWUinQGjZsyCeffMLIkSOpW7cu77zzDm3btqVv376kpqYSFRXF3Xffnem6/fr1Y926dZQrV/AejjLG652J4+iUkVSM/Y5VNEZuHsM1zZp6OqpcYUmlACtWrBhjxow5b1qnTp1Yu3bt35ZdvHjxea9/+eWX8+4CM8YUDLptIQkz7yEo6Tjjig/j+hEvElahlKfDyjV2+auIOX78OPXq1aN48eJ06tTJ0+EYY85JTiB1/sPI5L7EJBbnjRpjGPTw60UqoYC1VAqs8PBwNm7cmO31ypYty7Zt2/IgImNMju1bQ8rMEfgd28GHqd1J7fgsT1/bKMc34xRkllSMMSavpKXC0rdI//FV4rU0z+g/uXXQYK5tUNnTkeUZSyoXoKpF8lsEOMdmjMlj8X+gs0ciMSv4Mu0KxpcZxVtDOlA7uGhd7srIkkomAgMDiYuLo0KFCkUusagqcXFxBAYWvoeqjCkUVGHd5+jXT5CYCk8k38fper35bEBzSgf6eTq6PGdJJROhoaHExsZy5MgRT4eSJwIDAwkNDfV0GMYUPWfiYP4D8PsCNvk15a6EO+ndsQ0Pd66PT7Gi9QX1QiypZMLPz4+aNWt6OgxjTGGy/TuYex/pCfG853M7YxKv5/VbW9CjaVVPR5avLKkYY8zlSE6A7/4Jqz7kRFAdBic/THxQPWYOj6RRtdKeji7fWVIxxpic2r8WZo2AuO38WnkAQ/Z0o2Wtqky8rSXlS/p7OjqPsKRijDHZlZ4Gv7wJi18lvUQwr1b8D+P21OCOduE83b0hfj7e+1y5JRVjjMmOY7vhi5EQ8ysna/dkwP6+7Djgz+u3NKFvZJino/M4SyrGGJMVrluF+foJkGKsj3qdgSvCKBXgx7SRrWhR3Yq3giUVY4y5tDNxsOAfsGU+WqMd4ys8zis/n6FF9dKMHdSKSqXtua9zLKkYY8zFbP8e5t4LCfEkdnyO+/+4ku+WxdE/MowXbmpMgK+PpyMsUCypGGNMZpIT4Lt/warxENyQ2O6TGPpNEruPxvNCr8YMblujyFXcyA2WVIwxJqP96+CLEXB0G7S9lyXV72XU9M34+RTj0+FtuKJ24R6dMS9ZUjHGmHPS0+CXt2Dxf6BkJXTwHMbEVOe1T3+jYZXSjLu9FaHlSng6ygLNkooxxsB5twrTuDdnu7zB41/FMH/979zQtCqv39KM4v7Wf3IpllSMMd5NFdZNdt0qLNB7HLFhN3DXxDVsOXiSJ7o14O5raln/SRZZUjHGeK+EeJj/D9gyD2pcBb0/YHlcSe4bvYyUtHQ+GhpFx/qVPB1loWJJxRjjneJ2wud94fheuO7f6BWjmLQilhcWrCC8QgnG3x5JrSI+oFZesKRijPE+u3+BaYNAisGQ+SSFtOZfszcxbXUM1zWsxFv9mxPkBQNq5QVLKsYY77JuMsx7AMrXhFuncdi3GneP+5U1e4/zwLV1ePC6ehTzkgG18oIlFWOMd0hPhx9fhp/fgJpXQ79JrD8q3PXpL5xKTOWD21pyfYR3DaiVFyypGGOKvpSzMOce2DQbWgyGG97iy01HeXj6OoKDAvji3itpUMX7BtTKC5ZUjDFF2+nDMGUg7IuGzi+gV9zP6MU7eWPhNiJrlGPs4FZUKBXg6SiLDEsqxpii69BmmNwfzhyBfpNIqteDJ2f8xuy1++jdIoRX+0RYQchcZknFGFM07fgeZtwBfsXhjq+IK9OYkeNXsHrPMR7tUo/7OtaxBxrzgCUVY0zRs+pD+OpxqNQQbp3G9sQyDHt/KYdPJjH61pb0aGod8nnFkooxpuhIT4OFz8Kv70PdrnDLBH7ak8h9ny8jwM+HaSOvoHlYWU9HWaRZUjHGFA1Jp2HWcNj2DbS5G7q+wqcrY3l+3ibqVirFhKFRhJQt7ukoizxLKsaYwu/EPpjSHw5tgutfJzXyTl5asIWJy3bTqUEl3hnYglIBdrrLD/YuG2MKt/1rnVuGk07DrdM5FdaB+yetZvHWI9x5VU2e6t4QH3tCPt9YUjHGFF5bFjgjNJaoAMO/JcavJsM/WMauI2d4pXcEt7ap7ukIvY4lFWNM4aMKy9+Dhf+Eai1g4FSi4/25a9xSUtLS+WRYa9rVqejpKL2SJRVjTOGSlgJfPQrRE6FRL7hpDHM3H+OxmWuoWiaQCUOiqFPJStZ7iiUVY0zhcfY4zBgCuxbDVQ+j1z7L24t28s6i7bSuWZ6xg1pRrqS/p6P0apZUjDGFQ/wfTsmV+F3QazSJTQby2LTfmL9+P7e0CuWV3hH4+xbzdJRez5KKMabg27sCpt4K6akweDZHKrbmrvG/snbvcRtDvoCxpGKMKdg2zIQ590LpanDbDH5Prczw0UuJO5PEmEEt6dbESq4UJJZUjDEFkyoseQ0WvwLVr4T+n/FjTBqjJi+jVKAvM0ZeSURoGU9HaTKwpGKMKXhSk2De/fDbNGg2EL3hbSauPMCLCzbTsGppJgyJokqZQE9HaTJhScUYU7CciYNpt8He5XDts6Rc+TD/XrCZz37dS5dGlXl7QHNK+Nupq6AqUp+MiDQE/gFUBBap6gceDskYkx1HtsHkfnByPyF8f58AAB8pSURBVNzyESdq38ioT1bz8/ajjLymFk90bUAxK7lSoBX4++9E5CMROSwiGzNM7yYiW0Vkh4g8CaCqW1T1bqAfEOmJeI0xObRrCUy4DpJOwdAF7K16PX0+WMbynXG81qcpT13f0BJKIVDgkwowEejmPkFEfIDRwPVAI2CgiDRyzbsR+AVYlL9hGmNybM0k+OxmCKoKIxaxKq0OvUb/wtHTSXw6vA39osI8HaHJogKfVFT1JyA+w+TWwA5V3aWqycBUoJdr+XmqeiVwW/5GaozJtvR0+O45p1M+vD0MX8isXb7cNn4F5Ur4M/vedlxRu4KnozTZUFj7VEKAGLfXsUAbEekA3AwEAF9daGURuQu4C6B6datiaoxHJCfA7Ltgy3xodQfp3V7jzR/+4L0fd3BFrQp8MKglZUtYyZXCprAmlcwurKqqLgYWX2plVR0HjAOIjIzUXI3MGHNppw7ClAGwfx10fYWzLUfyyPT1fLXhIAOiwnjxpib4+RT4CykmE4U1qcQC7hdZQ4H9HorFGJMdBzc6NbzOxsOAyRyudi13jv+VDftO8Ez3htzZvqaVXCnECmtSWQXUFZGawD5gAHCrZ0MyxlzStoUw8w4ICII7vmYTNblz9FJOnE1h3OBIOjeq7OkIzWUq8O1LEZkCLAfqi0isiAxX1VRgFPAtsAWYrqqbPBmnMeYSVox1xpEvXwtG/MB3x6vSd8xyAGbcfYUllCKiwLdUVHXgBaZ/xUU6440xBURaKnz7FKwcB/W7ozeP48MVR3jl6y1EhJThw9sjqVTaSq4UFQU+qRhjCrHEkzBzGOz4Dq4YRcq1z/Ov+VuYsjKG7hFV+G/f5hT39/F0lCYXWVIxxuSN4zFOh/yR3+GGtzjRaDD3TIxm2c44RnWsw8Od69kT8kVQlpOKiFTBeehQgVWqejDPojLGFG77omHyAEhNhEEz+aNMG4a/v5TYY2d5s18zbm4Z6ukITR7JUke9iNwJrMR5sPAW4FcRGZaXgRljCqnNc+HjHuAXCMO/YznNuGn0Uo6fTeHzEW0soRRxWW2pPAa0UNU4ABGpACwDPsqrwIwxhYwqLH0bvn8eQqNgwBSmb0nk6dkrCK9Yko+GRFG9QglPR2nyWFaTSixwyu31Kc4vk2KM8WapyfDlQ7D2M2h8M+k3jub/Fu1h7E+7aF+3Iu/d2pIyxf08HaXJBxdNKiLysOvXfcAKEZmL06fSC+dyWKElIj2BnnXq1PF0KMYUbmePwbTBsPtnuPpxEto9xoPTfmPh5kMMalud53s2xtdKrniNS7VUglz/7nT9nDM3b8LJP6o6H5gfGRk5wtOxGFNoxe10BtU6vhd6j+VAeC/uHLuCLQdO8nzPRgy5MtxKrniZiyYVVf13fgVijClk9iyDqa4RJm6fywafxtw5eilnktKYMCSKjg0qeTY+4xGXuvw172LzVfXG3A3HGFMorJ8G80ZB2epw63S+OVCCB6cto0LJAGbe05oGVUp7OkLjIZe6/HUFTof8FGAFmZecN8Z4C1X48RX46TUIb4/2m8QHK+N57Zs1tKhelnGDIwkOCvB0lMaDLpVUqgCdgYE4VYC/BKZY8UZjvFBKIsy9FzbOghaDSO72X56et5WZ0bH0bFaN129pSqCflVzxdpfqU0kDvgG+EZEAnOSyWEReUNX/5UeAxpgC4PQRmHorxK6E654nvvm93D1xDSv/iOfB6+ryj051rUPeAFl4TsWVTHrgJJRw4F3gi7wNyxhTYBz+HSb3hdOHoe8n7Ai+juEfLOPAiUTeGdCcXs1DPB2hKUAu1VH/CdAE+Br4t6puzJeojDEFw84fYPoQ8A2EoV+xNLEG97y/FH/fYkwZ0ZZWNcp5OkJTwFyqpTIYOAPUAx5wa94KzpjwdouHMUXV6o/hy0cguAHcOo3JW5V/zl1JneBSfDgkkrDyVnLF/N2l+lTsMVhjvE16Gnz3L1j+HtTpTFqfCbyyaB8TfvmDDvWD+d/AFgQFWskVkzkbT8UY85fkMzBrBGz9ElrfxemOL/KPaRtY9Pthhl4ZzrM9GlrJFXNRllSMMY6T+51BtQ5thOtfY1/92xk+diXbD5/mxV6NGXxFuKcjNIWAJRVjDBxY7wyqlXQSBk5lXfE23PneUpJS0vhoaBTX1Av2dISmkPDadqyI9BSRcSdOnPB0KMZ41tav4aPrQQSGfcOCxAj6j11Ocf9ifHHvlZZQTLZ4bVJR1fmqeleZMmU8HYoxnqEKy0fDlIEQXA+9cxH/2xTIqMlriQgpw5x721G3ctClt2OMG7v8ZYw3SkuFrx+D1R9Bw54k3fgBT87byey1++jdIoRX+0QQ4GslV0z2WVIxxtsknoAZQ50HG9s9SFzbJxk5cS2r9xzj0S71uK9jHSu5YnLMkoox3uTYHmdQrbgdcOP/2B7Sm2EfLOfwySRG39qSHk2rejpCU8hZUjHGW8SsgqkDIS0ZBn3BktRGjHp/GQF+PkwbeQXNw8p6OkJTBHhtR70xXmXjLJjYA/xLwfDvmXSoBsMmriKkXHHmjmpnCcXkGmupGFOUqcLPb8APL0FYW1L7fcaLPxzik+Xb6dSgEu8MbEGpADsNmNxjf03GFFWpSTD/H7B+CkT042TXt7h/+maWbDvCnVfV5KnuDfEpZh3yJndZUjGmKEqIh6m3wd5l0OFpYiJGMXz8anYdOcMrvSO4tU11T0doiihLKsYUNUd3OINqndgHfSYQXfpa7np/GSlp6XwyrDXt6lT0dISmCLOkYkxR8sfPMG0QFPOBIfOZGx/KY+NXULVMIBOGRFGnUilPR2iKOEsqxhQFKYmwZhJ8+zSUr4XeOo23olN4d9E6Wtcsz9hBrShX0t/TURovYEnFmMLs8O+w5hNYNxkSj0OtDiT2/phH5+9mwW8HuKVVKK/0jsDf154eMPnDkooxhU3KWdg0B6InQsyvUMwPGvaEVkM5XDGKuyatZV3McZ7o1oC7r6llJVdMvrKkYkxhcWizk0h+m+rU7ypfGzq/CM1vhZIV2bz/JCPe/5W4M0mMGdSSbk2s5IrJf5ZUjCnIkhNg02wnmcSuBB9/aHgjtBoK4VeRlJbOd5sPMW3VCn7ZcZRKQQHMGHklEaE2pIPxDK9NKiLSE+hZp04dT4dizN8d3ADRn8Bv0yHpBFSoC11ehmYDoWQFfj94kmkLNjNn7T6OJaRQrUwg919bl8FtaxAcFODp6I0XE1X1dAweFRkZqatXr/Z0GMZA8hnY+IXTKtm3GnwCoFEvp1VS40pOJqUyf/1+pq+KYX3sCfx8hC6NqtAvKoyr6lS0p+NNvhKRaFWNzDjda1sqxhQYB9a7+kpmQPIpqFgfur0KTfujxcux8o94ps1Yz1cbDpCYkk79ykH884ZG9G4RQnm7TdgUMJZUjPGEpFNO5eDoibB/LfgGQuPeTqskrA2HTyUxc2UsM1b/xh9Hz1AqwJfeLULpHxVGs9AydkeXKbAsqRiTn/avdRLJhpmQfBoqNYLrX4Om/UjxL8OPvx9m+qTV/Lj1CGnpSuvw8tzXsQ7dI6pQwt/+u5qCz/5KjclriSdh40wnmRxYD77FocnNTqskNIqdR88w/ccYZq2J5ujpJIKDAhjRvhb9IkOpFWxlVUzhYknFmLygCvvXuFolsyDlDFRuAt3fgIi+JPiUYsFvB5i+YDmr9xzDp5jQsX4l+keF0aF+MH4+9gS8KZwsqRiTmxJPOLcBR38ChzaAXwlo0gda3YFWa8Ha2BNM/2ov89fv50xyGjUrluSJbg3o0zKESqUDPR29MZfNkooxl0sVYlc7rZJNX0BKAlSJgB5vQkRf4lIDmL12H9Nn/My2Q6cp7udD94iq9I8KIyq8nHW6myLFkooxOXX2uKtVMhEObwK/khDRF1oNJa1Kc37acZTpM7fz/ZZDpKQpzcLK8krvCHo2q0pQoJ+nozcmT1hSMSY7VCFmpatVMhtSz0LV5nDD2xBxCzFnfJi+OoaZk37kwIlEypXwY3DbcPpHhVG/SpCnozcmz1lSMSYrEuL/apUc2QL+paDZAGg1hMTgpny76SDTP93E0h1xiED7usE826MR1zWqRICvj6ejNybfWFIx5kJUYe9yV6tkDqQlQUgruPF/0PhmNsWlMX1VDHPWLeLE2RRCyhbnoevqcUtkKCFli3s6emM8wpKKMRklxMP6KU4yOboNAkpDy8HQcggnyjZk3rp9TBu3lo37TuLvU4yuTarQPzKMK2tXoJjV3zJezpKKMeC0SvYsdRLJ5rmQlgyhUdBrNOkNb+LXfYlMXxLD1xu/Jyk1nYZVS/N8z0bc1CKEsiWs/pYx5xTJpCIiNwE9gErAaFVd6OGQTEF1Jg7WT3aSSdwOCCjjPOnecggHi9dhZnQM099dxd74BIICfekbGUr/yOo0CSlttwIbk4k8TSoiUhb4EGgCKDBMVZfnYDsfATcAh1W1SYZ53YB3AB/gQ1V9VVXnAHNEpBzwBmBJxfxFFXb/7CSSLfOdVklYG2j/CMn1b+SHnaeY9nUMS7YtIl2hba3yPNS5Lt0aV6W4v3W6G3Mxed1SeQf4RlVvERF/oIT7TBGpBJxV1VNu0+qo6o4M25kIvAdMyrC+DzAa6AzEAqtEZJ6qbnYt8qxrvjFw+gis+xzWfALxuyCwDEQOh1ZD2EEo01bF8MX85cSdSaZy6QDu6VCbvq3CCK9Y0tORG1No5FlSEZHSwNXAUABVTQaSMyx2DXCPiHRX1UQRGQH0Brq7L6SqP4lIeCa7aQ3sUNVdrn1OBXqJyBbgVeBrVV1zgfhs5EdvkJ4OfyxxWiW/fwnpKVD9SrjmSU7X7s6XW44xbWYMa/buwreY0KmhU3/r6rrB+Fr9LWOyLS9bKrWAI8DHItIMiAb+oapnzi2gqjNEpCYwVURmAMNwWh1ZFQLEuL2OBdoA9wPXAWVcLZ8xGVdU1fnA/MjIyBHZPC5TGJw69Fer5NhuKF4OWt+FtrydNWcrMW1VDAtmLSUhOY3awSV5unsDercItaF4jblMeZlUfIGWwP2qukJE3gGeBP7pvpCqvuZqYXwA1FbV09nYR2Y9paqq7wLv5jBuU1ilp8OuH51WydavID0ValwFHZ/laPUufPHbUaZ9GsPOIzsp4e/DDU2d+lstq1v9LWNyS14mlVggVlVXuF7PxEkq5xGR9jgd+bOB54BR2dxHmNvrUGB/jqI1hdepg7D2M6dVcnwvFC8Pbe4mtfnt/HSsLNNWxbBo6lJS05WW1cvyf30i6NG0GqUCiuTNj8Z4VJ79r1LVgyISIyL1VXUr0AnY7L6MiLQAxuPc/vsH8JmIvKSqz2ZxN6uAuq5LaPuAAcCtuXYQpuBKT4OdP0L0x7D1a9A0qHk1dHqOPZWvZfraw8ycEMOhkzuoUNKfO9qF0y8yjLqVrf6WMXkpr7+q3Q987rrzaxdwR4b5JYC+qroTQESG4OrYdyciU4AOQEURiQWeU9UJqpoqIqOAb3FuKf5IVTfl1cGYAuDkflj7OayZBCf2QokKcMV9JDUbzFf7SzBteQy/7lpOMYFr6gXz7xvDuLZBZfx9rdPdmPwgqurpGDwqMjJSV69e7ekwzMWkp8GO752+km3fOq2SWh3QlkPYFHQVU9ceYu66/ZxKTKV6+RL0iwylT6tQqpax+lvG5BURiVbVyIzT7aKyKbhOxLr6Sj6Fk7FQMhjaPcDJhgP5Yrc/0xbFsuXAKgJ8i3F9kyr0iwqjbU2rv2WMJ1lSMQVLWirs+M5plWxfCJoOta8lvevLLPdpzdS1h/h28S6SU9NpElKaF3s15sbmIZQpboNeGVMQWFIxBcPxGFj7qdMqObUfSlWGqx7iYJ1+TNvuw4wFMcQeW0uZ4n4MjAqjX1QYjauV8XTUxpgMLKkYz0lLhe3fulol3znT6nQipeurfJfagqlrDvLz9ztRhXZ1KvBY1/p0bVyFQD+rv2VMQWVJxeS/Y3ucu7fWfganD0JQVbj6UXaG3sznW2H2F7EcS9hA1TKB3N+xDn0jwwgrX+LS2zXGeJwlFZM/0lKc50miJ8LOH5xpdbuQ0PR15p5uwtQ1B1i/8A/8fITOjSrTLzKM9nWD8bFOd2MKFUsqJm/F//FXq+TMYQiqhl7zOOsr9uTTLel8Nf0AZ1O2UK9yKZ7t0ZDeLUKoUMrqbxlTWFlSMbkvNdmpvRU90anFJcWgbleON7qVqfH1mR59gF1H91IqwJebWlSjX2QYzcPKWv0tY4oASyom98TtdFol6z6HM0egdChp1zzF0qDrmbQphR+nHyYtfQdR4eW4p0NtejStSgl/+xM0piix/9Hm8qQmwe8LIPoTZ9wS8YF63ThQpz+TjtRh5rIDHDkVS8VSAdzZvib9IsOoHVzK01EbY/KIJRWTM0d3wJqJsG4yJMRBmeokX/M0C/07M2lDEitnxeNTbA8d61eiX2QoHRtUws8GvTKmyLOkYrIuNckZ0z16ojPGu/igDbqzq3pfJuyvwbzFhziddICaFUvyRLcG9GkZQqXSgZ6O2hiTjyypmEs7ss0Zq2TdZDgbD2VrkND+GebQgU9+S2Tr2lME+h2gR0Q1+keFERVug14Z460sqZjMpSTClnlOq2TPUijmi9bvwYYqvRkXE8a3PxwmJe0IzcLK8krvCHo2q0pQoNXfMsbbWVIx5zv8+1+tksTjUK4mx698hqkp7Zn0WwL71yZSrkQ8g9uG0y8qlAZVSns6YmNMAeK1SUVEegI969Sp4+lQPC/lLGya47RKYn6FYn6kNbiBFeVv5IM/qvLLj/FAPO3rBvNMj0Zc16gSAb5Wf8sY83c2SJc3D9J1aLOTSH6bCoknoHxtDtUdwCcJV/L5xgROnE0hpGxx+kWGcUtkKCFlbdArY4zDBukyjuQE2DTbSSaxK8HHn+R6N7C4VA/+t7MyG5acxN/nFF2bVKF/ZBhX1rZBr4wxWWdJxVsc3OA8oPjbdEg6gVaoy55WT/PhyTbM2HCWpNR0GlaF53s24qYWIZQt4e/piI0xhZAllaIs+Qxs/MJplexbDT4BnK17A18HdOOd7RXZs/QsQYFJ9I0MpX9kdZqElLZbgY0xl8WSSlF0YL2rr2QGJJ9CK9bn92ZP8358JF+uTyRdoW2t4jzYuR7dGleluL91uhtjcocllaIi6RRsnOUkk/1rwTeQk7VvYE6xzry7rTxHY1OoXFq5p0Nt+rYKI7xiSU9HbIwpgiypFHb71zqJZMNMSD5NenBD1jV6irePtOCn9an4FhM6NSxP/6gwrq4bjK/V3zLG5CFLKoVR4knYONNJJgfWo77FiQvvwbT0Try/oxxnYtKpHRzA093r0LtFKMFBNuiVMSZ/WFIpLFRh/xpXq2QWpJwhNbgRK+o9yWsHmrJ+I5Tw9+GGplXpHxVGy+pWf8sYk/8sqRR0iSec24CjP4FDG1C/EhwI7c6k5I58+Ec5UmOgZfWy/F+fMHo0rUapAPtIjTGeY2eggkgVYlc7rZJNX0BKAskVm7Ck5uO8GhvBzi0+VCjpzx3tQugXGUbdykGejtgYYwBLKgXL2eOuVslEOLwJ9SvJnmo9GH/maj6PLU8xEa6pF8xjUWFc26Ay/r7W6W6MKVgsqXiaKsSsdLVKZkPqWc5WjGBh6OO8EtuYQ1v9qF6+BI92CaVPq1CqlrH6W8aYgsuSiqckxP/VKjmyBfUrybbKPRh98irmxVYiwLcY1zepQr+oMNrWtPpbxpjCwZJKflKFvctdrZI5kJbEqQpNmV/5UV7b14TjO/1pElKaF3uFcWOzEMqUsEGvjDGFiyWV/JAQD+unOMnk6DbS/UuxMbgnbx27gh/3VaV0oC+9o0LoFxVG42plPB2tMcbkmCWVvKLqDMMbPRE2z4W0ZI6Vb8bM8o/w1oHGJJwMpF2dCrxzfRhdG1ch0M/qbxljCj9LKrntTBysn+wkk7gdpPmXJrr8jfw3ri0r9lejaplA7uwYSt/IMMLKl/B0tMYYk6ssqeQGVdj9s5NItsyHtGSOlG3O50EPM+ZIBGlnAuncqDITI8NoXzcYH+t0N8YUUZZULsfpI7Duc1jzCcTvItW/NMvK9OSNI2357WAI9SqX4tEeYfRuEUKFUlZ/yxhT9FlSya70dPhjidMq+f1LSE/hQJnmTAx4kIknmuObWJwbW1Tj35FhNA8ra/W3jDFexZJKVp069Fer5Nhukv3LsrjUjfz3aFu2HgohKrwcL3UOo0fTqpTwt7fVGOOdiuTZT0RuAnoAlYDRqrowRxtKT4ddPzqtkq1fQXoqe4NaMs7nJmacbE5QehB92ofwfmQYtYNL5eIRGGNM4ZTnSUVEfIDVwD5VvSGH2/gIuAE4rKpNMszrBrwD+AAfquqrqjoHmCMi5YA3gOwllVMHYe1nTqvk+F6S/MqyMLAXbx9ry+7kUDrWD+Z/kWF0bFAJPxv0yhhj/pQfLZV/AFuA0hlniEgl4KyqnnKbVkdVd2RYdCLwHjApw/o+wGigMxALrBKReaq62bXIs675l5aeBjt/gOiJ6NavEU1jZ8mWjNHezD3VkmoVytCvaxh9WoZSuXRgljZpjDHeJk+TioiE4lyGehl4OJNFrgHuEZHuqpooIiOA3kB394VU9ScRCc9k/dbADlXd5drfVKCXiGwBXgW+VtU1Fw0yLQWWvAZrJsGJGM76lWOBfy/eP9mOA2khdI+oyqeRYbSuWd463Y0x5hLyuqXyNvA4kOmAH6o6Q0RqAlNFZAYwDKfVkVUhQIzb61igDXA/cB1QxtXyGZNxRRHpCfRsVdUHfnyZLcVbMSb1Zr5ObEnD0IrceW0YPZtVo3Sg1d8yxpisyrOkIiLn+kCiRaTDhZZT1ddcLYwPgNqqejo7u8l8k/ou8O7FVlTV+cD8miEVR1yd9Boni4XSu00I86LCaFDlb1fqjDHGZEFetlTaATeKSHcgECgtIp+p6iD3hUSkPdAEmA08B4zKxj5igTC316HA/uwEedIvmMcHdqNzo8oE+Fr9LWOMuRx5duuSqj6lqqGqGg4MAH7IJKG0AMYDvYA7gPIi8lI2drMKqCsiNUXE37WfedmJs2bFktzQtJolFGOMyQWevh+2BNBXVXeqajowBNiTcSERmQIsB+qLSKyIDAdQ1VScls23OHeYTVfVTfkWvTHGmPOIqno6Bo+KjIzU1atXezoMY4wpVEQkWlUjM073dEvFGGNMEWJJxRhjTK6xpGKMMSbXWFIxxhiTayypGGOMyTWWVIwxxuQar7+lWEROAVs9HUchUwY44ekgcsDTcefH/nN7H7mxvcvZRk7Xzc56FYGjOdiHt6urqmUyTiySg3Rl09bM7rU2FyYi41T1Lk/HkV2ejjs/9p/b+8iN7V3ONnK6bnbWE5HVdg7IPhEZl9l0u/xlcmK+pwPIIU/HnR/7z+195Mb2LmcbOV3X05+1N8j0PbbLX/YtxRivZueA3GUtFci0CWeM8Rp2DshFXt9SMcYYk3uspWKMMSbXWFIxxhiTayypGGOMyTWWVDIhIiVFJFpEbvB0LMaY/CUiHUTkZxEZIyIdPB1PYeMVSUVEPhKRwyKyMcP0biKyVUR2iMiTbrOeAKbnb5TGmLySzXOAAqeBQCA2v2Mt7Lzi7i8RuRrnj2SSqjZxTfMBtgGdcf5wVgEDgWo4ZRsCgaOqusAjQRtjck02zwG/q2q6iFQG3lTV2zwUdqHkFWVaVPUnEQnPMLk1sENVdwGIyFSgF1AKKAk0As6KyFeqmp6P4Rpjcll2zgGqutk1/xgQkG9BFhFekVQuIASIcXsdC7RR1VEAIjIUp6ViCcWYoinTc4CI3Ax0BcoC73kisMLMm5OKZDLtz2uBqjox/0IxxnhApucAVf0C+CK/gykqvKKj/gJigTC316HAfg/FYozJf3YOyAPenFRWAXVFpKaI+AMDgHkejskYk3/sHJAHvCKpiMgUYDlQX0RiRWS4qqYCo4BvgS3AdFXd5Mk4jTF5w84B+ccrbik2xhiTP7yipWKMMSZ/WFIxxhiTayypGGOMyTWWVIwxxuQaSyrGGGNyjSUVY4wxucaSijH5QERURP7r9vpREXk+G+s/LyKP5klwxuQiSyrG5I8k4GYRqejpQIzJS5ZUjMkfqcA44KGLLSQi5UVkjoj8JiK/ikhTt9nNROQHEdkuIiNcy1eV/2/vDlmrDMMwjv+vIAyLYX37BiKmhTkOfgEFo+CC3bbuEMtgsLIkKsxm0rBgUTjRhY2DX8EFw8IYLhhuw/sGGcdzYDznNfj/1fsJz5MunjvcdzJOcpLkW5J7C3yDNNf/PKVYGto+MEmyM+PMNnBcVQ+T3AcOgDt97TawRrfv5zjJId1SqU9V9bJfOnVzcdeX5jNUpIFU1XmSA+AZcPmXY+vAo/785yTLSW71tY9VdUm3PO4L3ZKpI+BNkhvAh6o6WewrpNlsf0nD2gOe0v02ppm15+fqoL6qqjGwAXwH3iV50uSW0jUZKtKAquoMeE8XLNOMgccASUZ020fP+9qDJEtJloERcJRkFfhRVa+A18DdBV5fmsv2lzS8XbqR69M8B94mmQA/gc0/al+BQ2AFeFFVp0k2ga0kv4ALwJ+K/ilH30uSmrH9JUlqxlCRJDVjqEiSmjFUJEnNGCqSpGYMFUlSM4aKJKkZQ0WS1Mxvcsa8bgy69uQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = piv.plot(logy=True, logx=True)\n", - "ax.set_title(\"Polynomial Features for 50 features\\ndegree is 2 - memory\")\n", - "ax.set_ylabel(\"Mb\")\n", - "ax.set_xlabel(\"N obs\");" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/kmeans_l1.ipynb b/_doc/notebooks/sklearn/kmeans_l1.ipynb deleted file mode 100644 index 64dbb2d9..00000000 --- a/_doc/notebooks/sklearn/kmeans_l1.ipynb +++ /dev/null @@ -1,523 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# KMeans with norm L1\n", - "\n", - "This demonstrates how results change when using norm L1 for a k-means algorithm." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simple datasets" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2000, 2)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "import numpy.random as rnd\n", - "N = 1000\n", - "X = numpy.zeros((N * 2, 2), dtype=numpy.float64)\n", - "X[:N] = rnd.rand(N, 2)\n", - "X[N:] = rnd.rand(N, 2)\n", - "#X[N:, 0] += 0.75\n", - "X[N:, 1] += 1\n", - "X[:N//10, 0] -= 2\n", - "X.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACOH0lEQVR4nO39fXhVZZrni3/utXcSwQoh8g4hIL5ETayyAAW6rFKr1JG6UKvQatSa7q6pRnSOPXOc7nN+VV0vND9qqk719OkzVp92pkTbq6ZmBFHB119ZpSiKWoAQGiURw0uAJCQkEJIQAZPsvZ7fH2s9z37W2msnARIIYX2vC9177fXyrJ217+d+7vt7f29RShEjRowYMYYvnHM9gBgxYsSIMbiIDX2MGDFiDHPEhj5GjBgxhjliQx8jRowYwxyxoY8RI0aMYY7Y0MeIESPGMEds6GPEiBFjmCM29DGGLETkM+ufKyInrfffPdfjixHjfIHEBVMxzgeIyH5gsVJq3bkey2BBRJJKqdS5HkeM4YfYo49xXkFELvI9+7H++x+LSEpERvnvfyYij/mvi0TktyJyWEQOiMhPRCTymReRG0Rkq4gcE5FmEfl/rM/+zD++1b/efhG51f/sNyLyn619bxaRBuv9D0Vkr4h0isgnIvJt67PvicgHIvJfRaQVWCYiBSLyf4tInT+OX4vICH//sSLymoi0i8hREXkv1/3EiGEjfkhinFdQSn0ObAFu8jfdBBwAvmK9f9d//f8CRcAMf/ufA/8ux6l/BfxKKTUKuAx4DkBErgH+O/BnwGRgDFByCkPeC3zVH8f/F/hfIjLJ+nwOUAtMAH4O/BK4ErgOuByYAiz19/0boAEY5+//IyBeksfoE7Ghj3E+4l3gJhFJAl8E/sl/fxFwPbBBRBLAfcDfKqU6lVL7gX/EM9hR6AEuF5GxSqnPlFKb/O33Aq8ppTYopbqAnwJufweqlHpeKdWolHKVUquB3cAN1i6NSqn/1w/ZfA4sAf6TUuqoUqoT+IV/H3qMk4BpSqkepdR7Ko69xugHYkMf43zEu8DNwExgB/Amnsc+F9ijlGoFxgJ5eN6+xgE8DzkKf4nnSX8qIltEZIG/fTJQr3dSSh0HWvs7UBH5cxHZ7odb2oEKf2wa9dbrccBIoNLa//f+doB/APYAb4hIrYj8sL/jiHFhIzb0Mc5H/BEoA74NvKuU+gQoBb5JJmxzBM8DnmYdVwocjDqhUmq3Uup+YDzw98ALInIx0ARM1fuJyEi88I3GcTzjrDHR2nca8CTwV8AYpdRooAoQ+9LW6yPASaBcKTXa/1eklPqCP8ZOpdTfKKVmAHcBfy0i34j+imLEyCA29DHOOyilTgCVwCNkDPsfgYf1e6VUGi/O/nMRKfSN7l8D/yvqnCLyb0VknFLKBdr9zS7wArBARG4UkXxgOcHfzXbgmyJyiYhMBB61PrsYz5Af9q/x7/A8+lz35eJNDP9VRMb7x0wRkX/jv14gIpeLiAAdQJpTCCPFuHARG/oY5yvexQvNfGi9LwQ2WPv8BzyPuxZ4H1gJPJ3jfHcA1SLyGV5i9j6l1EmlVDXehLISz7tvw0uIavxP4CNgP/AGsFp/4K80/hHYCDQD1wIf9HFfP8ALz2wSkWPAOrzVC8AV/vvP/HP+N6XU+j7OFyNGzKOPEeNUcSFw+mMML8QefYwYMWIMc8SGPkaMGDGGOeLQTYwYMWIMc8QefYwYMWIMcyTP9QCiMHbsWDV9+vRzPYwYMWLEOG9QWVl5RCk1LuqzIWnop0+fztatW8/1MGLEiBHjvIGIHMj1WRy6iREjRoxhjtjQx4gRI8YwR2zoY8SIEWOYIzb0MWLEiDHMERv6GDFixBjm6NPQi8hUEVnvt0GrFpH/PWIfEZF/EpE9IvKxiMy0PvsLEdnt//uLgb6BGDFixIjRO/pDr0wBf6OU2iYihXhNEd70lfk05uMp612B1xrtvwNzROQS4O+A2XhyrZUi8opSqm1A7yJGjBjnHJUH2thU28rcGWOYNa34XA8H8Ma0dlsDCrhnZsmQGdfZRp+GXinVhCfPilKqU0R24nXpsQ393cBv/bZmm0RktN8X82bgTaXUUQAReRNPDnbVgN5FjBgxBg1hA26/B9hU20rnyR6een8faVdRkOfwzOK5Z2xUT3fi0McVj8xn2avVdKc8yf4Xttazasm8wLn6c40zHYc+buXmOl6vamJ+xSQemFN6Ruc+VZxSwZSITAe+DGwOfTSFYEu0Bn9bru1R516C1y+T0tLSUxlWjBgxBgkrN9ex9OUqXKXITzosXVDO8tc845lMOKAUPWkVaJPV3eOyqbY1p0EFIl+H9//uU5voTrnkJ/s/cdjHOSKk3MzIetKKTbWt5prFI/PNveS6RuWBNu5/chM9KZdEQlg0eyoLZ5bkHHfguBUb6Ukr8hLC979yKb/eUAvAe7uPAFA2sfC07vF00G9DLyJfANYAjyqljg30QJRSK4AVALNnz46V1mLEGGT05U1WHmhj6ctVxlh2p1xer2qiO+XiKuhJuUT9UB1HjBGH4GSRcATX9SYGPVGkXJVl6NZsa6Crxzt/Typ74siFTbWtZnxKKURA6zbmJYTikfnGuAqQ9j/LdY212xrMiiCVVjyzuY7nKxuyxq2vrb/LNdsa6PZP3p1WvLQ92MHy9aom2k50B77L/t7j6aBfhl5E8vCM/DNKqbURuxzE6qsJlPjbDuKFb+zt75zOQGPEiDFw6I/HvKm2lbTlETsizK+YxJb9R42BsiFAwhGW311hzhWeLNx05iBtQCFo6CoPtPFCZYOZRBKhiaM3zJ0xBkfwDD0gyjt+ZulorpxQSFVjR+TY7cnJngCjJrIef9x6ElqzrcFMCPq7PNLZFTim9JKRHDqW2TYiL0HxyHzykw49KZe8pNPvezwd9Gno/f6U/wLsVEr9Pzl2ewX4KxF5Fi8Z26GUahKRPwC/EBH9BN0O/O0AjDtGjBhnANvz7e5xWf5qNRVTilhoJSznzhhDQZ5Dd4+LCHz9qvGUTSzkmcVzeWzdLt7ffcQzpsBt10zgS1NHZ60OwpNFLogQCOX0WJPAd2ZP7Xf8vOZQJ9ahKCDtKrbVtbN1fxvJhJB0JCvc5PpjDE+A35s3PThOIC/prUTSriIv6SAQ8MzXbmvgnZoWc0xeQvjB/KupOdTJ6i11VDcdY93OZjbsPszSBeW0negeEjH6rwB/BuwQke3+th8BpQBKqV8DvwO+idfr8gTw7/zPjorIz4At/nHLdWI2RowY5w5zZ4wh6QjdaYULfNTQwUcNHTxf2cCyOzPG55nFc1mzrYEXKhuMcXpm8VzmV0xi417PiCcc4eay8SbBGL6OniwQb5tSmJCKNrZpBTWHOpk1rZjOkz0BI7y7uZPKAx5RL5wUtuPxy++u4PWqpsj71ZNNT1px+zUTGFtYwOot9Wa7Upj4vW20N/rbwBv+jVeM5dFbrwyMBbxQk/bMFZgVjAC3lI03+95ePpEdBzvM+asbO5g8egQwuInZ/rBu3sf8iXLuo/AaKEd99jS5GzLHiBHjHCHKz+5OuVnJ1/qjJ0ilM8ZPhyrSfqw95SqWv1ZN2cRCgCw6oz1ZpNIujuAZ6rr2gKFd+nIVZRMLqW4KpgA/3N/Goif+iOM4pNKZ8Ii9KnGVYunLVSy+8VKT7MyFsYUF/OLb11Ixuci7V1eRn5cJnehwSiLhUN3YYY5LJoSpl4wEvPHbxliPZ+6MMdQc6sQRARTJhMM7NS2s29lsvk/7/M9vrSflKpKOgEjg/gbS2A9JmeIYMWIMLjbVtpJKR4dUtAHv7vGMvn7vCIFQRYBpk3J54t29rNvZbOLfNp3Ru14mNr5lfxuJhOCZQw+u8lgx8ysmZRnrlAu4XkxGx/O9eLzg+tnWtKuobjrGw1+bwbpPW9jT8pk5PuHH7fMSwj0+a+aBOaWUTSzM8qK10T7YfpJVm+vMOVxX8eyHdazd1pBliLXhrzzQxvLXqs1K56Yrx/GW/5109XgevH3+Zz+s8ybQtEIHkwYjMRsb+hgxLkDMnTGGvKQTSIhqJBzxGSueEdWGeHxhAf/xG1dSNrGQ1VvqjYEFEJGAkQfPeK3d1mCojPlJxzBpFKBcxW3XTODtT1vMCsI2uL98fSfHPk8FxoVSJnE5a1oxy++uCExG7+8+wpb9R3lm8VxqDnUa3nqUQYdsz9zetnJzXTCOr+iTBaRXGQqP9TO+sIBkwjHbnt9az8KZJTxyy+WmmKu7x8X+KyQSA5+YjQ19jBgXIGZNK2bVg3N54t29vPlJszFo+Qlh2V0VtJ3o9gqOXqkyNMFDx7pY9koVq5bMY/GNGV44wMzS0WzZHyx4F8GEJhwRFt94Kce6UrxQ2UA67cWzH7rpMh666bJIIxw28g/eeCnVTceYXzHJ7Ke98sfW7eI9PzmsefyP3HJ5IG9wqh5y24luw+ABb0UD3qqmeGQ+j6/fkzXmuTPGkO9PoCJC+eQiFLDKnzTSrjKTxKxpxSxdUM4/vbXLMHIEuHfWwFfwxoY+RowLFLOmFfOlqaNZt7PZS5DiMVxs41jd2MEzVvhCe+l1R0+YsIsDXDmhkI/q282k4AjcevUE4+W7SrHivVr+87eu5Z6ZJVlJ1TDCSdVLx4zkNxv3051y2bL/KGUTC40xnDWtOBDucYGVmw/wUX07D910GZCdN+gLlQfaONh+EscRQwl1/KSzAMteqYrk/2vj/dOXdpByFcteqWLZXRUU5GXTKCsPtAUmUvAmER1aGkjEhj5GjAsY2gPVRmhhyMgsnFnC85WZoiHHgWc/rDOFRoKXpARYdlcFVY0diH8cYMIy4HnGP325iucemmdCFz9+cYfl9UP55CIuHXsxTe0ngwMV6bW4yE6aAhxs/5yD7Z/z5ifNOI6YpO8LW+vNiiVXZa7N5rFZKOm0Yv2nLSZMBNFjqWrsMN9Pd1qxvqYlkKzV+26qbQ0YeYCbrhw3KDTL2NDHiHEBw2bFHOnsYs22BmoOdZrQTduJbpbdWU51YweHO7t4a2cz4RyuAlZ9WEfSEb7jSwRoY7X87gp+/OKODI3SVSx/tZpF15ey/LVqE7MHbyLQNE+N8YX5HOnsZm/LZ4azH1VAlYupr8MlGj1pZVhFuSpzbTaPAyRz5CwAJGIs4WKpt3Y28/BNl/HILZcHts+dMYaEEPg+xxcW5LiTM0Ns6GPEiMELltduQ4CCPI8W+HpVU1ZFKXjSAArPe125uY41FivlgTmlvFPTwhufNJv9P2rooLqxKstoRuFwZ3dgHwVe8D+Ee2aW8MLW+iwPOQxHMqyicIWr9szDqxxd1KS1cezJKZVWhv+vMS5krF0Fj63bxaO3XpmVCP7Zt67lpz7FM2pFNVCIDX2MGBc4tAcbBYVHC/zpSzuyPHnBoysiYnRvolgpD910Ge/UtASMsOsqHEcQFImEw2VjL2bnoc7I64eRTkezXu6dPRUBjneleGl7o9meTAhfLxvP2MICKiYXsfy1asNjtytci0fmm9VHuGJVFzMtXVDOig172d96wpz/9aqmQF5j4cwSVm+tD9BXbTaQPe5cFM+BRmzoY8S4wFE8Mj8g/pWFUHjhSyVFLLq+NBDnXrOtwYu1p1WAHqgN5LK7Kqhu7OD5rfXGsNrGdFNtK58eqok07ILniTu+IFpYFyZKt+fP5k1nzbYGky8IG+twjD4saZyfEFMDEK7AXfDFSQFDP79iUmAsm2pbWfyVS9lY28rxrhR7Dh8PsIFy0TkHE7GhjxHjAoYu8Mll5B2B2dOK+dCiTlZMKcqSO6g51Mlq1+edq2jdmGcWz2VhiHFjQzNTEAnE1b9YUsTSO8uBbAmETbWtNLafzErUPnLL5acke/zYul1BkbV0hgYZrsB97eMmvnXdZLbXt3NH+cSAtry+huuzmBKJTJjJxZtUzwViQx8jxgWM3sI2ADPGfYEfzL/aaLJHxZG1QqX2+lOW7ntfBlhDJ4U31bayvb6dN62YfvmUIjPWaJ0br2DLUdnefvg+w6wd+zw28hKZJGtUBe5rHzfhKsXTH+yjsytlJjBbGVPhMXU0BHinpiVLxOxsNB+JDX2MGBcgtHHpPNnT6377j3xGzaFOvjOrxPDQgUCx0Kba1kCVrC35ayc1cxUZadgyAu/WtNCTViQcj8Vy/5ObSKW9Zif3zvLGkPGyATy9mKULyiPPbSdYEwmHg+0nTccnnVwV4LJxF3PDjDEBvr2uwP2pX4HrOJ7Rd1UwAf29edMDyWqdw1Bg1DLf+KSZNz9pNl24gLPSfCQ29DFiXGDQXqzNHrEx7ZKRHDjqxaBdl4DI2aiCJE++V2t0Y1YtmWeUMHvSHhfe1qPXXnrnyR4jVZCXCNIwV26uY/WWOiaMuoiHbrrMq9pdMs8IodmVu90pl1Wb68hLOllyw0op2k50R7Y+XLutga9dMQ7wvGpdqWpr7Sigru0k359cZFYkkGmViFIImASynYDuTrn8vvqQOZ+tdLlmW4O5nr5Od4/LY+t2MfWSkRm56JQbyc4ZCMSGPkaMCwybaltzGnkB6tsyiUbNQ9fG7IkNtRmjm85w4vHVGhMJx6hYQkZ2YNETGzOdqqxOTd+smGgxZDpYX9PCsyEhtPA4vZCIy303lKIgIKlgd5DKTzrcUT6Rlz9qNDkILW5mG13b2HenXH76chUqxLO3PXVXwZ/OKuFIZxdvfdqC63+uE7SOeCsZ22DrxiQ6du8CH+w5QjLhTVj6Gu/tPsLm2tas3rZnitjQx4hxgaF4ZH50C0A/b2gbNf3SweswlQplbcOc+CjqYzi0o9GdcgM0SPBCHGtCQmg9Kddo3r9T02JYO3pFUDG5yIiX2e35unqyz59Wvmib6+nwO+L9s0P0Rrve4tnbEDA0TddVeo4zchBfuXxswMhrWYTXq5oonzSK6qZjfLDnCK7KTFhVBzOFYt3+dxAb+hgxYpw22k50B94LcPd1k7m4IMmqD+uy9hegdMxI7iifyNMf7MsqStKSvOBVjxaPzA+ET2yhL0UvNE48o7t6Sz2uf87FN15K4Yi8LKaN/V43+N6y/2hA792FSCK+oLhvTinlk4uobuxg876jAUljfc+6k1TYo3ccMS0JFZl2hcpPBttGvvJAW0CLX49xy/6jZgI73NnF8e501vUHEv1pJfg0sABoUUpVRHz+fwLftc53NTDO7y61H+gE0kBKKTV7oAYeI0aM08PcGWO4KM8JhG9+X32IhTNLIo2wAg60nuA3G/cbPZs/7jliQhUKWPDFSbz2cRNpV7H05R0oPM67TjrqWL1WxNSJVsfJxLqnXTKShvaTxqNOuYqn3t/H6ofmBbzj8GrBZtO0nejmmcUZVc4o6M5W1Y0drN5SR4hwgwPcP6eUhTNLjNRxV0+aLfvbUHjFXgJZ1bPra1poOfa5qZSNyoWEx7huZ3Ogahj/vANdIdsfj/43wD8Dv436UCn1D8A/AIjIncB/CrULvEUp1XvLlxgxYpw1aCrjY+t2mRBCjy/gZbf9C4dwtJEaVZAMFAwBbK9vtzpO6SO88ImmVYJXWHWzX6V6j29IdZL2YPtJ07tVw7VkfaO8+YPtJ0kmHBOj12yftz9tCTjzV08sZHfLZ2alkEvyISHws29dywNzSs1qoavHo3AmExKQKtCUyuKR+ayvaTETy0cNOwBMGEmPQ68S7DGGWTo6gXsuWgluEJHp/Tzf/cCqMxpRjBgxBh2zphXz6K1XmhBClPGyK0XBa4hRPDKff3yjJut8B1pPZCU28V93nuxhyW+3su6TZtNgI9+X42070W3i+9oI2+qQjpMJBdlJ1qULyk3IJukI37h6AuBNJJDp2aqx98hxXKWM1PC6ndnevl3xqycV7Y2nFeAq7rvBC/noCad4ZD5LX67Kut7rVU08euuVxusXX5lz0fWlzJpWzOPr92Qdk0jIoBh5GMAYvYiMBO4A/srarIA3REQBTyilVvRy/BJgCUBpaXaT4RgxYgws7CKlsBxA24lurispMhWxAtx85bicwmYKL75+7ZQiqhqPBSpbn3yvNksnx24HGA6BVDd2mIbgrvL60S6cWRKgIb5e1WTep9KKt3z5YICEkz0+HR4SFOMKCwLdrjTmzRhjJo/8pMP35k0PSEPofc0Ek3BIpYLdoTS0LMI9M0vY1dzJtrp2Pm7ooKbZ662rKam2sV80e+p5UTB1J/BBKGxzo1LqoIiMB94UkU+VUhuiDvYngRUAs2fP7iVdEyNGjIGCXaRkl++HkUhIljCZAFdPKmRPy2cZ/Zo7y004RguXpSNOqKmQUdozYYXI7h6XD/cdNeNyFZRPGmVWIyJBg5nOUeibEAIrF92VCry4fHXTsQBj56n39xkjr2Pymmaqw132nQmeXMOi6z2hsu8+tYnPe4KD6erJcOV1G0RdozBYypUwsIb+PkJhG6XUQf//LSLyInADEGnoY8SIce4QLt8PY/qYi7OYKcmE8OmhTpIJh0U3TDXVpLOmFRtFxnA7QgFuu2YCN5eNz/KeH1u3ixF5iay4tguBaztA4Yi8YILXCjM5/jE2vnrFWBQE2hA+euuVbN7nTRbJpMOYi/OD8gW6KTrwFT92Dh4nPkqT57ZrJrDizz2+yePr99DVkz3jKDwly417W1l+dwWrH5o36PIHMECGXkSKgJuAf2ttuxhwlFKd/uvbgeUDcb0YMWIMLHQIJVch1b4jn2Vt6/GNdzrtMmX0iF6bbmv5gGRCGFtYQLVPT9Tes91/NuFAAi8ncPXEQnYc7DAGWID8vGAT8U21raY5isLjuNuTy3UlRfxxr8flD7ch1C6767q88lGQc6+vlwzFzsMTjA476baFlQfaaGw/6Wnf5whzpVzFT1+u4md3V3Cw/SRr/dzCOQvdiMgq4GZgrIg0AH8H5AEopX7t7/Zt4A2l1HHr0AnAi+I1CUgCK5VSvx+4oceIEeNMYTNZNBNHhzNsRIVDHMlmkkSh7UQ3yjeoPWnlSRgkxLBlwtx61/V02ssnF1HV2MEnTccyfVsFo2dj0xcdgW9cPcFIKNgrCjtZ2tXjsvzVaiOUlgowhYJQof+HUTaxkFUPzs1iAukQWMLvLJ6rF0raVfzkpR1mEnu+soFVD54jrRul1P392Oc3eDRMe1st8KXTHViMGDEGF1HSvZqJYwt9JRNivHcbZRMKGVtYwPyKSdQc6mT5q9UBvRqNuTPGkEw4JrSiwyKLbpjKlNEj6DzZE/DoFdDS2cUaP7QjBNk8uuBrzbYGEwNPK08w7J2aFiMfMGtaMT9+cUcgfq/ItCtMJoSklUPIZZBT6SDFM/yd2S0C7RCY+CyduqMneH/3kcgJww6VRfWfHSjElbExYlygiJLufeSWywOhibYT3RxsP8mzH9Zlxe93tXxGTXMnf9zbasWqO3jzk2Z+/u1rjU57zaFO0taSQPBkhSsmB3XtbR2ddT4nXU82Wp5Brx4qD7Tx3Nb6rHvqCRnl5yP20UinFYvmlDJ59AiKR+YHvGsbCtjd3Mnj6/dEat+HJ7WoZusb97Zm0SmTDiBiOlFpKulgIDb0MWJcoAhI9zpCY/tJKg+0ZcXXtfqjHb9P+N2eFGRpGijgxy/toKqxg4rJRQGtevD0zzRtUsfLf/jNq6k9ctxUiYa5+Aq41QrN/OjFHYFWfRq2jvym2mzjGt7XbmQe7m1r46XtjV7RlCORBVoaYcqq3SRdM5GSSU9qWReMPf1+LbVHjqNC38lAIjb0MWJcoNBGSWuxrPrQ01UP90vVolw61p30NWh+s3F/zuStUrBqc50pgNKwhdPCDUCaj32ec6yugnU7m7m5bDyzphVnacFMKR7BiLwEM8ZebLbNnTEmaz9HvAlDV+baBvWhmy4L8PGjxpBKK+6b44WcND1Uf5e9Iao3rF15a0skDEb4Jjb0MWJcoNCJ2MOdXYYT3t3jBrjd2ugfbD9pFCiVUobeuNbvFRsWOoMMu0QLfjniTRBP/3G/aQCiwzBRXZ68wqfMROEqTxu/bGIh5ZOLAvse6victKvY0/IZb3/azOqH/sRMUnYbxNnTig0F0v4edH/ZB2+8lCff35fb2AOjCpLMnTEmK1YPmO9DT4i27n4unZ4AF18GJ3wTG/oYMS5A5CqQ0mEVVwWNvtZN14VRtrevZRN2N3ea2P7uw5+Z0IrgJSV1vPrpD/YZSeOaQ50BaWHxDkApTxb5y1NHGzExyGjfgOed67HbhjnlklPm94oJhYH3lQfauH/FRjNR5ScdHrzRa+w9ftRF3FI2ntermgLJ1Kfe38exrlSQHvruXt7bfThY6GV1n4rqHFU8Mh/HL711HDwhuEEK30QUC8eIEWO4I1eB1KxpxeQnHRJCoGVeKuVy9aRRLLqh1Hivj6/fY2L6c2eM4ffVh2jp7GJf63FuKRtvwiZaLXJTbStrtjVk+Pe+h6515xPixf71cT1pxYf72xDx9fDJcOh1fsEJx2Z8fLjvKL/83c6AN59wyKo+3VTbGmAUdae8itgdBzt4b/dhyiYW8uitV/oyzB60emXS36bwBMqiwliKTDhGo/JAGz96cQfLXq02+jtfv2oCyv+uw/sPBGKPPkaMCxC5CqQun1DID+ZfbTzz5a9V093j6bnsONhBTXOnabphhy3CDJ7xhQUU5GUSvVqPPZlwAoVErt/+z2456EkPZITNXOVNAIuunxqIq2vefxR1cU/LZ9QeDhZ5VfjhHrtv7dwZY0g42Y1HbAM9d8YYvn7VeN7a2YxS3mSjJ4yVfotApYJyD5qWqtUudb9c/Z3a37ugGOvr72i2Tm91CaeD2NDHiHEBQidi125rYPWWOtKu5/Fqv1Vzw8smFrL81Wo+augwgmIrNuw1hqqrx2XttgYWziwJGCodQ1d4zb1139dUymXGuIvZ13rC08LxY9LaeH/3qU2mAbfuAgWeIY2qvrVlDLK86dCGgqTD/Su8loZ2I+5F15fyzOZMwxXdMUqrdeoQl25Mbk82a3w5hLykw7VTitjiryAUcHPZeK6bOjozYaZcHAmqc+qCs3tmeucdLDmE2NDHiHGBwo6xh5k3dkx5Z9Mxc4zdGxU8g7Z6az0LZ5YE+Pe2hLBLhi7pArVHjnst/JxgTDqQnFSKW6+Z4Gu2e4Y5p5frW/SEA5eO/QL7Dn9mmpd//ytevL266Vgg1m+HRxTevjqEY3IFSgWkGmypB53IthlKa7c1GEMP3jkeueVyHl+/xwqTKZNbSDiw6PrSAMXzfFCvjBEjxnmCcBMP3Yg7THvsi4sOXuGRLrbSWusmjBPBxnEVxuhB5nomOYky2jEP3XRZr16uHp9XbRsUP0OE28on0tmV4uOGjiwv2vbWw9W3Co9KWXWwI4s3H1Udq8e2emu9SUK/s+swlQfasuoV0spboYiI0baHwTPyEBv6GDEuOEQZqnBFpzZodgenRA79dceRgLetJQ88CqV44Yq0r/0iknWOhF8Ruvy1atN/dumCcoCcRl4Xce1u7szZXzWVdg3d0S70qpg8yjQY0ROSQ6YIzCWjmrnjYAdJRwxrKGsisybFWdOKWTR7qonb60bpdrXxR/XtpiirJ+1p3Sh/9aGlGwYDsaGPEeMCg5047U55xnDy6BFZuvAmNu0buvLJRfz4xR1Z5/vZ3RVZBsp1MyGYZXdVBM5rtzD0NO1HmRCJTmxWNXZkJXx1yGSNb7zt1YIOBaXTwSRuS2dXYEXiuoodBzvYeaiam68cF6CM6vsvHpnP61VNZoxpVzHZyg9ETYoaOgwW/kxPBD8KfX96aN1plZMSOhCIDX2MGBcYikdmdNddBas+rEMpTCPvsNeaSivqjp4wUgQ2rp9eHNCrAS9BqVksKReqGjsCicawcNpHDR3sbDrmJWDTCnGE6oMdWV4zkNVsW0Mpr0NT3dETgWYi4302i2YOKX/f7pTLm580k5cMaulrlE0sDLRZtI15LpmDqLh9uNftPTNLeMGfpML3kGtlMhCIDX2MGBcYtPqjhvEqezJhCO21agP5wZ4jAS65RnfKZeXmuoCxD+91pLMrK1S0dEF5YHXQk1Ze2z68ieWjhg7A89QTCYeD7SdZs60hq5JUQ+vWAJF9cKNomDq8EmbzQG5jbn8e1gOKittHbV+1ZF7WeBKOnDcdpmLEiHEeIFeJvQgBYTPNU9chDBWRWPUkfz2DrY39wpklPF+ZCV+MKyzI8s4Ptp/MFi4LnV7wPPIjn3Xx7Id1pphKi4vdXDYeIEu3JmygKw+0UXrJSPISnlKkCIhP37TzEfqYmkOdvF7VRPmkURSOyOvz+6w80MZj63aZlUY4mR2lEKpXNd09Lo4jLI8Ifw0k+tN45GlgAdCilKqI+Pxm4GVgn79prVJquf/ZHcCv8BrGPKWU+uXADDtGjBini+rGjqxtCUcQIYteqQ1ST8ozSFEsGoDXq5qMoZ81rTjQkAPIilvrjkq9QQGHjnWZ97r5SNIRlt1VkRUygmw2ke1RJxMO983xwjRAYHx6H8fJyAbrEFDCEb5+1Xge9jtIRZ0/UABlTZi54vl9rRgGGv3x6H8D/DPw2172eU8ptcDeICIJ4HHgNqAB2CIiryilPjnNscaIEWMAEDbVXyoponxKkdGcDysofvWKcbQc+5zxoy7irZ3NkZrt8ysmmddhYwteV6inP9gHSvFm9SGvF6sQea6+oKtpbWgWjhYUi6rY1WEaCBprOx/hRkxkaVfx5ifNvL2zGcQTaNOCb69XNWXlDFIuAY2bXAY9HP4ZTPSnw9QGEZl+Gue+Adjjd5pCRJ4F7gZiQx8jxjlERUj5cdH1noTu2pDXHRb8ykscMyyVhE+5TCuvgUbZRE8sbOXmOk9/3lUmuQvwd69UmdXAnsO1JgTja3qdEhwJ0jkrD7Rx/5NB9UtbvsD2qItH5nP/k5vM+1UPBqmlYnn0YaSt+NLnPa6hRkbtrfDyF3Z9gR6r3dTlbHjzMHAx+nki8hHQCPwfSqlqYApgt3dpAOYM0PVixIhxmmg70W2Kg8R/b2vT62RqWPArlVY84Hdk0l2nwLN9mhVj92f9vMflsXW7KL1kZFbIR5HRu7ELlfqCA1nx7LV+klbD7mMbDpHY+2pq6c+/fW1gHx2jF7zwTa6xBVQ/I+5BCOY8wmEeRwhIHA9mGGcgDP02YJpS6jMR+SbwEnDFqZ5ERJYASwBKS7NjbzFixBgYFI/MD1SA2slZbQifr2zg5ivHBQS/NItFG6212xro7nGNhvqm2tYsHff3dx8hLyFZDUhsRG3V6pnhCUIcMasHjZbOrsD7L5YUsfTO8ixZgU21rVn7Kjwv+4l391J75Djb69t5+KbLKJtYyP1PbgpqxecYK8BDX5vB3iPHPckGVxlev53zCOvP6zDZ2m0NhlHkiJeYjco/nAnO2NArpY5Zr38nIv9NRMYCB4Gp1q4l/rZc51kBrACYPXv2aUTuYsSI0R/YHr1Dhm4ZLqTSPPPbrhrH+MKCLE0W3XVK69UsXVBOwpGsZtxeI/BSjnR20Xzscy4dezH7jhynuukYyq+EdfGkFBIJ4U9nT8202ftgX0DWQOvR26GQd3cdNp8nHQJGXu9jpA5ESDjguh4ls2JyEYtWbDThmj0tn7H+02YWXV9KT6gRSi6jJEDhiDye/PPZZtL4uKGd5mNdAeG38slFWTkJxxET5vGkIZRprjKQnv0ZG3oRmQg0K6WUiNyA9+y0Au3AFSJyKZ6Bvw944EyvFyNGjDPD3BljjISwzQTR0gU6tKF55tdNHW3ULG20neg2evU9KZfqxg5mlo4OaMALHg8ePDXHqsYOI1mccITyKUUmRxDVZq875ZJwPB0bPSZ7BaI1evS1Fl1fmmUgN9W2ZhKmSpEQjwq6cGYJT7y7Nysmn3K9VUJe0gmEhMLQk2VeQug82cOf/ctmxlycn9V3VuFp4NxS1pV1jp604l8PtAVqD8KT2UCgP/TKVcDNwFgRaQD+DsgDUEr9GrgX+PcikgJOAvcppRSQEpG/Av6AR6982o/dx4gR4xyiV2qfUgFvP4pnbksBaE0bx5EsWQLBC6PsbDrGKl//xYabVnzc0EFNczXPLJ4bmEwCjVGsA/UKxE5q6sIux/FEwuyxAnxU3x64dtpPoNYc6szZDPzdXYf5/p9MZ92nLUGhNAuOvzJIuYpfb6jt5Rv3Vitvf9oS+dnOQ50kHM9Iar37s65Hr5S6v4/P/xmPfhn12e+A353e0GLEiDFYiKL22UqQjsBXLh/Lo7deCZBTrVGzUFz/OMMlx5NUKJ9SxI6DHTnDHuECI43w6gIyycswc+b7fzKdp97f54c9dngt+VxFXsKj9YRDMAAvVDZQfTC7nkAjlfY6TeXKK4C1yuhHoNnxBdNywXUxie7BSMjGrQRjxIgB+MbVrz5NOsKjt16ZVd3ZnfKYNNpr1hOD7vGaEC9O/sWSIpYuKKdicpEvPRzEJRfnkZ/w9o/qqDRrWjH3zioxIQ1dJfvVK8bxTk2LSWp2p1w21rZmWh66mQ5R3WmVUzKhJ+VSkMw2f474ieBQg5AoJKR3fRqtA/TdOaX87O4KCvK8don5SSfL8Cq8cNFQZt3EiBHjPINmzSgIyAdo4S/bBza6N76xf2/3ETbXtrLsrooAR33pgnITg99xsIOqxipEPMMbZqxcPu4LjB6ZnyVfYEMLgHX7AmCHjnVx6JPmLCM5YdRF1DR3ZhUu9VaQpYDt9e1867rJvLy9McCEuf2aCdxcNp5lr1abFYVYx4HXJnD5XRVUN3bwvD9GG0lH+OH8qwFvpVQ2sdCEy7bXt7MuImS07pNm3tt9OLKR+JkiNvQxYlxgCBcYvbC1nlVL5nmqk77BSvmyuYBRZFy9pc6IjXWnPSnhcKz/8fV7TAOTcEzDEZgx1msjqBO2+QkxkgRRiEqFunjetO4ipRuUrNnWwHNb60mnPXrjN66ewLoclbzgJUJHFiT5YkmRuS+Akz1pyiYWcvXEwsB2DQFuKRtP24luI5pmV+VqiiRk1DYTvp7N3Blj+NVbuyNpm7nCWAOB2NDHiHGBYVNtayBu3ZNWLH+1muPd6cB+WnVSG6qZpaMDnwvZsf65M8bgiNciMAqTRo9gz+HjgWs/tm6XCRPZsCceG/kJCWjc28e9UNlAGq9y9+ay8WzYfdgki13XC+/YNQSrt9Rz5xcnBQx6+aRRJicBXnw76cf7dQOV9TUtrPukOdAOcGGo5+vj6/eYVUbK9WiTX79qvPnuBbjtmgmMKyzg+a31Rhd/oBOxEBv6GDEuOMydMSZAHVSQ5bnm+6qTtqGqrGsnmfCae+jiqTBmTStm8Y2XBlgogid1kJ90KJ80yoiF6Wu/v/sIW/YfDUj7rvW98zCun17MD+dfHWhCopuTa6qlwkumtp3oDqw4gKwuT2lX8drHTXzruslsr2/njvKJFI7Iy3Se8pPS8ysm8U5NC83HPqcg6ZgVScqFZzbX8XxlQ1bj8LkzxgTqCrRmjp5odLtE3bd3qFfGxogR4zyCVpdcu62BqoMdASMvwI1XZAybDaUU911faqQTag51RhqnwhF5gZi84wiLrp9qmo+E4/W6qGjNtgZqDnUGZBRsOOJx8bWRt3V4Vm+tZ+bU0YGGKsUj87NWHPrYtz9tCRjg1z5uwlWK32zcz9IF5YY2mkx4k9NPff0ePY4wulMuqzbXsXZbA0sXlFPd6DGNFt94qWHvhMM1984KFqDFPWNjxIgxoNCGJWwwkwmhfNIofvLSjiwtl/ykQ/nkokCSErw4+XdmZ7o0hT1Z5SqOdHbx2LpdlE8aZYq1EgkH13VJuZ6xf35rPavdOqI0xTS10vbMwzo8dqFWFN/eDvUsv7vCVPXqUJOrvAnnnZoWizbq8mSIZumqTH/Z8ITV3eMGJoVkQrjlqvG0HPs8MKEmHC83EVWfMBgQdarScWcBs2fPVlu3bj3Xw4gR44LAys11/PSlHUaJ0ivFD+7zJV8/5ol390YWGWnevA6//PJ3O1nxXi1KecbONsoPf20GhSPymDtjTOB8UVoyDrDE2t+WPrAnqKixLF1QzvLXqnOKiGkBt/Dk5ZBJjkaOSWDJV70xFY/MN8ybtKsQkazViBZZQylSaWUajZRNLAxo5YdDP6cKEalUSs2O+iz26GPEuMDRdqLbGLO0G63psrPpGDWHOnlrZ3Qlqc0YAfjNxv2A57lOu2RkIAFb3XSM//mXc1i5uS5wPvGtqn19F9h75DjXTR0duN6sacWGKbSnuZPKunaUUiQdb3WhY95hEbFuP0Skxdv0KqW0OJMkdvGMvSPe+HXRlX2ep/+4n1UPZmiQuin4kc4u1te0BCY2BaRSLveHCqJ+/OIOMwnZoZ+YXhkjRowBh63HrgXGsvRf0orXq5p6LSBSQOfJHp54dy+f92hmiWLGuC8EDP38iklUHmjzdOutE+aiQa7b2cxbO5uzqnL1/7/71CZcXxwt3HkqP+kE+PUuHpvILgCLzAkILLqh1FA/H1u3K5BEjqJB6skj6Qi3XzOB9hPdJpzk4q0c9NgqD7Tx/Nb6rNBPTK+MESPGoCCsfVNzqJN/emtXoI2f4wjzKyaxubbVhEsSfpL1RFeKl7Y34iqyNF8cx+O531w2ntermphfMYkH5pTy+Po9vcoL2NDNPbotI6hj2+/WtJhJRSmP2//4+j0BLXq7EbcjMK6wgKQvgSwQPQ5FoGn4/IpJAUPvOMHmJ4FOVq7iS1NH09h+0hh6R4JN2XVVMWRYSUp5AnAxvTJGjBgDCjsZ+MgtlxvVyK6eDNdbF/s8MKeU6sYOVmqBMqWYMnoEb1Qfynn+ayaNMolf29PWCprdPS7kqGCdOKogMNmICAfbT7Jyc10g9p7ZAaOMaXv/dt/bPD9U87w0AF68PIFfvSsYnRzHkYBKpi3tjH/vNqI6Wf1q3S7zeTJkwE21cY/X1QqlfKlml5pDnbFHHyNGjIGBrdNu91jVBlRTLbWw2ePr91A+uShL4nh7fTsQLRA2YdRFrNxcF2C86Mll6YJy2k5080b1ocgK1MOdYVlfxbMf1hmWTHhuKBqRz9Hjntesu0dpxs3CmZ5uTphv77qK+27IxM41vVNr7Gtd+LkzxgTaHuquWnYYyV4VhT12m0qp99d6/nbYKK0Ymnr0MWLEOD9hhxt0bDjcfeqivAQ1hzqNNrxuim0b7odvuoz1nzaTcj3WzuIbZ7BuZzO1R47zxifNvPFJM454Xu1NV47j3V2HA1538ch8PmrYkTW+sJfv6kSx8jxuFTL27VZoxFWwym92DhnGzcKZJUa8rSftxfXthiqbLIE0O1RUc6gzMB4nIVkhljAX3vbwKyYXBUJKkNHzz77vc6BHHyNGjOGJcLhBe6K2GNi6T5pZ/2lLVoORyaNHAJnQz/K7rzXGH+DJ9/cFDKPdtUqjy+8p++itV/Lw12bw++pDXDd1NL+vPmQSw7bsgH6dZ002nSd7qG46xoi8RODc+pr2a93paeHMkgzFx1LWrDzQxkf17VlFVwCvVzUFzl3uh6Rywfbwi0fmZ02U1Y0dtHR2kfSbrDsWL9+uFxgoxIY+RowLFGFjZDfy0OEbHd5wHEF8DRkt3mVD0xrBY5/0J9Gq5Q8217aCCKm0y6FjnwdWDJBpmg0Z7ns4tFF5oM2TL46qtrKu97wvq6BDN+l0hhKqdX007DaL4WTsouv77umqPfzH1+/JsHx63EAxmgPces0EHrrpMtOUfH7FpLMfoxeRp4EFQItSqiLi8+8CP8ALRXUC/14p9ZH/2X5/WxpI5SLzx4gR49zApihq8bLFN15KZ1eK1b4SZDLpsOxOz/gebD/Js1ZIRKM7rVjpa76UFo8IfBaW+LWh8ITNdBCmO+Vp1NjdpvQYV26u47kt9bhKmYbbdsx/2V0VVDV2GC67Lk6aVTqaLfvbzLV2N3f6GvkqsJKxOfdCsNOTTiTbzKH+VrXaoSI39EW4wNuftnBz2Xjj9W/Zf/ScxOh/g9dB6rc5Pt8H3KSUahOR+XgNvudYn9+ilDoSfWiMGDHONewEbMpVPPX+PpbfXYFDPWkApYzhqTzQZoxtGJoCudfizDtgWDVRBj9ceWqHS2xo3r1eSej4OWRLAZdNLDQ6PQmBb325hO0NHcaQf7i/zbCJli7INBLXYSxxPBmIcP/ZB+aUGgP/oxd3RDJ8tNCaTvzq4/XqKAqu8moUwvmSs2rolVIbRGR6L5//0Xq7CcgtLh0jRowhAbvxSMXkoiyVxRUb9vqetvdeGx6tE6MlEyBTQZpKq2yDJh4t0kGZ+HRVY4eRHni9qikQEgGyuPDgTUZ2OMgRMZ54WAr4T6+fajpfpV1F24lu7p1VEuhbq/B49zo0o8NYa7Y1mMYpNc3VkSEiPbHoc9kVwYtWbDTFZs9XNrDqwbk+yyfazGsNofkVkwIU0KEeo/9L4HXrvQLeEBEFPKGUWpHrQBFZAiwBKC3tO/4VI0aM00O48Uh+QrJUFve3ngCCDcI1HphTStnEwoDnCpjmG3qCAEwDEkfge/OmB7j0Gn/cc8RMGsmERHrKNu9eBL5+1XggWgpYG8+w0Vy7rSFAHU0kHA62n6TyQJuZxDT10m6baGvlR4V49DXWhvTz9QQQloUGb6Xx4FeDGj5lEwsHTeCsX6Jmvkf/WlSM3trnFuC/ATcqpVr9bVOUUgdFZDzwJvAflFIb+rpeLGoWI8bg4fH1e/i//1ATMFb/x78pY+6MMfzghY8CcgUTRxXwH79xZaSBjkLlgTaWv1odyYtPOsLqh+YFhMm0d6w7Qo0rLDC0yITAX99eZuL1OiwSngj+58b9vLS90VznF9++NtJortxcZ8I/CfFu3HU99c1VS+YBBM6vw022WJses2YFfWf2VMonF9F2opvt9e0B5k/CEZ7z71evoHY3d9KVcll0fSYMFNXS8XQw6KJmIvJF4ClgvjbyAEqpg/7/W0TkReAGoE9DHyNGjMFD2MPMszjh+3xPXqP5WFegcKgvzJpWzNI7ywMrBg07BATZ3vGXpo5m7owxrNnWkOWN68SngDHCPX5R1GsfZ6iPgseUidJ3t3nraSvG1J1WPPHuXjbsPmy0aq6dUsTHDR2R+jP3zCwxhhkIKFAmHa8ZSULgZ3dXROrydKdcapqrAQKqmbql45BsPCIipcBa4M+UUrus7RcDjlKq0399O7D8TK8XI0aMM4PdeORwZxdjCwuA7Dg49F9oK8xAWfVgUGMGvFj+3BljAhrx4RBLuMLU9qK1EU4mHFIpFxGhpbMrkBhO+NIFdozfvl7SkUgKZvOxzwNaNeVTiqhp7jS6+Vp6Ydmr1Wa891gKma7yqJp2lW34+7L37U65/NNbuwKTYU964AulNPpDr1wF3AyMFZEG4O+APACl1K+BpcAY4L+JV3ygaZQTgBf9bUlgpVLq9wN+BzFixDhlaGNy/4qN9KQVL2yt5/tfuTRy30TCyTKeNnTMXxtALd/76K1XBkTQXAW/WreLP+71JhStGR/u/Wo3RXl8/R4Otp/MJFzTilnTR1N5oI20q3j70xbT8ckRL9cQLk5a9koVPWlFXkK4uWx8oJ2fdxzMmzHGGHZdySrA7uZOKg+0sWpzHY4jZiLsTrk88kwl37puSmCyWhgRfglPbNrY2zo+AAmHQRE0g/6xbu7v4/PFwOKI7bXAl05/aDFixBhMrNnWYIxwd1qxMaLNnwA3XTkuYDzDeulPvLvXeKZaY0Yb6+umjjYKjgrYYDFsunuyOfMadvzeExvz4Pqf6YVH2pcnvu+GqVkedneP7zVb9wiYpK72pV0FT3+wzzQcLx6Zn9VFS1/LxqFjXfx6Qy1XTyxkpt/3NcrI23pCSxeURzKNwGMnDRacQTtzjBgxhjTCZqUg6WQZ+YI8h/GFBVkcb42Vm+uypAeU9Znd3i9qAFGceQhy+8MtDbM1cBT1R73cgpZ1cPAmhbDX3Hzsc743bzqlY0YGtveklVlZrN5Sl2XkIbpXLMDOQ508t7WeNdsaqDwQvN+wnlDbiW4evfVK8hPZJ+tJK5a/Wp11joFAbOhjxLhAsXBmCflJx9ARL59QGDD+08aMZOmCcrNfwufLN/qURF3EZNvdhGSSlGF9mDCU8pKRP3pxR8C4VR5o42D7SZyQZdVUxvyEBMapgA/2HOG7T22i5lAn98ws4dqSoqyJDOCjhg5+vaGWA6GkcyLhxfa/+9SmnIyh3mLnPWnFqs11fPepTYF70RNPQgjkIZbdVUGEreejho6scwwEYq2bGDEuUOikqd1wJOHHoTWXfunLVSy/uyJQTLTqwzrW+OJgdiJU8Ljh2iCWTxoVCFFcPv4L3HrVeKqbjpkkbbiFHmSYKboQSykV6KkKmJj361VNfLDniBEt+8lLO7wGHg6BmHoYmkuvX6MUq7fUBbRuwFPjXHR9KYUFSZ58f5/ZbveVtc8ZTlzr5LKmUII3kb1e1ZSzo9Y5qYyNESPG8IWd+Fz+WjUpv+BIQ1ebrn5oHlNGjzDUxq4el+qDHSQTjumnqvB6xd5WPhHw+qpqOAJzLr2E0jEXs/fI8ZwGEjChDgEW3TCVKREsFj3mqsYOr/2hrspVetxw/fTR/GtdO64/Uejm3K4/HgFTqJVyMZ68AySTwYll0RMbA5PG/XNKWTizhF++vpMtVnhK+RIONgsJ/HxIyuWFrfVGwE3pa/lJ4nd2HTbqnEO9MjZGjBjnGSoPtPHYul2Zlnyhz7U+evHIfOOFKjzDmHQICNZ092QMdo8V53YVPLO5DsjODdjVpYBhpogIFVaf1fCYteefK4V55YRCfjj/6oDB1fexvqYlstG5I/CVy8cGqmEfX78nSOG0LnhRXiL4XeGFo1CKlKuMBr6J0/sEfhVxrf6KpJ0O4hh9jBgXMLTB/GBPNgvEkUzDjrkzxlDVmB27TrvBrnoi0Nh+kuKR+eQlo81LIKbvCLdeM8EweXTnJcFbTSx7pSoyXm0nORVeDN02+PkW1fGRWy43537klsspm1joa+wH71XwmqPYRh6sBK94Rt5xhFUfevH48kmjssbWk3I9pUp/5XOksysTp08Ief7r/GT2tQYLsUcfI8YFjDXbGownDxlmSbiTFHj9WG3osIMORYgIIl5np3xf2lg32Hh312FSqQylUcN1Fe/tPszDN10GeBPP6i11JqTSnfYkicPGsHhkvnc9Pyzz/T+ZzlPv7yPlKpKOsOzO8px89oPtJwNhmISvtZ+2Yz8W7CKuxvaTRqKhO+VS3XSMh782g421rVQ3HcN1lU+TVN4kCLyz67CReQ5r7IflIHJRWM8UsaGPEeMCxcrNdTz7YV1g25KQ0JbG4+v3kEpnzPQN04u5qWx8wHDZWvVdPS5VjR384tvXAhkju72+nXVWwZIi0/kJspt/QCbUYxce/d0rVcZYu67Lsa6UCa/YqpRYx9pSBXkJMXr1t1w13oypO634m+e2s+Rrl2Vpzj9yy+Ws3Oz1rFV+x633dh9hy/6jPLN4ruk3m3ZVgIqZTufW2NeIausYG/oYMWKcETQ1Msz8ONaV4offvDprf908QxcdbW/o4Afzrw6wSyoPtPHC1nq6/cToC5UNRqhL73ew/SR5SSfg3Su8zk+ahWMPSYdgAjF5CbJp0m5G7jeXzK+tXBmWKqg51BmoBdjfeoIfvbiD31c18ce9rSaZa/rdhr60z3tc1mxrYMroEaZpuVJeOEkp1a/kalRbx4FEbOhjxLgAoZtghxHlPeuQw3dmT2Wlr+muW/CFmTA3l43nDd9o2vuE9WpmTy8OFFNpto89mSSsEIzdjk9C43bEqwlY6FfGhlcjlQfazEQCnqRDuCG43SdXI1DFG+p3G8YLlQ0su7M8YKyj5B2ioL/r/u5/OogNfYwYFyC0B2k30MhPOpRPLgp0T7KlepcuKKcgL9rr1BLCb/udnQAQMZWvdmgilVZsCSVYhYyuvZ5MsEIwtsebSDi4rkva9Yz8z751bZZKpB1y2VTb6rNdPNw7qyQy2Wp/F6cKHZ6xBdn0fdvf0dmOzWvEhj5GjAsUWm63wtdTLx6Zz/LXqrMMnua5hw1ZlK68fVzaVfz4pR28+K8NfPvLXnVtd48XZwkvJi4d9wXAM/ZRMsX6M8HrTFXd2JFTwz1sPG+YfklgXA1Hg1WxdrJ1c21rwJO34QDieKEiDU21tKtewysYndiO0gsa7Ni8RmzoY8S4wBA2Qroo6LF1u7Ji5OAZOC19UHOoM+t8YV15G0rBlv1t/GtdG4tvnGG6WIVRe/gzvvvUJp5ZPLdPmeLnqCeVVkYqONd4tPHcVhdcPby3+4jpKhXG1EtGRoZxNOf9orxEIIQza1oxBXkJ5ldMAjAKn7ZWT1ePy4oNe81726APdmxeIzb0MWJcYAgbwrXbGlhjJSs1HPFYOMe6UrxQ2WBCKppbb7f5M2EVRwKKlRopF49+qFTkhKDpiptqWw3vPWq8tpa8rZRpIzyeE93pwOfKP2dU+ETr3afTXogIpUi73qTy6K1XGnaQRmVdO0opNu87GiiS+t686QFmUa7WjFH6+4OB2NDHiHGBIexFRrFdwDO+nV0pI32grO22VzprWjHfmzed31cf4o7yiRSOyMsy9EkH0wA7VyzcVdFqlnZFbhj2ZjsGHua9B8cigesEmoe4KiC7oD8vHpnP2m0NtHR2kfDDN45gaJa6Clh77NVNx7JWBlFVt0AgKWy/H0jEhj5GjAsMYS8SPPqhNlZ2AyZFZmLQGu6OBL3SlZvr+PWGWgB+vaGWb103maTfsFuA66cXGypm2cRCnnh3r2Hm2HCA6saOrAYnbSe6jcqC+Nd3lVdlqkM3UUnNR2653CSJe1Ja115wlQq0RwxPfFFx/6jWiI4jOCKR3v/8ikls3nfU6AB5xWUOUy8JyiPnGvs5Yd2IyNPAAqAlqkG4eKVgvwK+CZwAvqeU2uZ/9hfAT/xd/7NS6n8MxMBjxIhx+rC57ZUH2gKJWbsjkzZ6emIoHplvEqEaYTniVz5qNDzyxTdeSuGIPGoOdZqJ5UtTR7NuZ7PxdsX/l0w6PL+13oQ/7NCQzfaJoiHaMXGtt6PvMaqqNbwisRUm7bHaCdMwlKu4N8L7N3F2P+OcdODrV03gnZoWnv0wo9QZ7p07mAnZ/nr0vwH+Gfhtjs/nA1f4/+YA/x2YIyKX4LUenI03IVeKyCtKqWzxihjDBoMpzhRjYBGVmF21ZF7W3y+scqnj488snsv8ikkBOWJtwF2lePK9WrNC0LH9pQvKAysE8Lzjm64cx1v+BBBliMMJWjvUUTwyP9CFKqwgGfbuoxKfdp5C8BLQy++uiAwn6VVN2Pu3hdBSvtyzq+BkT5qUqyKN+dlIyPbL0CulNojI9F52uRv4rVJKAZtEZLSITMLrNfumUuoogIi8CdwBrDqjUccYVJyJoT5bvOAYA4Mob7I3Q2NXmPZYyVPwPPvySaP4zcb9JmRhh4H0NaobO1g4s4Tqgx3sONhhYuN2datuyK3ZMeEVSPgZazvRbUI6jnghoL/zVyYJR1h0vddqMFfiM8wcUmQkmhddPzXQYvG2ayZw3dTRvf4+7LyCq+DznrRJ8oaN+dlIyA5UjH4KUG+9b/C35dqeBRFZAiwBKC3NliWN0TcGwpM+U0N9tnjBMQYGYW+yeGS+aRielxBWLZkXMLDhClNtsB6YU2rkhEvHXMzqLXV8HOrUJP4xOjyTdCSgJf9OTQvL7qqgurGD57fWR4Y5IPiMaZ0c3QVL38fu5k5TJJV2FSut5iZRPWrnzhhDMuFkhWhc3yu3Q0cP33RZn8+0nVcA2Lq/jbyEcN8NpZG9Ze2JbDAwZJKxSqkVwAqA2bNnn26B2gWLMzXQepJobD95Rob6bPGCYwwMwt5kuGG4rRy5qbbV6LwI2RWm4D1Hy16pCtAgwZMvvv+GUo50dvGmLyCWdhUVU4r4uKHDvK9q7KD+6Al6fOMf9QzaRlkBq7fUsXBmCd+bN52Xth+k9JKRHGw/mXWv3T0uj63bFan/DoBSJtmrQy5JPzxzTw55hTBs6YiCvEy1rb6/yaNHnBPHZ6AM/UFgqvW+xN92EC98Y29/Z4CuGcPCmXjSuXjEp2OozxYvOMaZIxzDBrJ44h/WtrLkt1sZV1hAYUESx5fgtQutbNgThQ1HMole/anjCBNGXURe4hhp1wuxaOkFzVSJegZnTSvmpivHmcKllAt///pOQ+kMNwTXcIH3fbXJcKXq164YZyYXHaMXMAnV/njcUdWwenWi2TjnyvEZKEP/CvBXIvIsXjK2QynVJCJ/AH4hIvobuh342wG6ZgwLZ+JJh3nE37h6PCd70syvmHRahnqwl6Exzhy5VoALZ5bwfGWDibHvOXycPYePB451BL43b3rk31iytnhwXS+Gbys/ptKKNz9pJi/psOgGLw6uWTG5OOca4wsLAu/rQrIGuaBZOa9XNWWKsHpc3tqZkU4WEROySbuq305T2NlqO9HNz799bU6xtbOJfnWYEpFVwEagTEQaROQvReRhEXnY3+V3QC2wB3gS+N8A/CTsz4At/r/lOjE7mKg80Mbj6/cMeCf1oQztSf/17WWnHLbRS2HB87LeqWnhgz1HWP5a9QX1HV5IiIpzQ6Zh+I1XjM15rKvgqff3RT4bOlYeRiIhzK+Y5HVq8rdp7znltwNUeFzzhGQ45zWHOs1v2f5d6+voBO63rgum/hKO9y8KIpix6I5RxsgD37hqPAV5fkeoU3CatLMVPs7ucnWuICpCqvRcY/bs2Wrr1q2ndWzM+jh1VB5oMwk4zVxQeIJNf317WWTyKsb5jcoDbYEioPyIxOv9KzZGhmE0HphTahqLhM/92LpdvL/7iAmDPDCnlJ9/+1qPnvlqtWnEDZmuVtqTnz2tmO317YaOKHjFUS6QTisSCeGWsvEIMLawwFAcV26uY/WWOiaMuoiH/I5V4WsB3H7NBFb8+exAPH3Zq9VmNbzqwblAdheoqPtcs63BKG+G4/69HTcYHr6IVCqlZkd9Nux6xkbFqnPhTDz/4bRq0Ek27WElHDllbybG+QUd59ZIpRWPrdtlnudZ04pZtWQeN0wPGiI7NPNCZUPW86+N2PyKScYrLshzjAQxwM6mY+a14ytZ2lTELQfaTM9VwHR+SvkxdB3yeeOT5kB7wwfmlPLyX93IQzddZn73S+8sJ9/q5p2XEDMJ6GKsd2paTF4gnXapOdSZ5YWHf+96Ily5uY5nNtexaMVGQwXVomb2vvaq5LtPbeIf36jhu09tOmv2Y8iwbgYK/Y1VhxOQ35k9NZL21Nexw2HVEP7OBqoBQlw4NXRReaCNd3cdNu9d4IM9mbZ4Os9SkJcIHDdhVAHNx7oim4/oVYJ+juw+qbmYO9dOKcryuHVVrevryDj+zlF6N2Higf3bdMQreFq1ZF7A8wavoEl78jalMq1g6ctVRh4BPIkHrxtXpmJ3U21rYLWT8hlKQE554qQjXD1pVMARXbOt4az8Roadoe8v6yOsiLdycx1rIji7fR07HLjig8GUGW6T4XDDptrWQA9YyBQ0rfWNT/HIfEaEDP23rptiCqJsR0qHZLTR7PYLo35uhXYqD7TxUX07IoLjM3cWXV/KJ01VgcYg+dYkoTtcba9vj+zwpIDt9e3Gm7alEFzlFTytfmheoHetaUlIsKAr8z1kErC65aKenLTC5twZY0hI8HghWF3bkwolfdPKTGqOEGAZDfZvZNgZeugf6yPcVUbh/RFtnm1fx57PXPGwtz3QTJnhNhkON4SlfLHEuZ7fWm+ohppXPmPcF/j+Vy7lgTml3FY+MVIv/vNQU++Wzi4jUAZBYbCEwNIF5YBXlIR/rcvGZ65jo/JAG+/WtNCT9rju9pXe/KSZ9Z+2GLkC23aHWTP2c5kL+dZves22hgBTyPG7Zm2qbeXBr87gyff34frUyfLJRSx7tTpTUOZIpGKng8coKr1kZKT2zmBgWBr6/kB7sWu2NQTapr2/O7h87e3YwVxyDWbY42x428NhMhzOmDWtmKULynm9qsk0zXi9qokjnV3stJqLKLxQyv4jxymbWGiO1Qb+8fV7TJGdjaQD7+46zFs7m8lPOnz1inGBfVwFVY0dPLel3njFCtjb8llAWdIe77K7KgIyC7bxzCVXkPAliXWo5mD7SZIJx9BHw0g4wtIF5VZyN1PYnxBYfOOlAf79z+6uMOEpe5UkwHdmT+WBOaWUTSw0dkbXpzx665UAvWrvDCQuWEMPmQf2npklAZZAf2bXweSKD7YhPhvedlw4NbRhi5Ntrm0FkZzGDzxDalfJhnNcWsoAPIP49asmGIXK7h6Xtz9tCZzPETjS2ZXVoFzh0T3/5rntLPnaZcazt8erC56qGzt49sM6M1HopiYFeV7VrIgws3S0UeM0hVAhsn9AN97vU7tycx0/eWlHwPO/74ZSCkfkBVQy2050B1hptnOj8wH6O9MTkC2EdrZ+Ixe0odeYNa2YR2+9ki37jw4JD3SwDfGZetv9XW3EhVNDF4FnLK2I6vs0tjCfI53d5v3zW+uNkQoX2dlSBgDjCgvMMyYiWQbdVfDOrsMB3XrHEcOs2d96gh+9uIO61uMUjsjjYEiao6qxgymjR/DgVzPtCR0RKiYXcc/MEtZua+D5rfVs2d+W1f/WHooA37h6Au/tPhzQ+/GSr8Hvo3xykTkHZKtkFo/MN31tbbqlHouWX7Yris/WbyQ29D6Gkgc62GGP8L0CWc0eciFOsg4P2M+YiCcjEMbMqcVGlwY8ZkmuXqeLri+lprk64M3qilDddNyOjXs0SZf7byhlsqXn/jfPbTdt9wBWvOc1NEkmHEPFFCGQxFx846XG2C9/rZpnFs9l8ugRxovPBcHz/h++6TIe9imZOgQT1ddWTy62SmZVY0fg3jTnHzxd+3CzdTvZfTbtTGzoLQwVD/RsTDp2nPVUDHecZB0esJ+xj+rbAx2fRo/M477ZUykdczHrdjYbD7ivXqdlEwsjdex1JWv1wY5QoZRQPrmIthPdZt8lX7uMH724w+yj7W1PysVxvOCHq7xqWr3d7kWrn8lwUva2ayZw2diLeer9fbhKkUw43DurJBBG0WNtbD9JXkKyhdkIJbETDtUHO7ImMM3iS/gUUbvqNqzeeSq07jNBbOiHKPo76Zxp0vZUDXecZB0+0H/nX63bFdjefqKHpz7Y57FbfCvlCCy7szwrQdrbewjF8hMO+QkvPOP43afsblZaotjuyWobUK0/Y4deHIvZYj+Tm2pbA573dVNH88gtlxvGkKZt5hqr40ggqQte6EZPcDocE64B0NDj9c7j/f+aSaOYMOqiTO4irXjmFGjdZ4ILxtAPx+KdgQijnKrhHkohrhhnDruAyUYq5M0qnyXT3xCffX4Ty0+73GeFasKSyD99ucoYc31NDcFjxKTdYDjGdRVlEwsjn8mo51p/FvW7sceqIsI+9spjU21rgPsfhgD5eUEFyx0HO9jZdCyQuIYMNz829GcIbRC7elzTHizM0z0fMRBhlNMx3EMlxBXjzGFP9BAsALI96oQDz22t97RmHFh0fbCBRljbXb8uHpnvSRsrZWL3+pgn3t0bGIsdFw97045PbTzWlWL1lnqzr6swXa7Cq4u+ukmFfzfh2gIFxpgnHQxNc+6MMcydMQb/tiLxxZIilvorIN1W0E5c2ysBHRIaTFwQht6ultN82zBP93zEQIVR+jLcmjkQpobFOP9hG8TikfkmlOIIPPjVGdQeOU7t4c84mXI52OY180i5BEIOQCA8g1ImBo3PuHEsfrrG2JDUsIjfJDzhcPXEwgCLJ63gNxv388ziuYwqSPLrDV6SVgGdJ3ty3lvUszp3xhiSjpg2g7nyDjWHOvnpy1WkXUXaxdAtkwlh0eyp3PWlyby0vTHr/I5gjLy+nu6RKyLMmzGGnU3HzGrG0apug4hhJ2oWhbkzxnjVfz50ifP5Cl2oApy2NPGpXOv+JzfxzOY6VlriTf0Z33AQfLuQUDaxkGV3VRhv9ukP9vF2TQt7Dh83Rt6GZpA8tm4XXT0ZD7nbFyTrSSt6dCjE56fbuGdmSUBwTHvHN185jkXXl1KQ5wRE1LT3XTgiL7A9l2Ryr8+hJtOHSPWzpmXEzNpOdKPVfT1JBW+flB9b///taIqUQg7z9HVxmuOHnp56fx/XTR1t7sF1B98eXRAe/axpxSy/uyIgTHS+JhGj4vKDKSOsl7kaqbRirVU405/xxSuAoQe9Smvp7OLdXYcNVXHhzBIjJtYXPRGBZ/0SfoXnNTp+shW0Eqr3IpFw2F7fzo9f3GHCN7ra9ccv7TBG3lXwxifNbNh9mKULyqlq7DBUSvHlB8omFpLw+fcQ3Rykt+dQV7AqsoXZbMydMSZnIxXAyDGEkXYJFJeBF9/XDJyUq9h6oM0YfoUXFhpMXBAePXgSpqsfmsffDKL3ezaQS4Z5sLzo8GoI6PXHfyoy0THODexV2pufNAf+XgKZ5hmJ3kMKruuFVHTF6VeuGMui2VNDxk/4xtUTcF2XNz9p5pnNdfzpE568L+B7zdnn7vY7NP3i29ey7M5yRDzDvuzVasCL12tEGUodrtWNVWwJ5lwNQuzv5/H1e6g51Mml477Q5/fpkNHU1zjSGWxn6MX07agCgTzDT1/aMagr4H559CJyB/ArIAE8pZT6Zejz/wrc4r8dCYxXSo32P0sDmhhbp5S6awDGfVoYDknEqLj8YHrRs6YV87O7K/jpSztIK69BRVSv0N7GF2NoYVNtq0m+amhWy+HOLr52hadTr4DNta0c+zwVeR7bPiccMfotz1rJUqUUJ3vS2EKZaStP5nU3kyyWj6syxru6scOcrzvlsvzVaiqmFAXok+GwkM2jV2RrWOVK1GpJ4jC7B0JSCda5E47w5dLRbNmfMdTh/APApWMvZk/LZ9lfJN6EGV4FDCT6NPQikgAeB24DGoAtIvKKUuoTvY9S6j9Z+/8H4MvWKU4qpa4bsBFf4Ih6SB9fv6dX9s2ZUku1MFN/ZQ9i+uXQxtwZY8hLOgElyW9cPYG3a1oChVNR0GwYPTForvjyuytMwZFYJjLhCCPyEiScYPWtzpM9csvlLJo9lWd8D99GVaPHTAkb3I8aPJpirib2lQfaeL2qKcDcsYuptMMX/o2s2dYQYPRoOHirlUdvvZK12xqyxqqU4soJhXxU325qAmxnyHbE+vpuBwv98ehvAPYopWoB/AbgdwOf5Nj/fuDvBmZ4MaIQfkh786IHyts/ldXQcFg5DWfMmlbMsjvLDaNEZw/TvfDCp48ZyR3lEwNa9FENajbVtga8XrsB+PWlRWyra0eF8mQLZ5Z4nPqQfPALlQ3cM9OrXn1ha32gUjXtKhbdMJUpPic/LLamWXba2Dvk7pgWbqsYhi7K0tewx6rPa0s+9EbnzAVHCHThGmj0x9BPAeqt9w3AnKgdRWQacCnwtrX5IhHZCqSAXyqlXspx7BJgCUBp6fnBcR+sIqxTPe/pcIZjXNiwGSVpV/HWzmYSESEU8GL2//in1zFrWnGWFr2GLeylqYQuGY86lXK5uWw8P5x/daRMgi3HoPV1dKL0kVsuZ9WSeTzx7l7e8iUZ8pIOFZZ8goZ+3rWRn+ZPUIUj8nL+ntb6hjsKjmA0dDQl26aj2hOdHWO3f8Ph3hdRuPXqCedVwdR9wAtKqbS1bZpS6qCIzADeFpEdSqm94QOVUiuAFeA1Bx/gcQ04Bisufrrn7Y0zHMfMY4Qxd8YYHEtVUilYNHtqlh7N5eO/wIyxF5s2eX3JHOj2ea9XNRnZb/C8Yt2wI8rg6vP+8nc7vQWGyvbAN+w+7HnnjvC9edMDuvCaz6/15lMpb6KpO3qCpz/Yx3dmT835XeQyNjo0pcM+a7Y15KwnCcs2K7zVjG42/sziuZGNygXvPnUf28FCfwz9QcD+lkr8bVG4D3jE3qCUOuj/v1ZE3sGL32cZ+vMNg+UpD/R5zyRmPhxlI2J4CFCOXUUy4Wm72CqUCUc40HrcJBBf2FrPqiXzsp6F8DPbdqLbyH7r3q12w45cYl4rN9eZQiiAO8onBkJCGYVIRXXTMfO+q8fliXf3smH3YXP+a0s82eRcrULtZ7vClx+2IcDXrxpv5IsTjpjOW1HfRbbss4fulDe2FX8+m6V3lpueuo4j3PnFSbQe7w6EhQYL/TH0W4ArRORSPAN/H/BAeCcRuQooBjZa24qBE0qpLhEZC3wF+C8DMfBzjcHylAfjvKcTM4/58MMfdvej57fWs3JznWnqXd3YQVXIu+9JZ/PVIVvR8WC7V1xlOxj96dH8elVT4LyvfNTIn82bniVPkJd0mF8xic37jpowzVu+UJjCC7WMH3URiszYFd6EsDaigfdXfZaRjbyEML6wwOQhGttPGkpo1HfRm5TEWzubTU/bVQ9mwj52I5XBrtTv09ArpVIi8lfAH/DolU8rpapFZDmwVSn1ir/rfcCzSgVYsVcDT4iIi5e3+KXN1jmf0R9P+XQ84qHCWolj+xcGZk0rZu22BuOpdqdc3qlpYcPuw3SFesDmJSTS8dDPrFZ0XLW5jue21LP87oqs7kvhHs26zmJTbSvlk0bx3u4jZn/l69hoRyXcQ8GWSdA0R+Vr6kQxWBRe8xR9bf1stxz7PLDf5eMu5sDRE2biW/WgFxZ6vjITy9ffhf0b1+PrPNnDExtqA+JsYbZPmCm3ZlsDa7Y1BJqWDCT6FaNXSv0O+F1o29LQ+2URx/0RuDa8/XxDLoPdm6fcm0fc1wQwFFgrcWz/wkE4Rt187HPjKTvAtSVFlE8pMnHpqOd31rTigBplWFNKG+pfv7uXN30Kp6s8nRojDRyyzgknKPalzxPVjFyHhwpH5HmaPX5hFf496Mkg7XezCjdN2Xko0zRlxrgvsOfwccCbENZua+Dn376WVQ/ODcToIVsFc+6MMXz3qU3m2oKnYmkLokUJqD23td4kwp+vbGDVgwO7gr4gJBDOBKcbwsjlEZ8vIZGhsrKIMfjQ9EXNAQ93i1p6ZzngPdO6a1L4+a080MYLlQ2B82quvD05jC8sCFAe7Vh7VOu+qOdOV73aSLvKiJ7ZTboBZoz/Avtbj3vKm4loKqRdJ6ITzxp6WGEHLKp+BchMkgJfuXws8ysmBXT3dWxfjzUrLDQIK+jY0PeBUw1hhGlmYY/4fAqJDIWVRYzBx6xpxaxaMi8QFrF7n0LGcxUy8Wf7+Q0bV+01hyu3k46Ql8wUOpVPGsUf9xwhCvNyrCK1LIeto2/H4BfOLAlQPPe2fJZZtfiRZfvZDq9Qag51Bq4XTtb29RvP94vRHPH491WNHQHd/R+88BF/f++XzBhWbq4LrKqSOUJkZ4LY0PeBUwlhRNHMwgUlcUgkxlCEfj7Djay15xtV8COO8FF9Oz96cQcVk4sCoQjNqgGMuqUOnehCp86TPV6v1wh+owCFI/JyjnXxjZcGGDrgGftVH9ZRPrmIZxbP5bF1u/hgz5HAuMMCaFG9KtpOdAdWHTZXP9dv3KaOLl1QbmQUlr9WbSQlNPYcPs79KzYaz96+ngDfmT313MToL2REhTByxdijaGZhZck4JBJjqCDcLMSuKIWMx56r4CedVkYyIenA16+awNjCgkAsXxtFuzpVx7cXPbEx4JXbxjWZEBrbTxq2ShjHuqL1d1wFS1+uYvVD85hfMYmNe1tRvmqkg5ewtc8b1ati8Y2XGg59OL4e/o2vr2lh35Hj1PqrhoK8jAKo5t+PLSww3bE0utPKaNvMnTGGgryM89ebltTpIjb0/UB4mZcrxt5fb30wQiIx5z3GqUCX/etn9d5ZJcYgQ6aQR3uqAcngVLDqFTwdmzc/aaYgL2OobKOo49WP3nols6YV86MXdwSMfMIRFl0/lYrJReY6qz7M3U+1N10Y11WmuCntes1FdHcq+7xLF5TT2H7Sq371h6L14nWzlHBh1tIF5aZpCWASyxrdPW5WsveemSVUTC7KSE740BIPZ8P5iw39KaK3GLv+g2ma1NnCuUrwxpPL+Qu77L875fL7qiYSjiCul7C8d5ZnnMKJ13tmlvDYul2BqlcNTVt8bN0uHr31yizHRxv5cOI2IfCzuytMQhQgle49j7VwZgmrfC18R2C2f16lPJaLkEmKKqUoHJHHsa4UPf627h7X9KdwHCGhvP0csfrSKsXvqw8Zj78n5VLd2IEu3Y0STXAciUz26oSvXR3bmxb+QCM29KeI/njt+kd0Nrq7w8AnePtjwM8X9lCMaISN9NHjXju+26+ZwEM3XRbJ9da6M4/eeqUpVgLd/s8zkK4KSgJHeap24laA+27wCrf0CiOZEJJ+qCNKpG9TbSu7mztN7N1VMLO0mB9YOjrgiY/p32nxyHx+9dbuzH0LZkUhrmLRDaVMGT0iU8jkJ3IPtJ4IhJ08aQNfSyf0JTpgVDwBM6nZtEq7OjaR8Mb14xd3BPIig/Fbig39KaKvZVZ/je5AesMDmeDtrwE/n9hDMbIRpQgJcLInnTMUaceq751VwiqfLeKIl0CsP3rCePpdPS6/fncv100dbcI/QGSV68KZJYEVRk9acfs1E/jS1NGRypTdKTerWcnvqw/xw29eHXgGw5W59uQSgAijCjxTWDaxMCuRa4edwHPk9Njv8EXeSi8ZyQ/mB68fZht9Z/ZUyicXGeaP67ose7XarDJg8H5LsaE/DfQWY++P0R1ob3ggY3z9NeAxe+j8hqZUPvHu3oAG/fyKSYF97GpPzSTRMe+oBOLm2la6fa2XNz9pZp2vRAlewnbR9aUsnFmS9byGuetjCwuyiAx24jSM0ktGAkHqY5jxpp9XkWBiNO0qfr2hFsFLpj6zeK7R6gmHnSAzgdgyBu0RDcrt8WrZB5sWmnJB3Oy8yGD8lmJDP8Doj9EdDG/4TBK8KzfX8XpVE/MrJp1SQjlmD53fmDWtmBV/Pjvw939gTmnWPhBkyKRcxZPv7+PrV41nfGEB5ZOLzHPwndlTA7zwcML2GUvjxjbkFZOLSPhJ0VxdzDpP9uRUmvzj3lZWbq5j+WvVxrg6QsCRsg30sleqslYzOg6vQ1S5nu9cMgbh37Hd5UqfP9zUJJEQlJUXCatiDhRiQz8I6MvoDiVveOXmOn70otfp8b3dR/jFt6/ttwGPC6qGB+wOYlF0xk21rUbOWCPtKtZ90kxeQnheGgx/Xnv6OsYdBbuK1PaMdZjk+1+5NGsMlQfaePK92qjTAV4V7utVTQHmkFa21DRGfc41voyBhk3rPJXfY67fsV5VHPQZPdq2C5iG4ODd66LZU5kcap4yGLhgDH1/E4xnw0Ptyxs+m2yWsGLg61VNPDCnNDbgFxACseQIzzIXj16hJXkznv5T7+8zRUfFI/Opbuxg9dZ60mkVMKbFI/MtjZsM00UpeOr9fZSOuTgQelm7rSGysAoyVbjzKyZ50sjWJKPI0Bghu1bAEbh2ShHjR13E+MICIyiWK7wa/m1qMTd9vvB3qZPKCUe4uWw8b3+aCZMlfTmGmHUzQIiqfgsvUQcqbt5fI53LGz5bbBY9zrBioB2jjXFhICAhnHJZtbnO643qP3vhsEd1YwfPb603BiytMiGJtKuoauzgF9/OaBlqqqGOmxePzOf1qqaMwVUKEZOjNM3DXb/l4NIF5Ty/tT574AT7udqaNR/Vt5vcgxYmmzx6RFatQDLhsLPpGDsOdphK4PB3Yq9AopKrurXg2m3ehKKPS6ddvnH1BE72pCmfNIrqpmOmSboA9846O0YeLhBDH1X9FtZ/Hoi4+UAY6bPBZgmP8+GvzaC66VhkjDbG8EfYY9d8+HCNiP0c6j6vAhzvSvHy9kZzrF0IZB+rG3D/6q3dhmkieLz3782b7hUq+c3GtYffk3J5vaopUFyloY+1E6X6Wr/83c7Avqu31LH87mtJJrQOjde+b2xhAc/6fHz79xYVlonS1Bcwq4eelMvhzi4cn2efSDi8U9NCT1rx3u4jgRBRvl9YdrZW7xeEoQ+LINmqevY+Zxo3HwgjfTbi9+FxFo7I49Fbr8wZo40x/LFwZgl7mjv5cH8b4MWVi0fm93rM2m0NkSwYXUMSRTWM2n/pgnIemFNq+tFqDRzX59HrkEz42Nsszr+NygNtPPX+vsC2tAvVjR2kfZfaVfDOrsMsu7M88vcWFV6tOdQZbL9IqB5B4J2aFrPSuenKcV6PW/9jnSC2qZpnqxbF6c9OInKHiNSIyB4R+WHE598TkcMist3/t9j67C9EZLf/7y8GcvD9xaxpXtu0pCMmEx82oPoP+9e3l532F66NdEJOnyY1EOM41XHqeOk/vlHDd5/aFGhyHGN4QxvgZz+sy/q7r96SvU1DOwu5WDDPba0PHJtrfwVUNXqVotqTfvqDfZ5uvGQmgWcWz+XGK8YaDrwDfGnq6Mjfx5ptDVkrgLyE0NLZFYjzd/t6VEsXlPMnl49l6YLyLHbNI7dcblYjXsLYM+LJRHbt+8X5SVL+SsTWvddGVtsevQIJh8weW7dr0H57fXr0IpIAHgduAxqALSLySkSnqNVKqb8KHXsJ8HfAbLy/aaV/7Fm3JDazYLAafgwU5XCw2SzhccbFTxcucilTAnzU0MF3n9oU6XBoZ0EnPnVYQiOdVqzd1mCeMXulqghqzwvehLN2W4Ph4YNHtbQngTC3Pcxy0e9teQUdonnopstMG0GNhN+w3G7pB941hWCnJ/t7SqD4+lUTeNOqEQDo/DxFwsG0NNQrBp2XiFKyTSa87yRcUXwuCqZuAPYopWoBRORZ4G6gPy0B/w3wplLqqH/sm8AdwKrTG+6ZoTcDOlCxssE00is317F6Sx0TRl0UuWQ9Fdjj1EtSyC45jzG8Ee50lFYKS1Y+K1avEU7QvlPTwjq/byt4/PBwWb/ef3dzJy9tbzTnOt6V4v4nN5nKWBu23zxrWjFLF5Qbzn+YHZNMOFw9sTBQAXv/DaX83E8Mh3XmH7zxUtpOdAe86p+8uMPE3J/bWs93Zk/lnpklWSHVcYUFgQQyeBI45ZOLjJaNrWCr7YuNmkOdpNNuILRzLitjpwB2yrsBmBOx3z0i8jVgF/CflFL1OY6dcppjHTScD7otNt8dOni7poXVVhf604Vekuq44tIFXjchW58jxvBFeHW3ZltDoNuRI7mbYNhJ1uWvVaOUJ1D2jasnABiPt8divcydMYYX//Vg4DybaltNU20b+UmH8slFPL5+D8Uj8zPqmemM962589pQayOrwyQL/YTnmm0NVB/sCCREC0fkBVYmSgVXJT1pFeh/G+5Zu8bKUegwzaVjLzZjUHhFXlH2BTw55XRoZTPUK2NfBVYppbpE5CHgfwBfP5UTiMgSYAlAaenZZX6c69BFf1YTYb57Kp2dUD4d2LFTpTxqXFSruBjDF+FVqNbASUhQpCsMuzAoHH+3k5COk/HudajCRuklI2k93m2kf8GbML7/JxmJ4HBoqavH5Scv7QgUI5nr4XHjy6cUUXOoM6sK1s7T6VXC0perIpk9NlNv9UPzAtW8enVRPmkUnV0pFFB9sCNwfHXTMQpH5EVSNe0iNC3TfC4rYw8CU633Jf42A6WUvSZ5Cvgv1rE3h459J+oiSqkVwAqA2bNn58rxDArOZaVqf1cT8ysmBfjuA9VuLHzvAlkJIpu+FuMCgB/G8/4fhK0lo42wXRgkjgS0cwS4ZtIodhzsMIYu/OOeWVpMZV122s7uJxuGLq7S17hs/BfYd/gzlPJ+GzsPdbLjYAeOSJYBt3XxwesgFa78DcMNdaZaubnOcP037zsKSpHyqaE25ldMomxiYZ8tB5eHZJrPRehmC3CFiFyKZ7jvAx6wdxCRSUop7XLeBWgS6x+AX4iIHvXtwN+e8agHGOdStyW8mlhjJbDscWh++0DF6DXC9w6YApAzSRDFWvXnF/Tfa3t9u4mV68IlXXNiOyWaZqgLg+67oRQFPPthXeC8jhBoNi6OkAqVuK7b2RzICwCICOWTRnmVrv6zKP75Lh33hUAfWEeg7qgnJywCpWMuNp+rkAHPS3h9XMNqmrqZiM2Lt2E7VpUH2gIrAL1CUXiSx7dfkymS0m0Io+yLnW8om1g4qOHjPg29UiolIn+FZ7QTwNNKqWoRWQ5sVUq9AvxHEbkLSAFHge/5xx4VkZ/hTRYAy3VidqjhXOm2hJNhOgYZ9cd+YE7poBQ0he9dy7Rqydlc4axcxvx8yHnEyMD+e4W9Z7vmJMDQUdp7VZ5RnlxE24nuLPngb1w9IcB4a2w/GRA9SzoSuXJwleLpD/Zxc9l4xhUWUFiQNJ2f6lqPk5d0SKW9CefrV40PMGD2tHwGeCEcu/gK4LqpowMrkXtnlTCqIEnaj88nE0ISLe3gQQj2cQ3TNx1HPEE2n/f/0E2XAdlVtDaLR+c1unpcNu5t5culowMNTgY6fNyvGL1S6nfA70Lbllqv/5YcnrpS6mng6TMY4ynjfPImbY+6sf2k6ZpzLmmOvVHZNHoz5uc65xGjb9i/kVwUS51gnDtjDJUH2mhsPxloCHJH+URe+aiRlN8Ee+mCcvISYuLheQkxRi9cHWuHLACLaOBdV1ef2u0JzQrCajA+d8YYag51BsJFkClMml8xKRCj31bXjvLP051yA4ln8Gih988pNRW+6XRGM1+PffWW4DEP3nipKfbSNsdWttRVtHYjonC1/pb9mdBVwhmYsKyNYVcZez56k+EfwVBQtewrnBXQ2u4JGvOhpM4ZIxvh38jSBeUmXuwqvzl3MiNuBgQojItu8Hq7/tRKhnb3eFTCVUvmGWmEKMGuqOeq8kAbt18zgeZjnzNvxhh+s3F/lhyD5207pjPTPSGOe5ZKpIiR9Khu7DCrCOXH0XXD8DB0K0ANfR/6OwhX5woeeye8Ko6SlQhLLNjV+vb57NXDQGHYGfrz2Zs8l7mCXOPJNQZba9slWC4/1O4jRhCBisweT0vme/OmU910jDEX59N6vDuge2R7p+m0y5TRI6hq7AhSA4VAf9TeYO+TNencWc5t5RP59bt7TeNtV+F1gPKNczrtUnOoM9KxEEdwXS8xuuzVasomFhpdHu14LF1QboTZ7BANwOIbLwXg/hUb6Ukr8hJiRNmiKntzOTKazbN6Sx3VTcdQobaIulpfN3PR8gi2sNpAYtgZ+vPdmxyIXMHZCF21neg2XpQjmKSTxrnKecToG7a36eL1IbBFtwTYsv+oScIWj8z3CupUxliFq0w1d96uv+jPcxjlmD1yy+VcN3V0oDvVS9sPBipm7SSx7VhEqVb+PEePhYV+o3PNZtPc+jXbGsy1utOKNb4qpZ1L07mDXDLDOgZvcgE3ZFMnyyYW8qfXT0XA5DgG6zc77Az9UPUmT9f49pbwPJeJ0PN9Qr2Qob3Nn7y0I5A8jarQBIzGi+MX1Onn6TnfI044ggLuf3KTSZAuvvFSnv5gHz1phSPws29dG0kkyPUczZ0xhjw/nARw6FhX4Li0qwLUX/3PjvUDVB3sMEJ9UWGkqFzUE+/uDey3p7mTTbWtLF1Q3m9jbE9gehWU63eaTHhNxweLQw/D0NDD0PMmT9f49tb84FwnQofqhBqjf6hq7IhMvuqq0ShpXlCBlZv4/9KuMmEW8BgzT2yoNRNHWsFPXtyRJQ0OuZ+jWdOKuXdWSVayVPNzFNHU33DT8x0Hc+v15Lr+uMKCwD6Vde1sPdDW52/Xdr76coT66gEw0BiWhn6o4XSNb67jejufLZSUSAyupz3UJtQY/UPlgbasRh5fu2IsCiifNIrCEXkUj8w3ksF6QrClizfVthqlxiiEt7uQJV2sYZMR7NDPPTNLeKGyIUsDR2vMKLwK2b95bjtLvnaZWTF8Z/ZUqg52BIq0evvNhZ/jhTNLeL7Si+k7fsy/L9pjlPPVmyMUlay12x4ONGJDfxZwumGO3pa1vZ5Pr8f7qPaLcWFiU21rVtHSH/d6fWG37D/K0gXlLHu12hg6DYdMLkY/g5/35OoMmw0hW2nSfh21Sl314FyeeHcvHze003ysy+QQkhY/fn/rCX704g7qWo/zm4376U65iHiS5MKp68fo69oVwH39dnPlGnqbXHQbwtVb6ki50U1bBgqxoR9k6Af7VOJ7Gr0ta3N5C7anlXYHRg8nxvBCOP6ti32017p6S12gOjYhummGBNhV98wsYXNtK3sOHzfbphSP4GDbSfNeTxN5vkCZZrMkEoIDRt1yodWCL+w5b9h92Hi+mpmydEE5KzbsZX/rCXOt31cfChR0JRxhkZUE1VLI4Xj4ys11pkI1nEcom1gYUOlcu63BJGej6JSn4szZK4ln/BBVKn3u1CtjnCb6G5vvLVGbKzySa7tR4/O9mr66BJ0JzqfCtBgZaI9VG72KyUUBr3XCqIuADrP/lRMK2d3yGWm/MAowjBIR8TTYXd+YTxoVMPS3XTOBL00dbZQxdezcXlH0pFxTnNXd452z82QPj6/fExBMc8jWqbGTr3eUTzTVs+Bx5qeMHgHAg7/dyrqdzWaR+8LWelYtmUfNoU5zDs2+seUI7N6wy16tNhOgPr4/zldvqDzQxuHOTKK5P529TgexoR9E9Cc2P9AsGc2o0Pzc5a9VRybBzhTnY2FajAzCjoLdlAfg7U+b0aHxXS2fBeLUtjQwyvP4H5hTSvnkIqoaO8hLeHo2Wg5AXyer8Ye/UtASCuWTi8xz++sNtTjiVYkKmT6rtpG39Z/Gj7qI28onAvDEe7WeuJnfPW3RE38096LR46u/hjXiV2zYy59cPjarqjVc3NQToR57qjkru72ihh0eG0j0q5VgjNNDf1oLRk0GZwqtxhemyZ0OdIIs3OJMa3EP5LhjnDvMmpZpmzdrWjGLri/NMFz8MIh+judXTEIsfRqdGF32ajWr/ArUB+aUsurB4OS/0Oeia+/9wa/OQPDCN8teqaK6scM8t+B5tz1pT64gTO3UKJtYSE1zJ2/tbOb+FRv5lw/2Ga89nXZ5+v3aLCMPXgho7owxlE8aFdi+v/UEL1Q2kPQnGMhIFdvClIoz97zDRViCN5kNZT36GBHoz3JuMPjoA3XO3uidL1Q2mAd0MLQ5YpwdhMNv+n355CIK8jLPkJ1jgqAOWTIhHOnsMmENHZaxq1/1NXSSU4dydASnO61o6ewimXCyWDbewkFFeroBRylU5ZpWBPIHNh786gzDYAtDq3Ee7uwKaOjY3Aa7SLA/IcyoJHTxyPxAmPXrV43n4QFSpQ0jNvSDjL6Wc4PBRx+oc/ZG77TbtQ2GNkeMwUeU5o3ddCYXgeDx9Xtw/TCGADeXjaf52OeBc6sc13hm8VzTvCMcyhlfWMC9s0rMqkDAeNG5hPVsoTVduNUTYhRp+GKbKOA3G/dzW/lE5s4Yw0V5md63jmQSx+FmPwrPqXH9Bipa7K2vEGagOMpX69QKtd+bN50n36sl7SrerWnhYV8EbqAxLA39QCQJz2aicTD46ANxzv7SOwdDmyPG4MNuhfd5j8s/vbXLTOyf93jsm6V3ZodLAtLaCYd3aloCxjXpYMTQestTlU8uCpy3fHIRZRMLWRvSpYmabCoPtAUYPItuKDXXXLutgZbOLt7ddZh02pMs+M7sqUYvX4UokNop6jzZQ3XTMconjTITno2EA6KnMN+9708eLrzqgExYdWNta2BVs/zV6sjv/Ewx7Az9QCQJ40Sjh6iVwZnQRWMMHXiN5usDoY6wzMBHDR3c/+SmrFi7fi50H9aPGzoC53GcTOrP6OSgSCQcDrafNJIEbSe6A9W4OhRyz8ySPiUBohg8NgMGosNSa7c10O0nPz+qbzdjgQyPf6NfU6CbnSDarme4+2lXGdZSMuEYOeOoEGa454Tyx5xIZDOcPm7ovZL3dDHsDL3tpZyuBMD5rICpMVArEntlEE+AwwO6Q1I6qkdfCN1Woj38PK31deXDZ0n7XPD/uXE/L29v9EIe4kkjPPthptR/7owxgTxA8cj8wPN1T2ilaD/TErpm+D1kr2o1I+2n/r2/8Ukzb37SzENfmxHo66qbqojfVEV/TzoprZTXMvFZv3dEXkK474bSnAJntsPUebKHJ9/z5SGU4uay8byz67BZPZyJ3eoN/TL0InIH8Cu8DlNPKaV+Gfr8r4HFeB2mDgPfV0od8D9LA5rsWqeUumuAxp6FgUoSDnXBrr6M+GAZ5OEwAcbw/o65jLyOY9tBi93NnfzXN3d5zb0dr1lI24nujH69eM24q5uOkfZFznY3d/LS9kZzjrTS/4kOm4R1dcLPVzjOfXPZeJIJIe3TOPsbPmw70W3yC3i3yq831PLw12YEwlE3XTmO8aHOVjpvUdXYweot9SbkosNWekLMZewBFj2x0RyXSnsJZl3T8PzWetPU5aw3HhGRBPA4cBvQAGwRkVeUUp9Yu/0rMFspdUJE/j1ec/BF/mcnlVLXDeioc2CgkoSDkSAdKPTHiA+WQR7qE2CM/mHujDGBTlCOQNmEQsOXd6wuHgK88lGj0btJuYqfvlzFz+6uCDwLi64vZdmr1aT9+PMfqg/1OgZNTQx73fY5i0fmG+2bgAiY33kqmRC+WFLEPP9zfb4+7z2ZzeypbjpmJAme31rPWzubTeJUJ3qXLijngTmlgWQ0eJPF6i2edx9mp9k2ZFNta6AJueOI0RRaOLPE6N4Phs3pj0d/A7BHKVULICLPAncDxtArpdZb+28C/u1ADrK/GMgk4ZkmM081dNLf/ftjxAfLIA/lCTBG/zFrWjHfmT3VlN27CmqaOwFMF6akDlFYoQuNtKuobuzI8sZTadewXnIxX8Bz7Je9UpVVyGc/X1pjJtwFK9CxKa34qKGDjxo6jDTCM4vnAtlhJt29TYBld5bzvzbt55OmTnPtMRfnM2tasdegxKdp2olTm94Z1R0q7WbLO4cdMrtqXUs52/doM5IGGv0x9FMAW+quAZjTy/5/Cbxuvb9IRLbihXV+qZR6KeogEVkCLAEoLT29BthDxRCdaujkVKQSwn07c3W3GazvYTAYQjHOPsonFxkVSPD+r0XAkglh2V0VVDd2GPZKFLfdfhZqDnXiSO4WfWFEVZZinfPHL+4wRr2rxzUTy5ptDbzgK0va19GOj9aisXvSlk0s5P4VG80KJuF4nHXb0L/2cRM3XDomEPoVIJHw6JS5ukO5riKZdECpwG8yl8hZf0NVA40BTcaKyL8FZgM3WZunKaUOisgM4G0R2aGU2hs+Vim1AlgBMHv27P48K5EYCoboVP+ApyqVoPt29sZKGArfQ4yhicoDbSx7tTpQAJRwPCkCN61MNZQ2mElHuP2aCbz9aTNp10s+2olS3U0p7arA5KGRTAhfLxvPW5+2mNVBXiJ3/kzLKOvT6NAIeEyce2aWmBBLKq0C/HcF5rfkKsXSl6tYdP3UwAoj7Sre/rTFE3NTmW0rNuw1oV99XcHrnhXWqH9gTmlANqLmUKcRRtO/u1xhKNtrP1uh0P4Y+oPAVOt9ib8tABG5FfgxcJNSyvC0lFIH/f/Xisg7wJeBLEM/nHCqoZP+7N9Xx5oYMfqLTbWt9IQ89PLJRew42GF6sq7eUmc86rSrGFdYwJ/6sggLLTXITbWtAeExVKaBCcCXSopYemc5AO/UtJgkb+mYi3mz+lCvCqw2Uq5HCV3jM3Z+/u1rTUy7eGR+oGr3uS31JhaedhWbI6pflau49ZoJvO1PPgqMEqYev6ZBvv1pC65S5to2jVN/DzoEs3Gvd60H5pTmDEPpc5zNCER/DP0W4AoRuRTPwN8HPGDvICJfBp4A7lBKtVjbi4ETSqkuERkLfAUvUXteor9x9FP9A54rqYT+IlapHF6IkimeN2MMNc2dhnVS3ZjhxjuOeN6zq3B8ATIgsMI01amJYBhDF//86MUdAYmCPS2fsaflMwAuyguGK00s269WtQ2vveINU391DH7BFyeZBLIihwyCz8dcfncFr1c18f7uI8aDv2z8F9h3+DMvnOWI4dR39Xihod7ID3oVUTax0Hxe1dhhJs3unuwVe2P7Sdb4VcKD9fsS1Y/mFCLyTeAxPHrl00qpn4vIcmCrUuoVEVkHXAvomuE6pdRdIvIneBOAi1cT8ZhS6l/6ut7s2bPV1q1bT+uGBgtDgUN+LgxumNb2ndlTc/KFY5w/qDzQxt+/vpMt+9tQeMb2jvKJbK9vZ3xhAVsPtJmCoS+WFJluTeBNDBVTMtsSAvfdUMrk0SMiG4qs8cMsuRK0CYG/vr2MR2653Dzj2ksvHplPVWMHL1Q2mKKk8G9PV8l2h84fFUbKurYj3PnFSQEqaF7Cm7RM79s/7jeTYn5CAvLE+vqLnthoViEOcP+cUnPPkiExAfCLb3v9cysPtHH/k5t6PfepQEQqlVKzoz7rV4xeKfU74HehbUut17fmOO6PeBPAeY+hwCE/F3H3MK3NXj7Hxv78xra6duNhf97jGmO3v/UEeX4A23GES8dezI6DmerNtPKqZiETGw9P/jqkoWV4c9lbIaNj05szdc/MEuOxh7GptjVyEulPg7W0q3jlo4yRF7xwjefdKwpH5AX0d6Ka+YSTs/l5Di2dXWbiscchZCqAwyG0XAnqgcCwq4wdKIS95wuVQx7V2zIuljr/EeZ0h1E0Io+jx7tJuyrg7doINwKJ4o2HZXgL8jwhL60pUzgiz+z/+Po9vYY4dCWudjT0fXSe7MGxEqtREIHrpxWzra4tS7ZYKQydNKG58+lMErWx/aTx8nP99ssmFrLo+qlGuiEs2KZhF3GGQ2i9JajPFLGhj0Auz+J0EydDPcbdV4crm9bWm6ZHjPMHc2eMCUgC2wlUgCOfZUsC6wrYnYc6zXNgG/lcvHGt8dJX2K94ZH5Gi56g3nt4Rb12WwPPhxqHJ8QzuJ82dRKy5SgFN5WN5wfzr2bNtgb2NHdSWdeO8j3wsAxzOInaG9Nt5eY6z5v3q2fv8YufnrdooIJn5JffXQFgGDh2p6/B6BWrERt6sg1drjDN6YROhkJsvzf0Z3z6vu8ZxMq9GGcXs6YVZ0kC61hy2OiD3+HJr4DViVrbMPWHN56rNkR/3naiG12Ua+u9gz8xOeKpVTrCYUv/XkMp2NX8mZETVq4KGPzikflZCdzeHJzH1+8x95SKYLppkbRnP6zLKFBa9243GLcnkfDv7effHvzo9gVv6PvyRM7Uex0Ksf3ecCrji7n5wws6xKA9bhdQ6Wwu/PXTi7m5bHwWTVBz6SsPtHGw/WRAxTEXb9xGlB5+b787Zf2LakKiGTIezVNxbUlRIJcQPib8PNuJ4KrGDvY0d5okqquCape58g+OZMIvUb+XH1mFYGfTHlzwhv50PZH+YqjH9of6+GIMHuywnC03LGi1SS9u/MP5V2d5uFGl/knHU3Es95uN97WKDST6U14v2qULygPUTo21vjQBeEnLrfvbAp/fML2Yb325JNDkfN6MMVQ3HjMhld6ebXvSySXq+cYnzWzYfdjYhrBypxZ8y2UvwqKLMDiNwKNwwRv6XIZuoLzXMy2KGOz4/lCRjYhx9qG55zb1UcDQCu1EaS6v/bF1mWYlaVcxefSIgLKlPSGEnzFb+8VV8P7uI2yubcUF0mnFC1vrDd0wbHvD77fVtfOD+VdnFSnZgmRRCWMNe9LpDfp+ws1X7p1VEhljt69niy6Clzz+yUs7+HBfK1dMKBzU398Fb+jDQkr9VcE71WuczvnOVnw/DslceNDP1uc92Z2zU67iXz7Yx3dmTw3s6+nHeBz6eTPGsPy1ahOG0DRL7SjZSdiP6tv51TpP5jiqMvSxdbtMwZLNhe9Oe9WoOj/0wtb6LK68huvTHnWDc7360JTI9TUtho+v2/iFi7SSCSdLQyeMhCM0tp8E6Ff+ISo0ZYd7XAUvbW80jKTB+o07fe9y/qDyQBs/enEHP35xB5UH2vo+wIemTy5/rZp/fKOG7z616ZSOHyxEhZVixBgI6GcrDG2Aevyaie8+tcnQGl3lSRF83NDBU+/vyxh5PJpl2IAvuqEURHjzk2a60yrwHFceaOPx9XsAePTWKynIc0iIFzKycaSzy+z3/a9cmvN+kiFqYvHIfMO5V8CbnzSzcnNd778nPzGRTAi3XTOB26+ZQDIhRujttmsmgAirPvS+F8B46lH2Ivz7bTvRzTOL53L/nNJAc3U9xsH8jQ8bjz5cHfd8ZUNWC7TeMBSTpnH8PMZgIUpmQCCLltjV49LS2ZVVS+Fa3ZZsmqXGrGnFJtFr8+hzefj2qnrZq16cPZkQ3qlpYd3OZvKTDmUTComCEOw9obVncoVh7CItvf9j/ngUng7OdVNHm0pdTX/0iqmCFE8t/Ba14o76/eqJcFRBkl9vqM05poHGsDH04eq4UzXWQ9GoDqX4uf3A95fvO9TrBy5kzJrmtdV7varJFC4Vj8xn6StVpgcreEb93V2HWXZneZYUQW99g1durvMacfvv8xJeV6h3dx3mzU+aMysHiwChz6FVIQ+2nzTt+npSblZ/VY1EwtPfCTcpsScY/TrpwKLrSwPCbDZ7JhyCAgwfPpGQQI5CQSCZ/Ni6XVkTXq7+tz/85tWUjrmY16uaGHNxPq3HuwPKlwONYWPow11zTtVYDyWjamMoxM/Dmhx2kqy3Y4Zy/cCFDltxccv+oxm2i9VZShvHdNoLO/zi29caSqaCrMYh9rmXvlwVqFS9ZtIoxhcWmOYk+hq2/IH929NGWK8K8pIOD910GTeXjee//OFT2k/0mHOPuijJslerSaW9wqabrxxnRNZEYOKoizjY/rm/GvEmBX1+nUy2Q1C2sdZhK/CkEW6/Zjxfmjra2BY7rPX+7iNs2X/UVO321v8WMlLHer8t+4/m/E7PFMPG0M+aVsyqJfOMHsbpCG8NBaN6Oojqdj+QE9bpaHIMxVBYjAzC1MalL1cFpIEVXrxc4enUF4/MN4ZXK1muzaF5tKk2uyftxw0d7Gw6ZjxixxGumTSKRdeXUnOoM1BZaq8Uws6XvtaPXtxhzn30eMbod6dc3vykmbykw9evHs87NS00tH9uPk+7nrokkJVMzo8IQYWjP2MLCwJ1AeFksh1n78/zf7Z+J8PG0MPQMNRnO1wRldkPt2DLtbzuL05Hk2MohsJiZGD/faLaBYL3e9pW107aVSx7pQoXAmGd3lpZFuR58X98Pr7CcxBuvWY84wsLeH5rPTsOdrCzyfP89fU/73H58Ys7jKKm3V7P/m394tvXsmLDXqMhb0PhrUI+70kHxquRchWrt9T16slraLZPT1pFNlzZVNvK/IpJbNl/NOtZj3r+z5WGVr9kis82hqJMcX9wLsIVj6/fwz++UWPkYv/k8rF8sOeIKSN3RIyndCbjiWP0ww92Jejy16oDidm8pMcN1zHyKIR15MPn1DLDy16pyoRUE54nbxdn9WaBvlRSRPmUIioiirDAC49oGufNZZ4Hb7TwF5Sz7NXqSHaRCIh/4WSidx2eqBWzvbLJ5VDp/Vo6uxhfWEBhQZKn3t+X9XsMf2en+3s5Y5niGP3DuQhXhD0C27vQntpAlFufzmppKKywYkQjbLzKJhayZlsDRzq7GFdYwELfc30hJBym8aWSIhZdXxqoO8nl6FQ3drDS19TpSStj5B08I4sIqVSG0WNDN//WYSSb8TJ59IgsMbJxhQUBZ6RsYqFxUI50dvHGJ82Ax6TUY1DAqg+z5bejnJtwvgoy1EldQDa/YhIPzPH6Xj+fg/vfnQpqaEG2Bs5A/nZiQz+AOBfhiqgksmYtaE8tDp/EsKGNlX4uVj3oecdrtzXQ1eN5x+WTi3hgTmlA+MyGLpiyDVMuR2ehryVv0zMdyYRLICM3bFMObbjKo2YKXhcr25t+ZvHcrDi/DrHYhrTyQBtvf9oSyEVofZ+wMxQ26M9tredPZ0/lSEhMTa9+Ok/28A9/qAHgvd1HAE9bJ1ezFZFg+HOwncR+GXoRuQP4FV6HqaeUUr8MfV4A/BaYBbQCi5RS+/3P/hb4SyAN/Eel1B8GbPRDDOeKuZPLcy6bWDgkmUQxzi1sJkl3yuWJd/dysidtqmRTbqYdXsXkokgly+qmY1mGqTc5kWcWzzXhDt1ycOolIwPnva18oqEclk8aFejslJcQlt1VQduJ7gDtstv37ldvqTcGvDuHoZw1zWsQ8tOXq0xOwMGjZ7ohrflwQVkqrVi1uQ4nVOj0Rb8n7vJXqwPbV2+pY+md5QEmoI20q3iz+lCWHMRgOWV9GnoRSQCPA7cBDcAWEXlFKfWJtdtfAm1KqctF5D7g74FFInINXo/ZcmAysE5ErlRKpQf0LoYQznW4Imr5nEs9MMaFibDZeWtnc9Y2VykTlrHj6ALk5zmRCcjeHB39u1jo0zNXb6lj1eY6nttajwMB71yHPW4rnxiZF1q5OZM3cBVsrg02E3ckN1lAUxqfeHevuW/Ba4Vox+ijxMYUXsjHb75FQjxO/qxpxRQkgyIDerJZdleFUcL8MCTE9usNtZSOuZgH5pQOupPYH4/+BmCPUqoWQESeBe4GbEN/N7DMf/0C8M8iIv72Z5VSXcA+Ednjn2/jwAw/RhgxrTFGX7CZJFr/XRs8XZpvqz0W5EWLd+kQoW2Y+nJ0Zk0rZs22BtPlqTcWT65ztZ3oDkw+uvm3rrztTUFSn/dLU0ezbmdzQIzNPiZ8DS3NkJf0OmTppOry16opm1jI5RMKA4Z8V3Mn//hGjUnUPrelPnIsr1c1mYltMJ3E/hj6KYA9ygZgTq59lFIpEekAxvjbN4WOnRJ1ERFZAiwBKC0t7c/YY0QgpjXG6Au65iQqjxPFHunLSz9VhKIfASPan+dV0zdtcTA75t+fMfX1O9HXiPpedBtG25nKNXn2+PLLUfRVgPkVk/oc60BgyCRjlVIrgBXg0SvP8XDOWwzVCt8YQwu2kY7yzHPtOxCw2+zlJR2W3XlqtR76GQ+3t+yvkbfP0VcLzVyfR2nY5Jo8dZiru8crFFvwxUlG8kB784ONPnn0IjIPWKaU+jf++78FUEr9X9Y+f/D32SgiSeAQMA74ob2vvV9v1zxfefQxYsToHwaqxuJc1Wr0dd3BrlaPQm88+v4Y+iSwC/gGcBDYAjyglKq29nkEuFYp9bCfjF2olPpTESkHVuLF5ScDbwFX9JWMjQ19jBgxYpwazqhgyo+5/xXwBzx65dNKqWoRWQ5sVUq9AvwL8D/9ZOtRPKYN/n7P4SVuU8Ajw5lxEyNGjBhDEbEEQowYMWIMA/Tm0Q+rDlMxYsSIESMbsaGPESNGjGGO2NDHiBEjxjBHbOhjxIgRY5hjSCZjReQwcOA0Dh0LHBng4ZwrxPcyNBHfy9DDcLkPOLN7maaUGhf1wZA09KcLEdmaK+t8viG+l6GJ+F6GHobLfcDg3UscuokRI0aMYY7Y0MeIESPGMMdwM/QrzvUABhDxvQxNxPcy9DBc7gMG6V6GVYw+RowYMWJkY7h59DFixIgRI4TY0MeIESPGMMd5behF5B9E5FMR+VhEXhSR0Tn2u0NEakRkj4j88CwPs18Qke+ISLWIuCKSk14lIvtFZIeIbBeRIan8dgr3cj78XS4RkTdFZLf//0gxcRFJ+3+T7SLyytkeZy709R2LSIGIrPY/3ywi08/BMPuFftzL90TksPV3WHwuxtkXRORpEWkRkaocn4uI/JN/nx+LyMwzvqhS6rz9B9wOJP3Xfw/8fcQ+CWAvMAPIBz4CrjnXY48Y59VAGfAOMLuX/fYDY8/1eM/0Xs6jv8t/AX7ov/5h1DPmf/bZuR7r6XzHwP8G/Np/fR+w+lyP+wzu5XvAP5/rsfbjXr4GzASqcnz+TeB1vK6Lc4HNZ3rN89qjV0q9oZRK+W83ASURu5nm5kqpbkA3Nx9SUErtVErVnOtxDAT6eS/nxd8Fb0z/w3/9P4BvnbuhnDL68x3b9/cC8A0RCbd1HQo4X56XPqGU2oDXtyMX7gZ+qzxsAkaLyBk1lz2vDX0I38ebBcOIam4e2aD8PIEC3hCRSr+h+vmK8+XvMkEp1eS/PgRMyLHfRSKyVUQ2ici3zs7Q+kR/vmOzj+80dQBDsaN8f5+Xe/xwxwsiMvXsDG3AMeC/jSHTHDwXRGQdMDHiox8rpV729/kxXgerZ87m2E4V/bmXfuBGpdRBERkPvCkin/oewlnFAN3LkEBv92K/UUopEcnFR57m/11mAG+LyA6l1N6BHmuMXvEqsEop1SUiD+GtVL5+jsc0JDDkDb1S6tbePheR7wELgG8oP8AVwkHAntlL/G1nHX3dSz/PcdD/f4uIvIi3pD3rhn4A7uW8+LuISLOITFJKNfnL55Yc59B/l1oReQf4Ml5M+VyiP9+x3qfB7w9dBLSeneGdEvq8F6WUPe6n8PIr5yMG/LdxXoduROQO4P8D3KWUOpFjty3AFSJyqYjk4yWchgwr4lQgIheLSKF+jZeMjszcnwc4X/4urwB/4b/+CyBrtSIixSJS4L8eC3wFr0/yuUZ/vmP7/u4F3s7hMJ1r9HkvoTj2XcDOszi+gcQrwJ/77Ju5QIcVPjw9nOsM9Blmr/fgxbK2+/80e2Ay8LtQFnsXnof143M97hz38m28WFwX0Az8IXwveIyDj/x/1efzvZxHf5cxwFvAbmAdcIm/fTbwlP/6T4Ad/t9lB/CX53rcvX3HwHI85wjgIuB5/7f0ITDjXI/5DO7l//J/Fx8B64GrzvWYc9zHKqAJ6PF/J38JPAw87H8uwOP+fe6gFxZef//FEggxYsSIMcxxXoduYsSIESNG34gNfYwYMWIMc8SGPkaMGDGGOWJDHyNGjBjDHLGhjxEjRoxhjtjQx4gRI8YwR2zoY8SIEWOY4/8PNYwAQ9n4+xQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X[:, 0], X[:, 1], '.')\n", - "ax.set_title(\"Two squares\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Classic KMeans\n", - "\n", - "It uses euclidean distance." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "KMeans(n_clusters=2)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.cluster import KMeans\n", - "km = KMeans(2)\n", - "km.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.27360385, 0.50114694],\n", - " [0.49920054, 1.50108811]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "km.cluster_centers_" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACR30lEQVR4nO2deXxV1bn+v2ufk4TBiDHMkICoIAZEISKo1NmCotapDm0deq1eb3tvbf21tROldvJer7e2t4Nar2MB5wEHHFBRVKYEiRBmEEjCHCAEgSTn7PX7Y+2199r77JOEcAJJ2M/nA8nZZw9rn+zzrne97/M+r5BSEiFChAgROi6swz2ACBEiRIjQuogMfYQIESJ0cESGPkKECBE6OCJDHyFChAgdHJGhjxAhQoQOjsjQR4gQIUIHR2ToI0SIEKGDIzL0EdoVhBDrhBAXhmwfI4R4VwixQwixTQjxvBCiTyPnmSWEuM14fa4QYqcQ4nrntRRCbBVCxI19spxtUfFJhHaFyNBH6CjIAx4BBgIDgFrg8eYcKIS4GHgFuFVK+Yzx1k5ggvF6grMtQoR2hcjQR+gQkFLOkFI+L6XcLaXcC/wFOKup44QQE4HngBullK8E3n4auMl4fRPwVOD4bkKI/xNCbBJCVAkhfiuEiDnvHS+EeF8IUS2E2C6EmCKEOMY4dp0Q4v8JIT4XQtQIIZ4VQnRy3usuhHhdCLHLWaXMFkJE39cILUL04EToqPgKUN7EPpehjPk1Uso3Q95/BfiKEOIYIUQeMA54NbDPE0ACOAE4DbgY0CEhAfwB6AsMBQqAyYHjvw6MB44DTgFucbbfDVQCPYBewM+AKGQUoUWIN71LhAjtC0KIU4BJwBVN7HoesBz4JM37+4HXgOtQRnu6s01fpxdwCXCMlHIf8KUQ4o/A7cDDUsrVwGpn921CiP8BfhW4xp+llBud870GnOpsbwD6AAOc88xu4l4iREiLyKOP0KEghDgBmAF8X0rZlHH8JVAHvCKEyEmzz1OokE1K2AaVC8gCNjkhll3Aw0BPZyy9hBDPOCGd3cA/ge6Bc2w2ft8LHOX8fj9qknhHCLFWCHFPE/cSIUJaRIY+QoeBEGIAMBP4jZTy6WYc8iXKI+8GPC+EyArZZzbKs+4FfBx4rwI1UXSXUh7j/DtaSlnkvP97VLhluJTyaOCbqJVBk5BS1kop75ZSDgIuB34ohLigOcdGiBBEZOgjtEdkCSE6Gf/iQoh+wPvAX6SUDzX3RFLKWlSMvB8wVSdSjfclKpZ/uQxoekspNwHvAA8IIY4WQlhOAvYcZ5dcYA9Q44zvR80dlxBiohDiBCGEAGqAJGA39/gIEUxEhj5Ce8SbwD7j32RUAnQQMFkIsUf/a87JpJS7gIuAwcBTQXaLlLJcSpkusXsTkA0sRVEvX0CtAAB+DYxEGeo3gJeaeX8AJ6JWJ3uAOcDfpJQfHMDxESK4EFHjkQgRIkTo2Ig8+ggRIkTo4IgMfYQIESJ0cESGPkKECBE6OCJDHyFChAgdHG2yMrZ79+5y4MCBh3sYESJEiNBuUFpaul1K2SPsvTZp6AcOHEhJScnhHkaECBEitBsIIdaney8K3USIECFCB0dk6CNEiBChgyMy9BEiRIjQwdEmY/RhaGhooLKykv379ze98xGITp060b9/f7KywnS5IkSIcCSj3Rj6yspKcnNzGThwIErnKYKGlJLq6moqKys57rjjDvdwIkSI0MbQZOhGCFEghPhACLFUCFEuhPh+yD5CCPFnIcRqpy3aSOO9m4UQq5x/N7d0oPv37yc/Pz8y8iEQQpCfnx+tdiJEiBCK5nj0CeBuKeVCIUQuUCqEeFdKudTYZwJKbe9E4Azg78AZQohjUR11ilG63KVCiOlSyhY1WI6MfHpEn02Ew46K+bBuNgwcBwWjD/doFCrmQ9k0QMKIG9vOuA4xmjT0jub2Juf3WiHEMpR2t2norwCecvS65zo9NvsA5wLvSil3AAgh3kVpf0/L6F1EiBCh9RA04OZrUL/v3w1z/gK2DfEcuHn6wRvVlk4c+rjO+TDjx5CsU9s/mwK3vOE/V3OucbDj0MeVPAHLXoWhV0DxLQd37gPEAcXohRADUQ2Q5wXe6ofqtqNR6WxLtz3s3Lejem1SWFh4IMNq03jyySf57W9/C8AvfvELbr65xdGrCBEOPUqegDfvBmlDLAfG3wdv3QPJerDigIRkAl9PlESdMl7pDCqE/x7c/8nL1XVi2c2fOMzjhAA76b2XbFDX0tfsnO/dS7prVMyHJyZ69zvyWzDihvTj9h13qbpmLAvG/Bt88qB6b8376mevk1t2jy1Asw29EOIo4EXgLinl7kwPREr5CPAIQHFxcYcQyd+xYwe//vWvKSkpQQjBqFGjuPzyy8nLyzvcQ4sQoWlvsmK+MvJ2Qr1O1imPNFkPMglJGxWRDcCyPCMO/slCxNRPJFhZ6qedTDV0ZVMhsV+9n6xPnTjSYd1sb3xSqMaNeoixLGXctXEFbyzprlE2zVsR2A1Q8rhaGQTHra+tP8uyqd41kvWw+Dn/eZe9Cvuqjc/yAO6xBWgWj97ppfkiMEVKGdYlpwooMF73d7al235IULp+J3/9YDWl61uUEkjBU089xSmnnMKIESP41re+1eT+b7/9NhdddBHHHnsseXl5XHTRRbz11lsZGUuECAcF7fm+/zv1s2J+6j7rZqtQjIawVNghlq1+TzHylvJ6L3nAM1jmZCFtZSxlUv2erEs1dPqYz6Z657di/omjMQwcpzx5UMdL1OQy4Ew47ZuweZExESS9awhjcqqYD7MfcD6T4D06k0KywRt32dTUz3LPNv9heQE2XFYXNenEstX4YtnNv8cWoEmP3ulZ+X/AMinl/6TZbTrwPSHEM6hkbI2UcpMQ4m3g90II7cJeDPw0A+NuEqXrd/KNR+dSn7DJjltMuW0Mowa03JMuLy/nt7/9LZ9++indu3dnx44dTJkyhfvvvz9l3xNOOIEXXniBqqoqCgq8ea5///5UVR2yeS5ChPQwPd9EnQph9BmhwhLaSA8cp+LtiTplPAePV+GGm6fDrD/AmlmokI2Aky6FfiNTVwfBySIdhPCHcrQ3DMpANzd+vmWptwIBlLG3YcM8WD9HTURWLHU1Im3vfGY45Yw7Ahe01MrA9OgR/gmrbBqsesc4JAsunKzG9tlTsOlzWDEDVr+nQmH7qttEjP4s4FvAYiHEImfbz4BCAKcR85vAJcBqYC9wq/PeDiHEb4AFznH36sRsa2Pu2mrqEza2hIaEzdy11Qdl6N9//32uvfZaunfvDsCxxx7LN77xDb7xjW9kasgRIhw6DBznGDyn53hVqfr32RSY8F+e8bl5uvJYP5vqGaebpyvP/ouPwJbqPCdc5CUYg9dxJwsc2yqVYZcS19jaSWUIC0arxK5phLet8FYcwaTwk5erlYGw1Epi2ashNysd7x21ojhpIhzVA0qf8rZL6a0oUlYZeuACjj8Xzv2pfywAi6Z5k4OeBEAdM/ir3r4nXQobF3nn31wG3fqrXVsxMdsc1s3Hzp02to8EvpvmvceAx1o0uoPAmEH5ZMctGhI2WXGLMYPyM36Npjz6fv36MWvWLHd7ZWUl5557bsbHESFCixDWLzpZ58TTpTJa4++DneudkIvthSoWPeMYM6k86LfuUd4+pNIZzcnCbgAsKBwDG+Z6hhaprtvrZNj8uX9M6z+BxyeoEIed8OLi62ar8Upb/Xvzbhj7PS/ZmQ5H9YCJD0LvU52wksMU0kY7lu0lXzeV4YWQ4pA3QP1eMNpvjPV4Bo5TE5Z4Wt2nlaW8+xUzvM/TPP9n/1SfoxUDhP/+Mmjs22Rz8OLiYhmUKV62bBlDhw49oPOUrt/J3LXVjBmUf1DePKjQzZVXXsmcOXPIz89nx44dHHvssY0es2PHDkaNGsXChQsBGDlyJKWlpU0e11K05DOKcIRi9gPw3m8ITaa6HqylEqu2DdjKa47lwKk3QOkTXrgD1HtDLoEVb3rbY9kenXH2AyqGLQ1P14o7YRYjTn7+L1Ts+vWUukzjWjE4/+fKqD4+wQjVCDj+POh9Cqx8C7Yt9x8jbRV2MSmWYV603lZTASVP4jKKRMy7r3SGWK8yEnXqsxv8VVjxlnPfAopvVeExfX53VWFkjfX9jbs7/WcQ9rEIUSqlLA57r91IILQEowbkHbSB1ygqKuLnP/8555xzDrFYjNNOO40nnnii0WOOPfZYfvnLX3L66acDMGnSpFYz8hEiHBAGjnM8y7rU96yY8uiFcIy2Y+iO6g3n/ER53Quf8ht6hN/Ig0pYlk3zqIyxbI9Jo2PnJ12qjLKmb5oGd+Yk2F9jXMIwtHq/Sx5wvHJndbFmlorF3zxdedaat97r5PCwSNAzN7eVPAE87m1viqEDRn7BVqyfo3qpCS3pjO+zfypDP+5uNSksekZNCiY91YpnPDHboT36Iw3RZxThgFAxHz75Eyx/A9ebjGXDhPtVjL5zPsz4kT8xqr305W94vHBQrJb1nwYuYEHM8dqFpcIqdTVOCCeRnpoIysiaXr0VV8dv/txfcKTvY9YfYM0HuCuRC35xwB5xCmY/AO//1pu8zIkmXRI1LG+weZEzachUb73kCfjoP2H3RucEQt3bxAcPeLhHrEcfIUKERlAwWjFlVszwwgenfdNvRDeXQYmRYtNe+s51+EI8PU6CyhJjUrDgJCOUI2349M9w6R/hlhtTk6pBBJOqxx4P8x5W518/R3no2sAWjFbG343N28qAVi2Es5zJ4kBlECrmq9CKy/tHGe7BF6v7nvGjcP5/wWg1CbzxQ/X+jB+piTPeyUvWmjTOsIl0xI1Nj+8AERn6CBGOZLghHMcI6apPjRE3KCaODvEIC0qf9MfaY44ZmXC/8l4R3nl0WAbUzzd+CN9+ywtdvP4DLyEphKJ4Hns81ARoyAIv8RoWOtlc5t+/ZoP6t/wNFYrScfzPpngrlnSVuSbF0r24w6RZ+bYXJoI0Y1nkfT7Jelj9jj9Zq/cN0kgBTrywVWiWkaGPEOFIhsmK2bNN/dyy1Avd7KtWdMvNZbBnq+H9G5BSGX8rplYEJhf/kgfg9btwDaNMKobOaTepn27M3vmhaZ4aR/VS49q2EpfiGFpAlS4ELf28+mSDxyrSEg5Bz9ysMcAKyVkY1zILrTSCxVIrZsBZd6WGkgaOc1YMxud5VK8093FwiAx9hAgRVNw8LDGLUGGH8fepcIovAetAM2eSSSURsGiaZzSLb4HV78Ly1739q0oVbTFoNMOwZ2tgH8fYBzHiRmflUZ/6nu92DBZRUt9LIMEaXOXoeLzWxjGTp3aDx//XOKqn/5rSVjmEc3+amgi+9H/UKkfa4SuqDCEy9BEiHOkICyG4kMqwaWPkGlonNh+L41aGajZNMJxx1vcVl9y8hm0r+qGmWfYYDJsXh18/CDsRzno57RvqfHV7/NoyVpaiOR7VQ3Hng6Js2qPvnK9CScjUZKumXI6/Dz79E+xY651/2av+vMaIG2Dh007NgAOTDWSOu/iW9IygDCIy9BEiHOnonO8X/wpCSL8n32+kCr2Yce6yqbDwn8oIm/RAbSAn3K/CPzoeH2SurJsNm5ekGYRQnriwPM/XDJeEKV2O/o4ak84XBI11MEYflDQ2awCCTJqiq/yGfugV/rGsmw1jv6t+1u2B7SsBO1zVE8IpnhlGZOhbGePHj2fu3LmcffbZvP76600fECHCoUTFfOXhpqNZCwsKx6rqVI0+I1LlDrYsBfmU80J65w4aYF0sFOa9amYK+OPW/UYq4wzhuvg1lamyBePuPjDZ41l/8IeutKSxG7M3KnDLX4LhX4eqEhh6uV9bXk8I0saN77uTl60mlMOAyNC3Mn70ox+xd+9eHn744cM9lAgRUqGNWDp0H6wEubQme1gcWStUukyTRHrdmKAB1tBJ4XWzVQx/+Rvee31O8caaonNTb6hVWulVIM0EqxlaMo2ziViWd56B47zVBKgVSflLanKc+zeo2+1NYK6RB7CVFpCplbP63VT+/SFoPtKxDX2GP8CnnnqK//7v/0YIwSmnnMLTTz/d5DEXXHCBT+8mQoQ2Af3d2N9Ea4nq1cpbP+0buDx0UMVE+nu1brY/tGPq0ZtJzc75/uOC0CGMivmw6l3lVVsxxWJ5YqIXFjrNGYMrNwwuG2f8feHnNhOsVtyRN3hCxdfd5KpQE9vAM/18e12B+8YP1fW00Ze2PwF9xh2p1cKxLDUh2A3q81v+Oix/0+vCBYek+UjHNfQt7VCTBi2RKY4QoU3C1WMxqI0mjh3kxaBt2y9yltMNPv1fv27MwHFOmX+DVw2qv2vaS9+/2xMQi8X9NMySJ5R8b24flbgtGK3Oq4XQzMrdZFLtH8sOyA1LNcZ91eGtD8umwQkXqHOsesfRsHkcf3JCqkKwMf/mrUggMCEKtYIQ8UACug6WTcfnvR9/nmLalE31KmPVh6oml1l/UCJp7kqjLpydkwF0XEOfbqnWQkQyxRE6DNbNTm/kEbBjnfFaegVCyTolmWAWC2lOvKY8WnFPxRK875wpPpasV9W2n02Bk6/wM2RWvg23vumtFEzRM9+YEjDqZvW7KalgdpCKZcPQy2DJ814OQjiceFdbxgytoO7xjR9696KvZXrq0lYtBfdsc+oKnGT1ji/U/lr8zTTYi54xwjpCXX/tLMUIsmIqxCNtJeOw7uPU3rYHiY5r6INc2Fbo3hJ59BHaJTrnE2rkheVsNsMPej/Nekn4j6la6OfEh1Efg6EdjWRdaos9u0F5wKYQWrJeGcMTL1beuGbt6BVB71M98TKzPV9if+r5ZdIx9hauIqew/EVVbq7BnAx8H5RH05TSmScMyumgc/1GXssiLHtVKWtu/lwZeWl7E9amMqdQTHpS0JGhbwbM5E4GYvTnn38+V155JT/84Q9dmeLIo4/QLrGvGn/IQsDwayHnKEd+OHiAgGMHKobJ3L8FOPfS0FNHhTU65/vDJwPHKQ83WYcbYkkLy5HutdU5x34POh2dyrQxX2te/Po5fr33sMlFj3HUzdB7hKJ8rv9ENTcJ3rPbRCTg0QvLa0mIrSYNXT0by/Yb+Yr5hhZ/whvj+jneBLZnK9R/mXr9DKI5rQQfAyYCW6WUw0Le/xGgrV0cGAr0cLpLrQNqgSSQSKes1mrIID+1JTLFAOPGjWP58uXs2bOH/v3783//93989atfzciYIkRoEQaOU1RGM3yz7DU49fo0XHqpwhLzHvb0bNZ8CDvXeu8XXaWYKGZMX0ov6aidLlcR00m0ipgX6z52kGpy4naDSsCcv8CtM/zecXC1YIZo91Wra7mqnGG348TVN5cpuWU7sErBUpTJETd4UseJ/co4a3llPRGY1bOr34HazV6lbFguJGWMb/qrhkFNihmukG2OR/8E8BfgqbA3pZT3A/cDCCEuA34QaBd4npRy+0GOs03g5ptv5uabbz6gY2bPnt30ThEiHEro1e6sP3ghhGQ9Su7AbPsXCOFoI5XTzTDyDqpKPGkBs0dsYr9HqwTl3Z54sapSHXGjMoo6SbtrQ6oXbtt+KmTQm6+pcBqY4A/RrnwL36zVezhsXeZU5MYcyYd6UmY2EVOyBMW3eKsF3TPXivulCjSlsnO+MvJ6YtFaPTqMZK6cUsYYYOnoBO5haCX4kRBiYDPPdwMw7aBGFCFChNZHwWhlUHQIIcx4mZWioAxd53yl0R6ETkSmlNhKxVh55hvKe9WGLZajDP2+ai85auMkJo1mJ5blhYLMJOv4+wwpgxgMmaD2L5uqfro9Wx1sW+mEgyw10ayYQYqR7zfKq/jVk4qmXupddchHTzid852JKrAqWPaq+ny116+VOU+7yeu4FRyjFW8VIw8ZjNELIboA44HvGZsl8I4QQgIPSykfaeT424HbAQoLCzM1rAgRIqRDMI8FnpHfVw39i42KWAEnXpRe2EyzTfqe5jW/1vj0f0lRvNRMuDABsc1lKma+Ya661lv3qLCSK1Ncp8bhhmykX1VTmNWoxvX0RHRUT6fbVaCz08Bx3uQRy1a8eN+85fxiauUkG/zn0NCyCKfeoFoabpgHVZ+pFUyvk73m7OYEMfJb7aJg6jLgk0DY5mwpZZUQoifwrhBiuZTyo7CDnUngEVAdpg5mIFJKyraVsXj7Yr5s+JKuWV0Z3n04I3qMQIjMJjkiRGjXMIuUfOX7AVhxR5jMEOpCQK9hsH2FX7/GDMdYVqrnCh4VMkx7JihfnKhTKw9T1773Kd5qRAj/NYKTijvcmH/lEuxKtflz7/4TdSo/4CaOHcqkDmHJpMHhNz4PrQPU6+TwWoXEfo8rr9sg6jaKraRcCZk19NcTCNtIKaucn1uFEC8Do4FQQ58JNNgNvLzqZR5f8jjV+6tJ2AkSdoK4FSduxcnvlM+tw27lyhOvJMvKaq1hRIjQ/uAmNdMwVfIHGZrwDqw4bF2qfo66yasmLRjtKTKmtCMUqk/sCReles+z/gBZXVLj2tgBVoylmDi+BK8ZZnKokyYGnadONfQKz2s+96ew7hNnDFnQpTup8gXOJHD8uWp/cDjxIZo8J10K109Rv89+wFkxhNQArPkAvvhIGfpbZ7S6/AFkyNALIboB5wDfNLZ1BSwpZa3z+8XAvZm4Xhj2Nuzlzpl3smzHMvYl9vnea7AbaLAbqNxTyf0L7ueNtW/w9wv/TpesLq01nAgR2hd0CCUYztDYvpoUo6WLmWygW0HjTbe1zLEVV4nYzWUG373O339WOGwcKw69h8HGzwwD7CSMg52adHMUpOK4m5NL31Gw7iN1jmAbQrMhyuKw2heng5YZO0+ZYJzJSrctrJivhNaESM9ishPqM7n0f1RCuWya97m1AppDr5wGnAt0F0JUAr8CsgCklA85u10JvCOlNMmgvYCXnVBJHJgqpXwrc0P30GA3cOfMO1myfQn1dn2j++5P7mfJ9iXcOfNOHv3qo5FnH+HIhslk0Uwct/eqgVBP35EPbqogcV+1PokqiCp5QnnQmi2DDORvbSi+1eG5L4JNn3vXF5anZ+PSFx1WzJAJnoSCuaIwk6WJOrWS0EJpuuo3hWLpjAvS8/57nQy3vN6I2JrlHJ8mlCST8MYPvHv7bIo63+FIxkopmwwcSSmfQNEwzW1rgREtHdiB4OVVL7Nsx7ImjbxGvV3P0uqlvLLqFa4dcm0rj87Drl27mDp1Kv/2b/92yK4ZIUJahOlBaSaOG1t2ioHMJhoavYugaw8VDtmyVBlQU69Gw9XC0QbPKbIadZNaCezf7ffokbBnixfaAXxZUT1xlE0FvXqXKD76qnc8+YCC0aqRiM+I2167Qld+QF82jUE2q33DPjOzRaCvDSGKpbNznZELCMCcQDMg1ZIO7b4yVkrJ40seTwnXNIX9yf08tuQxrhl8zSFL0O7atYu//e1vB2TopZRIKbEsqxVHFuGIRJge1Li7/aGJfdUqtFD6ZKpXv2Wp+vnFR35juvwNmPigp9O+ZWnA2DrCYL1P9evamzo6y990NjpMGe0d69VDxXzV6CQIU0e+Yr5qdJIOdkKtHLr1V/dqetc+SNi6XMXdw7Tvg5NaWLP14GcEjpaO8CZRYbWaXn27tx5l28qo3l/d9I4hqN5fTdm2sqZ3dPDUU09xyimnMGLECL71rW+xbds2rr76ak4//XROP/10PvlEUdEmT57Mt7/9bc4991wGDRrEn//8ZwDuuece1qxZw6mnnsqPfvQjAO6//35OP/10TjnlFH71q18BsG7dOoYMGcJNN93EsGHDqKio4JZbbmHYsGEMHz6cP/7xjy263wgRfNBGScSUZ1tTqYxjwWhl8ItvUT9H3OgwTgxzocXBZDIk7CGV0Xz9LhWmMbXqwWuy/dY96noAF/1aJTPNc5iqkkgVmtEqtGVTw1cZpo68K4qWBrEsZYj1vQ65JP2+i59T9QOf/VMZaM3gCYasNGX1/J97Y9Uyx1Ycl71TfKtKxF7y39B9iDORSf9nkkG0e49+8fbFJBr7YzaChJ1gyfYlnNrz1Cb3DZMp/t73vscPfvADzj77bDZs2MBXv/pVli1bBsDy5cv54IMPqK2tZciQIdx5553cd999LFmyhEWLFgHwzjvvsGrVKubPn4+Ukssvv5yPPvqIwsJCVq1axZNPPsmYMWMoLS2lqqqKJUuWAGplECHCQUMbJa3FUvqk0lUP9kvVolxv3q2YKFqDZt7D6VUwpa2MvBXzUx/duLWd2gCkdlP6sUobVryp2DoFo0nRgjlmAGR1gvwTvW0Dx6XuhwUnXeJV5pre+Fnf9/Pxw8aQTEDxzSrkpOmh+rNsDGG9Yd3K24BEQiuEb9q9of+y4cuDMvRfNgTFhMIRJlM8c+ZMli5d6u6ze/du9uzZA8Cll15KTk4OOTk59OzZky1btqSc85133uGdd97htNNOA2DPnj2sWrWKwsJCBgwYwJgxYwAYNGgQa9eu5d///d+59NJLufjii1t0vxEi+KATsXu2epTGRJ1ff14b/ZoKTyNGSo/eWDZNebmhzcWdJKcuYBKWmiDm/t0rONJhmLAuT8IRStOGVzo6Or1OVolaE7ur1LW2rVDSAlofp3CMvw3igLEeBdL8HHR/2TP/PbzAy4WtJCAGjkuN1YP3eWihN1N3P51OjzlRalG4DKPdG/quWV2JW3EawpZxTSBuxema1bXF17Ztm7lz59KpU6eU93JyctzfY7EYiUTqZCSl5Kc//Sl33HGHb/u6devo2tUbV15eHmVlZbz99ts89NBDPPfcczz22GMtHneECGkLpHRYRRcNaaNvxb3EpQ5ZaMOlZRO2Lof1H0OXfPW7G3sWMPJmL14992/qp51Q8XtXWtgRC3N7d1jq/Os/xTWGWvsGjPZ+wh+isRPpZX57DEn9HJ641JuoYjnK2K+bDbm94YSLVRWumUyd8xeoq/HLIX/yIKx+P+CdG92nwhofdc53Pm9LFZZpXfu37glQQA8e7T5GP7z7cOJWy+aruBVnWPcUQc5QnH/++Tz//PNUV6t8wI4dO7j44ov53//9X3cfHZJJh9zcXGpra93XX/3qV3nsscfcVUBVVRVbt25NOW779u3Yts3VV1/Nb3/7WxYuXNisMUeIkBbpCqQKz1DGTsQc42M7iccGJQw26ibPe539gBfTHzhOKWDWblGc+8EX44ZN9Epg3WxlgJMO/14m1USided1rkBbertBGXkhUKbK8jj0WvpYx7aDWP8pvPsrvzcvYqnVp+tm+6t9k05F7MZFynD3OlkxkbQMMzhaPMLYJmHFW+kLpHQ4RqNivspfzPgxrv7O4PHO7nbq/hlAu/foR/QYQX6nfCr3VB7wsfmd8hnRo3kM0DCZ4j//+c9897vf5ZRTTiGRSPCVr3yFhx56KO058vPzOeussxg2bBgTJkzg/vvvZ9myZYwdOxaAo446in/+85/EYjHfcVVVVdx6663YjirgH/7whwO+1wgRfHALpAIx9h5D4MJfe6wbrd6IrQqXtiz1mm6YYYsgg+eoXkoKWYuOaT12K+4vJJK2J9urW/a50gNGqEjE/NW3YPD+Z5FS5LVtBWxf5d/W91T10+xbG6Y543bUMvR4Bo/3uknFDbmCkse9cfoKpAJql7pfrvuZmp+7UDmDVmyUJGSjTQAOD4qLi2VJSYlv27Jlyxg6dGjo/s+teI7/LvnvA6JYdop14sen//iQ8uhbG419RhEipED3Ul34lBdTHnmTF1PW+7x1j+okpePseQP9apXFt6pjguqSulJ1zzaj76sF3U9UTcd1c5FLHvBkgc0CKLPln7Dg/F/4Oet6fE9MDJccDippDjgLKhd4ujw6nPL6D1RrQ/cwy8tRTPgvv4jZaTd6k02QU9/vNCfM5OCkS5Uipjburi6Poc6JUBOiXiUdhByCEKI0Xc+Pdu/RA1x54pW8sfaNZlXGAmRb2RR1L+JrJ36t9QcXIUJbhRljDzJvzJjy5sV4VaK21zhcbYCFT6tzmPx7U0LY9c4BbKhe5YRcLH9M2k1O2kBMsWNWvoUr+pXWy3XOLWJqEtm+Crd5uW70velzf6zfFx6RqnhK5xTcvq7SL9VgSj3oRLbJUCqb5jf0CDUxzX7AKKKynElMhE+s7UC98rAhy8ri7xf+nTtn3snS6qXsT+5Pu2+nWCeKuhfxtwv+FskfRDhyEWzioTnnwUKgdbPD1SdN6MrRcXd7Wus+hUcTRrJXQ19PJyexPO2Ys77fuJfrjs+J+W9b7l1HC6jV7fZWJPq9YCNx9xiDu59MqF6uwcYmYdWxemwLn/YmjFXvqn3NIior5ty/sxrS2vbQ9kXNDhWklGmrWLtkdeHRrz7KK6te4bElj6VVr/z2sG/ztRO/1uGMfFsMwUVoowgzVMGKTm3QzA5O6fTXheX3tl3JA0fETDff1onW4DmsmLcK0NLG4+9T76Uz8jrslNLrVcNJ5mq6ozbgVtxrAGI2EnelHnRYxVHN3PiZo855s+d5+yYyY1IsGK005XXc3pwA9WqnaqHXOtBuUGEjpFp9aOmGVkC7MfSdOnWiurqa/Pz8tMY+y8ri2iHXcs3gayjbVsaS7UtcPfph3Yd1WD16KSXV1dWhNM8IEVKwbra/iUfZNCUDENSF15OBFfM6K71+V+r5Lv2fVAMlHS8bqeLc5nnNFoYIxebRIRJsFdbYvCg14atDJmVTkQv/SVmWYHFODl9260pXG4Y3JBixbx/CDDPt2eJfkdhJZbw3L1GNVEzKqL7/zvmKUqnHaCfV56PvMWxS1Bhxgwp9Bd9ztXeCn58z4SXr01NCM4B2Y+j79+9PZWUl27Zta9b+OeQwSoyCbGdDNSyvXt7oMe0ZnTp1on///od7GBHaAzrne6ETaUPpE8om60beKV6rVMJcPlkCBwPO9OvVgCNP4LBY7IQy2iNu9LxzVzjNYfNULVR5AM2LF5aKqbuTkRdPb3jycl7uHOPxvt2pjsVIIEgIiEtFl85HcOv2rVxZu4csLMX+8ckvOyyeZJ1KEMeyU9k8oHIGZptF05gHO3OZietg3D7Y63bEjUqlMtmQ+lmmVPFmDu3G0GdlZXHccccd7mFEiND+sa8aXzxaG/1EnReGCOrTr53lVaqaSNQpqQOfsQ8YrD3bUkNF4+8zvFupDJ8w+PMmy8eKQ00Fexc9xZ09jmZZdhb7AiJ/DQIaSFIJ3H9sHm8c1ZW/b99Nl9BuUnjXtROpWvqQ3pib75vb0sXtw7bf8kbqeMI4/hlEuy+YihAhwgGicz6hRUZC+IXNbp6uOitpTztMaqSqFF7/vjL2GiNucETQhPp5VM/UmPbmRaQYXV/xlpOszO0NMklD6VPcufEdloQY+SD2W4IlnTpzZ9GZNPRT8iLkDVRxcCynMCvLL0xWMd8rACt5Ap6+0qGENgMV85XhTtT57xHCFUJ1Y/Z4JzUeKx4e/sogmtN45DFgIrBVSplSRiqEOBd4FfjC2fSSlPJe573xwJ+AGPColPK+zAw7QoQILcbmEMVWEVMGPUiv1GEW3UgjndTIslc9r75gtL8hB6TGrXVHpUYhYfcmQPJy7lEsy86ivply3fXYLN1TwSvz/8i1M//H48EX36zCJ+Afn9ksRN+jbsAiYjBkPJx1l/84X/MTowDKnDDTxfObWjFkGM0J3TwB/AV4qpF9ZkspJ5obhBAx4K/ARUAlsEAIMV1KuTTsBBEiRDhUCHjz/UapjkulT6V6ngAnnA+1m5V3vWKGn2euMfQK7/cgdRNUqGbe31V8XBdPuVo1jY9VAo93y23Skw9if3I/j615mWuS9QiTBw/+8Zn5iDAxM5lUY16hG+RJtVIZf5+a4ILVxXbCr3GTzqAHwz+tiOZ0mPpICDGwBeceDax2Ok0hhHgGuAKIDH2ECIcTvU/1vz7tJpV81E2vzXCGKfhl6fZ/Seenw7u34up48PTnbdtL7gK8+f88T3n7CrxmIoEJIwRlOdlUx0LyA81Atd1AWecunLpvr8ed15W0sWy18jC97sZWLeYkkNjvNCoJSVCrnVXC16wvAG8S1E1dDoE3D5lLxo4VQpQBG4H/J6UsB/oBFcY+lcAZGbpehAgRWgpfMtZSr01tep1MDQp+mR2ZairUCgCUsdMxaV9/1v0qdp03MMR4SsNwNm7sF+fkkGghIyWBzZKz7+TUZCcvZKTlkDW1dOIf/V73lqXKU5fA2mAC1xy/uT3sHgI5D1PiAYddFMvJiPxBU8iEoV8IDJBS7hFCXAK8ApzY+CGpEELcDtwOUFhYmIFhRYgQIRS+ZKzt1z/XXv1nUwyeuWO4dWs8bbQWPePp0ugmHL4qWqmYJW4j8HR9I8ISwzHXu/7SUhTKliBhJ/iya3c49jRHez/YF0Kqe/nkT0p/p6pUxeJ7naw8f5oy5g7O+r6SdljxlkcRDeY8dP2C5s5r6mjZNCeHUaeO0do/GcRBG3op5W7j9zeFEH8TQnQHqoACY9f+zrZ053kEeASUqNnBjitChAhpsK8aRbizcT16CDBEkh7P/KSvKj56UJNFd53SejXj70tVgjQbge/ZprpIHXs87FijuPJa2ExKT91y5DdVwnTLUpj3d7rWVRGXikJ5oIhbcbp+uR1e041NhNMG0dHC6X0qPH6Jt+LYthxWvq00aFKaqaQzS0I1Yrl+qjdpbFzoJpJJ7FfGvPeI1JyEllnWNQNmc5UMevYHbeiFEL2BLVJKKYQYjXqCqoFdwIlCiONQBv564MaDvV6ECBEOEgPHqfh5kAniShdor9wxvv1GpapGgpogdLOMZL1i8xSc4deA13K9oNoAbl7kSRYLS0kH6xxBWJu9ZD3Dc7KJI2loQfgmbsUZ9uXuACsm5ilufvKn1LCSnVCefyw7teuVD46HH8tS8spPXwldunsSBy4c4bfBqV3msBugsgRf7YFurnIoDb0QYhpwLtBdCFEJ/ArIApBSPgRcA9wphEgA+4DrpRJeSQghvge8jaJXPubE7iNEiHA40Si1z+Gv6/i9mZgN7m9q2gjLaSloGk1LSfduXgwlTwKP+8chk6owastSNR5zMjFWFyP27yM/maTyAFk3APnxoxixvQKfN67lGbYsDTHKDlbNhDF3KvVMVygtAM0aSiZUh6nGYCcM1k4Amxc7oSpnZaObq2QQzWHdNFquJaX8C4p+Gfbem8CbLRtahAgRWg1h1D5TCVJYMOhcxaOH9GqNZnWtj4EilMHqc4rq1hQUQnMhwxtiG6sLAdxaU8t/H3vMAVEsO9k2365ag9gd0pHts6nQ+/P0B9sNqgFKY8qd0pFUaII1BHga942dSye6WyEhG1XGRogQQUF3W9LhlnN/6kkVu7H7OsWk0R6+KxHsTA4ipo7tN1LF7Huf6kgbBNClu9c+MKyjUsFo1eTDCWlcWfslQ5OQ3czwTbZtU1RXz9d27yLUECfrncrUAPQ9CMtRsmzEOLv00DQYcKYy3sXfVpWvcadFYyyHVNMrVbiolVg3kaGPEOFIRMV8JZH7+l3qdw3tlZvep+aZ61DFmg8Uv97s9RrPUWyRUTep1xs/gzd+6PDnk6QYxB6D4cSLvR60YcZtxI2ObAFkIfl7VRXD9u2jk914kVUn22Z4XT1/21pNejFyqbpNDf+6f2zShiET1L3EzKOFfz8rSxnv4lvVZxCEFVctGUfcqLz0Xier+zz/53DihYROIMvfVCsn8++RIbQbUbMIESJkCG77PSfR+NkUJbRVNtVLTNoNDqceT5Hxs6cU/VCHWzYvSo31z35AHeuqYxqhD2FB/omKcaM7McWyPUmCMBgTThcpeXTzVl7J7cpj3bpRHbOUeqVlERcx4lKS31DHt2t287U9+8gaMgFWvJm++jbZADld1eqjqtTb3rBXGebewwINS9wbUc3P91WrhO6IGzzde51kvuQBtavmzVvOtoHjYNZ/Bs6pcyJpwlgZQGToI0Q40uC27HOQbFAMl/ov/ftp1UltqAqC9Y4iNdY/cFzj0gbd+sH2lf5rz/qDFyYyYU48DrKAa/c2cM1XfkzZruUs6Xo0X3btrnpO2BYjXr4LoXMJJ1wEq9/zKl7dzlZGF6nSp2DY1X5D3/sUJydRh5eUjqv71Q1UVr6jPHCzHeCIG1InPV0cZTu0ycHj/R2tTrpUib599k+vl22GE7EQGfoIEY48uCX/mjoo/YYOPNVJ01BtmOv0Vk14xVNBFIyGsd8LsFCEitPHcpQR1WJh+tprZinhNF9zkWmw8J+p5x9wJlz4a0TBaE6tmM+pZVNhx3bPyNqOzrvdoDxuc8UBqV2eZBLKX1IhnKoSGHq54sQn673Cp0HnKi2f1e+qOoB4J49CaidUY/HPpvgbh+vP2dKxfpQhd5uk47VL1H1723hlbIQIEdoTtLpk2TTVEzXYT/X48zzDFpQSHvktXArmlqXhxqnT0fiqSIXlNfdYNxuvWMu5HrZTVDRVnfPNu70krwlhwQkXepOBqcOz8Gm13Wyo0jk/dcWhj135ltEcxTH2UsK8h53CL90KMUtNTm/80AtDiZDUZtLR5V/0jDp+c5ka/9jvOewd3aLQvRk1MZgFaFHP2AgRImQU2rCkCJfFHcP2g0D4xdFl6T0CZvzYWA0IfzWrblpiVshKqcJAs/6gzq2Ltay4Mp52AlVU9E+QT4UrSGpdGNMz9+nwNAQKtZyK33QiYpc84FX1mmGdxH7/BCeT8On/+sckba+6NjgRJur8k4KVBYO/qtQ/zQnViqnPK6w+oRUg2mJT6eLiYllSUnK4hxEhwpGBkicc46TlCGxSYuz9RilP9ZM/pSkyEiqkocMv7/4KPv2zMvJW3B9rP+su5fUPHBc4X5iWjAVn/Ye3v6kCaU5QYWMZf5/KPaQTEdMCbimTl/bYtRwz/nEJC850xtQ5X3nvOsYuRMhqRDjMHKmKq3RittfJRl/eeGro5wAhhCiVUhaHvRd59BEiHOnQWjdalyaM+rd5sQqrrJiR5iQGYwRUCATUxHHsIEeaWJ/rc/jWy2qCMc/nJnHN69tKLKzfKP/lCkZ7TKFtK1X+AGdSOe2bXsxbNxwHx2OvU8eYkszjRyiFTXeMjgaQiHl1BckG/3nm/l2Fv7RRHnGDOu+ebUorx5dElur44lv8BVGv/8CTZkgmvdBPOrrpQSAy9BEiHOkw9dhdgbGA/ksyoaR7G60ClUrz5ZM/QWKfs01A9xP9hn7oFcojf/PuQEgkTRXq8jfVhKC9cTOuDcorllJ5yhPu9ys/xrIDjUFsZYzNAjA3J2BA4OUVwOnxaiSRw2iQevKwYnDSRNi30wgn2WrloMdWMV+tAoKhn1aiV0YFUxEiHOnQ2jfn/1x5yZf8N+T29e9jWcpAW4ZvaMVVwdDwr6vX0lZsGzO0IyzFLJn4Jzj+fPWz+BaHIdNUdykNLZxW560YdI/XmZOdScWRYNi8yOv96va9PQ83BCMsxSbSnjoivAJW4jUNLxjt76AF6niTBmlWD9tJxc3vMcR/XXflREDSWaBMsZPviOiVESJEyCjMZOC4uz3VyIQRr9Yx5eJbVDy65HHc6tluBY030e5zimcsTU9bK2i61wkx+kf3hd0bjQ1CNTwpecIZY6CFH3jKmKYmj9n3NpatPGumOKe0wBJefF2rcVqWX6ff16yFVN2aYG/Yzvkw6z5vfyvLb8D1/lrPH3AbsG9ZGoVuIkSIkCHojkemWNm62V7yEgHHn+sJm81+QBnJeCe/xHGQg28it48yzCbjRU8u4+9T25e/EX6O2hBZ39KnQDwdEssHuuTBl9Vqu+4epRk3p16v7sfl2ztMH2nDyJu92Lmmd2qNfa0LP3CcNxEAblctM4xkcvaDHvtpgSSrqedv5kVksm3q0UeIEKGdwidWVu8ZRde7lpDVWRk/RxteJS/v8xvus+5yEpBO45Cx31Mx9epVyogvf93xnLOUzsuqmX6vu3N+uKEPMn+0cZfOKiPYr/XLHd5raUPpE94+mnEz4gaP/pl0WEZmQ5V1sz3WkQ4VFYxWn4E5nmDoBlK58KaH3/tUNVGazCGt558SNjoMevQRIkTooAiGG7QnakoYLH9TGXHX+DkNRrr1V+9r7/ySBzzjDw733DCM2nCaYR7dU/bcn6rJYtl06FcMy17zkpqm7ID+3Zxs9u9WLJ6sLqkhpOD1daenETfg0SYNobKK+YrrHiy6AicRbUCHpNLB9PA756dOlJvLlFqlFXcWTwbjyKwXyBAiQx8hwpGKoDHSP2M5RvxbqmSlZSQLtXiX7lECHq0RlDFNx6DxQSolzHUf4xrx3Zv8KwbwSxho7nswtFExH1a9k4ZXb1zvM0dWQYdu7ISX4H3ycue+NYwE6tAr/Kyb025q+va0hz/7AW/llKgLFKNZcNIlKmGtm5IPveLQx+iFEI8BE4GtUsphIe9/A/gJ6k9eC9wppSxz3lvnbEsCiXRk/ggRIhwmmBRFLV429ntQt1vJCtgJJdc74b+U0aupUA2vXa/XOU+yXiVpP5uiOOk+hBQduXA45vq9ZJ26jtltSo+x5Ak1Jml7DbfNmP+E+xXrxuWyO0qShWMctUznWttWOAlQy7+SSdYbYxT+Tk86kawNcfEtza9qNUNF2IGPwVZyDCdc5Hn96+cclhj9E6gOUk+lef8L4Bwp5U4hxARUg29T5u48KeX2gxplhAgRWg9mAta2lTbLJQ+A0KJi0jM8FfM9Y5sCJwlqqlNiOWQVpwgppSOTqXuDP1xiQvPutayCSbUMSgH3Oll596AM7PCvq76sWo1y/Seo1UlMrR60QdVhLGGp0MxpN/mNbfEtnoF//a5whk/FfG/VYcb+w2Lx5j0vezU1X3IoDb2U8iMhxMBG3v/UeDkX6J+BcUWIEKE1oRUikSpR6FNZtOHTP6kiKV0tqw2P1okx9VywDG2bMIMmvGTo+PuU162lB5a9GlCzxOPCm55ykHcvLM8TD0oBj/yWx2Sxk2qFcNqNakVgShRL6YVmdBirbKoy4BsXqVBKWIjIDfHoVYhREfz4JV6x2WdTVPWsy/IJg6PqOfQKPwW0jcfo/wUwa6Ql8I4QQgIPSykfSXegEOJ24HaAwsLCDA8rQoQILoKNR2LZqSqLO9Y6O1uphqf4FmUATc8VvOYbZihGhyqEBWfc4efSa6z9EJ8IWJinbPLuhVC67hAiBezQQoNJZlCVq66BtlReoabCK67SbRPtBL62iaZWfliIR1+jbJq/olhPACmy0Ch5hTP/3a/h0+vkVhM4a5aomePRvx4Wozf2OQ/4G3C2lLLa2dZPSlklhOgJvAv8u5Tyo6auF4maRYjQipj9ALz3G3zG6oJfKgPz6vf8cgW5feGcn4Qb6DDogqswuqQVh1tn+IXJdNhFCNXC76ieTg4gqYzh+T/34vU6LBKcCOb/AxY/511n4p/CjWbJEx5vXUsNS1vlIG5xGDvu+Ru8cFM8xx+acYXIYioB3XuEWhlUlfqZPyIG337Lr7G/bYWabE67yQsD6ZXVQQiawSEQNRNCnAI8CkzQRh5ASlnl/NwqhHgZGA00aegjRIjQigh6mDGjarN6tX/f2k3+wqGmoAuBzBWDhhkCgoDoWEzJBgwcpxKtQW9cJz41O0fHssumKS15F0IZ3TB9d5O3brKCkvVKn0d3o7Ji0Pc0qPpMjS0YMz/1BlzDDH4FSivuJIFjqqdsmC5Psl6FhcCvmqlbOrbFxiNCiELgJeBbUsqVxvaugCWlrHV+vxi492CvFyFChIOE2Xhkz1Y4qofarouFfGim0FaQgXLL644Q2Ae4KwcdVzc14oMhlmCFaZgXbcUhKdUqYM+W1EKmzvn+GL95PSumlCKDqN1kaNWgkrFblnoGXEsvzPixN17dSMU8btTNfoVKE74CtTr48D/9k2GyoVUEzaB59MppwLlAdyFEJfArVOtGpJQPAZOAfOBvQmk2aBplL+BlZ1scmCqlfCvjdxAhQoQDhzYmT1yqDMxnU2DMvxHKDLHiqcbThBvzdwyglu8996eKI6+57dKGD/4A6z5SsfR4TmqVrR6bNtCzH1BGVidckxIGjFGyxHYSVrzlhWGEQw0NFifN+JG6x1gWnHixv52fukFP/sCsZD1VqFDLhrlQ8iQIoylKsg6ev1kxeszJymTamJ+Pb2KrU59F7cbA5xxSbZshNId1E9IY0vf+bcBtIdvXAiNaPrQIESK0KsqmekbYZY4Em38IJVtgGs+gXvonf/I8U60xo411/2KHw44671qDYZMI4cxr+OL34FEwbWV4XR5/EogpTzroYSe012zcIyitHlfPxznn3L8pHv6+amWQtedufhbBOXD3RqXW2Xs49D89vZE39YTG3+cwjT4IOaGgtRDJFEeIcMQiYFjiOaQY+XgnOKpXKsdbo+SJEPVK6b3nGvk0lw/jzIOfNukLJ4lwDZyd69XvOv+g+flBr7l2k2L/HDvQvz3Z4K0sPnvK49z7xpvGXG5erGoLyqYqwx68D/Oz21etVjqxrNTz2A1qQg2eIwOIDH2ECEcqRtygONyay91jCJ5JEHDsccoDHXGDMp6641JNpTJGuojJ12Yv5iUpg/owQUipPOfX7/Ibt4r5Klwjgh6uQ2WMZeOfpCSsnaU85y1LVbK032mEeshVC5UXvuML/3Ydnnry8vSMocIx4ecEZaRLnlDHm/eiJx4R8+chJtyvtqWMrzT1HBlApHUTIcKRCp001YnPLUvBetqJaNjKGL55tyqQMouJSp9UzJhTr0/1ts/8dy980fsUfzFUj5MU/33z517oIlnnb6EHXqhDCCCm9rOyvJ6q4MW8l72qjLwWLXvjB2oCsWKOUFgw8WoUTPmkGaTy5BMBppAVh5E3Qc7RSqjNPT6syjckce0WYk3z9q2Yr8adjtp+OCpjI0SI0IFhJj7fuifQUs8R/XrzbsV/71bg8csTdbDpc2WA3Vi2VL1iT7pUHT7378a5LBhwJuQdp+SL0xlI8EIdxFQ7v24FqUlgPebNi5Rn7EoYO+e1E+p6FfPVe1aWc50EbqNwMwxkJ5S3r4upYoGJ5fEJ/kmj+Ba10pn5K394Sko1AZksJPAoo59NUde1dQ9aC2JxlSRe9a5XH9DGK2MjRIjQ3lAxX1Ehwzo2Aa4+eud8w4O3lWG0AuGHRJ3fYLuwoeQx5/c0IRlt3DQzRQjFfgkr1jKTnO45A2PvcRJc+Gu/wdX3sfodpzF5YMIRFgw6118NO/sB/8rFDLnEOwUGZqtwlJZfiGWrlY8bp9fnCblWc0XSWoAoRh8hwpEMbTDXziIlESssT6Nm4DhHo8aEDGmqLVQMX1MJQxGI6Z90icfk0QVXOO39ZvwoPF5tJjmRRg9YB7rJSMFoxerR5x53tyr+0hr77ji0DHOW38iDE2fPcT4PJyRU+qT63Hqfkjq2ZL1K7sqkmjz3bDPi9FnG7zmp12olRB59hAhHMsqm+j15zSyJ5aTqwn82NXCwE3ZwQxHCM4KxbCVtrBtsrJrpaOCEMGZWv68aj4Ay6p+ZfPV6NcagMXTZOo5xHnOno9WTVEZ/wn+l57PXVAQE0mJOm8AkoSsas4irptKTaEjWqXzDWXep9zZ97pxD94B1zrfqXU/mOaixH5SDSEdhPUhEhj5ChCMVJU8oo2UatzP/wy+0pTH7Ab8C44Cz4IQL/IarpkL1dNWe7OZFMPFB9b42slWlqmuVmRTVnZ8gpPkHuIbTLDx68/95k4FMQl2NIW9gqFJq+Kpr42qCSiaUINrgr8JyJ4yTrIeX74Azv5+qOT/ubvWZCQHSie+v+UCpTt483es3a9tOItkJJ9mJ9Br7GmFtHSNDHyFChIOCpkYGOel1NXDRr1P3d5tnOMa1sgQunOxnl1TMV8nGpOPJfjbVE+rS+9VUODF407vXnZ9kapGSDsEEY/JmYtR2vOgwxUqNsmneyiUoVbBlqb8WYMdaeP37sPRVVcWrk7lmv1sXEhL71KqjW4Ez2diovrYx9bo5ydWwto4ZRGToI0Q4EhGqawOh3rMOOZz2TdVFymzBF2TCnHixagYO/n2CejUDxjoNQPD21c1A9GQijBCM2Y4vmMwVlpoMRtwQnsysmO9NJKA8+mBDcLNProZZxRvsdxvEZ1PVWE1jHSbvEAb9WTd3/xYgMvQRIhyJ0AlGMz4fy2F5r0tZ8spLXLX4Tiy7Hp9U7/j7FMskzOvUEsIr3/ZfR8fSfaEJCRuCFbOGrr2eTMALwZgerxV3RMQcueEwlUgz5LJutrOCcHDajeHJVp8swgFCh2dMQTZ93xphrJpWjs1rRIY+QoQjEKX2iXwx7G+MjS2lX5/+sK+a5Z1G8LXpDfyLfAs7Vo8lDCqlLt8PKktCeNclUMb49btg8bMw/DplyLR2TbBYqPuJ6ueIG8JlikHRFHVnqs1l6lphGu5B41k41j+uHev9+5vJ1i8+9nvyPlhG0taBplqaVa/BFYz27sP0glo5Nq8RGfoIEY4wlK7fyTcenUt9Iofs+Cim3DYGgAdnrqQ+sZ05DOV7sTgWCSynqMe2snip+jjqs3uzM3EFY+x8RukTpnRdMiFVQVHFfKOLVYhM8PaVyjDePL1pmWL5tFdYpAuaTASNZ9UC//trP/C6SgVx7ED4IiSMoznvWZ39IZzCMWq1M/QK9VorfJpaPYn9qjWjq8BpGPRWjs1rRIY+QoQjDHPXVlOfsLElNCRsXlpYyYsLK6lrsJHAQgbzjfqfcWZ8GdeMG0FW3U7unp/LvLk5SBZjCciOW0y5bQyjBuQFwioxpeRoxt9BGebNn5O2Sba0vYbfmveusW62J+2btL3jTaVME8Hx1H0ZvJjfc07Ru89S47Xi+Aqfzv2pxw7S2DDXGeMn/n3PuANfsjlda8Yw/f1WQGToI0Q4wjBmUD7ZcYuGhE1W3EIC9QnbZ34XysEsbBjMzi8L6XtMZ+YnVnhdYJ0JYu7aamXoC0bzTvEj7Fr2PscMPZ+Lu65KNfRW3GuA3VgFbpiapa8iN3ic8dqMgafw3gNjMa+T0jzEkF3Q73fOdxq1bHEkF5z8ANKYgJzxJOvVpBZM8IZV3YI/KWy+ziAiQx8hwhGGUQPymHLbGOaurWbMIGXwXlpYSUNCGaVkQIJdTwz1DbYK5AjIilvusVPnbeBns2LARbAF7j2tgBusHOJ2veLHDDjTo2L2Olnp12tmjg+Wir0HG5zsq8aVHdZFWbrXqw7dhCU1x92ttuuYvxBqRSFtf3vEYPgkLO6f0hpReFWyYd7/0CuUl++GtCy1UsgbkHrbhyAh2yxDL4R4DJgIbA1rEC5UG6k/AZcAe4FbpJQLnfduBn7h7PpbKeWTmRh4hAgRWo5RA/KUN46K2V89sj8SGNa3G5OnL6EhKcmKCa4e2d83MeR1yaZ8Y43PQZ6xZJPv3JMXdeVV8VPOii9n2JmXsirnZPI2ZrNz9WrGDDqRUf1Gwoo3DW/XKS6KZSkapDaW2uANHKfi4I3RFn0x8TovNBNa1RqIkwcVJrcs9YdS3ByECWfCGPnNVO/fjbMbdM7B42HVO6qgTCt1BnvntmJCtrke/RPAX4Cn0rw/ATjR+XcG8HfgDCHEsajWg8Wouy4VQkyXUu48mEFHaNsoXb/T9Ra1MYnQNuElZm2y4xZXj+zPtNvHpvz99MRQun4n975eTr0T259y2xgmDOvD7FXb3XPaEkrlYD5rGIz4EJJyBYAb23/l8hGcFKQzWpYqSFrxVqrBS9dH1gx1dM73zoWdqiAZ9O7DEp+LpjljehyX03/JA865Q5qQhHn/phCancCdEBr2qgkszJgfgoRsswy9lPIjIcTARna5AnhKSimBuUKIY4QQfVC9Zt+VUu4AEEK8C4wHpqU9U4TDjoMx1EHD4SbsIrRJBBOzZjgnDC8ZSVu9/3fPOwFQnn1Rn6N5Ys46GpyYvxkG0td4urIXpw37GxdtfYxumz4BaWPbku3yGHo6Bk+zfI5bv9PNAzTKPd9X7YV0hBMCevP/KQ0eKw4jv6WMcrrEp+u1G7F2LdE88ia80BFKhrnfqMaTp2ZeQWvlW3F1iqAxPwQJ2UzF6PsBFcbrSmdbuu0pEELcDtwOUFhYmKFhHVnIhCd9sIY6zHBEhr7tIpiYzeuSzQ2PzHFDN9NuH+sL8TxfUuH6trGYF6e/8YxCbjxDfW8L87vy7IINfF5Z47uWcI55vqSCaXYOo+MX8c+sBWDX00CM/1g6hMmX/5PczXO5e34u8+flkF06N/UZ9PWFdXRydLcsbfy3rXCE1lAGu+RxL2QS1qN24DhliHVVrobtsHzM0NFZdzVtjH15BVQSOpbl9LYN6S1rTmStgDaTjJVSPgI8AlBcXJym9UqEdDhYA60niY279h2UoQ4ajsa8wwiHH8HE7IsLK6l33PD6pOTFhZXu33/u2moStnpPANeM6p/ybJSu38nk6Uvcc2gIATeMLmR7bR3vLt2CBBYkTuB3fe6jy8Y5zEkOpYwTeKqyFxU7LmJew3bfqsF3HccoS0dTRy78J9aIGxSlcfFzqrnJrgpSkKhTuvth+u8AuuuUyabRCV/deLy5cgad89Xk4DKMnERtt/6HRJY4iEwZ+iqgwHjd39lWhQrfmNtnZeiaEQwcjCdtThJxSxCPWSSTLTPUQcMRefNtF+YKUIdfXlpY6dtn/tpqbn+qhB65OeTmxLGEUmTU8fwgzInChCW8RK9+17IEVUcNZ5bsRRJJzBK8UFpJImlrnkr4M1gwmm0nXM2xy6cRE5JkMsGud+/n2A3vqPd3b0xzx4baZLBS9YQLHJkEzfM31CedazZpoMOqYTeX+RPMrVQQ1RQyZeinA98TQjyDSsbWSCk3CSHeBn4vhNDf9ouBn2bomhEMHIwnbU4SSVtywdCe7GtIMmFYnxYZapPREaFtIt0K8KqR/Xm+tNKNsa/e9iWrt/kLjiwBt4wdGPo3TtM6G9tWMXy9IgBIJCXvLt1CVtziutEFCGDa/A3YUl3jrBO6c9eFg0Ov82Hni7iUF8iSCRqIU7+zqtH71VcVSOXZL3vVCP/UBbpNCa+wy042nwUTZM/sq4aJf0wvtnYI0Vx65TSUZ95dCFGJYtJkAUgpHwLeRFErV6Polbc67+0QQvwG0DXI9+rEbGviSGR9HIwnPWZQPvGYmiQsSzBrxVYStmTBuh0M6Z17xHyGRxLMyb2uQTFo9AQ97TtjeHDmSh+TxoQt4dGPv+Ciot4pz4aeKOoTfgmBWEwwYVgfFqzb4fLxtVlNJGzXd9aryVjMouDYLqzYXOtLEOvfjzvtPG4t/QWjZDmlooj7hsfh0595F3Q0aKRMej1VNI3esrB08ZbLrzeonkMmwOr3DpwFk44908rx9+ZAyHSdyA8jiouLZUlJSYuOjVgfB47S9TvdBJwl1BdZAjEBP7x4iLusj9BxULp+Jzf8Y65rkLNDEq83PDInNAyjceMZhfz+yuGh535w5ko+XrXdDYLceEYhv7tyuKJnvlZOmZGotZxlgPbkiwfksahiFwlbYkt1fFZMYAPJpCQWE5w3pCcC6J6b43L9KXlCdafK7QNnfR+AxW8+RFXFes6LLSJGEonF7MH3cP43fuyLp9szfqJCN7EsrFteUwNqygvXip1aebO5fV9bqTesEKJUSlkc9l6bScZmCgcSqz5YGmFHWTXoJJuOTsYsgZQySqZ2YIwakMc5g3vw7tItgAqjPDhzpRsqGTUgj2m3j+U/Zyxj/jqv7MVswf1CaaVnZB3o74X23nUo8Sojnr9s0273d0t72c5rW8KC9TtVLtTZJsE34eiQD+DPFRTfAsW3qDGsdlYB4x/gPx6Zw7D6FYyxllEiivjJ2Tep/QtGU2qfyMMfrmHH/p8ymqUsaDiZKzf2VgyioKZ9kMf/xKVeIdXCp+HWN8PlDIJJ30MgSxxEhzP0zY1VBxOQ1xYXcNXIVBZBU8d2hFVD8DObNLGInXvrD3oS60iTYUdD6fqdfLhym/vaBj5ZvZ0F63a4z/OoAXnkZMV8x/U6Ooctu+sURz7pd6T0KkE/R5MvS32Ogsyd4f26+bx7UIY/bglsqTx6y9nZDllcBJ0587tpCcG9Vwxj2u1jeXFhATVcyE+cSeGvH6wmr0s2k18rd1Y1J1KCkkr+7NUlvpDl8gUzOX7GjcRlAyKW43HezWpZu8Hx7kkvT2zFoPdwQ6CtXh1zCOL3Hc7QNzdWbXr+9UnJ1HkbeNGp9GvKKHU0rnhrMGU62mTY0TB3bTWJpD+ObqpZarmDzgFD/7VT+7kFUaYjpUMyOhRUn7Ap31jD74zQTun6nZRV7EIIgeUwd647vZClm5Tkgka2MUnkdclm5956FlXscr14ExJYVLGLUqewau7aaregy5aSSa8u4dk7xrohJvO5FPgLurzPQbrf6dL1O/nwtef5D9GAEDYyWY/QhlmLm7kQ/mbryXp/0jeZVD1zQVE4rZjqTKUll1vRu+9whh6ax/rQXqx+KLSCn7l8berY9swVD3rbmWbKdLTJsKPBfIZjlgAh3CTo8yUVNCSlG1+3BAzqcRTfPus4bjyjkIuKevueHW089zf4J46ttXX89YPV7vfDzAnEBEyaWASAbXj4x/f0rmOidP1OPlyxlYakRODvA/Xu0i18sHwr914xjLwu2T6xgqQtfc+e+VymQ7bxnX5xYSXLG07izuw4yATSirOm0wjeW30sl479DQPn/NLh22erhigzfoyncRNLo9jpqFjmDXS0d1q36Qh0UEPfHGgv9sWFlS5315bw8Sr/8rWxY1szLNGaYY9D4W13hMmwI2PUgDwmTSxixpJNTBjWB1D0x+21dSzbXOvuJ1GhlHXbv2RI71z3WG3g//rBarfIzkTcgg9XbuO9ZVvIjluMO7GHbx9bwpKNNTy3oML1qiWwZuse7n29PIXtNWpAHpMvH+aTWdBOGkDCVt77dacX+PIIMUuQ1yXbDdVU7drnMszCbH3MEkyaWMSoAXlMnbeBZxdUkJRKn/+s+DKGj53If0xvoD6xgv+ND+KVy5/jpP1lXrMRt3G4UD12i29RKpllU/3e+7kOy7wx7Z0M4og19OA9sFeP7O9jCTTHA21NrnhrG+JD4W1HhVNtG6Y42by11SBEWuMHypCaVbLBHFfMEtiOxY4JOP+kXsxctkWFRhts3l++1Xc+S8D22jrsAOtPouiedz+3iNu/crzr2ZvjXbBuB5MmFlG+sYZn5m9wJwpbqlVITpalQjNCMLLwGFeN0y2DCpD9NdNMDUCyc289U+dt4BevLHa3L5SDGTryQlbldKauQWnz1zfYvLdnICedd6F3Mp/csdMD10n6fpH4imrdeOrFnud+CJqOwBFu6DVGDcjjrgsH+1gCh9MDbW1DfLDednNXG1HhVNuF7xlLSmSIie+em832Wi/h+HxJhcuyCRbZDevXjc8rPfniHrk57jMmhEgx6LaEWSu3EbcECVuFYyxLkHAM8rrqvfzs5cVsqP6S3M5ZVAWkOZZsrKHfMZ35zrhBPPrxFyRtiSUEw/p24+qR/XlpYSXPl1SwYN1O353pFYqGAC4Y2ovZq7b59H4mvbokJbxT1Lebew5Q4aO8Ltnu9yGvS2+ydR9ex5iXrt/pjiVhO60bTznRa8N4iDj2kaF30JY80NYOe4Q1ntCx1KbuO0qydgyYz5gQEIi8ADCyIM/VpQFFa9ROR/AZve70QlZsKffRKa8a2d9N6mpvXBtPCSSSNjeMVh2s9HN493OLWFe91x3DI7NVC754zHKpmELghluz4xa3nX2ca+zvfb2cKbeNoe8xnV0vPh0Eyvv/13OO51/POd79PsxdW00yJIivJxe9ArCE2mbemyCHrNhIrk10pmjjBu59vdwXYjKT3YfSzkSG3kBb8UAPxaRjxlkPxHBHSdaOAfMZK6vYxTsGo+WYLllcX1xAYX5XZi7b4nrAptMR9owO6Z0bqmNfun4nV43sT3lVTaBQSlDUtxs799a7+97+leP52cuL3X20vdVV26AolwlnZmpI2JRv2u2GbfQzGUzKXnRyL47v3pVHP/4CW0riMYtrRvX31QHosW7ctY+smEgVZiOQxI5ZlFfVpExgmsUXcyiihrCCm+xO2PKAad0Hg8jQt1E0d9I52KTtgRruKMnacaD/zn+audK3fdfeBh795AvFbtEEEgGTLytKSZA29hoCsfyYRXZMhWcsS3Db2cf5ullNvnwY5RtriFmqBasZO5codk4w9GJZIqU4S3vlpud9asExfPe8E1zGkKZtphurZQlfUhdU6EZPcDocE6wB0NDjVedRP0/uczS9ju7k5S6SkikHQOs+GBwxhr4jFu9kIoxyoIa7LYW4Ihw8zAImE4mANysdlkxzQ3zm+d1YftLmeiNUE5RE/uWrS1xjrq+pIVCMmKTtD8fYtmRI79zQZzLsudbvhX1vzLHKkLCPufKYu7bax/0PQgDZWZabNH6+pILFVTUs27Tbl7gGRetu7ZXxEWHotUGsa1Cc4XuvGJbC022PyEQYpSWGu62EuCIcPMyJHvwFRKZHHbPguZIKpTVjwXWnF/pCDqYjBZ74WF6XbCVt7EhqmMc8/OEa31jMuHjQm7YE3Hb2ceyuSyjKo7OvLXG7XAVXF+me63Tfm2BtgQTXmMctXJrmmEH5jBmU74qkheGU/t2Y5KyA/vrBale3RyeuzZWADgm1Jo4IQ29Wy2m+bUdQZcxUGKUpw62ZAxJStE0itG+YBjGvS7YbSrEEfGfcINZu/5K12/awL2FTtXMfoBK3ZsgB8IVnkNKNQeMwbiyDn67RPTfHNxYhlNGLxyyG9s71sXiSEp6Ys44pt43h6Jw4D32kkrQSqN3XkPbewp7VMYPyiVuChqTSwE+Xd1ixuZZfvrqEpC1J2rh0y3hMcF1xAZeP6Msri1K17y2Ba+T19bLjFvUNioE0dlA+yzbtdlczllZ1a0VYrX6FNoAxg/JV9Z8DXeLcXqELVQCm3DaGH148pNVifFq/ZMq8DUydt4HrHplD6fqdzRpfU/tFaFsY0juXyZcPc73Zxz75gvdXbGX1ti9dI29CM0genLmSugbPQ65PSpe22aBDIQ4/3cTVI/uTHfO+l9o7PndwD647vZCcLMunb6+979zOWb7tj378Reiz1uhzqMn0AVL9qAF57upg5956tLqvklRQ+ySc2PobizcRC7GgQZ6+Lk6znNDTox9/wakFx7j3YNutb4+OCI9+1IA87r1imMONlb4S5/aGsLh8a8oI62WuRiIpXe3y5o4vWgG0PehV2tbaOj5cuc2lKl41sr8rJtYUPREBzziNQiTKa7ScZCtoJVT1SyxmsahiFz9/ebEbvtHVrj9/ZbFr5G0J7yzdwkertjFpYhFLNta4VEohVJXrkN65xBz+PaTKHOj7S/ccap0fSaowm4kxg/LTNlIBXDmGIJI2vuIyUPF9zcBJ2JKS9Ttdwy9RYaHWxBHh0YPSw372jrHc3Yre76FAWHwRWs+LDq6GgEa//OnGF6HtwFylvbt0i+/vJVBJzJhQGvCNwbZVSEVXnJ51YneuKy4IGD/BBUN7Yds27y7dwpR5G/j6w3OYOm8DgOM1p567PmGzc289v79yOJMvK0IIZdgnv1YOqHi9Rpih1OFa3VjlwZkr3e+GDqXERHirQv1dWrG5luN6HNXk52nhaeprbK+t871WMX0zqoAvz/DLVxa36gq4uR2mxgN/AmLAo1LK+wLv/xE4z3nZBegppTzGeS8JaGLsBinl5RkYd4vQEZKIYXH51vSiRw3I4zdXDOOXrywmKVWDirBeoY2NL0Lbwty11W7yVUOzWrbV1vGVE3sAyoDOW1vN7v2J1JPgn/BjluCuCwcD8IyRLJVSsq8hiSmUmTTyZKq7mUhh+djSM97lG2vc89UnbO59rZxh/br56JPBsJDJo5ekalilS9ROnbeBSU5cPjj/+KQSjHPHLMFphcewwNDtD+YfAI7r3pXVW/ekfpCoCTO4CsgkmjT0QogY8FfgIqASWCCEmC6lXKr3kVL+wNj/34HTjFPsk1KemrERH+EIe0j/+sHqRtk3B0stvfGMwtBimOaOL0LbwphB+WTFLZ+S5AVDe/H+iq2+wqkwaDaMnhg0V/zeK4a5BUfCMJExS9A5K0bM8lff6jzZd887geuKC5jiePgmlmxUzJSgwS2rVDTFdE3sS9fvZMaSTT7mjllMpR2+4HfkxYWVPkaPhoVardx14WBeWliZMlYpJYN75VJWscutCTCdIdMRa+qzbS00x6MfDayWUq4FcBqAXwEsTbP/DaieshFaCcGHtDEvOlPe/oGshjrCyqkjY9SAPCZfVuQySnT2MNkIL3xgfhfGF/X2adGHNaiZu7ba5/WaDcBPL+zGwg27kIE82VUj+ytOfUA+WHewunpkf14oqfBVqiZtyXWjC+jncPKDYmuaZaeNvUV4mEYfY0ooB6GLsvQ1zLHq85qSD43ROdPBEvi6cGUazTH0/YAK43UlcEbYjkKIAcBxwPvG5k5CiBIgAdwnpXwlzbG3A7cDFBa2D457axVhHeh5W8IZjnBkw2SUJG3Je8u2EAsJoYCK2T/w9VMZNSAvRYtewxP2ynaphMEG4OcO6ck9E4aGyiSYcgxaX0cnSr973glMu30sD3+4hvccSYasuMUwQz5BQz/v2sgPcCao3M5Zab9PLy1MbWauYQlcDR1NyTbpqOZEZ8bYze9wsPdFGC4c2qtdFUxdD7wgpa/tygApZZUQYhDwvhBisZRyTfBAKeUjwCOgmoNneFwZR2vFxVt63sY4w1HMPEIQYwblYxmqklLCdcUFKXo0J/Q8ikHdu/LiwkqgaZmDbMfTn7Fkkyv7DcorzuuSndaB0ee9781laoEhUz3wj1ZtU965Jbhl7EBXTEx/TwBXbz6RUBPNhh17eeyTL7i2uCDtZ5HO2OjQlA77vLiwMm09SVC2WaJWM1lxi2nfGcOU28akNEUHp/F53OKOc45PO75MoDmGvgowP6X+zrYwXA9819wgpaxyfq4VQsxCxe9TDH17Q2t5ypk+78HEzDuibEQEBR/l2JbEY0rbxVShjFmC9dVfugnEF0oqmHb72JRnIfjM7txb78p+696tt519nGuY04l5TZ23wS2EAhhf1NsXEvIUIiXlm3a7r+sabB7+cA0frdrmnn94fyWbnK5VqPlsD3Pkh00I4PyTerryxTFLuJ23wj6LVNlnhfqEGtsjNxUz6bIit6euZQkuO6UP1V/W+8JCrYXmGPoFwIlCiONQBv564MbgTkKIk4A8YI6xLQ/YK6WsE0J0B84C/isTAz/caC1PuTXO25KYecSH7/jQSfYXHYGuqfM2uE29yzfWsCTg3TckU/nqkKroWLVLFVeZDkZzejTPWLLJd97pZRv51tiBKfIEWXGLCcP6MO+LHW6Y5j1HKEyiQi09j+6ExBu7RE0ILzkrE/PZHuewjExkxQQ9c3PcPMTGXftcSmjYZ9GYlMR7y7a4PW2nfccL+5iNVFq7Ur9JQy+lTAghvge8jaJXPialLBdC3AuUSCmnO7teDzwjpY8VOxR4WAhho/IW95lsnfaM5njKLfGI2wprJYrtHxkYNSCPlxZWup5qfcJm1oqtfLRqG3WBHrBZMRHqeOhnVis6Tpu3gecWVHDvFcN8xXxhPZp1ncXctdUU9Tma2au2u/tLR8dGOyrBHgqmTIKmOUpHUyeMwSJRzVP0tfWzvXX3ft9+J/Toyvode92Jb9p3VFjo+VIvlq8/C/M7rsdXu6+Bhz9a6xNnC7J9gky5FxdW8uLCSgS0imxxs2L0Uso3gTcD2yYFXk8OOe5TYHhwe3tDOoPdmKfcmEfc1ATQFlgrUWz/yEEwRr1l937XU7aA4f27UdSvmxuXDnt+Rw3I86lRBjWltKF+6MM1vOtQOG2pdGpcaeCAdY5ZfrEvfZ6wZuQ6PJTbOUtp9jiFVTj3oCeDpNPNKtg0Zdlmr2nKoB5HsXrbl4CaEF5aWMnvrhzOtO+M8cXoIVUFc8ygfL7x6Fz32gKlYmkKooUJqD1XUuEmwp8vrWTadzK7gj4iJBAOBi0NYaTziNtLSKStrCwitD40fVFzwIPdoiZdVgSoZ3rF5tqUJKh+rl8orfSdV3PlzcmhZ26Oj/JoxtrDWveFPXe66tVE0pau6JmWONAY1PMo1lV/qZQ3Y+FUSLNORCeeNfSwgg5YWP0K4E2SAs46oTsThvXx6e7r2L4ea0pYqBVW0JGhbwIHGsII0syCHnF7Com0hZVFhNbHqAF5TLt9rC8sctXI/m4YATzPVeDFn83nN2hctdccrNyOW4KsuFfoVNTnaD5dvZ0wjE2zitSyHKaOvhmDv2pkfx/Fc83WPd6qxYksm892cIWyYnOt73rBZG1T3/FspxjNEop/v2RjjU93/ycvlPGf14xwxzB13gbfqiqeJkR2MIgMfRM4kBBGGM0sWFAShUQitEXo59NrZC1dkbN0BT/CEpRV7OJnLy9mWN9uvlCEZtUArrqlDp3oQqfafQ2q12sIv1EAuZ2z0o71trOP8zF0QBn7afM3UNS3G1NuG8ODM1fyyertvnEHBdDCelXs3FvvW3WYXP1033GTOjppYpEro3Dv6+WupITG6m1fcsMjc1zP3ryeAK4tLjg8MfojGWEhjHQx9jCaWVBZMgqJRGgrCDYLMStKwfPY0xX8JJPSlUyIW3D+Sb3onpvji+Vro2hWp+r49nUPz/F55aZxjccEG3ftc9kqQeyuC9ffsSVMenUJz94xlgnD+jBnTTXSUY20UAlb87xhvSpuO/s4l0MfjK8Hv+MfrNjKF9u/ZK2zasjJ8hRANf++e26O2x1Loz4pXW2bMYPyycnynL/GtKRaisjQNwPBZV66GHtzvfXWCIlEnPcIBwJd9q+f1WtG9XcNMniFPNpT9UkGJ/xVr6B0bN5duoWcLM9QmUZRx6vvunAwowbk8bOXF/uMfMwSXHd6AcP6dnOvM21++n6qjenC2LZ0i5uStmouortTmeedNLGIjbv2qepXZyhaL143SwkWZk2aWOQ2LQHcxLJGfYOdkuy9emR/hvXt5klOONASD4fC+YsM/QGisRi7/oNpmtShwuFK8EaTS/uFWfZfn7B5a8kmYpZA2Cphec0oZZyCiderR/bnwZkrfVWvGpq2+ODMldx14eAUx0cb+WDiNibgN1cMcxOiAIlk43msq0b2Z5qjhW8JKHbOK6ViuQi8pKiUktzOWeyuS9DgbKtvsN3+FJYliEm1nyWMvrRS8lb5Ztfjb0jYlG+sQZfuhokmWJYITfbqhK9ZHduYFn6mERn6A0RzvHb9JToU3d0h8wne5hjw9sIeihCOoJHe8aVqx3fxyb2445zjQ7neWnfmrgsHu8VKoNv/KQNpS78kcJinaiZuBXD9aFW4pVcY8Zgg7oQ6wkT65q6tZtWWWjf2bksYWZjHTwwdHVDiY/p7mtclmz+9t8q7b4G7ohC25LrRhfQ7prNXyOQkctdX7/WFnZS0gaOlE/gQLXBVPAF3UjNplWZ1bCymxvXzlxf78iKt8V2KDP0BoqllVnONbia94UwmeJtrwNsTeyhCKsIUIQH2NSTThiLNWPU1o/ozzWGLWEIlECt27HU9/boGm4c+XMOpBce44R8gtMr1qpH9fSuMhqTk4pN7MaLgmFBlyvqEndKs5K3yzdxzyVDfMxiszDUnFx+E4OgcZQqH9M5NSeSaYSdQjpwe+3hH5K3w2C78ZIL/+kG20bXFBRT17eYyf2zbZvJr5e4qA1rvuxQZ+hagsRh7c4xupr3hTMb4mmvAI/ZQ+4amVD784RqfBv2EYX18+5jVnppJomPeYQnEeWurqXe0Xt5duoWZjhIlqITtdacXctXI/inPa5C73j03J4XIYCZOgyg8tgvgpz4GGW/6eRXCnxhN2pKHPlqLQCVTp9w2xtXqCYadwJtATBmDXSENys3xatkHkxaasEHYqXmR1vguRYY+w2iO0W0Nb/hgErxT521gxpJNTBjW54ASyhF7qH1j1IA8Hrmp2Pf3v/GMwpR9wM+QSdiSf3z8Beef1JOeuTkU9e3mPgfXFhf4eOHBhO0UQ+PGNOTD+nYj5iRF03Uxq93XkFZp8tM11Uydt4F7Xy93jasl8DlSpoGePH1JympGx+F1iCrd851OxiD4PTa7XOnzB5uaxGICaeRFgqqYmUJk6FsBTRndtuQNT523gZ+9rDo9zl61nd9fObzZBjwqqOoYMDuIhdEZ566tduWMNZK2ZObSLWTFBM+LSpc/rz19FeOWWJ03EOtUgYjVIZM5JPcX0LC/0Kdxoz1jHSb59lnHpYyhdP1O/jHbz5s3YUvJjCWbfMwhrWypaYz6nC86MgYaJq3zQL6P6b7HelVR5TB6tG0X4DYEB3Wv1xUX0DfQPKU1cMQY+uYmGA+Fh9qUN3wo2SxBxcAZSzZx4xmFkQE/guCLJYd4lul49BItyet5+o9+/AW/uvwk5mx9k8/3vMKehl0k7ASIJMgYEIPkUXxRdwP/+2h/6hPCx3SREh79+AsK87v6Qi8vLawMLawCrwp3wrA+ShrZSaTqMWoaI6TWClgChvfrRs+jO9EzN8cVFEsXXg1+N7WYmz5f8LPUSeWYJTh3SE/eX+6FyeKOHEPEuskQwqrfgkvUTMXNm2uk03nDh4rNoscZVAw0Y7QRjgz4JIQTNtPmbVC9UZ1nLxj2KN9Yw/MlFa4BS0ovJJGU+3l09Y/ZJzawL6HkioXlXEgkgSRYO3hn8z8QffpiV9wKdg5CuDlKt3m47bQcnDSxiOdLKlIHjr+fq6lZU1axy809aGGyvsd0TqkViMcslm3azeKqGrcSOPiZmDo2YclV3VrwpYVqQtHHJZM2Fwztxb6GJEV9jqZ80263SboArhl1aIw8HCGGPqz6Laj/nIm4eSaM9KFgswTH+a9fGUT5pt2hMdoIHR9Bj13z4YM1IuZzqPu8CuDLugSvLtqIJEmnwsepbqhEWOGVqxpS1BPrXEnngseRm+7glrHHq0Ilp9m49vAbEjYzlmzyFVdpCBRn3kyU6nHe9+Yy377PLtjAvVcMJx7TOjSqfV/33Byecfj45vctLCwTpqkvwF09NCRsttXWYTk8+1jMYtaKrTQkJbNXbfeFiLKdwrJDtXo/Igx9UATJVNUz9znYuHkmjPShiN8Hx5nbOYu7LhycNkYboePjqpH9Wb2llvnrdgIqrpzXJbvRY15aWOkLg2Qds4BYTlWTRl5DWAlinauYcFYV94yf6Paj1Ro4tsOj1yGZYOjoIoPzb6J0/U4e/fgL37akDeUba0g6LrUtYdbKbUy+rCj0+xYWXl2xudbffpFAPYKAWSu2uiudcwb3UD1unbd1gtikah6qWpRmGXohxHjgT6jGI49KKe8LvH8LcD9ei8G/SCkfdd67GfiFs/23UsonMzDuA8KoAUbbtEAHenOfg2WRZMJIHwo2Sxg/Oip+OjJhru6C/PJnF2xI2/lIOwueoZNk53+IiKXSDBuDsBr4aOtzSHm7e50bHplD0pZYAiZNLHKTxWZFrgWMKDgmdGwvLqxMWQFkxQRba+t8cf56R49K97gNtvQLSp+ohLEy4kKQ0ki9a3acPXWJFN17nTPQLCC9AjFZO2ZF8WFh3QghYsBfgYuASmCBEGJ6SKeoZ6WU3wsceyzwK6AYNaGVOsfuzMjoDwAms6C1Gn5kyki3NpslOM6o+OnIRTplSoCyyhq+8ejc0IlfOwvaiMU6b0DEv2zRGOpkDc8uns3iNXkuDx8U1XLJRiUXMGpAXgq3Pchy0a9NeQUdornjnOPdNoIaMadhudnSD9Q1Bf5OT+bnFENy/km9eNeoEQCo3Z8gZuG2NNQrBq1uGaZkG48phytYUXw4CqZGA6ullGsBhBDPAFcAzWkJ+FXgXSnlDufYd4HxwLSWDffg0JgBzVSsrDWN9NR5G3h2wQZ6Hd0pdMl6IDDHqZekkFpyHqFjI9jpKCklhqx8SqxeI5ignba8jC/sZIvGYJPk1++8zb7tZ6a8Z64yRg3IS/G+gyyXob1zfRWwN4wu5HdXqiZ3QZ3575x9HDv31vu86l+8vNiNuT9XUsG1xQVcPbJ/yiq4R64/gQxKAqeobzdXy8ZUsNX2xcSKzbUkk7YvtHM4K2P7AWbKuxI4I2S/q4UQXwFWAj+QUlakObZfC8faamgPui0m3x1qeH/FVp41utC3FHpJquOKkyaqbkKmPkeEjovg6u7FhZW+bkeWSN8EQzsLpet3suaTaqxjW2bopUyQlPtStmfHLYr6duOvH6wmr0u2p56Z9LxvzZ3XhlobWR0mucpJeL64sJLyqhpfQjS3c5ZvZSKlP+bekJS+/rfBnrUvGjkKHaY5rntXdwwSVeQVZl9AySmb0Z/2UBn7GjBNSlknhLgDeBI4/0BOIIS4HbgdoLDw0DI/DnfoojmriSDfPZFMTSi3BGasVUrJko01oa3iInRcBFehWgMnJvwiXUGYhUGJRDbZMuZQKA8UcSw6+bbEBHz7TE8iOBhaqmuw+cUri33FSC43HsWNL+rXjRWba1OqYPUk4AqNOY1Cwpg9JlPv2TvG+qp59eqiqM/R1Dqx+fKqGt/x5Zt2k9s5K5SqaRahaZnmw1kZWwUUGK/74yVdAZBSmmuSR4H/Mo49N3DsrLCLSCkfAR4BKC4uTlfp3Co4nJWqzV1NTBjWx8d3z1S7seC9CzhkCaIIbRROGE/99MPUktFGOB6zEDkFKK7GgRv6uIixf1+q5IHZTzYIXVwFysgf3/Movti2BynVd2PZ5loWV9VgCZFiwE1dfFAdpIKVv0HYgc5UU+dtcMkd877YAVKScKihJiYM68OQ3rlNthy8NyDTfDhCNwuAE4UQx6EM9/XAjeYOQog+Ukrtcl4OaBLr28DvhRB61BcDPz3oUWcYh1O3JbiaeHFhZeg4NL89UzF6jeC9A24ByMEkiCKt+vYF/fdaVLHLVZHUhUuaeWM6JZpmqAuDris6m/f2vMBeue2Ar20nj6Jhr38VL4SgqM/RqtLVeRYFyhs/rsdRvj6wloANO5ScsBBQmN/VfV8GDHhWTPVxDapp6mYiJi/ehOlYla7f6VsBNDifl0RJHl98slckpdsQhtkXM98wpHduq4aPmzT0UsqEEOJ7KKMdAx6TUpYLIe4FSqSU04H/EEJcDiSAHcAtzrE7hBC/QU0WAPfqxGxbw+HSbQkmw3QMMuyPfeMZha1S0BS8dy3Tqqls6cJZ6Yx5e8h5RPBg/r2C3rNZc+Jj6EjtvUqEEAzrdwy7tlzFR9sfOyCKpbSz6LrvImoC5E5bSh775AvOHdKTHrk55ObE3c5PG6q/JCtukUiqCef8k3r6GDCrt+4BVAjHLL4COLXgGN9K5JpR/Tk6J07Sic/HY4I4WtpBQeDv4xqkb1qWUIJsDu//jnOOB1KraE0Wj86N1TXYzFlTzWmFx/ganGQ6fNysGL2U8k3gzcC2ScbvPyWNpy6lfAx47CDGeMBoT96k6VFv3LXP7ZpzOGmOjVHZNBoz5oc75xGhaZjfkXQUS51gHDMon9L1O9m4a5+vIcj4ot5ML9tIwmmC/fNLL+HDqrehU9OVsQDSjlPYdTA3DL2BX1Z4lawC3OpTsz2hu4IwGoyPGZTPis21Pqll8AqTJgzr44vRL9ywC+mcpz5h+xLPoPrg3nBGoauRk0x6mvk6qfvsAv8x3zn7OLfYS9scH0feqaI1GxEFq/UXrPMY5zErM2FZEx2uMrY9epMme8HsinM4aY5NhbN8WtsNfmPeltQ5I6Qi+B2ZNLHIjRfb0mnOHffEzQAfhfG60aq36y+NZGh9g83ufTaPXPwQP5vzfWqSX5CkPu0Y4iKHQXlDePrSf7BsYx0Xn9yLLbv3M3ZQPk/MWZcix6C8bcvtzHR1gOOeohIphCvpUb6xxpVOlk4cXTcMD0K3AtTQfHr9GQSrcwWKvRNcFYfJSgQlFsxqffN85uohU+hwhr49e5OHM1eQbjzpxmBqbdv4y+Xb2n1E8MOn2dKgtGRuGTuQ8k27ye+aTfWX9T7dI9M7TSZt+h3TmSUba/zUQIH7t5553DReWfUKjy15jOr91STsBAk7QdyKE7fi5HfK59vDvs3XTvwan1fs8U86lxVxUVFvHvpwjdt425aoDlCOcU4mbVZsrg11LIQlsG2VGJ38WjlDeue6ujza8Zg0scgVZjNDNAC3nX0coKpzG5KSrJhw+7/6K4EV0jkyms3z7IINlG/ajQy0RTSr9XVoyaSEZhodztC3d28yE7mCQxG62rm33vWiLIGbdNI4XDmPCE3D9DZtVB8CU3RLAAvW7XCTsHldslVBnfSMVbDK9IKhvQCv/uLaIddyXM4FvLr8U7rkbuTYoyRds7oyrPswRvQYgXAYPWGO2XfPO4FTC47xdad6ZVGVr2LWTBKbjkWYauXv0vRYuMppdK7ZbJpb/+LCSvda9UnJi44qpZlL07mDdDLDOgbv5gJGp1Inh/TO5eunFyBQhVbBytlMosMZ+rbqTbbU+DaW8DycidD2PqEeydDe5i9eWeyr7Ayr0ARcjRfLKajTz9NzjkccswQSuOEfc90E6W1nH8djn3xBQ1JgiX785mvDuXFEKpEg3XM0ZlA+WU44CWDz7jrfcUlb+qi/+p9XVKiwpKrGFeoLq+4Ny0U9/OEa336rt9Qyd201kyYWNdsYmxOYXgWl+57GY6rpeGtx6KEDGnpoe95kS41vY80PDncitK1OqBGahyUba0KTr7pqNEyaF6Rv5Sacf0lbumEWUIyZhz9a604cSQm/eHlxqEBauudo1IA8rhnVPyVZqrk5knDqb7Dp+eKq9Ho96a7fIzfHt0/phl2UrN/Z5HfXdL6acoSa6gGQaXRIQ9/W0FLjm+64xs5nCiXFYq3rabe1CTVC81C6fmdKI4+vnNgdCRT1OZrczlnkdcl2JYP1hGBKF89dW03CDk9oAinbbXBb+gVhkhFM6Y2rR/bnhdJK16vX0BozElUhe/dzi7j9K8e7OYVriwtYUlXD4qqaZn3ngs/xVSP783ypiulbTsy/KdpjmPPVmCMUlqw12x5mGpGhPwRoaZijsWVto+fT6/Emqv0iHJmYu7Y6RWL30zWqL+yCdTuYNLGIya+Vu4ZOw8LLxehncH9DWHlROASpSpPm72Gr1GnfGcPDH67h88pdbNld5+YQ4gY/fl31Xn728mI2VH/JE3PWKcllIbBEy/Rj9HXNCuCmvrvpcg2NTS66DeGzCzaQsP1tDyPWTTuDfrAPJL6n0diyNp23YHpaSTszejgROhaC8W9d7KO91mcXbPBVx8aEbpohfOyqq0f2Z97aalZv8+SJ++V1pmqnJ1Cmp4ksR6BMs1liMYGF4pBrpkm6VepHq7a5nq9mpkyaWMQjH61hXfVe91pvlW/2FXTFLMF1RhK0dP1Ot7+raUynztvgVqgGCxKH9M71qXS+tLDSTc6G0SkPxJkzVxJTnBBVInn41CsjtBDNjc03lqhNFx5Jt91V43O8mqa6BB0M2lNhWgQP2mPVRm9Y324+r7XX0Z2AGnf/wb1yWbV1D0mnMApwGSVCCKXBbjvGvM/RPkN/0cm9GFFwjKuMqWPn5oqiIWH7mnQIIajd18BfP1hN1a59Lq3RIlWnxky+ji/q7VbPguLM9zumMwDfeaqEmcu2uIvcF0oqmHb7WFZsrnXPodk3phyB2Rt28mvl7gSoj2+O89UYStfvZFutl2huTmevliAy9K2I5sTmM82S0YwKzc+99/XytF2CDgbtsTAtgoego2A25QF4f/kWdGh85dY9vji1KQ2MVB7/jWcUUtS3G0s21pAVEySSnhyAvk5K4w9npSCEoKhvN4r6dnOf24c+WoslVJWowOuzahp5U/+p59GduKioNwAPz16rxM2c7mnXPfypey8aDY76a1Aj/pGP1nDmCd1TqlqDxU0NIeqxB5qz0t+hOiP8ZYbHMgmr6V0itBTau46J9HHCsMngYKHV+II0uZZAJ8hK1+/0bdda3Jkcd4TDh1ED8tyY8qgBeVx3eqHHcHHCIPo5njCsj8uDV+8rgz35tXKmORWoN55RyLTv+Cf/qxwuuvbevzNuEAIVvpk8fQnlG2vc5xaUd9uQVHIFQWqnxpDeuazYUst7y7ZwwyNz+L9PvnC99mTS5rGP16YYeVAhoDGD8inqc7Rv+7rqvbxQWkncmWDAkyo2hSklB+95B4uwBGoya8t69BFC0JzlXGvw0TN1zsbonS+UVroPaGtoc0Q4NAiG3/Tror7dyMnyniEzxwR+BeN4TLC9ts4Na+iwjH7ezWvoJKcO5egITn1SsrW2jnjMSmHZqIWDDPV0fY5SoMo1KfHlD0x8Z9wgl8EWRDJpc/3oQrbV1vk0dExug1kk2JwQZlgSOq9Lti/Mev5JPfnXDKnSBhEZ+lZGU8u51uCjZ+qcjdE7zXZtraHNEaH1EaZ5YzadSUcg+OsHq7GdMIYAzh3Sky279/vOLdNcY8ptY9zmHcFQTs/cHK4Z1d9dFQhwveh0wnqm0Jou3GoIMIo0HLFNJPDEnHVcVNSbMYPy6ZTlb+CtE8fBZj8S5dTYtiQe88Temgph+oqjLAFCuAq1t4wdyD9mryVpSz5csZV/dZQvM40OaegzkSQ8lInG1uCjZ+KczaV3toY2R4TWh9kKb3+DzZ/fW+lO7PsbFPtm0mWp4RKftHbMYtaKrT7jGrdwxdAay1MV9e3mO29R324M6Z3LSwFdmrDJpnT9Th+D57rRhe41X1pYydbaOj5cuY1kUkkWXFtcgASemb8BGaBAaqeodl8D5Zt2U9TnaHfCMxGzQOgpzHHvm5OHC646wAurzllb7VvV3PtaeehnfrDocIY+E0nCKNGoELYyOBi6aIS2A9VovsIX6gjKDJRV1nDDP+amxNr1c6H7sH5eWeM7j2V5qT9XJwdJLGZRtWufK0mwc2+9rxpXh0KuHtm/SUmAMAaPyYCB8LDUSwsrqXeSn2UVu9yxgMfjn+PUFOhmJwht1z3uftKWLmspHrNcOeOwEGaw54R0xhyLpTKcPq9svJK3pehwht70UloqAdCeFTA1MrUiMVcG0QTYMaA7JCXDevQFUG8k2oPP00tOJ7LgWZIOF/zpOet4ddFGFfIQShrhmfleqf+YQfm+PEBel2zf83V1YKVoPtMicM3ga0hd1WpG2i+de39n6RbeXbqFO74yyNfXVTdVEU5TFf056aS0lBJhCZ5xekdkxQTXjy5MK3BmOky1+xr4x2xHHkJKzh3Sk1krt7mrh4OxW42hWYZeCDEe+BOqw9SjUsr7Au//ELgN1WFqG/BtKeV6570koMmuG6SUl2do7CnIVJKwrQt2NWXEW8sgd4QJMIL6O6Yz8jqObQYtVm2p5Y/vriRhS+KW6m+6c2+9p18vVDPu8k27SToiZ6u21PLKoo3uOZJS/xceNgnq6gSfr2Cc+9whPYnHBEmHxtnc8OHOvfVufgF1qzz00Vr+9SuDfOGocwb3oGegs5XOWyzZWMOzCyrckIsOW+kJMZ2xB7ju4TnucYmkSjDrmobnSyrcpi6HvPGIECIG/BW4CKgEFgghpksplxq7fQYUSyn3CiHuRDUHv855b5+U8tSMjjoNMpUkbI0EaabQHCPeWga5rU+AEZqHMYPyyYoJN/RhCRjSK9fly1tGFw8BTC/b6OrdJGzJL19dwm+uGOZ7Fq47vZDJr5WTdOLPb5dvbnQMmpoY9LrNc+Z1yXa1b3wiYE7nqXhMcEr/box13tfna/Le46nMnvJNu11JgudLKnhv2RY3caoTvZMmFnHjGYW+ZDSoyeLZBcq7D7LTTBsyd221rwm5ZQlXU+iqkf1d3fvWsDnN8ehHA6ullGsBhBDPAFcArqGXUn5g7D8X+GYmB9lcZDJJeLDJzAMNnTR3/+YY8dYyyG15AozQfIwakMe1xQVu2b0tYcWWWgC3C1NchyiM0IVG0paUb6xJ8cYTSdtlvaRjvoBy7CdPX5JSyGc+X1pjJtgFy9exKSkpq6yhrLLGlUaYctsYIDXMpLu3CWDyZUX8c+46lm6qda+d3zWbUQPyVIMSh6ZpJk5NemdYd6iknSrvHHTIzKp1LeVs3qPJSMo0mmPo+wGm1F0lcEYj+/8LMMN43UkIUYIK69wnpXwl7CAhxO3A7QCFhS1rgN1WDNGBhk4ORCoh2LczXXeb1vocWoMhFOHQo6hvN1cFEtRPLQIWjwkmXz6M8o01LnsljNtuPgsrNtdiifQt+oIIqyzFOOfPX17sGvW6BtudWF5cWMkLjrKkeR3t+GgtGm1M771iGEN653LDI3PcFUzMUpx109C//vkmRh+X7wv9CiAWU3TKdN2hbFsSj1sgpe87mU7krLmhqkwjo8lYIcQ3gWLgHGPzAClllRBiEPC+EGKxlHJN8Fgp5SPAIwDFxcXNeVZC0RYM0YH+AQ9UKkH37WyMldAWPocIbROl63cy+bVyXwFQzFJSBHZSutVQ2mDGLcHFJ/fi/eVbSNoq+WgmSnU3paQtfZOHRjwmOH9IT95bvtVdHWTF0ufPtIyyPo0OjYBi4lw9sr8bYkkkpY//LsH9LtlSMunVJVx3eoFvhZG0Je8v36rE3KS37ZGP1rihX31dgeqeFdSov/GMQp9sxIrNta4wmv7epQtDmV77oQqFNsfQVwEFxuv+zjYfhBAXAj8HzpFSujwtKWWV83OtEGIWcBqQYug7Eg40dNKc/ZvqWBMhQnMxd201DQEPvahvNxZX1bg9WZ9dsMH1qJO2pEduDl93ZBGuMtQg566t9gmPIb0GJgAj+ndj0mVFAMxasdVN8hbmd+Xd8s2NKrCaSNiKEvqiw9j53ZXD3Zh2XpdsX9Xucwsq3Fh40pbMC6l+lbbkwpN78b4z+UhwlTD1+DUN8v3lW7GldK9t0jj156BDMHPWqGvdeEZh2jCUPsehjEA0x9AvAE4UQhyHMvDXAzeaOwghTgMeBsZLKbca2/OAvVLKOiFEd+AsVKK2XaK5cfQD/QMeLqmE5iJSqexYCJMpHjsonxVbal3WSflGjxtvWUJ5z7bEcgTIAN8K061OjfnDGLr452cvL/ZJFKzeuofVW/cA0CnLH650Y9lOtappeM0Vb5D6q2PwE0/p4yaQJWlkEBw+5r1XDGPGkk18vGq768Ef3/Movti2R4WzLOFy6usaVGioMfKDXkUM6Z3rvr9kY407adY3pK7YN+7ax4tOlXBrfb+EbEZzCiHEJcCDKHrlY1LK3wkh7gVKpJTThRAzgeGArhneIKW8XAhxJmoCsFE1EQ9KKf+vqesVFxfLkpKSFt1Qa6EtcMgPh8EN0tquLS5IyxeO0H5Qun4n/zljGQvW7USijO34ot4sqthFz9wcStbvdAuGTunfze3WBGpiGNbP2xYTcP3oQvoe0zm0ociLTpglXYI2JuCHFw/hu+ed4D7j2kvP65LNko01vFBa6RYlBb97ukq2PnD+sDBSyrUtwWWn9PFRQbNiatJye99+us6dFLNjwidPrK9/3cNz3FWIBdxwRqF7z8IjMQHw+yuHc+MZhWrc/5jb6LkPBEKIUillcdh7zYrRSynfBN4MbJtk/H5hmuM+RU0A7R5tgUN+OOLuQVqbuXyOjH37xsINu1wPe3+D7Rq7ddV7yXIC2JYlOK57VxZXedWbSamqZsGLjQcnfx3S0DK86eytwNOxacyZunpkf9djD2Lu2urQSaQ5DdaStmR6mWfkBSpco7x7SW7nLJ/+Tlgzn2ByNjvLYmttnTvxmOMQeBXAwRBaugR1JtDhKmMzhaD3fKRyyMN6W0bFUu0fQU53EN06Z7Hjy3qStvR5uyaCjUDCeONBGd6cLCXkpTVlcjtnufv/9YPVjYY4dCWudjT0fdTua8AyEqthEAJOH5DHwg07U2SLpcSlk8Y0dz7pJVE37trnevnpvvtDeudy3ekFrnRDULBNwyziDIbQGktQHywiQx+CdJ5FSxMnbT3G3VSHK5PW1pimR4T2gzGD8n2SwGYCFWD7nlRJYF0Bu2xzrfscmEY+HW9ca7w0FfbL65LtadHj13sPrqhfWljJ84HG4TGhDO7yTbUEbDlSwjlDevKTCUN5cWElq7fUUrphF9LxwIMyzMEkamNMt6nzNihv3qmevdopfnreoIEKlJG/94phAC4Dx+z01Rq9YjUiQ0+qoUsXpmlJ6KQtxPYbQ3PGp+/76las3ItwaDFqQF6KJLCOJQeNPjgdnpwKWJ2oNQ1Tc3jj6WpD9Ps799aji3JNvXdwJiZLKLVKS7DN0L/XkBJWbtnjyglLW/oMfl6X7JQEbmMOzl8/WO3eUyKE6aZF0p6Zv8FToDTu3Wwwbk4iwe/b765s/ej2EW/om/JEDtZ7bQux/cZwIOOLuPkdCzrEoD1uG5DJVC786QPzOHdIzxSaoObSl67fSdWufT4Vx3S8cRNheviNfe+k8S+sCYlmyCiap2R4/26+XELwmODzbCaCl2ysYfWWWjeJaku/2mW6/IMlvPBL2PflZ0Yh2KG0B0e8oW+pJ9JctPXYflsfX4TWgxmWM+WGBVptUsWN75kwNMXDDSv1j1tKxbHIaTbe1CrWl+hPqF60kyYW+aidGi850gSgkpYl63b63h89MI+vndbf1+R87KB8yjfudkMqjT3b5qSTTtTznaVb+GjVNtc2BJU7teBbOnsRFF2E1mkEHoYj3tCnM3SZ8l4PtiiiteP7bUU2IsKhh+aem9RHAS6t0EyUpvPaH5zpNStJ2pK+x3T2KVuaE0LwGTO1X2wJH6/azry11dhAMil5oaTCpRsGbW/w9cINu/jJhKEpRUqmIFlYwljDnHQag76fYPOVa0b1D42xm9czRRdBJY9/8cpi5n9RzYm9clv1+3fEG/qgkFJzVfAO9BotOd+hiu9HIZkjD/rZ2t+Q2jk7YUv+75MvuLa4wLev0o9RHPqxg/K59/VyNwyhaZbaUTKTsGUVu/jTTCVzHFYZ+uDMlW7BksmFr0+qalSdH3qhpCKFK69hO7RH3eBcrz40JfKDFVtdPr5u4xcs0orHrBQNnSBilmDjrn0Azco/hIWmzHCPLeGVRRtdRlJrfcetpndpPyhdv5OfvbyYn7+8mNL1O5s+wIGmT977ejkPvLOCbzw694COby2EhZUiRMgE9LMVhDZADU7NxDcenevSGm2ppAg+r6zh0Y+/8Iw8imYZNODXjS4EIXh36Rbqk9L3HJeu38lfP1gNwF0XDiYnyyImVMjIxPbaOne/b591XNr7iQeoiXldsl3OvQTeXbqFqfM2NP59chIT8ZjgopN7cfHJvYjHhCv0dtHJvUAIps1Xnwvgeuph9iL4/d25t54pt43hhjMKfc3V9Rhb8zveYTz6YHXc86WVKS3QGkNbTJpG8fMIrYUwmQEBKbTEugabrbV1KbUUttFtyaRZaowakOcmek0efToP31xVT35NxdnjMcGsFVuZuWwL2XGLIb1yCYPA33tCa8+kC8OYRVp6/wed8UiUDs6pBce4lbqa/qiKqfwUTy38FrbiDvv+6onw6Jw4D320Nu2YMo0OY+iD1XEHaqzbolFtS/Fz84FvLt+3rdcPHMkYNUC11ZuxZJNbuJTXJZtJ05e4PVhBGfUPV25j8mVFKVIEjfUNnjpvg2rE7bzOiqmuUB+u3Ma7S7d4KweDAKHPoVUhq3btc9v1NSTslP6qGrGY0t8JNikxJxj9e9yC604v9AmzmeyZYAgKcPnwsZjw5Sgk+JLJD85cmTLhpet/e88lQynM78qMJZvI75pN9Zf1PuXLTKPDGPpg15wDNdZtyaiaaAvx86Amh5kka+yYtlw/cKTDVFxcsG6Hx3YxOktp45hMqrDD768c7lIyJaQ0DjHPPenVJb5K1ZP7HE3P3By3OYm+hil/YH73tBHWq4KsuMUd5xzPuUN68l9vL2fX3gb33Ed3ijP5tXISSVXYdO7gHq7ImhDQ++hOVO3a76xG1KSgz6+TyWYIyjTWOmwFShrh4pN7MqLgGNe2mGGtj1dtZ8G6HW7VbmP9b8GTOtb7LVi3I+1nerDoMIZ+1IA8pt0+1tXDaInwVlswqi1BWLf7TE5YLdHkaIuhsAgegtTGSa8u8UkDS1S8XKJ06vO6ZLuGVytZvpRG82ju2tSetJ9X1rBs027XI7Yswcl9jua60wtZsbnWV1lqrhSCzpe+1s9eXuyee8eXntGvT9i8u3QLWXGL84f2ZNaKrVTu2u++n7SVuiSQkkzODglBBaM/3XNzfHUBwWSyGWdvzvN/qL4nHcbQQ9sw1Ic6XBGW2Q+2YEu3vG4uWqLJ0RZDYRE8mH+fsHaBoL5PCzfsImlLJk9fgg2+sE5jrSxzslT8H4ePL1EOwoUn96Rnbg7Pl1SwuKqGZZuU56+vv7/B5ucvL3YVNc32euZ36/dXDueRj9a4GvImJGoVsr8h6RuvRsKWPLtgQ6OevIZm+zQkZWjDlblrq5kwrA8L1u1IedbDnv/DpaHVLJniQ422KFPcHByOcMVfP1jNA++scOVizzyhO5+s3u6WkVtCuJ7SwYwnitF3PJiVoPe+Xu5LzGbFFTdcx8jDENSRD55TywxPnr7EC6nGlCdvFmc1ZoFG9O9GUb9uDAspwgIVHtE0znOHKA/e1cKfWMTk18pD2UVCgHAuHI81rsMTtmI2VzbpHCq939baOnrm5pCbE+fRj79I+T4GP7OWfl8OWqY4QvNwOMIVQY/A9C60p5aJcuuWrJbawgorQjiCxmtI71xeXFjJ9to6euTmcJXjub4QEA7TGNG/G9edXuirO0nn6JRvrGGqo6nTkJSukbdQRhYhSCQ8Ro8J3fxbh5FMxkvfYzqniJH1yM3xOSNDeue6Dsr22jreWboFUExKPQYJTJufKr8d5twE81XgUSd1AdmEYX248QzV9/r5NNz/+oRfQwtSNXAy+d2JDH0GcTjCFWFJZM1a0J5aFD6JYEIbK/1cTPuO8o5fWlhJXYPyjov6duPGMwp9wmcmdMGUaZjSOTpXOVryJj3TEl64BDy5YZNyaMKWipopUF2sTG96ym1jUuL8OsRiGtLS9Tt5f/lWXy5C6/sEnaGgQX+upIKvFxewPSCmplc/tfsauP/tFQDMXrUdUNo66ZqtCOEPf7a2k9gsQy+EGA/8CdVh6lEp5X2B93OAp4BRQDVwnZRynfPeT4F/AZLAf0gp387Y6NsYDhdzJ53nPKR3bptkEkU4vDCZJPUJm4c/XMO+hqRbJZuwvXZ4w/p2C1WyLN+0O8UwNSYnMuW2MW64Q7ccLDi2i++8FxX1dimHRX2O9nV2yooJJl8+jJ176320y3rHu392QYVrwOvTGMpRA1SDkF++usTNCVgoeqYd0JoPFpQlkpJp8zZgBQqdTnF64t77Wrlv+7MLNjDpsiIfE9BE0pa8W745RQ6itZyyJg29ECIG/BW4CKgEFgghpksplxq7/QuwU0p5ghDieuA/geuEECejeswWAX2BmUKIwVLKZEbvog3hcIcrwpbP6dQDIxyZCJqd95ZtSdlmS+mGZcw4ugCys6zQBGRjjo7+Xlzl0DOfXbCBafM28FxJBRb4vHMd9rioqHdoXmjqPC9vYEuYt9bfTNwS6ckCmtL48Idr3PsWqFaIZow+TGxMokI+TvMtYkJx8kcNyCMn7hcZ0JPN5MuHuUqY8wNCbA99tJbC/K7ceEZhqzuJzfHoRwOrpZRrAYQQzwBXAKahvwKY7Pz+AvAXIYRwtj8jpawDvhBCrHbONyczw48QRERrjNAUTCaJ1n/XBk+X5ptqjzlZ4eJdOkRoGqamHJ1RA/J4cWGl2+WpMRZPunPt3Fvvm3x0829deduYgqQ+74iCY5i5bItPjM08JngNLc2QFVcdsnRS9d7XyxnSO5cTeuX6DPnKLbU88M4KN1H73IKK0LHMWLLJndha00lsjqHvB5ijrATOSLePlDIhhKgB8p3tcwPH9gu7iBDiduB2gMLCwuaMPUIIIlpjhKaga07C8jhh7JGmvPQDRSD64TOizXleNX3TFAczY/7NGVNT3xN9jbDPRbdhNJ2pdJNngyO/HEZfBZgwrE+TY80E2kwyVkr5CPAIKHrlYR5Ou0VbrfCN0LZgGukwzzzdvpmA2WYvK24x+bIDq/XQz3iwvWVzjbx5jqZaaKZ7P0zDJt3kqcNc9Q2qUGziKX1cyQPtzbc2muTRCyHGApOllF91Xv8UQEr5B2Oft5195ggh4sBmoAdwj7mvuV9j12yvPPoIESI0D5mqsThctRpNXbe1q9XD0BiPvjmGPg6sBC4AqoAFwI1SynJjn+8Cw6WU/+okY6+SUn5dCFEETEXF5fsC7wEnNpWMjQx9hAgRIhwYDqpgyom5fw94G0WvfExKWS6EuBcokVJOB/4PeNpJtu5AMW1w9nsOlbhNAN/tyIybCBEiRGiLiCQQIkSIEKEDoDGPvkN1mIoQIUKECKmIDH2ECBEidHBEhj5ChAgROjgiQx8hQoQIHRxtMhkrhNgGrG/Bod2B7RkezuFCdC9tE9G9tD10lPuAg7uXAVLKHmFvtElD31IIIUrSZZ3bG6J7aZuI7qXtoaPcB7TevUShmwgRIkTo4IgMfYQIESJ0cHQ0Q//I4R5ABhHdS9tEdC9tDx3lPqCV7qVDxegjRIgQIUIqOppHHyFChAgRAogMfYQIESJ0cLRrQy+EuF8IsVwI8bkQ4mUhxDFp9hsvhFghhFgthLjnEA+zWRBCXCuEKBdC2EKItPQqIcQ6IcRiIcQiIUSbVH47gHtpD3+XY4UQ7wohVjk/Q8XEhRBJ52+ySAgx/VCPMx2a+oyFEDlCiGed9+cJIQYehmE2C824l1uEENuMv8Nth2OcTUEI8ZgQYqsQYkma94UQ4s/OfX4uhBh50BeVUrbbf8DFQNz5/T+B/wzZJwasAQYB2UAZcPLhHnvIOIcCQ4BZQHEj+60Duh/u8R7svbSjv8t/Afc4v98T9ow57+053GNtyWcM/BvwkPP79cCzh3vcB3EvtwB/Odxjbca9fAUYCSxJ8/4lwAxU18UxwLyDvWa79uillO9IKRPOy7lA/5Dd3ObmUsp6QDc3b1OQUi6TUq443OPIBJp5L+3i74Ia05PO708CXzt8QzlgNOczNu/vBeACIUSwrWtbQHt5XpqElPIjVN+OdLgCeEoqzAWOEUIcVHPZdm3oA/g2ahYMIqy5eWiD8nYCCbwjhCh1Gqq3V7SXv0svKeUm5/fNQK80+3USQpQIIeYKIb52aIbWJJrzGbv7OE5TDdAWO8o393m52gl3vCCEKDg0Q8s4Mv7daDPNwdNBCDET6B3y1s+llK86+/wc1cFqyqEc24GiOffSDJwtpawSQvQE3hVCLHc8hEOKDN1Lm0Bj92K+kFJKIUQ6PvIA5+8yCHhfCLFYSrkm02ON0CheA6ZJKeuEEHegVirnH+YxtQm0eUMvpbywsfeFELcAE4ELpBPgCqAKMGf2/s62Q46m7qWZ56hyfm4VQryMWtIeckOfgXtpF38XIcQWIUQfKeUmZ/m8Nc059N9lrRBiFnAaKqZ8ONGcz1jvU+n0h+4GVB+a4R0QmrwXKaU57kdR+ZX2iIx/N9p16EYIMR74MXC5lHJvmt0WACcKIY4TQmSjEk5thhVxIBBCdBVC5OrfUcno0Mx9O0B7+btMB252fr8ZSFmtCCHyhBA5zu/dgbNQfZIPN5rzGZv3dw3wfhqH6XCjyXsJxLEvB5YdwvFlEtOBmxz2zRigxggftgyHOwN9kNnr1ahY1iLnn2YP9AXeDGSxV6I8rJ8f7nGnuZcrUbG4OmAL8HbwXlCMgzLnX3l7vpd29HfJB94DVgEzgWOd7cXAo87vZwKLnb/LYuBfDve4G/uMgXtRzhFAJ+B557s0Hxh0uMd8EPfyB+d7UQZ8AJx0uMec5j6mAZuABud78i/AvwL/6rwvgL8697mYRlh4zf0XSSBEiBAhQgdHuw7dRIgQIUKEphEZ+ggRIkTo4IgMfYQIESJ0cESGPkKECBE6OCJDHyFChAgdHJGhjxAhQoQOjsjQR4gQIUIHx/8Hj3nOGTTdAXkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def plot_clusters(km_, X, ax):\n", - " lab = km_.predict(X)\n", - " for i in range(km_.cluster_centers_.shape[0]):\n", - " sub = X[lab == i]\n", - " ax.plot(sub[:, 0], sub[:, 1], '.', label='c=%d' % i)\n", - " C = km_.cluster_centers_\n", - " ax.plot(C[:, 0], C[:, 1], 'o', ms=15, label=\"centers\")\n", - " ax.legend()\n", - "\n", - "fig, ax = plt.subplots(1, 1)\n", - "plot_clusters(km, X, ax)\n", - "ax.set_title(\"L2 KMeans\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## KMeans with L1 norm" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "KMeansL1L2(n_clusters=2, norm='l1')" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import KMeansL1L2\n", - "kml1 = KMeansL1L2(2, norm='L1')\n", - "kml1.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.5812874 , 1.49145705],\n", - " [0.33319472, 0.4959633 ]])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kml1.cluster_centers_" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACSwUlEQVR4nO2de3hV1Zn/P2ufkwRQLjHcIQERQS4KAiJUqXcLlmq9dFTaUepYbaftjG1/7dh2Sh3aaZ1xnGpnbKt1FK2C9wuiWEWlonJLuEgCBJBbEkiAcAsSkpyz1++Ptdfea++zTxJCQi7s7/PwcM7Zt7VP9nnXu77v+35fIaUkQoQIESJ0XFitPYAIESJEiNCyiAx9hAgRInRwRIY+QoQIETo4IkMfIUKECB0ckaGPECFChA6OyNBHiBAhQgdHZOgjRIgQoYMjMvQR2hWEENuFEFeGfJ4phHjJ2S6FEJc2cJ7FQog7jfeXCiEOCCFucd5LIcQeIUTc2CfD+SwqPonQrhAZ+ggdCR8B3wDKj+cgIcTVwGvAN6WUzxmbDgDTjPfTnM8iRGhXiAx9hA4BKWWtlPIhKeVHQLKxxwkhpgMvADOklK8FNv8FuM14fxvwdOD47kKI/xNC7BZClAkhfi2EiDnbzhJCvC+EqBRC7BNCPCuE6GEcu10I8f+EEJ8KIQ4JIZ4XQnRytvUUQiwQQhwUQuwXQiwRQkS/1whNQvTgRDiV8RWUMb9JSvlWyPbXgC8KIXoIIbKBKcDrgX3mAAlgKHA+cDWgKSEB/BboD4wAcoH7Asf/HTAVOBM4D5jpfP4joBToBfQBfgZElFGEJiHe8C4RInRYXAZsBD5Os/0Y8AZwM8poz3c+A0AI0Qe4BughpawGPhdC/A64C3hUSrkF2OLsvlcI8d/ALwPX+L2UcpdzvjeAsc7ndUA/YJBzniUncJ8RTnFEHn2EUxm/AGqA14QQWWn2eRpF2aTQNsAgIAPY7VAsB4FHgd6gJgIhxHMOpXMYeAboGTiHGU84CpzuvH4ANUm8I4TYKoS4tyk3GCECRIY+wqmNz1EeeXfgRSFERsg+S1CedR9UsNdECWqi6Cml7OH86yalHOVs/w2KbjlXStkNFSgWjRmYlLJKSvkjKeUQ4Frgh0KIK47z/iJEACJDH6F9IkMI0cn4FwcQQmTpYCaQ6Wyr17BKKatQHPkAYK4OpBrbJYrLv1YGNL2llLuBd4AHhRDdhBCWE4C9xNmlK3AEOCSEGAD8uLE3KISYLoQY6oz/ECrAbDf2+AgRTESGPkJ7xFtAtfHvPufzYuf9AOCvzutBDZ1MSnkQuAoYBjwdzG6RUhZJKYvSHH4bkAmsR6VevoRaAQD8GzAOZajfBF5pzM05OBtYhJoolgJ/kFJ+cBzHR4jgQkSNRyJEiBChYyPy6CNEiBChgyMy9BEiRIjQwREZ+ggRIkTo4IgMfYQIESJ0cLTJytiePXvKwYMHt/YwIkSIEKHdoKCgYJ+UslfYtjZp6AcPHkx+fn5rDyNChAgR2g2EEDvSbYuomwgRIkTo4IgMfYQIESJ0cESGPkKECBE6ONokRx+Guro6SktLOXbsWMM7n4Lo1KkTAwcOJCMjTJcrQoQIpzLajaEvLS2la9euDB48mAZ0qk45SCmprKyktLSUM888s7WHEyFChDaGBqkbIUSuEOIDIcR6IUSREOKfQ/YRQojfCyG2OG3RxhnbbhdCbHb+3d7UgR47doycnJzIyIdACEFOTk602okQIUIoGuPRJ4AfSSlXCSG6AgVCiHellOuNfaah1PbOBi4E/ghcKIQ4A9VRZwJKl7tACDFfStmkBsuRkU+P6LuJ0Noo2HGAZVsrmTQkh/GDslt7OIAa0yurSpHAjeMGtplxnWw0aOgdze3dzusqIcQGlAysaeivA5529LqXOT02+wGXAu9KKfcDCCHeRWl/z2vWu4gQIUKLIWjAzfcAy7ZWUlVdx+MfbSNpS7IyLJ69c9IJG9WmThz6uOwumdz3RhG1CSXj/1J+CfPumuw7V2OucaLj0MfNXb6ThYW7mTa6HzMuzDuhcx8vjoujF0IMRjVAXh7YNADVbUej1Pks3edh574L1WuTvLy84xlWm8ZTTz3Fr3/9awD+9V//ldtvbzJ7FSHCScfc5TuZ9XohtpRkxi1mTR/F7AXKeMZjFkhJXVL6upbX1tks21qZ1qACoa+D+3/98WXUJmwy442fOMzjLCFI2N7I6pKSZVsr3Wtmd8l07yXdNQp2HODWPy+jLmETiwlunpDLDeMGph2377jHllKXlGTEBHdcdCZ/+nArAEs27wNgeN+uTbrHpqDRhl4IcTrwMnCPlPJwcw9ESvkY8BjAhAkTOoRI/v79+/m3f/s38vPzEUIwfvx4rr32WrKzT83lY4S2hYa8yYIdB5j1eqFrLGsTNgsLd1ObsLEl1CVswn6oliVcIw7+ySJmCWxbTQx6okjYMsXQvbyqlJo6df66ROrEkQ7Ltla645NSIgTolhsZMUF2l0zXuAog6WxLd41XVpW6K4JEUvLs8p28WFCaMm59bf1dvryqlFrn5LVJyWtrynznXVi4mwNHa33fZWPvsSlolKF3emm+DDwrpQzrklMG5BrvBzqflaHoG/PzxU0ZaFPQ3Muip59+mv/6r/9CCMF5553HX/7yl3r3/+tf/8pVV13FGWecAcBVV13F22+/za233nrCY4kQ4UTQGI952dZKkoZHbAnBtNH9WLl9v2ugTAggZglmXzfaPVdwsrCT3kHagILf0BXsOMBLBaXuJBILTBz1YdKQHCyBMvSAkOr4cXk9GNanK4W7DoWO3ZycTLsRNpHVOePWk9DLq0rdCUF/l/uqanzH5J3RhfLD3medM2Jkd8kkM25Rl7DJiFuNvsemoEFD7/Ss/D9gg5Tyv9PsNh/4nhDiOVQw9pCUcrcQ4q/Ab4QQ+gm6GvhpM4y7QTR16ZcORUVF/PrXv+aTTz6hZ8+e7N+/n2effZYHHnggZd+hQ4fy0ksvUVZWRm6uN/8NHDiQsrKylP0jRDjZMD3f2jqb2W8UMXpAd24wApaThuSQlWFRW2cjBFx+Tm+G9+3Ks3dO4qFFm/ho8z5lTIGrRvZhTG6PFKcqOFmkgxD4qJw6YxL42oTcRvPnxeVVGIcigaQtWbXzIPnbDxCPCeKWSKGbbGeMQbsxc/Jg/ziBjLhaiSRtSUbcQoDPM39lVSmLi/e4x2TEBP8ybQTF5VU8v3InRbsPs2hDBR9u3sus6aM4cLS2TXD0FwF/D6wTQqxxPvsZkAcgpfwTqofnNcAW4CjwTWfbfiHEr4CVznGzdWC2pWE+yM2xLHr//ff52te+Rs+ePQE444wz+PrXv87Xv/715hpyhAgnDZOG5BC3BLVJiQ2sLT3E2tJDvFhQyn1f8YzPs3dO4uVVpbxUUOoap2fvnMS00f1Y+pky4jFLcOnw3m6AMXgdPVngJIZJiUupaGOblFBcXsX4QdlUVdf5jPDmiioKdqhEvWBQ2OTjZ183moWFu0PvV082dUnJ1SP70LNrFs+vLHE/lxKXvzftxlLnM1DDv/jsntxz5TDfWEBRTdozl+CuYARw2fDe7r5Xj+rLurJD7vmLdh2if4/OQMsGZhuTdfMR7p8o7T4S+G6abU8ATzRpdCeASUNyWnxZ1JBHP2DAABYvXux+XlpayqWXXtrs44gQoSkI87NrE3ZK8LVk/1ESSc/4aaoi6XDtCVsye0ERw/t2BUhJZzQni0TSxhIoQ73zoM/Qznq9kOF9u1K02x8CXLH9ADc/+gmWZZFIeit005mzpWTW64XcefGZbrAzHXp2zeI315/L6P7d1b3akswMz0ZouxGLWRTtOuQeF48Jcs/oAqjxm8ZYj2fSkByKy6uwhAAk8ZjF4uI9LNpQ4X6f5vlfzC8hYUvilgAhfPfXnMa+TTYHnzBhggzKFG/YsIERI0Yc13mac4YsKiri+uuvZ+nSpeTk5LB//36Xe0+H/fv3M378eFatWgXAuHHjKCgoaPC4pqIp31GEUxOPfLCF//prcaixVyZKVVNalnANuiWUEbxx3EDmrdjp47ktAVeO6MOiDRXu55kx4aYzPvLBFh58p9jdJoBYTJA0KBRLwI+uHk52l0x+9uq6tGOPCfjh1cOZNCSHmx9d6vOeLz67J6P6dWPRxj1s2XPEd4wtFY1ipliG2Qj9WdnBauYt3+nFCoT6XuozxHqVUVNnE7MEl53Tm/ec70QAMy7M44ZxA93zP+d8j/o7N+/vu5cNTfsdhEEIUSClnBC2rd1IIDQFwVn3RDBq1Ch+/vOfc8kllxCLxTj//POZM2dOvcecccYZ/OIXv+CCCy4AYNasWS1m5CNEOB5MGpJDRtzyBUQ1YpZwMlYEtvQMce+uWfzTFcMY3rcrz68swTacRCGEz8iDokleWVXqpjJmxi03k0YC0pZcNbIP72/c464gTIN7/8INHD6W8I0LKd0V+vhB2cy+bjSzXi90J6OPNu9j5fb9PHvnJIrLq9y89eF9u4Y6fWE2Qn821zDy4AV466OC9SpDorJ+enfNIh6z3M9ezC/hhnED+e5lQ91irto6G/OvEIs1PwPRoQ19c+P2228/7jz4O+64gzvuuKOFRhQhQtMwflA28741iUf/9hnvrq9wDVpmTHDftaM5cLRWFRzNL3TTBMsP13Df/ELm3TWZOy/28sIBxuX1YOV2f8G7ELjUhCUEd158JodrErxUUEoyqSjVuy85i7svOSvUCAeN/LcuPpOi3YeZNrqfu9+MC/MY3rcrDy3axBInOKzz+L972VBf3OB4nb4DR2vdDB5QKw5QwdjsLpk88sGWlDFryrg2YSOEYFT/7khwVwZJW7qTxPhB2cyaPorfv7fJzcgRwE3jm7+CNzL0ESKcohg/KJsxuT1YtKFCBUhRGS6mcSzadYhnl+9032svfef+oz6KZ1ifrqwtOehOCkEqx5aSx5Zs5ddfPZcbHerCDKoGEQyqnpnThTlLt1ObsFm5fT/D+3Z1jeH4QdlMG93P5eZtYO7yHawtOcjdl5wFpMYNGkLBjgOUHazGsoSbEmo5QWcB3De/MDT/XxvvX7y2joQtuW9+IfddO5qsjNR4YcGOA76JFNQkcqNTkNWciAx9hAinMIJJCzcEjMwN4wbyYoFXNGRZ8NyKnW6hkUAFKQHuu3Y0hbsOIZzjAJeWAeUZ/+L1Ql64e7JLXfz81XWG1w+j+nfnzJ6nsftgtX+gQtSbRWcGTQHKDh6j7OAx3l1f4cYZQMkg6BVLuspcM5vHzEJJJiUfbNzj0kQQPpbCXYfc76c2KfmgeI8vWKv3Xba10mfkAS4Z1qtF0iwjQx8hwikMMytmX1UNL68qpbi8yqVuDhyt5b6vjKJo1yH2VtXw3oYKArZJURMrdhK3BF9zJAK0sZp93Wh+/uo6L43Slsx+o4ibL8hj9oIil7MHNRHoNE+N3l0z2VdVy2d7jrg5+2EFVOlSSjRdolGXlG5WUbrKXDObxwLiaWIWACJkLMFiqfc2VPDtS85KCa5OGpJDTOD7Pnt3zUpzJyeGyNBHiBCBlwyv3YQAsjJUWuDCwt0pFaWgpAEkynudu3wnL68qdY3mjAvzWFy8h3fWV7j7ry09RNGuwhSjGYa9VbW+fSQo8j+AG8cN5KX8khQPOQhL4HrkwQpX7ZkHVzm6qElr45iTUyIp3fx/jV4BY21LeGjRJu65clhKIPhXXz2XXzgpnmErquZCZOgjRDjFoT3YMEigps7mF6+tS/HkBSpdESFc3ZuwrJS7LzmLxcV7fEbYtiWWJRBIYjGLs3qexobyqtDrB5FMhme93DQhFwF8XpPgtTW73M/jMcHlw3vTs2sWo/t3Z/aCIjeP3axwze6S6a4+ghWrOuVy1vRRPPbhZ2yvPOqef2Hhbl9c44ZxA3k+v4SEcb9mNpA5bh1MbmkFy8jQR4hwiiO7S6ZP/CsFAXphzMDu3HxBno/nfnlVqeLak9KXHqgN5H3XjqZo1yFezC9xDatpTJdtrWRjefq8fkuoYKj2fE26JEzu5O8nD+blVaVuvCBorIMcfVDS2KwBCFbgTj+vn8/QTxvdzzeWZVsrufOiM1m6tZLPaxJs2fu5LxsoXTpnSyIy9C2MqVOnsmzZMi6++GIWLFjQ2sOJEMGHgh0HmL2gKK2RtwRMGJTNCiN1cvSA7ilyB8XlVTxvO3nnMlw35tk7J7nFQmHeq85MQQgfr37ewO7M+sooIFUCYdnWSnYdrE4J1H73sqHHJXv80KJNfpG1pJcGGazAXfDpbr46tj9rSg4ydVRfn7a8voYugorFPJrJRk2qrYHI0LcwfvzjH3P06FEeffTR1h5KhAgpqI+2ARjS63T+ZdoIV5M9jEfWCpXa608Yuu8NGWANHRRetrWSNSUHedfg9EcN6O6ONVznRhVsWTLV2w/eZzBrxzyPiYyYF2RVipjCzR5K2srY21LyxMfbqKpJuBOYqYwpUZk6GgJYXLwnRcTsZDQf6diGvmQFbF8Cg6dA7sQTPt3xyhQDXHHFFT69mwgR2gK0camqrqt3v+37jlBcXsXXxg9089ABX7HQsq2VvipZU/LXDGqmKzLS0BRGwY4D/K14D3VJScxSWSy3/nkZiaRqdnLTeDUGz8sGUHoxs6aPCj23GWCNxSzKDla7HZ90cFUAZ/U6jYlDcnz59roC9xdOBa5lKaNvS38Aeubkwb5gtY5hSHDVMt9ZX8G76yvcLlzASWk+0nENfckKeOpaSNZCLBNun39Cxr4pMsURIrRFmHosYYzNoDO6sGO/4qBtG5/IWbesOH9estWnG6OVMOuSKhfe1KPXXnpVdZ0rVZAR86dhzl2+k+dX7qRPt07cfclZqmr3rsmuEJpZuVubsJm3fCcZcStFblhKyYGjtaGtD19ZVcoXz+4FKK9aV6qaGjMS2Hmgmjv6d3dXJOC1SkRKBLgBZDMAXZuwebuo3D2fqXT58qpSn2aO5usfWrSJ3DO6eHLRCTs0O6c50HEN/fYlysjLpPp/+5ITMvSRTHGEjoJlWyvTGnkBlBzwAo06D10bs0c/3OoZ3aSXE4+j1hiLWa6KJXiyA6b4WK3Rqema0X2NDJlDfFC8h+ecIOiyrZUkkqnjVJSIzS0T85Dgk1QwO0hlxi2mjurL62t3uTEILW5mGl3T2NcmbH7xeiEykGdveuq2hL8bP5B9VTW8t3EPtrNdB2i1+JtpsHVjEs3d28DHW/YRj6kJS19jyeZ9LN9amdLb9kTRcQ394CnKk9ce/eApzX6JyKOP0B6R3SUzvAWgEzc0jZp+aaE6TCUCUdtgTnxY6mOQ2tGoTdi+NEhQFMfLASG0uoTtat4vLt7jZu3oFcHo/t1d8TKzPV9NXer5k9IRbbOVDr8l1D+Tone16408exMC3DRN25Z6jnPlIC4a2tNn5LUswsLC3Yzq142i3Yf5eMs+bOlNWIVlXqFYrfMdRIa+McidqOiaZuLoL7/8cq6//np++MMfujLFkUcfoT3iwNFa33sBXDe2P6dlxZm3YmfK/gLIy+nC1FF9eeLjbSlFSbr5CKjq0ewumT76xBT6ktSTxokyus+vLMF2znnnxWfStXNGSqaN+V43+F65fb9P792G0ER8geSWC/MY1b87RbsOsXzbfp+ksb5n3Ukq6NFblnBbEkq8doXSCQabRr5gxwGfFr8e48rt+90JbG9VDZ/XJlOu35xoTCvBJ4DpwB4p5eiQ7T8GtLWLAyOAXk53qe1AFZAEEum0klsMuRObJQgLTZMpBpgyZQobN27kyJEjDBw4kP/7v//jS1/6UrOMKUKEpmDSkBw6ZVg++ubtonJuGDcw1AhLYEflUeYs3e7q2XyyZZ9LVUhg+nn9WPDpbpK2ZNbr65ConHcddNRcvVbE1IFWy/K47kFndKH0YLXrUSdsyeMfbeP5uyf7vOPgasHMpjlwtJZn7/RUOcOgO1sV7TrE8yt3Eki4wQJudXTjtdRxTV2SldsPIFHFXgJSqmc/KN7DnsPH3ErZsFhIcIyLNlT4qoZxztvcFbKN8ejnAP8LPB22UUr5APAAgBDiK8APAu0CL5NS1t/ypZ2gKTLFS5YsaaHRRIjQNOhUxocWbXIphDpHwMts+xekcLSR6pYV9xUMAawpOWh0nNJHKPpEp1WCKqy61KlSvdExpDpIW3aw2u3dqmEbsr5h3nzZwWriMcvl6HW2z/sb9/ic+RF9u7J5zxF3pZBO8iEm4FdfPZcZF+a5q4WaOpXCGY8Jn1SBTqnM7pLJB8V73IllbalqmqJpJD0OvUowxxjM0tEB3NZoJfihEGJwI893KzDvhEYUIUKEFsf4Qdncc+Uwl0IIM15mpSiohhjZXTJ58J3ilPPtqDyaEtjEeV1VXcddT+ezaH2F22BDd6o6cLTW5fe1ETbVIS3Lo4LMIOus6aNcyiZuCa4Y0QdQEwl4PVs1Ptv3ObaUrtTwog2p3r5Z8asnFe2NJyVgS26ZqCgfPeFkd8lk1uuFKddbWLibe64c5nr9wlHmvPmCPLfjVvCYWEy0iJGHZuTohRBdgKnA94yPJfCOEEICj0opH6vn+LuAuwDy8lKbDEeIEKF5YRYpBeUADhytZezA7m5FrAAuHdYrrbCZRPHr5w7oTuGuw77K1j8v2Zqik6OLlsIExIp2HXIbgttS9aO9YdxAXxriwsLd7vtEUvKeIx8MELNSx6fpIYGkV9csX7crjclDctzJIzNuMXPyYJ80hN7XnWBiFomEvzuUhpZFuHHcQDZVVLFq50E+LT1EcYXqratTUk1jf/OE3HZRMPUV4OMAbXOxlLJMCNEbeFcIsVFK+WHYwc4k8BionrEnMhApJWv3rmXdvnV8Xvc5p2Wcxrk9z2VMrzGIEOW7CBFOVZhFSmb5fhCxmEgRJhPAiH5d2bLniKdf85VRLh2jhcuSISfUqZBh2jNBhcjaOpsV2/a747IljOrXzV2NCOE3mMk0hb4xgW/lortSgeLli3Yf9mXsPP7RNtfIa05ep5lqusu8M4GSa7j5AiVU9vXHl3Gszj+YmjovV163QdQ1Ci2lXAnNa+hvIUDbSCnLnP/3CCFeBSYCoYa+OVBn1/Hq5ld5svBJKo9VkrATJOwEcStO3IqT0ymHb47+JteffT0ZVkZLDSNChHaHYPl+EINzTkvJTInHBBvLq4jHLG6emOtWk44flO0qMgbbEQrgqpF9uHR47xTv+aFFm+icEUvhtW3wXdsCunbO8Ad4DZrJco4xMeXsnkjwtSG858phLN+mJot43CLntEy/fIFuig5c5HDnoHLiwzR5rhrZh8duU/kmj3ywhZq61BlHopQsl35WyezrRvP83ZNbXP4AmsnQCyG6A5cA3zA+Ow2wpJRVzuurgdnNcb0wHK07yncWfYcN+zdQnfB3p6mz66iz6yg9UsoDKx/gza1v8scr/0iXjC4tNZwIEdoVNIWSrpBq274jKZ/VOcY7mbQZ0KNzvU23tXxAPCbo2TWLIic9UXvPZv/ZmAUxVExgRN+urCs75BpgAWRm+JuIL9ta6TZHkagcd3NyGTuwO598pnL5g20Itctu2zbz1/pz7vX14gHuPDjBaNpJty0s2HGAXQerlfZ9GporYUt+8Xohv7puNGUHq3nFiS20GnUjhJgHXAr0FEKUAr8EMgCklH9ydrseeEdK+blxaB/gVYcqiQNzpZRvN9/QPdTZdXxn0Xco3FdIrV1b777Hksco3FfIdxZ9h8e/9Hjk2Uc4pWFmsuhMHE1nmAijQyyRmkkShgNHa5GOQa1LSiVhEBNutkwwt962lU77qP7dKdx1iPW7D3t9WwWuno2ZvmgJuGJEH1dCwVxRmMHSmjqb2W8UuUJpCV+mkB8y8H8Qw/t2Zd63JqVkAmkKLOZ0Fk/XCyVpS/71tXXuJPZiQSnzvtVKWjdSylsbsc8cVBqm+dlWYExTB3Y8eHXzq2zYv6FBI69Ra9eyvnI9r21+ja8N/1oLj87DwYMHmTt3Lv/4j/940q4ZIUI6hEn36kwcU+grHhOu925ieJ+u9OyaxbTR/Sgur2L2G0U+vRqNSUNyiMcsl1rRtMjNE3MZ0KMzVdV1Po9eAnuqanjZoXYE/mweXfD18qpSlwNPSiUYtrh4jysfMH5QNj9/dZ2Pv5d47QrjMUHciCGkM8iJpD/FM/idmS0CTQpMOFk6O/cf5aPN+0InDJMqC+s/21xo95WxUkqeLHwyha5pCMeSx3ii8AluGnbTSQvQHjx4kD/84Q/HZeillEgpsayQVIIIEU4AYdK9371sqI+aOHC0lrKD1Ty3YmcKf79pzxGKK6r45LNKg6s+xLvrK/j36891ddqLy6tIGksCgZIVHt3fr2tv6ugscnLS9WSj5Rn06qFgxwFeyC9Juae6gFF+MWQfjWRScvOFefTv0ZnsLpk+79qEBDZXVPHIB1tCte+Dk1pYs/Wln1WmpFPGLUAItxOVTiVtCbR767F271oqj1U2vGMIKo9Vsnbv2kbv//TTT3PeeecxZswY/v7v/569e/dy4403csEFF3DBBRfw8ccfA3Dfffdxxx13cOmllzJkyBB+//vfA3Dvvffy2WefMXbsWH784x8D8MADD3DBBRdw3nnn8ctf/hKA7du3M3z4cG677TZGjx5NSUkJM2fOZPTo0Zx77rn87ne/a9L9RohgQhulmFAl/LsOVlOw4wDjB2Xz3cuGMuPCPL572VBuHDeQzLjlK8uPOd2ebElKVo0Efv7aOn726jrmLt/p06oHpX+m0yYLdqj0zXuvGcFVI/v4ziEDr68Y0ceV8X15VamvVZ+GqSO/bGuqcQ3ue8O4ge69XjmiT9p9X1uziwffKebF/BLiMcvN4AlSVjpl9YdXD3fHqmWO45bAQmXvzLgwj+fv/gKzrx3N0F6nYQnl1JnfSXOi3Xv06/atI2EnmnRswk5QuK+Qsb3HNrhvmEzx9773PX7wgx9w8cUXs3PnTr70pS+xYcMGADZu3MgHH3xAVVUVw4cP5zvf+Q73338/hYWFrFmzBoB33nmHzZs3s2LFCqSUXHvttXz44Yfk5eWxefNmnnrqKSZNmkRBQQFlZWUUFhYCamUQIcKJQhslrcUyb4XSVQ/2S9WiXJrrjjsaNHOWbk8bvJUS5i3f6RZAaZjCacEGIBWHj6Udqy1h0YYKLh3em/GDslO0YAZkd6ZzRowhPU9zP5s0JCdlP0vAlSP6uJW5pjd+9yVn+fLxw8aQSEpuuVBRTjo9VH+X9SGsN6xZeWtKJLQEfdPuDf3ndZ+fkKH/vO7zhnckXKZ40aJFrF+/3t3n8OHDHDmishO+/OUvk5WVRVZWFr1796aiIrUS75133uGdd97h/PPPB+DIkSNs3ryZvLw8Bg0axKRJqjHBkCFD2Lp1K9///vf58pe/zNVXX92k+40QwYQOxO6tqnFzwmvrbF9utzb6ZQerXQVKKaWb3viK0ys2KHQGXnaJFvyyhJognvhku9sARNMwYV2eVOGTN1HYUmnjD+/blVH9u/v2LT90jKQt2bLnCO9vrOD5u7/gTlJmG8QJg7LdFEjze9D9Zb918Zn8+aNt6Y090C0rzqQhOSlcPeB+H3pCNHX30+n0+HLxRcvQN+3e0J+WcRpxK06dXX+nnDDErTinZZzW8I5pYNs2y5Yto1OnTinbsrKy3NexWIxEInUyklLy05/+lLvvvtv3+fbt2zntNG9c2dnZrF27lr/+9a/86U9/4oUXXuCJJ55o8rgjREhXIKVpFVv6jb7WTdeFUaa3r2UTNldUudz+5r1HXGpFoIKSmq9+4uNtrqRxcXmVT1pYqAOQUskin5/bwxUTA0/7BpR3rsduGuaETVqZ37P7dPW9L9hxgFsfW+pOVJlxi29drBp79+7WicuG92Zh4W5fMPXxj7ZxuCbhTw/922cs2bzXX+hldJ8K6xyV3SUTyym9tSyUEJxD3/hSQJsB7Z6jP7fnucStps1XcSvO6J4pgpyhuPzyy3nxxReprFQP2f79+7n66qv5n//5H3cfTcmkQ9euXamqqnLff+lLX+KJJ55wVwFlZWXs2bMn5bh9+/Zh2zY33ngjv/71r1m1alWjxhwhQjqkK5AaPyjb5e3NlnmJhM2Ift24eWKe670+8sEWl9OfNCSHt4vK2VNVw7bKz7lseG+XNtFqkcu2VvLyqlIv/97x0LXuvI4V6OPqkpIV2w8ghKOHj5dDr+MLVpCbcbBi237uf2uDz5uPWaRUny7bWunLKKpNqIrYdWWHWLJ5L8P7duWeK4c5MswKWr0y7nwmUQJlYTSWxKNjNAp2HOBnr67jvjeKXP2dy8/pg3S+6+D+zYF279GP6TWGnE45lB4pPe5jczrlMKZX4zJAw2SKf//73/Pd736X8847j0QiwRe/+EX+9Kc/pT1HTk4OF110EaNHj2batGk88MADbNiwgcmTJwNw+umn88wzzxCLxXzHlZWV8c1vfhPbVkvb3/72t8d9rxEimEhXIDW0T1f+ZdoI1zOfvaCI2jql57Ku7BDFFVVu0w2Ttghm8PTumkVWhtc0ROuxx2OWr5DIdtr/mS0HlfSAJ2xmSzUB3HxBro9X13n/YamLW/YcYetef5HXaIfuMfvWThqSQ8xKbTxiGuhJQ3K4/JzevLehAinVZKMnjLlOi0Ap/XIPOi1Vq13qfrn6OzW/d4Gkp6O/o7N16qtLaAqElMGvqPUxYcIEmZ+f7/tsw4YNjBgxInT/F4pf4L/y/+u4Uiw7xTrxkwt+clLz6Fsa9X1HESIEoXupPr9yJ0lbebw3X5Dncsp6n9lvFLndjywBeWd08alVznC027/++LIUcTKJau6t+75awJBep7Gt8qirVjn7utGuLLBbAGV0gdLX/dHVw30563p8t/55WYruDKQqaU4cnM2akoMkbOlrxP3zV9fx7HKv4YrlUEcZcYv7vjLKJ2J20/iB7mSjx6vv+dwB3VlprCCuGtmHsbk9vAkzYWMJvzqnlobWq6QTkUMQQhSk6/nR7j16gOvPvp43t77ZqMpYgEwrk1E9R/HVs7/a8oOLEKGNwuTYg5k3Jqe8Yfdh9xizNyooQ/p8fgk3jBvoy783JYRtPINrA1v3fa5a+Fl+TtoXnJSSK0f2cTTblWFO6+U6zmrMgjN7ns62vUfc5uV3XKT49qLdh31cv0mPSNS+msJxYwVS+qQaTKkHHcg2M5ReWVXqM/QC+O5lQ3nkgy0GTSbd2ELYxNoe1CtbDRlWBn+88o98Z9F3WF+5nmPJ9GlanWKdGNVzFH+44g+R/EGEUxbBJh66EXcw7bGhXHRQhUe62Eprrbs0Tkg2ji1xjR5413ODk0hXO+buS86q18vV41PVtn7xM4TgqlF9qapJ8GnpoZQGIGYj8WD1rUSlUhaWHUppbBJWHavH9nx+iRuEXrxpLwU7DviKqGKWICkV1SOEcLXtoeWMPLQzQ6+/nDB0yejC4196nNc2v8YThU+kVa+8Y/QdfPXsr3Y4I98WKbgIbRNhhipY0akNmtnBKZZGf92yhM/b1pIHKoVSKLoi6Wi/CJFyjphTETp7QZHbf3bW9FFAeipD006bK6rS9ldNJG033VH/OmKWYHT/bm6DET0hWRhFYHiqmevKDhG3hJs1lDKRGZPi+EHZ3Dwh1+XtdaN0s9p4bclBt3VgXVJp3Uhn9aGlG1oC7cbQd+rUicrKSnJyctIa+wwrg68N/xo3DbuJtXvXUriv0NWjH91zdIfVo5dSUllZGZrmGSFCEGbgtDahjGH/Hp1TdOH1ZKAN3aj+3fn5q+tSzver60anGCjb9iiY+64d7Tuv2cJQadp3cykSHdgs3HUoJeCrKZOXHeNtrhY0FZRMmkFcyWeHC6H7p2RaNchkFvaxXNaV5bGhvIpLh/XypYzq+8/uksnCwt3uGJO2pL+hzhk2KWpoGiy4TU8EPwt8f3qxVJuUaVNCmwPtxtAPHDiQ0tJS9u7d26j9s8hivBgPuvagEjZWbmy5AbYyOnXqxMCBLde4IELHQXYXT3fdljBvxU6k9IKCQa81kZTs3H/UJ0ugccHgbJ9eDagcdp3FkrChcNchbnRy7ScNyUkRTltbeogNuw+rAGxSIixBUdmhFK8ZSGm2rSGl6tC0c/9RlmyuIKPHSjJz/sZGjpLZKwEiCTIGxJCJ06itvIR3119ARjzDp6WvMbxvV1+bRdOYBztzmYHrIG8f7HV747iBvORMUmHB45ZCuzH0GRkZnHnmma09jAgR2j20+qOG61XWeTSE9lp1auXHW/b5csk1ahM2c5fv9Bn74F77qmpSqKJZ00f5Vgd1Sana9qEmFjPLJxazKDtYzcurSlMqSTW0bs2xxFFW1f0akVWGsOpIAkJXC4kkkERk1pLV503i3dZQW/rNFC19SG/Mze3mZ+l4+7DP5901OSUtNGaJdtNhKkKECO0A6UrshcAnbKbz1DWFIUMCq0ryVxlsbexvGDeQFws8+qJX16wU77zsYHVKE/FgmEkAvbtmse9IDc+t2OkWU1lCFStdOrw3gKtbc17u6dz513vI7FJGQtZfKS+sOmKdS+mU9yQTBj/h87qLy6tYWLibUf260bVzw7G8gh0HeGjRJnelEQxmhymE6lVNrZNKOjuE/mpONKbxyBPAdGCPlDKljFQIcSnwOrDN+egVKeVsZ9tU4GFUw5jHpZT3N8+wI0SI0FQU7TqU8lnMEghBSnqlNkh1CWWQwrJoABYW7nYN/fhB2b6GHEAKb607KtUHCZQfrnHf6+YjcUtw37WjUyijF4pfoHDf+gaNvIawEmSdVs6S3W/y+MI+Ks/d8mSDdQOWmCW4/JzefNvpIBXWaMRXAGVMmOn4/IZWDM2Nxnj0c4D/BZ6uZ58lUsrp5gdCiBjwCHAVUAqsFELMl1KuDztBhAgRTg6CpnrMwO6MGtDd1ZwPKihOObsXew4fo3e3Try3oSJUs33a6H7u62DqJqiuUE98vA2k5N2iclU8JQg9V0PQ1bQm8rfv58Hlf6JWpk+tDkOtfYxXtj5DbeIebCncycRE0pa8u76C9zdUgFACbVrwbWHh7pSYQcLGp3GTzqAH6Z+WRGM6TH0ohBjchHNPBLY4naYQQjwHXAdEhj5ChFbE6IDy480XKAndVwJed1DwKyN22M1SiTkpl0mpGmgM76vEwlz9eVv6Kj5/Ob/QXQ1s2bvVpWAcTa/jgiX86ZwFOw7w9WeeJ2PAIY+PPw7UykNknV5C7ZE8hOHRB5E0+KVjdbabGhm2t0TFL8z6Aj1Ws6nLyfDmofk4+slCiLXALuD/SSmLgAGA2d6lFLiwma4XIUKEJuLA0Vq3OEg4701teh1MDQp+JZKSGU5HJt11CpTt01kxZn/WY3U2Dy3aRN4ZXVIoH4mndxOUKqgPFqTw2a+sKsXO2Akkj+Nb8GCT5LZLY3SrHe7j6AWKvkk3Np/qZ8g9CPwxjyDNYwl8EsctSeM0h6FfBQySUh4RQlwDvAacfbwnEULcBdwFkJeX18DeESJEaCqyu2T6KkDN4OwrTmbLiwWlXDqsl0/wS7fG00brlVWl1NbZrob6sq2VKTruH23eR0ZMpDQgMRH2qVbPDE4QwhLu6kFjT1UNIlbjZNUcPxJ2giVbSqmtLGNNyUG+fclZDO/blVv/vMyvFZ9mrAB3f3EIn+37XEk22NLN6zdjHkH9eU2TvbKq1M0osoSn/dOcOGGZYinlYSnlEef1W0CGEKInUAbkGrsOdD5Ld57HpJQTpJQTevXqdaLDihAhQhpojx6UAdB8d7CQ6t31FViWxVUj+/D1C/OY9y2v1F93nTL1arK7ZKakYCppAsnNF+Ry9cg+jBnYna+O7c+Ygd2JxwQxAZkxQTwmXMXHGRfm8cK3v8C/XTuaob1P953P1KMHRYX8bdNeZDLLyZM/fti2xebyOrbsOcK76yu4+dFPXBoreC9hEEDXzhn8+bYJvHD3ZK4a2YdeXbNIJKWrV//KqlJf/YKGZQmX5rGlatQy6/XCZm8neMIevRCiL1AhpZRCiImoZ6cSOAicLYQ4E2XgbwFmnOj1IkSIcGKYNCTHlRA2M0G0dIHu9KTL+Mfm9khRjQQ1QdiGhnrRrkOMy+vh04AXqDx4gEuH96Zw1yFXsjhmCUYN6O7GCMLa7NUmbGKW0rHRYzJXIFqjh2O5qOS+pnj1MZLHPJ80YatVQkbc+y7CoD38jJigqrqOv/+/5eSclulKHGho4bfLhteknKMuKVm944Cv9kBPZs1J4TQmvXIecCnQUwhRCvwSyACQUv4JuAn4jhAiAVQDt0glvJIQQnwP+CvqL/CEw91HiBChFVFvap+UrgGzwBeYDe5vatpYlkiRJRDAeQO7s2H3YeY5+i8m7KTk09JDFFcU8eydk3yTia8xinGgXoGYQc3MuEVtdR4ycToic/9xfx8ycTp2tZ8q+dumvdzxhcEs2rjHL5RmwLLAtpUX/qcPt9Z7jWRS8v7G1KZCABvKq4hZykhqvfvm1qNvTNbNrQ1s/19U+mXYtreAt5o2tAgRIrQUwlL7TCVIS8BFQ3tyz5XDANKqNeosFNs5zlSIzMqwGDWgO+vKDqWlPYIFRhrB1QV4wcvsLpmuBn1G3OKOLwzm8Y+2Ubf/i2T2fhNhNb6tqLQzqK28hGA9byKpOk2liyuAscpoRCTZcgTT0sG2cQPdLRGQbfetBCNEiNA8mDQkh7hTfRq3BPdcOSylurM2oTJptEetJwbd4zUmVLrleQO7M2v6KEb37+5ID/txxmkZZDocfVhHpfGDsrlp/EDX/Ooq2Sln92Jx8R43qFmbsFm6tRJbSmoPXEDy2ACk3ThGWsg4yeoB1B30enVYwgkEBxqEhCEm6ten0TpAX78wj19dN5qsDNUuMTNupRheiaKL2nLWTYQIEdoZdNaMBJ+gl24SYjLTru6NY+yXbN7H8q2V3HftaF/V56zpo1wOfl3ZIQp3FSKECsYGM1aG9jqdHl0yXfmCMOOmBcBqHQGw8sM1lK+vSDGSfbp1oriiipo6qN75TTrnPkmsc1m9nr20M7CPDeSK7J/y5s79vkyYq0f24dLhvbnvjSJ3RaENut4vHhPMvnY0RbsO8aIzRhNxS3DvNNXtbdnWSob37erSZWtKDrIowOMDLFpfwZLNe0MbiZ8oIkMfIcIpBt1+Txuxl/JLmHfXZKU66RishCObC7iKjM+v3OmKjdUmlZRwkOt/5IMtbgOTIKdhCRjSU7UR1AHbzJjgxnrEvMJCoTbKm9ZdpHSDkpdXlfJCfgnHdn6LjB75dOv3EcfsQ0AyoF55OrWVl5A4OIFufU/nvIFJ974AquuSDO/blRF9u/o+1xDAZcN7c+BoLTeMG8gN4wa6uvcJW7opkuCpbeqWiZOG5PDwe5tD0zbT0VjNgcjQR4hwimHZ1kpf6mBdUjL7jSI+r/VnrGjVSW2oxuX18G0XpHL9k4bkYAmVchmGfj06s2Xv575rP7Rok0sTmTAnHhOZMeHTuDePe6mglCQxODKZHwz/B3793lvYGTsRsVpkMpNEdS7J6jy0j/78yhK+cl4/n0Ef1a+bG5MAxW/HY6qMVzdQ+aB4D4vWV/jaAd5gSDHrSU8XR+m0ycvP6e1+9wLcVMwX80tcXfzmDsRCZOgjRDjlMGlIji91UGvCm8h0VCdNQ1Ww8yDxmGruoYunghg/KJs7Lz7Tl4UiUFIHmXGLUf26uWJh+tofbd7Hyu37fdK+rzjeeRAXDM7m3mkjfE1IXllV6hrZRNIZb9LmYHUdz3zjFp+4WrDLU9KWLPh0N18d2581JQeZOqovXTtneJ2nnKD0tNH9WFy8h4rDx8iKW+6KJGHDs8t38mJBqa9xuP6eY5ZwK4W1Zo6eunS7RN23t61XxkaIEKEdQatLvrKqlMKyQz4jL4CLz/YMmwkpJbdckOdKJxSXV4Uap66dM3ycvGUJbr4g120+EuTrJaqo6OVVpRSXV/lkFExYQuXiayNv6vA8n1/CuNwevoYq2V0yU1Yc+tj3N+7xGeAFn+7GlpI5S7cza/ooN200HlOT0y8c/R49jiBqEzbzlu/klVWlzJo+iqJdKtPozovPdLN3gnTNTeP9TcGjnrERIkRoVmjDEjSY8ZhgVL9u/Otr61K0XDLjFqP6d/cFKUHx5F+b4HVpCnqy0pbsq6rhoUWbGNWvm1usFYtZ2LZNwlbG/sX8Ep63dxKmKaZTK03PPKjDYxZqheXbm1TP7OtGM+v1QmwpXapJV7EuLt5jpI3a/DmQZmlLr79scMKqrbN9k0I8JrjsnN7sOXzMN6HGLBWbCKtPaAmItthUesKECTI/P7+1hxEhwimBuct38ovX1rlKlLZMlQ8eM7A7s74yikf/9llK5Sd4efOafrn/rQ08tmQrUipjZxrlb39xCF07ZzBpSI7vfGFaMhZwl7G/qQJpTlBhY5k1fRSzFxSlFRHTAm7BycvCC46GjknAXVPUmLK7ZLqZN0lbIoRIWY0IFE2DlCSS0m00MrxvV68vb8xKoX6OF0KIAinlhLBtkUcfIcIpjgNHa11jlrTDNV027D5McXkV721INfLgzxgBmLN0O6A810FndPEFYIt2H+Yv/3Ahc5fv9J1POFbVvL4NfLbvc8bm9vBdb/ygbDdTaEtFFQU7DyKlJG6p1YXmvIMiYrUORaTF2/QqJS/bCxLbKGNvCTV+hKAucJ4nPtnu0/7RTcH3VdXwQfEe38QmgUTC5tZAQdTPX13nTkIm9ROlV0aIEKHZYXZBilkCG1KyXRJJycLC3fUWEEmgqrqOR//2GcfqdGaJZEiv032GftrofhTsOKB0640TpiscXbShgvc2VKRU5er/v/74MmxbEgvpPJUZt3yNQWxUNpFZABYaExBw88Q8N/XzoUWbfEHksDRIPXnELcHVI/tw8GitSyfZqJWDHlvBjgO8mF+SQv1E6ZURIkRoEQS1b4rLq/j9e5t8bfwsSzBtdD+Wb6106ZKYE2Q9WpPgtTW7sCUpmi+WpfLcLx3em4WFu5k2uh8zLszjkQ+21CsvYEI396g1jKDmtv9WvMedVKRUuf2PfLDF9Zp131vdiNsS0KtrFnFHAllA+Dgkvqbh00b38xl6y/I3PzGrh5O2ZExuD3YdrHYNvSX8Tdl1VTF4WUlSKgG4KL0yQoQIzQozGPjdy4a6qpE1dV6uty72mXFhHkW7DjFXC5RJyYAenXmnqDzt+Uf26+YGfk1PWyto1tbZIMK9+b7dsnyTjRCCsoPVzF2+08e9ezvgKmOa3r/Z9zbDoWpeFKWA4stjONW7AiQqyGpZwqeSaTZrwbl3E8HesNldMnl40SZ3ezxgwN1q4zobYSkrb6PUQovLqyKPPkKECM0D3fHIFCtbtrXSNaA61VILmz3ywRZG9e+eInG8puQgkFpBCkqeYO7ynb6MFz25zJo+igNHa3mnqDy0AnVvVVDWV/Lcip1ulkxwbujeOZP9nyuvudZp6KEzbm4Yp3Rzgvn2ti25ZaLHnev0Tq2xP7xvVzeTyGx7qLtqmTSSuSoKeuxmKqXef9b0USm0UVKqLl36us2FyNBHiHCKwqQbNDcc7D7VKSNGcXmVqw2vm2Kbhvvbl5zFBxsrSNgqa+fOi4ewaEMFW/d9zjvrK3hnfQWWUF7tJcN68bdNe31ed3aXTNaWrksZX9DLt3WgWCqPWwaM/UGDGrElzHOanYOXcXPDuIGueFtdUvH6NxiZLsscgTTN32tjXlxe5RuPFRMpFEswF9708Ef37+6jlMDT80+971bQo48QIULHRJBu0J6oZVApi9ZX8MHGPSkNRvr36Ax41M/s6851jT/Anz/a5jOMZtcqjRqnp+w9Vw7j218cwttF5YzN7cHbReVuYNiUHdCvM4zJpqq6jqLdh+mcEfOdW1/TfK07Pd0wbqCX4mMoaxbsOMDakoMpRVcACwt3+849yqGk0sH08LO7ZKZMlEW7DrGnqoa402TdMvLyzXqB5kJk6CNEOEURNEZmIw9N32h6w7IEAkksZrniXSZ0WiOo7JPGBFq1/MHyrZUgBImkTfnhY74VA3hNs8HLfQ9SGwU7Dij54rBqK+N6LzqyCpq6SSa9lFCt66NhtlkMBmNvvqDhnq7aw3/kgy1elk+d7StGs4ArR/bh7kvOcpuSTxvd7+Rz9EKIJ4DpwB4p5eiQ7V8H/gVFRVUB35FSrnW2bXc+SwKJdMn8ESJEaB2YKYpavOzOi8+kqibB8/klJJOSeNzivq8o41t2sJrnDEpEozYpmetovuRld/ZtC0r8mpAoYTNNwtQmbA4crfV1m9JjnLt8Jy+sLMGW0m24bXL+9107msJdh9xcdl2cND6vByu3H3CvtbmiytHIl76VjJlzL/B3etKBZDNzqLFVrSZVZAe+CBt4f+MeLh3e2/X6V27f3yoc/RxUB6mn02zfBlwipTwghJgGPAZcaGy/TEq5L/zQCBEitDbMAGzCljz+0TZmXzcaixLVgVVK1/AU7DjgGtsgdArkZ0bOvAVuVk2YwQ9Wnpp0iQmdd69XEpo/h1Qp4OF9u7o6PTEBXz1/IGtKD7mGfMX2A2420azpo1yDqmksYSkZiJsvyPMZ2xkX5rkG/mevrgvN8NFCazrwq4/Xq6Mw2FLVKATjJSfV0EspPxRCDK5n+yfG22VAenHpCBEitAmYjUdG9++eorL42IefOZ62eq8Nj9aJ0ZIJ4FWQJpIy1aAJlRZpIV1+unDXIVd6YGHhbh8lAqTkwoOajEw6yBLC9cSDUsB/d0Gu2/kqaUsOHK3lpvEDfX1rJSrvXlMzmsZ6eVWp2ziluKIolCLSE4s+l1kRfPNjS91isxcLSpn3rUlOlk+4mdcaQtNG9/OlgLZ1jv4fgIXGewm8I4SQwKNSysfSHSiEuAu4CyAvr2H+K0KECE1DsPFIZkykqCxurzwK+BuEa8y4MI/hfbv6PFfAbb6hJwjAbUBiCZg5ebAvl17jky373EkjHhOhnrKZdy8EXH5ObyBcClgbz6DRfGVVqS91NBazKDtYTcGOA+4kplMvzbaJplZ+GMWjr/FKQD9fTwBBWWhQK41vTfFr+Azv27XFBM4aJWrmePQLwjh6Y5/LgD8AF0spK53PBkgpy4QQvYF3ge9LKT9s6HqRqFmECC2HRz7Ywn/9tdhnrP7fl4YzaUgO//LSWp9cQd9uWfzTFcNCDXQYCnYcYPYbRaF58XFL8Pzdk33CZNo7tgRcMUI14dBpkTEBP7x6uMvXa1okOBH8Zel2Xluzy73Ob64/N9Rozl2+06V/YkLduG0r9c15d00G8J1f002mWJses84K+tqEXEb1786Bo7WsKTnoy/yJWYIXnPvVK6jNFVXUJGxuvsCjgcJaOjYFLS5qJoQ4D3gcmKaNPICUssz5f48Q4lVgItCgoY8QIULLIehhZhg54dscT16j4nCNr3CoIYwflM2sr4zyrRg0TAoIUr3jMbk9mDQkh5dXlaZ44zrwKcA1wnVOUdSCT73UR4HKlAnTdzfz1pMGx1SblDz6t8/4cPNeV6vm3AHd+bT0UKj+zI3jBrqGGfApUMYt1YwkJuBX140O1eWpTdgUVxQB+FQzdUvHNtl4RAiRB7wC/L2UcpPx+WmAJaWscl5fDcw+0etFiBDhxGA2HtlbVUPPrllAKg8OjRfaCmagzPuWX2MGFJc/aUiOTyM+SLEEK0xNL1ob4XjMIpGwEUKwp6rGFxiOOdIFJsdvXi9uidAUzIrDx3xaNaMGdKe4osrVzdfSC/e9UeSO90ZDIdOWKlXTrLINfl/mvrUJm9+/t8k3GdYlm79QSqMx6ZXzgEuBnkKIUuCXQAaAlPJPwCwgB/iDUMUHOo2yD/Cq81kcmCulfLvZ7yBChAjHDW1Mbn1sKXVJyUv5Jdxx0Zmh+8ZiVorxNKE5f20AtXzvPVcO84mg2RIeXrSJTz5TE4rWjA/2fjWbojzywRbKDlZ7AdekZPzgHhTsOEDSlry/cY/b8ckSKtYQLE66b34hdUlJRkxw6fDevnZ+6jiYPCTHNey6klUAmyuqKNhxgHnLd2JZwp0IaxM23322gK+OHeCbrG4IoV+CE5s29qaOD0DMokUEzaBxWTe3NrD9TuDOkM+3AmOaPrQIESK0JF5eVeoa4dqkZGlImz8BXDKsl894BvXSH/3bZ65nqjVmtLEem9vDVXCUwIdGhk1tXWrOvIbJ3yuxMQXb2aYXHklHnviWibkpHnZtneM1G/cIuEFd7UvbEp74eJvbcDy7S2ZKFy19LRPlh2v404dbGdG3K+Ocvq9hRt7UE5o1fVRophGo7KSWgtViZ44QIUKbRtCsZMWtFCOflWHRu2tWSo63xtzlO1OkB6SxzWzvFzaAsJx58Of2B1sapmrgSEr2q9iClnWwUJNC0GuuOHyMmZMHk5fTxfd5XVK6K4vnV+5MMfIQ3isWYEN5FS/kl/DyqlIKdvjvN6gndOBoLfdcOYzMWOrJ6pKS2W8UpZyjORAZ+ggRTlHcMG4gmXHLTUcc2qerz/gPyunCrOmj3P1iTr78LiclURcxmXY3JrwgZVAfJggpVTDyZ6+u8xm3gh0HKDtYjRWwrDqVMTMmfOOUwMdb9vH1x5dRXF7FjeMGcu7A7ikTGcDa0kP86cOt7AgEnWMxxe1//fFlaTOG6uPO65KSect38vXHl/nuRU88MYEvDnHftaMJsfWsLT2Uco7mQKR1EyHCKQodNDUbjsQcHlrn0s96vZDZ1432FRPNW7GTlx1xMDMQKlC54dogjurXzUdRDO19Olee05ui3YfdIG2whR54mSm6EEtK6eupCric98LC3Xy8ZZ8rWvavr61TDTwsfJx6EDqXXr9GSp5fudOndQNKjfPmC/LomhXnzx9tcz83+8qa5wwGrnVwWadQgprIFhbuTttRq1UqYyNEiNBxYQY+Zy8oIuEUHGnoatPn757MgB6d3dTGmjqborJDxGOW209VonrFXjWqL6D6qmpYAi488wzyck7js32fpzWQgEt1CODmibkMCMli0WMu3HVItT/UVblSjxsuGNyD1TsPYjsThW7ObTvjEeAWaiVsXE/eAuJx/8Ry86NLfZPGrRfmccO4gdy/cAMrDXpKOhIOZhYSOPGQhM1L+SWugJvU13KCxIs37XXVOdt6ZWyECBHaGQp2HOChRZu8lnyB7VofPbtLpuuFSpRhjFv4BGtq6zyDXWfw3LaEZ5fvBFJjA2Z1KeBmpgghGG30WQ2OWXv+6UKYw/p05d5pI3wGV9/HB8V7QhudWwIuGtrTVw37yAdb/CmcxgU7ZcT83xWKjkJKErZ0NfBdnt5J4Jch12qsSFpTEHH0ESKcwtAG8+MtqVkglvAadkwakkPhrlTuOmn7u+qNj23mq0ee44rTt5MRDzcvPk7fElw5so+byaM7LwnUauK++YWhfLUZ5JQoDt00+JlGquN3Lxvqnvu7lw1leN+ujsa+/14FqjmKaeTBCPAKZeQtSzBvheLjR/XrljK2uoStlCqdlc++qhqPp48JMpzXmfHUa7UUIo8+QoRTGNtWf8C/ymcgBq8kp7AG1TYw2EkKVD9WE5p20FTEeGsz87J+S3xVHcQymX/dM/yltA97qmpUV6mEl9KoYduSJZv38u1LzgLUxPP8yp0upVKbVJLEQWOY3SUTIQTCoWXu+MJgHv9oGwlbErcE931lVNp89rKD1T4aJuZo7SdN7seAWcS162C1K9FQm7Ap2n2Yb39xCEu3VlK0+zC2LZ00SakmQWDxpr2uzHNQYz8oB5EuhfVEERn6CBFOVeTP4Ya1P0TEkgD8XWwxiyfPYXPWyBT64JEPtpBI2owTm5hkbcAedBFdz77IZ7i+emS1MvIyCYljnFOxgH+//iHAM7JrSg6yyChYOl9sYrLcwLbV1cBlKc0/wKN6zMKjX84vdI21bdscrkm49IqpSolxrClVkBETrl79Zef0dsdUm5T86IU13PXFs1I057972VDmLlc9a6XTcWvJ5n2s3L6fZ++c5PabTdrSl4qZTKbX2NcIa+sYGfoIESKcGEpWwFs/wpJJ15JmkOTqxPtcPfXalN0nDclhYnwLT1q/IYMEVsXrWNPegFxlvMYPyoaSq2HNw5BMAhJWz4UxMyB3oqJOrM2UHXmHqoyurKgbyt9Z7/GrjDlY2Ih1r/MKf6Q2keWjdjQF4+PkhT+bJml7cr/pZH5N5cqgVEFxeZWvFmB75VF+9uo63i7czSefVbrBXLffbSBd5lidzcurShnQo7PbtFxKRSdJKRsVXA1r69iciAx9hAinIrYvARnmOTtWv2SF2qdzDlRXMn7wFB6cWEVWQQILG+w6tT13oneC3Ilw9tWwcYF6bye8fUpWwFPXMiBZy9zMDFYNuplxpU8jcLJ87Fomx9YTt8a5Fawxg4Ix2/GJAL1iCVUTcINTGRtcjRTsOMCL+SXuBBKLWSkNwc0+uRq+Kt5Av9sgXioo5b6vjPIZ6zB5hzDoVUNj928KIkMfIcKpiMFTIJYFiWO44dFYFvQdAwvuUd64XedMBhbEsxgw9X6IZ0GyFmKZ6hwaJStg7VzY9Ff/dTo7nun2Jeo4mcRKSiaUPY0/LCsYMPZqvpbozFzdIMSgYEyPNxazsG2bpK2M/K++em6KSqRJuSzbWulkuyjcNH5gaLDVbCZyvND0jCnIBviqiMOyalqam9eIDH2ECKcqxt4KSOg7FqorlVF++16/8QfAVka6uhJun6+M9uApnjfveOspx8mkmjTWPQ/n3qwmh0SNk44ZMKk9zwaUZx4mU6y3CVRnqqJdh9JquAeN58TBZ/jupnS/vyrWDLYu31rp8+RNWICwFFWkoVMtzarXoOKmDmyH6QW1NDevERn6CBFONWjDrD3z22eozxf/FpI1pGbSW2DF4FApVKxPPZ/21tO1/97xibrm5O/B0v8FO5m6275N8NS1jL99foMyxS9QQiIpXangIILGc9VOf3rmks373K5SQeSe0SWUxtE5750yYj4KZ/ygbLIyYkwb3Q/AVfg0tXpq6mwe+/Az971p0Fuam9eIDH2ECKcaDBqFZC2snQdr5ilv20yAFBZ84Z+g5pCicvLnqO3CUjTP7fOVVz94ipowkrVqQhh4Aez42H9NOwHlnzqefMiEIG01yWxfwvgpE31G2KdIaVAwplKmCR/NYwmO1vonFumcM4w+0Xr3yaSiiJCSpK0mlXuuHMYrq/wppgU7DyKlZPm2/b4iqZmTB/v606ZrzRimv98SiAx9hAinGkzDHMsEpOORB7LcpQ01h6F7rjLUert0qBwdaM2dCBfeDRvmw4hroVO3VENvxWHEdbBjaQg1ZFyvc6pHa1bkphxivDY58GDeu4m405xEw9c8xJY+2QW9PbtLJq+sKmVPVQ0xh76xBG6apa4C1h570e7DKSuDsKpbwBcUNt83JyJDHyHCqYbciX6uHWDNc46xR3n6LqQ3MWiPX1j+YGz+HPj4IfX644fg3L9Tht1OAAIGfQGuvE9dt89I+PhhLzPHBwvK18KSB30xgANHa12VBQGuAc2ICZe6CQtqfveyoW6f2bqE1rUX2FL62iMG6ZMw3j+sNaJlCSwhQr3/aaP7sXzbflcHSBWXWeSe4ZdHTjf2Vsm6EUI8AUwH9oQ1CBeqFOxh4BrgKDBTSrnK2XY78K/Orr+WUj7VHAOPECHCCUB74qD4czMwu/DHkKyDWIabB+9ODJ1zlDE2fekNr/vPXfiS2mzFFS/fqZvi9vXEMmAcFL9lpHcK9S+WAaufURx+LNOlhiYNySEro/60RZMT13o7OjAaVtVq8uRBhcni8ioflaI9/iCkLbkpxPt3eXYn4By34PJz+rC4eA/PrfCUOoO9c1syINtYj34O8L/A02m2TwPOdv5dCPwRuFAIcQaq9eAE1J++QAgxX0rZ/Mr6EdoOdA62mZkRoW0iLDA7883Uv5+eGEpWqMycZK1aBdw+X1Eyn73vnVPz8BL45H8cgy49bn/q/U5qpxETsCw4+0ooftuLHTjUULo+sibVkd0l09eFKqggGfTuwwKfLxtFVQKVxz/7utGhzVEsR18+6P2bQmgJR+7ZllBdlyRhy1BjfjICso0y9FLKD4UQg+vZ5TrgaSmlBJYJIXoIIfqhes2+K6XcDyCEeBeYCsw7oVFHaFmciKFOMRzzI2PflhEMzJp0ThjWzvM4dr3/lB+pbRteh77nwfJHnXNKwKCBNLdfvhbG3gK7P4Vdq9XndhLl1eugbhwOlajnSVfW1pN7fuBorUvpWAKKdh3il06v2JgluPkC1WowXeBTe9VmAFVLNN98Qa6vxeJVI/swNrdHvcFTM65gSzhWl3SDvEFjfjICss3F0Q8ASoz3pc5n6T5PgRDiLuAugLy8VFnSCI1Ac3jSJ2qowwxHZOjbLoKB2c45MOfLHnUz800/xbP6GVyTZ8W9SWHCTPUPIPtMWP00lK0KXEyoYzQ9Y8VAxDyPf/M7MO0BNRGsfgYKnvZWDcYzZFIdNXUq80Z3wdJe8eaKKrdIKmlL5hrNTcJ61E4akkM8ZqVQNLbjlZvU0bcvOatBY2zGFQDytx8gIya4ZWJeaG9ZcyJrCbSZYKyU8jHgMYAJEyY0tUDt1MWJGmg9SRwqPTFDHTQc9XmHEVofwcDs2rleUDZZq97rv//2JUYOvIDzZ6Q+GyUrHI7fLyqGsGD87XBkL2x8E5CKY+k/1pkQpDp3+Ro4sAOSTpZPyDNoGmUJPL9yJzeMG8jMyYN5bU0ZeWd0oexgdcqt1tbZPLRoU6j+OwBSusFeTbnEHXrmxjTyCkGYwmtZGV61rURNOP17dD4pssRBNJehLwNyjfcDnc/KUPSN+fniZrpmBBMn4kmbk4QVczImaJqhDhqOyJtvuzBXgJp+WRtgVbd/As99HU7vDVndQAjA4drHzEg9pzlR+CC8QK/2c4UFXfuplYP28LX0Ao70QsgzOH5QNpcM6+UWLiVs+I+FG9xG5MGG4Bo28JGjNhmsVP3i2b2o012qcMPDbkC1MR53WDVs0a5DvJhf4mbjtFRBVENoLkM/H/ieEOI5VDD2kJRytxDir8BvhBD6G7oa+GkzXTOCiRPxpM1JwgaGT4O6oyrI1hRDbWZ0RGibSLcCHHMrrH7Wq3TdV6z+mRCWypsP/Run6fckbcXhm1WxdgI2vqUM/fjb1LEFT6l9hQVDLoVLfxp6nd5ds3zvdwZkDdJBZ+UsLNztFWHV2by3wZNOFkK4lE3Slo3Ogglmzxw4Wsu/X39uWrG1k4lGdZgSQswDlgLDhRClQoh/EEJ8WwjxbWeXt4CtwBbgz8A/AjhB2F8BK51/s3VgtkVRskLl4pasaPFLtRloT/rynx8/bTN4ivLiEeoHtvkd2Po3lV1xKn2HpxLMyT1xzPPkcyfCzAVw1mXUa7SX/m/4szHmVuXtB6ELpmKZeGZHouiZOtx+hFZc8fZWBmQPUmmZ+rds/K41J6/lib861h/6i1nqXxiEgGmj+7ldnyxLeEYeuOKc3mRlOB2hjsML19kzwePMLletBSFDOqq0NiZMmCDz8/ObdnCU9XH8KFnhBeCE5SxXbfWDu/zn3rI+QsdByQqYM93RtkH9VoKB1zlfTkPDOJjwTZj+UPi5F/8WPvsAlwiZ8E2Y/jsvPbOswNtfOBZZK2UOmgSl+crj15/F4uq5tBNqMhh2NXtkDz7sfCVnnn8Z4wdlM3f5Tp5fuZM+3Tpxt9OxavYbRW7Tb42rR/bhsdsm+Pj0+94ocoOt8741CUjtAhWETtcU4AZYG9P3taV6wwohCqSUE8K2tZlgbLPheLjqE00j7Cg8tBtkcxhKywIpomBqR0buRJW3vvFN9T6ZUMZZUyW5E5XhX3RfQM7AyCUxGou40L8LLXegHa4xt3r7lK8zTqcdCyMLfudS9fy5kgy2f8Kx62Djm/QGboq9BOMXABOZcWFeSleoWV8Zxa2PLXU1cjJiwp0EtJF99G+fkUh6TUmKy6uYcWFeiqZ9MI/fPO/z+SU8f9fkUDmDYND3ZMgSB9HxDH1juepgAPL8b6iHsTFGu6OtGoLf2dT7lSTtiU5iHWky7GgoWQGbFxkf2LB1sTLO+nnOnaj050106weHd6OyZBJ+R8pdJTjP0bT/TH2Ogpk7/c9PTcOUUv0mJZ5HL/TrAALOnBkQtYQqeJp312Sf5w2qoEl78mZKZVLCrNcLXXkEgLnLdzLr9UJsKV3jvGxrpU9gLeH0tgXSyhPHLcGIft18PP7Lq0pPCn/f8Qx9Y7M+fJ5/EvKfVAp+jTHaHS1XvCUyZTraZNjRsH2Jo0WjIbyCprXzPLmDjIA2y7l/5xVEmY6UWzHrUEHJGpUPP/133rElKzyjrqtkz79NFU7Zdd5+sSxvknA6XFFW4K0+fJBqm1NYtWxrJaOSG7nQ2sAyewSzXofn757Mb64/F/BPBAJIhjDXtvQCsAU7DjDr9UK3fWCtU9U6aUgOMeE/XuCvrq1LBIK+SenSSJZQlbcvFZSSSLa8d9/xDD00LuvDFWrSSnpSPZzm8rWhY9tzrnjQ227uTJmONhl2NASlhREe/736GS+PHSedstcwuPA7qijqnC/7nx238Uggd/1IhSdQBv6YgIiplSP4NW96DfeuY6JkBWx+1wjcGt79xrdUZ6trHuSK0wdyR4bqa1tHnG/U/oxlW4f5KBVteNMh0wikvryq1Ncj1hJK+XLZ1kq+NWUIf/5oG7aTOjmqf3fue6PIa1loCaaN7sfK7ft93asslIpl3hldQrV3WgId09A3BtqLXTvX3zbts8X+5Wt9x7YkLdGStMfJ8LY7wmTYkZE7URnaDa8rPh3U68/3+jl07QRVblHKk/pYbeCXPOgV2Zmw4ooaKn5b/f2HXu4ZeVC/tfI1sOovhlqmhL3FamXQZ2RqP9ppD/hlFkwnzU7AWz/inHG3YQunr61McFHGRrK73OhSNWUHq4nHLFdVMoiYJZg1fZQR3PUK+2MC7rz4TF/+/a+uG+0KrC3bWknCaT8lgK9NyGXGhXkM79uVl1eV8lJBqSuBcM+VwwDq1d5pTpy6hh68B3bMDCdLYDHpqvHSHtsSaGlDfDK87ahwqm3DFCfb/hEg6ukShTKkZpVsMMYlLM9gixgMmwrFC530zRpl8E0IS1XJpvDuUu3/6t3whX/2PHtzvDuWqkmqfK2Td+9c15FSsOJZyGQtiBjTB9rMWvAqy+uGeoVQgaxRn26806d248pF7HrjBcbIEaxCGeVbJubRtXOGTyXzwNFan6SCKcOg4wHaS9dhbFMI7WQ0HYFT3dBr5E5UdI2ZJdCaHmhLG+IT9bYbu9qICqfaLnzPmDa2ASN/eh9Fv2isesbLsgkW2ZlSBqAqafUzJkSqQZe2omJM3XphOYFaG/ZvhQX/DAe2KZnjQyX+30T5GtUQ5Qvfd9oTOkVWfcfC7TMQa+cRX/0MQ0te4knrNb4ufsYqOUz5/wFe/YoRfViyea9roK84fTtnLZzBPbE6vh+zeDF5Ca8kpzCq/7m+b0mrZOrfw/jOObw3sZSlyZFuyiclKyhb8w4PrOjKisRQMgPtD1ta40YjMvQabckDbWnaI6zxRKDZQ1pEQdaOAfMZEyIQmHUw8AJPlwb8WTbBZ/T821Rxk5lOOeZWL6irA7XSmFTsOhg/E7oP9J7DV+9WRl7jk9/jiqEJodIuhXDo1oS6ltuL1lbXuX2+OmdSUTgZ1DHZ2sCq5DDf7QmUWNm3LzmLb19ylutZn7PzCaSsQwibmLSZEXuPG2NLeHP3ICq6n+dTyczcnQ/v/qN7bwOwuCkWh/g3YO8YePte+iVqeNKK83V+xtrEMLat/oDxO7edVDsTGXoTbcUDPRmTjsmzHo/hjoKsHQPmM1a2yt/xqXM2jLtdqVBufAvX0JtOR9gz2mdkuI59yQpPltj0+oUFfceorBq97xf+WXnyGnpiSEqPc3FljR2pZLcXrUG7ds5BB2xjQjJ+5FC+nT2Exz/ahi0l8ZjFTeMH+mgU7YFzqBRhxbGTdQikMuiyjsmx9ZQPucylZy6Ib+GqPe8GJjBnDPlPOimitjPZJJgc20CmsLhh3W/UJHe8ad0ngMjQt1U0dtI50aDt8RruKMjacaD/zovv939efQCWPuK8cQyYsFTKYzBAWt97CHD5caVrk0yoorzJ3/N3s9ISxSKmnkf9vx6HdFhuH/dipRZnDZ6inmNhgbQRwuLyvBiXTxnBVaP6smxrJVecvp1zjr0D1hQgJO4gLCzUJSVgCcmAfgMZ4GjHb1v9ATes+w3WrmNpvlypVhiWBQgsK8bU/glu71aMtamuaWndJ4BTx9B3xOKd5qBRjtdwtyWKK8KJw1fAZMDMawdlXMvXNJ7iM89vcvnjb/eomqAk8ps/9LTpIcDrC+UBuxXcePv0GRn+TMayUp7r8YOyGW9thqe+kfq7McfqjMMXt632ql3H79zmzyJKgVDFZk7Q2Fr9DOeWvwZ7AoFrndbdwivjU8PQu3m+NWqGvebB1Dzd9ojmoFGaYrjbCsUV4cRhTvSArzG44xEDysiuesbJtY/BuNv8lIPpSIH3unOOw61bHnevj/n4Yf9YfE3JzbYdzlgmfw9qDqmGJGamje5yFVxdpHuu0/1ugrUFUnoTnhVX96InusFTnPtKk6U0YJwy8rkT1TF2MhC4NrR+EC2+Mj41DP32JV5/StuGt36UmqfbHtFcNEpDhrtkhaNuKFO1TSK0b5gGsXOOR6UIS2W0VG6BfZtVzvrBHeoYOwH5T3iUA/jpGd1ERBdiSYfC0IZP4/Re/rEIRwXeyoC+o6FsNS51JG2VO3/7fMjqDh8/5Bwk4djh9PcW9qwOnqLGlrTV/+niDhXrnVVGUt3Pmz9w5BniMO7vYfRNsO6FkAsH7tUtzqxR9zh4iqpV0JOrFnVrQbT8FdoCBk9xuDIH2gtor9CFKtB0aeLjudac6eqHnf8kPHlNw9LFp6JMdEdAn5GKJ7digIRlf1AVp/uKPSNvQsslLP6tMmLaQ3a95Trnta0MpA66aoyZ4cgWO9De8dlXqSyeeBaeVLL0vO9O3YzPSS+ZXO9zKAL/O8id6K0OqivxVhXSo5XsOvV7KHpVxRFSTh1yzqn3KxtkJ9V4B07wrn0S7NGp4dHnTlR0zVs/Ul9qLKv9BhHDePmWlBHWy1wNu079uOtTBI3SL9s+9CrtSIWqYNWpimNvUQZXap34BmTMdaMQFbJ0eHTN70vPEFpxRVcs+IFH3+hq1zfv8Yy8tFVK55b3HH57jVe5LoRadfQZ6VzHSQm1k6m0ZX3PoavzEyLMZmLwFNJq8oNznyHbZdJfXAZq0nAnigTsWGbcg3SyhFoOp4ZHD4qT/+ZCuPxf27fxCeMXoeW86MFTQpaW9fz4040vQtuBuUrb+KaTHuj8vXDkqUVMZcLUB2k7XLlj5M+6VFEaQeM3fJrab+Ob6ppPTIX8OWpbdWXI4+QEKKsrld79tP/E1eJZ+BO1y+Tv+fcPGkpN1+rGKot/6/02NJUiYuGUp/4tVayHnmfX/x2Auvfgb+TIXv/7lEnD9iYqaSuKqAVXwI3y6IUQU4GHgRjwuJTy/sD23wGXOW+7AL2llD2cbUlAi2fslFJe2wzjbho6QhAxjJdvSS86dyJ8+b89rjKWGd4rtL7xRWhbCK7SADer5cgeGHqF85lU8gjHDgXP4G3XsCxVXQ5+WQKkaktpZvbIpBcn093NUrJ8bM94l6/1zpesUUVR/cZ4wWJhpdJCRh49SNUExdSwSheozZ+jxuZm9xjG2QxOm9+BFVPn2PGJ93Ew/gDQc6jS8glD2CqgGdGgoRdCxIBHgKuAUmClEGK+lHK9O0Ypf2Ds/33gfOMU1VLKsc024lMdYQ/pkgfrz7450dTSCTPDi2EaO74IbQvuZGwoSQ6fpvh4s3AqFDobxnI4Z9vLZNPFUUJ4c4CIKaljk2oBf7bMuL9X8Z+ga1++Ru/s/7ysQAUzrQyPcjIdipIVSvzMl7kj/b+NoNNXskIZWjOjx722s1q59KeK7gqOVUrodY7qiqVrAkxnyHXE6kvH1N9ty6AxHv1EYIuUciuA0wD8OmB9mv1vBX7ZPMOLEIrgQ1qfF91c3v7xrIY6wsqpIyN3oqJD9CpNI0wGQeOMITDiWr8WfViDmu1L/CmHZgPwQRNh53JA+uNkY25VGTy+ClO8DlZjZhgNy/V5k6qhePdc//XNVGptpNHtCNOsMINtFX0QaiIbcZ13Dd9YjbRRLfmQNp0zpHGKexnL34WrmdEYQz8AKDHelwIXhu0ohBgEnAm8b3zcSQiRDySA+6WUr6U59i7gLoC8vLxGDKsNoKWKsI73vE3JGY5wasPMKJFJpTQZRqGAMsrXP6qem6AWvYZ+ZjvneKmE6CCtVJ7u0Cvhyn8Ll0nwyTE4+jo6UDrlR6qt4ccPO4qYUl2j79hUysalpRwt/TMGqwmqU7f0v6e189J720J4Gjo6JdtMRzUnOpNjN3/DKb0vQjD8mnZVMHUL8JKUvrXPICllmRBiCPC+EGKdlPKz4IFSyseAx0A1B2/mcTU/WooXb+p568sZjjjzCEHoILv2MqWE8d9I1aPpdQ7kDFW0BjQsc6A9/Q2vG83BUV5x55z0Dow+77u/9Kif4PO65T11PsuCC+/2ZIv17wSUyqUVd1o/2XBgu0oTPf8b9XwZacyNcIqmtH7N2rnp60mCss26kXksE2YuUOMLNkVXF1H7XPTPtCQak3VTBuQa7wc6n4XhFmCe+YGUssz5fyuwGD9/337RUtklzX1e7YE0Jdc+yofvuNApx1YcRT/EAeHkr3fyMlIqP1O8ff6TMOfL4c9C8JmtrlR8dryTmkysuMqSefteeP/f1XkW/CD1XPlzVCGUTkMc8RU/JWTm5Jd/6l0zcUx5+09dqzh2JAw4H197xPwn1XZ9TfPZ7js25AsSMHyqyuUXMa8yWNeTBL8L33dQ56yMnOyhjx/2culjTm2AiKm2jGddlqoh1AJojEe/EjhbCHEmysDfAqSkXQghzgGygaXGZ9nAUSlljRCiJ3AR8J/NMfBWR0t5yi1x3qZw5lE+fMeHDrKvnesYsSe9pt7la2H3Wn/j7mRdOPXnkw6IK68a/HRiY3o0b3jdf97Cl2Dit1LlCWKZijPf/rE6F9KjdLAVa9O1L35PXaoJYa3jh5rP9tDLU7+bWIbS49dxiEOlThA2zXdRn5RE8UK3py0zFwSkm2tVNlALV+o3aOillAkhxPeAv6LSK5+QUhYJIWYD+VJKZ83ELcBzUvrEH0YAjwohnKgF95vZOu0ajckuaQqH31ayViJu/9RA7kRl/DQ3n6yBLe8qmsQNaDqIZYQ7HvqZXTtP9ZvNf0q1CLzmQX8xX1iPZr1i3b5EtQj8zAjvSenPkgn2UOg72qCZHEpHOlRIaAaLVOPTGTj62a4q9+/Wc7jSxNcT30wnE2n1sx6Xr78L8zeux3fssKPjo2MggfsIy5RbO9ehx0SLyBY3iqOXUr4FvBX4bFbg/X0hx30CnHsC42sbSGew6/OU6/OIG5oA2kLWSsTtn0IIcNRVu42ApqVokH7nebx02PObO9GvRhnUlNKG+uOHnGArilY5dtiQBg72+Iv5nzt9HjezxghuatGzTt0czZ6fmCfCnQzsJC4vbjZNKS/03vc8W8k+gDLsa+fB9N8pg29y9JD6Gx88RX3mwlGxNAXRwgTUVj3jTbarn1XXakYbcGpIIJwImkphpPOI2wsl0lZWFhFaHm76opMDHuwWNdWpj9y+RH0eDILq53r1XP95da68OTmc3gdfyqPJtQdjov3GhD93rkihmcaZ9ETPXIkDB72GqViDnVDUUlgqpFknsjZwH/o6QQcsrH4FcHvvCguGXKpoJlN3f+ab/t9XCi3U/CvoyNA3hOOlMIJpZkGPuD1RIm1hZRGh5ZE7URkfkxYZewsujQCecwJesNR8foPGFeHlygczUmJGoVPf82Dr38LHlW4VqUUKbTMv3eDgx9zqT/HcW4yvcErfc7oVdkWAXQ4Gaxv6jetiNN0UpXyN990la+H178F1/+uNIX8OvknLijf7Cjoy9A3heCiMsDSzYEFJRIlEaIvQz6fm2e2kVwhkOicmhKU48gX3KGNoUhG6RR546pY6UKoLnY4dVkqOwfOqkzsqlWnGOvl7hlSxhlRGs+8Y5S0v/i1sXewvVAoKoIX1qqiuxLfqMHP10/3GzdTRqfc7MgpO/r0rKeFgX7HK2tGeve96AsZ9o3U4+lMaYRRGOo49LM0sqCwZUSIR2gqCzUKCvLf22NMV/NgJTzLBisOwqUrjxeTy3dJ/s4rU4befnJa6CtDVrLG4ojR0tkoQNen0d5zYwDcXKm9624fOkJ3rWzH/ecN6VUz+nrNiIJVfD/7Gt7yjaKG9m9Tl41meAqjOvz+9V6AtIl4AVvP1caMbVn1aUk1EZOgbg+AyLx3H3lhvvSUokY7YKjFCy8Et+9cByRketwy4AUvtqZqSwck6vKpXB3ZCBVnjnTxDZea+a7760p+q53PBPX4jL2LK0+871rtOwVP19FOtTz7YVkZ0zXOeFs/kf1KTg3neqfcro29q89i2s8qwwwuzpt7vNS0BL7CskaghJdg7Zoa6r6DkhJZ4OAnOX2Tojxf1cexumpmTJnWy0FoB3mhyab8wy/6TNbD+DU9q14orw993bGrgdcwMRYmYVa8unJTJxb9VBj3o+GgjHwzciphSSNUBUVCTQH1xrDG3eiqZwoK8ybBzmfKkdcMSnTkkHRqo5pA3mSVqnP4U0pAYdl7btnMcsGG+5/Ena1V9gdkwJAjLCg/26oDv2/d6KaH1aeE3MyJDf7xojNe+5jm1/SR0dweaP8DbGAPeXrKHIqRBwEgf3af+P2e6KscPy/XWujOX/tQpVtL6MEJNDrqp9meLPUngME/VF7gVqmF4n5HeCsOKO2qXhIv0bV8CezZ63rG0YeAFcOV9fipqzTzv+eycA4v/w3/fZqNxHTfQhUzauO/fhkcnZeIa6KCEMah9tIoneJOamVY59X7/fXbOUVXCZlykBX5LkaE/XjS0zGqs0W1Ob7g5A7yNNeDtKXsoQirCFCFBacenoyJNrvr8GV62iLBUAPHADmXksR1ZgodgwHiP/oHwKtcxt/pXGHadmnAGjAtXpgxTgtwwH676N/8zGKzMNScXAT6Vzazu6v8+I1MDuSbtBJ4jF8tUMg07PoLsM9VEU5/+zfnfUIFiU0xu4U/8lFkL/ZYiQ98U1MexN8boNrc33JwcX2MNeJQ91L6hUyo/ftivQT/iOv8+ZrWnbshhxVTAMt4pNYC4/SPPcG18U0kUu8JmcRh3mzLswec1mLt+eq/URAYzcBpEj8HqfzP1MZjxpp9XrUipIZNOBo+laJ/b5yujvmNpKu0EfvVKTW0dPZA6JnO8WvbBinkrCTsBGKsKze23wG8pMvTNjcYY3Zbwhk8kwJs/R+mMjLju+ALKUfZQ+0buRLjlWf/ff8LM1H3AnyFjJ+CT/1GiX6f3UV6qfg7O/0agMUcgYJv/hEdpmoa871gvMyVd5smxw4QaeYDtH6r7MGkXYalc/mBXqc45TgFTYDWjeXhNUaV7vtPJGAR/x74uV853YQeC2FbcCfw6cZGgKmYzITL0LYGGjG5b8obz58ACRyL1s/dh+sONN+BRQVXHgNlBLCydcfuSVKpEJr2GIjhVtZblefrpPG/wV5GanrGmSSb9Y+oYSlaoySUdpK0mK1e6wfksccxLY3RrBeY6tI1O5zTTOo/j95jud6xXFYdKAu0HRaD7lqW6a3Uf2OLO0qlj6BsbYDwZHmpD3vDJzGYJKgZueF398CMDfurAxyWHeJaDpyjPOMV4Ow1FtOXSqYm66KhzjspSWfUXI4BpIWOZrJXHWPfyzXyOzWlScm7MZkxCIqRU58g+00+9rJ2XprAKlIHOUiuSHUsD45ReGiOEa+T0P1+pXZ7exxMUS0evBn+bWsxNny/4XVpxj+46+2rY9LZn6K2MFhEwC8OpYejDqt+CS9Tm4s0ba6TTecMnK5tFjzOoGGhytBFODaRICM9RAUf97AVpj/K1XpaI5py1EbaTKg9++kPe+Z1Uw7pOPXi1YhlPHt5A5bbnSXQ/jYSAuIQ4XclJJvnmoSqur/qcDJ36qHPXVz+TZvCW18/V1KwpW+XFHrQwWfeBqbUCVobqP7trjRcYTvlOjBVIWHBVZ/eseQ7G3uodZ6N68dYdVb+z8k+N2IBQE+pJcqhODUMfVv0W1H9uDt68OYz0ychmCY7zonvUQxjG0Ubo+EipfDUkhM1UQfM5HHOrVy9ScwTWvegdaxYCOcce7Tua77z5DTYc+oxq7W1bKj2xTkAdglLL4oEzevDm6afxx/J9dNG/gQ2vOwHMIBxlSDNQqsf57i/9u6562mu0knRy74dfo4K+uiG4+XsLo2XCNPURuKuHZC0c2eOocDoNVza/A8mE40wZFFE8S31HJ2n13pgOU+0fWgRJQ6vqBfeJZXqddZrCm6fzAo53rCc6juMdZ6du6sdSXRl1kzpVMfYWGDTZey9tJ5hYD9Y8p7z/dS/gCzAma3xZNHV2Hd958xsUHtjkGfk0OGZZFHbqzHf69qROc+YjrgvXmD/ny+HOVMkKRf+YsJNqJaIDytKGze96Gj3B35texZid2TrnBKSUHZkDE5vfUc6ksODsK50JyqCRhLMC0a0Pn7pWdd0yu1+1ABpl6IUQU4UQxUKILUKIe0O2zxRC7BVCrHH+3Wlsu10Isdn5d3tzDr7RyJ3ozeY6Eh80oGF/2ONFcxjp5hjH8Y6zc85Je+AitDHo1V3B07BzuX/b6qfTPwvaWUhnuFc94x776uZX2XB4G7VW46rFa7FZn5nBa11PU7TNhJnqt3DWZXjG3lJ59mG/j7VzAxo6qKDxkYqA3kyNcm6m3g9DLlH/B7NrpvzI4+bdgHFMUT5BZHX1DLupe6/NrLY9egXic7iciuIW+u01SN0IIWLAI8BVQCmwUggxP6RT1PNSyu8Fjj0D+CUwATX9FTjHhiSdtjDMzIKWavjRXCmHLZ3NEhxnVPx06iKdMiWoRtZPXRvucLh0jw58alrCgZ2AtfOQ2z7kyd1vUi0DhrcBHLMsnuh+OjftXo1gprp+MLc9mOWi3/vkFRyK5qJ/9toIuttiqS39QMUYgp2efLo9MRj2JUfnxrjnY4ecxuCozze/q9oy6sB0mJKtFVe6OcGK4lYomJoIbHGaeyOEeA64Dgga+jB8CXhXSrnfOfZdYCqBBuInDfUZ0ObiylrSSOfPUV5W135emXpTYY6zYr3HK7Z2umeEk4tgpyMzsAqpXL1GMEC75V0ofstLJbTisPoZ1mbEqOyT46dOG4nKWIy1icOMNa859X4v5z+YHWPFVXtB3akJAeNnqu5QkKoz/4XvK+NretULfoC7Sln1F1XxO2ZGKmd/em8nVdIw9EKoZillBc53V+sp2Gr7YqJivZGNBL48/lYw9AOAEuN9KXBhyH43CiG+CGwCfiClLElz7IAmjrXl0B50W8x8d4BNf4VvvnXi49RLUq3yp7sJmfocETougqu7tXP93Y6E1bAKq0troLzd4dPU9o1vsu60LBJNFPhLICjs0pWxSx50sn3WKG/dTnje94bXlYGWTvWpNrKaJhlzqxrf2rmw+1N8AdFO3fwrE+kEkzXsOvW70/1vgz1r18zzr2hiWXDGWd4YkKrIK8y+gCOqZq6k2n5l7BvAPClljRDibuAp4PLjOYEQ4i7gLoC8vLxmGlYj0drURWNWE8F8d7uuecZpcq1SqB9TWKu4CB0XwVWo1sARMb9IVxBmYZDL18fUtuKFgORzS5BoopBrwhJ8XrwADhxILdhKHIM3f2AYZ5M6cnLj+52nvOZgFawZp9OrhLd+lMrrA65Ugda4N6t59eqi73lQc1jtu/tT/+Hln6oJJSxJw7wnLdPcipWxZUCu8X6g85kLKWWl8fZx4D+NYy8NHLs47CJSyseAxwAmTJgQ1D9tWbRmpWpjVxMjrvPnu1sZzTPO4L1reVczQGSmr0U4BVCPZTa1ZLRDYKpNCsunnXOaLYkjqEt/xrSIA6cl6sLlgJEGbSKg13DYt9nJvY+rZt+71oD4S6oBH3Kp/5murvRTMGGwbb9jlT/H8chtpeSpG4+LAEU14joVGwxtOZiF23Lwmgf9Ms2tQN2sBM4WQpyJMty3ADPMHYQQ/aSUu5231wIbnNd/BX4jhMh23l8N/PSER93caE3dluBqYu3c8HHo/Pbm4ug1gvcOTgFIzYkFiCKt+vYF/fcqK/C8X5n015yYTokQ6vmQttMe8HZAQv5TvtOeW5sgbmVQJ4/f1MdFjNEJacgICPW659n+PrDC8uSEhYAzhjgdn2yQAcNrZSjjG1TTdJuJ6JVBwPDH4v7gr7kCcFcLzjHnTPeKpHQbwjD7YsYb+oxsUfq4QUMvpUwIIb6HMtox4AkpZZEQYjaQL6WcD/yTEOJaIAHsB2Y6x+4XQvwKNVkAzNaB2TaH1tJtCQbDNAcZ9seeMLNlCpqC965lWrXkbDo6K50xbw8xjwgezJZ/KZo2hidrOiXS8gKsQqgK0epKggZyzKDLyck8QOmR0uMeVk5tDWNyvwhd+0BWN6/z0/6t6rmy65SRHzbVUcl0xu5OAs4YbcNw517gX4mcP0NJFGtFSSuu7seUdkCoKlhTK8fXHcvyAtmxTOWEQWoVrZnFo+MaiRrV7jB3olew1gL0caM4einlW8Bbgc9mGa9/ShpPXUr5BPDECYzx+NGevEnToz5U6nXNac00x/pS2TTqM+atHfOI0DDM34iZOuiD8LjskhXq+TQbgoz4ChS+pAzc2/cqDzWW4Xm4Vgbi4nv45tHt/Ff+f1GdqG708DrZNnccOoQofUuJpI29VdEr0slR141CBk9RPLwptawLk4Zcqrxlk6PfuVxt18FbM/AM6twTZuJW+GqnywzqFjztP+YL31fFW6bN8SlbOtcxGxEFq/V3fOKdz4o1O33c8SQQ2qM3aWYvmF1xWjPNsSE6y3xQE4EUvLakzhkhFcHfyNT7nb+X9ugtZbC1uBn4Uxh1b9c3f+hNDgmn+Gjmm540guPBXm+fz5tb36RwXyG1dm2aQXnItCWjamr5atXn6oNkDa63nXQkfc2g5fYlISqRlifpUb7Wk06WUnn5wQwbDd0K0IXw3gcF0fT2Tt1SV8WhshKG06Or9e2QydVcPTQTOp6hb8/eZGvGCtKNJ90YfFrbgXL5tnYfEfwwfyOJGsUTX3i3yhDp0lO1FTR1j0zv1EZ50uVr/KmBQvj7oxrIsDL445V/5DuLvsP6yvUcSx5LO7ROViajug/mD9VxMsrfVh9K2+kA5RhMO6G8eJ9jkeXEDixnnAnVvanPSGWoTQdq6v2eMJuPokHJLAPM+bLaFsvw+r/6BNEcpHNkdDbP6qdVJo60UyUWrnnQa+aiVyE6JbSZ0fEMfXv3JpsjVnAyqKvqSs+LEpYXdNJorZhHhIbh8zZtlc0VFN3asdQLwmqNF2kU1AWrTHXuvFl/YTyHXXIn8viXHue1za/xROETVB6rJGEnSNh1xG1JHElO0uaOvpP56jWPkPHx76H4HVxnYt0LjlEmNUhsOhZhqpXTfxfueIy5NdDo3MmtXzvXo3p0gsSYGf5Y2tlXq6KpdDLDmoPXqyBdeGXu22ek0qPHiHG00G+24xn6tupNNtX41hfwbM1AqOlFtccJ9VSG9jbdPHSNkApN8DRedEGdfp5W/UUFRK24OnbOdC9AOvl7sOwPyjgLC77832RMmMnXhn+Nm4bdxNq9ayncV8jn+4o5bdUzjD5WzZgEiC/d6aUOxzJw+8ge3uW/B9v2p/7qfwvu8e+3e63XTCWsujcsFvXxw/799m5S38XU+xtvjM1Vk14FpfudWnE4X7ZYDj10REMPbc+bbKrxra/5QWsHQtvqhBqhcShfExJ8tVBWyfDcty/xZ+OYKzchAKFoko1vep9L2zGWzsQhk0pawPHAhRCM7T2Wsb3Hqu1nfiX1Ocqd6DQgDwRL3Rz/NKm/wabnu1an1+vR1wk+x6f39u+zc5n619Bv13S+GmIWGuoB0MzomIa+raGpxjfdcfWdzxRKsuIt62m3tQk1QuNQskKpS5oYcrmyoX3PU/RF5xz1XB077Bl5U7p4+xKPWw5F8HPba+kXhJmMYFI/Y2aozBft1Wu47fhsRT+9ejd84Z+9mML531Ce/K7VTnZNA7+54HM85lajOlgHbhs4T5jzVZ8jFBasNdseNjMiQ38y0NS4QbrjGjyfDPwfIYKB7UsC1aICtn+oDNqOpYqiWPgTz9CZ3L326F1D1fiUSRCpSpPm67BV6swFanWwaxUc3o0rd6Dz1pEqr37BP8OBbbD8UWdiEN7Yj5da1NcNVgDXd54w50tLHKe7hm5DuOppT9ws2LSlmRAZ+paGfrCPh9/TSEeP1EebmJ6WnWxfWUcRTg5cR8HxlIVO83O81tVPe9tkUumw6KwQM7tq7K2q/H9fsfdZj0FwcIdxMYdqiWWqgKPOZtGFSbrIaOwt6VepW95zUnmNzJSp98MnDysjr7FhfqDoK6AfU7LC6+9qGtP8OV6FarAgsc9Iv0rn2nlecDYsnfJ4nDlzJaHTP5tLwyqAyNC3JBrLzdcXqE1Hj6T73PwRC9Fwl6ATQXsqTIvgQXus2uj1Hev3Wrv28+/fZyTs2aAmg7edvkNv32t4zjEvfbDvuX5Df86XVYMQrYypuXPbkERI1uJ63gnnuT12WNE4PsE0K1WnxlR0HXGtVz0LaoXSPVe9fm6GElrT21Y/q3L+K9Z759BaUqYcgdkbduFPvAlQH98Y56s+lKxQ7QfdeIbdIr/ZyNC3JBrDzTd3lozOqHjrR94PM9gftznQHgvTIngIOgpmUx6ATW979E7Fej9PbUoDgzL0E76pjGH5GpU1oytKTU2msMYfWp+m7xiYOsbLK//4IeW9i5izs5XaH9an/9RXTSrgBYJjGcpoPjktVdgs6XjO2z/yf/7Jw6rbVLCq1aWKAseb3+Hxxqz0byhh1hWEpCo3A46/G0CExqMxrQWbo89sEK4an33i59QBsmCLs7Vz1QPanOOO0HrInehxyrkTYdxteBkuTjWpfo5HXGdsw6syXfgTRYOAMvwzF6QGOWNZuNIKX/i+em0nlUxB+Vp/xaq0lecfltqp0WekmoiK31a00NJHvOPthErxDJMf1jr7fc/zf75/q+LJrZj//u1Ear/YE/W8U4qwnGbnbViPPkIYGrOca4kCr+Y6Z33pnavn4j6gLaDNEeEkIUi/6fd9xyiNGbOaVMeYwKtABaXseGSvR2toWkY/7+Y1dJBTUzn6HMla1dPViisv2gdHuiDM0/U5Sja+BASZ9McPTHzh+14GW1gbxPG3K0rF1NDxdZMyPO/GUJhhQejOOUasRMDwqXDRPVHWTbtEQ8u5lshHb65z1pfe6XpJLaPNEeEkIEzzxuTq0yUQLHnQrytz9tVQtTtwchl+jdvne807glTO6X2c3Pk5uNk1Wt89nbCeKbRmxZQxttNIIgvLs+fLH1VUz+ApakLTuk3C8gLHwWY/SC8eoYu6GkNh+oqjnJWCprYuvBs++R91zs3vKkPfAuiYhr45goQnM9DYEvnozXHOxqZ3toA2R4STAE2/IVWa5If/4XHviWrFfYfRJT5p7ThsfgeSBj2iRceg/jhV3zH+8/Ydo6iYNc81PNmUrPBn8OjsGlATyJEK2LxIGVQdUEUq5clgCqR2io4dVno/fc8zgs0GRMzI4ZcN359GyqrDOV7vb65qtApolHXTAJojSBgFGhXCVgYnki4aoe0gf44jt2vQEUGZgbICJWsQ5NrdHPC5SrCrbDWewB1GABVPJwdLGeRDJZ4kQXUlvmpcTYWMvZWUFMggwjJ4zAwYCKel1jzneO8oXRw9FvB+89s+xG2qguX/jmyHHrKTXtaSFfekm8MozGDPCelw/lY8NcOpbFX9lbxNRMcz9KaX0lQJgPasgKnRXCsSc2UQTYAdA7pDkq8xdRoka7xAe/B5WvOc4/UGpBTshNp3xZ9h3Yv4KI+Cp71S/8FTVPBRP0+dc/zPl/bQzXG7PHew3WFI+8PgqlZnpL35Q3XvGxco6YaL/tnf19VtqiKcXH+nxkAHpaVDKRU8hdu6cPzt6QXOTIfp2GFF1YA639CrFGXjrh5asfGIEGIq8DCqw9TjUsr7A9t/CNyJ6jC1F7hDSrnD2ZYE1jm77pRSXttMY09FcwUJ27oCZkNGvKUMckeYACM4MZagzo0Dl8c2tu/ZCB/8RnmxVkzJ61ZX4jYrEZZqxr37U48q2bNRKU5qyKSfogjSJr4GKCHPV5DnPvtqfxpnY+nD6sqAxo9UqZwX3eOno86+UsUM3M5WeIVa5Ws8CghwVTX1hJjO2INK9XSPSzga/k5Nw+pnvAKyk914RAgRAx4BrgJKgZVCiPlSyvXGbquBCVLKo0KI76Cag9/sbKuWUo5t1lGnQ3MFCVsiQNpcaIwRbymD3NYnwAiNw+ApygvV1IewoM8oL1/e5aEBLNVFShtHO6E84i//t/9ZOP82KP+J2kfKQMenEOjUxKDXbZ6zc46nfRMUAdv4pjLIuhirPiObcu+ZpPDv5Z96kgSrn1Hpmm7g1EjvnDAzEIwGkErGQMrU7DTThmxf4j/OsjxNoTG3err3LWBzGuPRTwS2SCm3AgghngOuA1xDL6X8wNh/GfCN5hxko9GcQcITDWYeL3XS2P0bY8RbyiC35QkwQuORO1E5QW7XJRsqipyNtkNdxD2jbxYKgXr2ytemeuNar8WuS5/5oo9f+OPUQj7z+QpqzOguWKYImF2nOO2yAk8a4fb56lzBZ1S3AUTAtP+ElY9DxTrv2l16qn3XzsVtRmIGTqXw6/xYMX9+vpYdMWtKgg6ZK+1d40k5m/doZiQ1Mxpj6AcAJcb7UuDCevb/B2Ch8b6TECIfRevcL6V8LewgIcRdwF0AeXl5jRhWCNqKITpe6uR4pBKCfTvTdbdpqe+hJTKEIpx89B3jTx+X0hABi8O0B5Qx19krQQ8Y6X8WKtY7K4FATno6hFWWgnfOBT8wMoKOeRPL2rmOoqUuNDKKq5K1yiNfM88zptc8qCaUOV82VjAxlbNuGvqiV2DQRX7qV4un1dsdylYVuDpA65N3Djhkx0NVNTOaNRgrhPgGMAG4xPh4kJSyTAgxBHhfCLFOSvlZ8Fgp5WPAYwATJkxouuxiWzBEx/sHPF6pBDOdLN1528L3EKFtomSFqmI1C4A0TSFt3MCmbr9nxeCc6Y4sQtJprzfDf76371VGTwj/eUFx6cO+5JdViGWkX2mWrFD0ianCuupp9XLMDPVPUyzJBL78d6SXIiptZYzH3ebx6KB+Z8VvOwFiZ7Vi20r+wLcScVY0w6alatRPmOmXjahY7wmj6d9dOhrK9NpPEhXaGENfBuQa7wc6n/kghLgS+DlwiZTSnf6llGXO/1uFEIuB84EUQ9+hcLzUSWP2b6hjTYQIjYVbem+g3xjYtQa33H/1055HbaMMnW57p7NLNN1oCo9JpxmJNtIDxivaBVS+vZ5EzhiiePZ6FVgN2AlFNa2Zp7zi6b/zOO3OOf6q3VV/MWIKSaWwGYSUcM41zuTjZNXs34ZbqOU29E6ofaT0rm2mcervQefdb/tQbZswMz0Npc9xEhmIxhj6lcDZQogzUQb+FsCX9ySEOB94FJgqpdxjfJ4NHJVS1gghegIXoQK17RON5dGP9w/YWlIJjUWkUtmxkCJTHPO8Ur1i3L0W11gLy8kISajXutDJXGG61alOW0FNY+jinwX34GvEvXej+odQlammAXW17nXqpml4jRVvMPVXc/CjbjACyDK9DAIoCmbD60bfWAG9hsG+Lcq4W5a3OkgcUyuJ0OSHwCqiz0hve/ka714SNakr9kOlzthpsd+XkMFlVthOQlwDPIRKr3xCSvnvQojZQL6Ucr4QYhFwLqDroHdKKa8VQnwBNQHoyoOHpJT/19D1JkyYIPPz85t0Qy2GtpBD3hoGN5jWdv430ucLR2g/KFkBi+6DHZ+o9/FOMOIrUJavinh2LnNoDaEyW3S3JlATQ/+x3mcipvLIuw8Mbyiydq7qaJVWmiAGl/9cURr6GddeeuccZShXz/VSKYO/PbdKNrBKCaORwq49+kZ/KqiVoe7d7X37R29SjGX65Yn19X0KmZby6Fc/40xuAl+66vSH1faSFaogrb5zHweEEAVSyglh2xrF0Usp3wLeCnw2y3h9ZZrjPkFNAO0fbSGHvDV492Bam7l8jox9+0bJclwPO3HMM3b7tzrGzvFozzhLGXUNmVSZLuBx48HJX1MargxvOoNrdICqz5kaM8Pz2IPYvsTPwbvjbESoTyaV9++uGoSXPYRQhVSm/k5YM59gcDaepYLY7sRjjsOoAA5SaOkC1M2AjlcZ21wIes+nag55WG/LqFiq/SOY0x00xJ3PgKN7lWEzvV0fAo1AwvLGU2R4OykhL60p06mbt/+SB+unOLQGjnY09H0cO+xX0wyFgEFfUJNbULZYSk+aICg61jlHUSuxjPqLmfqMdKSdpRcsDv3KrBDNKO3R1xOgPkFEhj4M6TyLpgZO2jrH3VCHKzOtTf8ATpWJrqNi8BTltbtpk4G0yM/3kGL8dQVseaH3HJhGPjRvPLPxtF/nHDyKI9BpKbiiXjvPa+DtKl3GoPdIpyYgWPkrYegVcOV96lneu8mhp6TywIMyzMEgan2ZbvlzHEkJW+XJj5nhbzBu9rm95kF1jM7AMTt9tUCvWI3I0EN6TyRI0zSFOmkL3H59aMz49H2PmdG2J6wIjUfuxBBJYDO9Mkh7OAVJ59+mctqDhqkxeePpakP09upKxzO3/Xrv4BUpJW31/5E9gdx+R7N+7wb1VjgeumnwO+ekBnDrc3CWPOgFWW2Zmumme9AWPOWtJrQ20JQf+RuMm5NI8Pc2/Xf1/qmaA5Ghb8gTOVHvtS1w+/XheMYX5eZ3LIyZ4dEhmrqQZnqhg0FfgKFXpqYJ6lz6khUqxdJUcUyXN24iTA8/lpX+d6e7T0kJ1ftTz6czZNQgYMD5qnJWNxUPNi4JPs9mILh8jfL63f6ztl/tMl38QRjUTNjvZcE9Jy662AREhr6pnkhj0da5/bY+vggtB5OWc+WGnSIhdEVoBlz5b4aHG/itgD8ra/ztKv0yLG88CN9vr0alOU6931sxmFg7z8vasetgx1L/9kEXwbl/57/u4CkqTVRTKvU92+6kY/TCDWLjAtjynmcbfPEH1ER3zYPp7UVQdBFapBF4GCJDn87QNZf3eqJFES3N77cV2YgIJx8693zVM/5ME51WaAZK03nti39r0BuoFEtX2TIwIQSfMTMYKW34bDFs/whXr331s0a6YZBKCrwvWa7492CRkilIFhYw1nAnnTRGXkPfT7D5yvkzwjl283o+0UXU9/PmD2DHx9D7nBb9/UWGPiik1FgVvOO9RlPOd7L4/YiSOfVQX+qjnVRNtsd9w79vslZ5+/3HKqP09r2pLfi0o2QGYctWweL7vayVYGXo4t8qI6+b2Wska9VEpONDbnAzBLbtrcbN1QcOv77lnfrz8QdPcfrV2qnfhwkrprJwoHHxhxRqKtP/nUvbyWoKKRxrRljNfsbWRMkKxYEt+IF63Vjo9Mm374X3/139cY7n+JZCGK0UIUJzIIx6ANwUWrtOBWqfulbRJq78RkIZ7qX/a1SuOmmWQQM+/jZAKKmD4HNcskIZY1CZO/Esp1VfzD+cI3u9/Sb9Y/r7icX91IyPEpFqDPlPOquHdL8n3cciQ/WTPWe6eo3wPkOo4OtTTlsN7amH2Yvg77e6Un0vE2Y69Fjg2i34G+84Hn2wOm71s6kt0OpDWwyaRvx5hJZCqMxAoIJTK0ceqUitpZC2123JTLPUyJ3oTRBBNcgwD99cVS/8iUeJbH4Hiheq/UxZAR8CvSe09kxaGkb4f08lK9SqQtNX0lYaPbpSV6c/6vx6M8VTC7+FrbjDfr96IszqrhqeuLBa9DfecQx9sDrueI11WzSqbYk/Nx/4xub7tvX6gVMZuRMVlbDhda9wqXMOvPX/UhUcNy9SGu5B6qO+vsH5c5Tna3rJw65W59r4pve5mQChz6FVIQ+V+Jt5B/uralhxFQAONikxJxh3HHFV2GQKsz11bXoKCjzKyIr7YxTaC9fB5MW/TZ3w0vW/verfIPtM9f136QlH9/mVL5sZHcfQD56iMgS0R3+8xrotGVUTbYE/D2py+IJk9RzTlusHTnW4iou1KoNFZ7u4XrCmFpzAaHUlTH/IqPqUqY1DzHP7etIK6Heeas3nBn2dz035A/O3p42wTv+MZarerkOvgvfug+oD3vU6dVerAN1w++yrPJE1IaBbfzhYgpua2XeMd34dTDYpKNNYr53nPfd2naJzdFcr8Prm6mDyjqVe1W59/W/BkzrW++1Ymv47PUF0HEOfO1EZH62H0RThrbZgVJuCsG73zTlhNUWToy1SYRE8BFMb3/pRQBpAOny5k27ZOcdb1eneprrJd/Dvun1JoCetVKmb5es8j1hYyviff5tSzTQrS82VQtD50tda8M/e6Y/u817rNoOxTNVcZNM7cHCnMZSkuhaEBJOzUj3yYAzj9F7+uoCwYLLm2Rvz/J+k30nHMfTQNgz1yaYrwiL7wRZs6ZbXjUVTNDnaIhUWwYP59xEivFl43oXq+bJt1fpPSj+tk84wDZ6igquJGoc1cSpUk3VKA/70Pmqy2LVGGX876Xn/iWMqoQK8LBRtWM3f1vSHVaMQV0PehLMKqatO1bUBT29fZ+WEefIabrZPXXjDle1LFOWyY2nqsx72/LeShlajZIpPNtqkTHFj0Bp0xZIHVaaQTCoPbMglsPVvuDKrwiKlaXFTEHH0HQ9mJajp3WpK5fwZHkcehnjncMngoMzwwh97K0IrQ3nyZau9a9WXzjhgvNq/79jUIizwF2udfbUK3ppa+At/QmobRJzfhfM6Fq9fhydsxWyubNI5VHq/IxVqcsvqprKV9Mol2ETclEpowu/lhGWKIzQSrUFXBD0C07twPTX7xMfTlNVSW1hhRQhH0Hj1GalozyN7VTepMbeq/VbPVXRIEAPGK9rFrDtJ5+iUr/UakeuG3khUpkkcEHhNSQJGv6zAaf7t0Ehmb9juA1PFyE7vjc8Z6TPSc1CO7FXVrWDEIhxHqOCpVPntMOcmGK8CL3VSF5CNuE7x7+Bo0hu0p3uMoc6pr9eCTmJk6JsTrUFXhAWRddZCUJskok8igGGsnOdipmP81jynvHrL6SI1YWZA+MyArjsxDVM6R2fMrcqImumZwqBLwJMb9qUcGpC2JyFsxf3e9O3zU3l+TbGYhrRkhb9vLeAWVAW1Z4IGfdUzqoDsyN7ACsFZ/Rw7DO/NVh999r76v7qSUJ18fZz5e2xhJ7FRhl4IMRV4GNVh6nEp5f2B7VnA08B4oBK4WUq53dn2U+AfgCTwT1LKvzbb6NsaWitzJ53n3Gdk28wkitC6MDNJkjXw8cNQd9ToEWt77fD6jiWVWrGUnnzQMNUnJ3L7fD/dYcUhe5D/tOd82Us57HteoLNTBkx7QBnPQyWOYqSttq+dp5qHawNuessmcicqLZo3f2jQUZYj6Gb7xxxMQNAFZCJQYzpgnBcXM7H6aacSNiPco5dO0DhFDqJlnLIGDb0QIgY8AlwFlAIrhRDzpZTrjd3+ATggpRwqhLgF+A/gZiHESFSP2VFAf2CREGKYlPV2CGjfaG26Imz5nE49MMIpioDhLl5ICm0ibaNK08IrpBIq0BoWgKzP0dG/izG3eoY5f47ylIXwe+ea9jjny+Fxofw5IJ80xvmxv5m4qSAZhE5p/Phh776FgHG3+zn6zjmp35NOzxQxLyZ2/m3qmHgn/6568pv2gKOEWey1bdT4+CE1sU2Y2eJOYmM8+onAFinlVgAhxHPAdYBp6K8D7nNevwT8rxBCOJ8/J6WsAbYJIbY45wtIz0VoNkRpjREagplJooP1OjCqS/NNtcd4Vrh4l6YITcPUkKOTO1HFArT3XV8WT7pzVVfim3z2bcKtXNXNPRoaw4BxytBLW00S3Qf6jwleQ0szxDJVhywdVH37XvU99BqmxMk0KtarfzpQu+ov4WPZ8Lo3sbWgk9gYQz8AKDHelwIXpttHSpkQQhwCcpzPlwWOHRB2ESHEXcBdAHl5eY0Ze4QwRGmNERqCrjkJi+OEZY805KUfNwI6L6YRbczz6qZvpuH8GzOmhn4n+hph38v2JWpylEaSQ7rJM1mrjHlY+iqoldFJQJsJxkopHwMeA5Ve2crDab9oqxW+EdoWTCMd5pmn27c5YLbZi2UqeYXjSSt0Of+5fkmGxhp58xwNtdBMtz1Mwybd5KlpLh3oHnWDJ3mgvfkWRmMMfRmQa7wf6HwWtk+pECIOdEcFZRtzbITmRmvHCSK0L5zs5yV3otdmr6nOiMv5z2j6eRpDM6Wb+MImgfomz4Ym0xZGgwVTjuHeBFyBMtIrgRlSyiJjn+8C50opv+0EY2+QUv6dEGIUMBfFy/cH3gPObigY224LpiJEiBChlXBCBVMO5/494K+o9MonpJRFQojZQL6Ucj7wf8BfnGDrflSmDc5+L6ACtwngux064yZChAgR2iAiCYQIESJE6ACoz6PvWB2mIkSIECFCCiJDHyFChAgdHJGhjxAhQoQOjsjQR4gQIUIHR5sMxgoh9gI7mnBoT2Bfg3u1D0T30jYR3UvbQ0e5DzixexkkpewVtqFNGvqmQgiRny7q3N4Q3UvbRHQvbQ8d5T6g5e4lom4iRIgQoYMjMvQRIkSI0MHR0Qz9Y609gGZEdC9tE9G9tD10lPuAFrqXDsXRR4gQIUKEVHQ0jz5ChAgRIgQQGfoIESJE6OBo14ZeCPGAEGKjEOJTIcSrQogeafabKoQoFkJsEULcG7ZPa0MI8TUhRJEQwhZCpE2vEkJsF0KsE0KsEUK0SeW347iX9vB3OUMI8a4QYrPzf3aa/ZLO32SNEGL+yR5nOjT0HQshsoQQzzvblwshBrfCMBuFRtzLTCHEXuPvcGdrjLMhCCGeEELsEUIUptkuhBC/d+7zUyHEuBO+qJSy3f4Drgbizuv/AP4jZJ8Y8BkwBMgE1gIjW3vsIeMcAQwHFgMT6tlvO9Cztcd7ovfSjv4u/wnc67y+N+wZc7Ydae2xNuU7Bv4R+JPz+hbg+dYe9wncy0zgf1t7rI24ly8C44DCNNuvARaiei5OApaf6DXbtUcvpXxHSul0GWYZqoNVEG5zcyllLaCbm7cpSCk3SCmLW3sczYFG3ku7+LugxvSU8/op4KutN5TjRmO+Y/P+XgKuEEIEmrq2CbSX56VBSCk/RPXtSIfrgKelwjKghxCi34lcs10b+gDuQM2CQYQ1Nw9tUN5OIIF3hBAFTkP19or28nfpI6Xc7bwuB/qk2a+TECJfCLFMCPHVkzO0BtGY79jdx3GaDgE5J2V0x4fGPi83OnTHS0KI3JDt7QHN/ttoM83B00EIsQjoG7Lp51LK1519fo7qYPXsyRzb8aIx99IIXCylLBNC9AbeFUJsdDyEk4pmupc2gfruxXwjpZRCiHT5yIOcv8sQ4H0hxDop5WfNPdYI9eINYJ6UskYIcTdqpXJ5K4+pTaDNG3op5ZX1bRdCzASmA1dIh+AKoM00KG/oXhp5jjLn/z1CiFdRS9qTbuib4V7axd9FCFEhhOgnpdztLJ/3pDmH/rtsFUIsBs5HccqticZ8x3qfUqc/dHeg8uQM77jQ4L1IKc1xP46Kr7RHNPtvo11TN0KIqcBPgGullEfT7LYSOFsIcaYQIhMVcGozWRHHAyHEaUKIrvo1KhgdGrlvB2gvf5f5wO3O69uBlNWKECJbCJHlvO4JXITqk9zaaMx3bN7fTcD7aRym1kaD9xLgsa8FNpzE8TUn5gO3Odk3k4BDBn3YNLR2BPoEo9dbUFzWGuefzh7oD7wViGJvQnlYP2/tcae5l+tRXFwNUAH8NXgvqIyDtc6/ovZ8L+3o75IDvAdsBhYBZzifTwAed15/AVjn/F3WAf/Q2uOu7zsGZqOcI4BOwIvOb2kFMKS1x3wC9/Jb53exFvgAOKe1x5zmPuYBu4E653fyD8C3gW872wXwiHOf66gnC6+x/yIJhAgRIkTo4GjX1E2ECBEiRGgYkaGPECFChA6OyNBHiBAhQgdHZOgjRIgQoYMjMvQRIkSI0MERGfoIESJE6OCIDH2ECBEidHD8fxd5C1fT59oNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "plot_clusters(kml1, X, ax)\n", - "ax.set_title(\"L1 KMeans\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## When clusters are completely different" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2000, 2)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "N = 1000\n", - "X = numpy.zeros((N * 2, 2), dtype=numpy.float64)\n", - "X[:N] = rnd.rand(N, 2)\n", - "X[N:] = rnd.rand(N, 2)\n", - "#X[N:, 0] += 0.75\n", - "X[N:, 1] += 1\n", - "X[:N//10, 0] -= 4\n", - "X.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "KMeans(n_clusters=2)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "km = KMeans(2)\n", - "km.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "KMeansL1L2(n_clusters=2, norm='l1')" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kml1 = KMeansL1L2(2, norm='L1')\n", - "kml1.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAEICAYAAABswuGIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACb40lEQVR4nOy9eXgU15m3fZ/qbm0gQEjsQsIyGIPALGK1jfEek+A9Hhs78TZe4klmJsuXTJYJ8RDPxPNm8iaTN05s4rEdTwzetxDbwXjFNqswGInFgKyNTSCEECCk7q7z/XG6WtXV1ZvUAoHOfV0CddWp6pLU/fRTz/J7hJQSjUaj0Wg0Gk16MU71BWg0Go1Go9GciWgnS6PRaDQajaYb0E6WRqPRaDQaTTegnSyNRqPRaDSabkA7WRqNRqPRaDTdgHayNBqNRqPRaLoB7WRpNBqNRqPRdAPaydJEIISoFkJc7rJ9lhDibSHEISHEASHEC0KIYXHO874Q4h7b44uFEE1CiFtCj6UQokEI4bWt8YW2afE2jUaTMnHsV4YQ4sXQfimEuDjBebT90qQF7WRpkiUPWAyMAoqBFuDJZA4UQlwJvArcJaV81rarCZhnezwvtE2j0WjSzUfA14B9qRyk7ZemK2gnS5MUUso3pZQvSCmPSCmPA78DLkh0nBBiPvA8cKuU8lXH7v8Fbrc9vh142nF8fyHE/wgh9gohdgshHhJCeEL7zhZCvCuEaBRCHBRCPCOEGGA7tloI8f8JIT4TQjQLIZ4TQmSF9hUIIZYJIQ6HonMrhRD6/aDRnIFIKdullL+RUn4EBJM9TtsvTVfRfxRNZ7kIqEyw5mqUIfqqlPINl/2vAhcJIQYIIfKAOcBrjjVPAQFgNDAFuBKwwvgC+AUwHBgHjAQedBz/d8BVwFnAecCdoe3fA+qBQcAQ4MeADvNrNBoLbb80XcabeIlGE4kQ4jxgIXBtgqWXANuAj2PsPwH8BbgZZXBeD22znmcI8GVggJSyFTgmhPg1cB/wmJRyJ7AztPyAEOL/Aj9zPMdvpZR7Quf7CzA5tN0PDAOKQ+dZmeBn0Wg0vQttvzRdRkeyNCkhhBgNvAn8s5Qy0Rv7p0Ab8KoQIjPGmqdRYfaoUDuq9ssH7A2FxQ8DjwGDQ9cyRAjxbCgMfwT4M1DgOIe9/uI40Df0/S9RBm65EKJKCPHDBD+LRqPpXWj7peky2snSJI0QohhYAfxcSvm/SRxyDHUn1x94QQjhc1mzEnVHNgRVmGqnDmXkCqSUA0Jf/aSUpaH9/4EKkU+UUvZDFbWKZH4WKWWLlPJ7UsoS4Brgu0KIy5I5VqPR9Aq0/dJ0Ge1kadzwCSGybF9eIcQI4F3gd1LKR5M9kZSyBVVTMAJYYhV92vZLVO3DNaHv7fv2AsuBXwkh+gkhjFCx6NzQklzgKNAcur7vJ3tdQoj5QojRQggBNKOKYc1kj9doND2WKPsFIITItArHgYzQvrhOjbZfmq6inSyNG28ArbavB1HFmiXAg0KIo9ZXMieTUh4GrgDOAZ52dsFIKSullLGK6G8HMoAtqPboF1F3jgD/BkxFGZm/Ai8n+fMBjEFF5Y4Cq4DfSynfS+F4jUbTM3GzXwDbQ49HAH8LfV+c6GTafmm6gnA43xqNRqPRaDSaNKAjWRqNRqPRaDTdgHayNBqNRqPRaLoB7WRpNBqNRqPRdAPaydJoNBqNRqPpBnqk4ntBQYEcNWrUqb4MjUZzkigvLz8opRx0qq8jHWj7pdH0PmLZsB7pZI0aNYr169ef6svQaDQnCSFEzam+hnSh7ZdG0/uIZcN0ulCj0Wg0Go2mG9BOlkaj0Wg0Gk03oJ0sjUaj0Wg0mm6gR9ZkueH3+6mvr+fEiROn+lJ6JFlZWRQWFuLzuc0w1Wg0pxJtv+Kj7ZfmTOW0cbLq6+vJzc1l1KhRJJjp2euQUtLY2Eh9fT1nnXXWqb4cjUbjQNuv2Gj7pTmTSZguFEKMFEK8J4TYIoSoFEL8s8saIYT4rRBipxDiMyHEVNu+O4QQO0Jfd3T2Qk+cOEF+fr42UC4IIcjPz9d3yRqNCz3Bhmn7FRttvzRnMslEsgLA96SUG4QQuUC5EOJtKeUW25p5qKngY4CZwB+AmUKIgcDPgGmADB37upSyqTMXqw1UbPTv5sykvKaJ1VWNzCrJp6w4T19L5+gRNky/R2OjfzdnMHVroXoljJoDI2f0umtJ6GRJKfcCe0PftwghtgIjALuBuhZ4WkopgdVCiAFCiGHAxcDbUspDAEKIt4GrgKVp/Sk0mjOQ8pombnt8Ne0BE6/H4Ktlhdw4tTCmg5OqE5TKeuta2vwmhoCy4jxGD8mNup6e6IhpG6bRnCLq1sKfroFgGwgDvvwrmHZn7LWpOECdWf+nayDQBkJA0UwYNBYm3dpxfDc4YSnVZAkhRgFTgDWOXSOAOtvj+tC2WNvdzn0fcB9AUVFRKpfVo/nTn/7EQw89BMC//uu/cscdnc6YanoZq6saaQ+YmBLaAyZL1tTy3Npafn7dRG6dWcSSNbW8WbGX0mH9aGkL8ML6OgKmTOiQldc08fKG+vD6DK/BM/fMCq91c5Re2lDPCb8JQFDC2uom1lY38dy6Wn5+7UQq9zTT0NLGB58fIBA0o87ZU+guG6btl0bjQvVK5WBJU30t+w7s2wSTFqj9m5bA0QPq+x3LwQyCJwOuehhaG92dnbq1sGkpfPrnjvV3vB7fUapbC+//AgInAKli0jWfqK9Pn4F5v4Sdb8P2N9V+T2bkObtA0k6WEKIv8BLwbSnlkS4/swMp5WJgMcC0adNkus9/Kjh06BD/9m//xvr16xFCUFZWxjXXXENeXs/64NH0TGaV5JPhNcLODSgH5yevbGbtF428unEPACt3HIw4znLInl9fx99NGxl2tsprmnhpQz0vltfTHug4Z7vf5DcrPufbl58DEI6eWY4SwIvl9a7XGDTV9TjfsO2BjnP2FEerO22Ytl8ajQuj5gD2VLAJ65+ADU+r7aY/+pjACeWMIcHwwtSvqWgTKKfs0yXKcQuvb1MO1MU/Uo//dA0E2zucr/C2NnVOJ8F2+Ot3QQbdz9lFRyspnSwhhA9lnJ6RUr7ssmQ3MNL2uDC0Ldb2k0J5TROPvLeT8ppOlYBF8fTTT3PeeecxadIkvv71rydc/7e//Y0rrriCgQMHkpeXxxVXXMFbb72VlmvRnPmUFeexcH4pQ/tlRmyXwGshBysegaBkyZpabnt8NUvW1LJg8SqWrKmNcLAATOCjHQe5+bFVPPbBrnD0zB8wWV3VyOqqRvyOY5zX48SUyvm77fHVaXv/dYXT0YZp+6U5IygYHb3NDLg7WICyKKb63/TD+ifhqfnw5Dz1vd3BUieDXe+pNW/9MBQ5CyrnqXplKJrWriJpsYjaZ8Kud+Gpr6goWBdIGMkSqiLxf4CtUsr/G2PZ68C3hBDPoopGm6WUe4UQfwP+Qwhh3fpcCfyoS1ecJPZ6lnSkLiorK3nooYf45JNPKCgo4NChQzzzzDP88pe/jFo7evRoXnzxRXbv3s3IkR32ubCwkN27T5qPqTnNKa9pYtGyStr80cYhlVBJu9/kuXW1tAdjHyWBgCl5Z+t+vB6DQNBECEFeTgZjh+biMQQB0/14j6EiWgCGUA6WRZtfOWqnMpp1Otowbb80pz32GqiuEuVYOZFqze5y9VAYKgrWXAdDJ6uolpUqdDLx72DLa+7PEWxX0bMuRLOSSRdeAHwd2CyE2Bja9mOgCEBK+SjwBvBlYCdwHLgrtO+QEOLnwLrQcYusAtLuxl7PYt2Rd8VIvfvuu9x0000UFBQAMHDgQG677TZuu+22dF2yRhPB6qpG2vxmXIdqQLaXw62BuOcxISp6FXOthEvPGcR72xoImpIHX6/gpmkjuefCs3j8oy8wparhunP2KCr3HmHehGGMHZrLyxvqkcAHnx9gd1Nr+HwSlfY8xZx2NkzbL81pT/XKkINlAgL6DYMjiSPw7giSv7UUMHwK7NsM5U+D8QyMuVIdv2OFiqIJA4adB1NuV4X4M+5VdV7VH8PB7ZGns2rGOkky3YUfEZlUdVsjgW/G2PcE8ESnrq4LWPUs/oCJz2t0i6FPdCc4YsQI3n///fD2+vp6Lr744rRfh+bMJC8nI8KsOKNEoKJPbtudbNvfEvHYAIQhME0Z8RweQzA4NxNTqu3toZRjps9g0bUTqNjTjACuKB3KD788LuKcL22o5/Cx9ohtg/pmnPKarNPRhmn7pTntyc5HOVgAEoovhM3PuyxMxYGyH2aA8ESnHQ0PDJsEezaG0oZB2PZX8GbBvP8D+zaq55y0IDJC1b8QvBnRz9N3UOrXZr9MZVt6FtOmTZPr16+P2LZ161bGjRsX4wh30tlOXllZyfXXX8+qVavIz8/n0KFDDBw4MO4xhw4doqysjA0bNgAwdepUysvLEx7XWTrzO9L0XB55byf/9bftYfPjZoqKB+aw+3ArpinxegQXjx3Miq37I5wuIcD5Nr9tZhE3TC0MF8IHgiaGECy6dgJjh+ayYPGqiPSiR8DNM4rCRfNCwP1zSvjhl8dRXtMUtd7iyvFDWHz7tIQ/qxCiXEqZeOFpgLZfnUPbrzOMlb+Cd35O2GoZXsgpgKP7ItcJjzJQHq+KOH3+loo2xUXAtLuUo2QVw5v+DpmIIeNVPVXQdtMnPFB2e0fhvBBw/j/DuV+xpTWdEX8D/v5vSaULY9mw02asTmcoK85L2110aWkpP/nJT5g7dy4ej4cpU6bw1FNPxT1m4MCB/PSnP2X69OkALFy4sNsMlObMY1ZJfkQtlNvtUH3IwTIM5WBdPHYw725vwAw5PB5DcM7gvmzd1xHJ8gi4IdRxWFacx41TC1ld1UheTgZNx9t5u3IfTn9JAm9X7gunHaWERz+sory2iabjflcHy2PA/XPPTsvvojei7ZfmtGbUHBVVshwmMxAdKRIeVXQuhHKwRl8BO95G6QcDCOWcmUEiHCDD0xGJGjlDdR9uWgpI5WDt3xI6ho7zAGx7o6P2Skr4+DfquEAr0QiY/+sudxee0ZGs3ob+HZ15LFlTy09f3Rzl9ORmeTnaFoiIUAmUUxW0pQBnjMpjY31z2DkygIeuVzpblqTDwRZldN7f3oA/KDsTuHclw2uw9N7kCrZ1JEujf0dnIOufipZHwICcgcpROro/cr3hBdMk7FCNKFN1U2/8fx1pQeGBr/xfVUtVt1Y5So271Jc0VTRLBqLD96li+OCuN5J2snplJEujOd25dWYR729vYPmWSGPUciI6nC6BYCiqFQxFv9ZVN0WkGxfMLAo7WLFSfOmiPQ0F2xqN5jRm2p1KfHS9vaTRhOMH3deboaiWZZb2bFQpv3DdlYCyOzocrCfnRacWIxy6LmD6VZTrZOhkaTSa04fCAdnh7+0ulARKh/envKaJ36z4vFsdLIu8HJdCUo1G03sYOimFxaZK91nIoOoStDC86nwrf6UiZAlrt7rIp3/ufp0sjUZz6iivaWL/kRNJr5dAzaHjMfe/t72Bha9XEHBxsOJ1KeZkeDjenvodYuWe5pSP0Wg0ZxD7Nqa4fnPsfTn58OYP4uhmxehUHFAMh2tSuw5QTlz1yi5Fs3QkS6PpoZTXNLHgj6vZVK8cFQF4DVV3BSqqnirrvmh0dbD6Znq4ZYb7zL0Mr8Hts4oxOvF8Pa/iU6PRnDTq1sKGP3c8Fh4l/ik8nTvf0X3uDpYnA86d724UDR+UXt+55xRGaDRQ59GRLI2mh/LyhsgZg+cV9mfh1aWAEqtsafXz6IdVKZ3zaJt7NOprM4u5onQoz62tjSiyNwTcff4onvikOqEWl5MMj+DGqYWpHaTRaM4cNi2N1LEaOw9u/GOH+OeGp9OT8pv1D0qKYfubjh0CZn8TVv8h9Votw6vkILpYk6WdLI2mh+L0aYb0ywoXkZcV5/HIeztTlvFzG40zbmguV5QOBVBF845I16qQ+niyGAJumVEUHkyt0Wh6KUcbIh9bwp6W9AI4iuI7wfAyyOqnZBuE4XCmRGh2YYqjfSwHa9qdXbs2dLqw27nqqqsYMGAA8+fPP9WXojnNmDC8f8Tjd7bujxgWPKskn0yfESFl3omMHtv2tXDb46t5eUN9VCpRSqjoRF3ViAHZ2sE6A9D2S9Np6tbC53+L3JYZadOYtAC82XTOcoXYuxHe/Xd443suUTETdm9I/ZxSQmtj56/Jhnayupnvf//7/O///u+pvgzNaUjT8cgRNUEJ//LSZxGO1o1TC7l8/BB8HqHMVCfrptr9JhW7o50pJQvhftzQfplRTydQNVw9YF6hJg1o+6XpNNUro52ej/8b3v6Z+r5urVpz1cMqYmT4Ovc8Mqi+zFjpwBix/kHnQsFYx0ahomGejC7XYlmc2U5W3VrV6tnFFkyLp59+mvPOO49Jkybx9a9/PaljLrvsMnJzc9Py/JrehaX4bmdnw1EW/HE1D7+xlZsfW8WSNbW8t62BQEhENJb+XqKidRP4rL456WJ6ryH4p8vOiYqkeQzBwvmlOoqVDrT90pzOjJqjnJUIQirrb/9Mjb155+fw5vdDu+KVJMQzTAYdXYVJFk8YXrjm/8G1vwNPpuOpDOX4dbEWy+LMrcmqW6vmEQXb1R/6jte79EurrKzkoYce4pNPPqGgoIBDhw4lHLCq0XSFsuI8fn7tBH7y6uYI56k9YEYUvAdMideh9O4kv08GB462u+6zmyengrzAZZqXgEXXTuDWmUWMHZrLb1Z8zsc7D2JKdS3/tXwb721v4Btzz9bOVmfR9ktzujNyBty5TEWvti2L3Ld2ccdcwWA7HD2gXueBE7g6Shl9ob0lejuExEtdHLSBJdC8O/Q8jnOW3tDxfrpzGbz/C9j1nlpnBuDD/4Sdy+GCb+vC95hUr1S/XBlU/3dR6+Ldd9/lpptuoqCgAFBzvW677TZuu+22dF2xRhPFrTOVrMK/vrI5ytmxM6VoAAIl++CmMRrv/i7WPgmcPagPOw8ci9g+cUT/sGr8yxvqyfZ5IjS2Dh3z8/aW/azYsp8XHzhfO1qdQdsvzZnAyBlwyzPw0r2w+fmO7X6Hll/jDph5v3qd793kouIex/rF6ho8VKWcpH2fwa53I/cdP6huZKx5h0PPi1xzZI/62v4W3P1Wl957Z66TZYUqrTvBNOVX7eg7Qc3JQsRTCkWNz4nHwRhRrET0yfTiNcDeXDi7JD+s4RWeiegSzZfAw29u5YVvnN+p5+7VaPulOVOoWwtbXou/5sB29QW4pgb9x6K3JYNV81X1QaQzllMAT83v6DqMpaElg7BpiXayXBk5Q4XYq1cqA9XFkN+ll17K9ddfz3e/+13y8/M5dOiQvhPUdDvlNU2uA6LTzaj8HKobo5XiZ5fkc/P0In7yyuZwxOuPK6uoOngMv83ziuX/1cVRn9fEQdsvzZnCx/+dooRCJ4xdToH7PMS9nylpB8MLQZuTVfFiZHQsroZWFzofScLJEkI8AcwHGqSUE1z2fx+w3qleYBwwSEp5SAhRDbQAQSDgNqG6W7FrcXSR0tJSfvKTnzB37lw8Hg9TpkzhqaeeSnjcnDlz2LZtG0ePHqWwsJD/+Z//4Utf+lJarklz5vPShvoIB0ugShBSFQZNRKxRPJV7j9DSFogwe0EJb2/ZHzGIOhY9ocvwtLVh2n5pTnfq1roLhKZ7FkTMgdMB+NRF8DRukb0N4VEyE10gmUjWU8DvgKfddkopfwn8EkAIcTXwHSnlIduSS6SUMX4Dpxd33HEHd9xxR0rHrFy5spuuRtMbONgSeQd4xfgh3D/37LDi++MffUHQlF12vGJ1Ja7c4f7WVUXyktGD+7Kz4WjM844Z0iM6055C2zBtvzQnn01LIh0a4YGv/F+lQZWdr+YabvhzpCp8WpEhnawY0ahYETCLstu7fKOTUMJBSvkhcCjRuhALgKVduiKNRgOoVOH7nx8IP/Z6BPfPPTv8+IrSoSy6dgIXjilgmqO4XKCGOncnpoSSgj5keNwNWIZH9IhIlrZhGs0poG4tfLqEcNTKcrCm3alS4K2NMOlW+PJ/Qb/hLifoWpquA0l0j3SIQee4yEyE8GSo6+siaavJEkLkAFcB37JtlsByIYQEHpNSLo5z/H3AfQBFRe6DajWa3sTqqkYCISVQAVw6djAvbajnxfJ6AkETjyEwTRmzm/B4e4qzuhLglqqUhDbawv9CwLTiPH44b9xp1VnYFRum7ZdG4yBCjFSouYWtjbD+KXjrh6E6rZAj5VoTdRLGy2fn0SFWIzu+HzQGZv5DWtL16Sx8vxr42BFmv1BKuVsIMRh4WwixLXRXGUXIeC0GmDZtWpd+u1JKNh3YxOaDmznmP0YfXx8mFkxk0qBJiGTVFjWaU8ysknwyvAb+gIkwBO9sa8C0aWGZ3VQN7zEEV583jFc37onYboS2/2XTHoJSmaPm4+0RjqD19trsoh5/GtBpG6btl0bjwN4hKwxVm7X9DfW9GaTbnCjDByOnQ80n0fuGTIT9lajIlgGNu0KpSqmua/gU2FcBB3cqR3DI+B6lk3ULjjC7lHJ36P8GIcQrwAzA1clKB37Tzys7XuHJiidpPNFIwAwQMAN4DS9ew0t+Vj53TbiL68dcj6+zEv4azUmirDiPhfNLeW5dLZ/VN3frfZ3PI7h47GAG52ZSOrw/Tcfb+cZFJby6cTf7jqi6MNOUYQcLlIlcW92kRvqEnD8ryuUPmKyuajytIlmcYhum7ZfmjGLkDCWf8OnTsPtTwim7ZIvOkyYUfRKhaNnoK1TErHAGbH1d6WVZNGyhw7kz4cC20CkM5Zy1He0QL02DPh2kyckSQvQH5gJfs23rAxhSypbQ91cCi9LxfG4c9x/ngRUPsPXQVloDrRH7/KYfv+mn/mg9v1z3S/5a9Vf+cPkfyPHldNflaDRdprymiUXLKjnhT7dRimRSYX9unl5E0/F28nIyWLSskvaASYbXYOH8Uh58vYL20Nget+BZ8cAcBvbJYK1Nq8swekY9VrKcahum7ZfmjKNurYoGxVJxTxfnfgX6DgIEDJ0USkWG9OWueliN7bHU5WNJNQyfAns2wsHtHdsMb1r06ZKRcFgKXAwUCCHqgZ8BPgAp5aOhZdcDy6WUdsWwIcArofC2F1gipXyry1fsgt/088CKB6g4WEG7GV908UTwBBUHK3hgxQM8/qXH9R2hpseyuqoxLPYZj0F9Y4/MSYQhYHC/LB78SyWBoIkQHbIM/oBJ0/F2bpo2kiVramOayaqDx6JU4ccP69djolg93YZp+6U5I7GmFiRysPoOgaP7Ox5bKcZkEB51/k+XqPovITpSkcE2FdGa8jVY/2T867CmK9iZcmtaarKS6S5cIKUcJqX0SSkLpZT/I6V81GackFI+JaW8xXFclZRyUuirVEr5712+2hi8suMVth7amtBAWbSb7Wxp3MKrO17trkty5fDhw/z+978/qc+pOX2xarKcVThjBvWJeJzhjf82jlfFY4Y0r9oDJqYkQvdKAnk5GdwwtRCfrYPQEDB+WG7EOZzcPL3nFH/3dBum7ZfmjCQ8INppnxyPnQOak3WwQDlG2/6qHCoZBNMk7ExJU8k3DJ0E3qzI5xX2axCwb3PkeYUnLZ2FkIST1dORUvJkxZNRIfZEnAie4ImKJ5CxBIK6gc4YKSklptm96SJNz6SsOI9n7plFcX5kWmiHLWokgNLh/SP2C1QK8MrxQ7h1ZhH/fv3ECJmFZEunTQkLX6/gsQ920T/bF7H9QEtsBefrJg9n7NBcHnlvJ+U18cf99Ha0/dKcsVhTCwaOcuywvx4MGHaey8GGGvB8wbdh2l0hRyyR5RIdnTcW25bBX78LI6bAgMKO7RF1YS7voQk3qkhc3doEz5mY097J2nRgE40nGjt1bOOJRjYd2JT0+qeffprzzjuPSZMm8fWvf50DBw5w4403Mn36dKZPn87HH38MwIMPPsjdd9/NxRdfTElJCb/97W8B+OEPf8iuXbuYPHky3//+9wH45S9/yfTp0znvvPP42c9+BkB1dTVjx47l9ttvZ8KECdTV1XHnnXcyYcIEJk6cyK9//etO/bya04+y4jyuKh0ac7/HUNpZ37ioJGxffF6DhVeXsvj2adw4tZDKPc0U5UdGvzwi2mSNHtwXp+RVIChZvmV/VDoyXnryjYp9LFi8il8t385tj6/WjlYctP3SnNGMnAHn/3Ps/ULABf8M8/8bRpSpOigEeHxw/WNwxb/B0MkwdAIMGuuIQDkYMVUVvjuRQdVpeLg2+eve/Dy88xD86ZouO1qn/ezCzQc3E3BK5idJwAxQcbCCyYMnJ1xbWVnJQw89xCeffEJBQQGHDh3iW9/6Ft/5zne48MILqa2t5Utf+hJbt24FYNu2bbz33nu0tLQwduxYHnjgAR5++GEqKirYuHEjAMuXL2fHjh2sXbsWKSXXXHMNH374IUVFRezYsYM//elPzJo1i/Lycnbv3k1FRQWg7ig1vYPymiae+KTadZ8A7rnwLABa2gJ4RKgwPRTdKK9p4ubFqwg4qtUlqjD90rGDeX97A4GgxOc1uPuCs/jfVdVs3dfSpWu2ZhpKTtsuw5OGtl+aM54h45XzZAaIGqmTP7pjzbBJsNe6aQitWf8ULLM7ac6Un1BRKU8GTLkddr7d+evMyIX2o7brM9PSYXjaO1nH/Me6ZKSOJTnd+9133+Wmm26ioKAAgIEDB7JixQq2bNkSXnPkyBGOHlUjRr7yla+QmZlJZmYmgwcPZv/+/VHnXL58OcuXL2fKlCkAHD16lB07dlBUVERxcTGzZs0CoKSkhKqqKv7xH/+Rr3zlK1x55ZWd+nk1px+PfbArZvG7BJ74+Aue+KQaf8AMm4agKVld1cjGusNRDpaFaUoG52ZyydjB7D9ygrMK+rDwtQoCaRiK6AmFw4JBicdjnFZdhicbbb80ZzRWh2H4Ne6wLwd3wFNfAURkkbwZVCN5Pv+b44QOW1gwBjL6wMCz4Y3vhYreO0nYwbI5gmnoMDztnaw+vj54DS/+Tsw+8hpe+vj6JF4YA9M0Wb16NVlZWVH7MjM7ivk8Hg+BQLQhlVLyox/9iPvvvz9ie3V1NX36dFxXXl4emzZt4m9/+xuPPvoozz//PE888USnr1tzelBe08Q7W6M/3Oy0q9BVxDYhVMF6vGM9HoPn1teFnbBN9e7ioR4DLjt3CNv3tbgOkb5u8nAaj7Xz0Y6DYfN06djBvLttv9LN0vU4cdH2S3PGUrdWpdvi1huaELRe+zY7JkSCmYaGimBZOle7y2M/RfH5kD1Q1WdFIdRonQM71LVYgqR7Nqo0YyzJhxQ47WuyJhZMxGt0zlf0Gl4mFExIau2ll17KCy+8QGOjqp84dOgQV155Jf/v//2/8BorjB6L3NxcWlo6UjFf+tKXeOKJJ8J3j7t376ahoSHquIMHD2KaJjfeeCMPPfQQGzZsSOqaNac3q6saOzX0OWDCor9Uxj12cmF/gkkoxksTJo0cQEube7Rl2Wd7mDdhGJk+A4+ATJ+BDF2DdS0vbahP/YfoJWj7pTljCUs4JEJG11qZgQRDo1MwjIPGhnS0YpznnHngzVQdhZ5MyB3a4VyZARVR6wKnfSRr0qBJ5GflU380dUOen5XPpEGTklpbWlrKT37yE+bOnYvH42HKlCn89re/5Zvf/CbnnXcegUCAiy66iEcffTTmOfLz87nggguYMGEC8+bN45e//CVbt25l9uzZAPTt25c///nPeDyRg313797NXXfdFY4K/OIXv0j5Z9WcfswqySfTZ9DuN0G4SyVYZHiNiLTiiQT6WoeOteNzHOOGELBjfwuHjrkby4AJFXuaWTi/lDcr9lI6rB+rqiILufUgmNho+6U5Y7GP1YH4UaE+g+DovhROLpVT5HZOp+7W0QNqpE8sqlcq0dKtr8G4a13qurpmwcTJbAFOlmnTpsn169dHbNu6dSvjxo1zXf/89uf5r/X/lVIbdJYnix9M/wE3jb2pS9fak4j3O9KcnpTXNLG6qpE9h1vjCoKmitcjWHTNBJ5bVxszVQhKEytRNO3K8UP4cMcB2vyms6KBDK/B0ntnJSx8F0KUSymnpfRD9FC0/eoc2n6dgdStVU5Mc70qYnfWVIVxFMQ7CRfO27jg29B2RBXL794Q+/ihE6N1sOwUn6/G/gTbwfCo8L31XIYP7nojqcL3WDbstE8XAlw/5nrGDRxHhpGR1PoMI4PSglKuG3Nd916YRtNFyorz+OYlo7lhaiGZvmhh0mSYXNif739pLDNGdTg60pQ0HW9n4dWlZMU5byIHK8NrUJCbSbut8N763xDw4NWlurMwAdp+ac5YRs6AOd+DSQtUSi6mpZGx92XlwZd/pSQeLIQBWf1g/q9VFMqbFfv4fRWxr08YKp1oKb4H/ZHO3Dlf6rLq+xnhZPkMH3+4/A9MKJhAlie6iNNOlieLiYMm8vvLfq9HUmhOGyxh0ivGD8Ej1BvX5xERZsVjCEbkZUcdu7G+mZZWP/8yb1xYQV4CG+sOA/DMPbNYMLOIDK+qqzKS9OSuHD+EpffO4saphWR4jShjYkqVStTER9svzRmPJUx67ldCo3BCA5ntFszwQMFYFXmyc6JJdQ5Oud0mSirgxBFY+Su15o7XYdqdan+UllaMO0Xhga/8Wim7ezLUY+exrV3X+DutnKx4qc0cXw6Pf+lxfjD9BxT2LSTbm43P8CEQ+Awf2d5sCvsW8oPpP+CPV/7xjBuu2hPTvpr08+GOA2Gdq69MHBZho4KmZHdTK4YA56SdtypVvYMp1aBna5zOgsWrAPiP6yey9N5Z3DKjKCknyxCqIL6sOC/sAN4yM/rYF9bXaTHSENp+xUbbr17CzncACYYBs78ZqdBuBtSA5v2VkNE38jgzAPs2hpTapYo6ffwbeOch5J+uYWPzTv63pIxH597P/46/lI1Z2QlKKwSU3aEcM8sBvPQncP4/Ri6r+TiU5uw8p03he1ZWFo2NjeTn5yOc0vkhfIaPm8bexFfP+SqbDmyi4mAFx/zH6OPrw4SCCUwaNCnmsaczUkoaGxtdW7E1pzflNU28vKE+HEy3ZgxKKXl14x7XY0wZnea7qnQoL22oj9LNag9KXt5QH3aWEnU0egyBaUq8HoO8nAweeW8ns0ryKSvO4+UN9VHHBoJSi5Gi7Vc8tP06w1n/lCoq9+WE0nKhuqxP/+wYbxNCmiHNKhuGVxWw2zoO/cAruTk82T+XxvL/Q8AwCJgBvAi8Q/LJDwa5q7mF61uOEhnzNZSTl9lPRcJGzVGO1sgZsOw70dez9TXljHWS08bJKiwspL6+ngMHDiS1PpNMykQZWGUOjbCtcVv3XeApJisri8LCwsQLNacN5TVNLPjj6nAHoNcIOTlBmVIB/IxReVxROpQFf1ztuv+5dbWUDu9P5Z5mDrS0xa37siIOpmny4F8qCQRNMrwGd84exdI10WMrfF4tRgrafiVC268zFKdiu+FDRaJMOH4wuXMMGgsz/wHe/EF403EheGDIILZmZtBqGEAwLETqR+I3DOoNg18OHMBf++Twh/0HyJGhW1WBWvvxb1R60JOp6rr2bYLyP0U//7hrO/ezhzhtnCyfz8dZZ511qi9DozlprK5qDI+oASWXMHpQDrsOHEvayfJ5BP8ybxyrqxoJBDvOlZPh4Xh7MHzef311c1KaXNaaoAmBUEt+e8DksQ+rIq5pxIAsLh47mBumFvb6KBZo+6XppWx9LfJxfgn0GwG73k3ueMMH1/xOdSiGCtL9wAPDh1PhFbQb8SueThgGFZkZPDBkEI/va8CHBGnrZJQmBNtCavGO7sWcArj0p12KYsFpVpOl0fQmZpXk43MUV1UdjHawnHVQ44flhgc9B03JN58pZ8f+FryejnO1tkfqy6Qqempfbsro0tLsDK92sDSa3o4zCnTgc2iqdixyGLABRSjXRKiI0wt3QMM2VZyO4JXcvmxNwsGyaDcMtmRm8Gpun1BhuyNFaZdssNMnX81U7CIJr1II8YQQokEI4doHKYS4WAjRLITYGPpaaNt3lRBiuxBipxDih12+Wo2mF1FWnMfd54+K2ObmDE0rziPLZ4QK3gUj8nI6RpxK2HekjVc37mFYv46alzgN00DX7752NhxlweJVPaLoXdswjaanIOFQVeSm4vPBm60cIMOruguFFW0y4cge2Pw8FM1GCsGT/XNDKcLkOWEYPNG/H9KtBiwWB7aruYp1a1N6LifJXOlTwFUJ1qyUUk4OfS0CEEJ4gEeAecB4YIEQoutuoUbTSyivaeLxj75IuK5/TgYXjRmEQEWuPvj8AF6XFsG9RyLFLs8e3NfV0RLAgplFfP9LY/nGRSUM6pucfpMTf6jovQfwFNqGaTQnl7q1Kg2XiOwBMPoyVOTKhB0rlJyDk93r2JThpdHjsi8JGj0eNmXGs2Uu1jDoV6nKLpDQyZJSfggc6sS5ZwA7pZRVUsp24FmgaxVkGk0vQnX6Jc7jvbutgeVb9hMMpe38AZOLxw6OEB8FaA90nMtjCO6+4KzwzEGvp8PASKB0eH/ycjJ4bGUVB44mM38sGo9Bjyh61zZMozkFVK907x508vly2PbX0IgcU3UQDp0YrZfV1sLmzEwCnRxzEwAqbIPPo3GxtR6f6j7sAumqyZothNgkhHhTCFEa2jYCqLOtqQ9t02g0STCrJB+vR4mHGnFEQoOOHKIE3tm6nzFDcrloTIHrMWfl5yjF9/mlfPfKsdw8bWT4/IaAyj3N/PTVzTh9PEMoBXlPEnbu5ulFp1NNlrZhGk06GTUnJB4aqq+K5W6YfiIcHGnC7nJo2ArDyyKWHjMEgU6qmASE4JhhqHN6syB3eJzVQinM3/nXHqH4vgEollJOAv4f8GpnTiKEuE8IsV4IsT7ZNmeN5kzHNEPjaiTcN6eESYX9kzouKOGZNbV8vMs9XVd96Di/Wr6dRcsqycvJQAJej4pqZXgNGlraCLrc2F0zaThb9rW47rOT4RHcMPW0acnvsg3T9kujcTByBsy8P5SFk6rOqvh8JcmQDGYA9myI2NTHlHg7qVvrlZI+eWdDwxal19XirjMIqAjWVQ932cGCNDhZUsojUsqjoe/fAHxCiAJgNzDStrQwtC3WeRZLKadJKacNGjSoq5el0Zz2vLShHkvBwQT+uLKKm6cXRaT2Et3UOaNcACPysjFNiSmh3W/y01c3s3RNLYGgyaDcTK4qHcoHn0c7Ct+4qIQxQ3IjZCVichqJZqbDhmn7pdE4qFsLq37XkTKUQbXtnHlEjtOJpyQVab8mtrV1WnfKa3iZMHxGpCBqTNJnv7rsZAkhhoqQDLEQYkbonI3AOmCMEOIsIUQGcAvwelefT6PpLTjf5kEJT3xUFaHabnUJpmISsn0ejFBu0Ayd1xq1Y3UittscqUmF/XnpgfP54ZfHMaskH08SucJg0OwpRe8J0TZMo+kG3GqyzAB88lsinCcz6DJv0J1Jbe3kd9Jtye87nEljb3Avqndidr3g3SIZCYelwCpgrBCiXgjx90KIbwghvhFa8lWgQgixCfgtcItUBIBvAX8DtgLPSykr03LVGk0v4IaphVF1WDsPHIta5zFEVMlmQZyOwF0NR6PG68TD7nCVFedx6djBiQ8SPaPoHbQN02hOCaPmhBTeHTgdrxSi3gK461Aj2WYKUgxAlvBy94S7EUUzYcrXEh8gTchOj/1KGHmTUi5IsP93wO9i7HsDeKNzl6bRaIQQRFWf2zAETCkaQHlNU4SG1oCcDA7augKvHD+EVn+Qj3ceTFl4dOu+Fv7usU+4eXoR/TK9fFZ/OOExg/pm9piid23DNJpTwMgZMOZy1TkYjyGlSqQ02I5rhx9A8QXgzYSq97m+5Sh/7ZNDRWZGUoKkGaZJafsxrjtyBJ69FRp3ody1BIawNT2ReK34rtH0UFZXNYZnBcbClLC+uikiZeg1wOcIgUlg3oRhZHiNTlUbBE1YsqaWRz+sYt+Rtoh9bunKnhLF0mg0p5C+QxKv2VcBSCieTYdL4rAqtath6HngycSH4A/7DzChrZ2sBBGtLNNkYls7v9/XgO+v31MO34FtRDtYDldIeLos3RDjzBqNpqcQy1ERKA0qC0lHXZVHgESwdV9LxDErtuxn0bJKFs4vZcHMIjwhJ6wr5Z19Mz1cN3k45xX2jyjGB3ircl+PUHvXaDSnkKGT3LcLDx3WRyrRz7q1dDg/kghHSAZVEf1VD8O0O8kRXh7f18APDjVR6PeTbZr4TBMhJT7TJNs0KfT7+cGhJv64ryE0HNrhWGX2h4KxNoV5G8nUbSXJaTMgWqPpbWzf1+Ka2pOoyJIbpsQ1+iWBNr9JxZ5mbpxayIvr6wiSMGAel6NtQV7duMc18O4PqML3npIy1Gg0p4Cdy2PscFoMqQrg41kkMwD7NsL838DQyfje+B43tRzjqy3H2JSZQUVmJscMQR9TMqGtjUlt7R03kYYvdH6b4WxrVl+uzxVUhe9pkHDQTpZG00N5s2JvSuutCFcshQUJvFhez4GWNtpTKHwvHJDFnsMnnGNVI85rx0AV4+853Ep5TZN2tDSa3krLPvftbpElw6PG6sS0NMCnS2DoZNj6WshpUnZvcls7k9vaca21GjQW8sfA52+Fzp8Ioa6luV5F13qAGKlGo+kG5k0YlvRaQ8CQfpmMGZwbd50/YLJi637X4w3UeJ3Rg/viEYSV5uvjOFhOvB5B2ag8ghKWrq3ltsdX67ShRtNbGXi2+3anZIPwQP5oR12WC8F2+Ot3YNd7uI/ByVBF8pbKvPDAwR2wbZmKhCWFUGvLn4I/XXNSBkRrNJpTwK0zixgxIMt1n7OWytK4ctZiWVhOkySyWVEAWT6Dh66byIKZRSAluxqOgoDhA7Ki0pUeoToVrxw/JGo2IkAwKFlf3UTQEjsNnD56WRqNJs0cP+i+XQajHx/YBjUfEzeShQxJQIQMkzDUlycDzp2vzlPziYpEFc9WayMkI0THWudsxDBmx3GBtu4fEK3RaE4dpcPdx+hYvo8hkpOZiZUcPHtQHxbOL2Xs0FwqdjcTMDtqvnYfPhG1/tJxQ7h/7tksvn0amb7o4lCXJIDuNNRoeivjEs1TT1VK2cGEr0LJxTDrH6BlbyhaJZWYaM0qoqxR7jCY90u45Rnok8xkhq7rZemaLI2mB3P/3LN5e+v+eFJZrh6UU15LSndHa9eBYzz4egUIkXBcjoEaPL1yxwGeuWcW8yYMY+WOGHeqIUoK+uiaLI2mtzLtTlj/OOzbHGdRDM0qYSQYfyOg8mVVZ7XrXZf9Luds2Qdv/RCGjFcOoOtxDrqol6UjWRpND6asOI/pcZwUM4bzdP+cEq4cPwSPITAEeDwiSj0e1LH+oKQ9YCbsNDRDz9fmN1n0l0oq9zTzjYtKGD24r+u5Ae6+sCTBWTUazRnNgOI4OyUx04Pn/5NK60XIPdgQRuJC+ShCKcCPf6OK5yf+HYwoU3VcwkW2wfB2WS9LR7I0mh7OgJzYI3LcMIDcbB+Lb59GeU0TL22o58XyegKOcFi4RivF65HApvpmNtU34/MInr1vNgCL/lLJpvqOlugZo/K4dWZRimfXaDQaA7L6qbTe+qfgje85CtcFFM2E2jWd0KExI1Xo5/93KOL2lCqqt0fPpt6uuws1mjOZJWtqeWdbQ9LrDcAwYHnlPpasqaWsOI8RA7IJuAhrdUUjy8IflPzLS5/x0oZ6bp5eFFaUz/Aa/Mu8cWl4Bo1Gc9qy/inY/maKB4UKTXdvUJ19rY2O0WJCRZhqVkcX0HeGFT+DZd9WKcSv/FqdWxjgzYZJcSdyJYWOZGk0PZTymiYWvlZBMIlhg1eOH8LFYwfzyqf1rKtuCkWaNlPbeIwjbQG8HoNg0MQwBIGgTIuDZbGz4Sg7G46S4RF8eeIwNtYd5qrSoboWS6PpzdStVRGoZB2hc+eDLwcqXlDHbFumtK3OuUo5Pibq/zFXhBy31IZEx+TEYVj/JHz6jCqKP+cqVUQ/petRLNBOlkbTY1ld1ZiUgyWAVr8yZE5NqsdWVoFUNVm3zChCAs+urY1fSB+HESFhUrfD24OSVzfuAeDRD6soyu+j04UaTW+lemWS4p8AQjk2ezZGRq3MgHK2DB+U3aEiS9UrYXsnZ7bnDodB50KVS8F7sB2WfYew87Zvs4pu6XShRnNmMqskn0xf4reoBD7eeZCFr1VE6VpZXYWBoGTH/hYE4LWK4Q1BQW5q9V67Qw6WRygl+Hgs/nCXFiLVaHoro+aANzP+GmGg3BCp0oOxol6mH3augE1LlaSCJzNa0DQZWva4O1gdT9TxbbAdNi1J/TkcaCdLo+mhlBXn8cw9s7h1ZlHEQGg7owf1wRCq6y9oynCXnyGgeGBOxNq11U0sXVsLQkW1fn7tBJqP+zt1bUEJuVm+uGuqG49rxXeNprcycgbc8TpMu0tFotw4/5/g7ItDDpNdJdmA/o4o+OFaWP8EvPkDNSi67A6VPuxOPl2iFd81mjOZsuI8/uP6ifz82omMHtQnYt91k4fzn1+dRIbXsO4FkVJFqh66biIXjimIOp8pIRg0GTEgm4o9zfhTmGHoJJa6vJ02v1Z812h6LSNnqIHOd70RGndjY+LfwRX/Bhf/SEWmwu6IUE7ZnO+5yyoE21UxfP+RKYzK6STB9u5XfBdCPCGEaBBCVMTYf5sQ4jMhxGYhxCdCiEm2fdWh7RuFEOu7dKUaTS+lvKaJRcsq2XXgWHibIWDMkNxwtOuCMQUYwnK0JE3H2ykd3j9KXUYAPq9BS6ufZ9fWpvU63bSbhTj1iu/ahmk0PYC6NbYHBgw+V31rRbzsES0zAPs2QdGs6PN4MlTKsPKVbrhIhwUT4qToZD0F/A54Osb+L4C5UsomIcQ8YDEw07b/EillfFlojUbjSnlNE79Z8XmEWKglkWB3XooG5rDKEMigxOMxyMvJYNGyyqgC9eL8HK4qHcofV1ZF1W85mTEqj/45GXxx8BhnFfTh7II+rKpqZHN9s2tfj8cIiaPaznvfnJKe0GX4FNqGaTSnhrq18P4vwLTVWxlGh/NSt1ZFi4aeB198GNrvhU//DEFHOUO/4SoC9ub3VZQpEQVjoU++EiAdNQcad6rORLfaL+EJGS+bATv/n7pc+J7QyZJSfiiEGBVn/ye2h6uBwi5dkUajAZSDddvjqznh73BpBHDFeDU/sKw4L7ymPWCGnaZg0OT97Q20ByKPk0BN43Ee/+gLEmUJPQKum6Leyu9tq2BXw1FW+gyeuWcW2/e18FMXaQmnFNcV44fwwy+feq0sbcM0mlNE3Vp46iuRDpHwwJd/pZyXurXwp2sg2BYSARUqmpU3Chp3QMStpYQj+2DV7yIdtiiswlQPDJvUMXpn/xYVMbvgn+Hj/1Zdi3acI3zO/YpKZ3aRdFeN/T1gVx6TwHIhhAQek1IujnWgEOI+4D6AoiLd9q3RrK5qpM0f+caXwNtb9iOBb8w9m5c31NPmjxyJE5RqxqAIDTD0GDBheH8+q29WQyxMiUcQ09ESobTjg69XEAwV1AO0+01e2lDPiAHZ/PzaCTzy/k52N7VGHOvzKj0un9fgG3PPTtev4mTSKRum7ZdG48KmJdERJxmEmo9VXVVzvc3BApBq/8HtHeuFB4ZPht2fAqZqABRG7E7EPoPVuc0gbH6+Y3ugTV1P/5HK0TpcEz1T0ZOhUpWeDLjg21360S3S5mQJIS5BGagLbZsvlFLuFkIMBt4WQmyTUn7odnzIeC0GmDZtWjq1EjWa05JZJfl4DEHAETGyHK13t+6PORYnaFXBoyJMs0vy2b6/BX9AOUAL55dSsaeZT2uaogrYLdkHv0O0VAjUeJ6giddjRETK1AK4+/xRrKpqZEi/+PIOPZGu2DBtvzQaN2IMNd38POGoVdwh0ChnatQcFYkKtisH6KqHYd9GOHogOv13/IB1oONShOoWNAMqHemWbpz1gEpd5g5L8udLTFqcLCHEecDjwDwpZbiVSEq5O/R/gxDiFWAG4OpkaTSaSMqK85h/3rCwwKeTVBoDV1U1cuPUQiRw49TCcKrx+XV1ruut9GL4sVDXs666CQnRDhbKOXvsw6rQcc28v72BpffN7gk1WQnRNkyj6QaGToqzUyavBl+9EiYvUMdMurWjTmrZt6PPIVE1X876qiHjYV8lYELQ7XmlSiNax+xYDnf+9dSLkQohioCXga9LKT+3be8jhMi1vgeuBFy7ezQaTTTlNU38ZZO7g5UqFXuOsHRtLc+vq2N7KHLlpigvgAyP4LzCyM5EKWFDbVPCcTz2/f6gPC3kG7QN02i6gbq1qkA9Hez5VI2+2fC/KqJlcfRA9Fpvpqr5OvuSyO2WgxUXmwUL+rss3wBJRLKEEEuBi4ECIUQ98DPAByClfBRYCOQDvxdCAASklNOAIcAroW1eYImU8q0uX7FG00tYXdWYUrQKYGCOj6bj/ihnyHKmTClZ+FoFY4fmuqYjh/TL5J8uO4exQ3O57fHVEfVeLsErQDlmZw/uy86GoxHbjR4g3wDahmk0p4TqldHdgYnIKYDjjTji6B0pRTOg5iFa4276Doo+/tKfwrQ71ZovPrRpaaU667Dr8g2QXHdh3DHUUsp7gHtctlcB8WKFGo0mDsoJiu7ai8fhVj8+j3KcbGVZEQRMyUsb6vmP6ydyz4Vn2VJ8sO9IGwtf28zN04tYOL+U97c3sHzL/rjP6fUIzirowxcHj0VExu7tGfIN2oZpNKeCUXNUh18qgqGth8DjU8cIA0bOVEXydsyAKmAfOQOGTiaiuOH4Qfjrd5XG1qQFMPtb8PFvEj+vMNR5pENmIg3oAdEaTU8mxUiWlDB55ADaAiYHj7ax+/AJ13UvrK/jQEsb725riHqKgAnPrKkly2cwZ8wg1+Pt+IOSt7fsj0gvGkBudvyxOxqN5gxm5Aw456poqYR4SAmF01QnYO5QYhbOb/gzHG2Az/9GlJGUQTV+Z+NSmHxLks9rKkcrqz+caO64luqV3a+TpdFoTg2rqxoTCoY6kagZhYmwHKN4tAdMGo64O2kQXRxv/94wekaqUKPRnEKc6TxX7JZEQo1Nts7wqi9nNMz0w7a/xj9tsE2dW3iSK7CXZoeDBSoKl4Z0oZ5dqNH0UGaV5OPzdu0tKoBR+Tmx7gcTMrskH59HhM9lDaB2OlhOSof37xGpQo1GcwoZOjnBggSWxAwqQdFOWTCpuhvP/0fVHg0dacFkmPK1LkexQDtZGk3Pxq2oKsSMUXkM7ZcZ93BDwFWlQ8n0Ga5zDONhSnjik2qklGrmoUdw35wSPCJxFvPm6VqQU6Pp1dSthbd+GHt/8QXRHYBORGj8jjcLl8mo8Y+VEt74/2D170EKFRE7/5/U/4nwZKiarjSgnSyNpoeyuqoRv6O90GOokTdZPoPrphRy8Gib67GW+TElPLWqmoXzS1kws4gMr4FHqNmHC2YW8Y2LSuKaqvaAScBUTlV7ULIqiRTmleOHcOtM7WRpNL2a6pWqtsqO8KgvbzZc/iCMuzb+OaQJq/+gxEen3QmeTHW8J1M9vuDbxHW2TH9IdNRUUbHPnk9ciD+iLC36WBa6Jkuj6aG4K74Lbp4xkhunFiZVsyWBE36TNyv28u3LzwkfN6skn7LiPB55b2dKtfWbdzdHBPhDk3vCeA3BxWMH88h7O8PPodFoeiGj5qjiTNPRHl12e4egaPVKVKwnVgu1VLVVnz6tHK1Jt6pjRs1Rx6/8VQoXJKHFoTvoNGCGF6bc3qGPpdOFGs2ZS1lxHvdceFbENtOU1B06zvZ9Lew53IrXEHiEim7ZcTpOK3cc5Kt/+IT/fHNrhPMzqyQ/pWoHUypz6BEqYvXv103EXjY2ZnBfHny9gl8t385tj6+mvCZxEb5GozkDGTlDSSjYkRIQSoJh2XcgO1+JhzpdEeF4vLsc/ucKWPGzDgcLQo5cZ2JFAs6dD1/5je14AaMuUjpc7zykBlfXre3EuSPRkSyNpgfjlEGQKIdp5Y6Dqk7Ka3DzjJEIYMmaWkImDCGIinJZnYe3LF7Fs/ZxN3FqT+OVpQ7KzeS97Q0RIqX2OYj+gMnqqkYdzdJoeitZ/YiwIgLM8qcRUqXshCcT5v0f2PoaVL0fEh0VkD8mcki0Rc0n8OSX4a43kowyxbJgAvoOhp3LbelDCVXvdiwJtGkJB43mTGdWST4ZHkG7i/S7NUPwYEsb9889m5c21IcHQN85exSLV1a5phP9QZPH177L4o211B1uwjvAT/DESMzWIgyhitsr9x5h3gQ1JPWnr24mKDs6C82QJ/fC+jrX67LwGELLOGg0vZlRc5S4aGgYs5QgZaDDlgTbeXv9ForLvsm5Nas6BkDP+gd48wchGQYHpm3czVs/VI/tGF7VkTjldvX4je+peixhU44XAj79s/uQ6DDy5Ci+azSaU0dZcR4Xjx0cV3V9+Zb9HD7ezsL5pVTsUTVTV5QOpSi/Dwtfq7DVdAXxDVhHRv6HrDx6FAiCCJI52AN4kIE+0HwJr2z0MrtkME3H25lVks/z3zif1VWNtLT6efTDKnUmE4IJqrkmjxygo1gaTW9m5AyY8jXk+icRhKZQYCBDzo4fD4/VDGNTTRvfL/01s4yt7MyZzFmDLqHszvGwaSmsf4qImi3Dp9KMf7oGAq2Rz9d3iCqKP3ZQRaku+Dbc9aZyyk4c6VB/l8EYQ6LtpChSGAPtZGk0PZjymibe/9xlCKqDtdVNlNc24TEMAkGT59bVcc+FZ3Hz9JFI4MiJo3x45BfIjN1gOO7eRBAIIjLakfl/4UjrBl7ddBfITLJ8Bs/cM4tvXjKar//PmtSuvfYw5TVN2tHSaHox24Z8hWL5Z3wE8OPl3/xfZ4JRDcDLwTlskOcA8HBFP2AmAvCsXcWiaycwduJCvgjM4dJDSxGNO9kZHErT5Ae4snVHdOciwFHbzejhGqUIf9ebMOd78L/Xp37x1vieLqCdLI2mB7O6qpFAksMLgyYEQ508ppQ8+mFVSN/KxFu4GCOrHmHEb18Whh9Pdj3ZI5+ktfZe/AHCdVWlw/qxcsfBpK/dNKWuydJoejnvHB3Fu/4fM1NsZbU5TjlVcUyaRM1X/ckrm/F4BKaZiWHcRcAqTXgfFl88hivdOhedmIGOuqqh58Gud+Ovd3I08Q1uInR3oUbTg5lVkh/WtrLqGFJBAjJ3LUbm7oQOloUwAniyd+MbsD5cV1Ve08RTq6pTem5D12RpNL2eWSX5VHrO5ffBa8NRq2SQQCAoMSUdDhYwVXxO3afLQ52LCVwYYajUYt1aWPNY7HW5w5O+rlTRkSyNpgdTVpzHM/fMiqqJSh5JRv4HCI8/8VIbwvCTkf8B/qOzABXNag/Evmt0ys0AlBXpmiyNprdj2bDHPtgVt7Y0GaaKz3km4z/wnfBjfmJgFM9WO5q+gCN7CddRZfQBf6he660fqkHRMYvcBfQbplKNzhmHSc1ejI+OZGk0PZyy4jxmleTT0pZcJMpCAN6cWoT3WKeeV3iPIjOqw+KlRiiUZggYPbgvXps4l9v0n411h7VOlkajAZTkSyoIVIeynVnGVnz48QqJkEGo+RhqV0PeqJC2lqG6Ewedqw6QZsi5EjbtLQMGjVUF9GqR0uFyGyKdcPZiYnQkS6Pp4ZTXNHHb46s54XePJMXTsjqvpJnP/UlMoHcliMiqY1PdYVpa/eGQvSnh7gvOorbxWNzIWlDXZGk0vZ5E9isWEpg4vB9b9h4JS8WsNseFuhOD4ZnPyKDSzwLAUHd8uz9FFX6FFtWts0k9mDDzH1T0y+o2dMWA1saUrjnGWRIjhHhCCNEghKiIsV8IIX4rhNgphPhMCDHVtu8OIcSO0NcdXb5ijaaXES9VN3pQH66d7F5PIIHKfQcQRiedLBEE0cbyLfujnKnFH+7iL5/tiXGginb5vEaPqMnS9kujOXXEs1+FA7KYMSovZr3pxvpmJo0cwJXjhzBuaC4b5Dn81H8nEuEaPVczCgNEVNbLIOzfHLnsk/+Gz9+Mc9WGUqJPg05WsunCp4Cr4uyfB4wJfd0H/AFACDEQ+BkwE5gB/EwI0T23tXVr1RyjNMjgazQ9ibycjJj7dh44xl8+2xtzNI4ZzESans49sfQgTfcQf3XjcXYfPhHz0Ikj+vPMPbN6ShTrKXq4/SqvaeKR93bq9KrmjCOe/ao/fILy2sMxHCbFuuomPtxxgKkhW/KseRk/9t9NEMOlSdEZ149x4kNVcMBFUd5ixBS44/W0zC5MKl0opfxQCDEqzpJrgaellBJYLYQYIIQYBlwMvC2lPAQghHgbZeyWdumqndStVcJkllqs2y+nbm3kYEmN5jSgvKaJn71eEXcQdDDOzuCJkYAH6Ew0yxM6PnUmjOjfUxysHm+/rHRKe8Akw2vEdE7La5oihntrND2dztivyYX92VjfHLGtzW9SsbsZIzQu7FnzMj5vH8n9xXv50qAm2PwCoV7q9Fz4sElp8xPSVZM1AqizPa4PbYu1PQohxH2ou0iKiopSe/bqlcrBkkH1vyW5bzlVkNgJi4Wbc6YdNs1J4rEPduG3tS8XDsgiv28mmxxGyEIAC2YW8WlNE1v3tWC2FiEDfRAZ8cZHuCMDfTFbU3wvhtixv4WfvLKZG6YWng4OwSm1X1Y6xZSR8x7tThWQlCPmhptzph02zcnAab9GD+5LSUGfmF2G1rSKUQV9eHVjRzmCBDbVN+MxVPrNlLCJcxCjzoa1d5E258riwHY1wHrSgjNHjFRKuRhYDDBt2rTUfmOj5ijnyXKiThyBJ+epzgJPZkf7pt0JS+YX5xYhg847bBpNiuw/EpmSy++bycKrS1nwx9WudQ4CqNzdzP6WE+Et7Y1zyRz815RkHKTpo71xLsRMRMZnbXUTa6ubeKG8nqX39pi0YbfRFftlaaFZcyfzcjL48SubebG8nkBQOVU3TC10dcQS4RYlg847bBpNKjjtV58MD/fPPZv3Pz8Q034tr9zHsXb3yHvQhHFDc9nRcJSgKan45K9cYQQ7aaXiUPOx+trwvykMo3YnXRIOuwF7XqEwtC3W9vQycoZydi79CVz1MKz6nSp+k2ZowKRQDpHwqP+TLWZzi5DFipppNN3AzdOLoh5v39fCuKG5jMrPiVpvou74Dh3rcKj8h6cTbBuBNJO7p5Kml2DrCAKHp3Xp2qHDIejhnFL7ZekIfffKsSycX8qiZZUsXVMb4VQJCIvSptJQ4BYlc9um0XQHbvYL4OJzBjGob3StlmW/djYcjXnObftaMKWag/hJ4FwCRgbKlRF03BQKx+NOYvrV/MQukK5I1uvAt4QQz6KKRJullHuFEH8D/sNWLHol8KM0PWckI2eor5W/ipTaF4YK+U1akHqKzxkhs5wzt20aTTdw60xllJ5bV8vgflms/aIxIox+3eThfHHwGEP6ZVF14Cg7D0RrYgk8tNbeRfbIJ/Fk70YYsSNa0vQRbB3Bibq78Hm8XDx2MPuPnOCz+uZwQD6eZETUcwt6RIdhAk65/SorzqOsOI9H3ttJe8CM+F37QpGsG6YWppzic0bJrL+F2zaNJt1Y9uvNir2UDuvHe9sb+NdXN4drtDwGnJXfh5JBfdl/5IRrGYSbvTGEQCCp8JzLrnlLOHf/Mvh0SaTgqMcHU74GRxtg219dzpIkRxs6d1yIpJwsIcRSVBFogRCiHtVx4wOQUj4KvAF8GdgJHAfuCu07JIT4ObAudKpFVhFpt1C3FprrweOFoF9Z+Nnf6nCqUg35WREyp3Pmtk2j6SbGDs1l+/4WVwP0xcFjXFk6lFkl+fznm1vB4WQZgDAEQTOT1tp78Q1YT0b+B3h8RxHCRBLEa3iR0qC9rQ/tjXPxH54GeAiakkG5mRTkZrJ1XwuBoIkQgnMG92Xrvpakrv2ycUNOeSrqdLFf5TVN7DncitcQBIISIdTv7/65Z4d/h6n+Lu0TA+zOmds2jaY7uHVmEWOH5rJg8aqw3pVF0IRhA7K5f+7ZvF25L6aTJUIF76DGdc0/bxiNx9qZN2EY504vgpWbQtIN1vklmKGUY99BKiBiBsDwwqBzYN/mqOeJSRdV34WM1zt5ipg2bZpcv359agfZ66eEoVKFSFWTpeumNKcxj7y3k1/+zb3d2NKX8RqCoJQ4Z0l7BNjtmhp/IzGya/Fl13F5aR6zzxqOL1DMz15ooT2gZoUZEBrOqh77PIKLxw7m/e0N+IMyqXvCDI9g6X2zk/oQF0KUSym7np/sAXTGftlrpwxDaQBJKXXNlOaMIJ4NU0PsBQjhWqfltGF2wjbG2BH6/G8LffYbYHjU91KqwMuUr8HQSfDG90IOmduVOJ7IkwF3/jUp/yGWDesxhe9dxl4rJa0/lEyt0D1VdJeh5iQQS2dG0HF357xDtHBuVvdUArO1mLbWYv72seDuCcoRGt1fdZzl5WRQuaeZZ9fWho/3ByWt/iABM9rBEqF/rPs1Q8AFowv49uXnaOcgSex1UjL0S5ekVuTeGXSXoeZkEE8rS2LZL3cbFu+Grj0oeWlDPWXX27JO2fmwbxOU/6ljVE7Qr87U2hj2DzrOKxDCgPzR0LhD7RcGlFwMF//ozOku7DL2+inDAwjlrVp1U+l2iJLR5tJoukh5TRNvVuyNuMcSAs4u6ONaf5UqpuwYfWN9Adz79PoIB00C+X0yMEKToA2PirYELacrtFag6iXmTRimP7RTwF475THUXX0w2FEz1R3OULL6XBpNZ7Fet3sOt6ZUy2knnsYW2ErbrbpsYOOShZwnTYzwc0rkhmd4/+zvc7GRgQi2E5CCvwRncbVnNV5MRNMXmMKrHDPDh5EGBwvOJCfLWT8FsXWyrnpYebROhysVR8yty1A7WZo0Yn0ItvlVIbRVm4CEXa4F7nD24L7sajialDEzBHg9BhvrDoc1rUBp27ztomPzl8/2YpqqVmjMoL5sc9RlddROSBYtq2Ts0Fz9oZ0kztopIKZG1sL5pTQdb49yuFJ1xGLpc2k06cDuxHsNgS90E2G3TeHxgzEeJ8LnETS0tEVo8j38xlbWbs7jmQwfGbSrulQBwWCA8q07+YP8EQsG1/LnfSOZZWxFqCE9SDPIc8FLqDfzKQ+W8n1zDGVp+D2cOU4WRHiy4cegOg7DDlGbyslKGRmBSjUyFavzUKNJE9aHoETVSE0s7E/F7uawdrsAzh7UEdGSwITh/eiT4YkpVmpx3eTh9Mn08ty62rBDtWRNbfg8bljKzFISVfiuIlgd6ck2v8nLG+r1h3YK2COJ1mMg3HFoSmgPmCx8rQLTUa/VmahUrM5DjSYd2J34oCm5bNxgVmzdHy4rEMB5hf2p3HskPHzeMARn5edEROndarIMAdOK89hQ2xS2X0vX1jJ2SG7INp3Dbe0/5gbPSm7yfIBHmvjxsio4jg1yDOV7x6iRPCb48SIIEsTLC/4L2SDPQUDa7NeZ5WTFwu4QQajrwFGvlUpkyop4xYqIaTRpwPoQbA+YGEIwpF8Wn9mcJ8MQ9MmMfAvb5R0srhg/hG+EuncWr6xCSnirch83Ti2MKJSPd/foCYWpYo3wMSxJGtlxrufW1Z4uiu89GrszBBAI/Q3s0adUolL2iJfuMtR0F3b7JYSKUdn77IxQ107Q5kEFTRlVBnHvnBJys33k5WTw3vYG3t3WgGlKNtQejrBfpuPmb4M8hw2Bc3g5OIfZnq2sNsexQZ6jrsO25rb2HzPbs5W1jGeDHBPe/+zaWkqH9w/LUHSWdImR9mysVGLZ7aqgzfoVG56OCJTliCUSLLUiXu/+O7z1Q+1gabqNsuI8Fs4vxQg5N+9vb8DrUYYpVLYT4XS5IYDJIwdQVpxHbrYPCBWaWrPA4liAbJ+BxxAIwOMxuPfCs/CGHlvntlB3q5HHB0x4aUN9Kj+yxgUrlXjzjKLwBxOAxxDh6JP1gZZIrNSKeP1q+XZue3w1AN+8ZLR2sDRpJ1n7Fe/mTgC52T6+eclobp1ZxOSRA5AhIdJAomItoHhgDp+JsfwheC2fibF4hHJ6fB6hah9RjtYjgWtZFxgTcWxQwsLXKro8tL13RLKgI1oV7jwUqqXTrqGVjP6VrsXSnESajreH1Y0DpuyoWZDqDjCRmXH7IG7zm2Fl5XjMGTNIhfeBYNAkN9vHc/fP5qUN9RxsaQNIKOmQ9nEXvRQrWmVFEgVw07SREfpZyUSldB2W5mSSTvsFyoZZQ6IhfvTda8CFYwpYurYWU4IwJbfMKArXt+Zmenn8oy/iOmv2xqDO0nucLIiuo5q0IHK/s6YLoovhdS2W5iRiOUYn/GZEl00yhaFeQ7Do2gkRw4bvnD0qnDKMh8fS3/IYEV1uoGoVrNqfuy84i8c+rIo41jKkllK5Jj04a6icv1tnTRdEF8PrOizNyaQr9ktAlP3Ky8lAJtmneOm5Qygd3j/i9V46vD+LllWG7dc9Fyr7ZT+bNRvRqnvs6nukdzlZyUarLGIVw6d6Dq2lpekk2/e1kJvp5YS/PWpfvE6cK8crpXAgYtiwIURCBwtUqPztLfvxeQS3zCiidHj/cCu2PRKyqqox6vmLQzMVryodqqMkaSTZaJVFrGL4VOuwtJaWpisMyc2i5tDxqO2JOgnvv6iEW2cWsWRNbbjZwxBKIDkZ3t6ynw93HGDh/FIq96i0ZOWe5gj7Vbn3SNTz52Z5ueTcwTQcOcHN04u6/JrvXU4WuEerYhErNZjsObSWlqYLLFlTy49fcR//IFChdLdQ93WTh/P12aN47INdvLN1f2RnjpQYRshQCeI6XJKOjsIHX6/AH5R4DBXd8ocM1ebd0SnH6kZlUB/9sIqi/D5dLhzVdOAWrYpFrNRgKufQWlqazlJe0+Q6Sgfi268Redl88+LRjB2ay31Pr+ftLfs7huVIicfoaMCJ525ZYr6Ve5p5YX1dhP0KBk2EgKoD0YOo11Z31GBt3dd1KZreUfjeWZItho+Fm5Om0STJc+tqY+6TwPzzhpHli34Lv7ZxD3/32Ccs3xLpYAnA6zUQIdPkMURCAyAENLS00R606iqUEKqlz5zopvLNir0JnkHTXSRbDB8PN0dNo0mG1VWNMSdRxLNfu5taeatiLwsWr2K5zcECZbPuufCscNF6Itzs19xzBnHpuCEETNh9+ETc49PxmtdOViIm3wJld3QuCtVVJ03Tq8n0xn97Nh5r55l7ZjGpsH/EdhWBilzrEWpQ61fLCtXoFkCaksvHDwnXX7khEVHF603Ho1OXsZg3YVjSazXp54aphdwyo6jTEah0OGqa3km8UTrQYb9unVmEcBiZD3ccjHLQDKFqtHKzfeFieks5JhZu9mtwbiYn/EHX9U7S8ZrvfenCZHGm+pxF8smQav2WRmNjQAIjZY2uWXh1KV/9wyexO/yE0pr54ZfHUV7TxMsb6sOFoPfPPZv7557N6qpGNtYdjlJ6N01JQW5mRPHodZNH8Kij2N2OIWDiiP7cPL1IpwpPEc40X2cbEDpTw6XRgKp/iodlv8qK8zjeFojS+HOOErtvjqrRKq9pirBH1gSEWPYLiGoY2b6vhZU7Drpel8cQXHruYAbnZqZF5087WbFIl1RDMh2LGo0LBbmZrtuH9svkny47h7FDc3nkvZ3MKsln2qg81tlqCUB1yXy+vwVTwlOrqrkiVIi+cH4pb1bspXRYP17eUI8EbpxayKySfFbuOMAJf0cYTAIHWtp48OrIUS77jpyIMIqWevOEEf21AGkPIJ1SDc4aLl0Ir0mGeLIuVlG79Vo61h4dWbp28nCOtwd5Z+t+Vxv23LpahvTLCq+/ZOxgVu44EB5DZl3DO1v3hwVN7a/ZCCeO7rNf2smKRbYVIhRgeNOX6tPF8JokmTC8v+v2ooGqe+/mx1aF24wvGjMoat2O0AxDqwDUqi2wWpjtd3Ivrq9j6X2zeeaeWfxmxecR+97esp93tu7nvjkl4Xbqv3wWWWvlMQQLry7VH7o9hLycDIQQCCnxeNKX5tOF8JpkuXFqIc+trY0aiSOBqoPHIrqehTNfSMdUCjcb9uBflA2DZpZv2Y8AMn3uUa2gVE0437ioJPxaffSDXRFOoCHoNvvVu5ysZCNIdWvhze+rKBbYBEzTgBYz1SRJ0/H2COE9i7XVTayrbgobiTa/yf4jJ/B5BH6bRbOGOVudPLNK8iMiHHb8QSW6981LRvPty89h1a6DBBwjK6xuwco9zVHjdeafN4yXNtTz2Ae7KMjN5EYdzUo7yUaQymuaePD1ivDfyExGsyNJtJipJlnKivNUPeCa6Aae5Y60npDKVtlfqtYwaa8hQp2BHTbMH4j8TJaouZ5Nx9v55iWjWbKmNip1aNmvsUNzeXdbQ8S+gX0yeGlDPdv3tYTlHtJlw5JysoQQVwH/DXiAx6WUDzv2/xq4JPQwBxgspRwQ2hcErD70WinlNV2+6s6QSgSpeiUE/R2PzUD6nCEtZqpJErtwpFWsbuH8flN9MxkewZXjh/D+9gaCpjJKEjCDkvagZMHiVYwf1i+s+h51jrrDlNc0UVacR+nw/q6K8Is/3MVglzSms57Cioz1hA/gM8F+pRJBWl3VGOFsB4NdV6220GKmmlS4YWohL22oj7I3TmToHzXGSyKlKjqfMLw/L4p6JMqGffe5jdw/92wMI3qOqimhpVV9bsdqzln84S4uGF0QdeyBo+0scTiD6bJhCZ0sIYQHeAS4AqgH1gkhXpdSbrHWSCm/Y1v/j8AU2ylapZSTu3SV6SCVCNKoOeDxdQyUTqczpIvhNUliLzpuafXHLTYHFY0qyM3kwWsm8GbFXrJ9nvBYHID2oGRjfTNjBvVh18FjURpZlnjfM/fM4ubpRWyqj9boqm48Tk1jtLCg27X0hCjHmWK/UokgzSrJx+cR4e6sdDpDuhBekwrW6+XlDfU8t76OQAxJBwtpSi4bP4RWf5B5E4bRdLw9lBZU1Bw6zk9e2Ryzo/Dxj77gitKhzCrJx+sRUc9X3XicuqbY0jh20mXDkolkzQB2SimrAIQQzwLXAltirF8A/KxLV9UdpBJBGjkD7vwrbFoCCNVZmE5nKBVBVE2vxio6Lq9pYkNtU4RQnhMJPLeujuekmtXl8wi8HiPCSAHsPHDM9a7SXvcwqyQ/QvTPuS4RPo/oKVGOM8J+pRJBKivOY+l9asakgLQX8qYiZqrR2F8rG2qa2LqvJeZaE1gR0sZaV32IhfNLo9ZYNVqux4dmDc4qyY/piDnlbWKRLhuWjJM1AqizPa4HZrotFEIUA2cB79o2Zwkh1gMB4GEp5asxjr0PuA+gqKgb2r5TjSB1hyOkuwo1ncBKFbX5E1sHu1PUHpRcMX4w675o5HBrILw9loEyhArX7zncymMf7HJ1sJzEmiL24DUTesoH8Rlhv1KNIHWHI6S7CjWdwZ7qNlwK3J1YVu6E36RiTzPFA3Ncx/I4ESiphrycDBb9pTIiZR7vGOcqAVwRGkt20mqyUuAW4EUppb0fs1hKuVsIUQK8K4TYLKXc5TxQSrkYWAwwbdq05Co11z8FW1+DcdfCtDsTr7c7Tifb4dFdhZpO8nKMmgZL9DieL/TB5wd48OpSfvLK5oQRqIkj+rN1XwtL1tTGXGvVTJgmGIZgStGAKOkIgPe2N5yOGlkn1X5ZmmXJFtnaHaeT7fDorkJNZ7HbLyllRDOPW2OPnefX17Homgn866ubE06XuHBMAfMmDLN1HkaTjP2yImXpen0n42TtBkbaHheGtrlxC/BN+wYp5e7Q/1VCiPdR9Q5RRipl1j8Fy/5Zfb8rdOOZjKMFJ8/hsTtyuqtQ0wmWrKnl2bWRTo8nJC5adfBYVAeNk0Co4+bFB87n5Q31vLC+joApEUIgpQwbLq8BE0b057P65igHa/SgPvg8Bk3H27lu8giuKB0aTkXt2O8e+n93W0O4iP4U0yPtV3lNEwv+uDr8YZBKke3JdHgsZ263YzB4T6i30/R8ymuaeG5dh/2SKPt1+bghDMrNpO7QcT6MIQoKEAhKKvY088I3Etuvb19+Trh20U5BbgaD+mSeMvuVjJO1DhgjhDgLZZxuAW51LhJCnAvkAats2/KA41LKNiFEAXAB8H+6fNWgIljOx0PGJxedOhkOj9ORu+ph3VWoSYnymiYWvlYRpTMD0NIW4N1tDQmjU0LAnsOtgKrNaWhp491tqvswYvyXEJQO7+86tLXq4LGwMXv0wyr2HTnBGxX7aA+YMesepOwZhe/0UPvlbEP3ByUvbahPKjp1smQU7M6c12PgDdXo6a5CTbK8tKEeZ1BJSpg0cgCzSvK56dFPEp6jcnczN04tdLVfVrpPIti+r8W1lvRgSzsHW1QTm2W/3qrcF7fjMZ32K6GTJaUMCCG+BfwN1QL9hJSyUgixCFgvpXw9tPQW4FkpI3qWxgGPCSFM1JzEh+1dPV1i3LUdESyAoecljk5ZkaXs/O53eJyOXGuj7irUpMTqqsYojSMjNEOuoaXNdYK9cy1CRcOeX1+HgIh5YPbDrTvGRddO4MevRHYVOp/GLtfgdgVWbURP+CDuqfZrVkk+Pm9HU4LHICzMGC86VV7TxO7DrXg9BsFg98oo2J25YNDklhlFDB+QrWuyNEnjvAkTKPuVl5PBb1Z8njAFCEqe5pbFq+Lar6ApWfhaBc/dP5ufu9gwO69u3BOzltQinfYrqZosKeUbwBuObQsdjx90Oe4TYGIXri82VmrQqslqbYwfnXKLLLU2djhYK3+VXufHrZtRdxVqUkC1IauOMsMQXH3eMBqPtVM6rB9PfFLtekxOhofigTlMLc5jx/6WcDdiMkWgn+w8yH9cP5EnPv6CnQ1HO33d00fl8S/zxvWYD+KeaL/KivNYeu+scE2WAJaurY0bnYqILBmCW2YUhWcSWuOV0vk7d3Y06nFJmlS5YWohz6+vC4uJXnruYATw4OsVrjeJQ3MzQajXXsWeI2E7lIz9CpiSxz7YxeLbpyW0YfHOZgAL56dP/f30VnyfdmeHs1W3Nn50yi2yNOd73VefpfWwNOkgFFgRSN6o2EcgaLJqV6Nr559HwDcvGc03LxlNeU0Tf5dEKN5OdeNxvv3sp9x9wVkRd4LjhubGbbt2kunzAN3zwX8m4Sxkf8k2uNvtLjoismRKhg/IBui2+iytiaVJByL8Jfng8wNhJXdrn/W9R8DXzx/VafsFSkl+yZraKBvmJF7HogQq9jSnzX6d3k6WnUROjTOylJ0Py74Nez+DYJsanZPu+iwdudJ0gdVVjQRMiURpuwRMlVqyOnRAdcsgRETqaMmaWhZ/uCupULyTZZ/t4YuDx7hu8vBw1KylLcD2fS3h1mqrxXlFaHCrk9Jh/XQnWook49DYI0sej8HukNSGVVvSHfVZWhNL0xXsNixgAmZHgZZAaVE57Vd5TROL/lLpWouaDIuWVXLn7FH8x/UTeW5dLZleg/XVTRH268IxBdSvq3O/WU0ydZ8sZ46TBfGdGrsTlp2vZhNaiu4AwtAF6ZoehfWh2u43sdeOSlT78U3TRnJjKF1kfThv39cSdQeXqP7ATsBUNRCb6pv5xkUlPLWqWhW4GwIRMkiZPoP7555NQW5mxCgKAVw7eTiVe4/oTrROkMihsatnv7C+jqUOqY10DoLWaNLBrJJ8vIaIqKWyuHz8EL4x92ygw34BLFi8ynV9spzwmzz6YRXXTR7O9v0trvbrhtDg6Qj7JWB6cR5tAZPNu5vTZr+MTh95OjJyhkoRtjZGziYEKLlYa1dpehTWh+rEwv5R+/xBydovDoXXffOS0ZQV5/Fmxd6otUKA1yPwCMLzDa8YP4TRg/rEfX6rA8dKT0lU5MyqV5gwPPK6JLDss718tOMgpuwo0tcf/OmjrDiP4QOyw9EBCwF8tUzXTGl6FmXFeVw8drDrvubj7ayuagQI2y/n3E07gg77devMImaMiv9af//zAxHp9YT2S8KG2sN8Vt+cVvvVu5wsi1FzwPBEbht3rXawND2OsuI8BvfLct23s+EotyxeRXlNh5jevAnDotaZUs0Eu2VGEUvvm839c89mcG4mza3+qLV2igbmREXAgqakco8aHO02hNX68DeAC0YX6FRhN2BFOO2dWxKiPjQ0mp5ArJjU2uom/utv27nt8dVhG6YkGNzXC6EmSdw/92xGDMjmaFvAfWGI80b0xxuhU6Ps05sVeymvaTpp9uvMShcmy8gZMPV2WP8kIFWqsLXxVF+VRhPFkjW1vLutIeZ+f1DymxWfh4epzirJZ/ywXLbsjSxUl5JwobRdBDMWAlydMDUfUYXYczO9eASutRNej+Dbl5+jHaxuwIpw/mbF53y046D6UBDuTq9Gcyopr2ni/e2x7ZcE2vwmj32wK6ydNbUoz31Gq1QF6YuWVcbVuLKYWZJPls/Dcodg88odB1lT1cjkkQMwADdLmE771TudLFBDnzcuVXVZhhea61SnYaxolp47qDnJhMVIE1Swf7TjICt3HEQAHo8g6OL1ZPhU2NspgumGgTIylXuPuO4PmPCMrZbBiQBumjZSO1jdSFlxHt++/BzWVR8Kz4TLy8mIuV7PHdScCl7eUJ9QfkGiugLf3rLf1X5Z3YkZPhW9bQ8kdrCyfEqLK5aD1x6U7o4c6bdfZ2a6sG6t0r2qWxt7m1UIX3YHIKH8aSXlYD/GfuyfroF3/z32mmSva9m3Ydl3On8OTa9hdZW7VIMT+8iKQFBGGaDRg/syZ8wgoEMEMxaGgMvGD2HcsH6YnWhPNERHYammc5TXNPHIezsj0sBu28qK81g4vxRDKIXrRcsqI/bbj73t8dX8anlkaqYz1/XjVzbzk1c2d/ocmt5FKhYklv2aVNifovwc7pw9ihumFkalyp0IAReNGUTlnuaEgs1OusN+nXmRLDfdK3DXwho5Q0WnzGD8ETvJjOFJFOmqWwtPfaWjo/HTZ+DOZToqponJrJJ8Mn1GUqHxeOxsOMrOhqN8sL2BpffNZum9s3jsg12s2LI/KlQuJeGxFU5ihdbD+0MzyQpyM7twtb0bt7mEEFsLq+l4O6aUcSUckh3DEy/aVV7TFNH19UJ5PUvv1fV2mvjcOLWQ59fVRo3WSYWN9aoG9NEPqyjK7xPusH12XS1BU0kuIDvKFqRUkTFnbZdHQF7fjPCIHSeGgFtmFDFheP9wQb5OF7rh5hBBbCcpO1+5vjKOhIOberudZARNq1dGdjTqIdGaBNi1kz7Y3hAzvJ0s/qAMf4i2+oNhbQdB6C0Qkh6PFT1LZCfNkINmSsnLG+p10XsncHOIgJhOktUibylqu3VCOZXb3dYkGjrt7PrS0hyaZCgrzuO5+8/n0dBNXeo3ixIjuxZPVh3C08afKj/lruyLqDmUgbSF8C8bN4R3HDeHQYfBMiW0tQdjP1PIFi5aVplWjb8zz8mK5RAZno7fenbIyNSthbd+qIRIDUON2nFzehIJnSYT6Ro1Bzy+jkiW1uTSJIGlnbT7cGuXnSxDQEurn5sfWxURRvcYgvnnDWPZZ3tTDq/bsQazdpcwZm8glkNk6aUhBBvrDlNe09TxuxWWt+yeRElG6DRRtGtWST4+T4fekZbm0CRLWXEek0cO4G1HAXp8gvgGrCMj/wOE9xgQBBFkr/DyUPkrSLMPnv5zkYen4/H41GiqeDlEVDqypS22k+XzGkhi39B0ljPPyXJziOrWhm7TpXKE3vw+DBlvc45MQMTvMIwndJoo0mUdf+dfYdMS9VyTFugoliZpbpxaGCU+mQoGcO+cEh7/6IsoRypgSl6zDX3uDDNG5XHdlEIWLauMGzHRxCeWQ7Rwfik/DTVBvL1lfzj1u7qqkUBQpZODwdgfComEThNFu8qK81h632xe2lCPAD3HUJMSljSDM7rkimgju+hJvFl7wIhM7UkCCANERjuZQ/6Kt99GWuvuStGBi2b8sFx+fp0aU/pygvFWqXLmOVkQ7RBVrwTTpqkR9Hc4YTbnSBZfyKaGjWw+uJlj/mP08fVhYsFEJg2ahHC6yc4arGTmFOoxO5ouYIQiRU68hnCNQE0q7M+QflkU5GZy49TCuIX0Xan5AiivPcy/zBsXrpfo6vl6M24OUeWe5oi/nT31mygV6Iaz/iqZaJcesaPpGu6zJ7y2CDgEyS56Ek9WPRjxdbCE4ceTXU/2yCdprb0X8MRdH48te1vYvq+FW2cWsXB+KW9W7GXehGG6JitpThwh4o8rDCXZAHDH6/i/+IBXfJIn1z1I44lGAmaAgBnAa3jxGl7ys/K5a8JdXD/menyGL3YNlnagNN1AeJaX65wtwZSiAbQHTDaFCkQtNtU3k+FtiShQjuWoJUusET1BU/LYB7u4f+7ZvLShnvaAqeuy0sSSNbU8uzZSMsMQkJeT0akhzrHqr7QTpekOymua+M2Kz6PsjiU5Myq/D0jJzgPH8A1YhydzNyKBgxU+hxHAk70b34D1+A/P7NJ1/vadz4GOmqx11YcYOzS3y++JM1PCwU7dWlj1u+jtIcmG44ET3HOsgv+qepH6o/W0Blrxm34kEr/ppzXQSv3Ren657pfc87d7OO4/HlmDFTgRSgFqNOmnvKaJBX9cHeFAeQzBdZOHh2ug1lU3UbmnWQ2LdmA5O6AiEZee6z7iIlmmj8pj9OC+rvuWb9nPYx/sci3c1nSOsFaa/R4RVcRrSTbYxyolg73+qs1v8lLo9aHRpBvLof9ox8GI7ddNHs4V44cQCErV/XzgGIaQqgbLE38ShRNh+MnI/4Bk4vGGUKUNbuVb+4608dNXN6fdfiXlZAkhrhJCbBdC7BRC/NBl/51CiANCiI2hr3ts++4QQuwIfd3R5StOleqVoZor64IMVZ8lg/iD7Tyw5t+oOFhBa6A17mlOBE9QcbCCB1Y8gL9otm0sj4RPl2jdK0234CYeOrVoAGOG5EZ10gzrl+lqPBpa2sIaS2cXxJ9XmIh11U3UNh7DxZ8DYP+RE2R4DTw9aG7h6Wy/Vlc1YsqOv7P1e7c3F6SK1ZFonefF8nqte6XpFiyH3un+jBmSy/4jJyK29em3O1TknjrCexQjO7ZAsoUZmk947tBc1/1BCYYQabVfCdOFQggP8AhwBVAPrBNCvC6l3OJY+pyU8luOYwcCPwOmod7P5aFjT947etQc8GRCsE05WLO/BWseg2A7r/Trx1b/YdrN5MZRtJvtbGncwqsndnPTlK91jOUxA1qOQdMtWOKh9jE466qbGBEakWMhgfrDymjZ/R+PAR98foB3tu6PWbvlxCNU1GtD3WECDvVliUoNXjZuCCu27kc6TndWQR8WXl3aY9TFT3f7ZdVcWaru91x4Fk+tqu5SYW5ZcR43TRvJklAjRbyCeY2mK1ivX6fW3479LVETJU4Y1WQSu/svPkE8WXWYrcWAsoGxSiNMUzKlOI8dB45G2TeAey48i9xsX9rsVzKRrBnATilllZSyHXgWuDbJ838JeFtKeShkmN4GrurcpXYSqyj90n+Fu96EK/4N7ngdecmPeXL4WbQm6WBZnAie4ImKJ5Dn3QLeLBAeLceg6TbKivNYeu8shvaLFPiMF8EI9dHiMQRTi/LwW+HvoCSRjzVjVB7Pf+N8/mXeONeomNLUElwydjDXThoetf/VjXt4u3JfSumrbua0tl9WzdX3rhzLc/fP5odfVs0F371ybJfq3W6YWkimr2dFHDVnHtbrtzg/J2L76qrG6PE5njYQnXSyRBBhtAFw5fghvPjA+dx74VnRywBvaOLF/InDyHSZfvHHlVXhesd0kEzh+wigzva4HnCrMLtRCHER8DnwHSllXYxjR7g9iRDiPuA+gKKioiQuKwWcRekjZ7ApM4PGuuc7dbrGY/vYdGQXk5PpKNRouoDVBXbd5BE8+mFVePuBox03B16PwDSjHSjTlJTXHo4Yu5OIdSEtrsc+2BU1c8wIVb0HTcnC1zbHVHFevLKKK0qH9hQn67S3X86C9K4UqNu7ClMtmNdoUsV6vV1VOjTCfjW0tIXtkdcjkFIig5kgPZ1ztKQHaaobUSsN+djKqoglAlVTurHuMEvizF4NSlj4WkVait4hfd2FfwGWSinbhBD3A38CLk3lBFLKxcBigGnTpnV7B/jmg5sJmMl1MDgJBP1UrPgJk298DuZ8L3qBHiatSQP2LjDDEOHOPkOADOXpBDB15ADWOWpq4oXL4yGBRz/YxTtbo3Vn7KeKNybDlJxu6afTzn51Breuwm9eMjrmWu2AabqC/fXmNQTjh+WydW8Lkg5bIoBLxw6m6uAxqlpGomQYOhPN8hA8MRKAw8f9PPbBrqhSBglJCzoHTZk2G5ZMunA3MNL2uDC0LYyUslFK2RZ6+DhQluyxp4pj/mOdd7IEHMPsGNljJ13DpDW9HnsXmH1wqmWgDAE+j1DRKptBMQQsmFnEPRee5Rq9mlTYnzgzotlY25QwrZiIvJyMrp0gfZyR9qszxBrZ4yRdA6U1vRv76609KNkScrAsBMp+vf/5AXY2HMVsLUIGOteYIwN9MVtVBLnm0HEq9zQnOCI+hiBtKfRknKx1wBghxFlCiAzgFuB1+wIhxDDbw2uAraHv/wZcKYTIE0LkAVeGtp1y+vj64DU6F8jzSuiD4V6HFWt2okaTIrNK8vE6p5yGsJygySMHhKNaFiL0VV4b/eEogIVXl/Lc/eczqbC/67kPHG3H50kwowJVvzV6kLtRbDqeWq1jN3JG2q9ElNc0hTtKLawi5ER1WMk6YxpNPKzXW0xLIpT9CoRl4AXtjXORQV9KzyNNH+2Nc7G3/OxtPhH7gBAjBmQxIi/b9frSqRmX0MmSUgaAb6GMy1bgeSllpRBikRDimtCyfxJCVAohNgH/BNwZOvYQ8HOUoVsHLAptOznUrYWVv3KNJk0smNh5J8vjY8Ll/+6eCrRU5J0F8XGuRaOJiTPmbcOU6sPU6YgFJTyzpjZcXxVxOuDtyn2UFedx8/TYtUOXjB0cVWzvZENtEzNL8l2NVE+JZJ3W9gt3ZymZY9wiUVYRcqKieTdnrDPXoendlBXnsXB+aUy5F2mzX9YS/+HpBNtGIM3kPpul6SXYOgL/4WlR5x6YE99Z2334BPtjOGMb65vT9lpP6ieRUr4BvOHYttD2/Y+AH8U49gngiS5cY+eIpcoeYtKgSeRn5VN/NHUhvvw+Q5lUusB9Z6zZiXGuRaNxY3VVY4TkgpvauinhrLxsqg4eSzrF9+iHqjC96Xi76zk9huD97Q0J5R4CpipgzfQZnPB3FGkJ4M2KvWkrHO0qp6X9IrYyeyLiDXtO5g7dqSIPdOo6NJqm4+1xG24kqnxhfU1TyBB5aK29i+yRT+LJ3o0wYguTesigrXU4rXV34RypI4Gm44lFTQOmxGuoxiGrKxvU++blDfUnrSbr9CQibdcG7/8iIookhOCuCXeR7c2Oc5JosjxZ3D3h7uhZhnZGzlAF8ZYjpVOImk5gRRTsb1JDwEVjCvDaCuF3HUjewbJ4aUN9WIPLjiGgf5aX9pDcg5V6jIUAnrlnFrfOLMLn6bimj3Yc1PU8XSSipiVg8psVn8f9fVrRprycjC4LwtpV5HX6UNNZ7MK3AMJmvwyh5hZucNSUIjNprb2Xtv3zMdsHIs0MpOlRGuKmB2lmYLYPpDTz6wT33A+yI+Lu8whGDMhSp8GSnIl9fQJYdO0Evvelsdx/UUl4aoYEXlhflxb7deY6WeG0naEU33e9H1WIfv2Y6xk3cBwZRnKpjQwjg9KCUq4bc13HxmTSgLFSiBpNHKyIwgVjCsLOiylh5Y6DzD9vGMX5OTFnCSZChM4/95xBEdtNCYdsd4BCxD+/VWB649TCiGuR6JEtXSXsZAv1d4nnuNpThIuWVbJwfmnSWlqJUoHJ1nJpNE4s4VsLKeGjnQeZWjSAiSP6c/HYwZiud4ge/IdncmzX9zle+/e0Ncyj/cAVtDXM43jt39Na9X2+O/sO5p4zNHyEQNV47T4cmQKMU3FB/2wvFXuaycvJ4KlV1VFD2NNhv87cAdFW2u79XygHC7MjihSKMPkMH3+4/A88sOIBthzYxAkZu3U0y5NFaUEpv7/s92pINLinASFavsG6lk1L6dxHoqa3Ulacx7wJw/ho58HwS0eiRD8trEGrQVsHooXXZbshlBhleU0T729viPv8iSJkuw+f4KZHP2HiiP5RuloSNbLlxqmFOr3UCSwn+zcrPuejHQcjRuk4f5/OaFPT8XZmleSHo06xfv/OlOTC+aXhY+0pxmfumcXLG+q19dKkzA1TC1m6tjZsS0zZIaXgEc0xpWZE6F+ztTis5G7xjYtKACLslxBQuSdSRT7R6/Vwa4Ala2pdb1bTZb/ODCfLrksFkU7OxT+CmlUdjpAjipTjy+HxLz3Oq2t/zRMVT9HoEQQQBAyB15R4keQHJXePvYnrZnynw8Gynsc+KPrj/4ad78Suvdq4VO3b+Kyuy9IkRXlNE4uWVca9GxNCFaqv2BKtbeXmeN03p4Sy4jx+8srmKMeoM5iSiAHWkc+vR7YkwqlJ5Xz87cvPYV31obijdKxok7UmLycjqToq57Don766GQmux7y0oT48cFzXZWlSIZb9Ckq104rWRhwT41yGgCtKh/LyhvoI+2VKON7eOcX4WM+VDvt1+jtZ9miS4QGEmiVoeGHKrTDp1uhCdAc+w8dNs37AV4fPZdP2l6no049jB7fTZ+d7TGg7waT2IGKsB+wRrOqVkJ2vnicYBCRse4PwUBNH1Ew5ZG0qdRls07MONUlhfQgmIlbZgZvxqDp4jPKaJip2d01LJhECnV5KhFskadGyyvCswkXXTuDWmUUJ1dmdxerxit/tTpwlE2IN8bU+s9r9kcc4nbF0FQVrznySiYDGu4l0Yko1kcI5YDrdpMt+nf5OVkRRufVhJJXjs/6pjqiRmzK7A1E0k8lFM5kMypH6bLk6j1OK4U/XQKANDANGzoSaTwhVzHSczPBERs2y85WDBer/bP3Bo0nMrJJ8DCEwbVZoYB8fh4/7w3d+VjdgsnZqVVUj729viBvFys3ycqwt0GlRUo+AW2YUcYNOFcbF6Qy9WbE3/NiUMmK8RzJdgfY19siW9UHhVOG+adpI5p4ziBVb9ke8fkwiZTicztgL6+v031aTFE4TMmJAFiMGZLO+ugkzxppEvO0StbdTOCCL3CwfW/e1pHhmRTrt1+lf+B5RVO5T34fv62Xnu/lGzoCrHobhk2H0ZR3bq1cqBwtTRcxqV6vnjYglCJjytchIVWsjHb9uI/RYo0nMpecOxiM6XmGHjnU4WAIoHphDewppv5YTAdpDacRY3YMlBX24fNwQ56s6ikmF/ZkxKtoITRjRX38IJ4GzqHzehGEYtnYoMzTeI1UsjaIJI/pz0ZiO5ganCveSNbV88PmBcGeohSEiBWXLivP4allheE2wk9el6V2U1zSpocw2T2Nv8wnVUZjCeZy2x5JbMFA2yOnIeD0GIwfmRNkvgXKg7BTkRje+XTZuCMMHpKY8EIvTP5Ll1KUCVWD+6Z/BDKbWzees7Xrz+8pJA9jxNty5TO0zDDBtPviUr6n/P12iHC9PBkxy6GiNmgPezJi1YRqNk4iog8dgwtBcNu9ujoguGQK+aDye8FzTR+VFiZNa7c1uofpN9c14jGa8HhGOeBkGnFXQl50NR8PrjrUHOeZSB/FZfTO3Pb5a1+4kwJnms35XC1+rwDQlGb7U0hVWKjAvJ4MHX68IOd/NvP/5AZbeOyvs1LX5zfAHVTBocsuMonChbzDoXvt149RCVQcTpzZMo7Fw2q9Jwzvsl5RSSStIZVeCCSoiDAH9s30Rnc+g5rMO6ZfFZ0SWPlQ3Hqe68XhE449ESUZMLRoQMcOw3R/55IZQBfUrtu5Piy7c6e9kgXK07FGjkTOUk5PKkGZnp+DkWyBo+4NaWlsX/wi+/Ct443sq7efJVM81coaq/4r1nG4ipRpNHOxRh2DQpHREf7bua4mo0bIKRxORl5NBhkeEI15GKDJmyg49GedZgiYM7OvjwNH28OOSgj7UHjoevga7w4XtPBKl7aSL3hPjTPPdOrOIsUNzUx7QHDFQXIgIMVl/QMlpjBiQzcL5pVTsaY5wqKyo441TC2M+byyHUKNxI579spstM3HJKaaEaaMGstyWJlTF8pL3tzfE7FDMy/bReKy947mkZPSQXMprD4fXHzkRiDjn5eOGsGLr/rA+nS58j4XT8UqEUzAUodKAwY6QOVXvq07FO16Hu950l2qI95ypXpOmV+PsGLtxaiEHWtoS1iO4MSg3kwevmcBPX6sgaEqE6FA5NoCJhf2p3HuEgCPtaDlYFgW5mdx9/ige/bAqYrsALhxTQOmwfuF9puw543VONzozO83+oQYSj+goZPd4BC+W1xMIdnQbujlUiZ43nTPdNGc2bvYLYMma2oh1Ttco1hSKi8cO5r1QLakRisBLVOr60nFDeG9b9JQKp/0yhKBfptfVIQNYMKOI0uH9w85cOmzYmetkpYpV22VFsiYtUF+blsDez2DPp6HOwFCNl13RXaPpBuyRg7ycDB77YBfvbE3OwTIAERoXYUUqVlc1hodJm6YM1yt4PYKFV5eyfV8LDy2r5Lg/9q1lv0wvlXuPRG236omeW9dhQA161KDoMx7nh5oVsbL+zpZWkdVtaCm6azTdgTPyuX1fC2u/SDz60+7+CJSDtejaCTQdbw87R1J21Gl5DME35p7NJWMH84s3ttDSFlvGYf55w1ztF6hGkdLh/dNuw848J8teV5WKExQrnec2e1DXU2lOEtaH4II/rk5KysFjAJLwh6wlLLl9XwvLK/eF11kpPQCEYPu+Fha+tplET/HYh1XMGVMQsW1AtpeLxw7mp69uxh4I83qErtvpBE6drGSJl84rr2niJV1PpTnJWJHPJWtq+fErmxOu9xjgESr15wl1v94wtTBt9uv1jXsYOzQ3Ylv/bC9jh+QyICejW2zYmeVkdXUQc6x0nq6n0pxCktHKGtgng//vyrGutTwPv7E1Kr1nx5IOSMKHU3MJdx6M2Ha4NRChQG9x8djBOlKSIp0dCm0RK52n66k0pxJ7dCgWV44fwv1zzwaIeJ0mctD8AZPn1tUmZb9MiJJ1aG4NRBTC27lp2sguv1dOfyfLHrlyG8ScLodI11NpThGzSvLxxCjstBiZl82tM4uAyBEqS9bUxnWwoKPwPVmkxFWh2cmg3Mz4CzRRUat4IqJdRddTaU4VQ/plgaMD0I4AJo0cEFEbaPHI+zvjnlsCm2MIK3d2tiuoNOQNoTqyrnB6O1nOyNVVD0fWVaWa1rMrubc2pha16myaUqOJg/UhfPV5wyKiRXk5XpqOd3TF3Dy9KOK4JWtqeW5dLZ/FGHfjZGPd4ahtXkOdt3R4f97f3sA72xqQUpLhNbhz9ige+7AqpgHLCNWBaWLjFrVy1lV1Rr7BOqYz3Yk60qVJJ9ZrqqSgT8T2yYX92WizTT5HWm7JmlrerNhLfp8Mdje1Jnwetxu+DI/gwWsmULmnmQMtbUjgg88PEAyaCMN91quFxxD8/NoJaXkfnN5OljNy1drY+bRe2GELjb7BULpWyaQcu5qm1GhcKK9p4pbFq8LdNHaajgfwGIJBfTO4bvKIcBSrvKaJ/3xza8zwt4XHoU1jb2O2nCu7mOitM4tcP4TdomQCePDqUv1BnQC3qNU3LxndqbSeU5MIKQmYMumUY1fTlBqNk/KapnAtqTNSvnnPkbBNKynow90XloTndj72wa4IqQY3DKG+3FKEbvbLfk3We+vtyn0x7de9F54VtqldJSknSwhxFfDfgAd4XEr5sGP/d4F7gABwALhbSlkT2hcErIRqrZTymrRcOUR3BFqOVWccnLDDZv3VzORTjt2ZptT0Wh77YFdYCNTtTi1oSvYdaeOpVdVcUToUSFwg7/UIbg4Vk/7Li5vYeeBY1JpR+X3CBsrpWNmNVm62L+b0+oo93TsXMRV6qv2KFbXqqnyDP/T3lySfcuzONKWmd/JyaKA4uGnwdWzZdeAYi5ZVArBoWSUn4nQ3gxIUXXTtBMYOzeWbz5Sz70hbxP6pRXkRau2xbNjqqsaY9uvxj77gitKhJyeSJYTwAI8AVwD1wDohxOtSyi22ZZ8C06SUx4UQDwD/B7g5tK9VSjm5y1fqRjoL0sMOmy2SlSjlaE8vdiVNqdG4kOwA1Ha/Epqss4mE2pk+Ko+8nAwG5WZG3N3dfWGJa0HpzgPHuO3x1RHDip3RjfKaJjbWHY6pGJ9KjVd30pPtVzqL0e0OmycUyQqG5DtipRydg6I7m6bUaNyIlYpzOjYSZcMWf7iLNhcHa9zQXApyMykd1o/cbF/Ee+W6ySOiolHlNU2sr2mKGrjutGF5ORkxa7assVEnK104A9gppawCEEI8C1wLhI2UlPI92/rVwNe6fGXJkq6CdLvDlkxNlls9WKp1XBpNHG6eXsSm+mgnyCBiFDlCqHEofhcH67rJw/nNLVNczz92aC5ej4gSIIWOjh1r/Io9ulFe08SCxavizkssHd4/0Y93sujR9itdxehOhw3i12S5pQd196Emndw4tZDn1tVGjcxxsxomUNN43EWEFB66fmLM1/BTq6od6ztElhPZsIWvbSZWzEySPiHlZJysEUCd7XE9MDPO+r8H3rQ9zhJCrEeF4h+WUr7qdpAQ4j7gPoCiovTkQlMmFYfNrR5szve69/o0vYpbZxbxxEdVUSk9awaXKSWGEFx67mBWbN3varyWfbaXGWflu9YXvLShnqBtzM7EEf3ZuvdIWKOmcu+R8Dk9HiPiw9sfx8ES9CgR0l5jv5wOWzxHKVY9mHauNOmirDiPm6cXRSm8WwiUnt84l5msYSRs39fi+rp8aUN9OPJlCLhgdAHzJgxj0bJKFdFNYMPiST44B6R3hbQWvgshvgZMA+baNhdLKXcLIUqAd4UQm6WUu5zHSikXA4sBpk2b1tmuy+RIRyegWz2YRpNmLh83hJ0HIsPhhiGYUjSA9oDJ7JJ8jrSpInjTxfEJmJJ/fXUzz62rZXZJfjjcDvDC+rqwATKEipw5FcItLj5nUNjQzSrJx2ebg+jEMGB55T7ycjLSVjx6Mjhd7Fc6ugB1elBzMpgQI6JtACWD+3L5uYM50hZgy94jrvYrKOFfX93Me9sbEBAueYBI+yWAeROGMXZoLjdMLYyyYQL4allhhA3zGu6F8wIQQrCx7jDlNU0nRSdrNzDS9rgwtC3ywoS4HPgJMFdKGa5Ek1LuDv1fJYR4H5gCRBmpk0a6OgG1QKnmJNDSFoh4LACkZF2oe3BTvXKKrIHPrqF4qdZtCrVMZ3gEk0cOiIhGBSU8+HoFAVNFx+658Cy8HiNc4/Xu9oawwSkrzmPpfbN57INdrNiyHxPV0XPpuUM4fLydtdVNoedTqc5T7GidUfYrXV2AWpxUczJwRoNE6MtEDZff2XA0Kftln9f67Lpayoryou3XXyoxpSQYVLWId58/Khwdk0Q6fGXFeSy6diL/+opKGXoE3DKjiNxML3/86AuCpuTtLfv5YHsDS++b3aX3h5HEmnXAGCHEWUKIDOAW4HX7AiHEFOAx4BopZYNte54QIjP0fQFwAbZaiC5TtxZW/kr9nyxunYCdZeQMPcNQ022U1zTx3Pq6qO3OGz5ror1T5iEW7UEZJfEgpdpuShX9+uNHXzC5sMMoBYKSlzfUhx+XFecxaeSAcIW7lEpMMNPniTjvmxV7k7uo7qPn2i/U3/iR93ZSXhNfcsPCLc3XWcqK83SKUNOttLT6Ix5LiKqDStV+BU1cJWraAyaBkPZVe8Bk2WeRUygqHR3PTcfbIzp0hg/IJjfbh2nLW/qDskvvMUgikiWlDAghvgX8DdUC/YSUslIIsQhYL6V8Hfgl0Bd4QQgBHa3O44DHhBChdj0ednT1dJ7ORqTSmebTAqSabmR1VaNrUbpHRDtahgGjCvqys+FoWp47aEp2H44UAbSe0kpX5eVkRKSc8nIyyHI4WfMmDEvL9XSWHmu/6FxUKp1pPi0+quluVrk4KCfDfgHUH47szk5kv6wZr4ZtuoZTJLUzJFWTJaV8A3jDsW2h7fvLYxz3CTCxKxcYk85qU6UrzacFSDXdjFt3iy+kYlyxp5mDLW28u72BQFASMGGXw0AZoJSN48y/iTd2Ym/zCbwh0VKfR3Dj1MJwZ6E/KMPX0nS8nbycDB78i1VwqkLzN08vOtWpQqCH2i86p02VrjSfFh/VdDflNU1U7j0Ssc1rwKJrJ8a1X5ZNslKLxBnhJYCigTnUHDruut8InSuR/bIcrIWvVWCaEo+Ay8apWYq9d3ZhqhEpZ9SpKw5R3Vp4/xcQaCMl0VKNJgWajrdHOEGTCvuz0Kak/sh7O1mxtaNWQaKMysTC/pSO6M/Blra4ysmTCvszuyQ/7mzDm6cXMXxAdvgD/cevbA4XvLcHJRV7mvmP6yfyk1c2h+u3giZkeo0e4WD1ZFKJSsUThU2V8pomfrPic9fWdo0mXayuaoxIvY0e1If//OqkhPbrgjGqS7BiTzPPrauLe5M4fVQe5bWHY+6/fPwQJo0ckNB+KUkHVZMKHZG23j1Wx4pIbVpCQulDt6gTdH38DkmKlmo0nWBWST6Zvo4P4ZunF4XrA8qKlcCosKmBGkLNDLQcsXufXh9xvoLcDA62dBSizi7Jp3LvkQhHzv5OsuYP2g2N85229otDlNc0RUXD1lY38e1nP42p0aXpiEq9tKE+rgWLFXXqTLrPfi7rQ013F2q6A+dNxN0XlkTYr1kl+Ri2rmjLfn378nMoK87jkfd2RjlYdlvlMaAtYEY4cqozUJlEn9eIikRF2a+qRn7yymYkRD3X8i37WbKmtss3i6evk2Wx8VnlPG1cGjtl50wtblqq1ncm1WcfvyMMKLkYLv6RjmJp0k5ZcR53zh7FW5X7mDxyAA++XhER5v7Z6xVhw2B1x9jH4TQ4FONH9M+msaU9HIp/PNRF41RfFihRv4Xzo+cP3jC1kGdtAoM7G46y4I+refDq0qjU46sb98TU6NJ0YI0feWlDvWvaLlaxe2fSffZzWdpC1oeaRpNOyorzWDi/lOfW1ZLpNcL2yxMai1PbeCyi5vRyR3ouLycDI06qEAmf1TdH2S+ksl9u81NvmFrIc+vrws+788Axdh44hs8j8LhIOjzy3o4u269kugt7Lsl2ClqpReFR/yNjH5eoYzHiXJkdDlZnOh01mjgsWVPLox9WUd14nFc37qHd6pwJSn799vaIFmZTqu4Yy8G67fHVfBaSbBComgQregHKGAVM9yn01l3de9sbIjrfymuaePSDXZgOQ9QeMHlvewOGizV5bp27EKFGkUy3oBUR8IiOqFOs4xJ1K9rPZY8aJHOsRpMK5TVNPPh6BZvqm1lb3RS2X5Z2n7NModUfjHgtLlpWGR7ZZck82O1VULrXk0rANCXPravlx69sdrFfLhMughLpEk/ec/hEl98Pp3ckyz5vUAg1DscNZ7E7dETA7Km+ZIrZ3QrnUymC1x2JmiSJJ39w4Gik/owh1J3fI+/tZM/h1rBDJYAh/TI5cLSNrftaos5jOWAIQSBghturJUqbZsWW/WT61Aywha9tjqmSvGLrftcZhkP6ZSXzo/ZaZpXk4/V0zBx0S9vFKnZ31nMlU8we61zJFsLrjkRNssSbDOEWnSod1o9H3tsZcRNh2bC8PhkcOuauwO41wDCMsP2ydLgsbcDn19ex6JoJce0XRKcL7T9HV17rp7eTNXKGmhn4xvfANOGtH8KQ8e7Oi7PY3el0rfwVNNfF71i0O0j2ETqxImpOZ0p3JGpSYN6EYazccTCptffOKQkPQjWEUiwWUt05OqfU2ynOz+FXfzcZUMZkU93hiGJ5S3PmuXW1cQ2Um4NlCLh/7tlJXX+vxvrluf0SQ7iNzHHOKkxUzG53kL55yeiI88eKjNkdKt2RqEmFWSX5GC5yDW5cN3k4T62qpj1g4jUEF48djNdjEAiq12QsBwtUc84NUwvDsgxvVuyNsJuBoOSJj6qi7Fe8zmoLj3GSJBx6NK2NIePUyS6//VuUcxZsB8MLhke5wc5i9ngOkrPTMTvffXh0c33nZCc0vZKxQ3Pj1ySEuG7ycCr3Hgl/wJqhwgQjZEXiHX5V6dCwcQK4eOxg3t3WEO6ysTjWHkzqmo1Q0alVd6E/hOOjZqjJcIq2M3fN2/e1hB3sWMXsiRwkZ5FyXk5GeL3XENw0TYnmpyo5oem9lBXnce+ckrjdy6DsV+Ox9rD9ag9Klm/Zj9dQ81SddVd2MrwGpcP78/KGeiTqdTx2aC6f7GqMiEwdcplD6HbOcFpSqvFl6bBhp7+T1RlxUbvDJIQqYpemcq7K7oD+hdHpvHi6XM4Uon1toE1F2qRUDpzhdXfiNBoHq6sa4wU3ALhoTAFvVe6LqLeysJwdKaXSywpG1mDNGJXHU6uqw8YNIMtncM+FZ4VHS4By2pwaXG5kOHRn9AdwYjorLmp3mgyhhoXHK2ZPpMnljIzZ17cHJUvW1OLzCLweg2BQzzvUJIdzLJiTePYrYMLgfllk+lrCr0U7kwqVFt/C1yvChewvrq9j6X2zuffCsyKcu0PHIpXn3bBKJ9Jtw05/J6sz4qJ2J0gaSm4WoRyfSQvcz5HImXOmI621UU7c7dB/pK7J0iQkLycjbhTKEtqzDJAz/C0ETC0aQFtokHTVwWO8s60BKSUZXoPRQ3JZVx0pv9DuN8nN9nHz9JEsXVMbUSifCAlU7GnmRofsgyY2nRUXtTtBSIlhCARqZptbt2AyzpwzJZnhNcIOuBVpu3nGSEbYdNM0mliU1zTxgstYMAun/TIEDM7NjChv+OLgMe6cPYpVodf75w1Hw/Zr4dWlvLShPqJDsT00Bic325dUOtCOpCO16Uynd4XT38mC1MVFs/NDzo8B3syOdF48xycVZ86+Nju/Ix3pyYBJt2rnSpMUTjHSEQOyyM7wUt14DGmqD9R5E4axrvpQuHA6aJpheQVTdsz4sgZJezwirMY+dmhulNifYQjycjLYWHc4JQMFqkNn6ZpaXo4hRaBxpzPioqq9XeU1MkKNCfHuvlN15uwaXi+W14ejV9qB1iSLlQq36JflJTfbx/4jJ1ztl89r8E+XncNPX+uQprGGSFt4QinEm6cXUVacx2MfRM5q94QagN7b3pCy/QJ1I7HwtQrGDs1N2+v8zHCyUqFurXJ6pKkiWFc9DNPuTO7YVJw5+9oh43VHoSZlLDFS605vd2gWl8cQ5PXJUE7UF43cMLUQAZQO789PX90c83wSVQT6WX0z2/dXsnB+KcJmioxQ5MvSs+kMEmjzK80n/WHcPVjt7WYogrVwfmlSWj6pOnPW+htDRcU6eqVJBSt6atmvIycCHDkRwOcRjBmSy/6WNv53VTVzxgxicG4mN0wtVAfGqZEImoTtF8D728Pz3DEEXD1peIRyezI4I15BU/KbFZ+nTT+u9zlZdjFRhIpgdTddHeOj6ZVY0YTfrPg8olsmaEoOhiQcXt2oJs1n+Qxb0Xt8LEfoiY+qwlEvUMbGmT7sDBJ4bl0dE4b310Kk3YA9VSiQNLkU9aaTro7x0fROYtkvf1CG5WQOHWtn674WMjwi3CGYyIZZ9uu5dbURN4OXjRvCss/2puRgWedzPv5ox0FW7Wpk0bUTerkYaWdwCpN2R/G5U5jU/liLlmpSoKw4j3kThiV8o7YHTASQ6TMwUHd18ZAoteNE4n6JzhOLoCn56WsVWtiyG3ATJ003dmFSp0ipFi3VJEvS9isoeXlDfTh6nwgJbN4d2XW4dU9zlNbVjFF5SdswAYzKzwmfPxBKHfZuMdLO0JlC+VRwSj1c9bBNIsKDGike0DpZmqRQg0s3h0VCY0k6mBJyM708c88sHv1gF+9uawjrZHUWIzSqZ21VIzsPHEu43usRmKYMX1/QVIZTR0HSS2eL5ZPF3rno9RggJQEzVGw8vzQsF6G1sjSJcLNfF44u4EMX/b/n1tdxw9RCFs4vjajLioVzd/3hyDFiApg7djD9czJ426b9FwuPoSRt7F2JnZVVsdP7nCzo3vSdU+ph62u2xzY9ba2TpUmClzbUR4joSalalzeFRubYefyjLyjK78N72xpiGiivRyBNmVAgUIS+jrcFEjpYAjivsD8Lry7l0Q92RRi0rqYeNe50ZwrPKfcAhAVO36zYq7WyNEnjZr9mluRzwh8MN+VYBELRLIitvp7hNTBNM64wsoUh4IPtDZTXJheJunl6EbnZvoht6RAj7X3pwnTjTP8505HjrrU99nV/qlJzRnGwJVqt/ayCPq5rA6bkzYq9rgbK6xFcOX5ISFMp8fNa7cxWzZfFwD4ZUWs9hgh3+3xj7tlkeAQCpZt1o1XMqumxONN/znSkzyPC38+bMKzbU5WaMwc3+5WXk0H/nGg7ArBjf4vrjZnXI7htZhEPXl2K4TYk1YFA2a+11U0RdacAQ/tlRp/fEJQO78+sknyyQiUX3pMpRiqEuAr4b8ADPC6lfNixPxN4GigDGoGbpZTVoX0/Av4eCAL/JKX8W5euOB2ka36gPTVoeGHKrUqiwZmOtHcXgu401HSJv2za47rdEGr+16qQ2nGowz+sAj4oNxO/i+hfMqryFkNyM6NGXARNyaJlleG256X3ze5x3Whnkg1L5/xAp6ipVejrHNljf76xQ3N73N9Xc/oQr3u5LWAyYXh/PI5xPAZww9RCXt5QT7sjjGXY7JxFLHMmgP0uY8YsG/bMPbPSnopP6GQJITzAI8AVQD2wTgjxupRyi23Z3wNNUsrRQohbgP8EbhZCjAduAUqB4cAKIcQ5UsrkZnR0B6nOD4znkEWkBoOw/ik1ePqO1yNnGzrTk9q50iSJW+dLrFTfhaMLeGpVdbi1X9pqsgJByYGWNnfjE9qYjHif25BpK5XkNu+uJ3Am2bBU5wcmcsjsqUFTRmoEORXh7d/3lL+tpmdTkBsZNbLG5sTirII+IXmSyO1WKvG5dbVRx5gp2K9Y++02LN3R2WTShTOAnVLKKillO/AscK1jzbXAn0LfvwhcJoQQoe3PSinbpJRfADtD5zt1xBrm7IblkL377+p/Z0eglRrEal+Qic+p0SRJeU0TH3x+wHWfQIWzLxpToAZCA5/ssn1gmjJCbsYwRJTBs7DuC61zhuYfJI0RSh1Z8+5+tXw7tz2+uid1n50xNizWIGc3LIcs3t9DDfHt+GuboUJfjSYdTBje33W7gSonuG1mEddNHh62Ycs+2+s6YscwRGjqQOznsuyXRyhR0lToThuWjJM1ArBr49eHtrmukVIGgGYgP8ljARBC3CeEWC+EWH/ggPsHS1pIRcIhkUNmdSpOu0vXWmnSzuqqRgIuVsUQcOGYAp67fzYzQ3ddEvUBaQgRUUtjiI7aghunFpLhsD4eQxk7j4AMn8GiayfwvS+N5d+vn0iWz0jobF03eTjfu3Isz9wzi6bj/3979xdiRRmHcfz7mBoUQoL2x7TwYhHMtaClkC4iDFMINoUivYgokEAhKIhMqDCswItuCkJIgjAriCgqUOvGGwM3KXOzTKI/SlKiZGBkW78uzjl20j27s9uZec97zvO5kVnH3cfD8PDbmXdmzhYeACpWeodV1V8TeXxDkYHsxmtnsmlw0bnhevo0r7Oy9jl15uwFj1CYIrilbxY71i5h88p++q6YAfy3wxr/pjE4NfprWovpqXHsbhpcxCPLFvDMXf3n1laNZdnCK3h2ZX+pHdYxdxdGxFZgK8DAwEB5NyVN5BEORV4+3bgUeP1qr7Wytmp+39xF9Vvp//r7wvfTNb+Trvn1KnDhpbsda5fw9v6jnPjtD2bNuPjcwvTRLik11t7MvGQ6p86cPffnb7//yfBPp1mx6KoLHtQ3mZcdd4Oq+msij28o+vLpNTdf43VWVorzn/o+hVpHNPfX+cdpo8MafTNafzXecNFqP5hcf0H7O0wxxiPsASQtAZ6OiDvq2xsAIuK5pn121vfZK2kqcByYDTzevG/zfmP9zIGBgRgaGpr0f6qt2rVI3mwSmtfUwOjDUDsXQv9fk80i6dOIGCgjU9Ud1kn91UnHhvWmxjHYahhq3qcTjtN2d1iRIWsqcBhYChwD9gFrImK4aZ91QH9EPFRfNLoqIu6RdB3wOrU1DHOAj4G+8RaNdlJJmVn5Sh6yKu0w95dZ72nVYeNeLoyIEUnrgZ3Ubn/eFhHDkjYBQxHxHvAK8JqkI8BJanfjUN/vLeBLYARYl/TOQjPrOe4wM0tl3DNZKfg3QbPeUuaZrKq5v8x6T6sO8xPfzczMzErgIcvMzMysBB6yzMzMzErgIcvMzMysBB258F3SL8D3BXefBZwoMU5ZnLtaueaGfLNPJPe1ETG7zDBV6ZH+gnyzO3e1eiX3qB3WkUPWREgayvGuJOeuVq65Id/sueauUs6fUa7ZnbtavZ7blwvNzMzMSuAhy8zMzKwE3TBkbU0dYJKcu1q55oZ8s+eau0o5f0a5ZnfuavV07uzXZJmZmZl1om44k2VmZmbWcTxkmZmZmZWgq4YsSY9KCkmzUmcpQtIzkg5I+kzSLklzUmcqQtIWSV/Vs78j6bLUmYqQdLekYUl/S+r4W4olLZf0taQjkh5PnacoSdsk/SzpYOosOXF/VSPX/oK8Osz9VdM1Q5akecAy4IfUWSZgS0QsjogbgPeBJxPnKWo3sCgiFgOHgQ2J8xR1EFgF7EkdZDySLgJeAlYAC4HVkhamTVXYq8Dy1CFy4v6qVK79BZl0mPvrX10zZAEvAI8B2azkj4jTTZuXkkn2iNgVESP1zU+AuSnzFBURhyLi69Q5CroJOBIR30bEWeANYDBxpkIiYg9wMnWOzLi/KpJrf0FWHeb+qpvarm+UkqRB4FhEfC4pdZwJkbQZuA/4FbgtcZzJeAB4M3WILnQ18GPT9lHg5kRZrETur6TcX+Vwf9VlM2RJ+gi4cpS/2gg8Qe1Ue8cZK3dEvBsRG4GNkjYA64GnKg3Ywni56/tsBEaA7VVmG0uR3GZVc39VK9f+AndYt8lmyIqI20f7uqR+YD7Q+C1wLrBf0k0RcbzCiKNqlXsU24EP6ZCSGi+3pPuBO4Gl0UEPW5vA593pjgHzmrbn1r9mGXJ/VSvX/oKu6TD3V102Q1YrEfEFcHljW9J3wEBEdPxbvyX1RcQ39c1B4KuUeYqStJza+pFbI+JM6jxdah/QJ2k+tXK6F1iTNpK1m/ureu6vSri/6rpp4XuOnpd0UNIBapcLHk4dqKAXgRnA7vrt2y+nDlSEpJWSjgJLgA8k7UydqZX6wtz1wE7gEPBWRAynTVWMpB3AXmCBpKOSHkydyUrh/qpYLh3m/mr6fh12ptTMzMysK/hMlpmZmVkJPGSZmZmZlcBDlpmZmVkJPGSZmZmZlcBDlpmZmVkJPGSZmZmZlcBDlpmZmVkJ/gH+vXa+0pPLTwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 2, figsize=(10, 4))\n", - "plot_clusters(km, X, ax[0])\n", - "plot_clusters(kml1, X, ax[1])\n", - "ax[0].set_title(\"L2 KMeans\")\n", - "ax[1].set_title(\"L1 KMeans\");" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/logistic_regression_clustering.ipynb b/_doc/notebooks/sklearn/logistic_regression_clustering.ipynb deleted file mode 100644 index 09c26d26..00000000 --- a/_doc/notebooks/sklearn/logistic_regression_clustering.ipynb +++ /dev/null @@ -1,672 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# LogisticRegression and Clustering\n", - "\n", - "A logistic regression implements a convex partition of the features spaces. A clustering algorithm applied before the trainer modifies the feature space in way the partition is not necessarily convex in the initial features. Let's see how. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A dummy datasets and not convex" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "((400, 2), (400,), {0, 1, 2, 3})" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "import numpy.random\n", - "Xs = []\n", - "Ys = []\n", - "n = 20\n", - "for i in range(0, 5):\n", - " for j in range(0, 4):\n", - " x1 = numpy.random.rand(n) + i*1.1\n", - " x2 = numpy.random.rand(n) + j*1.1\n", - " Xs.append(numpy.vstack([x1,x2]).T)\n", - " cl = numpy.random.randint(0, 4)\n", - " Ys.extend([cl for i in range(n)])\n", - "X = numpy.vstack(Xs)\n", - "Y = numpy.array(Ys)\n", - "X.shape, Y.shape, set(Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJztvXuUHdV95/vZ3eqmGwvUtiRANBKSsSMYQNAaXccZnMRGGLANtmAycmyHMDNZYebOtSexYwUxThjZXlyJS1Zss5ysXFZMDLEnGfGSMdgCG2E75hpjPXhYxgrGPKRGhkZYiEeLbnXv+0ed6q6us3fVrqq9q3adrs9avbq7Tp2qXefx27/67t9DSClpaGhoaKgPXVUPoKGhoaEhG43hbmhoaKgZjeFuaGhoqBmN4W5oaGioGY3hbmhoaKgZjeFuaGhoqBmN4Z4lCCE2CCG+5vD4u4UQ7279LYQQ/yCE+LUQ4iEhxG8LIfY4OOcSIcSrQohu28duaPCZxnB3EEKIjwohtreM2X4hxLeFEO8q49xSytOllN9r/fsu4L3ASVLKd0gp/0VKubzoOYQQTwshzouc81kp5Vwp5UTRY9tCCLFUCCGFEHOqHktD59IY7g5BCPEp4IvA/w0cDywB/hb4UAXDORl4Wkr5WgXnbmjofKSUzU/Nf4B5wKvAf0jYZwPwtcj/twC/Al4GfgCcHnns/cDPgFeAYeDTre0LgLuAg8BLwL8AXa3HngbOA/4IOAxMtMb0WeDdwL7I8RcDtwMjwAHgy63tpwDbWtteBL4ODLQe+0dgEhhtHffPgaWABOa09jkRuLM1tl8Afxy7/s3Aza3r2g2sSni9JPBfgSeAXwN/A4jWY13AXwDPAC+0jjmv9dizree+2vr5LcWxu4H/ATzZGssOYHHrsX8H/KT1vvwE+HeR530P+DzwQOt59wILWo9tBT4eO88jwKWtv08FvtN6bfYAa1vbe4GHgU9ExvYAcHXVn+vmJ+E7X/UAmh8LbyJcCBwJDZhmnw3MNNz/GTgGOIrAU3848th+4Ldbf78ZWNn6eyPwd0BP6+e3I8bsaeC81t//Efhh5HjvpmW4W4bhEeALwJuAPuBdrcfeRiCxHAUsJJhQvhg5ztQ5Wv8vZabh/j7BXUYfcDbBxLA6cv2HCSal7ta1PJjwekmCSWqA4O5lBLgw8tr9AngrMJdgEvpH1Zg0x14HPAYsBwRwFjAfeAvBJHEZMAf4SOv/+a3nfY/A2P8G0N/6f1PrsT8EHoic498QTLBHtV7nvcB/ah13JcHEeHpr3zNa5zkN+AzwINBd9ee6+Un4zlc9gObHwpsIHwN+lbLPBiKGO/bYQMvYRL3G/wIcG9vvc8A3gLcpjjFlVEk23L/VMoJawxZ53hpgl+ocrf+njCSBFz8BHBN5fCPw1cj1fzfy2L8BRhPOLWlNKK3/NwPrW3/fB/y3yGPLgfHWOEwM9x7gQ4rtlwEPxbb9CPiPrb+/B/xF5LH/Bmxt/X0M8Bpwcuv/a4AbW39/GPiX2HH/X+B/Rv7/M+DnLQP+9qo/081P8k+jcXcGB4AFpgtiQohuIcQmIcSTQohDBAYRAikE4N8TeKbPCCG+L4T4rdb26wg8zXuFEL8UQqzPMdbFwDNSyiOKcR0nhPhnIcRwa1xfi4wpjROBl6SUr0S2PQMMRv7/VeTv14G+lNcsvv/cyLmeiZ1nDsHaggmLCTznOPHjhsdOuoa5AK3rvhv4/dZjv08gNUGw5vCbQoiD4Q/BZH9C5Fg3EUw635JSPmF4HQ0V0RjuzuBHBDLAGsP9P0qwaHkegT6+tLVdAEgpfyKl/BBwHLCFwNtESvmKlPLPpJRvBS4GPiWEWJ1xrHuBJRqDuZHAW10hpTwW+INwTC2SSlk+B7xFCHFMZNsSAo3eNs8RGMPoeY4Az5M8xpC9BHp+2nHDY5tewz8BH2lNtP3A/ZHzfV9KORD5mSul/D8jz/1bAmnogrIikRry0xjuDkBK+TJwNfA3Qog1QoijhRA9Qoj3CSH+H8VTjgHeIPDUjyaIRAFACNErhPiYEGKelHIcOEQgQSCEuEgI8TYhhIhszxqK9xCBhr5JCPEmIUSfEOKcyLheBQ4KIQYJtOAozxPoyqrXYC/w/wEbW8dcQbBQ+nXV/gX5J+CTQohlQoi5BK/f/27dRYwQLKIqx9ni74HPCyHe3op5XyGEmA98C/iNVljnHCHEhwkknbsMx/UtAsP/udZ4Jlvb72od97LW56JHCPF/CCFOAxBCXAb8WwKJ678DN7Wuq8FTGsPdIUgp/xr4FEG0wwiBl/VxAo85zs0Et+DDBNEjD8Yevwx4uiVX/FcCzxfg7cB3CYzrj4C/ldOx26bjnCDw1t9GoKXvI9BgIYhAWUkQUXE3waJflI3AX7Ru9z+tOPxHCO4engPuINBwv5NlfIbcSBDl8gPgKYK7nU8ASClfJ9CXH2iN852K5/81wV3MvQQT4FeAfinlAeAiAr35AEHkzEVSyhdNBiWlfIPgNTsP+F+R7a8A5xPIJ88RyC3XAkcJIZYQLE7/oZTyVSnl/wK2EyweN3hKGBHQ0NDQ0FATGo+7oaGhoWY0hruhoaGhZjSGu6GhoaFmNIa7oaGhoWY4qWC2YMECuXTpUheHbmhoaOhIduzY8aKUcqHJvk4M99KlS9m+fbuLQzc0NDR0JEKIeNaslkYqaWhoaKgZjeFuaGhoqBmN4W5oaGioGU17pYaGhtowPj7Ovn37OHz4cNVDyU1fXx8nnXQSPT09uY/RGO6GhobasG/fPo455hiWLl1KUOusXkgpOXDgAPv27WPZsmW5j9NIJQ0NeXh0M3zhDNgwEPx+dHPVI5oVHD58mPnz59fSaAMIIZg/f37hO4aO8ri37Brmunv28NzBUU4c6GfdBctZMzSY/sSGNprXMoFHN8M3/zuMjwb/v7w3+B9gxdrqxjVLqKvRDrEx/o4x3Ft2DXPV7Y8xOh6Uhx4+OMpVtz8GYM3glGHMfDCYZbyWtea+z00b7ZDx0WB7Y7i17B0ZZffeVxkdm6S/t4vTF89l8cL+qodVSzrGcF93z54pQxMyOj7BdffssWJsypoYfDCYrl/L2vPyvmzbK8K1ocxy/L0jo+x66hATrdYOo2OT7HrqEEDtjfeGDRuYO3cun/70p3nppZf48Ic/zNNPP83SpUvZvHkzb37zm62fs2M07ucOjmbanpUkY2aLMs5hguvXsvbMOynb9goIDeXoWGApQ0O5d8TOe5j1+Lv3vjpltEMmJoPtLtmya5hzNm1j2fq7OWfTNrbsctHJbppNmzaxevVqnnjiCVavXs2mTZucnKdjDPeJA+pZW7c9K2UYM18MpuvX0kuyLDauvhp6Yq9FT3+w3RNcG8qsxw8NvOl2G4R3sMMHR5FM38EWNd4333wzK1as4KyzzuKyyy6b8dg3vvENLr/8cgAuv/xytmxRNaAqTscY7nUXLKe/p3vGtv6ebtZdsNzK8cswZr4YTNevZRtVR2iEi40v7wXk9GKjbhwr1sLF18O8xYAIfl98vVf6tmtDmfX4/b1qU6PbbgMXd7C7d+/mmmuuYdu2bTzyyCN86UtfmvH4888/z6JFiwBYtGgRL7zwQu5zJdExGneovbpa2Ft3wfIZ+jPYN2ZFzpFlUTNtX9ev5Qx8iNDIs9i4Yq1XhjpOf2+X0ojaMpS640Mgo8R169MXz52hcQN0dwXbszI2Psno2ASTEroE9Pd209vT1baPizvYbdu28Xu/93ssWLAAgLe85S25j1WEjjHcEBgcV4tnZRizvOfIsqhpuq/L13IGPkRoVLDY6Hrh0Kah1B1/x5OHUHWs3fFk+6Jj+HfRaz4yIXl9bIKwVe6khNfHgs9yaLzHxid5fWyCE+b1sf/l9njpInewUsrEcL7jjz+e/fv3s2jRIvbv389xxx2X+1xJdJThdk0ZxizPObJEgXgXMeJDhMa8k1oyiWK7A/JGWGQx9nFD2TtHIKVk+5OH2L331cITxeKF/Tz6zCuMHWk33bJ13vjxFy/sLzw5jU9MEu9vLiWMjk1MGe7RlmH/+Hvexufv/hmHx6dnL9UdrIkHH7J69WouueQSPvnJTzJ//nxeeumlGY9/8IMf5KabbmL9+vXcdNNNfOhDHyp0vTo6znD7EAddNlluCYvcPjp5bUs2mkpWXz1TrgGni41JC3s2w+lCQ+kqFE9ltENcLTrGjXbIpGz/+/1nnAjAl+//Bb96+TAnzOvjygtPnfGZDb3zJA8+yumnn85nPvMZfvd3f5fu7m6GhoaINo1Zv349a9eu5Stf+QpLlizhlltuyX+xCXSU4e6UJJysnDjQz7DC8KpuCbPsG8XZa5tkNB/dHEgmL+8LDPnqq93IJ+ExyzgX6Qt7Ks86j7EPKfLcJJJ0boCtO0esS0A6laJLzPw7arxDA94lYN6bZhZ2Go0Y7ZC4Bx/n8ssvn4ociTN//nzuu+++9AspSMdElYD7OGhX4UVFyRIFkjdixNlrq4vQgGyRHkVZsRY++VPYcDD47VBfT4qw0MVHF4kScRVhcvriuTMMpur4NmPHAXq6u9qMt2jJGyH9vd2p+4RMGnjwPmLscQshuoHtwLCU8iJ3Q8pPlUk4VXrdWRY18y6Aqrz0pO2ZUEVofOGM6hctHaFbODxhoFe54DcxCQKUC4EmUSKuIkxCT1qndYMdzz7KnG7B0b3diZp0VOtO062j3nl8u89kkUr+BHgcONbRWAqxZdcwXUIwoRDBbMVBOzVeBcmyqJlnAbRb89p2uyr448OiZR4M5B1VhMUJA708++JhpXGGwGh3d5ErSsRlhEl0wfGOB59X7mPi2WdZeO3t6dLKGFn2gcCgvx6TS3TeuU8YGW4hxEnAB4BrgE85HVEOQglDZVhsxlqXbrw8QnXd4fZl6++2r/f7sGiZlQwx6fEIi607R9p06ChRrTtrOJ2tULw08nr2VdYxyeKd+4Spx/1F4M+BYxyOJTcqCQMCg7rx0jOtGZMk4xXHx0XMPITXkURU7wdLC8ElR3pYoUBMepJXGnrHRcLpbITipZHXs3e1eGqKyjvPEiJYBamGWwhxEfCClHKHEOLdCftdAVwBsGTJEmsDDEkyhDoNe1LK3EZEdb5BTUTGYEyK8aXKX1bi1/yeUxdy245h5aSowqreX3KkhxUKyDs6b1UAQ8uO9aaCXpKkkdezr6KOSRJZQwSrwMTjPgf4oBDi/UAfcKwQ4mtSyj+I7iSlvAG4AWDVqlVW1mRDQzJ8cHTG4kzcEOYNcUs6r8rw/vt/O9hmyFRSjC+LmFnT4OPX/PUHn9VqrjpmdQXBAvKOzlut2mhHDXVPd+AJh4t5Kkkjj2fvOj0/K1lDBKNlXW+55RY2bNjA448/zkMPPcSqVaucjDH1lZFSXiWlPElKuRT4fWBb3Gi7IBp6B+0r6tFQNNtFkXSG9/6fj7Dx0jMZHOhHEHjaKinGhyp/WUMXVdesM9rhtauwVhDLpPCTzeJUNo5VoGrg4oX9DC07dspY9fd2eWG0o6GI4xPtERg2Kg6evngu3QpLNDEpC4cS7h0ZZevOEe548Hm27hwxOl6REMEzzjiD22+/nd/5nd/JONJseJuAo9Oto4SG0HYdEZ2BHT44ynX37Ek9tu07gDxk9fqzTCrh6+u06FaaXmyzOJWtYxWUd8rQoUNMojhU2rOKLJJG0nkfefoQ0Y/s2BFZaJEy76JnWojgzTffzF/91V8hhGDFihWccsopU/ucdtppmceZh0yGW0r5PeB7TkYSw8SQRA2hzToiOsMLZnp1GZUE08jq9euuOR4/HF6H86JbaXqxzeJUNo/ledVAgId/+TJPvTBdfEln0EwNsqmkkWZId+99lfHYTJFnkTJcWHzsWfNFz+hipCpILAwRDMu6PvDAAyxYsICXXnqJ66+/3nhstvBDaVeQ5p26NIQq6SVKWsbgmqFBI0klC6adPML9dHd1utdVJzd97J1LtNexZmiQB9afy1ObPsAD68+1q9+ndZmxGedd15jxHOwdGZ1htENUkoeJQc4SD57WfMHGImW4sDgp4Y1xs+NFnwOBni2YNuBdAo5uRZU0ZV1TUHmtofc36Di8LupN6jzvtDsCm3cAplEq8f3iJE12pdbghvRElbRwQJtx3nWMGc9Jkh4dN2iqBVMB9MwRjB2RmePB0wyzjUXK6MLiUT1dSuMdP55yMZLAqx2YO7O2SVpZ17Lw1nCXbkgU518zNMg5m7bVRq9OWhcwmexKq8Ftoimn6cU247zrGDOekyTvNW7QbCfupBlmGxmeUW36rcf3s2f4tRnbVMfLshiZVta1LLw13FCiIUmgTnq1bj8BPLD+XNvDyo+pppykF9uM8/YkZtx1cwVIruinMpA2F0zTDLONiSK6sHj8wFEA/PL5Ud4Yt/OappV1veOOO/jEJz7ByMgIH/jABzj77LO55557cp9Ph9eG2wfK8PzT4q1No1R8iGYxIqumrJNVbC4EVryoWFbat8p4Aiw7rs95RIuJYS46UcRrjxw/cBQnvPmoKY3aBkllXS+55BIuueQSK+dJojHcBug8fxtp7Sb6tanX78PdgRFZNOU0WaWsmt2OKSvtu6y6JUnnd3mu0DjHC0clUccKgY3hzomttHYT/Vrn9QOcs2nbjG0bLz3T/xopWTTlJFkFqm80bIky077LjBf3AZmSsl7HCoGN4c6JrbR2U/067vXrJo6Nl57pl56tIoumnCSr+NBo2BK+pX3Xmawp63WsENgY7pzYSmvPq0v7Ug8lN6aacpKs0kHx1667ss8m8qSsm9bv9oXGcOfE1kJgXl3ah3oopZAkq9z3ufLjry1q6vEokiUL+vjVwbFKtGeT8bkcj81z1VGzzkpjuHNiayEwb9RKbSJIipImq5QZf22hpknUQEUZHZvk2RcPV15YKqTM5ga2z1VHzTors85w22pwYDNMME+8em0iSGygk1XKjr8uqKnHDVScMpsHpFFmcwPb5ypbs46WdV23bh3f/OY36e3t5ZRTTuEf/uEfGBgYsH7OWWW4bTc4qDJBqOrMUm8oM/66oKZuUm2vquYBccqMcnFxrinNuuRw0fe+971s3LiROXPmcOWVV7Jx40auvfZa6+eZVYbbxwW9IncAPmSWFsbVF8vFcXULpcighnfKOUwMkS9RJGVGuTg7l83SvxGSyrqef/75U3+/853v5NZbb819niT8+JSUhG8LelmbHXQcJs0SfDquqlFCiME50gyRzSiSPA0EoqiaG7iKcnF2rrQcgByEZV23bdvGI488wpe+9CXtvjfeeCPve9/7cp8riVlluHULd1Ut6CXdAcwKbH+xwi42t/+x9S8sEHhpF18P8xarH085h67TC9jteBPvXBMu9mUx3mV25HF2LgfhoqZlXa+55hrmzJnDxz72sdznSmJWSSW+Lej5dgdQOja/WPHbYlvHjRNq6hsGUDZ3SzhHWenmthb7XGdYOg83dFCu16Ss60033cRdd93Ffffd56wE7Kwy3CYLeraiTkzopJC+XK+bzS+Wynu3cdykY+UYexnp5kmLfVt3jngRJ64KAdz+5CEOvDLG2W+dZ+ckOcv1RrvhxCNS0sq6bt26lWuvvZbvf//7HH300XauQ8GsMtyQvKBnO+okDZ/uAFSGF8yiVnK/bjbrYKd506bHNV3U9LiGd1Lp1rh8Avbjsk3QRdg89cJh5h/Ta2dMOcJFw244YQz4ZKzOSVpZ149//OO88cYbvPe97wWCBcq/+7u/K34tMYQ0LaGVgVWrVsnt27dbP65rdE0TBgf6M9f/MPVAy/Twk8Yan0B6ugQIGJ+Y/nz093QrW7AVet1MDKXJPl84QxPxQaBJv/18eOLe9POojPHF16u/7J5WJkyLF4/S39vFhSsXuh9UjDsefF77WNKYHn/8cacNeV9+bVybdTnvTT3tD+REdR1CiB1SylUmz+9IjzuvMcyrOcfP955TF3LbjmEjD9SHkD7VIum44tOrC50spNWnxWGbhnTpPOCLW41cTY7x7SuzJdh42hhYpaWXGZedRtoiaZWx7HnqnFRBx0WVFAmxyxN1ojrf1x98tlbRIlkWQ1X7Oo3WMY08mRHxIYLfoadscoxHN8Oopg1VDYtWLV7Yz4UrF3LJO4/nwpULtaGIVcSNJ/W9hGpj2ZPqmYxpmg9XQS087iwedJEkG53m/J5TF7bVvY4udMbPp5ucXUSL2JBadIukun3jONXqs0Se6Dxgk2MkhQp2QNNgn6oPJnnUVVdE7O/t5rU31H1bdWVhq8Bbwx0apOGDo1Pd3SF94avIbbsq6iRN9shijG1Hi9haTFUZXpXGDfDaG0fYsmt4xvGdpt/biDwxOUaSV+3BgmNRqu58E0Un3Qhoi9+OhwwO9s78PCZFgOSht6dLa7h9kku8NNxxgxR/vZI86KIhdnHN+ZxN2xI9eN35opMNuIkWsZXCn9Rh57Pf3M2vXx+f2vfg6LhycnCm1duI3jA5hs6497/FSx07D750vtF5/yqjHQ8ZHOuaZGx8kt6ertQIkLzUoSysH35/DJVBiqPzdNddsJz+npnlG4sYzTQPXne+j71zCYMD/QiC6ApVNEZRbCbwrBka5IH15/LUpg/wwPpzpwzx0b3tc3upen2Sdm3zGKp09p5+eJ/9AkGzHdNMSV3I4GjLOCd1uilCf2838bwZ38rCeulxmxgenQdt+7Y9zYOvskpfGQk8XmR32ojeSDtG2SViZzkm3r9OC5+UM3/rHs9L1rKw0bKuf/mXf8k3vvENurq6OO644/jqV7/KiSeeWGxACrw03GmLZWketM3bdpOFt6pC+spI4Omk7M5UPA3vm63otPBQsjCSNPbvgifvhcMHoW8ATjkfFg2lnjtvK7N169bx+c9/HoDrr7+ez33uc04ScLyUSlTyQ/heuJIddKwZGmTjpWc6lz18HZtt6amhwRRdUa5QskiVNPbvgsfvCIw2BL8fvyPYXoCbb76ZFStWcNZZZ3HZZZfNeOzYY4+d+vu1116bXbVKfGsS4EOSjA7XYzN6LzzNIGyoN6pImN45055wqqTx5L0wOT7zoJPjwXYDr1tFWNb1gQceYMGCBbz00ktcf/31M/b5zGc+w80338y8efO4//77c50nDS8NN/htLGcbie+Fo2L1HU3O2/fZSFwLf/zxF2c8nihphJ626XYDTMq6XnPNNVxzzTVs3LiRL3/5y3z2s5/NfT4dXkoldaFosfqOwEGx+o7G0e17g4I+Ta9H3XYDTMq6hnz0ox/ltttuy32uJBrDnRMbxeqtETYQ2DAQ/Dbt9JL3eVEcFKv3kv274IfXwnevCn7nNbRJt+8NdjnlfOiKFYbq6gm252T16tVs3ryZAwcOALSVdX3iiSem/r7zzjs59dRTc58rCW+lEt8pswt2InmlClsSh4Ni9VaxIUuEXnJocEMvGbIfy8Hte4OG8L2xKEullXVdv349e/bsoauri5NPPtlJRAk0hjs33lRbS5Iqkgxw3ufFsV2XOouhTdvXlsG1ucjVN6A20gVu3xsUjL0Ob7wMb1oIZ/0hHDUPeu00Nrj88su5/PLLlY+5kkbieGW4nbcysoiTztR5ojPyShXa5+0NxmFqvG0mrpgY2qixjqLa15bBtekln3L+zGuEwrfvhem0xdKx1+Hwr5kqOiEnWv9jZrxDoy8nQHTDnD44cnj6f4uTQF68MdyqugSmHTqqMPjWq63llS7yShW650F2ycRW4kqaoY0b9jhxo2zL4Nr0kh3cvhfCpgzkC2+8THuFIwmHW3p0ktFVGf3x1yKHyTgJOMKbxckkzTiJqhYJrXem1kkX374y+Xm6GhtpUoXqedHzVhEVkmZoVYY96RhawyqyLS7aXuRaNATvuhLO2xj8rtJA1nCxNLVrl0yoVXL414Fx1qE0+m0naO2XDxtdx1I9biFEH/AD4KjW/rdKKf9n4TPHyKsZV7lIaLXamk66GH0pWbrIK1WEj9/+x9nGo8NGEk6aZ2viKUeNtUqWAEDCz26DPd+EI6PtXq9KOjjtEn+85Lyorqtmi6V9fX0cOHCA+fPn68PyRHeC8W4ZXZ23nGT08+wXf5qUHDhwgL6+vlzPDzGRSt4AzpVSviqE6AF+KIT4tpTywUJnjpFXM85j8MuUVozPlSRdpC0Y5pUqwu4wRaNCbEWo6PTf+cuDELw04l5waFh330KbFyUnAqMNM+UBUEsHp10SeMd1RSeJzOmffh2ieLpYetJJJ7Fv3z5GRkamN06MtT57k0AXdPcE25I85z7dhPVy6zhpdEHfK8bjnnHqvj5OOqlY1FWq4ZaBXx/qFT2tH+slxfNqxlkNfhEtPSuZzrX6anvebxZsRIXYilBR6b/zl8P+nekSic4LXjQEuw3i06PygOU06VzYXjDUSSLdPcGEp1os9XDRsqenh2XLlk1vUK17dPXAopUw/BBKU9U3AEOaSThtHSU8/mmXwCJ3TYvTMFqcFEJ0AzuAtwF/I6X8sWKfK4ArAJYsWZJ5IHk7dGQ1+GVKK5nOtWJtoGer+h66jIm2ERWSN7JFZxiixuGH1+q/RKbGRCfBxEnap0zpwMWCoW7846/D6Wvb3wcod9Ey7yShm5AO7IHT/0P2CB6d83Bgj1cTmJHhllJOAGcLIQaAO4QQZ0gpfxrb5wbgBoBVq1bl8sjzaMZZDb7r+OuoNKJD+9j7rrUbE21KKLWEOvXtVwS/TQ14nsgWU+OUZDBNpQut1h0jSUsvUzpwUBwpcf0gPlmCesKcHA9kp92b7RqwIhNVkkafN4JH9Xp4RqZwQCnlQSHE94ALgZ+m7F4aWQx+FmklqxYel0aSxqCkymL+RXTqPHKLqXGyEYoX/wL3HA3jh5mhZUY9sarjrF0sGGaNH9eeS04/bssDLzJRpX0+yjDCFUhKJlElC4HxltHuB84DKuvnVHRh0VRayaOF61otRUnV7asq5l9Ep84z4ZgaJ1sJK/EvcNqXLe2L6PLL6iK7Mqv3aSIv2dL+i0xUrhOaysrOzYiJx70IuKmlc3cBm6WUdzkbUQI2FhZNpZWsWvjekdFUucXrbNCixaKyTjimxslVwkqSJxY+Fn5pd28OfoeQrwNqAAAgAElEQVTndf1ldWWMsnifpvLS4YPB61HkuotMVC4TmkzeZxeylgEmUSWPAl4IPrYWFov0u1NtDycUHf29XVy4cqHx+KYos0FB2cWishinKjRH3Zf24DPqaAWbX1YfsivjY0CgDSYrOmkVnahcfT5MjHJFcfDepLybkGZMbcZnZ9HCkySS3GnwZTcosF0sCpInHh+MUxK6L+1wW0DVNDa/rD4skEXHkBQmV3TSsvFZcCFdmRjlioqG1cpwJxlT2/HZWcIMkySS3GnwtmKjTbG9MGoy8fhgnHTkMcI2v6y+xVBPJTNpYuKLTlpFPguupCutzi+Cuuy6PIMSFrO9qVVigqp5aGhM89Y60ZGlFokuSqS/tyu/np1Hcy7aGGHFWvjkT2HDweB3kQmi7p1xshph2wtiPnbJWTTkpKtMYVzVW1HVqAFmRNbs3xkk+4TX3zfQSs6pOKrEJ5IWFrc/qdaYi8Rnm4YZWq8UCNk1Z996P+rS93XbfcN0cQ4AYffLWvaCVxbv3seytK50ZhOdP0z2KbkcQq0MN+iNqZP62BnGBNmzPhPJqjmXLa2koSv0I7rLH0seTNPvp9KfLRrUMhe8ssoMPq5NuNSZoxLOd69S71NBQa7aGW4dTrzeDFitFAjZNWffej/qqqflrKpWCSrddeBk90arqCHK4kHn8e5trE3Y1PDLugvwqHtRxxhuU6+37KYLhc6XJTbat96P8xZrxrO4/LHYxOWCqq67D5gboqwedBXhbKox7r4V/vWuoHZKVkNu8y4gaULxSCbqGMMN6V5vmZUBSz+fi3C+ThqP7ySF29kouqTzoKvwIpUNMSYDow35okJs3QUkTXoeyUQdZbjTKLvpQqnnq7LOSR3G4zu67j59A9kWvrJ60POXt8emu/YiTbz5Kkrpmkx6noSwzirDnbUyYFFZpfRO8FXVOdHh23h8por+mPt3BYutcRatTDZORfVpG2V2XVCjbkC1iuMuSlK8dRwbvSyznK/BAft3BeVJv3tV8LvqOOgkbMVHZ+mPqfPyD+zRH99GjLk2PjpG2Yt+Psaoa5hVFiQpgSeOjYSeLOdrsIyvSSw6bDUkXjQUhCeaJITk8TBtJLvEx6gy4lUs+tluCu2QWSWVAHQJCAPSeucIVpx8jFL+sCFzOInvbjCjoqptubG58GWqw+ZZmLQlJ0QrMEb7fU49niLXuMCjxcc0Zo3hVjU5mJjUN+qxldBjPb67wYwa6ZVTlL3wlSe8zXYUSh65xiWeLD6mURvDXXShMGuER9UJPQ0FsWFgZsRVt9KdPfbCMpPHw7Qdy1zHCdYDamG4bcRDZ5U+KpM5bNTgLrOOdxXnM6GogWmLq3bQsssHsnqYtuUEj7IR2/CtQmOEWhhuG/HQeaSP0mUOG4Wiyi425Vtxq5CiBkZ3Cw9+a+VlYFNO8CgbcQYVtSQzpRaG28ZCYS2kDxuFosouNuVbcasoRQxM2q16cytvB18XBD1f3K6F4baxUFiLCA9toai9QX1tH4tN+VbcyhZpSSI+3Mp3Cj4sCMZlEc+191oYblveclT6CBc7tz95yB8jrisUhZjeniZFlF1syrfiVrZIqsddxq28x/pqx6GSRXR4MmHXwnDb9pbTFjvLriA4haowk6p4e5IUUXZxp04tJqUrol+GEVVWz9sc/PhkxF1NLmVPWknrGVF80N5b1MJwg92FQt1i56PPvAJQagXBGagKM2k7yWikiLKLO3VyMamqbuGTDIkvi2SuJpcqFgXTPGwP73pqY7htolvUHDsiefSZV0qtINhGvDDTF87ILkWExwjD9G6/IvjtyqCWUUzKR+nA1ZjSdFQfFslcTS55FgVdFb3KWpmxRGZVrZKQpEXNsSPqbEpnFf3SWH11ID1EMZEiwjC9l/cCclobz9pA2Ad8rDvickwmOmrVi2Smk4ut4+q2uyp65ZEsomJWGu48IYCVVfRbsRYuvr7VOUYEvy++Pt3DrXuX9SiuungXweWYTKrnlbVIpquw2HN0+nPzTC5ZK/S5KHpVUqf2IsxKqWTxwn4eefoQ44r2hz3dMCnxK947jxSRFqbnY7ajDh9Ds1yOqW1hNEZZ3mCS3iz1dX6myDO5ZE3IsV30qibMSsMNcNbSY5UhhmctPRbIF8FiLRrFhlFNCtO761Ow/UamolV8yXbU4VtadNJtuK0xRQ1JmobrSmtP8maPpNSlzzu5pCXkxK+15+jplmdRPAnbc8WsNdxpIYZZDa61/pK2Ush1YXpvP3+m0Q6pItvR1OD4lhaddBvuYkxJ3qDLKIwkbzYpSaXo5KG7XmW8dReIbpCR2+cqPhslL57X3nAX8XLLCDHMHI1iK4VcF6Z33+doM9ohZWY7ZjE4vqVFJ92Glz0ml6nZSXc6usnUpTasazLc3Q9zjqrus1FBCGOtDXfZXduTsNZf0mYKuUobv/0K/f5lZjtmNTg+aZA+STcutfakO50qJlPdNR0ZhXdXmPBVQV2TWhvusru2J2Gr8YLzFPKktPoysx19XHA0xSfpxuUkkmacy55MfZowo1TwWa51OGDpXdQTsNZfMm/cdpHjI2DVfy5X365RY9Y2fAofcx2DvGgoSEI5b2Pwu8q7Hl/jrSv4LNfa47bm5VrAWj0V1ynkvqSo++S15sEX6cY3/d8lvl5rBZ9lIU3iMTOyatUquX37duvHjaPqI9ndBUPLjq2+0l9DOhWmsW/ZNcx19+zhuYOjnDjQz7oLlrNmaLCUczd0IBY+y0KIHVLKVSb71trjrkWN7U7CdtJORV7rll3DXHX7Y4y2MrCGD45y1e2PATTGuyEfJX+Wa224oemiXhqOWpRV4fled8+eKaMdMjo+wXX37GkMd0MtqL3hbigJk/jyjB55VZ7vcwfVWX+67bONyurRNxiTariFEIuBm4ETgEngBinll1wPrMEzTGqfZPTIq/J8TxzoZ1hhpE8cmDZOvmvgroyrT7kR0TE1E8lMTDzuI8CfSSl3CiGOAXYIIb4jpfyZ47G5R7eg4GPt56qLQqXFl+fI+KzK8113wfIZnj5Af0836y5YDvivgbs0rj7lRoCfE4kPpBpuKeV+YH/r71eEEI8Dg0C9DbcuTfXgM7B/p530VVsTgCN9ORNpLcpyZHzqPN+Bo1NKmhYkNL46j9p3DdylcfUpNwL8mkh88vwzadxCiKXAEPBjxWNXAFcALFmyxMLQHKNLUx1+iLZaHnnSV23WL7BVv6QIafHfOo9cdAUTj2Kc6y5YzrpbH2F8Yubr/erhI2zZNQzojWtR1gwNao9l407ApdSSxbhmNTY+5UZA8rXe8eDzpRlQ3zx/Y8MthJgL3Ab8qZTyUPxxKeUNwA0QxHFbG6ErtOmomqFnTV+1Wb9A683u1RpFJyTVBVc2Oiao2qa5O1gzNMiGO3dzcHTm6zQ+Kdlw527eODJZiVyhuxPoEoJl6+9ONcSupRZT45rH2Jy+eK4yN+L0xXPbJoETBnr51cExpx6o7lpDyjKgPnn+YJjyLoToITDaX5dS3u52SCWhTUcVGffXYLN+QVKdEl/akYWdekR3+2MJnXdejhntkIOj41q5wjXrLlhOf0/7dUxIiWTaEId3BXGSpBYbmJZXSDI2OhYv7Gdo2bFTk0B/bxdDy4Ia9bueOjRlREfHJnnqhcMz/t/11CH2jthdn1Bda5y0a7KBbxJSquEWQgjgK8DjUsq/dj+kktDVPRh8h516CDbrFyjri7Sw0Y7s0c1BU+INA8HvPBNBuHgqFW2FQHvXEI3kMKGMkL01Q4NsvPRMBgf6EUC3aJ/Mkwyx60VXnXGNe355jI1OWlFNAnFcGND4teoIpZOtO0esTx6gl4qqkpBMpJJzgMuAx4QQD7e2/Q8p5bfcDasEkuoeDJwcaRslZvawM5U5bNYvCCWG2/9Y/XiROto2Fj7jx1ChuWtYd8Fy1t3yCOOT0xJVT5dgbt8cfv16uzee1dDnJaqBL1t/t3IfnSE2CTcsikniWVa9OklaMfUsXXig0WvdunOkEukkSUKqgtTpQkr5QymlkFKukFKe3fqpt9EO0VU+WzQU8chbBiVr92jbFeRWrG01DFZQpOSrjabCqmNESatuGHdoBXxgxaI2uSIasmeTLbuGOWfTNpatv5tzNm1rk0B0Ble3XSW1uBp7ElkrViZJK6aepWsPtCrpxPQupyyazEkdNhYXbdcvSAvJy4ONxg1J+85bnBhzft09e9qiSsYnJPf/fISNl57pPAnGZCExLe47Tlq4YVlkreWTJK2sOqW9R2ucIh6oafRL/Jp0jI5NWg/f86m8Rmcb7iJx1D4W+ndRktVG4wbtMRbDJ3+a+NQkPTgpZM8WJjHbeQxxGWM3IYuxSZJWVJNA3qgSVXTKsy8eNo5+MZFOerrxKnzPNp1ruIvGUSd126gyszIpJC8Ppl58UuZmgTuBMvTgJEwXEn0xxC5J03FteJwqHf2pFw637WcaaqcbsxCCididXJXhe7apdQecRJKkDhN0USfzlwcTQGjUs2rfZZMWMRKG8c1bDIjg98XXz5wcwsXHl/cCcnoBMzyWyTE0VK0HZ9WvO5kydFyT6JQQk4VO3ZjHjqjzMaoK37NNZ3jcKg+4qNShizqpoDFobkwjRtK8eJPMzZx3AlXrwVn1607HtY6bxXCaLnSqxqzTwKsK37NNvQy3ykCDWhLpORrGX28/RpY4atXi4m5NjHNe7TsuQbz9fHjiXjsatq1UeZud5xVUKUNUPXGUTdX1NtIyIUOKhtr5Fr5nm/oYbp1m3TVH7QF3zQmkDdt94Gx2mlZ5xNu/Mv140WJStgxuUh2SDQPV9a20xGzQr8GPehsnDPS2adrdXbBkQZ/RQmfe6JOqi0LZpj6GWydRxLeFHBmF09faX0S0mViTFv8MxYpJ2YgYgeQ6JFBNtcKGzFRdb2PvyCjPvti+ELlkQR9nv3We0fOzTDx5ZJ+q70hMqY/hzipF9A246QNns9O0qeebV5KwFfcdD0MUXe2p7WVXK8yJ7w0SdKgMCmTzKKuut6FbmPzVwbHcz7c58fhwR2JKfQy3TqLoORomxtUesKuwPVsTgs4jVu2XB5tx39HFxw0aWciS5u0K3xsk6FAZlB1PHkIICCsFmBgZmyVb83imRScO1xNP1XckWajPEqsuPO83LlKnloP/YXtJxaNCimZGrlgbJMFsOBj81hntLIWmdBNJkdT7EnBdtc8VKoMimTbaIWmp3llT4HWEE0nWyoBFCzW5LvRU9R1JFvz3uKNe85x+6O4JokXiHnTcA/7htf6H7ak8YptRJaZkLTTlIvW+BOraJDiL4Uja19aCXV7PtGikh+tIkTx3JFVp4n4b7ngkyZHRVunV34QDe4LQvCfvVUsgPqasq7CdCZmHrGGDLlLvS6DqLM28mIbQhfsmYSNOO69nWnTicB0popoYACYmJXtHRtvOU6Um7rfh1rYXi3RO06Wy2wzb63TyhA2qJpyqGxqnUNdkG5VBETBD44by4pR7umFcUXZd0XuijbSJI82DdZkgFB73kacPzbi+sSNSaZCr1MT9Ntym3rFKAjEJ2/Oxm3sV2Agb9KGhcQp1SLZJMlxFo0psEfRWaU8pF4qGE1nwIaojbBoxHrPI0fUDk8qErvHbcOu8ZhXx/dLC9mw28607NjRrHxoaG+Bzsk2a4UpKNFEdy5VR19UB0W03xZeojiQpKK20LZSTVu+34VZ5zTpUEkhS2F6dao64xoZm7TgtfjZgy3C59lxddYL3JapDd30CUo12WXKV34Zb5TX3zYeDT87cL0/mou3Fy7rLLkUXSS3ILXVNjrGFLcNlOgHk9cpdRXe4mhCyors+E0+7iSoJiXrNobzRts/K7EbS1uLl/l3wr3fNLGg1G2WXgnJLXZNjbGLLcCVNAFt3jkwZ2LxeuavoDl8KQ+muT6dtqxV/t/hvuKOo5A0IQgOzYqPmSFwnj+Kb7OKyCiEUlltMOtFURVl3AirD1SXgyETQwdzUQCaFD4YGurtLFJJlXER3+FQYSnd9Ko07NNpNOKAOm/JGlpojca96Tj8sv1g/kRQZlwtcVyEMKSC3ZEmOKVNSKfNOIG64eucIxo/IqdA0U8Ogi0cOmZgMYpNVVJ0l6FNfxzjx90flaTfhgCpsx2ab1BzZvwt+dtvMokpHRmH3rUDKh9yXmHEXVQgtx2ybJseULamUfScQ76c4Rvb2W6YNdVV0SqMBV0TfnzsefF65TxmTX73eJV29kqI1tpN48t72SnhAYLQT4lZtjitLHREVtqsQprUyy4FpC7Oy641UmSZfZLFy8cJ+Lly5UGuIuxQf3U5qNFAGvXPU3/8yJr96Ge5FQ+0FpRatDIzrd68K6pPYLiKVKHfI9okEAinltEvs6Ns2jKRpZIfpfkkx2zlZMzTIxkvPZHCgHwEMDvSz8dIz27xancEcPjjKll3Duc+vQ5cOP69f8b5bxkZRJVVhKZ27sWRBXyUyxd6RUbbuHOGOB59n686R1GJVPrB3ZJRxRdx6l2jCAdWookxcJtEkJQFF+1C6CgO0kdiia4QQJUvCjaOYbZPkGJ2kAjiRTNZdsJx1tzzCeEwTfm3sCH+x5THu//mIM63dxmKlasFvYlIqk2VM62KryBta6EO2ZB52731VGUnS3VXOuOvlcccp2sndhFPOB6EqwtA1baTfdSWctzH4bTuKxIaRVHVhX/VHubqyA5WWdVVJKiEuJJM1Q4P0zmn/moxPSL7+4LMMHxxFMq212/T64x3Me+cIpKRtsTLNQw1lk0veeTwXrlxovQN63jKvkBxz7jO610pVw8UF9fO4o5RRATA0xKqokjJC/Wy1H7NZhbDCsq6hR/un//th5eNZtGeT6JQtu4Z5bUz9bYybPxeLljYWK+PYTnQpkvFpO1uyrDKrVScL1dtwl1UB0EULNFN8rH1dcVnXNUODXHfPnkIlWk2jU7J68C4XLW0ZOduJLkXGZbsrT5LsYtOoV50sVG+ppIook7JRyRyhrFE02qTouEw66zjCNApFh2l0SlZD7LK2t60OMHEJpr+3i6Flx+Y2YkXGZasrDyR7/kXkHBW2X8Os1Nvjttm412d0ta89L6PqkqIlWk3D/JIWQ+O4ru1t08uzmehSZFw2syWTPH8XlQerTBaqt+GGamWMKqlJGVWXFCnRaprwo2q+EEe0nue6KFZZKeFZJQUbnW1cVy2sq5auo/6Ge7ZSRhlVzzvaFMG0G05oiP9s8yNMyPZojMGBfh5Yf67bwUZw7eXlDc/zIVU9yfPXZZG60NLLoHMNd54yq3UqzWor2kRHh0sxWaSWcFsd255lxZdmBnlI8/xtyUw+vEadabjzJObUrSOO62iTWSDFJEktqlDBjZee2fH1wn1pZpCXtE5BrrX0suhMw52nu03dOuK4DsmbxR1tdKGCGy89s1RZpAqqjk92SRlaell0puHOk5hTRjKPbWwm1cRxLcV4jM+1wV1TdXxyHfDhNar/NKpCl4CTlJiT5zmdzOqrA+klStWJPyVRZUXAqqk6PrkO+PAapXrcQogbgYuAF6SUZ7gfkgXydLex0RGnk6g4O7JKTEMFOxUfIkRKoUAwQtWvkYlU8lXgy8DNbodikTyJObMlmScLLqWYqjD4spqGCjbUmLoFI8RINdxSyh8IIZa6H4pl8iTmzNZkntmC4Ze1aFZmHmZ7h/vSsRmMUEEYsbXFSSHEFcAVAEuWLLF12IYGe2T4shbJysyKrx3uO3oysRWMUJHnbs1wSylvAG4AWLVqVdnd6hvqSNmeio0vq4Mx+xjF4utkYg2TyqIm73VFYcSdGQ5YIVXXMKgNVXgqui/rHMP3x9GYfYxi8XEysUpSMML+XbDnm0FT8BDde11RGHEtDbfOOFZtNH2oYeAM23VLingqeb3eU86H3bcSNHqOMDEWHDPtGI68Kx+jWHycTKyiC0aAdoMeonqvy+oJECM1jlsI8U/Aj4DlQoh9Qog/cjqiFHR1dR/+5ctW6+3moa5tmFJx0NU9t6cSer3hfqEnZNIketEQ9PS1b5cTZu3uHHlXRWuLu0A3aZQ6mezfFTQAd9UIXIVqco4Sf68r6glgElXyEacjyIjOOD79wuG2VlJlF37xoYaBE1zULcnrqRT1esP2c3HiY1F59Y68qyqiWHSEC5LDB0cRzGzPVupk8vgWGP7x9P+2pTSd7JVktKH9va4ojLh2UonOCOpWQ0fHJtm6c6QU+cSHGgZOcFG3JG/CU1Gv13RRSvWlXrQS9u90kqSlimKxFdVhepz4gqSEKeM9WOZksn/XTKMdYnPRT+cAtE1XEXTvdQVhxLUz3ElF0XXE5RNwozn7UMPACS7qluT1VEy93rjHPH85HNijfm78C6n7Uh/YA6ddUop3ZSuqI8txVAuSodFWFddyFi6YJFvZWvTTHkcGn4f4+99zNPzGRd7kedTOcKuMo2j9NolBdCmflNWhBCi3yYGrErJ5PBUTT13lMas8OFAb3ySvviTvylZUR5bjZFmQdBoumGScbS366RyA0EBnmZzrnIBTFirjODEpGTtiHjruUnMupYZB2U0O8tQtMZlY8nzgTTz1tAWmkL4BeNeV6u0VRApEsRXVkeU4WaJbnIYL6l5/sLfod8r58LPbgoXpKOOHg9+qz4WKuifglEncON7x4POZnp9Vc646zLCNKpocZKlbYjKxFPnAp3m9prfTScah4oJjtkIEsxxH11/z9bEjbNk1PMMgOw0XVL3+AIO/ac8YLhpqj9UGYDKbjt4k4OQni+6dVXP2Mjbb9yYHJhOLyw98kscW309FiZECOp3YVqGrLMcJDfOGO3dzcHT6vfn16+NtMoiViUV3x1XW699mtFscPhiEH5qcu0nAyY9K91aRx1v2ob9cG2U3Ociqp5tMLC4/8DqPLUqaB12Clm2iExdd/Mt6nDVDg1x3z54ZhhvaZZDCE0vaHVcZawlJE3w8TyAcl+kxHMtqHWG447q3jgtXLsx8bC9js133m4ySR083mVhcfuBVHls0qsSTkr1pOrGNQld5Ij9MZJDCE4sPrQJNJvhwXLtvgd2b2z87FclqHWG4YVr3DmO24+SNpfYyNtvVYqGKPHq6ycTi+gNfgxK9rtPK80Z+mMoghSYWH1oFqib4pDBBUN8ZxI/RRJVkx3YsddHjOVvYtL1YqCOPnh4e89tXwuhLwd/xQk6d1LgiY3RM6AXr4qAGju7RPJKNvJEfaTKIlfhtDyJ3gPYJPtS2k4jfGTQJOMXJEkttYlSLxGbnXti0HaNdJAqliJ4eXfwZfal9sqiBV5xKxuiYuBes4tXD7VEcecjr0SfJINbit23ccakmTCjmDJjKJxU3Ee84ww1msdQqo7rjyUM8+swrjB2RMwx03tjsXAubLmK0i0Sh5NXTqwhZNMVmwkRGrVblBccZn5SpXrGJ11sk8kMng1iL3y56x6WaMHffCkJMx2bniamOj0uXAl9xE/GONNwmqIyqhKlEnjTv2MRbz7Ww6cLg5fGap7z+vUznpgL9b4H3XetGYikD2wkTGbVaU/06aT9Tr9d278wtu4aVE0HaeLUUueNSJllNttvYPAue0XHFPy/gRRPxmlc/yo9JVIiuJKuutGy8hKxuATNxYdOFwVt9deAlR0nymmeUcYUZ3wZd7Gsc3aTgKmTRlCQPOQ86z0uz3TTOOWm/JK83ypqhQTZeeiaDA/0IgpojGy89M3ehqnByyDpeJ2SRKorIGouGgvo04fvZNxD8X7HE563H7Tpb0TRpR7WPqQSSa2HTRYx21igUldcfEvf+dXp8mSGLWbAdzZBRq9VlJ0ZJ84qzaNe2emcmSTyV1A43TbIK9y2Ch2sxXhruMrIVsyTtxDGVQHItbLoyeFmiUNK8+/BxEz2+rEJYptiOZsio1aoW/t5z6kLu//mIcZRGFR1zkqSQvF58IZSLiF0zNW7wQtZwgZeGu4xsxbhR7ekOzjEZUQV03nGW2O7MC5s+GDyd1x99HNL1+CyTRVm4iB/P6JEV9YJta9cm6CaLwYH+anpQJrUe64QQ0xS8NNxlZCuqpBgw846d192u2uCpvP6QqPfv6wJkErbixyso5RlSRcecKiaLVHQTZgca6jheGm7X2Yo6KWZo2bFGafGl1d0us+Z2lBle/14Q3cHt57zFM8dQds0UWxTVLC1GpuRNZrGlXZviU3u10qhwck5DSGlex9qUVatWye3bt+d+ftywQuDRDi07FihuMJPS4vPUM3FCXD+GwNu9+Hp/5Ic6jNEFuuw6XX1vDapknP6e7mo044aZ6MIAHUaUCCF2SClXmezrZTjg4oX9DC07dsrD7u/tmjLaNjq5e1k4Kk6SfuwLK9YGRnreYkAEvzvdaIO1yBTTsL6GCrAdNmoZL6USUC/qbd05krpoaRJG6GXhqDhl68d5ZZmq9fgqsBSZ4rrIVEMBfCiClYBHliqdNE/ZNDHm9MVz6Y5duXdNfctMYJmRcCOnw/oe3Wz/XJ3AKecHt81RckSm6ML3Sk9m6WT27wqkre9eFfzev8vseRkTq8qmVoY7LRMxKYwwik6KqbQdWZRHN8PYa4oHRGBUv3CGXaNaB1nGJyxl0627YDn9Pd0ztlUeqdFJhDp1vCmCifG2NDm7whupxETiSAvDy6Jdl9LUNw+qBb8pWgvJtpsD1zGsr2osZNPNykiNMinSrMHzssNeGG7TTMm0MLxaaNdpJKWbR7FZaa+uYX2+UCBsrOywvllFUZ3adHKuIGzQC8OdJVMyyVN2nhhTBlm8XFsesa91RUyoOtbWdrXBBnuU0ayhovffC1fUVnie99q1CVm8XFsesY2wvkc3B9r7hgH7GrwOlYa5ezN8//Pmi1BF8TxsbFZThk5d0fvvhcdtU+LwTbvOXOVQ5f129QTFcybGprfZ9oiLhPW5aP5ggrImMzD+enler+dhYzqstB/znTJ06oref8ljTMUAAAc6SURBVC8Md0dIHApyVTnUFZlSbfMlfrqqbjdJX46yOob70jsxA9baj9nEleTluiRrRe+/NynvrutvV0EtUuttsGEAZXsnCGSXrJON6ZfYpLEruNW+K0iNLso5m7ZpO9kMVuF91/A1nMLi2LOkvHvhcYN/EkdR9o6M1iO13gbaMrBierupfJJlsSdLY1dX0onnYWMqkjIzK/G+i4TtVU1F7783hruTCCUSHbUKTzRBWwY25oWbyCdZvsTh/3u+md5SzaUh8LBDShK62tohuZr/FqGm6wRTVPD+d5gF8QNVeGNIl6i/dt/GirVw1keZ0VRYR1oIY9Yv8aIhePfVcPpa6Dk637FnGaqMzTil1kvxPL3cRxqP2wFJUoiDJQU1ZdfyfuJetDp3lLQQxryLPYuGAo96/PXkYydRdUx4SUQzNnWed6n1Ulx0JepwOt5wV7HomdSIWGK3BdsMpoz1XgLv11GKvAqTZCCTEMYiX+IkjzrtGDVPpMka3hdmbOpqgmetl1I4vLC7Z/q1n9MPyy/O9rrPkkk3pKOlEtNqgbZRVR+M4mRxckaFP9Dqy67QedKim0xJPUUKOGk9apF+jBon0oTGd/jgKJLpBcYtu4ZTn7tmaJCNl57J4EA/giCqJGsjhyLnn5owo3dKk0eMzz3jGHmKSdUUI49bCHEh8CWgG/h7KeUmp6OyRBlNh1WEx97x5CGleOBkcdKkxknUK7YtpejS5vM0Vsi72DN/OQz/uH374DvSj1fjBbKkhgwqA6zyjh9Yf25p55+BjYiSOkel5CTVcAshuoG/Ad4L7AN+IoS4U0r5M9eDK0qV4Xih8S4tschEqgi9YheZjj50pz+g6Ryj2x6lhok0IVkaMrhIvinUEMLGhFnjSTcvJq7fO4BfSCl/KaUcA/4Z+JDbYdkhrX63a0qtnZK26BfVl13V316xFj75U9hwMPhddmZnkS+w5/WXk8jSkMFFu7RCDSFsRJTMwqgUEws2CESzK/a1tnmPD51uFi/s58KVC7nkncdz4cqF7iSa1VcHxnkGrfC8uL7cqfW3i3yBLTVHqIIsDRlctEsr1BDCxoRZ40k3LyYatyo4t026FUJcAVwBsGTJkoLDskNa/e6OIotU0an1t4uGldUskSYkS0MGXfJNkfC/Qg0hbGQe1jB7tSiptUqEEL8FbJBSXtD6/yoAKeVG3XPy1CppKBFVl528C4m+McvCwrKiC//LGknSYB/btUp+ArxdCLEMGAZ+H/hogfE1VI0PC4muqKnXXBZNu7TOwKg6oBDi/cAXCcIBb5RSXpO0f+NxNzQ0NGTDenVAKeW3gG8VGlVDQ0NDgxU6OnOyoaGhoRNpDHdDQ0NDzWgMd0NDQ0PNaAx3Q0NDQ81w0nNSCDECPJPjqQuAFy0Pxzc6/Ro7/fqg86+x068P/LzGk6WURs1onRjuvAghtpuGw9SVTr/GTr8+6Pxr7PTrg/pfYyOVNDQ0NNSMxnA3NDQ01AzfDPcNVQ+gBDr9Gjv9+qDzr7HTrw9qfo1eadwNDQ0NDen45nE3NDQ0NKTQGO6GhoaGmuGN4RZCXCiE2COE+IUQYn3V47GNEOJGIcQLQoifVj0WFwghFgsh7hdCPC6E2C2E+JOqx2QTIUSfEOIhIcQjrev7bNVjcoUQolsIsUsIcVfVY7GNEOJpIcRjQoiHhRC1LWHqhcbdakj8r0QaEgMfqUNDYlOEEL8DvArcLKU8o+rx2EYIsQhYJKXcKYQ4BtgBrOmU91AIIYA3SSlfFUL0AD8E/kRK+WDFQ7OOEOJTwCrgWCnlRVWPxyZCiKeBVVJK35JvMuGLx13bhsSmSCl/ALxU9ThcIaXcL6Xc2fr7FeBxatKb1AQZ8Grr357WT/Vej2WEECcBHwD+vuqxNOjxxXDXtiFxQztCiKXAEPDjakdil5aE8DDwAvAdKWVHXV+LLwJ/DkxWPRBHSOBeIcSOVp/cWuKL4TZqSNzgP0KIucBtwJ9KKQ9VPR6bSCknpJRnAycB7xBCdJTkJYS4CHhBSrmj6rE45Bwp5UrgfcD/1ZIwa4cvhnsfsDjy/0nAcxWNpSEnLe33NuDrUsrbqx6PK6SUB4HvARdWPBTbnAN8sKUD/zNwrhDia9UOyS5Syudav18A7iCQaWuHL4Z7qiGxEKKXoCHxnRWPqSEDrcW7rwCPSyn/uurx2EYIsVAIMdD6ux84D/h5taOyi5TyKinlSVLKpQTfwW1Syj+oeFjWEEK8qbVwjhDiTcD5QC2jvLww3FLKI8DHgXsIFrU2Syl3Vzsquwgh/gn4EbBcCLFPCPFHVY/JMucAlxF4aQ+3ft5f9aAssgi4XwjxKIGj8R0pZceFy3U4xwM/FEI8AjwE3C2l3FrxmHLhRThgQ0NDQ4M5XnjcDQ0NDQ3mNIa7oaGhoWY0hruhoaGhZjSGu6GhoaFmNIa7oaGhoWY0hruhoaGhZjSGu6GhoaFm/P/i1mA3VotM4gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1, figsize=(6,4))\n", - "for i in set(Y):\n", - " ax.plot(X[Y==i,0], X[Y==i,1], 'o', label=\"cl%d\"%i, color=plt.cm.tab20.colors[i])\n", - "ax.legend()\n", - "ax.set_title(\"Classification not convex\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## One function to plot classification in 2D" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def draw_border(clr, X, y, fct=None, incx=1, incy=1, figsize=None, border=True, clusters=None, ax=None):\n", - "\n", - " # see https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/\n", - " # https://matplotlib.org/examples/color/colormaps_reference.html\n", - " _unused_ = [\"Red\", \"Green\", \"Yellow\", \"Blue\", \"Orange\", \"Purple\", \"Cyan\",\n", - " \"Magenta\", \"Lime\", \"Pink\", \"Teal\", \"Lavender\", \"Brown\", \"Beige\",\n", - " \"Maroon\", \"Mint\", \"Olive\", \"Coral\", \"Navy\", \"Grey\", \"White\", \"Black\"]\n", - "\n", - " h = .02 # step size in the mesh\n", - " # Plot the decision boundary. For that, we will assign a color to each\n", - " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", - " x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx\n", - " y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy\n", - " xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h))\n", - " if fct is None:\n", - " Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()])\n", - " else:\n", - " Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()])\n", - "\n", - " # Put the result into a color plot\n", - " cmap = plt.cm.tab20\n", - " Z = Z.reshape(xx.shape)\n", - " if ax is None:\n", - " fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3))\n", - " ax.pcolormesh(xx, yy, Z, cmap=cmap)\n", - "\n", - " # Plot also the training points\n", - " ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=cmap)\n", - " ax.set_xlabel('Sepal length')\n", - " ax.set_ylabel('Sepal width')\n", - "\n", - " ax.set_xlim(xx.min(), xx.max())\n", - " ax.set_ylim(yy.min(), yy.max())\n", - " \n", - " # Plot clusters\n", - " if clusters is not None:\n", - " mat = []\n", - " ym = []\n", - " for k, v in clusters.items():\n", - " mat.append(v.cluster_centers_)\n", - " ym.extend(k for i in range(v.cluster_centers_.shape[0]))\n", - " cx = numpy.vstack(mat)\n", - " ym = numpy.array(ym)\n", - " ax.scatter(cx[:, 0], cx[:, 1], c=ym, edgecolors='y', cmap=cmap, s=300)\n", - " return ax" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Logistic Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", - " intercept_scaling=1, max_iter=100, multi_class='multinomial',\n", - " n_jobs=None, penalty='l2', random_state=None, solver='lbfgs',\n", - " tol=0.0001, verbose=0, warm_start=False)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.linear_model import LogisticRegression\n", - "clr = LogisticRegression(solver='lbfgs', multi_class='multinomial')\n", - "clr.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VMX6xz+zvZf0Su9IU5pYQFFR7AoiNqz87L1eu1ev1957x94LInYF0StKRwFpCek9u5vtbX5/7LImJJCEYkDP53nyJDlnzpw5Z5P5zrzvO+8IKSUKCgoKCgqqrm6AgoKCgsLugSIICgoKCgqAIggKCgoKCkkUQVBQUFBQABRBUFBQUFBIogiCgoKCggKgCILCHooQ4lQhxJfbee3vQogJO7lJuz1CiLlCiBld3Q6F3RehrENQ2NUIIYqBc6WUX3fBvV8GyqSUN+1gPT2AIsCXPFQHPC2l/O+O1KugsDuh6eoGKCjsYTiklFEhxEhgnhBisZTyq515AyGERkoZ3Zl1Kih0BMVkpNClCCHOE0KsF0I0CCE+EULkNTt3mBDiDyGEWwjxpBBinhDi3OS5M4UQC5I/CyHEQ0KImmTZFUKIvYQQM4FTgWuFEF4hxOxk+WIhxCHJn9VCiH8JITYIIZqEEIuFEIXttVtKuQj4HRjerL15Qoj3hRC1QogiIcSlzc4ZhRCvCCEahRCrhRDXCiHKmp0vFkJcJ4RYAfiEEJp26hsthFgkhPAIIaqFEA8mjxuEEK8JIeqFEC4hxK9CiOzkue+bvT+VEOImIcSm5HubJYSwJ8/1EEJIIcQMIUSJEKJOCHFjpz9chT0ORRAUugwhxMHA3cBJQC6wCXgreS4DeA+4AUgH/gDGbaWqw4ADgX6AA5gG1EspnwVeB+6VUlqklEe3ce2VwHRgMmADzgb8HWj7WGAvYH3ydxUwG1gO5AMTgcuFEJOSl9wK9AB6AYcCp7VR7XTgyOQzxNup7xHgESmlDegNvJM8PgOwA4Uk3tv5QKCNe52Z/Doo2SYL8PgWZfYH+ifvfYsQYuC23onCno8iCApdyanAi1LKJVLKEInOf9+kvX4y8LuU8oOk+eRRoGor9UQAKzCAhF9stZSysoNtOBe4SUr5h0ywXEpZv43ydUKIAPA/4Engo+TxUUCmlPIOKWVYSrkReA44OXn+JOA/UspGKWVZ8nm25FEpZamUMtCB+iJAHyFEhpTSK6X8udnxdKCPlDImpVwspfS0ca9TgQellBullF4S7/5kIURzM/LtUsqAlHI5CWEato33ovA3QBEEha4kj8SsAIBkx1RPYkScB5Q2OyeBsi0rSJ77lsTo9gmgWgjxrBDC1sE2FAIbOtHmDBKj6auBCYA2ebw7kJc007iEEC7gX0B28nyL59ni57aOtVffOSRmRGuSZqGjksdfBb4A3hJCVAgh7hVCaGlNi3ef/FnTrH5oKcD+5HMr/I1RBEGhK6kg0fEBIIQwkxjdlgOVQEGzc6L571sipXxUSrkPMJhER3nN5lPttKGUhMmlwyRH3g8AQeDCZvUUSSkdzb6sUsrJyfMtnoeEELWqeot2bbU+KeU6KeV0IAu4B3hPCGGWUkaklLdLKQeRMLEdBZzRxr1avHugGxAFqjvxKhT+ZiiCoPBXoU06PDd/aYA3gLOEEMOFEHrgP8BCKWUxMAcYIoQ4Lln2IiCnrYqFEKOEEGOSI2EfiY46ljxdTcJGvjWeB/4thOibdE4PFUKkd/CZ/kvCYW0AfgE8ScewMems3ksIMSpZ9h3gBiGEUwiRD1zcTt3brE8IcZoQIlNKGQdcyWtiQoiDhBBDhBBqwEPChBRro/43gSuEED2FEBYS7/5tJbrpn40iCAp/FZ+RcG5u/rpNSvkNcDPwPokRdG+SNnIpZR0wFbiXhBlpELAICLVRt42Efb2RhOmjHrg/ee4FYFDS7PJRG9c+SKKz/pJEB/oCYOzgM81J3vM8KWUMOJpE1FERiXUKz5Nw8ALcQcLkVQR8TcJh3tazAIlZSDv1HQ78LoTwknAwnyylDJIQzfeSz7IamAe81sYtXiRhXpqfrD8IXNLB51b4m6IsTFPYI0hG8ZQBp0opv+vq9uwoQogLSHTi47u6LQoKm1FmCAq7LUKISUIIR9Kc9C9AAD+3c9luiRAiVwixXzL+vz9wFfBhV7dLQaE5ykplhd2ZfUn4GXTAKuC4ZEjmnogOeAboScLm/xaJsFUFhd0GxWSkoKCgoAAoJiMFBQUFhSR7lMlIbbJLjT2rq5uhsIfQt7HNdWwKCv84fg8F66SUme2V26MEQWPPInfGw13dDIU9hHc/urqrm6CgsFsw6I81m9ovpZiMFP6mzFXEQEGh0yiCoKCgoKAAKIKgoKCgoJBEEQQFBQUFBUARBIW/IYr/QEFh++jSKCOR2Hy9iUQ2xqiUcmRXtkdBQUHhn8zuEHZ6UDKzpYKCgoJCF6KYjBQUFBQUgK4XBAl8KYRYLISY2VYBIcRMIcQiIcSimN/9FzdPYU9D8R8oKGw/XW0y2k9KWSGEyAK+EkKskVLOb15ASvks8CyAPrevkolPQUFBYRfRpTMEKWVF8nsNidzwo7uyPQoKCgr/ZLpMEIQQZiGEdfPPwGHAb13VHgUFBYV/Ol1pMsoGPhRCbG7HG1LKz7uwPQp7OIr/QEFhx+gyQZBSbgSGddX9FRQUFBRa0tVRRgoKCgoKuwmKICgoKCgoAIogKCgoKCgkUQRBQUFBQQFQBEFBQUFBIYkiCAoKCgoKgCIICn8TlDUICgo7jiIICgoKCgqAIggKCgoKCkkUQVBQUFBQABRBUFBQUFBIogiCwh6P4lBWUNg5KIKgoKCgoAAogqCgoKCgkEQRBAUFBQUFoOv3VFbYgqi7Bu/Kr4n5XRgKBmPqPw6h1nZ1s7qEeNBLoHgZQqgw9ByBSmdsVWZP9x/M9rh5zR+kPBhgiNnM+RYLw4ytn1NB4a9AEYTdiMDGxdR9+gDmQRPQphXQtPQzmpbOIeukO1BpDZ2uT8Yi+Fb/QLB4KSqDBfNeE9Hn9Nnu9oUq1+Fd/jkxXyP6gkFYhx2OymDZ7vq2hW/VPBq+fBJ9wSBkPEb954+RfuQVmPr8fbbdfsPt4u244MFr7mavHv34YtEPXPzMPTyZmcmQv7koeGMxZns8bAiH6KXTc4zNhkWt7upm/ePZowRhL4uO+q5uxC5CxmPUf/E4mcdej6H7UACs+xxF7Qd34V36GbbRJ3SuvmiEmvduRcbjmAcfRMzXSO17t2M/4HSsww7rdPt8q+fT+M1zWEcdi7HnPvjW/kjlq1eTc9q9qI22Tte3LaKeGhq+eprsU+9Bl9kDgFDFH9S8eyv6855BbbLv1Pt1BREpecbt4fMHX2NQ94RIzzjseELhMM+/9QyP/IWCsCYY5MWGBtaGQnTTaTnTmcbeJtN21VUfjfKGq5ElgQAZag3THA5GblFXeSTMGSUlDDUa2dto5NeAnxca6nmlsBsFOt3OeCSF7WSP8yGsGd8t9fV3IlK7CaHRp8QAQAgV1hGT8W/4tdP1+VZ9B0D29P9gHTYJx7iTyT7lv7i+f5F4yN+pumQsSuM3z5F54i3Yx0zB1H8cmUdfg6FgEE2LPul029pt++r5mAYekBIDAH1efww998G/9n+pY7u7uSgYj/OZx8NLDfUs8fuRUqbO1UejqNSalBhsZuLe+/JHOPSXtXFFIMA5ZaUMNhi4OzeX/c0WLqsoZ57X2+m66qJRppdsoi4a49y0dEYYjVxTWcHHbneLcvfX1jLV4eChvHxOd6bxUF4+Ux0OHqir3VmPpbCd7HGC0Jy/kzAIjRYZCSFlvMXxeDiAUHd+1BTYuBjzkEMR4s+PWJuWjzarF6GyVZ2qK1JfgspgQZ/bt8Vx8+CDCBYv63Tb2kNGQqj0rUeoKoMZGQnuUN3lkTCPNDRwbX0DLzU24o7Fdqi+rbEhFOKosjLmpmXjG30wtwRCXFpbRzgpCk61mlAkTElNZYvrFq/7nULtXzdKfry+jisyMpmRlsZAg4GTHA7uysnl4e3onF9pbOBAs5nbc3LYz2zmFKeTp/ILuL+2hnD8z7/r771epjucLa49xeHku+0QIYWdyx4tCJv5OwiDJq0AtcmGd9nnqWPxkB/Pz+9iHjyh0/UJnZF4wNPimJSSeMCDaKOz3RYqg4VYwIOMRVocj3kbtupDkPEY3pVfU/Pe7dS8dzve375Bxlt2vgkz0G2UPnoKlS9fhnflN0gpMfYaiW/V/BYzmVjAg/+PnzD22qdTbW/O0oCfaRWV6MZO5IQzL6ek7xCmVlRQHYm0f3EnuaXRxXVnXcGn973CAxfdyLIXP4OCnrzhagRAr1IxzW7n7P9cxYaKEqSULFi5iBueupszzO2bi8ojEb5uamJVMNhi5tFZVgQCHGxp+RnubzazMRwmGI9v5aq2+dXv53CrDSkli/1+nq+v549QCJ0QzPf92dnrhCCwRd2BeBy9EO3ewxeP83JDAzNLS7myopwFzeqNSckHbhczS0s5q7SE1xobWgiRQvvsUT6E9lgzvhsD5pV0dTO2CyEEGUdfQ827t+L7/Ts0jhwCRUsxD9gP86AJna7PstdE6uY8hKnffmhsGQD4fv8WGQ2jzx/Qqbo0tix0mT1x/fgmjv1PRajURL0NuH58E+f4M1qVl1JSN/t+Yk11WEceC1LiWfQRgaIlZBx1NUIIQlXrqXnvdhzjZ5B+xGWE6zbR+M2zxINN2EYdh6nPaCpnXYl12GHIeBzvsrlYhk1Cm17Y6XexuU13uzw8cvkdTDlwEgDTDz6KG569j2cWfM4t6enbVW9bVEYilEQinHPElNQxrUbL1dP/jxvuvY4zk8cudjh4xlXLgRdNIRiPk63Xc5XNxgHmrTvqY1Ly7+pqvvQ2McJgZF04RI5Gw6P5BTjacMr+EQzykceNOxZnrMnE4TYbumYdb5ZGw8ZwmDTNn11BWSSCSQg6G9uWplZTGg4zq7GBdaEQB1msLA0EaIzFuLGykjytjkEGA0fabDxRX8ft2TmohCAuJY/X13Gkbdu+qEA8zlmlJeRoNJzsdFAfjfHv6mqm2kOcm57OzVVVFIVDnJ2WjlYIXm9sZL7Xx1MFBaibPXMoHudbr5fKaIShBiP7GI2IDojRPwGxI6OLv5p9+g6WPz76VofL74niEHXX0PDtc0Rqi1Gb07DuczTmAftvV12eXz7A9dPbGAoGEfO5iAc8ZJ54cwvbfEeJeRup/fhuop46NI4cwtUbsI8+Afu4aa3KBkt/o37uo+Sd/QRCk+hWZDRMxQsXknHUVejzB1L78T3o8wdiG3lM6rpIQzlVr19LwQUvg1pDcNNy/Gt/QggVpgH7o00vJNpYgcaRw5df3dWp9rtiMSaVllD53s+om3Wca8uKOPKKU/myoKDT72RrlEfCnFpTS9FbP6BS/TkJX7ByEVfdfRVvZWe3KB+TEn88jkWlardjeq2xgc+bmnimoACzSk1cSu6praE2GuXBvPwWZT9xu7mvtoZpDgdZGi2zPW40QvBMfgG6ZLvedjXytsvFY/n55Gt11EWjXFJextpQiBytlssyMjjM2rGgge+9Xm6srKCv3sCzhYUp4fnQ7eLJ+np6a7U8XdiNpliMC8vLaIzFGGE0sjQQwKlW82R+AdZtRBq91djIPJ+XJ/MLUu+pOhLh2OIiHsnL54aqSub07IUx+WxRKZm2qZhLMzIZn5wFFYfDnFtaQg+djj56PQt8Pgq0Wh7Ny0+9k78jg/5Ys1hKObK9cn+rGcKW7GkzhpjPRdUb12PqOxb7mClEPbW4fniNqKsS+9ipna7PNvoEdLn9cf30FjIeRd9tCLB9IyG1xUnOqfcSriki5mtEl9Nnq9FFwdLfMPUblxIDAKHRYeo3jmDJSvT5AwnXFGHfb3qL67Rp+QiNjpivAY09G2OP4Rh7DEfGYzR++wK+375Bk5ZPtLGC60wG/p2R3mK0uy10QhCPS7xBP3azNXW8zu3CoFJza309KyNRstVqphsNHGjZ/nDaPI2WDJWKt+fNZfpBRwIQj8d59N0XOVjbetytFmKbHWFzPnK7uTYrC7MqUV4lBJdmZDB+/XoeqKnh0yYP3nicMUYTv/h9vN69B331egCm2O2cV1bKJx4PUxwOAE6yO3DFYkwpLsaoUuGKxTjaZmNWYTeWBgNcW1mJQ61mtMncbtsmWCw41BrOTktr8bkca7Nzf20tiwMBfvb5GGs2M6uwG4sDATaGwxxrs3dolL4w4GeyzdaiXLZWy1CDkc+aPEywWFJiAKARgkOtVhYF/ClBuKWqkjPT0jjNmQYkROOS8jJmNTZy7k6cJe6p/H0lMcmeFJXUtGQOxl57k3bITPR5/TEP2J/saXfi+fk94iFfp+sLla+h9sO7MBQOxrH/qWjsOVS/eQOh8tXb3UZdVk+MPffeZqip2mgj6mntlIy6a1Alr9M6cghXrWt5vqkeGfKjMrYMK/X88iHh6g3k/d/z5J7xIPnnv8g3llzurK3rcLtNKhUH2Wzc9uJDxJN2ZV/Qz60vPEB1MEC/Q0/gpTufZsY5V3GXL8D7Hnc7NW4dIQR3OJ1c99gdnH7HZdz1+lPsf+EJVK/7ndOTHfH24o3HcapbjuN0CASwJhTiuYJCvurVm32MRuLQwoykEoIT7Y4W9nwhBP+XnsGnPXvSFIvxUY+e3J6Ti1alYrTJzKUZGbzS0Njh9jk1alRb9OuChCDPcKZxY1Ul77hcCCEYaTJxUjIstSMmG6daTWUk2uKYlJKKaIRcjZaycGtfUFkkQlryHdRGo6wLhZjWzKGtEYJz0tKZ2+Rpde0/kS4XBCGEWgixVAjx6a6+1+4uDIHipZj6jG1xTGPLQJteSLimqNP1Nc6fhbH3KLxLP6P+s0doWjIbfbehNMybtbOa3CamAQcQLF5KoFm4rH/9QoKlK1PmL+vo43HNe4XApuVIKYm4qqj79H4sww9HpWu5CM+7bC5ph8xEbUyM7FV6E44jLuN9j4eacLjD7fqX08mSn75h8BmHMPXGmfQ/dSI15cVccuIMbjr9Iob3Hsj0g47k/bue4TGXm8gOmFMHGQzMLihg0MZV1H7+LufFwryQndViBLs1pJT87PPxWF0tbzY24moWCbW/2cwHblfq92A8zombihFC8Hh+Pn30ehxqNWelp3O41cY7rpaduTsWw9RGG5rikjSNhm5brAMYrDdQ1gmn+6EWKy82NBBt9u4+b2rCqlJxUUYGzxUU8nBd7VYd1k2xGO+7XbzUUM/qYMuIshPtDl5L+icA4lLySmMjGgQznE7WhkN84nYjpURKyQ8+L995vRxls6fKq4Ro1elphUBxPSfYHUxGlwGrgZ27umkb7I6mJNeC14k2lBNuKMPY+09Tn4xFiLirUFs6P50NlawklpZH1tTb0GX1ItJQTt3s+wnXbNyZTW+F2mgl8/h/Uffpg6h0L4GEeDRE5vE3pqKSjN2HkXbI+TR8+RSxplqERo91xORWZiSAqK8RVBpkPIZImko0tkxkLMpBxcUc7nByc3pam07V5jjUal7KzmJ1KERZdQkX52RzaX0Dx+7fcqHekJ79MOgNVEQidN+BhVI2tZqTnc72CzYjIiVX1tZSrjdy7CEnsLasiCcX/8ijWZmMMJqYmZ7OaSUl1EdjHGAx877LhQrYx2hEv0VHv5/ZzKuNDVyUkQkkRsgvNzZwa3ZOq/vmajR443E2hcMtnvknv4/+SZNTR5jucLDA5+OYoo1MstooCodZHPCn7P699HpyNBrWhkIM3WLx3SK/n8sqyhllNJGp0XBReRnjzRZuyc5GCMFgg4GrMrM4s7SEAq2WhlgMh0rNY/n5GNVqns4v4LrKSh6rr0MnBBEpeTgvn8ykwzxbq6VAq+UTj5vj7YmZWkJUGjjUYm31LP9EulQQhBAFwJHAXcCVf+W9N88U/mphkNEwvtXzCZb+htrswDLkUGQ0jHf5F6QffRUNcx/FUDAIfW4/4pEgjd+/hC6rN1pnbsfqj0WIhwOoDFaE3kzaYReiy+oFJGz06ZMvp+rVK5FSpqJ9PAvfJ1JfijatANvo49Hn9d/h5zQU7kX+/z1HuGo9CIEuu3eqM9+Mqf84jP32RYYDCK0eoVIj4zECm5YT9zWiy+lL05I5CKD6zRsQGh2OA07HMmQi/jUL0OX1J2vKLfw8fxYz1v3ER/m57ZoehBAMMhgYZEjMQrI0ataUbmRorz+fubHJg8vvw5nx19uU33e5CGcX8Mu9L6FN+mA+/fk7rnngRj7NN5Kl0fJu9x6873bxvddLZTTKzLR0Hq1LrHFobrtfEghQHA4zbVMxmRoNi/x+zkpLY5y5tT9Ar1Jxbloal5SXcX1WNr10Or73enm+oYGXCtuP7ApLyRdNHhb7AwwxGDjKZuOZ+jqGGIzM6dkLW1Ksw1JSG42mzDibiUrJtZUV3JNcHAdweWYmp5Vs4muvl0OtiQ77WLudSVYrvweDWNUq+ur0qc98gMHARz16sD4cJiol/fV6VFv8PdyencPMslLm+3z01en53uulKR6jIhzhJ7+PSVYr0xzODvum/m509QzhYeBaoMvk+a+YLch4DO+KL/H+9i3RxgqEzoR176OI+xupeu0aDD1GYB44HlOvkciDz6X2g7uSztVGNGn5ZE+7s/17xKK4fngV77LPkYDaZINYGF127xbltBndkLEoxCIEK9dS+9Hd2MedjH3sVELlq6l5/w4yjrkWY/dhO/zcQqVOiYuUkkDxskReJZ0J06DxaB05CCFS6yIiripq3r0NlVaPxpFL/RdPojY7yJv5PBprGqGq9dR+cCeBTUsJblxC5gk3ojbasB52EdWblvNLwM+YDjg/m3OK0cgtz92HQaujvL4Gk97A3J++4TCbLdWJbS8xKSmLRLCpVDg1HftX+yYa47Kp56TEAODIMRO4zmBibSjEAIMBu1rN2WkJsTq9ZBNZWg1DjAb+VVnB1ZlZpKnVfOR2M8fj4Z3uPSiJRHDHYtyanZMaLbfFmc400tQaHqqtpToaYajRyHMFhfTTt51Hyx+P87HbzS9+PyuDAXK1Wg632iiLhLmntoYZDifvedw0xGLY1GrCUvJIbS0D9IZWKSqWBQKkqdUpMQAwq1Sc5nTyeZMnJQgABpWKfbaSWkMIkXKit8UAg4E5PXsxp8lDVSRCVMbpptUyIy0dCbzYUM9Cv5/H8vL/kaGoXSYIQoijgBop5WIhxIRtlJsJzAQozOrYKLmzNPcr7ApxaPjiCSL1pTj2nYbQm/Eum4vvt2/IOe0+jL3HUPPuLZj3mgiAeeCBmPqNI+qqxLXgdQyFe6Vs59ui8fuXiNSVkHv246itGYTKfqf2gzsJblyMedD4VLlQyUo0zlxQa3H98BppE2emzuuye6EyO3DPfxXj6TsuCJuRMk7d7AeI1GzENPBAYn4XVbOuJO2wC1uE1NbPvh/rsEnYRh8PQDzko+qNGwiWLMcy+CD0OX1wTjiLhm9fIHv63egyuwOJTkCb15/iutWdFoQDzWZebmri/IdvZfKY8WyoKGXVxjU8k51FMB7nU4+HZbE4mQKOt1ha2di3xldNTdzrciG0OjzBAPtZLNzidGJvR2QEEJetLdpxKduMDzvcauPFhgYezsvnibo6jikuwh+P41Sreb6ggAKdrsP5gYQQHGu3c6z9T6f+2lCQzzweeuh0qVkVJGz9M0pLyNVoMaoEffR6nmoWDnqwxcp1lRWc40xj+qZiCrQ6qqIRBugN3JOb+D+OSMmvfj/+eBw1pNYKRKTktcYGPvM04Y7HMCBoisU6HInVHla1mpMdTn7weZnn8/FkQWHq3qNNJo4p2sjSQGC78zntyXTlDGE/4BghxGTAANiEEK9JKU9rXkhK+SzwLCTWIezqRu1sU1Kkvgz/+l/I/7/nU85Sff4Aat69Ff/qeViGHoba7MC/6ntsI49F68xFqDVIKQkWL8M5cWa794iHA3hXfk3+eU+jNids1obCvbAMP5z6Lx5HxqIYug8hVLGWxm+fx3nwuQlzUcUasqbe1qIuU9+x1H3035RJaWfg/+Mnoo3l5J75CEKT6JwsQw6l+q0bMfYaiUpnINJYSdRTg7XZugSV3ox935PwrvgSy+CDANBm9YR4JCUGkBCccOlv9LV3/h94TpOHiCODdQ+/jtmQuP6tbz/lxqfvxgDk9+zPcQdNZu2mDZzyxYfck5HOfm2YXJqzMhDgTrebt+94in0HDccb8POv5+7l+oXf81RW1javPUyr4ZG3nmPSyP0x6BIj3fd/+BJ1OEg/fVqr8ic5HPzq93PSpmLGmy0MNxhYGwrxXGG3bY6U2yMYj3NpeTlrQyFGGI2sDAboqdPzcH4eZpWa112N9NbpuTc3l7NKSzknPa3F38sokwmTSsUIk4lvHH1YGwqRplanBPW3YIBLy8vJ1miwqdUs8/sRQrDI7+e1xka88RjXZmVhEIJZjQ2cXVrK6927t2vK2bymw6xStTIXNUdKyU8+H/uZTC0WrWmFYILFogjCX42U8gbgBoDkDOHqLcWgK9lZwhCqXIuh+7AWkTNCCEx9xxKq+APzkEOQ0QjWkcdQNesKjL1HIeNxghsX4Tz0fDSW1p3AlsR8LlQGS0oMNmMeNAHfb9/R+P2LICXazO6kT7oIY+9RAGgs6UTqy1qkxI7Ul6K2pHVKDEJV64nUbETjyEVfuFera32/f4dl2OEpMYDEbESb1YNQ6crEM0eCCJ2xlZ9BZbC0yF8UWv8L2ngMz/cvYdrnGGQ0hH/+LHrJKCO2I0Po5+EIl58xMyUGANMOOpKbX3yIPt1689Fdz6Se57DR4zn/P1cy12TaZmfztt/PldPOY99BwwGwGE3cf8GN9Pnhq1ZO2y05zm7n57pqRpx9BEfvfxhFZUUsXLWMJ7Kz2vxMtELwUF4eK4JBlgT8DDMamWixYNiBRVa10SgzSjbRTafjq9690QpBTEpurqrkwdpabs7OYYHPx0XpGQgh0KsEvi2ihuLJjtmoEphUKoY3+2zCUnJJeTk3ZmVzSNIUVBoOc9KmYi4oK8WoUvF17z6pzv9eQx5nlZbyZZMnFTG0JVJKXm4h/2GKAAAgAElEQVRs4OWGRnzxOHa1igvSM1LrLZrzq9/Pf2qqqYhECEtJWSTKrdnZKbNecTjMQGvn083/HehqH8Juz476GNSWNKINZa1G3ImON52mJXNQW5zYx03HMnQSgQ2/AIK0ieehNncsZl1jzUBGgkQaytGm/blaNVi0BEO3IVj3OZq6T+4l++T/tGiDde+jaPjyKTKPuwGNLYNoUz0NXzyJdZ+jO3RfGQ1T+/E9hGuKMHQbQvjXjxFaHVlTbkNtshPzu6n75B5C1UUYegxvXUE0AsnNf7QZ3ZDRMMGSlRi6DUnULyVNi2ejsWURaSgnsH4h4f+9xVNZGbyzdh7zFs9Gq1JzlNXCFTltd5ibme1xM8sfoDQQYIDJzPkWM2PNZqIIDNqWI2khBGqNhqP3P7RFnQcNH4NKp6coHKb3NkbftRIGbpHFVKfV0jMrh9poaJuCoBGC+zIyWBEM8utPX7GvRs2thQWphWhtIYRgmNG4UzbWkVJyWXk59bEYT2Zlo00+v1oIrsjM4oiNG7kpKxuLSkVjMhz2KJuN5+rr2d9kTu1p8LbLRYZGQ482EvX97PORr9WmxACgUKfjdGcaP/m8dNfpW8wEhBCMt5j5LRjcqiC82tjIpx4PLxQW0kev5/dgkKsrytGrBEc3u6Y0HOay8jKOstnZoA7hj8epjUa5uLyMWYXd+KTJw+pQiAfz/plRR7uFIEgpvwe+7+JmbJUd8TEYug9FxiJ4fn43YRtXaQhsXIR35ddo7FnIWIysKbcghEBjTcc6/IhOt09otNjHnkTtB3fiPPhctBmFBNb/gvvn98g++S50WT2JNtVDLALNRunWUccSD/mofOliVEYbcb8by4jJ2MZ0bO8F9//eBSHIn/lsyszV+O3zNHz9LJnHXEP93EfRZvbEOuoEGr95FvOgCSl/SKBoKVFPDYbCwYlnUKlJP+xCaj+6G8uQQ9A48/D/8SNRTy0qk42ad29Dl9uPN/Jy6Kc3MNZsgayMDrXzHbebV2OSR6+9l+F9BvL1kp+46rF/84AQHKRW8dQHrzB5zIFokgu+vlv2M40eF5n2lrOzaCyKNxTEqNq2UA9WwewFXzNp1AGpYxX1NawpL6Fvt/bXwWxPBx+TkjWhEAIY0EZ0TUdZFQpRH4sSB+xbzDKsKhVhGSdOYibzVF09+5pMHGW1sSIQ4JCNGxhtMlEbjdIQi/FMQWGbIu2Lx9sMEXaq1ehVKorbWFuyPhTeqglMSslLjQ08nV9An2SZwQYDN2fncH9tTQtBeMftolCrZVkwwHlp6VhUKt52NfKT38/+69eTr9PybEFBh9aL/B3ZLQRhT6KzpiQhVGRNvY36zx7G8+tHCI0OodZi3ecYDN2GYOg2pJWZZHuwjToWlclG3ZwHAdAXDCJ72r/RZfUkVPEHGmt6ajTevG2OA07DNmYKsaZa1NaMNrepDJatwvf7d8hoCGOvUYltPVVqfKu+I/P4fyGSHakQAsd+0yl7cgZRTw2hst/JOOZahEZHqGwcFc+fj7HXSGJNdYRripLX/tkmY+9R5Jx+P94VXxGqWIN54IGYB41vYWrq18k9EOJS8ozHwwf3vMjw3gMBOGn8EUSjUZ578UEez8zgu4pN7HfBCZw48WjWlxXzwYKvGKFWcferj3HQiDHYTBaklDzy/iv01unIayP9RHNOsdmZ/uOXXGcycfLEoymtqeK2Fx7gDIejXafy9rDY7+eGqkp0QiBJiMM9uXnbNWOoiUboodMxWKXiXbebmc3SObzncrGv2YxaCCZZrKwJhjiiaCN7G42URCKkazTsbTTSW69nX5MZzVZEabTJxO3VVVRGIuQm32VESj7yuJnhdPJ4XT3P19dzhtOJRgjmNjUx3+flqszMNuuLSEl9NEq/LQRjL0PrRXXrQiFKIhG+6tU7NZsZazJxaskmuml13J3bfujy3xlFELaTzpiSNLYssk/+TyI1QzSExrFr/ugsgw9CpTPR8NVTWIcdjja9WyrRnHXsVALrfyFYvAShM2EZfDDajER8uUpnQLWVLKLuhe/RtGQO1r2PQqU34/n1Q3xr5pN57PXIaBih28LxptEl1hIUr0DoTKiS5hjn+DOxDDkU7/IvCJasTDjZ20jDrXXm4Rw/o822bM+GOJ54HH8slhKDzYwfNpobggF0QvBkViZ319TwwNsvMHbwCG45/WJm//AFDeXF9Jo+AYfNgcvbhFGj4Vpb+zmOMjQaXsvJ4cUfv+Ts7+bgUKs526Bn8g6mrWgLVyzGpRXl/Ccnl/GWhHB94/VycXkZc3v26vS2lIMNBpYHAjxfWMgl5eUUh0OMNJn41e/nO6+XV7v9Gdl1eWYmpzqdLA8EyNBoGGYwdOjvOl2j4cL0DE4t2cQpDic2tZoP3S4y1BoOs9oYZjRyS1UVzzfUoxaCXI2GJ/MLWmRkbY5WCAp1OhYHAnTX6Xi1sYFlgQAAeVtcY1apGGUytXgvQgiOstlZGvD/o8UAFEHYITo7W9BYd/1CJ1PfMSBjuObPIlxbjNaZh23MVAIbFhLz1GIeNIFYwE3Vm9fjPPjcVPROW0Sb6vH8711yz3ky1XbLkIlUvXo1gQ2LUmkxnAedDUCksZKad25GpbfQtGQ2cb8b14I3ceyfWH2sTctHRsOY++/XphjsCiwqFVohWFtWRL+Cnqnji9b+RvdkfL0/HmeO389PT75P77zEZ3rxcacx6vzjCHlcPHDBDYweMJT5K37lmifuIk2taXNxV3OytVpu+AuSpc31eBhnMqeStwkhOMRq5VOPhy+amjixkyKUpdFyot3BbVVVXJH0ZbzS0EB9NMZb3brTY4tReKZG08IX0FHOSEtjmNHIJx43G8IhznCmcajVikYI8rU6XijsRn00SlRKsjSabXbUQgguSs/g6opy4iTSZ1yYnkFROMzT9XV85HZzXDKUdpLVymN1rXNgbQyHOhxS/HdGEYSdwO6WCsPUbxymfuNSv/tWzSPmayTn9AdS5h3z4IOpfv1aTH3HtmkmAgiWrMDQY0QLIRNqLebBBxPYuAj7/qdS/cZ1RBorMHQfhvunt7GNnYJt5DEIoSJcvYGqN64nHvRi6D4E/9qfCZX9Rs5p9+3aF9AMjRCcYbdz5l1X8vz19zGwW28W/LaYqx67g39ZEqK0NBBgWI++KTEAUKlUeMMhZt1wP+OHjQZg2oTJaDUaHnryP+0Kwl9FQyzWpgkrV6uhYTt3g7s6M5NPPHo+cLtpiscYb7FwljOtw4vrOkp7fpL0Ttxvss3GXI+HLK2Gm5OpOcaazYwwGjmvrJTJyX0gJlqsPFBbyysNDZzmdKIWgp99PuY2NfFO9+7t3OXvjyIIO4ldvbhtR/Bv+AXrsEkpMQDQZXRDl92LUOlvqTDULVHpjMQCrbNAxgIeVDojGksauWc+iu/37whsXIzKYME28tjUaE6X3RvbqOPwr1tI1FWBPm8AzoPP3mam1F3BOXY7GrebI648DVc4RIHRzJU2Kwcl89eYVSrqmlwtIsHCkQjlddUcOLTlu5k4Yl9m+pqAba8n6Ag/+Lx8EgjhB8ZpVJxos7cbLhqKx1kTCuGNx1geCFIUDrEkEODC9PRULqPNG8Dcm5u3Xe1qa4FaW2wMhZjn82IQKg61WsnYCYKx0O/jzUYXdbEowwxGZqQ5ydJ0bKuemliUs9NbBgIMMBiwqdUUh0P00xtQC8FzBYVcV1nBiw0NGFWCGHBvbh75f+HWpbsriiDsAnZlnqRwXQnRxkq0md3ROlonKWsLodYRDwdaHY+HAwjN1sMnjT33puGLJ/Cv/wVTn8QoOdJQjnf5F2SfnEinodIZsY6YjNrkwLvyq1ZTe409G11GNzKO7rz9vznb4z/YjBCCMx0OZtjtqXw/zds5wmjEX17Oq199xBmHJVZJVzbUYtDpWVm0tkWeo6XrVlFo3HFz19ONjcyOSa465QLSrHZenvM2nxet5YXsrK1u1PKJ2829tTUYhaAxFuN4u53eOj3LA0GOKNrItZmZIASvNjQy1GBkqGHXxdI/VlfLOy4Xh1mt+OJxHqmr5c6c3O0yH23mQ7eLx+rquCA9gx46Hd94mzh50ybe7Nad7HYc+ZDYsa0sEmFEs0lHIB6nPhptkTK8m07Hm917UBIOE5Rxeuv0LRan/ZNRBGEXsjNnDfGQn7rZ9xGu3pgY2Vf8gbH3aNIPv7jFyL8tzIMn0DD3UcwDx6fWNvjXLSTmdaFPhn22hdDoyDz+Rmo/uhvP/95B6E2EK/7AefA5rXZd0+cPpH7uI8R8rtQ9pJT4Vs/H1H+/HXr2nYUQos19e1VC8EhmJpc+dx9PvPsi2c50flm3in31es797zW8ctNDDOzWm2UbVnPxQzdz3g6uYK2LRnnF7WbZC5+Rk5YInT1uv0M44uozmNNYncrE2ZzfggHur63h0bx8Liwv463uPVIhlmelpTF1UzHPNzSQodEwxWHnGJt9lzlIlwb8fOx280mPnikz0qpgkLNLSxhjMm1XiomwlDxYW8vzBYX0TwrZKJMJAbzU2MD1WdnbrgCY5nByd001ww1GCnU6wvE4D9TWMMpkajOHk+IzaI0iCH8RO+pnaPzuRVRGK/nnv4BQa4hHgtR+cBeeXz7Avu9J27zW2H0Y5iGHUPH8+Rh67k3c7yJSV0rmCTdtM+Q1HvLh+2MBCEHEXYU+tz+5Zz2Kxt76n1NtcWIdeSxVb1yPfcyJqEw2vCu+Ih70btee0LuCcDzO7CYPP0XjWJAcZzIyIjna76vX82l+PosDfpoaqrm9sBC7SsUst5tJV5xKMBbDqtEw02ZjqNHITfX1LA+FydJqmG4wdGpkvCTgZ98BQ1Ni8NPvS3nwvRdZW1NJcThEgVbHqC1E5z2XmzOcaTTEYgw1GFNiAIlkb9MdTlaFgtyZ0/l8X1WRCKtCQbI1Wgbp9e0KyRdNTUxxOFr4FAYZDOxtNLLA5+OIdvZGbotN4TBWlTolBps53GrjzurqDtUxwWKhNJJY8Zyv1VIVTZid/pO7a3Kg/R1RBOEvZHtFQcai+FbPI3/mc6nZgEprwDF+BnUf39OuIAA49puOZcihBDctR6U3Yey1T4v4/lb3jMeofucWtGkFZE/7NyDw/PIBtR/9l5zT729TSOz7TUeX0xvfym+IhwMYe+6NZfgRqdDTriQcj/N/NbXo87oxY/JJ1DTWc+37LzEjHOa05IhcLUSrrSJnOBycZrfjjccxCcGcJg+nVFRw2dSzuXG/Q/ijtIibnr2HGreLU9oY2beFQ62msr4GSCyCO/Pe67ntjEu4+5yr+Hn1cq5+9h7+HY+32MazMRZljMmEVghCbSS/C8o42k5ujyql5N7aGj50uxlhNLIxHCZDreGR/Pxt+gPiEtRt3Eu1AxvNONVqGmJRAvF4i0VhJZEw6ZqOzzhOd6Zxot3BulCIDI2G/A6YmhT+RBGEv5jtMSPJeBQZi6Y2l9mM2uzo1NaaGlsGliETO1Q2WLQE4nHSJ1+eGjGmHX4J1a9dQ2D9L5j67dvqGiEEpj5jMPUZ0+E2dYQd8R9s5tMmD/rcQube90pq4/vjDziUMecfz9EW6zYXjKmTNvtTamoIavVccMIMrj/lfAAGde/DoO59mHjZyZxotbXapKYt9jGacJeX89ycd3jzu0956MJ/cUJyk56+BT1Is9m5/eFbWgjCSJOJuU0e7s3J5aZwmIV+Xyqza0M0ypsuF3d3cnbwgcfN4kCAL3v1xqZWE5eSh+pquaWqkicLtr4HwqFWKzdVVTLN4UilCF8XCrHI7+eu7ZihSClZGQxgV6s5vriIKXYHpzid1EajPF5Xxw0dMBc1x6RS7ZQ0Hv9EFEHoQjo6Y1BpDehz++JbPR/LXgenjvtWfoOx597IeIxg0RIijRXosnqiLxyyw/bjcE0Rhu7DWtQjhMDQfRjhmqI2BWFnEA8HiTXVobambzUctjn10Shvuz2sisUZqFFxks3Wpr3452ic0ydPTYkBQPfsfPbpNYAlntpUxFFbSCm5pr6eS06/mJe//JCjxrZcu9G/sCd2s5XySIReHcgwqhaCJ7IyuXLWo6z3eTl85AEtzk8auT9T3S5kcqcwgBPsDj5wu7mpuooznE4uKS9nsMFAplrNAr+fUx1ORnbSt/Gh281F6RmpTl2VjOc/YMN6ziopQSVgosXKFIejRW6hkUYjEy1Wji0u4kirDW88zhdNHm7Kzt6uldhP1Ncxx+Ph/PR0nGoNrzc28mxDPSIe55KsLCZY2l8MuL344nE+crtZEvCTqdEwxe5oYY77p6EIQhfT0RmD86BzqHn/DiK1xehy+hLctJzAhl/JOO4GKl++DKHRoc/th3f5F6iMNrKm3NqhDjUe8uNf+xPxoA9Dj2EpZ7HGkYN3+Retyoeq1+8Sn4CUcdwL3qRpyWxURitxvwfTXhNR6U1MqawhQyU4w2JqEf9fFA4xvbwKTb99Ed2Hs6xkBa/+sYDX8nJb/VObkVQ31G1xT0mNu6FdJ+j6cBiPSs3/HXUyXy/5idUl69m776BUHd8s+R/lrnqWaVUUaLUtooRWB4M82eRlkbeJTL2Bk0xGTrXb6anT80FuLpPKK/iteB2jBwxNXfN78XryTOYWYmxWqXi1sBtvuVz86Pcxymikh05PN52WSzMyO7znQXO8sXgrc4xeCLQIDrNaydFqeK2xkXk+L0/lF6TyIwkhuDYri6NsNuZ5vaRp1Lzfo2e7KT3aojYa5ZWGBi7PzMSkUjHaZGK82cwZpSWogdOc7Wf73V7csRhnlJTQXaflEIuVTZEwZ5aWcEdODgf/Q7fUFHIHNhL/q9mn72D546NvdXUzdikD5pUgZRz/6h8SDt14HFO/cZgHTyDWVEfTsrlEGyrQZvXEOvwIGr5+Bo09G+eEM4FEx1r/6YOozU6cB5/Tqv5A0VI8C98lUl+G2pJOpKEcQ49hqM1OAut+xtR/v8QeDLEoFS9ciHmvg7GNOh4ENC2ejXfZ5+Se8+RO9wt4fv0Y3+p5ycyrmYRqiql+4zpMfffFPHgCUXc1oR9e5XKLgVOTq2/Pq6ph9d7HYR39ZzK+pkUf03fR+7yU03KdwPJAgCsbXXzz8Jv0zC1ASsmsLz/kv8/fz+z8fEJS8rirkU88TfiiUcY7HFxus9FDp2NFIMCdkTi/vjCHb5b8j/MfuZW3b3qYvXr05eQ7r2DFxjVMHn0g64rXsX7Tep7NzqaHTkdROMRpFZXMOPIkTpl4NN5AgGse/zcj/R4uS+61/IbLxSc6I2/c+hi987pRXFXGqXdcyqGBJmY4Orcfc2e5r6aGoIynFnIB/OTzcUd1FZ/17IVKCKJSMnVTMVdmZnKAeeeP1G+uqmSOx8N4iwVfLM7voSAP5OZREY1wb00Nc3v22ukL4jbzWF0tFZEId+bkstDvpy4aRS8E99TW8GWv3lvNxbQnMuiPNYullCPbK6fMEHYz1ozvxtkP3cr7K1ZgHXUcQqhoWjKHwPqFZBx3A87xZ6bKyliEwPqFFFz8auqYECrs46ZR/fbNrQTBv+FXGj5/DOfB56LPH0SofBUNXz+LZcihmPqMJj7+TKpeu4bA+oWY+o4le/pdNHz1DGWPnQIIDN2HknXyXe2KgZRxQuWrifvd6PMHttqnoS2alswm49jr0dgSCcwCa3/E1G9fMiZfnipjKNyLB1++lONtNkwqFQub3OQOm9SiHvPQSfz67QvI7MwWI+xhRiPnhcPse8HxjOjVn1p3Iz5PI49kZqIWgqtr68gYOJwfz70Kh8XGi3Pf46y3nuWDvDwGGAxU15Ty6x8rmbj3vtx2xsWc9O/LcHubGNq7P6tenIsuOTp+8uPXuemtZ3k1O4sb6+qJCBXzVyxi1lcfc8je45h108OMu+hEzrbZsKrVTLfb8bvdHHjRFHQ6PaFwiNMdDs7ooIN6RzgnLY1TSzZxVUU5B1ksrAuFeNPl4sG8vNRsQCMEh1ms/Or373RBWB0M8p3Xy+yevVLO31/9fi6vKGeK3Y5RCEoikV0mCD/5fJzicHJk0UbsajUFWi3/8/tRkVh0128XruPYXVEE4S9CSsmako0s+H0xX69YTDgaZdp+BzP1wMNRNzNZLNuwmtm/LCD77KdSm+qY+o+j8qVLCZasaLnXsUzUi2qLj1GtJR72U/b0OYlUE4PGYx8zBfeCN0ibdFHK6auxHYjQGXEveB1Tn9Go9Cas+xyNb/UPmPqORWPLIuvEm4lHQgAdmhVEGiup/SARlaSxZ1H/2SNYRx2HY7/p27wu2lSPNq0g9Xuw9DfsY1tGT2nT8tFbM1gXCjHMaMSg1hLze1Dp/zQjxQMe9Oq2c9+cbLcz2WJhaVMDFo2KEfn5qIRgdTDI+rhk9g33pVJgXzn1bFZtXMMHq5dyjtPJzWlOjv/XTM6aPJUeed3olZ7F6qCfm0+9MCUGADOPmsZdsx7jlcYGvBYHy+55gfyMbHxBPxc+cjsPvPci3dIzKYlEGKxWI4TgXIeDM2w26mMx0tXqrS5M29mkaTS8070H77vdfOv1EojHGaDXt9jXGKA0EmHALrCrz/F4OMnuaBEJNMpkYqBez5uuxMrxAq2WpliMr71NeONxxpnM29yLojOYhYqn6uuY4UxjenLG5onFmLapmF8DgX+kIPwzk37/xSxa+xsDZx7H2KtmcOWsZ1lg7MWvjsFc8eYrnHT3tTQ3281b/iu6PmNa7rCm1mLqvx+hTSta1Cs0Wozdh+FdOqfFcc8vH6Cx55A95TYyjrqKcOVaaj+5h3D1Bow9925R1thjBOHqjc3upYEtwhpVWn2HxEBKSd0n92AZOoncsx8na8qt5J33NL5V8/Cv/2Wb1+rz+hNYvzD1u9rkIOpuGX8uY1E83ka+8yUiq46zWfF/+xwyFk2d9337HMdsI+WCTa1mvMXCPs12PdsYDjOq314pMdjMASP2ZWM88dkcYrXySnYWjfPm8O2bT3OEu45stQbtFnZzlVChVqn5LBzlgQuuJz8jESFjNph48IIbeHf+52yqq2mVhVOnUpG7hf/hr8CqVnNmWhoP5uXzYF4+m8IRPvW4kVIipWSe18s8n5cjt2NtQXsEZRyzuvXzqoXAolJxpM3O+nCISUUbmef1sTEU5qzSEu6pqUZKyftuF0cWbWTIH2s4sbiIr5uaOnX/cWYz7nicac0SANrUai7OyORHn3eHn29PRJkh7GJcXg9H3nIRqpFTiC58l/yzHk2Fj8qB4/nxtSv4fvlCDho+FoB0mx2Vr6FVPRpfPdeNGc4TWxx3HjKT6jdvJFS+Bl1uPwIbFxOpKybvnKdSK4Yzj7+R8mdnorakEa7agD5/QOr6cPUGNI5EpyWjYZqWfoZt5LHb9ayRuk3E/B6sI49OjdDVZif2MSfiW/l1Kv1FWzgOOI3aj+4mFvBgKBiM2uzENX8WhsK90KYXIGMRXPNfRZvVgzc8NezV1MSVaU6Kataz9InTMeX0JVC9niEaNddkt503f2v01Ol4dN1vxGKxFrO1H5ctpEeziUYvvZ6rmo1OK2MxHn/vJfYdODwVvfTOvLlkqlW4o1F65vw54wFIs9oRwHiLZZeZQXYEo0rFUwUFXFdZwWN1dagRRJE8kpffqURzHWWCxcI9NTWc4nCm1h6URyL84vcz1e7gsowMjijayIO5eYxNBhNcEctkeskmIrKan/1+7sjOYYjRyEK/j1uqqtAk90TuCKNNJt5xu1ptJmRVqQjsQb7Vncnu91f5N+O9+V+gLRxCXKXC1GdMi7UEQqNF9Nufzxf9lBKEY8cdwlXPPYBYtzCRyhoIblpBcP0vnHTtv7jEmcg8ujkiSevMI++cJ/Ctnk+0sQJUKmxjprbYflOoNcmd26LUf/E4GUdfgy6zO+G6Eupm34/a4sT1w+v41vyALrsXpgH7b9ezynAAtdGKEC1HfSqTvc1cSs0xFO5F1tTb8Sx8H+/yL9CmFWAeNIHKly9Fk1ZAzNeALrMnmcf9P3tnHd7U2cbh+0Qaa1KnhRZ3Ly5FBgx3Z6O4O4whY+iGw2DocGdjDIYNl6GD4e5SvN6mTdpGz/dHSyBUKAy2fdvu6+KCnLzn5E1IzvO+j/yeUSQ9vsqyX5fwsVbLUr8s3DGZuGcKJU8WTwoo3n6bX0SpJHdcHN2mDefrHsPwcNWxYtdP7P39MD9nS18grpO7O71vXqJ6/9Y0qlaXG/ducvDcCb7z9eV7g4FNR/bwRfvejvFHL59BAUz4E2Sx35UiSiXbc+XmrtmMVRQp+Ae6r72JILWG4kolbR6G0NzNDaPdzk+xsQz19iHY05PfjEayy10cxgCSV/Dt3T1YEBnBkuw5KJri1qmqcWV0Fl+WRkVl2iAUVCoxiSLnExIonZKyK4oiG/WxVPubqNn+2fxnED4wYTGRWHV+yJSu2IwxqZ6XJMTgqc3reKxVa9g2fh7tpgxH/9taBIkUITGOjaNm4Ovx8kbyqoCeRKFGG1gPSHYXmSOd01dFUcQS/gD3j7pgiXxI+MYxiBYTglyBa8l6IFMgmo141e37h2oYXHzzYo2PxBx2DxffvI7XNl45kMpVlRYKv3z4NB3heGyJDcV2/TC6uv2QqN0cYn5yz2xEWK2OcXldXNJtr5hZvvH2Zs7Ni5Tr0Rij1UJ1d09W+Pqm25QFkgugVvj6cthg4PLODeSTShkUEIC7VEpPiYSOm1cRnxBPvQofceX+Taat/46x7u5vVDT9qxEE4Q9/npl9nUl+WTmRYOSwIVk1dXFAdgqn3ORtiMjS+CrKBAGzKDqMwQvKqNV8Gfo8068vFwTG+fox4NlTmuvcCJDL2WuIx2wXafuBM7z+rvxnED4wlYqUYt6ByajKNSfm0HIS7p1BnSI3bXp2i6Sbx/l04CCncyoWLsm9lbs4d+caNrudsgWKIk9HAvj14jZNsVroV/TDcHkfmqI1EW0W9Cc3Iop2lB2LhdEAACAASURBVDlLoMoViLZ0I+wmIxKF5r2073yBIHPBs1ZPwn4ah7ZUQ2S6LBhvHsWeGIdX4JC3vp5M54OL3QISqZOya9LNE1RRuHA6wciceAMXY2PwVqppp9PS0939nZQrNRIJo7y8GOXl5SSD/cY5pjSkeV3LKKeLC99ny8raY3v48vAuskkkzPXy+q+C9jUEQaCKxjVVIBugrErNCPNzriYlUkyZ/Lkl2e1siI1BLghcT0qiyCtG4VxCAnlc3s6QfeTqyvc5crJFr+e6KYnmOjfqabV/eizn78J/dQgfGLvdToOx/bgUm4iQsxT63zcjVWmRyeTIjNEsHzKBxpXS71r2thQ68ghz+H2i9y/CHP4ARBFl7lJ41u6DzNUTUbSncum8b8zhDzBc3pccD8heHE3RGu9ct9BrdU8mxRlQVu+M3Dsn5tu/Yb2wi8nenoyLieHbQRNoFlSLu08fMfDbseSNCmW454crZvqribJa+SE+jssiBACfaDR/ymr+r+JAfDxjw0Kp46rFSyZlV1xccmMdpZL1sbF87edHMeXLGMIYX98Mq87/rWS2DuE/g/AnYLKYWbprI+uP7AegcsEi1C0TRLUS5VC+5YomM7zYMdiTDCCRInFRYby8H9PxdcTHR6HV+aCoGoymWOZ0jd4FW2IclshHyNyyINNl3EzGEvkY0+lN2MLuINX5IAlshDpvOYeG0SmjkWWGBJ5bbZRxkdHTTcf8uHiqNO/EgBYdHdeJ0EdTvHM99mbP7pBj+DtiF0VOJSRwOjERN4mERunIbbzOc4uFT8JCKVKnAcU+rseT61f5ddUSZnp4EvQP9nmHWizsjIsj3m6nikZDGZUKQRDYrI9leVQ0jyxmCigU9PXy/kP9GP7J/GcQ/gNINg7GK/uR/rqMWT5eBCpVnEtMZGhEFOLHvdFk0FP5XRBFkYRjqzFe3EOegDw8fP4QRY6SqOsOdEqlfYE58hH6H0cxolUnGlWoztWQOwxb/i1iuTYcuZ9aOuMF7cLCmTd2rpPkA0DpLvWZpJRT6APnkJtFkfWxsey0WrEjUlsmo5ObO+o3uBqsosjgqEjuqNSUbtaa2EchXNi/m1le3m9syzk2OprEpi1pOXy049jlI4fYOrQ/O/38/vUN4v8jff6rVP4bcPPRfXafOYrSRUHzoNoO/fs/dQ7Vc5Dlu+/5ztvLof1fVq1muo/IoBPfv5VBMEeEkBRyEcFFjaZg5VTqqwCGi7vxC7/OnhW/4OPmSaIpiS6zxnL8yHJca/dLfc3TmxjZujOftejEjlO/8uuFU3xUNJDtR1ZhDfBLVz4gr1TK8StnnAxCaHQkz2Kj8M+evlLnC4x2G2v1eg7Z7CgFaCaT0UznhkQQEEWR84mJ7I2P46Io8shkxlUup4VKSXd3D+TA4KhIovLko+GAoUilMg4uXcDxi+dZkyVLhjGM7XF6nvplY8yP25Gl6A+VP3WCL3p34UCKvHV6nDQl0adFW6djxavVYIXNRoTNmulWk2+LKIqcS0zkodlMfoWC4krl39b43DGZWGc08lCEwgJ00GrfqLEUYbVyy5SEn0yOu1TKXZMJf7mc7P/CBjr/zsjJn8CEld9SZ/AnXNu6huM/LaNUtwb8fGxfuuMj9TEM+24yxTrWpnz3Rny7aSUWq+UPz0MURQxxEamCmYFKFYbYzDUeEUUR46GlJG4eT1NFHOVirxK5rCeJDy+lHntlL7N7DMXHLdmPr1Iomdd3JIbrRxCt5lTjrc9v07BcNTpMG870H5dSMm9hiubKh0oK38Wkrsd4QUdXDd/8sJR1B7YRn2Dkwt3rtBvXlzZubm8UqzPb7XQOj+D34oHUn7WAihOmsUrnzoSYGOyiyIjoaIYmJbFFhLwduzFu3zF6rv2Jo7nzMio6motJidySyRmw6kcKVwyiQLkKdJo5H72XF0feUNC012anRvc+DmMAULhiEBpvH64lJWV4rk4qIzY81OlYoiEeq9WC5gMFQWNtNj6NCGeUzc6+MuUYlJhI98hIEuzv2vngw3E6wUjH8DCs7YIJmjqL0PqNafn8OfdMaX+uoigyPSaGhk+fMs/Lh+CYGOqGhjLNVUubiAj6R0Vh/Bu+zw/JfzuED8CpG5dYt3MjW/39HQVINzUaus4eQ81SFXF3da76NCYlUGvwp5S2mpjp6kq83c6in1dx4eZlVo+e/YfmIggCBX2TO4G92vzlbGIiWo/Madcn3j+L+uklTi/bhpsm2Ud7+OLvtJg4BEWfNUheabRjSYwjRxbn63rrPJAIEuyWJKSvNeWR6bxZf2gHD54/5sis9Q4ZiE9qNqZszyZ8onNLs1lLQaWS+Vl8mLfyWwbMmYCPUklbjYbO7m/WANoTHw+589Bz4QrHSrdwpSqMqlaWvMB1N3cqN2xC5LOnNB0wFAAPv6z0XbqWkUGl8LfZKFa3ITK5nPuXLvDD5HE8vnENURSZp1CSW+4CAuSQu6TaLUgBm83mdEwURWw2K5I3GLI2ChfWTx5PjnWbcHX3wGqxsHnyeKprdWjeY7bYq0zT6/H6uB4DJ85AEATsNhtLB/Rk3qXzjPibBe+nxhsInjaHMnUbAMm7J20WXzotns9GH59UO4XNej1HdW5M3nEAVw9PbFYrP0waS3x0NJ9t+oU1nw9kyrnTTPybvc8PyV+2QxAEQSkIwmlBEC4JgnBNEIQJf9Vc3jebD++ihUblVI1aSKmkjEbD3rPHU43/4dBOAixJjPX2pqBSSVm1mgU+Phy+cJLrD+86jT1z6wqjls7ky2XfcO72tUzNZ2TH/oyOiuY3o5EEu51jRgPjo6ORV+0AJN+Qkh5fRX9yI4bL+7CbEpzOF28fZ2jz9g5jAPBRYAXyZsmK/uBSp7GK7MX54fBup2N7zx5H4eaDRJk64CcJbMSKvVtoX6uJkyZQdh8/qhcrzamE9BsAlVQqaaBwIadGg95i4aTFysXEjAvgAM7YbQQ2aenk9lC5ulKkYmU2Jhip3r0Pz+7eoUgl5wI9F6WKfMVKYhZFQm/dIPLpE+b06kTN9p1ZcP4W3xw9i1eN2rSKiKBrvIGPnz7lQHw82+LiaBoWRrkHDwhJSGDfwjmYEl5+xhcO7MWm11PsDXGP1jo3KsfGMKpaOWa1bMjIyiUxHz7AuEwYwcxiFkXmxURT8+lTKjwMYa/RQFDbDo7PSiKV0nTYKH4xZr4x04dGFEWems08MBooVbue03OVmrQgEZHB0dG8Hi/daLHQ7ItxuKZIbEtlMloOHcXVY4cxJybSevxk9uhjMf2Ldgl/5Q7BBNQURdEgCIIcOC4Iwm5RFE/9hXN6L4iimGYzQwlCqi8lwLnrF6jy2ipYIZFQUePK+TvXKJIzH5Dshlqz80eaqdWIQOs9m+jWpD1fduyf4Xza1miIVCpl+toF3Hlwn4J+AcwY/BXNq9TGYrUQ/PVgfr96gSYqJfdsIud/XY5b20ko/PKlvCE7sjRWr1q1K5a7p6Duy9iAomJbZm74ggh9LPXLVub8vZvM3LwGdf0hafqd1fkrEnNxF5FxqYv2YuPjMgzSrtbr+UXqwrwvZ1MkZz72nDnKoIWTWejjQ/E08v1FUSTcasXNZufJ3Vupng+5fw+DTIZos5ElZy7uX75AxcbNHc/brFZCbl5nmE7Hnts3WDt2BJWatqRSk2T5bVcPT7pOncXwmifps2glSUYjI7t9ipuHJ+2//Y6cRYtz5civrB83klEflad0nfrEPn7E/YvnWOiT5Y0VwRJBYKSHB920Wm7HRJHVwzNVQ547JhM7DQbMQE2VypGRk1lGRkcTmr8gfUeNx9XDkyMbv2dev66M37YPnWdyYaRS44rJamVffBzHLFa0iDTTaN6pSvyPsic+jlnxBqItZmwIxEVG4P5Kh7Wo509xz+JLWEwMd1NiIC+Is1mdxgIoNRrkSiVJRiMeflkRBYEkUeSfm9jrzF+2QxCTeeFwlaf8+f9JecqA5tXr8XNCIvpXXAN3TCZOG+Kp+1p3LICc2XJw57VViCiK3DKbyJElWTrh6oPbrPhlAz9lzUp/Ly8GeHmxMWtWFm1dy+0nD944p1bV6nF66Q5itp/n1JLtNK9SG4AVe34m7PZV9mb3Z6SPN0v9fJjo4YZx25SXxitvRWZtWkVC0svV95lbV7j95AGmhDin15F7+uMR/A0bQ410W7WE+Rdvom01IcNKZU21ziza/TMPnj9xHNt75hg3H90jSJ125o3Zbme5Xs+PExZQtXhZvHTutK/VhNGdB7HCkHr1ejrBSKOwUJqFh/N9fBxHt/zEtRNHk901Vit7li/CZrUS/PUM9q9ZTsUmLfl9x1aO//wjVouFuKhI1owYTH5BoLhKxYosWQi9fJFcxZyznCRSKTmLFCPi8SPylSqDoFDS67uVFKlcFY2bOxWbNOeTcZMIEEXK/nqA1g/usS8g+1sVrPnIZARpNKmMwTq9nk5RUTxp2pLYTzoy3GTi69iYNBchaRFiNnPKZKLPktUEFCyMexZfmvYfQpHKVTn643rHuIOrl6FTKpin0aLoNYDolu3oHBnFz3FxGVz9zSTZ7cyPiaZ+6HNqP3/G1OhoYl9zr73K7wlGJhoTaL9oJfMu3aVi4+asHjsCU8ou0RAbw8ZpE6neNhh3Ty+n3yNAZRcFv21yzlq8/tsx1FodnlmzcenQfrKr1Oj+RUVqf2kMQRAEKXAOyAcsEEXx9zTG9AR6AmTP8vb9Wv8KKhcpRavazWi292caqNUYgX0GA3MGjsNDm1o1smPdFpT/eTVl5HLqabWYRJElsbEo3DypUqwMALtOH6G+Wu3khvKSyaijcWXn70coEJAbgPgEI0cun0YmlfFRyfLp1jk8iwpn+c4fWbvzR0qS3D3qRS58Pa2WyTFPsEQ+wsUnJ+oClYg4vJTSfVrQ7qMGROij2XriAJ3qtGD1mdQqpjKdD64fdc305+XimwdLxbaU7t+GorkLEB76BKMpkQYqJZZ0VmcRNhsKFwX5/HM6Ha8RWJG565wlAB+ZzQyKiqLTrAWUrFEbc2Iiyz8fwKJ+3dFqNMQlJuLpH8BnK9bjkz0nN04e45vO7ShQrgJbZ09n1ZfDkEskNHT3YGSKPzm3i4L2ChfOHtrvtIswJSZy98JZ2n4xFqNej91mJUfhok7zKVShElutFjr5+fG+CLdamBsby9jdh/H2TxbVq92lB1/Xq06DxMRMtde8YzKRr1gJ5K+t9IsGVeOX+bNQaXXcOXqI2yeP45MnH8M370Ka8p2p0KwV45vUYWJEBFXd3flMqyXnW2TpiKLIgKgokooWp+Pg4cgVCg4uX0Tng/vY6OubZuXwqsQkmo4cS8FyyTpgweMnMbldM4ZUDiR7oSI8vXOLoBatKRpUnZ2zplIkew6n83tptXyyaQMJ0VEUr9uQR9evcmDtcup07skv877h0IrFzPb0cuywXhgn979xjcsf5S81faIo2kRRDCS56LK8IAjF0hizRBTFsqIolvXR/X/oiwiCwOSew9k+YzU5G7ajdPPOnF6ynbY1GjrGhMdGMX3DErpN+ZwNh35h5RffsE6mJCgkhOohITwOyMPWKcscKpouchfSypVIAhTy5B/e5qN7KRBck2/nf82Ub8eSv31Nfr2Y2gN3/eFdKvZuTsiBrQxw1aCRSGgZ8oC7JtPL9wC82LAJggRFnUGEx8Vx8f4NdGpXBrXoyNJ9W5BXbv9ePjNNYAM0tXpx6+FdOtZtzuz+ozEWKMGnoaFprhK9pFKMpiSeRDpn3Zy9fYUcrwUPfzQYCGobTGDNOgiCgEKtpvf8pbhqNAyXSVGLdvrOXUyWHLkQBIGOE6YycPEqrh7aTze7jUM5c3Emdx4menri+srNoLVWx+3DB9g6ayqRT5/w4Mol5vXpQonqNcmSIxdqnQ7RLhL64J7TfO5fvkiOV+IF0VYrlxITiXlFn+ltOWYwUqJqdYcxAFC5aqnYNpiDmYirAOR0kRNy8zq21+YRcu4MuaOiMH83hzo3rlJOp6NKh64OYwCQNU8+8pYuS/tJM1G1aU9waCjRb/F+LiYlcl/uQu/Fq8ldvCQBBQrRceps5LnzsN+QdubWE5uVnK8YWxelihHrNoFoR2Kz0nbkWLz8svFt+xZ87u6Ryv3oK5ez2c+Pkr+f4MSY4VxYvxKZ3c6JNcuJXLOCtVl8qajREGI20zEiglqPH/Hxk8d0jIggxJw6Y+6fwN8iy0gUxVhBEA4D9YCrf/F03hsl8hSkRJ6CqY7feHSPep93orpSQQmZlLPXzzPfYuXA7PWoFSqULi6pMpFaVKnDtLUL6KDVOlwFd0wmDhnimRH0MQ/DnjFg9lhW+Pk6irLOJCQQ/PVgrq/Z7wgI643xtBndmx5qFcEpq91GOjdyRcuZHRnBAv8A9hvi8dDpuNSyKoIgUOjII9S5SyFtOZazZ7fw+/FfkXplx7XZGBTZUr+/d0G02zAdX8vW8XMJKprsXmpTvT69Z45izZXTDHwt00MpkdDOzY2OXw9m0bAp5PfPxcELJ/ly8XSmejj3Q3gmCOQo4rzWkEgkBOTNj+xRCJVVak5v30KTQZ87njfEROOnUtPZwzNdH7yHTMZ6Xz/mbd7A1DUrQCJBdHGhWtv23Lt4jlObNqAU7Szr34POsxei0mrZseBbzv6yjW4qFeEWCyMjI7iQmEg2/wAinj6lkU7LKHePt27fKBcEzAkJqY6bE4xkdp1eQKGkgBDP6mEDafnlBDQ6N37btpmz2zax2S8rfimG9lp0NIl6vdO5NquV8IchfD9xDKLdjkyhYFJkBN/4ZW5Xfy0piSLVajoZGUEQKFKnAVdXLqFhGucUkcm5evRXp//buKhI5DY7DZ8+4czsaXgCc3VaRw3O63jIZFRSqlhjjKTpiLEUDarGw2uX2Th+FDfNyfUIncPDqDVoGD0/7QTAr9+vpsucGezK5u+Q7f47cGrHwfSfLOCfqWu8sVJZEAQF0BLIxSsGRBTFrzL1Culf1wewpBgDFbAPmCaK4i/pnfNPqVRuOrIbZUIf0cHj5Y5naXQ0D/MUZmTHAWw6shur1UqTKh9TodDLDmnr9m/j84WTqOyqRQROGuKZM3AcbWs0ZPqGpdzauYHR3s7SyoMjo2jVcSAdajfFbrdTY2Bbzt6/xen8BZxWTAabjcp371Dby5szSUn8PHEx5QoWd7rWC0kM0W7DeGojSZf2kmSMxT1nceRVOqDIWuCdPxNz5CPEHZN4sMo5Q+nEtfN8NukzNvimlr+wiSLLYmNZHxeH3mwmj8aVvq4aJILAabMZD0GgsVbLPoOB4yVL0WPBcse5iQYDI6uU4me/rNhEkfZhoZRt0YZitery+NoV9i2ayxQ3d6pnUkoZkt0eO+Pj+MliQW+zEyST0UWrZXuCkcUxMSQhUKFhU7yzZ+f05o1ER0eSJ7AMUpmc+5fPEzx2EsfXraTGk8f09Xi73XCczUbtJ48ZtHYTeUqWAiDq2VMmNf6YVV6ZlwU32m1Mi9WzMzYWi91GoLs7I121TiJyZxMS+DwxkZFb9zqCsgsG9CAm9Dm9Zi3EOyA7d86dYWHfrsx01aQpXPc6hw0G5mh1jNi+3+n4sn7d+ejSeYLT+DzumEx0Cg+j/uARFKxYmdD7d/ll5mTaWS10fYsWpN0jIyn4+SiqtnxZ9Hf77GnW9upEP7Wan3LlYcDan5zOmRvcinaPQjJsxvRnkKEReIWuBfzfW6XyNkBPsq/f9Iaxb0NWYHVKHEECbMzIGPxTsNvtHLp6jil58zkdb+3mRo2zxzl2+QzNNRpkQPCezbSu04zJPYcDEFy7KXXLV2XP6WMIAiwrXx0vXfIXPz7RgFsaMXl3AeITk4OsRy+fQR8ZilYiIcZmRS15uXaMstlQubjQ4JM+rKhWN9UOBV4qqxoPLaGAJZIF05eSI0tWNh/dx5BlE3BvNw25V0Cq8zIjqCdxUaNPMGC2WJzST8NjotBK0l4tSwWBXh4e9HB3x5KysBkYEYlB507r+m159PwxbQ79wmgPDx6dPMEPE76kStv2xEdHsX36ROprXB3tG3/yy8rafbs4vGcnAYLAMi9vp5tgZhAEgUY6Nxq9djxYq2O5Po5hK78nX+lkpdsGPfoxLbgllZq2JKh5a+5fusDsHsEMXLSKpV3bv7VB0EmlTPb0YnhwS/KUKY+LSs2NE0forXN7q+wfjUTKV56ejPPwwCaKafruy6rVfGo2M/bjIAqVq0BoeBhhIfeZsv84nn7JSRAFypbnk7GTWD5pbKYMQhWNhmlPn7B9zkzq9uyHVCbj+KYN3DpxhFnZ0l7d5lcomOLuwbj5s9g0czKCAP5KJVXfUrr6eoKRVlU/cjqWN7A0kYmJnAOyFg9MdU62EqV4dv/OW73O+yKzRuBdyIxBCBBFsd6bh70doiheBkq97+v+3REEAaVMTrzd5rTdjLXZEOx2NmbNim/KTaqDu42W+7bQ8qOGlCmQ7Cv1cfOkQ+3UHc3qlq1Kj12b6G63O64ba7NxyGBgdOnKAFx7eJcyLi7I3dyYGRHBtKzZcEnRlp8eGUn3Bm3o3qB1hvM/UkJD4IKjbFm5x+GG6linGQ/Cn7P0/A7ktfs4xiY9vIzlt3XEPL6BWuuJslRDNOVbpim5LdN54+Kbl8nrFjK20wAkEgmR+hgmrZpD5zeoeUoEAYUg8GNsDKJfAJ1qNuL41fN46dyZ0nskYxdP44esWVmxbxfLf9mCRiKljYucdq/cdP3kcoZ5fJgCpEtJSXhl83cYAwCZiws1g7twbu8ugpq3Jk/JUhSuVIUnt24Qk5Q5n//r7DabyVmgELlKBCKRSFHIZOw4eZyOdvtb92CQCkKGEhw93d1p7urK73dvsVgfh0KldhiDF+QsWoxfLJmrtpcJAit9fBj341qGLF2QXFCp0bAii2+6QoVmu52JcXFU79mPj7v2RBAkHNu4nm4zJrErm79TvCcjsipVPL553bHbuXX6JEuHDUTj7cMxuw3Dj2spXa8heUokGwa73c6Ng3tp+gH1sj7kTT8jMmMQfhMEobgoilc++Gz+BQiCwCc1GjL7zBEmensjFQSsosjs6GhyKZUOYwDgJpXSUKXil5OHHAYhPYKKlaFK2Sp8ev4EbVQqLMAPxgQ6N2hD/oBcABQIyMUqi4VVPj6MDH1O7Xv3KKZScj4hkXw58jCm08A3zv/+88fk98/lVKQGUK1YKZad/M3x2PT8Dsad01k8YDRNKtXkztOH9JjzNQ+PGdFU75LmtVX1BrNn7UA2HtpBPr8ATt+9TludGw08Mrf9P2ixERavZ8+ZY7SuVo/HEc8Zt3ouCqWaUKuFL/+iilOZANY0ZEisZrOTz1yl0XL33BlKveXuAJLdJ6csZqZ8/7MjS0gUReZ1aM3ORw9o+RYulNfZFx/PgoQE7un1ZNdq6aHR0CJFobWRzo2qGlc+fvqEp3du4Z//ZUzp2vEjFHqLTCM/uZzFXt4Y3D2wkfz9z4hfjQY88uajfu8BjmM12nfm5uGD7Lp5nTaZLNjrqlQya/Qw3Jeswc0nC/P7dafnN/MpXq0GoihyZvcOZnZqy+Cla3FRKtm74Fs8YqMJ8slYxfdt+auMwKukaxAEQbhCcpqJDOgiCMJ9kl1GAsllBCXSO/c/MmZSj2G0exJC/Qe3KaFWcyHBSBZvX3IbUudxm0jOMHoTgiCweNgUdp0+wrYje5DJZHxXqzEflazgGFMzsCJSnSdzYmOY4OvHU6uF1TGxqFy17PlmLUlmM2arJdXN/lXyZM3Onach6I3xTuNOXr+I6PFya285v42xn/akRZU6ABTOkZfNo7+hUPfGqCq2RaJIHeSTuXryvZ8v100mwmPDGB0QkClZ6BeEm5IoWKAYG8fMcQSC65evTo2hHRC0b067/FCUUKpIevqUCwf3UapW8ueRaIhn36qlNBuYHMjWR0Zwbu9OpBYzS14rlsoMV5ISKVIxyCllVBAEitZrxKVFc2mZxjmiKLInPp7NFgvxokg1iYQObm5OK/KD8fFMTEqi46wFFCpfifuXL7Lw8/7Y9Hpap/jP3aRSBru5812PDrT9ahoBBQpx+cghfvlmCssycdO8ZzKx1mgkRISCAnRwdSUgE4bkqcVCtmIlUx33DyzN06updbbSo6FOR3ycnnntmmG0WilWqw7FqyWLPgqCQPkGTTj+w1qWdWuPq4sL9RQudPP2eafWon+Hm35GZPRre90V+h/vCa1aw84Zq7hw9zq3n4QwLkdesnr5ULxzPW5qXR1ZQo/NZn4xGjlcrS6QnC46a8MSLt+5Tl7/nAxs24NKRV76NyUSCY0q1qBRxbQVTKVSKb9MX8mI7yZT67eD2Owi9UtXYlmzDjT7ohsXH9wGBCoXKsG8zyaS0zd1P2FfDy9aVa1H8JRhzOw1gpy+2dh0dA/fbf+BgzNW0fR+8jgx+gmVC/dKda63hzfWuAhcfHKmuvburZ+DIFBUqaQob78dd5HL6VLXWZKiRJ6CZPPKgv0vLHmUCgKzvbzo91k/jpcIxD2bP2cO7EUikRD24B7b58/i4NoV5JEITPHLSt63aHgjiiJr9HqWGw1E7dvN87ZNaDbwc4oGVQPg+bXLFEun3vNbvZ69CgUNho9G6+XNbz+sZc+Jo2zw9XWI5S1KTOTTqbMoVqU6kBwb6DpnMYu6fEIrnc7xWbd3c8MtLo5Vwwby3JREMbWaxd4+qdpcvs65hAT6R0VSs2svqpQqy8mfN9L8yCHcJBIKuLjQU60mMJ2ivWJKJT8ePoh99FcOHShRFLmxdxc1MhE3sYgiBw3xnLVY8QK+9/VlTWws8XnzpxrrlysPDe7fpfM77DL/7kbgVdI1CKIoPgQQBGGtKIodXn1OEIS1QIc0T/yPTFMqXxFK5SvieLzws4l0nT2GihpX5MBRQzxfd/uM/AG5uHD3Oo1GdKWzqytj1CquPbpDuzG9x99KXwAAIABJREFU+W74NBpUqJ7p1/R282D5yBkstduTVUxNiZTsUp8eaiULc+fBJoqsDn1Ew+GdubB8Z5qtO2f1Gcm0DUupN7IbEfoYqhYvw+bx8yiYPTc3U5SnA3Zl5+jVs06urmdR4UTGROKj83nnzywj/KVSIvXOEhh2u50EYzzaTLqdPhQlVSr2BQRw6NED9A/uMdjTkyibjf1rlqFCYIlW907tNRfp9ezUudH3u5X4FyjIpV8PsOTzAfSdt4S4iHDO79rB2GypUz8jrFZ+0OuZdPg02pSbXKEKlVnYrT1b7twkOCUw+8BoJP8rsQ+APCVLEZGYgFkUUbxifBvpdDTSpU5GyIjpBgOfTJpJ+YZNuf7bMa6dOkHL4V+Sv2wF7p49Td/pXzPT3SPNXhHlVGqyRUawuE8X6vX/DIlMxoElC5A9f0YN34x3WUl2O90jIzD4ZaNU05Zcv3+X1Tu20k2j4ej2zTTsMxBZivvWnJTIpf276ZVB853/p5t+RmRmP+7kvE7JCirzYabz76ZF1TpUL1me3aePYLXZmFuumqOHwsSV39Jfp6Ndil+0mFKFv1zGl4unUr98NcdK7e7Th6zes5nwqHCqlq5E6+r1HYVrr/Ki4G3j4d0EyuV8knIDkAsCvTw9ORkezq7TR2laOXVXNblMzujgvowO7ptu/+Ffevbm4y964uvmSdOgWtx+EkKveZNwLdUgTXfR+6CZUsn0dQuoXTaIrJ4+yT70LWvwFkXy/Q207dUSCY10L9MU8wMV/0CnM5Pdzmq9ni+/34JPShVu2boNSdDrmd+rM9kkEhb6+KTZJ+FyYiL5i5d0GANIdo+UbtqSszMmEZxyfRelgjvnzxBYo7Zj3P1LF/BRqXF57f/dKor8ajBwzmwmiyDQRKdLU6n2BWa7nev6WAbWTa4y2DJnBsHjJ1M25bF/vgJoPDyYM25kmgZBEAS+8/Jm2fUrrO3WPrlRkYuCXj4+b6zj2KDXIxYuxvAV3zt+C6UaNGFN324UsNuZE9ySGt37YrNaOPDdXCpIJGnudv4phuAFGcUQvgBGASpBEF44twXADCz5E+b2r8RL507wx6mziH6/dYURWZ1XekFqDYPu38eQmIBWrWHX70foMW04zVxdySWVsOLiKZZsXcfumavRKNO+CYc8f0zBNBJQCkqlPAx79sb5ple0FZi3MNvHzeWrtfPpO3cCLlovXErWR1Ou2Ruv+a5Ud3XlpiWGwK4NqFCgKI8iQhGNBub7eL/3hi7RViub4+O4h0A+oKVW6yQr8mcQabPiolI5jMEL8pcpj5sAW319033f3jIZ4U8epTLo4ffv4ZOSwrtZr8ctix/rxo9CJnehUIXKPLh8kcWf9aWfRuN0XqLdTo+ICOJ9/Qhs0oIzt26wdP9u5nv7UCYd2QyZIKCUy9FHhOGZ1Z8Hly9SssbHTmMCa9Rm0cDekE4sQimR0N/Dk4zlHVNz0G6neuceDmMAUKRyVVzc3Ognl3Pj2RP2jh+JDKg2dBSVmrbk1D9YsuIFGbmMpgBTBEGYIoriF3/inP4jDfzcPAkxm52CrM+sVhQyGSqFAqvNSv/ZY5jr40PplB9gW1FkcEQES3b8yJDWaWf2lCpQjDkHt9PzlRuDTRQ5aTLRMV/hPzTnykVLsWfqcqdjL4rbXudF/+Q/Si8PD1pptVyKCcNDISPQLet7NwYPzCY6hYVTpGZt8lSqwtmTx1lzaD9rfH3J9SfuRLylMsyJCUQ+eYx3wMsucXfOnSa/i0uG77uEUomrPpadC2ZTv/dApDIZ9y6e4/Ca5azxSXbpHRJFGg0aBsCmGZN4fOsGfrnyILVaKfjaanm9PhaheElGLF3ruMmWOLiPL0cMYnc6iqsSQaClmxsbxoyk29zFeGbNxrM7t8lZ9GVB5NM7t8jyAfpFuwhgSnSu7Lbb7ZhMJlwVCnIdO0+vdM79J5NucrIgCKUFQSgN/PTi36/++RPn+K/HYrUQkDU748JCeZqS1x1jtfJVdDRd67dCJpVx+f5ttIgOYwDJq/dWGjW7jqffqa1JpRpYdB6MiYzkVlIS15KS+Dwiguw58hJU7P17Bm9Wz/HmQX8QL5mMmq7JcgUfotXj9HgDNfsPofOsBVRr/QmdZy2gRt9BzIyPf++vlREKiYSObu4s7t2Jh9euYDWbObdvN1unfkWPdKQaXiAIAgu9vAlZu5JhFYoztno5lnT5hK/c3BwS0Sog0RhPmboNGL9tH8tvPmbi7sPIBEmquob9Njs1uvV2WnEH1qxNktyF+xno/gxxc8f3xhWGVCqZ3Hxn+EAinyar3kY+fcKa4YPo+AEMQlOpjH3zZpH0Sl+HYz/9gMrXj/C9x9776/2/kNEe95uUv5VAWeASyS6jEsDvQJV0zvuPDLj1+AHf/riUS3eukcc/FwPbdEvVKP51Bn47HuO961TTaGgV8gCdVEq41UrzKrUZ32UwABqlCoPVil0UndLh4m12NBkEK+UyObtnrmbq+u/47Pg+ZBIpreq05PO23VPdTEVR5NbjB+gT4imZp1C6SqqvY7PZOHblLGGxUVQsXNJhFNLbLfydEUWRE9FRzGnnnFNR/ZMODJk9Dby80jzPLoocNhrYlZjEHZuVcLMFrUxGc5WK7u7uGfZSzog+bm5o4vQs7tCacKORIu7uzHR3d1oYpEdWuZx1WbLwxGzGYLeTzz/AyffeVC5n+vzZBNasg2tKjOn4pg0okxIo7O4s2SAHLCZnIQPRbsdqtWT43hQSCQNctRxLSKTL5G+4/tsxvmpeD4VGg1EfSy6plE6+708V9oXP39tuJ/uEUYysHUTxajWIePSQyGdPGLJs3d+2X/SfQUYuoxoAgiBsAHq+KExLUSR9P/v7fxmX7t2k4YgutNdoGK5ScfXBdVp92ZOlI2dQt1zqPgmQ3Dh+64n97MueHVeplIHePjyzWNgRHw8qjSMLqEBALny9/fheryc4JfCst9lYZjAwqmObDOfl7qpjaq8RTO01It0xD8Oe0mHqcJ5HR+Ctc+dpZBjTew6nXY20ZMdeEhL6hObj+qN0cSF31uwMXTSVT2s2ZlqPz/+wYbhvMrHZYCASgZJSgaY6tw/WW/gFQorfOyFOj+oVnSNjbCyqdJq520SRIVFR3Na4Ei0mUqN9F3q2+ZT46Ci2TBnPgwf3mZ6OIcnMfDq5udPpDxSepZfzX8vVlQuxsXz5UXmKVaxC9LMn6B8/YrGPT6qbZmOZlA1zv6FwpSBclMkLkCMb1uInSMjxBjdahNWKXzZ/igZVo2hQNZoO+IzY8HCe3rnFqTHD//ANOq3Ar0QioeOEqdTu2J3fd27j+b276MPDmPpJc4Kat6b5kBEo3iHr6/+dzETBCr1apSyK4lVBEFKLe/zHG/l6xWz6aF35NGW1VVKlIkAm58tFU6lTtkqaX/x7zx+RR61xlOGrJRLyKRRUsFpZE/JSS0UQBNaM+ZZmo3qwIzSM7HI5v8XH0bFuc1ql1DG8K6Io0ubrwbT9qAGDW3RCIpFw6d5Nmo3tS6EceQjMm36socuMUXSq25zBLZKVIvXGeOqN7MaPh3c5jMnN6jl4sPXt5nTEYGB0dDTdGrUjKEceth7excZbV1nt5/vGCtc/ShOdG1umTqDLrIVIZTJsVitbp31F03RSLn81GLjv7kGZxs0JfxRC88HJfnmvbP70W76eEZVL8dBsfqv+AX8GgiAwzMODT101nL1+BXeplMr+/mmu+Fu5uXM27Dmjq5enePVahN+/Q9S9uyzzeXOKcQGFgmePHxL9/CmeWf1xUarIkiMne7+bQ5l0dKxe512zfVRaLYc3rKVR74EMW/0j8dFR/DRjEkuG9mfAwuVvvsA/jMwYhBuCICwD1pFcuRwM3Pigs/qHcurWZYa/lilUVaNhyL17GJMScU3D75svW07uGQ3E2zzRvnKjO2cyUbhYIeex/jm5tGI3Ry6fISw2illFAsnpmznZ24w4fesyJouZIS07O4xWybyF6FinGZ8tnELurAHkzZaDznVbkM3rZTbI/eePCQl7yoCmwY5jbhotw9p2Z9Xen9+4u0gPmygyMSaG78fNo1qJ5Bz59rWa0H3aCNZcP8eADyxRMcTdnUGnT/Fl1TLkKRHIvUsXKAAMSmeV/6vFQqXunblz7nSqLBoXpYr8xUty5+GDv51BeIG/3AV/t4znJhUEZnh5cSMpiQu/HcVHJqO6v3+q1NS00Eql9HB3Z/YnLWg8/Eu8/AM4s3UzN/bs5KsMmgi9qxEQRZETWzayb+VSwh89pGKjZnzcMbmhk0KtpseMuQyrWZGnd2/jn+/dFXz/H8mMQegC9AEGpTw+Cnz3wWb0D8ZX58HD1zKFQq1WlHI5ynRuBr4eXrSqXo8hZ44ywt2dbHI5u+PiWBsTQ5XQJ/zw605aVa2DXCZHFEWeRIaRN1t2agRWeG++0Eh9DDmyOGfrPAx7yso9P1OtRDk+KlmBs7evUGlAG7Z/vYiSeZMNlTEpEa1KjfS1FbuHqw7Da01bcs/eyIMhGbu2XhBiNiNXqBzG4AWdG7Zh6KXfGZDOee8LjUTCMh8friclcf/mNfJqtRTOoCJXBSTpY8mSIychVy85ejAD2G02Ht66QUAGRU+ZxS6KbI3Ts91qwySK1JAIlFEq8ZHJ3+i2eV8UVirJq1BwPiGBswkJlFGpUGTCjdfDzZ2c8XFsmDiWGLud8lIp6319MdjtXFy3Gc0fcIm9zoE1yzm8YR3B4yZxcN1KClao5PS8zMWFPMUDCb13919nEN74PyWKYpIoirNFUWye8me2KIppNe/6jzfQq0UnpsfqCUvJFIq12fg6OoYu9Voik6Zvm78dOI5a9dvSJzqGyvfuMisqkhZaV4JCQ5i7aAotR/fi0r0bBPVpQdU+zanapwWVejfj8v3UjeTfhfKFSnD65hWeR0c4jk1YM5/uDVqz7osZdKjdlDn9RjO+4wBGLpvpGFMkR16SzGaOXTnrOCaKIst3b6Z+OjGTzKCRSIhPSsT8mpJmVFwsmky6GN4HRZRKGuncMjQGAI1VKg6vXkbJGh9zavsWftu6CZvVSnx0NGu/+Iw84JAr+SOMi4lhlZsH5SdM5eOZ8zhQsCh99HG0i4ykQ3g44WkI7L1vziQkUOvJYyYrVUx31RL0+BHBoaGsi4nBaE+/PzJAHa2OFV5ejDh1GeXw0bQyGgk2mxlesxJLhw10ygh6V6wWCzsXz6ffvKUUrhhEjkJFuXv+jPMYs5n7Vy6SNQ0Ji3866TbIEQRhoyiKbV4RuXPirxC3+39vkCOKIhPXzGPhtvX4uigINSXRulo9vuk/xqkHQHqERkdSsmt9tgUEOFRRraJI85AHREmkDHV3p5lOhwBsj49jjiGBKyv3oE2nUf3bMG3DEtYf3MGwNt3xcfekw5RhXFyyDX/vlxIBZosFn5YVCdv0myMDac+ZY/T4ZjTBHzfBZDGz58wxTBYza0dMp3Ix5+zlzO4QALqHhVOzfmtGBfdFEARi4uOo93kHPrUkvXPTErPdzsY4PfttdmQCNJJKaaJzy1AGOrOsitWzUB9D9kJFePb4EQZ9LDJBoJ6bO4ESCdtsNmJtVirLXeih1Tqp3maGuyYTnaKjmXz0LIqUDCO73c7UT1tQs30nQu/c4sGGdWzIkuWDZdHE22zUefqE7gtXOLSU7l08x6xu7clfpDjx16+y3tc3VU/i110/N3//jaWfD2DAdyvJVawECfFxfP/1GKwWC71nL3Qae27fbvYsW0hoyH0CChSmYe8BDt2ltIgJfc5XLRsw+8QFAPQR4YxvVpf63ftStXU74qOj2DRzMqJdpN/8pe/jY/lb8D4a5LxwEf0ncveeEASBMZ0GMrh1Nx6EPiHAxw9PbeZvXseunKWMRuN0s5AJAkUVSsJtVlq+ciNspnPjV5OFn4/vo1Od5mld7q0Y0a4nJfIUYvW+LcQlGFArlcTE650Mgj4hHrlMhuyVH3y9clU5NHM1HaYOw5CUSM9GbYlPMNJ+6jCGtelG3yafvtN8Jnl60P+XDfx4YDv5smXn5K0rNNdqafwO0tGQHJfoExWFIU8+anTvjdViYdWCb/k9MoKp75gB9Cqd3d1o5KrhVNhzVAoFZXLmQi2VskCvZ7VaQ5ORY/D0zcqpLT/xyaYNbPLzw/MtKp8vJCZSrEp1hzGA5EyasnUbcO/COT4Z/RWjfvqBWybTe9mNQLKL6rcEI+cTk/CRSrEhkr9cRYcxAMgbWIZy9Rrjlycvz7LnYHIWX1oMHp7hdQ+uW0mT/p+Rq1jymlOt1RE8bjLDPiqPPiIct5Sq5VO/bGXzN1NoP3YieUqW5tbvv7F8xGC6TZ1Nsdca3rzA1dMTq8XsKOZz88nCsNUbWfHFEDbOmIhG50ZQizY0Gzj0vXxG/29klHb6POWftYBjoij+Ne2B/oFo1Zo0ey2/CZ1aQ5gptbcuzGpN022RSxB5Ghn2TnNMi/rlq1G/fPKP/et1Cxi/Zh7rR32DQu6CzWZj3Kq5tK5WL5X76/7zx1htNs4u3OzYOXSs3YyKA1rzcanKbDmxj6OXz+Lpm4v6969RKROFSL5yORuz+nEpKYnwiCcMy5bN0fP3XThuNBLq5s6oNRsdPQqKV6vJmI/KcyMp6Y1uoczgndI/4AUxVivr9bFM3roXnVeyZlWOIsVI1Mfy/W9H6f8WDXu8ZVIiQ+6nOh72MAR3X18kEgk+2fyJion+w+8DkndTfaKieOaqpWTbYC7ducmFXw9S3je1kJ7Ox4eEuDiqtmzH95PGvtEgxIaFku01371So8Hd189hEERRZPu8WXSf9i0FyyfHAMrVb4wgkbB9wbfpGgS5i4JawV1ZPLQfXSfPwi9PXmLDQ4l+/pwhS9c6GbN/I5lJ2s4FLBYE4Z4gCBsFQRjwX9rpX0ONwIo8tljZG/+yb0KI2cwNUxL7DfFYX3H/2USRo2arU0/mF5y8fpHmX3SnwKcfUX9oB/afO5HpOfx0ZA/VPwtm5Z6fufbwLgU71+XTyUMp1qMRIWFPmdojdYnK7jPHCK7d1KmQLadvNqoVL0fVIZ9yNeQOA5t3oHqJcow3GPnhtQbu6SEIAoEqFXW0ukwZA7soEmI2O2I4r3ImKYnAZi2dGtYoVCpK1KrD2cTUzevfB3vi4/DOnddhDF5Qsl5DLr2lXHcVjSv6RyH8um4V9hQl26vHDnNm9w6CmrcmOvQZD+/cIqdczrrYGMbFRLMmNga9LWO/fnr8EKfHmK8Ao/ccodngYfRYsJwmQ0dydu9OEg0vK7bNSYmc2PwjXlmzYYiJdqrdSI/cJUpx8ZBzb+Wwhw/Qh4fh6R/A6V3b2bFwDuGPQihQrqLTuCKVq/L41vUMr9+k/xACa9RmWodW9CqWh+8njqX9mK/faAysFgt3zp3h7vkz2KzWN76P/0feuCcVRXEsgCAIKqAHMAz4FvjnKz39iUToozlw/iQuMjl1y1ZJMwXVRS5nYOuujNmwhGVR0eikEq4lJdHR3YNV+lj6h4fT2dUVQYA18Ub8c+alRmAFp2scv3KWduP6M9hNxxAPd67ERtBz8ufMGvIVzavUTvWar7JoxwYWbl/P9J7DKZwjL3vOHGX86vmUyV+Uz1t3o3T+Immep1IoMCSkDgiGxkRSNFc+1o6c4ThWI7ACQf1a0USrfa9FZieNRsbp9STJZJjNJgoolExzdydriiHxkki4d+9uqvOiQu7jlUHA/4/wi9lMTFgoVovFIbUM8OTmDd62NlcuCCz18eHzuTPYOXcmdrkcq8VC/R59uXHyBLtmT6ONqysdw8PJWaES+ap8xNFTJ1hx4girs/i+dcrrluy5aNSrv5MBrdu1FzsXzWVi68bU7tQNqUzOoe9X46JSY7fb2b5gNh937PbGa9ft2ouJbRojlcsoU6cB4Q8f8PPsadRo34mJrRrildWfHEWL46JS8fjGNXIUKeY498Hli/jmzJ3h9SUSCQ17D6B+z35YzSbkCuUb4yo3Th5n2fBBaL28Ee12jPpYes6cT4FyFTI87/+NdIPKjgGCMBoIAlyBC8Bxkl1IzzM88QPw/x5UTo/lu37iy6UzqOCqxSSKXElMYNWob6hdJijVWLPFQpMvuvP84R1Ky2W4SmVsS0hgfPfP0Rvi2XxoO6IILWs1pm/T9qnkJeoOaU/DuEgav+K6OGk0Mt1i48KK3en+MMwWCwU612H3lGUUzpHXcXze1rWcuXWFNSOmp/v+Lt67QfOx/Tg8a52j6c7hi7/TcsIAlg+dTLMqzrn5VXo3Z7BoSVcl8215YjbTOiyUrnOXUKzqR9gsFvYsmc+lVcvY5ueHRBCIsFpp8uwpXectdbROPLVtM1vGf8E+/4C37kmcGSo8DME/sAzZ8uan1eejUKjV3D5zim97dmKVtxcl36BHlB4hZjNRViunEhP5DdABbRUKtplMqNoG02TQy13c7iULCF+1lO/SiZOkl+s/LbgV9bv3ocRHL+XR7XY7gyuVpPngYdw5dwa7zUZgzTr8MGksFrOJ6m3a02bEmEwFtSMeP2L3soXcOXcGN28fanzaiRM//0jukqVo3Cc5vLl/9XIO/7CGPnMWEVCwMPcvXWDJ0P40GzyMio3en6puXHQUo+tVp/e331GkcnJ23JWjv7J02ECm7j+OWvduSQx/Ju8jqPyCFoAV2AkcAU79l3b6/rj56D7jls1kQ7ZsjlXa+YQEOk0eys21B9CpnbfYLnI5O6YuY8uJAxz4/QgqrRs767WkeO5kn2t6qqYvuBhyh6nZszsdq6hW8+DuXZLMJlTpdJp6Hh2OXCZ3MgYAH5euzLJdP2X4moF5CzO8XQ8q9G9NjcAKxCcY+e36BUrkLkC4PspprNVm5WlMJB5e76+4bLPBQKWWbR1tEWUuLjTsN4RzWzdzLjGRcmo1PjIZc7y9+WJwHza6arFaLWjMZpb4ZPkgxgDAW6GkXtfeHN/yI0OrlUWpViORypBYLBRXvrtsQi4XF3K5uFBGrabfK8eHhocztUNXp7E12ndm4Kxp2D09kQhCpou9ytZrxJ4ViyhSuSqylO/tyW2bsVmtxEVF0u6LcSTE6dk8axo+2XPQd94SPP1Sd+BLD5/sOeg4YarjsSkxkaWf96fX7JclUB937Io+IoxJbZsg2u3ovH1o3HfwezUGAGd2bqd49ZoOYwBQvFoNClWszJndv1C9bfv3+np/JZlxGZUWBEFLsphdbWCpIAhhoij+J273Hvjx1500c3V12rKXVqsprVaz89RhPqmZOslLLpPTpnp92lSv/9avl93Th1umJCq8kop632zGXa3JUKzO280DQ6KR59ERZPV8KUdw6d7NNFttvk6fxp/QokodDl04iUqhJC7BSKOKNZi5cQU1SlYgf0AurDYrE9YswF8iIc9btJF8E6GCgG8BZ3kNQRDImicvYa/4m8urNexXqbllMiFTKsj3BgnpP0oHlZK1076i7/L1KCaoiXj8kM0Tx1LFanmnfr1vwkUqJclocGqKY0owIlUp+X3Hwbd6r9Xbtufm7ycY3bAGgTVqE/bwAQ+vXaXnN/M5uW0zX9SugotaTeWmLek+fc4f1wVK8WS8OkVBEAhq3oZTO7YwcddhFOoPo25r1MfikUaw3NM3K0Z97Ht/vb+SNxqEFDG7qkB1klVPHwP/Xn3Y90yiKZG0cmo0CCSa3/9GbFC7HkxaOoNvpDLyKxQ8MZv/x95ZRzeRtXH4mSRtmtS9pS0OxV2KuxVdYHFZ3F0Wh4XF3d1tcXeXxd0dWmgpdUmTJmky3x8tgdBCi63w7XMO59Bp7p2baTLv3Hvf9/djZGQUPX5q88kvk7WVkjbVfqLT9BEs7Psb3i7uXLh/k5GrZrOg9+h0ndvd0dkU4FSaeObuXEfXOs2oOKA1WTy8efEmCKVcwan5W0kY1yPVPj7m0PYpCgsCO/fupHyTFqa2GpWKe5cvMsbN3HhFIghfnFEUrNezIiaWm3oDmaUS2tnZkOcTfTW1sycyJoaxNctja+9ATHQ0De3t6enw7e0+L+w5RvHxo9gxeyodJ89CIpViNBrZMWsqfnUafPY1lVlY0H3OEp5ev8Ljq5fJmCcfXWcuRK5UUrBiSpe9r0WuVOJbojTH1q2iVsduQNJn4eDyRRSrURur7yCR/ZZcfmVYOaw/9Xv1wyJ5Bq3VaLh65ADdZy/+buf9O0jPHsLbpaKzwGVRFL9/ueNH+BH3EE7fukzX3/uy2dPTtIn6Rq/np6AgLi/djbfLt5P+haQv0cJd65i8YTHGRD1GQaB7/VYMbdXdTMs+NfSJen5bO58VB7YCSSqpo9v0pGlF/y8ax7h1C1i4ZwM5vDLz+NULCmXPw6aRM7FT2qQoUruiVjMnTsW1mChcrRQ0t7Wlg4NDuorGNEYjzd68wa1cRcq3akd8bDR7Z0ymaGQEv30j3aMXOh3Ngl4jLVAdi2zFSQx5QsKFzcx0daKc9acza9RGI6/1etxlMpOI4bfi/SWghPh45vXoQHjQS3IULcHT61exc3ah9+JVKG0/zwv57yA08AVT2zbFK4cvmfMW4O650yTq9Qxa9cd3XccXRZGlA3sRGviCKq3bIxqNHFmzHO+cuegwaeZ3O++3JL17CGkGhH8SP2JAEEWR7jNGcObiKRoorNAiskUVT++mnejfJO2MjC8l0ZBIWEwUzrYO6aqSfh+dXk+sWoWTrX2aQSQtIuNiuBfwBG8XdzJ7eJuOvx8Q7ick0Dk0lBm9R9OgdFWeBAfQZ9ZockSGMsgpqRBNbTTyRKvFVSYzZQ69T3RiIh3evCFAEJBYyNHHx5NFJmOZh9tnFYB9jD5vwriS3x+70k1NxzRPr2C5fzqHvDN816WnzxF5E0WRZzevEfT4EZ5Zs5O9SLHPHps6NobrRw+h1ajJW7ZCmlk93xKtRsOVg3sJexlIxtx5KVipqlmm0/fCaDBzyg0iAAAgAElEQVRwcd8urh7ajyAIFKtZh+L+db/68/9X8V9A+BchiiInblxk99nDWFpY0rRyXYrmzPt3D+tv5f2AMDQ8glINWtOn0S+mY6HRERRoV4tDPj7sVKlYFBVFRhc3XkWGU1ihYLyTE3bvPW1viIpmjqDEvvkkJHIlomhEdWwpeZ6cY4lH2hLNaVH6RSDKX+Zg4fBuRieKIiEzG3MyU0biDAYWxsRyTafHXSqlo60yzZnDp/hcpc+Y8DDO79hC7JsQspcs/cU30rt/nmZpz44UVSpxQOC4Ko6KbTtSv/+Qz+4rvcRGRnBm41pe3biKc7bsVGjZLoWP9H98mm+ZZfRdEATBB1gDeABGYIkoirP/rvH8nQiCQOXCflQu7Jf2i4H4BDVrjuzm5L2ruNs70bF6Q4yikTm7N/D0zSsKZ/alT/1WZPH0TruzZNQJGqLj43B3cE6hTvoptHodO84e4e6LJ+TwykSj8tWxtvr6dNH31U+fGwz0z2uue+Tm4EwGB2d2xMSwVRQ4t2A7WTy9SdBpGTB/PGOunmWG67uCr43qBKxq90QiTxqbIEiwLt+WSzcPEWNw+moPBXuZBQkxoWYBwaiOQRBFwvV6Wr4OQVakLnLfMjwLD6T/yRX8mmig8Sd0l75U3vlDHl2+yILObaiiVJBHhEN7dnA8YyZ6r91iMrNJD1qNhqW9OjHPyZliySnBkXZ2/LxuFbnLVfouOfnhr14yuZE/5WRSfpZZcOfeHcZvWk+vlRvJVujbW7z+v/N3zncSgQGiKOYG/IAegiCkXtn0HyZi1SoqDP6FDQ8u4163DhFZvKk+ogtVh7THWKQAFQcNITiDC2UHtuZeQMpCqw/R6nX0XTyZTG2qUrxPM3J2qs3GE/vSNZbQ6AhK927K6sM7sFEo2H3+GEW7NeRFyKuvfZtmZJVKOXfnqtmxN1ERBEdHcEafyMj2/cjknoFDl88wdPkMbGxs+VMVR8R71aTxRgNSpfk6uWAhR5DK0BiNQJJQ4JfOmNvaKNAcW4whPinrxKhPQHV4AbXs7FkWq0JWtD52Fdoi98iOTb7K2DUZx7TIaPQfnO/CnmOmf5C0+R31JuSLx2U0Glk9oAcTHewZ7+RMR2dnNrm64vIygONrV5q99tnN6+xZMIuja1YQGxGeoq97587ga6UwBQMAJ5mM5koFl3d+OvX4S9k9bQJNZDImODnjb2fHYCcnhtvasXZgH55cu0xiKlXnX4PRaOTkH2uZVKcyoyoUZ+OoIUSHfjv5l386H50hCIKwh1RUTt8iimK9rzlxcmHb6+T/xwmCcB/wAj5dd/5/zqK9m7DLkYOOsxaa1n7zV6zCtHbNqdK6PTJLS3KVLI21gwO/bVzMpveqgFNjwNKp3FBFMO7Qaexd3Xh68xpDenbGzd6JKkVKfbLt2LXzqVTIj2nvWW9O2bSMQUumsmXU10/23s4S2thY02njYtydXKlfugpPggPpO3s0je3suKjXk8ktA+2nDePO80e0rFqPGFUcgsyCjTEx9EwuuKpgJefQjYNYVu9u6l/z7Ap6UWR7dDS7tXpexsdha2lFOwc7Ojk4fFbqZ1N7ewIjo/hjcQcU9u5oYsMorVQy0tWZesFvsPItbfZ6S7cshFtZM+uXzpRp2CTFWrQ6LpZVo4Zy8/gRJDJLrB0daTPyNwpUqPxZ1/D1sycQH0/F94yZJIJAa6U10/fupGan7oiiyNpf+/Lw6CFqyuWECQIjZ0ykw+zFZuczJOqxSOWSyIFErZZXjx6g12oJfvKIc2uWo4qKJGfZCtTq0Rcnzy8zarp39hSjXd4Vzd1NSGB+RDg6UWRL13ZEINJ22jxTjcnXsnnscIL27WaQrS3OlpbsOHqQyccPM3zvMZOv9I/Mp5aMpn3id98UQRAyA4WBi6n8rjPQGcDHLWUu8P8bh25cwK9nL7ONwEx58+Po7sHLB/fIUiBJZqqYf10mLJ7/yb5i1So2ndzP+KPnTLnp2QoWod6AIczcuj7NgLD73DHOzNpodqx7vRZ4NilDjCoOe5vPM33R6fVExEXjYudg8oqGJK+A2S4uzF0+jS4zRuBmpaCpjQ3tHB2ZEhnJjC3LeRH6mrOzN5pqKdpW/4lS3RvSysEBB6mU7o4O7Lt7grD4aBQ5S6EPD0B18zCKXBVY8PA0LnUH45O1CPrwQFbunU5CVDR9nNJ/AxAEgcHOTnR2sOe5Toun3TuxPXeZlMCIV1i6vyvqMyaoSNSo2DR7DleOHqH3vMVma/rz+/QgON4Sjy4rECyVJLy4zsIBvRm2bjM+udI/kZbJZOiNBkTg/Xu5VjQiTb7G148e4tWJI+zx9ESZHJiuKRT06NedKedvmFIt85QuxxqVisfWNuRIrhNRG42sVasxXPiTh8ePkJioR2EwMsTNFU8LC/aeOMKko4cYvueoSaX0c1BYWxOZaMDLIilbrNurlwx1c6emrS2CIHBFraZn786MPngaR4+vuz9Ehbzm/PbNHPH2Me0/DbWyIioigjOb1lOrS8+v6v/fwEeXjERRPPWpf99qAIIg2ADbgL6iKMZ++HtRFJeIolhMFMVirnY/foROCzulNXGR5tW9RoMBVVQkVsnCYXptAo8uXcQpDZep0KgIbO0dzAqVAHxy5SEwLG1lEqlEiuED05NEQyIgMHJV+mcIoigybcsKsrepil/Pn8nephozt60yWyYpolSy0s2NmzlycsTHh46OjkgFgRxSCafvXCXgTTD1Rnbj+PULAGTx9KZs7kKcTzZVcZXJcLe0RKK0J/7eKfThgTjX6o1BFYZj1S4oshVDECRYumbGtuEI1kZHo0teSkovF/Yc48H+k2iPnufFwdOmpZ+yU2YQf349uvBAAIzaeCIOL0SZqywurWfx/OlLLu59Zyr9JuA5z27dwL5KFyRyawRBQJGlCMrCdTm8ZuXHTp8qbpmyYOvuydbYd1+tBKORpfFqijVpDsD13dtoZaUwBYO31zuTXM7Dy++e0ZS2dlRu35VWr15S7dlTmge8oHZQEDH6RLpLJGx3d0er07EuY0Yq2diSy8qKgU7OVJZIOL7qy7wFSjVrzfS4WNRGIydUKnLJrahlZ2d6IHKRyXAzGhlXqwIT/CtxZusfX7y8FnDvNvlt7cySEQAqWVgQcOn8F/X5byPNPQRBEHIIgrBVEIR7giA8e/vvW5xcEAQLkoLBelEUt3+LPn902lepz6GFc4gJT3IvE0WRA0uTTEMc3Dw4uHwR/csVZfPksQS9eU3fxZPRf8Qpy8fNE61azesPRN1unzpG0ey5U23zPg3LVWfc2gVmX8BpW1ZQq3g5/jix76Pn/ZAFuzew/cwhjk9bQ8CGkxyZspI/Tuxj6f7Nn2y3Ly6WpdpElg+cwO1le+hcuykdpg3j6LVzAMRp4s08fRWCBH1kELo3T0AiJfLYUnTBj7BwNs9Ykdm7g8ySiHQogX645v8+CfHxqKKjKFSpGg179iJy01BezW/Lq4XtEaQynKp1RZBaIM9fkwsHD5jaRQYHYeXqgyA1T5+VuWQm9NXLNMf0PoIg0H7eUubr9bQND2dUZCQ1Xwdj41eGco2TAoKAgJjK6rCIeRHgtSMHOLtyCX2cnZni6UlJGxviDYl4K6xoZG/PE52O7JZyM4tYgCpWcgIuX/iscb+lRqfuWJWpQJVXL1kQF4uT7N3NOkivp01gADWtbdjg5s6vCRrOThrLnlkf19X6FE6eXjzTaDB8EFAeJibikDHTF/X5byM9WUYrgdHATKASSR7LX51ULSR90pYD90VRnPG1/f2oGAwGAkNf42Bjh6OtHXX8KnLz+UNGVi9HzoJFCAt6hY1URrmcBRhQujC2Li6M2LIX90xZiI2MYNXA3oxYM4/J7ful6FtuYcmwZp2Z2aUtDYeMIkP2HNw4dphjy5dwfNKKNMc2qnUPcratQYkejalYqCRXHt4hVh3Hnt8Xk69jHRJ0OrOln48xd+daNg6fQXavpC9dTu8szO05kg7ThtN52Z5UndREUWRhrIoVI2dRNn9SNl3j8jWQSiRM3LgYqUTCvYAnlHlPt8kNA49FEe+uKxBklohGAxEH5hJ1YjkeLd7p5ugjgxAMepw/kpaZVvZPXGQkK0cO4c7p4yAIuGfJzi9jx9Nr/lIWDB6EU9N5SBXvltPERB2y987l5ZsbTcgzbNUxSJXvspD0L66Ss4R5tlV68Mqek99PXeLmiaPEhIbSvWhxM4XQwg0as/b8WerYGbCWJN1wr6jVBOr0pswhURTZNnYk052dTLInhRVKrAWBHXFJctfuMhmBeh06UTQLxE90ehy805cmKooi98+f5cWdWzhn8KZItRr8MmM+YS8DuXnyGAenjSfemDTOdVGR1LOzp7tLUjZZZktLhgvQc8l89i1ZgFKhoEyjptQfONS07PUpMubOi1PW7EwKfkVfR0eUgsCZ+Hg2xcczuFX7NNv/CKQnIChEUTwmCIIgimIAMEYQhDMkBYmvoQzQGrgtCMKN5GPDRFHc/5X9/jDsOHuEQSumoxONaOLjqV68HAu6D2dEi6509v+ZSw9u4ergRAnfAgiCQNHeTak5bKSpUMjOyZlW46cwxr8yNpZyNDotNYuVpVz+d8VIPeo2x9PRmdkL5xMc/oYSuQpwdOIycmXMmub47K1tqVa0DDYKJV4u7lQsWIIaxcqy7+IpcvlkSZd1pyiKBIa+NonzvSV/lpwEhAZ9tJ1eFAlUqyiTzzz1sFKhkrSbOpTWv/Vmhpu5MN3tRCOOlTsgyJJ0owSJFMfK7Xk1rw2qO8dR5vBDF/YC9YFZdHZw4Nre42mOP7X3M61jG+KsM+HZbTWChRz1g7NM79CGsbsOIkOP9tU9lDmSbrRGbTwJN/ZQbvS7r5OdkzMVm7Xizx1jsS7dEqmtC5r7p0gMuELVOb9/9pggyRimWI3aqf6uUOVq3K1Wk9oH91FDoSBCEDgTr6LTvGVYJO/JxEVGEB8TRYkPnpRr2NiyOCKCeKMBH0tL8ltZMf5NCIPd3LCWSLmiVrNMpaJnu84pzhsa+IId40dz69wZrORWlKjXkMDbN9C+eE45CwtuiCI7Jo6h/8YduGXMTNXW7Xhz/y4tjxygvULBebWaoe9Jj4QlJjIwOJgeTs40srcn0mBgyp4dLA94Ttcla9J1nbosWcO6X/tQ4cKfyKVSlA6OdJy/DM9s2dN7qf/VpCcgJAiCIAEeC4LQEwgCPn936ANEUTzLN5hp/Khcfnibnosn0WXeUnIULY5GpWLLhDH8MnMkO0bMws3BmTp+5pkVYVHhZPjgg/vw8kV0RgNXpHqUnk60X/g75XMWYHnfsaag0LBsdRqWrf5F4xzZqjs1hrTHwcaWPBmzMX3LCubvWm/mcfAWjTaBtUd3cez6BeyVNrSpVp+y+YtROHseDl/5E/+S77xwD1/9kyI5korzjKLIxpgYNqs1hOm0FLW2oZuNNa5WCm49e0jBbLlM7a49vkcGKyu2enig+CBzJ8GQiJ3CPPVUYqlEiojbqRU8ProAe/cMNOjTm3zNWn3R9Xh64yoRoeG4/PLu+lrnqUBiyAPObN1Er7mLmNH5F3R3DyFYO6F5conS9X6iUGVzL4qmg4fjmSULR9evJz4mirylylB//O4v2phNC0EQaDVxBgGt2nHn7CmcbW35vWZds70lK2trEkWIMBhweW82E6jXYWNrR6vQMDopldS1s2dGRDjlnj7FVqFEolTQYsossuQ3N2qKi4xk6s91aGVhwQxvH2KMRqbt3k5sgoaDmbOYJElWRkexbmBv+m/eDUCL8VO5XLY827b+Qez9uzzQ6kwzlk3RUVSzsaVt8rhtpFJmODtT+dJ5Xj97gmfWtG/qtk5OdFu6lviYaLTqeBw9vm+V+T+N9GgZFQfuAw7AOMAemCKK4pctCn4FP1qlssFgMBWB3Q98yuxd67gfFED+jNkIiQrHrnw5qrXrZHq9XpvAr+WLc2HGejK5p0zjazS+H45VKlGlVZIEtjouloEVSjB80y68ciRZdmo1GiY3rs2Mlr1MdphfS2Doaxbu2cDtZ4/I6ulN17rNyZPJ/Mun0SZQa1gnHKxtaVmlHqHREczevoY+DduQLUNGus0azYQO/fHLXYhz964xfMVMlg0YT9Uipen7SzWuKO2Y2nMkWT192H7mEONXzaaxjQ3nrKxZOWw6eTPn4MqjO7T9vR/dLKTUtkupzTMgNIwLvlWwq9DGdEx15xg2r84wesuub3ItLuzdyZaVm7HzH2R2PO7mYbJZBNNt+my0ajXXjx8mPjqaPKXK/mOfPj8UElw/bAAcP8JEJydspFJe6/V0Dg+nwtDRyORyLv+xjkRtAvlqN6BYrdok6vQ4Z/BCkkrR34El89GuXsak94KOXhSp9vQpS3y8yZm8xKMzGikd8IJJZ65i84Gl6LOb15nftinTnJzwUyrpHRRETTu7FH/7LlFRFBw9gSLVan7Ly/Ov4ptVKouieBkgeZbQWxTFuDSa/EcabDtzmN82LuJJwFM83T1pVKoqa47vpmr7LlRo3pTHly5w+uxhOnfsaNbOQm6Fh08mgsJDUw0Io5p1oebILug1GvKUrcCpzRvw8c1tCgaQZAtZumkrtl84nq6A8CLkFSsObuNlWAiFs+fBw8mFs7evoLRS0LxSHQpmy0VGN08mdvi0Kfn6Y3uwU1qz47f5pptMHb+K+PVqwv0VB1g1eBLTt65gzJp55M6YlbVDplIufzFi4uP4IyaGGzM24uGUtFbcrV4LngcHcufkXioLAv4DWhOn1+Msl9PFzjbVYHBhzzEqBb3ibJP6RGsikXkXwBD2lISHp+m+Yn2a1yG9ZMqdD3XASGz0WiQW7yS8DS9vkL1BkgqoXKn85pr935JzO7ZwcPY0gl4H4e3lTa2+g/Gr15CfR/3Oeo2aKscO46ZQ8CZBS/UOXSnTsAmCIHzWewq5c5MaUvMZnIUgUEhhxWOtzhQQBEFI2vR+77lVl6AhNiICn9x5aD1jHiPHDEMVGIhOr8PZ0tLs768TRe6q4qiZjtnBf6RP/roYSRvLtsk/xwDtRVG8+smG/5Eq+y6epN+K6bSdPJPcpcoScPc2S/r3IG+lqtTu1huA3H5leHb7JtcO7TfzeY0KeU3Q86fkzZz6h7tgtlwcnbCMKdtWsXHbFpQWcmQ2KaUJErUJ2KZjs/fM7Su0GD+AVtXqUblQSSZuXIJMKqNz7SZEqWJoMKo7w1p0pVPtlJu+H3L8xgWaV65rXj/h7kXh7Hm4cP8mNYuXo0LBEinaPQ1+SUZnV1MwiE9Q03XWGI5dO4eXsxsrX7+ksZ0dXRwcuLPvBIIg8LGpq4uXN+P3HuH01j94ducOnkWzUGnq8C8umkoNz2zZyV+uPA93jce6VHMkVjaobx9GEvWCso2apt3B38y5HVs4MG4kEx0dKZQjJ1c1aoaNGYogkVCyTgPazVxIbEQ4UW9CcMuYOV0eyanhnD0nVy6ep+F7xwyiyDWNhs5O7wrRtsbGkDGnL7ZOTkk2nDMmcWLdSqwkEnRA9U49GHvyEnER4SSo1UxuWIvs0VE0tLMnypDIlJgYshUrmeos7K3Q360Tx7BUKihZuwEu3j4pXvf/RHr2EFYA3UVRPAMgCEJZkgJEge85sB+ViVtX0mz0eJP7UuZ8Beg+dwkzOrTEaDSaKlabDh3Fbw1qorS1pXjt+kQEB7Fr+iT6/tQGe+uPF3zlzZyD1QPGA0nLNNnb1eThpfP4lkgqMouNjOD0+tWs7TP2k+MURZF+CyawsO8Y6vhVYte5Yzja2HFi+lqTOmqrKvUp1bspjcrXwMn20/LDjjZ2hESGpThHSGQ4DjYfl172cfPgZWw00apYHGzsGLpsOhJB4OnaoyjkVoTFRFJ/bG/m/dyUSulY67VxdMK/U/c0X/e5PL99k9PbNqOOi6NQxSr4+AZxZvsSdBo1hSpWpsH0nSg+s1Dvawl7GcjJNcsJf/KIDAUK45U7L9d3bSUuNJRs5StSpU2HFMswB2ZPZaKjo0meoqTSmnEijJs1lZLJMwA7ZxfsnF1SnA+S/qZRIcFIpDIc3Nw/OraA61d5FBNNHpmMxg4OxBoNTA4NwyC3YlRcLBXiVdwXJNw2JNJvyhwADi6cw4vNG9jh4UkGCwte6HT0WbEIhYMDFZu3wR7ov3EHO8aNZPLlCyitkrKMOgwaluo4N44YzN0De6hjJScWgXELZtN87GT86jf6ksv9Q5CegBD3NhhA0mawIAj/LRt9Ic+CXtCqkHnqoLdvbtRxsWjV8aabhl6rxd7allenTnNmy0as5Fa0LleToU07pdZtqijkVqwbPIkWPTqSo2gJrB0cuX7sMN3qNDWlan6M4IhQQqMjqF2yIgAHL52mdbUGZlLZWTy9KZuvCCduXKRRuU9vSreu1oCWEwZQr1RlsmXImKQxn1xnUMI3P5AksLfr3DFehr2mWM78VCxYAld7JxqVq8EvEwYwpftw/jixnzvL95qsPl3tnZj8S1+6Lp9KpVa/pPvafEuOrV/NttkzUBTwR1B4cn/eQry9XJmw7wiyz5QW/1Y8u3mdub80o6G1kuoyGetvXuOURkNvF1e8LWTs27Seids2M3TXIVNQEEWRoOAgCuf0NeurqEJB0LOnaZ7zxZ1brB3Yi6jXQRhFEa/svrSZOT+FPPbLB/d4deMaq719mBMRzuSwUOSCBGe5JTUHDsPFy4cXt2+Q2cuHJv71sLK2RhRFjq1cwmonJzIkX9PMlpaMsrNn2JL5VGyetC/knTMXvdZuSdNI6d65Mzw6tJfdnh6mVNsWNja0HPkrBSpV/Vf4JH8P0hMQLgmCsBjYSJK2UVPgpCAIRQBEUbz2Hcf3w2A0Gtly+iAySzmPLl+geK26pt+9uHMLqcwCQ3IhlCo6is3jRqFP1OFWvBg1/X8j7GUA6+fOxMvNk251mqX7vJUK+fFg2T72XTiJKkHN/BltyOqZ9rRYKVeg1etRazVYWylRWCmIVad8DohWxWGdDsVMv9wFGdq8C+X6tiBv5hyExUQik0jZNGImEomEhy+fU2dEF/JlzkGeTNn5delUXB2c2DZ6LiWnTiVk5hRK929JYqIelw8q1jO6eRIbHZXua/ItiY+JZsu0ibi0mmlSOhULVCNoy3CuHNr3t+0VbB09hKG2ttSzt0djNPLbmzes88losiYta23D8IgIjq1aRv1+g4Gk9XrvDN5c12jMBOyuajR4p1FHoIqOYk7bpgy1saamtw9qUWRHaAizWjRi3IkLJt9lSPq8l7S2Jo9CwSJvHwyiiATYGB3NuXt3qNamA4WrmD9gGBITiYmLJauHuWFUTrmc8MDAFONJKzPo+r5dNJVbmYIBQA65nEK2ttw5e4oS/u+k2iKCgzi3fROq0FBylClH4So1/hIPhr+D9KidFgJyklR3MAbIDZQGpvMX6h392+m1cALj9qyj+E+NWTd2BNeOHESjUnFs3Upmd2hJRkdXhlXyY3JDf4ZXKY0iXk3RWnVpPno8vsX9KNuwKX1WbmDs+gWoEzSfdW57a1taVKlL59pN0xUMABxt7ahQsATj1y/CaDTSrKI/i/du4mVYiOk1hy6f4WlwIJUKpU/2uKP/zzxYdZAhzTqztP/vXF6wjRzemQHoPmcMA39uz47f5jO+fT8uzN2MrdKGOTvWILO0pNGvI5h16Q4emTJz8LK5g+umUwfJVqgIz2/dIC4yMn0X5Rvx8NIFFN65zGSvBYkUi1yVuHr0yF86lrfoEjQ8fXgf/+TN1UdaLZ4yWQqf6tpWVjw+bV5rUavfYIZERXFRHY/OaORcfDwjoqKo2XfwJ895ftc2Slla8kKno8Kzp1R6+oSt0VHYJKi5eeKo2WtdvLx5qNOZKtylgoAgCNwXRZw+YrYjs7AgY8bMnE2WInnLyXgVWT9D2+ktEqmUREBrNDIrLIxKT59Q/PEjnsbGEBfxThrm9ukTjPOviNXGtRQ6dpBTo35lVsuG6LXf3t72n0B6soy+jYzg/zH3Ap6w88IJfj/6J1bW1uQsVpKdc6axdFAvlLZ2FK1RmzePH+Ko1zK6XhvK5S9Gwwn9KOJf16wf98xZcfbIwL3ApxTLme8jZ/t2zOs1kp/H9qFg5/rkyZydOE08hbvUp2qR0kSpYnn48hkbh89EbmGZdmfJ2CltUojmvYmK4H7AUzrUamw6JpVK6duwLX0XjKcvQ5OOyWQ0Hv4bHfv3oF+DNhTOlovD186x6vAOjKIR1YsXBL5+Rck6DWgyYuxfslxjZW2NUaNKcVxMiEPp9uUGOF9CbEQ4T29cw8bBAZlMRpTBgKtMhpNUSmhiInpRxOK9J+dgvR4bF3NzoFL1GyEAo+dMI+jpE7y9M9Lg96mUqP1pcePo4CAi1GoiBfgjYyZ8LCy4oFYz4HUw9y/+SdEa72xWfUuWRufoyKyoKLo6OGApCOyLjeWYRsPoxs0QRZGLe3dyccNqtGo1eav7U7ltR+oNG82wfj0YaDBQwMqKyxoNs+Ni6TJt3mdfq2L1G7N6325uqtUgwHJvHxylUrbERLNmzjSK+9dFKpOxemAv5jq7UDx5xtRGFOkS8IJTf6ynatvv52j4d5GeLCN3YAKQQRTFWsmeBaVEUVz+3Uf3g3Dm9hUKVqpqMgIvUKEygffu8MjBkT6LV5umnweXzGfRwa38VLYaHg4uhAUGkNuvjKkfvU5LRGgIiQYDLacO4cCFk8gtLWlawZ+xbXpip/y2NyA3B2dOTl/LlUd3eBn2mskdB6CQKzhx4wI2CiVVi5Q2qYt+DR+rhZFIhBS/y1umPH1Xb+LE2pVs23sFvcFANq/M7BkzDxd7R6LiYmkxZTD75s+ift9Bqfb7LfEtUQohIZr4B2exzlUWgMTYUDQ391N+8bLvfn5Iun57Z0/lyIrFFLC1I0inRWkpZ0pUFBNcXPCxtCS7pZyZYWCnigcAACAASURBVGH0c3XFQhAI0OlYGB9Pi1+S9qRiwkIxJOpx9MiAX/1Gn72x6p03PycSNBzMmhW35Ay2UtbWDHZ1Y+0N81VliURC7zVb2DCkL2UvX0QiCGTIlIVe85dj7+rG5rHDebZnJ12tldhJpGxet4Lp+3czeNs+Oi5exZZ5M5n3/Blevr706D2QbAU/X84jZ7ES5Pavx+WtGzmTLTuWyckcnZ1deBERwZTGtYl4E4LRYGCpXoeHTIaPpSVSQaClwopF+3b+fwYEYBVJWUXDk39+BGwiSYfoP9KBi70TkdfNlzku7d9Nm7GTzNYiq/zSkf4L5xARG033Wj/Tds5oshUphlf2nOi1CWydNI7C2XLTeuoQijZuwqSJk9Fq1OyZPZWfxvXh6IRl6a6qfHujTev1giBQ3Dc/xZM3fgGaVUpdAuFL8XBywdcnK6sP7zTNEoxGI7O3ryF73ZRPpj658tB6fFIl9LCKJdk5dAYu9kn7Co62dsztOpRyg9umGRCCnzxGFR1Fpjz5kCu/zOVNKpPRb/FKZnZph/bGbqRKO9SBd/mpz8C/zNHrxvEjXF27kv1e3rjIZEk6T1GRbNRoqPTqJb7WNtw1GnkhCOx+9RI3KwVBCRrq9xuCq09Gpjby59Xjh0gFAUePDLSaNjdFZXFaZM5XEKVUZgoGb8lrZUVcKmY7ju4e9Fj5B+q4WBL1euySU03Dg17x59Y/zCSoSymVdAgP5+LeXZRr3IxcJUun6O9LyFWuAonHD5mCwVv8ZDKeRISzL0tWRGB9VBQdXr1kd+YsWEkkaIxiurSR/o2kJyC4iKK4WRCEoQCiKCYKgpC2DOR/mKhdsgL9l07h/K5t+NVriCAIaNXxyD5YapFIpAgSCYkGAxULlWR0k06MaNEQexc3osJCKZm7INUKliTewY76vQcCYIsTbSfNZEzNCpy7d50yeT/9tPQ6Ioyhq2ay+8/j6BP11PCrwNR2/T/LbvN7ML/3KOqO6MrBy2fImyk7h66cwVZpQ4v2XT7ZLioiPMXYM7lnICY6yiyN930iQ4KZ06MLoUFBWNg6oYsIpsmgoVRq3vqLxp4pb36mnTjPw0vn0aji8C1eKoWk+Pfk/LqVdLe2NklKCIJAF0cnNqmDaDl7EaJR5Kccvrh4+/Am4DlxEeH45MqL1MKCUZX9aI1Iq4yZkAIH4uIY26oRg7bsxTtnLh5ducSlbZtITNBQwL8ehapUT/Waunh7kyhP2kPI/N4G8gWNGq88H89QV9qapxw/uX6FEnb2ZhLUgiBQy8KCo2dPUa5x+hMq0sIjc1a2aBJIFEVk7z0YXdWoqWBtgzz5fXZwduacOp4VkZG0dHRgiVpNxaYtv9k4/kmkJyDEC4LgTLJ7miAIfkDMdx3VD4aVpZzdo+fRcuoQ9s2ZjtTCguiwUA4uX0SXGe8qd8/t3IqvT1bcHZOeltrXbESLynV48PIZLvaOeLt40HvRRLKVNPdelkgk5ChaggeBzz4aEDTaBAYun8baw7uQyKQ4enrwU9/BhAW8oMrQDtxYsO2bLzl9jLc+zLefPyKrpw8Fsvpy69lDpnQaRGy8itdRYYxp04vwpvVSvfm8T+6iJdh+5jC/1HhX4rTjz6PkKlQ01baiKDK7WydUzvlwqzkaQSJFH/GKLbNG4ZU95xf7AsssLMyKCD+FRhVHWGAAThm8vokLlyY2BkeZuTyEVBCwk8mQK6zxLfHu8+KeKYspDfT60UN4Jupp994+Qm07O06oVIxvUIMchYsRfv8OLZVKlAhsOnuKqyX86DB3aYpra2Epp2bX3vRauoAR9nZkt5RzUqViQZyKvr0/XcX+PvYurgQmbzi/P3t9YTRi5/ltDbK8fXPjla8AQ588YpCDPfYSKdtjYzgQF8feLOab23msrFgbFcnyqEhylSlPydr1v+lY/imkJyD0B3YD2QRB+BNwBRp/usl/fEjBbLm4vXAHt549pOWUX2k7bgrH1qxgcstG5C9fiYB7d7h7+gQnp6wya2dlKadQtnfeBLm9srDl6mVo+07WQhRFnl6/im+J6qaft545xJw9G4lPUFMlf3Fex0QSaAFTT13C1smZu3+eZtmg3vRZsoZXd2+z4fheun5GOuuXEh4TRc0hHXB1cKJigRLM3LaKyNhoavtV5Nnrl7yOCGP3uIVk98rExjSCAUDd/r8ytGMrgiPDKZ+vCOcf3GLmzjV0mZf6+n3QoweEh4TgWnssSWosYOHsjbJoA45tXGcKCI+vXubCvt2IRiMlatVO2iv4SpEzo9HI1hlTOL5+FZb2rmijQylVvxGtRvz2VRvguavVYvvqZZRVWpvGeC8hgaC4WOZ1bEWV1u2oN2Boipt4ZMhrsqeiM5RLLkcGHLlyiUNZs5pmHg2NRhpeOs+9c2fIV7ZCinY1OvfA2smZsUvnExHymqx58tNz8HAy5c2f4rUfw7dEKTQ2NqyMiaatvQPSZFe07fEqhjT9MsHBT9F50Sq2TxhDrd3b0ep1ZMmaHTe1Glfpu1ujKIpciI9nkmcGFBKB3lcvEfXmNU4eGb75eP5u0hS3AxAEQQb4kqRO+lAUxW/rbJ1OfgRxO51ej1PDkiy++xyjwcD1owd5fvsmto5O7Js3k4htn9YMjImPo3CPxpRp3ZZKLduhS9Cwe9ZU4u7e5fSU1QiCQIeZIzl8/xp1uvXBQi5n/+J5hL0KZPb5W2Zr5YdXLSXw3h0y5c2P3e2HzOo65LPfz72AJ1x6cIsMzm5UKVzKJNb3MfrOHw+CwMxuQ1l5aBtrj+xm3/jFKJNrGRbu2cgfJ/bRdfeBj/Zxaf9uji9bRGjQSzLlykvxn37m2eWLhDx+iFvWbFRu1wlv39QNfh5cPMeiUb/h2GSS2XH14ws4vj7DkNUb2DpjCic2b0KerzqCRELC3SOUqlWLViN++8yrY86R1cvZvWYDDvWGIbNxwqCJI2b/NMpWLs3PAz//2r9Fo4pjWuM6eEdHUdvSkkC9jo3R0Yxwc6eQQkG/yEhytu2If4++Zu2e37rBsl+acSBDBpN/gSiKtH4ZSHZLS2KNRmZkMJf1WBoZwZ1q/jQfM+GLx5sWYS8DWd6zIxEBL7C2kKGWymg5cQYFK1X9bucURREx2SFv8k81yRX2ho7Jy1nLIyMI1OlZmzEjUkHgt8hIElv9Qu1ufb7beL41Xy1ul6xy+lIUxZDkfYOiQCMgQBCEMaIo/rUJ3z8IFjIZdra2hAW+wD1zVorXqkvxWnV5cv0KLo7OhMdEmTZIU8Pe2pZjE5czaOUM+syejoWFBU0q+TNx1DwEQeBB4DN2XjjBlJMXTeuzzhm8WDl8YIqN04y583Lt8AESVfG09P28DVCDwUCXWaM4fuMiVQr78SDwGYOXTmXX2AWpCu+9ZfeFExyZvAJBENh08gADm7Q3BQOAzv5NmLB5GWEvA3H1SVkMdWbzBo4tmMvsLr9SKFtujl8/z8AJY+iyYDk5i6XUQvqQTHnzkxAWiD46xKx2QPvwNAX8y/H62ROObViDa9t5SJX2GOKjESysOLN1A8Wr1zRJgHwJh1avxLZST6RKexJe3UPUJ2Bdvh0nNo6gUf/BaS6PfQyFjS2Dtx/g7PZNTJk6nuJSGcu9fchllbTx+buDA21XLqFW9z5ms5wsBQrhXawEna9fpZudLVaChHVRUSSKIsUUSlZFRdLt1Ute6fXkllvR0dmJaASsbL+PBMfTG1c5vng+4QHPyVi4KPWHjsLa3hHvnLlSVUz9lgiCgJB8jr4btrN3znTabfsDo1pNI3t7Rri5myS5vUWRO2Fhn+ruX8unPoGLAR2AIAjlgUnAGpL2D5Z8/6H9mAiCQNfaTVk/8ldik72Rrx09yJwuvxCpiiV3pzrUHt2DoPA3H+0ji6c3W4fNIHbXFSK2nmdRz1E4Jt/8D14+TYGKVcw267x9cxP95g3RoeZ93jlzEoMhkeA7t2j+mZlDyw5sIeBNMHeX7WVp/985M2sDravWp8vMUZ9sJ5NI0SVba2r1Oqzl5lXOEokEuYUleq02RVuj0ci+eTPZ+OsUahYvh4eTCy2q1GVyu34cmj8rXeNW2NjSsM9AoraMIO76ftRPLxO9fxpW6hAqNmvFrZPHUOQsg1RpT9yNgwQv7ULCy7tIPXIwrUMbrh05mM4rlJK4yDCMiXqCl3Yl8vACYs5vJnTDUBJUMUxq04xRDeuwa95M1HEprMXTRK5UUqVVO+ITDYzz8DAFA4CslpZEx8awbtgAbp44ivE9r+hO85aRsUNX+gQHMzzkNZksLVju40MiIq/0emra2jE9QwZyW8lpGxjIlrhY/Br8nK4xJep03Dl7iuvHDqf5nq4fOcjCds2pfOcGo7UJ5Dh1jKXdOyKzsPzuweBDFDa2/DxsDLUHDMMginR1dsEmeQwGUWS3Wk3OZC2yH41P7SFI35sFNAWWiKK4Ddj2nsPZf3wBw5p1JmbFTEZULYOtgxMR4aF0nDKLItX9Meh1HFg0j7pjenJlzqZPPjWmtqbtYGNH5M1gs2NKWzsy5MjJlNY/02r0eFx9MnFx706OrllOpUJ+zJk0IV3uZu/zx4n9DG/Z1aQpBNCrQWtmbltFcEQoGZxTN3L5uUJNJv+xlBUDJ1C7RAUW79tEhYIlTO/l4OUzYGmBR9ZsKdqqY6LRxKsoksO8MrVS4ZIMXTs33WOv3rYDPjl9ObphHbEBNylYvTyVW7RBaWuHpZUV6DXoI4OIPr0Gj7azsHBM2szUhjxh6a/9mFq85Ec3g0VR5NHlCwTev4urT0byl69sSi3OUqAIT3ZOwLFKJ2zyJtV76sIDCVk7kHBrXyyzZuPEiaNcOrCfUVt3I1ekLQnyIdlz5+VEWAh139PiORMfj4dMRvHTJ9h+9BAXi5Wk4/xlSCQSZJaW+HfthbOXN5tG/opRImVvTCwzI8KZ5+VtkrDIKbfCUhDY5OCULv+GJ9cus6hrO7ykEpQSCStVKpqO+p0yjVLuU4miyLZxI5jm6IRfcq1OEaUSayLZN2MSnRakL8M97GUgt04eQ2oho0i1Wh8V4Esv13dspqBCQdvAANo5OSMXBDZGRxGs1ZKndNmv6vufyicDgiAIMlEUE4EqwPseeD+mkMdfhEwqY3qnQYxq0ZUxa+fz2FpGsZp1AJDIrajbewC3jh7i9K3LVEynLMRbfq5Qk/5Lp3L96CEKV60BwNOb1wh+/JCSOfJxcPxYwmMiKZO3KJfnbCKnd+pSAWmRoEvA2sp8CcpCJsPSwhKtTvfRdkObd6HRb70o3qMRpfMW5eydq5Tp05ymFf15GhzAlnNH6TIvZRYLgMLWDqlMxpOgAJP/MsD1x/dx9/k8E/TcpcqSu1TKL3XRGrXZNHUSiYIF1nkrmYIBgNwjO4rMhbh+9FCq6Y9atZrpndry+mUQFj4FMIRtRj7xd4au3YSjhyd5/Ury/EmAKRiIiXpkdq7YFq2DURWFokRBrDIWIHrX75zftZWKzT4/DbburyOZ2Kk1cUYjJRRKbiZomBkWxngPTyrY2NDCaKTJlYvcPH7E9PkAKFn3J7x8c3Nu0zpuBAeTePo4RT8ISJVsbFn4JuTDU6ZAl6BhQec2TLS1o0KyPPYzaxtajRtJloJFyZA9h9nr46IiiYuOouQH9pzVrW1YffVSut73wcXzOLhgFlVsbNAiMGLib7SeOIMMOXz5c/MGNJER+FaqSrEatdO9gR/66iVTXN24q9WyPzYWnShS1caW+6KIOi4O+Wc+RP0b+NSNfSNwShCEcEADvJW/zs5/aaffBHtrW9R6LRl8zWUoBEHAK6cvr8LT/vJ9iLWVkhX9xtFuYC/sXd2QK5W8efGczO4Z2D56Toqb+JfiX7ICS/Ztwi93QdPT/Z7zJxCNRqoMaguCwE9lqjKiZXfTchaAjULJwYnLOH3rMrefP2Jur5FodVouPrhNZK5sjBw6BEd3j1TPKZXJqNymA21mDGd1v9/J7pWJiw9u0W/pZBqO+jKv4Q+xc3ah05QZLOrXE+uiqcg1WFh9VMdm94LZhKplOLeeg5Asmhbz53pWjBzCgKWreXLjOlI7V4wJKiKPLUP98CyIIlI7V2T2SVLRgiBgkbUkdy9e/KKAkLN4SXqu3sShuTNYfOs6Fho1szJ4mZ70LSUSfpbL+fPQPrOAAElKoU1G/k6iTkf/4nkISUzE872b51OdFie3tC08b506jq+l3BQMALLK5TS0tubCjs00HDTc7PUKa2sMqdpz6nF4zxvhY7x8cI+jC+ewyzMD7snjfahU0nxQb6xkFjS1scFdENh19hR/rltJ7zWbTV7RnyJTnnycf/SA5g4OJtOdhwkJSLTar559/FP56HqEKIrjgQEkVSqXFd+lI0mAXt9/aP8flMyRjzvHjppJNOgSNNw9d5aiX6hX1KBMVV6tPUbHsjWpnNGXjb9O5tq8rd8sGAD0adiWRy+fU3t4Z+bvWk+veeNoP20ohbPn5vDkFRyetByNNoE6I7qQaEg0aysIAhUKlqBng1Y0KF2VphVrM6PrEGp37fXRYPAW/269yVajFhWGtMPl59K0mDkc//6/pri5fQ1Fq9Wi35JVaO+fwKh9J6aWGBeB+vEFClRMPdvl3J5dWJf42RQMAGyLN+TBhbNoNRqiwiPQvrpH6LZxCFIpXt1W4NNvM/almqANvk9ibCgAhpiQdN14P0bWgoXptmwtzSfPxMPG1ky5FCBOFLFQfPyzILO0pHzTloyIiiIiMelv91ynZWJsLJW69EIVHcXDS+d5E/A81fYJ8SocJSmXM52BhNiUz5IWcitK12vImKgoVMmKv6/1eibHxlKuQ9c03+/lvTtpqFSaggFARktLJAYDq9zd6OPkRDNHR9a5umL94hnndmxNs0+Aat37Mis6ii3R0YTo9ZxSqegdGUGdvoN/WLXTT76r1HyTRVF89P2G8/9Hs4r+zNmzgbXDB1G+RRs0qjgOzJtJ1UJ+5M6Ych09vVgrlIxo2e0bjtQcO6UNx6atZvuZw1x6cIv4BA3ZMmRk25h5phnD/N6jqdC/FQcunaFuqU9rJG7MnvqTYKJOR3ToG2ydXZArFEgkEvy796Zmlx5oNWqsrG2+iwl67lJlKV2nLhfW9UOepwoY9GjuHKVOl164eKVe1W1MTESQmn+lBEnSz0aDAc/MWQiN0aGPeIV78wmmwGGTrzK6kCeobhzCKkthNHeOUHHUzq9+D3lLl2ONXsfZeBVlrZOe1kP0ejaq4+nc6NMudw0GjWCrTket7VuwtbBALYrU6t6HsKePGTZiEFmtbXipUZMpfyE6zl9m5h+Qp1RZtsTGEm5rZ3ri14kiO3V6/Cun7pvx86hxrFOrqHzsMO4me84u6XKZMxoMKW5kNzUaMlpYmqw4IalYr4ncij8O7qFCGpXGMeFhrB3chwxyOWuiIpkSFopMJqP+8LFU/MKK9n8DP2aY+xehtFJwfNIKpm5ZwYb+vbCylNOmYm261mnKlUd3CIkMo2jOfHg6uabaXhRFNp3cz/Jju4iJV1GjkB99f2qDs53Ddx+7laWcFlXq0qJKXSZtXIK3i7vZzVkQBCoVKsmd54/SDAgfIooiR1ct48CiOVhZyInXxFO+SUsaDBiCVCZDIpV+VwcyQRBoNXIsJf3rcuXQfiQyG0oNWk+mPB+ftRWtXpPr1/ZgX7Wb6Tqobh4kS4EiKGxsKFq1GlcP78fSO6/ZLALA0jMHMSdXYHxyii5TZ+L5DTyALeRWdF20mkFd2uKboMVOELgQF0vtnv3TFISTWVjQbMxE6g8cTlxkOI4enlw5uI/Li+ayz8sbV5kMnSgy4elj1g7qQ5fFq0xtnTy9qN6pB01XLqGVUom1ILBZq8WxcDHyV6j80bG2m7mQRl9gz1m4Zm2WbVpHG4MBh+RsoFiDgRiDIUXFc6zRgKV12v1u+30UlTVqfvV8V3w2NTKSR+fP/tABIV2Faf8UfoTCtPQQHBFKw9/7Ea6JwyNTFh7duErHWj8zvm3vFE/Dw1bNZufNc/j37I+diyvnt23i5aWLnJux7i+TogDYfOoAqw/tYN8E84zkuiO60qpqPZpW9P9Iy9RnB+d2bOHUgrlsHT6DnN5ZCI4Ipc30YbiULkX9NLT5/y5UUZGMb9EYDQok3gURI55jCHlIv8Ur2TpzKs9u30Zq54rmzQu8e65DYvFuHTv6wEyKFcpMsyGjvvlyhC5Bw+3TJ9Gq48lTutwnrS0/xbSGtegWGUGV9+oQ4o1GKgYGMPH0lRR2nA8vX+DS1j/QazTkr1WHotX9v1sK6bZJv3Fp0wbqKRRogd0qFRZyOQOUChokz14iEhNpHvqGJrMWka9cxU/21yN/Vg55+5jtaUQlJlI5MIAFd55/l1np9yS9hWn/BYR/IDVGdMHRryT1+gxEEARUUZHMbNOE0fXbmt1YX0eGUbDbT4w/+qfZl3FJr840yJiHPj/9dU8yCTotRbs1pFWVevT6qTWCAHN3rGPt0V1cXbj9ozLZH1sqmlC/BrNb9aZy4Xc6PM9fv6JU/5ZMO3/jH7uGq9dpuXr4AAF37+CWMSN+dX9i7bjR3H8WiX21HghSGWG7p2BQReFYqT1SpT3xt49gfHyS3/ccTnFT/ScxprIfM6RS8liZK31WePWKAbsO45bx8zK9vjUBd29z/cgBpJaWlPCvh16rZW675rgbjbjJpFyKjaVa+y7UTccDRWoBITIxkSqBgSy48+yHDQj/zG/V/zEvw0K4+ewhU9dsMH3obBydqNWzHytWrTILCNce3yVHwSIpbiIFavjz587d/JWF9VaWcg5MXMbAxZPxaZ6kc1O1SGn2T1j6RZ4J4SHB5MlkvmyS2cMLnU6LLkHzlxvWpxcLSzl+dRqYrDP12gSuHNiDR+dlpv0Fl9r9iTy6mLDNI5ErrMhXriKNf9/5jw4GADnLlGfvscNmAeGqWo2gUHx0X+WvJFPe/Cl0k8afusyDC3+iiommdnG/NJMW3lKsak2WXjzHECcn0/dwaUwMxavW+NcFg8/hv4DwDyNOrcLG1tbMgxbAzsmFmHhzZy4PR1dCAp6nkHl+8/QJXo5/fVpcRjdPNo+chVafpFaZViD42OwAIGu+ghy4dIp2Nd8ZtZy5fQVndw+s0rEG/E9Br9WCKCKRv8tZF6Qy7P0aYwy8wrwL/54az1o9+jHp6CHiIyOobCnniV7PCpWKFlNm/eXVxOlFZmFhWh56fvsmu+fNIC4yEt8SfpRt1Oyj+xSNRoxlRrP63A4Pp5hE4KpRJNzahv4jx/2Fo//r+VsDgiAIK4A6QKgoit/fE/JfgK93FkSdnkdXLplp85zb9gc1C5vr6BTJkQd3G3t2z55G7R59sLCU8+jyRU5vWM3RCX+NW1dqfI6l5sfw7z2AYZ1ao9ZpqVLI73/snXVUVGsXh58zQ3cKChbYidiBHdjd3d2d1/YaV6/d2N3drdgNJioKSncMMDDn+wO+0RFETPR6nrVcyzmc9z37nIn9xt6/zZ3nnozdsJAWE6f+ciM0RXQUexfM4caRAyQqlZSoUZvmw8ZgbpsVAxNTsuRyJPbZVXVFNYAYj7MUyaBcdnoEvnnNmS0bePfyFQ5FilC9XUdMrb8+ZDU9zG2zMu7Qac5tWMuKG+6Y2udgQJeeX1xMJzO4emAPO+dMp1bnHhQsV5EbRw9xafd2xm7bl+Zs08TSiglHz3P/7CnevXhGIRNT9AyNeOf1DGMLy6/WnfrVydQ9hBSNpGhgY0Ycwp+yh3D42jl6LZ5C5XadyZLbgfsnjhL27Bnn56zHwthU41y/0CC6LZjIXa/HGBgZI0tK5N9eo2lQ7tcvhZ3eDAGS14RPrFjM2yePscqeg+rde2e45kBaJCUm8uaxJ9q6utjlzf9dHIsoisxu3xzrHDlp1H8oOnp6nN64lpvHDzPlwCl0DQx4dusG//buin7ROsizOJDoc5/E17cZ4baZqJBgjMzMyVGoyBfb8+Lebf7p0Rm9wjXRyuJIou8DlN63mLhjH1ly5Prme0v32vfvcGrTBsICAyhUpiw12nf+ZZe8lPFxjKhShhHrt5O9QLLsiSiKrBzWnxwFC1OvV/9PtlWpVGyeMo7bJ45SsFxF/F56IYoiQ1ZtwCLrp0UcfzV+m01lQRByAYclh6DJo9derDmxl7dhQbjkL07n2k3T1Rt6GxxAVGwMee1yflaCGiAkMpxdF47jHxqES9FSVHMq+9NHPZ9zCN+ThxfPsX7CSAyMTYhXxKJvZEyv+Uuxy5Pvm/p9euMqmyaPY+rhMxrPb2HvzpSo6Urllm0BCPB+yektG/Hz9saxSFHk2lqcdFtJ9gKFCPP3Q9/EhP6LV3/RWvxfzRqgyF0Dw0JV1cci3LfjaBRF/4XLvum+0uPqwb1smj4FfecmaJlnI+HFVWRBT/lrz2F1KcxfiRf3brNp8jgm7z+hcfzBhbOcWLuCQSs34L5vJ4+vu2NsboFLi7bkKpJc5e3Cji1c3rOd4eu2o2domFy/esUinly9wsiNOzPjdr6K/8ymsiAIvUjRUcqe5ftWTMpsQqMicDu6ixsPb5E9qz09G7bDIWt2jt28yLuQQNpVrUepDGYr21llPJTw6qN7tJzUlwr6+tgDw4/uJJdDAXZOXYbONxRq+RK+1BlEBAXivm8XkUGBOJYsjVONOhnWpAn29WH1iIH0X7Ka/GXKI4oil3Zv59+eHZl18vIn+1ElJaGIjkLfyPiTa+S+z56Sr3RZBEHgyt6dnN+xmaiQEIwtLPG6c1PtEGxyOdB+/GQAHl+9jNu44UzefwIr++yIosjxNctZPqg3E3YfztBMIT42lrdPPbGvO1njuGGRmjzaOjRDz+VrSExIYMuMKZg1noCubfKmv0GeMoSfWsbxtStpNXLcd7+mKIokJSZ+dREhAxNTokKCUSUlabyPEcFBIBMYU7MC2Rzz4tKyLcFvfVjYU+njNgAAIABJREFUqxMtR02gQpMWXD2wh4b9hqCXIronCAJ1u/fl1LrVhPn7YW773/pN+uUdgiiKq0iR2y6Zt/DvEyP7GfxDg6k2uDXFEamqo8MLHy+qnT6Ino4uObXkOMjlzFcoKFXYmY0TFqCt9X1+qFUqFT3/HslkMzN1PHlfUaTP62esObqLfo3bfZfrfE+e3brBin7daFy+OiWy5WTvyhWcW7+GQW5bU9V4SAv3/bsp16iZupaBIAhUbtkW93278Lh0DqePsmdFUeT0xrUcXb2MhNhYdA0Mqd97ANU7dEn1Y22b24FLu7ZyYMl87p46TvPhY7G2z8G1w/s5u2U9oX5vschqhyiK+L96gbaOLpd2b6dez35Y2WdX21Onex/ObdvI22dPPlnc50Pk2trI5VqoFFHIDd8nISbFhKFnZJJOy2/D76UXgq6h2hn8H70ClXl4ZRutRn6/a4miyNnN6zm2ZhlhAf7Y5nKg8cBhlPnC8pVZHfJgaWfP0VVLcSjuzIMLZ1AlJXHr5FHioqIoULY8A5evU7+3TtVrM6djS0q51ideEYuBiebzlGtro6OvT0Kc4rvd66/CL+8Q/qvM3bYSF0Fk7AciWWcjI2ikp0OXlGl3gkpFv6cPWXFoGwObdvou13302ovEuFiqW7zPwNQSBDoYGrLt3OGf4hC+ZHYgiiKbxw1n9aDJ6n2RwU070WrWcM5sWku93p+X1YoMCSZLzlypjlva2RMZEpLq+Pntm7i0ezvD3bZin68APk8esXJYf7R1dancSvP5JCumCpxYu4KZJy6pwxqbDh5BfGwMpze64VS9NusnjEQZH4cyPh65lhal6zbU6Ecmk2FqnYWYiPAMPRctbW1K12+M56X1mNYagCDXQpUQR/SVjdRq1YaIoEB09PW/Kjw3MSEBubZ2KucniiIPL55DERqImKhE+GCQkhQVjNl33ENIVCpZNqAHfq9eMHD5OnIULMzTG1dZO3oI2rp6X6xd1eufpcxo3Yjz2zdRtXUHosPDiI+ORlffAJeW7TTu1T5fASyz2fHa04NiVWtwfvtmHEuUUp/z8OI5tPX0yJLz65SCf2X+m1vlvwFnbl6k8QfhkwFKJW8TlLxTJtLlzRsm+PvxIiGB7sZGzFj3L3bNy9FzzhjehQR+03VlMhlJaewbJYki8p+wh/ClS0X+r16gioujftmq6mMymYwB9dvgcepkhvrIX6YcN48d0igMo4iOwuPS+TSrrJ1Yu5Iu0+din68AANkLFKLL9DkcX7tCfU50WCh3Th3n6XV3yjZqikVWu1Qx7sWqVMfrzi2WDOhBq9ETmHPuOvMv3yFXUScu7NyiIWjo/+oF/q9ekKtIxiN22o+fjJ2JSMDqHkTsn0rA6u5kz2rG5f17GV27CkMqlmRhv55Eh2WsuOHtU8cYXacqvYvlYVD5EhxZuUzjmR1ctohjW3egZZWTsEubEFXJQnSJkcHEXt9B7fYdEUWRR+6X2DxtEjvnzMTnyaMM38+HrBk1mCc3r9N/8Wpypmy4FyhbgfaTpnN09dIv7u+d1zMMTc2YcfwiDfoNps24yUzae5TY6EiCfF5rnKtSqYgMCUbf2Jg6XXvh8+QR//bsxPntm9k+czJrRg2m0+RZv1y02/cgs8NOtwFVAStBEHyBv0RRzFg1jN8cU0NjghNi1a9fJiSgRERHEOhtacmj+Dh6+vrQ08KCLDIZq7JmZYvHTWoNbc+NVQe+Wrm0YA5HDI1MORoVpZb0TVCp2BATQ+dm3b76fkRRZOXhHSw/tJW3wQGUzl+UiR36U6Fwia/uE0BLW4cEpRKVSqWxWa5IiEdLJ2PLaCVqunJu6wYW9e5M+aYtSYyL59TGNZSp1wjb3JoCgqIoEuTzWr2p+H9yFilGkO8bAE5tWMOBxfNxcHImxNeHsAA/VCoVCXEKdD4oB+r77AlJSYmUqlNPvSwlyOX0mLOQ0dXLsbhvNyo0aU6o3ztOuK2kxfBxGVoC+z/6RkaMWLsRvxdeBL7xRsfAgEX9emJSayC2ecogJih4fWUz//btwYTte9Pty/PKRdaOH4NJnSFkb1kcZfAbju9cjDIhniYDhxKvUHB87UqsOixA0NIh6OAc3i7vhtzIgsRQHxoPGIpTjdqsGTOc+1euolOwGiiDOLezNc0HD6Nmx64Zvq93Xs95cu0KqqTEVMtnDk4lCXj1MsN9/Z97Z09SuUUbjaJDNrkcyOtcmqMrl1C6bkPMbWwRRZETbisxNDVTR6KN23GQc1vWc2nPdnT19ekxZ2GatTT+C2TqDEEUxbaiKGYVRVFbFEX7P8UZAHRp2JZlUVFEpMj97goPp6+lJSOyZKG8oSFdzC0YamXNqpAQahsZY6OtzTBLS3Krkthx/tMF6D9EpVJpjPAgeb163fh/mBsVzYCgYP4OCaHRu3fkLFiCLnWafvX9zN6+mo2n9rFy6DRebDpNp1pNaD1tCHeevx8hfk1UkXX2HFhks2P1sV3qY4r4OP7e7YZzw9T2ens8YMf0SWwaP5K7p08kK2Fqa9Ns6GgC37xm7ajBbJg4Cj1DIxoNGJaqvSAIZC9YGM8rFzWOe165SI4ChXl26wYn3FYy5eAphq3ZzIzjF2g/aQbaOrqsnzCK6PAwRFHk8bUrHF21FCv7HNjkctDoS9/IiKJVq6Otq4P7gT34PntC34UrPqvA+SmyOuaheLWa3D1zGv2itTDIm7zJLdM1wKRqd/xev+HNI490+ziwbAlGLl3Rz+WEIAjoWOfEtN4ITm5YS2JCAsFvfdAyNEXLNAtyQzNs287Eps10DIvVxiJbdhr2GcAj90vcd7+KZfv5mJZrialLJ6zazWX3/NlEhgRn+H7ePPEkX+lyGFtY8urhfY2/Pb3ujl3KzO1L0NLRIV6Res1fER2NRTY7Jtavxj/d2jK6RgWOr1nOwGVu6hmAx8VzHFm5BLu8+clRoDDrx49k5+xpZHaE5o9A2kPIJLrUacbjV0+pe3I/xYyMuRUbw/AUDfzTUVHMDgokSRSJEUUexccTmZSEiVxOKbkMD6/H6fbtFxrEmGUzOXD9AgANSrswp/94dVnLEnkK4bnhJAfdz+AfFkz3IiUpnb/oV0+BY+MULN6/CfdFO8hpk7w30bZ6A0KjIliwZz2bxsz5qn7/T+e5C5ndvQPbL58kv11OTt6+Qt5yFVOt55/d5MaJZYvoXbcV5pbWuM2fy80De2gxfgpL+vegxchxlGvYjARFLPsWzmNxv26M3bYv1X03HjicdeNG0G7CFBxLlOL57RtsmzmZLtPm4L5vFzU7dccy2/sY9IpNW3LCbRUxEeGMql4ORBETK2s6T52NMj6OM5vXU7trL/V1EuIUPHa/wrC1mzO0gZwWoijy5Lo77gf3o1KpKOtaj4A3b9Cy/KjYkkyOrnUOgt/6kiMdpdaA168wdtYcxWub2SIC0eFhmNvYkhAVSlJsBDJdQyJv7SfG8zwqRSSm5qZEhgRz+9QJdApWR6bzXtpCy9QGg9xOPLx4jopN067FLIoiL+7dxu+FF9ny5MXaPjs+Tzyp32cQK4f1o9OUv8ldzIlHVy6xafJYes//8pDasg2asKh3F1xatFGL+z29eY13L54hk2uRpEzk8TV3ilWpTs+5i9UZzIroKNZPGMnIDTvUz6/RgKFMbVaPYlVrUKBshS+25VdGcgiZhCAIzOk7jiGtenD/xRPGLJ2Bn1JJWFIiUwL8WZBS5SpGlcTcwEBG+71juX12PFQqqmd3+GS/CUolrsM7USUpgfO5cyMD3F54UGdYB26tOazOIjbSN6BdjYaf7OdLeBcSiKmhsdoZ/J/KxUrjdjy5GMm35BzoGxlTukETXty8xv3oUNrO+oeiH6lVRoaGcODfudxctFNtR/e6Lag4vCO7586gZJ16VGqWrK2vpW1KuwlTGedamZf37+DoVFKjrxI1aqOlrc3RVUvZPHUC2Rzz0P3vBRSpVIWrB/ZgnEasvYmlJdXbdabb3wsY7lKS6UfPo6WtTWJCAqc2rmXZoF5Ub9+FBIWCIyuXULiiy1c7A4Cdc2dx8cB+9Iq4gkzOg0l/YZXFnISgOAwLVVGfp4qPJdbncSqNn4+xy5ufQO/7yPLoItM3QpBrkxD8BrlMhpG5BVra2lRo0oI7x+aTKGgjKuOwqN0fma4BsfePMa1VE4pVqQbK1KNwURmPtm7aMiaK6CgW9+tGmL8feUqU4sjKxVjYZsPIzIK3z55Qt0dftv89lQDvl2jr6NJ+4rSvSk7MXdQJRVQkE+tXp1iV6iiio3hy4yo6unrU7toLPQNDLuzcgr6hkTrEFMDj0nkcnZw1nKmBiSlV2nTg1vEjkkOQ+L5ks8xCNsssvA54yz9blmEnquhmYaGucmUokzPOxpYaL7xYEBTEncQk1tRo8Mn+Dl8/h1mCgqEfVNwabGHJw8AgDrifoVWVut/9HmwtrAmLjuBdSKB6FgJw48kD8trlSrONIjoKVVIShqbp123we+HFPx1a0LxCDVrXac3VJ/dZP3IQg9y2atQmeOx+mUrFSms4JV1tHbrVbMyCs/up2am7Rr+CIJCzUFGCfN6kcggARStXo2jl1NnehV2qcmXvDso3bq5ORAt84423xwPylirDpV3bKOpSVR0zr6Wjw3C3bZzeuJY9/8xKrg7WpDmVW359NJffCy/O79yKdZdlyPWTo4hUxWoTuHEgMtGHiPNu6BeugSo2gpirWyjboLHGjOZjRFHEztGRp9tWEX5hPQD6+cqhCnhGo74D1ffSfvxkEieO4eqRQ9gP2ISglTy40KnZh/CDM9E3NCTO4yCGxWqjZZJcvyPO15P4d88oVqVGmtfePW8WltnsGbF+BzKZDJVKhduYoWjp6BATHsb2WVOA5HKWbcdNIXcxp696ZoIgINfWZvj67bzxfEi8QsGz2zeYevgMplbJtrq0bMOkBjWZ3LgWlnbZqdg0/SJC/0Ukh/CL0LtBG3z937Lm4BYamWjKU+gIAhZyLe6ZW3NyzFzM0okz93r7mmJpRAsVk8FzX+9PthNFEb/QIAx09dLtPy2M9A3oUbcVnf4exdJBf5HXLifHbl5k2ualbBu/QGN2EOr/jm0Tx/DoxlUEQSB3wSK0njJTHdHzMQfmzWJE004MbdYZgOYutSmc3YEVs6YyZNP7TFFdA33Co6OA5CWzp29e4pAtB2HRURiZmfHI/ZLGEpMyIZ6nN6/RsN+XacKWb9iUawf2MLdTKyo0aUFEUCAn162iiEtVNk8Zz5Nr7ozapJnBqmdoSIO+g2jQd1C6fatUKl49vIcyLg5HJ2e0dfVSnaNMiOfIqiVgaIni5S0M81dE0NJBpqOHTv7KlMpjhDJByYPjs9EzMqZRpzZUb98l3ete3ruTqydPY9txPjrWOVGG+RG8fwZFShSldpce6vO0tLUpULYcj7wC1M7g/8hzlMD78SOyOTri7dYf/Wx5kevokvDuGf0XLdcYdX/ItYN7mX70nNq5ymQymg4ZxeQmtVl8w5OEOAWJSiUGxt+WWyEIAuUaNuX81o10mjabS7u2UbxqTbUzANDR06dS89a8fvQQ55qu7F0wG6fqtXhx/w6vH3moByAxEeFc2L6ZrjPnfZNNvyKSQ/hFEASB6T1HkKhSce7SMSp/oMIYlJhIoCBwYeYazI1NSExKxO34Hnae2IcyKRHXijUpV9AJO2sbCubIw4EklUalKFEUuZ0kMiRn2iU5Lz+8xeB//8I/NIgElYpqxUqzdMQMrE1Tx5VHK2I5f/86MkFG1eJlMEiJqpncaQDzdq2lzphuBEWE4eRQgFVDp1G+kBPeKW2TEhNZ2KUtHSvU4uTgmWhrabHh1AEmd2nL5GPn0pwtPLx6ib09NbNf29VoyMCl0zUyTwtXrMymcSNpPnkgVx/dpUjufHh6P0eFSLeFK9j011h2zZ1BldbtiYmI4MCieeQrWQa7vPm/6H3S0tFh6JrN3Dh6EI/LF9DR1cOlRRviYmOwze1I+4nTPjvrSYs3jz1ZPqQPcrkWeoaGBPm8oePkmZRyfT8bjAgOYma7FsSKeug5lCbG4ywRV7Zh02YmWiZWJMWEoa1tTvsJUz95nY8riAEcXrUC42q90LFOrmegbZ4VywYjebp/cqr2VvbZSQjyTtWPMsCLZ89vYVS6GSblC6O4f5RcRQvTb9v1TyqKiqKIMj4evY/+rmdoiDIuDkj+kf4wcuv/RIeFcmn3dnyePiZLjlxUbtmW8MAAXj28j6WdHUVdqqWqmdFy1AQW9+3GeNfKmFhap5l9HhMRjl2e/JRv3JzClaowrk5lWo/9i3mdW+NUozYGJibcOHqI8o2aka90uVTtf3ckh/CLMbRVdyqeP8K8kBDqGxril6hkcWQUA5p2xDxllNRt1gi8Pe/QzciIyzHRzN2yHDtdXaIEGY72uVHoGzIjJIQepqYIgFtkBDEGRjRMQ/DulZ8vrScPYIq5OdVz5kQhiix9/YyWE/pwbtEOjS/9/iun6b9oCiXyFCIxKZHeCyaxZvh06pR2QS6XM7pNL0a17kmSKgmtFO3/D2cHDy+dI4ueERPbva/13KNuC8553OLawb3U6KgZ9qpKSkJfX5/A8BCNkqBBEaHo6ekjfDAT0tbVw6m2KyH3HvBk/XFMDIyIjVPQcc5oHl04y5gteziwZAGz2zdHx8CACo2bU7dHv696j7R0dKjQpAUVmrTQOO73woszm9ehSlJRsnZdtZDa50hMSGBRny40Hz6Wcg2bIggCrz0fMr97e+zzF1SHxm6fPQOlTVGsqr5f/gq/uImwc2sxLd+KmMeXcfd7SLOhozXk00VR5OS61RxzW01UkD/ZChSh9cgxFKmUvNcQ7v8W2yya+1LaVjmIjQglUZmA9gcy5vlKlcXU1JDISxswLtcaQUuH2CeXiPY4j23nBehY5QDAuHhtXmwYSNAb709uZguCQLGqNTi3daOGwNy5rRspVjXtJSZIliL5u30zCparSOGKlXl57w6TGtTAwMSUIi5VuH54Hzv/nsbwdds0lsoMjE0YtWkXL+/fwefxI/bM/5vHVy+rQ0j9XnhxZd8uxm7bByQrnuYpURJDE1OmHTnLzeOHSVAoGLZmc4bf298NySH8YtiYW3J+8Q7mbl3J+LtXsTA2Y3S7AbRJKYxz5/kjrt67wSG7bNxRKDgXHc2eXLnJpaNDoiiyNCyIeyaW6BV2ptnlk4hAo/LVaGCdlUp9myGKIk2q1mNIi64Y6Omz9sgOmhgZqWUsDASB4RYWNHj3ltvPPdVaSr7B/vRfNIUjM1fh5Ji8GXr10T1aTBnIg9WH1D/YgiCk6QwAQnx9Ke6QekTunCsfl319NY6983rOsj5d0BYFRqyYze6/FqGvq0eCUsmotfOp2KxVqpHu40sX2Ddmnrp0qIGePgv6jKXkgBa0GPsXXaZ/W7RTepzasIbDyxdRvnFz5FpazO/RgWptO9Ko/+d1hTyuXMDKLjvlGzVTH8tZuCiVmrfmyr5dNB82BoC7p45h3VUzwsakTFN8FrdH8eoOlq4DSfA8wf1zpylZ530hpQNL/uXMvkOY1BuNmVVOFC9usnRIf4aucCNfqTLYFyhC1MvbGpvRca/vY5k9t4YzgOT3d6TbZtaOH8WT5Z0RZDJ0DY3RdyyldgYAMj0jdPNX4v6FM+lGN7UaPYHZHVrg8+QReUuW5vntmzy/fYPRm/d8ss2+f+fg0qItjQcmhw2HB/jj4OTMoBXr1fsdh5YvZMPEUQxbuyWV/Y5OJXF0KomtgyMrhvQlq2NeBJmMVw/u0WHSdHU9a1EUCfL1wcTKCrMsNtT6aB/qv4jkEH4SIZHhHLl2PnmJp7RLumJ09la2LBz0V5p/u/b4Hi4G+ujKZOyOCKeXpRW5UkaDWoJAf3Nzavq8ZvXo2Swdlhwr3XB0N3zvXmOksREyATYc20nj25c5Pm8Tb/ze4PzR1FkmCOTV0+dN4Du1Q9h98QRNK9VSOwOA8oWcqOFcnv1XTtO9ruZoOS1yFi7C1nWrSUxKVDsNURQ5fu8qhTq8L/epUqlYOaAH4xp3okONRvRZ+Bf5OtchX/ZceHp7YZ4tG6MXLeHNIw9uHN5PYnw8RavXIio8LNVzzWphhUKhQJWYiEzn2+s0pEWwrw8Hly5gyoGTaknkOt1681ejWjjXdP1sNFFMeDhmaVTyMrOxxe/Fc/VrQSaDj/JKRFEEQYZdHzfkeoYk+j0i1P+d+u/K+DhOrFuNZft/0DZLvoZBvvIkKaI4uGIpI9aUoeWwESzs3wsxMQHdHEVJ8HtG9MV1dJs2I017Ta2sGbZyHYroKKLDwpnYsCZa1mkkCSbEoquffqJdlhy5mHroNO77d+P79DEOTs50nDwTg4/20T7k4aXzTB4xVv36+pEDdJr6t4b4nWu33hxbtYzo8DCMzMzT7KdA2QrMPX8dT/dLBLx6ydunj8mWsoSoSkrihNtK5FpaaQYd/FeRpCt+Avsun6JIlzrs37SYU9uWU6pnQ5bt3/xVfdmYW/Em5UchLCmJrNqaPl1LELDV1SU4MlkT5+KDm7x5/ZyFWawpaWBACX0D5ltbE+7ny6k77pQq7MxlpVKjjxiViltRkTjneT8tjo6Nwdwo9ZfUwtiMKEVMquNphZk6liiFeW4HWs8awe1nnnh6P6fvkqn4xkRojGhfPbiLrkqkm2tzdHV0WDdyFhcWbKZAdgfKFChGSIA/57esZ0n3DhSNUeGiZcL+v8ZjZmHFtrOHNa65+9JJ8hVzSlWB7nty9+xJStaqp6GPb2JpRbmGTblz+vhn2+cvUx7PKxc0JCZUSUncOLyfguUqqo+Vcm1A9I1d6oQoURSJuLoTwwKVkOsZIiYlkuB9VyMSJyI4GEFbV+0M/o+efSHepTibAmUrMHSFG9aRD4jaOxHTd5fp98+/lKpTP1279Y2MeXL9Crr2BYl7eZt4fy/13xICXhLz5HIqzaa0MDQ1o1bnHnSaOptanbqn6wwA9AyNiA4LU79OUipTbcDL5FrI5HJUKYmfn0JbVw+narWo0603HSbPZFGfLkxqWJMRVcpw98wJBn0gevcnIM0QfjAhkeH0mz+BtTY2FEypRfvWxIS2GxdTzbk8BXOkvdH7KWo6l2dIXDw7wsMppW/AkchIXD7QRPJOSMAnLp5iDsk6/zeePsRFVwetDz7UMkHARVuLG08eMLhZJ1bu38ys4GCaGRkRlpTEsqgomlSqTS7b99r8tUtVotPsUYxu0xOjlFFfWFQkB66c5uis1RmyXRAEei9dzfFVy2j77wQSlUqK16rDsCm7NZYmFNHRWJqYa3wRHbJmp0rxMuy5dBJTI2OOLFvI7SW7yZEiid63YRtKD2rNtO2reBsaRLViZbj+9AErju6k38r1X/SMvxSZTE5SUmKq40mJichk6demSFQqeXrdHbMstkxtXp/6vQegb2TEhR1b0DM0wrnW+zDh1iPH8rJjG8K2j0SerRCxr+6RFBWCRb2hxPl4EHtrL7kK5NcY0ZpaWUFiAspwfw2nEOfrSTbHvOrX+UqVYdS6Lx+khLx7i8zKAcvCtQncMQGdrPlBgHgfT8rUcc1wDeMvoWLTluxdMJv+S1ajraNL8Wo1ObluFT3mLFR/Zq4e3ENWB0dMLDNeSrZ03YaUqFEHn6eP0TcySiVr8icgOYQfzOFr5yhvaKR2BgB22to0MjJi1/mjjG3XJ8PS1rFxCpqM7UFWuYx1oSFEJCWhFEWGiW9pbGKKX2Iia6OimdJtiFrryN7aljOq1Cn2L4Am1raYGhpzduF25mxdzojrFzDWM6Bjmz70btBa4/zS+YtSy7kilYe2p3vdFiQlJbHs0FaK5M77RWGqOnr6NBo0nEaDhn/yHEenkqz2fs5zX2/y2ucCkpeRNp06QDWncpy8cwXXclXVzgDAUM+ArjWbcDrSHy8zfS6d2IGVgyOjdhz44V9s51qu7F84F78XXmR1TF5/Dvb14dqhfYzbvv+T7ZISE1nUpysJcQpcu/fhxd3b7F0wG9MsNtRo34WKTVtqRMoYmVsw7cAxHlw8y7vnz4gtlpUrhw4RfGAWWrr6lKxRg64z5mo4Um1dPWp37cmZvXMwrt4XHeucxL64SYz7ZhqvXPfN9+5QvARn9x9Gv1J77HK6ofC+C6okZDHBuLRo8839p0X93gNYM3oII6uWJa9zaV553EcZp2Bup1YUrVId36eP8bxykWFrMu7gEuIUPLx4noQ4BYUquGiEo/5JZHrFtC/hd6yYtuboLs5sX8FMS80llEXBwWyLjiYqIR5Ha1smdhlCy6rpJ40t3reR47vdWGyd/GH1USq5GRvL7NBQSjrkx9rCip6NO1C5WGl1m9g4BcW61qWbnjYtTc0QgP2RkSyJieXhuuPpVmH7GFEUOXnrMrN3rOHR6+eUK+iElak5R69f4J++Y2lb7f0Sw7dWQ7u0cyuH/plN/wZtsLOyYdvZw0TGRiPX1UVpZYGlQsmhvxZrtJm0cTGPjHVo/gOKtHyOK/t2sX3mZIpVrYFcW5u7p4/TZNBIanTo8sk2N48d4oTbSsZu26/+4Y8IDmJC3apMPXwm3dH1w4vnWDZ8MMZVe6KXvQjx754SdX4VnSf+RdmP6gWIosipjW4cc1tFZKAfdgWL0WbEaApVcPnm+1apVMxs14JghRb6zk0AEcXtfdiYyhmzcfsPXW7xe+GF77PHZMmZm2x58nL75DG8H9zD0s6e8o2aZbik57Ob11k2qBf2+Quib2zM46tXaDxo+H9qE/m3KaH5JfyODsE32J/SPRux286ObCmbXpFJSdR/9ZLh1llobGLCTUUs40NCmT9sBo0qVAdAmagkSaVC74OllHrDO9IiMphqH2ncN/f3Z/lfiylbIG3p5Kc+r+gzZzRPfL0RAMes2Vk+chZFcn95+UhP7+fUH9+Lywu3YW+V/IP1+M0Lqo/oxL3mc99rAAAgAElEQVSVB7Ext/xmZxARFIggkxHy7i1Hl/6L78MHBAT5Y25hRY1O3anaoTPja1Rkz4QFVCzsDMDrgHdUHN6BwRu2f5MkxLcQHhjA3dPHUSWpKFGz9mdr7m6YOAr7fAWp8ZES6LJBvShR01Uj6uhj/mrWgLi8dTHI9146Ie71AxLd1zD39KVvu5EvJF6h4Nia5Vw7mlztrXyDRrh265Vm/sCvRkKcglHVytFj7iJ1GG7Iu7fMaNWIQSvWpVK9/V35z5TQ/N2xt7JlYudBtNm4mEZGRugC28NCqWpoSBPT5M2zMgaGjFOpmLdlGRUKl2Dk0unsv3YelUqFS8Hi/DPoL/Jnz42hvgFRYZpRJipRJCoxEUPdT3/58mfPzbnFO3kXEpgsU/AF5TY/Zt/lU7Sr3lDtDCBZUrtOKRcOXzuHwcDeX92379PHbJkwCr+XLxARyZG/EB1mzsUmlwMqlUqjZnGPf5fRfEg/SuUvipG+PmfvXKXx0FGZ5gwAzLLYUK1d5wyfr29sQkRw6voWEUFBn83M9fN6QtaaYzWO6eYoSuAObxKVyq8uN/k16Orr02TgMJoMTK0em1n4Pn3Mxd3biAoJIX+ZcpRv3EJD+vr/eF6+iF3e/GpnAGCZzY6qbTpw7eDe/4xDyChSlNEPIikpidN33Nl8+gC1SlXixIIt2NRsglbF2sQCM7JqCsEV19PnuZ8Pjcd0R/vJXc7lysV1R0fKBr3FdUQnQqMiaF+3JW4xMYR/EDmxMyICc3MrCufKy+fIZpnlm5wBwJtAP2QfLAP4BPkzcd1Cbj/3YP+V0wT5vPmqfmOjIlnYtR2DqjTk7dZz+G4+RydnF/7t0hZlQryGM4DkzORZ56+Tt11brOrVZeqJi1TvkHHN/V+Bik1bcnHnVt4+f6o+duPoQYLf+nxWwM0iWw7i/Z9rHFMGvsTI2iZVhu6fxq3jh5nXpQ2GJmYUcanKvTMn+bt9MxTR0anOjY9ToJ+G89U3Nv5Plsj8HH/2J+cH4e3vS6Mx3dGLjyO3tjZjo6NoWLEWS4ZORRAE9l84xkOFgqIfjFhuKGKxs7QhJiyIMba26rXXDubmPEwKYevpg/Rv0oFbj+5R7+hOyhkb806ZSLS2DvumLfwpoXFn7lzl8LVzaGtpMbh5Z4LCQ6k3rictK9dlRtdhuD+5x6wW9Rm0dssXj6xuHDlIhYJOdHNtnnxADoOadOTwrcvcPX2CMvUapWqjZ2iY5vHfBbu8+Wk9ZhJ/t2uGff6CxEZGEBsZSaepszWysNOiUZ9+bJk7F1nd4ehmzUtCkDeRJxbSqFe/PypM8mMSExLYPHUCg1dtJHfR5CXUCk1asHxwb85v20jdnprZ6YUquLB58jiCfX3UNa6V8XFc3rODpkNHqc+LjYrk5tFDRIYEka9UWfKVLveffM6SQ/gBdJs5gsao6GabPBqPNTejx82LbDi5j66uzRnbcQCj3eYz0dyconp6XI2NZVZYOK1qNyXA/VSqD1oRucDzNy/Veke9Grfn6qO7WJmYU7V4GY1KYj+SKZuWsHzIFB68fEKZ/i0xMzRmRKvuDGjcAYBGFapT0D43y2ZP1xCeywih795SImeeVMeL5cxDkN+7NFr8HCJDQzi/bSOvHtzDIqsd1dp1+qQQ39dQvnFzStR05emNq1zZtwvPKxfZOHEUoghNBo+gcsu2abar0KQFCfHx7F88l6DwUPSMTWjQq98XVSb7L+Lz5BEmllZqZwDJ4c6Vmrfh+NrlqRyCiYUlzYaOYkbrRlRp1R4DExMu791Jtjz51AqtL+/fZVGfLuQrUw5r+5xsnDQGW4c89F244qcuzf0MJIfwnXkT6Mcz31eszPE+jd9AJqOnsSFbj+2mq2tzutZtgZ6uHvO3ruDl69cUts/FmrHjMTUypvPpgySZi8g/cAo3ElU0zVdY/TpHlqwaIZc/A1EUufXMg/plq9C4Qg2aVKxF5aHtaV9dc4Teplp9+i2aoiE8lxFyF3Pi0KIFjGnTS708lJiUyPE77rRo3viT7d55PefEyiV437+LZTY7qnTuTvFqNb/uJj8i1P8ds9o2pVB5FyztsvP46mVuHD1AiRqutJ847YvKXaaHnqEhHpcvoIyPY9bJS5hYWvHmkQdLBvTExNJSXX7zY6q2bk+VVu2Ii4lB18Ag1bLan4ieoRExEeGpPn/RYaHoGxqn2aZ6+y7kKVGKa4f2ERUWQvNhYyhapToymQxRFFkzajAdJs9UJ+o1HTyC+T3ac2n3Nqq17fRT7utnITmE70xcQhz6cjkf/xQayeTExr9fk2xbvQFtq2vWNRBFkTy58zHy7Sv6mZpiIJOxNTKSVzI5ravW40fhHxrMxDXzOHztHHKZjOYurkzpPlQjv0AQBOysbHj0+gXFHPJTNHc+LE3M8AsNVIvu/b8vA0Ojzy55fEyxqjU4uWopHeeNZUjjDiQmJTFnzzqM7O0/qSr5zus589o3Y2jjjtQf1RbP116M+2sckUGBuLT6+noD/+fIiuRau7GRkXg/vEfzYWPQNTDg5LrV/NOtHaM27vwuGdBxMTG479+tdgYAOQoVoeXIcZzasPaTDgGS35dPqYl+CyqVios7t3B+9y7iY2NxrlGTej36fJWS65fy1usZL+/dwdzGlkIVXL5oYJHVMQ/mNracXL+aOt16IwgCkaEhHFm5hGZDR3+yXY5CRdLUXHr7/ClJiYmUrP3++6elo0PtLj05tWHtf84hSEOK70yebDnR1Tfkcux7OQdRFNkZE0P9Sp/+YkPyl3vn1GUUqtqAvmHhtPYPIKloGU4t2KLODv7exCXEU3tYe3Q8brLfLhvbbW0Ju3mBRqO7p6rH3K9ROwYsnsqbQD8AmlasxdDls4iJi1X3NWLNPFxatPni9VW5lhaD120jqVB+Oi2dSo9VszAsV4Z+K9w+2deJFYsY2rgjo1p1p3CuvLSqUpc94xewY/okehTIztxWjXl64+onrxmvULBzznSGVnKmf8mCrBo+gOC370X2Hl29RN6Spbl/7hQjN+zEuZYrhStWZvCqDYiiyJYZk/C8cvGz8gifIzo8DD0Dg1RZtXZ5C2joEv1M1k0Yzd61G4nL1xCVUyvOHTzOqFpVOLFudZqbs98DVVISbmOHMa9za57euMq+f+cyoV61Lw5U6D1/Ge77dzOpQQ0W9u7MuNoulHZtgHMt16+y63cKzf9WpBnCd0Ymk7Fk2HTaTxtMvbh4cslknFUqUZiY49bs86MJAz19ZvQcwYyeI36CtbDh5D4SoyJATw+PuDiqGBox2cqSlv4BnLt3nRrO5dXnDm7aiRhFLOUHtsLYwJDImGgcs+UgT1dXiuYphMeLJxQoX5HOH2zGfQl6hoY0HjKSxkNGZuh87/v3aDCmg8ax4o4FMDM05tiiHdx/8YTBA3sxYM1mjTXl/7NsYC/0jYwYvWkX+kbGnNu2idntmzHl0GkMjE0wMjXjyfWrFKlURWN5SCaTUdq1Ppd2b+f1wwckxCkYumZzulXJ0sPcxhZRhDePPDRGqQ8unCF30a+rEPYtBHi/5Obxo9j0XE1iuD8BOyei71Aa3ay1OLL3OCc3uDFhx77vLktxYecWArxf8fdpd3WI6LE1y3EbO4zRm3dnuB/r7DmYcvAUXnduERkcRJfpczG1zvL5hmlglzc/2jo63D5xRF2bIjEhgZPrVlH6Nw5o+BSSQ/gBVHUqy9Xl+9h4Yi/vgvzoWqw0LSq7aiSZ/Qq4e95lwuq5VNPXx0QuZ2VICJvCwlhuZ08pHW08X3tpOASZTMaEDv0Y1qIr/mHBZLWwZn9hO4Lf+uL/0ov6OXOTJUfOn2a/RdZs3Hn+mM2nD7LzwjGUiUpqOJcnKjaGrBbW5LPPRUB4CPvWrKDHwuUabV89vI/fSy9mnbykDtNsMmg4/i+9cN+3m5qduuHSoi1HVy3DxCp1ol3Aa2/KNGhMw76DObJiMW5jhzFyw46vug+5lhZNBo9gyYCetBw5Dru8BXhw4QzHVi9j1KZdX9Xnt/Dq4X0MchdHpqNP6JlVmFXqgLFTyui6RD0iLqxj94K59Pz7n+963WsH99Gg7yCNfIFanXtwbPUyQv3fYWGbLZ3WmgiCQN6SpT9/Ygb66TFnIQt7d+b6kQNkyZGLO6ePY5cnPy4t0t7w/52RHMIPIkeWrEzo2P/zJ34GURR54vOSiJhonBwLfDenIooiveeMZpZ1FnUthO4WFgx6+5atYWHcUyppmqIj9DEGevo4ZM2uzki2srPHys4+zXMhWazu9LpVPDx9ArmWFs4Nm1CtfZdvjtCo3LkbI0cNpWaJchyevhJ9XV0W79uEnq4u8pQ9jIqFS7D83MFUbd8+f0LekqVTxeznL1ue154eALi0bMu7l885v20zZzato1q7TggyGZ6XL3Dz2CEmHzgBJEtdH1+7goigQI2RaKj/O3bNmcHd08eRybUoXbchLUeOS1NSoXLLtphYWnJqw1pC/d+Ru6gTozbt+uKKbt8Dsyw2JIb4khSvIOHdU2xaaVZgMyhel/u7xn6i9dejjI9H18BQoxqbXEsLbV1dlPHx6baNjYokJjwci6zZvnseRu5iTsw8eYlbxw4TEZI848hXqqwUdirxc3kd8Jb2UwbhH+iHubY2fsoE5vQdR7san5cU/hxPfV4RFxtNdbv3yxxyQaC9uTmTA/yJ09KmlnOFdHr4PIkJCdw6cYS9c6ZjZ2zB/M6D0JLLmLXLDbfbN+m1eNU39W9kZoGpkQnrR/6tDr2d12cMXu982H3xBJ1qN+GK511s86SW6LDN7ciRlUtSZUC/vHcHu5SwUkEQaDPmL0rWrs/KoX05sPgf5NrayLW06PvvcvWIVa6tjdZHP1rxCgVzOrakTP3GzLt4iySlkkPLFvJP9/ZM3H0kzYggp+q1091A/l7ERkbgvn83Ps+fkyN/crnIDzOj85Uuh4GenOhb+0AQUCnjkcvfO28xIRZt3fQHJglxCg4tX8zl/XtJTIinRPXaNB86Il3RuKwOeVg5tB/hgf5YZM1GzU7dyZIjJ3oGhmTJkSvNNvEKBVumTeD28SPoGxsjiiItRoxLV/bjazAwNtGoyf1fRdpU/kURRZEWE/pQLTaSE/Z27LS1YY21NWOXzeCu16Nv7l9bSwulSsXH22UJoohKFElISlLXVEiLz+kVxUSEM7tlQ+6sXc2AOi1wsLGjz7+TyGqRhUOTl/Dm/l28PR7w4v4dNowawqIubTiwcB6RoSEZvgefJ55UK1EuVR5GNaey3PV6xM4Lx5i5czU1e/RJ1dbRqSSmVlnYOGkMkSHBxCsUnNqwBo8rF6nUrJXGuXmdS1HEpSqW9tlRREeRp0QpCnxQp+DOqeMYmZph+cEs6eaxg9jmcqDZkFEYmZljap2F9pOmgyjieflChu/xexP4xpuxdatz5MBZPEIMOLz3FOPqVifY10d9jkwmY9S6zZhGPUOQyQm/sOF9DYakRKKvbqVSk08XRBJFkYX9enLp/C0MXEdi2nw6D19HM711U+IVaWf/Prt5Hc8rF2g/aTqrPL0ZuMwN9wN7WDNqCJ2mzf7kaHzjpNEkKBTMOXeNeRduMmDJGnbPm8nja1e+4Sn9uWSqQxAEwVUQhKeCIHgJgjAmM2351bj59CGKyDC6mpmppSLy6+nRztiIdUe+LOkrLRyyZsfWyobdEe9/9ONVKtaGhtDD0pIsunoEhWf8x/ljji5bSIUc+bg4dyOj2/Ri6/h/GNmqB0OXz0RXW4fazhU5u2UDK/t0o651Lv6q0wazl2+Y1awe4YEBGbqGTS4Hbj73SBUFcsnjFiuP7GT2yd30WrI6zaxpQRAYtNwNRJHRNcozoGQBPC9fYNSGnWku6YQF+KOrb8CsE5fx937JP13bcmbTOtaNG8768SPoOOVvjR8tvxcvyOOsuYadvK5dRqMK2s9m84wpaBV2xazeCExKNsSs/khk+Wuw9e/pGued274FvxfPMcjthOL5Vd6u6Eb40X8IXNubnLYmNOo38JPX8H54H+8nTzFrMAqdLA5om2fDrFoPlIY2XD+0L802x9cup/nwsTjXckWupUWOQkUYuHQtMrkch2Jpb6xHhoZw/9xpOk+bow6HzV3MicYDh3Nm07dLe/+JZNqSkSAIcmApUAvwBW4KgnBQFMVvH/7+BwiOCCOrjk6qkVE2uRz30KBv7l8QBNaNn0/1wW05FBlJXl1dLkRH46xvgLOePkujosljl/YGcUbUTO+dPM6h8Qs07O/m2pwJ6xYQHh3JI5+XPPf1Zv/EhZQpkPyD7VrahaEr/+bkmuW0Gjf5s9coWL4S+7XkjF77D+Pa9EJXW4fVx3Zx/eUTFt/0+GzlLQMTU7rMmEunabNBFNONd3/n9YyBS9dibmvL+B0HuHHkII+vXeH6kQPMOnk51R5KNsc83Dx2SOOYKIo8v32DYlWqf/befgSiKPLo4lnsBm7VOG5Uoh4eK7upXz+57s7ZXbvI0nUZcgNTRFEk8tZBYq5tZfSG7TgUd073Oq8feaCXoxjCR8WB5HbFeOXpQVoqTX4vvWhZQlOM08o+Ozr6+kQEB6e5RxURGIBZFptUeRh2efNxftumdG2USJvMnCGUAbxEUXwpimICsB34dErqH0aZAsV4GB1NUOL7SlyiKHI8LoEqpb5dxx6SVUovL93NC1HAW6lkoJUVLoaGDAwOZlKXwd+0gS2Ty1B+VEUsMeX16qO7eBn4DiN9A7Uz+D9tq9Tj+TX3jF1DJmOg2xZux0WQq2MNbFpVZJvnDYZu3PFZZ/BxP59LfoqLjlZvGGvr6lGxWSu6zJgHIphap14XL12vIf7eL9m7YDbRYaGEBwawecp4BEFGoc8I1/1I5Dq6qJRxGsfEhDjkH7zXV/bvRa9YXeQGyc9QEARMSzdG39ZRo3Tlp8iSIyfKAK9UMzcx+CU2OXOl2SabYz6e376hcSzwzWuUcXFpPl8Am1y5iQwOIuD1K43j98+dxqF4ic/aKZGazHQIdoDPB699U45JAFam5gxt2Y3O/gHsiQjnfHQ0w4KCCTEypWOt7xf/7JgtBzdW7sepcl12yHU5b2PP4lGz6dUg7WpXGa11ULJ+Y2btXEPSB0lb8/esQ0tLi+0PrtJr8UoioiKJ/UhR0ifIP8OFTSC5dnGPf5ex+M5Tltx9yqB1W8nqkFoT6VspWKES7vs1Y+FvHDmAo5OzRvnP/6Ojp8+oTbsI9vVhRNUyjHetQpJSyTC3LZkmMSEIAmXqNyb6yhZEMTnpUBRVRF/dSrmGTdXnJSYmIshTZ2ALWrokflR/Oy0KlKuIsaEOkRfXo4qPRUxSEnX3KAlv7lGpadp7D3V79mXvgtncOn6YhDgFrx7cY/mQPtTu2ivN5wvJz7hh/yH827Mjt08cxffpYw4sns+l3dup0+3rZdj/ZDKtQI4gCC2BOqIo9kh53REoI4riwI/O6wX0AsieJWvJZ+tP/HRbM5PjNy+x4fB2IqIiqFW+Bj3qt/qiKmffm4w6hHiFgmW9O6Pw96dm8XLcffWUN6GBdF+wTD16W9anK6WMrZnTfRjaWtq8DQ7AdWIfag8fpU4C+lXwf/WC2R1aULJ2PQqWq8jLB/e4tHsbg1dtwPEzSyi/ErFRkczr3okgvwB0shUg/u0jbLPbM3z1BvXSy90zJ3GbNh2LNnOQaSf/GCcEeRO6cxzzL97MkFRGZEgw6yeNw+PiGURRJGeREnSZOiNdYcBH7pfYv+gfvB/eV0cZ1ejY9bPhnbdOHOHslvVEBAaSx7k09Xr3xyZn7ow/lD+AX75imiAI5YHJoijWSXk9FkAUxVmfavM7Vkz7r/El1dBEUeTpjau8eeSBlX0OilWtoZF7EB0WituwAfg+fkTOrPY8e/OCOt37UrfvwF8yxjsswJ/z2zfh++QxNrlyU7Vtp5+aiPe9EEURrzu38HvxnGx58uJYopTG81apVKwcMRjPG7fQzueCkBCN4tF5Ok+ZoTGTyAjK+DiSEpPQM8y8QYzE7+EQtIBnQA3gLXATaCeKouen2kgOIXP51tKYnyLA+yXhgQFkL1Doi9b+JX4coijy5Lo798+fRd/IiPKNmn4yF0Di1+eXL6EpimKiIAgDgBOAHHBLzxlI/HexyeWATS6HzDZD4gMEQaBguYoU/CDfQuK/T6ZmKouieBQ4mpk2SGSMHzU7kJCQ+HWQMpUlJCQkJADJIUhISEhIpCA5BInPIi0XSUj8GUgOQSJdJGcgIfHnIDkECQkJCQlAcggS6SDNDiQk/iwkhyCRJpIzkJD485AcgoSEhIQEIDkEiTSQZgcSEn8mkkOQkJCQkAAkhyAhISEhkYLkECQ0kJaLJCT+XCSHIKFGcgYSEn82kkOQkJCQkAAkhyCRgjQ7kJCQkByChISEhAQgOQQJCQkJiRQkhyAhLRdJSEgAkkOQkJCQkEhBcgh/ONLsQEJC4v9IDkFCQkJCApAcwh+NNDuQkJD4EMkhSEhISEgAkkP4Y5FmBxISEh8jOYQ/EMkZSEhIpIXkECQkJCQkgExyCIIgtBQEwVMQBJUgCKUywwYJCQkJCU0ya4bgATQDLmbS9f9YpOUiCQmJT6GVGRcVRfExgCAImXH5PxbJGUhISKRHpjiEL0EQhF5Ar5SX8fr1inlkpj1fgRUQnNlGfCG/o83we9r9O9oMv6fdf7LNOTNy0g9zCIIgnAZs0/jTeFEUD2S0H1EUVwGrUvq8JYrib7XnINn88/gd7f4dbYbf027J5s/zwxyCKIo1f1TfEhISEhLfHynsVEJCQkICyLyw06aCIPgC5YEjgiCcyGDTVT/QrB+FZPPP43e0+3e0GX5PuyWbP4MgiuLPvJ6EhISExC+KtGQkISEhIQFIDkFCQkJCIoXfyiH8bpIXgiC4CoLwVBAEL0EQxmS2PZ9DEAQ3QRACBUH4bXI9BEHILgjCOUEQHqd8NgZntk0ZQRAEPUEQbgiCcD/F7imZbVNGEQRBLgjCXUEQDme2LRlFEARvQRAeCoJwTxCEW5ltT0YQBMFMEITdgiA8Sfl8l//R1/ytHAK/keSFIAhyYClQFygEtBUEoVDmWvVZ1gOumW3EF5IIDBdFsSBQDuj/GzxngHiguiiKxQEnwFUQhHKZbFNGGQw8zmwjvoJqoig6/Ua5CAuB46IoFgCK8xOe+W/lEERRfCyK4tPMtiODlAG8RFF8KYpiArAdaJzJNqWLKIoXgdDMtuNLEEXRTxTFOyn/jyL5S2OXuVZ9HjGZ6JSX2in/fvkID0EQ7IH6wJrMtuW/jCAIJkBlYC2AKIoJoiiG/+jr/lYO4TfDDvD54LUvv8EP1e+MIAi5gBLA9cy1JGOkLL3cAwKBU6Io/g52/wuMAlSZbcgXIgInBUG4nSKH86vjAAQB61KW59YIgmD4oy/6yzkEQRBOC4Lgkca/X3p0nQZpKff98iPA3xVBEIyAPcAQURQjM9uejCCKYpIoik6APVBGEIQimW1TegiC0AAIFEXxdmbb8hVUFEXRmeQl3P6CIFTObIM+gxbgDCwXRbEEEAP/a+/+QqQqwziOf3/kiuGfCpQwtAyxjf7A1pKBZvbXiwgzNOyiSPAuErrQi5BKkIoMIigiiIQgsX9oRIGblWvUSmpkplsZEdFqEVItdSMkTxfvMzGIuzq565mZ/X1uZuY9c855WGbPc97znvO8jPo4ZNMVt2ujkhcDwMy6zzOAIxXF0tYkdVCSwaaI2FJ1PI2KiD8l9VLGb5p5QH8+sFjSHcAEYIqk1yLivorjOqWIOJKvv0naSrmk28xjkQPAQF2v8W3OQkJouh5CG9kDzJF0qaTxwL3AuxXH1HZUaqi/AnwTEc9WHc/pkjRN0vn5/lzgNuDbaqMaXkQ8EhEzImIW5ff8cSskA0kTJU2uvQcW0dyJl4j4FfhZUmc23Qr0j/Z+WyohnEHJi7MuIv4BHgJ6KAOdb0bEwWqjGp6kzcAuoFPSgKSVVcd0GuYD9wO35C2F+/IMttlNB3ZI2k85edgeES1zG2eLuRD4VNJXwG7g/YjYVnFMp2MVsCl/I13Ak6O9Q5euMDMzoMV6CGZmNnqcEMzMDHBCMDOz5IRgZmaAE4KZmSUnBGsrktZm9dD9eQvq9SO8/ZtOVuVzqPYR2N+S+mJ9knpbodKvtaame1LZ7P/K8sB3AtdGxDFJU4HxFYd1ppYA73EWHkoycw/B2sl04GhEHAOIiKO1kgWSuiXtzOJmPZKmZ3uvpOck9WXNrLnZPjfbvszXziH3eoJ8MnajpD25/l3ZvkLSFknbJH0vaUPdOislHcp4Xpb0gqR5wGLgmeztzM6v35NzKRyStGAk/nBm4IRg7eUDYGYeKF+UtBD+q3X0PLAsIrqBjcATdetNjIh5wIO5DEoZiRuzsNhjNPaU6FpKWYfrgJspB/RapcouYDlwNbBcZYKfi4BHKfM53A5cDhARfZRyJ2uyjv8PuY1xETEXeBh4vIG4zIblS0bWNiLib0ndwALKgfgNlZnq9gJXAdtL6SPOAX6pW3Vzrv+JpClZY2gy8KqkOZQqtR0NhLKIUgRudX6eAFyc7z+KiEEASf3AJcBUYGdE/J7tbwGXDbP9WgG/L4BZDcRlNiwnBGsrEXEc6AV6JX0NPEA5cB6MiKGmIDyxfksA64EdEXF3zrPQ20AYApaeOJlTDnAfq2s6TvkfPFmp9OHUtlFb32xE+JKRtQ1JnXlGX9MF/AR8B0zLQWckdUi6su57y7P9BmAwz+DPAw7n8hUNhtIDrMpKrEi65hTf3w0slHSBpHHA0rplf1F6K2ajzgnB2skkymWe/qwQeQWwLqcwXQY8nRUv9wHz6tb7Q1If8BJQq/C6AXhK0meUS0yNWE+5xLRf0oH8PKSIOEwZo/gc+JByR9FgLn4dWJOD07OH2ITZiHC1UxvTcmKa1RGxt+I4JuUYyDhgK7AxIrZWGY9wGzAAAAA7SURBVJONPe4hmDWHdSrzKx8AfgTeqTgeG4PcQzAzM8A9BDMzS04IZmYGOCGYmVlyQjAzM8AJwczM0r+mVQCI+IdirAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = draw_border(clr, X, Y, incx=1, incy=1, figsize=(6,4), border=False)\n", - "ax.set_title(\"Logistic Regression\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Not quite close!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Logistic Regression and k-means" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\python370_x64\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:757: ConvergenceWarning: lbfgs failed to converge. Increase the number of iterations.\n", - " \"of iterations.\", ConvergenceWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "ClassifierAfterKMeans(c_algorithm='auto', c_copy_x=True, c_init='k-means++',\n", - " c_max_iter=300, c_n_clusters=2, c_n_init=10, c_n_jobs=None,\n", - " c_precompute_distances='auto', c_random_state=None,\n", - " c_tol=0.0001, c_verbose=0, e_C=1.0, e_class_weight=None,\n", - " e_dual=False, e_fit_intercept=True, e_intercept_scaling=1,\n", - " e_max_iter=100, e_multi_class='multinomial', e_n_jobs=None,\n", - " e_penalty='l2', e_random_state=None, e_solver='lbfgs',\n", - " e_tol=0.0001, e_verbose=0, e_warm_start=False)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import ClassifierAfterKMeans\n", - "clk = ClassifierAfterKMeans(e_solver='lbfgs', e_multi_class='multinomial')\n", - "clk.fit(X, Y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The centers of the first k-means:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[3.26205371, 1.08211905],\n", - " [1.06113799, 3.78383125]])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clk.clus_[0].cluster_centers_" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VMXawH+zvWTTGyl0kSJVioIKIiAqFhRFLKCoXMXeUK79XnsvXBXFgr1gRcQuKvIBSpPeQ3rdJJvN9t35/jiHuAkhBdAInN/z5HmyZ9o7c+bMO/NOE1JKNDQ0NDQ0dG0tgIaGhobGPwNNIWhoaGhoAJpC0NDQ0NBQ0RSChoaGhgagKQQNDQ0NDRVNIWhoaGhoAJpCaBQhxIVCiG/2Mex6IcSIAyzSPx4hxEIhxJS2lqMphBAjhBD5bS3HoYwQ4i0hxL1tLcfBgBDifiHE620tRzQHvUIQQuQIIUYdyDillG9LKce0IO3XhRD3NwjbS0q5qDXpCSE6CiGkEMKt/uUIIW5vpdhtipTyFCnl3LaWY39Q30HXqN+3CCGKhBC99uI/XwjhE0IkNHi+Vo0r66+W+UAhhLhd7czUCCF2CCFuakNZRgkhctoq/cOZg14hHGLESyljgAnAXUKI0Qc6ASGE4UDHeSgihLgTuAEYLqVc34TXXcD5UeEGAKa/WLy/iouAeOA04EYhxIQ2lmefaKs6fih8W4e0QhBCXCGE2CaEcAohPhdCZES5jRFCbBZCVAshnhdC/CSEuFx1u0QIsVj9XwghnhJClKp+/xBCHCWEmAZcCMxQe/XzVf91IxYhhF4I8W8hxHa157VCCJHdnNxSyt+B9UC/KHkzhBAfCSHKhBA7hRDXRblZhRBzhRCVQoiNQogZ0aYRVabbhBB/ALVCCEMz8Q0WQvwuhHAJIUqEEE+qzy2qSaBCCFElhPhNCJGmui2KKj+dEOJOIcQutdzeEELEqW67R0NThBC5QohyIcQdTbzD04QQq1RZ8qLNEc3FpZbL62q5bAAGNVf2arj7gcuBE6SUW5rx/iYwOer3ZOCNBvFZhBBPqvKXqPXNorolCSG+VN9DpRBivhAiMyrsYiHEfUKIJWod+koIkai62YQQ70S9j+VCiOSW5LEhUsqHpZSrpJRhKeVGYD4wbG/+hRAnCCGWqt9EnhDi4kb8XC6EWBT126C+r47q73Fqfa0RymjrRrWezAfaiz9HzKlqndr9LZULId4T6shMCNFVjfdSIUQu8E1rykZN+zZVlkohxCtCCHOU+xlCiDVqPIuFEEc1CHurEGIt4NlL/L2FEN8JpR0qFkLMaMSPTggxT3WvUr+nHlHue5SV+jxVrT9Vavw/7+2dtQgp5UH9B+QAoxp5PhIoBwYAZuA54GfVLRlwAWcDBuB6IAhcrrpfAixW/z8ZWIHScxJAD6Cd6vY6cP/e5AFuBdYCR6ph+wJJjcjaEZCAQf19DErlGq/+1qky3I3S++wM7ABOVt0fBn4CEoAs4A8gv4FMq4FswNqC+P4PuFj9PwY4Rv3/Xygfqw3QA0cDsarboqjymwpsU+ONAT4G3myQ15dVWfoCfqDHXt7vCKC3KnMfoAQ4qyVxqeXyC5Co5n1ddLk0kpYE5gFbgfYtqHv5qnzbgCNQ6lJBlFxZqr9ZwCfq+4kFvgT+q7qlAONV+WPVspoXlcZiVZ4j1HL/BbXOAVcDn6ph9cBAIOYAfFM6tQ5dvhf3TkANcJ6a52Sgn+r2FnCv+v/lwKKocAa1XDqqv8uAoer/icAA9f9RQE6DNG8BfgUyAQvwSlSd6qrG+5paRtbWlI36Hv9A+XaSgaVReRik1rlBajxTge2AKSrsCjWstZG449Tw16O0Q7HAYNXtfuD1qDK/BHCo+ZsF/B4Vz97K6jHVrxHlWx6+X+9+fytPW/+xd4XwCvBo1O8YlEa/I0ov7v+i3ASQR+MKYSSwBaWR1jVI43WaVgibgTNbkIeOaoWuArzq/48DQnUfAuQ2CDMTeE39v64xj/oQGyqEqVG/m4vvZ+A+ILmBn6nAEqBPI3lYFFV+3wPTo9yOVMveQIPGUnVfDpzfwvf9NPBUg3JrNC61XMZGuU2jeYXgAp5roSy7FcK9wH+BccBClA9aojQSOsAHdIgKdzywdS9xDgTKon4vBm6P+n0d8EVUfhYDvQ/wN/UAsBK10WvE/S7gw724tUYhFKp+HA3iaEwhbCWqsUNR8H61fHcrhPZR7i0uG/U9Xh71+wxgs/r/y8A9DfxvB4ZFhZ3cRNwXE9WwN3CrUwiNuCWrebI3U1YPonQiuhyId38om4wyUOy7AEgp3UAFSg8jA0UB7HaTKC92D6SUP6Bo4P8BJUKIl4QQsS2UIRul8rSUZBTFdQtKQ2NUn3cAMtRhYZUQogr4N5CmutfLT4P/G3vWXHyXAd2ATUIxC41Tn78JfA28J4QoFEI8KoQwsif1yl793xAVP0Bx1P8eNd97IIQYIoT4UTWpVANXopRTNHuLq2G5RMu0N84HJggh7msgxzdRJoyJDcK8gWI+nEIDcxGQjtIzXBNV1l8AqWq8diHEHKGYvFzAD63I3+vAd8AHQogCIcTDohE7tlBMartln99U5oUQ16tlME5KGdiLt9bW670xHqXxzVVNJEOa8NsemB9VhmtRGszUKD/R7/p1WlA2ewm7C6XugPKt3NbgW2mH0o40FrYh2SgjyCYRinn5UaFM6LuiwuyuC3srq4dVeb9XzWm3NpdWUxzKCqEQ5WUCyocHJKEM6YtQem+73UT074ZIKZ+VUh4N9EJpKHcXumxGhjygS2uElooN9wmUXuX0qHh2Sinjo/4cUspTVfd6+UGphHtE3UCuvcYnpdwqpZyE8rE9AswTQtillEEp5X1Syp7AUJQe8eSGCdGg7FE+5hDK0Lm1vAN8DmRLKeOAF1FGdC2hiPpl0b4FYbag9FCni6iVXlLKMVLKGPXv/egAUsodKHkejWKmiKYECABHRpV1nJoXgBkoJpjBUspYlBFpi5BSBqSU90opewDHoTQaFzbib26U7KfvLT6hzIvdDJwkpSxsIumW1utaFBPObtIbyLVMSnkGSj37Anhvt1MjceUDoxvUWYuUsjgqPhn1f4vKJoqG9WR3/vOA+xqka5NSfhCdlSbibWlZTQZORXn/cSijHlDr+t7KSkrpklLeKKXsCJyForyGtyC9RjlUFIJRKBN3u/8MKA3JpUKIfuoE0YPAMillDrAA6C2EOEv1ezUNKutuhBCD1F6qEaWC+4Cw6lyCYiffG3OA/wohjhAKfYQQSS3M08MoE9YWFDOIS534sqq9iaOEELsnST8AZgohEoQyIXlNM3E3GZ8Q4iIhRIqUMoJixgIICyFOVCfI9CimlWBUWUTzLsoqlU5CiBiUsn9fShlqYd6jcQBOKaVPCDEYuKAVYaPLJQu4tiWBpLKqaBRwqxDihhamdQlKQ+ptEFcYpR48LYRIUetBlhBi97JmB0qvv1KtG3e3MD2EECPV96aj6ffRkrimoJgJR6vfSFO8BYwVQpwjlIniZCFE30b8rQH6qHXGCtwTlZ5VCHGBECJWShlEmZOI/q6ShRCOqLheBB4UQrRXw6cKIc5oIj+tLZtrhBCZ6juYCexW+i8BV6vtgBBCxAghTlc7mC3hc5QJ8muEECYhRKxajxviQDGBVaAo0Qei8rLXslJl6aJ2aqvV5/tUB+DQUQhfotjed//dK6X8HsXW+RFKT7EL6vJAKWU5cC7wKMoL6An8jvJCGhKLYkesRBmaVaDY90GZp+ipDiUb9gwBnkRplL5BqZSvoExytYQFappXqI3K6SirjnaiTJbPQelJAPwHpQe1E2WYPG8veQHqGqmm4hsLrBdCuIFnUGzyPhSlOU/Ny0aUiey3GkniVRTz0s9q/D5a2Bg3wnTgP0KIGpTG8oNm/EdzH8o724nyDt5saUAp5RqUBQX3CCGubIH/bVLKFXtxvlmVYznKR/sNyiQxKHUkDqVeLUGZg2gpGSj2YxfKqrTvUJTxvnA/ygh6RZR5aVZjHqWUO1Hqz22AE2W+oXcj/jagdAYWocynNVwBMwXYpZpILkOxtyOlXIfy3eao31YqSjl9hWIaqUEpq6ZWjbW2bN5V/WxXZX1QlWUZcBXwAsr3uAVleW6LkFJWo4wczwFK1fCN9eBfQxmVFKryLmng3mhZoczP/QC4USbdn5FSLm6pfA3ZPWl5WKP2IvKBC6WUP7a1PPuLEOIqlEZ8n4eOGhqHC0JZon2RbOWG0kORQ2WE0GqEECcLIeJVc9K/UWx1S9tYrH1CCNFOCDFMKGuZj0TpkX7S1nJpaGgcXBz0O+v2g2NR5hlMwAaUte3epoP8YzEBs1EmJ6tQJpyeb1OJNDQ0Djo0k5GGhoaGBnAYm4w0NDQ0NOpzUJmM9LY4aYhLbd6jhsZfyBGV2gnaGgcX6/2+cillSnP+DiqFYIhLpd2Up9taDI3DnA8/vaWtRdDQaBU9N29qyS59zWSkodFaTjnr8eY9aWgchGgKQUNDQ0MD0BSChsY+oY0SNA5FNIWgoaGhoQFoCkFDQ0NDQ6VNVxkJ5SLt3Sf3haSUA9tSHg0NDY3DmX/CCOFEKWW/ligDbf23xj8JbR5B41Djn6AQNDQ0NDT+AbS1QpDAN0KIFeptTXsghJgmhPhdCPG7M7wv96toaGhoaLSEtt6pPExKWahegPGtEGKTlLLeJRpSypdQbi3iKItVuttCSg0NDY3DgDYdIey+t1VKWYpyfn9jV8vVY6F2bICGhobGX0KbKQQhhH33nanq/aRjgHVtJY+GhobG4U5bjhDSgMVCiDUod80ukFJ+1ZKA2ihBQ0ND48DTZnMIUsodQN+2Sl9DQ0NDoz5tvcpIQ0NDQ+MfwkGrEDSzkYaGhsaB5aBVCBoa/wS03coahxIHtULQRgkaGhoaB46DWiFoaGhoaBw4DnqFoI0SNDQ0NA4MB71CAE0paGhoaBwIDgmFoKGhoaGx/xwyCkEbJWhoaGjsH4eMQtDQ0NDQ2D8OKYWgjRI0NDQ09p1DSiFoaLQF2uY0jUMFTSFoaGhoaACHoELQzEYaGhoa+8YhpxA0NDQ0NPaNQ1IhHMyjhFB1KVWL36Him+ep3fATMhxsa5HajIjPTe2mxXg2LyES8La1OH8J813VTCwu4bicHK4qK2ON99DMp8bBwSGpEODgVAreHSsomnsDEZ8bY2IWNau+pOS9O4gEffsUnwwHca/7gfIvnsD53Wz8xdv2Sz5/0VYqvnqO0o/+Q/WyeUR87v2KrylqN/xEwYuXUbvue2rWfEXBC1PxbFv+l6XXFrxTXcWcMDx460OseOVLJk2+jmvKylh7GCgFdzjMu5WV3F9SzDuVlbjD4bYWSYM2vDFNoz4yEqbi61mknHk7lg59AHAcPY6yjx/AvepLYgef3br4QkFK592DjESw9zqRcG0lZfPuI+74i3H0HdNq+Wo3/kzl9y/jGHQm1k5HU7vlV4revIX0ix5Fb41tdXxNEXKV4vz2RdIufARTSkcA/IWbKf3wHsxXzEZvizug6bUFQSmZXe3iqyffomeHrgBMGTMefyDAnPdm84zV+rfJssnn41Wnky1+P+1NRi5JSGSAzbZPcVWEQrxTVclKr5dkvYGJ8fEMbBBXQTDA5Nxc+litDLBa+c3r4RVnBXOz25NlMh2ILGnsI4fsCAEOrlFCsGwXwmCuUwYAQuhw9D8Vz/bfWh1f7YYfAUib9CCOvicTP/R80i54mKpFrxLxe1oVlwyHqPz+ZVLOuZu4IROwHTmUlNNvxZLVk5rfP2+1bM3KvvFnbD2Or1MGAOaMI7F0OhrPlv874On9VfgiEb50uXjNWcFKjwcpZZ1bRSiETm+oUwa7OWnAsWwO+P82Gf/werksP49eFgsPtWvHcfYYri8s4Cd360d/5aEQk3J3UR4Kc3liEv2tVm4tKuSz6up6/h4vK+Pc+Hieysjk4oREnsrI5Nz4eJ4oLztQ2dLYRw5phQAHj1IQBiMy6EfKSL3nkYAXoW99r8m7YwX23qMR4s9XbEzMxJjaGX/+hlbFFazIRWeJwdzuiHrP7b1OxJezutWyNYcM+tGZ9+yh6ix25D6az3YTqi6h5pc38Cx4nJrlHxM+AGavTcPb7/Fsu9/PuPx8FiamUTt4JHd7/VxXVk5AVQoJej3+YIDc0qJ64VZsXU+28e/rJc+qKOfG5BSmJCbSw2LhvPh4Hkhvx9P70DjPrXRygt3OfenpDLPbuSAhgRcys3i8rJRA5M96vcjtZlJ8Qr2wF8Qn8OM+KCGNA8shrxDg4FAKhsQs9LZY3Ku/qnsW8XtwLf0Qe68RrY5PmKxEvK56z6SURLwuRCONbVPoLDGEva49JrjDbic6S0yjYWQkjHvtd5TOu4/SeffhXvc9MlLfTqyYge4l79kLKHr9etxrv0dKibXzQGo3/FxvJBP2uvBsXoK189Gtkj0aX/5GKt+6iYkpZh4ZO4bjw0VUvXEDoZryVsWzaXj7en8AnZ76gE5PfVDn5+7KKm679Ea+eGwuT1x9B6tf/RKyOvFOVSUAZp2OiXFxTH3wZrYX5iKlZPHa35n5wkNMtjdvLioIBvmupoYNPl+9kUdr+cPrZWRM/Xd4nN3OjkAAXySyl1CN85vHw1hHLFJKVng8zKmoYLPfj0kIfq79s7E3CYG3QdzeSASzEM2mURuJ8LrTybS8PG4qLGBxVLxhKfm4uoppeXlcmpfLW5XOeopIo3kOmzmEhZ/e8o/eUSqEIPn0Wyn98B5q1/+IIT4d785V2LsPw95zRKvjiznqJMoXPIWt2zAMsckA1K7/ARkKYM7s3qq4DLGpmFI6UfXru8QfdyFCpyfkdlL167skDJ+8h38pJeXzHydcU45j4JkgJa7fP8W7cyXJ425BCIG/eBul8+4jfvgUkk65nkD5Liq/f4mIr4bYQWdh6zqYojduwtF3DDISwb16ITF9T8aYlN3qstgtU2DRS8y+5k4mnHAyAJNGjmPGnCd4Z+kHxIye3mwcjY0EGtLpqQ9Ycs14coNBLjtlQt1zo8HILZP+xcxHb+MS9dk18fHMrirjhKsn4ItESDObuTk2luPtjStZUBq9/5aU8I27hv4WK1sDftINBp7NzCJer9/D/2afj09d1VSHIxxjszE2NhZTVMObajCwIxAg0fBnU5AfDGITAmOzua1Pol5PXiDAG5VOtvr9nBjjYJXXS2U4zB1FRWQYTfS0WDgtNpb/VZRzX1o6OiGISMmsinJOi216LsobiXBpXi7pBgPnJ8RTEQrz35ISzo3zc3lSEncVF7Mz4GdqYhJGIXi7spKf3bW8kJWFPirP/kiEH9xuikJB+lisHG21IlqgjA4HxP70Lv5ujrJY5YcdO+5XHP9kpQDKslPnDy8TLMtBb0/EcfTp2Lsft09xuZZ/TNWS97Fk9SRcW0XE6yLlnLvq2eZbSthdSdlnDxFylWOITydQsp24wWcTN3TiHn59eeuoWPgsGVP/hzAozYoMBSh8ZTrJ427GnNmDss8ewZzZg9iBZ9SFCzoLKH57BllXvQ56A75da/BsWYIQOmzdj8OYlE2oshBDfDp6e8Ie6TYpv9dF+UtXUP7hYvRRDeeW/J0cd9s0Eqe9skeYliiAxthVUsCImy5m+5vfodP9OQhfvPZ3bn7oZt5LS6svm5R4IhFidLpmG6a3Kp18VVPD7Kws7Do9ESl5pKyUslCIJzMy6/n9vLqax8pKmRgfT6rByHxXNQYhmJ2ZhUmV6/2qSt6vquK5zEwyjSbKQyGuLchni99PutHI9cnJjHG0bNHAIrebO4oKOcJs4aXs7DrF80l1Fc9XVNDFaOTF7PbUhMNML8inMhymv9XKKq+XBL2e5zOzcDSi1HbzXmUlP9W6eT4zq66cSoJBzszZyTMZmcwsLmJBp85Y1byFpGTirhyuS05huDoKygkEuDwvl44mE13NZhbX1pJlNPJsRmZdmRyK9Ny8aYWUcmBz/g6bEcJu/skjhXBtFcXv3I7tiGOIGzKBkKuMql/eIlRVRNwx57Y6vtjBZ2NqdyRVS95DRkKY2/cG9q0npI9JIP3CRwmU7iRcW4kpveteVxf58tZh6za0ThkACIMJW7eh+HLXYs7sQaB0J3HDJtULZ0zMRBhMhGudGOLSsHbsh7VjP2QkTOUPr1C77nsMiZmEKguxdRtK4pirEPqW9WOF3oSUEdw+D3F2R93z8uoq9EYz7q+fI1KyFV1MEvq+p7FrautWdUXTPjWDtIRk3v9pIZNOPA2ASCTCsx++ykjjnvLqhWiyIYzm0+pqZqSmYtcp/nVCcF1yMsO3beOJ0lK+qHHhjkQYYrWx3FPL2x06coTZDMCEuDiuyM/jc5eLCfHxAJwXF09VOMyEnBysOh1V4TCnx8byRnZ7Vvm8zCgqIl6vZ7DN3qxsI2JiiNcbmJqYWG8UcmZsHI+XlbHC62VpbS3H2O28kd2eFV4vOwIBzoyNa1EvfZnXw6mxsfX8pRmN9LFY+bLGxYiYmDplAGAQgtEOB797PXUK4e7iIi5JTOSihERAURrXFuTzRmUllyclteQVHNIcuiqxCf6pcwo1Kxdg7TyAxFHTMGccib37caRNvB/X0nlE/LWtjs9fsImyTx7Akt2L+OMuxBCXTsm7M/EXbNxnGU2pnbB2GtDkUlO9NZaQa89JyVB1KTo1nDE+nUDx1vruNRVIvwedtf6yUtfyTwiUbCfjX3NoN/lJMq98lVB1Cc7vXm6x3DqThZgjhnDH688RUe3KtT4PM19/Fq+rnGk9O/Plvx/isbPOxvLzS8z95pMWx90QIQQv3HAvM+c8zuRHZvDA2y9w3PSzKdm6novVhnhfcUciJOjr9+NMCASwye/n5axsvu3chaOtViJQz4ykE4Jz4uLr2fOFEPwrKZkvOnWiJhzm046duC+9HUadjsE2O9clJzPXWdli+RIMenQN2nWBMm8wJSGRO4qL+KCqCiEEA202zlOXpbbEZJOg11MUDNV7JqWkMBSkncFIfmDPTZz5wSCJahmUhUJs9fuZGDWhbRCCyxKTWFjj2iPs4UibKwQhhF4IsUoI8UVby9LWeHNWYet6TL1nhthkjEnZBEp3tjq+yp/fwNplEO5VX1Lx5TPUrJyPuX0fnD+9caBEbhRb9+Px5azCG7Vc1rNtGb68tXXmL8fg8VT9NBfvrjVIKQlWFVP+xePE9BuLzmSpF5979UISR01Db1V69jqzjcSx1+Je+x3BGmeL5bKO/Bcfr99A50tP49R7rqPj5LFsLq/glrMnc/dFV9GvSw8mnXga8+55lnvfmEUwtO+7xPt37cnq2Z9x3FFHEwyFuCIc4JW01Ho92L0hpWRpbS3PlZfxbmUlVVGbto6z2/m4uqruty8S4ZxdOQghmJWZSVezmXi9nkuTkhjriOWDqvqNeXU4jK0RGWoikkSDgfYN9gH0MlvID7a8HEbHOHjV6SQUZYr+qqYGh07H1cnJvJyVzdPlZXudsK4Jh/mouorXnBVs9NVfUXZOXDxvqfMTABEpmVtZiQHBlIQEtgT8fF5djZQSKSW/1Lr50e1mXGxcnX+dEHs0ekYh0KaeFf4JJqPrgY3Agd3ddJBRtfhtQs4CAs58rF3+NPXJcJBgdTH6mNYPZ/25awknZpB67r2YUjsTdBZQPv9xAqU7WhReJ8LoRYhgxERrTE16q4OU8f+m/Isn0ZleAwmRkJ+U8XfUrUqyduhL4qgrcX7zAuGaMoTBjKP/qXuYkQBCtZWgMyAjYYRqKjHEpkA4SOGLU7H3HE7CyMua3SCntzpwnPcAgZLtrK0uIbb/hcR//TBnDD2pnr/enbphNhrJLS2iS8a+zSMAxMfEMu00ZY5l5+pfWhQmKCU3lZVRYLZy5qiz2ZK/k+dX/MqzqSn0t9qYlpTERbm5VITCHB9j56OqKnTA0VYr5gYN/TC7nTcrnVydnAIoPeTXK53ck5a+R7rtDAbckQi7AgE6RCmFJZ5ajlRNTi1hUnw8i2trOWPnDk52xLIzEGCF11Nn9+9sNpNuMLDF76dPg813v3s8XF9YwCCrjRSDgasL8hluj+HutDSEEPSyWLg5JZVL8nLJMhpxhsPE6/Q8l5mJVa/nxcwsbisq4rmKckxCEJSSpzMySVEnzNOMRrKMRj53VTM+ThmpKUrFyegYxx55ORxpU4UghMgCTgMeAG76O9PebTb6u+cTZChA7caf8eWtQ2+PJ6b3aGQogHvN1ySdfjPOhc9iyeqJuV03IkEflYtew5TaBWNCu5bFHw4SCXjRWRwIs53EMdMxpXYGFBt90qk3UPzmTUgp61b7uJZ9RLAiD2NiFj3GHMvYozcypN3P2AxuIlIPQrK1sic/5J7KqtJjCMvmq40l+ygy//UygeJtIASmtC51jflubEcOxdrtWGTAizCaETo9MhLGu2sNkdpKTOlHULNyAQIoeXcmwmAi/viLiel9Ep5NizFlHEnqhLupXvwOpR/eS/rFTzRrehBCsHPiyLrfp/+exqa8HfTpfGTds8oaF1XuGpJi98+8E02npz5g543nNevvo6oqAmlZLH/0NYzqHMwXS3/k1ifu4ItMK6kGIx926MhH1VUscrspCoWYlpjEs+XKHodo2/1Kr5ecQICJu3JIMRj43ePh0sREhtr3nA8w63RcnpjItQX53J6aRmeTiUVuN3OcTl7Lbn5lV0BKvq5xscLjpbfFwrjYWGZXlNPbYmVBp87EqmabgJSUhUJ1ZpzdhKRkRlEhj6ib4wBuSEnhotxdfOd2M9qhNNhnxsVxssPBep8Ph17HESZz3TvvbrHwaceObAsECEnJkWYzugb14b60dKbl5/FzbS1HmMwscrupiYQpDARZ4qnlZIeDifEJ9crxcKKtRwhPAzOAQ1o9y0gY9x/f4F73A6HKQoTJhmPAOCKeSorfuhVLx/7YewzH1nkgcuTllH38gDq5WokhMZO0ifc3n0Y4RNUvb+Je/RUS0NtiIRzAlNalnj9jcntkOAThIL6iLZR9+hBxQ8+n2+gRXDZwLpmJq/ipaBz3Lnkapy8ZiQ6Tzke/1OWM6vAFF/Z4iY+3XsQvBc0ffyGa490xAAAgAElEQVR0eswZSkMrpcSbsxpfzip0Jhu2nsMxxqcjhKjbFxGsKqb0w3vRGc0Y4ttR8fXz6O3xZEybg8GRiL94G2Uf34931yp8O1aScvYd6K2xJIz6F0WvXYs/d229nd4t4arTJ3Hz7IexGE0UVJRiM1v4avkvjB82iviY/Ru0hsNhckoKiLM7SI5LaJFS+D4U5vpzL6tTBgCnDRnBbRYbW/x+ulssxOn1TE1URowX5+4i1Wigt9XCv4sKuSUllUS9nk+rq1ngcvFBh47kBoNUh8Pck5Ze11tujEsSEknUG3iqrIySUJA+VisvZ2XTzWxp1L8nEuGz6mqWezys9XlpZzQy1hFLfjDAI2WlTIlPYJ6rGmc4TKxeT0BKnikro7vZsscRFau9XhL1+jplAGDX6bgoIYGvalx1CgHAotNx9F6O1hBC1E2iN0Z3i4UFnTqzoMZFcTBISEZobzQyJTEJCbzqrGCZx8NzGZmH5VLUNlMIQohxQKmUcoUQYkQT/qYB00AZ1h5o/o6RgvPr/xGsyCP+2IkIsx336oXUrvue9Isew9plCKUf3o39KMVsYe9xArZuQwlVFVG1+G0s2UfV2c6bonLRawTLc2k3dRZ6RzL+/PWUfXw/vh0rsPccXufPn7sWQ0I70Bup+uUtEk+aRs9jMrlxwH0s2DmBpzaeSljWXwkTiFhYXnwCy4tPoL1jB9P7PUyqrZiPtl5MS0xJUkYon/8EwdId2HqcQNhTRfEbN5E4Znq9JbUV8x/H0fdkYgePByDir6X4nZn4ctcQ0+tEzOldSRhxKc4fXiFt0kOYUjoASiNgbteNYGXBXhXC3paQjh10PM98PJcrn76HU4cMZ3tRHht3befz/76A1+/jvR8XsHTjGtITk5kyZjyd27VsH8Snv37HjJceA8DlcXNS/2OZde3dzSoFAUTknhbtiJSNlvRYRyyvOp08nZHJ/8rLOSNnJ55IhAS9njlZWWSZTC0+H0gIwZlxcZwZ9+ek/ha/jy9dLjqalD0Eu6kJh5mSl0s7gxGrTtDVbOaFqOWgI2Mc3FZUyGUJiUzalUOW0URxKEh3s4VH2imj3aCU/Obx4IlE0EPdXoGglLxV6eRLVw3VkTAWBDXhcItXYjWHQ6/n/PgEfql181NtLc9nZdelPdhm44ydO1jl9e7zeU4HM205QhgGnCGEOBWwALFCiLeklBdFe5JSvgS8BMo+hL9fzP0jWJGPZ9tyMv81p26y1JzZndIP78Gz8Sdi+oxBb4/Hs2ERsQPPxJjQDqE3IKXEl7OahJOmNZtGJODFvfY7Mq94sW59viX7KGL6jaXi61nIcAhLh974C7dQ+cMcEkZerpiLCjfRa8pV3DDgLt7YcBUrS4c2m1ZuTWfuX/oYtw+eiTvo4Ouc8c2G8WxeQqiygHaXPIMwKI1TTO/RlLx3B9bOA9GZLAQriwi5SnFE7UvQme3EHXse7j++IabXiQAYUztBJFinDEBROL789dh7j2o0/ab2E7z/00LcPi9b3/gGu0VpAN77cQFXPHknVpOZ9MQUzhg6kq0Fuxh+40W8NuMhRg1oupx+37KOG55/gHfveIpje/bD7fVw56tPMfXxmXxy3/+aDDvGaOCZ917m5IHHYTEpPd2PfvkGfcBHN3PiHv7Pi4/nN4+H83blMNweQz+LhS1+Py9nt2+yp9wcvkiE6woK2OL3099qZa3PSyeTmaczM7Dr9LxdVUkXk5lH27Xj0rw8LktKrNejHmSzYdPp6G+z8X18V7b4/STq9XWT1ut8Xq4rKCDNYCBWr2e1x4MQgt89Ht6qrMQdCTMjNRWLELxR6WRqXh5vd+jQrCln954Ou063h7koGiklS2prGWaz1du0ZhSCETExmkL4u5FSzgRmAqgjhFsaKoO/k79qpOAv2oKlQ996K2eEENiOOAZ/4WbsvUchQ0EcA8+g+I0bsXYZhIxE8O34nYTRV2KI2bMRaEi4tgqdJWaPzVr2niOoXfcjlYteBSkxpnQg6eSrsXYZBIAhJolJ3Wbz7a4zWqQMduMOxvHkinv5z9DrWF50PMW7qgiW7sAQ3w5z9lF7DLVr1/9ITN+xdcoAwJTWGWNqR/x5a5U8B30Ik3WPeQadJabe+UXKyiVB5U9zcQwYhwz5qV78DgZHEubMHvXCtmRj2byfFnL92ZPrlAHAxBGncvfrz9KpXTaf3DurLj+jBwzj6ufuY/2cBfU2nDXk5QUfcMM5l3Bsz34AxFhtPDptBt0uGcP2wly6NDFKOCsujqXlJfSfegqnHzeGnfk7WbZhNf9LS23UhGEUgqcyMvjD52Ol10Nfq5WTYmKw7Mcmq7JQiCm5u2hvMvFtly4YhSAsJXcVF/FkWRl3paWzuLaWq5OSldGZTlDbYNVQRG2YrTqBTaejX9QEckBKri0o4I7UNEappqC8QIDzduVwVX4eVp2O77p0rWv8H7VkcGleHt/UuOpWDDVESsnrlU5ed1ZSG4kQp9dxVVJy3X6LaH7zeHiwtITCYJCAlOQHQ9yTlkaCaoHICQTo4WjcTHao0+bLTv9pHOg9CvqYRELO/D3OmwlW5KGPSaJm5QL0MQnEDZ1Eu6n/w5zVE0v73mRcMbuuV9wcBkcyMugj6Cyo99y3cyWW9r1JPedudCYraec/WKcMADqNGMGRyVv4Lndcq/Pl9KWytOgEBtbeSdknD+LLW4/z2xcpfvMmwh7ldMuwp5qS9/6NL39D4xf9hIKgbiwzJrdHhgL4ctfWOUspqVkxH0NsKkFnAa7lH+Na/jHJZ8wg7HZS9Mp0St6+DZ09npSz76rXYDZUBu/+uIBjrz2P9HOHMea2qSxavQyAYDiExVi/Jy2EQK/TMW7IiHpxnthvCABb8nOaLJvCilJ6ZHeu98xkNNIpPZuiilKAeuceRWMQgseSk3koxo5xybccW7iTL7OzOMqy9/ONhBD0tVq5NDGJ02Jj90sZSCm5vqCAinCY21PTMKr51wvBjSmpfFbtQkpJjE5HpbocdlxsLC9XVNS70+D9qiqSDQY6NnJQ39LaWjKNxjplAJBtMnFxQiJHms0cb4+pNxIQQjA8xs46394PNnyzspIvXC5eyc7m927deDYzi1ecFcx31T9pNS8Q4PqCfAZZbRxlsdDdbKYsFOKagnzCkQifVFex0e+vN2dxONHWk8oASCkXAYvaWIw6DuRuZkuHPshwENfSDxXbuM6Ad8fvuNd+hyEuFRkOkzrhboQQGBxJOPqd0uo0hMFI3DHnUfbx/SSMvBxjcjbebcupXjqPtPMfwJTaiVBNBYSDENVLHzcuwpKikwiE96039EPeadwyfBHf694gorMgpaTyhzk4v3uJlDNupWLhsxhTOuEYdDaV37+EveeIuvkQ785VhFylWLJ7KXnQ6UkaM52yTx8ipvcoDAkZeDb/SshVhs4WS+mH92Jq103JT0pHrB37NSpTY6OCVxbO45mP5/L09Dvo17UH361cwpRHb+OtmY8z7pgTmf3Fe5w65AQM6oavH1cvxVlTTUpc/dFZKByi1uvB1kTjDDCw21EsWLaIkwcdX/essKKUjbnb6dWxW7PluruB79uKOxHCUrLJ70cA3RtZXdNSNvj9VIRDRIC4BorFodMRkBEiKCOZF8orONZmY5wjlj+8Xkbt2M5gm42yUAhnOMzsrOxGRzW1kUij5y4l6PWYdTpyAoE93Lb5A3s1gUkpea3SyYuZWXRV/fSyWLgrLZ3Hy0o5PWpU8UF1FdlGI6t9Xq5ITCJGp+P9qkqWeDwct20bmSYjL2VltWi/yKHIP0Ih/BM5UEpBCB2p595LxZdP4/rtU4TBhNAbcRx9Bpb2vbG0772HmWRfiB10JjpbLOULngTAnNWTtIn/xZTaCX/hZgyOpLre+G4Gpv8fs//Y9xFRobsDVaF2dE3axpZKxVQUP2wS+c9PIeQqxZ+/nuQzZiAMJvz5QymccyXWzgMJ15QTKN1Jyvh/1zt6wtplEOkXP477j2/xF27C3uME7D2H1zM1NUVjyiASifDQu7OZd8+z9OuimJTOG34KoVCIR9+fw0f3PMeCpYs4/oYLGH/caLYV5PLJr98ytGd/Hn7vJU7sP4RYWwxSSp755E26t+9C+9SmlwBfefokjr/hAm6f8zgTR5xKXmkx/3lzFteNv5iEqHOBWroUtTlWeDzMLC7CJAQSRTk80i6jVQplN6WhIB1NJnrpdHxYXc20qOMc5lVVcazdjl4ITo5xsMnn55SdOxhgtZIbDJJkMDDAaqWL2cyxNjuGvSilwTYb95UUUxQM0k49yiMoJZ+6qpmSkMCs8grmVFQwOSEBgxAsrKnh51o3N6ekNBpfUEoqQiG6NVAYR1n23FS31e8nNxjk285diFGV0jE2Gxfm7qK90cRD7dodlquLdqMphL8BQ2wqaec/qBzNEPJjiP9rKl1MrxPRmWw4v30BR9+xGJPa1x005zjmXLzbluPLWYkw2YjpNRKHyYXT2/hH1lIq/ck4TFHb/g0mZS9Bzh8Ikw2dao5JGH4JMb1H417zNb7ctcokeyPHcBsTMkgYPmW/ZKonn9tFrc9Tpwx2M7zvYO549SlMRiMf3zuLW2Y/wpPzXmdIj77cdeF0FixbRFWtiy4XjyLe7qDS7cJmtvLYtBnNppmWkMSPT7zBk/NeY9qTd5EUG8+tEy/nvOGtH/01R1U4zHWFBTyY3o7hMYri+t7t5pqCfBZ26lzX6LWUXhYLa7xe5mRnc21BATkBPwNtNn7zePjR7ebN9n+u7LohJYULExJY4/WSbDDQ12JpUb1OMhiYnpTMhbm7uCA+gVi9nk+qq0jWGxjjiKWv1crdxcXMcVagF4J2BgPPZ2bVO5E1GqMQZJtMrPB66WAy8Walk9XqNaQZDcLYdToG2Wz1ykUIwbjYOFZ5PYe1MgBNITTJgZ5oNjj++sOzbEcMARmm6uc3CJTlYEzIIHbIuXi3LyPsKsPecwRhbzXF796OODdIZD+nkcKhCDqh2I6DlUWUfnAXOnMMNSvnE/FUU7X4XeKPU3YfGxMzkaEA9iOHNaoM9oe9TSDH2WMwGYxsyd9Jt6xOdc9/37Kubhey2+fhvUUL+PWZd+ueXXPWRQy55ly8fh+PX3k7g7v34ec/fuO2lx8jOS6BkwYc26Q8mclpPHHl7c3Kvb+jhIUuF0Nt9rrD24QQjHI4+MLl4uuaGs5p5dlJqQYj58TFc29xMTcmJ/OHz8dcp5OKUJj32negY4NeeIrBUG8uoKVMTkykr9XK565qtgf8TE5IZLTDgUEIMo0mXsluT0UoREhKUg2GJhtqIQRXJyVzS2EBEZTjM6YnJbMzEODFinI+ra7mLHUp7ckOB8+V73n/xY6Af49jOw5HNIXQAv7JJ6Q2hq3bUGzd/lw1VLvhJ8K1lcpOXtVObu81EnfNzThM1dQG930CLUbvpPDHz3B5qqhe8j6xx0wgduAZCKEjULKd4nduJ+JzY+nQG8+Wpfjz15F+0WP7ncdomlpNZNAbuHb8ZC597N+8fNN/6dG+C4vXreCW2Y/w9PR/A7B0w2r6delR75gKnU6Hy+Nm7oxHGN53MKCsPjIaDDz47ovNKoS/C2c4TEYjJ6i2Mxpw7uPF9bekpPC5y8zH1dXURMIMj4nh0oTEulU4B4rm5kmSWpHeqbGxLHS5SDUauEs9muMYu53+VitX5OdxqnoPxEkxDp4oK2Ou08lFCQnohWBpbS0La2r4oEOHZlI59NEUQgs52JRCNJ7ty3H0PblOGQCYktuzeqODo1MXs2Dn+fsUb7y5gg5JxeTK8/HlrEZniSF24Jl1vTlTWhdiB52FZ+syQlWFmDO6kzByarNnDrWUlt5XcPOESzHo9Zx2x79wuqromJ7Jg1Nv4rQhIwCIsdkpr66sO84DIBAMUlBewgl9BtWL66T+x/Kvp+4+IPJ/8/ti3vr+c9yxqQzI3cw5sXHNrhDyRyJs8vtxR8Ks8frYGfCz0utlelJS3VlGuy+AebRdxj7J1dgGtcbY4ffzU60bi9Ax2uEg+QAojGWeWt6trKI8HKKvxcqUxARSDS074rw0HGJqUv2FAN0tFmL1enICfrqZLeiF4OWsbG4rKuRVpxOrThAGHm2XQebfeHXpP5XDcyp9H/knHJsdKM/Fs3UZwariFocRehORgHeP5/MXmjkxeyHKJ9F6Tsj6hmXFJ6DvOZ6Yo05SNtU1GNob4tIwJbcndcI9xA2d+LcrA1Dt3WdPYceb31EybwmrZ3/GucPH1rkf26MfvkCAt777vO5ZkbMMi8nC2p1b6sW1ausGOqVn7bf8D7/7Eje9+DDD+wzm4tFn8lt6B64oKW3yysfPq6s5acd2biks4PqCAirDIbqYzOgRnLJzB1+5qvmqxsXUvDz6WKz0sfx1a+mfKy9jSl4u+cEga3xexu3cwXc1NfsV5yfVVcwsKmKY3c71ySmEkZy/axclLTxtNVGv32MS2RuJUBEK1TsyvL3JxLsdOvJm+/Y8m5nJV506M6yR850OR7QRQitpq0PxIn4P5fMfI1CyA1NaZ/yFm7F2GUzS2Gvq9fwbw95rBM6Fz2LvMRy9XbEpe7YuI3+djyp/MgPT/o/fSlp3K5tJ72NE9lc8+fu9AJgze1Cx8BnCtVV1aUgpqd34M7Yjh7U+w02wLzeZBaig3PgZXtMuwtSix4ZFZpESOhOTLo3373qKc/9zPc9//jZpCcks27SGk/ofw7Qn7+K1GQ/Ro30XVm/fyHX/u5/bz29+93hTlFRW8Mwnc1n14mekJyrXm541bBSn3DKZBZUldSdxRrPO5+XxslKezchkekE+73XoWLfE8tLERM7dlcMcp5Nkg4EJ8XGcERv3l02QrvJ6+Ky6ms87dqozI23w+Zial8sQm22fjpgISMmTZWXMycrmSFWRDbLZEMBrlU5uT01rOgJgYnwCD5WW0M9iJdtkIhCJ8ERZKYNstkbPcNLmDPZEUwj7yN9tQqr88VV0VgeZV76C0BuIBH2UffwAruUfE3ds05OS1g59sfceReGcK7F0GkDEU0WwPI+Us+/kgy1Brun3EIW1WRS4O7ZIFp0Ic1XfR1lX3p98tzJRq49JwDHwTIrfuZ24Ieegs8Xi/uNbIj73Pt0JvTdaqwzcYh1Fhjep0i8mMXwSjkhfdNiI4KWG9ayxnENcZBBZnS7ij5c+59f1K6mudfPKLQ+S6Ijj2U/e5NSZV+Dx+4i1x3D7+dMYdGRvpj15F8s2rSEjKZUrT5/EmQ2O0G6KJetXMqzXgDplsGT9Kp6c9ypbSovICfjJMpoY1ODYhHlV1UxOSMQZDtPHYq1TBqAc9jYpPoENfh/3p7fsVNxoioNBNvh9pBmM9DSbm1UkX9fUMCE+vt6cQk+LhQFWK4trazmlmbuRG2NXIIBDp69TBrsZ64jl/pKSFsUxIiaGvKCy4znTaKQ4pJidHmzX+jI5XNEUwn7wdykFGQ5Ru/EnMqe9XDca0BktxA+fQvlnjzSrEADih00ipvdofLvWoDPbsHY+GmEwsaUS3t44jRmD7mTWqplsrerVZDwWvYcr+z6KEJK566+u5xY3bBKm9C7Urv2eSMCLtdMAYvqdUrf09O+mVP8RecZZZASn0il4B4YGV26kcjYdwzdRpv+CbabbSNddzPF9Jqv3jylcf/ZkrjnzQlyeWmIsVj74eSHDb7qI68ZP5oZzprA5byd3vPoURRVlXHl6y+ZikmLjKVR3LP+4eimXPHo7906+locuu5mlG9dw09xnuPjuB+gz/M9junOmXsCQ7VsxCoG/kcPvfEiMrbweVUrJo2WlfFJdTX+rlR2BAMl6A89kZjY5HxCRoG8kLd1+XDSToNfjDIfwRiL1NoXlBgMkGVo+4rg4IZFz4uLZ6veTbDCQ2ciEu8be0RTCfvJ3KAUZCSHDobrLZXajt8e36mpNQ2wyMb337MkuKx6OJxTDtf0fZJerC9/nnsaasoFI/vwQ02wFjMheyLD0r1m2vSfvFdy1x70IQghsXYdg6zqklTlsntaODEr1n1BgeJme/tewyo579afHTnp4IgmRE9hkugqAjFD9fRB6vZ4KVyXDb7qQWp+XK0+fxO2TFLNRzw5d6dmhK6NnXMIlJ4+vO5CuKYb1GkCNx8OcLz/knR/m89T0f3P2ccpx4kdkdSQxNo6ZTz1WTyF0OWEkCzau5/GEBO4MBFjmqWWIes+xMxTibY+XybNfZ+mgYxpNszF++fBdlj96P9907kKsXk9ESp4qL+Pu4iKez9r7qa6jHQ7uLC5iYnx83T0HW/1+fvd4eGAfRihSStb6vMTp9YzP2cmEuHguSEigLBRiVnk5M1tgLorGptPt06Y8DRANz9j5J3OUxSo/7NixrcVolL9aKRS/PYOYvmOJOerPRqJ6yfsEK/JIOu1GfDtXEqwsxJTaCXN2732yHxt1fgalL+ak9l+SZC6kojaRkM5OjKkGh9HFLwWj+OwjH6XVccQfd8GBzF4dkYCPcE05ekcSOtOfH/XeFEJpVQUvL/yI1Tnb6NehC5eNPQdHUgWbzP9SlUGnRsM1hl8Us958EV0DDxMbibq1TkqGXX8+k0eP57WvP+KF6+9jwBE964XtffnpzLvnWY7Mbll6W/J3cuGDt7Axdwel85bUOw4jFA4Re8bRzNmUV/cefbW1PHL2WHq4XPQQ8LLTSS+LhWSzhV98XkZecgVn3Hhbi/MK8OiZY7jeVV23hwGUU06Py9lJpx690Ol09Dl9PLe+/1a9s4WklDxWVsbCGhenOWJxRyJ8XePijrS0vR4+1xSzystY4HIxLSmJBL2BtysrWePzIiIRrk1N5aKE5g943FdqIxE+ra5mpddDisHAhLj4eua4Q4WemzetkFIObM6fNkI4QPzVk80JJ15G6Uf/IViWgyn9CHy71uDd/hvJZ82k6PXrEQYT5nbdcK/5Gp01ltQJ99RrUPdGxO/Bs2UJEV8tlo59WRI5iSWFJ2Ev+BxT4Q+kjJmMJ2inxJNJMGKiZNM92Ht2P+D5kzJC9eJ3qVk5H53VQcTjwnbUSejMNjpXbmH8z4lcO+48Rvb/swe8JX8nI2Zchq7TQMjoyf9t2Mis+eeyYG5/0vUXt0oZAJhlOpnBaRQZ3iY28Oe3szF3OxWuaqaddh7frljMxtxtdQpBSsn3K/+P/PJilm5cQ8f0TMxRyxfXbN/E/W8/z6/rVpKWkMwVp53HVadPoltWJ5b/bx49pp7CupytDO7+5z0O63O2kZJWf8WWxW5nxkdf8uNbr/Ptt1/R7YjuxPfoRVLHTtwxbDgp2a2faPe6a/Ywx5iFwBSJcHZxEelGA2/Meoop3bpz7dz3653wegLQYf1anJdfRKJBz0cdOzW6H6I5ykIh5jqd3JCSgk2nY7DNxnC7ncl5uejhL1UG1eEwk3Nz6WAyMirGwa5ggEvycvlPejojD9MrNbURwl/A/ioFKSN4Nv5C7ebFEIlg6zYUe68RhGvKqVm9kJCzEGNqJxz9TsH53WwMcWkkjLikLmzFF0+ityeQMPKyPeL27lyFa9mHBCvy0cckEXQWYOnYF709Ae/WpdiOHKbcwRAOUfjKdOxHjSR20HgQULNiPu7VX9HusucP+LyA67fPqN34EylnzcQQm4K/NIeSd27DdsSx2HuNIFRdQmDZB/xn0uVcNU65p3jcvdexyt4Fx+A/72SIrPuQ1657n8HhhRhp/c7wMLX8n+5EXn/6aG4/53a6Znbgt81ruea5/7Bs1od8v/L/uPKZe3j/zqc5quMRnH//jfyxcxOnDh7B9sJcthflMv+/L3JEVke25O9k5C1TuHj0mVwwchxur5cZLz3KyP7HcN+U6wB4cf57vPLtJ7x3+2N0yWhPTnE+5z8yg55nn8PoS/dvNVNzfHD/3cR9+Tn3RJ1XtKS2lv+UFPNlp87ohCAkJeeUljDu8Vn0PqHp03ePOb3lE+u7uau4iAUuF8NjYqgNR1jv9/FEuwwKQ0EeLS1lYafOB3xD3G6eKy+jMBjk/vR2LPN4KA+FMAvBI2WlfNO5y17PYjoY0UYIbUj0foV9UQ7Or2YRKNmOY9BZCKGjZuUCvNuWkXzWTBKGX1LnT4aDeLctI+uaN+ueCaEjbuhESt6/aw+F4Nn+G86vniNh5OWYM3viL9iA87uXiOk9GlvXwUSGX0LxW7fi3bYM2xHHkDbpAZzfzib/uQsAgaVDH1LPf6BZZSBlBH/BRiKeasyZPfa4p6ExalbOJ/nM2zHEKmcrebf8iq3bsSSfekOdn2D2Udw191Ymjzodu8XGz6uWkH71VfXiGTXGQEzwWIy6fTsmRI+dDN2ZnDw2jzG3X8byWR/St3N3Sisr+G3zWk4acCz3Tr6G8/57PdXuGvp06c6GVxZiUnvHL8x/l2lP3c0Pj8/liifuxB8I8POa33jjm08ZNWAoc2c8wrAbzuemCZcSZ3cQe8N0etokw26ZjNlgwB8MctIllzPqkiv2Sf7WMHb69Tzy7UJuqChnlNHI1mCQd51OnszIqDst1SAEY/UGNi9d0qxCWDr/+3q/m1MQG30+fnS7md+pc93k728eDzcUFjAhLg6rEOQGg3+ZQlhSW8sF8QmctnMHcXo9WUYj/+fxoEPZdNftL9zH8U9FUwh/MbsnnaWUBMvz8Oevw5e/ASJhbEcMwdb9+HqnnQZKtuPduZKMy1+su1THduRQil67Dl/uH1g79P0zcqmYLNA1eI16I5GAh/wX/5+9sw6P4lrj8DtrSXbjxAUCwYK7u7trcXcvxYq1FCvFXYq7F7fiFC3uECGEuOvq3D8SFpYICdD2Vt7nyXPL7JmZM3uT+c757NcHQSpHVaQmNhXbEXtpG/YNhxiDvjLrGggKC2IvbUWZvwISMyVWZZuT+PgiygKVkFk74dR2MgatGiBbuwJtdDDh+74HBGQ2TkQeXYRV+VbYVu2c5RXDDFkAACAASURBVHm6+Ejk9u8KvlICH2BTyTR7Sm7vjsLGiQf+z6lYuCTm5kr0SXFIzN4VFXkoX+EkL8cn1toBYCkWo3TRJOqVdmTjyf2Mad+bhUMm0XbaUHo2bEMeZ3e83XLzOOAlk7sMMhoDgH5N2vPD1hUsPrCZqIQ47qw+iLuDM4kpSQxeNJ2f9vxMHid3Xr4JpEyBIgiCQKMBQ6nbqx/xkRFY5XJAno3A9JfA2j4Xkw6f4eKubey7doUUnY4CD+6Z6BoDBEgErB2dcnz9twYiM8NwJC6ODja2JplA5ZVKfMzM2B4TgyiKeMjlxOv1nE6IJ8FgoIpShfcX8vGrBAkrIiPoYWdPZ7vURUucXk/HAH9uJCf/Kw3Cf5XKfwJztw9Bv/QrQraNJ/bqHsw9i2KRryxxNw8R8cuPJuI5KQH3UBaoZKqwJpWjLFQVdcA9k+sKMjkWeUqScPuIyfG46/uQ2bjg3G4aDs3GoAl+Rvgvc9CEvsQibxmTsRZepdGE+r53Lxl8kNYokZtlyxiIokjEL3OwLNEQ195LcWo3Fbd+K0l8dJ6kF9ezPNfMrRDJL64Z/y1V2qKLNc0/F/U6YiPfcPT6RQC612tB8sWNiHqd8XPzmKdI+bzGeVJRiV5IpGqxMjwJTP1uWlapy6m5G9AbDFx/co9u9Vrg5uCE/AO/uUSQIJNK2Xn2CD8NGIe7Q2qGjMpcyfxBE9h94Tj+oa/J7eTK9vzvdjFyhRn2ru5/mjF4i9LKmoZ9BtJ/9SYGLFuHvyhyKC5VBEcURc4nJHAuKZlKLT4ulZoZVw+dSfcDkCIaUEnTv4KkgoClREJTaxteaNQ09PPlfEIivmoNvQJfMScsFFEU2RsbQ1M/X4o/fUJbf78cV0pXUamINRjo+F4DQGuplKEOjlxOTPjk5/07898O4Q8mTq+nT0gosmrdEK7txq3XYmP6qMqnJsEbR5AScNco+CKxsEb3+mG66+jiI1A4pg+S2tXrT+j2SaiDnqBwLUiy7y20Ef649VlhrBh2bD2JoNX9kVraowl5iZn7u6CwJvQlMtvUl5ao0xB/+yjW5Vp+0rNqIwLQJ8VhVa65MSAqVdlhU7EtifdPo8xfIdNzbat3JfzALPTJcZh7FEWqsiPmwibMPYshz+WBqNcSc2EzckcvVpw+Qpn8PnzffShPZ43jt9V9UXoUIvnNMxRfW6An6ZPm/xa9kIhUtOS3R3dMOqQW8szLD71HGf8dGBbCsoNbqexTyhhw3XX+GC52jkTHx6VrcWFvZYOAQJMKNXGw+bgb7c/GzMKC4Rt3smRoXxYFByMVBDRmZgxavRHrXA5f9F5XD52hVp2KzAkL4ytbO2PtQZBWy/WkJNrb2DLCwYHGfr7Md3WjUlpriVF6Rzq/CkArhnI1KYnvnF0obmHBtaREpoSEIEvTRM4OFZRKdsXGpBMTspJISP4bxVa/JP8ZhD+YY/FxKHKXQJRIUOavaFJLIMjkKH1qkOL3u9EgKAtWJvrczyQ9v5bayprUXUPyi+sZ6gTI7dxw67OMxMcX0EW/AYkE64rtjcYAUlf9qcptOiJPLMWh+VgUjnnQRLwi4tA8pJZ2xFzcSuKTiyic86EsnLM2Fm8RNclILawQBNNVn0Rpk2Evpfcx9yyGU/vpxF3bi/XT01TzyIdX/eas3DAcmb0H+sQoFI55cWw1kZTAB/x0YBstq9Tl0LRFPAp4weNXvhTy8MIh/23iJbc+y2WUINzjzsMYTtx8zPVluzMdN7xNN1pMHkStMd1oWrEmTwL9+PX2b+yfvpwVh7ax9+JJY70CwIV7NzBXmLF8+LRPn9wfTJ4ixZh+5jeCnj/FoNPhUbhIlvrRn4P0zFWKly9ChwB/WtvYkGgwsDsmhjEOjnS1t+dKYiKecoXRGEDqCr6LrR3LIsJZ7ZmbomluneoqS751cmZNZGS2DUIhc3PUosjvSUmUSasMF0WRXbEx1PiX9jb6zyD8wUTo9Ogd8iAzt0SfGJ3uc31CtIlOgsRMiVObbwk/NI+YC5tAIsWQFItDi28yDc5KzJRYlUpt1hZ3fR+aiFcmn4uiiDbMD9tavdBGBBC2azKiVo0gN8OyZCOQmSFqEsnVcPAn1zBAandTXXwEmtCXKJy9jfdOvH86nasqI/w61oGO7+os/IJfs/nCKSwbDkGitEFum9rWWG7vRsiNdz3tC3vmo0ie/ADo9K4Eyhej0UagIOerWh0JvDEc4vCRMhyftTadjOb7qMyVnJi9jqPXLnD96T0qFC7BTwPHY29lw/hO/ak3tifxyYk0LFeN+35PmbtzHUuHTcHczMzEXfT/hiAIeBT88qnFGd2n+Y1H5Lt0njsnj5L75DFWeXjik/aS1yMiy+BXUSYIaETRaAzeUlapZFJIcLbvLxcEpjq7MOxNEK2tbfCQyzmREI/GINLR9v9vB/dn8F/a6R/MlcRERiVosem+gDdrB5GryQiUaUL36jdPid05Cfs+K4zZNW8RDXo0IS8QDQbMXAt8tIHdW/RJsbz5eQh2NbqjKloHUa8l9rddJPvexLXnIgRBgmjQY1AnIjFTfRH5zvdJfHSeqF/XYFW6KTJrJxKfXMCQHIdzp5lZ1kVkVHim0+vI070hihaTMHPJbzwed2krjZQp9KzbjCkbF3P9yT2cbXPRv2lHvunYlwDzH1CILnjocp62GSLdTpzkFgW1n19PEhD6hqUHt/D784fkcXJnYPNOxnqD/2eD8FfyfgA62WCgru9LVnt4UCytcC/FYOCrVwGEaLWs9cxNkfeMwpn4eNZFRbEth7oGARoN+2NjidLrKGehpJGVFYp/mKZydtNO/zMIfzAGUaR3SBhPbdyQ5K9E7LW9SM0tkUqlSGNCmO3oQN33FKe+RGGbJsyXqFMr0YT5gShinrc09vUHIbO0RxQN6Vw6XxpNmB8J906mxgM8i6MqWjvLoHRWbSm2nPmFUesWYVa5M3KHPGheXkP/8AxrR0xh8KJpzB80kVZV6/Ii6BUjlv9AKW8fpvZvySOzvhRRr0UpFsj2vFOE1zw0605BzXysDKVy9Mw54XOMQVxkBGe3bcL/wV1yuXlQ+6vuuBco9AVn9/9DpeZ1OR0fz5TQEBpYWpFLJuVoXFyqsI65OVtjYvjexYVi5u9iCJOdnan9Ly0qy4r/DML/ERqDgR2xsRxM1gAiZaUC1VUqKiiVRlGT9/lS1c6GlASQSJEoLEi8dwr1pS3Ex0diZe2IWfWuqIrlvJAou+iT49BGvEJm44TMOvOUxSc1c/PklS8/7lrLrecP8XR0ZXCLr2hcoYZxzLk715h3YCuvwkOp5lOCb9r14LvNyyldwIdhrboZx4XHRlGiX3Me/3wMnc1FXskWUlizPFtGIUUI5LFiIK66brjoP00wKLtszWfH498u8eTaFSxt7ajUvDU22UjrjAoOYmanVhSrXpsSNevw+uljzmxZT795SyhWreYfOue/ikrN6xKi1XIkLo54g4FqKhVlLSwQBIG9sTGsi4zilVZDQTMzBudy+CQ5z38D/xmEfwBfyjAk3j+F9Oxa5jvmopS5BbeSkxkTHolYbyCqolkXG+UUURRJuriRxDvHyeeRj4DgAMxyl0TZcLhJKi2kGoPHr17ScFxvhrfpQZMKNXjg/5wpGxYxsfNAujdolel9qo7ozIJBE0xaPgCUG9SGn8fOokS+QkRIj+Avn4urriuOujYoMqhc1hJDuOwgwbKNeGgH4qzPnr6xRqtl+aHt7Lh0Er1BT5tKtRneqisq86xTXrd42bBixEBC/X0p16gZUcFvuH36OAMWLKdo1RpZnrtpyjhUNra0HTPBeOze+V/ZOfs7Zhw9+48ViP+UCuj/MOU/g/B/wMs0iUEzQUIDK6sMRTqyw+cahqgVvVhhY2HMpIBUqcIRCTrs+q/J9nU04f6k+N9BUChRFaqSrvsqQPzto7i8PMfxGctxtLEnWZ1Cr/lTuJQoYFn/Xbvst26i3j9OpKhXfka26cGhq2c5ceMiSeoUzty+iv/WM8gyiZ30m/8tPrm9Gd2ul/FYSFQEpQe25Mn649ioUleKScIzQmTbiJSewlZfDUtDCaSoMJBEjHiPSMmvPH1kjyqmOe3LDUIikSCKIlce3WbfxZNcffYA3+BXWKms6FG3BWPb9UYuk9F2xijeCDoaDByKVCrj1w1rEELCODNzLdIsBGIG3z3NpT07GLtxJ7I0gZbHVy+zduxw5vx6FVkW/YDG16vK8JUbcMv/bscjiiIjKpVg+i+nsEvTEv7SiKLI85vXCfH3xaNgYfKWKPWnG5/sGoXnajVbEhMJEMFHgG5WVh/tsRSu0/FUnYKLTI6tVMoLtRp3uRzPf5CATnYNwj8rcvJ/xJKIcHoGvuKNVsvDlBSa+/lyIj4u0/HROh1zwkJp4utLG38/1kdFok0z1scOfG38ySmiKBIfF56uHXApcwsSYrInPCKKIom/riF57zRamsVRPuYBEWv7kxxwN/3Y+ydY0G+MMTvHwsycJYPHk/DoPKJOk+oiei9mcOPpfRqXr0G3Od8wd+caSnr7UNQrPwbRwMxtqzKd0/DW3VmwZwNbTh8kPimR2y8e0fmH0fRt3MFoDACUYkHyaadROuUYVoZSpEheEcM1dl1fz9ZL/pwNXcJj+ff8sOcaw1bMxGAw0Gv+t3RZMJmN54/iWb8ekw+dps/ytRz2e0ifRVO4+vgud1/7MmTNJnwqVaVg+Yp0nzWfCJ2GYzcuZDrn7flzcfvUMep27Wk0BgA+lapiaWeP/4P03+f7qGxsiQkzlU5NTohHp9FgrspeqmVOSYiJZlbn1mycMo7nt66zavQQFvTtijrp82o9csr7BW2ZcT0pke5hoeg6daXq7PmENG5O2+BgXqpTMhwviiJzo6NpGhTEklyOdI2OpmFICHMsregQHs7QyEgSs5A0/SfyX9rpH8Cd5OR0EoNPUuzoGfiKykqVsYf8W5IMBroFvqKCUskCNzfiDQZWREbwKEXNj26mQuk51V8QBAFrW2duJSdRQfkut/pmcjJWdtnrXZ/sexNl0F2urz1ofNmeu3ONNjNGYTZoExLZu5ebNjmO3E6m13WwtkMiSLhSPn0aqIejM1t/PYRfcCDn5281toHoXKc55Qe3ZUCzTjjbpXf1FM9bkN1TFzN90xKGLZ2Bi70D/Zt2ZETr7hk+gwxrXPSdQQ/bzhxiy6VoRm7aZVzp+lSuxqS6lfFx9+JWsD+V23Ug4k0QLYeNAcDOxZWBy9cyoVZF8jq4UrRmbWRyOb53b7N95lQCHz9EFEW+274yrZhNxNs1d7rdgiCRotebFkmIoohep0PykYyv6u07s3f+HHIXKYalrR06rZY9P/5AqTr1schm7n1O2TXnezwL+9B16kwEQcCg17N6zFAOLvmJDuMm/yH3/FRmxyfQdc4iyjZsAkDxGrWxcnKmx6ql7HJ0TLdT2BsbywVrG2YeOo2lnT16nY7tP0whPiqK0XsOs+nr4cy6dZ0Z9n9cx9X/N/6yHYIgCOaCIFwXBOGuIAgPBUGY/lfN5UtzIj4uncRgYXNzyiqVXExML2hzOC6OPHIFU5xdKGRuTjmlkuXuHlxPSuK5Wm0y9l5yMvXWdKf+mu6og59naz6Kal35OjySK4mJJBkMXExMYFx4JPLqqQFZURRJCXxA7G+7SLh3EoPadPUnPrvEmNZdTFbetUpVxNvJldgzpi4nM8/ibD93zPT7uHkJb2dX7K3S98of3KILG08eoEvdFiY9gTwdXahVsgJn71zN9LkqFi5Bx1pNyO+Wm+j4OE7fusLVx1mvsgEuPL5NiYZNTdweFpaWFK1cnTUn91K9Wy/evHhOkcqmBXoKcwsKlCyLWqsh7OULIoJes2hAD+p06cmy35/y04WbWBUtSqXRXWg0fSgF+zbl4JVf2XrmEAVHd2JImcKE+L3k+NoVJivs26dPoFWr8Spekqyo0eErCparwPh6VfmxewfG1q5I5Js3dJ36w0efObvoNBoOLP6JsbUrMqx8UW4eP0y1Np2M35VEKqXViK/57dD+L3bPnJDRLkEURYI0GvwSEyhdv5HJZ5VbtCEZkZFRUXzoHt+l1dJqwlQs01psS2Uy2o6ZyIOL59AkJ9N+2kyOx8ag/hftEv7KHYIaqCOKYoIgCHLgkiAIx0RRzPwN8DdBhAzFDCWASPqYzcOUZKp/UBlpJpFQUankYUoKBdKaeS2JCGd/bCxtbGxSr7JtLM1tbBns4JDlrkFVtDaJEiljLm0h8Y0vKjsXFI1HoCxUFVGvI37/DBRvntDCwpyXepHfz67DpuMP73L/RQOyDPziVkpLtC+uQsN3sQGzSh2Zt2MC4bExNC5Xhbu+T1myfxPrvp6Zod+5eeXarD6yk4i49EV7MQlxWFpkHqRdtH8TW0//wvxBEyiSJz/Hb1yg04yR7Ju+jHIFi6UbL4oibyLDsFda8cjPN93nvk8ekhATjajX45THC997t6nU/F0PH71Oh/+j+/w0oSd7Zo1h85TxVG7Zlsot2gBgaWdP71nz+eZaZQYsX0dKYiJ9+nXHJpcDX303izxFi3P//Fm2fDeJ8fWrUrZBE6JC3uB753eGrVz/0YpgiURCx/FTaNRnIIFPH5PL1R1X7/wmY14/e8L1IwfRaTSUqtOAAuUq5Mjfv278KJIT4hmxcgOWdvac37WNJUN6M+3gSaztU3dq5ipLtCkp3DxxhIeXzmNhaUWVVu3wKOST7ft8DlcPnTHGFI7HxzE/PoEorQY9AnER4di+p7AWGRyErZMzodHRvNBojH9LAHF6ncnY1GdTITc3JyUxETsXV0RBIEUU+edJ5mTMX7ZDEFN520FKnvbz94lwZ0F9Syv2xsYS+55r4LlazY2kJKpn4Ot1lct5pjHdCYiiyDO1Gjd5qs1+pk5hT0wse/N4MdTBkWEOjuzO48X2mGj8NOqPxhdUPjWw7bca97EHsO27EmWhqgAk3D2BZ9hzTni6M97RgTUujsywsyHx4Kx3KyrvSszfs4GklHftJ248vc+z136ok0zjInJ7d+y6/oSZTMLCvRvxffOKQzNWUa9MlUznNqPXSDac2I9f8GvjsRM3LvIk0DfT89RaDfN3/8z2SfOpXrwcuaxt6VK3BZO6DOKn3T+nG3/h3g1KDWlLuREdWXF4Bxf27uDh5QtGd83xdSvR63R0/W42pzato1KLtlw7dIBL+3ai02qJi4xg86SxFPXMR7mCxTj2/UpCnz3Bq5hplpNEKiVPkWKEB74if+myIJfRf8kqilSpjsrGlkotWvPVt9/h4OGJU+48lGvYlNmnr+Bd8uOV3G+xcXSiWLWa6YzBmc3rmdezEwa9AXNLS36eMJpt309OtzLOjBC/lzy+epkhS1bjUcgHWydnWg4dRZEq1bmwc6tx3Okt61Ha2HBs9XLcCxRGbm7OvJ6duLh3Z7afISM0KckcXDKfSY1qMr5eVXbMmk5CTPqFAqQahWtJicxITKLLyvUsufuCSs1TYx3q5NTf04SYaHbNmUHNjl2xtc9l8vcIUEVhxpU9O0yOPbpyEaWVNfaubtz99RSeFkqs/2FFalnxl8YQBEGQAreA/MAyURSvZTCmP9AfwPUP6ov+pSljYUFDKyta+vvRxMqaxDSJwcnOLthksNJuY2NDG39/Y5WkWhRZFRmJVIByaSvkswkJNLG2MnFD5ZLJaGhlxdmEBPLam3HswNckGvRcS0pCisCsTosRZBlnSujiI0m6fRTxzlFyywRi9XpjFlQjKytmRr9GG/EKhWMelAUrE35uDWUGtaFTrSaEx0Zx4PJpejRow8Yb77qYvgsW5wbKZvv7KuldmElfDaTy8I6UzFcI/9AgElOS6VCrCRqdNkOd4pCoCBRyBfndTatSa5WsyNIDW02O+QYH0nH213SfPZ+SteujSU7m53EjWTl8ANbWtsTGxWDv5s7on7fi6JmHx79d5KeenShYviIHFs5jw6SxKORyOtRuyo/jfwSgoEdehjTuwOmL50x2EerkZF7cvknHCVNIjI3FoNeR26eoyXwKV6zMnnmzaPAFBXCiQ0PYv+hHph08iYN7alO9+j36Mr1VI57fvE7B8h/XuQ569hTvkmWQm5mmBxetWoNDyxdhYWXN0+tXeHL9Ks65vRi/bR/StN+ZSs1bM61lA7Z+/y0latah7ejxOOfJvmKdKIosG9ofmVxO3x8XIzcz4/TGdczr0ZFJuw9l2AV2UUEfWtZrRKE0Hemu035gZqdWjKpSCs/CRQh6/pSqbdpTtGpNjsyfTZEPVOUGWFnRec8OkqIiKd6wKa8ePeD05nU06Nmfw0t+4tefV7HAPpdxhxWTZlBss8gi+7vzl5o+URT1oiiWAjyACoIgpNvni6K4WhTFcqIolrPPZvuGvxpBEBjj6MRKdw+spRLyKhTs98pLU2tr45hInY7VkZFMDH7Dobg45ri6sT4qiiovnlPj5Quea9Ss9PA0dmJUCALJhvQrvWSDaNS7PR4fR92XL9kaHc26qEgSF7Yn2f9OunM04QFE/TyYuk/PMNHWEpVEQlt/P168F69IvaKY9jwSzBqMICwujju+j7FWWjKiTXfWnNyPvEqXdJlDn0K/ph1YMGgC9/2f061+K+YPmkBoVAQ1R3UlMi4m3XgnW3uSUpJ5HWGadXPz2X3yu5vOZc2xPVRt35lSdRogCAJmSiUDFq3E2tqWud2GYWVmweDFq3DK7YUgCHSfPpvhqzbw8PxZxjbtzIuNJwnffYVVw6ZirXy3w+vdsA0vrlzmwMK5RAS9xu/+XZYM6kWJmnVwyu2F0toa0SAS4vfSZD6+9+7g7PXuZRkXFcnLu78THxX1yd/f/QtnKVGzjtEYAKmunNbtuH3mRLau4eyVl4BH99HrdCbH/e7dwcHNnaDnTyhcsQo+FStTo8NXRmMA4JovP96ly9Ft6izcvAsw+6u2xEVFAiAYErBK2ISnfy28AgriFZgHL//CuL9qiirpIIgaXt6+SdgrPwYvWU3e4iXxKFiYHjPmorSx4dZJ05jUWyJeB5LnPWOrMLdg3JY9IBqQ6HV0HD+FXC5uLOzShq9t7VB+sNJ3lsvZ6+JCyWuXuTz5G25vXY/MYODypnVEbPqZzU7OVFKp8Ndo6B4eTt3AV9R7HUj38HD8NZpsfad/N/4v3rCiKMYIgnAOaAQ8+Iun88UobG5O4QxENl6o1fQOfEUtS0vKKpXcSkpiS3Q0Gz1zYyGRYCYI6TKRGlpZ09bfj+52duRL84M+V6s5kxDPCEcHgrRapoeEsMEzt/GeN5KSGLFnKofy5sMq7XoNG08ncfcURlmp6JqWPdHM2gavKDkLIsJZ5u7BqYR4UsxUKB3erb6VeUsjbTuFmzf3E3DjIoU883Jk+tJ0hWGfil6vZ8rGxeyesoiqRVPdJx1qNmbQwqksPbCFqd2Hmoy3MDOnf9OO9JgzjhUjplHA3Yszt3/j2/WL2DB2lslY/4gQ3Co2NjkmkUjwKFAIuUxGndKVuHH4IM2HjTZ+nhAdhbuTKyPadM/UB+9gY8fZOeuZvm0Fc9s1QwREiYQaHbvw8s4tru7fg9zcnFVjhtJn9gIsrKw4tGwhN44dpmHv/kSHhbLum5G8uH0DFy9vIoICqdyiDZ0mTjN52WYHuUJhdJW8jyY5xSTFNSs8Cvnglr8QGyZ9Tbuxk1BZ23Dl4F6uHznIlP3HsHdJzXh79eghyR+kUOt1OsIC/Nk2YzKiwYBMoWDnzImMH+eAVdIu5M9UWJ4yR/7aFUEtwWBuQJs/DPNGU9C5TiAitjxFqlQ3eW5BEChevTYBD+5RqVn6IsU8RYrx4NJ5chd5t46Mi4xArjfQNOg1NxbMwR5YbG1F6UxiUXYyGZXNLdiUGEHLcVMoWrUGAQ/vsWvaRJ5oUusReoaFUnfEWPp/ldpt+Oy2jfRa9CNH3dyNbbv/KXy0ME0QBDOgLeDFewZEFMXvPuvGguAIaNOMgQVwEpgjiuLhzM75uxWmZcbA14FUVano9p6A+JrISB6rUxhgn4vj8fHoEalraWVSP3AwNpZZYaFUVqkQRbialMhkZxeaWluzOjKSMJ2Wbz8oThoR9Jpalpa0trHFIIp0DQjgnjqF6wUKmqyYEvR6qrx4TjXbXFxLTsGmw3eYuZn2yHm7C9DpdczduZa1x/YQERtF9WLlmN5zeIaB3Ozy+NVL2k0fzsN1pmI/lx/+zrg187i0cFu6c/R6PfN2r2P5L9uIToijoLsXk7sOQSKRcP7edRys7ehcpxn7L5/m0Jvn9F243HhuckICE2pV5PqiHegNemp905MyzVpSrFZdAh8/5NSaFawbMd2khcbHEEWRneeOsu7MQaLiY2lQshJ5Ro/gt4N7ObxyCdqUFCo2a4mDR26uHtpHTGgI+UqVRSqV4Xvvd7pO+YELu7dTqEIlWgwZ9fEbvkdSXCzj6lZh1Not5CtZGoDIN0F8364pX6/fnu2Ab3JCArvnfs9vh/aj02goULY8HcdNIU/R4sYxT29cZd24kUzccdAYlF02rB/RIcEMmL8cBw9P/H4/R56oXhTSWmK33R5pTObFYToXNZG9I/k9TIpdizsgvDMKq8cMxbtUWep265XuvKDnT5nbrT3NBo+gUIXKhPi+4PC8mXTSaeltY5tufGb0jYig0NcTqd62o/HYs5vX2TygB0OUSnZ75WPYZtM26Iu7tqPTK39a2KTPnPt/5EtqKh8EYkn19as/MjYnuAIb0+IIEmBXVsbgn4JBFLmSmMgCN3eT4+1tban98gU3k5JobWOLQhAY8yaIxtbWjEnrc9PSxobqKhXnExMQEJjm4mL0ZyYaDBnGJ2ylMmNxzfWkJJJEESuJhGi9DqXk3coxUq9HKlNwr2InHApXN1YhZ+QKGrNyNi+CXnHkh1XkdnJl74WTtJ4yhDPzNpgIyhif2WD4aAaNlVJF+DOKsgAAIABJREFUbGI8Gq3WJP00LDoSG2XGOfZSqZRxnfoztkNfNDotAgLtvx9OZFws7Wo0JDA8hKojOrFw0EReH93FjhlTqNquE/FRkRxa+CPtajQkj3PqqvfKgq0s/WUbvy1aiJeTK0emL6N0/iJZzvlDBEGgU+2mdKrd1Hhsu0Mu6nbrxfF1Kxm5agP5y6R2um3SbzBzuqZmKFVt3R7fu7dZ0K8rw1duYMXwgTk2CEprG3rNms+8nh3xLlUWhYWSR1cu0mzQ8Bxl/1hYWtL9uzl0nToTvV6Xoe++UPlK1OzYlW+b1KZwxcqEvQog1N+XWacupe4iRA3VnBdi+dIauy0OCGLWWU6yEDOcfnSh1MDXPL3YFKHcfqRyOZf27uTxtSuZptW6FyhE79nz2TJtInvm/oAggLu5OdVz2Lr6UVIi7arXMjnmXaoMEcnJ3AJci6dvdOhWojRvfLOX9v13IjsGwUMUxUYfH5YzRFG8B5T+0tf9f0cgNaU03qA32W7G6PUIwO48XjinvRC72dnT2t+PhlZWxva/9jIZrTNY/VRXqfg2JJi+9rmM143R6/k1IZ5e9qmun+caNeWUFsgFJfPCw5nj6oYirbf83IgIBjfrwMz+A7Kcf2h0JLvOHzNpD9G9QSsCw4NZdnAri4Z8axx7/u51pm5aktqe2s6BQc07MaZd7wxbO3g4uFDK24dZ21cxuetgJBIJEbHRzNq+ijHte2c5J4lEgrnCjLVHd6PWauhevyWXHvxOLmtbfug9irFrfuTigi3M37+ZDUP7Y6W0ZGCd5vRv8q5vkYeDC7N7j87iLjnnbVdT3zu/k8vV3WgMAGQKBXW69uLWiaNUbd2efCVL41O5Gq+fPiY+KiKzS2bJzeOHye1TDK/iJZFIpCjMzbl2+AD1e/RBYZ556/GMkEilSLIInjYdMJSqrdvz5NoVDq9cgplSaXQpWcdvQOnri90Wx48ag7cIWgnOq93RT3zOtKHF+P22nNw+RRnz8zaU1hmvwrUaNdtnTKVOl57U69EHQZBwcddW+vz4A0fd3LHMZvDX1dyCwCePjLudp9d/Y83Y4agcHLlo0JOwczNlGjUlX4lUw2AwGHh85gQt/4Gay9kxCFcEQSguiuL9P3w2/wIEQaCFtTULwsOZ4eKKVBDQiSLzw8PwUiiMxgDARiqlubUNZxMSjAYhM8paWFDGQknngAA62tqiFUW2xkTTxsYWrzQfcl6Fgl9i49jo6cn4kGDqv3xJMQtzfk9KIn9ubyb3GP7R+fsGB1LA3cukSA2gStHSzN7xrkjt1rOHdJs9loVDJtGich2eBwUwfOkMYhLimdkn4xfvmjEz6Pj9SHZfOE5+t9xce3KXfk060KFm4wzHf8jBK2cIjgzn+I2LtK/RiMDwYKZuXIy53IzA8FDm9/+G+dm60pdFKpOh06YPQuo0GhOfuYXKihe3blCw3Mczgj4k6PlTHl+9zNwzV4xZQqIosrBfd64dPkj1dp/ewfXWiaP8smwBQc+f4pwnL437D6Zam47YOjlTqXlrilevzTd1KxP0/Cnu+QtgG7Ua632W2TYGb5GopdiftGPS1Lz42q5F9RG3z91fT5HLzZ3G/QYbj9Xu0pMn585w9MkjOthmz23U29yc+d+OxXb1JmwcnVg6pC/9f1pK8Rq1EUWRG8cOMa9HR0au2YzC3JwTyxZiFxNF1Wx0qP27kalBEAThPqlpJjKglyAIvqS6jARSywi+TDTxX8hoR0dGBr2hoe9LSlhYcCc5GXupFC95+uCfWjRgkQ0RG0EQmOHiwrnEBM7EJyATYJqzC5Xea2hXWaliIeEsioxgurMLQTotG6OiUAgCx3/aTIpGg0anTfeyf598rp48D/InNjHeZNxvj+5QyMPL+O/F+zcxrlN/2lRrAIBPbm+2TJhHqQEtGN+5v0m2zltc7R05P38Lt188JjgqjJUjv8PFPvuqZ8FR4RTyzMuuyYuMgeDGFWpSe0w3/uxGoO9rHuQrWYak+DhunzlJ6bqp30dyQjwnN6yh1fDU+pHYiHBunTwCCIxatyXH9/O9d4cilauZpIwKgkCJWnXxu3c7Q4Pw9mV3ed9ukhPiKFatFvW69zZZkd8+fYLtM6fS84d5FK5QGd97d9gw6WsMOj01OnwFgMrWljajxrFsaD+GzWhPXkUS8pef1mjP4oY1Fh1uY6NKQEfWL/SIoNd4FE7vDnMvVYagj/SFep+m1tbEx8WypFMrEnU6itVtQPEaqV2ABUGgQpMWXNq+mbV9umCpUNDITEEfB8d0Wsz/BLLaITT702bxL0MlkbLG05NHKSn4aTT0t8+Fk0xGEz9fnqSkGLOEAjUaDsXFsTV3mstHrWZ9VBRP1CnklivoYW9nkj0hEQTqWFpRJxOBEKkgsMbDkx/Dw6jj+xK9KFLb0pKZLq60mtCHO37PAIEqhUuwZPQMo3/9fZztctGueiO6zhrLvAHjyOPsxp4Lx1nxy3ZO/7jBOO7Zaz+Gf9BXyNkuFy52jrwODzFKXn6IIAiUKVAEyJn/HkAhk9OrYVuTrKAS+Qrh7uCMmEHK7p+FRCpl4ILlLBnch/M7t2Dn7MLNE0eRSCWE+L3kl6ULOLNlPS55vek9a4FJN9OPIYoipzet4/jaFcSEhRH2yp9Ww782ttIOev4Ee1f3DM/dv3Aut8+cpPmg4VjlcuDS3p3M7tKWiTsOYp5WOX9k1RK6Tptp1FsoWK4CfecuYuWoQVRv39n4Xdft2hOVrS0S/8moXisQMqzV/ziCRoLsqhln9zbijl9FGvcbRP7SGcdCvYqV4NLenRj0eqN7SxRFHp84Sm2zj7tztKLImYR4bmp15AK2OTuzKSaGeO/037+LVz6a+L6g5z+8r1GmBkEUxQAAQRA2i6LY7f3PBEHYDHTL8MT/yDZFzM1NJACnu7jQM/AVlZQq5ILAxcQERjk64qVQ8CglhX6vA+llZ89XdrY8TElhRFAQ37m4ZltUHFLT7Ga6ujHDJbWJRrLBQDN/Pwbk0rI8bz70osjGkFc0/aYnt9cdQS5Lnx0yf9B45uxYQ6PxfQiPjaZ68bLsnbaEQp7vAsqFc3tz6cEtyhZ8lyf+JjKMkOhwPB2z11Qvp+RxdiMi1rSy1WAwkKROweZPVNHKSBHNu1RZ5py+wu0zJ0iMiaFe9z7ERYTz+6njSGUyhq/akKNq5bccXrmY26dOMGzFetwLFuLu2dOs/noYg5esJi48jFsnjjLt4Ml058WEhfLr1o3MOnkJq7SXXOGKVVg6uA+X9+0yZvUEv3xBgfdiHwD5SpYmOjQEnUZtsiOp1KwVbq+2IrsbkOPneB+LKAV129bCcKM8Swf3od+8JRlqRRSqUBk7ZxdWjBhIk/5DkMhknF69DFnwG2o7O2dw5XekGAz0jQgnwcWN0i3b8sj3BRsPHaCPSsWFX/bSdNBwYytyTUoyd08dY8C/QHwnOzEEkzLLtKyg7Jeh/ke2aWhlTUWlinMJCehFkW+cnIzVw8siIxiWy4FOdqkZFMXMLXCXy5kbFkZNlcq4UvN/Tx+2rIWSJpnow77d7h6Jj6OUuQWd0zIz5ILAAHt7fgsL4+j1C7Sskr4PvVwm59uug/m262BEUcwwT39Em+40nzQQRxs7Wlaty7PX/oxcPpP+TTtipVSlG/8l6F6/Fd+s/pH65ariau+IKIosObAZF3tHfHJ7/yH3zAlmSqVJVbN7gUL4fNBALydo1SmcWr+GyXuP4phWhVuuYVOSYmNZMrAXudzcGbbi5wx1Evzu3SF/6bJGYwCpu7NyjZpy9+xp6nbrhVadgtzcnOe/36BU7frGcb53b2Pn7ILsgwwkvU5HYnQYgu4zXSk6AStrJTU7dkFla8uBxfMyNAiCIDBsxc8cW7OCzX26YECkvsKMAY6OyD7iztkRG4voU4xvft5mzIAr3aQFmwb3oaDBwKKubanddzB6nZbTKxZTUSKh6D8wiPwhWcUQJgATAQtBEN5WoQiABlj9J8ztX4mtVEqrDHKb7yYnM+2DP+yqShVBWi1JogGVIOVcQgKTQoJpbW1DUXNzDsbFsjMmmnWeudNVab4lSKvFxzyD1EKplIDQNx+db2ZFW6W8fdg5eSHfbV7K4MXTcc3lyIBmnRje6o/bWDauUIN7vk8oPaAVlXxK8iosGIkgsGfq4i8u6BIeG8WGkwd4HORPEXcvejZojYON3WfpJeeU2PBwFBYWRmPwlgJlK6CysWXawZOZPre1gwNhrwLSGfTQAH+sHR0BuLhnB7ZOzmyZNhGZXEHhilXwu3eHVaMH02TAUJPz1MnJLOjblSEdI/CyzFlG04cYLA3oFanfY6na9Vk5clCmYxXmFrQcNppZJ49kOiYjzhgM1OzZzyQdukiV6ihsbBgil/P4zWtOTBufGkCVymj+D3cVvSUrl9EsYJYgCLNEUZyQ2bj/+HNwlMnw12hMVNfe6HTIBQEzQYJOFJkeGsISN3ejMlpHG1tGvAliR0w0ve0zflEVMTdna3Q0/d/r2aIXRX5Tq+me//O6V1YpWprjs9d91jVyyrhO/enVqC3Xn9wjl7UdlXxKfnFj8Oy1H/Un9sOnei3y1qzG6ZvXWTKsPWdmrYM/0SDYODqiTk4i4nUgDh6exuPPb13HvWChLJ87X8kyKCwsOLxyMU36DUEqk/Hyzi3ObtvI2E27ALh79gzNB40AYM+PPxD49DEuXvkQJFI8C5nGeH7dsh6VtQ2utUaTZL4Ei3RdybKHiEhyRR0pZqmZVkHPn2Lvmj6W9bkoBFAnm7Z5NxgMqNVqLM3M6GRrxx+rrP3/SabVQoIglBEEoQyw++1/v//zJ87xX49WFHGWyZgaEkyQVgukKqxNDwmhg60tMkHgqVqNlURiIpMpCALtbW25kJBeg+EtdS2tSDGITI6I4GlKCg9TUvg6PBzP3N5ULfb39Aw62eaiWaXaVC7yx0g9jtuwiNp9BtBjzgJqtO9MjzkLqNWrHz13r/ji98oKuZk5DXr2Y8WIgQQ8vI9Oo+HWyWPsWzCHxn0HZ3muIAgMX/Ezjy5fZEyNckxqVJPlw/rT/bs5eBQsDIDCwpzkxHjKNmzCtIMnWfckkBnHziGVSVF8oMB3+8wJ6nbrRaJlB7SFEtDbaD/pmbT5k9EozUhRVCUi6DUbvh1LvW5Z16F8Ci2lMk4umU/Ke/okF3duxU6vJ98/SDozp2QVQ/gp7X/NgXLAXVJdRiWAa8CnOz//xfiq1WyIjuKpWo2nXE43O/t08pYfMiM0BL0oUsPSknb+flhLpYTpdDSwsmKYQ+r23kIQSDAYMIiiSTpcvN6AhSTzl6JcEFjn6cn2ohUYfekkMomUdg3a8nXHvulepqIo8jTQj9ikeErmK5xhF9KM0Ov1XLx/k9CYSCr5lCSPc8ZZL38HRFHk9PWLLFpq+vKv0akr+xZlrklhMBi4e/Y014/+wpvnT4kODUFpbU3VNh1o3HdwllrKWdFs0AjMlCqWDetHVPAb8hYvSb95SyhQtvxHz7V3dWfclj2EB74iOSEe9wKFTOoiKrdoy74FcyhVpwGWaTGmS/t2IZMr0nVwlcrkaNVqRIkViRYtUNU+i9WBnLtZYurGsn6LhpPnKpEYG4NznrzU79kvx9f5GM2srbkVHc3EGuUoXr0WEf6+RPn7scbJ6U/Xi/5/IiuXUW0AQRB2AP3fFqaldSTNubjvf/A4LVOoq50dbW1seZCSwtCg1/zg4kqNTDKFwnU6TsTHczqfN5ZSKcMdHHmj1fJLbCyJogF52i9vXoUCB5mMbTHRdE3rkRSr17MmKpL+mbiL3mItlTJ7wDhmDxiX6ZiA0CC6zf6G4KhwHKxtCYoIZW7/b0zaNGSEf8hrWk8dirlCQV5XT8asnM1XdZozp9/Xn/2H9zTQj/Un9hISFUEln1J0rdciS0GdL4EgCFiYW5AUF2siW5kYE4O5MuN7G/R6Vo4aRLDvS2LDw6jduTs1OnxFfFQke+fPJsT3Jf1+XPzJ82nQsx8NPuOl+WEM4i2l6zXk5Z1bTGhQjaJVaxIV/Ibo0GBGrt6U7v+7is1acnT1MnwqVyXafiTKusdQPEvA7FH2M+AS68SiK25J7TqHKdkrmaDnTzm9ad0f8oKWCALT7e3poVZz7NplzusNRKQk0yU4mFY21oy0sf3HNa7LDtl54sLvVymLovgASN/c4z8+yrLICAbncmBgLgdKWljQxc6OGS6uLIgIz1TE5JVGQz6FmbEMXymRkN/MjEoqFb7vteAVBIG5rm5sjY6mQ4A/o98E0cj3JZWVKhp9ZrqcKIp0+H4krarW4+n64/y2ZBeHZqxiwtqfuPPycZbn9vpxIj0atua3JbvYNvEnHq47wsX7N9h57uhnzen4jYvU/6Yn5nIz6petwq93rlJrdFeiP+jC+UfQpW5zDsybZWwTrdfp2LdgDlVatctw/O0zJwl/HUiFJi0oWbserUeOJZebO17FSjBs+ToeXDxHaIDfHz7vnCIIAu3HTmLqvuMUr1GbZgOHMevkJdwLFEo3tkb7r3Bw92BCg+qsm76U+etyE9rrDSml4j96HxGRuLqRxLRK5o37bmRKJ5xy5+H++TPkL/PRfmyfhZVUyrakZEoMGcnS358y+dg5nhUvzdef0Yr870x20k4fC4KwFthCauVyVyDrt8B/ZMjt5GSmfpApVF2lYuSbIJJEEVUGK6E8CgW+GjXxer2xhTXAreQkvD/wdXopFBzOm49rSUlE6nWMcXTEPYPq55xy/ek91FoNo9r2NK7WSnoXpnuDVoxePou8rh54u+WmZ8M2uOV6V87vGxyIf2gQw1p2NR6zUVkxtmNfNpzY99HdRWbo9XpGLPuBLRPmUaNEqmukS90W9Jv/LUsObGZKtyEfucLn8X33YXSc/TXf1q2Cd8kyvLhzC+eChek548cMx987d4ZqbTry/NZ1StauZ/KZwtyC/KXL8frpkxwJyvyZOHh4mgStM0IildJv3hJePXrA899vYutYi1BPZ+R9eyF/rcbyuBlm9ywRDO9+x0W5gZTyccQ3UhMjE/h2kg3Vut4ll3sk148c5P7Fc0zek7PsoewgiiL74+LYkJJCYFIiFVu0oV6PvkBqanCfRSsZX7UUL9Rq8pv9W8QzU8mOQegFDAJGpP37AvDnRs/+IThKZQR8kCkUotNhJgiYZdZzXyajsZU1I98EMd7JGTe5nGNxcWyOjqachQWH4mJpZGWNXBAQRZEQnY48CjmVZcovttWOiI0mt5OryfUCQoNYf3wfNUqUp1bJitx8dp/Kwzrwy/crKemdGpRMTEnGykKZrpmdnaU1CRn07s8uz4MCkEokRmPwlh4NWjN+7U9/uEGwtFByZPpy7rx8zJNXvgQMHGrSk/9DFBYWJMfH4ZQ7D/4P7ho1mCHVnfTq8QNaDh/z2fMyGAxc3r+ba4f2o1WrKV6zDgXLVcDWyRmn3F6fff3skLtIMdzyF+T5revcu5OIuuxFbBzPYOexArkmAEm4CkmKgMHCgN4lAbW8NDEOA0k2q0WNHsc5v3MrCdFRFCpfifHb9pGcEI9UJsuyr9FbfeXssikujq1SGZ0Xr+LMlvUUqlTV5HOZQkG+IsXxC/D7zyB8iCiKKcCCtJ//+Aw62dkyJyyMpe7uOMvlxOj1fBcaQvu0TKHMmOTszJrISAa8DiRSp0MlkdDa2pqC5uZsi47mcFwcIxwcmRYaQnBaFpKzTMYMF9cMBXpySoXCJegzbxLBUeG42qcGsadvWkrfJu2NL99u9VtSytuH8WvncWzWWgCK5PYmRaPh4v2bVC+euvUXRZF1x/bSuHz1T56PpVJJfFJiulbZkXExWP3BMYT3KeXtQylvn4/WHlRq0ZrlQ/sxeMlqFg/sRZ4ixanYrBVJcXHs+WkmLnm90wVpP4VNU8bz+ukjmvQfiplSyYmfV3Hy51VIZDLcvPPTb97SDIvUviRPr//GytFDsHdxQyKREPTiKbl9ilGuYWdqtyyLpWcUgpiEQbBCK/NGL3uXYFCuYVPKNUzdNf52cC8zO7RAIpORFBdHqTr16TZtlrGlxqeiFUVWx8UyZs9R3PIX4PnN67z4/YaJkdZpNPg+uk8+u39H7cH7ZCqQIwjCLlEUO7zX5M6Ev6K53d9dIEcURZZFRrAlOhpnmZxQnZYm1taMd3I2ymBmRbhORzM/X37xymvsiqoTRVr7+RKh1/O1kxOtrG0QgF/i4lgQHs7RfHlRZaM5Xt4Fu7L8fM6O1Ww9c4ixHfriaGtPt1ljubP6IO4O71oEaLRaHNtWInTPFWMG0vEbF+n307d0rdcCtVbD8RsXUWs1bB43lyrFPj17ucnEflQrVpYJnQcgCALR8XE0mdiXYa268VXd5p90TbVWw7rje9l/7SxyqYzO1RryVZ1mGbbrfp/sFKOdXL+aX5YtJLdPUYJ9X5AQHYVUJqd80xbkK1GKa4cOkBATjU/lajTpNxg7l5y19wh68Yx5PToy+9RlzNKC2waDgdlftaFOlx6E+L7k4ZULTNxx8A/LokmKj2N8vaoMmL/MWFn88s4t5vfpgnepckQFBzF+2z5jxlJmPLl2hTVfD2PYivV4FStBUnwc276fjE6rZeCC5SZjE2pVYHVKMq+SksivVDFIqaRqFkYjVKulTUQ4P91M9XrHhocxrVVDGvcdTPX2qVoZe3+YhtX9OyzN9efVlPzRfAmBnLcuov+a3H0hBEFgqIMjveztCdRocZHLcyTYfTMpibIWFiYtsmWCQFFzC8L0Otq+t61uZWPDrwnxHI+PNzn+qYzr1J8S+Qqz8eR+4pISUJqbEx0fa2IQYpPikctkyN57pkblq/PrvI10mz2WhJRk+jfrSHxSIl1mj2Vshz4MbvHVJ81nzegZtP9uOLvOH6OAex4uP/id7g1a0bnOp/266vV6Wn8/giiFlJr9B6DTavlpzQrOPrjJz6O+z/S87FYmN+jVn4rNW/P4t0uYWSgpULY85ipLflm2gPM7ttBq5FjsnV25emg/Mzu3YvLeo1h/JDvsfV7cukGx6rWMxgBSdSLKNWzCy9u36Pztd1w5uIfAJ4++yG4EUg3Oo8sXeP77DWwcHDEYDBQsV8GkzYR3qbKUb9Qcl3zevHn5nJMb1tBm5DdZXvfMlvW0GDoar2Kpa06llTVdp85kbK0KxIaHYZPWdvrq4QPsV6vpPGs++UqW4em1K3wz+RvmIFJNlXF2k51Uil6jMRbz2Tg6MXbjLn6eMIrdc7/HSqGglZUVw+1yJrLzTyGrtNPgtP+sC1wURfGfJw/0F6GSSClsnn1D8O48CWEfCKADhOp0GbafyKswI1Sbfvyn0rhCDaOk5PdbljFt0xK2TvwJM7kCvV7P1A2LaV+jETKp6a+Vb3AgOr2em8v3GncO3eu3otKw9tQrXYX9l09y4d5N7K1t6d2oDbVLVfroXNwdnLm8aAfXntwjODKMBYMn4uHw6e6Qk7cu8yohhvH7jhpz8YvXqMOUBtW5+/KJMS7yOdg4OJr0MoqPiuLMlvXMOnkJ61ypbb5zFylGUlwcZ7dupOWw7Av22Dg6Ev4qfVO50AB/bJ2dkUgkOHh4Ehf5aeI7H6LVqFkyqDcxYaGUqdeI57ducPvMyQy1j60dHUmKi6N6205s+2HKRw1CTGgIbvkLmhwzV6mwdXYxGgRRFDk+bSK9l6+jUIXKAJRv3BxBImHp1AmZGgSFREIXGxvWDOlDz/nLccnnTUxYCDH+fqxydaPKZ7qk/u5kJ+3UC1glCMJLQRB2CYIwTBCE/9JO/wIqqVQEarWceC+10l+j4bE6hVPxCejec//pRZHzCQmUyqDo7XZyEoNfB1Lv5Qv6BL7iUmJCtuew+/xxao7uyvrj+3gY8IJCPRvy1cwxFOvXDP/QIGb3S1+icuzGRbrWb2lSyJbH2Y0axctTfdRXPPB/zvDW3ahZojwDF05j1eEd2ZqLIAhU8ilJ62r1s2UMDAYDL4ICCIoITffZxQe3KNG4qUlhlpmFBSVq1+PSg1vZmk9OuXHsEI4eeYzG4C2l6tbH797tHF2rWPXaRIUEc3bbRgwGA6Io8uDiOW4cO0TV1u2JCnnDq0cPcfbKy5nN69k0dTynNq4lMTbmk+Z+dtsmQGDq/uO0GvE1A+Yvo9XwMdw8cYTkhHepppqUZC7v3UkuVzcSoqNMajcyI2+J0tz59ZTJsdAAP2LDQrF39+D60V+4U6UUQQnxFCxvungoUqU6z+OzTnUdYmNLk6hI5rVpzMAiedgzYgBTVKqPGgOtKPJ7UhK3k5NM/tb+SWQnqDwFQBAEC6AfMBZYCOR8ifsfmRKl03E5KRG5IFBdZYkqg6IYhSDQzc6OySEhrI2Mwloq4WFKCt1t7dgQE82Q16/pZW+PIMDGqCgcZTITgRxIdTuNfBPEKAdHJjg5cz8lhckhIVheOkXravXT3fN9Vh7awfJftjK3/zf45Pbmf+yddZhVZdeH731yTkwnEzDA0N0hndIpiJSEpCAKoghIG4ACSkoJiIiIgIA0iKQ0gnQNM0z3nK79/THDgcMMTIDv977ofV1clxx2e85ez/OstX6/3ad/Z+qahdQoVYFxrw3K9jHIiUqpRGfIKZ8Rl5pEhfAI1n34qFyzadU6NBzzBr2bv9gms0MXTjJi8SwMVgtmk4lKJUqzaswMwvyzAkmgly/n79/PsV9K1H38iz29guh5OLVzG6nxsdisVpdO5ahrVwucQ5DJ5by7Yh3Lx41m+5KvQBSxWSy0eWsEV08cY8eSBTTu2ZvZfV+jROVqlK5Vl9sXzrJ75VLGr9tU4JLXc3t30X74aJcA2nrgUHYu/YqZr3WgZf9BSGVyDn6/BoVKjcPh4JdF82jRb1Cex249cCgze3RAKpdRo1VbEiLv8vO8z2nauz8zu7cjwMub0A5dkG/aQNTVv1wqvO7+eYGwPF7sEkFkGz+CAAAgAElEQVRgqJcXb3l6YhFFlIKQZ17lpF7PBykpaAMCER0ODA+imevjS82nNCP+r/LUpLJzA0GYBLwCaIHzwFGylpBin7nj38D/elL5aWxKS+OLxATqqNWYRJFLJhOzixTJddprEUWGR90nyW6nhlqNRhDYml1llOGwszczExFo5e5OHy9vlE8ElgFR9+nq6UmHx1yxTuj1zLbaOb9q11N/GBarldJvtmLXpytcpKS/3rqO09cvsfaD2U+9vwu3r9Ll45H89uV3TtOd3y78Qbdpo1g59hM6N3CtzW/0bm8+HTyWVyq8GMmse3HR1HuvNwPmfk3Fhk2wW63sXrGEK79s5exXPyKRSIhLSaL62914c+7XTuvEk9s2s232LK4t34HqKYYrz6NuOqpWBcLKVSC4ZCm6j/sIpVrNjdMnmT+kP+O+3UDJqoXTkoq/d4eM5CSunDjK1RPH0Hh40rBHL07+soXgkqXo+Pa7zm13rVjCrbOnGbVkVYHO8Xmf7rQZPJzKTR6VfDocDsbUq0KXMe9z8+xpHHY7VZu1YsOsj7FazDTu0ZseH0zOV1I7Meo+u1Ys4u7FU2i8Amj6xpsc+3kjJSpWpv3bWUtp+9as5LcNaxm+YCmhZcpx5+J5Vrw9mPckEtp7eBTofp5Fis1G25gHDFmymvL1s6rjLv1+iFWj3mJPSCgeBcgD/n/xIpLKD+kK2ICdwGHgZHYp6r+8AG6bzSxISmRjsXCKZTeanTMYGPkgmn3ZchWPoxAEloYVZV9mJscNepSCwIrQMMpkl5c+TdX0IVdMJuYFu2oJ1VWruXvrFiaL+akvvtiUBOQyeQ5fgRbV67Pi103PPGfVkuUY//pb1Hn7NZpWrUOmQc/xK+epXLw0CenJLtva7DaiE+Pw83hxSb3V+7ZSt3N3py2iTKGg3fDRnN/5C8f+OkfDSjUJ8vHjhw/nMmjyh/ykVGC1WvGQK9k+ddFTn8nz4hUQyKsDh3F0y0bGNqqJm1qNRCpDELKWTQpLYHgJAsNLUKpGbTq9/SgPsey9kfSePNNl26a9+vHzvM9xOBwuUtB5UfPV9uxetZTy9Rsiy/7enti2GbvNRkZyEq9PmIIhI53NX36Of1hRRnz9DT5BeauWSuwpuBs2EqL4nlpDHs7Y7mGWJhN74DqtBz6aTbboN5D0xHhm9egANhs+SjdGumtfaDAA2JWZSaXGzZ3BAKBSo6aUrfMKe65e5rV8ejf/L5CfJaPqgiC4kyVm1xJYLghCvCiK/4rbvQB+zcygi6enMxgAVFerqa5Wc1Cno2Mu3ghyQaCthwdtC/HFD5bLuW42Uecxk5o7Fgteas0zxer8PL3RGfUuvQgAF29fy9Vq80mGd+hF1watOHj+BCqlGxkGPe3rNmXuj6toWqUOpULDsdltTFu7iPCgEBf3teclOiWBwAb1XT4TBIGgEhEu+YRGlWtxffkOLt29gUwqpXyxiGeOZp/X+6BZnzfZsmA2by9aiXKamsSoSDbN+YR61bsV6OWcX+QKJSa9zsUUx2zQI1MoClyK2rhnb679cYxJ7ZpStWlL4iPvEvnXZYZ8sZAT2zYzoWUDFGo19Tt1Y/DsBSjzEHAUHAZ80qeiMW7HoGpNkvd8zPKKICgRRCNK8xl6j1qCZ1pjMq29SfX4AEGQ8UqXHpxZv4ad4WGo87H0UxjS7XY8Q3PqPXmFhpFeAO/m/wXyDAjZYnYNgcZkqZ5GAUf+5uv6x2ByiLhLc/74tRIJ5r8hcdXf24cZ8fHMCw6hlFJJtMXCpLhYRr6WU930cTRuavq17MJbX0xiyZhphPoFcvLqRSZ/u4DFo6fk69yB3r7OslCdUc/XW79jWPvXaTK2L8WDQrkX/wC1UsXheU83mX+aQ9uzqF+mMiv37qZRjzec+xp1Oq78cZzaPVzNVyQSSaEripJjHrB79XJu//kngcWK8eqbgyj2jA7mJq/3RZeawtROrdD6+JCRlETDbj1dRvUvkrodu7BlwRwGfz4fiVSKw+Fgy/w51G3fucDPVCaXM+Krb7h9/gw3z56maPmKDJu3BKVaTZUmBescljhSCUrqg0VWkujAYzikrg1hoqDC5NYQU2hDdPYY/FLfJzB5APE+37Bn6Ve0Vqtzzbm9KOqo1WzevoVO74x1WoaajUbO7drOwJesKik/OYSHS0VHgdOiKBZO6PwF8DLmEE4Z9EyJi+On8OLOL3W81Uqne3fZGl6coELKIj8NURRZn5bKN8nJiIAd6OPlzedr9uc5KrXarExbt4hVu34CwEvrwZR+b9OzSdtCXceM7xazZPv3lAoJ52b0PapGlGfj5Hl4qHPmTo5ePsuUNV9x8upFAr39GNa+J2O7D8yzaQzAYDLS8P1++FSsRMPX+6DPSGPn1/NoHF6GRSMmFfjaH/L4DCHu7m1mvt4VRZnGKIpVw5ZwB/3ZrYz48ivnUtXTMBsMJMc8wDsoCNXf6P1s0utZOHIQSQ+iKFWjNrfPn8XD14/Ry75F7f5il1nyiyCaCErqhVlemRTPqZCfwCRa8UkYxr3zZ1j2sYXVfoF/6zq+KIqMS0nhpq8fTd8agehwcHDZQiqmp/HZ/0jzWn5zCHkGhP8mXsaAIIoiU+PjOGs00sXTE7ND5Mf0NPp5e+eZD3gebKJIqt2Op1Tq7JLOq1v5IRarlQyDDh93z+de2kjJTOdK5C1C/QIJDwrNdZuLt6/RYdJQ5g77kM71W3ArJpIxiz+heqnyfDY4q8xVbzJwJfI2QT7+zsohl/NkpNHu45HciLuPRO6G1WiiTGgxdkz7Cn/PwkkUPB4QFo0ZwR29Jx51ezg/M94+g3h2PZ/tPvRfo7EviiJ3Lp7jwc0bFCkRQUT1mgW+NkNGOuf378FsNFChQePnEuXz0H2DynSEeN81IOT/uySIJoLut8JvhRHNhb8/mNlFkV8zM9htsyMAbWUyXnV3d/Ee+W/m34DwP4QoipwwGDioy0QuCLTz8KCi2/P50haG/AaE/zSD5n5E5RJleadrP+dnCWnJVBnSkaurdrFu/zY+2/ANRQOKEJUYR73y1Vj+3gy8tI9eFMt2bGTq9p9x7zYNiVKNKDrQHV5NTdLZNmV+oa7r8YAwun51PLrNQu71KBiJokjswl58cegEhsxMti9bxM1zZ/EJKkKbAYPynDm8SNKTEjmxZRMZ8XFE1KlPlaYtXEpG88tfx35n+duDqaFW44XAQV0mTfoPptN7Hxb8okQHofGNSPSeh1mZt6HPk2gM2yhy4WP8PvXLe+N/OPkNCP9vDhCCIIQJgnBIEISrgiD8JQjCO3nv9XIiCAL1NRomBQbxQUBgnsHA4HCwPi2Vd1JTmZGSwjWTiSsmEx+mpPBGcjIzU1KIeswrIT8YHQ5ikhOw2+0F2s9stfDDoZ1MXr2AtXu3ojcZ8t6pgFyLuku98q69kAFevoT4BrJu3y98s+NHjs7fwImvf+TW2n0Eefsx4qtpLtsv3bMVRf3eSJRZdeOCIEFTvzeHL/5RKA+FJxPKGi8f7OkJLp85DOkgQnpyItO7d+CvGDuSBsNI9KrG0vHj+H3ThgKftzDcOP0HU1o2wPrtN5T/9RcOTXqfeb06YzEVTHHWbDSyfNRbLPTxZZGPL7N8fNgZHMKp777lxumCmyi7mY/ikKgwKwrneaBXtcEabMEWaC7U/v+Sk/9PSyAbMFYUxXJAXWCkIAi5dzb9ixOd3c4b8fHsiihD+PhJmF7vy5vJyfSNi0X15lu0mreYzM7deT0ujpvmvH8oFoeDmampNLofSa13Xqf0W+3YcCh/GvQJacnUH92TNXu3oFWp+OXEAWoM78q9uOjnvU0XyhUtwfErrp278anJPEiOZ9fpw0zqM5xigcHsOX2ECSu/RO3mxoGzx0lIe1TSmmnQIVW7Li0IciWCVIbenBXEbHbbU42K8qJV3/7ojq7Brs/q/HVYTWT+toLa7Tqya+VyFBVb49mgD8qgCLQVm+HVaSI/zv0Mm/XZKTmjTkdqfFyhr8vhcLBm7Eg+9fJklo8vg3192ejvj19UJAfXrXbZ9s7F82xfPJ/9a1flKnFx5fgRyripXJqxfGQyeqlVnN767NLj3NAYd6BTv5a/vEFuCAp07t0wVc/bhCe/OESRH9PS6BV5j/Z37zArPp7EXORiXlaeOmcUBGE7uaicPkQUxY7Pc+LsxrbY7P/OFAThKhACXHme477sfJ+RjnftugxZ9MhasHKzlswd0Ivm/QcjUygoW6c+ah9fFq5cyoI89Nw/TU/jRqmyzJy9AE//AG5fPMeHbw8hwNOH5tXrPXPf6esW0bRqXeY+Zr05e+MK3v9mDps+XvD8N5vN6C79aD9xCIFevnSq35xbMfd5d8knDGjdjd8u/kGxgGAGzv2Iy3dv0LtFR9J1mSAILNuxkcl9sszm29asz0+X9qNoPsR5XOOdM1hsVtbt3cb63/dyJ+o2Xp4+jOnch3Hd3yxQfqTJ631IiIri0OrhuPmFYUp+QIVXGtFn8nQmd26LqrGrR4MioDhWe1bt/itde+Q4lyEzg28/nsDFg/uQyBRovL3pN3kalRs3K9Czi71zC/R6mhR51PksEQT6qjV8sWMrr741AlEUWffBGK7v38OrSiWJgsDkLz9l0IJlLuez26zIc3l3KwGb2Uz0jWtYzWZibt3g+NqV6FJTKN2gMW1GjsGnSE4fbakjBaP0+fy1rcqiRGvtPL/SVBazExM4bzQy2s8fX6mUbRnp9LkfycZi4QUSovxf5VmLiE93DH/BCIIQDlQDcsw7BUEYAgwBKFKINc+XjSMOkUav93VJBBarUAnvwCCirl2heOWspZVa7Toy66sv4BlVEDq7nR3pGXzyxSJnbXrJKtXpOPZD5v20Ps+A8MvxAxyZ77rsMaLjGxTp8Qrpukw8C1gxY7FaSc5Mw8/DC7nsUXVV5RJl+GHSfKatW8jQ+R8T5O3PkPY9ebdrfz5YMZcvN3/Lvbhoji7Y4Oyl6N+qC/VH92RExzfw9fDio55v8cOI7iRmJKEqXQ9rUiS6i3tRlWnEzE3f4tfhfcJer4416T7z9i3CYDEztc/wp11qDgRBoOf4j2g3ZDhxd27hExzibMTyDggkNTkaReCjpj6HSYfNqGPjgq84s38foxcuc1nTX/TOSGL0CoKGrkJQqDHdO8+SsaP56LsfCSub/4m0TCbD6rAjAo+/y82iA2n2Mz6/fw/Rh/axvUgR1NmB6ZxKxch3RzD7xAVnqWX5+g1Zq9NxU6OlVPZAw+BwsM5gwH7yGNcP7sNms6KyO/gwwJ8icjk7Du3js/17mLh9v1Ol1PnMsJK/3thn3iGnLQa8rVYXFeDCEG+1sjU9nb0lSjqrlsq6uZFqt7M5LY1B/yMVRc/DU4dAoigeftafF3UBgiBogc3AGFEUcyzmiqL4jSiKNUVRrOkj/TcgaIHMFNfuXofdji41Bbds4TCr2cSNU3/gpXi6febJ7Qc4sHgVKv8Al0YlgLCy5bmfmLcyiVQixe5wzTnY7DZAYPK3+Z8hiKLI3E2riOjXgrpvv0ZEv5bM2/ytyzJJ/QrV2PPZSjJ+OceNNXsY91pWyWmFYhH8/udpIuNj6Dh5OAfPnwSgeJFQGlSq6fx7kI8fIX5FkKg90V85jDXpPr5tRmPXJeLdYgiqkjURBAkK/3A07cax8JfvMVsLlocB0Hp5E1G9lktXbpuBg9CfWI8lKavz1mHWk7x3CeqyDfDrO5+7t6P4Y8dW5/bxkXe58+cFPJsPRaLUIAgCquLVUVfrwN61q3Oc81kEFCuOe2ARfsp49NMyORws1xuo2aMXAOd/2UwfN5UzGEBWc2QxpZLrj+UG1O4eNBs4jD7RUbS8c5tekfdo9+AB6VYbIyQSfg4MxGyx8F3RojTVulPWzY1xPr40k0g4+O3yHNdmF7yQOJJzfF4QJLYkLKk2ukfeo2fkPX5OTyv08toVs4kqKlWOEtbGGi2XTP8McYY858SCIJQSBOEnQRCuCIJw5+GfF3FyQRDkZAWD9aIo/vwijvmy012hYNf82aQnJQJZL9Nd3ywCUcQrIIjdK5fyXsMabPx8OrEmIzNTU7E+9gM5uf0AJ7cfAMAnOASL0UDs7Vsu57h0+AA1IsrleS1dG7ZixrrFLj/AuZtW0aZWQ344tBOrLX8tK4t/+Z6fj+zh4Ny1RH7/G/tmr+aHQztZ/uuzq542/vYrn/2wnJXjZnFpxXaGtOvJoLkfsf/ccSCr+e3x7muNmxvWlAdY4m+BRErKgeVYYm4g93XtQpV5BiJI5SSkPZ/RukmvR5eWStWmLen69ihSNk4gelF/opcMRJDK8Gk5DEEqR1npVU7u3uXcLyXmAW7+YQhS1xGvzC+chOioAl2DIAgMXLicRVYr/ZOS+DglhVdjY9DWfYWG3bMCgoCAmMvqsIhrE+C5fbs4uvob3vH1ZXaRItTRatHbbYSq3Ojm6ckti4UIhdLFIhaguZuSyNMncz4f5StojL8W6H5cL1BElvoTHtc1rCtajNF+/qxLTWVxcuGCTBGZnNtmM/YnAspNi5kg+T9jMJqfu1wNTCHLQrMpWR7Lz118K2R901YCV0VR/PJ5j/eyYhdFYqxWPKRSPKVSmmm1XE1PZ1KzupSqUInEmBjUeh01ZDLG1q2Ee0AQkzbtILBYcTJSklk1eijz7t2h0dFzOY4tVyjpMGIMXw1/kx7jJxMcUYrzB/ZyYOU3HPwsb7Gzj/uOpHT/1tQe2Z0mVetw5vplMgyZbJ+5jIqD22OyWFyWfp7G11vXsWHil0SEFAOgdGhxvn57MoPmTmRIu5657iOKIkt2L2TllH5ULClDShSdGtVCKpnApxuWIZVIuBJ5ixaPLXsFe3lxWZdA6LBVCDIFosNO8q6vST20kqA3PnNuZ015gOCwEeiV+xJBXpIVmSkprJ78IZd/PwiCQGDxCN6cPotRi5azePz7+PRciFT1aDlNtFmQPfYSDSlTDmPcHdwN6UjVj6RLrPfOUrp2wQX/QiJKM/PwKS4e2k96QgIjatRyUQit1rk7604cpb2H3emud8Zg4L7FSuladbKuURTZPH0yX/j6OGVPqqmyxBW3ZMtNB8pk3LdasIiiiwPgLYsVr1ykH/TqDvhkzEBmu4dNFl7g+3KznITMDLrHByMoBMIVCuRCAKMePGB5SjJaiYTOHp6M8vPLIfKYG2Xd3AiVK5idmMBoP3/UgsARvZ4f09JYG5bz+l9G8hMQVKIoHhAEQRBFMRKYKgjCEbKCxPPwCtAXuCQIwoXszz4SRfE5hgwvF3syM/g8IwObTI7RZKShuztTPT0ZUlNBz1oK9J6XkMtBY5Ihj1Qw5BcVTad85mwU8vDxpd+cBUxu15yUr+ZmGa83akqZ2vWcI7/mfQfg6e/PnlXLSImLpWTV6ry3/ifKCnnXdntq3GlZ4xW0KjUhfoE0qVKb1jUbsPOPw5QNK467Ou+2flEUuZ8QS6XiroYolYqXJjLhQc7tsZMq+Z0o+UamzklBUO3jsqBGIuqQ2G9TsnFtzLsv0f/z8az/6EsXYbozt67j3WYcgixrKU2QSPFuNpDohf3QXT6IulRdLIn3MB1YyvvdB7j4NecXURSZO7gfmZpiFBm+BkGuxHDtKF8M6sf0bbuRYcUcfQV1qawXrcOsx3RhOw2nPPo5efj40uT1PhzbMh1N/d5I3f0wXj2MLfIMLb6a+bRTPxO5Qun0K36Sqs1a8lfLV2m3eyetVSqSBYEjeh1vLVyBPHuGlZmSjD49ldpFi7ns21rrzrLkZPQOO2EKBZXc3JgVH8f4gAA0EilnDAZW6HS8PWBIjvPGR8UTfcaLcg2XkuH/WY5/fyaiiCrxa8y/yhCyx6eJNhvjYmIY4etHN09PUux2vkhM4IPYWOaH5C95PS84mGnx8TS9fQulIOAplTK7SDAl8ijOeFnIT0AwCYIgAW4KgvA28AAIyGOfPBFF8SgvYKbxsvKn0cj0TB3Dln9HqRq1MGZmcHvLG8SVuoSPQoL6mCcel93BJkFU2zGX1/P5ogz08uXorAFY5VlLPtdP/4HdbsOQkYHWy5s1H39ARLWaDPz0S2dQqPlqe2q++oT15K38Tbsn9xlB6w8H4qV1p3zRknyxaRWLtq138Th4iNFsYt3+bRw4fxJPtZZ+LTvRoFJNqkWUZ++ZY7St09i57d6zx6heKsvq0eFwsGznRraf/44R7yfj5hmO0XcoetU6ROHRC19wZKA1/MTUz67iI/Whojnc5fwGkwGtyrX0VKJQI5UIhN46wNV9iwn0C2Ji974MbtM9X/f/JLcvnCU5IQm/N6c7n6+mfGNscdc48tNGRn29lC+HvInlrz0IGh+Mt05Rv2MXqjZz9aLoOX4iRYoXZ//69ejTU6lQ7xU6zfolR2L2RSAIAn0+/ZLIPgO4fPQwvu7uzHy1g0tuyU2jwSZCst2O32OzmftWC1p3D/okJPKWWk0HD0++TE6i4e3buKvUSNQq3pg9n+KVqricMzMlhTmvtWeQvwSfij9jV9dFr8nptvY03NMWYYo/zeW9aipkjzs2pqXSUutO/+zr1kqlzCkSTIs7t7lrMVP8GeKND/GWyZgfEkK63Y7B4SBIJvuv6TL/T5AfLaNawFXAC5gBeAKzRVHMuSj4N/OydSrbRRFp9pftltnMGr2e26JIaUEgyeEg4K0RtBo4FEE0Ehg7FE3UWTw2uaO4rnaOih7HobZjeCUdXQcdCUELSbLVY1zj2kzcuI2QUmWArOaiWT060O29D6nStEWOYzykVz4DAsD9hFiWbP+eS3duUKJIKMM69KJ8sQiXbYxmE20+egsvjTu9m3ckIS2ZBT+v5Z2u/SgZXJTh86fwyaD3qFuuKsevnGPiqnmsGDuLFtXrM2XNV1xPPsToCSkk+0xBp3nt2RckinhnzMdXt4HKptUoxazu4b5zJnLArMGjYR/nprrLBwi7/RsnvlyTr3stezinic7j6K8cxnDzJP6dPnD5PPPiXkrKYxj+xQLMBgPnD+5Fn5ZG+XoNKFIy4ilH+//lSSHB9R+NhYP7+NTHB61USqzVypCkJBpPmIJMqeT0D99hM5uo2K4zNdu0w2ax4hscgiSXcs1d3yzCvGYFn/n4YA0xkfJ+AokBU9Fp33h2X4Io4p06F6+EFSR+7MnwS3HMLhJMXbWa0Q8e8KqHB+2eUAEeGR1NF09PWrj/fTpR/+28MD8EURRPA2TPEkaLovjiukD+oezOzOBrvYF7GekEajS0UijZajTQcshIWtaozY2Txzm1fjVDy5QD0U5g7CA8/ryM97IABNvT10IlBinafT4or6sQ3x3J/t8aEFamnDMYQJYtZKPX3uDcvt3PDAgPuRcXzardm4lKjKNaRHmCfPw4eukMajcVvZq2p0rJshQNKMKng8Y+8zjrD2zHQ61hy7RFzpdM+7pNqDuqB1dX7eLb8Z/xxU+rmLp2IeWKlmDdh3NoWKkm6fpMNp/cwIrVauJ952BQtcn7AQsCqZ7vIgpK/hLfpoppLVLUzOw3kt/G9kenS4SwKpBwC8u131k4Y0nex8wnisASpBxcjsNqRiJ/NCK1R10gonOWCqhSrc7Ve/i/heNbNrF7wVwexD4gNCSUNmPGU7djV177eCbrjQaaH9hLgEpFvMlMq0HDeKVrjyw70wLcU9zli7TOVvmVP3DD95MghDEzUWmXYQwYgV7VCVHyqGNf4khHq9uIV8pyZAkGrHN9Ka1XMj0oiBnx8aQ57JgcDnxlMpeAYBFFLpmMjPX3z3EN/5KT/Mhf1yQrseye/fd0YKAoin+P0exLziFdJp+YzLy5YCnl6jUg8q9LLHt3OBUbNaXdyCwnq3J1X+HuX5c4u3sn9StcRHv3T7yXBiDY8zd1ld9X4bvQn+7DDnL2ZJUc/261mJEpnr0+viHCl9Ate3hj1lj6tOxIs6p1+HTDN8ikMoa060GqLp3OH4/gozeG8Va7Hs88FsDBCyfp1ayDa/9EYAjVIspz8upFXq3VkMZVaufY73ZMFP37a8jQdslfMHiMNPfhqM2nSLRuJ8jek2KBwVxYvInVe7dw6tZVypUMY/DbP+Yqhpcbec0OAOS+YajCq5G4eQZeDXsjcdOSeXEPxgc3Oap/m+MrXTuupwwqvBHO38HxLZvYNWMyn3p7U7VUac4aDXw0dQKCREKd9p0ZMG8JGclJpMbHEVA0PF8eybnhG1GaM3+coGv232UJCnw+CmKm9y3G9Z+FX8Rk7I4QzKiwOzJxl8Uh/0vL3k1mvjqRiUqiwyKKDPD2YUd4OMkOB0aHg973IymVqqSLpyepdhtzExOpplLlmgMQRZE/TSZ+1+twEyS09XAnRP70Uu1/AvnJIawCRoiieARAEIQGZAWIyn/nhb2sLDOa6DVzjtN9KbxiZUYuXMGXg3q7uFb1nPAxM7q24oPeEjy/C8x3MHiI4rYa7U0fqpS8xvVTJyhTO6vaJiMlmUPfr2HQ588WdBNFkXcXf8KSMVNpX7cp244fwFvrwaEv1jmTrX2ad6Le6J50a9QaH/ecRj6P4631IC4lMcc54lKSXEToniQk0JOaZdJJ0g7Mz227IgikeLzFA8tEAo09EBDw9fBiXPcBBT9WHphjb6L/6yAOswG38GrYM5NJ3r0Qh9WEqkRNAnt/7tRRepxpjwWIFx0cEqPu89valSTdukFw5WqElKvA+W0/kZmQQMlGTWjebxBab9celF0L5vCpt7dTnqKOWsMMEWbMn0Od7BmAh68fHr65Fx2IokhqXAwSqQyvgMCnXlvk+bPcSE+jvExGdy8vMhx2Pk9I5GyUivc+EmntoyTZK5oYqZl3tYEEpIWw8n46v+msbA4vQbBczj2LhXdjHuAuldIj27VsVVhRvkxM4POEeDQSCV08vRjtl/NaRVFkVkI8h/V62rl7EGe30v3ePSYGBtLe49nf5Q+r/9MAACAASURBVJeZ/ASEzIfBALKSwYIg/LtsVEgijQZKVHUtHQwtUw5DZgZmg96ph281m2lSV0QW50AeXTgLR/e9anqNttK9z2AiqtdB4+3Nhf17aNZnAGVq1X3mvmnxcSSkJdOuThMAdp/6nb4tO7tU3hQvEkqDitU5dOEPujVs9czj9W3Zmd6fjKVjvWaUDC6KKIrOPoPaZSoBWb4F244fICoxlpqlK9GkSm3wPolNWRebLHdp7LwwKepjljjIlJzFw1E4EbW8yDz/K+nHf8C9envkfsXQnf8VwU1DkTcXIBSgmfJhcHgRgeHOxfN8/ebrdNWoaSWTsf7iOQ5nSzKEymXs3LieTzf/yIRte5xBQRRFHsQ8oFrpMi7HqqFS8eDO7TzPee/yn6wbN4rU2Ac4RJGQiDL0m7cohzx21LUrRF84x5rQML5KTuLzxASUggRfpYJXx32EX0gYty5doPbmjYzy8ECTLsmS10hNYVVYUYKzv4PhCgWTAgKZGh/nDAillEqWhIblaaR0wmDghMHA1vBwZ6nt617e9L0fSSON9n/CJ/nvID/f1lOCICwDNpClbdQT+E0QhOoAoijmLHD/lxw4RJFdmZnIFUpunD5JrTYdnP927/KfSKUyp9KoLi2VjR9/wIg3HPgcLfzap+yeG0pDBgt2z+P44XTMBj3th40ioGh4nvsqVCrMVisGsxGNmxqVm4oMQ85xQJouE00+pLrrlqvChF5DaTjmDSqElyIxPQWZRMrGSfOQSCRcj7pL+0lDqRheivLFIvhg+Rz8vXyYPccbk2enwtx+FoJAhrot6ebTzxUQnrZcZDfpSDu8hqA3Fzilr7WVWxL//QQM14+hKd841/2exbQXsKz005QPmeDuTkdPT4wOB9Pi4/kurKhz6aSBRsvE5GQOfLuCTu+OB7KqjUKDQzlvNLoI2J01GgnNpY/gcXRpqXzVvycTtBpeDQ3DIIpsSYhj/hvdmHHopNN3GbK+73U0GsqrVCwNDcMuikiADWlpHL9ymZb9BlGteSsYMx5Nh6y8iw1Isdsp8UT3fWmlklhrTvG5vCqD9usy6e7p6QwGkBVMqqtUHNPrafNYHiLGauWXjHSSbXZqqVU007oje0krj/ITEB7qDj/Zd1CfrABRMLWtfyjTUlM54+FB7Y5d+W76JKQyOeXqNeD41k1snz+bYIedCQ1qEBwaRuyDaMKVSoqGuyHbU/j6ZwEBWZQCbUQK9Tvn3uD1NDSeXjSuUptZ65cyc8AYXm/Sll6z3qNXsw7ONfc9p49wO+Y+TavWydcxB7d9jR5N2nD62iU8NFpqlq7o/OGO+Goq414byND2rwMwvf9o3vh0HFGpd7AHFM7A5iF2qQ8WIe8RbmEw37+EIrisiw+CIJGiqdQc450zhQoIT1LQZSWLycjt61dpm129dMNspohMlmMdvZ2bG1/+fhCyAwJAm3fH8+G0icxCpJqbijNGI5NSU+k8M2cZ8eOc2LaZegoF9ywWGt+5jcnhIFguR6tUcvHQfmq0fuSq5xcSylGLxTmKf1hpd1UU8XmK2Y5cECilVHJUr6fRY3mL3/Q6KqkKPoOWAHYRzA4HS5KT2ZaRjs7hwFMiIeUxCfgjeh0fxMbS1t2dELmcVSkpbEhLY2lIaL6a3f7XyE+V0X/OxeMl5abZzH6zmVk//YqbRkPpmnXY+tVclr8/CrXWnRqt2xF35TKekXcZadRTKySEEWlpuGlBMD/fl05iFBHEwnkULBw1mdemv0OVIZ0oHx5BplFPtaGdaFG9Pqm6DK5H3WHDxHkoC5CI81Brc4jmxacmczXyNoMeq/2XSqWM6dqfm6nj8KRgHg1PIog2JH+T0rugUOEw5Zw5OYyZCIoXb3L0rOCQkZzE7Qvn0Hp5IZPJSLXb8ZfJ8JFKSbDZsIoi8sdGtjFWK1o/1xlovU7dEIApX83lwe1bhIYWpfPMOdRu92xx47SYByQbDKQI8EPRYoTJ5Zw0GBgbG8PVP465BIQydepj8fZmfmoqw7y8UAgCOzMyOGA0MqX764iiyB87tvLH92uYLZHSOjGePt7evOPnz6S4WN7zD6CymxunjQa+TkpifnDBFVPbuHvwYVwsF4xGEGBlaBjeUimb0tP4JjmJV92zZgGTY2NZEBxCrewZUz9vH4Y/iGZTehp9vJ9voPLfSH6qjAKBT4BgURTbZHsW1BNFceXffnUvCWcMBqo0aY5btiF35cbNuH/lMje8vHln2RqnyuWupV/z/bfLaeXugb9EwGKWIaocz3Vuh0ZAlBSuEiTAy5ffvljHmRuXiUqM5fPBY1EpVRy6cBKtSk2L6vVdtIIKy9N6YSQSgfRUEV97zo7lgqCwRaMQC//jfVZ1kVvRStj1qeivHUVTtgEAtowEMs/twL9TIVzECsC0leeZMqgaoiiyY8Ec9q1aRmV3Dx5YzKgVSmanpvKJnx9hCgURCiXzEhN5198fuSAQabGwRK/njTffAiA9MQG7zYp3UDB1O3WjbqduBbqW0AqVOGQysrtECQKy5UrqaTSM9w9g3QXXVWWJRMLotZv4/sMxNDj9BxJBILhYcUYtWomnfwA/Tp/Ine1bGaZR4yGR8pPZzICoKNaGFWVucDCrU1JYlpxEKaWSRSGhVFEVPPDWUKtpqNGwMyODIyUjUGSP9of4+nHfYqXv/UjibDbsosjylGSCZDLCFAqkgkAvLy++S039ZwYE4FuyqoomZv/9BrCRLB2if8kH3jIpKVGuL5VTv/5Cv+mfuUgetxg4hHcXzyfN7sMbSjeuXEkmqJQUeVThksqiIGItYcAiK53z37JfwnmttQqCQK0ylaiVnfgFeL1p7hIIhSXIx48yYSVYs3erc5bgcDhY8PNaGr9SB2/dD2RoBhbKSEUQjWgN2/G1r8vxb9fu3yE5M42qJcuicctZAZSv40uk+HeZSOKWWWSc3oJU5YE5+gqeDXqjDHlRKv1PZ9rK8xhu/oFs10p+DQnFTybL0nlKTWGD0UjT6CjKaLT85XBwTxD4JTqKADcVD0xGOr37If5hRZnTrS3RN68jFQS8g4LpM/frHJ3FeRFesQpqqcwZDB5Swc2NzFzMdrwDgxi5+gcMmRnYrFY8sv3Dkx5Ec+ynH9gXGuZM7NZTqxkSHc3OzAy6eXpROx+SKPmhrlpNvNXqDAYPqa1Wc9NiZkt4cURgfWoqg6Kj+CW8OG4SCUaHiPIfnEPwE0XxR0EQJgCIomgTBOH55vD/MJpqtHxy/Qontm2mbseuCIKA2aBH9sRSi0QiRRAEbKIIB0+SvHsmySVWoD7olWtncl5YKuixqQKxyB9VCKclxLNpzizO7tuF3WqlatOWvDZ+EgFPaNT8p1k0+mM6TBrG7tNHqFAsgj1njuCu1tK7zldctfdEaT2HWVGjwMfVGHegEcvjJoY5P4tOiqPbzHHcSYhD6e6DKSWGTwa8w5C2eXRAPwVlUAQhQ5Zjun8Jh8WAb9sxLqJ0fzf28zsY6+nulJQQBIGh3j5sNDyg94KliA6RLqXK4BcaRnzkXTKTkwgrWwGpXM7HzerSF5E+RYshBXZlZjK9Tzfe37SD0NJluXHmFKc2b8RmMlK5bUeqNm+Vq3GQX2goNmVWDiH8scTvSaOBkPJPr1BXu7uWHN86f4baHp4uVT6CINDK3Z2zBiPdPL2e82k9Ilyh4KrZjE0UXZLEZ40GGmm0zhzBIF9fjhv0rEpJobe3FytTkhno83J6I+QnIOgFQfAl2z1NEIS6QPrfelUvGUqJhGX+Abw3fRI75sxCqlCSlpTA7pVLGfrlo87d41s2UcJNhZ9Mxi2gbOuJSO/twFLGgPJ6wUdFma3NpPq9C4KAxWTkh0+nc2zzRiQyKT6BQXQZM56EyHvM7tudGTsPOkteoWDSFQXFbLWw5eg+Lt29QYkiYVQuUYY/71xn9lvvk6HXEZuayNR+o2hZ4xUkEgnB1tcwpM8nxm8NCPnPBQgOI74ZSwm1jHB+JooiXWaMJSaoMj6dZiBIpCiTo5n43WTKFy1Bg4oFDzoAglSGqnj+qoEcZgO2tDikHv4uqqeFxqTDW+ZaJikVBNxEAaVKQ5naj0qMA4sVd5aBnt+/hyI2KwMeyyO08/DgkE7HrM6tKVWtJklXL9NbrUaNwMajhzlbuy6Dvl6eIyjIFUpeHTaaUcsXM8nTgwiFkt90OhZn6hgz+tld7I/j6efP/ccSzg+5b7XgJ3uxpaCllW6UViqZGBfLWH9/PCVStqSnsyszkx3FXZPb5d3cWJeawsqUZOqo1bR9SWUw8hMQ3gN+AUoKgnAM8AcKp/z1D6acmxu/FinCNbOZ91KS6T9jNgfWruLz3t2o1KgpkVcu89dvB1gf+FgzjyCQEjAe+ZsT8ZvphkSf/x+EoU4GaT5pTOi3nBI1rpGRlIjNamHO4VO4+/jy17HfWfH+aN75Zi2RVy9zYttmmvV+88Xf+BMkpafy6oeD8PfypmPLMFLVW7ngcBBY3YukVAunzhgZ22w5pYIf1cIXsfUiyfwblrRpJHlNzd/SkWihSPJIfC0ReDkeVfr8de8mkUkJeHfpiZAdXOS+oShqdGHJr5udAeH4X+fZ+PseNsRkoi5dD2VYpecWORNFB2lH1qM7twOphz+2jES0FZri3WxwgfoVclCqHhv/3EEDtcZ5jVdMJhKNehYO7kPzvgPoOHZCjpd4SlwsEbnU25dVKpEB+86cYk+JEs6ZR1eHg66nTnDl+BEqNshZPdV6yEg0Pr5MX76I5LhYSpSvxNvjJ1KsQqUc2z6NMrXrYdRqWZ2eRn9PL6SCwBmDgZ/T01n/N8xivwgOYV5iAu3u3sXkcFDOzY0gmQz/x/5/iKLISb2ez4oEo5IIjImJId5mI+g5Hdr+G8lPldE5QRAaA2XIUie9Lopi/pxP/sUFQRAoqVQSrddTt0MXarftyPn9u7l76SLFK1XhrwN7KOvmmi/Qa7qSHnQR4f1N+HzhjzQz7xeHoWYGCV3jOHDnPZr1L8avyxaSGH2fBSf+RJldLVGxQWPaDn2bA+tWUap6LWLz0XiUG1cib3Hq2p8E+wbQvFo9pHk09Mxav5D+vb1o1DwNiz2GIo6+qIQwBFGOLTid2uX3E09f5NKuFLH1RykWQYKS8qb5OBiB1DGGRK+PcUifPmWX2aIJSnkXH7MbpSyzXJbbUjLTUXr4OYPBQ6SeAcTf/QuAyWsXsmzPNmSVWiPV+pK862tUperg02xwoZ7RQzLP7cR07zxFBi9BpvXBbswk6ZfZpB3bgHejvoU+rqZ6e07/dYhBcQl0Vrtx32phQ1oas4KCqKpS8e6mDexWa2g7cozLfiUqV2WFwYjF65F/gSiK/KbXEaFQ0FircVE2VUokdFYouLR/T64BQRAEGr7Wi4av9Sr0vUgkEkat+ZGVbw9mdeQ9NHIZBqmMfotXEf7lp4U+7tPQSCRMCgxiYkAgD8s3+tyP5KO4WOey0MqUZOSChAYaDVJBoI27O79kZDDkJbTUfOrbJVvlNEoUxbjsvEENoBsQKQjCVFEUn89O6h+KHNAqlCTev0dgeAlqtelArTYduHX+DN5KN1JtNq7vcnUoTfadikOiwjF1NdpdGlTHPZAYXF+8IiK2cBOZLfUkF00hIXgLVcpnNWL5BoeweuI4ZzB4SNFyFTi3dxdmg4HyrzQs0H3Y7XaGzv+Ygxf+oHm1uly7f4fxy+ewbfpiigXmXgZox0DlVrupVa4UYdb38XDUyZEbCaALZiGWOMcPXFb2prR5Hu5iFeR4Udm0gr3RoykSVAuL5lUyPAZgkVdAFFQIoh43y2l8MlejtJwl0NaDYtbhCLg+p6oR5TAk3keRFufSO2C79juv1q3Njei7LN6xCZ8BC5GqPbHr05Ao3Eg9sh5VRG1URQuv2JJ5bid+7d5FqvbEFH0F0WrCq9kgEjZ8hFfD3jmCVH6RKNV49ZvHjUv7+eTwauopFawMDXMOLmZ6edFz2RLajHjHZZZTvHJVQmvWZsj5swz3cMdNkPBdaio2UaSmSs23qSkMj44i2mqlnNKNwb4+pCHg9jctl9y+cJaDyxaRFHmXotVq0GnCx2g8vQktXTZLMfVvCAgPEYRH35TloWEsTU5mcNR9bKJIVy8vJgUEOvslgmVykuw5m+FeBp4qfy0IwjmghSiKKYIgNAJ+AEaR1ahWThTF//iy0csif/11aiq/h4Ty1pLVePj4cm7/br6dMBZsNkS7jRK16/PmzNl4BxVx2U9pPoNXyjJU5oMoL7kjjxIRbAIOtYixhh27t4xTtyqx95CKvrO+ce5nyMxgbMOafLr3iIu+zE9zP+H66T9IT4xn2i/7nUJl+ckfLNvxAz/9vodfZixxmtB8sWkV+84eY/dnOQvQHFi5rhiJw+JJOT5BQt7T7VTJEW4rJlHOvBSNWA6Hw0HZAW3YMGU6QaWvESvfio1oRNGC3S5HLStNqKU7vvZXkfL0qqGvt61n+o/foqjVDamHP/arh/HKiOL4l2v5ds8WZp+/inuL4WRe2E3ab6txK14dh8WAOeoKfh3Goi71bNmPp3F/Xg/8u31Myq4FCHIlEjct1sRIHGYdbsWqIlpNuJWogUeNDkiUhaukeTC3M8eLF0f72EzNIYpUunEdz8ot6D+yL5UaN3MuH9ksFvauWsbeBXPwk0p51d2dAT4+7MvM5LOEBCYEBFLOTckxvZ5vkpOxKxRM2LInX5LdNouFa6dOYDWbKVO7bo4E8uOc37eb9eNHM1yrpZxCyVGziR8MRsb9uJ3giFLO7epmdy7/J/ghNZV5SYkcLBmBJvt52UWRbvfuMcrPj+b/Q3mEFyF/LX1sFtAT+EYUxc3A5scczv6lEAz38kL3IJqJjWvj4elJckY6g2cvoHqrttitFnYuW8S8t/oyddtel3Vfs7Im8UVqIrEno/HbjswWg8RmwK7wxayoglHZhOunNxJ9d5PL+dTuHgSXKs3svq/RZ8os/MOK8ceOrexfu5Jy9RsybN7iAqtW/nDoVyb2HubiSDaqc1/mbf6WmOQEgn1djVyiZYsRUFCeTxHylboCb0dDilsmcl3xDlXNO0jVGcg06qhRog7Y6hBi6w9AVNIDGo3px93vvs/XcUd16k2lYhEs+nUzCbFnaVerLkPbzcJT445KqURiNWFNeUDa72sJ6j8fuXdWYDbH3SJh4ySUQ5Y/NRksiiLmqMtYEu4g8wpCVaImQrY8gjKkLElbP8G7+VtoK2T1e1qS7hO3bhxuxauhCCyJ7s+9xG/4KEsMT/7w2Yp4KZPRyjORCCI6q5YUkz+5+Uu5B5bkkD6DDo8JtB3R6wmSyegb+yc/vPs2a0MqMGf7JiQSCTKFgrbDRuEbEsrGyR/gkEjZkZ7BvOQkFoaEOiUsSivdUAgCG7188hUMbp07zdJhAwiRSlBLJKzW6ej58Uxe6fZ6rs9s84xJzPX2oW52r051tRoNKez88jPeWpy/Cvdoi4XDej0yAVpo3fGVPUdeBtijy6SKSkX/+5EM8PFFKQhsSEslxmqhnrpwZcr/7TwzIAiCIBNF0QY0Bx73wPtnOE7/TcgEgQne3rzt4cGClBTiO3RxOpZJlG50GvUeFw7s4fofxylXr0GO/R1SXzK1b+Z67DrtOrHhkymc37+Hai1aA3D74jlibl6neKVqbJozi4zkJMrUqsuUrXsoUqJw5iwmiylH7b5cJkMhV2C2WFw+t2MkQbaZiuYN+Q4GD/F1tCJB/IkU6T68NK2RS2XcehDp9F8GuHAzy5inIDSpWocmuUhudH6lBRNWf4VJIkdToakzGEBWealbsaoYb55AWzmnmJ/DYiLx5xnYdSm4FauC4dpR0n77loCeM5C5+6EMLY89M9kZDESbFZmHP+412uPQpaKqXQW3opVJ3Dwd/V+/4Vu9CXWK/E6zor/ip0ogzewNCHgo0tBZ3Tl4vy3HHjTHZH/0/0HRZADTfppGpt1BbbWaiyYj8xITmRVUhMZaLW94Oegcc4UJHy3j88+GO/er06ELIWXKcXzjd1yIicH2+0FqPNHw1VTrzpL4uDyfrcVkZPGQfnzq7kHj7IHGHY2WPjMmU7xKDZcRP0BmagqZaanUeSJp3EqjZc3ZU3meD2BVSjIrUlJortVidojMS0xkalAQJRVKtqank+GwU1etoZW7u0u39rOItlpZHhLKX2Yzv2ZkYBFFWmjduW4yoRMdqHn5BPCe9evcABwWBCEJMAIP5a8j+Lfs9IXgLpVikkoJfqIKQxAEQkqVISU2psDHVKrVDPpsPt+MG4VXQAAKlZr4e3fxCw3jnWXf5sgjPEl+y03b1mnMNzs3UrdcFee69PYThxAdDpq/3x8EgS6vtGBS7xFYvQ6gdVTGTSy4xABAoK0nMbI1+EnbMaJjbwbO/YiVY2cREVKMP679ybhlnzN36Ad5HygfBHj5suq96fT5/EPUNXOK6gkKN0Rb7jUV6Sd/RKLyIKDHdOesIO3IelL2LSWg6yQssTeQevjjMOlIObACw/WjIIpIPfyReWYt5QmCgLp0PWr772d4k7XcTivDzzf7cDmpOqJTfkOkrM8lmoX9StdS3/HzzT4cuJ8llugWVhGh50wWH9/AgtgbaKwm5geHOEf6ComE3hoVS64fY9rKrKWvhxIYoaXL0mPyTGwWC+/VKk+czUaRxyppblvM+ATkbeH55+GDlFEoncEAoIRSSVeNhpNbfqTr+xNdtldpNNhztee04vVEvf/J7QdyLBtdN5n4NiWFLcXCCcy+3usmE2/cj0QlkdDDy4sKcjc2pKWyOT1Lh+jJZrTcKKdUctJg4HVvb6fpznWTCZlEgs/zVIX9F/PUpyKK4ixgLFmdyg3ER8kGCVm5hH95AVSRSLi0a4eLfIPFZOTKiaOEV676jD2fTs3WbZl//Dx1O3QlvGIVhs1fwvTt+/MMBgXhna79uRF1l3YTh7Bo23pGLZzBwLkTqBZRjr2fr2LvZysxmk20nzSUeOlmAm15m+g8DW9HYyySGIzCHcb3HEz7uk1oMf5NArrXY+CcCUzt9zYd6r04ya1O9ZuzbdrX6C8fxGHWOz+3ZSZjvPkHqpK1ct3PcPUInvV6OIMBgEedrpjuncdhNWE3ZmKOvkLC5hkIUikhw1cR9u6PeNbrgTnmKraMBABalz/CgNdi+fzULOafm8KlpJqPBQMAgWsplVl88UOmHl9As6K/0q3UIwtQZXAZ3LtPxa3NGHzdNC7KpQAZDgfIn979LlMoaNSzN5NSU0m2ZSVP71rMfJqRQdOho9ClpXL91AniI+/mur9Jr8NbknMU7guYMnKOJeVKN+p37MrU1FR02cJysVYrn2dk0HDQsKde50N2Z2bSxdPLGQwAiioUCMCqsDBG+/nzurc3a8KyFFu3ZWTkeUyAN318mJ+UyKa0NOKsVg7rdIyJecBwX99/ptppbr7Joije+Psu559Hew8P1l69zNoP36Vx34EYdZlsXzyf8vUbEhKRU3IivyjVGjqNeu8FXqkrHmotB+au4ecjezl17U/0JiMlg4uyeepC54xh0egpNH6vD3pHJBpHuUKfS0CGyl4Kk/AAlaQE43u+xdjuA9GbjbirNM/dH5AbTavUQV26PrHfvoO2UktEuxXdn3vxqNsdmWfuo2TRYcvRTyBIsv/ucGQtPwkSrCnRBPb6xBk4tBWbYYm7he7CHpo0l9Llldt8cmZBdp7g2SQag/jkj8/5qM4HpJl9nDMFAFV4VW5brRzV62igyRqtx1mtrM3Uoar0yD71oSbS43R+fxI/WSy0+XkT7nI5BlGkzYh3SLx9k48mvU8JjZYoo4FilaoyeNEK1I/lLMrXa8CmjAyS3D2cI36LKLLVYqVts9x9M177eAbfGXQ0O7CXQKc951D+j72zDIziatvwNesSF6J4cHcoDi3u7hQpTtEiBYprS6G4a3GKu7u7a9B4iGc3q/P9CCwsSSBQaPvycf1jcubMzLI7z5Hnue9yjVOq9L49S7AgplgGuqrXk0mhIOcbe1xSQaCJswu74+No6vLuiudIs5lRoaH4yeWsiI5iSng4ConAjx4eNHdxfee5/8ukmWX0X+RLyTJ6mxiLhYWxsRw2GVEJEor06EPlVu15dvsmMRHhZC1QKE33qVfKkMc3rkUfH0++chWo3qFLCies9PKxFcqT1ixAZ9Az5vs+dsdHLp9BjR9WUsJ4GBkfJ7IHcNHcjTOn5HQtOw3ZPzRdz3XkCYagW+junU6WtM5TAYVX9jTbRx2Yj2gx41athy1IxV3cjv7+WbxajCPx9jEid/2BKlN+vJqOtjs34eZh4o4tZs2KJGbfGk9gbK7ULpEmnuoQRpbpx8CjS+z2FJKe3yR24xhyKZU4SyScS4xH+01LHEqnTBJMTVpbn5BAfFQkrt4+XNizk0NjhrPE0xNPmQyjKDIhKoonBQrTdf4yu/N2zvydU0sX0EajQSsIrDcYcChcjC7zlqYqffGK9NpzvhkQrur19A8O4q8sWXF5mV21Ly6OyRHhHMiW3W7AsDYmmks6PVN8fdPsG+DnkGBcpDIGvbFE9lt4OJEWM5N83n3uf5FPkWX0lX8IF6mUn9zc+Onlv8PXrqDDts3o4mPxypyVxYP7UqlFWxoPGJJiNPzX1ElcP3aIej374eThyclN65nYsiHDN+6wk6JID39HriKbb0aW792c4vil+7eoaVVjJRH+RkBQqa3cfhTMhCfz+aVtz4/u50MQBAGVfz5U/vnS1d65bEvC1vxM2NphqLMWwRj6EEPQbTwbDSd842iMYQ9ReGbB8PwWVpMBify1UmzSo8tUbhRApEX3wcEAIELvw+2oQnzje5hDz16LD6r886HouYLgRxd5bkzCPUthZA7pHyyoHRxsL+aTyxbS18EBz5ejfoUg8JOrK5VOHSMhOspuEFK7d38CSn/DuY1rMen1VKxZh2LVar0zXfUNSAAAIABJREFUGMC77TnTopBaTW0nJxo9fkQdJycMosj22FgUEgnb4uKo75w8e3lhNrMsKorhXmlbe75iX3wCe7JlszvWyc2NqoEPmej9bje2/2W+BoT/IIOiYyhQox71fxyAIAgkREfxa/vm+OfOQ+mXvraQLFR3ZO1KJu0/Yfsx5ihWgjl9unJ8wxqqdeiS1iU+OfXKVGH0illMXD2f3g3bIggwc/OfBIY8w0EIIF5yFXfru20208KKAb30Ln1q/Ubl3gP4uVXXf2yW8CFI1U74tJuG7t4pjOGBqDIXxL3mj0QfWoRE7YxftyUIUhkR26YQvmEkrpU7IdU4k3BtP0nPrlNvZAa7l/mHcvBpbdrkmcehZ7V4MyVVIleiyfnNe89/n4VnQky03SYzJFf6amRydPHxKWaluUqUfq9V66eiv2cGajg6cTAhHo1EwurMWTCKVno8f87amGi8ZHLO6BJp5+pmWz77UERSS/T9svjyLH/+xwkxmbhjMFCn+4+2UYiDqxt1e/bl5F/r7No+vnGV7IWLpfghFv2uJg+uXPzH7hlApVCye+IiLj+8TcaWFfFvUZGL92+ya8JCvK3NCJOte38nafBCuh+tNTcBHsVJMhrQGZI+4Z1/WgSZHG3eirhW6oBjkVoIUhmJd47jWqWjbX/Bo3Z/5O4ZCVs3nNCVAzDHReDXejy53O9wMfT9L+60uBNVAEdFHK7KzyNMmLNsBXYkJtodu6jTIajVePh9nOf1pySvSkVvD0+6uXuQ5eX+we5s2enp4cF3jo5sy5qVHh7pm31Uc3RkcdQLu2SPRVFRVHN0/GJnB/B1hvCfI8FqRavV2nnQAji5eaCLt3fmcvb0IuxJIFar1W4qHhr4EBfP90+L3+RTqJtmyuDD+hHTMZiS1SpfmedYLZ48kU9BLwSiFrO9p5eUhEnX4WvuwPHrF/Dz8MJR/Wn08P8JRLMRRNGu8liQynAu3QT9g7P491wBgKMiBp1Zi1n8O4JpAvFGJ7TyeKINH7bs8iapbTID1OzZj0kH9pIY9YIqCiUPTCaWJCTQasr0ZGmJf5DU0k9TQy4IthnBjSQ9M+PiiRKgFAKNnZ3sPJXfZICnJ52ePaNd0lOKqjVc1uuIsVhYkvHd3tL/6/yrMwRBEJYIghAuCMKNf/M+/ktkUyiw6hK5d8G+IOfEpnXkL28vKJYlf0EcXFzZMuM3TEYDAPfOn+Xw6uVUbN76H7vnt1HKFXZOahLk+JjbECgfjRXDB/UVIllDkiWaPQfi+P7XoYxs1+s/N0KzGnTEHlpAyJy2BM9oQcye6Zjjk01hJCoH5O4Z0d07bXdOwvWDqLK88dIVP8bxIiUCIuIn6OlNq85XuHr78PP2AxgatWBeBi/Ol/qGXis3UKxarVR6+G+xLS6OrtHRCG07kmvoKA7kzkvLsHBbmuvbuMtkbMiShXaubqglAtUdHeno5sZDowHr/1Aizofyb88QlgGzgBX/8n38Z5AKAiOcnRn2Q1sqduiCV5asXNq/m5CHDxgyeIRdW0EQ6DV7MYuH9GNAuWKoHZ2wWi18P/43/HJ8+Mbk58TH/D2J8jvcU/Qjh/G3d2oNvSJcspkH1pmMGuaMo3Qfi/qPo0qRj1+TNlvMXH14F5VCQd7MAZ8ksIiiSPSWseQrlJtGk3ahUKnYu2wRRzcMw6PNH0gUKlyrdiZi03iM4YEovLKT9Pgy+gfnydB0FPpHl5GoHRG8s6CW6VBIkzBaPs4hT8CCkyyCmAg9fHo7ZyDZr6DBgCE8vHqJ/SuXs/bXieQtWYqqrdt/dGbb58ZgtTIpJpp+67aRMXdeAErUqsfCXp1Zc/USP6Rx33JBoKqDAyeiTSzX6chTojShgQ+QhoaywMMjxX7Kl8C/nnYqCEIWYIcoivnf1/ZLTTtNjfsGAzMrViE2PJyAosUp17jFO9PwokND0Cck4J01W7qm7wnRUZzduY3YiDBylSzDGM88780A+btYMfFIPo4EyTV8zd/jbqmOBPuXn4hIonCDUNka4iVXyG2cjVrMmkaP6WffhRN0nTkGpZMTBr0ON7WWP3+aRJ5MaaeRvstL+RVJT69jObWISXuP2H1+v3ZsS5hDfhwLJW+km6KCiL+yG3NMKIoM2ZBIpCRc3IJvzjzEhoVgkqoZM1nDlajyHHte/aOesZDnOWr7LqD/uNx41B34UX28TWpLR6e3bWLluNGoizZA5uqL8eFpJBF3GfnXDpsV5j9BeoXurur1/CyRMGLfCbvj144e4sTQ/sx3dWVLbCynATdRpKlGQ76XSrHrY2JY5epGvzVbUGm1iKLIztnTePrnMlZ4vr9O5L/CF5N2KghCF17qKPn8TbGq/xoxFgsbY2K4nqTHWy6nmbMLGRUKjiUkEGY2U6ZuI7Kms1rZ1duH9JbLPLh0ntmd21JWpSKzKLJl9QpuZMnF+jFzUHzGUY8EOdlMo4iRHCVUto4n8t/xsNREKfom+yEIsURLj2AmFi9LU7IYhiAjWTIgNCqSVQe3ERodSZm8halbujJyWfru9UlYEO2mDqPb7IXkKlkGURQ5sWENdUf25PbC7Wn2I1otWI16JAq1XfXxm5gin5C3ZGkEQeDkpvUcWfcn8S9e4Ojmjin+NrwMCHI3P5ufgv7JVZIOzWb8jv14+GdEFEV2LZjD1lUr6Nh1J8eeV+Nj8lmqZNrJ4cA66B9veH/jj8RsNLJq/Ghc6g9H6Z2sg6UJKEnM/jnsWTyfZj/9/MmvKYoiFrMZ2Ud+N52kEuKiY7BaLHaDpdjICCQWM9+FhOCVvyDlm7bkxfOndFk8j0EODtR3dGKL2Uzt/kNQvRTdEwSBGl16MXDxPMJMJrvq6C+B/3yWkSiKC0RRLC6KYvEvST8kwmym+ZPHPDAaqOHohINEQpunT6gW+JCV0VE8NBpY0rIB87q0x2z6dH5EVquVpX27M87Jid/c3ent4cFmLy/in9xj0a7P9yJ5hYCAq7USeYxzyW/4E7nogUEIQS95iBUj/qaeFDbswNfc0RYMTt68RIkejQkMeYavewZmbv6TGkM7k5ikS9c1Vx7cTql6DclVskzyPQgC5Zu1wtnPn30XT6ZoL4oiM7b8SdiCToQt7Ez4wk4kXLKXF3mFzM2f+5cvsXXW7+xbtpC6PfrSZ/5y8patgOHhOcxxEbY+TS+eY44Nw3jrAPW698LDP6Ptfmr+0J2rl6wohQTye1z64M81k+NDsjrf5+TdHB8tnZ0ab+8lhAQ+QFBqbcHgFarcFbh+0n4E/ncRRZGDK5fyU6WSdC2QjWE1KnJu59YP7ierQomfALvmzeDWqROsnTia1eN+YeuUcVxP1JGpZGkGLl9H6boNqd29D/1Wb2ZSdDRJVit6qxWNk71st1QuR6FQov8C9xK+nDfs/xiLol5QycGBoW9UIB9OSKCekxPfv5x2G61Wuly9xKGVS6jWsesnuW7w/btIdIlUecNrQSYItNFqWXN4Bz3qt/ok10kPKjEjfuZ3u5CJokiPP0Yxt+8o6pRO1ivq07AdLScMYM62NfzUrNN7rxMeG4Vbgdwpjrv7+xMRk9LnaeGuDcw9vI1hq9bhnzM3z+7cYuaP3UmUyXEoaL+co8pckMjjy9i7aB4T9h3H1SvZdKdhn4HoEhK4eHkHymwliD84B6nVhNlkQCKV4epl75AmkUhwdM/AoqPF6P3dNCafH09wQvosI91U4fQpOo6V1zoRcWg12gLfYkmITvZcUH64fpVoMYFElmKPRRRFrh87jD4qHNFsQnhjZmWJj8TlE+4hmE0m5vTqTMijh/Seu5RMefJx99xpFg/ui1ypsin5ppepLq40XzyfIw6rqdSiDQkx0egNBhSOTpRv2sruWf1z5sbdx49bSUlUlss4unIJ2YsUt7W5fuwwarOZzF/Y7AD+B2YIXyqnEhOp/4b+S5jJRJDRRLDJzPdPnzI8NISHRiNdtVp2/zaBvkVysqx/T6LTIT/8LgSJBIs15cjGIopIP/MewsdwP+gxSUYjtUtVsh2TSCR0r9OCnWePpKuPivmLc3nnNqxWq+2YPiGe68ePUDZf0RTtp25ZQZsJv+GfMzmIZMydly6TfkN/6fXo1KKPQ3fvNElPriPPVQFXH19bMHhFkcpVsYbdJWb7JDqPHs30E+eZefoKOYoU5ei6VXYzjtBHDwl/HMg9a01W3/mBwSWGkd/jIsnlUGmT3eU2Pxfrw/rNajb9shikcnS3jhK8uAfP57QnYsskLPr0ibnp7p0meHFPnk5tTNCc9sSe/QtRtNpmCdvmzGD36nXIPDITfXwlojU5Q8ccF4nu7DqqtW6LKIrcOnWcP8f+wvopE3h251a6rv02iwb14c75s/ScuZDMefMjCAK5S31D61/GsWvh7A/u76HRiNbFlfF7j1GnRx9a/DyKX7bsQZcYT8SzJ3ZtrVYrsTHROEqlfO/kTPjxo8xo25Qja/9k3ehhLO3TldHOzv+5bLdPwb86QxAEYQ1QCfAQBOE5MFIUxfS5YfyP4ySREml+bcMXaDRiItnbtqu7O7cMSfzw/Bk/uLmRQSJhgZc3f549ya9N6zByz7GPVi71DciJzMWFXfHxNklfo9XK8sRE2jfq+NHPI4oi83esY+721QRFhlEiVwFGtOnJN/lSr3pNLwqZHKPJiNVqtfNr1hsNKNK5h1CvTGXm7FrH7C7tKdmoKeYkA4eXLaRp+erk8M+S4jmeBT8jS357q8zM+QuSFJksR55wcRvxp9eQpUARYsOCSAoLRS9aMSbpUahep/c8u3sHi9lM8eq1KPxS1E2QSvlhyh8MqlKaaV07UKFREyKDg9m5cC6O5dshUag4G1KROIMz3+ebTZJFzaGntTgdUsmWfSQTTJTwPkGVTDtxU0Xy5/kWnIz2xbO+ioitE3Gv2Qd1QElEo56Y4yuJ2DIR75bvtp/UP7pM1P65uNfujypzIUyRT3mx+w9EiwmXb1pg0OvZs3g+Hm2mIcgURGybQtDcjkgd3DBHPaN+r34UrlqNRUMGcPXkaRR5KoMpgsPrm9O4T3++bdshXf9XAMEP7nPnzEmsFjP+uexFEbMVLkbYo8B09/WKg0YjZTt3R/mGx4NXlmzkKFqCXfNnUaJmXVy9vBFFkb1L5uNiMROgUCAIAmu9vFgT+IC9k8ehxspkV1ebkc+Xxr8aEERR/Hg37v9xGjk7M/tFJIXUapylUjbExNDd3Z0fXuq4lNRocJFI+T0inFYurnjJ5Qxwc+fBi0jO7thMhWbvrzN4NSJ+M/tFEAQ6zVzIhPbN2WYykVmAQ0lJlMlXnO+rN/zo55m8diHbTh9kfr+x5MmUjV1nj9J8bF+2jp1L0Rx5P7rfLN7+ZMzgw6LdG+haJ9ltS29I4rcNi2lZuU6K9pfu32LN4R3okvTUKFGBWiUrIJfJGd+2Nx3/+IXFPyWL7xXPXYBfWqaUVhYEgbwBubl58hgFKryW1L558hhavwCSnt/EeHUb43cexN032d/h5OYNrJ0wimXDB9Fq+Bi0zi7cOXuKbXNnIvXJi3+A/Xq72sGBPGUrcethBM/nLQeFAw41fkLl//rldzuqMEOOzyev+xWqZtpF27zzMFiUiKKASqbnTlRBdj9qzJWIklhFKZrsEH14CQ6FqqHJkWz8Iyg1uFbpTNCCLhjDAlF4pV0UGHduE66VO6HOkpzEoPDMjEe9QYSu6I9zqcaMmbEPmdbZpvTq3XICphfP0D+9gfTePup268XNk8e4euo07q1/R6JIDl7agtXZ+HtfStaqm26Noqd3bpKzRGkeXb/Co+tXyVqgkO1vd8+ewi9nyuW/96EAdG9VWUOyeJ+brx8jalcma8HChD1+hCkmmg2eGWwzgOOJicxPSKDIdzVQu7jy87ZN1DWZGeTi8sXNEr7uIfxLNHJ25oHRQPXAhxRUq7mo0zHgpbLigfh4JkeEYxFFEkWRWwYDcRYLTlIppQUJl25ef2ffMeFhbBw9jPOH9wNQrGJVmo6aYFvSyJyvAOOPnufS/t3ERkbQoUQphmkyffSXW5ekZ+aWlZyasY7MXslKkC2r1CEqPpZpfy1j5ZApH9XvKxYNGEf9X3qw8dhecvpnYe+FE1QsWIIO1RvZtZu7fQ1T1i2iS61mZPX2Z8Lquaw9vJMpXX6i8fh+NBg8jNJ1G2HU69g6/VcajevL0SnLUjz3qJbd+H5Qf9qPGkv2IsW5f/EcK8f8gqZKDwy3DlOjww+2YABQtmFT9i5ZQGJsDIOqlE6uTNa44FClO6LZyJldu6jWoYvtOsYkPbfPnMS5/i8oPLOk+dwiEm6+KMrNF0URsKCR6xCwojM7YLFKMDy9TuKduWC1oslZBlNMGNpc9tIXgkSKwiMT5tiwdwYEU1QQCl/72hW5izcIEiz6eGSO7hjjo7DoYpEotcRd2ELizSNY9XE4uzoT9yKSi/v3oshTxRYMAGTOXmiyFub6scOUbdg09ecURR5euUjIwwf4BuTA0z8jz+7cpHa3H5nfvwftRk8ia8HC3Dp5nJWjhtL19zlpPkda1FGr6bJiMeWbtbIpB989f4aQB/eQAharlbunTlDO0Ykp3j42T+oEi4URUS8YsHYrmfImZ8bX7TOQcbUqU1mvo6Tmy5opfA0I/xKCIDA4gxcd3Ny4nWQg2GQixGQi2mJmdFgo0166XCVaLfwaHs7gkGDm+mfkiiiSIXvaPglmo5HfW9SnusHA1CxZkQCLr11marN6jNx/HPnLCmKVVss3DZIlkP+ubEXwi3CctY62YPCKCgVLsGTPxr/VN4CjxoHmFWtx4sZFnkeGMrfPKL4rVtauTURsFGNWzuLMzA22++hUswmV+rfh56XTKVK9FuUaJWvry+TOtBgxlpHVynPu7jVK5S5k11ed0pXR3o7hz+lzMEQ+Q+mZEe23vVFnLUrs3aM4uafMtXdyd6dKq/Z0nDSN/mWL4t99FhKpHNFi4sWVHczo0Zlq7Tti1OvZMnsGcv+C7wwGbyMiJdH0Wr025thydHdO4FikFkikRB9ZiqDUoHt4Hm3e1xXtVoMOQ9Ad3Kp1T61bGwrPzCQ9vookQIlE7YAglWOMfApCsmifIJXxTYMmXNr9O2ZBjmhKwq1aTyRKDbqruxnbrAEFK1YGkz7lvZsMyJXKVK6avJczs0dHokNDCChSnJ3zZ+Lm7YuDixtB9+5Qs3N31k4aQ9jjQOQKJa1HjCVf2Qrp/txeUUClQh8czIjaVShYsQr6hHjunDuNXKWiWocuqDRaTqxYhDYxEe0bM+oTukQCChS2BQMAjZMz5dt1Ys/yRV8Dwlc+LRlkcjI4yAk2mfg1IpyMcjkd3dxsLldaiZSfvbyp+vABv0dEcEEUGd2gcZr9XTm0jww6HQPeKJrp6+bG5chILu3bQ6k6KW0h/y7ebp5EJ8QS/CIcX/fX+vHn7lwjh1+WVM+J0yVgsVhxdXRK9e+vuPvsETWGdKJ+2W/pXq8VZ29fpfPUYWwdO5fC2V8vsRy+cpbyBUrYBSWlXEHb7xqwYO9flKlqr/wqCAKZ8xbgUcjzFAEBQJ2tGOpsxVIcl/oX4vC6NZSp39i2FBf+9DGPb1wjR/GSHFu/BsecJZBIk/c3BKkc18ajeXpxO/NGjEKQyZEFlMMpFU/m9GJ68YyEa/vx7TwXqTo5SDgUrEbIkp4YYsKIPrQYbYFvsepiiTn+J5o8FZA5pW19KYoiMldfog8uIObosuTnz1kaQ9AdnEs3tYnytR42CvOIIZzeuR3/XisRZMl6W4pvuxGzbQJqrZakG9vQFqyGzCn5+5f0/CaG4HsUrJh6EdnG3ybi7uvPwGXrkEgkWK1Wlgzph0yhIDEmmrUTk30jMufNT8ufR6e7LudtBEAmwIBla3l68zoGvZ57F88xZsdBnD2S77V80xaMrFGR+qGh+CoUNFEo3rOn/zXt9CufiRYuLoSYTWyIiaHeG9lHkKw77yaVctTLm4F/zLNzp3qb0EeBFEklW6goyZksaSGKIiFREWiUKlwc3v2SfhsHtYbONZvRbtIgZv84khx+mdl9/hhj/5zNmmHT7No+jwylz6xxHL12HkEQKJw9D9N7/Ey+LDlS7fuX5TPo07g9fRu1B6Bx+WrkyZSNnxf/zq4JC23ttCo1sYnJ4n8hURHcfRpINt9MxCbEk8HRmbsnj1Gh2euUWpPRwJ3zZyhY7/sPelZtvkpE3D3K+JaNqdS0ObER4exduoD85SuxdPgQbpw6iXuz8XbnSBRqnMo0gzLvthEVRSvGkPuIZgNK39y2F65dG7OJ2DMbkDq6ow+8gDZXWQSZAolChTZvJaxGPaLFSMTmcUiUWrT5q+JY9N2S2ok3DpL06DLe7X5H4ZkZU3QIEZvHo/DMjGOxerZ2Mrmc3KVKc+tBWIp7k2YqwuPbt/DNnp3HS3qi9s2BVKHEGHyPnjPm2gq73ubMtk2M23XYFlwlEgkN+w5iVINqzDx3E2OSHrPJhOY9A4f3IQgCtV1cObp8EW0nTeP4hjUUqvStLRgAKFRqyjZvw5Nb18n1bQ2mTJ9CNZORB9ev8uTWDTK/nCUkxsZwfMViJqs+kz7Iv8jXgPAfQRAE+ntmwCzCoYQEKrwhUxFhNhNqNrPPZOR2lmxYzGaOrV/NxQ1rsJhN5K1em+xFi+Pq7YNfjlwctVoRxdcmHqIoclYU+SZH6ktNJ65foM/0kYRGRWC0WqlcsASzB47H0zllXnmCXseRq2eRCBIqFSqJ5uWPYlS7Xvy2YTHVh3QkIjaawtlys6DfWMrkfT2iM1vM1B3WjSYVqrNyyK/IZTJW7N9KneHduDR3c6qzhUOXTzPnx5F2x1pVrUvvWeOwWCy2zKOqRcrQ84/RNB7Vm9O3LpM/a05uPr6PKIosHzyFXnPHs3HKOCq0aENibCw7/viNcvmKkDdzQIprrglwZ2SAe6oCb4JUjmujkcTdPs7mtTsRpQqkuapwLywJibMvnt/PQqr6cL19Y3ggsTt/Ra1WoNI4ELrjKU5VuqLNXc7WxpIYTdiaYUjUDmgCSpJ44xCxJ9fg1WICMicPzInRSFQOuFVO2wfjze/FK+LOb8GtWjcUnsl1D3JXHzzq/kT4+hEpzvfwz4gx4nGKfkxhD7h3/wIOJRrhVCYf+qu7yFIgHz3WnE1TckUURUwGA6q3/q7SajElJUucK1Rqu8ytVyRER7EoOprbQBZRpKmDA+EWCzeSkvCVyymn1abwPR7k7Ez3o4cYUbEkTl5eoEqpGZUYG4NfQC7K1G9MvnIVGV65NIOdnZnSogGFq1ZD7erKhe2bqadUUVz9NSB85TPT0c2NZk8e81t4OLWdnAgxm5gREUk7VzecX778lvTpiuH8WXprtZxITGDTzKn4KpXESqR4ZAtA5+DI2Kgoujg5IQCL4+KIcnSkcNWUxTzhT58wcFQvRru6UiVzZvSiyOwn92g6vBuHZ6yz+9FvOXmAnjNGUyQgL2aLma7TfmHRgHFUL1EeqVTK4BZdGNT8ByxWS6oGNvsunMTZwZFhrV+vZ3eq2YRj186z9shOute1TzqzWCxoVWrCY17g7vTaAzciNgqtSm2XPaVSKKn7TRWuB97lzrI9OGkc0CXpaTd5MPsvnuTQpCWMXTOPaS0boVGpaVOpDgObpEyFXBPwfi0eQSrHIX8VyF/F7rjpxTPiL24H0Yom5zcoMqRPg0m0mIjeMo62Pw+ndL1GCILAk5vXmdy+JYoMWZG7JW9gRx9djipbUZsEBkDMsZVEH16Mc5lm6O6cQKLS4lqhLYL0dUquKIrEX9hG3IWtWOIjUXgH4FK+DeqsyTUY5tgwFBnsN5zlHpmw6GLBYoY30ntzFi+Fs7OWuOPLcSzdHEGmQHfnOAk3juDdfhoKj2R5aMdC1Xi4vDcRTx/brb/bfY6CQMFKVTm8egW1urx2wTu8egUFK6WtUxT5/BmTWjcib/FS5KpYhbvnz1Bn9w4cNBryl6tI0O2bTAp6xhLPDPi+UTzmKJWy0tOTa0lJ3AkN4fe4WG6fPkGeMslBN+ThA05u3sDQNcnOf07uHuQoUBDnoOfs8PNjz/nTJFlFuru4kiuVYPIl8DUg/MfwkMlYnSkzi6JeMDgkGBeplE7ubtR5OXp2/K4sj15EstvHl0t6PYcTEvgrS1ayKBSYRZGZYSEc9fQirHhJ6u1Jllso9m0NCvr4MbF2ZRChcN0GVPuhJ0q1muNrltPAwYGqjslr0RpBYICbG3WCg7h4/ybFcyb/mJ9HhtJzxmh2TlhgW7s/fesKTUb35trC7bYXtiAIabqZPQkPplC2lCqsBbPl4klYkN2xO08DaTqmDwICA+dNZuPIGaiVKowmE0MXTaXNt/VSjHQPXDrFmmG/46RJHnFqVGp+7z6Ukj2bMKnzAOb1tp9pfEoSLm4j8fwGyjVoglQm48TmMSjzV8exTIv3nqt/dJkMmTJRpv7rvaHM+QpQoUlzzt08iHP5dkBy4Zhv57l25zqVbMizma3RP7qEe43exF/Zhf7BeTRvZBvFnl6H/v5ZMjQahtwjM/qH54nc8TueDYcmW2x6B6APvGi3GZ305CpyNz+7amRI/v/9acmfLB42iDtz2yNIJCi1jqizF7cFA0iW/VbmKsfVowfTDAgAzQYPZ3KbJjy7c4scxUpw/+J57l88x+A//0rznM3Tp1C+UTPq90k2nY0JCyVb0eL8OG+ZTe9ox6zfGbFqGYs97AXoBEGgkFpNIbWarEoF/bp9j0/2HKBS8/DWddr8Mh6fbMmzRlEUiQh6jodMhqdMRtv/qJrrp+RrQPiHiLFYOJQQj1mEilrtO0WxvOVyhr9V9fqKy3odlWQylBIJG2Nj6PLSHQqSJSh6u7qy6XEg30+bTdtJ0xBFkT/aNIGTRxmjdUAiwOLVK5hx7DAD1m0j+sljyr2ljioRBHKo1DwND7YFhI3H9tKw3Hd2G7ll8hamatEiZqDWAAAgAElEQVQybDl5gE41U5q2v03h7HmYs3U1ZovZFjREUeTApVO0r/a6BsJqtdJyfH/6Nm5Pm6r16PbHSHK2r07OjFm49fgBfp7ezO87hqsP77D+6G6SjAZql6pEVFwsfh72xkA+bh4kJukxWywo3lOJnZ7ZQWqYY8NIOLOO8Tv34+aTPJqv2bkbP9eqijKg9HuziaxJ8bil8v/t7usLV5/Z/i0IArxRbQ3Jnx+CBL9uS5CqtBie38QcH/H672Yj8ee34t1+WnIaKaDJWQaLPp64s5tQ+efDpWxLIrZOQTQbUWYqgDHkHtGHFuP2bepyKc4envSfvxR9QjwJ0TGMqPstMs9Uvs9GHUr1uwsoM2TKwpjtBzi1ZSPP794mW+GitB014Z37ZNePH2HU1r22f5/duZV2YybZid9V/6EHfefPIsbVDZc01H9LarQc8ldzOjqKxwYD8wQB35ey8VaLhb0L56BKSKCQd+q/xS+R/55WwRfIvvg4agQ+5HhiIpf0Ouo/fsSq6OiP6stDJuOJ0QhAtMWCj9w+pssEAU+VioToZI2eO2dPEXfvNrM8PCmm0VBErWGGhwfWp0+4cfwImYqV4sgbFdMAiVYrF+LjKBrwuqAsQZeIq0PKH6mbowvx+pQFP6lROk8hsvtmpNWEgVy8d5Obj+/Ta+YYXsTF0LDcd7Z25+9dRxAEOtZojFKhYOlPEzk67U9yZ8xGidwFCY4MY/7OdTT4pQdKuQIf9wz0nzcRTxc31hzaYXfNjcf3USJXgfequKYWDNLyFn4b3f2zFK1W0xYMIHm5oWz9RimMcVJDlbEAt08dt/2fQfIL6fjmTcj8C9iOaXKXI/bMBpvkhSiKxJ5ejzZ3OaQqLaLFjP7RRZQ+r/eKLIkxCHKlLRjYrumfF9OL5GCjylQQz4ZD0d07RdiaoSRc3Yt7zR/tZhmpoXZw5M7Zkyj985AUeBFD6APb34xhgSTeOUGJmnXf+/xaZxe+a9+ZdmMm8127Tu8MBgAqrQMJb/x+LCYTcqX9Eo5EKkMqkWB5jwCdUiKhkoMD37u7M8rZmdltmzC6ahkGlS7I3aULmOvh/sUVn72LrzOEz0yMxcIvoaEszZiJPC/XHYNMJlo8eUwpjYaANPKz06KsWsP4sDDWRUdTXK1hZ1wc5d8wDX9sNBKUpCdj7nwABF69TCW5wm6DTSIIVJZKCbx6iWoduzJu+UImRkbSyMGBaIuFOfHxNChXjSzer31yqxUvR7vJgxjc4gccXo76ouPj2HryALsmvs72eReCILBm2O/8vnEpnab+jNFkom6ZKuyZtBil/HXWSrwuEXcn+yrQbD4ZqVioJH8d34eLgyOT1y7g3Oy/yJQhWaSve90WlO7VjImr5xMSFUHFgiU5f/caC3asZ8PIGR/0GX8ogkSC5a2gCmA2m9KUzX6FaDGT9PQ6Mkd3RjWsRd3uvVE7OLB/1UpiDRJcc5axtXWp0I7wdSMIXTkApX8+kp5cxZLwAvda/Uh6doO4MxuRu2dE4fu6kleqdUE0GzHFhNoFhaTnN5G7Z7T9W+WfD1WTfB/87C+Cg5B4ZMM9XzXC1w1H4ZMLBDA8u0nJ6jVS6Dt9Cso2bMqWSWPovnAFcoWSQpW/Zd/SBXSe8oftO3N6y0ayqNS4f4Bkfg1HJ6o4OHLPkISDm5tt5v3/ia8B4TNzMCGeb7RaWzAA8JPLqe/kzO64OLp5eCBP5whEb7XSPTgIX5mcpdFRxFosmESRfmIQDZycCTabWZCYQMOfhtu0jtx8fLmZSl/3BIFMPn5oHJ0YvGk398dPYODZoziqNLRt0Y2udZrbtS+RqwDfFS1LhX6t6VSzCRaLhTnbV5M/a44PSlNVK1UMa93dbmP5bUrlLsTNx/e5//yxTWvIarWycv9WKhcuzf6LJ6ldqpItGABoVRraVWvIg6AnCAjM2baKAL8sHPpteQq9ord511LRyE5FUs02snumHGW4srw3IQ8f4JM9ef058vkzTm/bjFvzyWmeJ1otRG8dj7sWGvT9kQeXL7Dx98lINK7I89fAtVJVu4AiVTvh3e539IEXMUU+RZ21KIl3TxK5ZSKCQoU6azHca/S2C6SCTIFT8fpEbp2EW7WeKDwzo3t4nphjK/Fs+Pe9C7IVKsKhLTtQl2uNX+Yl6B9fBqsFSWIk5Zu8f//kY6jdtRd/rVnB4DKFyVmoCIG3bmA0GJjarC75qtcm5NoVbh49xKIMaddevE2S1cqJxET0opUyGi0eX5j3Snr51x3TPoT/Rce0dTHRXNHrmehjX8U7IyKCVdFRJIoiWRQKerp7UNPp3S/WFVFRnNXpmOWXvDTxzGTivE7HxOhosufJi4NnBsq370zuUq+n+ga9nhGVS9FNLqeZszMCsDkujml6PeMOv04JTE+1siiK7LtwgsnrFnHryX1K5ymMh7Mru84eZWr3obSs/O589w9h2d5NjFw+k+51W+Ln4cWaQzuI0yWglCtwcXRCtIpsGj3L7pxRy2disVoZ26FPuq+T3n2D9wWFxBsHiTuymIKVqiKVy7lyYC8O37TCoUjan0ninROo7u9m5MZtSF++gGIjIxhcrQKe7WYic0z73vSBF3mxazqu33ZFlTE/huC7RB2Yh2ulDmjz2FfyiqJI/KUdxF/YijkuAqV3DpzLt7HpFqWX1JbQrFYrE1o1IVIvQ120ASCiv7gZL2cpQ1as/SzLLa+c0gINBu4ZDWSSKwhQKNifkMA1swk/QUI9J6c09w7e5oJOR5/ICPxz5UHt5Mytc6fp5eJKO+d3L139L/HFOKb9r1NR68C0iAiCTSZbClycxcKG2BiGenlT38mJ83odQ0NCkAsC377M9jGJIlZRRPnGRuixxARau7rafmSZFAoyKRQsNxqoN2w02QunrKxVqtX0W7WJFQN6MiPwASDglSkz/RaufKclZ2oIgoC/pzeBIU+5MHcT/h7JywG3nz6kysB2VClcGi/Xv2+hGBoVSa1SFSmQNReT1y5g0a4NBL0Iw8vFnR71W9GlVnPy/1CHkzcv2eSrn4QFs2zfJnaMm5/u63zsJnJqaPNXRZmlCIH3zyAaLHi0nW6r1k0L87OrVGzc1BYMIHnDNlfJsgQ/vYZDvsppnht7ai1u1bqjyZkc/DU5SiFRqInaPzdFQBAEAadidXEq9v71/A9FIpHw09JV7F40lzO7FiEIAlXq1KNGxy6ffe09m1JJtjeWXGs7OfGhQ5Ikq5U+kRF0mL2Y/OWSs6xeBAcxsX41iimVNivN/y98DQifGW+5nF4eHjR/8pj6Ts4oBIF1sTFU0mpp8HIEUlKjZbiXFwtfRFFMrWZSRDj74+OxAKXUGoZkyEA2pRK1REK8xT7LxCqKJJjM78zm8MkewOAte5O9FEQR1zfMcT6UzSf206pKXVswAMiTKTvVi5dnx5nD6co2Sosbj+7Ra9ZY7j17hIhIgay5mPPjSAL8MmO1Wu3qDpYPmkzzsX0pkasAWpWGg5dPMbJtb/JnTVvn6U0+NBikZ+lI5uCWrC2UXhQaosLDUhyOjQxHkrPkO081hj9Cldl+hK/MVABTVBCixWyTm/gnUKrVNOjdnwa9+3/2a6XXR/meIYkNiTpeCAKlBKjn5Iw6lSyzk4mJ+OXIbQsGAO6+flRo04Ft61f9vwsIX7OMPhMWUeRkYiJbYmMpp3VgScZMKCUCetGKzmJh/FtLSIVUagINSXQLeo6LVMrh7AGcC8hBBQctHZ8/I8ZioZ6TM4uiXhBjsdjOWx8bg8ozQ7okgV29vP9WMAB4Gh6C5I2R37OIUEYs/YOL92+w5eQBHoc+/6h+YxPjqTuiO+2/a8DTNUd4suoIdctUps7wrhhMRrtgAFC1aBnuLN1D66r1qFmyPFfmb6Nb3c+zZv2K9GYdpRd13iocWbuKoPt3bcfO7dpG+NNn713Okbl4Ywi9b3fMFB6I1NEd3rOR/aWzJz6O7yMjSWjaCr8BQ9maJTutw8NItFpStE0SRdROjimOq11cSCnT9+XzdYbwGXhuNNI16DlaiYQscgVTI8Kp4uDISC8vBGB/fDzX9XoKvFH6fk6vw0cux2AVGfKGFnsbVzeu6ZPYHhdLGxdXrifpqRn4kFIaLSFmE7EWC3M1GsL+5vR8TYD7e/cRDl46zY4zh5HLZPRp3J6ImChq/fwDTSvUZHyH/py5fYUK/VqzZcyHeyBsPLaXMnkL06HGy+IsKfRu0JY9546z/fRhmlRIWWXtoNakevx9/J2lovTMFNKLwjMzmvIdGNOsAb45cqOPjyMuOhrHb7uD8O6xmlOpxkTtnY1H3Z9Q+uTAGPGYyJ3TcCrZ6P9VmuTbGEWRsdEx9P5zo81H4ZsGTZjXrQNrbl6l81vFZWU0GkZfOEfk82c2j2uTIYnTfy5j0BtZRvEWC3vi43lhMVNMraG4Wv1Ffs5fA8JnYGhoCI2dnen40htZZ7XS6dlTNsfG0tjFhe7uHvwUEsxIL28KqFSc1umYEBZGTUcndKI1xRetgFrFE6PRpnfUwsWVy3o9rlIppTQapIJA1rpVObP94Gd9rtErZzG372iuBd6hZM+muGgdGdisE73qtwGg3jdVyJUxK8OXTrMTnksPz8JDyJ+KwF2+LDl4FhHySe4fPjwYxEW94MiaFTy6dgU3Hz8qt2r3ye4FwCFfZTQ5SqN7eg3D7SNYkp6jOzyX+ANWtGVa4ZCGKqpDvsqIZiMRWyZi1Sd7FDiVaoxj0ZSmQV8K6VkuupuUhLOHp52pjiAIlG3VjqND+/O2g7ebTEZfV1cmNqhG+dbfo3Fx5fTq5eRJSKDCS5nza3o93SMiyFn6G9yzBfDX7u3kfBHJdPf0Zwj+r/B1yegTE2wy8chopN0bIxGNREIXd3e2xyV72zZ2caGnhwdTIsKp+PABS6OiGO/jQy0nJ87pdCmKac7odOR6o/DGVy6ntpMT32i1SN/4QqZ3fTUt3vWyFEWRC/duULtURUa06cm2sXN5HBZE6yr17Nq1qFybo9fOY7GknJ6/i2I587P73DE732Ozxcz+iydt1dKpcedpIJ2nDqNw1/rUHd6N3eeOpdn2Q4NBVGgwYxvX4kVQEO5+Gblz9hST2zQm44M/GdIypQTHxyJRqDE/u4q/u5xfD55k5unLDFm2CvPlTegenE3zPMdC1fHrthj/nivx67EMp+L1v8hR64eglUhISIjD+tb3LyE6Coc0PptWTs4scnXDbeMarIvmMsRs5jd3dySCgCiKDIqOpuWU6XSdv5wmg0cwct8JwjJm5q/YmH/ikf5RvgaET4xBtKISBN5exXWQSNGLr192dZ2c2ZwlKxdz5mJ15syU1zpQUKUis1zBwJBgHhiSTXN+Cw/nocFArfekpP4dYiPCWda/Jz8WzoFX02/o88doYhLsjdkFQcDPw4tbT5IltAtkzYm7kwshUeF27UKjInHSaFOs+b+PmiXLI5PK+P7XIZy/e53Tt67Qcnx/Mmbwplz+lNlTkBwMqg3uQK6M2Vg19DfafleffnMnsGzvphRtP2aZaOe8ZK9dQSLh8fUrNO4/hG7T5hIbEc7Ujq0QLaYP7jM1rEY9CTcO0WXKNJvNZKa8+Wk1dDiGqzvfea4gCEiUGoT3LDF9KKJoJf7KHkJXDSJkWR+ij60k8R96AQY9uMfxjWu5cfyI7cWe3sFONqUSbxH2L5lvq+iOi3rBnj9+pfE7qtXzqFQMcnNnlJsbFR0cbPtkD4xGjCoVxaq9ThaQKRR82603u99K8PgS+BoQPjGZ5QrkgsAJ3Ws5B1EUWRcTTSXtu9M8BUHgDz8/MsrldHn+jGZPHhNrtbAiUyY7F6d38aGzBJMhiV+b1iXbmZPs8PHhLy8vos8fpd7gTnajdYAe9VrRa+YYnoYnL+E0LPsd/eZOJDFJB0CS0cDghb/SvlrDDx6pyqQyto+bRw6/zHSfPpK+c8ZTIlcB1o/4I82+fl2/iN4N2/FTs07ky5KDZhVrsm74dAbOn4y2dmGqDGzP8esX0gwGBr2e9VPG0a9cUXoWy8OCAb2IDHq9KX7r9HFyFCvB1cP7+Wn5eop+V4N8ZSvQZ8FyRFEka9Am9I8uI6ayWfkhWPXxKNSaFJ7DfjlyY3lDl+ifJGrfHBKvH8C5dDOcy7dB/+gSg76ryN6lC9EnJHyWa1otFpYM7c9v7Ztz99xpNk//leG1KhPx7OkH9fO7qysX5s9iVNUyzGrThOGVSlHHbKLqB6ZZv+J/qVbr7/J1D+ETIxEERnp5MyAkmFqOTmRVKDiYEE+81cqodJTxqyUS+ntmoL9n+qss36b0B+wnHN+4FnlMNBKlkhtJSVTUOjDKw52moWEcvnKWqkVfSyf0adiORL2OMr2b4ajREpeYQHbfTOT6vgaFs+fhWuAdKhYqxci2vT7qvh3UGka06cmINj3f3xi4cO8GA5p2tDtWKHtunLWOnJqxjqsP79B80kB6BXjbrSm/Yk7vLqgdHBi8cgNqB0cOr1nJ5NaNGL39ABpHJxycXbhz9jT5y1W0VX5Dcu59iRq1Ob5xLVLJZSKPLsa10S/vdCV7F1JHdywWK09v3bBTBr16+AAyr9SNgz4npqggdHdP4ddtMeaYUMLWj0CdrQRKn+/YuWkP+5YvYfi6zZ9cluLo+lWEPX7EpAOnUL5MuNi9aC7rmtam7gf8HvwVCrZ5e3NZr+fF86cU9vPD8yMrjwMUClRGAxf37qR4jeT9GbPRyIG5M2gi/fLG018rlT8TwSYTm2NjiTCbKaxWU9PR0a7I7J/gfUHh/sXz/NGuGVXVKrIrlBxMiEcjkTDXz5+pMTEUbNCeHxu2TXGeLklPaHQkPm6eqJUqnoQFc+/5IwJ8M5PVxz+VK30eav/chZZV6nLryX3WH92NyWyiatEy7Dh9hIcrD+Co0TJr6yo2P71N5z/sZaMfXb/K3D7dmLjvuF1h2Ly+3QkoWoJv23Xk2PrV7FowBycPd35eu9Xu/JWjfsbFy4u63fuwfe4MDm7fh2vjsR/9LAnX9mG+vIlWQ4fjlyM3Vw8fYNu82bg1HWczrvmnSLx1BN39s3jWH0zomqFo81TEsXAN299jjy4lj6+cHyZN/aTXndiyIXW6/0iBCq8L8swmEwNL5meLlxfe7xEo/Fxc1+vpFhFOQIkyeATk4OqubeQymZju7v4/s6n8tVL5X8ZXLqenh8f7G74HURR5aDSSYLWSR6n8oKDyrpmCKIqs6N+TyZ6eNi+ETm5u/BgUxOroaC6bzXiWKJDquRqVmmw+r4XRMnv52nkZv028LpGZW1ay48xhZFIZzSrWpGud5shlf+8H3r1eS7pM+4WqRUqzY9x81EolMzevRKVUIn35OZXNV4S5h7elODfo/h1yFCthFwwAcpUqw5ObNwAo37QlwYH3ObLmTw6uXErlVu0QJBJunjjK+d3bbRLMNTt1Y9+S+VgSopE6uNr6MsdFknBiGQl3TyNIpGjzlMexfHuk6pT7QQ4Fq6HTOLNq5gIs8RHIvXL8K8EAQOrghunFMywGPcbgu3g1G2P3d02hmlzdMPSTX9dkMKDUaO3c2KQyGQqFHMN7Bq7xFguxFgvecnkKp7S/SwG1mj1+/uy9e4vIW9doqdZQzMnpi9zA/xoQ/sMEmYz0Dw4m0mzGVSolxGxmsGcG6n0CjZWQhw+wJMRR5Y0COakg0NrVlVFhoSQqFOQvX4k1Umm6dI5Sw2gysfnkPoYtmU4GF3dGt++DTCrh1/WLOX3rCqt+/u1vPYObowsuWkeW/TTJZqX5W7chPAh+xsZje2lXrQEnb17GOyBl9bJ31uzsnD8rRQV04JVLtiI/QRBoMWQkxarVZn6/7mydORWpXI5UJqP79Lm4eSd/dlK5HJlSyY+NczB7byQAVlMSURuHUaVxY6ovnoXFZGLLrOlc2DQK91a/pboJrAkohSag1N/6TNKDNSmBhJuHMb14jsIjI9p8lZEoX3seKzMmL1vFnd8EgoDVZED6pgObUYf8PSq9xiQ92+fO5MSWTZiNBopUqUbjfgPtPIzfxidbAPP79SAmPBQ3H1++bdeJDJkyo7VYyZTG7EBvtTI2JoZ9cbFoNFoEo5GBTk7U/cRJGI5SKU1cXN7f8H+cL28R7AtBFEV6BQVR3dGR/dmyszFLVpb4Z+S3iHBuvfSbTQ9pbTJL5TLMVitvj7uMLzWUjGYz8S/1+dcEuH9wlk50fByVBrRh7ra1/FCrKVm8/Og2/Rd83DKwefRsLty7waX7tzh35xpdfh9B3eHdGPfnHCJio97f+UuuP7pL1SJlbMHgFZULl+Lyg1usP7qbCesX8m3nbinOzV64GM4eGVjxyxDiXkRi0OvZv3wRN04eo1yjZnZtcxQtTv7ylXD3z4g+IZ6AIsXJXbqs7e+X9u/BwdkFdz9/WzWz7s4JMufIQeP+g3FwccXZMwPtRo3HUSMj6dGnKWz7GEzRIQQv6Y0h6DZyd3+Snt0keEkvzLGvJTQEQUKGJiNxTbiPIJESc3T5aw8Gi5mE06sp1yBtiRJRFPmjxw8cP3IBTY2fcG48jutPEhjXvCEGfer1v/fOn+XmyaO0/mUcC24+pvecJZza+heLB/RirLNzmqPxX2KiCS1clMknLjHl7HW6LV/Hr0l6zurS59HxFXv+1YAgCEINQRDuCoLwQBCEIf/mvfzXuJaUhEkU6eDqZkuBy6VS0cbV7YPzn1MLChkyZcHRy4eNb/RlsFpZHPWCzu7ueKjUxL+ItDvnQ4LC5HULKJQtN4enrmBwiy6sHjaVn5p1pt/cCSjlCqoVK8v8HWtpPrYv+bPmpGf91oRERVC+bytCotKXWRPgm5nTD26kyAI5fuMC83euZ/K+jXSZtZAs+QumOFcQBH6cuwREkcFVy9CrWG5unjjKoOXrcUjFKjE6LBSlWsPEvScIfRzI1A4tObhyKUt/HsCyYQNpO3qS7aU1slMRzNHPyVuqVIpr5i5RymZM828QfWQJjkVr41lvEE7F6uJZfzAOBasRfWSZXbuEq/sIeXgfTdbC6O+fJmheR2J2TSV8cVcyeztRr0fvNK/x+PpVHt+5i0udQSgyZEPu6otL5c6YtF6c3b451XP2LJ5L4wFDKfpdDaQyGZny5qf37MVIRSiQhp5QlNnM0fgE2k7+A61z8ug9a8HC1Bk4jBUfMGj6ymv+tSUjQRCkwGzgO+A5cF4QhG2iKN76t+7pv0S0xYKPTJ5iZOQrl3Hb8OFf9rf3EwRBoOOshUxpVJPtcXHkUCo5mpBAUbWGoio1fyTq8MqS0iT+VVB43zLStlOH2PCLfcpoxxqNGb50GjEJcdx++pB7zx+zceQMSuZOfmHXKFGeAfMmMf2v5Uz+YWCq/b4ZlKzZapG0aiaDF0/l5xZdUMoVLNy9gbOBd5h5/sZ7nbc0Ts58P/5X2o2dDKKI5B1yycEP7tF79mJcvb0Ztm4r53Zu4/aZk5zduZWJ+07g4We/md6kflnO795ud0wURe6cP4u8kL3XxD+FKIroH5zHo1Y/u+OORWsTNLeD7d9JT69hvHeUDB3mINU4I4oicRe2kXhmNYOXryVboaLvvM6TWzdQZSqYwhxI6leQRzdvUCGVc0ICH9C0iP2ep4d/RpQqFZH/1969h0dV33kcf3/IxUi4KmIpSKAoInUrwpoiiGJpvbBVipVSd73wVJenrGVpvT1Vn1qqS7vYPmq3XXfLUtRV1hvedtUCao3YpSuXggiEWAWEQAn3QCrk+t0/5oROQi4zIZMzZ/J9PQ8PmZM5c77P5Mz5zO9cvqe2lv5NHDvbU1ND71NOOa5rb/+zhvJ/GXiNQEcIc4RQCHxkZpvNrAp4BpgUYj1p5by8PD44eoQ9cXfiMjN+c+gwha3cp7Y5jUcK/c8cyr3/8yYl6sKW6mpm9unDuPx8Zuzbx6Tbvn/cbQnjtTZayOqSRXVtw7uI1QSP57/+PFvLdtC9a/6xMKg3dfxElq1b0eTyGi+zS5cuzFywkNVHyxl0wwRO/8ZYnt6wgu/957OthkHj12kpDACOVlTQMzj1MeekPMZe8w2mzfkZGPQ87fj94hdMvIpdWzfz4sNzqTiwn4O7y3jih/dw+NNa8ga3b5O8ZCg7h7rqhl8orOooyvpL354zqz4g7wtXktU19h5KoucFkzj5M0Ma3LqyOX0HFlBd9tFxIzfbu5nTCwY1Oc9nhwzlj6sb/t13b/uEqqNHOa2Zv01Bbi7l+/dT9smWBtPff2MJIxK8F4JrKMxA6A/Ej51Lg2kO6J2dzbdOOZUbt33CC+UHKaqo4Hs7d1JWU82kEzio3DgU+hYMZvZv3qbHVZOZn9eV5wYNZurDjzL++mmtvlZLxxauvfhyHnx2foMWFg+98BjZWdksXvkuC+/+GQcOl/Pp0Yb7lLfv2cWpPXo3mNZS+PQ4tQ+3PPIov/hDCb9cU8I/PvZf9Pvcma3WnqxzxlzE8pcXNZi24rVXGDJiJDm5xx9gzc07mbuefJ69pdu5Y3whd31lHOtKdtP7mtntflVxoiSRP/wSyt99Cguumjer4+DvniL/8+OBYHdXTU2DgDg2f/ZJ1FS3fnX2sNFj6Z6fy6Flj1NX+SlWW83hNa9TtW0tF01u+tjDlX8/gxcfnsuqxa9SdfQIW9atZd63pzGtV09ymzmzLq9LF2b06sW/3DCF1Utep7SkmFd+/lOWL3yMb7XxIrTOLrTrECRNAS43s1uCxzcAhWY2s9HzpgPTAfplZ496a0j7f9jT2TsVFbxUXk5FXS1j8vOZ2qsX+e3Q3jjVjfAqjxzhuZv+jl3793LpiC+ybnMJO/eV8fidc7lgWOx01in3z2Jg33788y23k5Odw469ZVzxg29z2e13HbsIKF3s2vIxc6+/llGXTeSc0WPZvG4t7y56mlnznmBIK7tQ4rVXp9S2qqv8M7sX3U/tp+Wc1H8YlaUbyereh4defvfwky0AAAm2SURBVP7Yrpc1by1lwQP/xCnffJAuObGwq9qzlf3P3cNDy1YmdGOlQ/v28vh997B+2VuYGQXnns+0++cwoIU27RuXv8vS226luPwgfbvmc2N+V67v0fwB5XpLDx/iycoq9tbUMDI3l+ndulHQCe+H3JJEr0MIMxAuBGab2eXB47sBzOwnzc0TpQvToiDVoWBmlKz4Pds2rqfPgIF8YfwEsuNOH6w4sJ8Ft32H0uKNFPQbwIfbPubym2dw5YyZaXmO94GyXRQ98ySlm4o5fdBgxl93I30HJn+dQNihYGZU7iimet92ck4dyI/vu67B+11XV8ev7pjFhhWryBk6DlVVcGRjETf9aA6jr5qc1LKqK49SW1NLXn5+60/mxBs0uqZFIRCygQ+BCcAOYCXwt2bW1D3hAQ+EVEh1KCSibOtmDu4u44xhw5Pa958Jwg6H5m76Y2Zsem857xf9lpO7dePCqyfTd+CglNXhQZBaaR8IAJImAo8AWcACM5vT0vM9EFIjHUKhswsjGNr7DnAnwgMhtSIRCMnyQEgdD4X0kapwSKcAqOdB0DG8l5FLSjIdUl1qxW+42yMc0jEIXHryEYJrwEMhvSUaEFEIAR8ddBwfIbg28ZFCeovCht5Flze3c8fxb24u1XwdS08+QnBNqv/A+mjBtScPgvTmIwTXIv8AO9d5+AjBtcpHC+5E+ReLaPARgkuYf6hdW/h6Ex0eCC4p/uF2iRp91QRfXyLGA8ElzT/krjW+jkSTB4JrE//255rj60V0eSC4E+LB4OL5uhBtHgiuXfiGwPk6EH1+2qlrN/EbBD9FtfPwIMgcHgjOuTbxIMg8HgguJXy0kLk8CDKXH0NwKecbkMzhf8vM5iME1yF8xBBtHgSdgweC63DeGyk6PAg6F99l5JxrkodB5+MjBBeaxhscHzGEz0Ogc/NAcGnDdyWFx4PAgQeCS0M+cugYHgKuMT+G4NKeb7jal/efcs3xEYKLhKY2YD5ySIxv/F2iPBBcZPkxh5Z5ELhkhRIIkqYAs4FzgEIzWxVGHS4zeDA05EHg2iqsEcJ64BrgVyEt32Wg5jaEmRgUvtF3qRBKIJhZMYCkMBbvOplMOmvJg8ClUtofQ5A0HZgePKwcXrJpfZj1tEEfYG/YRSQpijVDonUP7Z/6ShKX2e91eunMNRck8qSUBYKkN4HPNPGre83slURfx8zmAfOC11xlZn/dTiV2CK+540Sx7ijWDNGs22tuXcoCwcy+nKrXds451/78wjTnnHNASIEgabKkUuBC4DVJSxKcdV4Ky0oVr7njRLHuKNYM0azba26FzKwjl+eccy5N+S4j55xzgAeCc865QKQCQdIUSRsk1UlK+9PHJF0hqUTSR5K+H3Y9rZG0QNJuSZG51kPSGZLellQcrBuzwq4pEZLyJK2Q9H5Q94/CrilRkrIkrZH0ati1JErSVkkfSForKRKtciT1krRI0qZg/b4w1cuMVCDwl5YXy8IupDWSsoB/Ba4EhgPXSRoeblWtehy4IuwiklQD3G5m5wCjgVsj8D4DVAJfMrPzgBHAFZJGh1xTomYBxWEX0QaXmtmICF2L8HNgsZkNA86jA97zSAWCmRWbWUnYdSSoEPjIzDabWRXwDDAp5JpaZGbLgP1h15EMM/uTmf0h+PkwsQ9NWl2K3BSLqQge5gT/0v4MD0kDgL8B5oddSyaT1AO4GPg1gJlVmdnBVC83UoEQMf2B7XGPS4nAhirKJA0CzgfeC7eSxAS7XtYCu4E3zCwKdT8C3AXUhV1IkgxYKml10A4n3X0O2AM8Fuyemy8pP9ULTbtAkPSmpPVN/Evrb9dNaKpzX9p/A4wqSd2AF4DvmtmhsOtJhJnVmtkIYABQKOncsGtqiaSvArvNbHXYtbTBWDMbSWwX7q2SLg67oFZkAyOBfzOz84E/Ayk/Dpl2ze0yqOVFKXBG3OMBwM6QasloknKIhcFCM3sx7HqSZWYHJRURO36Tzgf0xwJXS5oI5AE9JD1lZteHXFerzGxn8P9uSS8R26WbzsciS4HSuFHjIjogENJuhJBBVgJnSRosKRf4JvDfIdeUcRTrof5roNjMHgq7nkRJOk1Sr+Dnk4EvA5vCraplZna3mQ0ws0HE1uffRiEMJOVL6l7/M3AZ6R28mNkuYLuks4NJE4CNqV5upALhBFpedDgzqwG+AywhdqDzOTPbEG5VLZP0NPB74GxJpZJuDrumBIwFbgC+FJxSuDb4Bpvu+gFvS1pH7MvDG2YWmdM4I+Z04HeS3gdWAK+Z2eKQa0rETGBhsI6MAH6c6gV66wrnnHNAxEYIzjnnUscDwTnnHOCB4JxzLuCB4JxzDvBAcM45F/BAcBlF0r1B99B1wSmoX2zn1x/fVJfP5qa3w/K+Ft+sT1JRFDr9umhKuyuVnWuroD3wV4GRZlYpqQ+QG3JZJ+prwKt0wEVJzvkIwWWSfsBeM6sEMLO99S0LJI2S9E7Q3GyJpH7B9CJJj0haHvTMKgymFwbT1gT/n93sUhsJroxdIGllMP+kYPo0SS9KWizpj5IejJvnZkkfBvX8h6RfShoDXA38NBjtDAmePiW4l8KHksa1xxvnHHgguMyyFDgj2FA+KukSONbr6BfAtWY2ClgAzImbL9/MxgD/EPwOYm0kLg4ai91HcleJ3kusrcMFwKXENuj1nSpHAFOBvwKmKnaDn88CPyB2P4evAMMAzGw5sXYndwZ9/D8OXiPbzAqB7wI/TKIu51rku4xcxjCzCkmjgHHENsTPKnanulXAucAbsdZHZAF/ipv16WD+ZZJ6BD2GugNPSDqLWJfanCRKuYxYE7g7gsd5wMDg57fMrBxA0kagAOgDvGNm+4PpzwNDW3j9+gZ+q4FBSdTlXIs8EFxGMbNaoAgokvQBcBOxDecGM2vuFoSN+7cY8ADwtplNDu6zUJREGQK+3vhmTsEB7sq4SbXEPoNNtUpvSf1r1M/vXLvwXUYuY0g6O/hGX28E8AlQApwWHHRGUo6kz8c9b2ow/SKgPPgG3xPYEfx+WpKlLAFmBp1YkXR+K89fAVwiqbekbODrcb87TGy04lzKeSC4TNKN2G6ejUGHyOHA7OAWptcCc4OOl2uBMXHzHZC0HPh3oL7D64PATyT9L7FdTMl4gNgupnWS1gePm2VmO4gdo3gPeJPYGUXlwa+fAe4MDk4PaeYlnGsX3u3UdWrBjWnuMLNVIdfRLTgGkg28BCwws5fCrMl1Pj5CcC49zFbs/srrgS3AyyHX4zohHyE455wDfITgnHMu4IHgnHMO8EBwzjkX8EBwzjkHeCA455wL/D8mkbzcCMCtwgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = draw_border(clk, X, Y, incx=1, incy=1, figsize=(6,4), border=False, clusters=clk.clus_)\n", - "ax.set_title(\"Logistic Regression and K-Means - 2 clusters per class\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The big cricles are the centers of the k-means fitted for each class. It look better!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Variation" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
nb_clustersscore
010.4475
120.6600
230.7475
340.8400
450.9200
\n", - "
" - ], - "text/plain": [ - " nb_clusters score\n", - "0 1 0.4475\n", - "1 2 0.6600\n", - "2 3 0.7475\n", - "3 4 0.8400\n", - "4 5 0.9200" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dt = []\n", - "for cl in range(1, 6):\n", - " clk = ClassifierAfterKMeans(c_n_clusters=cl, e_solver='lbfgs',\n", - " e_multi_class='multinomial', e_max_iter=700)\n", - " clk.fit(X, Y)\n", - " sc = clk.score(X,Y)\n", - " dt.append(dict(score=sc, nb_clusters=cl))\n", - "import pandas\n", - "pandas.DataFrame(dt)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VMUWwH9ne0uymx6S0AUBwUZTVBBBUVHE3hAr9q6oz6di7w0riB07VkTsIiKCgoCKIDWkkN7L9p33x11iOgniC+j9fR8fmzvlnpk7d87MOTNzRSmFjo6Ojo6OobMF0NHR0dHZNdAVgo6Ojo4OoCsEHR0dHZ0oukLQ0dHR0QF0haCjo6OjE0VXCDo6Ojo6gK4QWkREzhCRz3cw7WoRGbWTRdrlEZH5IjK5s+VoCxEZJSK5nS3HPxkRuUtEXupsOXYHROR8EVnQ2XI0ZLdXCCKSJSJjdmaeSqnXlFKHt+PeL4nIXU3SDlBKLejI/USku4goEamJ/ssSkRs7KHanopQ6Uin1cmfL8VeIPoPeDf6+TkTyRWRAK/FzRcQnIp4m13+N5pXxd8u8sxARm4g8JyJFIlImIh+JSJdOkqW3iOgbpDqB3V4h/MNwK6VcwInALSIydmffQERMOzvPfyIi8l/gKmCkUmp1G1G3AKc2SLcfYPmbxfs7uAbYH9gLSAdqgMc6VaIdpLPauIgYRGS37lN3a+G3h4hcICIbWhrxiMjhIvKHiFSKyNMi8q2InB8NO1tEFkV/i4g8Gh05VYrILyKyl4hMAc4ApkZH9XOj8etnLCJiFJH/iMhGEakWkeUikrk9uZVSy4DVwD4N5O0iIu+KSLGIbBaRKxqE2UXkZREpF5E1IjK1oWkkKtMNIvILUCsipu3kN1RElolIlYgUisgj0es2EZktIqUiUiEiP4lISjRsQYP6M4jIf0VkS7TeXhGRuGjYttnQZBHJFpESEbm5jWd4tIisiMqSIyLTGoS1mVe0Xl6K1svvwJDt1X003V3A+cAhSql124n+KnBWg7/PAl5pkp9NRB6Jyl8YbW+2aFiCiHwSfQ7lIjJXRNIbpF0kIreLyOJoG/pUROKjYQ4Reb3B8/hRRBLbU8YW6AF8qpQqUkp5gbeAFmdG0XsPFJEvo+9WgYhMbSHOGBHJanItV6ImVREZLiI/N2hnD0ajLYyGb5sxD4n+fb6IrI3W0/xt71K0PSsRuURENgBro21wujR+b/u3UpZFInJ3tM1Xisj70mDWJyIjRGRJtI5XisghTdLeKSI/ALVA1xby7yYiH0SfcYmIPN6KHE9G66cq+m4d2CCsxbrayW0AlFK79T8gCxjTwvXRQAmwH2AFngAWRsMSgSrgeMAEXAkEgfOj4WcDi6K/jwCWA25AgH5AWjTsJeCu1uQBrgd+BfpG0+4NJLQga3dAAabo38OBOmBi9G9DVIZb0UafPYFNwBHR8PuAbwEPkAH8AuQ2kWklkAnY25HfD8Ck6G8XMDz6+0JgLuAAjGgjytho2IIG9XcusCGarwt4D3i1SVmfi8qyN+AH+rXyfEcBA6MyDwIKgePak1e0Xr4D4qNl/61hvbRwLwXMAdYDXdvR9nKj8m0A9kBrS3kN5MqIxnsSeD/6fGKBT4A7o2FJwMSo/LHRuprT4B6LovLsEa3374i2OeBS4INoWiMwGHDt4Hs0LJp3GuBEUwgPtRI3LvocrkR7t2KBodGwu4CXor/HAFkt1Vn090/AadHfMcCw6O/egGqS7kTgD7R3yQRMA76Lhpmi9f1ptI7twNHAj1FZDUB/ILWV8iwCcqJxnNE63VaGTKAUrR8wAOPQ+pWEBmmz0PoFM9F3uEHepmi7eyiatx0YEQ07H1jQIO4ktLZqAm6ItiXrdupqp7UBpdQ/WiE8DzzQ4G8XWqffHW0U90ODMIk2iJYUwmhgHVonbWhyj5doWyH8AUxoRxm6Rxt0BeCN/n4IkAYva3aTNDcBL0Z/13fmDRpaU4VwboO/t5ffQuB2ILFJnHOBxcCgFsqwoEH9fQVc0iCsb7TuTTTpLKPhPwKntvN5PwY82qTeWswrWi/jGoRNYfsKoQp4op2ybFMI04A7gfHAfMC2TS60TsQHdGuQ7mBgfSt5DgaKG/y9CLixwd9XAB83KM8iYOBOeI/cwNtRuUNEB0GtxJ0ELGslrCMKYTHaoCShSZyWFMIXwOQGf5vQlH86fyqEQxqEHw6sjbZ1Q0uyNqnjuxr8PSj6zAS4edt70SD8K+CMBmlvbSPvg4ECwNhCWCOF0CRMgGpgwHbqaqe1AaXUP9pk1AXNvguAUqoGTdOnR8NyGoQptIbaDKXU12gjvKeAQhGZKSKx7ZQhE9jYAZkT0RTXdWgdjTl6vRvQJTolrBCRCuA/QEo0vFF5mvxu6dr28jsP6IM29f5JRMZHr78KfAa8KSJbReQBETHTnEZ1H/1tapA/aC/JNuqi5W6GiAwTkW+i0+1K4CK0empIa3k1rZeGMrXGqcCJInJ7Ezk+b2DCOKVJmlfQzIeTaWIuAlLRRtGrGtT1x0ByNF+niMyKmryqgK87UL6XgC+Bt0UkT0Tukxbs56KZ1LbJPreVcs9AU17xaCPZj4F5rcTNRJsV/VXOQRuV/xE1dRzVRtxuwFMN6rAEiKAp3W00fKc/B54FnkF7b58VkZg28m/aTqxoddENOK3JuzIcrW21lLYpmWhKMdxGHABEM/WujbbzcrTnsK0ttFZXL9GONtBe/skKYSvawwS0Fw9IQJuG5dOgIYmI0LhhNUIpNV0ptT+aTbUPmikItFFJW+QAvToitFIqrJR6GG2EckmDfDYrpdwN/sUopbY1ikblQWuEzbJuIler+Sml1iulTkPrtO4H5oiIUykVVErdrpTqDxyINiI+q+mNaFL3aHbVEJqZoaO8DnwEZCql4tBecmln2nwa10Uz+24LrEMb2V4iDVZ6KaUOV0q5ov/eaphAKbUJrcxj0abvDSkEAkDfBnUdFy0LwFQ0+/1QpVQs2oy0XSilAkqpaUqpfsBBaKanM1qI93ID2Y9pJbu90UbC5UopP5qJ9UARcbcQt73tuhbNzAXUO3sTGsj1h1LqVLR29jDwrmi+lZbeqxzgvCZt1q6UWtqwqA0TKKUeU0rth+Yo74/mOG+Npu3ED5RF7/tik/s6lVIPNojfVj+QA3QTEWMbcRCRQ6PynYA2W/OgOfYlWpYW66q9baC9/FMUglk0x922fya0juQcEdlHRKzAPcBSpVQW2shnoIgcF417KdpIrhkiMiQ6SjWjNXAfsE3bF6LZyVtjFnCniOwhGoNEJKGN+A25D81hbUMzg1SJ5hi2i+as3kuizja0qf5NIuIRzSF52XbybjM/ETlTRJKUUhE0MxZAWEQOFc2ZaEQzrQQb1EVD3gCuFpEeIuJCq/u3lFKhdpa9ITFAmVLKJyJDgdM7kLZhvWQAl7cnkdJWFY0BrheRq9p5r7OBw5TmkG2YVxitHTwmIknRdpAhItuWNcegjfrLo23j1nbeDxEZHX1uBtp+Hu3hJ2CyiMRG2/olaGbFihbifgR0FZHLRMQSTTO0hXhrgRgROSKa5238OetFRCaJSGK0nVWidawRoAhQItLw3XoWuFlE+kXTukXkxNYKI9rCiKHR97sWTSm3VTdnicie0YHj7cDbUcvBq8BEERkbfU9s0fegvUtyf0CzTNwjmgPYLiIjWogXgzZoKkGro2loM4Rt5WmxrnZyG/jHKIRP0Gzv2/5NU0p9BdwCvIs2UuxFdHmgUqoEOAl4AO1h9QeWoY0KmhKL5rQsR5tKlqLZ90HzU/SPTiWbjgwBHkHrlD5He1jPozl/2sO86D0viHYqx6CtOtqM1mhmoTnMAO5AM3ltRps+zmmlLEB9J9VWfuOA1SJSAzyOZpP3oSnNOdGyrEFzZM9u4RYvoL1IC6P5+2hnZ9wClwB3iEg1Wmf5dgfS3o72zDajPYNX25tQKbUKzZF4m4hc1I74G5RSy1sJvjYqx49oL/PnaE5i0NpIHFq7Wozmg2gvXdCc0FVoq9K+RFPGO8I1aB3JBqAYbbZzfEsRlVKV0fAT0DrvdcDIFuKVoz33l9Fm5mU0Nn8dBayJPtuHgFOiI95q4F5gafTdGqyUegetrt4RzbT2C9rzaQ032vtWgeZDywcebSP+q2htOR/NOXtVtAxZaKPuW6L1ko32PNvVd0YHQePRnM450fQtKbJP0J7f+qi8VVFZttFiXbFz20C90/JfTVS75qI5ir7pbHn+KiJyMVon3uwl1dHRaYxoS8xnKaVe6mxZOpt/ygyhw0Snse6oOek/aLa6JZ0s1g4hImmirZU2iEhftBHM+50tl46Ozu7Fv3nX6gFofgYL8Dva2nZv20l2WSxoq0R6oE2R3wSe7lSJdHR0djt0k5GOjo6ODvAvNhnp6Ojo6DRmtzIZGR1xyhSX3Nli6PxL2aNcPzlbZ/dktd9XopRK2l683UohmOKSSZu8Wx7AqPMP4J0PrutsEXR0doj+f6xtzy593WSko6Ojo6OhKwQdHR0dHUBXCDo67ebI4x7afiQdnd0YXSHo6Ojo6AC6QtDR0dHRidKpq4xE+7xeNdqhWiGl1ODOlEdHR0fn38yusOz00Ojpozo6Ojo6nYhuMtLR0dHRATpfISjgcxFZLiJTWoogIlNEZJmILAvXVf6fxdPR0dH599DZJqMRSqmtIpIMfCEia5VSCxtGUErNBGYCWNP20E/i09HR0fmb6NQZglJqa/T/IrTz+1v6DJ+Ojo6Ozv+BTlMIIuIUkZhtv4HDgd86Sx4dHR2dfzudaTJKAd4XkW1yvK6U+rQT5dHR0dH5V9NpMwSl1Cal1N7RfwOUUnd3liw6Ou1FP75C559MZ68y0tHR0dHZRdAVgo6Ojo4OoCsEHR0dHZ0oukLQ0dHR0QF0haCjo6OjE0VXCDo6Ojo6gK4QdHR0dHSidPZZRjo6uxVrR3aFkW/X/7356pM7URodnZ2LrhB0dNrB2pFdW7ze41FdOej8c9BNRjo626E1ZdCUhspBR2d3RFcIOjpt0F5lsI0ej76tKwad3RbdZKSj0wodVQYN0U1JOrsj+gxBR6cF/ooyaIo+Y9DZXdAVgo5OA9aO7LpTlcE2dKWgszugKwQdnSh/hyJoiK4UdHZ1dB/CLkaosoiaX78kXFeBLWMAjr4HIkZzZ4vVKUR8NXizViJiwNZjXwwW+992r79bGWxjm1LY5leYW1XJ7DofeT4vA51OLnK52Nv+95VTR6ctdIWwC+HdtJySjx/G2X8U5vgMqld8QvWKeSSffAcGs63D+alwkNo13+HLWoHB5sK512FYU3vvsHz+/PXUrPqUcG051oz+xOw9DoPNtcP5tUXt799S9vnTWDP6oyJhSj99goSjr8bRe+d/dvv/pQwa0uPRt7n73MN5KyI8cv297NW9D58t+47LZtzP00lJDPyHK4WacJi5VVVsDPjpabFybGwsLqOxs8X616MrhF0EFQlT+tmTJE24EVu3QQDE7D+e4vfupmbFJ8QOPb5j+YWCFM25DRWJ4BxwKOHacorn3E7cwZOI2fvwDstXu2Yh5V89R8yQCdh77E/tuu/Jf/U6Us98AKM9tsP5tUWoqoiyL54l5Yz7sSR1B8C/9Q+K3rkN6wUzMDridtq9OkMZAARDQWb5Q8y7Zyb9u2lKevLhE/EHAsx6cwaP/x8VwlqfjxfKyljn99PVYuZsTzz7ORw7lFdpKMTrFeX87PWSaDRxitvN4CZ55QUDnJWdzSC7nf3sdn7y1vF8WSkvZ3Ylw2LZGUXS2UF0H8IuQrB4C2Ky1isDABEDMfseRd3GnzqcX+3v3wCQcto9xOx9BO4DTyXl9PuoWPACEX9dh/JS4RDlXz1H0gm3EjfsRBx9DyTpmOuxZfSnetlHHZZtu7KvWYij38H1ygDA2qUvth77U7fuh512n79bGXj9Pt7+dj6Pvfcyi1evQClVH1ZYUQoi9cpgG4ftdwB/BPx/q1wN+cXr5bzcHAbYbNyblsZBThdXbs3j25qaDudVEgpxWvYWSkJhzo9PYF+7nevzt/JhZWWjeA8VF3OS282jXdKZ5Inn0S7pnOR283BJ8c4qls4OoiuEXQQxmVFBP0pFGl2PBLyIseOjJu+m5TgHjkXkz0dsjk/HnNwTf+7vHcorWJqNwebCmrZHo+vOAYfiy1rZYdm2hwr6MVibj1ANNicq6PtLeYcqC6n+7hWGLXmKx957mfLqqr+UX2uszd7EoCnHMvvLD8ktLuDCR2/l5DuvJBAMApAY6yEQDJBdlN8o3fL1q8k0//9GyU+WlnB1YhKT4+PpZ7NxstvN3alpPLYDnfPL5WUc4nRye2oqI5xOTvd4eCY9g4eKiwhE/mzXC2pqOM3taZT2dLeHb3ZACensXHSFsItgis/A6IilZuWn9dci/jqqlryDc8CoDucnFjsRb+POTilFxFuFtNDZtoXB5iLsrUKFg42uh2vKWvUhqEiYml+/pGjO7RTNuZ2a375CRcKN4mhmoGnkTD+d/JeupObXr1BKYe85mNrfFzaayYS9VdT9sRh7z/07JHtDfLlrKJ99DWem2Bg35GBWbVzLAVecTF5J4Q7n2RoXPnYrU08+n4/ufJaHLryBn599D38wwDNz3wDAZrFywVEnc95D/2Hj1myUUiz6dRk3PXMvZzm3by7KCwb5srqa332+RjOPjvKL18toV+NneJDTyaZAAF8k0kqqlvmpro5xMbEopVheV8es0lL+8PuxiLCw9s/O3iKCt0ne3kgEq8h271EbifBSWRlTcnK4ZmseixrkG1aK9yormJKTwzk52cwuL2ukiHS2j+5D2EUQERKPuZ6id26jdvU3mNypeDevwLnnCJz9R3U4P9deh1Ey71EcfUZgik0EoHb116hQAGv6nh3KyxSbjCWpBxXfv4H7oDMQg5FQTRkV37+BZ+RZzeIrpSiZ+xDh6hJiBk8Apaha9gHezT+TOP46RAR/wQaK5tyOe+RkEo68kkDJFsq/mknEV03skONw9B5K/ivXELP34ahIhJqV83HtfQTmhMwO18U2mQILZjLjsv9y4iFHAHDa6PH85/lHuP/NmUy/7JYdyrclcooL2Jyfw7njTqi/ZjaZueaEc7j15elcebxWZ7eceQn3vTmTUddMwhvwkRafzLUuJwc7W3fUh5XizsJCPq+pZl+bnfUBP6kmE9PTM3C34JT9w+fjg6pKKsMRhjscjIuNxdKg4002mdgUCBBv+rMryA0GcYjQ0bVt8UYjOYEAr5SXsd7v51BXDCu8XsrDYW7Oz6eL2UJ/m42jY2N5qrSE21NSMYgQUYonS0s4OrZtX5Q3EuGcnGxSTSZO9bgpDYW5s7CQk+L8nJ+QwC0FBWwO+Dk3PgGzCK+Vl7OwppZnMjIwNiizPxLh65oa8kNBBtns7G+3I+1QRv8GdIWwC2FOyCDltHsp+/o5/FvXYo5Px5o5cIcaq63rQGL3H8/WFy7FltGfcG0FEW8VSSfc0siM1F4Sx19L8Yf3kjfjAkzuVAKFG4kbejyOPgc2i+vPXU2gcCNdzn0KMWndimOPYWx9/hICW9diTe9H1dJ3iTvwVGL21jpnu8uDaeLNFLw2lZh9j8Yz5kLsW1ZRt24xIgYSjr4ac0Im/rw1mNypGJ2eZvdti4ivGm/pViaOGNPo+tlHTOSY/17c4fpo816RMEaDsdlzMxmNhBuMWI1GIzefcTE3njqFGl8dsQ4XWdec0mbeb1SUsyHg54uePXEajESU4v7iIu4oLOCRLumN4n5UWcmDxUWc4nbTw2LlncoK3q+qZEZ6BhaD1gbO8Hi4p6iQJ9LTSTdbKAmFuCF/KwGlOHZLFlcmJnJ4TPsWDZzs9nBz/lb2sNr4sEfPesXzfmUFT5eWMr24iGczu3J1YhKX5OVybNZm9rXbWeH14jEaeTo9o838P6ysJMFo5PEu6fV1e4jTyYSszQy02VhSV8u8Hj2xR8t2kNPJKVuyWFRby8joLCgrEOD8nGy6Wyz0tlqZVlhAhtnM9C7p9XXyb0ZXCLsQ4doKCl6/Eccew4kbdiKhqmIqvptNqCKfuOEndTi/2KHHY0nrS8XiN1GRENauA4EdGwkZXR5Sz3iAQNFmwrXlWFJ7t7q6yJfzG44+B9YrAwAxWXD0ORBf9q9Y0/sRKNpM3IjTGqUzx6cjJgvh2jJMcSnYu++Dvfs+qEiY8q+fp/a3rzDFpxMq34qjz4HEH35xu/doiNGCSRQ1vjrinDH110sqK7BbrVzy+DSWrfuNLgnJXHzMaRwx5OAdqCWNrsldSPEk8ta38znt0KMBiEQiPPHhaxx34GHN4huNxnqZejz6dptnH31QWcnU5GScBm02YBDhisRERm7YwMNFRXxcXUVNJMIwu4Mf62p5rVt39rBaATgxLo4LcnP4qKqKE91uAE6Oc1MRDnNiVhZ2g4GKcJhjYmN5JbMrK3xepubn4zYaGepwbrfco1wu3EYT58bHN5qFTIiN46HiYpZ7vSyprWW408krmV1Z7vWyKRBgQmxcu0bpS711HBUb2yheitnMIJudT6qrGOVy1SsDAJMIY2NiWOatq1cItxbkc3Z8PGd64gEIKcXlebm8Ul7O+QkJ2y3jPx1dJe5CVP88D3vP/YgfMwVrl7449zyIlFPuomrJHCL+2g7n589bS/H7d2PLHID7oDMwxaVS+MZN+PPW7LCMluQe2Hvs1+ZSU6M9llBVc6dkqLIIQzSd2Z1KoGB94/DqUpS/DoO98bLSqh/f12YcF84i7axHSL/oBUKVhZR9+Vy75V43tg9HDR3JtFeeJBIdpdf66pj2yhPklxaRnpjCzGvu5JRDj+aKp+7m5c/fb3feTRERnrlqGjfNeoiz7p/K3a89w8FXn0F5dSWXTjhju+nb2tFcE4ngMTYex1kQBFjr9/NcRiZf9OzF/nY7EWhkRjKIcEKcu5E9X0S4MCGRj3v0oDoc5oPuPbg9NQ2zwcBQh5MrEhN5uay83WX3mIwYmvTrguY3mOyJ5+aCfN6uqEBEGOxwcHJ0WWp7ZsEeo5H8YKjRNaUUW0NB0kxmcgPBZmlyg0Hio3VQHAqx3u/nlAYObZMI58UnMP9vWlywu9HpCkFEjCKyQkQ+7mxZOhtv1gocvYc3umaKTcSckEmgaHOH8ytf+Ar2XkOoWfEJpZ88TvXPc7F2HUTZt6/sLJFbxLHnwfiyVuBtsFy2bsNSfDm/4tzzIADcw4+hv+85RsU8w9E93mJU0uukrZ+Ga58jMFgab8KrWTmf+DFTMNq1UbTB6iB+3OXU/Polweqydsv16CX/YXXWevY6fzwn33kVe559JKWV5Vx+3CRuPuNi9unVj9MOPZo5t01n2itPEgw172Day769+7NyxocctNf+BEMhbj79Iubf8xwO2/YdxkopltTW8kRJMW+Ul1MR/tMZf5DTyXuVFfV/+yIRTtiShYjwZHo6va1W3EYj5yQkMC4mlrcrGnfmleEwjhZMI9URRbzJRNcm+wAGWG3kBttfD2NdMbxQVkZIKRSKQK86fjsml+umKiZdF+Tl6x0s7FmEV4VbTF8dDvNuZQUvlpWyxtd4RdkJcW5mR/0TABGleLm8HBPCZI+HdQE/H1VWopRCKcV3tTV8U1PD+Ni4+vgGkWadnlkE3fWssSuYjK4E1gA7d3fTbkbFotcIleURKMvF3mtw/XUVDhKsLMDo6vh01p/9K+H4LiSfNA1Lck+CZXmUzH2IQNGmnSl6M4z2GJIm/oeSjx/BYHkRFERCfpIm3kyi28uojPc5ZNTn5FdnklMVJqBq8HiqOewSPwbjj3yTk8T3W0fjDWlmilBtORhMqEgYiZpKTLFJEA6y9dlzcfYfiWf0ea3OWrbtN4iPieOz+55n5cY1ZBXkcd/513LSHVdwbBMzzsAefbCazWQX5dOry47vVXC7YplydNs+gaYEQ0FOv+daNhktHDNmHOtyN/P08u+ZnpzEvnYHUxISODM7m9JQmINdTt6tqMAA7G+3Y23S0Y9wOnm1vIxLE5MAbYT8UnkZt6WkNrtvmslETSTClkCAbg2UwuK6WvpGTU7t4TS3mx/8NTzSfz0nHmfAaoVuP8bROz8GFHhiwtw4xUeFYzOR7zzYv3Nj8GnPdFldHVduzWOI3UGSycSlebmMdLq4NSUFEWGAzca1ScmcnZNNhtlMWTiM22DkifR07EYjz6ZncEN+Pk+UlmARIagUj3VJJynqME8xm8kwm/moqpKJcZrJTFMqZYx1xbRapn8TnaoQRCQDOBq4G7imM2X5f6FCAWrXLMSX8xtGpxvXwLGoUICaVZ+RcMy1lM2fji2jP9a0PkSCPsoXvIgluRdmT1r78g8HiQS8GGwxiNVJ/OGXYEnuCWg2+oSjrqLg1WtQStWv9qla+i7B0hzM8RnEDp2ItUvfv1xOW+ZepF/4HIGCDSCCJaUXQ9J+YPKAu1iSP5L7f7qH/NqmK4YUfTyrOSzzI47s+iYPL7yc377+BQEK37gJMVlwHzwJ18DDqFu7CEuXviSfeCuVi16n6J1ppE56uJnpoenmMxFh39792bd3fwC6JKSwNmcTg3r+Weby6ioqaqpJiHX/5XroKC9+9h7VdbUseeJtzFEfzMdLvuH6h2/m43Q7ySYz73TrzruVFSyoqSE/FGJKfALTS0oIKNXIdv+z10tWIMApW7JIMplYVlfHOfHxHOhs7g+wGgycHx/P5Xm53JicQk+LhQU1NcwqK+PFzO2v7AooxWfVVfwqtVx5T5BEsRL7QSKWtQ5ENX4mjs/jCXX3UTumDO/wLXiezESVmZiav5X7o5vjAK5KSuLM7C18WVPD2Bitw54QF8cRMTGs9vmIMRrYw2Ktf+Z72mx80L07GwIBQkrR12rF0KQ93J6SypTcHBbW1rKHxcqCmhqqI2G2BoIsrqvliJgYTnF7GtXjv4nOniE8BkwF/tHqWUXC1PzyOTW/fU2ofCticRCz33gideUUzL4eW/d9cfYbiaPnYNTo8yl+7+6oc7UcU3w6Kafc1SzPbrEbODj9CxLtRViNPrxBOxvXVvHBi1vILzRgdMRCOIAlpVejdObErqhwCMJBfPm/rdfrAAAgAElEQVTrKP7gXuIOPJW44Sfhz1tD0bt3kHjsVOzd9v7L5RaDsV65HJD2NSft8SIP/nQn2dW9WkvBuvK9WFe+F4NTvmPqIQ9y09cxVE+ZhSkmHn/BBorfuwvvlhX4Nv1M0vE3Y7TH4hlzIfkvXo4/+9dGO73bw8XHnMa1M+7DZraQV1qEw2rj0x+/Y+KIMbhdzWccihDlhoWUGj8jKGUoQpiIITYymKTQBEz86f8Ih8NkFeYR54whMa59q6I+/P4rLp1wZr0yADh62ChusDlY5/ezp81GnNHIufHajHFS9haSzSYG2m38J38r1yUlE2808kFlJfOqqni7W3eyg0Eqw2FuS0mtHy23xNmeeOKNJh4tLqYwFGSQ3c5zGZn0sbZ8jlZdJMKHlZX8WFfHrz4v3Vwmbn4wjGeLE/eclGaKYBuCYM6y456VTu1hZZRdm03O7ZrcBzVYcus0GDjT4+HT6qp6hQBgMxjYv5WjNUSk3oneEnvabMzr0ZN51VUUBIOEVISuZjOT4xNQwAtlpSytq+OJBiuZ/k10mkIQkfFAkVJquYiMaiPeFGAKgDE26f8k3c6l7LOnCJbm4D7gFMTqpGblfGp/+4rUMx/E3msYRe/cinMvzWzh7HcIjj4HEqrIp2LRa9gy96q3nYNiWNpCDu/2EXHWMr7NGcdvJfvhD1uxm+rok/kLz87MY2NlXz5cuh8Ln34d36blOPuPrJfFn/0rJk8aGM1UfDeb+MOm1IdbUnpicLqpXPgq9kl/XSFso0fsWk7d41nu//lBttZ0a1eaZYUHo5Rw5y2Pc93sJRBzFNbU3nhGnUPZ18+Tctq9WJK0vEQEa1ofguV5jRRCe46mGDfkYB5/72Uueuw2jho2ko35OazZspGP7nwGr9/Hm9/MY8maVXRJcnP8CRGC7s+xqBSSwhOwqnQEIyEqKDcuINc2g/jwYXQJncdni9YzdeaDAFTV1XDYvgfw5OW34tnOEk6DwUBENbdoR5RqcX3YuJhYXigr47Eu6TxVUsKxWZupi0TwGI3Mysggw2Jp9/lAIsKEuDgmxP2p1Nb5fXxSVUV3i7aHYBvV4TCTc7JJM5mxG4TeViv3X2eEYoh9JyXq5t4+zq/iidjCJFxagvFqLU1QKWaXl/FJVTWVkTA2hOpwmJiddPhdjNHIqW4P39XW8G1tLU9nZNbvUxjqcHDs5k2s8Hp3+Dyn3ZnOnCGMAI4VkaMAGxArIrOVUmc2jKSUmgnMBLCm7bHjWzI7iWBpLnUbfiT9wln1zlJr+p4UvXMbdWu+xTXocIxON3W/LyB28ATMnjTEaEIphS9rJZ7DpgAghDmz/wz6en5jzrrJrCoejKLxC/Jz0YG8t/FshqUt5Iqxs0lVe/DWU0+iwiFs3Qbi37qO8q9n4Rl9vmYu2rqW5JOmNcrDscdwSj64r96ktDMYl/I8H2w+q93KYBvLiw5in6QlHJz8Id9xFADm5B4QCdYrAwClIvhyV+McOKa1rFrlrW/nU+Pzsv6Vz3HatA7gzW/mccEj/8VusZIan8TEUcPpMvR1IrYe9A08jlP1a5ZPQuRwgsEyCk1z+NU8iRkLIrx8w5Mc0H8farx1/PeFRzn3oZt4//an2pTn+IPGMv39Vzhi8EHYLNpI993vPscY8NHHGt8s/sluNz/V1XHylixGOl3sY7Oxzu/nucyubY6Ut4cvEuGKvDzW+f3sa7fzq89LD4uVx9K74DQYea2inF4WKw+kpXFOTg5Tesbh36eQxJt7tVsZbMP1SSIVt1dg7hFhWU0ds8vLqYmEmZqcjE2EV8rLODcnh9e6dduuKSesFHWRCE6DoZm5qCFKKRbX1jLC4Wi0ac0swiiXS1cI/2+UUjcBNwFEZwjXNVUG/wT8+euwddu70coZEcGxx3D8W//AOXAMKhQkZvCxFLxyNfZeQ1CRCL5Ny/CMvQiTKx5QnNlvJumubO5e+mC9s7UlAhEb3+UdztqyQVx32M3UZhuZN/8FUApzUjcSjrgUe68hAJhcCQRLcxsdiR0szcHoiu+QMvAXbCBYtAmTOw1r5l6N0nqsJQxI38yL393egVr7k69zjuWiw25h0Y9hFMboyiWh/NuXidlvPCrkp3LR65hiErCm/9lRt/fgujnfzufK48+qVwYAp4w6iltfmk6PtEzmTHuANbbziQ2PpWvoakS1vjDPTDwZoSnEGAZx623XMjBsAgUuu4MHpkylz9mHs3FrdpuO6kljJ/D1yqXsd9FEjjlgNJsLclmy4geeSklu8ZmYRXi0Sxd+8fn42VvH3nY7h7lc2P7CJqviUIjJ2VvoarHwRa9emEUIK8UtBfk8UlzMLSmpLKqt5dKERG12ZhAcI2uwLY+tdxB3BFGCZ5GHiRNKufj+HOwGA1/26l3f+T9g68I5OTl8Xl1Vv2KoKUopXiov46WycmojEeKMBi5OSKzfb9GQn+rquKeokK3BIAGlyA2GuC0lBU/UnJYVCNAvpuPHzf8T6PRlp/90jK54QmW5zc6b0TreBKp/nofR5SHuwNNIO/cprBn9sXUdSJcLZuAacCgAQ1O/o2/8rzy2/NY2lUFDir2pPLL8Ds47N8J+503BYLGTcuo99coAIGa/8ZR9/gyhqhJA2wdQ9tnTxOx/TLvuoUIBit69k+L378GXs5qyL56l4NVrCNdpp1uG6yrZv+pGfsg7BF94x0Zbm6v6UBNJpJ/tC6p+fI+qH98j8diphGvKyH/+EgpfuwGD003S8bfUd5gtKYM3vpnHAZefTOpJIzj8hnNZsHIpAMFwCJu58UhaRDAaDIwfNopsyyPYIz3pGrqG5gsWWyYuMpy+kbtYZ72KCAEALGYzPVIzyS8tajOtyWjilRvu58Wp95LkjueY4YfySWYGe7WxXFVE2Ntu55z4BI6Ojf1LykApxZV5eZSGw9yYnII5WqdGEa5OSubDyiqUUrgMBsqjy2HHx8YSO6oW+8Idd8I7Frs58CAY5LFwsNPVaCYgIox0OfnN1/rBhq+Wl/NxVRXPZ2ayrE8fpqdn8HxZKXOrGp+0mhMIcGVeLkPsDvay2djTaqU4FOKyvFzCkQjvV1awxu9v5LP4N9HZTmUAlFILgAWdLMbfgq3bIFQ4SNWSd4gdOhEMJrybllHz65eY4pJR4TDJJ96KiGCKSSBmnyOb5XF49w+Zs25yhzvVwrp0vs47lnGDV7PsqVIIB8H0pz05ZsgEIv5a8l+8DIM9lkhdJa59jyJ2WPu+vVD5wzsgQvqUmfVmrvKvZ1H25UySjr2e0vnT6XOtmSWVg7efWRusqRhMUt5L+Av2J+XUu7EkdcfefZ8W47akDJ6fP4fH33uZxy65mX169+PLnxcz+YEbmH3TQ4wffigzPn6To4Ydgim64eublUsoq64kOcFGqfFT9vF91GEzSHzkUAojb1Bm/ILE8NFsLS1iTfZGBnTvs920IsKwPfdm2J5RP87YCW3uXgbNVLLW70eAPVtYXdNefvf7KQ2HiABxTRRLjMFAQEWIAMfFxfFMSSkHOBwc7XFR5MnHlLvjJipDjQmqTCQlCVlbAs3CN/gDrZrAlFK8WF7Gs+kZ9I7GGWCzcUtKKg8VF3FMg1nF25UVZJrNrPR5uSA+AZfBwFsV5Syuq+OgDRtIt5iZmZHRaMfzv4ldQiH8kxExkHzSNEo/eYyqnz5ATBbEaCZm/2OxdR2IrevA+rX1LdEtdgNuaxmrinesU/02dxx3j7iE2GQPNDnmQcSA++AziR12IuHqYowxiS1+ptKX+zu1q79BhfzYew7RPutpMFL7+zckTfwPEu1IRQT3iNPIfXoyoaoi/LmriUnqhndj+2Y1reENu0g54HCSEs7tcNpIJMK9b8xgzm3T2aeXZlI6eeSRhEIhHnhrFu/e9gTzlizg4KtOZ+JBY9mQl83733/Bgf33ZXHBdM4LH4SZHTvSICV0ChsjM1m82M4drz7JFRMnbdepvCMsr6vjpoJ8LCIoNOVwf1qXHfoUZ1EoSHeLhQEGA+9UVjKlwXEOcyoqOMDpxCjCEa4Y1vr8HLl5EyNSbFzjlQ4rzaaEvMK4JCcPbKpmVmkpZ3k8mESYX13Nwtoark1qeVFJUClKQyH6NFEYe9mab6pb7/eTHQzyRc9e9V9oG+5wcEb2FrqaLdyblvavXF20DV0h/B8wxSaTcuo92tEMIT8md/sb3cHpX/JtzhHNHMjtpcKfyO9FezJ2kpuFG37El/UzYnHgGjAac6K2vtxgsWFo5RTRyqVzqP55HjH7jcdgdVL10/vUrl1I0oQbUaEAYmkyazFZUJEw3qxfEIuDQMSGxdh8xNcRzMYAgciOjT7La6qo9dXVK4NtjNx7KDe/8CgWs5n3pj3JdTPu55E5LzGs397ccsYlzFu6gEMO9ZIS7vgZUtvwREYSkGm89cPzXH/K+Zw8svns769SEQ5zxdY87klNY6TLhVKKr2pquCwvl/k9enb4s5QDbDZWeb3Myszk8rw8sgJ+Bjsc/FRXxzc1Nbza9c+VXVclJXGGx8MvoTpM9joU6i8pBbFFGG6M4bnMOG4tKGBWWSlGEdJMJp5Oz2h0ImtDzCJkWiws93rpZrHwankZK71eALo0SeM0GBjicDSqFxFhfGwcK7x1/2plALpC+L9iiun4SDPRXshvJfv+pfvmevckPvItld9vwdl/FGFvJQVv3Ihn9Pn1foqWCFWXUvXDO6Sd93S97K6Bh1Hw6nV4Ny6rPxbDc6g2cg+W51P09i0YrC6qf55LpK6Swmw3ac4cVhUPafU+26OLM4fVpS2biBrSkrkozunCYjKzLnczfTJ61F9ftu63euduja+ONxfM4/vH36i/dtlxZ7LYPBRHePsmntYQTHjMfXnq+vNwRw7Y4XzaYn5VFQc6nPWHt4kIY2Ji+Liqis+qqzmhBadqWySbzJwQ52ZaQQFXJybyi8/Hy2VllIbCvNm1G92bjMKTTCYOM8VSXFVEKN2POW/HnLERZwiLO4Klwky62cjzmV0pDYUIKUWyydRmRy0iXJqQyHVb84igHZ9xSUIimwMBni0t4YPKSo6LLqU9IiaGJ0pKmuWxKeBvdmzHv5F/p6FsN8Ji9O/w6Hgb/rANq9FP6qSHiR06Ec/Is0k57V7Kv5xBJOBtNZ0v+xds3fdtpMjEaMY5YDTeTcuIO+gM6tb/QNF7d1G1fC4Fs6/Htd94Mi57hS5nP07qmQ8wd3YWI7vMZUdPi4m1lDMgcQU/FRy0Q+lNRhOXTzyLcx78D79v2aCdcfPrMq6bcT9Xn3g2AEt+X8k+vfo1Wv1jMBgwmEIY+GurTYzYidB6HbeX1g68KwuH6WJufuJrmtlEWbjl84K2x3VJSUzyxPNeZRUrvF5GulzM7dGjmTJoiH2RG+/IilbDt4d3RCXWVa5Gq5QSTCZSzOZ2jdqPio1loM3O2JgYbklNZbjTyWkeDzMyMnm4uIhAdFHHYa4YAkrxclkZ4ei1JbW1zK+u5vi4nfet7t0VfYawi+MLObCbOvYN5KbYjTV4Y3ohNX8+bktiVywpPfHn/NZo5VFDDBY7YW/zUyDD3ioMFjsmVzxpZ0+ndvU3eDctx2BzETt4Qv0LbEnpRY7zeHzV8+iX8Au/t2OU35RDMr5gWcEI6kKtfzQG2l5meu2J52AyGjn65gspq6qge2o695x7DUcPGwWAy+GkpLK80d6LQDBIEBNhajDQfP1/ewlRg5GWZf982SJmf/URNXV1jB08grMPn4i9lV3B2/BHIqz1+6mJhFnl9bE54Odnr5dLEhLqzzLa9gGYB9K67JDMLW1Qa4lNfj/f1tZgEwNjFrhQd2bjei+pw0tPlSi8B1cQN6sLS+tqeaO8gpJwiL1tdibHe0g2te+I86JwiHMTGj+rPW02Yo1GsgJ++lhtGEV4LiOTG/K38kJZGXaDEAYeSOtC+v/x06W7KvoMYRcnt7obfTyr/1IefeJWsiW/+TK6SMCLmNoY9fXYj1BpDnUbfqy/FizLo2bVZzj3Gg1oSiNm36Nw7XWYtqmu6Udh4lKZuyCNE/Z4BbOhYx+Pj7cVMabrXL7KHt+hdE0REa46fjKbXv2SwjmLWTnjQ04aOa4+/IB+++ALBJj95Uf11/LLitmaa6HKsGyH7xuihjrDOuyRHs3C7ntjJtc8ex8jBw1l0tgJfL5sEUfffCH+YOv+lo8qKzls00au25rHlXl5lIdD9LJYMSIcuXkTn1ZV8ml1Fefm5DDIZmeQ7e9bS/9ESTGTc7LJDQZZ5fNyzKpsKpbbqD6lEEXH9o/WHlmKocLEx7/4uSk/nxFOJ1cmJhFGceqWLRS287TVeKOxmRPZG4lQGgo1OjK8q8XCG92682rXrkxPT+fTHj0Z0cL5Tv9G9BnCLs63uUdw+4FX8u76SQTCHX/B011ZpLoK+ebNCpJOr8Do1GzKdeuXEq6pwJo5oNW0YrKQNPFmij+4l6of3kasDgJb/8Az+jwsSd0bxbWm96N0/uOEa/+8h1KK2jULWRg5nKHeX7h47wd4ZtUNBCPbH4m5raVcu/805mcdT3Z1zzbjtncTmojU7/5tiMFg4K1bHuWkO67k6Y9eI8WTyNK1qzj/jG707vISCYbD25V/U0qMHxMXGYaFxqtjCstLefz9l1nx7IekxmufNz1uxBiOvnkKby+Yz6SxE5rltXzdah4qLmJ6l3QuycvlzW7d65dYnhMfz0lbsphVVkaiycSJ7jiOjY372xykK7x1fFhZyUfde9Rv5vrd5+OC+7cw50kLNScV4ZqT3OpZRg2pHV2Gd0QFMfd145HiLGZlZNI3qsiGOBwI8GJ5GTcmp2w3r1PcHu4tKmQfm51Mi4VAJMLDxUUMcThaPMNJ9xk0R1cIuzilvmTWV/RjeNq3LMw9osPpR2fO59utR2Hrb2DrrIuw9diPSF0FwZIcko7/b5tLXiP+Wmr/WAQiBCsLsKb1Je2c6Zjimr+cRpeHmMETKHj9RuKGnYDBEUvNL18Q8dXg6H8os345jAsGPcLUIf/h7T/OYX1Ff1r6eptBwuybvJTT9nyOb3KO5LOs49osX3uVAYA/GODNb+bxxfLFxDldnDlmAgf018xY/bv15peZH/H96p+prK3h+evuwR3jYKlpNHWRjThUawfytYxCUWh6i+7BG5uFLV79MyMG7FevDBavXsEjc15gbc5m7ntzJt1T0zl4YONlxrcsfJ9JCQmUhcMMstnrlQFoh72d5vbwu9/HXantOxW3IQXBIL/7faSYzPS3WrerSD6rruZEt7teGQD0t9kYIA5W3BPD4Osrqbg8B8dnCVj+cLS48ijY1UvdmHKCGT7iH+7GppIIMQZjvTLYxriYWO4qLGxXOUa5XOQEA5y8JYt0s5mCkGZ2uiet43Xyb0VXCLsB8zYcx6WD7mJN6SCKve1v3P0TVjI49XtuW/w47hEJuAaOxbdlFQarA3vP/RFT6yMkFQlT+PatmOMzSDnlTkCo+vE9ij+4j9RJD7WoSOJGnIYltRe1v35FJODF3mM/XPscicFsJaTg2VXXM7rrJ5w38HECYQvf5BxFTnV3AmEbdlMtfeN/Y1Tmp5R4U5j9+0WsLB62I9XVIv5ggGNvuRiDCJPGTKCosoyz7p/K1SeczSXHng5on7I8ZFBjf0p3OZ+N5lvoH3geI+1f159nehYjTmIjQ5uFJcS62RrdsfzNyiWc/cCNTDvrcu4971qWrFnFpPuuZ8ZVd9R/xvON3gnUFhWSYTRhFsHfwuF3PhXB3MEln0opHigu4v3KSva129kUCJBoNPF4ejqJbZyKGlFgbFGZC8FaA57pmXgPrKTmpCKUSWFbGouxwgQRIRIbwrd/NRFXGMdCNzGvp2DwGfEYQ5SFQ3gjkUabwrKDARJM7fdJTPLEc0Kcm/V+P4kmE+ktONx1WkeaHqmwK7OXza7e6d690bUjj3uoc4T5PxIJ+thn46mcOSWBR5bfTkFt2x8jB00ZXLT3Azy54j+sK9+rw/f0bvyJikWvk3rWI/UjRqUUhbOvJ3bYCTj67PgySiFCv4Rfosd3F2rHd4ec5NZ0Y0HOOHK2YyKCjs0MAF75/APe+OZj5t09E0O0w9lSmMfwy0/m9+fnt7phTKHYaP4vfgroG3wM03ZOalcotppeoMg4hwH+2Vha2NQWDofZ58LjuPL4s3j967lcdtyZHH/Qn2apeUsXcM/rM/j+8Td4o7eW/ouXZlE44wke8ngYu3kTD3XpwrDod47LQiFOyd7CvalpDO7AgWzvVlbwVkUFszIyiTUaiSjFoyXFbPT7eTqj9W8g/FRXx38L8nmnW3dio+v51/v9TMrewmc9exEXvaZQBHt58e+jKQAEpM6I9XcnltXOepOSUooFtTXcV1SEACfGuTnd46E4FGJKbg43JacwytX2ogKdtun/x9rlSqnt7m7d7RVCU/6pCqLgtakce0YGZx66lG9yjmRBzjjK/YnN4qW7shidOY/BqT/w1Mobd0gZAFT+8DYRfx2eUWc3ul6x8FUwGHEfdPoO5bs9IgEf4eoSjDEJLe6ahsbKoKiilOfmv8vKrA3s060X5407od4U05DJ99/A2P0P5Mwxje3zx/z3Ii465tT6FUctyqRCPLHsCA44wEhG5GySI8c0UwyKCBWG7ykwvU5QStjT/yQWWrd7r8vdzBn3XMea7E0UzVnc6NOaoXCI2GP3Z9banHpl7Kut5f7jx9Gvqop+As+VlTHAZiPRauM7n5fRZ1/APV9/3ur9WuLM7C1cEJ9Qv4cBtFNOD964gb2sNgyiLdM80e1udLaQUooHi4uZX13F0TGx1EQifFZdxc0pKa0ePtcWT5YUM6+qiikJCXiMJl4rL2eVz4tEIlyenMyZnh1f5bU9aiMRPqis5GdvHUkmEyfGuRuZ4/4ptFch/ONMRvM/uK7F67u7ovAceh7vPnEHq1cP4Zgx67nzgA9YU7wneb498Uds2I219IldSZI1h0++dvNfxwNUq+0vO4z466hbt5iIrxZb973rncUmdyo1qz5rFt9fuAFn/1E7uXTaEdaVi96g+ue5GOwxROqqcOx1GAarA3/Obxgdblz7jGPL5GPr06zL3cyoqedh6DEYuvTnh9/X8OTck/j6/ln069rY5h/rcFFYXtrknoqiilLiHNtZ0pqdxdNPmZg85A4+zZpG9z5PkKgOw6rSEMwEVDlbQ58iAQc9IpNJ5dj6/QurNq7lrtee5vvffibFk8gFR5/MxcecRp+MHvz41Bz6nXskv2WtZ+ief37HYXXWBpJSGq/YsjmdTH33E76Z/RJffPEpffbYE3e/ASR078HNI0aSlNmVJVffUB9/+DGNPwvaEjXhSDNzjFUEM8LhMTGkmk3MLi/n29oanknPqD8fSUSYmpzM+NhYvq2pId5k5N3uPVrcD7E9ikMhXi4r46qkJBwGA0MdDkY6nZyVk40R/lZlUBkOc1Z2Nt0sZsa4YtgSDHB2TjZ3pKYy+l/6Sc1/3AyhPezqykGpCHVrvtMcupEIjj4H4hwwinB1CdUr5xMq20pMRgajj4zDWfAZjlg7Km0weTXdWFE4mKK50zE6PXhGn9csb+/mFVQtfYdgaS5GVwLBsjxs3ffG6PTgXb8ER98R2jcYwiG2Pn8Jzr1GEztkIghUL59LzcpPSTvvaQzmnTuKqvrpQ2rXfEvScTdhik3CX5RF4es34NjjAJwDRhGqLCSw9G3uOO18Lh6vfad4/LQrWOHsRczQifX5VC/7iIEVa/j0zsbfHVi6dhWn330tXz7wEj3SMlBK8eoXH/LA27NYNeNDfEE/d7z6NK9/NZcaXx1HDD6Iu865it7p3fjpj1+57Ik7WPrkO3z18w/c+Mp/efrWY0hKNPHh4k/ZlFtKvAznx+U1bMzPYe6dz7JHRnfW5W5m9HWTmTR2AqePHk+N18vUmQ8wet/h3D75CgCenfsmL3/+HrNveoheXbqSVZDLqfdPpf/xJzD2nCl/uV7bUgwPFhXhUxFuafCN5cW1tdxRWMAnPXpiECGkFCdtyeKapCQOdu58s80tBfnMq6pipMtFbTjCar+Ph9O6sDUU5IGiIub36NnIeb0zeaKkmK3BIHelprG0ro6SUAirCPcXF/F5z16Y/kHHWPxrTUZ/hV1FUZTOn06gcCMxQ45DxKAdke10k3jcTY1GjSocJOexU8i47FUM1j/XUQdLcyh86xYyLnmpUb51G3+i7NMn8Iw+H2t6f/x5v1P25UwSjrwCR++hRPx1FMy+Hvchk3DsMZxQVRFlX8zAl7UCEGzdBuEZcyFmd/OPtDdEqQj+vDVE6iqxpvfD6Nz+5yPzZpxP4oQb67/NULHoNUJVxSQeddWf5SrLo/L169nyqvYxm9gJg0m9tHHZIwEfeY+fQs3cn5utlpk57y1ue3k6+/UeQHFlGV6/n7dueZT+3Xpz/G2X4XI4uGPyFbhdsbzw6bs8+eFr/PjkO8Q6XPQ9+wjevvVxhvQd+D/2zjI6qquNws8dy2TiIS4QnADF3d1dihQv7i6lQGnR4lCkOBRpcStOcYfiGiFCiHsmk4zd70dgYAgJCVD52u61slbmzrG5mdx9ziv7ZeupA0zbtIzElGRKFSzGkVlrULzcHa88uJ0dZ47w2/xN1BndjYfBARTx8iEoMowG5aoxrftQqo/szOMNR7GzskEURRbs2sCS3ZuQKOSk63TU79WX5oNHfNKw0XcRQ5xezxchwRRXKqlrbY1fejrbExJY6OFhVspyZUwMGtHIaGeXT7YegEdpafR7Hsov+XxMzt/rqamMfBFGBzs7DiQmstjT64NE+nKCLsFBdLV3YHlsDHZSKV5yOZdTU5EA6728KfIH5nH82fjXmow+Bm+amz41OYiiiC4mlPTn90l7/hCMBlSFK6MqVtMsYkcbGYDm2e949F1lKqqjKlqN8A3DSQu5a17rWMwYF8lbf0apHKM2lVlUGXkAACAASURBVOervsyQmiheG7vKHUi8sA3HxkNQFcqI3pHZ1kJQWJJ4YSuqQpWQWKiwKd8S9aPzqApXQWbrgkv7KRh1GQllOTkV6OLDid6TEZUks3Mh9vASbCq2wb56l2z76ZNjkTu+dpanhd7Hroq55LPc0ROFnQv3g/yoXKw0SqUKQ2qSOSFoklAqVe98mPZv3onPazfl8sPb2FpZU9W3DBKJhDsBj7kf5MfD9b+aJLBHd+jN45BANh3fy5iOfVg8ZDLtvxlKr8btyOfqSUGPvDwKDmDKF4NMZADQr1lHZm5dydJ9PxGXksTt1fvxdHJFnZbK4CXTWbBrPflcPAl4EUq5wsURBIGxHfvgMmY4ybEx2ORxQv6OXImPxZWDpwBzYnCUydiRz4fdiYn8lpKCxmikmIWFGRkAhOp0FPsD7Oq/JiXxuZ29WSRQRZUKXwsLtickIIoiXnI5yQYDJ1OSSTEaqaayouAnWouVIGFlbAw9HRzp4pCxaUkyGOgUHMR1jeYfRQg5xX+EkAU+pS8iPfwpsb8uRq9OQKJQYle1I4JUTtKNg6Q+vYJT6wmvnYfBd1EVrmJeYU0qR1W0OunB5oQgyORY5itNyq1fsa30uoZB0rU9yOzccG45DqMujcSL24g+MBdtZACW+cuZrc3SpyzRu797Yy4ZvBXWmFPzkCiKxByYi3WpxthUaIUgCBjU8URsm4TCtSCqQplDMF/BwqMoGv+rpvrOUpU9+kTz+HPRoCcx9gWHr52ncrHS9GjQim3nNyFrPjajHoNBT+q5TXxRP+sCP/bWtjStVMvs2uPQQCoVK2Uig1eoXrIcF+7fBKB1tfoU8y7A5hP7uPb4Lt0btOKH/VuRv2U3lwgSZFIpv5z+lQUDJuDplOFYtlKqWDhoEr59miIRBPK6uJsiiADkgKO7Z5br/lR4RQyQQQ42Uim9HDPs9BqjkSaBgRxKSqT5y6irc2o1Z7ORnv4YpIlGHN4hSyEVBKwlEmpZWeOvTWfUixdUslThIJWyJjaW5ra2jHd2YU9SIuvj4gjRailiYcGgPE40yEVhm2pWVqyLj6PTGwKAtlIpQ52c+TUpkS8c3n+y/afhP0LIJXJ7ijCmpRC161tsq3Qk6epOPHovRaLM2IFZ+dYmfNMI0oLvmAq+SCxt0T/PLFWhT45B4ZxZAsGhQX8it08mPewxCvciaAJvoosJwuPLlaaMYee2kwlb3R+ptSPaiAAsPIuZ+msjA5DZZzy0RL2W5FuHsa2QOVM2J9DFBGNITcKmQksTwUmtHLCr3B71vZPZEoJ9zW5E75uNQZOE0qsEUisHEs5tRuldEnkeL0SDjoRzPyF39mHlyV8pV8iX73oM5cnsCVxe3ReVV1E0L55SoWAxZvcenqt1F/XOz9SNSzEYDEjfkEW+/PC2mUJqUe/8zOwzyvQ6NCqC5fu3mk4aADvOHsHNwZn45CTyu5mHBzva2CEg0KxSbU6UL8RfjbdPDZYSCSu9vJgQ/oJlMTFIEdAjssTDkzx/gB2/jrU1c6Oi6GrvYMo9CNPpuJaaSkc7e0Y4OdH0WSAL3T2o8lJaYpTBmS4hwejESK6kpvKtqxufWVpyNVXN1IgIZC9rIucElVQqdiQmZComZCORoPk/MqV/SvxHCB+BnJCD+vH5l0VwJKgKVTaRAWTs8FW+tUh79ruJEFRFqhJ/Zj2pfldRFc4w7aQF30Xjfw2H2j0zjS938MDjy+WoH51DH/8CJBJsK3c0kQFk7PozKrfpiT32A04tx6Fwzoc2JoSYg/ORWjuQcH4r6sfnUbgWQFXsw5RFRa0GqaUNgmAukSVR2WWrqgqg9C6JS8fplPc/zP1TJ6nhVQCfhi1ZtXE4MkcvDOo4FM75cW7zFWmh91mwbxutq9Xn4DdLeBjsz6OQQIp6+VAyf+7lqssU9KWYd376Lvyab3uNwOGlD+HYjQtcW74zy37D23Wn1ZRB1BnTneaVa/M49Bm/3brM3ukrWHlwG7vPH2dil9eO4XN3r6NUWFB7ydJcr/GPxJWDp0ykUFyp5IBPfvy1WvSiSNGPqL72PlRXWfGZUsnnwUG0tbNDbTSyMyGBMU7OdHN05JJajbdcYSIDyNjBf2HvwPKYaFZ756XES7NOTStrvnZxZU1sbI4JoahSSboo8ntqKuVe5m+IosiOxARq/Uu1jf4jhE+ErExMVZ3KIXNwR6K0xqCOz/S+ISXeTF5aYqHCpd3XRB+cT8K5zSCRYkxNxKnV+CydsxILFTZlMsTakq7tQRsTYva+KIroop5hX6c3uphgonZMQdSlI8gtsC7dBGQWiFo1eRoPxsL7sw92ZipcC6JPjkEbGYDCtaBpbvW9k5lMVW/idV5BXqCe6fqz8Of8dO4E1o2HIFHZmZzZckcPIq6/1rQv5l2A4vk+bse99asFTN20lEpD2pOi0dCkYg2Ozl6Ls13WYY9WShXH5qzj8NVzXHtyl0rFSrFg4EQcbeyY2Lk/Dcb1IlmjpnGFGtx99pQ5O9fRddY8FH9D2/SbpiTIWdjqx0IQBGa6uXMxVc2ZlAzV1B+9vPF9eX8MiMje8VWUCQJaUTSRwSuUV6mYHBGe4/nlgsA0VzeGvQijra0dXnI5x1KS0RpFOtn/+8xF8F+U0R+OS2o1o1J02PVYxIu1g8jTbASql3LT6S+eELVrOu69liCzNbfRikYD2gh/RKMRC/fCpjKV74MhNZEX64fgUKsHViXqIRp0JF7egSbwBu69liAIEkSjAWO6GomFVbZaRh8C9cOzxP22BpuyzZHZuqB+fA6jJgnXzrMyJZq9L9tYb9CTr0djFK0mm6KPAJIubKWJKo1e9VswddNSrj2+i6t9Hvo378T4Tn3NzD4fgjdlsD8GwZEv+GH/Fn73e4CkgA+1e/ShYOmsifHviD+DGLKCxmikfmAAq728KPkycS/NaKRrSDAROh1rvfNS/A1SOJWczLq4OLbly5ereYK1WvYmJhJn0FPBUkUTGxsU/7Cayv+Fnf5NYBRF+kRE8cTOA0mhKiRe3Y1UaY1UKkWaEMEcZyfq29h80qgmbVQgcSdWoY16BqKIMn9ZHBsOQmbtiCgaM5l0PjW0Uc9IuXs8wx/g/RlWJeqaOaZzIzux5dQBRq1bgkXVLsid8qENuIrhwSnWjpjK4CXfsHDQV7SpXh//sBBGrJhJmYK+zO337tPaX4E3HcefAkmxMZzetpmg+3fI4+FF3a498Cxc9JPO8T78mSRxMjmZqZERNLK2IY9MyuGkJEpbWlJaqWRrQgLfublRUvnahzDF1ZW6/9KksuzwHyH8jaA1Gvk5MZH9Gi0gUl4qUNPKikoqlamoyZv4VORgTEsBiRSJwhL13ROkX9hCcnIsNrbOWNTshlXJP+4f26BJQhcTgszOBZnt6/j1d5HB45BA5u1Yy02/B3g7uzO4VVezSKAzt68yf99WQqIjqeFbivEdevLtTysoW9iXYW26m9pFJ8ZRql9LHq0/gr31py9mnxtkRwRGo5FHly/w+OolrO0dqNKyLXY5iPGPCw9jVuc2lKxZl1K16/H8ySNObdlAv/nLKFmj9qdcfq7xR5HElYOniIt4wdUDe9EkJVKydn26T8/Ix9mdmMC62DhCdBlRRoNzGWX0b8J/hPAPRm4JQ33vBNLTa1nonIcySktuajSMiY5FbDAQq2xqKn8IRFEk9fwm1LePUsCrABGRIdQpXZkfR03HSplZeO1hyFMm7ehFpybl8PXxICImhY0HLtHcdxg9GrbPcp7qI7qwaNAkM8kHgAqD2rF+3GxKFfhjd81anY4VB7fz84XjGIwG2lWpy/A23ThQMmtROACDXs/KEQOJDAqkQpMWxIW/4NbJowxYtIIS1Wtl23fz1AlY2dnTfswk07W7Z3/jlznfMuPw6X99gfjs8Feavv4O+I8Q/gYIeFli0EKQ0MjG5p1FOj4WOSGHuJW9WWlnaYqkALiaqmZEih6H/mtyPJc2Ooi0oNsIChVWRauZRUy9QvKtw7gFnOHojBU42zmiSU9j4OJp2KqsWTZsyuuxiCVatpsA3WaspZ44SMoiRUW6MYkE4x2SdCEUtuiNm7EDCjKL1fVb+DW+eQsyukNv07WIuBjKDmxtygLODsmpapYf3MbBG+exVFjQo3ZzujVohUQiQRRFLj28xZ7zx7ny9D6B4SHYWNnQs34rxnXog1wmo/2MUbwQ9DQaOBSpVMZvG9eQEB/H+J92IsnGh3F+9y9c2PUz4zb9guxlgZZHVy6ydtxw5v52BVk2ekATG1Rn+KqNeBQqbLomiiIjqpRi+oETOLhmn0H+oRBFEb8b14gICsSrSDHylyrztyWfML8nnNqygajgIPL6lqB+9z7k8Xid3/EuYojW63mSnoabTI69VIp/ejqecjne/6ACOv9lKv/FWBYTzY6EBBrb2JBqFFkWE810NzcaZyGzHK/XszoulrMpapQSgZa2tnRzcET+nn+89yXQiaJIclI0pd3Md8xllJakPPcnJ7EUoiiSenot+qcXaVOtHuHxgZxbuxGblhPMM6cB8d4xFo34yhSdY2mhZP7ACZTo05x5A8ajVFiQKLmCn2ICjoZ6lJeswcroC29J/KsVj3kubuOusj2FtXOxM1Yxe3942x40m9QPF3tHWldrgP+LYEavnEPfpp+/lwzSdVoaf90fC5981B8/CU1KCvNXLuOq332WDfqKPoumcObRbVLUyTTo0YcvOnYlOS6WffNn83jJVAY368Sd54F8c/SM6QHuVdSX+T07cefMKcrWz7rC2q0TR6jfrZeJDAB8q1TH2sGRoPt3KFQ26/9ZKzt7EqIizAhBk5KMXqtF+QfoDAGkJMSzdGBv1IkJFChdll9XLcPVJz9Dlq3BIhdS238GHl+9xIrhA2jY80vK1m/Mg0vnmN62CRO37jHdszejqURRZOe8mVzYspH8RYsRHPQMnV5PXu+8RDwPpbxSyVwHB6z+YQ7m7PAfIfwBuK3RZCox+DjNgV6hIVRVWZk05F8h1Wike2gIlVQqFnl4kGw0sjI2hodp6czz+LBC6a+Iommb+djau3JTk0ol1evY6hsaDTYOOSu2owm8gSrsDtfW7jc9bM/cvkq7GaOwGLQZyctCO49r56XQuhTyupiP62TrgEQiQZ2mIU15E3/FJIpoF2BrzObhJxajKN+SpL2Bn2IsBbUzsTdWN73/Wf4i7Jy2lOmblzHshxm4OTrRv3knRrTt8d7Ps/vcMfR2Ngxdssq00/WtWoPJ9avi6+nDzfAgqnb4nJgXYbQeNgYABzd3Bq5Yy6Q6lcnv5E6J2nWRyeUE3rnF9lnTCH30AFEUOfDDAtwLFEQURVzz5c90WhAkUgwGg9k1URQx6PVI3hPxVbNjF3YvnEve4iWxtndAr9Oxa95MytRriOUfVC9gx9zv8C7mS7dpsxAEAaPBwOoxQ9m/bAGfT5jy/gH+RPwy9zt6fjuX8o2bAfBZrbrYOjoxv1cnJu84aHZSADi/62ceX7nErLPXsHZwxKDXs33mVJLj4hi96xCbxw5n9s1rzHD84xRX/274y6hPEASlIAjXBEG4IwjCA0EQpv9Va/nUOJaclKnEYDGlkvIqFefV6kztDyUlkU+uYKqrG0WVSiqoVKzw9OJaaip+6eaF6e9qNCyIjmJhdBT307JP9oIMYphiKWVsdCyX1GpSjUbOq1OYEB2LvGaGQ1YURdJC75N4eQcpd49jTE81G0N8eoExbb8w23nXKVOZgi7uJJ7KMDm9chbX+qwiO84eMb8fNy7g7eyGyjbxJRksypYM3oStsQJFtIvwV3yFRgg2e69ysVJ0qtOMQh55iU9O4uTNS1x5dOe9Y557dItSjZubmT0sra0pUbUma47vpmb33rzw96N4VfMEPYXSksKly5Ou0xIV4E9M2HOWDOhJvS96sfz3Jyw4dwPPwr5816E5i/p2Z0L9qvx+4iiX9u1iWquGDClXjIhnARxdu5L01Nf3+NbJY+jS0/H5zPy09TZqfd6VIhUqMbFBdeb1+JxxdSsT++IF3abNzMmtzBH0Wi37li5gXN3KDKtYghtHD1GjXWfTvZJIpbQZMZbLB/d+sjk/FqIoEvP8OeH+TynbsInZe1VbtSNdo2HliAG8bR4/v3Mb7UaNx/qlxLZUJqP9mK+4f/4MWo2Gjt/M4mhiAunGzBXq/qn4K08I6UA9URRTBEGQAxcEQTgiiuKVv3BNnwQi76oWnMG+Ipl9Ng/SNNR8KzPSQiKhskrFg7Q0Cr8U81oWE83exETa2dkhAsPDwuhgZ89gp8w29jfR3NYWCTA/OopnWi0FFQqkTUejKlod0aAnee8MFC8e08pSSYBB5PfT67DrNPN17L9oRPYOu7iNyhpl8DUe155ruvZV1wE0HN+b2KREGpSryp3AJyzbu5l1Y2cRKd+Oq74DtsbcxeLbGMviqv+cCNk28uteO1SX7N3M1pMHWDhoEsXzFeLo9XN0njGSPdOXU6FI5sJAoijyIjYKR5UND58FZno/8PEDUhLiEQ0GXPL5EHj3FlVavpbWNuj1BD28x4JJvdj6/Th+mjaRqq3bU7VVho6UtYMjfWYvYHy9SwxdvpY0tZolA3pimycP3b+ZTb4Sn3Hv7Gm2fDuZiQ2rU75RM+IiXhB4+3eGrdpgkr/IChKJhE4Tp9Lky4GEPnlEHndP3AuaJ+Q9f/qYa7/uR6/VUqZeIwpXqJQre/+6iaPQpCQzYtVGrB0cObtjG8uG9OGb/cexdcyInFJaWaNLS+PGsV95cOEsltY2VGvTAa+ivjme51PhxtFD7Fowm+S4OIxGI0kx0di7vC5MFBsehr2LC4nRUbzwf2oWoqtOTDRrCxl1J+RKJWlqNQ5u7oiCQJoo8s8rmfNu/GUnBDEDKS9fyl/+/P94uLNBQ2sbdicmkviGacAvPZ3rqanv1JR3l8t5qjU/CYiiyNP0dDzkGZz9ND2NXQmJ7M7nw1AnZ4Y5ObMznw/bE+J59lbfd6GprS17fPJzq0hRdvnk5+yjvRzZN5aUO8fwjvLjmLcnE52dWOPmzAwHO9T7Z7/eURWswsJdG0l940Ry/ck9nj5/RlxSgtk8hTzzcW7xNiQSgcW7NxH4IoSDM36kbrkyREsP4WLomOP7+CZc9O2JlR7GQMbOOl2nZeHO9WyfvJCan1Ugj609X9RvxeQvBrFg5/pM/c/dvU6ZIe2pMKITKw/9zLndP/Pg4jmTueboulUY9Hq6fTuHE5vXUaVVe64e3MeFPb+g1+lIio3hp8njKOFdAL9mtRm9fhthfk/wKWke5SSRSslXvCTRoSEUKlseiVTKoCU/UrxaTazs7KnSsg3dpkzBycsLl7z5qNC4OXNOXspVwpqdswsla9TORAanftrA/F6dMRqMKK2tWT9pNNu+m5JpZ5wVIp4F8OjKRYYsW41XUV/sXVxpPXQUxavV5NwvW03tTm7ZgMrOjiOrV+BZuBhypZL5vTpzfvcvOf4M74I2TcP+ZQuZ3KQ2ExtU5+fZ00lJyJzd/wqPrlxk24xp9J61gB9uPKRKi7ZsmjqBdE3G9zQlIZ4dc2dQu1M37JxdUCeYf1eLV6vJpX27zK49vHQelY0tju4e3PntBN6WKmz/8yH8ORAEQQrcBAoBy0VRvPqONv2B/gDuf1ChjE+NcpaWNLaxoXXQM5rZ2KJ+WWJwiqubqd7sm2hnZ0e7oCBTlmS6KPJjbCxSASpYZjjuTqek0MzWxswMlUcmo7GNDadTUsjvmLGHURsNXE1NRYpAlSzyHACi9Dp2JCRgGbCGvJYqEg0GUxRUExsbZsU/RxcTgsI5H6oiVYk+s4Zyg9rRuU4zohPj2HfxJD0btePKo9uZxvZ2dmP2l2PMrkVKd2FrrICF+GGRMBa4YWusQIz0MK6GDkTExaCQKyjkaZ6VWqd0ZX7Yt9XsWmB4KJ3mjKXHnIWUrtsQrUbD+gkjWTV8ALa29iQmJeDo4cno9Vtx9s7Ho8vnWdCrM0UqVmbf4vlsnDwOhVxOpVbt6bB6HQDuBQpRt2tP7l84a3aKSNdo8L91g06TpqJOTMRo0JOvqA/W6p+wUW9BoXuCTwXoVE6PQR5HslVnkpUajHycdk58ZAR7l8zjm/3HcfLMENVr2LMv09s0we/GNYpUrPzeMcKePqFg6XLILcwlIUpUr8XBFUuwtLHlybVLPL52Bde8Pkzctgfpy+9MlZZt+aZ1I7Z+9zWlatej/eiJuObLLMaYFURRZPnQ/sjkcvrOW4rcwoKTm9Yxv2cnJu88+E5J8BOb1tJ21HiKVswIOOj2zUxmdW7DqGpl8C5WnDC/J1Rv15ES1WtzcMVi8pX4zKx/8wFDmdWlDSmJCZSu04CQh/c5+dN6GvXqx8EVizm5eT2DlqziatUaVGlZn4SXGzz7j8yE/zvjL6U+URQNoiiWAbyASoIgZDrni6K4WhTFCqIoVnDMoXzDXw1BEBjj7MIqTy9spRLyKxTs9clPc9vXEUaxej2rY2P5KvwFB5OSmOvuwYa4OKr5+1ErwB8/bTqrvLxNwmIKQUBjfL3T03mmoa4fR+nOGop1VJNaO55T8njqBwSwNT6edXGxNAgM4PI7fBZ+6em0DwoiwWBghLMzVhIJ7YOe4f+Gv+Jl+XMAntTxYdvYmSSqk7gT+BhblTUj2/Vky8l9TOs+JEf3JFXyBDtD1mqnOYGtoTJqySMAXOwdSU3T8DwmwqzNjaf3KORpnvy25sguqnfsQpl6jRAEAQuVigFLVmFra8/33YdhY2HJ4KU/4pLXB0EQ6DF9DsN/3MiDs6cZ17wL/puOs+z3J/Sa8T2Wb2TB1urYlcdXLrJ3yTxiwp7z7N4dlg3qTana9XDJ64PKRkWfXka8witgmXaWONvJBHs8JsgziGCvZ0Q5rkSuD8ErsibKwF6oY0M/+N7cO3eaUrXrmcgAyDDltO3ArVOZS6G+C64++Ql+eA+DXm92/dnd2zh5eBLm95hilavhW7kqtT7vaiIDyCDIgmUr0H3abDwKFmZO1/YkxcW+PUWWCLh1g6iQZwxetpr8n5XGq0gxen43G3dvJf7n1iHTP0MwJpv1iXkeSj7fEqbXCqUlE7bsyvjWCgKdJk4lj4cXC/t0oePYyZmiohzc3Jm6+wjOXt4c37iaq7/uQyKVcm7nNgJu32LC1t34Vq1BxLMA2jk4Ui88nAbPQ+kRHU2QVpvjz/b/hL/FE1YUxQRBEM4ATYD7f/FyPhmKKZUUe4eQmX96On1CQ6hjbU15lYqbqalsiY9nk3deLCUSLAQhUyRSYxtbOj0PpHcZOTYNUjDk0aG4bU2dZGuQgNZBQ9GWyex+YonThTwoHqm4kaphxIswjuUvgM3L8ZINBoaHPWeAYx66vYyeaGFrh0+cnEUx0Sz39OJESjIOtrbcaV/TZH+uX64qe6evYNHujRy9fp6i3vnZNW1ZpsSwrKAnGSkfl0UqwwYDGVZGSwsl/Zt3oufcCawc8Q2FPX04desyX29YwsZxs836BcVE4FG5qdk1iUSCV+GiyGUy6pWtwvVD+2k5bLTp/ZT4ODxd3BnRrgc/F3biXXtCG0dHJm7by/5lC5j5eUYNBkEQqNXpCwJvX8FHN44GbXx54boCg+ytWgeCHK2iFDGKeUjsJmMTPRW7wPrsXNeKVqPnmD1scwK5QmEylbwJrSbNLMQ1O3gV9cWjUFE2Th5Lh3GTsbK149L+3Vz7dT9T9x7B0S0j4i3k4QM0yUlmfQ16PVHBQWybMQXRaESmULDtuykMXLQiR3MH3b9H8Wq1kMpkSAzR2KRux1a9hW8npKITf0IRswWpMQaNRXWSrXqisahFvuIluX/hLHmLv95HJsXGIJPJKFO3AbdOHsXawZFBS1ZRqFzFd85r4+iIb9UanNy8nrYjx1Oiei2CH9zl59nTCX38ECdPb+b36kzjLwcyem3GyfP0tk30XjKPwx6eJtnufwrem5gmCIIF0B7w4Q0CEUXx24+aWBCcAd1LMrAEjgNzRVE8lFWf/7fEtKww8Hko1a2s6P5GAfE1sbE8Sk9jgGMejiYnY0CkvrWNqXyg0UpP8IAQFEaBPGecsLhrjWA0dxYaLYykVUwitX4c8iAltlvcGRkSRh1ra9ra2WMURboFB3M3PY1rhYugeuPLnGIwUM3fjwY2NlxPTWXv/M1ULGp+xH4FvUHP97+sZe2RXcQkxlGzZAWm9xr+TkfuKwTKv8HKWBJXQ4cPvm+R0l2kSO5RUJcRkGYwGJi/cx0rDmwjPiWJIp4+TOk2BIlEwtm713CydaBLvRbsvXiSgy/86Lv49cNJk5LCpDqVubbkZwxGA3XG96Jci9aUrFOf0EcPOLFmJetGTCeha9uslpMJoihy9dA+zu/aTu9OTylavjSxLmtByEHxeVHEPmEW6mc72H/tC5oNHJ+re5OalMiE+tUYtXYLBUqXBSD2RRjfdWjO2A3bc+zw1aSksPP777h8cC96rZbC5SvSacJUM3PLk+tXWDdhJF/9vN/klF0+rB/xEeEMWLgCJy9v/G5eZ/nQvvSbt5SSNeu8d97bp09wZPUy5q2qgLV6O6mWzUmy6oFW8XrDIRhTsdbsxUa9EYlRw/2UCUzrNpkWg0dQtFJVIgL9OfDDImq070STLwfm+N4t/LIbFZu1pGb7TqZrT29cY/3EUbQYPIIbRw8xcvVmsz5Lu3Wgc0gQrezscjzPX4lPlqksCMJRIJEMW7/JSyqK4oKPWaAgCKWATYCUDNPVjveRzD+BEIyiSJmnT7hauIjZ7iLBYKBugD82Eglt7eyRC7AvMZGmtraMypuH+LEhKO5bYb3PGUHMPmpEVBhJ6BuGYBBY/J2UQnILujk4ckWtZk5UFJF6Hbt8fPCUv945Bmu1dAwOYoyzM01tbCm9dHeW449YPgP/sBDmD5xAXhd3dp87zuT1izg1f6NZQRnTZzYacCGsHQAAIABJREFUeaFYg16Ix0c38QPuWgaC5N8jE23w0g/KNL5Wr0NAoON3w4lNSqRDrcaERkew48xhFg/6isk//UCxBg2p3qEzyXGxHFw8j+pehVg+eDIAz2Mi+OHANq77P8LHxZ2hLTpTtlDxDxKns9QcxzFpLi9cDiEKuagHLIo4xXzJ/s2XqT7mUa7n/f3kMdaOG0bBMuVRWKp4eOk8LQYNp/mAobkey2gwYDDosyzn+euPP3BkzQqKVa5KVEgwkUGBzD5xwXSKALh6aD8Xdv/MmA3b3zufQZdG8m+VKFSqIHEu6zBKs4n9F0VUab/ilDCJyyH9WDxhC0mxMSAIuHjnY+DilbkS/HuV6f1mxJFBr2dwuaJUadEGG8c8dBj7lVmfXfNnU2jPzwzMk32E398FnzJT2UsUxSbvb5Y7iKJ4Fyj7qcf9u0MgI6Q02WjIRAgCsDOfD64vs1+7OzjSNugZnXprsH2iwnqvM8I7A1rfmkMrwf5HL+KHh+DRLpUav2U81Py06VRQWSIXVMyPjmauuweKl9ryc6Mi6WRv/14d+Mj4WHacPWImD9GjURtCo8NZvn8rS4Z8bWp79s41pm1exrXHdylZ1IGly7R4MwIpuS+abiSNGOmvlEzfmuk9iUSCUmHB2sM7Sddp6dGwNRfu/04eW3tm9hnFuDXzOL9oCwv3/sTGof2xUVkzsF5L+jd7XbPZy8mNOX1Gm437oUqlturNJFoPyB0ZAAgCSXYjad70PAmiAYTcOS9vHD1EXt+S+HxWGolEikKp5OqhfTTs+SUKZe7WIpFKs5XgaD5gKNXbduTx1UscWrUMC5XKjAwA8pUoyd4lIVmMYA6XlGm4lytJlNNGEN5j4hIEUi1bECXJQzlNDzoM+IJy7SchCBLO79rOgt5dmXn0jJm/Jzs4eXoT+vihiRCeXLvMmnHDsXFw5NGVi6QmJVKuUTMKlMooYmU0Grl/4QxF5yyGeTNyNMf/C3JiALskCMK7bQf/IdcQBIFWtrYsio7G8PJ0phdFFkZH4aNQmMgAwE4qpUdpK6SeWmx2ueSIDEzzGATsNnrQoo1IXpsM3s+vUHBHk8awPE4YRJGGAQEMCXtObX8/Yg0GhuRgtxMYHkphT59M8hDVSpTlcegz0+ubTx/Qfc44hrftTtKBm2wauY6QQBWx0qM5/gxvIkZ6DGtjSZSiV5Zt9l86RXhsNEevn6dpxZq4OzoxbdNSLGRyQqMjWdh/PA9X7efqwq0MbNH5vXH/HwKZPggL3R3UqqzrOmcHraIUUuu8WKb9lqt+YX5PeHTlImM2bKP96Im0HTmO/gt+wMHVnauH9n/QWl7h5rHDTGvVkL6+eZncpDYX9mSEl9q7uFKlZVsmbd2DQW8gzO+JWb8HF8/jXaz4e8dXaO+jSjtJdJ7V7yeDN5BmUZVU50m0ahiIXGGBTC6nbpceFCxbLlefuVHv/mybMYXQxw9Jio3hhyF96fnd98w/e525py7T49u5zO/Viac3rhF0/y4/jhqM0sqaEn+xwuwfgSxPCIIg3CMjzEQG9BYEIZCMZDKBjDSCnHkT/0MmjHZ2ZmTYCxoHBlDK0pLbGg2OUik+8sz/DEUap2F93iGTvyAnkMbLsfSzIq1SIqrzDlRVWbGYaJbExjDd1Y0wvY5NcXEoBIH13nlJF0V0BgOlsjEXFXD3xi8siER1shkpXH54m6JePqbXS/duZkLn/rSrkaHr45u3IMrUsfgZvseBOshzpKKUAR0JhMlWmyWlvQvhcdEU9c7PjilLTM7wppVqU3dMd3KrxfahpwOV5ihqyxa5Px28Aa1jD6zSfkVj2TDHfQLv3qZ41RpmIaOCIFCqTn2e3b1FzQ6dM/URRZHrRw5ycc9ONClJlKxRhwY9+qCyfW0Xv3XyGNtnTaPXzPkUq1SVwLu32Th5LEa9gVqfdwXAyt6edqMmsHxoP7pMno5XkWLcPfsb+5ctYPS6zCe6tyGLWE6i7ReIktzLb6RYdcEhZSEyfQh6WUZ0mXex4sSG5Txiq3KL1mhSkljUtzualGRK1anHZ7UyVIAFQaBSs1ac37mdlSMHorKxpUKT5vSetQCJRGJWfvSfgOy2SC2AlkBTMvIEGr18/er6f/hAWEmkrPH2ZqmnF/WtbVjh6cVqL28upap5nJZmahcqScO7qhbVJftsRsseqnMOaGplJORIBYE1Xt4kGwzUCwyga3AwWlFklps7g5+HUj8ggLoBAbSa0IfgyBfvHM/VIQ8dajah2+xxPAl9Rpo2nS0n97PywHaGtO5mavf0+TOq+JYx65tf1YSzZ0QeyYegJzFH69eTxBPFMBwNDbA3Zl/rWSGT07txe7PM3FIFiuLp5Ipo/HNyHqXGGPRSz/c3zAZ6qQdSQ85CNkVR5MSmtexb/D1XDuxlZqdWPLh4zvR+mN9jHN3fvZ69i7/n4IolVG/bgbYjxxMZ/Iw5X7Qn7Y1Q5V9/XEa3b2ZRskZtZAoFRSpUou/3Szi0aqlZwlv9br1oNWw0+5YuYHq7ptz+7TgjV2/OlLj3NgJvnsbOcAy1Tbds22X5+SWWJFt2wEa9xXQ/7p8/g0/J7GVAAPQ6HdePHGTrd1NIjotl0vY91OzQGfeChTO1dctfkCZ9BjDzyBnajhiH8g1lgbfLj/4/I0tCEEUxWBTFYGDGq9/fvPbnLfGfi+JKJc1tbSmmVOIokzHdzY1eoSGMDAtj3IsXjNcHI4+XI0368OhgxRMVeo90k2SGg0zGLHcPbhYuwq0iRZnp5s7kyAia2NhyuXBhLhQqRPGIEJqP74VOr3vnmAsHTaRysVI0mfglTu2qsPXUQXZ/s4yi3q8dysXyFuTC/Ztm/V7ERvHDynQsdSW5b9GDeMl5RAxvDw+AiJF4yXkeWPTAWixJXv2I937WfK4exCSaZ7YajUZS09Owy0UVrY+pciZkVAL+4P4Zg8ggi/vyNg6tWsrl/XsYtnIDq+7507jPAFaPHcaTG1e5fuQgN48dpnq7zzP1S4iK5Letmxi/eSeVmrfGt0p1+n6/BGevvFzcs8PULjzAn8JvhWwWKF2W+MgI9G9lyFdp0YYpuw6x+NJtRvy4yRTtlB0eHpqGTlkOg/T9BYKyglrVBnnyEYIf3mft+BEY9AbKZKM4CxlZ0Qt6d+HEprU4eXqRGB3Nd+2bY+fswu/Hj6DX6cza3v7tOEUrVc1yvH8KKeTkm1vizRcvs4vL/zHL+XejsY0tlVVWnElJwSCK1Cxkgywt7qPGFIwC6AVECxEh/fXO+VXC26/JSZRRWtLFIcOEIxcEBjg6cjkqisPXztG6WubjsFwm5+tug/m62+As6w+PaNeDlpMH4mznQOvq9Xn6PIiRK2bRr1lnCjOcGP0RnsuXE8QsXAwdsTaWRCpaYRDUqCX3iZTuQoYNnvr+OBma5eiz9mjYhvGr59GwQnXcHZ0RRZFl+37CzdEZ37wFP+T25RpGwQ6pMecJWe+C1BiLUfL+cEZdehonNqxhyu7DOHtnmEsqNG5OamIiywb2Jo+HJ8NWrn9nnYRnd29TqGx5bN5Q8hQEgQpNmnPn9Enqd++NLj0NuVKJ3+/XKVP3tfkq8M4tHFzdkL0VgWTQ67l96jh+v1/H3sWVqq3bY+dkXivcbP3adFLjnoFFmSzb5AQGiTNGTRQ/jhpMuYZN6TZt5nvzOM5s/wmllRXDVr7WkCrXsAnrJ43Gq6gvi778gvrd+2DQ6zi+YTVFK1V972nnn4DsfAiTgK8AS0EQXmWhCIAWWP0nrO1fCXuplDYvY5t1Bg1Jio9TWhQFEWQigvbdRvQwnQ5fZebQwqJSaZZmozeRlXBamYK+/DJlMd/+9AODl07HPY8zA1p0ZvjLkpdOhqY4GZqSItwjUraLBNkFDEIKUtEKpZiXwtq5WIklc+VIb1qpFncDH1N2QBuq+JYmJCociSCwa9rSHAu85fR0kBQXy4VdPxMe6I9HwcLUaN8ZG0dHNBbVcY4fSbztJPjA2tUqzWE0ynrvbZcYHY3C0tJEBq9QuHwlrOzs+Wb/8Sw/t62TE1EhwZkIPTI4CFvnjIf4+V0/Y+/iypZvvkImV1CscjWe3b3Nj6MH02zAULN+6RoNi/p2w6DTUq5hU8ID/JnSvB5Dl6+jSIV3Z6hLZXJkCgWi+HHfcQERSxsbZh079/7GL3H79Ama9BloFlhQvFpNLCxVtBoyiuCH9zi9fTNSqZQ6nbtTtXXW1fte4Z/gT8iSEERRnA3MFgRhtiiK2Xvz/sMfAkm8HIOTDlFuRNB92MNF756OLkGaZe5CcaWSrfHx9HfMY/oHN4gil9PT6VHo49Qrq5Uoy9E567JtYy1+hrXu0wWxTejcn95N2nPt8V3y2DpQxbf0J6/uFR7oz7wenShZszaFy1fC//frTGvVkAlbduKarwJGiQrL9PNolLmPQpHqw1CmXyXa4Yf3trVzdiZdk0rM81CcvF6X7vS7eQ3PIkWz/dwFSpdDYWnJoVVLadZvCFKZjIDbNzm9bRPjNmeYjO6cPkXLQRmmul3zZhL65BFuPgUQJFK8i5pHD/22ZQNWtnYMWb7W9JAtc6oRGyePZebRs+9ci0QiwfuzOhhTQ+DDrXRIjZEYJDkPUgCQyS1I15jLvBuNRrRpGpRW1tTt0oO6Xd5fW+OfhiyfMoIglBMEoRyw89Xvb/78iWv810KaJEMeYElahaT3N84C6poJnD+WNZnUt7YhzSjydUQET9LSeJCWxtjoaLzzFqR6yf9Py6CLfR5aVKlL1eK5K/WY09PBrnmzaNS7H31mL6RWxy70mb2Qhr36smv+bBAEkq16YZuyBj6gPK2tej0pqvaIkvdXI5NbKGnUqx8rRwwk+ME99FotN48fYc+iuTTtOzjbvoIgMHzleh5ePM+YWhWY3KQ2K4b1p8e3c/EqUgwAhaUSjTqZ8o2b8c3+46x7HMqMI2eQyqQoLM2jqG6dOkb97r3Ndtxl6jVEp00nPMA/y3WU/fx7LI2PkBrefxrNClape0lVZu8zeBtVWrbhyJqVZg708zu3Y2Vnn0lF9t+E7AxtrzKRlUAF4A4ZJqNSwFUg+5CP//BOBKanszE+jifp6XjL5XR3cDTJU7wLqnMOxDaLwvJy7iONjBYG0iomcXuIBV2ymEIuCKzz9ubH2FhGp6iRSaR0aNSesZ36ZnqYiqLIk9BnJKYmU7pAMZRZZLG+DYPBwPl7N4hMiKWKb2nyuX5cFM5fCVEUuXvuN/rOW2p2vXanL9i7eB4AKap22Kg3Y5+8hATbkTkeW6U5jHXqPl64HMxxnxaDRmChsmL5sH7Ehb8g/2el6Td/GYXLv1u75004unsyYcsuokND0KQk41m4qJntvWqr9uxZNJcy9Rph/TJh8cKeHcjkCvL6mrkWkcrk6N4q5iQajeh1OmSKrKU7ZMo8JEiboUrcRLJj7g0RglGNdepewlxP5KpflVbt8L91g4kNq/NZrbpEhwQT8+I5o9Zu+agT5f+72Sg7k1FdAEEQfgb6i6J47+XrksC7C/n+h2zxKC2Nfs9D6ebgQHs7e+6npTE07Dkz3dyplUUJxMQ7FiS01eFQKQHLa7kjhZSWMdz/XaCOzoHskoNtpVLGubiwYtGOLNsER4bRfc54wuOicbK1Jywmku/7j6dz3ebZriEo4jltpw1FqVCQ392bMavm0LVeS+b2G/vRppwnoc/YcGw3EXExVPEtQ7cGrbC2/GPr/AqCgIWlitSkRLOyleqEBJQv1TRFwZLIPJtxj26HIKYRbzv+vf4Ea/UvOCbNIiLPFgzSnJdNFQSBRr360ahXvw/7QJDJB/EKZRs0JuD2TSY1qkGJ6rWJC39BfGQ4I1dvzvS3q9yiNYdXL8e3anVTVvTZHVtxdHXHJa9PtvP7xdSigsMU1PaDMEpy9x23Uf9EmkWVXN0zyDBX9Zg+h4Y9+nL11/2EB/iTGBXJnC5tqd62I21HTcAim43aPxU50TK6/VKiOttrfwb+37WMhoY9p5rKiq4Or+2dZ1NSWBwTzZ58Pu98QN5MTWWrZSQT5+mx+8kNi3vvD58UEUluHEtohVhOTLZjhKXrex+++bMhA1EUqTLsczrVacbIdj2RSCTcCXhMm6mD2fvtcsoUzNrXUHdMD1pXr8/Idj0BSFQn02Til4xo1/O9ZJIdjl4/T/+FX9OnSQcKe+Vj/6XfCHwRwonvN+JgY/v+Ad5CbkJNt82YSkpCPF/OWYRUJsOg17N2/AjsnJzp/NU3pnYSQywucf0RtM9Jse6B2rqLmUaPYNRgpTmAInoFFnItMS6b0ckzx8D/1Yh5HsqT61ewcXCkePVayOSZd/xGg4F1E0by+NplStWuR2TwM6JDQxi9dut7TTCpyUkEbK9IgzbFiXLahijJ2YPYMu0UTvFjCHfajV7+YVFkCVGRfNOmMS0GDqfmS52rnfNmotfpGLYie/9XVvg7nhA+pbjddkANbCEjc7kbYC2KYpdPsdDc4P+dEKr7+7HPJ7+pEA1kiN2V93vKhUKFsXqHlEKMXk+LZ4EcreeJbkg4lhftsDzrkGVugt41neQmsSR7apAudcczJWc75uwI4erjOwxYNJVbq/aZEcu0TUs5f/cG+d29KOiRl16N2+GR53U8eWB4KPXH9cJ/03Gkb+ji7LlwnI3H9nDgu1U5WtvbMBgMFP+yOWtGf0etUq9NI/0Wfo23sztTc1ij4U3khhDS1GpWDB9AeKAfBUuXI+D2TTwKFWXw0h8zae4jipxY2pv6tePxdnyATpoPicIBiahBpg8iXVGerRvjcSg1kPKNPpwg/y4IeXgfv99vYO/sQum6DXIsvX149Q+UdV1NmUpexLiszX7HLxqxTt2BY9JsIh3XkW6Rs/rcpu6iyMW9Ozi+YQ1RIcFUadGGXjPnmd7Xa7WMq1eFsRt/xrNQkVyNDf/fhJCTPITewCDgVWbQOWDlR6ztXwtnqYxgrdaMECL0eiwEAYssdvBOMhlNbWwZcymWSfFuSFolkzwtEB6ocLhtiyRZBhIRg70eTdVEdO7pGM/b4PlzPqTpn6bcRUxiPHld3M3IIDgyjA1H91CrVEXqlK7Mjaf3qDrscw58t4rSBTOckuo0DTaWKjMyAHCwtiXlHdr9OYVfWDBSicSMDAB6NmrLxLULPogQcgOllRWj120h+OF9wgP8aNZ/iJkmvxkEgagkbw5fLofEWA5LWSRNe3VFFFTopZ7ocOLYoaoMa+7z0esyGo1c3LuTqwf3oktP57Pa9ShSoRL2Lq7vNdt8KuQtXhKPQkXwu3mNJ9evUKRCpUwV2N6FZv2HcuOYD4mnv6detZpolLXROPQlTVGVV7ojEkMc1qk7sFX/hFFiQ7jTTnTy3D+wT25ex5mft9Bt2kxObdlA0crmCWcyhYICn5UhIsA/14TwdySD3OC9TwxRFNOARS9//sNHoLODPXOjovjB0xNXuZwEg4FvIyPoaG+PLBuTzmRXV9bExtL/TgSxN/U42wgMbWmgRPlY1JZ6BINAnjQFW/bpOHZGRK9PxlWmYYab+zsL9OQWlYqV4sv5kwmPi8bdMSNGffrmH+jbrKPp4du9YWvKFPRl4tr5HJm9FoDieQuSptVy/t4Nan6WsTkRRZF1R3bTtGLND16PtUpFcqoarU6H4g3zRWxSAjZ/sA/hTeQrXpJ8WRHBG6jSqi0rhvZj8LLVLB3YGwvXelRu0YbUxCR2LZiAW/6CmZy0H4LNUyfy/MlDmvUfioVKxbH1P3J8/Y9IZDI8Chai3/wf3pmk9inx5NplVo0egqObBxKJhDD/J+T1LUmFxs2p3u5zM7/L26jQuAXQgnBjMtFXviavdR+87NPQGlTIpEbkUj1qy2ZEOy4lXV7ORBS5gV6n49cff2D85p14FCqM341r+P9+naqt2r1uo9USeO827cf8+6Lts0tM2yGK4udviNyZ4T9xu9yjk509MXo9rYOe4SqTE6nX0czWlmHZZHMCyASBQU5OdLC3p8WzQLY658f1phxuZiiltn0WSIwhjbEuLozLZ4cAHEhKYsDz5xwukB8rycfVgHW2c2RU+540ntCHcZ/3xdnekYOXT3N79WtFSS0xNG6i50r8DYKEFSgljtgJlVk69Gu6zhxDtwatSNdpOXr9POk6LYNbfrjF0cvJjc8KFGH+znVM6jIAQRCIT05izvYfGfYy8e1DoNOmc+6Xbfx+8ihSmZxKzVtSrXWHbGWgc4KCpcvRuM8AFvXtTl7fEuycN5MNX41BKpNTsXkryjVqypyu7UhJiMe3ag2a9RuMg5t7ruYI83/KndMnmHPiosls5Vu1BnO6tqPeFz2JCAxgxfD+fPXz/k+el/EKqclJLB/WnwELl1Oiei0AAm7fZOGXX6BQWnLm55+YuG2PKWIpKzy6fo81Ey4wbOUv5PcqSHpyGLsXLiQ5RaD/AvPorpvHj3B07QoiggLxKuJL84HDKJmNCmlybAyCIOBRKMNXU7vTF3zTpjGu+QpQs2OGD2HX/FkUKlPe1ObfhCx9CIIguIuiGC4IQr53vf9S0+hPxf+7D+EV1EYDoVodbnJ5rgp2H0lK4mBSIiveSEICmPjiBVEGPevfihYZHvac2tbWtLfLPnIjO/+B2fzXzrHp+F6SUlN4EOTHoZk/kq9gMpHSHSRIL2JnqIlM74RMqkAvxBEvPYulsRDGyLr0n7aHpNQ0+jbrSHKqmvVHdzPu8y8Z3Kprjj//mwiLiaTjt8NJTU+jsGc+Lt7/nR6N2jD7yzEf9MDbmt+exf17IIoi9bv1Qq/TcWzdKtwKFOLLOZ/mcJwYE82jyxewsFRRuHxFlFbWHFi+iLtnTtFm5DgcXd25cnAv148eYsruw9g65tyvcfaXrfjfupFprcc3rCY6NIQuX3/LxAbVGLp83Sc5jUCGierhxXP4/X4dOydnjEYjj69cZOhyc2fsxsnjcCtQkBcBfti7uNJuZPbV4JYP60fJGnWo3ekL07U0tZpxdSox4/Bp7Jwz/FRXDu1j94LZfDF1BgVKl+PJ1UtsmzGVL+csyrJKm06bzuga5Zi256gpme+Fvx/rJ40i6ME9rGztqN7uc9oMH5PrGhJ/Z3PRR/sQRFEMf/lrfeC8KIp+n2px/3ZYSaQUU+Z+12klkRD1VgF0gEi9/p3yE/kVFkTqMrf/UDStVIumlTJ2fjO2LuOGZjR6Objru5FfNwXZq5rJL6c06rTESU/y3HkzIydG0cxpD9aKjJoLPRq2ocqwjjQoW429F49z7u4NHG3t6dOkHXXLVHnvWjydXLm45GeuPr5LeGwUiwZ/hZfTh5tD7p07TVJsDFN2/WqKxf+sVj2+alyTkIf3s/YR5AJ2Ts5Uafm6JGdyXByntmxg9vEL2L6sRZG3eElSk5I4vXUTrYeNzmqozGM7OxMdknmPFhkchL2rKxKJBCcv74zKYp8AOm06ywb1ISEqknINmuB38zq3Th2nSos2mdraOjuTmpREzfad2TZz6nsJISEyAo+3bPdKKyvsXd1IjI7CztkFURQ5sGwhfecuNonOVWzaEkEi4cDyxVkSglxhQf1uffhxzBD6zFqIW4GCJERFEBcezqg1P5lONrnF35kMcoOc6CH4AD8KghAgCMIOQRCGCYLwp4ec/geoYmVFqE7HsTcKnAdptTxKT+NEcgr6N057BlHkbEoKZd4RS31Lk8rg56E0CPBnsMSCEzcv5ngNO88epc6YL8hT+mfK+LpSKn0nboYur8ngDUhQ4GRoRmn9Vsp5NSbQZjAGMjJD87l6UOuzitQc1ZX7QX4Mb9ud2qUqMnDxN/x46OccrUUQBKr4lqZtjYY5IgOj0Yh/WDBhMZFm17cXysPTG1cp37iZWWKWhaUlZeo15MmNqzlaT25x/chBnL3ymcjgFcrUb8izu7dyNVbJmnWJiwjn9LZNGI1Gkwz09SMHqd62I3ERLwh5+ABXn/yc+mkDm6dN5MSmtagTEz5o7ae3bQYEpu09SpsRYxmwcDltho/hxrFf0aQkm9pp0zRc3P0Ledw9SImPy9aH8Ar5S5Xl9m/miWaRwc9IjIrE0dOLa4cPcHDFEqJCgihS0XzzULxaTUKfPMx2/FZDR1GmbkPmdu/AgJIF2DZjKl9M+e69ZKDX6fC7eR3/369jeGNj9k8hA8iZU3kqgCAIlkA/YBywmIxayP/hEyFOr+diqhq5IFDTyvqdIagKQaC7gwNTIiJYGxuHrfR/7J13dFTV2sZ/Z3pmksmkd2roIEiv0pUuCIJIVRAQFQuI0kRUEBBpSpNiQSkiXaoUAaVIr1JCSUgvk8lMppfz/ZEQCIQ00M/rvc9aLM1k9j77nMzsd7/teSRctNkYqPPjG0Mmr8XH85K/P4IA3+r1BMlkNL6vDPKExcJbiQm8HRjEuOAQzhvSGDZtDLPf/ogezQsXZFm8dQ0Lt/zAF9NqEhAup7pzMRKKLisUkFLRM56bno+IUYynimMeAMmZ6dQoF83K9++W/LWu04gWb71Iv7aPt8ls/5mjjFw4FYvTgd1mo1aFyqx462OignIMiTYgkMSYB53gtNu3qVy/aI+lNPhj22YyU5JyunnvSY7fvvxniXMIMrmct5etZOmYUWxdNB9EEZfDQcdXRvLnkd/5edE8Wvbpx8wBz1PhiSep3KAx18+cZOfyxYxduY6Qsg9qYReGU7t30OXVUfkM6DMvD2fb4vl88nxX2g8aglQmZ9+qb1F4qfF4PGxZMId2A4cUOfczLw/nk95dkcpl1Hu6E6mxN9kwZwat+w3ik16dCQiLoEyNWii8vLj958V83tvNc2eKvBeJRELnEW/QcdhruBx25EpVkWHGP4/8xrKxb+ITEIjo8WDOMjBs1pcM/Gh8oeP+01CkQRAEYSLQDPAGTpPTpXzoL17XfxXWGQx8npZKI7UamyjyUUoKM8PCaK558DQ1LCCQ0xYL6W43ZRUqqivna4a6AAAgAElEQVSVrM4yMDYoGKPHzdz0NETgaR8f+uv88miu72BBRjrvBQfTNVcVK0qhwE8qZcryz+nerN1DvxgOp5Ppa5awffoXmKNGUMm+rljG4A4EBMo5x3Na1QGLcI0/Tuu5cPMqy0dPy/e+iuFliI4oy9kbl2lW4/FQZt1KjufFme/x0qwvqNmiFW6nk53LFtFtyuucnJ+TP2nctQeTurSl/sHO1HqqNaIocnTLBuKv/MmT7UrGk1NcJFy7QlS1GqyZ9iG9xoxHqVZz9fhRtn+1gDHfFC1Mfz/CKkTzwYbtpNy6gTEjnUtHfuPsr3vRaH3pM24yR7dspEXPF+j2+ttAjqjNjmWL+HH6x7yxaEWJriVIJHjc+TUbRFFEkEhpN/Blrp74A4/bzTMvDWf11A9YN2sqLXv3o2n3XkXOHRAewfjVm9ixbGFew1+vMRP4fcNamj3XO49wzz80nCXvvMar8xYTWaUaN86eZuXkcXR/691i3YNEIilWnsCoz2DRmyMYMXcR1ZvmVMedP7ifRUP70T0iEu0jFh38k1CcQvXnyIkKbwMOAEdzS1H/h8eA63Y789LTWFu2HGVzm3hOWSy8lhDPLxUq4n3fh00hCCyOKsMvJhOHLWaUgsCyyCiq5JaXvlxEIvKSzcac8PxcQo3Vam7GxGBz2PF6SM14kj4VuUxOQLnLSD31UYolO8ECSJAT4OjOyjOjGDclgyfKVyY1K792gMvtIj4tmUBtydgrC8PXv2yicfdeebKIMoWCzq+O4vS2Lfx+8RRUfgbfoGBGzl/CinGjkcnluJxOlF5evLX0uxInF4sLXXAIHV4ewW8b1zL6qfqo1GokUhmCkBM2KS1CylUgpFwFKtVryLOv381DLHnnNfpNyq9t1brvQDbMmYHH4ymRxnT9Dl3YuWIx1Zu2yGs+O7J5PW6XC2NGOi+Mm4zFmMX62TMIiirDyC++wj+0+PQSQVFlGDhlet7PdquVpWNeZ/icuy1Q7Qa+TFZaClP7dEP0eNAGBtF15FsF5jEeBce3baFWyzZ5xgCg1lOtqdqoGbv+vMDzutIrGv7TUJyQUV1BEHzIIbNrDywVBCFFFMX/kds9Bmw3Genh65tnDADqqtXUVavZl51NN98HhVLkgkAnrZZO2pJTNPhHRnHFbqOR+q4E4A2HA51aUyhZXaCvH9lWM4nCaiq4incCKwjhnt7UbrCaulUq0qFua2b9uILWtRtRKbIcLreLKd8toFxoRD71tUdFvD6VkOZN870mCAKhFaLz5ROqNmqK+sUvcabeQi6RIA0sy9eHHXA4J54/eUjuJi3a8bIfQepJA9GNR+KLTVEfj7Tw8uH70ab/YDbOm8nrC5ajnKIm7XYs6z6bRpO6PUu0ORcXcoUSmzk7nyiO3WJGplCUuDKrZZ9+XD72OxM7t6ZO6/akxN4k9uIFhn3+JUc2r2dc++Yo1GqaPtuToTPnPTovUG5+7N5lCoJAsx69Obp1I59s/xWlWv1YS2rv5AZOpafj1+NB1TldZBRZF84+tuv9E1CckFFNoAXQkhzW09v8L2T02GDziPhIH/zye0sk2EtBn/ww3JH4a7d+LVOmfcg8qYxKSiXxDgeT9Jm81mNgoV8mjUrNwPbdscm+R2srGVXAvVAQgpcQwrAerfh85U5GdHmBVqMHUD40klspCaiVXhyY8/1Dxz9Moa0wNK3yBMt37+Sp3i/mjbVmZ3Pp2GEa9n6VTsvvJnAFQYIipEKB8yxYtZNWUTtoEbGHFEs46dZgpFI5WqWRCtq3MYiN2blLya97UgkpW44Og4cU2rjW6oUBZGfq+fDZp/H298eYnk6Lnn3yneofJxp368HGeZ8xdMZcJFIpHo+HjXM/o3GX7iV+pjK5nJHzv+L66RNcO3mcMtVrMmLOIpRqNbVbPf4kq1KtpkrDpuz9/hs6Dn0VyPks7Fy+mPrPdM6ncfwoKChB3EitZv3WjTz75ui8rmu71cqpHVt5+TFd95+C4nAZ3QkV/QYcF0WxYKHdvwH/lj6Ee/GHxczk5GR+Klc+L5Gc4nTy7K2bbCpXntACiMRKgvu1XkVRZN+3S9n+5VxwOhGAkc/2Z1z/kUWeSm2uTE6rn6aJ4/gjremCYiBlnG8y97ujLNq6ikoR5bgWf4s60dVZO2kOWvWDuZPfLpxk8rfzOfrnWUL8AhnRpQ+je738AC1GQbDYrLR4dyD+NWvR4oX+mI0Gtn0xh5blqrBg5ESqHogrYgaRZ8ptomuFH/ktsQ374zqRYskfdlPLsmkatpc2kVtINPgze1V99Ee3MXL2/LxQ1cNgt1jISEzALzQUrxJoP5cUNrOZL18bQnrCbSrVa8j10yfRBgQyask3qAshBHyUKprHqTWcGneLzwb1IaJSFcrVeIKLhw/icjp595s1qLVFS44WhOLcmyiKjNHruRYQSOtXRiJ6POxb8iU1swxMD3gEZZ+/EY+N3O6fhH+jQRBFkQ9TkjlptdLD1xe7R+THLAMD/fyKzAcUhOJ+Ad0uFyZ9BkMyxHz0D4XBg5M/VA1pZDtVImnL+3FO2ZuKjg/RiNXRm7K4FBtDZGAI5UIjC3z/2euX6TpxOLNGvE/3pu2ISYzlrYXTqFupOtOH5jCxm20WLsVeJ9Q/KK9y6F7ojQY6f/AaV5PjkMhVOK02qkSWRf/Me0jVhW8mz0WvpG7IEWafnILeVnhYSCq4GFTjS8I08Xz043PYj61j+s79f1l3cEkhiiI3zp4i4dpVwipEE123ft7airvxG91u9mVnY/V4aKrR5At3PgqK89m1W62c2PkzabfjKFOtBrVbt8tX6fRXlYC6RZHtJiM7XW4EoJNMRgcfnweKNv6p+J9B+A+CKIocsVjYl21CLgh01mqpWYJE5qOewvrGFF8U/qSqLdXty/ASSxfj92DjpKodtW2bURRTN3HIrPE8UaEqbz53V9Iw1ZBB7WHd+HPFDlbu2cz01V9RJjiM22nJNKn+JEvf+Rid991T75Kf1/Lh1g349JyCRKlGFD1kH/gaW2YKQT0eXjrYLHwvXSuuYerRWZicxT2FirxSazYKqZ33Bp9l3sGjWEwmti5ZwLVTJ/EPDaPjS0OK9BweJ7LS0ziycR3GlGSiGzXNt5GWZBM9bDYzJimR+l5e+Eql7MvOpq9Ox+tF0K88CvQuF+uyDFzOFZXq7asj8jEZof8WPE62078EgiBEAd8BoYAH+EoUxXn/X+v5/4QgCDTVaGhazHjkgbVb+W3Dj1w9fhRtQCAt/ryIKIrs+W45aXGxRFWrQftBQwkuUyDrSIGw2KwYzCZCdAGFhmGCXN1Ikf1EOWfpEsvp0l34eGoX2xgAXL59k+FdXsj3WrAugIiAEFb+soWvtv3Ib3NXUz4sEpvDzrtLZjJy/hRWjf887/2Ld21C0bQfEmVOb4MgSNA07UfmgoG4bdlIVQ+GqQTc9Kj0AwvOvFcCY5AzcsWFUcx8aigVy7v5dMkhUtaOx6d2B7yajyAtPY7FY8fQZ/QYnnr+r2eRv3r8GAuHDaSt2ovqIuzaupE/bDYWR0aiKkHy2urx8G5SIvPDI6if29/ytstFn7hYGqs1ea89TiQ4HQyIi6OpRkN7bx8u2mz0iYtlYURkoUqD/0Pp8PhLGYoPFzBaFMVqQGPgNUEQqhcx5r8aR7fuZf/qTXzatzsXfz9AnbZPow0MZNbgF5jRrycRlarQ/c0xeHl7M61PNxKuXSlyTqfDTtc18yg7sB0N3nyByq90ZvX+bQ99f4j7edKlW3FTOvrqFNlaQlx9SjSmWpkKHL6Uv3M3JTODhIwUdhw/wMT+r1I2JJxdxw8xbvls1CoVe08eJtVw1/MxWbKRqvPHyQW5EkEqQ3TkVFGLHjf3esxPBJ0ky67jZlaVkt4mblHOr3FP03NQKKaTm/Gp0xFdi/4oQ6PxrtkG3bMT+HHWdFzOwlNy1uxsMlOSKa0n7/F4+Hb0a3yq82WqfwBDAwJYGxSEWiKwypCZ773nrFYWZ6TzfaaejAIoUo5YzFRRKvNt/P4yGS/46thhKr3ud2FYkJ7Oc76+fBIaRietlneDg3k/KJjJycmctlpwPuYIh0cU+dFgoG/sLbrcvMHUlBTSCngW/1YUxna6lQJYTu9AFMVuj3LhXK6kpNz/NwmC8CcQARTed/5fhIJCQft++JbQ8hUZPmdhXuz3iZZtmfVSX9oNeBmZQkHVRk3R+OrY/OVsRs5bUug11kybQmZyIh/vOohvUDDXz57i/deHEezrT9u6TR54v1IMx8dTjwTZV5RxvVnAjA9HunQHLrLQeZqVaNyoHgPpMmEYIboAnm3alpjEON5eNI2XnunJr2ePUTY4nJdnjefCzav0a9eNrGwTCAJLfl7LpP45YvOd6jflp/N7ULQdljev9cYJRLcL0/k9WK/+jjMtFqlGh0/9bmgbPkebMtvYF1d60ZqDiR2Z1nwLixd5UD85Ot/vFMHlsTtF3h89m5lz330goW8xGfnmg3Gc3fcLEpkCjZ8fAydN4YmWbUq0hqQbMWA20yrsbt+IRBDo5+fPoox0XvYPyMtjHbZYeMbbh1iHgwXp6cwIC88n7eoSReQFxMwVEgGnx8M1ux27x8N1h4P1WQYy3W4aqdUM8Q8grJTFEb+bLawqe5e08aLNxoKMdByiyMcpKejdbj4ODaVFAU2cpcHMtFROW62MCgwiQCplszGL/nGxrC1brkRElP+pKCxkNOvvWoQgCOWAJ4EHSGMEQRgGDAMIk/2/Rbj+VhSWE7j4+wE6Dh2ZL0lZtkYt/EJCuX35EuWfyKGZatCpKzuWLiz0OtZsE0e3bmT6L7/n1aZXrF2XbqPfZ85PPxRoEAAqOCZxUTkQwe1LlDi4WPeUKTnELfl0qtmXIjyE9cThdJJhMhCo1SGX3d1AnqhQhTUT5zJl5ZcMn/sBoX5BDOvSh7efG8R7y2Yxe/033EqO57d5q/N6KQY93YOmo/owstuLBGh1jO/zCmtG9iLNmI5X5SY402PJPrsbddWnMB3fSFDXd1FVqIszPY6MnV8gupxUbHuFZedKXwKaZfcn2RxJxSoicRnxKELuyjx6bNl47GaMxzcyqtsJ5m1anS85uuDN10g0KwgdvgJBocZ26zSLRo9i/Pc/ElW1+I60TCbD6XEjQr4yALvoydvc92Znc85mY3O58qhzDdMpi4VRiQnsrVARZe5rTdQaPkhO5prdTiVlznO2eDz8kJnjaRxJiMfp8aCUSHg/OJgwmZztJiP9cjfUoFJ8f72lEvQuNxHynJDVq/G3GRccQgcfHwRB4ETuOjeWLUfII1bkpTidbMrKYneFinndx1VVKjLdbtYbDAz5D6koehQ8NGQkiuKBwv49rgUIguANrAfeEkXxAb9TFMWvRFGsL4pifX/pv98gFJUg9tL4YNLnTwJ73G6yM/Wock9zTruNq38cw9vPv6Ap8mBMT0Pjq8vXqAQQVbU6cWlJDxkFcvyp6ljCeeMSYmSTsQnxD32vEz3xssXcUHxAFcc8NOKDClSiKDJr3QqiB7aj8evPEz2wPXPWf5MvTNK0xpPsmr4c45ZTXP12F2Oezyk5rVE2moPnjhObkki3Sa+y7/RRAMqHRdK8Vv28n0P9A4kIDEOi9sV86QDO9DgCOo7CnZ2Gf7theFWsn9ODEFSOoG5jMZ3cglpuwex6tJNnttObwFp1MRxaiSM9p7zVYzeTsXsR6qrNCX9pPm5zJu+/O48puf0QKbE3uXHuDL5thyNRahAEAa/ydVE/2ZXd331dout3e30owS4X67Oy8l6zeTys0OvplFtq+ku2ib46vzxjADnNkeUUCk7co2znI5XS38+PAXGxtL9+nb6xt+h64zoGt5tX/ANYV6YsVlHk+zJlae3tQ1WVineCgmnl7c2qzPzhqeKih9aXOelpWDwe9mdnU1WpoqNWm3cgCpTJCJRK6RV7iz6xt9iQZSh1eO2S3UZtL68HqChaarw5b/vvIGcoTmNaJeBToDqQx2sgimLB3TslgCAIcnKMwQ+iKG541Pn+k1HcSqHmPfvw06xp1GjeEt/AIERRZHuuJ6ALDmXn8sVsW/IFMoUSW3Y2qz75gN7vTSpQGN0/PAKH1ULS9Zh8QujnD+ylXnS1QtehEiM4+FMHkuqdpXbDF/H21CTQ3RWFGIKAFCd6MqS7MUgP4u9uQw37d6jEqALnWrhlFRsO7WLfrO+IjijL1fibDJg+Fo3Ki2GdH55vWPvrdqavWcryMVNpUKUWB8+dYMis8Swd/Qnt6jYl22rO132tUalw6hNwZsShjKiGfu9SRLsFXfP++eaV+YYgSOW4PFJkEicOd+lDBXLBgSSkJtqG/qT88B6CTI7HaUddqTH+7UcgSOV4P9kJ69UjeNdsw5Tlp7HGnkUVFIUgzf83kwWWIzV+f4muLwgC08PCGR5/mx0mI2XkCg6as2moVvNcbhe8AIgFRIdFMb9Xscdk4keDgVGBgVRTqTiYbWaVIZMycjk9dTpOWCxEK5QPeAKtvb35Vq8v0brvYLC/PzcdDtrfuE6gVEq1exQAE5xOBsbF8oLOj05aLQlOJ7PSUklyungtMLCQWQtGmEzOdbsdtygivccDv+awEyr/9x9GoXhVRl8Dk8mR0GxNjsbyIxffCjkmfjnwpyiKsx91vv9kFGYMPG436QnxaHx90fjqqNP2aW5fvsT4Z56iYp16ZCTcRqZQUPHJerzd/El8AwKZuO5nQsqWx6jPYNm7b7Jhzgx6j534wNxyhZKuI99i/quD6T12EuHRlTizdzd7l3/FvulFk52N6/0OlQc9Q8WIEPr2chNcdjZeGidRISGcvxZPi7KDqSN5DzmFc718sWklqyfMJjoipyqqcmR5vnh9EkNmTXioQRBFkWmrFrN89Cc0z5Xn7PXUM0glEj5dvQSpRMKl2Bja3RP2CtfpuJCdSuSIFQgyBaLHTcaOL8jcv5zQF+/y5jj1CYgeNwabP8FeScRnl67EVsBDoDyWmHVLUVQbRWD399HvXkTEywuQet1tQBNdDrjH+1UElSM9PgYfS1a+HgnnrZNUblh8wr875aTRSiU7ylfgV3M2aS43fXS6fBvr0z4+zEtLp4tWm6eud8JiIc7poH5uJY8oinyelspn4eF5tCdPeqlRSwQ25XofITIZcU4HDlFEcc+GGmO3EyIrXjhHFEWOWixctNkIl8tp6+3N1LAw4h0ODpizWZKRgdnjRiOR8n2mnm5aX0bmbv7lFArkQjBvJCSwVJ+Bt0RCd60vbwQG5oW9CkNVlYpIuYKZaamMCgxCLQgcMpv50WDgu/vEp/6tKE6n8klRFOsJgnBeFMVaua8dEkWx9KK4OXM0J4cC4zw5ZacA40VR3P6wMf+2PoSivIITu7axdvpHeNxubGYzT7Rsw4Apn6L20WLMSOf6mVNoAwKoULsugiDw4bNP0+vdCfkkBPVJCUzq3Jb2g4fmCK8/1ZoqDZvky0Gc2Pkze75bgSUhgYZVn2BC76FULxtd0JIeQP9P38XbS03VMhWoFFGWZ+o3Z9uxA8xY8xWH568tcrwoimi61MG45SQyqQwnelJlm8gQfiHZdJNAXx0ytPi6GxHi7p3nZdidDgKfa4xxy8l892LINlKuXxu0ag0/jP88T8sZoMLgTogdx6AMvXtvbquR+C8HEtBxFOpKjXGk3UK/eyGaGm0Y3M+CWm7mhz+HF+tZ3I8aAafoXflrxizviX7vUkIHziZl1Tj82w1HXakRkBM+Sv7+XXRPDcp7DSDz12+wxZ5F99QApD6BmC8dwHPtVz7evDNPMexhKGlzlpjLsHvAnM0zPj5kSVykRmXzejl/qipVSLKlGGPkdL12k8PRlfI97ziHg+du3eRAdDQaiZSR8bcJkskYGxyMRiLlhMXC24kJLIqMfKC3Js7hYE56GoeyzaglOf03l2w2DG4PzTQartptxDqdLI+Mokxu38HHKcmctloZ7OfPikw944KD8wxUmstFz1s3GRbhR9cKaowKJytTDJjSJHzqU7B3ej8yXS6mpKTkEUf6SqWMDw4pdkn4PxWPsw/BJgiCBLgmCMLrQAJQ+CeyGBBF8Tceg6fxb8WNs6f54aOJjJz/FZXqNcCanc3aT6fw/cTXeXPGILy9MglvAm6JFJtoRhS8ycpIJ7xi/o38yvFjuN0uLEYj3jo/vv3gPaKfrM/Ln87O+2LX79CF+h26ACVrUgOY1H8kz7z/MjpvH6qXqcjn61awYPMP+TQO7sBqt7Fyz2b2nj6Kr9qbge2fpXmt+jwZXZ1fzm2jUsNjZEoP4O9uS1n3O1T2CgGHBBeZpAo7OSnpTcw1CX/sq8wrrcYS4hfAuRtXqF2xat41Tl27RFRQKMe+XIf6vg3IYrPg7ZW/9FSiUIMgYDqzE/3uBci0wfjUfxbv2s/w6+0MPm72Bj9dHYjdXfKa97ZltrPvdmc01VthT7iM+fxegrqNJXXDJ2Sf2YHU2x/L9T/QVGuJV3TDfGN1LQeRfW43hkM/4LEZUZWpjW+vT5m7JYHJQx7565cPgiAwOTSUy1oTmc31lG1lR5GmRGayY8OOW+fC4+9k4M8i6WdsBBnvPos4pwNfqZRBcXG87B9AV60vs9NSaRETg69UilwQmBwS+oAxyHS5GHQ7jr46Pz4IDiHL4+Hz1FQSnU52VqiYF7L5Rq/nw5TkPHnYicEh7DSZ2GEyYvF4uGKz5xmE3QFpTO8rJbqJHpfehMYuYZjCg83PRtLVOPwPBqC4okYQH77t+MlkzI2IIMvtxuLxECqT/WO6zP8OFMdDaAD8CeiAjwFfYKYoikf/+uXlx7/FQ7jjGXjc7jwB94SYq/zyzTKSb14nolJlstJSqdygMU8PfgUAufMK3savURl/xKOpi0eWU0Yo9aSgcFzErO7O4jkx+FfqSNv+g4Gc0sUxLRsyYe1mIirl1NLbrVam9u5Kz3fep3brdg+sraQGASAuNYlFW1dx/sZVKoRFMqJr3wc8DKvdRsfxr6DT+NCvbTdSDRnM2/Adbz43kErRMqSVZhPt1Y8I9yBkFNwE5sFGmvRnbgpz+HS6SJ2gF9h1/DeWj5lKjXKVOHH1AoNnvs+k/iPp06rTA+MHfDaBvXYN2hZ3cwbZF/aSfXY3of1mFHjN1+tMIyG7DBtj+hf4+4ehou5P3qr7MaMPrMDhVmE6uxt7/CUCO7+Fx2HDGnMMj82Eqmxt5AHFO73ejzz21XtQGuoGURDJ7pGGtUkWXod98TqkQ5aevxPYFWLH1CITSyMjXvt1+G0PItnp4tX4eAb5+aGQSPjZmIVdFGnt7c3T3j44RZEwuTxfPP4OluszuG53MO2eclinKNL++nW+ioqkci6JnMPjodn1GH6pUPGBss9zViuvJcQzq1IIlUYZsAba8T3kh/qIDonp7lnXo/Rga5CFtZUBBPBdEoEs9b+r0/mxU1cIgqAFRFEUTUW++S/Cv8UgfDHyLbZ8OYfEmKv4h0dQ7+lO/L5xHc+8NIyKT9bj6vFj7F25guFzFlKjaTP8s6agsf6MSdMPk+ZF3NL8WgRSdxI+5lV4Z69k904bcZ43qN6sFQd+XEX85UuMW70x3/v3fLeC25cv8dK0ByuL7zcIt5LjWbFzPbfTknkyujqh/oH8dv4EapUXfVt3yXc6LwzLtq9jy5G9bP5oUd6JKzYlga4f9WLFMjVlnW8T5OlSrLlMwjkuSF9lzbKKhCmbs2TbWoxmE0E6f8b1Hc6gp3sUOC42JZHmowchRtaEqNo4kq9h/vMgwb0+RBlWqcAxvko9kxqPYev13hyI71Cs9UV43+LdBhNZcf5NzqU3ACBt03SUkdXR1n+k9p0CcccwlNYYGAcl4fZ3olscicRSeALd7eMi6dU4jl9yM2OOh8H+AQz3DyjxKXpcUiIN1Gqe882fX3orIZ72Plo651K7O0WRZjHX2FW+An65yWqbx0OG202QVMpRuZHg8akEn/fFb3Nwoad/ERFrCwPmLuno5kchTyhY++PfiMcWMhIEoT45iWWf3J+zgJdFUTz5yKv8L8Tit99j7ZQJvPzpbKo1aU7sxfMseec1ardqS5dXRwFQrXEzbp47w8nd22hVbS1SdyoJIfvxSAo+ObulYRi0ozF6D6V1lyHcuLyGme9tQKZQIS9A48DpsCNTFJzkWx0dkGcUDp0/wYtTR9O/fTfa1GnEp6u/QiaVMaxzbzKzs+j+wUjGvziCVzo/yBV/P/adOUrfNl3z90+ERPDhJA2hrr7FNgYAPuITVPPMpPuA0fTvF8PAdj15/4VhaDXehW5MZUPCObNwHV/v3sgfMX9yUKkjbNBcZNqH8/Bk2f357PjHjK7/AcHqJLbf7InZWTAzqFRwUT/0d16stIBFK4I4q/BGorqN6ewuHCnXCeg4qtj3WBLcKVfdUYqx5i7puIOc+M2NQnAWnXiVmmSEzytL8zFxtBrhg9/eklfzAETJFZy0WPMZBLcocspqZdg9pI7rDQaqKpX4yWR4RJEFGemsyszESyIBuYelX0gJOeWH97aiuZQEBNSH/JBYpRhei8dvelkuprg4aM5GJUjopPUhQv7f5Tncj+LkEFYAI0VRPAR5yeCvgSf+yoX9G3F06162v/As/SZ9kqe+VK7mE7z2xVfMHtIvn2pVn3EfcHtLB7BVISVsPaJQ9GnGI/ElNeh7ooUXmPd9U1IVb/Buq0Zc+eMIVRrmVNsY9RnsX/UtQ2bMLXQuURR5e+E0Fr31IV0at2bz4b34eWvZ//nKPHbU/m2fpcmoPvR86hn8fQrn+vHz1pKsT8v3moUbhIRbCHcPKPLe7ofO04xgr+r89k0XBo1bz5pftz3Ad1QQArQ6xvR6CaAYtNc5SLFEMPXoLJ6v8g0zn3qF06mNORTfjgxbEG6PDG+FkXrBh2kZsZ2EFBWfbe7KxWQV5ktf4nHa8KpQn5B+M6bC2SkAACAASURBVPJ4lP4uxDscrDEYiHM6qKxUUkmp5BeTiQy3m/peal6M1OJslUnAhxWKZQzuQGKX4rckAv37txAP+SM47o4VRZFklwuZIBTaiHbBZuW4xUo1pZJeOh1Gj5sZqakATElNoblGw1W7nQs2G8sic0Jqy/V6jpotrC9XnnC5nNuN0pFZzGi2lcwoqU5ocZS3crB5PJ9+6aGzj5Zkt5Net24xISSELqWk0v43oDgGwXTHGEBOMlgQhP+3sNF/OpJv3qBCnfylg5FVqmExGbFbzHl8+KI9je7dPaSEfF0sY3AHoqAi1f8rIlJaYQwdxvDZC1jw+itUqtcQjZ8fZ/bsok3/l6jSoHDh+MSMVFINGXRu1AqAnX8cZED77vmossuHRdK8Zl32nzlGzxaF6w4PaN+dftNG061JGyqGl0EURX5N+pSqEb1KpM18L0LdfUjR/sjUl99mzJIZxTIIpUWWw49l599GIzfSImIPfaquQKswIBXcZFuknP7DyuRdbUjILoP5/B4ElYawwfMQ/sZmyo7dZ7FjUw4d+DmrlZEJ8XTX+tJZq2V1ZiarDAZGBQQSqZCzw2hiZfVbDDznjdRU8jXK0hUorquxNjSi/i3nlH/RZmNychLJLhduUaSSUsnHoWEP0GNfsdm4bLfzbVQU8zPSmZGWilKQECiTMszPn3Clgos2G6003kwPC0cjkSCKIisz9ayIKkO4XI6IiLqtCe9NQaWiYlfv9yN6rIGNuyvg7cr5TL+gy2m6e0rj/a/SSS4JivNJ+EMQhCXAanK4jfoAvwqCUBdAFMVTf+H6/jXwiCJHf96EXKnk6vGjNOjYNe93ty6cQyqT484VLc82ZJJ0cAzmrm1wS0teUeKWBmNVtcXb8iPVmw5j+t7DnNm7G7vFTJcRbxBcplyh41dHB9DBZMTudGKxW9Go1HipvDBaHjwHGLJNaIpB1d24Wm3G9R1Oi7depEa5SqRl6Zm/JIlwJpf4/u7Az92Gm/JpRITJSM8qXSdsSWF2atl56zl23noOALctm8TFQwgdPA95dCg+gPcT7UlZNQ7Lld/RVG9Z+IR/EWampTI2KJhuvr5YPR6mpKTwfVQZKuRSTjTz1hDbLRvNN6XXrvY6oCO7Rxrq33QY3G5GxN9mbHAwHbx9sIgimwwGXom/zc/lK+TrS7hgt9FIraa6lxeLI6NwiyISYLXBwDW7nf4BAbS5TyjIBejdbirkGhdneRuiyoPiz9KVg8rSFahueSFtYIYjOQatklJJXS8vfjeb6XiPPG2i08kWYxYZLjcN1F608fZB9g+rPLq3hP1RNCGKYxDq5P73/m9uU3IMRMnYtv5LMSUzkz+WL6bJsz35/qOJSGVyqjVpzuFN69jy5Rz8QkN5r00TQstXJOXWdb7/XsAaULr6dwCjZiBBmW9j1LyC2kdL0+69SjTez0dLy9oNmfrDYj556S1eaNWJvlPfoW+brnkCNLuOH+J6Yhyt6zQqYrYcDO30PL1bdeT45fP4eKsQVUNQ2iKKHvgQSJCjFEPZdXYbjarV5sTVC5QLiSDQt/SbXElhjzuPIrwqct1dUR5BIkVTqy3WGyf+doPQsfssNm54h/M2G99E5WxqV+12wmSyPGMA4PF1ofIC2a3SJ1YVf2pwjUjAo/SwNTmLxl5qbjkctLxxHZvHQ7hcjpcgcCA7m/Y+dzf4CJmcH+z2PDnUO1VIV+w2Ih8Sw5cLApWUSn4zm3nK2xtHNTPK0z6FJpGLgs9pLdaqZpZscbLZmEW2x4OvRII+92AGcMiczXtJSXTy8SFCLmeFXs9qg4HFEZHFanZ7nCgum0GB76tcvO9ZkQZBFMW/T8XjX4prdjt77Hamfr8elUZD5fqN2DR/FkvffQO1j5Z6z3QiMeYaTpuNjq+8SvX6VdGYO2BQlF672K6oj8SjR+LJxCMtnNPoYfjyjUk8/9Gb1B72LNXLRWOymnly+LO0q9uUzGwjV27fYPWEOShLkIjTqr1pW7cJbsycRPZIymsAdrvIukNbuHBBwq3keG4mx9OnZSc+Gz42H0FeQbjcskyx8wgPg6DwwmN70HPyWE0Iir+Xr99tNmBPvMIlmw2FIJDpdhMkk+EvlZLqcuG8h61U9PKAWfJIz18QBSQWKaLaTYrTRZrbTbrVypoyZYmSyzlqsTA6MZFjFnM+g9BQrUYE5qenMywgAIUgsM1oZF92NhvKlUcURbaZjGzJMmIRPbTQaOjv58ebgUFMTE7inaBg6isd+JkeLJgoCSQmGbfkVmIcIssjo/CTSlmXZeCrjHQ6+OR4AZOSkpgXHkGDXMrvgX7+vJoQz7osA/2L4AorLR6n7GhJUZwqoxBgGhAuimLHXM2CJqIoLv/LV/cvwQmLhdqt2uYJgT/Rsg1xly5wVefHm0u+zWO53LF0Ib+uXknjtp/iyvaGR3FLBQGPRIdEzMJD6T64wboAfv18JSeuXuB2WhIzho7GS+nF/jNH8fZS065u03xcQSWBBDUenHhwlDqHAOAkiwB1BJeWLyfQ149Mk5GBM8Yyfc1XTOr/WqnnLS5UZWrhNmdivvwb/jXq0TjsABGqS0i8T0BQDbKEtRxObE2G7fE2k90LURQx//Y95uObqK725l2nA7Ug8FlqKlPDwohSKIhWKJmTlsrbQcHIBYFEmxMknqInL+raUhHBJVBFqWCVIZOdFSoQnGuIm2g0jA0OZkOWId8YiSCwJDKSKSkptIiJQSpAeYWCRZGRBMlkzEhN4ZjFwrCAALQSKT9lGXjp9m2+iyrDrPBwvtbrMZmsPCd5NIMgSkSMLg+zw8JR5J72hwUEEudwMiAuNi8XslSfQahMRpRCgVQQ6KvT8X1m5mM3CP+fhuAOihMy+oacqqIJuT9fBdaSw0P0PxQDfjIp+tv5T6J/bN/CwI+m56M8bjdoCD8vmo85y0rIY8hFCqId8SGb7Z3+k6LqxwVBoEGVWjSoUivvtRdal14jIG9eBLw9NTFIfsffUzon1CbE4xQzmdDrs7wwkZ+PljmvjqPNmIFFGoTLcTewxV9BEVwRiaJ0oRNBIqXmwGG0Us+nbXMHV/Q1uGysj1VbG4XLToR3HFOavsk1QzV+ie3GpYw6RU9aQlhj/kBxehsby0QRKJMhiiIL9HrWZWbS9noMVVUq/rTbiHc6+dloJFQuR59oZ6UviHJPiSqM7oXHy42o9CCYpdRUeaGWSPKMwR3UUKlYpnc/MDZYJmdBRCQmtxunKOKf+z1IyKWg3nUPBXUTtZph8fFsMxnp6aujoVqDWZKBW/dowjUePxeiSZpnDO6goVrNNYedjeXKIwI/ZGYyJP42W8qVRyWRYPWIKB9jDuGfYAjuoDjbTqAoij8KgjAOQBRFlyAID/6F/4eHorXGm2lXLnFkywYad+2BIAjYLWZk94VaJBIpgkSC3eODTDAheEyIEp+HzFo4BI8JiWjEI8l/ijGkprDus6mc/GUHbqeTOq3b8/zYiSWS23xcCHH3JkW2Fn9H6QxCinQdu7bBey3yE++WDQkn3WjIV8Z7L+LTk+n5yRhupCbj8NLhykxC13IQPnWK13h2L2oFnuCVNl/wa1xHJh/riN72YD38j1cH0zjsAC/V+IIjSa3YcK0/j5O1xX36Z0b7+hCYu6kKgsCr/v5sMGTyYUgoIgKTQ0KIkCuIdTjQu11UUaqwxSRgq2vC61jpyixtjbNQnvVG8AhEyOV4gFsOB+XuqSo6ajZTWfnwk7zPfdU8Z6xWGqk1+ap8BEHgaR8fTlqs9MztW1Ce9SZzdBzihiAEV+kMmrlRFtu+dtNCFPMliU9aLTyl8c7LEQwJCOCwxcwKvZ5+fjqW6zN42f/RtRH+SYbgDorzJM2CIASQq54mCEJjIKvwIf/DvVBKJCwJCubnhfMY93RzJnRshSEtlZ3LF+fjbj+86SfCKkajDYrCqmyDt2V9qa/pbVmPRdUGUZITx3bYrHw3eRzvtWnCqV924B8SyrBZX1Cu5hPMHNALa/bfV0lsdzpYs38b81dcxuA5j1W4WeI53FhJk23i9qVqbDi0O9/vNv6+h8bV6hRoDERRpMfHo4kPqYX/K0sJGzib0P6fkXV4DbbbF0q0hhoBpxlaay7zT01iQ8zAAo0BgMOt4mD8M3x0ZDY1A07Rq+JSHCk3cFsf0zO3ZeMny7+xSgUBucILL4mElt7eeQ1XZRWKXJZSCTG7lOifKjlVCeR0/VpaGlAfyPHMFBIJQ/39eTMhgWMWMxkuF+sNBhbrMxhags0zUCYlzul4QNMgzukg8J57lKUokSUosT1ZumfoLGMDXxfmsyomJCeR6nJi93hYk5nJDpOJ53X5jWR1lYqVmXraXL9OiExGJ5/SHdSObt2b9++fiOJ4CO8AW4CKgiD8DgQBJStZ+R+oplLxyZY93P7zIovfeY1BH89k73crmNGvJ7Weak3spQtcOPQr76/KkYUweg8iwDARk2ZQyXMJoogmazlfLpRx/nx7qjZuhjE9DZfTwWcH/sDHP4CLvx9k2bujePOr74j98wJHNq+nTb/Bj//G70N6ViYd3h9CkM6fVk805KcfFQg93qC+sAYZxROjEfFwXTEBnbsFozq/QI8PXiNZn07zmnU5evkc8zd8y6oJBTOqX7x1jdj0VPx69CGHsxHkAZFoGz5H9rndqKJqAmCLv4Tl8m+AiLpyE5RRtfKF13yVeoY/MYsvz4wjxlC4dsQdmJy+fH5yChPqvcHp9CPsX23Bu0Zr/NoMfbR+hUpNWHvuZ5qrNXlrvGSzkWY183p8Nv38/Xk9IBDJfZ+jmBMygge6sNfMRnmhZEJAtvomBLeAPOZu4vwlP390UikzUlNJdrmopVKxMCKS6qrih+MaeKlxiCLfZOoZ6OePNFcVbUNWFj/c58V6HfDD3Ckd1WmfEnkJIiLmDhmoD+mYFerPnLRUOt+8ic3joZpKRahMRtA9fw9RFDlqNjM9LBwvicBbiYmkuFyElkCh7Z9qAO5HkU8xt8+gJTllpsOBGqIonvurF/ZvhCAIhEdXJi3uFo279mDcmk20HfASZmMW5WvVRhRFylSrAYBN0RQAjXVTia+jtmzEmJ5GcJ1X6DD0VS79fpDTe3cxdMY8tAGBCIJAzeYt6TT8dfauXEGlug1IunG9VPd0KTaGb3ZtYPeJ3/L6KArDJ98vpHmt+myftpQgP39O/R5JgKQBfyqH4aTo06oHB1ekYzkXe4qnXzjIh99+wfRXxhCfnswH335BTEIs26ctpXnNegWO15uyUGoD84zBHch8g/FYcgT7DId+IH3rLKQaHVLvgDzNhHvRMnIXJ1KacjWzZpFrvhdmp5Yfr4+k7xB/IoYvw6lPwPD76hLNcT80dbtwXKphSHIqW7Ky+DI9jVfibzM1NJRN5StwzGxheQECNbWUXnz2qUDWwCSc5awFzFwwHJXNmHqnoP0mLF+VkiAIPOerY0O58hyOrsSSyChqe5Ws0koiCCyOiGSPKZs216/T+eYNxiYlMi00LF8oCnLCRtI0BVmDkxAlxeNkExExd03H7e9Evc8fjUTCxJBQ/oiuxJnKVVhdpiwaiYTxyUlcs9u5ZrczLjkJuSChuUZDQ7WGjj4+bDE+IO74UPynGAMoxEPIZTm9LYpicm7eoB7QE4gVBOFDURRLJ4H0Xw6pXI6Xj5a0uFuElKtAg45dadCxKzGnT6ANCMSk1+dIWgoCaX5fEJrxIm5JIDZV8eQnVLZD+CSPJbHsKp6qnUOpHBAewdcTxqBU56dOKFOtBqd278BusVC9WcnkLdxuN8PnfsC+M8do+2RjLsfdYOzSz9j80ULKhjy85nnL0f38MmMFgiCw9tcdjOk9hGixJfHuhZxT9STI1ZMQdy+UYn4CPxdG0qSbiRd+4Mx5C1GWyRyeV5t9p4/w/rJZrJ44h2Y1ihaPqRNdDUtaHApDcr7eAfOlAyjL1MKZEY/pzA7ChyxAqvbFbTYgUajIPPQDXtEN8SrzBFLBRauoncw+8WGJntkdnE2rT/9qC4lwHcDVZgipq8eja9HvASNVXEiUanQD53D1/B6mHfiaJkoFyyOjqJp7Mp8SGsrLt+MY6u+fz8up5eWFPEbNN7MdDBx9G9+fQlAd1yJ4CvZIRZkHa+MsMrulEbQ8Avntx0sOd9ZqZWWmnninkxoqFW8EBqKTSqmkVBbImCqIAr5fh2EYkYDh1Xi0K8OQGh/uaXlUbrJ7pOGsaEU3Lyof5YYg3FX6XhoZxeKMDIbejsMlijyn0zExOCRvDeEyOenuohPa/0mG4A4K+wQuARwAgiA8BUwHviMnf/DVX7+0fx8ad22LIAi06TeY7z54H2OuNvKpPTuZP3wwFmMW77dvxpyhA8hMTsKhqEmq/xKCM19Hm70cwfPwU5zgsaLNXo5/6jC+31Ifqe4uv35klWoYUlIwpKbkG3Ph0K+43W5iL52ncdfnSnQvy3asIzYlkYvLfmbpO59waO4qBrR7luFzPih0nEwixeFyAjm5BI3SCwGBKNdrVLd/jRszf9CNC7IhxMgncl0+mSuKNzit6ki25CKTp9ipK1tEh3ptCfUP5MW2XZn68jvMXLO0WOvWqr35cMBIjD9OwHR6O5brx0nb8hnO9Dh86nTAev046irNkKp9MZ3ZSeLS4dhuX0QZXpm0nz7Gcu0otQJPkm4NKbWSmoiU/XEdaBG0gdRV4/DYTKT+OJnk79/FcHgNHru5xHNKFCp86nXB4nHzcWhonjEAqKBQkOF281FKMgeys/HcE5+fGR6O/0Ut774ncqFBKslTY8junIYrxI7Hy41H7cYVZifr2VTip8ZwskYajs/CUFwpukPYIYr8bjazL9uEqQjvca/JxBsJ8dT1UjM2KBidVMq7SYnI72lcKwiCS4JuYSSyZCUZk29gGJKAI9qCKOTcoyiIOCNsGPsmkz71OqLKg9+sMoXSdXhLpYwJDubVgEBcwIiAQLxzk9xuUWSr0Uh9r4fzUv2TcwRFobDApfQeL6AP8JUoiuuB9YIgnPnrl/bvROOubXFv3MW6mZ8wrn1zfPz8MaSmMHTmXOo+3Qm308G2JQuY88oAPty8G5uyCUmB6/A3TkVnmkO2Vy+y1T1wS3MSmFJ3Gt6WjXhbf8KuqMeOc8M4cfwQ7e+5ptpHS3ilyswc8Dz9J08lKKosx37exJ7vllOtaQtGzFmIl/fdGHJxNBHW7N/OhH4j8FLe3Xje6D6AOeu/ITEjlfCAguvun2/ZgRlrlrJizDQ6N2zJkm1raVm7YY6QvFiey4ebMvHbQ+xe2B+3JAsRFzJRSwXPhxiNUk6f7Uy9CTXyzdn6yUZ88O38Yv8N3ni2H7XKRrNg+3pSk07SuVFjlulG5gjay5WIDktOKOfgd4QOmovcL8dbsSfHkLp2IiGtnuWGoXKxr1cQbpqq0aXWeUL6jSB55RhU5Z9EEVKR7HO7SVk9PocMT17yE7hPSEX2m410vYeg7ZDZTKhMRlmFkrnpaWwxZvFZWDgSQUAhCAwNCCDcIOedt1IYWsub2h2saF7T4+MDEgQk2VKU57w5MVnH2isW1pQtOqF62mrh7cREImRy1BIJ45OSeD84hO6+D1Y05chzpjEzLJzGub06ddU5ie/FGRl8Fh5e6LUEj4DP+mCyNmm5XD+Dci8kogxzITgFRIWIJFOG1+86Aj4qjzSr+HH/Xdkmant5MSgulpf8A1AKAqsNmSQ6HTS5z9v+TzUA96NQgyAIgkwURRfQFhhWzHH/QxFo1uMZpFv30u2Nd9g4dyYetydPsUyiVPHsG+9wZu8urhw7TLUmzXHKK5MS8C0yVxw+5h8IynwHiSen2ccj0WFRtSMxaAcuWRRV21hYPGkRp/fs4sl2zwBw/ewpEq9doXytJ1n32VSMGelUadCYyZt2EVaheFKZ98PmsKFR5f9SyGUyFHIFdofjoePG9R1Ozylv0OC1njStUY/fLpyk2Zt96dOqE9cTY9n42x5WTficALE+3Heo9NW4kEtlxCTE5ukvA5y+9icVwiJLtP5WdRrR6h7KjRW5Hcvqyk0xHPwOQa5EU6N1njEAUIZGoypbB6nxGjaviiW63v2wubxQSS3ItEH41OuCJzsTr4a1UZV5grT1H2G++GupymAVrV5iyk9TMLk9NFSrOWuzMictjamhYbT09uZFnY4X4mLZn51N23sqZTpptVRSKtkQa+D8lxIOmAX+qJRfLrOR08k8V9Gxc5vHw6iEBD7JvSbADbudgbfjqKVSUfG+MtRMtxu920Wj+zbZp719+CGzeBxVK/QZLNPraZvgjX2jmkMWE1PKhlAeFZsyjRg9ThqrrTztI8vr1i4K8U4nSyMiuWi3s91oxCGKtPP24YrNRrboQY30X2MI7qCwjX01cEAQhHTASo7+MYIgRPO/stNHRuOubTm6dS9Ou4Oy1fOfeAVBIKJSFfRJifled8nKkOk7jkzfcQ+dV6lWM2T6XL4a8wa64GAUXmpSbt0kMDKKN5d880AeobTo1KglX21bS+NqtfM2ja1H9iN6PLR9N6cyqkezdkzsNxI/n7tEYd5eanZ+uoyD545z/uZVvnhjEnaHnWOXzxMVFMaxBese6l3IpDJGduvHy7PGs3z0VKIjynLs8jnGLJnBrOHvPZb7kmp0BHR8k7Sts9A2ePaB3wsKFVabG620+EnYgqCSWTEmJhP/RX+k2iBkviE58wsC6spNsMWdL5VBUEXVROjzCQsPr2Ze0lU0ThtzwyOon/t3V0gk9PTVccCc3yBADrnbe8EhOESRp2KukexyEXZPJc11h52QQiit7+CgOZsqSmWeMQCooFTynK8vW41G3grKX56rkUjwABlud14vBUCc01kohfYdXLHZ+EavZ2PZcoTkrveKzcaLN2PxkkjordNRQ65itSGT9Vk5PET3N6MVhGpKJUctFl7w88sT7Llis4GPlmtb93GjGGv7T8ND70gUxamCIOwFwoDd4t3CYAnwxt+xuH87Gndty8EBQzj1yw5a9R2Yt7E6bFYuHfmNTiNK95jrP9OJWi1asnP5EvTJSfR4ayxPtGxTYF1+afHmc4Po+P5QOk8YRudGrbh8+war9/3MU7XqM3PYWABm//Q1XSYO58DslcjuKeMTBIGWtRvSsvbdPEefVsXrfh7bZygSiUC7sYOx2G0E+frz4cDX6drk0Si37uU1UlduQnDPSWRsn4tvo55IlDlhDJcpA+u1Y2QoBtPYd98jXa+czxX0ykZEvT0K86UD6PcsxmVMRaYNxpmZhFRTeoI+ZXgVlL0+xBLzBwG7v8gzBndg9HjYV74pH1kL7v9QCALP63RMTk7m07AwAmQybjrszEhNZXhAAAa3m2t2O8Ey2QPU1gBmjwe/Aspo/aRSEpzOB9crkdBNq+XjlGSmhobhLZWS5HQyKy2VAX5FP4edJhM9fHV5xgCgjEKBAKyIisqT43xep+OV+NtsNhp5Xqd7yGx3Mdjfn5Hx8UgFgRYaDVfsdqYZs+jyzrh8DAP/x95ZBkZxfX34mfXNbjbuiru7u7VI0WKlUGjxYgUKpVCkeGkLBYq7U1yKFSiuRYp7EuKeTTar834IhCwJEOxf2pfnE8zOvSObnTP3yO/8l8h1C813gf9KC82sGGw22kVF4teoKbU7fIJBn8L2OT/h4uXD59Ny7xd/U7xMT+V0k5FNR/Zy+volkg2pXLl/i5Oz1mcaNlEUqTW4M0Pb9XjlB7bJbCYiPhoPJ1ccsshsW61WUo0GHNWaF8pv5JasQneiKJJwYAGGO6fRlmiAaDWjv7QXx/ItcK3cgum1PuOHs+MI0we/9HEErEyt+Tm/XBjJg+QMl138/vlIFGpUecoQs2US3h2nIHd7OTfY04gWE9GzuzDT3Znqmoy39UizmZYPw1G3m4DSN6PP9uMeClkxiyI/xESzJSkJnVRKms3G5y6u6B/1JcivVPLAZKKYSsVUH1+7yuIIs5mW9++xI0/ezDd+kyjy8YP7DHT3sFs5PMb4SKL7D30KPnI5EWYzXV1dc9Wec0ZMNHJBoL/7k5XHydRUpsZEsynYPvC/KzmZ3SnJzPJ7/r3ds2QtMz5ugUNSApb09IymPzIZLb4ZR+0OL9/Q6Z/ms4J+b7an8rvAf9EgACRarSxISuKg2YToH0jVFq2p0/FTQq9dITEmmjwlSuHs6ZXjWFEUObVjC0c2rsWQkkKx6jVp1O0LtK8ovPUyBiErk9fMJ81oYFzXAXbbxyybiUquZETHl5PyFkWRX7auZNq6hSgVSvSGVD5r3Iaxn/a3W228SZ5WPhVFEePDq6TdPJEhaV2kJgqvjNjBR/lX4ahIYsXVPi99nFIep2meby3jTz4pntNfOUjCwcUIEhmuDXvjkL/ic2bIPelhV0jaOI5CSiVOEgmnU1PQVO2AtrJ9bWlORgEg1WYlzmLFWyZjjz6FRXHxLAgIwEMmwySKTI6OItFqZYavfarxvLhYNiYl0dHZGY1Eym9JifjI5Mzw9c1WIJeVOIuFKIuFIIUcjSR3TWouGgwMDn/Ib8F5cH5kmPYmJzMlJpr9efPZGZS1iQmcTzMw9TmB6pPbD7B4YG/ynT7BcLcnVdbT4uO5Wa4i3WfOy9V5vUu8Nwj/YnYvXMUvfbqTlpKEV1Aebv91jtrtP6H1kK+zvS1tnD6Jy3/+QfO+g9C5e3Bs03punTvNqI07Mruv5ZZXNQYA6w/vZtmezeycaJ+R3GxULzrXb87HtT94qflWH9jO9A2LWTtqBgX98xAeF81n00ZQtVhZRn/ydlRM1+R3y+xP/CKclXGMq9afmedHcTuxaK6PoZGnMLLsl2y5+wlnYp60EondMQOJSotL3e4IuXwQ5hab2Uj6vXPYTOmogksj0+b8svAso/CYT0Me0MXF1S72kGqzUffObfbkzZf5MH7M2bQ0ticnYxJt1NJqaaB1fG4K6eswIyaaHcnJiq5ObgAAIABJREFUNNXpMIoi25OSUEgkDHL3oMWjzKY4i4VOIQ8Y5eWVuWJ6zNPB4b4l8rLHP8AuppFgsVA35AFz/r73xlal/ytyaxD+m46wfznrWjSkRLuOtBg0HEEQ0CfEM+3Tj/EvXITKTT/K3C8xOopDa1cwed/RzBVBgXIVmDOgJ0c2rKFhty+edYg3TvMqdRm7/BcmrZ5H/5afIAgwa/NK7kaE0qLqy3dw+mXrSqb3HE5B/4wlv6+bJ3MHjKXGoI6M7Njzra0SxnQvA/BCw5BodGP+pSH0LzORn89/y92kQi+cWytPYmC5cZw+r2b70r241AlA6uCE/tI+0kMvZ7TcfMPGAEAiV+JQsOoL92vy0fTMf+dkHBKtNrsgM2QEhDUSCSlWazaDUN7BIVv84m0x2MOTxo46DuhTcJBIWB0UjEm00ScsjLWJCXjJ5JxMS6Ver/7IBg7j5Csc45E+8Js98XeM/23Ln/e8kAizmetGI037Dc58C9G6uNKs70CO/bbObt/7f18kX+ly2dxDZRs04faFcy913NdZHQCoFEp2T1rIX3euEdChFv7ta3Hu1hV2TVzwSj0TwmIiKRpknxIb7O1HuslImjH9tc41Nzw2DM/j79hyLP57AAPLjaVFvtU4K3O+h3KJkep++/m28ldcjy/BVsNPyN0CiFo3isgVQ7Akx+DdcQpStS7H8f8EWY3DYyo4qNn5lGTDubQ0pIKA70vo+rwtiqpU9Hf3oJebO8EKBQWVKr67eJt6sxcRPG4yYw6fodnAYbmaq3z9xixISrIT2VuQlESF+o3+dauDl+H9CuEdQ2+zodFokD2VvaFzdUe8dsWuX+q9iTOIenA3m8xz5N07OHvkHHN4mwR6+rD+258wPlKrfNXmOQDlChZn9+nDdGvcOnPbkctn8XP3wlH9an10X5Yx3cu8cKVwMaYCE09NpUHQNiZU68u1+FJcjSuFweKAQmrET/OAyl57uacvxsprvbgcWw6k4FS5DYbbp/Dvu/x/ci2vwtMrhs9d3egY8oA0m43aWi13TEaWxMczxsv7rbmCcsuz6gFkQPEatQG4d/ki236ZQUp8PIUqVqZ66/Z2BZlZaT1qHDPat+BybCzlJQLnbCKxGi2Dvx3/lq7g3eAfNQiCICwGmgLRoii+nErYf5S8CgW22Bhunj1NwfJPAovH1q6g5lMSx+1HDGJzUhJbZk6nWZ8ByBVKbp45xcHVyxi2YsP/+tQzeZmWms9iZMdetBrTD4PJSN3SlTl/6wqjlv7M9J7D/qdvaLkxCuHxrvyyXcYvD2TUqXGWQuXD0Pn6YJY4Emfw4MsR3qTlaYCm8BPBPf3lA6iCX7wKeRHmxEj0f+3CnBiBwiMPjqWbINW++Z7STT6azu4tX7EuKJg1iQmsTEjASy5jrr8/xVX/21ahWcltYdiJrb+xfuoEGnzagyKVq3F613aObFzLiDWbc4y16dzcGbXrEBf/2Ef4nZsU1Tmh0mgJv30TR1e3N5rC/S7xjwaVH2kk6YHluTEI/1+Cyn/oU/gmMYnaXbrjmS8/F3ZsIfbcGVZ5eWXz08ZYLAxPTOCqIR0HjQYMaYxycqKu1vGlqihf12X0Nvjr9lWmr1/M3/dvksfbny9bdqFumcqvPJ/FauHinRuoFAqKBuXPZljW5H+xbv/TxkEUReLXj6RYqcK0+nIwCpWKPUsXcnjLFtw7/4xEoSI97Aoxm75HW7oxCq98pN//C8PtM3i2/S5DPE/tiMIr30sbOuPD60RvGo+2RAMU3vlJf3ARw+1TeHWcYldh/TaYvKYvy1NSibSJVJVL6eTslO1v803yOhXBZmM6X9WqyFdL1xJQOCMBQBRF5g3uS2CRYnzwxbOTFGw2GyvHjuTcnl0UqVyNiLu3EUWRgfOX4eqTu8b17wL/miwjQRCCgR3vDYI9t4xG1qemEi0IlANaO+mem4YXZTajt9kIftT3NSs5/Zj0CfGc2rmNpJgoevkVo07pSv/Ztx6AvWeP0nPWOJQ6HUZDGq5qDSuHTqZIYEYaaW6MwWOyGoX0kMtYjy9k8p5Ddvdv2mefEKUtjmOphgCY4x+ScmE3lsRIFJ55kUik6M9twbdgEZKiIjBL1Tg3/RqZU+57L0eu+ArHck3RFK2duS3x+FoscWG4N3t+xtDrkHr1EAkHF6Or2AqZiy+Wq4dR3DvLb34+ma0w3ySvKw9x58I5Vnw3ku+27LHbfunwH+xZ9CtfzlvG8c3ruXbqOI4urtRo04Hg4iUBOLxuFUd/W8uQJWtRaTSIosiOX2dy/cQxhi5f/1rn9b/kP5NlJAjCFzzSUfL5j1UHJlqtbExM5HK6AW+5nHZOzgQoFPyp1xNlsdBcraZELvXkveRynhU1eBx3ePzDun3+DLN7fEI1lYogUWSIyUxw3sKsHzcHxTsQHMyJyPhYVh3YRmRCLFWKlqZZ5TrIZbk71wdRD+nywzf0mr2AQhWrIIoiRzesodmYvlxbsP2Z89isVgz6FNRaRyRZ3n6zZiKZYx9QtGJlBEHg2Kb1HFq3kpS4OBxd3TCnXINHBkHu6odr3R4AGB5cJP2P2Xy/Yx/u/gGIosiu+XPYs34Krh2m52qlYDOlY4y6g1dhe9lybfH6RCwb8IxRr49oNZPwxyI82oxB6f0o6J+/Ism7fmJR+EWGur9+a0mwNwKiKGK1WJC94t+mg86JlLhYbFar3feYFBsDEoGv61fFN18BarTtQOzDUH7+ogtth42i6kdtOLH1N5r1GYjqkeieIAg06d6bfUsWkBAZgYv3212J/a9555+woijO55HcdnGV+t9TNPECYiwWOoc8oIxaTWNHHbdNRjqHPEApkRAkl5NPqWRpQjzFlCqm+frmWpDreVRuVg+bKDL23l0meHhm5pP3FkV6PbjJwl0b6NOi42sf501z7Mp52o8fRPOqdcnvF8SszSuZvXUV28bPzSawlxMrDmynUvOWFKpYBcj4Uddo15FTmzaw99wxPqxU225/URTZv3wRuxbMwZSWhtJBw4c9+1G3c1e7h/WY7mW4UjiFld+PY+svM/hr3++0HjICD/9ATu7YQuiyxViSY5DpPBBFEUv8QwSZHNPV/TTv3Q93/4DM82nyeW/2rVyGOfYBCo/gF16TIJUhSGXYDClINU9kGKypCZlSG28Dc1wYglLzxBg8QlGiPqviQvnjUazhZclpFSCKIn+sXMruhXNIiIrEOzgvLfoPpuKH2TWmnodP3vy4+fmza/5s8pYqy6XDB7BZrZzdu4v0lBQKV6pC/7lLMr/b0nUbMvWTtpRv/CFGQxoOOvvsL6lcjkKtxpT+enpW7yLvvEH4r7IwPo7aWi0jslQgH9Traa7T0fVRD1qTzUavh2GsSUigi+urVR4/zW2TERtQN0t2hUwQ6KzRsObgjnfOIIiiSJ+fv2PuwO9oWjlD/mJAyy50mDiEOdvWMLRd9xfOEZ0Uj2uJwtm2u/n7E5OYvc/TobUrOLJxLUMWr8a/YGFCr19l3uC+yJVKarazvz9FqlRHKZeyZ9GvTNxzBBevjKY7LQd8RZpez7m/dqDMW4GUA3OQ2sxYzEYkUhkuXvbyBxKJBJ27B+Zc9lkWpDI0RWqRcGgxbo2/zDAOpnQSDy9FU6I+Vn0CglyJRPnydQCi1QwSWbaViiiKpN09h1Ufh2gxI2RZWVlTYl86bfZ5riCL2cycfj2IuHeH/nOXEFikGDdOn2DR8IHIlapMJd/c8sUPs/n+4+YcWruC2h93Rp+YgFGvR6l2oEbbjnbX6l+wMG6+fjy48jcla9fj0NqV5CtTPnOfy38eRK5S4Rn0av0w3mX+u07jd5zjqam0yKJZH2U289BkJtxsoWtICKMiI7hjMvG5qxtz42KpevsW30RkNAN/HQQEbDlst4oi0ncwhnDr4X3STSa7t3iJRELvpu3ZeepQruaoVbw8f+3chs325MoN+hQuHzlEtWJls8UP9iyaR9cJ0/AvmGFEAgoXpeuEqfy+6NfMffQJ8Zzf9zs3Th2nUvOWuPr4ZRqDx5SpUw9b1A0St0+mx9ix/HT0DLNOXKBAmbIcXrfKLsc98t4dou/fReFdILe3Bpc6n2FL1/Pw18+IWj+Gh79+BlI5aVcPE76oD2FzPiVmy2Sshty1e0y7eYLwRX0J+aE1D+d8StKp3xDFJ/cs+eQG0q4dRu4eRMKRFYi2DH1yS3IsicfWoC3VCFEUqV26M5UcC1HZpXiGOugjsjaYf1FcYOGwAVw/c4q+sxYQVLQ4giBQuFJVOo2ewK4Fs3N3g0QLMss9FKYL6EP24Reo5fvf/6RpnwG0H/kdozftIk2fTEzoA7thNpuN5LhY1I6ONOr2BaHXr/LT5104tHYlayd+x8JhA+jy3aT/ZD3CP512ugaoDbgLghAGjBFFcdHzR/030EmkxFqetOG7azJhRkQhCPR0c+OqMZ3Pw0L53NUVT5mM+f4BrEpMoEtICJuC8+Dwig/v/AoFKkFgV0pKpqSvyWZjWWoqn7b67JWvRxRF5u1Yx9ztq3kYG0WFQiX4tnNfqhZ7vdRKhUyOyWzCZrMhzeL/NZiMKHIZQ2hepQ5zdq1j9hefUrFVWyzpRg4uXUDbGo0o4B/M2aeuIyb0QWZQ8TFBxUsSE5ahdbRv2UK2zppB3tJliQsLJSEqApvNhindgCJLCmbojetYLRbKN/qA0nUzYgmCVMrnU39mWN3K/NizGzVbtSE2PJydC+biWKMLEkXum+JIlA54th6NOS4Uc2IkEpmKmK2TcGsyAHX+iogmA4lHVmSI5XWY9Ny5DPf+In7fXNw+HIwqqBTm2BDidv+MaDXjXLU9NnM6yac3Z1RTyxTEbJvKw7mfIdW6Yo4LwalqB9T5KxH/+yzSw66iLVEPm8lA69hE2g/+ivqfdMv1dYXfvsX1k8ewWS34Fypi91ne0uWIunf3ueOl1igcU1fjmLoSUZBhk7jg5Ken+tRYLPrOpIhdSFU3wSs4LwXKVmDXvF+o0KQZLl7eiKLInsXz0Dg541egEIIgMHLdNg6uWsqR39aiVKvpMfVnilSpnuvr+TfxjxoEURQ7/JPH/ydp5eTE7LhYSqnVOEmlbEhMpLebG5+7uQNQ0cEBZ4mUGTHRdHR2wUsuZ7CHJ3dMJnYlJ9MmF/K9j1slZhUTEwSBKT6+9AoLZVdyMgEKOQf1eiqWq07XRi1f+XqmrF3AthMHmDdoPEUC87Lr1GE+Hj+QrePnUrZA7rV+nibY258ATx8W7t5Az6btATAY05m+YREd6jTNtv/5W1dZc3AHaekGGleoyQcVayKXyfn+k/589vNoFg3NCLiWL1yC0R16ZRsvCAIBRYpx5diflKj5RKH1yrE/CSxcjJtnT7Nn8TzGbtuH2yNBt2ObN7B24ncsHTWMjqPGoXFy5vqp4+xeMJuiFavgn9/e367WailSrTZX78QQ9usyUGjRNh6Kyt/+4Zdb5G4ByN0CSDi4GG2phjgUyGj8IygdcKnbg4fzv8AUdReFV95nzpF8ehMudbqjDi4NgMIjCPfmw4hcPhinSq2xJEUjcXDKzILy7jARc1wohpC/STm/I6PQ7t5fpIddxefTnzINm2OpRqyd+iUVP2iG7tHf9osIuX6FghUqc+/yBe5dvkieEqUyP7tx6jh+BbO7/wAQrbgkT8IxdTWp6mZEuS/HJM/Sa0Q045C+B51+Ga5JY4lx+QmDXo+rrx/ffliHPCVLE3X/Psa0VEZt2JG5Avj7z4PsnPcLZRo0xkHryNJvhlK52Ue0HTbqP7dKeB9D+Ido5eTEbZORRnfvUFKt5lxaGkM8M35s+1NSmBITjVUUSRVFrhqNJFut6KRSKqoduGk0PnfuGIuFqdHR7NNn+KPra7UM8/TE89EbdVGVit1583EgJYUYq4WpPr60+PanV/7jTks3MGvLCo7PXEeQV4aKZIe6TYlPSeLH35ay4uuprzTvYxYOmUCL0X3Y+OceCvoHs+fsUWqVrEC3RvZ9oOduX8PUdQv54oN25PH2Z+Lquaw9uJOpXwyl9feD+Gj4N1Ru1gqTIY2tP02j1YSBHJ66NNvxWvQfwpKRX9Fx1FjylSnPrXOnWTPxO7qOn8rxzRuo36V7pjGQWqOo07QoN/a7IJNE8HX9StisoHP34NNxUzAb0zmwcikNu31h1+/i2sljOLUYnasAck6Ioogx5DKp1/8Emw2HglUwJ0ahKWSvWSRIpCjcA7EkReVoEBxkeqr5HaDK+Ft4ed5AIfsRg1lDaEowB0M/YJtMwGpIQebohjU1AWtaEhKlhuSzW0i9cgibIRlBocaampghFV6yvt0qR+bkhSq4NJf/PEi1lm2feS13Lpwj4s5tfPMXwMM/gNDrV/iw15fMG9yHLmMnk6dkaa4eO8KK70bQc8acHCax4pHQF6k1ljCvo9ikOcTcBDlp6qakqZuiMh7HPbYn+bxTOXZShdVs4drJ45SsVZfPp83KrGA26FNYOmooQ5etI7BoRmZ8836DGNfqA0rWrkfhSi/WiPo38d4g/EMIgsBwTy+6ubpyLd1IuNlMhNlMgtXC2KhIfnzU5SrVZmVadDTDI8KZE+BPavEUWje1EZPnNqLaCiYJ0gQ56hM6VCedsBgkdAsNoa5Wy+F8+ZEAi+Pj6RoSypbg4MxOURqJhOZZ+tu+zptOeFw0ThrHTGPwmJolK7D4942vPO9jHB20fFzrA47+fY6w2EjmDviOBuWq2e0TkxTPuBW/cHLWhszz6N6kDbUHd2bkkp8o0+gDqrf6GACZ3In2345nTMManL5xCQrUtZurTL2GyORyds2fzcpxo/DNl5/uk3+kePVanNj6G05uTmjSNqNLXYbcfAur1JuhQ0ElvwsDnVixKJo6wzYiKH2wmEzsW76IOV9+Qd1OXTEZDGyZPRO5f8lXNgYAiX8uJ+36URzLfAASKQmHliAoHUi7cwZN0VqZ+9mMaRgfXse1YW+78QppOh8XWkxln8NciinPutBvCLsRhMmqRC1Lo7DrZeoHbqXDCiO7ww6zP/QjtMXrErt9ekbfaXM6rg37IlE6kHJhF5Grv0adpyyiKfvLis2cztZjEVTLYQFq0Kcwq89nJERGkL9MeXbOm4Wrty9aZ1ce3rxOkx69WTt5HFH37yJXKOn07XiKVauZbR7XpLFIbfFEuq8C4cWSKenKqkR5rmPwkI8ofKYZCcbCHF6/CrVGm5liCvD3kUPkK1020xhARhprrfadOfv7zvcG4T1vFk+ZHE+tnHCzmWkx0QTI5Xzm6pqpEqmRSBnh5cWUQrcI/eQ2zVKkuB9xRbFBg2CQICpErD5G0mokom8WS9xxNT5zJQz2eFLgNMDDg4vpBvbr9Xyge/MCat6uHiTokwiPi7Zrf3n6+iUK+AXnOCY5TY/VarNrr5kTN0Lv0fjr7rSoVp/ezTty6tpFevzwDVvHz6V0viculoMXTlGjRAU7o6SUK/ikwUfM3/MbVerZK78KgkBQ0RKsFpPIqfa5RM06di6jxzRo5kWV4DEIqWVI0n5BmqohCE9+RgrTRVp9sRBdXF2Std1IdPyKIYvXsH/5In77YRJypYoUn8roSjZ87nU/D3NcKPpL+/DtMRepOiN1WFuyIRGL+2JMjCLhj0VoStTHlpZE4pGVOBSpiUz35HvRypMYXP47wvWBjDjyK8kme6kLs0nJ6cianI6sib/2Pj1K/EiALpQl1l7E7p2L4cZx/PutQJBlSJS4NehN9KYJCHIl+kt70JZqiEyX0awmPewKpohbqFt8neO1bJw+CTdff75aug6JRILNZmPx14OQKRSkJiawdtJYAIKKFqfDyLHkKVk62xwy8x20hi2EeR3JlTHIvE55UVK8pvNh7QVEeE6hRtv2jG5an+9aNMDNL4BqLdvleq7/Cu8NwjtCe2dnIixmNiQm0jxL9pGIiKldDN0LyfBc6Iv8wVOFaukgTZahuKHBqrMg+yiaYdOM2OZakOiffL2l1WrumUzPPL4oikTEx+CgVOGsfTmjoVU70KNJO7pMHsbsL8dQwC+I3Wf+ZPzK2az55ke7fcNiIxnwywQOXzqDIAiUzleEn/qMpFhwztk1o5fNZEDrTxnY6lMAWtdoSJHAvIxcNINdExdk7qdRqUlKzXCRRcTHcCPkLnl9A0nSp+Dp6MSNY3/apYyaTUaunzlJ434Dc32dmrTfqF10C9GuqzAqK+S4j0lRCpPXLJKtMXjFd0dmDSfWeQZNe39J095fZu6Xkz6SKNowRdxCtBhR+hbOfODa7WMxk3RyA1JHNwx3z6IpVA1BpkCiUKEpWhubyYBoNRGzeQISpQZN8Xo4ln3SnlQhSWdQuXHciC/BuhvdeJGcc5g+mEmnJzOo3FjaF13OwmvFEc2mbOemzlsOw50zyFx8CV/UB4V3fgSZElPETdybDUWiyLnA8uS2TUzYdTCzylsikdBy4DC++6ghs05fwZRuwGI24/CcFwdd6gpSHDpgkzg9c59nkar+ENfkCShMl0FVguqtP+bB1cuUrd+YTT9OoXTdBty5eJ4HV/8m6NEqITUpkcNrV9JtYnZF2H87/7h0xcvw/0G6Ymp0NGk2G995Z6Qw6pvFkF40FdeZAUgML9aKERFJ/CgaW0EDrj8GIpgliKJIl9AQOru40CiHH9bZtDQmREURKwiYbDbqlKzA7K++x8Mpux9Wb0jj0MVTSAQJtUtVzGxrabVamb5hEXO3ryEmKYHSeQszpks/GpZ/ko1hsVqo0KcNbWo2YlDrrshlMpbv28oPm2aza05PZOokbKQjxRGNrTBOtsp4tq7K9SW/46Z7EkQ3mk24taxE0tazmZlH6SYjhbs2plzB4py4+hfF8xTkyv1biKLIsuFT6Tf3e4p/0JSa7TuTmpTEjp+nEyjIabFgca6+F1X6ETwT+hHhvhGzPHepoYJowDu2A+mKSiQ4jchxn8eGwRR9l6Sd01CrFagctMSEhaCr2xNN4Sf3z5qaQNSab5CotaiCSmF8eB1LUhRe7Sci07kTu3smEpUW1zrPzhZrlncNQbq7/HJhJC+j7e8g0zO26gBm7W/JyRW78Plstp2bMfb3WRhunkBXKUOdNuWvncjdg/BoNtSuFiKrrLgoivQsnpefT12yE5hLTUpkSI1y/HrpzjPPR58Qz5GNa4m8c5lv+vxBtO9+LLKAXF9PVpxSZiK3hBLrMo11k8ehVDvw0YCvSI6LZWSjmnw8YgzrJ4+jdL2GOOh0nN61nSrNW9F26Df/mqBybqUr3r3E8//nfObqyp+peqZHR3PTKwl91URc5/jnyhhARp2B8xZPxHgZUQ1iiDKbmRwTTYrVRt0cVB1DTSYGhD+kv7s7R4KCOBQcjPuDm7Qd1YunXxa2HNtPoa6N+HX7WmZuXk6hro3Zc+YIAFKplOHtv+Deyj9I2nqWYzPX2hkDgL1nj+GkdeSbTr1xUKkxy+9Tp/k1FixJRa88gogJKWosJBAi/4kLyma0by8QmXzfbp6YpHg0KrWddpBKoaRZ1brEJSdwfenv7J2ymFvL9lK1WFn2nTvGH5MX4/Ewmh87tGLlwD40DSrK8sETc3VPEUVck8YS6zwt18YAQBTURLkuxjF1JVLLw2fvZzWTsGUCnYYOZerew4zfuosRy9egPzgPc/yTcQmHl6HKWxbvTlNxrt4Jr4/Hoylcg4SDizBF3yPt+lHSrh/JKCyzO32R5DNbiZjfjVoeG9l6pwMv2+glzaJl34PmNC5/DUGmJPHw0ozViM1K6tVDpF05hFfHyThVao1Tpdb4dp2JOeoulsTIZ84pCAIla9fj4Gp7CfCDq5dTsvazmyrFhoXy3UeNCL99k+r1gzAJga9sDABS1c1RGw8Scec2xzZvoFKzjCZUOjd38pcph0bnxPidfxBYtDg6Nw8GL1xJu/9ghhG8dxm9c7jLZKwODGJhfBzXq0RT+5ALkpSX+5oEBJx3ehDS/z6f/JJIHbWO2lot7R/cRwQaaB3p6uqKWiJhQ1IiLXVOmTIWDoLAEFdXmoY/5NytK5QvmLFMDouNpO/MseycOD/Td3/i6gXajO3PpQXbM9/gBUF4ZjezB9HhlMqb0VksUrqah/L5eFk+poJlBwo8yVoxJ1pE9MIlvmizjBhbH+Itv+IqK4nJbGbEwh/oXL95th/k/vPHWfPNDHQOGRkiDio1M3qPoGLfNkzuMYRf+495qfv4GKXpLBIxnTRV/Zcea5O6ondojS5tJQm64dk+H9O9DBcO7mNLYCBVWjzp/RBUrAQ123zM6SsHcKrRBcgoHPPtMdduvK5iS0JndcJw7zxujfuTcmEXhttncMiSbZR0Yh2GW6do3L8Z8eIJQlOenX76PI4+rEeL/KvJ32kK97avImx2FxAkSJQOqPKWR+EemLmvRKVFU6Qmhjtn7LKbxi76y26V0G74KKZ0bkPo9asUKFeBW+fOcOvcaYav/O2Z57H5p6nUaNOBFv0H42D4HVvipVe6nsdYJe6IpjjGtf6AzqMn4JM3I01YFEViwkLRubvj7OlFgy4vror/t/N+hfA/ItFqZVNSIusTE4kyP7/a2FsuZ2QeDyrXENEef3G9QU7IIpQ4x6jZ39qHaIuFm8Z0Rnp68a2XF9eN6fQKC8UqikSYLRRQ2gfiJIJAAZWakOjwzG0b/9xDy+oN7AK5VYqWpl7ZKmw5tj9X51Q6XxH++OsUYZLFRMrWUsy4En9L7wxj8BQCAo5iKUoIMyguH81laQ86/dSWoI61uRZyl/FdB3DxznW+WfwjQ36dzB9/nSQ+OQk/d3uJPx9Xd1LTDVis1mzHyK3CqS51GcnajIffq5Ci6YI2dQ2IOcdwUhMTcX2qyhnAzdcXjKmZ/xcEAWz2deaiKIIgwa/XYjRFaqBwD8KSEvPkc4uJlDNbcW8xnKqFb3HkYYNXugbIWCVcjKlAhTzX8Gz5Df59luHT9WeogPCeAAAgAElEQVRs6al2MhaPsabrEeTPL7TzDAxm3Pb95C1VhrAb18hbuizjtu/HIyDwmWMuHzlEjbbtH/1PgtX8/DTsFyFgRRCkKJRKfAtkvLDYrFZ+XzgXqUxGvtLlXjDDf4f3BuF/wN6UZBrfvcOR1FTOG9Jocf8eqxISnjvGWEKP4obDS68OsqI+7kR0+QQiLGZm+vlTzsGBMmoHfvT1I9Vm42hqKsVVKo6k6u3GpdpsnE1Jpmz+JwVl+rRUXLTZg3aujs6kGFKzbc+JykVK0aCOhlCWU8Q4H5Xon6tx7rbGFJOOpdeAcKqXLkp4bBTzdq7jo9F9UMoV+Lh5MvjXSXg4u7Lmjx12Yzce2UuFQiVeS8VVbTxMqrrZK483y/NjlXqgMF/J8fNCFatw6/RR9AlPdJVsVitHNm9C5l8ic5tD4eokndyQ6coTRZGkE+vRFK6OVKVBtFow3DuH0qdg5hhraiKCXInc2RudIpFYw+t10os1eKFTJAIZldLGkEso/YuQfvccxsjbmfuZou6SdvMYDoVfXNGrcXKmwac96DJuCg26dMdB9/zgsEqjRf/o92OVuCCzRr3GFWXUkohyDzp/N5GZvboyull9vqpVkb8O7OHLLKJ3/x947zJ6yyRarYyOjGRJQCBFVBlvSw/NZto/uE8lBwfyK3NOk7M5WZDGvV7nMWmsHIujhZoaR2RZ/qglgkAtrZZL6Qa6uriyJjGBiVFRtHZyIsFqZU5KCh9Vb0iw95MHdsPy1ekyZRjD23+OVp0RJExISWbrsf3smrQg27FzQhAEunVV4msdiZLsb8TPw93WBDfpXspWCuPKHUemrJ3P6dm/EeiZIT/cu1l7Kvdrx6TV84iIj6FWyYqcuXGJ+TvWs2HMzJc6lh2iiMSWhFWSuyrbZ2GTuCO1JWXbbjGbuXHqOM6e3oxr/SEf9uyHWqtl36oVJBkluBSskrmvc80uRK/7lsgVQ1D6FyP9wUWs+jjcPhhEeujfJJ/ciNwtAIXvk0peqcYZ0WLCnBiJVGLFKr5eExurTYpMeCK5YkmOQemVH8dSjYleNwqFTyEQwBh6BXX+Ssgc34wcdlaqtWzLph+n0PeXBaAojTPxyM3XMMtfrdJbm7aRNHVjKjRpRpl6jQi9cQ21Vot3nnxv+Mzffd4bhLfMAX0KVTWaTGMA4CeX00LnxO7kZHq5u+cobS1KRbC83puJYBWQyzMUTp/mttFIDY0WR6mUlYFBLIiPY1B4OBqJhM+6DqRn04/t9q9QqAQNylaj5qBOdG/SBqvVypztqymep0Cu01TThFuYpA9xMWfP788N/nSiep0RTJudyIeV6mQaAwCNyoEuDVty++EDBATmbFtFfr9g/pi+jAL+wa90vCcIkKMk4MtgQ3xqQW61WJjZqxumdAONu/fizl/n2DhjChIHF+TFG+NSux5ClqZIUrUO7y4zMNw9hzk2BHWesqTeOEbslkkIChXqPOVwa9zf7o1WkCnQlW9B7NbJ6Kur0Mpzp6b6LDTyFOLSn7j4lD6FSDyyAqcanfALWozh/l9gs2JJjEZb8tXdU8/jw579WDh8IENrV6JA2QpUKiJQt80CzF4zXnouQUzHMW0tD3TrOL93N6Z0A0Wr1sDJ3eMtnPm7z3uD8JaxiCLKHB74CkFgZUI88+LjCFYo6OvmTpMsRWOSNCkWl9fzjdocrGgMcm4ZjaxJSKCtszMCsCUpiQuGdCb6ZDxQ3WUyRnh6MeLR7zxPDhLYgiAws98o9p49ypR1C7n64BaVi5TG3cmFcr1a8kPvEXSo82G2cVmJkm3Ey9IaCa/mvnG0lUMulfFJy8KE3knL9nmqIQ1PZzfGd3txg5hcd0gTBKwSV2TWKCyyZ/u1X4TUGolNYl8Adn7fbtKSExmxZgtSmYxqLdvS4sshDG9YE12+CgjS7PdJkEhxyF8Rg0RK3K6fcKnfE1VAcYzhN4jf/ytpt06gKWJfyaur0g5B6cD5g6spXeNPzkdXyTZvbhCwUsbzNLMvPCkyU+Uti3D6N2K3TMaxQkukGheST29CpnNHFVTqObO9OjKFgl4/ziHizm3Cbl7DL7gTztbepFq/wir1ffEEWdCmriXJGMig+u3xL1QEtaMjq8aNosWXQ/5fBJGf5r1BeMvU0mj5MSaGcLMZ30d+7GSrlQ1JiYzw8qaFTscZQxojIiKQCwL1H2X7CLdVGBvFIUpEBNurrRSMpfQo7ziw0N+L0VGRzIyNQRAEAuVyFgT4P7clZ04IgoC/hzd3I0I4O3cT/u4Zbp9rIXeo+1UX6paujJfLsx+0acIN/K3P7l/7wuMj4CZUZmDHQGp0XsKxK+epVqwsAA+iwlm6dxM7Jsx75fmfRZqqIdq030jUDXql8QrTBQTRiEluL/J39fgRqjRvjTRLJ0Andw8KVaxGeMgltMWevZJKOr4W14a9cSiYkU3kUKASEoWa+H1zsxkEQRDQlWvGRXlNOvp9wbo7yaSaX75ivaTHeVJMOu4nP0m9FQQJnm3GkHx6M/H75gACmsLVcSzf4q373n3y5ccnX0ZGUFLKl3jHdiHCY0M2w/ssVOl/4pw8g4FDrfSYNofi1TMkP+LCH/J9u+YUKFshm+rtf533QeW3jLdcTj93dz5+cJ/p0dHMjImhyb271NRo+MjJCUEQqOigYZSXF4vj40mwWBgeEU61gyHcjbRhLKF/8UFywKaykl4+GfVRJ/IqlawMDGJrnjxsDgpmbVAwBZXPzv64N+jZJfubj+6jY91mmcYAoEhgPhqVr8GOkwefe05WIRWZ+HrdvJRSZxQqM8uGTeHj8QNpOaYvnScNpXL/tnzdvifF8xR88SQvSYq2C46pK0F8tV4UutTlpGg+AcHeAKsddSTFRmfbPyk2GolKm217VkzR91AF2cs4KANLYI5/iGi15DgmxezEheiK1Pbfk+Pnz0ekftA2/gjNvgqUyFU4V+uAb7dZ+HabiVOVdkjkz5aQyKlK+3VJ0vYiTVUHn5iWyM03n7+zaEWbug7PhH4cu/c5NnWxTGMA4ObrR+32nTm5bdMbP893nfcG4S1hFUWOpaayJSmJ6hotiwMCUUoEDKKNNKuV733sl7alVGruGtPp9TAMZ6mUg/nyU/SEJ8m14xF5+Wry9MpJKK5rkCY9cTt4yuR4vWbP5JDoCDs57dCYSL5d8jPnbv3NlmP7uR8Z9syxElGFVUh/5ue5wSYYkIhq6pWtwvUlv9OpXnOaVKzBhXnb6NWs/YsneAVM8mJYZAFo017+ASGzhOBg+J0Uh+znVq1lW/5cv5qHt25kbju9axvRIaGZMtTPnNfZG2PkLbtt5ui7SB3d4Dkrv+1329EoeAuFXC6/1HV8mHcDOkUSpyKyC8u9EwgCCU7fkKz9DM/IljiHNMfB8DuIT4yjxBqHU8oc/KOqo0tdToT7esITAlDnUL2vdnT8T7bIfBHvDcJbIMxkovn9e/wcG8Px1FQ+CXnAyoQE+rq5M8zDEzeZjMsG+z+204Y0fORyjDaRrz08cZJK0f6lQ6qxkdw49qWObw42oP8wDs2uV8/wyGmVcOD8CXacPMiK/VuJSYrn6oPb1BjYgXSTke+7DaZEnoLUHNSJ87eu5jinUvTFINzO8bPckibcQilmGFOt2oE2NRvRqV7z57qqnibX8YMsxDlNwDX5e1TGk7keI7HG4RX3CQm6odik2Y/pV6AQH389mskdWzGlcxvGNG/Ahqnf03Pq9BfWPOgqtSZ+z2yMERlGwRRzn9idP6Kr2Oq5rpqI1AB+vTSUvmUmUdL9TC6uQuSj/Kuo5b+HH8+NwWx7vcy3t02CvD0dOskIN9TFST+X4PC8BIYXJSA0L37hFZBbbhPtOpdwz52Y5YUpWrUG108dJzYsNHMOszGdo7+to2SdJ4WIaSnJHF63iu1zfuLG6RPZqvj/K7yPIbwFRkRG0NrJic8e9UZOs9noHhrC5qQkWjs709vNnaER4Yzx8qaESsWJtDQmRkXRxFFHmmjL/EELFgnOvwQQPuQeSEV0Oz0QXiA5YCqYSmKPcJyW+yB/mPvuW7lh7IpfmDtwLJfuXqdi37Y4axz5ql13+rXoDEDzqnUpFJCHUUt+tBOee4yH9SNC5DPwtLZ94XXkhEG4h0FyB2dbjde+ltySHB/HoTXLuXfpAuXKlaXDhz2IdxlPqrrFcx/acvM1vOJ6oHdoSYr22d3CqrRoTZn6jblx+gTHNm/gyrE/Wf7tMAxGC5oqHdE+QxVVW6wOosVEzJZJ2AwZPQp0lVrjWDZ706CnuRpXmp/Pf0u/0pMISwnmQMiHXIwpj8iTlYVKmkYV30PUDdyJyapiwsnp2VRR30VCr1/FwckDh0IDiWAgiBYktmT+PnaCHQuXMGy5fSaSztWNVoOG8f3HzanVrhMOOh1HN63HN39BStbKkM+4e/EvZvbqSsGKlfHwD2L56K/xzpuf3j//iuw1V9zvGu/F7d4w4WYz7R7c51C+/Ha5/wf1KSyLT2BpYEamyvbkJBbHxxNiMlFIqaK3uxs6iZRhEeHsypMXaZaxw1JD6DXGjJNSgvqwC6ozOiTGJw8jURAxFU7DUCsBU14Dzgt9Udx8PV89QJ4f1z85hiiiaVqa5G3nkEllXL53k5qDOnF3xQE7CWuj2YRry4okbz1n1/ISQMTGRWUL8pnH42h7vkskJ+7LpyARVQRanmQRXQ+5y/QNizh7828CPHzo07wjTSo+362R2xVCfGQ4kzq0pGiVGshVKq6dOIqHUwSjRmtwclWToumCXtPuSRBTNOOQvvdRn4SbJOiGo9fkringqvHfEhsWQreJP6Bzcyfk6t/82Ks7imrdcMhf6ZnjRFFENBkQFCqEl6yklkuMVPA+Sr3AXTgr44hI9cdkVaGWpRLgeI9r8SX5I+QDrsWX4mW1j55HVumKN03EndtM79aeaQdPIcny93d8y0bO7dlF/7k5ixmGXP2bk9s3YzSkUbJWPUrUqotEkiEM+U3jWrQaPJzyjTLiJxaTiRk9OlGhSTPqdOjy1q7lTZJbcbv3K4Q3jFG0oRIEnvbiaiVSDFkaljfTOdHsqYpMURQJkiv4KiKcvm7uOEgkrE5I4JLejOe0YORF0zHUSkD/UTTyEBWCQYoot2H1NiEYM4yFbomvnbHIDTEWCz/FxHBAn4JUEGji6MiX7h7cG9Qu0ygIgoCfuxdXH9yhZN5ClMhTEDedMxHx0XYGITI+Fp2Dxk547jECErwtHXkgm0FR0wIk5F67PlW4Sax0JyWMazO3XQ+5S8Ph3ejfsguDWnflyoPbDJo7kaiEWLo+1U3tVdj5a0av3bTkZO5fvkDrwV+jdHBg/Iz5+LhF0nfoJQKSp4IgRUSOREzBqChPsuZTUtVNQMideyU9NZXjWzYyae+RzDaTgUWL03HEKFbNmv9cgyAIAkIWNdGXwWxTcjy8HsfD6+GjCcVNHY1CYsRg0RCu9yXs9DlSr6xGNC9Blbc8uootkb4g2P0meHj7JncvnMfFy5uiVWvYPdhfhE++/Lh4ebN36QIafdYTQRBIjo9j57xfaDUou5bUYwKLFrdrgpN5LrduYLVYKNfwg8xtMoWChl0/Z9+yRf8ag5Bb3huEN0yQXIFcEDialkoNTcaPRxRF1iUmUFvz/B+TIAj87OfH3LhYvggLxSSK1NFqWR4YiFaQwjUNymsarM5mLL5GRLUNwSQgSZAjC1O+khvGaLPRNTSE2hot2/LkwSzCvLhYeoaFsiowyG7fPs070m/WOFaOmE6gpw8tqzVg0NxJbPpuFhqVA+kmI8MXTOPThi2f6cf2sn5MsuQctxTDKWCakiujYBDucUPRj2DziMz4AcC09Qvp37ILQ9tl5IsXCy5AIf881Bv6KX1njqNSkVKM/bQ/NUrk/GJkNBjYOusHTmzbhMlgoFTterQa/DXufhkV2ldPHKHdsFEsH/01k/cdQ/moaVGRKtWZ1KElM2Y5Ur7hIopVLIVEImKT6Oya5eQWfWICKgeHbD2H/QoUxppFl+htEpEaQETqE8XQuD2/YI6+j1PV9hmS6kdXo7+0N8MtVbKhnaT1m8JmtbJ01FAu/3mQYtVqEnHnNqsnjGbQwpXP1TZ6mp4z5jCrz2cc27Qed/8Abp07Q/1PPqNsg8avdF7/Ji/K6/LeILxhJILAGC9vhkSE84GjjjwKBQf0KaTYbHyXg4DZ06glGd3OsnY8exppohxp4pvxXf6WlIgoZjgE/k5Pp5ZGy1gvb1o/uM/JtDQkWVYJA1p2IdWQRpX+7XB00JCcqiefbyCFujamdL4iXLp7nVqlKjHmk37PPJ6AhPzmidyWf8NVRQ8CLP3R2SrkaMyspBEr3UWYfDYB5oG4W5vYfX725t8MaWuv/V8qX2GcNI4cn7mOi3eu02niEDaPnUO5ghnN1rO6i+b0/wK1VsvwFRtQax05uGYFUzq1Yuz2/Tg46tA6OXP91AmKV6+VaQwgo4lLhcYfcmTjWh5cvsSadAODFq7EzTeHPr65wMXLG1HMcFtkfUu9dPgAMq/cy22/KczxD0m7cRy/XouwJEYStf5b1HkroCzZAMPdc+jP78Sr4+Q3LktxeP0qou7fY/L+4yjVGX02di+cy+IRgxm+MvetWD0CAhm7bR+3z58lOTaGrhOm4fSc39Pz8CtQCLlCwbk9OynfOCM+YzGZ2LtkPhU+aP5Kc77LvDcIb4HKGg0bgoLZnJTETaORZjonmjg6oszBjfJPcj4tjZ9iY6mj1aKTSpkXF8eKhATm+vlTwcGBW0YjVbP0l5VIJIzq3IfBbboRmRCLj6sHaqWKB1Hh3Ay7R37fIPL4vFiwToKCAuYpREt/4758EiDiaWmNWsyLBBVWUkiSniJWugNHWxkKmn7MMebg7+7N+VvXWLl/G+sP78ZsMVOvbBVS0lLxcfWgoH8w0Ylx/Lx5GcuHT7Ube+/yRSLu3mbS3iOZhWEffTmEyLu3Ob55I/W7fEaNNh3YNX8OOvfsD76oB/ep2LQFzXoPYOevs1g8YjBDl617yW8gA6lMxkcDvuKXfp/TduhI/AoU5tLhA+xeMIdhKzaw8M/sVdlvE1PkLVRBpTIK3Q7Mx7l6ZxxLZ7xdO5b5gISDi0k6ugq3Jl++YKaX4+S2zTTt/WWmMQBo8GkPdi+YQ3xkOK7eua9CFgSBAuVy7mr3MgiCQI+pP/Nzz085tXMrnoHBnN//O375C1GjTe7iQ/8m3huEt4SvXE5f99cTRIOM5eodkwm9zUYRpfKNGRVRFPk2KpJJ3j6ZvRC6u7ry5cOHrE5I4ILBQFW3DGOQNZYAGX0G8vo8cS8Eefna9TJ+mpS0VGZtWcGOkweRSWW0q9WEnk0/xou2eFrbkCI5R4x0G4nC0Ucd07RobIUpYVxn5yJ6mt7NO/DFj6OpV6YyOybMQ61UMmvzClRKJdJH96lqsTIs37cFsF8dPLx1nQLlKthVCQMUqlSFB1f+BqBG2w6E373FoTUrObBiCXU6dkGQSLhy9DBndm/nu60ZBV6NPuvJ74t+JSkm2u5NND4ynA1Tv+ev/b8jkcqo0KQZbYeOROuSfSVRs20HdG5u7Fu2iPjIcPKUKM2wFRvwK1CIMQXeTjHXs5BqXTHHhWI1GjCF38Cr3Ti7z7VlPiBq1bA3flyz0YjSQYMoipkuR6lMhlypxGx8voxLWkpyhoy4j2+27/R1yVOyNBP3HuHs7h0kxWWsOAqWr/SfVEF9bxDeYR6aTQwODyfWYsFFKiXCYmG4hyfNnV6+d+zT3DWZMIkidbVP4hpSQaCTiwvfRUZiEG1U17xeppLJbGbzsb18s/gnPJ3dGPvpAGRSCdPWL+LE1QusGjkdAQGdrTw62wsTILLh6uiMs8aRpUMnZ2Y0Te/1NbfDQ9n45x66NPyI41f+onBA9oYw3nnysXPeL9hsNrsA+N0L5/ErmKEWKggC7b8eQ7mGHzJvUG+2zvoBqVyOVCaj909zM99YpXI5sqceWkaDgamftKXihy2Y/udZrGYz2+f8zA/dO/Htxp05Bt1L121I6bo5p5m+SWzpevRXDmKOC0PhHoCmWB0kyifftTIgw22VfGYTCAI2sxFpFl0l0ZSWY79nu2OYjSSf3EDq1cOIFhPq/BVxrt6RcV/WfeYYn7z5mTeoD4nRkbj6+FK/S3c8A4NQOWjwDAzOcYzRYGDV+FGc+30nakdHRFGkzVcjqdL89ZMKsuLgqLPryf1f5d3yYbwnE1EU6ffwIY0cHdmXNx8bg/Ow2D+A6THRXE1/vWpfAJkgYBaz10CbRBEbIkabjYQsTWWeJ2eREwkpydQe0pm529by+QdtCfbyo9dPo/Fx9WTz2Nmcvfk3529d5fT1S3wx41uajerFhJVziEmKf/Hkj7h87wb1ylTJlt5ap3Ql/rp9lfWHdzNl7XwGtPo0W6ppvtLlcHL3ZPnor0mOi8VoMLBv2UL+PvYn1VvZX2uBsuUpXqM2bv4BGPQp5C9TnsKVq2V+fn7f72idnHHze+IuO7N7G97BeWk1cBhaZxecPDzpNHoCiCJXjh5+mVsJvLlUTXNCBOGL+2N8eA25mz/poVcIX9wPS9KTngKP9YnS718EQUri4WVPejBYLSQeWYWm6LN1lkRRJHbrZEyxD/BoOQKvjpMQZAoiV4/AaMi5+vfmmVNcOXaYTqMnMP/KffrPWczxrb+xcNhAuoyf8sy38eWjh2MyGJh68CTTD5+h3y8L2Th9ItdOHnuNu/T/l3/UIAiC0FgQhBuCINwWBOHrF4/4/8Ol9HTMokg3F9dMqYhCKhWdXVz5LSnxtecPlMtxl0rZmGUuo83Govg4eri54SmXE/8MTZzcMGXdfErlLczBH5YzvP0XrP7mB4a268GguRNRyhU0LFeNeTvW8vH4gRTPU5C+LToRER9DjYEdiYjPXWZNft8gzt68nC0L5Mjls8zfuZ55O9ayeuQP3GiSvZBNEAS+nLsYRJHh9arQr1xhrhw9zLBl63N06SRERaJUOzBpz1Ei79/lh24dOLBiCUtGDmHpN1/xydjJdg+tiDt3yF/W3oed4deuSMSdW09P/z8j4dBiHMt+iEfzYejKNcOjxXC0JRuScGip3X76i3uxxIehDCxJ2s0TPPz1M2K2TePhvM9BEHCq0vaZxzBF3sIcF4pHi69ReOZF/n/t3Xt0VfWVwPHvJjchGJ6CBAiaIIiYWgxQIoIIFiuID96ldkGLL2wrKB21IwsdFZe1qFVmHMpUBWUBI4wg0PqAChLBoSMPBYI8Q3iFR8IrgUBIINnzxz3BJN4k94Z7c+4N+7MWi5xz7zlnr0M4+/x+5/z2r1kbruz3CNHNWvP13xf53GbpjOkMe3IiXX82gCiPh2uSb2T8tBnUi4ri2s6+x6ycOnGcTSuX8+uXXiWuiXdmwXadUxg0/klWzH6vZifoMudaQhCRKGAacBeQDNwvIslVb3X5OFlcTGtP9A/ujNpEezjhYzrIQIkIf2rdhjePHmX0/n1Mzj7CwD2ZtPJE0zW2AbnFxSRGl+8WCKSV8Lc1XzBu8Khy8T84YBjrdqSTm3+Kbft389naVcx/biqPDxnNgO69mfb489x9c1+mLpzl1zFuT/H2406c8Wdy809RUHiOtxbP5tuMrRycv4oVr83iwJD+lW5/ReMmjHn5NaZ9s4O/pmcy4Z3ZF6tnVnQoYye/nPQizVq1YtL8Jdxy31D2pG9kzZKFPL94GR1/klru+23adyDjm/KlIVSVXRvW0qZDzQrwXWorQVUpyFhHoy4Dy61v1PVuCnavvbh8bv9mzmxdSZuHpxM/7FnajptNo58MpmD3Oq4a/Awthz5bZZdRUXYmsdd0LjeXA0BsUhf2OM9nKjqcmUGHLuW7DVu0vZqYBg3IO+a7dEteTjZNW8bToGH517kTruvIicOHfG5jquZmCyEVyFDVTFUtAuYBg1yMJ6zcFBtL+rkCjl74/i5dVfns1GlSGwTnHfAO9eszLzGJXYWF7C0qYnyLFvSOi2PcoYOMa9Hikh5gR9WL4nyFFsYFZ/ndTz9kb/ZBGl0RR2qn8uWFR/YdyKrNa/FHvXr1WDz5Lxw+fpR2o/rRakQvlm9Yw2evvEPTho39HpFcr169agc/ncvPv/jAOLp+LL2G/pwxL78OCk2u+uFkKt0H3suRvZl89OYU8k+eIDcnmzkvTkKkHsm9al4g7lKTgniiKTlfvstRi84hUd9f4M9sXUWjLncTdYX3WZWI0KT7IGLir6Wk4FS1x/AW3sv4QctNj2USn5jkc5s27Tuya0P5f/ec/fs4f+6cz/MLEJ/UjlPHjpK9b0+59ZtWeudoNoFzMyEkAAfKLGc56wzQzOPhwSub86v9+1iYl0tafj6/P3SI7AvnGRSEh8qlEmNiWJTUjvYx9Zlz8iRLT5/i2Zbx/KLppdWtGX5bf16d/y7FZVozbyx8D0+Uh6XrVjN34uucPJ3H2QoVJQ8cPULzxv4fu2XT5sz61ynkLFhDzsJ/suSl6XRs2+6SYvflhp63smZx+Xfh136yhPYpXYmO+eHgupjYBvxh9occyzrAU31TmTSgD8Xnz/MvM+f6fKBcG0SEuOQ+5K2egzqj5lVLyP1qDnE/6nvxe1pywWcLQDwxlZbWLis2sTMiQm7ae5QUnkWLz3P6208p2r+RW4cM97nNXY/8lo/enML6pR9TdK6APZs3Mn3Cb7jzgbE+zy94z/G9j01g6iOj2bDsU7J2bGPJW2+wesE8+j/4qB9nxFTkWi0jERkB9FfVh53l0UCqqo6v8L2xwFiA1h5PtxWVNOnrqi/z81mUl0d+STE94+IY2bRpwBPbhELZ11B9OXuugOGTH+fIiWPcnnIzmzN3cOh4Nu8/PYXunbwTx4+Y/ATXtGzNnx5+kmhPNAePZXPPpEd5bvTvGHprzd+2qUk10+oc2bObKaOG0+3OgdzQoxeZm2qA0TgAAAmpSURBVDeyesEHPPH2LNrf1DXox6tOTV9DLSk8Q86CyRSfzaN+QicKs7YS1agFLYc+e3H08dldX5P71RxajXr94rwGRUf3kv3fz5Dwm5l+jVIuPpPLieV/9XZFKbTr3IUxk1+mbcdOlW6zdc1qFv/Hn9mbvuniW0b9Rj9Q7eud65d9whdz3ycvJ4cOXbsz8NHHiE8M/k1BJPO3lpGbCeEW4AVV7e8sTwRQ1Vcq2yYSittdLqpLCODt4lqdvp6Nu7eTFJ/AXam9ifZ8//ri8VO5PPDaM6Rn7iSpVVu2H9jN74eN4emfP1zjd7xDkQxKncw+Qtq82WRt30Z8Ujv63v8rWlYo71FbLmVcgqpSeHAb548fILr5NdRP6FTufKuWcPzTqRQe2klcch9KCk5zZmsaV97xKHHJfarYs49jXShCS4p58bc9axyvuXSRkBA8wE6gH3AQWAf8UlW/q2wbSwjhx5/EUJ2Mg/s4fOIoP27XkaYNA5/asVQok0E4CuVgNVWlcH86BZnrkZgGxCX3JbpZ6xrtK5TVTY1/wr7aqapeEJFxwDIgCphZVTIwdVeHhEQ6JLhzpx3Jnn+oS8iSgogQm9iZ2MRLm1PYkkFksfkQTFAEo6VQE5dbq6AytVnawl+WDMKHvy0EG6lsgiLQkczBYMnAmOCyhGCCpjaTgiWD8sLtbjzc4jH+sS4jExKh6EKyJOAft7uPLBmEH+syMnXGBx2aWzIIgF2QTU1ZC8GEXKCtBbv4B09tthYsEYWvsB+HUBOWECJXdUnBkkDohDopWCIIf5YQTFj6v7+vcDuEy14wEoQlgcgS9gPTjDHuKL2Y1yQxWCKo2ywhmFrV495+1koIE3ZxNxXZW0bGGGMASwjGGGMclhCMMcYAlhCMMcY4LCEYY4wBLCEYF/S4t5/bIRhjfLCEYIwxBrCEYIwxxmEJwRhjDGAJwRhjjMMSgjHGGMASgnGJvWlkTPixhGCMMQawhGCMMcZhCcEYYwxgCcEYY4zDEoIxxhjApYQgIiNE5DsRKRGRauf5NMYYE3putRC2AEOBVS4d3xhjTAWuzKmsqtsARMSNwxtjjPHBlYQQCBEZC4x1FguTd2zf4mY8NdACOOZ2EAGqnZg7JgR7j3aua08kxn05x5zoz5dClhBEZDnQysdHk1R1ib/7UdW3gbedfa5X1Yh65mAx155IjDsSY4bIjNtirl7IEoKq3hGqfRtjjAk+e+3UGGMM4N5rp0NEJAu4BfhERJb5uenbIQwrVCzm2hOJcUdizBCZcVvM1RBVrc3jGWOMCVPWZWSMMQawhGCMMcYRUQkh0kpeiMgAEdkhIhki8ozb8VRHRGaKSI6IRMxYDxG5WkRWisg253fjCbdj8oeIxIrIWhHZ5MT9otsx+UtEokTkWxH52O1Y/CUie0UkXUQ2ish6t+Pxh4g0FZEFIrLd+f2+JdTHjKiEQASVvBCRKGAacBeQDNwvIsnuRlWt94EBbgcRoAvAk6p6A9ADeCwCzjNAIfBTVb0JSAEGiEgPl2Py1xPANreDqIHbVTUlgsYi/DuwVFU7ATdRC+c8ohKCqm5T1R1ux+GnVCBDVTNVtQiYBwxyOaYqqeoq4ITbcQRCVQ+r6jfOz6fx/qcJ+hDoYFOvfGcx2vkT9m94iEhb4G7gXbdjqctEpDFwGzADQFWLVDU31MeNqIQQYRKAA2WWs4iAC1UkE5EkoAvwtbuR+MfpetkI5ACfq2okxD0V+ANQ4nYgAVLgHyKywSmHE+6uBY4C7zndc++KSFyoDxp2CUFElovIFh9/wvru2gdflfvC/g4wUolIQ2AhMEFVT7kdjz9UtVhVU4C2QKqI3Oh2TFURkXuAHFXd4HYsNdBLVbvi7cJ9TERuczuganiArsB0Ve0CnAFC/hwy7Irb1aGSF1nA1WWW2wKHXIqlThORaLzJYK6qfuR2PIFS1VwRScP7/CacH+j3Au4TkYFALNBYROao6iiX46qWqh5y/s4RkUV4u3TD+VlkFpBVptW4gFpICGHXQqhD1gHXiUg7EYkBfgH8zeWY6hzx1lCfAWxT1TfcjsdfInKViDR1fm4A3AFsdzeqqqnqRFVtq6pJeH+fv4iEZCAicSLSqPRn4E7CO/GiqkeAAyJyvbOqH7A11MeNqIRwCSUvap2qXgDGAcvwPuj8H1X9zt2oqiYiHwD/BK4XkSwRecjtmPzQCxgN/NR5pXCjcwcb7loDK0VkM96bh89VNWJe44ww8cBXIrIJWAt8oqpLXY7JH+OBuc7vSArwx1Af0EpXGGOMASKshWCMMSZ0LCEYY4wBLCEYY4xxWEIwxhgDWEIwxhjjsIRg6hQRmeRUD93svIJ6c5D339dXlc/K1gfheIPLFusTkbRIqPRrIlPYjVQ2pqac8sD3AF1VtVBEWgAxLod1qQYDH1MLg5KMsRaCqUtaA8dUtRBAVY+VliwQkW4i8qVT3GyZiLR21qeJyFQRWePUzEp11qc66751/r6+0qNW4IyMnSki65ztBznrx4jIRyKyVER2icirZbZ5SER2OvG8IyL/KSI9gfuA15zWTnvn6yOcuRR2ikjvYJw4Y8ASgqlb/gFc7Vwo/yIifeBiraO3gOGq2g2YCbxcZrs4Ve0J/M75DLxlJG5zCov9G4GNEp2Et6xDd+B2vBf00kqVKcBI4MfASPFO8NMGeA7vfA4/AzoBqOoavOVOnnbq+O929uFR1VRgAvB8AHEZUyXrMjJ1hqrmi0g3oDfeC/F88c5Utx64EfjcW/qIKOBwmU0/cLZfJSKNnRpDjYBZInId3iq10QGEcifeInBPOcuxwDXOzytUNQ9ARLYCiUAL4EtVPeGs/xDoWMX+Swv4bQCSAojLmCpZQjB1iqoWA2lAmoikA7/Ge+H8TlUrm4KwYv0WBV4CVqrqEGeehbQAwhBgWMXJnJwH3IVlVhXj/T/oq1R6VUr3Ubq9MUFhXUamzhCR6507+lIpwD5gB3CV89AZEYkWkR+V+d5IZ/2tQJ5zB98EOOh8PibAUJYB451KrIhIl2q+vxboIyLNRMQDDCvz2Wm8rRVjQs4SgqlLGuLt5tnqVIhMBl5wpjAdDkxxKl5uBHqW2e6kiKwB/gsorfD6KvCKiPwv3i6mQLyEt4tps4hscZYrpaoH8T6j+BpYjveNojzn43nA087D6faV7MKYoLBqp+ay5kxM85Sqrnc5jobOMxAPsAiYqaqL3IzJXH6shWBMeHhBvPMrbwH2AItdjsdchqyFYIwxBrAWgjHGGIclBGOMMYAlBGOMMQ5LCMYYYwBLCMYYYxz/D8cZIEpO9T0aAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = draw_border(clk, X, Y, incx=1, incy=1, figsize=(6,4), border=False, clusters=clk.clus_)\n", - "ax.set_title(\"Logistic Regression and K-Means - 8 clusters per class\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Random Forest\n", - "\n", - "The random forest works without any clustering as expected." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", - " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", - " min_impurity_decrease=0.0, min_impurity_split=None,\n", - " min_samples_leaf=1, min_samples_split=2,\n", - " min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=None,\n", - " oob_score=False, random_state=None, verbose=0,\n", - " warm_start=False)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.ensemble import RandomForestClassifier\n", - "rf = RandomForestClassifier(n_estimators=20)\n", - "rf.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEWCAYAAABmE+CbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXd4VMX3h9/Z3kt6pfcignRQsGADQSwgIooNe/eHFcVevoqKHTsW7KiI2BWsIFJEAZGS3rPJJtvb/P7YuGYJJUEUlfs+D4/J3bkz596s85k5c+aMkFKioKCgoKCg2tcGKCgoKCj8M1AEQUFBQUEBUARBQUFBQaEJRRAUFBQUFABFEBQUFBQUmlAEQUFBQUEBUARBQQEhxGghRMm+tkNBYV+jCILCPxIhRIEQwi+E8AghKoQQzwshLPvarj+LEEIKIbxNz+URQtT/ze0r4qewUxRBUPgnc5yU0gIcCPQHrtvH9uwt+kkpLU3/HG29WQih+SuMUlBQBEHhH4+UsgL4iLgwACCEGCuEWC2EaBBCFAshZjf7rEPTSPwMIUSREKJGCHFDs8+NTTOOOiHEemBQ8/aEED2FEF8KIeqFEL8IIcY3++x5IcRjQoglTSP8b4QQWUKIB5vq2yiE6L8nzymEOFcIsVkI4RJCvCeEyGn2mRRCXCSE+A34relaDyHEJ03lfxVCTGpW/lghxHohRKMQolQIcbUQwgwsAXKazVByWhiisN+iCILCPx4hRB5wDLC52WUvcDrgAMYCFwghjt/u1pFAd+Bw4CYhRM+m6zcDnZv+HQWc0awtLbAI+BjIAC4BXhZCdG9W7yTgRiANCALfAauafn8TmLMHz3gYcFdT3dlAIfDqdsWOB4YAvZo690+AV5rsnAI8JoTo3VT2GeA8KaUV6AN8LqX0En+PZc1mKGVttVXhv4siCAr/ZN4RQjQCxUAV8Y4cACnll1LKdVLKmJTyJ2ABMGq7+2+RUvqllGuBtUC/puuTgDuklC4pZTEwt9k9QwELcLeUMiSl/Bx4n3iH+zsLpZQ/SikDwEIgIKWcL6WMAq8Rd2/tilVNs496IcTvbU8FnpVSrpJSBom7x4YJITo0u++uJpv9wDigQEr5nJQyIqVcBbwFnNRUNkxcOGxSyrqmzxUUdokiCAr/ZI5vGuGOBnoQH4EDIIQYIoT4QghRLYRwA+c3/7yJimY/+4h39AA5xEXmdwqb/ZwDFEspY9t9ntvs98pmP/t38PvuFr8HSCkdTf8ubdZuwg4ppQeo3a7d5ja3B4Y0E5Z64qKS1fT5icCxQKEQYqkQYthubFJQUARB4Z+PlHIp8DxwX7PLrwDvAflSSjvwBCBaWWU5kN/s93bNfi4D8oUQqu0+L22j2W2ljHgnD0CTSyh1u3abpyYuBpY2ExZHkwvoAgAp5Q9SygnE3UnvAK/voA4FhSQUQVD4t/AgMEYI8fvCshVwSSkDQojBwKltqOt14DohhLNpfeKSZp8tJ74+MVMIoRVCjAaOo6U/f2/zCnCmEOJAIYQeuBNYLqUs2En594FuQohpTXZqhRCDmhbEdUKIqUIIu5QyDDQA0ab7KoFUIYT9L34ehX8hiiAo/CuQUlYD84FZTZcuBG5tWmO4iT9GwK3hFuLumW3EF49fbNZOCBhPfPG1BngMOF1KufHPPsOukFJ+RvzZ3iI+g+kMnLKL8o3AkU1lyoi7x+4B9E1FpgEFQogG4u6005ru20h8vWVrk6tJiTJSSCCUA3IUFBQUFECZISgoKCgoNKEIgoKCgoICoAiCgoKCgkITiiAoKCgoKADwr0qSpTbZpcaesa/NUPiX0Mei29cm7FWCxVv3tQkK/1J+CQZqpJTpuyv3rxIEjT2D7DMe3NdmKPxL+GZUu90X+hex7YpJuy+koLADev26sXD3pRSXkYKCgoJCE4ogKCgoKCgAiiAoKCgoKDShCIKCgoKCAqAIgoKCgoJCE/s0ykgIUQA0Es/EGJFSDtyX9igoKCjsz/wTwk4PlVLW7GsjFBQUFPZ3FJeRgoKCggKw7wVBAh8LIX4UQszYUQEhxAwhxEohxMqoz/03m6egoKCw/7CvXUYjpJRlQogM4BMhxEYp5bLmBaSU84B5APrsrsrhDQoKCgp/Eft0hiClLGv6bxWwEBi8L+1RUFBQ2J/ZZ4IghDALIay//0z8OMCf95U9CgoKCvs7+9JllAksFEL8bscrUsoP96E9CgoKCvs1+0wQpJRbgX77qn0FBQUFhWT2dZSRgoKCgsI/BEUQFBQUFBQARRAUFBQUFJpQBEFBQUFBAVAEQUFBQUGhCUUQFBQUFBQARRAUFBQUFJpQBEFBQUFBAVAEQUFBQUGhCUUQFBQUFBQARRAUFBQUFJpQBEFBQUFBAVAEQUFBQUGhCUUQFBQUFBQARRAUFBQUFJrY12cqK2xHxF2FZ92nRH31GPJ6Y+o+HKHW7muz9gmxgAd/wRqEUGHo2B+VzrivTdrrLPhiMY+88xJFlWUc1K031516HkN6KMeEKOwbFEH4B+Hf+iM179+PuddotCl5NK7+gMbVi8mYdCsqraHN9cloGO+GrwgUrEZlsGDuczj6rC57bF+w/Dc8az8k6q1Dn9cLa7+jURkse1zfrvCuX4rr48fQ5/VCxqLUfvgwqWOvwNTlv3Ps9hOLXuXxRa9w//nX0qdDNz5a+RUn33Ipb9/yKAO79dnX5v2leKJRFjU0sCUUpJNOz3ibDYtava/N2u9RBOEfgoxFqf3oEdInXIuh/QEAWA8aR/Xbd+BZ/QG2wSe0rb5ImKo3b0bGYph7H0rUW0f1m7dgP3ga1n5Httk+74Zl1H32FNZBEzB2PAjvpm8of/Fqsk67F7XR1ub6dkWkoQrXJ0+QOfUedOkdAAiW/UrVGzejP/dJ1Cb7Xm1vXxCOhLnn1XksvnMevdrHRfqMIycSCof53+vP8NqND/xttmwMBHjW5WJTMEg7nZbpzhQGmEx7VFdtJMIr9XWs8vtJU2uY7HAwcLu6SsMhTi8q4gCjkQFGIz/4fTzjquWF/Hbk6XR745EU9hBlDeEfQri6EKHRJ8QAQAgV1v7H4tvyQ5vr867/AoDMKXdi7XcUjuGnkHnq3dR/+SyxoK9NdclohLrPniL9xJuwDzkJU/fhpB/3fxjyetG48r0227Zb2zcsw9Tz4IQYAOhzumPoeBC+Td/t9fb+KvzBAK8vXcKDb7/At7+sRkqZ+KyyvhaESIjB7xzWfyjrtv76t9n4k9/P2SXF9DYYuCs7m5FmC5eVlbLU42lzXTWRCFOKCqmJRDknJZX+RiP/V17Gu253Urn7qqs52eHggZxcpjlTeCAnl5MdDu6vqd5bj6WwhygzhH8IQqNFhoNIGUOIP3Q6FvIj1G0fNfm3/oi575ikurQpuWgzOhEsWY+x88BW1xWuLUJlsKDP7pp03dz7UOqXvgAHn9Zm+3aFDAdR6VuOUFUGMzIc+FN1F1aW8uyHb1FQUUr/rr04Y8xEnNa9O8MB2Fi0leNmnU/Pdp3olteRZz54kx7tOvLydfej02pJszkJhUMUVZXTLiM7cd+Pv/1Cx6y8vW7PzniktoYr0tI5yeEAoKfBQJZGwwM11YyytM0d+EKdi0PMZm7MzAJghNnMAKORc0uKOcZqRaeKfxe/9HiY3VTmd051ODlky+a98EQKfwZlhvAPQZOSh9pkw7Pmw8S1WNBHw/dvYO49us31CZ2RmL8h6ZqUkpi/AbGDznZXqAwWov4GZDScdD3qce10DUHGonjWfUrVm7dQ9eYteH7+DBmLJpWJu4FmUzz3VMqfvwzPus+QUmLsNBDv+mVJM5movwHfr99i7HRQm2xvznfr1zDyslMJhEIcPehg1m7ZyLBLJ1FaU7nHde6M8x68iZmTzuG9257gvvOuYdUTbxMMh3h80QIADDo95x47ibPvu54tZUVIKfl63Uquf2YOl51w+m7rLw2H+bSxkfWBQNLMo6385Pdz2HYd/0izma2hEIFYrE11/eDzcbTVhpSSH30+nq6t5ddgEJ0QLPP+MePQCYF/u7r9sRh6IXbbhjcW43mXixnFxVxZVsrXzeqNSsnb7npmFBdzZnERL9W5CLXxGfZ3lBnCPwQhBGnH/R9Vb9yM95cv0Diy8G9bjbnHCMy9Rre5Pkufw6lZ/ACmbiPQ2NIA8P7yOTISQp/bo011aWwZ6NI7Uv/NAhwjpyJUaiIeF/XfLMA5qmXnJaWkZtF9RBtrsA6cAFLSsPId/NtWkTbuaoQQBCs2U/XmLThGnUHqMZcRqimk7rN5xAKN2AYdj6nLYMrnX4m135HIWAzPmiVY+h2FNjW/ze/id5uufuJuHrjwek465CgAphw2juufmcM9r85j7sWz9qjeHVFcXcG28mLOOvrExDWtRsuVJ57JTS/MTXT4s067kLtfncfoK6fhDwXITsngrrOv4siBI3dad1RKbqus5GNPI/0NRn4LBcnSaJibm4djB4uyvwYCvNPgxh2NMdRk4mibDV2zjjdDo2FrKESK5o+uoCQcxiQEbY1tS1GrKQ6FmF/n4rdgkEMtVlb7/dRFo9xQXk6OVkcvg4GxNhuP1tZwS2YWKiGISckjtTWMte16puaPxTizuIgsjYZTnA5qI1Fuq6zkZHuQc1JTmVVRwbZQkLNSUtEKwct1dSzzeHk8Lw91s2cOxmJ87vFQHglzgMHIQUYjohVitD+gCMI/CG1qHplT7sL1+VMEyzaiTclFn993j76shnZ9sR00jrJnL8KQ14uot56Yv4H0E2cluZFaS9q4q6h+9y5KnzwXjSOLUOUW7INPwNRteIuywZJfCFVuIeesRxGaeLdi6jqEsmcuJFS2EX1uTxqWv4V9+ClY+8U7Z6PFiWbiDVS8PBNr/7E4jzgPY+FafJu+RQgVqWOvQJuaT7B0AxpHFmqzs032uxrdbC4rYuKII5KuTz9qIsfdeEGb38euiMWiqFXqFn83jVpNtNmIVa1Wc8PUC7j2lBl4Aj5sJstu/9YL6uvYHArySadOmFVqYlJyT3UVt1ZWMCcnN6nse243/6uuYrLDQUednjfc9SxscPNkbl7CfTPV6eTOqkoezs0lV6ujJhLhmvIyQlIyvrCAy9LSOLKVLrVJDic3lJfRVW/g3Y6dEsKz0F3PY7W1zK2u4on8dlyRls6FpSWML9hGf6OR1X4/TrWax3J37Sp71+0mVa3moZzcxHs6xGxmQsE2+hoMfO/zsrhjJ4xNzzbSbGZyYQFfe70J91dBKMQ5xUV00Onootczu7KCPK2WuTm5iXeyP6MIwj+IqLeeileuxdR1KPYhJxFpqKb+q5eI1JdjH3pym+uzDT4BXXZ36r99FRmLoG/XF9izkZDa4iRr6r2EqrYR9dahy+qy0+iiQPHPmLoNT4gBgNDoMHUbTqBoHfrcnoSqtmEfMSXpPm1KLkKjI+p1obFnYuxwIMYOByJjUeo+fwbvz5+hScklUleGqdtwUo68oNV7NAw6HTEZwxPwYTdbE9dr3PUY9XoufGg2Kzf9TE5qBhccN4WjBh28B28pTruMHDKdaby2dAlTDh0LQCwW4+F3X+b44Ye3KK9Wq5Ns2hXvuN3MzMjArIrPBlRCcGlaGqM2b+b+qireb2zAE4sxxGhihc/Ly+070FWvB+Aku51zS4p5r6EhsWYwye6gPhrlpIICjCoV9dEox9lszM9vx+qAn5nl5TjUagabzLu1bbTFgkOt4ayUlKRZyASbnfuqq/nR7+d7r5ehZjPz89vxo9/P1lCICTZ7q0bpy/0+jrXZksplarUcYDDyQWMDoy2WhBgAaIRgjNXKSr8vIQg3VZQzPSWF05wpAESk5JLSEubX1XFOampr/gT/aRRJ/AfRuGoxxk4DSDliBvqc7ph7jCRz8u00fP8msaC3zfUFSzdSvfAODPm9cYycisaeReWC6wiWbthjG3UZHTF2HLDLUFO10UakoWXESMRdharpPq0ji1DFb8mfN9Yigz5UxuSw0oYVC+MzjvOeJvv0OeSe/ywRdyWuT59qtd1mg4ljB49i9vxHiDWN0r0BH7PnP0x5bRW5aZnMu/I2Jh86lksfvYMXPl7Y6rq3RwjB45fP5rqn7+P0e2Zyx8uPc/AVU6lrdHPRhKl7XC+AJxbDqU4ex+kQCGBjMMhTefl80qkzBxmNxCDJjaQSghPtjiR/vhCC81LTeL9jRxqjUd7p0JFbsrLRqlQMNpm5NC2NF1x1rbbPqVGj2q5fF8TXDc5wpnBDRTmv19cjhGCgycSkprDU1syCnWo15eFI0jUpJWWRMNkaLSWhcIt7SsJhUpreQXUkwm/BIJMdf8wuNUJwdkoqSxobWty7P7LPBUEIoRZCrBZCvL+vbdnX+AtWY+oyNOmaxpaGNjWfUNW2NtdXt2w+xs6D8Kz+gNoPHqJx1SL07Q7AtXT+3jJ5h5h6HEygYDX+ZuGyvs3LCRSvw9wj7h+3Dp5I/dIX8BeuRUpJuL6Cmvfvw3Lg0ah0yZvwPGuWkHLEDNTG+ChapTeRcvQleNZ9SrjR1Wq7Hrjwen4p+I0+54xj0m2X02P6MdS667jk+GncMPUCDuzckymHjuXNm+cye/4jhCMtO5jW0r9LL9Y8+S4j+xxEOBLhhlPPZ8mdT2Ey7H63tZSSL9cs57aXHuXJ91/F1fhH2OZIs5m33fWJ3wOxGCcWFiCE4JHcXLro9TjUas5MTeVoq43X65M7c3c0imkHrpHGmCRFo6HddvsAeusNlIRb/x7GWKw863IRabbQ/WFjI1aViovS0ngqL58Ha6p3umDdGI3ylrue51y1bAgkR5SdaHfwUtP6BEBMSl6oq0OD4Aynk02hIO+53UgpkVLyldfDFx4P42z2RHmVEC06Pa0QKEvPcf4JLqPLgA3A3o/9+xdR//XLRFylhFwlSSGhMhom7K5AbWn7dDZYtI5oSg4ZJ89Gl9GJsKuUmkX3EaraujdNb4HaaCV94vXUvD8Hle45kBCLBEmfeEMiKsnYvh8pR5yP6+PHiTZWIzR6rP2PbeFGAoh460ClQcaiiCZXicaWDtEwZU+chbnXKJyHnb3bDXIpVjsf3f0Ma7ZsoKCilLvPuYqTb72U8du5cfp27IZeq6WoqpzOOe32+D04LDZmjJ3cpnvCkTCn3nkVW8uLGT/scL7fsJY7Xn6c12Y9RBYwIzWV04qKqI1EOdhi5q36elTAQUYj+u06+hFmMy/WubgoLR2Ij5Cfr3Nx83YhnwDZGg2eWIzCUIj2zUThW5+X7k0up9YwxeHga6+X8du2cpTVxrZQiB/9Ph7LzUMIQSe9niyNhk3BIAcYk8Vxpc/HZWWlDDKaSNdouKi0hFFmCzdlZiKEoLfBwFXpGUwvLiJPq8UVjeJQqXk4NxejWs0TuXlcU17Ow7U16IQgLCUP5uSS3rRgnqnVkqfV8l6Dm4n2uMssLiouxlha57L7r7NPBUEIkQeMBe4ArtyXtvxdyEgI74ZlBIp/Rm12YOk7BhkJ4Vn7EanHXYVryVwMeb3QZ3cjFg5Q9+Vz6DI6o3Vm775y4gISC/lRGawIvZmUIy9El9EJiPvoU4+9nIoXr0RKmYj2aVj+FuHaYrQpedgGT0Sf0/1PP6chvw+55z1FqGIzCIEus3OiM/8dU/fhGLsNQ4b8CK0eoVIjY1H8hWuJeevQZXWlcdViBFC54DqERofj4GlY+h6Ob+PX6HK6k3HSTbi/foWqN2aTNe3+3boehBD079KL/l16AZCTmsnG4q0c0OmPZ65rbKDe00iqzfGn30Nbee6jt2n0efn+4dfRNq3BvP/9F5w750betRjJ0Gh5o30H3nLX86XHQ3kkwoyUVObW1BCSMsl3v8rvpyAUYnJhAekaDSt9Ps5MSWG4ueV6gF6l4pyUFC4pLeHajEw66XR86fHwtMvFc/m7j+wKSclHjQ386PPT12BgnM3Gk7U19DUYWdyxE7Ymt01ISqojkYQb53ciUjKzvIx7mjbHAVyens5pRYV86vEwxhrvsCfY7RxltfJLIIBVraKrTp/4m/cwGHinQwc2h0JEpKS7Xo9qu+/DLZlZzCgpZpnXS1edni89HhpjUcpCYb71eTnKamWyw5n0Hvcn9vUM4UFgJvCflmcZi+L56WM8P39OpK4MoTNhHTCOmK+Oipf+D0OH/ph7jsLUaSDysHOofvuOpsXVOjQpuWROvn33bUQj1H/1Ip41HyIBtckG0RC6zM5J5bRp7ZDRCETDBMo3Uf3OXdiHn4J96MkESzdQ9datpI2fibH9n0+wJlTqhLhIKfEXrInnVdKZMPUahdaRhRAisS8iXF9B1RuzUWn1aBzZ1H70GGqzg5wZT6OxphCs2Ez127fjL1xNYOsq0k+4AbXRhvOI8yh/7hKCReuSdnq3hguOm8JVT96NQaujtLYKk97Ahyu+YuKII3BY/tykNRqNUlBZit1sJc3euqiod7/5jIsmnJYQA4CxQ0Zz3dNz2BQM0sNgwK5Wc1ZKfMY4raiQDK2GvkYD15eXcXV6BilqNe+43SxuaOD19h0oCodxR6PcnJmVGC3viOnOFFLUGh6orqYyEuYAo5Gn8vLppt9xHi1fLMa7bjcrfD7WBfxka7UcbbVREg5xT3UVZzicvNngxhWNYlOrCUnJQ9XV9NAbWqSoWOP3k6JWJ8QAwKxScZrTyYeNDQlBADCoVBy0k9QaQojEIvqO6GEwsLhjJxY3NlARDhORMdpptZyRkooEnnXVstzn4+FmkUz7E/tMEIQQ44AqKeWPQojRuyg3A5gBoLal/03W7V1cHz1KuLYYx7DJCL0Zz5oleH/+jKzT/oex8xCq3rgJc5+428Lc8xBM3YYTqS+n/uuXMeT3SfjOd0Xdl88Rriki+6xHUFvTCJb8QvXbtxPY+iPmXqMS5YJF69A4s0Gtpf6rl0g5fEbic11mJ1RmB+5lL2KctvcybkoZo2bR/YSrtmLqeQhRXz0V868k5cgLE2sKALWL7sPa7yhsgycCEAt6qXjlOgJFa7H0PhR9Vheco8/E9fkzZE65C116eyDeCeizuxGuK22zIBw96GAeevsFzn/wZo4dMoot5cVsKNzCe7c9jj8Y4NUvFvP9hrVkpaRxxpET6ZTdun0Q73zzKTPn/Q+ABp+Hw/sP45FLbtrtrmiVSkVMtvRox2QMQct9BkdbbTzrcvFgTi6P1tQwvmAbvlgMp1rN03l55Ol0rc4PJIRggt3OBPsfi/qbggE+aGiggy6+h+B3GqNRziguIlujxagSdNHrebzJLQRwmMXKNeVlnO1MYUphAXlaHRWRMD30Bu7Jjs92w1Lyg8+HLxZDDYm9AmEpeanOxQcNjbhjUQwIGqNRrHsp+Z1VreYUh5OvvB6Wer08lpefaHuwycT4bVtZ7ffvcT6nfzP7coYwAhgvhDgWMAA2IcRLUsqkPAhSynnAPAB9dtc935K5jwjXluDbvILc855OLJbqc3tQ9cbN+DYsxXLAkajNDnzrv8Q2cAJaZzZCrUFKSaBgDc7DZ+y2jVjIj2fdp+Se+0QiPt+Q3wfLgUdT+9EjyGgEQ/u+BMs2Uff50zgPOyfuLirbSMbJs5PqMnUdSs07dydcSnsD36/fEqkrJXv6QwhNvHOy9B1D5as3YOw0EJXOQLiunEhDFdaB4xP3qfRm7MMm4fnpYyy9DwVAm9ERYuGEGEBccAIlv2Dum7zHoDW8tnQJnoCf3+Z/jNkQ7wBe/WIx5865EaNOT1ZKOuOHH8ZvpYWMuuI0npt5F0cMaLn3ojkrN/3M5Y/dwYIbHmBYrwPx+H3c+OwDnHXfdSy85dFd3nvCyDHMXTifowaOxKCLj3Tf+upjtBoN3fQtO/ZJDgc/+HxMKixglNnCgQYDm4JBnspvt8uR8u4IxGJcWlrKpmCQ/kYj6wJ+Our0PJibg1ml5uX6Ojrr9Nybnc2ZxcWcnZqS9H0ZZDJhUqnobzLxmaMLm4JBUtTqxKL1zwE/l5aWkqnRYFOrWePzIYRgpc/HS3V1eGJRZmZkYBCC+XUuziou5uX27XfryolKiS8Ww6xStXAXNUdKybdeLyNMpqRNa1ohGG2xKILwdyOlvA64DqBphnD19mLwXyBYvglD+35JkTNCCExdhxIs+xVz3yOQkTDWgeOpmH8Fxs6DkLEYga0rcY45H40lZbdtRL31qAyWFpu1zL1G4/35C+q+fBakRJventSjLsLYeRAAGksq4dqSpJTY4dpi1JaUNolBsGIz4aqtaBzZ6PP7tLjX+8sXWPodnRADiM9GtBkdCBaviz9zOIDQGVusM6gMlqT8RfHIJUHd0hewDhiHjARxf/0KGmsq+tyerbb5d95cuoTLTjg9IQYAk0cfy03Pz6Vjdj4LZz+SeJ4xA0Zw0cO38MvTi1HtYhPTU4tf5/ITpzOs14EAWIwm7p0xk27Tj2RLWdEuF6qnjZnA52uWM+D8iRw37DC2VZSwYuNa3rr5EcTjt7QorxWCB3Jy+CkQYJXfRz+jkcMtFgx/YpNVdSTCGUWFtNPp+KRzZ7RCEJWSWRXlzKmuZlZmFl97vVyUmhafnakE3u2ihmJNHbNRJTCpVBzYbAE5JCWXlJZyQ0YmRzS5gopDISYVFnBBSTFGlYpPO3dJdP73GnI4s7iYjxsbEhFD2yOl5Pk6F8+76vDGYtjVKi5ITUvst2jODz4fd1ZVUhYOE5KSknCEmzMzcTa50wpCIXpa255u/r/APg87/a+jtqQQcZW0yDcT73hTaVy1GLXFiX34FLLPehR9Xi8M7fqSc+6TiVHx7tBY05DhAGFXadL1wLZVGNr1JePEm1DpjGSecmdCDACsA8bh+vhxIg01QHwfgOujx7AedFyr2pWREFVv3Ub1wjsJFP+C65MnqHjxSqK+eJhk1Oem8tXrCZSsb5EHKd5gGJo2lmnT2iEjIQJF6/6oX0oaf1yExpZB2FVKw4q3aVjxNmnjZxL1uCh/5kIqX74GldlB+gmzdiliC75YzLBLJpF18giOvOYsvlyzHIBwNIJBmzySFkKgVqkYN2R0Up2HHjgEgE0lBbt8L2W1VfTM75R0TafV0jErn/Laql3eq1FrmH/NPTw38y7SHSkcN/RQ1j00ALoyAAAgAElEQVT1Pgd1673Te4QQ9DMaOTMllbE2258SAykll5WWUhuNcm1GJtqm51cLwRXpGbzrbkBKiUWloi4az001zmbjqdpaPNE/clW9Vl9PmkZDB23LWc33Xi+5Wm1CDADydTqmOVPortdzsNmSNBMQQjDKYubnwM4TG75YV8f7DQ08k5/Pym7dmJubxzOuWhY1JGdaLQ6FuKy0hEFGE30MBnro9VRHIlxcWkI0FmOhu54NwWDSmsX+xL5eVAZASvkl8OU+NuMvwdD+AGQ0TMP3b8R94yoN/q0r8az7FI09AxmNknHSTQgh0FhTsR54TJvbEBot9qGTqH77dpyHnYM2LR//5hW4v3+TzFPuQJfRkUhjLUTD0GyUbh00gVjQS/lzF6My2oj53Fj6H4ttSOvOXnB/9wYIQe6MeQk3V93nT+P6dB7p4/+P2iVz0aZ3xDroBOo+m4e51+jEeoh/22oiDVUY8uMdnVCpST3yQqrfuQtL3yPQOHPw/foNkYZqVCYbVW/MRpfdLf486R0wdjiw1e/nmSVv8tDbL/DghTdwYJeefLrqW8649xpeuu4+xg09lCfff5VjhxyCpmnD1xdrvsfV6Cbdnjw7i0QjeP2+3e4lGNitD4uXf5m027mstooNRVvo3aHbbu0VQjCkR782nZwWlZKNwSAC6LGD6JrWsj4YpDYaIQbYtxMWq0pFSMaIAcfb7TxeU8swk4lxVhs/+f0csXULg00mqiMRXNEoT+bl71CkvbHYDvMuOdVq9CoVBaFQi882B0M7dYFJKXmuzsUTuXl0aSrT22BgVmYW91VXcVyzWcXr7nrytVrWBPycm5KKRaXitfo6vvX5GLl5M7k6LfPy8pJ2PO9P/CME4b+MECoyTp5N7QcP0vDDOwiNDqHWYj1oPIZ2fTG069vCTbIn2AZNQGWyUbN4DgD6vF5kTr4NXUZHgmW/orGmJkbjzW1zHHwatiEnEW2sRm1N2+ExlYGS9Xh/+QIZCWLsNCh+rKdKjXf9F6RPvB7R1JEKIXCMmELJY2cQaagiWPILaeNnIjQ6giXDKXv6fIydBhJtrCFUta3p3j9sMnYeRNa0+/D89AnBso2Yex6CudeoJFdTW4nFYty14EnevHkuB3aOu5QmjTqGSCTCva89zVs3P8zi77/k4MtPZeLIMWwuLWLhN58wvFd/7n51Hof2H4LNZEFKyUMLX6RHu85J6ap3xPnHTeHgy0/l2qfvY/LoYymuquDWFx/h0onT/pJU2z/6fFxXUY5OCCRxcbgnO4d+xrYfOVoVCdNBp6O3SsUbbjczmqVzeLO+nmFmM2ohOMpiZWMgyDHbtjLAaKQoHCZVo2GA0UhnvZ5hJjOanYjSYJOJWyorKA+HydbG//5hKXmnwc0ZTieP1NTydG0tpzudaIRgSWMjy7werkrfcVBJWEpqIxG6bScYfQwtN9X9FgxSFA7zSafOiRPahppMTC0qpJ1Wx13Z2ftldNHvKILwN6CxZZB5yp3x1AyRIBrHX/Ols/Q+FJXOhOuTx7H2OxptajsCxT9Tu2Qu1qEn49+8gkDBKoTOhKX3YWjT4hEzKp0B1U6yiLqXv0njqsVYB4xDpTfT8MNCvBuXkT7hWmQkhNBtt/Cm0cX3EhT8hNCZUDW5Y5yjpmPpOwbP2o8IFK2LL7LvIA231pmDc9QZe+2d1Hka8AZ8CTH4nVH9BnPDsw+g02p5e/YjXP3kPcx583mG9OzHrKkXsnj5l9R7G+g87QgcZit1ngZMeiP/mzFzt21mOlP54v75zHnzOWbMmUWqzcH/TT6HSaPaPvvbHfXRKJeWlXJnVjajLHHh+szj4eLSEpZ07NTmYyl7Gwys9ft5Oj+fS0pLKQgFGWgy8YPPxxceDy+2+yOy6/L0dKY6naz1+0nTaOhnMLTqe52q0XBhahpTiwo51eHEplaz0F1PmlrDkVYb/YxGbqqo4GlXLWohyNZoeCw3Lykja3O0QpCv0/Gj3097nY4X61ys8fsByNnuHrNKxSCTKem9CCEYZ7Oz2u/br8UAFEH4W9FY//rkWaauQ0BGqV82n1B1AVpnDrYhJ+PfspxoQzXmXqOJ+t1ULLgW52Hn7HKdItJYS8N3b5B99mMJ2y19D6fixavxb1mZSIvhPPQsAMJ15VS9PguV3kLjqkXEfG7qv16AY2R897E2JRcZCWHuPmKHYvBXYDdb0Gm0bCrZRre8jonrKzf9nFjc9QR8vPrlYr55aEHi2sXHn8aQi0/GHwxw3/nXMrjHASz76Qeueep/pNmdHD5g2C7bzU3L5P7zr/3rHqyJJQ0NDDeZE8nbhBAcYbXyfkMDHzU2cuIOFlV3RYZGy4l2B7MrKrgiLY2fAgFecLmojUR5tV17Omw3Ck/XaJLWAlrL6Skp9DMaea/BzZZQkNOdKYyxWtEIQa5WxzP57aiNRIhISYZGs8uOWgjBRalpXF1WSox4+owLU9PYFgrxRG0N77jdHN8USnuU1crDNTUt6tgaCrZI27E/ogjCfxBTt+FJaam965cS9dbFd/I2uXfMvQ+j8uWZmLoO3aGbCCBQ9BOGDv2ThEyotZh7H4Z/60rsI6dS+co1hOvKMLTvh/vb17ANPQnbwPEIoSJUuYWKV64lFvBgaN8X36bvCZb8TNZp//trXwCwcVS8Y9eoNVwy8XTO/N/1PHXlbfRs15mvf/6Rq5+8hwcvvB6A79ev4cDOPZOif1QqFQ0+Dy/MvIdR/QYD8egjrUbDnQue2K0g/F24olFytC0zvmZrNbii0R3csXuuTk/nvQY9b7vdNMaijLJYONOZkojC2Vv0Mxp36dZKbUN7x9psLGloIEOrYVZTao6hZjP9m05sO7bpHIjDLVbur67mBZeL05xO1ELwvdfLksZGXm/ffjet/PdRBGE/wLdlBdZ+RyXEAECX1g5dZieCxT8nRR41R6UzEvW3zAIZ9Teg0hnRWFLInj4X7y9f4N/6IyqDBdvACYnRnC6zM7ZBx+P7bTmR+jL0OT1wHnbWbnMO7Q16LC1KiMJVJ52JRq1m7A3n4Wqop0NWLneedSVjh4wGwGIyU+OuS9p7EQqHKa2p5JADkt/N4f2Hcd4DN+0VGz9e+TUvffYeHp+PMQNHMP3IiRh3siv4d4KxGBuDQTyxKGv9AbaFgqzy+7kwNTWRy+j3A2Duzc7ZI7t2tEFtR2wNBlnq9WAQKsZYraTtBcFY7vOyoK6emmiEfgYjZ6Q4ydC0LsV5VTTCWanJgQA9DAZsajUFoSDd9AbUQvBUXj7XlJfxrMuFUSWIAvdm55C7g4io/Q1FEP5lhGqKiNSVo01vj9bRMknZjhBqHbGQv8X1WMiP0Ox885Kx4wBcHz2Kb/MKTF3io+SwqxTP2o/IPCWeTkOlM2LtfyxqkwPPuk9aHgpjz0SX1o60465u7SPudYQQXH7CGVw28XSC4RB6rS7JzmE9DyQQCvHSp+8xbcwEAMpd1Rh0BtZt25SU52j1b+v3ypnHdy+Yx0ufvccVJ04nxWpn/ifv8MbSD1ly11Pod9Ixved2c291FUYhqItGmWi301mnZ60/wDHbtjIzPR2E4EVXHQcYjBxg+Oti6R+uqeb1+nqOtFrxxmI8VFPN7VnZe+Q++p2F7noerqnhgtQ0Ouh0fOZp5JTCQha0a0/mDmZB25OiVlMSDtO/2aTDH4tRG4kkpQxvp9OxoH0HikIhAjJGZ50+aXPa/owiCP8SYkEfNYv+R6hya3xkX/Yrxs6DST364qSR/44w9x6Na8lczD1HoTbHfcq+35YT9dSjz99FfLtGR/rEG6h+5y4avnsdoTcRKvsV52Fno0vvkFRWn9uT2iUPEfXWJ9qQUuLdsAxT9xF/7uH3EkKIxO7f5qhUKl6b9QAn33oZj733MpnONJZvXMvh/YcyY84snpt5Fz3bdWbNlg1c+ujtXHvK7neP74rKuloeWvgCq594l6yU+PGmx484grE3zOD1L5ckRKk5P276hfuqq5ibk8uFpSW82r5DIsTyzJQUTi4s4GmXizSNhpMcdsbb7H/ZAulqv4933W7e69Ax4UZaHwhwVnERQ0ymPUoxEZKSOdXVPJ2XT/cmIRtkMiGA5+pcXJuRuds6Jjuc3FVVyYEGI/k6HaFYjPurqxhkMu0wh5OyZtASRRD+JdR98Swqo5Xc859BqDXEwgGq376DhhVvYx82aZf3Gtv3w9z3CMqePh9DxwHEfPWEa4pJP+HGXYa8xoJevL9+DUIQdlegz+5O9plz0dhb/s+ptjixDpxAxSvXYh9yIiqTDc9PnxALePboTOi/gmA4xKtfLOaTH7/FbrZw2hETEruJe7Xvwk/z3uObX1bh9np45uo7SbHambvwRY697lx8wQA2s4VrT5nBoO59mTFnFss3riUnNYPzj5vChB2chLYzvv1lFSN6D0iIwbe/rGbOm8+ysXgbd786jw5ZuRzcd2DSPc++/yqnO1NwRaMcYDAmxADiyd6mOJysDwa4Pat1WXGbUxEOsz4YIFOjpZdev1sh+aixkZMcjqQ1hV4GAwOMRr72ejlmN2cj74jCUAirSp0Qg9852mrj9srKVtUx2mKhOBzf8Zyr1VIRibud7sxu+zvZX1EE4V+AjEbwblhK7oynErMBldaAY9QZ1Lx7z24FAcAxYgqWvmMIFK5FpTdh7HTQLuP7ZSxK5es3oU3JI3PybYCgYcXbVL9zN1nT7tuhkNhHTEGX1Rnvus+IhfwYOw7AcuAxidDTfUkwHGL8rAtQCcG0IyZQ5XZx+j0zueLE6Vw4/lQgfpTl9msGl51wOhdPmEqDz4vFYOT1ZUsYdeVpXDrxdC4/8Qx+Ld7GDc8+QHltNecfd0qrbEm1OShr2rH8xZrvmX7vtcw+/RLuOvsqvt+wlml3/x9PXn5r0sa2alc1vbVatEIQ3EHyu4CMoW3j8ahSSu6trmKh201/o5GtoRBpag0P5ebucj0gJkG9g7ZUf+KgGadajSsawR+LJW0KKwqHSNW0fsYxzZnCiXYHvwWDpGk05LbC1aTwB4og/AuQsQgyGkkcLvM7arOjTUdramxpWPq2biQb2LYKYjFSj708MWJMOfoSKl/6P/ybV2Dq1jLKRgiBqcsQTF2GtNqmv4vXvvgAlRAsvmNeIg/RxBFHMPSSSUw5dNwuN4yp1WpqG+oYdeVUvAE/5x83hWunxN1Gvdp3oVf7LoyZOZ3pR03coUtqe0b0HkCjz8fTH7zBK58v4oELr+eEkUcC0DWvAyk2O7e+9FiSIIwaOJIlr/zEvVnZ3BgKsdznZUjTOceuSIQF9fXc1cbZwdsNbn70+/m4U2dsajUxKXmgppqbKsp5LG/nWV3HWK3cWFHOZIcjcc7Bb8EgK30+7tiDGYqUknUBP3a1mokF2zjJ7uBUp5PqSIRHamq4rhXuouaYVKo92pSnoOQy+leg0hrQZ3fFu2FZ0nXvus8wdhwQ3wi25QcaVr5LoOinFnmT9oRQ1TYM7fsluQ+EEBja99uj4zxbSywUIFxbssNF8B0R9dbj/vY1qhf9j/pvXyXq2fH5v5+t/o6phx+XlJSufWYuA7v15dv1q3bZhpSS0++ZyYXjp5JmdzJuaPLeje75HbGbbRRWlrXKZrVazVuz5/Lk+6+yYuM6jh54cNLnRw0cyerN65P+jmccdQLF4TA3VlZwutPJJaWlnFlcxMyyUsYVbON4m52BbczOudDt5qLUtESnrmqK5//B7+fMoiLOLi7ilbo6Qtt9nwYajRxusTKhYBv3VVUxu6KC04sKuTEzE/serB88WlvDvVVVnJ+ayrUZmSz3+Ri9ZTOTtm1lmtPJaItl95XsId5YjJfr6riqrJS7qyrZ3HQ85/6KMkP4l+A89Gyq3rqVcHUBuqyuBArX4t/yA2nHX0f585chNDr02d3wrP0IldFGxkk373R/QXNiQR++Td8SC3gxdOiXWCzWOLLwrP2oRflg5ea/ZE1AyhjurxfQuGoRKqOVmK8BU5/DUelNBIt/Rm1yYDnw6KQcRuHaEipfvR5j50EYOx5EsHQ95c9fSsYpd6BLS84oajNZqKyr3a5NSVV9LXbTrjucDUVbqG1wM2PsJD758Ws2FG1mQNdeiTo+W/UdJTUVfL9hLR2ycpOihNZu2cjtLz/GNz+vItOZxrljJ3HBcVPolteRFY++Sc+zjuHngt8Y3OOPcxx+KdhMXlpWkhhbjCZezG/Hq/X1fOPzMshopINOTzudlkvT0lt95kFzPNFYC3eMXgi0CI60WsnSanipro6lXg+P5+Yl8iMJIZiZkcE4m42lHg8pGjVvdei4w/0Qu6M6EuEFl4vL09MxqVQMNpkYZTZzenERauA05+6z/e4p7miU04uKaK/TcoTFSmE4xPTiIm7NyuKw/fRITUUQ/oFIGcO34av4gm4shqnbcMy9R5N9+hwa1yzBt/ErtBkdyZ7+EK5Pn8TYaSDO0dMT99a+Pwf316/gPOzsFnX7t62mYfkbhGtLUFtSCbtKMXToh9rspGHFW5i6j8B5+AxMXYdRv+xF6r9ZgG3QRBDQ+OMiIrUlSZve9haNKxfh3/Yj2Wc+jMaWTrCqgMpXrsHUdRj24acQcVdSu2Qu9qEnYe1/LAB1S5/HNmhi4kAdS5/DaEhtR/2Xz5Fx0s1J9Z82Zjyn3nEVJ4w8ko7ZeUgpefGTd/EG/Azr1R9vwMetLz7GK58twhPwcdTAkdx+5uV0yW2PN+DHYbGiUqm4cPxUzn/oZnq260KfDl055fYr+GnbRqYdMYHXv/yAuxY8waLbnqBrXgc2lWxj7A0zmDZmAjdNuwiP38/MefdSWVfDLWdc2hQOO53LHr2dl667j8457SioKOGih2/l4uNbZoK3qNWck5rKOal7Z8f7CLOZhW43fZol6/vO58OmVjHZ4UAlBAebLZxcWMA3Pi8Hm5OFs5fBkHRozp4wt6aaKLDS78cbjXFrZSX3Z+cw0W7n3qoq6iKRvb4h7nfm17noZdBze1Y2y30+AGZlZHJ7ZSWHmC07zcX0X0YRhH8grg8fIVS5Beug4xFCReOqxfg3Lyft+OtwjpqeKCejYfybl5N38YuJa0KosA+fTOVrs1oIgm/LD7g+fBjnYeegz+1FsHQ9rk/nYek7BlOXwcRGTafipf/Dv3k5pq5DyZxyB65PnqTk4VMBgaH9AWSccsduF4mljBEs3UDM50af27PFOQ07onHVItImXIum6VQ8/6ZvMHUbRtqxlyfKGPL7UPHi1Zh7H4ZKZyCwbRVpY69IqsdywJHUffFMC7fZkB79uOaUcxl+2WQGdOlNtduFPxjk9VkPolarmXbrTCwmE189+DIOi41nP3yLI689mxWPvEG/Tj2oqqvlh1/XcfiAYcw+/WIm3XYZbk8jB3TuwfpnlqBrGh0/vmgBMx64ic/ve4Fz77+RYCjEsrU/MP/jdzhiwHBemHkPIy4/hStPOhO72cp54ybjCfgYfeU0tFotoXCIiyecxiU7EIS9zdkpKUwtKuSqslIOtVj4LRhkQX09c3JyErMBjRAcabHyg8/XQhD+LBsCAb7weFjUsVNi8fcHn4/Ly0o5yW7HKARF4fBfJgjfer2c6nAydttW7Go1eVot3/l8qIhvuuv2F+7j+KeiCMLfhJSScE0xwZKfCZSsh1gUU9chmHocnBSxE6rcgn/bKnLOeSJxqI6p+3DKn7uUQNFPyWcdy3i9qLb7M6q1xEI+Sp44O55qotco7ENOwv31K6QcdVFi0VdjOwShM+L++mVMXQaj0puwHnQc3g1fYeo6FI0tg4wTZxELx/2qrYkWCteVU/12PCpJY8+g9oOHsA46HseIKbu8L9JYizbljw1fgeKfsQ9Njp7SpuSitmcQri5An9sDoTMS9TWg0v9xaHzM34BKu+MkazPGTmbSqGP4bv0abGYLw3oeiEqlYu2Wjfxc8Bvrn12cSIF95UlnsrFoKy98vJCrTj6LBy+6gRNnX8z0o06gfWYunXPasaFwC7OmXpAQA4Bzjz2ZO15+nLnvvIjL08Caee+Sm5aJN+Djwodu4f43n6V9Ri5byooZ0LUXQgiuPvksLjn+NKrqXWQ4Una6MW1vk6LR8Hr7DrzldvO5x4M/FqOHXp90rjFAcThMjz9x+trOWNzQwCS7IykSaJDJRE+9ngX19UgpydNqaYxG+dTTiCcWY7jJTOe9ZItZqHi8toYznClMccYHLQ3RKJMLC/jB798vBUFZVP4bCJZvovyZi6h45Vrc37+JIb83xk4H0bByETXv/S9pNBso/Kkpv1CzE9bUWkzdRxAs/CmpXqHRYmzfD8/qxUnXG1a8jcaeReZJs0kbdxWh8k1Uv3cPocotGDsOSCpr7NCfUOXWZm1pYLuwRpVW3yoxkFJS8949WA44iuyzHiHjpJvJOfcJvOuX4tu8Ypf36nO649+8PPG72uQg4k6OP5fRCJH6cnxbVwJg6XM49UufR0Yjic/rlj6fOJ96RzgsNo4ZfAgjeg9ILDBvLN7K4B4HJMTgd0b0GcDG4vi7mTD8cD6593misRgrNv7EtCPGk5OWgXY7v7lKqNCo1bz2xWLuP+8actPiETJmg4k5F1zHG8s+pKCypEUKbb1WR3561t8mBr9jVauZnpLCnJxc5uTkUhgK836DGyklUkqWejws9XoYuwd7C3ZHQMYwq1t2QWohsKhUjLXZ2RwKctS2rSz1eNkaDHFmcRH3VFUipeQtdz1jt22l768bObFgG582Nrap/eFmM+5YjMnNEgDa1GouTkvnG6/nTz/fvxFlhvAXEwt4qHrzVmxDT6Zh+RvknDk3ET5q7jmK8hcuI1C4NrFYqjLaiJT80qKeSGMNuvSOLa47j5hB5YIbCJZuRJfdDf/WHwnXFJBz9uOJHcPpE2+gdN4M1JYUQhVb0Of2SNwfqtyCxhHvtGQkROPqD7ANbLlTtjWEawqJ+hqwDjwuMUJXm53Yh5yId92nifQXO8Jx8GlUv3MXUX8DhrzeqM1O6pfNx5DfB21qHjIapn7Zi+jSO+DbsAx9ZifsI6dSs+h/lD5xFvqcHgTLN6HL6Ijj6EvbZHf3/I7c9PxcotEo6mZRMt+tX5OUIbV7fkfuOOsPF1VxVQWPvvtyYqYB8PrSJWQ506lrbGiR4iLFakcgOHbwKNLsu3ej/d0YVSoez8vjmvIyHq6pQY0gguShnNw2JZprLaMtFu6pquJUhzOx96A0HGaFz8fJdgeXpaVxzLatzMnOYag5Pgu8IprOlKJCwrKS730+bs3Moq/RyHKfl5sqKtA0nYncGgabTLzurm9xmJBVpcK/FyL1/o0ogvAX4934VdMhOCpMXYYk7SUQGi2mnocQ2LYqIQimbsOo+/JZfL8tj6eyJj5r8G9escNzArTOHHLOfhTvhmVE6spApcI25OSEGEB81B8/uS1C7UePkHbc/6FLb0+opoiaRfehtjip/+plvBu/QpfZCVOPkXv0rDLkR220IkTyqE9lsu82jNSQ34eMk2+hYflbeNZ+hDYlD3Ov0ZQ/fymalDyiXhe69I6kH389geKfaVy1GFO34WSccCOh6kLCtcXYR57aIqVGaziwc0965HfknDk3cuv0y3A2rSF8tPJrVjz6xk7vu/SEaYyfdQGjr5rG2CGj2Fi8jc9Xf8fCWx7j8UWv8NZXHyf2KwAs++kHDDo9j106u802/l30Mhh4r0NHNodCRKSk+584fW13jDCZ6WswMKmwgIl2O95YjDfq67kqLZ3TUlL41uslX6tLiAHER/BTHU4eralmXn47eje5dQ42W7gxI5OnamtbLQjdDQaCUrLK52NAU8iulJLX3fUc0qzN/QlFEP5iop46NM5sVAYLUW/LGPmopy4pvbRKbyLjhBupXnQf9cvmg0pNzOcmbfzMnS7OqvQmrAceDcTdRaGaoqTPpZSEq7bhGH0m4ZpCql6fhQwHEVo9ln5Hg0aPDHlJPepC9Pl99zgHji6zM5HGGkKVW9Bldk607V33aQtX1Y7QZ/0/e2cZHsXZheF7NhvbuDsJ7hCkECS4u7u7uzstbsHdXYs7FKe4WwgRCHF3WZnvR8I2SxRrv8p9XVxtZkfemWzmvHLO8xTCquVE9c/y6GAS3t7GouFQJDITtZiftrm9Rr2BtqUTOlbfJl28Z8pSZuxYSaWhbYlPSqLRT9U5N39zJhvNjBjoyTi/YAtn7l7nnuczKhUrw9JBkzA3MmFSpwHUG9+LuKQEGlasznNfTxYd2MLq4TPQ+wHz8d8TQRCytav83teZa2vHrcQErsanqaZucHSiePpLXomINIuvolQQSBVFdTD4RAWZjKnBQXm+vrYgMNPGluGBAbQ2NsFRW5vz8XGkqkQ6mv7/jeD+DITvUcT0Z6FrV1i067n8r27GF5Hk94Soyxux6bKQwM2DsWgyElm63HRKoCehh2dj12uFOrvmE6JKSWrwO0SVCl27wrkK2H1CmRhD4NahmNXogUHJOohKOTG/HyTJ5wF2vVYgCBJElRJVSgISXYPvYt+ZkYRX14j8bRNG5ZoiNbYm4c11VEmx2HSal6e6iIyIKiUB6/pg1XY6uraF1Nujb+5BGReBQclayG/tJsr/NfqGZui7NsHArb36nj7JX38pGWWwv4X3IYGsPr6bR14vcbZ2YFDzThr1Bl+K7+jcJUr+SSSpVNT18Wajo6M6NTZZpaLLh/cEy+VsdsqnkfZ6OS6OLZGR7P1CX4P3qakcjYkhUqmgor6MRkZG6PzDPJVLeL55KIpixdz2+y8g/GBEUUXY4Z8RVUr085cn5u4RJPqGCFo6KOPCsWg8Allht+96zdRQHyIvrk+rKBZF9PKXw7z+YKSG5oiiKtOUzvcmNdSX+GcX0tYDnEpjULL2V+sZxb/4jejrOzGt3gVtS2cS390l4dlFzBsOg8urWTZ4Cq2q1eVdwAdGrp2La8HiLOz/10ltf7A31HcAACAASURBVE/2FcpcbxAbEc6VvTvxe/GU4i+e0dnA4E/pzf9VXIqLY0ZIMA0MjbCQanEmNjbNWEdPjz3R0fxia0spvT/WEKbb2FD7X1pUlhP/yIBQSk9fPOTi8lc344tJVanYHxPD8aRUQKSCloC7gQGVZDK1qcmPIFapREsQMJBIqFGgIQaX1vJeLie/jg4DzS1okYsBCkB+j4Nfde2I2Ghef/Amn7V9rqb0bz74sPjgZh56vcTJyo4hLbrQuFIN9edXn9xlybE9fAgLoXrxMkxo15Ofd62lXOHiDG/VXb1fWEwkZfo35/XWs5gaZp8Vk9WL9s9EpVLx+vebvLl7G0NTM9yat8bEyjrX4yKDApjXqRWl3GtTpmYdPnq+5vLubfRfsopS1Wtme5xbc82sqzsnL+e4b06f/5l8anewXM7p2FjiVCqqGxhQQV8fQRA4EhPNlohIPshTKaKryxALSw0/hqzu4/Nn8W/hv4DwH2qOxcSwISKceXZ2uOrp8zApianBQQy3tKSZcc5B4UsDgiiKTN++gi1nD1HMqSBeAX7UKluZDaNnY6CXWWvn9QdvGk7sw4g2PWlSqQYv/LyYsX0FUzoPokeDVtlep9rIzngMnpxpCqbi4DZsHT9fw9Tmc75HQFCkpnJ59zbunTmJSqWkfP1GNOjZH91c9ISUCgXrRg4ixM+Hio2aERkUyONL5xjosZaS1WrkeOzOGRMxMDGl7djJ6m3Prv3GgQU/M+fMlX+kQfz/U4D6O9OniEOeAsJ/i8o/EO90i0FdQUIDI6MsTTr+DDZFRjDX1o5y+mkvq4oyGT/b2jI/JDTHgPB5MHjp58Xlx3cwlhnQqlq9LHvhm88c4urTezzbdBIrE3OSUpIZtHwmkzYtZdXw6Zn2X3xgCyPb9GRUm56cvHOFK4/vULlYWaZs9aBL3WaZagM+UcI5zRs5Y0AIjgwnICIEZ5vM1pGfB4Gk+Hgu79rK06uX0NHVw61lW6q1bo9EIkEURbwe3uf+uVP4Pn1E6Hs/9I2MqdamPU36D0VLW5t1IweRmpJMu3GT0dKScnHHZjz6dWPCrkNIchB4u338CHGREcw8eg5puv6QW4vWbB4/goW/3UGagx7Qq9s3GbF+u8a20jVqs3nCSKJDQzCzyZuD3pciiiJeD+4R7OeDY5Fi5C/j+qcFny8NBgFenlzevY3Q937kK16Sut37YGHvkOMxMWGh+L95hZmdPYamZgR6eWLh4IR1vn+fx/I/a+Xk/4hV4WH08v9AoFzOy+Rkmvv6cD4usz/xJ6IUChaGhtDEx4c2fr5si4xA/h1Gb6Io4peamkkO2FVPH5/UvCk7iqLIuA0LaTZtEN6BHzh//yYl+zbl6pO7mfbdcvYw8/qMVmfn6OvqsWTQRA5cPUNyFte77/mcxj/VoPvCCSw6sImyBYtT0qUQKlHFvL0bsm3TiNY98Di8nd2XjhOXmMDjd6/oPHcM/Rp3wMQg5zlkeWoKS3p1wv/NK9qMmkDd7n24um8Xu2dPQaVSsXnCSDZPGMGd40coXaM2s09cZOiqjbx79JCtU8bi/fgBAe88GblhB8XdqlHkp8r0nreU1KQknl7N+QX2+OJZ6nbrpQ4GAMXdqmFoZo7fi6c5HmtgYkp0aLDGtqT4OBSpqeh9Z1mJT8RHRzG/c2t2zJiI18N7bBgzFI9+3UhJ1/75f+LN3dss7NYOMxtbGvYZiEpUMbt1IwLfeWW5vyiKHFw0h6mNa3Fuy3oWdWvHlIbuHF2xhLkdmrNmWH+SE/IuL/9P4L8Rwg/gSVJSJovBN8lm9PL/QBWZgVpu+BOJKhXd/T9QSSbDw96eOJWKdRHhvEpOYbH91xmlf0IQBArq6PAwKZFKsj9yqx8kJWm4buXEufs3uPzod55sOKZ+2V59cpfOc8fgt+cKuhlebuGxUZnWDCyNzZBIJCQkJ2XyC3C0smHPbyfxDfLn2rI9ahmIznWa89OQtgxs1gkbs8xTPKXzF+HQzJXM3rmK4avnYGtuyYCmHRnZukeu93P/zEn0ZDIGLV+n7ukWr1KdSfWqYlugEIHeXlRv04HwwABaDh8LgJmtHcPWbGJCbTcs7OwpXaMOUm1tfJ4+Zt+8mfi/fokoipxYvRS7AgURRREb5/yZRguCRAulUqmxTRRFlAoFklwyvtzbd+bIsoXkK1EKQ1MzFHI5hxfPxbVOffR/kET0wYW/4FSsON1mzkMQBFRKJRvHDuP4qqV0mJh5xPdXcmDhL/T8eSEVGqaJH5auURtjc0uW9OrI1IMnM40Ubhzez5s7t1lw8SaGZuYoFQr2zZ1BXGQk43ceYPuUceyfP5tecxb9Fbfzl/CXjRAEQdATBOGeIAhPBUF4KQjC7L+qLd+b83GxmSwGi+npUUEm40YWPY5TsbE4a+sww8aWonp6VJTJWOvgyL3ERLw+02d/lpTE0rBQloWF8iI5b54BAy0smRoczO2EBBJVKm4kxDMjOIiB6aqZoijyIDGRjRERHImJJv6zF9aRG+cZ3KKzRs+7lmtlHK1sGbdxoca+NUr/xMFrZzWfx4ObOFnZYm6UeXpqSIuu7LhwjK51W2hoAjlZ2VKrbCWuPLmT7X1VLlaGjrWaUMg+H1FxsVx6eJs7r3PuZQN4PbxH+QZNNKY99A0NKVHVnesH91Cnay8C33lRoopmgZ6Onj4FXSsgT00l2Ocd4QEfWTGwJ3W69mLNI0+WXn+AQ+Hi/NKuKR79ujOxbhUeXTzH7WOHmdmiPkPLFyPY15tzm9dp9LAfXzqPPCUFl9JlyYkaHbpQpGIlJtWrxuIeHRhfuzIRgYF0mzk313vOK4rUVI6tXMr42pUZ/lNJHpw7RfU2ndTPSqKlRauR4/j95NHvds1vRRRFwj9+JOjdW8rVb6TxWZUWbUhJSmLdyIGZBA9vHNpLm9ETMEyX2NaSSmk7dgovblwlNSmJjlNmce/0ceQpyX/avfzV/JUjhBSgjiiK8YIgaAM3BUE4K4pi9m+AvwkiZGlmKAFEMk8DvUxOwv2zykhdiYTKMhkvk5PVaYWrwsM4GhNDGxMTRGBEQADtTEwZYmmZY3uaGhsjAZaEheKbmkpBHR0mWdtQ38gIuSgyLjCAtykp1DE04kVyEsvDwljv6MQn0QalSoU0i3lxI5khJ37/jVXD/ugpTukykPoTehMRG0O98lV46uPJqqM72TJuXpbzzs2r1Gbj6QOEx2Yu2ouOj8VQP/tF2hVHd7Ln0gmWDZ5MCedCnLt/nU5zRvHr7DVULFIq0/6iKBIdEozM2ISQ9z6ZPv/w6gVxUZGISiXWzi74PHuMW/PW6s+VCgXvXz2n2eARrD1/ml0zJ1GlZVuqtGgDgKGZOX3mL2VCndsMW7OZ5IQEVgzsibGFBd1nzce5ZGmeX7vC7p+nMql+NSo0aEJkcCA+Tx4xfP02DfOerJBIJHScNINGfQfh7/kaCzsH7AoW0tjn49s33Dt9HEVqKq51GlC4YqUvmu/fMmk0SfFxjFy/HUMzc64d3MuqoX2YdfwCxuZpHQg9A0Pkyck8OH+alzevoW9oRNVW7XAsWjzP1/lePDh3isNL5xMXGYlKpSI2PAzTDA5rEUEBmFpbExMWSuC7tzgU/iPZICEmRmNfAD0DA7T19EhOSMAs3f0tNTkZbd1/h9DdXzZCENP4pCClnf7v75PylAP1DY04EhNDTIaetldKSrYSwnba2rz9bH5dFEXepqRgr50Ws9+mJHM4OoYjzi4Ms7RiuKUVh5xd2BcdhW8e1gIaGxvzq0t+HhcpymGX/NRPT887Eh1NjFLF8fwFGG9tzUoHR6ZY2zApKFDdo2pRpQ7LDm8nMcOI5L7nc95+9CUyNlrjOoUcnLm+fC8SicDyIzvwCfzAyTkbqFc+ew+FOb1Hsf38UXyDPqq3nb9/gzf+PtkelyJPZdmhreybugz30hWxMDala90WTO06mKWHtmba/83d28xoVpdZrRry2+7t3Dy8n5e3rquna85tWY9SoaD77AVc3LkFtxZtuXvyGDd/PYBCLic2Ipzt0yZgX6gI+cu4MmbrXgK8PHEppZnlJNHSwrlEKcL8P1CoXAUkWloMXrGBElXdMTAxxa1Fa7pM+xlLx7RFy4oNm7Lg0m0Kls29kvsTJlbWlKpeM1MwuLxrG0t6dUKlVKFnaMjWyWPY+8v0PDvoBft68/rOLYau2ohj0eKYWtvQctjotJHTgT3q/S7t3obMxISzG9fiULgY2np6LOnViRtHDuT5HrIiNTmJ46uWMbVRTSbVq8b++bOJj87aAQ/g9Z1b7J0zk97zlrL6wSvcmqWtdaQkpX1P46OjOLhwDjU7dsPEypqEaM3vaomq7tw+dlhj26vbN5AZGWNuZ8/T3y5i7eyCLJdMvH8Sf+kagiAIWsBDoBCwRhTFTKuUgiAMAAYA2P1FWTpfSnl9fRoapVkMNjEyJkGl4nxcLNNtbLO0GGxjYkIbPz91lWSKKLIhIgItASqm95CvxMfTxNhIYxrKQiqloZERV+LjyW+eNopIUCm5m5iIFgJuOdQ5hCrkHIyO5nhMDOX0ZcQoleosqEZGRniEh3FxaCsarD1Oy6p1GbdhIeUHt6FTrSaExURy7NYlejZow53XTzKd28nKlvl9x+b5eZUtWIypXQZRZURHyhYoil9IAAnJSXSo1YRUhTxLn+LgyHB0tHUo5KCZCVKrbGVWH9ujsc0nyJ+14wbSZ/5SytauT2pSElsmjmLdiIEYmJqREB2Fub0DY7buwcrJmde/32Bpr04U+akyx1YsYfvU8Ui1dXBr0YbBK9YDYFegELW79OTFzWsao4iUpCTePX5Ax8kzSIiJQaVUkK94SY32FKtchcNL5tOg9wC+F1EhwRxdsZhZxy9g6ZAmqle/Zz9mt2qE14N7FPkpd5/rgLeeFCxbPlNvuGS1GpxcuwJ9I2M8793mzb072ORzYdLeX9FK/864NW/NrJYN2PPLNMrUrEPbMZOwcc4sxpgdoiiyZtgApNra9Fu8Em1dXS7t2MKSnh2Zeugk2ll8By7u2Ezr0RMo+lNaYWe3WXOZ16kVo6u64lSsBAFenlRr056S1Wpycu1ynEuW1ji+6cBhzOvciviYaMrWqseHVy+4tGsrDXr15+Ta5VzauZXBGdaZ4qMiAdRTTP9E/tIsI1EUlaIougKOQCVBEDKN80VR3CiKYkVRFCua51G+4a9GEATGWlmz3sERYy0J+XV0OOqSX0NCOEKhYGNEBFOCAjkZG8tCO3u2RUZS9Z0XNbzf4ZWawnpHJ7WwmI4gkKTK3NNLUonopO9zLi6Wut7e7ImKYktkBPV8vPk9izULr5QU2vr5Ea1UMtLKCgOJhLZ+vhp+shknGSQSCRtH/0JMQixPfd5gLDNkVJue7L50jJndh36XZ9a/aQc8Bk/muZ8X3eu3YtngyYREhlNzdDciPhuFAFibmpOYnMTHcM2smwdvn1PIQVOyYtPZw7i364xrnQYIgoCuTMagFesxMDWj7djJ6BoYMGTlBqzzuSAIAj1mL2DEhu08v3aF+j36suTafdY8ekOvOYvQz1AFW6N9F97cucXRFYsJD/iI7/OnrBrcmzI162CdzwWZsTGiSiTY11ujPT7PnmDj8sfLMjYyAu+nj4iLjPzq5/f8+hXK1KyjDgZA2lRO63Y8vpzZCjUrbFzy8/7Vc5QKhcZ232dPsLR3IMDrDcUqV6V45SrU6NBFHQwgLUAWLFeR7jPnY1+wMAu6tCU2MuLzS2SL9+MHhH7wZciqjeQvXRbHIsXoOWcRMhMTHl44m+Ux4R/9cc4QbHX09Jm4+3DaNIMg0HHSDCzsHVnWpzPtx03NVCNiZmvHjCNnsXJ04sL2jdw9fQyJlhbXD+3F+8ljJu45QvEq1Qn29WZRj/ZMqFOFiXWrsqhH+0y/038K/xdpp6IoRgNXgUa57Pq3opieHoMsLOllbo5dhgXTdykptPbz5aM8lQoyGd4pKUwLDmKpvT0n8xfgcoGCrHFw1KhbaGhkzPm4WHwyvLS9UlK4HB9HAyMjAuRyZgcHs90pH1uc8rEznzPL7B0YGxRIXIapqzilkhEBHxlobsE0G1uaGZsw09aWvubmeISHAXAxPg5tQaBQhuyhuuWrcHT2WnS0dTh3/wYPvV5yeOYqapbNXtL6S1AqlczYsZJDM1YwretgOtRszJ4pS3ArXpbVx3Zn2l9fV48BTTvSc+FE3n70RRRFLj26zbRtKxjVRlMV1i88GMcimoVqEokEhyJF0ZJKKVHVnXunT2h8Hh8ViYW9Aw36DMTU2kbj5fcJI3NzJu09SmRQIHM7NGfloF4EvntL6Vp18X7ykL1zZqCtp8eGscP4+PYNEUEBbJ82nm1TxlG8SjWiQkNY0qszE2pXZteMyUxuUJ09P0/L9ELOC9o6OuqpkoykJiVrpLjmhGPR4tgXKsr2qeOICQ9DkZrK9UP7uHf6OL3mLaHH7AXU6doLfUNjkj5LoVYqFIS+92PvnOlc2LYJpULO3l/ynoXk9+I5JarW0HjOgiBQ2r027188y/IY5xKleHHzmsa22IhwpFIprrXr8fjSOT56vmbwivXU6NAly3MYmZunvfR9vGnUdzAzjpyh85RZBLx9jf+bV6QkJbGkVyfK1WvEyrvPWXHnGeXqNWJp785ZPu+/O7lWKguCoAu0BVzIMMUkiuLP33RhQbAC5KIoRguCoA9cABaKongqu2P+KZXKgz76U83AgO4Zhp6bIiJ4nZLMQHMLzsXFoUSkrqGRRv3A8ZgY5oeGUMXAAFGEO4kJTLexpamxMRsjIghVyJn2WXHSyICP1DI0pLWJKSpRpNv79zxLSeZe4SLIMkwnxSuVVH3nRT2jNLvENQ6OlNHXz7JSWaFUsOjAZjafPUx4TCTupSoyu9eILBdy88rrD960mz2Cl1s0zX5uvXzExE1LuLl8b6ZjlEolSw5tYe2JvUTFx1LEwYXp3YYikUi49uwelsZmdK7TjKO3LnEs+B0Dl61RH5sUH8+EOpWZefQ8KqWC+V3aULlJC0rXrIP/m1ec27yO3vOWUrZ2vTzfgyiK3D11jBuH95MQE03JajVo0HsAvx8/wqn1q5AnJ1O5WUssHfNx5+SvRIcEU8C1AlpaUnyePaLbjLlcP7SPopXcaDF0dO4XzEBibAwT61Zl9ObdFChbDoCIwAB+adeUcdv25XnBNyk+nkOLfuH3k0dRpKZSuMJPdJw4Q2O6xfP+HbZMHMWU/cfVi7JrhvcnKjiIgcvWYunohNfD+6wZ1o/+i1dSyr1Wrtd9cuUiZzasZsr+4xrbN44dRkHXCtTt3jvTMQFenizq3p5mQ0ZStFIVgn3ecWK1B9XbdqRR30F5ul+AZX278VOT5ri37aje9vbBPbZOGk2zISN5cO4Uozbu1Dhmef/uVGrakqqt2uX5On8l37NS+TgQQ9pcf94qmfKGHbAjfR1BAhzMKRj8U1CJIrcTEvD4LCe6vakptb3f8SAxkdYmpugIAmMDA2hsbMzYdJ2bliYmuBsYcC0hHgGBWba2mKavSSSoVFmuT5hqSUlQpTmg3UtMJFEUMZJIiFIqkEn+6DlGKJXopWc2zbKxzVQrkZGx6xfwLuADp+duIJ+1HUeuX6D1jKFcXrJdw1BGfc8qVa4ZNEYyA2IS4kiVyzXST0OjIjCRZZ1jr6WlxcROAxjfoR+pCjkCAu1/GUFEbAztajTEPyyYaiM7sXzwFHwvHGbv3Bm4t+1EXGQEx1YuoVKTFuoplumHT3Fp51ZOb1iFpYMTozfvzjTnnBuCIODWvLXGmgJA3e69ObdlPaM2bKdQ+TSl2yb9h7CwW1qGUrXW7fF5+hiP/t0YsX4760YM+uKAIDM2off8ZSzp1ZGCrhXQ0Zfx6vYNmg0e8UXZP/qGhvT4eSHdZs5DqVRkOXdf9Cc3anbsxrQmtSlWuQqhH94T4ufD/Is3MbdNq5spUrESXab9wvmtG/IUEEq71+bQwjmcWO1Bw76D0JJKuXnkAK/v3s42rdahcFH6LFjG7llTOLx4LggC1k7OlK5RO8/3C/D+5TP6zF+qsa2ga3miQoPxenAXxyLFMh3jWLQEEYEfM23/u5OXgOAoiuJ3n8oRRfEZUO57n/f/HYG0lNI4lVLtEgUQrVQiAIecXbBJfyF2NzOntZ8vDY2M1PK/5lIprU1MM53X3cCAacFB9DO3UJ83Wqnkt/g4epunLbx6paZQUaaPtiBjSVgYC+3s0UnXll8YGkJHU9NcdeBDoiI4eO0sb7adU9cl9GjQCv+wINYc38OKodPU+157eo+ZO1dx780zbMwsGdy8E2Pb9dFwJfuEo6UtrgWLM3/fBqZ3G4JEIiE8Jor5+zYwtn2fHNskkUjQ09Fl85lDpMhT6VG/JTdfPMLC2JS5fUYzftNixv96mvPbNrBu5CD0DY2o1qY9tTr/UcRmbmtPhwnTcrjK1+Pz5BEWdg7qYAAg1dGhTrfePDx/hmqt21OgbDmKV6nOR8/XxEWGf9V1Hpw7Rb7ipXApXRaJRAsdPT3unjpG/Z590dH7MulxiZZWjhIcTQcOo1rr9ry5e5tT61ehK5Opg8EnnEuW4uiKD9mcQRMtqZSx2/exa+ZkRlUpgyBIyFe8JGO37s02y0eemsK+OTOp07UX9Xr2RRAk3Di8j6W9uzD33FWN9Z6csHRwwv/NK/Vox/Pe72waPwIjM3Ne37lFYmwM5Rs0oUCZNBMrlUrFi5tXaTtmUp7O/3ciLwHhtiAIpUVRfP7DW/MvQBAEWhgb4xEWxhxbO7QEAYUosiwsFBcdHXUwADDR0qK5sQlX4uPVASE7KujrU15fRuf37+loaopcFNkTHUUbE1Nc0ueQ8+vocCImlh1OTkwKDqK+tzel9PV4lJhIPh0dllnkXM8AaRk7hR1cMslDVC1ZjgX7N6l/fvj2Jd0XjGf50Km0qFIHr4D3jFg9h+j4OOb1HZPluTeNnUPHX0Zx6Po5Ctnn4+6bp/Rv0oEONRvn2i6A47cvExQRxrn7N2hfoxH+YUHM3LESPW1dooID6TL1Z5iap1N9V7SkUhTy1EzbFampGnPm+gZGvHt4nyIVc88I+pwAL09e37nFosu31VlCoiiyvH8P7p46jnu7Tl/d/ofnz3BijQcBXp7YOOen8YAhVG/TEVNrG9yat6a0e20m1K1CgJenRp7/y1s3cCpWIs/XMbe1Z+SGHSTFx6FSKjHIouOTkae/XcTC3oHG/Yeot9Xu3INXt29w99RxanXqlqfrNug9gL1zpjNk5UZMrKxZPbQfA5aupnSN2oiiyP2zJ1nSqyOjNu5CR0+Ps5vWomdgSMkcFGb/rmQbEARBeE5aXYAU6C0Igg9pU0YCaWUEX+/08S9njJUVowICaejjTRl9fZ4kJWGupYVLFgbrKaIK/TyY2AiCwBxbW64mxHM5Lh6pALNsbHHLkFlRRWbAcsJYERHObBtbAhRydkRGoiMIbHXKR4ooIlcqMcqhZ1jAzgmvAD9iEuI0gsLvr55Q1NFF/fPKozuZ2GkAbao3AKB4voLsnrwE14EtmNR5AMZZTAPZmVtxbdluHr97TVBkKOtH/Yytee5B6hNBkWEUdcrPwekr1KmCjSvVpPbY7j/cAyInCpQtT2JcLI8vX6Bc3bTnkRQfx4Xtm2g1Is27ISY8jIcXTgMCo7dkXkTPDZ9nTyhRpbpGyqggCJSpVRffZ4+zDAifXna3fj1EUnwsparXol6PPho98seXzrNv3kx6zV1CsUpV8Hn2hO1Tx6FSKNULtQamprQZPZE1w/rTeepsHIsU49m13zi+ailjtuzJdN3PCXznxeXdWwnx88WxSDHqdu+DlVPu5kbhAR9xLJZ5OsypWAkiAvxzPf4TlZu1JCk+Fo9+3UmKj6NMrTrqaSdBEKjUpAU3Du1j3ahByIyMqdioKb3nLc11GvTvSE4jhGZ/Wiv+ZRhItNjk5MSr5GR8U1MZYG6BtVRKE18f3iQnUyzdBco/NZWTsbHsSVdd9EpJYVtkJG9SksmnrUNPczO1gimARBCoY2hEnWyGylqCwCZHJxaHhVLHxxulKFLb0JB5tnYM+ejPy+S0JaIKMn1m2NjikIXypo2ZBe3cG9Ft/niWDJyIs409h6+fY92JfVxavF2939uPvoz4TFfIxswCWzMrPoYFU8K5EFkhCALlC5cA8t6z/ISOVJveDdtqVOaWKVAUB0sbVOnrKH8FEi0tBnmsZdWQvlw7sBszG1senD+DREtCsK83J1Z7cHn3NmzzF6TPfA/sCxXO87lFUeTSzi2c27yO6NBQQj/40WrEOLWUdoDXG8ztslb7PLp8EY8vX6D54BEYWVhy88gBFnRty5T9x9FLr5w/vWEV3WbNU/stFKlYiX6LVrB+9GDc23dWP+u63XphYGrKsZVLiQj8SP7SZRm1cWemwr3PefvgHquH9qVejz6Uq9uQ28d/5ec2jZEZm+BYtDiN+w+mULms10JdSpXh5pEDqJRK9fSWKIq8uHGVhr0H5vrsFHI5jy+d4+2DexhbWDB5369c3LEFWRY+Ibb5C1LKvRYN++R+3r8z2QYEURTfAwiCsEsUxe4ZPxMEYRfQPcsD/yPPlNDT07AAnG1rSy//D7jJDNAWBG4kxDPaygoXHR1eJSfT/6M/vc3M6WJmysvkZEYGBPCzrV2eTcUBzKRS5tnZM8c2TUQjSaWimZ8vA80t2OxkilIU2REVST//D5zIXyDLcywbPImF+zfRaFJfwmKicC9dgSOzVlHU6Y8F5WL50uSpKxT5I088MCKU4KgwnKxyNsz5Wpxt7AmP0axsValUJKYkIzPO3jDnz6CgawUWXrrN48vnSYiOpl6PvsSGh/Ho4jm0pFJGbNj+RdXKnzi1fiWPL55n+LptOBQpytMrl9g4bjhDVm0kNiyUh+fPMOv4hUzHRYeG8NuesHCuBQAAIABJREFUHcy/cBMj87Rst2KVq7J6SF9u/XpQndUT5P2OwhnWPgAKlC1HVEgwitQUjRGJW7NWuDXL3sMiKw4tnkO3GXOo1LQlr27f4NWta7QdO4nCFSvz7uF9Vg/pS/8lq7L0iihaqQpmNrasGzmIJgOGIpFKubBtI0qFEtf0kVh2pCYn4dGvO0qFnAoNmhDm/4Ff2jalYd9B3D11jGaDRqilyFOTk3jy2wWGrt78Rff2dyQvawgaZZbpWUEVfkxz/t00NDKmssyAq/HxKEWRCdbW6lqENRHhDLewpJNZ2qJvKT19HLS1WRQaSk0DA3VPzS+DP2wFfRlNsvGH/VTwdjouFlc9fTqnn1dbEBhoYcmthASuxcdTJIt2aku1mdZtCNO6DcnWf3hkmx40nzoIKxMzWlary9uPfoxaO48BTTtiJDPI4qzfTo/6rZiwcTH1K1bDztwKURRZdWwXtuZW2BfK6k7+XHRlMo0MJIfCRSn+mYDelyBPSebitk1MP3JGPcVSsWFTEmNiWDWoNxb2DgxftzVLnwTfZ08oVK6COhhA2uisYqOmPL1yibrdeyNPSUZbTw+vR/dxrV1fvZ/P08eY2dgi/SwDSalQ8OTyBbwe3cfU2oYqLdtiYqnpFa7R/tQU/J4/pULDpgAcXbGYbrPmUTH9Z4dCRdJHHUuyDAiCIDB83VbOblrHlkmjUSmVlK/fmG4z52ZZN5KRq/t2oWdgwPB1f2hIla/fiK2Tx+BYtDgefbtSt3sflAo5F7ZtpGilKrmOdv4J5LSGMBmYAugLgvCpCkUAUoGNf0Lb/pWYamnRKosh69OkJGZ99oddTWZAgFxOoqjCQNDianw8U4ODaG1sQkk9PY7HxnAgOootTvk0ag4yEiCXU1wvc2phMV09AuTyXNubnXCaa8HiHJi+nJ93rWbIytnYWVgxsFknRrT6cQPLxpVq8MznDeUGtsKteFk+hAYhEQQOz1zJ79/Z0CU2MoKbh/cT5PMO+4KFqd62k8bL9c8gJiwMHX39TPPthStUwsDElFnHL2T7+zG2tCT0w/tMAT3kvR/GVmkv8RuH92NqbcPuWVOQautQrHJVfJ89YcOYITQZOEzjuJSkJDz6dUMpT6V8/cYEeb9jetM6DFuzhSIVsy5e1JJqo6MvIyYsBHM7B3yfPclU9+Fauz7rRw3O9hno6OnTcvgYWg7POlEhO55cuUijPoM01gFKVHVHV19Gi6Gjef/qOVf27URLS4tanbpTpWXbLzr/35WcpozmA/MFQZgviuLk7Pb7jz8HK6kUv9RUjerlQIUCbUFAV5CgEEVmhwSzyt6B8ukLyR1NTBkZGMD+6Cj6mGdtG1lCT489UVEMMLdQ/4ErRZHbiQmZAtCXUrVkOc4t2PJN5/hSJnYaQO9Gbbn35hkWxma4FS+LIAj8/h2vEeTzjsU9OlLKvSaFK1Ti3aP7zGxRn4m7D2HjkvU024/AxMqKlKREwj/6Y+nopN7u9fAeDkWK5qhyWqBseXT09Tm1fmWaC5xUiveTh1zZu4PxO9OKEZ9euUzzwSMBOLx4Lv6er7F1KYAg0cKpqOYaz2+7t2FgbMLQNZvVL1nXyw3YPnUcc89dy7ItEokE93ad2DtnJv0Xr8Tczp5Ar7ca9R8BXp6Y232bJ0hWSLV1SUnSNPlRqVSkJiehZ2BI7c49qN05d2+NfxrZLpMLglBeEITywKFP/5/x35/Yxn89clHERiplZnCQutcepVAwOziYDqamSAUBz5QUjCQSdTCAtN57e1NTrsdn7/pU19CIZJXItOBgPJOTeZmczNjAQGylUirof1nu+v8L1qYWNHOrTZUSP8bq8fDieTTo3Z8+85dRo31n+sxfRv1e/Ti8ZP53v1ZOaOvq0aBXf9aNHMT7l89RpKby8MJZfvVYSON+Q3I8VhAERqzbyqtbNxhboyJTG9Vk7fAB9Ph5oboQS0dfj6SEOCo0bMKs4xfY8safOWevoiXVQuez78bjy+ep2723Ro/btU595KkpBHm/y7YdbcdMRFcmY1Q1V1RKFZsmjCA8IK3gKzzgI9unjade95zrUL4Gt+atOLtpnYYj2o1D+zAwMc2kIvtvIqeJtk+le3pAReApaVNGZYC7wNdPfv6L8UlJYXtUJJ4pKThpa9PdzDyTveXnzAkJRimK1DA0pJ2fL8ZaWoQqFDQwMmJ4+hytviAQr1KhEkX1+gBAnFKFviT7l6K2ILDFyYkNERGMDAxAKgg0NDKiX4YRwydEUcTT35eYxDjKFiiWpQppViiVSm48f0BIdARuxcvibJOzx+3/M6Io8uz6b/RbvFJje82OXTm6fHG2x6lUKp5eucS9MycI9PIkKiQYmbEx1dp0oHG/ITl6KedEs8Ej0ZUZsGZ4fyKDAslfuiz9l6yicIWfcj3W3M6BibsPE+b/gaT4OBwKF9WYe6/Soi2/eizEtU4DDNMLFm/+ehCptk4mBVctqTbyz8ycRJUKhVyOVCf7e9PW1aPl8DE8v36F3vOW8Or2DX5u3QhdAwMSYqKxcc5P/V79v+SR5Am3Fm149/gBk+pXo3SN2oR9eE944EdGb979p/lF/z+S05RRbQBBEPYDAz4VpqUrko77c5r3z+J1eqZQNzMz2pqY8iI5mWEBH5lra0eNbDKFwhQKzsfFcalAQQy1tBhhaUWgXM6JmBgSRBXa6V/e/Do6WEql7I2Oolu6RlKMUsmmyAgGZDNd9AljLS3GW1sz3to6233ehwTQfcEEgiLDsDQ2JSA8hEUDJtCpdtMcz+0X/JHWM4ehp6NDfjsnxq5fQJc6zVnYf9w3/+F5+vuy7fwRgiPDcSvuSrd6LXI01PkeCIKArr6MxNgYDdvKhOho9GRZX1ulVLJ+9GCCfLyJCQulduce1OjQhbjICI4sW0Cwjzf9PwswX9KeBr360+AbXprZ5fyXq9cQ7ycPmdygOiWr1SQyKJCokCBGbdyZ6XdXuVlLzmxcQ/Eq1dRV0dcO7sHcxg7rfC45Xj86NBQbZxdKVqtByWo1aDl8DNGhoQR4eXJp55Yf8oKWSCT0mL2A+j36cff0cYK83xETGsKCzq2p1ro9rUdPRPdvOkL+FvKSZVQsY5WyKIovBEFw/YFt+seyJiKcIRaWdEnP6Cmrr4+jtjYe4WG4Z8gUysiH1FQK6OhimJ5nLZNIKKSri5uBAZsyyAsLgsAiO3sGf/TnRGwsjtra/J6QQGsTUxoZ5a2EPztEUaTDL6PoWKsJo9r0RCKR8NT7Da1mDKFYvgK4FsxeK6f34in0bNharUAakxBHo0l9OXD1TK7BJCfO3b/BgGXT6NOoHfUrVOX47d/YfOYgFxdtx8zox6aYVm3VjiPLFtB3gQdaUilKhYJfPRZmK3T2+PIFwj76U6lJC0I/+NF61HiAtCygtVsYX6syIe99v8g/4M9AEATaj59K7c498Lx/ByMzc0pUq5HlaKZG+y54PbjH5AbulKlZh5D3voT5f2DM5twL0xyLFiPIx5vIoADM7RzQ0dPHOp8z5zavpVD5XPXYvgl9IyOu7t9Fs0EjGL/jAHGRERxaPJeNY4cxfO2fu/71/0BeAsJrQRA2A7tJq1zuBrz+oa36h/I4KYmZny3UuhsYMCowgERRxCCLgOCso4NPagpxn1UQP0xKpOBnssYuOjqcyl+Au4mJRCgVjLWywiGL6ucv5Z7nM1LkqYxu20sdtMoWLEaPBq0Ys3Y++e0cKWifj14N22Bv8ccowyfIH7+QAIa3/ENCwMTAiPEd+7H9/K9fHRCUSiUj18xl9+Ql1CiTNjXStW4L+i+bxqpju5jxnTwasqPN6ImsHTGQSfWrUbBsebyfPMS+UFF6zcl6yujZ1ctUb9MRr4f3MmXR6OjpU6hcRT56vvm/CwifsHR00li0zgqJlhb9l6ziw6sXeD16QKnqtShbu16epLdlRsY0GTCUpb270HLEWCwcHLl3+jjPb1xl+uHTuR7/pYiiyK2jB7mwbROhH97j1qwV9XqkrVPoymT0X7yS8XXcCHj3Fof/g3TlP5O81F73Bl4CI4FRwKv0bf/xhVhpSXmfqqlpE6xQoCsI6GYzLLaUSmlsZMyowAC8UlJIUKk4HB3NrqgoAuVyTsbGIE+XMBdFkWCFAmcdbZoZGX9zMPgkfR0eE0U+azuNEcz7kAC2nfsVe0sbapWtTEhUOFWGd+Cp9xv1PgnJSRjpyzKJ2ZkZGhP/DVryXgHv0ZJI1MHgEz0btObCw1tffd68omdgwJgtuxm2ZguudRswfO1WRm/elcmA5RM6+vokxcVinc8ZvxdPNT5TKZV8eP0iT1INuaFSqbhx5ABLenVifufWnFq/ircP7hL6we+bz51X8pUoRc0OXZAZG+N5/06eDeqbDBhK69ETuHF4P7tnTUFAYNLeX0mKjyMhJrNB0rdwaecWzm5aR+epsynlXpOilatofC7V0aFAaVeCc1gM/6eS6whBFMVkwCP93398A53MTFkYGspqBwdstLWJVir5OSSY9umZQtkx1caGTRERDPzoT4RCgYFEQmtjY4ro6bE3KopTsbGMtLRiVkgwQelZSDZSKXNs7dQyGN9CpWJl6LtkKkGRYdiZpy1iz965mn5N2qt7493rt8S1YHEmbV7C2flpFZ0l8hUkOTWVG88f4F46begviiJbzh6h8U/uX90eQ5mMuMSETFLZEbHRGP3gNYSMOJcohXOJ3D0g3Fq0Zu2w/gxZtZGVg3rjXKI0lZu1IjE2lsNL52Gbv2CmRdqvYeeMSXz0fEWTAcPQlck4v3UDF7ZuQCKVYl+wEP2XrM6ySO174nnvd9aPGYq5rT0SiYSAd57kK16Kig2bUq1NB411l8+p2LCpuijt9+NHmNehBRKplMTYWFzr1Kf7rPlqSY2vRSGXc3rDaibsPIR9ocJ4PbjHu0f3qdKizR/7pKbi8/wJbcf++7LtszXIEQThoCiKHTKI3GnwV4jb/d0NckRRZE1EOLujorCRahOikNPE2JhJ1jZqG8ycCFMoaObrwwmX/GpVVIUo0trXh3ClknHW1rQyNkEATsTG4hEWxpkC+THIgzheVmQ0x1m4fyN7Lp9kfId+WJma033+eJ5sPI6DpY16n1S5HKu2boQcvq3OQDp3/wb9l06jW70WpMhTOXf/BinyVHZNXETVUl+fvdxkSn+ql6rA5M4DEQSBqLhYmkzpx/BW3elSt3mm/fcVynlhHdIqZ68f2MujS+fQkmpTqWlzqrZsl6MMdF65sG0jJ9YsJ1/xkgT5vCM+KhItqTY/NW1BgTKu3D15jPjoKIpXqU6T/kMws/0yeY+Ad29Z0rMjCy7eUo9UVCoVC7q0oU7XngT7ePPy9nWm7D/+w7JoEuNimVSvGgOXrVFXFns/eciyvl0p6FqRyKAAJu39VZ2xlB1v7t5m07jhDF+3DZdSZUiMi2XvL9NRyOUM8lirse/DC2c5t3ktwX4+OBYpTtNBw9W6S1kRFRzEz22b4HHrMQAxYaHMatWQxv2G4N4+zSvj8JJ5iCqRoas3ZXuevxvfwyBnZPp//xO5+04IgsAwSyt6m5vjnyrHVltbbXCTFx4kJlJBX19DIlsqCJTU0ydUqaBtBrngViYm/BYfx7m4OI3tX8vETgMoU6AYOy4cJTYxHpmeHlFxMRoBISYxDm2pFGmGe2r0kzu/LdlB9wXjiU9OYkCzjsQlJtB1wXjGd+jLkBZZWxvmxqYxc2j/8wgOXjtLYQdnbr14RI8Grehc5+u+riqlklWD+yCKIvV79kUhl3N+y3o8792h74JvHxw36D2Ays1b8/r3m+jqyyhc4Sf0DAw5scaDa/t302rUeMxt7Lhz8ijzOrdi+pEzGOeSHZaRdw/vU8q9lsa0lUQioWLDJng/fkjnaT9z+/hh/N+8+i6jEUgLOK9uXcfr0X1MLK1QqVQUqVhJQ2aioGsFfmrUHNsCBQn09uLC9k20GTUhx/Ne3r2NFsPGqKUiZEbGdJs5j/G1KhETFopJumHUnVPHOLJ0Pl1nzKFA2fJ43r3Nlomj6LvAI1tTHkNzcxTyVHUxn4mVNeN3HGTr5NEcXDwHA2MTqrXpQKsRY7/LM/q7kVPaaVD6/9YFboii6PXnNOmfj4FEi2J6X97rNJBICM3CbzdEochSfiK/ji4h8i/3582OxpVq0LhS2h/7L7vXMGvnKvZMWYqutg5KpZKZ21fSvkYjpFqaXyufIH8USiUP1h5Rjxx61G+F2/D21CtXlaO3LnD92QPMjU3p06gNtV3dcm2Lg6UNt1bs5+6bZwRFhOIxZAqOll8/HfL8+hViI8KZfvi0Ohe/dI06TGnozodXL8iXh6mh3DCxtNLQMoqLjOTy7m3Mv3AT43QvinwlSpEYG8uVPTu+SI7BxMqKsA/vM20Pee+HqY0NEokES0cnYiO+znznc+SpKawa3Ifo0BDK12uE18P7PL58IUtxO2MrKxJjY3Fv24m9c2fkGhCiQ4IzaU/pGRhgamOrDgiiKHJi1TL6LVxO0UppawA/NW6OIJFwYs3ybAOCto4udbv1YcPYofSZtwzbAgWJDg0mMiiI0Zt2ZamZ9G8iL1lGLkA3QRCcSbPRvEFagHjyIxv2H5lxMzBgfFAg5+NiaZieWumXmsrrlGQ+yuWMsbJWr0UoRZFr8fFMyKK24HFSIpsiInibkoKzjg69zc2pbpA3xdRD186x+vhu/EOD0NXRoWivhlQtWZ7H716R39aRfVOXZTrm7P0bdKvfUqOQzdnGnhqlf8J9dBcaVKzGiNbd8Q8LZtDyWYxp14uBzXI3dBEEAbfiZfPUbkjr0YZ98ENHTz/TlMzbB3ep0LCJRmGWrr4+rnXq4/ng7ncJCJ9z/+xJrByd1cHgE65163N1364vOlcp99rsnTOTK3t3ULNTdwRB4OXNa9w/e5JZx88TGRzIh1cvsXHJz+Vd2wh454ldgUJUbdUuVyOarLiydycgMPPoOfUzO7dlPafWraTj5Blqt7LU5CRuHTlAi6GjiY+KzHEN4RP5y5TjyW8XNYrrQt77EhMagrmDI/fOnCDY14fQD34U+Umz81CiqjtbJuVsP9pi2Gi0dXRY2L0diTExWDu70HX6L7kGA4Vcju+zJwhCWhtzE9D7O5KXReUZAIIg6AP9gfHAcuDbJ1b/Q02kQsGtxAS0BQF3A0MMshCj0xEEupuZMT04mM0RkRhrSXiZnEwPUzO2R0cx9ONHepubIwiwIzISK6lUwyAH0qadRgUGMNrSisnWNjxPTmZ6cDCTra1pkEv+/vqT+1l7Yg+LBkygeL6CnLt/nVk7VlOhcEnGte+b7mOQGX1dXeITM8tnBEeFU9KlELsm/ZGuWdu1Mu6jutC17vctMnt1+wa7Zk1GnpJCalISTsVK0Hehh9orwNjCksB3mQfBYf7+FKmY+4jla7h3+jhRIUFp1bwZpgH937z+4jUEqbY2ozfvYtO4EZxctxJEEUVqKo37D+H177c4tW4FNTt2ZVH39hQoU44iP7nh/eQh57asZ8KuQ1+c8vrowlmaDR6h8VJs2Gcgp9evZE775tTv2RctqTa/7d2Bjr4MlUrFiTUe1OvRN9dzN+wzkDkdmqOlLaVCgyaEvvflV4+F1O7akzntmmJh50C+kqXR0dfH//VLjWDt++xJrvcikUhoOmg4jQcMVUt457au8vr3m2yeMBIjC0tElYqEmGgGLFlNkZ++3N3u/5lcA4IgCNOAaoAh8Ji0KuUbP7hd/yoORUezNCyUyjIZyaLIzyEhLLKzy7LXPsDCkseJiYQrlTjr6FFCV5d9MdFMsLImVqVkeXgYItDAyIhupmYaMhaQVhw30dqa5umuWE46OphpaTEvNIT6hkbZ/mGkyuUs2L+Bs/M3UzxfQQAGNutEqkLOfc/nOfoed6zVhNYzhtK9fiucbdKEyq4+ucsL37dsGTtPY9+C9vko5ODMU583VCv5fSSz/II/sn7sEPovXkkp91oo5XLOblnH8gE9mXX8AhKJBLfmrZnerC4VrzdVWyfeOfErHz1fU65eztr6X0uAlydOxUuyf94s2o2bgq5Mxtv7dzizcQ3jtu/74vPZFSjEjF/PEOLnQ2xEOK9+v8nTq5cxMDah4+SZ3DlxFPe2nWgxLK0HXbdbL85uXsfBBb8wfN3WL7qWIJGgUio1tomiiCDRol6PPrx9cA+VUknD3gPZN3cGh5bMpWaHrtkW72XEwt6BKfuOcXbzWjZPGImJpRXtxk3l1q8HqNamg1pwz9zWng1jhjJ4xXocixbH5+ljds2cTKv0wr/ckEgkefKajo2MYN3IQQxavo4SVdOy455fv8LqYf1YcPFmtp7Pf0fyMuZpAyiA08A14E56Kup/fAe8U1JYER7GAWcXnNOLeB4lJjI04CMX0+UqMqIjCKx3ysfFuDhuJyagKwhsdnSiaHp6aXaqpp94lZyMh72mlpCbTMYHuZwUUUQvm4AQFBmKtlRbHQw+Ua98VTafOZTjNV0LFmdCp/5UHtae2q6ViUtM4Parx5TJX4TQmAiNfRVKBR/DgrE0zjkT5UvYdvEYVVu1U9siSnV0aDZoBPfPnMTrwV2KVqqCiZU1Q1ZuYOvksUi1tVHI5ejq6zNq084vNqjPK6bWNjTqM4ibRw8wtkZF9GQyJFpS9ZTE12LjUgAblwIUrlCJlsP+WIfYMGYoXafP0di3duce/OqxEJVK9UWWkBUbNePc1vWUqOquLj77/fgRlAoFsRHhdJo8k8TYGI4sW4iVUz6GrNqIuW3eVUutnPLRY/YC9c8pSUlsGjeMgR7r1Nvq9ehDTFgIczu2QFSpMLa0ovmQUV9s0pMb90+foHTNOupgAFC6Rm2KuVXl/tlT1OzY9bte768kL1NG5QVBMCJNzK4+sEkQhBBRFP8Tt/sOnImLpbWJiToYAJSXySgvk/FbfDwtsvBG0BYEmhgb0+QrXMDstbXxTEmmcgaTGp/UVEwkkmyL4wAsTcyIT0rQqEUAeOr9Rt3rz4nBzTvTpnoDfnv8O/q6esQmJtDMrTZLDm6ldtnKFHZ0QaFUMHvnGlxsHTTc176Vj5Gh2FWvqrFNEATsChQiKiRYva1Y5aosuHSLj29eIZFKcSics4T0t1KnWy+OrljEsDVb0J0tI8z/PYcWz6NK+bY/xK9XW0eX5IR4Dd+GlMQEpDo6X3yfNTt25c3dW0xrWhvX2vUJee/L+5cvGLB0Nb8fP8Lk+tXRkcmo2rIt/Rat+HZdoPT0+IzNFASBaq07cOfkUeacuYquTPZDfl8JMdGY2WSewjO3sfvuRXN/NXmZMioFuAM1SVM99ee/KaPvRrJKxEgr8x+/oURCSjY1It9CTzNzfgkJwcPegcK6unxMTWVacBDdzcxz/GMy0JPRo35r+i+dxrpRs3G0tOHO66dM376CtSNm5unaNmYW6rTQ+KQEVh3bzaBmnag1tjv5bR3xCwlApqvPNY/sTeazc2jLiapFy7Dx0jlqdOiiPjYpPp7Xd27RduwkjX0lEslXLyBHBAZwbtsmvJ89w8bZmUa9+uZYuFarU3fioyKZ1bIBhubmxIaH4962o0av/nvi1qI1R1cspt/C5Ui0tFCpVBxdvhi3Zq2++JlKtbUZsnIj3o8f4PXwPvlKlGKQxzp0ZTLK1qr73duuK5NRtFJVLu/eTuN+aYY5oihybst6KjZs+s0FazlRzK0a26aMoeXw0WrL0JSkJB5ePMuQFRt+2HX/CrItTFPvIAifpopuAvdFUczdRusH8XcvTMuKe4kJzAwO5rBLfvVCcohcTks/X4655Mf2K2WRP3Hn5GWNn0VR5LcdmzizejmShHiUQDdTMwZZWGRab8hYmAYgV8iZvWsNW88eBsDU0JiZPYbRsVaTL26XKIr8snst607upbCDC14f/XAtVIID0z0wlmVeO7n54iEzd6zkzuun2JhZMqhZR8a265NJFiMrEpOTcJ3SG6diJajZsRsJsdGcWO2BS6my9Jj9fTwMgn29mdOpDTpFa6LjXA5FqA8JD48xZNlK9VRVdqQkJhIRGICZra06O+dHkJyQwOqhfQkP8KdwhUp4P36IsYUlIzZsR/aDBQG/B6Ef/FjcsyMO/2PvvMObKts//jnZSdOke0Oh7L2XgGxlI6AiW0BBQYaKoIgKKgqIggNliyBLBARkD0GQIQjKUjYtpbtp2qbZyfn9kRIILW2Z7+/15XNdXNrTnHOeps1zn+d+7vv7rVCJMtVqcvrArzgdDt5YvPKB5vFFUWT+2JGkJVyhTf/BiG43O5YsJKZi5fvSo/IwKGljWrEB4f8T/8aAIIoik1JT+MNiobtej80t8kO2kQGBgcXuB9w62d8JLqeTXEMmrQf3RiEIHNq4i8ZdfJ/sbg0I17E7HOSYTQT56+85tWHIzeZM/AViQsIpExFT6Gv+uvgPXSYOY8ZLb/LUY225kBTPmK8/om6Fqkx9waPEnmc1cyb+IhFBoZQKLdiPUGHrKTLWTEbISUFQqLCaLcgCownrORGp5t4nk4yNM5CHlEbf5FnvMcvFo2Tt+ZbIwV89FI3994b47jvc+vuEfD8Hq5ULNhtlFQrqqNUlHtv1v7eqHVuy22TC4najWbamQFVP4y5tfP42CxtHUde/9byb/zYtbjdfvzCc9KsJtF27CvXOAz6VTjff614+H7dezyWKbM7NYVX12vne051p0LHLA0ntPQgeBYT/IkRR5KDZzG5TLnJBoJNOR/USbGTezz/4OwkID5shMyZQM64yo3vcsDRMM2ZSa2hX/l60haU71zN1xTxKh0VyNT2FJlXrMP+1DwjQ3njqjZ41h7xTuwl79n0kSg2i6Mb4y7c4s1MJ7T7hnseY+PXzhPeZijzgRjASRZGrnz9H9LD5uG1mcg7/iC3pHDL/YPzrdkYdV++e73srW34q3Kokw+lkQ042GU4XddVqWmq1Repn3Y57M3KWAAAgAElEQVQDeXmMTU6ivlqNXiplt8lE74AAXgkJLf7ku8TgdLI628g/+aZSz+oDiCmBiuojblD17D/3LF3xQBEEoRSwBIgA3MA8URQ/L+ocU4WKHFq75WEM76EjAa4LI5uAQ0W81mY2s3/tD5wb/RK64BCaP9MbURTZuWQh6QnxlKpSjXYDXyCsdGyx970eVGwWC1sWLEMfEurV7il7IbOoUz3nOeys27+D01cuUCE6lp6PP4Gf6v4KzP1z9XKBRrWwgGCig8NZumMD8zb9wP5ZKygbGYPVbuONudMZ/sVklk/41Pt608mdBDw+AInSMzZBkKBv1pfE2QNwWU1IVSVrzLsdUo0eV3aaT0Bwm7NBFHGZjKSumoB/rfYEdxiFIyOBzG2zCWj6HNqaD6ak9WaOms2MTrpGa62WWLmCBYZMvs/KYk5MDKo7eMK1uN28kZzEF1HR1M/vb3nV6aRXQjyNNX7eY/eTaw47/RMSeMzPj3Zaf05brfRKiOfr6JhinQYfcef8J9c7TuB1URSrAI2BEYIgFN7Z9AgvFlMuH/d+itO/7aV2myfQhYQw4/nnmNa3J9EVKvHU6LGotVo+6tWVa+fPFns9h93G8g/f5bVmdZncvT3j2z7GwQ1rSzSWNGMmj43qxXfb16FVq9lwcBf1Xu7BlZTEe/0xfahSOo4DZ477HEvNyuRaZipbjuxlYr+XiQ2PYtuRfby18DM0KhW7/jhAmvFGQHPbzEg1vnlyQa5EkMoQ7Z4qatHt4m5XzNra7cna8y2uPE/VidthxbBrPn5VHyf3j/X41+5AQPN+KCPKo63emrCe72D8dSmiq2hpEbfNjDM3s0TjKmx14BZF3klJ5sOICD6IiOSF4GCWl45FIxFYbszyee0Ji4U5mRl8n2UgsxCJlIPmPCoplT4Tf5BMxnP6ALbk5hQ7vrthdkYGPfR6PoyIpKNOxxthYbwZGsZ7KSkct5i90u/3C7co8oPRSO/4K3S+fIkpqamkF/Je/Fu57QpBEISNFKJyeh1RFLvey43ztZKS8/8/VxCEv4FoPH4Lj7gNu5d9R0TZcgyb+bU391uzRRtmDOpN2/6DkSkUVG70GH76ANZ/9VmxVRArP5pMVkoSH23diz40jIt/HeObUcM8cgrhRYugvb90Nq1qN2bGsPHeY9NXLeCNeZ+w+t0iF3t3xKjuA+j89lDCA4Lp9lgbLiQl8Oo3HzHoyZ7s+eswsWFRDJ4xgVOXz9G3bVeyTbkgCMz9eRXv9POYzavL1iH3xA6C2w7zXtdy6Siiy0nuyZ1Yzv2GIz0eqV8A/vW7omvYA0Eo+fOStlZ7nNlpJM0fhiwoBqcxGVWZ2gS2foGUpWMJ6eQrp6AIKwuCBNOp3Whrti1wL7ctD8OOOZjPH0KQKZCo/Alq/QLqcnfmIHbJbscFtLypyVEiCPQNDOKbzAwGBwV797EOmM08qfUn3m5ndkYG0yKjfKxdnaLotWz1+VkkAg63m/M2Gza3m4t2O2uyjWS5XDTSaBgSFEzkXRZH/JZnZnnsDa+I01YrszMzsIsiH6SmYnC5+CAiguYllF4pjunpaRy3WBgVEkqwVMr6nGz6JcSzKrbMHQlR/rdSVMpoxsMahCAIZYA6wOFCvjcUGAqeDsb/dU7/tpcOLwz32QiMrVaDwPAIrv5zhrI1Pe6mDTp2Ycv8r293GcCz2ji0cR1Td/zmrU0vV6suPV4dz47F8/lw/Kwiz99wYBf7Zvl21A7v2ofIZ5uSbcpFf4cVM3aHg8xcIyG6AOSyGxNIzbhKrJw4i8lLv2LYrHeJCAxlaOdevNpjIOMXzOCzNYu5kpLI/s9XePWSBj7RncdG9WJ41z4E6wLQN36WpG9H4srNRFOxCY6MeEx/bUdT+XFyj6wjtMsbqOLqetI5W79EdDoIaNq7xGMXBIHAFgPRNeyBIzMRmS4Umc6jUSTVBuHITEQRfqOpz2014bblkXNkHdZLRwnpNh7hJpnyjI0zkPoFEjN8MYJCg/XKcTJ+/pTwXh96gkkJkQkCdlFEBG6eym03+XHvMpk4YbWyvkxZNPkppGNmM6OSrrErrhzK/GNNNH68m5LCeZuNCkrP+2x2u1mW5VlpHLyWiMPtRimR8GZYGJEyOZtzc+ibP6GG3oX2j1YqweB0ES33pKxeTrzKW2HhtPf3dNUfzR/nutgyPirAd0Oqw8FP2dlsjyuHLn/yr6xSkeVyscZoZEhwydVn/1u57SOQKIp7i/p3vwYgCIIWWAOMEUWxwLpTFMV5oijWF0WxvvYO5ID/raj9/Mk1+Ob23S4XpiwDqvynOYfNyrnfD6MNDCrsEl5yMtLx0wf4NCoBlKpclcyka8WORSqR4nL7yhc4XU5A4J3FJV8hiKLIjNWLKD+gLY1feYbyA9oxc81inzTJY9XqsG3qQnI2HOPcd9sY+4yn5LRabHl+PXGE+NQkur7zMruPe3ZfykbG0KxGfe/XUm0gMn0YUo2evDN7cWQkENxhFC5TOkFth6IuVx9BkKAILUNo13Hk/rER0XnnFdZStT+qmCreYADgX7czxn1LsWckAJ6n/8zt36Cp3IyoQV/gyssi78yNj5QjKwlbynmCnngZidLjta0uWxdd/W7kHr8zS8lYuZwQqZQ12dneY1a3m0UGAx3zS013mHLpHRDoDQbgaY4so1Bw9CZnO3+plH6BgfRPiKfdxYv0jr9Cl0sXMbpcvBgUzOrSsVhEke9Lx9JK609llYrXQsNoqdWyPMs3PVVSuuv0zMxIx+x284vJRGWlig46nfeBKEQmI0Qq5en4K/SKv8LabONdp/3O2KzUUqu9weA6Lfy0nLT+b4gzFLsmFgShgiAIPwqCcEYQhEvX/92PmwuCIMcTDJaJoliyxPX/OM169mLTnC/JzkgHPJPp5vyVQEBYBFsXzuG15vVYNf0DMpOusfzDd3E6Cp/YgqKisVvMJN9iFXhi726vFn1R9Gj+BB8s/drnAzhj9SI6NGjOyl824SjhhPr1huWs3beN3TOWEL98Dzumf8vKXzYxf3PRVU6r9mxm6sr5LBw7hZMLNjK0Uy+GzJjAzmMHAE/z280Kq4JcicNwDXvqBZBIMeyajz3pHPJgX/tKmT4cQSrDZb63LlS33YLLkoumfEN0DXuQumw8ibMHkPjNYASpjKB2LyFI5WjrdMRy/kYZgTMnHXlQDILU94lXHloGZ3b6be/X4amCi3pBEJgaGcWczAwGX01gUkoKHS9fIkYup0d+F7wAiIVkh0XRd1WxMzeXH4xGRoWEMD0qksYaP0yiSCm5nJ4BAVyw2ymvUBZYCbTSajlpvTvL1OeDgoiUyWl36SJzMzMIkt2YrK85HAxIiKe9v46lpWMZFRLK0qwsvs4svhiiMCJlci7abLhuCSjn7TYi5P8+ZdPCKMlP+S3wHh4LzVZ4/JTvuaha8IT4hcDfoigW1Ex+BOB5+s+4loifXo+fPoDabZ7g6j9nmPDk45SrXY/Ma1eRKRSUq1OPV5vVQR8cwsTVPxMeW5YcQyYL3hjN2pnTeHbcxALXliuUdBk+hi9efp5nx71DVPkKHN+1ne3fzmP892uKHdu7/UdQceCTNBzxNC1rN+Lo2VPkmHPZ+OFcqr/QGavd7pP6uR1f/rSUFW9/RvloT1VUxZiyfPnKOwyZ8TZDO/Uq9BxRFPlo+RwWvv4hzfLtOZ9+/EmkEgkfr5iLVCLhTPwF2ta94ZcrUfnjtuYS89IiBJkC0e0ic8uXZP2ykIg+N3RzHIZriG4XUr+7MxZymbMx7JiD5eIREATkwaUIajuMkKfexLD9G6IHz0aqvpFOE512uMlDQhFaBkfaZVzmbJ8eCculoygjK9zxeMorlWwpG8eePBPpThe9AgKocpO16hP+/nyenkFnnc7rrnfUbCbBYad+fiWPKIp8mp7GJ1FRXtmTOmoNGonAT/mrj3CZjASHHbso+jgAXrDZCC/B38H1+xwymzlttRIll9NGq2VKZCSJdjt780zMzcwkz+3CTyLl+ywDXXV6hod4VmNlFArkQhgjr11jviETrUTCUzo9I0NCvGmvoqisUhEjVzA9PY1RIaFoBIF9eXn8YDSy5D54Xv83UJKAoBZFcZcgCIIoivHAJEEQ9uEJEvdCU6A/cFIQhOveChNEUdx8j9f913B02yZWTX0ft8uFNS+Pmi1a03/yx3R95VVa9u7PxT+PoQsOJq5WXQRBYFK3J3j6jbe9jUK6oGCe/3Aa73Rqg0KlwmGzUePxVlRq2MS75G7TfxD60FC2LZqLISWZcrXrMm6px2+WYspO9X7+tKvXFK1aQ3RIOC1rNeTJ+s3YdHgvlUuVxV9TvJyAKIokpCVTo6yvIUqNshWJT7t92srudHApOZGm1X1r+VvVbsSgT95i4LTxLJvwKWrljYnPkXbZk6uXeWrYBYmUwNaDSfxqAKZTu9FUaIw9/QqG7V+ja9izwBN6SRBFkfQ1H6CIqkTMiCUIciXmf/aTtuZ9IgZ8hui0Y0s8g6aCRzbZbcsj9+h6Ah4f6L2GVKNHW7sDaasnEfB4f6T+IeSd2Yvlwu9EDrh9Z+ztehAAFBLJbeXNW/lp2WfKo8vlyzzp70+m08W+PBMzoqJR5E+kBpcLo8tFw1skyZ/013kn6VIKBTVUKqakpjAuLAw/iZSjZjOLDAa+iSnYdJhgtzMzI519pjw0Ek//zRmrFaPLTVM/Pw6Z85iZkc7CmFKUVijoqwjikt1Thvp8YBAHzWbeusnvI93pZGxSEsODQ+ip12Nwufg0PY3xycnMii7Z/uPMqCgmp6bS6uIFlIKAXiplemQUccqCBlT/RkoSEKyCpwTivCAIrwDXgIKuK3eIKIr7uQ8rjX8rl/46zrL3JzL8i3lUqNcAi8nEqo8ns3DcGEZ+swhdcAh12vjWsGdnZhBVrrzPsbNHDuNyOTHn5KANCOS7d8dTvk59Bn/8mTco1G/fmfrt78568p1+w3nyzcEEaP2pWrocn65exOz1y3w8Dq5jsVlZunM9u44fQq/RMqBdN5rVqE+d8lXZfvQ3Oja64YW7/Y/fqFvBU+XkdruZu2kV8zf9QGpWBo9Vq8PbfV4mPDCYE5fOUqtcZe95x86foVRoBIe/Wo3mluY+t8OCVO07KUoUGhAEcv/cimH7bGS6MPzrd0Nb68m7ej/sSf/gsuYS2PoF7/vrV7UFtmt/k3dyF6Fdx5G29kNMf25Bqg3CfPF3/Kq0QF2+oc91AloMxHRiO8Z9y3Bbc1CVrkVE3+lItfdPBfY6giDwXkQEZ6xWfsvLI1au4K2wMAJvSv34SSS4gEyXi5Cbjic47OilUgYmJDA4KJguOj2fpafR/MIF9FIpckHgvfCIAo2WWU4nA68m0DsgkHfDwsl2u/k0LY0kh4OtceWQ5r93iw0GJqWmsCj/CX1iWDhbc3PZkpuD2e3mrNXmXbGsMmbRTuvPwPw9Ma1UyieRUbS9dJHLdhtlFcVP6oEyGbOio8l2uTC73UTIZA+ly/z/CyUJCGMADTAK+ABoDQws8oxHlAi3y+VtArt24Rw7Fi8g5fJFoitUJDs9jQ4vDve6Rqm1Wvq++wFjWzT0+sHeSrladTm+awdt+j0PeEzPl06awDs/biK6QiUAnhzyElOe7cKJPbuo1aptgWvcKZVKleXXmcv5ZuNyvli3lLjIGLZOXUjVWN/AZLFZ6TDhRQL8/OnbpitpxkwGz3ib0T0G8E6/4bw86z0+GvIajavU5sCZY7y9aCYLXp8CwOSlX7H7+CFmj3qPuMhSrNu/g67vvMSg9j0ZNvNdFo6dQrUyFTh67hSjZn/IO/2GFwgGAOqy9TCd2E5A837eY3l/70UZWZGIvtPu+b0AcGanoQiLKzCJyMPisCWeQRldmehhC7BcOIzbmouuYXfkwQV/l4Ig4F/rSfzvMjDdDVVVKqrelEq6WUhQJZHQRafjw9RUPoyIQCuVkuxwMCMtnVeCQ1BIJGzMycYmigwICuIJrT8OUSRSLvdO7jezNiebJho/huZX7gQCn0VH0+7iRS7abVTMX9n1CQhgdmYGRpeLAKkUQRDooNPRQafjhMXCiGuJVFAqaazRcNZqo/0tCsAKiYQaKjUXbfYSBYTr6KVS9P8DZaa3UhL56yMA+auEUaIo5j7wUf3LObJlIxu+mknShXMERUVT74mO/LZuNU8OGkqjzt04d+QwRzZvpFUf37grV6oIKx1LVmpKoQGh64gxzBjUG7vVQrWmj7P3h+WUqlTFGwzAYwv5+DN9OLZja4kCwpWURBZtXcPV9BTqlK9KRFAI+08eRaNS07tVZ2qVq0zpsEg+HlK0KfmyXRvRafxYN3m2d5Lp3LgljUc+y9+LtrB43FQ+/XERk5Z8RZXScSx98xOa16hPdl4u8zat4vic9UQEeXLFL3V5jsspVzl9+TxPNW1L54kvkZOXS2hAEG/1HnZbsb2AZn1JWTYeZ04aqtja2FPOk/f3r4Q9PanY96GkKMLjMOyej9thQyK/MQFZLx9DGePpu5QoVPhVbXG7S/zH2ZCdzTxDJpftdsopFAwLDqGTTscboWG8n5pK20sXiZTLSXY4eD4oiKf0eoR8yZWScsFmo8Etnc1yQaC2WsV5m90bEARB8Gx637TRa3W7yXS5qKxU8n5EBB+kpmJ0u7C63QTLZD7jsIsiJ60WXg99cNIa/yZKIn9dH8/Gsn/+19nAYFEU/3jAY/tX8ufu7aya+j6DP/6MKk2aEX/6JHNfG0Gtlm3o/PIoAKo0bsrlE3/yx/bNPj6vWSnJJF+6SHTFSoVeu3TV6oxbupot87/m4Po1yJVK5IU8FTnsNmSK4vPj+04epc+U1+nXriutazfi4xXzkEllDO30LFmmbJ56dzgT+rzEi52eLfZau/88RO/WXXz7J8KjqVO+Kof+/ov2DZrTolbDAuddTLpKbFi0NxjkWc28NGsSu44dICY0gv2njzHoyR68+dxQdH7aIpf3Mn0YkYM+x3RiB9bLx5AFRBI5cBYy3f2bLOTBpVCXqUP6mg8IaN4XiUpL7l/bsKdeJLjDqPt2nwfFhuxsZmdmMCUiktpqNX9YzExMSUEAOup0fBQZSaYzlFSnk1iF3LsJfaeUkiv4w2yhx01+zi5R5JjFwtCbysvXGI1UVioJlMlwiyKzMzNYnpWFWiLBLooMCgzi5zJlyHS7sbjd9E2Ip0KWku56PVkuJzPS06mjVhe6B3Bd6O/XPBMqQUJHnT/R8v9tjaSSpIwWAcNFUdwHIAhCMzwBovi6xEcUYPO82fR950Ov+1KZ6jUZ8eU8PhvS18e1qtdb7zL5qfaotToadepKZtI11s6cxpODhxYpVRxTsTIvfvIF4DE4f6NlI87+fpBKDT3VNjmGTH5Z/h1DphXddCaKIq9+/RHfjJlE58atWH9gF4FaHb98uhRFfgNQvzbdaDKqFz0ff5Ig/6IVQwO1OlIMviWToiiSYsjwEaG7lVJhEcSnXcNoyiFAq+OtBZ8iEQQuLt2JWqkiPdtAz0kjWblnUwG9o8KQqnXoG/Us9nV3ii35PHmnd+O2mVGVqYMrN5PMrV/hdlhRx9UnvO80r47SwyLRbmel0UiCw05FpZIKSiU7cnPJdLmor9bQNzCwQPftPEMmUyIivfIUjTR+TA6P4JP0NK8hU7BMRvBtmsxEUSTF6UQmCEU2op2yWjhitlBFqeTpgABy3C6mpaUBMDktlWZ+fpyz2ThltbIgfzW80GDgUJ6ZNWXKEiWXc8Vu59Wka/hLpTwb4Aksi0qV5rP0NKalpeInkdBdH8CokJAC9xdFkSlpqezNy6OTv44Ul4Onr1zh7fBwOv+LLDHvlJIEhNzrwQA8m8GCIDxKG90lKZcvEVfb1ys4plIVzLk52Mx5Xj18h82GWqfj70P72ffjChRKFY26PEXnfD/ZkqBQqRn22Wxmv/IiFeo1xC8wkD93bqN1v0FUalC0cbwxNYU0YyadGrUEYOvvv9K/3VPeYAD5zV/V6/LLn4fp2bxokbb+7Z6i70ev07VJa8pFlfZozOf3GTSsVAPw+BasP7CLq+nJ1K9Yg5a1GhKqD6Jn8ycZ/MkEpr44lpW/bObUwp+91UOh+iCmDH6VsXOnlSggPAhyj28m+8BK/Ot2Rh4Si+n4ZgSVH5HPf44g/c/Ur5+wWBh+LZGndHo66XSsyMpiudHIqOAQYhRytuTk0jv+CitukmQQRZFLdjt1bhGNq6dWc9FmK/aep61W3ktJJsXpxCWKVFAq+SAi0scNEOCs1co/NhvflSrFF5kZTEtPQylICJFJGRoYRJRSwWmrlZZ+WqZGRuEnkSCKIkuzDCwqVZqo/L/BMgoFE8PCmZSa4g0IFZRKvokpVayR0kGzmYNmMz+VKeNd5TwX4Gm6e9xPW6A57X+Fkvy1/i4IwlxgBR5to17AHkEQ6gKIonjsAY7vX4Pb7eb3zRuQK5WcO3KIBh26eL935dQJpDI5rnzTcpMxixVT3sVld1CuVl16vfku6Vfj2fDVLIKjomnd9/kS37fqY82ZuusAf+7ajs2cR+eXRhJWukyx5ynUamwOB2abBT+VBrVKTY654HOA0ZSLXwmkuhtXqcVbvYfRfEwfqpWpQHq2AZlEyqqJM5FIJJy9epnOE4dRvUwFqsaWZ/z8TwgNCGLNe1/y2UtvMXnpVzR/tQ92p6OA33LpsEgysu+uE/ZecVlNGPd+R8Tzn3uVTrU125G6/C3MZ3/7j+0VTE9PY1xoGF31eixuN5NTU/m+VGlv6qSZn5Z3UpL5Psvgla4WBIE4hYLjFouPgN0fFgvliim7NLpcvJR4lXFhYbTX+mMWRX4yGnkx8So/l43z6Us4ZbPSSKOhqlrNnJhSuEQRCbDCaOS8zUa/4GBa3yJ74sRT+hp3S3CpqFSS7CgoPldcZdBOUy5P6/U+Ka8KSiV11Wp+y8ujw037EEkOBxtyssl0umigUdNa639X0uH/DZQkINTO/++tfQeP4QkQre/riP6lfD95ApdP/EmTbj35/v2JSGVyqjRpxoGfVrPhq5kERkQwvnUTIsqWI/XKJSLjytGgQ2f6vusxRa/UoDEV6jZgyrNdadqj1x151Gr8dTz21NN3NF4/fQAtajVkyrI5fDhoDM+17EjvKa/Ru3UXrwHNtiP7uJiUQKvajUp0zRc6PsOzLTtw5J+T6Py01K9Y3fvBHf7FJMY+M9j7lP/+wFH0+XgsX6xbwvjnhjJl8KtMHjCSRiOfZeuRfT4lqj/s3UqjKrU4eu4UZcKjCdHf/9LM22FLOIkiqrKP7LUgkeJXow2WS0f/IwHB6nZz0mplcSnPpHbOZiNSJiuQR+/gr2NuZobPsWHBwbydksz7ERHUUak5arHwbkoyr4cWXWm+MSebxmoNV+x2Wly6iNXtJkouRy0I7DWZaOd/Y4KPlslZZrN5n+KvVyGdtVmJuU0OXy4IVFAq2Z+X5yO4tyfPRA21qtBzikICuESwud18k5nJ+pxsTG43eokEg+uGHMu+PBPjk5Pp6O9PtFzOIoOBFUYjc6JjStTs9t9GSaqMivb/e0SxXDt/luM7t/Hx9v2o/PyoWL8RP30xg/lvjETjr6Pekx1JunAeh9VKhxdfplKDJnw1Ygj1O/j2BoSXiSMoMoqk82e9InYPkq9GvsMz74+m1tBuVC1TnlxLHnWGdaNt3cfIMuVw9uolVrw9E+UdbMTpNFra3NQ9DB4p67/jLzKkw42gJZVKGdNjIGO+nsL454YCIJPJmP7iGwz65E1G9RhI7XKV2fnHARZvX4dbdHMlJZHLKYn0atGRT4aNK1GX9L0iKNS4rQVXTm5LLoLi4er1Zzqd/GW1ECCRohAEslwuQmUygqRS0pxOHLeolSY5HATektLqotMjAB+lpnHZbqOcUsnroWE+T8yFkepwku5ykWGxsLJ0LKXkcg6ZzbyelMRhc55PQGio0SACX2RkMDQ4GIUgsCknh90mE2vLlEUURTbl5rAhOwez6Ka5nx/9AgMZHRLKxJRkXgsNo6ZKxRGLmS8zMph1F6KXHfx1vJmSzJ8WCwiwMKYUgVIpq7ONzMvMoL2/ZxXwTnIyn0dFeyuiBgQG8fK1RFZnG+lXjFbYfyMlqTIKBz4CokRR7JDvWdBEFMWFD3x0/xLO/n6QWi3beo3Aa7ZoTcKZU5wLCGT03O+8FoBb5n/NnhVLqf9kJ/ShoaQnxFOlcVPvdRx2G1mpKbhcLua+NoI/d29HrlDSqEt3erw67r778YYFBLPn06UcPXeKq+nJTHvhddRKNb/8eQitWkPbuo/5aAXdLbcTI5NIhALfa1O3CZs+ms+cjSv45fghnG4nFaJjWTd5NiH6QLJycxgwbRxTV87jnX4j7nlsxaEqXcMjTvfPfvwqNwPAmZNG7rGfCe325gO/P3jev7z939Pp8iVqqdVcczjQCAKfpKUxJTKSUgoF5RVKZqan8WpoGHJBIN5uZ64hk8nhnpVNutOJUxSJkMnorNPf8cZqJaWC5cYstsbFEZYfiJv4+TEuLIy12b6aUBJBYG5MDJNTU2l+4QJSAcoqFHwTE0OoTMa0tFQOm80MDQ5GJ5HyY7aRQVevsqRUaWZERfGtwcDczAwqKJXMvkujnHoaDc39/NiUk8O+cuW9HdlDg0NIsDvonxDv3QuZb8gkQiajlEKBVBDoHRDA91lZ/5sBAViMp6ro7fyvzwGr8OgQPaIE+AcFk5nkaxrz++YNDHh/qo8fbNuBQ/j5my8wZRlo1XsAi956jXJ16xNdviIOm5Ufpn1IbLUazHt9BI899QzTdx/GZjGz/osZfPnyIN5YsrrEXZXXJ9riXi8IAg0q1aBB/sYvwHOtOpX0Ry8REUEhVCoVx3fbf/KuEtxuN5+vXUL3pu0KvL5G2YrMHuXJYFYe1J5VE2d500SB/jpmvvwWrccOKDYgODKu4rLmoD6mfsAAACAASURBVAgrh0Rx52kH8KSHQru/Tfq6KeQcWYdUrcOWeAZ9s74ooysXf4H7gOXC7yiOb2Jd2ThCZDJEUWROZiYrjUbaXLxAZZWKv21WEh0Ofs7JIUIu56rdzsiQUGLkcgYmxHPWZkMmCITLZEyOKNhZXBzVVWo0Eok3GFynmkrFAoOrwOvDZHJmR8eQ63LhEEWC8j8H1/IlqLfdJEHdRKNhaGIim3Jz6KkPoGEJJFFKQmONhlSHwxsMrtNQo+G83ca6MmURgWVZWQxJvMqGMmVRSSRY3CLK/+E9hBBRFH8QBOEtAFEUnYIgFPwNP+K21G7djhVTJnFww1oad+mOIAjYzHnIbkm1SCRSBIkEl8tFlSbN6DJ8DNP69kQfGkZ2Wirl69anSpNmKNUanhrlaQTzJ4hBH3/GxA4tOf/HESrWL1jLfzPGtFRWfzKFP3ZsweVwULtVO54ZN7FEdpsPktmj3qXLxJfYemQf1WLLs+3oPvw1Wkb16F/keWlGA2UjfXVyYsOjyMgx+pTx3owzJ4OMDdNw5mQg1QbizEomoMVA/Gu3v6uxKyPKEz10PtaEk7jtZoI7jvERpXvQuI7/zOt6f6+khCAIDA0OZnW2kUnhEYgIvBceTrRcQbzdjsHlpJJShVwQ6Hz5Er0DAllQqjRSYEtuLi9evcqS0rFUUCr5w2xmU24ONrdIK62W1lotkkImw2i5HDdwxW6nzE0bv4fy8qhYxIa0/y3VPH9aLDTS+PlU+QiCwBP+/vxhttBTf3eCg4VRRqHgb5sNpyj6bBL/YTHzuJ/Wu0cwJDiYA+Y8FhkM9A0MYKEhk8H/Uin+kgSEPEEQgsl3TxMEoTGQXfQpj7gZuVLFmHnfMfe1Eaz/8lOkMjnG9DS2LpzDsM9udO4e+OlHIsuVR59f9fH4s31o0q0HSRcv4B8URFBEFMven0jFBr6buBKJhAr1GpJ04dxtA4LdamHlx+/z25pVSGRSgsIj6D5mHGnxV5je/2k+2LT7vqecbsd1H+aTl88RF1mKmnGVOHHpLNNffIOcPBPJWelMGjCSdvWaFjqh30zTanVZu287zz/Zw3ts3W87aVyldqHniqJI+vqPUcfVR9/kWQSJFEdmIqmrJiIPjkFVqvpd/UyCVIa6bJ0SvdZtM+M0piDVhfqont41VhOBMt+JVSoI6CRS1BIJDW56oo5VKIjFM2Hvys0lXCbj+Zv8MDrpdPxiyqVX/BXqqtRccdjpHRiIRpDwTWYG23JzmRYZWSAoKCQSXggKYvS1a0wID6O8Qskek4k5hkzmF9JVfztCZFISHPYCZaMJDjshsvtbClpRqaKiUsnbKcm8HhqKXiJlXXY2W3Jz+bmsrwlRVZWKpVkGFhoyaaTR0NH/4XxWHjYlCQivARuAcoIg/AaEAndWsvIISletzodb9nD179PMeW0EAz+Yzq4li5jWtyc1Hm9F/JlTnNq3hzeX+9pCyJUqYqvemKQi4spz7sgh2g18wXtMFEUu/vkHj3V/2vv1kc0b2bl0ITazmcqNm5KTkY7TYeeTvb/jHxTM6d9+ZcEboxg9bwnxf5/i4Po1d1TOerdkZGfR/s0hhAYE0bJmQ2auWYwhx0inxi25lHyV5Mx0NnzwjVcKuzjeG/AK3d8dQYohg2bV63LonxN8sfY7lr9duKK6IyMelykL/WO9vLaV8uAYdA17YDqx3RsQrIlnMP+zHxDRVGyCslSNexY5E0U3xn3LMB37GakuFGdOOtpqrTxCePfSr1ChCatO/EwzjZ93jGesVq467LySmEjfoCBeCQ4pMImnOp2UK2QPqLJShQyBHaZctsWV8648euj1PBN/hYNmM039CqZtBgUGESCVMi0tjRSnkxoqFV9Hx/joIxVHA7UGuyiyOMvAgMAgpPmuaGuzs1n2AFaxn0ZFMzM9jU6XL2N1u6miUhEhkxF60+9DFEUO5eUxNTIKtURgTFISqU4nEffo0Pb/kZJUGR0TBKEFUAmPOulZURTv3ErqEQiCQFT5iqQnXKFxl+407NiV4zu3cvnkX5StUYuTv/5C6SpF+xg36daDLfNns2nuV7Tu+zx2q4WfPv8EjU5HxfqelcOit17j7O8H6fzyaORKJZvnfkV6YgKfHzyBMr9aonqzFnQc9gq7li6iQt0GJF+6eFc/05n4C/z+zwmigsNoU6cJ0mIaej78/mua1ajPzJff4tttawjVB/H7Tcqk32xcwZBP32bvZ9/f9ho//rqNz9d+R3zqNWrGVWbqi2M5eOY47373JRVjyrD5o/lUv0VO+zpuSw4y/5ACHsYyfRjWy56WGuO+ZZhO7fKkkAQJmVu+RF2hEUGtXyjskiUm99gmrFeOE/nCN8i0QbgsuWRsmI7xtxUEPl50aqwo/Op25sjpXxhxLZH2/joSHHZWGI18mC8/MTYpCbVg4MVbLCBrqFR8m2Xw8S8QRZE9eSbKKxS00Gp9lE2VEglddXp+zTMVGhAEQaCHPsBHjuJOkQgCc6JjGJ+czGJDFlqpBIvbzUcRkT6pqPuFn0TCxPAI3g4Lx51/rF9CPBNSkr1poYWGTOSChGZ+fkgFgQ7+/mzIyfEK8/2buG1AEAShAXBVFMWU/H2DekBPIF4QhEmiKBoe2ij/RUjlctT+OtITrhBeJo4GHbrQoEMXLhw/ii44hFyDoYCl5c1o/HWMW/ojq6d/yKhG1ZHJ5TTu0p3Rc79DEASSLpzn2I6tfLLnsFfiIjgqmm/fHusNBtcpXaUax7ZvwWY2U7Vp8zv6OVwuF8NmvcvuPw/Tpk5j/km4xLj5n7D+/a+JDb99GeCGQ7+wY9oiBEFg1Z4tjH12sI8y6dCOzzJ95XyupCRSJqKghv7ibWv55IeFfPrSm9QuV4Xdxw/y5oIZrJg4k6bV6hZ4/a0owsvjyEzAYUzx6R3IO7MXZekaODITyf1zC1FDZiPV6HHlGZEoVGTtW4a6fEPUpe9esSX32CZCOr2KVKPHmngG0WEloPUQ0lZMIKB53wJBqqRIlBoCBsyk2bIRfJKeRn21hoUxpaic/2Q+OSKCwVcTeCEoyGeVU0OtpppSxUuJVxkWHIxKkPB9VhZOUaS+WsPiLAMvJ14l0eGgilLFC8FBGF0u/B5Q/f1fFgtLswwkOhxUU6kYGRJCgFRKBaWyUMXU+4kgCFx/lJkfU4o5mZm8cDUBpyjSIyCAiWHh3jFEyeRkuAo2w/0bKGqFMBdoCyAIwuPAVGAknka1eTxKG90VgiDQuu/zLHn3TYbN+gZdUDDHdm5l8YSxiKLIm+2aUr5OfZ7/cDqBEZGFXiOsdCwjvppfaKXQib27qNWyjY/eUUylKhhTUzGmpRIQFu49fmrfHlwuF/FnTjJ46u2NVwpjwZbVxKcmcXrBDRmJT1cvYtjMd9k69fYFaDKJFHu+tabNYcdP6VvNIpFIUCoUWO32Aue63W4+Wj6XlRNnUreCRzm0T5suuNxupq+cz/oPvil23BKlBn2zvqSumIC+8dNIdaHknd7j8Vhu/wqmv7ajqdQUqUZP7p9bMe75FlXZuiijKpL+4weEdHkdTYWiZT9uh8tkwO10kDT/JQS5EolKiyM9HrfNRNoP7yE6rKji6qGr1wWJ8s4qaSQKFX0CA/k0PY0P8uWprxOnUJDpcvF+agottf409/Pzpo+mR0WxxGBg9LVrhMhktPf3Z1JEODtyc0l0OOgfGEQVlZLf8vIYmJCACCwvYerGLoocMZuxiW4aqDUFNpBvZlduLpNTU3gpOIQ+AUp+M+fxRnISi0uVfuDB4Fa0Uiljw8KIkcuZmZHOS8Eh3iDoEkU25uQwshB9pH8DRYV66U2rgF7APFEU14ii+A5QvojzHlEMXYaPplTlqrzVrhlvtm3KvNdeYcD7U/n88ElmHThO2Zq1mflif9xud5HXEQShQF5bo9OTmZzke8xfR1SFikzv/wxnDuwj/WoCP3/zBTuXLEQbGMj479egvqn7sySs/GUz45970ceRbORT/Tl15TxJmWm3Pe+ZFu2ZtnI+brebTg1bMHfTKp9eg61H9iGXyqkYU6bAuVmmHHItJm8wuE6rOo04cflciceuq9eF4I6jsV49Te7RDSjCyhLRb7rH0F6uRLSbcRiuYfx1CREDZxHabTzhz0wmvM/HZG6ehctyeykvURSxJpwk5+h6zBcOI7pvFOQpoyuT8dNH6Jv1IWrwV0T0mUp432kIcjWqsnXQN++HI/MqqSsm4Hbcnal7TbWaX/JMPsf25eURIZMRq1AyKyOdN5KTcOe/5wpB4IXgYN4NjyDb5UIEfs7OYVpaGl9Fx9BNr6eiUsWgoGBeCQmhjEJRIvew4xYzT1y6yNcZGazIMtLu0kWv1WZh79mn6elMj4yiT2AgdTUaRoaE8nxQEHPuwB850W5nWVYWq4xZZDrv/Ql+mymXWmo1AxPi2ZSTw87cXIYmXiXJYaeJ5uEKFT4silohSAVBkImi6ATaAENLeN4jikEqk/HchEl0Hfka62ZNx+1yex3LJEoV3Ua+xp+7tnH28AGqNGl2R9du1KkbKz56j+M7t1Gnrcdc5eJfxzzdzTXqsPqTKeRkZlCpQWPe+2kbkXF3F9utdit+qlv07GUyFHIFtkKe7q/zVu9h9Jw8kgYjevJYtXrsP/UHTUf3plfLjlxMimfd/p0sf/vTQiuE9H5a5FIZF67F+2w6Hz//N3GRBdNLRaGOrYU6tlaB45qKj2H81WN96VetFfLAG6s0ZUR5VLG1sZw/iLZmQTE/t91K+toPcJkMqGJrYf5nP8Y9iwnr9QEy/xCUMVVx5WaireZp/hedDmS6UPzrdcZtykLdsBaq0jVJX/M+eaf33FUZ7IjgEMYkXcPkctNAo+Evq4WZ6elMiYikhVZLn4AAnkuI5xeTiTY3Vcp01OmooFSyNtvIEVseTtEjanczrbT+zDcUnym2ut2MunaND/PvCXDJZmPA1QRqqFQFdJGyXC4MLieNbplkn9D6syyrZBpViwyZLDAYaKPVYnOLzExPZ1JEBOUUSn7KzibH7aKxxo8n/P19urWLItHhYH50DKdtNjbn5GAXRdpq/TlrtWIS3Wj49wngFTWxrwD2CoKQAViA6/LX5XlUdnpf0PjrcNjsxFb13UgWBIHoCpUw3PKkXxKUGg1Dps5i3tiRBISFoVBrSL1ymZCYUoyeu7jAPsLd0rFRC+ZtWkXjKrW8q5SNB39BdLtp88ZAEAS6N23LxL7DCbwpfaVVa9j68QJ+PXGEk5fP8eXId7DZbRz+5ySlQiM5PHs1UcGF6+bIpDKGd+3L4BkTWPj6FMpHx3L4nxOMnTuNGcPG35efS+oXQHCH0aRvnIGuQbcC3xcUKkRn4TUV2Yd+QKLWEfbs+wj5omnGfcsw7JhDWI+J2JPPIdWF4raaMOxagPnsfhBFpLpQZHpPKk8QBDQVm2BNOHlXAaG+RsPX0TEsMhhYYMhEAsyKivaK1SkkEnrqA9ib5xsQwCPuNj4sHLso8viF86Q4nUTeVElz0W4jvAhJ6+v8mmeiklLpDQYAcUolPfR6NubkMOYWsxo/iQQ3hdlzOoqU0L7OWauVxQYD62LLEJ4/3rNWK30S4lFLJDwbEEA1uYoVxizWZHt0iG5tRiuMKkolh8xmngsM9JrunLVakUkkBP2HVGwfNLf9qURRnCIIwi4gEtgu3ljXS/DsJTziPhBXszbHdmyhZe8B3onVbrVw5uB+Or50d29z/Sc7UqN5C7YunIshJZnuY8ZRs0XrYmv674TRPQbS4c0X6PT2UDo1ask/Vy+xYvfPPF6jPtOHjgPgsx+/pfPEYez9bCmymz5AgiDQolZDH0OcXi1L1v08rtcLSCQCbcc9j9lmJVQfxKQBr9Clyf2T3NJUbEJYz3fI3DwLfaOe3ny+MzcTy/nDBDTtU+h55r/3Edp9gjcYAOga9SDxq364HVZcllwc6fGkrfkAeXAM0S8vQqL0I+/MXgw75+DMSUOmC8ORlYzU7+4F+mqq1cyKjmaPycS3hkwf5VIAk9uFsogNbIUg8ExAAO+lpPBxZCTBMhmX7TampaUxLDgYo8vFeZuNMJmsgLQ1QJ7bXUAjCSBQKuWao2Aw9VQv6fggNYUpEZE37DnT0+gfWPz7sDU3l+76AG8wACitUCAAi0qV8rqvPRMQwIuJV1mfk8MzAcVXQj0fFMTwxESkgkBzPz/O2mxMTUvl5eDg/021U1EUDxVyrOTJ2kcUS6Mu3dmxZCHfTRxHy979sZhy2fj1LKo+1pzo8oWXTpYEpcaPbiNfu48j9UWn0bJrxnes3bed3/85QZ7VQrmo0qyZ9JU3sM0e9R4tXuvHlt/33fWEbXc4SDakEaoPQqNSI5FIGNfrRV5/ejB5Ngv+ar977g8oDFVsLTQVHyN58Wi0NdohuhyYTmxH1/hpZPrCVzCi21mgn0CQ5H/tdnvST4IEhyGR8N4feQOHtnpr7CkXMP25DVXZOphObCeiz717PDfRaHgnJZn9eSaa+Xme1lMcDlYajcUKwo0KCeXT9DQ6Xb6ETirF7HbzYmAQCXYH7VMvUl6pJN5up5pKxfTIKJ/O4sYaP6alpZHhdHqf+O2iyIacHMaEFO5O90ZoGJMLsefsXgJNJRdigTTQXxYLpRUKbzAAT7Pe0/oAtuQWHxAynE4mpaQQLZezJMvA9LQ0FBKBUSEh9Ap4eGq6D5t/57rnvwilWs34739ky/yvWTBuNHKVise69aRVn4FcPvEnxvQ0ytao5VMddDOiKHL455/Y9+NKLLm5VGv2OE8OGor2IQhvqRRK+rTpQp82XZi6Yh4xIeE+k7MgCLSq3YhTl8/dcUAQRZGv1n/PJ6sWoFQoMVnyGNz+aSYPHIlMKkMqlaLT3NlG+J0gCAKBbV5EU7kp5nMHESRSwp5+D0V4udueo6nQmJyjGwh6Yrj3fcj9ayvKqCpIlBrUcfXJ2/w5qtLVfVYRAIrICmT9sgjTqd0EdxiNPPjO9kQKQymRMCsqmjFJ16ioVKKTSjmYl8ew4OBiBeHkgsCbYeGMDAkh0+kiQiZjmymXdZkGNpaNI1Qmwy6KTE1LZVJqCp/dFGAi5XIGBQXROyGePgEB+EmkrMk2EitX0LyQ/oXrY71be842Wn9eS7pG//zGOIAcl8uzSX5Lx3OO24W6BOW9n6Wn0cxPy7iwG8F/Rloaxy2WRwHhEQ8WbUAgz7zxNs+84dEPzEpN4ePnnsKcm014bFkWjh9Dy+f60/P1Nws8Da/5dConf91N1xGvogsJ5be1P/Bx7+5M/PHnhyZFARAXVYrvtq0rcPzY+TP0a9v1jq+3YvfPfLt1LTs/WUzFmLIkZaYx+JO3+Gj5XN7t/+BVTMETFFQx1VDFFN0seB19096krphA6sq3UZetgz3lIrZrfxPaYyJpP07GnnoRRWgZbIlncDtsSOQ3Nletl4/jV7k5ga2HFAgW90I9jYYdceXYn5eH2e1mQlh4ifLy1/GTSPFTeMbzo9HIyJAQ7/kKQeD10DBaX7yA0eXyseMcFhxCPbWGjTk52EUbg4KCaKf1L1QH6WaKsue8HbXUajrpdPS4cpnOOh02UWRjdjYKiYQNOTl003tWGZlOJ4sNBiaGF/5wdTPbc01sjYvzOTYkKIg2ly7ycUTRbmz/zTwKCP8PWTh+DDUeb0W3Ua8jCAKmLAOfDOxFTOUqNO78lPd1xrRU9qxcytQd+70rggr1GvD16GHsW72CJwYNvd0tvDTu0ub235z5Q4nH3LVJayYv+YqPl89lZPf+CAJ8ue57LiVfpdtjRdzjNny1/ntmDBtPxRiPpkxUcBjfjJ5M81f7MKHPMJ89if8vSNU6IgfMxHzuAPa0S6hiaxLcYRRZuxcgUeuJfmkRglRG+obppK1+j8BWQ5Bq9JhO7MB69aTHcvM+BoPrqCQS2t4H7R2jy+2zyQyeDWE/iYTcWwICeDa4b92/eFC8FhpGe38du0y5aCQSlseWwS66GZ6YyEpjFuEyOYfMeQwIDPKmz+4UEY9Uw7+Z/3+fqv9xDMnXSPj7NGPmLfE+hWgDg+gyYgx7V37vExCunPqLcrXrFUgP1W3XgWM7tlC0y/H9RaVQsuXjBYydO41SvT0uYW3rPsbmj+bflWdCYnoKVWN9S2LLRERjtdsw26wPNF10LwgyOX5VW3id0kSnnbx/9hH90kLv/kJIp9cw7JxL6qqJSGQKVGXrEdFnGlJ10SY0/2kaaNRsysnx0Sb6w2xGKghen+P/JFVVqgK6SVviynHYnEe2y82E8LAC8ty34wl/fxYaMhkXGub9HC4wGHjC3/9fuzqARwHh/x0WkwmNTofsluoNXVAI5lzfhih9aDip8ZcKyDynXLpIQGjxy+L7TemwSH54Zxa2fLXKezHPqVexOlt+38ug9j29x/adPEp0SDj+6vujh/8wEJ12EEWfzmNBKkPf+GksFw4TM2LJfbtXh6dmALDlp7F0eGoGW34ae9+uDfBiUDB9EuIxu9201Gq5aLfxrcHAe+ERD72buKTIBcG7IjhltfBlTi4GARoh0FOvu+0+xeuhoQy5epUB1gTqqjUct5gxulwsKlX6YQ7/ofMfDQiCICwCOgNpoijene7wv4zIuPK4HA7OHf3dR8p6/9pVVG/u689bpnpNtAGB/PTFDLoMH41coeTckcP8svw7xi1d/bCH7uVOLDVvx4Q+L9HjvVew2G20rt2YY+dPM3Hx58wYNu7/3ROa22Ym97fvMf+zD9HpQFOxMdqm/ZD5hyBRaZEHl8J87qDXUQ3AdHIXqjIlk8suCocxBdPxzTiMyShCy+Jfu4M3MFz/7/1EmpfFjqMb2Hn1FGJoeRQduvFpZAU+LeKc2wWmQxt33ffx3S4FuiEnh2l5JtoMfYVK0TFs37yR7xOu8NaKdbfdaxvrcPDX7h0kXTxHJZ0elZ+WjZFRVGrY5L6WcD8UKpbMZlS4nX3hwyBfI8kELClJQChTo5b43totD35g/2GO79rO4rfH0qrPQMLLlOXYji0kX7zAm8vXor2lwsGYlsrCN18l/tQJ1P463G4XfSZ+QJ02JUsYFbWHUPYO9hAeBMcvnGHGD4s4deUcZSNiGNV9AK3r3J2O0IrywbicThL+Po1cqSS6QqX7ElhEUWRa356Elo6l64hXUahU7FyykCNbf2by+h0oNRrOHf2dWcMGoa7xJNKwOKxXjmO5cISwZybhyjPycu8GlK5avcB4Ji88XuS9bdf+IW3tB2hrtEMRUR5r/F9YLhwmvM80nw7rB4Et6Sy5x7fgystCGVMF/zodS5zyem/IvQfCO8FhszK2RUPGLl5Jqcoe2RNRFJn72ghKV6lGx6G3L1Jwu918P3kCf2zbTJXGTUm+dAFRFBkz7zuCIu/cy/k/xeCK0X+Ioli/uNf9RwMCgCAIZYCfHwUEX66dP8veH5aRnZZG+br1adbzuSL1hrJSkrGYTESUjUNSjAQ1gCnLQFqXtmS4nNRXa2is0RSoAPlPB4T7yYSkEyye+AYafx02ixm11p+hn82+p14P8PhlL500gfd/3uXz1Pj5sIHUaduex5/pDUDqlUvsXLaE5CtXKFe9BlK5jO2L5lKqclWyUpJR63SM+HI+IdFFl5veHCRSlo7Fv15n/Kq29B4zHliJMzORkC73N110M3ln9pD1yyJ0DXsgC4zCfPYAtmunieg3o0ROcQ87IFz88w+WTprApJ+2+Rw/sXc32xbOYdTc7ziw7gf+PnwA/8Agmj/dmzLVPaq2e1ctY/+albz+7UpUfn6IosjPc77gn4O/8caS/57PR0kDwv/7PQRBEIb+H3vnHR5F1cXh925L2TSSQAIJhN5LAOnSe+8IgoiCFAERUKSJgAqCXREEqQLSq4BU6b1K7y2992yym937/ZGwZEmA0Az4zfs8PrKTmXvPzM7OmXvvOb9Dho5Sfo3m0VExrxixZjOrY2M5l2LAW6ulm6sbBXU69iUmkpKWxnv29lRwcICb12D1sufW72lDMh8FBVHbUU9BnZbp4eHk12r40cfXqosPcGt4t5fGKYRGR7J010ZCYyKpVdaftjUbos3hAuGdsCB++2gog2f8RqnqtZBSsn/1cn547y2mbj+A5iELohazGUNiAg5Ozg91soFXr1CyWg2EEBxcu5I9K5aQEBWFs7sH108dtzoEr8JF6TluIgCXDh9g/tiRTFy/DU/fgkgp2Tp3FrM+GMD41ZtyNHKxGFNIDbuBV2lb2XKn8k0IWTQsR9flaZBmEzF/zyNvl8+w805f9HcsXp2obTOIP76ePPXffv59Sok5Le2h39PjcHRxJSEqEovZbPM9xkVGgEowukltChQrQd2uPYgMCuDH/r3pOmo8tTt04fCGNbR9/0PsM/InhBC07DuIHQt+IyY05KGKxK8qL71DkFLOIV1um/L2Drk7nHmORKSl0evuHSo7ONDC2YXrxlR63b2DnUqFn1ZLMTs7FsZEU87Onq8LFMixINfjsEjJ2JAQJnl5W7VsBnl4MiAwgFWxsfTMgVTAv83BC6fo/vlw2tVuRHEfP35et4RfNixl4+ezsgjsZcfiXX9Ss10nSlWvBaT/qOt17cGhdas4v383/o1sp9eklOz8fR5bfpuJMTkZO0c9rQcMoVGvPlke1t5FirJ/1R9smPEdp3dspfPIMeT1LcSRTev5e+lCokOCcM/vg5SS0Fs30Ors2L96Oa3eex/PjNKSQgia9x3I7mW/E3T1Mr6lygCPnjISag1CrcFiSECtv591a06KeWLp7CfBFBWIsNNbncE99GUbELNnwXPtS0rJ30sW8tfcmcSEheJduCjth46geuusGlOPIn/R4nj4+LJlzi8UrVSFs3t3YTGbObF9CykJCZSuUYuhsxZYv1v/Rs2Y/lZXXmvRmlRDMo4utlNhaq0WnYMDxhTDczvXl4WX3iH8V5kbHUUDJyfGZMpA9yKHvgAAIABJREFU3p2YSDsXF/pkVGoyWiwMDApkWUwMvR9RNOdJuG5MxQI0yjT9pBGCt/K4sygm+qVzCFJK3v9xIrM+nEibmunZzsM69qbHlJHM3LiMj7v1fWwb4XHReFYonWW7h48v8dnIK+9Zvpj9q5czcv4f+JYsTcDli8weMRitnR31utnqGKWr0Qq2zfuVKdv2k8crvehOx2EfkZqcxM7f5+PfqBkLx3+MKTUFU2oqao2Gai3b2rSjUqlwzZuPpLhY67bsplbuOQmh1qAvU5+YPfPxaPFBunMwphC7dyH6Ck0wJ8ak11ywe/I8AGk2gUqTxflJKUm+eRJzYhQyzYTINEIzJ0Q+17DZNJOJmUP6EXLrBkNnLaBQmXJcOXaYeZ98iNbO3qrkm1P6f/sLX77Rjj3LF9PgjV4kxsaQmpiInYMjdbu+aXOuviVL41HAhzsXzlOxQWP2LF9CscqvWfc5t283Wnt78vkVeVh3ryyv2FL5f4dDSUm0z6TTEmYyEWQ0EWxKo8/du4wPDeGG0ch77h7Mioqk9vVrjAsJIfwhSps5RSDIrsqCWcqX8ma4FnSbFKOR1jUaWLepVCoGtenO5qN7ctRG/fKvcfyvP23qSxgSEzi/f49NJNc9ts2bTZ8vvsa3ZLoTKVi6LH2+mM7Web9a90mMiebUjq1cOXqIGu064p7fx+oM7lGxfiOunzrBjCH96PbJeKbvPsp3B05RuII/e1cutakDEXrrBqG3blC4fFZJ7oeRp+G7WFISCfr1XcJWfkbQr++CWkvyxb0Ez3ufwJlvE7H+K8yG+By1l3z1MMHzBnP3284EzXybuKNrkPL+NYs/sorkS3vRevoRs3+xtdZDWnwksQeX4VSpOVJKDLfPEL3rN2L2LsQYfivH55OZuaOGcfn4UQb//Bt+GQvupWvUpueEL9jy2y9P3F7w9avoXd34cus+2rw/jO5jJzJh7RaSE+OJCLhjs6/FYiE+KhIHZ2eav9OfgMsX+eG93uxZvoTlUyYyd9Qwek+c+tJFuz0PcjvsdBnQAPAUQgQCn0kpH15u6z+Ei0pNZKYiHjeNRkyk17Yd4OHBxdQU3gsM4D13d/JpNMzxLcjS2Bh6373L2sJFcHzKsLfiOh32QrAlIcEq6Wu0WFgYE03bHAiJPQwpJbM3rWDWn38QFBlGtVIV+LTXYGqXe7YFRJ1Gi9FkxGKx2NRrNhhT0eVwDaFdrYZ88fcafhrwNrU6diUtJZUdv8+leqt2eBex1SaSUhIRcMe6qHgPv/IViQi8C8CORXPZ8PN3FPWvQlRgADFhIVgsFowpBnSZyoEGXr2M2ZzGa81bWaelhFpNv+k/8kmjmvw86F1qd+hMdEgw2+bPpsvIsU8kT66ycyRf5wmYogIwxYai0tgTsWEqHi2H4VC8OtJoIHb/YiLWT8W7x9RHtmW4dZroHbPwaD0Ce79KmCLvEvXXj0izCbfa3bGYUog/ti49m1qjI2LjdIJmvYvayR1T1F1ca/fAoXgNorf+TErgRZwqNMZiNBC28lPcavfAuUrO1GwBgq9f4/KRg1jMadbps3sU9a9K2K2bOW7rHmf+3k69Lt2xy6Th5FW4KCWqVGPL7BlUa9mWPF7eSCnZNn82elc3ayTa2BUb2b10IfvXLMfOwYF+03984jolrwq56hCklD1ys//cpJOrK79ERVLJwQFXtZpVsbEM8vDgPY/00nzVHR1xU6n5LiKcN93y4KXVMiJvPm4YjWyJj6dLDuR771XFyhw9JIRgWv4CDAwMYEt8PAV1WnYnJlLe3p5Ork/vEKYt/42Nh3cxe/jnlClUlC1H9/LG5x+y4fNZWSqcPQmFvX0pmC8/c/9axYA23QEwpKbwzap59GjYJsv+p65dZNnuTSSnGGhRrR6tqtdDq9HSafgnzB8zknmjhoGEov5VaDckqxqsEIKCZcpx4eA+KtS7L8h34eA+CpUux9UTx9g2fzaTNu7AI0PQ7eC6VSyfMpGF40fx5vjJ6F3duHz0EFvm/EKp6rXwKmyriePg5ESFBo1IS03l0IY1OLnlYdCPv1K8SrWnukZaj4JoPQoSs3s+TpWa4ViiRvq52DmSp1E/gub0xxh2E51X0Ye2EX9sLXka9sWhsD8Aurx+eLYbRejvI3Ct0Zm0uHBUjq5WpVfvHlMwRQVguHuehFOb0hPtbp0mJfAi+d/+AZUuPWPYuVJzQhZ8kF6WVP/4exbg7uULlKxWk1vnznDr3D8UqXB/1HTl6CF8Smad/nscGp2OVEPWOX9DYiLuBXz4tHVDilT0J+z2bVKTkxi/6v7i/vl9u9k8ewaVm7bA0cmZheM+pmbbDnQdNf4/N0pQ1hByiU6urlw3ptL85g0qOjhwMjmZkRnKijsTEpgWEY5ZSpKk5GJqKvFmMy5qNdUdHLmamvrItiPS0pgeHs6OxPTM5iZO6aqN99L2y9rb81fRYuxKSCDCnMb0/AWoaG//1Dd3coqBn9cv5tBPK/DzKgBAj0ZtiE6I4/s1C1k8evpTtXuPuSO/oP2E91m9bxslfQuz7cQB6lesxjvNO9nsN+vPZUxfMZf+rbpRxNuXKX/MYvnuzUzv/zEzhvejy8djqdm2E0ZDMut+/Iaf33+XMcvWZTnv9kNHsmDsR7w5fhLFKr/GtZPHWDZlIn0+n86hdato0ruv1RkA1OnYlW3z55AUF8uoRjVBSlw88/L25GmYUlPYtWQhzd7pb1Pv4tKhg4yYtyTLG/DDeHCBWUpJ6t1zJF3eBxYLjiVrYYoNQ1+qts1+QqVG51mItLiwRzoEU3QQugKlbLZp3bxBqDAbEtA4e2BOisGcHIfKTk/8ifUkXdiDxRCP0DlgTorFcOMYThWbWJ0BgMbVC/vC/hhuncSpfPYRglJKbpw5SciN6xQoXoK8vgUJuHyB1gM/YPaI9+k96SuKVPTn4sH9LJ44hgHfzczRNctMjTYd+GlAH+p26W5VDr5y/AjBN66iUmswm9K4dOQQFes34r2vf7aGeBsSE1g4/mM+XrSCQmXTI+PbDRnO5E6tqNigMaVr1H5on68iikPIJYQQfJLPi3fc3bmUkkqwyUSIyUSMOY1JYaF8n1HlKsli5uvwcD4JCWaWb0HOpRio7PDwaQWjlLwTcJdGTk7sLVYcFTA/Opo+dwNYX7iwtVKUXqWi3TOMCDITHBWOq97Z6gzuUa9iNeZvXf3M7Ts7OvFG/VYcOH+SwMhQZg2bSNOqdWz2iYiLZvLiGRz5eZXVjr4tu9BgRC/GLviBqs1b8XqnNwDQaF15c/xkxraox81/TlHMv6pNW5UbN0Oj1bJlzi8smTyeAsWK0/er7yn/en0Ob1iDc8aif2ZcPDxo9ObbvPvV94ysW5UvtuxBo9WSZjSy4/d5zPygP4169sFoMLB59gzK1ambY2eQHbH7fif58gGcK7cClZqYPQsQdo4k3zhu1VGC9Czq1KDLuDcb9Mj2dHn9SLn9D6ridqgcnBBqLcbIuyDSRfuEWoNT+UZE/vlNet1pUwruzQajsnMk4cwWQv8YjUORKkhj1pcViykFoc4+e92QmMDP779LTGgIxSu/xubZP+PuXQAnN3eCrl6mZb9BLP9qMmG3b6LV2dHz088pV6feE1+vIhX8MSTE82nrRlSs3whDYgKXjx1GZ2dPs3f6Y++oZ+/KpTjonawhpgDn9++hmH8VqzOA9DDW+t17cWLrZsUhKDxf8mm05HPSEmwy8XVEOAW1Wt51d7eqROpVasZ6edP4xnW+jwjnpMHAhAcWLzOzOzEBD7WaEXnv67gPy5uXf1IM7ExMpJXL8xdQ83bPS0xiHMFR4TblL49dPksJn8LZHhOfnIjZbLEpr5kdVwJu0WJ0X9rXacKgdm9y9NI/9Pt2HBs+n4V/sfsP1N1njlK3QjUbp2Sn1fFW0w7M2baGWo1tlV+FEPiVrUBEwN0sDgGgQr2GNlNG9yhXtwEH166gVvvO1kS08Lu3uX3+LCVeq87+VcuoULeBNWZeo9Mxcv4ydv4+jzXfTkVrZ0/tDp2p1zX7qms5wRQVQOLZHRToNwu1Q3rosFPFZoTMH0xqbBgxf89DX6EJluQ4YvcvwbFMPTQu2Rf1gfQ3dE2eAsTsmkPs3oUAOJSsSWrQZVxrdrWK8uVp2Jeo7b9guHII3yGLEZr0h7xH00GEr/0CobUj8ew2nCo1Q+OSXggnJfACxpBrOLQfnW3fq7+ZikcBXz5auAKVSoXFYmH+6OFodDqSYmNYPnUSAH5ly9Nj7CSKVPR/qmsmhECt1TJy4XLuXjhHqsHA1ZPHmLxpF64ZRXvqdu3OhDZNmNi+KR4+BanTsdtT9fUqoziEl4Tubm6EpJlYFRtLuwcWd3VC4K5Wcyw5mQUFC9lUp3qQ20ZjtsVP/B0cuGU0PvQ4KSUR5jTsheqR7WeHk4Mj/Vp2o/dXo/jlg88o4ePHX8f38fmSX1g27nubfQMjQxk24wv2nj2OEAL/YmX44f2xlCtcItu2Jyz6iWGd3+bDTukJT53rNqNMoaKMnfcdW6b8Zt1Pb+9AXFL6FFlIdARX7t6kaIFCxCUmkM/ZlYuH9tuEjJqMqVw5foS27z9ZEletth05smENX/fuRu0OXYiLCGf7gjmUr9uAJZPGcfnIIUYttk3ms9fraTPoA9oM+uCRbVssFm6dO4MpJYVi/lXQZlT7yjxdJNNMxB1ZhdrZA8PNE+hL1UFodKh09ujLNsBiNCDNRiLWfYHKTo++fOPHLugmnd9Fyq3TePf+Dl1eP0wxIUSs+xJdXj+cq96vZSHUGuwLlkeajFZncA+HolUx3DiOJk8Bgue9j867OEJjhzHkKp5tP0aly74gz5GNa/liy26rc1WpVHT8cBQTOzTj52MXMKYYSDOZcHzMi8PjEEJQs21H9vzxO70/n8b+Vcuo1KCJ1RkA6OwdeL3zG9y5eI4qTVqw9vtp+Ddqyo1/TnHn4nn8MkYJSXGx7F2+hHemPH+tqNxGcQgvCUIIRuTNR5qEvxMTqZcpTyAiLY3QtDS2Fy2Gq1pNmpSsjovlr/h40iS87qTH394Bb62G4jo75kdH21SKklJyPDmZXg/JMTiRnMwXYWFEmNMwSkktR0cmennjnk2hkkRDMnv+OYpKqGhQqTqOGVE1E3sP4ZtV82g++l0i4mLwL1qaOcM/p1bZ+290aeY02o4bSJd6zVk8+mu0Gg2/79hAm/EDOTVrXbajhb9PH2bmB5/ZbHuzcVuGzvgCs9lsjTxqXLkWg3+cROeJQzl88TTli5Tkwu1rSClZ9Ml0+s6Zyqqvv6T+Gz1Jiotjw0/fULJqdXxKlMrS56PQ6HQMn7uEY1s2cv7AXnR29tTt0p2U5CS8ixSj56efo3fN2eJpZu5eusCsDweiVmuw1+uJCLjLWxOn8FqL+wvn5qQYwpaNQ+XghGPx6iSd/5u4g8vw6j4FjYsnaUkxqOydcG/48DoYD1YQA4g/vh73ZgPR5fUDQJsnP55tPyZ85adZz9/VC1PErSztpIZeJzXoMi41OuNQrBoJpzej9fTDZ8Dch+ZCSCkxpaZi/4Aki71ejyklBUh/SGeO3LpHYkw0+1cvJ+DKJfIVKky9rj2IDQ/j1rl/8PDxoULdhqgfuH+7jhrPz4PeZVyLerh45M02+zwpLhaf4qWo1b4z5V6vz9jm9XhjzGd88/Yb+DduhqOLC8e2/Emtdp0oWe3pdLVeZhSH8JLxrrs73e7c5pvwcFq7uBCSZuKniEh653HHNeMGHhMSQliaib7uHhxISmRuVBQ+Wi3xZguFtBoSLRa+DA+jn7tHeqHxmGgSzBYaZaPqGGA0Miw4iMle3jRycsIgJTMiIxkaFMSSQrZSv+sP7mTwT5OoXLwsaeY0Bnw/gbkjv6B5tbqo1Wo+6d6fUW+8h9lizraAzfYTB3F1cmZcz/vz2X1bdmHf2eMs37OZQW1tg87MZjN6ewfCY6PwcLn/kI2Ii0afUV/5HvY6O9rWbsS5m1e4vHArLo5OJKcY6D3tE3acPMjopWvYMON7pvXsjM7RkdrtO9Oy3/tP9R1pdDpqd+hC7Q5dbLaH3LjOriULsJgtVG3W0iqk9jjSjEZ+GtiHziPHULNtR4QQ3Llwju/69rRZZ4jZuwj7olVwb9TPui1232Jids/DtVY3ki8fQGWvJ0+9txDq+yG5UkoSTmwk/sQGzAmR6LyL41a3Fw5FqqT3HxeGLp/tgrPWsxDm5Dgwp0Gm8F4733IIjR2xexfiWrs7QqMj+fJ+ki/swfvt79F5pt8zzpWaEzxvMGmxoVkWsyfNO81nfSsjhKBig8bs/uN3G4G53X/8TsUGD5eoiQwM4KuenShTsw7l6tTj5plTTGjTGEcXV8rXrc/RTetY+dXnjFywzGbx39HZhVGLV3Hzn1MEXLrImu++4tLhA9YQ0pAb1zm4bhVjlqVX/nPx8KR45aroXVz5fPPfHN+6CaPBwIi5S3L83b5qKA7hJcNTo+GPQn7MjY7ik5Bg3NRq+nq40ybj7flCSgqnDclsLlKUUwYDuxMTWVO4CIV1OtKk5JfISI4lJ5MmocPt9KSgJk7ONHByovud20igqZMzfdzdcVCpWBUXS0cXV6uMhaMQfJQ3L61u3eR8Sgr3fsqBkaEM/mkSm6fMsc7dH754hi6ThnL2tz+tD2whxEOrmd0JD6ZS0axv5BWLluJOWJDNtst3b9J18jAEgo9+ncbqz37Cwc4eo8nEmLnf0qtJuyxvujtPHWLZuO+sxXMc7R34btAYqg/uwrdfTaHPF88W7fQodiyay6ZZP1GrfWfUGg3f9etFwx5v0W7w8Mcee/7gXjx9ClKr3f2oKb9yFXi98xscXLcKXNOzcpOvHqZAv1k2x7pU70jAzz0x3DqFR4uhJJzZguH6cRwzRRvFHV6B4dpR8nUah9bTD8ON40Ru+o68Hcdg71sOnXdxDDdP2ixGp9z5B627j002MqR/v/m6TCBq+0wCf+kNQoXKzhH7oq9ZnQGAyt4JfZl6GG4czza66Z5T6PbJeKb16kLA5YuUqFqNayePc+3kMT5Zsuah12vdD9Op26UH7Yemhw3HhoVS1L8KH/y60Lp28+esH1n06ShGzFuaxf5i/lUp5l8V76LF+PXDQeQvVgKhUnHr7Bl6TfiC/EXTZTmklEQEBuDi6YlbPi+a9n58VvyrjuIQ/iVizWb+TkwgTUJ9vR6vRwh1eWu1jH/IwvFpQzL1nJywU6lYHRdLfw9PCmcU09EIwWBPT9beuMGX+fMz0Ts90WZAYCDR5jTG5vNCJWBhdDQDAwOYX7AQIaY0Xn+g8LlKCErY2RGcKSt69b5tdHy9qc1Cbq2y/jSuUov1B3fSt6Xt23J2+Bcrw8wNf5BmTrM6DSklO08d4u1mHa37WSwWenw5gg87v02vxu0Y+ONnlHy7OSULFubi7ev45PVm9oeT+efGZVbu/YsUYyqtazQgOj4OH0/bwkD53T1JSjFgSUtDpXv2Og3ZERkYwMZfvmfShu1WSeTm7w7gs3ZNqdKkxWOjiZJiY3HL5vt28/Im5MY1PhtRmUnzTqc7QIttnrmUEoQKn4HzUdvrSQ28QFpCxP2/pxlJOL4B77e/Tw8jBRxL1sJsSCD+6FrsfcvhVqcHERumI9OM2BWqgDHkKjF/z8O9yYBs7VXr85Cv4zgsqcmYDfGELPggi+MAMKckonb2fOS55ytUmMl/7uTQ+tUEXrlEUf8qvDVxCo6PSJI8t38PEz8aY/18dPMGek/+ykb8rsW7A/hrzkwSY2OySMbfo3SN2ny95ygXDu0n7NZNgq5cokDGFKLFbGbb/NmoNZpsgw7+q7yMagX/ObYnxNPi5g32JyVxypBM+9u3WBoT81RteWo03MlYHI4xm8mvtfXpGiHw0mqIMadnQR8zJKdPO/n4UtXRkcoOjnxfwIcki4UDSUmUt7dnf1KiTRtJFgsnDQbK2d2PJ09MTiKPU9YfqbuzGwmGpBzZXrNMJYoVKMibUz7i5NULXLh9jSE/TyYqPpaOrze17nf86jmEELzbojN2Oh0LPp7K3u+XULpgUaqVrkhwZBizN6+gw4T3sdPqyO+RjxG/TiWvmzvL/t5k0+fq/dupVqpClgp0z5PTf2+natNWNvr4Lh6e1GzbkVM7tz72+FLVa3Hh4F4SY6Kt2yxmM8c2radMzfvhtY6lXyfuyCqr5IWUkrjDK9GXfh21vR5pTsNw6yR2+e9LepuTYhFaO6szuIe9b1lMUQHp/y5Ukbwdx5B89RBhy8aQ+M82PFp+YDPKyA6VnSOpd89i51uGlJsnSQ29bv2bMewmyVcP4lj68Rm9elc3mr7dj96Tp9G0d99HOgMAe70TiZl+P2aTyboAb7VNrUGlVmMxmx/ZltbOHv+GTWn+7gB6TZzCTwP7MKFtEz6qX53Tu7bxQSbRu/8HlBHCCybWbGZCaCgLChaiTEa91yCTie53blPD0ZHidk9WZrKOgyNfhoWxIiaG1xwc2RwfT91MRcNvG40EGI2UyviBnDWkUE/vhCbTTa0SgvpOTpxNMdAnjzvLYmOYEhZGZ1dXYsxmZkRF0tTJGd9MD9Fmr71O72mj+KT7ezhl5EHEJMSz4eBOtky9H+3zKIQQLBv3Hd+tXkDfb8diNJloW6sRW7+aZ1NlLSE5CQ8XN5sfYtH8BalfqTpr9m/HzcmZacvncOyXNRTKly4/PKhtd2oO6cbUP2YTEh1B/YrVOX7lLHM2rWTVZz/xdIo6OUOlUmM2p2XZbk5LQ/WQEo33SDOZuHL0EG75vJncuTWtBwzBwcmJvSuWYq93okrTltZ93er1JnzFp4QuHomdbzlS7vyDOTEKj1bDSQk4T/yR1Wg9CqIrcD+TV613Q6YZMcWG2jiFlMALaD0KWj/b+5bDvku5Jz73tPgI7LyK41ypBeErxqPLXwoEpAZcwKF4DTTOWXM2npU6Hbuy9vtpDJ7xG1qdHZUaNmH7gjn0m/6j9Z45vHEN+YsWw8Xj0SOUzFRr2ZbKjZsTcOUSDk5OWWRN/h9QHMILZldiArX1eqszAPDRamnv4spf8fEM9PTMsbS1wWJhUHAQBTRaFsREE2c2Y5KSEZYg2ru6EmIy8Vt0FB/mzWvVOvLWajhhSM7S1vXUVOrqnXBWq1lSyI/foqMYHhyMXqWig6sr3R+QxqhWqgJNq9Sh3vCe9G3ZBbPZzMw//6B8kRK4OeU8JNDBzp5xPQfZLCw/SI3Slbhw+xrXAm9TwrcwkD6NtHjHBhr612THyYO0rtHA6gwA9PaO9G7WketBdxAIZm5cSnGfwvz9zSJK+BZ+oQ6hStMWrP/xa0JuXCd/sfT558jAAI78uY6xy9c/9DhzWho/DXwHY4qBFn0HcuP0SdZ+Pw3XfF407tmHOh272kTKqB1c8O79HYabJzFF3sWhSBWSrhwkcv1UhM4ehyJV8Wgx1MaRCo0Ol9faE7nhK9ybDUaX14/kG8eJ3beYvB3HPvO52+UvRez+xbjW7YmP33wMt0+DxUxabDhOFZs+voGnoPWAIcz95EM+blCDElWqcev8P5hSDHzduxsV6jci8MolLhzcx4i5S3LcpjHFwLl9ezCmGChbu65NOOr/E7leMe1JKG/vIFcVLpzbZjwRK2JjOGMwMDW/bRbvTxERLI2JJklKCut0DPbwpOVjksZ+j47maHIyM3zSpyYCTCaOJyfzVXgYFRwc8FBr6OrmSnXH+2sCBouF1rdu8p67B13d3BDA+rg4foqMZEvRIg8tMn6PzAVypJRsP3GAaSvmcvHONWqW8cfTNQ9bju7l20Fj6NEw5wJmj2PhtrV8tuhnBrXtgY+nF8v+3kR8ciJ2Wh1uzi5Ii2TtpBk2x0xc9DNmi4XP38maW7Cs+PN/U83MPT2jig0ao9ZqOb1zKx0++JjGvfo89Jjjf/3JtvmzGbNsvfXBHxcZwfiWDZi8aVcW9dTM+QiGmyeJ2vIDeZoMwL5geVKDrxC981fyNHgHfRnbTF4pJQmnNpFwYkP6G713CVzr9rLqFj0LUloIWz4Otb0zztU6ApL4Y2uRplTydZv8yOmWZ62cFnLjOoFXL5HPrwgFipfg5Pa/uH32DB4+vtRq1wmnPDmTjL96/CgzP+iPb6kyODg7c+nwQdp/MPI/tYj8n6mY9qpTX+/E9xERBJtMFMhY9Io3m1kVF8sYL2/au7hw3JDMmJAQtELQJCPaxyQlFimxyxRauS8pkZ558lh/ZIV0OgrpdCyJjWGYZ95sE9IcVCrm+hZkQlgoP0VGIISgkFbLbwV9H+sMHkQIgW9eb26G3OXErLX4eqY/sC7dvUGjj3rTyL8mXnme/cEbGh1Jqxr1qVCkFNOWz2HullUERYXh5ebB++3fpH+rNyj/XhsOXjhFnXLpoZN3woJZuH0tm76Y/cz9Pw11OnalXJ16nN65FYvZQoehIx5bc/fiof3UatfZZhTg6pmXMrXqcPnoIZuooweJO7Qc92aDcCyZPs/vWKIGKp0D0TtmZXEIQghcqrbFpWrb7Jp6JoRQka/LZ8QfW0f0jpmAQF/6dZxfa/9QZ/C8SmjmL1bcOiIDqNmmAzXbdHiiNowpBmZ+0J9+X/9E+dfTo6yigoP4sls7SlSplkX19r+O4hBeMN5aLUM8PXnjzm3au7iiE4IVcbE00OvpkKElVN1Rz3gvL36LiqaqgwNfRYSzIyEBM1DDwZHR+fJR1M4OB5WKBLNtlIlFShItFhxUD38TK2pnx5JCfoSnmZCSR0Y4PY51B3bwZqO2VmcAUKZQMZq/VpdNR3bnKNroYZy/dZUhMz7nasAtJJIKRUox84PPKO7jh8Visck7WDRqGm98/iHVSlVAb+/IrtOH+OytoZQv8mw1kp8Ft3xeNHwz5yUkHZxdiIsMz7I9LiIiS2bug+J2xvBb2PvZvuHbFaqAKToIaU6zyk38G6ipSNI9AAAepklEQVS09rjV6YFbnZdHvDjwyiX2rV5GQlQUparXpFb7LjbS1/e4cGAfPiVKWZ0BgEcBHxp078WRjWv/7xyCEmX0gjBLycGkJNbHxfG63on5BQthpxIYpIVks5kvH5hCqmTvwM3UFAYGBeKmVrO7WHGOFS9BPSc97wYGEGs2087FlbnRUcRmipxYGReLs0pFCd3jF6fzabTP5AwA7oaH2MhpB0SE8umCHzl57TzrD+7kdmjgU7Ubl5RA208H8XbTDtxdtoc7S/fQtlZD2owfQKrJaOMMABpXqcXlBVvp2bgdLavX5czsjQxs2/2Zzu3fpk7Hruxb+QdB165Ytx3bspHIoIDHCrhp3LxJDb1ms80UfhO1swc84cjvv8aJrZv4pk939C5ulK/bgDO7tvNVz04YEhOz7JuaYsAhmwx5B2fn/2SJzMehjBBeAIFGIwOCAtGrVBTW6vg2IpxGTs585uWFAHYkJHDOYKBCpjeWY4Zk8mu1pFoko/Pmsw63e+Vx56whhT/j4+jllodzKQZa3rxBDUc9IWkm4sxmZvn6/iuhcbtOHWbTkd1oNRqGdX6biNhoWo19j671WvLlOyM4cukM9Yb3ZP3kJ6+BsHrfNmqV9eedFp3TN6hhaIe32HpsP38e3k2XellLJjo5OGa7/VXBp0Qp3hg9ga/e7IRvqTIkx8eRHB9P78nTEI8pgORSozPR237Bs+3H2OUvgTHiNpGbv8eleqf/qzDJB0kzGlkyeTzD5vxuraNQu0MXZg0bwJ5lv9PyPdvs9LK167Jk4lgiAwOsNa5NqSkcWLOCjsNHWfdLTojn+JY/iY+KoORrNShZreZ/8jorDuEFMCY0hM6urrybIZOcbLHQN+Au6+Li6OzmxiAPTz4OCeYzL28q2NtzODmZKWFhtHR2IVlastxoFRzsuWM0WvWOurvl4bTBQB61mhqOjqj/pRtz0uIZzPpwEmdvXqb64K646Z35qFtfhrTvBUC72o0oVbAI4xd8byM8lxMCwkMon43AXbnCJQiICHku9j8N8dFR7Fn2O7fOnsE9vw8N3+xtLa35PKjVvjOVm7TgyrHDHFy3igsH9/H7p6OQEjoM+4h6XbOfhnEq1xCZZiRi/VQshvQaBS41OuNcJWvRoP8nAi5fxMXD06aojhCC1zt3Z+u8WVkcgou7B52Gj+LLN9pRv1tPHF1cOLB2JQWKl6Ri/XT5jJv/nOangX0oWb0meX39+H3CaLyLFmfQj7/aJMP9F1AcwnMm2GTiltHIgkwRDo4qFf09PFgUHUNnNzc6u7mhUwmmR4RzNyNn4Mv8+XFRqRkVEoxZSpuH/JHkZBpkyjUooNVaF6j/LaSUnLh6ntY16tO+dmM61GlKveE96dmonc1+3Ru25v2fJtkIz+WEqiXLM33Fb4zu3t86PZRmTmPHyYP8NGT8Q4+7fPcm36yax4mr5ymYNz/vt3uTltWfXC8/O6JDg5naoyNla9XFw6cglw4f4NiWDVRu3IKen37+ROUuH4W9Xs/5A3sxpaYwdft+XDw8uXvxPDOGvIeLhwf+jZrxWd/KWdYRnCs1x6liM6TRgNDZI4QyA2yvdyIpLhaL2WwjXpcYE42DPquWF0Cjnn0oXvk1jvy5joSYKDqPGE2F+o1QqVRIKZk7ahi9Jk7htebpUXQdh33Ed/16sn/1Mhr26P2vnNe/hXIHPWdSpQV7IXjwUeikUmPIVLC8rYsr6woX4WTJUvzh50ddvRMV7e3x0+r4KCSY66npRXO+CQ/nRmrqC6ljcI+ItDTGhYRQ89pV6ly/xhdhocQ/kOEphMDH04uLd24AUKFISTxc3AiJtl0UDY2OxMVRn2XO/3G0rF4XjVpDn69Hc/zKOQ5fPEOPL0dQMJ83r5fPXjrg8t2bNPvkHUoVLMrSMd/wVtP2DJ81hYXb1j5R3w9j86/ptXaFSsXtc2foPGI0A7+fRVxEON+++yZpj5ATfxJSkpI4tH4170z51ppIVahsebp+PJYdix5dYlwIgcrO8bk7AyktJJzZSujSUYQsHEbMvsWYU7LOwb8Igq5fZf/q5Zzfv+exmcYPkr9YcfJ4ebN94W/WjO746Cg2z55B7Y5dH3pcobLl6fbJp7w1cSqVGjax3r9B165gTkujarNW1n01Oh3N+rzHia2bn+LsXm4Uh/Cc8dPq0ArBgeT7cg5SSlbExti85WeHEIIffXwoqNXSPzCAbnduE2cx83uhQuif8AGbU1ItFvoE3MVNrWZjkSKs9CuMUUoGBAZYazLf4/12bzLk58ncDU+fwulYpynDZ00lKSU98S3FmMonv33N2806PvH8qkat4c8vfqWEjx+DfviMD2d+SbVSFVj56Y8PbevrlXMZ2rE3H3frS7nCJehWvyUrxv/AR7OnoW/tT6OP3mb/uRMPP3eDgZXTv2D461UYXLUMc0YOITLo/qL4xcP7KVG1Gv/s3sHHi1ZSpWkLytWpx7A5i5BSsvTLCVw4uO+JH1oPkhgbg72jY5asWp8SpYkODX6mtp+W6O0zSTq3E9ea3XCt2wvDrVMEzx1E3PH1WFKzJjo+DyxmM/PHjOCbt9/gyrHDrPvha8a3akhEwN0namfAdzM5tH41E9o05scBbzO2WV2qtWhDlaYtnsquVylX61lRpoyeMyoh+MzLm5EhwbRydqGITseuxAQSLBYmPqLS2T0cVCpG5M1nU/HsRbImLhYpQQDnU1Kor3dikpc3ne/c5khyMpmT94d17E2SIZlaQ7vh7KgnPimRYgUKUapPC/yLleHszcvUr1SDz94a8lS2ODk48mmvwXzaa/DjdwZOXD3PyK7v2myrVKw0rnpnDv20gn9uXKbnlJGsmzQTimedRpo5tD8OTk58sngVDk7O7F62mGk9OzHpz504Orvg5OrG5aOHKf96fZvpIZVKRbUWrdm/ejl3zp3FmGJg+NwlNlLLT0IeL2+khLsXz9uUajy7dxdFKjx78tiTYooOIvnKIXwGziMtNpSwlZ/iULQadhWbYrh5ksRTm/F686vnLkuxd+VSwm7f4qudh6whon/NncX8MSP4ZEnOS7HmLViISRt3cP3UCeIjI+jzxde4PuXvyadEKbQ6HSe3bbbWpkgzGtm+YA7VWrV7zNGvHopDeAHU1OtZ5VeYdXFxXE1Npa2LKy2dnW2SzF4GTiUn80NkJA2dnHBRq5kdFcXimBhm+fhSzdGRa6m29XFVKhXje73PiC7vEBoTSX73vDjY2XMnLJirgbcoXsCPIvl9/zX7fT29OXXtEkt2bmTl3r8wpZloXKUWCclJ5HfPS0nfwoTHRvHjukW0bGXrEG6d+4eQm9eZun2/NTGswwcjCb15nUPrVtOk97vU7dKDLXNm4uKZ9cEXduc21du0p+2gYWz+9WfmjxnBx4tWPNV5qDUaOgz7iBlD3qPrx2PxKVGas3t38ddvMxm1eNVTtfksGEOvYe9XKT3Rbdcc3F7vhbN/+tu1c+VWxOyeT9yBpXi0fHQFuCflyMZ1tBn0gU2+QNO3+/HXbzOJDg3G3bvAI462RQhBiarVntkmIQT9pv/IjwPe5ujmDeQrVJhTO7fiU7wUdbu8PHkXzwvFIbwgCmi1DPbMubDWw5BScsNoJNFioYyd3XNzKlJKPg0LZap3fmsthL7u7nwQFMQfMelyG7U99Nke62jvQNH894XR/LwK2NQyfpCE5CR+Xr+YTUd2o1Fr6Fa/JQPavIE2G8nkJ2FQux70/34CjSvXZNMXs3Gws+PndYuxt7NDnXGdaperzO871tPygWODrl2mRNVqWapqlapRizsXzgNQt2sPgm9eY8+yJexavICGb/ZGqFRcOLCX43/9ycQN24B0qeut834lLiLc5k00OjSYVdO/5PTOrajUGqq1bEvXj8dmK6lQr2sPXDw82LFoHtGhwRSp4M+oxaueuKLb80Dt5I4pKgBzqgFj8BW8uk22+btT5VaELR31kKOfHlNqKnaOeptqbGqNBq2dHaYHXk4eJDkhnqTYWNzzF8jynT4rRSr6M2X7fk78tYm4qPQRR8nXaihhpwr/LkEmIyOCg4lMSyOPWk1IWhqf5M1HO9dHywPnhJtGI0YpaZSpfKFaCHrmycPE0FAM0pKlTsKTYjSZWHdwO+Pm/0A+Nw8mvT0MjVrF1yvncfjiGZaOfbaatO7ObrjpnVn48VfWiKZvBo7menAAq/dto3ezDhy6cJrSBbMWaPEuUozNs2dkyYC+eeYUPhlhpUIIuo/+jKrNWjN7+CA2/Pwtaq0WtUbDoB9mWd9Y1VotmgceWqkGA9Pf6kr11u35Zt8JzCYTf878kW/79uTT1ZuzXXT3b9QM/0bNHnq+2UUaPQ2WlEQSL+zGFBWIzrMg+nINUdnd/67tCqZPW8UfXwtCYDGlos5cgc2YnKWmcpY+TKnEH1lF0sW9yDQjDsWr4/b6m6j12dcmAMhftDizh79PbHgo7vkL0KR3X/IV8sPeUU++QoWzPSbVYGDp5+M5uXUzDs7OSCnp8tHYR8p+PA2Ozi42Nbn/q7xccxgKVqSUDAkKormzMzuKFmN14SLM9y3INxHhXMyoN/ssaITAJCUPLpcZpcSCJNViIeYZFktjEuJpMLIXszYu571WXSns5cPAHyaQ3z0f6yb9womr5zl17SLHLp+l/3ef0nb8QL5YMpOIuOjHN57BuVtXaFy5Vpbw1ob+NTh9/SIr9/7FtOVzGNYpq5xEMf+quHrm4/cJo4mPiiTVYGDHormcP7iP1zt1s9m3RJXXKF+3AR6+BTEkJlC88muUzlSn4NSOrTi5uuHhc3+67PhfG/EuXJROH47CyS0Prnnz0XPCFyAlFw7szfE5Pm9MMSEEzx9KatAltB6+pARcIHj+ENLiwqz73NMnSrn9Dwg1sXsX3a/BYE4jdv9S9GUbPrQPKSWRG77CGHmHvB3H4PXmVIRGR+gfY7CYsr93rx4/yoWDe+k54QvmXLjN0JnzObRhDXNHfUjvz6c99G389wmfYDQYmL77CN/sPc6QGXNZ/c0ULh05+AxX6f+XXHUIQogWQogrQojrQojRuWnLy8bZlBRMUvJOHnerVEQpe3t65XFnTVzsM7dfSKvFU61mdaa2Ui0W5kVH0c/Dg3xaLdHZaPznlGkr5lCpaGl2f/s7n3Tvzx/jvuXjbv0YPmsKdlodzarWYfam5bzx+YeUL1KSwe17EhIdQd0P3yQkOuLxHQDFC/hx4uq5LFEg+8+dYM7mlczetJw/xn6bbda0EIIPZs0HKfmkcS2GVC3NhQN7GbVoZbZTOjFhodg5ODJ12wFCb9/k23d6sGvxAhaMHcnCcR/x1qSvbB5aITduULyK7Rx2+rx2dUJuXHuw+X+NmD3zca7SmrztRuFStS1523+CU8VmxOxZaLNf4j/bSYsOxK5QRZKvHibo13eJ2Pg1QbPfAyFwrfXwEE5j6DVMUQHkbT8aXb6iaPMUwL3xe2jz5Cfp4r5sj9k6bxadR46hStMWqDUaCpUtz9Bf5qFSqylaMfuF9fjoKP7ZvZO3P5+O3jVdrr1IRX/aDx3JrsULnu4C/Z+Ta1NGQgg18AvQFAgEjgshNkopL+aWTS8TMWYz+TXaLG9GBbQaLqU++whBCMFX+Qvw1t07/BkfTwk7O/YmJlLFwZEq9g7MMEfip336KmMbD/3Nqgm2IaPvtujM+AXfE5sYz6W7N7gaeJvVn/1E9dLpAmItqtVl5K9f8cOaRUx776PH9tHQP30ed8y8bxndvT92Wh1z/1rF6esXCVqx77F1GhxdXOnz5df0/nwaSGmTyPQgwdevMvSXeeTx9mbcig0c27yRS0cOcnTzBqZuP4Cnj+1ieoFixTn+158226SUXDt5jIr1Gz323LLjWaeLpJQYrh/Hs5VtnWfnKq0JmvWO9XPK3bMkXdxNgX6zUDu6IqUk/sRG4g4sxeuNz7Er8Oh1DWPYTewLVUQ8oKlkX7gypvCb1vPIrHoacvM6XSvbqjN7+hZE5+BAXGRklusLEBcehls+LxycbMO5fUqUZM+yxY+0USF7cnOEUB24LqW8KaU0AsuB9rloz0tFJXt7zqUYiEi7/5YupeSv+ASqOzyfDNnidnYs9yvMtdRUbhuNDPX0pK5ez5DgIIZ4ej7TArZapcb0wAgjLePz3C2ruB0WhLOj3uoM7vFGg1bsO3ssR32oVCrWT55JSFQERXo1xrtrHXaePMRfU397oqI9KpXqkc4AICUx0bpgrLWzp06nbvT58huQ4Jo3azGVaq3aEnr7Jmu/n0ZiTDSx4WEsmTQOIVSUfYxw3cN4HrLRQqPNMm0jjSkI9X3nn3RxH86VW6N2TF+rEkLgWq09Oq+iWAzxj+0jXXjvepaRmzHsOhq37EOvCxQrybWTtt97+N07mFJSsr2+AF6FixAfGUHYHdvyR//s3knRSs9HYvv/jdx0CD5AQKbPgRnbFIA8Gg3vunvQ++4d1sTFsicxkeHBwYSlmWj/HBaV7+Gn07GucBGK6exYEhPD1oR4xufzovtDCpPnlC71mjN9xVzMmdYhvluzAI1aw9bj+1k65htiEuJIfkBRMiAiFA+XnPedz82DRZ9MI3z1IcLXHGbD57Mo6VvkmWzPjjK1X+fQettY+GObN1DMvwrabJRmdfYOjFq8isjAAD5qUJ1xLepjNpkYMX/pE2dxPy+EEOjL1idu/xJkRta8lBZiDyxBX66BdT9pSct20VhodMgcTCPa+1VECEHsngVYUpORZhMJp7eQcus0+vLZj45avjeItd9P48TWTRhTDNw6e4ZZHw6k2Tv9s72+kH6N2w7+kB/ee4uT27YQeOUSG37+jv2rl9P83QE5uCIKD5JrFdOEEF2B5lLKfhmf3wKqSymHPrBff6A/QH6NpuquTAUx/h/Ym5jIurg4Ei1mauv1vOHm9sSFbZ6FzBXTnoTkFANdJn9AaHQkDf1rcPbmFYKjwlj48TSqla4AQNfJwyiULz9f9RuJVqMlKDKMNuMG8Olb79Pp9YdH2zwNz1oxLfTWDab16kLVZq0oU7MON8+eYf/qZQybs4hilao8Jysfz7NOG1lSkwhfPRlzchx2PqVJDbyI2tmTfJ3Go7JLH3kmXztK7IElePf6BpU2/WFsjLhN2B+j8Rk437rfozAnxRK9czaGG8dAgq5AKdyb9EeXt7B1nwdHPBcP7Wf9T99y+9w/1iijxm+989jwzhPbNvP30oXEhYdTvEo1Wg0YjJff838peJXJacW03HQItYCJUsrmGZ/HAEgppz7smFexhOarztM6BEif4tp/7gRnblymsJcPLavXtck9iIqP5Z2vR3Pu5lUKe/tyOeAGwzv34eNu/Z57jPfzKKEZExbKnuWLCbx8Ca/CRWjQozf5Cvk9B+tyzvMIO5VSkhp0CVNUAFqPQtj5lLa53lJaiNryA6nBV9GXrY/FkEDSxT24NxmAvmz9R7ScTV9pRqTFjEqXtTjN86qcpvB4XgWHoAGuAo2BIOA48KaU8sLDjlEcwr/PsziEnHI96A4h0RFUKFLyieb+n4QXXVP53+J5OIScIKUk9e45DDdPIHQO6Ms2QJsn/3PtQ3EI/x4vfU1lKWWaEGIIsA1QA/Mf5QwU/rsU9/GjuM+/+6at8GiEENj7VcTe7/+rhOT/O7maqSyl3AJsyU0bFBQUFBTSUTKVFRQUFBQAxSEoKCgoKGSgOAQFBQUFBUBxCAoKCgoKGSgOQUFBQUEBUByCgoKCgkIGikNQUFBQUAAUh6CgoKCgkIHiEBQUFBQUAMUhKCgoKChkoDgEBQUFBQVAcQgKCgoKChkoDkFBQUFBAVAcgoKCgoJCBopDUFBQUFAAFIegoKCgoJCB4hAUFBQUFADFISgoKCgoZKA4BAUFBQUFQHEICgoKCgoZKA5BQUFBQQFQHIKCgoKCQgaKQ1BQUFBQABSHoKCgoKCQgeIQFBQUFBQAxSEoKCgoKGSQKw5BCNFVCHFBCGERQryWGzYoKCgoKNiSWyOE80AnYF8u9a+goKCg8ACa3OhUSnkJQAiRG90rKCgoKGSDkFLmXudC7AE+klKeeMQ+/YH+GR/Lkz66eJXwBCJz24gn5FW0GV5Nu19Fm+HVtPv/2WY/KWXex+30wkYIQoidgHc2fxonpdyQ03aklHOAORltnpBSvlJrDorN/x6vot2vos3watqt2Px4XphDkFI2eVFtKygoKCg8f5SwUwUFBQUFIPfCTjsKIQKBWsBmIcS2HB465wWa9aJQbP73eBXtfhVthlfTbsXmx5Cri8oKCgoKCi8PypSRgoKCggKgOAQFBQUFhQxeKYfwqkleCCFaCCGuCCGuCyFG57Y9j0MIMV8IES6EeGVyPYQQBYUQu4UQlzLujWG5bVNOEELYCyGOCSH+ybB7Um7blFOEEGohxGkhxKbctiWnCCFuCyHOCSHOCCEemvf0MiGEcBNCrBZCXM64v2u96D5fKYfAKyR5IYRQA78ALYGyQA8hRNncteqxLARa5LYRT0gaMFJKWQaoCQx+Ba4zQCrQSEpZCfAHWgghauayTTllGHApt414ChpKKf1foVyEH4GtUsrSQCX+hWv+SjkEKeUlKeWV3LYjh1QHrkspb0opjcByoH0u2/RIpJT7gOjctuNJkFKGSClPZfw7gfQfjU/uWvV4ZDqJGR+1Gf+99BEeQghfoDUwN7dt+S8jhHAB6gHzAKSURill7Ivu95VyCK8YPkBAps+BvAIPqlcZIURhoDJwNHctyRkZUy9ngHBgh5TyVbD7B2AUYMltQ54QCWwXQpzMkMN52SkKRAALMqbn5goh9C+605fOIQghdgohzmfz30v9dp0N2Sn3vfRvgK8qQggnYA3woZQyPrftyQlSSrOU0h/wBaoLIcrntk2PQgjRBgiXUp7MbVuegjpSyiqkT+EOFkLUy22DHoMGqALMklJWBpKAF74OmStqp4/iPyR5EQgUzPTZFwjOJVv+0wghtKQ7g6VSyrW5bc+TIqWMzRB6bMHLLd5YB2gnhGgF2AMuQoglUspeuWzXY5FSBmf8P1wIsY70Kd2XeS0yEAjMNGpczb/gEF66EcJ/iONACSFEESGEDugObMxlm/5ziHQN9XnAJSnld7ltT04RQuQVQrhl/NsBaAJczl2rHo2UcoyU0ldKWZj0+/nvV8EZCCH0Qgjne/8GmvFyO16klKFAgBCiVMamxsDFF93vK+UQnkHy4l9HSpkGDAG2kb7QuVJKeSF3rXo0QohlwGGglBAiUAjRN7dtygF1gLeARhkhhWcy3mBfdvIDu4UQZ0l/edghpXxlwjhfMbyAA0KIf4BjwGYp5dZctiknDAWWZtwj/sCUF92hIl2hoKCgoAC8YiMEBQUFBYUXh+IQFBQUFBQAxSEoKCgoKGSgOAQFBQUFBUBxCAoKCgoKGSgOQeE/hRBiXIZ66NmMENQaz7n9BtmpfD5s+3Por0NmsT4hxJ5XQelX4dXkpctUVlB4WjLkgdsAVaSUqUIIT0CXy2Y9Kx2ATfwLSUkKCsoIQeG/RH4gUkqZCiCljLwnWSCEqCqE2JshbrZNCJE/Y/seIcQPQohDGZpZ1TO2V8/Ydjrj/6Ue2usDZGTGzhdCHM84vn3G9j5CiLVCiK1CiGtCiOmZjukrhLiaYc9vQogZQojaQDvg64zRTrGM3btm1FK4KoSo+zwunIICKA5B4b/FdqBgxoNyphCiPli1jn4GukgpqwLzgS8zHaeXUtYG3s/4G6TLSNTLEBabwJNliY4jXdahGtCQ9Af6PaVKf+ANoALwhkgv8FMA+JT0eg5NgdIAUspDpMudfJyh438jow2NlLI68CH8r727Z40qiMI4/n8wgRRREZJWA2IEtTDYBcXOXiKk1C+QLtYGUoh+AivBSkOK2IYorkIEJQGJMWAVUgQ7ZdHGIhyLORcuwd1wIbKy+/yqvS8znGbv3Jm5nMODBnGZdeUlI+sbEfFL0jXgBuVBvKRSqW4DuAKsldRHnAC+1Zo+z/bvJJ3KHEMngWeSLlCy1A43COUWJQncfB6PAGfz9+uIaANI2gHOAWPA24j4nueXgcku/VcJ/DaBiQZxmXXlAcH6SkQcAC2gJekzcJfy4PwSEZ1KEB7O3xLAIvAmIm5nnYVWgzAEzBwu5pQb3L9rpw4o/8G/pUrvpuqjam92LLxkZH1D0sV8o69cBfaAr8B4bjojaVjS5dp9s3n+OtDON/jTwH5ev9cwlFVgLjOxImnqiPs/AjclnZE0BMzUrv2kzFbM/jkPCNZPRinLPDuZIfISsJAlTO8AjzLj5Sdgutbuh6T3wBOgyvD6GHgoaZ2yxNTEImWJaUvSdh53FBH7lD2KD8AryhdF7bz8Arifm9PnO3Rhdiyc7dQGWhammY+IjR7HMZp7IEPACvA0IlZ6GZMNHs8QzP4PCyr1lbeBXeBlj+OxAeQZgpmZAZ4hmJlZ8oBgZmaABwQzM0seEMzMDPCAYGZm6Q97eHVwPhMgnAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ax = draw_border(rf, X, Y, incx=1, incy=1, figsize=(6,4), border=False)\n", - "ax.set_title(\"Random Forest\");" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/piecewise_classification.ipynb b/_doc/notebooks/sklearn/piecewise_classification.ipynb deleted file mode 100644 index a53567b7..00000000 --- a/_doc/notebooks/sklearn/piecewise_classification.ipynb +++ /dev/null @@ -1,688 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Piecewise classification with scikit-learn predictors\n", - "\n", - "Piecewise regression is easier to understand but the concept can be extended to classification. That's what this notebook explores." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Iris dataset and first logistic regression" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn import datasets\n", - "from sklearn.model_selection import train_test_split\n", - "iris = datasets.load_iris()\n", - "X = iris.data[:, :2] # we only take the first two features.\n", - "Y = iris.target\n", - "X_train, X_test, y_train, y_test = train_test_split(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAADPCAYAAAAzmacdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAApT0lEQVR4nO3dd3gU1frA8e+7m94DhACB0EKvSpMiSJFeRUVFbFfB+7ty7b33Xi9WLFgQC4oigqJiAOm9So2hhGYKpLfd8/tjJzGBlE2ym93sns/z7MPuzM7Mu0vePWfOnDlHlFJomub5TK4OQNO02qGTXdO8hE52TfMSOtk1zUvoZNc0L6GTXdO8hE52NyEi74jIw9XYLlZEMkXE7Iy43EV1vx/tH6Kvs1ePiCQCNyqlfq0LxxWRi4BlQDaggGPAc0qpjxwcouamdMnuXY4ppUKAMOB2YLaItHP0QUTEx9H71GpOJ7sDiYi/iLwmIseMx2si4l9i/T0ictxYd6OIKBGJM9bNEZGnjOcNRGSRiJwWkVQRWSkiJhH5FIgFfjCq7veISAtjPz7GtvVE5CPjGGki8t3ZcSqbxUAq0NXYziQi94nIQRFJEZGvRKReidivEZFDxrqHRSRRRIYZ6x4Tkfki8pmIpAPXiUi4iHxgfN4kEXmq6FRDROJEZLmInBGRZBH50lguIvKqiJwSkXQR2SEinc/+fozXN4nIAeP7WSgiTUqsUyJys4jsN77DN0VEHPO/XHfpZHesB4ELgO5AN6A38BCAiIwE7gCGAXHARRXs507gKBAFRAMPYMvRacBhYJxSKkQp9UIZ234KBAGdgIbAq2e/wUjs8UAD4ICxeCYwERgENAHSgDeN93cE3gKmAo2BcCDmrN1OAOYDEcBcYA5QaHzW84DhwI3Ge58ElgKRQFPgf8by4cBAoK1xjMuBlDLiHwI8a6xvDBwCvjjrbWOBXth+zC4HRpy9H6+jlNKPajyARGDYWcsOAqNLvB4BJBrPPwSeLbEuDtu5c5zxeg7wlPH8CeD7onUVHRdoYezHB9sfvhWILGO7i4x1p4E8wALcVmL9n8DQEq8bAwXGfh8B5pVYFwTkF8UBPAasKLE+2jhGYIllVwK/G88/Ad4Dmp4V4xBgH7YfTNNZ60p+Px8AL5RYF2LE2sJ4rYABJdZ/Bdzn6r8ZVz90ye5YTbCVMkUOGcuK1h0psa7k87O9iK3EXSoiCSJyn53HbwakKqXSyll/TCkVge2c/Q1syVWkObDAqPaexpb8FmyJWyp2pVQ255a4JT9Pc8AXOF5if+9iq2kA3AMIsF5EdonIDcZ+lwGzsNUoTonIeyISVsbnKPU9K6UyjXhK1jZOlHieje0HwavpZHesY9j+0IvEGssAjmOrshZpVt5OlFIZSqk7lVKtgPHAHSIytGh1Bcc/AtQTkYiKglRK5QH3Al1EZGKJbUcppSJKPAKUUklnxy4igUD9s3d7Vhx5QIMS+wpTSnUyjn9CKXWTUqoJMAN4q6jtQin1hlKqB9ARW3X+7jI+QqnvWUSCjXiSKvrc3k4ne834ikhA0QOYBzwkIlEi0gBb9fcz471fAdeLSAcRCQLKvWYsImONRiwBzmArYa3G6pNAq7K2U0odB5ZgS55IEfEVkYHlvDcfeNmIEeAd4GkRaW7EECUiE4x184FxItJPRPywVdvLbfAy4lgKvCwiYUYbQWsRGWTs+zIRKfrxSMP2Q2EVkV4i0kdEfIEsILfE5y5pHrbvsrvYGkCfAdYppRLLi0nTyV5Ti4GcEo8AYCOwHdgBbAaeAlBKLcFWdf4dWxV9rbGPvDL22wb4FcgE1gBvKaV+N9Y9i+0H5bSI3FXGttOwnb/uAU4Bt1UQ/4dArIiMA14HFmI7dcgw4utjxL4LWwPeF9hK+Uxj32XFXuQawA/YjS2h52NrBwBbw9k6Eck0jnmrUioB2+nFbOP9h7BVzV88e8fK1sfgYeAbI57WwBUVxKKhO9W4jIh0AHYC/kqpQlfHUxUiEoKtoa+NUuovF4ej2UmX7LVIRCaJ7Vp8JPA88ENdSXQRGSciQcb58UvYai6Jro1Kqwqd7LVrBrbq70Fs5+H/dm04VTIBW8PYMWynGVcoXS2sU3Q1XtO8hC7ZNc1L6GTXNC/hlLuTQiPqqagmTSt/o+bxTCf3uzoEr3IwNTdZKRVV1jqnJHtUk6Y8PXexM3at1THBL17s6hC8yoR5ew6Vt05X4zWn0YnuXnSya5qX0MmuOYUu1d2PTnZN8xI62TWH06W6e9LJrmleQie75lC6VHdfOtk1h9GJ7t50smual9DJrmleQie75hC6Cu/+dLJrNaYTvW7Qya5pXkInu6Z5CZ3sWo3oKnzdoZNdqzad6HWLTnatWnSi1z062TXNS+hk1zQv4ZQx6DTPpavvdZcu2TW76USv23Sya5qX0MmuaV5CJ7tmF12Fr/t0smuV0onuGXSy28lqsXBo326OJR5Ez3yr1UX60psddqxdwewn78XXz4+83BzCIhvwn6ffIKZlnKtD0zS76WSvRPLxJGY9MJNbnp1Flz4XYrVa+f3bz3nhv9fy8rfx+Pj6ujpEp9JVeM+hq/GVWLHoa/qNnECXPhcCYDKZGHrp1dSLimb7muUujs65dKJ7Fp3slTiTkkzDmNhzljds2pwzKX+7IKLaoRPd8+hkr0T783qz/rfFWK3W4mW52VlsWx1Pu/N6uzAyTasaneyV6DVkFCLCq3feyLZVv7Pu1x95avrl9BoykiYtWrs6PE2zm26gq4SPry/3zvqMX+d/wsI5b+Hr58/wK65nwOhLXB2a0+gqvGfSyW4H/8BAxkybwZhpM1wditPpRPdcuhqvaV5CJ7umeQmd7FoxXYX3bDrZNUAnujfQDXRlsFqt5OVkExAUjIi4Ohyn0knuPXSyl6CUYtEn77Jk7mxyMjMIqx/F5Bm3M3Dspa4OTdNqTCd7CYs+eZd1v/zAg+98QZOWcRzYsYVZD87EPyCQPsPGuDo8TasRfc5usFqtLJk7m38/8RoxrdogIrTpej7X3fskP37yrqvDcwpdhfcuOtkNeTnZ5GRm0OSse9RbdezKiaOJrgnKiXSiex+d7IaAoGDC6kdxYMeWUst3rltJ8zYdXRSVpjmOTnaDiDB5xu3MenAmW/5YxpnUZFYtWcBnrzzJxBv/6+rwNK3GdANdCQPHXop/QCAL3nuNE0cTad6mI7c8M4tOvfqRlLCfzSt/w8/fn95DRxEZ1Yj83BzWL/uJ5ONHad2pG516D8Bkcv/fT12F907ijMETW3Xsqp6eu9jh+3WV+e+8wm/ffEafYWPIy8lmY/zPXHLTbSyZ+z4xrdsSG9eebavjCQmP5O7X5+AfGOjqkMs15cxLACx672cXR6I5w4R5ezYppXqWtU6X7JXYv30zyxd+yfNf/UJYZH0ARu27kcdvnMylN9/JqKv+BcCUW+7ljfv+j0WfvMPkGbe7MmRNK5P71zldbP1vPzJ44pXFiQ4QERWNpbCQiy+bVrzMZDYz9tqbWffrIleEWakpZ14qLtU176STvRJKKcR0dpdZhW1J6eUigjsOKV9Wko+dPsIFkWiupJO9Er2Hjub3BV+QcTqteFl6WgpmH1+Wfft58TKr1cqPn75H76GjXBFmuXRprhXR5+yVaNutJ/1GTuDey4fRb+QEcrKy2LBsMRNvnMnCOW+yY+1ymhkNdP4BgUx/5EVXh6xpZao02UXEH5gMtCj5fqXUE84Lq3J/blrLdx/8jyMH9tCoWQvGXHMzPQY555LSFTPvo9+ICWxe8QuRDRvx7Lyfqd+oCWGR9fl29uvs2rCamFZtuPK2BwgICnZKDNVR3VI932Jl/u4UVh5Kp8Ci6B0TwpTODQgP0GVDXWbP/973wBlgE5Dn3HDss2vDav53/3+YettDdOzVj4RdW/n4+YfJy82m34gJTjlmbNsOxLbtUPz6l68/Ycnc97n2nieIjWvP1lW/89KtN3DvrE9p1bGrU2Kwl71JPnb6iHMuwSmleP6PJMwm4e5+Mfj5CIv3pfHgb4d5eUQL/H30mV9dZU+yN1VKjXR6JFWwYPbrXHPXo/QbORGA+tGNCQmP5P2n7qXv8PFOvwe9sKCABbNf5/635tIsrj0AQydPxVJYwMKP3uS2F11340xNz9H3p+ZyND2ft8a0wmw0TE7v2Ygn4o/wx+F0hraKcECUmivY8zO9WkS6OD2SKkjcu4suFwwqtaz9+X1IPp5EQV6u049/JjUZoDjRi3TpO4hDe3c5/fjOdDA1ly7RQcWJXqR7o2AS0tyiYqdVU7nJLiI7RGQ7MADYLCJ7RWR7ieUu0zCmGYl7dpRalvTXfoLDwvHx83f68UPDI8jPyyPl5PFSyxP/3EFUGVNF1ZbqlOpjp48odRmuUYgfCam550xLfTAtl+hgz57E0tNVVLKPBcYBo4A4YLjxumi5y4yZNp2PnnuIxD07ATh+KIF3Hr2DUVNvqpW+6X4BgQy79Grefvg2/j52BKUU+7Zt5PPXn2b01Tc5/fhlcdQltq7RQVgVfLY9mewCCwUWxU8H0th2IouLWoY75Biaa5R7zq6UOgQgIp8qpaaVXCcinwLTytywFvQfNYnc7GxevuNf5GRl4ePry+ipNzL2mtqbxOGyf9/FN+++woNTR2O1WAmJiOCKmffRvf/gWouhiCOvpZtNwiMXNeO9jSe4bsEBANrUD+Sxwc0I8zc77Dhn++NQOvtTczivUQjdG7vPFQ1PUumNMCKyWSl1fonXZmCHUqrcm7xr60YYq8VCVkY6QSGhmH1cc1mosKCAnKxMgsPCXXbHmyOSvawbY3ILrViVIsjXeUn+d1Y+9yw9hEVBy0h/9qbkEhlg5uXhLQny0y3/VVXRjTAVnbPfLyIZQFcRSTceGcApbJfjXM5kNhMaEemyRAfbXHChEZEuSXRH9ncvq/tsgI/JqYkO8MTyo3RvHMxHE+N4fHAsH0+Mo36gL8/9cdSpx/VG5f6FKqWeVUqFAi8qpcKMR6hSqr5S6v5ajFErgyd0g80ttHIsI5/rz2tY3Prv72Pi+vMasj/V+VdVvE25RaKIFFXdvy7xvJhSarPTotIq5AmJDpBfaMWqOKf2EOZvxmJ1wzuK6riK6r8vG/8GAD2Bbdhu8+oKbAT6Ojc0rSzOTPSyetQ5U1iAD2H+ZlYcSmdIiZb+pQdPExWku+Y6WkWt8YMBRORb4Hyl1A7jdWfgsVqJTvN413aL4p0NJ9ifkkO7+oFsOp7J+qRMHhnU1NWheRx7fj7bFSU6gFJqp4h0qGgDV7FaLKz88RvW/rIIZbXSa8goBo2/HB9fz+gM4o7Vd4tVEZ94hlWHM7Aq6NsslKGtwvE5ZwyAsg1pFUFMmD8fbz3FthNZRIf48cqIlsSE+ZX5/v0pOSzen8aprALi6gUyrl0kDYI84//X2ey59DYPyAI+MxZNBUKUUleWt40rxqBTSvHWQ7dyKukwo6+2da75ad6HBIeFc/tLs+v0nG21neT2VuWVUry65jgnsgqY0C4SkwiL9qUS7Gfm/gExDv/O1x3N4K0NJ7ikQ31aRPiz6VgmKw5n8NywWBqFlP3j4G1qOgbd9cC/gVuN1yuAtx0Um8Mc3LWVfds38eL83/DzDwDgvAuHcv+Vo9i9YTWdevd3cYTV446leZH9qbnsSc5h1piW+JltF3Z6Ngnh9p/+YsfJbLo2clznGKtSfLTlFHf1a0KXaNt+uzUKJtDXxNe7UpjZp7HDjuWpKr04rJTKVUq9qpSaZDxeVUq53XWRPzeupeegi4sTHcDH149eQ0by56a1LozMc+08mU3vpiHFiQ7gaxb6Ngtl59/ZDj1WWk4h2QVWOjcMKrV8QGwYO0859lieqqJONV8Z/+4wboAp9ai9EO0TVq8+fx8/tyNG8rGjhJYYLLIucedSHSA8wMyprIJzlp/KKiDc37Gt6YG+JvItiqwC67nH0oNq2KWikr2o2l5048vZD7fSe+ho9m/fzLpff0QphVKKLSt/Y9vqePqNdM6AFs7i6pFg7R2Msm+zUPYm57DqcHrxd74xKZPNx7O4sHmYQ2MK8jXTt1koszedJK/QlvAp2QV8su1vRraOcOixPFVFl96K7t8cBqxQSu2vnZCqJzA4hLte+5A3H/wvX856HpPJTEFBPre/9B6hEZGuDs9u7l6alxTka+ahgU15eXUSc7aeQhCUUtw3IKbKN80kpOaw81QOvWJCaBxadmPb9B7R/G/dcW74bj8Rgb6kZhcwoX19Brd07A+Lp7Kn/hMLvCsiLbANTbUCWKmU2urEuKqldafuvPRtPIf3/4myWmnerlOdmI6pLvM1C4G+ZlJzChEgzN+En9n+VvjMfAu3LT1ERq6FBhGBzN2VQlSgD6+PiMVsLv2DUWi1ciQ9jzwL5BRYKVSQkJZbp6+01Ca7p38SkUDgJuAuIEYpVe5Pt6dN/1Rb3K1Ur+wSXF6hlX8vSuCqrg0Y0jIcAVYezuCDzSd5c0wrQvwqL91n/JhAu5ZRfP34GOqHB3L4ZDoj716Ays7lxeEtSr33tiV/0SDIl9v7NibYz8zxjHweXnaYPk1DualHdA0+qeeo1l1vRUTkIRFZAizFNojFXYDu3uRg7pbo9lhzJINWkf4MaxWBSQQRYWDzMDo3DGLlofRKt8/Jt5CWY+Gj+4ZTP9w2P15sdBhv3zGUEzmWUu89nVvI0fR8ZvZpRLDxI9I41I+bekSz6nDlx9Lsq8ZfAhQCPwLLgTVKKT0YmQPVxUQHSM0ppEkZ59cxYX6k5hRWuv3pPAtWpYiNDi21vF1sJPmFpVvdk7MK8DXLOS3vMWF+5Fn0TTP2sOc6+/nYGunWAxcDO0TkD2cHprm/9lGBbDiWRWGJO9QsVsX6o5l0iKp8JtuGQWYCfM0s3XC41PIFKw4QeNYpQGy4P0op9ibnlFq+5kgGkQHOvefeU9gzSURn4EJgELa7344AK50cl9dw51K9srvgOjQIpFm4H0/EH2Fih3qYRPhhbyrhAWa629F7zmw2c15UAFMe/5FnbupPr/bR/LrxMM98toFL2kWUeq+fj4mhrSJ4YvkRruvekOYR/mxIyuT7PancM6BJTT+qV7CnGv8cthb4N4ANSqlze1G4uZNHEvns1Sf5O+kIDZs1Z+rtD9GwSSy7N65h4+8/YTKZ6HPxONp260F6WgrLF37NySOJNG/bgQFjJhMYHOKUuMpL9INJp/nk5z85dTqbgd2aMnlgHH5OHjGmOkRsE0n8dCCNr3amYAX6NQ1hdFtbP3l73Nk/ho+3nuLRD1ZjBczA1E71GNuu3jnvvalHNA2Dffh6Vwq5hVYiA808OLAp3arQLddiVaw9msH2k9mE+JkZ3DKMpmHOG5E4MS2X+MR0ci1WejQOoUeTYLu/G0ezuzW+KtypNX7HupW8cseNdOs/mE69+rFr/Sq2rY6ne//BJO7dxeBJV2ItLOS3b+dy/sBhbFj2E937D6Zlx67sWr+KQ3t38cgH84mMauSwmCoqzRetSeBfz//KNSM60Dw6lK/j92MSYfELEwl0cK80e9XmPe7OVGBRPL3iKFkFFgY2DyM1p5BfE84wo2c0A2Idf61+6YHTzN3xN8NbRxDiZ+b3v87QJMyPO/s2OWdcfkepqDXe45P91rH9GHLJVUy44ZbiZR88fT/rly3h1e9WEBRq+08+k5rMHRMHMubq6Vwy/bbi9857/RkyzqQ5dMLG8pK9oNBCqys/4otHRtO/i61qarUqxj+wkBG9mjNzcneHxVAVnpLsvxw8TXxiOk8MblacbAmpuTwaf4T3x7d26NRWGXkWZvxwkJdHtCjuJFRgsXLPL4eY0rkBFzQNrWQP1VOjS291mdVqJeVEEhdffm2p5YEhIVw04fLiRAcIr9eAXoNH4B9YumFp2GXT2LLyN4fEU1k32C37/6Z+WEBxogOYTMKM8V1YtPYvh8TgzTYey2RE64hSpWqregE0DvU7p+GvprafzKJjVGCp3oC+ZhPDWkWwISnToceyl0cnu8lkwmQ2k5t99pcrZKWfOef9WelnkLN63OVkZuIXUHnLcmXsaYgL9PchM6fgnNlY0rPyCfTTN3vUlJ/ZRM5Zl/SUUuQUWPBz8ISV/mYT2WfdtAO2nn/+Vehh6EgV3fX2g4gsLO9Rm0HWREyrNsx7/VmsVtsXb7VYSErYx+ol35GU8E93/4Td29i5fhVJfx0oTrbCggLmv/sy/UdNrFEM9ra4d25Zn9BAPz5Y/M98cacz83jpi01Mvbh9BVs6l703xri7QS3C+G5PKul5//QBWHkogwKLom39gAq2rLpujYI4lpHP5mP/FDQp2QUsPpDGoBaumVmnouLCfa8JVcFdr83h4WljmTmqN+2692LPlvWICJfPvI9Hr59Ehx59sBZa2Ld9Izc88Cy/fPUx91w2jJYdurBn01qat+vIxH/NrJVYRYTPHxnFuPu/Z87iXcRGh/Hb5iNMG96eSwfF1UoMJVmttjvZzGbPqAD2aBzM3thQ/m9RAt0bBZOaU8iJrAIeGtjU4S3kvmYT9w6I4bk/kogN9yfUz8zWE1lc3qk+7RrUvKZYHR7fQAe2c/f4775k//aNtDuvNwPHXYbJZCLzTBrbVsdjNvvQtd9FBIWE2jpubFnPiSOJtGjXiRbtO9fo2FW9jp5fYOHhD1bz3g87ycotoHubKF75z0AGdImpURxVkXImh7veXsnX8fsptFgZ0bs5Y+tJuXej1TV/ZxWw42Q2If4mzmsUgq8Tq9V5hVY2H88it9BKt0bB1At07ulYjVrjRaQN8CzQEduw0gAopVqVt427JburVKfDzI0v/MKp0zm8PnMQzRqGMn/5fm59YznLXp1Mp5bOH4TDalUMuOUreraP5pFr+xDo58M7C7fz0twNvDY8trhfuuaeatoa/xG2MecKgcHAJ/wz+KRWjuok+vGULL774yBzHxpJy8bh+JhNXDGkHbde2p1ZC7Y6PsgyxG89SnZeAa/PHESD8ECCA325c0oPLurZnPhEfcNJXWZPsgcqpX7DVgs4pJR6DBjj3LDqtup2gf3r+BnaNo0kNKh0dblPh0bsO3LaAZFVbt/RNPp0aHzOPeIXdGzE8TKGoNLqDnuSPU9ETMB+EblFRCYBzuk/6uXaNI1g75E00jJKj+e5fFsSnWuhCg+2KwIrtydhPWv6pfitR4n1kHN2b2VPst8KBAH/BXpgm5f92gq38GI1ubElKiKIacM7MPnhRWzed4rU9Fze/m4b7/2wo9Z6z/Xv3ISYBsFc99xSDiSd5lhyJg/OXsWuv1J45vFJtRKD5hyVNg0qpTYAGKX7f5VSGU6Pqo5x5J1rL//fhbzy1WamPL6Yv0/nMLBbDD+9OIm4mAg+W/on36w4QEyDYB677gIaRARVvsMqEhEWPD2ORz9cy6D/fk1uvoVx/Vrx+2uXEhJYdsmemlPIuqMZKKB3TIieocVN2dMa3xNbI11RZ94zwA1KqU3lbeNNrfG1cYtqfn4h3W+cS2p6HpcMjGPf0TTW7T7Be3cP5cqhtdvZ5ux+8ssSzvD+5pP0ignBJML6pAyu7hrFqDZ1Z5BPT1LTGWE+BP5PKbUSQEQGYEv+ro4LUavIv1/7nUB/X/76cmrxnW+f/7qHW16LZ8rgti4bVDMlu4APtpzkheHNi28TPZlZnzt/PkT3RsEec13eU9jzV2IpSnQApdQf2C7Deb3aGnjit02HeeDqXqVucb1yaDsC/Mx8vyqhVmIoMnb6iOLus2uOZtAnJrTU/eDRIX4MbBHGqiP6bM/d2FOyLxeRd4F5gAKmAPEicj6AUmqzE+NzW7U5woxS4OtzbmcWs8lEfhk3W9QWq5UyZ2v1Ec5pzddcz56SvRvQFngU27zsHYDzgJfxkP7zVVXbQ0n169SYl7/cRKHln8T+af0h0rPzmDyw9vvMg62E79M0hNVHMkjO/uf6++mcQlYcSueCZs65X1urPnta4wfXRiBa+WbfPYxO131Kp2s/YerF7dl35DTf/XGQZ6f3x8fBt2ZWRXSIH5d1qs8dPyVyUYswTCLEH0pndJtIYsOdN9STVj32DDgZDTwDNFFKjRKRjkBfpdQHTo/ODZUs1b/74yD/+2YriSfS6dkumgeu7kW3uCiHHzMkyI+Dn1/Pc/M28PO6Q0RFBrL+7SvoWEsdbYqs3X2cp+esZXtCMnExEVxUz8zIuAhOZOQTn2ib761301DGttMt8e7InktvS7C1vj+olOomIj7AFqVUl/K28dRLbyUT/YMfd/Ls3A28cPOFdG3dgCVrE3nq0/UsfWmSUxLe1VZuT+KSBxZyZcd6dIkOYn9KLnO2niLEz0STMH8mG6PLfrcnlZNZBTw7NNZp46xp5avpjTANlFJfAVYApVQhYKl4E89TMtELLVYem7OW+U+M5ZKBccTFRDBzcncevLoXz87d4MIonefR91dxTZf6DI+LoHGorcX9tgsak5xdyF19G9OmfiCt6wVwR9/Gttlcj7lm6CWtfPYke5aI1MfWEo+IXICtY43XOpGahdWq6H5WCT6yTws27Tvloqica8uBZHo0KT1kc5foIPIsVkpOyCIinN84mAOpuWjuxZ5kvwNYCLQWkVXYbnGtnaFb3MTZre/1QgPIzbdwPCWr1PLtCck0j/bMVuhmUSEkppWe9SspIx8fk5wz+EPi6TwaBusus+7GnumfNmObDaYfMAPopJTa7uzAXK1oJNiyLrMFBfhyw+hOXP/cUo4l26qrm/ed4t53/uDWS8+r7VBrxZ1X9uSDbckcPmNL+JOZ+by16RRBAb4s3JNKgcVKoVWxeH8a+1NynTIOu1Yz5bbGi0gv4IhS6oRSqlBEegCTgUMi8phSKrXWoqxl9lxHf+amfjwwezVdrv8Mf18zvj4mHrv+Asb1K3cAnzKlZeSydvcJIkP96dOhkdvONX7NiA6czszj8U/XgVVhUfCfSd24engHLr97Pl/sTEEEWkb48/jgZgT6esa4dZ6k3NZ4EdkMDFNKpYrIQOALbNX37kAHpdSl5e20rrfGV6XTTE5eIanpuTSqF1TlgRnfmL+Fx+aspWe7aI6lZGE2Cd88OZa4mIgqRlx7CgotnErLoUF4AP7G8NaL3vuZjDwLCkWYi2at0WyqeyOMuUTpPQV4Tyn1DfCNiGx1cIxuo6q94wL9fYiJqvpYHsu3HuXV+VvY/P5UWjQKQynFmwu2cdkjP7L5/avctoT39TGX+XlD/fXYdO6uoqLIbFxTBxgKLCuxziN/vmuzG+xHS3Zz5+Xn06KR7dxWRPjPpG7kFhTWuRZ9TxlX3tNVlLTzsN0EkwzkYEzTLCJxeOClt9ru7346M4/oeqUvZYkI0ZFBnM7MK2crTau+ckt2pdTTwJ3AHGCA+ufk3oSXXXpzhot7xvLp0j9LTfW0/2gaO/9KoU8Hx80Yq2lFKqyOK6XWlrFsn/PCcY3aLtUBrh/Vkbm/7GHc/QuZenF7jiVn8vr8rTxzU/9zRpfVNEfwyHPvqrAn0fMLLMz5aTeL1vxFgJ+Zq4a1Z0L/VjVqRAsK8OXXVy7hk6V/8u2KA9QLDeCrx0dzQcfG1d6nK42dPsJjpnb2VF6d7PYkeqHFyoQHf6Cw0ML08V3Jyi3gkQ/WsHrnMV64+cIaHT8owJebx3fl5vF6hC/N+bwy2atSbV+4KoG0jFxWzbq8+Dr6hP6taD/tE2aM60JrN74mXtt06e7edDenSsRvPcqUwW1LdZiJDA1gZO/mxG896sLINK1qvKpkr05DXP2wAI7+fe7tmkf/zqR+uGum3tW06vCakr26Le5XX9yeT5f+ybrdJwBQSvH5r3s4kHSaUb2bOzJETXMqryjZa3JprXVMBLPvHsakh36gWcMQMnMKsCrFwmfGF/cN1/6hz9vdl/5rtcOEAa0Z2bs56/ecJMDPTI+20Zj0kEtaHePxye6oDjP+fj5c2DXGIfvSNFfw6HN2V/SM0/SNMe7KY5NdJ7qmleaxya5pWmkemey6VNe0c3lUA50jkjwtI5e5v+zhQNIZurZuwBVD2hIU4JyRUi0WK0vWJ7Js8xHqhQYw9eL2tGwc7pRjOUJWTgFfLNvLjoQU4mLCuXp4ByJCyp7mSV+Ccz8eU7I7ItH/PJRK1xs+Y+3uE7RoFMqClQfoOX0eJ1OzKt+4igoKLVzyyCIe/XAtjesFk5KeS5+bv+C7Pw46/FiOcDwlix7TP2fh6gRaNApl9a7jdL3+M/YeTnN1aJqdPKpkr6nbZi3nvqt68Z9J3WyvLzufO99cwaMfreWdO4c69Fhzf93L6Yw81r49pXg65quGtWPc/QsZ2bs5AW7WYeeRD9cwvn+rUnf6vT5/C7e/uZzFz090XWCa3TyiZHdEqZ6TV8jKbUncOKZTqeX/mdSNH1Yn1Hj/Z1u0OoEZ47uUmne9V/tGtG4Szppdxx1+vJr6YXUCtxg/gkWmj+vC71uOkpdfWOY2+hKce3Gv4qOKHNkQZxIwmYTcfEupbrDZeQX4+zp+5FQ/XzPZeecmSXZuoVOOV1P+ZcSbm1+I2SS6N2EdUWdLdke3uPv7+TCuXyue/mx98bhwFouVJz9ez5VD2zn0WABXDm3Ha19vKTW45LcrDpCRk++WY9BdMaQdT3y8DovFCthuCHrqk/VMurB1qdqJ5r7qdMnuaK/dMpAx931Prxnz6NE2mvitR2jZOJwHp/V2+LHG9m3Jyu1JtJ/2MaMvaEFSchY7E5L5/pnxVZ5sojY8cm0fJj38A52v/5SBXZuyce9JzCbhx+cnuDo0zU6Vzs9eHc6eEcaZ19GtVsWyLUc4kHSabq2juKCjc6dkOpB02nbpLSyAMRe0JNCNZ1RRSrFm13G2JyQTFxPBkPOa2V2F15fhakd1Z4RxS87uMGMyCcN6xDKsR6xTj1MkLibCrad7KklE6Ne5Cf06N3F1KFo1uF99sQK6Z5ymVV+dSPbypk7W6g59Gc716kSya5pWc26f7LpE1zTHcOtk14nuWXRV3rXcNtl1omuaY7ltsmua5lhumey6VNc0x3OrZNeX2DyfPm93HbdJdp3kmuZcbpPsmqY5l1skuy7VvYuuyruGy5NdJ7qm1Q6X3fWmk1zTapfLS3ZN02qHS5Jdl+qaPm+vfbWe7DrRNc01ajXZdaJrJenSvXbpc3ZN8xK1luy6VNc013L6pTed5JrmHpxasutE1yqjz9trjz5n1zQv4bRk16W6prkXpyR7PctJZ+xW81C6Kl87dDVe07yETnZN8xI62TXNSzhlFlcR+Rs45PAda5pWmeZKqaiyVjgl2TVNcz+6Gq9pXkInu6Z5CZ3sbkpEHhSRXSKyXUS2ikgfB+//IhFZZO9yBxxvooh0LPE6XkR6Ovo4WvlcNgadVj4R6QuMBc5XSuWJSAPAz8Vh1dREYBGw28VxeC1dsrunxkCyUioPQCmVrJQ6BiAiPURkuYhsEpGfRaSxsTxeRF43agE7RaS3sby3iKwRkS0islpE2tkbhIgEi8iHIrLe2H6Csfw6EflWRH4Skf0i8kKJbf4lIvuMbWaLyCwR6QeMB1404mttvP0y4337RORCR3xxWgWUUvrhZg8gBNgK7APeAgYZy32B1UCU8XoK8KHxPB6YbTwfCOw0nocBPsbzYcA3xvOLgEVlHLt4OfAMcLXxPMKIJxi4DkgAwoEAbJdZmwFNgESgnhHrSmCWsf0c4NISx4kHXjaejwZ+dfX37ukPXY13Q0qpTBHpAVwIDAa+FJH7gI1AZ+AXEQEwA8dLbDrP2H6FiISJSAQQCnwsIm0AhS0J7TUcGC8idxmvA4BY4/lvSqkzACKyG2gONACWK6VSjeVfA20r2P+3xr+bgBZViEurBp3sbkopZcFW+sWLyA7gWmxJsUsp1be8zcp4/STwu1Jqkoi0MPZpLwEmK6X2llpoayzMK7HIQvX+lor2Ud3ttSrQ5+xuSETaGSVxke7Yqsp7gSijAQ8R8RWRTiXeN8VYPgA4Y5S84UCSsf66KobyMzBTjGqEiJxXyfs3AINEJFJEfIDJJdZlYKtlaC6ik909hWCreu8Wke1AR+AxpVQ+cCnwvIhsw3Ze36/EdrkisgV4B/iXsewF4FljeVVLzyexVfu3i8gu43W5lFJJ2M7z1wOrsJ2/nzFWfwHcbTT0tS57D5oz6e6yHkJE4oG7lFIbXRxHiNHm4AMswNaAuMCVMWk2umTXHO0xEdkK7AT+Ar5zaTRaMV2ya5qX0CW7pnkJneya5iV0smual9DJrmleQie7pnkJneya5iX+H7iZrdKu8X/VAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy\n", - "import matplotlib.pyplot as plt\n", - "\n", - "def graph(X, Y, model):\n", - " x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n", - " y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n", - " h = .02 # step size in the mesh\n", - " xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, h),\n", - " numpy.arange(y_min, y_max, h))\n", - " Z = model.predict(numpy.c_[xx.ravel(), yy.ravel()])\n", - " Z = Z.reshape(xx.shape)\n", - "\n", - " # Put the result into a color plot\n", - " fig, ax = plt.subplots(1, 1, figsize=(4, 3))\n", - " ax.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)\n", - "\n", - " # Plot also the training points\n", - " ax.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\n", - " ax.set_xlabel('Sepal length')\n", - " ax.set_ylabel('Sepal width')\n", - "\n", - " ax.set_xlim(xx.min(), xx.max())\n", - " ax.set_ylim(yy.min(), yy.max())\n", - " ax.set_xticks(())\n", - " ax.set_yticks(())\n", - " return ax\n", - "\n", - "from sklearn.linear_model import LogisticRegression\n", - "logreg = LogisticRegression()\n", - "logreg.fit(X_train, y_train)\n", - "ax = graph(X_test, y_test, logreg)\n", - "ax.set_title(\"LogisticRegression\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Piecewise classication\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseClassifier(binner=KBinsDiscretizer(n_bins=2),\n", - " estimator=DummyClassifier(strategy='most_frequent'),\n", - " verbose=True)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.dummy import DummyClassifier\n", - "from sklearn.preprocessing import KBinsDiscretizer\n", - "from mlinsights.mlmodel import PiecewiseClassifier\n", - "\n", - "dummy = DummyClassifier(strategy='most_frequent')\n", - "piece4 = PiecewiseClassifier(KBinsDiscretizer(n_bins=2),\n", - " estimator=dummy, verbose=True)\n", - "piece4.fit(X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We look into the bucket given to each point." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2bucketlabel
0.06.23.40.02
0.06.73.10.01
2.05.13.82.00
2.04.83.02.00
3.05.52.33.01
\n", - "
" - ], - "text/plain": [ - " x1 x2 bucket label\n", - "0.0 6.2 3.4 0.0 2\n", - "0.0 6.7 3.1 0.0 1\n", - "2.0 5.1 3.8 2.0 0\n", - "2.0 4.8 3.0 2.0 0\n", - "3.0 5.5 2.3 3.0 1" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas\n", - "\n", - "bucket = piece4.transform_bins(X_test)\n", - "df = pandas.DataFrame(X_test, columns=(\"x1\", \"x2\"))\n", - "df[\"bucket\"] = bucket\n", - "df[\"label\"] = y_test\n", - "df = df.set_index(bucket)\n", - "df.head(n=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABy4ElEQVR4nO2ddXhUR9fAf7Ma9xAjSAgSHIpTKNBSKKXUqL2Ulrq/fevu7krbr+5KodAWqKAtFC0eXOPuurt3vj82duMQ25D5PQ8Pe889c+9M7u6cO3LOEVJKFAqFQtFxMbR1BRQKhULRtihDoFAoFB0cZQgUCoWig6MMgUKhUHRwlCFQKBSKDo4yBAqFQtHBUYZA0eEQQhwRQpzRjNfrJoSQQghTc11ToWhNlCFQKNoIZUAUroIyBAqFQtHBUYZA0VEZLoSIFUJkCSE+EUK4CSHmCCH+rqpU9sYeXfbZXQjxihDiqBAiRwjxtxDCvfqFhRAXlk0/9RdCGIQQ9wshDgohMoQQ3wshAspUV5f9ny2EyBdCjBZCRAshVpVdP10I8V3L/hkUCmUIFB2XWcAUoAfQC3i4EWVeBk4BxgABwL2AVlVBCHEV8AJwhpRyJ3AbcB5wGhAOZAFzy9THl/3vJ6X0klL+AzwF/A74A52Bt06seQpF41GGQNFReVtKGSelzASeAS6rT1kIYQCuBm6XUiZIKR1SyrVSypIqav8D7gEmSCkPlMluBB6SUsaX6T4OzKxnXcAGdAXCpZTFUsq/69BTKJoNZQgUHZW4Kp+P4nxbr48gwA04WI/OPcBcKWV8FVlXYIEQIlsIkQ3sBhxASB3XuBcQwAYhxC4hxNUN1EuhaDJqt4KioxJZ5XMXIBEoADzKhUKI0Co66UAxzqmkbXVc80xgqRAiWUr5Y5ksDrhaSrmmurIQomt1mZQyGbiu7PypwJ9CiNVVRhgKRbOjRgSKjsotQojOZQu3DwHf4ezg+wkhBgsh3HBO4wAgpdSAj4FXhRDhQghj2eKutco1dwFTgblCiBllsveAZ8o7fSFEsBDi3LJzaTjXGKLKLyCEuEgI0bnsMAuQVFuHUCiaG2UIFB2Vr3Euyh7COd3ztJRyH/Ak8CewH6g+P383sAPYCGTiXBTW/YaklNuA6cAHQoizgDeARcDvQog8YB0wsky3EOf6xJqyqaNRwHBgvRAiv6zc7VLKQ83cdoVCh1CJaRQKhaJjo0YECoVC0cFRhkChUCg6OMoQKBQKRQdHGQKFQqHo4LQ7P4KgoCDZrVu3tq6GQqFQtCs2b96cLqUMru1cuzME3bp1Y9OmTW1djVaj0FbIsmN/siX1Xw7nHKLQXoiHyYPuvlEM7jSYM7qciYfZAyklQoi2rq5CoXBRhBBH6zrX7gxBR0CTGgZhYNHBhXwZ+znFjmLd+SJ7ERnFGWxK2cgXsZ8zK+ZyZvQ4DyklBqFm+xQKxfGhDIGLoUkNTWo8s/4pNiZvaFC/xFHCxzs/YmvqVh4c+TAmg0kZA4VCcVyoHsPFMAgDr21+pVYj4GX2IswzHG+zd41z/6Zu5pXNLykjoFAojhs1InAxVsev4q+E1TpZv4B+XBF+Hp1s7tiTkzCGh5BmLeWLpJ/YmbGzQu+fxLWsiFvOxMhJrV1thaJdY7PZiI+Pp7i4uGFlF8fNzY3OnTtjNpsbXUYZAhfjq91f6o4nh01kluVUbNc9RPG+fQDYgYCePbn7laf51hLC0qRlFfpf7/6S0zpPUCMDheI4iI+Px9vbm27durXrTRdSSjIyMoiPj6d79+6NLtdivUVZ6r8NQohtZXHVn6hFp4sQYoUQYosQYrsQYlpL1cfV0aTG9rRtJBUkVsjCPMOY5X8mxTNnYy8zAuXY9++n6KIruNRnEhFeERXylMIUtqVtRZMqYKVC0ViKi4sJDAxs10YAQAhBYGDgcY9sWvK1sQSYJKUcBAwGppZFV6zKw8D3UsohwKXAOy1YH5fGIAzEZsTqZOeFTkF76S1kXQ+1pATHi29yQegUnTg2I1aNCBSK46S9G4FyTqQdLdZbSCf5ZYfmsn/VQ51KwKfssy/O5CAdlri8Y7rjoX4DKPntj3rLlP65jMF+A+q9jkKhUNRHi742liXv2AqkAn9IKddXU3kcuFwIEQ8sxpnou7brXC+E2CSE2JSWltaSVW5T7Jpddywk4HDUX0jTnP/quY5CoWg5vLy86j1/5MgR+vfvf1zXnDNnDvPmzWtKtY6LFjUEZQm+BwOdgRFCiOp/jcuAT6WUnYFpwBdlScKrX+d9KeUwKeWw4OBaPaRPCvzc/HXHObYcjJGRdWg7MYaHk2vP18n8rH7NXTWFQnES0yoTyVLKbGAFzjR+VbkG+L5M5x+cycGDWqNOroaUkmi/aJ1sfvoyjNfPqbec8for+SltmU7Wwy8alXBIoWhd8vPzOf300xk6dCgDBgxg4cKFFefsdjuzZs0iJiaGmTNnUlhYCMDmzZs57bTTOOWUU5gyZQpJSUltUveW3DUULITwK/vsDkwG9lRTOwacXqYTg9MQnLxzPw0wInQkJkPljt51yevIO30E5mnV7acT85TJFEwZy5rktRUyozAyOmx0i9dVoVDocXNzY8GCBfz777+sWLGCu+66q+KFbO/evdx8883s3r0bHx8f3nnnHWw2G7fddhvz5s1j8+bNXH311Tz00ENtUveW9CMIAz4TQhhxGpzvpZS/CCGeBDZJKRcBd+HM7XoHzoXjObKDvsoKIfC1+jI+4jSWxznf8B3SwUM7n+Ph+2+n0+yLEB9+hSMhEWN4GPKaWaRH+vLUjmexy8o1gVMjxtWYYlIoFC2PlJIHH3yQ1atXYzAYSEhIICUlBYDIyEjGjh0LwOWXX86bb77J1KlT2blzJ5MnTwbA4XAQFhbWJnVvMUMgpdwODKlF/miVz7HA2JaqQ3tDkxpX97+WTSkbyS3NBaDAls8DO54hyjeKqXdPJ8DoTZaWx5L0Xzm046CuvLfZm2sGXFcRtE6hULQeX331FWlpaWzevBmz2Uy3bt0q9vNX39IphEBKSb9+/fjnn3/aoro6VG/hQhiEAR+rD/cNfwCLwaI7dyjnEO8c+pSn97/F3IOfcihHbwTMBjP3DL8PP6ufMgIKRRuQk5NDp06dMJvNrFixgqNHK6M+Hzt2rKLD//rrrzn11FPp3bs3aWlpFXKbzcauXbvapO6qx3BBBgQP5KmxzxDiEdIo/WD3YJ4c8zSDO9UYgCkUilZi1qxZbNq0iQEDBvD555/Tp0+finO9e/dm7ty5xMTEkJWVxU033YTFYmHevHncd999DBo0iMGDB7N27dp67tByiPY2JT9s2DDZERLTSCkpcZSw4MCPLD28hKySrBo6/lZ/zuw2lQt7zsRqtJ40npEKRWuze/duYmJi2roazUZt7RFCbJZSDqtNXwWdc1GEEFiNVi7rM4uLe1/KsdyjHMo5RIGtAA+TB1G+Pejq2xWjMKJJTRkBhUJxwihD4MKUd+5GYaSbT3e6+XSvWGSqel6tCSgUiqagDEE7oeobv3r7VygUzYl6lVQoFIoOjjIECoVC0cFRhkChUCg6OMoQKBQKhYuwdOlSevfuTXR0NM8//3yN8yUlJVxyySVER0czcuRIjhw50iz3VYagjameUlJKqSKHKhQdEIfDwS233MKSJUuIjY3lm2++ITZWn7Xwo48+wt/fnwMHDnDHHXdw3333Ncu9lSFoA8o7/2J7MRuS1/PV7i95d9s7fLjjA/44+jtJBc5QtMogKBSuScH8BSSPGEVC5y4kjxhFwfwFTb7mhg0biI6OJioqCovFwqWXXqoLZQ2wcOFCrrzySgBmzpzJsmXLmqWfUNtHWxkpJcX2Yr7c/TnLjv1Jkb2oVr0BQQO5ou8cegf0RkqptowqFC5CwfwF5Nx7H7LI+dt1JCSQc6/zzdzzgvNP+LoJCQlEVklE1blzZ9avX1+njslkwtfXl4yMDIKCmpbGRY0IWpk9mbu5edmN/HLo5zqNAMCO9O3ct/puvoz9XOdEplAo2pa851+oMALlyKIi8p5/oY1q1HSUIWglpJTsydzNo2sfJrM4o1FlNDS+3/cdH+54X40IFAoXwZGYeFzyxhIREUFcXFzFcXx8PBEREXXq2O12cnJyCAwMbNJ9QU0NtQqa1Ch1lPLSxhcocZRUyAWCQcGDOT9wEiEeIRTbi1mZtYHfk5ZTaC+s0Ft0cCEDggYxInSEMggKRRtjDA/HkZBQq7wpDB8+nP3793P48GEiIiL49ttv+frrr3U6M2bM4LPPPmP06NHMmzePSZMmNUufoEYErYBBGPh+77ekFVVm4fQwefDS4Me5NaU/Ebe/hBw3HffzruGcxam8M+hZBgT0113j/7a/g4ZW/dIKhaKV8b7/PoS7u04m3N3xvr9pO3hMJhNvv/02U6ZMISYmhosvvph+/frx6KOPsmjRIgCuueYaMjIyiI6O5tVXX611i+mJ0GJhqIUQbsBqwIpz5DFPSvlYLXoXA4/jTFW5TUr5n/qu2x7DUNs1O3OWzq7IOgbwwsBHCHzpM2yLfqmhbwgOxjr/Sx469DoJ+ZVvHvePeJDRYWPUqEChaGaONwx1wfwF5D3/Ao7ERIzh4Xjff1+TFoqbm+MNQ92SI4ISYJKUchAwGJgqhBhVrWI9gQeAsVLKfsD/WrA+bYImNfZm7tUZgd7+vQk6mF6rEQDQ0tLQHnyaS8PO0ck3JW9URkChcAE8Lzif0A3riIg/RuiGdS5lBE6EFjME0kl+2aG57F/14cd1wFwpZVZZmdSWqk9bYRCGGmklpwdOgPc/r7dcyd9/M8C7N0ZhrJBVv45CoVA0By26RiCEMAohtgKpwB9SyvXVVHoBvYQQa4QQ64QQU1uyPm1Fvi1PdxxsCcDRkGu4lDgyMvAweVSI8krz6imgUCgUJ0aLGgIppUNKORjoDIwQQvSvpmICegITgMuAD4QQftWvI4S4XgixSQixKS0trfppl8dqdNMd59sLMAQ27ABi9PWl2FFccexmcqtHW6FQKE6MVtk1JKXMBlYA1d/444FFUkqblPIwsA+nYahe/n0p5TAp5bDg4OAWr29zokmNbj7ddLLfcv6B2RfXW87crx/x9nRsmq1C1s2ne0tUUaFQdHBazBAIIYLL3+6FEO7AZGBPNbWfcI4GEEIE4ZwqOtRSdWoLDMJAn4AYLEZrhWxzymbsp43E3K9f7YUsFkzPPsLXKfrF5AFBA4H6A9NpUqs4V/WzQqFQ1EVLjgjCgBVCiO3ARpxrBL8IIZ4UQswo0/kNyBBCxOIcMdwjpWyc2207wsPswfiI8RXHGhpP7H4FPn4D65WXIzwq1wEsI0fi/tM3/Cg3E5uxq0LubnJnQuRE0grTWBW/kri8YxXB68r/t2t2DmYfZNmxP1ly+Ff+SVxLSmFKxTWUUVAoXJerr76aTp060b9/9Rl0J1JK/vvf/xIdHc3AgQP5999/m+3eLeZZLKXcDgypRf5olc8SuLPs30mLJjX+E3M5axPXVHgMJxUkcce2xzj7osmcftNCzHYJZhN78w7yQ8pXHMg+oLvGrJjLcTO58fKmF9mQvB6DMPDfIf9jUpfTyS3NZd6+71l2bBkFtvwa9+/i3ZXpUedwZrcpSClVsnuFwgWZM2cOt956K1dccUWt55csWcL+/fvZv38/69ev56abbqoRlO5EUSEmWgGDMBDkHsSNg27mtc2vIMt20ebZ8vj26Hy+PTq/3vJDOg1letQMNiSvZ0PyegSC/w29kwmRE1mT8DfvbH2bPFvdO4qO5R3lnW1vs+zYn9wz/D6C3YOVP4JC0QSWbkvkvWX7SckpJsTXjRtP78nUQU0LMTF+/Ph6E80sXLiQK664AiEEo0aNIjs7m6SkJMLCwpp0X1AhJlqVCZETuXnwrZgMjbe/p4QM44ERD5FZnMk7W98GYHrUOUyInMjvR37jxY3P12sEqrI3aw/3rr6L1MKUGglxFApF41i6LZHnf95Fck4xEkjOKeb5n3exdFvTgs41RG1hqhNqiXl0IqgRQSszpdtU+gT04Z2tb7M7c3eder4WX/4TM4uzup9NelE6726dy4Xh0wg3BzMwfBhxuXG8u21uxeiinH6B/ZnkOwIPg5UEezpLU1aSXiXGUWZxJs9teJZXJrym8hwoFCfAe8v2U2zTv0gV2zTeW7a/yaOCtkIZgjYg0rsLL4x/mYPZB1iXtI6D2QfIKcnBYjTTxacb/QL7MTpsDGajmXWJ/+BTBDfKcRhe/xpHQgK5YWF4Xjebp/rdxzN736DAVkCIRwiP9Pkfbtv3Y5g7Dy07h969ezLp2lvYbkjkrQMf4ZAOwOmh/PPBhZwXfUEb/yUUivZHSk7xccmbi8aEqT5RlCFoA8oXa7v7RtHDL7rGeYfmYH3yOpYeWsyVkRfi/fIHlFaJS2TbuRP++INO08/imQcf4MnYV3mm731w3Z3Ytm+vvNCOHTBvPgPuvp07p97IS3vnVpz6+eAiZvQ4Ty0cKxTHSYivG8m1dPohvi3r8DljxgzefvttLr30UtavX4+vr2+zrA+AMgRtStVOWEpJbMYuPt31MYdzj1DqKGFM6Bh8Vm7RGYGq2H5ZgvfIU7h5/NUYXv0/SqoagSqUvvwGMWO/ItI7krg85xtFWlEa+7P20dO/lzIGCsVxcOPpPXn+51266SE3s4EbT6/hC3tcXHbZZaxcuZL09HQ6d+7ME088gc3mdCi98cYbmTZtGosXLyY6OhoPDw8++eSTJt2vKsoQuAhCCP5KWM3erL0VsguCzsBx5131lnP836cMPnsBaT9dV6+enPsx5959Dm/nfVwhO5B9gN4BfZpWcYWig1G+DtDcu4a++eabes8LIZg7d269OieKMgQuRFZxlu7Yz+KL7ejResto2dnIrCwoKalXz759B13drq92v8wTq6hC0cGZOii83S4M14aaE3Ahqm8rlQIwGmtXLtex2xFu7vXqAAhPD0odNp3MZDAfdx0VCsXJhzIELkRn70jd8dbsnVgnn1FvGcupYykyaxi7dq1Xz3jBOfyVv0Uni/SOVP4ECoWi4xgCKaVLB2HTpEZMQF+dbH7ybxjuuRWs1toLWSwY77udb1OXYn74njqvbQgKwnDx+SxPWl0pw0BMYF8Eyo+gpZBSIjXX/c4pFOWc1Iag/Ado02wczjnEnszdxOfF1QjW5goYhIGBwQMJ9QitkCUVJPJd7grcv/8MU48onb6xezfcv/2UH/JX8+vRX9nYxYZ17isYqoXpNg8dgvXHL3jt0EeUOirXEYaGnEKAW4ByKGtmpOb8Tkm7HfuevZRu2oR9z16k3a47r1C4EiflYnF5B78m4W+WHFnMnozd2KW94rzFaGVIpyFM734OgzoNRpOaS2yhNAgD/4m5nFc3v1whW5L4J4mBqcz+5EUCigwYkjPwjowiyxNeP/IZW9O3AvDOgU+YFHYaMxd9jjUlC0d2NuZu3TjiSOWzY+9yJPeI/j59ZrlMu08GpKYhDAaKly2j4LPPKVn7j34B32rFOmoUnlfMxn3qlAp9hcIVOCkNQUphCq9tfoU9dYRwKHWUsD5pHeuT1jEmfCy3DL4NT7OnS3SKEyInsi7pH9YmrqmQbcvYzraM7fhafPF18+OOkDuJ9O5C1j79LqPlSatYnrSKIPcg3IzuZO3LpMBWUOMeF/W6hGj/pu15VlQipURLSyfrzrsoWbmydqWSEkpWraJk1Sqs407F/7XXMISGqBGZooK4uDiuuOIKUlJSEEJw/fXXc/vtt+t0pJTcfvvtLF68GA8PDz799FOGDh3a5Hu3fc/XjEgpOZRziLtX3lGnEajO2sQ13LPqTnJLclxiqkiTGneecjdDO51S41xOaQ7Hco/y6uaXcUgHj49+ikjvLjX00ovSic+Pq9UInNX9bGbFXO4SbT0ZkJqGIy6OtOnT6zYC1Sj5629Sp5+D4+gxNVWkqMBkMvHKK68QGxvLunXrmDt3LrGxsTqdqqGo33//fW666aZmufdJYwg0qVFkL+LJfx6vEY3T0+zFhMiJzOg2nbHhp2IxWHTnEwsSeWb9U0DbJ28xCAMmg4lHRz/OnH5X6zKblROXF8fT657Ew+zBK6e9xtndp2Moe5R+Vj9O73IG53SdzojQkZiEc9DnY/Hh7mH3ctOgm0nMT3CJ0U97R2oa2O1kXDEHR2KS7pzw9MT93HNxu/Zq3M87D+HpqTuvJSeTccUVYLMpY9AOWRm3gmt+m8O5P03nmt/msDJuRZOvGRYWVvF27+3tTUxMTI3oonWFom4qJ83UkEEY+GjnB2QWVyY4MxlM3BJ1FUM8eqHNW4QxaT/2nt257pwX+T1tNV8fq8wDsDdrL4sOLuS86PPbovo6DMKAlJILel7ImV2n8MfR39matoXDOYcosBXgYfLAKIysTVjDaZETuGHQTVzQcyZFGSn4Fgvs387HkBmHY2AMlilvkEg23Tv1wWpy47cjS/l454fcPOhWTouc0NZNbdcIg4Gc117Hvn9/pdBgwPzwPYizz2RZxjoSHBmEG6OY8MBtsHQZtidfAIcz+J/94CFyX34F34cebKMWKE6ElXErmLv1LUrKNl+kFaUxd+tbgHNqtzk4cuQIW7ZsYeTIkTp5XaGomxpz6KQwBFJKckpzWHFseYXMIAw82f8+Qj5fStEHt+kLvPAqZzzzKH6DruKdg5XxOhYeWMA5PWZgFPU7cbUG5XPHnmZPzu95Aef3rD1S6N7MPSTmJzLGcwDGVz4k/4cfK09+DyVPvUDX998jzRjHu/s/Zke6Mx7R/AM/KkPQBKSUUFxMwaef6eTWd15ldZdCPt90FxqVb/pfHf6BWcNmMum9Nyi57tYKecHnX+B9x/8Q7u5qvaCd8EXsZxVGoJwSRwlfxH7WLIYgPz+fCy+8kNdffx0fH58mX68xtGTyejchxAYhxDYhxC4hxBP16F4ohJBCiGEneC/+il+t2xl0auhYQv/eQ+kHtQRmstspue9RhheF0M2nW4U4oziDnek7XGr+vLbOYWf6Dl7d9DI3/nEd96y+iyPpe8n76COKqhqBckpKyLz6WjyyC0nIrxxmHs45xLHco20+FdZukZKiP/5E5uZWiCyjR3G4tz+fHv5WZwQAJJIvj/zAgSh3rOPGVcrz8yle+lurVVvRdNKL0o9LfjzYbDYuvPBCZs2axQUX1Hz5a6lQ1C05UVwCTJJSDgIGA1OFEKOqKwkhvIHbgSYl39yftU93fEGnydjffr/eMvL1/+OCkCk1ruPq8+ff7f2WlfErSCxwZkQ6K3gipZ98UXcBhwPHe59yTthknXhflQB3iuNDGAzYtm7VyeRNV/F1wsJ6y32T9DPy5jk6WenWrWo00I4Icg86LnljkVJyzTXXEBMTw5131p7GfcaMGXz++edIKVm3bl2zhaJusR5POinPpG4u+1fb6+dTwAtAk7I6pBal6o59hQeOBtK4laxZQy/vHjpZSmFKU6rRKqQWVrbVzeiGKa9A92ZaG/bVf9PXXe+UllKYqjqgJmCPj9cdG3t052DOgXrLHM45hOiqDyXiiIuvQ1vhiszueyXWaps4rEYrs/te2aTrrlmzhi+++ILly5czePBgBg8ezOLFi3nvvfd47733AJg2bRpRUVFER0dz3XXX8c477zTpnuW06BqBEMIIbAaigblSyvXVzg8FIqWUvwoh6oyRIIS4HrgeoEuXmtslgRMLlGAw1Ej12B5CLlStoYaERoxghMGArDbl5fotdXFO0IjW+I4px7J2Rfk6wBexn5FelE6QexCz+17Z5PWBU089tcGp2pYKRd2ihkBK6QAGCyH8gAVCiP5Syp0AQggD8CowpxHXeR94H2DYsGG1/qVCPcPYlbGr4jjDkYtvjyjsBw/VeV3rpIlsztmjk4V5un5o2VDPsIppoVJHCaWeFgyBgWgZGXWWMU2exNZC/fRZmFe4ylvcBEzVAv05du2hb2A/Yqt8D6vT278P2h79c6h+HYXrMyFyYrPtEHIFWuVVREqZDawAplYRewP9gZVCiCPAKGDRiS4Y9/LvrTv+IfU3jHfeUncBoxHD/25kQbJ+oa6Xfy+XWiyujd4B+rYuSl2G+ZZ6EtO4uWG49gp+TfpTJ67+N1M0HqlpWIYM0Qvf/ZjZ4fVvP54dcT68o9/AYB4ySPkSKNqUltw1FFw2EkAI4Q5MBipev6WUOVLKICllNyllN2AdMENKuel47yWlZFzEeJ2j2PqU9eyP8cPy0L1g1sfdF56eWN9/k9/t2yverAFCPULpF9TfpReLNakxMfJ03fTCbwl/kjJ5KJabrq0xzWDw98P9yw/5Ln0peaWV6wi9/XsT4RWhRgMniDAYcDt9EoaAgAqZbctWOv21kzt63VjDEdBisPDfntcR9s9+SjdVfsUN/n64n3mmS8UdqmqUpMOBVlCAtNl0MsXJRUtODYUBn5WtExiA76WUvwghngQ2SSkXNdeNhBB4WbyY2n0aiw7+VCF/YfdbzBp9IZP+/g3HitUYklLRenaH4UP4LuEXfju6XHedC3td1FxVajEMwkCoZyjjIsazOmEVAA7p4JGdz3PtjP8w6oo/sP+xAkNmNlq/XjgG9OaDuB9Zk7hOd52Lel+ipoWaiLBY8LrhenKfe75CVvrQk/S7/mrev+p5tuXGkmjLIMwUwGC//tg//4bSdz7QXcPzuusQdYUZb2XKvw9aWhoFX3xJ8bLl2PbsgdJSMBgw9eiBdewYPK+4AnPvXipw3kmEaG/7yIcNGyY3bao5aJBSYtNs3Lb8FpKqvOWD08N4QNBAPM2eZBVnEpsRW2OReHDwYJ4c+0yL1r250KRGga2AW5bdRHaJPvCc1WhlQNBA3ExupBWm6nIglzOh80TuHHZ3a1X3pEVKCZpG2ozzamwlxWjEMmokxsBAtMxMStatB7tdp2Lu35/gX38Go7HNDXL5W37e23PJe/0NZ+dfDx6XXILvk48jPDxOCmOwe/duYmJi2roazUZt7RFCbJZS1jr1ftIYAnD+MFMKU3jw7/uOy7kj2i+ap8c+h5vJzaWnhaoipeRwziEeWfuwbsqnIQYFD+aRUY9hMpjaTVtdGalpaJmZpF94EfYD9W8drYopqjtB8+ZhCA5q845UOhzgcJAx52pKVq1qdDlTjyiCfvgeQ3Bwm7ehqXR0Q9C+n141hBCEeITw6oQ3GBlaw3etpj6Cad3P5rlxL7YrIwDOtkb59eC1CW/QP2hAg/oGYeCiXpfw2OgnlBFoRoTBgCEggOCfF+I+88JGlXE//zyCf/nZJYwAgDAaybrjrlqNgPW0cXhedy3uM2bUWH+yHzxE+qzLwe5Qi93NQHFxMSNGjGDQoEH069ePxx57rIZOSUkJl1xyCdHR0YwcOZIjR440y71PqhFBOeUJV3am72Dx4V/ZnraN3CpvzUHuQZwSMoyzu0+nm2/3dp2gpbzuG5M38vuRpezM2EmBLb/ifIhHKCPDRjKt+3TC1XbRFqN8vrx0y1YKPvuM4tV/oaVUOicaOnXCOn4cXldeiWXoEJeaXy/6dTGZ19+gk7ndeTtcdznJJWnE5R3D3y2AXr490ZatpvgmfYx8r//ehu9997ZmlZsdVxgRSCkpKCjAy8sLm83GqaeeyhtvvMGoUZUvte+88w7bt2/nvffe49tvv2XBggV89913Na51vCOCkyLoXHXKO/W+gf0q3pazi7MochTjZfbC2+INVGYya69GACrrfkrIKQwPHQ5AZlEGJVopPhYfPM3O8MflbVVGoGUo79TNgwbi//prADgyM5G5eQhvL4yBgUDljhxXMQIAua+/rjt2e/1F0iYN5sV/9FOsHiYPrh10HUOW/0rxpLMr5AUffoT3LTcjPD07zPdr/6rDbPhiK/npBXgFeTJi9mB6nta9SdcUQuDl5QU4Yw7ZbLYaf8+FCxfy+OOPAzBz5kxuvfXWZnm5c51vYwtQtYP3c/MnzDOswghUP9/eqdqWAPdAwjzDKoxA9fOKlqNqB28MCMDUrWuFEah+vq2Rmkbp9h3YYyuTOJkGDKB06ngeXvNgjXW2Qnshb255g4PehXj+tzKirywspOinhR3KCKyeu478tAKQkJ9WwOq569i/6nCTr+1wOBg8eDCdOnVi8uTJ9YahNplM+Pr6klGPI2ljcZ1vpUKhaFWEwaDzaQAwP/Ug3+37jlKt7l1Dn+/+HPs1l+pkpZv/bZE6uiIbvtiKvUTvS2EvcbDhi61NvrbRaGTr1q3Ex8ezYcMGdu7c2eRrNgZlCBSKDoz9kD4Ei+wdzT9Ja+stcyzvKNLdrd7rnMzkp9dMAVuf/ETw8/Nj4sSJLF26VCevGobabreTk5NDYJUR54miDIFC0ZGptttHGAzYNFsdylWKVQvDIh32OjRPPryCPI9L3ljS0tLIzs4GoKioiD/++IM+ffrodGbMmMFnnzmTIc2bN49JkyY1y5ScMgQKRQfGWC2WvZaeQd+AvvWW8bX4Ypb6zscY7vrBGpuLEbMHY7LqsxiarEZGzB7cpOsmJSUxceJEBg4cyPDhw5k8eTLTp0/n0UcfZdEiZyCGa665hoyMDKKjo3n11Vd5/vnnG7hq4zgpdw0pFIqGkQ4H5oEDdTLDy+9y8aNXs70spWltnB11DobfV+tklmrXOZkp3x3U3LuGBg4cyJYtW2rIn3zyyYrPbm5u/PDDD026T20oQwD1br9qzz4GivZPff4GTfVFEEYj1jGjMQQHo6WlAVC0YAGd77mF2TFX8MXuz2uUGR02hqnhp1NwwaQqFxK4nzujzvq0ZBvaip6ndW9yx+9KdGhDUN7J55XmsuzYMmIzdxGXewy7tONv9aeHXzRjwscyMHiQMgiKVqW8g9RSUin4/ntKN2925tZwODCGhmIeNBCPc2dgGTq0SZ2pMJvxuvoqcl94sUJWNGEak37+jlNPf59fDv9CQn4CflY/zul+Dn6lJoomTYecnAp9t6lTMEVG1rh2RRuysyn8/gdKN2zEvn8fstSGoVMwlgEDcT97GtaxY9qtQThZOCk9ixuDJjXsmp0vd3/BL4cWYdfqXuzq5tOd24b8l57+vZp8X4WiIaSmIYuKyHniSQq//Q7qCftsGTYMv1dewhwdfWL3khIcDlLPmqbzJwAwduuK2/33YO8cgiknD9tb71O6Th/FVvj6ErJiGYagIISxct5cahrYbOS+8BL5n3xSbxA7U98Y/F96CcvgQSfUhubAFTyLm5MOHXSusWhSI6ckh0fWPMSxvKONKmMQBq4fcCPTos5uWFmhOEGklDiOHiP90stwlG0TbBCrFf/XX8Njxjkndk9NwxEfT9oFF6IlJTe6nHBzI+CzT3E7dWyN62np6aRf+h/se2tGv60VoxHfp57E68orjqfqzUZHNwQdbiymSQ2bZuPhNQ/WagQsRiteZi8M1f40mtR4b/s7rIpb2ToVVXQ4pKahZWeTftHFtRoB4eGB8PWtmSu5pISsW2+jeNXqBnPe1oYwGDB2jiR40SIsY0Y3qoypRxRB836o1QhQUkL6JZfVagSEmxvCz69mnmaHg5wHH6JwwU/HXX9F0+lwawQGYeCzXZ8Ql3dMJx8dOppLQs7C12ZGKyzAEBTM2qxN/BD/iy7m/3vb32FA8ED8rH5qzUDRrAiDgZwHH8KRWCWfhhBYL7oQcf0VFHoYsTts+Jp9cCz4Gdt7HyPL5+odDrLuuouQFcvB0/O459uFQWAM6UTwD99T+NNCCj75tIbXMTgNgOfs2XheMbtG5r/yNmQ/+xz2ffq8zNZpU+GWaykJ8KTEVoSv1R9tyR/Y535QsVANkP3gQ1jHjHGZyKwdhQ5lCDSpkVGUweJDv+rkt0RfzbCjRmz/u43i8jcxs5nR06cx6v5HeXj3SxXJbgpsBfyw9ztuGHRTa1dfcRIjNQ3brliKFv1cKTQYsL7/Jlu7Sr48+iqZxZmAM+3lpDETuHTad5TMnF3RkWpJyeR/9DE+/7u9tls0SPkcv/u5M/A471y03FxsO3eiZWUjPDww9+uLsVMnZ31r2WknNQ1HcjIFn36mk1uef4IDIyL56Oj/kXLEGZHVJEyMHTiGqxZ+Q+msa3EcPuK8Rm4ueW++id8zT59QG9o7S5cu5fbbb8fhcHDttddy//33t8p9WzJnsZsQYoMQYpsQYpcQ4oladO4UQsQKIbYLIZYJIbq2VH3AORr4/ehvaFR6RU4MO41TDmgUX3+bfjhus1GyYCHaVbfyaJ//6a6zIm45NkfD3pcKRWMRBgMFX36pk5lvupZ/Iop4c98HFUYAoFQrZWn877yS+DmWD97UlSn86qum16Wsgzf4+GAZORK3qVOwjh9XYQSq6lRvQ+FXX+u8la0Xns/e4eE8u/t1Ugorw3LbpZ1VSat5/OBbWD6aq2/Dj/ORDWRIOxlxOBzccsstLFmyhNjYWL755htiY2Nb5d4tOfYqASZJKQcBg4GpQojq2WK2AMOklAOBecCLtDC7MvRBnGaGTsX2RN3eefbY3Zg372RgUKXDTKG9kEM5B2u42SsUTaF03frKA4MB0+WX8PnR7+vU35G5kxR/gal37wqZIzEJe3z8Ca0V1IYwGiv+NYaS9et1x+Kmq/jg8Jd1aMOR3MPE2uOwjB1TIZN5edh27nTpZDcF8xeQPGIUCZ27kDxiFAXzFzT5mhs2bCA6OpqoqCgsFguXXnopCxcubIbaNkyLGQLppDxDirnsn6yms0JKWVh2uA7o3FL1KedobuUCcYBbIG7peWipqfWWEV/OY5LviBrXUWsEiuZC2u26wG3mvn05kH+YEkdJveUWZ/6F4ZypOplt9+4aMYRaC/ueygViQ2gomZZSsqrl1a7O4qy/0C7Q78az7dnrsmsEBfMXkHPvfTgSEkBKHAkJ5Nx7X5ONQdUQ0wCdO3cmISGhqdVtFC36lxZCGIUQW4FU4A8p5fp61K8BltRxneuFEJuEEJvSqiwsnQg2R+WQ081oRcvJbrCMzM3Fw6CPtlhfmF6F4rix2XSdt/DwIM/ecDTLPHsB0rtasLOSkpo7i1oJWVJpuAwe7uSX5tej7aTAVgDV2iCLi5u9bs1F3vMvIIuKdDJZVETe8y+0UY2aTosaAimlQ0o5GOeb/gghRP/a9IQQlwPDgJfquM77UsphUsphwcHBTaqTr9W34nNWSRbmrt0aLGPo3YsEm94A+Vp8m234rVAId3eEh0fFsSMhga5eNb11qxPlFonxkH6rqSGg6WGJTxRDlZDIjtQ0wrwaDkbX1TMSwyH9Lj5DUJDLTg3pdnU1Qt5YqoaYBoiPjyciIqJJ12wsrTL2klJmAyuAqdXPCSHOAB4CZkgp6x8HNwNRfj0qPhfZizhgS8AyYkQ9JYDrr2BxynKdKNq/Z0tUT9GBMffrV/HZkZCAX2YJ4Z51d6QCwdRO4ylZUGUeWQjMAwe02bSKeUDlu57Mz8ewcx99A/vVUwIu6DQZxxf6vLuWgQPabFTTEHVFWm1qBNbhw4ezf/9+Dh8+TGlpKd9++y0zZsxo0jUbS0vuGgoWQviVfXYHJgN7qukMAf4PpxGof6K+GZBSMjJUv179WcICjK88hSEkpNYylrtvZ4chibSiyhFBpHcXwjzDOkxqPkXr4DblTN2xcf5iHhp6P15mrxq6AsFtA2/FvOugbhrFMnoUBq+a+sdLXW/jsp5wF1JK3Ku34ael3NH/NgLcAmotM7v35fimFqBlVa4jmHr1wtStm8v+vrzvvw/h7q6TCXd3vO+/r0nXNZlMvP3220yZMoWYmBguvvhi+vWr34g2Fy0WYkIIMRD4DDDiNDjfSymfFEI8CWySUi4SQvwJDACSyoodk1LWawKbGmLCrtm45rerdAtYMQEx3BN1A/KnX9F+WIgsLMDYvz/ilquJ9cjmtf3v45CVP4CbBt3CWd2nnXAdFIrqSCmROTkkjxiF8PTE7/nncJ9yJnZbCblF2Sw5uoTVyWuwaTb6+sdwcfcLCHQPwtPLH9vBg2TfeRelmzYT8OEHuE0584RHBOXB3+yHDlG8bDmlO3cic3IQ7h6YY/pgHTsWyylD64zYK0tLSR45GllSgt8Tj+Fx0UVoDge5hRksj1vOn4krKXYU0cOnBxd3v4BQz1C8vYOwJyaSffe9lKxahd/zz+I5e3ZT/6THxfGGmCiYv4C851/AkZiIMTwc7/vvw/OC81uwhseHijXUCP5JXMtzG57RySwGC+PDTmW89xAswsyx0hQWpvxBQn68Tq+3f29eGP8yAuGybyyK9kvhz79gHTMaY2Ag+R9/Qt5bbyMLCrBcdAGOM8eDyYxh5x4cH3+JIz0dj4tm4vvA/Qhvbwq++LLJsXpsBw6S88ijlKxeXaeOqW8Mvo8+itu4U2uNGlq8chWmHlGYIiMpnDeP3JdewZGejvXcc3BMPwPh5gb7DyE/+hL70aO4nzMd38cexRgcTP5XX+N56aVgaN3fV0ePNdQhDQHAhzs+YNHBn46rTIBbAC+Of4Ug9yC1dVTRIkhNQ+bnk3HtdZSuqT93cDmGsFACP/wQy+BBTQrnXPDNt2Q/9LBz11Ej8Lr+Onwfe7TGPaVDA1spmbfcRnG1nLt1tsHfD/9338Ft3Lg2CUnd0Q1Bh+zNpJRcO+A6ZsXMxiga5yjTwzeaF8a9RLB7sDICihZBahrY7aRfNqvRRgCcoSXSL/sPtsZG+qyFgu9/IPvuexptBADy3/+A7Ecf0xsBKUFAxtXXNtoIAGhZ2WTMuZqSjRtddpH4ZKZD9mhCCKSUXNL7Ul6Z8Dojw0bV2bmHeIRwdf9reXnCqwR7dFLTQYoWQxgM5D7/IratW3Vyc79+mN9+Gbe1f2Jd+weWBV9jnTpFF8FT5uaSddt/QdOOa1uz1DTsx46R8+BDOrkxKgqvJYux7tmLefc+3Pbsw2PtGizjxun0Cj76mOJlyyruKYQg///ep2TVKp2edeJE3Jb/isf+Lbjt24zbrvV4PfsUVNkyS3ExWbf+F1lU5LJbR09WOuzUUDnlmcdySnLYnRlbkaHMz+pPtF9Pevj1wCAM9aazVCiaitQ0HAkJpIw5VedYZr7jVnJnnsGn8T+yPX0bAOGe4cwMP5uhuf4UX36tbteQ73PP4nXF8S20ZtxwI8W/VAZidLvgAnjuBb5bd4SfNiWSW2TDajJwev9OXD+pJ9ZF8ym8/4EKfWO3boSu+cu54J2bS/LQYbo6ub35MgVnjOSz3Z+xOXkTGhrB7sGcEzWDCSGnUjT1fLSjlX4E3nfegc9ddx5XG5pKR58a6vCGoCpV01FKKZFINQ2kaDVynnmW/HferTg2nzeDuP9dxFOxr9Qa1+qs8DOYmdqV0hsqo42a+vQhZNkfjbqflBItPZ3kYSPAXpahz98f93Ub+O/n/3IgJa9GGT8PMx9fPxLrQ/dSvHBRhTzox3lYR40k//0PyHmiMtm6x/XXknrrxTy45gFsWs1AjSNDR3JTz6spGliZB8EQEkLoxvWNjm/UHHR0Q6B6uSpU7fSFEMoIKFqVktV/6Y6Nt9/A6/vfrzO44ZLEPynsH4UhLLRCZt+zB0d6euNuKCUlf6+pNAKA99y3+HVbfK1GACC70MYbS/ciH3lEJy/3qi2uttvIcds1vL7ltVqNAMD65PXE2dNwP2d6hUxLScG+b1+Hmx66+uqr6dSpE/371xqAoUVRPZ1C4QJIh0O32Gvq2ZMEmUlOaU49peDn9BWYLzhPJ7Pt2Fmv41c5wmDAVi3McfGgU5i/of5QCX/vSwcvX72wbNbUViXvsbF7dwoMNhLy6w+ctvDQQuSt1+hktp07O9yi8Zw5c1h6HAvszUmHSkyjULgqsqTEGXiuDENAAKklGQ2WSy3JQAvRB+3V8vMa3YnKfH1QOKPJSGpu/QHfHJrE5qg2pVw+pZqbWyEyde1CQlHDQSLTi9JxROi9obW8fJdek1u6LZH3lu0nJaeYEF83bjy9J1MHNS3ExPjx4zly5EjzVPA4USMChcIFEFYrWCwVx1pGBiHWhgMshlqDMCTrp4IM3j7QyLU/US0chcNuJ9TXrQ5tJ0aDwGys1kmX7xry8akQ2Y8cIci94TYEewRjyNEbJIOPt8sGdVy6LZHnf95Fck4xEkjOKeb5n3exdFvTgs61JcoQKBQugDAaMVdJMGM/cIBwfPGz+tVbbnrQRGzz9clLzAP6N2qhVWqaLtAdgMfWzVwwov6Il+N7ByPyqk1ZlXXa5n59K0SOI0fxcpjo3EAU1fOizkW8+b5OZu7Xv9HGrLV5b9l+im369Ytim8Z7y/a3UY2ajjIEx4mUUvemIqWsdTFPk1oNvdrecKqXPZmznnWktp4I1tPG644dr7/LHT1vqNPp8eyIKbhv24eWnFwhM8X0wRjYyDDUQmA9dawuCX3Ozbdy1sAIeof51FokwNPCf6f2hscf1cmNZeGS3aq1Qbz+AXcMvQOLwUJtjAkfS4QhkOLFlalIDKGhmHr1bBbv4uoLzs2xAJ2SU/vUWV3yplK936irL2kK9a4RCCF8gGAp5cFq8oFSyu3NWhMXp9yPILEgkb2Zu0kqSAYkwe6d6Onfi+6+3XX6h3IOsj9rPxlF6RiEgXCvCGIC+hLiGVJxLbtmZ2/mHg7mHCCnJBeL0UwX7670DeyHr9VXt521vVLehlJHKbszYzmUfYh8Wz5Wo5Vuvt3oG9APL4vXSdHWpiA1Dc8rZpP/7ntQttBrW/QrEV078+plT/JZwny2pP6LRBLp3YWLw86mf6YHxXdcr7uO15wrG31PIQTGoCDczzqLokVlW0FzcpD33sVrL77CvI1Hmb8hgexCG1azgakDQ7n6tB5Y5n9H4a+VHbcpqjvWkSOQUuJxySXkvvASstCZeLDo408I6N+b1896gy92f8H65HVoUiPEI5TzepzH2KARFE0+V1cvz8tnNWnraHmICmmzUbr5X2w7d+DIyERYrZh79cIycgTGwMATDmUR4utGci2dfkgDU2rHQ3kfIaVEFhaiFRUhbXbnuombFYOHJ1jMzebfVKcfgRDiYuB1nNnFzMAcKeXGsnP/SimHNvnuJ0BL+hHURnkHtSF5PT/s/Y69WTXd+AcEDeTBkQ/jafZkyeHFLDywgMSC2ucL+wX257I+/2Fg8CCO5R7jsbUPk1GsXxQ0CiMjwkZyecxsIr27tFtnNiklRfYivt37DX8e/Z18W81sVWaDmbERp3J5zBV08uhUy1U6FjnPPkf+3Hd0MlPv3ogb52AccQoSkIlJiHc/pWTFSt30ibl/f4IX/wIGQ6O/L9LhwJGcTOrE05EFlRnRjBERuL87l9KeMYBACDCmJmG/515Kq+UlDvzqS6ynja+4Z/4HH5Lz+BM6HcvYsRgeuwfRrSsSiSwtxfz9z+S/+ApUcT4zdulCyPI/wWo9oU5aahrYbOS99TYFX36FVltGQ5MJtzMn43PPPZh79URKyZ49exrtR1C+RlB1esjNbOD+c/o1acH4sssuY+XKlaSnpxMSEsJjd93NnClTkLbat94Kby+MoaEYPDxq9BHN5lBWlmLyLCllkhBiBPA58ICUcoEQYouUcsiJNLaptKYh0KSGXbPz9tY3WRm3oladvoH9eGLMUxTYCnhp4/PsytjVqGuf1f1srh9wA6mFKdz31z1kl2TX0DEbzMzueyXnRZ/fLo1BbMYuXt70IulFDe9rdze5c/3AGzm9yxmtUDPXxBlryEH6zJmUbv73uMoKPz+Cf1qAqUfUCXWghfMXkPXf2497Xt7rhuvxfbTSp0BKCVKSMecqSpYtr6dkTYSbG4HffYvllKEn/F237d5N5vU3YD90uGFlqxXf++/D6/rrjtuhrCV2DUHZ36+0FPvRo8iiRkw1CTB26oQxNFTXRzSnIdghpRxQ5TgM+AVnjoE5J/uIQEqJQzp44p/H2Ja2tVYdT7MXb096B6PByP2r76lzFFAXo8PHcN/wB9iUspGn1z1Zp95lff7DZX1mHde12xIpJbsydvH42keOO7fzjQNvZlrU2Q0rnqRITUMWFpJ53Q31hoKuijEigoBPPsZSZaH2RCj84Qey73+wcfmChcDr5pvwffCBWqKPOsDhIOu/t1P08y+NurchMJCA/3sX6+jRDSvXgtQ07Hv3knbhRcic+n0vquN95x0kTDurzT2LpZRgs2E7cABs9oYLVMEQGICpc+U24uY0BGuB2VXXB4QQ3sBPwKlSSutx1bSZaM0RwRexn/PDPn0KvQivCG7qMYcoUxhmoxmThxefxH3PooP6nRuhHqHMCJ1MT/euOKSd9fk7+T1phTNRdxXuPOVuxnkPISUnnvTidJblbOTvsgQk5QgET419hgFBA11+VKBJjSJ7ITf/eaMu+Q84R08Tw6cT6BZEvi2ftSl/sKFszrgckzDxyoTX6erTtcOuGZR3rAVffEHem2/hSEyqVU+4u+Nx6SX4PHA/wsOjWb4b9iNHyHnscYqXLa9zdGAeOBDfxx7BOmpUnfPs0uFAGI0U/rSQ3JdfxnH4SO03tFjwOO88fB59GKO//wnVuXw6KHXymdgPHtLXdcAAuHYWdO0ChYUYfvyVkl8W66OsCkHOz4uIGTyozX5f5f2w/cDBivWVcoSbFYICwc0KmoScXGRWlvNzFYxdIiv+hs1pCAYBhYBZShlbRW4GLpVSfnFcLW0mWsMQaFIjpSCZm5fdqMtMdmefWxjr0Z/8d96l+M8/QZNYx47B67Zb2WfK4MHtTwNwQ48rGCW7o839CPuGTQizGdPZUzDMmcWHCd/zd+o/WIxWHo75HxFxhYj3PsW2Zy8GXx8Ml1wA507juQNvcyD7QMW9wzzDePeM99tF5/jetndYfLgyiJmn2Yu7hzxGaoaVBevTic8sxN/TwrShQQzv6clrW5/UeZ/29u/DS6e90hZVdzmkw0HJqtWUbt6M/dAhpN2OMSwMy6CBuJ15JgZv72aN31+RoezYMYqXr8C2cydadjbCwwNzTAzWsWOwDBx43FOVJWvWULJxE/Z9+5G2UozBnTAPHIDbmZMxBgRUGI4TJfe118l7ufI7I9zcsHz4NvHhVual/c6xvKN4mj2ZHDSOCQEjsd9wB7btlftdsr78nH4TJrTpi5YjIwNHfBUvbAEisjN2dwtZ9hxKHCUIDHibPfE1eSPjEpD5VV4sTUbMMTEIg6H5g84JIXYCXwAvAm5l/w+TUp7YGK6JtNaI4KMdH7CwSuKaq6NnM7UwiozLZukWtwAwGvF/7x22R1uJL4hnQqyk5F59LBZwOu+4/fAFr2bP48Kws4j4aDG2L76uoWeMjMT83Sfcv/cFUgpTKuSPjHqMU0KGubQxKLIXceWSyyl2OP9GAsETI1/mm1UFrNpdc62gRycvnrgkisc23EleaaVX6qunvU5UWeTXjk5tHX3VsM+tdU/ghDvsOtsgZZONmHQ4SB4+Ei2l8rfi9sUHfO+9hyUJNQPwhXiE8Gzf+3HMnIMjLg6AzE8/pt/IkQhv7zYzBra9+3TTciIygjw3SUa1kTWA0WCks3sY4kicbi3B2DkCQ0BArYvfTQ06NxKIBNYCG4FEYGxDhYQQbkKIDUKIbUKIXUKIJ2rRsQohvhNCHBBCrBdCdGtEfVqFDcn6nRHTOk0g6+praxoBcM6H3nIbp/j153T/kZTc92hNHZzu/KXX/5cbu86ic1JJrUYAwBEXh/bY81wcPl0n35C03qU7Rk1qbE3dUmEEAIZ0GsrhJGOtRgDgYGo+P6xN48wu+rauT17n0m1tTWrrKIVo2VSOdXXOJ/rWXmcbmmoENI3SLVt1RsDcvz8JnT1qNQIAKYUp/N+xrzHept96q+XmtokRkNK5i0pnBMxmNE/3Wo0AgENzkFKSDqEh+mvl5p1QGxrzFGxAEeCOc0RwWMpGeQKVAJOklIOAwcBUIcSoajrXAFlSymjgNeCFxla8JSm0FZJUUDkvOynyDOz/bkXLqv2hAM6V/tjd8N3CendeOOLi8Esvwvjjkjp1AEqXLecUvwG6zvBgzoF6SrQ9BmHgUI7O5YRJETP4cV398WZ+257KmNCJOtnB7IN1aCsUlQiDAduOHXrhVZcxL+33esttSt2MYcKpUMWwycKilqhio6i+LkCgP9n23NqVyyi2FyOtFl0btKLCekrUTWMMwUachmA4MA64TAjxQ0OFpJPyjePmsn/Ve8hzce5CApgHnC5cYDU0r1QfgrerT1dsOxveFirzC3Dsim1QT9uzH0obSAmoaTjS0/E0eVaIckqObzdEW5Bb7W8X7N6Jw2k1/QeqUmxzIDX9m2Z7aKvCNajxgtalM/H5cfWXQSOnOAuDj3el0HF8O3WaCyEE0uEgLjmZM6+9hkEXnM+g0ybw7tvvNVjWppUizFX8ghsRdbY2GhN99BopZfmkfBJwrhCiUSmQhBBGYDMQDcyVUq6vphIBxAFIKe1CiBwgEEivdp3rgesBunTp0phbNwmrUe8OX2DLxxAY0HBBkwlDI3Y+iAA/pKFhe2f08qbEUWkwLMY22ah1XFgMZt1xsb0IX3czmQX1byOtPuNgMdYekkChqI6wVvtd5BfgZfZq0H/F3eKJVnWvfhtNRTrzPAtMRiMv3HU3Q2JiyPf1ZtgZpzNy/Eii+0TXWdYojOCoMkFzgu/RDba8ihGoKmvUjiEppUNKORjoDIwQQpxQxgUp5ftSymFSymHBwQ1HM2wqfm7+eJsr3xQWH1mM29QpNXurapj69IbLL6pXR7i7ow3qh+OUQfVfKzqaFPJ0+/C7+XRruPJtiJSSrj5ddbJ1KSuZMqj+Zza0mz8HsvfoZK7eVoVrIDUNc5/eOpnhx1+YEjS+jhJOOntFYkpI0635CffGh4hYGbeCa36bw7k/Teea3+bU6XDaWISbG2HBwQwpW+D1tjuI6dOHlKSUOsuYDEZM0qDzPBZuJxbmolVMoJQyG1gBTK12KgHnQjRCCBPgCzQchL0V6B9U4UtHfmkecSXJeN1wfZ367ufOIM9kIzlAYJ54Wp165ntv55fkP5FnnoYpqnvtSgYDpqcf4psUvTNOv6DWz1x0vFT9uwGsTPiDGcNDCPKufTRjMRm4cXIXlhybp5P3C+rvsmGIG4umyYp/ipZBGAxYhg3ThfAuWfo7o70HEe5Zu6evAQM3dZ8Nb+gjngpPz1r1q7MybgVzt75FWlEaEklaURpzt751wsZACOHswKu8aB7et58d23YwYuTwOssFWQKRadVCkFcLK95YWswQCCGChRB+ZZ/dgcnAnmpqi4DyKFkzgeXSBX79mtQ4s9sUnez+7c9guOZyfB57BENQUIVc+Pri9d/b8Hj8Ye7c8QTP7n0L23MPYL3uKt0XyxgehvWVZzl4Wi++P/YTT+97A+PXH2CdMR1MlTN0pj59cPv2E373PMrWKh7NVqOVSZGnu3TnKIQg1DOMgUHO0U6AWwC3DbmdLn4BfHTdKMb2DKLqjFjfCF8+vHYkvUOCuWHgTXT3jQLAz+rPqLDRLu88V52qzyYjv4R1B9JZtiuZdQfSSc8rqVVP0XQMvr64T5tWKbDbsV17G0/3uZtxoafqord29enK0wMeIGTBX5RW8dwWQmDw92/Us/ki9jPdlC1AiaOEL2I/q6NEwwiDAUOAc1o5v7CQS+++i5fvuYdeQVH4WvRbWi1GM2HuIbgVlCKzsqtcxJnQ6ES+Xy2WvF4IMRDnQrARp8H5Xkr5pBDiSWCTlHKREMINp4/CECATp6PaoTovSut6Fj/894NsT99WcWwymLit702M8R6EyCtAaBKDny87iw7ywo7Xybc7F0XdTe7MiJjKmcHjEbl5CJOFfIuDH1N/Z1XiamTZmnmAWyC39byGwb79KEpPxmY1kWjP4JuUX3X3BZgVM5tLel/aKu1uCprUOJh9gO/3fsvtQ+7E0+zJvpWHOLI+nqDBYYQODCWnsBQvdzN5x7JJWH2ETr2C6Hd2L4RZ8HnsZ0R4RTClW/XBo2ujSYkmJYs2x/PjhjgOptZcIO8e7MkFw7tw/rDOGAwCQzszdK6K1DQcx+JIPf0M3RZMQ2goppuvxTj1DPJKc3GzeGA4koB4831nruYqZM+fR7+RIxt1v3N/ml7xG66KQLDwvMaF1KjRBinB4aBw507Ou/lmJo8Zw/9mXwEmIyIoCOHvi0NqztGDzQFp6cgc/a4iQ1AgprJw4M3uUOZqtJYh0KRGRlE6d6y8ndzSmtu4vExe9PDrweNjnmJ3ZiyPrnkYu6y568BqtKJJrdbk3UHuwbw24Q2KHcXcu+oucktzdZ7M5cQExPDsuBcw0Piokm2Npmnkpxew4rW1JMdW2T4qwOxmwl7iQFaZMvEJ9WLiHWMI7dM+I5AeTsvn0Xnb2Z9ce9L3qkSHePHEhQPpEeLdoK6i8eR//gU5DzxY84QQCA8PZzpQe83fqGXYMNKfe4Y+MTGN+n1d89sc0mpJwRnsHsxHUz49kaoDTmNwxWWX4Wc08cq999ZUMBicW9Nr6bOFmxVTz57Otgpx3IZAeezUgUEYCHIP5qmxz+JvrbkTKN+ez7b0bXy792v6Bw3gvhEP1Lqrp8RRUqsRCPEI4emxz+Bp9uSNf18jqySrDiPQl8dGP4mgZR2ImhOpSfJSClh43+96IwAgwVZk1xkBgNzkfH55ZBlxW9tXuj8pJfuScrn+w/WNMgIAB1Lyuf6jDcQm5KhpombE64rZ+Dz0oLPDrIqUzhDbtRmB4cMJ/PJzoPFe2rP7Xom12m/darQyu2/jc0HUxpo1a/jyu+9YtXULwy+5mOEXX8ySv/6qVNC0OoyAG6aoqAojcCKoEUEDSCkpsBXw/o73WB23Co2avnRX97+G86IvICk/kblb32J7et05e4zCyBldJ3NVv2swG828vOlF/klcW0PPzejGzF4Xc2GvmQhEu/GylVIiHZIf71xM5tFs3Tl3Xze6ndYVtyBP7PmlHPv7KDmJ+s7T4mnm4rfPwcPPHdGILbZtiSYlxaUOLpu7pkZ2qhBfN87oH4q/h4XswlL+3JlcI5lJsLeVb289FXeLEYOLt7U9UB7/qGTjRrLvuQ/7/rpTRwoPD7xvuxWvW24GIdizd+9xRR9dGbeCL2I/I70onSD3IGb3vZIJkRMbLthItKIiHPHx9Tu5GQSGwCCMoSE1jICaGmoBypPTpBamsPzYcvZl7SWpIAkpNTp5hNDTvxfTup+Nv5u/07s2+yCr41dxIHs/6UXpGISRCK8Iegf0YVKX0wlwC0CTGvuz9rMybjkHcw6SU5JTkaGsX2B/JkROxMNcM+FEe2DzdzvY9HXlGocwCE65bhi+McEs2JFEXFYR/p5mzusXhntBKf+8upbSKn4G3UZFMuWBundeuRIv/7qbeRuOVRxbTQbund6XMH93Fm9NJCWniE4+bpw9OIKUXGeS85IqCU3OH9aZ+87pV9ulFSdIeVyj4tV/Ufzbb9h27sSRkYGwujkzlI0aiceFF2Dw8qr4fR1vPoKWprxeWkEBWk6O0yDYbc4O3+qG8PTA4O+PMJlq7SOUIWhB6kunWPVcfXpVH1pj9doTml3jy6vnU1Tl7XfMnWNZV1LKR2uO1NAf3yuIW4Z35c+H/sBeWjY1JuCy987Fu5OXy44KpJQUlNg5++WVFR27QcBL/xnK6j2pLNwcX6PM2YPDOaN/KHd/vQVH2dSY1WTg57sn4O1mapfP25WpLyprYzJ6uQL19QP1nVNrBC1IfdMzVc/Vp1f1wTVWr70gNUnCjmSdEQiODiTf361WIwCwel86fxzNpMfEqCoXgoN/H3VZI1DO6j2purf70T2DSckpqtUIAPy6NZH4zELG9qp0sCuxa6zaXbfTkOLEqS+gXW2/L1d8Ka6vH6jPQBwvyhAomg1hEKQd0PsDRp3diy821x/3Zd6/8XQ7U+9GX/06roYQgj2J+t1k5w/rzPfrjtVRwsn3649x/rDOOtmexLaJeqmoxM3NjYyMDJc0BseDlJKMjAzcjtPDuDGxhhSKRlOQoV/c8u/qx46/648kml1oQ1j04TsKMk4simJrkpardyoK9nbjSHpBHdpO4jIKCfDU7zhJzW1EakhFi9K5c2fi4+NJqy3ZfTvDzc2Nzp07N6xYBWUIFM2Kwah/s3XYNSwmI7YGIjtWfyFuroxbLUltVRSi/vzvQtRsq9HFp8A6Amazme7d6wj50gFw/V+bol3hG+6jO07ZksjEBpzEokO8KEjRe+L6RfjUoe06dAnSx6bZEZ/NyB5BdWg7Gd49kF0J+hDb1a+jULQ2yhAomg2pSUJj9JFGDyw9wKxhkbiZ647cesPY7hz6eS8WDzM9J3Zn7PXDGT6r/uisbY0mJQMj/XSy+RvjuGJc9zrf8I0GwRXjujN/o37NZGCkH1o7n5tWtG+UIVA0G8IgCIoKILB7pSd2YVYRB+bv4s2LBxHmp1/A8nE38+jZMXgl5tFtZGcu//gCJv1vLP3P7o2Ukqy4HAqzK9ccqnsjtyUGIRjZI4hOPpVtOpSaz197Unnm4kEEeunzKQR4WXhy5kDWHUjXeSAHeVsZ3TO4zrhD5YuXdodGXEYBR9PzKSypnGZTBkTRHKg1AkWzIqVk2GUD+e3ZVRWyQysOU5xZxMuXDiBXwLHMIgI9zXT1cydtazK9T+uOh787cVsSiV26n8QdyZQWVIblcPdzo8sp4fSb1pvg6ECkJl1ia6nBILjqtChe+LkyK903/xwlKbuI5y4ZTFZBKam5xQT7uBHgaeHbf46yPFa/VXTO+KhaRxBSSmwOydJtify8JYE9iTnYHOUJ66FzgAdn9A/lwuFd6gzxrVA0FuVQpmgRlr+2hv0rD9eQe3fyxCPAg9LCUvwjfTn9rlMpyi5m1dx1xG1uOM5Qn8nRjLl2GCaL0SWMAcDtn29i/cGa210jAz0qQkwcq2UX1LDuAbw9p/Z489uOZfH0gp3EZda/e8rdYuTmM3px0cguaFKqiKaKOlGexYpWRWoSTdP4/dnVHNucUKtOUFQA5704hbzUAn5++A8KMxufODywuz/nPD0Zi4e5zY2BpkmKbQ7+98VmtsdlN7pcv86+vHnFMNzNNeMM/bkzicd+3FHhfdwYzj2lMw/M6NduPdIVLY/yLFa0KsIgMBgMTH14AiOvHILRrP+aGUwGJtw+Gs2usfiJ5TWMgMXLwimXDWTcTSMYeF4MBpO+fMbhLH5/flWbGwFwTg+5mY3MvWo4V9azUFyO0SCYfWp33rt6RA0joEnJnsQcHp9f0wgEeFmY1DeEKQPCiA6pmYVq4eZ4PvvrkDICihNCjQgULUb522lRTjG7f9/PsU0JZBzKovuYLky6YyxrPtjIzl/2VugbTAYmPjYJn66+rIhNISW3hKhgT0ZFB5H0byJrX9NHaR130wj6Tu3V2s2qlfK2puQUsWBTPOsPpHMwNZ9Su4bZKIgO8WZEj0DOHxZJqJ97rW/umia5/N21HKqS1Mbf08Jd07sRFgib0/7BppXQ23cgPqYw3l5yjO1xlVtRzUbBlzePITLAU0UzVdRATQ0p2pTqnZ6madgKbXwx50cc5bF6DHDO3HNYuj+dj1Ye1L0Ru5mNPHJef7rYNZY/trxC7h3ixWXvnesSI4Nyqs7Ta1Jid2iYjAadrLZ5fE1KVu9O5f7vtlbIfD3MvDmnH98cfJd/Uzfq9Dt5dOLuIU/w5i/J/Hskq0I+Y2gED57r+rmtFa1Pm0wNCSEihRArhBCxQohdQojba9HxFUL8LITYVqZzVUvVR9F2VH/zNRgMHPjraKURAIbNGsy21HzeX36gxrRIsc3BI/O2oXXyInJoZULyvJR8kmJTXW5badXPFpOxhqyucku26RfLbzgjkvlHPq5hBABSC1N5btOD3Dm9qy4P9O87krE7aubMUCjqoyXXCOzAXVLKvsAo4BYhRN9qOrcAsVLKQcAE4BUhhAXFSU/qvnTdccSE7ny8qu501ZqED1ceoN9/BurkafszXGpE0BSqehx7WI0M7OrJuqQ1depnlWSxO2sbI6MDK2TFNgeH0/KVf4HiuGgxQyClTJJS/lv2OQ/YDURUVwO8hfOV0QtnAvv6g9IoTgpyq6V1lEbR4FbJdQfS8QjWh2PIaWR6SFen1O4gPa8yiF1UsBd7snbXmiS9Klsy1jKwq/5vEp9ZRAPFFAodrbJrSAjRDRgCrK926m0gBkgEdgC3SylrjGuFENcLITYJITadDNEBFSdGrTNAJ2mHJxqKXleGRNYIYtfe1v0UbU+LGwIhhBfwI/A/KWVutdNTgK1AODAYeFsIUSPamJTyfSnlMCnlsODg4OqnFe0Q7076LZAGTRLm515vmRFRgRRWGzV4h5wcAdssJiMBVcJSHE7Lp5d/nwbLDQoYya5j+u234f4ecHLMlilaiRY1BEIIM04j8JWUcn4tKlcB86WTA8BhoOFvv6Ld06lnoO446e+jXDmu7jDAQsC1E3qw+9sd1a4T5FKLxU2hb7hvxef8Yjt7E4oZFjKiTn1viw8DAk9h7f7K9RaryUB0iJfyMFYcFy25a0gAHwG7pZSv1qF2DDi9TD8E6A3UvWKoqJOGOkNXmi6QmqTHuG46R7GNn29lVKQ/s8Z0rTHVYTIKHpzRD4+CUo6ur0wD6RXkQXj/kHa5WFx9MVdKydRBYTrZe3/EcVn0jfQNqJnc3s/qz4OnPMNbS47pdlmd3i8Uk1H5iSqOj5YMOjcWmA3sEEJsLZM9CHQBkFK+BzwFfCqE2IFzMHuflDK9lmsp6qA8AFteaj6xv+0naWcqmceycZQ6cPOxEtQjgG4jIuk5oTtmN9eIMSgMAndfN3qf3oPdv+0HnEnvf/3vL5zz9BnMHNGFX7cmkpZXQvcgT07vF0r6nlR+v+933XUGnhvT7oxAuR9BUlYRP22O598jmRxKzefhc/szISaEyEAP4sriEmXkl3Ln57u5/9xbuSS6iI1pq8ocyobQ2TOauUuPsfFQpQ+B0SCYNbYbmiaVQ5niuFAOZe0YqUnspQ7++WSzs0Ot51FavS2MuWYYvSZGuUQ8GqlJbMV2vr/tZwrS9fP+noEeDLqgL1ZvKwVpBfz7w07sxfrNZCF9gjj3uSkg6k/w7UpoUlJic/Dmb3v5aXO8bi04qpMXn90wmt2JOdz48YYaC+Nhfu6c0j0Ak1FwKCW/1rhGV50WxQ2TerZsIxTtFuVZfBIiNUlhdhG/PPwn2QnV1+DrJubMaMbfMso1jIGUZB7L5peH/6S4Wv7f+vDr7MOMZ8/EzdvabkYEmpRk5Jdw66ebOFpHXuM546O48fSe/PxvPM8t2lX7Lqk6mNw/lCdmDkTQfgyjonWpzxC4xlyB4riQUjqnUh5dVqsR8A7xwuxmojCziOI8fQe7+/cDuPlYGTF7SGtVt06EEAR08eOCl89ixRtrSdqV2mCZHuO6Me6mEVjc2z7yaGORZaEm/vtZ7UYg3N8dD4uRnzbH0SXQg3OGdibYx41nF+6qSGxvNAg6B3hgMgiSsosoLHUAYDEZuHZCDy4f253CEjtebuZWbZvi5ECNCNop/3y8me0Ld+tk0adH0XN6H5ILSskrthEZ6Ik9vYDd3+wg/VBmhZ4wCM57YQrBPQNd4u2xfJ3j8D/H2LVkH8mxqbrwE2Z3M5FDwuh3dm/C+4e4TGKa4+HN3/bw9dqjOtnZQ0KZOSqEbFsK+aX5hHuFk54jyM03MW1wBMU2B79uSUCjlOHRPsTnH8Om2ejq05UDSSUkZmhMGRhO5wAPNhxM5+Vfd/PeNSPw87CoXUOKGqipoZMIKSXFuSV8efV8NHtlZzn8xuEk+rvz9qoDZBdWZvfqHebDo2f1YddHm0nallwhjxwazrTHJrVq3RuifLpKc2jkJORSWmzHzcuCT6g3wiDapQGQUpJdaGPGKysrMowB3DU9Ck//o3y97yNySytHdT18o7mh/138siGPM/qF0SPczM8HF7HgwI+UOJyjO4FgSKeh3D70DkpL3Pho5UEW/evM+zD71O7cMtk1IrIqXAuVj+AkQgjBvuWHdEag2+hIMjp58vSS3TojALA3KZdbv9vKKTcMx2StTCAftyWRgoxCl9pWWj46MRgN+Hfxo1PPQHzDfSo6//ZmBMDZpsVbE3RGYGJMMP5Byby38zWdEQA4mHOAZzbezwWjgtgWn8r3e+bx7d6vK4wAOL2J/03dzGNrHyG1ILvCCAD8/G88CsXxogxBOyR5jz7MRvQ5fXj3r7rdL7IKSvllZzJRE6o4bMmy67iOHaiBK0xbNQfbj2XrjmeO6cR3+z+tUz+nNIfViX9w5sBO/Hrkpzr1juQeJqP0GP0iKh3RsgttHMsocCkDr3B9lCFoh2THV0apNJoN4GkhMav+VI9/7EklZHjnGtdpj2/Z7Y2qC8QWkwFPd42UwuR6SsA/ySsp1vKwa/XHYPwn5U9G9/bVyQ6n5jcmTJFCUYEyBO2QqtNCBpOREpujwTJFpfYaKSM1u+otWgN7lX2gJqOgxF7aYJlie3Gjrl3iKMFcbe+f/SQJuaFoPZQhaId4BFQGZ7MV2fB1N2M11f8o+4b7kBevn4/28Hdrkfop9ARWCSZXWOLAy+KNxVB/2o1ov16YG5GaI9onhqMpesMS5G1VQecUx4UyBO2Q4B76gG1xa45yZr/QesvMOiWSg4v36a8THXjSBGxzZfqE66duVuzM5NSI0+otc1bXmSRlafTwja5Tx2QwMTpsIstiK/0vDMK5U0xtH1UcD8oQtDOkJoka20Un2/vzXq48pbNu0bAqN46PgrgcnfOZdydPgqMDm7xGUJ8hUQuWTo/iSf1CdLIf1iUxLfIyevn3rrXMpT2vJD7Zwuu/HuHmAfcS5F4z9LpJmLh90IP8uC6Vkio+F6N7BuNmNtbQVyjqQ3kWtzOEQRAa04ngnoGk7c8AoDivhFVPruCRe8dxpKCUhbHJ5BbZiAryZOagcPJ3p7Hhw8266/Q/p0+TjED5nv7MY9kcWnOMtIMZFGUVYzAJ/Dr7EhoTTPT4bpjdzC4RzqKtMAjBoC7+9I3wJbYsFWVOoY17vtzDkxffTabtKKuTl5Jfmkdnr66c0XkGO4/aeGnJIRya5Pn5cTx4/gscyNvOX4nLsWk2evv157TwM1m4MYP5G/R5ji8b3bUisJ1C0ViUQ1k7RGrOGD3z71qiWzgGCOkdRPjYLpjczRSl5HNo+SEKM/U7ioKjAzn/palNCtiWk5jL6nfWk7gjpU4ds7uJQef3Y8jMfgghOuwOJU1KDqXmM+f//sHu0P/e+nf2ZUJ/PzysBpIybSzZmqZLWQnQN8KHD64ZybHsTP49ksHBpFKWbk+hsES/SWDaoHAevWBAi7dH0T5RnsUnKXuXHWTV2+uOa57fM8iDc5+fglegxwl3zAf/PsKKN/7BUdrwbiWATr0COevRSVg9LR3WGAD8uiWBZxbuPK5gcp183Pi/q0fg42Hm8nfWkJRd+26ifhG+vD1nGFaTUYWgVtSK8iw+Sel9eg8m3zceNx9ro/RD+wZz3gtT8Ao6cSNwbFMCy15ZU7sRqOOSqfsy+PXRZWgOrUOvG5w9JILnLhmMn0fjAsMN6uLH/10zgmAfK4/N216nEThzQJgyAoomodYI2jndR0US1jeYrfNj2fvnwRrRRgECu/vTf3pvek/qAZzYdJDUJKWFpax86x/dCMTiYabnlJ50ndgdO2AyGshPyuPgoj0kbK90mko/lMnGr7Yxas7Q42/kScRpMSEM6urPl38f5uctCeRUCwkC0CvUm4tGduHsIRGU2Bw89MM2/t6n9yYXAoZ1D+Cy0d0Y0ytYJaNRNAk1NXQSUL5wqzk0suJyyDySjd3mwM3bSnB0AF5BzZPgff3nW9j6466KY48AdyY8MpF5scn8vD2xYs66Z6g3N4+LQsSmse2rbRX6wiCY9dH5ePi5d+gpovJO26FJDqfmcyAlj1K7hq+HmZhwXzr5Ov07yhfZS+0O9iXlcTS9AIeUBHu70S/CFx8Ps1oYVjSaNlkjEEJEAp8DITgj2rwvpXyjFr0JwOuAGUiXUta7wVoZgvopf55CNG+0Ts2h8cWcH3UJZCY/dyYv/HOYbdVi6TjvD8+e25/S3w9yZO2xCvmwywZyyqUDm6VOJwNVn1d9b/WalBUzb1Ki3v4Vx01brRHYgbuklH2BUcAtQoi+1SrmB7wDzJBS9gMuasH6dAiEEBVTP81lBKSUZB7N1hmBTr2COFZsq9UIOMvAq8v30+u8GJ08oZ5dRh2Rqs+rvs7dUKYnhFBGQNHstJghkFImSSn/LfucB+wGIqqp/QeYL6U8VqbXcIoqRZuQeTRbd9x5XFcW7qo/cFpabgk5UupCYmQeyaqnhEKhaAtaZdeQEKIbMARYX+1UL8BfCLFSCLFZCHFFHeWvF0JsEkJsSktLq01F0YIIIbCX6KNgmjwtZBU2HDwtu6AUi2dlzJzq11EoFG1PixsCIYQX8CPwPyll9QS7JuAU4GxgCvCIEKJGeiUp5ftSymFSymHBwTXd7RUti9QkVi/9FtXitAK6BHg0WDbc34Oi7EqHNqt347a6KhSK1qNFDYEQwozTCHwlpZxfi0o88JuUskBKmQ6sBga1ZJ0UJ4CAoB4BOtHhZQe5aFB4vcV6hXrjSC+kJK9y5BAUFVBPCYVC0Ra0mCEQzhWwj4DdUspX61BbCJwqhDAJITyAkTjXEhRVkFLWcMSqTdZSCCHwDfPGL8KnQpaXWoBMyOM/IyJrLePtZuLhqX3Y/f0OnbzLsOrLRAqFoq1pSYeyscBsYIcQYmuZ7EGgC4CU8j0p5W4hxFJgO6ABH0opd7ZgndoV5ds/C9ILid+aRPrhLEoLS7F4WAjs7k/nwWF4B3u2WlL3fmf3Zs37GyuO17+9jjPuHsvQCwbw5eZ49iTm4m4xMjkmhIuGRLDjk38rAuMBWDzN9JoY1aGD0CkUrohyKHNhshNzWffxZo5tTqw1npAwCCKHhDP66qH4da49BHVzIaVEapIFdy8l/VCm7lxwz0Cizu6Fb7gPdpuD5A0JHFx2kJJ8/WLyabeOos/kuuPrKxSKlkMFnWuH7P59P2s+2NSowG5Gs4HR1wyj31k11tmbFalJcpLzWHjfbzqfgsbQc0J3Jt0xtoVqplAoGkIFnWtnxC7dz+q56xsd3dNh0/j7vQ3sWry3ReslDM61ghnPnqlbL6i/EAw4pw8Tbx+jsqEpFC6KCjrnQkhNkp2Yy9oPN+rkJouRqNO60WVSFBZPC6UFNo4uP8Th1YexV4lJv/ajzYT1D8G/s2+LrRkIIfDr7MPMN85myw872bV0H8U5tY8OQvsGM/w/gwgfEKrWBRQKF0ZNDbkYvz62jPitSRXHvhE+nHr/OJbsTWPB1gQy80sJ8LRw3qBwpsWEsObFv8iOy6nQDx8QwjlPT27xepZ37A67g6SdqaQdzKAwswiDyYB/pC+hMZ3wi/BRBkChcBHqmxpSIwIXQWqS3OQ84rdVGgGzu4lT7x/PvT/v4lBqfoU8s6CUj9ceYfn+NF66dxx/3v8bpQXOcMaJO1LIis/BL9ynRXcSlXfuRpORiIGhdB4cVtmWKi8XyggoFK6PWiNwEYRBcOzfRGec1jKiJkaxaFeyzghU5UhaAQt2JNFjUpROHrc5sVXDPFe/V9VAagqFwvVRhsCFyDikD8jWdWIUP21LrEPbyc/bE+kyQW8Iqm/vVCgUivpQhsCFKCnQ77s3Wo3kFtXMYFWVvGI7BotRJyutJeuVQqFQ1IUyBC6E2V2/ZCPtEvdqnXx1rGYDODSdzGRVSz8KhaLxKEPgQgR29dcdx689yln9w+rQdjK1XyjxVTKAAQR292vuqikUipMYZQhcBKlJIgaF6mQHfj/AZUMjCPapPXRzoJeFWcMiOfDbAZ2886Aw5bylUCgajTIELoIwCIKiAujUK6hCVpxbwqa31zH3osFMGxCGxeR8XBaTgbMGhPLupUP4d+56inKKK8oERQcQHB3YoZPDKxSK40M5lLkQUkpS96az8IHfdW/0HgHu9DyrJxGjuqDhtN4J6+PYv3gfhZmVSV8QMOPZMwmNCVbbNxUKhQ7lUNZOEEIQ0ieYoRcPYPO32yvkhZlFbPtqO9u+2l5PaRgysz9hfTu1dDUVCsVJhpoacjGklAy7bCBDLx4AjX2pFzD4wn6MuHxwqyWrUSgUJw9qROBiCCGQUjJ81iA6Dw7j7/c3kHkku079gK5+jL1umArsplAoThhlCFyQ8s48tG8wF70xneTdqcRvKc9QZsPiYa7IUBbWt1PFKEAZAYVCcSIoQ+DClHfsIb2DCY2pOfdfvqCsDIBCoWgKLZm8PlIIsUIIESuE2CWEuL0e3eFCCLsQYmZL1ac9U9dWULVFVKFQNActOSKwA3dJKf8VQngDm4UQf0gpY6sqCSGMwAvA7y1YF4VCoVDUQYuNCKSUSVLKf8s+5wG7gYhaVG8DfgRSW6ouCoVCoaibVtk+KoToBgwB1leTRwDnA+82UP56IcQmIcSmtLS0FqunQqFQdERa3BAIIbxwvvH/T0qZW+3068B9UkqtRsEqSCnfl1IOk1IOCw4ObqGaKhQKRcekRXcNCSHMOI3AV1LK+bWoDAO+Ldv1EgRME0LYpZQ/tWS9XA0pZUVmsva6AHwytKGt0Cp2f6kdYIq2ocUMgXB+oz8CdkspX61NR0rZvYr+p8AvHcUISE0iDALNrpF5LJvi3BKMZgMBXf2xelmcOi7uIFbeBqlJsuJyKMwqwmA04N/FF3dfN6eOi7ehLaj6N8krsnEwNZ9SuwNfDws9OnlhMhrQpMSg/m6KVqIlRwRjgdnADiHE1jLZg0AXACnley14b5elvPNM3JXCzp/3cGxzIppdPzPm38WXmCk9iTmzJ0azweU60vI2pB3MYMeiPRxZF4e91KHT8Qn1os+Z0fSb1huzm8nl2tBWaFJid2gs3BzPT5viOVgtH7XZKBgVHcQlo7oyLCoQTZMY1AhL0cKo6KOtiNQkthI7f7+7gf2rDjeo7xPmzcT/jSG0j+usi0hNotk1/vlkM7uW7KuYDqoLz0APTrt1FJFDw1ungi7Orvgcnpi/nWMZhQ3qTu4fyn3n9MXDalKjA0WTqS/6qAo610pITVJaZGPRA783yggA5Cbl8cvDf3B0U0IL165xSE3isGv8+vgydi1u2AgAFGQUsuSpFexbcajlK+jirDuQzs2fbGiUEQD4Y2cyN3y0gfxie8U6gkLREihD0EoIg2DZy3+TcThLJzeaDUSN60r/mf3oO703Xp08decdNo0/X1xNbkp+m2cdEwbBX++uJ2mX3uXDYBR0HRXJgJn96DujD74RPrrzUpOsfPMf0g5ktHkb2gJNkyRlF/Hgd1spqTYNGOLrxswRXZh9ancm9w/FatL/JA+m5vPwD9vU9JCiRVGGoJXYt+IQcf8m6mR9ZvRh6utnkzQ0jMVWwdoQDwbdO47xD55WsWAMYC9xsPrtdW26G0dKSfzWJPYt17/ZR03qzrQ3p5MzNpLFVgOrA630um0Uk548HY8A98ryZcagI2IwCJ5btIvCKuso3m4mnr5oEI+dPwCHppGYVUjXYE8+um4Ul43uqiu/4WAGv25xjVGh4uREBZ1rJbb9pIusQf+L+1PQO5BLP16P3VH5lrxgczzjegVx2xOn8+fDf2ArsgOQsD2Z9EOZBHbzbxODIIRg2wJ9G3qeGY3nhG7M+nQjxbbKTu7nLYkMivTlkccnseyRPynOKQEg82g2cVsSiRwS3mG2mGqa5FBaPhsOZlTI3MxGXpk1lC/+Psxfe6s4SO5K4ZNVh7jvnL5cM6EHH608WHHqq7VHOHtIbY75CkXTUSOCFkZKSVZcti6ngEeAO53GduHxX2J1RqCcv/alM39PKr3P7q2T7191uM060OLcEuK3JVUcm91NRM/owz3zd+iMQDnb4nJ4b/1R+l08QCc/sPpIhzEC4BwN/LY9SSe7YHhnVsSm6I1AGQ5N8vyiXYzsEUhI2RZcgEOp+RxIzkNrZ5s7FO0DZQhagdR9Gbrj6Ck9+WZzPPVNly/clkC3Cd11srT9GXVotyxSk6TuT9ctDked1p1fdiZTaq/bKXzF7lRCB4dhtBgrZKlt1Ia2JDYhR3c8ZWA4C/+Nr1NfkzBvQxznntK5xnU6jglVtCbKELQwQgjy0wt0Mt/oALYcy6qjhJOiUgdZRTYsnuYKWV5aQT0lWg5hEOSn6Xe6+EQHsjkuu95yDk1yKDUPr+DKBfD8NmpDW5KaU1zx2d1ipLDETmFJzVFUVbYcyaRXqLdOlpRTpPwxFC2CMgStgv7HKzWJ0dDwn95Y5rVbTlvuHBHVqis1DWMj6mMyGJCOylFDh+zHqrRZk7JRfzejQeCoNmQ0dsg/nqI1UIaghZGaxDdc/2aXsSOZcdGB9Zbz97TgKUTFYjGAb5h3PSVaDqlJfMP0W0Izd6RwWo/622A1G+ga5EleauUowDfcp54SJyeRAR4Vn0tsTqMYUGVXWG2M7R3MtmqjxshAD9qbA6iifaAMQUsjIKSaZ/DBZYe4YFAEHlXmzqsze2QXDi7dr5N16hXUIlVsCGEQBEcHYKiyx/3IP3FM6BmMv2fdHdqFQztz7K8julFNp95t04a2pH+kn+544eZ4Zo3pVqe+u8XIuUM788sW/Xbj/p39ai+gUDQRZQhaGCEE3sGehPUPqZCVFtiI/WY7b1wymGBvq07fZBTMGd2NUzyt7P+zcvugMAh6n96jzRyyzO5muo+OrDjW7Bqb39/IWxcPpnOVN14Ag4ALhkRwTrcAds3Xbzltyza0BZqUTBsUTtXZoCXbEgn39+DKcd0xGfXTPUHeVl68bAhfrTlCbpGtQj6oix8RAR5qjUDRIig/glZASsnQi/vz686UCtmRv49iKyjlzf8MIrnYxv60fHzcTAzrGkD8P8dY/f4mXYcZPa4b3iFebVF9wDk9NOTC/hxeewytbMtr0rZkHO+u54UrhpAtYFdSLh4WIyO7B5KyNYnljy3HUcWJKmJQKCFtNKppKwxCEOrnztSB4Sze5nzD1yQ8/MM2rhofxafXj2bL0Uxyi+x0C/Yk2NvKJ6sP8c/+dN11rjqth4rkqmgxVNC5VmT1O+vZ/dv+GnL/Lr74hHhhK7aTvDutRjRSjwB3Ln5rOhYPS5vvwd/09TY2f7ejhtw33BvfcB8cNgcpe9KwV9sVY/EwM/PN6XgFerR5G1obTUoKS+xcNncNabklunNmo2BApB8eFhPJOUUcSMmvUf6coRE8dG7/1qqu4iSlvqBzyhC0ElKTSE3y+wurObqh7j3k1XHztXLOU5Px7+Lb5m+D5W+kK9/8h73LDjZcoAyzu5mzHp1IWN9OLVg710ZKyeG0Am79bCOZ+aWNLjemZxAvXjYEg0GoCKSKJqEMgYtQPtWzdf4uNn2zvcabf3U6Dwljwm2j8Qhwb3MjUE55LoJdS/ax/rN/dbuaaiOkTxATbh+DXwfcLVQdKSUZ+aU889NO/jmQXq+u2Si4ZkIPZp8ahaBttw4rTg6UIXAhyt+qCzIK2bVkH0c3xJMVl1NhJDwC3Anr24mYqT2JGBBa0fG6IkW5xez57QAH1xwlKy6nwrC5+VgJjQmmz+RougyLAKnSV5ZTnmhm8+FMftoUx5ajWaTnOaeLjAZB1yBPxvUO5sLhXejk66bWBRTNhjIELkjVDt5e6qC0oBSj2ViZptKFDUA5VTsph91BSV4pBpMBt7KdUO2hDW1F1VSUecU2SmwaPu4mLCZjjfMKRXNwUhkCIUQacLSWU0FA/eNt10e1wTVQbXANVBual65SylrTHbY7Q1AXQohNdVm79oJqg2ug2uAaqDa0HsqhTKFQKDo4yhAoFApFB+dkMgTvt3UFmgHVBtdAtcE1UG1oJU6aNQKFQqFQnBgn04hAoVAoFCeAMgQKhULRwWl3hkAIYRRCbBFC/FLLuTlCiDQhxNayf9e2RR0bQghxRAixo6yONbzjhJM3hRAHhBDbhRBD26Ke9dGINkwQQuRUeRaPtkU960MI4SeEmCeE2COE2C2EGF3tfHt4Dg21waWfgxCid5W6bRVC5Aoh/ldNx6WfQyPb4NLPoT2Gob4d2A3UFbzmOynlra1YnxNlopSyLkeTs4CeZf9GAu+W/e9q1NcGgL+klNNbrTbHzxvAUinlTCGEBfCodr49PIeG2gAu/ByklHuBweB8yQMSgAXV1Fz6OTSyDeDCz6FdjQiEEJ2Bs4EP27ouLcy5wOfSyTrATwgR1taVOpkQQvgC44GPAKSUpVLK7GpqLv0cGtmG9sTpwEEpZfXIAS79HKpRVxtcmnZlCIDXgXuB+sJ2Xlg2fJwnhIisR68tkcDvQojNQojrazkfAcRVOY4vk7kSDbUBYLQQYpsQYokQol9rVq4RdAfSgE/Kpho/FEJ4VtNx9efQmDaAaz+HqlwKfFOL3NWfQ1XqagO48HNoN4ZACDEdSJVSbq5H7Wegm5RyIPAH8FmrVO74OVVKORTnkPcWIcT4tq7QCdBQG/7FGdtkEPAW8FMr168hTMBQ4F0p5RCgALi/bat03DSmDa7+HAAom9aaAfzQ1nU5URpog0s/h3ZjCICxwAwhxBHgW2CSEOLLqgpSygwpZXkKqA+BU1q3io1DSplQ9n8qzrnEEdVUEoCqo5nOZTKXoaE2SClzpZT5ZZ8XA2YhhCvlqYwH4qWU68uO5+HsVKvi6s+hwTa0g+dQzlnAv1LKlFrOufpzKKfONrj6c2g3hkBK+YCUsrOUshvO4ddyKeXlVXWqzRvOwLmo7FIIITyFEN7ln4EzgZ3V1BYBV5TtlhgF5Egpk1q5qnXSmDYIIUKFcMZRFkKMwPldy2jtutaFlDIZiBNC9C4TnQ7EVlNz6efQmDa4+nOowmXUPaXi0s+hCnW2wdWfQ3vcNaRDCPEksElKuQj4rxBiBmAHMoE5bVm3OggBFpR9J0zA11LKpUKIGwGklO8Bi4FpwAGgELiqjepaF41pw0zgJiGEHSgCLpWu58Z+G/BV2ZD+EHBVO3sO0HAbXP45lL1MTAZuqCJrV8+hEW1w6eegQkwoFApFB6fdTA0pFAqFomVQhkChUCg6OMoQKBQKRQdHGQKFQqHo4ChDoFAoFB0cZQgUimZECLFUCJEtaomOq1C4KsoQKBTNy0vA7LauhEJxPChDoFCcAEKI4WXBDd3KPK13CSH6SymXAXltXT+F4nho957FCkVbIKXcKIRYBDwNuANfSimrhwpRKNoFyhAoFCfOk8BGoBj4bxvXRaE4YdTUkEJx4gQCXoA34NbGdVEoThhlCBSKE+f/gEeAr4AX2rguCsUJo6aGFIoTQAhxBWCTUn5dlqd2rRBiEvAE0AfwEkLEA9dIKX9ry7oqFA2hoo8qFApFB0dNDSkUCkUHRxkChUKh6OAoQ6BQKBQdHGUIFAqFooOjDIFCoVB0cJQhUCgUig6OMgQKhULRwfl/+o1fgUWiyPwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn\n", - "ax = seaborn.scatterplot(\"x1\", \"x2\", \"bucket\", data=df, palette='Set1', s=400)\n", - "seaborn.scatterplot(\"x1\", \"x2\", \"label\", data=df, palette='Set1', marker=\"o\", ax=ax, s=100)\n", - "ax.set_title(\"buckets\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We see there are four buckets. Two buckets only contains one label. The dummy classifier maps every bucket to the most frequent class in the bucket." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAADeCAYAAAD7E3YjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq7UlEQVR4nO3dd3hUVfrA8e+bSSeNEgKEDlKlSZOqFAFBRMCGYK+7Kz/7WrCw9rLq4qKrYlsFdW0ooiCIhCpFeq8SSOhJIIXUmfP7496ECSRkgEwmMO/neebJzG3nncm8c88995x7xRiDUur8F+DrAJRSFUOTXSk/ocmulJ/QZFfKT2iyK+UnNNmV8hOa7KUQkUwRaVwJ4nhCRD6o4DIbiogRkUAvbb/YexKR4SKyx/7MO4jIBhG51AvlzhCRm8t7u+cK8efz7CKyC4gDnEAWMAO41xiT6cu4KoKINANeAPoAQUAi8AkwAagH/AkEGWMKKiCWHcCDxpgfynGb44Gmxpgx5bXNc53u2WGoMSYCuAjoBDzp43i8TkSaAEuBPUAbY0w0cA3W+4/0QUgNgA0+KNe/GGP89gHsAvq7vX4NmG4/N1h7BoAQ4J/AbuAA8C4Q5rbeMGA1kA7sAAbZ06OBD4F9QDLwPOCw5yUCHe3no+3yWtuvbwe+t5+PBybbz0OByUAKcARYDsSVVVYJ73sy8NMpPpeGdjyB9utbgU1ABrATuNtt2RrAdDueVGABEGDPe9SOJQPYAvRzf0/255ppl5UF7Djx/wI4gCfszzUDWAHUs+dNwPrBSren97KnDwLygHx7+2vs6QnAHfbzAKwf9kTgIPApEH3C+7/Z/p8fBsb5+vt6tg/ds9tEpB4wGFhVwuyXgWZAe6ApEA88ba/XBeuL8ggQA/TG+rKCVS0usNfpAAwA7rDnzQMutZ9fgpVEvd1ezyshjpuxkroeUB24B8j2oKwT9Qe+KWVeSQ4CVwBRWIn/pohcZM97CEgCYrEOiZ4AjIg0B+4FOhtjIoGBHP9cADDG5BqrVgXQzhjTpISyHwRGYf1vooDbgGP2vOVY/5NqwOfA1yISaoyZCbwI/M8YE2GMaVfCdm+xH32AxkAEMPGEZXoCzYF+wNMi0rLkj+cc4etfG18+sL58mVh7pUTgHew9NvaeHRCsvU4Tt/W6AX/az98D3ixh23FALsVrAKOAufbz24Fp9vNNWIn5pf06EbjIfj6e43v224DFQNvTKauE2PKxax+lzG+I2569hPnfA/fZz58FfsCuBbkt0xTrR6I/1rG/+7yi9+T+WZ/wfyncs28Bhnn4/0zD+tE4qQx7WgLH9+xzgL+6zWtufy6Bbu+/rtv8ZcD1vv7Ons1D9+xwlTEmxhjTwBjzV2NM9gnzY4FwYIWIHBGRI8BMezpYe9kdJWy3AVbD1z639d4Datrz5wG9RKQ2VlX1K6CHiDTE2nuvLmGbnwG/AF+KyF4ReVVEgjwo60QpQO3SPpATicjlIrJERFLtbQ/Gqr6DdeizHZglIjtF5DEAY8x24H6spDsoIl+KSB1Py3RT2ueLiDwsIptE5KgdV7RbXGWpg/WjWigRK9Hj3Kbtd3t+DGvvf87SZC/bYayqcmv7RyHGGBNtjlc/9wAlVT/3YO1ta7itF2WMaQ1FyXAMGAvMN8akY3257gIWGmNcJ27QGJNvjPmHMaYV0B2ran1TWWWV4FdgpCdvXkRCgG+x2izijDExwM9YNR6MMRnGmIeMMY2BK4EHRaSfPe9zY0xPrB8jA7ziSZknKPHzFZFewN+Ba4GqdlxHC+OyyzuVvXZchepjHQYdOIMYzwma7GWwk24S1nFqTQARiReRgfYiHwK3ikg/EQmw57UwxuwDZgGvi0iUPa+JiFzitvl5WMe1hcfnCSe8LkZE+ohIGxFxYDVK5QMuD8ty9wzQXUReE5Fa9rabishkEYk5YdlgrIa0Q0CBiFyO1R5QGNMV9rqClWxOwCUizUWkr/1jkYP1g3nSD5gHPgCeE5ELxNJWRKpjnTUosOMKFJGnsY7pCx0AGopIad/xL4AHRKSRiERw/Bjf66cafUWT3TOPYlVVl4hIOtaesTmAMWYZdqMV1pd9Hsf3GDdhJctGrOPJbyhefZ6H9aWdX8rrE9Wyt5GOdZw/D6tq70lZRYwxO7DaHRoCG0TkKNbe+w+sFm/3ZTOA/8M6zEgDbgCmuS1ygf15ZAK/A+8YY+Zi/UC8jFUz2o91SPF4Ke/rVN6wy55lv+8PgTCsw5mZwFasKngOVi2g0Nf23xQRWVnCdj/C+uzmY/UpyMGqZZ23/LpTjVL+RPfsSvkJTXal/IQmu1J+QpNdKT+hyX6eEZHxIjLZC9tNEJHSut+qc4Am+znEPtec441k9hb9kag8NNnPLW9jDf5Q6rRpsp8jROR6rAE7czxYPFRE/iciGSKyUkSKRn3ZV6Bp6vb6ExF53u31MBFZLSLpIrJDRAaVEEttEVkrIo/Yry8WkcV2v/w1hVeZEZEXgF7ARPsqNBPtXnBvishBu4x1InLhmX0q6nRosp8DRCQKa3TZgx6uMgyrB1nh0M/v7QEzZZVzquG6hcs0wuq5N9EY85qIxAM/YY2frwY8DHwrIrHGmHFY49vvNdZQ03uxutr2xhoyHI3Vtz3Fw/elzoIm+7nhOeBDY0ySh8uvMMZ8Y4zJx+puGgpc7MF6twMfGWNmG2NcxphkY8xmt/mtgLnAM8aY9+1pY4CfjTE/2+vMxup2O7iUMvKxugS3wOrBucnu26+8TJO9khOR9lhjwt88jdWK+ojbA3mSsIZ0lqXU4aS20VhXnnG/8EUD4JrCobX2UNOelN4v/zesi0S8jTX09X275qK8TJO98rsUa8DKbhHZj1VNHlnK4I5C9Qqf2KO+6mIN6QRrWG2427K13J6XNly30HisgS2f2yPvCtf5zG1obYwxpoox5mV7/kmDL4wxbxljOmLVFJphHTYoL9Nkr/zex0rA9vbjXaxj5IGlr0JHERkh1qWg78ca677EnrcauEFEHHbjm/sw2BKH67rNz8e6MGUV4FP7h2QyMFREBtrbDBWRS0Wkrr3OAazLPgEgIp1FpKvdhpCFNdrsTIa+qtOkyV7JGWOOGWP2Fz6whpLmGGMOnWK1H4DrsIak3giMsI/fAe4DhmK17I/GusRUYVmnGq5buEweMALrii4fYVXrh2Fde+4Q1p7+EY5/tyYAV4tImoi8hTXmfJIdWyJW49xrp/WhqDOiQ1yV8hO6Z1fKT2iyK+UnNNmV8hOa7Er5CU12pfyEV27JGxlTzcTWqVv2gqrcBBzY5usQVCWwIzXnsDEmtqR5Xkn22Dp1eWHKz97YtCpFldcu83UIqhIY9sXmxNLmaTVeKT+hya6Un9BkV8pPaLIr5Sc02ZXyE5rsSvkJTXal/IQmu1J+QpNdKT+hya6Un9BkV8pPaLIr5Sc02ZXyE5rsSvkJTXal/IQmu1J+QpNdKT+hya6Un9BkV8pPaLIr5Sc02ZXyE5rsSvkJTXal/IQmu1J+QpNdKT+hye4hl9NJ4taN7N21A2OMr8NR6rR55fZP55t1S+Yz6blHCQoOJjcnm6iqNfjbC28R36ipr0NTymOa7GU4vC+ZiU+M5d6XJtKmay9cLhdzv/ucV//vZl7/LoHAoCBfh6iUR7QaX4b507+m+6BhtOnaC4CAgAD6XT2GarFxrP19no+jU8pzmuxlOJpymJrx9U+aXrNuA46mHPJBREqdGU32MrTo0IVlc37G5XIVTcs5lsWaxQk079DFh5EpdXo02cvQue/liAhvPnQHaxbNZemvP/H8XdfSue8g6jRs4uvwlPKYNtCVITAoiEcnTubXbz5l2ifvEBQcwoDrb6Xn4BG+Dk2p06LJ7oGQsDCG3Hg3Q26829ehKHXGtBqvlJ/QZFfKT2iyK+UnNNmV8hOa7CVwuVxkZ2XqgBd1XtHWeDfGGKZ/+h4zpkwiOzODqOqxjLz7AXpfcbWvQ1PqrGmyu5n+6Xssnf0j4979kjqNmrJ93SomjhtLSGgYXfsP8XV4Sp0VrcbbXC4XM6ZM4i/P/ov4xhcgIlzQ9iJuefQ5fvr0PV+Hp9RZ02S35WYfIzszgzonjFFv3Kot+5N2+SYopcqRJrstNLwKUdVj2b5uVbHp65cuoMEFrXwUlVLlR5PdJiKMvPsBJo4by6qFv3E09TCLZkxl8hvPcdUd/+fr8JQ6a9pA56b3FVcTEhrG1Pf/xf6kXTS4oBX3vjiR1p27k7xzGysXzCE4JIQu/S6namwt8nKyWfbbTA7vS6JJ63a07tKTgAD9/VSVkyb7Cbr2H3JSy/s3777BnG8n07X/EHKzj/HNu68z4s77mTHlA+KbNKN+0xZMefN5IqKr8siETwgJC/NR9EqVTpO9DNvWrmTetP/xyleziapaHYDLt97BP+4YydX3PMTlN9wOwHX3Pspbj/2V6Z++y8i7H/BlyEqVSOucZVg25yf6XDWqKNEBYmLjcBYUcNk1NxZNC3A4uOLme1j663RfhKlUmTTZy2CMQQLkxKlYU4pPFxG0h62qrDTZy9Cl32DmTv2SjCNpRdPS01JwBAbx23efF01zuVz89Nn7dOl3uS/CVKpMesxehmbtOtF90DAevbY/3QcNIzsri+W//cxVd4xl2idvs27JPOo1bcGaxQmEhIZx19Ov+TpkpUpUZrKLSAgwEmjovrwx5lnvhVW2TSuW8P2H/2bP9s3UqteQITfdQ8dLLvNKWdePfYzuA4excv5sqtasxUtf/EL1WnWIqlqd7yZNYMPyxcQ3voBR9z9BaHgVr8RQkfKcLr7ZmMKCxHTynYYu8RFcd2ENokN133Au8+S/9wNwFFgB5Ho3HM9sWL6Yfz/+N0bf/yStOndn54bV/PeVp8jNOUb3gcO8Umb9Zi2p36xl0evZX3/KjCkfcPPfn6V+0xasXjSXf953G49O/IzGrdp6JYaKYIzhlYXJOAKER7rHExwo/Lw1jXFzdvP6wIaEBOqR37nKk2Sva4wZ5PVITsPUSRO46eFn6D7oKgCqx9UmIroqHzz/KN0GXInIiQ1q5asgP5+pkybw+DtTqNe0BQD9Ro7GWZDPtI/f5v7Xzt2BM9tSc0hKz+OdIY1x2A2Td3WqxbMJe1i4O51+jWN8G6A6Y578TC8WkTZej+Q07NqygTYXX1JsWouLunJ4XzL5uTleL/9o6mGAokQv1KbbJSRu2eD18r1pR2oObeLCixK9UPtaVdiZVikqduoMlZrsIrJORNYCPYGVIrJFRNa6TfeZmvH12LV5XbFpyX9uo0pUNIHBIV4vPzI6hrzcXFIO7Cs2fdemdcSWcKuoc0mtiGB2puacdJWeHWk5xFXRm1iey061Z78CGApcDjQFBtivC6f7zJAb7+Ljl59k1+b1AOxL3Mm7zzzI5aPvrJC+6cGhYfS/egz/eep+Du3dgzGGrWv+4PMJLzB4zJ1eL9+b2saF4zIwee1hjuU7yXcaZm5PY83+LC5tFO3r8NRZKPWY3RiTCCAinxljbnSfJyKfATeWuGIF6HH5cHKOHeP1B28nOyuLwKAgBo++gytuqribOFzzl4f59r03GDd6MC6ni4iYGK4f+xjte/SpsBi8wREgPH1pPd7/Yz+3TN0OwAXVwxjfpx5RIQ6vlbswMZ1tqdl0qBVB+9rn/hmNykjKuqiiiKw0xlzk9toBrDPGlDrIu3GrtuaFKT+XX5SlcDmdZGWkEx4RiSPQN6eFCvLzyc7KpEpUtE9HvFV5rfxPO+YUuHAZQ3iQ95L8UFYef5+ViNNAo6ohbEnJoWqog9cHNCI8WFv+T9ewLzavMMZ0KmleqRkiIo8DTwBhIpJeOBnIA94v9yjPQIDDQWRMVZ/GEBgU5PMYvCW0Ak6zPTsvifa1q3Bvl9o4AoTcAhfPzUvi5YVJPNv33G7/qGxK/W8aY14yxkQCrxljouxHpDGmujHm8QqMUZ2ncgpc7M3I49YONYta/0MCA7i1Q022pXr/rIq/OdWevbDq/rXb8yLGmJVei0r5hbwCFy7DSYcJUSEOnC4dUVTeTnWg+7r9NxToBKzBqsa3Bf4Aunk3NHW+iwoNJCrEwfzEdPq6tfTP2nGE2HDtmlveTtUa3wdARL4DLjLGrLNfXwiMr5Do1Hnv5naxvLt8P9tSsmlePYwV+zJZlpzJ05fU9XVo5x1Pfj6bFyY6gDFmvYi0PNUKvuJyOlnw07csmT0d43LRue/lXHLltQQGaWcQb3G6DAm7jrJodwYuA93qRdKvcTSBJ10DoGR9G8cQHxXCf1cfZM3+LOIignljYCPio4JLXH5bSjY/b0vjYFY+TauFMbR5VWqE6//XE54k+1oR+QCYbL8eDfi0B11JjDH85+kHOJi8m8FjrM41M7/4iDWL5/LAPyd5vb+8PzLGMGHJPvZn5TOseVUCRJi+NZUV+zJ5vGe8x5958xphvNi/QZnLLU3K4J3l+xnRsjqXNoxmxd5MHp6VyMv961MrouQfB3WcJ8l+K/AX4D779XzgP16L6Azt2LCarWtX8No3cwgOCQWgQ69+PD7qcjYuX0zrLj18HOH5Z1tqDpsPZzNxSCOCHdaJnU51Inhg5p+sO3CMtrXKr3OMyxg+XnWQh7vXoU2ctd12taoQFhTA1xtSGNu1drmVdb4q80SqMSbHGPOmMWa4/XjTGFPpzots+mMJnS65rCjRAQKDguncdxCbVizxYWTnr/UHjtGlbkRRogMEOYRu9SJZf+hYuZaVll3AsXwXF9YMLza9Z/0o1h8s37LOV6caCPOV/XedPQCm2KPiQvRMVLXqHNqXdNL0w3uTiHS7WKQqP9GhDg5m5Z80/WBWPtEh5duaHhYUQJ7TkJXvOrksvaiGR061Zy+sthcOfDnxUal06TeYbWtXsvTXnzDGYIxh1YI5rFmcQPdB3rmghb/rVi+SLYezWbQ7vegz/yM5k5X7sujVIKpcywoPctCtXiSTVhwgt8BK+JRj+Xy65hCDmsSUa1nnK0/6xt8OzDfGbPN0oxXVN/5EOzas5u1x1q2aAgIc5Ofn8Zd/vEGLi7pWeCwVzRt94z2xLSWb1xcn4zQgCMYY7u9Wh9YnVLfLsjM1m/UHs+kcH0HtyJIb27LzXfx76T7W7M8kJiyI1GP5DGtRnesurK4NsLYz6hvvpj7wnog0xLo01XxggTFmdblFWE6atG7PP79LYPe2TRiXiwbNW+vtmLwsyCGEBTlIzS5AgKiQAIIdnideZp6T+2clkpHjpEZMGFM2pBAbFsiEgfVxOIr3rCtwudiTnkuu00r8AgM703I00T1UZrIbY54BEJEw4E7gEeBfgPeGQp2FgIAAGjZv7esw/EJugYtnE5K4oW0N+jaKRoAFuzN4fn4Sbw9pTERw2V+Rh2Yn0qpxLF//YwjVo8PYfSCdQY9M5bE5e3htQMNiyz712x7iqgTzcv8GVAl2sC8jj6d+282kFQe4s2Ocd97keaTM3Z6IPCkiM4BZWBexeBjQ7k2K3/dk0LhqCP0bxxAggojQu0EUF9YMZ0FiepnrZ+c5Sct28vFjA6gebd0fr35cFP95sB/7s53Flj2SU0BSeh5ju9aiiv0jUjsymDs7xrFod9llKc+q8SOAAuAnYB7wuzFGL0amSM0uoE4Jx9fxUcGkZheUuf6RXCcuY6gfF1lsevP6VckrKN7qfjgrnyCHnNTyHh8VTK5TB814wpPz7BcB/YFlwGXAOhFZ6O3AVOXXIjaM5XuzKHAboeZ0GZYlZdIytuw72dYMdxAa5GDW8t3Fpk+dv52wEw4B6keHYIxhy+HsYtN/35NB1dBKeURZ6Xhyk4gLgV7AJVij3/YAC7wclzoHtKwRRr3oYJ5N2MNVLasRIMKPW1KJDnXQ3oPecw6Hgw6xoVz3j5948c4edG4Rx69/7ObFycsZ0Tym2LLBgQH0axzDs/P2cEv7mjSICWF5ciY/bE7l7z3reOkdnl88qca/jNUC/xaw3Bhzci+KSu7Anl1MfvM5DiXvoWa9Box+4Elq1qnPxj9+54+5MwkICKDrZUNp1q4j6WkpzJv2NQf27KJBs5b0HDKSsCoRFR7vgh+/IjP1IM069aRLv8EEBlW+vt8i1o0kZm5P46v1KbiA7nUjGNzM6ifviYd6xPPf1Qd55sPFuLBafUe3rsYVzaudtOydHeOoWSWQrzekkFPgomqYg3G969LuNLrlOl2GJUkZrD1wjIhgB30aRVE3yntXJN6VlkPCrnRynC461o6gY50qHn825a3M8+xnwlfn2UuybukC3njwDtr16EPrzt3ZsGwRaxYn0L5HH3Zt2UCf4aNwFRQw57spXNS7P8t/m0n7Hn1o1KotG5YtInHLBp7+8BuqxtaqkHhXzv+VD8f/HzcPaE6juCp8Pm8XWY7qPPz2lwSHll419tV59nNJvtPwwvwksvKd9G4QRWp2Ab/uPMrdneLoWb98OwEBzNp+hCnrDjGgSQwRwQ7m/nmUOlHBPNStzknX5S8vpzrPft4n+31XdKfviBsYdtu9RdM+fOFxlv02gze/n094pPVPPpp6mAev6s2QMXcx4q77i5b9YsKLZBxNq5AbNhbk5/PgFZ357qm+9GhjVU1dLsOQcT9Tq+cYBt1we6nrarKXbfaOIyTsSufZPvWKkm1nag7PJOzhgyublOutrTJyndz94w5eH9iwqJNQvtPF32cnct2FNbi4bmQZWzgzp0r287rHicvlImV/Mpdde3Ox6WEREVw67NqiRAeIrlaDzn0GEhJWfO/Z/5obWbVgToXEu2vLempEBhclOkBAgPDXoS1Zv2BGhcRwPvtjbyYDm8QU26s2rhZK7cjgkxr+ztbaA1m0ig0r1hswyBFA/8YxLE/OLNeyPOWVEQTVnAe47ug/vbHp03aLw0HOsUzCI9x/SYWs9KMnLZuVfhQ5ocdddmYmUcGuCnk/6/IP83F2FsaYYr3C0rPyiHccOnUMdw30enznuil7fyL7WPFEM8aQj9BnZDe6tS6/YbLy+5/88vbck6ZnF7hoemF9rrirb7mVVcwXm0uddapRbz+KyLTSHl4J1AtaNKzBFxNewuWyztu6nE6Sd25l8YzvSd55vLv/zo1r2LBsAft2bim69VFBfj5T332FMf0vqJBYL2xUnciwYD78+fj94o5k5vLPL1cw+rIWp1hTeeLGQa2Yvv0o6bnH+wAsSMzAOALo2rJ822T6d6zH3ox8Vu49/uOSciyfWX+mc+NA31zoqdRjdhG5pMQZNmPMvNLmdWoeZ5a9N+osQysfSYcy6PiXqTgDgmnevjObVy0jiHzGjWrL058sp9VFXXA6C9i6ZhVvje3Bv7/fxKFsB41atmHTyqV0bBLD109fRmhwxQyj3JSYytDHf6BW1XDqx0UxZ+UebhzQgtf+0qvC+4C7XNZINofj/DjaM8bw1AeLeWfqGjrUqUJajpODxwqY/upw2jeNLffyFq3by8gnp1EvOoSIoABW78tk3I1deXhUiYfU5cLRZ0LFNtBVpmQH69j9oxkb+X3DPnq2qcPNA1sSEBBAanoOM5ftItARwKAuDYiqYnXcWLhuL9uTj9C+aSwdLqhZobHm5Tt56sPFvP/jerJy8ml/QSxv/K03PdvEV1gMKUezefg/C/g6YRsFThcDuzTg9b/2pml8TIXF4E27D6Qzd1US1aJCGdi5AcFevONNdm4BM5ftIjM7n/4d61O7undvbXVWyS4iFwAvAa2wLisNgDGmcWnrVLZkP5fc8epsDh7JZsLYS6hXM5Jv5m3jvrfm8dubI2ndyPsX4XC5DD3v/YpOLeJ4+uauhAUH8u60tbz17WrWfjSG6Ajv3yVXnblTJbsn9bOPsa45VwD0AT7l+MUnVTnal5LF9wt3MOXJQTSqHU2gI4Dr+zbnvqvbM3Hq6gqJIWF1Esdy85kw9hJqRIdRJSyIh67rSPcL6zBldumNP6ry8yTZw4wxc7BqAYnGmPHAEO+G5Z/+3HeUZnWrEhlevLdc15a12LrnSIXEsDUpja4ta5/UPnBxq1ps2ZNWITEo7/Ak2XNFJADYJiL3ishwoGL7j/qJC+rGsGVPGmkZxa/nOW9NMhdWQBUerDMCC9Ym4zrh9ksJq5O4sHGNColBeYcnyX4fEA78H9AR677sN59yDXVGYmPCuXFAS0Y+NZ2VWw+Smp7Df75fw/s/rmPsyPYVEkOPC+sQX6MKt7w8i+3JR9h7OJNxkxax4c8URvVrViExKO/wuDVeRKIAY4zJKGtZbaA7c06nize+Wsn709dz6Eg2vdvF8+xt3WjfNJbJszbx7fztxNeowvhbLqZGzOld581Tmdl5PPPREr78bQs5eU6Gdm/MC3d0Jz625ArdvpQsfli0A+MyDO3RmLqx3ukKqsp2tq3xnbAa6Qr/g0eB24wxK0pbR5O9fOXlFdD+jimkpucyondTtialsXTjft5/pB+j+vm2s81/Z2zk/n/PpXN8JAECS5MyeeGuHvz1qnY+jctfnSrZPekp8hHwV2PMAgAR6YmV/G3LL0R1Kn/511zCQoL483+jCbOvx/75r5u5918JXNenmc8uqpl8KJP7/53AS33rFQ0TvaZFVf4+aREDOjc4b87Lny88+ZY4CxMdwBizEOs0nKogc1bs5okxnYsSHWBUv+aEBjv4YdFOn8U1dcF2Lq4bUWw8eFxEML3qR/LtPI+vPK4qiCd79nki8h7wBWCA64AEEbkIwBiz0ovxKcAYCAo8uZeXIyCAvBPukFKRnC6Do4QuvA6B/ALfxaVK5smevR3QDHgG677sLYEOwOtA5Rjadp7r3ro2r/9vBQXO4wk0c1ki6cdyGdm7qc/iurJHY35PyuDwseMXLzqSXcDCPZkM7+W7uFTJPLlufJ+KCESVbtIj/Wl9y2e0vvlTRl/Wgq17jvD9wh28dFcPAsvxggunq1HtaMbd1JVHPltG7/oRBIgwf3cG947sUCFde9Xp8eSCk3HAi0AdY8zlItIK6GaM+dDr0VVy3y/cwb+/Xc2u/el0ah7HE2M6084Lo6ciwoPZ8fmtvPzFcn5Zmkhs1TCW/ed6WlVwQi3ZuI8XPlnC2p2HaRofw6NjunDPsLbs2HuUr+duxRjDsJ5NuP/aiyo0LuUZT069zcBqfR9njGknIoHAKmNMm9LW8YdTbx/+tJ6Xpizn1Xt60bZJDWYs2cXzny1j1j+HeyXhfW3B2mRGPDGNUa2q0SYunG0pOXy2PoUa1cKpJi6uambdKGLatiNkBQax6J3rz5uhseeSsx0IU8MY8xXgAjDGFADOU69yfitwuhj/yRK+efYKRvRuStP4GMaObM+4MZ15acpyX4fnFc98sIib2lRnQNMYakcG07thFGM71WT3vqM80CWOC6qH0aRaKPd3iSMrPZufluzydcjqBJ4ke5aIVMdqiUdELsbqWOO39qdm4XKZky54MKhrQ1ZsPeijqLxr1fbDdKxTfCx2m7hwcgpcuN+QRURoWyOE5Zv3V3CEqiyeJPuDwDSgiYgswhriOtarUVVy1SJDyclzsi8lq9j0tTsP0yDu/OwqWi82gl1pxe/6lZyRR2BAAEEn3LV1T2YBDWuV/6WZ1dnx5PZPK7HuBtMduBtobYxZ6+3AKrPw0CBuG9yaW1+exd7D1jXGVm49yKPvLuS+qzv4ODrveGhUJz5cc5jdR62EP5CZxzsrDhIeGsi0LWnkO10UuAw/b0tjx9E8ruurg2Yqm1Jb40WkM7DHGLPfGFMgIh2BkUCiiIw3xqRWWJSV0It3dueJSYtpc+tkQoIcBAUGMP7WixnavdQL+JQoLSOHJRv3UzUyhK4ta1Xae43fNLAlRzJz+cdnS8FlcBr42/B2jBnQkrtfm83NP+xAENo2rs6vb15NRFjlu4ONvzvVBSdXAv2NMaki0hv4Eqv63h5oaYy5urSN+kNrfKHs3AJS03OoVS38tFuf3/pmFeM/WUKn5nHsTcnCESB8+9wVlbpPeX6Bk4Np2dSIDiXE7SKcqek5uIyhRnTZN3RU3nOmA2Ecbnvv64D3jTHfAt+KyOpyjvGcFRYSWOrQz1OZtzqJN79ZxcoPRtOwVhTGGN6euoZrnv6JlR/cUGn38EGBjhLfb7Wo0BKWVpXJqXZFDvucOkA/4De3eRVzXeXz2MczNvLQtRcVNWSJCH8b3o6c/ILztkVf+dapkvYLrEEwh4Fs7Ns0i0hT/PzUW3k4kplLXLXip7JEhLiq4RzJzC1lLaXOXKl7dmPMC8BDwCdAT3P84D4APz/1Vh4u61Sfz2Ztwr3NZFtSGuv/TCn3u5MoBWVUx40xS0qYttV74fiPWy9vxZTZmxn6+DRGX9aCvYczmfDNal68s8dJV5dVqjzosbcH8vKdfDJzI9N//5PQYAc39G/BsB6Nz6oRLTw0iF/fGMGnszbx3fztVIsM5at/DObiVuV3c0Gl3Gmyl6HA6WLYuB8pKHBy15VtycrJ5+kPf2fx+r28ek+vs9p2eGgQ91zZlnuu1Ct8Ke/TZC/DtEU7ScvIYdHEa4vOow/r0ZgWN37K3UPb0KQSnxNXyp2OQSxDwuokruvTrFiHmaqRoQzq0oCE1Uk+jEyp06PJXobqUaEkHco8aXrSoUyqa28xdQ7RZC/DmMta8NmsTSzdaA3ZNMbw+a+b2Z58hMu7NPBxdEp5To/Zy9AkPoZJj/Rn+JM/Uq9mBJnZ+biMYdqLVxbrG65UZaffVg8M69mEQV0asGzzAUKDHXRsFkdAQOXsu65UaTTZPRQSHEivtvG+DkOpM6bH7Er5CU12pfyEJrtSfkKTXSk/oQ10J0jLyGHK7M1sTz5K2yY1uL5vM8JDg7xSltPpYsayXfy2cg/VIkMZfVkLGtWO9kpZ5SErO58vf9vCup0pNI2PZsyAlsREhJS9oqoUdM/uZlNiKm1vm8ySjftpWCuSqQu20+muLziQmlX2yqcpv8DJiKen88xHS6hdrQop6Tl0vedLvl+4o9zLKg/7UrLoeNfnTFu8k4a1Ilm8YR9tb53Mlt1pvg5NeajM2z+diXP1gpMDH5nKld0b87fh7YqmPfT2fLJy8nn3oX7lWtYnMzfy8c8b+PWNEUW3Y16+eT9DH5/Grv/dRmgl67Bz52u/UjUypNhIvwnfrOKX5Yn8/MpVvgtMFXO2t3/yC9m5BSxYk8wdQ1oXm/634e34cfHOci9v+uKd3H1lm2L3Xe/cohZN6kTz+4Z95V7e2fpx8U7udfsRBLhraBvmrkoiN6/AR1Gp06HJbgsQCAgQcvKK38buWG4+IUGOUtY6c8FBDo7lnpwkx3IKvFLe2QopId6cvAIcAaK9Cc8Rmuy2kOBAhnZvzAuTlxVdF87pdPHcf5cxql/zci9vVL/m/OvrVcUuLvnd/O1kZOdVymvQXd+3Oc/+dylOpwuwBgQ9/+kyhvdqUqx2oiovPWZ3cyA1iyGP/QBAx2ZxJKzeQ6Pa0Xz33BXl3iJvjOHR9xby6S+bGHxxQ5IPZ7F+52F+ePFKOjWPK9eyykNWdj7Dn/qRPQcz6N22Ln9sOYAjQPjplWHExoT7OjxlO9Uxuyb7CVwuw2+r9rA9+QjtmsRycSvv3pJpe/IR69RbVChDLm5EWEjlaphzZ4zh9w37WLvzME3jY+jboZ5W4SsZTXal/IS2xiulNNmV8hea7Er5CU12pfyEJrtSfkKTXSk/ocmulJ/QZFfKT2iyK+UnNNmV8hOa7Er5CU12pfyEJrtSfkKTXSk/ocmulJ/QZFfKT2iyK+UnNNmV8hOa7Er5CU12pfyEJrtSfkKTXSk/ocmulJ/QZFfKT2iyK+UnNNmV8hOa7Er5CU12pfyEV27sKCKHgMRy37BSqiwNjDGxJc3wSrIrpSofrcYr5Sc02ZXyE5rslZSIjBORDSKyVkRWi0jXct7+pSIy3dPp5VDeVSLSyu11goh0Ku9yVOkCfR2AOpmIdAOuAC4yxuSKSA0g2Mdhna2rgOnARh/H4bd0z1451QYOG2NyAYwxh40xewFEpKOIzBORFSLyi4jUtqcniMgEuxawXkS62NO7iMjvIrJKRBaLSHNPgxCRKiLykYgss9cfZk+/RUS+E5GZIrJNRF51W+d2EdlqrzNJRCaKSHfgSuA1O74m9uLX2MttFZFe5fHBqVMwxuijkj2ACGA1sBV4B7jEnh4ELAZi7dfXAR/ZzxOASfbz3sB6+3kUEGg/7w98az+/FJheQtlF04EXgTH28xg7nirALcBOIBoIxTrNWg+oA+wCqtmxLgAm2ut/AlztVk4C8Lr9fDDwq68/9/P9odX4SsgYkykiHYFeQB/gfyLyGPAHcCEwW0QAHMA+t1W/sNefLyJRIhIDRAL/FZELAIOVhJ4aAFwpIg/br0OB+vbzOcaYowAishFoANQA5hljUu3pXwPNTrH97+y/K4CGpxGXOgOa7JWUMcaJtfdLEJF1wM1YSbHBGNOttNVKeP0cMNcYM1xEGtrb9JQAI40xW4pNtBoLc90mOTmz71LhNs50fXUa9Ji9EhKR5vaeuFB7rKryFiDWbsBDRIJEpLXbctfZ03sCR+09bzSQbM+/5TRD+QUYK3Y1QkQ6lLH8cuASEakqIoHASLd5GVi1DOUjmuyVUwRW1XujiKwFWgHjjTF5wNXAKyKyBuu4vrvbejkisgp4F7jdnvYq8JI9/XT3ns9hVfvXisgG+3WpjDHJWMf5y4BFWMfvR+3ZXwKP2A19TUregvIm7S57nhCRBOBhY8wfPo4jwm5zCASmYjUgTvVlTMqie3ZV3saLyGpgPfAn8L1Po1FFdM+ulJ/QPbtSfkKTXSk/ocmulJ/QZFfKT2iyK+UnNNmV8hP/D6WUypnHyduYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax = graph(X_test, y_test, piece4)\n", - "ax.set_title(\"Piecewise Classification\\n4 buckets\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can increase the number of buckets." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseClassifier(binner=KBinsDiscretizer(n_bins=3),\n", - " estimator=DummyClassifier(strategy='most_frequent'),\n", - " verbose=True)" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dummy = DummyClassifier(strategy='most_frequent')\n", - "piece9 = PiecewiseClassifier(KBinsDiscretizer(n_bins=3),\n", - " estimator=dummy, verbose=True)\n", - "piece9.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAADeCAYAAAD7E3YjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAArG0lEQVR4nO3dd3gU1frA8e+7m94hhACht1CkSZMiiCDSBBU7cu3ld6/YvXbFXrHcy70W5IoKYkFFREGaoUrvIN2EEJpJgPSyu+f3x0zCBlI2sJtNsufzPHmyO7Mz8+4m754zZ845I0opNE2r/SzeDkDTtKqhk13TfIROdk3zETrZNc1H6GTXNB+hk13TfIRO9jKISJaItKwGcTwlIp9U8TGbi4gSET8P7b/EexKRq0Qk2fzMu4nIDhG5xAPHnScit7h7vzWF+PJ1dhFJBGIBO5ANzAPuU0pleTOuqiAibYFXgEGAP5AETAPeB5oAfwL+SilbFcSyH3hYKfWjG/c5EWitlLrZXfus6XTJDlcopcKAC4EewDNejsfjRKQVsAZIBjoppSKBazHef7gXQmoG7PDCcX2LUspnf4BEYIjT87eAueZjhVEyAAQCbwMHgWPAh0Cw03ZjgM1ABrAfGGYujwSmAkeAFOBlwGquSwK6m4/HmcfraD6/A5htPp4ITDcfBwHTgTTgJLAOiK3oWKW87+nAz+V8Ls3NePzM57cBfwCZwAHgHqfX1gPmmvGkA8sBi7nucTOWTGA3MNj5PZmfa5Z5rGxg/5l/F8AKPGV+rpnABqCJue59jC+sDHP5xebyYUABUGjuf4u5PAG403xswfhiTwKOA58DkWe8/1vMv3kq8LS3/1/P90eX7CYRaQKMADaVsvp1oC3QFWgNxAHPmdv1wvhHeQyIAgZg/LOCUS22mdt0A4YCd5rrlgKXmI8HYiTRAKfnS0uJ4xaMpG4CRAP3ArkuHOtMQ4BZZawrzXFgFBCBkfjvisiF5rpHgENADMYp0VOAEpF44D6gp1IqHLic058LAEqpfGXUqgC6KKValXLsh4EbMf42EcDtQI65bh3G36Qu8CXwrYgEKaXmA68CXyulwpRSXUrZ763mzyCgJRAGTD7jNf2BeGAw8JyItC/946khvP1t480fjH++LIxSKQn4L2aJjVmyA4JR6rRy2q4P8Kf5+CPg3VL2HQvkU7IGcCPwm/n4DmCO+fgPjMT8ynyeBFxoPp7I6ZL9dmAV0LkyxyoltkLM2kcZ65vjVLKXsn428ID5+EXgR8xakNNrWmN8SQzBOPd3Xlf8npw/6zP+LkUl+25gjIt/zxMYXxpnHcNclsDpkn0x8HendfHm5+Ln9P4bO61fC9zg7f/Z8/nRJTtcqZSKUko1U0r9XSmVe8b6GCAE2CAiJ0XkJDDfXA5GKbu/lP02w2j4OuK03UdAfXP9UuBiEWmIUVX9BugnIs0xSu/NpezzC+BX4CsROSwib4qIvwvHOlMa0LCsD+RMIjJcRFaLSLq57xEY1XcwTn32AQtE5ICIPAGglNoHPIiRdMdF5CsRaeTqMZ2U9fkiIo+KyB8icsqMK9Iproo0wvhSLZKEkeixTsuOOj3OwSj9ayyd7BVLxagqdzS/FKKUUpHqdPUzGSit+pmMUdrWc9ouQinVEYqTIQeYACxTSmVg/HPdDaxQSjnO3KFSqlAp9YJSqgPQF6Nq/beKjlWKRcBYV968iAQC32G0WcQqpaKAXzBqPCilMpVSjyilWgKjgYdFZLC57kulVH+MLyMFvOHKMc9Q6ucrIhcD/wSuA+qYcZ0qiss8XnkOm3EVaYpxGnTsHGKsEXSyV8BMuikY56n1AUQkTkQuN18yFbhNRAaLiMVc104pdQRYAEwSkQhzXSsRGei0+6UY57VF5+cJZzwvQUQGiUgnEbFiNEoVAg4Xj+XseaCviLwlIg3MfbcWkekiEnXGawMwGtL+AmwiMhyjPaAoplHmtoKRbHbAISLxInKp+WWRh/GFedYXmAs+AV4SkTZi6Cwi0RhXDWxmXH4i8hzGOX2RY0BzESnrf3wm8JCItBCRME6f43v8UqO36GR3zeMYVdXVIpKBUTLGAyil1mI2WmH8sy/ldInxN4xk2YlxPjmLktXnpRj/tMvKeH6mBuY+MjDO85diVO1dOVYxpdR+jHaH5sAOETmFUXqvx2jxdn5tJnA/xmnGCeAmYI7TS9qYn0cW8DvwX6XUbxhfEK9j1IyOYpxSPFnG+yrPO+axF5jveyoQjHE6Mx/Yg1EFz8OoBRT51vydJiIbS9nv/zA+u2UYfQryMGpZtZZPd6rRNF+iS3ZN8xE62TXNR+hk1zQfoZNd03yETvZaRkRuFZEVHtjvNBF52d371aqOTvYaQETai8gSs6fYPhG5ytsxuUp/SVQfOtmrOXMCiR8xRpbVxehhN90cj65pLtPJXv21w+jH/a5Syq6UWgKsBMaXs42IyGSzJrCrqPuquSJRRIY4PZ8oItOdnvcXkVVmH/tkEbm1lJ2Hi8hvIvIvs1dbOxFZaPad3y0i15mvuxtj+O4/xZiF5idz+eMikiIimebrB595DM39PDLtkOZxAlxQzvreGD3o6gFXA9+LSAulVHq5OxVphjFbz93m9hEYA1GcXxNtvmaBUuoZEQkFFmIM+R0OdAIWish2pdTHItIXOKSUesbc3nno62Fz4I+1Uu9eOye6ZK/+dmMMFX1MRPxFZCjGePeQcrY5DrxnDpz52tzHSBeOdROwSCk109w2TSm12Wl9I4wuut8WJS/GYJxEpdSnSimbUmoTRtfba8s4hh2jK20HEfFXSiWa3Xc1D9PJXs0ppQqBKzGS9SjGZBHfYEwYUZYUVbIfdBJGolakzOGkppEY/dI/dFrWDOhdNLTWHGo6DqMf/1ncOPRVqySd7DWAUmqrUmqgUipaKXU5xswqa8vZJM4chVakKcaQTjAm4nCuFTgnZVnDdYtMwRh88otZfS/aZqnT0NooZcwO839F4Zfyftwx9FWrJJ3sNYA5rDNIREJE5FGM0WzTytmkPnC/We2/FmiPMQYdjEkxbjDX9QCucdpuBjBERK4TET8RiRaRrmfs+z6M04KfRCQY4ypBWxEZb+7TX0R6yukpnI5hfDkVvRd3DX3VKkkne80wHmMiyeMY86FdppTKL+f1azCGnqZiTBd9jVIqzVz3LEbpfQJ4AWPuNgCUUgcxZqF5BGPyyM1AifnbzNODuzFOI37EGFM/FLgBo/ZwFKOkDjQ3mYpxfn5SRGbjvqGvWiXpIa6a5iN0ya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPsIjfePDo+qqmEaNPbFrzYMsx/Z6OwTtPO1Pz0tVSsWUts4jyR7TqDGvzPil4hdq1UroW5d5OwTtPI2ZuSuprHW6Gq9pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu6b5CJ3smuYjdLJrmo/Qya5pPkInu4scdjtJe3ZyOHE/Silvh6NpleaR2z/VNttWL2PKS4/jHxBAfl4uEXXq8Y9X/kVci9beDk3TXKaTvQKpR1KY/NQE7nttMp16X4zD4eC377/kzftvYdL3Cfj5+3s7RE1zia7GV2DZ3G/pO2wMnXpfDIDFYmHwNTdTNyaWrb8v9XJ0muY6newVOJWWSv24pmctr9+4GafS/vJCRJp2bnSyV6Bdt16sXfwLDoejeFleTjZbViUQ362XFyPTtMrRyV6BnpcOR0R495E72bLyN9Ys+pmX776OnpcOo1HzVt4OT9NcphvoKuDn78/jk6ezaNbnzJn2X/wDAhl6w230H3G1t0PTtErRye6CwOBgRo6/h5Hj7/F2KJp2znQ1XtN8hE52TfMROtk1zUfoZNc0H6GTvRQOh4Pc7Cw94EWrVXRrvBOlFHM//4h5M6aQm5VJRHQMY+95iAGjrvF2aJp23nSyO5n7+UesWfgTT3/4FY1atGbftk1MfnoCgUHB9B4y0tvhadp50dV4k8PhYN6MKfzfi+8R17INIkKbzhdy6+Mv8fPnH3k7PE07bzrZTfm5OeRmZdLojDHqLTt05uihRO8EpWlupJPdFBQSSkR0DPu2bSqxfPua5TRr08FLUWma++hkN4kIY+95iMlPT2DTiiWcSk9l5bwfmP7OS1x55/3eDk/TzptuoHMyYNQ1BAYF88PH73H0UCLN2nTgvlcn07FnX1IO7GXj8sUEBAbSa/Bw6sQ0oCAvl7VL5pN65BCtOnahY6/+WCz6+1OrnnSyn6H3kJFntbzP+vAdFn83nd5DRpKfm8OsDydx9V0PMm/GJ8S1akvT1u2Y8e7LhEXW4bH3pxEYHOyl6DWtbDrZK7B360aWzvmaN75ZSESdaACG77mTF+4cyzX3PsLwm+4A4Pr7HudfT/yduZ9/yNh7HvJmyJpWKl3nrMDaxT8z6MobixMdIComFrvNxmXXji9eZrFaGXXLvaxZNNcbYWpahXSyV0AphVjkzKUYS0ouFxF0D1ututLJXoFeg0fw2w9fkXnyRPGyjBNpWP38WfL9l8XLHA4HP3/xMb0GD/dGmJpWIX3OXoG2XXrQd9gYHr9uCH2HjSE3O5t1S37hyjsnMGfaf9i2eilNWrdjy6oEAoOCufu5t7wdsqaVqsJkF5FAYCzQ3Pn1SqkXPRdWxf7YsJrZU/9N8r5dNGjSnJF/u5fuAy/zyLFumPAEfS8fw8ZlC6lTvwGvzfyV6AaNiKgTzfdT3mfHulXEtWzDjQ8+RVBIqEdiqEoFdgezdqaxPCmDQruiV1wY119Qj8ggXTbUZK789X4ETgEbgHzPhuOaHetW8e8n/8G4B5+hQ8++HNixmc/eeJb8vBz6Xj7GI8ds2rY9Tdu2L36+8NvPmTfjE27554s0bd2OzSt/4+0HbufxyV/QskNnj8RQFZRSvLEiBatFeKxvHAF+wi97TvD04oNMurw5gX76zK+mciXZGyulhnk8kkr4Ycr7/O3R5+k77EoAomMbEhZZh09efpw+Q0cjcmaDmnvZCgv5Ycr7PPnfGTRp3Q6AwWPHYbcVMufT//DgWzV34Mze9DwOZRTw35EtsZoNk3f3aMCLCcmsOJjB4JZR3g1QO2eufE2vEpFOHo+kEhJ376DTRQNLLGt3YW9Sj6RQmJ/n8eOfSk8FKE70Ip36DCRp9w6PH9+T9qfn0Sk2pDjRi3RtEMqBE9WiYqedozKTXUS2ichWoD+wUUR2i8hWp+VeUz+uCYm7tpVYlvLnXkIjIvELCPT48cMjoyjIzyft2JESyxP/2EZMKbeKqkkahAVwID3vrFl69p/IIzZU38SyJiuvZB8FXAEMB1oDQ83nRcu9ZuT4u/n09WdI3LUdgCNJB/jw+YcZPu6uKumbHhAUzJBrbuaDZx/kr8PJKKXYs2U9X77/CiNuvsvjx/ekzrEhOBRM35pKTqGdQrti/r4TbDmazSUtIr0dnnYeyjxnV0olAYjIF0qp8c7rROQLYHypG1aBfsOvIi8nh0kP30FudjZ+/v6MGHcno/5WdTdxuPb/HuW7j97h6XEjcNgdhEVFccOEJ+jab1CVxeAJVovw3CVN+Hj9UW79YR8AbaKDmTioCRGBVo8dd0VSBnvTc+nWIIyuDWv+FY3qSCqaVFFENiqlLnR6bgW2KaXKHOTdskNn9cqMX9wXZRkcdjvZmRmEhIVj9fPOZSFbYSG52VmERkTW+BFvoW+VvHSZZ3PgUIoQf88l+V/ZBfxzQRJ2BS3qBLI7LY86QVYmDW1BSEDN/jy9YczMXRuUUj1KW1dmhojIk8BTQLCIZBQtBgqAj90e5TmwWK2ER9Xxagx+/v5ej8FTgqrgMtuLSw/RtWEo9/VqiNUi5NscvLT0EK+vOMSLl9bs9o/qpsy/plLqNaVUOPCWUirC/AlXSkUrpZ6swhi1WirP5uBwZgG3datf3Pof6Gfhtm712Zvu+asqvqa8kr2o6v6t0+NiSqmNHotK8wkFNgcOxVmnCRGBVuwOPaLI3co70Z1k/g4CegBbMKrxnYH1QB/PhqbVdhFBfkQEWlmWlMGlTi39C/afJCZEd811t/Ja4wcBiMj3wIVKqW3m8wuAiVUSnVbr3dIlhg/XHWVvWi7x0cFsOJLF2pQsnhvY2Nuh1TqufH3GFyU6gFJqu4i0L28Db3HY7Sz/+TtWL5yLcjjoeelwBo6+Dj9/3RnEU+wORULiKVYezMShoE+TcAa3jMTvrDkASndpyyjiIgL5bPNxthzNJjYsgHcub0FcRECpr9+blssve09wPLuQ1nWDuSK+DvVC9N/XFa4k+1YR+QSYbj4fB3i1B11plFJ88NxDHE85yIibjc4182f+jy2rfuOht6d4vL+8L1JK8f7qIxzNLmRMfB0sIszdk86GI1k82T/O5c88vl4wrw5pVuHr1hzK5L/rjnJ1+2guaR7JhsNZPLogideHNKVBWOlfDtppriT7bcD/AQ+Yz5cBH3gsonO0f8dm9mzdwFuzFhMQGARAt4sH8+SNw9m5bhUde/XzcoS1z970PHal5jJ5ZAsCrMaFnR6Nwnho/p9sO5ZD5wbu6xzjUIpPNx3n0b6N6BRr7LdLg1CC/S18uyONCb0buu1YtVWFF1KVUnlKqXeVUleZP+8qparddZE/1q+mx8DLihMdwM8/gJ6XDuOPDau9GFnttf1YDr0ahxUnOoC/VejTJJztf+W49Vgncm3kFDq4oH5IieX9m0aw/bh7j1VblXfp7Rul1HUisg046zqIUqpaDdqOqBvN3m0bzlqeevgQrS7o5oWISnf9qbe9HUKZKjtVZmSQlV1puWctP55dSNto906nHexvocCuyC50EBZw+lLd8exCPamGi8or2Yuq7UUDX878qVZ6DR7B3q0bWbPoZ5RSKKXYtHwxW1Yl0HeYZya08HV9moSzOzWXlQczij/z9SlZbDySzcXNItx6rBB/K32ahDNlwzHybQ4A0nIK+XzLXwxrFeXWY9VW5V16Kxq/OQRYppTaWzUhnZvg0DAefe9//Ofp+/l68htYLFYKCwt46O2Pa213Vm8L8bfyzIDGTFqVwrTNxxEEpRRP9I+r9KCZA+m5bD+eS8+4MBqGl97Ydnf3WP695gi3z95LVLA/6TmFjGkXzaAW7v1iqa1cqf80BT4SkeYYU1MtA5YrpTZ7MK5z0qpjV97+PoGDe/9AORw0i+9Y4wenVHf+ViHY30p6rg0BIgItBFhdv/KRVWDnwQVJZObZqRcVzIwdacQE+/H+5U2xWkt+YdgcDpIz8sm3Q26hA5uCAyfy9JUWF1WY7Eqp5wFEJBi4C3gMeA/w3FCo82CxWGge39HbYfiEfJuDFxMOcVPnelzaIhIBlh/M5OVlh/jPyJYlzq3L8sjCJDq0jOHbF0YSHRnMwWMZDHvsB55YnMxbQ5uXeO2zS5KJDQ3g9SHNCA2wciSzgGeXHGTKhmPc1T3WM2+yFqmw2BORZ0RkHrAAYxKLRwHdvUnj9+RMWtYJZEjLKCwiiAgDmkVwQf0QlidlVLh9boGdE7l2Pn1iKNGRRoNe09gIPnh4MEdz7SVeezLPxqGMAib0bkCo+SXSMDyAu7rHsvJgxcfSXKvGXw3YgJ+BpcDvSik9GZlGeq6NRqWcX8dFBJCea6tw+5P5dhxK0TQ2vMTy+KZ1KDAb4YqkZhfib5WzWt7jIgLIt+tBM65w5Tr7hRiNdGuBy4BtIrLC04Fp1V+7mGDWHc7G5jRCze5QrD2URfuYii+91Q+xEuRvZcG6gyWW/7BsH8FnnAI0jQxEKcXu1JKX+n5PzqROULU8o6x2XLlJxAXAxcBAjNFvycByD8el1QDt6wXTJDKAFxOSubJ9XSwi/LQ7ncggK11d6D1ntVrpFhPE9S/8zKt39aNnu1gWrT/Iq9PXcXV8VInXBvhZGNwyiheXJnNr1/o0iwpkXUoWP+5K55/9G3noHdYurlTjX8dogf8XsE4pVejZkNzvWHIi0999ib9SkqnfpBnjHnqG+o2asnP976z/bT4Wi4Xel11B2y7dyTiRxtI533IsOZFmbdvTf+RYgkPDqjTe/Skn+fzXPzh+MocBXRozdkBrAjw4NdS5EjFuJDF/3wm+2Z6GA+jbOIwRbY1+8q54pF8cn20+zvNTV+HAaPUd17Euo+LrnvXau7rHUj/Uj293pJFnc1An2MrTAxrTpRLdcu0OxepDmWw9lkNYgJVBLSJoHOG5GYkTT+SRkJhBnt1B94ZhdG8U6vJn424VzkF3LqpqDjpXbFuznHcevpMu/QbRsWdfdqxdyZZVCXTtN4jE3TsYdNWNOGw2Fn8/gwsHDGHdkvl07TeIFh06s2PtSpJ27+C5qbOoE9PALfFU1INu7u8HuOONRfzt8vY0iw3n24S9WET45c0rCQ70bE+xuR//6tH9e1uhXfHKskNkF9oZ0CyC9Fwbiw6c4p4esfRv6v5r9Qv2nWTGtr8Y2iqKsAArv/15ikYRATzSp9FZ8/K7S3lz0NX6ZH9gVF8uvfomxtx+X/Gyqa88ydol83h39jJCwo0/8qn0VB6+cgAjb76bq+9+sPi1M99/lcxTJ9x2w8bykr3QZqfljZ/y1XMj6NfJqJo6HIrRT83h8p7NmDC2q1tiKEttT/aF+0+SkJjBi4OaFCfbgfQ8nk9I5pPRrdx6a6vMfDv3/LSfSZc3L+4kVGh38M+FSVx/QT0uahxewR7OTXnJXqt7nDgcDtKOpnDZdbeUWB4cFsYlY64rTnSAyLr16DnocgKDSzYsDbl2PJuWL66SeDft/YvoiKDiRAewWIR7Rndi7uo/qySG2mz94SwubxVVolRtWTeIhuEBZzX8na+tx7LpEBNcojegv9XCkJZRrEvJcuuxXFWrk91isWCxWsnLOfPDFbIzTp31+uyMU8gZPe5ys7IICHLvoI6yBAf6kZVbeNbdWDKyCwgO0IM9zleA1ULuGZf0lFLkFtoJcPNMuoFWCzmFjrOW5xY6CKxED0N3Ku/2Tz+JyJyyfqoyyPMR17INM99/DYfD+OAddjspB/awat5sUg6c7u5/YOcWtq9dScqf+4qTzVZYyKyPJtFv+JVVEusFLaIJDw5g6i+n7xd3Miuft7/awLjL2pWzpeaKgc0jmL0rnYz8030AlidlUmhXtI0OKmfLyuvSIITDmQVsPHy6oEnLKeSXfScY2Nw7d9Ypr7iovmMxK+HR96bx7PhRTBjei/iuPdm1aS0iwnUTnuD5266ifffeOGx29mxdz+1PvcbCbz7jn9cOoUX7TuzasJpm8R248o4JVRKriPDlc8O54skfmfbLDprGRrB4YzLjh7bjmoGtqyQGZw6lUAqPNSZVte4NQ9ndNJy/zz1A1wahpOfaOJpdyDMDGru9hdzfauHx/nG8viKFppGBhAdY2Xw0m+s6RhNfr2pqimeq9Q10YJy7J8z+mr1b1xPfrRcDrrgWi8VC1qkTbFmVgNXqR+e+lxASFm503Ni0lqPJiTSP70jzdhe4NZaKWuMLCu08O3UVH/+0ney8Qrq2ieGdfwygf6c4t8ZRmqIGuox8O59tS2VF4ilsDkXPxhHc0im6zNFoNc1f2YVsO5ZDWKCFbg3C8PdgtTrf5mDjkWzybA66NAilbrBnT8fOqzVeRNoArwEdMKaVBkAp1bKsbapbslcnFSX7nW8u5PjJXN6fMJAm9cOZtXQvD/xrKUveHUvHFtEejW3ux7/iUIqnfjvEJb1bMvH2PgQH+PHBj1uY9OV63hvatLhfulY9nW9r/KcYc87ZgEHA55yefFJzoyNp2cxesZ8ZzwyjRcNI/KwWbrg0ngeu6crkHzZXSQzbj+VAgD//fnAQ9SKDCQ3259EbenBx1zgSEvWAk5rMlTpFsFJqsYiIeWfXiSKyAXiurA3q2o9V6+mXqqs/j5yibeM6hIeUrC73bt+AxRuSqySGlMwCLurQ4Kwx4v06N+a3xdurJAbNM1wp2fNFxALsFZH7ROQqoGr7j/qINo2j2J18ghOZJefzXLolhQs8XIUv0iwqkGVbUnCccfulxeuSaFpLztl9lSvJ/gAQAtwPdMe4L/st5W6hnZOYqBDGD23P2GfnsnHPcdIz8vhg9hY+/mmbx3vPFWlfL5gIK/zt5XnsSznJ4dQsnvxoBZv3HHP7vHJa1XJlppp1AGbpfr9SKtPjUfmwSX+/mHe+2cj1L/zCXydzGdAljvlvXUXruCimL/iD75btI65eKBNvvYh6USEV77CSRITH+zTkqx1p9Lt3Jvk2B70bh/PSwDiC/UsvG9Jzbaw5lIkCesWF6Tu0VFOutMb3wGikK+rMewq4XSl19rzNph7xsWrtRze6LUhfV1Bgo+udM0jPyOfqAa3Zc+gEa3Ye5ePHBnPjYPd1tjmXvvFLDpzik43H6BkXhkWEtSmZ3Nw5huFt9CSf3lBea7wrDXT/A/6ulFoOICL9MZK/Ws0bX5v933u/ERzoz59fjyse+fblol3c914C1w9q67VJNdNyCpm66RhvDm1WPEz0WFY0j/yaRNcGobXmunxt4cp/ib0o0QGUUiswLsNpVWTxhoM8dXPPEkNcbxwcT1CAlR9XHvBaXL8fyqR3XHiJ8eCxYQEMaB7BymR9tlfduFKyLxWRj4CZGHeGuR5IEJELAZRSGz0YnwYoBf5+Z3dmsVosFJQy2KKqOByUerdWP+Gs1nzN+1wp2bsAbYHnMe7L3h7oBkyilvSfr+76dmzIpK83YLOfTuz5a5PIyMln7ICq7zNfpHfjMFYlZ5Kac3ryopO5NpYlZXBRE8+M19bOnSut8YOqIhCtbFMeG0LHW7+g4y2fM+6yduxJPsnsFft57e5++Ll5aGZlxIYFcG3HaB6en8glzSOwiJCQlMGINnVoGum5qZ60c+PKhJOxwKtAI6XUcBHpAPRRSk31eHTV3OwV+/n3d5tJPJpBj/hYnrq5J11ax7j9OGEhAez/8jZen7mOX9ckEVMnmLUf3ECHKupoU2R3ai6zdqaReDKfRuH+XNkummGtoziaWUBConG/t16NwxkVr1viqyNXLr3Nw2h9f1op1UVE/IBNSqlOZW3jC5fepv68nddmrOPNey+mc6t6zFudyMtfrGXB21d5JOGrQnmX3nYcz+GNFSnc3DmGTrEh7E3LY9rm44QFWGgUEchYc3bZ2bvSOZZdyGuDm9aaobE1yfkOhKmnlPoGcAAopWyAvfxNajeb3cHEaauZ9eIorh7QmtZxUUwY25Wnb+7JazPWeTs8j/hqeyq3davP0NZRNAw3WtwfvKghqTk2Hu3TkDbRwbSqG8TDfRoad3M97J2pl7SyuZLs2SISjXmPdhG5CKNjjc86mp6Nw6HoekYJPqx3czbsOe6lqDxrf3oe3RuVnLK5U2wI+XYHzjdkEREubBjKvvQ8tOrFlWR/GJgDtBKRlRhDXKtm6pZqqm54EHkFdo6kZZdYvvVAKs1ia2crdP1QfxJPlLzrV0pmAX4WOWvyh8ST+dQP1V1mqxtXbv+0EeNuMH2Be4COSqmtng6sOgsJ8uf2ER257fUFHE41qqsb9xzn8Q9X8MA13bwcnWeMjq/LRxuOcfCUkfDHsgr495ojBFotzNmVTqHdgc2h+GXvCfam5XlkHnbt/JTZGi8iPYFkpdRRpZRNRLoDY4EkEZmolEqvsiiroVfv6stTU1bR6bbpBPpb8fezMPG2i7iib5kT+JTqRGYeq3cepU54IL3bnz2OvLoY1CKC7EI7zy45iAA2B4xsG8X9vSP4cP0xvtqehgi0iArkhUFNyhw0o3lPma3xIrIRGKKUSheRAcBXGNX3rkB7pdQ1Ze3UF1rji+Tm20jPyKNB3RCs1sr9g/9r1iYmTltNj/hYDqdlY7UI3700itZxUZ4JtgKuDISxORSn8mxEBFrxd3q/mfl2FIoID9+1RivfuQ6EsTqV3tcDHyulvgO+E5HNbo6xxgoO9CMupvJzeSzdfIh3Z21i4yfjaN4gAqUU//lhC9c+9zMbP7mp2pbwfhYhupQhrOGBem666q68oshqXlMHGAwscVqnv77P06fzdvLIdRfSvIFxbisi/OOqLuQV2mpti77mXeUl7UyMQTCpQC7mbZpFpDU+funNHU5m5RNbt+SlLBEhtk4IJ7Pyy9hK085dmSW7UuoV4BFgGtBfnT65t+Djl97c4bIeTfliwR8lbvW099AJtv+ZRu/27rljrKY5K7c6rpRaXcqyPZ4Lx3fcNrwDMxbu4oon5zDusnYcTs3i/VmbefWufmfNLqtp7qDPvV1QUGhn2vydzP39T4ICrNw0pB1j+rU8r0a0kCB/Fr1zNZ8v+IPvl+2jbngQ37wwgos6NHRj5Jp2mk72CtjsDsY8/RM2m527R3cmO6+Q56b+zqrth3nz3ovPa98hQf7cO7oz947WM3xpnqeTvQJzVh7gRGYeKydfV3wdfUy/lrQb/zn3XNGJVl66Jq5plaW7OVUgYfMhrh/UtkSHmTrhQQzr1YyEzYe8GJmmVY5O9gpERwRx6K+zh2se+iuL6Ejv3HpX086FTvYK3HxZO75Y8Adrdh4FQCnFl4t2sS/lJMN7NfNydJrmOn3OXoFWcVFMeWwIVz3zE03qh5GVW4hDKea8OprAAP3xaTWH/m91wZj+rRjWqxlrdx0jKMBK97axWPSUS1oNo5PdRYEBflzcOc7bYWjaOdPn7JrmI3Sya5qP0MmuaT5CJ7um+QjdQHeGE5l5zFi4i30pp+jcqh43XNqWkCDPzJRqtzuYtzaRJRuTqRsexLjL2tGiYaRHjuUOeTYHy5MyOJhRSGyolUuaRxIWoGeoqSl0ye7kj6R0Ot8+ndU7j9K8QTg/LN9Hj7tnciw9u+KNK6nQZufq5+by/P9W07BuKGkZefS+9ytmr9jv9mO5Q3qujUcXHWS/CmDgpR04ERLOQwuSOJShJ9qoKXTJ7uTByUt54qae/OOqLsbzay/kkf8s4/lPV/PhI4PdeqwZi3ZzMjOf1R9cX3w75puGxHPFk3MY1qsZQdWsw85XO9O4dkh73vr7AMD4bN79diPT5m7hmX6NvByd5gpdspty820s35LCnSM7llj+j6u68NOqA24/3txVB7hndKcS913v2a4BrRpF8vuOI24/3vlam5LFhLFdSyy7d3RnNqdkUWj33j3iNdfpZDdZBCwWIa+g5G3scvILCfR3/3lpgL+VnHzbWctz8mweOd75CrBazoo3r8CG1UK1nQlXK0knuykwwI8r+rbklelri+eFs9sdvPTZWm4cHO/24904OJ73vt1UYnLJ75ftIzO3oFrOQdevSRgTp/6O3SzFlVK8OG01fZtG4qe7DtcI1evE0Mveu28AI5/4kZ73zKR721gSNifTomEkT4/v5fZjjerTguVbU2g3/jNGXNSclNRsth9I5cdXR1f6ZhNV4foO0bzx+xHa3TyNgV0as27XUQpzC3i6n55Gq6ao8P7s56Im3xHG4VAs2ZTMvpSTdGkVw0UdPHtLpn0pJ41LbxFBjLyoBcFevKNKRXeEUUqxKzWXxJP5NAwPoHNsCBZdha9WzvWOMD7JYhGGdG/KkO5Nq+R4reOivHa7p8oSEdrHhNA+JsTboWjnoPrVFzVN8wid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT5CJ7um+Qid7JrmI3Sya5qP0MmuaT7CI3dxFZG/gCS371jTtIo0U0rFlLbCI8muaVr1o6vxmuYjdLJrmo/QyV5NicjTIrJDRLaKyGYR6e3m/V8iInNdXe6G410pIh2cnieISA93H0crm5+3A9DOJiJ9gFHAhUqpfBGpBwR4OazzdSUwF9jp5Th8li7Zq6eGQKpSKh9AKZWqlDoMICLdRWSpiGwQkV9FpKG5PEFE3jdrAdtFpJe5vJeI/C4im0RklYjEuxqEiISKyP9EZK25/Rhz+a0i8r2IzBeRvSLyptM2d4jIHnObKSIyWUT6AqOBt8z4Wpkvv9Z83R4RudgdH5xWDqWU/qlmP0AYsBnYA/wXGGgu9wdWATHm8+uB/5mPE4Ap5uMBwHbzcQTgZz4eAnxnPr4EmFvKsYuXA68CN5uPo8x4QoFbgQNAJBCEcZm1CdAISATqmrEuByab208DrnE6TgIwyXw8Aljk7c+9tv/oanw1pJTKEpHuwMXAIOBrEXkCWA9cACwUEQArcMRp05nm9stEJEJEooBw4DMRaQMojCR01VBgtIg8aj4PApqajxcrpU4BiMhOoBlQD1iqlEo3l38LtC1n/9+bvzcAzSsRl3YOdLJXU0opO0bplyAi24BbMJJih1KqT1mblfL8JeA3pdRVItLc3KerBBirlNpdYqHRWJjvtMjOuf0vFe3jXLfXKkGfs1dDIhJvlsRFumJUlXcDMWYDHiLiLyIdnV53vbm8P3DKLHkjgRRz/a2VDOVXYIKY1QgR6VbB69cBA0Wkjoj4AWOd1mVi1DI0L9HJXj2FYVS9d4rIVqADMFEpVQBcA7whIlswzuv7Om2XJyKbgA+BO8xlbwKvmcsrW3q+hFHt3yoiO8znZVJKpWCc568FVmKcv58yV38FPGY29LUqfQ+aJ+nusrWEiCQAjyql1ns5jjCzzcEP+AGjAfEHb8akGXTJrrnbRBHZDGwH/gRmezUarZgu2TXNR+iSXdN8hE52TfMROtk1zUfoZNc0H6GTXdN8hE52TfMR/w9TTYeqTtSeSQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax = graph(X_test, y_test, piece9)\n", - "ax.set_title(\"Piecewise Classification\\n9 buckets\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's compute the ROC curve." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAEICAYAAABViZKWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABxeklEQVR4nO3dd3iUVfbA8e9NI6H3llACCUjvCNJBCL1LFxDL2lZdy6o/FfvasK6FVVFQei9SFaSI0sECCAk91JBGQurM3N8fkwwBEtJm8r6TOZ/n4ZHMvJk5EzzJyZ1zz1Vaa4QQQgghhPA0XkYHIIQQQgghhBGkEBZCCCGEEB5JCmEhhBBCCOGRpBAWQgghhBAeSQphIYQQQgjhkaQQFkIIIYQQHkkK4WJEKTVZKfWL0XEIIXIn+SqE+5B8Lb6kEBYFppSqqJRappS6qpQ6pZQaZ3RMQojsKaUeVUrtUUqlKqVmGh2PECJ7SqkSSqkZGT9XE5RSB5RS/YyOq7jyMToA4dY+A9KAakBLYLVS6net9UFDoxJCZOcc8AYQBgQYHIsQImc+wBmgG3Aa6A8sVEo101qfNDKw4khWhN2QUqqWUmqpUipKKRWtlPo0h+s+VkqdUUpdUUrtVUp1yXJf+4zVoStKqYtKqQ8ybvdXSs3OeNw4pdRupVS1bB67FDACeElrnai1/gVYCdztmlcthHsyQ74CaK2Xaq2XA9GueJ1CFAdmyFet9VWt9Sta65Naa5vW+gfgBNDGVa/bk0kh7GaUUt7AD8ApoC4QCMzP4fLd2FdqKwJzgUVKKf+M+z4GPtZalwXqAwszbp8ElANqAZWAB4HkbB67AWDRWh/NctvvQJOCvC4hiiMT5asQIhdmzdeMYrkBIO+2uoAUwu6nPVATeCbjt8aUjNXYm2itZ2uto7XWFq31+0AJoGHG3elAiFKqcsaK7o4st1cCQrTWVq31Xq31lWwevjRw4+3xQJlCvj4hihOz5KsQInemy1ellC8wB5iltf7bCa9R3EAKYfdTCziltbbkdqFS6mml1GGlVLxSKg77b6KVM+6+F/tvmH9nvD0zMOP274H1wHyl1Dml1LsZiXijRKDsDbeVBRLy/5KEKLbMkq9CiNyZKl+VUl4Zn5MGPFrgVyVuSQph93MGqK2UuuVGx4x+pX8Do4AKWuvy2FdsFYDWOlxrPRaoCrwDLFZKldJap2utX9VaNwbuAAYCE7N5iqOAj1IqNMttLZC3boTIyiz5KoTInWnyVSmlgBnYN6OP0FqnO+MFiptJIex+dgHngbeVUqUymu87ZXNdGcACRGEvWKeSZQVXKTVBKVVFa20D4jJutimleiilmmX0Sl3B/laO7cYH11pfBZYCr2XE0QkYgv23VyGEnSnyNeMxfDJ6GL0B74xYZHKQENeYJl+BL4BGwCCttfT9u5AUwm5Ga20FBgEh2MeqRAKjs7l0PbAO+8rtKSAF+2+7mfoCB5VSidgb+8dkJFt1YDH2JD0MbCHn4vZh7GOYLgHzgIdkdJoQ15gsX1/EvjHnOWBCxt9fLMTLE6JYMUu+KqXqAP/AvhnvglIqMePPeCe8THEDpbU2OgYhhBBCCCGKnKwICyGEEEIIjySFsBBCCCGE8EhSCAshhBBCCI8khbAQQgghhPBIho3OqVy5sq5bt65RTy+E6ezdu/ey1rqK0XFkR/JViOuZOV9BclaIG+WUs4YVwnXr1mXPnj1GPb0QpqOUOmV0DDmRfBXiembOV5CcFeJGOeWstEYIIYQQQgiPJIWwEEIIIYTwSFIICyGEEEIIjySFsBBCCCGE8EhSCAshhBBCCI+UayGslPpGKXVJKfVXDvcrpdQnSqkIpdQfSqnWzg9TCJFXkrNCuA/JVyGMlZcV4ZlA31vc3w8IzfjzAPBF4cMSQhTCTCRnhSg4re1/isZMJF+FMEyuc4S11luVUnVvcckQ4DuttQZ2KKXKK6VqaK3PFyaw3VUH0C5qTWEeQghTSUi5QpkSZVz+PEblbHHw11/w9NOQlGR0JKKo2VQaVb1m0/nylww6u5/fnv4fE/9vssuf193y9fx5ePhhiI7O/+cGJYfzz2NPUNKa4PzAhEfRaKw+iVi8Y7H4xnMyKJTxO3cV6LGccaBGIHAmy8eRGbfdlKRKqQew/0ZL7dq1b/mgUgSL4saqrUaHkClPOZuffC0uPv4Y1q83OgpRZMqco0HQTEZ7zWb0xSM0uWxz3LV30zdQBIVwHrjkZ2xBrV0Ly5cX7HP/wzd0RH62C+dL9j1c4M8t0pPltNZfAl8CtG3bNm/vO93w9tSMfTO4b9V99A/tz7OdnnV6jEI4U0RENM89v5GnnuzIU36ljQ4nXwqUr27ul1/s//36awgNNTYW4XxWbeXwlZ0cOzyHmpuX0WvfeVpm+fkZW9Kb1YG12RnUn6e+ese4QAuoKHLWmvH7/IAB8O9/5+9zG794BLbByXteJb5Vd2eHJooRrTWXUs9wNGEfRxP2EZG4n0TLleuuqVoiiNIJoUT/VZV/PXxPgZ/LGYXwWaBWlo+DMm5ziRRLCgB1y9Wla52urnoaIZyiax0Yt3UQ/v6GnWaenSLNWXcRFQV//w0BAXD33eDnZ3REwhmirkax/th6dv66iAqrfmTQgWQePnft/sSSPkT2bEuFSQ9Sbcg4RuPFGKXw8THNUCVT5muNGtA1vz+Co48AUPfRgdBa9vyJ652KO8WmE5vYdHITm05s4lzSOfAGytv/1Cpbi171etGzbk96BPcgqGwQACkplkL9jHXGT+eVwKNKqfnA7UC8K3uXki3JAAT4BrjqKYQolJ9+Os6ZM/Hcc08rALMVwVDEOesutm+3//f226UIdmc2bWP/+f2sCV/Dzt3LCNm4n1F/wYTIa9ekBPgS07szle95hNT2PZnx4W7eGNQTfH3wNS70nBSPfLVaISLC/nd5u0UAFxMv8vPJn+3F74lNHIs9dt39VUtVpWdwT3rW7UnP4J7Uq1APgNdf38rtYwKgrP26wv6MzfWzlVLzgO5AZaVUJPAy2L9XaK2nA2uA/kAEkAQUfH06D5LT7YWwv4+/K59GiALZt+88w4YtIDExjdq1y9GrV70ij8FsOesuMtsiunQxNg6Rf3Epcfx47EfWRKxh974f6LbnMqMOwgunro1GSvf3IyWsF2Um3od/v37UDAjg6tU0Bt75PTt2RHL1ajqffz6gyGP3mHw9dQrS0qBmTSjj+k3Dwnxik2PZcmqLo/A9GHXwuvvLlShH97rd6RXci57BPWlcpTFKqeuueeONrbz88ma++mof4eH/dMpCU16mRozN5X4NPFLoSPIoszUiwEdWhIW5RETE0K/fHBIT0xg3rhk9egQbEofZctZdZBbCnTsbG4fIndaag1EHWRO+htXhq/n78C8MOWRjwkH4+iR4Z3THWv18sfTri8/Y8fgOHIhvqVKOx0hPtzJ69GJ27Iikdu1yvPiiMa12HpOvR+xtETRsaGwcosgkpiXyy+lfHIXvvvP70FxrXS/pW5IutbvYV32De9Kqeiu8vbxzfLyvvtrLSy/9jFLw8cd9nfZuq+nes81NZmuErAgLM7lwIZGwsNlcunSVPn3q8+23Q/DyUrl/ojCFpCTYuxe8vKBDB6OjEdlJTEtk04lNrAlfw5rwNVy5eIZhf8Pzf8GdJ8AnY+CDzdcHHdYXNXo03oMHQ9myNz2W1pr771/F6tXhVKoUwPr1E6hZU1YpXeroUft/GzQwNg7hMqmWVHZE7mDjiY1sOrGJnWd3YrFZHPf7efvRMaijo/BtH9geP++89aEtX/43Dz64GoDPPx/A8OGNnBa32xXCjhVh6REWJnHlSir9+s3h+PFY2ratyeLFd+Hnl/NvtcJ8du4Ei8W+fyebukkY5Gj0UUfhu+XUFkpcTWPwEfjsIIQdA7+MCQbaxwf63AmjR+M1dCiUL3/Lx33++Y3MmvU7JUv6snr1OG67rbLLX4vHkxXhYsdis7D33F7HBrdfTv/iqNEAvJQX7QPb07NuT3rV68Udte6gpG/JfD/Ptm2nGDt2CTab5uWXu/Hgg22d+TLcrxB2bJaT1ghhEvfeu5IDBy4QGlqR1avHUaZMCaNDEvkkbRHmkGJJYcvJLfbiN2INETERlEyDgUdh3l8wIEJRwmJ/a1V7eUGvHjB6NGr4cKhUKU/PsWDBX7zzznZ8fLxYsmQUt98e5MqXJDJJIez2bNrGnxf/dBS+W05uISHt+sNRmldr7tjc1rVOV8r5lyvUc16+nMTgwfNJSbHwj3+04eWXuxXq8bLjfoWwbJYTJvPaa905cyaeefNGULVqqdw/QZiOFMLGORV3ylH4bjy+kWRLMv7p0C8c3v3bl35HbPinZiz9Kuwzu0aPRo0YAdWq5fv5hgy5jeHDGzF0aEP69g1x7osROZPWCLejteZo9FFH4fvziZ+JTr7+SMEGlRo4Ct/udbtTpVQVp8ZQuXJJ3n33Tn788Tiffdb/ps1zzuB2hbC0RgizadSoCr/9dq9LElS4nsUCv/5q/7sUwq6Xbk1n+5ntjo1uh6IOAeBngT7H4KFjFej151VKJKcB6fZP6tgRRo+GkSMhMLBQz+/v78PixXdJvhalq1chMhJ8faFuXaOjEbdw0yzfhHPX3Z/TLF9Xuv/+Ntx3X2uX5azbFcKyWU6YwX/+s43y5f15+OF2APJD1Y398QckJkL9+vZDAoTznU84z9qItawJX8OPx3/kSqr9hCgfKww7E8CjJ6rQaW8UJRKTgVj7J7Vtay9+77oL6tQp1PPv2XOODz74ja+/HkzJkr6Sr0UtczU4JAR83K7sKNZym+VbpWQVegb3dIw0q1ehnsvz5+rVNCZOXM6rr3anadOqgGt/xrrd/5EyPk0Y7euv9/HCC5vw8lL06FGXRo2c+1aQKFrSFuF8VpuVnWd3Oja67b+w33GftxXuiavNAxHlab3jJH6xV4DT9jtbtLAXv6NG2X8zcYKjR6Pp128Oly8n0aRJFV54QU4kLXLSFmEaeZ3lmznZoUmVJkX6i2N6upW77lrE2rURnDgRy969D7j8+d2uEJYeYWGkFSv+5h//+AGAzz7rL0VwMSCFsHNcTrrM+oj1rIlYw7qIdcQkxzjuK+nlz6NpLZnwtx+NtxzEO+o0juK3cWN78Tt6tNM3Up0/n0BY2GwuX06ib98Q/v3vTk59fJFHslHOMFfTrrLt9DanzfJ1JZtNc++9K1m7NoLKlUsyf/7IIinC3a8QliOWhUG2bTvFmDH2ES6vvOL8ES6i6GktJ8oVVNajjNdErGFn5M7rfsDWKx/MI9Y2DP8jnTo/7kKd23Htk0NDrxW/TZu6JL74+BT69ZvDyZNxtG8fyKJFd+HrK2MNDSGFcJHJnOWb2ee7I3LHdbN8fb186Viro2OkWX5m+brac8/9xPff/0GpUr6sWTOOBg3yNgmmsNyuEJbWCGGEP/+8eN0Il6lTnT/CRRS948fh/HmoXFnetc2L+JR4fjz+I2vC17A2Yi0XEi847vPz9qNb7a7cY2lG2L54KnzzE+r04mufXLfuteK3ZUtw4UpPSoqFoUMX8PvvF2nYsBKrV4+jdGlz/LD3SNIa4TL5meXbM7gnnWp3KtAsX1d7//1fee+9X/Hx8WLp0tG0a1e4TbH54XaFsLRGiKKmtWby5BXExaUwfHgjl41wEUUva1uE/JPeLOtRxmvC17D9zPbrVpeCygbRv34/xlgb0em3SPxeXQ7Hf7r2AEFB9n7f0aOhXbsi+yJ/+OFvbN58kpo1y7B+/QQqVzbfD36PobWsCDuREbN8Xe3vvy/zzDM/AjBr1lD69HHO/oC8crtCWManiaKmlGLhwpG8/vpWpk8fiLe3l9EhCSeRtoibXU27eu0o44g1nI4/7bjPW3nTtU5X+of0Z5i1AaE/7UP9bxEc+eraA1Svfq347dDBfm51EXvqqTs4dSqeRx5pR5065Yv8+UUWFy9CQgJUqGB/60Xki9aa8JhwNh7faNgsX1e77bbKfPfdMKKjkxg3rlmRP7/bFcIyPk0UFZtN4+VlX8GqX78iM2cONTYg4XSyUc4uPDrcUfhuPrmZNGua476qparSL6Qf/UP709dWj7LL18K07+Fglt3mVarYZ/yOHm3/Ynobt9nGy0vh5+fN9OkDDYlB3CBzNbhBA3nbJY9Ox592bG7bdGITZxPOXnd/rbK1HCPNimqWrytk/Rk7YUJzw+Jwq0JYa+1ojZAeYeFK6elWhg5dQM+edXnqqTuMDke4QFQU/P03BARAq1ZGR1O0sjvKOJNCcXvg7fQP7U//0P60TqmA18JF8OpbcODAtQepWBGGD7cXv927Gz4f9n//28OSJYdZsmSUHHNuJtIWkau8zvLN/FO/Qn23b887cuQyI0Ys5LvvhtG6tbED3N2qEE63paPR+Hr5GjbeQxR/mSNc1qwJZ9eus0yc2IIqVeTo5OJm+3b7fzt0sB94VdydijvlONRi44mNJKUnOe6r4F+BviF96R/an7D6YVSJSYGFC+GZh2H37msPUrYsDBtmL37vvNM0X7hlyw7z8MNrsNk069ZFcNddTYwOSWSSjXI3MfssX1c7d84+1vDUqXjefXc78+ePNDQetyqEZaOcKApZR7isXj1OiuBiqrj3B2c9ynhN+Jqbfti2rN6S/iH2Vd/bg27H52IULFoEDw29duY0QOnSMHiwvfgNC4MS5lpt3br1FGPH2scavvZadymCzUZWhLmadpVfTv/CxhMbs53lG+ATQJc6XRwjzYyc5etqcXEp9O1rL4Jvvz2QGTMGGx2SexXCslFOuFrWES5LloyiffuiG+EiilZx7A8+n3CedRHrWBOxhg3HNjiOMgYo41eG3vV70z+kP31D+hJYNhAuXYIlS2DBC7B1q32HP9j7RQYOtBe//fvbPzahP/64yODB80hNtfLww2158UU5Nc50PLAQzs8s357BPbk96HbTzPJ1peTkdAYPnseff17ittsqs3r1OEqVMv51u1UhLBvlhCvNnv0HTz9tH+Eyc+YQwsJCDI5IuMrVq7B3r32gQYcORkdTcFablV1ndzl6ffed33fd/Y0qN3L0+nau3dn+wzYmBhYuhQULYNMmsNnsF5coAf362YvfgQPtK8EmdvJkHH37ziY+PpWRIxvzySf9itXbx8VCerp9WLdSEFJ8v58Wl1m+rmS12hg3binbtp0mMNA+1rBSJXN8DdyqEJbDNISrpKZaeOmlnwF4//0+jB9v3A5W4Xq7doHFAm3aQJkyRkeTP9FJ0Y5V3xuPMg7wCaBncE/6h/anX0g/gisE2++Ij4fZ8+zF748/2l882Ht8M4vfIUPsPcBu4oMPfuP8+US6d6/L998Pk7GGZnT8OFitUKeOad9VKIjiOMvX1bZtO82KFX9Tvrw/69ZNoHZt83w93KoQdkyMkNYI4WQlSviwZctkFi8+xJNPdjQ6HOFi7tQWYdM2Dlw44Oj13RG54/qjjCvUY0DoAPqH9qdbnW7Xvj8mJMDcufbid906SMsYiebtDX362IvfYcPs813d0AcfhFGlSkkee+x2/P3d6keZ5ygmbRF5meUbWjHUMdLMHWf5ulr37nVZuPAuqlcvTdOmVY0O5zpu9d1DWiOEs125kkrZsvbNP7Vrl5Mi2EOYvRC+1VHGvl6+dKvbzbHRrUGlBtdaApKSYPkie/G7ejWkZLw96+UFPXrYi9/hw+1zf91QWpoVq9VGQIAvPj5evPSSHHVuam48MSK3Wb5BZYPoFdyLnsE96VG3B7XK1TIoUnPL+jN25MjGBkeTPbcqhKU1QjjTuXMJ3HHHDO69txUvvthV+gs9hMVybSiCWQphrTWHog45en1/Of3LzUcZZxS+PYN7UqZEln6OlBRYu9Ze/K5aZS+GM3XubC9+R460n/jmxmw2zZQpKzhz5gorVoyhfHlZEDE9N1oR9sRZvq62ePEhHnpoNStXjqFjR/P+ouBWhbCMTxPOknWEy+rV4fz7350oUcKt0kEU0B9/QGKife+OkbVhbkcZd6ndxbHRrVnVZtf/0E1Lgw0b7MXvihX2NohMHTrYi9+77oLA4jH1RGvN009vYM6cPyld2o+TJ+No2dK9C3uPYOJCOLdZvmVLlLXP8s0YaVbcZvm62s8/n2D8+KWkpVnZsuWUFMLOIuPThDNkN8JFimDXSU+378+6ciX3a4vCpk32/xqxGhwRE+Ho9d18cjOp1lTHfVmPMu5drzcVAm7o3U1Ptwe/YAEsWwZxcdfua9PGXvyOGmXfmFTMTJv2Kx9+uANfXy+WLh0lRbC7MFFrROYs300nNrHxxMZbzvLtGdyTVjVa4eMlPxcK4sCBCwwZMp+0NCuPPtqOZ5/tZHRIt+RW/8rSIywKy8wjXIqrmTPhgQeMjuJmRVEIp1hS2Hpqq6P4DY8Jd9ynULQPbO9oeWhTsw1e6obJB1YrbNliL36XLIHoLBt0mje/VvwW49FUs2Yd4N///gmA774bRu/e9Q2OSORJfDxcvGifFlGr6FcDb5zluzNyJ+m2dMf9N87ybR/YnhI+5josxh0dPx5Lv35zSEhIY9SoJnz0UV/Tr6S7VyGcOTVCeoRFAWitefjh1Sxfbs4RLsXVpUv2/zZqZK/dzKBKFRg71jWPfTr+tKPwze4o47CQMPqH9CcsJIyqpbLZPW2z2c9/XrAAFi+2FxOZGjWyF7+jR8Ntt7nmBZjI6tVHuffelQB89FEYY8Y0NTgikWeZq8GhofbNmi4ms3yNd+nSVcLCZnPhQiI9ewbz3XdD3WKsoVsVwrJZThTG5ctJbNhwHH9/H1atGmu6ES7F3bBh8OabRkfhfOnWdH4986uj1/evS39dd/9NRxln93ar1rBzp734XbQIzmbZoR4Scq34bdrUfjiBh1i8+DBWq+a55zrx+ONufPKJJ8rsD3ZRW4RN2/jr0l+OkWbZzfJtVrWZY6SZzPJ1vd9+O8OJE7G0alWdZctGu03LoXtEmUFaI0RhVKlSil9/ncLBg1F07lzb6HCEG7uQeIG14WuzPcq4tF9petfr7TjUIrBsDhvWtIZ9++zF78KFcOrUtfvq1LlW/LZq5VHFb1Zffz2IO+8MZty4ZkaHIvLLyRvlMmf5Zm5u+/nkz1xOunzdNZmzfHsG96R73e7Zv+MiXGbIkNtYs2Y8LVpUc4xMcwduVQjLZjlREBERMYSEVASgRo0y1KjhZkeJCcNZbVZ2n9vtaHnYe37vdfdne5RxdrSGP/+0F78LFsCxLCOaAgPt/b6jR0P79h5b/J4/n0DZsiUoVcoPb28vOeXRXWW2RhSiEJZZvuZns2lOnoyjXj375t4+fdyvh9+tCmEZnyby6+efT9C37xyefLID//lPL9M37QvziE6KZv2x9awJtx9lnPUkKX8ff/tRxiH96Rfaj3oV6t36wQ4fvlb8/v33tdurV7fP+B09Gu64o0h6Kc0sNjaZ3r2/p1QpP1avHkflytLD6bYK0BqRl1m+PYJ7OEaaySxfY2mtefLJ9Xz77QFWrBhD9+51jQ6pQNyrELbIZjmRdwcOXGDo0AWkpVm5ejU9908QHk1rzf4L+x2rvjvP7sSmbY77g8sHO44y7l63e+7vTEVEXCt+//zz2u2VK8OIEfbit2tX+5HHguTkdAYNmsfBg1E0alQZLy8pcNyWzZan0WlxKXFsObmFjSc25jrLt2dwT5pUbXLzZBVhmHff3c7HH+/Ez88bm03n/gkmladCWCnVF/gY8Aa+1lq/fcP9tYFZQPmMa57TWq9xbqjSGiHyLnOEy5UrqW4zwsVZzJKv7iA+JZ6fjv/kOMr4fOJ5x32+Xr70qNvDUfxed5RxTk6etPf7Llhg7//NVKGC/WjjUaOgZ0/wcas1CJezWGyMGbOE7dvPEBRUlvXrJ1Cxoud8ny92OXv2LCQn28ezVLg2DzvrLN9NJzex7/y+637ZlFm+7uPbb/fz3HMbUQq+/34YPXsGGx1SgeX6f5hSyhv4DOgNRAK7lVIrtdaHslz2IrBQa/2FUqoxsAao6+xgZbOcyIvsRrh4yuqSmfLVjHI7yjiwTKCj17dXcK/rjzLOSWTkteJ3165rt5cpYx+VMXo03Hkn+OXQN+zhtNY8+OAPrFx5hAoV/Fm/fgK1annO7v5imbMZbRG2BqFsO7nllrN8O9fuLLN83cwPPxzl/vtXAfDJJ/0YNaqJwREVTl5+1WoPRGitjwMopeYDQ4CsSaqBshl/Lwecc2aQmWR8mshNQkIq/fvPISIixu1GuDiJafLVLK6mXeXnkz87Wh5OxV+bzpDrUcY5uXDBPuZswQL7zN9MpUrB4MH24jcsDPzll/bcTJ36MzNm7CcgwIfVq8fRuHEVo0MqasUmZzNn+cat/oQwYFbKTqbM6u6430t50a5mO8dIsztq3UEpv1JGhSsK4NdfzzBq1CKsVs2LL3bh0UfbGx1SoeWlQggEzmT5OBK4/YZrXgE2KKX+CZQC7szugZRSDwAPANSunf/xVbJZTuQmLi6FhIQ06tevwNq1491qhIuTmCZfjXSro4yrlKxCv9B+9A/pT5/6fW4+yjgnUVH2090WLLCf9qYzeuL8/WHgQHvx278/lJQNXnlls2nOnLmCt7di4cK76NjRI3f9u23O5jTL96PfIAw4XMHqmOXbM7gnXet0pbx/eZfHJVzn3LkELBYb993Xitde62F0OE7hrKWyscBMrfX7SqmOwPdKqaZaZ2n+AbTWXwJfArRt2zbfndWOzXLSIyxyUKtWOX755R4SEtKoVq200eGYVZHka1FKtaSy9dRWVoevLthRxjmJiYFly+zF76ZN9iOPwd7m0K+fvfgdNAhKy/9rBeHlpfj22yE88kg72rXLYd6yABPlrEWnQ6vv2VhxHdWmZT/L9870ZCCS/7tvJu+OnuSKMIRBRo5sTHBweVq0qF5s9t3kpRA+C2T9NT0o47as7gX6Amitf1NK+QOVgUvOCDKTtEaI7Git2bjxBL16BaOUokqVUlSp4rFvt5kmX13tdPxpx6EWPx3/6bqjjMv7lyesfhj9Q/vTN6Rv/gbrx8fDihX24vfHHyE9o6fRx8e+4jt6NAwZAuU8p4/V2XbtOkvDhpUoV84fpZSnF8FulbN7kxfBkHs5AZBkn+XbM7ino8+3Vrla8IF941T5FjcubAt3FBOTzMmTcbRuXQOANm1qGhyRc+WlEN4NhCqlgrEn5xhg3A3XnAZ6ATOVUo0AfyDKmYGCtEaI7L377naee24jTz3VkWnT+hgdjtFMk6/OlttRxi2qtXD0+nYI6pC/3eaJibBqlb34XbsW0tLst3t7Q+/e9uJ32DCoWNGJr8gz7d9/njvv/I569Srw88+TqFDB4xc23Cpno6z22b51k4az4d9vE1Ix5PqVwZQU+ymJ3t5QL5f52sL0kpLsYw0PHLjA6tXj3HZW8K3k+pNCa21RSj0KrMc+tuUbrfVBpdRrwB6t9UrgKeArpdS/sDf1T9ZaO/1tGRmfJm6UdYRL+/YevaoEmCtfnSHqapSj3WHDsQ3Ep8Y77st6lHHfkL4ElQ3K34MnJcGaNfbid/Vq+7gnsJ/o1r27vfgdMcI+Ako4xbFjMfTrN4eEhDQaN65CuXKyqOFuORtvtY8YrJ7WjdBKoTdfEBFh758PDpZJKW7OYrExevRifv31DLVrlyM0tHguBORpySRjXuGaG26bmuXvh4BOzg3tZjI+TWSVdYTLxx/3dfsRLs5ilnwtrOikaOp/Up+EtATHbbdVvs3R69u5duf8j1pKTYV16+zF78qVcPXqtfs6dbIXvyNHQo0aTnoVItPFi4mEhc3m4sWr3HlnPWbO9Jyxhrlxp5y9YrsAQElrDjnihKOVhfG01jzwwCp++OEoFSsGsH79BAIDy+b+iW7IreZKZbZGSI+w+O23ayNcXnihC//8p/SiFTcHLhwgIS2BwDKBPN/5+bwdZZydtDT46Sd78bt8OVy5cu2+9u3txe9dd0Etj5xYUCSuXEmlX785HDsWS5s2NVi6dBR+fnKinjvKXBHOsRAuwNHKwnxeeGET3357gJIlfVmzZhy33VbZ6JBcxq0K4czWCFkR9myHD0cxcOA8kpMt3HtvK15/vXiMcBHXi4iJAKB3/d480v6R/H2yxWKf8rBwISxdCrGx1+5r1cpe/I4aZX/7VrhUaqqF4cMXsH//BUJCKrJmzXjKlPG4sYbFRrzNXggHWKtnf0FmISwrwm7rk0928tZbv+DtrVi8+C5uvz2fbWduxq0KYRmfJgDKlClBjRql6dy5NtOnDyw2I1zE9TIL4dCK2fQhZsdqha1b7Su/S5bA5SxjnZo1sxe+o0dDaB4fTziFj48XISEVOXgwig0bJlC1qsdOdHF7WmvirRmtEbYcCmFpjXB7tWuXIyDAh+nTB9KvX/H/fuk2hbDWWlaEBQBBQWXZtu0e/P198PHJ4zxY4XYiYu2FcEjFkJwvstng11/txe/ixfYT3zLddtu1ld/GjV0crciJt7cXX3wxgJdf7kaNGnk4slqYVlxKHBZSIbU0vjqH2dnSGuH2hg69jYiIx6hZ0zPy1W0K4cyTofy8/fI+DF8UG0lJ6cye/Qf3398apZSMXPIA4dH2QzFuKoS1hl277MXvokUQGXntvvr17cXv6NH2VWB5t8Aw3333OwMHNqBixQCUUlIEFwMXEjN+0UzMoT/48mX7ITSlS8uGUzezd+85kpLS6dKlDoDHFMHgRoWwHKbhuTJHuPzww1FOn47njTd6Gh2ScDGbtnEs1j6vtH6F+vbid/9+e/G7cCGcPHnt4jp1rrU9tG4txa8JfP31Pu6/fxVNm1Zl794HZGNcMXE+0d4fTEKN7KuHrG0RkoduIzw82jHWcMuWyR43itRtCmE5TMMz3TjCZfz4ZkaHJIrAuYRzpKSn0PVKBcq98Z69AI6IuHZBzZrXit/bb5cfuiaycuUR/vGPHwB4+OG2UgQXI+cTMgrhxOpQPpsLpC3C7Vy4YB9rGBWVRJ8+9WnZMofe72LMfQph2SjnkTJHuAQE+LB69TgaNZLDDYq9v/8m/X/vcHA2NL4cC7xpv71aNfuM39Gj7TN/vaRFymy2bz/N6NGLsdk0L73UlYceamd0SMKJrmuNKJ/NBTIxwq3Ex6fQt+9sTpyIo127mixZ4pljDd2mEJbWCM9z/QiXUXToULxHuHi0Y8fsq74LFsAff5A51CyhTAnKjJ1kL367dbMf2ypM6eDBSwwcOI+UFAv339+aV1/tbnRIwskcrRGJuUyMkBVh00tJsTB06AJ+//0ioaEVWb16HKVLe+ZJgG5TCEtrhGdZvvxvnnhiHQDffDOE/v2L/wgXj3PqlL3fd8EC2Lv32u3ly7Pn9lq8UOVPuk5+jhd6vWJYiCJvMk+Ni4tLYejQ2/j88wEy1rAYcqwIJ+RymIasCJvevfeuZPPmk9SoUZoNG+6mShXPHWvoNoWwY0VYWiM8QseOQbRsWZ2xY5sycWILo8MRznL2rH3Sw4IFsGPHtdvLlIEhQ+wrv3368NbysWw4/CeTq8oPVHdQpUopRo1qwp4955g7d7iMNSymrq0IZ1MIW63X+vhlRdj0Jk5szubNJ1m7djx165Y3OhxDuU0hnNkjLCvCnqFatdL8+uu9lCghb4W7u1KJF3mYxdz3/QJ46xf7BAiAkiVh0CB78duvH/hfy+3MwzRuOUNYmIaXl+L99/uQmmrF399tfqyIfLrWI5xNa8SpU/bjzGvWtI9PE6YWFhbCsWOPSb4CbvNre2ZrhPQIF1/h4dG8/PLP2Gz2Qsnf30feXnVXly/Dl19Cr1489k5NPuNRgs9sgxIlYMQI+4rwpUswfz4MG3ZdEay1lkLYDaSnW3nmmQ1cunQVAKWU/FAt5hxTI7JrjZC2CNP79tv9/PTTccfHkq92bvNVkNaI4i1zhMuJE3GULVuCp566w+iQRH7FxsKyZfYid+NG+1ulgM3bj1XWvqQMGc3o7wfZ2yBu4ULiBZLSk6gUUIkKARWKInKRT1pr7rtvFd999zu//HKGX3+dIr+0FnMplhRiU2LxwgdbcqWbL5CjlU1t+fK/ue++VXh7K/7++1Hq1ZPvrZncphCW1ojiK+sIl7Zta/LAA22MDknk045HZ9P6syn4kQ5AOj5s9unHUr/RLLUM4ZK1PP/XBEbn4bAiWQ02v+ee+4nvvvudkiV9+eijMCmCPcDFxIsAlPWqRpzO5s1kmSFsWlu3nmLMGPtYw6lTu0oRfAO3KYRlfFrxlN0IlzJlShgdlsgn6w9r8SOdXbTjSx5gGcOIsVQCi/1+Hx9ol8eRslIIm9uHH/7Gu+/+io+PF0uWjOL222WsoSfI3ChXzrs6cdldIK0RpvTnnxcZPHgeqalWHnywDVOndjM6JNNxm0JYxqcVP1arjbvvXsbmzSepXr0069dPoGpVzx3hUhwkTnmc96aN570bbvfzg1J5/KcNjwkHpBA2ozlz/uDJJzcA8M03g+nbV/6NPEXmRrlyXjmMTpPWCNM5eTKOsLDZxMenMnx4Iz79tL+8e5MN9ymELbJZrrh5++1fWLz4EGXLlmDduvEEB8vbNe6uRAmoUMh/RlkRNqe//rrE5MkrAJg2rTd33y1jDT1J5ka5ct7ZFMJXr0JkJPj6Qp06RRyZyI7NphkyZD7nzyfSrVsd5swZjre328xHKFJuUwhntkbIinDx8eCDbdm48QQvv9yNFi0873xzkT0phM2pSZMqPPdcJ1JSLLKZ1QNltkaU9crme3XmanBIiL0PShjOy0vx8cd9efnlzaxYMUYmRNyC23xlHOPTZGpEsVGpUkk2bpwob9UIh6yj00IrymmCZqKU4vXXe6Iz50ALj+JojchuRVjaIkype/e6bN48SX7G5sJt1slls1zxsGzZYR59dA1Wqw1AElRcJyopioS0BMr7l6diQEWjw/F4584lMGjQPM6eveK4TXLWMzk2y2W3IiwTI0zBZtM88MAqVq064rhN8jV3blMIy/g097d16ynGjl3CZ5/tZvHiQ0aHI0woa1uEfAM3VlxcCv36zeGHH47yxBPrjQ5HGOyWK8IyMcIU/v3vH/nqq33cffcy4uJSjA7HbbhdISytEe7pxhEuo0Y1MTokYULh0TIxwgxSUiwMGTKfP/64SMOGlfjiiwFGhyQM5tgsl93UCGmNMNy0ab/y/vu/4ePjxcKFd1G+vCwa5pXbFMKyWc59yQgXkVeOFeEKUggbxWq1MW7cErZuPUXNmmVYv34ClSuXNDosYSCbtnHxasaBGt7Vrr9Ta2mNMNh33/3OM8/8CMCsWUPp06e+wRG5F7cphB2b5aRH2K1cvpxEWNhsGeEi8iQiViZGGElrzSOPrGHZsr8pX96f9esnUKdOeaPDEgaLTorGYrNQwb8CvuqGxagLFyAhwT43sXJlYwL0YGvXhjNlin2s4YcfhjFuXDODI3I/blORODbLSWuEW3n22R85ejSaFi2qyQgXkSvHxIhKMjHCCOvWRfC//+3F39+HlSvH0LRpVaNDEiaQuVGueulbjE5r0ADknb4idfVqGpMmLcdq1Tz7bCeeeKKD0SG5JbepSmSznHv64IMwLBbN22/3olw5+bcTOdNaS4+wwfr2DeE//+lJ48ZV6NJFDkYQdpkb5WqUqQGpN9wpG+UMU6qUHytXjmX+/L94661eRofjttymEJbxae7DZtMoZR/bUq6cP7NmDTU6JOEGYpJjiE+Np4xfGaqUrGJ0OB7FZtN4eSmUUjz/fBejwxEmk7lRrkbpbAph2ShX5DLzFaBDhyA6dAgyOCL35jatEZk9wrIibH7PPfcT99yzgvR0q9GhCDcSHnNtNVg2UxadLVtO0qrV/zh5Ms7oUIRJ3bI1QjbKFam4uBRuv/1rGUHqRO5TCMv4NLfw/vu/8t57vzJ37p8cOHDB6HCEG5GjlYve779fYPBg+5i0r7/eZ3Q4wqQcrRGlZYawkZKT0xk8eB579pzjlVc2y2KTk+SpEFZK9VVKHVFKRSilnsvhmlFKqUNKqYNKqbnODVNaI9zB7Nl/8PTT10a4tGsXaHBEnskM+VoQcrRy0TpxIpa+fedw5UoqI0c25tVXuxsdkkdyh3zNcUU4PR2OH7dvkguRX2BdyWKxMW7cUrZtO01gYBnWrh2Pr6+30WEVC7n2CCulvIHPgN5AJLBbKbVSa30oyzWhwPNAJ611rFLK6VuNpTXC3Nati+Cee66NcBk7Vka4GMEs+VoQsiJcdKKirhIWNpsLFxLp0aMus2cPk7GGBnCXfM26We5Y1juOHwerFerUgQBZpHIVrTUPP7ya5cuvjTWsVauc0WEVG3n5ztceiNBaH9dapwHzgSE3XHM/8JnWOhZAa33JuWHK+DQz27kzkhEjFmKx2GSEi/FMka8FIYVw0UhMTKN//7mEh8fQsmV1li0bTYkSbrNvurhxi3y9brNcVtIWUSReeWUzX321D39/H374YSxNmphi7aLYyEshHAicyfJxZMZtWTUAGiiltiuldiil+mb3QEqpB5RSe5RSe6KiovIcpE3bSLXat6qW8C6R588TReO117aSlJTOpEktZISL8QzP14LKullOuM6iRQfZs+ccwcHlWbt2vIw1NJbT8hVcl7M5tkbIxAiXO3cugQ8/3IG3t2LhwpF06lTb6JCKHWctA/gAoUB3IAjYqpRqprWOy3qR1vpL4EuAtm3b6rw+eNbjlWU3ufksWDCSDz/8jeee6yz/Pu7BpflaEDHJMcQkx1DSt2T2O9OF09xzTytSUiz07l2f6tVLGx2OyF2e8hVck7OJaYkkpiVSwrsE5f3LX3+nTIxwuZo1y7B582QOHYpi0CD5hcMV8lIInwVqZfk4KOO2rCKBnVrrdOCEUuoo9sTd7YwgsxbCwhwSE9MoWdIXLy9F6dJ+vPRSN6NDEnaG52tBHIuxdx7K6DTX0FqTkJBG2bL2d9QeeqidwRGJDKbP18z+4Oqlq9+cm9Ia4TJXrqQ68rV16xq0bp3NxA7hFHlpjdgNhCqlgpVSfsAYYOUN1yzH/tsqSqnK2N/KOe6sIDM3ysnECHNITk6nf/85jB27hNRUi9HhiOsZnq8FIRMjXOu9936lZcvphIdHGx2KuJ7p8/W6U+VuJK0RLrF//3mCgz/m++9/NzoUj5BrIay1tgCPAuuBw8BCrfVBpdRrSqnBGZetB6KVUoeAn4FntNZO+44rG+XMI+sIl+3bT3P5cpLRIYkszJCvBSEb5Vxn1qwDPPvsT5w4ESezvU3GHfI1p41yAWnxcPGifVpEkJxs5izHj8fSr98cYmKSWbMmAq1d2pUmyGOPsNZ6DbDmhtumZvm7Bp7M+ON0mYdpSGuEsW4c4bJu3QQCA8saHZa4gdH5WhARsVIIu8Lq1Ue59177AuPHH/flrruaGByRuJHZ8zVrawTA6dP226vFZbRFhIaCl4zec4aLFxPp0+d7Ll68Sq9ewcycOURaxYqAW/zfK60R5vDyy9dGuKxaNZamTWWEi3CO8GiZGOFsO3ZEctddi7BaNc8/35nHHrvd6JCEG8qcGFGjdA0++QTeeMN+e88gaYtwpoSEVPr3n8uxY7G0bl2DpUtlrGFRcYuvsmyWM95nn+3i9de34uWlWLBgJJ07ywgX4TzSGuFchw9HMWDAXJKTLUyZ0pI33+xpdEjCTWUWwnu3VmdFxjr1hx9Cx2iZGOEsqakWhg1bwL5956lfvwJr1oxzbJQTruceK8IZrRHSI2wMq9XGokX2g46+/HIggwfLCoBwnviUeKKSovD38admmZpGh1Ms/PjjcWJikhk4sAH/+98geXtVFNiFBHtrxIrZNVAKvvoKnngC2SjnRBERMezde55q1Uqxfv0EqlWTsYZFya1WhKU1whje3l6sXTue1avDGTmysdHhiGLmWOy10Wleyi1+Nze9xx67ncDAMvTrF4qPj3xNRcHYbLD77/PgC97J1ZkzD0aPzrhTZgg7TZMmVdm27R7S063Ur1/R6HA8jlt8h8zsEZbWiKJ14kQsFosNgIAAXymChUtIW4RzJCenExl5xfHxiBGNKVnS18CIhDuzWGDyZIhOta8Iz/ioxrUi2GaTFWEnyDrOsGnTqrRqJbOCjeAehbC0RhS548dj6dhxBiNGLCQ5Od3ocEQx5iiEK0ghXFAWi40xY5bQocPXHDx4yehwhJtLTYVRo+D7ORYodQmFYtyQLJujz56F5GSoWhXKlzcsTnf27bf7adToM778cq/RoXg8tyiEHZvlvGVFuChkHeFy9WoaXl7SXyhcJzxGJkYUhtaaBx/8gZUrj5CcbJF8FYVy9SoMHgzLlkHZGpdAaSqXrIyvd5Z3F6QtolBWrTrC/fevwmrVpKVZjQ7H47lFIewYnyYrwi4nI1xEUZPWiMJ56aWfmTFjPwEBPvzww1gaNapidEjCTcXHQ9++sGEDVKkC/5uTw6lycrRygf366xlGjVqM1ap58cUuPPpoe6ND8nhuUQjLZrmikZZmZfjwhTLCRRQpKYQL7r//3cmbb27D21uxaNFddOxYy+iQhJu6fBl69YJffrEfFLdtG5SpYR+dlnmYhoP0BxfIwYOXGDhwLikpFu67rxWvvdbD6JAEblIIy8lyrmezaSZNWs5PPx2nalUZ4SKKRmJaIhcSL1DCuwS1ykkRlx8LFvzF44+vA+DrrwczYIC8TS0K5tw56NYN9u6F+vXtRXDDhtdOlbvxeGVpjci/M2fi6dt3DrGxKQwe3JAvvhgoYw1Nwi3e85bWCNdLSbFw+XISZcr4sW7deBnhIorEsRj76LR6FerJ6LR8OncuAa3h7bd7MXlyS6PDEW7q5En7SvDx49CkCfz4I9TIqHuznip3HWmNyLeoqCRSUix07lyb+fNHyFhDE3GLQlhOlnO9kiV9Wb16HIcPR9GiRfXcP0EIJ5C2iIL717860rlzbdq2lUNIRMH8/Tfcead9CETbtrBuHVSqdO3+8wnZtEakpMCpU+DtDfXqFXHE7qt16xr8+usUKlcuSUCAjDU0E7f4lcQxPk16hJ3u559POHat+vl5SxEsipRMjMifY8diOHYsxvFxu3aB8vaqKJADB6BrV3sR3KULbNx4fREMcOFqNpvlIiJAawgOBj+/ogvYDaWnW9m06YTj49DQSlSoIHWM2bhFIezYLCetEU61atURevf+nkGD5jkOzhCiKMmKcN5duJBInz6zueOObzh0KMrocIQbu3ABevSAqCgIC7OvBJcte/N12a4IS1tEnmituf/+VfTq9R3Tp+8xOhxxC25RCMtmOefLOsKlffua0q8kDCGFcN5cuZJKv35zOH48llq1ylKrVjZVixB5tGMHxMVBq1awYgWULJn9ddlulpOJEXnyf/+3kVmzfqdkSV9atZJ3Ws3MLaofGZ/mXIcORckIF2EKmYVwaMVQgyMxr9RUC8OGLeDAgQuEhFRkzZrxlCkjYw1F4dWuDSVy+F9Ja31ts1zW1giZGJGrjz7awdtvb8fbW7F48V3cfnuQ0SGJW3CLQjhzaoSsCBfemTPxhIXNlhEuwnBJ6UmcTTiLr5evjE7LgdVq4+67l7Fp0wmqVy/Nhg0TqFq1lNFhCQ8QnxpPiiWFUr6lKO2XZZSmrAjf0rx5f/Kvf60H4JtvhtCvn/ySb3buUQhbZHyaM8TEJBMWNpvIyCsywkUY7njscQCCKwTj4+UWA2yK3BNPrGPRokOULVuCtWvHExxcweiQhIdwtEXIqXJ59tNPx5k0aTkA773Xm4kTWxgbkMgTt/jpI+PTnMPf34f69Svi5aVYuXKMjHARhgqPlokRuWnYsDIBAT6sWDGGli2lz1AUnWw3yl2+DDExULo0VJf/H29UpUpJKlUqyfjxzXj66TuMDkfkkVsUwo4DNaRHuFBKlvRl2bLRxMYmywgXYTjHRrkKUgjn5NFH2zNiRCNq1ChjdCjCw+S6UU5a6m7SokV19u//h7QvuRm3eF9cxqcVnNaaL77YTUqKBQAfHy+qVJEkFcZzbJSrJD10Wa1dG87ff192fCxFsDBCtqfKSVvETc6fT2DevD8dH1evXhovL/klwZ24RSEs49MK7v/+byMPP7yG4cMXoLU2OhwhHCJiZXTajX755TTDhy+kU6dvOH063uhwhAe75QxhmRgBQHx8Cv36zWHcuKXMmnXA6HBEAblHISytEQXy8cfXRrj885/tZTqEMBWZIXy9v/66xKBB80hJsXDXXY1lVrAwVLanysnECIeUFAtDhy7g998v0qBBJQYMkF8O3JVbFMKyWS7/5s//iyeekBEuwpxSLCmciT+Dt/KmTrk6RodjuFOn4ggLm01cXArDht3GZ5/1l19chaFkRThnmWMNN28+SY0apVm/fgKVK+dwKokwPdMXwlablXRbOgqFn7eca54XP/54jIkTlwHw7rt3yggXYTrHY4+j0dQtXxdfb8+eXhIdnURY2GzOnUuga9c6zJ07Am9v039rFsXcTZvlrFaIsL+L48mFsNaaxx5by+LFhyhXrgTr1k2gbt3yRoclCsH0322zbpSTFZLc/fXXJYYPX0h6uo0nn+wgI1yEKUlbhJ3FYmPQoHkcORJNs2ZVWbFiDP7+bjHMRxRzN50qd+oUpKVBYKB9fJqHmjbtVz7/fA8lSnizYsUYmjevZnRIopBM/x1XNsrlT0hIRfr2DaFECW/ee6+P/PIgTEmOVrbz8fHivvtac+nSVdatm0D58vJ9Thgv1ZJKTHIM3sqbyiUr22+UtggABg5swBdf7GHatD5061bX6HCEE5i/EJaNcvni7+/D/PkjsNm0jHARpiUrwtdMmdKKceOayUqwMI2LVy8CUK10NbxUxhvHMjoNgEaNqnDo0COSr8WI27RGyIpwzuLjU/jXv9Zx9WoaAN7eXvj6ehsclRA58/RC+K23tvHHHxcdH8sPVWEm2W6U8+CJEVu3nuLzz3c7PpZ8LV5M/6+Z2Rohh2lkL3OEy+bNJ4mKSmL27OFGhyRErsJjPPd45Q8++I3/+79NfPDBDo4ff4wyZUoYHZIQ18n2VDkPbY3444+LDB48j/j4VGrVKsugQZ73i0Bx5zYrwtIacTOr1caECUsdI1zeeKOn0SEJkatUSyqn40/jpbyoW76u0eEUqTlz/uCppzYA8OGHYVIEC1PK3Cjn6SvCJ0/G0bfvbOLjUxk+vBH9+3v2nobiKk+FsFKqr1LqiFIqQin13C2uG6GU0kqpts4KMLNHWFojrpc5wmXJksOULSsjXMQ1RuZrXpyMO4lN26hdrjYlfDynEFy/PoLJk1cA8P77fZgwobnBEQmzMFvO3rQifPUqREaCry/UrevKpzaNqKirhIXN5vz5RLp1q8OcOcNlrGExleu/qlLKG/gM6Ac0BsYqpRpnc10Z4HFgpzMDlNaI7L3xxlbHCJeVK2WEi7AzOl/zwhMnRuzadZYRIxZisdh45pk7ePLJjkaHJEzCjDmb2SPsGJ2WuRocEgLexX//SWJiGgMGzOXo0WhatKgmYw2Lubz8etMeiNBaH9dapwHzgSHZXPc68A6Q4sT4ZLNcNlavPsrUqZvx8lLMnTtCRriIrAzN17zwtI1yV66kMnDgXK5eTefuu5vz9tt3Gh2SMBfT5exNrREe1hbx0EOr2b37HHXrlmft2vGUKyf1R3GWl0I4EDiT5ePIjNsclFKtgVpa69W3eiCl1ANKqT1KqT1RUVF5ClDGp92sT5/63H13cz7/vD/DhzcyOhxhLobma154WiFctmwJPv64L0OGNGTGjMEy1lDcyHQ5e1NrhIeNTnvllW507BjEhg0TqFGjjNHhCBcr9Fq/UsoL+ACYnNu1WusvgS8B2rZtq/Py+LIifDNfX29mzRoqh2WIfHN1vuaFJ06MGDu2GWPGNJWcFflmRM7etCLsYRMj6tevyPbtUyRfPUReVoTPArWyfByUcVumMkBTYLNS6iTQAVjprGZ+R4+wh68I//HHRYYPX8CVK6kAkqAiJ4bma154wopwcnI6I0cuZPfua196yVmRA1PlrE3buJhon3F9U49wMV4RnjbtV957b7vjY8lXz5GXFeHdQKhSKhh7co4BxmXeqbWOBypnfqyU2gw8rbXe44wAHa0RHrxZLnOEy/nziTRsuI233pIeQ5EjQ/M1N+nWdE7GnUShqFehXlE8ZZGzWm2MG7eU5cv/5s8/L3Hw4MP4+Mhuc5EjU+VsTHIM6bZ0yvuXt78Tq3Wxb4347rvfeeaZHwG48856tGpVI5fPEMVJrt+dtdYW4FFgPXAYWKi1PqiUek0pNdjVAXp6a0TWES7du9fl5Ze7Gx2SMDGj8zU3p+JPYdVWapWrVSxzWmvNww+vZvnyvylf3p8lS0ZJESxuyWw5e9OpchcuQEICVKgAlSoVdTgut2ZNOFOm2McafvRRmBTBHihPPcJa6zXAmhtum5rDtd0LH9Y1ntwaceMIl+XLR8sIF5ErI/M1N8W9LeKVVzbz5Zf78Pf3YeXKMTRtWtXokIQbMFPO3rRRLmtbRDFrF9ixI5K77lqE1ap57rlOPP54B6NDEgYw/VKFp64Ip6dbM3oMZYSLKD4chXCF4lcIf/HFbl57bSteXor580fQpUsdo0MSIt88ZaPc339fZsCAuSQlpXPPPS35z396GR2SMIjpC2FP7RGePn0P69cfo0qVkjLCRRQb4dHFc2LEqVNxPP74OgD+97+BDBlym8ERCVEwnjA6TWvNffetJCYmmYEDG/Dll4Nkc5wHM/377Jkrwp7WGvHww+04diyWCROaExpa/PqyhGeKiC2erRF16pRn4cK7OHLkMvfd19rocIQosBxPlStGhbBSinnzRvDSSz/z+ecDpI/fw5m+EM7sEfaU1gir1Ya3txfe3l589FFfo8MRwqkcxytXKh7HK2fmK8DQobIKLNxfcW6NyJqvtWqVY+bMocYGJEzB9L8GOTbLeUBrxPff/0737rOIiUk2OhQhnM5is3Ai9gRAsRidduJELM2bT2f79tNGhyKE01zXGpGeDseP2zfJhbj3uzgWi42RIxfx2mtb0Npp5wOJYsD0hbCnbJZbuzacKVNW8ssvp1m58ojR4QjhdGfiz5BuSyewTCAlfUsaHU6hXLp0lT59ZnPoUBRvvfWL0eEI4TTXrQgfPw5WK9SpAwHuuxiVdazhRx/t4Ny5BKNDEiZi+kLYsVmuGPcI79wZyciRi7BYbDz7bCcmT25pdEhCOF1xGZ2WkJDKgAFziYiIoWXL6sydO8LokIRwGseKcJkaxaYt4uWXN/PVV/sICPDhhx/GERhY1uiQhImYvhB2bJYrpq0RWUe4TJrUgrfekhEuongKj3H/iRFpaVZGjFjInj3nqFevAmvXjqds2RJGhyWEUySlJ3El9Qp+3n5U8K9QLDbKffbZLl5/fSve3ooFC0Zyxx21cv8k4VFMXwgX581yZ89eISxsNtHRyQwYEMpXX8kIF1F8ufuKsM2mueeeFfz443GqVi3F+vUTqF69tNFhCeE0WU+VU0q5/ei0RYsO8s9/rgXgq68GMWiQe74O4VrmL4SLcWvE55/v5vTpeDp0CGLhwrvw9fU2OiQhXMYxMaKie06M2Lv3HAsXHqR0aT/Wrh1PSEhFo0MSwqlynCHshq0R6elWpk7djNbwn//05J57WhkdkjAp049PK86b5V5/vSdly5bgvvtaU7Kkr9HhCOFS7r4i3K5dIKtWjcXX14vWrWsYHY4QTnfT6DQ3bo3w9fVm06aJzJ37J08+2dHocISJmb4QLm7j0ywWG6mpFkqV8sPLS/Hss52NDkkIl7ParByLPQZA/Yr1DY4mf+LjUxzHm/ft655FvBB5cd2KcHw8XLxonxYRFGRwZHmXNV9r1CjDU0/dYXBEwuxM3xpRnFaEtdY89NAPdO8+i0uXrhodjhBF5mzCWdKsaVQvXZ3Sfu7TV7t69VGCgz9m48bjRocihMtdd6pcZltEaCh4mb5UAODixUTatPmSZ5/9UWYFizwz/f/dxalHeOrUn/n66/389dcljh+PNTocIYpMeLT7TYz47bcz3HXXImJjU9iy5ZTR4QjhcpkrwtVLV3e7togrV1Lp128Ox47F8tNPJ0hKSjc6JOEmTF8IW7UVb+WNr7d799B+9tku3nhjG97eioULR9Khg/u81SREYblbf/ChQ1EMGDCX5GQL997bildf7W50SEK4XGaPcI3SNdxqYkRqqoXhwxewf/8FQkIqsnbteEqV8jM6LOEmTF8Ig/u3RcgIF+Hp3GlixJkz8YSFzSY2NoVBgxowffpAGWsoPMJ1m+XcZGKEzaaZOHE5GzeeoFo1+1jDqlVLGR2WcCNuUQi780a5TZtOMGHCMhnhIjxaRKx7rAjHxCTTt+8cIiOvcMcdtZg/fyQ+Pm7xbVKIQrvuVDk3aI3QWvP442tZuPAgZcrYxxrWq1fB6LCEm3GL7/DuvCK8YsXfpKVZeeyx9jz3nEyIEJ7JXVoj9u07T0REDI0bV2HVqrEy1lB4DKvNyqWrlwCoFlDlWiFs4hXh+PhUNmw4jp+fN8uXj6FVKxlrKPLP9OPTwL03yn30UV86dqzFqFFN5O1V4ZFs2uYohOtXMPfotDvvrMeGDROoV68CFSu67/cdIfIrKikKm7ZRuWRlfC9cguRkqFoVypc3OrQclS/vzy+/3MO+fefp2TPY6HCEm3KLFWF3a424dOkqcXH2sW9KKcaMaYqXlxTBwjOdSzhHiiWFKiWrUM6/nNHh3ERrTXh4tOPjbt3qUquW+eIUwpUco9PcYKNceHi0YzxalSqlCAsz9ztNwtzcohB2p9aIhAT7CJeuXb/l3LkEo8MRwnBmb4t48cVNtGgxndWrjxodihCGcZeNctu3n6Z58+k8/vg6bDaZFSwKzy0KYXdpjUhNtTBs2AL27TtPUlK6bLIRgiwTIyqZb2LEJ5/s5D//+YW0NKvRoQhhKHfYKHfw4CUGDpxHSoqFlBQL0m0onMEtKjV3WBG22TSTJskIFyFu5FgRrmCuFeH58//iiSfWATBjxmAGDDDf6pcQRSWzNaJ6qeqmbI04fdo+1jAuLoWhQ2/j888HyL4b4RRuUQibvUdYa80TT6xjwYJrI1zq169odFhCmIIZWyN++uk4Eyfaxxq+/XYvJk1qaXRIQhjquhVhk7VGREcnERY2m7NnE+jSpTZz5w6Xd1yF07jF/0lmb414++1f+O9/d8kIFyGyER5jruOV9+49x7BhC0hPt/HEE7fz7393MjokIQyX2SMc6FsJTp0Cb2+oV8/gqODq1TQGDpzH339fpmnTqqxYMYaAABlrKJzHLQphM7dGaK05dy4BpWD27GEywkWILLTWplsRvnTpKlarjbFjm/L++2Hy9qoQXCuE6162gNb2ItjP+GOKExLSSExMo3btcqxbN54KFcy9MCbcj8wRLiSlFJ980o9Jk1rStm1No8MRwlQuJF4gKT2JigEVqRBgjhOf+vUL5bff7qVRoyoy1lCIDJmtEYHnE+03mKQtonr10mzdOpno6GQCA8saHY4ohmRFuID27DnH5ctJgL0YliJYiJs5JkZUNHZiRHx8Cr/9dsbxcYsW1fHz8zYwIiHMQ2vt2CxX8cxl+40Gb5Rbvz7CMSu4QoUAQkJk341wDbcohM22We7gwUv07v09nTt/w8WLiUaHI4RpmaEtIiXFwtChC+jefZbMChYiGwlpCSRbkinpW5ISx07ZbzSwEP7ww9/o23cODz+82rAYhOdwi0LYTCvCWUe43HZbZSpVKml0SEKYltGFsNVq4+67l7F580kqVgygceMqhsQhhJllPVVOGTwxYs6cP3jyyQ0A3HFHLUNiEJ4lTz3CSqm+wMeAN/C11vrtG+5/ErgPsABRwBSt9SlnBWmWHuGsI1w6d67NvHkjZITLDdLT04mMjCQlJcXoUEzL39+foKAgfH1ds/PZ6HzNysiJEVprHn98HYsXH6Js2RKsWzee4GBz9CmbieTsrXlCvl53qtzRw/YbDVgR3rDhGJMnrwBg2rTe3H13iyKPwewkX3OX35zNtRBWSnkDnwG9gUhgt1Jqpdb6UJbL9gNttdZJSqmHgHeB0fmOPgdmaI24ejWNAQPmOka4rFwpI1yyExkZSZkyZahbt67sxs+G1pro6GgiIyMJDnb+hBEz5GtWRq4Iv/nmNj77bDclSnizcuUYWrSoXuQxuAPJ2Zx5Sr5mbpRroCtCTAyUKQPVizZfdu8+y/DhC7BYbDz1VEeeeuqOIn1+dyH5emsFydm8LGe2ByK01se11mnAfGDIDU/8s9Y6KePDHUBQPuLOldGtERaLjVGjFrNz51kZ4ZKLlJQUKlWqJAmaA6UUlSpVcuVv84bna5bnMWyz3Ndf7+Oll35GKZg7dwTdutUt0ud3J5KzOfOUfM1sjWgamzEurUEDivL84vDwaPr3n8vVq+lMmNCcd9/tXWTP7W4kX2+tIDmbl0I4EDiT5ePIjNtyci+wNocAH1BK7VFK7YmKispzkEa3Rnh7K5o0qUKlSgGsXz9BRrjkQhL01lz89TE8XzNFJUWRkJZAef/yVAwo2h3fdeuWp3RpPz7/fADDhzcq0ud2R5KzOXOXfIWC56xjRTjaPqWhqNsiypXzp06dcvTtG8I33wyWsYa5kHy9tfx+fZw6R1gpNQFoC3TL7n6t9ZfAlwBt27bVeX1co1eElVK8+25vnnyyI9WrlzY0FiGcxVX5milrW0RRf+O+8856hIf/U/JVFBu55SsUPGcze4RrX0i231DEG+WqVi3Fzz9PQimFr6+MNRRFKy8rwmeBrFs3gzJuu45S6k7gBWCw1jrVOeHZGdUjPGfOH1y4cG08mvxQdQ9TpkyhatWqNG3aNMdrtNY89thjhISE0Lx5c/bt2+e4b9asWYSGhhIaGsqsWbOy/fzu3buzZ8+e627bvHkz5cqVo2XLltx22208/fTTznlB+WN4vmYq6v7gv/66xIYNxxwfS766j3Xr1tGwYUNCQkJ4++23s73m1KlT9OrVi+bNm9O9e3ciIyMd93l7e9OyZUtatmzJ4MGDs/38yZMns3jx4utuO3nyJAEBAbRs2ZLGjRszceJE0tPTnffCcmeKfM0shKuejbffUAQrwikpFj7/fDc2m71eL1OmBKVLG3+SnchdYfP19OnT9OnTh0aNGtG4cWNOnjx50+cXZb7mpRDeDYQqpYKVUn7AGGBl1guUUq2A/2FP0kuFjuoGRrRGzJv3JxMmLKNz52+4ejWtyJ9fFNzkyZNZt27dLa9Zu3Yt4eHhhIeH8+WXX/LQQw8BEBMTw6uvvsrOnTvZtWsXr776KrGxsXl+7i5dunDgwAH279/PDz/8wPbt2wv1WgrA8HzNFB6dMTGigusL4VOn4ggLm82AAXPZvPmky59POI/VauWRRx5h7dq1HDp0iHnz5nHo0KGbrnv66aeZOHEif/zxB1OnTuX555933BcQEMCBAwc4cOAAK1euvOlzb6V+/focOHCAP//8k8jISBYuXFjo15QPpsjXzNaIcqfs/3V1IWy12hg/fimPPLKGp55a79LnEs7ljHydOHEizzzzDIcPH2bXrl1UrVo1z8/vinzNtRDWWluAR4H1wGFgodb6oFLqNaVU5q/e7wGlgUVKqQNKqfx9J8pFUbdGbNhwjEmTlgPw0ENtKVVKfkstCKVc8yc3Xbt2pWLFW/ekrlixgokTJ6KUokOHDsTFxXH+/HnWr19P7969qVixIhUqVKB37965FtXZyfyt9ezZmxZ3XMoM+ZopIrZoVoQvX7aPNTx3LoFOnWrRoYNL9v55BCNydteuXYSEhFCvXj38/PwYM2YMK1asuOm6Q4cO0bNnTwB69OiR7TWF4e3tTfv27Ys0Z82Sr+cTzuNlA/+TGat2oa7b3Kq15tFH17B06WHKlSvBlCmtXPZcxZ075uuhQ4ewWCz07m3fEFm6dGlKlsz/eQzOzNc8DcHVWq/RWjfQWtfXWr+ZcdtUrfXKjL/fqbWuprVumfEn+/emCqgoWyMyR7ikp9t4+mkZ4VJcnT17llq1rr0jGRQUxNmzZ3O8Pb9iY2MJDw+na9euTok3P4zO10yOiRGVXPdD9erVNAYOnMuRI9E0b16N5cvH4O/v1K0PwsXymnMtWrRg6dKlACxbtoyEhASio6MB+076tm3b0qFDB5YvX16gOFJSUti5cyd9+/Yt0OcXlNH5mmZNIzo5muB4hUpLg8BAKO26tqLXX9/K9Ol7KVHCm1WrxtKsWTWXPZdwvsLm69GjRylfvjzDhw+nVatWPPPMM1it1nzH4cx8dYvTIIpqRfjGES7vvCMjXApDa9f8MbNt27bRokULAgMDCQsLo3oRz+I0C631tdYIF60Ip6dbueuuRezceZa6dcuzdu14ypc3zymU7sjMOTtt2jS2bNlCq1at2LJlC4GBgXh72zdWnTp1ij179jB37lyeeOIJjh07lsujXXPs2DFatmxJtWrVqFGjBs2bN3dOwG7iYuJFAG5PLG+/wYVtEf/73x5efnkzXl6K+fNH0qVLHZc9lydwx3y1WCxs27aNadOmsXv3bo4fP87MmTPz/LiuyFe3KISLokc4Li6FsLDZXL6cJCNcPEBgYCBnzlybWhQZGUlgYGCOt+dVly5d+P333zl48CAzZszgwIEDzgzbbcQkxxCfGk8ZvzJUKemaY40feWQNa9dGULlySdavn0DNmmVc8jzCtfKaczVr1mTp0qXs37+fN998E4Dy5cs7HgOgXr16dO/enf379+f5+TN7Do8dO8bevXvz3WPs7jL7g1tdyXh72kUTI9auDefhh9cA8MUXAxg69DaXPI9wrcLma1BQEC1btqRevXr4+PgwdOjQ6zar58YV+eoehXARtEaUK1eCiRNb0L59IIsW3SUjXIq5wYMH891336G1ZseOHZQrV44aNWoQFhbGhg0biI2NJTY2lg0bNhAWFpbvxw8ODua5557jnXfecUH05lcUo9Puvrs5QUFlWbNmHA0aVHLJcwjXa9euHeHh4Zw4cYK0tDTmz5+f7eSHy5cvY7PZAHjrrbeYMmUKYG9DSk1NdVyzfft2GjdunO84KleuzNtvv81bb71ViFfjfjInRjSKzfiZ56IV4fbtA7n99kBee607DzzQxiXPIVyvsPnarl074uLiyJxzvWnTJsPz1S0K4aJojVBK8cor3dm6dbKMcHFzY8eOpWPHjhw5coSgoCBmzJgBwPTp05k+fToA/fv3p169eoSEhHD//ffz+eefA1CxYkVeeukl2rVrR7t27Zg6dWqOG+8GDBhAUFAQQUFB3HXXXTfd/+CDD7J169ZsR8MUd+Exrm2LAOjSpQ4REf+kXbu8r9gL8/Hx8eHTTz8lLCyMRo0aMWrUKJo0aQLA1KlTHSs+mzdvpmHDhjRo0ICLFy/ywgsvAHD48GHatm1LixYt6NGjB88991yOP1j/8Y9/OHK2Y8eON90/dOhQkpKS2LZtm4terflknipX72LGGCoXFcKVKpXk558n8eKLRb9vQjhPYfPV29ubadOm0atXL5o1a4bWmvvvvz/b5yqyfNVaG/KnTZs2+pYy2lV4BZ1uTb/1tQVksVj1M89s0KdPx7nk8T3RoUOHjA7BLWT3dQL2aIPyMbc/ueXrL3XGaQ36l4dma621fvnnlzWvoJ//6fl8fmVubc6cP/Ty5Yed+pieTnI2d+6WrzqXnF22zP4jdsgQrV/5+RXNK+i4ymXsN0ZEFOArlL3jx2P088//pC0Wq9Me09NJvuZNfnLW9Nurfbx88PFyfpha20e4TJ++l3XrIjhw4EHpCRbCSRwTIyo6b2LEunURTJq0HJtN8/vvD9K0ad5nTwohsnc+8TylUqHc5QTw84O6dZ3yuFFRVwkLm014eAwBAT689FKOB+IJYSjTt0a4aqNc1hEun37aX4pgIZzI2afK7dwZyYgRC7FYbDz1VEcpgoVwkguJFwiNyfggJAS8C78/JjExjQED5hIeHkOLFtV47LHbC/2YQriK6QthV/QH3zjCpWtXGeEihDM5sxA+cuQyAwbMJSkpnYkTW/D223cW+jGFEHbnE8/TIDrjAydMjEhLszJixEJ27z5HcLB9rGG5cjLWUJiX6QthZ0+MWLr0sIxwEcKFYpNjiU6OpqRvSaqXLtwc5bNnr9Cnz2yio5Pp1y+Er78eJO/eCOFE5xPO0/ByxgeF3Chns2mmTFnBhg3HqFLFPtawRg0ZayjMzfyFsBNbIyIiYhg3bgk2m+bVV2WEixCu4KzRaVprRo5cxOnT8dx+u4w1FMLZNJoLiRdomLkiXMhC+KOPdjBnzp+ULu3H2rXjCQ2VsYbC/ExfCDuzNaJ+/Qq89loPHn64LS+9JCNchHAFZ7VFKKX46KMwOneuzerV4yhVSsYaCuFM6d4xpNvSaRSTUQoUsjXi3ntb0adPfZYuHUWbNjWdEKEQrmf6QtiZrRFKKf797058+ml/lw35F8Zbt24dDRs2JCQkhLfffjvba06dOkWvXr1o3rw53bt3JzIy0nHfv//9b5o0aUKjRo147LHH0NmcOdm9e3caNmxIixYt6NSpE0eOHLnu/scee4zSpUs794W5CWdOjLj99iC2bp1MpUolC/1YwrzykrOnT5+mR48etGrViubNm7Nmjb3F7ccff6RNmzY0a9aMNm3asGnTpmw/X3L2Zim+F0BzrUe4kCvC5cr5s27deHr3rl/44IRpFSZfT548SUBAAC1btqRly5Y8+OCD2X5+Uear6Qvhwq4IR0VdZcCAuRw/Huu4TYrg4stqtfLII4+wdu1aDh06xLx58zh06NBN1z399NNMnDiRP/74g6lTp/L8888D8Ouvv7J9+3b++OMP/vrrL3bv3s2WLVuyfa45c+bw+++/M2nSJJ555hnH7Xv27CE2Njbbz/EEEbEFXxHWWvPPf65h/vy/HLdJvhZvec3ZN954g1GjRrF//37mz5/Pww8/DNhPmFq1ahV//vkns2bN4u67787xuSRnr5fie57qiVA6xQYVKkCl/LcyrFkTzn33rSQ93QpIvhZ3hc1XuHZM8oEDBxyHXGWnqPLV9HOEC9MjnDnCZffuc1itNtatm+DEyERu1Kuu+YaoX755hTbTrl27CAkJoV69egCMGTOGFStW3HTS1KFDh/jggw8A6NGjB0OHDrXHrBQpKSmkpaWhtSY9PZ1q1ardMp6uXbvy0UcfAfZvEs888wxz585l2bJlBXyF7q0wrRGvvLKZTz/dzTffHKBHj7pUq+ZZK3RGM3POKqW4cuUKAPHx8dSsaX/rvVWrVo5rmjRpQnJyMqmpqZQoUSLH55SctUv1OX/9anA+i9gdOyIZOXIhyckWOneuzeTJLZ0eo8iZO+ZrQbg6X02/IlzQ1ogbR7h8++0QJ0cmzOjs2bPUqlXL8XFQUBBnz5696boWLVqwdOlSAJYtW0ZCQgLR0dF07NiRHj16UKNGDWrUqOE4RvJWVq1aRbNmzQD49NNPGTx4MDVq1HDiq3Iv4dEFO175iy9289prW/HyUsybN0KKYA+R15x95ZVXmD17NkFBQfTv35///ve/N12zZMkSWrdufcsiGCRnM6X4XijwxIjDh6MYMGAuyckW7rmnJZMmtXB+gMJ0nJGvJ06coFWrVnTr1i1PxyO7Ol9NvyJckNYIGeFiDrf6rdJo06ZN49FHH2XmzJl07dqVwMBAvL29iYiI4PDhw46e4d69e7Nt2za6dOly02OMHz+egIAA6taty3//+1/OnTvHokWL2Lx5cxG/GvNItSURlRSFv48/NcvkfQVg8eJDPPKIvYfsyy8HMnhw4XoVRcGYOWfnzZvH5MmTeeqpp/jtt9+4++67+euvv/Dysq/nHDx4kGeffZYNGzbk+BiSs9dL9T1/bWJEPjbKRUZeISxsNjExyQwc2IAvvxwkLREGcMd8rVGjBqdPn6ZSpUrs3buXoUOHcvDgQcqWLXvTYxRVvpq+EM5va4TWmqef3iAjXDxUYGAgZ86ccXwcGRlJYGDgTdfVrFnTsSKcmJjIkiVLKF++PF999RUdOnRwNOH369eP3377LdtCeM6cObRt29bx8erVq4mIiCAkxL4SmpSUREhICBEREU59jWZ2xXoRsK8Ge6m8veG0efNJxo9fitbw5ps9uffe1q4MUZhMXnN2xowZrFu3DoCOHTuSkpLC5cuXqVq1KpGRkQwbNozvvvuO+vVz3qglOXu9FJ8L+d4oFxubTN++szlz5godOwaxYMFIfHxM/+aycBJn5GvmOzZt2rShfv36HD169Lq8zFRU+Wr6/3vzuyL8yy+n+fDDHfj6eskIFw/Url07wsPDOXHiBGlpacyfP5/BgwffdN3ly5ex2WwAvPXWW0yZMgWA2rVrs2XLFiwWC+np6WzZsiXX1ohMAwYM4MKFC5w8eZKTJ09SsmRJj/mBmik+SyGcF6mpFiZOXEZampV//rM9zz/f2ZXhCRPKa87Wrl2bjRs3AnD48GFSUlKoUqUKcXFxDBgwgLfffptOnTrl67k9PWdTffN/mMZLL/3MwYNRNGpUmR9+GEfJkr6uC1CYTmHzNSoqCqvVvrHy+PHjhIeHO/qNc+OqfDV9IZzfFeEuXerwySd9mTVrqIxw8UA+Pj58+umnjt7eUaNG0aRJEwCmTp3KypUrAdi8eTMNGzakQYMGXLx4kRdeeAGAkSNHUr9+fZo1a0aLFi1o0aIFgwYNMuz1uJt4S0YhXCFvhXCJEj6sWjWWRx5px0cf9ZW3Vz1QXnP2/fff56uvvqJFixaMHTuWmTNnopTi008/JSIigtdee80xkunSpUtGviS3YfU6R71Y0ErBLVbSs3rnnTu5556WrF8/gYoVnXvyqzC/wubr1q1bad68OS1btmTkyJFMnz6dihUrGvmS7K0ERvxp06aNviXQGvRLm1669XUZLBZrnq4TrnXo0CGjQ3AL2X2dgD3aoHzM7U9u+fpLnXFag35tXFfNK+jpu6ff8nrJV/OQnM2du+WrziVnly2z/4ht/FBprUFb6tS+5eu32WzaarXd8hpRNCRf8yY/OWv6FeG8tEbs2BFJs2Zf8Pffl3O9VgjhOvHWC8CtWyMSElLp1OkbZs48UERRCSFu4pNM/dhEALxuu3X710sv/cyYMYtJTbUURWRCFCnTF8K5tUZkjnA5fPgy06fvKaKohBDZya1HOC3NyvDhC9m58yxvvrmN5OT0ogxPCJGp9LWNcuoWEyP++9+dvPnmNpYuPcyuXTePyRLC3Zm+EL7VivCNI1ymTetThJEJIW6UZIunhHcJapWrddN9Nptm0qTl/PTTcapWLcW6deMJCJCNNkIYokyW0Wk5bJRbsOAvHn/cvvP/q68G0aVLnSIKToiiY/pCOKcDNWSEixDmVK9CvZtGp2mt+de/1jF//l+UKePHunXjqV/f4A0SQniy0rc+TOOnn45z993L0BreeqsX99zT6qZrhCgOTF85ZrcinJyczqBB82SEixAmlF1bxDvvbOeTT3bh6+vF8uVjaNXK807xEsJUSmc5XvmG1oh9+84zbNgC0tNtPP747Tz7bP7G0gnhTkxfCGfXI7x6dTjbt58hKKisjHARwmRuLISjo5OYNu1XlILZs4fTs2ewQZEJITKVDThB9auQXsIHgoKuu++tt34hMTGNsWOb8sEHYTLWUBRr5i+Es2mNGDmyMd9+O4T16ydQq1Y5A6ISZjZlyhSqVq1K06ZNc7xGa81jjz1GSEgIzZs3Z9++fY77Zs2aRWhoKKGhocyaNSvbz+/evTsNGzakRYsWdOrUiSNHjgCwadMmWrduTdOmTZk0aRIWi+ftsr6xEK5UqSTbtt3DjBmDGTWqiUFRCTNbt24dDRs2JCQkhLfffjvba06fPk2PHj1o1aoVzZs3Z80a+5HcJ0+eJCAgwDFD+MEHH8z28yVnr9dQhwMQX7s6eF1fCnz33VBef70HM2cOxctLimBxvbzk66lTp+jVqxfNmzene/fuREZGAnDgwAE6duxIkyZNaN68OQsWLMj28ydPnkxwcDAtW7akdevW/PbbbwD8/vvvdOzYkWbNmjFo0CCuXLlS+BeU3Uy1oviT1znCW05ucdwUF5ecjylywghmmHG4ZcsWvXfvXt2kSZMcr1m9erXu27evttls+rffftPt27fXWmsdHR2tg4ODdXR0tI6JidHBwcE6Jibmps/v1q2b3r17t9Za6//973960KBB2mq16qCgIH3kyBGttdYvvfSS/vrrr7N9fnebS5rXOcLjhqPXR6zXWku+ugujc9Ziseh69erpY8eO6dTUVN28eXN98ODBm667//779eeff6611vrgwYO6Tp06WmutT5w4cctcz1SYnHW3fNV5mCM8vmMLrUFH9u2ktdY6ISFVp6fLfG+zc5d8HTlypJ45c6bWWuuNGzfqCRMmaK21PnLkiD569KjWWuuzZ8/q6tWr69jY2Js+f9KkSXrRokVaa63Xr1+vmzVrprXWum3btnrz5s1aa61nzJihX3zxxWzjLFZzhDNbIz79dBeNG3/On39eNDgikWdKueZPLrp27ZrrSTUrVqxg4sSJKKXo0KEDcXFxnD9/nvXr19O7d28qVqxIhQoV6N27t+O89Fs9X0REBNHR0fj5+dEgo9+ud+/eLFmyJO9fr2IitGIohw5FERLyX774YrfR4Yj8MCBnd+3aRUhICPXq1cPPz48xY8awYsWKbEJTjtWf+Ph4atasWeCXKTkLDVMyfpY2bEBqqoWhQ+czfPgCkpJkpKHbMHG+Hjp0iJ49ewLQo0cPxzUNGjQgNDQUgJo1a1K1alWioqJu+ZyZ+Qpw9OhRunbtCjgvX01fCPv7+LNw4UEee2wt584lsH//BaNDEsXA2bNnqVXr2oivoKAgzp49m+Ptt7Jq1SqaNWtG5cqVsVgs7Nljn2e9ePFizpw545oXYDJa2d9O9sIbrpQlLGw2ly8nsW7dMWw2bXB0wszymnOvvPIKs2fPJigoiP79+/Pf//7Xcd+JEydo1aoV3bp1Y9u2bbk+p+QsNLwaB0CJRs2ZOHE5GzeeYPfuc0RFXTU2MGFqec3XFi1asHTpUgCWLVtGQkIC0dHR112za9cu0tLSqJ/L8d6Z+QrQpEkTR1G9aNEip+Sr6Qvh/bujmDBhqWOEy8SJLYwOSeSVo8HFyX9MYvz48bRs2ZLt27czbdo0lFLMnz+ff/3rX7Rv354yZcrg7e1tdJhFIt3LfkJVGa/KDOg3n8jIK3TuXJv580dIj6E7MXHOzps3j8mTJxMZGcmaNWu4++67sdls1KhRg9OnT7N//34++OADxo0bl2PfoOSsnVVbaRCfAsCMjeksXHiQsmVLsHbteOrUKW9scCLvTJyv06ZNY8uWLbRq1YotW7YQGBh4XW6dP3+eu+++m2+//RYvr+xL0WeeeYaWLVvy5ZdfMmPGDAC++eYbPv/8c9q0aUNCQgJ+fn6FjtUnLxcppfoCHwPewNda67dvuL8E8B3QBogGRmutTxY6OuDhBzaQnh4gI1yEUwUGBl73m2RkZCSBgYEEBgayefPm627v3r17to8xZ84c2rZte91tHTt2dKxIbdiwgaNHjzo99twYka8WZS+EU6JLc/jwZZo0qcLKlWPkwAyRq5xy8UYzZsxwtCl17NiRlJQULl++TNWqVSlRogQAbdq0oX79+hw9evSm3ATJ2UwJaZcco9PeWhSNn19pVqwYQ8uW1Qv6kMJD5DVfa9as6VgRTkxMZMmSJZQvXx6AK1euMGDAAN588006dOiQ43O99957jBw58rrbbrvtNjZs2ADY2yRWr15d2JeU+4qwUsob+AzoBzQGxiqlGt9w2b1ArNY6BPgQeKfQkWW4GqdlhItwusGDB/Pdd9+htWbHjh2UK1eOGjVqEBYWxoYNG4iNjSU2NpYNGzYQFhaW58e9dOkSAKmpqbzzzjs57mB3FaPyNd3LvgKXGl2a2rXLsX79BCpUkLGGInft2rUjPDycEydOkJaWxvz58xk8ePBN19WuXZuNGzcCcPjwYVJSUqhSpQpRUVFYrVYAjh8/Tnh4OPXq1cvz83tizlouHaCkBS4GeHNFBTB37nC6d69bmIcUHiKv+Xr58mVsNhsAb731FlOmTAEgLS2NYcOGMXHixJuK3LzIzFebzcYbb7zhlHzNS2tEeyBCa31ca50GzAeG3HDNECBzztRioJdyUtXao0uojHAR+TJ27Fg6duzIkSNHCAoKcrylMn36dKZPnw5A//79qVevHiEhIdx///18/vnnAFSsWJGXXnqJdu3a0a5dO6ZOnZrrxrus3nvvPRo1akTz5s0ZNGiQY7NAETIkX9NIAMAnpSLr108gMLBsYR5OeBAfHx8+/fRTwsLCaNSoEaNGjaJJE/uYvalTp7Jy5UoA3n//fb766itatGjB2LFjmTlzJkoptm7dSvPmzWnZsiUjR45k+vTpkrO58I7cD8CRMiX5/PMBjBhxY90tRPbymq+bN2+mYcOGNGjQgIsXL/LCCy8AsHDhQrZu3crMmTMdIw8PHDiQ5+efN28eDRo04LbbbqNmzZrcc889hX9R2Y2SyPoHGIn9rZrMj+8GPr3hmr+AoCwfHwMqZ/NYDwB7gD21a9fOduSF1lrbbDZHt0ps3NUcrxPmY/RoF3fhqnFMRuSr1lrPb9FIXwpQ+tMx/yrU10UUPcnZ3LlyfJoROTvn8ef02VJe+vvb6hf2SyOKmORr3ph2fJrW+kutdVutddsqVarkeJ1SytG0Xb5cySKMUAiRKa/5CjD6wCEqX7Xy0NxpRRSdEOJGec3ZcR+9Rc1EK+P//LsIoxPCnPJSCJ8FamX5OCjjtmyvUUr5AOWwN/QLIYqWYfmqlMJLmX4QjRBmY1zO+uRpv7wQxVpefmrtBkKVUsFKKT9gDLDyhmtWApMy/j4S2JSxDC08kPzT35qLvz6SryLf5J8/Z0XwtZGcFfki//S3lt+vT66FsNbaAjwKrAcOAwu11geVUq8ppTK3Cs4AKimlIoAngefyFYUoNvz9/YmOjpZEzYHWmujoaPz9/V31+JKvIl8kZ3Pm6nzNeA7JWZFnkq+3VpCcVUZ9Mdu2baszT/MRxUd6ejqRkZGkpKQYHYpp+fv7ExQUhK/v9TN2lVJ7tdY3Dz81AcnX4kty9tbcMV9Bcra4knzNXX5zVhqEhFP5+voSHBxsdBhCiDySnBXCfUi+Op/sbBFCCCGEEB5JCmEhhBBCCOGRpBAWQgghhBAeybDNckqpKOBULpdVBi4XQTh5JfHkzEyxgHvGU0drfeuTKwwi+eoUEs+tmSket85XcMucNVMsIPHkxh3jyTZnDSuE80IptcdMu3IlnpyZKRaQeIxgttco8dyaxJMzM8XiSmZ6nWaKBSSe3BSneKQ1QgghhBBCeCQphIUQQgghhEcyeyH8pdEB3EDiyZmZYgGJxwhme40Sz61JPDkzUyyuZKbXaaZYQOLJTbGJx9Q9wkIIIYQQQriK2VeEhRBCCCGEcAkphIUQQgghhEcyRSGslOqrlDqilIpQSj2Xzf0llFILMu7fqZSqa3A8TyqlDiml/lBKbVRK1TEqlizXjVBKaaWUS8eZ5CUepdSojK/PQaXUXCPjUUrVVkr9rJTan/Hv1d+FsXyjlLqklPorh/uVUuqTjFj/UEq1dlUsriT5Wrh4slzn8pyVfM01nmKfs5KvhYsny3XyM7a4/ozVWhv6B/AGjgH1AD/gd6DxDdc8DEzP+PsYYIHB8fQASmb8/SFXxZOXWDKuKwNsBXYAbQ3+2oQC+4EKGR9XNTieL4GHMv7eGDjpwni6Aq2Bv3K4vz+wFlBAB2Cnq2Ix+Gvukfma13gyrnN5zkq+5immYp2zkq+FjyfjOvkZa4KcdVW+mmFFuD0QobU+rrVOA+YDQ264ZggwK+Pvi4FeSillVDxa65+11kkZH+4AgoyKJcPrwDtAioviyE889wOfaa1jAbTWlwyORwNlM/5eDjjnqmC01luBmFtcMgT4TtvtAMorpWq4Kh4XkXwtZDwZiiJnJV9z4QE5K/layHgyyM9YE+Ssq/LVDIVwIHAmy8eRGbdle43W2gLEA5UMjCere7H/BmJILBlL/7W01qtdFEO+4gEaAA2UUtuVUjuUUn0NjucVYIJSKhJYA/zThfHkJr//b5mR5Gsh4ynCnJV8LTx3z1nJ10LGIz9j3SpnC5SvPi4LxwMopSYAbYFuBj2/F/ABMNmI58+BD/a3brpj/01+q1KqmdY6zqB4xgIztdbvK6U6At8rpZpqrW0GxSMMYnS+ZsRgtpyVfBWmJPmaI8lZJzPDivBZoFaWj4Mybsv2GqWUD/bl92gD40EpdSfwAjBYa51qUCxlgKbAZqXUSew9MStd2Myfl69NJLBSa52utT4BHMWetEbFcy+wEEBr/RvgD1R2UTy5ydP/WyYn+Vq4eIoyZyVfC8/dc1bytXDxyM9Y98rZguWrq5qa8/oH+283x4FgrjVjN7nhmke4vpl/ocHxtMLeQB5q9Nfmhus349pG/rx8bfoCszL+Xhn72xSVDIxnLTA54++NsPcvKRd+jeqScyP/AK5v5N/lyv9/DPyae2S+5jWeG653Wc5KvuY5rmKbs5KvhY/nhutdlq/5+Pp4dM66Il9d+j9ZPl5Yf+y/1RwDXsi47TXsvw2C/TeMRUAEsAuoZ3A8PwEXgQMZf1YaFcsN17o0SfP4tVHY30o6BPwJjDE4nsbA9owEPgD0cWEs84DzQDr239rvBR4EHszytfksI9Y/Xf1vZeDX3GPzNS/x3HCtS3NW8jXXeIp9zkq+Fi6eG651ab7m8evjsTnrqnyVI5aFEEIIIYRHMkOPsBBCCCGEEEVOCmEhhBBCCOGRpBAWQgghhBAeSQphIYQQQgjhkaQQFkIIIYQQHkkKYSGEEEII4ZGkEBZCCCGEEB7p/wHrsmPHaH4IgwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from sklearn.metrics import roc_curve, auc\n", - "\n", - "def plot_roc_curve(models, X, y):\n", - " if not isinstance(models, dict):\n", - " return plot_roc_curve({models.__class__.__name__: models}, X, y)\n", - "\n", - " ax = None\n", - " colors = 'bgrcmyk' \n", - " for ic, (name, model) in enumerate(models.items()):\n", - " fpr, tpr, roc_auc = dict(), dict(), dict()\n", - " nb = len(model.classes_)\n", - " y_score = model.predict_proba(X)\n", - " for i in range(nb):\n", - " c = model.classes_[i]\n", - " fpr[i], tpr[i], _ = roc_curve(y_test == c, y_score[:, i])\n", - " roc_auc[i] = auc(fpr[i], tpr[i])\n", - "\n", - " if ax is None:\n", - " lw = 2\n", - " _, ax = plt.subplots(1, nb, figsize=(4 * nb, 4))\n", - " for i in range(nb):\n", - " ax[i].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n", - " plotname = \"\".join(c for c in name if \"A\" <= c <= \"Z\" or \"0\" <= c <= \"9\")\n", - " for i in range(nb):\n", - " ax[i].plot(fpr[i], tpr[i], color=colors[ic],\n", - " lw=lw, label='%0.2f %s' % (roc_auc[i], plotname))\n", - " ax[i].set_title(\"class {}\".format(model.classes_[i]))\n", - " for k in range(ax.shape[0]):\n", - " ax[k].legend()\n", - " return ax\n", - " \n", - "plot_roc_curve({'LR': logreg, 'P4': piece4, 'P9': piece9}, X_test, y_test);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's use the decision tree to create buckets." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 14 out of 14 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseClassifier(binner=DecisionTreeClassifier(min_samples_leaf=5),\n", - " estimator=DummyClassifier(strategy='most_frequent'),\n", - " verbose=True)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dummy = DummyClassifier(strategy='most_frequent')\n", - "pieceT = PiecewiseClassifier(\"tree\", estimator=dummy, verbose=True)\n", - "pieceT.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAADeCAYAAAD7E3YjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtYklEQVR4nO3dd3gU1frA8e+7m94hhEDoEHqV3pEivYqgXEBRsVwVFexiQbl2sVxRsfNTQAUF5IKioIQq0rt0AyHUBAjpbc/vj5mETUjIAtlsyJ7P8+yT3Wnn3c2+O2dmzjkjSik0TSv7LK4OQNO0kqGTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE72QohIkojULgVxPCsin5dwmTVFRImIh5O2n+c9icgwEYkxP/MbRGS3iNzohHJ/EZE7inu71wtx5+vsIhINhAPZQDLwC/CQUirJlXGVBBGpB7wCdAc8gSPATOB9oBrwD+CplMoqgVgOAZOUUj8V4zanAJFKqTHFtc3rnd6zwyClVADQEmgNPOfieJxOROoAfwExQFOlVDAwAuP9B7ogpBrAbheU616UUm77AKKBXnav3wIWm88Vxp4BwBt4GzgKnAJmAL526w0BtgEXgENAX3N6MPAFcAKIBf4DWM15R4BW5vPRZnmNzdd3AwvN51OAWeZzH2AWEA+cBzYC4UWVVcD7ngUsucznUtOMx8N8fSfwN5AIHAbus1u2ArDYjOcssBqwmPOeMmNJBPYBPe3fk/m5JpllJQOH8v9fACvwrPm5JgKbgWrmvPcxfrAumNO7mNP7AhlAprn97eb0KGC8+dyC8cN+BDgNfA0E53v/d5j/8zhgsqu/r9f60Ht2k4hUA/oDWwuY/TpQD2gBRAJVgBfM9dpifFGeAEKArhhfVjCqxVnmOjcAvYHx5ryVwI3m824YSdTV7vXKAuK4AyOpqwGhwP1AqgNl5dcL+KGQeQU5DQwEgjAS/10RaWnOeww4BoRhHBI9CygRqQ88BLRRSgUCfbj4uQCglEpXRq0KoLlSqk4BZU8CRmH8b4KAu4AUc95GjP9JeWAOME9EfJRSS4FXge+VUgFKqeYFbHec+egO1AYCgOn5lukM1Ad6Ai+ISMOCP57rhKt/bVz5wPjyJWHslY4AH2HusTH37IBg7HXq2K3XAfjHfP4J8G4B2w4H0slbAxgFrDCf3w0sMp//jZGY35mvjwAtzedTuLhnvwtYBzS7krIKiC0Ts/ZRyPya2O3ZC5i/EHjEfP4y8BNmLchumUiMH4leGMf+9vNy35P9Z53v/5KzZ98HDHHw/3kO40fjkjLMaVFc3LP/DjxgN6+++bl42L3/qnbzNwC3ufo7ey0PvWeHoUqpEKVUDaXUA0qp1HzzwwA/YLOInBeR88BSczoYe9lDBWy3BsaJrxN2630CVDTnrwS6iEhljKrqXKCTiNTE2HtvK2Cb3wC/At+JyHEReVNEPB0oK794oHJhH0h+ItJPRNaLyFlz2/0xqu9gHPocBH4TkcMi8jSAUuog8ChG0p0Wke9EJMLRMu0U9vkiIo+LyN8ikmDGFWwXV1EiMH5UcxzBSPRwu2kn7Z6nYOz9r1s62YsWh1FVbmz+KIQopYLVxepnDFBQ9TMGY29bwW69IKVUY8hNhhRgArBKKXUB48t1L7BGKWXLv0GlVKZS6iWlVCOgI0bV+vaiyirAcmC4I29eRLyBHzHOWYQrpUKAnzFqPCilEpVSjymlagODgUki0tOcN0cp1Rnjx0gBbzhSZj4Ffr4i0gV4EhgJlDPjSsiJyyzvco6bceWojnEYdOoqYrwu6GQvgpl0n2Ecp1YEEJEqItLHXOQL4E4R6SkiFnNeA6XUCeA3YJqIBJnz6ohIN7vNr8Q4rs05Po/K9zoPEekuIk1FxIpxUioTsDlYlr0XgY4i8paIVDK3HSkis0QkJN+yXhgn0s4AWSLSD+N8QE5MA811BSPZsgGbiNQXkR7mj0Uaxg/mJT9gDvgcmCoidcXQTERCMa4aZJlxeYjICxjH9DlOATVFpLDv+LfARBGpJSIBXDzGd/qlRlfRye6YpzCqqutF5ALGnrE+gFJqA+ZJK4wv+0ou7jFux0iWPRjHkz+Qt/q8EuNLu6qQ1/lVMrdxAeM4fyVG1d6RsnIppQ5hnHeoCewWkQSMvfcmjDPe9ssmAg9jHGacA/4FLLJbpK75eSQBfwIfKaVWYPxAvI5RMzqJcUjxTCHv63LeMcv+zXzfXwC+GIczS4H9GFXwNIxaQI555t94EdlSwHa/xPjsVmG0KUjDqGWVWW7dqEbT3Ines2uam9DJrmluQie7prkJneya5iZ0spdCIhItIr2KeZtO7bZaRNlrReSGEiqrmYisK4myrjc62YuJiDwkIptEJF1EZl5muRfMpCvWZHaWa/2REJFBQKJSaqv5eoqIzCrWIO0opXYA581yNTs62YvPcYyeZl8WtoDZtXQERs80d3E/F9sCFMlsOHOt38vZwH3XuI0yRyd7MVFKzVdKLcRod16YDzEa6GQ4sMk2IrJHRM6JyFci4gMgIuNEZI39guaeN9J87isi00TkiNlmfI2I+ObfuIgMNw8Xmpgt7p4WkUMiEi8ic0WkvLloTgOf82KMJNPBbDG30tx+nIh8X9AbEBEvoAdmi0AR6YvRK+5Wc1vbzelRIvKKiKzFaEJcW0QaiMgyMdrj7xORkXbb9RaRt0XkqIicEpEZ+d5jFNDTbL2nmXSylxARGQGkK6V+dnCV0RjdQutgdK91dFCNt4FWGG3ny2O0H8/TTFVE7sRop95LKbULo+XYUIyutREYLeU+NBfP6XYboozuon8CUzFatJUDqgIfFBJLXYzmvMcA1OW7no7F6BcQiNEEdhlGt9WKwG3ARyLSyFy20C7HZjmxGE2J61/2k3IzOtlLgIgEYnzJH7mC1aYrpWKUUmcxho8a5UA5FoxusI8opWKVUtlKqXVKqXS7xR7F6Ht/o9kZB4yq9mSl1DFz2SnALZc5Ts/EaBIcoZRKU0qtKWS5EPI1v72MmUqp3Wbb9L5AtFLqK6VUlnm8/yMwwmyDfy8wUSl11mzO+yrGD4K9RLN8zVTiZ2bd1BTgG6VU9BWsY9/O+wjGHrcoFTBGsymwS6jpCeDlnL2tqQawQETsawDZ5O3uae9JjL37BhE5B0xTShV0ruIcjg9zZf9+awDtxOi2msMD49jfvstxzjzB6CZsLxBjnALNpJO9ZPQEqorIA+brMGCuiLyhlCqs22c1u+fVMU4AgjGQhl/OjJxea6Y4jA4ddYDthWy3N7BURE4qpX40p8UAdyml1uZfWERq5J+mlDoJ3GPO7wwsF5FVdjWFHAeNRaSKWbWGwrue2k+PAVYqpW4qIB4LF7scx+afby5TBaNT0L5CynJLuhpfTETEwzyJZgWsIuJjVw3uCTTBOMZsgZG493HxuLggD4pIVfNE2WQg5yTYdqCxiLQwy5uSs4LZHfdL4B0RiRARq3lCzf5E1W6MavKHIjLYnDYDeCUnsUUkTESGmPPOYBzz5w6rLSIjRKSq+fIcRqIW1P8+A6NHnH1X26K6noIxpl09ERkrIp7mo42INHSgyzFmeX/kO3zRXD1UTll5YCSdyveYUsiy0dgNdFnI/GcwuqueB/4P8LObPxljLx4DjCHv4Ji+wHsYAz0mYJxN9+XSQSRbYyReP4wf/UkYe8JEjMOAV+3Kexkj6c8D7YE3ze0nmcvee5n3MgD4xe51KLAG40diizktCnO4KLvl6gNLzHLjgT+AFuY8H4zj9MNc7O77sN26S4DBrv5OlLaH7uKqOZ15Se0hZTascXJZzYBPlFIdnF3W9UYnu6a5CX3MrmluQie7prkJneya5iZ0smuam3BKo5rAkPIqLKJq0QtqmhNZTh1wdQgl7tDZtDilVFhB85yS7GERVXlltqP9PTTNOfzfuqQBXpk35Nu9Rwqbp6vxmuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5CZ3smuYmdLI7yJadzZH9ezgefQh9T3vteuSU2z+VNTvXr+KzqU/h6eVFeloqQeUq8OAr/6VKrUhXh6ZpDtPJXoS4E7FMf3YCD702nabtumCz2Vgxfw5vPnwH0+ZH4eHp6eoQNc0huhpfhFWL59Gx7xCatusCgMVioectYygfFs6OP1e6ODpNc5xO9iIkxMdRsUr1S6ZXrFqDhPgzLohI066OTvYiNLihLRt+/xmbzZY7LS0lme3roqh/Q1sXRqZpV0YnexHa9OiHiPDuY+PZvnYFfy1fwn/uHUmbHn2JqFnH1eFpmsP0CboieHh68tT0WSz/4WsWzfwITy9vet92J5373+zq0DTtiuhkd4C3ry8Dxt7HgLH3uToUTbtquhqvaW5CJ7umuQmd7JrmJnSya5qb0MleAJvNRmpyku7wopUp+my8HaUUi7/+hF9mf0ZqUiJBoWEMv28iXQfe4urQNO2a6WS3s/jrT/hr2f+YPOM7ImpFcnDnVqZPnoC3jy/teg1wdXiadk10Nd5ks9n4ZfZn/Pvl96hSuy4iQt1mLRn31FSWfP2Jq8PTtGumk92UnppCalIiEfn6qNdu1IyTx6JdE5SmFSOd7CYfP3+CQsM4uHNrnum7/lpNjbqNXBSVphUfnewmEWH4fROZPnkCW9f8QcLZONb+soBZ70xl6PiHXR2epl0zfYLOTteBt+Dt48uCT9/j5LFoatRtxEOvTqdxm47EHj7AltW/4+XtTdue/SgXVomMtFQ2/LGUuBPHqNO4OY3bdsZi0b+fWumkkz2fdr0GXHLm/YcZ7/D7j7No12sA6akp/DBjGjff8yi/zP6cKnXqUT2yAbPf/Q8BweV44v2ZePv6uih6TSucTvYiHNixhZWLvueNucsIKhcKQL/943lp/HBuuf8x+v3rbgBufegp/vv0Ayz+egbD75voypA1rUC6zlmEDb8vofvQUbmJDhASFk52VhY3jRibO81itTLwjvv5a/liV4SpaUXSyV4EpRRikfxTMabknS4i6Ba2Wmmlk70IbXv2Z8WC70g8fy532oVz8Vg9PPlj/pzcaTabjSXffErbnv1cEaamFUkfsxehXvPWdOw7hKdG9qJj3yGkJiez8Y+fGTp+AotmfsjO9SupFtmA7eui8Pbx5d4X3nJ1yJpWoCKTXUS8geFATfvllVIvOy+sov29eT0Lv/iAmIN7qVStJgNuv59W3W5ySlm3TXiajn2GsGXVMspVrMRr3/5KaKUIgsqFMv+z99m9cR1Vatdl1KPP4uPnf0XbvjXhbafEfC3SMrJ49ZsNzFn2NxmZNgZ1rsOUO9sTFuLn8DYWf/prgdMH3tunuMIsOoYSK+n64Mie/ScgAdgMpDs3HMfs3riOD555kNGPPkejNh05vHsb//fG86SnpdCxzxCnlFm9XkOq12uY+3rZvK/5Zfbn3PHky1SPbMC2tSt4+5G7eGr6N9Ru1MwpMZQEpRQ3T15E4pkEHm5RAS8P4Zd9sXR7aC6bvxiDr7euDF6vHPnPVVVK9XV6JFdgwWfvc/vjL9Kx71AAQsMrExBcjs//8xQdeg9GJP8JteKVlZnJgs/e55mPZlMtsgEAPYePJjsrk0Vffcijb12/HWc27j3FroNn+KBPDazmicl7WlbklbXH+X7Ffsb11U2Hr1eOnKBbJyJNnR7JFYjet5um7bvlmdagZTviTsSSmZ7m9PITzsYB5CZ6jqYdunFk326nl+9MWw6cpmlFv9xEz9E01Icte0+6KCqtOBSa7CKyU0R2AJ2BLSKyT0R22E13mYpVqhG9d2eeabH/HMA/KBgPL2+nlx8YHEJGejrxp07kmR79907CCrhV1PWkduVgDp9Pv2SUnujETGpXCXFNUFqxuNyefSAwCOgHRAK9zdc5011mwNh7+er154jeuwuAE0cOM+PFSfQbfU+JtE338vGl1y1j+Pj5RzlzPAalFPu3b2LO+6/Qf8w9Ti/fmXq2rIanrxezd8aRkplNZrZi6cFz7DidytjeDYvegFZqFXrMrpQ6AiAi3yilxtrPE5FvgLEFrlgCOvUbRlpKCtMm3U1qcjIenp70Hz2egbeX3E0cRvz7cX785B0mj+6PLdtGQEgIt014mhadupdYDM5gtVr4ddpwHpi2nLt+OgxAq3phLHt3OKHBzmvzP2/FfjbsPUnvNjW4qXUNp5Xjzhw5QdfY/oWIWIFWzgnHcT2Hj6b70NtITryAX0AgVo+SPUts9fBg5INPcvO9E0lNTsI/KLjM9HirHOrPgleHkJyaSbbNRpC/8w6NYk5doO29c0hPz6JWOR9mLNhOpfJ+bP1yLAF+Xk4r1x1d7pj9GRFJBJqJyAXzkQicxrgc53IWq5XAkHIlnuj2PDw9CQwpV2YS3Z6/r6dTEx2g92PzaRLqzVdDI3mpezVmDo3EX9kYNvl/Ti3XHRX6DVVKvaaUCgTeUkoFmY9ApVSoUuqZEoxRK6NS0jI4fCKBO2+omHv239vDwp03VOSvPSeKWFu7UoXuEkWkpfl0nt3zXEqpLU6LSnMLKWlZ2BT4eVrzTA/ytpKVbXNRVGXX5eq/08y/PkBrYDtGN69mwCagg3ND08q6CiF+lPPzZNWRC/SoFZw7/bdD56lWMdCFkZVNlzsb3x1AROYDLZVSO83XTYApJRKdVuZNe7g79725jAPxqdQP9WXziSQ2xCbz6zs3uzq0MseRM1v1cxIdQCm1S0RK5QVXW3Y2q5f8yPpli1E2G2169KPb4JF4eHq6OrQyKzvbxjfL9vLtb3uw2RQjejbgzn6ON6kd27sh9aqG8OTHq/npcCJ1q5dn29Rh1K1WrsDlN+49yQfztvLPiQTaNa7MoyNbUjVM1wIc4Uiy7xCRz4FZ5uvRgEtb0BVEKcXHL0zkdOxR+o8xGtcs/fZLtq9bwcS3P3N6e3l3pJRi7H9+YdfeEwyoE4xFhBnfbWDJusOMr+nt8GferlFlVn4wssjlFq09zPjXf2VovRD6VvJmy54Y2tyzl7Uf3UbtiOAi13d3jiT7ncC/gUfM16uAj50W0VU6tHsb+3ds5q0ffsfL2weAG7r05JlR/dizcR2N23ZycYRlz8a9p1i97Rjv966Ol9W4sNM6IoAnfo9hp28ozSpdWXffy7HZFBP/u4KJbcNpGm5st3klf3yswtSZ6/nq2ZLrOnu9KvLisFIqTSn1rlJqmPl4Vynl/N4mV+jvTetp3e2m3EQH8PD0ok2Pvvy9eb0LIyu7Vm47RpvKfrmJDuBpFdpU8mXXmZRiLetEfDIXkjNoUjFvn/rO1QJZue1YsZZVVl2uUc1c8+9OswNMnkfJheiYoPKhnDlx6T897vgxAu0Gi9SKT1g5P+JSsy+ZHpdmI7iY+70H+XuRnmUjOTPvJbnTyZmEheihux1xuT17TrU9p+NL/kep0rZnfw7s2MJfy5eglEIpxdbVv7N9XRQd+zpnQAt3N7xrJPvOprH26IXcz3xTbBLbTiXTpUZQsZYV6OfFsC61+XLbGdKzjISPT8lk9u6zPHBzi2Itq6y63KW3nCZMvYBVSqkDJRPS1fH1D+Dx977kw8kP8/30N7BYrGRmZjDx7U8JDCn4zK52bQL9vFj8xlBGvbiEb3bFYxGweFiZ/8pgEtbvuqJtbTtwmpXbYxnYoRZ1CulK++Gknox75Vfu/t9hQv09iU/O4NERLbm9T6m8OFTqOFLXqg58IiI1MYamWgWsVkptc2JcV6VO4xa8PT+Kowf+Rtls1KjfuEy2WS9NfLw8CPTzIiE5HYsIYYFe+Hp7kODg+glJqTQZN4uzielUCPbl2c/WUq1iALtnjsVqzduyLiPTxp7oeNIzs0lMhfRMG1sPnNFXWhzkyAm6F5VSPTB6v60GnsBI+lLJYrFQs35jajVsqhPdyVLSMun7+Hy6hXvxxaDafD6wFv2r+THgyQUkZVx6LF+QFnfPoW7VchydezdH5t7N31/fjkWEzg/Nu2TZGyd8T5DKZubQSL4cEsl/+9Xir53HePSDlcX91sqkIrNBRJ4TkV+A3zAGsXgcqOrswLTSb/7qQ9QM8qJX7RAsIogIXWsE0biCL6uPXChy/aTUDE6dS+Wrp3vn9pWvHh7Ex5N6svfouTzLnj6Xwv5jCUxoVwl/L2OPXznQi3tahjPn1z3F/+bKIEeq8TcDWcASYCXwp1KqVIwyq7nWibgkKvld+hWq5GflbGpWkeufOpuCTSmqh+dtAVe/ejkysvLWDGJOJ+JpFYJ98pZXJciLtMyiy9Icq8a3xDhJtwG4CdgpImucHZhW+nVoUpktp1LIsl0cry7bpth8KpWGYUVfDqtZKRBfLyu/bTyaZ/qCVQfxz3fprmmtUBSwLy41z/Q/YxKpVL74Gu+UZY7cJKIJ0AXohtH7LQbj2F1zc52aRNCsbkVeWXOcQXWN5rI/H0qgWkQ5WjjQes5qtdK/fS1ufWkJr97TiTYNwlm+6SivztrIs2Pb5FnWy8uD8QOb8PKSXYxrUZEaId5sjE3ip71n+eE/pe5KcKnkSDX+dYwz8P8FNiqlMp0bUvE7FRPNrHenciY2horVajB64nNUjKjOnk1/smnFUiwWC+1uGkS95q24cC6elYvmcSommhr1GtJ5wHB8/QNKNN5Dsef5+te/OX0+ha7NqzK8ayRe+fp8lwYiwrypg5ixaAff/vY3NqUY2a8pD97cguUzf3doG7Of78czn6zhpa/Wk21TeHpYeOO+TjwwrMUly773cHdqRoTw3nebSEzJICIsgP+9MZSerRwf0Tfbplh/LJEdp1II8LLSvVYQVYOcNxpP9Lk0oqIvkJZto1XlAFpF+GNx0dUDyT9kcHGo3aiZemX2z8W+3aux86/VvDNpPM07dadxm47s3rCW7euiaNGpO9H7dtN92ChsWVn8Pn82Lbv2YuMfS2nRqTu1GjVj94a1HNm3mxe++IFyYZWcEl/+2z8t/vMwd7+xnNv7NKRGeCDzog4Ye8w3h15Xd2MpFbd/yhdDZrbilVXHSM7MpmuNIM6mZrH8cAL3tQ6nc/XibQQE8NvB88zeeYbedUII8LKy4p8EIoK8eKxDxCXj8heXId/u3ayUal3QvOvn23OVPp/6FEPvnsCQux4C4KYRt/PFK8+w4Y9feHfhKvwCjX9y95v/xaShXRkw5l5uvvfR3GW/ff9V5n08rURu2JiZlc2/3/mD+VMH0qlpBAAPDG3O4GcX8fniXUwY3sLpMZRlUdEJZNoUr/e6eLebLtWDeDEqhjYRAXh7FN+l2sT0bGZuO820PjWpHGgMnNm/bghPLjvCxuNJtK9a8t1yy/SFaJvNRvzJWG4aeUee6b4BAdw4ZGRuogMEl69Am+598PbNe2Kp14ixbF3tWJX0Wm09cIbQIJ/cRAewWIT7Bjdl8fp/SiSGsmzT8ST61AnJs1etXd6HyoFel5z4u1Y7TiXTKMw3N9EBPK0WetUOYWNsUrGW5agynewWiwWL1UpaSv4PV0i+cGkbr+QLCUi+hjipSUl4+ZRMRwtfbw+SUjMvuRvLheQMfL3KfCXM6bysFlKz8nakUUqRmpmNVzHu1QG8rRZSMi8dRy8104a31TXH7Jfr9fY/EVlU2KMkg7wWVWrX5dv3X8NmMz54W3Y2sYf3s+6XhcQevtjc//Ce7ezasJbYfw7mJltWZiY/fDKNTv2GlkisTWqFEujrxRc/X7xf3PmkdN7+bjOjb2pwmTU1R3SrGcTCvWe5kH7xuvzqI4lkZivqhfpcZs0r17ySH8cTM9hy/OKOJj4lk58PnqNbTdcMtHG53UXpu3H4VXj8vZk8P3YgE/q1pX6LNuzdugERYeSEp3nxzmE0bNUOW1Y2+3ds4q5nX2PZ3P/jyRG9qNWwKXs3r6dG/UYMvXtCicQqIsx5oR+DnvmJmT/vpnp4EL9viWFs7wbc0i2yRGKwZ7MZPdms1rJRAWxV2Z991QN5YPFhWlTy52xqFieTM3mua9ViP0PuabXwVOcqvL4mlurB3gR6Wdl2MpmRjUOpX8E1XXIv1+utTDQ4Dg2vzPSlG4la+D0Hdmxi5INP0nXQCCwWC537DWX7uiisVg8efPUD/AIC6dx/GPu2buBkTDT9R4+nZoMmJRpvnYhghneN5NP/7WLD3lO0qBvG0C51SrSzR3xCKo9/vJp5UQfIyrbRp20Npj3Qlcjr/MaOIsLoZmH0rhPCzlMpBHhbuKFSAJ5OqlY3DPPj00F12HIimbQsG+NbhVPe14U3NClqARGpC7wGNMIYVhoApVRtJ8ZVrCwWCz1uHkWPm0flmR4QXI5O/YblmSYiNGjZjgYt25VkiLkeePcPTp9PZcvn/6JaxUB+WHmA4c8v4Y93h9O4lvMH4bDZFIOeWUTrBuFEf38Xvl4ezFi0g54Tf2THl2MIDnD+XXKdLczfkx61S6Yq7e1hoUO10jEgpiP1s68wxpzLAroDX3Nx8EmtGJ2IT2bhmkPMfq4vtSoH42G1cFuP+jxySwumL9hWIjFEbTtGSnom70/oRoVgX/x9PXns1lZ0bBLB7GV7SyQGzTkcSXZfpdTvGA1wjiilpgADnBuWe/rnRAL1qpYjMN8NDds1rMT+mPMlEsP+Y+do17DyJYcN7RtVYl/MuULW0q4HjiR7uohYgAMi8pCIDANKtv2om6hbNYR9Mec4l5h3PM+V22NpUgJVeDCuCKzeEYvNlvfyX9S2YzSpXaFEYtCcw5FkfwTwAx7GuFXzWOCOy66hXZWwED/G9m7I8OcXs2X/ac5eSOPjhdv59H87S6z1XKcmEVSp4M+413/jYOx5jsclMfmztez+J55RPeuVSAyacxR5gk4ptRHA3Ls/rJRKdHpUbmzaA114Z+4Wbn3pZ86cT6Vr8yosfWsYkVVCmPXb3/y46iBVKvgzZVx7KoT4Fb3BKyQiLHhlEHc8NpdO939LepaNdlUDmdymAlHfrChwnbOpWfx1LBEFtK0SQAU/fQee0siRs/GtMU7SBZqvE4C7lFKldmiq65nVauGJUa15YtTFvgwZGVk0uv3/OHshnZu7RrL36Dlq3fYVnz7Rk1E9i7+xTYCvF3e2COPOFmFFLvvH4QQ+33KKNlUCsIgwe8cZxjQLo19dPchnaePIRb8vgQeUUqsBRKQzRvI3c2Zg2kX/fm8Fvt6e/PP96Nyeb3OW7+Wh96K4tXs9l421F5+SyRdbT/Fm7xq53URPJYXy2K9HaFHJP0+7cM31HPmWZOckOoBSag3GZTithPy++SjPjmmTp4vrqJ718fGy8tPawy6L689jibSrEpinP3h4gBddawaxNkYf7ZU2juzZV4rIJ8C3gAJuBaJEpCWAUmqLE+PTAKXA0+PSwSusFgsZBXS2KCk2G3gU0C/bQ7jkbL7meo7s2ZsD9YAXMe7L3hC4AZhGGWk/X9p1bFyZad9vJiv7YmIv3XCECynpDO9a8m3mc7SrGsC6mETiUi4OXnQ+NYtVRy7QvpS0GtMucuRsfPeSCEQr3GdP9KLxuG9ofMfXjL6pAftjzrNwzSFeu7cTHsXcNfNKhAd4MaJxKJOWRnNjzSAsIkQduUD/uuWoHnz9N6staxw5Gx8OvApEKKX6iUgjoINS6gunR1fKbVyxlN/nzODM8WPUbtycgeMfo0a9RsVeToCfF4fm3Mnr327k17+OEFbOlw0f30ajEmpok2NfXCo/7Ikn+nw6EYGeDG0QSt/IEE4mZhAVbdzvrW3VQAbW12fiSyNHjtlnYpx9n2y+3g98D7h1skctmMMvn7/JO/e3p1mdJixZH83L94/gqRnznJLwHh4WnhvbjufGuqaDzu7TKbyxJpYxzcK464aKHIhP44O/ThDgZSEiyJvnuxndRBfuPcuUqGO81rO608ZZ066OI3XACkqpuYANQCmVBTh2b58yKjsri/kz3mThy324uWskkVVCeGR4C54ffQOLv3jH1eE5xXe74rjzhor0jgyhcqBxxv3R9pWJS8ni8Q6VqRvqS53yPkzqUNm4m+tx1wy9pBXOkWRPFpFQjDPxiEh7cPi+fWXS+fgziC2LFpF5G530b1eDf/aUulvXF4tDZ9NoFZF3LPim4X6kZ9vItjvxLiK0rOzPwbNpaKWLI8k+CVgE1BGRtRhdXEtm6JZSKiAohLSMLE7EJ+eZvuNwHGGVIgpZ6/pW0d+T6HN57/oVm5iBh0UuGfwh+nw6Ff11k9nSxpHbP23BuBtMR+A+oLFSqmzuvhzk7evLjUNu4/Y3VnA8zqiubtl/msc++YteYx50cXTOMbh+eT7ZfIqjCUbCn0rK4IO/TuBttbBo71kys21k2RQ/HzjHgfg0p4zDrl2bQk/QiUgbIEYpdVIplSUirYDhwBERmaKUOltiUZZCIyZMZt4H0Oiu7/D2tGLx8GLYv5+mVbebrmg75xLTWL/nJOUCvWnXsFKpvdd491pBJGdm8/wfRxEgywYD6oXwcLsgZmw6xXe74hGBWiHevNS9Gr6eZWPcurLkcmfjP8G4oSMi0hXjNlATgBbAp8Atzg6uNPPw9GTUpCkMf+Apki6cJyS0Ihbrld2iaensz/j3jK9oXT+c4/HJWC3Cj1MHlsqx3kSEQfXL069uORLSsgjytuJpDkQ5tUd1EtOzUSiCrqO71riby/1nrHZ771uBT5VSPwI/isg2p0d2nfDy8aX8VYwr//fmP1k+azpbPh9NzUpBKKX4cMF2RrywhC2f/6vU7uE9LEJoAV1YA71L373otLwuV9eyikjOj0FP4A+7efrn+xqtXjibJ0c2pWYl49hWRHhwWHPSMrPYvP+0i6PTyqLLJe23GJ1g4oBUzNs0i0gkbn7prTikJp6/5L7iIkJ4OT/OJ6UXspamXb1C9+xKqVeAxzBa0HVWF+9JZMHNL70VhwbtezLztwN5bvV04Ng5dv0TT7uGzrljrObeLlsdV0qtL2DafueF4z5uHHIbr/88l0HPLGL0TQ04HpfE+z9s49V7Ol0yuqymFQd97O2ArMwMVi6ay86VP+Ph7UO7/iNpfWOfazqJ5u3ry9OfzCflh/uYv+og5QN9mPtSf9o3qlyMkWvaRTrZi5CdlcW7j4wlMOMEkwY1JDktkzenP8/BbesZNXHKNW3b29eX2wc34/7BeoQvzfl0shdh88plqPNHWT59WO4NDod0qk3d22fT45ZxhFer6doANc1BuplTEfZuWs2Y7rXy3Mm0XKAPfdrWYs/mS05paFqppZO9CP7B5Tl6JuWS6TFnkgkIDin5gDTtKulkL0LnAbfw9bJ9/LXnJABKKeYs38v+2ERadNIjdmnXD33MXoTwajW568X3GPj8E1SrGEBSagbpyotJ/52Fp5ceZ027fuhkd0DrG/vQvOONHNq1DU9vb2o1bOayGzNo2tXSye4gTy9vGrR0zfhvmlYc9O5J09yETnZNcxM62TXNTehk1zQ3oU/Q5ZN04Txrl8zndMxhqtVrQoc+Q/D2vfKRaBxhy85m8Z+H+WNLDOUDfRh9UwNqVQ52SlnFIS3LxuojFzh6IZNwfys31gwmwEuPUHO90Ht2O7GHD/DsiBtJ2TqXXuUPE73sM174Vy8S4s8Ue1lZmZm8P2kcL365nsrl/Ym/kEa7+79j4ZpDxV5WcTibmsXjy49ySHnRrUcjzvkFMvG3Ixy7oAfauF7oPbudOW89y3OjmjJhWHMAHh0BEz9cw/yP3uDO54v3hrVrf1mA9fw/rP741tzbMf+rV30GPbOIvm1r4ONVuv413+2JZ0Svhrz1QFcAHh3RknfnbWHm4u0816lsjpVf1ug9uykjLZXdWzdz74DGeaZPGNaULat+K/bydq5cwoODG+S573qbBpWoExHMn7tPFHt512pDbBIThrfIM+3+wc3YFptEZrbr7hGvOU4nu0ksFiwipGXkvY1dSnomnp7FP3KM1dOblPSsS6anpGXh7Vn6joO9rJZL4k3LyMJqodSOhKvlpZPd5OnlTeuuPZg6a1PuuHDZ2TamfL2Z9v1uLvby2vYbwdvzduUZXHL+qoMkpmaUyjHoOlULYMoXf5Jt7sWVUrw8cz0dqwfjoe/Wel0oXQeGLjb6yVeZ9tAolt33I63rhxG1LZZyVSN5ePzEYi+rZdde7N+ylgZj/4/+7WsSG5fMrsNx/PTq4Dx950uLWxuF8safJ2gwZibdmldl496TZKZmMLmTHkbreqGT3U5waBhTZv/G7o1rORUTzbjhjajbrKVTqqkiwqiJU3i7T5Zx6S3IhwHta+FbSu+o4uNh4YXOEeyNSyU6/iwjagfQLNwPi67CXzdK5zfLhSwWC03bdaFpuy4lUl5klZBSebungogIDcP8aBjm5+pQtKtQ+uqLmqY5hU52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0N6GTXdPchE52TXMTOtk1zU3oZNc0NyE59yIv1o2KnAGOFPuGNU0rSg2lVFhBM5yS7JqmlT66Gq9pbkInu6a5CZ3spZSITBaR3SKyQ0S2iUi7Yt7+jSKy2NHpxVDeUBFpZPc6SkRaF3c5WuE8XB2AdikR6QAMBFoqpdJFpALg5eKwrtVQYDGwx8VxuC29Zy+dKgNxSql0AKVUnFLqOICItBKRlSKyWUR+FZHK5vQoEXnfrAXsEpG25vS2IvKniGwVkXUiUt/RIETEX0S+FJEN5vpDzOnjRGS+iCwVkQMi8qbdOneLyH5znc9EZLqIdAQGA2+Z8dUxFx9hLrdfRLoUxwenXYZSSj9K2QMIALYB+4GPgG7mdE9gHRBmvr4V+NJ8HgV8Zj7vCuwynwcBHubzXsCP5vMbgcUFlJ07HXgVGGM+DzHj8QfGAYeBYMAH4zJrNSACiAbKm7GuBqab688EbrErJwqYZj7vDyx39ede1h+6Gl8KKaWSRKQV0AXoDnwvIk8Dm4AmwDIRAbACJ+xW/dZcf5WIBIlICBAI/J+I1AUURhI6qjcwWEQeN1/7ANXN578rpRIARGQPUAOoAKxUSp01p88D6l1m+/PNv5uBmlcQl3YVdLKXUkqpbIy9X5SI7ATuwEiK3UqpDoWtVsDrqcAKpdQwEalpbtNRAgxXSu3LM9E4WZhuNymbq/su5WzjatfXroA+Zi+FRKS+uSfO0QKjqrwPCDNP4CEiniLS2G65W83pnYEEc88bDMSa88ddYSi/AhPErEaIyA1FLL8R6CYi5UTEAxhuNy8Ro5ahuYhO9tIpAKPqvUdEdgCNgClKqQzgFuANEdmOcVzf0W69NBHZCswA7janvQm8Zk6/0r3nVIxq/w4R2W2+LpRSKhbjOH8DsBbj+D3BnP0d8IR5oq9OwVvQnEk3ly0jRCQKeFwptcnFcQSY5xw8gAUYJxAXuDImzaD37FpxmyIi24BdwD/AQpdGo+XSe3ZNcxN6z65pbkInu6a5CZ3smuYmdLJrmpvQya5pbkInu6a5if8HR+WqqJ0F5GAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ax = graph(X_test, y_test, pieceT)\n", - "ax.set_title(\"Piecewise Classification\\n%d buckets (tree)\" % len(pieceT.estimators_));" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAEICAYAAABViZKWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACTaUlEQVR4nOydd3gUZdeH70lPgJCEEAgpJCG00JuAKFKEUJQm0gXs9bWj+KnYX1CxvhbsgPQqIFXpNjqihJKQXknvZcvz/bHJEiBlE7Ymz31duWBnZmfObHJ2zpw553cUIQQSiUQikUgkEkljw87SBkgkEolEIpFIJJZABsISiUQikUgkkkaJDIQlEolEIpFIJI0SGQhLJBKJRCKRSBolMhCWSCQSiUQikTRKZCAskUgkEolEImmUyEC4AaEoylxFUX6ztB0SiaR2pL9KJLaD9NeGiwyEJfVGURQvRVE2K4pSqChKnKIoMyxtk0QiqRpFUZ5QFOW4oiiliqIstbQ9EomkahRFcVYU5bvy62q+oiinFUUZbWm7GioOljZAYtN8DpQBrYCewHZFUf4WQpy1qFUSiaQqkoG3gXDA1cK2SCSS6nEAEoDbgHhgDLBOUZRuQohYSxrWEJEZYRtEUZQARVE2KYqSrihKpqIon1Wz3SeKoiQoipKnKMoJRVFurbTupvLsUJ6iKGmKonxYvtxFUZQV5fvNURTlmKIorarYdxPgLuBVIUSBEOI3YCtwj2nOWiKxTazBXwGEEJuEED8BmaY4T4mkIWAN/iqEKBRCvC6EiBVCaIUQPwMxQB9TnXdjRgbCNoaiKPbAz0AcEAT4AWuq2fwYukytF7AKWK8oikv5uk+AT4QQ7kA7YF358jlAcyAAaAE8AhRXse8OgFoIcbHSsr+BLvU5L4mkIWJF/iqRSGrBWv21PFjuAMinrSZABsK2x01AG2Be+V1jSXk29jqEECuEEJlCCLUQ4gPAGehYvloFhCqK4l2e0f2r0vIWQKgQQiOEOCGEyKti902Ba5fnAs1u8PwkkoaEtfirRCKpHavzV0VRHIGVwDIhxHkjnKPkGmQgbHsEAHFCCHVtGyqK8ryiKOcURclVFCUH3Z2od/nq+9HdYZ4vfzxzR/nyH4HdwBpFUZIVRXmv3BGvpQBwv2aZO5Bf91OSSBos1uKvEomkdqzKXxVFsSt/TxnwRL3PSlIjMhC2PRKAQEVRamx0LK9XegGYAngKITzQZWwVACFEpBBiOuADvAtsUBSliRBCJYR4QwgRBtwM3AHMruIQFwEHRVHaV1rWA/noRiKpjLX4q0QiqR2r8VdFURTgO3TN6HcJIVTGOEHJ9chA2PY4CqQAixRFaVJefD+oiu2aAWogHV3AuoBKGVxFUWYpitJSCKEFcsoXaxVFGaooSrfyWqk8dI9ytNfuXAhRCGwC3iy3YxAwHt3dq0Qi0WEV/lq+D4fyGkZ7wL7cFqkcJJFcwWr8FfgS6AzcKYSQdf8mRAbCNoYQQgPcCYSik1VJBKZWseluYBe6zG0cUILubreCUcBZRVEK0BX2Tyt3ttbABnROeg44SPXB7WPoZJguA6uBR6V0mkRyBSvz11fQNebMB2aV//+VGzg9iaRBYS3+qihKW+BhdM14qYqiFJT/zDTCaUquQRFCWNoGiUQikUgkEonE7MiMsEQikUgkEomkUSIDYYlEIpFIJBJJo0QGwhKJRCKRSCSSRokMhCUSiUQikUgkjRKLSed4e3uLoKAgSx1eIrE6Tpw4kSGEaGlpO6pC+qtEcjXW7K8gfVYiuZbqfNZigXBQUBDHjx+31OElEqtDUZQ4S9tQHdJfJZKrsWZ/BemzEsm1VOezsjRCIpFIJBKJRNIokYGwRCKRSCQSiaRRIgNhiUQikUgkEkmjRAbCEolEIpFIJJJGiQyEJRKJRCKRSCSNkloDYUVRvlcU5bKiKP9Ws15RFOVTRVGiFEU5oyhKb+ObKZFIDEX6rERiO0h/lUgsiyEZ4aXAqBrWjwbal/88BHx542ZJJJIbYCnSZyWSeqPWakEIcx1uKdJfJZJ6U6rVIm7AX2vVERZCHFIUJaiGTcYDy4XOir8URfFQFMVXCJFSb6uAYz5j6Ze+40Z2oUcA8x55hKOdOhllfxJJfVjz4BzauHmY/DiW8tmGwL//wvPPQ1GRpS2RmButUoa3wwrsOp7hj+GDeDaulBeenWXy49qav6akwGOPQWZm3d/rXxzJfy49jZsm3/iGSRoVAoHGoYBL/s68/OzDDDp5mqWffFKvfRljoIYfkFDpdWL5suucVFGUh9Dd0RIYGFjjTo0VBAMkeXvzwdSpRtufRFIfVFq1pU2owCCfrYu/NhQ++QR277a0FRKz0SyZDv5LmWK/kqahfnx191xi2kwA4M9zBy1r2xVMco2tLzt3wk8/1e+9/+V7BmK8a7ukcfPjiBE8+swzFLq6ora3Q63V4mBX99Y3s06WE0J8DXwN0LdvX8Py2Neku787+R0PbHuAMe3H8OKgFw3aRUSJgBRBoCM830Kpm9ESyQ2QmJTHV1+fYOqULrRybW5pc+pEvfzVxvntN92/334L7dtb1haJ8dEIDefyjnDp3EraHNjMsJMpJDcfwP898Cxn2rUDoE1yMj0Ox/LhvOcsbG3dMYfPajS6f8eOhRdeqNt7w165AIch9t43yO01xNimSRoQQggulyZwMf8kF/NPElVwigJ1HgAaBxcu9X+StNDRALQ5Ecmn7oH1CoLBOIFwEhBQ6bV/+TKTUKIuASCoeRCD2w426D1Z6emQcpYe7i34T6dupjJNIrmeTvDGoNG4uFhsmnlVmNVnbYX0dDh/Hlxd4Z57wMnJ0hZJjEF6YTq7L+3myB/r8dz2C3eeLuaxZPita1ee/L/5/Na9OwB+GjVvd+zEtJtvwWGKHQ4OViOqZJX+6usLgw27BF8h8wIAQU/cAb1lz5/kauJy4tgXs499sfvYF7OP5KJksAc8dD8B7gH0Dr2LY83HkKZ1xMXOjv+FhjKz/yBcXR3rfVxjXJ23Ak8oirIG6A/kmrJ2qVhdDICro6vB70kuKwOgjbyySczAr79Gk5CQy7339gKwtiAYzOyztsLvv+v+7d9fBsG2jFZoOZVyih2ROzhybDOhe08x5V+YlahbfyYkhDHvPsjOmwYA0MLenu5nStl832Cau1rlL75h+KtGA1FRuv/Lxy0SIK0gjf2x+3XBb8w+LmVfumq9TxMfhgUPY1jQMIYGDWVviStPX7pEiVZLqIMzm3t2o2vTpjdsR61XaEVRVgNDAG9FURKB1wBHACHEEmAHMAaIAoqAe2/YqhooVukCYRcHF4Pfk1xaCoCvs7NJbJJIKjh5MoWJE9dSUFBGYGBzhg8PMbsN1uaztkJFWcStt1rWDkndySnJ4ZdLv7AjagfHTv7MbcczmHIWXo67Io10ISiQBS+8wPpOYQhFoam9Pf9p5csvDx1i/8EEXjpbyhdfjDW77Y3GX+PioKwM2rSBZs0sbY3EAmQXZ3Mw7qA+8D2bfvaq9c2dmzMkaAjDg4czLHgYYS3DUBSFPLWahy5cYG16+d3sjhSKNl0m9N9+RrHLENWI6bWsF8DjRrHGACpKI1wdZEZYYl1ERWUxevRKCgrKmDGjG0OHBlvEDmvzWVuhIhC+5RbL2iGpHSEEZ9PPsiNyB9sjt3P+3G+Mj9Ay6yx8Gwv25dWxGidHEu+axKJZs/mqSRPUQuCkKDzapg3z2vjz8NTNHD+YQGBgc155pa7P+Y12Lo3DXy/oyiLo2NGydkjMRkFZAb/F/6YPfE+mnERwpXTdzdGNWwNv1WV9g4fRq3Uv7O3sr9rH8bw8pkZEEF1SgrMWSheeQ9l7mf9tmGK0p61W98y2NipKI+qSEU6pCIRlRlhiIlJTCwgPX8Hly4WMHNmOH34Yj52dbMy0FYqK4MQJsLODAQMsbY2kKgrKCtgXs48dkTvYEbmDvLQEJp6Hl/6F22PAQavbTuvogAgfRd60abzfpw8fXb5MkVaLnRDMbd2a14OCCHR25t57t7B9eyQtWriye/cs2rSRWUqTcvGi7t8OHSxrh8RklKpL+SvxL/bG7GVfzD6OJB1BXUktycneiYH+A/WB701+N+FkX3WCUgjBJ4mJvBAdjUoIgtUOxN7/J8QX8cWXY5k0qbPR7La5QFifEa5LjXB5aYTMCEtMQV5eKaNHryQ6Opu+fduwYcPdODnZ1/5GidVw5Aio1br+HXd3S1sjqeBi5kV94Hsw7iDOhWWMuwCfn4XwS+BUrmAgHBxg5O0wdSql48bxWUEBi+LjyUpNBWCCtzdvBwfTpUkTAObP/5Vly/7Gzc2R7dtn0KmTt6VOsfEgM8INDrVWzYnkE/oGt9/if9PHaAB2ih03+d3EsKBhDA8Zzs0BN+Pm6FbrfrNUKu49f56t5WLVE5Vm7Ji0G5Gv4rXXbuORR/oa9TxsLhDWN8vVozTCVwbCEhNw//1bOX06lfbtvdi+fQbNmsknD7aGLIuwDkrUJRyMPagLfqN2EJUVhVsZ3HERVv8LY6MUnNW6R6vCzg6GD4WpU1EmTULt6ckPqam8cf48SeXf+bc1b86ikBAGNL8iXbh27b+8++7vODjYsXHjFPr397fIuTY6ZCBs82iFln/S/tEHvgdjD5JfdvVwlO6tujMsSJfxHdx2MM1d6iYb+ntuLtMjIkgoLaW5vT0ftwnmmb4rKc1X8fDDfXjttduMeUqALQbCdWyWK9NqyVCpsAdaykBYYgLefHMICQm5rF59Fz4+TSxtjqQeyEDYcsTlxOkD373ReylWF+OigtGR8N55R0Zf0OJSWp76VdBpdk2dinLXXdCqFVoh2JiezivHjnGxWHd96NW0KQtDQhjp6YmiXF2iNH58JyZN6syECR0ZNSrUzGfbiJGlETaHEIKLmRf1ge/+mP1kFl89UrBDiw76wHdI0BBaNmlZr2NpheDd+HhejYlBA/Rv1ow1YWEEubqieu92fvklms8/H3OdPxsDmwuE61oakVqeGWjt5IS9CT5AiaRz55b8+ef9JnFQielRq+GPP3T/l4Gw6VFpVPye8Lu+0S0iPQIAJzWMvASPXvJk+D+FOBeXASrdmwYOhKlTYfJk8PMDdBfpX7Ky+L/oaE4UFAAQ6urK28HB3N2yJXbV+KOLiwMbNtwt/dWcFBZCYiI4OkJQkKWtkdTAdVq++clXrQ9wD2B4yHCdpFnwUPzdb/yJSlpZGfecO8cv2dkAzAsI4J3gYBzLB2Q8+GAfHnigt8l81uYC4bo2y+nrg2WjnMSI/Pe/h/HwcOGxx3TyLfKiarucOQMFBdCunW5IgMT4pOSnsDNqJzsid/BL9C/kleomRDloYGKCK0/EtGTQiXScC4oB3cWQvn11we/dd0Pbtlft70heHi9FR7M/JwfQlb29FhTEfa1b6y+elTl+PJkPP/yTb78dh5ubo/RXc1ORDQ4NBQebCzsaNLVp+bZ0a8mw4GF6SbMQzxCj+s/e7GxmnTtHalkZ3o6OLO/UicEuzZh29wbeeGMIXbv6AKa9xtrcX2Rd5dNkfbDE2Hz77UlefnkfdnYKQ4cG0blz/R4FSawDWRZhfDRaDUeSjugb3U6lntKvs9fAvTmBPBTlQe+/YnHKzgPidSt79NAFv1Om6O5MruFcYSEvx8SwOSMDAA8HB14KDOQJPz/c7KtuUL14MZPRo1eSkVFEly4teflly8ikNWpkWYTVYKiWb4WyQ5eWXUwShKq1Wt6Ii+OduDgEMLh5c1aFheFj58D48WvYuTOKmJhsTpx4yOQ3rjYXCNe1RlhmhCXGZMuW8zz88M8AfP75GBkENwBkIGwcMooy2B21mx1RO9gVtYus4iz9Ojc7F54o68ms806EHTyLfXo8+uA3LEwX/E6dWm0jVXxJCa/HxrIsNRUt4Gpnx9P+/swLCMDTsfrRqikp+YSHryAjo4hRo0J54YVBRjxjicHIRjmLUVhWyOH4wzek5WtsEktKmHHuHIdzc1GABW3b8mrbttihMHfuT+zcGYW3txtr1kw2y9Mb2wuE6zhiOUUO05AYicOH45g2bSNareD1140v4SIxP0LIiXL1pfIo4x1ROziSeOSqC2yIRzCPa/ow6YyKtr8cRUn+68qb27e/Evx27VrtMdLLylgYH8/nSUmUCYGDovCwry+vtm1b66TQ3NwSRo9eSWxsDjfd5Mf69Xfj6ChlDS2CDITNRoWWb0Wd71+Jf12l5eto58jAgIF6SbOatHxNwfbMTOacO0emWo2vkxMrO3dmqKcnAC+88As//niGJk0c2bFjBh06tDCLTTYXCNe3NEJmhCU3wj//pDFu3BpKStQ8/HAfFiwwvoSLxPxER0NKCnh7y6e2hpBbkssv0b+wI3IHO6N2klqQql/nZO/EbYGDuVfdjfCTuXh+/ytK/IYrbw4KuhL89uwJNWR68tVqPkpMZHFCAvkanWLEdB8f3gwKItStdh3SkhI1Eyas5e+/0+jYsQXbt8+gaVOZDLEYsjTCZNRFy3dY8DAGBQ4ySMvX2JRptfxfdDQfJOrGJId7erK8c2d8ypOUH3zwB++//wcODnZs2jSVfv38zGabzQXC9S2NkDXCkvoihGDu3C3k5JQwaVJnk0m4SMxP5bII+Su9nsqjjHdE7uD3hN+vyi75u/szpt1opmk6M+jPRJze+Amif72yA39/Xb3v1KnQr1+tH3KpVstXycm8HRdHukqnGDHay4v/BgfTs5nhk98++uhPDhyIpU2bZuzePQtvb/Nf+CXlCCEzwkbEHFq+xiamuJhpEREczc/HHngnJIR5AQF6ZZfz5zOYN+8XAJYtm8DIkdf3B5gSmwuE6yqflixLIyQ3iKIorFs3mbfeOsSSJXdgb399V7rENpFlEddTWFZ4ZZRx1A7ic+P16+wVewa3HcyY0DFM1HSg/a8nUb5aDxe+ubKD1q2vBL8DBujmVteCRghWpKXxWkwMceXJi5vd3VkYEsJgD486n8Nzz91MXFwujz/ej7Zt6/5+iRFJS4P8fPD01D16kdQJIQSRWZHsjd5rci1fU7Dh8mUeuHCBXI2GQGdnVoeFcXPzqwPzTp28Wb58IpmZRcyY0c3sNtpcIFxX+bQU2SwnqSdarcDOTnfH2q6dF0uXTrCsQRKjIxvldERmRuoD3wOxByjTlOnX+TTxYXToaMa0H8MobQjuP+2ExT/C2Urd5i1b6jR+p07VfZjVKDhcixCCrZmZvBwdzdmiIgC6NmnCf4ODuaNFizo/eanwWScne5YsuaNO75WYiIpscIcO8rGLgcTnxuub2/bF7CMpP+mq9QHuAXpJM2Np+RqbEo2GZy9d4stknQ7xBG9vvuvYEa9Kza2Vr7GzZnW3iJ1gY4GwEEJfGmFIjXCpVkumWo2DouBdQ2exRHItKpWGCRPWMmxYEM89d7OlzZGYgPR0OH8eXF2hVy9LW2NeqhplXIGCQn+//oxpP4Yx7cfQu8QTu3Xr4Y2FcPr0lZ14ecGkSbrgd8iQOuvDHszJYX50NH/l6TSFg1xceDMoiBmtWtVr+NFXXx1n48ZzbNw4RY45tyZkWUStGKrlW/HTzrOdVZfnXSgqYurZs/xdWIiTorC4XTue8PO7yuYLFzK46651LF8+kd69LSvgblOBsEqrQiBwtHM0SN4jpVJ9cHVThiSSa9FqBfffv5UdOyI5ejSJ2bN70LKlHJ3c0Pj9d92/AwboBl41dOJy4vRDLfbG7KVIVaRf5+niyajQUYxpP4bwduG0zCqBdetg3mNw7NiVnbi7w8SJuuD39tvr9cGdys/n/2Ji2JWlk1dr6ejIq23b8lCbNjgbUEZRFZs3n+Oxx3ag1Qp27Yri7ru71Gs/EhMgG+Wuw1q0fE3Bj6mpPHrxIoVaLaGurqwNC6P3NfX9yck6WcO4uFzee+931qyZbCFrddhUIFznRjk5TENSD+bP/1Uv4bJ9+wwZBDdQGnp9cOVRxjsid1x3se3ZuidjQnVZ3/7+/XFIS4f16+HRCVdmTgM0bQrjxumC3/BwqGeZWWRREa/GxLA2PR2AZvb2vBAQwNP+/jS9gWljhw7FMX26TtbwzTeHyCDY2pAZYQrLCvkt/jf2xuytUsvX1cGVW9veqpc0M4eWr7Ep1Gh4IjKSpak6JZlpPj581aED7tf4dk5OCaNG6YLg/v39+O67cZYw9ypsKhCuc6OcrA+W1JHKEi4bN07hppvMJ+EiMS8NsT44JT+FXVG72BG1gz2X9uhHGQM0c2rGiHYjGBM6hlGho/Bz94PLl2HjRlj7Mhw6pOvwB129yB136ILfMWN0r+tJcmkpb8bG8m1KChrAWVF4ws+P+YGBeN9gkuLMmTTGjVtNaamGxx7ryyuvyKlxVkcjDITrouU7LHgY/f37m1XL19icKShgakQE54uKcLWz49PQUO739b0ui11crGLcuNX8889lOnXyZvv2GTRpYvnztqlAuM6NclIxQlIHVqw4w/PP6yRcli4dT3h4qIUtkpiKwkI4cUInaDBggKWtqT8arYajSUf1tb4nU05etb6zd2d9re8tgbfoLrZZWbBuE6xdC/v2gVar29jZGUaP1gW/d9yhywTfANkqFe/Gx/NpUhLFWi12wP2tW/NaUBABLoZ9h9dEbGwOo0atIDe3lMmTw/j009E28/i40aBS6cS6FQVCG+73qa1o+RobIQRfp6TwdFQUJVotYW5urA0Lo2sV3x0ajZYZMzZx+HA8fn46WcMWLazjM7CpQFgO05CYitJSNa++uh+ADz4YycyZlutglZieo0dBrYY+faAO8rRWQWZRpj7re+0oY1cHV4YFD2NM+zGMDh1NsGewbkVuLqxYrQt+f/lFd/Kgq/GtCH7Hj9fVAN8gRRoNnyYm8m5CAjnlx7nL25u3goPp3MR4ZUYffvgnKSkFDBkSxI8/TpSyhtZIdDRoNNC27Q09VbA2bFHL19jkqtU8dOEC68pLne5v3ZpP27fHrRrFmMOH49my5TweHi7s2jWLwEDr+TxsKhDWK0bUsTRC1ghLasPZ2YGDB+eyYUMEzz470NLmSEyMLZVFaIWW06mn9bW+fyX+dfUoY88QxrYfy5j2Y7it7W1Xvh/z82HVKl3wu2sXlCcGsLeHkSN1we/EiTp9VyOg0mr5NiWFt+Li9E/jhnt4sDAkhH5GCLCv5cMPw2nZ0o0nn+yPi4tNXcoaDw2kLMIQLd/2Xu31kmbWpuVrbI7n5TE1IoLokhKa2tvzVYcOzGjVqsb3DBkSxLp1d9O6dVO6dvUxk6WGYVPfHnUtjZDDNCS1kZdXiru77olBYGBzGQQ3Eqw9EK5plLGjnSO3Bd2mb3Tr0KLDlZKAoiL4ab0u+N2+HUrKH8/a2cHQobrgd9Ikne6vkdAKwdrLl3k1JoZL5cfr26wZC4ODud3Ly2jHASgr06DRaHF1dcTBwY5XX5Wjzq0aG1aMqE3L19/dn+HBwxkWPIyhQUMJaB5gIUvNhxCCjxMTeTE6GpUQ9GralLVhYbSvYex55Wvs5Mlh5jK1TthUIFzX0gg5TENSE8nJ+dx883fcf38vXnllsKwvbCSo1VdEEawlEBZCEJEeoa/1/S3+t+tHGZcHvsOCh9HMuVI9R0kJ7NypC363bdMFwxXccosu+J08WTfxzcg278rK4qXoaP4uLASgo6sr74SEMMnb2+j+pNUK7rtvCwkJeWzZMg0PjxuvM5aYGBvKCDc0LV9jk6lSce/582zL1GXC/+Pnx/vt2tUoebhhQwSPPrqdrVunMXCg9d4o2FQgXF/5NJkRllxLZQmX7dsjeeGFQTg725Q7SOrJmTNQUKDr3TFybFgnahtlfGvgrfpGt24+3a6+6JaVwZ49uuB3yxZdGUQFAwbogt+77wY/06ie/JGby0vR0RzKzQXA39mZ14OCmNOqFQ711AKuCSEEzz+/h5Ur/6FpUydiY3Po2dOCvzyJYVhxIFyblq+7s7tOy7dc0syWtHyNzW85OUw/d47E0lI8HBz4rmNHJtXyVGn//hhmztxEWZmGgwfjZCBsLOoin1as0ZCtVuOoKLRoDGr5EoOpSsJFBsGmQ6XS9Wfl5dW+rTnYt0/3ryWywVFZUfpa3wOxByjVlOrXVR5lPCJkBJ6u19TuqlQ649euhc2bISfnyro+fXTB75QpusYkE/FvQQEvx8SwtTwr5OXgwP+1bctjbdrgauBY5fqwePEffPTRXzg62rFp0xQZBNsKVlQaUaHluy9mH3tj9tao5TsseBi9fHvhYNe4rwtaIXg3Pp5XY2LQAAPc3VnduTNBtTQ+nj6dyvjxaygr0/DEE/148cVB5jG4ntjUb7kuNcIplYZpNNa7OMn1WLOES0Nl6VJ46CFLW3E95giES9QlHIo7pA9+I7Mi9esUFG7yu0lf8tCnTR/slGuyqRoNHDyoC343boTMSg063btfCX5NLE0VW1zMa7Gx/JiWhgDc7Ox4NiCA5wMCaH4DwzAMYdmy07zwwq8ALF8+kREj2pn0eBIjkZsLaWk6tYgA82cDr9XyPZJ4BJVWpV9/rZbvTX434ewgyygrSCsr455z5/glOxuAFwICeDs4GMdanvhER2czevRK8vPLmDKlCx9/PMrqYzDbCoQrVCMMqBFOkdJpkmsQQvDYY9v56SfrlHBpqFy+rPu3c2dd7GYNtGwJ06ebZt/xufH6wLeqUcbhoeGMCR1DeGg4Pk2q6J7WanXzn9euhQ0bdMFEBZ0764LfqVOhUyfTnEAl0srKeCcujiXJyaiEwFFReLhNG15p25ZWZig52779IvffvxWAjz8OZ9q0riY/psRIVGSD27fXNWuamMaq5WsKfs3KYta5c6SpVHg7OrK8UydGt2hR6/suXy4kPHwFqakFDBsWzPLlE2xC1tCmAuG6NMvpp8rJ+mBJORkZRezZE42LiwPbtk23OgmXhs7EifDOO5a2wvioNCr+SPhDX+v77+V/r1p/3Sjjqh63CgFHjuiC3/XrIalSh3po6JXgt2tX3XACE5OrVvNBQgIfJiRQqNWiAPe0asUbQUEEm1EPdsOGc2g0gvnzB/HUUzY8+aQxUlEfbKKyCK3Q8u/lf/WSZlVp+Xbz6aaXNGuIWr7GRq3V8kZcHO/ExSGAIR4erOzc2eCE4p9/JhATk02vXq3ZvHmqzZQc2oaV5dSlNCK5UmmERALQsmUT/vjjPs6eTeeWWwItbY7EhkktSGVn5M4qRxk3dWrKiJAR+qEWfu7VNKwJASdP6oLfdesgLu7KurZtrwS/vXqZJfgFKNFo+CI5mf/GxZFZPgzjzhYteCc4mG43OGmuPnz77Z3cfnswM2Z0M/uxJTeIkRvlKrR8K5rb9sfuJ6Mo46ptKrR8hwUPY0jQkKqfuEiqJLGkhBnnznE4NxcFeD0oiFfatsW+Dt8948d3YseOmfTo0UovmWYL2FQgXJdmuWQpnSYpJyoqi9BQnZ6pr28zfH1tbJSYxOJotBqOJR/TlzycSDlx1foqRxlXhRDwzz+64HftWrhUSaLJz09X7zt1Ktx0k9mCX9BlgpanpfFabCyJ5d+dtzRvzqKQEAY1N28WLSUlH3d3Z5o0ccLe3k5OebRVKkojbiAQllq+5uHnjAzmnj9PplqNr5MTKzt3ZqiBg3a0WkFsbA4hIbrtR460vRp+mwqE6yKfliKl0yToJFxGjVrJs88O4L//HW71RfsS6yGzKJPdl3azI1I3yrjyJCkXBxfdKOPQMYxuP5oQz5Cad3bu3JXg9/z5K8tbt9Zp/E6dCjffbJZaysoIIdickcHLMTGcL9cf7t6kCQtDQhjt5WV2f8nOLmbEiB9p0sSJ7dtn4O0tazhtlnqURhii5Ts0eKhe0qyxafkamzKtlpeio/kwMRGAUV5eLOvUCR8D4yYhBM8+u5sffjjNli3TGDIkyITWmg7bCoTVhjfLyYyw5PTpVCZMWEtZmYbCQlXtb5A0aoQQnEo9pc/6Hkk6glZo9euDPYL1o4yHBA2p/clUVNSV4Peff64s9/aGu+7SBb+DB+tGHluAvdnZvBQdzbFyDeIQFxfeCg5mmo8PdhYILoqLVdx552rOnk2nc2dv7OxkgGOzaLUGSafllORwMPYge2P21qrlOyx4GF18ulyvrCKpF9HFxUyLiOBYfj72wH9DQng+IKBOvv/ee7/zySdHcHKyR6sVtb/BSjEoEFYUZRTwCWAPfCuEWHTN+kBgGeBRvs18IcQO45pax9IIWSPcqKmQcMnLK7UZCRdjYS3+agvkluTya/Sv+lHGKQUp+nWOdo4MDRqqD36vGmVcHbGxunrftWt19b8VeHrqRhtPmQLDhoGJJcdq4nheHi/FxPBruSxSaycnFrRty/2+vjiZOSNdgVqtZdq0jfz+ewL+/u7s3j0LLy/zNeVZmgbns0lJUFysk2ep9Ii9spbvvth9nEw5edXNptTyNQ/rL1/mgQsXyNNoCHR2Zk1YGAPrWAL1ww+nmD9/L4oCP/44kWHDgk1kremp9S9MURR74HNgBJAIHFMUZasQIqLSZq8A64QQXyqKEgbsAIKMbWydmuVkRrjRUpWES2PJLlmTv1ojtY0y9mvmp6/1HR48/OpRxtWRmHgl+D169MryZs10UhlTp8Ltt4OFb8ovFBXxSkwMG9LTAWhub8+LgYE86e9PEwtlpUH3O3nkkZ/ZuvUCnp4u7N49i4CAxtPd3yB9trwsQtuhPYdjD9ao5XtL4C1Sy9dMlGg0PHvpEl8mJwMw0dub7zp2xLOOQ8d+/vkiDz64DYBPPx3NlCldjG6rOTHkVusmIEoIEQ2gKMoaYDxQ2UkF4F7+/+ZAsjGNrMBQ+bQijYZcjQYnRcHLgpkXifnJzy9lzJiVREVl2ZyEi5GwGn+1FgrLCtkfu19f8hCXe0WdodZRxtWRmqqTOVu7Vqf5W0GTJjBunC74DQ8HF8PGwZuSxJIS3oiL44eUFDSAi50dT/r58WJgIF5WMHVzwYL9fPfdKVxdHdi+fQZhYTWPbm2ANBifrdDyzdn+KeHAspIj3LdsiH69nWJHvzb99JJmNwfcTBOnJpYyt1FxvrCQqRERnCksxElR+KBdOx7386vzk9I//khgypT1aDSCV165lSeeuMlEFpsPQyIEPyCh0utEoP8127wO7FEU5T9AE+D2qnakKMpDwEMAgYF1l68ytFmu8jCNxvI4XKIjJ6eE/Pwy2rXzZOfOmTYl4WIkrMZfLUlNo4xburVkdPvRjAkdw8h2I68fZVwd6em66W5r1+qmvYnymjgXF7jjDl3wO2YMuFlHg1emSsXCuDg+S0qiVAjsgYd9fXk1KAg/K3lSptUKEhLysLdXWLfubgYObJRd/zbrs9Vp+X78J4QD5zw1ei3fYcHDGNx2MB4uHia3S3I1y1NTeeziRQq1WkJdXVkbFkbvZvVTT0pOzket1vLAA714882hRrbUMhgrVTYdWCqE+EBRlIHAj4qidBWiUvEPIIT4GvgaoG/fvnWurNY3y9VSIyyHaTReAgKa89tv95KfX0arVubXPbURzOKv5qRUXcqhuENsj9xev1HG1ZGVBZs364Lffft0I49BV+YwerQu+L3zTrCAxm51FKjVfJyYyPsJCeSV2zu1ZUveDA6mg5UE6RXY2Sn88MN4Hn+8H/36VaO3LAEr8lm1UEGvH9nrtYtWi6vW8r1dVQwk8n8PLOW9qXNMYYbEAArUap6IjGRZ+XTKGT4+LOnQgWY38KR88uQwgoM96NGjdYNJNBryaSQBlW/T/cuXVeZ+YBSAEOJPRVFcAG/gsjGMrMDQ0gjZKNe4EEKwd28Mw4cHoygKLVs2oWXLRvu4zWr81dTE58brh1r8Gv3rVaOMPVw8CG8Xzpj2YxgVOqpuwvq5ubBliy74/eUXUJXXNDo46DK+U6fC+PFgZn3d2ijTavk6OZm34uK4XG5zuKcn/w0JqXf2x1QcPZpEx44taN7cBUVRGnsQbFM+e6J4PYy/nxiAIp2W77DgYfo634DmAfChrnHKo8e1iW2JuThTUMDUiAjOFxXhamfHZ+3bc2/r+gWvWVnFxMbm0Lu3LwB9+rQxtrkWxZBA+BjQXlGUYHTOOQ2Ycc028cBwYKmiKJ0BFyDdmIaC4aURslGucfHee78zf/5enntuIIsXj7S0OZbGavzV2NQ2yrhHqx76Wt8B/gPq1m1eUADbtumC3507ofxmGnt7GDFCF/xOnAheXkY8I+OgEYLVaWksiI0lpkSXLOjfrBkLQ0IMFsU3J6dOpXD77csJCfFk//45eHo2HnWIarApn03X6LR9g4omseeFRYR6hV4dXJWU6KYk2ttDSC362hKjI4Tg65QUnoqMpFQIwtzcWNelC12a1C85VFSkkzU8fTqV7dtn2KxWcE3UeqUQQqgVRXkC2I1OtuV7IcRZRVHeBI4LIbYCzwHfKIryDLqi/rlCCKM/ljFUPk0O02g8VJZwuemmRp1VAqzLX41BemG6vtxhz6U95Jbm6tdVHmU8KnQU/u7+ddt5URHs2KELfrdv18k9gW6i25AhuuD3rrt0ElBWiBCC7ZmZ/F9MDP8UFgLQ2c2N/wYHM97b2yofW166lMXo0SvJzy8jLKwlzZtbvpnQ0tiaz+ZqdBKDrctuo32L9tdvEBWlq58PDra4UkpjI1et5qELF1hXrgzzgK8vn4SG4lZPVRi1WsvUqRv4448EAgOb07699SUCjIFBKZNyvcId1yxbUOn/EcAg45p2PYbKp8mMcOOgsoTLJ5+MsnkJF2NhLf56o2QWZdLu03bkl+Xrl3Xy7qSv9b0l8Ja6Sy2VlsKuXbrgd+tWKA8gARg0SBf8Tp4Mvr5GOgvTcDgnh5eio/k9Lw+AQGdn3ggK4p7WrbG3wgAYIC2tgPDwFaSlFXL77SEsXdp4ZA1rw5Z8Nk+bCoCbphofMcJoZUndOZaXx7SICKJLSmhqb89XHTowo1Wreu9PCMFDD23j558v4uXlyu7ds/Dzc6/9jTaITelKVZRGyBphyZ9/XpFwefnlW/nPf2QtWkPjdOpp8svy8Wvmx0u3vGTYKOOqKCuDX3/VBb8//QTlwSMAN92kC37vvhsCrF+x4O+CAv4vOpodWVkAeDs68nJgII+0aYOLBbWAayMvr5TRo1dy6VI2ffr4smnTFJycrNdeSfVUZISrDYTrMVpZUn+EEHycmMiL0dGohKBX06asDQuj/Q02xr788j5++OE0bm6O7Ngxg06dvI1ksfVhU4FwRWmEzAg3bs6dS+eOO1ZTXKzm/vt78dZbDUPCRXI1UVlRAIxoN4LHb3q8bm9Wq3UqD+vWwaZNUD5FDYBevXTB75Qpuse3NsCl4mIWxMSw+vJlBNDU3p7nAwJ4xt8fdyvXSi8tVTNp0lpOnUolNNSLHTtm0qyZ/G62VXK1ukDYVdO66g0qAmGZETY5mSoV954/z7bMTAD+4+fH++3a4XyDEyI//fQICxf+hr29woYNd9O/fx3LzmwM6/4GvQZD5dNkjXDDplkzZ3x9m3LLLYEsWXKHVdZCSm6cikC4vVcVdYhVodHAoUO6zO/GjZBRSdapWzdd4Dt1KrQ3cH9WQEppKW/HxfF1SgpqIXBSFB7z8+P/AgNpaSPfbw4OdoSGenH2bDp79szCx6fRKrrYPEIIcjXlpRHaagJhWRphFn7LyWH6uXMklpbi4eDA9x07MtFI/QyBgc1xdXVgyZI7GD3adr4v64vNBMJCCIMywgVqNXkaDS52dnhYeaZEUj/8/d05fPheXFwccHC4sTtfifUSla0LhEO9QqvfSKuFP/7QBb8bNugmvlXQqdOVzG9YmImtNS45KhXvJyTwcWIiRVotdsDc1q15PSiItlYwra4u2Nvb8eWXY3nttdvw9bUuGTdJ3cgpyUFNKZQ2xVFUo50tSyNMilYIFsXHsyAmBg0wwN2dNWFhRv1emDChE1FRT9KmTePwV5uJFCsmQznZO9Uohp9SqT5YZgobDkVFKlasOMODD/ZGURQpudQIiMzUDcW4LhAWAo4e1QW/69dDYuKVde3a6YLfqVN1WWAb+w4o1mj4LCmJhfHxZKvVAEzw9ubt4OB6yx9ZiuXL/+aOOzrg5eWKoigyCG4ApBaU32gWVFMfnJGhG0LTtKnVN5zaIqmlpdxz/jy/lpd6vRgQwFvBwTjeYCkEwIkTyRQVqbj11rYAjSYIBhsKhOs6TEOWRTQcKiRcfv75IvHxubz99jBLmyQxMVqh5VK2Tq+0nWc7XfB76pQu+F23DmJjr2zctu2VsofevW0u+AVQabX8kJrKG7Gx+u+wIR4eLAwOZoCVDe4whG+/PcmDD26ja1cfTpx4SDbGNRBSCnT1weT7Vh09VC6LsEE/tGZ+zcpi1rlzpKlUtHR0ZHmnToxq0cIo+46MzNTLGh48OLfRSZHaTCBs6DCNFNko16C4VsJl5sxuljZJYgaS85MpUZUwOM+T5m+/rwuAo6KubNCmzZXgt39/m73oaoVgQ3o6r8TEEFmuY9yraVMWhYQwwtPTJp9qbd16gYcf/hmAxx7rK4PgBkRKfnkgXNAaPKrYQJZFGB21VsvrsbH8Nz4ege4GeWXnzkaLcVJTdbKG6elFjBzZjp49q6n9bsDYTiBsYKOczAg3LCokXFxdHdi+fQadO1vncAOJETl/HtVX73J2BYRlZAPv6Ja3aqXT+J06Vaf5a4THgZZCCMEv2dm8FB3NyYICANq7uvJ2cDCTW7bEzgYDYIDff49n6tQNaLWCV18dzKOP9rO0SRIjclVphEcVG0jFCKOSWFLC9HPn+C03Fzvg9aAgXm7b1mha4bm5JYwatYKYmBz69WvDxo2NU9bQZgJhg0sjyjPCvjIjbPNcLeEyhQEDGraES6Pm0iVd1nftWjhzhgpRs/xmzjSbPkcX/N52m25sq41zJC+Pl6Kj2Z+TA+hu2l8LCuLe1q2NUutnKc6evcwdd6ympETNgw/25o03hljaJImR0ZdGFNSiGCEzwjfMtowM5p4/T5Zaja+TE6s6d2aIEUeml5SomTBhLX//nUb79l5s3z6Dpk0bZwLRZgJhQ0sjZEa4YfDTT+d5+uldAHz//XjGjGn4Ei6Njrg4Xb3v2rVw4sSV5R4eHO8fwMst/2Hw3Pm8PPx1i5loTCIKC3k5JoafymXdPB0cmB8YyBN+fvUegWotVEyNy8kpYcKETnzxxVibLOuQ1Iw+I5xfyzANmRGuN2VaLfOjo/movAl4tJcXyzp1Mrpc4v33b+XAgVh8fZuyZ889tGxpW824xsRmAmF9RthQDWGZEbZpBg70p2fP1kyf3pXZs3tY2hyJsUhK0ik9rF0Lf/11ZXmzZjB+vC7zO3IkC3+azp5z/zDXx/YvqHElJbweG8vy1FS0gKudHc/4+zMvIAAPR0dLm2cUWrZswpQpXTh+PJlVqyZJWcMGypWMcBWBsEZzpY5fZoTrRXRxMdMiIjiWn4+DovDf4GCeCwgwSanU7NndOXAglp07ZxIU5GH0/dsSNhMIV9QIGzxVTmaEbZpWrZryxx/34+xs25kyCTQpSOMxNvDAj2th4W86BQgANze4805d8Dt6NFTSwawYplGjhrCVk15Wxn/j4/kiKYkyIXBQFB7x9eWVtm0bXOmWnZ3CBx+MpLRUg4uLzVxWJHXkSo1wFaURcXG6ceZt2ujk0yR1Yv3lyzxw4QJ5Gg1tnZ1ZExZmUsWY8PBQLl16UvorthQIl5dGGCqf5isDYZsjMjKTFSvO8NprQ7CzU6SD2jIZGbrRxmvX8uT+A9ihhQR0we7YsTrFh7FjoQptXCGETQfC+Wo1HyYmsjghgQKNBoAZPj68GRxMO9eGo3+tUmn4v//by7x5g/DxaYKiSJ9t6OhVI6oqjZBlEfWiWKPh2UuXWJKcDMBEb2++69gRTxM8Lfrhh1MEBDTn9ttDAKS/lmMzn4IhpRH5ajUFGg2udnY0l1PlbIoKCZeYmBzc3Z157rmbLW2SpK5kZ8Pmzbqyh717dY9KAa29E9s0oygZP5WpP96pK4OogdSCVIpURbRwbYGnq/GaQ0xNqVbLl0lJvBMfT4ZKBcAYLy/eCQ6mZy3nbGsIIXjggW0sX/43v/2WwB9/3Cdrghs4JeoSskuyscMBbXEV+rVytHKdOV9YyNSICM4UFuKkKHwYGspjbdqYxJd++uk8DzywDXt7hfPnnyAkxHa+W02NzUSLhpRGpFRqlJNfyrZDZQmXvn3b8NBDfSxtkqSO/PXECnp/fh9O6AJAFQ4ccBjNJqepbFKP57LGg//rAlMNiAdtMRucpVIx8ORJLpZrAd/s7s7CkBAGe3hY1jATMX/+ryxf/jdubo58/HG4/L5tBKQVpAHgbteKHFFFDbjUEK4Ty1NTefTiRYq0WkJdXVkXFkYvE90wHzoUx7RpOlnDBQsGyyD4GmwmEDZEPi1ZDtOwOaqScGnWTP7+bA3NzztxQsVR+vE1D7GZiWSpW4BuSjAODtDPQElZWwyEP01M5GJxMaGurnzYrh13tGjRYIPDjz76k/fe+wMHBzs2bpxC//5S1rAxUNEo19y+NTlVbSBLIwyiQK3m8chIlqfpbixm+vjwZYcONDPRU+x//klj3LjVlJZqeOSRPixYcJtJjmPL2EwgbIh8mpROsy00Gi333LOZAwdiad26Kbt3z8LHp/FKuDQECu57ivcXz+T9a5Y7OVVZDlwlkVmRgO0EwgVqNZ8mJQHwXceODTYLDLBy5RmefXYPAN9/P45Ro2zjdyS5cSoa5ZrbVSOdJksjauVMQQFTzp7lQnExrnZ2fN6+PXNbtzbZTXNsbA7h4SvIzS1l0qTOfPbZmAZ7g34j2E4grK69WU4O07AtFi36jQ0bInB3d2bXrpkEB8vHNbaOszPcqOa7rWWEv05JIVut5mZ3d241YZe3pfn338vMnbsFgMWLR3DPPVLWsDFR0SjX3L6KQLiwEBITwdER2rY1s2XWjxCCr5KTeToqilIh6OLmxtouXehiaHagHmi1gvHj15CSUsBtt7Vl5cpJ2NtLWcOqsJlAuKI0QmaEGw6PPNKXvXtjeO212+jRo/HNN5dUjS0FwqVaLR8kJADwUmBgg862dOnSkvnzB1FSopbNrI2QitIId7sqvqsrssGhobo6KImeXLWaBy9cYH16OgAP+vrycWioyYfo2NkpfPLJKF577QBbtkyTChE1YDOfjF4+rQbVCDlMw7Zo0cKNvXtnN+jgQVI3Kkuntfey/mmCK9LSSC4ro2uTJoxpUUUnfQNCURTeemsYokIHWtKo0JdGVJURlmURVXIsL4+pERHElJTQ1N6erzt0YHqrVmY7/pAhQRw4MEdeY2vBZvLkdWqWkxlhq2Xz5nM88cQONBotgHRQyVWkF6WTX5aPh4sHXq5eljanRjRC8F58PADzAwNNMv3J0iQn53PnnatJSsrTL5M+2zjRN8tVlRGWihFXIYTgo4QEBp06RUxJCb2bNuVUnz4mD4K1WsFDD21j27YL+mXSX2vHZgJhQ+TT5DAN6+bQoTimT9/I558fY8OGCEubI7FCKpdFWPsX+Ob0dC4WFxPk4sLUli0tbY7RyckpYfTolfz880Wefnq3pc2RWJgaM8JSMUJPpkrFuH//5dlLl1AJwZN+fvzRuzehbm4mP/YLL/zCN9+c5J57NpOTU2Ly4zUUbKc0Ql1zaYQQQsqnWTHXSrhMmdLF0iZJrJDITNtQjBBCsKg8GzwvIAAHO5vJKRhESYma8ePXcOZMGh07tuDLL8da2iSJhdE3y1WlGiFLIwA4nJPDjHPnSCwtxcPBgR86dmSCmW6SFy/+gw8++BMHBzvWrbsbD4/qk4aSq7GZQLi2Zrl8jYYirZYmdnY0M3ERuqRuSAkXiaHoM8Ke1h0I/5qdzYmCAnwcHbm3dcNq9NRotMyYsZFDh+Jo06YZu3fPwtvb9NksifWiFVrSCssHathf83hfiEZfGqEpvzFeEBODFhjo7s7qsDDaupgnGF2+/G/mzfsFgGXLJjByZDuzHLehYDOBsL5Zrpoa4crZYBlkWQ8ZGUWEh6+QEi4Sg4jKtg3FiIXl2eCn/f1xbUA33kIIHn98B5s3n8fDw4Xdu2fRtq2Hpc2SWJjMokzUWjWeLp44KtcEd6mpkJ+v00309raMgRYktbSUe86f59fsbEDXL/BmUBCOZnpKtHNnJPfdp5M1/OijcGbM6GaW4zYkbCYQ1jfLVVMaIeuDrZMXX/yFixcz6dGjlZRwkdSKXjGihfUqRhzJy2N/Tg7u9vY85udnaXOMyq5dUXz11QlcXBzYunUaXbv6WNokiRVQ0SjXumkN0mkdOkAjS0L9kpXFrHPnuKxS0dLRkR87dybcy3xNvoWFZcyZ8xMajeDFFwfx9NMDzHbshoTNRCW1NcvJ+mDr5MMPw1GrBYsWDad5c1mzJKkeIYRN1AhX1AY/2qYNzRuYZuqoUaH897/DCAtrya23ysEIEh0VjXK+zXyh9JqVjbBRTq3V8lpsLAvj4xHAUA8PVnTubPb4o0kTJ7Zunc6aNf+ycOFwsx67IWEz3+K1yaelyGEaVoNWK1AUnWxL8+YuLFs2wdImSWyArOIscktzaebUjJZu1qnCcK6wkJ8yMnBWFJ7297e0OUZDqxXY2SkoisJLL91qaXMkVkZFo5xv0yoC4UbWKJdQUsKMc+f4LTcXO+D1oCBebtsWezNmwyv8FWDAAH8GDGg430WWwGaKNStqhKvNCMthGlbD/Pm/cu+9W1CpNJY2RWJDRGZdyQZba53/u+XZ4Ht9fWndQL5rDh6MpVevr4iNzbG0KRIrpcbSiEbUKLctI4Oex4/zW24ubZyc2NezJwuCgswaBOfklNC//7dSgtSI2E4gXIt8WkVphKwRtiwffPAH77//B6tW/cPp06mWNkdiQ1j7aOX4khJWXr6MHTrJtIbA33+nMm6cTibt229PWtociZWiL41o2jg1hMu0Wp6NimLcv/+SpVYz2suL0337cpuHh1ntKC5WMW7cao4fT+b11w/IZJORMCgQVhRllKIoFxRFiVIUZX4120xRFCVCUZSziqKsMq6ZtZdGJMvSCIuzYsUZnn/+ioRLv34Nq5HIVrAGf60P1j5a+YOEBNRCMNXHhxDX6idc2goxMdmMGrWSvLxSJk8O4403hljapEaJLfhrtRlhlQqio3VNcqHWeQN7o1wqLmbQqVN8lJiIg6LwfkgIP3frRkszxxpqtZYZMzZx+HA8fn7N2LlzJo6ODUexxpLUWiOsKIo98DkwAkgEjimKslUIEVFpm/bAS8AgIUS2oihGbzWurTQiRTbLWZRdu6K4994rEi7Tp0sJF0tgLf5aH6w5I5xeVsY3KbpgYH5goIWtuXHS0wsJD19BamoBQ4cGsWLFRClraAFsxV8rN8tdqrwiOho0GmjbFhrAzeG1rLt8mQcvXCBPo6GtszNru3Shv7u72e0QQvDYY9v56acrsoYBAc3NbkdDxZBvvpuAKCFEtBCiDFgDjL9mmweBz4UQ2QBCiMvGNbNm+TQhhJRPsyBHjiRy113rUKu1UsLF8liFv9YHaw6E/5eURLFWy1gvL7o3bWppc26IgoIyxoxZRWRkFj17tmbz5qk4O9tM33RDwyb89apmuco00LKIYo2GRy5cYGpEBHkaDZO8vTnVt69FgmCA118/wDffnMTFxYGff55Oly5WkbtoMBgSCPsBCZVeJ5Yvq0wHoIOiKL8rivKXoiijqtqRoigPKYpyXFGU4+np6QYbqRVaSjW6jK+z/fUZ31y1mmKtlqb29jRrYHJGtsCbbx6iqEjFnDk9pISL5bG4v9aXys1y1kS+Ws3/kpKAhpENXr/+LMePJxMc7MHOnTOlrKFlMZq/gul8ttrSiAaoGHG+sJD+J0/yVUoKTorC5+3bs6FLFzwdHS1iT3JyPh999Bf29grr1k1m0CDb/w6yNowVNToA7YEhgD9wSFGUbkKInMobCSG+Br4G6Nu3rzB055XHK1fVTS7rgy3L2rWT+eijP5k//xar7faXXIVJ/bU+ZBVnkVWchZujW9Wd6Rbk65QUctRqbmnenFvM3BxjCu69txclJWpGjGhH69a2nd1uJBjkr2Aany0oK6CgrABne2c8XDyuXtnAFCOWpaby2MWLFGm1tHd1ZV1YGD2bNbOoTW3aNOPAgblERKRz550N54bDmjAkEE4CKrdI+5cvq0wicEQIoQJiFEW5iM5xjxnDyMqBcFWkSOk0s1NQUIabmyN2dgpNmzrx6qu3WdokiQ6L+2t9uJSlqzy0Num0Uq2WDxN0CTtbzgYLIcjPL8PdXfcd+eij/SxskaQcq/fXivrg1k1bX++bDaQ0okCt5vHISJanpQEw08eHLzt0sOgT5ry8Ur2/9u7tS+/eVSh2SIyCIaURx4D2iqIEK4riBEwDtl6zzU/o7lZRFMUb3aOcaGMZWdEoV61iREWjnMwIm4XiYhVjxqxk+vSNlJaqLW2O5Gos7q/1wVoVI35MTSW5rIxuTZowxoyjU43N++//Qc+eS4iMzLS0KZKrsXp/vWqq3LU0gNKIvwsK6HviBMvT0nC1s+P7jh35sXNniwbBp06lEBz8CT/++LfFbGhM1BoICyHUwBPAbuAcsE4IcVZRlDcVRRlXvtluIFNRlAhgPzBPCGG0b9yaGuVADtMwJ5UlXH7/PZ6MjCJLmySphDX4a32wxkY5jRC8VykbbE2Z6rqwbNlpXnzxV2JicqS2t5VhC/5aXaOca1kupKXp1CJscMqiEIIlSUn0P3GCC8XFdG3ShON9+nCvr69FfT06OpvRo1eSlVXMjh1RCGHSqjQJBtYICyF2ADuuWbag0v8F8Gz5j9GpGKZR7VQ5OUzDLFwr4bJr1yz8/CzTRSupHkv7a32Iyra+QHhjejqRxcWEuLgwpaV1jnyuje3bL3L//boE4yefjOLuu7tY2CLJtVi7v1YujQAoH65Iq5zysoj27cHOtqT3clQqHrx4kQ3lDYUP+vrycWgobvaW1eVNSytg5MgfSUsrZPjwYJYuHW+zN+C2hE1ILNRaGiGb5czCa69dkXDZtm06XbtKCReJcYjMtC7FCCEEi8qv+PMCAnCwsQs9wF9/JXL33evRaAQvvXQLTz7Z39ImSWyQCsUI36a+fPopvP22bvkwf9ssizial8fUiAhiS0poZm/P1x06MK1VK0ubRX5+KWPGrOLSpWx69/Zl0yYpa2gubOJTrrVZTg7TMDmff36Ut946hJ2dwtq1k7nlFtttHJJYH9ZWGrEnO5tTBQW0cnRkbmvrUrEwhHPn0hk7dhXFxWruu68n77wzzNImSWyUikD4xKHWbCnPU3/0EQzMtC3FCCEEHyUm8mJ0NGoh6N20KWvDwgh1c7O0aZSWqpk4cS0nT6bQrp0nO3bM0DfKSUyPTQTCFaURtdYIy4ywSdBotKxfrxt09PXXdzBunG1lACTWTW5JLulF6bg4uNCmWRtLmwOgzwY/ExCAi4Ufl9aHX36JJiurmDvu6MBXX90pH69K6k1qvq40YssKXxQFvv4aHngAmGo7GeGMsjLmnj/P9qwsAJ7y8+Pddu1wtpInPVFRWZw4kUKrVk3YvXsWrVpJWUNzYhOBsL5ZrorSCCHElRphmRE2Cfb2duzcOZPt2yOZPDnM0uZIGhiXsq9Ip9kplr8w/ZWby4GcHNzt7XmkjXUE5nXlySf74+fXjNGj2+PgYPnPVGKbaLVw7HwKOIJ9cWtWroapU8tX2oiG8OGcHKZHRJBUVoangwM/dOrEeG9vS5t1FV26+HD48L2oVBratbNddRpbxSa+IStqhKsqjchWqykVAnd7e5rYYObGmomJyUat1gLg6uoog2CJSbC2soiKbPDjfn40t6FJlcXFKhIT8/Sv77orDDc3y0zDktg+ajXMnQuZpbqM8Hcf+14JgrVaq5dO0wjB27GxDDl9mqSyMm52d+d0375WFQRXljPs2tWHXr2kVrAlsI1AuIbSCDlMwzRER2czcOB33HXXOoqLVZY2R9KA0QfCnpYPhM8WFrIlMxMXOzuesiFJKLVay7RpGxkw4FvOnr1saXMkNk5pKUyZAj+uVEOTyygozBhfqTk6KQmKi8HHB6xw2mJqaSnhf//Nq7GxaIGXAgM50LMngS7WM078hx9O0bnz53z99QlLm9LosYl0h75Zzv76P2I5TMP4VJZwKSwsw85O1hdKTEdklvUoRrxbng2+r3VrWtnId4oQgkce+ZmtWy/g5eUq/VVyQxQWwqRJsGcPuPtdJk8ReLu1xNG+0tMFKy6L+CUri1nnznFZpaKloyM/du5MuJUNw9m27QIPPrgNjUZQVqaxtDmNHtvICKuqzwhXNMpJDWHjICVcJObGWkoj4kpKWJWWhj3wfEBArdtbC6++up/vvjuFq6sDP/88nc6dbVPzWGJ5cnNh1ChdENyyJXy1spqpclY4Wlmt1fJydDThZ85wWaVimIcHf/fta3VB8B9/JDBlygY0GsErr9zKE0/cZGmTGj02EeHU1CyXLKXTjEZZmYZJk9ZJCReJWbGWQHhxQgIaYKaPD8GuVSvUWBv/+98R3nnnMPb2CuvX383AgbYTwEusi4wMXRB84oRuUNyvv0KUopNOqximocfK6oMTSkqYHhHB73l52AFvBAXxf23bYm9lailnz17mjjtWUVKi5oEHevHmm0MtbZIEGwmEa5oslyKl04yCViuYM+cnfv01Gh8fKeEiMQ8FZQWkFqTibO9MQHPLBXGXy8r4NkV30X8x0DY0steu/ZenntoFwLffjmPsWOt7TC2xDZKTYcQIiIiAdu10QXBQEPx2sjwj3LSajLAVlEZsy8hg7vnzZKnVtHFyYnVYGIOtsG45ISGXUaNWkp1dwrhxHfnyyzukrKGVYBuBcE2lETIjbBRKStRkZBTRrJkTu3bNlBIuErNwKUsnnRbiGWJR6bRPExMp0Wq5o0ULujW1jRvA5OR8hIBFi4Yzd25PS5sjsVFiY2H4cIiOhi5d4JdfwLc87q08Ve4qrKA0okyr5cXoaD5OTARgjJcXSzt1oqWVJsXS04soKVFzyy2BrFlzl5Q1tCJsIhCuabKcrBE2Dm5ujmzfPoNz59Lp0cP2JmlJbBNrKIvIU6v5PDkZ0HWX2wrPPDOQW24JpG9f29Q6llie8+fh9tt1IhB9+8KuXdCixZX1KflVlEaUlEBcHNjbQ0iImS3Wcam4mGkRERzPz8dBUVgUEsIz/v7YWXGGtXdvX/744z68vd1wdZWyhtaETdyS6OXTZI2w0dm/P0bfterkZC+DYIlZsQbFiK+Sk8lRq7m1eXNubt7cYnYYwqVLWVy6lKV/3a+fn3y8KqkXp0/D4MG6IPjWW2Hv3quDYIDUwiqa5aKiQAgIDgYLJKDWXb5Mr+PHOZ6fT5CLC7/16sVzAQFWGQSrVBr27YvRv27fvgWenrbRf9CYsIlAWN8sd01phBBCXyMsM8J1Z9u2C4wY8SN33rlaPzhDIjEnls4Il2g0fFj+aNXas8GpqQWMHLmCm2/+noiIdEubI7FhUlNh6FBIT4fwcF0m2N39+u2qzAhbqCyiWKPhkQsXmBoRQb5Gw13e3pzq04f+VRluBQghePDBbQwfvpwlS45b2hxJDdhEaUR1zXJZajVlQuDh4ICbnCpXJypLuNx0UxtZrySxCJYOhJenpZFaVkaPJk0YZWUyS5XJyytl9OiVREdn06ePLwEB1nnxl9gGf/0FOTnQqxds2QLVPVBNLaiiWc4CihHnCguZGhHBP4WFOCsKH4aG8mibNlb9NOT//m8vy5b9jZubI716ySet1oxNBMLVyadVlEXIbHDdiIhIlxIuEqugIhBu79Xe7MdWa7W8Vz5AY35goNVeVEtL1UycuJbTp1MJDfVix46ZNGsmS8EkN05gYPVBsBDiSrNc5dIIMytGLEtN5bGLFynSaung6srasDB6NmtmlmPXl48//otFi37H3l5hw4a76d/fdqZUNkZsIhCuUI24NiOcLKXT6kxCQi7h4SukhIvE4hSpikjKT8LRztEi0mkbMzK4VFJCOxcXJre0ziEUGo2We+7ZzL59MbRu3ZQ9e2bh49PE0mZJGgG5pbmUqEto4tiEpk6VlFTMlBEuUKt5LDKSH9PSAJjVqhVftG9PMwfrDltWr/6HZ57ZDcD3349n9Gjz3+RL6oZ1/0WVo2+Wu6ZGOEU2ytWJrKxiwsNXkJiYJyVcJBYnOjsagGDPYBzszPtVJIRgYVwcAPMCA3Gws04/ePrpXaxfH4G7uzM7d84kONjT0iZJGgn6sggLTJX7u6CAKWfPcrG4GDc7Oz5v3545rVtbfdLm11+jmTPnJwDef38Es2f3sKxBEoOwiUC4Ovk0mRGuGy4uDrRr54WdncLWrdOkhIvEokRmWk4xYndWFn8XFtLayYk5rVqZ/fiG0rGjN66uDmzZMo2ePWWdocR8VNkol5EBWVnQtCm0Nv7foxCCJcnJPBMVRakQdG3ShHVhYXRuYhtPQVq2dKNFCzdmzuzG88/fbGlzJAZiE4GwfqBGNTXCMiNsGG5ujmzePJXs7GIp4SKxOPpGOU/zB8ILy2uDn/H3x8WKG22feOIm7rqrM76+1l0TKWl41NooZ+TsbI5KxQMXLrAxIwOAh3x9+Tg0FFcr9s9r6dGjNadOPSzLl2wM63weeA3VyafJYRq1I4Tgyy+PUVKiBsDBwY6WLaWTSiyPvlGuhXlr6P7IzeVQbi4eDg480sb6hlHs3BnJ+fMZ+tcyCJZYgiqnypmoLOJoXh69TpxgY0YGzeztWRMWxlcdO9pEEJySks/q1f/oX7du3RQ7O+su4ZBcjU0EwtXJp8mMcO383//t5bHHdjBp0lqEEJY2RyLRE5VtGem0ReXZ4MfbtMHdyhpvfvstnkmT1jFo0PfEx+da2hxJI6ZGDWEjKUZoheCDhAQGnTpFbEkJfZo25VTfvkz18THK/k1Nbm4Jo0evZMaMTSxbdtrS5kjqiXVdBaqhutKIFFkjXCOffHJFwuU//7nJ6hsNJI0LS2gI/1tQwLbMTFzs7HjS37okjf799zJ33rmakhI1c+b0kFrBEotS5VQ5IypGZJSVMff8ebZn6SYlPu3vz6KQEJyttHH1WkpK1EyYsJa//06jQ4cWjB1rHjk5ifGxiUC4qmY5rZwqVyNr1vzL009LCReJdVKiLiEhNwF7xZ62zdua7bjvJiQA8ICvLz5W9L0RF5dDePgKcnJKmDixE59/PkbeuEosiikzwodycpgREUFSWRmeDg4s7dSJcd7eN7RPc1Iha3jgQCy+vk3ZvXsW3t5uljZLUk+sPhDWaDWotCoUFJzsr1y4MlUqVELg6eBg1c0uluCXXy4xe/ZmAN5773Yp4SKxOqKzoxEIgjyCcLQ3j3pJTHExq9PSsAees6JscGZmEeHhK0hOzmfw4LasWnUX9va2kRWTNFyua5bTaCBK9xSnvoGwply28LXYWLTAze7urA4LI9DFpdb3WgtCCJ58cicbNkTQvLkzu3bNIijIw9JmSW4Aqw+EKzfKVc6QSOm0qvn338tMmrQOlUrLs88OkBIuEqvEEmURHyQkoAHuadWKIFfrUE1Rq7XceedqLlzIpFs3H7ZsmYaLi9V/LUsaAddNlYuLg7Iy8PPTyafVdX+lpcw6d459OTkowEuBgbwRFISjjZRCVLB48R988cVxnJ3t2bJlGt27W6/8osQwrP4bt7pGOTlMo2pCQ70YNSoUZ2d73n9/pHy8KrFKzD1aOa2sjO9SdRmuFwMDzXJMQ3BwsOOBB3pz+XIhu3bNwsPDdjJjkoZLqbqUrOIs7BV7vN3KSxZuoCzil6wsZp07x2WVCh9HR37s3JmRXl5GtNh83HFHB7788jiLF4/kttuCLG2OxAhYfyBcnYawzAhXiYuLA2vW3IVWK6SEi8RqMXdG+NPEREq0Wsa1aEEXKxPnv+++XsyY0U1mgiVWQ1qhbqxxq6atsFPKM7b1kE5Ta7UsiI1lUXw8Ahjm4cHKzp1pbcMJrM6dWxIR8bj01waE1T+TqHaqXHlG2NeGHcpY5OaW8Mwzuygs1N0c2Nvb4ego66Yl1os5A+E8tZrPk5IA3eNYa2DhwsOcOZOmfy0vqhJrospGuToqRsSXlHDb6dMsjI9HAd4KCmJPjx42GQQfOhTHF18c07+W/tqwsPrfZkVpRHXDNBp7RrhCwuXAgVjS04tYsWKSpU2SSGolMst845W/TE4mV6PhtubNGdC8ucmPVxsffvgn//d/+/jww7+Ijn6SZs1sLzCQNGyqnCpXh9KIrRkZzD1/nmy1Gj8nJ1aFhTHYw8MElpqeM2fSGDduNbm5pQQEuHPnncYdJiKxPFYfCOub5arTELbBu0tjodFomTVrk17C5e23h1naJImkVkrVpcTnxmOn2BHkEWTSY5VoNHxULpn2UlvzybRVx8qVZ3juuT0AfPRRuAyCJVZJRaNcXTPCpVotL166xCflT2DGenmxtFMnvG00YRUbm8OoUSvIzS1l0qTOjBkjZUgbIgaVRiiKMkpRlAuKokQpijK/hu3uUhRFKIrS11gGVtQIVztVzkYd7EapkHDZuPEc7u5SwkVyBUv6qyHE5sSiFVoCmwfi7GDaQHBpaippKhW9mjZlpKenSY9VG7t3RzF37hYAPvhgJLNmdbeoPRLrwdp89rqMcGEhJCaCoyMEBVX5nkvFxQw6eZJPkpJwUBQ+aNeOrd262WwQnJ5eSHj4ClJSCrjttrasXDlJyho2UGrNCCuKYg98DowAEoFjiqJsFUJEXLNdM+Ap4IgxDaytNKKxDtN4++1DegmXrVulhItEh6X91RDMpRih1mp5vzwbPD8w0KIKKkePJnHXXetQq7XMm3czzz470GK2SKwLa/TZihphvXRaRTY4NBSq0O1fe/kyD164QL5GQ7CLC2vCwrjJ3XYnIxYUlDF27CouXsykR49WUtawgWPI7c1NQJQQIloIUQasAcZXsd1bwLtAiRHtq3aqXGpFINwISyO2b7/IggUHsLNTWLXqLinhIqmMRf3VEMzVKLc+PZ3okhJCXV25q2VLkx6rJvLySrnjjlUUFqq4557uLFp0u8VskVglVuez15VGVFMWUazR8PCFC0yLiCBfo2Fyy5ac7NPHpoNggEcf3c6xY8kEBXmwc+dMmjeXsoYNGUMCYT8godLrxPJlehRF6Q0ECCG217QjRVEeUhTluKIox9PT0w0ysCr5tAyVCrUQtHBwsJm55MZk5Mh23HNPd774YgyTJnW2tDkS68Ki/moI5giEhRAsio8H4IWAAOwtmA12d3fmk09GMX58R777bpyUNZRci9X57HWlEVVIp50rLOSmkyf5OiUFZ0Xhi/btWRcWhoejeSZFmpLXX7+NgQP92bNnFr6+zSxtjsTE3HCuX1EUO+BDYG5t2wohvga+Bujbt68wZP9VZYSTG/kwDUdHe5YtmyCHZUjqjKn91RDMoRixMyuLM4WF+Do5Mbt169rfYGKmT+/GtGldpc9K6owlfPa6jHAlxQghBMtSU3k8MpIirZYOrq6s69KFHvWYNmettGvnxe+/3yf9tZFgSDo1CQio9Nq/fFkFzYCuwAFFUWKBAcBWYxXz62uEK2WEG6N02pkzaUyatJa8PN1NgHRQSTVY1F8NwRwZ4YXl2eBn/f0t8tSouFjF5MnrOHbsykcvfVZSDVbls1qhJa1Ap3F9bY1wfocOzD5/nnsvXKBIq+WeVq040adPgwiCFy/+g/ff/13/Wvpr48GQjPAxoL2iKMHonHMaMKNipRAiF/CueK0oygHgeSHEcWMYqC+NqNQs19iGaVRIuKSkFNCx42EWLpQ1hpJqsai/1oZKoyI2JxYFhRDPEJMc47ecHH7LzcXDwYGH27QxyTFqQqPRMmPGJn766Tz//HOZs2cfw8Gh8ZVwSQzGqnw2qzgLlVaFh4uH7kmsEHDhAqfbtWOqnR0X09Jws7Pjiw4dmGMFT1uMwfLlfzNv3i8A3H57CL16+dbyDklDotZvZyGEGngC2A2cA9YJIc4qivKmoijjTG1gVaURKY0oI1xZwmXIkCBee22IpU2SWDGW9tfaiMuNQyM0BDQPuE4S0VhU1AY/4edHMwfzdnoLIXjsse389NN5PDxc2LhxigyCJTVibT577VQ5kZLCF8OGMeCLL7hYVka3Jk043qdPgwmCd+yI5L77dLKGH38cLoPgRohBVwkhxA5gxzXLFlSz7ZAbN+sKNZZGNPCM8LUSLj/9NFVKuEhqxZL+WhumLos4U1DA9qwsXO3seNLPr/Y3GJnXXz/A11+fxMXFga1bp9G1q4/ZbZDYHtbks5Ub5XJUKh64eJGNTz8NwMO+vnwUGoprFRJqtshffyVy993r0WgE8+cP4qmnBljaJIkFsPpURY3Ncg04I6xSacprDKWEi6ThoA+EPU0TCL9bng1+wNeXlmb+fvjyy2O8+eYh7OwU1qy5i1tvtfwkO4mkrlQ0yjl4dKPXiRNsBNwLCli7fz9LOnZsMEHw+fMZjB27iqIiFffe25P//ne4pU2SWAirD4SrrBFuBMM0liw5zu7dl2jZ0k1KuEgaDJGZplOMiC4uZs3lyzgoCs8HBNT+BiMSF5fDU0/tAuCrr+5g/PhOZj2+RGIsUgtSwWcEe93HE1tSQp+cHE4+/DBTGtATWCEEDzywlaysYu64owNff32nbI5rxFj9c/aKjHDl0oiURiCf9thj/bh0KZtZs7rTvn0LS5sjkRiFqGzTlUYsTkhAC9zj40Ogi3mfnrRt68G6dXdz4UIGDzzQ26zHlkiMSUp+CgTdi1ax4z9+frz/8cc4JydfN0zDllEUhdWr7+LVV/fzxRdjZR1/I8fqA+GKGuGK0ghNpalyrRtgRlij0WJvb4e9vR0ffzzK0uZIJEZFP165hXHHK6eWlvJ9iu6R7guBgUbdd01U+CvAhAkyCyyxfZILUsBLN4nxvZAQnCPKJz136GBBq4xDZX8NCGjO0qUTLGuQxCqw+tsgfbNceWlEelkZGqCloyNODWyq3I8//s2QIcvIyiq2tCkSidFRa9XEZMcAGF067ZOkJEqFYIK3N2FNmhh139URE5NN9+5L+P33eLMcTyIxBwnFBWDngLudwEWrhehoUBQINe1IdFOjVmuZPHk9b755ECGMNh9I0gCw+kjy2ma5hlofvHNnJPfdt5Xffotn69YLljZHIjE6CbkJqLQq/Jr54eboZrT95qrVfJGkmz8w30zZ4MuXCxk5cgUREeksXPibWY4pkZiDpPLSw9aODrogWKOBtm3B1bWWd1ovlWUNP/74L5KT8y1tksSKsPpAWN8sV14j3BDHKx85ksjkyetRq7W8+OIg5s7taWmTJBKjYyrptC+TksjTaBjq4UF/d3ej7rsq8vNLGTt2FVFRWfTs2ZpVq+4y+TElEnORrtH929bV7arRyrbMa68d4JtvTuLq6sDPP8/Az8/03xMS28HqA2F9s1x5aURDG6ZRWcJlzpweLFwoJVwkDZPILOMrRhRrNHyUmAjAS2bIBpeVabjrrnUcP55MSIgnO3fOxN294dyUSxo3RaoiihXd05q2rk31o5VtuVHu88+P8tZbh7C3V1i7djI332xeRRmJ9WP1gfC1zXINaZhGUlIe4eEryMwsZuzY9nzzjZRwkTRcTJERXpqaymWVit5Nm3K7p6fR9lsVWq3g3nu38Msv0fj4NGH37lm0bt3UpMeUSMxJSn4KOOumOfs7O1/JCNtoILx+/Vn+85+dAHzzzZ3ceadtnofEtFh/IFxNaURDqBH+4otjxMfnMmCAP+vW3Y2jY8MQKpdIqkKvGOFlHMUItVbL+wkJgC4bbOqbyBMnklm37ixNmzqxc+dMQkO9THo8icTcpBak6gNhPycnmy6NUKk0LFhwACHgv/8dxr339rK0SRIrxerl06prlmsIpRFvvTUMd3dnHnigN25ujpY2RyIxKcbOCK9NTyempIQOrq5MbNnSKPusiX79/Ni2bTqOjnb07u1r8uNJJOYmpSAFnMoDYWdnmy6NcHS0Z9++2axa9Q/PPjvQ0uZIrBirD4SvlU+z9WEaarWW0lI1TZo4YWen8OKLt1jaJInE5Gi0Gi5lXwKgnVe7G96fEIJF5eOUXwgMxN6E2eDc3BL9ePNRo2xbQkoiqQldRlh3U+mnUkFamk4twt/fwpYZTmV/9fVtxnPP3WxhiyTWjtWXRjSkjLAQgkcf/ZkhQ5Zx+XKhpc2RSMxGUn4SZZoyWjdtTVOnG6+r3Z6Zyb+FhbRxcmJWq1ZGsLCa42y/SHDwJ+zdG22yY0gk1kLlGmG/uDjdwvbtwUY0+9PSCujT52tefPEXqRUsMRir/+uuXCOs1mpJKytDAVrZYCC8YMF+vv32FP/+e5no6GxLmyORmI3ITOMqRlRkg58LCMDZRBfpP/9M4O6715OdXcLBg3EmOYZEYk0kFGSAQ1Mc0OIVqfNZWymLyMsrZfTolVy6lM2vv8ZQVKSytEkSG8HqA2GN0GCv2ONo78hllQotuqlyjjZyh1rB558f5e23D2Nvr7Bu3WQGDLCdR00SyY1izPrgwzk5/J6Xh6eDAw/5mqZWNyIinbFjV1FcrOb++3vxxhtDTHIcicSaiCspAMDbHhQbUowoLVUzadJaTp1KJTTUi507Z9Kkie0lyySWweprhOFKWUSKjUqnNRYJF5VKRWJiIiUlJZY2xapxcXHB398fR8fG0yBpTMWIimzwf/z8aOpg/K+whIRcwsNXkJ1dwp13dmDJkjsapKyh9FfDaEz+mlSqu8a2dnSwGcUIrVYwe/ZP7N0bQ6tWOllDHx/zjFk3N9JnDaOuPmsTgXBFo5x+qpwNlUXs2xfDrFmbG4WES2JiIs2aNSMoKKhBBg7GQAhBZmYmiYmJBAcHW9ocsxGVbZyM8N8FBezIysLNzo7/+PkZw7SryMoqZtSolSQm5nHzzQGsWTMZBwfbevpkKNJfa6ex+WtG+VS5QFc3m1CMEELw1FM7WbfuLM2a6WQNQ0JMqyduSaTP1k59fNYmvuFteZjGli3nKSvT8OSTNzF/fsNWiCgpKaFFixbSQWtAURRatGjR6O7ojVUaUZENftDXF28T3BCfPJlCVFQWYWEt2bZteoOWNZT+WjuNyV81Wg156HyqnWuzK4GwFWeEc3NL2bMnGicne376aRq9ejVsWUPps7VTH5+1jYywDQ/T+PjjUQwcGMCUKV0axR9vYzjHG6WxfUZaodUHwu086y+ddqm4mHWXL+OgKDwXYJoxqbffHsKePbMICfHEy8vVJMewJhrb32J9aCyfUXpROsKpBQABpWVQXAw+PuDhYVnDasDDw4XffruXkydTGDas4WfsofH8Pd4Idf2MbCIjrNcQthHptMuXC8nJ0d2NKIrCtGldsbOTf7ySxklyfjIl6hJaurWkuUvzeu/n/fh4tMCsVq0IcHExmn1CCCIjM/Wvb7stiICA+tspkdgiKfmVhmlcvqxbaKVlEZGRmXp5tJYtmxAeLvW9JfXHJgJhfWmEDQzTyM/XSbgMHvwDycn5ljan0XHffffh4+ND165dq91GCMGTTz5JaGgo3bt35+TJk/p1y5Yto3379rRv355ly5ZV+f4hQ4Zw/Pjxq5YdOHCA5s2b07NnTzp16sTzzz9vnBNqABijLCKltJQfUlNRgBeNnA1+5ZV99OixhO3bLxp1v5La2bVrFx07diQ0NJRFixZVuU1cXBzDhw+ne/fuDBkyhMTERP06e3t7evbsSc+ePRk3blyV7587dy4bNmy4allsbCyurq707NmTsLAwZs+ejUrVuOW2UgpSrgzTqNAQtsKyiN9/j6d79yU89dQutFqpFWxubtRn4+PjGTlyJJ07dyYsLIzY2Njr3m9un7WJQFhfGmHlGeHSUjUTJ67l5MkUiopUDbbJxpqZO3cuu3btqnGbnTt3EhkZSWRkJF9//TWPPvooAFlZWbzxxhscOXKEo0eP8sYbb5Cdbbje86233srp06c5deoUP//8M7///vsNnUtDQa8Y0aL+ihEfJyZSJgQTvb3p1MR4HeGffnqE//73N8rKNEbbp8QwNBoNjz/+ODt37iQiIoLVq1cTERFx3XbPP/88s2fP5syZMyxYsICXXnpJv87V1ZXTp09z+vRptm7dWqfjt2vXjtOnT/PPP/+QmJjIunXrbvicbBndVLnyjLCVagifPXuZO+5YTUmJmpISNbJKwLwYw2dnz57NvHnzOHfuHEePHsXHx8fg45vKZ20iUrs2I+xrhRlhrVYwZ07jkHAxBEUxzU9tDB48GC8vrxq32bJlC7Nnz0ZRFAYMGEBOTg4pKSns3r2bESNG4OXlhaenJyNGjKg1qK6KirvWpKSkOr+3IaLPCHvWLyOco1LxZXIyAPMDA41m15o1//L007rf73ffjWPsWOvLfpkLS/jr0aNHCQ0NJSQkBCcnJ6ZNm8aWLVuu2y4iIoJhw4YBMHTo0Cq3uRHs7e256aabGr2/JuWlgJPuu7PN33/rFlpRIBwfr5M1zMkpYcKETnzxxdhGXS9riz4bERGBWq1mxIgRADRt2hQ3N7c6n7uxfdYmAmFXR91UucsqlW6qnJXpOQohePrpXaxde0XCpV27moMxieVISkoioNLjdX9/f5KSkqpdXleys7OJjIxk8ODBRrHX1rnR0ogvkpPJ12gY7uFBP3d3o9j066/RzJ6tkzVctGg4c+b0NMp+JYZjqL/16NGDTZs2AbB582by8/PJzNTVdJeUlNC3b18GDBjATz/9VC87SkpKOHLkCKNGjarX+xsK0UU5oNjTFBVO587pFlpJaURmZhHh4StISsrn1lsDWbVqknziagFu1GcvXryIh4cHkyZNolevXsybNw+Npu5P44ztszbxl+Tq4EqaSoVAN1rZwcqmyi1a9Bv/+9/RRiPhYghCmObHmjl8+DA9evTAz8+P8PBwWrdubWmTrILIrPqPVy7SaPi4vL7MWNngEyeSmThxLSqVlqef7s8LLwwyyn5tGWv218WLF3Pw4EF69erFwYMH8fPzw97eHtDVIh4/fpxVq1bx9NNPc+nSJYP3e+nSJXr27EmrVq3w9fWle/fuxjHYRokrLgTA205AXBzY20NIiIWtgsLCMu64YzXnz2fQtasPW7ZMw9XVupJhlsAWfVatVnP48GEWL17MsWPHiI6OZunSpQbv11Q+a10RZTW4OLhY7TANIQTJyfkoCqxYMbHRSLjYMn5+fiQkJOhfJyYm4ufnV+1yQ7n11lv5+++/OXv2LN999x2nT582ptk2iRDihjLCP6Smkq5S0bdZM4Z7Gkco//LlQjQaLdOnd+WDD8Ib9eNVS2Kov7Vp04ZNmzZx6tQp3nnnHQA8yiW9KrYPCQlhyJAhnDp1yuDjV9QbXrp0iRMnTtS5xrihUdGD469S6yKikBCwguttfn4ZBQVlBAY2Z9eumXh6NnxZQ2vlRn3W39+fnj17EhISgoODAxMmTLiqWb02TOWzNhEIuzq46p3U2jSEFUXh009Hc/Tog9x9dxdLmyMxgHHjxrF8+XKEEPz11180b94cX19fwsPD2bNnD9nZ2WRnZ7Nnzx7Cw8PrvP/g4GDmz5/Pu+++awLrbYvUglSKVEV4uXrh6Vq3QFal1fJ++QCN+YGBRgtYR49uz59/3s/SpROkrKEF6devH5GRkcTExFBWVsaaNWuqVH7IyMhAq9UCsHDhQu677z5AV4JUWp4gycjI4PfffycsLKzOdnh7e7No0SIWLlx4A2dj+1RMlQsqKtb9x0rKIlq3bsqhQ3PZu3c2fn7GKY2S1I8b9dl+/fqRk5NDeno6APv27bMKn7WJQPiqjLCVNModP55MRkYRoAuG+/ZtY2GLJADTp09n4MCBXLhwAX9/f7777jsAlixZwpIlSwAYM2YMISEhhIaG8uCDD/LFF18A4OXlxauvvkq/fv3o168fCxYsqLbxbuzYsfj7++Pv78/dd9993fpHHnmEQ4cOVSkN05jQK0Z41V0xYu3ly8SVltLR1ZWJ3t43ZEdubgl//nklk9GjR2ucnOxvaJ+SG8PBwYHPPvuM8PBwOnfuzJQpU+jSRZdMWLBggT7bc+DAATp27EiHDh1IS0vj5ZdfBuDcuXP07duXHj16MHToUObPn1/tRfXhhx/W++vAgQOvWz9hwgSKioo4fPiwic7WuhFCkKvVlRuEZObqFlq4UW737ii9VrCnpyuhobLvxtLcqM/a29uzePFihg8fTrdu3RBC8OCDD1Z5LLP6rBDCIj99+vQRNVJessLriJf3vixejY4W7N8vXouOrvl9ZuDff9OEh8ci0bHj/0Rqar6lzbEaIiIiLG2CzVDVZwUcFxbyx9p+avPX39rOEALEb4+uuGr59ye/F7yOmLlxpoGfjA6NViu6HDki2L9ffJ+cXKf3XktxsUoMGbJUODm9JX7++cIN7ashIf3VcGzNX0UtPrt5s+4SO3687nVuSa5g9XzB/v3i27fe0q386qs6fkrG48MP/xDwunjkkW0Ws8EakT5rOHXxWZkRriOVJVw6dfKmRYu6S39IJI2F+tYHb8/M5GxREf7Ozsxs1arex9dotNxzz2YOHIjFy8uVsLCW9d6XRNJQSclP0WsI+18sHyxjodKIlSvP8OyzewC4+WbTjFKXSCpjUCCsKMooRVEuKIoSpSjK/CrWP6soSoSiKGcURdmrKEpbYxppLTXClSVcbrklkNWr75ISLhKrw9L+Wpn6KEYIIVhYXhv8nL8/TvVUiRFC8NRTu9iwIQJ3d2d27ZpJcLBxGu4kEmNhDf6aUlBpvPKZM7qFFiiN2LPnEnPn6jRnFy8ewT339DC7DZLGR61XGEVR7IHPgdFAGDBdUZRrC7FOAX2FEN2BDcB7xjTS1dHV4hnhwsIyxo5dpZdw2bpVSrhIrA9r8NfK1CcjfCg3lz/z8vBycOAB3/pLEb7zzmE+//wYzs72bN06jR49pJydxLqwFn+9aqrcpUvQrBmYWf7x2LEkJk1ai1qt5bnnBvLcczeb9fiSxoshqZabgCghRLQQogxYA4yvvIEQYr8Qoqj85V+AvzGNdHFwIcWC45XVai1TpmzgyJEkKeEisXYs7q+VjlOvZrlF5dngJ/39aergUK9jf/vtSV59dT+KAqtW3cVttwXVaz8SiYmxCn+NyUsDhyY4alR4FBToyiLMKCsYGZnJmDGrKCxUMWtWd957b4TZji2RGBII+wEJlV4nli+rjvuBnVWtUBTlIUVRjiuKcrxCPsMQHO1duaxSYQf4WCAQtrdX6NKlJS1auLJ79ywp4SKxZizurxWkF6WTX5aPh4sHXq6GdXyfys9nV1YWTezseKIOGs7XEhTkQdOmTnzxxVgmTepc7/1IJCbGaP4K9ffZS4U6pQjvkkIUMHtZRPPmLrRt25xRo0L5/vtxUtZQYlbql26pBkVRZgF9gduqWi+E+Br4GqBv374GzzApsdNlX1s5OWFvAfF7RVF4770RPPvsQFq3bmr240skpsBU/lpB5bIIQzWA3y3PBj/Upg0tbmCU+u23hxAZ+R/pr5IGQ23+CvX32biSInAEv/w83QIzN8r5+DRh//45KIqCo6OUNZSYF0MywklA5dZN//JlV6Eoyu3Ay8A4IUSpcczTUajoAmFzl0WsXHmG1NQC/Wt5UbV+du3aRceOHQkNDWXRokVVbhMXF8fw4cPp3r07Q4YMIbF8hC/ACy+8QJcuXejcuTNPPvmkXseyMkOGDKFjx4706NGDQYMGceHChavWP/nkkzRtarG/FYv7awV1rQ+OKipifXo6jorCs/51f/r777+X2bPnyohd6a/WjyH+Gh8fz9ChQ+nVqxfdu3dnx44dAPzyyy/06dOHbt260adPH/bt21fl+6W/1k5FM3pARpZugRkywiUlar744hhare47tlkzZ5o2ta6BWZLruRGfjY2NxdXVlZ49e9KzZ08eeeSRKt9vbp81JBA+BrRXFCVYURQnYBpw1Vw7RVF6AV+hc9LLRrOunAJ0DXLmbJRbvfofZs3azC23fE9hYZnZjiupPxqNhscff5ydO3cSERHB6tWriYiIuG67559/ntmzZ3PmzBkWLFjASy+9BMAff/zB77//zpkzZ/j33385duwYBw8erPJYK1eu5O+//2bOnDnMmzdPv/z48eNkZ2eb5gQNw+L+WkFkZrlihKdhgfD7CQlogXtatcLfxaVOx4qLyyE8fAVjx67iwIHYOloqsQSG+uvbb7/NlClTOHXqFGvWrOGxxx4DdNOltm3bxj///MOyZcu45557qj2W9NeaydDontgEJaXoFpg4ENZotMycuYnHH9/Bc8/tNumxJMbjRn0WroxJPn36tH7IVVWY02drLY0QQqgVRXkC2A3YA98LIc4qivImOnHircD7QFNgffkj0HghxPVz9+pJLo6AymwZ4T17LjFnzk8APPpoX5o0kXepdUV5wzQlLOK16p/2HT16lNDQUEJCQgCYNm0aW7ZsuW7aVEREBB9++CEAQ4cOZcKECTqbFYWSkhLKysoQQqBSqWhVi4bt4MGD+fjjjwHdl8S8efNYtWoVmzdvrucZ3hjW4K8VRGUbnhFOLi1laWoqCvBCYGCdjpORoZM1TE7O57bb2jJggEl6/xo01uyviqKQl6d7ZJ+bm0ubNropnr169dJv06VLF4qLiyktLcW5hoSJ9NeqyRW6MqTA6FjdgvZ1nwRpKEIInnhiB5s2naN5c2fuu69X7W+SXIct+mx9MIfPGlQjLITYAey4ZtmCSv+/3WgWVUGu1h5QmSUjXCHholJpef55KeFiSyQlJREQcOUpo7+/P0eOHLluux49erBp0yaeeuopNm/eTH5+PpmZmQwcOJChQ4fi6+tb/mX9BJ0719xotW3bNrp16wbAZ599xrhx4/C9AckvY2Bpf61ArxjRovaL6keJiZQJwV3e3nR0M3xITWFhGXfcsYoLFzLp3r0VP/00DRcXo7Y+SEyEof76+uuvM3LkSP73v/9RWFjIr7/+et02GzdupHfv3jUGwSD9tSrKNGWU2useM/unpoKfH5iwVOSttw6xZMkJnJ3t2bZtOt261X9gjsS8GMNnY2Ji6NWrF+7u7rz99tvceuutNR7THD5rE1eMTK3uzsfUwzSulXB5910p4VJfarqrtDSLFy/miSeeYOnSpQwePBg/Pz/s7e2Jiori3Llz+prhESNGcPjw4SoddebMmbi6uhIUFMT//vc/kpOTWb9+PQcOHDDz2VgnQogrpRG1ZISzVSqWJCcDML8O2WCVSsPdd6/nyJEkgoI82LlzJh4edSupkOiwZn9dvXo1c+fO5bnnnuPPP//knnvu4d9//8WufNDK2bNnefHFF9mzZ0+1+5D+Wj1pBWlXhmlkZJi0LOKrr47z2msHsLNTWLNmMrfearJZPg0eW/RZX19f4uPjadGiBSdOnGDChAmcPXsWd/frlbjM6bM2EQhnqXX/mjIjnJNTQnj4CjIyiqSEi43i5+dHQsIVJaLExET8qpDgatOmDZs2bQKgoKCAjRs34uHhwTfffMOAAQP0RfijR4/mzz//rDIQXrlyJX379tW/3r59O1FRUYSG6oK+oqIiQkNDiYqKMuo52gpZxVnklubSzKkZLd1qHmv8eVISBRoNt3t60reKL8TqePzxHezcGYW3txu7d8+iTZtmN2q2xIwY6q/fffcdu3btAmDgwIGUlJSQkZGBj48PiYmJTJw4keXLl9OuXbtqjyX9tXquGqaRkQGDB5vkODt3RvLYY7rE95dfjmXChE4mOY7EdBjDZyue2vTp04d27dpx8eLFq3yzAnP6rE3MB05X6+58TFkj3Ly5M7Nn9+Cmm/xYv/5uKeFig/Tr14/IyEhiYmIoKytjzZo1jBt3fSldRkYGWq0WgIULF3LfffcBEBgYyMGDB1Gr1ahUKg4ePFhraUQFY8eOJTU1ldjYWGJjY3Fzc2uUF9UKDJVOK9Jo+CRJ1yT/Uh1rg++5pzv+/u7s2DGDDh1a1N9YiUUw1F8DAwPZu3cvAOfOnaOkpISWLVuSk5PD2LFjWbRoEYMGDarTsaW/XiExPwWcPFGEFt/MTJNlhG+6yY/+/f14880hPPRQH5McQ2JabtRn09PT0Wg0AERHRxMZGamvN64NU/qsTQTCqSpdStiUGWFFUXj99SEcOjRXSrjYKA4ODnz22WeEh4fTuXNnpkyZQpcuXQBYsGABW7fqmrEPHDhAx44d6dChA2lpabz88ssATJ48mXbt2tGtWzd69OhBjx49uPPOOy12PrZMZJZhZRHfpaSQoVJxU7NmDPXwqNMxbr21LVFR/6Ffv/oP3pBYDkP99YMPPuCbb76hR48eTJ8+naVLl6IoCp999hlRUVG8+eabejmmy5dNJoLSYLmQlw6KPV75eThqNCYLhFu0cGP//jm88oppMs4S03OjPnvo0CG6d+9Oz549mTx5MkuWLMHLy7BhSyZFCGGRnz59+ogaASFA8IaDYP9+Yb9/v9BotTW/p46o1Roxb94eER+fY9T9NlYiIiIsbYLNUNVnha5L3GI+WdNPbf76W9sZQoD47dEVQgghXtv/muB1xEu/vlTte8o0GhH4xx+C/fvFpsuXa9x/BStXnhE//XTOoG0lNSP91XBszV9FLT67ebPuEjt+vBAP7P9AsH+/6PHdN7qFUVH1+ISqJjo6S7z00q9CrdYYbZ+NGemzhlMXn7X6GmF7l5ZogNZOTtgZcaqcEDoJlyVLTrBrVxSnTz8ia4IlEiOhV4zwql4xYvXly8SXltLJzY3x3t617nPXrijmzPkJrVbw99+P0LWrj9HslUgaK3HFReAKbVPSwMkJgoKMst/09ELCw1cQGZmFq6sDr75a7UA8icSiWH1phLOr7rGnscsiKku4fPbZGBkESyRGpLapclohWFQ+TvnFgIBab3KPHEnkrrvWoVZree65gTIIlkiMRKpKBZQ3yoWGgv2N98cUFJQxduwqIiOz6NGjFU8+2f+G9ymRmAqrD4QdXHUag8ZslLtWwmXwYCnhIpEYk9oC4W2ZmZwrKiLA2ZkZtQwtuXAhg7FjV1FUpGL27B4sWmQWGWSJpFGQoetdwi89HTp0uOH9lZVpuOuudRw7lkxwsE7WsHlzKWsosV6sPhC2d9FdJH2NlBHetOmclHCRSExIdnE2mcWZuDm60bpp6+vWCyFYGBcHwHMBATjZVf81lJSUx8iRK8jMLGb06FC+/fZO+fRGIjEiuUKXZDKGhrBWK7jvvi3s2XOJli11soa+vlLWUGLdWH0grJTrGxojIxwVlcWMGRvRagVvvCElXCQSU1CbdNrBnByO5OfTwsGBB2qYECSEYPLk9cTH59K/v5Q1lEiMjUBQbNcEME4g/PHHf7Fy5T80berEzp0zad9eyhpKrB+rD4SFo05awxg1wu3aefLmm0N57LG+vPqqlHCRSExBbWURC8trg5/y96dJDfWIiqLw8cfh3HJLINu3z6BJEylrKJEYE5V9FsJJd431y8i44dKI++/vxciR7di0aQp9+rQxhokSicmx+kBY6+QJGCcjrCgKL7wwiM8+G1OjyL/Edrnvvvvw8fGha9eu1W4jhODJJ58kNDSU7t27c/LkSf26ZcuW0b59e9q3b8+yZcuqfP+QIUPo2LEjPXr0YNCgQVy4cAGAffv20bt3b7p27cqcOXNQq9XGPTkboSbFiJP5+ezJzqapvT2PVzGR6Fr69/fn0KG5tGjhZnQ7JZZn165ddOzYkdDQUBYtWlTlNvHx8QwdOpRevXrRvXt3duzQlbbFxsbi6uqq1xB+5JFHqny/9NfqKXZMAWfd5EdjZISbN3dh166ZjBhR/ZQ/iW1jiM/GxcUxfPhwunfvzpAhQ0hMTATg9OnTDBw4kC5dutC9e3fWrl1b5fvnzp1LcHAwPXv2pHfv3vz5558A/P333wwcOJBu3bpx5513kpeXZ5RzsvpAWO3QHADfegbC6emFjB27iujobP0yGQQ3XObOnasf7VgdO3fuJDIyksjISL7++mseffRRALKysnjjjTc4cuQIR48e5Y033iA7O7vKfaxcuZK///6bOXPmMG/ePLRaLXPmzGHNmjX8+++/tG3bttpAuqETlV19RrhCKeJhX1+8HB2vWy+E4D//2cGaNf/ql0l/bZhoNBoef/xxdu7cSUREBKtXryYiIuK67d5++22mTJnCqVOnWLNmDY899ph+Xbt27Th9+jSnT59myZIl1R5L+mvVFLqlgr0rTYqLcXdyghZ1L2XYsSOSBx7Yikql67qT/tpwMdRnn3/+eWbPns2ZM2dYsGABL730EgBubm4sX76cs2fPsmvXLp5++mlycnKqPNb777/P6dOnWbRoEQ8//DAADzzwAIsWLeKff/5h4sSJvP/++0Y5L6sPhMsc3IH6lUZUSLjs2BHJY49tN7ZpkppQFNP81MLgwYNrnVSzZcsWZs+ejaIoDBgwgJycHFJSUti9ezcjRozAy8sLT09PRowYUWtQPXjwYKKiosjMzMTJyYkO5Y8WR4wYwcaNGw3/vBoQ1ZVGXCwqYkN6Oo6KwjMBAVW+9/XXD/DZZ8e4//6tpKUVmNxWSTkW8NejR48SGhpKSEgITk5OTJs2jS1btlRhmqLP/OTm5tKmTf0fuUt/vZqC5umATjFC6djRoO/Yyvz1VyKTJ6/ju+9OsXLlP6YwUVIdVuyzERERDBs2DIChQ4fqt+nQoQPt2+ueFLZp0wYfHx/S09NrPGaFzwJcvHiRwYN1Za3G9FmrDoRLHR1R2bnioCh4V5E9qolrJVx++GG8iayU2BpJSUkEVArE/P39SUpKqnZ5TWzbto1u3brh7e2NWq3m+PHjAGzYsIGEhATTnICVE5lZ9Xjl9xMSEMCc1q3xq+LG9ssvj/Hmm4ews1NYvfouWrVqag5zJRbCUH97/fXXWbFiBf7+/owZM4b//e9/+nUxMTH06tWL2267jcOHD9d6TOmvV1PYTHeDUZ+yiHPn0hk7dhXFxWruvbcnc+b0MIWJEivCUJ/t0aMHmzZtAmDz5s3k5+eTmZl51TZHjx6lrKyMdu1qLqOp8FmALl266IPq9evXG81nrToQTinP7PnWcaqclHCxAvRDso38YyXMnDmTnj178vvvv7N48WIURWHNmjU888wz3HTTTTRr1gx7IwjT2xql2iLSi9JxcXChTbMrmbuk0lKWpaaiAPOqyAZv2BDB44/raj+//voOxo27sVpFSR2xYn9dvXo1c+fOJTExkR07dnDPPfeg1Wrx9fUlPj6eU6dO8eGHHzJjxoxqawalv1ZNcbMioO6NcomJeYSHryArq5g77ujA11/fKUsizI0V++zixYs5ePAgvXr14uDBg/j5+V3lXykpKdxzzz388MMP2FUjnzlv3jx69uzJ119/zXfffQfA999/zxdffEGfPn3Iz8/HyUjzJax6xHJy+djVutQHCyF4/vk9UsJFUi1+fn5X3UkmJibi5+eHn58fBw4cuGr5kCFDqtzHypUr6du371XLBg4cqM9K7dmzh4sXLxrddmsnT5MG6LLBdsqVL7iPEhJQCcHdLVvSwe3qxrcDB2KZOXMTQsA77wzj/vt7m9VmiWWozg+v5bvvvtOXKA0cOJCSkhIyMjLw8fHBufzJQp8+fWjXrh0XL168zi9B+mt1lDTRNQj6ZWRAH8PkRLOzixk1agUJCXkMHOjP2rWTcXCw6pyaxEgY6rNt2rTRZ4QLCgrYuHEjHh4eAOTl5TF27FjeeecdBgwYUO2x3n//fSZPnnzVsk6dOrFnzx5AVyaxfbtxSl6t+q83ubxwvy71wb/9Fs9HH/2Fo6OdlHCRVMm4ceNYvnw5Qgj++usvmjdvjq+vL+Hh4ezZs4fs7Gyys7PZs2cP4eHhBu/38uXLAJSWlvLuu+9W28XekMmtFAhXkKVSsSQ5GYD5gYFXbV9aqmb27M2UlWn4z39u4qWXbjGfsRKL0q9fPyIjI4mJiaGsrIw1a9Ywbty467YLDAxk7969AJw7d46SkhJatmxJeno6Go2uQSs6OprIyEhCQkIMPr70V1C56bK4dSmNePXV/Zw9m07nzt78/PMM3NzqVrYosV0M9dmMjAy0Wi0ACxcu5L777gOgrKyMiRMnMnv27OuCXEOo8FmtVsvbb79tNJ+16kA4pSIQrkNG+NZb2/Lpp6NYtmyClHBphEyfPp2BAwdy4cIF/P399Y9UlixZou8qHzNmDCEhIYSGhvLggw/yxRdfAODl5cWrr75Kv3796NevHwsWLKi18a4y77//Pp07d6Z79+7ceeed+maBxkSuujwQ9rwSCH+elEShVstIT096N7u6RMnZ2YFt26bz+OP9+PjjUfLxaiPCwcGBzz77jPDwcDp37syUKVPo0qULAAsWLGDr1q0AfPDBB3zzzTf06NGD6dOns3TpUhRF4dChQ3Tv3p2ePXsyefJklixZIv21jmhcdUFsm8xMqKVWs4J3372de+/tye7ds/DycjWleRIrw1CfPXDgAB07dqRDhw6kpaXx8ssvA7Bu3ToOHTrE0qVL9bKHp0+fNvj4q1evpkOHDnTq1Ik2bdpw7733GufEhBAW+enTp4+oERDzH3hAsH+/eDs2tuZthRBqtabWbSSmJSIiwtIm2AxVfVbAcWEhf6ztpzZ//a3tDCFAvDljsOB1xJJjS4QQQhSo1aLF4cOC/fvF/qws/fbSXy2P9FfDsTV/FbX47ObNuoJQl43fCPbvF78PHVLj+Wu1WqHRaGvcRmJ6pM8aTl181qozwhU1wrVlhP/6K5Fu3b7k/PkMc5glkUiqIVeTClwpjfg2JYVMtZr+zZpxW3mNWH5+KYMGfc/SpactZKVEIsGhGOGiy6AHtPCucdNXX93PtGkbKC1tfENHJA0f6w6Ey0sjamqWq5BwOXcugyVLjpvLNIlEUgWVa4TLtFo+KG+seKltWxRFoaxMw6RJ6zhyJIl33jlMcbHKkuZKJI2X5imUunpgp9HgW4M28//+d4R33jnMpk3nOHq0ZjlJicQWsepAOKWWZrlrJVwWLx5pTvMkEsk1FGlzcbZ3JqB5AKvS0kgoLSXMzY07W7RAqxXMmfMTv/4ajY9PE3btmomrq2y0kUgsQkAKKHa0ys7GoRrptLVr/+Wpp3SKHd98cye33trWnBZKJGbBqgPh5Bqa5aSEi0RinYR4hgAK75Zng18MDEQBnnlmF2vW/EuzZk7s2jWTdu0Mb2ySSCRGpo1uwEF1ihG//hrNPfdsRghYuHA4997by9wWSiRmwWojx2InJ7Ld3bFH0OKaqXLFxSruvHO1lHCRSKyQUK9QtmRkcL6oiEBnZ6b7+PDuu7/z6adHcXS046efptGrl6+lzZRIGjetcwHwT0+/bpjGyZMpTJy4FpVKy1NP9efFFwdZwkKJxCxYbSBcURbhZSeuk1Tavj2S339PwN/fXUq4SCRWRjuvUBbFxwPwfEAAedklLF78B4oCK1ZMYtiwYAtbKJFInL11U/h8s7PA3/+qdQsX/kZBQRnTp3flww/DpayhpEFj9YGwdxWz7yZPDuOHH8aze/csAgKam9kyiTWza9cuOnbsSGhoKIsWLapym7i4OIYPH0737t0ZMmQIiYmJV63Py8vD39+fJ554osr3DxkyhI4dO9K9e3c6derEE088QU5ODpmZmXptxNatW+Pn56d/XVZWZvRztVa0zbtzND8fb0dH7vf1pUULNw4fvpfvvhvHlCldLG2exIowxF9Bpz8aFhZGly5dmDFjBgD79+/X+1fPnj1xcXHhp59+uu69c+fOJTg4mB49etChQwdmz56t9/n+/fvTs2dPAgMDadmypX5fsbGxpjhdq8KzWTEAXupSuGbM7fLlE3jrraEsXToBOzsZBEuucCM+CxAfH8/IkSPp3LkzYWFhVfqa2X22Kk01c/zUpku67rbbBPv3i8FH9uuX5eQU10lHTmJeLK1xqFarRUhIiLh06ZIoLS0V3bt3F2fPnr1uu8mTJ4ulS5cKIYTYu3evmDVr1lXrn3zySTF9+nTx+OOPV3mc2267TRw7dkwIIURpaal49tlnxeDBg6/a5rXXXhPvv/9+tbbami6poTrCMyYhev2xV7B/v3j5fGSN75FYFlvx14sXL4qePXuKrHId6rS0tOu2yczMFJ6enqKwsPC6dXPmzBHr168XQuj0cD/88EPRvn17UVpaqt/mhx9+qNbfhbA9fxUG6AgHffS+YP9+8fFzuvPOzy8VKpXU97ZmGoLP3nbbbWLPnj1CCCHy8/OtwmeryLdaBxUawq0cdSZ+9tlRFi78jV27ZtKtWytLmiYxAOXAAZPsVwwZUu26o0ePEhoaqh+zOm3aNLZs2UJYWNhV20VERPDhhx8CMHToUCZMmKBfd+LECdLS0hg1ahTHj9cux+fk5MR7771HaGgof//9Nz169Kj7STUgMn06cKrUDjfFji/Dt+L34q08+mg/S5slqQVr9tdvvvmGxx9/HE9PTwB8fHyu29eGDRsYPXo0bm5uNdqjKArPPPMMmzdvZufOnYwfP76OZ9SAaKr7rFp7uFNaqmbChDW4uTmyZs1k2XNjA9iiz0ZERKBWqxkxYgQATZs2rdUec/is1ZZGVChGtHZyZN26szz55E6Sk/M5dSrVwpZJrJWkpCQCAgL0r/39/UlKul73skePHmzatAmAzZs3k5+fT2ZmJlqtlueee47FixfX6bj29vb06NGD8+fP39gJ2DBC0Qntn+szEwC7n1PIistn165LaLXCkqZJrBRD/fXixYtcvHiRQYMGMWDAAHbt2nXdNmvWrGH69OkGH7t3796N2l8BSprpygoD/QKYPfsn9u6N4dixZNLTCy1smcRauVGfvXjxIh4eHkyaNIlevXoxb948NBqNQcc2pc9ab0a4PBAuTihk1qw9egmX2bMbd8bNVqjprtLSLF68mCeeeIKlS5cyePBg/Pz8sLe354svvmDMmDH4X9M4Ygi6py6NF5VdARcCAohvdwuKSkvBD9Hccksga9bcJWsMbQBr9le1Wk1kZCQHDhwgMTGRwYMH888//+BRPqkwJSWFf/75h/DwcIP32dj9VS3U5HjorrG//FrEunVncXd3ZufOmbRt62FZ4yQGYYs+q1arOXz4MKdOnSIwMJCpU6eydOlS7r///lr3aUqfNSgjrCjKKEVRLiiKEqUoyvwq1jsrirK2fP0RRVGCbtSwima5Hz86ISVcJAbh5+dHQrl2LUBiYiJ+fn7XbdemTRs2bdrEqVOneOeddwDw8PDgzz//5LPPPiMoKIjnn3+e5cuXM3/+dX/u16HRaPjnn3/o3Lmz8U7mBrCEv6qVAt6bNg0UO8SuVLq0bs7WrdPkwAxJtRjqr/7+/owbNw5HR0eCg4Pp0KEDkZGR+vXr1q1j4sSJODoa/rd26tQpq/FXML/PpqpSKXF2oVlhIR+uSsfJyZ4tW6bRs2frG9mtpIFzoz7r7+9Pz549CQkJwcHBgQkTJnDy5EmDjm1Kn601EFYUxR74HBgNhAHTFUUJu2az+4FsIUQo8BHw7o0aVpERLo0vkRIuEoPo168fkZGRxMTEUFZWxpo1axg3btx122VkZKDVagFYuHAh9913HwArV64kPj6e2NhYFi9ezOzZs2vsigVQqVS89NJLBAQE0L17d+OfVB2xlL+meCn8OGIEilaL76Ecdu+ehaenlDWUVI+h/jphwgQOlNdDZmRkcPHiRX2NIsDq1asNLosQQvDpp5+SkpLCqFGjjHIeN4olfDYj518AWmdmkKe4smrVJIYMCbqRXUoaATfqs/369SMnJ4f09HQA9u3bd1198bWYw2cNyQjfBEQJIaKFEGXAGuDaauXxwLLy/28Ahis3GLVWNMvd0tFPSrhIDMLBwYHPPvuM8PBwOnfuzJQpU+jSRSfXtWDBArZu3QrAgQMH6NixIx06dCAtLY2XX365zseaOXMm3bt3p2vXrhQWFrJlyxajnssNYBF/3TDiZlSOjrQ9EcG+H6fg5+d+I7uTNAIM9dfw8HBatGhBWFgYQ4cO5f3336dFeaIkNjaWhIQEbrvtthqPNW/ePL0U07Fjx9i/fz9OVUwstRBm99m83GgA3HOz+eKLsdx1V83BiEQCN+6z9vb2LF68mOHDh9OtWzeEEDz44INVHsusPluVlETlH2Ay8G2l1/cAn12zzb+Af6XXlwDvKvb1EHAcOB4YGFit7EWJWi2CV64UzbdtE1nZBdVuJ7EuLC3tYkuYSo7JEv4qhBCj3lggHPfsES8+/tqNfCwSMyL91XBMKZ9mCZ99ZtGHwmfjBjH4nbdu9KORmBHps4ZjtfJpQoivga8B+vbtW23ls7O9PdEzZiDE9VPlJBKJeTDUXwF2LniDy6WleN8+3Cy2SSSS6zHUZz988Rk+BLQqlblMk0isFkNKI5KAgEqv/cuXVbmNoigOQHMg80aNk0GwRFJnLOavPs7O2ClWq8gokVgrFvNZuzo0GEokDRVDrlrHgPaKogQriuIETAO2XrPNVmBO+f8nA/vK09CSRob8tdeOiT8j6a8Sg5G/9toxw2ckfVZiMPLXXjt1/YxqDYSFEGrgCWA3cA5YJ4Q4qyjKm4qiVLQLfge0UBQlCngWqF1zStLgcHFxITMzUzpqDQghyMzMxMXFxVT7l/4qMQjpr7Vjan8tP4b0WYlBSJ+tnfr4rGKpD7Rv377CkBG2EttBpVKR+P/t3U+olFUcxvHvU1KXwP6gBdE1TVDIbJFI1KY/FCEGuQjCwIUggRZtWgVuolYtahEI4SKyoNJaCeWmUATpKoWmJhRqRrdC+7+JW0a/Fu8bjdOdO+91PPecmff5wIV3Zg7cZ86dhznvzJm5k5NMTU3ljlK0sbExxsfH//e9p5I+jYjVmWLNyH0dPe5rM8PYV3BnR5E728xsO1vsf5az4fPvl2ebWfncV7Ph4s6m4U+2mJmZmVkreSFsZmZmZq3khbCZmZmZtVK2D8tJ+gH4us+whcCPcxCnKefpraQsMJx5FkfE9XMRZrbc10vCeWZWUp6h7isMZWdLygLO088w5pm2s9kWwk1I+qSkT+U6T28lZQHnyaG0++g8M3Oe3krKklJJ97OkLOA8/YxSHm+NMDMzM7NW8kLYzMzMzFqp9IXw9twBujhPbyVlAefJobT76Dwzc57eSsqSUkn3s6Qs4Dz9jEyeovcIm5mZmZmlUvorwmZmZmZmSXghbGZmZmatVMRCWNIaSV9IOinp2Wluv1LSzvr2g5KWZM7zjKQTko5K+kjS4lxZOsY9KikkJf06kyZ5JD1Wz8/nkt7KmUfSzZL2Sjpc/73WJszymqRzko73uF2SXqmzHpW0KlWWlNzXwfJ0jEveWfe1b56R76z7OliejnF+jh3V59iIyPoDXA6cApYCVwCfASu6xjwJvFofrwd2Zs5zP3BVfbwlVZ4mWepx84H9wASwOvPcLAMOA9fVl2/InGc7sKU+XgGcSZjnHmAVcLzH7WuBPYCAu4CDqbJknvNW9rVpnnpc8s66r40yjXRn3dfB89Tj/BxbQGdT9bWEV4TvBE5GxOmI+BN4B1jXNWYdsKM+fg94QJJy5YmIvRHxe31xAhjPlaX2AvAiMJUox2zyPAFsi4hfACLiXOY8AVxdH18DfJcqTETsB36eYcg64I2oTADXSroxVZ5E3NcB89TmorPuax8t6Kz7OmCemp9jC+hsqr6WsBC+Cfim4/Jkfd20YyLiL+A3YEHGPJ02UZ2BZMlSv/S/KCLeT5RhVnmA5cBySQckTUhakznPc8AGSZPAB8DTCfP0M9vHVonc1wHzzGFn3dfBDXtn3dcB8/g5dqg6e1F9nZcsTgtI2gCsBu7N9PsvA14GNub4/T3Mo3rr5j6qM/n9km6PiF8z5XkceD0iXpJ0N/CmpJUR8XemPJZJ7r7WGUrrrPtqRXJfe3JnL7ESXhH+FljUcXm8vm7aMZLmUb38/lPGPEh6ENgKPBIRf2TKMh9YCeyTdIZqT8zuhJv5m8zNJLA7Is5HxFfAl1SlzZVnE7ALICI+BsaAhYny9NPosVU493WwPHPZWfd1cMPeWfd1sDx+jh2uzl5cX1Ntam76Q3V2cxq4hf82Y9/WNeYpLtzMvytznjuoNpAvyz03XeP3kXYjf5O5WQPsqI8XUr1NsSBjnj3Axvr4Vqr9S0o4R0vovZH/YS7cyH8o5eMn45y3sq9N83SNT9ZZ97VxrpHtrPs6eJ6u8cn6Oov5aXVnU/Q16YNsFndsLdVZzSlga33d81Rng1CdYbwLnAQOAUsz5/kQOAscqX9258rSNTZpSRvOjajeSjoBHAPWZ86zAjhQF/gI8FDCLG8D3wPnqc7aNwGbgc0dc7Otznos9d8q45y3tq9N8nSNTdpZ97VvnpHvrPs6WJ6usUn72nB+WtvZVH31v1g2MzMzs1YqYY+wmZmZmdmc80LYzMzMzFrJC2EzMzMzayUvhM3MzMyslbwQNjMzM7NW8kLYzMzMzFrJC2EzMzMza6V/ALLAsXH1XDE0AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_roc_curve({'LR': logreg, 'P4': piece4, 'P9': piece9, \"DT\": pieceT},\n", - " X_test, y_test);" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/piecewise_linear_regression.ipynb b/_doc/notebooks/sklearn/piecewise_linear_regression.ipynb deleted file mode 100644 index 80a5685e..00000000 --- a/_doc/notebooks/sklearn/piecewise_linear_regression.ipynb +++ /dev/null @@ -1,652 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Piecewise linear regression with scikit-learn predictors\n", - "\n", - "The notebook illustrates an implementation of a piecewise linear regression based on [scikit-learn](https://scikit-learn.org/stable/index.html). The bucketization can be done with a [DecisionTreeRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) or a [KBinsDiscretizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html). A linear model is then fitted on each bucket." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Piecewise data\n", - "\n", - "Let's build a toy problem based on two linear models." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "import numpy.random as npr\n", - "X = npr.normal(size=(1000,4))\n", - "alpha = [4, -2]\n", - "t = (X[:, 0] + X[:, 3] * 0.5) > 0\n", - "switch = numpy.zeros(X.shape[0])\n", - "switch[t] = 1\n", - "y = alpha[0] * X[:, 0] * t + alpha[1] * X[:, 0] * (1-t) + X[:, 2]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABHlUlEQVR4nO29e3hc5Xno+3vXSDIYZFvx3ZZl4wAOsUmobYzZoQHKpcCBOAFacznZSVPisE9y2px27zZNGsd1d3qa02aXPie04BBOmhYMAUwgbEjBhGuKjC1tLjLG2MiWLV/km2wLbCzNzHv+WBettWaNNJJGl9G8v+fRo1n3T6OZ93u/9yqqimEYhjH6cYZ7AIZhGMbQYALfMAyjTDCBbxiGUSaYwDcMwygTTOAbhmGUCSbwDcMwygQT+MaQICIfiMjcETCOb4vIfcM9jqFGRL4sIq8O9ziM4aViuAdgjB5EZCcwFcgAHwLPAN9Q1Q9U9czhHJuPqv7NcI/BMIYL0/CNYnODJ9wXAouBvxzm8RiG4WEC3xgUVHUProa/AEBEVETO9l6PEZG/F5FdItImIveIyOn+tSKyTETeEJHjIvK+iFzj7R8vIj8RkX0iskdE/ruIpLxjLSKyyHt9u/e8+d72H4rIL7zXq0Tk37zXp4nIv4nIYRE5KiIbRWRqb8+KIyKOiHzLG+thEfm5iHzMO/bPIvJY6NwfiMjz4lIjIk+JyEERafde14bOfdF77n94JrFfishEEXnAe282isic0PkqIn8kIs0ickhE/k5EEr/jIvIJEXlORI6IyFYR+f3QsetE5B0R6fD+9v9a6P/dGNmYwDcGBRGZBVwH/K+Ew38LnAtcAJwNzARWetctAX4G/DdgAvBZYKd33U+BtHfNbwFXA3d4x14CLvNeXwo0e9f62y8ljONLwHhgFjARuBM4WcCz4vyfwOe958wA2oG7vWN/Cpzv2dB/G/hD4Evq1jRxgP8PmA3Uec/+UezetwBfxH2PPg685l3zMWAL8L3Y+V/AXVktBJYBX4kPVkTOAJ4DHgSmeM/4JxH5pHfKT4CvqWo17oT96zx/t1FqqKr92E9RfnAF8wfAUaAF+CfgdO+Y4gpPwbXvfzx03cXADu/1vcA/JNx7KnDKv5+371bgBe/1HwJPeq+34Arnh7ztFmCh93oV8G/e668A/wF8qi/PShjbFuCK0PZ0oAuo8LYvAo5447i1h/fvAqA9tP0i8J3Q9g+BZ0LbNwBvhLYVuCa0/X8Az3uvvwy86r1eDrwSe/a9wPe817uArwHjhvszZT/F/TGnrVFsPq+q63s4PhkYCzSIiL9PAN9cMgt4OuG62UAlsC90nQPs9l6/BPy9iEz37vVz4HueyWM88EbCPf/Ve95DIjIB+DfgOwU8K2lsj4tINrQvgztx7FHVDSLSjKtN/zz4o0XGAv8AXAPUeLurRSSlqhlvuy10z5MJ23FneHiMLbgrjqTxXiQiR0P7KnDfD4CbcH0vfysibwHfUtXXEu5jlBgm8I2h5hCuoJqvrp0/zm5c00XS/lPAJFVNxw+q6nYROYFrXnlZVY+LyH5gBa5mm024pgv4K+CvvInhaWCr9zvvs/KM7Suq+pukgyLydWAMsBf4M+D/9g79KTAPuEhV94vIBbgmMEm6T4HMAjZ7r+u8ZyaN9yVVvSrpBqq6EVgmIpXAN3AnqVkDGJMxQjAbvjGkeIL3x8A/iMgUABGZKSK/653yE+APROQKzxk6U0Q+oar7gGeBH4rIOO/Yx0Xk0tDtX8IVUL69/sXYdgQRuVxEzvecscdxzTDZAp8V5h7g+yIy27vvZBFZ5r0+F/jvwP+Oa4v/M0+wA1TjTn5HPSdv3B7fH/6b5wyeBfwx8HDCOU8B54rIF0Wk0vu5UETOE5Eqz+k93psQjwM5k6VRmpjAN4aDPwe2A/UichxYj6vpoqqvA3+Aa+o4hiusZ3vX/WegCngH1zH6KK693OclXCH6cp7tONO8exzHtcO/RLdZo7dnhflH4EngWRHpAOpxTSYVuGaiH6jqm6q6Dfg28K8iMga4Czgdd9VTD/wqz/37whNAA64J63/iTqARVLUD1wl9C+4KYD/wA9xVCLgT007vf3MncHsRxmWMAETVGqAYxmhARBQ4R1W3D/dYjJGJafiGYRhlggl8wzCMMsFMOoZhGGVCwRq+iNwvIgdEpCm0b5WXev2G93Ndnmuv8dK3t4vIt4oxcMMwDKNvFKzhi8hncbMof6aqfn2UVcAHqvr3PVyXAt4DrgJagY242Ybv9PbMSZMm6Zw5cwoan2EYhgENDQ2HVHVy0rGCE69U9eVwoaY+sATYrqrNACLyEG6Nj14F/pw5c9i0aVM/HmkYhlGeiEhLvmPFcNp+Q0Te8kw+NQnHZxJN92719iUiIitEZJOIbDp48GARhmcYhmHAwAX+P+OmwV8A7MMt7jQgVHWNqi5W1cWTJyeuSgzDMIx+MCCBr6ptqpoJpcsvSThtD9E6HLXePsMwDGMIGZDA9yoT+nwBaEo4bSNwjoicJSJVuOncTw7kuYZhGEbfKdhpKyJrcRtMTBKRVtxCT5d5haAUtxb617xzZwD3qep1qpoWkW8A/45btvZ+Vd2c+wTDMAxjMBnRiVeLFy9Wi9IxDMMoHBFpUNXFScestIJhGMYQ0tDSzt0vbKehpX3In20NUAzDMIaIhpZ2br+vns50lqoKhwfuWMqi2UnR7IODafiGYRhDRH3zYTrTWbIKXeks9c2Hh/T5JvANwzCGiKVzJ1JV4ZASqKxwWDp34pA+30w6hmEYQ8Si2TU8cMdS6psPs3TuxCE154AJfMMwjCFl0eyaIRf0PmbSMQzDKBNM4BuGYZQJJvANwzDKBBP4hmEYZYIJfMMwjDLBBL5hGEaZYALfMAxjBDGYtXYsDt8wDGOEMNi1dkzDNwzDGCEMdq0dE/iGYRgjhMGutdOXjlf3A9cDB1R1gbfv74AbgE7gfeAPVPVowrU7gQ4gA6TzFec3DMMoZwa71k5fNPyfAtfE9j0HLFDVTwHvAX/Rw/WXq+oFJuwNwzDys2h2DV+//OxBqbdTsMBX1ZeBI7F9z6pq2tusB2qLODbDMAyjiBTThv8V4Jk8xxR4VkQaRGRFEZ9pGIZhFEhRwjJF5DtAGnggzymXqOoeEZkCPCci73orhqR7rQBWANTV1RVjeIZhGAZF0PBF5Mu4ztzbVVWTzlHVPd7vA8DjwJJ891PVNaq6WFUXT548eaDDMwzDMDwGJPBF5Brgz4DPqeqJPOecISLV/mvgaqBpIM81DMMw+k7BAl9E1gKvAfNEpFVE/hD4EVCNa6Z5Q0Tu8c6dISJPe5dOBV4VkTeB14H/qaq/KupfYRiGYfRKwTZ8Vb01YfdP8py7F7jOe90MfLpfozMMwzCKhmXaGoZhlAkm8A3DMMoEE/iGYRhFYjBLGxcDK49sGIZRBMKljStSDjcvquWmhbWDUiKhv5iGbxiGUQTCpY0701nWbtjF7ffVjyht3wS+YRhGAn01z/iljcXbVganpv1AMJOOYRhGjP50nvJLG69rbOWRTbvJZHVQatoPBBP4hmEYMZI6TxVii180u4ZFs2u4cWHtoNW0Hwgm8A3DMGL45pmudLZfWrov+EcaJvANwzBiDHbnqeHCnLaGYRgxGlraR52wB9PwDcMwIvTHYVsqmIZvGIYRIslhO1owgW8YhhHCd9imhBEXVjlQzKRjGIYRolCHbSna+U3gG4ZhxPDDKv1s27hQL1U7vwl8wzCMBHoS6vG6OYUmZg03fbLhi8j9InJARJpC+z4mIs+JyDbvd+JfLSJf8s7ZJiJfGujADcMwBkJvtXJ6ct7WjK0iq+7rrLrbpUBfnbY/Ba6J7fsW8LyqngM8721HEJGPAd8DLgKWAN/LNzEYhmEMNr72/sNnt7L83td4cMOunHN8560jICIRod5+ojMokuZ426VAnwS+qr4MHIntXgb8i/f6X4DPJ1z6u8BzqnpEVduB58idOAzDMIaEsPaeziorn2jK0fQXza5h5fXzcUTIZJXVT20Ozlk6dyJjKt1InqrK0onkKYYNf6qq7vNe7wemJpwzE9gd2m719uUgIiuAFQB1dXVFGJ5hGEaUpXMn4oiQVdcuk81qoh2+/UQnWdVIqWPfoVuKpReKGoevqopbBnog91ijqotVdfHkyZOLNDLDMEY7falfv2h2DauXLaDCERzya+k9xeQvml3D1y8/u2SEPRRHw28Tkemquk9EpgMHEs7ZA1wW2q4FXizCsw3DKAN6i3nvT5jkbRfVMW9adY/3LVVNPh/FEPhPAl8C/tb7/UTCOf8O/E3IUXs18BdFeLZhGKOcQoT5QOrX+9eHt+PnlLqg9+mTwBeRtbia+iQRacWNvPlb4Oci8odAC/D73rmLgTtV9Q5VPSIifw1s9G61WlXjzl/DMIwcChHm/a1fX6oJVP2lTwJfVW/Nc+iKhHM3AXeEtu8H7u/T6AzDKHsKEeaFmF6SzEL9XRmUKpZpaxjGiKZQO3pPppcHN+xi5RNNZLLKmMpuTX6gna1KDRP4hmGMeAZiR29oaWflE02kvdTYzq7SD6/sLybwDcMoGcJmGaAgQV3ffDiItwdwHMkJrxztgt7HBL5hGCOehpZ21jW28sim3aSzSoVb74B0pndnq2+26UxncURYvWxB2Qj4OCbwDcMY0fiRNKe6skFWZ1fGzfGMZ8D654c1/3Iz2/SECXzDMEY0fiSNL+wFqEy5Gn4mE3W25guzLCezTU+YwDcMY0QR19DDkTSplMPNi2q5aWEtkGvD7ynMshQ7VBUbE/iGYYwY8mno+UwyhSZglVuCVT5M4BuGMWLIp6EXapLJNzmUW4JVPkzgG4YxYihGIlTS5FBuCVb5ENUBVTMeVBYvXqybNm0a7mEYhjEI5LOp+/trxlbRfqKzaDb3crHhi0iDqi5OOmYavmEYQ0pDSzuPNbbyaENrYhy9//vWH9cHGvnar+ba3HsS4EnHLFLHBL5hGENIYkx9gk19XWMrneksAJ3pLOsaW3NWAfkmBHPQ5qeoHa+MKH3pwGMY5UBSTH0q5bDn6MnI9yRuaI5v+xOC4k4Iq3/Z3W82yUFruJjAHyR8LeOHz27l9vvqTegbBtGWgVUp4apPTgVVHnp9V+R7ctPCWqpSguCe58fd+8QngDdbjwXX99SWsNwxk84gYWFghpFLPGyyvvkw67e0JYZhrl1xcV4b/U0La3l00246M92i37/+65ef3a/a+OXAgAW+iMwDHg7tmgusVNW7Qudchtv6cIe3a52qrh7os0cyFgZmGIU5T/N9T3pqP+hPCL7zN15ioScHbTnb+Acs8FV1K3ABgIikcBuWP55w6iuqev1An1cqWMEmoxyJly/uTbD635PHGluRhHv1dL0v1G9aWBt55t0vbO/xO1fOq+9im3SuAN5X1ZYi37cksTAwo5wIC+iKlMN506oLFqy+E/axxtZAsBcqmP3vWaGaezmvvovttL0FWJvn2MUi8qaIPCMi8/PdQERWiMgmEdl08ODBIg/PMIzBIiygO9NZ3mw9RlbBCTlPkyLX8kXV1IytwhGJXF/o83uKzvFXFX9y9byyMudAETV8EakCPgf8RcLhRmC2qn4gItcBvwDOSbqPqq4B1oCbaVus8RmGMbj4mnM4xt4BPnP2JL555blAsoknSeNuaGln9VObyWSVlCOsvH5+r4K5L5p7ua6+i6nhXws0qmpb/ICqHlfVD7zXTwOVIjKpiM+OYPHvhjH0+JrzbRfVUZUSN/Sy0uGbV56b10QTvi6scYfj9VWV9hOdwXPyfb/zae4mD7oppg3/VvKYc0RkGtCmqioiS3AnmkHJhihnD7xhDDfh75rihk/6+5bOnUhFqruufVJf2YaWdr7z+Nsc7DhFhSNkstqnMsdxzd3kQZSiCHwROQO4CvhaaN+dAKp6D3Az8F9EJA2cBG7RQaraVooe+HKNCTZGH3EBG0+Ywv/aJ3z9/XIJfkmFipSwfEldZNLo6/e7FOXBYFIUga+qHwITY/vuCb3+EfCjYjyrN0rNA28aiDGa6EnA1jcfJp11+9Cms8pd69/j2gXTg4qY9c2H6fKEPUAmo8yccHrk+9DX73epyYPBZtRl2pZa/LtpIMZIo5AVZ75zfAHb2eUK7pe2HmDP0ZPctLC2+5j3eX912yFe2XYIAcZUOnz54jk4nhkH3L61cQHd1+93qcmDwcbq4Q8zvobvayCm4RvDSSErznDFy5QjrF62gNsuqguOP7hhF9/9xduEqh5QlRLWrrgYgLvWv8er2w5F6uEIbvimH8Z5xXlTuWzelKLWwy8XrB7+CMY0EGMkUciKs775cBB6mc4qK59oYt606uC89hOdZGN6ZFdGgzo337zyXDbuPBI8B1wHrz9BZNXdXv3U5mDiWXn9fBP+RcAE/gigXGOCjZFB2DxTiM176dyJpBwh7UnrrGpkYnCPQ8gcHzHPhJWcN3cf5dl3opHcCvz63QOoqpvE1ZVl5RNNZFXNzzVATOAbRhmTZMIpZMX5O5+YwvPvHiCbVRwRasZWRY47jgPZbGCeuXzelEjcfTgM89fvHggmDx/NKo4jCIqIkPWEv/m5BoYJfMMoY5JMOF+//OzgGERj6x/csCvQtsWrdpbOKquf2hyYdeqbD5POuOq9AFOqx0TMM/F2hquXLWDlE01kvAgeR4iYcWrGVrHql5sT4/eNvmEC3zDKmHxlDeJaP8Bjja08vHF3EEUT9rp2dnVr3vF7+l2p8mno86ZVs/zCWSiwYMb4HFv9gxt2kcl45RoKCDKxvJb8mMA3jDIhX236uAnn7he2RwT0usZWHmtsjdTIieM4rlnHL0288vr5PNO0j2sXTGfetGrWNbbmTCr1zYepGVsV0f7DSVb+mFc+0RQ4dNMZ7dGkY3ktPWMCfwRiGopRbHoShPGggXwaej5hn3KEOy45KxDcFSmHrCqZjLJhxxFW3TCfmxbWBqUWoLuImiMSmHKStP/65sNkQ1q94+TG5oexvJaeMYE/wjANxRgM8gnCQrR+INDQU45w3vRxvNl6DHBt9MsvnEX16ZWR+/siujOd5btPNKFehI3frKQ7JNOthqmqiVFB4WQtR9yY/56+D5ZZ2zMm8EcYpaah2GqkNCjEVh+OdQ8TnwC27u/gzda3AdeMP25MRWJpZB/f5u9/nuNj6SnGftHsmoh5KJzglYTltfSMCfwBUmyBV0oaiq1GSgP/MxoXrGFbfTjW3TfJpDMaCav0eXHrgcj973t1B1fNn8aXL57DPS83R45VOG6IZrjnrC/EH964i6njToskbSWN3TcVbdx5pMdzfSyvJT8m8AfAYAi8fBrKSNSkS201Uo709BkNKxfxWHdfS88qPPdOG8+904YAqZSQzkR1+EzWdaS+FuswdeaYFN++7pPMm1Yd+ew2tLSz6pebvaqYx3hx6wHWrrg48bNjn7HiYgI/gUKF62B9GEulpncprUbKlZ4+o2Hlwo+W6UpnQboLmIVRyBH2/v6asVVMHXcacCzY/8GpDKuf2swDdywNYvv9MYWrYnb1EHljn7HiYgI/Rl+E61B9GCO9Qruy3LX+vaCL0HBi9tKRT2+f0XDp4nCi08on3o6URvARyLHRC7B57zG+dunHWb+lLVJH51RXriK0dO5EKj1HLEDKIe93xz5jxcUEfoy+aO1D9WEMl5zNAq9sO8SGHUdY+9Xh1/TNXjqy6clEuK6xlQMdp3jpvYOkM1EFZ960alb/cnMQjeMj4gr4sFBX4JFNu7lxYS3nzxwfuUaESHy+/3lZdcN8vutl1zpOz51W7TNWPIrZxHwn0AFkgHS8PKeICPCPwHXACeDLqtpYrOcXi5G4hPS/tOEvYKeXEGNfBKM3kkyE4c5SPp3p6Opx5Q3zc87Lqht3f9uSWRzsOMVzXuEzPyFq+YV1QQQPwOc+PSOx6uWeoyfxS7NnMu5n2bT4wafYGv7lqnooz7FrgXO8n4uAf/Z+jyj6orUX27ae5DsI75sf057iS+uR6Ng1Rh5xGzp0a+2vbjvExp1Hgs/yzYtqeXDDrsi52ayyec8xxlR0a+ZZoONkF0vnTuTqT06l7fhHXDx3Ipv3HQ9CNT/qyvKXv3Ang4qUE/SsTaUcHtm0m3TWqmEONkNp0lkG/MzrZVsvIhNEZLqq7hvCMRREoUvIYjpt89UvicdJV6WEroxSmZJIv9B8k49NAkacuA29woE5k85k+4EPcjJeb1pYy6ObdtMZctYq5Jh6AO59uZmf/GYHmawb2rll3/HIddBtCkpnsty6pI4ZE05nz9GTPPT6LovEGQKKKfAVeFZEFLhXVdfEjs8Edoe2W719EYEvIiuAFQB1dT0nWQw3fTX/9CR8kyYPiBadaj/RydoVFyfeI9/1A1mB9DZZ2GRSmiyaXcPary7l3pfeDzTx+3+zIzieSjnUjK3i24+/zaGOUyjuCqAiJXwylGUbR3EjboCcFUQcR4Qbvbo5vj9hJJlRRyvFFPiXqOoeEZkCPCci76rqy329iTdRrAG3xWERx1d0imn+yTd5xPeFVx+9Na4oNJ0+nynJH29FyuHmRbWRwlaFtsKzCWF46el/8PK2g3Sms2zeezwIwxTgsnMns+rJphztPJNVpo47jZTTfb7fljCMAJUVDnjJW1m6o3sEgraI4fDQcDatfVYGj6IJfFXd4/0+ICKPA0uAsMDfA8wKbdd6+0qaYpl/8k0e+SaUQhtXFJJOn1SrPBIKms6ydsMu1jW2Jh73Kyr68dx+aF++GuhG/+nLJNpT6YTw/y+rikDQTHxS9ZhAUw+TVXje60SVcoSFdRN4s/VYkKgluJ2tLgtl5U6qHhOUPPY/G0mf5b5m0xr9oygCX0TOABxV7fBeXw2sjp32JPANEXkI11l7bCTa7weLQsw/SZNHOE46vp3UuKK3SSSSTp/Osubl9wOnWngiitdGyXfcb0rxyKbddGW6G1g41qWo6PQ1SCA+aYfbBK68fn7O/xfgmvnTEu32Pr5mn0I5rTJFOtOdlfup2vEsv7AulEXrNi+/aUVtweO0z8rgUiwNfyrwuBt5SQXwoKr+SkTuBFDVe4CncUMyt+OGZf5BkZ5dEvRm/smnueX7khfqP/AnkYaWdu5+YTsdJ7twRIJ+oS2HT7hCGnLuc9PCWg52nOLFrQfcaApH2Hv0JA0t7ZG/x3e6hdPx0e4WdWaXTaavJq++CsZ46QS/jeCprizPNO1j5fXzWfPy++w8fCK45sk397LkrIlcOm8K9c2H6Pgok3xzgX1HT7pdr7x//Jb9HWzee6zgLNqkcdpnZXApisBX1Wbg0wn77wm9VuDrxXheqZLP/NOT5pbPGZtUDCsf/v19bU5wE2JUCTTyz5w9KYi/jo9n1ecW0LT3GI82tLL29V08FjLthJ1ufmJYvEWd2fBz6U9IbyGCMT6J+JNyx8muoLCZ4ibv/Wb7IeZNrY5cn1X47i/eJkG5j5DJwvaDH0b2+dp+OAIo3Lw8H5ZNO3RYpu0IoCfNLf4lrxlb1WdB4d/f/w4HURehOuThUg3x8bSf6GTmhNNJZwqryWJCvnf6Y8YoZJWY9NnwTXlxB2tWXa3cke7OgSlHchqKF0pW3RaFNy2sZV1ja9DwpJDPgWXTDg0m8ItIf6JSGlra2Xv0ZJCEEtfc4l/y/giKeGmG3jTwniKGOj3zQM3YqsgzhvoLW+oRQP01Y/T0Pvf02agZW4WIJPaEVYXbLqpDgUMdp3jWy54N43glFXrS/AV4eOMu5s8cH+SIxH1PxvBiAr9I9GeJHg99XL5kVqJGFP+S91VQ9KaB+/b9cITNjQtrEYjESn/2nMk8v6WNTFZZ/dTmSDTFUArgsInKD/HrrTFGf54xmH9PscwYvYXm+ueserIpsQImgOPg+mq8mjpxBLh1SR3zZ4zPCdf0wyyzWTf88s3WY7zZeoyfb9yF4zg5NXpKfaIudUzgF4n+aN7hazKZLDMnnD7gZX1P1yWd++CGXax8oilYxod8cKQE5s8YD7gJXB91dQuDU11ZHvNq+Qx1+eb65sOBPyKdVVY+0VTUUL6h+nsGuioqNDS3vvlwYpilTybr1rzPd4b/mWjaeywIufz11gNkvIzvVZ9bwDNN+3hlW3dVlXQWJBuN/oKBJQIaA8cEfpHozxJ9MJb1vdHQ0s5jja0IrjAPC3uI1ufJeA68W5bUcaorqvkp8GhDa06P0q60OxHEbbjF1OyWzp0YsTVntfdIkL5QKmGChYTmgv9+kVju2KcnYV+REn6+aXdQC78iJUhwgjBvWjXzplXzWvPhSL38VErQkJmyVN7X0YwJ/CLRH817qKMTGlrauXXNa8GS3F+K90TWi+RJcuZlMrk9SlOOBDH5AD/fuIvVy87vdxJWvibbq5ctiMSVFzOUr1TCBHsy4cTfs0LdsI64FS4Pf9jJ/OnjOH4qzeY9xyLlFMJCPR2aaJYvnsUDXqE1R2D54lnMmHB6j4mAxtAimuDEGSksXrxYN23aNNzDGDXc/cJ2/v7ft0a+/BWOmyDliHDHJWfRfOjDiNOuwoGHv/afeG7z/px+padV5tpm39x9NMfpd/aUM3nfK8yVEviTq+dFOiDlozfTymDag0vF1uyPs6cM53tfej/REZuPlBe9VZHyyiNkNRLdk3JcM5DPVZ+cyp2XfhxwTTa+QLdyG8ODiDTEy9P7mIZfwvT1y1MztgpHuiMtqiocVt2Q29g6bM9dfmFdUEohbN93BFZePz+idQP84/r3cp7b7Al7cAtzFarZFVKOYrCExlBEHRVD+PnX+RNjPMN5XWMr67cULuyhO5vWT6DyczXOnzmeBTNdn85ar7olwPp32nhl28G8PoT4eE3QDx8m8EuUvjoW/Xolvnnmik9M4WuXfjzR3lsZKsF8oxdeF7ebo9B+ojNy7brG1hznYNhsJMDNi2p71NLDGms8XDXeOamUGYhjOP6ePdbYGjixUQ26UqUcYVtbR05xMx8HImUVfCpT7v8s5Wn4/vu/8ob5wf8o/Ewl2nqzkNWbMTyYwC9RCnWA+cJh79GTwfkplE/PmpBfwPj58hK45qJ286xSVRnV1Bta2nlk0+5uTd4Rll84iwUzxgfNsSsrnB5r+PuF3HxB4ghBuOoCLyTQn4jWrri4IAE5Uk0IYYHZmwPzwQ27eKZpH/Onj6PjVDrSLGTl9fN5tKG1e+XlgIiQyShdGeX1ne15x7Dis3M5fiod1KL3EeCWJXXBZJ/kQ3ngjqWsa2x1x+JVxPzN9mjzFGPkYQK/RFk6dyIVqe7iZfnS7IM4f0eoSDlkMt0Zu99+/O2cWPvVocJXvlPW//LedlEd86ZV563HH4n2yWoQodPTNeFJ65mmfZGMYD9c1U/o8Z3NnRkNQkJ7YqjDRQuloaU9IqRTTnL5gYaWdu556f2gjWA47BG63zM/dt6PvHrLc7D25J1zBKpPr6Ru4hk5K4B0Rtl1xK2vk88E4++/cWEtd61/j99sP2TRNyWACfxSxne453G8R+L8s8ryJbOYOeF0asZWRRJoHmloZdUN8/mep0H7JE0k+QTA0rkTu0P1cFve+UK5p2vCURvXLpjOxp1HIjV//Eqc8cqNErtXkiY/UsMA65sPRxKczps+Luccf7L6qKuHWEoR5k8fx8adR+jsyuI4wlmTzsjboCS4DLeaac3YKp5pyi1Y2xdtfdHsGr555bls3HnEom9KgJ7bxRsjFl+jVlxh7ie2hPEFakoIzClfv/xs2k90RgR7VzrL/b/ZkWN/j9vbffzM3IaWbnPBotk1XHHe1Mh5v2ral9MPNYxvGviTq+fxwB1Lue2iOr588ZzAkpRyhEvPnZwzrsqUMH/G+GAMvnD84bNbuf2++mBcrpNacLx7+ZU+B4Ok9yQf/v/F//K9vedYZNzQPVn1RCar3PfqDpbM+RiIu/2LN/b2+vxwwtrEM6oSz4kX6+uJ+P9xJEyqRjKm4ZcohdbXT4qa8B2zvtbsOLD9wAeRa1NCxN4O3SaGX3tNMOJmkq9d+nF+vfVAEKd95MMuvv2427Q6XPogrI3H73/fqzsCE0M2q0ypHpOTAzD7Y2NZ9WRTYMe+aWFtYkXR1U9tdpt7iCvk4pU+i0WhpqPw3/3AHUt7NIWE/7+qrtadRDqrvBwz9YQ5b1o17+7vSDTvpLPKU2/t4/MXzEicKJJqJuXDom9KAxP4JUqhSVtJX8RFs2tYu+JiHmts5VDHqcSwvb/+/Pk50TThpC1wyyv4kRn+c8LJNz4Pb9wV2PG3tXXw5Jt7yaobFurHeVc4wnnTx0XqvTiOGyXkZwRnvBVNuCyv320pXlH0rvXvRUxDWa85S2c6OuZiUIjpKGlSyGcK8ScGv7idH1sfROIUiABfvHgOr+84nFfzz2aVc6ZWc+dn50byLNzKmsqqX26mae+xgqteGiMbE/glzEC0Kv/au1/YnpOUs2RODbddVBfRSJPqsSiuI3HDjiOs/erSwIn3cCgNH9waLLf+uD4Qzj6d6WwQ29+Z0cD27IcU+n1PfcfvXevf49Vth4J7CN2mKr/EQzjxSHFtlhUpAZGgvPOr23q3T/cluqeQ1VZ4UjjV5cbHf/8L5+dM2vlWC7sOf8hDm3Zz9ERXj2MJo8CqJ5uo+9jYvOdUhHol1008g2ea9nF6ZYr1W9rytrc0SpcBC3wRmQX8DLfrlQJrVPUfY+dcBjwB7PB2rVPVeAtEYxhYOnciVSHzDsAbrcd4cMOuSMbmly+eE0naCtOZznLvS+/z6VkTWDp3Ig+vuJg/WtvInqMfAW5WZiabUIVRoNKRoDWiz6dqx7PyhvkAkbj7sEacSjlceu5kplSPYev+jsRerQLMnXImcyedgQIHjn/EW63Heg2F7Gt0TyGrLT+qyp+IHt60O4iO6ilyqb75MFv3d+RkORdKV0Y5djL/JHHzItds57/P/kT/8raDedtbGqVLMTT8NPCnqtooItVAg4g8p6rvxM57RVWvL8LzjD5QiKZ68+JZvL7jSGDHz2S6QyR9Lc+3rTsAQk4o3/Nb2li/pS0o0XDwg86c58T52m/P5ar50yKhhwBvtR7juc37+elrO3MacOczc/irgjsuOSsiWLcf+CD4uxzJLeiVRH+bk/Q2KVx27uRgNZXOaGSS9LX7PUdPRsJnl86dyF2x7OWxVSlOdOZpPZhA+H8RzpYGOHEqnTi5hePsk/o0GKXJgAW+14h8n/e6Q0S2ADOBuMA3hphCatGE4/SrKroFjR8i6fdD9e3nQE6At0O35p9VZc0rvWujZ08+g6vmT2PR7BoumDUhIvAVuDfUjs9vwO331V29bAHtJzpzunilvaiV36qbwMaEhKOsgigsX1LXo006Xgwu3Md3IEyqHhPZfv7dA6zf0hasoH786g4yWaUiJdzi1Z+vbz7M/OnjIjH4JzoznDetmi37O3p8ngBnjknRcap7cjhjTIoPQttv7D6aOLmF4+xHYuKa0T+KasMXkTnAbwEbEg5fLCJvAnuB/6qqm/PcYwWwAqCurrhNLcqN3jTVfHH6/pfbd7T62rQvABEhk3FfXzZvCs+/2xYJI1F1Ha758gPAdbzefl89D9yx1OvGFD3dL7Tm7/OjdPxwwtXLFkS6ePlks9pjOKOq9tp3wNdwH2tsTezjWyjxaCTBLUaXyeK1FXRr3nR2Zbn3lebuvzWjHOw4FZjUKlJOjlbf8VHPtnxfkw8Le4Arz5saceBeM39asJIaCZ3MjMGlaAJfRM4EHgO+qarHY4cbgdmq+oGIXAf8Ajgn6T6qugZYA261zGKNrxzpzZkYPx7XesNf9nC2LHSn269rbCXeJKkyJWTJNR/E6fSaqDza0Jo4N5w7tZptBz7I6dSUySrPNO1j5fXz2bz3GA+9vitYYVRUOCy/sI4t+90JqiIlnD35TN5t6wB1q4MWorH7BePy9fHtjfjqyXcaO47wqdpxXDx3Ij99bWewgoqXnm4+9GFgrupMZ4kbyA71YjKLv50TxlZyy+JZXDV/Gic6M7Qd/4jlF9Zx20V11E08I1hBxTuZGaOLogh8EanEFfYPqOq6+PHwBKCqT4vIP4nIJFXNH0BsDJjenImFhnb658Yng4aWdpr2RLM6p40bw6dqJ7B+S1tQD2dK9Rj2Hz+Vc0/HEQ51nMqrkbef6CSrGtjo/VWA4kbavPb+YX7nE1MiUTs3L6oNYv79+jM/fW0nqKdVkxuPn8/P0Zd683Eiq6uM4hvEshnlrdZjbG3rCPwRHSe7WPNKc8QvsuPQBz1Olh/1kpQVn2yPnejivleb+fGrO4IcinnTqnPeZ3POjm6KEaUjwE+ALar6P/KcMw1oU1UVkSW4Zt/eU/iMAVOIM7E/X+54a0SftuOneHHrgYjj8fMXzMyJMkk5wuWfmMLRWMVNv2SCQmSSqPRKOT/TtC8IzUxnlefeaXM7MHmOxQUzxrPiZ5t43gsrfO39w4H/wa3N4473VFd3gpYfMlpZ4QThpf574zsv/b+y0AiecON4EsxVXelsEFl0+331OU5wP6ipt1VSPhT3PT5r4ljeP/ih9375R9xVgy/YS6XhizFwiqHhfwb4IvC2iLzh7fs2UAegqvcANwP/RUTSwEngFh3JnVfKmEK014aW9pw+uLMnjmXn4RNBTP1Vn5zClOoxnh05HQguwQ273LLvOM9vacupiTPpzCpOdmUijkWAbDbb3Urv/e5CbYpr877qk1O5bN4UVoWKv4E7KaRCKwMfBba1dQRVRKE7vHTNf472jnissZVOr7Z8PKt3XWNrYnnnpXMnsvL6+Xz3F2/nhLL6+QPhMNI4jhcJlXLc3700JgvKUEf+RlUumjuR1qMnc5K2RLoLtvVlpWeUNsWI0nmV3FpW8XN+BPxooM8yBpdCtdf65sNkQ/N1yhEumDWBnYdPBPvWv9MWCK3KlFAZigCaP3M8b+85FoR5pqS7lWK+cM50liBDdvWyBfzlL94OhKBCkC3clWTqELeDU1xmPvnm3pz6P8+/eyBi348nTB3sONUdweMVdguXKg7nLnz2nMk5wr4qJfze4llBBE7N2CqqKpyIQJbQmDPao++baePGcOiDzpyVlk/1mApuWljLgQ535eUnz2lW2bq/I7KaMUE/+rFMWyOg0PjzwFzhdVhavWwBD2+MllNQukM10xnllou6I4DAa5bimRBWXu+aauLlf+P4dvvVyxaw4rejpQCy6gr9Cq95S5i40zcYo7r+hVQooUy1uxCdL5DDcf0vbj3Aqs+5YaF7jp4MasmHyzv7223HP4o879NeQtnW/R2Bk7Sywk0gE+DF9w4GVTT9Mfe2Dk7yjYTfk3tebkaAMZUOl82bEoS/ZoHvPtFkDtoywwS+EVCoLTduAgDYvC8emNWN40hOBFCSCcEvJJYP326/8okmll84K8e+nVW4ct4UJleP4aCn0WaybnOOuOD0heD8GeNZNLuGjS3toG5NnpqxVZGVzqXnTma91/Yxk9XA9r6usZUKR0hnFAmVKvbfv4vnToyUKr7Ye6++6wl7cM1I699pY0ylw1f+0xx+/EpzYjbzQPB9BvFleCarrCugr4AxejCBbwQk2XLz2fTDJoDvPP524AwFmFRdxaGObtPMHZeclRgh5O/z2y+Ca7uePv409h37KK/wz2SV99qSK0BOqh4TJAtdNm8KTXuPsb2tI9L5acmcGs6ZWs38GeMjNv+UEETO+CaWU11ZDhz/iMpUtNWi7+gVAfVKE//0tZ3B9b59PsyaV5pp3NWes+LwBfJrzYcLEvZ9deQ6uD6DybHEL//ZRvlgAt/IYe/RkzzW2MrW/R0Rm3SSTT+pteHCWTVBI3TB1f59u3hvjUpSApPOHBPU4fEJCzkFGncdTRz7ghnjQw29QXFt4ZUpYUr1GPYd+4hNLe280XqMDTGHaUbdQm8LZoyPPOut1mNUVjj8znmuI/rFrQeC68Irh04v8sbv6bp1f0fgxwD3d1IGsP++TR13GnAs8XiYT9W6zcQPdpzi+S1teSeJCq/URPXplcFK7JGG1mDsFU5uCWxjdGMC3whoaGnn1h/XRzReP5wxn00/3towk1VefO8glSk3mcivTvna+4e545KzgqxO3/Z/20V1OaakKQmCLy7TslnNyc49b1o1j/+v1qBLlDus7vj38CTSmc5Gyiz7PNrQ6nWEIuIUTmeyvPDuAbJedmwSTijyJWgaHzs36VKBwJEbr1yahJ8wBfnDY6/2opb81Yb/f1v71e4wUyt5XH6YwDcC6psPR6JcMl5mqpC/eJYvrMNRJplMlluW1NG05xhvetUp01nl3leaQf1JRPnLX7wdOA3jPoEX3m2jp9wiv1DaL9/eR8fJLj7sTPdaW6YQ0pnu+vr+qsPBFeaRekIJ3HHJWYBbedIP9/RXOT1dV1nhcOPCWtY1tiYev3BODW/sPho0cPcTpsDNgF5+4Sya9hwLKoE6ApOrxySuziwap7wxgW8ELJ07kUpP0IEbQuhHpOSLz47XnQlCL2eM55GGqACLa7tZJYh7jwui5RfW8eCGXYmC0hFYWDeB+3+zg3RWcURIqL7cP9Q1C0F3U3C/OmeSJh0e0/FQ5ckKR0g5gmZyVyJxbl5Uy9b9HTz0enI7yA8+Sgf9BdIZDcJTgcjzwqGvCiOyn68xvJjANwIWza7p15LfF9Y3hSorxht1+4w7rYLjH6WD7Xjoos+NC2uDhCdfxgowY8JpHOg4xcad7cFkkC1iDl8WWPnE20FHrhs9G/djja0srJvAxpb2ROHtroS6hWw6q91RMb0Mb9yYCjdMM8954RaFitt0ZuPOI5EksHjxO4iGvlr2rAEm8I0Yxeii5RM2i4C7YrhtSV0kfn75hdGKqPFM1Yc37qJp7zEyWVfYxZ25PmGzybRxY2g7fiqvnO3NxOKbkjq9zlSPbNodaRDjc1qF013TRtzG6r4vIlwQTXFNUPnyAV5rPpz3mH99nKTWjoWEvhrljQl8o+iEe7Ju3nuMAx2nmOKFS4Zb6V27YHpOc/PARJFy+93Gu2El4Tc/cRuWC2eOqaCNhGJtCSUWeiILvNfWkZPI5RMuYJb2InR8IbutrSNShviGT03nnKnVbGvroL75MAc6TgUT4Vutx3Ac0KxbIG7R7Bo6PkoHFT4rvRaN4RaRKS+34aYe6tWbvd6IYwLfKCpJQtsvPeCbR267qC4i6H3imb6QLJxTAlecNzVIrKr0GoiseaWZTFYTo2+Evgl7n015wiiTHhCuJd+0N5qItmnnEZacNZGn3toXTEy+bchN6HKds2+2HmNTSztVFQ7f//z5gf/gxa1usxTfnOT/HSbUjb5gAt9IpC9NvMOsa2wNInbCQrsQx2Gk05Q3WWS88Eu/gJgj8NXfnkv16ZWRsMN1ja054ZLTxnWXZe6vlb/g1YC6DcP9uvdxO3/r0Y/49uNvB9uS4AjYfeREpP5+uJpmvPhZV0bNEWv0GRP4Rg59beIdvi6chFWRch2ZhfZETQrPrG8+TMfJrsDun1X4yW92kM50tztcNLuGx2IhjQ7wR1ec22NkTbFx7fyFPSvprIMdp6hIOaQz3d2n6psP5wh7n3h3Kp/+TtbG6McEvpFDf5p4+9eFSyb/3uJZOTbmvggj31zxxZ9EO2b6NvV01o3l97Njw0XQUl68+uplC4ISxSnHrTM/FOK/p1DMfE7jrMJZNaez4/CJoPvUly+ekzdZq/1EZ/B+1oytCpqpuA3ntU+TtVEemMA3cuhvQ4x4828/LNEvNdCXpur+cYDTK1OR54SFaVbdbNOqlEQEYzrjFga7cWEt4nTPBL3FxBeLnp5RM7aSIydye9IqBM1KwA3x/NXm/ZFeAuHwzI6TXcH7lbSI6bT4eyOGCXwjh/42xOit+Xdfmqp3pd1+t+u8WPyUI0w+s4rPXzCT9w99GJT59YlH8yjw8MZdbNhxJEhaSkgLiBAup5BEf7tPxUkS9uFOXz5ZJegx4Iib7euvoBzcGkX5hL17jVj8vRHBKcZNROQaEdkqIttF5FsJx8eIyMPe8Q0iMqcYzzUGj0Wza/j65Wf3WTtcNLuGmRNOz2n+Dd0rgJTQY1N1/3g4kSmTVdqOn+Knr+3k8nlTqEpJpNxvynFj0sOks7D9wAcFj913Cjskd/TJJ+xTPbb/KYxPTKsmledGDvCZsydxxyVnUeEIDlBV6XDtgulUpJxgrOHfFSH/hmH4FKOnbQq4G7gKaAU2isiTqvpO6LQ/BNpV9WwRuQX4AbB8oM82Rib5TEJ9baoOboar77T0o33aT3Sy6nMLgqSsbBYcx+G6BdN44s29fTLZJNXU76smX4z69Vv2dyROHEK3cF/91GayqjiOsPL6+W5NHe+PrUgJv794Fgu8UhDmsDWSKIZJZwmwXVWbAUTkIWAZEBb4y4BV3utHgR+JiFhf29FJT4K9r03V/Sbij2zaHalHv/qpzZHolXQ6y5N9FPaVKeF/O396JEEKimO2qR6ToiPWl7c3VHPNShKq0e+vdgS3CYvvJFfcloUzJ5yemN9gGD7FEPgzgd2h7VbgonznqGpaRI4BE4GcnnYisgJYAVBXZx/eUqVYCUH+ffzaOoJbs74zHe0B6/RQuiDOVZ+cygWzJgQF0fpD9WkVdIRqAsU5b/o4GncfDfwH+cYp4gp5lEgCWXCKEmjsSaum/jjXjfJlxDltVXUNsAZg8eLFtgIwAnwHbkXKocITnCnHbQpePaaC+17dQSbrmjwERdUVqOEyyxUp4c5LP86i2TXc/cL2gieJOD0J+5Qj/Pm15/FYYysPbuiugOlm1HaHrV5yziSuXTCdpr3HEIiUnlj5RBPZrFJV6QSrpKRVk9XLMfpCMQT+HmBWaLvW25d0TquIVADjgcMYRoGEM3j9evszQpUhb7+vPpgAVi9bwLxp1YEg3Lq/g4c37mLquNP4mifswfU1jKl0a/njadrxOP0KB37nE1N5/t22XqN8AtQNCY3nBkROASaeUcWqJ5uCOvfh0hNAUG/IH6+VUTAGSjEE/kbgHBE5C1ew3wLcFjvnSeBLwGvAzcCvzX5vFEpOG8WUE2jD4DYc8U08qq59OywcF82uCYRoQ0s7d7+wPdCIV14/3y1N7E0WC2rH8faeY4HzdvmFdXz/C+ez4mebCupGBa6Af3DDLiorHBbOrsnb1vCJN/Z2x9xnlMe8huJ+t6zOdJaNO48ETWKS3pf+ZEQb5cuABb5nk/8G8O9ACrhfVTeLyGpgk6o+CfwE+FcR2Q4cwZ0UDKMg4hm8Ny+KlgEuNFHMbweYySpjKl0B2X6ik6xqYG6ZP3M8W9s6gnv5WndSA/CeUPAEdv7ia3GN5/XmwzS0tEcik3rKdO5vRrRRvhTFhq+qTwNPx/atDL3+CPi9YjzLKD/iAj3eeLuQRLGGlvZIXZ2PurLB+fF7J5UcvnFhLQ9t3N1vm38Y8X9i5p7tBz/k1jWvBSGo4PoD8k1g/c2INsqXEee0NYw4+QR6vI6ML/DufmF7ZJ+f5RsX1h0nuxLv3dCSq5Uvml3DXy9bwHe9FUJ/STnw18u6yx6v+uXmoKUkEKm979cjipefCI/VnLZGXzCBb5QEcYdl2H7t29srK6JNUxwhsG0vnTsxJ6PqNS8DOHzvBzfsCoR6VYWbzPXG7qNcM38a37ruPHYd/pCfN7Ry5MPOfv0dC2aMj9jk502rjuQZpBy32Ynfm/bG0Gomn83eBL1RKCbwjZIkbL+G7ixc/zUQsW1//fKzuXB2Da+HbOpTx50WvG5oaefel97nuXfaIsXL/KSse15u5vktbWwLNVc5b1o177Z1oOqaXlS1x1o84Ha3uv2++oiw9vMM4mWh46uZu9a/ZzZ7Y0AUpZaOYQw1vv3a8coROLgafmVKgg+1E6vZ8+fXnkeFV7+gIiV87dKPA64wXb7mNZ4NCfsktsU6ab27v6O7A1VWufK8qYk1eMKEHbE+DS3trGtsZc/Rk0BuHSNfs39126Gg3o+fcXz3C9sTTVCGkYRp+EZJErZfx2348X3h8MyHV1wcZOz6rGtsjWTEFkr4CscRLps3hee3tPVYW8efmPyxNrS0c+uP6wM7/qObdrN2xcWJVUSV7kJqfm2dYoRkWsOU8sEEvlGy5LNf9ya0/Ixdv3RzXD4Lbn/ZCWOrIiaeOL4ZxxE32Wvz3mM9CnsBPnPOJL555bnBGOubDwemKMhtXdjQ0s7eoyeDzOLKCodvXnlu0UIyLZa/vDCBb4xakjTXJEF508JaHt2022tRCOdNr+aN3UdJewL245POYMv+jpz7i8AtF9YFjtWVT3T3rHUEFsd8Bo5A3cfGRu6xdO5EKiucQMOvTElE+w83hL/ivClM8vIBihWSabH85YUJfGPU4ScvPdrQSjoT1VyTBOWi2TV85TNnce/LzSjwzr5u4Z7JZF0hmyDwM6GmK6t/uTlSswfg879Vy1t73EJvfuG0eFOYRbNrWPtVtyKoAjeFMojDwjidyfLrdw+Q9co2PHDH0ohJqz4UcdQXLJa/vDCBb4wqfK04XDr5VFeWu9a/F5hSkuLu73t1R6Jpp7LCYf70cfzH+7lx/Ar8fNNuHm1ojcTSg1vquP1EZ/CsvUdPsvb1XWTVjf4JjyfJNNXQ0s6eoyepSDlkvKbmGa8UcjjyCBiQScZi+csLE/jGqCLs4PRR4JVth9i480hi7Pq6xtYgA9enMuVW4VwwY7zbeCSrpMQVkHuOfcSedjeixnX25hruHUeoGVsVPMtfdfga+6ux8YSJmHIc4ZYldcyfMT4otBbOvi2GScZi+csHC8s0RhW+iSIpPDIeDgndhdnCOAJ/9bkF/M0Xzg8aj7iF2TzN2xP28WuqKhwunFNDyhGyWWX1U5uDkElfk/7M2ZOC/K/wePyibr7fIdzaccaE093uVuL9VdL914XbQqZSDnuOnrQwTSMvJvCNUYUvWG+9qC4Spw+uQIzbqMOF2XxUYfPeYxGzSkpAHEmMwhFcZ+yqG+Zz2bwpqFeM7VRXlnWNrZGxffPKcxlTGe3r62v0P3x2K7ffV0/HyS4ckUgIZ33zYdKZ7vLQYZv9A3cs5ZYldaDKQ6/v4vb76k3oG4mYwDdGHYtm1/A3XziftV9dyq1L6qhwvAbfCRW5gwSu0D4FHt60m1vXvMZDr+8CVa44byqSJ0BTgV1HTrD6qc3UjK2iIuUE+x/ZtDsifH0B/SdXzwvMOWGNvjOd5b5Xd0R614adzUkN4BfNrmHGhNNJZzWncbxhhDEbvjFq8YVpVru7Tfk27nDIpu+0fHP30SDuPpNRMnRfd7Irk1M2oSIlzJ/eXT/fb7B+86Ja1m7YlfPM8LjylXcOO2f93rX+WP3etnHnatzBa9E2Rj5M4BujmqSww6Rko69ffjYNLe28vO0gXeksqZRbiM1Pdrp2wXQ27jwSHLt5UW1Qpvn2++pzwhrXNbYWHOoYzxpe/dTm4NqasVU9RuEkOXjDzWEMI4wJfGNU4wvTcDmFfJEt8RBF/1xfo/bbJtaMraJp7zHWNbZy48LaovSaDWv94faM63pphpLk4DVhb+RjQAJfRP4OuAHoBN4H/kBVjyactxPoADJAWlUXD+S5htFXwuUUVl4/P2+yUVjwxh2f/v5b17wWZOU+0tDK2q8uDWLik+7TF8Kmpq37O3jo9V2R1o7x1YIlThl9YaAa/nPAX3htDn8A/AXw53nOvVxVDw3weYbRZ8ItA091ZWnae6ygDllJppT65sORJiXFLEcQN89ktLsjVlJrR7DEKaNvDEjgq+qzoc163AblhjFiaGhp59GG1kBLVuDRhlZuWlibo5WD2wDlmaZ9nOrKRCaJdV6D8aVzJ1KZkkDDL6ZWHellGyrbAG6htnhrRx9LnDIKpZg2/K8AD+c5psCzIqLAvaq6pojPNYy8+PHrYdKZaGkDnwc37OLbj78dv0UQXuk7Q9eGSiz7hdPufmH7gDTs+MSUcsBxHNLpLI7jVuM0oW4MlF4FvoisB6YlHPqOqj7hnfMdIA08kOc2l6jqHhGZAjwnIu+q6st5nrcCWAFQV1dXwJ9glDO91XL3bdzhVoj5Shs807Qv73PC4ZVxO38xyguHJyYBlntVOM1UYxSTXgW+ql7Z03ER+TJwPXCFakJmi3uPPd7vAyLyOLAESBT4nva/BmDx4sX97xZtjHoKEbbxkMdnmvbx6rZDiVEv1y6Yzivbct1MAoi4tXHiFFLLppAGI3Hnq7+aMEFvFJMBZdqKyDXAnwGfU9UTec45Q0Sq/dfA1UDTQJ5rGJAsbJPwbe/tJzq5dsH0nNIGPrddVMedn50blKpJOcLnL5jh1sbRaG0cn54yYIGcsgn5Sh4kZeAaRrEZqA3/R8AYXDMNQL2q3ikiM4D7VPU6YCrwuHe8AnhQVX81wOcaRsEhifGVQL6MVYCr5k/j/t/scKtSCpwxpoKsal4Nvrcomb5UszSN3hhsBhqlkxvm4O7fC1znvW4GPj2Q5xhGEoWGJMaFbvuJzsQIHf/ctFfawC9x0Nuk0pOgtjh5YyRhmbZGSVOIVtwXoRs/96aFbgmF/jpPLU7eGElIHj/riGDx4sW6adOm4R6GUcL4DtOasVV5zTj5rjEBbZQiItKQr5qBafjGqKW/IZNmSzdGK1YP3yhZwl2ikojb7tc1tvZ4vmGMdkzDN0qSQrT3sD0+lXJ4ZNNu0lkdUIKUYZQypuEbJUkhMfjh2PabF9VaRyij7DEN3yhJCo288e3xDS3tfWpKYhijEYvSMUqWvkbTWPSNUQ5YlI4xKulrNI1F3xjljtnwjVFHb9E7hlGumIZvjCqKVa7YMEYjpuEbo4pCK2gaRjliAt8YVfRWrtgwyhkz6RijCitWZhj5MYFvjDosGscwkjGTjmEYRplgAt8wDKNMGGhP21UiskdE3vB+rstz3jUislVEtovItwbyTMMwDKN/FMOG/w+q+vf5DopICrgbuApoBTaKyJOq+k4Rnm0YhmEUyFCYdJYA21W1WVU7gYeAZUPwXMMwDCNEMQT+N0TkLRG5X0SSQiNmArtD263evkREZIWIbBKRTQcPHizC8AzDMAwoQOCLyHoRaUr4WQb8M/Bx4AJgH/DDgQ5IVdeo6mJVXTx58uSB3s4wDMPw6NWGr6pXFnIjEfkx8FTCoT3ArNB2rbfPMAArW2wYQ8WAnLYiMl1V93mbXwCaEk7bCJwjImfhCvpbgNsG8lxj9GDFzgxj6BioDf//EZG3ReQt4HLg/wIQkRki8jSAqqaBbwD/DmwBfq6qmwf4XGOUYMXODGPoGJCGr6pfzLN/L3BdaPtp4OmBPMsYnRTaqtAwjIFjtXSMYcWKnRnG0GEC3xh2rNiZYQwNVkvHMAyjTDCBbxiGUSaYwDcMwygTTOAbhmGUCSbwDcMwygQT+IZhGGWCqOpwjyEvInIQaBnucQCTgEPDPYh+UKrjhtIde6mOG0p37KU6bhicsc9W1cTKkyNa4I8URGSTqi4e7nH0lVIdN5Tu2Et13FC6Yy/VccPQj91MOoZhGGWCCXzDMIwywQR+YawZ7gH0k1IdN5Tu2Et13FC6Yy/VccMQj91s+IZhGGWCafiGYRhlggl8wzCMMsEEfgGIyF+LyFsi8oaIPCsiM4Z7TIUiIn8nIu96439cRCYM95gKQUR+T0Q2i0hWREoi5E5ErhGRrSKyXUS+NdzjKRQRuV9EDohIUovSEYuIzBKRF0TkHe+z8sfDPaZCEJHTROR1EXnTG/dfDdmzzYbfOyIyTlWPe6//CPikqt45zMMqCBG5Gvi1qqZF5AcAqvrnwzysXhGR84AscC/wX1V10zAPqUdEJAW8B1wFtOL2cr5VVd8Z1oEVgIh8FvgA+JmqLhju8RSKiEwHpqtqo4hUAw3A50f6ey4iApyhqh+ISCXwKvDHqlo/2M82Db8AfGHvcQZQMrOkqj7r9RUGqAdqh3M8haKqW1R163CPow8sAbararOqdgIPAcuGeUwFoaovA0eGexx9RVX3qWqj97oDt2f2zOEdVe+oywfeZqX3MyQyxQR+gYjI90VkN3A7sHK4x9NPvgI8M9yDGKXMBHaHtlspAeEzWhCROcBvARuGeSgFISIpEXkDOAA8p6pDMm4T+B4isl5EmhJ+lgGo6ndUdRbwAPCN4R1tlN7G7p3zHSCNO/4RQSHjNozeEJEzgceAb8ZW4yMWVc2o6gW4K+4lIjIkpjTraeuhqlcWeOoDwNPA9wZxOH2it7GLyJeB64ErdAQ5bfrwnpcCe4BZoe1ab58xiHg28MeAB1R13XCPp6+o6lEReQG4Bhh0p7lp+AUgIueENpcB7w7XWPqKiFwD/BnwOVU9MdzjGcVsBM4RkbNEpAq4BXhymMc0qvGcnz8Btqjq/xju8RSKiEz2o+VE5HRcR/+QyBSL0ikAEXkMmIcbNdIC3KmqJaG9ich2YAxw2NtVXwoRRiLyBeD/BSYDR4E3VPV3h3VQvSAi1wF3ASngflX9/vCOqDBEZC1wGW6p3jbge6r6k2EdVAGIyCXAK8DbuN9NgG+r6tPDN6reEZFPAf+C+zlxgJ+r6uohebYJfMMwjPLATDqGYRhlggl8wzCMMsEEvmEYRplgAt8wDKNMMIFvGIZRJpjANwzDKBNM4BuGYZQJ/z9GYu35Wt6ROAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X[:, 0], y, \".\")\n", - "ax.set_title(\"Piecewise examples\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Piecewise Linear Regression with a decision tree\n", - "\n", - "The first example is done with a decision tree." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "X_train, X_test, y_train, y_test = train_test_split(X[:, :1], y)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseRegressor(binner=DecisionTreeRegressor(min_samples_leaf=300),\n", - " estimator=LinearRegression(), verbose=True)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import PiecewiseRegressor\n", - "from sklearn.tree import DecisionTreeRegressor\n", - "\n", - "model = PiecewiseRegressor(verbose=True,\n", - " binner=DecisionTreeRegressor(min_samples_leaf=300))\n", - "model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.38877424, 2.59190533, 0.96242534, 3.40015406, 1.20811239])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred = model.predict(X_test)\n", - "pred[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAdElEQVR4nO2de5wT9dX/3yfZBbwg4oqK3FYEWQQE2RVR1Kp4LRQVtF4fi1V5bG2rtY+2VovWatXHWrV9bP3hDVvBKyh4FxWtqIgsQrkrIguLqLAuCEXd3eT8/phJNskmu8lmskk25/16LSSZme98Z5L5zJnzPd9zRFUxDMMw8hdftjtgGIZhpIcJuWEYRp5jQm4YhpHnmJAbhmHkOSbkhmEYeY4JuWEYRp5jQt7OEZEdItI3B/rxWxF5oA33t1xEjm2r/bVX2vp7M1qHWBx5/iMi64B9gQDwH+Al4GequiOb/co0InIj0E9VL8h2XxIhIqXApzjfC8AW4D5VvS1rnTLaHWaRtx9+oKq7A8OBCuD6LPen4BCRomYW7+l+P2cCvxORE9t4/0Y7xoS8naGqG3Es8sEAIqIi0s993VFE/iQi60XkCxG5T0R2CW0rIqeJyGIR+VpEPhGRU9zPu4jIgyKySUQ2isjNIuJ3l1WJSLn7+nx3f4Pc9xeLyLPu6xtF5FH3dScReVREakRkq4h8ICL7trSvVBCRdSJyQsS+nxSRf4jIdtftUhGx7v4iMkNENovIpyLyi4hlI0TkPbefm0Tk/0SkQ8RyFZHLReRj4OMkvp+FwHJgWEQbPxaRlSJSKyKviEifiGUnichqEdkmIn8TkbdE5BJ32UQReUdE7hKRGuDG5r5jEdlbRJ53j+UrEXlbRHzusl+753u7u7/Rsd+b+36ce/62isibIjIw5pz/j4j82+3vEyLSKYWvzWglJuTtDBHpBXwf+DDO4tuAg3BEpB/QA5jsbjcC+AdwNbAncAywzt1uKtDgbnMocBJwibvsLeBY9/X3gLXutqH3b8Xpx4+ALkAvoAS4DPgmiX2lwzjgcZxjmw38H4ArZM8BS3DOx2jgShE52d0uAPwS2Bs4wl3+05i2TwcOBw5uqRMiMhLnJrvGfX8a8FtgPNANeBt4zF22N/A0cC3OeVoNHBnT5OE453xf4Baa+Y6BXwHV7n72dferIjIA+BlwmKp2Bk6m8buP7PtBbt+udNt4EXgu8sYG/BA4BTgAOASY2NI5MTxAVe0vz/9wLrodwFagCvgbsIu7THEuaMHx0x4Ysd0RwKfu6/8H3BWn7X2B70LtuZ+dC8x1X18MzHZfr8QR3cfd91XAcPf1jcCj7usfA+8Ch6Syrzh9C7eZ4JycELHeaxHLDga+cV8fDqyP2fZa4OEE7V4JPBPxXoHjm/luSt11tuLcrBT4E43jUy8BF0es7wN2An2AC4H3IpYJsAG4xH0/MbLvSXzHNwGzcMYVIvvYD/gSOAEoTnSOgd8BT8b0dSNwbMQ5vyBi+f/ijAdk/Rpp73/mU2s/nK6qrzWzvBuwK1ApIqHPBAi5LXrhWFix9AGKgU0R2/lwBAUci/tPItLdbetJ4AZ3kK8LsDhOm/909/e4iOwJPApcl8S+0uHziNc7gU6uT7kPsL+IbI1Y7sexjENW6J9xxh12BYqAypi2k+nf3jgifgVwHs5x1rn7v0dE7oxYV3As6f0j21ZVFZHqZvbd0nd8B44wv+oun6Kqt6nqGhG50l02SEReAa5S1c9i9rU/zs051J+giGxw+xoi9jzvH+dcGB5jrpXCYQuORThIVfd0/7qoMwAHjiAcGGe7DThW8t4R2+2hqoMAVHUNzgX7c+Bfqvo1zsU8CZinqsHYBlW1XlV/r6oH47gKxuJYn83uK0NswLFY94z466yq33eX/x1YBfRX1T1w3BES00ZSoV+qGlDVPwPf0uie2QD8d8z+d1HVd4FNQM/Q9uKob8/YZiNeN/sdq+p2Vf2VqvbFcTVdFfKFq+p0VT0K58aiwO1xDuEzd3lkf3rhWOVGFjEhLxBcQb0fuEtE9gEQkR4RvuAHgYtEZLSI+NxlZaq6CXgVuFNE9nCXHSgi34to/i0cH2vIH/5mzPsoROQ4ERniDmJ+DdQDwST3FYtPnMHT0F/HFE/NAmC7O9i3i4j4RWSwiBzmLu/s9nGHiJQBP0mx/XjcBlzjDgTeB1wrjQPEXUTkLHe9F4AhInK6+/RwObBfokZb+o5FZKyI9HMFeBuO/z8oIgNE5Hj33H2LczNocgPGedoa4/5GinF87t/huMmMLGJCXlj8GmeQbb6IfA28BgwAUNUFwEXAXTgX+Vs0Wl8XAh2AFUAtzgBc94h238IRvH8leB/Lfm4bX+P41d/Ccbcks69YzsURntDfJ82s2wRVDeA8EQzDiffeAjyA4xYC+B8cV8h2HJF8IpX2E/ACzrFdqqrP4Fi/j7vfyTLgVLdvW4CzcHzNNTi+/YU44pmIhN8x0N99vwN4D/ibqs4FOuLcXLbgPE3tgzNOEIWqrgYuAP7qrvsDnLDXuladBcMzbEKQYeQJboRNNXC+K8CGAZhFbhg5jYicLCJ7um6PkH9+fpa7ZeQYJuSGkdscgeMuCrkyTlfVb5rfxCg0zLViGIaR55hFbhiGkeeYkBvtBjf3yLwMtDtVRG72ul3D8AoTciNncRNAPShOYq7t4iT0OjXb/UoWuwEYbYUJuZHLFOHMfPweTlz39cCT7vR/wzBcTMiNnEVV/6OqN6rqOlUNqurzOJN2ypvZTMRJNbtNRFaFpqC7C8Kpbd33sSlajxKRd90UrRtEZGKcxjuLyFwR+Ys4lInIHHHSwq4WkR+6600CzseZwblDRJ5zP4+bLtYw0sGSZhl5gzg5yw/CyeediMNxZoPujZMadqaIHKCqX7XQdh+cTIST3O33wMkjErlOibvOq6p6vYjsBszBSRN7KjAEmCMiy1R1iogcCVSr6vXu9pHpYj9znyxSzrVuGLGYRW7kBW5uj2nAI6q6qplVvwTudhNzPYGTw3tMErs4DyfV7WPutjWqujhi+f44qQSeCgkzztT+dar6sKo2qOqHwAycafXxCOBMhz9YRIrdJ42UUgoYRjxMyI2cx52a/k+ctK8/a2H1jRo9OaKK5FKp9qL5PC1jgF1wklyF6AMc7rpitoqTCvd8EiS2cjNFXomTLvZLEXlcRCzNq5E2JuRGTuNm6nsQp+jEBFWtb2GTHu42IXrjpF8Fp+jCrhHLIgU3URrfEPcDLwMvui6V0DZvxaSg3V1VQxkSm8y2SzJdrGGkhAm5kev8HRiIk2Uvmanp+wC/EJFiNx3sQBoLZiwGznGXVeAUQg4xDThBRH4oIkUiUiIiw2La/hmOq+Y5cepgPg8cJCL/5bZZLCKHSWMdyy+AvqGNU0gXaxgpYUJu5CzuAOR/46SY/dyN/tghIuc3s9n7OOlat+DUsDxTVWvcZb/Dsbprgd8D00Mbqep6nFqnvwK+whH9oZENuy6bSTgZCGfh5FE/CTgHx+r/HMfCDuVEfxDHH75VnCLUSaWLNYxUsVwrhmEYeY5Z5IZhGHmOCblhGEaeY0JuGIaR55iQG4Zh5DlZmaK/9957a2lpaTZ2bRiGkbdUVlZuUdVusZ9nRchLS0tZuHBhNnZtGIaRt4hIVbzPzbViGIaR55iQG4Zh5Dkm5IZhGHlOzuQjr6+vp7q6mm+//TbbXWnXdOrUiZ49e1JcXJztrhiG4RE5I+TV1dV07tyZ0tJSopPXGV6hqtTU1FBdXc0BBxyQ7e4YhuEROeNa+fbbbykpKTERzyAiQklJiT31GEY7I2eEHDARbwPsHBtG21JZVcu9c9dQWVWbsX3kjGvFMAyjvVFZVcv5D8ynriFIhyIf0y4ZSXmfrp7vJ6cs8lzixhtv5E9/+lPC5c8++ywrVqxowx4ZhpFvzF9bQ11DkKBCfUOQ+WtrWt6oFZiQtxITcsMwWmJk3xI6FPnwCxQX+RjZtyQj+8lrIffa93TLLbdw0EEHcdRRR7F69WoA7r//fg477DCGDh3KhAkT2LlzJ++++y6zZ8/m6quvZtiwYXzyySdx1zMMo7Ap79OVaZeM5KqTBmTMrQJ5LOQh39Odr67m/Afmpy3mlZWVPP744yxevJgXX3yRDz74AIDx48fzwQcfsGTJEgYOHMiDDz7IkUceybhx47jjjjtYvHgxBx54YNz1DMMwyvt05fLj+mVMxCGPBzvj+Z7SOVFvv/02Z5xxBrvu6hRZHzduHADLli3j+uuvZ+vWrezYsYOTTz457vbJrmcYRgGzYQGsextKj4ZeIzxrNm+FPOR7qm8IZtT3NHHiRJ599lmGDh3K1KlTefPNN9NazzCMAmXDAoJTfwCBOvB3wDfxOc/EPG9dK177no455hieffZZvvnmG7Zv385zzz0HwPbt2+nevTv19fVMmzYtvH7nzp3Zvn17+H2i9QzDMAA2Ln6VYEMdPoIEG+rYuPhVz9rOW4scHDH3yu80fPhwzj77bIYOHco+++zDYYcdBsAf/vAHDj/8cLp168bhhx8eFu9zzjmHSy+9lL/85S88/fTTCdczDKPAcd0pq7/uwF4UgTZQTxHvBQ7mTI92Iaqa3IoiDwFjgS9VdbD72V7AE0ApsA74oaq2OOpYUVGhsYUlVq5cycCBA1Ppu9FK7FwbhndUVtUyf20NI/uWNDUsNyyAR8ZBoI6gr5gb6i5gD91OpQzi6ksuTNkQFZFKVa2I/TwV18pU4JSYz34DvK6q/YHX3feGYRgFQYvRc+vednziGsAXrOeyEV3ZdfQ1rRLx5khayFX1X8BXMR+fBjzivn4EON2bbhmGYeQ+Lc7cLD0a/B1A/ODvQI9hJ2UkFDFdH/m+qrrJff05sG+iFUVkEjAJoHfv3mnu1jAMI/u0GD3XawT8aHZGQg4j8WywU1VVRBI63FV1CjAFHB+5V/s1DMPIFqHouYQ+cnDEO0MCHiJdIf9CRLqr6iYR6Q586UWnDMMw8gUvo+daS7px5LOBH7mvfwTMSrM9wzCMtGmLHOC5RNJCLiKPAe8BA0SkWkQuBm4DThSRj4ET3PcG8OabbzJ27FgAZs+ezW23JT41W7du5W9/+1v4/WeffcaZZ3oVYWoYhYXXeZhaZMMCePtO5/8skbRrRVXPTbBotEd9yQsCgQB+vz+lbcaNGxfO3RKPkJD/9Kc/BWD//ffn6aefTqufhlGoeJ2HqVki4sTxd3AGNjPsD49H3k7RBzy/E65bt46ysjLOP/98Bg4cyJlnnsnOnTspLS3l17/+NcOHD+epp57i1Vdf5YgjjmD48OGcddZZ7NixA4CXX36ZsrIyhg8fzsyZM8PtTp06lZ/97GcAfPHFF5xxxhkMHTqUoUOH8u677/Kb3/yGTz75hGHDhnH11Vezbt06Bg8eDDi1TC+66CKGDBnCoYceyty5c8Ntjh8/nlNOOYX+/ftzzTXXAM6NZuLEiQwePJghQ4Zw1113eXJuDCNfaKsc4EBUnDiBOud9FsjfKfoZuhOuXr2aBx98kFGjRvHjH/847PIoKSlh0aJFbNmyhfHjx/Paa6+x2267cfvtt/PnP/+Za665hksvvZQ33niDfv36cfbZZ8dt/xe/+AXf+973eOaZZwgEAuzYsYPbbruNZcuWsXjxYsC5oYS49957ERGWLl3KqlWrOOmkk/joo48AWLx4MR9++CEdO3ZkwIAB/PznP+fLL79k48aNLFu2DHCsfcMoJJKKJPGKUJx4SIdKj87cvpohfy3yDN0Je/XqxahRowC44IILmDdvHkBYmOfPn8+KFSsYNWoUw4YN45FHHqGqqopVq1ZxwAEH0L9/f0SECy64IG77b7zxBj/5yU8A8Pv9dOnSpdn+zJs3L9xWWVkZffr0CQv56NGj6dKlC506deLggw+mqqqKvn37snbtWn7+85/z8ssvs8cee6R/Ugwjz8hUDvAmg6ihOPHjr8uaWwXy2SLP0J0wtsp86P1uu+0GgKpy4okn8thjj0WtF7Km25KOHTuGX/v9fhoaGujatStLlizhlVde4b777uPJJ5/koYceavO+GUZ7o7Kqljse+Aflupw73ojIldIGceItkb8WeYbuhOvXr+e9994DYPr06Rx11FFRy0eOHMk777zDmjVrAPjPf/7DRx99RFlZGevWreOTTz4BaCL0IUaPHs3f//53wPFnb9u2rUlK3EiOPvrocFrcjz76iPXr1zNgwICE/d+yZQvBYJAJEyZw8803s2jRohSO3jCMRHz64Vwe9t3ML/1P8bDvZj79cG62uxQmf4UcHPE++lee3g0HDBjAvffey8CBA6mtrQ27QUJ069aNqVOncu6553LIIYdwxBFHsGrVKjp16sSUKVMYM2YMw4cPZ5999onb/j333MPcuXMZMmQI5eXlrFixgpKSEkaNGsXgwYO5+uqro9b/6U9/SjAYZMiQIZx99tlMnTo1yhKPZePGjRx77LEMGzaMCy64gFtvvTX9k2IY7YjWxpgf4V9BMQ0USZBiGjjCnzvF15NOY+sluZrGdt26dYwdOzY8UNheyYVzbRjZIBRjXtcQpEORL7WiNOEKP/XgL/a0wk+yJEpjm78+csMwjBRJK8a81whHvDOcAKs1mJBHUFpa2u6tccMoZNKu9ZsDA5vxyCkhV9UmUSOGt2TDlWYYuUKbxpi3ITkj5J06daKmpoaSkhIT8wyhqtTU1NCpU6dsd8UwskYuZCv0mpwR8p49e1JdXc3mzZuz3ZV2TadOnejZs2e2u2EYhofkjJAXFxdzwAEHZLsbhmEYeUd+x5EbhmEYJuSGYRj5jgm5YRhGnmNCbhiGked4IuQi8ksRWS4iy0TkMRGx+DbDMIw2Im0hF5EewC+AClUdDPiBc9Jt1zAMIyPkQI1Nr/Eq/LAI2EVE6oFdgc88atcwDMM7cqTGptekbZGr6kbgT8B6YBOwTVVfjV1PRCaJyEIRWWiTfgzDyAo5UmPTa7xwrXQFTgMOAPYHdhORJnXOVHWKqlaoakW3bt3S3a1hGEbqhCqLiT+rNTa9xgvXygnAp6q6GUBEZgJHAo960LZhGIZ3hCqL5WAq2nTwQsjXAyNFZFfgG2A0sLD5TQzDMLJEjqaiTQcvfOTvA08Di4ClbptT0m3XMAyj1bTDyJTm8CRqRVVvAG7woi3DMIy0WDgVXvglaBB8xXDRi+3OAo/FZnYahpE3tFg4ecOCRhEHCNbDO/e0XQezRM6ksTUMo3CorKpNuUpPUoWT173dKOIhtm/yqNe5iwm5YRhtSmsr2SdVOLn0aMedEqxv/OzQCz0+gtzDXCuGYbQp8QQ5GUKFk/1C4sLJvUY4PvGysdCjHMbeAxUTvT2AHMQscsMw2pTWVrJPunByrxFwzjQPe5z7SDaqqldUVOjChRZqbhiFSmt85AaISKWqVsR+bha5YRhtTnOV7E3kU6fghdx+NIaRO7R2ILTQKWghtx+NYeQWSUWmbFjQ7nKlpEtBR620dvTcMIz4tDhhpwUiI1P8fh8bt34T3dbCqfDwqfD6zU5e8QKZgt8SBS3kSYUzGYaRFKEn3DtfXc35D8xPKObNiX0oMuWcEb1BlccXrG9sa8MCePFXEGwAgtDwXbvJJ54uBe1aSTqcyTCMFol8wq1rCHL3ax9x5QkHRV1Xybgzy/t0Zf7aGhqCGu1iKYqZtenztZt84ulS0BY5OD+ay4/rZyJuGGkSesL1CQQV5n28pYllnqw7M/Jp+bCiNZy+43HYpQT8HUF84CuC79+Z0Eeerosn3yhoi9wwjKa0NpIr9IR792sfMe/jLShNByyTnQwUamvbvPs5ds3t+CqDUNQRTrkNvqlpdqCzEIMYTMgNwwiTrgiW9+nKlSccxAfrvoor1oncmfFuHuWbZ8GaWxvdKQ3fOSJ+9K+a7UNSkS/tDBNywzDCeCGCIbGesagaSbC8Rb+572NnYLMVPvHWpgDIZ0zIDcMIk0gEW+NumbmomrqGIDMWVTdr2cfePD79cC7l2/8JwUDjSuJr1iceSSEGMZiQG4YRJp4ItsbdkoplH3nzOKxoDeOX/hGCdYACAj6/I+IpZDFsLgVAe8QTIReRPYEHgME4Z//HqvqeF20bhtG2xIpga9wtqbg3Im8ep+/4EN+ieselIj7oeywce21KMzgLMe2GVxb5PcDLqnqmiHQAdvWoXcMwskxrfM6pujfKN8+ivHoW7HcI+DtAoA78HVhVdjmvr9mLkcHapES5ECNWwAMhF5EuwDHARABVrQPq0m03mxTiHd0wEtFan3PS7o2FU+H5K5zXn7wBo66ETnuwqtNQTp9dT13D6oy4dNoTXljkBwCbgYdFZChQCVyhqv+JXElEJgGTAHr37u3BbjNDod7RDaM5MupzXjkr+v3n/4b/eobX566hrmF1xlw67QkvZnYWAcOBv6vqocB/gN/ErqSqU1S1QlUrunXr5sFuM4Ml0jKMNmbgaXHftyYXUujp4aqTBhSUEeaFRV4NVKvq++77p4kj5PlCod7RDaNNiUxFG4pGWTnLEXH3fTouHSBshBWCmKct5Kr6uYhsEJEBqroaGA2sSL9rTWkL33UhxqAa7Z9MXDutabOyqhadcwPDq/+JD4WiTvCj2Y54xwkvbI0oF6J71KuolZ8D09yIlbXARR61G6Ytv5xCi0E12jeZuHZa02ZlVS07HvgBx/iWOh8I0PCtY5l7mDelEAc8Pcl+qKqLXf/3Iap6uqp6nnLMfNeG0Tq8vnYqq2q5+7WPUm5T59wQFnERZ8IJIs1Ou29N3wuxzkDezOwc2beEEUVrKNflVMogRvY9MttdMoy8wMtxn5CF/F19EAV8KYjl4G1vAa6Iu5M2OfIXzU72aYsY9vZA3gh5ue9jphffDMF68BXj8x0BWL0+w2gJL4UtZCErzuP8kB5dGNSjS1LbdjrkdPSdux0RB/4VGMLuB11JeQb6Xmju0bwRcpZMxxd05xkF62DJdCu8ahhJ4pWwhSzkuvogIrBi09cs3biNmS0kxgLgxN9TWVVLyfqXeSlwGHcGz+OqJPzXhSbKrSGPKgTFJsSMlyDTMIzWkGxFnfI+XZk8dhA+nzh+64Am9l8vnAr/PMP530VO/D2n6j3cGTyvYPzXbUH+WORDzyW46FEkWI/6ivENPdfzXdjUfKMQSTUypHZnHUFVXA8JQhw/+Zwb0Hfudl5/8oZjdlVMLEj/dVuQN0JeGezPHfXXhwc7rw72b9a3lnL7BRh7ahiQerhe5ACk3yecVdGL8cN7Nm6zYQHBd/6CaOPA5rZFT9MlYqKPXVvekjdCPn9tDQsa+jFf++EXPI8NLcTYU8OAppEhXXftwL1z1yS0mJu1qmdcCitnA8HG6BSgcrdjOJ7ET732NJweeSPkmZ46b1PzjUIlUpi77tqBm55f3uKTaVyresalsPRJwHG3BJxAcR4MjqX8qEsTPvXa03D65I2QZ9q3Zr47o5AJCfO9c9fEfTINWcxdd+1A7c66ptfIhgWuJe4gAEWdeGbI3yk/9Lhm27an4fTJGyGHzPvWzHdnFDrxnkzjTQKKspwXTnUKJQcbotryHzyOM08f32zbzX1uJE9eCXlGiMzCViBx6eaPNBIR78k0ZEmHolSiLOfNs+CFX0ZXuy/qBAPHwYT7m7Q9eewgXlq2iVMHdw//9lJ9Grbfb1MKW8g3LIBHxjllpXx+6H8S7N4Nhp7XbkXd/JFGc8QTychJQEEap+WPqX8FXrg+WsR9RfCj5+JeP5VVtWH/+wfrvmLAfp2jxNwyG7aewhbydW87Iq4BNBCAVc8DIIseheEXZEXQM21tmD/SaC5yJJ5Ixg6G1u6sY0z9K5S+1yjiCig+1o+8idIE14wXvz37/cansIW89Gjwd0AbvgVVxJ0sqsF6ZOFUWPy4kyu5jcQ8FWujtYJv/sjCprnfWHMiGWUxz7kB3r0HN38hCgRVuL7hIma8dQBn/WdpdFy5ixe/Pfv9xqewhbzXCPjRbJa9eB8DPnuWYg04nwuAOtZ6M7mSvSZZayOdx0uLzilsmvuNJSWSc26A0IxNF8XH9Q0X8VhgNKBMf389M+LkXvHit2e/3/gUtpAD9BpB3Sn9ufCBofxA36Kbbxsn+P+NaAD8HZrNley1GyRZayPdx0uLzilcWpr806xIblgA7/4lpkVh/ZE388zbfZFA0HWxJP5devHbs99vU0zIcX4YV19yIfPXjqGsbwk+38ctRrJkYtAlWWvDHi+N1pLM5J94v7tNM37Nnisfo5MGo9PVjbqC0hMvZ9qAWmYsqubpymoCAftdtjWeCbmI+IGFwEZVHetVu21F9A94RIvulPlraxgUWMXhvpUsCAxk/tr+nlgJyVgb9nhptJbIiT0vLdsUjg1v7slu04xfs9+/7wu/VwERn1MU4sTfA42/2wnDe9rvMgt4aZFfAawE9vCwzZxl9O7r+HHxHymmgQA+vv78I9hwUZv50+3xsnW0pxjkVI8l8ikyqM5QUKhARHMWdKePXwAaE2B9W9SFXX70dNzfuv0us4MnQi4iPYExwC3AVV60meuUfbsE9TUgGsRPkG6rH4NPnvE8yqU1F2t7ESqvaU8xyOkWJQbCszRH9dubK084KOH23/YfA/++L5wAa+vAc9mlnc6zyFe8ssjvBq4BOidaQUQmAZMAevfu7dFus0jp0Yi/IzR8i4SGeDyOckn1Ym1PQpUJ2lMMcmuOJTyxx93OhzPVPq6IL5wKK2fBwNPoPuF2NuFY5t/2H0P3CbdHrRppPIT6ZoZE25K2kIvIWOBLVa0UkWMTraeqU4ApABUVFZpovbzBDV1kyWPw4aMQbDnKJRGJrOhUL9bWXNzNWfDtzbpvT4PE6RYlTpj8CmDK8ehnlc5rtyiEI963xzYZZTwU+X2gSkNQzZBoY7ywyEcB40Tk+0AnYA8ReVRVL/Cg7dymlzsoOvTcVudrac6KTvViTXX9qIswpkBAe7Tu29MgcWuPpUUfdkjEExSFiCXWeIDmww+NzJC2kKvqtcC1AK5F/j8FIeKR9Go5yiWKiERd89fu1exsulQu1lTXj7wI6wLREznakxsikvY0GJfOscR92lo4NWyJxysKEY+oakF+H0FVAgHF78/vJ558w+LIPSAlF0Rkoi5/B8aM+B3fFf+bdxvKWOYva/LjT/ViTWX90EUYCkGLtKTakxvCiCbu05bvY7596y46arSILw72pctRlyZsK9Zdc+PsZQSgsQGjTfBUyFX1TeBNL9vMdVJ2QUQk6iLwHb3fm8wVvgC/6OCj+sg/UNrn1Dbre+gijDeRoz25IYxoYp+2ts27Hz65nQ5uPvGQBq/pMIDgBa8k9SQYSnfbEHSKMgeC2m6e4vIBs8jTJGUXhJuoi0AdQYRgsIEiAdUAvd+bDHvtBt/UZDw/euRTxB/PGBJ3Ikd7ckMUMrFPjJFPW3cW3ctxH78DOFEsDcAG3ZeH9AecfsH1lpAtTxDNwiNQRUWFLly4sM33mwlCFnnox5vUoKDrI39jfYCjP7qNIgKIQBDB5/M7JpG/Q8YyL2Z6ILO9RbvkM4kGtAF2ff4nlG1+KWrKfVCKmDn0fg5wy7O1Zn/23WcOEalU1YrYz80iT5PWuCAqg/2Z37AXXft14KZVXzDZ9zA+DSI+v5PfWYONMengeQWjyKeI7+qDzFxU7dlF1x6jXdKlteKWjiiGtt249Zu4A9pzh71J980vNdnON+ZOzqwYH6fF5LCnuOxgQu4Bqfx4Y4Vu8tgrmLVpFEf4V9Cje094+TfhgVB2KYkaGPXKQh/Zt4Qivy9cvuuphRvi5o9uDe012qW1tPbGls4NMTa2u8gn1Ac0PKB9n97CfkuXNt1wyA8hQZihkdv4st2BQiNW6Gp31nHm6ePp8YPrnYvoR7Ph+Ouc/7+piRgYjbDQwXHPvH2n83+KlPfpypnlPcOP1KGBKS8I+Un90nz+jkIh3o0t1e3qUtgudttAIMhZFb049/DedCjy8eeie/mev1HEQ+K+pe/pUTU2K6tquXfuGiqrapPer5E9zCJvY1ocEIqNSXcHRqNmjW5YAFPHQKAe/MUw8YWULfUJw3syc1G15wNT7TnapTWujtYOAHbdtUM4J0pQnffJErvP0NPWpN3+RZ9333Em+9AYnXJfYCx3rjqbm95fz3mH9zb3WB5iQt7GpCR0oTQAsT7yJdMdcQfn/3fucYpGI84s0yREPZOCmwk/abYH0Vorbq09z7U766KyE9burEu6r3H3uXAqpe9djxIdJ/5mYAi3N5wHKJNnLWPAfp3NPZaHmJBngZSELu6sUYl+u/rFxkrmi/7Jl/1/yL92OaHFyIN8GZjKBQsxHXFrzXke2beEjsWppVuIFO7Q/uavraFk9fRwoeSQJa7ArMAo/if4M0K1N4Oui83CCPMPE/J8ZOi58OE0xxoXn+NDd9FgPXuvmsZpPM5NlRfBJdcDLWeky7bF2xy5YCFmWtziCXGylny8Gx3A+Q/MZ1BgFZOK/4BKRGUf8fFm/2v5pt85jF79Ja+v/AJV6FCc3GSwXP6tFCom5PlIrxEw8XnH5bJLCbx0daOrBSfHtGiAyb6HefDtCt5c/SXlupw73hjE1ZdcGPfCbM7izfaF65WIpnMcmXRFJTr/yVryiQZUBwVW8Qv/DHwEokRcxtxFl26n8dOIyJYzy3syISJyKdG+c+HpyGiKCXmeEopFH9mthPKJBzt+8x2b0dUvQdCZYOTTIMO+epkf+V50KxnN4KOXl8D3L4ty1zRn8eaCyHshol4IUKZcUa194ogs2xZ7oytZPZ1JxX/ARxAfoIgzT+H7d0LFRObPXRMV2dJjz12ivvNE5zoXno6MppiQ5yFxH6WH3MD8tTWM2etIer83GdUgUtSBA7vtSnFNA0USxK9BBm+aAQ89A3v0hO6HwKgr6LrrfvjcEbBYizcdkfeSdEU0lwWoNU8cTecjDGL5Z9tQCPvEQ+4URZADj4Njrw3fwCOLTIhIOCqmpe/U/Oe5iQl5HhIrSjMXVTNjUTV1DUH+WtSXZ8c9Qdm3S6D0aLoBwTUzCQa+Q0SdR2wNotvWw7b1sOp5DgyWMZRzWOIbwMQjSsOP5rF5OVIR+VwjlwWoNU8csed+2WfbmLmomjOCc+hV9BAa+q7BscQjRDy0z8ljBzF51jICQeWm55cnFbHSnsNL8xkT8jwkVpQUoi6+13eUUnbcCeH1fROfgyXT0cp/oOr4S0MXuSqMkFU8WXwja4I9+Me7pzIlcHyUNZbows1lcYwl1wWopSeO5hJfFRf5EOCM4BxuLnoIHxrlE+f7d8YNSa3dWUdQNeX0xfkS7VRImJDnIbGiBDQ/uafXCCqD/Xn2fT83+B7E74abiTh/AD6Fg3wbuZkHOJrFPBAYy/y1/VsMX8xlcYwlHwQonn96+vvrmTxrGUHVhDfY3b6spN/ihx0RFyegUBAYc1fCaffxRDvfvlPDwYQ8T4kVpZYuvvlra5jWcDzL6clNRQ8zyFfVmPs/QtBV4ST/Qkb7P2RjfQcqq0ri+kwjBefy4/q1wRHnJl4O9iYKI5w8axkN7jTPyOn64f36PobFf4wKMRSAsjHN5k4x0W4/mJC3E1qyNkPW15KGgziT23lk8Ar6ffpPdg9up+O3WxpXFGcmoRCg9L3fEVj9KlP5nI5FdTwVPI75a/sDWAga3g/2zlxUHa7WFBlGGAjN1Qd87sBkaL8jitYwvfhmfMG66GliviIYdUXCfsebPJSJYzLaBhPyAqGpO2Ykj+99mnMxb54FL/wyPPMPXItOA/SteZO+bmq1Yb61VNUfyAtrT27TQc5sx7EnwsvB3sqqWp5auIGQZEfWvOxY7KOuPojPJ9x02mBqd9ZR1xDkDv+9nCofQDBm+n6Pcjjltrh+8ZaEOp8GsI1G0hZyEekF/APYF8c1N0VV70m3XcN7QtZX04v5NMp/fLAzwejbr+G9/4NgAEKDZiG3C1D6xWuMPOa8NhvkzGULMd3B3sgb1Py1NWH3iQBnljdOzpk8dhAvLdvEqYO7h5NaPVx0K8f44qSi9XdMKOLQslDn0wC20YgXFnkD8CtVXSQinYFKEZmjqis8aNvIAHEv5uMicrqUjXEmGC16FIL14e0EYOBplPfpyrPjiqld8QZdDz6esgwKa0vC05y1nmlLPvIpp+uuHaLCNlsiXhx4pIBOGN6TyqracD3VhkCQ9z/9imWfbePCnl9wqJuKNuxO8XeAQy9oMWlaS0JtfvP8JG0hV9VNwCb39XYRWQn0AEzIc5Suu3ZIOAEIaEzUNfQ8R9A3r4aG7+DQC53Bsw0LKHvlAictwPoH4IvznHUzUJauOeFpzlpvK0s+1Oa59zeW+3vs0pb3FS8vfaTlDc44RMhnDs5A56oFr7H5w5kM8MWkTjv4dBh7V1L9bUmo8yG6x4jGUx+5iJQChwLvx1k2CZgE0Lt3by93a6RAZVUtNz2/nKAqPp8weeygJlEo4Ys4buZFHBdMuOBFABZOdZJ4JWERpko84QlZqss3bktorbelr3emOxkLHLGNLZ0X79zG3qC67tqBm55fTl1DkA/WfcWE4T3DFZxCnON7nT8UT0UIEEXf46OKQrSECXX7wzMhF5HdgRnAlar6dexyVZ0CTAGn+LJX+zVSY0ZEZISg1O6sS916LT3aeZRv+JZwjZlAHSx8GBY/5vhov6kJ51BP18URKTyVVbWcO+U96gKRkRxNqxG1pa839scc+b65hFiRN6jYG49CuP9+n3D33s9yytYnnMlc4hTqjp12bxQungi5iBTjiPg0VZ3pRZuG91RW1fJ0ZXVjZIRP4opIi9ZrqODFksfgw0edSkVhQf8OXvyVE5Du78Cqkx/l/Nn1Ld4kkhX7+WtrqA9ES+eofntz5QkHZW0q+eD9uyR839y5jbWMY33kE4b3ZP7aGi5cfjGdtyxGpbGyTxDho7LLKUsQmWI+7sLCi6gVAR4EVqrqn9PvkpEp5q+toSHguAAEOKuiV/hCT9l6DfvRz3X86B9Oh2CDay4GgSAE6qhd8QZ/1MWcULyI9cF9WPXhjZT3ia7SnsoTwci+JRT7JWyRdyjyNRHxEG3lQois5iPAS8s2MWC/zi3mqont67RLRjJjUXXY913epyvlb/0YtiwGon3irweHs2ZHKWUx7eRylI+RObywyEcB/wUsFZHF7me/VdUXPWjb8JB4tRwhTes1cmA0lB/95d+E64wO/G4pI/3vADDIX8XBiy+G8p5Jp9GNpbxPVx6bdERY8MZH5NBOhlSt1WTWD1XzCR3D2x9v4f21NTw26YiUz23I3z5jUTXz+j/OXmvfCOfGUZx/GvDxMOO4Os5NweLACxMvolbm0aT2mNGWJCtOzYlK2tZr5MDovgeH64zuOf2HYZcAgBB0lkF4nZF9+6f0RBDrM7937pqkRDJVazXZ9UPn9abnlrOkehsAdQFlhjvomey5jRTh+/QWStYudQoli1tjU6But/147qBbuTpBGT+LAy9MbGZnnpOqOKUq2K3yt0aKer8TYemTYb+84HOs9kfGOVa7z095/5N4++A9eGuXE1usMxrbt1SKXqRqrab6pDC4R5ewkDvHmhohER4fnMP3QnHi0lhjc/2eIym98hXObKGdCcN7ou7/Zo0XBibkeU4mHqUjK8+EQuJa62+trPhfNizeyPGyiA3sg/8Hf6bsmyXR4YurnqcbMJ7H+XTDMawa+XPKDjuhxbZnxMlN0lzGwGSs1UjxT9W6HT+8J09VVjdxXcW229zNYO6wN9l7+aMQbBzYBJgdHEWvM6ZR2sz+Y29sEyL2b7RvTMjzHK8fpSPFwCdCUDWtm8T8tTXc2XA5QQW/wFU7Sinrt0dM+KKDaJC+W96k7vl5rOKJsJjHE8FEETihZfEyBl5+XL8WiwrHWvip+LfL+3TlsUubrp/0U9OMS+m+9MnozwSq9hxJrzOmtThz1fzjhYsJeZ7jdZhdpBjgThoSEswATYK4N5pe/dzwxcY0AEpjKt0iDVC74g3Ybw82z3uYj1Z+yRsNR/FXf1lYBJuLwJm/tiZuxsCQLz1R2t14Qnj5cf1a9KPHZhKMXT8pgV04FWJFvKgTcsrtlFZMbGKJx7s5mH+8cDEhbwd4GWYXKwaTxw6idmddWpN54t1oKoP9mb/bzxh96ljKPnkYXfUiqCPMDfjp3r0HTB3D3oE6zhE4p/g1lgf78Pbb1zJ/7WFNCg5HujHCUSRuxsBLjjogKRdRqkKYrKXdYrsbFsALV4XfhscTDr8snE88Geu7pScOo/1iQm5EkYmJNLE3mkgBvMcnnFXxG/5rzEWUrJnB519/R/Hw85yao4H6cPZFVRjkq6Ls48tYuvpAZnIck8deEfcmExuT/fV3DQkt4unvr4/KLJjKsSfrymj2nG5YAG/e6owXhFBYoX349qArKSc169um3xcmJuRGEzItBpECWBdQpr+/nhmLfEy75I+N+92wB/iLIVAX5XbxKwzzfcIwPmHjO5X0POt/HVdNHEIx2UV+Hz6foAGNyvM9/f31/PYZJzrk7Y+d4hrnHd476WNP25Ux5wZ49y/hEc1QnHg9fm5ouIjj3BuDWd9GS5iQG21OSABDESfxok7oNQImvgAvXIV8Hp13OxSS1+PrD+HBE6FjF9hvMJxwYzjsMVL8GgKNBTMa69s5MzAjCc3ITGVwMxkxjbSoi/w+zizvyVXb/8Tea5+NPCr+s/chPPdlN2Y0HMUyfxnXujcGs76NljAhN9qcSNfH05XVBAKJi0Zz2TyYcWnjQKAQZaED8N02qHoHHjwZLn4Feo2IEj8RIRB0qsUHghq+YZw6uHvYEgcY1H2PlKe3Rw6wRr6PJOoJpCFIz4W3UVL0fNREKUTY/bQ/cVCwP8etreHamBuDxYYbzWFCbmSFkDUZSgzVrAU84X4YcSmsexv5chUsfYqmOQcBgnz9/HXU1vkoGTiOaZecFxUPH2nRVlbVUruzjsuO6cvyTV9z6uDu4RJqsT7vlopXRIZr3nTaYM47PDpNc+QTyNm+17ms6HkgZsLQkb+AXiMod89NaMZqbCy/xYYb8TAhL2DaKktec/tJ2j0QOVt0xKXwzt2w6kUiBV2Bzp8voDPAO/PZ/93JDPP58A86nQGX/G+4D6s/395kslBIPDsUOdEu4oYsplLjMqjK5FnLwgmzIo9x2iUj+eDtl7n446nhVLShJFsM+SGc+Puo8+VlLL/R/vFluwNGdgiJxZ2vrub8B+ZTWVWbP/vpNQLOmQ4Xvwr7DQl/7FYYDbtdirUBX6AOXfok5Y8fyuWd5wGEJwuFXB2RbpHJYwfh8zniedPzy5nhDphGCmkkI/uWONWWXBqCysxF1U26XN6nK5f1+YwiCUaIuMCoK5sUhYi6OQQVnwh+aZpz3TBCmJAXKPEiIfJuPyEf+sVzYPRkvhjy30DjeKZIhC/9m1p4/goOmH40N/oeYLh8BDiThSLFsXZnXZQFLDipchMJaXmfrtx02mD8vkYxf3zBeqa/v75pf0uPRoo6AT7EVwRj746yxEOEXDF+gQ7FPm46bTBXnTTAUtIaCTHXSoGSian98dwnbTLb0HW7dAfWde5N5w/+yl51m6IEHRwruOt3Gzjfv4Fz/K/zeqACOeqKZvs7fnhPxsf48WOP9bzDe7Pss21h8Q4ocV0s4YIcbtbHRJV9UomGiZcOwEISCw9RjTdolFkqKip04cKFbb5fIxqvLvpUsxC2RZ83zfg1Jcsepki/Q2IEHSJmTwIU7wplY8MujpYGN+MVWq6squXs//deOL+LT+CcEb3psecuGRHVeOccsKIS7RwRqVTVitjPzSIvYLyKQ25phmMyIXrN0ZpsjJ9V/IaZe12Kf+MHHLXqVgb5q8I5vYWYiJH6nY3hjRPub/a8xCu0HDq2S446gAfmfUog6Hjrn1q4gUBQMyKqiVxWljSrMDEhN9KmJfdJOuXHkongiLWgoybg+LrwZ7mdMxvm8BP/LHrKlsQ7WzPHmW25cjabepzEzL0ubWJNf7n9u6hNNm//LurYQmLeEFQCgejsi166PxKdc0uaVZh4VXz5FOAewA88oKq3edGukR+05NNNJ71qS9kY490kovYXUE44eB969PopX/b9Hb02z4L3/w6bV9MkFn23feCdu1Fgv5r7OD34BFvm7sW6oy6mZsB5zFxUzdzVX4ZXL/LB3p07Rh3b8k1fE4xxVwYVtn9THzcuvLWWeqJzbtP2CxMvii/7gXuBE4Fq4AMRma2qK9Jt28gfmnNHpDPg2XXXDk54nyodiptmY7x37pomN4mRfUso8jkFmhV4c/WXdOvc0WmwYqLzt2EBLHkM1r4JOzbDgFNhozNuIzgSv7+vlv2phXd/yy7zbifQcCYNwdHhdc4+rDfjh/dk5qLGYhKnDu7OB+u+CqcfCK37wLxPCaoTShiaZZqu+yPeObdp+4VJ2oOdInIEcKOqnuy+vxZAVW9NtI0NdhYerXEnJDNrMrRObNrdJRu2MmfFF1Fi2rG4BQt4zg1hizzShx55iWwIduNvgXE86z8xaiJRrGtn5qLqsI9cIlxCPnFCHlWdpwobkDRSIZODnT2ADRHvq4HDPWjXaEe0xlKMdJEISu3OurjthtwJkW6LIr+PYr9Q71rlSVnAJ/4evv4MCdUYjQ1fVOjl28yt/ge5xfdP/AtPhz5NB0dD70Nhi7EpAtLN8W4YsbTZYKeITAImAfTu3buFtQ0jeZdMSDgj3SyBQJBzRji/s5BlnJRbx83rsmXew+xY+Qal8nljtEuEme4P1jmRLuvmwR7d4dALw0UgYvsFpJRV0TBSxVwrRk6Tiksm1s2SyPWRyr63zbufIzc9QqcdTafdN6HD7nDYJXFnaxqGFyRyrXgh5EXAR8BoYCPwAXCeqi5PtI0JeWHRlrMNM7avDQvgtRuddLktIX4YPKFJDhXDSJeMCbnb+PeBu3HCDx9S1VuaW9+EvHBIJ4Y8JwnV16xZC/X/aX7dzvvDDx9JOBXfMFIlozM7VfVF4EUv2jLaF+nEkOcajrW/FyNPfc45hjk3oO/cHV4eFekCyPbP4MGTYMhZsE9Zs/lVDCMdbGankVHaJGlWBmkuPQAHXcmz/9rB5TzNvr6taCgAnciBUW2c/g9O7nFzuRgeY0JuZJRkM/m1lkz632Pj2GMn8gBMazief+rxnOd/nZ93eI6S4BaKJRiV1yWKpU/CHvvbgKjhKSbkRsbJ1GzDTPvfo9IDoPh9zkQev0/4bOs3DNq/C0U+J1b9SR3NU3UnUB9QzvG9zk+LZtErUV6XlbNNyA1PMSE38pZM+99j3UKTxw5i2WfbeLqymscWrKfI7yPorqsIQTeF7RPB0XzV7zzO8b/BiNrn2X3LkuiGB45rVX8s17iRCBNyI29Jx/+ejCjGcwvdO3cNDYHGmwc4bnENNib08vuENz/azGuBQXQoGsKz44opW3Yn1K5rUp8zlf62q+gfw1NMyI28pbX+95AoflcfxO+Ln8MltF5s25E3D7/fB6rhWaOhqfefbf2GxxasD4v96ztKKbvopbSOtT1F/xjeY0Ju5DUt+d/jifH8tTXh7IQNwfiV7xNZwLE3j1B7seXWZkRkRPQiUiffo3+MzGJCbrRbEonxyL4l+H0SLssWCCozF1VHCXlzFnC8JFmh/YVEvaUnhVT93ZmO/jHyGxNyo92SSIzL+3TlptMG87tZy8IhhU8t3MD44T3julCSsYCnv7+eybOWEdTG0m6XH9cv7rqt9XdbrnEjEb5sd8AwMkVIjP1CEzE+7/DenH1Yr3CcdyCo4dhwaLSArzppQItCW1lVy+RZy2gIOjnH6yLizOORqN6mYbQWs8iNdktL7ogJMdV9Yq3uZC3g+WtrCAQbcxaJCBu3fkNlVW3c7c3fbXiNJ0mzUsWSZhm5QmsrF8Ut9lwfRNwQxKDSrNvEYsKN1pDRpFmGka+k6ndO5N8OWf4bt37D4xGhh4nCBM3fbXiJ+cgNIwUS+bfL+3Tl8uP6MWF4z4R+ecPIFGaRG0YKtOTftjBBIxuYj9wwIkjGd+2FfzvVEnZ2YzDAfOSG0SLJxnen699OJY7ccqwYyWA+csNwSeT/rqyq5d65a6isqo1aP9Hnrd1PuusahUtaFrmI3AH8AKgDPgEuUtWtHvTLMNqceP7vRBZxOpZyKnHkFnNuJEO6rpU5wLWq2iAitwPXAr9Ov1uG0fYkSlsbb5p/OtkIUxkQtcFTIxnSEnJVfTXi7XzgzPS6YxjZJdb/ncgiTtdSTsXP3poMj0Zh4VnUiog8Bzyhqo8mWD4JmATQu3fv8qqqKk/2axiZJpFQ5oKA2mBoYdHqqBUReQ3YL86i61R1lrvOdUADMC1RO6o6BZgCTvhhkv02jKyTyCLOhdmZVnDCgCSEXFVPaG65iEwExgKjNRtB6YaRx6Rr7dtgqAHpR62cAlwDfE9Vd3rTJcMoDLyIiLHBUAPSj1r5P6AjMEdEAOar6mVp98owCoBEbpFU3SW54OIxsku6USvxS6AYhtEimYqIMQoPm6Jv5D35nLdk/PCeiPt/ZE1Qc5cYqWBCbuQ1+Zq3JLYv44f3jFpu7hIjFSzXipF1WpuzBPI3b0ku9cXIf8wiN7JKulZyunlLsuVqMT+44SUm5EZWSXdCSzp5S4CsuVrMD254iQm5kVW8sExbm7ckUUKstsL84IZXmJAbWSWblqm5N4z2gpV6MwqaXAtHNIzmsFJvhhEHc28Y7QELPzQMw8hzTMiNvCCdWHPDaO+Ya8XIeXJpRqZh5CJmkRs5j82CNIzmMSE3cp5QmKBfsDBBw4iDuVaMnMdmQRpG85iQG3mBhQkaRmLMtWIYhpHnmJAbhmHkOZ4IuYj8SkRURPb2oj3DMAwjedIWchHpBZwErE+/O4ZhGEaqeGGR3wVcA7R99i2jXWOzOQ0jOdKKWhGR04CNqrpERFpadxIwCaB3797p7NYoAGw2p2EkT4tCLiKvAfvFWXQd8Fsct0qLqOoUYAo4aWxT6KNRgKRbOcgwCokWhVxVT4j3uYgMAQ4AQtZ4T2CRiIxQ1c897aVRcFjRB8NInla7VlR1KbBP6L2IrAMqVHWLB/0yChybzWkYyWMzO42cxWZzGkZyeCbkqlrqVVuGYRhG8tjMTsMwjDzHhNwwDCPPMSE3DMPIc0zIDcMw8hwTcsMwjDxHVNt+kqWIbAaqYj7eG2jvMeh2jO0DO8b2QT4eYx9V7Rb7YVaEPB4islBVK7Ldj0xix9g+sGNsH7SnYzTXimEYRp5jQm4YhpHn5JKQT8l2B9oAO8b2gR1j+6DdHGPO+MgNwzCM1pFLFrlhGIbRCkzIDcMw8pycEnIR+YOI/FtEFovIqyKyf7b75DUicoeIrHKP8xkR2TPbffIaETlLRJaLSFBE2kV4VwgROUVEVovIGhH5Tbb74zUi8pCIfCkiy7Ldl0whIr1EZK6IrHB/p1dku0/pklNCDtyhqoeo6jDgeWBylvuTCeYAg1X1EOAj4Nos9ycTLAPGA//Kdke8RET8wL3AqcDBwLkicnB2e+U5U4FTst2JDNMA/EpVDwZGApfn+/eYU0Kuql9HvN0NaHcjsar6qqo2uG/n45TIa1eo6kpVXZ3tfmSAEcAaVV2rqnXA48BpWe6Tp6jqv4Cvst2PTKKqm1R1kft6O7AS6JHdXqVHzlUIEpFbgAuBbcBxWe5Opvkx8ES2O2EkTQ9gQ8T7auDwLPXF8AARKQUOBd7PclfSos2FXEReA/aLs+g6VZ2lqtcB14nItcDPgBvatIMe0NIxuutch/OIN60t++YVyRyjYeQyIrI7MAO4MsYbkHe0uZCr6glJrjoNeJE8FPKWjlFEJgJjgdGap4H8KXyP7YmNQK+I9z3dz4w8Q0SKcUR8mqrOzHZ/0iWnfOQi0j/i7WnAqmz1JVOIyCnANcA4Vd2Z7f4YKfEB0F9EDhCRDsA5wOws98lIERER4EFgpar+Odv98YKcmtkpIjOAAUAQJ83tZarariweEVkDdARq3I/mq+plWeyS54jIGcBfgW7AVmCxqp6c1U55hIh8H7gb8AMPqeot2e2Rt4jIY8CxOClevwBuUNUHs9opjxGRo4C3gaU4WgPwW1V9MXu9So+cEnLDMAwjdXLKtWIYhmGkjgm5YRhGnmNCbhiGkeeYkBuGYeQ5JuSGYRh5jgm5YRhGnmNCbhiGkef8f4FDqA/IJAL5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], pred, \".\", label=\"predictions\")\n", - "ax.set_title(\"Piecewise Linear Regression\\n2 buckets\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The method *transform_bins* returns the bucket of each variables, the final leave from the tree." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 0., 1., 1., 1., 1., 0.,\n", - " 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0.,\n", - " 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1., 0.,\n", - " 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 1., 0., 1., 0., 0.,\n", - " 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0.,\n", - " 0., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0.,\n", - " 1., 0., 1., 0., 1., 0., 0., 1., 0., 1., 0., 1., 1., 1., 0., 0., 1.,\n", - " 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 1., 1., 0., 1., 0., 0.,\n", - " 0., 0., 0., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0.,\n", - " 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,\n", - " 1., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1.,\n", - " 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 1.,\n", - " 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1.,\n", - " 1., 1., 0., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0.,\n", - " 1., 0., 1., 0., 1., 0., 1., 0., 0., 1., 1., 1.])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.transform_bins(X_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's try with more buckets." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "PiecewiseRegressor(binner=DecisionTreeRegressor(min_samples_leaf=150),\n", - " estimator=LinearRegression())" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model = PiecewiseRegressor(verbose=False,\n", - " binner=DecisionTreeRegressor(min_samples_leaf=150))\n", - "model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAA0lEQVR4nO2deZwU1dW/n9M9LKKIiKAIAwNhFRBk2BQxGvdAXFCjoDFolDeJMZpFo9G4ZTO/xKiJ5PUlajARMUaIEGJUVIwoIs4gRJBFIAwM4AIOCoLOTPf5/VHVPT093T3d09XT23k+n4Gurqpbt6qrvnXuueeeK6qKYRiGkb/4sl0BwzAMIz1MyA3DMPIcE3LDMIw8x4TcMAwjzzEhNwzDyHNMyA3DMPIcE/ICR0T2iUjfHKjHj0XkoVY83hoRObm1jleotPbvZrQMsTjy/EdEtgBHAgHgU+BfwHdUdV8265VpROQOoJ+qXpbtusRDRMqA/+L8LgC7gAdV9e6sVcooOMwiLxy+oqqHACOBUcCtWa5P0SEiJQlWH+b+PhcCPxGR01v5+EYBY0JeYKjqdhyLfCiAiKiI9HM/txOR34jIVhF5X0QeFJGDQvuKyLkislJEPhGRTSJylvt9JxF5WER2ish2EfmZiPjddVUiUu5+vtQ93hB3+Rsi8rT7+Q4Recz93F5EHhOR3SKyR0TeFJEjmztWKojIFhE5LeLYT4rIn0Vkr+t2GRWx7dEiMldEPhSR/4rIdyPWjRGR19167hSRB0SkbcR6FZFrRORd4N0kfp8KYA0wIqKMK0VkrYjUiMhzItI7Yt0ZIrJeRD4WkT+IyL9F5Cp33TQReU1E7hWR3cAdiX5jETlCRBa65/KRiCwREZ+77kfu9d7rHu/U6N/NXT7HvX57RORlERkcdc1/KCL/cev7VxFpn8LPZrQQE/ICQ0RKgS8Db8VYfTcwAEdE+gE9gNvc/cYAfwZuAA4DTgK2uPvNAurdfY4DzgCuctf9GzjZ/fxFYLO7b2j53zHq8XWgE1AKdAG+CRxI4ljpcA7wBM65LQAeAHCF7B/AKpzrcSpwvYic6e4XAL4HHAEc767/dlTZ5wFjgWOaq4SIjMN5yW50l88FfgxMBroCS4A57rojgKeAm3Gu03rghKgix+Jc8yOBn5PgNwZ+AFS7xznSPa6KyEDgO8BoVe0InEnDbx9Z9wFu3a53y3gG+Efkiw34KnAW0Ac4FpjW3DUxPEBV7S/P/3Aeun3AHqAK+ANwkLtOcR5owfHTfiFiv+OB/7qf/w+4N0bZRwKfh8pzv5sCLHY/fwNY4H5eiyO6T7jLVcBI9/MdwGPu5yuBpcCxqRwrRt3CZca5JqdFbPdCxLpjgAPu57HA1qh9bwb+FKfc64G/Rywr8KUEv02Zu80enJeVAr+hoX/qX8A3Irb3AfuB3sDlwOsR6wTYBlzlLk+LrHsSv/FdwHycfoXIOvYDPgBOA9rEu8bAT4Ano+q6HTg54ppfFrH+/+H0B2T9GSn0P/OpFQ7nqeoLCdZ3BToAlSIS+k6AkNuiFMfCiqY30AbYGbGfD0dQwLG4fyMi3d2yngRudzv5OgErY5T5F/d4T4jIYcBjwC1JHCsd3ov4vB9o7/qUewNHi8ieiPV+HMs4ZIX+FqffoQNQAlRGlZ1M/Y7AEfHrgKk451nrHv9+EbknYlvBsaSPjixbVVVEqhMcu7nf+Nc4wvy8u36mqt6tqhtF5Hp33RAReQ74vqruiDrW0Tgv51B9giKyza1riOjrfHSMa2F4jLlWioddOBbhEFU9zP3rpE4HHDiC8IUY+23DsZKPiNjvUFUdAqCqG3Ee2GuBV1T1E5yHeTrwqqoGowtU1TpVvVNVj8FxFUzCsT4THitDbMOxWA+L+Ouoql921/8vsA7or6qH4rgjJKqMpEK/VDWgqr8FPqPBPbMN+J+o4x+kqkuBnUDP0P7iqG/P6GIjPif8jVV1r6r+QFX74riavh/yhavq46p6Is6LRYFfxTiFHe76yPqU4ljlRhYxIS8SXEH9I3CviHQDEJEeEb7gh4ErRORUEfG56wap6k7geeAeETnUXfcFEfliRPH/xvGxhvzhL0ctN0JEThGRYW4n5idAHRBM8ljR+MTpPA39tUvx0iwH9rqdfQeJiF9EhorIaHd9R7eO+0RkEPCtFMuPxd3AjW5H4IPAzdLQQdxJRC5yt/snMExEznNbD9cAR8UrtLnfWEQmiUg/V4A/xvH/B0VkoIh8yb12n+G8DJq8gHFaWxPde6QNjs/9cxw3mZFFTMiLix/hdLItE5FPgBeAgQCquhy4ArgX5yH/Nw3W1+VAW+AdoAanA657RLn/xhG8V+IsR3OUW8YnOH71f+O4W5I5VjRTcIQn9LcpwbZNUNUATotgBE689y7gIRy3EMAPcVwhe3FE8q+plB+Hf+Kc29Wq+ncc6/cJ9zdZDZzt1m0XcBGOr3k3jm+/Akc84xH3Nwb6u8v7gNeBP6jqYqAdzstlF05rqhtOP0EjVHU9cBnwe3fbr+CEvda26CoYnmEDggwjT3AjbKqBS10BNgzALHLDyGlE5EwROcx1e4T888uyXC0jxzAhN4zc5ngcd1HIlXGeqh5IvItRbJhrxTAMI88xi9wwDCPPMSE3CobovCAelvtyKL+JYeQiJuRGXiAi/UXks0wIdaawF4DRWpiQG/nCDODNbFfCMHIRE3Ij5xGRS3CSTr2YxObt3fSpe0VkhYgMjygnnNLXXZ4lIj+LWI6ZxjeqLt3dNK03uMvjRGSpm9Z1lbizEonIz4EJwAPizNL0gDjcKyIfuMd4W0SGtuyqGEYDJuRGTiMih+Jk7ft+krucC/wNOBx4HHjaHU7e3HESpfENbdMHZxTqA6r6axHpgTNK82fu8X4IzBWRrqp6C07ire+o6iGq+h2clLwn4aSZ7YST8nV3kudlGHExITdynZ8CD6tqdNa/eFSq6lOqWoeTtbA9MC6J/b4BPKKqi1Q1qKrbVXVdxPpjgMXA7ao60/3uMuAZVX3G3WcRzhD6LxObOpzUBYNwQn/XuvllDCMtTMiNnEVERuDkyL43hd0i074GcYa0J5NKtZTEeVouxcny91TEd72Bi1y3yh43Fe6JxMkNo6ov4UxoMQP4QERmui0Ow0gLE3IjlzkZZ2KGrSLyHo7r4gIRWZFgn9LQBzc3SU+c9KvgpNvtELFtZCbBeGl8Q9yBM7rycWmYem4b8JeoFLQHa8PEyk1G26nq71S1HMfCH4DjyjGMtDAhN3KZmTjiOsL9exDHJ31m/F0oF5HJbtrX63EyBYZyk6wEprqpas/CmYouRMw0vhHr63AyER4M/Nl9STwGfMXNh+J30+ieLCKhnOHvA31DBYjIaBEZ6/rsP8VJGRsrXaxhpIQJuZGzqOp+VX0v9IeTfvUzVf0wwW7zgYtx0sR+DZjs+svBmZ3nKzgRMJcCT0ccK1Ea39A2tThzax4JPILjagnNufkhjoV+Aw3P1f3AheJMqvw74FCcVLg1ODPt7MaZtccw0sJyrRiGYeQ5ZpEbhmHkOSbkhmEYeY4JuWEYRp5jQm4YhpHnlGTjoEcccYSWlZVl49CGYRh5S2Vl5S5V7Rr9fVaEvKysjIqKimwc2jAMI28RkapY35trxTAMI88xITcMw8hzTMgNwzDynKz4yGNRV1dHdXU1n332WbarUtC0b9+enj170qZNsym6DcPIE3JGyKurq+nYsSNlZWWISLarU5CoKrt376a6upo+ffpkuzqGYXhEzrhWPvvsM7p06WIinkFEhC5dulirxzAKjJwRcsBEvBWwa2wYrUtlVQ0zFm+ksqomY8fIGdeKYRhGoVFZVcOlDy2jtj5I2xIfs68aR3nvzp4fJ6cs8lzijjvu4De/+U3c9U8//TTvvPNOK9bIMIx8Y9nm3dTWBwkq1NUHWbY5M3Ntm5C3EBNywzCaY1zfLrQt8eEXaFPiY1zfLhk5Tl4Lude+p5///OcMGDCAE088kfXr1wPwxz/+kdGjRzN8+HAuuOAC9u/fz9KlS1mwYAE33HADI0aMYNOmTTG3MwyjuCnv3ZnZV43j+2cMzJhbBfJYyEO+p3ueX8+lDy1LW8wrKyt54oknWLlyJc888wxvvvkmAJMnT+bNN99k1apVDB48mIcffpgTTjiBc845h1//+tesXLmSL3zhCzG3MwzDKO/dmWtO6ZcxEYc87uyM5XtK50ItWbKE888/nw4dnEnWzznnHABWr17Nrbfeyp49e9i3bx9nnhl73t9ktzMMw/CavLXIW8v3NG3aNB544AHefvttbr/99rgx2MluZxhG8ZKpUMS8FXKvfU8nnXQSTz/9NAcOHGDv3r384x//AGDv3r10796duro6Zs+eHd6+Y8eO7N27N7wcbzvDMAzw3h0cSd66VsARc6/8TiNHjuTiiy9m+PDhdOvWjdGjRwPw05/+lLFjx9K1a1fGjh0bFu9LLrmEq6++mt/97nc89dRTcbczDMMAxx08JLCOsb61LA8MZtnm/p7pl6hqchuKPAJMAj5Q1aHud4cDfwXKgC3AV1W12dfMqFGjNHpiibVr1zJ48OBU6m60ELvWhuEdlVU1LNu8m3F9uyQU5nVvvkDvhVNoQz11lFA1aQ6DRp+W0rFEpFJVR0V/n4prZRZwVtR3NwEvqmp/4EV32TAMoyhIxV0y6LNVtPfVUyJB2vsCDPpslWf1SFrIVfUV4KOor88FHnU/Pwqc5021DMMwcp+kRm5uWw5L7oGDuiD+diB+xN8WyiZ4Vo90feRHqupO9/N7wJHxNhSR6cB0gF69eqV5WMMwjOwTip6rqw/Gjp7bthwePQcCteBvC2fdDQd2OyJeOsazenjW2amqKiJxHe6qOhOYCY6P3KvjGoZhZItQ9FxcH/mWJY6Ia8D5/8BumPADz+uRrpC/LyLdVXWniHQHPvCiUoZhGPlCwui5sgmOJR6yyD10p0SSrpAvAL4O3O3+Pz/tGhmGYaRJspEkGad0DHx9gWOZe+xOiSTpzk4RmQO8DgwUkWoR+QaOgJ8uIu8Cp7nLBvDyyy8zadIkABYsWMDdd8e/NHv27OEPf/hDeHnHjh1ceOGFGa+jYRQimRx40yJKxzjulAyJOKRgkavqlDirTvWoLnlBIBDA7/entM8555wTzt0Si5CQf/vb3wbg6KOP5qmnnkqrnoZRrHidhykfyNsh+kBDWM+25Z4Ut2XLFgYNGsSll17K4MGDufDCC9m/fz9lZWX86Ec/YuTIkfztb3/j+eef5/jjj2fkyJFcdNFF7Nu3D4Bnn32WQYMGMXLkSObNmxcud9asWXznO98B4P333+f8889n+PDhDB8+nKVLl3LTTTexadMmRowYwQ033MCWLVsYOnQo4MxlesUVVzBs2DCOO+44Fi9eHC5z8uTJnHXWWfTv358bb7wRcF4006ZNY+jQoQwbNox7773Xk2tjGPlCa+VhCuOxDrWE/B2iHx3W8/UFnjRd1q9fz8MPP8z48eO58sorwy6PLl26sGLFCnbt2sXkyZN54YUXOPjgg/nVr37Fb3/7W2688UauvvpqXnrpJfr168fFF18cs/zvfve7fPGLX+Tvf/87gUCAffv2cffdd7N69WpWrlwJOC+UEDNmzEBEePvtt1m3bh1nnHEGGzZsAGDlypW89dZbtGvXjoEDB3LttdfywQcfsH37dlavXg041r5hFBPNRpJ4SYZ0KFXy1yKPDuvZssSTYktLSxk/fjwAl112Ga+++ipAWJiXLVvGO++8w/jx4xkxYgSPPvooVVVVrFu3jj59+tC/f39EhMsuuyxm+S+99BLf+ta3APD7/XTq1ClhfV599dVwWYMGDaJ3795hIT/11FPp1KkT7du355hjjqGqqoq+ffuyefNmrr32Wp599lkOPfTQ9C+KYeQZmcoB3iR7YYZ0KFXy1yLPUFhP9CzzoeWDDz4YAFXl9NNPZ86cOY22C1nTrUm7du3Cn/1+P/X19XTu3JlVq1bx3HPP8eCDD/Lkk0/yyCOPtHrdDKPQiDmRciuFFzZH/lrkobCeL93iaXNm69atvP766wA8/vjjnHjiiY3Wjxs3jtdee42NGzcC8Omnn7JhwwYGDRrEli1b2LRpE0AToQ9x6qmn8r//+7+A48/++OOPm6TEjWTChAnhtLgbNmxg69atDBw4MG79d+3aRTAY5IILLuBnP/sZK1asSOHsDcOIR8zh+BnSoVTJXyGHjIT1DBw4kBkzZjB48GBqamrCbpAQXbt2ZdasWUyZMoVjjz2W448/nnXr1tG+fXtmzpzJxIkTGTlyJN26dYtZ/v3338/ixYsZNmwY5eXlvPPOO3Tp0oXx48czdOhQbrjhhkbbf/vb3yYYDDJs2DAuvvhiZs2a1cgSj2b79u2cfPLJjBgxgssuu4xf/vKX6V8UwyggWjq5w7i+XRhTspFrSuYzumRjQydqK4QXNkfSaWy9JFfT2G7ZsoVJkyaFOwoLlVy41oaRDWK6R5L1o29bTnDWV8JuFN+0f7S6eHuRxtYwDCOvSSpbYTy2LMEXrMNHEF+wLmsdm7EwIY+grKys4K1xwyhm0ooxD3Vsij+rHZuxyKmoFVVtEjVieEs2XGmGkSukFWPeSnlTWkLOCHn79u3ZvXs3Xbp0MTHPEKrK7t27ad++fbarYhhZI625fkvH5JSAh8gZIe/ZsyfV1dV8+OGH2a5KQdO+fXt69uyZ7WoYhuEhOSPkbdq0oU+fPtmuhmEYRt5hnZ2GYRh5jgm5YRhGnmNCbhiGkeeYkBuGYeQ5ngi5iHxPRNaIyGoRmSMiFt9mGIbRSqQt5CLSA/guMEpVhwJ+4JJ0yzUMwzCSwyvXSglwkIiUAB2AHR6VaxiG4S05MDWb16QdR66q20XkN8BW4ADwvKo+H72diEwHpgP06tUr3cMahmGkTo5MzeY1XrhWOgPnAn2Ao4GDRaTJPGeqOlNVR6nqqK5du6Z7WMMwjNTJkanZvMYL18ppwH9V9UNVrQPmASd4UK5hGIa35HAGw3TwYoj+VmCciHTAca2cClQk3sUwDCML5HAGw3Twwkf+hog8BawA6oG3gJnplmsYhpERcjSDYTp4kjRLVW8HbveiLMMwjLSpmAVr58Pgc2HUtGzXJuPkTPZDwzCM5qisqml+UohFt8Nr9zmfN73k/F/gYm5CbhhGq5OUIMfYp9mJk7cth6X3N/7urT+bkBuGYXhJS2eyjzVxcpP9tiyB6OkMO3b3sPa5iSXNMgyjVWnpTPZJTZxcNgH87RqWxQ/jr/Oo5rmLWeSGYbQqIUGuqw+mNJN9UhMnl46BaQth1RxAYfjUgotQiYVkY1b1UaNGaUWFhZobRrHSEh+5ASJSqaqjor83i9wwjFYn0Uz2JvKpU/RCbjeNYeQOLe0ILXaKWsjtpjGM3CKpyJRtywtuiH26FHXUSkt7zw3DiE1lVQ0zFm+ksqqmRftHRqb4/T627znQuKyKWfCns+HFnznpaAsop3g6FLWQJxXOZBhGUoRauPc8v55LH1oWV8wTiX0oMuWSMb1AlSeWb20oa9tyeOYHEKwHglD/ecGkoU2XonatJBXOZBhGUkS2cGvrg9z3wgauP21Ao+cqGXdmee/OLNu8m/qgElQYGlhH7ctLoMsB0GDDhj5fwaShTZeiFnJI3HtuGEbyhFq4ITF/9d1dvLnlo0ZinZQPPKKsoYF1/KXNL2i/pR62loCvDQTrQHzw5Xvi+siLLYih6IXcMIzGtFQEQy3c+17YwKvv7kJpKtbJDgYq792Zp89pQ6dX/kb7vbWIAsEAlF8OnUoTdnQWYxCDCblhGGHSFcHy3p25/rQBvLnlo5hiHc+d2eTlsW05g56d4kzHFsLnT2qkZrJWfyFhQm4YRhgvRDAk1nNXVCNx1jfrN9+6BAJ1jXc87rKkwg1bmgIgnzEhNwwjTDwRbIm7Zd6Kamrrg8xdUZ3Qso9+efz3rcWUl1Q7Fniw3tnI3w6GT0nquMUYxGBCbhhGmFgi2BJ3SyqWfeTLY3TJRia//QunQ9NXAoPOhEOOdEQ8hcE/xRbE4ImQi8hhwEPAUECBK1X1dS/KNgyjdYkWwZa4W1Jxb5T37syzEzYjaxdwaMeO+LbVgQYgCPQohwk/SKn+xRaxAt5Z5PcDz6rqhSLSFujgUbmGYWSZlvicU3JvVMyibOmPnc81OJY4fvC3ZV374by4eGPSolyMESvggZCLSCfgJGAagKrWArWJ9sl1ivGNbhjxaKnPOWn3xtr5jZe7D4dBE1nXfjjnLaijtn59Rlw6hYQXFnkf4EPgTyIyHKgErlPVTyM3EpHpwHSAXr16eXDYzFCsb3TDSERGfc6Dz22YJBnguMth1DReXLyR2vr1GXPpFBJeCHkJMBK4VlXfEJH7gZuAn0RupKozgZngTCzhwXEzQrG+0Q2jVYnMYBiaGHntfEfU3eWMu3QKCC+EvBqoVtU33OWncITceypmNfmxvaZY3+iG0Wosuh2W/s6ZJLmkPXx9gfM8Rz3T6bh0gHA202IQ87SFXFXfE5FtIjJQVdcDpwLvpF+1KCpmoQvdSVQ3veQMNMiAmBfrG90obDLR79OSMvfM/AqddrwC4DzD9Z85lnmc0MKWiHIxuke9ilq5FpjtRqxsBq7wqNwwH694ikMVRJwX+ccrnqJThqzyYotBNQqbTAhbS8rcOfdHHLXdFXFx4pRFJGEGw0zHsBcKnuQjV9WVqjpKVY9V1fNUtWVZ5RNQefBJ7rEaLxuGkRivJ1CprKrhvhc2pFxm+3f/CTQYYwCc8N2EA31aUvdinGcgb0Z2djrxam5b9z6n8waLGMt5J16d7SoZRl7gZb9PyEL+vC6IAr4UxPKz/hPhPw+GRXxHlxPocfqdnte9GN2jeSPk5b07w1W3smzzbs4rkh/HMLzAS2ELWciK05wf1qMTQ3p0Smrf7hf8ijX7PqfDpmd4Njia+z+4jNlVNQnrk/EY9gJBVFs/EnDUqFFaUVHR6sc1DCM9wj7ruiAi4PMJgaDG9l/HiDKbsXgj9zzvxIb7Bb5/xkCuOaVfVs4lHxGRSlUdFf19Uc/ZaRiGQ7KTJpf37sxtk4bg84njtw5obP/1otth4XXOQJ+F1zmiTnH6r1uDvHGtQOaHztvQfKMYSTUypGZ/LUFVQm15IUKUF90Obz8Jn+xwolJwo1PWzodR04rSf90a5I2QZzo2tBhjTw0DUg/Xi+yA9PuEi0aVMnlkT8o33Aev3QfQIOKu2m858jTK3P2LzX/dGuSNkGcsNtQdKvzx1gDf0I28zmBW1Q8oithTw4CmkSGdO7RlRoKMgzGt6m3L4c2HG20XVFCEmYGJBNucyTXEb/Vaazg98kbIMzJ0fttyePQcqP+cUwjyRb8Q9Pu4K3gF4/qekH75hpEHRApz5w5tuWvhmmZbpo2s6opZ8MwPGmbzcdmuXfle/TWs9g9idt8ucVu91hpOn7wR8oz41rYscSd3DSKAXxQfAe4s+RO+twPga36iV8MoBELCPGPxxpgt35DF3LlDW2r21zY8gxWz4J/fAw02Kk98JXw68UFO2VfGze628couxpGYXpM3Qg4Z8K2VTQB/W6j/HGc6EsevJxpwbtCVTzgJfUzMjSIhVss31iCgtiU+np2wmbLXb20s4uKH8q/D8CkMKh3DoGbKTvS9kTx5JeSeUzrGEeotS+CzT+D1ByKah+pY6wkS+uQr5o804hGr5RuypENRKkGFycFF9Fr6J0IGEADig4m/jZvMLhS6+K/VOzl7aPfwvZdqa9vu36YUt5CDI9IhoR40EVbNgbceg2DAsdYTJPTJR8wfaSQilkiGLObauiBB4Eclj/M//oVO9sIQ4oOJ9ybMSFpZVRP2v7+55SMGHtWxkZhbZsOWY0Lu4tzAhzNu2G2UD5/SkPS+la3xTFsb5o80EkWOxBLJSIv55K0PcMx/FwI0CLn42HL8z/jn3hMZl2DIvRf3nt2/sTEhJ84NPCEJAY+c5cQDwU/F2mip4Js/srhJdI8lEsny3p0p970LrzwaVaKw5fifcdaSvtTWr6ckMq486r704t6z+zc2JuS08C0fCl0M1Dqzfh83FYanF+WSbD3SaV7ayLriJtE9llAkF90OKx5tEp3C+Ov4Z8mZ4bk1awPK429sZe6K6ib3pRf3nt2/sTEhp4Vv+S1L0MDniAbRQADxIMol2Xqk27y0kXXFS3ODf2KK5KLbwyM2w4jPySV++p2Mq6qhbYkvHNWixL8vvbj37P5tigk5LXvLr2s/nN7BEtpShw8FST/KJdl6WPPSaCnJDP5pct+tXdA4b8pBnWHqk+H7PFTm3BXVPFVZTSBg92Vr45mQi4gfqAC2q+okr8ptLVJ9y7+4r4yX6n7M+b4lXOT/N21QfB5EuSRTD2teGi0lcmDPv1bvDFvRTSzoiP6fnT3O4KjdD4bDD3f2u5juUcZK6L69YGRPuy+zgJcW+XXAWuBQD8vMWcb17cLv/YNYWT+AhfJF7hmzlx4jzmi1KBdrXraMQopBTvVcIvtWgtpgYfuISim76HZYer+T8crfjteGPciHgWrO9L3Jc8HRBA+/mmviHMPuy+zgiZCLSE9gIvBz4PtelJnrNLaKT6BHKjdvCtEuLXlYC0WovKaQYpDTnZQYCI/SHN/vCK4/bYCzf7Q/PPA5Jx14gZPkMn5TN5U2JT5mm8sk5/DKIr8PuBHoGG8DEZkOTAfo1auXR4fNLi2yPiKjXfxtE3aOpvqwFpJQZYJCikFuybmEB/a4+/lwhtqHRXzbcnjt/ib7devYNqErL9J4CNXNDInWJW0hF5FJwAeqWikiJ8fbTlVnAjPBmeot3ePmLaFEXRpw/l81h+0rn+f1wDH0Oe6URjd/qg9rSx7uRBZ8oVn3hdRJnO6kxE2SX21bDs/eBDQ8mqEIFN/wqZSXxjZaIo2HEr8PVKmPN/WbkTG8sMjHA+eIyJeB9sChIvKYql7mQdmFRyhRlxt/HlzxGEcG6jgXH3dVXgFX3ZpcXG8MUt2+0UMYNZCjEK37Quokbum5xGxFhtM5Hwh/FZoQ4qHgVygP9qc8TnnRxgMkDj80MkPaQq6qNwM3A7gW+Q9NxBMQmajr421QMYsSUVQD3Ob7E0tePRK2+qFsAuW9x6T0sKb6cEc+hNEDOQrJDRFJIXXGpXMuodbWxLrnKFv9QFjENeLv/+oncU9wCt9P8Ns3mi3I7yOoSiCg+P353eLJNyyO3ANSdkGEEnVtWw6Vf0GD9c6M5Brg5I2/go0a9p+X9x6TscE+oYcw1kCOQnJDGI0Jtbau08fo7V+ISkMES536eTJwMvMCE1ipA2jbJvFvH+2uuWPBagLQYNIbrYKnQq6qLwMve1lmrpOWC6J0DFuPv4vSpT9BUMTnw0fQGQYdGlwEGUvglWggRyG5IYzGLNu8m+v0Mf7HH5X8CngycDK31n/DiWbpHxHNkoCQ8TBj8Ubqg86kzIGgFkwrLh8wizxN0nFBVFbVcOmSvgwJ/ITxJeuYfOKxlC3/aUNEy0Fdko5wSZXIVsQvzh8WcyBHIbkhipnoFuOl736PTv5XAJBGuWh9LJQv4hcnrjwZEY/EWnHZw4Q8TdK5eUMvgUodwMq6AbRrM5Brvj66wQKPjnDxaJKLROlKvaDQol3ymegO7T92X8hJu16BCHeKo+WCTLqXG7qe2+Lfzlpx2cOEPE1acvNGDpNu8hIo7ddYrEMRLtHD/ytmwdr5MPjchMn8YxHZivi8Lsi8FdWeinihRbukS0tfbOm8EEP7bt9zoFGHdukHLzgi7lriAtD7BDjtTigdQzmk9XtZKy47mJB7QCo3b7TQ3TZpSON43kgiI1wifeQVs2Dhdc7nTS9BzX+h/aFJ+9HH9e1Cid8Xnr7rbxXbYuaPbgmFGu3SUlr6YkvnhRgd213iE+oCju/62cBovlWysMES7/sluPzv6ZyikQOYkLcy0UJXs7+Wa07pF3+HyKnoQqyd33h56e/ckRs++PI9zVro5b07c2F5T+a8sdXzjinzkzampS+2RqGhKb4QI/cNBIJcMqYXCjxVWc09gan4AsIFHd6ifuAkdoy6iWURaWxDmHssvzAhb2U8EbrB5zqWeIhQsv9gEP75fdi4CA7pBsOnxLXQLxjZk3krqj0X3EL2k7ZE3Fr6e3fu0DacEyWoznKyRB8z1NoK/ea/rZjK/9s7hZIVAm8toz4QxCfCXecOZerYXuYey0NMyFsZT4QuZHGvnQ9HHQuvPwDBeuc7DcA6J6yMt2bDtIUxxTyTgpsJP2m2LcSWiltLr3PN/tpG2Qlr9tcmXdd4xyzv3Zllm3dTH1SnhRBQ1B2SH1TltvmrGXhUR3OP5SEm5FnAE6EbNa1B0Dv3gWd+AMEAjXJlBGqRBLHo+dIxlQsWYjri1pLrPK5vF9q1SS3dQqRwh463bPPucB1C5YZHYvqEgDquNYCg62Iz91j+YUJeCIyaBkceA6seJ1j5F8S1zmvxs/NAe3rN+ko4t4tv5GUxXS7ZtngTkQsWYqbFLZYQJ2vJx3rRAXFDTCNHYr68/gNeXPs+qoRHcTZ37Fy+V4oVE/JCwe0UnVd/Ep9XPIYCTwcncPXmKnrW11IiQTRQi1Y8glTOgoO7wUGdYOy3qex6bkKLN9sPrlcims55ZNIVlSiuP9WO0dCLDoj98tu2nPKtSzj4kOGct6AuHNlyYXlPLoiIXIp37FxoHRlNMSHPU+KJUp/jTuHSyoPCorf5kKM4iRJEnblFBZzO0X3vOX8Lr6O0wwyGBKZSqQOaWLzNPbitIfJeiKgXApQpV1RLWxwJxyNAo+9OPWQLPHEbrH8WVPmCrw1DAjdTqQMIBIL0OOygRr95vGudC60joykm5HlIvKZ06OGLFD2AK9bfylf031zsX4yfYKPcGgBd92/gyTZ3sDHYg8c4m3F9TwivS/TgtqZ1lq6I5rIAtaTFEWs8wpodH4d7SCJffhPrnqPsmZ84HeEuJcE6xpes4626AYhIOCqmud/U/Oe5iQl5HhItSvNWVDN3RXWjhy8yNv2Gqy5n2eaJVNc9R9nrt4IGI4ZmO//7gAG+7dwlD7F5wUbWjbuWQaNPS/jg5rI4RpPLAtSSFkf0tV+942PmuffAPDcVcbnvXco/nQOVjzYScQDx+Rg6biK+V4RAULlr4ZqkIlYKObw0nzEhz0OiRUmJ4w91CVmzlVVdqNjfnQlVD9Dto8qI+JaGIduq0GfXywQWLmFLzU8pP+OauA9uLotjNLkuQM21OKLdHdHXXmh8D3z86h9h06+aRDIBIH748j28u/cYgro+5fTF+RLtVEyYkOch0aIENDu4p6HJ3A6f/JBjdT3T/QsZLFvo5duFaoOY+wREA5QuvRVqN3LwkROBsmbrkesPdz4IUCz/9ONvbOW2+asJauMp1KLvgbkrqhkaWMf0koWc8m4ljQVcQHww8GwYfx2UjmFcVU0T0c6339RwMCHPU6JFqbmHr/EM6sp/ZCDXBAbQpsTHo0PfYdSanzo50SEs6j6CaMUj9NM/IcHuPPbSl8NT0UUKTsIUAwWOl5298fo+bpu/mno31js0XB+aTnL87ITN9Fp6FxLdDyJ+KL8chk9tMo7ARLswMCEvEJqzNqObzI2TdZ0N45y0uTs/+IBuq/+IT4OIa9H5UQb4dnAXD7H41SOp5GoLQcP7zt55K6rDszVFhhGGBuwA+NyOySbH9b1L2es/AYKNCxUfTPxto/w78QYPZeKcjNbBhLxIiNUUDwkFEI5D7w4w5gJY9ThU/hnVQCP/efmnr/DY5skMCaxjrG8tywODWba5f0Yf9mzHscfDy87eyqoa/laxLewMiZzzsl0bH7V1QXw+Jx9Kzf7aRsf971uLKf/wgSYdmiAw8d4mIp5IqPOpA9toIG0hF5FS4M/AkThOuZmqen+65Rre09Dp2YzVFcq4eNQI5J/fQ0NJuQQ6jbyQU3ULV7b5BW2oJ4CPT97bANuu8HwqOshtCzHdzt7IF1QoBwo4UUQXljcMzrlt0hD+tXonZw/tHk5q1bbExy/095zmW8EhKz+jSYcmPph0b5NMmM0JdT51YBsNeGGR1wM/UNUVItIRqBSRRar6jgdlGxkgaavLHfovr90Pe3fCcZfDqGkMWnIP6qtHNIifIF3Xz4GNT8FxsYf/Z7Kuiaz1TFvy0cPdo/OaJCJWHHikgF4wsieVVTXh+VTrA0He+O9HrN7xsTMtX+kf6LTjNYAm4wLoUQ5n3R3zd2hOqM1vnp+kLeSquhPY6X7eKyJrgR6ACXmO0rlDW3wioNq81VU6Bi6Z3fi7sgmIvx3Uf+b60dXJ5VLxJ1g5x9O5RRMJTyJrvbUs+VCZU/64LFzHOVc3f6xYeekjLW9wcqWEfObgdHTOeWMrm1e8xOP+V5oKOIC/XVwRD9W3OaHOh+geozGe+shFpAw4DngjxrrpwHSAXr16eXlYIwUqq2q4a+Eagqr4fMJtk4Y0iUJp9iEOzVy0ag689RgE6iBS0FfNiZltsSXEEp6Qpbpm+8dxrfXW9PWGBuIA4QE5zbUaol9QnTu05a6Fa6itD/Lmlo+4YGTP8AxOIUbKBib7lzCULU0rcXhf6HtyUi0iE+rCwzMhF5FDgLnA9ar6SfR6VZ0JzAQYNWpUtEPPaCXmRkRGCErN/tqWWa8hP/rwKU7H6FuPOznRfSWOuAcDzjyjX1/Auvc+oeadl+h8zJcYNPq0lOscKTyVVTVMmfk6tYHISA6aWOut6euNvpkjlxMlxIp8QUW/eJSGXCl+n3DfEU9z5p6/4otVAZuurejxRMhFpA2OiM9W1XlelGl4T2VVDU9VVjdERvgkpoikZL2GBX2qY4V/vA0q/+xEUARq+fDVP/GFdU/gJ0hw8wy21PyCsjOuiVm3ZFoEyzbvpi7QWDrH9zuC608bkLWh5EOP7hR3OdG1jbaMo33kF4zsybLNu7l8zTfouGslKg3+8IDCvh4T6HT2bXmVktjIDF5ErQjwMLBWVX+bfpWMTLFs827qA44LQICLRpWGH/S0rdeQoG9bDiufcFws/rbotgpKCCIColC69BYYPLqR+KTSIhjXtwtt/BK2yNuW+JqIeIjWciFEzuYjwL9W72TgUR1jDqWPd21DL565K6rDYl3+4XzKl98JBz4CGkRcFRQfi7pdyYUxRDxXo3yMzOGFRT4e+BrwtoisdL/7sao+40HZhofEmssRPLZeQ/5z10feac7Xwquc0aLqrIsQoFRaBOW9OzNn+vFhwZsckUM7GVK1VpPZPjSbT+gclry7izc272bO9ONTvrYhf/voFT9ipP+18PehFwUKQYQ7g1dy3nGnNNnf4sCLEy+iVl4lRgSU0XokK06JRMVT6zVknQPtjrsEfe2+sDtHxO90gkaQqj872mc+I8Ys8LFI1VpNdvvQdb3rH2tYVf0xALUBZa7b6ZnstV22eTdDAuu42r+QM30VQGMrHIHag4/iHwN+yXnHnRKzTIsDL05sZGeek6o4pSrYaftbT7+T9z75jEPWz0M7l3HopJ838em2tEWQ6qQXqVqrqbYUhvboFBZySN26mVj3HN9sc6fTaiHalQJbDxtH2fXPcWEz5Vwwsifq/m/WeHFgQp7nZKIpHTnzTCgkrqX+1sqqGi5deTK19SfR9oCP2cH+lMfYLjJsMHI5EXNj5CZJlDEwGWs1UvxTtW4nj+zJ3yqrm7iuosuNeW4VsyhbegsqGnajhFwpinB78Bucd/6tMXJQNq575IvtgojjG4WNCXme43VTOlIMfCIEVdN6SST7omlucE+0CMaLwAmti5Ux8JpT+jU7qXB0HVJpKZT37sycq5tun7DlsG25E3dfMQtCU/HhWuMlHag5+kRePHxKTFdKui0Oo3AwIc9zvA6za5Tu1h00JCQxAjQOyb5o4olQPBFMFIGzbPPumBkDQ770eGl3Y9XhmlP6NetHj84kGL19XIFddDss/Z0zh2oszvolnUdNi+lKiXVdzD9evJiQFwBedlQmTneb+jHivWiam/EmMkNjpAjOXVEddvvEisAJnUNkxsCrTuyTlIsoVSFMtn8iZrlzr4a3n2yybcil8v6wb9I9QerZeC8dy5NSnJiQG43IxECa6BdNpACW+ISLRpUyeWTPmMeNFEG/T8IJpNomeMlEx2R/8nl9XJfD429sbZRZMJVzT9aV0eSabrivqYiL8FHp6Ty3JchT9SeyZuUgZo+qidsqiffSseH3xYkJudGETItBKMxurG8tH+khdKrYx69XDOGGqy5v4vaIFMEdew4wZ/nWRommEs1OFIrJLvH78PkEDWijPN+Pv7GVH//9bcCJ/QaYOrZX0ufeEldGl/WPw9L7m6444TrmlHyNe95dT1DBrw0vBrO+jeYwITdanVMPCeUzr8OPEnQnmXtv7t9hwHFNEj+FXiyhZFnJCGek+NUHIqY+0wbf+b9W72y0T2hEZiqdm8mIaWVVDZUPXcv58hrd5KNGQ+0BGPZVOP3OmHNoQvwXhlnfRggTcqPVGfTZKjefuaIKflFUlR6fvAUVb8Fbs2HawrTizSPFT0QIBBXFmTYtZOmePbR72BIHGNL90JSHtycTNtnl75dwtW9ZeFkIDfARZPx1cPqdzZ6fxYYbiTAhN1qfcD7zz0HcTIyRJmqg1hnGD05mxW0VsH83HPtVyk+/M+kokshJH+5auKaRRVtZVUPN/lq+eVJf1uz8hLOHdm8yhVpk5EwyIYs+caZimzrWTdNcMQve+AO996wH9xxVIagQwM+S/jfxpdNvbFReZOtjxuKNTWL5LTbciIUJeRHTWlnymhwnIh+LfPYJLP194/km/W3hoC4wa6Ij6iFeuw/W/ws69YDB5zaZxixeJ2p5786NXCbr39vbZLBQSDzbljjRLuKGLKYyx2VQldvmr3YSZm24z6kvrhtFGtLbLg8M4j6Zyg0nXh73enkZy28UPibkRUprZcmLe5yIfCwMmuhY3vs+hEO6OT7yLUvcCSui2LXe+dv0ElQ85Hy3fzcM+yrLSr4WFtXagPL4G1uZu6K6UQ7weIOFQutvmzQkLPJ3LVzDZHeCh0RzXIbEFqA+qGx9/g+Ub2/aoSnAnh4nUdn/Xm5I8PL0OpbfKHxMyIuU1hoFmNRxIkU9En+bxhZ5NO+93fD5tfu49OgV/L7k2+Fh+7GG7scaLBQpjjX7axtZwELiFL/lvTtz17lD+cn81QSCykjZwKTqe8JD7cMcMRDGfZvDRk2jaTb2xngdy28UPibkRUomhvbHctO0+DilY2DaPx1Lff1zsHdHs7sctuMVXu1/OB99sIOdew7Qy/cBi3QMh3T4RXhUZ/RgobvOHZqwvpNH9mSyO8FD5FRzkctTx/Zi9Y6PefyNrYzzrUUIRuQnF4jo0EyGVKJhmhtoZRQHohHhWK3FqFGjtKKiotWPazTGq4c+1SyELaJiFqydz54D9Ry6Y4kbsBifyLt6b7Adm7Qn8ziF8666FSBhfZrr3Iw10XJlVQ0X/9/rHKvrmd3WCa1EfLzS/yY6nXi156Ia65oDNqlEgSMilao6Kvp7s8iLGK/ikJtzn7Qks2EklVU1LNt7Ip0HfIm7Fq5hSOBLXFjyKmeW+Ti8ZnVcaz1kFXeUzxkhmxjBJvb/eS4HH3wQ5cO+Cr1jW8mJrkusiZZD53bViX146FW4tPbHHO9fy3KOoXJ1f9quW+a5qMa65qE6Wcdo8WFCbqRNc+6TdDpWY0VwVOoAVtYN4KM+A7nmyn5seX4GsnYBB3c+iiM2Px2R/tUNa3RNd1XoEKiBT2qciJIVj0K3Y6DrAGfO0ajp52JZ5R/s/bxR/T7c+3mjcwuJ+Yr6AeFtaqNE1YsWSrxrbkmzihOvJl8+C7gf8AMPqerdXpRr5AfN+XTT6VhtLoKjsqqGS5f0pbb+u7Td5ePZCWOQtQto++FajvJ/HJ5ZB6Ji1QEO1EDVa85fxaPwjeegdExct8W8FdUsXv9BePcSHxzRsV2jc1uz85NwBEuIoMLeA3Ux48JbaqnHu+Y2bL848WLyZT8wAzgdqAbeFJEFqvpOumUb+UMid0Q6HaudO7TF546kadumaQTHjMUbGwnpP9ucybjzpjJl5uv8MvAAp/tWUB8UOvv3E6HpMQjCC3dAz9H0f/NxnuIgVvr7Ma9+Av/376688u6H4WgY3HIuHt2LySN7Mi8ibcDZQ7vz5paPmmz70Kv/JaiKL2KUabruj1jX3IbtFydeWORjgI2quhlARJ4AzgVMyA0gvanc7lq4xhFAn3DbpCENoyZdol8SnTu0Zdnm3Zw8sBs/fOeasJheEniRKSUvM+iQT2m3/73YB9y5CqpeoyMwxAdDqGKq/0VqNh7CLjrxJ99ZPBE8FQHatfGFBxtFn9vAozoyb0U1f6vYRiCoSMSgHlD8PkHV4sIN7/BCyHsA2yKWq4GxHpRrFBAtsRQj3SqCUrO/aUx5pJBGui1K/D7a+IW6gGP9PhE8lb/Vncr3Rw/kmn4fwWv3Oy6VAzUNhYnf+S/8D6BwuOzjcNnHL30Pc73O5dNDetOxdCjdfF2AMU3OLbQcCluMThFgceGG17RaZ6eITAemA/Tq1auZrQ0jeZdMSDgj3SyBQJBLxjj3WcgyDpdR2g8ume3svOh2WLsABp/jLLvD6kMdppF+dQWOlD3I/j2wfhVsmAO9jof6z+C4y5ukDIgU+FSyKhpGqqQdRy4ixwN3qOqZ7vLNAKr6y3j7WBy5kSypRHiEOilDwh+ZQyVpEV10O/zHmfRBI8IaE8WsN2wkcFgfmPx/sUeqGkaaxIsj90LIS4ANwKnAduBNYKqqrom3jwl5cdGaow09PVbFLHjjf2Hf+41dMMlweF843wTd8JaMCblb+JeB+3DCDx9R1Z8n2t6EvHhoreRcGWfb8th+9YT4wiGNhuEF8YTc50XhqvqMqg5Q1S80J+JGcRFvBGLeUTqGyuMfYMaYF9g57JuOxX10eTg5V2xzKNiQV90wMoiN7DQyitfJuVqbkKsmMiLm9yUnM/uqmwB4+qGf8TX+RS95j3a+QCNFV/HhK5uQpZobxYQJuZFRWhpDniyZ9L9HpweIHsgDMLv+S/xFv4Rf4HuHL+XCvY/RiU/ZpEezrvwOLjS3itEKmJAbGSdTow0z7X9vlB4gYiCP3yfs2HOAIUd3osTnxKqLwP17xvObwAkAtPULc4473rO6GEYiTMiNvCXTk2PEmuBh9Y6PeaqymjnLt1Li9xF0t1WEoDthhQAnD+zW4myP8bBc40Y8TMiNvCUd/3syohjLLTRj8UbqAw0vD3A7O4MNCb38PuHlDR/ywtr3PWspFEz0j5ERTMiNvCWdHC6XPrSMz+uC+N1ZgqJzuIS2iy478uXh9/tANTxqNDT0fseeA8xZvtXTlkJrTc1n5Ccm5EZe05z/PZYYL9u8O5ydsD6o3Dbfnfk+alajWBZw9MsjVF70dGtzIzIiehGpk+/RP0ZmMSE3CpZ4Yjyubxf8PqHe9WkHgsq8FdWNhDyRBRwrSVboeCFRb66lkKq/O9PRP0Z+Y0JuFCzxxLi8d2fuOrdh5nvFSawVSksLqVvAj7+xldvmryaoGn5pXHNKv5jbttTfbbnGjXh4MrLTMHKRkBj7hSZiPHVsLy4eXRpOhhUIaqNRpyEL+PtnDGxWaCurarht/mrqg07O8dpmRrAWzGhXI2cwi9woWJpzR1wQNbtPtNWdrAW8bPNuAsGGIZ0iwvY9B6isqom5v/m7Da/xJGlWqljSLCNXaElsdvQ+YVdJXRBxQxCDSkK3icWEGy0hXtIss8iNoiZVv3M8/3bI8t++5wBPJBF6aP5uw0vMR24YKRDPv13euzPXnNKPC0b2jOuXN4xMYRa5YaRAc/5tCxM0soH5yA0jgmR81174t1Odws5eDAaYj9wwmiXZ+O50/dupxJFbjhUjGcxHbhgu8fzflVU1zFi8kcqqxlO8xfu+pcdJd1ujeEnLIheRXwNfAWqBTcAVqrrHg3oZRqsTy/8dzyJOx1JOJY7cYs6NZEjXtbIIuFlV60XkV8DNwI/Sr5ZhtD7x0tbGGuafTjbCVDpErfPUSIa0hFxVn49YXAZcmF51DCO7RPu/41nE6VrKqfjZW5Lh0SguPItaEZF/AH9V1cfirJ8OTAfo1atXeVVVlSfHNYxME08oc0FArTO0uGhx1IqIvAAcFWPVLao6393mFqAemB2vHFWdCcwEJ/wwyXobRtaJZxHnwuhMm3DCgCSEXFVPS7ReRKYBk4BTNRtB6YaRx6Rr7VtnqAHpR62cBdwIfFFV93tTJcMoDryIiLHOUAPSj1p5AGgHLBIRgGWq+s20a2UYRUA8t0iq7pJccPEY2SXdqJXYU6AYhtEsmYqIMYoPG6Jv5D35nLdk8sieiPt/5Jyg5i4xUsGE3Mhr8jVvSXRdJo/s2Wi9uUuMVLBcK0bWaWnOEsjfvCW5VBcj/zGL3Mgq6VrJ6eYtyZarxfzghpeYkBtZJd0BLenkLQGy5moxP7jhJSbkRlbxwjJtad6SeAmxWgvzgxteYUJuZJVsWqbm3jAKBZvqzShqci0c0TASYVO9GUYMzL1hFAIWfmgYhpHnmJAbeUE6seaGUeiYa8XIeXJpRKZh5CJmkRs5j42CNIzEmJAbOU8oTNAvWJigYcTAXCtGzmOjIA0jMSbkRl5gYYKGER9zrRiGYeQ5JuSGYRh5jidCLiI/EBEVkSO8KM8wDMNInrSFXERKgTOArelXxzAMw0gVLyzye4EbgdbPvmUUNDaa0zCSI62oFRE5F9iuqqtEpLltpwPTAXr16pXOYY0iwEZzGkbyNCvkIvICcFSMVbcAP8ZxqzSLqs4EZoKTxjaFOhpFSLozBxlGMdGskKvqabG+F5FhQB8gZI33BFaIyBhVfc/TWhpFh036YBjJ02LXiqq+DXQLLYvIFmCUqu7yoF5GkWOjOQ0jeWxkp5Gz2GhOw0gOz4RcVcu8KsswDMNIHhvZaRiGkeeYkBuGYeQ5JuSGYRh5jgm5YRhGnmNCbhiGkeeIausPshSRD4GqqK+PAAo9Bt3OsTCwcywM8vEce6tq1+gvsyLksRCRClUdle16ZBI7x8LAzrEwKKRzNNeKYRhGnmNCbhiGkefkkpDPzHYFWgE7x8LAzrEwKJhzzBkfuWEYhtEycskiNwzDMFqACblhGEaek1NCLiI/FZH/iMhKEXleRI7Odp28RkR+LSLr3PP8u4gclu06eY2IXCQia0QkKCIFEd4VQkTOEpH1IrJRRG7Kdn28RkQeEZEPRGR1tuuSKUSkVEQWi8g77n16XbbrlC45JeTAr1X1WFUdASwEbstyfTLBImCoqh4LbABuznJ9MsFqYDLwSrYr4iUi4gdmAGcDxwBTROSY7NbKc2YBZ2W7EhmmHviBqh4DjAOuyfffMaeEXFU/iVg8GCi4nlhVfV5V693FZThT5BUUqrpWVddnux4ZYAywUVU3q2ot8ARwbpbr5Cmq+grwUbbrkUlUdaeqrnA/7wXWAj2yW6v0yLkZgkTk58DlwMfAKVmuTqa5EvhrtithJE0PYFvEcjUwNkt1MTxARMqA44A3slyVtGh1IReRF4CjYqy6RVXnq+otwC0icjPwHeD2Vq2gBzR3ju42t+A08Wa3Zt28IplzNIxcRkQOAeYC10d5A/KOVhdyVT0tyU1nA8+Qh0Le3DmKyDRgEnCq5mkgfwq/YyGxHSiNWO7pfmfkGSLSBkfEZ6vqvGzXJ11yykcuIv0jFs8F1mWrLplCRM4CbgTOUdX92a6PkRJvAv1FpI+ItAUuARZkuU5GioiIAA8Da1X1t9mujxfk1MhOEZkLDASCOGluv6mqBWXxiMhGoB2w2/1qmap+M4tV8hwROR/4PdAV2AOsVNUzs1opjxCRLwP3AX7gEVX9eXZr5C0iMgc4GSfF6/vA7ar6cFYr5TEiciKwBHgbR2sAfqyqz2SvVumRU0JuGIZhpE5OuVYMwzCM1DEhNwzDyHNMyA3DMPIcE3LDMIw8x4TcMAwjzzEhNwzDyHNMyA3DMPKc/w9gwtNCoL/VxgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], model.predict(X_test), \".\", label=\"predictions\")\n", - "ax.set_title(\"Piecewise Linear Regression\\n4 buckets\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Piecewise Linear Regression with a KBinsDiscretizer" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseRegressor(binner=KBinsDiscretizer(n_bins=2),\n", - " estimator=LinearRegression(), verbose=True)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.preprocessing import KBinsDiscretizer\n", - "\n", - "model = PiecewiseRegressor(verbose=True,\n", - " binner=KBinsDiscretizer(n_bins=2))\n", - "model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAhElEQVR4nO2deZwU1dW/n9M9w+KGZMCVZSCsCiLMCChqNOAWCChoVDQJ+ipZNGr01cQlqCQm5qdGTWKSF0UxkSUqKIq7ERUXRAYhoCwCMjCICzgoiDoz3ef3R1X39PR093RPV08vc57PZ6Crq+rWreqq7z117rnniqpiGIZh5C++bFfAMAzDSA8TcsMwjDzHhNwwDCPPMSE3DMPIc0zIDcMw8hwTcsMwjDzHhLzAEZHdItIzB+pxnYjc14LHe1dETmip4xUqLf27Gc1DLI48/xGRTcCBQAD4EngGuFRVd2ezXplGRG4Ceqnq+dmuSzxEpBT4AOd3AdgO/ENVb81apYyCwyzywuH7qroPMAQoB27Icn1aHSJSlGD1/u7vcybwGxE5qYWPbxQwJuQFhqpuxbHIBwCIiIpIL/dzWxG5XUQ2i8jHIvIPEWkf2ldExonIchH5QkQ2iMip7vcdRGS6iGwTka0i8jsR8bvrKkWkzP18nnu8w93l/xGRx93PN4nIQ+7ndiLykIjsEJGdIvK2iBzY1LFSQUQ2icioiGM/LCL/FJFdrtulPGLbQ0Rkroh8KiIfiMhlEeuGisibbj23ichfRaRNxHoVkUtE5H3g/SR+n6XAu8CREWVcKCKrRaRaRJ4Tke4R604WkbUi8rmI/E1EXhGRi9x1k0TkdRG5U0R2ADcl+o1FpJOILHDP5TMRWSQiPnfdr9zrvcs93sjo381dHutev50i8rKI9I+65v8rIv916/tvEWmXws9mNBMT8gJDRLoC3wPeibH6VqAPjoj0Ag4Fprj7DQX+CVwN7A8cD2xy95sB1Ln7DAZOBi5y170CnOB+/g6w0d03tPxKjHr8GOgAdAVKgJ8CXyVxrHQYC8zBObcngL8CuEL2JLAC53qMBK4QkVPc/QLAL4FOwNHu+p9HlX06MAw4rKlKiMhwnEZ2vbs8DrgOGA90BhYBs911nYBHgWtxrtNa4JioIofhXPMDgVtI8BsDVwFV7nEOdI+rItIXuBQ4SlX3BU6h/rePrHsft25XuGU8DTwZ2bABPwBOBXoARwCTmromhgeoqv3l+R/OQ7cb2AlUAn8D2rvrFOeBFhw/7bcj9jsa+MD9/H/AnTHKPhD4JlSe+925wEL38/8AT7ifV+OI7hx3uRIY4n6+CXjI/Xwh8AZwRCrHilG3cJlxrsmoiO1ejFh3GPCV+3kYsDlq32uBB+KUewXwWMSyAt9N8NuUutvsxGmsFLid+v6pZ4D/idjeB+wBugM/At6MWCfAFuAid3lSZN2T+I2nAvNx+hUi69gL+AQYBRTHu8bAb4CHo+q6FTgh4pqfH7H+/+H0B2T9GSn0P/OpFQ6nq+qLCdZ3BvYCKkQk9J0AIbdFVxwLK5ruQDGwLWI/H46ggGNx3y4iB7tlPQzc6HbydQCWxyjzX+7x5ojI/sBDwPVJHCsdPor4vAdo5/qUuwOHiMjOiPV+HMs4ZIX+CaffYS+gCKiIKjuZ+nXCEfHLgYk451njHv9uEbkjYlvBsaQPiSxbVVVEqhIcu6nf+DYcYX7eXT9NVW9V1fUicoW77nAReQ64UlU/jDrWITiNc6g+QRHZ4tY1RPR1PiTGtTA8xlwrrYftOBbh4aq6v/vXQZ0OOHAE4dsx9tuCYyV3ithvP1U9HEBV1+M8sL8AXlXVL3Ae5snAa6oajC5QVWtV9WZVPQzHVTAGx/pMeKwMsQXHYt0/4m9fVf2eu/7vwBqgt6ruh+OOkKgykgr9UtWAqv4J+Jp698wW4CdRx2+vqm8A24Auof3FUd8u0cVGfE74G6vqLlW9SlV74riargz5wlV1lqoei9OwKPDHGKfwobs+sj5dcaxyI4uYkLcSXEG9F7hTRA4AEJFDI3zB04ELRGSkiPjcdf1UdRvwPHCHiOznrvu2iHwnovhXcHysIX/4y1HLDRCRE0VkoNuJ+QVQCwSTPFY0PnE6T0N/bVO8NEuAXW5nX3sR8YvIABE5yl2/r1vH3SLSD/hZiuXH4lbgGrcj8B/AtVLfQdxBRM5yt3sKGCgip7tvD5cAB8UrtKnfWETGiEgvV4A/x/H/B0Wkr4h81712X+M0Bo0aYJy3rdHuPVKM43P/BsdNZmQRE/LWxa9wOtkWi8gXwItAXwBVXQJcANyJ85C/Qr319SOgDfAeUI3TAXdwRLmv4Ajeq3GWoznILeMLHL/6KzjulmSOFc25OMIT+tuQYNtGqGoA543gSJx47+3AfThuIYD/xXGF7MIRyX+nUn4cnsI5t4tV9TEc63eO+5usAk5z67YdOAvH17wDx7e/FEc84xH3NwZ6u8u7gTeBv6nqQqAtTuOyHedt6gCcfoIGqOpa4HzgL+6238cJe61p1lUwPMMGBBlGnuBG2FQB57kCbBiAWeSGkdOIyCkisr/r9gj55xdnuVpGjmFCbhi5zdE47qKQK+N0Vf0q8S5Ga8NcK4ZhGHmOWeSGYRh5jgm5UTC4uUdey0C5M0Tkd16XaxheYUJu5CxuAqjp4iTm2iVOQq/Tsl2vZLEGwGgpTMiNXKYIZ+Tjd3Dium8AHnaH/xuG4WJCbuQsqvqlqt6kqptUNaiqC3AG7ZQl2E3ESTX7uYisCQ1Bd1eEU9u6y9EpWo8VkTfcFK1bRGRSjML3FZGFIvJncegnIi+IkxZ2rYj8wN1uMnAezgjO3SLypPt9zHSxhpEOljTLyBvEyVneByefdzyG4YwG7YSTGnaeiPRQ1c+aKLs7TibCye7+++HkEYncpsTd5nlVvUFE9gZewEkTexowEHhBRFap6jQROQaoUtUb3P0j08V+6L5ZpJxr3TCiMYvcyAvc3B4zgQdVdU2CTT8B7nITc/0bJ4f36CQOMREn1e1sd98dqro8Yv0hOKkEHgkJM87Q/k2q+oCq1qnqO8BcnGH1sQjgDIc/TESK3TeNlFIKGEYsTMiNnMcdmv4vnLSvlzax+VZtODiikuRSqXYlcZ6W0UB7nCRXIboDw1xXzE5xUuGeR5zEVm6myCtw0sV+IiJzRMTSvBppY0Ju5DRupr7pOJNOTFDV2iZ2OdTdJ0Q3nPSr4Ey6sFfEukjBjZfGN8S9wLPA065LJbTPK1EpaPdR1VCGxEaj7ZJMF2sYKWFCbuQ6fwf642TZS2Zo+gHAZSJS7KaD7U/9hBnLgXPcdeU4EyGHmAmMEpEfiEiRiJSIyJFRZV+K46p5Upx5MBcAfUTkh26ZxSJylNTPY/kx0DO0cwrpYg0jJUzIjZzF7YD8CU6K2Y/c6I/dInJegt3ewknXuh1nDsszVXWHu+43OFZ3NXAzMCu0k6puxpnr9CrgMxzRHxRZsOuymYyTgXA+Th71k4FzcKz+j3As7FBO9Ok4/vCd4kxCnVS6WMNIFcu1YhiGkeeYRW4YhpHnmJAbhmHkOSbkhmEYeY4JuWEYRp6TlSH6nTp10tLS0mwc2jAMI2+pqKjYrqqdo7/PipCXlpaydOnSbBzaMAwjbxGRyljfm2vFMAwjzzEhNwzDyHNMyA3DMPKcnMlHXltbS1VVFV9//XW2q1LQtGvXji5dulBcXJztqhiG4RE5I+RVVVXsu+++lJaW0jB5neEVqsqOHTuoqqqiR48e2a6OYRgekTOula+//pqSkhIT8QwiIpSUlNhbj2EUGDkj5ICJeAtg19gwWpaKymruWbieisrqjB0jZ1wrhmEYhUZFZTXn3beYmrogbYp8zLxoOGXdO3p+nJyyyHOJm266idtvvz3u+scff5z33nuvBWtkGEa+sXjjDmrqggQVauuCLN64o+mdmoEJeTMxITcMoymG9yyhTZEPv0BxkY/hPUsycpy8FnKvfU+33HILffr04dhjj2Xt2rUA3HvvvRx11FEMGjSICRMmsGfPHt544w2eeOIJrr76ao488kg2bNgQczvDMFo3Zd07MvOi4Vx5ct+MuVUgj4U85Hu64/m1nHff4rTFvKKigjlz5rB8+XKefvpp3n77bQDGjx/P22+/zYoVK+jfvz/Tp0/nmGOOYezYsdx2220sX76cb3/72zG3MwzDKOvekUtO7JUxEYc87uyM5XtK50ItWrSIM844g732ciZZHzt2LACrVq3ihhtuYOfOnezevZtTTjkl5v7JbmcYhuE1eWuRt5TvadKkSfz1r39l5cqV3HjjjXFjsJPdzjCM1kumQhHzVsi99j0df/zxPP7443z11Vfs2rWLJ598EoBdu3Zx8MEHU1tby8yZM8Pb77vvvuzatSu8HG87wzAM8N4dHEneulbAEXOv/E5Dhgzh7LPPZtCgQRxwwAEcddRRAPz2t79l2LBhdO7cmWHDhoXF+5xzzuHiiy/mz3/+M48++mjc7QzDMMBxBx8eWMMw32qWBPqzeGNvz/RLVDW5DUXuB8YAn6jqAPe7bwH/BkqBTcAPVLXJZqa8vFyjJ5ZYvXo1/fv3T6XuRjOxa20Y3lFRWc3ijTsY3rMkoTCveftFui84l2LqqKWIyjGz6XfUqJSOJSIVqloe/X0qrpUZwKlR3/0a+I+q9gb+4y4bhmG0CpJyl2xZAovuoN/HC2jnq6NIgrTzBej39QrP6pG0a0VVXxWR0qivxwEnuJ8fBF4GfuVFxQzDMHKdJqPntiyBB8dCoAZ8RYivCIIBxN8GSo/zrB7p+sgPVNVt7uePgAPjbSgik4HJAN26dUvzsIZhGNknFD1XWxeMHT23aZEj4hqAIFD2Y+jQxRHxrkM9q4dnnZ2qqiIS1+GuqtOAaeD4yL06rmEYRrYIRc/F9ZGXHgf+No6Y+9vAoHM9FfAQ6Qr5xyJysKpuE5GDgU+8qJRhGEa+kDB6rutQ+PETjmXusRUeSbpC/gTwY+BW9//5adfIMAwjTZKNJGkRug7NmICHSDpqRURmA28CfUWkSkT+B0fATxKR94FR7rIBvPzyy4wZMwaAJ554gltvjX9pdu7cyd/+9rfw8ocffsiZZ56Z8ToaRiGSyYE3uUoqUSvnxlk10qO65AWBQAC/35/SPmPHjg3nbolFSMh//vOfA3DIIYfw6KOPplVPw2iteJ2HKR/I2yH6QDg+ky1LPClu06ZN9OvXj/POO4/+/ftz5plnsmfPHkpLS/nVr37FkCFDeOSRR3j++ec5+uijGTJkCGeddRa7d+8G4Nlnn6Vfv34MGTKEefPmhcudMWMGl156KQAff/wxZ5xxBoMGDWLQoEG88cYb/PrXv2bDhg0ceeSRXH311WzatIkBAwYAzlymF1xwAQMHDmTw4MEsXLgwXOb48eM59dRT6d27N9dccw3gNDSTJk1iwIABDBw4kDvvvNOTa2MY+UJL5WEK47EONYf8HaIfGZ/pb+N0KHjgh1q7di3Tp09nxIgRXHjhhWGXR0lJCcuWLWP79u2MHz+eF198kb333ps//vGP/OlPf+Kaa67h4osv5qWXXqJXr16cffbZMcu/7LLL+M53vsNjjz1GIBBg9+7d3HrrraxatYrly5cDToMS4p577kFEWLlyJWvWrOHkk09m3bp1ACxfvpx33nmHtm3b0rdvX37xi1/wySefsHXrVlatWgU41r5htCaajCTxkgzpUKrkr0UeGZ8ZqHGWPaBr166MGDECgPPPP5/XXnsNICzMixcv5r333mPEiBEceeSRPPjgg1RWVrJmzRp69OhB7969ERHOP//8mOW/9NJL/OxnPwPA7/fToUOHhPV57bXXwmX169eP7t27h4V85MiRdOjQgXbt2nHYYYdRWVlJz5492bhxI7/4xS949tln2W+//dK/KIaRZ2QqB3ij7IUZ0qFUyV+LPDo+06NRUtGzzIeW9957bwBUlZNOOonZs2c32C5kTbckbdu2DX/2+/3U1dXRsWNHVqxYwXPPPcc//vEPHn74Ye6///4Wr5thFBoxJ1LOkA6lSv5a5KH4zO9e7+nrzObNm3nzzTcBmDVrFscee2yD9cOHD+f1119n/fr1AHz55ZesW7eOfv36sWnTJjZs2ADQSOhDjBw5kr///e+A48/+/PPPG6XEjeS4444Lp8Vdt24dmzdvpm/fvnHrv337doLBIBMmTOB3v/sdy5YtS+HsDcOIR8yJlDOkQ6mSv0IOzkU77ipPL17fvn2555576N+/P9XV1WE3SIjOnTszY8YMzj33XI444giOPvpo1qxZQ7t27Zg2bRqjR49myJAhHHDAATHLv/vuu1m4cCEDBw6krKyM9957j5KSEkaMGMGAAQO4+uqrG2z/85//nGAwyMCBAzn77LOZMWNGA0s8mq1bt3LCCSdw5JFHcv755/OHP/wh/YtiGAVEcyd3GN6zhKFF67mkaD5HFa2v70TNgA6lStJpbL0kV9PYbtq0iTFjxoQ7CguVXLjWhpENYrpHkvWjb1lCcMb3w24U36QnW1y8vUhjaxiGkdfEdI8ky6ZF+IK1+AjiC9ZmrWMzFibkEZSWlha8NW4YrZm0YsxDHZviz2rHZixyKmpFVRtFjRjekg1XmmHkCmnFmLdQAqzmkDNC3q5dO3bs2EFJSYmJeYZQVXbs2EG7du2yXRXDyBppzfXbAgmwmkPOCHmXLl2oqqri008/zXZVCpp27drRpUuXbFfDMAwPyRkhLy4upkePHtmuhmEYRt5hnZ2GYRh5jgm5YRhGnmNCbhiGkeeYkBuGYeQ5ngi5iPxSRN4VkVUiMltELL7NMAyjhUhbyEXkUOAyoFxVBwB+4Jx0yzUMwzCSwyvXShHQXkSKgL2ADz0q1zAMw1tyYGo2r0k7jlxVt4rI7cBm4CvgeVV9Pno7EZkMTAbo1q1buoc1DMNInRyZms1rvHCtdATGAT2AQ4C9RaTRPGeqOk1Vy1W1vHPnzuke1jAMI3VyZGo2r/HCtTIK+EBVP1XVWmAecIwH5RqGYXhLDmcwTAcvhuhvBoaLyF44rpWRwNLEuxiGYWSBHM5gmA5e+MjfEpFHgWVAHfAOMC3dcg3DMDJCjmYwTAdPkmap6o3AjV6UZRiGkTZblhSc1Z2InMl+aBiG0RQVldVNTwqxdAY89UvQIPiK4YKnC17MTcgNw2hxkhLkGPs0OXHyliX1Ig4QrIXX74ZzZnp8BrmFCblhGC1Kc2eyjzVxcqP9Ni2qF/EQu7Z5WPvcxJJmGYbRojR3JvukJk4uPc5xp0Qy+Ece1Dq3MYvcMIwWJSTItXXBlGayT2ri5K5DHZ/463c7lvjgH0H5JG9PIAeRbMyqXl5erkuXWqi5YbRWmuMjN0BEKlS1PPp7s8gNw2hxEs1kbyKfOq1eyO2mMYzcobkdoa2dVi3kdtMYRm6RVGSK0YhWHbXS3N5zwzBiU1FZzT0L11NRWd2s/SMjU/x+H1t3ftWwrC1LYMEvYcEVBZVPPF1atUXe3N5zwzAak+wbbiJ3ZigyZd6yKh5ZuoU5SzYzb1mVU5bvfZgxBgLfOBu/MxMmPVXwozaToVULeVLhTIZhJEXkG25NXZC7XlzHFaP6NHiukhH7su4dWbxxB3VBbehiKXJziYcI1DoDgEzIW7drBZyb5pITe5mIG0aahN5wfQJBhdfe38559y1u4BpJ1p0Z6WI5qmg9p++eA+1LnBziIfzFcfOJp+viyTdatUVuGEZjmhvJFXrDvevFdbz2/naUxh2WybozQ2V98M5Cxq/8Pb5ltY6In/b/4KMVgMKgiTGt8dYYxGBCbhhGmHRFsKx7R64Y1Ye3N30WU6zjuTNjNR5lvvcp+/Svrk9cHbfKVztgzJ0J69AaI19MyA3DCOOFCIbEeu6yKiTO+ib95r73Ycbohj5xnz+pqdlaYxCDCblhGGHiiWBz3C3zllVRUxdkbijqJM5+MRuPokVOZ2Ykg89PqmOzNQYxmJAbhhEmlgg2x92SimUf3XiM3GcTfFzlWODBOmcjf1sYdG5K59EaBDyEJ0IuIvsD9wEDAAUuVNU3vSjbMIyWJVoEm+NuScW9Edl4jNxnE/2eO99xqfiKoN8psM+BjognGWbYGtNueGWR3w08q6pnikgbYC+Pym3I0hmwej70H9cqUlMaRi7QHJ9zqu6Nsk/nU1Y1H4rbOyKuAQjC1r0P4/G9z2F4sISyJOraGiNWwAMhF5EOwPHAJABVrQFqEu3TLJbOgAWXO583vOT8nyExb40tumHEo7k+56TdG5HPNjiWOH6CvmKuWrIvS+rWZsSlU0h4YZH3AD4FHhCRQUAFcLmqfhm5kYhMBiYDdOvWLfWjrJ7feDkDQt5aW3TDSERGfc7Rz/bBg6DfaObt6MGSt9pmzKVTSHgxsrMIGAL8XVUHA18Cv47eSFWnqWq5qpZ37tw59aP0H5d42SMskZZhtDDRz/LgH8FxV9Fj8IlNT+0WRejt4cqT+7YqI8wLi7wKqFLVt9zlR4kh5GkTsr4z7CNvrS26YbQoW5Y4eVJKj4v7bKfj0gHCRlhrEPO0hVxVPxKRLSLSV1XXAiOB99KvWmMqOo9j8a5jGd45uY6P5tAaY1CNwicT/T7NKbOishp94UaGVP0LHwpF7eDHTzjiHcM4a44ot0b3qFdRK78AZroRKxuBCzwqN0xL/jitLQbVKGwy8ew0p8yKymp23/d9jvetdL4QoO7rhBkMMx3DXih4kv1QVZe7/u8jVPV0VfU85Zj5rg2jeXj97FRUVnPXi+tSLlNfuDEs4iLOgBNEEg67b07dIzMnthb3aN6M7DTftWE0Dy+fnZCF/E1tEAV8KYjlgM9fAVwRVxyL/JjLEg70aYkY9kIgb4S8Nf44huEFXj47IQtZcV7nBx7agcMP7ZDUvu2OOB19/S5HxIFXAwPZp88VCfu7Mh7DXiCIhq5qC1JeXq5Lly5t8eMahpEeYZ91bRAR8PmEQFCT9l8vve8ySjY/yzOBo7gjOJErT+7LJSf2aqHa5z8iUqGq5dHft/oZgtiyBBbdYRO5Gq2aZGfUKevekSljDsfnE8dvHdD4/uulM+BfZzj/u8hJN3Oa3s0dwYnmIvWQvHGtQAZCqLYsgQfHugl6/HzS6yxebT+KHoNPbFWvZUbrJtXIkOo9NQRVCb3LCzH85C/ciL5+l/N5w0tOXvLySeYizRB5I+QZCT/ctCicoEcDATqtmck45jC14gK46Aa7yYxWQarhepEdkH6fcFZ5V8YP6VK/z5YlBF//M6L1HZufL3uUDhEDfezZ8pa8EfKMxIaWHufMA1j3NaD4BEQD3Oi7n9XPVsP3fmozdBsFT3RkSMe92nDPwvVxLeaEVvXci2H1E0CwPjoFqNj7eL5L/LdqS1SXHnnT2RmyyEM3m2cDgrYsgRWz0Ip/QjAQERolSGjUmYm5UeCEhLTjXm2YuuDd5r35zr0YVj4MODHiQSdQnOnBMZRd9BeAmG/VrXEkZnOJ19mZNxZ5xnxrXYdC16HIQUcSfOoq0DoQkNBkrwlGnRlGoRByd9yzcH3MN99Ioa/eU9P4GdyyxLXEHQSgqB2PDfw7ZW6fU7yyW+NITK/JGyGHDPvWyifhO/AwWDEb3nkIggHH7ZLEZK+GUSjEGoATaxBQA8t56Qx4+qr6adlc/IeN5czTxycsO9H3RvLkjWulRYnMzFaA1rj5I41ERN8f9yxczx3Pr3VdJQ5+wYkB3/c1eOqXoMH6lUXtoP9YmHBvo7JnvbWZZ1Zt47QBBzNxWP28BKnck635/s1710qL4rpbChHzRxqJiCWSIYu5pjZIkPph+aNrn4Onbmgo4r4i+PGTMZ+fisrqsP/97U2f0fegfcPHSPZt2+7f2JiQuzSrlc+A5Z5pa8P8kUaiyJFYIhnZPxXykY+ufY7SN+tFXAHFx+bhUymN8yx4ce/Z/RsbE3Ka2co3GExUBIMnwqCJaQl6KvVoruCbP7J1k+geSySSYYt5yxJ48UaofCNcphOhItxQdwFzX+nBWV+ubBhX7uLFvWf3b2xMyGlmKx8xmIhAwOnwWT4nrXDFZOuRzuuljaxr3SS6x5oUyS1L4IHTGnVqKj5uqLuA2YGRgDLrrc3MXVbV6L704t6z+zc2JuQ0s5UvPY6grxgJBAH1JFwx2Xqk+3ppI+taL00N/kkokpsWNRJxEDYf8zseW9QTCQRdF0v8+9KLe8/u38aYkNO8Vr4i2Jvbaq5jjL7CWf5XaONTJM1wxWTrYa+XRnOJ9nfHGvwT677bNvdX7LN2HnsjzhRtIUZcTulJlzCzbzVzl1XxaEUVgYDdly2NZ+GHIuIHlgJbVXVMom1zPvwwCSJDssp967iq76cc/d3TWyzapTWHYBnNJ3JgzzOrtvHa+9tRIsIJY6SU3Tb3Vxz033+El7/erzvt9+vkzHYfNc+m3ZeZpSXCDy8HVgP7eVhmzhJpFa/y96PNCZOga8vduPZ62TwKSWhSPZfIvpWgOqMvQxNEJLKg273/FFCfAOvr2iDtL34p5rZ2X2YHT4RcRLoAo4FbgCu9KDPXSavTJYWwxeY8rIUiVF5TSDHI6U5KDIRHaY7o1YkrRvVpuP/SGbB6PvQfx9e9R8N//xFOgPV179EZOSej+Xhlkd8FXAPsG28DEZkMTAbo1q1bvM3yimZZH5Fhi/42cOqt8NWOmKKe6sNaSEKVCQopBrk55xIe2OPu58MZat9IxP95Bmx0Le4NL3HwmLvZxk9p9/5TfN17NAdP+GODciONh1DdzJBoWdIWchEZA3yiqhUickK87VR1GjANHB95usfNWxqELX4DT1+FBgMExceWo39L6cmXhDdN9WFtzsOdyIIvNOu+kDqJ052UOG7yK1fEQ3MjKyCr53PwDx8D/tiozEjjocjvA1XqUpj6zfAGLyzyEcBYEfke0A7YT0QeUtXzPSi78AjlQA/UgAgarEMAXzDAoa//hjUd+9LvqFFA6g9rqts3eAijJggoROu+kGKQMzIp8dIZDUXcNbc2HTiK0jjlRRsPkDj80MgMaQu5ql4LXAvgWuT/ayKegK5DnUFDmxZB+xKCT12Jz82DLhqkdtks+HoFlB5HWfehKT2sqT7ckQ9hTaDhQI5CckNEUkidcemcS6O3rS1L4I27wyIeYmPwIJ4tPoVL4pTTYLYgv4+gKoGA4vfn9xtPvmFx5B6QsgsiIinXls++5NDXf4NokAB+Dv/4Sfjoccdq//ETlHUfmrHBPqGHMJSeNNKSKiQ3hNGQ6Letx8cW0++589G6r0AJR4kHgOv5OVcn+O2j3TU3PbGKANSb80aL4KmQq+rLwMtelpnrpOuC2NF3Is988i167n6HwR12c8C6Oa7/3B0lChlLqRt6CGMN5CgkN4TRkMi3rcv1IUqfXQiBrxCgDvhEO/Lf4Ld565DzuXr06Um9CYbS3dYFnUmZA0EtmLe4fMAs8jRJxwVR3wjsR5uiE3m8rJgDNsyrj2hpX9IwwsXDaeci3yJ+f8ZAJgzp0ki0C8kN0ZqJfmMMvW39Xv/CGf7XHdMbxxIPUMRldZezyt+PmaNTM0rsLS57mJCnSTo3b3Qj8J/dpfQL+c9Lj4uKcPFu2rlE6Uq9oNCiXfKZeB3aC498mYNWvg7U+8QF+Lzf2Zx40Pe5thm/nb3FZQ8T8jRpVp6WiGHSjRqBrr0ainUowiU6j0vEgI3oYdJNEdmAfFMbZN6yKk9FvNCiXdKluQ1bOg1iaN+tO79q1KF98rKfcZB/ZYNOTQDEzwHHTuKSro2H6SeLvcVlBxNyD0jl5o0WuiljDo8dzwsNI1wifeRLZ8CCy53PG16C6g+g3X5J+9GH9yyhyO8MDFHgkaVbYuaPbg6FGu3SXJrbsKXTIEbHdhf5hNqA47u+vegejvetbLzTQQNh9J8KdmasQseEvIWJFrrqPTUxExWFiTXt3Or5DZff+LM73toH37ujSQu9rHtHzizrwuy3NnveMWV+0oY0t2FrEBqaYoMYuW8gEOScod2csMKKGY5PnPrBPgAVXX6MnHQzZRG5gsw9ll+YkLcwnghd/3GOJR4iNGdiMAhPXQkfrYBB5ya0riYM6cK8ZVWeC24h+0mbI27N/b077tUmnBMlqM5yskQfc/yQLpR9Oh9dcT/QcLDPq4GBXLDhFHwb32TquAFMHNbN3GN5iAl5C+OJ0IUs7tXz4aAj4M2/1if81wAsvR+W/TOhdZ5Jwc2EnzTbFmJzxa2517l6T02D7ITVe2qSrmujY346H576JYI78tKNFX8sMIKr6pyhPkFVpsxfRd+D9jX3WB5iQp4FPBG68kn1It2xBzx9FQQDhF6YNViHPnUVvgMPi2uZ50vHVC5YiOmIW3Ou8/CeJbQtTi3dQmRjETreB+8sZPCKq/BFTJIcRPhN3YU8yij8Pse1BhB0XWzmHss/TMgLgfJJcOBhsGIWwYp/Iu6Q/2AwwNblz7Proy+ofu8lOh723XAel2iybfEmIhcsxEyLWywhTtaSj9XQAdx23z/5OY+gvrpwjKGIjy3H/I5Di0/hpr3a8PLaT/jP6o9RhTbFyQ0Gy+V7pbViQl4ouJ2iL39+CMetu9XJ20IxSz4STl16Lr2oI7Dx//hk/dkccOykBlZ6UxZvth9cr0Q0nfPIpCsqUVx/qh2joYau/4fz+JfvVnwE8eFY4T6fH753B6XlkxgeFdlyZlkXJkRELsU7di68HRmNMSHPU+KJUodjL+aHa9pSpu9SIYdzQWArxdRRJEH8GqTz2pmwbjbsfQC07wDDfs7iXcfGtXhzQeS9EFEvBChTrqjmvnHEGo9wVNF6zv1gBh03vwAoIhBQYfchx9LhtCnhBjw6suXQ/ds3+M3jXetceDsyGmNCnofEe5UOPXxXX/QjFm/cwdU9S9j7kwpqFzyAaC0+1HnD1iDs/sj5W3A55+zbl5d9E6kI9G5k8SZ6cFvSOktXRHNZgJrzxhFrPEL7//6LsVtvx7c56PzO4uYT9/kbiHjkMWvqgohIOCqmqd/U/Oe5iQl5HhItSvOWVTF3WVWDhy8cm959FGuYTe2yWQz46HEnqiUCBb71xVrmFN3IBv+hrO/xQxZv7A3QIC9HrAc3l8UxmlwWoOa8cURf+8/ff50fVN2OjyASMWRTxIeMvqNRh3dZ945MGXM4U+avIhBUpi54N6mIlUIOL81nTMjzkGhRUkj48PU7ahQcNYpNz5fR9Y0b8BEEdSbTDVluPoXespXem27luvWfcp7vpLA1Fu/BzWVxjCbXBaipN454ia9C137wZ880EHEnr7jA6DvjhqBW76khqJpy+uJ8iXZqTZiQ5yHRogQ0ObinorKa8xb15PDAFK72z2GYb02DlNFhAVC40v8IA4Kb+OCdryjrPj7peuT6w50PAhTLPz3rrc1Mmb+KoDacQi107UfXPkf3NxcA9QN9VHzImPgiDrEb4nz7TQ0HE/I8JVqUmnr4Qq/MFdqHiTqFMt/7XOR7ksNkE1182xvMDNNJvmCi/z/oilf45KsXue29viyp69VARCIFJ2GKgQLHy87eeH0fU+avos6N9Q4N1wfYa8HP+MnORRTVfonziuVY4l92GsQ+425vMm+KiXbhYEJeIDRlbUZbX2eMGc/6PWPo1LOEru7IPzQIEpHWVOvovHYmD/mEDUUH82DwtLD/3ELQvO/snbesKjxbU22EYIcG7AD43I7J3fd9nyFu8iuN/M18RU2KeLzBQ5k4J6NlMCFvJcRyx4SEon5A0Wxk2b8gWBveTwA/Sh/fh9zim05l7bd5auMpLdrJme049nh42dlbUVnNI0u3hBNZRc552bbYR01tEJ9PmDpuAG22LeU4V8RF6pNf4Sty0jI0IeKJhDqfOrCNetIWchHpCvwTOBDnnpqmqnenW67hPSHrK/bD7GZZHHQurJgNuz+Gtc+CBhp0oJV+/CLDj5/YYp2cuWwhptvZG9lALd64I+w+EeDMsvrBOVPGHM4zq7Zx2oCDmXjIR3y+4n4nB4u4PnEh6TS0TQl1PnVgG/V4YZHXAVep6jIR2ReoEJEXVPU9D8o2MkDChzkybe7SGfUuF9zX9/7jKOvekcfHFtcP+8+gsDYlPIms9Uxb8pFvOR33ahN+w0l2ME90HHikgE4Y0oWKyurwfKp1gSDdPniYuqIH2I8ACE4KLAFfz+/Cjx5Lqs5NCbX5zfOTtIVcVbcB29zPu0RkNXAoYEKeo3Tcqw0+ccy5hFZXyOXy+t2waxsM/pHz3ZYl9HvufGfmos33wccTYdDEjExKkEh4ElnrLWXJh8o8997F4TrOvrjpY8XKSx9peYPTDxHymZ/j+w9T/dPxacidIvi+fSKccG1K1z0Zoc6H6B6jIZ76yEWkFBgMvBVj3WRgMkC3bt28PKyRAhWV1Uxd8C5BVXw+YcqYwxtFoTR4iLsOhXNmNiykwVyiAcdyf2cmDD6/yTzoqRJLeEKW6rtbP49rrbekr3eeOxgLnKiS6KnzYl3b6Aaq415tmLrgXWrqgry96TMmDOkSnsHpgaI/8B13aja3/SUogj9FEQ9hQl14eCbkIrIPMBe4QlW/iF6vqtOAaQDl5eUavd5oGeZGREYISvWemtSt19LjnDlE677G8ZyrI+xLH4Dls53p6aKScqXzqh4pPBWV1Zw77U1qApGRHDSy1lvS1xt9M0cuJ0qIFdlARTc8CuGZ7k/wr2wQTQTw4QEn0NWmZTNcPBFyESnGEfGZqjrPizIN76morObRiqr6yAifxBSRJq3X0FyiK2bDOw9BoJYGgr5idnie0Ypg76QaiWTFfvHGHdQGGkrniF6duGJUn6wNJR9wSIe4y4mubbRlHO0jn7z3q3R9402gXsRVnUyGV287gasrq9O6lkbh4EXUigDTgdWq+qf0q2RkisUbd1AXqO+4PKu8a/hBT9l67RoZ5TIL3pnlzFLkK3LEPRgAfxs+GPA3auraJmwkUnkjGN6zhGK/hC3yNkW+RiIeoqVcCJGz+QjwzKpt9D1o3yZz1UTXdeZFw5m7rAoBur9yBZ02Pt5gGwUCwA21F/K29kr7WhqFgxcW+Qjgh8BKEVnufnedqj7tQdmGh8SayxHStF7Dgj7RscI/3wIV/3T95zUc7X+PPxW9wfGygld1EF17zmxURCpvBGXdOzJ78tFhwRsfkUM7GVK1VpPZPjSbT+gcFr2/nbc27mD25KNTvrbzllVxRvAFSooebzDQR4Gadp348ZeX8bb2itsoWBx460RUW95dXV5erkuXLm3x4xYqqYhTxl+7tyyBB8c6LhZ/G+h2NLqxfqJoiREqF7IiQw1MKlZkqueeirWayvYVldVMffJdVlR9Hv5u4rBu/P6MgUmdB8A9C9dT9eLfuNr/bzrK7gb5bwII68c8ypcHlCU833SupZH7iEiFqpZHf28jO/OcVMUpVXdDysIf8p+7PnJm/QAg7Hpg40uO2Ed01DX3jSDVSS9StVZTfVMYcGiHBkIuMbeMz/jP7uWgounhZXX/UYQpdRdy6O5SLjmq6d9vwpAuqPu/iXjrwIQ8z8nEq3TkzDOhkLiU/K0Rg4q2H/wdSjY87viP3eHksmmRs11I7LsObRA2CMkNqpkbIzdJooyByfirI8U/1ciX8UO68EhFVSPXVXS5Mc9t6QwOXvmPsDtFgYC/PQtrD+f/6sawyt+PmUlMwBzZsE2IOL5R2JiQ5zleh9lFioFPhKBqWo3Ev7v+hsPXbeB4/0oCCupvS3H7knr3i88Pg89nzYGjOe+J2riDe6JFMF4ETmhdrIyBl5zYq8lJhaMt/FTeFMq6d2T2xY23b/KtacsSeOpKICL5FVDU+7t86+h7OHHjDq5NYuSq+cdbLybkeY7XYXaRYoA7aEhoYgRoAob3LOG8l65nQO0ajilaw/dOO4t+X62IGlD0AH14kLt0MNMYw4q6PmERiieCiSJwFm/cETNj4D0L1ydMuxtLCC85sVeTfvToTILR2ycU2C1L4OU/NJq5CQRGXEFZ1+QnQbY8Ka0XE/ICwMswu2gxmDLmcKr31KQ1mMdpaHozvOckJy/Llv0I+oohEERQ9y/AKf6ljPIv4+bghQzveQzQWATnLqsKu31iReCEziEyY+BFx/ZIykWUqhAm2z8Rt9wXboQ3/kzkDB+KEye+5ZhbKE0wqCpeo2N5UlonJuRGAzIxkCa6oakI9ua2muv4vr7C2f6F+KV+smA/QW4umoHPdzYwtIEI+n0STiDVJkEjEx2T/cU3dXEt4llvba7PLDisW0rnnqwrI+Y1nXsxrHw4Yithd6cjePKTzjxadyzvLurJzL7Vcd9K4jUONvy+dWJCbjQi02KweOMOltT1YrH2YmWwlN8VP4Cf+kkthKDTEQqUrZzFq4fV8Gr7UbyjvZm9ZHODRFOJZicK5UAp8vvw+QQNaIM837Pe2sx1jzl5vRe9vx1wQgaTPfdmuzJeuDFKxAERnu1yBddvdQZP+bW+YTDr22gKE3KjxQkJ4De1QeYER7Kupis/8S/gpKJ3EFHwt4X2JTBjNARqOAA4k5mMbdcJX9HpzKr7bpPCGSl+dYFgfShghBvjmVXbGuwTGpGZSudmMmIaaVGf63+JwUXT3QYrgmMuo0efE2lTsbhRw2DWt9EUJuRGixPp+ni0oooVgT5cLv/L46OL6ff1CickcdMiN4dLPW2+3s5U/31cse9/2HXkxZR2Py3uMSLFT0QIBJ3Z4gNBDVu6pw04OGyJAxx+8H4pD29PJmwy1KgcyTpu8j+AqNaHYgIM/AGcdDNlxJ971WLDjUSYkBtZIWRNThjSJSxczgQVo+o38hc70S0RCFCy5wNK3rgOtj4Fo26Km2kxctKHqQvebWDRVlRWU72nhp8e35N3t33BaQMOpnpPTUyfd1OTV0SGa04dN4CJwxqmaR65zybKi6fSn0qEQDgVrYogIy6Hk25udF0qKqu5Z+H6RrH8FhtuxMKEvBXTUlnyEh0nrnug61CY9JQTX/3RytgFV74O00+CvTrB4POp6HNFWFSLfMJZ5V3DuVgiXSZrP9rVaLBQSDzbFDnRLuKGLKYyx2VQlSnzV4UTZgHOJBxPnYX6nFBJFOoUFD9bj/ktpSddEvN6eRnLbxQ+vmxXwMgOIbG44/m1nHffYioqq3PvOF2Hwk9fgxFXOGLdPo6A7dkOr99FyWPnhEW1JqDMemtz+Jhl3TuGO0ZDg4WCWj9YCJxGZcqYw/H5HPGcuuBd5rodppFCGsnwniXObEsudUFl3rIqZ2HLEnj21zgBhYQjc2qLO7BhzMOUntxYxCGqcQgqPhH80jjnumGEMCFvpcSKhMjZ45x0M1yzAX61yRH1OFlMuu9czHlFLzXIGBh9zFiDhSLFsXpPTQMLWHBS5cYT0rLuHZk6bgB+X32d5izZzPPPPgEzxsDWigbbC9B+2AX0O2oU8Qj59/0CbYp9TB03gCtP7msJsIy4mGullZKJof2x3CeejzY86WboNxpevwvWPE3kfDwCXPutl/lh4L88uPMI5gS+G55GLTSqM3qw0NRxAxLWd/yQLoyP8OPH8plPHNaNVR9+zqy3NgMwiHWUvnEv6vumcZPjdmwmIpVomFjpACwksfVhaWxbMV499KlmIfSszr734bGfwGcbG22nQK20RX1teLDmBG6tOzdcN6DJVLCJOjdjTbRcUVnN2f/3JmfyIr8rvh8/Go6LV0AOLYNTb/VsPtNY1xywSSUKHEtjazTCqzjkpkY4NiezYSQJszFe9o4z+fPq+fDFVvh0bXi/Yv0GAt9wse9JxhYt4s/BCSze2LvJ/CmJrkusiZZD5/bn3is4ddP08CTJEMol7mP9kdfRz8M5NuO5rCxpVuvEhNxIm6bcJ+lMP5ZMBEdF53Es3nUso2ufo/TT68J5vMNiChzo28ktvuns2LIDeDCp48ayyj/Z9U2D7T7d9Q3n3beY3+tfONX/OiIN59dUhN/UXUCX3aX0a6LsVIh3zS1pVuvEq8mXTwXuBvzAfap6qxflGvlBUz7ddNKrNpWNMVLo/1LUk2eP+z0dK/7Cfl9vQ10xjxT0Thsfhz90g/IL4vqq47kt5i2rYuHaT8LbFfmg075t+b3+hTP8rwPRIg7X1V7InOBIfvpVbcy48Oa6P+Jdcxu23zrxYvJlP3APcBJQBbwtIk+o6nvplm3kD4ncEel0eHbcq40T3qdKm+LGibLuWbi+QSPxVPEpDJ84kc33nsfp/tfrR+RHWMp887nTWbpiNpxwHZRPanDMyMbjm9og//fKBl59/9PwJBZucZx9VDcuDT7EQSERj3CnADwWGMGc4EgEuO+1DwiqE0oYGmWarvsj1jW3YfutEy8s8qHAelXdCCAic4BxgAm5AaQ3ldvUBe86AugTpow5vNGoyehGouNebVi8cQcr+kzlX6sXMd6/iKN5l57+j8KzFIXZ/TEsuByeuQYOGwcT7g2XWeQTagKO4P5nzScEXfEFR8TbFvu4eO9XOfiNfzSYJDm0wbq9h3LtzkvxiyIRLiFQ/D5Btfk53g0jGi+E/FBgS8RyFTDMg3KNAqI5lmKkZSwo1XtqGm0T2UhEui2K/D7w9eWduj4ocI3O4idFC/ARIwo98E19NsIJ91LWvSNnlXdl1lubcTw69eLr9/s4s6wLE4Z0ofSxayBGeTLwB/SdcC+zozppvcrxbhjRtFhnp4hMBiYDdOvWrYmtDSN5l0yokYh0swQCQc4Z6txnjyzdwh3BibwaHMr0TrPZu3p17AOuf8FJMbv6CS499GTmFp8QW3zX3QVzH4YvPmxcxogrwr73yMYrlayKhpEqaceRi8jRwE2qeoq7fC2Aqv4h3j4WR24kSyoRHqFOypD4RuZQaVDGliXw4k1OrpZIOvWF7fXhi192PIxnul9Nj8En1h+70YQQEUSIuGFkgnhx5F4IeRGwDhgJbAXeBiaq6rvx9jEhb1205GjDlI4VmvT4s03Q9zTYujTm4CL27wbHXuV8XnB54/Xig2MuMxE3Mk7GhNwt/HvAXTjhh/er6i2Jtjchbz2kE0Pe4rxwoxPNkgr7d4MJ0z0bsWkYiYgn5J4kzVLVp1W1j6p+uykRN1oXLZWcyxNOutnJhRIHjfof8bNmxJ3cs/5b4ayOoTzimcomaRixsJGdRkbxPGlWpplwLwy9OOxDjww5DE/po/DV/r2oPPaPnP5ELTV1a8OTQXsx2McwUsXS2BoZJRQemKk0rBmxgLsOhQueZtMxv+fz4F5hEzw0s08AH0/1uJ7/7C5t8Lbx77c3801tnrx9GAWFWeRGxsnUaMNM+9+fKj6Fl+pqmF38W4o1ADgifmPgQtDeHL5XG4p8Qm3AmYPzvW1fhC14v09y/+3DKBhMyI28JZ0cLskwvGcJf/H3Y2Ltb5hQ9Brl3TvyYtuRPLJmf+qWbKbI78OdwA1FCLoTVghwQt8Dmp3tMR6Wa9yIhwm5kbek439PRhTrR432pk/PSfTu3pHnF66n7t214cYDHM+LBusTevl9wsvrPuXF1R979qaQV9E/RotjQm7kLenkcDnvvsV8UxvE784SFJ3DJbRddNmRjYff7wNVAkFtMPrzw51fMXvJZk/fFDL99mHkNybkRl7TlP89lhgv3rgjnMmwLqhMmR818z3xLeDoxiNUXvR0a3OXVXkaqZN30T9Gi2JCbhQs8cR4eM8S/D6hzvVpB4LOzPeRQp7IAo5uPGLNl9nUm0Kq/u7mvn0YrQMTcqNgiSfGZd07MnXcAH4zf1U4N/gjS7cwfkiXmC6UZCzgWW9tZsr8VQRVw43GJSf2irltc/3dlmvciIfFkRsFS0iM/UIjMZ44rBtnH9U1nII2ENQGcd+pxL9XVFYzZf4q6oJOzvGaJmLI82q0q5EXmEVuFCxNuSMmDOnCvAS+7GQt4MUbdxAI1ucsEhG27vyKisrqmPubv9vwGk+SZqWKJc0ycoXmxGZH7xN2ldQGETcEMagkdJtYTLjRHOIlzTKL3GjVpOp3juffDln+W3d+xZwkQg/N3214ifnIDSMF4vm3y7p35JITezFhSJe4fnnDyBRmkRtGCjTl37YwQSMbmI/cMCJIxnfthX871SnsrGEwwHzkhtEkycZ3p+vfTiWO3HKsGMlgPnLDcInn/46X87y5udBTiSO3mHMjGdKyyEXkNuD7QA2wAbhAVXd6UC/DaHFi+b/jWcTpWMqpxJFbzLmRDOm6Vl4ArlXVOhH5I3At8Kv0q2UYLU+sjsp7Fq6POcw/nWyEqXSIWuepkQxpCbmqPh+xuBg4M73qGEZ2ifZ/x7OI07WUU/GzNyfDo9G68CxqRUSeBP6tqg/FWT8ZmAzQrVu3ssrKSk+OaxiZJp5Q5oKAWmdo66LZUSsi8iJwUIxV16vqfHeb64E6YGa8clR1GjANnPDDJOttGFknnkWcC6MzbcIJA5IQclUdlWi9iEwCxgAjNRtB6YaRx6Rr7VtnqAHpR62cClwDfEdV93hTJcNoHXgREWOdoQakH7XyV6At8IKIACxW1Z+mXSvDaAXEc4uk6i7JBRePkV3SjVqJPQWKYRhNkqmIGKP1YUP0jbwnn/OWjB/SBXH/j5wT1NwlRiqYkBt5Tb7mLYmuy/ghXRqsN3eJkQqWa8XIOs3NWQL5m7ckl+pi5D9mkRtZJV0rOd28JdlytZgf3PASE3Ijq6Q7oCWdvCVA1lwt5gc3vMSE3MgqXlimzc1bEi8hVkthfnDDK0zIjaySTcvU3BtGoWBTvRmtmlwLRzSMRNhUb4YRA3NvGIWAhR8ahmHkOSbkRl6QTqy5YRQ65loxcp5cGpFpGLmIWeRGzmOjIA0jMSbkRs4TChP0CxYmaBgxMNeKkfPYKEjDSIwJuZEXWJigYcTHXCuGYRh5jgm5YRhGnuOJkIvIVSKiItLJi/IMwzCM5ElbyEWkK3AysDn96hiGYRip4oVFfidwDdDy2beMgsZGcxpGcqQVtSIi44CtqrpCRJradjIwGaBbt27pHNZoBdhoTsNIniaFXEReBA6Ksep64Doct0qTqOo0YBo4aWxTqKPRCkl35iDDaE00KeSqOirW9yIyEOgBhKzxLsAyERmqqh95Wkuj1WGTPhhG8jTbtaKqK4EDQssisgkoV9XtHtTLaOXYaE7DSB4b2WnkLDaa0zCSwzMhV9VSr8oyDMMwksdGdhqGYeQ5JuSGYRh5jgm5YRhGnmNCbhiGkeeYkBuGYeQ5otrygyxF5FOgMurrTkChx6DbORYGdo6FQT6eY3dV7Rz9ZVaEPBYislRVy7Ndj0xi51gY2DkWBoV0juZaMQzDyHNMyA3DMPKcXBLyadmuQAtg51gY2DkWBgVzjjnjIzcMwzCaRy5Z5IZhGEYzMCE3DMPIc3JKyEXktyLyXxFZLiLPi8gh2a6T14jIbSKyxj3Px0Rk/2zXyWtE5CwReVdEgiJSEOFdIUTkVBFZKyLrReTX2a6P14jI/SLyiYisynZdMoWIdBWRhSLynnufXp7tOqVLTgk5cJuqHqGqRwILgClZrk8meAEYoKpHAOuAa7Ncn0ywChgPvJrtiniJiPiBe4DTgMOAc0XksOzWynNmAKdmuxIZpg64SlUPA4YDl+T775hTQq6qX0Qs7g0UXE+sqj6vqnXu4mKcKfIKClVdraprs12PDDAUWK+qG1W1BpgDjMtynTxFVV8FPst2PTKJqm5T1WXu513AauDQ7NYqPXJuhiARuQX4EfA5cGKWq5NpLgT+ne1KGElzKLAlYrkKGJaluhgeICKlwGDgrSxXJS1aXMhF5EXgoBirrlfV+ap6PXC9iFwLXArc2KIV9ICmztHd5nqcV7yZLVk3r0jmHA0jlxGRfYC5wBVR3oC8o8WFXFVHJbnpTOBp8lDImzpHEZkEjAFGap4G8qfwOxYSW4GuEctd3O+MPENEinFEfKaqzst2fdIlp3zkItI7YnEcsCZbdckUInIqcA0wVlX3ZLs+Rkq8DfQWkR4i0gY4B3giy3UyUkREBJgOrFbVP2W7Pl6QUyM7RWQu0BcI4qS5/amqFpTFIyLrgbbADverxar60yxWyXNE5AzgL0BnYCewXFVPyWqlPEJEvgfcBfiB+1X1luzWyFtEZDZwAk6K14+BG1V1elYr5TEiciywCFiJozUA16nq09mrVXrklJAbhmEYqZNTrhXDMAwjdUzIDcMw8hwTcsMwjDzHhNwwDCPPMSE3DMPIc0zIDcMw8hwTcsMwjDzn/wNdptZVat01TwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], model.predict(X_test), \".\", label=\"predictions\")\n", - "ax.set_title(\"Piecewise Linear Regression\\n2 buckets\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n", - "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.0s finished\n" - ] - }, - { - "data": { - "text/plain": [ - "PiecewiseRegressor(binner=KBinsDiscretizer(n_bins=4),\n", - " estimator=LinearRegression(), verbose=True)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model = PiecewiseRegressor(verbose=True,\n", - " binner=KBinsDiscretizer(n_bins=4))\n", - "model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAUUlEQVR4nO2deZgU5bX/P6d7ZkBckCBubANhFQjIIKKIUXEXQUGjojdBI/6SGKPRi4kxAUOWa64aYxJyc3FDI2CiKCAucQEVF8QZhAuyCcgwg7iAg4IgM9N9fn9UdU9PT/dM93T19DLn8zzzTFdX1VtvVXd/69R5z3uOqCqGYRhG7uLLdAcMwzCM1DAhNwzDyHFMyA3DMHIcE3LDMIwcx4TcMAwjxzEhNwzDyHFMyPMcEdkrIj2zoB+/EJEHWvB474vIaS11vHylpT83o3mIxZHnPiKyFTgKCABfAc8DP1bVvZnsV7oRkTuAXqp6Vab7Eg8RKQY+xPlcAHYCf1fVOzPWKSPvMIs8f7hQVQ8BhgLDgF9muD+tDhEpaGT14e7ncwnwKxE5q4WPb+QxJuR5hqpux7HIBwKIiIpIL/d1GxG5W0S2icgnIvJ3ETkotK+IjBORlSLypYhsFpFz3ffbi8iDIrJDRLaLyG9FxO+uKxeREvf1le7xBrjL3xeR+e7rO0TkMfd1WxF5TER2ichuEXlXRI5q6ljJICJbReTMiGP/S0QeFZE9rttlWMS2x4rIPBH5TEQ+FJGfRKwbLiJvu/3cISJ/FZGiiPUqIteLyAfABwl8PqXA+8CQiDauEZF1IlIlIv8Wke4R684WkQ0i8oWI/E1EXhORa911k0TkTRG5V0R2AXc09hmLyBEissg9l89FZKmI+Nx1P3Ov9x73eKOjPzd3eax7/XaLyKsi0j/qmv+niPyf299/ikjbJD42o5mYkOcZItIVOB94L8bqO4E+OCLSC+gMTHX3Gw48CkwBDgdOBba6+80Cat19jgfOBq51170GnOa+/jawxd03tPxajH58D2gPdAU6Aj8A9idwrFQYCzyOc24Lgb8CuEL2DLAK53qMBm4SkXPc/QLAT4EjgJPc9T+Kavsi4ETguKY6ISIjcG6ym9zlccAvgPFAJ2ApMNdddwTwJHAbznXaAJwc1eSJONf8KOB3NPIZA7cAle5xjnKPqyLSF/gxcIKqHgqcQ91nH9n3Pm7fbnLbeA54JvLGBnwHOBfoAXwLmNTUNTE8QFXtL8f/cH50e4HdQDnwN+Agd53i/KAFx0/7zYj9TgI+dF//L3BvjLaPAg6E2nPfuwJY4r7+PrDQfb0OR3Qfd5fLgaHu6zuAx9zX1wBvAd9K5lgx+hZuM841OTNiu5cj1h0H7Hdfnwhsi9r3NuDhOO3eBDwdsazAGY18NsXuNrtxblYK3E3d+NTzwPcjtvcB+4DuwHeBtyPWCVABXOsuT4rsewKf8XRgAc64QmQfewGfAmcChfGuMfAr4F9Rfd0OnBZxza+KWP/fOOMBGf+N5Puf+dTyh4tU9eVG1ncC2gFlIhJ6T4CQ26IrjoUVTXegENgRsZ8PR1DAsbjvFpFj3Lb+BUxzB/naAytjtPkP93iPi8jhwGPA7QkcKxU+jni9D2jr+pS7A8eKyO6I9X4cyzhkhf4RZ9yhHVAAlEW1nUj/jsAR8RuBiTjnWe0e/z4RuSdiW8GxpI+NbFtVVUQqGzl2U5/xXTjC/KK7fqaq3qmqm0TkJnfdABH5N3Czqn4UdaxjcW7Oof4ERaTC7WuI6Ot8bIxrYXiMuVZaDztxLMIBqnq4+9denQE4cAThmzH2q8Cxko+I2O8wVR0AoKqbcH6wNwCvq+qXOD/m64A3VDUY3aCq1qjqr1X1OBxXwRgc67PRY6WJChyL9fCIv0NV9Xx3/f8A64HeqnoYjjtCotpIKPRLVQOq+kfga+rcMxXA/4s6/kGq+hawA+gS2l8c9e0S3WzE60Y/Y1Xdo6q3qGpPHFfTzSFfuKrOUdVTcG4sCvwhxil85K6P7E9XHKvcyCAm5K0EV1DvB+4VkSMBRKRzhC/4QeBqERktIj53XT9V3QG8CNwjIoe5674pIt+OaP41HB9ryB/+atRyPUTkdBEZ5A5ifgnUAMEEjxWNT5zB09BfmyQvzXJgjzvYd5CI+EVkoIic4K4/1O3jXhHpB/wwyfZjcSdwqzsQ+HfgNqkbIG4vIpe62z0LDBKRi9ynh+uBo+M12tRnLCJjRKSXK8Bf4Pj/gyLSV0TOcK/d1zg3gwY3YJynrQvc70ghjs/9AI6bzMggJuSti5/hDLItE5EvgZeBvgCquhy4GrgX50f+GnXW13eBImAtUIUzAHdMRLuv4Qje63GWoznabeNLHL/6azjulkSOFc0VOMIT+tvcyLYNUNUAzhPBEJx4753AAzhuIYD/xHGF7MERyX8m034cnsU5t8mq+jSO9fu4+5msAc5z+7YTuBTH17wLx7dfiiOe8Yj7GQO93eW9wNvA31R1CdAG5+ayE+dp6kiccYJ6qOoG4CrgL+62F+KEvVY36yoYnmETggwjR3AjbCqBK10BNgzALHLDyGpE5BwROdx1e4T888sy3C0jyzAhN4zs5iQcd1HIlXGRqu5vfBejtWGuFcMwjBzHLHLDMIwcx4TcyBui84J42O6rofwmhpGNmJAbOYGI9BaRr9Mh1OnCbgBGS2FCbuQKM4B3M90Jw8hGTMiNrEdELsdJOvVKApu3ddOn7hGRFSIyOKKdcEpfd3mWiPw2YjlmGt+ovhzjpmmd4i6PEJG33LSuq8StSiQivwNGAX8Vp0rTX8XhXhH51D3GahEZ2LyrYhh1mJAbWY2IHIaTte/mBHcZBzwBfAOYA8x3p5M3dZzG0viGtumBMwv1r6p6l4h0xpml+Vv3eP8JzBORTqp6O07irR+r6iGq+mOclLyn4qSZbY+T8nVXgudlGHExITeynd8AD6pqdNa/eJSp6pOqWoOTtbAtMCKB/b4PPKSqL6lqUFW3q+r6iPXHAUuAaao6033vKuA5VX3O3eclnCn05xObGpzUBf1wQn/XufllDCMlTMiNrEVEhuDkyL43id0i074Gcaa0J5JKtSuN52m5EifL35MR73UHLnXdKrvdVLinECc3jKouxiloMQP4VERmuk8chpESJuRGNnMaTmGGbSLyMY7rYoKIrGhkn66hF25uki446VfBSbfbLmLbyEyC8dL4hrgDZ3blHKkrPVcB/CMqBe3BWldYucFsO1X9s6qW4Fj4fXBcOYaREibkRjYzE0dch7h/f8fxSZ8TfxdKRGS8m/b1JpxMgaHcJCuBiW6q2nNxStGFiJnGN2J9DU4mwoOBR92bxGPAhW4+FL+bRvc0EQnlDP8E6BlqQEROEJETXZ/9VzgpY2OlizWMpDAhN7IWVd2nqh+H/nDSr36tqp81stsC4DKcNLH/AYx3/eXgVOe5ECcC5kpgfsSxGkvjG9qmGqe25lHAQziullDNzc9wLPQp1P2u7gMuEaeo8p+Bw3BS4VbhVNrZhVO1xzBSwnKtGIZh5DhmkRuGYeQ4JuSGYRg5jgm5YRhGjmNCbhiGkeMUZOKgRxxxhBYXF2fi0IZhGDlLWVnZTlXtFP1+RoS8uLiY0tLSTBzaMAwjZxGR8ljvm2vFMAwjxzEhNwzDyHFMyA3DMHKcjPjIY1FTU0NlZSVff/11pruS17Rt25YuXbpQWNhkim7DMHKErBHyyspKDj30UIqLixGRTHcnL1FVdu3aRWVlJT169Mh0dwzD8Iisca18/fXXdOzY0UQ8jYgIHTt2tKcew8gzskbIARPxFsCusWG0LGXlVcxYsomy8qq0HSNrXCuGYRj5Rll5FVc+sIzq2iBFBT5mXzuCku4dPD9OVlnk2cQdd9zB3XffHXf9/PnzWbt2bQv2yDCMXGPZll1U1wYJKtTUBlm2JT21tk3Im4kJuWEYTTGiZ0eKCnz4BQoLfIzo2TEtx8lpIffa9/S73/2OPn36cMopp7BhwwYA7r//fk444QQGDx7MhAkT2LdvH2+99RYLFy5kypQpDBkyhM2bN8fczjCM1k1J9w7MvnYEN5/dN21uFchhIQ/5nu55cQNXPrAsZTEvKyvj8ccfZ+XKlTz33HO8++67AIwfP553332XVatW0b9/fx588EFOPvlkxo4dy1133cXKlSv55je/GXM7wzCMku4duP70XmkTccjhwc5YvqdULtTSpUu5+OKLadfOKbI+duxYANasWcMvf/lLdu/ezd69eznnnNh1fxPdzjAMw2ty1iJvKd/TpEmT+Otf/8rq1auZNm1a3BjsRLczDKP1kq5QxJwVcq99T6eeeirz589n//797Nmzh2eeeQaAPXv2cMwxx1BTU8Ps2bPD2x966KHs2bMnvBxvO8MwDHBE/K4HHmXfK//NXQ886qmY56xrBRwx98rvNHToUC677DIGDx7MkUceyQknnADAb37zG0488UQ6derEiSeeGBbvyy+/nMmTJ/PnP/+ZJ598Mu52hmEYAB++t4SHfb+lkFpqeJpn3+tKSffxnrQtqprYhiIPAWOAT1V1oPveN4B/AsXAVuA7qtrkbWbYsGEaXVhi3bp19O/fP5m+G83ErrVheEdZeRXLtuxiRM+OjRqW25/5LUeV3kOBBKlVH58Mu4XOF/4yqWOJSJmqDot+PxnXyizg3Kj3fg68oqq9gVfcZcMwjFZBQtFzFcth6T10PqYLvoIigvjxFRTRecjZnvUjYdeKqr4uIsVRb48DTnNfPwK8CvzMi44ZhmFkO01Gz1Ush0fGQqAa/EX4zvsD7N8FxaOg63DP+pGqj/woVd3hvv4YOCrehiJyHXAdQLdu3VI8rGEYRuYJRc/V1AZjR89tXeqIuAac//t3wahbPO+HZ4OdqqoiEtfhrqozgZng+Mi9Oq5hGEamCEXPxfWRF48Cf1HYIqd4VFr6kaqQfyIix6jqDhE5BvjUi04ZhmHkCo1Gz3UdDt9b6FjmHrtTIklVyBcC3wPudP8vSLlHhmEYKZJoJEmL0HV42gQ8RMJRKyIyF3gb6CsilSLyfRwBP0tEPgDOdJcN4NVXX2XMmDEALFy4kDvvjH9pdu/ezd/+9rfw8kcffcQll1yS9j4aRj7idR6mXCCZqJUr4qwa7VFfcoJAIIDf709qn7Fjx4Zzt8QiJOQ/+tGPADj22GN58sknU+qnYbRWvM7DlAvk7BR9IByfScVyT5rbunUr/fr148orr6R///5ccskl7Nu3j+LiYn72s58xdOhQnnjiCV588UVOOukkhg4dyqWXXsrevXsBeOGFF+jXrx9Dhw7lqaeeCrc7a9YsfvzjHwPwySefcPHFFzN48GAGDx7MW2+9xc9//nM2b97MkCFDmDJlClu3bmXgwIGAU8v06quvZtCgQRx//PEsWbIk3Ob48eM599xz6d27N7feeivg3GgmTZrEwIEDGTRoEPfee68n18YwcoWWysMUxmMdag65O0U/Kj6T7y30xA+1YcMGHnzwQUaOHMk111wTdnl07NiRFStWsHPnTsaPH8/LL7/MwQcfzB/+8Af++Mc/cuuttzJ58mQWL15Mr169uOyyy2K2/5Of/IRvf/vbPP300wQCAfbu3cudd97JmjVrWLlyJeDcUELMmDEDEWH16tWsX7+es88+m40bNwKwcuVK3nvvPdq0aUPfvn254YYb+PTTT9m+fTtr1qwBHGvfMFoTTUaSeEmadChZctcij47P3LrUk2a7du3KyJEjAbjqqqt44403AMLCvGzZMtauXcvIkSMZMmQIjzzyCOXl5axfv54ePXrQu3dvRISrrroqZvuLFy/mhz/8IQB+v5/27ds32p833ngj3Fa/fv3o3r17WMhHjx5N+/btadu2Lccddxzl5eX07NmTLVu2cMMNN/DCCy9w2GGHpX5RDCPHSFcO8AbZC9OkQ8mSuxZ5muIzo6vMh5YPPvhgAFSVs846i7lz59bbLmRNtyRt2rQJv/b7/dTW1tKhQwdWrVrFv//9b/7+97/zr3/9i4ceeqjF+2YY+UbMQsotFCfeFLlrkYfiM8+43dPHmW3btvH2228DMGfOHE455ZR660eMGMGbb77Jpk2bAPjqq6/YuHEj/fr1Y+vWrWzevBmggdCHGD16NP/zP/8DOP7sL774okFK3EhGjRoVTou7ceNGtm3bRt++feP2f+fOnQSDQSZMmMBvf/tbVqxYkcTZG4YRj2VbdjEgsJ4f+BYwMLDeKaScJh1KltwVcnAu2qhbPL14ffv2ZcaMGfTv35+qqqqwGyREp06dmDVrFldccQXf+ta3OOmkk1i/fj1t27Zl5syZXHDBBQwdOpQjjzwyZvv33XcfS5YsYdCgQZSUlLB27Vo6duzIyJEjGThwIFOmTKm3/Y9+9COCwSCDBg3isssuY9asWfUs8Wi2b9/OaaedxpAhQ7jqqqv4r//6r9QvimHkEc0t7jD6kK08Vvh7bi54gn8U/p7Rh2x1VqRBh5Il4TS2XpKtaWy3bt3KmDFjwgOF+Uo2XGvDyAQx3SOJ+tGX3oMu/i2iQVT8yBm3pyVvSmN4kcbWMAwjp4kVY54wxaMQfxsQP5JBf3gscnewMw0UFxfnvTVuGK2ZJrMVNkYL5U1pDlkl5KraIGrE8JZMuNIMI1tIOca8BfKmNIesEfK2bduya9cuOnbsaGKeJlSVXbt20bZt20x3xTAyhpe1frOFrBHyLl26UFlZyWeffZbpruQ1bdu2pUuXLpnuhmEYHpI1Ql5YWEiPHj0y3Q3DMIycw6JWDMMwchwTcsMwjBzHhNwwDCPHMSE3DMPIcTwRchH5qYi8LyJrRGSuiFh8m2EYRguRspCLSGfgJ8AwVR0I+IHLU23XMAzDSAyvXCsFwEEiUgC0Az7yqF3DMAxvyYLSbF6Tchy5qm4XkbuBbcB+4EVVfTF6OxG5DrgOoFu3bqke1jAMI3mypDSb13jhWukAjAN6AMcCB4tIgzpnqjpTVYep6rBOnTqleljDMIzkyZLSbF7jhWvlTOBDVf1MVWuAp4CTPWjXMAzDW0Kl2cSf0dJsXuPFFP1twAgRaYfjWhkNlDa+i2EYRgbI4lS0qeCFj/wdEXkSWAHUAu8BM1Nt1zAMIy1kaSraVPAkaZaqTgOmedGWYRhGypTOgnULoP84GDYp071JO1mT/dAwDKMpysqrmi4K8dI0ePNPzuvNi53/eS7mJuSGYbQ4CQlyjH2aLJxcsRzeuq/+e+89akJuGIbhJc2tZB+rcHKD/bYuhehyhoce42HvsxNLmmUYRovS3Er2ocLJfiF+4eTiUeBvU7csfhh5o0c9z17MIjcMo0VpbiX7hAondx0OkxbBqrmAwuCJeRehEgvJRFX1YcOGaWmphZobRmulOT5yA0SkTFWHRb9vFrlhGC1OY5XsTeSTp9ULuX1pDCN7aO5AaGunVQu5fWkMI7tIKDKlYnneTbFPlVYdtdLc0XPDMGJTVl7FjCWbKCuvatb+kZEpfr+P7bv312+rdBY8fB688lsnHW0e5RRPhVYt5AmFMxmGkRChJ9x7XtzAlQ8siyvmjYl9KDLl8uHdQJXHl2+ra6tiOTx3CwRrgSDUHsibNLSp0qpdKwmFMxmGkRCRT7jVtUH+9PJGbjqzT73fVSLuzJLuHVi2ZRe1Qa3vYilYChqs29Dny5s0tKnSqi1ycL4015/ey0TcMFIk9ITrEwgqvPHBzgaWeaLuzMin5RMKNnHR3sfhoI7OZB/xga8Azr8nro88VRdPrtGqLXLDMBrS3Eiu0BPun17eyBsf7ERpOGCZ6GSgku4dmD+2kMJlf6HH50vxlSkUtIFz74T9uxod6GyNQQwm5IZhhElVBEu6d+CmM/vw7tbPY4p1PHdmg5tHxXL6vXCFU44tRO0BR8RH3dJoHxKKfMkzTMgNwwjjhQiGxHreikokzvom/ebblkKgpv6OCfrEm5sCIJcxITcMI0w8EWyOu+WpFZVU1waZt6KyUcs++ubx4XtLKCmoBJ/fjVDBSX7ViE88ktYYxGBCbhhGmFgi2Bx3SzKWfeTN44SCTYxf/XsI1jgDmv3OgUOOgsFXJDX5p7EUAPmIJ0IuIocDDwADAQWuUdW3vWjbMIyWJVoEm+NuSca9ERrYrFq7mF5FVfg21oAGIAh0LmnSJx5Na0y74ZVFfh/wgqpeIiJFQDuP2jUMI8M0x+eclHujYjn9XpjoDGz6ClyXCuAvYn3bwbyyZFPCotwaI1bAAyEXkfbAqcAkAFWtBqob2yfbaY13dMOIR3N9zgm7N1bNhcAB53WwBvqNgc5DWd92MBctrKG6dkNaXDr5hBcWeQ/gM+BhERkMlAE3qupXkRuJyHXAdQDdunVr3pFaoDJ2a72jG0ZjpNfnHFUT4ZBOMOoWXlmyieraDWlz6eQTXszsLACGAv+jqscDXwE/j95IVWeq6jBVHdapU6fkj1I6Cxbd6FTFXnSjs5wGLJGWYbQAFcth6T3O/8ETwV8EiPN/8ESgebmQQk8PN5/dt1UZYV5Y5JVApaq+4y4/SQwhT5l1Cxoup8Eqb613dMNoMV6aBm/92SmSXNAWvrcQJj3bIDVtKi4dIGyEtQYxT1nIVfVjEakQkb6qugEYDaxNvWtR9B+Hbl4cXpT+4zw/BLTOGFQj/0nHuE9z2tz56PfouGU+gDNZqPZrR8BH3RIzvLA5otwa3aNeRa3cAMx2I1a2AFd71G6Ysk7jmB9YzVm8w0ucyEWdxlHi9UFcWlsMqpHfpEPYmtPm1hdn0H3zfABEHM+4iDQ6WzPdMez5gifZD1V1pev//paqXqSqnqccW7ZlF7Nrz+C7Nbcxp/YM810bRoJ4Pe5TVl7Fn17emHSbbVfPBlwRD41vnvyTRif6NKfvrbHOQM7M7DTftWE0Dy9/OyEL+UBNEAV8SYhlUYfO8OX74eWqQ/vyjbN+7XnfW6N7NGeEvDV+OIbhBV7+dkIWsuI8zg/q3J4BndsntO83zppC4KHFSLCWWvz8aPeVTCmvarQ/aY9hzxNEVZveymOGDRumpaWlLX5cwzBSI+yzrgkiAj6fEAhqbP91jHkfT85/ig9LX+DtQH9W0Yebz+7L9af3ysi55CIiUqaqw6Lfb/UVggzDSLyiTkn3DkwdMwCfTxy/dUBj+6/jzPvocfzpPCgXs4o+5iL1kJxxrUCaps5XLA/Hr5YFe5vrxmh1JBsZUrWvmqBqeD6mEMNP/t6jTlQKbnSKO+/DXKTpIWeEPC2xoRXL4ZGxEKgmKH421p7K4tpT+Iu/X6uIPTUMSD5cL3IA0u8TLh3WlfFDuzj7zJsMG58neGAPonWT77cedSbF7uvW5r9uCXJGyNMSG7p1qZNxTQOIBrhMXuaSwiVMq53Esi297ctmtAqiI0M6tCtiRiMZB+Na1fMmw+p/AY4lLm4R5pcCw9hUeA7XE/+p2hLVpUbOCHlawg+LRzm5HWq/BhSfgGiA6QUPU/Xxfqi4Oqlk9oaRi0QKc4d2RUxf9H6TT74NrOqK5bBuYb1tggoHKOJhGcuUnh3jPlW3xpmYXpMzg51pSYbTdbiT52HYJET87kwz8EuQThvmOm6XiuWpH8cwspyS7h24/vReVO2rjjkBJzQYOuedbQ0HRUtnwcPnuQaRgwD7v9GfZ4//X6Zc+11KuneIO7nHEtWlTs5Y5JAm31rX4c7f0UOQ526BYK1bMFYdt8vWpWaVG62GWE++sSYBhS3nzxbAsz8FDdY1UtAW+o/l4An3c0kTbTf2vpE4OSXkaWXYJDjqOCfJ/XuPQTDguF0SqNqda5g/0ohHLP/3jCWbwpOAgLDl/MUb98Om/6ov4r4C+N4zcRNgTR0zgOfX7OC8gceEv3vJRrLY97chJuSRhKzzwVc0SKmZL5g/0miMWCIZspira4IEcSzyiQWLOf2Dh3BqsrmIr9FK92XlVWH/+7tbP6fv0YfWE3PLbNh8TMhd6n+Bhycm4BEx6F4JfrqtjdaYGc6oT2ORI7FEMnowtM/quxla+SgSUdkniI9Xe91G+0ayknrx3bPvb2xMyGnmXT4iBh1fARw/0alskoKgJ9OP5gq++SNbN419xxoTybDF/NI0qHykXpuKj2mBa5i9ZgAFa9+uH1cegRffPfv+xsaEnGbe5SNi0AkEnJH7lY87UTDNFPNE+5HK46XNrGvdNPYda1IkK5Y7lX3qISzpfRuz1wwgqFAdUOa8s415KyobfC+9+O7Z9zc2JuQ08y5fPIqgrxAJBAF1HjNTjHJJtB+pPl7azLrWS1OTf+KK5EvTYMUj9Qc2AUbeSPs+kylaXxfVosT/Xnrx3bPvb0NMyGneXb4s2Ju7qn/BGH2NS/2vUeRTJMUol0T7YY+XRnNJZPJPg+/dS9PQN/8UXhRwBjZP/gmc9WtKgNnXjmDeikqeLKskELDvZUvjmZCLiB8oBbar6hiv2m0pkr3LL9uyi+W1vVimvZgfHMUtfT/jpDMuSnnQM5F+2OOl0VxCYysd2hXx/JodYSu6sSe7r/9vPm20rrJPTZvDKfyPJ+p910Pf2wlDu9j3MgN4aZHfCKwDDvOwzawl0ipe4+9H0WmToGvLfXHt8bJ55FMMcrLnEjm2EtS6zIQ+YmQvjIjIWtP+25R8uTVcnm3VkeMYFsdgse9lZvBEyEWkC3AB8DvgZi/azHZSsoqTCFtszo81X4TKa/IpBjnVosRAeJbmyF5HcNOZfer2L50Fz97s+MP9RRxy7hzuL/+cs2Q5L+lwSpooz2a0PF5Z5H8CbgUOjbeBiFwHXAfQrVs3jw6bWZplfUSGLfqLGo1ySfbHmk9ClQ7yKQa5OecSntjj7ufDmWrfQMQX3Vi3U+AA/T55lq+u/QvPxTEQIo2HUN/MkGhZUhZyERkDfKqqZSJyWrztVHUmMBOcUm+pHjdnqRe2WA2r5vLZGw/z8ZcHKBw6kX4nnBneNNkfa3N+3I1Z8Plm3efTIHGqRYk7tCuial91/c+2YjksuqnePk5xCI1rtEQaDwV+H6hSG6/0m5E2vLDIRwJjReR8oC1wmIg8pqpXedB2/hFKnetOJAqWPcoRwVqOAKo/WsB6/hkW82R/rMluX+9HGFUgIB+t+3waJG7uuTT6FLlqLkTM1lS3MMSGo8bQL0570cYDNB5+aKSHlIVcVW8DbgNwLfL/NBFvhFDq3K1L4YsKKJ2FOOkWKdAANSvmwNeroHgUJd2HJ/VjTfbHHfkjjJ7IkU9uiEjyaTAulXNp8LRVsRx2rKorz+bq+fzASHbsLY4r5PWqBfl9BFUJBBS/P7efeHINiyP3gKRdEKHkXBXLYcVsNFANQAAfAz55Bj6eH/afl3QfnrbJPqEfYayJHPnkhjDqE/209cKoLRQvm4oGa53szThiPj8wkl/IDcxu5LOPdtfcsXANAai7ExgtgqdCrqqvAq962Wa2k5ILoutwNp43l91vP4og9Oh0MEdufLzOf751qbNdmjIxhn6EsSZy5JMbwqhP6GlrCBuZzsN0f6sccMS7FngzOIg/BybQ7psnMztyIDQOIeNhxpJN1AadosyBoObNU1wuYBZ5iqTigigrr+LKhTVU115GUYGP+ScVcuTmp+oiWg7qmHCES7JEPkX8/uJBMSdy5JMbojUT/cQ4omdHrixYzDTfA/gjtnOeyvz8JTCB9/39EhLxSOwpLnOYkKdIKl/e6JvAK3uL6RfynxePahjh4lG1osbSlXpBvkW75DKxBrR/uudupvvnA+50excBto/8DacXnsNtzfjs7Ckuc5iQp0iz8rRETJNucBPo2qu+WIciXKLzuJTOgnULoP84p7pREkTeQA7UBHlqRaWnIp5v0S6p0twbWyo3xNC+23fvrzeg3bn0TjoWLAKpL+IADPoOxWdfz/VJHak+9hSXGUzIPSCZL2+00E0dM6BhPG+IyAiXSB955KSNzYuh6kNoe1jCfvQRPTtS4PeFy3c9UVoRM390c8jXaJfm0twbWyo3xOjY7gKfUBNQjpeNXOl/GYgS8cJ2MPw6sBmbOYsJeQsTLXRV+6q5/vRe8XcIRbhEsm5B/eW3/uzOt3ZLbTVhoZd078AlJV2Y+842zwemzE9an+be2OqFhiZ5Q4zcNxAIcvnwbpTsXMjYyrvxUxfr7fz38dSAGfToc3q9yj7mHsstTMhbGE+Erv84xxIPEcoRHQw6OTI2vQSHHOnUHo1joU8Y2oWnVlR6Lrj57Cdtjrg19/Pu0K4onBMlqM5yokQfc/LBr1P8f3ejEgxb4qpQqZ24JXgDpe+0wbf8baaPG8jEE7uZeywHMSFvYTwRupDFvW4BHP0tePuvEKx13tMArF/kvH5vNkxaFLeieboENx1+0kxbiM0Vt+Ze56p91fWyE1btq064r5HHHH3IVoqfnwoaDLeHQjUF3FhzPSvUeRoMqjJ1wRr6Hn2oucdyEBPyDOCJ0A2bVCfoHXrAc7dAMEC9KdaBaqSRWPRcGZjKBgsxFXFrznUe0bMjbQqTS7cQebMo6d6Bgz8t46C37kKDgTpLHOFlLWFm7RjW+PriV8e1BhB0XWzmHss9TMjzgWGT4KjjYNUcgmX/QFzrvBo/O/a3pdusC8O5XXxDr4rpcsm0xdsY2WAhplvcYglxopZ8rBtdxw1z+Oabv8KHU4pQRRCfH9/599Cx0zhO37KL8e2KeHXDp7yy7hNUoagwsclg2fxdaa2YkOcL7qDoU7WncqD0MRSYHxzF5C3ldKmtpkCCaKAaLX0IKZsFHXvDiB/BsElNWryZ/uF6JaKpnEc6XVGNxfUnOzBaUxvkizfu5/gP/gshiAgEVKjscCLdx/8Gug4PD2pGRrZcUtKFCRGRS4lkOzT/efZgQp6jxBOlHsefzpVlB4VFb8shR3MqBYjW4EOdR2wNws4NTgjj2gUs63pXXIs3G0TeCxH1QoDS5Ypq7hNHrPkIEwsWc9oHD4VFXBWC+Nh/8pR6T2HRkS2dDz+o3mce71pnw9OR0RAT8hwklihBXUL/SNEDuHrDL7lQX+My/xL8BOvHEG9ZzFUfX8yrvu9TFujdwOJt7IfbktZZqiKazQLUnCeOWPMRvvzgTSZvetgRcdwp9+Jj+8m/qZfnPvKY1bVBRCQcFdPUZ2r+8+zEhDwHiRalp1ZUMm9FZb0fX2Rs+pRrv8uyLRdQWfNvit/+JWiwLl0pcNhX23i8YBqf+w/lg2MvYtmW3gDhvBzxfrjZLI7RZLMANeeJI/rar/noC47Y+CqIa4kDIj7kgnspjjGvoKR7B6aOGcDUBWsIBJXpi95PKGIln8NLcxkT8hwkWpQUmvzxlXTvQFl5R0r3HcPZG6dx6Ffb3B87IOBTOEL2cMSOf3BY5eusXtKbgy/8ISUnnBn3h5vN4hhNtgtQU08csRJfRV57Ad6s7ccPCwsp1BrE58d/QeOTw6r2VRNUTTp9ca5EO7UmRDOQN3jYsGFaWlra4sfNJ6LrJF75wLLwjy+WiyPykdknwv2+33Oaf3V4fai4ReTXISB+CoZ9j/VHXcAre4stgqEFiHU957yzjakL1hDU+iXUYn0HBgbWc3LBes6/8NIG7pRYx4r1vbHPNHsRkTJVHdbgfRPy/KCpH9+MJZu458UNTtFdAZ8I35GXudr/Ar18HxGOP9cIUXf3DaiwOXgMj3E+F137S/uxR+DldYg39nHZ/75NrRvr7RO45ey+jOjZscFxm9OXWPvYZ5u9xBNyc63kCU097kY/MjvJuvrwZc9fIb4P4OVp8NlGgvs+BzcfR2hQ1I/Sx/cR03mAJW8cRRmTLQQN7wd7n1pRGa7WFHJ1QN2EHXBuwB3aFaUUrhgrZj1d52S0DCbkrYRoHzEQFgq6DoernwfAV7HcKcK79xPY8AKqgXpul5KvXuexLeNbdJAzWy1ELwd7y8qreKK0IvwUFFnzsk2hj+qaID6fMH3cQKr2Vcc+buizQ2HwxJipGZoS6lwawDbqSFnIRaQr8ChwFM7T+ExVvS/Vdg3vqRv0bOTHHJltsXQW8uxP0VBSLoH2Qy9hRKeODC/YRIm+T5kMYETPk9PW52y2EFMd7I28QS3bsivsPhHgkpK6yTlTxwzg+TU7OG/gMeGkVg2OWzrLSZimAafx92bDpGcbiHlTQp1LA9hGHV5Y5LXALaq6QkQOBcpE5CVVXetB20YaSNjqcqf+y5v3wZ4dcPx3YdgkSiqWM6fo9+60/6fxrf4QfLEtwHT3tTFrPd2WfORTTod2ReEnnETdG9Fx4JECOmFoF8rKq8L1VGsDQd758HPWfPQFE4Z2qR+B89kCePandVkwAQI1MStKNSXU2R7dY8QmZSFX1R3ADvf1HhFZB3QGTMizlA7tivC50/6atLq6DofLZ9d/b+tSfMEaIAjBascafG82HB87j0sqNCY8jVnrLWXJh9q84v666I+5k5s+Vqy89JGWNzhRKCGfOTghpnPf2cZTKyqduQKf/wGWPQ8H9hKZLA0Af2H9ilIR/W1KqC28MPfw1EcuIsXA8cA7MdZdB1wH0K1bNy8PayRBWXkV0xe9T1AVn0+YOmZA8lEoxaOc0nO1XxMq2UugGkofhpVzPS0SHUt4Qpbq+9u/iGutt6Sv9yl3MhY4YhtdOi/WtY2+QXVoV8T0Re9TXRvk3a2fM2Fol3AFp0hCA6Edn74cdi9r2BkR6Hs+jLwp7mdgQp1/eCbkInIIMA+4SVW/jF6vqjOBmeCEH3p1XCM55kVERghK1b7q5K3XUAm6VXPhvcecx/hIQV81t17a3FRdHJHCU1ZexRUz36Y6EBnJQQNrvSV9vbHENkRjCbEib1DRNx6FcP/9PuG0vkfy6oZPGaQbGO9bSrdYIu4rSKhClJF/eCLkIlKII+KzVfUpL9o0vKesvIonyyrrIiN8ElNEErJeQ4Oig6+AVXPgvTlOcQtfgSPuwQD4i1h/zmNcubCmyZtEomK/bMsuagL1pXNkryO46cw+GZtKPvDY9nGXG7u20ZZxtI98wtAudf33fcAnVXdzxOcrAEVCORZCHD0ILvijJzdOI/fwImpFgAeBdar6x9S7ZKSLZVt2URuoixG/dFjX8A+92dZrWNAnOlb4FxVQ9qgTPRGopmrtYn6vKzmzcAXbgkey/r07KOk+vl4TyTwRjOjZkUK/hC3yogJfAxEP0VIuhMhqPgI8v2YHfY8+tMlcNdF9nX3tCOatqAzrc7j/j14MWxZzpPt+KKthWMt7ngHffRrI7igfI314YZGPBP4DWC0iK933fqGqz3nQtuEh0aIyfmgXwCPrNSToFcth5eOOi8VfRP8DqxnhfxOAAf5yjlv5fSjpEjelalNPBCXdOzD3upPCgjc+Iod2IiRrrSayfaiaT+gcln6wk3e27GLudSclfW1D/vZ5KyqZP7aQ7q/fTNs95YAr2uHUtMKuvhM58pRJzb6WRv7gRdTKG9R/yDNamETFqTFR8cx6DfnPXR/54XO+g0rdF0QIOusgvM2Inr2TeiKI9pnPWLIpIZFM1lpNdPvQdZ3+zPusqvwCgOqAMs8d9Ez02kaK8PjgS/R59iHETaFRL22CwKeD/h/HTPhDgzYsDrx1YjM7c5xkxSlZwW6WvzVyUlGvs2D1v8J+ecEHB3WER8a6ceh+So6/ivlj4yfmaqxvyRS9SNZaTfZJYWDn9mEhd841OUIiPDCwnukFDyJEJTML3RBH3sQxZ/06bjsThnZB3f9mjbcOTMhznHQ8SkdWngmFxDXX31o27L+pWLmdM2QFFRyJ/8I/0m//KkfENQCBAJQ+TD95hCO7jmbxF1cApyd0nHkxcpM0ljEwEWs1UvyTtW7HD+3CE2WVDVxX0e02djNYMuRVvrH2H/gDdTeCkD/8wKHdOeg7D8QNK4y+sU2IOL6R35iQ5zheP0pHp7sNqqZ0k1i2ZRf31F5PUMEvcPPeYvr1OqxBHLpqgA7lL3JR+cv8uuwacLMshvoUK0NfrAic0LqpC9aEp7xXu32//vReTRYVjrbwk/Fvl3TvwNzJDbdP+Knp0Ys5Zsviem+FXCmfDPpBA1dKqk8cRv5gQp7jeB1mFykGuJOGhARmgMYh5o2may83Dn1OOMIlNJDn1yBTfQ+z4L2RlHQfH1cEG4vAWbZlV8yMgSFfemT1pHjnXhMh/k350aMzCUZvn5DAvjQNokTcOTeBkTc2cKXEui7mH2+9mJDnAV6G2cVOd1ud0mSeWDeasmBvlh38Yy44qTfFb/8K1UA4F7pPg5zkXwuMbyCC81ZUNig4HO3GCEeRuBkDrz2lR0IuomSFMFFLu9F2QxkLSx8OvxUeT+g+Es68I2ZseLybjuVJaZ2YkBv1SMdEmugbTaQA3ufrwc39Z3BZ9TwOr1hMUBUpKKLzkLOB+iLo90k4gVRRIzeZ6JjsLw/UxrWI57yzrV5mwWTOPVFXRsxrWrEcXr4Dtr1VryxT6OXrwUEccsZsSrrGzlYZ7+Zg0+9bJybkRgPSLQaRAlgdUP6w5jD+VPh95o/9Af2+XhWe2h/qS0gEP9q9n7nLt9VLNBXPTQJ1MdkFfh8+n6ABrZfne8472/jF0065u6Uf7ARg4ondEj73ZrsySmfBopuIntwfBBThf2sv4J7gRG52bwxmfRtNYUJutDghAQxFnISiTl7ZW0y/0xvWmQzdWELJshIRzkjxqw0E60IBI6zf59fsqLdPaEZmMoObiYhppEV9hX8xxxc8iKD1wxNF2NXnCm5Y2493g73qnZ9Z30ZTmJAbLU6k6+PJskoCgcQnAiVqhUaKn4gQCDrV4gNBDbtAzht4TNgSBxhwzGFJT2+PHGCNXI5k2ZZdXBx8ie8UvMog3xZENRwfHubkG+l01q+ZEidM0WLDjcaw4stGRmk0vrpieb0sism2B9SLh4+sFh9at2d/De/v+JLzBh5D1b7qcIFqv8DNZ/fl+tN7NVm8IjJcc/q4gUw8sX6a5p2Pfo+Om+eHl0O5UpwJPk5UCjGiUryK5TfyByu+bDSgpbLkNXacuO6BiuXO7M/aA4BCm8Pg6IHhKI54xwmJaoFPuHRY13AulkiXyYaP9zSYLBRy3RQVONEu4oYsJlPjMqjK1AVrwgmzqFgOb97HEVsWhdMUqOJsi4893UbT4axbG5yP17H8Rv5jQt5Kaaksec0+ztalroi75csOfAHlb8KDZ0PnoeGyc5FED6LOeWcb89xqOpF+9liThULrp44ZEBb56YveZ7xb4KGxGpchsQWoDapTWOKzBfVqaIY9KQJV7Xrw2el30++EhuMB0efhRSy/kf/4Mt0BIzPEioTIquMUjwJfrK+nwvYyWHQj/P0UWPRTx/Klzi8udVs2OGasyUKR4li1r7qeBSw4qXL90rB4BThPFNPHDcTvq3N6dym7E110Y10h5AhE/HS8YmZcEY88D79AUaGP6eMGcvPZfc2tYsTFLPJWSjqm9sdynzT7OF2HO9VuoosKR/Lxauev9CE45ChKTvsFs68d12AQNXJWZ/RkoenjBjba3/FDuzA+ssBD94Zl8Sae2I01H31B8N2Hua1gDofJ/ohk4S7tjoBuIxx/eBP+/mSiYWKlA7CQxNaHDXa2Yrz60SebhTApKpbDopvhEyfeuy6LYhwGfQf27WTrUWfybOE5MQcLgUb709TgZqxCy1/dO4x2uz8IbydS11eVAnzXPO9pUepY1xywohJ5jg12Gg3wKg65qRmOiYToxaXrcMrOf4YP31tCr30r2bqulAt9b+FD69K6RrL6XwB037yYyfJraqSQL/Q0/qATE86f0th1iS60/O7SFxg05xe0O/B5vf6E7KN3Av34k0xkSrA3JYmfdZPEc1lZ0qzWiQm5kTJNuU9SGVit27cNPhlBUE/kUc5ign8p5x28kW8cqKg3P7Ju4g8U6gEKOcAP/Iu42PcGM/QSRvQ8OeHjxrLKP91zIPz6ct8rTN70ID63A/VyhwMrAj25vHYqPqGeqHrxJBTvmlvSrNaJV8WXzwXuA/zAA6p6pxftGrlBUz7dVNKrxorgWKV9WCv96DdxBAdK76Rg1Wz205YV2odxblk5qF9V5yjZzXQeQP45HwqKHBdMnOIM8dwWT62oZMmGTwEYKhv5XeGD+KBB8QeAVwODuLr2NsAJN9yzv4YZSzZ5Fhce75rbtP3WiRfFl/3ADOAsoBJ4V0QWquraVNs2cofG3BGpDKx2aFeEz51BU1TYMFHWjC2Tuafm1PAknsP6ncbJOx6hzZ5K1M2mGBnFwj53Juebf4IVj0D3kQ0GICNvHgdqgvzva5t5/YPPwikF7imYwXm+d/HFcKXsL+zANV//lHdq63LACPDAGx8SVMUXMcs0VfdHrGtu0/ZbJ15Y5MOBTaq6BUBEHgfGASbkBtD8jIpl5VVMX/S+I4A+YeqYAQ1mTUbfJD7udTkPHjue40tv5aS9r0SmVmk4LX5/Faxf5PxFVKIf0bMjBT6hOuAI7ivrPyUYVI6XjdxV8Hd6+j6u10yo+MMXx57K4dc9w5TyKp5aUckTpRUEgopETOoBxe8TVC0u3PAOL4S8M1ARsVwJnOhBu0Ye0RxLMdIyFpSqfdUx2w3dJCLdFgX+yQzhVMbyOifxPj39H9evexnNlsUwbzIcdiwl6xZy/zEnManyAieplyoTCxbza/+D+KMHWaUAOfRIGPQdDnddNaFzDYUtRqcISDXHu2FE02KDnSJyHXAdQLdu3ZrY2jASd8mEhHPGkk1h4Q8EgvQePpp1jGZ6aQWX1L7MZf5X6XfwV7TZ93HMdli30C0/B6eyhTeKnuMz/QZbOZqx/rcaZiwEGDgeJtzfaL+ApLIqGkayeCHk24GuEctd3PfqoaozgZngxJF7cFwjz0nWJRNrMk+dZdyH2p6/ok1EDhS2vAbVe+oaEH/dS+BYXxXHUsVgNse24nueEVfEY52LCbiRLlKeECQiBcBGYDSOgL8LTFTV9+PtYxOCWhctOdsw6WPNmwybXoJeZ8FhxzqDoE0hPrjg3ga5Xgwj3aRtQpCq1orIj4F/44QfPtSYiButi5ZKzhUiacs32qL+8qPwpKKYdOoHY//i6SxNw0gVT5JmqepzqtpHVb+pqr/zok0jP2ip5FyeMeF++P5LMOxq+EbPequC4ufJzj+jLNg7/F5ZeRUzlmyirLwq5rJhtAQ2s9NIK14n52oRug4PW9xbX5xB29WzqTnoKKbsOI3l77ShqGxZzNwmU8cMsCIQRkYwITfSSnNjyBMlnf73svIqrlzak+ra22NO5IH6uU3++e628KQhy3VitCQm5EbaSVfERrr97/XSA0RM5PH7hI9272fAse0p8Ak1AacG59odX4bzvvh9khtPH0ZeYEJu5Cyp5HBJhGi30NQxA1jz0Rc8WVbJ3OXbKPD7QvWLUISgW7BCgNP6Htm8bI+NYLnGjXiYkBs5Syr+90REMZZbaMaSTdQG6m4e4EzR12BdSTa/T3h142e8vO4Tz54UWjr6x8gtTMiNnCWVHC5XPrCMAzVB/G6VoOgcLqHtotuOvHn4/T5QJRDUelPvP9q9n7nLt3n6pJDupw8jtzEhN3KapvzvscR42ZZd4UHJ2qAydUFE5fuI/WJZwNE3j1B70eXW5q2o9DRSJyejf4wWw4TcyFviifGInh3x+4Ra16cdCCpPraisJ+SNWcDRN49YBSOaelJI1t+d7ugfI7cxITfylnhiXNK9A9PHDeRXC9aEQwqfKK0I52aB5C3gOe9sY+qCNQRVwzeN60/vFXPb5vq7LV+LEQ9PZnYaRjYSEmO/0ECMJ57YjctO6BpOhhUIar1ZpyEL+Oaz+zYptGXlVUxdsIbaoJNzvLqJGaw5N9vVyHrMIjfylqbcEROGduGpRnzZiVrAy7bsIhCsSz4nImzfvZ+y8qqY+5u/2/CalLMfNgfLfmhkC82JzY7eJ+wqqQkibghiUGnUbWIx4UZzSFv2Q8PIZZL1O8fzb4cs/+279/N4AqGH5u82vMR85IaRBPH82yXdO3D96b2YMLRLXL+8YaQLs8gNIwma8m9bmKCRCcxHbhgRJOK79sK/nUwb5k83QpiP3DCaINH47lT928nEkVuOFSMRzEduGC7x/N/xqv40txpQMnHkFnNuJEJKFrmI3AVcCFQDm4GrVXW3B/0yjBYnlv87nkWciqWcTBy5xZwbiZCqa+Ul4Da3APMfgNuAn6XeLcNoeeKlrY01zT+VbITJDIja4KmRCCkJuaq+GLG4DLgkte4YRmaJ9n/Hs4hTtZST8bM3J8Oj0brwLGpFRJ4B/qmqj8VZfx1wHUC3bt1KysvLPTmuYaSbeEKZDQJqg6Gti2ZHrYjIy8DRMVbdrqoL3G1uB2qB2fHaUdWZwExwwg8T7LdhZJx4FnE2zM60ghMGJCDkqnpmY+tFZBIwBhitmQhKN4wcJlVr3wZDDUg9auVc4Fbg26q6z5suGUbrwIuIGBsMNSD1qJW/Am2Al0QEYJmq/iDlXhlGKyCeWyRZd0k2uHiMzJJq1ErsEiiGYTRJuiJijNaHTdE3cp5czlsyfmgXxP0fWRPU3CVGMpiQGzlNruYtie7L+KFd6q03d4mRDJZrxcg4zc1ZArmbtySb+mLkPmaRGxklVSs51bwlmXK1mB/c8BITciOjpDqhJZW8JUDGXC3mBze8xITcyCheWKbNzVsSLyFWS2F+cMMrTMiNjJJJy9TcG0a+YKXejFZNtoUjGkZjWKk3w4iBuTeMfMDCDw3DMHIcE3IjJ0gl1tww8h1zrRhZTzbNyDSMbMQsciPrsVmQhtE4JuRG1hMKE/QLFiZoGDEw14qR9dgsSMNoHBNyIyewMEHDiI+5VgzDMHIcE3LDMIwcxxMhF5FbRERF5Agv2jMMwzASJ2UhF5GuwNnAttS7YxiGYSSLFxb5vcCtQMtn3zLyGpvNaRiJkVLUioiMA7ar6ioRaWrb64DrALp165bKYY1WgM3mNIzEaVLIReRl4OgYq24HfoHjVmkSVZ0JzAQnjW0SfTRaIalWDjKM1kSTQq6qZ8Z6X0QGAT2AkDXeBVghIsNV9WNPe2m0Oqzog2EkTrNdK6q6GjgytCwiW4FhqrrTg34ZrRybzWkYiWMzO42sxWZzGkZieCbkqlrsVVuGYRhG4tjMTsMwjBzHhNwwDCPHMSE3DMPIcUzIDcMwchwTcsMwjBxHVFt+kqWIfAaUR719BJDvMeh2jvmBnWN+kIvn2F1VO0W/mREhj4WIlKrqsEz3I53YOeYHdo75QT6do7lWDMMwchwTcsMwjBwnm4R8ZqY70ALYOeYHdo75Qd6cY9b4yA3DMIzmkU0WuWEYhtEMTMgNwzBynKwSchH5jYj8n4isFJEXReTYTPfJa0TkLhFZ757n0yJyeKb75DUicqmIvC8iQRHJi/CuECJyrohsEJFNIvLzTPfHa0TkIRH5VETWZLov6UJEuorIEhFZ635Pb8x0n1Ilq4QcuEtVv6WqQ4BFwNQM9ycdvAQMVNVvARuB2zLcn3SwBhgPvJ7pjniJiPiBGcB5wHHAFSJyXGZ75TmzgHMz3Yk0UwvcoqrHASOA63P9c8wqIVfVLyMWDwbybiRWVV9U1Vp3cRlOiby8QlXXqeqGTPcjDQwHNqnqFlWtBh4HxmW4T56iqq8Dn2e6H+lEVXeo6gr39R5gHdA5s71KjayrECQivwO+C3wBnJ7h7qSba4B/ZroTRsJ0BioiliuBEzPUF8MDRKQYOB54J8NdSYkWF3IReRk4Osaq21V1gareDtwuIrcBPwamtWgHPaCpc3S3uR3nEW92S/bNKxI5R8PIZkTkEGAecFOUNyDnaHEhV9UzE9x0NvAcOSjkTZ2jiEwCxgCjNUcD+ZP4HPOJ7UDXiOUu7ntGjiEihTgiPltVn8p0f1Ilq3zkItI7YnEcsD5TfUkXInIucCswVlX3Zbo/RlK8C/QWkR4iUgRcDizMcJ+MJBERAR4E1qnqHzPdHy/IqpmdIjIP6AsEcdLc/kBV88riEZFNQBtgl/vWMlX9QQa75DkicjHwF6ATsBtYqarnZLRTHiEi5wN/AvzAQ6r6u8z2yFtEZC5wGk6K10+Aaar6YEY75TEicgqwFFiNozUAv1DV5zLXq9TIKiE3DMMwkierXCuGYRhG8piQG4Zh5Dgm5IZhGDmOCblhGEaOY0JuGIaR45iQG4Zh5Dgm5IZhGDnO/wcSusb4YtoF5QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], model.predict(X_test), \".\", label=\"predictions\")\n", - "ax.set_title(\"Piecewise Linear Regression\\n4 buckets\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model does not enforce continuity despite the fast it looks like so. Let's compare with a constant on each bucket." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 0%| | 0/4 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], model.predict(X_test), \".\", label=\"predictions\")\n", - "ax.set_title(\"Piecewise Constants\\n4 buckets\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next\n", - "\n", - "PR [Model trees (M5P and co)](https://github.com/scikit-learn/scikit-learn/issues/13106) and issue [Model trees (M5P)](https://github.com/scikit-learn/scikit-learn/pull/13732) propose an implementation a piecewise regression with any kind of regression model. It is based on [Building Model Trees](https://github.com/ankonzoid/LearningX/tree/master/advanced_ML/model_tree>). It fits many models to find the best splits." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/predictable_tsne.ipynb b/_doc/notebooks/sklearn/predictable_tsne.ipynb deleted file mode 100644 index c5a488d1..00000000 --- a/_doc/notebooks/sklearn/predictable_tsne.ipynb +++ /dev/null @@ -1,604 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Predictable t-SNE\n", - "\n", - "[t-SNE](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) is not a transformer which can produce outputs for other inputs than the one used to train the transform. The proposed solution is train a predictor afterwards to try to use the results on some other inputs the model never saw." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## t-SNE on MNIST\n", - "\n", - "Let's reuse some part of the example of [Manifold learning on handwritten digits: Locally Linear Embedding, Isomap\u2026](https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1083, 64)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "from sklearn import datasets\n", - "\n", - "digits = datasets.load_digits(n_class=6)\n", - "Xd = digits.data\n", - "yd = digits.target\n", - "imgs = digits.images\n", - "n_samples, n_features = Xd.shape\n", - "n_samples, n_features" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's split into train and test." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "X_train, X_test, y_train, y_test, imgs_train, imgs_test = train_test_split(Xd, yd, imgs)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(812, 2)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.manifold import TSNE\n", - "tsne = TSNE(n_components=2, init='pca', random_state=0)\n", - "\n", - "X_train_tsne = tsne.fit_transform(X_train, y_train)\n", - "X_train_tsne.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAEICAYAAABMAnwwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXl4VOXZ/z/PmckKIQkQtiQkRAU1WCKggEsJVqu2WlLUupdYcenPVmLbt7ZWMdLaajexrXVtCVZARZBYXn2rVBM3QEgMsolAyA4khEwWss7M8/vjzDk5M5lJQhaSwPO5rlyZmfOcc56ZZGa+537u+3sLKSUKhUKhUCgUCsVQRBvoCSgUCoVCoVAoFD1FiVmFQqFQKBQKxZBFiVmFQqFQKBQKxZBFiVmFQqFQKBQKxZBFiVmFQqFQKBQKxZBFiVmFQqFQKBQKxZBFiVkFQogiIcTlfXSsLCHEbzrZLoUQZ3puPyeEeKQvznsiCCGmCCE+F0LUCyHu7+Y+5rz7YT7m6y+EeEgI8VI39+v2WIVCoVAoTlWUmO0G3RF7QohkIcS7QogaIYRDCJEnhPiWZ1uqRww947PPx0KIdM/tdCGESwjR4PMzod+e2AAjpbxXSvnrATj1z4EcKWWElPIvvhuFEDlCiEUDMC+klL+VUnbr3NaxQohEz/+YvX9nqFAoFArF4EKJ2b7j38B7wFhgDHA/UGfZfhz4vhAisZNjbJJSDvf5qeivCZ/GJAC7BnoSCoVCoVAoeo8Ss10ghPgXMBH4tydS+nM/Y0YDk4AXpZStnp9PpJQfW4Y5gCzg0T6a19lCiPeEEMeEEHuFEN+zbMsSQvxdCPGOZ86fCCHGCSGWeSLHXwohzvc55AVCiN2e7cuFEKGW410jhCjwRJw/FUJ8zbLtfCFEvmfJ/jUg1HpQIcT/CCEOCSEqhBA/8NlmpiR4otdlQoifCiEqPfvcYRk7SgjxbyFEnRBiqxDiN0II6+vr+/p8RwixyzPnHCHEOZ7H3wfmAX/zvDaTffZ7HLjUsv1vls2XCyH2eV6jZ4QQwrLfD4QQezzb/iOESOhkbrcLIYqFENVCiF/5bMsUQrxiuf99y9hHfFISrGM/9Px2eOY9RwhxphAiVwhRK4Q46vn7KBQKhUJxSqHEbBdIKW8HSoBrPZHS3/sZVg3sB14RQqQJIcYGONzjwHVCiCm9mZMQYhh6FHgVehT4ZuDvQohky7DvAQ8Do4EWYBOQ77n/BvBnn8PeClwJnAFM9uyLEGI68E/gHmAU8DzwlhAiRAgRDKwH/gWMBNYA11nmeRXwM+AK4Cygq7zccUAkEAvcCTwjhIj2bHsGPbo9Dljo+Qn0+kwGVgMZQAzwNvrFSLCU8jLgI+BHnr/nV9Z9pZS/8tn+I8vma4ALgGnor++VnvOlAQ8BCzzn+8hzfn9zOxd4FrgdmID+msZ1Mvbv6H+b8ZbXxh9f9/yO8sx7E/Br4F0g2nOOvwbYV6FQKBSKIYsSs32AlFKiR/uKgD8Bh4QQHwohzvIZdxh4Dlga4FCzPZFE4+dAgHHXAEVSyuVSSqeUMh9YC1xvGfOmlDJPStkMvAk0SylfllK6gNcA38js36SUpVLKY+ii+2bP43cBz0spt0gpXVLKFejieLbnJwhYJqVsk1K+AWy1HPN7wHIp5U4p5XEgM8DzMWgDlnqO9TbQAEwRQtjQRfKjUspGKeVuYEUnx7kR+F8p5XtSyjbgj0AYcFEX5++KJ6SUDillCfABkOJ5/B7gd1LKPVJKJ/BbICVAdPZ6YIOU8kMpZQvwCOAOcL7rgX9LKT+WUrYCSwB5AvNtQ0+pmCClbPZZKVAoFAqF4pRAidkeIPQqfKNA6yEAKWWZlPJHUsoz0AXEceBlP7s/CVwphJjmZ9tmKWWU5eeMAFNIAGZZhS969G6cZcwRy+0mP/eH+xyz1HK7GD1qaJzrpz7nivdsnwCUe8S8dV+DCX6O2xnVHjFo0OiZZwxg9zmW9bYvE6znklK6PeMDRTW7y2E/cwP9NXra8vocA0SA83m9Jh6RXx3gfL5jGzsZ64+fe+bxmSfl4gdd7aBQKBQKxVBDVT53D69omJTyXuDegIOlLBW6c0GHpWYpZbUQYhn6EnBPKQVypZRX9OIYvsRbbk8EjMKzUuBxKeXjvjsIIeYCsUIIYRG0EwEjonzIz3F7QhXgRF8qN9IC4gMPpwI4zzJP4Rlf3s3znUj0E9pfo5XdGHsIOMcyt3D0VINAY6dYxoZ1MrbDnD0rAXd59r0E2CiE+FBKub8b81QoFAqFYkigIrPd4wiQFGijECJaCPGYp+BGE3pB2A+AzQF2+TP6kvc5AbZ3xQZgsqeQKMjzc4FR5NRD7hNCxAkhRqLnfxrFQi8C9wohZgmdYUKIbwshItDzcJ3A/UIIuxBiAXCh5ZivA+lCiHM9oq1HxW+e1Ih1QKYQIlwIcTbw/U52eR34thDiG0KIIOCn6KkRn3bzlJ3+vf3wHPBLI2dZCBEphLghwNg3gGuEEJd4co6XEvh9+AZwrRDiIs/Yx9Ajrf6oQk9XMOcthLhBCGHk49agC17XCTwvhUKhUCgGPUrMdo/fAQ97lpF/5md7K5AIbES349qJLp7S/R1MSlkH/B69aMrKHNHRZ/YCP/vXA98EbkKPQh5GT18I6cFzM1iFXixU6Pn5jedc29Cje39DF0T7jeflyeNc4Llfg56rus4yz3eAZcD7nv3e72oS5bHxQeWx8Z+Wx8a3xNlsCRcFhxjFdD9CL4A6jF5wthr9Ne6AlHIvcBt6wdNR4Fr0Ar7Wbr0S8DRwvceZoIMPrZ/zvYn++r8qhDD+/lcHGLsLuA/99T6E/rqVdTL2x8CrnrH1QCV+nrcnBeFx4BPP/+ls9GK1LUKIBuAtYLGU8mBXz0ehUCgUiqGE8E53VChODuWx8UFALjADCAYmxZaXFpXHxtvRcz1TgBuMx333F0I8CYyTUgZ0NTjVEEIMR7d4O0uJUoVCoVAodFTOrKJXhIWFHW5ubg5kRdYlY8LCWvKjRwHsLY+ND0a3D5uKLnBNPKkFwcAO9IjjncCAdOk6mQghrgX+i55e8Ef05180kHNSKBQKhWIwodIMFL2iubl5rJSSnv5UNjUZqRHveX7/F8i2nGJteWx8y4bRY/bY9aXy48DrPxw+/Hjp+NjXymPjZXlsfOJJfMonm/noqSQV6F69N0m1nKJQKBQKhYlKM1D0Cm8jgx7tT9mEONBzcn+E3kltEWB0xvoDej6ymXJgSUU4H92LtRU9aitpL5CahO5e0CGVoceTVSgUCoVCMehQkVnFYGMt8EvL/Y3AJZ7bB8tj4xNjy0udseWlv6Xdpmuj5/den+M0AHNoj/oqFAqFQqE4xTihyOzo0aNlYmJi/81GMeTIy8vD3/9QZmYmjz32GJGRkWRkZJCZmel3f0tkFoD14WGkNTZ5jTmmCUa69XPcFTOaSrsNm5S8UHmU0e725lkbwsO4xrPvumHhjHG5uKS5hRohiJbe+ytOP/Ly8o5KKWMGeh4nE/WZrVAohion8pl9QmJ25syZctu2bT2emOLUQwjRQcw6HA6io6PN+wcPHiTQF6qvmI38w5PUPfkH5NGj+gN2OzgtTcGCgqCtjYs1KC7z62jVLRISEigqKurx/oqhhxAiT0o5c6DncTJRn9kKhWKociKf2SrNQNHnOBwO8/bChQsDCll/1P7Pg+1CFtCiory2B8/SezIUl5X1uOhMSklxcVeddRWKgUUIYRNCfC6E2OC5P0kIsUUIsU8I8ZqnkYZCoVCc9igxq+hXTjT6OXbzp0Tc/2PzvtsibAFaP/6kL6alUAwFFgN7LPefBJ6SUp6F3mzjzgGZlUKhUAwylJhV9Dk5OTnmbWuUNhDaqPZGaM6iItw1NeZ9+3lTvcdOmND7CSoUgxxPG+JvAy957gvgMvQWxwArgLSBmZ1CoVAMLpSYVfQ5aWnt37HdSTHQRo82b1ffdAvH//WKed+5Y6fXWHdFRZfHS0xMJCMjoxszVSgGLcvQ7eeMCsdRgENKaSSQlwGxAzExhUKhGGwoMavoc6Isea5RPjmv/nDu/cq8HfqtqwOOG/HrpQT5RGoDYY0OKxRDCSHENUCllDLP+rCfoX6rd4UQdwshtgkhtlVVVfXLHBUKhWIwocSsol946qmniIyMZP369V2OHZa+0LwdueQRYstLiS0v7TCu7pEltPlEav2RkpLC9u3blVuBYqhyMfAdIUQR8Cp6esEyIEoIYbQgj0PvCtcBKeULUsqZUsqZMTGnlROZQqE4TVFiVtEvZGRk4HA4upUze3zFy+btozffSnliEuWx8aDp/562SZMAGP7zn0NYWJfHKygoAGD79u09mbpCMaBIKX8ppYyTUiYCNwHvSylvBT5A73gHsBDvts8KxUknr7iGZz7YT15xTdeDFYp+RIlZxcBj8al1HTyIbewYAGzx8eZjAA2//z00NXXc3wcjtSEyMrKvZ6pQDCQPAj8RQuxHz6H9xwDPR3Ga4E+05hXXcOtLm/nTu3u59aXNStAqBhR710MUCv8YxV16ofWJk5CQgOcAICWj160lZNaF1D35e+r/8ldEaAgAIVd+k5b/vMvYzZ9ij4+nKu27kB24YUJ3I7LliUnQ1mY2YjCOPxDItjaOXncDrTt2QGvrgM5FMXiQUuYAOZ7bhcCFAzkfxemHIVpbnW7smuCGmfEkT4jknZ2HaGlzI4E2p5vNhdXMSIju8ngKRX+gxKyixxQXF/ttZdtdTBEc4BhGYVjLf97V7xcVI4I794m3pjWkpqZ2Ojb0iitofvttQr5+KS3/fb+bs+45iYmJ3W/WMHFih4dU1zKFQnGy2VxYTavTjVtCq0uycksJoFckSvTlXZsmqHA0kVdcYwravOIaNhdWMztpVECR250xCkV3UGJWMaDEh4frebBNTRxdcB3QXhCmxcTgtlRjV990MyIqCllbG/B4UVFRJCQkdMsSLOjMM2gG7PHxtPTqWXSPPhP/CoVC0Q/kFdewLr8MCVw3PY4ZCdHMThpFsF0zo7AGEl3QJsUMo6SmiVVbSnhtaylL509lyrgIv9HcnRW1CGDBdL2FuTEm2K6xctFsJWgVPUaJWcWAsilqJCI8HGnJhXXX1gGgjRhhitnRG94i+LzzqEiY1OUxT+XoZXlsvEpBUCgUfU5ecQ03vrAJp0uXrK9vLeHGCyayYHocKxfNZm1+GW/kleF06VFa0AVt4dHj5n2nW7IkeyffuyDebzTX4PVtpZw7foQ5RqUpKHqLKgA7AWRbG1XfSaN80hmUx8bjLO1oH6XQPV5TU1NJTU1l2bJlXY6X1dVe95vefBMA54ED5mMNf38WYR8c117q/0ChUJxqrM0vM4UsgNMNq7aUcOtLm9l7uJ7YqDAyr03mp9+cwoWJ7aLT7bPY5JYSAQTbNb/myABtLsn2slrcUo/uCiGIDu88hUyh6AwlZk8EIQi9/BuEffObABxbdLcSNH6YN28eubm55ObmMmlS15FUX8Zu/pTY8lImFBWijRsHQPPb7+As1f1nI+7/cZ/M02ib6ywr138XFeM6cqTrHT3/B6GXXw7AkUvnUh4bb1qKtR086CV2jftdkZGR0a0mEwqFQtEXWF0KjtZ3TLaSQKvTzZLsnfzp3b0s3bCL2UmjOHNsRMBjakKQPCGSlYtmc/m5Y7ucgxDtEd1VPhFchaK7KDHrwV+0zfcx16FDRNz/Y+xJukBr+/JLaG0FoLVAeZr6w9ratru4Kg7pN4TA3gMx3F2MtrktGzcCek5u7eO/9RaihQc7/F8Iu93r/yDkkkv035deah7b66Lnnh/S6vG+9YfD4SA9PZ2nn36a2trabnnzKhQKRW+wWmvd/MImPthbaW4T6EVdRtTU5Za4JbS0uVmbX8Z10+MItnWMuwoBLo8w3Xu4njERIV7b46JCO+zjm6KgLL4UPUGJWQOfqKvxWMi8VLRhwwA4MvsiyhOTqP/LXwEInn4+YvjwgZjtoMW3jezcuXM7HT8q+03Cf/ADRET7lX7r7t24jhzBWVRE0JlnmI+7jh6lbf9+3DU1xIeHI4To8U9CQoLZacz6E/3nP3n/H/j7v/AgPE0d7Am684B9op7H6it2Qy+9hLCr/bfpzc7OJjo6mvXr15tWZSo6q1Ao+hurS0GbS5opBgK44tyxGFpVCLB5lIIE1mzTVyFX3z2HW2ZNJMgiaqXUxxjCtMon2tvY5up0Ti63ZHNhdadjFAp/KDHrwRAgWlwsoAvXioRJBM+ahf3sKea4kK+3R9+i//K0lwhTnDjHn3+Bxn/+E1lfbz5W9/Aj1P3uCSrnzjOjpwD1f/qz+dimqJGUTYjj2OIMpJQn/BOoSMxXiAq7zes+tEfx6//2jP4cPB3MjN9mZNlD+K230rJtm9/zzZ07l0cffRSHw9GllZhBt9MhFAqFIgCGS4FNQJBNEOS5HRKkMToiBKdbIgG3SzIiLMjcr80lWZdfxoyEaH773fO4YWa839xYt1syOiLEK4J77Hhbp3OyaYLZSaP66BkqTicGR0XNIEC2tVG14Hra8vO9Hq99+GGc+/ab97URI8zbzqJipEu/0qy570fU3PvD077SPCoqisjISGo99lkpKSmdjh/2/e8T9ZtfczxrhRnxNl7DqD/+gYa/P0vj2nU49+8n4sc/ZvQr/+r359AlQhB0fgquqipcJSWImBhkZSXahAm4y8tx/PIhnAcPmiko0uVENjT4PVRUVBSZmZkA3U4vqL7pZsJvuJ7oZU/1ydNRKBSnHzMSolm5aLZpxTV1QiQ1ja2mmFyXX0Zrmxs3HUWoUfOVV1zjSUkAl9vTgVzqEdrgII3rpscxdUIkD6/f0aFQzIqR1rB0/lTlaKDoEUrMGghB6Dcuw1VcjNtSXR90/nScRcXMOXKI0sZGeOZv7ftYorQmfszu4fQxvE9JSSElJYXc3Fyg6yVzQ5jZxo/vsE3Y7YR+62qa3n4bAGd5OfYjR7CN7bqooD8RdjvHX2rvJCor9Vwzd7leSOY6dEjvLObBXV6BLSEBvvqy0+MaFwKdYXRJUygUir5gzbZS2lySIJtg9d1zTDG5ctFslm38ik/2H/USonab4LrpcWbOrdV/1qZpZF6bzK6KWvOxmsbWQH1xANAEXHzmaDIun6yErKLHqDQDD8JuJ+yab3cQVcGzZyEiIyltbOzRcrbx0+3OT0Mch8NBWloac+fOZf78+Zx//vmdjo8tL2X4j+7DWdT++rR+XmAuo1fOnUfbjp36sX98P3W/e6L/Ju/ByMsFPfrevGWL133XkSOduirIujqvrmbVt96Gc9euLs9bVFREbW0tBZ0UiznLy1WKgUKh6BPW5pfR6tLTCVpdkrX57W3CZyREk3H5ZILtmikUBO2iYV1+Gc0+jRRcLje7KmpZs62U1VtKuPmFTUSHBxMS1G7TZdh2BdsENqHfVkJW0VtUZNZC5dx5HR6rzXhgAGYydImKiiIjI4OMjIxu7+P7utf88P+Zy+ix5aXUPfl76v/y15OWwmGdT/VNNwMwx3FMj8z7i8Z3g/jw8C7HpKammhHtQDh+fD+h117DqOee7dE8FAqFwsA319X3/oyEaJZck8wLHx6guLoRiV6ktTa/jNe3lXbYN8iuUVnfQqunmKzVJdlZUcvKRbPZXFhNdHiwVypDoFa2qs2t4kRRYtaCVTgZjPjVr6h7/PEBnNWpT2x5YI9e3yipCA7u9zQDf/MpFaLfW9FmZmaa+bOdoYV2tLdRKBSKE2XB9DjW5JXR5nQTZNdInhDJMx/sN0VkXnENSzfsMlMJDMEqAJfL+/PwkrP0VIF1lugunn1mJESbxzPcCozHfLGmLxh5tLfM8p++198oUT10UGLWQtv+/V7L3QB1jz/eqf1WQUEBqamprF+/vtvV6Iru4xslPd0LnzoT/gqFQnEizEiIZvVd7VHTzLd20uaS2DS48QJdQFpzYhHw9bNiSJ4QSZBdo9XpBsAm4Oqp403BZxXIC6bHAbowvPmFTX7zc61sLqw2z2lYfE0ZF3HSxaQhqludboLtGkuuSTajykrYDj6UmLXgL80ACFiJDu3V+suWLVNith9Q4k2hUCj6DyNC+tCbO8z0AKcbVm4pwSZ0n1ljUUpKeG/3Ed7/spJFl0yi8Ohx/vtlJVJKlm7YxZRxulXlDTPikMB10+NM4Wfk50J7fq4/UTg7aRQ2TeD0VJ25pe49e7IFpNWHt7nNbToy2DTBrwcwWqzwjyoAs+DPRL+7Yio7O/u0cCuwkpCQ0OvGBacChkdsZmam6t6lUAwBrG1cFTr+EqFcEpDt3cCgvSnCSx8fJCYiBCn17mBtTjfr8su49aXNrP6sxG+6QVfnA11cL50/Fbsm0DwFYifiPdtXf9vo8GCv9DDD0cHlljy8fgcPvblD/f8MIlRkthvElpfql6cBiIqKora2lqysrG7lPJ4qnG7iPRAFBQXk5uaSm5vbaeFb/PDh3cqdDcSpIv4VnSOECAU+BELQP6PfkFI+KoSYBLwKjATygdullK0DN9OhiVo+9o+RP2ukDhhI4Btnj2FMRAivflaCkSrr9jRVCPakGwghqKpvae8q5nR7RVR983ON9AN/3DJrIlPGRZxwvqpvvu2iSyYRERbklQPs75i+jxu5wq4A5rhuCau36IJ95aLZp/X/zWBBidk+ICMjg6ysrNNOzCr0qKwhYOfPn9+pr+6mEVEwwnu7/Zyzce750nRqKI/1dms43XOET1NagMuklA1CiCDgYyHEO8BPgKeklK8KIZ4D7gSUrUU3MQRLhaPJFFytzvblY7tN8FqAPM7TAWv+bH1TGy9+VIjL054296sqVt81m+MtTrILKnQRa2mKsCR7Jy63JGdvJXabhsulC1ZrRNV6/O4IVH8FYv5Ep/W+b77tcx8WItC7mi25JpmlG3bR6nRjt2lcP0Ofu2El5nRL8+LmnZ2HvES9AHxlraSjYFcMHErM9gEZGRmkpKQwb948cnJyVO7saYLD4SA9PZ3t27eb9zsjaMZ02vLywW4Hp5Oxmz+lcdVq6vfozRTa9u8n7DvX0vTWvwGIfvbvqkHCaYjUbTOMRP0gz48ELgNu8Ty+AshEiVm/GCLHsIKKDg82q/I1Tx6o8HSqMkSK0yV5PvcAL3x/5oDOfSCxCsj6FiertpTodlwuN8/nHuDd3e0e1+lzEk0B6ZbStO268cJ4YqPC/ArWQA4G3cFfRN0Qp8F2jZWLZnfIt4V20WkIVOMiZtWWkg7naHW6TWEu0Rs62G0acyfHINAbQOQV15gpB6r97uBB5cz2koKCAi9f1czMTLKzswd4VoqTgcPhwOFw8OijjwKQmJjY+Q6eFAMRFgbAkdkX4a6rMzdXzp1nClnQ/XZPRpMIxeBDCGETQhQAlcB7wAHAIaV0eoaUAbEB9r1bCLFNCLGtqqrq5Ex4EGFUzf/hP3t56M0d/OE/e3kke6dp8O+SeutVfwvIR+qaT/Z0By0LpscREqRhE7odl+9rs+uQ/tk1O2kUdptu12Wz6dHa++ad2efRSmtBlq84tUZIF10yqUNWoM2mkTx+BFoXaV5CiHYhi96ZLPPaZD7aV8XGPUfItwhZgNQpY1RUdpCgIrN9QFZWFrW1tQBm7mRvPElPRRITE3vVBW0wtgNOTEwkJycH0N0suhKz7upjAIioKGR9PQDHs1YAuofuuPxtA96qVzE4kFK6gBQhRBTwJnCOv2EB9n0BeAFg5syZp90HkbVq3sDlln6Xin0ZMyKUvOIaJVDQo6hGs4PZSaPYe7ie7WU7zO1XT7V0y7TaHfQTs5NGEWzXzJzbq6eOZ2vRMfP+7KRR5BXX8M9PizpMw+Vy889Pi3BLiU3T7Rlcfqb6jbPHkPNVFW1ON3ZPZzJr6oIvoyNC+uW5Kk4cJWZ7SUpKiqpg7wbFxcX93nRgoMjJyaG2trbL9BLXwYMAuEs7OmQoD12FP6SUDiFEDjAbiBJC2D3R2TigYkAnN0jp7ieFkUuZPieRjV9WUljZwMbdR/hoX5UqCvNgTQswfr+z8xBXTx1vWlNtLqzG6W5PM+ivHFJfcT0jIbpDkdgzH+ynzaeADTzReM/jGpKkmOHsr/S23AwN0kidMoacvZX6A57vq+jwYC8ha9PA7YYgm+C6TorYFCeXQSNmD1Y2sGTtF5RUHyc0yMY1KbH8+MopAz0thaJLoqKimDZtWpfjjCIv3y5zJ6tNr2JoIISIAdo8QjYMuBx4EvgAuB7d0WAhoPKZ/LBgehyvbi31qkT3J3A1TbDkmmSmjIvgpY8PYkig5jY3j2TvREpp5mKezoLWyi2zJnbwV/WNmPZnDqlvzq3v/dlJo7yaOfjDLSE6PMjrsTNjhvHk9dO8hLnTI8wrHE3mOE3ozSQC5QQrBo5BI2ZbnG6u+toELjprNGs+K2Hlp0Xk7DnC0YYWJW4Vg5qUlBQKCgq6NdbanlehCMB4YIUQwoaeuve6lHKDEGI38KoQ4jfA58A/BnKSg5UZCdH8ev5Us5DHsGh66eODXoVBbrekprHVLGCyYgjhVlWt3iX+IqYDOZfVd83m+dwDFFY1cLC6EbdbomnC/JtqwOSxEXxeUoOheYuPNbI2v4wRIXYzJ9Ytob6pjTXb2lfS7J6cYPX/MPjodzHrG3H9/OmFVB0q63pHH94F7gdixsdRWaG6Qp1qZGRkkJOT021ROFTx12XOdfSoiswqTKSUXwDn+3m8EFD2Ft3An0/pxFHDeGT9DjNX0hpFtGkCt58kSj2KF3wypz4k6Y1LQX/w4b4q3YJLE9w0ayLHW5y8tb0CKXVLMcPj1nBraHNJVm8p0fNpPWjApsJq2jz/FwK4foYSsoOVfhOzhogtPnocTQiuSB5HcJCNdw+V9Tp3clthNTNPsh2G0e2qN/sr/FNUVMTTTz8N6A4BnXm1DmWMIq/D072tf+p//0fsy/48qIu/qg5Us+6n74CEu9bdgmZTRiiKwY2vwDIE7tr8MgR6OoKx/dzxI9heVtvhGBq6HZNi6GB1PXC5JVX1LX4txUAvFjSKuyR661y7JpBSYrNp7CyvNfNlg+yaypEdxPSLmD1Y2cADr+RxuFa38tCEYEPGANIIAAAgAElEQVRBBXemJvXJ8d/fdZin/7P3pObXDrZK+lOJ7du3s3jxYrKysk5ZIQvtRV6x5aVezRFaPvyQut89MSDFX/5Eqr/HNv0zD5tdw9UWOBdNoRjsBIog3njBRK9KfZsnbtHfOaCKvsc3hzeQpdjew/VMGRtBiF2joNRhpqSkThnD6IgQqupbeM8igudOjlFR2UFMv4jZFqebueeMxa4JjtQ1s3HnYQDWbe2b9ID/LaggOTaSrLvnmPm1c84afdKjtYq+Yf78+QCsX79+gGcSmL6IzMdaLohiywdHqoxVpB49cIw3f/5/IEGzC9xOPSZxcFMJDZXHSZwVz4GPe26v1teoaLGirzCKmoxK/Z60UlUMDrpjKbZqSwkPvdn+2L1fT6KuxckbeWVs3HOEYLvG18+K8TruGGXDNajpFzF79oQRnD1hBABvF5SbYtbpz9gNPeqZkpJi+nZ2FZ276msTyM4vo7qhhZlJI1m3tZS6pjZzu3JGGFoUFBSwcOHCQd0K+FSJzH+VW8gHf/4UgMt+domXSP3o2S2mEWfChXEc/LQUl9PNlpc/Z9bC6ZTklQ/gzDuiosWKvsS3Ul+J2KFLV5Zit/9ji9f4XYfqmJ00CqervQnD6IgQrwjvApViMKjpUzHrKyLnnTOWtwv0L0ABLL3+a2x8qON+aWlppKSkUFRURFZWltlNKxDZ+XoB2f+syickyEbcyHAuslxF+XNGUJHbwceyZct44IEHAD0629XfXdF7Pnluq3n70vlzOFJz2P/At/Rf94bert94rn3TvXb9sTGRYzlUXdFvEdHOIq/+osWdja86UM2z166Y8fz8VyQQdE/2bU7f8ykUilMT3wuVq6eO56N9R837YUE2osODvcTrddPjuG56nIrQDxH6VMxaReTLHxeyPq/dtUACD7yS73e/tLQ0s3vSsmXLuhQ1No/Nhk3TcDS2sfjKKYQG28zt1siwv8itYnBgdTDIzs5m2bJlpKamkpKSMtBTOyXZnJVPW7OT4aPDaTjayJGaw4O6kYU18vriglWALlKlhDnfnuUlxA2BHei+D20ZYXcdaWpqGtcP01YoFIMcQ9i+trWE3Yfq2LjnCO9/WcmiSyYRERbkJV6ViB0a9FrM+lvSHzMilC0HjnYY+53psWzxcwxjeTk7O7tby7maABfQ6tKXF5vbXBxvdjIs1PvpNDS38Y+cAx0it4rBg5Enm5GRQWZmJunp6SxbtmyAZ3Xq0dbsZMdbe5j67SkUbz1xa7yTjW/k1ZrD++W7+/pCiI99fv4rbvRFIxWpVSj8kFdcY0YmgVMiSml9Tt9MHseO8lrcUncyeOGjQn6Tdt6Qfn6nK70Ws/6W9IeH2jnW0DES+s72zrsvLl++nLS0tC7P2eaS7H7mDuqrDwGwYGnX81zrE+wdPS6Wq5a8rvJqBwnLli1TIrYfyf3rJrQgGxd+P6VPxazb5e7zNANrnu7ud74CIHFWPIWflADgqKjvq1MN3h7JpxhWAaGEwtAgr7iGW1/arPu12jSQEqenAUHiqGFEhwcxeWyEl8XZYMf6nILtGkuuSUYTwmya4ZawJHsnU8ZFDJnnpNDpsZj1jcgesxRj/W9BBTERITz7gwtpaHaSd/CYKXY/DnC8oqIisrOzu13RXl99qNdLpMmxkdw970x+s34nKz8tYvWmIoSA4aFBStwqTikc5XU4m53844ZXuzW+qKiI1NRUcnJyzBQgf0h3z9+Dgfjy3X2ERIQw8YJYcv+2CQAtqD2NaNr8c+CuPj+top/wFRCqPezQwOrX2uZplSUBt0uyv7IBgK1FNazJK2P1XUPjb+r7nGoaW1k6fyoPr9/R3vnL08Z2KDwfRTs9CqkcrGzg569+TmFlA0E2jTERoaz8tIi//N9egm0atY0tZF73NYJtGvEjw7n14kQmjRnOzKSRAY9p5Mk++uijJCYmkpqaGnCstUtHb0gYPYy/vLuX+mY9ijwsxI7LDefFR7Hy0yK2FVb3yXkUioHm0h9eyLzFFzFv8UWERoZ2OtbhcJCWlobD4SAnJ6fTsS8vXNuHs/Scv6Keyr1H+ef3XqWtSV/93//hQQBeXLCK8JFhne6fmZnZqQBX9C95xTU888F+8or1ts2+AmJdfpnXdsXgxPBrtQndbzfI5v97t83T8nco4PucZieN4pZZE/lN2nnYNYGG3iFMeQsPPXoUmW1xukmbEW9GWw3/2LqmNlpdblpdcF+WXjV9XlwkL941m4bmNp7duM/v8YwCoISEBDPNoDN7LlcfRYOSYyNpbnPx9vYKjjW0Ut+sf3HGjwo3n49CcSowdkoMY6foeeOTL0vi4KYS07HAl7S0NNMub/369aSnpwc87rcyL+vzuU6bfw6T505ie/ZuDnzk8bXtpvtWdnY2jz32GE899RQOh8PMw+6iqNAGqJzZEyBQLiXQYRm33NGE3abhcrmx2TTWbCvF6ZYI4BvnjOWeuWeoKNggxNevFeD53ANe3bRgaDWW8H1Oxv+dv/bHgw2VqtM53RazYWFhh5ubm0+4gnkL8NLdEDVmAhf+5F9+x6SkpJxQykBnU8jLy+OGG27gnnvu4cEHH+z0OEljh7PsP3tpbnXxg68n8df3vmLksGA27z+qisb6GNUOePBg5KT6Izs7m9zcXD744APS0tK6zGMeOTGyz+c3PGYYw2OGMXvhdKbNP5fyHYfZtvoLXK2uTvcrKipi4cKFzJ07l4yMDFJSUti+fXt38vCrgeF9Nf9TnVVbSliSvROXJ39SIHFLCPZ4cRpR2JY2Nw+v34GUEGQT3HThxA6tRd/dfYScr6pYfdds4NQoMDqV8O2Y9sL3Z7JqSwmvbS0h2K4NuZxZCNwFLtDjJ4OuhKpK1emabovZ5ubmsb3NUU2/NIl3e3yEdi6ZHMNmP4/n5eUxc+ZMHnzwQZ544okuxex9WVs55Gjif759Lr9evxNNQHiIjZKjjdg0mP9Ursqd7SNOlaYDpwJfvrsPmyUH1cpTTz1FZGQkOTk51NbWcscdd7B+/fqAuez/umMdi16/uV/mOTxmGGHRYbzzmw+6FLKgFxHW1taSmJhIeno627dvZ/78+Z2mLHnocoBCJ6+4hiXZO3F6Vsesq2RtTjcCXdS2trlxA8ZXRptLUlXfwn/3HOlwzFanm6X/3sWew/U4XerLerDj69mq6B1ehXaa4IaZ8SRPiKSmsdUUt76pOgOV0zuYo8P90gEsEE//Z2+fHOejvVV+H3/yySd58MEHefDBB3n++ee7PM7eQ3pV9CNvfAHA8FA71Q0tXD1tAld9bTz/2XFINVxQnHI4Kuo5Vuzwuy09PZ077riDxx57DNBz2DtLM/h2P6QZWPny3X00+/RWD1R0lpaWRlZWFitWrAD0aH5WVlZXp7jgnuzbtvV+pqcHmwur/aZ5CTC7JCVPiOSFDw9QVN1obpfAe3uOECge8kVZrdF8LuCX9WD+IlUoToRVW0rMjmQ1ja2mUG11SVZu0V1bBBASpF/YGbm+RkOHgUjr8BcdhsGzmnJSxeylk2P8+syeKCF2/3VrSUlJ5OXlsXHjRqKjT/yFbfDkzG74vJwNn5dzWfJYQOXOKk4tRsaPIDzafxFYenq66WJwxx13dNlieHQnRZ19wZcbDyB98mWzblvjd2xqaioOhwOHw0FiYiJpaWmd5t7fk32bsuY6QaLDg7FpwozMGiL2+hl6tySApRt20eKnxXBnC3vGJuN4vl/WaplVcaqwaksJD725A4CP9h3l3q8nEWzXaPZ5z0jaL+zum3emmesbHR5sFtz1x3sg0EWjv0LOtfllft+TA3Hh2SuDyKKiIqKiohBCdGcpj4++qiIyZgJCiB7/RIwaT4vTfzXIE088wXvvvQfQLTE7PbHjGJuAWy9KZOMvL6P46HGVO6s4pXA53Wxfv4eLFl0QcIzhJtKdPOUV33+jV/OpOlDN82mv8Pz8V3C7vN/Xbc1OqotqOOPSBIZ5ijIBrnnsG50eMzc3l9ra2k4jyoMZIUS8EOIDIcQeIcQuIcRiz+MjhRDvCSH2eX6fVDWXV1zD0g27cEuJXRPc+/UkfnblFFbfNZvffvc8r+VQiS5Mfa8WBJ3XPGgCllyT3OEL0N8yq0IxFHln5yGv+7sO1bFy0WzOjBnWYawQUOFoIq+4hhkJ0cxOGsXSDbv407t7ufWlzX3uCGJcNP7p3b3c+PwmVnmixNDRCUKC3/ekcYw//kc/xhNv7zkp7iW9isxmZWWZ7UeNZcmuOPuH//S6HxFqRxOCp2+fwVufl7NuaykxESG0utw8fVv7Y4uvnMKrm4poaHEyPXFkpxHevLw8rrjiii7n8kVp+1LrJZNjCA22sXHnYVZ+WsTHX1XR2OLk2R9c6NUqV6EYyhgerpPmxHc6LjExsXt5zr00FrG2rPUl96+bsAXZSL1/Dmt+vAGAO1Z/j73vF3Z6zOXLl5OQkDCU2yI7gZ9KKfOFEBFAnhDiPSAd+K+U8gkhxC+AXwCdFwb0AUaUpdzRZH55CSQRYUHcN+9Mr3EVjibsnnbjQXaN9DmJvPhRIW4JNg1uvGAiyRMiyfz3LloDBCVqGls7POZvmVWlHSiGIldPHc9H+4563QcoqWnqMNbp1iO5a/LKuH5GHIJ2AdnaD7mz1otGt5ReDST8uVusyy/rkPqwLr/MjDI73ZLnPiz0Spnor/dqr8RsWloaGRkZZGVlMW3atC7HT4gOY9X/u5jQYBsNzW3c/3IeVXXNPDQ/mcff2sXBSj2HtbapjVX3XUzcyHAqaptYt7WUhhYnR+pagMA5swA1NTW89957nHHGGTz55JMkJSUxY8YMkpKSOowdOyKUCkcTUsKCC+JodrrZuFPv915Z18Qfb5lBsE3z2ypXoRiKGB6uLy5Y1SfHm//bb/Z4X9+Wtb74a/Sw/ObXuzxudxuvDFaklIeAQ57b9UKIPUAsMJ/2YrUVQA79KGbzimtYl19mWmnZbZqXULUKyujwYJZu2GV2i7rxwngz7eCfnxbhdrrRNM0sbPnBRYlsKqxmZ0Utbrd+TaR5Ij7R4cE888F+L5Hq74u0s/w9620ldBWDCaN4zsiZnTIugmUbv8JpWZkStMcJjAjoqi0laLS7FLqlnvbTl8xOGuXdEc2ngYQhao33/ZJrkr0K1VZtKeHVz0o6HFcCrW39W7jWK4VmRD4KCgq61YZ2QlQYC5/bREn1cfMPdXnyWJBwYdIoiquOA25anW72lNcSZBP8I+cAcSPDuf3iSdw170wamtu455+fBYzM1tTUUFhYSGFhIQcOHKCwsJBf/OIXfp0NKhxNDAu209DixHG8jX99chCb58O6qdVteuXaNMHwULtyNlAMeQwPV4B7A/jMnggxZ/WsEMHasrYkr9zvmEt/eCG15foFbu7fNuF29X23scGOECIROB/d5XCsR+gipTwkhBgTYJ+7gbsBJk7sWdW5sVTY0uY2P6tdLjc3XTiRCVFhHQSlJvTPTQk4nW5Kj+nFX5sLq3G69GM4XW6WZO/ELSW+NWRBNr2Ke+qESFMU++bhzUiIZu/hepZt/IqwIJvf/L3mNt1RQdO7r6r8WsWgxHCE8H2faQKv1sG+7xPrWoaG/1WM3jAjIZql86fq71O3xG4TXmkO4J2/rgnB0vlTTYH7yPodBPqYdtP34ttKn4Qb169fb1YQd0ZyXCQNzU7OHBfBf3fpEdCNu46wcVdHu5ZH3viC0REhCDCX+o1obl1j4IKspKQkamq6l5shJdhtgpgRIazaVERpdSORYUG8sGgWcSPD+bKizqsVr3I2UAx1DA/XgaDqQDXrfvqOV2rCxj9+ZN6Xbqm3L/BgNHo4uKmE4OHBOJudOFu6tug6VRBCDAfWAhlSyrru+jRLKV8AXgCYOXNmj64A1uWXeQlZq1uB8aX2zAf7TUEJEk2AS+pfWp/sP8rWomMsuSbZTA8QFsHri8slTQFsXUZdtvErMi6fbEZ9jMIZ0D+7hSdKLMFc2pSAEeQaSBsjhaIrrDnmGnDxmaPJuHwyew/X89rWEnaW1+KWHbO5BP3XqcxoILE2v4w38spY/VkJa/PLzItC31SER7J3krO3ksKqhg5CVoj2wk9N9L34ttJrMWuYqs+fP7/LsSs+OsidqWfwP9ecyzd2j+Wh17YDMDzERqPHR9ItITRII3H0MCocTfzuxvMJtmlU1jbzi9c+p+xYI7+78Xw2/E9vZ67j8Ajjo3UthAVr/ORb5+B0ujne7CTErvF/X1Twwgf7sHm+SJSzgeJUoa8bWVjF6l3rbkGzedeXeuXHGutolg+/5be8jqvN5bW/y+lm84p8pJvTTcgGoQvZlVLKdZ6HjwghxnuisuOByv44d15xDWu2lZp/GiNqaqQNGCkA1jxWm03TlyY932ZGxLSmsdWrCtuIuup5t5iFYoYANlIZjKjUx/t0Ubxy0ewOhTPJ40fwzeRx5hf6q5+VdIz4DqHuVIrTD99c8IzLJwPtjiDWi0njo1oTkDhqGEkx/dfnxRCtTldHb1vfVASXW3boCmcg0Fe2pZT9/l7sEzGbmppKVlYW0dHRTJs2rdO+6OcnRNPQ3MaL7+8nyCYYERZEdYO3Wm9uc/OlxwPWWOr/1rQJ7C6v83qst2xZelWHxz54GCJGjedPaz7k0iljuOprE0hJiOKBV/IACA1gNq9QDDV8C7waqo6z/6Midry1BxA01jSR9vsr0ewa637yDgBRcSOorahHuiV3rrnJa3/fYi6ruL3855fSUHmcmDNHcXhPFaOTojl6oIbMT37O4WpvkQJwr/32TuceEhLSKyEeGhrq/9N3ECD0J/YPYI+U8s+WTW8BC4EnPL+z++P8mwurvay3bpgZz2+/e55feyxDqJY7mrxy5awWW9bOSkbL0OjwYGoaW4kOD+a1rSVsL9MjUEYqQ8mxRj7ed9S0J1qbX0aYz2fvjRd4m/fffWkSz33YXhx4xbljmTdlTL/aGCkUPSVQ3qmx4mEVsiFBemvonRW1vL6tlP1Vx9lfddzsntcf/9vR4cFontCqb478oksm8dLHB83PCX9oArOltfX59Re9ErMOh4Pi4mKKi4vJztY/VxcvXtxpC8zK2mb+9u5XlFY3MiIsiOfvnEV0eDD/L+sz9h2uZ1iInfpmJ0u+O5VvpcR67btkwXnmbbG0NzPXCdTRTAjBXZ4q3biRYdz/cp4ZQWpuO32iQ4rTi7DoML58bz8XLbqAkrxyvnq/kJgzR7FhyUaEJpBuibPFxfDR4dRXHvdqXuCvmMsqbj/7VwEX3JbCR8/q2e61FfrF6uHqQyfUytoXIQTPfcd/m2wDe6idO1+7CSFEnpRyZo9PdvK4GLgd2CGEKPA89hC6iH1dCHEnUALc0B8nN7/EkATbNaZOiOSZD/azvdRhRosMgRlryZ81KpuFgOQJkdx4wUSvYhFfYQv6F/qeQ3XmfZtNT2UA2Fp0TI/6akIvQnNJbBpM9RzbtwvVL751DhNHDfMqrFHetIrBSGe+ybOTRmG3aabbh2FXd8usiTzzwX5clrX8/kqjySuuIfMtT8tqz/nBO0d+0SWTqG9x8prnvQm6Y8lNHseSkyFgrfRKzEZFRZ3QF9HwEBuvbi5m/5F6QoPal/Q37TtqduOq9zQuKD56vNNj9fUSqS9zf/MeIXYbQTZBq9NFRFgww0KDmDZRfRgqBj+JiYkUF3d0COgWz8G40ePJvOj3vLhgFcNjwokYO4y6Qw00VLW/L/9542vcte4WpKRDMdfBzaVe4tYWpPH+nz8x921rcvbq+VkJCrPjdrr92nuBXkj2fNorPPedf814fv4r9nuyb+u7k/cDUsqP6WjRatC5yW4vMbxkXW6JEHBV8jiv1AADYRGYQXaN1XfpUVojz25HeS17j+wCCFjQBR2jwNfPaM/JNaK+20sd5jKmyw1TYyOZMi7CTHcAWJtfhgAWTI8zRa41p1flzioGE4Ha0xoXfnMnx7Bx9xEzOmvkms5OGqVrEo947K+l+7X5ZeY5XBJ2VtRS09hqXsy6peSljw/y2j1zSJ4QaRZ+2YTwyqs/mZxUv6mfXXMumWv1BP7GVjcPr9FzZkdHhBARamPk8FDqm9p4+vYZnDV+RKfHsi6RHqlt4sa/fkJLm4tHrzuPq6fF9iraAzD7jFFsO3iMuiY9ElvfrHvArdtWakZtFYrBSnFxca8jngYzbzufHet3A/Cd313Bhkf+i9viEWr1ri3ZpovZz/5VwDlXncVnL+uBxZqS2h7PpSt8hbEt2EbstHGUbC1nwR+vZlOWV/rD+c/Pf2ULnpXwwS5sTzbWghQp4a3tFQDeQhY9Z29/ZQOgF2qtyy/j8e+e1yHP7rWtJV7R3HX5ZV5RWutSZnCQHgX+1Zs7kMB10+O4b96ZXkVfAFsKq1mTV4bTpfeyd4MZGVqTV0bmtcnsqqilqr6lg5WYQjEYCOSbbEY+NYHmKZ6y/u/OSIhm9d1zvC7eeiIcu/Jo9tfsJDo82KsQzeWx7YL20gfjsVNezI4eHsIZY4ZTVtNIaJCNa1JiuWhyjJkDW9+sR33+t6CCu6LDTW/Xg5UNLFn7BSXVx839DIus481O7n95m7n8b4hlfxQVFZGenk5ubi4LFy7stG977pdVTE+MJr+oxrTr+vX1X1PdwBSnHZNmxVKwRn9fvfXL97y2vbhgFVO/PaWDd23doXqKt5WZ1axhUaFETojg8G7dIzo4PIjWTlxJQI8uP/30090qLrUy/7ffNC3D/KQ/fHZCBzvN8C3ukBI0TSCkNCuug4M0kka3i1lo/zLzKgrTBDsras1tmhHNdUszl87oKKZpgvQ5iV7NFN7YVsrqu+dw3fQ43thWSptLn8OBqnZrR+Mxg1anm0ey9eVR0B0PbrxwItcNULRIofCHr2+yNVfWLTFtCO2a6NARzzdV50TpTmvoBdPjWJPX3hBhwfQ41uaXeY3RBKbI9hXmA0Gv2tmeKD9asY1RESFk3T2HbySPY+WnRVTUNBIbHeY17tXNxazaVMTBygZuf/ZTFj6/idLqRq5IHmfut81zRfDloTqKjzZ2ee6ioiJSUlJITExk+fLl3TJWP1ilf1gbH4yPvPEFqzYVncAzViiGPstveh1HWV3A7efNP5sFf7yaBX+8mpCIdh/BI7uPmrYsTY5mU8he9tOLiYrrfOUlOzu722kSmr09jrDojZtNIWv1srW1d/E7/cxqTwDDZ9LmeUn1X+3C8KZZE838Oc2zPdgmTKcD40v6J9+cQuqUMVg7FCeMDDddCtqcbt7Zecj88pZSsutQHW2WiH+bqz3Ks/ruOVxy1mg9WkX73GxaxyiSyxJGdrkksVFhSsgqBh0zEqK5b96ZXrmywXbN6/9ZStnndlbdaQ09IyGa1XfN5pZZE5k7OYbncw/w2lbvZgiaJsyxKxfNNi8aB4puR2ZDQ0OPCCHGWh8LCQmhpaWl2yfbsvQqtgB/9dyPGDWeJ7Us7DaNuWfHkHewhoYWfdXvlY8PUnGskau+NsH0eV23tZQ7U/VOXoZF1oxJI9n82JVe0dtAZGZmkp6eTkFBAVFRUZ3ONcimYRMaL987m8fe3ElLm5tXfniRam2rOCXIzMwE9Iu8zlYoAK59/Aq2r99NydZy79Y0HoaPHsaIsRG6H2xYEEho8TiU2ENtOJu9iybf/9MndMWjjz7K3LlzmT9/Pg6Hw7wY9Yfb2T6hrNvWcOdrusvCl+/uQwuyeXnZApuBOV1O4DRmyrgINE3gckndpN2jL42CP2v01CYg8zvtpunr8svMFIHtlnbhAEkxwylzNJkRnKunjjeLvIz7Ww4eM48dZBNey6sZl0/2KgpLnTKGnK+qcLq9OydpnpU032Oo9reKwYwhCtcaXfdcEputY6Szt//H/lIcArFmW6mZO+uLyyVNH+i9h+t5fWspLrf08qQ9mXRbzDY1NY2bOXOm3LZtGwB5B48xM2lUr/PyXlo0i7c+L2fd1lKS40awq6yO8+Ij2VFayztfHOJv58cyacxwZiaNZN3WUjZ8XkHcyPAOy/0tTrcpfJMe6XiuxMREMjIyAL3JQ2pqaqdzC7Fr/OI75/Lr9btwHG/l+TtnKSHbC3pVkIResOdrJaXoOcbKhPGeCMSS3J9x73mdu1h1ZqM1JnIsS+f+8YTmlpOTw/bt21m/fj0Oh4PExERSU1O7tZribHby/PxXuGvdLTgq6qkpdvgOsQrZYEDlzPqwubCaNp8vMN3nUnC0vsUreuqWenFKXnENN7+42RSir28taTfGRF+STJ0yhnvmnuH1RWxYdVnvr8svo6q+BYnukADtS6vWpdnNhdVs3HPEa46GhdEuT3qDkV7QnaVVhWKgMf4n39hWqj/go69WbSlhiSeNJiSo+//H1rbTNY2tpM9JZNehOq6eOt6v4wj4/xywYnhDbymsxiXbV0T6u21tIHqcMztj0sg+mcBd//iMIM+a1tH6VuJGhnP9hRPZUarn6NU1tZm+tME2DZfLzTPpF3QQltYGB11RUFDQqX0YQEOLk5+t+hzQPW6DbRrHm51mHq/ixOjLgiRF7zBs9ADS09M7HVtZe6TP/24xZ42ial/HpS2DrKwsIiMjiYyMJDU1ldraWjOS3Bnjzh1D1b6jpqvByPhIQkeE0FwXcPWoEug/5/Ehim/LSU3oQtHllry/t9Krq4/NJih3NJm2XAZONwhLONwtdVeDlYtmc5+lgNY3/8+4ffMLm8yI0Jq8MtNL03e82V1MEySPH+HXsgv0L2ajEG2gvmwViu5gOHzoneykWTQZHR7MkuydpvuH7/+xVZAax/FtO20t5NSEbn8H/h1HfAu+DOyabr23w9OdzDdvXdPEgOTNDrgyGx5qo+a4njJwrL6Fl+6ezaNrvyDIJhgzIpSvxUfzo6xtlFY3Ehqk8dj10/wKSyMym5IQxVQ/kVmDzMzMTpcs/fH29gre3l7BnalnKM02ROUAACAASURBVCcDxZCmqKiIxYsXm1FOQ8x2lWrQV1z2wMWUbT9E1b5qr1xXK4mJidTW1jJv3jwAFi5c2K336+E9lcRNG09ZwSGvYrRO6Febq6FKTWMrmmh3MEiKGU5hVQOSdtcAm9CFZ0Gpg1c/K8GuCew2YUZy7Bpomi40zWKtbtpj+UaEAu1nXZa12oFNGRfRYaz1i7m/e8QrFL3Bt7OeUTSpCeGVD24VjdaVB7smQAicLl2cXjc9roOQBcyW0dbcdet7raax1Sur7MyYYVyYNIrrpsex93A9uyp2gpTYbe3n04Rg6fypp4abQVFRERkZGWRnZxMZGUlBQUGnHcFa2tzmB2ebW/LLVz+nsq6FEWFB/O7GFH7+aj4l1cdxuiUNLS7T+cBXWJ49YUR7g4MAREVFUVtbS2RkJOnp6Xz3u98NWCm9+bEre/YCKBSDFIfDQWpqKg6Hw1yZWLFiBcuXLz9pc/jw2S3EnKmv6iReGA/rOo4x8todDke3VlEMLrw1hR0bvuy4QQPcejGFT6Q48IfFaYyvaXtR9XHsmugQgQkJspkFXS635MYLJ5pffkYhiCE0Xa7uVzp35qXprwGD1Q7MsAnzXTK1CvT+7hGvUPQG60XarvJavijzOIJIaTorCQGLLpnklRJgClKX3ifcsMOrrG9BE3pLWd9Iq1vqbaGtuevGe2120iiC7O0XpAeqjlPmaGLqhEgvF5LM70ztkC40EPnpfS5mDeuryMhIamtrKSoq6lTMGh9CBhWOZgA+/sOtTHmwY5tLgy1L4e5O5pGYmNghx7KoqMj8YiwoKCAtLY3ly5d3udSq6D/S09PJyclR+bAnASO6mZKS4pV/2lX+eCAcDgfp6ek4HA5ycnK6tY+z2cmhnZUAHNxS6ndMYmIi69evRwjB4sWLuyzWNBgxIYK2Zj8psB17KawEbgVsqJzZDsxIiOb6GXGs3lKi+826JTdcqC/dr9lWavq2+hZw+bO/mpEQzXXT407oi82flybAr97c4WXtZV0ONb5D3BJe21aK2y31wuLJMYyJCCEixO7V1Ux5zioGE/7E3xt5Ze1dwNAt8dLnJPLSxwdxS0nWpiKuSB7HjIToDpZ4RqQUIGdvpdnJC5/orgB2HaoL3HLWIoANcWyN5Ap0twVr+o9vlPiGmfEnpZFCn4vZrKwsHA4HUVFRTJo0qcvxgSrl6o/2vs2lL1FRUd3KvVOcHBwOBytWrOCpp57C4XCQlZXVZUGSouesX7/eFLTG+yArKyvgxeY92bdxrwhc3GWk7HQlZCdeEEvJ1nLmLb6I/Z8UUbpNN+KP/do4eDPwfif6/t/4+4+87gcPC6L1eLuXreUz4VbP72pUzqxfrpseZ+bBGj6TMxKiWeAjTK0RGcDsytVdX8xAERx/X45GzivoEdhAy6FGKkSr0817u72LF/35dioUA4m/4sR1+e1CFuC8uEiWXJvM5sJq3FKaqxCGm8CMhGiWXJNstnIGzPxao/2t2+iE4sF4z3y0Ty/iWn33nIDd+YzxQXaN5PEj2HSgGvDfjMQaJW51SVZuKTkpDgd9LmaNL8b09HQSEhK6jPoE2zTGR4dR39TGsttnMNnT+Uss7euZKQYbUVFRREZGApCWlkZubi5paWmdRvIVPcead3r++ecD9DginpmZSVZWFjk5OV1GTq9+eJ55O/eZzebtss8Dr7z4I5Ajxr1vBRbcVizOCp8AFwOpJzSB0wh/pu7G44EKTqxfyP4cBawYNl7+Iq2+WLuSGbhle97r7KRRhARptLa5/QThvekP306Fojf483396ki915jk2EjzvWHTBG6XLmg/3neUrUXHzAYkrU43WwqrOWf8CK8ILOjFmpoQuFx6Lu7E6DD2e9qTt7p0Sy3r+8832nvDzHiSPSkGLree8uDvwnB20ijsmvAKVJ6Most+KQDLyclhxYoV3bLSaXW5KT6qv6BvF1QQGx1Ox8wOxalKWloaDzzwAAAffPCBErInCSNX/ES7a4EugB977DGWL19OYmIi2dnZTJs2LeDfzu1yo9k0NmflI92SsKhQmhzNxM0YD291/7x96IiRck/2bcoeowu6iqhaxeuC6XFm5LSlzbsL1+tbS7js7LHERISYKQO+kdZARV55xTVUOJo65OxqtOe9GsJ72cav+GT/Uc/yp/5jFbca/dfLXqHoKb6+r/VNbWwtqjG320R7Dvrew/VexZH+lv5bXZLtZR3bh182ZQyjI0LM1J11+WWmmIWOzUf8XdD+6s0d5vu2swvDc8aP8JqDOAkOB/0iZjMzM5k7dy4JCQlmpK07RRyvbi4myC7IO1gTcExBQQEZGRnk5uYC8Pnnn5+QM4FicJGVlUVUVFS3vH8Vg4P09HSmTZtGUVERqampbN++ncWLF3f6Hj+05wjb39wNgN3jQnLlL+bCoydlyr6kDshZTyGs0aSWNjcFJTVeuXXWqJDTDe96lvvX5JVxw4w4r0irsXzpzxz+5hc20eaS2GyCK84da+b/+Y73baoQ5IkO76yoRaBbCfnNCVQoBhhf0bhs41de26daorLv7Oy4muWv4Yg/3v/yCG6JefHpr2WtgXXVxfB03nu4njXbStvft5ogOjzYK7XIuMhtbvOehzgJAcp+EbOG0DSWMjurlra6EhxvdvLjl7dSdsx/e9qioiLzmPPnzyc7OxuHo4MpuklPvUkTEhJ6tJ+iZyghO7Qw3t+gL/1v37690wvKFxesInRESPsDRrGO001CQsJJ9RBWEdm+wep4IIHdh7yXRa1etFaMymir9dD1M+L8piKszS8zlyqdLsnoiBBW3z0nYDFZoNQIhWKwY10FuXrqeD7ad9TcduMF7b7Jvts0AUuuSWbKuAjclk54msC08pIYPtH6R68113b1XR3fL4FsvjQhvHJo3W5J5ls7TduwRZdMYlNhdQchC/pnwZBMM0hISMDhcJCSksIDDzzQ6VKm1V7ry0N17C4P3AM+KyuLhIQEcnJyzAKWzr5EfZckDzua+N5fP8btlmz4WSpRw5TX4ECTnZ1NcXGxKswbQnz++eemzVdaWhoJCQldOoK0Hm9fjqo/0gDA8ptf98rZfetX73JoV2WHdrkGneXGpqamkpiYeNL8ck93fB0POiB1QXv22Aj2VTWYRVmG60F3HA58rzoEnac+0I3tir7hibf38H+7DnNV8jh+8a1zBno6pxRG0w+jmMvaBOSWWRP516Yi9hzWLx7dEnZV1JKztxJrUPa82EhuvGDi/2fvzOOiOu/9/37ODKC4MLjhCmgWGiEFl6hZGjBba2oDTdpmu62kzdakraS9vbdNWx29t/f2/np7xbRp0zRtsGk0aWIEk9Ym2gazVI2CGEHjziDiHgY1qMPMeX5/nDmHmWFmANnheb9eI3O25zwzI8PnfM/3+/my9I0q66IRKS0rPTPX9sUH51iRV8CyugtMWTC/kKWUQYWWMqBhgi4lz7xzMOzriXTnpbPpEjF7qUUlMyaPsPxdwxWATZs2jWnTpllV8G+//XabbXuOuc9zz6/ex+vTeeprM5WQ7SU8//zzZGdnq1zZTqajEc9odyfMC0i3201JSQnZ2dmtjqf7JEmfGsXxj04xKCGOCw0XmbvwOmv7oU011B9uwB5rw3vRB0Dc8FiQgotnI3bwAowc/Y0bN1JYWEhBQQH5+fl9OvVICPEHYD5wQkqZ4V83AngZSAWqga9IKSPnY3UDpuNBuMIr6f9n34lzLM3NoHTPCY6fuWBFmdoSPY12G1TRc/zsr7st4WL+VIK2c7lvdvhOdmWuevaeOBe07uTZi/x9d7BrR8aEBO6bndzCbaRww17e23fKyrVdXV5rOSeYRZjhCrggOMZgClSfTydKx1sAPu13Yuhz1lxdiRnhzcvLIzs7u823pk80XOCeX73HhSadhZ9NIz7WzomGC4xJGNSFs1W0hbYUCSraT3f49jocjnYVZA1PGsbxj07xL7+/E1tMcztqn1dn84pyNE1j9OUjjegscP1Ds6jdXsfefxwk7/99lkcjFIvl5+ezbNkyKioqWL58eX+wdysCfgX8MWDdD4C/Syl/JoT4gX/533tgbhaBt/V3HHazftfxlqbsuqSqroF39p3E49XZfbQyqDtRNLueGSmJYW+DKnqWv1Uda7GsxGz3sPng6aDvXJuAUcPigrz6bZqwLvwC71Ss3FLDmfNN+IO0xNg1BLRwUpgzZWRQAZcZEgnMcb/hilEU3HIle46dZZG/2DP0d18AMTbRLUIW+piYBaMArKSkhOLiYqqrq610hmj8veqYlcex/M09AExLSeQ3X5/V5fNVKBQG+zYeAqDoX17hGy/fY63/6K196D7J0NHxDB01xFqfOmsCteWGJ+2oKSPCjml2CsvLy8PpdLJgwYI+H+WXUr4jhEgNWZ1Lc+HaCqCUHhaz0PzHssxVzzv7TtLk1RGaQOoSKQ2jdzNPL1x3onB5dCu31ATdYlUitnfxufSxQbeUP5c+tgdnM7AwnQ8uNukIAQ99Zgq3po+17pBoWvh2siu31PDkmp3W8q1Tk3g0+zLAyE03734kxsdaTiOBBApVTRNMGhEPEBT9TYyPtez4Mnqg4LLPiVkTMxJTWFjYqpi997pU7r0utXsmplAowjJp5ngOb6vjjv+8NWi9u+4s5058wrkTn3Bi72lr/R/uftl6XvQvr4Qds7CwkPz8fBwOBytWrCA7O5v8/Pz+mDubJKU8CiClPCqEGBNpRyHEw/gbJCYnt7xV2RWEFl8BQc/NBgxmd6JI7W0D/+iahS7hbreGCl5F92FGYVXObPdjNkcwo6FmF7DQwsfQZiShLggXmnyWyAw8Npync2BE1v/ry0sf1PBaQCOE3nDB2SEx25V5eZHIysoiISGBjRs3snjxYtWKVqHoI3z2B9lB6QUmmblXMTFzLBfPeti1fh/Hd50EYO7C6zjwTxc1W48YAvjPLccsLS0lKyvLuqB1OBxtsgHsz0gpnwWeBZg5c2a3mXaH/lELfB5J6Ib+EQz9o7uu8mgLsdpWwavoOn5w+1VKxPYQ9Y0edBl8d+PxuZeHdSMwG5gMCvneNbuEQcvfWzPyG5oje8MVoxgcY7PSiQLvrPSGi8sOidnuyMsLRzQ7LkXvpCcufBQdp6Of25iEJOt5aHqBydDRQxg62kgvuPKmKUHbQpdDycvLY/ny5SQkJLTqddvHOS6EGOePyo4DTvT0hNpDNKEbSKj1UOAfXZO2CF6For8S2mQhWjvZi006i0oq0aXErhl+y3dfE1xcVuaqZ3V5rdVMYdH8dF7eWkNl3RnLLzrGJpiXMQ7n2kpL5Npsxrl7y8Vln00zUPQteurCR9Exon1u505+wnn3Bba8sJ26nceRurScCsCIrCZOSmDbyx82R1c7mcLCQgoLC0lNTW2zs0kfZS2wAPiZ/2dJz06na4hmS2TSFsGrUPRXWvNTToyPtQrCzAYmptfsbeljWwjZe5/dZDkX/HnbYQTg1SV2TXDz1CRGDYuzrPRMn1kBfGmG4Q0d2uShpy4ulZhVKBSXhBlRvXDmItL/JWcKWWiOqs778dwun0t/ulgSQqzCKPYaJYSoxeiT9jPgz0KIbwA1wJd7boZdSyRbosDtEF3wKhT9mcA7HYH5sWD8XgT6wQoBQob3et188HRQe9wmX7OXrE+XZE5y8HhAL4DAiLDZYre3XFwqMatQKDrEZ745i4Yjhon3pqJyLjRcCPKQVbQPKeW9ETbd3K0T6cW0JngVioFAYH6sEKDrwQVbEsOGy6YJFs1vaZE1Z8pIYmzNnrIxNuHvFha+ZXS4iHBvubjstWJW5VgqFH2DpLTRJKWNBlrPcVUoFApF5xCYHxtq9JoyMp6ajxvRpdG9q77R0+L4GSmJrHr42qCcWXPcSC2jw+W794aLy14rZvvTbUOFQqFQKBSKzsQsBrsQ4gurCXj4xsusdrbR2smGE6i9wWqrvfRaMatQRMV56VF7HtkO4/puu9OBSkfv1gwaNMjbidNRKBSKHsW89f/MxgOs39Xc0vbhz0xp0c62LwrU9qDErKLv8tn/g6n+OphlkyIvL5sEt/4cMvy2UEOTwo+n6NV09G6NEGJH58xEoVAoegczUhL53ddmhvV67S0NDboD0Z7e6jNnzpTbtm3rwukoFG3EKSAuAWKHQNodsO0ZY/liQ/B+8aOh8STEDoe4oca+854CW0zPzFvRYwghyqSUM3t6Ht2J+s5WKBR9lfZ8Z6vIrKLXk5qaisvlCrOlwf94JmA5lJOkjIyj+qXHIHYo/OPHMCYDZj3eZfNVKBQKhULRfWg9PQGFojVcLhdSykt+uE5fhPMfw5wnjAGPf9izL0ihUCgUCkWnocSsYmAwZAxs/bXxPOnTPTsXhUKhGGCUuep5+u39lLnqe3oqin6ISjNQDAze+c/m53/9Fky6XjkaKBQKRRdidqdKjI9l6RtVeLw6sXaNFx+cAxDUuWqgVN0rugYlZlvhnOcs33/nXznReJxYWywzk67h29MWEmuL7empDWgqKipwOp2UlpaSlZVFXl4e+fn5OByOtg2gN3XtBBUKhWIAE9idShMCny6RQJNX57XyWlaX1+Lx6thtGkiJV5eW0FWCVtFelJglWoFRS17iFf6VfwtalzB2ODf+5gbsws61469j4fQnlNjtYtxuNyUlJWRmZuJwOKiurqa4uJj8/PzIB9kGwaAEuOxWGJ3ebXNVKBSKgUZQdyokNk0gpcRm06g80sDFJt0St8YexvPNB08rMatoN0rM0lxgdKkIIbg1+TbW17zFu0fe4frxN3DdhOs7cYaKcCQkJFBRUdGOIyR8chw+/JPxANVAQaFQKLqAxPhYNGEIWE0IHrxhMmcvenll22F2HmlAYhTt2O1GZNany6idqhSKaCgx20lMTpiMJjQ0oTF+6ISenk6/x+Fw0NDQgNPpxOl0tu0g38Xm56OmwlffVA0UFAqFopMpc9XjXFuJ1wjL4tUlRZuqufGK0TT5jHQDTcD1l4+i4JYrAZUzq+gYys2gk3h252/RpY6Ukj/vWYXH5+npKfV9nCJi29qsrCxyc3NZsmRJ28XslFuan3+8H979acfnqFAoFAqLMlc9S1+vwuMLvtt5sUln/a7jmGuFEKSPG87mg6fZc+xs909U0a9QkdkIuN1uCgsLKS4uZseOHWRmZrbplrZP+niv7j1umHCjSjXoCBFEbCDFxcVkZWVRWlratjEPbmh+PuVmo2uYaqCgUAwYzOp6FQHsGsyirwtNeottoYl8Pl3yzDsHrWUB2DTB0twMqx2rQtFWlJiNQnFxMQ6Hg4SEBHbsiN7WfYh9CJ94PwHAJmwq1aCLcbvdFBUVsWPHDrZv397+ASbfBPvXqQYKij6FEOJzwHLABjwnpfxZD0+pz1DmqufeZzfR5JPYNLj7mmTunD7RErXhetsr2odZ9BWITRPofieDaEiMdIRFJZWkjR2mLjYU7UKlGUTA4XBQUVHBE08YXaMWL14cdX9TyAJcPerTJA1RuZgdxj4YYoaG3bRx40aKiop4/vnnycpqQwHX5fMgbwXM+Z6xvOtV46dqoKDoIwghbMDTwDxgKnCvEGJqz86q77C6vBaPP1/Tq8OLW2q493ebKXPVs3JLDU+u2cm7+07x5JqdrNxS09PT7ZPMmTKSWLuGTUCsTXDb1CQmj4wPK2Qj3Xvz6ZLXymu7cpqKfsiAjsyaHrKRKCkpYcGCBaxYsYLc3NxWxxtiH8Jtkz/Hmn2r2eBazxcuu6Mzpzvw8J6PuCk3N7dNn4nF/nVw6B8gbMbyySq45jGY8UgHJ6lQdBuzgP1SyoMAQoiXgFxgV4/Oqo8QTjx5/J6nNR83Bq1fV3lURWfbQWBU+8UH51iNEpxrK1vkzoLxWQgBSKMQTILfwst4/sq2w0FRc4WiNQZ0ZNam2fnqVV+LuL2+vp6Ghgaef/553G531LFGDhrJJ95PKD9eBkCcLa5T5zogSf4MTPtG54w1eJThZuBtNMb993r4/NNgG9DXc4q+xQTgcMByrX+dog3cOX0isfaWf/IkkD5ueNC60GVFZEKj2nuOneXxuZdT3+ihKUTICgzRYXjONovYUGdMny7ZfPB0d70ERT9gQIvZwfbBUYu0cnJyyMzMpKSkJLoZP+C+aIjdo+fquH3yfG5KvrkzpzqwqDMuCKh5D7b/vlOGFD84hVgCYgmk/qjSELGmW4L52Plyp5xLoegiwgUXW4S9hBAPCyG2CSG2nTx5shum1TeYkZLIqofmcNvUJDSMNzPWJhgeZ+d37x4M2rdoUzVlrvqemGafosxVz7PvHAhat67yKGCkHMTYgv/LSgAB05MdxNgENgE2DTRNWP+5NYHym1W0mwEtZs95zvL1N/Mjbk9NTaW4uJiUlBRKSkqiVs3rUidlWAp/un0Vj2Z+E7umIn6XTOxQGD4RbDEQE98pQ0oprYfrWMAfqbRcePAD45H2hU45l0LRRdQCkwKWJwJ1oTtJKZ+VUs6UUs4cPXp0t02ur/DOvpMgjOjg16+fzO/ePUjonXCzE5UiMqZzget0cIrGvIxxlmuE844MMicmBG3XJWytrgchuOmqJDRNQ9clQkBe1ni+d1uaammraDcDWnHZNDsLpubzPCvCbs/KymLHjh0kJCSwbNkycnJyIo5VkvdGF81yADIqDb7rv5vqep+UZTcjROtWXZFISUmJvHFPCex9HUZ9Ch7aesnnUCi6ga3AFUKIycAR4B7gvp6dUt8isMWqQFJ19IyVq2kiUJHBtrD54GmrJS3A2OFxfHqiA4D7n9uMx6sTa9dYND+d3UeDc2cl4PXpXGjy0eQ1xpAS3vjwKC8/kqqErKLdDGgxe/RcHQlxCRG3t69VqqLTqCuDQ2/DlZ+HPSVUf8vs3CVg2HjEvx7pUPthi/S74ao7ofx3hgdtcT585c8dH1eh6AKklF4hxLeANzGsuf4gpazq4Wn1KlrzkTWr7Zu8OjF2jXkZ49hy8LQltGya4O5rJnGXKj5qlcT42KAcl9OfeNiw+zj/+OgEPr8V18Umnaq6BlY9fC3PbDzAht3HrfxYXRq5yZsOnLY6henSyJVV772ivQxoMdvgaWBZ2S96ehqKUGKHws6V8PZPjOfJN8Ln/g/2/w3+8eOIh1VUVJCXl4fL5SIlJYXq6uro5/nyS8bPyTfBz0fDiZ2d9xoUii5ASvlX4K89PY/eiHnb24wIhrtVPSMl0aq2NwVv2thhrC6vRYCqoG8H9Y0eNIE/yg1ev+2ZlP4V/gKvl7caNmejh8W1yPAeNjiGpbkZLCqpRJeS2ICIuPL9VbSHASNmTRuuE43HibXFMjPpGr49bSG/u+0PvMDKDo+fmpraunhStI1RafBoefC6urJWhWxBQQEul4vFixdTUFAQ/Rxmh7HPLYcDbxnPx1zdgUkrFIqeJDCFwOPPeQ0nTGekJAatD11WtI3AKLdNE0igyS9oA0WrVzeEaYxdw2YTeP1R8FibCLqgCLzAMB0SAN7ddwpACVpFVPqtmA0Vr9PGTOfetPu4PPEK3qxex5r9rzEl4TImJ0zulPO5XK5OGUcRgplysP77UXfLycmhoaGB7OxsnE5n6+N+8Y+w9mH420JAGG1tv/jHTpmyQqHofhLjY638V13Cxj0nVNvaLiQwym16ykZCAj6fzj2zkq3l4XF2CjfstSKvgZ+T6YgQuKzErCIa/dbNwPSQ/eVNv+a2lM/y3pF3sWt2xg8dz+jBo4nRYhhkH8wvty8nYWwCQohLfkQtMFJ0DDPlwESLCbtbXl4eYHQGa5OY3fADmJYPP/GAU4fHdkLMoI7PV6FQ9Aj1jZ6g5Q+q67n3d5tZuaWGp9/er6y2uoAZKYmWp6w3oJJOALF2jVunJlkdwWLsGndOn8hPv3g1GeMTeOadgxE7rs3LGBd1WaEIpd9GZgM9ZE3xet7byJfWfhGP7mHamOnkTMph3uR5fGtHOdOTZoQtKnI4HDQ0NJCbm4vT6YzYOrUj1faKKJgpB05htLeNHQq09M4sKioiKyuL0tJSCgsLKSgowOFwRB73mseMtIUxGTDr8a6bv0Kh6BbmTBmJXRNBoqrJqwflYy6an059o0dFbDuZ0JSDL8+cZOUfBxblATz99n7WhLSrDY28ms9VzqyirYj2VIXPnDlTbtu2rQun07lUnapk8T9/YonXJ2Z8j3Oes7xf9z4v7n6Bh65+xGo5K4QIK2ZLS0spKiqiuLjYWg4naCMdP6BxBgv81D9MwHX4yCUPlzJpAtV/+iYi+8cR3+vCwkKeeOIJ6uvrI4pZIQTy4ifwX0NgxsPwhd9e8pwUfQchRJmUcmZPz6M76Wvf2e0hnHPByi01/KR4p+Uba9MEur+yXhOgCWEJW+Vl2rmUuep5ZuMBTpy5wN3XJLcQoIEFeqF2aI/eOIVhg2NIjI9VFxsKi/Z8Z/fbyCzA5YlXUDj3KUu8vvTRSm5NuY03DqwF4I+7ithbv4dvT1sYcYycnBxycnJITU3F5XLhcrkiRmc9Pg+xttgueS19ls/+H0z9MgCuJZM6JPiFEHD5PCB8IZjT6aSwsBAAt9sdPTK79dfGz6RPX/J8FApF92IK2MT4WJa+UdXCueC+2cmkjR1miaprp4ykaFM1TV4dIUSQZdTq8lolmDqRPcfOsn7XcQB21BrFW4GCNrBAL5BZqYkUbaq2PGs1gbrYULSbfitmD7oPcMZzhrFDxjLIFgfAO7UbefPQ34izx5E9cS6OuARKDhRz7bjroo5VUlKCy+UiOzub3NzciPttO7Y1anvcAUnpEvjn/0LaHZ0z3nOzI27KyclhyZIlLFy4kNTU1OjjvP8/RqrBjEc6Z14KhaJLCYzsaQHCtCmMc8G7+07i8ersPnqGnLQxjBoWR8b4BJxrDfN+wzLqMBnjE9Qt7E6itaItMxWhuWmFETl3xMfi8TY3X9Bl+M9UoYhGd+YKhgAAIABJREFUvxWzDZ4GfrX9Keov1DM0dii3T57Pg1c/FNRm9o0Da7ELO3+o+n3UscwCL4fDETXiN37ohM57Af2B25+G5Oth7xtRbbXaxSAHcCrsppycnLZHfv9N9axXKPoSwZE9adhBSdmiW1eQRZdPsn7XcWLsRq1zTtoY3vJHD326ZFFJJWljhynRROsNJ1o7Ln3ccMtGC1oWbQW6H5w938Rz7x3Cp0tK95zAbtPwenV0jMis6sCmaC/9VsxOGzOd33+2KOy2wFzaT4/K5JaUW/k9z3f4nElDkjo8Rr9i1mPGzxFXtOoRW1xcjNvtprq6moqKCioqKsJfNPzbSfh3VWynUAw0Qrt3RSrmMvczb1tLDN/ZVVtqiLEJbJoR1QXw6pJnNh4ga5JjQOdptqXhRKTj7n12E00+SYxN8OiNU6g6eoZ5GeNIGzuMp9/eH/S+mp6+T7+9H10aEXKfLrl71iQmOAarnFnFJdNvxWw4Ar1nbcKOXYvhw1M7+Ojj3VGPczgcZGZmUlJSEpSXGcoG13qroGxA4rw0kVlUVMTy5cut5czMzOj5rgqFYsARrnsXGIIqUDSZ+60ur+XVslo8Xh0wRK1Xl0wZNYSDpz6xcjfX7zrOhl3HiYsZuHmagdHsJq/Oa+W1EaO0gRHc3248YLUC9vgkZy56eeEbs1sVx6EXJqp9sKKj9AsxaxZnXSojxo2IuK2oqIiCggLLkD8/Pz/ivjZhu+Q59EnCiVez4OvjA7AiBzQ7xA2HK+cD4ZsSLF++nOLiYrZv3966R+yHHe/WplAo+iah3bpCRVNgtPa//H6mPymptCKxuoQDJz9B0wQEpCRFyr0dKARZa9k0Xt5ag0+HGJtg1cPXBl04mO+33abh9elB45h/EULFceD7aophZZOm6Ez6hZh1uVwdr5KPgOlX6nQ6yc/PjxoxHBYz7JLn0G9487vGw0T3wvmPYUd4IVtaWgo0Nz1ITU2NesFA0qdJGTO0Q76+qsmFQtE/CMqPbWr2lLX7vU4ltPjbYN7aDkQwsPM0A6PeFYfdliuBxyeDXB9CRWrgu2jTBHdOnwi0jLya7+ulpjMoFK3RK8Rs4O3/GC0GieS89zxgRDuvG38dC6d/t0dsr9xud5v3nTR8AFbF2gdBXAJcdiuMnQFvPWHYZ+1fZ0Rj974R9fDU1FQWLlxIQUEBhYWFlJaWRhezo9KoPn7WiAoH2H4xNAmOf2i0vr3y87D3L0YL3Nt/pZoiKBT9lMT4WDTT41tgORx4fJIX/Tmydn+OrM2moes6Xr3lOJ+emMCiL6QPKGEVqeArNEwQuBwawUVKvD6JpgmW5mYE5caGSwmJFrFVKDpCrxCzZuvZ1ITJ/OXg67x+cC23JN+GELDe9RbvHnmX68d/xrK9ChS/vcnXdUAWgHkvGI8P/wRD/dWr+9cZP1sRsmCIWTMH2eFwtJorK+wBn/eS7wLfDbPX9wP2+RbwLVJSUqiurm51PgqFom9Q5qpn6RtVloANd3OuySe5bWoSo4bFIYCTZy+yftdxQnetPNLAnmNn+7WwCu3EFWhz9uANkynaVO1fNhwFdGn4vZrRVmgpUoEW3b0Cc5dD389IEVuFoqP0mJhtLc/1df4adXn8pPFs3bWVN6vX8RKvhB3D6XRSVFSEy+UiMzOT0tLSLi0s6s8FYG3LS/55xC0pI+OAi2G3OZ1OSktLcbvdLFmyJOoZLjWdRLUbVih6nku1fwrHa+W1lmOBiQaMGR7HsTPN3zXSv6+Z5xlja3YzMDuF+ST92qYr1KN37qfGWBFSXUqeffcggH/ZOMauCZxhotWhItVsWRuaPgC0+KwjRWwVio7SY2K2M/Jcxw8dz+jBo8NuN/Nbi4qKqK6u5oEHHqC6ujpi967OIM7fnKE/0pV5ydOmTaO4uJisrCyys7Mv+RwKhaL3Edi1y7m20rJxCiwsupQxX95aEyxkBdhtGskj4oPErABLuPl8OvfMSma83wZqUUklXqs4TPbb296Bt/d1Kfn77uNB6QNS0qIoTpeS+kZPu8dv8hrd1cwLiNDc2HARW4Wio/SKNINL5Utrv4hHD//LVlRUBBg5r0VFRWRmZkYVsgljEzoUvRszYTQ3Jd98yccPZHJzc6N2VlMoBgpCiC8DTuAqYJaUclvAth8C3wB8wHeklG/2yCTbQWDETtAcCfX4JEtfrwrKU21P1HZ1eW1Q7us1qYlcmTSMV7YdZmt1vbVeEzBqWFzQrW3ztvnmg6d58IbJPPfeIXQpie3Ht73nTBlp/H2Tza4Os1ITKa9xG/nEmmB6soMPgt470er7EXihEvgeB15AXGwyrL6UgFV0JX1azBbOfYr3695vkYIQSFFREaWlpVbVfCR+v/F3rPzoRZr0JuzCzvUTPmO1u70l+VY21pbyWOa3+HXFr2iSTQgE8THxzEy6hm9PW9ircncHEqHpD4cOHWq9la1C0XupBO4Efhu4UggxFbgHSAfGAxuEEFdKKX3dP8W2E9y1K5gdtQ3c/9xm65Z0W6rcTfF06mxwytKVScMY7xiM158/C0ZENtbvYXrX9Ilh80Vj7RpLczP6vUXUjJREbv5Uc/czgCuShpE3baLlAFFR20CsTVgFXQ/eMJnNB09bx4cSzRYN4BW/x68EXvqghvTxCaSNHcZr5bVIUN6yik6l14nZiooKK4eyoKAgqu+oXbMzqA239ttSWPTi7j8RY4vBJ338PPsXXOa4nF9X/BKADTXr0YSNZ3b8Bp/0YRM2fNLH5OFT2Fhbys5TH3LWc5ZYW+yAE7fV1dU4nU5WrFhBdnZ2qxcNnUlhYSEul4vi4mKys7NVowVFn0dKuRvCpuXkAi9JKS8Ch4QQ+4FZwKbunWH7mDNlJHabZjUuCMWsaAdarXIP9Ti12wQ+nwyKtsbaNTxNOkLAzVcl8Uj2ZVZOp0noLfH6Rg+Pz728i96B3kNgK1+A9PEJVNU1WAV0oSkYS9+oinpx0dr7+KUZE1m5pQYwIvI/Lt4JNOfkvrrtcIdSTRSKQLSenkAgpaWl5OXlkZWVRWpqqpUqEInHNjzK6n2vRt2noKCAvLw8cnJyotpsaULjvPc8maOzaLjYwJfWfpG/Vf+NCUMncnvq59Glj4v6Bb6Sdg9TR04FwCd92IUdn+5DIvH4PGysLWVzXa/++9JpmDnIpaWlLF68mOLi4m49f2FhIZmZmRw6dEg5FSj6OxOAwwHLtf51LRBCPCyE2CaE2Hby5MlumVw0khMHR9xmsxm39s0qd5uI7PcaKJ58Pp27Z07i3tnJ5Fw5mtXltQAsmp+Opgkk8M6+k+w5dpYfrdnJvc9u4hdv7eH+5zZbt8RtwvBGrXOfDxK7/ZX6Rg+a/xpJAKV7TvDKtsNWJNtmMy4KHp97OfWNnhYXF4GUueqpc5/HromIn9ld0ydi15ovygKLy8BwmggdV6G4VHqdmM3KyiIvL8+K+EXjtdwS/jjvxVbHzcvLY8eOHVRUVETcp3DuU9x/1VfZfqIc1xkX35vxfW6adDNHztXy8cXmX7iX9qxk5ynjCnP3x7vwSR/jhoxjWc5TXDXiKgA+vvBxG15t/6ChoYGioiKcTmerkdGUkXEIIS75EdrsoKioyCrymzZtGgUFBV35UhWKTkEIsUEIURnmES1xPFxCf9iKTCnls1LKmVLKmaNHhy+Q7Q7KXPXc++wm9p/8JOI+X5oxMagF7XdvS4uYYmAKXg0jcj0szs6rZbW8tes4K7fUcO+zm6iqa0CXMqiJwsotNXh80srfrKprYNH8dDImJCCBVR/UcP9zm1m5pYan397f74St2e43MT4Wu834ky+Bv+8+TpM/iVkA2VeOZvPB06zcUsMR93nr7oCmBefOmhHyVR/UgBDcPSs57Gc2IyWRpbkZ2DUR9j9vjK31nFyFoq30qjQDU4yYwiiqeT5wZ0kuvigpY2Y+ZWZmJgsXLiQnJyfivo///ZvEaDEAnGw8wfC44Ww5thmAzUeNn1OGT8F1xoUPH0NjhnKu6RwSyUf1H/HE29/BK70IBFeNvKodrxqOfXKUxzY8ild6ARgTP4bCnF8yNHZou8bpbsyUgkDniGhFdtXfbjK+RYUG0n/b8XPLYc53jOeBjRCWTTLWXX0/3PIzhGNSi+hrTk6ONQez7bDpWatQ9FaklLdcwmG1wKSA5YlAXefMqGvYfPC0JZbCYdcEd4V4mEbLk50zZSSL5qdbOZ7PvXfIciIAI9InwSpEEkKgSxmk+CXw8rbDIGuCCsg8XkP4msVQS3MzuG9232+CE5rXmn3laDb4fXYlRmRaSuM1b9x7kr/vPt4iv7nJJ4M8eEMj5BMcgyMW8d03O5m0scNYXV7Lq2W1eH3G53LTp8bwqD8FRKHoDHqVmDUje4GdoKKlGvzH9T9lyabFEbe359azRKLrxrfbO0c28rfqdQyJGcJgWzznfY0AHDxjePHZsHGu6RwCgUQSeN0pkVSdqiJtxKfafO44Wxzzp9zB9KQZ/HFXEfvd+/jznpf5+tXfaPMYPYEpJAsKCqwc56g5s2Oz4Gg5TJgFtcYFAiergvcJbYf7UQnEtd4muKKiQuXMKvoza4GVQoj/wygAuwL4oGenFJ05U0YSYxN4/II2xmZ8U3p1iSaCO0ZBcGV8faOHxPhYKusaLBFkGvibkVf8Isz0jI2xCTLGJyAwhFrG+ASWvlFFk1cH0byfN4zAFkJYwtiry37jORua1zpmWBwxfrFvt2k4v2AUbdW5z7Pqg5qwhXoA6yqPWuLe7LoGRr5yYnysFfl1vl7lH9toJxxa5CWAO1Xhl6IL6FViNpDS0lJycnIoLCyMePv4PzYvwRHXeQJm5thrKDuxjf+8/r9JTUhl96ldbDm+hR989occP3K89QH8hLortNZ9KnHQCEu4/u3QGPa79/GpdojhnqKoqIjCwkIcDgdZWVnMnTs3+gHn/bfv3DXN65I+3fz8xkXwztLgY66+D7Y9E3HIkpISFi5ciMvlYvv27e18BQpF70II8UXgl8Bo4C9CiAop5WellFVCiD8DuwAv8HhvdzKYkZLIqoevZXV5rSVioKWRPjRHEM0mCKYgDaTJb+8VaAG1aH46VXUNSKDxopcfF+9ESoiLMVwMTIN+s6ApVNiaCIKF8aV4zq7cUsO6yqPMyxjXa6K6oR230scnWP68uq6TNtYIFKwur8VuM/YLp2fnZRjdHQO7rtk0Qf61qVahmAh4X5t8klVbanitvJZF89ODiskCO4opFJ1FrxOzBQUFVopBQUEBxcXFEcXsy19oLv5qr0dsOIG5+dgmpo2ZbrWlvaBf4N3ajRw/crzLGgaYvHHgdZ7daYi2YbHD2p2q0FOY0VAzH7m6ujqyNZb7kPHzXB2pv4rDdfqi1W42Ms9G3OJ2u1mwYAE5OTmtpjgoFH0BKeUaYE2EbT8Fftq9M+oY4VIHwglEM4JofsuGftsKjAIlCUEWUOZYK7fU8OSandb+F5uMoqXH514edL6Xt9YQZ9coq6nHF5BmICXcdNUY3v7oxCV5zgae/919pwB6haAN7bgV6M/r1eGZjQd4d99JwyFCE9w6NYl/fHQcnw6aZkS3774m2XotgZ+Trkv+VnWs2Xot5G+kxLgAWVd5tFWnCoWio/Q6MZuXl0dRURE5OTm4XC4WLFgQcd+uEJjbT5Tz5Ls/4H9u/DlXOK645PFD+eaGRzjReDyifdeNk7IZO2QsxQfW8OHJHTyz4zf8cPaPOu38XUV1dbX1WS1evDi6x2v8KGg8Bbf+HNeS77fr8wv3eTkcjqgOFQqFom9g3rrWZWjE1EgfyEkbQ+meE7z0QQ12zViuc58HDMG2rvJo8HGCFkVLzrWVVspDIBpGNf6j2ZfxaPZll9RqNfT8gbfle5rAC4rX/K4PJifOXGjOf9UlmZMcPOJ/D8x0DzN6C82RXk+Tjg5UnzZS8Mzuaz6fTuBbbLNpzMsYx9bqj63osCr6UnQFvU7M5uTkRC3U6kxMgTRi3AgAJg2dxOFzhznQsJ9tx7YyLWk6X5uazx9Y0eFzffWqr5GaMJk3q9exZv9rXDvuOq6bcD0A7xzeyMnzJ7gyMY3BtkEADLIP6vA5u4PU1NS25yY3GhELNi7psvkoFIq+ReCta00E2zeljIzn4Rsvo77RwwZ/cZLHJy2/1FfKaln10BzmZYyzIqIAd2SODzL8j1SMpgm4ekICGRMS2jzXcGI39Pzmbfnexp3TJ/JKWa0lLO++Jpk9x6uChKb5usI1sZiRksii+ek89fe9QS2Dr56QwKIvpPNaeS0rt9RYqSJfmjHRKgK7lIsEhaKt9Dox2518Yc3tQcunLpxi6oh09tbvYfzQCRw9V0ejtzHssdXV1RQUFFBSUkJCQgIVFRVRo5K/KPs5sbZYxg0ZR4wWw/ihzRaRx88f58XdL6BLHYEgZVgK38x8vFNeY6/iicOwYwX848c9PROFQtFLCLx1LaThcqDrEh2o+biRpW9UsWh+OrF2zcqpNTFvW5tm/esqj5I+bjhFm6pZu6POEmJzpozEphHkYKBhRBN3Hz3DziMNvFJWC1Li1WXYRgGhzgCB280obG/LmQ1lRkoiqx6aEyQswwnN0MIxMzXAvPC42BTcBCNp+CA2HzxN+vgE4mKM3Fub3waszFUf0alCoegsepXPbEdxu91Wzq0QotWmCyPiRlhOBFc4rsTr87Lr4yquHv1pkoYkcazxGM/s+HXYY/Pz8yktLSU7O5uGhoZWo5PfmVbAee959rv3M3HoRCsvF+DLV36F4tzXWZv3F0ry3uCXN/+6z0Rm28WySa0K2fz8fIQQXZNCcDSyz7BCoegZAhsmxMZoPHjDZJJHxiPAElNVdQ3ceMXoFn6lgbet75udzAvfmM2wwTFhDf81zfhzZ9MEj944he99No0vzZiIV5fWvoF+tIUb9lqes2Wuego37I3aSMA8f28VsiYzUhKZM2Ukmw+etoRmYG5xmaueI+7z2G0amjDuYCbGGylxobnNADbNaMDwi7f2WBce98xKBmkUgd39201WJzDT87a/efkqep5+FZnNycmhurqavLw8VqxYQXFxcVSv2rNNZ4nRYmjSm/h6xoMkxA3n/br3eXH3C2xwreeWlFv57ox/ZS1/aXGs6WdaUVHBxo0bo+eKAn/cVcQXpuTy+sESDp05xAbXer5w2R0debn9ErMt7hNPPBFktZWSktLuIr9AUpInwZj0zpiiQqHoRMxb1+sqjzJySCzPvXfIarGqCSPv8pVthy0fWZPMicatbTNiaEYXQyv4TeHW5A/LSl0ybHAMj8+9nDJXPa/6x9Y0rKIwCby37xRbqz+2qvHNqLAWpUtZXyBchBkIcn3weHWrnssrJUvfqCJt7LAWObMGwvpszLa24x2DrXWm1RnQokWueV6VfqDoKD0mZjsqTuLi4lqsW7JkCSkpKbjdblasWNGm3FuP7gFg6/EP+Fzq5xhkM8aNs8Vx9FwdCXHhc6mysrKsVIPs7OxWxezJ8ycpObCGCUMncOTcEeJsLeffm+mwmExJAVxR9zGj21lZWSQkJITdZiKEQO56DbY9Cwf+ZjRaSM2B5Oth7xvNEeC4BIgdAmmfv+S5KxSKriPw1nVoVuv1l49i0oh4XvqgxtomMKy3AoXsvb/bbInXVQ/NCargn5GSyJ5jZ63jdbAijYDVQEDKYEswidFF7Km/7+WC/7a65p9TwS1X9lnxFZpC8Fp5LavLa/F4dTS/vVbo5+Dxu0PMmTKSu6ZPpPJIAzuPNKBLoxA7MNc5MT6WtLHDsGnN3r26lC1cDQLPGy6tQ6FoDz2WZlBdXY2Ust2PypM7uaskj4sXL7YYMzc3l6ysrOjG/QEsn/tLZiZdA8C6g3/hsQ2Psnrfq9w+eT43Jd9Mg6eBX2z7ecTj3W43DQ0NbNy4kZycnDbdFj9y7ghTR6RzU/LNbZpjb6HNn9fFT5CLQT53PfJoBfL1byIXQ3V+dCFrngNg+fLlzJ07t/XistX3Qd1W4/mgBJj1GIzNhDlPGOsmXQ8PbIRrHjO8assi23wpFIqeIdyta5PBMTYyxic0pyHYNe6dHdw+9TW/IJIYnbxeK69tceu8vtGD5r8W14SxbB5rFobp0thm/lEUGMI3sNDJbtf6tJCF4LSOGLtmvW+6NOy2wqFpRqqB2cZ299Ez2G3GGHabBsIQ/z4JzrX+KKy/la3m/9zmZYyLeN5waRsKRXvoc2kGlydeQeHcp1hNccR9TH9ap9PJ5MmTyc0N3/J84T++TZNsAuCr6QuYP+ULAJzznOXb/3icE43HrRa34cjKyqK+vt7ywi0oKIiYpzskZgh3XJbLqo9WclPyzdi1PvfWR6auDA69DVd+Hvb6UzKuvtcQljMehm2/MdZpsTBxtt+P8L0Ww2RlZbFgwQLy8/PJysoiMTExum/tI+XG+dZ/HwaPgPf/N/wcRlxhRGqPf9jpL12hUHSM8LeuDdbvOs47+04GecsCQU4FofIrnBwLTD2w2TSOuM+zcksNW0IE1M1XJZE5yUFifCzrKo8GORSAUZ3fl4UstPSeBb+o90e2p4wawq6jZ639hTCEaWVdgxU99+qSe2ZNYoJjsPVemjT5pFWUF1pcFrgcet6+mrah6B30KUV10H2AM54zjB0yNup+DoeD4uJi8vLyeP755yOKWR2dQbZBXPBdwKd7rfU2zc5Xr/oaNs1G6eG3eZlXwx5fVFRkeeK2VrD0SdMnvLr3FSvq2694dqbxc/33jZ8TZsPFc3ByNxzcELxvzbsRh3E4HNbFgBmRraioiJwu8tvpEDvUiLx++muw5qvw9k+MdVO/3DwHU9wGdhtTKBS9AlNcrS6v5eWtNcHNDGjOwzRzXM18T7Ml7l3TJ1p5rzE2wV0hHabMfFqzW9gr2w7zUpjWrXab4JHsyyyxmjZ2GFsOfYzHn2sbG2bsvkqou0BgpzQzsgpGpPo/864mbewwFq+tbE7VkEZDhftmJwcJWTAKwkxhGnqeSOdVObOKjtKnxGyDp4FfbX+K+guRKyFzcnJ44okn/DmazZ2pwvGbW37LO7Ub+dPuFyiqep6X9qyyGhpcN+F6/nnkPd6vaxlBBCPF4IEHHgBg48aN5Obm4nQ6o87/hgmf4dHMb7byKvsoabnwGX+TB80Oa78BG53NYrPpAnxUDBc+jjpMYWEhbrfbErVR855/fD54+dHy5uen9sCr9wbPYcYj7X1VCoWiGzC9YAN7Jtg0AVIGRe0C8z11aRQWvfzItax6+NqobXIDW6ma7gWhpI8bzp5jZ4PGWfXQHF4rr0UCd03v+1FZCN921xSZT7+938pzFRiR6vpGD6+V1+IN8el9eWsNlXUNLRwm7r4muc3vk7LsUnQWfUrMThsznd9/tgjAstQKJTU1lby8PMAoOlq+fHnE8R7b8ChDYocyfcwMvpHxIBtq1lsNDRLiEvjFtv+NeKzD4WhXB6t+6x1rsqcE9r4Ooz4FD20NFpYAzrYVj5nR2ZycHCvd4JIYldZyDgqFotcS6kIQrm3tnCkjgzqF6XrzLe1AaylTkAaKX0+TzgcHTyMILvQy+bC2gR21O60Cs8BGAf2F1truBqVjaIKNe0/y993HsWsCu00ENZ7YUdvAjtoGbCFf7enj29aAQqHoTER7BNnMmTPltm3bunA6bUcI0eF2tubxqampuFzRC5Q661z9klfuIfWJUlxHjl/yECkpKW3vJMYAeE8VnY4QokxKObOn59Gd9Kbv7LYQqcNWICu31LCopBJdl8TGBFfBh0ZiTVut0Hxcwz/VsOISAkK/SmwCvntbmtWMob/w1d9vCcoD/swVo3jhG7OD9jEjt4NjbFbXNZuAu2clI4DKI4aIjUSgZZpC0RHa853dpyKznc0dxZ9nTPwYXC5XVGHUEUuqAcGXX8L1lY5fXCgUioFNWyKh0dqjhtpO1Td6ePHBORRu2Mt7+04F5XyaCwIjpUGXRvqBRt/2kY1Ga213TZs0j1e3otfm+yMw2uHeOX0i9/5us5VLrEHQhcKO2gbuf26zstpSdCsDWsxe7riC/e59PT2Nvs2OP0HlSz09C4VCMYAIFL2BOaChrgU7Drs54j7PvIxxbDl4Go+v5QW3XRM478igvtFDYnxsi9SG/kRrbXcDLwYC8UlY9UENq8trefHBOUG5xBnjE3C+XmWJWwhugatQdAcDWsyOGTymTWK2cxoG9FPiR8Khf/T0LBQKxQAhULwCQTmg//XFq3nxQUNovbztMG/tMlKfYm2GYC3dc4L1u44HNWD48sxJLUSd2Xa1P4ra+2YnR2y5mxgfG5STbOLzq1tTpAbmKIPh/PBaeS2vbDuMT5f9NrKt6L30WTHbUYGZMHY4/zz6PoPtg8Nud7vdFBQUsGLFChISEqivrw9qrxqIEII71nye4bHDeeGDVfhu+zm29HuMjUOTwBbZq7bPc8U8+HEj/KTlZ1FRUUFBQQFgWG2ZhV2RaM/nmTJ+dLunqlD0doQQPwe+AHiAA8ADUkq3f9sPgW8APuA7Uso3e2yiPURoAdPlo4cEbV9XeZT7Ziez+eBpfAFR2CafpL7RQ+YkB+t3Nef22zTBnWGsvELbvfY3QRsOM8VAl7JFgZwmDOEfSaSakfI7p09UVluKHqHPitm2FgtVnapk8T9/gkf3IBD8vxv/l3FDx7P34z0UH1jDhyd3RBy/uLiYBQsWsGLFiuh+p0BJ3hvGkw9WYdv4n7BpGaTdAfOeaucr6z+kpqbidrspLCwEWrHZAuSWX8GsMI4Pps3Wqd2GzVb6V+BzkV0qFIo+zHrgh1JKrxDif4AfAv8uhJgK3AOkA+OBDUKIK6WUvh6ca7ezrvJo8IqQC2AzWjtnykhi7Jp16zvGJiwRFhdjNGjQNMOnNlR0hebdDpTb5YGv2xSvugS7Bktzr25T+kV/c39Q9B36rJhtK016E2anaYlk7YG1TEkxlD/uAAAgAElEQVSYzJWJaQy2DYp4XFZWFtXV1eTn55OQkNCqELO4/WlIvh72vmF0nRqTEV6gDQAqKiqsRhKRotpBRPKBVTZbigGClPKtgMXNwJf8z3OBl6SUF4FDQoj9wCxgUzdPsUcJLWD6+vWTgZY5oNE8Ylsz6g+1CBsot8vbYo2mUPRW+rWYPeg+QJOviR/PWUTJ/mLKT5RRc9bF+3XvoksdgSBlWOR81ry8PDZu3EhCQgIVFRVt8zyd9ZjxU7VQpaGhAYfDgdPppLq6mpycnIjtfgGw9ev/jgpFe/k68LL/+QQMcWtS61/XAiHEw8DDAMnJ4XMj+yqRCpjC5YBGihK2Fj0Mbfc6UITcQH3div5Bv1YPH9V/xKrdL3LOc44Yf97q7ZM/z7zJtwft9yt+E/b40tJS3G43+fn55OTkUF1dHT3CWFcGh96GKz+vWqgCubm5Qa2E8/LyKCoqIj8/v+cmpVD0MEKIDUC4ntw/klKW+Pf5EeAFXjQPC7N/WC88KeWzwLNg+Mx2eMK9jGgFTJ3FQL1dPlBft6Lvo/X0BLqScUPGEWuLRQjBIPsgbp88n1tTbmvTsU6nk4qKCiuy2NDQED2qCEY+586V8Nvp8P7/qBaqIRQUFLSrMYJC0R+RUt4ipcwI8zCF7AJgPnC/bDZvrgUmBQwzEajr3pkrFApF76RfR2YD29+2l+LiYgoLCyksLLQEWKt5nyq3swWmg0FqaiqlpaU9PR2FolcjhPgc8O9AtpSyMWDTWmClEOL/MArArgA+6IEpKhQKRa+jX4vZjmC6FzzwwAMALFu2TN0ebyfV1dUUFhZa7yHAoUOHenBGCkWv51dAHLDeb1W3WUr5qJSySgjxZ2AXRvrB4wPNyUChUCgiocRsFFQksWOkpqZSUVHR09NQKPoMUsrLo2z7KfDTbpyOQqFQ9An6dc6sQqFQKBQKhaJ/o8SsQqFQKBQKhaLPosSsQqFQKBQKhaLPonJmgZSUFIQIZ+PY9uMHOuo9VCgUCoVC0RMoMQvK+7QTUO9h95CamorL5brk41NSUtRnpVAoFN3Eyi01LTrWKTofJWYVij6Ey+Wi2Ue//XQkeq5QKBSKtrNySw1PrtkJwLv7TgHhWy8rOo7KmVUoFAqFQqHoZNZVHo26rOg8lJhVKBQKhUKh6GTmZYyLuqzoPJSYVSjaSWpqKkKIS36kpqZ2+pwKCwuteWVlZeF2uzv9HAqFQtHXKXPV8/Tb+ylz1Xf5WGljhxFjM1K7YmyCtLHDOnxORXiUmFUo2omZt3qpj44UcEXC6XTicDjYvn07YIhbhUKhUDRT5qrn/uc284u39nD/c5svSdCaAnbllppWx9p88DQ+3ahx0HXJ5oOnO/waFOFRBWAKRR/hXFFR2PVF/vXFxcWkpqaSl5fXfZNSKBSKPsLmg6fxeHV0CU1enc0HTzMjJbHNx5ti2OPVEUJYQtUTYaw5U0Zit2k0eXVsNo05U0Z26utRNKPErELRizlXVMS5p3+Dfr4RWR85daChocFKX0hNTaW4uLibZqhQKBR9gzlTRhJrN8RljL394jJQDBPgKqNLSIyPDX+QuV8HXGgUraPSDBSKTqKkpAQhBA6Hg5KSkg6P5/nwQxp+9BOGPJBP3OzZEferqKggMzPTWjbzZxUKhULRzIyURF58cA7fvS2NFx+c066oLDRHWsNR3+hpsW7zwdN4dYkEfCrNoEtRYlah6CS2b99OZmYm+fn5LFiwoMPjXXhrPQBS6lx4uzTifnPnzrUaIZSUlLBjxw7mzp3b4fMrFApFf2NGSiKPz7283ULWPDbnytFht4WLzJqRYJvgkiLBirajxKxC0Uk4nU4KCwut4quORmd9Jw2T7bP/9TO0MWMi7peQkEBDQwMFBQXk5eWRnZ1Nbm5uh86tUCgUipaOBaOGxbXYRxPhI7MdjQQr2o7KmVUoOpGcnBwAsrKyqK/vmPWLbfSo5oVBg6Kec/HixSxZsoTs7GzlZNCHEUL8B5AL6MAJIF9KWSeM1m3LgduBRv/68p6bqULR/wks+Iq1a7z44Bzumj6RV7cdxuMzcmA1AbFRoq4zUhKViO0GlJhVKLqAioqKS8pbNQu+ZFMTg26+yVqv79sX9Tin04nT6Wz3+RS9jp9LKX8CIIT4DrAIeBSYB1zhf8wGfuP/qVAouojNB09zsUlHAp4mw7Hg8bmXs+rha9l88DSJ8bHUN3qYM2VkmwRrmauezQdPt3l/RdtRYlah6CTy8vJwOBzWshmlbStmwdfwHz2JLSmJ+u8sxJ6ejreqqpNnquitSCnPBCwOAcwS6Fzgj1JKCWwWQjiEEOOklKo/pkLRRSTGx1q/gDrNebFmtNUUp+EIFa7horxK0HYeSswqFJ1EYI5sQkICWVlZFBYWtlnUmgVf8ffcjZaYiPsHP8Q2NskSs7bUVKir7expK3oZQoifAl8DGgCzkm8CcDhgt1r/uhZiVgjxMPAwQHJycpfOVaHoi6zcUsO6yqPMyxjHfbMj/47UN3rQhGG9FZoXG0mcrtxSw8tba6g6egZdl9a2QFuvSL60iktHiVmFopNYtmwZTzzxBJmZmWRlZZGamhoUqW0Ns+Dr5G2fQ3q9SEB6vcTl5HCxtBTfsWOdMk8pJUYKpqInEEJsAMaG2fQjKWWJlPJHwI+EED8EvgUsBsJ9YGGNK6WUzwLPAsycOVOZWyoUAazcUsOTa3YC8O4+4zs3kqAN9aVNjI/l6bf3M2fKyLANGPYcO2uNbWJuS4yPxd9jIbovrR+VktA+lJhVKDqJgoICCgoKLn0A3QfA4Lu/gn3yZNwLC8DTxPAfP8nJ0lJiszKZdKyuQ0J0Unw85/+6jvjP337p81R0CCnlLW3cdSXwFwwxWwtMCtg2Eajr5KkpFP2edZVHWyxHErOmG4EpRpe+UWVFYhfNTyfWrlndwBLjY1uMDc2WXJsPnkZgXIEKoKquwRLGoWJVpSS0H2XNpVD0FswOMYFiVUpis7IY+uijeDZvYdPoJGonX0bt+Imc+sZD6LrOqUcepXZSCpPi41s9xeHGRobM/zxCiBYP1Wih5xFCXBGweAfwkf/5WuBrwmAO0KDyZRWK9jMvY1zU5UACo6NVdQ1cbGqOxNY3elg0Px3N39Z26RtVpI8bHnT8bVOTLCEamH8rgZc+qOF/39zDvc9usmy/TMzCM102F54poqMiswpFb8Fm/Do2rnoJvF5EfDy+06c4ds1sfG6jlW1S2VZsI0Zw9MpPIYYMofG117jw+hvE3TSXw396AdmBlolmxDfQUWHI/fcx7F+/p9ISuo+fCSHSMOpNXBhOBgB/xbDl2o9hzfVAz0xPoejbmFHY0JzZaAVbdpuGruuWGLXZmqOtujQ6fDV5dc5e9HLb1CSOn7nA3dckkzZ2GK+V17K6vBYBVmQWwO/shccnWV1eGxR5jVR4poiMErMKRQ8QVRwGFnnt3xu0KTkjg6r//m/khQucLynh4qZNACQ4F8OfXujwvMI5KsSkpzP49nkdHlvROlLKuyKsl8Dj3TwdhaJfct/s5KDUgnC39UNzYk0E8KUZEwE44j6PTRNIn0TTBK9sO4zXX/QFcO/vjDEB7JqRcuDz6eCP5gaOGUi0wjNFeJSYVSjaSUpKSocilSkpKVb72fYihKDhRz+BmBhip2Xh+WArALbR4VssthfTUeHc7/8APh/Y7TT+7U0lZhUKRb8hNAobrpgrsGBLAja/uIyxCTLGJ1ji19zH6w+1mlHadZVHg0SwV4fM8cNIn5BAxvgEnK9X0eTVsdmENSczOhtaeKba4LaOyplVKNpJdXU1UspWHye+eBe14yfi2bsXn89H7fiJ1vEdpqmJIV//upVfe+y6GyLu6na7KSgowOFwkJeXF33Yj/YAMGTB10j4yY/B68X70e6Oz1ehUCh6ELMt7cotNdz/3GZ+8dYe7n9uM2WueuZMGYldEwjApgnmTBlJfaPHipgKaK5lEIKquoYgIQuGiJUYkdQYu0b6uOGExjw+rG3gtfJa0sYOY9VDc7h3djKaEKz6oMaaC6g2uJeCiswqFF1E/D1fwbNlCw1L/wPbhAmdO3hMDPX//gOraMw2dixU7Qy7a35+PiUlJSxevJiioiKKiorIz88Pu6/+8ccADL59HrYpU+A7C5HnPuncuSsUCkU3EphGoAmBLqUVhTXzWa0YqhDsOXaWI+7zVlqA8KcFmFHXE2cvYrdpVgqBdShw/eWjmJcxjqVvVAWJXWiO2pqdxDYfPI3XFxwRNoWraoPbPlRkVqHoIoZ85SvY06dy8R9v0/jCn9DGRa6ara6uJicnh9TUVEpLS1sfvKkJzp0zng8ahHfPnojjlpSUsGDBApxOJ3l5eVRUVEQcVhthfHme/+s6LqwpNtYNGdL6fBQKhaKXEphGoOvSKsYCeHnrYV7cUoPXZ4hVr09nUUklL31QA1Jyz6xkluZmEONPB5DAPz46QebEhBa5rnExGgW3XEl9o6eF0DUxi8egOZ3AJoyIcJ37fAtnA0XbUGJWoegiPB9+iLdqF8N/9CSJTy1HPxrZSSkrK8v62WavWs3/63vhAiN++0zYXcymDWYk1uFwRG3kEPOpTwHwyfNFuJcsBbsd+9Sr2jYfhUKh6IUEika7TaBpAonhKBBaiKUJgVc3IremwK1v9JCTNsbaz6dLymvcxNgENgGxNsH9s5OtlIDA82khijf7ytFBEdc7p0/k5quSIEy6gaLtqDQDhaKTMa2tTDutwXd/BduIEbh/8MOw+5eWltLQ0IDT6SQrK4usrKyoqQAWTU3N51z1UthdokVhwzHolps5u6yQoQ89aLkZDL711naNoVAoFL2JwOYHde7zrPqgpsU+Nk1w9zWTGB5n55l3DgJG6sEr2w7j0yV2myFOTUstKSVfviaZ8Y7BVqTV9IMNPN+Ow27e2nXcOs+YYXFA9NQH1eq2/Sgxq1B0IoHWVhdKS/G8/09OZM9F2O1Iny/icdnZ2eTk5ABGFLVNRWJCGDmzNhtNO3aE3cWM+DY0NOB2u6moqMDpdEYcMiYzk4T/WMq5Xxs+s0O//S0GqW5hCoWij2PmoJa56nmlrDYoDcAm4KEbJjNscAw7DruDjmvyq9cmr841qYmU17jRpWG/def0iS08aUM7dtW5z2O3CXw+SYz/GAhOfUAa1l4CqdwLLhElZhWKTsS0toq/526aDh6E9/+JbexYYtKncv7V1WGPqa6utkQnwLRp09i+fXvrJ4uLgwsXwOdD1oe/LeVwOMjOzmbZsmWsWbMGh8MRdK4W81/3N4Z+/QGGfl158isUir7Nyi01LZojzEhJ5EszJrJqS43VWvbmq5Io2lRttKYNGcP0e5UY0dSHPjOFYYNjLMH59Nv7OeI+38LaCwhquvCV2ZO4yy9+oaX91qL56dQ3elq0tw33GhQtUTmzCkUn4jt5CjCKpswvRV/9xxGFLBjR04qKCtz+tIRly5ZFP8mgQcbPCxesorJB8yL7wBYXF5OamkpFRUWr+bjn33wr+rkVCoWiD7BySw1PrtnJu/tO8eSanazc0pxacNf0icTYNQSGjdaoYXGWGDU9ZQVGLuzMAGHpk/Dce4csIWtafL1aVotdM/JnzchqYOTV59OZ4BgcJFJD7bfum51sHWfmzEZ7DYpgVGRWoehEbKNHAaCfOwc2GwDy+Imox2RlZZGTk0NeXh5ZWVls3LiRwsLCiPsP/953afpoD+dXr0Y/dgzi4xFDh0bc3+FwUFRU1Kb566dOtmk/hUKh6M2sqwwuuH32nQOkjR3WLCillfxKxviEsFHSxPhYnK9XBY2jS2lFXgPF6j2zmvNnZ6Qksr7qGIAlmMOlDgTab4VLVQh9Desqj3Lf7OQWTR8USswqFJ2KWUDV+PKf0U8ZUVrrS9Me+dfN6XSSn59PaWkp27dvj5oK8Mkfnkc/fx6AYT/8AfaxY6n/zsJOmb82qnM6iSkUCkVPMi9jHO/uO2UtV59u5P7nNluFWV6/b6xPl9Q3elg0P73F7fyn396P1xfcyjbWrpEYH0tlXQN2m+FDGxOQPwtGRNUsIgPIvzY1rOgMFKWBkVxPk07hhr2kjxse9BrSxw3nyTU7ebWsFq+vZX7uQEaJWYWig5x+9Jtc+Os60HViZ13D8KVOPvnNb9EbG4N39HqjjtPW6Kn0eolJS8OzZQtD7r0HLTExolNCexl86y3W89DXNfLVV9A0lZmkUCh6P6YgffadA1SfNr6LzXzW0HzVxPhYlr5Rhcers7X6Y9LGDgOg4rA7qPHBrVOTyEkbg3NtJU0+iU0z8m1H+R0KTEIjqlVHzwQtl7nqea28lpe31uDTjRa5zjsyiLVr/P/27jw8qvpc4Pj3nUlCFkgmskN2t1rApgQRr702toC4ggtIobeCbaP3UW/pY6/SRUvBWqz1ir3aXtFrsXVrBRXk6SYVauVKKCCRVcWQQAABMStZJjPnd/8450xmkklYsowh7+d55mHOyW/O+c0BJm9+ec/7+pstLGD9nk/4Z9mn3H5ZHjsO1TBqeCrL3imjqdnCnZJWPmih35mU6oTjK1bQ+Ppq+n35MpK/Pht/8UasQx8zbNNGRuzcTvy4cS2D4+O75Jxp9/0If3Ex4OTmiiBd1NjAv3Mnxpio76v2wZ91yTmUUqonzLo4i0dm5JMY74nIZ22dr+o2OXBv4HplSwWzn97AmrCSWgJ8IdPH9oPV+N0GCxb8bddhXtq4j5uf/D+mPv42LxTv48rRkQ1ywrfddILni/cRsOwcXX/QsPb9I9w4NoMxTjMGd4V2QFI8v/vmxdQ0BSIC2Y7SF/oiXZlVqhPqn38RgLQFP8abm0v9756jbulT1C9fQcrsWVz09lvsc1rEdpWkG66n8u7vQXMzVl0dnoQETF0dmampSOtm4KegX79++O69B+69p2Xnc79reX7fj+xHK9nZ2SdXSkwppXpYeM1XN5CNlnMavlJrsPNhw7vRGqC2oZkdB6ojju/eNGYZKKmopqRiG7dflkecVwgEDXFeCa30QktJrtbe3H0E45Tocs9rAenJCWwur2T55orQ/jgP3HxRVkRqQ1+nwaxSnWA5gap38GAC27fbOxMSSLvvR1T+x3fY9+mnGNPykdiZYNNV+4tHkJQUTFUV9b//A96hQzENDbx3510cX/asXbJLBBobSbmtCN/990W8vu6Z34TqyHpzcxm68tWIOZ6qrnhPSinVXdwbrV4o3sfC13ew81ANQctE5JyGB7wAr2ypaLMS+vTbewlYkZ+VXo+9Qhvuzzs+xnLGGctEpAK4KQ5uOgE45b+cHF4TDPt+gd19bEPpsVDurmAHsj+9fkzXXaAzgKYZKNUJnrPOAiB4+DD1f/6LvW/gQJJuuB5JTm4zPjs7204LOM1H1pAh1C55DFNfT3x+Psef+Q3VCxfR/647sZqaAJD4eMS52cxf8l7o3HXLlvHxRRdT89DPsWpr7Q/pxobuvUDqtIjI90TEiMggZ1tE5JciskdE3hORsbGeo1K9iVvmqqSimuag3W2rqdlOKQA74L3j8nNCge/914ziwoy0UMtaj0faBLIega98bijnDImsJtMctPC2KtXlcgPniZ8figc7OBUIBc2tV4PTkxMi2uP2i29pvKBaaDCrVCckz5wBQPXCRfbNUkDSFZPbzWMtKyvDGHPSD4CKERmhx6YvXw4eD/j9NO/ejVVXCyKI10vzdruEzJB1bzJ8904Agnv3Ai2dyRKnXIGpq8PU1cHx4zRv297t10idGhHJBCYB4UUlrwTOdR5FwK9jMDWleq3WN2WBHSy+vGl/qK6ra3N5JQtX72DbgepQUwWhbSAb5/Ww7v0jlB6tI94rjExPAuBAVSPNQcNXLxjabrWBN3cfwaIlRSEaD/bKbHiO75xLcliy5gOtOduKBrNKdULKjBkkXn0VTev+TvDDD+19d91pB6N1de2+rrS0lIKCAh566KGTPpckJeFfvx4sC1JSoLERU1uHVVtL7ZLHCFbYKwxHJk+h5uFHIl7rdiYLVjv5XnFxxI0e3eH51q1bR05OzgkbLagu9yhwD5GLNFOB3xrbBsAnIsOjvlop1Ubrm7JcQcuwYksFT6zdwwvF+3hi7R5WbKloqSFrGRqagxEB50U56dw9+XxuKsggYNmrvJZliPdEplx9cLg26jk3lB4jaIWnnxFaeU2I8xDnFQSIcyotPLF2D2Cv0v7PW6XaRCEKzZlVqpMGLn0SAP/WrRy9+loaX14eymNtz9lnn43P52P+/Pmkp6dTVFR0wvMkF32b448/AcEgkpSEOX48FJQGNm0KtbRNuOgi6h57DIC43FygpTNZ4P0PAJDUVCQ5qcPzzZs3j/Lych577DGqqqpOunSYOn0ich1wwBhT0ioXeSSwP2y7wtnXdrlJKdWGW6rrT9sPhcpcNQfsdIDlmytodm74cqsExHmEoGWIj/Nw5ejhFJcew+/ks5ZUVDP/ygsAO7fWvXFsyqhhEfVly53atnMuyWHHoZpQDdsJeQOJj/OEbgTzCCy4NqxRw6rtBAHLsljw+g4CQbsl7lnJkRVx3CYKSoNZpbpMQn4+aYsWUvPwLzC10X8iB1i6dCnTp0+nqKiIvLw8CgoKmD59OunpHd+VGvzoI/tHeAC3hm1qKp6UyNxc//r1oecpc24BWjqTEQwCYD79FP/f32r3XOvWraOkpIS1a9dSXV3NtGnTKCwsZM6cOR3OUZ2YiKwBhkX50g+BHwCTo70syr6ov5wUkSLsVASysvQbnVKuWRdnhYK/SaOGsaH0GAerGnhx476InNVA0OJrrTp67ThYzQvF9rhg0M61HeFLCnULc8dlDUxh6VsfUX6sHoOdl+sGuP/48BP2HTvOgKR4Cs8bzBs7D9tpBpYdmM6beF6rhg4QtKxQdYWPa5oi3k97q819kQazSnWhhHEFmBq7QLY3OxsOVrQZU1paSl5eHhMn2g0KbrvtNtasWcP06dM7PHbjG2tCjRdCq77V1fid9AYAT1YmNAcwx4/jzcwk6ZqrgZbOZCbY0rjBk52NVV4e9Vzr1q0jOzubwsJCqqqqSEtLO2GwrU6OMWZitP0iMgbIBdxV2Qxgi4iMx16JzQwbngEcbOf4S4GlAOPGjTv9MhVKncHcG702l1fy+3/uxwqr6OIRYdSINCrr/aF9N4zNYIWzCuv1enh5034CrSoiAJw/bACXnjOIg1X7CboVCsL+Fy79hx3YxnmE+DgPgYBd1eDtDz/hnY+O8a0v5YbKhHk9AiKhVWOXLzmemeMydVU2jObMKtWF3NxUgMQpV0Qd0zoonDhxIps3bz7hsb2ZYbFMYqL9ZzAIB1t+02zt20/S1OuQxEQSxo8Plc1yV42D+1uCa+vo0XbPlZOTQ7kT6Pp8PnJyckhLSzvhHNXpM8ZsM8YMMcbkGGNysAPYscaYj4FVwDecqgYTgGpjjKYYKNVJBdnpLJw6mjiPk6fqEb71pVwWrt7BI399n9lPb2BzeWXETVjhubJukwU353b20xt4ceM+EOHm8VkU/WtexPksQygX96aCDC49d1ComkHAMiz9RylzLsnh5vFZTB+XyYJrRzHr4iwSvBIK2Goamln2TlmbG9f6Ml2ZVaoLubmpAElTpsCP728zZvr06RQUFLB48WIAKisrycvLazOuzbH37sWbm2tXKOigrezxJ5eCMSRO/GrE/v63zqX5/Q+of+45e0cHOb1u8OrmypaUlJCfn3/COapu80fgKmAPUA/Mje10lDpzzLo4i/OHDQjVmXUbG7jBqlsnNrxerUcEjIlYpfWIYBk7yA0GLUb6krjj8nPIGpjSJlc3Ps7DjU6JrXc+OhYq+2UZeOrtvXjFDm7jvB5uKshgwXWj+dP2Q6zf80mbeSldmVWqS4VyUwFvXm7UMXl5ecyYMYOCggLWrFlDUVERBQUF7R/UWYWVxESCh+zFuOHvbSVt0cLQkKQbrm8Z7/xOq/appziQlcOBjCyO3nAjlmWBFQwNS31gUbunzMnJASA/P5/vfve7PProo/h8vvbnqLqcs0L7ifPcGGPuMMacbYwZY4zZFOv5KXUmCa8zG17XtXWdWLdsl+V06/ryeYMjKhp4JLK+7ObySirr/cybeB7zr7qA5781gZvHZ3HZuYNZ4dS4XTh1NOGFECzLhGrh+gMWLxbvY+HqHVw5eni78+rrdGVWqS7k5qYCVN/343bHLV68mIKCAiZNmtQmmA3/FT9ARumetgdIalWJ4PH/Dj3NHDCAdwYOJrB5C/2+cjlWXR3+4o0cOu9zxIUF2P7i4nbnl5OTw2uvvca8efOYNm2aludSSvUZ0VrgusJXbQXDkAH9Ilrhht8QBjD76Q34A1YotxZg+eaKUCWD5Zv282LRJTwwbQz3r9yOZezVWIwd0BrsFITmgEVlvb/defV1Gswq1YXCKxo0rl7d7rj09HRKS0ujfq28vLzz7WXT7Q/S5Jk3U1l0OwCe5GQCO+xmCpI6gMbX258fQGFhIVu3bj3teSilVG/lphS05q7ausHrDWMzuGFsRtQA84m1e0KBr99JCwA7MHU1B+12t3dcfk5EqgPYZb9e3rQ/VCLMPb4GsW1pMKtUF+t/61z63+qkNEq0iko9wCnB5d9aEpqHsSyIi4NAgLOWPsmxmbPsbaWUUielvVXbaAFmenJCqNmCZezt84cNiKgxG++VUPDaOlAtyE5vN1BWkfQ7mVJnImdlN1S9wBg8qalYxmCqqqh9/Ff2/kCgnQMopZSK5mRXRyvr/aFKBeGtaV/89gRe2VKBAW4cm9HhsXQl9uToDWBK9SKFhYUn1Ymrn1PJoHnbttC+xMmToamJ+Px8mrdsAUCGa9FtpZTqDhPyBtIv3mlTG++JWIH96fVjePD6MRqodhFdmVWqG2VnZyNdlGqwYMECtm7dypIlS8jJyaGwsLDdsYGdu6BfAsGyMgA8Iywkdy8AAAb5SURBVEcS/PRTTEMDzbt3h9IQaKgnMzm5U3PMzs4+7dcqpdSZqqMbyVTX0pVZpbpRWVkZxph2H03vvkvFiAxqnvgVx5evoGJERtTjrFy5kp/85CcsWbKEZcuWsWDBgg7PmzJ3DukPPwxA8syZ0NRE44oVxF14ITQ2QnMzAKaqmnd8Z1ExIoO6VauoGJFBxYgMjt39n1SMyODghfkcnTWbg1/4IoevubbNXOtfX02ZEzArpZSKFF7yS3UfDWaViiG3+sHxZ35D9cJF9L/rzqjj9u7dS3Z2NtOmTSM/Px+fz8fKlSvbPa4xFtU/s5sy+EtKSP76bAD6/cslAEhSEvH5XwiN92Zn0/T2+tC2J3WAfZy6OjyDBmHq6ojLO7vNXBOvvqpzF0AppZTqJA1mlYqx/rfOZdimjQwveZe0+fdGHeOmFLiNCwoLC3n11VfbPWbtg4vpf+tcZMAAArt20bzlXQCs6hoAJCUFj8+HZ/BgPIMGEdy/n4bnXyDugs/ZB/DbPclNYyOeAamYhgaSJk1sM9euSqFQSimlTpcGs0r1Am5HLvdX+mVlZSfsyJV08wy7WoHXS/DoUSD6imu/wkJG7i9nZMU+hq55g7RFC2n881+QlBQkJYX6Vat0FVYppdRnlt4AplQv4PP5Qp24pk2bxrJly3j22Wc7fE3TmjWYhgYkNRVJslvitrfiGi6iTq5SSin1Gacrs0r1EkuWLMHn8zF37lwKCwuZOnVqh+NrHniQ/nfdifH7Q/muuuKqlFLqTKMrs0r1IsuWLTupOrMA/f/9drxDh0JjI0mTJpJ0zdW64qqUUuqMI6fSA15EjgLl3TcdpRRQcCr/L1sTEe7qP2D/3JT+w+IFea2+4ZP7a6oOnP4RzxjZxpjBsZ5ET+qBz+xBwCfdePzeQq+DTa+DTa+DrbPX4aQ/s08pmFVKdT8RMZ0NZo0xWmZAdTsR2WSMGRfrecSaXgebXgebXgdbT14HzZlVSimllFK9lubMKvUZk5iYeFhEhnbm9V05H6WUUuqzTINZpT5jGhoahsV6DkqdpKWxnsBnhF4Hm14Hm14HW49dB82ZVUoppZRSvZbmzCqllFJKqV5Lg1mllFJKKdVraTCrlFLqtIjI90TEiMggZ1tE5JciskdE3hORsbGeY3cSkYdFZLfzXl8VEV/Y177vXIf3ReSKWM6zu4nIFOd97hGR+bGeT08RkUwRWSsiu0Rkh4h8x9l/loi8ISIfOn+mx3quPUFEvCLyroisdrZzRaTYuQ6/F5GE7jq3BrNKKaVOmYhkApOAfWG7rwTOdR5FwK9jMLWe9AYw2hhzIfAB8H0AEfk8MBMYBUwBfiUi3pjNshs57+sJ7L/7zwNfc95/XxAA7jbGXABMAO5w3vt84G/GmHOBvznbfcF3gF1h2w8BjzrXoRL4ZnedWINZpZRSp+NR4B4g/C7iqcBvjW0D4BOR4TGZXQ8wxvzVGBNwNjcAGc7zqcBLxpgmY8xeYA8wPhZz7AHjgT3GmFJjjB94Cfv9n/GMMYeMMVuc57XYgdxI7Pf/rDPsWWBabGbYc0QkA7gaeNrZFuArwHJnSLdeBw1mlVJKnRIRuQ44YIwpafWlkcD+sO0KZ19fcCvwJ+d5X7oOfem9tktEcoAvAsXAUGPMIbADXmBI7GbWY5Zg/3BrOdsDgaqwH/a69d+F1plVSinVhoisAaLVPP4h8ANgcrSXRdnXq+s/dnQdjDErnTE/xP6V8/Puy6KM79XXoQN96b1GJSL9gRXAPGNMjb0o2XeIyDXAEWPMZhEpdHdHGdpt/y40mFVKKdWGMWZitP0iMgbIBUqcb9oZwBYRGY+9+pIZNjwDONjNU+1W7V0Hl4jcAlwDfNW0FG4/465DB/rSe21DROKxA9nnjTGvOLsPi8hwY8whJ83mSOxm2CMuBa4TkauARCAVe6XWJyJxzupst/670DQDpZRSJ80Ys80YM8QYk2OMycEOZsYaYz4GVgHfcKoaTACq3V+3nolEZApwL3CdMaY+7EurgJki0k9EcrFviNsYizn2gH8C5zp3ridg3/i2KsZz6hFOXuj/AruMMf8V9qVVwC3O81uAlT09t55kjPm+MSbD+TyYCbxpjJkNrAVucoZ163XQlVmllFJd5Y/AVdg3PNUDc2M7nW73ONAPeMNZpd5gjLndGLNDRP4A7MROP7jDGBOM4Ty7jTEmICJ3An8BvMAzxpgdMZ5WT7kU+Ddgm4hsdfb9AFgM/EFEvold7WN6jOYXa/cCL4nIA8C72IF/t9B2tkoppZRSqtfSNAOllFJKKdVraTCrlFJKKaV6LQ1mlVJKKaVUr6XBrFJKKaWU6rU0mFVKKaWUUr2WBrNKKaWUUqrX0mBWKaWUUkr1Wv8PpmOABhleXi4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "from matplotlib import offsetbox\n", - "\n", - "def plot_embedding(Xp, y, imgs, title=None, figsize=(12, 4)):\n", - " x_min, x_max = numpy.min(Xp, 0), numpy.max(Xp, 0)\n", - " X = (Xp - x_min) / (x_max - x_min)\n", - "\n", - " fig, ax = plt.subplots(1, 2, figsize=figsize)\n", - " for i in range(X.shape[0]):\n", - " ax[0].text(X[i, 0], X[i, 1], str(y[i]),\n", - " color=plt.cm.Set1(y[i] / 10.),\n", - " fontdict={'weight': 'bold', 'size': 9})\n", - "\n", - " if hasattr(offsetbox, 'AnnotationBbox'):\n", - " # only print thumbnails with matplotlib > 1.0\n", - " shown_images = numpy.array([[1., 1.]]) # just something big\n", - " for i in range(X.shape[0]):\n", - " dist = numpy.sum((X[i] - shown_images) ** 2, 1)\n", - " if numpy.min(dist) < 4e-3:\n", - " # don't show points that are too close\n", - " continue\n", - " shown_images = numpy.r_[shown_images, [X[i]]]\n", - " imagebox = offsetbox.AnnotationBbox(\n", - " offsetbox.OffsetImage(imgs[i], cmap=plt.cm.gray_r),\n", - " X[i])\n", - " ax[0].add_artist(imagebox)\n", - " ax[0].set_xticks([]), ax[0].set_yticks([])\n", - " ax[1].plot(Xp[:, 0], Xp[:, 1], '.')\n", - " if title is not None:\n", - " ax[0].set_title(title)\n", - " return ax\n", - " \n", - "plot_embedding(X_train_tsne, y_train, imgs_train, \"t-SNE embedding of the digits\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Repeatable t-SNE\n", - "\n", - "We use class *PredictableTSNE* but it works for other trainable transform too." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\python370_x64\\lib\\site-packages\\sklearn\\neural_network\\multilayer_perceptron.py:562: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.\n", - " % self.max_iter, ConvergenceWarning)\n" - ] - }, - { - "data": { - "text/plain": [ - "PredictableTSNE(e_activation='relu', e_alpha=0.0001, e_batch_size='auto',\n", - " e_beta_1=0.9, e_beta_2=0.999, e_early_stopping=False,\n", - " e_epsilon=1e-08, e_hidden_layer_sizes=(100,),\n", - " e_learning_rate='constant', e_learning_rate_init=0.001,\n", - " e_max_iter=200, e_momentum=0.9, e_n_iter_no_change=10,\n", - " e_nesterovs_momentum=True, e_power_t=0.5, e_random_state=None,\n", - " e_shuffle=True, e_solver='adam', e_tol=0.0001,\n", - " e_validation_fraction=0.1, e_verbose=False, e_warm_start=False,\n", - " t_angle=0.5, t_early_exaggeration=12.0, t_init='random',\n", - " t_learning_rate=200.0, t_method='barnes_hut', t_metric='euclidean',\n", - " t_min_grad_norm=1e-07, t_n_components=2, t_n_iter=1000,\n", - " t_n_iter_without_progress=300, t_perplexity=30.0,\n", - " t_random_state=None, t_verbose=0)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import PredictableTSNE\n", - "ptsne = PredictableTSNE()\n", - "ptsne.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAEICAYAAABMAnwwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXl8VNX5/99nJnsCk0DYAzNsbkEJiyJqJVbUQlWi1r2twbq0tUr4tr/Wb1sx0OVrW61DW7ValNC6VFFMKooLSlCrIASCsghiSEJYwpbJQhKSmTm/P+7cy8xktiQTkpDz9jVmlnPPPXPvMPO5z3nO5xFSShQKhUKhUCgUit6IqbsHoFAoFAqFQqFQdBQlZhUKhUKhUCgUvRYlZhUKhUKhUCgUvRYlZhUKhUKhUCgUvRYlZhUKhUKhUCgUvRYlZhUKhUKhUCgUvRYlZnsAQgibEEIKIWI8j1cJIe7ogv0UCCF+G+J1KYQYF+399kSEED8SQlQLIRqEEAMjaJ8rhPi4i8aSLYSo8nq8TQiRHeG2EbdVKBQKheJ0RInZCBFClAshmjzip1oIsVQIkdIV+5JSzpJSLotwTDO7YgztIVKhJ4T4pRBij+cYVgkhXvZ6rVgI0SyEGOn13EwhRLnXY+9zoN/+1oHxxgJ/Bq6UUqZIKY/6ve5zcXGqkVJmSimL29tWCJEvhHi+K8emUCgUCkVPQ4nZ9nGNlDIFmAycD/zav4HQUMfVD0+k+XvATM8xnAq879fsOPBQmK6u8QhQ/faTDgxnCJAAbOvAtgqFQqFQKHoQSnR1ACnlPmAVMAGMqOLvhBD/BRqBMUIIixDiWSHEASHEPiHEb4UQZk97sxDiUSHEESFEGfBt7/49/d3l9fhuIcQOIUS9EGK7EGKyEOJfwCjgDU+E8ueetsuFEAeFELVCiA+FEJl+w08XQrzn6WutEMIa6D0KIeI9Y6z0RKL/LoRIDNDubODvwHTPOBxBDtv5wDtSyq89x/CglPIZvzZ/AW6NRqqDZ/x2IcR+z83uee4MYKenmUMI8UGAzT/0er1BCDHdq99HhRA1ngjzLK/ng57vAGNL9KR81AghtqMdG+/XjYi7p+0yT9sdQoif+6UklHsi2N8Cfgnc7BnzFs/ruUKIMs/53iOEuL3dB1OhUCgUih6MErMdwDMVPhvY7PX094B7gH5ABbAMcALjgEnAlYAuUO8GrvY8PxX4Toh93QjkA98H+gPXAkellN8DKjkZqfyjZ5NVwHhgMLAJeMGvy9uB3wDpQGmA13X+AJwBZHnewwhggX8jKeUO4IfAp55xpAbpbx3wfSHE/xNCTA0i9PYB//C8387yK+BCz/gnAhcAv5ZS7gJ0gZ8qpfxmgG0v9Xo9RUr5qefxNDQhnA78EXhWCCE8r4U63/48DIz13K4CQuVHPwzYgDHAFcB3AzWSUr4N/B542TPmiUKIZLQLhFlSyn7ARWjnXKFQKBSK0wYlZttHoSfy+DGwFk086BRIKbdJKZ3AAGAWkCelPC6lPAQ8DtziaXsTYJdS7pVSHgP+L8Q+7wL+KKXcIDV2SykrgjWWUj4npayXUp5AE4UThRAWryZvSik/9Lz+K7SI6kjvPjwC7W5gvpTymJSy3vNeb6GDSCmfB+5HE29rgUNCiAcDNP0/4JoAEWWdQiGEw+t2d5B2twOLpJSHpJSHgYVoFxydoUJK+Q8ppQtNvA4DhgghhhD6fPtzE/A7z7HdiyY4g3ET8HspZY2UsipM20C4gQlCiEQp5QEppUqtUCgUCsVpRbcscOnF5EgpVwd5ba/XfSsQCxw4GbjD5NVmuF/7oOIUGAl8HcngPNHO3wE3AoPQhAxokcRa/3FKKRuEEMcCjGcQkASUeI1fAAGnzQOMYxSw3Ws/KZ6/LwAveBZg5Xjub5ZSvuPV9rBnUdci4KkA3Yc6B94Mx/e4Vnie6wwH9TtSykbPsUlBu3gJdb4DjS3S8+/fNlifbZBSHhdC3Az8DC2K/F/gp1LKLyPtQ6FQKBSKno6KzEYP6XV/L3ACSJdSpnpu/aWUerTxAJpI1RkVot+9aNPR4fYJcBswB5gJWNCmp0ETojrebgG6ENvv188RoAnI9Bq/RRel4cYhpaz0XqTVprGUrVLK5cDnePKO/fgTcBkwJcj+ImE/2kWFzijavs9g+B/XcIQ73/605/wfADK8Ho8M1pAA45ZSviOlvAItivwlWhqHQqFQKBSnDUrMdgFSygPAu8BjQoj+QgiTEGKsEGKGp8krwANCiAwhRBoQaLpdZwnwMyHEFKExzmvRVjVaLqVOPzRRdRQtsvp72jJbCHGJECIOLXd2vWeq23v8bjTR87gQYjCAEGKEEOKqIGOsBjI8fQbEsxDp20KIfp7jMQstd3W9f1sppQN4DPh5sP4i4CXg10KIQUKIdLR830htqw6jRbXHhGsIEZ1vf14B/lcIkSaEyEBLvwiGd9sRQCj3hmrAJjxuGkKIIUKIaz25syeABsAVyXtSKBQKhaK3oMRs1/F9IA5tur0GeBUtOgaaUHwH2IK2SGtFsE48EczfAS8C9UAhWjQVtPzSX3tyR38G/BNtynqfZ7/rAnT5ItqiomNokc9gq9t/AewG1gkh6oDVwJlB2n6AZnN1UAhxJEibOrTV9pWAA20B1Y+klMH8aRcTWHjp7g367fVAG38xdNjh25OSz003mQ4mC7EH7TgHLRjhjZSyEe2Y/9dzbC+MYLNQ59ufhWjnaQ+aCP5XiH4XAVWetqs9/Z4I0na55+9RIcQmtH/fP0WLSB8DZgA/juC9KBQKhULRaxBStndGVaHo2ewbMXIKsBFNkO9HE4s3jNi3N+hFQ29BCPEj4BYpZbCor0KhUCgUfQoVmVWcjlzr+fscmvXYcbRc4l6HEGKYEOJiT+rCmWiR1oDRaIVCoVAo+iJKzCpOR4Z4/taP2LdXouWKDgnRvicTBzyNlmLyAVAEPNmtI1IoFAqFogehrLkUpyPVnr/9940YeQRtYVx1iPY9Fo+ncCDHB4VCoVAoFKjIrOL0ZKXn71y0BW5JwBvdNxyFQqFQKBRdRbsWgKWnp0ubzdZ1o1EoImT28UaubzhODPBuUiIvpiTDyYIFfNvr9fcSE3m+n+/rir5HSUnJESnloO4ex6lEfWcrFIreSnu+s9slZqdOnSo3btzY4YEpFO2loaCAc+6/n70NDR3uw2q1Ul5e7tNnwxNPIVtbSb79Nvr97KcIJXRPe4QQJVLKqd09jlOJ+s5WKBS9lfZ8Z6ucWUWPpeXzz6n91UPsbWigMxZy3kJV77P/r36JecgQah6YR2xmJomzZ0VjyAqFQqFQKE4xKmdW0SNpKCjgyI03R73f5nffAyDplptJvP46RFISTe+8G/X9KBQKhUKhODUoMas4JTQUFHDw/GkcyJpM3Z8eDRlp1aOnMePHR23/+n6dhw4DYEpORgiBSE7GfeRw1PajUCgUCoXi1KLErKLL0cVp8txcLA/9mnr7YppXvR20vR49jZt2Qch+S0tLycnJwW6343A4QrbV99v02msA1P7hj9Q/txT3kSOc+HRdWIGtUCgUCoWiZ6LErKLLae/UvuvwEQASr7oqZL92u53i4mLsdjtZWVkh2zoefhgA04jhABx/+hnqHloAUpJ8220BBXZ7oskKhUKhUCi6ByVmFV2OLk4jndo3D0oH4MSGzxAWS8A25eXlLFu2jJycHEpLS7HZbBQXFwftM37aNG0MMbH0X7TQeD75rh/Qf1F+G4Hd3miyQqFQKBSK7kGJWUWXo4tTt8eVQDY0YEr3tY7zjoI2f/ghAPW/fwTzkNBVaPPy8khNTSU/Pz+kmBUDB2pjaGyk3w/uhIQEACy//F9MJlMbga0WiikUCkXXUVJRwxNrdlNSUdPdQ1GcBigxq+hyEmZeDkDjy6/QtOJ1ZFMTiVfMNF73joIm33EHrSWbMHlErHPXroB9btmyhRkzZhjpBd4+soFoWbceAFNSopYu4HQCUL9kCQemXoD78GFc1YeMVIL2RpMVCoVCERklFTXcvmQdj727k9uXrFOCVtFplJhVdDlxWVlYfrOI488tpXbRb0i5/yckfHu28bp3FFQ6W7UnPZFTkZQUsM8ZM2b4PC4sLAy5CMz19dcAOHd/zbEf3H1SzP7+EdyHNZHq3LGDYz/8EQ1LC2gqKgK0hWJutztgNFmhOJUIIUYKIdYIIXYIIbYJIeZ195gUio6wruwoLU43bgmtTjfryo5295AUvRxVNEHRZdhsNioqKtq+8Hkp/O+DbZ/3pAIAsL+KkUlJrPd+zovU1FRKS0vJy8szhGy46CwAMTE0v/MOcRdfRMt/P9Ge8whbzGaaV75J88o3SZ6by/GlBRx/+hlwOttEkxWKbsAJ/FRKuUkI0Q8oEUK8J6Xc3t0DUyjaw4VjBhIXY6LV6SY2xsSFYwJ/zysUkaLErKLLqKio6HTlLnddXdDXCwsLycnJMe6npqaG7dM82oarohL3Md9pLZGYiHS7weUCoN//zMc8ejR1D+dz/PkX2kSTFYpTjZTyAHDAc79eCLEDGAEoMavoVUyxpvHCXReyruwoF44ZyBRrWncPSdHLUWJW0bNpbQ36UnZ2dlh/WX9cX+6EuDjcftuJ5GTksWMgBEhJ9WWXk/Ld2zGlpxObeQ6WB3/RoeErFF2BEMIGTALWd+9IFIrglFTUBBWsU6xpSsQqoobKmVV0mq70Y409//yo9QWAyQQtLcjGRp+n3bW14HaDZ+ym5GTq7Ytx19aqXFlFj0IIkQK8BuRJKdtMXQgh7hFCbBRCbDx8WC1aVHQPnVnkpZwOFO1FiVlFp+iIH2tubi42m83wiA2FKTExmsOFGG0yQtbW+j7vFwF26bm+LS04y8rYN8rGvoxRHL7+Btxud3THpFBEiBAiFk3IviClXBGojZTyGSnlVCnl1EGD1IWY4tTgL0C9F3m1ON3YV++KSJwqpwNFR1BiVtEp2uvHWlxczLJly0hNTSUnJ4ecnJyQqQLOysroDrilpd2btG7aRPyMS0n67u20rP+M+t//X3THpFBEgBBCAM8CO6SUf+7u8SgUOoEEqL7IyyTALeHjr45w6z/W8cvXvwgpUJXTgaIjKDGriIhgqQQd9WMtLCwkNzeXrKwsCgoKgraTzc2MTErS+u7gbWQQe6/20LJ1G02eiHPjm291uj+FogNcDHwP+KYQotRzU6sSFVGnPdP8JRU12FfvaiNA9UVeF49LRwASLUL74vpKbn3mU6Nv/33pItgsUE4HiohRC8AUYdFTCfr/6peYhwyh5oF5xGZmkjh7lk91L1NcXFg/Vr1Kl81mAzSLrdGjRwdtP3zTxg6Pe2RSEp+mDjAeT3ccY69frmzE7K9i1JChfGKOQR5TkQLFqUdK+TEgunscitMbPcra4nQTF2PihbsuDLpQS297otWNBEx+AnSKNY28mWewofwYza0n07NaXJLXNlUB+OxrwdWZ1DS2sODqTLbur1UfdkXEqMisIiyhUgnCVfcKR3FxMRaLJejrUsoO33yEq8nE3sbGTvVXWX3QM6h2HkCFQqHoJbRnml9vK9HExMXj0tuI3ynWNBZcncnQ/vE+2wrP9idatX2daHWzoGgrj727k/w3tvHqxr289Fll0LxZtUhM4Y2KzCrCEiqVQK/u1fDkU8jW1nb5sTocDioqKoyStF1KFBdtmdKUnYxCoTg9aU9BA71tS6sbk0kwa8KwNlHckooaFq3c5hOZjYsxcf3kDHYerDdiAxJwuSUSTUTrz3mnLXj3GWn0WNE3UJFZRVi8UwmklG1SCVLunMvQjZ8xbMtmLA/+Am2dSmCys7MBTcjm5uZisVgiKnbQYxCC2GkXdPcoFAqFokvQc13/58ozA4pE/4jopeMHIQS4pWTRym1tIqV69FXHJCD/mkymWNPYtv+kq4wAzCZh5MrGmkXQvFm1SEzhj4rMKsKSMPNy6h+30/jyK7Tu2olsaqL53Xep+9Oj9PvZT0OKV3+ys7OZM2cOaWlpzJgxw8ihbQ95eXksXryYOXPmUFhY2O7t/SkrK+PGG2/kpptu4he/CFMcQUqSrryy0/tUKBSKnkqwggbeEdEYkwAhaPWkGUDbKGpJRQ37HE16LRpA+7ttfy0vrq/k35+ddKuJjTGRf42WM6uL1xWbqtpkdZVU1LDf0USMSeByS7VITAEoMauIAD2VoH7xX3AfOULcRReRdPNNOOblGQvB/GkI4VDQGQHqcDhYvHgxEydOpLi4GLvdTl5eXof7Axg7diypqak8+OCDpKWlcc899wRtq8raKhSKvopPRNQlAWmITYFvFNVb+Lq9FKkEXt5QiUTg8np+YobFELJTrGm8uL6SlzfsxeWWvLJhL4vmTODMof1OimmziZsvGMkNkzNUioFCiVmF5ixQoRcJiIRXX9FuAN+ejdVqpby83HhZdz/oCnQbr7y8PGw2G5dddhnZ2dkdzrt95plnuPHGG7nnnnsYM2YMU6ZM4cYbbyQtSF6sKmurUCj6InqUNcZswuVyY/ZEZl0uN2azie9MyfARlq9tqjJcDvxxub1lsMaG8ho2lNeQEKu5Giwo2orTo4KdbsmCoq3cfP5IQxy7XG5GpCYqIasAlJhVABUVFZ0qQeufZqC7H3QF5eXlWK1WcnNzAZgzZw52uz2kV63PHJcfZWVljBkzhpkzNQeGe++9l9WrV3PjjTdGeeQKhULR+yipqOG1TVW8snEvLpdEADPPGcK9M8YCWrRWj6bq+bT1Ta28vGFvUOOXWHPbFAWdE61uVm09gNvvO9vtlhyqP4FJaK61Kr1A4Y1aAKaIOrr7QVeQmprqs2AsOzs7ZEncuEsuAbM56Ov+EdiZM2dSUlLS+YEqFApFD6S9BRFuX7KOF9dX4nRpsVQ38P6OakDLrb3vsnGGkNWrgP39wzJcXrkF3uEOAdx58Wjyr8nkvAwLJr8lFxIYmByHSQhjO4EWk1i9oxqnW2ISggVXZ6qorMJARWYVUUd3P7AOG9auxWH+xMfHt3kukPPBli1bgvYRm3kOLocD19atAV+/8cYbmTJlCo888ggANTU1jBkzJuIxNhQU0PCEZkuWfPtt7V4Qp1AoFKeK9lpa6Tmy/riltjjLOyobLK3ALDTR+1m5Jp4l8MxHZcSYTThdgS0T39iyH5fUom3n29KQaGkIOk63ZNv+WiNqLIDrVe5sn0aJWUVQ7HY7drudiooKY8FVJDZauvvBF79+iBPrPuXE+2sgPp6EGZfS/O57xE6aROvmzfT7xc+JGTGCmgfmEXPOOQx57x2ffgKJwuzsbObPn4/dbgcgPz+fpUuXBh3L8aefCRmZHTNmDDfddBNTpkzhD3/4A/fccw+rV68O+x4hdGU0hUKh6GkEsrQKJQB1H1l/kWoywfKNe3G6pVG569WSts4DWluBJSnO5zm3JKBIBi0Kqy8McwOfldcQKD7w8sa9vLyhEr2b5SVVvHS38pvtq6g0A0VQ8vPzSU1NZfPmzQCGgAyH7n5w/LmltHy6HoAhG9Yz4LlnEUlJyOZmAI4XLKN20W8gJoaYs8+OqO+srCzmzZvH/PnzmT9/Pjk5OUb+bEd55JFHqKmp4YorrjCEbSToucFSSuoe+QMAdX9+vFP5xwqFQhENAqUT6OI0mH+rP7rn7CXj031SBSYMt+B0S0MUr9p6wCfKOiIt0Wjvdst2laUN9O0Z6CvV5ZJ462HlN9u3UWJWERB9QVVhYSFZWVnk5OS0a3u9kELi9dcDYE5JMaqHicQErc1dP8Cy4CFwOkm68goaCgo4eP40DmRNpu5Pjwbt2263GyVmQy78AsTAgcRdcrEWSghCWloaZWVlSCl5+umnI36Pem5w/e//j+S5uYh+/XDu2EHzqrcj7kOhUCiijXf+qnc52HAFEQIxxZpG3swziI/VRHCcWTCkfwIxXgUOZk0YpvnOejhU1+xT9GBQv/g2ubGdwYTWr9mrTwmk+UWAFX0HlWagCEptbS02mw3Q7Ls64g+r58/WL1nChAcfZG9DA2zRIr3c9+OTDa+52ndDTxvvVAN/C7BIkMePYx40GOKi/yWnvzeAxJtvou6xP4PZTNM776pUA4VC0W2ESicIVhAhGCUVNawrO8qCqzPZur+WV0uqWL2juo3Pq14IQaJFYy8/ewhNrS5mTRjGmUP78dqmKlpa3XSksLjmX3CSwf3jeeDyM9i2v5YX1muFF0xATWNLB3pXnA6oyGwfJ1hxg9LSUiZOnGg8ttvthrBtDwkzLweg/vePsFcvh9vBW7u8cHWam7UxOJ3t3zYM+nsDOPHe+9DcjEhOxn3kcNT3pVAoFJHS3nSCYHhHeBet3IYAnK7APq/XT84gPtakiQoh+ODLav67+wiLVm5j58F6rp+cwa3TRnHp+PSg+zMLjAiuScAFtjSuOGcIYwen+LQ7WHeCBUVb6RcfQ4IeMY5VVl19GRWZ7cOEKm5w2WWXGVP4RUVFbNmyhYULF7Z7H3FZWcRnZ3OiA2Vro0HcRRchT5zoEjHr/d5qf/c7kn9yH43PPocpfVDU96VQKBSRoqcTrCs7SlpSnJFLGi4iq0dhdYcC/wivBOJiTLQ63W1E8hRrWptiB6At9FpQtBW3lMSYBK3u4GsKpljT2LTXgdul5eNuqqzBZArseuB0S5Z8vIdFcyb4VA5T9E2UmO3DhCpuYLFYqK2tJS8vj8WLFzNjxgzmzJnTof2YMzI6OsQ2tMf2atTgwbj27KHuN78l5f6fMOrxP3fKNstqtbZ5rv//+ymHi4vp96MfYh4yhONNTSReMbPD+1AoFIpooAu7SK24Atl2XThmoCZAXRKzSXDDZK3Kl7fg9d5ecxdoK1b151pd/nW/fKk81ojTq8at0w3CrYlogfY/78VgbimpaWzhvsvGRXpYFKcpKs2gDxOquEF2djYPP/ywIWQjdTIIhHduaSAKCgqw2Wzk5OTgcDhCtq39459wu91IKTmxZQtVwzOoe+JJjr/6GlXDM2h8862TaQnV1Qzd+BnDtmzG8uAvqKiu5sTmzW22OXL3vVQNz8B59CjNmzZRNTyD6qtmnezzjZVIKQPm63o7N9Qu+g0p9/+EhG/P7vCxUigUimgRKHc2ECUVNdhX7wrcVg8AeP56F0rw3v7WZz5lS1Vtm769ta1JaJFdvQiCdUCSz8Kwg3UnfLY1C83ay+T56y1kBVpfKrVAASoy26cJJzLz8/PJz8/v9H5039lg5OXlsWzZMmpqarDZbCEFbb19seHlqkeWk265GVNaGo4H/zfs4itdfDY8qRU6SLn/J7iOaSt9TcnJxE+ahEhJoXXXrojFacqdc0m5c27INgqFQnGq0XNnA6UF6OgRWd1L1uSVZ7uu7ChOl/a80xXcl3Zd2VFaXeEtCd0SLj9jEOn94pkw3MKilduQUtunLnoFcF6GhcH9E1i76zCtTjcmk29INtYsuHHqycVnCoUSs32YcCIzWugCkh/c2ea14uJiamtrjRSG0tJSSktLycrKCtiXSEoyBKseWT585beQTicScB0+FHY8/uKz7tHHAHA3NGCKiwOXi8RrrmHA4sfb+1YVCoWiR3H95IyQFbL06K1Em6q9eFw6eTPPYIo1jZ0H6w2R6ZbBra8uHDOQWLOgxSNoY81aKVr/tAIJvLe9mvhYbVJY3693IwncfP4oahpbeH9HteGOoCOAG6eO5PfXnduRw6E4TVFpBn0YQ2SGwGazaf6wIW5A0Nd0B4Rgkcvi4mLmzZtnPM7JyQlpAebjFuB2AZotVvyMS6GxkZZPPqXuT4+2q3CB7krQ+PIrNK14HanyXhUKRS9Hj7j++7NKXttUFbSdt/NBXKzmGbuu7CglFTXUNLYYBQ9CWV9Nsabx0j3TuW3aKG6fNop/3zOd/GsncF6GpY3IkMCJVje7q+sxCYEJMHvlGpiAbftr2edoIsZ80pFB962NjzVxw+Tw6zACFY1QnL6oyGwfJ+XOuQEjpjoVFRWdqmgVbsFVJOVxvZENDSfdAjzjch06RNOrrwFgHjXKJxUhEgKlHqi8V4VC0ZuJtHStv/PBopXbjEVgC67OJD42dJqCdz96/yUVNUY/JrOWQ+D2i75+Vu5J7xJw9XnDeHvbQVpa3QiT4OUNlbglxJgEt1wwiszhFrbtr0VCRKkFgRazqXSE0xslZhVYrdZOrfLvDFlZWRR72XYVFhaGrDbmEzU1ax/fpqL/aI8TEzGPGIH7wIF2Fy5Qea8KhaK3422tFUm+rI4uRJ9Ys9tHANc0thhC19u9wN/Cyx9vIS1dvikC/qERt4SVnx/grktGs+TjPT5uCC63lqbgLbAjicquKztq5AC3tAYX8orTByVmFSGranW1yM3KyiIvL4/c3FwcDgeFhYUhnRO8o6b6ArbE2bNoWv4qSIl58GCcqnCBQqHoYwSKRgYSoqEIJID9K4ZFEvX07sdsEiAELpcbs9kEUuJ0SZ9KYG4p2XagDrffLGCsx/nAW2Cv2FQV9j2lJcUZotmNKnPbF1BiVtEh7HY7xcXFFBcXk5ub22HrrtTUVBYuXEh2drYhZkNhefAXxn19AZvrwEHtCU+1r+Y331SFCxQKRZ8iUFqBv4VWOPSUgxWbqoL6wUaSvuCduqBHhP3v1ze1suTjPbilJC5Gy9VdX3bUWERmNgkWXJ1plMJtdWpiePnGvTjdMmT6QE1ji+GQYBKqzG1fQInZXoTNZutYSVcPVqs1ZBS2PeiWXXoktbi4mOzs7A71NWfOnA4VZNBzXevti7XHnmpfagGXQqE4nQk0zd+etIJwvLapihZPFNRfMOr7aXG6EUIEjXr6R3QD3b8ic6jP+9i2v5YX11d6HA60ggh6ZbFVWw+QEGvm/R3VYfOAo3ksFL0DJWZ7EV29GCtSSktLyc7OZu7cuWRnZ2Oz2cjPzw8qZqWUXZauoOe6Njy3lIYnnzKqfakFXAqF4nQk2DS/fzS0ozmi4SKv3mVrXW7JopXbOHNov5D7C5Zj6y94r5+cYURhdRHqvZgsxmwixiRwuWVIkRqtY6HoPSgxq2g3xcXFZGVlGdFUh8NhWHAFonnV2+1ajNUR1AIuhULRFwglNv3FYUeIJKpZ09iCW2qLs7zo5IKHAAAgAElEQVSrhQUrcxups0AgEeq9KM3lcnPLBaMYnpoYVqRG41goeg9KzCraTWpqqk+VrnAlaNvrLKBQKBSKwHT1FHokUU3/MaQlxQUVrJFahHnvP1Bag76vYMUfFH0bJWZPA+x2O6NHj2bevHmkpqZSWlrapftLS0vzyb0tLi5m0qRJQdvrzgKdtQCzWq0d3lahUChOB07FFHq4qKb/GEIJ1rSkOExCK0fbEfGtUgYUkaDE7GnA/PnzsVgs2O12SktLKS8vDznt31lmzJjB448/Tnl5OampqRQWFhoLwgKhOwtEa/GZQqFQ9GWiNYUezi+2PWMIFC3W813dUiIEXDq+Yy4zKmVAEQ4lZns5esGB/Px8cnNzKS4u7nIxm5qayvz58xk9ejRWqzWsnZZyFlAoFIqeRTSrZAWLnnpHbAHe217Nh18dVhW5FFFHidleTnl5OTNmzCA3NxeA2tpa9uzZ02GbrEiZM2dOxM4KyllAoVAoeg4lFTXYV+9qVy5rOAJFT/V8V70al/eCMSVmFdHE1N0DUHSO8vJycnJySE1NBeDxxx8PKWRtNhtCiIhvgM/jjkR8u6tUbqS095j437oyCq5QKBTRRI/IfvzVEaOoQFd5seoR21unjSIuxoS5C/el6NuoyGwvJzs720g10P9mZWUFbd8dXrUHz5+GbG0l+fbb6Pezn/Y4cdtT/HsVCoWiq9Gn/iVaNOvicenkzTyjyyKlesT2hskZahGXostQYraXY7PZKC4upqioiDvuuCNs/mp3kDw3F/OQIdQ8MI/YzExl06VQKBTdhL/V1awJwwyf2K4UmWoRl6IrUWK2l2Oz2cjNzeWOO+7Abrd3ea4stC8SOTIpiaRbbsaUlobjwf9VnrMKhUIRgM44C7QH78VaaUlxRnWtzi4CUyi6E5UzexqQm5uLw+EwFoF1hNmzZzNgwACEEDzwwAMh20opI7od+/mDfJo6AFNyspZfmpxseM72dHQbsfz8fPLy8rp3MAqF4rRGz2N97N2d3L5kHSUVNV26vynWNO67bBw1jS1tFoEpFL0RJWYVAKxbt47Zs2fzr3/9i1WrVvH88893uk/zoHQA3A0NmsBtaDA8Z3s6OTk5FBUVUVBQQGpqKna7vbuHpFAoTlMCFR04FegpB2phlqK3o9IMFKxatQrAELADBw5k1apVfPe73+1UvwkzL6f+cTuNL7+CecgQZFNTr/Gc1d0hiouLsdlsEUdnbTYbFRUVHd6v1WpVxSUUij5GV5eoDYaqrqU4XVBiVgHQaeEaiLisLCy/WUTDk08hW1tJuf8nvcZzNicnB8Cw3crNzaWoqIg5c+aE3E45IygUivbSnaJSLcxSnA6oNINehNVq7ZQfqtVqDdjvqlWrmDXr5KKs22+/PWzebKSk3DmXoRs/Y9iWzVge/EWvEWvZ2dm8/vrrxuPU1FSfxwpFdyCEeE4IcUgIsbW7x6KILnoeqxKWCkX7UZHZXkQ0pp/Dicnvfve7XHjhhYwbN67T++rN2Gw2SktLjcepqalq+l/REygA/gb8s5vHoVAoFD0GFZlVMGvWLB544AHGjx/PW2+9FZXFX72d1NRUFi5cSFZWFkVFReTn5+NwODrcX1FREUIIUlNTKSoqiuJIFX0JKeWHwLHuHofi9KSkooYn1uzucjeFaNNbx62IHioyq2DatGkMGDAAgPXr1xv3+zpz5sxhzZo1Rv7s448/3uG+Nm/ezMSJE8nOzuaOO+7olDBWKEIhhLgHuAdg1KhR3Twaxamisz61uj1Yb/Oc7a3jVkQXFZlVMGDAANavX6+EbADsdrvhm9sZv9n8/Hzsdrth8aWis4quQkr5jJRyqpRy6qBBvcMKT9E5ouFT2132YJ2lt45bEV2UmFUoThF6dbasrCxqatR0mEKhiA7REHS91XO2t45bEV1UmoFCcYopLS01LL8iRfnXKhSKYETDp7a3es721nEroosSswrFKSAnJ8coxAAno7SRovxrFQBCiJeAbCBdCFEFPCylfLZ7R6XobqIl6HqL56x/fnBvGbei61Bito+he9V2ZvvTjVNxTLxzZC0WC1lZWdjt9naLWkXfRkp5a3ePQdEz6SuCrqsWfHV2AZ2ie1Fito/RE6eaG1rq+X8f/oxDjdXEmeOYOuR87p80jzhz3CnZ/6k4Jo8//jjz589n4sSJZGVlYbPZfCK1CoVCoQhPoPzgzopP5YjQ+1FiVtHtmE0xfO/s72OzjOad8lW8vnsF04ddxEUjLu7uoUWNvLy8TrkhBMLhcJCVlUVFRQUzZsyguLg4qv0rFApFTyMa+cH+dIVAVpxalJhVRJWORFkTYxIN4ToocRCxpliGp4w4VUPutaxdu5aKigrmzZvH4sWLKSgoIDc3t7uHpVAoFF1GVyz46gqBrDi1KDGriCodibI2tNTzwJr7OdJ0GIC0+DTSEtRVcTisVitz5szBbrdTWFjoU35XoVAoTleinR+sHBF6P0rMKqJKsChrqIit2RTDHefk0i+uHy/v/Dc7jm1n2balPDA5utPynaGz1lhdQVZWFoWFhYDmjqCqiikUCkXH6CsL6E5XlJhVdBp/oToudTw7jm6nxd3CpMGTGZI8BCBoxPZAw34s8RaGJg/FEm8BID2xZ1UuitQay2azdYtbRHFxsXJGUCgUCkWfRInZaJDvJ17u3QzDsrpnLN2Ad2rBG18X8eaelZgwEWuKZfOhTby9ZxXXjb+ei0ZcTENLPR9UfgDA4s2P8+mBT/jGiBn8rXQxjhNaZDE9cRDXjL22O99ShwnmjCCE6JRPbChyc3OpqKjguuuu65L+O8OeQw0seO1zKo8eJyHWzNVZI7j/qjO7e1gKhULRpSirr1OLKmcbLa76M8zfq90GZ3b3aE4pempB/7h+FO9dA0CMKYakmGQADh4/AMC2I1u54+3vU9vi4JwB5zBz1BWsrSrG6W7lH1c+x5OX/53bz/4eR5oOG/0oglNeXk5qairLli3DarWyefNmsrOze5T92gmnm2+dN5yCe6ZzeeZQXviknI2qdrpC0WspqajhiTW7KalQJbmDoVt9PfbuTm5fsk4dq1OAisxGi+KF8MmjcOa1MOsv3T2aTtPZHFHL0P5c+tQlCARXWr8FwLi08Sy+7C/8d/9/eWHHv0iNTyXWFItbutlxdDtDk4eSYI4HIN7zN1K6y6vWbrdjt9vJysqioKCg3d6xnYlc2mw2srOzKSoqoqKigoULF2KxWNiyZUu7y+V2FWcN789Zw/sDMHXMAFZs2EtdU2s3j0qhUHQE5ccaGcrq69SjxGw0mP0EjLoYdq2ED34NgyfABfd196g6RbTKp8aaYvn5Rz/FbDJzRuoZ3Hvej3A01/Dhjz7mjYNvAbCCojbbv8FbIfu3Wq0+Ecju8KotKCggPz8fu92Ow+EgLy+PgoKCdvWhRy4vGp/O8s8qeeGTcqaPT2eqlzXMnkMNQbfXF4B1lo++PMSvlm+hxelGoInQpfdOj0rfAA3NrTxb/DUZA5K4aHzPyodWKPoy7ZkOVyItMpTV16lHidlocMGPtb8Dxmtitvrz7h1PD2FI0hCqG6sxYaLV3crnRz7nvg9+RP84C7UH66IilnW6w6u2sLCQ/Px8cnNzKS8v75CwjCRyecLpjsp4vfGPCGcOt3D+mIHkTMngydW72LG/jhf+u4fbLx4ddttw0eSG5lYe+GcJdY2tPHXnBSTEmTvUj0KhiC7tjbReOGYgMWZNpJnNSqQFQ1l9nXpOezHb2ely/whgG/aXwJ41cMa3Ydeb2nNDzuvw/k4nqhurATh7wNmU15Vz3HkcoMum/rcd2crDnzzUxkWhq5g7dy4Wi+a+EEl6QSjxFipyqYvdaOIfEV6xYS9/u2MqU8cMZHPFMfYcPs6R+hNht3127de88Ek5/15XjnZtol1kCCFJSYjlqnOHsbXKQdWxRv7v5knEmU0cb3aSnBATMCpdvKOaIw0nQopbJYIViugQKtIaNGKrByG6aEHr6YKy+jq1nPZiNlrT5UGJS4EvXoQ1D2n3z/8xTLm3w/vrNF3orOBwOMjPz6egoIDa2lqWLl0aUcWpL499iQsX/WL7Ud9abxRHiDbj0sZj98rJXV3xXpe6IsyZM8e4X15eTlZW6OMcLKXgrOH9A0YuIbr+tt976pOAAlCPCH91sJ5H39pB+WHtoqMlSEQ4PsbE25/v55k1X6F/2m6aZmVrlYMv9tYyelAyew4f59yRqbyyvtLY7r6CDQD8IHssd182LmBU+ryRaXz/G6N9js/AlHgf8Tp9XHrA4/idb04Jd6ymCCGCfhkkJCRUNzU1DY3wcCoUvRZdqKYlxQWcDg8WsV1XdhSnWyIBl1uqNANFj+G0F7NRIV8EF4XpZ8IPN0V1d52OJg9Pp3z7Zu1BSvSik/pK+ZycHJYtW0ZhYWFIMXvOgEx21ezkGyMuZU3VB9S31ofs3+FwYLfbKS8vN3xTI81BLXN8TV1LXacWkXWG/Px88vPzQ7YJJN4O1TXz5OpdASOXcPJirLP+tRkjR7WJpr6yvpLEODNCQMaAJIZaEqk62ogALjlzEK9t2Mtl5wzxyd+Fk6I8a1Qq81/YRHOrm/PHDODcUam8fOlk1h/V3CvWBxnL+kVwT5DXtqcP45OfPc95I7VId11TKykJsXzrvOGMGpjEbwu38vbnB/ho5yGONZzwSc2IwoVr14byFT2avmKl5C9Uc6fb2HagjlkThhnv2ztie6LVzYpNVUyxpvXaXNDuPLfd/bnq7v2fKpSYjYT5e6MqCsMRlWjykmlRd1ZYuHAhVqsVh8PBsmXLwpr0bz+2jbGp48jOuIzyunL21JWFbJ+Tk2Os0M/Ozmbu3Lnk5+dHtDK/tqWWv23+CzXNNaTEpTB79NV8c9Tl7Xh3HScvL8+wySotLQ0bofVOKUhLjmP7vjqgbeTSm47abQkhuHDB20jg7+/v4vmPy6hvdgJwzoj+VB5tpOZ4C3deOoaFr3+O0y2Zd9WZtLrcfLTzsJG/6z+1f+WEYTy27SCgfU4dja288Ek59UcPdPqze+mZg3lj8z4G9YtneGoivyvaSuXR48SaTQzqF09tUysTMlJ54ZNyhqUlqEVlik7Tl1bpewvVFqebf3y8B7dbsn7PMc4c2s8QrTFmEy1ONxJYvnEv10/O6HQuaHcIq1N9br3fI9Ctn6u+9Lnus2I2Ly+PwsJCKioqmDhxIoWFhcFF00e/6312W+f/2MdZIRrWVfq0ergIpM6MjGzWVhXz8LqHImqvW1zp961Wa8RWV5MGT+bZqwoiahtN7HY7ixcvBmD0aG2xVKj0C//FUBkDkli38KouHeNtF9mormtm9daD1DS2kt4/jqYTLrZUOoiL0aK9WyodNLdqaQWL39kJaOkEw1MT+d5Tn1Bx5DgmIbgicyjCJFj+WSUJsSZaXdo2i17fGrXxrt52EIDvf2M0CGFElF/8pJw3Nu8jvV883zxnCOu/PsrxJifP3TvdJzVDoWgvfWmVvnd0FSFwubWLzxbnyQjsFGsa35mSwUvrK9ukFHQ0F7S7hFVHzm040R3s9RfXV7KgaCsut8RsElx21uCo77s99KXPdZ8tmlBcXExubi579uwxImtB2fh3KHnmlI0tKlw4X/vrcVbQrav+8I0/IRCsrSrm9rdu4bGNf6LF1dKurvPy8pg4cSL5+fkUFbW11dIxi/YJDO+Ipp6D2l7f1lNNXl4eUkqfWzAhe7zZyQP/3EjVsePk33CekVLQEcrLy8nOzkYIETZv+f6rzuSbmSdnFo7VtxjCtcWp/ZB9sL0aAZgEmE2CxDgzf7gli4de+5yyQw3ExZgYOSCJlaX7cXkEbHOrG1f0jRZoanFhSYxl2th0Rg5I4vaLbQzqH89mj/H4dVNH8udVX2ISsPA7oY+jw+EwPkc9qZiEomehCzyzoFdNn7cXXSgtuDqT/7nyTL551mCf13dV1/O9Z9fz4vpKbpicQXxs6GPSngIKgYTVqaC95zZcwYNgr5dU1LCgaKuRU+x0Sz748hAxJtGufd/6zKc8+s5Obn3m05DHNZJjH+69n04FMPpsZHbLli0UFhZit9tJTU0Nv5Cpm+22dB/TZcuWYbFYjGntoGx4UvvrcVbQrauanE1cOGw6xVVruHj4JXyw930mDZrE8q+Wc6ixGqc7vLhKTU2lsLCQnJwcli5d6rMQypsP9r4PgCUuFZMQ1JyI/B9MXl4eo0ePxuFwRCxou6twQqR8eaAuopSCcOhCPycnh9zcXPLy8kK2b2hu5enVuxFoSQFXnTeMzeU1HKprxi3higlDyT5nCC98XM72/bXECE1Q7jxQz+yJw8k+e4jheACwYc8xYswCtyei4w6TVaCPt7a2lhkzZlBcXBz2PdY2tXLTXz/mB9ljuW26jfsKNrC/ppH0lHhWbq4y7MrmP6/lq/8ge2zAfgoLCw0Rqxe4UCj86QtWSt5Rw/hYLTJ64ZiBrPmyGqdbi2xtKNe+oz/66gg5WcNDHhPvSGuM2cR3pmRwgycVIRDdlW8b7tz6R0LDRTODvb6u7KgR5dZxuyW3TBvF8NTEkJ8rfQxb9jpocXki5S7Ja55IeaD23lHuBVdnsnV/LQKMdJBw770jkfKenH/bJ8VsaWkpFouFrKwssrOzKS0tNfI0g9LNdlu6j+kdd9zBsmXLjDEH5b9/8HFWaGip54E19xtOAmnxaYxIySDWFEtawkCanI1IKTEJEy7pCtptdnY28+fPx2q1AtqxDMaA+IEcO3GU2haH8ZxZmEP2r2Oz2Xj44YfJyckJKn5u+E+Oj2jtjsIJ7WHK6AFRSynQ/W1LS0vDiv37CjZSVdOI/jW7aou2QMtsAiRMtg3gwrHp7DncwPb9tTg9X8hPvf8VP8gey+jBKUzIsLBiw15iTIKGplacrsjzYgsKCsjOziYrK4uFCxdGtE1CrIlrJ2dw92Xj+HjnIXYe0BYPHmnQ7MK+ceYgqo41sr+miYQ4M80tgT9TpaWlxsxLJCJa0XfpbiulrhAK3q4FetQQoKXVbezLZDIh3G6kfrXrobB0PxeMHsh9QS62/XNvX1pfyYpNVUFFUXdeMAQ7t4EEXTjR7f96WlIcT6zZTVpSHGaTMI4xaLNc1/sJfP/z7D0G/yW+wewR/Y/9Q4VfoH8lv7JxLzdOHWlcWAR77/6ifMWmqrCpFT05/7ZPitmKigofa6ns7OzQi4y6224LbQq+vLyc3NxcLBZL2MVX/NzX/spsiuGOc3LpF9ePpVufpaK+gn/tWMakwZMZlJSuNfL7MguEzWYjJycH0Dx49XzRQEweMpmjTUfZfPik20M4Iau7GJSXl4ddTPXXbz7ZRrSe6sIJ3YHNZjOisYWFhWE/C18drCMh1sz3LxnNcx+WGZZbeorAH1Zu5+kPvqK2sRWTgJSEGPonxvH8jy4iIc7MQUcTf3hjOwDxMYLvTLOyfV8t104ewZLiMiqOHA+5/5ycHKM62sSJEyN6j82tbl5ZX8n5Yway9MOv6Z8Yw9xLxxr5vB/t1D7f158/EoAXPikP2M9ll12G1WolLy+vx6esKKJDILHQU6NJ3mJz0cptURUK3uLDJHxFlskkuHDMQM1qy6Ut8gpkWvfoO18ai8L80UXdiVZte0n4vMzuvmDwJ1CU9b7LxoUU3booX7GpisP1J8j/j3aREBdj4q5LRrPk4z043RKTgLsuGR0yGrrg6kxWbT1gHEMTWqqXfqqKdx2mpKKmzRi8i1cIr7xngFaXDHthAZCWFIdJaD/6ZrOJ5Rv3Gu9D38778+k9zp6Yf9s7xWwUvFQff/xxI7LlcDhCi9lvP9H+MYahI1PiOTk5rF27FovFEtGqeW8ONOzHEm9haPJQhiQNpaK+gnPTz2PzoU18duAzLh95Ocu/Wh62n4KCgojtslZXvgdo0VgpJaP6j6K8rjzkNvn5+axduxar1eojnAMxPGV4G9HaVYUTrFZrp6yx9Eh2tCktLQ07de6W0Nji4u8f7G7z2oyzBnPzhVYWrvgCS5LWtq6plfmzziYhzkx1bRO3/O2/hgA+3uJm2Ud7ADh7uIXaxvD51vrntLS0NOT51Ll4fDq7qxuormvm18u3GCkFupD1T834YPtBIwXCnzlz5lBaWsratWtZunRp2H0rejeBxEK0RWK08BebbimjulDHW6j5O4xcfd5JGy7vKOMFtgF8+NURo92xxlZufuZTXr5nekhRt3zjXlxu2evyjYNFYSMR3ctLqny8uFudbvolxnLXJaN55qMy3BKWfLyHUQOTuW3aKEoqalj0xjZjvcKJVi2iql8ImIC4WBOXjh/Ee9urtYV3rsCFLNKS4oyiFUJAjAm8bcElWsTWvnoXeTPPCJhaoYtwk4BB/eLZV9NkvI91ZUfZebDeSEuRnIx1mWhfXvmpupjsnWIW4Ko/wzk3ave9bbP8hW4A5syZQ1FREXa7nYKCgrA5h11BR6bEi4uLcTgcRjQ5bN6sF7UttTxe8hiOE9qUf1r8AM4acBZfHPmcf+1Y1u7FWpHw/bO/zz93/NOIxpbXlWMSJuaMzeEN3gq4TXumgr/zn+vaiNauKpxwqhcP6VZYocjPz4+oWMPvb5rINzO1WgDHm53c/88N7DncQFOLm0nWNBa/8yWNLU4GpMRRXat9oTW3uDhU28wD/9xIc6tvNN1sEqQkxLDrYB2OxtY2+wtGYWEhy5YtC9vuv18dIS5GEGMSRjrD5ZlD+N1Nbd+nt81ZIF/boqIi7rjjDiwWS0RCWtG78Y+0rdp6oEes5g4ULbav3mWMDSkxmQSCtoKwo2LAW6gJv8jsys8PcMHogdQ0trDg6kxqGluM/qf+9j2ONJy8SHW6ZEBBpbefYk3j+skZPTb6HYqOpj6s2OQrZAUYKQd/fnenEVl1uiULijSnl/z/bDXyYUEThvpDk4CLx6WTN/MMAD786rCPwH5xfSUvb6hk2/5a3BLj4kcTvJKxg1MYk54MQPHOQzjd2oXRR18dYX3ZUV7yuhjRRbU+FrfEELIAZrOpTVqKPl7vcUZyrE5lakLvFbPFC+GTRwN7qXoL3YUjA27++uuvs2zZMubNmxd+8Ze3QI5SRS19QRZENiWen59PTk4OWVlZ5OfnM2nSpJBC/NrCbxMjYpg+/CLmTZ7PpMGT+ceVz7F2bzHPbX2WmhPHeOPr/zBp8BSusn6L1796jZ2OLzv9vrwZ2c/K2QPOZsexHQCYMOGWbl7fvSIq/fuL1syBmd1aOCGa6IUJng/yempqKrW1tVgsFnJzc7nuuuuCLsTz9mD1XoQGYPdEOwHDfxa01IPZE4dTcaTRp68Lxg5k/rfO4tm1u1m9tTri96NHj4ON0R+XS3L7JaNJS45j8ds7eX9bNdeVHfUp4OBvc/ZagH8KNTU1xnHSxay+gFFx+uEfaZs1YRgbyo91q8l/sGixMbUsMJ73FpX+20ayyMobb6HmL06cbsmvXv8CgPhYbd/ryo7y3raDPkIWIMYsAlYGMwnBojkTuG3aqHalD/S0tI+OpD74Z2Scl2FhwTWZvLapCv/lBG63ZNXWA7SGWGcQ5/ms6ufq+skZxmKunQfr+aXnXJ0cgESYBHgE7e5DDew53MBvcs7l3hljWfTGNrZU1QLaQrJHVu0g+8zBRjqLHh0OxHemZFDT2ILbL5pv8owzUiELp9YarHeK2dlPwKiLYddKHy9VA2+hG4T2TJcHjQJ3kvZMievOC3qFLCBkVPaKUVfyXuW7fLTvQy4efglDk4dS11LHeYPO49azbuXZrUu469x7uNJ2FW+VreQftz5L7cFanz7aM61utVrbRC9/99lvEAjS4tN8nAzMRCcK/LO1/8Ow5GGAJlq7s3BCZ/AvSKCXmj1reH++G2Sb8vJyQyDq0/fB/G29PVgTYkzExZiMqEKsWWBLT+Gr6nqs6ck0nnDy1J0XcMnkc3g4QBW69cBfO/Ae7Xa7UdEtLS2NiRMnhkztcUlYvr6SOLOJASlxHGtoMQo4gLfN2cnKaYHIyckxHA3Wrl0LwIwZMzrwDhS9gUCRtjOH9utW8RQsWqxP2YaKdIVbZOU97ewvhMFXqFUePW5Mf8NJQaZPdwdyJemfEMPSuRcErAzmllrUMVhObSB6+iKiSLlhcgavbtxLq0sSaxYsuCaTKdY0VmyqatM2LlYTquvLjvpEZnXMJkHudJuRDuOWWqQ3PtbE9ZMzWLX1QMA+zx1hMdwnQPvOXFC0lZfvnc6EERZDzILmUlFSUYPJL782EBOGWzhzaD/jd8IkBHddMpp+ibGdmh3o6ovJHiFmO12+9emHKD/gEbOzn4C37oMTtZo/bDQIFQUORIQ5ve2ZEtfdC+bOnQuczPkNxmjLaExCi4Q+uvGPxJhikEicLifJcckkxybz9OdPseSLf9DsaqL2YG2nKzd5i1/L0P6kxqfiOOEwhKwbNwnmBC4cNp1C3ujwvnSanE18Xfs1kwZP4ZujLifGFNMthRM6y57DDdQcb8HldlPb6OaFT8opLNlLzpTAswqgXchEWrxCL497vNnJb4u2goSZmUNodrr5eOdhvqrWnAIO1TXx09nn8P9e3NThKnSBLoAcDgcVFRVUVFQYvsTz5s0Lm+vb1OKiCReD+8e3qfIVyOYsECoK2/fwj7R196KjcNHiUJEu70pc4LvICuDmZz41UnF0AfTCXRcC+IjctKQ4Cj4tR8q263y9p7v9afRLMbpwzEBjihu0qGOoVfDttb3qLUyxpvHSPdN9Kn09sWY3mcMtxrmOMQsfV4Ezh/bjtU1VCOCr6no+04WolGw7UHcy5QTf8zxrwjA+8spjvuKcIVx25mAeKvKL1qJF3NeVHSVzuAUhjLRaQF9UphVzkFIiPAvN/LXttv213DZtVEhLr0gvDk+lg0WPELNRKd96oBSenhTFUXkxd23wKHAwwkRzyxxft3tKvD35pM988TQA1qj0XwkAACAASURBVH425k/5Ke9VvMObe1ZiFmacbie2/qP5UdZ9vFvxDm98HbzwQXu45vXZxv2sQVnMn/JTdhzdQUpsMr9d/xuaXc00u5oprlqDZWj/Ti2oyhiVwd3n3sPSbc8xN/NOYkw94qPcIYanJXHrdBvDUhP4+/tfUXm0kZEDk4Ou0G8vs/+0hu9cMIqLzhjEnsOa88DqbW1TBJpa3Py2MHqVvHRSU1Pb/e87xiSIMUGzU9J4wsVjt032iTAHsjkTi6IyXEU30Z4fyZ4yVR3JODodLfb6t2PyMr9/eu3XPhZ5Es1y67VNVbzqtTjJJGjjZuCNbWAS5UcbA77mckmeXvs1E0emGmNdNGcCC4q24nZLYmICr4LXj017ba96E/pFkv/7vPMiG9sO1DFrwjDjPPu3v/Uf64x+zCahRW73HPPJwzV7HCf047lq6wFmTRjGbdNG8cvXvwhasKa+qZW/fvAV/l+5/uksW/Y6eG9729+BlzfuRaJFn/1t2ToSWT9VF5O9VwH4Mziz6/oeOhEGjNfEbKTFE8JEc7t6SvzqMdeysuw/VNSXs+3oVgYnDsYszPzygl+z9egXvL57BZuqN+JyO6MmBF/69ivUNB8zIs0f7/sYS5yF7cd2kDlwAiWHNhptL33qEgBiTbG0ulu5esy1vFv+Ni3uFsZaxlFRXx60gEN6QjqOZgfPfPE0AsH/fvzzHlcgoT2cNbw/Zw3vT0NzK3/x5LCePawfX+6vC7NlZHx70ghe+KSc6ePTKbh3Oqu27EdKycrNVTS2aN+Id182luIdh4xUh+7G6ZbG6tyGE07eLN3P3WlJJCecPl9ZipO050dSr5KkT/G+FGCl/amgPWP2/kFvjxBfV3bUEKHeKQkAn1c52rR3A7ur631EUSA3g6wMC5/vq0VK2O9o8rGDgpPRWwm8u72a97ZXG1Hf26aNMkTaPkcT//6sUkuDaPVdPd8R26vegvc59E8FWfLxHtxSsr7sKAiB0+X7+dDt0EA7zjdOHclt00axdX+tUT5Yf14/PrdNG8Vt00YZ+962rzbguAQYUV7QPjPnZliIjzFxwunm5vNHGc4Ki1fvMiL03uff6ZK8uL6SVzbsNXKidSKNrHfHxeZp+MvgO4liHRjfOUul4elweAfselN7wlM8IXxqRK3n9nfPza/fADmm0SQxJsG4/9zWJbiki0mDJzNh0LlUNx7ELMz8c/syXNKFaGPVfJLs7Gwj13DixIkUFxcHzdX9qmZXm0jz50c+592Kt4P23+rW8iAzUkZgv+wvrPhqBasr38Xk+c+N2yi+MG3odNYf/JQjzUe4btx1HGk6ykf7PmSsZSxrq4p7VIGE9tLQ3MpPCjZyqK6ZGJPg9ZJ9Ues7LTkW0Cy3BqbEs7HsKF8favBp8+yarzl3ZCoF90xn+WeVvBugH905wWazhfwcdJbEWBMDUuJ9Vtj+e10FyQkx7a6WpugdhPqR9P9hfG1TVURVkvyJ9g9sR6bM9aicHpl86W7fSKY+Da0b7ftHMnUhe/uSdUEX8ew+3Nb32X/K+XOPGJKAyy25/OwhrPnykGHD5B/DlWi5tfqx1se8YlOV4TrixrN6fs8xXro7eBS2u9M+OkowT+AFV2f6uEbox1Bb8CXb+LL6H5fM4RaeWLObCcMtxMeefP76yRkBx6BfQOmYPJJHokVzM4f1N9JYzCbB9gN1xuKzHQe2GhciPpF6edKiTX9Wd2LwzomOJLLeXXnRPVrM5ubmRl6+9TeeiFxsMrR6fqhHTKP8J16GPVPugWue1nJa4y0Ql3wycmqObdvnkZ3w6q3w9GSIS/EpnhCV1IguZPmuV4gzx5Odkc01Y65l3cF1vLDjX9z25s24pIuJg7K4I3MuJdUbeWHHvwL2UVxcTGlpKfPmzTO8OkOVl/3r5sUcaz6GRGLCxHNblzBlyFQWZ/+V57YuYcuRLQG3G5E8giFJQ4kxxVB3QvuSdePW7MIkODw5t1uPfs7o/mPYU1dGSmw/BiQM5KN9H2KJT+vVBRKONzu5r2ADXx1sIDHWTFyMGTeSC8ems33gsE59VvoNHMbKzfuNnNMd+2t9FlLpuIEtex0cbTjBhAxLwL50N43y8vIutbRranWzr6aJ2ROH88PLx5McHxNRRLazXsAJCQmR2zMookqwH8lAP4z+ZziSM94VP7AdmTL3tnRq8VRdMqaen/nUEOnLS6oMoesfyXxizW4fMePPseMBvJ/9fqqk1ESQQBNAP5wxlh/6rYIP1MWrJVVMGG5h6/5aXtm4F5dLYjYLxgxOYbfnAll/X9dP1pwX9Cnr3iRgQ1XpMnkLVqebmsYWH9eIRSu3GUISIXC52op5vX19U6uWsiFlUEcLb7wvoEwCzh1hYcIIC8dPOPnPlv043ZKCT8uNfvY7mnhxfaWxfavHZs0/91kCZw/tR3yMiQ3lNcbHxS19bdkiyYHtrrzoHi1mly1bxowZM5g/f374KNC4WdotOR1eu017bp+f86RektZ/kdjGvwdepJV+JvxwE6eaaBj0/yfnTSMvNz4m3oiW3nLmrRw7UcOqPW+y/sA6UmKTg/ajl/rVixdYLJaQK9CfvaqAJmcTm6s3YbOM5uWdL7Fm7wecMzCTrMGT2XJkC5MHT2WTV7oBwEzrlTy55W/UNNd4xpqI091qlNZ14zHsbz3OntYyBIIXd7xAYmwiJmHio31ro1og4VRTWlFjlGs93uLieIuLKycMZZI1jXPuW+rjE/vl/jpK9hzjovHpLP+skhUb9vLAVWfwl3d2+fT5vUtsfLzzMPuONeFyuXki93wS4sy4JRwOUiIRYNlHZXxe2Xb6EjQxq59/u90eUMx29rM7ZPjJaMRbW/bz1pb9bYokBCPcTIcQokRKObXDg1NElZKKGlZsqjLETqAfSe8fxhOtbp5e+zWD+sUTYxa4XDJoBMufjkZRQ/1od2RxS6CIpz4+b+sm7zH6pyjsdzQRYzq5Kj1cZWn/FALQSlkLIXC7pBa2jRCny93Gf9TpkvgnaO6qrve5eLghgnPUUwgUPff+/HgvotJFqn+0Wc9vDZYbrd+/6e+fGOevxSOM9TzVQJ8/H+9gk2Dr/jo+r6r1+Vy1tJ7sp6Sixqe4Q6z5ZB6unvvs9Ahz/SJG/zQItGit/0VauMh6d+VF91gxq/8wZWVlYbEEjhT5UL8fnI1axDU2GVoDlNh86ycw8mK44MeamJ35CKx+UHvNf/FYlPxkO0K00g+883ITYhK4YOg0Lh7xDYp2vw7A8l0v0z+uP1dYrwxaxMBm+//svXl8VPW9//86ZyYJBONM2JeQDDs0oQkJstSFQa1eLZUoWpXWElql3roQbPu4/bYWJt7bxV57Gdpq1boMrYqIQEKp/urGhKKAEEgkiECAmWwQIGRCIMss5/z+OPM5c+bMOTNnliQT+DwfjzySzFlnSeY17/N6v94m0WqwY8eOiMck+blSG4Z030rHUbrNMNqAm/5yPaZlTsc1KUNQdbZKXMaDx6qin2Du2Hk413k24QMSEkU8KR17IVRV5/30jaAufuKvBYDZE4diy74GjDYMDmqGIpaFhtZODEphUXZvPlJ1LC53ezF9zLWYNuZaHD9zETwPZAzSg+c5dLo5pKbosO/kBdVzIukJFRUVqq9RcjvDMNh5pAWv7zyBhtbLGHrNIHR0ebDuoSJMGXNt0DZVpy6EJBL80DwJD9+Qg/NL7oP7b4fQ5HZj1J7PoB+vnvBAGTgQwUDeZN/d3wDLXXkh62Wmpwofjvx5mh982QKWAfQ6Ft+ZO15zxS/aN1itldxoL5nLI52IyJs3cRhSdIxYmSUB/M/vqBPPlTR2eX1C5uz9c8Yjb6wBlm218Ph4UaBKRTEDYNqoDBxr6RBFEwMgd6wBh5raxSlTWw40CvYNhYovywjjb3mODxmdSpg44ho4Wi+LPvcD9S5wXOgl9oGAvHr+UuUJDM9Ig17HilVWtQpqlbNNtCDsc1zAmw/PE0UleS7J+vJMWoZRzvOVV2zJ1LW3P69X/CBDRhUT7i3KwvmOHgzPSAv6eyFe2KdlsWyxDEeQ0pcJBlL6V8yGmdZF3hTXrVuHdevWIScnB3a7Xb0y2FIDuBxCtVUF06tj4CyTiNayn6ufW9mskJsi+VxdLpeYX1tTU4P8/HxUV1erH6OXmTWyUIyqOnj2AP588I948pPHxIazh2c+Aj2rR5e3C09C/ZIxEbOlpaVhvZJLthUjVZeKKcapCbFhjBw8EkfbvhI9vUMHDUVbdxt48DjedhzXpl2b1AMSEvEYvLZiXlAXP0E6+Uoqdkn+an3rZXg5Hpd6fKJQ/KF5EgpNQ3H0dKCx7KJ/UEKanoFhcAq63D780DwJe8MkA7z++uuapmkdlcRndXQLHy6VGrlIMgHv8Qji9dAh4BU3vLt2YtCtt0A3Zgy6tm+PeDzKwGHPyVZ4JMLJ7ePxq4pa8HygKx4ALP84HCKeOF4QYOOMg4OyVqNNFIh0fr1xqVQe6SS9fLthxXzRM5s71iCKIr3/crXUz0juv7QZiwiYLQcacaylA1XONnA8cORMB3QsoGMY8fG9/7psHG05LIp7HgiKhpLC8QDv43GdKRPFs7KE8/II18sYCEMVhmek4ebpo8QxrDwfqF7qWAbNri5UOdsGhKCVPwQfHxHuk55l8MCcbNHPrIT8dbPlQKM47lee+FDnj0QkTB15jfh6lk6Hc3u5ICvCmw/Pw1jjYEUhq2eFQRZSa0SPR7A8kNultHW6VVMPYhGyhP7wRfd/ZXbaYgCh0VAFBQVYtmwZSkpKUFBQgMzMTDgcjrCXuUG68lm9kD5w/khgWWoGnI2ne9XnarPZsGrVKvF3l0v5cm1/IBW2AHDJ3YEnPnkMZztbIiYAWCwWmEwmLF++HOXl5ar5tn+6+QVxNG8iONt1FgCgZ/XwcB5c6A5UDUekj8CfDq4bcAMSooVUVKXiTz75Sip25RO+AARdpr/c7cXXxl2LhtZOGNNT0XihE4NSGCyZk4M3PnUAAF61n1A9H4fDgYqKCk3Zrd+7fgJmmYYGVV3DNnIxTJB4ZfR6ZDz5BC4++/uIx6IMLDLTU8GywVU+8jMRj82uLlVvKKmuxpooEInevFSqdh7S24kvluODG4mAwOhUtYYq4qvdLwnU5zjgwbnjMc44WDEeDBBEMJlKJocH8LmjDcWzsoL8ofajZ/HxkRZs2FuPFB2DFH1w9bK2uR3vVjViw+f12CwZ9pDMSKvnLCPcd/I88EDI+Us/TElfNzqdEFtGtgOCPxhdkI0Cb2jrxO/eOwLbbkfQdDi5R5c89nJMw9Lxh+8UBFl0yH6UmrkA4XWelsLC7eHAsrEPR0gGEidmNQ4KCOGocsap0WgUJ3SRaigZHKDKwjLBSsB5g4WsLlXwv2K/6qaJgIi8VatWYdmyZRFD4fsTHavHQzO+D5NhAv7leB9vY5Piena7XbPtYew1Y8GAERq3EsQN427CYwWP4y8Hn8fO5krxdi/vGZADEqLlrv+rDBGj8slXUrGrlL8q5augaqlQle3y8KKQvW9uNn5y5wzVzFbik12zZg1WrlwpJhsoMShVF/F8pFDxeuUifcMHgGe2HwanUAZkIBQNMtNT0eTqClkOCHFDqxflBjVD9UYFVSrapFmhfUGQKJI0EulYIYhfrToo7bhPkU36k1sypLmne062YvWiXBxubsfGffVQ+QyBjfvqUfH4DeJ2qytqxQqh18fjAZlgfn5HHby+gTUkQVo9z0xPhWVbLdx+QfpuVWPQ46j0YYq8bkhsmdKHkCpnGxytwVbISz0+vLjzpPg7iWK7I2+M2FRGtleaNLbipkkhQlXHBvKF5c1c5L5eCVFpQKIrs7f/H/Cvp4SfiQc1nKjNvR8YXQCU/T/FxVarVbx0DyC8kAUEIXvDz4Fdvwu+fdYPEjcNLAKrVq2CwWDQPiq3nyDeVgAYMXiE6noWi0WM5lq5cmXYqWP3brsbbs6NFFYhGUKyP5vNBqfTGTHqK39EAXKH5uJ77z0IH+/DsEHD0dotTEI54VKvHiY71dXVKC0tFR/XgwcPoqBA+W9ELgSVJl9pbZACQsXu5W4vnvjbPlEcjx+ajsvdyvm+1dXVqKioQE5OjmgzCNeYKa8oU64u1KKMlhRmhVQAWQh9SByECu0z2w8LkUcSHymBh3B5FAiIPrc/FkmpYhUr5I29P2KG5CIDQETBIRdWlm8L4jRcmoCSNzN3rEE10WDUtYHIxz0nW8VueEB4/upaOnC4qR2Z6amKMVQDZUiCtNp9uLkdb/nzX32+YEGulqVLxP6WA41ilfbeoizxeXh+R53ihzkCC2FkLbnUL28k2ywTswyAaaMzQiw34oALv0VB6fEfqFFpchL7TmMvE75nzQeWvAmwKYrTr0Tue1uIv4KymCXVWbPZLNoNVHniGKAfDKyVNYikGYCvPxRWzFosFpSVCeeuZcymmtfXaDRizZo1sFqtMJlMKC8vD3/OcRLvGOBx48dh3p+vg5tTiHLxE83UMeloXiVKSkrE59ThcGD58uVidqkSNeeqcfzCMfh4YaQiEbIAMH3oDM3nlUw4HA7MmiV80Fu8eDEqKiqisqNEU+nUgpo4VqKgoCAqm85bux2aRLbq6zg7O/zvfsanp+NEbS1cK1cJflvaLNavkDdx4hOUXyY919ETcil7ZpYBtc0Xwfvf4Elnt+WuPGzcV4/a5nZx4hHLQBStRTmZWL0oV6gQcjws22phP3oWIzLSwnobtdKf41eV7ANy1ML7SWTUr++eGfYY8sB/8jgCEBvtfBwHHyd4Y3+0IPC/ITM9Fazfh0sux5MRrTWNwqjVcGNRBwr3FGZhs1+UygV5OLEeruop3Y5lQ5v2rp8S3Hwlfy0sKczCRkkDGMMgqImPfPCSe6q1Pv7JMmEvGqIXs2p2gjufB7KvB14sABp3Ay/OAmY+qDj9CgBQ8wZQ+zYw+1HVQ5WUlIStBAZhMwsimsDoAd4rNIS9fqPqZi6XC2VlZTAYDDCbzXEHwVssFpSWlqKgoABmsxl2u73XBG0iGoysC3fj3WObVNMMoqGtuw0bjrypupxUq0m1PT8/P+JjM+aasZg7ei42HnsbPt4HHXTwwQdjWu8E9vc2NptNbGYk6QC9+YEnEmrieEUC9q21WpyozGbaLNb/kEpfcKB/cJSRHD3LIG+cAV9IqoGsv8oqNkHpWEwdOQRftXSA4wWbAvH/tXW6wfnTDtw+Hh/4R3RKs1pjfXNOxsqilvB+rYkN0pgvaeC/fNqY3G4B+K0i/gavwmyjKGQJ79eextK52QOy8id/vaiJ0kiX6cP5o6XbfXj4DF7+90nwPJCWEtx8pfTaLcrJxH8Xzwyqukqb+NSi3bTcZ/nraiD4nIFYK7O3/x/wtfuEn0nldc6P/cvWAv9aBQybIlRDR+YJl/+l/OggkD4MOPUJcPyfMZ66jDGFwJHNgd956aXS8I1bOTk5MJvNCbEGuFwuVFZWwmg0wul09qqYTQR6Vo8JhgkJ2dfqz55Gii4F+SMKwopjm80Gu92uqerb2nUe7xzbiFRdKnq8PbhrcjG2n9yG8RnKVbpkZ9asWZg1axZcLhfWr1+PHTt29NokrasJ6rdNDkilT4peJ1zybut0ix5Egs7fdNLR44VOJ0ySIp3XbZ1u8c3Z6+VwtKVD7Lx2e4VpVOTNN1XPhlgXSDe5NNIq2jfnZPMUag3vj3Su0v3odSxumTESPIDKY+fEBi55N7s8N1aau1rlbAs5xh15YxJ+//sCtabCRDQWqm1XlJOJb+aODnnuwjU4qiVZxPLBS/664nh+QPmcgVjFrL0M+Oy5wPSs5irg1A5g6reE5isAmLkUaN4PtHwh/C4XwPJc13gZMlL4PipfiOnKvhGo/7dw27i5QONnipsR/yb5WVMl+M7ngbLHFBdZrVZYrVYUFxejtLRUe2W5n/jxR4/imtRrErKv0UPG4GxnCw6d/yLiukajMaKIG3dNFh6ZuQK/2fs/6PJ2gQGDrXWbB/SAhMWLFwMQBhAsWLAgsg88iYjW1iJP/+jtEc6U3kNrZVM+WQgQci7JPHjrR8fEhhQGQFG2Ea/sOiWKMgAAz+NwcztyxxpEP6wQ9xQ4DgMECVTSOf/O/gYhxB/CZfFw3eRaSabKYrTh/Vr24/Vx+OSrs+B4XjV+Sm5hONvRA9af/0tENWH0tWl48papYo7pQKO/rCVKz12kc5FvE+sHr6DXFc+DZRkw4JPmaoQWworZwYMHn+nu7g5SDUwVALT7v170fxF+Fvix7CnkDEuD4z3/1C25AAYCArdM8LbF4wFlil8TjvfqbEHMEiELqApZQBAV5eXlWL9+PdavXw+73R65QjvnxwCUxazFYhEvH/cXdrsd5eXlYuUzXNbtlsVCmsTOnE/jmtyUnZONh2Z8H6faT2HjsQ1h1y0tLYXL5RJtGGqitulSI45dOAbrwj+isrESG49uQNGo61DVsi/pBiREA2mkKi8vh8PhgMvlSrrqvdokr3jtAN6GBs1eVuKnTvarG30JwzD/AWAdAB2AV3ie/12ETeJGKa9STagENZ1wPFJThCqedB8kckivY1HlbAvJy/TxwJt76zEohUXJfJN4+ZWgYxncMn0kPjrSEuQP/c3dM7HE72/0j6tX7SYfqMhtD5HGn2rZD8MEOt69Ph5j/fm9auvrWAb2o2fh5Xixsv7aZw54vBz0OgY3zxiFaaMzEnq/+5JkspZEey6xfvAi/mfwwt+s1tdVMnlrw4rZ7u7uUXF72Yp+BIAR/LTHtgOfPC1YDwBR4OYMSxPfOOM+3iAjMGQ00HkO8DcOAQBmLAGwOWQbEi1EfJwRhSipQicpLpcLpaWlcDgcsFqtmit/iaqY5Y2YiXa3K6IHt7i4GGVlZRHj1vae2Y1JmRPR3iM0SQ3WCd20yTYgIRbWrl2L6upqWK3WpBNrSq+HeD7sxHoO7e3tmhrkvA4nfE3N4NraxN+Z1FToRg3MCr4SDMPoADwP4JsAGgHsYxhmG8/zXybyOPI3KC15lVKUmk5IhBYPQVRmD03HlFEZ+Mjvb1XC4+Ww+2RrSJD//dcJk792Hj8X8iYvfTMP6iZXiLRKpjdirSTK9kD281LlCRxubkeTqxuAkCahlAghPW5Ng0v0Jfs4HifPXxYntHl8PN7+vB5bkjxTNtxzT+4r+VDUn6g932/trRdH5sZbASdTyzh/RXb1otyw+0xWb23v5+bo9AE/7dApgpht+SLQMHZsOxyPPw3oB4H5VXf8xzv1CdDjAgZnAtPvAQ68LNx+JFTIEoqLi7F8+XLYbLbwQxkAIPUa4NBb8Z9nL2E0GmE2m2EymRJicbjk7sDPdv5UHK4we9R1eGLWSsVBC299+QY2HX9HTB9QglTf8/PzsXLlyhAhGzQG925BEFvxJ3E5EclqYnkgXMomI5orKyuxZs0aTc/TqbOXsHrzF6hvvYxBKTosKhiHJ26f1vsnmwS0t6tP9SO0PvBgyO/p992LTOva3jqt/mAOgDqe508CAMMwbwNYDCBhYlbJoxcur1JNFMgrRGKEln9ylLO1Ew1tXdDpGHA+Hgwr1FKliQUpetYfBRV4/nUMxBGwSwqzwsZOhRN+0Qxb6C+0PraxcvRMhyhKCSwTiD1TOo/HFk7GL7YeClrecrFbfG0ASHqvpdbnnoy17e9hD/Ln+6299eJz8O/jQsJPPIJW+mGVWHyko3flGdHJ6q3tfTEr9dMe8zd7jfp6qMCd8i0oVU6BUPvBqVOn1EXnmYPCd283kJoeOMaF42FPk+Rmvv766+Hvz/BpwKMHgP/s789s6hCrhN1uj9uTKR+usLVuC+aP+YaYUSuFYVlwvEratp9IQjNRne3JTrTT4Xq8HP7j62PxjSnDsenzerz5mQPzpwzH7CS4ZEqq6+Xl5Qn1ABOR39YW2lwiZ1xTQ2Ac7hdfAB4POssr0LnpXYz89064Slfh1JhxhU3jxvMAJoxranAk7ET7jnEAGiS/NwKYK1+JYZgV8AdSZKvEmamhlpuplFepJArIPpQqXksKs1Db1I4vGoXsUx/HQ8cAD84VPJpk28z0VPESp1xwPXLjRBw90xF0LkTcKqEm/PozcksLfSG2N+6rD7lNnkWqdB5LCrPwjn+wgp6FOBqXfFAhH0SS1c6h5blP5tfH+7WnQ36PR8xmpqeKVhwOwuuC4yF60eUZ0cnqrY1JzBYUFKCmpkb8PT8/X92XSSqZO34l/Hzdj4Gxs4FPnwsWuBMWQknMWq1WOJ1OlJeXY8GCBZE7v2/4OXD0H8CFOqDGn3d66UzYTbSM5pSj5imMZvvewOFwoKamRswyXbNmTVweXvlwhRQ2BWOvGRey3knXCcwYOgMvffOv2Ht6T0KivigBpo+9FtPHXgsAmD1xKLbsa8DFLk+ErfoGYpGIxtaihdLSUlgsFu3C3z8Olx01Ct3vvYe0m25Ez8efiLf/f5/uct08aHByvCPFhtI/nJBPfjzPvwzgZQCYPXt2VJ8M1Tx64awD5A1/s38OvTQqiiQYSCO2WAaiT9bHI2hEqJKoIP5XFsDFHi9WV9SKlcAej5BYEG38VjL5IpXobTFV5WzDl6eDx17f9rVRYo4sqcwpnce8icOEYFPwAMNg2uiMoGlpsXh4+xItz30yvz7uyBsjVmTJ71LkfweR/i7aOt3i3xgA+DiICRnv154Oev55ICGe7d4gajFrt9tRU1ODlStXwmg0YtasWTAYDOobDJ8WXC3d9wIw8ZsBgasfJOTD5tykuLnVakV+fj5OnTqFnJycyN7CfX8BUocAs5YLjWaf/ArwuQHnTgBV0d5dVZL5UvbixYthsVhQUFCAkpKSuCu0h8/XYs1nv4Kbc6smCbS72/Hng39EW3dbwtIRKKFc6vbgVfsJZA1NxzemqE9u6w8qKirgcDjCWnWi8bIWFxejurpa89/aVlNT9wAAIABJREFUhMmTgxtI//434ftEMXqO/Lc9BYUPooMGDWrp6uoarelg/UMjAGn3XBaA5kQeIFKmplrwe4qeBYNAziUJ4Of44KEJPh+HW2aMwsdHWkRB+87+BuSNNSi+KZLZ8dJjSDvneQCb9jcgd6whKv9eskVuyUmEmAonYvacbA16HG/72ii8/P3ZihPB5Oex+UCjmBjh9fHYfKARv7l7ZtI9hmpo8cQm8+uDVGGVPLNKz1+kvwtpZRYAdKyQHJKiZ3FH3hjsc1wQn/8lhcIUs2R8XKIWs+Xl5TAYDDCZTHC5XMjPz4/sMwVCo7lmCJf1cf4o8O6DwF/nKG5GmrJsNhtWrVoVeULX8srgRrNPn43uDkbCwoQf0dvPmEwmWK1W1NTUwOVyoby8PPJEswhMzpwSNN1LKUlg1shCvHq7Tfz970icr9jhcKC0tFSs/hcXF8d9nwYil7o9ePJvVbjY6cFffjAHg1J1/X1KIkajEe3t7RGbKKPxsk6YIIhQ8mF53bp1KC8vF+PN5CTAopLs3WL7AExhGGYCgCYADwBYmuiDyEVrOO+mfOQqmZQkDeCXR0j9aMEkuDrdYsi+18fj6a2HwANI0THYsGJ+UKVWeoyjZzrAssFRUB4fj5d3nhB9f1ormckUuSUnXjEVyaYgF8ukIqs0RUx+HlsURqkORCJ5YiO9PvqzgXDp3GxFa4H8+ZNXVpX+Lto63WAZwevMMsDN00ehy+MThbLSBDGl/w/9XZWPWsySDuNVq1YhJycHVqsVDocj8uV/pWguIOBBBYBfhf5ZkPgmQBC2paWl4YXM6PyAD/fkx8Jt+d8HLjYB+Fj7HVVjVUP4Eb1JgMvlwtq1a0URGE8o/0nXCVx0X8ToIaMxyJ8goCVJIF4bhhSXywWj0SgK2nXr1kUebywj3tG/sTSWJdKKcrnbiyf/th+NFzrx2/tnIVXH4nK3F0MG9b7tXQulpaWw2WwRxey4pgbVZXIOHjwIs9ksiuS1a9diwYIFCTjbgQnP816GYR4H8C8I0Vyv8Tx/uDePGUkUqeVcEmuB0uVIANgvC9knTnu3v9KnlDgACFOnfLJ4Ax5CQxmxIiTbZeFYiUdsa8knVRLLShVh+XncU5iFTVWBcP57VDzLyZwWEa+NI9kaCKWCUvr8ySurkSwVOh0rxq7tc1wISi0h09+UGimlkXta/PO9QdTvhDabLSj/ceHChRHjlaTJBWLFdI5yTmvcnDsS8OGOzAO+2grUCJcbpRFgsZAzPB3496/VR/QmCeS5SQRy+8CdExbh5uxbIm5HhJ/covDzOb/AYP1g1e2Unp+CggKxoc1ms2HBggVRR1klurGsr8XxV6cv4ssmweP2mG0fAOCH5kmaR8b2NmSE88KFCxPSeAgIz3u0jXJXOjzPvwf0nSE92jd9qfBRmwn//I66kLgtKeQvTS4YSPOJdD1/NKb4RkpGsEbrob3S0GJTUBPL9xRmgfF/V0uJ2PBI+Kpxsok9OfMmDoOeZeDxT5yL9sNPMjWIKVkLpBVStb9DgvSDTZOrC29/Xh90vwCoPpfkcRAbyPjgyXt9+fxHLWaNRqMoJOx2uzgKNixK0VwxUF1dHbnK+FJhoNFswWrgmtGBCDA8Ddz551AhbZEJqHk/Afb8AShaIYzn/c0QIad2zKzeF+NJhtw+EC1aLApaIfm54YZAAMAf9v+vanxYoujr1IWiCUOxp+z2mI/Xm1RXV4sfNgBhcMiqVatU7QB9TUlJCRwOR8I+4F1NRBJFkfI6ld7A5k0chlQdA7ffd6ljhb8Hn48PqvTJBQMPYdACCee/b/Z45Pm9suT8pEJWHNcqyZgl+73SBW4sNgW5KFKruJL9h9tnMok9VSRNbNGSTA1iStaQxyRFDi0VfrKONJuZ3K9wz6U8co8kWfBAnz//MV2jLC4uRkFBAcrKyiJHWalFc0VBRUUFVq5cCafTiYMHD4Zf2dsNeLth+s8KOBteCF1e9jiAxyMc8Q/CNLF3RgoNa4CQtlCwPC4xfrURq0VBDYfDgZKSkoge7cpGu2p82EBAjJg6dAhwuzFqz2eap2b1FzabTcyDraysRGVlZVxiP5GYTCasX79etKtQtJOorFa56N2wYr7YgKMmMuWCIW+sAe/uF2wqDAL5svLKExmbKzaj+Xi8tbcem6oaAZ6Hl+OTslqYaKK1KSRSgCaT2FNiz8lWeH2c2JQYy4jjZGkQU3usY7kyoXa/iGBlGCZoqIZ0falnFkBgYImORZOrC1XOtl59nKIWsy6XC3a7HRUVFVi2bFnkwHelaK6iH0V1vGXLlsFsNsNms0W+vLxK+GfnLBsff+Xss+eC0xaIsI1SjF+txGpRUKOkpAQ2my1i85dafJga0nGy5eXl/T+Nyx8lpRszBl3bt/fvuWgg2e0AyXxuA4F4s1rVLoPKhx0oVXalb6x7TrbCS1IRuMDgBun5yT18JHKINIZB8nNSVgv7kUQK0GQSe0ok4r4mSwOh0mMdj81Dfr+KcjKxelGumE7yzPbDQV5atcfhzYfnYcuBRmza39AnU+FishlE9eYgbfCKgaiP98pcocksETzdFZy2EIMY702SNeuWEK9FQQr5EKVlWlbe8JmK8WFqEL+nw+GIW8ySc3Q6ncjJydFmjZHB6PXIePIJXHz29zGfx0Ai3tdx9tChYZcTW0plZWXSWB+uBLQKAqnodXu4oIEHWiK0pMsjHU/q4WMAfD3LgCNnOuDzCRUi8Dx8XHKEvCcbiRagSiInXh9zLNsrbZPsYjta5I91om0ebZ3uqKd9FeVkih9A+8JukByt0Inkuh8LVoBEcLpaiOCKQ4z3JsmcdZtIXC4XTCYTTCaTpgEQB88eiMqbW1BQIAraeCA2CNIYVlJSQi9ra6C3X8fkw/DWrVupmE0gWgWBVPQyUYzAlIsQLcfLTE8Vm8t4CNOppDYE4OrwzMZKb1Yb420Ki2X7SFPqHtPYQDvQmgkTbfOIdX99aTe58sTsvFVhxSzJwyQYDAaUlJQoX7oemau8E3nDWBLnzl4JRF2dR3TeXBL3RqLMYsXhcIhCNicnRxyRHC8XHl4Bz7FjA8Y/m2zY7XaUlpbGNOmPEkCtwqWlQqMW2aX25qYmXMIdr8rZhvdrTwdNDGvrdCteNqX0PfFWC2PZXr5NLF32yZrMEKn5MtFV9lj215cV8L4Xs70tBH8zRHURaVLJz88Pqpg5HI6Ik4tCkA+BAKjITRK0enPtdrv4VV1djfLy8oRVUs1mc1yVXk9dHbg2IYszJTcXutGj0f3RRwk5t1hJdluLGiROsL29XUxesVgsCR29e6WTqDd0Mvp0y4HG0Dm8EqIVLmp5l9RKkDzEW6WLZXv5NrF02SdjMoOWv8dEV9lj3V9feYvDitlBgwa1xDMVJz19cOQ3v7JZQb9K109LS0NPT4/m4+UMGwSgW3V5QUEBDAaDOBkLQHgBW/WyegSXvQz411OhtyuJ3N6GiuggHs3/T03rORwOlJWVAQBef/31uMWN2WzGggUL4HK54r50fnbBQvHnzo0boZ8xPa79JQLpffLU1eHyK6/i8t/fwLC3NyBl6hRNI2r7i8rKyqDvVquVitkoiOcNXakBjFTH1JpCtAgXaWVK6pVlAcwcZ0DeuDBj1il9TrRVulhsJpGOCSAkeioSyZjMkIwCu79houn4nz17Nr9//37lhfIIrg9/BqYMcScK8Gv8v+jSAF8PYLYAN/4C0KUIt8uFHACM/waYhz9TPLbNZsPy5ctFMavmoWMYBvy2FcC3Xwpd+PkLQnbti37BuPC/gYISYO14IM0ApA6B6bkuOM+0hW6rkahC9S1MqIgmj88Ag2GY+F8zCtur3U58roBQrSPe3EjbK+2PpCI4nU4YDAbY7XbV6my09/Pis79Hxx//lDQ2g6ZxweegdURtb5Kg185Anc6pSNj/2VFABCl5Q4+mMvv8jjr84YOj4HihKWvSyGtw4uwl8AB0DPDUbdMUvYtv7a1XnD8vPR/5DHqPl4OOZQCGgdcXfWSY2m2UvqU3L+3H20QG9L/vOp6/x4EEwzBVPM/P1rJu4mwGShFcUMh5jRWfv0JrtwhfgFCBBAQh5+4Exl0HvHE70PCZ6m5KSkpgsVjEfNywDSEkgkup8jk6P/D7rt8CHU3CZLCcm4Bj2+E883SfhuqrjgseYPT1pWyTyYTy8nKYzWYsXLgQ5eXl0dlNJBiNRpjNZqxfvx7t7e0oLS29YoP6oxlLSxn4aKmKqYmEeROHibPfeQB1Zy+Jy1iV6UtVzjY8s/0w3F4uZKwmoBwUT86v2dWFDbIpRpEiw/Q6FvcWZYlDGPrKH0mFszK9WXmM5bI32SZZ/LNXWhpDIkicmFWM4EqQmP3ad4D5q4BX5wu/k0oouYxvLwNShwAddwHffA748Kdhd2cymbT5GdUiuA6+DugfBabfLYzLnXAzsP9FYbrY6Hxh0hkSlKighb4cF9zL9EdCg9FojDhVTCsWiwVGoxE2mw2VlZWwWCyaEhjCIfXPeh1OgGXR9p+PDaihCpSBT6Tmq3Bv8rzYlhUMpzDXlgw9IP5Xt5eD9aNj4nQvQPnSr1RwbNZwKTkoMszLYcPeeuhY7WkL8ZIswigZScZL+0ByXd5PlpzbZKFf0gwsFgvsdrvoXwOAlStXKicKDBkJLHgaqPtX4DZpJfTO54HBmUD13wRBOV29g1wajq9JNOkkD49+kGAhGDcHcFYCB14OVKBv+S3wOwNQ83dB2JJJZ31FgsYFU+LHZDLBarVGHOwAxFB9B4CbbsT49HTsNg4VxzD6mk9TMUvpV5Te5Mntza4u1atUHI8goSoVeCQrluOBXcfPY5/jQlCqgVplKtwyaSWUCCYimnkI4pplGTDo/SzaZBJGyUaiK4/yCnisFfFkFdmUfhCzdrtdbLrJzxcu1ZvN5vCRSC8VCsLROAFwnQI8nYJw3f+icMk/ZTCw61lh3WPbgbwHAWwI2Y3RaITRaERNTU30EUyMXjjusX8A/7FOqIQSj3DVy8I6HU2Bc1W572SOfU1NDQBgx44d8TWiJGBcMKV/iNWGwjAMYBwKduxYcE1NcP2//wfvKUfUVVqTySRGicVCVL7uPiBei8qgQYNaEng6VxXyN/nM9NTAJXyWgV7HwuvjwDIMFn19DLZ/cRo+/zSvT+sCQlUq8FgGyB6aDmdrp+LUrnCVKbXA/gf/GvAZbnhkXtCUIjJMgUwoCyeEE+GvpcIoPImqPKr5q2OdjqUksqldpP/pczFrtVqRk5MDm82mTcQt+wTY8hBw/gjg7ghd/tIs4DubgRZBHILzArWhQpYQ7nKy/M09+I0x4PNC2UrJ7T8Tf8rJ0cHh6BJ++a/QN1Wr1YqKigrk5ORg5cqVKC0tjdmfKRLnuGBKdPAeD84vua+/TwMAwGZcAw5AatFspEyZGvXoW6fT2be+7l4mkrCOppmAEj1LCrPA+79LRamP43H/nPEYZxwsvtk/NN8E60fH8GndeXA80OMRkg3uKcwKEngrbpoU1NjVHMeM9y3+BAUAYpLCr++eiaKcTNzjP+dwfmCl8P14bALU99g3yCvg79eejqsiLhXZVc42bDnQiI376uHjgBQdgw0r5tPnsh/oczFrNptht9ths9nES/5hsz1H5gpeXFKB/PBnkmV5wNla4J0lgduW/hN461sxnVtvv7mTLNOETiGKc1zw1ULCGssYBoNuvQX4R0WCzix2vF8dBQCk3XQjvF9+CQC48MgKeI7SAQuUvkMu9JYUZoVUHZcUZoVYAUpvnYq9py6IloJN+xtwT2GWosDbuK8eX56+iA2f12NzjDPe5f/Zpb9HqgKq2SjitQlQ32N0xFIBlb8W78gbg30O4XXHMAwy01NjTjh48K97xA9IAOD28XjmH4ex+tu59HntY9i+PiAZG7p+/XqYzWaYzWZt051IBZL1R04xOkHIAsA3/9e/Tgaw7eHeOfEEYDKZcPDgwf4+jasSh8MBnuc1fbX/7lk0js2Cp75evI1U/Ri9HhlPPoHs4cPBMEzMX2qpCyQaTJMNZvAgAED7//waHX9+HgCQMvPrGHzbbQl5zCgULah5P998eB6eum2aqvAsysnEvUVZIB8xvT4e1o+OAYAY1fWLrYewZlstahrb4fHxQZOcnt9RhyqncvxhlbMtZPmSwiyk6hgwAFJ1DJYUZmm+j0QQ6RiIlgCl2yi9B/nQ9IcPjuK7r+xRfO6rnG345dZD+MXWQ+Jy8lp8YE427inMwrTRGVi9KBcsw8DH8bD84zAefHl32P2SfUtfU9JKv5QvGtvD7ifW+x7u9U7ppwYwMnVp4UIhGL66ujqy5UBagbQwAO8LLPvkaaE5a9JtQrXWvkZ5H/1MQUHBFRvVFIkrzZ956Kc/Q8cf/4QhJctw2bY+qArKe704/8BSuHfvBgBxGcmKzWpuVLwvdrtdfIw0fcDrEgaEcI2N4k2d77wDeL0x3y+XyyX+LRYUFMBms8W8L8rVgZr3U0vVcUlhliAKPBw4CP7ZvSdbYZ42EvajZ+Hx8SEVVZ2Oxab9DfByvOiBlHpcw43C3bBifkyNQGqWAGoT6DsiNczJK6Xv7m8IuuRPBnW8s68BN08fCY7nRS82AEVftnTf8teU2jVcHoDbw2HzgcaEvDZo6oU2+kXMVlRUYOvWreLvEUeIKg1GmPptoRkLAKbcCYwtEkRtlhDflTMsLWGePqvVCovFgvb2dgBAW1tbTGNPS0tLUVxcDIZh1NMbrlAGij9THoPFpKZqnmxF/LQkMku83etFy23/Ae+RI2G3J9VYg8EQc5xXSl4ePAmIGaupqUmqDw+U5CUe7yfZ1vrRMew6Lvhn3T4eH3yp3IvHADBPHYGPjrQI63o4rK6oBcfz4ht9ONEj9ztGIxKUxDm1CfQdkRrm9pxsFYUpAHh8vPjcS18THM/j4yMt0OtY+HwcdDoW4Hn4OF7Vl630msobawALILQ2K9z2zv4GcBwftwClqRfa6Bcxu2PHDqxfvx7Lli0DAG2Zr7f/HzCmECj/AeA6KQhZNhXg3MDQSQC5WLVPuNzqeNwbWA4IkV1flQdE8ML/BuY8ATxrBIpWAEUrwIwL7Q0pLS3FunXrAADLli3D3XffHZOQBSDmjxYXF2PdunUoKSnRdt8pCUcuPEn1VDpGtvWBBxUnW3nq6uBrFTxzl9f/DQDQ8/l+pM2bg0G33gImIwM9kgq8r7UV3sOHw56PdASu2WyOuTEwXiFLEj8AiB/eKJRIkDdX4iWNtup5R94Y/Pv4eU3HGp6RJooahgnNhdWaEkBFwsAi0oemeROHIUXPipXZFF1gIIcwuEN4rQAAzwP3FmWJTYmAULl9t6pR0ZetlNbxzPbDikKW4PUJx4r3tUVTL7TRL2JWaw5nEGQwQs5NgM8NdDQGhOpnzwHpI4SfLzZBsAL7AE5iRXD+W/h+7B+C77blCyHaCxCirFTitMjYW/JzPJddq6urUVJSAqfTifz8fCpko8Tb0JC4hiZ/I5duzJigFAAtk62kghf+f46uJ58Uhe9F2ajXyy/9FeOaGkSbgRI2m00Uj8uXL9d0FwbfXYyureXidwAYVLwY3eVCc1q0lWUCyX9esGBBVNtRrl5iiT+Sit22TnfQWAUGgg91xugM1DQGPlTpWMHrShITOro8eGXXKYDng4YnaKkUU5EQH70dR6W0/0hxbBseEaLWznb0YGRGWtDym6ePxMdHWsDzQGoKK3qmyTHGGQfD61Ov6EtfU+SDkBZ0uvheWzT1Qhv9ImajRj7h6s4/A+89Dsz/CbD7DwCjg+l/L8F5HgC6VXbSKvnZA2CT/wtA2eOqDTnSxAVy6TXWqpnZbKaXbmWUlJTAbrf3+eNCGrkuPvt7zHddQEN2duSNVBifno6TX30lCu2MJ59Axx//BHboUHAXLqD7vffQE6HxT+oZP3XqlKbjEgFLvgMQhSygXlmOhMFgQHt7O1wuF1wuV8xXIihXD9HGHymJ3xQdA4+Ph44F7r9OaNYB/PFXHg4sy+CZxXlB+/nuK3vA8cKgg9WLcjWJHgIVCbGj9PwpZfMmav9aL9OTdci2mw80Bn2wImOLl0hfW5L7QD7c6HQsqhtc+OXWQ7jHn8Qhf01J1zVPHQH70bNCNZYRahxk6Me9RVlxPybUzhKZgSFm35ONZiUVVb+lAOPnw3l+V694Mkll1mazYfny5fSNPYG4XC6sX78ea9euhcvlgs1mi36YRQJo6OyM+7XTcuMCwONBysw8eA4LMVnchQviOpde+AtSJk9W3Ye0Sq+p+ctP6k03wb1zZ8jtw97egJSpU6KuykoxmUz09U7RhFr8UTh/o1TsHm5u90+048GyrCggAPUmK+k+GPBo63QjWqhIiI2gUcAKvuV4H9N4LCDhPlj5fJy4TrOrK2i9tk43Vi/KxcZ99TjU1I4P/b7tTVWN2PBI8H0qysnE6kW5eL/2NO7IG4Olc7PFSjKxIEhj6Si9T/KL2eYq4fv1/wWweuDfvwa62oSf9YMEi0D9rl4/DZvNhgULFtA39wRiNBphMBgAAMXFxaisrERxcXH8gyT6gbSbbkTPx59A/7VccO0X4auvR0pBgehhHfL9h9D9z/fC7uPgwYMoLS3VlHiRdsvN6Pn4E0UhC8RelQUCXtmKigpUVFQkNheZckWiVOWcNjojrL9RrwtUtngAXp+QN+vzaZv0pWYToNOYeh/pY6/kW473cY/HAiLdVscyGJyiA8uIjjBs3Cc0ZqXoGLEJLEXPoqPLg7UfHoOXCy5sqF1ZeGb7YfR4OOw+IVz1XTo3W1wn3Guf0jv0qphNSFA98bJ++izAsMCIXGDFPmGELQC4O4HfDEnA2apjs9lQWVmJtWujFwaU8BQXF2PVqlUAhMbAvhSy0uSCeOn5ZAcAoGvjxsD+Jc1YrQ8sjbiPaKLbej7+BACCI8FkTW0ZP3lK6+kHkZOTA6fTCYPBgIMHD9IPcRRNyEVnxKonURc8j7yxhqjFi7w6Fi6WixIbah8MpB9e5JXIRHiPo7WAvLW3PqhK+ubD88SGrg+/bBG92D4e4uvO6+PxwFxhMl1meipWV9SGCFkAYFkm5D5tPtCIbo9Q5fVyPFZX1GLa6IyobC6UxNKrYjZhPki5Z9ZuERq+pn4LOPbPsJtWV1ejuLgYTqcz5qxSu92O/Pz8qC6BJ2zi1BWOzWaD0WhEeXl5xKxh74kTuLDiUXi++iohE66CGrkUsFgsKCsrg8FgQGlpafi4LPLGrNeLOa8kgxYARu7aCdfKVYLQ7C1Umtqihfq6Kb3NnpOt8HJCzqePEywC0fpXSXXM7eWwz3FBrIbRhILEEOmDgVSw9UYlUqsgfGtvPX6xVfi/ShIxls7NxpYDjfD4p8spwfqbCYtyMvHLrYcUhSwD4JEbJoRUZd+tagxaz8fxitVbWp3tO3plApjJZIprOlJIdW7Oj4HR+cA8oYIHl0OYBvZSoVCxve7HiudRXV2N0tJSOJ1OrFmzBtUxxhbZbLaot41m4pTS19UkKLQIWQBo/e5DAMfFPeGK93hw7q5iIDVVdR2Xy4WysjIAwmX3kpKSsPtMmV0EAEidc514m08SbdVa8gO4Dx4Myp9NBC3zvgFvg5DAQJra9BMnJPQYFEqiUZqeVZSTiccWTo7ZGymN5aJTueJHbYSvEvLnLt6JVdFs/37t6ZDfq5xt2LS/IUjIMpLven8zIQD8cushbNxXL66nYxkUF4yFnhW2eGXXKby1t148py0HGuH1BScZ8AAy0wPvJ1qmlVESS69UZhMakN9cBZzaEVyFzbkJuG+jbKsXQvZjNpvR3t6OBQsWxBxCT+ldKioq4HQ6NT0/JDbr4rO/D7ueWoasCMMg7WYzvCdPglMRl9ImrGXLlkW0P5CmL/dnu8XbuiUpA766OuiysuBrbAzZNl58588nLrKMQukDEpEkoOSrpAkFiUPuPVUaJqBEvFYP6fYsI4jOpXPV02bkGcV35I0RK/9SdCyDh2+YgIzBKeKHHOnEMMLN00diyqgM+LhmwcvN8fhVRS10jPCznmVEv7f0CLXNgeIFvULQ9/RKZTahpF4TWoUt+pGmTYuLiwEIuZlUzCYnr7/+OhYsWKDZK8t7PLj8jhCpJq1KBuG/3D7o1luF9W5cgKZx44MrmI8/Dv306ZqOqalK3tUVdvHgJUvA++0H49PT47pyMT49PWjfl154UdP9oFD6Ci2VtWgrsUrbv/nwPDx127QgwRTvfikC5PG9f042wDDY8Hm9piqjlopuuNeHdHviRw13zGmjM6DzV1F1LINpozNEIS41+vE8j4zBKeJrY4t/vK2cymPnkJmeKu4TADiOh8cnNLn5OB73FmVh6dxs6CUK6t2qRvE86RWCvif50wyGTwMePRDTpjabTWyqsVqtKC0tpY0sSYZ0KIUmGAb6CRPgPnNGfRX/5fb23/4OAJB6w/Vw77CL8VmkUpt23Wy4d+9W3Ie0EUtLVNaQh76Hy39/Q/xdXg3mvV6cf2Ap3GfOYLdxKAb/8BF0bd4srsv39ODyK6/i8t/fEIcgpH//IXT+7e9ASgrg8YQck6xnWP20eFs043ipr5vSG/RlExZttOldyChYpWECap5QeVKFXMhJXx96lsF9s8cjd6xBzKmVT+viFPyoUrYcaITPX4X1cTy2HGjEr++eidWLcvGr8kPwD+IKORe1a8c+nxDT9cziPDFyTO8feev18WAYBnljDWK1+K299SEpHPQKQd/TZ2KW5LRKMRgMKC4ujmuqViRI01ZFRUWENemb+0DA63AgZfIkUYSGu8TOsMLHZv348XAjEJ+lheLiYvH1qqVqLBWyAND60DJ4HY4g8ayfNDFw3hIxPnn+fDibmgIbP/9n4fvvfhv+oP71cq6/Ho56wfOlZRwv4WryZVP6DnqJ9cpCyc4R8QOLJKlCTlBGrY/Hm3uF/13WAz5nAAAgAElEQVQsA3FfopDkeKSmhK9syo9Afm/rdAdNlJMPL8gbawjaTq9jwHPBk+SkjW1Hz3SI4tbyj8OobW5H3lgD0lKUUzjoB62+pc/ELGmgys/PFy//m0wmZGb27pNtsVjE0bmRphnRN/fkpmnCpJAGqksvvIi0v74UdjsianXjxgGAWKEdfPfdqttIXydaqvnjmhrQJBlj6z1+PMgj66mrQ+cbb4rL3Z9+Kv7sbGqK22Pua2mBbtQoTeN4KZTehI6JvbJQqjI+v6NO8QNLlbMN1o+OBSVVyD/MkNdHjyfYc8rxgNvLwfrRMZTeOhUbfzRfU2VzSWEW3t3fAI9PyI4lQwrkr8MlhVmqI5RZAN+ZLcR0qY3P3XOyVczTdXs5bNhbj7SUxE8/o8RGn4tZu93ep5f6zWYzysrKsHLlygEZxk8JwA4ZIjZskdgr6SV2KdLL7ZwkVQAA0m68ET2ffIKurVvDHm/t2rWwWCyarBCeujrRakCmb122rUfHH/8EIDQGLO2mm6DPyQ6p6MbKxd/+LqYBCRRKoqGXWK885FVGJSsBqdaS/FUGyn5R8vogObBeLwfOvz7HA7uOn8c+xwW8+fA8PLZQfWqidH8bVoQKX/nrEAgdXyutqi4pDB07KxW/chHOA+jxCNPrfn33zFgfWkqC6DMxazKZUFlZ2ecjS81mc1xVL0piSISFQz99Gty79wAICFQ1X6hUPHb5UwX4jg4AgD57PHo0HLO0tFTza1Xp8r5uzBjxtnFNDfDU1Ym+2J6dOzWdg1aokKUkE/QS65WJdGSr3Eqw52QrejyBhiqGAVYvylV8HZDXR95YA96vPY3cMdfi8OmL2HX8PHgkzp4ifR3Kq8mRso2VrBRvPjwPWw40YuP+Bnh9QvV50/6GoPHLlP6hz8RsaWkpysvLYbFYxExR6Tx6ypWNmoWD93px6YW/wHP4S3Rt345Rez5Dy7xviMvnuy6gobMTTqcTI53OwIbEV3rTjWGPOz49HbuNQwEERG3Xtn+Iy0ft+QzIVo990UrKzDx4jh4LigKTR4jJq7Oin1VF5LtcLphMJphMppgzkikUCiURyCOzfBIrweYDjWAg+F59ktpRW6d6rrZ86MXqRbnY57gAt0cYkSvNbdV6XkR0AhBFt7SxTCnKTU2EKnm/SRICD2ADafyK0KBG6Rv6TMySVIFZs2aJAfT0DZpCkgekwi/jySfQ8cc/YeSunWiYODH+zGK/mCVwFy6IP7fcuCDmfUtJu/566HNM4uQtpVSBWPys7e3tqKmpQUVFBRYvXpyQc6VQKJRokYo7gIeOZcDzwvd3q4RBAgzjH07AC81cUouBPP1ALhbbOt1YvSg30GS1rRaHm9uDqp5KCQpbDjSKl/49Xg5bDjRis+Q2aWNZNPaXcN7vJYVZ4oQx6gtPDvpMzLpcLjj9lTUt054oVydeh1MUgb7Gpghra2fUns+gGz0a5771bXiOHAE44XJY6tw5gPNU3PsfdNtt6JHEeUWTKqCGNOWDClkKhdKfyMUdaXxqdnVhw+f1gsglU71ZJshiIPXTsgyw4saJ+Gbu6BCxSGK2eAhJB2/trcfmA41itVWpAiud9KXTsaKXldymVFnVQjjvN/WFJx99JmYtFgvWrVuHxYsXi+kCiYTGal0ZtD7woOLPCYFh4Dl8OOgm3+kz4hCDWJEPMQCQkFQBImbz8/Oj3tZkMokfHmMhJyeHpntQKBQRNQFX5WzDpqrgAQQ8z6Ot0y1WUptcXWJjGMcDL+48iexhQ0IatOQjaKX+2WbJPno8gWEMZNIXid/KG2sIGWMbS/VULUdX+nhQEZs89JmYtVqtvSJiCfSNd+AivSRPkgB0o0YJE7NSUlS3c7lcKC4uhtlsjjgQQ3qp/+KzvxdTBgbdeAN2nziBkbWH0bllCy698Begu1vcTjr8oO2/fi7Ga5HzvPCjR+Hetz/ux0CO1WpFTU1NzNsndKQ0hUKhIIyAk/yvYf1TrzLTU8VKqnSaFuH92tNYOjc7qEFLOoJWxzIAz4v7+r8PjgYOB6CjyxNS3V1SmIU9J1vBMoJoZgDcMGU4Sm+dGvNI3d4e/EGOR6u88ZH8E8AoVzxql+QZffiXZ3V1NSorK1FZWRkxdaD1gQcBlgU4DoP9OcdAIBWB0etw7con4d69W0xMkCPNiW194EEM+o/bwXcJwrenqgre5mYAkSdvaaGkpAR2u13TsA8KhULpL/acbBVFKAvg+smCeJR6Yjlf6Afr3DHXij9XOdvQ7OqCnhUay6Q2hnkTh2HPyVbId3H49EX8/M4ZitViqcCNVsiS+5SowR+RhGpfC+crFSpmKf1OLJfkXS6XKGAXL14ctio71nkqKDGhS5IbSxIOWuZ9A8O3b0PaddcFiVkiTLmODjFH9npwcDY3A6+9GjjIYz8O/BwhYUHLJXyj0Qir1YqKioq4KrSUKwOGYe4DYAEwA8AcnucTfzmAQokBqZdWp2Mxfqhgu8pMTw0aSysnY7Bw1S1ovK2Oxf1zxouZr9IoMD0LSJwMuCNPiD6UV4sT4WdN1OAPLUKVTsxLDFTMUgYcLpcLJSUloshzuVxh15cnJgy+u1gUsVIuvfAiUiZPCrqNVIo7N70r3uZsbu6TS/hGoxE5OTlwOp2orq7WHGV3and92OUOhwNmsxnV1dV9OsCEEhe1AO4BEH7cHYXSB8irjSR/ddP+Brz9eT3e3d8A+IWsjmXAgIePCx49S6K3pGLO5+MwzjhYFLJSIfjM4pnYcfQszl7sxv3XZWPpXPVIxXB+1nCVUumyRDR4aRGqdGJeYugVMUubsSixwHs8OL/kPrgPHRLzWpVwuVxwuVxYs2YNysrKop7sJhWyZLhBxx//hCHffwidb70lLrv2f/4b6XfeAd2oUcFJBAnyk5470YotP3lfdbnRaIzaC+7zctj7t4Nh1zGbzSgpKaFCdgDB8/wRgHqZKf2PWrWR2A04HvD4ePAg1gMeD8zJRv2FTnEoAssEMmhJBRfgg8ScUnTXX78/u1fOXW2Zlglk4dAiVGkyQmLoFTFLm7EoMcEwGHTrLdCNGSPmtSphMplg98dgWa3WiGI2e8g1aOi8rLxwnaQpUW4P+MFyAL3X2b/7tSro9GxC9/nVB8eRlpGmutxisQRZNChXHgzDrACwAgCyEzAQhEKRolZtlAo3hmXg9ZtcOR7IHWvAPYVZ2Oe4ECTsyOAEH8eDZYCbpowQj9MbFctwldLeuNyvVajSZIT4Sew7KYUSB8QOoJ84QdP6drsd7e3tEXOLGzovg+f5mL+iibgyGo0oljSYqXFqdz0unb0M09zxmvetBVdzB84ePa+6vLy8HFarFUajERUVFZrOldI3MAzzEcMwtQpfUYUM8zz/Ms/zs3menz1ixIjIG1AoUUBEpo4Jjrwiwu2p26Zh4bSRQdvUNrcHLZdWc91eIRPWxwMfftmC776yB1XOtpD1ASHxoMrZlvBzj7QsHopyMqPKt6XEBvXMUgYsRqMxpgzW3sJms6G9vR0VFRVwOBxhK8Z7/3YQc5cVor4qcYMhACB/8QxMXTABj24LXVZdXQ2HwyFO4Nu6dWvUFg1K78Hz/K39fQ4USiQiDRMoysnEL7ceCtqGkS0nEAFJhhxIc2XJukr+2Vg7/otyMrF6US7erz2NO/LGRNU4RuOzkhsqZikDloKCgqQaiWyXTACL5EdNy0jDhPnjUb+/CSMNoxLmMb9mxBBcM2KI4no2m020aFRXV2P9+vU4eDC8v5ZCoVDkRLosfk9hFjZVBca93lOYpbqfNx+eh80HGvFuVSN8PmVLQaIsAMTW4PZy2Oe4gGmjMxTFuNJ2ND4ruaFilpJUSAcoeB2xT7CKhpKSElRXV6OkpCRmL6nD4cD69euDfg+XPnD26Hn89R6h2eyZBc9BP0iPH258IGidbb/8AGePnofPw+GRLUvB6uJzBZlMJtTU1GDhQiHXNz8/X3NCAqV/YRjmbgB/AjACwD8Zhqnmef72fj4tylVCtFXJopxMbHhEW1MTEZBk4IHS+rH6Z+XnHasopvFZyQ8Vs5SkQHH8qr8hS0vVMtYmrYqKClGE2u32mMVsuSS7NicnJ6JIvOe5OwAA+zd+gfp9Tbjrf74ZtFzqqT2xKzGivrS0FGazGUajERMmTKBNYAMInue3Atja3+dBufqIpSoZyyX5cNXeWDr+lc5bLooz01Px/I66iPuk8VnJDxWzlH5BHsPlbG7s8/GrdrsdK1euFH+P1EgWDiIUyVckRkwR/hne8fTCkGUkXqs3PLVEZMfzWFMolKuHaKuSvXVJPtqOf+l5u/3n/djCyaIozkxPFS0Hkc4zVjFNPbZ9BxWzlP5BYwxXdLsMFbRk6IAcYiuQLov3kjvZXst+OB+nahsg8VrEUwsAPMcDusjnECm7lkKhUKIh2qpkNOK3NwVfZnoq/FN2wfFAR5dHrMI+tnAynt9Rp3qe0sljZKRuNGKaemz7HipmKf2CfCpXIlCrNiqJXLvdHlXkllaMRmPUolgUoDzwyJalYrwW8dQCgO17m0I8tUr0RnYthUK5eom2KqlV/Pam4KtytuH92tPi7wyAV3adAsfzIZYDt4cDwzCi2JVWbDle2DYtJbrzox7bvoe+61EGBGQ4gtVqjbyyhHMnWhVvLy0txalTp4KivRIxEYuMio0GqQA9d6IVtf/4CgBQ/PvbkX3dOAAI8dQq0VvZtRQK5eommqxUpTxZJZQEXzxUOdvw/I46vLW3Ht99ZQ8+rRPytlkAOlYYrUuOtflAI/acbEXJfBNYloGP4/HizpP4338dxa8qasXzAoLjwqTHCZd321uZtRR1aGWWkvRUV1dj1apVAKKfLrf7tSrVZSaTSezwB+K3GUSDtOoKABOvz8bJT+uxx3YAuhQWPg+HEZOHKXpqlZD7bBMZ90WhUCjRoOWSfCKbqqRVXpYRxCkZm3v95OG4I28Mntl+GB4vBx3L4N2qRnh9wrocTwbvCvg4HjqWAQtB/LJA0MQyLdVkOqK276FiltJvSGO41LDZbEFd99EITlKpDIfVaoXD4UBNTQ1cLldCqrOxoEsVDLFKCQZyG4KS11bus31mwXN4+N0HoUvRYLSlUCiUPiaRgk9a5eV5HgwDMDyQqmdReutUFOVkYtroDOw52YqaBhc+/LJFELA8D5ZlhGmPkv3dPH0kCsYbQzyz4Xy2lP6FillKv3F2QfiqY0VFBZYvXx50m9ZL+NJKJV5RX89kMvXb4AVGB/A+4WfeP8d8zvdmobHmdNB6xIbg83Cq+4rHZ0uhUCj9QbQJBWpI/a8cAPBCVfamKcI4Z9LQ1dHlwcdHWkThqtezsHw7F4eb2/H25/Xw8YCeBRZOG4m2TnfIUIXM9FSwDANAqN42u7rE0btSaANY30PFLKXfGNfUEPhF4ZK4wWDAmjVrAABlZWUAoHn8qrRSmUhO7a7HqMzRcV3CH2kYBQAYdO0gdLV1AwDqdjoAADv/shcT52cDEBIMTn2uLW+WjLFta2zHDutnAIBFZbfEfI4UCoUyUCBVXutHx/Bp3XlwPODjgQ+/bIH92DmA5+HxBVdfGQD3FmVh6dxsVDnbsKmqEZxXaAazbKuFl+PBMgyeWZwnrvPM9sPwcTxYRvDSbvi8HpsPNIaIVTU/MLUd9B5UzFKSFpLZWl1dLYrZ6upqTVYDpUplvJBq76fb9uCLii9x9lir6G8FIPx3lPy3zMwxoM3ZDgAYMXko/vPVH+BsewvOtrfg0W0PqR/oHeHbo6nB64w0jMLi47eh4ucfhFgOyBjb3baqgOd2Cm06oFAoVwdFOZkovXUq9jkuoMfDgUegeQsI+tcMQGgKW+Ifs7vnZCu8PmEbr/8qGQ+A43n8qqIWtc3tYCDk1Qq3A5xfHCvZDeR+4I4uD+5/aXdQmoI8BoyK3PigYpaS9JhMJuTn56OmpkazZ5ZUKgHg0W2JOQ9ptfez1/YDQPClf/9/S1bPgPPyaG/uEBe5uzw4294S92CIvesPqloOiEd4deXPcPp8Mx7VhxHMYYh1mhqFQqH0J6RCu/lAI96taoTPx0GnYwGeh9fHg4NQc9CxQsWViEep+NTpWPh8HPyaFj6Ox4a99UjRMdD7l+lYBmAY+HzKzWtSP3BmeipWVwiVXgDo8XB4sfKE6MnVOriBEh4qZilJj9FoRHFxcVQCi1QqAUGcJaKzX6nay7CMMNAAwFCTERccLpjmjsfJT+vBSQRne1MHEsGZI+cw6fqcEMuB1CN8+pXmPp+mRqFQKMkA8eEuKcwSK54AFIcgSLeRNqMdPdMRJEB5CKL2/jnjMc44OGifkSqqtc3t8HGB/8c8BPvDR1+2QMcGkhdoQ1l8UDFLGRBYLBZYLJaYtk1UlZFUe0986sSRD47DfdmDrIIxaDjQDPPK+fj05X0ABIELAFNvmYim6tO43NqF8UVjgQRUiK9bmo/206HCuLc8whQKhdLXJOLSu7y5rCgnU9xvJJbOzca00RnYcqARm/Y3wMfxSNGzWFKYFbQftfOTNoDpdSxSdEyIZ5fYGHT+NAWaRxsfVMxSKBoh1d5jlafgvuwBADQcaAYAVP55D9KGpMLT5cWZr84BAL7xwyJseUoYLXvrT28A1qjvmwxbsNvtYZvcZt41HbteFESzdMRtb3iEKRQKpa+RC8F7i7KCvK1KAlKL+FVKGCD7VLvcX5STidyxBrxfexp35I0BAPxi6yExp1bNGiBtAPP5ONwyYxRaLnbjy9MX4eMC+bWpeharF+UqVosp0UHFLIUSJVI/7of/uxMdLZfB+3h0X+wBAFw+1wkAsC3dJG7z+oPvqO7P5XKhuLgYLpcLdrsdJSUlquu+dv9G8Wdp9JaYZtDUHrYC7HA4UFBQgOrqas3JEBQKhdJXSIWg28thw956vLu/AWAYRQEpF6mrF+WKDVv3+CupZL+kMcztEaaAbTnQGDJoQXq5nyQYuL0c9p66AI7j4JW0K6hZA+ZNHAa9TvDgsiwD+9Gz8HI89CyDW2eMAg9gZEYacscaqJBNEFTMUq5a5MMIWh1tEYcTAMF+3Lt+fRu6XN3odHWhevNhnDlyDkNzjLjgdGH6bZPx1Qd1AIAFT8xTFZnED1xQUIDy8vKwYhYAsmePRf3+5qARt9I0g3CUlJSgoKCAClkKhZKUkGasoEQCn/ATD0HgWj86Jg5DkIrfHg+Hp8sPiaNoN1U1YsMjgvDNTE8VL/NzAM539CgOWpBe7pcLazk6llG3Bvj7Fjh/JZYH4OV4fPLVWXC8IGw3MeErvBTtUDFLSQoS1aQVDdJhBGOGjcXZ9hZxWbRJAEoJANt++YEYkzV14UTF7SoqKlBZWYkdO3aguLgYVqs14rFu/4VZUWif2l0flKCgdqxTp05FPAaFQqH0B6QZS+pXJekBXp8gLHcdP499jgt48+F5YhWUxGZJe1+lldPDze0hxwoSzTygZxmsXpSrmHIAf/VWyowx14bss8rZButHx+D1V3p5QPTFMtIKsESg0+av+FEuPVEofYzD4RBGCsb4FW2TF4mxMs0VGqZIbFasX06nE5yPC9p/e9NFMUJLukzK2rVrYTAYYLfb0d7ejuXLl6O4uDjsuSvti6QZpA5JUd3u9ddfx7Jly8SpZ7E21FEoFEpvUpSTiV/fPRMbVszHU7dNw4YV87HhkXm4fvJwMc5bKgDvLcqCUilEWmWV57sMz0jD6kW5QfN6OI5HW6c76DxWL8rFNyYPxyM3TIC8hvBFYzu++8oeVDmFsezE8rDruDC4gWUEwfzM4jw8dds0PLM4D2kpLHQMkKJjkKIXftbpWDT5p4lRYoNWZilXHdIYqy/fP9Zr+9elBv68Tu2uV1y3pKQEy5cvF4dCrFmzJqLNQImvPjgOAPB2exWXV1RUoKKiAm1tbWKz2fr166M+DoVCofQV8kQCMhSBDCMgQnVJYRa2HGgUq6yAUA21fDtX9L4yEEbV+jhBSJLoLimszDZAPLM9Hg676s6LipgIah5At4fDS5UnkD/eiCZXl1ghZgFcP3m4aIcgTBudERQBtnFfvThOd4vCNDGKNqiYpVx1kBir7OvGofLPu3tl/wDQeaFTvG3/W18orltSUiKmGCxfvlxTtfTV+94GEOzrbT7cEtZisGPHDuTn58Nms8FqtaK9vR35+fla7xKFQqH0O/I8WCL6SAX16fJDos2A53jUNrfjl1sPYdP+BqEBS8fiO9dliRFbgFA5JU1g0kEKgOCZ7SZ54ZLSrrzK+8GXLfjoSAv0OhZ6loHXx4NlGdyRNyZEmBKBLhXKZH/UbhA7VMxSrjpIjNVr33lb0/pmsxkmkwk2m03T+m2NF0OE5cWWS6rrm0wmmM3mmHy/hLPHzoddvnDhQlHIOp1O0W5AoVAoAwl5tZYgtQcAAMMA71Y1wuMNiEWfj8M442AAwPM76jBv4jBFcUzITE/VfF7SGC7S5PXM9sOYNjpD8XxJcxk5NwagWbNxQD2zlKuO/MUzcM9zd2DSjZHFo91uR2VlJUpLS1FaWorq6mrVdXmOx7kTrTj8z6MAgNkPfB36NH8QbISBXCaTSbPvd+zMUQCA8ycu4KXiN/DS4jfEWDA1Fi9eLEZ/AcDdd9+t6VgUCoXSX1Q52/D8jjpFL6l8GWnWYhmhkeuWGaPg9YWKxcz0VHz3lT34wwdH8d1X9gAAHls4WVUgK3lxGQhWBSksI+yfTAvj+EClVQlyvjq/r/bBudnUYhAHtDJLueogMVbzlhUif/HXAACPqsRmlZSUYO3ataiursa6detQWlqqut9X7t0Q9Pv+twPWAjYlcZ8bmw8JqQvSNIa5DxWi4WAz6vc3hd3WZDLFNeqWQqFQ+gKlIQdq2bJkAMI9hVlivuzRMx344MtAQs03vzYKP1owKShuS35ZXz58Yd7EYUhLYQNWAz8sA5TdlQf70bNoudiN+ROHIWNwCjLTU7F6W22Qb1ep0kqOIx2YAEAUvlTQRg8Vs5SrFmlerBLV1dXiQAOLxRLx0jzDAjwHXDNyCC6dvRy0jPMopxnEw6Xzl5GZbcT5Excw/bZJOFcXeUwjhUKhDATCiU75MukAhFQ9i3sKs8SqKmnGyh9vDPLJerwcdCyDZkmKgJJ4fvPhebB+dAz/Ph6wcnE8UNvcjp3Hz8Ht5XC0pQNvPjwPmw80wusLFAvM00YqTitTEuJqwp2iDWozoFz1nDuhLAKtVitKSkpgNBqxfv16OByOsEkDvF+vDp8o/BMqfvZ2ZF83Trgx9ghdVS63dcHb48Xqyp8iJS0FN6+6Ho9uiy4fl0KhUJIR6WV4uZdUvowBQoQvqarqGCA1JXj7JYVZuHnGKIBhsOHzenz3lT3Y7BfDcntAUU4mSm+dGmQrSNExiseU/5sfkZEWYodQEulKt1Gig1ZmKVc9u19Tnpplt9tRUFCAgoICAIDRaNQ01EDvj+QaPmkopt8yCW1OF4bmGDHSPiquwRAjDaMw8YZsOPY0gPPy+JblZhz+5zExI5cQzzEoFAolGVBLLlBaBgCbDzQqRnbx/u9FOZl4a289VlfUguN5sAwDjg94WxkEkg0Yhglp/mL8XywDWO7Kw7TRGYrH3FQVuC13rCGk4iodxCDdTuk2inaomKVc1ZDhCUoUFxdj3bp1MBgMWLlypSYhCwB1Ox0AANv3NmHI0MGYu6wQ9VVNeGbBcyFjcqUjdWcv/ToObqoVBy0okXvnVJzcJWTWbn/6Y8V1+mOaGoVCoSQateQCpWVycSsVkUsKs1DlbMPqilp4/VO8OJ4XBhb4q7v3FGYhd6wBqytq4eOEJAJAaAJrcnWJE70AwWLQ1ukO8rySc9nwyP/f3t0Hx1Vedxz/npVsy2+VGvyKbbxOAowxqRViCPQlsuKYgdaxjAMtITBWk9Dkj7YW005p4gSrlKaTIZNKaZohJMSazkBDIM5uXoaCXXtpUzC1zUgkxlj4RTIyYMuGFbZlI+3u0z9Wu9qVdrWrlaWrlX6fGQ1e33ufPb6Dd46fPfec/jj2HD2TbL3V0xsvhwD4xJVzmTN7WlqLsAfWreCZ376VsZ2X5KZkViat1OEJ/HDw8YaGBhoaGvD7/VRUVOS9rvmMr+/+m/7xuI/0HxtyTG7KQ2jzyufzYNW3Bp3yi6/uTHt9xfWL0q4Dhj0Nzcx4/IvbmXfVHI78up17t981rOtFRLyWmtz+2+7DGb+2HziO1ucz7li1JJlU7jl6hphzyWEIX/3Zb+LdEfr6xyZG6z69v4NINPODaak7yYfePptMgGPAk3uPkxjgWNpXqpDw4C8P0BOJsbftnaztvCQ7JbMyaSWGJyy7acmQ5+WbHM68bAbnz3Sz/htr+dI1J0fUNSDbzuq02VPpvRgh1huj6q9u5EN/6IevZ1/H7/fT2NhITU3NkO+X2D0WESk2mboQZPraftoUX9qQgljMpfWd/d0ZU/FZ/AGvhERC/HuLy1mxqJzTZ99nx6sn47utKYny9pc7ksMZEknuu909yfUMSJ1EHok6nnjpOD99uYON1y3O+rCb5EfJrExaieEJP9j4xCVZ7/yZ+MSvX9XvuiTr+UqNWCQ9Ie69GOHDf+SndddRrqr+ILu+/b9Zrw8Gg7S3t+f1XstuWpJs6+ViDkoKj1tEZKxka+GVqd420XHg6f0dRKMxSkp8NL8R5l92thKNOqaUGP45szh8Kn3IjQN+c6KLg2+9R9T1tw2POTh7oZfP/XBPxkleqUl1SYmPWCxGJJa+bmq9rmpmC6dkViatlTXLuapqGZC9z2wh1j+0Fn4y8nUGJrLx34vRuusoEE86wyfey3r91q1bqaqqSg5MaGtrSz7MNlBqQt9091N84ck7Rxi9iMjoy9bCK1O9beL3PnPd4uRO6o6UXrQ9UccHZkzJ+D4xB71Rlzb/xoADb72XdZJXtgfVTp99n1BrJ9FoLFmvu/G6xVknkUluSmZl0vjgFawAAAriSURBVMrVZ7YQ926/i1zVBYlWX7m++l/1uZWcOnQ6fRBCytpNdz/FugfXQOPga0OhEC0tLQQCAcLhcHJkbiAQyPhevlIfsb4tg/UPrR36DyAiMk5kKykYSqI+NhIb/GF95fzZbPjoYr7zX628PWCyos8HPjN6+3rJTikxbr12IXvb3knuvt7+scVpD3YNTKqz1demHpPhUzIrwsg7ACyce3ny16/+Z2vW80KhEF1dXRw7diznmis3LOd/vvd/WY9H3o8Q+LtnMx5ramqivLyc8vJyVq9eTVdXF/X19VnXWnbjkuTDX6ndFkRExrOhWngN5cYPXkapz+iJpie0Ky4v566PX8HVC2bzp4+8QOph5+Afaq7lwJtdaS2/rl4we9jvP1SnBhk+JbMi5PeQ18+3PMepQ6eJ9sa4d/tdHHz2dVpDx6j555t5/l/30Lr7KC7maHvxjYzXh8Ph5Djcurq65E+2qWKP3fHjrLEsuGYuna+fydrGy+/309XVRXV1NQCbNm3KWmIAUDJVRbIiUpwKTQyXL/wdWjq60n7v3e6e5Jprls9PG4nrXPz4P932kUvy/nLpaAtGJA+JfrT+j/d3Pkh9gKx1d7yOtenup5i1YFbGNZ5//nlaWlqoqakhGAzS2Ng4ZO/ay5b1fzgmks2Zc2cAcK6zOy2WgWpra6mpqaGqqory8vLcPXL7dh9chq/dREQmgsQ0rideik/9emVAIju1xNLKFFZfPQ9fyhd22coYBk75krGnnVmRHFL70aa2r0p9gGzfk69wfO8J1j+0lukVZfDXg9dJlBY0NzezYcMGgKy7sgBnjvV/MEZ7ogCc74x3TOgOXxhyN9Xv9xMIBDAzNm/enLNPbmoyroe/RGSiSe164LN4z1hHfEfvI31tt1JrXfe3v8uDvzyAc/HBCmuWz+dLVR8atAObrZuCjC0lsyI5pPajTW1flfoA2a1fq865Tm1tLaFQiFAoBMS/+k+UHeQyZeYUes/3MmVGKb3dEf6k/pMc2nk053X59rq94vpFyWRcRGSiSDxo9Wb4QrLrAcSHHzjnmFLq44FPrxiUgCa6JCQ+QVcuqciYpGbrpiBjS8msSA6Z+tEWsoNZUVFBIBCgsrKSlpaWvBNZgN7zvfH/dkcA+MWWnUOdPmz5JOMiIuNNpq4AqccSu6alPqO0xJdsh5VpFG2q+AAFg76EN1t5wYnwhbR11SPWG0pmRXLIVk5QiHA4nKybHeqBrEEMcDDnwx/g9OF3qN78+xx5oZ3jezW1S0Qmp1xf8afumkZjjj+7YQmLKqbn7DqQKDGIOYfPZzywbvDO7cBE+c4brmBjSpmCjC0lsyI5XHv9ikGTtPIZspBo9bV06dJkt4SKioqCxtxufPhW5l7Z/y/+ziNnOP4dJbIiMnnl+op/YA/az+SZbKaua7hkh4Ns50RjjssrpiuR9ZCSWZEc2tvbC0pAE0bSvxagtKw0LZEFePFH+ykp9RHtjY24R+7SpUtHFJ+MPjN7GPg00AMcAf7cORf2NioRb+UamDCSHrS5BjEUMqxBRo+SWZFxbmBJQ2qbsCO/bufokaMadDDx7QC+4pyLmNk3ga8A93sck4in8klWC+kBm++6hSTKMjqUzIqMYxu/lV5eEI3EeOGxfZzr7ObsqfMeRiZjyTn3XMrLPcDtXsUiMp6M1sCCfNbVsITxQ9s5IiNQW1vL6tWrc55nZsP6mVc+ny8+/dlB5QWvPfc675/rwVfaX1agQQeTzueBZ7IdNLO/MLN9Zravs7NzDMMSkUw0VGH0aWdWpEChUIhAIJDXKNwf3P4Ei1Yu4PjeE4N2WwGe+cfdyR62CZnafx3f/ya9FyI5z5PiY2Y7gQUZDm1xzgX7ztkCRIDHs63jnHsUeBRg1apV+peOiIc0VGFsKJkVKVBdXV1ykldbW9uQ07xqvnHzoAQ2IRqJ8e4bYW64u5K3X+tMJrUDa2WT591TydsHs58nxck596mhjpvZJmAdsMaN5IlEERkzGqowNlRmIFKAYDBIW1sb9fX1+P1+GhoaCIezP1yeLZGFeOnA9IrprNx4DWWzpwFkLTGYXjGdlbcNfZ5MPGZ2C/EHvtY757q9jkdE8pPoelBiqOvBKNLOrEgBtm3bht/vJxQK0dXVRWNjIwANDQ3DXivfCWOJ8xZedjmnuk4C8OWp9wz7/VL73krR+C4wDdjR14Ztj3Puy96GJCK5qOvB2LDhfFu1atUqt2/fvlEMR2T8MbNBfWYTI2kTNm3alNylzef6VOc6z3MhfBHonzCWqa42cd68q+aMuO/tZPyW2sz2O+dWeR3HWNJntogUq+F8ZmtnVqQAgUCAQCBAU1MTfr+fpqamgteaNXcms+bOBODWr1XndZ6IiIjEqWZWpAB+v5+6ujqvwxAREZn0tDMrMgLNzc1eh5CmtraWioqKgmp3RUREipGSWZEJIhgMEggEkl0V6urqqK6upqamxuPIRERERo/KDEQmiM2bNyf73jY0NNDY2Eh5ebnHUYmIiIwuJbMiE0AwGKS9vZ3KykqCwSD33Xcf27Zty2vUroiISDEbVmsuM+sE2kcvHJHxp6ysbOXFixcLLskpKyuLXLx4sSX3mXn72MC/txs2bCAYDCZfD9VLtq9P6f5LGE+xWOqcm+t1EGNpHHxmzwFOe/j+44XuQz/dizjdh37Z7kXen9nDSmZFxHtmNmiaaXNzM+FwmIaGBoLBIFu3bqW+vj7b9TjnbAxClUnOzPZNtt6+meg+9NO9iNN96Hcp7oUeABOZACorK4F4UhsMBqmtrfU2IBERkTGimlmRCSQQCFBVVZVxEpmIiMhEpJ1ZkQkkFAp5HYJIqke9DmCc0H3op3sRp/vQb8T3QjWzIkUmU83sMK9XzayIiEwYKjMQERERkaKlZFZEREREipaSWZEiU1ZWdtLMKPSnrKzspNd/BpkczOxhM3vNzF4xs5+ZWYXXMXnFzO4wswNmFjOzSdeSycxuMbNDZnbYzP7e63i8YmY/MrNTZvZbr2PxkpktMbPdZnaw7+/F5hGtp5pZEREZDWZ2M7DLORcxs28COOfu9zgsT5jZciAGfB/4W+fcPo9DGjNmVgK0AmuBDmAv8Fnn3KueBuYBM/sEcA74d+fctV7H4xUzWwgsdM69bGaziQ/y2VDo/xPamRURkVHhnHvOORfpe7kHWOxlPF5yzh10zh3yOg6P3AAcds4ddc71AD8GajyOyRPOuf8G3vE6Dq85595yzr3c9+uzwEFgUaHrKZkVEZGx8HngGa+DEE8sAt5Ied3BCBIXmVjMzA98FHip0DXUZ1ZERApmZjuBBRkObXHOBfvO2QJEgMfHMraxls+9mKQytQJUjaNgZrOAnwJ1zrn3Cl1HyayIiBTMOfepoY6b2SZgHbBmRA2Si0CuezGJdQBLUl4vBt70KBYZJ8xsCvFE9nHn3PaRrKUyAxERGRVmdgtwP7DeOdftdTzimb3AlWa2zMymAncCP/c4JvGQmRnwGHDQOfftka6nZFZEREbLd4HZwA4zazazR7wOyCtmdpuZdQA3Ab8ys2e9jmms9D0E+JfAs8Qf9PmJc+6At1F5w8z+A3gRuNrMOszsC17H5JE/AO4BPtn32dBsZn9c6GJqzSUiIiIiRUs7syIiIiJStJTMioiIiEjRUjIrIiIiIkVLyayIiIiIFC0lsyIiIiJStJTMioiIiEjRUjIrIiIiIkXr/wHFLftgGA9GpAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X_train_tsne2 = ptsne.transform(X_train)\n", - "plot_embedding(X_train_tsne2, y_train, imgs_train, \"Predictable t-SNE of the digits\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The difference now is that it can be applied on new data." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAEICAYAAACqK7d0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXl8G+Wd/9+P7Tg3lklC7kgJZwklzlGSQnctylUorbVQSoGlNvvjaIESp9ey3TYxdNulS2kUWrYF2sahSzkC1G5Z2AIlMi0QyCWXcJYGOXFIyIHlJOTw9fz+GI0iyzPS6LAk29/36zUvS5pnnnk0mvF85vt8D6W1RhAEQRAEQRAGOkX5HoAgCIIgCIIgZAMRtoIgCIIgCMKgQIStIAiCIAiCMCgQYSsIgiAIgiAMCkTYCoIgCIIgCIMCEbaCIAiCIAjCoKCgha1SyqOU0kqpksj7p5VS1f2wn3ql1H8kWK+VUidke79C5iilAkqpayOvr1JKPeNwO8dthwpKqZBS6tx+6jv6OwmCIAhCf5GxsI3cDA8ppQ4opT5QSq1USo3JxuDi0VpfqLVe5XBM/XKDTgWlVI1S6i8O2n1HKfVe5Bi2KqUeiVkXUEodVkpNj/nsXKVUKOZ97G9gLj/L+hcqcLTWD2qtz0+nbSE8vCilvEqp1iz11a9CshCOlyAIgiDEky2L7ee01mOAecAngO/GN1AGBW0hzgcRC/TVwLmRY7gA+FNcs4+A7yXp6nNa6zExy839MFxBEARBEISCJatCU2u9HXgaOA2iVqMfKKVeBA4Cs5RSZUqpXymldiiltiul/kMpVRxpX6yU+rFSao9Sagvw2dj+461QSqnrlFJvKqX2K6XeUErNU0r9BpgB/CFiufx2pO1qpdROpVS7UuoFpdTsuOGPV0o9G+mrSSnltvqOSqnhkTFujViof6GUGmnR7mPAL4BPRsYRtjlsnwD+qLX+e+QY7tRa3xfX5m7gimxYyCLj9yul3o8sfqXU8Mg6b8Ri/A2l1K7Ib3RNgr4CSqnvK6VejBy3Z5RS42PWL1JKvaSUCiulmpVS3sjnZyulXotp95xS6tWY939RSvls9nmeUuqtyO/4M0DFrOtlIVdKna+UejvS9r8jv+u18W2VUi9ENmmO/FaXK6XGK6WejIz9Q6XUn+0ezJRSZyql1kX2s04pdabTYxTTbjTGtTMlxuo+RSlVpJS6VSn1d6XUXqXUo0qpYyPbjFBK/U/k83Bk3xOVUj8A/gH4mUpgvVdKXa2Uaols/+9x685QSr0c6XeHUupnSqnSBMerPHK8diul2iKvp8Xt8nil1KuR49Rofo9In7bXp1LqImVc3/uV8T/jmzHrLlZKBSPjfEkpdbrVdxUEQRCGCFrrjBYghGFtBJgOvA58P/I+AGwFZgMlwDCgAbgXGA0cB7wK3BBp/xXgrUg/xwJrAA2UxPR3beT1ZcB2DGGogBMAd/yYYsb5L8BYYDjgB4Ix6+qB/cA/RtavAP4Ss14DJ0Re+4HfR8Y3FvgD8J82x6Ymth+bNv8MfAh8C8NaWxy3PgBcC/wE+J/IZ+cCIavfwMHvdTuwNnLsJwAvxfxeXqAr0mYYcBHGA0m5TV8B4O/AScDIyPs7IuumAnsjfRQB50XeTwBGAIeA8ZHzYifwfuR4joysG2exv/HAPuALkfEtiYzXPCeixzum7SWRfSwGOq3axv/Gkff/ifFgMiyy/AOgLMZ0LNCGYXUvAa6IvB+X7BhZ9OUFWuM+q438XtMwzs17gYci627AOP9GAcXAfOCY+GvFZl+nAgc4es7/JHIszWt5PrAo8p08wJtAbYLjNQ64NDKWscBqoCHuXNmO8dA7GnicyPns4PrcAfxD5HU5MC/yeh6wC1gY+f7VGNfC8Ez/r8kiiyyyyDIwl8w7MG4kB4Aw0AL8NzAysi4A3B7TdiJwxFwf+ewKYE3k9fPAV2LWnY+9sP0jsDjBmGyFHuCK9FsWeV8PPByzfgzQDUyPvNcYwllhuAUcH9P2k8B7NvupIYmwjbS7Cngu0vde4NaYdQEMYTsBaMd4SLAStuZvYC7X2ezr78BFMe8vMPvCEFaHzOMd+WwXsMimrwDw3Zj3NwL/F3n9r8Bv4tr/EaiOvP4zhuhcBDwDPAp8Bjgb+KvN/r4MrI15r4BWrIXtl4GX49pus2ob+xvHvL8daIz9zGZMVwOvxn32MlCT7BhZ9OWlr7B9Ezgn5v1kDIFegiEGXwJOt/ltEgnbpfQ+50cDHdhcNxgC+3d2x8uifQXQFjeeO2LenxrZX7HFtvHX51YMEX9MXLufE3koi/nsbaAy2TUniyyyyCLL4Fyy5Yrg01q7tNZurfWNWutDMeu2xbx2Y1i/dkSmDsMYFqjjIuunxLVvSbDP6RgiLSnKcHG4IzKduw9DCIJh1eszTq31AQwr6pS4riZgWKQ2xIz//yKfOxnHjJhp5gMx+3tQa30uxg39K8DtSqkLYrfVWu8GfoYhuKwwfwNzud+m3RR6H9eWuO+5V2vdFfP+IIbQt2OnTVs3cJl5nCLH6lMYwgygCUPI/WPkdQCojCxNCcYe+ztpep8vydqmEph1J/Au8IxSaotS6tYE+4k/T1swLNYmdsfICW7gdzHH8E2Mh66JwG8wHhYeVoZbyX8ppYY57Df++JgPVQAopU6KuBPsjFwzP6T39dILpdQopdS9EdeGfcALgEtF3IwixF/bwzBcgJJdn5diWP5bIu4kn4w5Nt+IO8em0/e6FQRBEIYIuQjm0jGvt2FYbMfHCLBjtNamP90OjBuTyYwE/W4DjnewT4ArgSoMS2cZxtQqxPhnxu5XGVkdjsWYHo9lD4ZFc3bM+Mu0EfSVdBxa6606JsCrT2OtO7XWq4G/EvFTjuNODIvmfJv9OeF9DEFgMoO+3zMbbMOw2MaK7dFa6zsi6+OFbRPJhe0OYPrIkSN3KiMqX2NYfO+PvF4JnBV5/Z8YwlrHtx05cuROm/6jaK33a62/obWeBXwO+LpS6hyLpvHHE4xjuj3ZPqx2a/HZNuDCuOM4Qmu9PXK+3Ka1PhU4E7gYw1Jt11csva41pdQoDHcCk59juAWdqLU+BvgOva+XeL4BnAwsjLT/R7PrmDbx13YnxjWV8PrUWq/TWldhPAA3YFj3wTg2P4g7NqO01g8l+e6CIAjCICWnWQq01jswpp3vUkodEwmMOV4pVRlp8ihwi1JqmlKqHLCzkgH8EvimUmq+MjhBHQ34+gCYFdN2LIag3othcf2hRX8XKaU+FQmQ+T7wita6lzVQa90D3A8sV0odB6CUmhpvXY3hA2CaGXRjhTKCmD6rlBobOR4XYrgbvBLfVmsdBu4Cvm3XnwMeAr6rlJqgjCCmpcD/ZNCfHf8DfE4pdUHEIjdCGcFpZkDRSxhC6AyMqfzXMQTiQgxrnxX/C8w+fPjwxM7OTvx+P8XFxdx///1orVm5ciVnnXUWWmt2797NmDFj+N3vfkdnZyc//elPKSkp4f777+fw4cMTLfrudc5EgpJOUEopDF/d7sgSz1PASUqpK5VSJUqpyzGm2Z9M+YgZYxinlCqL+ewXwA/Mczvyu1VFXp+tlPp4xCq6D0Modsf0FXsNxPMYcHHMOX87vf8fjI30eUApdQrwVYuxxl9jh4BwJChsmcU+/1kpdWpERN8OPKa17ibB9amUKlVGzuEyrXUnR38LMK7FryilFkb+B4w2r6UE31sQBEEYxOQj/daXgVLgDYwgm8c4Oj19P8bUajOwEXjCrpOIZfMHwG8xAr8aMKysYFjrvhuZnvwm8ADG1Of2yH7XWnT5W4yb8YcYFtGrbHb9rxhT1Gsj06bPYQg0K57HCKbbqZTaY9NmH4Y1bCuGb+x/AV/VWtvlv12BtcAys0CYy+9stv8PYD2GVfg1jONsW5wiXSIPBVUY3203hnXtW0TOucjU90bgda11R2Szl4EWrfUumz73YAQNMm7cOP72t79x1llnWe5//PjxrF69mm9/+9uMGzeON954gwULFjB8+HC7IdcBqyLnzBeBEzF+2wORcf231jpgMaa9GJbSb2AIs28DF0fGmhJa67cwHjy2RMYxBeP3/j2GS8R+jHN3YWSTSRjXzz4MF4Umjj6krAC+oIwMBXdb7Ot14CaM834HxrUY66rxTQxL6n6M6/KRuC7q6H28/BjBcXsiY/w/i6/4Gwx/9p0YAYS3RD5Pdn1eDYQi19tXMAIu0VqvB67DcNFpw7guayz2KwiCIAwRlOF6KAgDB6WUTvW87enpYdq0aTz44IN8+tOfRmudaFpdEARBEIQBSEm+ByAI2aKxsZHFixfj9XqpqKjgYx/7GAsXLmTkyJHceeedaK1ZtGhRvocpCIIgCEI/IRZbYcBhZ7E13GGPcsMNN7B69Wo6Ojo49dRTufvuu1m4cCFKKbHYCoIgCMIgRErcCoOCYDAIQHV1Ne+99x4Ap5xyCnv37mX//v288sorLFy4MFEXgiAIgiAMcETYCoOCQCAAQG1tLR6Ph8rKSsJhuyrGgiAIgiAMRlLysR0/frz2eDz9NBRBSB9TxDo9PxcsWCA+OEOMDRs27NFaOyqmMliQ/9mCIAxU0v2fnZKw9Xg8rF+/PtV9CEJWifelBXC5XAA0NTUxZ84cmpqaqKurs+1DzuOhh1IqUSXDQYn8zxYEYaCS7v9scUUQBgU+nw8wfGy9Xi9z5szB6/Xmd1CCIAiCIOQUEbbCoMDj8bB8+XLAsN42NDRYtjGtvUqplBeZ0hUEQRCEwkby2AoDggP19Ry45+fozk7bNrW1tdTW1tqub2lpIZP0dlYuEIIgCIIgFA5isRUKno6//pX2f/8eo6+poex73833cARBEARBKFDEYisUPIefeRaAUV+6nKLy8jyPRhAEQRCEQkUstkLB0717DwBFo0f3iztAIBCgoqIiYRYFQRAEQRAKH7HYCgVP8YTxAPQcOEBRaSnTsyxwa2traW5uJhQK4XK5EvrpCoIgCNlhQ0sba7fsZdGsccx3y2yckB1E2AoFQWxw2OirrmTsN7/BR6tWceCen9Nz8CAAHz38CCWTJvFyWTnHPvwInW+9xf7lfia91kxReTk7TjqFERddRMn0aexf7gdg7Hf+jf13/hg6O5n2fmuf/QaDQZqbm1m8eDEVFRXU1tbicrmoqanJ5dcXhjhKqenAA8AkoAe4T2u9Iq6NAlYAFwEHgRqt9cZcj1UQssGGljau+uVaOrp6KC0p4sFrF4m4FbKCCFsh75jBYcf8+3conjiRtlsWo8aMZt9//LDXZwf8K9CHD8OoUXS88QY9e/cCR10U1OjR9OzZzYhrqqPCtmjMGOjshOHDLffd0NCA2+3G7zfaezyeaHleQcghXcA3tNYblVJjgQ1KqWe11m/EtLkQODGyLAR+HvkrCAOOtVv20tHVQ4+Gzq4e1m7ZK8JWyAoibIW84PF4aGmJKypy041HX994Y9/PYph+Wx2b/vnLwFEXBX3gAEXjJ1BaUUHpJxbQsW49++76CWO+djMHH34k4VgEIZ9orXcAOyKv9yul3gSmArHCtgp4QBs569YqpVxKqcmRbQVhQLFo1jhKS4ro7OphWEkRi2aNy/eQhEGCCFshL2Qjp6yOuCgcfORROt95G33oEIefeYZ9d/6Y0rPOomPdeiau+RNFxx7LR7/8lWU/Xq+3l4XW7/dHq5gJQj5QSnmAucArcaumAtti3rdGPhNhKww45rvLefDaReJjK2QdEbbCwKWnm7Lv387+FXfTs2cPpWeeyajLv0h4cS3HfOc7gCF6iydORB86ZNmF1+slFApRU1NDKBQiFApRX19vu8t9d/6Ysd/8hhRrEPoFpdQY4HGgVmu9L361xSZ9ng6VUtcD1wPMmDEj62MUhGwx310uglbIOpLuSxiwFI2fwJh/uYbRV/8zAMfe+3NGXXoJatQoOt95h7Lv385Hv15J++3fZ8zXbrbtp7a2loaGBlwuF4FAAJfLZdt2v38Fh5/+v6x/F0FQSg3DELUPaq2fsGjSCkyPeT8NeD++kdb6Pq31Aq31ggkTJvTPYAUhRTa0tHHPmnfZ0NKW76EIgxwRtkJB4ff7UUpFRWYiRpx7DtA3z60ZRDbmX65h0vpXmdy8ibJb/9W2n9raWsLhMA0NDXi9XqMPiwVg2vutjPrsRbZtxF9XSIdIxoNfAW9qrX9i0+z3wJeVwSKgXfxrhYGAmQHhrmfe5qpfrhVxK/Qr4oogFBRmdoKamhp8Ph/BYNBeLBYZz2XxeW7NILJ0yIbvryCkwVnA1cBrSqlg5LPvADMAtNa/AJ7CSPX1Lka6r2vyME5BSBnJgCDkEhG2QsEQDocJh8NUVlZGq4DV19fbVgQ7/MyzjPrsRYw49xz2L/f38qcded65uRu4IGSI1vovWPvQxrbRwE25GZEgZI9MMyBIIQchFUTYCgVDMBikvb096oLg8XgIBoO27Xv27AagIxhEHXMM+/7zDtSI4Yz52s2M+OxFuRiyIAiCEMFOgFplQHAqVmMLOZQUKS5bMJ1L5k0TgSvYIj62Qk45UF/Pzk9Y55QPBoPMmTOn1/twOGzbV9H4CdHiDmO/djPl/uXog4coPf10S5cAt9tt6xsb60drRSgUwuPx4HK5aGxsTOEbC4IgDH6S+dHOd5dz09knREWtU5/bWDeGjm7Nb1/ZKn66QkJE2Ao5wxSho6+psW1jZiQIhUI0NDTY5pQdPnw44+72M3zOHKa938oxN93I6C9cmjC4K7YghNvtRmvdZ7Gjrq6OlpYW2tvbqa6uTii4BUEQhhpWfrQm8RkRErWNx3RjMM0OmuTbCEMbEbZCzjj8zLMAjPrS5ZbrvV4vwWAQr9eL1+vF5XLZCtsjR45YClOnS5+qZwkIBoOsWrWK6upqqquraW9vT+giIQiCMFixS9tlCtBiRS8/WivrrNm2CCPgtnxUqe3+TDeGKxbOsOxfEOIRH1shZ8Sm5bKioqICn8/HqlWrcLvd1NfXJ8wpmytMEWwWbggEAoRCofwNSBAEIQ/E+ruWlhTx4LWLevnLLr14Nm0HO3r5zVpZZ286+wSWXjybpY2b6dGa2598nZMnjbX1mzULOVw6b5oEkQlJEWEr5AwzLdfOMz9l26a+vj5h5a98Ul9fT01NDR6PR1wRBEEYcti5EMSLXYB71rzLolnjbDMitB3soEfrlFKASaUywQkibIWcUex2AzDs1I/BxvX9so9wOBx1Y1iyZAlVVVUZ91lZWUlZWRl+vz8qagvBkiwIgpBLrERqvNh9fGMrT2xs7SV0H7x2EU9sbO1V/znTFGCCYIcIWyFndEem9Dtff6Pf9lFTU0NzczNr1qyhtraWOXPmZFwNzOVy4fV6aWxs5Oyzz6asrIyampqsjFcQBGGgYJW2C6CkuIiOrh5Qij37j/Sx6i6aNY7HI2L3iY2tURcGq75A8tYKmSHCVsgZpo/tpJdfhBEjst5/KBSisbGRNWvW4PV68fl8NDc3Z6XMrVkRLRQKRV8LgiAMBeKFZrzY7OnpAaC7R/P827soKS6iu9veqmu6HVj1ZefH62RcggAibIUcElv61swpm00aGhqorKzE6/VGP9u0aVNW3BE8Hg8NDQ0Z9yMIgjCQSCY0127ZS3fP0fbd3ZovLpzOVNfIXoLTqduB0/K7qQhgYWgh6b6EnDHi3HMAOPjIo7xx109onTKNg394MpqCq/3OH9M6ZRpde/bQ09PD9uNPZO8ttY7zzcb7vc6dO7ffv5MgCMJgJlnO2UWzxlEcoyRKilX0c1Nomm4HXz//5KQC1C5tWKrjEoYuYrEVckZpRQVl37+dA//9c3RnZ5/StyPOPYf9y/0cfORRiidORB86xMjzznXcf0VFBU1NTdH3mzZtkiAvQRCEDHAS5FVUVAQ9PRQp0Frz8Ktbe/nSgvOMBol8b5ONS1wTBBBhK+QQj8fTuzDCX4Pwb7f2bXjTjUdff+7i6MvpY8aweekyxn7zG7b9l5WVUVdXh8fjwe/3EwgEsjR6QRCEoUcyofn4xlY6uwxfBK2hW/euDma2T0V0OhHB8eOCvmnHRNwOTUTYCjmjpaUlYdnaZCil2O9fwbDZsy3Xu1wugsEgPp8vGuRVUVGR0j4y9f11R1KaCYIgDHRixehNZ59guf6xDUfTeBUXK4owgsisqo9lW3TGCuB71rzryDdXGPyIsBUGFGrUKA798Rnb9R6PJ6Nyt1JRTBAEwZkYXbtlL12RyDEFXL5gOpdYVAezCwjLpuuA5MUVTETYCgMKNXo0PXt253sYgiAIgxon2QnixeQl86ZZuhHY+cNecf/a6GcPXZeZFdepb64w+JGsCDnC4/GglEp7yUYu1kIlFArh8/lwuVxJLab6wAGKxk/IzcAEQRCGKE6yEzjNdmDVzqxOpiFauCFT5rvLuensE0TUDnFE2OYI07803aVX0NUgo6amBp/Ph9frTVr8INVMCYIwEFBK/VoptUsptdlmvVcp1a6UCkaWpbkeozD0uHTeNC4/Y4alaN3Q0sY9a94FSComrVwO4qMtdu0/ktWxC0MXcUUQ8kogEMDlclFTU0M4HGbJkiUJxa2ZIkyCvIRBRj3wM+CBBG3+rLW+OMF6QcgK8f61l86blnB9supgVm0vnTeNR9dtJZJQgaZ3drOhpU2srULGiMVWyCvt7e34fD7AsNwC1NfX27Yvu/VfUUoRCoX48Nu30jplGj2HD6O1pvWEk4wCD3v3GgUeTjjJtsCDBIkJhYTW+gXgw3yPQxAgefGDVIojJGo7e0pZ9HV3txRZELKDCNs8U1tbi1IKl8uFx+MhHA7ne0g5x/QfdrlcVFdXOz4GsSV6tdZwxJjKKho92vBNlkAzYXDxSaVUs1LqaaWUdc47QCl1vVJqvVJq/e7dcv4LqZPMv9ZpdTC7tqYV96+t7QAUOehHEJwiwjaPhMNh6uvrKSsrY9WqVXi93oTWysFIVVVVn+88c+ZMR9vGlug99MTvoLsbgB2fWEj7f90pgWbCYGIj4NZazwF+CjTYNdRa36e1XqC1XjBhgpz/QuokCwpLpUSuVVvTiqsxRMhZJ4yXggpC1hAf2zzS0NBAe3s7bW1tuFwuKisrkwZPDUaCwSChUIhAIEAoFKKqqsrRdrElensOHYp+PuKssziw4m4ACTQTBgVa630xr59SSv23Umq81npPPsclDF6SVf9yWiLXqm18+q/ac08SUStkDbHY5pFQKMScOXNwuVwAGRUWGMj4/X5mzpxJfX09DQ22hihLxvzLNUxa/ypjrqkBYOyt/8qRdesAKDnlFEZ89qJsD1cQco5SapKKREsqpc7A+N8tDolCQWFmStjQ0pawXSoWX0FIFbHY5hGXy0VtbW30fSgUGtT5au3wer0ZldoF6N5tGK7GXn8dx3ztZnZUzKN40kRmzpyZUao0t9stgWZCv6OUegjwAuOVUq3AMmAYgNb6F8AXgK8qpbqAQ8CXdKYXjSBkQHwKr1TL5qZi8RWEVBBhm0dmzpzJmjVrou/9fj+BQCB/AxrAxAaSFZWWRv1rzfzB6ZJJSjFBcIrW+ook63+GkQ5MEPKOlYh1UqlMEHKBuCLkkaqqKlasWEFjYyNerxeXyxV1SxBSIz6QTAo5CIIg9A9WItYuU4JT9wRByBZisc0zy5Yto7q6Gp/PNyQDx7JFbCCZ7uyMFnIQBEEQskt88JfpjmBabpO5J1hVIhOEbKFSmaZdsGCBXr9+fT8OZ/CilMp4Snygu9R5PJ6c+7smOm5f/OIXaWtr49FHH6W83Pqf62A47oKBUmqD1npBvseRS+R/dm4ZSoLNyXe9Z8273PXM2/RoKFbw9fNPZtGscSn54gpDl3T/Z4srgpAzQqGQZRUwp0s2g7ja2tpYvXo18+fP50c/+lHW+hUEYWhiWifveuZtrvrl2kE/9T7fXc5NZ5+QUJRauSekUrVMENJBXBGEIcfq1aspLy/nsssu44477mD+/Pnccccd+R6WIAgDGAme6ouVewLQx41BELKJCFthyLFlyxba2o5aU774xS+yevVqLrvssjyOShCEgYyV36lgndbrknnTUJG/Q138C9lHXBFyhNvtRimV9uJ2u/P9FQYN5eXlbNmyhUcffRSAyy67jOeeey7PoxIEYSAjRQeSY7prPPzqVh7f2Jrv4QiDFLHY5ghJ8l84mC4IsWzZsiVPoxEEYbAgRQcSI+4aQi4Qi60w5CgvL+fWW2/lvPPO47nnnuPWW2/N95AEQRAGPXa5bgUhm4jFVhiSXH/99WzYsIHzzjsPl8vFfffdl+8hCYIgDGrsgskSMZRSqAnZQYStMGS59957uffee/M9DEEQhCFDKu4adgUeBCER4oogCIIgCELBITlvhXQQYSsIgiAIQsEhPrlCOogrgiAIgiAIBUc6PrmCIMJWGNSY+YMz2V4QBEHID5JCTUgVEbbCoEbyBwuCIAjC0EF8bAVBEPKMUurXSqldSqnNNuuVUupupdS7Sqm/KqXm5XqMgiAIAwERtoIgCPmnHvhMgvUXAidGluuBn+dgTIIgCAMOEbaCIAh5Rmv9AvBhgiZVwAPaYC3gUkpNzs3oBEEQBg4ibAVBEAqfqcC2mPetkc/6oJS6Xim1Xim1fvfu3TkZnCAIQqEgwlYQBKHwsUrtoa0aaq3v01ov0FovmDBhQj8PSxAEobAQYSsIglD4tALTY95PA97P01gEQRAKFhG2gpAEj8eDUirtxePx5PsrCAOf3wNfjmRHWAS0a6135HtQgiAIhYbksRWEJLS0tKC15ayvIzIpECEMDZRSDwFeYLxSqhVYBgwD0Fr/AngKuAh4FzgIXJOfkQqCIBQ2ImwFQRDyjNb6iiTrNXBTjoYjCIIwYBFXBEEQBEEQBGFQIMJWSAvxOwW/3x/9LsFgMN/DEQRBEIQhj7giCGkhfqcQCoVwu91UVFTg9XoJh8P5HpIgCIIgDGnEYisIaVJXV8eKFStoaGgAoLGxMc8jEgRBEIShjQhbQUgTl8tFVVUVAO3t7XkejSAIgiAIImyFrFJTUxP1o62pqRkS0/Omf21ZWVmeRyIIgiAIQxsRtkLWCAQCrFq1iqqqKqqqqli1ahWhUCjfw+pXwuHe3eVqAAAgAElEQVQwtbW1UV9bQRAEoXDY0NLGPWveZUNLW76HIuQIEbZC1qioqGDx4sXU19fjcrkoKysbFNkP7GhsbMTn89HU1ERLSwsVFRVDwkItCIIwENjQ0sZVv1zLXc+8zVW/XCvidoggwlbIGi6XC7/fT1NTE6tWrcLn8+FyufI9rH5j06ZNNDU14Xa7qa6uxuVyDXoLtSAIwkDh8Y2tHOnsoUdDZ1cPa7fszfeQhBwgwlbIOlVVVSxfvpyGhgZqamryPZx+o66uDq01oVCI+vp6gsFgTt0R3tt1gKt//hKV//EsF/zoeY6bMn3I5xYWBEEAw1r72IZWzKSUxUWKRbPG5XVMQm6QPLZCv1BbWwvAkiVLqK+vz+9gCgCPx0NLS0va27vd7j7W4CNdPXzm9CmceeJ4Vr+6lWd2tA753MKCIKTHhpY21m7Zy6JZ45jvLs/3cDJm7Za9dHX3AKCAyxZMHxTfS0iOCFsha4RCIWpqavD5fFRUVOD3+ykrKyMcDmfsknCgYz/feuGb7Dr4AaXFpSyY+Am+NncxpcWlWRp9/9IfBS1OmXIMp0w5BoAFs45Nu+9k9IcoFwShcDB9UTu6eigtKeLBaxcNeBG4aNY4SkuK6OzqYVhJEZfMm5bvIQk5QoTtECbbYtHj8eByuViyZAlgpL9qaGiwFbUd3R2O91VcVMLVH/synrKZ/DH0NL979wk+OflMzpx6VlpjHUwcONzJrwJ/77f+pcqcIAxu1m7ZS0dXb1/UgS5s57vLefDaRYPKCi04Q3xshygHOvbzjaavs/OjHRSrYo50HaGpNcBVT13BXevvpKO7w3a7rz53g22/DQ0NaK3RWhMOh/F6vbZt1+9c53i8I0tGcvqE0/n+2tv4/d+NCl/PbX3WdpzZxO12Z+S76na7szKOWH/an/7xbcAQtbc8sIF9BzsttwkGg3i9XpRSUfeQRMT3LwjC4Me0bhYrGFZSNGh8Uee7y7np7BNE1A4xRNgOUYqLSqg+tYZ7zvkF57nPp0t3AdDRbQjcpS9+11I0mpbTbDBlzNSU2r/T9g4ffLSTbt3NcaOOY/0H61ISx+kSCoWiYj2dZfNbf7Pt2+/3U1FR4Wiq/jOnT6H++k9yzuxJPPhSiL+8tYtbHlhP64cfUXfp6Zbb1NTUEAwGWbZsGfX19Un3E9v/eokgFoQhgWnd/Pr5Jw8KNwRhaCPCdogysmQkZ049i7bDH/LUe/8LwJTRU7nkxEspUkW88eHrlqLR3C4bTBw9MaX2s8efxt2f/hlXfexqdh3cRbEqTlkc5xrTomqFz+ejrq4Ol8uFz+dL2tdVZ3mYedyYqD/tmzv28cb2few71MVN9dYC3+Px4Pf7qaurcySgY/vfd8jaCmwSW2UuEAgkHb8gCIWLWDczQwpBFA7iYztIsPKX/ekX7kk56Ode7o++3jTjr2xr2dan7xNdJ2VlzM+1PMvnjv+8o7Zbwn9nX8c+9nfs4+G3fgsYFt9UxXEu+ehwV8SietByfTgcpq6ujtra2qg4TOS6AUf9aacdO4qrz5rJdWefEF2nbu/b3iyWAYZbQrIgvtj+zzxxgm272traaJW5YDDoaOyCIAiDkcEYfDeQEYvtIMF0Efjpp/+b890X0NQaiAb9pLu0bm217Du4exMTp03MyO+0bNIxDC8e7vj7tXe089NNK/jJ+rsYVTKKk1wns23/Vp5reba/DmnGvBVjUbXCtKKC4cebzOoZ60/rv3o+I0qLk47BFLKBQID29vakuWqd9h8IBFi2bBkNDQ0AkgM3CyilPqOUelsp9a5S6laL9TVKqd1KqWBkuTYf4xSERAwEy6XTMTptZxV8l60xCKkjFttBQqyLwISRExhWNKxf+lYoSlQJT6x9jFd3vsrz2/7E3Anz2LR7I7d+4juWbgpHuo9w98YV/Hl7EwAvfPVF2ne2c8HMz6Q1nukzpvPTP63gnfDbKYnjXDN/5rGsve0CwNqaGm/hTGZNPe+O50HDp2dPorS4iI8OdzF6hLNLuK6ujqqqqqT7aP3wI/7z8rlJ+w8Gg4BhdW5paUlL2EoasaMopYqBe4DzgFZgnVLq91rrN+KaPqK1vjnnAxQKikLNOTsQLJdOx7ihpY0r7l8bTRf20HX23yU+tZhd8J35u5WPKuX2J18v6OM0kBFhO4h4fc9mlr74XTp1J4rsplh6fc9mlr30PTp6OhhWNIw71/0XY4eP5aKZFzN59GQ2733N0t/12dAz/Lz5Hrp0F1PHTGX7ge2072zPOH3U4397jItmXsynZ5yTydcqCAIBw7qebCrfPGR/en0nf3p9J//Pe3wvVwQ7fD4fTU1NVFdXEwgECIVCtuWOY/11nfTv9/uZM2dOWm4IkkasF2cA72qttwAopR4GqoB4YSsMcX77ylaWNm6mR2tKihSXLZjOJfOmJRRGqQrhdIVzrOXySGcPj29sLTjB5jS12RMbW+noMgo8dHT18ETcd4k/RslSi8UK6iKl6O7RaPqOId1jX6gPO/lAhG0eyCR/bKJtTyg/kR/945387t0n+PP2Fyy3D4VC1NbWRtNA+f1+R8UTTig/Ef/Zd/Pi+y/y4Ju/4bqP38CssllRsTv3uHmW/q5lw8s4ZvgxhA+H2X5gO6ceO5s/8FTyg5SEBy58MOM+CgGv10tTk2HJrq2tjRa2sGLtbRfw/Bs7+c4jzfzwi3P49OxJSfsPhUJRF4dVq1axatUqACoqKizL/5oWZieEw2Hq6+sdpRETkjIV2BbzvhVYaNHuUqXUPwLvAEu01tviGyilrgeuB5gxY0Y/DFXIFxta2ljauJmuHuOBsKNb8+ArW1m9odXWopiqFdUUzt09muHDUrMmLpo1jpIiRUe3Idoe29DKpUlEd65xal2Nf+SOfW93TBN9z1hBDZoiBT26d6nfdC3eA8FSnkvEx9YhHo8nI5/S2KlaK39Yp2mrYrf1TjubptYAlz/5BS5/8gt8/+XbGF48nJPK7YO7AoEA4XCYmpoaGhoaHImSLeG/8+beNygpKmFEZOp/ePHwqNi96mNXs2nXxqi/q5nr9pLGKn68/r840XUiV59qpAgbDBbWbFJRUUFlZSXLli3D4/FEfVatSBTY9d6uA5bbeDwewuFwH/9pK1ELpJS/1ufz0dLSQigUwuv1plQ62W68Qxgr83P8vfUPgEdrfTrwHLDKqiOt9X1a6wVa6wUTJtgHAAoDj7Vb9tLd03eWw7Qo2m3j1P8zVjhroKPTmb+oyXx3OZctmB49mbu7U9s+FzhNbXbpvGmUFhtzn6XFiktjKpel41Mbmyu4pLgIVRQ5SjEzT6n2a/rpPh6xLqcynsGMWGwdks1pUyt/WKdpq3ptO+o4ilUx31n4Xf609Tleev9Fvvb8TYwaNooiZf3MUlNTQ01NDWBY88LhcNJ9tne087NNd9N2uI0xpWO4aObFzCybyZt732DS6Em9xC4cFd8Huw5y/2v38srOV3htz2uc5z6fJ/72uO1+wuEwFRUVtLS0sGzZMurq6hwdk1QpJN9OO+usFWZg18//5Yw+gV1HIlNmmfLgSyE+eeJ4FiRJ0B4Oh6PHYMWKFcDRkspOsBtvMBhk7ty5lJWV4ff7Hfc3CGgFpse8nwa8H9tAax17t7of+FEOxiXkAKfTyItmjWP4sCI6OnvQ9H7y2bX/iGWf5aNKHVkowZh+74oRzkUx1kSnXDJvGo9vbHW0v3yRzLpqtnno+k9a/i5Orb7x/ZnuCtvDh3j41a1RV4Tb//A6Sz83O6V+Y620JcVFlBQZ7g2FesxziQjbPBHrs2o3je9029PGf5wPPtrJup2vcleln8ljJrP74C4aedK2j7q6OgKBgKP8o3OPm8eKs38adYFoal3Dtv1bef/AdvYeNu61JUUlNO8O4p1+di/xfbjrECtf/zWjho3m2ZZnEu7HrFT2T//0TyxevLjfhG22fTvf23WApY//la17P2LEsGIurpjK1y44OdNh9iFRYNcpU47J2n6S5a8FI9AtE3FvN96WlpZopbZrrrlmKAnbdcCJSqmZwHbgS8CVsQ2UUpO11jsibz8PvJnbIQr9QSrTyLHiqHxUKUsbX8N8Rmx6ZzcbWtqY7y7v0+fSi2ez+f32hJEXG1raWL3+qGdLcZHi9qrTUp7SHkylbO0EcLrf0exvQ0sbj63fFnXZaG5t54r7Xuah6z/pyFd37Za9vB8+FLXSdnf38KUzZqCxnvoZaoiwzRPxPqup5HSN3/bK/72cbt3N3OPmcajzYNSSmgiXy0VLS0s0aX8yP1vTCuspm8kfQ0/zu3ef4OvzvklpcWmvz86a8ilOn3A6t6z5GnsO7Tb2NdzFF064jB56eK99i62Prcfjoa6ujoaGBkeW5ELhSFcPnzl9CmeeOJ7Vr251bPVMlVQDu9IhWf7a/qaqqoqqqirq6+v77cGmENFadymlbgb+CBQDv9Zav66Uuh1Yr7X+PXCLUurzQBfwIVCTtwELWcNpMJNJrDiaPaWM5tZ24Oi0/3x3eZ8+N7/fHg2Genxjq6V4Xrtlb9Raq4DLPzGdKxem56PtxCI6kMkkUMvc1nvycTzzxgfRzzu7NWu37E1YJKOXlbZIUVJcRHe3Yd2dPaUsmmnB7jceKoiwzRAzEMsM0nGS9sgsNmA1jZ/Otl86+QpQigff/A2TRk9i/c51tB1OnBuvtrYWn8+Hz+eLVqZKhJX7hKdsJp4yT6/PpoyZGi3XO7Z0LI+8/TBvfvgGD7xZT2dPZ1JLaSAQYMmSJVRXVzs6HoXAKVOOiVogF8w6lifWbXNk9UyVZIFdM9zujDIFHDN+suP8uP2NWWp4KKG1fgp6P/VprZfGvP434N9yPS7BmnTEjdU25vRzR2cPSinKR/UNIo7fzhQ4RzoNc22RotcUdPyUtoKk4jl+m1ifUuEoqQZqxf52b+/c3yujxbBiRWe3cU8cVpzc7SP2gaW7R3P5GdOZ6hrJolnjeGJjK0ciLipOHpCcfM+BanUfPMK2Lu6GfsMmmNz/N8ZgMEhNTQ0ej8dxLk8rn1WnQVWx244sGckZkxZy1tRPseGD9QAcX3YCX51zE4Blyq9QKERzczOVlZWAYbl1khUBrN0nrD7bceB9yoaXMWn0JMqGlwHQ1dNFZ09ysVdTU0NFRQU+ny+jalbpZp6oqanB5XKl5Psa3WeC4C53hqLTnJ6346PDXZzznYdo/fAg/3n5XKYfO4rRw0uS5rn96HAXX3tgXXS70uIi3B4PWzPwQXbCR4eti1YANDY20tzcnFIwmiDkknSi0K3cA9oOdrBo1jiWXjw7Knhuf/J1Tp40tlf6p/h9mQJHY0SAn3XCeGrPPSm6TfxUOZDQ79UUMbFjykSsD2ZSsbDH+8F2d/cQ0bF09Wi+dMYMFIavtJPsEVYPH+aDzur12476XNs8IDkl0bk6EH7jwSNsAS74CZx6mfF6TO5Krfp8vpT8DeceN49fXVCf1r5it920ayM/23Q3tzx/s2OB7HK5WL58OT6fD4Dq6uqEmRHsxNgfeIrb+Y9en70w6S8s+MsnmDZ2Gss33EX4iOFOMG7EOC4/+QqOdB/h0bcfsd1XRUUFwWCQioqK6FS0Ex9gK6xcJz45+UzLAhImwWCQhoYGPB4PjY2NVFVVOd5fbFUwq+CuVM6PA4c7ueHXr3Kks4f/+eqZthZUuyC4Zx3a9NxuN4+v2cgb2/cBRN0ctsb5IJsZQdLFSpS/tWOfZdtwOMzixYuprq52ZLFdv2Vv1l0+BCEZqboPxG/T0dUTFbKlJUVcMm8aPVpb9me1r3iBEytqTeLdAex8N+1EupVgtbMcD6U0U04CvMzjtD3GD7Yz8iBiUqRULzFrZjhIJB7tfHtj3UjAsObGPyBZjc9uX73O1c7e5+pA+I0Hl7AN3AYv/RhO/jxceHfq26dh9a2oqKC83PiRKysrHQuxbEXmpyqQXS5XSmIxlSArpRRNrWv44ad+xP3n/5rdB3dF/YD/3PoCr+/dTA+Jo/fr6+vxeDzRtGTpkk7mCdPyblqKnQrbjw53ccsD63tZPVOpChbLgcOd3PCrVwnt+YjiIqha3mQbjJaNILjY6mjRz+OqpKUaJKaUSjqu+TOPtfy8rq4uWsmsrq6OUCjEP/3TP9n+Fv3h8iEMbZxYINOJio/dRsUl6Fdg25/VvuKDyMz0TvHjtfou8W2thPPbO/fzvYbX6NZGqquHrv8kgK3lOBWBn0v6w5qcLHDMLltBcXERaE1Xt6YoLjAv1QDC+AcNM/OF6YoA9r+Hk33Fn6t2D12FSuEK21RF5kX3wIyz4J0n4fnvwnGnwRk3pb7fFK2+pp+q1+uN5vJ0Esk9WKsuvdP2Dk/87XGeafk/wkfCFEVSJb/14ZtJRa1ZNKKpqSma7ikTUs080dzczPLly3G5XDQ3Nzvez1s79vWxetoFd6XzQPMMcEvk9WAqI2uFz+djxYoV3HbbbYDxfRPNKOQz0E0YfDgVGOlExceL0duffD0qVi+ZN41L5k2z7M/c7vGNrb2cy8w2duO1mk62KuO6aNY4SooNEVNcXET5qNKoqAWjCMTjG1uZ6hqZ1HKcqzRTTgRrtqzJVvtKFBzXyw82kq1gSsQP1lwfP+50HhDiS/7Wfc7IfPHYhtZoQJnV7+FkX4nO1YGQSqxwhS2kJjLPuNH4e+yJhrD94K/p7TNFq2+sD2hdXR11dXVDKUVRH4YVDWNUySg6ujvQPRpVbPwr/tzxn6fiuAoa3m1IWHksXdcDK9LJPGFaa8vKyhzvx8rqGY+ZEqzQHmgu+NHzjtOT1dTUEAwG8fl81NbWOvbNTgWv15vS8SmEQDdh8JCKwEgn8j92m5MnjbUUTHZYZTVINN74dU9v3mH/3cxrTms2v98eFbUmiuSW41z5XzoVrNmwJqcjjuOPU3y5Y6vt03lAiC/5+8i6rSz93GwutXlASnVfyc7VQqawha1Tkfn+BnhvDZz0WXjnf43PJp6e+v7SsPrW1tbi8XiifqH9cbPPN7FlUxsaGhIGdHX2dPKrzffzwlf/Qnhne/TzbJTRTYV0Mk+43W68Xi9z586NBtdlCzMl2P9ktVdrGhsb8fl8uN3upJk6zpk9yXF6MrMcr2nNLoR0XOm6fAiFTz6CknJpgUxFGNuJtETjjWZbiEwnz558DOtCH/Zpa/pnagzfzD1xhR6Ki1RUnFmJ2ExSe6XzGzsVrNn4LdMRx5la851uE//439zazlW/XMuD1y7ipgSpIAdTnmE7sn9HyFZ2glREZukYPJfcRsuubx397LabgZsd767XFG+KVl+/3x9NLG9WYUoHs0CBKRwqKytpaGhIWyxnIxK/vr6ea665JvpZTU1N0qlwjSa8s93W8pYLN4p0Mk/4fD7q6+spKyvLutXdTAn2z1nttS/hcJhly5bhdrtpaWlJmg82lfRkK1euxOfzUVNTk5H/s2m9zga/fTnUL/l8hfySr6Ck+e5yll48m6c37+DC0yYXzE3fTqRZZT+IDUBaevFsvtfwGl09ml+/+B51nz+NtoMdvfxy4/uO55xTjsuKiI0n3d84FYtjpgIuXXGcqTXfCZfOm8aj67fRFWNeT0V8p5L1YqAFCPaPqSOT7ATxwvhfXjL+JhKZ40+mZdeBzKd4X/xxylZfv9+fsS+oiZldYeXKldTX19PU1EQoFEo7n2c2gn7M72YKJSciu1jlf3o4ncwTZu5UU7zlEvMBItOHGTPgKhAIMHfuXObOnZuwvV16MitiSzFnkmM2m9ZrEbWDk2xNI6eTZ9b0Q10X+tA2qjzXJBJppkixEiCxbgUd3ZrA27u4ofL4Pu1i+358Y2uvfY8f6yzHeqqk+xunIlgzFeJOg/SckM0ZiA0tbTyxsfWoCwl9cxlni0IPELSif4StAxcCx0E0t50ZeXFfZDHolyCa134La74HpWPgEzfC/BuMz+PFdj8RDoej+VubmppYvHhx3pPU19bW4vV6o4UTEgXymHTr7oTrM7UkT542Oe1tkxEMBvut7wOH7a2iZmaNcDhMbW1t2jlcw+FwL9eDZPlv7dKT2dHY2EgoFEo7vzActV7/ez/n9rVi+9Tpw4AmYD5QCsycun1bKO1BCCnh9Oae6TRyulambN/Esylmkok0q7HHX11/evMDJowdbhkEZnLpvGk8tn4bnd2aYcXKcaGGVL9rJr9xNi3HTvYF9kF6TogtqGGWKk63qltsX6astcplnC3yFSCYCdkXtg5dCAotiAaAr2zMfp8pEAwGo/6RZWVl0Vyz+aaiogKXy8WSJUuSCr8LPBfyx9DTtuvr6+tpaWmhrKyMVatW2aZxMq3HZq5e06XgzCmf4tqPX5fR98kHZkowO6qqqmhoaADIqOqa+eBRV1fHnDlzkj4Y1V16uuP0ZHV1ddx2221UV1cnFbZO8stufutvjvL1mjjN75sEDTwJtAKXpdOBkB6ppjTKZBo5XYGazZt4rqdw7cb+8LptdEdynGptXACxvrf7D3X2GedD138ypWOfznctFF9PJ4I80weetVv2RoVoV49maeNmTp40NrouHR9jUz0poHSYdS7jbFAov1Mq9HWoyZQzboRJc2DREuN9utkJsoTf70cphVJqQGQrqKqq4r333suKL2M28Xg8UZ/bRHT32FeUAiPqfc6cObhcLpYtW5Z0v6ZLwRNVjTxw4YN8Zc5XKSkaeMFCsSnB7KiqqmLTpk0Z7aeiooKKigrH7gI31a/j8z9p4rcvhxK2M0UtGEFkyfIhJ/PZjS1o4aSMb6rt7Zi6fVvX1O3bfgi8k1YHQxgzgfyGlsTluu2wEgeJmO8u56azT8jIN7I4xelZ8yb+9fNPzliIpvp9M8Vq7PPd5Xy/6jRKihRFGALo0nnTWHrxbIqUoqtHc9+ft3Cks69oS+XYp/tdM/mNs4EpyO965m2u+uVa23O7fFQpRUqlPd2/aNY4iouOGuN6tJFCzcm+rfoyz+3SkiKuWDgjpXM1levYbAvk9XdKlV4KYeTIkTsPHz6c0Ck2kaXUPX0KoYeW9PVTtQooyxF+v585c+ZES7WmxUX34P71D3M2berxePD7/ZSXl/fKSJAv/H4/wWAwGiCXiOe2PmtZytfE4/FEMyuEw2HC4fCgzCQRj5kSLL74QTxm5bNMMMsmNzc3s2rVKqqrq20fSJKlKTMxgwbNAEefz5dwnGeeOMGxu9GT37L+3HQ3ymYBDCE9MrU+bmhpY3v4ULSsaC4yDqRrZcrWNHc+pnCtxn7lwhm90jUBPL15R7RSlVmwKploS2TZHIjT1eDMEmv6XXf3aIqLFEsvnp1WYNjtVaf1quCloN99jONJ5ToeiEFjJr3uDIcPH56YsXuAlZ/qUzc7DigzBU+s2Ek3t2ljYyMtLS2Z55Y940ZCW2+EjoPww9Ew/3r43L3p95eAYDCIx+OhqakJSD0ArL9oaGigrKwsqcX25opbON9zQUJxGw6HaWlpobq6Oi+iNhvZIpxiZgDYuvcjRgxLbGWsr6+nubmZxYsXEwgEoi4gqWJeL263G4/Hk5Vj7PF4UvL7HVFanDV3o1QKYAj9QyZTsb0qMRUpvnTGjD65PdMh2RSylcjLZQqxQprCtQowi0XR20fTrnSunY9oIX3XVHAiyGOn/rXWtB3sSGtfVg8Yj29szYqPsdPzOpXreCAGjZlk3+SxM2KN7ToM866D4sguHOakbWpqYs6cOQAZ35AXL15MWVkZoVCI+vp6fD5f6n1mK0euA8zgMdPKVVVVVRC5Qmtrax1bjZOl1AJjujydwJ9skcuHBTMDwJknjmf1q1t5xqZdMBiMplVbsWIFK1asSGhpTURNTU3e3W4+OpzYJSUVnBTA0J2d7Ln0Mjpeew06Opi49iVKpk+3bLt96vRTAPMucvz2qdOPTN2+bUfWBjwIScUiF3+T7VWJqUczxTUy44CsJza2snr9Nrp6nNevz4cFKpdBTk6I/S0UYD7fl5YU9RK1sRWtHrpuka2PqFV2hoGEE0GeTWt0/DHKxsNAKud1Kt8lW987H/mokwrbcDhMXV1dND9rWVlZ1JpkiZVlNj6gbPgxSQfmcrnw+/0ZTcuaOTzNLAN+vz/1qd7SMfbZErKMy+UqGAttujj1fzUzLQx2zAwAYOSMtSP2YcYs+JFJ5oF889uXQ7ndoVKMOPcciidP5tCTTyZr/WbM6+eAVUBNfw1tMODUImd1k42/Qe4/1MnVv3qFC0+bnDQyPJHl0JwLcGpNGsgWqGxg5Q6y9OLZtB3s6PWb3tv0914VrZ7Y2Mol86ZRXKRi3Bf0oDl+yQR5f1qjs/EwkGq1vFRSpWX6vfPlzpBUhfj9flasWEFlZaWzG62VZTa+3G04ZLmpGXEfDodpbGzE6/Vm5F8aK57MNEiBQCA1a9b4k/OeLWEwUVdXFxXwjtK9DRIOHO7kV4G/266vqqrKaNq+0Lju7BO43madz+cjHA5n5cEm3lI7uiZ5Romp27flJn/fIMPJ1L7VTfams0+I3iD3H+rkFy9sAeDPf9sDYCturW6KVhHhTq1J/eEHmg9rVDo4dQfZ0NLGn978oNdnGmsf0YHiR5sNCtkanep5HeuWElvMI1HbdMnXw2RSYWtaN83E9UkDsK5p6p3qa9qivlP57n8EHu2zaUVFRfTmbuZzzTRwqrGxkbY2I/qvvb0948AcITM8Hk90yr2ysnJIBI/FRvQPBPrTB9nv99PY2AgY16Zdujc7kgak/fAHxt8ZlmJp/siRI3ceOnRoUko7zRFKqc8AK4Bi4Jda6zvi1g8HHsDIwbsXuFxrHcr1OE2cWGdjK2TNd5dz9a9e6dXH05t32Apbq5tibP/FxUV8Yf40LnXor5tty9tACq5x6g6ydsveXqVaixXRPLbxPqKF+l2dMlAeSpKRznmdq3M3X0GFSYWtOTVu+v2tWbMmseV20pzeJWlnnWszlZ+43G1FRUVWkgVJGOUAACAASURBVOW/9957LFlipB6rqqrKe8GDQiYXQVWF4P+ZS+Ij+u0yAKRDf/1e/ekOM3PmTObMmUNzczObNm1KWdhmISAtxVKIuUEpVQzcA5yHkWN3nVLq91rrN2Ka/T+gTWt9glLqS8CPgMuzPRa7G36q1lmrm+yFp02OWmrN93ZY3RQzFafZtLwNJNcGpwLDbNfR1UORMoLEBrofrRUD6aHECan+LrHn7pFOw90kXVeDZAGc+QgqTCpszbQ+Ho+H2tpa/H5/YmG7+83eQVYpTOWHw+FoHs6UXQZsSCXwKZfkMjLfKakImiPdR9h9cBcvvv8iD775G677+A187vjPZ31MAx2riP5sMRD9sauqqqisrIxWWhOinAG8q7XeAqCUehioAmKFbRVQF3n9GPAzpZTSWfRhsbvhp2qdBSzLj5rW2ac370jqY2t3U0xlKrU/GUgprua7y1l68ezocc+GD+ZAZiA9lPQHi2aNo6S4KOrWs3r9tpQzlTh9OMjHw1D2syLcc+rR10/dDNPPgsnOrKQulyvqF1tRUYHf78/68AqFgShKTLaE/86+jn1MGj2JEcVGHfHhxf1TT3ygEx/R71lVeA80ucbM9DB37tz8DqSwmApsi3nfCiy0a6O17lJKtWNkd9gT20gpdT0YLs4zrF0ybLG74adinf3tK1tZ2riZ7h7N8GF9b3hXLpzhuJyo3U2xECxuA0kEmrlYO7p6WBf6sE9Gg1gGi1U2EQPpoaQ/mO8u5wvzp/HQK1vRGO4pqabw8z/3TsE+HCQVtqYFFQzrrVn2MyHJcta+v8F203TSGwm5pb2jvVeZ24tmXuwozZcwsB9oskUoFKKsrIzKysqs9dnY2MiyZcuyUuAiT1g97cRbYp20QWt9H3AfwIIFC1Ky5trd8JP5zppsaGljaePmaPR8R+fRKlTZFICFYnEbKCKwUI5XoTCQHkr6i0vnTeOJNPLoxmcmSbcaW3/iyGLb2NjIpk2b8Pv9+Hy+5BvEZEbw3Py0bbCHE8uVWX1IKBzMMreJKERXC6EwWLFiBWVlZdTV1eHxeJJWMXNCWVkZzc3NNDQ0FKTrkQNagdjEu9OA923atCqlSoAy4MNsDiLR9L8TIbB2y156YjwjiooU5aNKs25dXTRrHCVFis5uoxpUId1UC5GhbqG0YqA8lPQX6Yr72MwkRRwt7AHk1TUoFkfCduXKldEI5qTuAXE5a1tayEr1oWSIkCos5GFEsKOyspJQKEQgEMDlcjFz5sysWVkHcHDoOuBEpdRMYDvwJeDKuDa/B6qBl4EvAM9n07/WxO6Gn8h31sQq+KjtYEf/WAuVAvTRKgOCLWKhFKxIR9zHPySZojbfrkGxOBK2jtwPTOJz1uaIpEIqvoLYs9+Ci34GZ9yUk/Hli6TpkZIgFnMh2/RnYY6Beq5GfGZvBv6Ike7r11rr15VStwPrtda/B34F/EYp9S6GpfZLuRyjE79WKwG1oaUt69bCtVv20tVtWI26u2Vq3QlD3UIpZAera/yeNe8WlKtL9oPHXvxx75y1WcDKEpuyhTWHFcQKiSykR8riaAShfzAfvrOVTSUfaK2fAp6K+2xpzOvDwGW5HpeJUz/NeAHVH9ZCmVoXhPwRf40X2vWYfWEbKx5t8Pv90dyyQNTFwW46UocjwcJjJkLxsPTGlcUKYmIFFYTCora2llAoRENDw5Ao+pEPMrl5ZdtaKFPrglA4FNr1mH1hGyse66ytfTNnzgSIlun1eDyJb0S/XNi7RG+eESuokC7xJWAnrn2JkunTk28oJKSuro5QKBStLtje3s7ixYsHdcrAXJNuhaP49tmq+CRT64JQOBTS9dhL2I4YMeKDTCrzOHUPWLNmDWBMHzqyrOx/H9b/wlhu2OQ4L65gTTgcxuPx0NDQkLjYhpB9lGLEuedQPHkyh558Mt+j6VdyGdAZW4ilvb2dqqqqgZodoaCJvXklE6hWPrlQWEEmA53BUhZWELJJUeybQ4cOTdJaK7tl/vz5aK1tlz7T6xfdY7lT84bj8Xiclc09N1Iy/eNXwnGzU/6SQm/C4TDt7e2cffbZKKXweDziGpEjVEkJH//JXYy77xdMe7+VYTNmoJRKaRkoeVpDoVDC/xfJllTOSbNaobntAM5nOyAwRetdz7zNVb9cy4aWtj5trHxyrT4T0sPJbyAIQ5HsuyLEcsaNQN+sA6a10Ofz4fP5CAaDiS23gTrjb/vW7Iwr3kUiS1Zgs5iFeUN1uVwFaTUyo9Krqqqi6ZHC4XAeRzRwSce1QFxZhIGOk0AyO5/c0pIiOjp7UMrIcSukhxRdyB5i+R5cZC5srfxob9gEuttIr2VDVVUV7733HjNnzqS2tjZxxbGSETDxdNj6F9hwX3ZSdCWrjpYigUCA5uZmmpubo5+VlZVlJfl8tikvP3rhzp07l6qqqjyOprBJKlyHkGuBIJg4CSSz88ldevFsljZupkdrbn/y9YTlXQuBQhU9hRaJPlAphPLMQnYpSt7EIZVL4dpXYfEWw13ATK9lQTgc7lXFLKlV89Y2qI6I5A/+mp3xBm4zgtL+/IOsdOf1eqmurgYM32GtddSXtdCoqqqiqqqKYDDI4sWLxVqbiIhwHXn++darS0oYe8vXKJk1M8cDE4T8YYrWr59/ckIhMN9dzqJZ41i7ZW90qrztYAc9WmfNHWFDSxv3rHm3X6biC3m63+lvMFRxel6Ie8zgI3uuCE3fN8ronv7PRuEDM73WV/tadIPBIHV1dbS3t7Ny5crk1YJircIb7oMFX03JdcA6PVd7ZPlFZLHHaXqu+vp6gsEgy5cvL3graENDA42Njfh8Purr6wvKZaKQMgeYwnXfj/4rJ/sLh8PRCP+UCqMMETINSBsxYsQHWRzOoCeRtdJJFLSVNSyblsb+trYV+nR/IUWi5wO78zOV88Lp+ViolnuhL5kL24vugX2tcGQfrLvHEJ4TT0/oLuD1elO3Eg4bDadeCt7b4JipKW2aS5/G2OjsQqa+vp5rrrkGKMAypFma3h+I+Ya9Xm8vdxahN5n8HkqpDYcOHVqQvdEMbkxxcKSzh+IiozzulQtnpNSHlTC86ewTspbzsr+Fp0z3Fy6JxGsq54WTNHbirjCwyFzYmiV0Ow4awhay5y4QS1EJbHkOho0qmHy2VgyU7AJ1dXW43W7q6+sLLuVXtqykuXqg6Xz3XXrajOmurlALqrSU4onp+W27XC6WL18u+VeFvLN2y16OdBpla7t6NEsbN6fsD2snDGMFSOz7VOlv4VloiecLjXxaMROJ11TPi2SW70K33Au9yUzYvr8Bmn9jVAOL1Q8TT89sVPFcdA/MOAveeRKe/y4cd1p2AsiySDgcpqGhgVAoVHgWUAsGigAvBJIJ112VZ0df7/3SFYy67AuU+5enta9AIIDH4xkQVn9hcLNo1jiKixRdPcY/9x6t07qhXzJvGiryNzYHbjYsYLkQnkN9ut+OfFsxE4nXbJ8XYrkfWGQmbEvHwN+fgT1vAdrIXlBRA/NvyMrgophW4WNPNIRtrEU4g9RdLpeLiooKXC4XPp8vWgUtXfx+P83NzeIbOchIJlynbt+Wlf00NjayfPlyEbZCQTDfXc7tVadFMxiUpnhDjxc+l8ybFl2XTQuYnfD87StbeXrzDi48bXLKLhRCcvJtxUwmXrP5QCKW+4FFZsJ2/Mlw8xsJm2RcfWj6FHjxx3DSZ+Gd/zU+jLcIp5G6KxAI0N7eTjAYpKKigvr6egKBQOK0YwlwuVzOik0Ijsjm9H48jY2NVFdXR0s519XVJXTHyJZwTYTf72fJkiUArFy5st/3JwhOuHLhDE6eNDatG3omU8WZTnH/9pWtfOd3rwHw57/tiX4XIXvkwoqZ7DzIpTVdLPcDh/4t0IDDKe/3Nxg5b03x+uy3jMwKZ9wEe96Gx66ANd8zLMSfuLGvRThwm5GR4eTP9/a/tcqxGyEYDOJ2u5MXhxAyItMArumjRvFyhtP78axcuZL29naam5txu9058zE2sz1YUVFRweLFiwkEAlxzzTU0NDRQW1tbcP7PwtAj3Rt6ulPF2Zjifnrzjl7vH1m3VYRtlulvK2a+XR2EgUu/C1tHmDlvrcSrmTbMjmT+txf8BG77ep/NgsFgtJSsabkbjGRsMXe7M9p/NgK4pn70UUZjiKexsTH6uqamJqt9JySS7YE/NPZZ5fV6oyK2traWQCAwaM9JYWiQ7lSxnaU3FSvuhadNjlpqAd7YsY8NLW0ijLJMf1ox8+3qIAxcCkPYJhOviUjkfwuGNdcCj8fDqlWrmDt3Lm63Oxq0M9iQILHemOWE4WhluFxhZntg8S0J20lGBGGwkI7wsbL0pmq9u3LhDAJv7+KZN4y0xT096QW+CfkjVwFbkp928OFI2I4cOXLn4cOHJ0J6deqzkg/UKkjMLNtr539rWnO/0zeYLDY457bbbqO+vp66ujpHQ8m3FVQ4SqrFHGIfXmpra3OWwaLXOAUhBqXUscAjgAcIAV/UWvcpl6SU6gbME2ir1vrzuRpjLrGy9N6z5t2UrXc3VB7PC3/bLZHsWSSXIjAXAVvi7jA4cSRsDx8+PDFXBQ4SEh8k1rbF3oUBjlpzLXC5XNTW1lJTU0NZWVlKU9JiBc0eZiBXKBRKb+o9xWIOprDNtbU2dpzcl7jSnTDkuBX4k9b6DqXUrZH3/2rR7pDWuvBzCToklapm6VjvJJI9u2QiAtMVxP0dsPX4xtZormZxdxg8FIYrglPig8SsXBjiLbtffNy2O7PK08qVKwelG8JAwAzkSpd0ijlUV1ezatWq1KvfZYA5zrZb/y1n+xQGDFWAN/J6FfD/27v7KDfratHj390ZSgXrpEihpS+TQgERzm0olRdZnkkPWF4WywSQJYiehiMi96KH4L3nXq8oDaxz7kJFO1U5S5ADqUdR5KUZRFRg2YyHI+V22qZSXm0hmU7LpQWaWGilnZnf/SMvpJm8PEmeJE8y+7PWrGaSJ0/2hGnZ+T37t3eU4oltx6g2Sao1SdWd7PaptebVqauiGxJ7eGjDSK4Ff9cU0VX9DjGl1QFYdvGdcM1gelV26Efp0b2lXPA9WB5NbyR75OqSh8ViMYwxzd1AVILb7UZEav5qx8Q8FArlal6buQrudrvp6elpyeasff/+U+YdcURd/621lKXjHGuMeR0g8+cxJY6bJiJDIrJOREpebhCR6zLHDe3evdu2IDck9nDn2q1sSEyokqhasSSp0usC3LB0oSOSoskou2reJVRV2lHNf+tmWvfqW4yOjQMgwBVL5unvVoeoecU2mUzidrsPWW2LRCL4fD5bApug0iaxfNFbYeqR6ZXdL22Eb05tTEw2atb4VyeIx+P4/X7i8TirV6/G7/c3dVpbKBSyXE9tl3rbntlSp65aRkSeAmYVeejmKk4z3xizU0SOB34vIs8ZY7YVHmSMuRu4G2DJkiW1/6OSx+5VN6ulBU5d7ZuMal01d+rUrsK48geIFNINZu2l5sQ2HA7nktq+vj48Hg99fX22BXaIwj63UHpsb7H2X8pRwuEwyWSSWCxmSzlAI4c52GUyfXBRExljzi/1mIi8ISKzjTGvi8hsYFeJc+zM/PmqiESB04EJiW0j2N16yWqS1EktnzohOaqltMOptc5W49IPV+2nrsQWYNOmTbautpVf2fqn92/e+mXgyxOOyK1sWVnZVS2Rv2IajUbp6emp63yVRt7WY8eCEyx1W1CqDo8Cy4HbM39OaHQsIjOAfcaY90TkaOBcwHpheZ0asepmJUly6mpftSZ7cmR3rbNdHxLy4yp1zkd0g1nbqTmxvfXWW/H7/YRCISKRiG0B2bKytfvFQ1Z227k918DAQG73vt0fIpygno1jWY0cefuBZctKdlso1mqsa9asqtqPVava9maqLdwO/FJEvgAMA1cAiMgS4HpjzLXAKcBdIjJOem/E7caY8vPMbdSqVTenrvZVq5NWnlvN6oeEapLf+58d5paBLYwbc8g5NyT28ODQ9vc3mHW174eryaTmxNbn8+V2l4fDYUdswMq5a/Eh7b/i8RsqP8eh1q5dC8DKlSs7LqnNSqVSJJNJ2zdz2fGBpvv4BaUPKNZqrMh95uDBsq+TrTn2er2VhzNU2d5MOZ8x5i3gvCL3DwHXZm7/EfibJod2iEZ3GCiViHRCZ4NOWXl2AisfEgqT31suOZU9+w4UHd/8yMYRfvF/hxnLZK/vHRzn4Y0jnNE7I73BbDz9gACfPmNu0ddq9w9enaaudl/9/f1EIhEikYizEttv7G91BLaJxWLWe64WG2Ix29nJsM/nq2uFvhw7NluVayNWrNVY0fZjFZLrSCTC5s2bicfjFRPbWtqbKeV0nX6pvtLKsyZH1ln5kJCf/B44OF5yNfbqe9blygyyDPDQhhFOO66Hncn9dE8RxsYNh3VP4fKCDWad/nvbrurqihCLxXC5XE3pBxoIBIjH4wwODgKwYsWKpu9sb7bse5xKpfB4PEQiEbxeb/knFQ6xUC0n3eX/mmVbnnX677NSpUyGS/WlVp41OaqOlfKU/ORXRBg3ZsLvVvZ3rtiyyujo+8lwd9cUPnPmPC5fPHG1djL83rajmvvYZi+fJhKJhq/WRqNRVq9ezeDgID6fz1qC1wFcLheBQIBFixaRSqWs1TJHb4V7zoL/+JfGB9iBzMGD7P6Unx0LTmDHnHmMbh8B0t0Wxt54o+rzvf3F69Ib0MrIJrZNnYSmlIPU2iO1Ezi1z2shO/sY1xsDlO9pnE1+v7rsZG7znXbI79aMI6Zy59qtzDhiau7+qd1T+ORHj819P2XK+8nw2Ng4c1wfKJtAT8bfWyerecXW4/E0bXJTOBymr6+P/v7+jq0zLSV7adrtdhOLxcofXKzV2ZntW19cr5o2WhXUsO5fswYo3W2hWKux8b17c/d1f/RUumbNgvirRV+uv7+fVCpFb29vxSEb7vnzSWwv2Cg3f375nyeP9sJVTtUpm8Rq0Q71t41aVa6mBKOWaXXZx0+eNZ11r77FjCOmcttjz5esvd2Q2MPDG0d4c+97RF/elStByP43KYx3Mv/eOllbjNSNx+O4XK5Jl9RCuivCypUrra2MVzPEokka0ZHCcsJaw0arwhrWSslwsVZj+x58KHff/gceoPuUj5R8frZtnhWJ7du1F67qWJ2wSawW7ZAc1TNOt1xdcTWJaj2X/bO/W3eu3XrIOfbsO8ANSxcecuwjG0c4MDo+oQShVLzlfm+1dro12mKkbiAQYGBgALfbPenqEHt7e3MbyILBYPmD//OOdKuz9f+a/r7UEIsmisfjGGMqfqVu/xYjx83l4PDwIfcXXWHMJKwfWLas7Gtnk9RynQ0mlh68vyJ6TvJtDps/v+x427k7Rw75OmpVf+72uYd1MWfHdj7wyU+WfH2/309PT09dU8mUUu3tjN4Zjh4XXMsl92wi+N0nXubqe9ZNKGGwUoKRX/5gx2X/SufIj6mwBKHakpFKP79qnLZYsQ0EAsyYMYM1a9bk+udOltXbqko+nrsf1n7zkFZn7aDayWG2dgYos6q7fd++hq+QhkIh/H4/gUCgJaN+lVKqklpWlSutsFYqwSi2Qlrvynaln6NcTIWPZWt1S8WiG8tax1JiO23atDdEpOYt9nYMOOjp6alYgzjpXb+x1RHUpJGTwyopliTnJ9r1snIuj8dTuX66jGQyid/vx+12EwwGJ82HPqVU81RbKlIpca2UZBZLDKtZ1a6lL3K5mPIfK6zVLVZG0Q61053KUmK7f//+WQBLliwxQ0NDjY2ohGAwyObNm/H5fPo/7g7TyMlh1a4Gw6GJdr3sPFcp4XCYwcFBBgcH8Xg8+vdDKdVyVlZ5yyWZ9SSG9Wx2q5T4FqvVLbYaW0/ttNbm1qctShGAula0VOexmrDWshqcS7RLlBIkk0lmzJiRaz1Xz7nskB9DvW3wdGSvUsou9WwIrCcxrLcMoFJiaTXpruXn177G9WubxLbTNaJ7QCezmrBaWQ2udlXX5XLR09PDwMBAQ0YBVyt/g13dsejIXqWUQ9SaGDd6tbeRnSy0Nrd+mtg6hPYXrY6d5Qu11vj29vZaTiTt+OBSrHNCMpk8ZHPh5s2b66pF15G9Sql214zV3ka1p9Pa3PppYqts53a762pfVWyQQP4l8nN2/T+279tn2/mrTZLj8TipVKqq1dFKH1z+8q1vs/f7Pyh76b9YYpwfQ09PD4sWLbIck1JK2c0p9aGtWO21Qzv0NXY6xyW2ekm+/SUSCfvbZOVdIt9+949aOqggm0w2a/JeJV6vl4GBAVKpFOFwWFuGKaVs08jpYE5JgvM5IbGcrMNK7OK4xFYvyatinHSJ3OVyVVWG0GjhcJhwOEwkErHl708tnSSUUp2nkdPBnLxJShPL9ua4xFapdmDniOd6E0mXy0UwGKw8mc6iXX1LOSf5drrc428/UdM5ipWTKKXaS7Ubmaq5jN/qTVJOXC1W9tDEVjVVLBbD6/WSSqXYs2eP7auesViM008/nRUrVjT0krzL5SpbipDdwFV12UMmkWxlYjhnx3a2i7S03EMp1XrFEtVyCWE1l/FbWctabrW4nRLedoq1mTSxVU3T399PKBQilUrVdCnfyhSvbDLb6PrXaDRa9vGG1BmrjiQiVwAh4BTgTGNM0Sk4InIhsAroAu4xxtzetCDVpFSYqAKWWmFZSbJaWctaarXYyeURhdop1mbTxFY1RTQa5aabbgLSu/crJbWj27dP6A5QbopXLBYjGAwyODgI2NDPVanm2QJcBtxV6gAR6QLuBD4JjADrReRRY8wLzQlRTVb5iaqViVu1nruZSq0Wt7o8ohrtFGuzTWl1AGpy8Hq9rFixgtdee63mc8zZsb1ka65AIMDg4CA33nhjzed3umzHkFq/7OoYEo1GcblcWkNrE2PMi8aYlyscdiaw1RjzqjHmAPALwNf46JR6XzYh7BLausfqGb0zuOWSU/n4wqO55ZJTcwlhO/187RRrs+mKrWqabJlAKpWyPSmKRqMkk0ncbjerVq2y9dx2i8fjeDwegsFgVXXATkkkg8Egbre7rkEQqmpzgPxPdSPAWcUOFJHrgOsA5s+f3/jI1KRhtXzA6bWfGxJ7uO2x5zkwOs76+NucPGt6bvW41a2+rGqnWJtNE1vVEnZ1FMhyuVyHrCJ6vd66z1lvT+VikskkHo8Ht9uN3++39dzNEIvF2Lx5M/fddx+QXinv7+/X0o8KROQpYFaRh242xgxYOUWR+4oWcRtj7gbuBliyZEnthd5KFVGpfKAdaj/LXca3Wh7hhORd25IVp4mtaqrspq7BwUHi8XhVq37Z6WNW2LG6Wc85SiXEoVAIt9udu5zfboLBIH19ffj9fvr7+4lEIvT397c6LMczxpxf5ylGgPyi87nAzjrPqZTt2qH2s96ODO2QvE9mWmOrmioej+dGv5ZL7EbjCcbeeOPQOzPTx8rJnjMWi9Udq92SySThcJhgMIjL5WJgYKDqVdvd297iLv9Pucv3U8bHxhsUaXEDAwMMDg7mVmj7+/vx+/1tmaC3ofXAiSKyQESmAlcCj7Y4JqUmaIfaz+xl/K8uO7mmpLRY8q6cQ1dsVVN5PB5LrbjeuvIqjrji08zoX5m7Lzt9jBv/seTzXC5XXW22GikcDuNyuQgEAiSTSZYvX171UIVn7t1AV/cUxg42N6mNx+P4/X4WLVpEJBIhEomQSCRsGwoxmYnIpcAPgJnAr0UkZoy5QESOI93W62JjzKiIfBn4Hel2X/caY55vYdhKFdUutZ/1XMZvZQ9ecEYZhJNpYqscac6O7bjdbhKril/mtlL76rTpV8lkkmQySTAYJBwOk0qlqlqxfe2ZYd7Z9S7us+ax7elEAyOdKBwOA7B582Y2b94MwKJFi2yvlZ6MjDFrgDVF7t8JXJz3/ePA400MTamaFCaNnZaItTJ51zKIyrQUQTlWdshBrV+JRHOTv0qCwSBer5dVq1aRSqVYvny55cRwbHScZ3+yibOWL6ZraleDI50oFArl3teVK9Or6Lpaq5SqJJuIffeJl7n6nnVsSJQfstMuzuidwQ1LFwLp/r7N+rm0DKIyXbFVqklcLheRSCTX7uvSSy8te3zRVekfvX/z+u7PH/JQs1aog8GgJrVKKUvaYTNZrVqxetrqMoh2oImtsl29bbLsGiQAxZNDO89fC7fbbanOuNpaYR3Dq5RymnZIxO5/dpgH1g9z7Iem8aW+Eywnp61I2tulhrmVNLFVtmv0qmEsFsPr9RIKhSquHDp1I5lSSrWLempknZ6I3f/sMF9f81zmuxS/f3kXD1x3jqXhE61K2rV/bXma2Kq2kk1qvV5vrrtAtoWWUkope9lxud3Jidhvtrx+yPejY6bkymux98LJSftkpZvHVFuJRCKkUqlcL9Xsym2ny04sa9YwhGw5Sa1frS73UErZo9M3K1102uxDvu/ukpIrr6VKD25YulCTWgfRFVvVEtkpYgeeew4OHODYdX+ke968yk/M8Pv9JJNJEokEkUikgZHWxu4642AwSDKZJBAI1BmZNaXKSd7Z/S77k38FYOiBPzG8fgeX3XERM090Xt2cUqp+7VAjW4/PnjUfwFKNbae/F51CE1vVGpkpYl2zZ7P/sccsPy27OpstQVi0aBE+n69BQdauVGL42jPDrP3+Hzm4bzR33xcevJLuqd2ISNGa4FgsxurVq4lEIi2f8vXBmUfywZlHAnDRN5a2NBalVOM5vUbWDifPms6yU2dV/Pkmw3vRCbQUQbVEdopY9/ELqn5uKBTC5XKRSqUcuVpbytjoOM+ENzD61zFccz9k+XmBQACfz4fP5yMWi02K0gullHO0++X2DYk9JXvNVttnt9r3otxrq8bQxFa1pWg0Sl9fH263u2mv6Xa766s7ndfLgXcO0jW1i6OPPyp33vHR0uNxw+EwnJGSUwAAE+NJREFU8Xg8V1vr9/tbvmqrlFLtolLiWk0NcbVJaqcOp3A6LUVQbScWizE4OMjatWub+rrZSWi1EhHee+cAAFv/EM/df99Vv+RLA58r+px4PE4qlcp1gEgkEjrGVimlLKrUa9Zq3Wx+R4QpItzmOy1Xn1vra6vG0MRWtczBrVsZ35P+BDsaTyBTp9J17LEVn+fxeNq2P23fV87mnd37iK15nrH3xnL3leL3+4nFYkA6oe/r68Pr9Vp6rd3b3uKR//4bMPDFRz7LlC69QKOUcp56+uRWYiVxvXzxXEzmz1Kvn5+kjhvDNwe2cPKs6WXj1c1mraGJrWqZXX3vbz5668qrOOKKTzOjf2ULI2q8j5y/kNeeGeaInmkcc9LRbHs6wUlLjy95vMfjydURi0hVq7XP3LuBru4pjB0sXeqglFKt1OixtOU2fBW+9uWL55Y8z9nHfzjd6SazqDI2bnhk44huNnMgTWxVy8zZsb3uc7jdbhKJRMnHK7Xc6u3ttWVS2sDAADfeeGPFc42NjvPsTzZx1vLFDG/YUdVrVLNK/dozw7yz613cZ81j29Ol3x+llGqlZlyuLzUgoprXPqN3Bn/3kWN48oU3cvdZ+RfZycMpOpVem1RtLVv3WutXuaTYqmQyyfLlyy1t6hr6WYzUzr089Z3/wIyl/1k04/aWVeQnz11Tu2w9t1JK2Sl7ub5LaPrl+mpf+/q+E5jaJQgwtUvKrvCq1tEVW+VY9Q45aJZQKEQqlbJ07CuDr+Vu/zlzO/y5B/nCA1faFs9LT/yZw6cfzoJz5jE8lF4VNuMGNMdVSjlMoy7XW6nbtfra+ef6+XXnaGmBw2liqxzLSolAqxPfgYEBVq1aRU9Pj6XjRYS5ntmMxF5n3pLj2D60k0/98ydtjSm5cy+7Xn6TH192f+4+u5NnZR8RuQIIAacAZxpjhkocFwf2AmPAqDFmSbNiVKqRKl2ur3ZzWTV1u1Zeu/BcZx//4VxbsGYmt43cZNdJNLFVHSkWi+H1eonFYg3tdbtp0yYAUqkUmzdvxuVyEQgEcn1nC51zzRm52toLv+49pFOBXWN4F/lO4aS+9OCL7Nhbu5NnZastwGXAXRaOXWqMebPB8SjVctkkbsYRU7ntseer2lxmZ91u4bke3jjCIxtHGrbZrZRGb7LrJJrYqo4UDAbxeDy4XC76+/sJBoMNeZ1QKITX6yUcDhONRgkEApx++ukljy9XHlC4Qv2bf17L8PpDN5h1Te3i2gevKhtTtWNvK23Aq8SuDXiTlTHmRWj91QelnKKwZ+y4MVUlqXa22So8l0BLetNqT1zrNLFVHScej+cGOIRCIaLRaMMSWwCv10s0GsXtdlccd1tNecDbiWTu9pFHfYB3397PJbedV3e8hewYPKGawgBPiIgB7jLG3F3sIBG5DrgOYP788g3klXKi/CQOY5gyRRCM5STVzrrdwnMBPLxxpOm9abUnrnWa2KqOEw6H8fl8xONxVq1axZ49e4jH4xVLEuoZaOByuSyVPFx2x0WWygNee2aY9/YeyH3/7tv7ARj42hOADlxoNyLyFDCryEM3G2MGLJ7mXGPMThE5BnhSRF4yxvyh8KBMwns3wJIlS9pzkoma1AqTuFsuOZU9+w5UlaTa0WYrv6b1hqULc/e3ojet9sS1ThNb1XGyq6fhcJje3l78fj8ulys36KDQXf6fgoHZpx5T80ADqyvCM0/8cMXygFy7rr/3MLxhJ8NDO3IbzaZ0T2F8VAcutBtjzPk2nGNn5s9dIrIGOBOYkNgq1e6ckMSVq2ltVW9a7YlrjS75qI7jcrlYvXo1g4ODQHosbTgcLnl8V3f6r8He3emBBq2Wbdd1ygUnMm364QCcvPR4ph9zJAvObm58wWAQv9/f1NdUE4nIkSIyPXsbWEZ605lSHemM3hncsHRhyxK5YjWtkE5471y7lQ2JPS2JS1WmK7aq44TDYcLhMDfddJOlTU29H5vLq38c5szPexjZ9HrjA6ygWLuup+54mvP/xyeqnlZWj3g8Tjgcbmh9sgIRuRT4ATAT+LWIxIwxF4jIccA9xpiLgWOBNZl65m7gfmPMb1sWtFIdrlhNa+Eqbn6JBKBlAg6hia3qOC6XiwUL0u2ukslkxYlg77z5LgALzp7HyMZ0YtuqgQa7t73Fll+9BID/2xew8cEtDK/fwVHzXU0fuJBNaIPBILFYjEgkUnFznKqeMWYNsKbI/TuBizO3XwUWNTk0pTpSLcMbAPqfeiW3intgdJxbBrYwbgzdUwREGB3TVlxOoImt6kg+n8/yTv8D+w4C8G9X/CJ3X7GOBXb1mS3nmXs30HVYus535sJ0Pe5/3jPEll+91NSBC+FwmIGBAdauXYvL5cLv9ze0H7BSSjVDLcMbss957+A4BpgiMEWEsXGDAQ6OGSBz24ZWXDqIoT5aY6smveTIX4B0j9j5H5sDULRjQTwexxhT81elsojXnhnmnV0T63wX+U5hafDjkJdTN3rgQn5Nst/vJ5FIcNNNNzX0NZVSqtFK1c5C6frZ7HMM6aTp3IVHc5vvNA4/bApdAod1CYd1Z27X2Yorm0R/94mXufqedVrLWwNdsVWT3vyPzWF4/Q58/2cZM09sfG9AqwMRru/+fNH7582dB/8EGLj0Oxey5n/+tqYWZeV4PB4GBwdZujTdwcHn8+Hz+Ww5t1JKtUqpfrDlVnILnxM8/yTO6J3BybOm8/DGEQQ49bieqluSFaODGOqnia2a9KxM57KTHQMRus5KlyusC2+suUVZOf39/Xg8HiKRCAMDA3i9XlvPr5RSrVCqlVi5hLJc+zG7x+vqIIb6aWKr2loz6l7rVTj4wQ7us+ax7elErkXZtqdrH4lbSiAQIBqNAukVXKWU6gTF+sFWSiiLPacRq6tO6OHb7jSxVW3NSjuvVnvm3g22r6pOyfTebXSLsmzrNKWU6mS1JJSNWl3VQQz10c1jSjVQqQ1hpQSDQUSEWCxW9rjUzvSGN/eZcyFT1WDGdXqqUkrVqtqhENlk+KvLTuZn154NoMMbHEBXbJVqkNxo3OWLLQ1W6O/vZ9WqVaxcubLipf9dr6R38t77mQdy9zW6BZhSSqmJ7bjyW4LZWW+raqMrtko1SHY07oJz5lVcVY3H44RCIVasWEEwGCSZTNLf31/65Jmy4r6vnFO2RZlSSin7lGrHVa6NmGouXbFVqkGKjcYNf+7Bosf29/fjcrkIhULE43H8fj/JZLLkONsTzu1l29MJTlq6gI+cf0JdcbbDBjyllGq2YoMSSm0Y024GzqGJrVINssh3Cif1pUf7Dj3wJ4bX70ivqv5y4rEul4tEIoHb7SaZTJJKpbjvvvtKnrtrqn3zdLMb8LITzvJ1T+vW8galVEexMtlrQ2IPV/14XS5R/fkXzy6bwFaz+UwnizWWJrZKNcgHZx7JB2ceCVTulRsMBnG5XCSTSW699Vb6+voIBAKln5BX2rA7fmg7sVqHNJRMxJVSqkNYrYXN9qcFODA6ziMbR3L1tKUSWCvdDLQWt/E0sVXKAVwuF8FgMFdXW2l87StrXwXSpQ0zFx5lSzuxahJxpZRqR1Z7zxbuhsj/vp52XDpZrPF085hSDhKJROjr66s4vja7YeyMz/xNVe3ElFJqMsuWEnQJZWthL188l6ldggBTu4TLF89t6uur2kk1oz2XLFlihoaGGhiOUu3B7XaTSNQ+7au3t7fm4RIigjGGsdFxHvzKr/jY1R4+cdnHeX33zpbE0y5EZIMxZkmr42gm/TdbqYms1rg2qhZWa2ytqfXfbC1FUKoGiUSCaj4UFqqnC0FWfjux13fvbHk8SinVDqyWEjRqAphOFmssLUVQqk0Vayem2o+IfEdEXhKRP4nIGhFxlTjuQhF5WUS2isjXmh2nUkq1A01slWpTi3yncNkdF3HZHRe1OhRVnyeB04wx/wV4BfjfhQeISBdwJ3AR8FHgKhH5aFOjVEqpNqCJrVI2CwQC5Vt1ZYhITV/H9BwLpLsYzDzxw8w8sfzmg3g8jtvttuEnU41gjHnCGDOa+XYdUGyXypnAVmPMq8aYA8AvgPI7DJVSahLSGlulbBQOh4lEIkSj0YrHZmtin3/8ZWJrXuAI1zR6Zn+IPw++BsC1D13F/uRf2Z/8K/B+b9lqV2gDgQB+v7+6H0S1yj8ADxS5fw6wPe/7EeCspkSklFJtRFdslbJRthdtIpEgmUxaek5y517e2fUuu155K5fUQrpHbf6q7EXfWMqXBj5XcYU2XygUAsj1x/V4PAwMDFj/gZQtROQpEdlS5MuXd8zNwCjws2KnKHJf0d2CInKdiAyJyNDu3bvt+QGUUqpN6IqtUjbJJo9er5cFCxawadMmEolExZ60i3ynMHfRLN7be4AXnvwzb7yQTkbsmPoViURyq7XBYJBkMlkxHmU/Y8z55R4XkeXAJcB5pnh7ixEgv1nxXKBofzdjzN3A3ZBu91VTwEop1aaq6mMrIruB2pt3KtU5zij8u5NNIP1+P9dccw09PT34/X7C4fCEJ2faa21oZDzRaJSlS9MTxPr6+hgcHGTt2rV4vd5mxONEvcaYma0OopCIXAh8D+gzxhRdYhWRbtIby84DdgDrgc8aY56vcG67/80+GnjTxvPVy0nxaCylOSkeJ8UCzorHSbEAnGyMmV7tk6pasXXi/xSUagURmfCJMJlMMjg4mLvUHwwGCQaDJc9h57CAYvFAOqEFiMVi9PX1FU1qGxGPqsoPgcOBJzMfMNYZY64XkeOAe4wxFxtjRkXky8DvgC7g3kpJLdj/b7aIDDnp98RJ8WgspTkpHifFAs6Kx0mxQDqeWp6npQhK2SQUChGNRolEIrhcrlx9a6t4vV6i0SjJZBK3293yeFRxxpiFJe7fCVyc9/3jwOPNiksppdqRbh5TyiZerzeXPHo8ntYGkycWi+H3+8uu1iqllFKdQFdslbJZLBZrdQiH8Hq9mtQqu9zd6gAKOCkejaU0J8XjpFjAWfE4KRaoMZ6qNo8ppdJEpMTmdcvPxxhTrIVTR8SjlFJKtYKWIiillFJKqY6gia1SSimllOoImtgqVYNp06a9ISLU+jVt2rQ3Ojke1RlE5Dsi8pKI/ElE1oiIq8RxF4rIyyKyVUS+1qBYrhCR50VkXERKtiQSkbiIPCcisVrbBdkcTzPem6NE5EkR+XPmzxkljhvLvC8xEXm0AXGU/VlF5HAReSDz+LMi4rY7hipiCYjI7rz349oGxnKviOwSkS0lHhcR+X4m1j+JyOIWxuIVkVTe+3JLA2OZJyJrReTFzN+lG4scU/17Y4zRL/3SL/3SL/2a8AUsA7ozt78FfKvIMV3ANuB4YCqwGfhoA2I5BTgZiAJLyhwXB45uwntTMZ4mvjffBr6Wuf21Yv+dMo+908D3o+LPCvw34EeZ21cCD7QwlgDww0b/nmRe62+BxcCWEo9fDPyG9Ojss4FnWxiLF3isSe/LbGBx5vZ00kNoCv87Vf3e6IqtUkqpoowxTxhjRjPfriM9yrfQmcBWY8yrxpgDwC8A2+c2G2NeNMa8bPd5a2Uxnqa8N5lzrs7cXg34G/AalVj5WfPjfAg4T0QasWm1We+7JcaYPwBvlznEB/zEpK0DXCIyu0WxNI0x5nVjzMbM7b3Ai8CcgsOqfm80sVVKKWXFP5BeOSk0B9ie9/0IE//n1EwGeEJENojIdS2MA5r33hxrjHkd0skCcEyJ46aJyJCIrBMRu5NfKz9r7pjMB6YU8GGb47AaC8DlmcvbD4nIvAbEYZXT/g6dIyKbReQ3InJqM14wU5ZyOvBswUNVvzfax1YppSYxEXkKmFXkoZuNMQOZY24GRoGfFTtFkftq6j1nJRYLzjXG7BSRY0iPKX4ps0rVinia8t5UcZr5mffmeOD3IvKcMWZbLfEUYeVnte39sCGWXwE/N8a8JyLXk15J/rsGxGJFs94XKzYCvcaYd0TkYiACnNjIFxSRDwIPA0FjzF8KHy7ylLLvjSa2Sik1iRljzi/3uIgsBy4BzjOZorcCI0D+atdcYGcjYrF4jp2ZP3eJyBrSl6VrSmxtiKcp742IvCEis40xr2cu0+4qcY7se/OqiERJr5DZldha+Vmzx4yISDfQQ2Mui1eMxRjzVt63PyZdQ94qtv2e1Cs/sTTGPC4i/yoiRxtj3mzE64nIYaST2p8ZYx4pckjV742WIiillCpKRC4E/hfwKWPMvhKHrQdOFJEFIjKV9KYg23fcWyEiR4rI9Oxt0pvfiu7+bpJmvTePAsszt5cDE1aTRWSGiByeuX00cC7wgo0xWPlZ8+P8NPD7Eh+WGh5LQZ3mp0jXd7bKo8DfZzoAnA2ksqUlzSYis7J1zyJyJuk88a3yz6r5tQT4N+BFY8z3ShxW9XujK7ZKKaVK+SFwOOlL+gDrjDHXi8hxwD3GmIuNMaMi8mXgd6R3o99rjHne7kBE5FLgB8BM4NciEjPGXJAfC3AssCYTazdwvzHmt3bHYjWeZr03wO3AL0XkC8AwcEUmxiXA9caYa0l3cbhLRMZJJyu3G2NsS2xL/awichswZIx5lHQS8+8ispX0Su2Vdr1+DbH8o4h8inSJzdukuyQ0hIj8nHS3gaNFZARYARyWifVHwOOkd/9vBfYB17Qwlk8D/1VERoH9wJUN+vAB6Q9XnweeE5HsLPqvA/Pz4qn6vdGRukoppZRSqiNoKYJSSimllOoImtgqpZRSSqmOoImtUkoppZTqCJrYKqWUUkqpjqCJrVJKKaWU6gia2CqllFJKqY6gia1SSimllOoI/x+OVBOBCWL9ngAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X_test_tsne2 = ptsne.transform(X_test)\n", - "plot_embedding(X_test_tsne2, y_test, imgs_test, \"Predictable t-SNE on new digits on test database\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By default, the output data is normalized to get comparable results over multiple tries such as the *loss* computed between the normalized output of *t-SNE* and their approximation." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.024681568435970355" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ptsne.loss_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Repeatable t-SNE with another predictor\n", - "\n", - "The predictor is a [MLPRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "MLPRegressor(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,\n", - " beta_2=0.999, early_stopping=False, epsilon=1e-08,\n", - " hidden_layer_sizes=(100,), learning_rate='constant',\n", - " learning_rate_init=0.001, max_iter=200, momentum=0.9,\n", - " n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,\n", - " random_state=None, shuffle=True, solver='adam', tol=0.0001,\n", - " validation_fraction=0.1, verbose=False, warm_start=False)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ptsne.estimator_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's replace it with a [KNeighborsRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html) and a normalizer [StandardScaler](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "PredictableTSNE(e_algorithm='auto', e_leaf_size=30, e_metric='minkowski',\n", - " e_metric_params=None, e_n_jobs=None, e_n_neighbors=5, e_p=2,\n", - " e_weights='uniform', n_copy=True, n_with_mean=True,\n", - " n_with_std=True, t_angle=0.5, t_early_exaggeration=12.0,\n", - " t_init='random', t_learning_rate=200.0, t_method='barnes_hut',\n", - " t_metric='euclidean', t_min_grad_norm=1e-07, t_n_components=2,\n", - " t_n_iter=1000, t_n_iter_without_progress=300, t_perplexity=30.0,\n", - " t_random_state=None, t_verbose=0)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.neighbors import KNeighborsRegressor\n", - "from sklearn.preprocessing import StandardScaler\n", - "ptsne_knn = PredictableTSNE(normalizer=StandardScaler(),\n", - " estimator=KNeighborsRegressor())\n", - "ptsne_knn.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAEXCAYAAAC+gsx+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xl8VNX5+PHPM9nYMxGQnYy4UAUlGhC0rYQWtagtsdb92xr9uVWtxm4uVQh0+WnVGvrTVtHW2G/FrWqwttalElwqKIFEQMRizISwyZKJ7Fnm/P64907uTGYm+/68X695ZWbuuWfOzGh4cu5zniPGGJRSSimllOqJPF09AKWUUkoppVpLg1mllFJKKdVjaTCrlFJKKaV6LA1mlVJKKaVUj6XBrFJKKaWU6rE0mFVKKaWUUj2WBrPdgIj4RMSISKL9+FURuaIDXqdARH4V57gRkWPa+3W7IxH5oYjsEJF9IjK0Ge1zROTdDhpLlohUuh6vF5GsZp7b7LZKKaVUb6TBbDOJSLmIHLSDnx0i8oSIDOqI1zLGzDHGPNnMMc3uiDG0RHMDPRG5U0Q+tz/DShF51nWsSEQOicg413OzRaTc9dj9HTi3h1ox3iTgd8BZxphBxpjdEcfD/rjobMaYScaYopa2FZE8EflrR45NKaWU6m40mG2ZbxtjBgGnANOAuyIbiEU/1wj2TPP3gdn2ZzgV+HdEs/3A3U109W07AHVuN7ViOCOAfsD6VpyrlFJKqW5Eg65WMMZsAV4FJkNoVvHXIvIecACYICKpIvInEdkmIltE5FcikmC3TxCR+0Vkl4iUAee6+7f7u9r1+BoR2SAie0XkYxE5RUT+FxgP/N2eofy53fZ5EdkuItUi8raITIoY/jARecPua7mIpEd7jyKSYo+xwp6JfkRE+kdpdzzwCHCaPY5AjI9tGvCaMeYz+zPcboxZHNHm98Cl7ZHqYI8/X0S22rd8+7njgI12s4CIvBXl9Lddx/eJyGmufu8XkSp7hnmO6/mY33eUsfW3Uz6qRORjrM/GfTw04263fdJuu0FEfh6RklBuz2B/C7gTuNgec6l9PEdEyuzv+3MRubzFH6ZSSinVjWkw2wr2pfBzgDWup78PXAsMBvzAk0AdcAxwMnAW4ASo1wDn2c9PBb4X57UuBPKAHwBDgO8Au40x3wcqaJip/K19yqvAscCRwGrgqYguLwd+CQwDSqIcd9wLHAdk2O9hDDAvspExZgNwPfC+PQ5vjP5WAD8QkZ+JyNQYgd4W4DH7/bbVL4AZ9vinAKcCdxljPgWcAN9rjPlGlHPPcB0fZIx53348HSsQHgb8FviTiIh9LN73HWk+cLR9OxuIlx89H/ABE4Azgf+J1sgY8y/gN8Cz9piniMhArD8Q5hhjBgOnY33nSimlVK+hwWzLFNozj+8Cy7GCB0eBMWa9MaYOOAKYA+QaY/YbY74AHgQusdteBOQbYzYbY/YA/zfOa14N/NYY86GxbDLG+GM1Nsb82Riz1xhzGCsonCIiqa4m/zDGvG0f/wXWjOo4dx92gHYNcKsxZo8xZq/9Xi+hlYwxfwV+hBW8LQe+EJHbozT9v8C3o8woOwpFJOC6XROj3eXAQmPMF8aYncACrD842sJvjHnMGFOPFbyOAkaIyAjif9+RLgJ+bX+2m7ECzlguAn5jjKkyxlQ20TaaIDBZRPobY7YZYzS1QimlVK/SJQtcerBsY8ybMY5tdt1PB5KAbQ0Td3hcbUZHtI8ZnALjgM+aMzh7tvPXwIXAcKxABqyZxOrIcRpj9onInijjGQ4MAIpd4xcg6mXzKOMYD3zsep1B9s+ngKfsBVjZ9v01xpjXXG132ou6FgJ/jNJ9vO/AbTThn6vffq4ttjt3jDEH7M9mENYfL/G+72hja+73H9k2Vp+NGGP2i8jFwE+xZpHfA35ijPmkuX0opZRS3Z3OzLYf47q/GTgMDDPGeO3bEGOMM9u4DStIdYyP0+9mrMvRTb0mwGXAXGA2kIp1eRqsQNThrhbgBGJbI/rZBRwEJrnGn+oEpU2NwxhT4V6k1aixMbXGmOeBj7DzjiPcB8wCMmO8XnNsxfqjwjGexu8zlsjPtSlNfd+RWvL9bwPGuh6Pi9WQKOM2xrxmjDkTaxb5E6w0DqWUUqrX0GC2AxhjtgGvAw+IyBAR8YjI0SIy027yHHCziIwVkTQg2uV2x+PAT0UkUyzHuBZt7cDKpXQMxgqqdmPNrP6Gxs4Rka+JSDJW7uxK+1K3e/xBrKDnQRE5EkBExojI2THGuAMYa/cZlb0Q6VwRGWx/HnOwcldXRrY1xgSAB4Cfx+qvGZ4G7hKR4SIyDCvft7llq3ZizWpPaKohNOv7jvQccIeIpInIWKz0i1jcbccA8ao37AB8YlfTEJERIvIdO3f2MLAPqG/Oe1JKKaV6Cg1mO84PgGSsy+1VwN+wZsfAChRfA0qxFmm9GKsTewbz18ASYC9QiDWbClZ+6V127uhPgb9gXbLeYr/uiihdLsFaVLQHa+Yz1ur224BNwAoR+RJ4E5gYo+1bWGWutovIrhhtvsRabV8BBLAWUP3QGBOrPu0iogdeTvUG5/ZSjPN/BazCmv1di/U5x9wwws0YcwDrM3/P/mxnNOO0eN93pAVY39PnWEHw/8bpdyFQabd90+73cIy2z9s/d4vIaqz/v3+CNSO9B5gJ3NCM96KUUkr1GGJMS6+oKqW6ioj8ELjEGBNr1lcppZTqU3RmVqluTERGichX7dSFiVgzrbFmo5VSSqk+R6sZKNW9JQOPAkdhpWc8A/yhS0eklFJKdSOaZqCUUkoppXosTTNQSimllFI9lgazbSAiWSJS2Y79+UTEiEiHpX+095i7iojcKSKPN7NtnojELMslIuUiMrv9RqeUUkqpztIrglm7bup/RKRaRPaIyHsiMs2ubRqr9FO3JyKTROR1EamyS0QVi8g5XT2u5ogMIO06tZ+IyO/terlFInLIvZWuiMwWkfLm9G+M+Y0x5uoOGHqHEZECEamxS4rtEZE3ROQrXT0upZRSqifr8cGsiAwBXgH+H1b91TFYdTxj1eLsFpo5+/p34A1gBHAkcDNWvdYuETlmeya5vBnnpQNvAy8bY242DYna+4G7232gXaSZ3+lv7V3RxmDVA/5TF46lw3T16yullOo7enwwCxwHYIx52hhTb4w5aIx5HagFHgFOs2fCAgD2LlRrRORLEdksInlOR67L/FeISIWI7BKRX7iO97dn16pE5GNgmnsgInK7iHwmIntF5GMROd91LMeeMX5QRPYAeSKSICL3269TBpzraj8MawX7Y8aYGvv2nnuTARGZKyIl9nv5TES+ZT9/pYhssMdRJiLXxfrwRGS0iLwgIjtF5HMRudl1LE9E/iYif7U3Tshp0Tdj9XE0ViC7xBgTuaPX74FLReSYVo7NPfP7AxHxi8huEbk7SupAsoj8xf5M1ovI1IiXm2Z/Z1Ui8oSI9HP1fY2IbLJnU18WkdGuY0ZEbhSR/wL/tWedHxSRL8S6UvCRiDTastcYcxBrd6+MiPd8lf3dVYnIa9Kw2xsicpaIbLT7/YOILBeRq+1jjf77itdfvHGKyDn2Z7FXRLaItSFHiz+LaN+pUkop1d56QzD7KVAvIk+KyByxtofFGLMBuB543xgzyBjjtdvvx9qtyYsVPP5QRLIj+vwa1m5X3wTmicjx9vPzgaPt29nAFRHnfQZ8HUjFmh3+q4i4d4GaDpRhzbL+GrgGOA84GZgKfM/VdjfWDlx/FZFsERnhfiERORVrx6+f2e/lDKDcPvyF3e8Q4EqsbWlPifzgxNr29O9YO5GNsd9vroRvWzsXa9cpL/BUZB9NmIAVyD5qjIk2A7sFaze0vFaOzWl7Ala5qsuxdt1Ktc9x+w5WWSsv8DLwUMTxy7G+06Ox/kC6y+77G1g7rV1k9+23+3HLxvpuTwDOwvoujrNf62Ks7zJyzAOBS7G+Y+e5bKxd0r4LDAfewdqW1/nj5m/AHcBQYCNwekS3Yf99xeuviXH+CbjOGDMYmIy1w1trPgullFKq4xljevwNOB4owNr2sw4rWBmBNZP4bhPn5gMP2vd9gAHGuo5/gLXjEliBwrdcx64FKuP0XQLMte/nABURx98Crnc9Pst+/UT78VisoOszIIgVGB5rH3vUGXczPp9C4Bb7fpYzZqygI3JMdwBP2PfzgLfj9OsDymMcy8NKiQgAR0c5XgRcjRVkVQOTgNlOf80c21/t+/OAp13tBgA1wGxX2zddx08ADroel0d8D+cAn9n3/4SVGuAcG4Q16++zHxvgG67j38D6A2sG4IkYfwFwyP5Mglhb1J7kOv4q8H9cjz3AASAd6w+w913HBNgMXB3nv694/cUbZwVwHTAk4vkWfRZ605ve9KY3vXXGrTfMzGKM2WCMyTHGjMWaSRqNFaQ2IiLTRWSZfem6Gmv2dlhEs+2u+wew/tHG7nez65g/ou8fiHXZPyBWWsPkiL7d5zbZnzGm0hhzkzHmaKwAZD/WbCzAOKwgN9p7nCMiK+xLwQGs4CzyPWL3OdoZr932Tqw/BKKOWUQuc7X9CBjvPl9Exruavwz8GXjLfbk84j3uxArYF7ZibI6wz9EYc4DGs6GR32k/Cc/rjPwenMvno3F9L8aYfXbf7plf92u/Zb+fh4EdIrJYrLxux/3GukrgAw5iXQFwv+dFrve7BytoHRPlPRqsP97cIv/7itlfE+O8AOu/Gb+dynBaaz4LpZRSqjP0imDWzRjzCdYM2GSsmaJIS7CCrHHGmFSsvFppZvfbsIJIRyhws4O1x4CbgKF2wLIuou/I8cTsL5IxZjNW4OHkX27GuiQeRkRSgBeA+4ER9jj+SfT3uBn43Bjjdd0GG2PcFRPCxmyMWeK0BU7Cmg10n18R0f7HWAv03hKRyEv/jvuAWUBmC8fm2IY1i+18Bv2xLsW3ROT3sNW+vxUrKHT6Hmj3vcXVPvIz+r0xJhNrtvk4rFQQItpUALdgBZv97ac3Y13ed7/n/saY/0R5j+J+HG0cTfQXc5zGmA+NMXOx0hUKsXJ7W/VZKKWUUh2txwezIvIVEfmJiIy1H4/DykVcAewAxopIsuuUwcAeY8whO+/0sha83HPAHSKSZr/ej1zHBmL9Q77THseVNASe8fq7WUTG2rm+t7veV5qILBCRY0TEY+dMXmW/L7Au+V4pIt+0j48Rq8xTMpBij6NOROZgpS9E8wHwpYjcJtbitgQRmSwi02K0b62bsFIq/h2Z+wtgjAkADwDuBWItGdvfgG+LyOn2d72A5v+B4rjR/h6OwJoBftZ+fgnW55xh/6HwG2ClMaY8WidilYSbLiJJWDPph4D6aG2NMW9gBYjX2k89gvXf1yS7r1QRudA+9g/gRDt/OhG4ERjZxHuK2V+scYpIsohcLiKpxpharFQRZ/wt+iyUUkqpztDjg1lgL1Z+5UoR2Y8V7K0DfoIVQK0HtovILrv9DcBCEdmLlWv5XOMuY1qAdZn1c+B14H+dA8aYj7ECsvexgugTgfciO9gyZtyNW8aMq9gyZtyX5aPG3HPFgIHp/UQ+BVYDL7qa1mBdin4TK6BYh1VuLMd+vQ+wF3dh5ZwuB9KNMXuxSng9B1RhBesvR3szxph64NtYK+o/B3YBj2MtoGo39iXx67AC1DftwDzSIlxBX0vGZoxZj/WHxTNYM5h7sRbBtaQ82xKs77TMvv3K7vvfWOXDXrD7Phq4JE4/Q7Bm6Kuw/lvZjTVLHst9wM9FJMUY8xJwL/CMWNUj1gFz7HHsAi4Efmv3eQKwKt57jNdfE+P8PlBun3M98D+t/CyUUkqpDidWnKE6ypYx424EbsOaMf071qKn32MFnGAFcbcAF4zZsvnFqJ2oFhGRQViLrI41xnze1ePpCHa1h0rgcmPMsq4ej1JKKdVVesPMbLdkz8Buw1pkcyTQDyuQhYbZtP1Amv1zbqcPshcRkW+LyAA7j/N+YC0Npcp6BRE5W0S89iX+O7FSKVY0cZpSSinVq2kw2wG2jBmXiRXEOiu/U7AWpTlucN0fAewj+ip91XxzsfJPtwLHYpVT622XHU7DqmCxCysFI9tYmy8opZRSfZYGsx3jO/ZPZxcpZwbWscr+ORCr7uuRwKgtY8a1dNGSshljrrZX66caY75pjNnY1WNqb8aYPGPMULuqw3RjzMquHpNSSinV1TSY7RjOLKuzoGk/4TOvn7ruV2NdLj4JOB+llFJKKdVsLVoANmzYMOPz+TpuNJ1o48aN7Nu3r9XnDxo0iIkTJ4Y9d87+A3x3334GBYP0B5b1S2HWocPUAp8mJjKprg6AXSKkGkMS1vZJhQMGcN7Bg7zfL4VF3nYtJKCUshUXF+8yxgzv6nF0pt70O1sp1be05Hd2i4LZqVOnmlWrVjXdsAcQEdqSUhl5fs1HH7FzzrkM+cWdmEOH2PvA70iZlcXhZUVWg3794NAhAEZ+VMKXv72PA399in7nn8/Qh37PtoxTSJp0AsOe+mtb3pZSKgYRKTbGTO3qcXSm3vQ7WynVt7Tkd7amGbSTQ6+/AcCASy5m8K25kJREzYqVyMCByKBBeAYNov9FVv37A88+R3CXVfa231dPt/YW3rcPz7A+NWmklFJKKdVmiU03UfHsKyhg38N/pH7PHgBkwABEBI/XS9KkE+h35mz2PfxHTG0tiaNHM2ThAvb/8RGCBw4AUL9nDwdffAlz8CD9z5zdlW9FKaWUUqrH0ZnZCLm5uXi9XgoKCppsW/PRR1T/4m4kdUgohWDb0cey5ehjCe7Zg/EkUP2Luxl4ZQ6pd9/F3vxFJI4axchVHzD643Wk/nIhB54ooHrhLxn0o5vod+45gBUgb582nW0Zp/DlffdjjIn6nFJKKaVUX6czsy7l5eUsWrQIgCuvvJJAIEBubm7M9k5qQd2GTyIOWIGtCQQAK/XAk5ZG4PY7OPja69R/sSM0Wzvw8ssY/NOfIGJV5ar56CNOuPFGNtszt5SugZ//LLz/aM+5pKenU15e3ty3rZRSSinVY2kw61JeXk56ejqLFi3iiSeeoKCgIG4wW79zV+j+aYE9DQGoY2ul9XPo0Ibnfv9peBs7MHUC0EOvv8HmAwfavDhNKaWUUqov0DQDl5KSEnw+H3PnzqWwsBCv10tRUVHM9gnDh4XuOwFoa29+v7VZmDtAVkoppZRS8enMrEsgEMDr9YYeZ2dnU11dHbP93sWPtfsY3AGyUkqp7qfYX8ULqysR4LunjCUzPa3Jc5RSHUdnZl2ysrIoLy8nEAgQCAQoKSmhqqoq9gn790M7XtL/8r77SfnmN2Iez83NJSMjAxFh6dKl7fa6SimlYiv2V/Hwsk0U+6so9ldx6eL3WbKygqdWVnDpYyso9sf5d0Ip1eE0mHXx+XyUlpbi8/nw+XwUFRWRnZ0d/6QmclvLysrIzMzk3nvvbfL19+YvIrhte9RjJSUlLFq0iOzsbJYtW8b8+fOb7E8p1TOIyDgRWSYiG0RkvYjcEqWNiMjvRWSTiHwkIqd0xVj7kmJ/Fb94aS0XP/of7n9tI5cufp8XVldSW9/we7+2LsiKst1dOEqllAazLj6fLxQkZmVlUVBQEJZ20BpHH300ZWVl3H777SxevDh+45QU9j/zbNRDJSUlXHHFFeTm5pKVlRWaRW4Nn8+HiLT6pttjKtXu6oCfGGOOB2YAN4rICRFt5gDH2rdrgT927hD7lmJ/FZc/voKnVlZQFwQD1NQbNu3Yi8d1QS4p0cOMCUNj9qOU6ngazEbIy8sjEAhQWFhIVlZW807yRP8YFy9ezIUXXsjzzz/PZ599xm233RY/bQGo27Qp6vNpaWnk5OSEguvs7Oxm1cKNxu/3t8tiNaVU+zDGbDPGrLbv7wU2AGMims0F/mIsKwCviIzq5KH2GSvKdlNTF2z0fHFFAAMkeIRTfWlcmDm28wenlAqjwWx7CDb+hQdWisGECROYPXs2EyZM4LrrruPNN9+M3c/hw5gYgfGaNWvaY6RKqW5ORHzAycDKiENjgM2ux5U0DngRkWtFZJWIrNq5c2dHDbPXmzFhKMmJntA/koIVwBpjCBowQcPqigBPf1DB5Y9r3qxSXUmD2TaQgQOtO0lJUY+npYWvcJ09ezbFxcVx+wx+/nnU530+X6O0goC9KYNSqncQkUHAC0CuMebLyMNRTmmUtG+MWWyMmWqMmTp8+PCOGGav5iz2Anjq6hn85OyJ/Ob8E/np2RP55dzJJCd6SBDweISgHdhq3qxSXUtLc7XBoGuuRo44gv1/fAT8jYPQCy+8kMzMTO655x4AqqqqmDBhQqteKycnh4yMDLKysvD5fJSUlLQ5n9etvLwcn88XSrPIz89vt76VUk0TkSSsQPYpY8yLUZpUAuNcj8cCWztjbL1Bsb+KFWW7mTFhaMxSWk6ebE1dkORED09dPYMbZx0T1mbiyMGsKNtN2oBkFr6yntq6oObNKtXF+mwwm56e3qadssYNGcLe/EV40tIgMfrHOGHCBC666KJQNYNrr702fppBE7Kzs8nJySEQCFBeXk5JSUmr+4rW94IFCygoKCAnJ4f8/Py4u58ppdqPWL+M/gRsMMb8Lkazl4GbROQZYDpQbYzZ1llj7MmiBanugNYJdLcEDlJTFwybbY0MfDPT00LPOYFtvABZKdXx+mww61yy//L+B9j7YD4jPyph9zXXUrvyAxImTKC+rKxZ/SSMHcuga66G710Q9fg999xDZmYmZ555Jtdeey2ZmZmtHnNeXl6rz22KM8tbVFSEz+fTQFapzvVV4PvAWhFx/kq9ExgPYIx5BPgncA6wCTgAXNkF4+yRnMVcQQOHa4O8sLoyFHy6A10RCNqJGyKEZltjzeq6A1u3yPbNmRVWSrVenw1mHYdXrQJg+0kZDbmvJvqCrhBnRtcYZMhg+n/3/JhN09LSKGtmYNyVnHq6TtmtnJwcli5dyty5c7twVEr1DcaYd4meE+tuY4AbO2dEvcuMCUNJ9Ag19QYD/K24kgvsnbvcga47A7kuCBu37wVoNKsLxAxOI2eB5503iYWvrI85K6yUars+vQBs/wsvUPPOu3iGD7cC1NpaAOo/L292HwkjRlC7dm0HjbDzZGVl8dJLL4Uee73esMdKKdWTHT9qSOh+fX3Dgi2nakE0z35YQf6bn3K4tiH14IXVlVz++AoeeH1j1CoG7uC4ti7Isx9WhJ2/omx32I5iSqm269PB7IGnngYguHMng++4vfknGhPa+evk558jZcoUgB69AYGzqMzh9XpbvSmDUkp1F85M6UeV1UBDiS0nhSAzPY15502KOi2+trKad/67C2Ofl5ToYdfew42CU7fIkl7rtn4ZmvBN8AhpA5LjBsNKqZbrM2kGPp8vfrH/m+JfvRs3YADve49o9HzFjh2YJra0jSdyEVpC+njGBfa0aXFaenp6i8/xer0sWLCAjIwMFixYwLJly7T0l1Kqx3NmSp3f0gYaUsWwgt1nP6xoXOMMiEw4+9akkfxz7baG4DShcRUDJziet3Qd9UET+vdBgAunjmPd1moO11rjiczfVUq1Tp8JZp1dr1pLRGDUGDh4EEQYeOMNJBx5JFz9f9o8NhFh3IABACRMnsz7/gqIEjgDeCZMIFhWRsoZZ3D47bcZXbYJSUlhW8YpJE06gWFP/bXV45g7dy7Lli0L5c8++OCDre5LKaW6A2em1AkgITzN4NLF71NT3/S/DQZYWrI11IcAx48czMbtexvlz1YdqCFoTFjblCQPg1MSeezdz8MCa3f+rlKqdfpMMNsuamqsnx4P+x96uN26rRwzLpS2YLbviNvW068fZsAA6u2dfYL79uFJTsbs24dnWNsLpOfn52uNWaVUr5GZnsZTV8/ghdWV/K24kvr6hrqwK8p2U9uMQNZhIu6XVlZTWrk2FKw6i7vSBiTjEQFjSEwQLpw6jkmjU7nbnq11cwJrDWaVaj0NZluivh4ZMhjzpbXCVbxe2FoZs7nP58Pn81FYWBh/g4OEBKirA6C2iR3C6rZthUOHqNu4EYDtM06n39e/jjl4kP5nzm7hG1JKqd7NKYt1wSljmTw6lWc/rGDEkH6ANWvrEXDHswl2eS53yOkRe6lEjNcwQI0rf3bhK+sJGoPHI+R9ZzKXTR/PtX9Z1SiQ9Qi64YJS7aBPLwCDltdVdQJZABMnp7SoqIhAIEB2dnaTfSd/9auh+57Roxs38Li+pqqA9ThoZXOJCIdee41+58yh37nnNOs9KKVUb+WuFOAs/nrg9Y1csvh97nppLaWV1bz+8Q4ufWwFAL/MPpEEsVIBkhOEX2afyKXTx4e2re2X5OFXrudirmYwhGZ7nWoGxhiqDtRQ7K/i3xvCr7pN86Xxk7MmtmupLq2SoPqqPj8zm5ubi9/vZ9GiRQQCAQoKCpp/sif63wLl5eXMmjWL1NRUjjrqKAoLC0PbxUZTs3w5iV/5CnWffEJw61YkLQ1T5fplFIxYhmDP4iKCqauzdiDrP6BNi8aUUqqni6zxesEpY0OBZTAincCpRHDjrGOi7uR1wSljoz734upKnvmggsjsBAMs/Pt6jho20EoxwJCU6CFtQDL5b35KMGL29/Y5x7drakFTu5wp1Zv16WC2qKiI0tJSli1bRnV1NdnZ2WRlZZGTk9O8DpxNFiIUFhYChKoBPPHEE5SWlsYtw1X3ySdWUFpfHx7IRuHsUCb9+5Mwfjx1n3xC3Scb2FdQwL6H/4iprWXg5Zcx+Kc/iRrgtnUr39ZUS1BKqY4WWeP10x17Y7ZNSBC2Bg5S7K+KupNXvOcmjU7l7sK1YQFtQw6tVQIs0SPknOZj4SvrQ4vPnLJgC+dObvdAM/K9ax6u6kv6fDCbnp5OVlYWgUCA1NRU0tJa8D+/syAswlFHHcXMmTNDj52+m1RXB4MHw/79JJ10ErUff9zwGikp1qYOwSAer5d6wNTXkzjpBGtGd/ceqn9xN0N+cScJI0ZQdfMtJE2aRP9z5jR6Ga0fq5TqjZzKBbX21rQflseeGKivNzz9QQUvrK5k3nmTqDpQEzYLG28L2sumj2fiyME8svwz3vrki0a5sAD1QcObG3aEVVEQgYXaFxYWAAAgAElEQVRzrRza9uZ+75qHq/qaPh3MumvPer1efD5f3KAz6eSTqV2zxlqwVV8fqkAQaebMmVxxxRWhx/FSDNwG/PB6DhY8iUlKwuNNZfhLL7Dz3G+HBagAZv8+64TDh0kYYo/XTj0YcMnFeNLSCNx+Bwdfez1qMKuUUr3Vd08ZiwDrtjTMkkZjsH6FH64NMm/pOoLGhG1X61yyT0zw8L3MsVHLZ2WM8zJr4pEUbfyC1z/e0aj/TTv3N3rRqgPRJ0HayqnaECsAV6o36/PBbGpqaihXtrS0lIyMjJjtj3zlZfb9+Qn2/cG6lD/g0ksgys5hXq+XnJwcCgoKCAQCBAKBZgWzSWPHceDgQUhOxjNsOMkZGaT+cmHo9RKPOYa6zz6jbuOn1gn9+rF/6VJITESGDIZdu/AMHGjtLjZwIMFdO1v70SilVI9S7K/i0sdWhGYmrzrdFzeYdYhYs6gGqKkNkv/mp4w/YkDokn1NXZCnV1bw4urKUB6qOz810WOV3jrj2GF8tKUab/8k/LsPRK18kJxkzZjGm/Vti2ipEUr1BX0+mAXIyMjA7/fz4IMPxi+hBQy66koGXXVlwxMxtsHNy8sjKyuL0tJS5s+fH7fPsU55rysbZnP5fb51i2Ncaiqf/PbPVkrB8SdQX/Y5wX37OLBkCcFduzj8/gq+vO/+mLmzSinVW7y4upKaOmuxbE1dkLJd+5nmS4ubapAgcM3XJ1Dwfjk1tUGCwHubdrHSIyQmWJfsDdYsqzsPdUXZ7lD6QE294amVFaE+AwdqSUwQ6iJWiE0Zm8q8b08C0IVaSrWzPh/MFhYWkpub26wSWi3h9XopKSlpVtvW7kwmIlQv/CWDfnQT/c4+m0P/+Ad78xex/89PADDwssvYm78oZu6sUkr1FpG/Rd/csAOPp+GPeA/h29MeM3wg935vCpnpaZw5aST5b37Ke5t2ETTWTO3Fp45DgOdXbaY+aEjwNCwYSxuQHLPmLMCkUUMYMaRfWOrBxdPGk5mexsPLNulCLaXaWZ+vM5uVlUVJSUmP3fVqxJpiUm+/jZSTrZSEA889D8DAa65myMI8ZMAADr72ehePUimlOtYFp4wlwXUBKmisRV5gVRGYfcIIkhMkVE/WCWTBujyfO/u4UG3ZJLus16/PP5Gnrz2Ni08djwGWrKzg0sdWsH5rNZ44F7tOmzA0LNgV4NV12yj2V4UWajmvowu1lGq7Ph/M9nTVv/p16P6gq66kf3Y2AKl33I7H49HcWaVUn5CZnsYvs08MCzKdgDIpQbhu5tE8fe1p/PTsiTx97WlkpqexZGUF3//TSpasrAgtoPpxxEYGmelpCFBbb0I7ff13x96GgDRBGDkkJfSaApTt2s8brllZg5W+cPnj1kYN0V5HKdV6Gsx2Q/n5+fh8PkSEjIyMUL3aaA48URCWppAwfBgAwX37MMZg9u3DM2x4h49ZKaW62sSRg6Pu0FVvYOP2vaFFVwAXPfIf7nxpLe/8dxd3vrSWe/65gcz0NG6cdUxYgFnsr2LdlvCFZB+UV3HU0IF88/gRCLDjy8OAtT1tSpKHHV8eajQGZzFZ/pvWAt7I11FKtZ4Gs23kbEDQ2lu0DQjy8vLwer2sWbMGIH4KRE0Nh179V+hhv9nfBODAs89x8MWXMAcP0v/M2e37ppVSqht6YXUlUUq+Uh80zFu6jgde38ilj63g4kf/wwcRC8MWv1PWaBvYJSsruPjR9/koSlWEDdv38uaGHdTZlRAAThyTylNXz+DiadHryAYNvPvfXVz86PsscS0aU0q1TZ8JZjsi6ASrhqwxJu6t+r77qRw9NvyWflTofDdnO93CwkIyMjLIttMG4nHnxDrlvPb/+YmGxWHnntO6D00p1SlE5M8i8oWIrItxPEtEqkWkxL7N6+wxdnfF/ir+VlwZdWGWRyBoTGjRVV2wcRtjrF203P3NW7ouLFiNFDSEzQSv2/olG7fv5bLp4znVFz7rOnJICtYmt1AXNNxVuFYDWqXaSZ8JZpsTdMa7tWXXLGe2NExtbcz21dXVobJhPp8vflUEkUY5sYOuupKRqz5gVOkaUm+/TctyKdX9FQDfaqLNO8aYDPu2sBPG1KOsKNtNXb0VpQpwqi+NKWNTOeuEEfwq+8SwRVeJUf7lS0kKX4y1omx32M5e0f6xTEoQvnn8iNBjZwa42F/FbXOOJznRYy04S/Rw8zePI8GV0Bs0hNoW+6t4eNmmRjPDSqnm6dOluTpLckYG/b77XQ69+GKTbUtKSpgyZUrocX5+PllZWbFPSEjQnFilejhjzNsi4uvqcfRkkdu53jbn+LCc1IkjB4flzL6wuhIBJo1ObbSVrdNfSpKHmtogHo/wja8cyZsbdoTSGI45chD3XnASAG998gV19oGgMawo282Ns47h6Wsa78h1V+HaUB9BY3hhdWWoRq7WnVWqdTSY7SRJ6eM5BJCSAocPx2w3a9asUKrB0qVLKS0tZcGCBbE7rqvTnFil+obTRKQU2Ar81BizvqsH1J00tZ1r5O5YTQWMkf0BvP3fnaFg+d4LTgr1sXDu5LAtcZ32ka952XQrl9bdVkDrzirVRhrMdpL6nbsAGL1hPXt+dDOH/vHPqO1SU1Oprq4mNzeXRYsWMXPmTObOnRuzX82JVapPWA2kG2P2icg5QCFwbLSGInItcC3A+PHRFyL1Vu29nWtkf7GC5cumjw+b+Y02hiUrK3h13TbmTB7Fs9ed1miW2AmSte6sUi0nLdl9aurUqWbVqlUdOJze68v7H2Dvg/mM/KgEzxFHsO3YiYz57L9Rd//Ky8tjwYIFzJw5k/z8fDIyMqL2KSKt3j1Mqb5GRIqNMVO7ehyx2GkGrxhjJjejbTkw1RizK147/Z3dPSxZWcGdL60NPf7N+SeGZmnBWmy2omw3aQOSo6Y8KNUXteR3ts7MdpJ+s7/J3gfzOfDscySMGIE5eDBm27y8PPLy8jpvcEqpbk1ERgI7jDFGRE7FWo+0u4nTVDtzgs7mBptO+9fXbw97/tkPK8KCWaevyx9fobmzSrWCBrOdxCmZte8Pf8TU1jLoRzfBHbd39bCUUt2AiDwNZAHDRKQSmA8kARhjHgG+B/xQROqAg8AlRi/LdKpifxWXP76Cw7VBEjzCwrmTwwLSWO1r6oKNtr79qLKaYn9VWLC6omy35s4q1UoazHaiQVddyaCrrmx4QoNZpRRgjLm0ieMPAQ910nBUFCvKdnO4NhiqE3vnS2v54PPd5F9ycqiNe+bWHZwKkNo/keqDdYBVa/beVzfw3PWnh86NrMagubNKNZ8Gs0oppVQTZkwYSoJHQiW4AApLtjJySD9uP+f4sJnY5EQP886bFBacRs6jb9q5L+xxU9UYlFKx9ZlNE7qjjtqVTCmlVPvKTE9j4dzGa/P+ZefDRqYJVB2o4amrZ/Djsyby1NUz+MrIwWHnHTN8UNTXuHHWMRrIKtVCOjPbhdqyq5hSSqnONXHkYI4fOZgN2/eGnvvWpJFA9DQBd2mv2+Ycz0WP/of6ICR4rMdKqfahwaxSSinVBHcaQYIHhg9KITtjDLefYwWlzdm04bnrTtc0AqU6gAazSimlVBPcaQQJwPdP83HjrGPC2jS1aUN7b+qglLJozqxSSinVBCeNIEHQagNKdTM6M6uUUko1QasNKNV9aTCrlFJKNYOmCSjVPWmagVIt4PP52lROzefzdfVbUEoppXoVnZlVqgX8fj9t2UVURJpupJRSSqlm05lZpZRSSinVY2kwq5RSSimleiwNZpVqBzk5OYgIXq+XQCDQPp3mSfht7bPt069SSinVi2jOrFLt4Mknn2TmzJnceuuteL3e+I3zIvJmr1sDozKit504F77+C+v+kZPaPlCllFKql9FgVqk2Ki8vByAjI4PU1NTmnXT27+CEC637D46L2cz3o3/h37201WNLT08PjU8ppZTqjTTNQKk2coLFRYsWMWvWLHw+X9MBZNECeHw6vPNr6/HZv2s49vVfwNUfAODffRhjTKtvfr+//d+wUkop1Y1oMKtUG2VkZHDFFVewbNkyqqqq8Pv98YPZcx6GK5fDtBtg1SPWc0ULGo6/8xt4Mqsjh6yUUkr1GppmoFQbeb1eCgoKgIZZ2pKSErKysqKfcOoNjfNmD1e7HhioPdDew1RKKaV6JQ1mlWoH+fn5BAKBUFAbM5AFeO/+Nr1WIBAgNzc3FDh7vV4KCwvb1KdSSvV2xf4qVpTtZsaEobotcS+jwaxS7cCZnc3KyiInJ4eMjBjVCQDWLmn8XKoPqsub9VoFBQUUFRWRk5MDoFvk9gIi8mfgPOALY8zkKMcFWAScAxwAcowxqzt3lEr1PE4AmzYgmYWvrKemLkhyooenrp6hAW0vosGsUs0VmRrgkpOTEwoum7R9TePnmhnIOjIyMvB6vWRlZcUPnFVPUQA8BPwlxvE5wLH2bTrwR/unUiqGYn8VFz3yH+oNOL+9DVBbF2RF2W4NZnsRXQCmVFeYOQ9uLoMz5rX41EAgwNKlSykoKCAnJ4e8vLz2H5/qVMaYt4E9cZrMBf5iLCsAr4iM6pzRKdUz3fPqBuqNdd/+QYJAUqKHGROGhrUt9lfx8LJNFPurova1ZGUF3//TSpasrOjAEavW0plZ1be0ZMOCjvT2r6zc2aHHNj7WRMpBbm4u2dnZZGRkEAgEyMjI4OSTT2bu3LnRT8gTuOAZOPHidhm66hJjgM2ux5X2c9siG4rItcC1AOPHj++UwSnVHW3eE76QNm1gMv/na0c1ypkt9ldx+eMrQikI886bRNWBGtIGJLNuazWbduzlg3IryH3nv7sAuGz6+LDznVxcQPNyu4AGs6pvC9Y2v+05D8OCG9v+mqNOgW2roe4A7CgFBIYeB7s3WscPfBH3dK/XG0otcHJ18/LyYgezV3+gu4f1fNFyXEyU5zDGLAYWA0ydOjVqG6X6guyMMTzydlno8UWZY7lx1jGN2q0o201NXZCggZq6IPOWriNoDMEY//c8+2FFKJhdsrKCu5euoz5oSEoQBKitNyR4hIVzJ4cFvarjaJqB6nsS+sHAEXDS/8DwFgR5p95Aeno6ItLqW/rQFDjhIqu/4y+wOzZWIJuQDCleqK9pcijZ2dmUlJQAhCooxLQ0p/nvUXVXlYB7q7ixwNYuGotSPcLt5xzP9WdMwDd0ANefMYEzJ43k4WWbWLKyIiylYMaEoSQnekgQ8IhQH4wdyAKs31pNsb+KYn8Vdxeupd5uXFtvqKk3GKAuaJi3dF3MtAXVvnRmVvUN7vSC+kNw2AMf/RVGT4MZNzd9/tZi+HwZ5R++Cv/+BXzyEiT2g7pDIIlg6uBrd0D/I+CNn8GMW2HFg+F9SAKYw/DuPdZjU2/9POchONWe8d21Ef73bKiugKQBwP6ow/F6vZx88smAtWVt3IB258dQmAMXPdf0+1Td1cvATSLyDNbCr2pjTKMUA6VUuNvPOZ7bzzmeJSsruPjR96kPWsGmRwirajDvvEk8+2EFyYke1mwOUG8HpdHUB+GF1ZUIhHJyo7czutCsk2gwq/qmOjuXav1z8K9b8D2Ugn/34Wac+DPX/UNOZ6QPTaFc7oXE/jD5UpyLHr6H+uHf7bSzg1cC9k+7NuyCm4CborxW9EAWrNnYJmdk3b5Y2/y2qtOJyNNAFjBMRCqB+UASgDHmEeCfWGW5NmGV5rqya0aqVPcWrZZssb+KeUvXUeeabg2ahqoGAHl/t8p2xZLgETCGemPl9zy/ajPGhEeyHiFsRjfBI40WmqmOocGs6p1ildFK6AdHnwlHHAcrHgg97d99uNEvppYQEci4BratsmZtkwfZ/R5qe7/t4cgT26cf1SGMMZc2cdwA7ZCwrVTvFbmQy5l1XVG2O5QK4PC4qhq8uLoybiALNDq/NmJKdsrYVC6eNt6qZVsbxGPnzOqsbOfQYFb1Xmf/Dk640Lq/4SX4181WisGnfwex08UnXQSb32uf1ztnEST1b3gcpy5tpzpyMpwfq3ypUkr1bM5s7JbAwdBCrtq6IC+srgxtmJCS5KGmNogIZKanccyIwVxwylg2bt/LMx+0vtyWB0hO8jDv25PITE9j4sjBWs2gC2gwq3qvogXwn/thb5R1MiYI478O026Af93SPq/n6Z7/O8mN6+DG/o2eT09PD22Jq5RS3UFLt5x1z8YmeKxqAh6sS/x/K66krj5IYoKHrOOGY4Dln+5klb+K1RUBhqQk8vi7n4flvTpTEAke4eqvHcX7ZbsprayO+toega8eM4zc2cdp4NrFuue/vkpF4fP58Pv9LTij2r5Z0seOorzgKnjn19YTw4+HhNj/CwQCAbKysigvLw+Vwrr11ltjl8AqXtywkGtrcdyRlZeXk5eXx5NPPsnMmTMpKiqK2i4lJaVNqQbxAtZ2S2FQSql2sGRlBfPsMlcpSc3bctZdVitYb6xg1iOMHzqQsp37QuW23vh4BwkeCS0ACxrDo66yXQCJdmpA1YGaUDBd7K/iInvhWKTEBE9YIBstzWHj9r28um4bcyaP0jJdHUiDWdVj+P3+tuef/uc+GDMdtqyEESfFDTpLSkooLS1l/vz5gBVMxwxkAXZ81HDfzpmNxgmOvV4v8+fPJzc3N2bbw4ddubxbi2HxVPjqbeBJRGb/uk2fh1JKdReRi7Rqapu35axTVutwbRCDtTirPmjY9MU+wJppdZ4PBg1ireMCGgo1C8SsC5uZnsbF08Y12vlLgO9ljgXg4WWbmDFhaFhgXVsX5NHln/H6xzuA6JstqPajwazqW+pr4It1VnpB5nVQ9RkMGUf45kqWkpISpkyZ0vztYkec1HC/Zl/cptXV1RQWFpKVldV0v07u7cUvWT/fu7ch51cppXq4Yn8V+W9+Gjb76WlmJYDM9DSeunoGL66u5PlVm6l1ldTyACeOTWXDti+tTQ0SPXxr0kgKS8JTz04amxrKeY3mglPGWovEaoMEaSjrNXl0aqOdw5ITPdTWBUlK9LDjy0Nh/by6bpsGsx1Eg1nV95x0OZz7sHV/2ET4cQX8pPEl90AgEJpFddIC4s2iknmd9bOJhV9OSkFOTk5oBy8njSGqW+1Ae9AIaxey8V+FT1+BvLuiNs/JyeHJJ58EYMqUKaHNFZRSqrtxLs07M6vQcLnfuczfVA5tZnoamelpTBqdyrMfVrB+azXGWNUK5n3b2hjHWQi28JX1jc6fPCY17gywEzA7fThpCC+srgyNu7YuSNWBmlC7GROGsnH7XkorG8oizpk8qtWfk4pPg1nV43m9XqqrrdzY1NRUcnJyyM/Pj31C8WKY+kMYlRHaDCGa3NxcfD4faWlprFmzhsLCwvjBrDv/1qmksGBco2ZOMJubm0tRUVHoZ0yPT4eJ34E5v4dTb7CeO+JYoHEwW1RUxJNPPklqaioZGRnNn1VWSqlOFFmBIDSbKoQu98cqtRWtn70Ha3n83c8JGmsr2Umjh3DxtPGh9pnpaTy8bBOHa8NLcCUnevjuKWObHK8TMLtf92/FlaFxOzVl3e2cn5oz2/E0mFU9WkFBAdXV1UyZMgWv1wtYOanl5eX4fL7oJ136D3j05Cb79nq95OTkAPDggw+G+o/JPSP71jwoyos55vz8fLxeLxkZGcyaNSt+v9NugLfugpQhMGA4HHcufPqPqE2doLjZKQxKKdXJIisQhKX+G6g6YG3p7c5BralrnEPr7se9PitYbyitrGbjjvVMHDk4dE7agOSwXb3OOmEE1808OuoMcFMzwivKdlNXbwXGAlw4dVzUdpdNH69BbCfQYFb1aBkZGaSmphIIBCgsLIwdwLo9fa71012HNsoMKliBcXZ2NoFAoOnL9bduhgftfmrj58w6gbHTZ9zge8atVjAbKIfP3oBld8dcYJaVlcWCBQvIz88Pjb3JIFwppTpRZAUCh2DVbHVyZdMGJIeC1KCxHsfqJ5rIRWRVB2pCu3R5BKaM85KZnhaqohA0hkSPkDXxSIo2fkFd0MScEXYWnjn5sc2Z3VUdR1eRqB4tIyOD/Px8/H4/paWlLTv5tR/Do6c0lOqKUFJSQlZWFhkZGZSUlDQdFD56ivXzzPuswPamT2M2dYLXW2+9lfnz58cPwj/8g/Uz/Qy4fjXcdRD+519Rm2ZlZTF//nyWLl3KlVdeGSotppRS3YUTCLpXF3gEvnbssLDAsepATaiNh4YZ28h+PDGWKUQuIpsxYSiJCdbrJiZYQbO7ikLQQE294fWPd1BTbxpteeuWmZ7GvPMmcfoxw5h3XuzFY6pzaDCrerycnBzS09N54oknWn7ygZ2w6pGoh5yFXwUFBc2b3Tz1Juvnv++AxZlQ+IOYTX0+H+Xl5Rhjms5rfe/ehuoLjjilv/Ly8qiqquLBBx8kEAiEUiWUUqqrFfureGF1JWccO5wzTxhBcoKQYFcHiNx8YMaEoaQkeazjrhlbh7Mw6ydnTeQ355/IZdPHh4LbxFjbyYbqclk/o2116xAatryN9j4WvrKe9zbtYuEr6yn2VzX5vh9etqnJdqp1NM1A9Qo+ny9+RYBInkSYfAl89Q7446T2GcT0W6BoPiQNhIN7YP8X7dPvz3c2fm7YxLinFBYWUlBQgN/v19xZpVS3UOyv4tLF71NjpxYkeIRrvnYUg/snRc1NdVcRiJW7Grkw64JTxsZsv6JsN3X2pgn1QRNql5LkCaum4Izt4mnjmDw6lRVlu9m4fW/YZgqRNWWdrXOjvW5zFrKpttFgVvVogUAgFMS26HJ6sA4++qt1ay/32rO3034IZ9wNvxnYfn23QFZWFsuXLw/NVuvMrFKqO1hRtptaV45sfdDw+Lufs3Du5NCl/GgBbUsCv1jti/1VbAkcJDHBQ319MDTj6gTML6yu5G/FldTWBRGBa752FGdOGhlWNsypL/vU1TPCcmbdW+dGC1YjA9/mbAahWkaDWdWjeb1evF4vpaWl8ctmxRNj04QW8yTBkSdai8qcPNcuELfMl1JKdZEZE4aSlCChmVmwAtq7Cq1arE4gCDRZW7Yl3DOjiR4hMz2Nw3VBNm7fGwp+M9PTmDw6NbSdbsH75ew9XBdWNswdjN4465jQrPHWwEGe/qAiZrAauVisOZtBqJbRYFb1eC3aFCCxH9SF78rCl1tIHzbA2u62ldKHpkBiMlRXwJ9Oh5TBMO0G0tP/0bZ+09Nbfa5SSnUnmelpPH3taTyy/DPe+uQLgvYlfyeN9XCttQXs2//d2eZL8u7SWmGbG9QbPii38lZLK9dSsXt/KM2h6kANQWNCmyAYrADbvfOXOxh1gmAnDzhWsNqcdAnVNtKSvd2nTp1qVq1a1YHDUSo2EaEl/71GPT8vEUwdeFKgvxf2W/tmc9x51q5aif2g/xFW5YBdn1i3ukOQkAwDhjVsXlBVBn+7FHZtAEmwar8OnwxF8+Cch+DUG+MP5oM/NOzk9dZd8JVs+OZvrPqxb/ysWX20y+fRhvN7GhEpNsZM7epxdCb9na26K2cL23f+uyvseedPfwMkCPz4rIncOOuYqOfHCg6dUlvOFrZBY6izZ4PF7tvhVEJwtqNd+Mr6UFDqniV27/wVK41Bg9X21ZLf2Tozq7qcz+fD7/c3q220Wc709PTm58tOvwlW5AP1DYEsWEElwLHnwqiTrQDTCSgjA88jJ1vPX786vO+aA1Ywu+Ojpsfh3snrrbvA/45V2it5UOPKBUop1ctkpqeRO/s4PizfwyHXrlxOoNlUJYFYC6rcpbbA2mxBXH1O86WFZmbBmhWOth1t2oDkUHAaLZiO9n40iO06GsyqLuf3+9s8w9hsx3/PCmaHnQBfRAk6hx7bsEmBE5SeekP47l7/vAnGfTV8O1z3rlwjToo/hmjnzFrQ9GxuhPT0dE1hUEr1WM7l9xdXV/LMBxW4UmkRIWb91ngLqlaU7Sbo+vckwWOV/nJmaW+bczwbt+/l1XXbmDRqCAXvl4elBzj9aPWBnkWD2Q7SktnGaFo026iaFdSljxuD77Tv4N8GEGv29B77BrDYvrn6GJpC+Qt3wZF2Oa/kQbB2ScOuXM2ZVW3NOVHofx+9i4h8C1gEJACPG2PuiTieA9wHbLGfesgY83inDlKpduYEiTv3HuaNj3eELbZatvGL0KV9aFgUFm9BlXPscG14VQJ3CkBmelpoi1nnmDMT67yOVh/oWTSY7SCdOtuoMPNdDyQBbvgYkgfAoBFh+a1y96G2fy9fuiofDJvYON2gKa05R/VqIpIAPAycCVQCH4rIy8aYjyOaPmuMuanTB6hUB3GnDHg8UN+QccAbH+/gzY93kJToAWPCtpd1ymlF/kvp7MzlbE9b8H45Z04aGTNVINpM7LzzJmn1gR5GdwBT3dLSpUsRkdAtOzubQCDQvJNNPTw2rWGbWid4vOtg+wyueLF1U6r9nApsMsaUGWNqgGeAuV08JqVaLHKnq2J/Fdf8ZRVzH3qXJSsrGrV3z4IGg40Oh/JZa6NsL/vi6kqe/qCCyx9fEbazllOVIN52tLHG4M6d/fFZEzXFoIfQmVnVLaWmpoZ+Zmdn4/P5WtZBf6+1Ta17q9rr1rTfAJuzyEup5htDeLHjSmB6lHYXiMgZwKfArcaYdiiQrFT7iFyYZc2QrqXODlJLK616ss4lfqDR5gNBCFUegIaFYBgTynudMWFo3FSAltZ1jdZeF3T1LBrMdoGcnByysrLIyckhJyeHoqIizX+MISMjg4KCgpafmOIFKmDsDLjweeu5QSNiNi8pKSE7Oxu/39+8fOWmFnkp1TLR8ooi82H+DjxtjDksItcDTwLfaNSRyLXAtQDjx4+PPKxUh4kMMF9dty0UyDr+/N7nYcFsZA1WgEeXf8abG3YQNIDAVaf7GuW9gl0Dti6IiJA2IDlmn00FpVoHtufTNINOlp+fT2FhIVlZWeTn51NUVNSyov99REZGBlOmTGH58uUsXbq05cr83TIAACAASURBVB2k2iv1t5fA49MbUg6iKCkpITc3F7/fz/z585v+PrR0Vqfy+XxhKSctvbV4Vr9rVALjXI/HAlvdDYwxu40xh+2HjwGZ0Toyxiw2xkw1xkwdPnx4hwxWqWjSBiSH1nskJHiYM3lUo7/SNn2xj2v+siosLSAzPY0bZx0Tmg0dPjgFu7IWxsCjb5fx6PLPQou0iv1VodxYjwj1QcPCV9bH7LM5WtpedS8azHayvLw8cnJy8Hq95OXl4fP5mp8L2od4vd7Q9rTz589vonUUm9+D8WfAVe9aweeqR2LmuWZlZbF8+XJmzpxJXl4eXq83ft/nPgwJelGjsziLKVt7a0tVkU70IXCsiBwlIsnAJcDL7gYiMsr18DvAhk4cn1JxFfuryPv7eurtKDRoJ8AmJjS+6PDGxzu4dPH7YcGnW+QlCQO8/vEO7nxpLfe9tjGUIxu5Y1dTubGq99JgthMVFRVRXV1NIBAgJyeH6upqgKaDpz4qJyeHK664gtLSUoqKipp30gB7JuobC+Gq5TA606obCzHzXLOzswFYvnw5eXl5bRu0Uq1gjKkDbgJewwpSnzPGrBeRhSLyHbvZzSKyXkRKgZuBnK4ZrXJELnbqy5wUA0d9ECvNoD569ZjaehMz+LzglLEkxolODtUGeXF1ZSjXNUFib7Cg+gadXupEzuXOJ598EoBbbrmF/Pz8LhxR9+ZOwWjyUvGZ91nbwH7tDnj9x1D2b6g92KzNDAoKCsjIyKCoqIj8/Hxyc3N79B8YPbHG8b6avfzs7Z/yxYEdJHmSMBjqgnUkJyQ3fXIvYYz5J/DPiOfmue7fAdzR2eNS0cXbhaovcuesAiR4YM7kUby3aRfRqiEmJVh5rg8v29QoTzUzPY1nrzs9PHc2wjMfVDBpdKrmuiqgl87MdtccO5/PR2FhITNnzuSKK67QQDaO8vJysrOzKS0t5ZZbbmn6OynKg8mXQn2N9fjIydbGBI+eAu/d22Sea25uLllZWaHZ8p6su16W31ezlx++eR0XvJzNpf+4iAdW3UeN/X0drDvEvpq91AZrOVB3gIN1B6kN1pKaHPuPivz8fESErKwsTdVRnS7aavq+rOpADR47o0CAi6eN57Lp4/nOlNGN2iYIXPXVo1j4ynoeeH1jo9JaYAW0i38wleevP50zTxhBgic8XaHewLyl6wA011X1zpnZ7rxhwdy5c5k/fz7nn39+h71Gb9DiXOKhx8EnL0HZG1bgOnOelWrQTHl5eaE/LgKBQI+eme1q7lnW5IRkpo6Yxo9OvoUETyLfP/4H+FKP4rXyV3lp04us3fURe2v2kpyQzJhBY5kyPINP9mzgi4NfALB1/5aYr3Prrbcyd+5cli5dSn5+ftwUkR++eR3nPvetU75TeG4V8A/g6pez/3Gofd+56ktaWv6pt3M+j5q6IIK1o1exv4pjRwxGaJwHu37bl83aZSszPY3HfjCVYn9Vo21vg8bo7lwK6KUzs91deXk56enpXT2M3sXZFOHnO1u1QMuZlW3OLHB3nfnvLpyg9f994w+clX42yyuLWLX9Q/on9uek4SfxyxULePkzq0JFWkoav8taxFnpZ/Np1Ub+s/W9UCDblDVr1oQ+y6Y+0+8f/wPe/sm764HHgcuBc1v9BpWioZyTFta3ONUFBGvW9PWPd3DpYytIG5BMSpInNGvrwcpvnTN5VIvyXTPT0/j1+Sfyy+wTSfQIHrFKc/X1PyK6UnfKGe+VM7PdnV4S7X6ysrKaPZvfnWf+YwkEAhQUFFBQUEBpaSlTpkzpsJJw/RP7c/qYrwIwJHkIAPcX/5bkNSnUBeuoCR4Otf3/7J17XFT3mf/f3xkuiiKD9wvIqElMogl4SdQkLdikaZKmYZI0za1dsU1z2Wwrabu73Xar6P5+u+m2+xPbdZukF8d2Y2qNCsbG5lYgNzUKQhWNUXBALqIiM6Bym5nz++NwDnOfAQZmgPN+vXzJzHzPOV+GM3M+5/l+nuepslXxq/LNLJ+5ghgRg0NyL0o5aYz/C5XicwbZJmIymfxG1Pc3fsyVpqtdQC3Qidx0QENjQGiF9d2Rqwv0PnbtpnWgupnkhDharnap/tb50xP77Hd9Ytnsfm2n4Z/SmpY+v5/R5hkfdWI2NzdXTSwym81YLBYtg11jxGM2m3nhhRfUx4N9Q1V58RjrPv4JXc4u5kyYQ+6S7/FuzTu8Ub2HB695mE/OHaT+ch0Axy9VcvxSJXOT5pE9z8SfTv6R+h57QXOHfx+i1WqloKBA9VUHshqU1BVz3x+/tBhYDLwLnAnvb6yhobF87iRi9YKuHh9AsG5a/b0Z0G4i+ocv0aqI0o5u2R5yw4xEMmYn8/DilIDvcaAObJFgVIlZRcC6RnNycnIiOicNOXt+INFKzbIRHOU8f+GFFwYt+TBQFYVfsFn9+Q33hH2VpOkTqP5VFboQ3E+FhYWsWbMGi8WC0WikqKgooJiN0cXQUNbQMjVjajJwF/BN4BdBD6ShoREyS9KSee3pFewsq0MADwURRBqDQyDR6tpquOVqF/XWdjq65RUxCTje2MbxxjZeP3yW155e4ffvt3zuJGJ0gm6HhF4nIm73GDViVqntmpGRgdVqVS/mmpiNPCOhla8S4S8oKFArIkSixFUgXnjhBZKSkvrXHjgEwmW/cCJ/seqEjttm3O5T/CYlJVFTU0N+fj4Gg4Hi4uKASXtpE4x81nCqY2oGduTvvav9nqhGVNKfpVKN8KNFTftGuM9bf8v/rpHUjm4nPyk8hiRJxOh9Bw+6HBK7yuoCz0nIqX0SsLNMXmlzFc9D+XkcNWJW8QoCrFy5EoBVq1aRkZExKMfToo3RSTj+Lr6ijwUFBeqyt8ViUT2c0YLBYGDdunXk5+erJeIG69wfCLseKCRGF0O1tYrWrlamj5vOP/sorZqVlcXGjRvdrBNFRUV+91tlPc3c++bMALqAV4Ct4Z+9RqSINv+exsAYLTcmg3Heei7/7yyrU/3KOoHqaVY6tTkcTlIMY6izehd32XH4rN/o+oHqZuwOp9x9zSHx2sFaXj98lkeWprJgZhIb9lYO6edx1IhZg8FAZmYmRqNRtRkMplc2miJyGr1YLBa4eBJefxwunoC48bDga3DPppArIPgSw7m5ueTm5mI2m8nNzSUjIyPq6gjn5eWpc8vKyqK4uDgkQeuv1NZgNDSI0cl/g3NXz/GzQz/FITn8jlXe81C5UH7ROiVjsgGo3GP6c/dA56oRPUSbf0+j/wz2jUk0CeXBOG9dS8bpdYLXS+uwO5zE6HU43PNrEci+5r9feS1rC49i93jd4fRf+kw5Tme3LGgl5GjutoO16HRCFctD9XkcUjF7oaqZXd/fBxJ8e9cT6PyEtweDnJwc1VKQkZFBRkbGiC+RpOGHyfPlUl5hpry8nNWrV0dtZzer1UpJSQkGg4GampqQxayv+rArZtymViwIhBKlLiwsJCkpifLy8oCfu+fefUYVzdcnX8+z6c/zBv7Hh0pW6kpe3v5yW4+Y1SwGIwyt5uvIYTBvTKItgj8Y561SMu5AdTMN1na2HayVhaanUgVuTkli7VcWuFWWSE6IY8PeyqBzUo6zq6yOHYfP0u2QVFHrcClpMVR+2iERs64iVhcjcNr776sbKIrdoKCgIGJz0BiZKPaDaG24kJ+fT35+PiaTqU/Jj66ltqaMnUKsLpaZ42eFtG1OTg7l5eVkZmZSUlKiJmz5o91+FUmSuNJ9hcpLlXyn6O9DOk4wPqz7gDn3GmcAm9EsBiMO1wt4NETcNPrPYN6YRFsEf7DOW8W3rAhZBb0ONTobo0MVsq7bACGVPlMi3A8tTuGhxSnsLKvj9dI6uu1O9ZgCeGRp6sjxzO7/XSk6ncDpkDAuS6X6o9qhOKxPzGYz2dnZWlRWI+xkZ2eTnZ1Nfn4+OTk5UXeO5eXl9dta41pqa9HUxUwbNy2k7ZQIdXl5OSUlJRF7T3ZlFyKEqJAk6R8iMgGNQUdLPBoZDOaNSTRG8EM9b/tjjyg+6d6AZv60RGL1OqZNGMMzmfP87ifYnHxFuP/9wZt4eHGKGql1OCViY3Q8tDglpLkOlH6L2UBleAKyR/7vP+b9a0R8pYpfVkMj3FitVkwmE4WFhZGeSti5Jvla8lf+go8aPuLVE3/g3Zp3+Mq8B4BeT60vMjIyVKuB4lkPxKWOS26Pp42dRtL0CQNK2ouPj4+6GwsNDQ3/DNaNyXCN4PfXHtHU6p7UdaKxDSHgZFMbz2TO8zqG8r4AAd+jA9XNqle2o9upVj1Q/j20OGXI3+N+i9nh2AVJQ2OwsFqtJCfLH9otW7aMKPHkWllgjD4egPie/6HXU/sSr/jc3mq1YrPZKCkpISsri4KCAr9WjOsM1/GZtbc5V1N7E1985U5ef2C39n0ThZTWtLCrrA4JghZZ19CIBoZjBL+/9ohHb5lNRd1R9bEESD72UVrTwuOv7JdrxuoFOsDulFThfPJcG/uONXLvwhk8sWw2yQlxbvaFP34ir7YrlQ8i8R6PmmoGGhqDicFgGJDYimZsXTb++8gvaOloYXzceO6bcz9fmH2n+rqrp9YXGRkZtLS0UFBQ4Fb1wRd2H9ULOh2dPkZqRJrSmhYe//UBNbEkWJF1DQ2N/tFfe8QTy2YDsO9YIwtmTMC83+JzHzvL6tSubXZH73Ws2+7kpZIq3jneBMAHpy5S23yFtk6723EcEmw7WMvOsrqIJdVpYlZDY4QR7hrHi6Yu5rdfMvsdf7mrje8Wfcfv62azGbPZTFZWFgaDIWAr3WpbldvjeBFPp6SJ2WjkQHUz3S4Z0t0O/2V8NDQ0+k8we0QgP+0Ty2arovaLC6b77AxWWW/zeVy9Xsd5D6vCKx9Uc+cN3jkTEpFNqhsUMZuXl4fZbI5YrVWtYYFGtNNvz3kPgbqLDfbn7nJXG98v+R6NVxoA0As91xiu8TnWarWyevVqAEpKSsjOzg6YhBari6Xb2VsCNpCQtVqt6neNzWZjy5YtASs03PPq3RkPFHz5f4Gn9pj+7F0hXKNPLJ87idgYnRqZ1esj39JSQ2Ok4m/pvi9+WuX5A9XNnDzXxrEGG6+X1vks2wXw1SUpTIiPoaKuV+xKklylwBW9DpCIaFJd2MVsYWEh69evZ+PGjerFRmkjO1RoDQs0op1o9JwPVGD7oq/2C19jb56c7rOlbVZWFhaLBZPJxNatWykoKAgoZhs+aLiY9qXZTwK7gZ0hT0rDL5nXTeG9E004JRi6quEaGhoKgfy0nhFbRfgqyVuBiNELFvZ08nIlNkZHU2sHciNbWdgunJnEwllJfruFDQVhFbMWi4VVq1aRmZmpdhqqqKiIqraeGhoDZbBa4kaSy11tUSGw7ZLsxdKjZ/nM25g9YTavffqqz7Hr168nLS0Nq9XK1q1bycrKCrjv9ovtXUAn8FnAgRoBUZK+XAulQ+BuQRoaGoOD4qftsjsRQpCcIHdm9IzYrr1/AfuONYYkZAF0QnCswUZntxy1FchNFk40tnK03qYKWQn4W52Nk01tQ1aGy+d8w7mz/Px8bDYbRqORnJwcKioqyM7ODnqR0dCIBoxGI0KIoP/8CdG0tDQkSQr6LxpXDvS66LDPPz7/Ce6d82UcOEhJTEEv/H9FZWdnk5GREXK5veufnJ8KlABnwjLZMCOEuEcIcVIIcVoI8UMfr8cLIbb3vH5QCGEc6jkqF8htB2vpchGySltMzWagoTE0lNa08OPdR9lZVkfOCiM6IbeQ3bC3Uo3IKhHbrm4nawuP8dHpi6oI9YXr8w6Hk9NNbepnXAKmThhDt0PC2WM1SJuUoApaJSqszG1z0WlKa1oG6bf3Jqxi1mQykZSUxNatW9m6dStpaWl+s5Y1NKINJTLZ33/hiLbm5eW5iepgCVPhYmzM2EE/Rih8LuXzOJ1yRYMdn23nf0/8Ieg2ubm5pKenk5eXF7DG7+nd1Q3A3cA3wzTdsCGE0CN3J7sXuBF4XAhxo8ewbwEtkiRdA2wEfjq0s3SvLwnyBS1OL3hi2eyItwbV0BgKIiHUfM3h8V8f4NWDtWw7WMvL71djd0qqqNxVVke9tZ0YvU4WeUJeOXEVoaaMmcTo3GWtAGJ0Ar2Q29CW1lrdXlOEKz3/37NgOvGxOvSi92ZWueH9r7dP8uRvDgzZ+xTWcExWVhZWqxWr1YrRaMRkMkVta8/hzmAmEGlEDqPRSF5eHsnJyWzcuDHS0wFk36vNZlOTt/z53+Pj4wdkNUieYeC7f/0HtfzXkzd8ndJzhzl47oBPz6zr/AoKCjCZTGzZsoXs7Gyf4xyddqXu19V+T3LwuBU4LUlSNYAQ4o9ANnDcZUw2kNfz8+vAfwshhDSENeHa2rvdlijvunEazwboJKShMZLob/OCvh5jZ1kdAkiMj6GysVWt76pEXOut7W5JW66fSaET7Dh8FrtTQifkx84eoauI0Zrmq5xr7WBD9kIqG2xuHbvW3r+AlqtdNFjb2Xawt1urXieYnBiPTiB75AW0ddp5eHGKW53pzUWnI9IyeFDWFktKSrDZbCH3ftfoO9Hgb9QIPzk5OWrHLJCtO0NxQ3i5q83vawUFBZjNZgoKCsjKyqK4uNinoO3s7OQru+9j//OfcLHhYp/n0NJoZbdpD8kzkrH+j5U3z+wlRsSQmjjb7zZZWVm88MILagWS8vJyv2Pn3GecgRz93NrnyQ0+s4CzLo/rgGX+xkiSZBdC2IBJgNubLYR4GngaYPZs/+9dX9h2sJbth2o56lLCRwAZqQZNyGqMGvrbvCBUlOYFXQ73a7tS39W830KX3Yle5/v6LYAFMyZwtN6GU5IrDyhmICUiW9N8VY3gtlzt4v8+eJPPjl2lNS3s6Kl0oNcJNmQvZP70RF4vraO75zlFNMfF6Hi4xy8bqZbBg5KAumXLFtLS0oa0goFG5AnVc+rvX7R2zcrJyRmyuRUWFpKVlYXRaPQrGgeDs21n/b6WlZWF2WxWI7TBVgQuNlwckF2jpbGFOF0c0xNmYJfsnGmt9nssZQVo0aJFWK1WNm3a5HfsW6verdhj+vM/7DH9udvvoMjh6+rkebcayhgkSXpFkqSlkiQtnTJlyoAntu1gLT/afZSKOvkCqaDXaaW4NEYXilBzXVYPJweqm+l2+A5S/aXyXK+Q9jMmNkbHo7fMVueod1F4/mwBIJfsen7lNW7C/J3Kc2odab2A+dMTAXA6ZZuRwyGp/tnOnpa2yr5efWo537t7/pBajwYlMltQUBDSuAtVzez6/j6Q4Nu7nkCn14q7DGdGYrRYyZRXSs2ZzWY1ajoYFBUVRaTSQYcjcNnVwsJCampqyMzM9LuMH06+PPd+dp/eFXSc0pBhBFAHpLo8TgEa/IypE0LEAEnApcGe2L5jjT6ff+qOOVpUViOqCNQ8IBwEa14wUJbPnYQQckTVk3sWTMe83+LlWXf9+atLUnhi2WzmT0/kQHUzDdZ2XvukVvXKVja2qjYCf/MvrWlx6/oFvQ1R6q3tKO4GJ7131xKw4/DZiLazjah63P+7UvQxmoANN7m5uQghQs7y1vCPwWAgKSkJkBMcX3jhhUH1Gufl5ZGdnc2mTZvIz88ftON4smjq4oCvK8v4Q5WQ5ipk9UI/6MeLAg4B1woh5ggh4oDHgD0eY/YAq3p+/irw16Hwyy6YMcHrOZ2AxLGxg33oUUs0JBkNN4Yq8chXFDOceDoIhIBnPz+XH953A68+tZwnls0mTi8nacXqhRqFjY/tXepXuNLTdlYRvR+eusiGvZVqRNb1HCutaeFHu4/y+K8PuAlZerZNTojzWwUBekvzRYqI1uO5fP4KxmWpVH0YXTU3hytKk4pNmzaRnp4etcv2ww1FxIIcOR3M99VqtZKVlRUwK7+vXO5q4x/f/wHnrzYRp49j6bRb+M6iNcTp40Leh8FgID09ncLCQvLy8vwK7fvm3O83WUvp1lVTU0N6ejrFxcUh+YEdkiPomOFOjwf2H4C3AD3wO0mSKoUQG4DDkiTtAX4L/EEIcRo5IvvYUMwtcWysVwQoLkZHckIcm4tOe0V4Bjs6NtIZiiSjkchg+1mHggPVzW5WnvSUJNZ+ZYH6eygRT1ePq7Kda2OEx399wGdXL8Ur+3JJFX/99DxOSVJr0ObtOebl1XVl7Z5jfGH+VDUBTNmfvkfhRro0X0TF7LJVi6ktrY/kFEYUGRkZ1NTUkJaWhslkihoxazKZyMrKGtTl+cFE8YsqCVCDSX5+PsXFxRQUFARdzu9vRYs/soMf8E9uFS2qrVV+xyvWCpvNRmZmZsDEzmfTn+M5/t7r+ZycHAwGg9rmevXq1VgsFr+eYOOEOVha5XKw7z/3IdB/G8pwaU8tSdKb4H4nIEnSWpefO4BHhnpey+dOIj5WTujQ63V8dUmK2hnIU3BpQmzgRJMoG043JpFKPAonnr+Dq5B1xXMZ3/XnXWX+29OCXN3gvRNNKLq1y+5k+6FaLyHrKloB7A6Jd443EaMX4JBQjqDTCR5ZmqpWM4gU/RazA+2CNH3iDOasSKX2sCxmJackxyM0+oVSEi0pKYlNmzZhMpmwWq1DulTti8LCQjWaZ7FYyMrKoqCgYNglBw6FkAX69PcKh0f5uXef4fzVpoBL+bm5uRgMBrU1dX+qKyi+VsV3nJ6eHvAcUISsXuixnWsd8O8ZjV3Xhgu+fIL+yu9EkxAbrkSLKBtuNyaD7WcNF4FuEDx/B8Br9SPYDUagb0ql2sHf6nqrkuiEIN7D7nnN1PF88/Y5XtFaCXA6JeZOHc/p85eh5/Esw9iIv9/9FrP+fIN7fvw2jZXnA76jN957Lcf3neLXD21TnzN/fQff2j4kq2YjEoPBwNatWzGZTGr74Gio8VtUVERSUhIZGRlqHeLhJmSV5Ke8vLxITyXsfOOGv8OYNIe3LPvYge+Eq754ZB/eE7h1tdlspri4OKife4x+DB2ODnIWrKaAN0I+vj8sFktUJhgOFzwjQf4EV7QIseFMtIiy4XhjEonEo74Qyg2C8jv4GgsE3f7hxSm87tFqGmQhGx8rVzs42VRJV7cTXU/JrWMNNj6x9HqMb50zUU0k21lWx8W2Too/u4DDIa/OWC5eVsfq9dHxOQ+rzeDM/lpaztqIidNj7/Tvc1vw5flcf+c1ABze/jdqD9XzwP/5YjinMirJzs7mzJkzmEwmKioqomJZPyMjA5vNppZ1CrXSRTSxZcsWMjMzo8a2EU5um3U7AFPGDryEE8Avv/A/7CKw39dgMAS90Xryhq/z22O/YWxMQljmpTFwSmta2FVWhwRMiI8hJTkBJIlv3jHXzdMXDUJsuBMNoky7MQk//m4QfEVbfY0F3J7bVVbntd2StGRee3oF+e9+xoenLvZ63QWsvX+BW7UDV5+tIoBj9UJNJHM9D10bNvzxE7mZglJBIdLnKoRRzDZ9dpG3X3wfgOk3TuHc8QvyAcbosXe4C9vxkxOIGysnnyx9/GZqD9ez6wf7tPJcYcBoNKqiKxois4q/Mjc3l+zs7CEp6xRuhpMAVxouKM0DTCZTQOtC5cVjrPv4J3Q5u8Jy/JnjZwZ8PTc3V01yC5QAtvPU69w3536+MPtOv/sqLy8nLy+P4uJicnNzR2TkPFoIlFTyo91H+eRMM/mPLQKiQ4hpDBztxiT8JCfEoRNyOqVn+1fPaKu/mwnlOb1e59a0QIncKn+v3LuuY39VM3aXbK2Wq/L3vC/P7WtPrwj4t3aNGO8qq1PnAPL3Q6TPD9EXL9rSpUulw4cPez3/WUk1Rf/vY9aW/IDztiYfW4aG1mI1dIQQfn2EJpMJi8USsBtSoO3DPSer1UpycjJFRUUBfaeDMae+MNDj92X7cLQj9uWZLS8vJz8/n4yMDMrLy9m6dStHjhzxae0QQtBh7+DExUry9q+j8MG9A/79Hy40sTO7IOB+ysvLWbRokd/zwfN99PW+FhcXk5OTQ05ODgUFBVitVr/fHcr2QohSSZKW9uuXG6b4+87uK5uLTvPzt04G9OMp5YNgeCUOaWgMBYpo7ezu7aj1xLLZbC46zX+9fRKnJFcG+N7d83l+pbxyve1gLfuONartbJX97Cqr41i9Te30pRfw2K2z2dmT/KWI25Pn2lhbeAynUyIuNny+Z2UOnmI63J/1vnxnhyUy+8HmgwCctzWNuKL5w5FoiyTm5eWRmZk5JAlUw4Vw3LT5+rxkZGSovlSz2UxmZmZAj/KJ5uOMjUngxkkLKJ7+/sCSOlOmk7/yF+zE9/mnCPj09HTWrFkzoPNB6Y6mRJ4jneg4UlHa2MbH6NDrBfYApXv+UnmOH953A9sO1soXUGnwLnIaGsMNxTYggdzpsCdK6i8CW1rTolYMOWS5xPzpiSxJS+bkuTa2HzqLwyl7YnU93bwk8LIlPL/yGi9LQX/xvEE9UC1HfZ0SdHQ7eamkil//XeRiBQMWs/t/dxh7p4O48VoBbQ3fDGVbVg2Z3NzcoNF5gF8e2URLRwvj48bz4l9e5FJHMwca9/P9Jf/IPMM8Pmr4iFdP/IFv3/QMX5n3ACBbE3784b/g7CnOkhRv4KZJN3Hn7LuI0fn/SgnnqoviB8/Ly8NgMAQsFwbwX4d/hi7OT0NzDZ8obWwV9Dq4+8ZpSMB7J5rcyvYATE2MV4WssrTZNUwShzQ0Bht/otXVztHW3k3+u59x78IZtFzt8umZdf18CeD2ayaTe9d1AOryv+f+B/r582WFWD53klv5rneON7HtYK0aQR5qBiRmuzvsHH3jJGMNY4iJj2jJWo0oJpigihYGWm4umuqZWiwWcnJygiat/fZLZgD2Vr3BK0dfAiAhZhw6oSNGF8MYfTwA8T3/V148xtqP/hUnTmaMm0HjlUa+dt2jpCSm8N9HfkFLx9B0LFK8tkpd3pycnIBtbUvqipl5+4ykIZncCMGzja3DCempBp5feQ1P//4w3IV3FQAAIABJREFUb7t0CRLA4ZoWSmutOFxUrk4ILXGon2hWjZFFIA+yEnH92VsnAfjg1EWe/fxcL/F7oLrZ7fOl1wly77pO3ddgeZx9JaM9v/Iapk8YQ521txX6vmONw0vMXqhqZtf394EEQi9otwbu6w7yEuOmTZuGZQKQxuhgJPm1FXEX6vL751MzmT5uOgVVu/nbhQo2lW3EKTkZHzfeLRFLr4vhuYy/x9Jaw54q2U4Qr49n0dTFqjAWAZsehp/i4mKysrLIz8/3W8EjVhfL5bOXO4d0YsOcexfO4INTF9XHMfpeYTo5Md5trLx0iltTecUXqAmxvjPcarxqhEagKKnnzWNlY6tPcRofq3Mrq+UpigfjPPEVVX7xzRNuQhbkGra+ugIOBf0Ss/t/V4o+Roej24kUwEOloNTp1AgfIymKqBFerFarGq0MhffPlnCh/TzXJc9nrH4MALfPuoMXlnzfbVy1tYpjF//G3uo3sHbKtWdvmnxzwIoDg4nSzCEnJ4fc3FwKCgr8itmFk29iT8OfNTEbAq4RwX9/8Ca2H6pl2oQxPJM5T71ALZyZhL5niVGvk/3b3R7XgkdvSY1YlGa4MxxrvGoMDM+bx3sXzvBZdSASFSZ8NXN45YNqtzGzDGMw77dE7Aasz2L2zP5aLp+/gnFZKlUf1rD40Zso23404Dbr1q0jMzOT7OxsNetY81AOjFCiiJVvnuSz4jNk/8fdlPzyAJ8VVfPU64+jj9VarUUTA61s4IrValXLs4VaqqqpvYlXT/wBp+REIEhLTOO59Oe9xtm6bOw78yatna1MiJvAbTPv4Kmbvu3lkx2qGy2TyYTZbCYrK4uamhpWrVrld+yR82XM+XLa5H5PapTgKyJY+A93qK9tLjpNckIcG/ZWyn3ZdYKn7pjD7z4647WvhTM1V0d/0Wq8jj6UGz/P6gWeRKr0netxNxedxjPXf8HMJN7t8dJH4gasT2JWoOPg74+wbNViakvlNrQ1h+oCblNcXExFRYVaPsdoNKotTSOFq01C4Vs7HiMmbmT5fq0NbZw/eXHIOq1p0eL+0d+2tL7ea4PB0KeOXQCPXPc1Hrnua0HHuVoJAjFUdo2srKw+VURwdDr8NyzXALwjgjt7irIrArbL7kQnBE5JzmIWSFQ2tvbWsuxBAJUNNt8H0QiKVuN1dPLEstnDYjVj+dxJxMfq6Ox2IgQ8/bm5fHHBdN4/dSFiN2B9Um/Xj1tIfGI8c1akUntYFrPWszaEwEulK5jNZpKSkkhKSiIrKwubzRY0YnShqpld39vX+4RcYzhsTRVcbRIjmfTsG7gucw4wNJ3WRpLnVGNkcd+c+9n75r7mSM8j2nGNCAqdYPuhs0iShE4ItRQQkoROJxA9hd/vXTiDQ5ZLdHY71fiABOw4fJaHFnt3Bwp3YlNpTQsvl1TR1NrBo7cMDzEQClrziehmNCfo+bvZiuQNWJ/EbFJMslekz9HtJHHqONrOX/G5jdFoxGazsXLlSgBWrVoV0GLgJWRBjaD++qFtAxa0ik0icep4rPWtjJucwJWLV/u9v2hm/JRxjJ8yDoB7/3VlhGejoRE5nk1/jufsfx+5jhzDBOUitausjj9+Uotig5WbToCQICZGR+Z1U5iaGO8mVl1LBgE4nJLbUuO2g7X87sNqqi/K14pw+OpKa1p49JX9av3bijrZ8jZSBK1GdKIl6Pm+2YrkDVifVOHRy6U89PN7eejn92JIlf1QtzyZjr3L4XebnJwcsrOzyczMJCkpKWh2ddHGj/sypT7hsDv5+LeHaTt/BWt9K4DWPlcjajGbzZhMJoQQZGRkUFhY2Od9GI1GhBA+/wF+X1P+BSvtpTHyWJKWzEzDWLc6skqhAqETOJ1O3jvRxI7DZ9lVVqd2KXJ4Wg0E6lLji2+e4Ee7j3L6whWcEmqh9V1lgW1qwThQ3ezVyMEzK1xDI9z4StDTiCx9isxecVxmyrXyl1NC0hisZ20cerUi4DZGo5GCggKEEKxZs8ZvL3YFa0NrX6YE9LbTBXjgxS+y51/e8WlLOLStnMsXfEdhnXYnxPX50Boag4LFYmH16tXq44qKCjZu3OhW2i5Uj/Jw78qnebGHHsUT19XthJ6qBRK4CdYuh8SrB2v97kPqKdFWWtPilfmssP1QrZcVwVcLT1+U1rRQftaquNBU7l04I6TfUUOjv2gJetFHvzOexk8fD8eagg/sIdQLqj5Oh73dPdIrYgSS3f/2H710SP15zw/fQRcjcPoY/+nbp72ea2u6DMCWx//EM4VfD2mOGhqDjdFoVD8zhYWFmEwmL6+54lEWQvj9fEWDGB0omhd76HH1xJ1qaqOgvKHP+3D22AzAf06Fw4mXFUHpOvbBqYt8cqaZa6clennwSmtaePyV/XQ5ejshzZs6nm/ePkezGGgMOoOVoDeafbgDpd9i9pbHbmbhPddRUXicqg/CV0PWU8gCbkJWckpcsPRWI7g5+wa6O+zoYnRydBUwLkul+iP3iEHVhxY6r3QxMS2JSzW9WbZx4+PoutzFyjW3he130IgMAy1xlZaWFnXCKScnh4KCAgoKCvqUua+hMVAU/9s3fnvQ67X0lCROnGvD7nD2VDVwj46CXLZLiVjpdMLLhgByX3nXqJanRaCgvAGBXCje1Zd4oLrZq67tg4tmaUJWY8gItz9U8+EOjP5HZnuSi5avWkxHaycNfYjSDgTz13cw5ZqJajWCo2+cIHXxLM6W9UYOPOuoOuxOPnzlEEnTEpk0Z6IqZrWaqyOL/pa4Uoi2KGZubi5bt27lyJEjYa/LnJuby6ZNmwA5KTNQK1iNwUUIMRHYDhgBC/A1SZK8+gILIRyAUtS7VpKkB4Zifp7F3GP1grVfWQCglu3ad6yRD09dVAWtTuDWnegL10/lnePu1wgB/JvpJpakJasRqQUzJrgdC2SR7Fm3cvncScTqhRqZ1ZZ6NYY7WqOMgTHgwqrjp4yjo7UzpE5g4WDJozdx9I1P1bJaIkaHtb6VmHg93e12eZCSgeuUQA+fvn0KoRPYGtuwNbap+xrMmqsaGgOluLgYkKOzxcXFQf3mfWXNmjUAmpCNPD8E3pMk6UUhxA97Hv+zj3HtkiQNebcZJdrpqxOY8v/86YkcslxS69BuyF7oFiV9NnMeRSfPq8laeiEL2SeWzZYtA78+oPoPTRkz2VPRgNTj09XhLVaXpCXz2tMr2FlWhwCfJcA0hiejdald8+EODNGXSNbSpUulw4cPez3fdPICTZ9e5N5nvkhDU32/JzM7dTabc37LuRMXmDZ/Mg1H5Tv5qfMnc/6kfLc+YUYiuhiBra7Vrw9LIWZMDN/a/hgf/eYwx9741Ov1lbm3UbTp47DWsNWIHIG8o0Ox/WAcV/HLBrJABPPMBvqdzGYzeXl5/dr3cEMIUSpJ0tJIz8MTIcRJIEuSpEYhxAygWJKk+T7GXZYkaXxf9u3vO3swCCZCSmta2FVWh4TcHazlahfL505iV1mdWyLZk8tm89DiFDXqq4wLJGxGqwAaaYz2pXbtPHanL9/ZYWl5NW3+FKbNn0J9dpBuYL/cz8l3q9ye08fpeWrH4+rjV5/ahaPLoQpZgPMnL6KPlW0FQoC9w864KeO4fP4KM2+eRsPfPJavdALJKfG5Z2/lZdP/ggSmn34JnV6nNg946Of3st/s3jxhJHouNeQWryaTiZKSEtatWxdym9dIU1hYyJo1a8jOzsZkMoV9/xaLhdzc3GHzfoxgpkmS1AjQI2in+hk3RghxGLADL0qSFLk2ij7w5yEsrWlhZ1kdp5va6LQ7WTF3ktpNLC5Gx+euneI2/nxbp88Lur8LvWdk97Vvjy4BNJIY7UvtWqOM/jOk/VuXPnYzC+65DujtSJX973e7jelo7fS5bdqtKVR/VMua157hvM1FvO4JcECX157t+VkRnGf212JraFOFrNPhHHGey2giUjcKFosFk8lERUXgEnLRSHZ2tlsprnBitVrVjnzh9uNqeCOEeBeY7uOlH/dhN7MlSWoQQswF/iqEOCpJUpXnICHE08DTALNnRzYhyrPqAEBFXW8CbrfdydTEeOL0gm6HhF4HJZ9d4L0TTW6RuUARu11ldXT1JP922eXatf5EtasYDrUE2Ggl0M2Dv+jhQCOL2lK7Rn8ZUjEbrCPVAXOZ3xazSnWC87amAQtOh93Jwd8fIW5cLO0t7UHtChoDJxw3ChceMNF19Ch0dTHtwMfEpKYG3U4RsmlpadTU1Kg+1NFOSUmJenNRXFysVUoYZCRJusvfa0KIJiHEDBebwXk/+2jo+b9aCFEMLAK8xKwkSa8Ar4BsMwjD9PvNgepmNyHriV4neGhxCg8tTmFnWR2V9TaO1tu8itFveKOSju5eweoasfPcu+djxd6w4/BZ7E6JuBgdOSuMvPS+XPtWSTjTBG0vnjcPa+9fQMvVLpIT4sjbc0y+8dALvrY0lYd7/MrhsAgMVskrjZHPkIrZQHR32Dm65wTjp4xTa78OFp++fQpwtytIPsrGaEQXY+66E/2MGbTv3RvyNkajkdzcXKxWKy+88IKW7NRDdnY2W7ZsYfXq1ZqQjTx7gFXAiz3/e7V6E0IkA1clSeoUQkwGbgf+c0hn2Q+Wz52EXoA/PesauthVVkdnt1NO+hKg1+uoOGtl47ufuXX5ckqQnNDb4ebhxSm8fvgs3Q6JWL3g4cUp6muKwFL2C7JI/kvlObd57DvWqIlZF1yX+7u6nawtPIZTkuRgUM+10u6Q2Hawlj8dOstTd8yhsrE1LBYBbaldoz9EjZgt+eV+JJ3cxEDxxw4WLXWt2Bra3J77/aqdAbcpLy8ftKxyjdAY+6AJqb29T9sUFMi2QsVzOlR/u77aKjwtKoPtvzaZTBQWFpKZmamJ2cjzIvAnIcS3gFrgEQAhxFLgWUmSngJuAF4WQjiRE/xflCTpeKQmHCpL0pL5N9NN/KTwmM86sw5Hb2OFLrssOAUwNTGei1e6eOd4k1ekFaDlapfbMV57eoVbNE9Z7m6wtqv7pWffsTE67lkwXY3MgtY1zJPkhDh0QoAkodMJnJIktzf2sbpmd0q89H61WmtYJ7RSaRpDT9SIWWt9K1K3/EHpr5C1Wq3k5ORgtVoDLicnGOJJTksi8/nlvPPTD7jSfJUv530B/uR/3wUFBVRUVGCxWDSPYRjJy8tj/fr1JCUl9SkZ6dJTT9P92WchWw4sFgvp6elDJmbDYasI1YPdn3atisjXiDySJDUDd/p4/jDwVM/PHwM3DfHUwoIS8fxJwVGvCK0EtLV309ZpJ0YnsDsknMA5P7kTAHE+hJJrNM91uVsRWIqI/eqSFHVZfPakcew71siCGRNoudpFaU2LFhFEfv827K3E2SNkn7pjDub9FrrtThC+m19Abxm126+ZTO5d17ndVAwny8BwnLNGFInZzz13K39e+x7dHfZ+70MpMRTMF9ne2kVLjY2Cf3pLfW7vT971O95qtZKfn6/+PFoY7KQtq9XK+vXrAbDZbOTk5IS87/g7bifGaAzZcmCxWDAajSHvPxoYbiWxzpy/zNqdf6O2+QpjYvXcnzGL73zJq8KUxiik5WoXvjSQAH7z4RmckoReJzCMi+XSlW6312NjdGRdNwUJOWIbrKas6xK5K9+8zcgP77uB0poWfrz7KBfaOrnY1snLp6tB8u4yNtLxJ9pc3z+BROLYWF59ajm7yuo41dTGJxavfh6AHJGNi9GRe5ec5P3j3UfdfMrD4b0d7qXBRrMQjxoxO23+FFZ+7zaqSmqoPlDb5yYMeXl5mM3mkGwA6dk3cF3mHKC3qsKYpDF+x+fn52OzyRm4oykqO9jVHVxvDFatWhVUbHZXVXFl22sAXH7pZcZ+7ZGQ5zLchOxwpNPu5J6bZ3LbtZPZ8Uktr35sYcW1k1mqLTeOejw7doEcxXNdwnY6JDchC3BzShJrv7KgTxdmJSO+w2OFr7KxldKaFh59Zb+bB1ehs3t0lIJSEuK2Hz6LwyGp5cygt6Obr4oCOw6f9Urmi9ULsuZPRfmmn5IYz8lzbWzYW+nlUx4O7+1wLg023IX4QIkaMQswe0kKB81HmLNiNmdL6+lutyN0IAVxHVgsFtavX8+WLVswGo0UFhaSnp7uV8B4VlWofPMknxWfCbhvJRu+pKSEzMxMzTcbIvVz5kFXV9BxofhDLz35DbfH3aVlIc+jvLw85LGDidIEISkpia1btw5a6a1IcP3MCVw/cwIAS+dOZNehs7S2dwfZSmM04Nmxa0FP04TkhDg27K30Ep4AcT1tc/ubEf9SSZVbC90FMyaw4Y1Kn0IWQAhGvM9TETyu73eX3cnLJVW8f+qCas1YkpbMNdMS1WS6DW9UuglZAdxx7WTuXTjDzT6iE6DrsSJ4+pSHw3s7nEuDDWchHg6iSsx++vYp4hPjSUgao7amVYSs0gjBFzk5OaSnp2OxWMjKyqKiooI1a9ao1oBgWBva1A5jnuTm5gKoy+0mk0nrZd8HdOPG4fQjZl3tIKHaNybv3UPn2+/Q9otfEv+5O7BXeVUmimqOHDlCeno6WVlZrFq1atBtK2lpaQOqf+zPjxuqBeXODf73qzUYGV34y1KfPz2RZ/9wmAuXe78nrpk6np8+fHO/L8ZL0pJ5NnMetqtd1F66yvK5k/jdxxa1Hq0vnv7c3BF/8VcEjydNrR1ukdRPLC2U19lYODOJvD3HvCOyPXaCF/edcPNBy5doCZ2Qf/Ys3xXtDOfSYMNZiIeDqBKziqj0JSwDlc4qKSlRfzYajVRUVPTJDqDYDp710YBh9erVZGRkUF5eTmFhIUVFRaPKauCLvLw81c5hMpkCel2lbv+ROZPJxOrVq4HQbQDNX/8GUqtcicLe0CD/b6lBxMUF2ixqyMvLIysri6ysLMxmM4WFhYManR0swag1GNEIFyfPtbkJWYBb50wMuVC/J+oy+qFaFN22p6LBp2cXYPqEeL5753WjojTX8rmTVKGpoBewYu4kt2YWIEf39h1r9BKyrjcaZy9d9TqGXidkUeyQ0AkxbISswnAtDeZLiI8mD21UiVlfXtaVa24jOTWJd372Pm1NV3xud+TIEbWjkdLHvi/JRK62A0+ULkwWi4XCwkKMRqNmMaD3BkKJhvsTo7E33UTX/v0+X3N9H0N9TyWrDb0xDYelhs633wGg+bHHSXjkq32YfWRRSmFlZGTQ0uI7mUJDY7gS6gVUEZ3vnfBoRw5utWK3HaxlbU9pr2BJWr7qygJeQlb0/IuL1bH5ySUj/kKvsCQtmQUzk9yE68JZSSSOjfUaq9MJfN1y1jb3XodNGbPcSpwBOHssBhLgcMgWhvZuh9ZpbQjwV9VjNHho+yxmBzPDPVCHsDuevpV9/1bkczslUmq1WtXameHGaDQOu+zywcBisbhZLIItk8ffstSvmAXYuHEjeXl5fSoVJeLlZL2k//oZrT9Zh3T1Kld3vE7azJmDsqQ+WJSXl2uJaRojilAvoKU1LTz+6wM+l7yf+fxctwvy2sJj2HvUaJdHkpancFaW0T2/qWP1AkmScDjln/MeWEjL1a5REbFSUN4rzyjso7fMZv70RMbE6uhSvLRCFqXvn/JeJXU4JXaW1XGgupnZk8Z5NcWQJEUISwid4O0e37LWaW1oGW0e2j6L2XAvL16oambX9/eBBN/e9QQ6vc7nduW7K/F5m+iCwWAIaW6+jln1Uf8F+mjDYDCoNzQ5OTkBBZkzSOQxNzdX9SWHiv3kSQBs3/9HdFOnoktKwtHYyMldu4lfdmuf9jXUmEwmtyj0SGtYUF5eTm5urhq5P3LkyKi35Yw0FFGUnBDHsQYbAtRyWaFeQH15N30t9x+obsbp8p2u0wnVC+hLOLv6BvV6HZnXTVHLeSn7G00CVsH1vdIJgSljJs1XutyipcoSdYO1ndc+qfXZrEKHbCPYfugsDqfsjXW95CrRbqX97e4j9Zw+39vRU+u0NnSMNg9txG0G+39Xij4mcMevM/traTlr8266HaZjOuxOPnz5E+Lj4wcU2YuPjw/PBKMYi8VCRUVFyOOv/OF/wz6HmHnzsFdVMfWD97HmvkBXaSkAjvM+W9pHFYWFvZ1Kk5KSyMjIID8/f0SIWovFwqJFiwDZnlNYWDiq6jKPBvwt4+8oreO1by8P+QK6fO4k9Dr3AvxfuGGal9BR9qeIsA3ZC1Uh6ks4P7/ymoAJPP314Q53XN8rpySx92+NbH9mhZev8vmV11Ba08LOsjq3Wr16Ad/+3FwSx8ZScvK8WmvWKfVUMEBuP+zalKK0poX/985Jt3ksmDFhiH/z0YurhzY5IY6dZXXsKqsLWqd5uBIRMet0ONHpdZzZX8vl81cwLkul6kPfkVGH3cmBrUdwBshC7Suex/z07VMInaCzs1NLaukjQ5qRHhsL3d3E3rQQe1UV5z/3+aE7dpjYuHEjL7zwAunp6WRkZIwoD7bZbCYtLY3i4mK1k5sWlR1Z+FvGD1VMKixJS+bfsheqZZ3i9MLNJ+s6zt/+/AnnUBJ4RpufUE78EmqU2+6U2FVWB+DzfVCaJCi1aPV6HV9cMJ0lacm8XXnObd9zJ4/jwcUpJCfE0XK1i5Pn2nippIrSmhYcHpft1s7+N0XS6DvKOf34K/vVRD7lxnOkne9hFbNms1ntwhUMh93Jwd8fYdmqxdSW1vsd9+nbp3A6nNg77UwyhufN9zymtaGN9paOsOx7pJORkaFG3WBomxEkfO0Rrr66jfaCwuCDo5T+2CqGC4sWLWLRokVYrVa2bt1KUVFRQKH+y7dOah3ChhlqpLTbiatO6auYBNk7OX96YkjC19drgYRusKjraPMTLklLZkP2Qn7Sk0gHchMEwOf7oFhGlGQuh6P3tUdvmU1F3VF139+8Yy7zpyf6jNh7Ullv09oGDzEHqpvpdjE1d9mdrPrdQb6+LI0f3ncDMDJWKcImZouLi1m9ejVbtmwJabxSU3bOilRqD8vCUnJKoHcfZ21o4/J5OXuy2dLC1KRpA4qATp84w+uYgUpzabhjMBhUMWa1WoNGFacd+JiY1FTSUlND/rvFx8fT2endm33iz/4z8IYPfAWAtNRULLW1IR1LI3woJcZMJhOZmZlBrROvfmyhoPQspiWpmqgdJnguXXp6Zvuzv4FcPH1tH0rUdbT5CUG+eTjWYOO1g7IfVmls4O99cPMf6wQN1nZKa1pUK8i+Y42q53Zz0emgQhbgaL2NJ39zYMRHwoeCYALU1dvu2X3vcqeDl96v5lxrB99YYRwRqxSiL8vqS5culUpLS30uxRuNRrKyssjPz8dqtfqN2AkhcNgd7N9SxrE3PnV7LWZMDN/a/pjbc5cvXOGDVz6h9hP36K0+Ts9TOx73GttulSOsSmmvh35+L1OulT+gH/3mcMBjCiEC2gzMZjO5ubl+s9CDbT/cGOjvI4Sgu7aWmNRU6melur9mMCD58FMmPPJVJm7KH/BxI/13CMd7F+nfIRD+5ldeXs6iRYsoKCggPT0dq9Xq02oghGDZ2r+oj3+cvYA/HayltvkKY2L13J8xK+wCVwhRKknS0rDuNMpZunSpdPjw4UhPY0jZXHSa/3r7pFy0X8D37p7P8yuv8Ro3EqJRfUUR+op4ffWp3ja2vt4HxT/7emkddoe72HF9/wAefXm/WnUiEIH+JhqhEeyGzfP1tfcvYHPRKeqt3ivQTyybzR8/qVX9z9+Por9NX76zwxKZNZvN1NTUkJOTg8lkwmg0BuyQ5RoNhV7h+cD/+aLX2PFTxvG5p2+l/WvuIjX73+/2OdZfaS/wXcfW1zF9UVhYqBb4j2YGs3TaQJhVf1b9uX5WqruQ1enA6WTqB+/T/OTXw35sjfByxiU72R8bN26kvLyc/Pz8kHyzL713iidum8Nt105mxye1vPqxhRXXTmbpKIiYaYSXUKOuw7E4/kAFuD9rRiCLx4HqZuwOdysCeHttN2QvdCuj5o/REgkfTILZZDxfr2ywca7Ve7UT4GJbp5ro55QgOWF4NCDyJCxiNi8vj+zsbLKysigpKQm6vGj++g6+tf2xgMLTlWAiNVQC7ccRIMGsuLhYXTotKSmJ6tqgw6Ez09SSIq785rdc+cP/MvbRR5EuNdPxzrsgBI4RYg8YrDay0UBngM9KRkYGSUlJlJSUsG7dupCblzRf7mLXoVpeKTqFvud9a2333z1OQ8Mfw7klaSD6mrTmT/j2VcT7ujnwV0li/vREtfuawwnCo9vYrcZk/vneG0bM3yRSBLth83xdQq4b7IlOyK2MBXKxKB3QcrVrWK5aDFjMFhcXU1NTQ01NjXrxDhbZCzUaOpR8+vYpn88rQnbLli1YrVat1FAfUVrN6qdNU587n9l7I9G+fTsxN1wPgIjRyxHcACLQaDRiMpnIz88fvEmHgSGt8jDEXD8zcHmd/n5Gbk5N5qu3pvLCq2WAgzGxvmtOa2gEYzhGXYPRl6S1cFZr8HdzEKiSxEOLU9Tx71Se4y+V57hnwXQ14UhjYAS7YfN8HWBXWZ2br1kIWcz+rc4mC1kh/02TE+K8LArDocHIgMWskt2uXMBKSkp48MEHA26jeFijCWtDm8/nFdGUm5uLzWZTf452MRUOBhpdTE1IUFvNJudvVJ93tRwAtP70P2k78ann5n4pLi4OOsbR1OQmoDWiF6VX/IefNfFJ9UWUgtIdAWpPa2iMNvqStBbuag2eNwehiClXC4MmYsNPsBs25XUlyqqIUqWEWr21nT/2NMfQAbdfM5ncu65zO3e67E7WFh7DKUlRnxw2YDFrMBjUVqR5eXmUlJSQlJQ04IkNNenZN8C3vZ83Go1qLVAlMhvq0mm0oUSZMzIyQhKESnRRstu5/D+/orvyOO1796oVChQ8k7s8xWs4ycjIoLCwEIvFEtDu0fofLw7aHDRkBurPPr55NTc+vwWnBMvnTeTkucs0X+5i0vg4phubzDuTAAAgAElEQVTGkJwQxzd+9TG1zVeI1euI0Qnaux2DliCmoRHN9MU+MRTVGkZi9Huk4StCD/LNzsKZSW7VKmZPTABkz6xOyMYDnRBq1Ytuu5NdPW2MXc+/0poWdpXVcaqpjU67k0dvmR2RLm9hrTObl5enFksfbiheWk9cI7C5ubkYDIZhWQi+sLCQVatWYbPZ+lykX8TEkPjd79D6U9+lsTwjrX2h+/RpteWt3VKDvaEh4Pjy8nIAKioqAopZTcgOHlc65MLn4fRnn2hoxdYu77f5chcAfznayD03z+S2ayfz66LT/PV4Ez/OXsCJhlYtQUxjxOHPp+j5fCgCcqT6hkc7ffWyekbolS5grhaCopPn+eun59l2sFauPdwjYPU6wVN3zMG836K2h95x+Cx2p+QmjB//9QG31tRKDeKhFrQRb2c7nBiunZry8vJYv369+jiaiva7+mebH3s8wEgZg8FATU3NsIz+jxQ+bWwlcdIM2pobw7ZPW7sdvQAn8E9fvoHtB2vZV1HP2LgYLl3u5K6bpvPX402Mi49h6dyJ7Dp0dsQkiAkhHgHygBuAWyVJ8llLSwhxD7AJuRr3byRJenHIJqkREoHEhr/XXnzzBAXl9Vxo61TrvrqWv+qv91WLnI4sQjkXPM8xz1rBlfU2NwvB9kO1HKu3oZSg7XJICORIrCRJJI6NVbvBHau3cbTeJm/b7ST/3c+YPTHBTcgq7DvWqInZaGa4Rp3NZrNa0L6wsDCqqjH4jOoG8OlWVFQM4mw0/HHm/GXW7vybWgf2/75axHfvuT5s+z++ebUqjh9a7/7a2y4/37nB989paWn8fHsJP3/T3Xt9w8wJbHlmRdjmOUgcAx4CXvY3QAihBzYDXwTqgENCiD2SJB0fmilqeOIpHAKJDX+vvfjmCV56v9ptv64e19HWqUzDP67nQme3HGV1PRe2HaxlbU+Ht/hY99bESq1gJdkL5DyFijqb2zH0AvR6HQ6Huz1lp0vymEAOOnx0+iL7/Vyq7104Y8grImjpwlGE1N3NhQdM1M+ZR/2sVOxnz/bpdX9YLBYKCgrUkmn9EbOedgBHU1Of9zFQXLPkg5V/0wgvnXYn99w8E/PTK7hzwXRe/djid6zVaiU/P5+srCzVFuKPdQ/eBEBbcyOSJPX7X01NDa3tdiaPj2fulHGM7amEcKKhlVc/OhO292EwkCTphCRJJ4MMuxU4LUlStSRJXcAfgezBn52GL0prWnj8lf387K2TfO2lj9l2sJaXS6ro6JbFRke3k5dLqtSx+e9+5iZEXi6pYnPRaf5UWue1b1cRoUTW9EKrzzoUlNa0sLnoNKU1LZGeihfL504iRierRwl4vbROnWdpTYta41dCjpwq9YCXpCUzyzAWu8N/hzYBxOgE/2a6ide+vZzv3T1ftRHkv/uZm5CdNiFeTdp1+MjRffbzve2N/+vtkzz5mwND8n72OTI7kutnDib9SpaZ3RumT0tL48zp04y56070M2bQvnev+prDZuPcwpvBGTj7W0noCpY85QtPO8BgJnn5w2AwkJaWFlWRZV9Ea+OKgXD9zAnEx+hYu/NvWC74b5pQXFzMypUryczMBGTPeaAGKv93z7GwzbGh5SrJ4+Oobb6Cw6V1Y1XTZb7xq4+55Ud7Fi1f99ZFYMuB9V/6x7AdeGiYBbjevdYBy3wNFEI8DTwNMHv20CdijAZ2ltWp7UEdEvxrwVE8y3i+fbyJF988gXm/xa0kktTz2jvHm7zEhQDW3r/ArRKA5n0dGsJZziwcc/HV2OKRpalsU9oRO9wj+E6X/AWdTvhsTeyv5fAXb5zGM5nzAPncFsDJc21s2FtJl9393G2+0kWMrtdXixDYHU50QrAhe6Ha3nioVxT6LGaj7SI7XAhHsoyIiWH8c89ybvltADQtv03umvWd7wYVsq70pw7oQJK8wslwOP+GQ+OK/tBpd/KFG6fxZoWDSz1JWp7k5OSwZs0a8vPz1W6AgbA7JFbeMJWDYZjf3vIGHlyawrez5vFPf5QjwjoB96bPYN65RHZtWHXipqf/+33gB8vXvbXvwPov/TUMhw0JIcS7wHQfL/1YkqTCUHbh4zmfJ5kkSa8Ar4DczjbkSWqEjOcfw1/Tq79UnlPFgFKYXsHXJjohF613RfO+Dg3RYulQ7AK+ymE9tDiFnWV1XlUqFLHaZe8Vlb5Kqe0qq2PH4bN0OyS3829yYjwAj7+yX71J0+sEzp5Ir+u563RKPHbrbGYaxqrH9xTeQ1FNwxPNM+tCtEed6+fMg64uYhcvwnnuHADnv3AndHcTl5VFV5ByWytXrmTTpk3U1NQMy4oMGpElZeJYPjh5gY4uB8/deS1//bH3mNzcXObMkVtGFxcXB002FAKKTpz3+ZrFYiEjIwObzUZmZmZI5eRmT0pQhSzA6s/P5ZZ5k7ll3mS+fu50B/Ae8BwwMejOwogkSXcNcBd1gGsNvBQgcOkPjUHjocUpbD98FnvPhV9ZdvUkI9VAXUs7kiShE4CQ4w6uAkHtvhRhK8Fw7PoUTiIhwBSU9z45Ic6tJXCXh6gO1I44lAj+TMNY8h5YyPZDtW5+WYEsSLtdVrScPZFXSeqNwCpe2ocWp3iJZVdc55OcEOdmeRgsNDHrQrRH/cbefTfte/cSd/PNdJcdASD+c5+j869/JdaYhu9YWS/Z2dkDihhqjGw8k7xca7le6bDz3d8fpu7SVdY+eBO/fPszn/tQxKvFYsFgMFBeXh7Q3xzodDSbzWRlZZGRkeFWjcMf05Li2fRW77wSYnXMmjiW87YOpiaNQT82UQ+sA04DbwbdYXRxCLhWCDEHqAceA56I7JRGL0vSktn+9Ap1SXbBzCTW7jmG3SGL1ptmJbFi7iTM+y2qMHFIqOGtGL3ga0tTWTgzya2QfTiEZH9EaTQtsUeKobR0uP6NAPW9Fz1lsRR0QniJan+R+kARfM+/79r7F3DiXKUq3B9anAJArF6okdnYGB15X+nt/gXeEdhAKGOG6rzSxGwUYLVaMZlMZGVlqbVsfREzV454OW2t6nO6yVpCwHDBarWSm5vL1q1bWbdu3ZBUxxiIf/dt4MWUVOrP1vJpYyvH6+Xz7gfbjoR0XKVJh8Vi8dsxL3lcLNarvktsmUwmcnNzMZvNpKenBz1mxuxk3jp6Tn18tdvJht2VLEpL5mdPLOLGv/vPawEb8PkD6790NegOhwghxIPAL4EpwJ+FEOWSJH1JCDETuQTXfZIk2YUQ/wC8hVya63eSJFVGcNqjHk/xMH96optAURJnfOF0SswyjA17+aL+iFIlQU3xU47mqglDYenw/Bs9vDhFtTe43t3rdd52gf7iaaFoudrFa9/2Fu55Dyzkdx9WgxB88/Y5PLFstpvwfn7lNQM67mCeV5qYjQLKy8spKSmhpKQk4LJs239vBqB99271uc4DBwDo+jRYMrQ7gUROKFaLYElKgaJ8oew7mu0e/SUnJweLxcKqVatYv379kIjZcPl3l8yZyHv/ciff+f0h6i5d5T8eXcTSDb63KSwsZPfu3eTk5FBeXo7RaGTlypVqeThXWtvtPs2ggGqFKS8vx2QyBZ3r6s/Pw3LxKo1WeX6pExMYFy9/xX3n94eIS5o6Bnge2LN83VtzgKtEQTKYJEm7gd0+nm8A7nN5/CbDL6I8anBtH6qIlUDZ44OxjO1aQimYeCitaVFLNnW7+Hq1qgmDi6fAk4AYvc6rXuujt6QGvdkJNQrvy0LhKdxLa1rIe6NSnUdeT3KukgTmWf84WjrRKWhiNsIo0TqQbQABGzPExkJnJwC6WbNw1tcTd/0NdNSepbtH1IbKYCcpKaWcbrt2Mjs+qe1Tx6Zot3v0F6vVSnFxMeXl5WzduhWr1TqsGnG4RmefNx/yOy4zM5OioiJMJhM2m+zLOnLkiE8x6/CXOeNCQUEBW7duDTrusc0fqT8r8/tW1jwWGydyvL6VmDHj9IC5Z8j/IF+7hzwZTGNk4ypWdAKmJsZzrrXTbcxgmL1Ka1p4vbRO3bde571E7Tr2yd8c8MpuF8K9moJG+PEUeAtnJvGnQ7Ve4xbO9G4M5CoiT55r85so5kkoFooD1c10uwjqbofEvmONXpFVCG4dcJ3nUFk3NDEbQaxWKzk5OWojgKBVBjp7vxCd9fUAdLz9ttuQ1ISEqMiGv37mBK6fOQFgxHVs6i8FBQUYDAZyc3PZuHHjsBKyIEdnD6z/kvpY+InMGgwG8vPz/VoL+oKyD19C2BPXufl6TQhRKknSUuW55eveepgIJINpDG+Cdfmqt7YT41J4/uYUA+eOu9fldkqyDSH3ruvCdoE/UN2MvafwpwAeWZrqd9+K4PYS1ZJ3NQWN8OIpLA9UN3vVaxV4/x1cI/7K+aV27gphCT+Yp1Y+b4WaBBarF9y7cAaHLJfcIquekeVdZXVBm4f01Z7QHzQxG0GsVitWq5V169axfv36AddPTXjkq9SGWPs13IJXsRVYLl7G4ZDUzN64GB1j4/SkTEzgtmunhPWYww1FyCr/RxKLxUJOTg4lJSWsWrUqYC3YSKI0XzCbzSQnJ5Oenu73c/LLt06GbGVZvu6tJIZvMphGhAi1y1eMTvDYrbPVxJr3Pm3yEiwfnrrIIculsCXFeEb8lGMHGysESAgkp0RcrGYxGAo8haVr4hUAAtpcgj+ejTe6PW5EJOTxm4tO9zkC6nne3n3jNCYnxvNwT8UCVy/4krRkTp5rQycESBJ6vY4dh89id/ZGh13FbpfdGfabNn9oYjaCKEkyIF+0g4rZ+Hi36CzA5F07iV92a9jnlpubqy6Jh4JiK5hhGMNvS6qoarpM+mwDFbVWuuxOcu+5njFx+rDPc7hgsVjUZKhI2yiUklcmk4mcnJw+C+sz5y/zz9uDJ4ENFKvVSk1NDTU1NRQWyqVYlRq2vgjVytIjZN8GJhFlyWAa0Y1nS9F/fr2CZXMn8dDiFLfXHE6JmYax6gX8T8/cxsslVVRfuAxCUHX+ctiTrfqSje85VvndRmtZrkiyJC2Z13oqYxypaeHEuTYkCV56v5rjja3Y2rupbGzF0VMbVidkj61TktTScMp4QW/imC+/radNYd+xRjq6HardxOGUSE81uEVSXb3gP9p9lNdL63BKEjqdIPO6Kbx3osnNhuDaoMEphf+mzR+amI0CiouLsdlsQVu06saNw+khZu119cQYm9BPmxa2+VgsFjZt2gQQsq/T1VaAgB9tr+DspV6N0NHl4EqHnXFjRucpp4hYg8GA2WwmIyMjoi158/Ly1AStUP6+rgl9sXods5ITwjKP9/7lTsaNifFpWTAYDH32def+bynj4mPUhEPXeS/5p9fTl697axOwArgGeAjoXL7urQkH1n+pNfCeNTR6W4p29QiL0xeucPrCFXaU1pH3lQV+k12WpCXzyt/JDhclEjYYSTF9ycb3HKuJ2Mih/C2y//tDt+ffP3XR7bEOuP2ayeTedR0vlVTxjod9RQLsTom1hceYPz3RK8FLicDqdcKtpqyCP5+1L4+1U5Kob7kqr/L2RGkVkZxiGEvVhSvqnEKxQQwU3aDtWSNkDAZDSKWHnJcueT1n/e53sf7r2rDOp6KigjVr1pCUlNRnX+fljm5+W1zFxPFxbl2ifrr3ONv2W8I6z+FEVlaWGhFVumMp0cahxmg0qnaHgoKCoKL6G7/6mL97+WPONl/hiwumc/dNMzjZ2MrMlFS5M10//yVOmhHWcyIpIZbffGsZdy6YzqsfWzhc3ayuGJifXoH1s4MtwHeBW4BkoAi5Rez3wjYJjRHNkrRksuZP9XpeKXf06lO9fe1d7Qebi06r/emVqKjnOA2NaRPGBHw9LlZH7l3XcfJcG3/91HezGZCFppKspeDmdfUhZAGm9Bzf85z157E+3timJvHaHU7+sN/Cj3Yf5fSFK25jfdXLDTejM0wWZWRkZIS8nO+LpLX/GsbZ9CbbFBQU9Gm7yx3dfPf3pVivdGFIiKP1ajcTxsbyylPLSJkYnkjecEYRj9FEeXl50ESt8fEx/P6Z29jxSS27Dp3lW1lyD+/0724l1eWGRScgcWxsn8qwhZPM66dy/awkGmztasLh0rmTuH7mBM6cv0yiMV1JD24DXo50SS6N4YnS+tMVISA5Ic5nuSMlGubau15rUavhi2cy5/Fuz7K9J3ffOI1nMuXv3rWFx9wqwUyfEM/yuZPY+7dGtbqBp3h09Unr/ERm61vaefhXH6vlEuNjZR9sckKc7JNF8tu62SlBQbl3U8KYMNbLDYQmZkcAjosXiUlNDT4wRMrLy1m1alWf6qAqHaLONl/BkBCP5cJl4mN0fO++G7DbnaPaYhCt5OXlqdHiQBypaaH5cqdaleLPR+qZkhhPl92BEPLSlL0n6c/ucPLqxxYKSuswLUnxErWuy/56Iejodvj9cuwre8rquWXuRMwfnHFLODxz/jI/2FZGXOKkOMAJVKOV5NLoJw8vTuH1w2fdEnacEqzdc4xjDTY1cQZgV1kd/7+9Ow+Osk4TOP59cmI4EuSOgXCIWwgUQVgUWSfBE6kRAqOzzjhqGB3EcUqhaquWWncFUnM4VeNu1HI8R+LMiquoJDgigwcEHZcsARIB8eBIMIYzJB0gd/q3f3S/TYd0d95OOt1p8nyqUunj7befftPpPPm9v9/zNLobJziN79O/qm+wW5s1zp1oxgjcMS2V6vPN3D5llGcO7HNbD+K8aPrVybNNbN5/nNyFUzp0kvNVJsvVNncvrb57enhGVZtaXNUK3tldSZvTEOy6cSsBD8f7XbOLCAumQ1NaVWWH20YnJbHnjy+Q+PKL3Y4lLy+PFStWAK7R2WAWBnnXID3b6Jor29Di5N/Xu8qOPZA1gV+EoTyHsiclJQWHw0FycjI5OTksWrQoYPmr4oOn+fSbU8THxtDQ0kZ9Uwstba77rhw+gK+OnQXgqpGD2FNRw5S0ZJ8LsrzrDz+16QAlR86weGYaB4aO6laFjcTERIpz53FrLgwcMoqVf9rCzsPVPL6+7EIxcuM0SOwbwD3uh2lJLhU0a8FO3kff8KnXnMbWNsO64qO8tfM7chdOAWBdcfv6oW1O02e7a/Vldjuz7ThcTavTeJLJiSMGknfR301rhNX6XDOGdp29vBdv+SuT5UqIXdu4xlt9c1W6wDPFwO4ShrFDklj6gwkh73AXiCazERaK5gWhmmbgXcGgsLDQUxaps5E76FiDVPVu3i1mrQ5ba9euJScnx+f2H+4/zum6JhLiXNPsrUQW8CSyAxJjcTS0kHZ5EvMzUik+VN2htrD3QsHFs0ZTcuQMM8cP4aFn/sr2r04BUJw7r9u/Ext3f8+3x+qYnj6YqpoGvq+pxxkTK4A13+U4WpJLddGM9MEsv/kqio+c6dC5qdVp+I/CfRivpMQSqJGBunTZbevqfTrf3+JA70oUZxtaeOWzIzidvrf397wXl3GbN3kkhWVVHZLVpTeM55bJI3l3t6tLnLjPwlkE11SEnNljPXEkxMfw1I8zwv4PmyazYdLdFq2BtJZXIAkJIaloYM3pXL58uWfFeyiK3/cl0dCONyUlxfY0krgYwXG+mVanobW5DZpdmWz6kCQqqi9UrIiLjeFsQwt/uOcacjfsDVhb+FxjC89/9C3xscITb5f5Pd3VHQeOnaVffIznNK/bIlyDDTdrSS7VHTPSB/PGL67j3d2VnDrbxMcHTniK2Dt9JLIihGXuoOp97CSpuypqyP3rflqdrikGObPHBuzoBa5OXNbc2XmTR3bY3l87WV9l3O6dPdaTIO8/VtduaoP3tlZJr8mjBjHwsnjP42+ZPDKi5d0kmBGQmTNnmpKSkh4Mp2/4/ooL81vTqiq7PQpVmZpG0l13MthmwwTrcd193u48XoVHKH7O1z6xud1tD2RN4Kezx3LXM9s5c9418pqUEEt9cxtLfjCOv39zmupzzbz4wCxaWp2eObL94mP5YcYVLMkcz6N/3kVVTT03Xj2C90uraPLKZkMxMntD7haaW51cO2EIxYeqiRHcc77EAD8DtgN1l3pJLv3MDp91xUc97UXjYmNwOp2ef9JiBH6dPTWsp11V7+Bd1ipQDdjnth7kD3/72vNPUFyM8OZDs/0mhhdvD/DbRR3fY3bn6vZGF3dtDERHZnu55cuXk5+fH7DV7RXffxfGiFS0OHLyXMj2dd8/jeOXt1zluf7h3mOeRBag3j1au3b7EQDmT0slITaGU3WNnjmy6//vKK9/Xs5n35yk5nwz//rDyeRu+IKmVkNyUjyO+hYWTE+l2MfzWwvVrEYjnZWMG3RZPP3iY7n+qqEUH6rGaTxd7wR43b3ZGmB1V4+JUt5+eu2Ydt2SAN7ZXYkAi70Wham+xbuslTHGb7vg68YPcS2mdY+0WuW1fC3ksqYKuEu8enyw71iHZLavVM7QOrMRMLxoK/3v/VnAbWpra8nJyeHpp5/G4XAETGaV8qUphOfu4+MufFScqG3kN4X7EGD14qm88cgcxg0b0K5k0aayKhb8ZxElR85wz5yxjBs+gJnjXeutKk7XU9fQyuPry2hqdX0SO+pdifHGPR1LuwBkZ2eTkZFBbW2trda7rW1OfnXzRPI++NrfJmt2rLltdac7UioIM9IH88jcKz0JxG8XTeU3i6b2iWRC+Wad6o8VAjbJmJE+mNyFU4iLEWKEduW1rNHdp7Z8zT2v7GBXRQ0z0gez9Ibx7fZx+5RRPf56eisdmY2Ak5lzA95fWFhIdnY2ycnJpKenU1FREXTzAtW3HTl5jt8U7mNgN6sEpKent1vYd76xlUf/UuKZh7r63b3ttp+UOoi1D83usB+rmUba5Un898PXe1obW7WJj9U2UN/U6jcBz87O9rR7zsvL67TSRm19C2sK9vlapVu0Y81tWQEfrJRSXfTkpgNs3n+ceZNHsnL+pKDaDF88um9t628h18r5kxgzpD8f7DvWbo5rX6TJbAS0mxbgI9HIzMxk1apVngVYr732WshjiIZFSqrrrBJYufu/Yd3n5bznrg27/tEbPIkkdF4arqKiIuD7ZOCQUVz9yFoAhg1K5EBVHa///Qj3zBnn2cZKWOvqW3j+57M8z2/VJq48U88tU0bxzk7/02WsxWqFhYWUl5fbOQQ0NLcxf1oqy26aSP/EOAZcFr/LGJNl68FKKRWkJzcd4IXthwF4Yfthjtc1knf39G61GQb/C7nAlQD35STWoslsL+S90rynphfYTQhUdLJKYJ1rbGGPuyXhfTeMa5fIQmhKw1lO1TUBcPpsk+c274T1d/88nYTYGE8DDe/axIESWW9r164lOzvbdnybyqrYVFbl6VqmlFI9ZfP+4+2uF5RWcW+AqgR2BTO621dpMtvLpaSkkJyc3PmG6pIUTFMNX1KGpzLp4VcZOjCRaycM7ZFObBNGDKC+qZXTZ5swBu73msflnbA+kr8TuNBAw19tYsn1/Tzl5eUUFhbaagnsa79L7bwYpZTqonmTR3pGZi257+3niTsmhySh1STWP10A1suVl5fjcDgoLS2NdCgqAqyR065+1Z6swmlco6U/fvYz1v1vechjrDnXTPW5Ztqchrx7Z5DSP8Fzn5Wwen91tROcNU921apVjB07lqysrFCEH3EicpeI7BcRp4j4LUMjIuUisldESkVE620p1cusnD+JSSMHtrvti0qHZ9GW6jk6MtvLZWVlUVRUFOkwVBR7LucfGX15Ev0T42yPyubk5FBQUEBpaaln4ZU/ZxtbaGkzLLvpSpIS4jjpaGR4cr8QRH6B1ZUuPT3dM83gEloUuQ9YDNjpST3XGHO6882UUpHw60VT+cnLOy60mwWaW5y8s7tSpwn0IG2aEGHavEAFEsqmB9bp/c72n5eXx4oVKwACtri9eP+W6emDef7ns7oVc0/8TgRTgDsSRGQb8C/GGJ8fsiJSDswMJpnVz2ylwm9XRQ0vFh1iy5cnPLfFuGvCJsbH8PqD12lCa4M2TVDqEldaWkpWVhYFBQWdnm73NX80kIKCAqZNm0ZKSoqt6S3B7l91mQG2uLuYvWiMeSnSASnVl60rPsqbO48yYlA/sv5hODX1zZ6R12FedbcB3L0QaGxx8sjru5ialsKyzAma1IaIJrNKRaGMjAzANYoa6rmjWVlZ1NbWsm3btk6nGCh7ROQjYKSPux43xhTa3M0cY0yViAwHPhSRr4wx230811Lc693GjNGSPUr1hHXFR/m3DVadbYdnFDYhLobVd0xmfYn/Ci3H65o4/uUJPjlwgreWXa8JbQhoMqtUFLPqroYy6bTKwokI48aNC7yxssUYc3MI9lHl/n5SRDYAs4AOyax7xPYlcE0z6O7zKqU6+mDfMZ+3N7c6eXPnUU9b2kDajKvlsSaz3afVDCLMal7Q1S9tXtB3WQug7LR3DVZ+fj7JyclkZmaGfN+d0d+JjkSkv4gMtC4Dt+JaOKaUioBArWOHD+pHQlwMMTb6EnW9dZHypiOzEabNC1RXLV++nPz8fPLz8z2jqb6cWpBN89690NzMiB2fEzd6dKf7XrJkCenp6ZSWluJwONizZw/Z2dme6Q09qa/9TojIIuBZYBjwvoiUGmNuE5FU4BVjzHxgBLDB3aQiDlhnjNnsd6dKqR5ldd169bPDHD593jMnNi4GlmVOYFnmBHYcrmZwUgI19c2e79+eOEthWRXGuKYkLL4mLYKv4tKh1QyU6sU6W9m/bds25s6dy9atW33OnRURKlPTSLzxRpo++aRDMutv/6tXr2bNmjXtbnvsscfIy8sLKr7epLdXM+gJ+pmtVM/bVVHDu7srMcCPrknrdNrArooaLdNlQzCf2ZrMKtWL+UsWS0tLyc/PZ9u2bZSVlZGZmcmKFStYuHBhh8dXpvr+z3/Ejs+JHzOmz5SG02RWKaWih5bmUqoPyM/Px+FwAFBUVERRUVHUJJZKKaVUqGgyq1QUyuWqrKIAAAU6SURBVMjIoLa2NtJhKKWUUhGn1QyUUkoppVTU0pFZpfowqwxWdx6vlFJKRZIms0r1Ff36QWOj52rznlIOFRcTO2JEBINSSimlukenGSjVi3W3gcDopKQLO/NKZAFqHv4ldb97MsyvSCmllAqtoEpzicgpoKLnwlFKBaMyNW2G9/VNDfXVS2vOlEconN4u3RgzLNJBhFOEP7OHAqcj9NzB0lh7RjTFCtEVb1+I1fZndlDJrFJKKWWHiJRES11fjbVnRFOsEF3xaqzt6TQDpZRSSikVtTSZVUoppZRSUUuTWaWUUj3hpUgHEASNtWdEU6wQXfFqrF50zqxSSimllIpaOjKrlFJKKaWiliazSimllFIqamkyq5RSqttE5C4R2S8iThHxW4ZHRMpFZK+IlIpISThj9IrBbqzzRORrETkoIivDGaNXDJeLyIci8q37+2A/27W5j2mpiGwMc4wBj5OIJIrIm+77i0VkbDjjuyiWzmLNEZFTXsfywUjE6Y7lVRE5KSL7/NwvIvKM+7V8ISLXhDtGr1g6izVLRBxex/WJUD6/JrNKKaVCYR+wGNhuY9u5xpiMCNbJ7DRWEYkFngNuB64GfiIiV4cnvHZWAh8bYyYCH7uv+9LgPqYZxpgF4QrO5nF6AKgxxlwJ/Bfw+3DF5y2In+mbXsfylbAG2V4+MC/A/bcDE91fS4HnwxCTP/kEjhXgU6/jmhvKJ9dkVimlVLcZYw4YY76OdBx22Ix1FnDQGHPYGNMM/A+wsOej62Ah8Jr78mtAdgRiCMTOcfJ+DW8DN4mIhDFGS2/5mdpijNkOnAmwyULgz8ZlB5AiIqPCE117NmLtUZrMKqWUCicDbBGRXSKyNNLBBHAF8J3X9Ur3beE2whhzDMD9fbif7fqJSImI7BCRcCa8do6TZxtjTCvgAIaEJTo/cbj5+5n+yH3a/m0RGR2e0Lqkt7xH7ZotImUi8oGITA7ljuNCuTOllFKXLhH5CBjp467HjTGFNnczxxhTJSLDgQ9F5Cv3qE5IhSBWXyOHPVLLMlCsQexmjPu4jgc+EZG9xphDoYkwIDvHKWzHshN24ngPeMMY0yQiy3CNKN/Y45F1TW85rnbsBtKNMedEZD5QgGt6REhoMquUUsoWY8zNIdhHlfv7SRHZgOvUb8iT2RDEWgl4j8qlAVXd3KdPgWIVkRMiMsoYc8x9Cvmkn31Yx/WwiGwDpgPhSGbtHCdrm0oRiQOSicwp6U5jNcZUe119mQjN77UpbO/R7jLG1Hld3iQifxSRocaY06HYv04zUEopFRYi0l9EBlqXgVtxLcbqjXYCE0VknIgkAHcDYa0S4LYRuN99+X6gw6iyiAwWkUT35aHAHODLMMVn5zh5v4Y7gU9MZDo2dRrrRXNOFwAHwhhfsDYC97mrGlwHOKwpKb2NiIy05kmLyCxc+Wd14EfZpyOzSimluk1EFgHPAsOA90Wk1Bhzm4ikAq8YY+YDI4AN7r9pccA6Y8zm3hirMaZVRH4F/A2IBV41xuwPd6zAk8BbIvIAcBS4y/0aZgLLjDEPApOAF0XEiStJeNIYE5Zk1t9xEpFcoMQYsxH4E/AXETmIa0T27nDE1sVYHxWRBUCrO9acSMQKICJvAFnAUBGpBFYB8QDGmBeATcB84CBQDyyJTKS2Yr0TeFhEWoEG4O5Q/kOj7WyVUkoppVTU0mkGSimllFIqamkyq5RSSimlopYms0oppZRSKmppMquUUkoppaKWJrNKKaWUUipqaTKrlFJKKaWiliazSimllFIqav0/BZKphDMwR0oAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X_train_tsne2 = ptsne_knn.transform(X_train)\n", - "plot_embedding(X_train_tsne2, y_train, imgs_train,\n", - " \"Predictable t-SNE of the digits\\nStandardScaler+KNeighborsRegressor\");" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAEXCAYAAAC+gsx+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xt8VNW58PHfMwnhTiYFBCWQAW+nQku4KFjPW4IVLdSaFIv1UkvoUbTVamh7Tq1VCPRyaovH4BGr1EpoK4ooJtbLUTgS2lpBCQ4KeLQaMhBRBMxE7rnMev/Ye4bJZGYySSaZmeT5+pkPmdlr7732TBKfrP2sZ4kxBqWUUkoppVKRI9EdUEoppZRSqr00mFVKKaWUUilLg1mllFJKKZWyNJhVSimllFIpS4NZpZRSSimVsjSYVUoppZRSKUuD2S4mIi4RMSKSbj9/UUTmdsJ5SkXkF1G2GxE5K97nVR0nIhUicoP99XUi8nKM+8XcVimllOouNJgNQ0SqReS4iBwRkf0islJEBnTGuYwxM40xq2Ls0yWd0Ye2EJFCEfl7DO3uFJHd9ntYIyJrgrZViMgJERkZ9NolIlId9Dz4M/A/Hoj7BSU5Y8xjxphL29NW/2BRSinVE2gwG9nXjTEDgInA+cBdoQ3Eou9hCHuk+XrgEvs9nAz8b0izo8DdrRzq68aYAUGPWzuhu0oppZRKYRqItcIY8yHwIjAOAqOKvxSRV4FjwBgRyRSRP4jIRyLyoYj8QkTS7PZpIrJURA6KSBXwteDjB99Stp/fKCLviMhhEdklIhNF5E/AKOAv9gjlf9ht14rIxyJSJyJ/FZGxId0fIiLr7WNtEpGccNcoIr3tPu6xR6IfEpG+Ydp9HngIuNDuhzfC23Y+8JIx5gP7PfzYGLMipM39wDXxGDm0+18iIvvsR4mI9La35dkjwz8SkU/sz2helGNViMjPReRV+317WUSGBG2fKiL/EBGviGwXkTz79eki8nZQuw0i8nrQ87+LSEGEc84Qkf+zP8cHAAna1mwkXEQuFZF37bYP2p/rDaFtReSv9i7b7c/qWyIyRESes/v+qYj8Tf8YU0opler0f2StsG+FzwLeDHr5emA+MBDwAKuARuAsYAJwKeAPUG8ELrdfnwx8M8q55gDFwHeAQcAVwCFjzPXAHk6NVP7G3uVF4GzgNGAb8FjIIa8Dfg4MAdxhtvvdA5wD5NrXMAJYGNrIGPMOcDPwmt0PZ4TjbQa+IyL/LiKT/YF9iA+B39vX21E/A6ba/R8PXEDzkfThQCbWdf0bsFxEsqIc71pgHtb7mgH8GEBERgDPA78APme//rSIDAVeA86yA8Z0rD9+skVkoP2HwSTgb6EnsgPlp+3+DgE+AC4K1ym77VPAT4HBwLvAl8K1NcZ82f5yvP1ZrQF+BNQAQ4FhwJ2ArmetlFIqpWkwG1mZPfL4d2AT8KugbaXGmJ3GmEasoGYmUGSMOWqM+QS4D7jabnsVUGKM2WuM+RT4zyjnvAH4jTHmDWN53xjjidTYGPOoMeawMeYkVlA4XkQyg5o8b4z5q739Z1gjqiODjyEighVwLzDGfGqMOWxf69W0kzHmz8APgMuw3rtPROSOME3/E/h6mBFlvzJ7FNH/uDFCu+uAJcaYT4wxB4DFWH9w+DXY2xuMMS8AR4Bzo1zCSmPMe8aY48CTWEEywLeBF4wxLxhjfMaY9cBWYJYx5oT99Zex/mh5C+t75yKsQPufxphDYc41C9hljHnKGNMAlAAfR+jXLGCnMWad/b13f5S24TQApwM59nvxN2OMBrNKKaVSWnqiO5DECowxGyJs2xv0dQ7QC/jIigsB648Ef5szQtpHDE6BkVgjc62yRzt/CczBGmnz2ZuGAHWh/TTGHBGRT8P0ZyjQD6gM6r8A4UZTw/VjFLAr6DwD7H8fAx4TkV5Agf31m8aYl4LaHrBvqy8Bfhfm8NE+g2Bn0Px99div+R2ygz+/Y0C0CX3BAWJw2xxgjoh8PWh7L2Cj/fUmIA9r9HMTUAtMA07azyP1PfhzMiKytw1ta6JcR6jfYv3R87L9Wa8wxvy6DfsrpZRSSUdHZtsneDRrL1awMsQY47Qfg4wx/tHGj7CCVL9RUY67FzgzhnOCdSs8H7gE6xa6y35dgtoEVwsYgDWKvC/kOAeB48DYoP5n+oPS1vphjNkTPEmrRWNrBHAt1kjluDDH+y0wHes2fHvtwwo0/UbR8jrjYS/wp6D3yWmM6R8UEPqD2S/bX2/CCmanETmYbfb9YY+Uj4zSNjukbXaEti3Yo/g/MsaMAb4O/FBEvhLr/koppVQy0mC2g4wxHwEvA/eKyCARcYjImSIyzW7yJHCbiGTbeZrhbrf7PQL8WEQmieWsoElb+4ExQW0HYgXRh7BGVn9FS7NE5F9FJAMrd3aLMabZqJ8xxoeVu3qfiJwGVm6oiFwWoY/7sXJBMyJdhD0R6Wt2vqhDRGYCY4EtoW2NMV7gXuA/Ih0vBo8Dd4nIUDuvdCHw5w4cL5I/Y6VFXCbWxL4+9gQzf0D5D6z0hQuA140xO7GC7CnAX8MfkueBsSIy2861vQ0rxzdS2y+ISIHd9pYobSHke0ZELre/pwT4DGiyH0oppVTK0mA2Pr6DNVFoF9at5aewchPBChRfArZjTdJaF+kg9gjmL4HVwGGgDGs0Faz80rvs3NEfA3/Eup3+oX3ezWEOuRpYBHyKNfJ5XYRT/wR4H9gsIp8BG4icU/oKsBP4WEQORmjzGdbkoj2AF/gN8D1jTKT6tMsIH1T5qzf4H89E2P8XWPmqbwFvY73PEReMaC/7D4F8rGs7gDVS++/YP0fGmKP2uXcaY+rt3V4DPHYudbhjHsRKFfk11h8mZwOvttL2N3bb87Cu+2SELhcDq+zvmavsY2/Ayhl+DXjQGFMR29UrpZRSyUl0/odSqckuq1UDXGeM2dhae6WUUqo70pFZpVKIneLgFKuO7p1YOdLhRuWVUkqpHkGDWaVSy4VYFS8OYk3iKrBLiCmllFI9kqYZKKWUUkqplKUjs0oppZRSKmVpMNsBdlmmthStb+14LhExdtmlThHvPieKiNwpIo/E2LZYRCKW6hKRahG5JH69U0oppVRX6RbBrF1L9R8iUicin4rIqyJyvl3vNFI5qKQnImNF5GURqbXLK1WKyKxE9ysWoQGkXbv2/0TkfruGboWInAheXldELhGR6liOb4z5lTHmhk7oeqcRkVIRqbfLjH0qIutF5F8S3S+llFIqlaV8MCsig4DngP/Gqsk6AlhM5NqbSSHG0de/AOuBYcBpWAX1P+vMfkUT2md7JLk6hv1ysBYNeNYYc5s5lah9FLg77h1NkBg/09/YK6WNwKoR/IcE9qXTJPr8Simleo6UD2aBcwCMMY8bY5qMMceNMS8DDcBDwIX2SJgXwF6Z6k0R+UxE9opIsf9AQbf554rIHhE5KCI/C9re1x5dqxWRXcD5wR0RkTtE5AMROSwiu0TkG0HbCu0R4/tE5FOg2F5Faql9nirga0HthwCjgd8bY+rtx6vBCw+ISL6IuO1r+UBEvmq/Pk9E3rH7USUiN0V680TkDBF5WkQOiMhuEbktaFuxiDwlIn+2F1MobNMnYx3jTKxAdrUxJnSVr/uBa0TkrHb2LXjk9zsi4hGRQyJyd5jUgQwR+aP9nuwUkckhpzvf/sxqRWSliPQJOvaNIvK+PZr6rIicEbTNiMgtIvJP4J/2qPN9IvKJWHcK3hKRFsv42hUIngRyQ675u/ZnVysiL8mpFeAQkUtF5F37uA+KyCYRucHe1uL7K9rxovVTRGbZ78VhEflQrEU62vxehPtMlVJKqXjrDsHse0CTiKwSkZliLRmLMeYd4GbgNWPMAGOM025/FGvFLidW8Pg9ESkIOea/Yq2A9RVgoYh83n59EXCm/bgMmBuy3wfA/wMysUaH/ywipwdtnwJUYY2y/hK4EbgcmABMBr4Z1PYQ1qpcfxZr+dJhwScSkQuwVgH7d/tavgxU25s/sY87CJiHtVTtxNA3Tqyi+3/BWp1shH29RdJ8Kdt8rBXNnMBjocdoxRisQPZhY0y4EdgPsVZIK25n3/xtzwMexFrh7HSs939ESLMrgCfs63gWeCBk+3VYn+mZWH8g3WUf+2Ks1deuso/tsY8TrADrsz0PuBTrszjHPte3sD7L0D73B67B+oz9rxVg1Y6dDQwF/oa1VK//j5ungJ8Cg4F3gS+FHLbZ91e047XSzz8ANxljBgLjsFZ9a897oZRSSnU+Y0zKP4DPA6VYqyE1YgUrw7BGEv/eyr4lwH321y7AANlB218Hrra/rgK+GrRtPlAT5dhuIN/+uhDYE7L9FeDmoOeX2udPt59nYwVdHwA+rMDwbHvbw/5+x/D+lAG321/n+fuMFXSE9umnwEr762Lgr1GO6wKqI2wrxkqJ8AJnhtleAdyAFWTVAWOBS/zHi7Fvf7a/Xgg8HtSuH1APXBLUdkPQ9vOA40HPq0M+h1nAB/bXf8BKDfBvG4A16u+ynxvg4qDtF2P9gTUVcIT0vxQ4Yb8nPmA38MWg7S8C/xb03AEcA3Kw/gB7LWibYC2ne0OU769ox4vWzz3ATcCgkNfb9F7oQx/60Ic+9NEVj+4wMosx5h1jTKExJhtrJOkMrCC1BRGZIiIb7VvXdVijt0NCmn0c9PUxrP9pYx93b9A2T8ixvyPWbX+vWGkN40KOHbxvq8czxtQYY241xpyJFYAcxRqNBRiJFeSGu8aZIrLZvhXsxQrOQq8R+5hn+Ptrt70T6w+BsH0WkWuD2r4FjAreX0RGBTV/FngUeCX4dnnINR7ACtiXtKNvfs3eR2PMMVqOhoZ+pn2keV5n6Ofgv31+BkGfizHmiH3s4JHf4HO/Yl/PcmC/iKwQK6/bb6mx7hK4gONYdwCCr3lZ0PV+ihW0jghzjQbrj7dgod9fEY/XSj+vxPqe8dipDBe2571QSimlukK3CGaDGWP+D2sEbBzWSFGo1VhB1khjTCZWXq3EePiPsIJIv0DgZgdrvwduBQbbAcuOkGOH9ifi8UIZY/ZiBR7+/Mu9WLfEmxFrmdOngaXAMLsfLxD+GvcCu40xzqDHQGNMcMWEZn02xqz2twW+iDUaGLz/npD2P8SaoPeKiITe+vf7LTAdmNTGvvl9hDWK7X8P+mLdim+L0M9hn/31Pqyg0H/s/vaxPwxqH/oe3W+MmYQ12nwOVioIIW32ALdjBZt97Zf3Yt3eD77mvsaYf4S5Rgl+Hq4frRwvYj+NMW8YY/Kx0hXKsHJ72/VeKKWUUp0t5YNZEfkXEfmRiGTbz0di5SJuBvYD2SKSEbTLQOBTY8wJO+/02jac7kngpyKSZZ/vB0Hb+mP9j/yA3Y95nAo8ox3vNhHJtnN97wi6riwRWSwiZ4mIw86Z/K59XWDd8p0nIl+xt48Qq8xTBtDb7kejiMzESl8I53XgMxH5iViT29JEZJyInB+hfXvdipVS8b+hub8AxhgvcC8QPEGsLX17Cvi6iHzJ/qwXE/sfKH632J/D57BGgNfYr6/Gep9z7T8UfgVsMcZUhzuIWCXhpohIL6yR9BNAU7i2xpj1WAHifPulh7C+v8bax8oUkTn2tueBL9j50+nALcDwVq4p4vEi9VNEMkTkOhHJNMY0YKWK+PvfpvdCKaWU6gopH8wCh7HyK7eIyFGsYG8H8COsAGon8LGIHLTbfx9YIiKHsXItn2x5yIgWY91m3Q28DPzJv8EYswsrIHsNK4j+AvCqf/v1/fpfnNur1+QPR4z8+MMRI5d8OGKkYI3kvoQ1yWkbsC7oXPVYt6I3YAUUO7DKjRXa53sde3IXVs7pJiDHGHMYq4TXk0AtVrD+bLiLMcY0AV/HmlG/GzgIPII1gSpu7FviN2EFqBvswDzUMoKCvrb0zRizE+sPiyewRjAPY02Ca0t5ttVYn2mV/fiFfez/xSof9rR97DOBq6McZxDW51qL9b1yCGuUPJLfAv8hIr2NMc8A9wBPiFU9Ygcw0+7HQWAO8Bv7mOcBW6NdY7TjtdLP64Fqe5+bgW+3871QSimlOp1YcYbqTB+OGDkJK/D4CdZI3J+AK0d8uHdd1B1Vu4jIAKxJVmcbY3Ynuj+dwa72UANcZ4zZmOj+KKWUUonSHUZmU8EV9r+PYpW3OopV8krFiYh8XUT62XmcS4G3OVWqrFsQkctExGnf4r8TK5Vicyu7KaWUUt2aBrNdw58nenjEh3sNcITws/JV++VjjXrvA87GKqfW3W47XIhVweIgVgpGgbEWX1BKKaV6LF1ysmvst/8d9OGIkQexJqHtj9JetZEx5gasurXdljGmmDALTCillFI9mY7Mdo3n7H/nYa001Q9rdSullFJKKdUBbZoANmTIEONyuTqvN93Y144eY/aRo6QD6/v25c8D+4O0tXqUUqq9KisrDxpjhia6H11Jf2crpVJVW35ntynNwOVysXXr1vb1SgWMBYoS3QmlehgR8bTeqnvR39lKqVTVlt/ZmmbQSVwuFyLS7oeOpiillFJKtU4ngHUSj8dDRybTi6YgKKWUUkq1Skdm4+BIaSkfnz+Fj3In8tlvl3YoiFVKKaWUUrHTkdkOqn/rLep+djeDfnYnacOGUXvb7fQaOzbR3VJKKaWU6hF0ZLaDTry8HoB+V3+LvrO/gfTrx/GXXo66z1VXXcWMGTOora3tii4qpZRSSnVbGsx2UNOBgwA4+ve3Jm/174/v4IGI7Wtra1m7di2TJk3innvu6apuKqWUUkp1SxrMdlDa0CEA+I4cwRiDOXIEx5DwZdHWrl1LZWUlc+bM4de//jXr16+PemzNw1VKqeRR6all+cb3qfToXTWlkonmzLbTkdJSjiz/Hb5jxwA4+sQa0ocPxxw/Tt8Zl8D9JS32qaqqapZacNVVV7F27VrmzJkT9hz95xU2y8PtO2tm51yMUiqhRGQk8EdgOOADVhhjloW0EWAZMAs4BhQaY7Z1dV97qkpPLdc9spn6Rh8Z6Q4eu2Eqk3KyEt0tpRQ6Mtsu/klf/ecV4lyyGICjD/6OuiU/Z8APbqXP12aF3S8rK4uqqiqefPJJAObMmcOGDRsinufII3/Au+Tn0KsXx196Kf4XopRKFo3Aj4wxnwemAreIyHkhbWYCZ9uP+cDvuraLPdvmqkPUN/rwGWho9LG56lCiu6SUsmkw2w7hJn31vuQSTt/+Jpl3/CRijdg5c+a0WI2nqqoq4nn6F87FufBuaGjg+FNP82H2KA7MvhKfzxe/i1FKJZwx5iP/KKsx5jDwDjAipFk+8Edj2Qw4ReT0Lu5qjzV1zGAy0h2kCfRKdzB1zOBEd0kpZdNgth3aOunLLysrizvuuIMZM2awYcMG7rjjjqjt+86aSZOvyXrSpw/9vn0d9Vte5/Cv/rPD16CUSk4i4gImAFtCNo0A9gY9r6FlwIuIzBeRrSKy9cCB1n8vqdhMysnisRum8sNLz9UUA6WSjAazrQi3IEKkSV/BbSOZP38+Y8aMYcaMGaxfv5758+dHbHv8+Rc4+t/LAUjPHkHmr35pvf7Ci3G8QqVUshCRAcDTQJEx5rPQzWF2aTEz1Bizwhgz2RgzeejQ8JNRVftMysnilulnaSCrVJLRCWBRRFoQoc8lX+HwfSUcW/MkacOGYY4fp9c5ZzdryzevjHjchx9+mIcffrjV8x9ZsQJz+AgA6eedh8PhABF8n4X+P04plepEpBdWIPuYMWZdmCY1wMig59nAvq7om1JKJTMNZqMIzo11ZGXhveOnHH/pZT637D4yf76EIw/+DtPQwIAf3BqoanDkD49CU1Nczm+OHAW7JFfGxAlWrqwxOAYNisvxlVLJwa5U8AfgHWPMf0Vo9ixwq4g8AUwB6owxH3VVH5VSKllpMBtFuNzYhu1uPj5/CqahgV7jxtL47nsce2INjkwrwOw/9zukjxgRdWQ2ZsZARgacOMHRtU/T+IE1WazvZZd2/NhKqWRyEXA98LaIuO3X7gRGARhjHgJewCrL9T5Waa55CeinUkolHQ1mowjOjXVkZOD77DN8Bw4w6Gd3Yk7Wc3jpUvpeOZs+06ZRe9vtgDVpK23MmLicv8+sWXzud8vZN8pF065dHNu1i16TJzHw7rvicnylVHIwxvyd8DmxwW0McEvX9KhnqvTUsrnqEFPHDI4pL7at7ZVSnUMngBF+khdAn0u+AsCxNU9yfN0zcPIkYKUdmMYGAEx9A31nfwMc1lt5/IUXOfFMGSP79bNGc9v5GNmvH30vuxQRwTF4ML2nfZkRNXs4rbzMyp1VSikVN/5FEe59+V2ue2Rzq6t8tbW9Uqrz9PioKHgBhMy77+JwyTJOvPg/AGTk5pL58yUcfXQldUt+Tvq4cYCVduA7aBXM9tV5rbqyffoAcHRlKd7FS3htyGkcuu12q9qB/aj77VJqzsim5oxs6h5YTo1rDCP79Qvbr73HjtF/9jcQEc7Y/iZDVz8WNuh1uVyd/yYppVQ319ZFEXQRBaWSR48PZj/7zW8BOPzQwzR88AHSrx/HX3r5VAOHgFgPR//+gJ12MMQqmO3IdFojufakrwE33oBz0UJobKTvjBnNzuUf6e1z6QyOLH8Q6uvZe+xYs4C3rQ+Px9PZb5FSSnV7bV0UQRdRUCp59Oic2fq33uLkxgoAzMmTHFl2PzJoUGABhHCluQD2X3gRvb5gjdJKr/RACkK/b32Lo4+uDFQ4CF3W1j/Se+TB3yG9epEx7cvw+Oquu2CllFIBoTmvj90wNWwObGg7//OFl4+l9lh9q+2VUp1L/PmhsZg8ebIJXY41ldX++38w/sHl7LXLarXHyAED2DLmLPpdczWDfvIfHF21iiPLrZJd/a+7loE//lHY5W3r33qLAzO/Rva+GtryGYQSkQ7tr1RPISKVxpjJie5HV+puv7PjyZ/zWt/oIyPdEXFVr9B2Cy8fy5LndkbcL9bjKqWia8vv7B6dZtDw9o4O3+bfe+QIp29/k8w7fkLD229HzL8NdqS0lINXXR21b16vl7y8PFwuF263O2pbpZRSbRNrzmtouxd3fBR1v+D2Jxt8rNtWQ6WnluUb39dJYkp1kh4dzMZ7PDN4kYW+s7/RMv+WU6kL6WedFfE4/kDW6XRSUFBAYWFhnHuqlFI9W6w5r6HtZo47Pep+U8cMJj3N+l+rAZ54Yw9XPfQPlr6kVQ+U6iw9Omc2Y9xYeOnFuB0v3CIL/vxbP3/AmzHlAhrefDPscUpLS3G5XJSVleH1esnKyqKiooK8vLy49VUppXqS0DzWSDmysbQ7d/jAqLm1eecMZf2u/RigyXeqD/UN1kiuph0oFV89Opjt/+3r4N6lYbeVl5dz++23k5eXR25uLkVFRRGP89lvlzLwxz9qsciCOXIEx5Chzdr6A96+X72Mow89HPZ4Xq+XgoKCwNeZmZkayCqlVDtFymP1P9raLtzx122rYe3WvTT6DOkOoVe6g4ZGX7M7gA6HaNUDpTpBj04zyMjNjbitoKAAj8fDqlWrWLBgQdS8VX9ubOgiC+b4caRXWrMFGfwlvdLHjGHQksVhj5eXl0dpaSmA1pFVSqkOak9+7MkGH09vq2nRptJTyzUrXmPpS+9yzYrXWL1lD9f8fjOPbdlDfZPBZ6DJZ5h2zlC+mJ1JeprgEEh3CEvyx+morFKdoEcHs5H4A9e5c+eye/duACoqKiK29+fGhi6y0O9bV3Hs8TXNJoQ5+lm1ao+teZI0pzPs8fLy8nC73Xi9Xrxeb3wvTimlepjQvNesfhmBCVnBk7OmjhlMusOqPmOApyprWuS4Pr2thvomgwHqmwyP/r2K+sZTuQQCpDmETe8d4O0P63AA11wwijU3Xci1U0Z12TUr1ZP06DSDSPyBa1FRES6Xi2nTpkUNKoNzYwd8dx4DvjsPgM+W3gtYE8IcWVl47/gpDe+9F6g1axoaIh6zuLiYoqIicnNzdXRWKaU6IDjvNatfRqC0Vrq9KE5j06m0gjmTR7J6yx4r37WpZY5ri0KLIaUXv5idybgRmTz++p7AKO0Zzr46IqtUJ9KR2TD8gWusQWS43FiIPCFswHfnMXzr65y+PfwEMIDCwkLcbjcLFizQagZKKRWjSGWwJuVkccv0s6g9Vn8q5aDJ0BCSfjB7Yja9e0WuVjB7YjYZ6Q4EyEh38N2LRpORJtbzNGHh18cG2ujqYEp1DR2ZDcNp3/7ftGkT48ePZ9OmTRQXF0dsb44fp++MS1q8HsuEsGh9iLW+rH8CWrjFGZRSqqdYvWUPC8t34DMm4oIF/pSDhkYfafbIbFOTLxB0RlsJDKyg+PEbW69u8NgNU3l6W03LkVylVNxpMBtGQUEBCxYsYO7cuTidTsaPHx+1mkC4pWsB+lzyFQ7fV2Llxw4bFjHo7ajDJcvoNXYsfWfNjPuxlVIqFVR6allYvoNGn1U/oL6xeYpAcMmt4GAVaBGItla9wL/dPwo8dcxgbpnesnb4um011DdaE8l0JTClOo8Gs2G4XC7uu+8+iouLcTqdlJWVRW2fecdPwr7unxDmz4+NFPR2lH8CmgazSqmeanPVIZp8pwphOeRUGazgklvpaQ6mnTOU0wb2BloPXCNpbdnazVWHONlgleY6Ya8EpsGsUp1Dc2YjKCoqwuv14na7OzQBKzg/NvOOn3RKKkC4xRmUUqonyeqX0aym6w3/OjoQPAaX3Kpv9LF+134es0tqhVuRK5blZ5/eVsPJhsjlvkL7s+aNPbr6l1KdREdmEywnJ6dDAW5OTk6bcnGVUqo7qj1Wj2CV1HIAA/v2Cmzz58n6R0r9GhpbVitobcTV3+apyprAsdLCLIZQe6y+2fMmH7r6l1KdREdmE6y6uhpjTJseJ998k5ozsvls+YPsuve/Oi0XVymlUsXUMYMDVQgyejWvIOCf1DXjvGHN9klPaxmExrLAwuaqQzTa69QKMGfyyIgTzfx6hTmXUio+dGQ2BXVVLq5SqmuIyKPA5cAnxphxYbbnAeXAbvuldcaYJV3Xw+QXSxWC8SOdrN+1H8OpIBQITOKalJPVrNpBpLJaoW1mT8wO25/Hb5zKum3WCO6VE7N1VFapTtLjg9l43Obr858GAAAgAElEQVRPhODFGZRSKa8UeAD4Y5Q2fzPGXN413UlNrU3m8o/e+oPQcWdkhk0pCA2Kgysh+M8RLXCOtT9Kqfjo8cFsdXV1oruglOrhjDF/FRFXovvR3YUGoeFSCvwBaHBJr3ABb2uBamgArJTqPD0+mFVKqRRxoYhsB/YBPzbG7AzXSETmA/MBRo0a1YXdSw2hQWhrKQWRAt5oYplEppSKHw1mlVIq+W0DcowxR0RkFlAGnB2uoTFmBbACYPLkySZcG2WJJV0glhzaUO0JgJVS7afBrFJKJTljzGdBX78gIg+KyBBjzMFE9qs7iGW1r1jyY4O1FgBrCoJS8aXBrFJKJTkRGQ7sN8YYEbkAq6xiy5pRqlO0dSJXtABYUxCUij8NZpVSKsFE5HEgDxgiIjXAIqAXgDHmIeCbwPdEpBE4DlxtjNEUgiQWKQDWFASl4k+DWaWUSjBjzDWtbH8Aq3SXSnHtycFVSkWnwaxSSinVRdqTg6uUik6DWaWUUqoL6WIKSsWXo/UmSimllFJKJScNZpVSSimlVMrSYFYppZRSSqUsDWaVUkoppVTK0mBWKaWUUkqlLA1mlVJKKaVUytJgVimllFJKpSwNZpVSSimlVMrSYFYppZRSSqUsDWaVUkoppVTK0mBWqQRxuVyISLsfLpcr0ZeglFJKJVx6ojugVE/l8XgwxrR7fxE59aRYmm+86U04Pbfdx1ZKKaVShQazSnUXl/0XnDfH+nrAsMT2RSmllOoiGswq1RlaGykN3R4PFYvhH0vh3Ctg5v3xP75SSimVhDSYVaojogWt7Rgp9Xq9FBQU4PV6AXC73bH1Y9ZyGHURvPccvHIXnDYOLrgltn2VUkqpFKbBrFIdFSloDR0pjWE01u1243Q6KSwsJDe3DTmvF3zf+vdzZ1vB7P632nABSimlVOrSagZKtZc/OH3ph3DfSHhpwalts5bDvE1w/vdh60NQucJ6/bL/ggV74eJfhD2kfyS2uroat9sdGKGNal8lvLoUDrwDbzxovTbsi+29KqWUUiql6MisUm3gcrnweDwRtj5lP8JYfCsAOct/RvUd9mhtGKNHj6a4uBiv14vX66W0tJSKioroncoYAG+vho13W1+f/32YdFNM16OSg4g8ClwOfGKMGRdmuwDLgFnAMaDQGLOta3uplFLJSYNZpdogLuW0Dh+3RmvDyM/PbzYam5ubS0VFBXl5eeEP+JHbytG9WeOaFFcKPAD8McL2mcDZ9mMK8Dv7X6WU6vE0zUCprnbhj2JuWlBQEH1k9rSxHe+PSjhjzF+BT6M0yQf+aCybAaeInN41vVOqZ6v01LJ84/tUemrj2lbFj47Mqm4lehpA63Jycqiuro5fh8J5Y3nETdXV1RQXF+NyuXA6nZSUlLSeZqB6ghHA3qDnNfZrH4U2FJH5wHyAUaNGdUnnlOquKj21XPfIZuobfWSkO1h4+Vhqj9UzdcxgJuVkRW372A1TW7RRnUNHZlW34k8DaO+jvYFwQUEBJSUl5OXl4XQ6o0/cSu8DIy4Iu8npdOJ2u1m8eDFlZWWsWrUqelUD/8Qy1d2FK4URNt/FGLPCGDPZGDN56NChndwtpVJHtFHTSNs2Vx2ivtGHz0B9g4+F5Tu49+V3ue6RzVHbNjT62Fx1qFOvR52iI7NKdZDX66W8vBy3201BQQGFhYU4nc7IO9xRC/XHYH7/Fpv8wWzMtARXT1EDjAx6ng3sS1BflEp6lZ5aNlcdCoygRho1rfTU8vS2Gp6qrKGxqeWI6tQxg8lId9DQ6ENE8BnTLFgNHnkNbtsr3cHUMYMTdfk9jgazSnVQSUkJ06ZNiz0d4MA78N7z8Tm5luDqKZ4FbhWRJ7AmftUZY1qkGCilwt/ujzRqet0jmznZ4Avc5ggNUiflZAX2z+qXwZLndkYMVoPbhktDUJ1Hg1nVI+Tl5eH1epuNmMYrF3XChAmUlpYGjr1q1Sry8/Mj77D8vLicF9ASXN2EiDwO5AFDRKQGWAT0AjDGPAS8gFWW632s0lzzEtNTpZLfum01gQDVH5yGGzX1B7j+QFYgYpDqD0zPHT4warAa3FZ1HQ1mVY+wadMmxo8fDxA9BaAdpk2bFpi0VVpaysaNG6MHs2AtnrD4hx0/eZr+CHcHxphrWtluAF2fWKlWVHpqWbt1byBATUtzBALPcKOm6Q6hocmQ5oBvnT+K2ROzowajwcFqaCqDShz9P6HqUfwVAlwuV2w7xLAErX/5Wb+SkpLWj1uxmJwh/ay6s+2Uk5PT7n2VUqo72lx1iEafFcoK8M1J2c1SBloEnSKAweFwtBrIBtPKBclFqxmobs8/oco/UausrKxtB/AvQXtt5DzXwsJCKioqKCoqil59AHD9fihyZx2eg8fa1g9bzqiRmMb6zi8hppRSKcafTpAm0LuXgysnZge2hVYs2Fx1iMYmK82gqalt1Qe0ckFy0ZFZ1e3l5uYGVu3yL0JQVFQU+wEqFsM/lkLOlyM2qa6uZvr06cydO7fVY3v2Hej4KmJKKaVamJSTxcLLx/Lijo+YOe70wGjp6i17WFi+gyafoXcvayQ1WvWB1lIItHJBctFgVvUoubm5bSt9NWs5jLoI3nsOXrkrYrMuX9igcgVcoCmUSqnupz25qP59/BUH6ht9vFH9KecOHwjAwvIdgfSD+gZrJPWW6WeFzaONJYVAKxckFw1mVbfn9XrJzc0lNzeXioqKZvmtrbrg+9a/nzs7ajDb5bS+rFKqG2pPLmrwPo4wtWABfEF3w0QIjKSGy6MNl0KglQuSm+bMqm7P6XSSl5eH2+0mNzc3tglaAPsq4dWlVl3YNx7s3E5iTRwTEUSk9YBb68sqpbqh9uSiBu/j8xkcIqTJqTJbU8cMJj3tVLgjjuapWqG5tMF5t5pCkBp0ZFb1CKWlpW3fKWMAvL0aNt5tfX3+94HOC2pLSkoYP348hYWFrU4i0/qySqnuKNZc1OBUhNB9Fl4+ltpj9c1u/39zUjaPb9mDAYzPBEZbI40EawpBatFgVqlIhpwLN29r9lJOzvMdLqfl8XhavF5eXo7H46G4uDi2NAitL6uU6gZC82NjCSTDBaCt7XPlxGzWbauhodFHmkPY5z0eOHe4lIJoKQRaXzb56P8RlWqDeJTDChcM33777WRmZlJdXU1paSkFBQVxX9xBKaWSSaRR0dZyUcMFoLdMP6vVxQ4eu2EqT2+r4anKGh5/fQ9Pb6th4eVj21SVQOvLJifNmVUqVLGcenzUhsoHHVBaWhqYoDZv3jzy8vK0jqxSqlvbXHWIkw1WUOqvMBCL9ua0TsrJYoSzL41NpwLh2mP1PHbDVH546blRA1N/Xu26bTVaXzYJ6cis6lZycnI6lgYwuDdc9p9w3hzrhQHD4tSz6PLy8gLlvbxeLy6Xq+2VF5RSKoVk9csILDvrs5/HoiM5reFyclsbCQ4ejU13COlpDpqatL5sMtFgVnUr7RrNbLZk7UnYuNBaJOHcK2Dm/fHqWqvKy8uprbVm09bV1cW+5K5SSqWg2mP1WIvJWkvP1h6rj3nf9pbFak8gHJzW0OQzfOuCkYxw9tWc2SSiwazq3oICVdcDvfEcOhnDTkfsx0P2w5KTk9Opt/53797NggULAMjPz2+9ooFSSqWw4JFZQ+wjsx3V1kA4dDT3yonZGsQmGQ1mVfd32X/BeXPwLB4Zn2Vki0PSGG56E07veOBZVFTUtmV2lVIqhdUeq8ch4DPgkLaNzHYlLdWV/DSYVakr1qCyYrGVNhBPdoAMxDWv1uVyhS3dFSpSXnBnjB4fqT/Mv//1x3xybD8ZaRlMHnY+P5hwOxlpXTOKopTqnmKtKZsMdLWv5KbBrEptrQWVs5bDqIvgveeAOC5H6w+Q45xX6/F44jN6HEdpjnSu//x3cGWO5qXqF3nm/XVcePqX+NKIi+J+LqVUz9HWEU+t76oi0WBWpbbQoDJ0tDYGTqeT3NxcnE4nBQUF5OXlRZ98FRwgv3IXnDYOLril/deQ5Pqm9w0ErkP7DqWXoxdnDBiR4F4ppbqDWEc8tb6rikaDWZVwsd5aD6+OnNN7UT3/Idh6arIW1/0PmCZY/TW46CfgSAd+2WLviooK6urqcLvd5ObmUlpaSkVFRfTlby/4vvXv5862gtn9b7Wpxx0tH5YIOw/uYNE/7qbeV8+E0yYyrH/XlCxTSvVs/tHYfd7jYVfqUgo0mFVJIG631rOnQs1m6D0Inv0u5HzZev3Ve0DCrw/idrvJycnB7XbHtuLWvkrYvRHO+Rq897z12rAvtqm/0XJaIwW5/soGBQUFFBYWdnnZrrOyzqZk+v28uu9VHnvnT2zwrOfrZ17RpX3o7kTkq8AyIA14xBjz65DthcBvgQ/tlx4wxjzSpZ1UKs6ipQ74R2NPNvhwCKQ5BPGZsPm1moLQs2kwq7qPj93QOxPOnAGnfQEqFsF5V8GX77RSAopb5sy63W5cLhfV1dW4XK7WA9qMAfD2ath4t/X1+d+HSTd10gVZysvL2b59OwDbt2+noqIisMBCV6jyfsBn9Z8xvP9w+qT1BqC3/a+KDxFJA5YDM4Aa4A0RedYYsyuk6RpjzK1d3kGl2qG1ALO11AH/CmEGaDJgfIYvjMjkW+ePatZOUxCUBrOq+2g8YT12PQUjv2S91tcJw8dbKQFhJoC5XC5WrVrFhAkTyMnJoaKiIvqo55Bz4eZtndL9SKZNm0ZmZmZguduuVldfxwNv3k/tiVo23vxXvB97+QsvtOtYnV2rN4VdALxvjKkCEJEngHwgNJhVKiXEEmAGL0YQLnVg6pjBpDmERp91585n4K2aOt7dv5Nzhw8MtG3tON2BjjxHF/7eq1IJVlJSgogEHgUFBdGDoGkLoWAVXPhj6/mONda/Rz+BA+/AGw+G3a2oqIhFixaxaNEiPB5P9FxZsCaY+R8fudt8Xe3hn6Dm9XopKSnB6/V2yXn9Jpw2kT9cVsq6/HK8H3sxxrT70f7c6G5vBLA36HmN/VqoK0XkLRF5SkRGhjuQiMwXka0isvXAgQOd0VelWhUuwAw1dcxg0tMcCJCW1jJ1YFJOFjf86+hmrxmgvsFHyYb3qPTUBo6Tke4gTUj6El/t4f/D4N6X3+W6RzYHrludoiOzKimNHm39Aps2bVqgukDUFIBNSyCtNzjSrOcHdsIXroVPdsHDE62UgDCcTidFRUUUFhaSmZlJYWFh9I51Un3Z1uTl5bF48WIWLFhAWVlZQkZoVacKlywdmkj+F+BxY8xJEbkZWAVc3GInY1YAKwAmT57c/mR0pTogtIZsVr8Mlm98n6x+GdQeqz8VcPrnS0SYN/HZycYWr/mAV98/yBvVnwZGfBO5qEFnj5r2hJHnjtJgViWljRs3AlBWVhbbxKy+Q+D4QWgCRv0/mPsKpIV8e/8k/OSqvLw8tm/fzsqVK1ufWBVDfdmOVWcIr7i4mLy8PMrKyli2bFmg+oLqNmqA4JHWbGBfcANjTPDQ1u+Be7qgX0q1S3CAmdUvgyXP7QzkvzoEMtIdzJ6YTaPPWDmxPhM2SAv9rT18UG8+OXyyRWCXqEUNuiJfN5UWl0gUTTNQScm/rKvL5cLtjuF2/oKg4HHo51sGslG43W6MMa2PygLM22RN+tr6EFSuCNvEX52hPY9IvF4vdXV1lJWVkZmZ2eXVDFpTUVFBXl5eIB1CtdkbwNkiMlpEMoCrgWeDG4jI6UFPrwDe6cL+KRWTSk8tyze+z+otewKjlbXH6qlv9AVuNfgDUYEW6QH+/f230mdPzCYj3RFoe9tXzkmqlIJY0ik6yv+HwQ8vPVcnt0WgI7MqKblcLsrKyigoKKCgoKD10lkbF536uo2lstrEP5msHfVlO6KoqIhVq1YBsHLlythGq7vYpk2bAv/m5+cnuDepxRjTKCK3Ai9hleZ61BizU0SWAFuNMc8Ct4nIFUAj8ClQmLAOKxVGcCkt/whsepqDaecMxeEQTJMJvN7LHpmdPTE7EPQCYUc5H7+xeQrBucMHJs1kqK4aNdXldKPTYFYlrfz8fHbv3s3o0aMpKiqKPjnrtaWQ3gdyCzu3VNaBd9pdX7YjSktLW5+clkBlZWUAzJ07t92BbEfTM1K9UoIx5gVoXibCGLMw6OufAj/t6n4pFSv/KGXwCGx9o4/1u/YH2vRKE+ZMHsmVE7MDwZn/3+Ub3w+bGxoayIU+T+RM/0Tn64bTEysfaDCrkpLX620WwPnTDiIq7qJ5Lv7JZO2oL1tdXU1xcTGrVq1i48aN5OXldU4fu1hxcTHLli0DrM/Nn3LQVnFbPEMplRD+Ucr6Bh8+rHzX0J9on88wwtk3bJDVnlHOZKgxm0yjpsnwfiSCBrMqKbndboqLi6mrq2PlypVxmezU0WVkc3Jy4K7qNu/n9XqbpQlkZma2uw/JyD85raKigsWLF1NeXs59993X+h8gSqluJXTS1859dazdupfGJoOPU+kFkYLU9oxy6kz/5nrq+yFtGQmZPHmy2bp1ayd2R/VEItLhEbmO7B9v4frjD6Lnzp1LSUlJxJzXZH8vWjt+dXV1YFQ23C3/aPt39rWLSKUxZnK7T5CC9He2SjT/Le/gklzxDK78I5H+0dyeMhIZSXd6P9ryO1tHZpXqApmZmdTV1bFq1Spyc3MjjlrGZfQ4QSoqKigoKKCuri6uE8BKS0spKirC6XS2vkKbUiqpdPYt+HjmrHaHXNNkzOHtCjoyqxIu2Ucj2ypcf8rLy1m5ciXz5s1j7ty5uN3uiEFZsl1PsEh9Ky8vp6CggJycHAoLCykuLm7T/pG2+Y+bn58feM8iLRihI7Mt6e9spWLTU3NNQ63esoc1b+xh2KA+3DTtzIS+Bzoyq1SSyc/PD4xW5uXlUVJSQklJSYJ7FT/5+fmdFoDn5+dTXFzMhAkTAhPNojlSf5h//+uP+eTYfjLSMpg87Hx+MOH2TumbUqp76Km5psFWb9nDnc+8bT+r45V3P2HN/AtT4n3QRRNUwvlvrbf3kchb623hdrspLCykvLw80V1JGfn5+YF6wwC7d+9udZ80RzrXf/47/PfFD3JpzmVsqqlg68dvdHZXlVIpzF9JIVkWY0iEF3d81Ox5Y5MJLAIRuphFstGRWZVwqVwbtC2cTierVq0iMzNTZ/q3UWFhIdXV1SxYsCCw0lgkfdP78qURFwEwtO9Qejl6ccaAEV3VVaVUCuqpuabBZo47nb/982DgeXqaBFZlS/YUDA1mleoiLpcraXNhk5XX6w2UaQPrD5+KiopWS7XtPLiDRf+4m3pfPRNOm8iw/sO6oLdKqVSWTPViE+HaKaMAWuTMRlrMIploMKuUillHqy1knZ7Flc8WNMtlzUjLiNi+tLSUBQsWUFZWRm1tLZs2bWLBggUR2/uPPeG0ifz2y/fy+v7XeeydP7HBs77dfVZKqe4uuITapWOHNxudjmUxi0RXgtBgVikVs46khBxvPM6b+7fhyhzNS9Uv8sz763j74Fscrj8cMaAtLCzE6/Uyd+5c6urqmDZtGtOmTYt4jv+++EHWvPs4G/e+wrjPjaNPWm8Aetv/KqWUas6fRnCywVqK2CE0SydoLQUjGdIQNJhVSnWJ0FzWdEmn4MzZXHD6FF6qfpEnWNtiH6fTSXFxccRSX6HOGHAGfdP6APD7HSsYmDGQWaMv5+JRX4nbdSilVHfir+TgT4ILl04QLQUjGSpBaDCrVJyl8sIHbRWpDFakkdbQXNbLRn+Vvul9Gdp3aFz6881nvxE49h0X3Enf9L5xOa5SSqW6SKkAU8cMJt0h1DedmtORluYgq18Gyze+HzF1IDg1obU0hM7WZcHsgQ8Ose5HL4KBG9ddiyNNq4Kp7qmnVGeAU2WwglMHLjz9S4ER2FBnZZ1NyfT7eXXfqzz2zp/4064/8nL1/1Dvq49Lf375r//Jks2LefOTbVz/wrVceMaXWs3LVUqp7i40FWDh5WObLS+cd+5pvLxrPwAC5J0zlCXP7YyYOtDa8bpalwWzrz1aSVq6g6YGX1edUinVydpSBqvK+wGf1X/G8P7DA7ms2QOyA8HtX3ihw/3pndaH84ddwCt7NzB28Fg21VREDa6VUqonCE4FqG/wsbB8Bz5jAoFoxbufBNo6HNadxWipA6GpBbXH6rll+lldfl1+XRLM7n5tD0c+OYprykg++LunK06pVFy4XC48nvZ/z+bk5CTNSG1nXUtw6sA/btnC6H2jYz5mcADbu3fvDqVnZA4fxG0bb6GXoxeX5cxk5MAR7Di0Q2vMKqW6tVgqCQRXJBARfMYEAtEXd3xEo+9UikGTz1Dx7iekpzloagqfOhBLhYOu1OnBbFOjjy1/fJMpcyeyp/LDzj6dUnHl8Xg6VBu2I8FZvHXWtQSnDvxl3wsdPkf+M5dj7P/8cofm8tMpdwVyYJ/74FlW7nyUe6eVMKz/sECVhL98UM7zu5/jJc+LAGT1ziKrT3LVQ+xuEl2SR6meLNZKAsEVCbL6ZbDkuZ2BQHTmuNN5o/rTQDUDsFb/unrKSEY4+4b92Q49nn+lsET9DuiUYDY4P/aiGyfTe2BvRl84kj1brWDW+AykdcaZlVJdKVzqQEeVFfwFgJNNJzl7zNns3bOXv/ACP+dXLdquI/rSwJnDBzHp+cncNlFXXOsMyVCSR6merC2VBIIrEpw7fGCzP0LPHT6QhzZ9wHo7b9YHjDsjk2unjAosZRsa1Pq/TobfAZ0SzAbnx9btO8wn7x7k97NXB7aXfnst/7bm6s44tVKqE13z/FXNKhbU1dfxwJv3U3uilgEZA+J2Hn+QvHfP3g6P9A6JU6UE1VIylORRqidr7+3+0FJbk3KyyB3p5H/f2Y/PWLVma4/VR/2DtdJTS8mG9wIjuon8HRD3kgLB+bEAX8j/F2YvncnspTMZdb6Vu3bFL2bE+7RKdTmXy0VhYWGiu9EhbrebvLw8nE4nIoKI4Ha7I7Y/3nicTTUVLHr1LuqbrBJYf7islHX55fxx5mMR9ystLcXpdOJ0OqmoqGi1X3X1dSzbdl97LqmFr595RVyO09lE5Ksi8q6IvC8id4TZ3ltE1tjbt4iIq+t72Zz/f6RpQlLkzSnV3fhHRSs9tWG3+2/3//DSc8OOira2f7Dgn+cM++c53B+s/uNe8/vN/O2fBzFYFRBEhKx+iakcE9eR2XD5sQOG9GfQsIEAzLxrejxPp1RCuN1uCgoK8Hg8UQO/VOB2u9m0aRO33347AMuWLcPtdpObmxu2/Zyzr2Lte0+y89OdbP34jZiqBJSWljJv3rzA88LCwlYnxU04bSIPXvIwpfwp9ouJoGLvxqQPaEUkDVgOzABqgDdE5FljzK6gZv8G1BpjzhKRq4F7gG91ZT9D82NbWxlIqURK5XzuSk8tT2+r4anKGhqbope/irSgQfCoqkOEJfnjAmkDT2+rQYDZE7ObLYwQ7uc5eOTXX3t2+14v9Y1B1akEfMaw5LmdnDt8YHItmtC3b9+PT5w4MSz4tZgmtDxk/XNa5jBu8F2j+bGq26iurmbChAmB54sXL05gbzqusLCQ3NxccnNzKSgoIDMzk4KCgojt17z3BNkDstl/bH/MVQK8Xi9gVUPweDw4nc6Y9ou24IHX6yU3NxePx8OiRYuirhCWJinxC+gC4H1jTBWAiDwB5APBwWw+UGx//RTwgIiI6UgeRhtEut0YbWUgpRIllfO5Q5eXBatM1sLyHTT5DGmOU4FpNMGjqj5jWFi+A4DiZ3cEFkhYW1nD4zdObRbQhgbKoRPHmgWxNmNIaKpB1DSDEydODDPG0N7HJ3X7Kf12yyUqlUpVTqeT/Px8cnJyyMzMZNq0aYnuUofl5uZSUVFBeXk5xcXFUYPNNEmj5kgNp/UbxrD+wyK2C1ZUVMSbb75JUVFR4HlHeb1e8vLyKCsro7S0NGrbgb0Gdvh8XWAEsDfoeY39Wtg2xphGoA5ocV9fROaLyFYR2XrgwIG4dTDS7UalklEqf7+GLi8rgEOERp9V46XRZwWmraUOTB0zGEfQAKTPZ3hxx0c0BK30Fem9CU5PmJSTxS3Tz6L2WH1QcHyqbZqDhKcbdfoyXJofq7oTp9NJWVkZhYWF1NXVJbo7ceNPl4iUXuBXcNY3APjwSA0bPOs5Un+Y7224iSufLeCa56+KuJ9/5Df4XJHEcjyXy0VxcTG7d+8OjPxGMnJQ9NGLJBHullfoiGssbTDGrDDGTDbGTB46NH6T3zQ/VqWSVP5+bZa7miZcO2UUS/LHke4ICkyNiRig+wNRILCfA8joZZXh6pV26jjh3hv/yPC9L7/LNSte42fPvE2lpzbQr+BfRAJc/C/D+OakbK6+YFT3qmYQbOjZ1puky9mq7iTWW+WpoqioiNLSUkpKSsjLy4vY7mXPS3z+c+fxzqe76J3Wu8Vytk8Q+U6My+UiJycncJ5I/Mdb8+7jUY9XUVHBggULmDt3btRri3UEOcFqgJFBz7OBfRHa1IhIOpAJfNo13YucT6dUMkqV79dweb3R+h68cle4AL3SU8s1K16jocngEPh5wRdYc9OFLcpwhcuZ9Wu2WliTYfWWPTy9rYbHbpjKYzdMZd22GtZu3RtIedj03oFAXu/sidmd+n5F0q5g1j8Duri4OOZbhrqcrepOCgsLKS4uZtOmTeTn5ye6Ox1SUVFBXV0d1dXVrY5yHm84zkdH9zFr9OVcPOorpDvSmy1nG0lJSQlutxuPx0NOTk7Uc/iP1zetT9R2/nzfgoICKioqIgbhGzzrk34CGPAGcLaIjAY+BK4Grg1p8ywwF3gN+CbwSmfny4ab8JWsQYFSoZL9+zVaXm+4vl87ZVSL+rChnt5WE8iHbTJw1zNvc82UUS0mekV7X/wjsP6cXQOcbPDx8KYPGD/SyeyJ2cyemM3mqkPs8x7n8df3JLw8X5uHR/2BbF5eHoWFhXi93qijLNCyXJdSqUUubccAACAASURBVM7pdOJyuVi0aFGiu9Ihbreb6dOnB1IAok2kAgIluG4e/z3SHdbfwjsP7uCbz36DFW8/HHXfsrIyMjMzW81x9R/vheoXIrbxp0Pk5uZSWloatd+947SYQ2eyc2BvBV4C3gGeNMbsFJElIuKPxP8ADBaR94EfAi3Kd8VT8K3G6x7ZHDE/ry2lf5RSp8SS1xv68+XPXw2u9Rq8PTQXyQes3rIn6s9w6LkAHrthKtdMGRVISTDAy7v2s/Ql6/cBwC3Tz2LsGZk4RHAkOJ2jzSOzZWVl1NXVUVJSgtPpJDc3l+rq6ogjtLqcrequUr0sF1jBYEcH95otZ0v4ALSoqCjmuzixHA+skl8ul4uKioqoI8oXj/pKTOdNNGPMC9D8go0xC4O+PgHM6ar+xLIgQirPGFcq0Vpb8KC1n69w22dPzObJrXubTfLyj6yu21YT8ecz3LF+9Y0vAPD4lj2B5PzgigUAS57bGUg3WHj52IT9/Lc7cbWgoACXy8X27dtZtWpVxHb/9/I/A8vZ+t8N4+vUO2NKqS5S5f2Adw7tIt2RHrflbGM5ntvtprS0lOnTp1NSUhI1UPaPIKu2iWUCTSrPGFcq0Vpb8KC1n69If3A+Mf9CrpsyihnnDWs2srp2696Io7ORznXlxGx693Lgn3vm4NTvg+CqC8YYao/Vx/PtaZM2/5b3387zer2UlpYyfvz4qDmDf3/4DQBdzlapbqgzlrP97zeXxXS8WFYSU+0XywSa9i6lqZSyRMtfbe3nK9L24GPe+czbgZHVJp+JmNMa7VjBdWZDF21Ilp9/iXaLMVo97uLiYhYvXszu3btxuVyR9uehK/5EwT2X4UhzsHXNW+x540NmL50ZqHKgVDITkQ7dhu/o/vEUS19cLhcej6fd5+jduzcnTpxo9/6hfYzn+y8ilcaYye0+WAqaPHmy2bp1a6eeI5VXWVIq2bX28xXL9use2RwIOKOlArXnZ7kzf/7b8ju73cGsf+ZwtNERfzCLoCW5VErqaHCXk5PT6tKtXSXWa+lo8NgRoe+XPxiNx+fg8Xg0mI0DDV6VSj7Rfi5T9We2LcFsu0tzbdq0iY0bN8bUXktyqVSVLIFoPMRyLR0NRgFml+dz77QSXJmuDh/Lz+PxJDTIVhad8KVU8mnt5zLZS5TFQ7uGSf0zoKMVVw+Wc35iiugqpbreuCFfiNtCBTk5ORqIJpFmxdQbfJRseE9LcimVAMEluXQiZhcsZwuwe/Pe1hsppZJWSUkJIhJ4FBYWRmz75ifb2OBZH5fzVldXJ03OsTo1ScSBVb/y1fcPxlS/UinVPuHqOIfWgM7ql5GwpXtXb9nD9X/Ywuote7rsnOF0STA7csIZgJbkUipVud1u5s6dS1lZGdOmTWPVqlVR0xa6aqGCqqoqbrrpJsaMGcMdd3TqGgKKUzObLzp7CA6hR48EKdXZIi1cEjoSW3usPmqJr86yesse7nzmbf72z4Pc+czbCQ1oOz2YvfnZ65m16GJufvZ60jPSm43uhD4iVUVQSiVWaWkppaWl7N69G7fbzcqVKyP+vPqXuu1stbW1TJo0iaqqKq666ioefjj6CmQqdtFW9ZqUk0XRJeckbCRIqZ4iUvpAuBrQoSuDdYUXd3wU9XlXijoBrE+fPvtFpN3Jb22dya25cUolJ6/XS15eHtu3b2f8+PFR0wxuHv+9LumTfyR2/fr1ZGVlcc8993TJebu71Vv2sLB8B00+Q+9e4Sd5hatBm6ozppVKVrHUfk3kz9vMcafzt38ebPY8UaKW5go1efJks2bZ0/zvvX/ntLMHs///rIvwl9zqTjU5leqJov0MlpSUUFZWxqZNm1i5cmXYgLazfoYjHbeqqoqqqipmzJgR9bz2H8pamqsVlZ5avvXwazTaKWEO4EeXncst08+Kup8/APYZQ0a6g4WXj21RXF0p1XbJ/kfi6i17eHHHR8wcdzrXThkV12N3WmkuwcHfH36dgacNYNDpAwPBrPEZSGtHT5VSKaOoqIiCggJGjx6d6K4EjBkzhg0bNjBx4kQmTZrE2rVrGTNmTKK7lbI2Vx3CF/RHgcMhraYQVHpqWVi+IxAAn2jwcXf5Dowd2Gr5LqXaL9nLal07ZVTcg9j2aFPO7L/0H4c4hM8+Osw/N+4OvF767bUc+CD6BICioiJEBLfbHbXdwwV/5uH8P+Nrin9d2gMfHOrU4yvVGVwuV9Rc89Ye8chFr66upqioiKKiInJycigoKOj4hcXJ/PnzqaysZPLkyZpq0EGBagUC6Q5hSf64Vv9HurnqEE0hk3ubfEYnhymlukybRmYz07M4XttyqcorfjGD1x6tjLhfSUkJy5Yt47777iM3NzfqOTpzgYXXHq3UBRxUykmGBQO2b9/OsmXLyMzMZNWqVTidzg4fMx6ysrLIyspixYoV1NbWUlurJaI6IlIuXrRbnVPHDKZ3LwcnwvxeTUtzkNUvg+Ub34/7bdJkv/2qlOo6bQpm3z5SyaKH7gRg65q32PPGh8xeOpMjB49y5JOjYfeprq6muLiYRYsWUVRUhNfrpbS0lKKiorDtcy7IpurVPfz+ytVtXgL3wAeHWPejF8Put/u1PRz55CiuKSP54O/tXxZTqZ4oPz8/KfPZN2zYwD333MOcOXPwer08+eST/7+9cw9zqj73/fdNhmEcxclwkdsME/BKoZ0A84DW3RLU7YVjTQRp1dZO2FqPPd2V2HPOU89uixkf+5Tus88m7h631doSevEOJta7KMF6FHUGMwUUFDEDAygwTIbbwEyS3/kjWSHJrJWs3FayZt7P8+SZZK2V33qzZiXru97feym3SbonfVpTTXehldfPwi/iSWPJhCNRrHx+G6LR3EMOsrXn5E5kDMNI5CRmT0SOY8KFsfip636+CAAQCUfxxr+/jQWtc4HHhr7H7XbDZDLB5XIhGAzCbrcjFAopilnjqFjwbT4eVCXPayQcxXt//BALWudiT8e+nMZkGKZymTdvHgvYEiNXHihdOPaeHJC92YkKIBqJLZc6hjmvuiir8MwmVtXYxDDlgmcNtKfgOrM7XvsUo8eMxvTLGmXXm0wmdHV1wWw2w2KxoLOzEy6XS3G8Y4diHt5cW+Ame14z2hj/veUGDoze8fv9sFqtidhYv99fbpOYYYhcTUsJqR5tcgci6W8yhNw6hmVrz5nJJoYpJ0qNDpjSkpNnVo7Q/mM4uPMwfrfkcdn1TqcTJpMJoVAIbW1tWLhwYcYalV9sPwggtQVupvABs9mMrq6hYQN3Vd02dPD/nbS+OrY+11q4DFMpeL1e2O12uFwuOBwOuFwuFrRM0ckUR5vsPU0ux7Xzi2OJUl1VRgNmThqDrfv6EuJ0/ZbujJ4rpfqa2WximHLDswbloWAx22ybiYsWxkr13PX80PUmkwlOpxNutxsAcM8996gat8EyGXu37IeIioyJW5WQHMMw5UD6TgGAxWLJWilEDU1NTQV9J5qamgq2YaRBRGMBPAXADCAI4NtCiCHuHCKKANgaf7lHCHGDVjbKlQeSa6kp1aOd11SPiyeNwebdPaivrca2/X34+ItjiESiMBoNeKZ9L8JZ4miXzG0Axf/Kra/0kkXMyCTbjRhTGgoWs+dMOBvnTDg763ZST3ebzaZq3L1b9gMA1tzyFGrrzxqSuJXw1jLMCCcQCMDn82HNmjUFj1WpsxTFENlyMzgVwr0A3hBCrCKie+OvfyqzXb8QInM5GA1R4z0FkPDeEoArZ07E+DGj8eT7e4Z4rqQ4w/raatz/wvaEx3fJ3KEhZxyTyFQqPGtQHgoWs2pRO/1ZVWNE+FQk8bqmrkY2cUvy1jLMSCYUCsHhcCh25BouFENkV/AsjA2ANf58LQA/5MVsRaHmop3svQWAN3ccxP222UNEcHLIgoEIkaiAgPw0LVcyYCodnjXQHs3EbDJKca4AcMfTtw5d+IczT++qug0NUxrw68X/gab5DcA65f1I/eQdDodi9QSG0SuhUAh2ux12u31YCNlMvwtq0HH8+0QhxAEAEEIcIKLzFLarIaJ2AGEAq4QQXs0sVCDbRfvSGeNgIEp0FYtGBXpPDgwRwQ9t3JUkegWMBkI0KkBEqK+tThmTYxIZhkmnLK5NKc4130f3/m4saJ2L44fka9tKSHVtC73Qc+cwphLxer3YtGkTQqEQfD5fuc0pmEJ/Fyo4jABEtIGItsk81MVdxZgW71N+KwA3EZ2vsK87iaidiNoPHTpUFPvzZV5TPe63zUaVgWAAUD0q1kQh3ZubXJ2gusqAO/5hOgyGmAi+/4XtKRnh+VYykCovcHY5w+ROpX9/yuKZLQbTL2tE+xOdiusDgQDWrl0Lr9dbcLci7hzGVCIWiwULFy5MhPCojUdntEcIcZXSOiL6kogmx72ykwEcVBhjf/zvbiLyA5gD4DOZ7R4F8CgAtLS0lL0G4a0LpqUkgyXHw0ohAukhC5t39yAqhKz3NZ+YRA5NYJj80cP3p6hittAkjVxQKgUm4XA4YLPZYLPZEAgE4PV6M9a3VYI7hzGVisVi4VJcw4PnAbQCWBX/O8TNTkT1AE4KIU4T0XgAlwP4V02tLABJsCaHE8iJ1OQLZLbkslwuphyawDC5IyVa7gv1V/z3p6hiVm28WibBGwwGYbVa4ff7YTabFbdb8m/Xof2pv8cuA2l4PB4Eg0F4vbGQMrvdnlPMbKbYPdn6tWnoOHavYAqNe2ysrcW7EyYCg4OYuPkdVDXKN+NgRgZS18DOztgsTGtrKzweT3mNKj6rADxNRLcD2ANgGQAQUQuAu4QQdwCYCeARIooiFh62SgjxUbkMzhe1ZYuKlRHe0dWL9Vu6cejYaVQZYollXC4pO9laCUtedqmucKUJG6Zwkr2xVUZDxX9/Ki7MQErYyiRkAWDCheNiLXV/MXRdMBhEX18fHA4HQqEQurq6YLGor2jDtWvzpxjHbvQ3v4HTb7xZRKsYPRIMBmGxWGCxWLB69epE6NBwE7NCiB4AV8osbwdwR/z5OwC+qrFpRScXkVpoRnhHVy9u+V3sYgwAVUbCd+ZPw9K0urVc5iuVTM0wgFiptdODUQgAhniMcyVOOzOFkTybEYlEcfP8aZhiOqtivycVJWYdDkeio5E0fWq1WnMex263JwrIBwIBLFy4MK9xmPJQ1diI0+U2gik7ZrM5MUNjMplgtVrR3NxcbrOYAtGqbNHm3T0YDJ/Jc4hEBCi+fOcXx9B7ckAxhnckkyxiBsLRRCe36ioDls5twEA4KnWFr+hpZ6Yw0mdRlJqXVAoVI2b9fj/8fj8CgUCi5JDT6cxLhFoslkSIARHl5JX9/N09Oe+PYUrJSO7KJX13A4EANm3ahI0bN5bZIkYvXDpjHEZVGRKeWaOR8Ez7XgxGRMKrmK2m7UgkWcRQ2vERiHliBwajiCJ2DCt12pkpDL01f6gYMQvEpqg3bdqENWvWJMIECiWXKe9IOIrNaz/MuI3P58OKFStGbExsvkg3KGazGU6nM6cbjJEOn2uxWZsVK1bwDAujmnlN9XjiB5di/ZbuhCfxyff3pHgVpZq2QlRuLKDWSCJm/ZZuHDx2Gps+OYRIJOadWzq3AUvnNgyJmd35xTG4N3yC62ZPxq0LpuW0Pw7zqFz01PyhYsSsdMG22+0AYmWGssXNFpsdr30KkaGObCgUQmtrq+Z2DQc8Hg82bdqETZs2JeIglQh3x7q9DezYiYNXXAVx8iQAYPz6dRi9YH5O+xWDgzi8dBkGtm4FBgY4qUyHSAmdw6ExBFMalARR8sVYSgZL9iqmx4Tq5cKtBeu2dMeSfwyEm+dPS5lmTj5Oj7+3B//y3FYAwN8+PQwAqgWtHko+MfqgYsSslPRltVphtVoTolYLHrH9GT9YfytC+4/h2EHlRgwulwt9fX2a2TWckMI+gOxx0Kc3bAAA9DqWw3DeeTDU1SFy4EB+OyZCzVVXwjh5MvpfeCG/MZiysnz5crS2tiZK7AGxhiiF1o9m9EO27Ho1gih52pQz8ZXp6OqFe8MniSSvSFRgiuksxeP08rYDQ16rFbNcMo0pFhUjZoGYyAmFQokpaa1pts1EQ/Mk2XJfPp8PDz74IOrq6jS3aziQPFWeTYRM3bc35fUh+415i1mqqsKYu3+Mo7/WTUnOikbrlrPBYBB1dXVYu3Yt1q5di4ULFwIAt6fWMblOK2cTq5t39ySE18BgZkGkp2nTcpB8rAViNeCyhV9cN3tywiMrvVaL2lJtDJONihKzQEzoSJUI1FBocsx5dRMBANFIFOdMOBvnTDhbdrsPP4zF0vb19aGzsxMmkwkOhwNutzvvfY8UpBsUic7OTg7V0Clal60zm80p5w6jb/KZVs7mvauvrT4TBxt/zeROukfWQMDlF4yH86qLMv6PJC/sy9sOpMTMqrlp0VuSkV4YiXHIFSdmc0XOy/P5u3vw7h86cN5F4/HZ2134wfpbYTAaEusj4Sie+fFfQUYD+vYdhYhmvzi7XC5YrVZ4PB74/X44HA7MmTOnmB9l2JLsia2rq+PySgwzQlESpo+/t2eIGJLI5r3rPTkAA8USugwUe83khpxHtrrKkCJkMwmkWxdMw60LpqGjqxcPbdyVU8kz9pYXl5Eah6xbMfuI7c8AgNufuRlV1Wc+RiQcxXt//BALWudiT8c+2ffueO1TAED4dBjnjK/FsYMnVAna5M5k+bTGHclYrVb4fD709fXB4/GoPn79b7yJaNwzd/imZUA0ilGzZ2Pwk09UJ3QN7tqFaG8vACAc7AJVV8M4cWJBn4dhmNyRE6bZEoiyee94qrpwkm8yCMBXG+qw8luzUoRsJoHU0dWLdVu68WxHN8KRKJc8KyMjNQ5Zt2JWiR2vfYrRY0Zj+mWN2NMeE7MiKgDjmW16u4+ib/+xlPet/f6zuOPpW7KObzKZeIo8DzweDzweD7xer6qYyYyxmfu7zzyfJp9okBybeXDhosTynptvQe2ym1DvXq3WdEYFHo8Hy5cvBwCsXr2aY1oZWeSEqXvDJynbyCUQZfLe8VR14Vw6YxyqDISBeA3ej79IvT5mEkiS0JXCE4BYSUwpoMhoINTXVuOhjbv4/6MBI/XmrixithhxrueMr8XxwyeHrAvtP4aDOw/jd0seTyzzfO8Z3P7UzYnXtaYajG0y4Zv/bQFe/9e3cKKnH9e3DekmKQtfpPPDZDLB6XSqPn7FjM1MTyhjiovL5UJbWxuam5thsVhwzz335PU9GcnNIUYS6cK0kAQipTGZ3JjXVI9lLY14/L1YHd5IJFWwZhJI67Z0pwhZABDxh/Tc9fw2hKNiRE17l4uRenNXFjGrxjP3/x5rx7a/7khZZhxthAhHMWvxxej6oFv2fc22mbho4XQAQPtTf8eeD/bhhgf+MWWb/qOncaQrBO9PX00se9H1ZorgZQrPXGdGBmazGStWrIDb7U543/OBm0OMTJQSiJjSoBT7umRuA9Zt6ZYVrEoCqaOrF892nGlKQQDSXRCDkTNLRtK0dzkZiTd3FRtmICdKJ10yAV/uPIz537ckxGw0HAWSkleTKxJc9/NFQ8ZVGjtd8DL5eUcL8awx+iS5mYHb7ebmBkzOSAlEjDryzVbPFPuazaMnJ5A27+5BOKnRULarhdFAI2bau1IZrpUOKlbMyonSZ50vInwqjN8vezKx3ZpbnsZ/9X2v4LGZyiHy5ZeK60KhEOrr62Gz2fL2ADKlwePxoLOzE36/v9ymMMywpZBs9WzJQbl69KTwg/QwAzkIwLKWxmEloPTGcK50ULFiVo5v/HA++vbFAtPf9WzBqb5TWLTi60Xfz0iJ3StFq9dCj11jbS2O/mqV4nqTyYS6ujr4fD6EQiHuAlUhhEIhOJ1O3HfffQgGg+jq6oLNZpPd9vODx7Fy3d+xp+cEakYZcb1lKn58zcUaW8ww+qSQbPViJwdJ3lypkkEkEoXRaEAkGkVyZ3ipdfCSuQ0F7Y8pDLlzR1qud0+trsTsxIsnYOLFEwAAF10xo2T7GTGxewW0eg0Gg7Db7bBarSmNI5KPHRFBCIF9U1MFsqpqAg9mbkbR1NTEQraCcLvd6OvrQyAQQFtbG1asWKEoZk+Ho7j2a1Pw9QvH45n39+Av7wRx2YXj0cLTjwyTlUIEaSmSgyRv7tK5DYlxAWD9llgs7ewpddw6uEKor62GgWKRzaOqDKivrU54ag1EuN82W7fhProSs0xxKaTVq9frRWdnJ4LBYNYuaMWsJhAMBtHX18dCtsKQGoj4fL6spbkumXIuLplyLgCgZcZYrP9gLx7wbUPviQH21DJMFgoVpKVKDkofl4VrZdHR1Yv7X9iOSFTAaCCsvH4Wek8OJDy1USHwc2+s3rMeBS2LWSYvpLhIrZtHSCKWW5xWFjabTXWyYLYwlNcA3C2zPLl2MMOMZEZitjpTGFKIgUCsDrDkLTcQIRr/7Y4KYKVvGy6eNEZ355ch+yYMMxRJzNrtdk33azKZ0NTUxI0rdIwQIq8Hl4ljGIbJDyk8xUhIhKfMa6rH/bbZMCT5F6JRkYil1RMsZkc46a1eM1USkJDiI8slKk0mEywWi+b7ZZhSQETLiGg7EUWJqCXDdtcS0U4i2kVE92ppI8MwqXR09eKhjbvQ0dWb07pyIYWn/OTqi1OqGFw8aQyumjkRRooJwupR+SUGlvszc5jBCCefVq8ej6fEVmXGZDINqzCDQptT8PS77tkGYAmAR5Q2ICIjgIcA/COAbgAfENHzQoiPtDGRKSXDtfbncCVTiatKLn+VHp6SbGuV0YCb5jVg6dyGnO1V+sxantcsZkc4+SRn2e32RPmlcjDc6pgWo3WvVuWuSlG2zuFwIBAIwG63w+l05pzcl8PNwDwiGnKga2pqvuzv75+U006LiBDiYyBrLPF8ALuEELvj2z4JwAaAxazOqWTxw8iTqTxaIaXTtGZ9UiviSCSKqaazZG3NJkqVSn5peV5zmMEwQgwO4tANduybfj72TW1EeG/xqggk43K54Pf70dzcrHkCGCOPVO7Kc+dluHLWJPzlnSDaSxD3FAwG8455ld6fztq1a9HZ2Ym2traslTHkkG4G8n2cOnVqYqHHRQOmAkj+QnfHlw2BiO4konYiaj906JAmxjHyqJmKXr+lW1YIMJWLXPypmnVKlGOKvqOrF0+17000uzAa5W2Vbrb+z2s78d3HNsvaKPeZlQRuqWDPbIVS6NRzY20tdhfRnnQsFgsCgUAJ98Dkgly5q6P9g2W2Sh1r1qyB3W6Hw+HIGj5y28Pv6LLZAhFtACDn/f2ZEMKnZgiZZbLufCHEowAeBYCWlpb8Xf5MQaidiq4yEKqMBkQixWlkwJSeTOXRci2dVgrPvJInNXn5+i3dCEfO/DxYL5qgyuu6bkv3kLGVPnMxG3Rkg8VshVKMqWdG3wSDQUyfPh3Nzc3w+/2qpt+PnxrE7/2foWFsLb5+4QQNrCwch8MBIPZ5syX2yTVb0ANCiKsKHKIbQHL3kQYA+wsckykh2aaiTw3GWmQNRgRuWdCIqaazyhIzy/G6+ZGpPFoupdOKHZaQKX41efk3064P48eMlh0vuUmH0UB4tqMb4chQ4S1XZ7jYDToywWEGTE6YzWYQkaoHgCHL1FY/kGIz833opaVwJvx+P+rq6tDZ2akq6e74qUHc/ccOHD05CPdt81BTbcy4/ecHj+O2h9/BwgdexzW/fhO/eXVnkSzPHZ/Ph2AwCKvVmnG7715uxvTzzkHLjLEAoOh9DgQCICKYTKayJywWiQ8AXEhE04moGsDNAJ4vs01MBjJNNx9LOm8FgHNHV+FHiy4oi5DNNoXMlJZLZ4xDlYFAAIwGKtiDmallbfLy8WNGo9oY22+1kbBUodVwchWEZS2NCEfUhw7Ma6pPhByU+txizyyTE1p5jDk7PxbK4Xa7sXz58qzT7ydOhXH3H9vRfeQkfvWdOag2GnDiVBhn1yh/xUvVVjbXZDSXy4W2tja0trZmFbNATLQ/vOFTjDIS2tZvld2mq6srcUOzfPnyhPe3EiGiGwH8BsAEAC8SUUAIcQ0RTQHwmBBisRAiTET/DOBVAEYAfxBCbC+j2UwW5jXVY+X1s/DytgO4bvbkFKG6/cDRlG3TX2uFnpKVhjVEEBCICGDnF8cK+h8otTtOX750bkNKC+JM+5S8rh1dvVi3pVt16ICWyY0sZnVIIBDAnDlzcN9992VMwAoHu0DV1TBOzC+/pdDMdaYwkqfcs3m0dxw4io/2xS6IP/J8AAC43Xo+frDoAsX3lCrOVkkkyyEJWSCWCOb1euH1ehVFreR9PtY/iFu+bsZ1X5uCGSuHbmez2WCz2eDxeCo+SVEI8RyA52SW7wewOOn1SwBe0tA0RgE1U/NS+9CBcBQfBI+kdFWaNflc/O3Tw4ltr5s9WRO705EEzsBgFESE+trqstgxktm8uweD4VjISSRaeEtZpen9TMsLHVsJLW+WWMzqEOninM1bp7ZurBJy3lEWt9oRCoXgcDjQ3Nyc1bM4b/pYbG67RvXYyd7T0VVGEKFocba5iGSHw4FgMIhQKASr1Qq73Z5RuCd7nxvH1uLs0Zl/wtxuNzfYYIqKWm+T0oW8o6sXnneDAAADAXd+Y0bewqVQJO/xSt82RIXA/S9s12UrUz0TaykLSLlYxWgpqxSzqzaWV+5mLXnZjzI4SZJR8hKXAhazOiIQCMDpdGLTpk0AkDUhKJ8asoUQCoXgcrkQDAbh9Xo13fdwQ/IodnV1YePGjUUfX/KennduNVzrtyESFRgIR/G7jbuKViFATTKa2WzOKaY13ft82z+YFbf1+Xyq440ZRi1qvU1KXk/p/UCsRMWYs0Zpaf4Qek8OICoEhxqUEUpWswDCUYH1W7rL8n+Qu1kDkFdzBS2TwFjMlgExOIjDS5dhYOtWYGAAEze/g6rGxqzvczgc6OzsxIoVK/Dggw9qOG4PYQAAEQRJREFUYGluWK1WdHZ2ltuMYUEgEEiUZnM6nbBYLIm/xeCSKeeicWwt7nhsM6QKT6cGIvjLO0F80dePX367sP0kJ6M9/E/zsyajqSXZ+yztQ45QKIQVK1agtbWVPbNMUbl0xjhUGePZ3Qq1OQFlr6eW3io1VJo9I43Nu3sQjQ7NQ3ny/T2YNaVOc6+9XCmuvUdOJpYNhKN44r09WL+lW1UMbC6VHQqBxWw5IELNVVfCOHky+l94QfXb/H4/QqEQzGZzRYpZk8mE1atX51X4nknF7XbDbrfD7XbD7/cnbhKK6WXcceAoPj90IvFa+jl9Y/uXuHF3T96JYErJaMUgER5x+ATCUQGjQj0WyattNpsTswU33ngjbDZbUexgRjhSEmyWZFg5r+elM8Zh6dwGCCCv1qHFRusSSkwqyTcTwBkHbaQI4QbpqIn1livFNRiOdQkjxK4TApXnxWcxW0TybnQwLXbn1dTUlDGL32QywWQyJbZRk/mtJX6/H2azGU6ns9ymDAusVmtJ/8c1owwYPcqA04NRnDPaiCqjAUYDoef4QEGJYErJaMVACo+oqx2FB7zbEInKb2e32/Hggw8mksuampr4vGSKwubdPQhHRawFaFRkvKCnez3ra6tTpnCVyiFpjVbeM2YoyTcT9bXV+IV3a1L8rEgprZXPzYYkYOtrqxMJiZlivZPt2R/qxxPv74FArI7rVxvq8PGBo4hERcV58VnMFhGtGx1UUvkqn8+H1atXs5jVCSdOhfGAdxsggP/xX2bikTc+RehkTMAaCOjs6sUVs+QaVmVHKRntlwVWx5jS0JiSXHb81CDcr8jXxrVarQV9FxlGiVym5dO9nlwKi5FI95JKyYEGAyESV7NVBhpyA5Rpaj99zOT4VwNRYpZgIByFe8MncF51UWK79Vu6U2YL5EpxrfzWLAD5C+tSwmJWh0iJX5XSTtbtduOee+4BEGtNylQ+Ow4cxYuub+NYzwG8JVPa6l0AP8kyRraZhHSCwWDONWgB4M2PvsC/PNWJyaYaLHzgddSMMuLq2ZPx7q7DqKstb/IMM/LIdVo+3evJ8amMUkWMzbt7EInHzxKAZS2N6D05oOoGSG7M5JsnCAGDIRYoEBXA258exgfBI1h5/Sy4/ro9kZT4bPtePHHnZYnz9i93XJoQusDQ87lSOsixmNUhJpOporxOFosFK1asgN/vx/Lly+H1euF0OisuDII5w7zpY3Gs54BmMwlKITivAbhbxfvrxk/GD9e9jW9ech4efyeIZ97fg7qzRuH3d16KxnvV28wwxUDNtLzcRZ7jUxlAuSJGfW01DESAEKgeZcCSeBiK3A1Q+vklN2b6LILUxOPtTw8n4l5f3nYgEa8LxNorpwvmdVu6MRCO4tn2vVjW0oglce+tlk0RssFiVkN8Ph9aW1sRDAazltXSE8mxnU6nE36/f1h9vlJTaHOKSm7dK3liixGC0/rNGThxKowPu44AAJYtmIZqpQwwhikjmS7yHJ/KyIWqSE02onEP6srrZyXOk/QbILnzS25MuZuniyeNwQfBI4ntrps9Ge99fiThmR1lTG2pmyySByICj7+3B+vilQwqKWyGxayGrFmzBn19feU2o6RwJYPc0Sr2OX2Kv5RjS+EDUsLWn4uwD0nIdh/pBwA85v8Mj/k/w7njJxd0M1BTU/NlEcxjmASVdJFnKg85kfnQxl2Jc4Yg0HtyQPH9cufXjxZdoNjhK/ncUxK46TGzEpJIPj0YHVLJoJLKurGY1QiXywW/3w8gJl649iWjNeltZl9T2M7j8WD58uVYuHAhvF6vKi+7UgvblhnjcMmUc/G9Itj/4Cs78Oq2AwCAc2qqsLh5CrZ1h3Duf/8TfvWdORBCYPXLO9Dde1I2HpeIOoQQLUUwhWEyUkkXeaYySReZSueMWi+s3Jhq953pfZL4XbelG892dCMSyez5LRcsZktMMBiE3W5HMBjE2rVrYbfbVQnZ4Tz1zJSH9DazStTXx36QQqEQnE5nxtq21/z6zYRoVNvCVkKqmQzEkhkztbEFgK3dIUAAd11xAf7yThBPv7cnsU4qATb//HF4YFnzEEHNMFpSSRd5Rh8onTO5eGFLadu8pnosnduQ1fNbLljMlhiPx4NQKIRAIIBQKKT6fZ/v2oXj//kwBrd/hP4XXkjpEja4axdOPPZ7nPjTnzHuyScw6qILYZw4sVQfgRlmSG1mlbDZbIl2xK2trRnHunLWpBTRKNfC9vgpeVHr8XgStZPdbnfWEBWpwcNv39yVWLbg/HF477Me/N/WlhTRqlZQM0ypqJSLPKMf5M6ZQr2wpbavUuDsiRIjdR8ym80IhUKoq6tT9T6qqsKYu3+MqhnTh6w7uHARTvwpFoXYc/MtOPqrVUW1OROSxzjfB3uMy0tym9lM2Gw2fPjhh1nHkzy8R/sHU8Z23zYPNdXGRDcwOaRZCylpMBub267B5rZrsOF/XYHzJ56DhrG1WGyZkth/8mdMF9QMwzB6RPLY/uTqi8taLaDSYc+shhQr+Wvqvr1FGScfKqlRA5Mb6W1mX/ifmbf3er1Zp/4l0dg8rV62hW1yN7B0XC4XTCZT4q8akgXzv313Lu5/busQL7C0/uF/mo+a6uImujEMw2hNJXtEKwX2zGpMX19fTuEGDFMsJGF5tD+ciDFVwuPxoLOzE1arFX6/X/GclbywwcMnUsa+4d834fF3g4rdwADkXL7tjBg/gZ9+6yv4pXcbQieGeoG7j5yAa+nXEoKaYRiGGd5QLrUfW1paRHu7/JQhE6uFWWgtzeT3c2wsU0qUztdAIIA5c+akLGttbR2SCEZEaN/dg8axtTh7dBXOrlGe6Mn03bDb7bDb7XA4HBnf3767Z4gIX9w8BXddeSHOHl2FHQeODll/u/V8/GDRBdIYI66aAf9mMwyjV3L5zWYxW0SKLWb3TW1MWV+77CbUu1fnPT7DJKN0vvp8PtjtdthsNpjNZlgsFlit1iEhB0SEBStfAZAqGnPZV3IrZABYvXo1nE5nxvd3fH4ko2jNYAOLWYZhNGHVSx/jle1f4NpZk3Dv4pnlNkeXsJgtE8UWswxTSrQ8X5W2JSLU1dUlytW53W7Z0nXF+G6wmGUYRgtWvfQxfvvW7sTru745gwVtHuTym80JYAzDlA2+eQOIaBkAF4CZAOYLIWTVJxEFARwDEAEQHmnCnGH0wivbvxjymsVsaeEEsCLCZauYUmE2mws6t7JVJWDKyjYASwC8pWLbRUIICwtZhqlcrp01SfZ1R1cvHtq4Cx1dveUwa1jDntkiwmWrmFLR1dVVcEgAU5kIIT4G+H/EMMMFyQubHDMr15aWy20VDxazDDNC4ZbJukMAeI2IBIBHhBCPym1ERHcCuBMApk2bpqF5DDNy6ejqTWn1eu/imSmhBXJtaVnMFg8WswwzQtFyJmGkC2ci2gBgksyqnwkhfCqHuVwIsZ+IzgPwOhHtEEIMCU2Ii9xHgVgCWN5GMwyjCjVeV6W2tExxYDHLMDrG5XIhEAjA6/WW25SMjPQQHCHEVUUYY3/870Eieg7AfKiLs2UYpoSo8bpKbWmTvbdM8eAEMIbRMSaTCT6fD4FAoNymMCWEiM4mojHScwBXI5Y4xjBMmZG8rkZCRq/rvKZ6/GjRBSxkSwCLWYbRMVJLWLfbnXXbfVMbEd67t9QmMTlCRDcSUTeAywC8SESvxpdPIaKX4ptNBPA2EXUCeB/Ai0KIV8pjMcMwyUhe159cfTEndpUJDjNgGB3j9/sBAF6vF6FQKCFuGf0ghHgOwHMyy/cDWBx/vhtAs8amMQyjknlN9Sxiywh7ZhlGx3g8Hnz++efo6+tDKBQqtzkMwzAMozksZhlG55jNZtTV1akKNWAYhmGY4QaHGTCMjvF4PPB4POjr64PH44HJZMKcOXNgs9nKbRrDMAzDaAKLWYbRMWazOVHJoK+vD21tbQCg2C0sHOwCVVfDOHGiZjYyDMMwTCnhMAOG0TFWqxWhUAhCiJSHEj0334Kjv1qloYUMwzAMU1rYM8swI4Sp+7gsF8MwDDP8oExenCEbEx0C0FU6cxiGUWBeLt/VdOKtZDuKZo0+aRJCTCi3EVpS5t/s8QAOl2nfuaInWwF92cu2lgY92QrkZ6/q3+ycxCzDMOWBiEShYlYIQUU0iWEyQkTtQoiWctuhBj3ZCujLXra1NOjJVqD09nKYAcPogJqami+JKO+srZqami+LaQ/DMAzDVAosZhlGB/T3908qtw0MwzAMU4lwNQOGYRimFDxabgNyQE+2Avqyl20tDXqyFSixvRwzyzAMwzAMw+gW9swyDMMwDMMwuoXFLMMwDMMwDKNbWMwyDMMwBUNEy4hoOxFFiUixBA8RBYloKxEFiKhdSxuTbFBr67VEtJOIdhHRvVramGbHWCJ6nYg+jf+tV9guEj+uASJ6XmMbMx4rIhpNRE/F179HRGYt7UuzJZutDiI6lHQs7yiHnXFb/kBEB4lom8J6IqL/iH+WvxPRXK1tTLIlm61WIupLOq4ri7VvFrMMwzBMMdgGYAmAt1Rsu0gIYSljncysthKREcBDAK4D8BUAtxDRV7Qxbwj3AnhDCHEhgDfir+Xojx9XixDiBq2MU3msbgfQK4S4AMBqAL/Wyr5kcvi/PpV0LB/T1MhUPACuzbD+OgAXxh93AnhYA5uU8CCzrQDwt6Tjen+xdsxilmEYhikYIcTHQoid5bZDDSptnQ9glxBitxBiAMCTAGylt04WG4C18edrAdjLZIcSao5V8md4FsCVFG9NqDGV9H/NihDiLQBHMmxiA/BHEWMzABMRTdbGulRU2FoyWMwyDMMwWiIAvEZEHUR0Z7mNycBUAHuTXnfHl5WDiUKIAwAQ/3uewnY1RNRORJuJSEvBq+ZYJbYRQoQB9AEYp4l1CnbEUfq/Lo1P2z9LRI3amJYXlXSequEyIuokopeJaFaxBuWmCQzDMIwqiGgDALkGHj8TQvhUDnO5EGI/EZ0H4HUi2hH36BSVItgq5zUsWS3LTPbmMMy0+LGdAeBNItoqhPisOBZmRM2x0vR4ZkCNHX8F8IQQ4jQR3YWYR/mKkluWH5VyXNWwBUCTEOI4ES0G4EUsPKJgWMwyDMMwqhBCXFWEMfbH/x4koucQm/Ytupgtgq3dAJI9cg0A9hc4piKZ7CWiL4loshDiQHwK+aDCGNKx3U1EfgBzAGghZtUcK2mbbiKqAlCH8kxJZ7VVCNGT9PJ3KFN8r0o0PU8LQQhxNOn5S0T0n0Q0XghxuNCxOcyAYRiG0QQiOpuIxkjPAVyNWDJWJfIBgAuJaDoRVQO4GYCmFQKSeB5Aa/x5K4AhnmUiqiei0fHn4wFcDuAjjexTc6ySP8NNAN4U5enalNXWtJjTGwB8rKF9ufI8gO/HqxpcCqBPCkmpNIhokhQnTUTzEdOgPZnfpQ72zDIMwzAFQ0Q3AvgNgAkAXiSigBDiGiKaAuAxIcRiABMBPBe/nlUBeFwI8Uol2iqECBPRPwN4FYARwB+EENu1tjXOKgBPE9HtAPYAWAYA8bJidwkh7gAwE8AjRBRFTCSsEkJoImaVjhUR3Q+gXQjxPIDfA/gTEe1CzCN7sxa25Wnr3UR0A4Bw3FZHOWwFACJ6AoAVwHgi6gZwH4BRACCE+C2AlwAsBrALwEkAy8tjqSpbbwLwQyIKA+gHcHOxbmi4nS3DMAzDMAyjWzjMgGEYhmEYhtEtLGYZhmEYhmEY3cJilmEYhmEYhtEtLGYZhmEYhmEY3cJilmEYhmEYhtEtLGYZhmEYhmEY3cJilmEYhmEYhtEt/x8lPok0nwTg6gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "X_test_tsne2 = ptsne_knn.transform(X_test)\n", - "plot_embedding(X_test_tsne2, y_test, imgs_test,\n", - " \"Predictable t-SNE on new digits\\nStandardScaler+KNeighborsRegressor\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The model seems to work better as the loss is better but as it is evaluated on the training dataset, it is just a way to check it is not too big." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.004112159" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ptsne_knn.loss_" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/quantile_mlpregression.ipynb b/_doc/notebooks/sklearn/quantile_mlpregression.ipynb deleted file mode 100644 index dc2c1de8..00000000 --- a/_doc/notebooks/sklearn/quantile_mlpregression.ipynb +++ /dev/null @@ -1,246 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quantile MLPRegressor\n", - "\n", - "[scikit-learn](http://scikit-learn.org/stable/) does not have a quantile regression for multi-layer perceptron. [mlinsights](http://www.xavierdupre.fr/app/mlinsights/helpsphinx/index.html) implements a version of it based on the *scikit-learn* model. The implementation overwrites method ``_backprop``." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We generate some dummy data." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "X = numpy.random.random(1000)\n", - "eps1 = (numpy.random.random(900) - 0.5) * 0.1\n", - "eps2 = (numpy.random.random(100)) * 10\n", - "eps = numpy.hstack([eps1, eps2])\n", - "X = X.reshape((1000, 1))\n", - "Y = X.ravel() * 3.4 + 5.6 + eps" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "MLPRegressor(activation='tanh', hidden_layer_sizes=(30,))" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.neural_network import MLPRegressor\n", - "clr = MLPRegressor(hidden_layer_sizes=(30,), activation='tanh')\n", - "clr.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "QuantileMLPRegressor(activation='tanh', hidden_layer_sizes=(30,))" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import QuantileMLPRegressor\n", - "clq = QuantileMLPRegressor(hidden_layer_sizes=(30,), activation='tanh')\n", - "clq.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
XYclrclq
00.2517346.4706347.0597806.481283
10.5380657.4236948.0299747.510084
20.5305107.4111818.0064147.485186
30.0483485.8080516.2785725.646920
40.8821628.6244568.9867418.519049
\n", - "
" - ], - "text/plain": [ - " X Y clr clq\n", - "0 0.251734 6.470634 7.059780 6.481283\n", - "1 0.538065 7.423694 8.029974 7.510084\n", - "2 0.530510 7.411181 8.006414 7.485186\n", - "3 0.048348 5.808051 6.278572 5.646920\n", - "4 0.882162 8.624456 8.986741 8.519049" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pandas import DataFrame\n", - "data= dict(X=X.ravel(), Y=Y, clr=clr.predict(X), clq=clq.predict(X))\n", - "df = DataFrame(data)\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEICAYAAACQ18pCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEkUlEQVR4nO3deXxV1bn/8c9zMickJCQhCYSEUUBwgKBEnIsDDkVRq1ZbtXVotVp79adtrbdae+1ta7XVqtdatbaK1qlatA6t1lmhgiPOiIKBhCEECATIcNbvj7VPchISkpMZ8n2/XnmRs4ez19474Tx51rPXMuccIiIiItJxob5ugIiIiMjORgGUiIiISIwUQImIiIjESAGUiIiISIwUQImIiIjESAGUiIiISIwUQInEyMw2mdno4Pu7zex/uvBe95vZ8V1sT56ZfWhmSV15n11db11rM0sxs8fNbIOZPdSV44lI/6UASvo9MzvLzN4zsxozqzCzW81scC8d+wUzOyd6mXNukHNuaTe8957AXsDfg9dnmdkrbWx7spm9FlyDF1q0ZxXwPHBeV9vUHjO7wsw+D4LIMjN7oKeP2R1ivNa/MbNPzazazD4yszMi6zp4rU8C8oBs59zXuqHth5iZM7NHWyzfK1j+QtQyZ2ZjW3mPs8ysIbhvG83sbTM7Nur9w8G6ajP72My+1dV2i+zqFEBJv2ZmlwK/Ai4DBgOlwEjgn2aW0IdN6w7fAea6jo1muw74HfDLNtbPDd6vx5jZmcA3gcOcc4OAacBzPXnMNtoR34ndYrnWm4Gv4n/ezgRuNLMZUevbu9bFwCfOufpYG7mDc1sD7Gdm2VHLzgQ+ieHtXw/uWyZwJ/CgmWUF61YG6zKA/wL+aGbjY2p8B3Ty3u0yx5ddiwIo6bfMLAP4GXCRc+5p51ydc+4L4GRgNHBasF2zbrTgL+qyqNc/MrPPgr+uPzCzOVHrzjKzV4KsQ1WQXTkqWHctcCBwc/DX+c3B8lb/yg/WHRv8db8+yBjtuYNTPAp4sSPXwjn3rHPuQWBlG5ssAEabWXErbZoeZO7iopbNMbN3g+/3NbOFQWZilZnd0MYx9gGecc59FrSpwjl3e9R7jjKzF4Pr/C8zu9nM7g3WNbsnwbIvzOywqDa8Hly38mDfxKhtnZl9z8w+BT4NlvXUtb7KOfeRcy7snFsAvAzsF7XJjq71z4CfAqcEPzNnm1nIzK40s2VmttrM/mJBBtXMRgbndraZLQf+3UazaoHHgFOD/eKAU/DBXEycc2HgLiAFGNNinXPOPYkP2PcMjhWK+h2qNLMHzWxI1DmfEZxbpZn9d4v7erWZPWxm95rZRuAsMxtsZncG93mFmf1P5GfTzMYGP0MbzGytBRlO834bXL+N5jPSk4N1g4NruiZox5VmFgrWnWVmrwb7VgJXx3q9RNqiAEr6sxlAMvC36IXOuU3Ak8ARHXyfz/CB0GB8QHavmRVErZ8OfAzkAL8G7jQzc879BP/heWHQbXfhjg5iZlPwH0zfAbKBPwDzrJV6GTNLA0YFx+2yINuxBN9N1XLdAnxW5StRi08D7gu+vxG40TmXgf9AfbCNw8wHzjCzy8xsWnRAFrgPWIS/jj/HZ0g6qgGf+cjBByszgQtabHM8/l7t3lvX2sxS8IHj+5Fl7Vzrq4BfAA8EPzN3AmcFX4fiA/9BwM0tdj0YmAgcuYPm/AWIdCceCSym7YB6R+cUD5wDbCIIRqPWhcxsNv4+LAkWX4S/9gcDw4Aq4JZg+92BW4HTgQL879jwFoc8DngYn/maC9wN1ANjgSn43+NIN/nPgX8CWUAh8Ptg+RHAQcBuwTFOBiqDdb8Plo0O2ngGEN0FOR1Yiu9Wvba96yPSUQqgpD/LAda20RVSDuR25E2ccw8551YGGYUH8B8a+0Ztssw590fnXAPwZ/wHQV4n2nse8Afn3ALnXINz7s/ANny3Y0uZwb/VnThOW6qj3rel+4GvA5hZOnB0sAygDhhrZjnOuU3OufmtvYFz7l78h+mR+GzOajP7YfCeRfhA47+dc9uccy8Bj3e04c65Rc65+c65+iDL+Af8h2G0/3XOrXPObaH3rvVtwDvAMy2W7+hat3Q6cINzbmkQ/P8YONWadydd7ZzbHJxbq5xzrwFDzHetnYEPqGJRambrgQr8z8Ic59yGYN2wYN0W4FHgEufcW8G67wI/cc6VOee24bM4JwXtPwl43Dn3inOuFp99a9lN+rpz7rEg85WB/9n7QXC+q4HfEmTW8D+LxcAw59xW59wrUcvTgQmAOec+dM6VB0H8qcCPnXPVwc/O9fiu5oiVzrnfBz9bbV5fkVgpgJL+bC2QY63XLRQE69sVdDFEunrWA5PxwVlEReQb51xN8O2gTrS3GLg0cpzgWCPwf7W3tD74N70Tx2lLetT7tnQfcEKQoTkBeNM5tyxYdzb+L/uPzOwNC4qLW+Ocm+ucOwwfPHwX+LmZHUmQmXDObY7afFkrb9EqM9vNzJ4w39W4EZ/FyWmx2ZdR3/f4tTaz6/A/Kye3Uju1o2vd0jCaX4tlQDzNg/Qv6Zh7gAvx2axH29m2pfnOuUznXI5zrtQ592zUupXOuUx8gHMTzbOVxcCjUdf5Q3zGMA9/bo1tD35/Kmmu5X1LAMqj3u8PwNBg/eWAAf8xs/fN7NvB+/4bn7W7BR+4326+iz8neL+W1zc6C9bRaysSEwVQ0p+9js8qnBC90MwG4WtaXggWbQZSozbJj9q2GPgj/kMnO/iQWIz/T7ojOlJ0HPElcG3wIRX5SnXO3d9ywyDQ+AwfuHRZEGSOxWdLtuOc+wD/wXIUzbvvcM596pz7Ov5D7FfAw0G3V5uCerSHgHfxQUY5kNViv6Ko75vdoyBzEJ1B/D/gI2Bc0JV4Bdvfo+h70aPXOqhlOgo4wjm3scW6HV7rVqzEBw4RRfgurFXRzezge92D79p8MirY7zZBhumHwB7WNOTDl8BRLa51snNuBf6+F0b2D7o8s1u+bdT3X+J/p3Oi3ivDOTcpOH6Fc+5c59wwfPfsrRbUGzrnbnLOlQC74+/lZfg/oiJZq4giYEUbxxfpNgqgpN8Kuhd+BvzezGaZWYKZjcTX6KylqYD2beBoMxtiZvnAD6LeJg3/H+gaAPOPZ0+OoRmr8LUVHfFH4Lvmi7bNzNLM7Jigy6w1T7J9N5WZWXL0V7AwLvg+HggF66KfQtwX+CIqq9Sa+4CL8bUkjeMTmdk3zCw36GJZHywOt9w5KMg9xszSg1qZo4BJwILguAuBn5lZopkdgH+SLeITIDnYPwG4EoiuV0oHNgKbzGwCcP4OzgN69lr/GB9kHuaca5lNgY5d62j3A/9lvsh+EE01UjE/peec+zw4j5/sYLPEFufVslatvWPU4rvBfhosug24NvhjBDPLNbPjgnUPA181sxnmi/6vZgd/nDjnyvE1TtebWUbwczTGzA4O3vtrZhYJyKrwv7thM9snuNcJ+GB8KxAOut0fDNqXHrTxEuDeWM5ZpDMUQEm/5pz7NT4b8Rt83cnn+EzGYVHdRffgswFf4P9zfiBq/w/wHwav44OhPYBXY2jCjfh6jyozu6mdti4EzsV3NVThi3DP2sEutwOnm1n0B84MfB1K41eQ8fhm8Pr/8AXxW/BBRMTp+A+6Hbkf/+H7b+dcdPfnLOB9M9uEP99T26gV2Yi/F8vxgdavgfOj6lROwxfsrgOuIqpGJwiGLwDuwGcHNgPRT+X9v2D/6uC8dji+VA9f61/gsxhLzD9Jt8nMrojaryPXOtpd+J/Rl/A/v1vxtWSdEtQb7ah4/H2an1dnxnS6Cygys6/ifybm4YcOqcY/TDA9aMv7+HP5Kz4btQlYjc8yteUMIBH4AH/vHsZ3yYOvo1sQ/CzOAy52fsy1DPzPRRU+k1oJXBfscxH+52kp8Ar+D4W7OnHOIjGx7bv2RfqvIIN0DbC/c255X7enq8zsPuBB59xjXXiPofii7inOua3d1bauMrOrgbHOuW/0dVtg177W/UWQYVuP74r9vI+bI9KjFEDJTsfMvgnUOef+2tdtkbb1twBKekaQpXoO33V3PT47NbWVwnuRXYpGZZWdjnPunr5ug4g0Og7fRWn4OrhTFTzJQKAMlIiIiEiMVEQuIiIiEqNe7cLLyclxI0eO7M1DioiIiHTKokWL1jrnWp31olcDqJEjR7Jw4cLePKSIiIhIp5hZm+O9qQtPREREJEYKoERERERipABKREREJEZ9Pg5UXV0dZWVlbN266w7qm5ycTGFhIQkJCe1vLCIiIv1enwdQZWVlpKenM3LkSJpPU7VrcM5RWVlJWVkZo0aN6uvmiIiISDfo8y68rVu3kp2dvUsGTwBmRnZ29i6dYRMRERlo+jyAAnbZ4CliVz8/ERmY7luwnG/euYD7Fuz083qLxKzPu/BERGTnc9+C5Vzx6HsAvPzpWgBOm17Ul00S6VX9IgPVn1x99dX85je/aXP9Y489xgcffNCLLRIR6X+eWly+w9ciuzoFUDFSACUiAkdNLtjha5Fd3U4ZQC1aVsUtzy9h0bKqbnm/a6+9lt12240DDjiAjz/+GIA//vGP7LPPPuy1116ceOKJ1NTU8NprrzFv3jwuu+wy9t57bz777LNWtxMR2dWdNr2IX8zZgwPH5fCLOXuo+04GnJ0ugFq0rIrT75jP9f/8mNPvmN/lIGrRokX89a9/5e233+bJJ5/kjTfeAOCEE07gjTfe4J133mHixInceeedzJgxg9mzZ3Pdddfx9ttvM2bMmFa3ExEZCE6bXsQ9Z09X8CQD0k5XRD5/aSW19WHCDurqw8xfWklJcVan3+/ll19mzpw5pKamAjB79mwAFi9ezJVXXsn69evZtGkTRx55ZKv7d3Q7ERER2XXsdBmo0tHZJMaHiDNIiA9ROjq7R45z1llncfPNN/Pee+9x1VVXtTmOU0e3ExERkV3HThdAlRRnMfecUi45YjxzzyntUvYJ4KCDDuKxxx5jy5YtVFdX8/jjjwNQXV1NQUEBdXV1zJ07t3H79PR0qqurG1+3tZ2IiIjsuna6LjzwQVRXA6eIqVOncsopp7DXXnsxdOhQ9tlnHwB+/vOfM336dHJzc5k+fXpj0HTqqady7rnnctNNN/Hwww+3uZ2IiIjsusw512sHmzZtmlu4cGGzZR9++CETJ07stTb0lYFyniIiIrsKM1vknJvW2rqdrgtPREREpK8pgBIRERGJkQIoERERkRi1G0CZ2V1mttrMFrdYfpGZfWRm75vZr3uuiSIiIiL9S0cyUHcDs6IXmNmhwHHAXs65SUDbs++KiIiI7GLaDaCccy8B61osPh/4pXNuW7DN6h5om4iIiEi/1NkaqN2AA81sgZm9aGb7tLWhmZ1nZgvNbOGaNWs6ebieNWjQoO2W3XDDDey+++7sueeezJw5k2XLlvVBy0RERKQ/6mwAFQ8MAUqBy4AHzcxa29A5d7tzbppzblpubm4nD9f7pkyZwsKFC3n33Xc56aSTuPzyy/u6SSIiItJPdDaAKgP+5rz/AGEgp/ua1fcOPfTQxgmGS0tLKSsr6+MWiYiISH/R2alcHgMOBZ43s92ARGBtt7ToT8dsv2zS8bDvuVBbA3O/tv36vU+DKafD5kp48Izm6771jy436c477+Soo47q8vuIiIjIrqHdAMrM7gcOAXLMrAy4CrgLuCsY2qAWONP15pwwvejee+9l4cKFvPjii33dFBEREekn2g2gnHNfb2PVN7q5Ld6OMkaJqTten5bdLRmniGeffZZrr72WF198kaSkpG57XxEREdm5dbYLb5f31ltv8Z3vfIenn36aoUOH9nVzREREpB9RAAXU1NRQWFjY+PqSSy7hySefZNOmTXzta77mqqioiHnz5vVVE0VERAaMRcuqmL+0ktLR2ZQUZ/V1c1qlAAoIh8PbLbvkkkv6oCUiIiID26JlVZx+x3xq68MkxoeYe05pvwyiNJmwiIiI9Bvzl1ZSWx8m7KCuPsz8pZV93aRWKYASERGRfqN0dDaJ8SHiDBLiQ5SOzu7rJrVKXXgiIiLSb5QUZzH3nFLVQImIiIjEoqQ4q98GThHqwhMRERGJkQIoERERkRgpgAIGDRq03bKXXnqJqVOnEh8fz8MPP9wHrRIREZH+SgFUG4qKirj77rs57bTT+ropIiIi0s+oiLwNI0eOBCAUUowpIiIizfW7AOpbT39ru2VHjjySUyecypb6LVzw7AXbrT9u7HEcP/Z4qrZWcckLzUcQ/9OsP/VYW0VERGRgUnpFREREJEb9LgO1o4xRSnzKDtdnJWcp4yQiIiI9ThkoERERkRgpgAJqamooLCxs/Lrhhht44403KCws5KGHHuI73/kOkyZN6utmioiISD/R77rw+kI4HG51eVlZWS+3RERERHYGykCJiIiIxEgBlIiIiEiM+kUA5Zzr6yb0qF39/ERERAaaPg+gkpOTqays3GWDDOcclZWVJCcn93VTREREpJv0eRF5YWEhZWVlrFmzpq+b0mOSk5MpLCzs62aIiIhIN+nzACohIYFRo0b1dTNEREREOqzPu/BEREREdjbtBlBmdpeZrTazxa2su9TMnJnl9EzzRERERPqfjmSg7gZmtVxoZiOAI4Dl3dwmERERkX6t3QDKOfcSsK6VVb8FLgd2zcfnRERERNrQqRooMzsOWOGce6eb2yMiIiLS78X8FJ6ZpQJX4LvvOrL9ecB5AEVFRbEeTkRERKTf6UwGagwwCnjHzL4ACoE3zSy/tY2dc7c756Y556bl5uZ2vqUiIiIi/UTMGSjn3HvA0MjrIIia5pxb243tEhEREem3OjKMwf3A68B4Myszs7N7vlkiIiIi/Ve7GSjn3NfbWT+y21ojIiIishPQSOQiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVAiIiIiMVIAJSIiIhIjBVC9ZNGyKm55fgmLllX1dVNERESki+L7ugEDwaJlVZx+x3xq68MkxoeYe04pJcVZfd0sERER6SRloHrB/KWV1NaHCTuoqw8zf2llXzdJREREukABVC8oHZ1NYnyIOIOE+BClo7P7ukkiIiLSBerC6wUlxVnMPaeU+UsrKR2dre47ERGRnZwCqF5SUpylwElERGQXoS48ERERkRgpgBIRERGJUbsBlJndZWarzWxx1LLrzOwjM3vXzB41s8webaWIiIhIP9KRDNTdwKwWy/4FTHbO7Ql8Avy4m9slIiIi0m+1G0A5514C1rVY9k/nXH3wcj5Q2ANtExEREemXuqMG6tvAU22tNLPzzGyhmS1cs2ZNNxxOREREpG91KYAys58A9cDctrZxzt3unJvmnJuWm5vblcOJiIiI9AudHgfKzM4CjgVmOudct7VIREREpJ/rVABlZrOAy4GDnXM13dskERERkf6tI8MY3A+8Dow3szIzOxu4GUgH/mVmb5vZbT3cThEREZF+o90MlHPu660svrMH2iIiIiKyU9BI5CIiIiIxUgAlIiIiEiMFUCIiIiIxUgAlIiIiEiMFUCIiIiIxUgAlIiIiEiMFUCIiIiIxUgAlA8aiZVXc8vwSFi2r6uumiIjITq7Tc+GJ7EwWLavi9DvmU1sfJjE+xNxzSikpzurrZomIyE5KGSgZEOYvraS2PkzYQV19mPlLK/u6SSIishNTACUDQunobBLjQ8QZJMSHKB2d3ddNEhGRnZi68GRAKCnOYu45pcxfWknp6Gx134mISJcogJIBo6Q4S4GTiIh0C3XhiYiIiMRIAZSIiIhIjBRASUw0lpKIiIhqoCQGGktJRETEUwZKOkxjKYmIiHgKoKTDNJaSiIiIpy486TCNpSQiIuIpgJKYaCwlERERdeGJiIiIxEwBlIiIiEiMFECJiIiIxEgBlIiIiEiMFECJiIiIxKjdAMrM7jKz1Wa2OGrZEDP7l5l9Gvyrx7JERERkwOhIBupuYFaLZT8CnnPOjQOeC16LiIiIDAjtBlDOuZeAdS0WHwf8Ofj+z8Dx3dssERERkf6rszVQec658uD7CiCvrQ3N7DwzW2hmC9esWdPJw4mIiIj0H10uInfOOcDtYP3tzrlpzrlpubm5XT2ciIiISJ/rbAC1yswKAIJ/V3dfk0RERET6t84GUPOAM4PvzwT+3j3NEREREen/OjKMwf3A68B4Myszs7OBXwKHm9mnwGHBaxEREZEBIb69DZxzX29j1cxubouIiIjITkEjkYuIiIjESAGUiIiISIwUQImIiIjESAGUiIiISIwUQImIiIjESAGUiIiI7DzCDVBb09etaH8YAxEREZFes2EFbPgSNq6AjeWwcSUMGgoH/MCvv3EvmHAMHPWrPm2mAigRERHpPSvfhjUfBwHSSqguh8Q0OOF2v/7Bb8KKRU3bJ6TCmK80vd7/Ysga1atNbo0CKBEREek852BbNSRn+NdLX4Tl85sHSPVb4aIgKHr5evhwnv8+ORMyhkPe7k3v95X/9t10GcP8V/JgMGtav++5vXJa7VEAJSIiIq1zDmrW+WBo6ESIS4BP/gnvP+qXVQddbLWb4CerICEZPnka5t8Kabk+AMos8kGScz4QOuxqmHkVZBT4zFNLYw5ttSmLllXxyJtlGHDC1EJKirN69NTbowBKRERkIAo3wKbVPgDauAJGHgCpQ3yA9OrvmmqQGrb57S96E7LHQOUS+PxFHxwNnQhjZvrvXYPf7tArfJAUn9T6cbPHxNTMRcuq+NubZTzwxnLqw37ZQ4vKuP/c0j4NohRAiYiI7Grqa5uyQ5GutAnH+OBl6Qvw2AVQXdEU9ACc+QSMOtBniZyD4dNg4jCfPcoo8BklgP0u8F9tSUrvttO4b8Fyfvr3xdSHXbPldfVh5i+tVAAlIiIiHdRQD1VfRNUYrfT/7n4cjDrIF2D/8Svb75ee7wOoQXkw6uCmGqOM4f7f7LF+u3GH+68OWLSsivlLK8lKTaSqppbS0dndFtQsWlbVavAEkBAfonR0drccp7MUQImIiPQnDfU+SxQJjCJdabvPhqlnwKZVcHNJ832SMyFvsg+gMkfCIVdEBUjBV1JQ5D10Isz5vy43c9GyKk6/Yz619WHCDgxISggx95zu6Vqbv7SSsGsKnuJCxiHjhzAobSNH7zFCNVAiIiK7vHAY6rc0FU0vuhvWL28eII07Amb9wneh3Xdy0L1mfgykjGHQUOf3HZQHc/7QlD1KL4DE1KZjpWXDIT9st0n3LVjOU4vLOWpyAePz05m/tJJPV1Xz9pfr2XtEJuPy0neYUZq/tLIxeAJwdL1rbVvDNj6s/JCKmgqq4peSnP8uLq6KhvX7c/XhxzO2qIKz/3kpuVWncCRXduoY3UUBlIiISFc01MPm1VC7GXLG+WUvXw+r3g8CpOBR/jFfgdMe8OtfvA42VfjgJ70A8ibB0Al+XSgOzv4XDMqFQfkQn9j8eHHxsNepXWryfQuWc8Wj7/mmfrqW+DijvqEp2/NFZU27GaXS0dkkxocag6gQ7Xet1TXU8cqKV6ioqaBicwXlm8tZtXkVx489njnj5rBq8yq++dQ3G7dPy04lNZTDaaVFnDatiPVbM7j2gGsZnzW+S+ffHRRAiYiItKV+W1MAtG0T7HaEX/7cz30328aVPhByYcjbA85/xa//7HnYUOYzRCOm+yLs/D2b3ve7L/vxjUJxrR+3sKT15e2I1CRFMkctX0c88Mby5qfZsH2dUXsZpZLiLOaeU8r8pZUMToljw5YGpo8awvLaF/jP2xVU1FRQvqmcipoKZhbN5OKpF9PgGvj+898HID4UT35qPgWDCkiISwCgIK2AW2beQkFaAflp+aQnNi9Iz0zOZPaY2Z26Nt1NAZSIiAxMtZubP6W2eY0f5RrgXz+Ft+ZCzdqm7VOy4Idf+O/rt0LSID9mUaTGKHp07LOe2PGxU4e027y2gp+2gqSs1ESueeJ9auvDJMaH+Omxk5q9js4kDc1IBjY0vmfIoGWttuEzSvuMHMyGbRsYnDQYgAc+eoDPNnxGxeaKxq9p+dO44dAbALjkr7+lalsVOSk5FKQVMDZzLMUZxQAkxyfz12P/Sl5qHkOShxCy5lPyJsQlcFDhQe1em/5AAZSIiOx6tm2C9cua1xhtXAFH/drXCz13je9ma2mfc/367LEw8dimJ9Qi9UYRR17bo82PLtCODn5aLo8OkkJmNIRdY+boqcXljd1rLTNJ3z14DM9/tIr6sCM+oYaLDy8k1DCUT1dV8/rav5M+eAXEr6fO1nHey5VMyp7E3GPmAvDIp49QVl1GXloeBWkFTM6ZzF65ezW2/aGvPkRWchaJcYmtnRqTsif16LXrLQqgRERk57NpNZS90VRjFHmc/6s3wZBR8NY98PSPonYIirEP/qEPkEYf4scrigRI6QX+34QUv/nUM/xXB7WVLWrpl09+yNPvVzBrUj4/Onpim9tFF2hHBz8tl0cHSeCICxnOORLiQxw1uYA3llVQb+tISNpM6egZANz34X08/+XzjNp7BWu3rqLe1fJYxVCeO/k5AC594V4+XLeC/LR8CtJ2Iy81jzGZTYNf3nP0PSTFtTFIJpCXltfh67YzUwAlIiL9Q0O9f/IsPskHRO8/1tS9Fvk6/hb/qP7y1+HBIMAJxUN6kCWq2+KXjT0cTsqLCpDy/TQkEaMO8l/doK1sUUu/fPJDbntpKUDjv20FUZEC7br6cLPC7ObLHTPGx7GwYhkNVkVoy1789Ng9eHXV43xR9xy3fr6ahDEbSAAMY88R3wFg3dZ11NTVsOfQieSnHUpBWgEFgwoaj339Ia1k5qLsKHgaSBRAiYhIz6vb6guxE9N8Jqh6le9Ci55wdtMqmH0zTDndd7k982OIT2nqQiver2mU65EHwrnP+wApLRdCzWtpyBnrv7pRa1mmRcuq+N2zn7CtLtxu0fXT71ds97qtAGpqUSb/d8YEXlz6CcOyt/FRzZOM2XoMJcVZXHDsBu779DZqGqq49bMw8YX+w/z60hM5YnwRqUuG869lBRSkTSU/Ld9/peZj+Al5L5xyIRdOubBbr81ApABKRES6Zlt1U4YoNRsK9vTLHj67aTDImkq/7aE/gYMvBxy8c39TcJS3u88i5QX1Mfl7wOWf+8Jts+2PmTqkQ4XY3aW1LBPQuMzR/mP8syblN2aesG3sNz6RV1e82vg4/7Gjj2Xk4JH8e/m/ufyly9kWmYMuiLsmDJlASXIJ04tGsapu/8Yn1SL/FmUUAXD82OM5fuzxPXcxBFAAJSIibXEOtlRFdaGt8NmjCcf4dbcd6Au1t21s2mfqmTD7JkhI9Rml9GF+TrVIV9rw4PH89Hz48ZdtHzs+EeK7L0BatKyKR94sw4ATphbGPNBjazVJQNMYSAb7j83hB4ftxt4jMlixaUVjYBR5Um3W1FnAaB7/5FU2Zt3IE1XwxLP+/UMWYsKQCYwcPJLijGK+PuHrTdmjIEjKSvJtnl4wnekF07vt2kjnKIASERmoNq2BDV82L8JOyWp6lP+W6bD24+b7jD3cB1BmMHwqFM9oPp/akNF+u1AcfOfF3j2fQGuP+X/99tepDcY6emhRGfefG9t0I81rjyAvZw3rtq0mOfs/hENVxCVuYPoex1FSPJ0vq7/k6L8d3Wz/wUmDmZQ9iR8dPYfzvpLHo59as+xRbmouCSFfozUmcwyXTru0+y6I9IguBVBm9l/AOfjxtt4DvuWc29odDRMRkS5a9QGs+cjXF0UySHGJcMLtfv2D3/TF2BGhBBh1YFMAtc85EK6PCpAK/DQiEbNv6pZmdnZC2rZqklp2tc1fWkld1ECRHZlu5LUVr7Fy88pmGaRTDt+ToQ3HUDIynfNeOhyHIy4XEi2R3OQ8hqTXA5Cfms/PZvyM/NR88gf5+qPUhKapVoYkD+HsPc7u7OWSfqLTAZSZDQe+D+zunNtiZg8CpwJ3d1PbRESkpbotTY/aL5/vA6DoLrZt1XDRIr/+5eth8cP++/gUGDwccic0vddBl/kBISMBUmpO82Ls6ed1qontDQAZHSgBnZqQtq0n31rraisdnU1CnFHb0ACESIgPEZ++mD+++3xTN1tNBROHTOTaA/z4Tj959Ses3bKWkIXITcmlIK2A0dmZnDnJF6bfnHBz40CRmUmZWFSdVkJcAieMO6FT1052Hl3twosHUsysDkgFVna9SSIiA9TWjT5blDXK1wAtfQHef7T5Y/xb1sGPy/zTaB/9A167yU8JEplUNm+yHw4gLh4O+REceIkPkJIzty/GHjuz208hOrCJDxmHjB9KTnoSk4cN5pon3m98Wi1kkBgf4sSphZ2akLZloPT6Z2sYmx9q7GoLp7xFfFoZC7c8zauLK8mbvBLqB3PQoP/hhKmFXPfe+bxf+T6ZSZkUpBUwfNBwxmWOa3z/2w67jYzEDHJTc4kPbf9RubOMli09p9MBlHNuhZn9BlgObAH+6Zz7Z7e1TERkV+Ec1KxremR/xL7+CbKlL8Arvw1GyV4JtdV++wsW+Ill13wCHz7hA6DBI5rmVHNBtHHgpX5gyKRBrR83Z1zryzuoo4NDRosObGobHP/8YBUAceaDo0hHWiTwcdChCWk31W5idc1qRmf6GiuX9iYpw/6Bi1tPKHE9d5ZV8/BjGbxwygvMPaeUny14hBXb3mHtNl9ndGjRQYzJHMOZk/YA4Kbcm0hPTCclPqXV8xg/pO8nq5X+rStdeFnAccAoYD3wkJl9wzl3b4vtzgPOAygqKup8S0VE+qNwg59DLXrAxzFf8cHLstfhsfP9ssgj6QDf+JvP/oQb/JQjueP9PpFH+tODOqN9z91xN1pKZqeavKOao7bmVWuvSy0ikgGKZJoiwg7iQgbOEcZnoBKCDNTsvYfy708/weI3kMZY9h+Tx5rwAs5/9u+N9Ueb6jb59n1jEYlxiWyxZeTmriCBLEYOnsrEoSMoSCvAOUdJcRYPDr+ZpLikZl1r0YamDu3UtROJMOdc+1u1tqPZ14BZzrmzg9dnAKXOuQva2mfatGlu4cKFnTqeiEivCzfAhrKgCDsSIJXDbkfC6IOhYjHcfrAvtI42+/d+GpA1n8CLv2z+lFrGcB8wJaW3fswu6EgxdnQXW6TbLD5kXHPcZMbnpzeuC5kRds4HPgaXHDGe7x3asYEpI0MGPLTwS+oaGrD4TSQmbeCU0gwyQ7uTP2gIb659mU+2PcbGujVUbq1s3PfJE55kRPoIHvjoAR759JFmT6rlp+Uzs2hmm3OsiXQ3M1vknJvW2rqu1EAtB0rNLBXfhTcTUHQkIjuPcBiWvdK8xmjjStjtCCg5y3e73bhn830SUiGzyAdQg4f7J9aiA6T0YX4wSYDc3eCku3rlVCKBUcsao5aZo+gutoj6sOOnf1/MyfuMaFrnHKGQYbg2B4d0zlFdV92YJarYXMGMYTMoKS6kLvFj5tf+jrVbV+NoAODRlfCnI//EtPwiilYUc88HQ5iaNqlxUtr8tHxyUnIAOGXCKZwy4ZSevGQiXdKVGqgFZvYw8CZQD7wF3N5dDRMR6RTnoKHWz6cG8M5foWpZ8y62UQfBUb/0RdX3nui3B19onTEcamv869Rsn02KzLOWMcwXbEe6hVKyYOZPe+W07luwnKcWl3PU5ALG56fztzfLcMCJwaCQkcCoZY1Ry2LsSBdbyyAq7BwGzeZfu+LocZRVl1M0tJayupdY+E4F+w3bjz1z9+SDyg/49jPfZnPd5mbt/N8D/5fC9EKGJA9hn4Ip242WXZxRDMABww/ggOEH9OxFE+lBne7C6wx14YlIlzjnpwTZtrFpwMbXb4WK95rPqVa4D5zxmF9/415Q9QWkDW0KgkYf2lRbtHy+f3w/o8DP09ZLWhvsMfIaaLbuvgXLueLR9xr3jQtBQ9h/nxhn3H/efkAwHEBduLHGqK3apUXLqnj9s7Ws3rya+996F+LXk5C0gVl7JTMhcwp11ZMYN6yeS+d/bbt2XzbtMs6YdAaVWyr543t/pCCtoCmDlOozSHGhuJ65aCK9bEddeAqgRKR/CDf4qT82roSt62HsYX75i9fBZ/8O5lQr98XYOePhwv/49X+eDZVLmoKjjOF+HrW9T/Prq1f5TFF8/6mbaTmG0U+PndRYsB0fMjCjvqGpePt3z37Cy5+ubfW9DPh/R/r6pJY1UMOHricrY3PjYJDlm8uZnDOZb+7+TerCdZTcU4KLKvVOjU/lrMlncf5e51MXruOO9+5gWNqwxgxSXloeSXFJvXSVRPpeT9VAiYh0TH1t89GwN62C0gt8V9gLv4Q3/wLVFeB8rQwJaXDFCr9+63r/b+E+TQFS1sim9z7j761PNhuRntf2uh60oyEAWo5h9NTi8qbXDf5h/+jxkI6aXNAsgIpkoEIpy0hMXsuq0Kdc/dp6yjeXU5xRzPemXwHAzAdnsnrLagDiLb4xUwSQEErg5/v/nKzkrMYC7fSE9Man1hJCCZy/1/k9f6FEdlIKoESka+q2wIYVUTVGK3ywNPMqSM7wGaTn/2f7/fY+3T+GnzEMRh3cPIOUMaxpuyOv3fHxdxQ8dVF03dFp0zs+DEtbo2RHNJ9XLcRRkwt444t11NWHiQs5sDgaGsIkpn9GVfwyqm0jJfss5cvqFeSlDeHqfW/ib2+W8dLmO1jfsIRHv4Ds5Gzy0/KbZYiuPfBaUuNTKUgrIDslm5CFmrXzuLHHdfkaiQxUCqBEZMc2V8LKt5oCo0igNOtXkDMW3p4L/2gx8WlKls8wJWdAUSkcckWLAKkAkjL8tlPP8F+9aEf1R5FAJ7ruKJL96WgQ1dp0IiXFWTjn2Fi7kZLiLOaeU8pD7z+LS17C29ueZ1LJClZuKic+LszvZjzK/KWVLNzyNA8sfYG0hDQK0gqYWjiCcZnjKCnOoqQ4iyVV15EUl0ReWl6rj/aXFpR20xUTkZYUQIkMROGw7y6LS4BNq+HDec3nU9u4Eo6+zg/uWPYfuP/UYEeDQUExdmTU7NGHwpzbfVAUmU4ksWniVEYd6L/6gUXLqvhbMD5RfdhtV38UnS16anF5s32fWlzebgC1tX4rFZsr2GfkYBLjQzQkfUTi4Pd4udrx9KNrWVWzii31W3jj9DcoKc7iudWfc/9HD5Kfmk/BoALGZ5eSn5bP1KJMSoqzWLvlKpLifkF6YutjRo3N6ti4TCLS/RRAiexqGup9jVF8EqTl+LGMXrmheYBUXQFH/Rqmfct//49LIRTvg5+MYX4+tcRgepAR0+Hbz/jlg/K3L8bOHuO/+lBHphxpOU4StFJ/FJUtall3dOSkoY1jHY3NHMugxEEsKF/AvR/ey6rNqyjfXM76besBeGLOE8w9p5Tb3/6I92s+IxQ3nHEZ4ziw8EAK0goIO/8I3fenfJ//N+3/bde1FhEZE0lE+h8FUCI7k/ptTYFQ8mDIn+xrkP52btMo2ZsqwIXhoMvgK1f6/f7zxyA4Gg4jSpuCJIChE+HSjyEtF1p7/Dx1iO+G6yEdrTNqK0hqr94oouU4SQZR9UeV1LlNJCRvIDGjgYrNgzhtehErtnzEI1/cSlzCRn7zyTp+9bEvcr/ziDvZt2BfttRvoay6jIK0AibnTG4c6ygzKZPi4sHcVvQDzP6rzXNKjk/u1DUTkb6nAEqkv9i2qXkRdnImTDjar7vzSP+ofk3Uo+x7nQZz/g/ik/04R6k5MGZiU61RYfDkbUoW/KSi7WLruARIz+/JMwNaD5Q6Wme0oyCprXqjaDV1NRTlbSIpfQkNoSqsdgQn7rEv+42v5/aPv0fabuXUhv1cdTcthrzMa5k9ZjZf3bOID7cNoSBtEnmpeRQMKqAgraBxotlDRhzCISMOafOc25qHTUR2fgqgRHrDlvXNn1LbuNJ3ke3/fb/+DwdD+dvN9xl1cFMAlbsbDJ0QNZ/aMBgSdJuZwXdfafvY/eBDvK1AqaN1RjsKkvYZOZjE5A00WBXxSRuojP+cV1dMYf/h+1O5pZLj/n4cG7ZtACB+uP9P74RR5/Czg/agckslL6zejYMKD2o2YnZktOwJQyZw15G9MxWLiOxcFECJdIe1S2Dtx83nUwM44Q/+3we/CZ+/FLWD+W6xSAC192kw6fjmAVJ6QdPms3/fG2fRKa2NoN1yMtu2AqWWdUZHTS6gpaqtVeTnriVp8AeEQ1XEJW5gW/I6YCwN4Qa++8qRJIysIyHY/qGlkJT0DfYfvj+ZSZnMGjmrcZyjSLH20JShAGSnZHP9Idf3yHURkV2bAiiRtjTU+5ogM1ixCJYvaD6fWk0lXPiGX//y9fDOfX6/ULyfOy26sHrGxTDt201PqaXn+66ziOnf6d1z6ybRXWvxcSFwjroGt91ktm0FSqdNL2Jd7Ur+9ekHjB/eQFXSF1z5SjlDU4fy/ak+uDz5iZOp2FxBfBBbxVsiG5wvro4LxXHRlItIT0xvzCDlp+WTlpDWuP7K0it774KIyIChAEoGprqtfmqQjEL/VNmy1+D9x5oHSJtXw2Wf+SLqj56El38D8SlNGaLhU5smrT3gB7DvuT5ASsuFUIunqsYd1hdn2aGn07qiZdcasN1ktk98tJCScds49qCPWLxqGVnpNSza8m9Ow2d+FlTfwtK4t1laAaFVIXJScpieP73xGJdOu5QESyB/kM8gDUke0qy26FuTv9Xt5yUi0h4FULLr2VbdVGuUvxekZfsA6ZXfBZPNBtkj8LVD+XvAmo/gnb8GYxkNg7zdfTAUMeNC2O97viC7tZqi3PG9cmqx6OjTaZ3hnMPMKB2dTVJaGeHELwglbsTiqyBuA4S2sfWL/yIhPsTyhsd5+OXnARicMpi4xHwS4nIb3+uSaZfgnCM/LZ/c1FwSQgnNjjVr5KxuabOISHdSACU7D+dgS1XzLFHx/r7AumwR/P0Cv2zbxqZ9vv4AjJ/lM0XVK2HwcBgRNadaejBlyNSzfBdbW1K6P3vTmpaTwbY3rtGOsksdeTqtLZtqN5ESn0JcKI531rzDS2UvNY6BFPl6+dSXKSnO4tgZa3n6yydICCWSnZRHXDiL7OQ8SseNZcaYoWRnTiTMD8hPzSc1IXW7Y00ZOiW2iyQi0g8ogJL+IRz2XWbRRdgbV8CYQ2H0IbD2U7jtAKjf2ny/Y673AVRKJuSMi5pTLSjGzpvktxt9yI6fVGvZ5dYNYu0+i84YhZ0fpygpofXMUUeySy3nW4sUedc11LGqZhVDkoeQmpDK4rWLefTTRynfXE5FTQUVmyqorqtm3vHzGDV4FIvXLuaO9+4gNyWXgrQCds/enZlFM6l39QBcMeMCruACMpMy23hsv3eCTxGR3qQASnqHc/Dlf5qyR5E51UYd5DM/2zbC9S26wUIJPjAafQgMyvM1RuktJpwdlOe3zR4Dp9zb22fVps50n0VnjMDXErWVOWoruxR2YdZtXUfF5gpGDi1g7jml/OOjN/m84TGuX3wPFQsqWLtlLQ7HHw7/AzOGzaBicwX/XPZP8tPyGT5oOCVDSygYVNA4fchJu53EKeNPIT7U+n8XWckKkERk4FEAJV3TUA9xwY/R+49B1efNM0gjpsNRv/Lr7z0Bajf57xNSfQCUv4d/nTwYjrkhGC07GDE7NacpM5ScAUf8T6+eWkRnCrGjA5xtdWEuffBtzjtozA5H2o5kjCL7haBZ5gh811r55nJSBy8hMWUtdVtySEhezwsbr+GJR9awqmYVdeE6AK6ZcQ1zxs0hZVABP3zpCwrSCjhg+AGNT6uNGeyfEpxZNJPDitsuck+KS+rQOYuIDCQKoKRtWzfC1vWQGXzoL7wLyt9pHiDlTYaznvDrn78W1n7ig6HG8YyCQmwzOO0BX0uUMcyPsh3d3WMG+5zdm2fXaEcBUmcLsSPBUGTetS8qaxoHkmwriNqjMI3fnl7Ey59/iotbT1zDEObsPoNxBXHM+fscKjZXsKluU+P2Jx/8bfLC+7N7YYg/LXmGUVl7cHja4T5ASs1nUo7vvtw9e3cen/N4m23VaNkiIrFTADUQOecnmN24Aras811kAK/dDEv+1TSnWm01ZI2Ci9/26z+YB6sW+yzR4BE+uxSpMQL45mO+yy0xrfXjjjyg586pk9oLkDpbiF1SnMXcc0q59MG3+aKyBghj8Zt4ePGr5OR9RPnmcvLS8pg1chbOOY585EjKNzcfbPLEcSdSUjybsAtTnFHMvvn7No6UnZ+WT3FGcWP32aHj/tKt10VERHZMAdSuJtwAm1bTbE61fc71XWGv/BYW/dmva/DzfhGXBFeu8hmgTav8fGy5E2DMTJ8pyozKlnzjbzsuth48vO11vSiWLrf2AqS2CrFbqq6t9kXYwRNq5ZvLyUjM4LyDZnLFo++RNvoGQklr+RS49EW/zyEjDmHWyFmYGbNGzSIlPqXZdCJ5qb6+K2Qhfnfo77rj0oiISDdRALUzqa/1AVGkADvSlXbw5b5r7LXfw7+uAtfQfL9JJ8CgXD/A4/ASmPjVpsEgM4b7jJQZHPHzHR+/B55U626xdrm1FyBFMknPfvIxw3M3U1b3Egvf8QFSyEL8dL+fAnDhcxfy5uo3G/eLt3j2yd+H24/wgzze8/5R7J43iNmTJjWOlp2RmNG4/SUll3TnZRARkR5mzrn2t+om06ZNcwsXLuy14+10tqyHinebTzi7cSUcdrUfqPHNv8C8i5rvk5AK5zznB3784hX47PmmIuxIgJSa3S8mlG3NomVVPPJmGQacMLWwywM93vL8Eq7/58eEHcQZXHLEeL536Nh22/D0x+8yJGstqambGjNJ67et5+5ZdwNw+UuX89TnTzXuMyR5CGMyxzRONPtS2UvU1Nc01h/lpOQQF4rr0rmIiEjfMrNFzrlpra1TBqqnOQcu7OdUq1kHH/1j+wDp8J/BuMNhxUK498SmfZMzfQC0NRgYsnh/P6lsxrCmx/mTBzcFRyMP6Jd1RtB6t9qiZVV8/fbXqW3wQfxDi8q4/9xSgE5PP9I8o2RMHzUEgM/Wf8YbFW80dq9Futoemf0IJcVZvLh2Ebcu/hMAqfGpjV1pdQ11JMQlcOakMzlx3Im+ay0tb7sn0w4qPKhL10dERHYuCqC6wrlgShDz04VsWQ+v3eQLsFtmkKaf52uT5l3o900b6gOgrJGQkOKXDS+BMx8PgqOC7Yuxs8c0n6C2H4sOmIBWu9XmL62krqEpA1pXH+Zvb5bxyJtlHeqC21q/lTiLIyEugaXrl/LMsmdYtXkVU/ZZzorqcmrClWRl3g8MYUH5Av73P/9LfCievNQ88tPymZI3hdpwLQCnjj+VY0Yd48c/Skjf7sm0SdmTWmmBiIgMVAqg2hJu8EXVG1f6ACdvEjTUwaPfbV6g3VAL+18Mh18DFvLzrUXGMsrb3WeWIk+qZY+BH7wHg/L9BLYtpWT5gSX7ibayRu1lh1rWIZ0wtbDVQu3S0dkkxFljBiohPoSDYNsw9WzgxSXLKSnOYvnG5cz9cG5jBmlVzSrWbV3HbYfdxv7D9+eLjV9w69u3kp2cTUFaASXDJpCflk9yfDIAx445lsOLDyc7JZuQbV/LNWzQsJ65iCIisksamAFU/bagEDvIECUO8vOlAdwzB9Z8DNUVTcXYk0+Ck+6EuAQ/6WzyYBixb1ONUWHQPZqcAf+9xnfXtSYuoflTbb2ovbGOWguUooOgnx47icUrN/DwojLqG3acHWr5ZJtBs0Lt6aOGsH7retLSV3HzGaN54YM6toWr2Jj6KB9vW03qmOUQvxGzMKRdDuzFprpNzPtsXmMB9qScSeSn5lOYXgjAgcMPZNE3FpEY10pgCr5gu/VVIiIiMetSAGVmmcAdwGT8zBPfds693g3t6rzazdvPpxafBDOC4us/HQ3LXm2+T9GMpgBqcGGQQYp6Si07qgj5/Bb7ttRPCoc70oUW2a6t7rVIEFRbH+anf19MQ9gR6XDb0ZhIU4rTSExZS4NVEccgTpg6g2P2yubnb1xOvVVxwatXsaV+CwDf3eu7/GLO91i3dR2n/+N/KRhUwP6F09m6JZ098os5YeKBAEwcMpHXT2v7RyshLqEbr56IiMiOdTUDdSPwtHPuJDNLBLafar23PXgGLHm2+bL8PZoCqIlf9QNHNgZJwdNqEbN/32tN7SmR4uy6BkdCnPG1aSPaHOuorXGQoouxzSwqeGogFF9NYspGSNvCKysqOGC4L1z/xpPfYNnGZazftp6EYkgADsw/mpLiLJzLJPfjEDkp48lPO7ixSHtC1gTAP9X21IlPtXo+oNGyRUSkf+l0AGVmg4GDgLMAnHO1QG33NKsLpn8X9ji5KYOUXgCJUXFd6fl917YuiGVwyEfeLGusK6ptcKyu3tbmWEctn1qbVBjHB5UfsMEqOGvWCr5cV8v+Q4/lmifeJzTsVkIpyzDz733bh7Df+v0aA6jRg0czPmt8YzdbZLRs8AHQX47SaNkiIrJr6EoGahSwBviTme0FLAIuds5tjt7IzM4DzgMoKuqF+p9xh/f8MbpRZ4qy2xscsmWuZmh6EnPPKeXlJSsYU1DPtvgP+dunvhi7PlzP3HPOYP7SSl6p/gUXvfZGs33HZY3jtOkXMD4/nVvfepe8zIOYMmxk43hH+Wn5jdtes/81nb4OIiIiO5OuBFDxwFTgIufcAjO7EfgR8N/RGznnbgduBz+QZheO1y/EkgnqyHt1JDDq6HxslVsqWbZxGQXDl5CSu5BwqIq4hM3MmXIzJcVZPLL8Ou58o2lSWcMoyiji4qkXU1KcxailJ1G59VAK0goaxzsakuzHUSopzuLO4h926XxFRER2FV0JoMqAMufcguD1w/gAapfRMliKNRPUno4GRpFutnqqSEhbQXViOdcv/HvjgJC3HnYrGYkZ3Pvhvdzx3h0AxOdAoqWRl5rPpEI/ztSccXOYMXxGY/3R0JShzYqvjx59dKfPRUREZCDpdADlnKswsy/NbLxz7mNgJvBB9zWtb7UWLHU04OmopvqjBhLi4xg3rJ5HPnmEipoKyjcFo2XXVPC7Q37H3HNKufOdubxc9RfmLoHEUGLjpLM1dTVkJGbw1dFfZVretMYAKTWheU3/Pvn7dPWyiIiICF1/Cu8iYG7wBN5S4Ftdb1LPiLXrrbVgqb2JZ1tTF64j7MIkxSWxavMqHl/6eLPpRDInlHNQ1sWcMukIqkPvcPW/ryZkIXJTcslPy2fikImELERJcRbFQ09lVY3vYstKytruybTRmaMZnTm609dIREREOqZLAZRz7m2g1Un2+oNI0JSVmsjV8xY3PtZ//3n7tRtEtRYslRRnNWaiSkdnM7Uok8otlYQsRFZyFlVbq7jjvTsa51mr2FzBmi1ruLL0Sk4efzJV26q48c0bGZw0mIK0AoalDWPq0KmcuNteTBiSRU3dvjxz4jPkpuaSENp+XKOclBxyUnJ66nKJiIhIB+2yI5FHd8EZEJlyrbbB8cibZe0GUCXFWdxx1p48/9knlIzIoaQ4i9qGWv725W+oqK3gH4vKWfXSKmrDtZy353lcNOUiQhbigY8faOxCi9QbReZRG5s5lgWnLdiuay0iNSG1zXUiIiLSf+yyAVR0F1zLx/oNqGuoY1XNKso3l5MQSmDvoXsDcMkLl/DFxi+o2FRBdV01AFtTZ3M0e5AQSuCdNe+QlZTFpOxJHFZ0GPlp+Y37ZiRm8Mbpb7Q56GN8KJ740C57yUVERAaMXfLTPOzCTBgOSWkraAitI2TQsGlP6hscKYX38dLWFZTcu47I2Nr75u/LnUfeCUBDuIHhg4ZTMrSEgkH+cf6xmX4qFzPjiTlPtHlcjZYtIiIyMOxyAdSPX/4xz3zxDHXhOuJH+BPMSynkV9O/w/yllSx3k0hOHts4CGR+WtOEtAA3fuXGvmu8iIiI7BR2uQBqytApDE0d6oOj1HwKBvkRszOTM4O6pyv6uokiIiKyk9vlAqiTx5/c100QERGRXVyorxsgIiIisrNRACUiIiISIwVQIiIiIjFSACUiIiISIwVQIiIiIjFSACUiIiISIwVQIiIiIjFSACUiIiISI3PO9d7BzNYAy3r4MDnA2h4+hsRO96X/0T3pn3Rf+h/dk/6pN+5LsXMut7UVvRpA9QYzW+icm9bX7ZDmdF/6H92T/kn3pf/RPemf+vq+qAtPREREJEYKoERERERitCsGULf3dQOkVbov/Y/uSf+k+9L/6J70T316X3a5GigRERGRnrYrZqBEREREepQCKBEREZEY7bQBlJnNMrOPzWyJmf2olfVJZvZAsH6BmY3sg2YOKB24J5eY2Qdm9q6ZPWdmxX3RzoGmvfsStd2JZubMTI9r97CO3BMzOzn4fXnfzO7r7TYORB34P6zIzJ43s7eC/8eO7ot2DiRmdpeZrTazxW2sNzO7Kbhn75rZ1N5q204ZQJlZHHALcBSwO/B1M9u9xWZnA1XOubHAb4Ff9W4rB5YO3pO3gGnOuT2Bh4Ff924rB54O3hfMLB24GFjQuy0ceDpyT8xsHPBjYH/n3CTgB73dzoGmg78rVwIPOuemAKcCt/ZuKweku4FZO1h/FDAu+DoP+L9eaBOwkwZQwL7AEufcUudcLfBX4LgW2xwH/Dn4/mFgpplZL7ZxoGn3njjnnnfO1QQv5wOFvdzGgagjvysAP8f/kbG1Nxs3QHXknpwL3OKcqwJwzq3u5TYORB25Lw7ICL4fDKzsxfYNSM65l4B1O9jkOOAvzpsPZJpZQW+0bWcNoIYDX0a9LguWtbqNc64e2ABk90rrBqaO3JNoZwNP9WiLBDpwX4KU9wjn3D96s2EDWEd+V3YDdjOzV81svpnt6C9w6R4duS9XA98wszLgSeCi3mma7ECsnz3dJr43DiISzcy+AUwDDu7rtgx0ZhYCbgDO6uOmSHPx+C6JQ/CZ2pfMbA/n3Pq+bJTwdeBu59z1ZrYfcI+ZTXbOhfu6YdL7dtYM1ApgRNTrwmBZq9uYWTw+3VrZK60bmDpyTzCzw4CfALOdc9t6qW0DWXv3JR2YDLxgZl8ApcA8FZL3qI78rpQB85xzdc65z4FP8AGV9JyO3JezgQcBnHOvA8n4CW2l73Tos6cn7KwB1BvAODMbZWaJ+GK+eS22mQecGXx/EvBvp1FDe1K798TMpgB/wAdPqunoHTu8L865Dc65HOfcSOfcSHxt2mzn3MK+ae6A0JH/vx7DZ58wsxx8l97SXmzjQNSR+7IcmAlgZhPxAdSaXm2ltDQPOCN4Gq8U2OCcK++NA++UXXjOuXozuxB4BogD7nLOvW9m1wALnXPzgDvx6dUl+AK0U/uuxbu+Dt6T64BBwENBPf9y59zsPmv0ANDB+yK9qIP35BngCDP7AGgALnPOKYPegzp4Xy4F/mhm/4UvKD9Lf5j3LDO7H//HRE5Qe3YVkADgnLsNX4t2NLAEqAG+1Wtt070XERERic3O2oUnIiIi0mcUQImIiIjESAGUiIiISIwUQImIiIjESAGUiIiISIwUQImIiIjESAGUiIiISIz+PzdLKqcG1StDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1, figsize=(10, 4))\n", - "choice = numpy.random.choice(X.shape[0]-1, size=100)\n", - "xx = X.ravel()[choice]\n", - "yy = Y[choice]\n", - "ax.plot(xx, yy, '.', label=\"data\")\n", - "xx = numpy.array([[0], [1]])\n", - "y1 = clr.predict(xx)\n", - "y2 = clq.predict(xx)\n", - "ax.plot(xx, y1, \"--\", label=\"L2\")\n", - "ax.plot(xx, y2, \"--\", label=\"L1\")\n", - "ax.set_title(\"Quantile (L1) vs Square (L2) for MLPRegressor\")\n", - "ax.legend();" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/quantile_regression.ipynb b/_doc/notebooks/sklearn/quantile_regression.ipynb deleted file mode 100644 index 05804ed2..00000000 --- a/_doc/notebooks/sklearn/quantile_regression.ipynb +++ /dev/null @@ -1,572 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quantile Regression\n", - "\n", - "[scikit-learn](http://scikit-learn.org/stable/) does not have a quantile regression. [mlinsights](http://www.xavierdupre.fr/app/mlinsights/helpsphinx/index.html) implements a version of it." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simple example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We generate some dummy data." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "X = numpy.random.random(1000)\n", - "eps1 = (numpy.random.random(900) - 0.5) * 0.1\n", - "eps2 = (numpy.random.random(100)) * 10\n", - "eps = numpy.hstack([eps1, eps2])\n", - "X = X.reshape((1000, 1))\n", - "Y = X.ravel() * 3.4 + 5.6 + eps" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LinearRegression()" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.linear_model import LinearRegression\n", - "clr = LinearRegression()\n", - "clr.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "QuantileLinearRegression()" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import QuantileLinearRegression\n", - "clq = QuantileLinearRegression()\n", - "clq.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
XYclrclq
00.3373516.7684417.2481716.753219
10.1342766.1064606.5700116.060008
20.4418927.1351707.5972817.110077
30.7376608.1106428.5849888.119707
40.9895508.9580299.4261638.979550
\n", - "
" - ], - "text/plain": [ - " X Y clr clq\n", - "0 0.337351 6.768441 7.248171 6.753219\n", - "1 0.134276 6.106460 6.570011 6.060008\n", - "2 0.441892 7.135170 7.597281 7.110077\n", - "3 0.737660 8.110642 8.584988 8.119707\n", - "4 0.989550 8.958029 9.426163 8.979550" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from pandas import DataFrame\n", - "data= dict(X=X.ravel(), Y=Y, clr=clr.predict(X), clq=clq.predict(X))\n", - "df = DataFrame(data)\n", - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEICAYAAACQ18pCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/u0lEQVR4nO3dd3hcxb3/8fd3tSpWsZq7ZEvumGZwwTI1YEILHRKKaQklCZDcwE3vN7nce1MgPxJa6ElwCIEkhAAhEJohYMcWmGqMq+x1tyzbkiVZW+b3x6yaLdlaW1q1z+t59Fh7zuw5c/bY8kczc2bMOYeIiIiIdFyguysgIiIi0tsoQImIiIgkSAFKREREJEEKUCIiIiIJUoASERERSZAClIiIiEiCFKBEBAAzqzGzMfHvHzaz/z6AYz1qZuceYH2GmtliM0s/kOP0dfqsRbqHApRINzGzq8zsPTOrNbMNZnaXmeUm6dyvmNk1Lbc557Kdcys64diHA5OBv8ZfX2Vmr7dT9jNm9kb8M3hlt/psBF4GrjvQOu2LmX3bzFbGQ2TIzB7r6nN2hgQ/65+b2VIzqzazj8zsisZ9yfysRfoKBSiRbmBm/wn8BPgakAuUAaXA82aW2o1V6wyfB+a4js3SuxX4f8D/tbN/Tvx4XcbMrgQuB052zmUD04AXu/Kc7dQjuB9vS+Sz3gmchf/7diVwu5kd3WJ/l3/WIn2JApRIkpnZQOC/gC85555zzoWdc6uAzwBjgEvj5Vp1o5nZJ8ws1OL1N81sebxF4UMzO6/FvqvM7PV4q0NVvHXl9Pi+W4DjgDviLS53xLc7MxvXTp3PNLNFZrYt3mJ0+F4u8XTg1Y58Fs65fzrn/gisa6fIfGCMmZW0UacZ8Za7lBbbzjOzd+PfH2VmC81sh5ltNLPb2jnHdOAfzrnl8TptcM7d2+KYo83s1fjn/IKZ3WFmj8T3tbon8W2rzOzkFnV4M/65rY+/N61FWWdmN5jZUmBpfFtXfdY/cM595JyLOefmA68BM1sUafezFpE9KUCJJN/RQAbw55YbnXM1wLPAKR08znJ8EMrFB7JHzGx4i/0zgCXAIOCnwANmZs657+D/87wx3m13495OYmZHAg/iWycKgV8DT7U1XsbMsoDR8fMeMOdcBFiG76bafd98fKvKSS02Xwr8Pv797cDtzrmBwFjgj+2cZh5whZl9zcymtQxkcb8HyvGf44/xrTcdFQVuir93JjALuH63Mufi79XByfqszWwAPjh+0Lhtb5+1iOxJAUok+QYBW+L/Ye1uPTC4Iwdxzj3unFsXb1F4DN+CcVSLIhXOufucc1HgN8BwYOh+1Pc64NfOufnOuahz7jfALny34+7y4n9W78d52lPd4ri7exS4BMDMcoAz4tsAwsA4MxvknKtxzs1r6wDOuUeALwGn4ltzNpnZN+LHHIUPGt9zzu1yzs0F/tbRijvnyp1z85xzkXgr46+BE3Yr9r/Oua3OuTqS91nfA7wD/GO37Xv7rEWkBQUokeTbAgxqZ8zL8Pj+fTKzK1p09WwDDsWHs0YbGr9xztXGv83ej/qWAP/ZeJ74uUYCI9oouy3+Z85+nKc9OS2Ou7vfA+fHW2jOB95yzlXE910NTAA+MrMFZnZmeydwzs1xzp2MDw9fAH5sZqfir7HKObezRfGKNg7RJjObYGZPx7sadwD/Q+t7BLCmxfdd/lmb2c/wf1c+08bYqb191iLSggKUSPK9iW9VOL/lRjPLxo9peSW+aSeQ2aLIsBZlS4D7gBuBQudcHvA+YB2sQ0cGHTdaA9zinMtr8ZXpnHt094LxoLEcH1wOWDxkjsO3luzBOfchPtCcTuvuO5xzS51zlwBD8AP2n4h3e7UrPh7tceBdfMhYD+Tv9r5RLb5vdY/i3X8tWxDvBj4Cxse7Er/Nnveo5b3o0s/azP4L/1md4pzbsdu+vX7WItKaApRIkjnntuPHLP3KzE4zs1QzK8WP0dmCfxoKYBFwhpkVmNkw4CstDpOF/493M4CZfRb/H35HbcQPWO+I+4AvxAdtm5llmdmn4l1mbXmWPbupzMwyWn7FN6bEvw8Cgfi+lk8hHgWsatGq1JbfA/8BHA883uKEl5nZYOdcjOZWldjub44PuP+UmeWYWSA+2P4QYH78vAuB/zKzNDM7Fv8kW6OPgYz4+1OB7wItxyvlADuAGjM7CPjiXq4Duvaz/hY+ZJ7snKts41gd+axFJE4BSqQbOOd+im+N+Dl+3MlKfEvGyS26i36Hbw1YBTwPPNbi/R8Ct+JbszYChwH/SqAKtwMXmn9C75f7qOtC4FrgDqAKP9D4qr285V5gtpm1bGk5Gqhr+RVv8bg8/vpu/ID4OnyIaDQbP15nbx7Fh4iXnHMtuz9PAz4wsxr89V4cH2e0ux34e7EaH7R+CnzROdc4n9Kl+EHeW4EfAL9tfGM8DF8P3A+sxbdItXwq76vx91fHr2uv80t18Wf9P/jWs2Xmn76sMbNvt3hfRz5rEYmzjk0fIiJdKd6C9CPgGOfc6u6uz4Eys98Df3TOPXkAxxiCH9R9pHOuvrPqdqDM7IfAOOfcZd1dF+jbn7VIT6YAJdJDmNnlQNg594furou0r6cFKBHpHvsz862IdAHn3O+6uw4iItIxaoESERERSZAGkYuIiIgkKKldeIMGDXKlpaXJPKWIiIjIfikvL9/inGtzdYh9BigzexA4E9jknDu0xfYvATfg13p6xjn39X0dq7S0lIULF3a44iIiIiLdxczanRetI114D+PnU2l5wBOBc4DJzrlD8HPZiIiIiPQL+wxQ8cUzt+62+YvA/znndsXLbOqCuomIiIj0SPs7iHwCcJyZzTezV81sensFzew6M1toZgs3b968n6cTERER6Tn2dxB5ECgAyoDpwB/NbEwbK3vjnLsXv9wA06ZN05wJIiIivUQ4HCYUClFf37cnqM/IyKC4uJjU1NR9F47b3wAVAv4cD0z/NrMYMIj4wqYiIiLS+4VCIXJycigtLaX1kot9h3OOyspKQqEQo0eP7vD79rcL70ngRAAzmwCk4VeRFxERkT6ivr6ewsLCPhueAMyMwsLChFvZ9hmgzOxR/IrvE80sZGZXAw8CY8zsfeAPwJVtdd+JiIh0tfKKKu58eRnlFVXdXZU+qS+Hp0b7c4377MJzzl3Szi4tpCkiIt2qvKKK2ffPoyESIy0YYM41ZUwtye/uakk/oKVcRESk15q3opKGSIyYg3AkxrwVld1dJeliP/zhD/n5z9uffvLJJ5/kww8/7PJ6KECJiEivVTamkLRggBSD1GCAsjGF3V0l6WYKUCIiIvswtSSfOdeUcfMpE9V910N0xZi0W265hQkTJnDssceyZMkSAO677z6mT5/O5MmTueCCC6itreWNN97gqaee4mtf+xpHHHEEy5cvb7NcZ1CAEhGRXm1qST43nDhO4akHaByTduvzS5h9/7xOCVHl5eX84Q9/YNGiRTz77LMsWLAAgPPPP58FCxbwzjvvMGnSJB544AGOPvpozj77bH72s5+xaNEixo4d22a5zrC/80CJiIiItNLWmLQDDbavvfYa5513HpmZmQCcffbZALz//vt897vfZdu2bdTU1HDqqae2+f6OlkuUWqBERESkUyRzTNpVV13FHXfcwXvvvccPfvCDdudx6mi5RClAiYiISKfoijFpxx9/PE8++SR1dXVUV1fzt7/9DYDq6mqGDx9OOBxmzpw5TeVzcnKorq5uet1euQOlLjwRERHpNFNL8jt1PNqUKVO46KKLmDx5MkOGDGH69OkA/PjHP2bGjBkMHjyYGTNmNIWmiy++mGuvvZZf/vKXPPHEE+2WO1CWzAnEp02b5hYuXJi084mIiMj+W7x4MZMmTeruaiRFW9dqZuXOuWltlVcXnoiIiEiCFKBEREREEqQAJSIiIpIgBSgRERGRBClAiYiIiCRIAUpEREQkQQpQIiIi0mNlZ2fvse22227j4IMP5vDDD2fWrFlUVFQkvV4KUNLjdcXK3iIi0nsdeeSRLFy4kHfffZcLL7yQr3/960mvg2Yilx6tcWXvhkiMtGCg05YGEBGR3uvEE09s+r6srIxHHnkk6XVQgJIerStW9hYRkf300Kf23HbIuXDUtdBQC3M+vef+Iy6FI2fDzkr44xWt9332mQOu0gMPPMDpp59+wMdJlAKU9GiNK3uHI7EuX9lbRER6l0ceeYSFCxfy6quvJv3cClDSozWu7D1vRSVlYwrV+iQi0p321mKUlrn3/VmFndLi1Oif//wnt9xyC6+++irp6emddtyOUoCSHq+zV/YWEZHe7e233+bzn/88zz33HEOGDOmWOihAiYiISI9VW1tLcXFx0+ubb76ZZ599lpqaGj79aT/matSoUTz11FNJrZcClIiIiPRYsVhsj20333xzN9SkNc0DJSIiIpIgBSgRERGRBClAiYiIiCRIAUpEREQkQQpQIiIiIglSgBIRERFJ0D4DlJk9aGabzOz9Nvb9p5k5MxvUNdUTERGR/iw7O3uPbXPnzmXKlCkEg0GeeOKJbqhVx1qgHgZO232jmY0ETgFWd3KdRERERNo1atQoHn74YS699NJuq8M+J9J0zs01s9I2dv0C+Drw186ulIiIiEh7SktLAQgEum8k0n7NRG5m5wBrnXPvmNm+yl4HXAc+MYqIiEjv9NnnPrvHtlNLT+Xigy6mLlLH9f+8fo/954w7h3PHnUtVfRU3v9J6BvGHTnuoy+ra1RKObmaWCXwb+H5Hyjvn7nXOTXPOTRs8eHCipxMRERHpcfanBWosMBpobH0qBt4ys6Occxs6s3IiIiLSc+ytxWhAcMBe9+dn5PfqFqfdJRygnHPvAUMaX5vZKmCac25LJ9ZLREREpMfqyDQGjwJvAhPNLGRmV3d9tURERESgtraW4uLipq/bbruNBQsWUFxczOOPP87nP/95DjnkkKTXqyNP4V2yj/2lnVYbERERkRZisVib20OhUJJr0ppmIhcRERFJkAKUiIiISIIUoERERKRdzrnurkKX259rVIASERGRNmVkZFBZWdmnQ5RzjsrKSjIyMhJ6337NRC4iIiJ9X3FxMaFQiM2bN3d3VbpURkYGxcXFCb1HAUpERETalJqayujRo7u7Gj2SuvBEREREEqQAJSIiIpIgBSgRkS5QXlHFnS8vo7yiqrurIiJdQGOgREQ6WXlFFbPvn0dDJEZaMMCca8qYWpLf3dUSkU6kFigRkU42b0UlDZEYMQfhSIx5Kyq7u0oi0skUoEREOlnZmELSggFSDFKDAcrGFHZ3lUSkk6kLT0Skk00tyWfONWXMW1FJ2ZhCdd+J9EEKUCIiXWBqSb6Ck0gfpi48ERERkQQpQImIiIgkSAFKREREJEEKUCIiIiIJUoASERERSZAClIiI9AlaPkeSSdMYiIhIr6flcyTZ1AIlIiK9npbPkWRTgBIRkV5Py+dIsqkLT0REer3euHxOeUVVr6qvtKYAJSIifUJvWj5HY7Z6P3XhiYiIJJnGbPV+ClAiIiJJpjFbvZ+68ERERJKsN47ZktYUoERERLpBbxqzJXtSF56IiIhIgvYZoMzsQTPbZGbvt9j2MzP7yMzeNbO/mFlel9ZSREREpAfpSAvUw8Bpu217ATjUOXc48DHwrU6ul4iIiEiPtc8A5ZybC2zdbdvzzrlI/OU8oLgL6iYiIiLSI3XGGKjPAX9vb6eZXWdmC81s4ebNmzvhdCIiIiLd64AClJl9B4gAc9or45y71zk3zTk3bfDgwQdyOhEREZEeYb+nMTCzq4AzgVnOOddpNRIRERHp4fYrQJnZacDXgROcc7WdWyURERGRnq0j0xg8CrwJTDSzkJldDdwB5AAvmNkiM7uni+spIiIi0mPsswXKOXdJG5sf6IK6iIiIiPQKmolcREREJEEKUCIiIiIJUoASERERSZAClIiIiEiCFKBEREREEqQAJSIiIpIgBSgRERGRBClAiYiIiCRIAUpEREQkQQpQIiIiIglSgBIRERFJkAKUiIiISIIUoEREREQSpAAlIiIikiAFKBEREZEEKUCJiIiIJEgBSkRERCRBClAiIiIiCVKAEhEREUmQApSIiIhIghSgRERERBKkACUiIiKSIAUoERERkQQpQImIiIgkSAFKREREJEEKUCIiIiIJUoASERERSZAClIiIiEiCFKBEREREEqQAJSIiIpKgfQYoM3vQzDaZ2fstthWY2QtmtjT+Z37XVlNERESk5+hIC9TDwGm7bfsm8KJzbjzwYvy1iIgkUXlFFXe+vIzyiqruropIvxPcVwHn3FwzK91t8znAJ+Lf/wZ4BfhGZ1ZMRETaV15Rxez759EQiZEWDDDnmjKmlqgzQCRZ9ncM1FDn3Pr49xuAoZ1UHxER6YB5KyppiMSIOQhHYsxbUdndVRLpVw54ELlzzgGuvf1mdp2ZLTSzhZs3bz7Q04mICFA2ppC0YIAUg9RggLIxhd1dJZF+ZZ9deO3YaGbDnXPrzWw4sKm9gs65e4F7AaZNm9Zu0BIRkY6bWpLPnGvKmLeikrIxheq+E0my/Q1QTwFXAv8X//OvnVYjERHpkKkl+QpOIt2kI9MYPAq8CUw0s5CZXY0PTp80s6XAyfHXIiIiIv1CR57Cu6SdXbM6uS4iIiIivYJmIhcRERFJkAKUiIiISIIUoEREREQSpAAlIiIikqD9ncZAREREJHkadsLSF2BbBQw+CCac2q3VUYASERGR7heLNgekqormPw//DBzzZWiohcev9GWnXqUAJSIiIv3EqtehcnnrkDSqDE75b8Dgj1dAdBcEB0B+CeSVQHZ8ud2sQfD51/z2jNxuvQxQgBIREZHOsu5t2Pxx64CUOxLOu9vv/+uNULUSLAVyiyG/FLKH+X2BAFzzgn+dPQTMWh/bDIYfntTL2RsFKBEREemYLUth04etu9gCKXDpY37/89+DVa/577OH+dairBYLXX/mt771aGARpLQRQYZP7vpr6CQKUCIiIuJtXwsbP4iHo1X+a+dm+Nw/fAvQ3J/Du3/wZTNyfRfb4IOa33/6TyCQCnkjIXXAnsfvQS1IB0oBSkREpL/YWQkb399zoPbsx2FAHix8AF671ZcNZkDeKB+SwnWQlgnH3Qwzr/fbBuTtefyhhyTzarqVApSIiEhfsasaNi2Oh6NVzSHpU7fBoPHw4ZPwzM2+rAX8OKS8Emio8YHoyMtg/KnxrrchflxSS4MnJvmCei4FKBERkd4isgs2L9mzBenYr0DJ0VDxBvz+M83ls4b4MNRQ419POA0Kx/rQlFsMKamtj18wxn/JPilAiYiI9BSxaIvH/Fe1ngtp0lmw5WP49XHN5dNzIX+Un2QSoGgaXPKYf7otb5Tvdmspt8h/9XDlFVXMW1FJVkaU7bURjh03grU7V/Ho4sdISdvKqWOP4/KDL+/WOipAiYiIJItzsH1N69ajqlVQeixMvRJ27YA7pzeXT0n3Qahum39dMNY/yZZX4luWBuS3Pn5WIUw8LVlXc8CisSgRFyE9JZ0XP17Kbz/4PfVs5v1NKyG4lUCwhvq1l3DnS0dgA1aSOuKfECnkoPwju7vqClAiIiKdaueW5ifYGluRCsfBMf/h9985A8K1/nsL+Ef6B433rwfkwwUPNI9Nyh7aehxSWiYcfE4SL2b/NLYglY0pZPLIHIKBILXhWh5b8hih6hBra9ayrKqCzXUb+PSYazl91CXc8Oi/CZb8GRfOIxYtIFY3CRcuIFo/DBd1UFPCro9/SIoZ+eO7fyyWApSIiEgi6nfsOQYpPRtmfd/vf+h039XWKHOQ734DPxXAuXdBRp5vQcoduec4pMMuTMplJKplKJpakt+07c3lW5g5dhBTRuXx+MePU752GU8vfh+XspW7V27llFGf4raTf0AwEOQX5b8gNz2X/LRhrN9UQKRhHHNCUHdwiIb6gdR/9GMClkLAjFjMEQMCBqkpBhYgGo2RGgxQNqZw75VNAgUoERGRliK7YNua1k+xhevhjJ/6/X+8HFa80lw+LQdKZja/PvmHvmUpr8R3v6Vntz7+Ied18QV0TFuBaG9lZ98/j2jGe6S+vZkTDw2yuW4dH25eSbSumDtevpw515Rx9zt3s7VuG6Tm4cIFRHaMJLBrLABpKWm8eembZKVmcefLy7h1wRJiDlIMHJAWDBKO+ID0/TMPoaq2gfzMNKpqG5oCU0frmwwKUCIi0r/EorBjXetWpO0hOOdO30L09M2w6JHm8ilpUDjej18yg6O/BFOu9C1I+aN9t1vLZUcO+lTyrylBjYGoIRIjLRhgzjVlTC3J5+1Nb7O4cjFra9YSqg4RqgmRl57HlLRv0RCJkVH4MikDQizcmE9OcAjR2hIitaXEIjHmrajkibOeYMVGx+UPLGgKQ5ecV9Z03qzULADKxhSSFgw0lblgSjEXTCneZ0DqCcGpkQKUiIj0Lc5BbeWecyHN+gFkFsDcn8Er/9viDebHIdVV+f1HXOoHdTcuZpszvPU4pHEnJ/uKOkV5RRXPLllEbu5G3l6/HAZ/THrqVgKBBuatuJOpJfn85oPf8OLqF8lIyaAou4jinGIm5E+grNAHnoa1lxO0LO66+ngAZt8/j1ikuVutcEA+haUw55qyvYahqSX5bZbpSQFpX8w5l7STTZs2zS1cuDBp5xMRkT5qV3XrMUjbKuCo6/wcR2/9Dp66sXX5zEK46hkYMskveLtuUXNAyh0JwbRuuYyO2FtX2+77NuzcwIeVH7ZqQVpbvZZvTv41Vz34FhT8ldSCfwGGCw8kFi7AIoU8fNbPmV5ayLqadaSlpFGYUYjttphve2OgelK3Wmczs3Ln3LQ29ylAiUhf09d/qPcLkYb44/6rmkPSwedA0RQ//ui3uz2JlpoFF/0Oxs3yC94u+2fzo/55JXuOQ+rhGv8O52em8aOnP6AhEiOYEuDsKXkU5lWybudaGmwLr638CIJbiWyczaOfPZ33a57i5wt/DvjusuLsYopzihkZvYI7X1yPS6kiJRDhy5+YwTFjh+nfyT7sLUCpC09E+pT2xnZIDxOLQfX61i1Io8pgzCdgyzK4Yxp+aHFcINVPBVA0xS9eO+sH8XBU6v/MLGwehzRofPO0AL1MfaSeZz5axHefnkssZQuBtCpsWCVsPoWG+pE8ufhlBhQ/CoBzASwjj1i4gEhsF39+K8SXTjmVqUOnUpxdTG56blMrUnlFFfe9upFwJJ+gBThm7DCmluTr38YBUIASkT5l3opKGiIxYg7C8YGt+k+iGzjnxxS1bEEqHOsf52+ohZ+UQLShxRsMTviGD1C5RXDC11u3IA0cAYEUXzRnmF/UtheKxqKsq1lHqMZ3r4Wq/dehAz9J7fZxFBau45a3byA43Jd3kUxcuIBAoIEYEK0dS23FNcTCBbhwLpDSdGwHDMsaxrCsYXuct70xR7L/FKBEpE/Z/emenjBfTJ/VsLP1OKQBeTD5Yr/v/x0O21e3Ln/EbB+g0jLhmK/4INTYipQ3EoLpvlzqADjx20m8kM7jnOOVZat4eflihhbUkpZRRagmRNnwMk4ffTqb6zZzxl/OaCqfGkilMH0Yz84vZNe2KGmpDVx0/Ld57M1awvV5pAYy+f6Zh/DBuu08vnANkWg20dpxfm6kYIBYLEY05udJumBK8V7rphanzqUAJSJ9in7T7kTRcPOyI1WrAAfTPuf3PXQGVPyrdfnS45oD1PSr/eP/jS1I+SWQntNc9qTvJOMKDlhb4+l2RXextmYta6vXNrUileaW8ukJn2bBqi186V/nYhaDjf4YhRmFjMwZCcCQzCH86OgfMTJnJMU5xQweMJh7Xl3JrW/7OZHC4TSGpBzGnCsK9zjv+fHH/Hvy3Ej9iQKUiPQ5+k27g2IxqNnQ3IpUuxVmXu/3/eWL8O4fwMWay+eOag5Qh5znB2znlcQXri2BrEHNZY/9SrKuotM559hSt4UXly3mv56bSyxQyR3lAzhv7CVcMKWYby24iPU71zeVz0jJ4MyxZwKwYNV2GjacRzSShYULuPH4GXxl1qFNZQMW4LzxrSfSbKvVtK2/w+39vdbf9e6hACUi0lc1jkNqGqi9Gmbe4McSvfTf8K9fQnRXc/lA0E8FkBKE0cf79dhatiDljGgue9S1yb+eTvTGinW8uHQxwwfVkj5gGysrt1MYOY2yMYXcsfhmFm70T4wHh4JzRrR2LI/OX82f3wrxxTOvYuzggU1PuLV85L9sTCG/emkG0UiMYDDAceOK9lkXtZr2TprGQESkN2uo9cGoMSQd/mk/M/bCh+CF78OuHa3L3/SBD0aLn4Y181q3IOWN9OOPeqHdu9qisSibajc1dbFtrN3IFyZ/AYAbnv8Wc9c/3er9LpxL7fJvkRYMcONZ1QwaGKOuNpefPL2JXXW5OOfXq0sxuPmUidxw4rgO10V6L01jICLSW0XDfpmRxoA09iQfdD7+B/z1Rti5qXX54Yf76QAKx8HhF/lw1LIVKSPXl5t0pv/qxaobqglVh3h15Ufc/so86itnkpqSzuxTlvFkxYNEYpGmsimWwhUHX0FmaiYZ4YNp2BQh2pCPRQqYVjye+cvrmp7ctJ1TuPgoH5AOL6ziz2+FeHzhGqIx16EHE9SF3D8oQImIdCfnoGZj8zik4ZNh8ERY/w784TLYEWo9DunCB32AGlgEE05tMRdSqf8+a7AvN/o4/9UDdbSFJhwLs6FmA2tq1hCqDjFr1CwKBxTyzIpn+N9//y/bd21vKhscDLbjIBoahhDaWMCVB19JUU5RUzfbsKxhpAZ8K9Klh57JM/MG4eLdbGcdOp63V33Q5pObjWHo/A6s0yb9ywEFKDO7CbgGP/3Ee8BnnXP1nVExEZE+o66qOSDljYIRR0L1BvjNWb77LdLix+Ynf+QDVNZg35LUsvUor8QHJ4Bhh8I5d3TP9RyA1hOdGvdcMYnCvBpCNSEOG3QYxTnF/P6dV7jjvR9TE92Cozk8FmUXcUzRMRTnFHNa6WlN4egvC+p45q0GiGUAMDh4OF+Zeli7dWhrzNHEYTn7XLtNwUla2u8AZWZFwJeBg51zdWb2R+Bi4OFOqpuISO8QrvNBqKoCMgb64BONwP0nwdZV0KKlhBlf8AFqQIEPSuNPaR6DlF/iAxb4iSMvuK87rqZTNT7yH6oOsX3HQG7/+zZ2sYkBpXMIpG7lS280D2L/4cwfsnFrFj/662osbwQWPYzrZk7nmNIJjMwZyeABvnVt8uDJTB48uel9+VTxwttvEsZ1aD4k2DMQKSBJog60Cy8IDDCzMJAJrDvwKomI9DDRCOxY61uQwD+hBvD7i/zCtDUbm8sedKYPUClBKBwPxdNbtyAVjPblgmlw0SPJvY5O0rILbsqovKZH/l//uJrclFGcfngB9338bUI1ITbVNo/RCm+ZRf3mT0IgExfOJVo3hiumT2HmqAlNrUkPvBaioa6QWO3FpBik1k1k+rD2B2yDDz+PXjdTXWySVPsdoJxza83s58BqoA543jn3/O7lzOw64DqAUaNG7e/pRES6jnOwc7NvQdq1w89vBPD0TbDsRR+eGgckjzgSrnvFfz+wCDIH+XDU2IpUMKb5uBc+kMyr6DK14VpCNSGcc9RUD+GSe98kZdjvuGvpJjIGbKch5luRwtumUr/+0zxevoYpRwUoG15GcU4xxdnF/Hup8buPa/0BY5nUha5icnEu3zrm2Fbn2t+Z5NWCJMl2IF14+cA5wGhgG/C4mV3mnGv1K5Vz7l7gXvDTGOx/VUVEDkD9dh+Qqtf7wdcAr/4M3n/Cd7+F4/+5Zw2Bry3132fkQfE0yL+wuRUpf3TzMc+8LamX0JlatiIdMXIgm2o3UR2uZkL+BP7v2cX8qeIusgeuJRasZGv9VgDKhpcxeOeXaYg6MixKdNdginOmMyKriBfeCRPdNQSAcMRxXM53uOHY5pajEcEqHp37BpEWdbho+p6/VGtOJOktDqQL72RgpXNuM4CZ/Rk4GuidbdIi0ruF65vnQxpzou9CK/8NLHzAB6f6bc1lv7MRUjP8V+E4GHdy6262Rif/IOmX0VV2NOxgS+0WxuSNobyiissf/yluwMfcvWwrwfRtRF2E0oGlHJP+U+6Zu4KMEdup2R5jYuERXD7lMIqzixmdO5rfvuoXAK4PXQnAocWjOH9yMS/Of5NI1P+O3FbL0dSSfB77/NHc8+pyNu2o56Lpo7h0Rtu9EmpNkt7gQALUaqDMzDLxXXizAM2SKSJdIxb1XWlV8Uf9MwbCkufg9V/4ddpqNjSX/fIiP9YoJdU/zVY0rfXTbIH4j76jv+S/epm2pgEIx8Js2LmB4uxizIznVj7HCxUvNE0kuaNhBwOCA5h/6XzmragklrKVQMpOovXDOXLQcZx9yGGU5JTw9Uf851i/7iIAtu3M5JqLTmw69/lTqni8PNTUxXb+lOKmMUh/eiuEQdO23U0tyee+K9qck1Ck1zmQMVDzzewJ4C0gArxNvKtORCRhzsHOLb4FKb/Ur6sWKocX/8tv2x5qHod01TNQeixYwIehpjXZ4iEpZ5gvd8Sl/qsPcM7xyrJVPP/eNv5Uvp5YxjLS33uHQ0oi7IhsZMPODURdlNcvfp3c9FwqdlSwpGoJxdnFfnqA+CDtmIvFlxs5l13xEPSVs8uaAs9phyzmnrkrms572iHDWtVjakk+j167ZxebWo2kv9FSLp1I0/eL7MOuat+ClFngH9PfuhKe+2bzOm3hnb7ceffC5PgTbs/8Z+twlF8KRVOaZ9TuQ3ZFdxEgQGpKKh9Xfcxfl/2VUHWIUE2I1TvWUB+to3bFl4nuGkFq3nzSB7/AsMwRTC0a1zRY+5TSU8hKzdrnufb28+r/nl3Mcx9s4LRDhvHNMyZ11eWK9Hh7W8pFAaqTtJ4cLsCca8oUoqT/ieyCbWt811l+iR+4/dSXm5chqfODkZn1fTjuP2HHOnjkwj2XGxkxBXKGduul7I/yCr/shwMOHZFLVW1Dq4DinCPiIqQGUtmwcwN/WfYXH5DiIWlz7WZ+ddKvOGHkCbwWeo2bXrmpqeWocls25cuN8I7DcZGBGI701BT9rBHpQloLLwnmraikIRJrWktp3opK/VCTvicW9aEnFvaP6zvn12PbusKPQ6peDziYdrV/Qi01CzZ96BevHX5Ec1AacaQ/3sARcP0b3Xc9CdhXC3N5RRWX3DePhkgUMAjUk5q7kOA7W5k61lEd3ci6mnV8ddpXueigi6huqOauRXcxJHMIxdnFTY/8j8wZCcDRI45mwewFmFnT8WcvmkcgGiMlGODCqcVc0M5YIxHpegpQnWR/5y4R6VGcg9pK33JUONZv++cPYd0i34q0bY0PTxNOg0sfAzPYsgRS0mDMJ5pbkYbHZ4lOCcKNC7rpYjpPWy3MR4wcyFPLn2oapF2+dhmpo9fBtuk0bPbTJGQMexoXTWfltmFMLx7HcUXHMbFgIgBjcsew8LKFpKekt3nOlEBKq9d6vF+kZ1GA6gSNv5l+/8xD9miyF+lxdtX4mbMbA9K8u2HlXN+CtG01NNTA0MPgi6/7/ZsW+0A1fDJMOtuHpKGHNh/vmn8m/RKS5eXVL7NqxyqeW/IBNmwFA1KriNWVMm/FeKaMyuMnC35CXaSO4VnDKcgcyrrNBxOriy8jEsug5uPv4aKZnDOjhFtObL02W0oghRRS2jhr+zRQW6TnUIA6QBr7JD1OpME/7t+4ZMi7f4QlzzYvZltb6ddh+8ZKv3/j+z485ZX4JUrySmDQhObjXfpY0i8hWRZtWsTSbUubxiGtrVnL0Myh3H7S7QDc/tbtLN++nKzgQALBgcR2jcAaRlI2phAz48lznqRwQCGpgVSgeQzUpupdvLJkE5FoFmnxR/1FpG9RgDpAGvskSReL+TmPsob4LrJl/4T3/tQ8ULt6HbgYfHsdpGX5FqR1i/z4o0lnNQ/Uds53wZ1zZ3df0QFrb3zSim0rWFK1pGmQ9trqtURdlIdOewiAe965h3+t+xfBQJCi7CKKs4sZl988e/avZv2K3PRcBqYNbPMcw7L2fMS/cZ+eyhXp2xSgDpDGPkmncw5qt/rwk5oBa8vh7UeaW5C2rYHoLrixHAaNg8rlsOIVH4pKj20xm7YffMzJP+hTM2q3tHHnRp5d8hY/e+kNYilbuOvDbYwdHuHJ8x4jYAF+++Fv+dPSPwFQmFFIcU4xJQNLcM5hZnxrxrdIC6QxJHPIHmOOgKYB3ZB495m620T6Nk1j0An0m6YkrGEnYJCW6QPQgvubA1JVBTRUw+VPwtgTYfHf/FQALR/zzyuBg8+FrMLmlqQ+aEfDDpZvW97qUf9QdYjbPnEbqzYFuOPtu1i4/Q8AuFgQFy6gNHckj513B9lp2VTsqKAh2kBRdhGZqZndfDUi0ttoGoMupt80ZQ/RMEQbfCvSzi3w5p3xQdrxgFS7xXedHXmZX6Ot/OHmcFRyjP+zYIw/1kFn+q639vTi8LQruovVO1Y3d7HVrCVUHeIrU77CuPxxvFjxIt9/4/sAGMaQzCEUZRfx74r13DRnDWEbSTDtelxDPtFwFqnBID86tYzstGwASgaW7O30IiL7TQFKZH/EYhCp9y1I4Xr41+3N4WhbhR/E/YlvwQlf9+OR3vilnwsprwQOOiP+qP8R/ljDj/TjldoLQr04IMVcjI07Nza1HDX++ekJn2basGm8tfEtrnvhuqbymcFMinOKqQ5XAzBzxEzumnUXxTnFjMge0fTI/50vL4uPPSyEcCEXHzWKEXkD1AosIkmjACXSnsguCMbn6HnzLqhc1iIkrfZLjZz9Kz8H0mu3woB8P1C75GgfkEqP8+/NGgzf2egHfLclEEjK5XSV6obqVoO0QzUhjhlxDCeOOpGKHRWc/eTZTWUDFmB41nBOHOUXp51UMImfHv/Tptm289LzmiaOBD9Ie/eB2rDn2MP2Fq8VEekqClDSf0XDfskRgHf+ABvea9HNthpGTofL/ABk5t/j50LKL4Ehk2Diab6rDXwA+taa5rC1O7P2w1MvEI6F2VCzgTU1a5q62MbljeOssWdRG67l6EePblV+YNpAirP9Y/tF2UV8f+b3mwLSsKxhTY/8A+Rl5HH66NMTrpMmlRSR7qZB5NJ3xaLQ+GTVx/+ANf9uPQ4psxBumOf3P3QGrH0L8ka1Xm7kiEv9/oZa313XBznn2LZrG/9c+iFvVCwlHNiCi2byucMvYWpJPic8dgJb67c2lQ8Gglw4/kK+U/YdAOYsntO0HElRThED0wZ216WIiHQqDSKXvqnl02cVb8Kq12HbKh+OGp9k+/pKX+a9J+D9P/lxSPklMOFUGDyx+ViXPgZp2e2PN+rl4Wneyo28uPQjRgyqJSNzGzEXY/ak2QBc8fcrWLR5UavykZrxvPjv0cy5powvTv4i6SnpTeu0DR4wuNUj/43HERHpTxSgpGdrDEkbP4BlL7YeqL1tNXx1KWQMhKX/gNd/AdlD/fijUTP8n7GI76b71K1w7t3td6Wl5yT3ujqoo1NkOOfYUreFtTVrWVO9hqr6Kq445AoAvvDcV3l9w/OYOVjvyxdlFzUFn3PHnUtmeAovvR8h2lBArCEfXDop5ieGveHEi7v8OkVEehsFKOkZqipg6fOtu9i2VcBnn4OhB0PFG/DC9yA9F/JH+daj8af4gARw7E1wwjcgdUDbx8/ofd1KjcsE7QrHSAkY3z1rHMccZE0Dti856BKCgSDfe/U2nq6YQ8Q1NL03xVK4ZNIlpAZSSY9MIrwlSrShEIsUcO3R0/jarOlNZS+YcAGl6VW8unAe0XAMgIChiWFFRPZCAUqSY+cWWPL31uGoqgLOvRPGnQybPoRnvwrBDD8OKa8ERh7lZ+IGmHwxHHahf9KtLRm5ybuWLhKNRdlct5k11WsIVYd4471h1IdjBHPLSR/yd279uIZbP24uf+LIE9m4NYsn3ozi0o8iEB3E1046mhPGTqQou6hpsPYVh53PP+aPwEViBIMBZo0f3+pJN2g9KDs/M02LYouI7IMClHSOhp0+IO3egnT81/xkkTvWwVM3ggVgYHwc0riT/UBu8IvY3vyR74Jr67H+HtrFlqjXlq/hpWWLGVq4k/MmHc3QrKG8ue5Nbpl/C2tr1hJpbFEDGtZ8ASjFhfOIVE+CcAFnTDqEz82Y1vTI/18XLmfX9oOJuYNJMajdPp4xuWNanbOjT6xpQlgRkY5TgJKOiUVhybMtWo9W+e8P/wwc/1U/Z9KfrvZls4b4gFQ0DXKG+22DD4IvL/KDuFNS9zx+Wpb/6sXKK6r41/KNjB8RZXPdOtZuGcApEw4hL3cr33n9O6zavoadkR2+8AaIxL7HjUd9hvyMfCbmT2TWqFl+QducYl55P8r9H1UBEK0dS6x2LOmpAS47rIzDBjeHnI6uxahwJCLSuRSgpNnyl3ebLLICRs2E03/iW47+dC1E6iB9oO9iGzTed7eB71q7fr5/3dYTa8E0KBid3Os5QG0N4HbOsX3XdkI1IbJSsxidO5pXl63ih/O+yaa69VjqNmyNH0fUsOl0fjO3mjsuH0teeh4lGSNZtMKINhRAuIBI8cEAHFRwELd+4tZW504PV/Hb1+YRjvjxT5+eNrLNySI1H5KISPdQgOpPQuWweXHrMUi5RXDhg37/s1/1ASolrXkcUl58LTEzuO5l38U2IH/Px/3NYMhByb2eA9AYjhrH+7Qc93NocSYvfPwRX318EQ11g0gLwsyyv1MT20ioOkRNuAaAiydezGnDr+fzv3mfwIhqYuFRxHYcQawhHxcuILZrKIFYjCVrA9zzyXv8oPBF83Dx1qLjxhW1W79EgpFal0REkk8Bqi/Z9BFsfL91CxIGVzzp97/4X7DyVb+tcV223JHN77/oET8YO3tY2+OQhkxKwkV0jZatSc45Ln7geaJWj2sYjAFpQ/5GyoC13L28ikDqDhwOKziYWOgKwhFYV13J+MFDmTJkCsU5xRRnFzM+fzx/XVhJQ8SIVVzf6nwpASPgXKtutURbixSMRER6LgWo3mTb6vhyIy1akGo2wLUv+xagN34Ji+b4spmD/DikQROa33/GzyAQ9KEpmLbn8XtxQNpdbbiWyrpKRg4cSXlFFZc/8VNc+nLuXrqVQNpWBowLE60ronbVl3CApVXh8OONpo+awJHDx3LX8zWkxB/n/5+Zd7UZZsrGVJEWDMQXtvXb0lKMH559aJtPsikUiYj0DQpQPUnNZtjw7p5Psl32Z8gsgLd+B3N/6sumZfslR/JKIFzrB2AfezPMvNF3v6Vn73n8ljNv93ILVlXy0tJlnDxhAlNL8nl2xbPMXTuXJVtWsbZmLXWxbeSn5zP34rnMW1FJLLieQOo2og2FpDZMomZnLrFdg5uOVx+6ggCQlhrgxnPKmFqSzzHD9j2JpR7/FxHpnxSgkql+h29BavkU27YKOPMXvvXno6fh6a/4silpvqUov8RPEZBZAEfO9ovY5pX617uPQxo0LskX1LVeW76GRRW1FGYN4JXVb7A+PJ+cnGo2161jfe06zKI89NotzLn6OD7a+hHz15WzaWsW0YZxBKKDuOjYGTjnKBtTyK9euohd8bFHF80s5Z65K5rOEzC47rgx5AxIbRV+OtpapFYlEZH+RwGqM4Xr/ZIjjeuxNbYiHXezn+dozb9hzgXxwgYDR/gWpEi93zThNPjs3/22nOF7jkPKL/VffUQ4FsYwgoEgS7Yu4e8r/06oJkSoOtT0yP/OZV8lFh5Eav47pA96A1edT1F2MeGtY4g1FBCLRJm3opKbPnET6dVnc+uiJcQcpBiwcyJm1ubYo1GFWTy2YDVDB2bw+RPGKgCJiEhCFKASEY3AliWtw9G2Cjjs03Do+VC1Eu4/qbl8ZmE8IO3yr4um+O64/FI/iDuY3vr4A4f7r15q98f+nXPEXIyUQArra9bzzMpnmpYhCVWH2LBzA/d+8l6OGn4Uq6tX85sPf0NRdhFF2UWUZBSzaEUAF/OfUbjqaMJVx2LA9BmjWF0VItZi7iMz2+ucSLu3El06YxSXzhiV7I9IRET6CHPOJe1k06ZNcwsXLkza+RLmHGxdsedyI6XHwPRroH47/F+L/3RTs3wX28wb/Gzb4XpY/qIPTfklfWb27L1xzmFmPPDGB/z09T9AsJJgehUlQ+vZ2rCeb8/4NmePPZt3N7/L7GdnU5BR0PQUW3FOMWeNOYvS3FLCsTABAqQEUoDmdeAawjFiLc6XFgzw6LVlAG2OT+ro4rsiIiL7Ymblzrlpbe7rdwFqx/o9B2kXjPGzaTvnA9Ku+GzRjU+sHTnbL0kC8MGTzWOTMgv3HIfUB7QVQsKxMPcs/DNvr1tO+oBt1LlNhKpDXHzQxRw58AIuuv8fDBh3Cy4WxIULKM0dybGlEzl99OkcMeQIwrEw4WiYzNQ2JtncRz3yM9N4f912DNqcTFJERKQr7C1A9b0uvNqtrQNS1Sr/RNop/+33/+5c2PxRvLD5sUbB+IK1ZnDu3TAgz7ciDRwB8RaRJoecm4yr6DRthaHdtzW+zsj9mPc3Lue5JR9AsJK7l1Zx6tjjuXXW91m0eju//vB/MYviKnOZWFjCjOEzGJc3jnnLKolFsqlZ+m1cJJtgIIUffX5mq6CTGkhtWty2ozQ4W0REeqoDClBmlgfcDxwKOOBzzrk3O6Fe++/P18Kyfza/HpAPI2c0v/7kj/3g7LxSyBu55zikSWcmpZrJ0NQNFomRFgzwo88MZN3OCu5989+4lEruWlLF4UPH8vZbp9EQiZE59idYahUpA9OIhQuINhRSXzsIgH+v3EbdipuJhgeSQionjZnIDcf6p/5yYlWkBVNoiAwkJWD86JxDFXxERKRPO9AWqNuB55xzF5pZGtDx/pmucvSXYepnfRdbXglkDGy9f8Ip3VOvLlZeUcVzS95lUEEV6RnbCNWEeKPiY2xoPbHQlYQjMe774HY27FpMIN9w4TxcuIDN27KaJoGsXf1ZXDQLF80EjGDA+NxZMwG/aG3qS4OBtgdoaz02ERHpT/Y7QJlZLnA8cBWAc64BaOicah2AMSd0dw32S0cGP2+u3czy7cv9k2zxp9mq6qu4/qCfM/v+edjgOQRz3wFgYNpACtKGE3A5TbNpf+nwb5IaSOOmOasIR4zUYIDPnXkIP1rxgV+0NjYMcETMEbDWLUn7CknqbhMRkf7kQFqgRgObgYfMbDJQDvyHc25ny0Jmdh1wHcCoUXpsvC1NXW2xWlIzKimbCDnZO9hYu5ZAahUPnnEnWalZ/G7x73jo/YcACAaCFGUXUZxdzL+Wb6AhEoMtJxHeejzXH3cUN886ounYu4eeIdcUtdo2cVhO02to++k2UEgSERFptN9P4ZnZNGAecIxzbr6Z3Q7scM59r7339Iin8JKsvKKKP78VwgHnHDGULfUbmLvyIwrzagikbmVtzVqGRC7gvpe2k5L3BhnDnmp6r4tk4yIF/OITt3LKxINYuX0lW+q2UJxdzJDMIXs88t84/9Gca8oUdERERA5QVz2FFwJCzrn58ddPAN88gOP1Wo2tPDNGF1A6NEaoOsSa6jUsCC3jiXffpb5yBrH6kTyx+O+kF/3Ov2kzpAbSGJUzkqPHBvyCtDUTqV1zBS5cQKwhH1w6KQZL1wU5ZSKMzh3N6NzRe5xfY5BERESSa78DlHNug5mtMbOJzrklwCzgw86rWs9UF6ljbfXaptm031q3nL//O49d1eNIy1pH6shftipvAwYSCE4iBoR3jsKt/QyxcAGEC7jppGnceNJ4AMYM9C1Vjy9cQyTqWwUD8bFLLQdst0fdayIiIslzoE/hfQmYE38CbwXw2QOvUvcpr6jijeWbSE2rYU31Ggbn7ySYXsVBBQdxcsnJVNVXcfxjx7d6T6plEA1+kpgbR7iukBPzr+WSKUdQnFPMxspMrnzwbSIRP5d2isvBaqdB1He1zRw7qOk4jQHo/CnFTZNHVtU2qEVJRESkB+p3M5GXV1Qxd9kaCFYSqgmRn1vDESNGMjzlGGbf/ybB0T/AUuqbyhsBZk+6lG8c9Q2cczzw/gNNg7eLc4pZvsFx2QPz2x1/1HIM1AVTioH2B2mLiIhIz9HvlnIJx8Js2LmBUHWItTVrCViA88efT3lFFVc8N5tAxppW5ScXHs3MrK9x6/NLSMl/FWIZxMIFWLiAL3/iKL580kF7PZ/WXxMREel7+tVSLl+f+3WeX/U8URdt2jY6dzTnjz+feSsqCW8/Arf90PhA7QIsUsDMk4+gbEyhH8i99QRiNI8/Ombs0H2eU+OPRERE+pc+F6CmD5tOcXYxI3NGUpxT3PTIP/jZtH/10nFNM28HgNTUQFPLUeOTbBp/JCIiInvTJ7vw9qaxu00hSURERPamX3Xh7Yu620RERORABbq7AiIiIiK9jQKUiIiISIIUoEREREQSpAAlIiIikiAFKBEREZEEKUCJiIiIJEgBSkRERCRBSZ1I08w2AxVdfJpBwJYuPockTvel59E96Zl0X3oe3ZOeKRn3pcQ5N7itHUkNUMlgZgvbmzVUuo/uS8+je9Iz6b70PLonPVN33xd14YmIiIgkSAFKREREJEF9MUDd290VkDbpvvQ8uic9k+5Lz6N70jN1633pc2OgRERERLpaX2yBEhEREelSClAiIiIiCeq1AcrMTjOzJWa2zMy+2cb+dDN7LL5/vpmVdkM1+5UO3JObzexDM3vXzF40s5LuqGd/s6/70qLcBWbmzEyPa3exjtwTM/tM/N/LB2b2+2TXsT/qwM+wUWb2spm9Hf85dkZ31LM/MbMHzWyTmb3fzn4zs1/G79m7ZjYlWXXrlQHKzFKAO4HTgYOBS8zs4N2KXQ1UOefGAb8AfpLcWvYvHbwnbwPTnHOHA08AP01uLfufDt4XzCwH+A9gfnJr2P905J6Y2XjgW8AxzrlDgK8ku579TQf/rXwX+KNz7kjgYuCu5NayX3oYOG0v+08Hxse/rgPuTkKdgF4aoICjgGXOuRXOuQbgD8A5u5U5B/hN/PsngFlmZkmsY3+zz3vinHvZOVcbfzkPKE5yHfujjvxbAfgx/peM+mRWrp/qyD25FrjTOVcF4JzblOQ69kcduS8OGBj/PhdYl8T69UvOubnA1r0UOQf4rfPmAXlmNjwZdeutAaoIWNPidSi+rc0yzrkIsB0oTErt+qeO3JOWrgb+3qU1EujAfYk3eY90zj2TzIr1Yx35tzIBmGBm/zKzeWa2t9/ApXN05L78ELjMzELAs8CXklM12YtE/+/pNMFknESkJTO7DJgGnNDddenvzCwA3AZc1c1VkdaC+C6JT+Bbauea2WHOuW3dWSnhEuBh59ytZjYT+J2ZHeqci3V3xST5emsL1FpgZIvXxfFtbZYxsyC+ubUyKbXrnzpyTzCzk4HvAGc753YlqW792b7uSw5wKPCKma0CyoCnNJC8S3Xk30oIeMo5F3bOrQQ+xgcq6ToduS9XA38EcM69CWTgF7SV7tOh/3u6Qm8NUAuA8WY22szS8IP5ntqtzFPAlfHvLwRecpo1tCvt856Y2ZHAr/HhSWM6kmOv98U5t905N8g5V+qcK8WPTTvbObewe6rbL3Tk59eT+NYnzGwQvktvRRLr2B915L6sBmYBmNkkfIDanNRayu6eAq6IP41XBmx3zq1Pxol7ZReecy5iZjcC/wBSgAedcx+Y2Y+Ahc65p4AH8M2ry/AD0C7uvhr3fR28Jz8DsoHH4+P5Vzvnzu62SvcDHbwvkkQdvCf/AE4xsw+BKPA155xa0LtQB+/LfwL3mdlN+AHlV+kX865lZo/if5kYFB979gMgFcA5dw9+LNoZwDKgFvhs0uqmey8iIiKSmN7ahSciIiLSbRSgRERERBKkACUiIiKSIAUoERERkQQpQImIiIgkSAFKREREJEEKUCIiIiIJ+v9uRRVoGWmmbgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1, figsize=(10, 4))\n", - "choice = numpy.random.choice(X.shape[0]-1, size=100)\n", - "xx = X.ravel()[choice]\n", - "yy = Y[choice]\n", - "ax.plot(xx, yy, '.', label=\"data\")\n", - "xx = numpy.array([[0], [1]])\n", - "y1 = clr.predict(xx)\n", - "y2 = clq.predict(xx)\n", - "ax.plot(xx, y1, \"--\", label=\"L2\")\n", - "ax.plot(xx, y2, \"--\", label=\"L1\")\n", - "ax.set_title(\"Quantile (L1) vs Square (L2)\");\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The L1 is clearly less sensible to extremas. The optimization algorithm is based on [Iteratively reweighted least squares](https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares). It estimates a linear regression with error L2 then reweights each oberservation with the inverse of the error L1." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[QuantileLinearRegression.fit] iter=1 error=890.6481655281331\n", - "[QuantileLinearRegression.fit] iter=2 error=553.443164087279\n", - "[QuantileLinearRegression.fit] iter=3 error=518.5974841726787\n", - "[QuantileLinearRegression.fit] iter=4 error=517.8860147236843\n", - "[QuantileLinearRegression.fit] iter=5 error=517.5129563462485\n", - "[QuantileLinearRegression.fit] iter=6 error=517.2078153294502\n", - "[QuantileLinearRegression.fit] iter=7 error=517.0042724262564\n", - "[QuantileLinearRegression.fit] iter=8 error=516.8285339347697\n", - "[QuantileLinearRegression.fit] iter=9 error=516.6879803415121\n", - "[QuantileLinearRegression.fit] iter=10 error=516.5864808002596\n", - "[QuantileLinearRegression.fit] iter=11 error=516.5254116312615\n", - "[QuantileLinearRegression.fit] iter=12 error=516.4842567183769\n", - "[QuantileLinearRegression.fit] iter=13 error=516.4533601589357\n", - "[QuantileLinearRegression.fit] iter=14 error=516.4334316544625\n", - "[QuantileLinearRegression.fit] iter=15 error=516.4204631587874\n", - "[QuantileLinearRegression.fit] iter=16 error=516.4064255197134\n", - "[QuantileLinearRegression.fit] iter=17 error=516.3984710347147\n", - "[QuantileLinearRegression.fit] iter=18 error=516.391040594802\n", - "[QuantileLinearRegression.fit] iter=19 error=516.385223204194\n", - "[QuantileLinearRegression.fit] iter=20 error=516.3817712143422\n" - ] - }, - { - "data": { - "text/plain": [ - "QuantileLinearRegression(max_iter=20, verbose=True)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clq = QuantileLinearRegression(verbose=True, max_iter=20)\n", - "clq.fit(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.5163817712143421" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clq.score(X,Y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regression with various quantiles" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "X = numpy.random.random(1200)\n", - "eps1 = (numpy.random.random(900) - 0.5) * 0.5\n", - "eps2 = (numpy.random.random(300)) * 2\n", - "eps = numpy.hstack([eps1, eps2])\n", - "X = X.reshape((1200, 1))\n", - "Y = X.ravel() * 3.4 + 5.6 + eps + X.ravel() * X.ravel() * 8" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEICAYAAACQ18pCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfTElEQVR4nO3df7xcdX3n8ff73iRIlMI1yWIw5MYsP7aQrTaZyqVWhQeuJTYFH6BWREULZuuytorWKii4bN3a+uhW+5CqURG1EMvPSlGq1sUHbJfE3ht/EPxFNnjD1SAhXBQ3yk1yP/vHnIFhMj/O/DpzZub1fDzugztzzsz5zj0k95PP53M+xxEhAAAApDfS6wUAAAD0GwIoAACAJhFAAQAANIkACgAAoEkEUAAAAE0igAIAAGgSARQwBGxfY/vPe72OcrZPsz1T9vhe26f1bkW12f6R7Zf0eh0A8oMAChggtr9ue9b2YTlYS1NBR0ScHBFf7+KSMmE7bB83KMcBUB0BFDAgbK+S9EJJIems3q6mP9he0Os1AOhPBFDA4Hi9pC2SrpF0Qa2dSqUz2++0/ZDt3bZfbvtltn9o+xHbl5btf5jtD9n+SfL1oVKGy/ZS27fZfjR53V22R2x/TtJKSf9k+xe239lo8eUZK9vvs3297c/afiwp7xXK9j3G9k2299i+3/Yfl217vu27kzXttv0R24vKtofti23fJ+m+Gmt5ne1p23ttX1axreb7274z2e3byef+A9tjyc9oT5IdvM32irL3e4PtncnnvN/2+WXb/tD295LXfdn2eK3jNPr5AugsAihgcLxe0rXJ1+/aPrrOvs+S9DRJz5Z0uaRPSHqtpHUqZrHea/s5yb6XSZqQ9DxJz5X0fEnvSba9XdKMpGWSjpZ0qaSIiNdJ2iXp9yPiGRHxVy18nrMkfV7SUZJulfQRSbI9IumfJH07Wf8Zkt5q+3eT1x2U9DZJSyWdmmz/LxXv/XJJp0g6qfKgtk+S9FFJr5N0jKQlklaU7VLz/SPiRck+z00+9z+o+PfspyWNqxhU/rLsszxd0t9KWh8RR0j6bUnfSradreLP8xwVf753Sdpc5zgAMkQABQwA27+j4i/o6yNiStL/lfSaOi/ZL+n9EbFfxSBlqaQPR8RjEXGvpO+qGCxJ0vmSroyIhyJij6T/pmJwUXqf5ZLGI2J/RNwVnbvB5v+OiC9FxEFJnytbz29JWhYRV0bEXETsVDEAfLUkRcRURGyJiAMR8SNJH5f04or3/ouIeCQiflnluK+QdFtE3BkRj0t6r6T50saU76+y/fdGxE0RsS8iHpP0/or95yWtsX14ROxOfv6S9EfJOr8XEQck/Q9JzytloQD0FgEUMBgukPSViHg4eXyd6pTxJO1NAhOpmBGRpJ+Wbf+lpGck3x8jabps23TynCR9UNIOSV9JylDvanH91TxY9v0+SU9LepbGJR2TlNAetf2oipmaoyXJ9glJmexB2z9XMfBYWvHeD9Q57jHl2yPi/0naW3qc8v1Vtv9i2x9PSoI/l3SnpKNsjybv/QcqBku7bX/R9n9IXjou6cNln/ERSVYx6wagxwiggD5n+3BJr5L04uSX+oMqlpiea/u59V+dyk9U/GVesjJ5TknG6u0RsVrFktslts9I9utUJqrSA5Luj4ijyr6OiIiXJds/Kun7ko6PiF9TMbhyxXvUW9tuSceWHtherGIZryTN+5d7u6QTJZ2S7F8qv1mSIuLLEfGfVMzkfV/FbFrpc/7nis95eET8nzrHApARAiig/71cxb6ck1TsU3qepF9XsWfm9R14/82S3mN7me2lKvZM/b0k2d5g+zjblvSzZB2lctdPJa3uwPErfUPSY7b/zPbhtkdtr7H9W8n2IyT9XNIvkmzOm5t8/xslbbD9O0lz+JV66t+Vjd6/8nMfoWJG71Hbz5R0RWmD7aNtn530Qj0u6Rd68uf3MUnvtn1ysu+Rtl9Z5zgAMkQABfS/CyR9OiJ2RcSDpS8VG5XPd/uX6v+5pElJ35F0j6RtyXOSdLykf1HxF//dkv4uIu5Itv2FioHXo7bf0eYanpCUHjeoGCjeL+lhSZ+UdGSyyztU7P96TMVsTlMN1kkP0sUqlkF3S5pVsVG+pNH7v0/SZ5LP/SpJH5J0eLLOLZL+uWzfEUmXqJjRe0TF3qg3J+u4RdJfSvp8UvrbLml9neMAyJA71+8JAAAwHMhAAQAANIkACgAAoEkEUAAAAE0igAIAAGhSpjfSXLp0aaxatSrLQwIAALRkamrq4YhYVm1bpgHUqlWrNDk5meUhAQAAWmJ7utY2SngAAABNIoACAABoEgEUAABAkwigAAAAmkQABQAA0CQCKAAAgCYRQAEAgL4xNT2rq+7Yoanp2Z6uI9M5UAAAAK2amp7V+Z/corkD81q0YETXXjShdeNjPVkLGSgAANAXtuzcq7kD85oPaf+BeW3ZubdnayGAAgAAfWFi9RItWjCiUUsLF4xoYvWSnq2FEh4AAKhqanpWW3bu1cTqJT0rlZVbNz6may+ayMWaCKAAAMAh8tRvVG7d+Fgu1kEJDwAAHCJP/UZ5RAAFAAAOkad+o0p5GGVACQ8AABwiT/1G5fJSWiSAAgAAVeWl36hctdJiL9ZICQ8AAPSNvJQWyUABAIC+kZfSIgEUAABoSq/nQ+WhtEgABQAAUstLE3ev0QMFAABSYz5UEQEUAABILS9N3L1GCQ8AAKSWlybuXiOAAgAATelEE/d1W3fp9u27tX7Ncr3mlJUdWll2CKAAAECmPvCl7+ljd+6UJN1138OS1HdBFD1QAACgZc3el25qelab7tr5lOdu3767G0vrKjJQAACgJa2MNNiyc68invrc+jXLu7jK7iADBQAAWtLKSIOJ1Ut02MIRWdKIpT960eq+K99JKTJQtq+WtEHSQxGxpuz5t0i6WNJBSV+MiHd2bZUAACB3SiMN9h+YTz3SYFCu4nNU5tEqd7BfJOkXkj5bCqBsny7pMkm/FxGP2/53EfFQo4MVCoWYnJzswLIBAEAe9Pq2Lt1keyoiCtW2NSzhRcSdkh6pePrNkj4QEY8n+zQMngAAwOBZNz6mi08/TpKaaibvd602kZ8g6YW23y/pV5LeERH/Vm1H2xslbZSklSv7r8YJAADqG8b747XaRL5A0jMlTUj6U0nX23a1HSNiU0QUIqKwbNmyFg8HAADyahjvj9dqADUj6eYo+oakeUlLO7csAADQL4bx/nitlvD+UdLpku6wfYKkRZIe7tSiAABA/xiUK+uakWaMwWZJp0laantG0hWSrpZ0te3tkuYkXRCNLucDAAADqxP3x+snDQOoiDivxqbXdngtAAAAfYFJ5AAAAE0igAIAAE3fFHjYcTNhAACG3DDOcWoXGSgAAIbcMM5xahcBFAAAQ6RaqW4Y5zi1ixIeAABDolapbhjnOLWLAAoAgCFRrVRXCpaGbY5TuyjhAQAwJCjVdQ4ZKAAAhgSlus4hgAIAYIhQqusMSngAAORYJwZcMiSz88hAAQCQU50YcMmQzO4gAwUAQE51YsAlQzK7gwAKAICcauaquVplOq686w5HRGYHKxQKMTk5mdnxAADod1PTsw2vmmtUpkvzHjiU7amIKFTbRg8UAABt6maAkuaquXoDMtO+B5pDAAUAQBvy0KRdKtPtPzBPmS4jBFAAALShUfYnCwzIzB4BFAAAbcgq+9OoTEiZLlsEUAAAtCGL7E8eyoR4KgIoAADa1E72J00Deh7KhHgqAigAAHokbWaJJvH8IYACACAjldmmtJklmsTzhwAKAIAMVMs2NZNZokk8XxreysX21bYfsr29yra32w7bS7uzPAAABkOtbNO1F03okpeeSGN4n0lzL7xrJJ1Z+aTtYyW9VNKuDq8JAICBM7Z4kUZsjVTck27d+JgmVi/Rlp17D7mPHfKrYQkvIu60varKpr+R9E5JX+j0ogAASKNf7vE2NT2rK2+7VwfnQ6Mj1uUbTn5ivYwo6E8t9UDZPlvSjyPi27Yb7btR0kZJWrlyZSuHAwDgEP0UeJTKdyEpIjS7b+6QbYwo6C9pSnhPYXuxpEslXZ5m/4jYFBGFiCgsW7as2cMBAFBVtcAjr0rN4qMV5btG25BfrWSg/r2k50gqZZ9WSNpm+/kR8WAnFwcAQC39NBup3hgCRhT0J0dE452KPVC3RcSaKtt+JKkQEQ83ep9CoRCTk5MtLBMAgEP1Sw8U+pPtqYgoVNvWMANle7Ok0yQttT0j6YqI+FRnlwgAQPOYjYReSXMV3nkNtq/q2GoAAAD6QNNN5AAAAMOOAAoAkJmp6VlddccOBkai73EvPABAJvppbhPQCBkoAEAm+mluE9AIARQAIBP9OjCSsiOqoYQHAMhEPw6MpOyIWgigAACZ6be5TdynDrVQwgMAUKaqoV/Ljug+MlAAMOQoU9XWj2VHZIMACgCGHGWq+vqt7IhsUMIDgCFHmQpoHhkoABhyeShTTU3PZnL8rI6DwUcABQDoaZkqqx4ser3QSQRQAICe6nYP1tT0rG7eNqPtP/4ZvV7oGAIoAEBPlXqw9h+Y73gP1tT0rM77RDHrVDJCrxc6gAAKANBT3ezB2rJzr/aXBU+W9ILjluqtLzmB7BPaQgAFAOi5bvVgTaxeooULRp7IQC0cNcETOoIACgAwsNaNj2nzmyZ087YZhaRz164geEJHEEABAHKl06MGGISJbiCAAgDkRtpRA8xzQq8RQAEAciPNSAPmOSEPuJULACA30txWplqQBWSNDBQAIDfSjDTo5twoIC1HRGYHKxQKMTk5mdnxAACDiR4oZMH2VEQUqm0jAwUA6DtcWYdea9gDZftq2w/Z3l723Adtf9/2d2zfYvuorq4SAAAgR9I0kV8j6cyK574qaU1E/IakH0p6d4fXBQAAkFsNA6iIuFPSIxXPfSUiDiQPt0ha0YW1AQAA5FInxhj8oaTba220vdH2pO3JPXv2dOBwAAAAvdVWAGX7MkkHJF1ba5+I2BQRhYgoLFu2rJ3DAQB6bGp6VlfdsUNT07O9XgrQUy1fhWf7DZI2SDojspyFAADoCSaAA09qKQNl+0xJ75R0VkTs6+ySAAB5xARw4ElpxhhslnS3pBNtz9i+UNJHJB0h6au2v2X7Y11eJwB0BSWp9NLcZgUYFkwiBzC0KEk1r9EEcCaEY5AwiRwAqqhWkuKXfn31JoATkGKYdGKMAQD0JUpSnUWPFIYJGSgAQ2vd+JiuvWhi6EpO1cpsnSi9lQLS/QfmCUgx8OiBAoAhUl5mWzBivbJwrE4+5ki979bt2n8wtHDU2rzx1JaDKHqgMEjogQIASHpqmW3uYOi6rbs0Yulg8m/puYOhm7bNtBz81OuRAgYJPVAAMERKZTYnj0NPBk8lrnwRgEMQQAFAm/I6S6raukp9X+edslKLFowc8ktg4ah1zlruDw80QgkPANqQ10v3662rVGY7d+0Kfehffqh/3fGw5qOYeXpl4dhcrB/IOzJQANCGXl66PzU9q0tvuUeX3XLPIdmvNOtaNz6mt77khCdGORy2cETnkn0CUiEDBQBt6NWl+1PTszpv092aSxqYbpia0eY3PZllSruuYR3lALSLAAoA2tCrAGTLzr3aX9b9XTlJfd34mC7fcLJu375b69cslyRddceOqmvkyjmgeQRQANCmXgQgE6uXaOGon8hAVWaZrtu6S5d/YbvmI7R1517J1oGD+erTAvoZARQA9KF142PavPFU3bRtRpZ0ztoVT5kqfvkXtuvAfDG4KmaqQiHu+Qd0CgEUAPSpWpmvLTv36uD8k+W9EUujoyM6eJBbrACdQgAFAANmYvUSHbZwRHP75zUyYl159hqd+KwjaBQHOogACgAGTK3GdgInoHMIoABgAHFlHdBdDNIEgJzK6y1iAJCBAjBApqZnB6bPJ6+3iAFQRAAFYCAMWsBR7VYs/fx5gEFDCQ/AQOjlPem6oXQrllEfOiQTQO+RgQIwEHp1T7o0Wiktco86IN8cEY336pBCoRCTk5OZHQ/AcMljD9SglRaBYWJ7KiIK1baRgQIwMPJ46T69TMBgatgDZftq2w/Z3l723DNtf9X2fcl/+dsAAKqglwkYTGmayK+RdGbFc++S9LWIOF7S15LHAIAKpV6mS156IuU7YIA0LOFFxJ22V1U8fbak05LvPyPp65L+rJMLA4BBkcfSIoD2tDrG4OiI2J18/6Cko2vtaHuj7Unbk3v27GnxcADyjInZAIZN203kERG2a17KFxGbJG2SilfhtXs8APnCVWYAhlGrGaif2l4uScl/H+rckgD0k0EbYAkAabQaQN0q6YLk+wskfaEzywHQb7jKDMAwaljCs71ZxYbxpbZnJF0h6QOSrrd9oaRpSa/q5iIBFOVxUCQTswEMozRX4Z1XY9MZHV4LgDry3GuUp6vM8hhkAhg8TCIH+gQTrRvLc5AJYLC02gMFIGP0GlVXPkKBhnYAWSEDBfQJeo0OVZlxunzDyVq0YET7D8wTZALoKgIooI/kqdcoDyozTrP75ggyAWSCAApA3yqVNcszTgSZALJAAAWg75RfaUfGCUAvEEAB6CvVrrS7+PTjer0sAEOGq/AA9BWutAOQBwRQQJvKL6NH9zHOAUAeUMID2sDgxta1OjGccQ4A8oAACmgD08Fb027gyZV2AHqNEh7QBspJraGPCUC/IwMFtIFyUmPVSnVjixdpxFZEyLbGFi/q8SoBoDkEUECbKCfVVl6qWzA6olesW6E1xxypK2+7VwfmQ5J0cD505W336sRnHcHPEUDfIIAC0HJDdyPlpbq5A/PavHWXRkesg0nwJEkh+scA9B8CKGDIdfJKwspArNQj9vj+eYWKwdJ8hEZHrPn50LykEfrHAPQhAihgyNVq6G42I1UrELv2ogndvG1GN0w+oIPzoYULRnT5hpM1u29OY4sXaXbfHP1jAPoOARQw5CpvyDu2eFFLGalaIx1KX+esXUGzPYCBQQAFDLnKKwkrA6Gbts2kCnwqA7HKkhzN9gAGCQEUcqlbTc2orjK4KQVCoyPWjVMzOnCwcTaKkQ4AhgkBFHKH26P0Vnkg9JNHf6nN39iVetI6WSYAw4JJ5MgdplT33rrxMV18+nE6Z+0KJq0DQBVkoJA7jXpp6qH011mU5QCgOkdE4706pFAoxOTkZGbHQ/9qJRCi9FdU+bMjqASA1tieiohCtW1koJBLrfTS1LqMfphUBpGXbzhZV9527yFB5XVbd+n27bu1fs1yveaUlb1eNgD0nbYCKNtvk3SRigOG75H0xoj4VScWBjSrndLfoKgMIm/fvvuQoPIHDz6mS2+5R5J0130PSxJBFAA0qeUmctvPlvTHkgoRsUbSqKRXd2phQLNK/TqXvPTEoS3flYLIUtP3+jXLD2kCv3377qe8pvIxAKCxdkt4CyQdbnu/pMWSftL+koDWDfJl9Gl6mao1fZ/4rCOe8nj9muVPZJ4kaf2a5Vl9BAAYGG01kdv+E0nvl/RLSV+JiPOr7LNR0kZJWrly5brp6emWjwcMq043yNMDBQCN1Wsib6eENybpbEnPkXSMpKfbfm3lfhGxKSIKEVFYtmxZq4cDhlqnZ2O95pSV+tyFpxA8AUCL2hmk+RJJ90fEnojYL+lmSb/dmWUBKFfZ2zSMDfIAkCft9EDtkjRhe7GKJbwzJDHkCegCBloCQL60nIGKiK2SbpS0TcURBiOSNnVoXcBAmZqe1VV37NDU9Gzd5+q9nuAJAPKjravwIuIKSVd0aC1A7tQKXJoJaKo1gEtK3RTOhHUAyB8mkQM11Apcmg1oajWAp52azoR1AMifdprIgYFWK/Bp9oq4ag3gzTSF00AOAPlDBgqoodatYZq9Zcy68TFdvuHkJ+YulbJHaZvCaSAHgPxpa5BmswqFQkxOZnOhHk236IRu9UDx/yQA5F+9QZoDmYHiFxY6pdatYerdMqYyuKKHCQAGz0AGUOW/sOb64BcW2bLBUS14b7bkBwDIv4EMoMYWL9J8Upmcj+LjvCJbNliqZZsuPv04epgAYMAMZAA1u29OlhQqXmY4u2+uxyuqjfLOYKmVbapX8gMA9J+BDKAmVi/RYQv7o2RCeaf7siyRcsUcAAwHrsLLgX5aa7+hRAoAaFW9q/AGdpDmuvExXXz6cX3xy7K0Vkmp7402KJq5H1wrykukj++f183bZrpyHADAcBnIEl4/GsZMSRafeWL1Ei0YHdHcgXmFpBsmH9A5a1cM/M8WANBdA5uB6jfDmClp9pYorVg3PqZXrFshJ48PzkdXjgMAGC4EUDlRypRIeiJTMuilvKzu8Xbu2hU6bCH3kgMAdA4lvJwoZUo2b92l0JOZkkEuNWV1xRpXxgEAOo0AKkfOXbtCN2+bGaqRBlnNR2IOEwCgkwigcqTXmRLGKQAAkA4BVM70KlMyjFcBAgDQKprIh0CaWUtZXBEHAMCgIAM14NJmljpxSxlKgACAYUEANeDS3qy43f4rSoAAgGFCADVAqmWAmskstdN/lTZQAwBgEBBADYhaGaCsruzrRAkQAIB+QQA1IOplgLK4sq/XIxgAAMhSW1fh2T7K9o22v2/7e7ZP7dTCOiHN1WdpXLd1l173qa26buuuDq2sPdU+V+VtUcYWL+rIZ2/GuvExXXz6cQRPAICB124G6sOS/jkiXmF7kaTFHVhTRzTT1Fzv6rHrtu7SpbfcI0m6676HJUmvOWVldxdfR5pS3djiRbrytntp6AYAoEtazkDZPlLSiyR9SpIiYi4iHu3QutqWdq5RKSD566/8QOd/csshGZvbt++u+zhr9T5XKQM0u2+OmU4AAHRROyW850jaI+nTtr9p+5O2n165k+2NtidtT+7Zs6eNwzWnsqRVq6m5UaC1fs3yuo+zluZzpf3sAACgNY6I1l5oFyRtkfSCiNhq+8OSfh4R7631mkKhEJOTk62ttAVpBjuWMlClq8eqlbuu27pLt2/frfVrlve0fFeS9nPR0A0AQOtsT0VEoeq2NgKoZ0naEhGrkscvlPSuiPi9Wq/JOoBKqzLYIPgAAAD1AqiWm8gj4kHbD9g+MSJ+IOkMSd9t9f16qfwy/3rN5wRWAABAav8qvLdIuja5Am+npDe2v6TeqjVPiVuVAACAkrYCqIj4lqSqqa08mpqe1U3bZmRJ56xd0dRNdblVCQAAKBmoSeT1SmxT07M6b9PdmjtY7Pm6YWpGm990aBap1kRtblUCAABKBiaAalRi27Jzr/YffLJhvl4WqdqtT7hVCQAAKBmYAKpRiW1i9RItHPUTGahWskhZ3FMOAADk38AEUI1KbOvGx7R546kNe6AAAAAaaXkOVCu6PQeKMQMAAKBTujIHKo8osQEAgCy0cy88AACAoUQABQAA0CQCKAAAgCYRQAEAADSJAAoAAKBJBFAAAABNynQOlO09kqY78FZLJT3cgfdBd3B+8o3zk2+cn3zj/ORbp8/PeEQsq7Yh0wCqU2xP1hpshd7j/OQb5yffOD/5xvnJtyzPDyU8AACAJhFAAQAANKlfA6hNvV4A6uL85BvnJ984P/nG+cm3zM5PX/ZAAQAA9FK/ZqAAAAB6hgAKAACgSbkOoGyfafsHtnfYfleV7YfZ/odk+1bbq3qwzKGV4vxcYvu7tr9j+2u2x3uxzmHV6PyU7Xeu7bDNpdkZSnN+bL8q+TN0r+3rsl7jMEvx99tK23fY/mbyd9zLerHOYWX7atsP2d5eY7tt/21y/r5je22n15DbAMr2qKSrJK2XdJKk82yfVLHbhZJmI+I4SX8j6S+zXeXwSnl+vimpEBG/IelGSX+V7SqHV8rzI9tHSPoTSVuzXeFwS3N+bB8v6d2SXhARJ0t6a9brHFYp//y8R9L1EfGbkl4t6e+yXeXQu0bSmXW2r5d0fPK1UdJHO72A3AZQkp4vaUdE7IyIOUmfl3R2xT5nS/pM8v2Nks6w7QzXOMwanp+IuCMi9iUPt0hakfEah1maPz+S9N9V/IfHr7JcHFKdnzdJuioiZiUpIh7KeI3DLM35CUm/lnx/pKSfZLi+oRcRd0p6pM4uZ0v6bBRtkXSU7eWdXEOeA6hnS3qg7PFM8lzVfSLigKSfSVqSyeqQ5vyUu1DS7V1dEco1PD9JSvvYiPhilguDpHR/fk6QdILtf7W9xXa9f22js9Kcn/dJeq3tGUlfkvSWbJaGlJr9HdW0BZ18M6Aa26+VVJD04l6vBUW2RyT9T0lv6PFSUNsCFcsPp6mYvb3T9n+MiEd7uSg84TxJ10TEX9s+VdLnbK+JiPleLwzZyHMG6seSji17vCJ5ruo+theomEbdm8nqkOb8yPZLJF0m6ayIeDyjtaHx+TlC0hpJX7f9I0kTkm6lkTwzaf78zEi6NSL2R8T9kn6oYkCF7ktzfi6UdL0kRcTdkp6m4o1skQ+pfke1I88B1L9JOt72c2wvUrFJ79aKfW6VdEHy/Ssk/a9gMmhWGp4f278p6eMqBk/0b2Sr7vmJiJ9FxNKIWBURq1TsUTsrIiZ7s9yhk+bvt39UMfsk20tVLOntzHCNwyzN+dkl6QxJsv3rKgZQezJdJeq5VdLrk6vxJiT9LCJ2d/IAuS3hRcQB2/9V0pcljUq6OiLutX2lpMmIuFXSp1RMm+5QsZns1b1b8XBJeX4+KOkZkm5Ievt3RcRZPVv0EEl5ftAjKc/PlyW91PZ3JR2U9KcRQYY9AynPz9slfcL221RsKH8D/4DPju3NKv4DY2nSh3aFpIWSFBEfU7Ev7WWSdkjaJ+mNHV8D5xsAAKA5eS7hAQAA5BIBFAAAQJMIoAAAAJpEAAUAANAkAigAAIAmEUABAAA0iQAKAACgSf8fiF7BbxrTqkkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(10, 4))\n", - "choice = numpy.random.choice(X.shape[0]-1, size=100)\n", - "xx = X.ravel()[choice]\n", - "yy = Y[choice]\n", - "ax.plot(xx, yy, '.', label=\"data\")\n", - "ax.set_title(\"Almost linear dataset\");" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "clqs = {}\n", - "for qu in [0.1, 0.25, 0.5, 0.75, 0.9]:\n", - " clq = QuantileLinearRegression(quantile=qu)\n", - " clq.fit(X, Y)\n", - " clqs['q=%1.2f' % qu] = clq" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAEICAYAAACQ18pCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACJhUlEQVR4nOzdd3xW5fn48c/9rOydPNl7AQECGSQQ9gogMgQBceEedVSr/VY7tMNqq/21Wm3rHq1KW6siigkgKBBIAgl7ZYcMIJvsPOv8/niSsLJBhtzv14uX5Dzn3Oc+T1+Nl9d9nesWiqIgSZIkSZIkDZzqck9AkiRJkiTpaiMDKEmSJEmSpEGSAZQkSZIkSdIgyQBKkiRJkiRpkGQAJUmSJEmSNEgygJIkSZIkSRokGUBJknRRCCGahRBhl3sel4MQ4mYhxPozflaEEBGXc06SJH2/ZAAlSdcgIUSaEOI3PRxfKIQ4IYTQDHZMRVEcFUUpujgzvHIJIUI6A6Tu70hRlA8VRZl9OeclSdKlJQMoSbo2vQ/cIoQQ5xy/FfhQURTTQAcaSrAlSZJ0tZMBlCRdmz4HPIBJXQeEEG7AfOADIcQ4IcQOIUSDEOK4EOJVIYTujHMVIcSPhBD5QP4ZxyI6/+4ihPhACFEthCgVQvxCCKHq/OxZIcS/zhjrrIyOEGKVEKJICNEkhCgWQtzc0wMIIeyEEO8JIeqFEIeEEE8KIcrPmWPEGT+/J4T4XdezCiG+7JxffeffA84491shxG+FEBmd81gvhPDs/HhL5z8bOpctx3fOeVsv87QRQrwkhDgmhDgphPiHEMKu8zPPzns3CCHqhBBbu74nSZKubPL/qJJ0DVIUpQ34D3DbGYeXAUcURdkLmIHHAE9gPDADePCcYRYBScCIHm7xV8AFCAOmdN7njv7mJYRwAF4B5iqK4gRMAPb0cvozQHjnn1Tg9v7GP4MKeBcIBoKANuDVc85Z2TlnPaADnug8Prnzn66dy5Y7+rnXC0AUMAaIAPyBX3V+9hOgHPACvIGnAbm/liRdBWQAJUnXrveBpUII286fb+s8hqIoOYqiZCqKYlIUpQR4HWsgdKbnFUWp6wzGugkh1MAK4ClFUZo6r/8T1uXBgbAAI4UQdoqiHFcU5WAv5y0DnuucQxnWwGtAFEWpVRTlf4qitCqK0gQ8x/nP966iKHlnBJtjBjp+l84l0nuBxzrn2QT8Huv3A2AEfIFgRVGMiqJsVeQGpZJ0VZABlCRdoxRF2QbUAIuEEOHAOOAjACFEVOfS0gkhRCPWf+l7njNEWS9DewJaoPSMY6VYMy/9zakFWA7cDxwXQnwlhBjWy+l+58yhtJfzziOEsBdCvN65vNiIdVnOtTP463LijL+3Ao4DHf8MXoA9kNO5TNcApHUeB3gRKADWdy5b/mwI95Ak6TKQAZQkXds+wJp5ugVIVxTlZOfxvwNHgEhFUZyxLi2dW3DeW6akBmtmJfiMY0FAReffW7AGFV18zhpUUdIVRZmFNTNzBHizl/scBwLPuceZWvu4z0+AaCCp8/m6luXOfcaeDCZDVIN1eTBGURTXzj8uiqI4AnRm6H6iKEoYsAB4XAgxYxDjS5J0mcgASpKubR8AM4F76Fy+6+QENALNnRmgBwY6oKIoZqxLXs8JIZyEEMHA40BX4fgeYLIQIkgI4QI81XWtEMK7s5WCA9ABNGNd0uvJf4CnOgvCA4CHz/l8D7BSCKEWQszh7CU6J6yBTYMQwh1rPdVAVXfOqd+eV4qiWLAGgH8WQugBhBD+QojUzr/PF0JEdC71ncJae9bb80qSdAWRAZQkXcM665O2Aw7AF2d89ATWIuomrAHAvwc59MNYM01FwDasS4PvdN5zQ+d4+4Ac4MszrlNhDbYqgTqsQU9vwduvsS7bFQPrgX+e8/mjwPVAA3Az1jcPu/wFsMOaIcrEuqw2IIqitGKtmcroXJZL7ueS/8O6TJfZuVy4EWv2CyCy8+dmYAfwN0VRNg90LpIkXT5C1itKkvRDIISYCvxLUZSAfk6VJEm6YDIDJUmSJEmSNEgygJIkSZIkSRokuYQnSZIkSZI0SDIDJUmSJEmSNEiXdBNQT09PJSQk5FLeUpIkSZIkaUhycnJqFEXx6umzSxpAhYSEsGvXrkt5S0mSJEmSpCERQvS6w4FcwpMkSZIkSRokGUBJkiRJkiQNkgygJEmSJEmSBumS1kD1xGg0Ul5eTnt7++WeyhXJ1taWgIAAtFrt5Z6KJEmSJEmdLnsAVV5ejpOTEyEhIVj305S6KIpCbW0t5eXlhIaGXu7pSJIkSZLU6bIv4bW3t+Ph4SGDpx4IIfDw8JDZOUmSJEm6wlz2AAqQwVMf5HcjSZIkXWo5pfW8trmAnNL6yz2VK9ZlX8KTJEmSJOnKkVNaz81vZWIwWdBpVHx4dzLxwW6XdT6ZRbUkh3lc1nmc64rIQF1Jnn32WV566aVeP//88885dOjQJZyRJEmSJF06mUW1GEwWLAoYTRYyi2ov21y6grk/rT/KzW9lXlEZMRlADZIMoCRJkqQfsuQwD3QaFWoBWo2K5DCPyzaXKymYO9dVGUBd7LXZ5557jqioKCZOnMjRo0cBePPNN0lMTCQ2NpYlS5bQ2trK9u3b+eKLL3jyyScZM2YMhYWFPZ4nSZIkSVer+GA3Prw7mcdnR1/25bsrKZg7l1AU5ZLdLCEhQTl3L7zDhw8zfPjwAY9xsddmc3JyWLVqFVlZWZhMJuLi4rj//vu544478PCw/g/1i1/8Am9vbx5++GFWrVrF/PnzWbp0KQC1tbU9nncxDfY7kiRJkqQfistZAyWEyFEUJaGnz666IvKe0nkX8oVu3bqVxYsXY29vD8CCBQsAOHDgAL/4xS9oaGigubmZ1NTUHq8f6HmSJEmSJA1efLDbFVU83uWqW8K7VOm8VatW8eqrr7J//36eeeaZXnsxDfQ8SZIkSZJ+OK66AOpir81OnjyZzz//nLa2Npqamli7di0ATU1N+Pr6YjQa+fDDD7vPd3Jyoqmpqfvn3s6TJEmSJOn7YTaZLvcUrr4lPLi46by4uDiWL19ObGwser2exMREAH7729+SlJSEl5cXSUlJ3UHTihUruOeee3jllVf45JNPej1PkiRJkqSLy2Ix89HPf0LAiFFMvfWuyzqXq66I/FokvyNJkiTph6a/4nBFUagtKyUvK4NTJ08w96GfALD14/fxCAhixKRp3/scf1BF5JIkSZIkXd36eqO+rrKcw1s3czQzg/rKcoRQETBiJCajEY1Wy6Sbbr/Ms7eSAZQkSZIkSZfUWW/UG81sz9pDjGcitg6OHDuwj6zP/ktgzCji5y0gInE8Dq5X3lt4MoCSJEmSJOl7de5yXVKoO36maoJPFRDRWoShuJE8j4cYPWMOwydOJSo5BXtnl/PGURSF6mNNCJXAK9DpMjzJaTKAkiRJkiTpe3Puct37t8Sy76+/ZHH1SVCpcI8cScLUqUQkJgNg09mXsUtXrbYQguwvi9n1VQnhY72Yc9+oS/4sZ5IBlCRJkiRJ30vHb8ViYfv2XSSe3IrKYmGb1yR2VbYyIjEZr+BQwhOSsHM8P5PUlWkqzK2iIKeKGbcPxy/SjYg4PU7utoSN8boo87sQ/QZQQoh3gPlAlaIoI884/jDwI8AMfKUoyk+/t1lKkiRJkvS9udjbpJ0sKuDglm/Iz9qOoa6WUUJFsX0oWrWwBmjT7unxOkObiZy0EgpyqmisaUeoBIHD3BAqa9tKD39HPPwdhzyvi2kgjTTfA+aceUAIMQ1YCMQqihIDvHTxp3ble/7554mIiCA6Opr09PQez3n11VeJiIhACEFNTU33cUVReOSRR4iIiGD06NHk5uZeqmlLkiRJ0ll62iZtMCwWM2WH9mMyGgEo2JXFvo1p+IRHMu/hJ5jy638w8taH+fCe8WcFZl2ZpmMHrfdT61Qc3nECV709024dxp1/nMj1j4zBN/z8eqjLrd8MlKIoW4QQIeccfgB4QVGUjs5zqr6HuV3RDh06xOrVqzl48CCVlZXMnDmTvLw81Gr1WeelpKQwf/58pk6detbxr7/+mvz8fPLz88nKyuKBBx4gKyvrEj6BJEmSJFl1bZNmNFkGvE2axWym/PAB8jK3kZ+9g9ZTDSz66S8Jj08ibt4CEq9fjM7udD1TUrT1n4qiUFPWTEFOFQU5J2msacfV256bf+2BWq3itufGo9Gqe7nrlWOoNVBRwCQhxHNAO/CEoig7L960Lq3nnnuO999/H71eT2BgIPHx8TzxxBN9XrNmzRpWrFiBjY0NoaGhREREkJ2dzfjx4886b+zYsb1ef9tttyGEIDk5mYaGBo4fP46vr+9Fey5JkiRJGoiubdIGWgPVWF3Fv55+jLbGU5hVWhwiRjH/jlkExowGOK+uSVEUhBAAbP13Pvu/LUeoBAHD3IifG0JY7OmapqsheIKhB1AawB1IBhKB/wghwpQe2poLIe4F7gUICgrqf+R3rzv/WMwiGHcPGFrhwxvP/3zMShh7M7TUwn9uO/uzO77q83Y5OTmsXr2aPXv2YDKZiIuLIz4+nhdffLHHve0mT57MK6+8QkVFBcnJyd3HAwICqKio6P/5OlVUVBAYGHje9TKAkiRJki6H3rZJM5uMHDuwj7zMbdi7uDLppttx8vRChIxm3Qk7Su2CMBm1fLbDwsjSI9S2GJg70pebxgWezjTlVjH/R6Nx83EgIl6PZ4AjoWM8sXPUXYYnvTiGGkCVA592BkzZQggL4AlUn3uioihvAG+AdSuXoU70+7J161YWL16MfedrkwsWLADgySef5Mknn7ycU5MkSZKky+bYgb0c2rKZgl076GhpQWdnx8ipswBrS4HtPlMpbDpd21tQ1UxBVTN2FmBfA6c+KcXSZOzONJkMFgD8Il3xi3Qd8ryMFRVYDAZsQkMv5PEu2FADqM+BacBmIUQUoANq+rxioPrKGOns+/7cwaPfjNNA9ZeB8vf3p6ysrPt4eXk5/v7+Ax7/Qq+XJEmSpIvJZDRSdnAfIbFxCCE4un0rBTt3EJ6QRFRyCsGjxqLRnc4YzR3py9b8GlBAbxZoEFRqLFiA+A4NdTYWFt8y7KJkmhSTCaHR0H40j+KFC3G+7jr8/3R5318bSBuDj4GpgKcQohx4BngHeEcIcQAwALf3tHx3NZg8eTKrVq3iqaeewmQysXbtWu67775+M1ALFixg5cqVPP7441RWVpKfn8+4ceMGfN8FCxbw6quvsmLFCrKysnBxcZHLd5IkSdIlZTR0ULI3l/zMDApzsjC0tbHyuT/hGxFNyopbmXbHfWi02vOuUxSFWb5utAX5UXO4HkcjlKnNrHYy0KGC11za+fUNoxiR5DfkuRnKy2lKS6MxLR3bkTH4PvssNlGReD/9NI5Tp1zIY18UA3kL76ZePrrlIs/lsoiLi2P58uXExsai1+tJTEwc0HUxMTEsW7aMESNGoNFoeO2117rfwJs3bx5vvfUWfn5+vPLKK/zxj3/kxIkTjB49uvuzefPmsW7dOiIiIrC3t+fdd9/9Ph9TkiRJks5yojCf//zmaYztbdg6OhGVPImo5BT0IWEAPW6l0mXju4fIyz6JUAmGR7tR66bhZGsLi1xtumugViYNoO65B/WrV9Pw309oP3gQANtRo7AdPgKwLh2633brkMa92MSlTBwlJCQou3btOuvY4cOHGT58+CWbQ3+effZZHB0d+30L71K60r4jSZIk6epibG+naPcu8jK34RMeSeKCJZgMBr794C0iEpMJjBmNWnN+TkVRFGrKmynMqaJobw03/CQOW0ctxftqaD3VQdhYrwtenjOUltL83Xe43XorQgiOP/Ms7YcP45yailNqKrqAy1feIoTIURQloafP5FYukiRJkvQDlZ+1ncPbvqV4Tw4mQwf2Lq7dGSaNTsfMux/s8bqWhg72f1tOQW4Vp6raECqBf5Qrbc0GbB21hI72vKB5dRQX05SeTmNaOh1HjgBgn5yMbVQUPr/6JULddyuDM9siXC4ygDrHs88+e7mnIEmSJElD0tHaSsXRg4SNtZajHNyyiRMFRxk5bSZRyRPxHzYCler84ERRFGormgGBZ4AjJqOF3PXH8I9yZeysIMLGeGHndIGF4GYzQq2mZft2jt15FwB2Y8ag/9n/4Tx7Nlo/a71Ub8FTm6mNL4u+JL04nTH6MTw09qELms+FkgGUJEmSJF3F2luaKcrJ5mjmNkr35mI2mbjntXdw9tSTev8j2Dg49Bk0WTuCWzNN4WO9mHPfKFy87LjzxYnYOpxfQD4YHUVFNKal0ZSWjtPs2Xg99CPs4uPxfvopnGbNQtvPy1MN7Q2caD3BMPdhALy480W87b3xsOu/U/r3TQZQkiRJknSVKtq9kzUvPofFbMLJw4sxqdcRlTwRJ3frEpudk3Ov16772z5K9tciBPhHu3VnmrpcSPBU+9ZbnFrzBR35+SAEdnFx6EJDAFDZ2OB+2229Xnuq4xSbjm0ivTSdrMosQl1D+XTBp9hp7Phi0Rd423tzeRfvrGQAJUmSJElXgbamRgp2ZpKXlUFUcgqjps3GJyySsXOvJzp5Ij4RUT3WBVkzTS0U5Jyk7FAdNzwRj1qrIjxeT/AoT8LGeGHvfGHLcx35+bTm5OK2YjkArXv2oHJxxvvnP8dp9my03voBjfOPvf/g9X2vY7KY8Hf057aY20gNSe3+3Of4Qdh+PwQmwbSnLmjOF0oGUJIkSZJ0hVIUhf2b0snLzODYgb0oFgsueu/uz+1dXJl66109XttU186hbZUU5FTRcLK1O9PU2mTAyd2WYclD7z2oKAodefk0pafRmL4eQ2EhqFQ4zZyBxtOTgL/8BdHDW31najG28G3Zt6SXpPN00tP4OPgQ7RbNLcNvITUklRiPGERrHRz5ErRu4OwLzVXQUArRc4c894tFBlAX4Pnnn+ftt99GrVbzyiuvkJqaet45N998M7t27UKr1TJu3Dhef/11tFot3377LQsXLiS0sxX9DTfcwK9+9atL/QiSJEnSFaaloZ6q4kJCxyYghGD/pvW0NzeRuGAJUUkp6EPD+8w0aW1UuHjZ09LQQc7XJfhHuxE7I/CCM02KooDFglCraVy7lsqf/h+oVNgnJOC28iacZs1C42ldOuwteGo3tfNt2beklaSxtXwrBosBvb2esqYyfBx8mBY0jWkeo61B07pfQPEWUMww/y+QcAeMXgaxK+Ayv4EHMoAaskOHDrF69WoOHjxIZWUlM2fOJC8vr7uZZpebb76Zf/3rXwCsXLmSt956iwceeACASZMm8eWXX17yuUuSJElXlub6OvKzt5OfmUH54YOoNGoefPNDdHb23PDUr7F1cOwzaCrMrerONI2c4s+Um6LxDnFm1R8mXnDQ1HHkCI1p6TSlpeF+xx24rViOw8SJ+Dzzq7OCpt60Glup76jH39GfZmMz/7f1/3C3dWdp1FLmhM4h1isWVVdLyvZT8P+GgdkAbqGQ8ijELAKf0dbPeyiGv1xkAAU899xzvP/+++j1egIDA4mPj++3keaaNWtYsWIFNjY2hIaGEhERQXZ2NuPHjz/rvHnz5nX/fdy4cZSXl38vzyBJkiRdnfZvWs/6N/4KioJHQBDJS5YTlZSC1tYOADtHp16v/eylXI4XnkII8Is6nWkCECox5OBJsViofvkVGtO+xlh6zJppShqHxse6fKhxd8ftpt42KrFmmrZVbCO9JJ3vyr9jjNcY3pj9Bp52nvx7/r+JdI1E3X4KDq+F9N+ASgM3/xdsXWDuH8A/3ho0XQGZpt5ccQHUHWl3nHcsNSSVFcNW0GZq48GN5zf9WhixkEURi6hvr+fxbx8/67N35/S9RUpOTg6rV69mz549mEwm4uLiiI+P73cz4YqKCpKTk7uPBwQEUFFR0et9jEYj//znP3n55Ze7j+3YsYPY2Fj8/Px46aWXiImJ6XOukiRJ0tWtsaaa/Kzt5GVuI3HhUiISkvAfFsOEpSuJSk7BI6Dn7U8URaGusoWCnCryD9dyKtGV5HBPwuP0RCX5XJTlufZDh+jIz8d10SKESkXrzp3o/P3xuPMunGbNROPuPqCx/r7n77x38D1aTa242bhxfdj1zAmd0/35sOpi+OopKPrOujznFgqjloKiWAOmhDuH/ByX0hUXQF1qW7duZfHixdjb2wPWTX6BfjcTHqwHH3yQyZMnM2nSJMC6B19paSmOjo6sW7eORYsWkZ+ff9HuJ0mSJF0ZzCYju79eS15mBscLjgLgFRxqDRgAdz9/xi/tOZtzqrqNIzuOU5hbRf2JVhBQprGwpq6Kv+oK+PDuZGKD3YY0L0VRaD9wsLsQ3FhWhrC3x3nuXFQ2NgR/8H6/heBGs5HtldtZX7qep5OexkHrgIedB3ND55IakkqiTyKa9kZrpsltGNg4QfVRqCuGlEcgZvEVn2nqzRUXQPWVMbLT2PX5uZutW78Zp4HqLwPl7+9PWVlZ9/Hy8nL8/Xver+fXv/411dXVvP76693HnJ1P9+aYN28eDz74IDU1NXj2s5YsSZIkXfkaTp6g4XgFIWPiUak17E7/ElsHJyauuI3IpBTc/Xr+90VXpsnWUYuDiw215c3kfF2CX5Qro6cF8F1rC//ZUoBFAZXJwl825vHjmVHEDzCIOrMQvO7d96j64x9Bo8EhORnP++7FccYMVDY2QO+F4EaLkazjWaQVp7GpbBNNhiacdc4si15GrFcsy6KXQWudNWj65o+nM012bjBiASQ/aK1tugqDpjNd85sJ5+bmsmrVKrKysrqX8O67775+a6AOHjzIypUryc7OprKykhkzZpCfn39eEflbb73FO++8wzfffIOdnV338RMnTuDt7Y0QguzsbJYuXUppaWmPRYKX+zuSJEmS+ld/vIK8zAzyMjOoKinEztmF+1//AJVKTUdrCzb2Dj1e1708l1tFYY410zTu+lASrwvFbLTQ0WbqXp7LKa3n5rcyMZgsWBQQgI1WxYd3J/caRCmKQvu+fdZC8PR0vH/+NE4zZmAoK6M1OxunGTNQu7r2+Wwmi4lmQzOutq7k1+dzwxc34KR1YlrQNFJDUhnvOx6tSmMNihqOwctjOpfnQqxZphGLwDf2qgua5GbCfYiLi2P58uXExsai1+tJTEwc0HUxMTEsW7aMESNGoNFoeO2117qDp3nz5vHWW2/h5+fH/fffT3BwcHdxeVe7gk8++YS///3vaDQa7OzsWL169WXfGFGSJEkamh2ffMz2/1pXLXwjoplyy51EJqV0b6HSW/BksSj89/md1JQ1WwvBI62ZprCx1saTaq0Ke+3p2qb4YDc+vDuZv2zMY1t+DQpgNFnILKo9L4CytLdT/ZeXaVyfjqnyOGi1OEwYj8rJWpSuCwxEFxjY6zOZLCZyTuaQVpLGN6XfMNF/Ir+f9HsiXCN4fdbrJHgnoOtotrYc2PwXa5+mha+BSyDM+BWETb0qg6aBuuYzUOd69tlncXR07DcDdSldad+RJEnStay2/Jg105SVwex7H8Y3MpoTBXlUHD1EZNIEnD1777pdW2nde66ppp2Zd4wAIHNNIQ4uNoSN9cLBxWZAc+jKRBlNFrQaawYqLtCFtj17MZ08gfPcuSiKQtHceeiCg3GaMwen6dNQu7gMaPy/7/k7q4+upq69DjuNHVMDpnJ9+PVMCrDW8XJoDeS8D8XfgcVkzTSNvQUmX7za4SuBzEBJkiRJ0gXoaG1l15efkZ+VQW35MRAC/+gRmM0mAHwiovCJiOrx2oaqVvKyTlDQuTxnbTngitloQa1VkbwwfNDz6cpEZRZUM6G9Et8P/05B+npMJ0+i8fbGac4chBCEfbm230Jwi2Jhd9Vuviv7jkfjHkWtUmNSTCR4JzAndA4T/SdiZ2iDvDTwM1t7MR3LgrpCGP+QdYnuB5xp6o3MQF0F5HckSZJ0aSmKQnVpMW1NjQSPGoPJaOQf992CPjiMyOQUIsdNwNGt99f6ayubcXS1wcZey/5vy9ny7zz8I10Jj9MPKtPU49wsFhACIQQn//gide+8g9DpcJg4Eec5qThOm4baqffeUWANmvZV7yO9JJ31JeupaqvCRm3DR9d9RJRbZyDYtY3Kwc9PZ5ru+BqCJ4CxDTS2P/igSWagJEmSJKkfiqJQVVxIXuY28rIyaDhxHM+gEG5/8VU0Wi33/u09dLZ2vV5fW9lMYU5Vd6Zp6s3RxEzyJzrJ58KDJrOZttxcayH4+vUE/PUV7MaMwWXB9dgOH2YNmhwd+32+DnMHthpbdp3YxV3r70Kn0jHRfyKpIalMCZyCg8ba0ofKPfDWjNPLc+MfsnYE9x1j/Vzb+/dwrZABlCRJknTNUhSl+wWejW++xr5v0hAqFUEjY0m8fgkR407vLtFb8GTsMPPfF3ZRf7wFBPhFuDJqagChsdaO4Do7DTq7of3r1lRfT81fX6Vxw3rM1TUIGxscJ08CrRYA22HDsB02rM/nO1R3iPTidNJL0kkNSeXxhMeJ847jhUkvMCVgCo4mAxz5CjJuBb8x1gJw75Ew8TEYdp01aPqBZ5qGQgZQkiRJ0jVFURROFORxNHMb+VnbWfar3+Oi9yZ6wmR8IqIIT0jC3rn3YuuulgPGdhMpSyPR2qjxi3Rl1BT/i5Jpat25C0t7G05Tp6Kyt6dxw3rsx8ZZl+emTEHl0PMbfed6Y98bfJb/GeXN5WiEhvF+44nVxwKgUWm4rrkV/n3b6eU512AIn269WK2B6b8Y8nNcC/oNoIQQ7wDzgSpFUUae89lPgJcAL0VRar6fKUqSJEnShWuur2PX2v+Rl7mdptpqVGoNIbFjMba3ARA0cjQwusdrG062krfzJIW5VdRVWjNNQcPduzNYU1dGD3leislE665dNKal0bRhI+baWmxHjLAGUDY2RG7e3G8huKIo5Dfkk1mZyW0xtwFQ2lhKsHMw946+l+lB03Exm63BUpe8NKgtgPE/6iwEHyMzTYMwkAzUe8CrwAdnHhRCBAKzgWMXf1pXh+eff563334btVrNK6+8Qmpq6nnnrFq1iu+++w6XzldH33vvPcaMGYOiKDz66KOsW7cOe3t73nvvPeLi4i71I0iSJP1gKRYLFUcPgRAEDItBpVazd2MaQSNjmbjiVsLix2Hr0HvdUN3xFlw87VBrVRzNOsGur0vwi3Bl0vIowuMG13Igs6iW5DCP7l5NitlMbnkjmUW1TP7kNTTfpCHs7HCcMsWaaZo8ufv6voKnwoZC0krSSC9Jp/hUMSqhYmbwTPwc/fhdyu8QbfXW5bn/3glF31ozTfoY8IqC6/8COkcZNA1RvwGUoihbhBAhPXz0Z+CnwJqLPamrwaFDh1i9ejUHDx6ksrKSmTNnkpeXd14ncrBuC7N06dKzjn399dfk5+eTn59PVlYWDzzwAFlZWZdq+pIkST9IFouZisMHycvKID97By31dQSPHsvSn/8We2cXHnzrI7S63gOfuuMtFOZaC8HrKluY9+BoQkd7MmpqACOn+PcYNH2UdYyvDxxn7khfViadvRnwmZ3DbVUKfwgzYrfjO/R7M3ls0kOU27ix0RLBM7/4HaOXzENl139xttliRq1S803pN/z42x8jECT4JHDL8FuYETQDDzsPAETxd/CvJaeX58b/yNoR3DPSOpBN32/qSX0bUg2UEGIhUKEoyt7+umcLIe4F7gUICup5l+nL7bnnnuP9999Hr9cTGBhIfHx8v40016xZw4oVK7CxsSE0NJSIiAiys7O7O473Z82aNdx2220IIUhOTqahoYHjx4/j6+t7MR5JkiTpmnFmIfiaF39HUe5ONFodoWMTiEpOISzu9A4TvQVPLac6+OLlPd3Lc77hLkxaHoV3iHXf0q6tVM71UdYxnv5sPwBb862VLGcGUZlFtTg11XHT4Q1MOL4fF0MrbWod231HYOkwYtHBPtcQMvyjGdNH8FTaWEp6STppJWksDF/I7TG3k+SbxFPjnmJ2yGw8FRUcXQf/uxciZ0PSfeA39nTQ5DdWZpouskEHUEIIe+BprMt3/VIU5Q3gDbD2gerv/NJbbzvvmNPcObivXImlrY2ye+8773OXxYtxvWExpvp6Kh559KzPgv/5wXnnnyknJ4fVq1ezZ8+e7r3w4uPj+91MuKKiguTk5O7jAQEBVFRU9HiPn//85/zmN79hxowZvPDCC9jY2FBRUUHgGS30u66XAZQkSVL/zCYTZYf2k5e5jeLdu1j1p79hY+9A7Kx5jJg8ndCxCX22HOjKNKnUgvg5Idg763DzsSdmkh/hY/U4uA5see7rA8fP+/mmOF9aMjMROhuSwyJ5T6djYuU+cnyGsdUvll36aEwaLSohUCsKWo2K5DCP88ZWFIX3Dr7HuuJ1HKk7AsBY/Vh8Haz/nnDUObKyQ8D/7ju9POcaBNFzrQPYusCs3wzoOaTBG0oGKhwIBbqyTwFArhBinKIoJy7m5C6FrVu3snjxYuztrb0vFixYAMCTTz7Jk09eeEv6559/Hh8fHwwGA/feey9/+MMf+NWvfnXB40qSJF2L6o9XkL3mfxTs3EF7cxNaG1vC4sd1b9Z7ZrbpXA0nW8nfdbJ7eQ4B4WOsrQaEEMy5d1S/9z+3nmnuSF+25tegsZgYU53PfbVl5L3xKJZTp3CYMpn411/nHz+aSdbsUbg62ZP75UHMJgs6jYpfzY+hvtVwVm1UZXMle6v3Mjd0LkIIMioz0Kl1PJnwJLNDZuOjsoHyMxpS7/0I6ksg+UFrIbjMNF0ygw6gFEXZD3Rv9COEKAESLtZbeH1ljFR2dn1+rnFz6zfjNFD9ZaD8/f0pKyvrPl5eXo6/v/9553dllGxsbLjjjjt46aWXAAZ8vSRJ0rXMbDJSun8P9s6u+IRHYjFbyMvcSnh8EpHJKYTExvVZ09RwshUXvR1CCHZvPMahbZWdy3ORg8o0wdn1TDqNig/vSOxernN55ieElRxA5eiI04zpOKXOwWFiCmDddqUrQIr2cTqvoPxEywneP/g+60vWs69mH2qhZoLfBFxsXPjbjL+hM7RYC8E/e8iaaVLM8EQ+OHjCje+DnZsMmi6DfrdyEUJ8DEwFPIGTwDOKorx9xuclDDCAuhK3csnNzWXVqlVkZWV1L+Hdd999/dZAHTx4kJUrV5KdnU1lZSUzZswgPz//vCLyrromRVF47LHHsLW15YUXXuCrr77i1VdfZd26dWRlZfHII4+QnZ3d470u93ckSZJ0KZmMRkr35ZKXmUHhriw6WluImTKTOQ/+uPtzTWcjyZ7Un2ihIOd0IfjSnyXgHeJMY20barVqUEHTmV7bXMDLXx9kTFUekyv2MqmhkJGb1qN2cqJ56zYUkxGHlBRUup7rpXqytnAtT297GoDh7sNJDUlldshsAp06SzwOfg7/uxssRuvy3IhF1o7gfnEyaLoELmgrF0VRburn85AhzuuKEBcXx/Lly4mNjUWv15OY2Hv690wxMTEsW7aMESNGoNFoeO2117qDp3nz5vHWW2/h5+fHzTffTHV1NYqiMGbMGP7xj390n7Nu3ToiIiKwt7fn3Xff/d6eUZIk6UqnWCwIlQqAj37xE6pLirBxcCAicTxRySkEjRrTfW5vwVPDyVbS3thPbUULAL4RLkxcFomzpy0Azh5D336ko6iYyZ+8RtJ33+JgaqdZa4dq6jQsLS2onZxwnDSx3zGqW6vZULqB9JJ0VgxbwdzQuSR4J/DI2EeYHTKbYK0zHFkHax6DMSth5A3gHwfJD8ig6QokNxM+x7PPPoujo2O/GahL6Ur7jiRJki4GY0c7xXtyyMvM4Hj+Ue56+Q1UajV5mdvQ2toRNHI0ak3/mSYHFxtGTPTDZDSz7m/7CB7lSfhYPUcbW89bLhsoS0cHLRkZaLy8sBs1io6iIkpuWokhaSIHIxOInDud+Ah9v+OYLWY+yfuEtJI0ck7moKAQ4RrB/bH3kxqSChYL7P0YDn7WWQhuBJcgmPY0jOkzfyFdAnIzYUmSJOmKcbKogOw1n1C0eyemjg7snJyJHDcBQ1sbto6ORCX3ns1pONlKQY61ELwr0zRsvA8jJvqh0apZ8OhYoId6pbuT+w2iLO3ttGzbRmNaOs2bN2NpacHlhhuwGzUKm7AworZtRWi19FdqXt9eT159Hkm+SahVaj4+8jEWLNwfez+zg2cTYesBJw9ZT1apIONlMLbJTNNVRgZQ53j22Wcv9xQkSZJ+UAztbRTlZOMVHIpHQBCGtlbKDx8gZvIMopJTCBg+ElUPTYi7NNa2dS+/ZfyvgJJ9NfiGW5fnwsfqcXQ7v6Yps6gWg8mCRQGjyUJmUW2PAVROcS2f7qlEAW5+42lUxQWoXV1xnjfXWgieNK77XNFH3dWpjlN8c+wb0orTyD6Rja3Glu+Wf4eN2ob35ryHi8WCOPo1rHsKCjeDxhaeLACtLdy+Fhz1Mmi6ysgASpIkSbroOlpbKcrNJi9zGyV7cjEZDSQtXsbEFbcRMHwk9/3jfVSq3oOm+hNdHcGrqa1o5rbfT8DJ3ZYJN4Qz5aboHoOmMyWHeaDTqDCaLOf1WbK0tdG8ZSuln35B085cVs/8GWaVmnLvFB675yHGXD+9z2DpXJ/kfcJzmc9hUkwEOgVyx8g7mBMyB53KWkzuenANfPWT08tzyffDiMWg6XwGJ+8B30u6csgASpIkSbooLBYzKpUai8XMOz++l9ZTDTi6ezBqZipRyRPxj7LWcgqVit5yLdXHmvjm/cPUVjQD1o7gE2+MRGtjDbbcfBwGNJf4YDc+vDv5rBqotoMHqX3rLZq//Q6lrQ2Lows5+uHYmTpo1tmz1WcUSW7hjO0jeGo2NLO5bDPpJencHnM7iT6JjPQcya0xtzInZA7D7XwReV/D17+ACY9A6CRrb6auoMlfLs/9UMgASpIkSRqytuYmCndlkZe5jebaGm79419RqdRMvfUunPU++EVGd79d1xNrTVMV7r4OhI31wsHVBp2dmok3RhIe54Wjm+2Q5vVR1jE25haz1HiMkYHjATcszS20Zu/EZeECnOfM4Yg+nNff2YXBZAFAqxY9dgQ3WoysL1lPekk6GRUZGCwGfBx8qG+vB2CYcxjD1D6Q9ox1ea4r09RWZx3Ad7T1j/SDIgMoSZIkadBK9+9h15efcWz/HixmM85eeiKTUjCbTGi0WoZPmtbrtV1BU0FuFbXl1kzT6OkBhI31wt5Zxw1PxA95XpaWFtLe+h8tn3/Jw1VHsDUb2X5sOdNeehb7xAQit3yH6Ky3igc+vieZT3PLUYAlcQHddVKtxlbKmsqIdo9GIPjjzj+iUWlYFr2M1JBURjsGoaovsd5UqGD9L0FrJzNN1xAZQF2A559/nrfffhu1Ws0rr7xCamrqeedMmjSJpqYmAKqqqhg3bhyff/453377LQsXLiQ0NBSAG264QW7xIknSFau18RQFO3cQEhuHs6ee1sZT1FeWE3/dIqKSUvAOj6SvzeVbTnXg4GKt+dnw7iGqShrxCXO54EwTnO4hpVgsFMyZQ2h1DS42TqwPSmSbfyxu0YlMgx4zYWd2CW8ztXVnmraUb8HN1o30JeloVBr+Ne9f+KsdUOWlwYbfQ+EmcPKFH+8DtQbu/RZcAmTQdA2RAdQQHTp0iNWrV3Pw4EEqKyuZOXMmeXl553Ui37p1a/fflyxZwsKFC7t/njRpEl9++eUlm7MkSdJgtDTUU7BzB3mZGZQd2o9isTDjzgcYk3od0eMnMmzC5D6DpoaTrRTkWjuCN5xo5c4XJ6Kz0zDlpijsnHQ4uQ89aDI3t9C8eTON6WkYKyoJ/fR/CJUK7yee4NsGDY8dsmAR1oDp96P73ybr4yMf8+ecP9NmasPd1p2FEQtJDUlFQUEgCNz/OWz8defyXCAk3QcxN5wewDWw17GlHyYZQAHPPfcc77//Pnq9nsDAQOLj4/ttpLlmzRpWrFiBjY0NoaGhREREkJ2dzfjx43s8v7GxkU2bNsmO45IkXdHMJhNqjQZDWytv/ugOzCYTbn4BJC26kcikFLyCrVnzvt6gq8xvYOt/8qgpsy7P+YS5MH5xePfn+mDnIc+vdedOat97n5atW1EMBjR6PU6pqShGI0Knw2XhQhYCLVnH+PrAceaO9O3er66LwWxge+V20krSuHfUvYS5hhHsHMz8sPmkhqSS4ByBOj8dvnkRZv0G9MPAZ1Rn0LQY/ONlpkm68gKoz/6Ue96xiHg9o6YGYDSY+fKve8/7fNh4X4ZP8KWt2UDa6wfO+mzxT+L6vF9OTg6rV69mz5493XvhxcfH97uZcEVFBcnJyd3HAwICqKio6PU+n3/+OTNmzMDZ+fQvjh07dhAbG4ufnx8vvfQSMTExfc5VkiTp+9BUV0N+1nbyMjNQa9Tc+Mvfo7OzZ+Y9D+ETFoFHYPCAMk2+4S74R7lh66BFo1Ux8cZIwsZ6XVimqamJ5k2bsB83Dq2vL8aqKtoPHMAwbxH7IuIZPiOFyNDzC79XJgV1b9ybU1rP6EBHdlTuIL0knU3HNtFsbMbFxoXZwbMJcw1jgtdYJlSVwKY/WZfnujJNjeXWACpsqvWPJHW64gKoS23r1q0sXrwYe3t7ABYsWADAk08+yZNPPnnR7vPxxx9z9913d/8cFxdHaWkpjo6OrFu3jkWLFpGfn3/R7idJktSfvMxt5Hy1hsq8wwB4BgYTPX4SiqIghGDk1Jm9XtsVNBXmVnVnmhKuC8E/yg13PweW/LTH3S8GxNzYSNM3m2hKS6N5+3YwGvF++mmKp8wnyyYC1xfe4zfrDmMotKArze6xy7i1E3kGRk6h3eTOW6tG8dj2x7DR2DAzeCZzQuYwzjUabUtN502NsPbH1oaWMtMkDcAVF0D1lTHS6tR9fm7nqOs34zRQ/WWg/P39KSsr6z5eXl6Ov3/P6+w1NTVkZ2fz2WefdR87MxM1b948HnzwQWpqavD09Lwo85ckSTrXqaqT5GdlMHL6bGwdHGmqrcXY0U7KsluITE7Bw7/vOp72FiO2DloUReGLl/fQVNeOd6gzKUsjCI/TX1CmqasQ3NLaSv6UqShtbWj8fHG/+Wac56RyyCWwe2sWlRCYLQoK53cZN1lMZJ/I5s87/4smdDsqgzsdpQ+x91g7H8z9gChbPdqCjfDdK1DwjbW9wD2bwNYZHtgOHuEyaJIG5IoLoC61yZMns2rVKp566ilMJhNr167lvvvu6zcDtWDBAlauXMnjjz9OZWUl+fn5jBs3rsdzP/nkE+bPn4+t7elfLidOnMDb2xshBNnZ2VgsFjw8zk9DS5IkXYiGkyfIy9xGXmYGJ4usWW5XHz8iEpOJm3s98dct7Pv6qtbOjuBVtDR0sOqFFFRqFTPvGI6Th92FLc81NND0zTc0pqWD2UTQO++gsrfH+//+D9vhw7AdPbp76TBzc0H31iygoFYJFEU5q8v4h4c/5PW9r1PfUY+t2g6ldRimU6PQaqz9nWL2/Q22/dm6POcccDrT1MUzYsjPIl17rvkAKi4ujuXLlxMbG4terycxMXFA18XExLBs2TJGjBiBRqPhtdde634Db968ebz11lv4+fkBsHr1an72s5+ddf0nn3zC3//+dzQaDXZ2dqxevbrPGgNJkqSBMhmNaLRaTlWd5O1HrKUDPuGRTFq5iqjkibh6+wA9v9bf5djBWnZ8Xti9POcd6kxcajAWs4JKDX6RfW/M25fm776j7p//oiUzE0wmtP7+OM+b17106LZi+XnXnLs1yy+uG8bh+r00a3II1lt/bzvpnEj2TSY1JJUU95Ecz14Lh9bQuGQRscFu0DTcGjSNWAQBCTLTJF0QoSjKJbtZQkKCsmvXrrOOHT58mOHDh1+yOfTn2WefxdHRsd+38C6lK+07kiTpylNXWU5eZgZ5mdtw9wtg/o//D4D9m9YTNDIWF33f+62dqrY2twwe6YlngCPlR+rIXFNERLz+gpfnTPX1NG3ciHNqKmpnZ+ref5+6f/4L5zmpOKXOwXZkzID+A3JnSS1rDmfQos1lb90WqtuqsVXb8pdpfyHFPwU6muHwWjj0ubUQ3GywZpqWvgNBSUOev3TtEkLkKIrSY0HfNZ+BkiRJuprt3fA1e9K/pKasFAC/6BEExpzeNmTU9Nm9XtsVNBXmVlN9zNrwV6NV4xngSMAwd5YOcx/yvEx1dTRt2EhTejotWVlgNqN2cMB53jzcVq7E7bbbBhQ0KYpCo6ERFxsXAjwNrKn6OTZqGyb5TyI1NJXJnmOwN7ZbT26rh8/vtwZN4+61Zpr846GPTJskDZUMoM7x7LPPXu4pSJIk9UhRFGrLSinYmUniwqWoNRoaa6qwcXBk2qr7iEwaj5N73y+iGNpN6Gw1mE0W/vPcTgztZrxDnZmwJILwOC+cPeyGPr/OQnDjyZMUTJ8BZjPa4CA87roL5zmp2HRm0kUfm/V2PeeBmgOkl6SzvnQ90W7R/HXGX/F19OVvM/5GnEsEDkXfwfb3oPAbiJgJN31sbWZ5fwboR8igSfreyQBKkiTpCqYoCtWlxdbluawM6ivLQQiCR4/FNzKaiSv6z+Scqm7rLgQ3GcysfDYZtUbFrLticPdzuKCgyVRTQ9OGDTSmpaPR6/F/8Y9ovb3x/umT2CclYRMdPaj6zg8Pf8g/D/2TiuYKNCoNE/wmMC9sXvfnkw6sg51vnV6eS7wHRi45PYDPyCE/iyQNhgygJEmSrjCKomAyGtDqbKjMO8LqXz2JECoCY0YSP28BEYnjcXC1FnH3FZwU7alm17qS7uU571Bnhqf4YTFbUKlVhIwaetuUxnXrqF/9b1p37QKLBV1ICA4TJnR/7n777QN6zqP1R1lfsp57R9+LrcaWNlMbIS4h3B97P9P08bgUZ8DOjyFgqnWzXvcwa9AUswj8E2SmSbps+g2ghBDvAPOBKkVRRnYeexG4HjAAhcAdiqI0fI/zlCRJ+kFTFIWTRQXWlgNZGYTHjWPaqnvxjYxi9v2PEB6fhL2zS59jdGWaIhO9cXK3xWQwo1KLi7I8Z6yqovmbb3BduhSh1dJ++DCmmho8778Pp9Q52ET1vZnwmc+Z35BvXZ4rWU9JYwkCFV7qWG6KncLdUcu52+II2auh8J7Tmaa6YvAeAePuGfIzSNLFNJAM1HvAq8AHZxzbADylKIpJCPEH4Cng/y7+9CRJkn74dvzvYw5s3khj9UlUajVBo8bgP2wEYN1zbtS0vgrBTy/PdWWa7J11DBvvS2SiN1HjfIY8L+PJkzSlr6dxfTptObmgKOjCw3EYNw6vhx/G6/HH+w2ackrrrY0uQ5xIDvXmaP1Rblx7IwIVHurhGE/egK4xlL8VVBDlWk+8pgg+uw+c/WWmSbqi9RtAKYqyRQgRcs6x9Wf8mAksvcjzuio8//zzvP3226jVal555RVSU1PPO2fTpk088cQTGAwG4uPjefvtt9FoNCiKwqOPPsq6deuwt7fnvffeIy7u4nRRlyTpyqVYLFTmH+XYgT0k37ACIQRNtTV4BAQyfulNhCckYefo1OcYJqMZjVZNe4uRD5/JRLEo6IOdmHBDZ6bJ05ppGkpvua5C8LaDBylZYv3VbhMZgeePfmQtBI+wNpsUOl2/Y315eC8//foDhONe2B/MBwtfIi4omruif8Y/00zEGo7wtHoLk9Wv8qllMplF44ifGgd3fwN+cTJokq5oF6MG6k7g3xdhnKvKoUOHWL16NQcPHqSyspKZM2eSl5fX3UwTwGKxcPvtt/PNN98QFRXFr371K95//33uuusuvv76a/Lz88nPzycrK4sHHniArKysy/hEkiR9XxSLhYqjh8jLyiA/azvNdbWoNRpiJs/A2UvPrHse6jfYaaxp62w5UIXWVsOix8Zi66Bl1p0j8A5x7g6ahsJ44gRN6ek0pqVjN3o03k/9DNthw/D6yeM4TZ+OTXj4oMZbfWQ1/837L3n1eajcBea2YMytQd1brszek84DylfY6ExUKu78yzyLdUzk6TAPa3PLgKHvoydJl8oFBVBCiJ8DJuD8TeNOn3MvcC9AUFDQhdzue/Pcc8/x/vvvo9frCQwMJD4+vt9GmmvWrGHFihXY2NgQGhpKREQE2dnZjB8/vvuc2tpadDodUVFRAMyaNYvnn3+eu+66izVr1nBbZx+U5ORkGhoaOH78OL6+vt/rs0qSdGlYLGbMJhNanQ35O3ew9v89j1qrJSQ2nskrVxEWPw4beweg70xR3s4T7N1YRlWpdXlOH+xEyCiP7q7dkQl9N8jsS/1//8up/31K2549ANhER6MLCbbOSa3G856+6426lufCfDuoU/Zw07CbUAkVBQ0F2GvsuTniEf6zQcNUYx4p6lxCQh8CwNUnhI8qZrHWlMRuJQJQcVNS0HkbAkvSlWzIAZQQYhXW4vIZSh/tzBVFeQN4A6ydyPsb99+//tl5x6KTJzEm9TqMHe18+sKz530eM2UmI6fOpLXxFGv//PxZny1/5oU+75eTk8Pq1avZs2cPJpOJuLg44uPj+91MuKKiguTk5O7jAQEBVFRUnHWup6cnJpOJXbt2kZCQwCeffNK9AXFFRQWBgYHnXS8DKEm6elnMZsoO7Sc/K4P87B3EX7eIcQuXEhIbx7xHniQ8LhGdnX2fYzTWtFGQW0XMJH9s7DS0njIAMP6GcCLi9BeWaaqooHnrNlyXL0MIQVvubiwdHXj9+Mc4pc7GJjR0wGOlHz3MY1++Dw57UR8rByDBO4Fo92ieGv0j1Pnr4dDn/FS9ERUGDPa+6NzaAPBb9BtsfI+xb80BBAo6jYolcQFDfi5JuhyGFEAJIeYAPwWmKIrSenGndGlt3bqVxYsXY29v/aW2YMECgH43Ex4IIQSrV6/mscceo6Ojg9mzZ5+1xCdJ0g+DoihsevcfHN2+lbamRjQ2NoSNTcQ7zFovpLO1Y3jKlF6v7wqaCnOqujNNbj4OhI72JHZGIGNmDj17byivsC7PpafTvm8fAPbjErEJC8P3188OqJbpzOcUQrDzxE6eyLwTtSeY2wIwnJzLOLdE2mp04A7qskz47F5w9keVeDeMWIQuIPGsmqaVSUFE+ziRWVRLcpiHzD5JV52BtDH4GJgKeAohyoFnsL51ZwNs6Ew9ZyqKcv/FmFBfGSOtjW2fn9s7u/SbcRqo/jJQ/v7+3dkkgPLycvz9/c87f/z48WzduhWA9evXk5eXBzDg6yVJuvKYTSaOHdhLVUkRSYtuRAhBa0MDQaPGEJWcQuiYeLQ2fe8dZzZbUKtVNNa08c9f7ACsy3PnZpoupBC8ees2yjqX4WxHjMDr8cdxTp2NLrhzmW4AwVNVaxUbSjeQVpzGeL/xPDjmQWK9YlkWdj+fbdIxo6OI69RZTG55h7f+tQDzXX8iPnw63LkezgmazhUf7CYDJ+mqNZC38G7q4fDb38NcLovJkyezatUqnnrqKUwmE2vXruW+++7rNwO1YMECVq5cyeOPP05lZSX5+fmMGzfuvPOqqqrQ6/V0dHTwhz/8gZ///Ofd17/66qusWLGCrKwsXFxc5PKdJF3BzCYjpfv3kLcjg8JdmbS3NGNj78DY1OvQ2dlz/eNP9TvGmZkmF709s++KwdnTjqk3RxMwzB0Xr6EvzxnKymhMS6MpLR2n1FQ8770H+/g4vH7yOM6pqegGWYP6v7z/8UXhF+yu2o2CQpRbFN721nornUrLL0/s4mnxJWqdgeOKO/8yzyTNEgedheJy817ph+6a70QeFxfH8uXLiY2NRa/Xk5iYOKDrYmJiWLZsGSNGjECj0fDaa691L8/NmzePt956Cz8/P1588UW+/PJLLBYLDzzwANOnT+8+Z926dURERGBvb8+77777vT2jJElDYzJY6480Oh37Nqax6d3X0dnZE5GQRGTyREJGj0UzgCzO4e3HObClgqqSRsCaafIJO90UM2bS0LPPe//f32j/eh3OZYUA2I4ahdbX2vtJZW/fbyF4l7r2OrJPZDMnZA4A2yq20Who5IExD5DqO5GwE4ehOBeilljflLN354DvEn5TFE2uEoGCCo1K8GyYx5CfRZKuJqKP+u+LLiEhQdm1a9dZxw4fPszwzg0mrwTPPvssjo6O/b6Fdyldad+RJP2QGQ0dlOzNJW/HNopys5m26j5GTp1JS0M9J4sKCBo1Bk0/m+E21rRRvLeGUVP9UalVbP+0gIqj9YTH6QmP019YpqmkhNbde3BdvIic0noO334nDh2t7Agcw4onbidu3IgBj9XQ3sDGYxtJL0ln54mdmBUz6UvS8XP0o625Cruib+Hg51CwEcwd1uaWD+4AW2vwl1Naz81vZWIwWlCpBL9ZOJKVSVfm29aSNBRCiBxFUXrsq3HNZ6AkSZIATEYjaX/7M0W5OzG2t2Hr6ERU8iQ8A6wBgYOrG2FxvWeoG2vbKMyppiC36nSmKcQZ33AXkheFo1INvpapS0dxcXefpo4jR0ClwnHqFDKLank5aRUGoUEtILhFx0Db8W4p38Ijmx7BrJhx0/rhaZ7LwuCp+GqsTTztjq6DtY+Ckx8k3GntCB4w7qyapvhgNz68O1kWgkvXJBlAnePZZ5+93FOQJOkSMLa3U7R7F811tcRftxCNVktbUyPDU6YQmZxC4IhRqDV9/4pULApCJThZ0sgnL1iz615BToxfHE54nBcuXta3e4cSPHUVgjd8/jnHf2atr7IbOxbvp36G0+zZaNzcSA6Dv+p0qE0WtBoVyb0snzUaGtl8bDPpJelMD5rO0qiljPYczaqYVahORZO/cQvXq7OYUvImu2p+SuKyn8KIheA17Lyg6VyyEFy6Vl0RAVTXq7HS+S7lEqsk/dAZ2tsoyskmLyuD4t05mAwduHj7MHbufFQqNTf+4nf9jtFY20ZhbjWFuVX4hruQsjQSryAnUpZGEBrr2R00DUVHYWF3Ibj7qlW4LrkBhwkT8H76KZxmz0brc/a+dv1lgL4q+oq04jQyKjMwWoz4OfgxLWgaAK5aB36cvxPDkd+h0xk5objxoXkGBbWBJALYuUFQMpIk9eyyB1C2trbU1tbi4eEhg6hzKIpCbW0ttrZ9vw4tSVLvOlpb0eh0qDUasj//L1mf/QcHVzdGTptJVPJE/IeNQKXqvz/bgS0VHNlxnJPF1uU5ryAnXL1PZ5iG2qtJMZup+dvfaUxPw1BQCEJgFxeH2s0aDGn1etxvu63X68/MALUYWzhUe4hEH+tS4+ojqznecpybht1Eqv8kRlUfQ5wohShArQWhoih4OT/PCydXiURBxe/jRg3pOSTpWnPZi8iNRiPl5eW0t7dfsnlcTWxtbQkICEDbT9GqJEmntbc0U5STzdHMbZTuzWXhk78kdEw8p6pO0lRbjX/0CEQ/G9U21bVz7GAtIyb6IYRg47uHqDveQnicFxHx+iFnmhRFoSM/H0NhIc5z5wJQfMMSVPb2OKWmWjNN3voBj9dqbGVLxRbSi9PZWrEVs2Lmu+Xf4axzpvZUKW4lWagOr4H8DdZCcNdgeDjHGkB1+ijrGF8fOM7ckb6yCFySztBXEfllD6AkSZIultbGU6T//S+U7N2NxWzC0cOTqKQUYmfNxd2v/61CmuraKcytoiCnqjvTdPOvk3H1tsdssqDW9B109UZRFDry8mlKT6MxLR1DUREqBwcid2xHpdNhMRhQDaIjeJf1Jev5+baf025ux9POk1nBs5jjP5kx3gmotLbw3Yuw+Xc067xoCb8O7+QVEJjUZ02TJEmnybfwJEn6QWpraqRgVyaK2cLomXOwc3SirbmJsXOvJyopBd+IqH4zTV01mKUHa/nyr3sB8Ax0JHlRGOFxelz11kzTYIOnrv84FUJQ9847VL34EqhU2Ccm4n7rLTjNnNkdNA0keOowd7CtYhvpJenMD5vP5IDJRLtHszBiIan+k4mrP4H60BpY/xdY+jYMv559XtfxgllDVlME2gMaPkweRrwMniTpopABlCRJV5XWxlMU7NxBXmYGxw7sRbFY8B82gtEz5yBUKlb+9qV+xzgz0xQ21ou42cGd7QbODpoGS1EUOo4coTEtnaa0NLx/8XMcJ03Ccdo0VA4OOM2cicbTc8DjWRQLW8q3kF6SzuayzbQYW3C1cSXJx9rlO1jnxi9KDsOGV6zLc06+kHAHeEQCsPWkjkxTFBYFMFnI7OoSLknSBZMBlCRJV7zWUw3YObsghGDrR+9xYPMGXH18SVywhKikFPSh4QMaZ9/mMvKyT3Yvz3kGOuLgbM3+6Gw1xM8JGdL8LK2t1PzjdRrT0zCWHgO1GoekcQgbGwBswsKwCQsb0FhGs5GSxhIi3SIRCP6Q/QcaDY3MDp7NHP/JJDbWoj3VYD3Zxglaa61B04hFZy3P5ZTWs7esASEEKpQ+2xxIkjR4sgZKkqQrUnN9HfnZ28nPzKD88EFueeEv6EPCqK0ow2w04hUc2u+bu0117ZwoOkVkgnUPty9e3k1bs5GIeP0FZ5raDxzEVF2F0/TpKBYLBTNnYhMahlPqbJxmzULjNvBMj9FiJPt4NmklaXxz7BtUQsXmZZvRqrSU1hzCr2I/2sNfWDuCm9rBeyTcv826pUoPckrruenNTAwmCwBqAb9dNEoWiEvSIMkaKEmSrhoNJ46T9ve/UHH0ECgK7v6BJN2wHDsnZwA8/AP7vL5rea4wt4oTRY0IAQHD3LBz1DHvgdFodP23LOiJNWg6YO3TlL4eY3k5Wj8/HKdNQ6hUhKelDakQ/Kuir3gh+wUaOhpw0DowPXA6qf6TERYFVBCc/R5kvw6OPhB3O8Qstmaa+ggeM4tqMXYGTwAWBepbDUN5bEmSeiEDKEmSLqvGmmryszKwc3ZhxKRpOLi6YTYaGL/kJqLHT8QjYOBZk7zsE2x45xAAHgGOJC0MIyJOj52jNbAZbPB0ZiF41R9fpO7dd0GjwWH8eDwfuB/H6dO7s2ADCZ7MFjM5J3NIK0njhsgbGOk5En9Hfyb4TSDSJh7f4kom5G/H7bu34bYvICgJxt1j3UYlMHnAb88lh3mg1ai6M1BatZDLd5J0kckASpKkS+5U1UnysjLIz8zgeMFRAIalTGHEpGlobW25+fd/7neM5vp2CnOrKcipYuQUf6KTfPCLdOsOmrqaXA6Woii079tnLQRPTyfg1b9iO2IEzvPmYhMRgdOM6ahdXQc8nkWxkHsyl7SSNDaWbqS2vRY7jR2jvUYz0nMkY+x8CC4oxq70bWyFkSrFjaoRK9A7dBabe0Za/5whp7S+z/3n4oPd+PieZD7NLUcBlsQFyOJxSbrIZAAlSdIl0VxXi6O7NQvyzdt/o3hPDvrQcCauuI2o5BTcfP37HUOxKOzbXE5BThUnik4B1kxTV4sBRzcbEuaGDGl+pvp6al9/g8b16Zgqj4NWi+OECSgWaxbKbtQo7EYNrEu3RbFQ3VqNt4M3ZouZRzY9gtFiZFLAJOYETGVSSwt2bSbryXbuKDV5rDZP5ytzEruJ4jH9cH7k0XNhfE5pPTe/Za1v0mlUfHh3cq9BlAyaJOn7IwMoSZK+N/UnKsnLzCAvcxtVJUXc+7d3cXL3ZNLKVUy/8wFcvX36HaO5voOa8iZCRnkiVILD2ytBCJIWhBERfwGZJouFtj17sbS14piSgsrWlobPPsN+7FicHnkEp+nTUTs7D3w8ReE/+zP4omAd5YZMnG0c+GLRF2jVWv4x9c9EVBVif3QdbLvHWggenAKjloJGR/GyTbzwdhZG+t4UGKz1TQaTBYsCRtmaQJIuGxlASZJ00Z0ozGf9669QXVoMgG9kNFNuvgONzvpav1dwaJ/XN9d3dBeCHy88hcZGzV0vTUSjVXPDE/Ho7Ib2q0uxWGjbvdu6PLd+PaaTJ7EdNcoaQNnZEbl1y5AKwdcWruVPO1+mtuMkikWN0hrNjXHXo6AgEIzO+Dsc/KyzEPy2zkLw0xv1xoe497kp8JmSwzzQaVQYTf0HW5IkfX9kACVJ0gWrLT9GXmYGXsGhRCQm4+jmjtbWjqm33UNk0nicPQe+t9v+b8vZsjoPAA9/x+5Mk0ZrLQAfbPDU1WkcoPL/fkbj2rUInQ6HyZNwfuInOE6b1n3uQIInRVE4XHeY9JJ0boy6kQCnAOw0djiIAGoqxzOppYMFIpcZ6x9HFZ0C7qEw4RFIvAeCkqGHjYv7q2k6U3yw24CDLUmSvj8ygJIkaUhqjpVwtHN5rq6iDIQgYf5iawDl7sFNv/ljv2OcmWlKvC6UwBHu+EW6krQglPA4PW4+DkOam2I205qTQ1NaOk0bNxLy3/+g9fbGdckNOE6ZguPUqagdBz62oijk1eeRVpJGekk6ZU1laISGYe7DCHAKYKZTOPGtbdi1/x1bjZEqxZV/m6Yw5ngzo9wB/7hexx5oTdOZZH2TJF1+MoCSJGlAFEWhqba6O5v09d/+TFVJEQHDYxiTeh2RieO7i8T7YjKaObi1ksIc6/IcWDNNZrOl++8e/o5DmqPx+HFq33yTxg0bMFfXIGxscJw8GUtLKwAOycn9jHCaoii0GFtw1DnSaGhkxZcrUFAY5zOOu4bdwgyDGVeT1nqyrQtu9QfY4bmAv1SOYKcSjRAqHq+yY1RM3/eRNU2SdHXqN4ASQrwDzAeqFEUZ2XnMHfg3EAKUAMsURan//qYpSdLloCgKVcWF1pYDWRk01dby4JsforW1ZfZ9j+Do5o6Da///sm+u76CxphW/SDdUahU5aaXYO+kuTqZp5y6ETod93FhQq2n4fA2OEyfiPCcVxylTUDkMbuyihqLuTJObrRsPD/8zmUW1PDzsFyzStuCetwGyHwdTGwybD5Ezwd4dHjuA7lgDe9/KRAyiPknWNEnS1anfrVyEEJOBZuCDMwKoPwJ1iqK8IIT4GeCmKMr/9XczuZWLJF09SvbmsvHtv3Hq5AmESkXQyFiiklMYPnEqWhvbfq9vru+gcHdnIXjBKRxcbbj99xMQKkF7sxFbR+2Q5qWYTLTu3GktBN+4EXNtLY7TphH4978BYOnoQNW5B91grC1cyzsH3qGgoQCBIMEngRjHFN5M88VgUvhQ9xzjxUFw9IbhC6yF4D3UNA2mnulCrpEk6ft3QVu5KIqyRQgRcs7hhcDUzr+/D3wL9BtASZJ0ZVIUhRMFeRzN3EZ4/DgCR4zCwdUNN19/khYtIyIxuXsrlYHYta6ErLVFoICHvwPjrg8lIl6PUFmLuQcbPJ1ZCF527720bN+BsLfHaeoUnGan4jh5Uve5Aw2ejjUeY33pem6MuhEXGxcaDY0465x5Ku5xZpkEXnnf0JH9Kz4w/Zl2xYG/GhdzIvFRFi9c2mMheJeh1CfJmiZJuvoMtQbKW1GU451/PwF493aiEOJe4F6AoCC5kaUkXQoDyWgoikJl3hHyMreRn7WdptpqVGoNTu4eBI4YhVdwKEue+nW/92ppsGaaCnKqmLwiGs8AR/wiXRk33xo0DXl5zmikJSubpvQ0mjMyCP/yS1T29rjdcguuK1bgOGkSKju7QY1Z3lTO+tL1pBWncbjuMADhLuFMC5rGSvex3LwvDdY8ZV2ec/TmVOQNOB800WyCXPVIfhLX81t0kiRdey64iFxRFEUI0es6oKIobwBvgHUJ70LvJ0lS3/p6q8tiMdNYXW1tYKkofPmXF2hrPEVwbBwpy28hPCEJW4f+C7gN7SaO7DhOQVchuALufg60txgB8It0xS/SdUjz7ygupvbtt2nesBHzqVOo7O1xnDYNc1MTKnt7nKZPH9R4RosRrUpLZXMlcz+dC0CY03BSnG/mDicnkoQ1wBNqHZRlwdhbrHvPBY1Hr1LzF7m8JklSD4YaQJ0UQvgqinJcCOELVF3MSUmSNHTnvtW1o6AafXMZRzMzKMjeDsC9f38PlUrNwid+gZuvHzb2/WeJWk510HrKgFeQEwDbPy3ExcuOcfOtheDuvkPMNBkMtGRmovHywnb4cJSODpq+TsNx2jSc56TiMHEiKtv+a67OdKLlBOtL1pNemo6fgx8vTnkRP0c/nh33FH7ltTRu+4LJ/Ak7YaDm5HI8bx4HnhHw+JHzNuyVy2uSJPVkqAHUF8DtwAud/1xz0WYkSdIFOfOtrmGt+Vg++pD/NDei0dkQOjaeqKQU6/5uKvAJj+xzrJZTHZ0b9p7keOEpvAKdWPZ0IjpbDbf+djwOroMv1gZr0NS8fTtN6etp+uYbLI2NuN54I76//Q020dFEbs8YUiH4V0Vf8e+j/2Z31W4AhrkPI9bz9P51Sza/ClUHqcaF/5qn8LUlmUm+1/Ng1wnnBE9dckrr5ca8kiSdZSBtDD7GWjDuKYQoB57BGjj9RwhxF1AKLPs+JylJUv8sZjPHDu6jLjOD1+dN5EC7I9EWF9r2tROVPJHQsfHobAdeM7T90wJ2bzjWvTzXlWnqMtjg6cxC8OKlN9KRl4fK0RGnGdNxSp2Dw8QUAIQQiAEGTzVtNWw6tonFkYvRqrQUNBTQbGzm4dH3MdusI6RoG6S/AMNuArWWglE/5tn0Y2w3RWNBhVYteCK87y7pOaX13PSmdUkU4JNdZXx873gZREnSNW4gb+Hd1MtHMy7yXCRJGiSL2cyx/Xusy3O7MmlvakRrY8usmFH8aNoYIAJmTOx3nK5MU2FuFbPvjsHBxQafMBcSrwslIk6Pu9/QlucsBgMt2zJoSk+n7cABwr5Yg1Cr8bjnHlSODjikpAx677m69jo2lm5kfcl6sk/sRMGCoc2DW8bM4EF9Co8W5MBXv7MWgjvoYcQCMDSDnRvppjgyTA50FWNaLP2XZWYW1WLsDJ4AjGZFNruUJEl2Ipekq43ZZKSppgZXH1/MJiNr/t/vUalUhMWNI2r8REJi49Dq+s/gdLSZyMs6QUFOFZUFDd2Zpub6DhxcbAgb40XYGK8hzbH90CFq33uP5k2bsTQ3o3J2xmnGDCwtLaidnXG5fv6gxuvKXh2tO8ryL5djVsy46wJQaiYR36RmdUEhw93iiFc6oHQHjL0ZRiyC4AlnvTWXHOaBWiUwdQZOCvQbDCWHeaDVqLozUFq1kM0uJUmSAZQkXQ1MBgOl+3eTt2MbhTnZOHvpue2Pf0VrY8vyZ17AMzAYzQAyOS2nOjC0mXDzccDYbmbL6jzc/RwuPNPU0UHL1q3YRESgCwnBVFtH83dbcEqdjfOcOTgkJSEGmWk61XGKTcc2kV6SToRrBE8kPkGkWyQPjLyLiBojHdu+Zpr4N3bCwD+U68ksmk78lPHwkyO9thqID3bjNwtH8qs1B7AoCroBdP6OD3bj43uSZQ2UJEln6bcT+cUkO5FL0uDt+vIzdnzyEYa2NmwcHIhIGE/U+BRCxyR01xT1peVUB0W7q7szTcExHsx/KBaAxpo2nD0H10upi6W9neatW2lKS6d582Ysra14PHA/+kcfRTGbwWJBaAffbXx9yXo+L/icHcd3YLKY8Hf0Z3nUMu4YdSdYLPDnGGiqpEZxZp05iXWWJHIZzsf3pcjO35IkXVQX1IlckqRLx9jRTsmeXPKyMph88x04eXji7OlFVPIkopJTCBo5GrVm4EHJtx8e4eC2SlDAzdeBxHkhhMefLpoebPDUtZSmmM0UzJqFuboGtasrztfNsxaCJ40DQKjVoB5Yw8lmQzM7ju9gZtBMhBBsKd9CQUMBt0QtZ45wZERxNiLjHRh5h/UtuZnPcLTNmYVfKnSYQKUS/HbhyEEFQrI1gSRJF0oGUJJ0mZkMBgpzssnLyqA4dyfGjnbsnJypmzYLJw9PopInEpU8sELwot3VlOyrYc79o9Dq1OhDnLF31hEer8fDr/8GmT2xtLbSvGULjenpmE6cJOTjjxBqNV4PP4zW3x+HceMGnWlqNbbybdm3pJeks61iGwaLgf9e/1+GuQ/jKf9Z2FccQ2x8GYyt4OBl3XvO1A5aO4hdQXNpPRZlB6CgFhDt43TePWSWSZKk75MMoCTpMjC0tdLa2Iirtw8drS18+fIfsHd2YcTk6UQlpxAwfCSqAWRw2luM5O88SWFuFRX5DdZMk489TbXtuPs6MCLFb8hzbN21i7p//ovmLVtQ2tpQu7vjNGsWisGA0OlwWza07iV7qvZw9/q76TB3oLfTsyxiMakqZ6KENRvm0FILx7ZD7E3WjuDBKefVNGUW1WKyKCiA2XL+W3F9dWOXJEm6GGQAJUnfs65MSIKfPc5VR8nLyqBkTy4BI0ay5Onf4ODqxi2//zNeIaGoBrDPWmujAZPRjLOHHU217WxZnYebjz0J80KIuJBMU0sLzd99h11CAlq9HkNZOa27duGyaCHOqXOwT4hHaAb3K6Pd1M62im2kl6Qz2ms0t464lSi3KJaGL2SWcGJsaS6qTa9ZM00mIOURGH49jFjY555zZzYL1fZQCH5uN3bZdkCSpItNBlCS9D3qyoTEn8ygpXEfasWCo5s7o2amEp08qfs877CIPsdpbTRQ1Llhb2V+A8PG+zL9tuF4Bjpy06+ScPO1H1BB+bnMzS00f/ettRB861aU9na8f/kL3G++GZfr5uGy4HprPdMgbSnfwldFX/Ft2be0mlpxt3VnmPswAOwR/Oy7N6H9lHV57sxME4C6/+XA+GA3Prw7udcluv4CLEmSpAslAyhJusjam5sp2JVJwc5MymMXYzBZaNC4cMBpJInTp3Hv8hmIXrYM6cn6tw9SsOskSufyXPy8ECLjvQFr1+7Bth7oKgQ3NzeTP3kKSmsrGi8vXJcswXlOKnZxcdaxB9F2wGA2cKDmAHHe1ms/PvIxB2oOMDd4FqlqNxLL9qHZ+zWMustaxzTt56Af3uPy3ED1VQjeX4AlSZJ0oWQAJUkXQUdrC3lZGeRlZnBs/x4sZjPOXnpGTTSi06g44jICrUbFoxMS+gyeujJN5UfrSb17JEIl8AxwxMXLjoh4a5+moWWammnevJnGtHQAAl97FbWjI/pHH8E2Jga7uLhBBXUARrORHcd3kF6SzuZjm2k2NrNh6Qa8Hbz5TcB1uNa1ov3u7dOF4CMWWtsQqFSQdN9ZY30fBd/yTTtJkr5PMoCSpCFqbTyFqaMDZy89jdVVrP/HK7h4+xB/3SKikifiHRaBEIIP/YL7DA7amg3dG/ZW5jV0Z5paTnXg6GZLXGrwkOfYvHUr9R99TMu2bShGIxq9HufrruvOQrnffvuQxs08nslPvv0JjYZGnLROTAuYzByNB+6KNbjzOlUBJdsgdkVnR/AUUJ/966YraHKz1/GbLw/Kgm9Jkq4qMoCSpEFoaainYOcO8jIzKDu0n+ETpzL3R4/jGRTCbX/8K55BIedliHrKhLQ2GgCwd9ZRVdLEdx8dxdXbnvi5IReWaWpspHnzZpxmzkTl4EDH0aO0Hz6M28qbcEpNxW7MmEFnmkwWEztP7CS9JJ1k32TmhM4h3CWcyX4TmKP1ZHz5QXRb37dmmuz9YcxKiLsdEu46L2jqcuZbciohsCiKLPiWJOmqIgMoSRqgdX99iSMZW1AUC26+/oxbeCPR4639mYQQeAWH9nl9a6OBoj2nM01xqcEkLwonYJgbK3457oKCpqZvNtGUlkbz9u1gNOL/8ss4p87G7dZbcb/zzkEHTQA7T+wkrTiNjcc2Utdeh73GniDnIAC8FMHz2z4EYwvYe56daQLQ2vY59plvyaEoqFQCgSILviVJumrIAEqSetBUW0N+9naOHdjLgp88jUqlRh8Shou3D1HJE/EMDB5wsKMoCuv+to/SA7UoCt2ZpshEayG4WqPCw39wrQe6luCMFRUUzJkLRiMaP1/cb7kF5zmp2I4eDYDKpv9NhbtYFAsljSWEuYQB8OLOFylpLGG06ziiLPbcaijDt2AXjLwTHDxh4o8hMKnH5bn+nPuW3K/mx1DfapAF35IkXTVkACVJnVoa6jmS8R15mRlU5h0GwDMwmOa6Opw9vUi4/oYBjdOVaaopa2LqzcMQQuDq44BnoNOFLc81NND0zTc0pqWj8dbj97vfofHzw+uhh3AYn4ztqFGDHteiWNhXvY+0kjQ2lGyg0dDId8u/w15rzx9CFqPL/QLX7P/gIDqoVZw5OXIZ3l0XT/npoJ+hi3xLTpKkq50MoKRrWmN1FUKtwsndk+rSYr794C28gkNJWX4rkUkT8PAPHNA4bU0GCrs27M2r7840GdpM6Ow0pCzpu89Tn3NMS6fhk09oycwEkwltQAD28Z2tBoTA8757Bz1mTmk9/z64nqzG16nrqEan0jHRbzypOm/UFjMAoSfzaC7bzufmiXxpSSZHGcajniP40ZCf5GzyLTlJkq5mMoCSrjkNJ0+Ql7mN/KwMThTmk7hwKZNXriIwZjR3/uV13Hz9BzROW5MBlUaFjZ2Gkv01ZxWCh8fp8fAfWqbJVF9P86bNuCxaiFCradu9G0NpKR53rMIpdQ62MSMGPa6iKByqPURaSRo+2jh++0k7RnUT9np3fhyczPKWchwzP7XWNPkkQ+QsdofcycrNcbSZrfVTOlmfJEmS1E0GUNI1Q1EU/vObpyg/dAAAn/BIJq1c1V0IrtZo+g2eujJNhblVVBytZ+KySEZPCyR8rB6vIOehB011dTSt30Bjehqt2TvBbEYXEox9fDxej/0Y/c/+b0hB05G6I6SVpJFekk5FcwUaoSHRBQymYYSYFNae3IJD1Qaw94DRyzo7glu/j+1lHXRYrMGTAJbGB8iMkSRJUicZQEk/WHWV5eTt2EZ1WSnX/9gagASOGE143Dgik1Jw0Xv3P0gns9nCV6/upfyIdXnORW9H3JxgAoe7A6Cz0+AZMLRC8Lb9ByhZvhwsFnTBwXjcfTfOqbOxGT4cAJVt32+0nTtmbXstnnaeKCg8tOkh6trqSPJJ5D7PJKZXFdNqqmaLZgTHTD78R5lJypyVRI2bc14h+LmF3kviAgb1fJIkST9kMoCSflAaTp7g8NbN5GVuo6asFAC/qOEY2lrR2dkz4caVAxqnrclaCN5U107ywnDUahX2LjbEzQm2btjr7zi0TFNNDU0bNtCYlo5dbCz6xx/DdvgwPB98EKeZM7CJjh7SuAX1BaSXppNekk6zwdoRXK1S86fwFYQUbsV155edLQc8cIm/o7uAe3TYa0TJ7VAkSZIGTQZQ0lVNURRqy0qxd3XD3tmFyqOH2P7JR/hHj2DaqnuJTJqAk7vngMZqazZQ1FkIXpHXgGJRcPN1IHF+KGq1ipmrRgx5ng3/+5RTa9bQumuXNdMUFoZGrwdAaDR4PTS00uxvy77l5dyXKWgoQCVUJOrjuMUjDovFjFqlZkzZHijeBqNvhJjF1uU5tYZ4GFBAJAu9JUmSenZBAZQQ4jHgbkAB9gN3KIrSfjEmJkm9URSF6tJi8rMyOJqZQX1lOVNvu5v46xYROW4CQSNjcXQfWLFzW7MBrY0ajVbNoW2VZH5eZF2emx1ERMLQM03Gqipad+zAZeFCAFoyMjDV1uJ5//04zUnFJjJySOOWNpaSXpLO9MDpRLhFoFPrcNU58/Pg65lZVYZnTro10xSxGHxjYdZvYf7Lg+7TJEmSJPVtyL9VhRD+wCPACEVR2oQQ/wFWAO9dpLlJ0nlMRiP//OnD1FWWI4SKwJhRxM9bQETieAC0trZo+6kZOjfTNPuuGCLi9Qwb70tQjAeeAUMMmk6epCl9PY3p6bTl5oKiYDdmDLrgYHx//9yAapl62lS3rLGse3nuSN0RAJx0TkS4RTDBomNC7obu5TlG32jtCK6PsQ5o7z7o55AkSZL6d6H/WaoB7IQQRsAeqLzwKUmSlaIonCwqIC9zG21NjaTe/ygarZaw+HHEz19EROJ47J1dBjxeR5uJ9Df2U37Uujzn4mXNNHkGWou/HVxscHAZeOfurjkKIWj+7jvK7rsfAJuoKDwffgjn1FR0wdaNgAcaPN30xg6MZgWtxsjH90xhZIA9S9Yuoc3UxmiPkfw06DpmVZdjLKrgteMFjA/yIy52OQxfACGTZKZJkiTpEhnyb1tFUSqEEC8Bx4A2YL2iKOvPPU8IcS9wL0BQUNBQbyddQ6pLizm4ZRP5WRk0VlehUqsJibXW9ahUaqbccifQma3JKei1wLkr02TsMDNmZhA6WzVCJYibHUR4vH7omabjx2lMT6cpLR3neXNxv+027OLi8Hr0EZxS52AT1veeeL355649KC7fYee8H4SJ/+WGEx88ij+GLyfqWC5++74FQzMmGzdeaXPgVeNRdBoVH979K1mnJEmSdIldyBKeG7AQCAUagP8KIW5RFOVfZ56nKMobwBsACQkJytCnKv1QKRYLlflH8QoKRmdnT8neXHZ/vZbg0WMYv+QmwhOTsXN0OuuanNJ6bn4rE4PJ0hlEJBMf7NYdNBXmVnVnmvTBTsTOCEQIwfUPjxnyPOs++CeNX31F2969ANgMG4baxZoBUzs54fnAA0Mad/Oxzbx94G32Nu/F1hssbX74NvmCl4Wc0npCsr9B33IIRi6BmMW8UerLqxsKsShgNFnILKqVAZQkSdIldiH5/plAsaIo1QBCiE+BCcC/+rxKkgCLxUzl0cPkZWaQn5VBc30d8x55kuEpUxg1I5VR01Oxdey9r1JmUS0GkwWLAmqDhczCGuKD3dj1VQn7Npfj7GXH2NlBRMTp8QwcYqapooK2fftwnjsXgKZvvsFiMOD14x/jlDobm9ChZZqqW6vZULqBmcEz0dvraTQ00mFq4xa3qXjvOcJS8x4cRTtPNqzgpjcrcTXfTIvGhQ9iU4gPdiNJU49uc3F3fybZHVySJOnSu5AA6hiQLISwx7qENwPYdVFmJf2gtZ5q4IOfPkxLQz1qrZbQMfFEJaUQNjYRAFuH/htSxvu4MMaoIbxdRZBJxQidtcZo9PRAho33HXLQZCivoCk9jca0dNr37we1GocJE1C7uBD4j7+jsrMb9JgANW01fFP6DWklaeSczEFBwU5jx+LIxSxQ7Fl4ILN7eW636yxeqxrJtjwjJtRU4YraRHemSfZnkiRJuvwupAYqSwjxCZALmIDddC7VSVIXi9lM+eED5GVmoNFpmXrbPdg5uxCVPBG/qGGExSWis7M/77qe3kYDaGno4JsPDlN+pJ4ZFi04avAb5UH8MGuvJxevwQc4XYXgDZ9+xvGnnwbANiYGr588jnNqavcy3WCDJ3NnL6ZTHaeY9cksTBYToc4h3O83ndT6KsLbTAAIn1Ew8gaIWYwmZBLZW0rZsv4ols5xBJyXaZL9mSRJki6vC3plR1GUZ4BnLtJcpB+QiiOHOLRlE/k7d9DWeAqNjQ3DU6YAIIRg+h339XrtmfVNzioVzydFEurlwLDxvtg6aeloMTJ2VhAR8UNfnjMcO0ZjWjpNaWm433knLvOvwyE5Cf0TP8EpNRVdYOCQnruhvYFvjn1Dekk6WrWW12a8hovOmZ8HXU/syXwiDm9BGLaAnTsETbZe5OQDC/7aPcaZW6ioVYIbEwK5IU7uQydJknQlke88X0NeWHeYtIMnmBPjw8/mDb+oY5tNJsoO7CVo9BhUKjX52ds5vO1bwuISiRo/kdDY+H77M3XJPFxFVIsgyqAjyKSiaN0xDMPcGDbeF7VaxY1PJQ5pjorJRO3b79CYnkbHocMA2I4ejcremlnS+vnhcffd3ef3lgXryXdl3/Hx0Y/JqszCpJjQ2/oxTIliV0kdCSHuLD3yLTSUdWearC0HtD2OJZfoJEmSrnxCUS7di3EJCQnKrl2yTOpyeGHdYf6xpaj75/snhw0qiOopmDCbjJTu20NeZgaFuzJpb2nmxl/+nqCRo2lrakRjY4NWN7C+Sh1tJmzsrPH86pdzqT3cQIPKQqGNhVUrYpg0zm9ImaaO4mIMRUU4zZgBQOH8+agcHHBOnYNz6my0/v69Pm9Pb/l1aTI0sblsMzODZmKvteft/W/z36P/IdU5kuTjJxhZtA0NZlIsb/Dm3VOJd2kCJ99egyZJkiTpyiOEyFEUJaGnz2QG6hqRdvDEeT8PNIDKKa3npjczu9/6+vieZELUTXz8yyfpaG3Bxt6B8IQkopJT8IsaBoCdk3O/47a3GCnaU01hThXlR+q56ZkkXL3tmbkkioPlpzjQ2sqPwj0HnYHpKCruLgTvOHoUlZMTUdszEFotof/974Bqmc58y6+rVUC0r5Zvy78lvSSdjIoMjBYjdlPtmBU8i9tw5s68gwhDJm0aF9ZYkvnKnESzorYWf0+LGNQzSJIkSVc2GUBdI+bE+JyVgZoT4zPgaz/NLsb/VCERLYU0aF35NDeA3y4YwbCUKYTFJxI0cgwa7cAzKw1VrWz9dx7lh+uxWBScPW0ZMysQjU4FgGeAI1MCHJky8MfrLgSvefNNqv/0/wCwGzsW76d+htPs2YjO+Q20EPzMOiStRkWkn4kp/56CwWJAb6dnhT6J1FN1jDZa56z1HgkjF8OIRRxSj+LZd3IwKrLNgCRJ0g+VDKCuEV3ZpsHUQBXl7uTQ1s24ZWcy32SgTWVDo9YZBVCp1cy8+8EB3bsr02TnqCU01gtbBy2NNe2MmRVIeJweryCnoS3PFRRYC8HT0/D++c9xSE7mWORYym68h8CF1zE8IXrQYwK0mdqoUbIZP34drW22/DThaeICnCgsm0xyXSWxBRmoDLvAzg0ir7depB/eXQgeD7KGSZIk6QdOBlDXkJ/NG95n4GRsb+fYwX2Ex48D4PC2bzm2fw9+8Sm8WebIMZ0vao2Gn8YF9Huv7uW53KruTFN4nFd3AHXzr5OH9AyWlhZq33mXxvQ0DAWFIAR28XGAsNYtfVONwRSNbk0RH3rpBxW8bK/YzmcFn/Fd+Xe0mdpwt3Vnse8k6xgWCw/sTQNTW3emidDJfRaCy8BJkiTph0sGUNc4Q1srRbk7ycvKoHh3DiZDB6v+9Dc8AoKYfsd92Ng7oFKriR7AG2lGgxmtTg1A2hv7qTjagJOHLbEzA4mIt2aaBktRFDry8jFVVeE4aSLCxob6f/8bm9BQ3H55E06zZqHV6wHI3FxwXt1SX0FMh7mDzMpMJvpPRK1Ss7ViK1nHM5nvPpo5jY3EF25HXXYcJv4aVGq4fS24BctCcEmSJEkGUNeysoP7+PT5ZzEZDTi4ujFy2kyiklJw87O+mXZmIXhvGZX2FiPFe6spyKmmMr+e23+fgq2jlqQF4ag1YkjLc9agKY/GtDSa0tIxFBejDQwkfH06QqMhYsP6HmuZzq1b6qn2yGg2sr1yO+kl6Wwu20yzsZl3Ut8h0SeRB3HjJ0XFaAz7rMtzMYusf7p4ykJwSZIkyUoGUNeI9pZminKyycvKIHjUGMbOuR59aDijZqYSlZSCX/RwVCr1gMerKW9mx2eFlB+pw2JWcPKwZdSUACwWa1sM33CXfsc4szVCXJBrd6C1/+e/Rvvpv1FUKhwSE3G/7VacZs3q/ry3QvDe+id13SfQu5Hndv+IVlMz9mpHUt2HkdrUzBiz9bmd9CNOB02hU2SmSZIkSeqVDKB+4A5t3czR7Vso2bsbi9mEk4cXwaPGAGBj78D0Vb13BD+TNdNUg4uXLX6Rbmht1NSfaCF2eiDh8Xr0wYPLNOWU1nPzmzsIrC2j/vg+bBvziHjj7xzQevDbej3+Y25gV2Asf3toFsGDqCXqypSZLCa2V27nwwNr2XzARHv1VGzVRvz0epa02HJP+2HcxCFrpmnkMfCPg5CJ1j+SJEmS1A8ZQP3AtDU1cjz/KGFx1m7dB7/dQMPJE4ydez3RyRPxCY9EqFQDGqsraCrMraLssDXTNGKSH36Rbrh42XHr78YP6e05U3091X/6E69lfItfSy1moaIhejSW9g4yy2rZ5xrMHpdg1IJ+65i6dGWZ3NzLKWjdwsbSjdR31KMVdjgSQ6sCFpPCmtodGNGQbknCbswSFiy6SWaaJEmSpEGTAdQPQGvjKQp27iAvM4NjB/aCAve/8U/snV2Y/9hT2DoMfL84s9GCWmsNsD77Uy51lS04udsyerq1EFwffLoQvGvM/rY8URSF9gMHUdrbsE9MRGi1BG1Zxx6XID6Jms6uwFH840czsQt2I7m0vt86prPmazHzv4OZ/GL1KYxmBTv/j7F3Pcp0t2GkCj3jC3ZwzNDGdWIpFrUtN5l+zVGLH0Kj48OEZBk8SZIkSUMit3K5yh3dsZWvXnkRxWLB1duXqOQUopInog8NH3DQ1NFqzTQV5FRRVdrI7b9PQa1VUXqwFlt7LfqQ3pfnetvyxBo0HbAWgqevx1hejt3YsYR8/BEAltZWdld39Bh49ReQWRQLe6r2kFaSxobSDdS01dBS+DgWg56Vus/4qfYrXM2tYOsKw+eT7zWL9e0xJId7Asj+TJIkSdKAyK1cfiCa6+vIz95OXuY2Rs+cy/CUKfhGRjNu4Y1EJafgFRw6qCW1k8WN7FxXTNmhzkJwd1uik30xGc2otSqCY/rvoH3WlidGc/eSW+WTP6Xxyy9Bo8Fhwng8H3gApxnTu69T2dsTH2zfYxDTVw+lAzUHeHTTo1S1VWGjtmGycyRRNTa8Z7RwAqgz+VPgOY2EuXdCmLUQPBKIPGd8SZIkSboQMoC6wlksZvakf0VeZgYVRw+BouARENQdKDl76pm44tYBjdWVafIMdMQzwAmLRaGuosW6PBen7zPT1JvkUHdGnjpG8rE9jD9+EOeb3gfAZeECHCZMwGnGdNQufb+R91HWMb4+cJy5I31ZmRTUfVxRFPbX7Ce9JJ1It0gWRSwi2N6X0bZ6ZikuTCneiUN7PiadC1maak4afdikSuaehT8GGSRJkiRJ3yMZQF2BGmuqqS0rJXRsAiqVmn0b0xBCMGHpSqKSU/AICOp/kE7dy3O5Vd2ZprjUYDwDnPAJc+bW54ZWCG48cYK6d9/Fef0G/nD8OBa1BiV+HJHO1vopx0mTBjTOR1nHePqz/QBsza8BIDaiifTidNJL0qlsqUSj0nBb+GKIWIST2cSfc78GWxcYvgBGLEYTNoWHyptJkEtzkiRJ0iUia6CuEI3VVeRlbiMvK4Pj+UfR2dnxwJsfodFqaW9pxtbBccBjWcwWVGoVikXhvacyaD1lwNHdhog4PeHxerxDnAff3NJioW3PHoRWi92oURgrKiicOw+HlBSc56TiOG0aamfn/gc6x61vZ7E1vxqhrUMxejAp0hNtwOvsPpnLeJdIUttNTCvOwdkvDm773HpR2U7wjQWNbtD3kyRJkqSBkjVQV6iuYmn/ip0Urv0QAH1oOBNX3EZkUgoarfUNsa7gqa/i6o5WI8X7aijMqeJUdRs3PZOEUAkmLYvC0d1m6EHT7t3WDXvXr8d08iROs2YS8Ne/ovX3JypzByp7+yE9u6Io5DfkY++9AQfzNwhdHS35TzN35CiSG33xqKzDpWi9tRB82PUw8obTFwcmDumekiRJknSxyADqEqs/UUnejm3s2bqFf4vRlOj88Tab+em85UybMwtXb58er+vtbbfK/AZ2ry/l2OE6LCYFRzcbwuP1mI0WNDo1EfH6Qc1PUZTuQOvYXXfRuiMTodPhMHkSzk88geO0qd3nDjV42l21m2e2P0PxqWJUQsVwh0Di6zQEzomy1kDtDLUGTTGLrRv2ykyTJEmSdIWRAdQlYOxoJ+erNeRlbqO6tBgAoQ/GpLJg0UKV2o3KoGgK223I3FzQY4ap6203jQUiWgSZ+08SH+xGW7OBmvJmRk0NICJOj3foEDJNZjOtOTk0paXTsn07oWs+R2Vjg9uyZbguWYrj1KmoHR2G/PzFp4pJK0ljlOcoJvpPxEvngqciuMUmjBmlu/FoK7HWNIWYrBck3g0yySRJkiRdwS4ogBJCuAJvASMBBbhTUZQdF2FeV73a8jKa6moIGT0WtUbL7rS1uHr7MvW2u4lMmkB+i5Y33spE3dkw0s1e12OGCaCjzUR4i2Bxi44ggwoNgqBW631CY70Ii/VCqAZfCN5RXEzdBx/QtGEj5poahK0tjpMnY244hcpbj/PcuUN+/tLGUtJLrIXgefV5CAR3R69kov9EAjraeGfvt9agadj1p/eek5kmSZIk6SpxoRmol4E0RVGWCiF0wNDWdH4AFEWhtqyUvKwM8jIzqC0/hrOXN3f/9S1UajV3vfwGOjt7ckrr+ed+ax3Th3cn87/ccgRwoPLU6X5KJguZhTXWPd2MZt5/KgNju5lhzrYYQmyJSfbF0c+e13rJVvU6R5OJ1l270Hh4YBMZiaWpiVOfr8FxyhScU2fjOHkyKoehZ5oa2htwtXUF4JFNj1B0qoixTiH8zCaUmaV78XYusZ6oHwG3fQFB42XQJEmSJF2VhhxACSFcgMnAKgBFUQyA4eJM6+rQ9QajEIItH77LrrWfIoSKgOExxN55P5HjJpB7rKG78Bs6zsoy/Wp+DJ/mlluX5tQq7BGEGFREm9Q4Z9XDdNBo1aQsicDD39FaCK4SvdZD9ThHk4nW7GxrIfjGjZjr6nC9aQW+zzyD7ahRRGVsG3ItE0BFcwXrS9aTVpJGWWMZm5dvxkZtw6+1Afic2INP8ZbOTNN8GL2Mzi/M2uRSkiRJkq5SF5KBCgWqgXeFELFADvCooigtZ54khLgXuBcgKGjg/Ysut97eeFMUhariws5M0zYWPvELPAODiUgcj6u3DxGJ43Fwdese48xA54a4gLOyTF8fOI7BZCHQoCLOoCHcpEYooHPWEhrpxq6SOrKK60gO88An+HQzyrO6f5ss522421UIrigKxYsX05FfgLC3x2nqFJxmp+I4ZTJgDfzEEIOnnSd28uecP7O/xtrDaaRDIPdqfTCbDKC2YYxDIERf11kILpfnJEmSpB+WCwmgNEAc8LCiKFlCiJeBnwG/PPMkRVHeAN4Aax+oC7jfJdNThme4m4pdaz8lLyuDUydPIFQqgkbGYjJYk27+0cPxjx5+1jjnBjoC0GlUCKOFKJOG1Ag9O0vq8GgXeJtV+CZ4kTItCO8QZ3LLGnrNMiWHeZy34a5iNNKSlU1TehrtBw8R8r9PEELgvmoVKicnHCdNQmVnN+TvpKq1ig2lGxijH0OMRww2qDC11fFjm2BSj+0noDXDmmlqOgE2TjD1Z0O+lyRJkiRd6S4kgCoHyhVFyer8+ROsAdRVL7OoFoPRjFf7SXSYySyKZFSyH3vWr8M/ejhJi5YRnpCEvfP5W5Scmbk6M9CxV6mYpLMnxlVPfeEpsEC81pYP704mM7+GpAgPEkLcz55DL1mm+GA363VFtYxX6vB580/kb9iI+dQpVPb2OE6fjqWlBbWjI65Llgz5e6hpq2F9yXrSS9LZXbUbBYUHY+4kxiOG0S2N/OfADrBxgeHzYcQiCJsqM02SJEnSNWHIAZSiKCeEEGVCiGhFUY4CM4BDF29ql55isVCZfxTPAxu5vSwDR1MzJ2x9SA67EZ2dPQ+88U+0Nra9Xn9u5upfdyVZA51DVfBlJYVrS9E5aYmdGkh4vB6fUGtNU0/1Sz1lmQAUg4GWzExGhYUTPy2Cpk2bqExLx3H6NJxTU3GYOBGVjc2QvwOD2YBOrcOiWFj6xVJq22uJsPPmQZtAZpcdJMy3znpiyCRY+V8ZNEmSJEnXpAt9C+9h4MPON/CKgDsufEqX1pmNI7/660sc3b4FtUZDcOQoGn1HsGTKpO4Ap6/gCaxZI4wWog1qhjWryfoojx89nQzASxtLKVOZqbHp4MMkT3yD+95g98wsU3KgM1HFe6n8ezpNmzZhaWzE8+GH8PrRj3CcNInIjG0XFDTVt9ez8dhG695zzZV8tfgrVELFs9ogAo6VENFyzJppGnYdRM62XqTWQNTsId9TkiRJkq5mFxRAKYqyB+hxj5grmcVipuLIIfIyt1GwK4tbn/8L9i6ujJw6E1XQCIrsQxg1zH9Qm9KW7K/BLfcUDzTYokHQrFLw83cCrIFVls6IRQG1mfOKvnuiKArxwW7E+TmSP3065dU1qJyccJoxA6fU2TikpAAgtFoG3wHKaueJnby1/y2yjmdhVswE23oyV+uJwWLARm3DVJ0nRMy1FoLLTJMkSZIkdftBdiLPKa3n09xyFGBJXEB3sNJYXUX2mk/Iz95O66kGNFodoWMT6Ghtwd7FlVrXUB7PPYnBVIpuW1mf7QEM7SZK9tcQPkaPWqviZHEjhup2AhL0nHBWMWOcb3dNU2/LceeydHTQkpFBY1oa5poagt55B6HV4nnvfeiCAnEYPx6hG3oQc6rjFJvLNhPvHU+gUyBNbfUcqz3KHVpfUisOE918DGHjAm2nwFEP8//fkO8lSZIkST9kP7gAKqe0npvetNYhqRQzO7Zs55eLxzJ98v9v796jo67TO46/n5kk5EImBBLu96ugwBIRsSgiIAngihdkXYpWoaWu9bLeemr1HD1de/a0PavbnrUX23q27a5uvWyVU1cGldAURC2IsoKiAUIIEkISMrmR+7d//AZlOVxmEjJJZj6vc3JIMr/M7yHPmeST5/ud38wBg71Fmxk3azaT585j3KzZpKR++8y0C10eoKWpjZLdlRTvrKB0TzXtbR2k/EkSY6fnkFcwhjk3jDvrFcF/ZznuLBe+bPx4Fydefpn6zZvpaGjAl5VF5uJFuLY2LCmJgXes6fT3o76lnsLDhQRLgmz7ehttHW088p37uWvmehaEqrnui11eaLpkuXdF8PHXadIkIiJyAXEXoLZ/dYxhtSVMaNjP+MaDpHU08+nbpSycP4dAzmDu/ZeXSDrHFOd8k6KaY4386kcf0d7WQUZWCpfOH87EvMEMHe/tZUpO8Z+3rsvHZH8TnDqammjYupW0vDySBg6k+auvaCgqIrMgn0BBARlXXtmlSdOpfV3N7c0seW0Jda11DE0ZwO8nDaHg631cWt8MgO+SZbD6lfDyXOf3UImIiCSauAtQqe+8wI3HvqTFkjmQPpZDmRN4Zt1t39x+rvAEp02K9h1nYpufY785zNbcSq5eOYmswWl85/pRjLl0EEPHZ0X92nMdTU3UFxVRF9xEfWEhHY2NDH36abJv/x5ZN61gwC03Y8nJnf5/N7Y2UlRWRLAkSKglxIv5L9LPknk0aSgTjh5lel0pvlOTplHhV+pNDcDk/E6fU0REJFHFXYBasHIV+ysbKGrIJtefzD2n7YG6kIOfHqdiezn+z6ooDk+ackd7G8HNjLkrJnSqpvbaWoqvC1+bKTubwPLlZBbkkzFnDkCXnkG3o3wHL3/xMkVlRTS1N5GTnMmS9FG0d7Tj9/m5xaXD+PzTNoJr0iQiItJVcRegJl4xl4lAJHOVlqY2Du+tZvysXMyMkt9WcexgiEuvGc6EywczrDOTpsZG6ouKqA0GMfMx4tmf4A8EGLR+PWnTLyN9zhwsqfPf9qa2JrYd2UbekDyyU7M5cOIrdnz9Piv82eRXfEVebSn+tKPQ1gwp6fC9X3T6XCIiInJ2cRegLuTUs+f27zzOoT1VtLd2cNvjsxk8JsC8WyeyYPWUqEMTQP22bdS88ir1RUW4kyfxDxpEYPmyb/Yj5fzx+s7X3N7CtiPbCB4KUlhaSGNbI09d+QQrL7mdm6qPc8uXe0nqlwWXLPOuCD7hOk2aREREulFCBajygyHeeHYX7a0dpGelMO1qbyN47ihvmS4lLfJvR0dDA3VbtpC5aBG+1FROfvIJjTt3knXTCgL5BaRfMRvzn39jeSRCzSGWvr6UutY6spLSWWoB8qsquKLZC3kp02+DnMkKTSIiIjEUtwGqpamNQ7+tovjjCoaMC5C3ZAw5I/tz2TUjGD8rl2ETol+ea69voH7LFuqCG6kv+l9cczMjn/8ZmYsWMWjtWnLuuadLoam1o5WPjn7ExpKNOOd45upnyPL14w5fNtOry7kyVEpyv4C3ETxnovdFgWHem4iIiMRM3AWo/bsq+PKjYxz6rOqbSdOQcQEAkpL9XL1qUqfut6W0lAM3fBfX0kJSbi4DVq4kUJBPWl4eAL60tAvcw7l9UvEJbxS/wbul7xJqDtHfn0p+YJK3/Jecyg/qW2DsEi3PiYiI9BJxF6C+2F5ORUkt0+YNZ+LluQydMABf1JOmeuoLC6ndGCR52DCGPvkEyaNGMXDdWvrPm0daXh7m83W6xvaOdnYe28nMwTPp5+/H9rKtvL3/v7nOn0VBdQO/FyolJdAIzoEZrNvk/SsiIiK9QtwFqIV3XkK/9OSoQxNA3bvvUvP6r2nYuhXX2krSkCGkTp0KeJcxGPzgg52uq72jnY8rPiZYEuSdQ+9Q3VTN3y54joVjFrOm8ih3HygmNSUTpizzrgg+YSGcCmkKTyIiIr1K3AWotP6RX8G7vbaW+v8pIrB8Gebz0fD++zR98QXZq1eTWZBP2syZXZo0nVLeUM7qt1Zz/ORxUn3JzPdnkX+ikataHACZeXfDmKu90KTlORERkV4v7gLUhbSHQtS9t5na4EYa3t8Ora2kjB5F2syZDH7kEYY8+WSXQlOH62D38d0ES4JkJGdw36z7GGIpzG/zM/dEI/NDVaSfmjRlDvW+KGfit5vCRUREpNdLqAB18tNPKVlzB7S2kjx8OAPXrCFQkE/qjBkA+DIyOn3fe6v28taBt9h0aBPlDeUkm58bBs2EWWD9AjxdWQmjF3+7PKdJk4iISJ8VtwGq7cQJ6t97j9qNQdLyZpF77730mzqVQXfdReb1i0mdPh3rwt4i5xz7TuxjSvYUzIzX973Kr4v/i3n+LB6oOcmCmkoy69O9g/1JcN/Ob/c0iYiISJ8WdwEq9OabhN7cQMOHH0J7O8kjR9J//jUA+FJSGPzIw52+71OhKVgSJFgS5HDdYX657JfMyJ3BPcfKeLCkhEBSf++K4AU3e5OmUxSeRERE4kbcBai6d9+jpayMQWvXklmQT+q0aV2aNJ1yMHSQBzY/QEltCX58zEkK8IehJsa2tACQO+cHMDUcmpJTu3w+ERER6b3iLkAN+/GP8WWkdzk07a/ZT7AkSE5aDqumrGJ4h48xjbXcGWpiUU0lA5MyvElTivcyMIzIuwjVi4iISF8QdwHK37/zG8EPhg5+szxXXFOMYdw8eA5MWUW/tGx+dqQMJi6CJTdp0iQiIpLA4i5ARau8oZyhGd7lBH668zkKD29hlj/A47VNXF9TSa4b7R2YGoBHvwRf118gWERERPq2LgcoM/MDO4Ajzrkbul5S9ztcd5hgSZBNJZv4vPpzNt66kRH9R/DD8iP8eWkZQ/zpMGUpXH/mRnCFJxEREbk4E6gHgc+BwEW4r261r3ofT73/FHuq9gAww5/JY3Ut9G9pAmDc3Acgby1MWKTlORERETmnLgUoMxsJLAf+Euj89QG6SXlDOZtKNjEycyQLRy8kt6UJX00pD9c2sSRUxQhfeNJk4cnS+Gt7tmARERHpE7o6gfop8KdA5rkOMLP1wHqA0aNHd/F0F1bRWME7h94hWBJkV8UuAFYOv5aFoxcyMDWblw4fhskFcP1NmjSJiIhIp3Q6QJnZDUCFc26nmS0413HOuReAFwBmz57tOnu+SD1c+BCfVu5msj+D++uaWVJTxdi0Ou/GAaPhsf2QFPkLDouIiIicqSsTqHnAjWa2DEgFAmb2C+fcmotTWuc8duwomUe/Zrylestzi2/2Jk2nKDyJiIhIF3U6QDnnHgceBwhPoB7t6fAEMPOqhwDzrteUnNbT5YiIiEgcir/rQE39bk9XICIiInHuogQo59wWYMvFuC8RERGR3s7X0wWIiIiI9DUKUCIiIiJRUoASERERiZIClIiIiEiUFKBEREREoqQAJSIiIhIlBSgRERGRKJlz3f7ydN+ezOw4cKibT5MDVHbzOSR66kvvo570TupL76Oe9E6x6MsY51zu2W6IaYCKBTPb4Zyb3dN1yO9SX3of9aR3Ul96H/Wkd+rpvmgJT0RERCRKClAiIiIiUYrHAPVCTxcgZ6W+9D7qSe+kvvQ+6knv1KN9ibs9UCIiIiLdLR4nUCIiIiLdSgFKREREJEp9NkCZWYGZ7TOzYjP7s7Pc3s/M/jN8+4dmNrYHykwoEfTkYTPba2a7zew9MxvTE3Ummgv15bTjbjUzZ2Z6unY3i6QnZrYq/HjZY2YvxbrGRBTBz7DRZlZoZrvCP8eW9USdicTMXjSzCjP77By3m5n9Xbhnu80sL1a19ckAZWZ+4HlgKTAN+L6ZTTvjsHXACefcROA54K9iW2ViibAnu4DZzrkZwGvAX8e2ysQTYV8ws0zgQeDD2FaYeCLpiZlNAh4H5jnnLgV+GOs6E02Ej5UngVecc7OA24G/j22VCennQMF5bl8KTAq/rQf+IQY1AX00QAFzgGLn3AHnXAvwK2DFGcesAP4t/P5rwCIzsxjWmGgu2BPnXKFzrjH84QfAyBjXmIgieawA/Ajvj4ymWBaXoCLpyR8BzzvnTgA45ypiXGMiiqQvDgiE388Cvo5hfQnJOVcEVJ/nkBXAvzvPB8AAMxsWi9r6aoAaARw+7eOy8OfOeoxzrg0IAYNiUl1iiqQnp1sHvN2tFQlE0JfwyHuUc+6tWBaWwCJ5rEwGJpvZNjP7wMzO9xe4XByR9OVpYI2ZlQG/Ae6PTWlyHtH+7rlokmJxEpHTmdkaYDZwbU/XkujMzAc8C9zVw6XI70rCW5JYgDepLTKz6c65mp4sSvg+8HPn3E/M7CrgP8zsMudcR08XJrHXVydQR4BRp308Mvy5sx5jZkl449aqmFSXmCLpCWa2GHgCuNE51xyj2hLZhfqSCVwGbDGzEmAusEEbybtVJI+VMmCDc67VOXcQ+BIvUEn3iaQv64BXAJxz24FUvBe0lZ4T0e+e7tBXA9T/AZPMbJyZpeBt5ttwxjEbgD8Iv78S2Ox01dDudMGemNks4J/wwpP2dMTGefvinAs553Kcc2Odc2Px9qbd6Jzb0TPlJoRIfn69gTd9wsxy8Jb0DsSwxkQUSV9KgUUAZjYVL0Adj2mVcqYNwJ3hZ+PNBULOuaOxOHGfXMJzzrWZ2X1AEPADLzrn9pjZXwA7nHMbgH/FG68W421Au73nKo5/Efbkb4D+wKvh/fylzrkbe6zoBBBhXySGIuxJEFhiZnuBduAx55wm6N0owr48AvyzmT2Et6H8Lv1h3r3M7GW8PyZywnvPngKSAZxz/4i3F20ZUAw0AnfHrDb1XkRERCQ6fXUJT0RERKTHKECJiIiIREkBSkRERCRKClAiIiIiUVKAEhEREYmSApSIiIhIlBSgRERERKL0/xlrXDOUgNmhAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1, figsize=(10, 4))\n", - "choice = numpy.random.choice(X.shape[0]-1, size=100)\n", - "xx = X.ravel()[choice]\n", - "yy = Y[choice]\n", - "ax.plot(xx, yy, '.', label=\"data\")\n", - "xx = numpy.array([[0], [1]])\n", - "for qu in sorted(clqs):\n", - " y = clqs[qu].predict(xx)\n", - " ax.plot(xx, y, \"--\", label=qu)\n", - "ax.set_title(\"Various quantiles\");\n", - "ax.legend();" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/regression_confidence_interval.ipynb b/_doc/notebooks/sklearn/regression_confidence_interval.ipynb deleted file mode 100644 index 46739833..00000000 --- a/_doc/notebooks/sklearn/regression_confidence_interval.ipynb +++ /dev/null @@ -1,700 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Regression with confidence interval\n", - "\n", - "The notebook computes confidence intervals with [bootstrapping](https://en.wikipedia.org/wiki/Bootstrapping_(statistics)) and [quantile regression](https://en.wikipedia.org/wiki/Quantile_regression) on a simple problem." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Some data\n", - "\n", - "The data follows the formula: $y = \\frac{X}{2} + 2 + \\epsilon_1 + \\eta \\epsilon_2$. Noises follows the laws $\\epsilon_1 \\sim \\mathcal{N}(0, 0.2)$, $\\epsilon_2 \\sim \\mathcal{N}(1, 1)$, $\\eta \\sim \\mathcal{B}(2, 0.0.5)$. The second part of the noise adds some bigger noise but not always." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from numpy.random import randn, binomial, rand\n", - "N = 200\n", - "X = rand(N, 1) * 2\n", - "eps = randn(N, 1) * 0.2\n", - "eps2 = randn(N, 1) + 1\n", - "bin = binomial(2, 0.05, size=(N, 1))\n", - "y = (0.5 * X + eps + 2 + eps2 * bin).ravel()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD4CAYAAADFJPs2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbLklEQVR4nO2df3AcZ3nHv8/pR7DB2BrbjR3LliMCaZAhRBKOMqGBAGFwGhLGSZoflDZMjZk2bckMM23KdEzG/av/MNA2U3ADLVDHAWyHhBTT8iP8SCdyohOByDEkRliOYidRlLNjsGvp7p7+cbenvb2923fvdm/v9H4/Mx5Ld6vdZ3ff777P+7zP+6yoKgghi5tU0gYQQuKHQifEAih0QiyAQifEAih0QiygM46drlq1Sjdu3BjHrgkhNUin06+o6mrv57EIfePGjRgbG4tj14SQGojIlN/ndN0JsQAKnRALoNAJsQAKnRALoNAJsQAKnRALoNAJaRHSUxnc++gRpKcyke87lnl0Qkg40lMZfOS+Ucxl8+juTGH3thEM9fVEtn/26IS0AKOTs5jL5pFXYD6bx+jkbKT7p9AJaQFG+leiuzOFDgG6OlMY6V8Z6f7puhPSAgz19WD3thGMTs5ipH9lpG47QKET0jIM9fVELnAHuu6EWACFTogFUOiEWACFTogFUOiEWACFTogFUOiEWACFTogFUOiEWACFTogFUOiEWACFTogFGAldRFaIyF4R+aWIHBaRK+I2jBASHaar1z4P4LuqepOIdANYGqNNhJCICRS6iCwHcBWAOwBAVecAzMVrFiEkSkxc9wsBzAD4dxH5mYjcJyKv924kIttFZExExmZmZiI3lBBSPyZC7wQwCOBfVfUyAL8DcLd3I1XdparDqjq8enXFyxwJIQliIvRpANOqerD4+14UhE8IaRMCha6qLwJ4XkQuLn70PgDPxGoVISRSTKPufwVgdzHiPgngY/GZRAiJGiOhq+pTAIbjNYUQEhfMjCPEAqwXepzvuyKkVbC6rnvc77sipFWwukeP+31XhLQKVgs97vddEdIqWO26x/2+K0JaBauFDsT7vitCWgWrXXdCbIFCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLMDoTS0ichTAaQA5AFlVHY7TKEJItIR5JdPVqvpKbJYQQmKDrjshFmAqdAXwPyKSFpHtfhuIyHYRGRORsZmZmegsJIQ0jKnQ36WqgwC2ALhTRK7ybqCqu1R1WFWHV69eHamRhJDGMBK6qr5Q/P9lAA8C2BynUYSQaAkUuoi8XkSWOT8D+ACAibgNI4REh0nU/XwAD4qIs/39qvrdWK0ihERKoNBVdRLApU2whRASE5xeI8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHRCLIBCJ8QCKHSy6ElPZXDvo0eQnsokbUpihHn3GiFtR3oqg4/cN4q5bB7dnSns3jaCob6epM1qOuzRyaJmdHIWc9k88grMZ/MYnZxN2qREoNDJomakfyW6O1PoEKCrM4WR/pVJm5QIdN2bRHoqg9HJWYz0r7TSdUyKob4e7N42Yv21p9CbAMeJyTLU12P99abr3gQ4TiRJQ6E3AY4TSdLQdW8CHCeSpKHQmwTHiSRJ6LoTYgEUOiEWQKETYgHGQheRDhH5mYg8EqdBhJDoCdOjfxLA4bgMIYTEh5HQRaQXwB8CuC9ecwghcWDao38OwN8AyFfbQES2i8iYiIzNzMxEYRshJCIChS4i1wF4WVXTtbZT1V2qOqyqw6tXr47MQEJI45j06FcCuF5EjgJ4AMB7ReQ/Y7WKEBIpgUJX1b9T1V5V3QjgVgA/VNU/jt0yQkhkcB6dEAsIleuuqj8C8KNYLCGExAZ7dEIsgEIn1mBz2WcuUyVWYHs5L/boxApsL+dFoRMrsL2cF113YgW2l/Oi0Ik12FzOi647IRZAoRNiARQ6IRZAoRNiAYkJ3eYsJUKaTSJRd9uzlAhpNon06LZnKRHSbBIRuu1ZSoQ0m0Rcd9uzlAhpNollxtmcpURIs+H0GiEWQKETEsBimArmohZCalBtKjg9lWmrGBOFTkgNqk0Ft1seCF13Qor4ueh+U8HNzAOJatjAHp0QVHfRq00Fd3emMJ/Nx5oHEmUGKYVOCPxddEdU3qngqPNAqo33a9kUFgqdWE96KoPjJ8+iMyXI5dWol3aLv5HAXK1e2xk2ROE5UOjEatxC6+xI4ZbN63HjYK+xYBt1r4M8iag8BwqdWI1baLlcHutWLIlMqCYE9dpRZZBS6MRqGnWPG/37Zq37EFWNfKfDw8M6NjYW+X4JiYNGk19aKXlGRNKqOuz93JoevZVuBmktbFhgZYXQo5yP5AOjfQl770y2b5dqSVYIPar5yHa5qaSc9FQG+8ansTc9jWzO7N6Z3utG21azOo5AoYvI6wD8BMB5xe33qupnYrMoBqKaj6yW+sgevnVxBHtuPg8nGuUnSK/gTAVs2rb8BG36MIniYWDSo58D8F5V/a2IdAF4TEQOqOpoXUdMgKgim96b2rO0u217eFuGIKOTs2UiF1SWL/MTXC0Be69dUNuqJmiTh0lUXmSg0LUQlv9t8deu4r/oQ/UxE0XAxXtTo0xRbCY2DUF6lnaXNdZr3no+PvHuNwWmmo70r8TWwV4IgK2uBJpaOfHVqNZOTLyBqNqY0RhdRDoApAFcBOBeVT3os812ANsBYMOGDaENaRe8N7UZixuipl0fUPWQOTOHlAB5BVICXLp+RcW5BnlqWwd7S9vWc+2qCdrEG4hq2GkkdFXNAXiHiKwA8KCIbFLVCc82uwDsAgrz6HVZ02a0a5HLKHOoW4n7Dx7DgYkT2LJpLW6/vNDZmJyriacGFETes7Q79LWr1U6CvIGo2lioqLuqnhSRRwF8EMBE0PY20I5zsEk9oOKMC9x/8Bg+/eDTAICfPvcKAOD2yzfUda5BPfyO6waQOTMX6jycduKsL6/nbxvBJOq+GsB8UeRLAFwD4B8bOipJnGY+oOqZ3grLgYkTFb87vbqJfd5xd60ePnNmDndefVFoG5OMjZj06GsBfKU4Tk8B+IaqPhKvWaQeWjGSbjq9ZbKfWue2ZdPaUk/u/O4+fi1x+bnqd159UahYjMm1TzI2YhJ1/wWAy5pgC2mAenuLuB8OTuOuNb0VZIvJuTm9t3eMbiIukxVktdx/P/ucYzvbp6cyeOHkWXR2pJDLNT82YkVmnA3U01s0w5V0i6gjJbh5eH3FdJUT5Nr5yCGcmy9st/OGTQAKwl3S1WF0brdfvqHCXa8nGOe371pDHe+13zc+jf3j02Vj+p2PHCqseU8Jbt28oewa1CKqBzGFvkioJ5IetSvp1yhriSg9lcFt/zaK+WweqWJ1FwDI5hV//62nkXfN3XR2CMSw+ovXFpNgXFDMopbgvNdegLLremDixMKa97ziAsM176wZRyqIIrrciCtZq1FWE5HT6wEFAQgWMrHyngnagbVvxAcG1gSeW3oqg/3j0/jm2PPI5rVkS5jgmVfUQYLzXnsA2Dc+XbquWzatxZNHXzW6zu5js2Yc8SVsJD3KaTZvo9w/Pl3W8P2O4U22eOfGHowfO4m8KlIpQTa3sMUt76x0y4FyYQDAbbsex5zr78IKxE/UJoLzXnvvdb14zbKKh0dQ7vuO6wZYM44kQzUXtmws3pEq9aidKYECyOYKbveejy/0hjcO9mLv2POYzym6OgR/u+USAAsPhV+9eLoiuObm/oPHsOOhCeTyivO6UrjqzavLRA4AHSnB8ZNnkZ7KGIndb7wtQKjCkYB/5digNFq/abxFWzOuFaeIFivpqQxu2/V4SWh7tl8R6Ba7CyneNNRbKqTo9g5eOHkWDzxxrNBgc1rqueeyeXzxx7/GpetXlO7vnu1X+I7rnf+9AncH73Y8NIFs0cefm89j8pXflW170erX41jmLPY8cQz7xqeNxrje4KEz919P4chqhMl9jyrfoaWEbtNii1Zg3/h0qQecyyn2jU8bL86Yy+ax5+Ax7B+fLssUu/Pqi0rj5Hln/O3qZH/wy5fx/cMvGS8IceNuHylZCN4BgAhwdHZB6F0dgsv7V2Ky+MCZM3Th3Q+s4ycLD4lahSOdc1XA+CFQKzZy42BvqH2Z0lJCb/fFFu3mjUjA716cBuokvygKPemOhyaQVy0T747rBnBg4gQG1r4RX/7f32A+p0gJoKqh769zXV84eXbh2KroSElhPC+CwQ0r8OTRTOk8bh5ej4ELlpeCenktrGQLw8AFy2uOkZ1ZAyeguHfs+UCvCPCPjXg7uRtdC2mioKWE3s6LLdrRG9k62Itvpheiw1sDGpfTQJ2odi6vECmIzbsAxJk3fvLoq7jn+k3InJkrzZWHub/u6yqyEMBTANvedSGWLelCz9Ju3PPwROm7rqJQRidnyyL5E8dPhTpeUF776ORsyWsBCsMU04eX15OJu5NrKaG362owoLneSFSew1BfD/Z8vHxaKGjBhdNAtxaF5Cder4t/YOIE7nr/W3yjz0HnV1Y4wjUEEACnz2WxbEkXJo6fKo3VBcBNQwtub1eHlIYne9PTgS6x9z4eOn4KF6xY4rvtSP9KdHWmSj16V4fU3TnF3cm1lNCB9lwNBjTPG/FGmhv1HNyrqsJ4JO775Cfe7qIA8go89twrePLoq0Zjcq8dd1yx0bfKSSolC5H9jlRZVNxxe4f6enDz8Hrcf/AYFIVxdtADuNrsQbX58z0fHwk9Rvcj7k6u5YTeroS9UfX0yumpTEWkOew4t1qu9ue+/2xNj6TW3/tNJe3eNoLPff9ZPPbcK1AEeznucXhZj3ritYptUwK89/d/Dz84/FIpUHbr5g24YMWSCs9k62BvWfKK832186k6e2A4f94IcXZyFHqRKNxh0xtV73h+dHIWedcLN1IpM1ex1vG8q8tSYlZTzSTgdNf732KUEeb2Uro6y3vnLZvW4uBvXi25xx0C/MOH34aL1yzDT5+bKYsvVPNMggJffj21s91+n4dEVDQzeEuhI5pAWpibVu943nErnemlnTdsMup13ePc/5vP41PfeArbr3oTbr98Q8XqsretW44dHxqIJFBk4uV4vZRsNo/bLi/0zj1Lu5E5M4d7PjSAQ8dPVbjHfvs2WXIa5nzimu5qdvCWQkc0tbnD3LSR/pXoTAnmc4UpItOewiscYMFFBVDVBm+BxKOzZ0rVWBxbnIDV4RdPVxy3Z2k3UlKIX4ctaRzk5fh5KU70P+ia+u3bJFZisk3c013Nnkqm0NFYIM1kfOtLUTiKQuIKAONe0ut+dqYEl6x9Y6nX9trgLpDoxqnCUitglZ7KYOcjh5DLFx5KO64bqNoz19NDVfNS7n30SGxehMk2cQux2VPJLSH0oEBR3OOYeiOe7rGlojC1IyKBiRmjk7PI5oqizGkpwyyM+1Y2hZVT/Hy6MEecQuUY25vo4uBUYakWsHIfx0lSyZyZC7QnCmE2IgSTWEnQNnELsdlTyYkL3SRQ1IxxTNiIp3dsCRQ66VxesfORQ7h4zbKq+/PLMHOLw+Th5ifelABXXrSqNGftPrfd20awb3waR146jXPZfNlqsGqNLkxVlKiF2Wwh+NkU9/GbOZWcuNBr9QRJpMSaehCjk7NludaF9M5K0frhNCJ3hpkjDm8+984bNvmu3HKLd296uiREr8jduKueXLxmWcX+vIE999AgqCpKHMJophBa8fhRkrjQa/UEcbhPQcMEUw9ipH8lzutKYW6+UB1l27suxH88ftTYVvd+3VFd99g0r4odD01U9Q6chuike9YSWNiHpjtSn82ZVUVZTMJYbCQu9Fo9wVDfwuKILZvWhm5E3oL+QUIOIwY/u68ZWBMqYcYpo+TO5hrpX1m2uCSf11L+uGnCih9hH5ruSH0e4ReENEq7LRBqdRIXOlC9oToRX2dxhF/PVq1B+BX0z5yZqylk02kX9/H8Ei1McJdRmssWKrI4f5tKCXLF6a7ODonkZY5hXWvvq4yqBeHiIIkFQov9wdISQq9GUA9bq0H4FfS/6/1vMSrr6+Que4nyNbfe/b98+hzuffQIjp88Wxr7CwrLLYMeUKaEeRA1a/rH71o1OzbTjisPw9LSQg9qbLUahF9B/1oJJ060211Y0DvlZdIATRuNu4xSRwr48bMz+MHhl9CZkrIot5M8Uu87uOsl6uBamPeDexeWvBCiFFQ9tHsdBBNaWuhBja3Wg8Bb0P/iNctKonaqoHjXHTt1xau9UaSsAaYE//WL4/ja40fx4Xesw93XLtQ7M2k0Q30LZZTKKpnkFbdsXo91xQUazt/W+w7uMPgNS6Jo8GHfD+6dlXjgifB5BmFo5zoIprS00IHa7mbQg8Ap6H//wWO45YuPl6qgOAE+R9TOmumgN4q4p7QeeOIYnjlRSBf9wk8mAQB3X3tJqEbjnJvzbjJ3YC5swK3ZabxhqGZbrWvlPAiy+fAVacKS9Jx9M2h5oQcRJABvYsu5Yukjd6JLXgt1w52VVh2ewofOfpyGsG7Fkop00u8eehF3X3tJXY3G5G+qub7OZ432SnG6r9Vsa8Rji5rFPjWYmNCjHE/6Fdx3fvcmtihQJnKgkDa6bElXqdE5q6bc+/cWQ/Dmjn9wYE3p51qNJkiwpm45ULnoo5FeKU5RBU2hNjMJx1YSEbrJS+nq3Zf7PVeOKKWYtebQmRLk84o8ClNH3Z0LpXV/9eLpigouZXnl2Tzue+w3UC2kvPYs6cIfDa8vjdFr2en36mAgeJWW9/j7x6dx7NUzFYtYvMsxwxC3qOrtMRd7T9ssEhG61010gi6m9cUd/FaOud9zNTe/IEqgMO4+r2uh4J/Tc7s9Ab8KLu7eToplhhVAB4A/+4P+wNf9eKuFAuWFFINc5p6l3WXVTL8+9jxyuYWFNFH1wBTV4iURoXvdxJdPnwtVXxzwr4zS0ZHC67o6StNTToVS53u/BR9u/NZGOw8Bt1tvUsnU7Y67k2OASnEGucyZM3Nl1UzdryoSQdWlo4Q4BApdRNYD+CqA81Foa7tU9fONHNTrJu4vrscuHdOzfa2kCkVhjP22dctx+MRrpbnoWzdvwMAFy8tEWUvkgP/aaABl03KAfzFEr71ud/yqN68u+/7tveVVXIJcZiev3pnWyxWn4RyambVG2hOTHj0L4FOqOi4iywCkReR7qvpMIwf2uonV6otXm/YpVT1RRXdXCpvWLcfTL5wqezXt7ZdvMCov7LbJm1Djd+ywU12rlp2H7g4pDU28pZqC9ue1y4kjONOFi3Hel0RLoNBV9QSAE8WfT4vIYQDrADQkdDdDfeX1xd2N3m/aByi8IMB56+aO6wZw8ZplvsUTTKbf3JF2d89tWuXE63F4hyY3DvYarTALukbO3w31mdVHJ8Qh1BhdRDYCuAzAwagNqSZIv2kft/gFhaon9USN/cb51VIxuzpT6FnaXfGCg2oeh58tUQqSgTMSBmOhi8gbAOwDcJeqVhTbFpHtALYDwIYNlYUSgjCps+3+rloChqnARycXaoiXlmNWScV0B+G8gt43Pu1bq41CJK2EkdBFpAsFke9W1f1+26jqLgC7AGB4eNhv8VdVTOtsu3837b39kmncr/7tTAmyuYU5db9UzKE+/2KFQOE1P87JhqnoGmQnIVFiEnUXAF8CcFhVPxuHEfWkX1brMd2CASqDad5jXfPW83Hp+hUVc+peqg0hsrnCtJmzpLQekdqwTJIki0mPfiWAjwJ4WkSeKn72aVX9TlRGmIyFTfAKZutgb8UDZKR/oY65AvjRszP4xLvfFDoi7zeECHobaTVsWCZJksUk6v4Ygl+d3RCOiPaPT+Pl0+dwz7cPlaWJmjZ6r2AElWP5ob7wL95z21nvEKIWNiyTJMnSUqvX3IEtIHzv5hXM1sHe0ut93UKsVcc8LFEE3bh4g8RNywjdnekG1JfDbTqt1YrCYpSexEnLCN1bveXm4fU164hXw1QwFBaxiZYReiv2soQsFlpG6AB7WULiIpW0AYSQ+KHQCbEACp0QC2hboaenMrj30SNIT2Ui3ZaQxUhLBeNMCZMbzjxyQtq0R69WjKLRbQlZrLSl0J3kmg6fZaWNbEvIYkVUQy0dN2J4eFjHxsYi36+bMOu3udab2IKIpFV12Pt5W47RgXDJNUzEIbbTlq47ISQcFDohFkChE2IBFDohFkChE2IBFDohFhDLPLqIzACYMth0FYBXIjcgGXgurYlt59Knqqu9H8YidFNEZMxvcr8d4bm0JjyXAnTdCbEACp0QC0ha6LsSPn6U8FxaE54LEh6jE0KaQ9I9OiGkCVDohFhA7EIXkQ+KyK9E5IiI3O3z/Xki8vXi9wdFZGPcNjWCwfncISIzIvJU8d+2JOwMQkS+LCIvi8hEle9FRP6peJ6/EJHBZttoisG5vEdETrnuyY5m22iKiKwXkUdF5BkROSQin/TZJvy9UdXY/gHoAPBrAP0AugH8HMBbPdv8BYAvFH++FcDX47SpCedzB4B/SdpWg3O5CsAggIkq318L4AAKr8EbAXAwaZsbOJf3AHgkaTsNz2UtgMHiz8sAPOvTxkLfm7h79M0AjqjqpKrOAXgAwA2ebW4A8JXiz3sBvE9EYn1NcwOYnE9boKo/AfBqjU1uAPBVLTAKYIWIrG2OdeEwOJe2QVVPqOp48efTAA4DWOfZLPS9iVvo6wA87/p9GpVGl7ZR1SyAUwBatbCbyfkAwI1Fl2qviKxvjmmRY3qu7cIVIvJzETkgIgNJG2NCcRh7GYCDnq9C3xsG46Ln2wA2qurbAXwPC94KSY5xFHLALwXwzwC+law5wYjIGwDsA3CXqr7W6P7iFvoLANw9Wm/xM99tRKQTwHIArVqTOfB8VHVWVc8Vf70PwFCTbIsak3vXFqjqa6r62+LP3wHQJSKrEjarKiLShYLId6vqfp9NQt+buIX+JIA3i8iFItKNQrDtYc82DwP40+LPNwH4oRYjDi1I4Pl4xkrXozDGakceBvAnxQjvCIBTqnoiaaPqQUTWOHEfEdmMQrtvyc6kaOeXABxW1c9W2Sz0vYm1CqyqZkXkLwH8NwoR6y+r6iER2QlgTFUfRuGkviYiR1AIqNwap02NYHg+fy0i1wPIonA+dyRmcA1EZA8K0ehVIjIN4DMAugBAVb8A4DsoRHePADgD4GPJWBqMwbncBODPRSQL4CyAW1u4M7kSwEcBPC0iTxU/+zSADUD994YpsIRYAINxhFgAhU6IBVDohFgAhU6IBVDohFgAhU6IBVDohFjA/wNG4APzhQjN0wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n", - "ax.plot(X, y, '.');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Confidence interval with a linear regression\n", - "\n", - "The object fits many times the same learner, every training is done on a resampling of the training dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "IntervalRegressor(estimator=LinearRegression())" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import IntervalRegressor\n", - "from sklearn.linear_model import LinearRegression\n", - "\n", - "lin = IntervalRegressor(LinearRegression())\n", - "lin.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "sorted_X = numpy.array(list(sorted(X_test)))\n", - "pred = lin.predict(sorted_X)\n", - "bootstrapped_pred = lin.predict_sorted(sorted_X)\n", - "min_pred = bootstrapped_pred[:, 0]\n", - "max_pred = bootstrapped_pred[:, bootstrapped_pred.shape[1]-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAD8CAYAAABetbkgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAArFElEQVR4nO3deXxU5d338c81k3UmISQhhCUkIZA9LFkggQCiuKBSVLSi1SJSl7phrY/U+ryqvdvb3ra1WtuHLt6iqMW2blhsi1UUxQAJEMISspAASQhLgJAA2TOZ6/ljQtiCTJKZLJzf+/XiRTJz5szvJPnOdZ3rnOscpbVGCHF5M/V1AUII95OgC2EAEnQhDECCLoQBSNCFMAAJuhAG4FTQlVKDlVLvK6WKlFKFSqkp7i5MCOE6Hk4u9wrwidb6NqWUF2BxY01CCBdTlzphRikVAGwDorScXSPEgORMiz4aOAq8oZSaAOQCj2ut689eSCn1APAAgNVqTY2Li3N1rUKIS8jNzT2mtQ45/3FnWvQ0IBvI1FrnKKVeAU5qrX9ysdekpaXpLVu29LRmIUQXKaVytdZp5z/uzGBcJVCptc5p//59IMWVxQkh3OuSQddaHwb2K6Vi2x+aBRS4tSohhEs5O+r+GLCifcR9L3Cv+0oSQriaU0HXWm8DLuj3C+GM1tZWKisraWpq6utSLhs+Pj6EhYXh6enp1PLOtuhCdFtlZSX+/v5ERkailOrrcgY8rTXV1dVUVlYyevRop14jp8AKt2tqaiI4OFhC7iJKKYKDg7vUQzJk0HPLa1i6tpTc8pq+LsUwJOSu1dWfp+G67rnlNdz1WjYtNjteHiZW3JdBakRgX5clhFsZrkXP3ltNi82OXUOrzU723uq+LkkItzNc0DOigvHyMGFW4OlhIiMquK9LEr1Ma43dbu/rMnqV4YKeGhHIivsy+OG1sdJt78dcPY5SVlZGbGwsCxYsICkpie9973ukpaWRmJjIc889B8DmzZuZN28eAP/4xz/w9fWlpaWFpqYmoqKiXFJHXzHcPjo4wi4B77/cNY5SUlLCm2++SUZGBsePHycoKIi2tjZmzZrFjh07SE5OZtu2bQB8/fXXJCUlsXnzZmw2G+np6T1+/75kuBZd9H/uGkeJiIggIyMDgHfffZeUlBSSk5PZtWsXBQUFeHh4MGbMGAoLC9m0aRM//OEPWbduHV9//TXTp093SQ19RYIu+h13jaNYrVYA9u3bx4svvsjnn3/Ojh07uPHGGzuOSc+YMYPVq1fj6enJ1VdfTVZWFllZWQM+6Ibsuov+7fQ4SvbeajKigl2+m3Xy5EmsVisBAQFUVVWxevVqZs6cCcD06dNZsGABCxYsICQkhOrqaqqqqkhKSnJpDb1Ngi76JXeOo0yYMIHk5GTi4uIYNWoUmZmZHc+lp6dTVVXFjBkzABg/fjyHDx8e8Cf8SNCFIURGRpKfn9/x/fLlyztdztfXl+bm5o7vX331VXeX1itkH10IA5CgC2EAEnQhDECCLoQBSNCFMAAJuhAGIEEXoou+/PJL5syZA8CqVat44YUXLrpsbW0tf/jDHzq+P3jwILfddpvbazyfBF2Idm1tbV1+zdy5c3n66acv+vz5QR8xYgTvv/9+t+rrCQm6MISysjLi4uK46667iI+P57bbbqOhoYHIyEh+9KMfkZKSwnvvvcenn37KlClTSElJ4dvf/jZ1dXUAfPLJJ8TFxZGSksKHH37Ysd7ly5fz6KOPAlBVVcUtt9zChAkTmDBhAhs2bODpp59mz549TJw4kaeeeoqysrKO02mbmpq49957GTduHMnJyaxdu7ZjnfPmzWP27NlER0ezZMmSHm+/nBknetfqp+HwTteuc9g4uP7i3efTiouLWbZsGZmZmSxatKijpQ0ODmbr1q0cO3aMefPmsWbNGqxWK7/85S956aWXWLJkCffffz9ffPEFY8eOZf78+Z2uf/HixVxxxRWsXLmStrY26urqeOGFF8jPz++Y/lpWVtax/NKlS1FKsXPnToqKirj22mvZvXs3ANu2bSMvLw9vb29iY2N57LHHGDVqVLd/RNKiC8M4+7z2u+++m6ysLICO4GZnZ1NQUEBmZiYTJ07kzTffpLy8nKKiIkaPHk10dDRKKe6+++5O1//FF1/w0EMPAWA2mwkICPjGerKysjrWFRcXR0REREfQZ82aRUBAAD4+PiQkJFBeXt6jbZcWXfQuJ1pedzl/Ysrp709PX9Vac8011/DXv/71nOVOt8a9ydvbu+Nrs9mMzWbr0fqkRReGUVFRwcaNGwF45513mDZt2jnPZ2RksH79ekpLSwGor69n9+7dxMXFUVZWxp49ewAu+CA4bdasWfzxj38EHAN7J06cwN/fn1OnTnW6/PTp01mxYgUAu3fvpqKigtjY2E6X7SkJujCM2NhYli5dSnx8PDU1NR3d7NNCQkJYvnw5d955J+PHj2fKlCkUFRXh4+PDq6++yo033khKSgpDhw7tdP2vvPIKa9euZdy4caSmplJQUEBwcDCZmZkkJSXx1FNPnbP8ww8/jN1uZ9y4ccyfP5/ly5ef05K70iXvj94dcn90cbbCwkLi4+P7tIaysjLmzJlzzlTVga6zn2tP7o8uhBjgJOjCEM6/8ITRSNCFMAAJuhAGIEEXwgAk6EIYgARdiHaXmnI6kMkpsEK0mzt3LnPnzu3rMtxCWnRhCKenqS5cuJCYmBjuuusu1qxZQ2ZmJtHR0WzatOmcKacLFy5k8eLFTJ06laioqD6ZQ+5K0qKLXnfvJ/de8Nh1kddxR9wdNNoaeXjNwxc8f9PYm7h57M3UNNXwwy9/eM5zb8x+w6n3LS0t5b333uP1119n0qRJvPPOO2RlZbFq1Sp+8YtfcPPNN5+z/KFDh8jKyqKoqIi5c+f2yZVhXEWCLgxj9OjRjBs3DoDExERmzZqFUopx48adM0/8tJtvvhmTyURCQgJVVVW9XK1rORV0pVQZcApoA2ydnUsrhLO+qQX29fD9xucDfQKdbsHPd/aEEZPJ1PG9yWTqdBro2cu7Y05Ib+pKi36l1vqY2yoRQriNDMYJYQBOTVNVSu0DagAN/FlrfcEtJpVSDwAPAISHh6f29NI34vLRH6apXo7cMU11mtY6BbgeeEQpNeP8BbTWr2qt07TWaSEhId2pWwjhJk4FXWt9oP3/I8BKYLI7ixJCuNYlg66Usiql/E9/DVwLGHdirxADkDOj7qHAyvYrZnoA72itP3FrVUIIl7pk0LXWe4EJvVCLEMJN5PCaEAYgQRfCACToQhiABF0YgjPTVDdt2sSUKVNITk5m6tSpFBcXA/Dyyy+zaNEiAHbu3ElSUhINDQ19uTldJrPXRK8r/+6CCx7zv342Qd/5DvbGRvY/8OAFzwfccguD592CraaGA4sfP+e5iLffcup9LzVN9a233uLrr7/Gw8ODNWvW8Mwzz/DBBx/w+OOPM3PmTFauXMnzzz/Pn//8ZywWS/c2vo9I0IVhXGqa6okTJ7jnnnsoKSlBKUVrayvgmN22fPlyxo8fz4MPPthxR9aBRIIuet03tcAmX99vfN4jMNDpFvx8l5qm+pOf/IQrr7ySlStXUlZWxsyZMzuWLykpwc/Pj4MHD3brvfua7KML0e7EiROMHDkSgOXLl5/z+OLFi1m3bh3V1dUD8rJSEnQh2i1ZsoQf//jHJCcnn3MhiieeeIJHHnmEmJgYli1bxtNPP82RI0f6sNKuk7upCreTaaruIXdTFUKcQ4IuhAFI0EWvGOgXV+xvuvrzlKALt/Px8aG6ulrC7iJaa6qrq/Hx8XH6NXIcXbhdWFgYlZWVHD16tK9LuWz4+PgQFhbm9PISdOF2np6ejB49uq/LMDTpugthABJ0IQxAgi6EAUjQhTAACboQBiBBF8IAJOhCGIAEXQgDkKALYQASdCEMQIIuhAFI0IUwAAm6G+WW17B0bSm55TV9XYowOJm95ia55TXc9Vo2LTY7Xh4mVtyXQWpEYF+XJQxKWnQ3yd5bTYvNjl1Dq81O9t7qvi5JGJgE3U0yooLx8jBhVuDpYSIjKrivSxIGJl13N0mNCGTFfRlk760mIypYuu2iT0nQ3Sg1IlACLvoF6boLYQASdCEMQIIuhAFI0IUwAKeDrpQyK6XylFL/dGdBQgjX60qL/jhQ6K5ChBDu41TQlVJhwI3Aa+4tRwjhDs626L8FlgD2iy2glHpAKbVFKbVFbr0jRP9yyaArpeYAR7TWud+0nNb6Va11mtY6LSQkxGUFCiF6zpkWPROYq5QqA/4GXKWU+otbqxJCuNQlg661/rHWOkxrHQncAXyhtb7b7ZUJIVxGjqMLYQBdmtSitf4S+NItlQgh3EZadCEMQIIuhAFI0IUwAAm6EAYgQRfCACToQhiABF0IA5CgC2EAEnQhDECCLoQBSNCFMAAJuhAGIEEXwgAk6EIYgARdCAOQoAthABJ0IQxAgi6EAUjQhTAACboQBiBBF8IAJOhCGIAEXYhvkFtew9K1peSW1/R1KT3Speu6C2EkueU13PVaNi02O14eJlbcl0FqRGBfl9Ut0qILcRHZe6tpsdmxa2i12cneW93XJXWbBF2Ii8iICsbLw4RZgaeHiYyo4L4uqduk6y5Eu9zyGrL3VpMRFUxqRCCpEYGsuC/jnMcGKgm6EFx8f/z0v4FOuu5CcHntj3dGgi4El9f+eGek6y4E9Gh//Px9+/5Igi5Eu+7sj7vzWLvWmtaKCnRLC97R0T1al3TdhegBV+/ba5vN8b/W7LvpZvZcN5ujv/t9j+uUFl2IHji9b99qs3dr3163tdGUn0/d+vXUZ61Ht7Yy+r13UUrhP/s6Bt8xH79p03pcpwRdiB7oyb599RvLOfanP2E/cQKUwicxEev0aWi7HWUyEfLwwy6rU4IuRA9dat/e3tBAw5Yt1GVlUb9+A+H/+yqeI0bgMTQE/1mzsGZOxTp1Kh6B7hvIk6AL4SbNJSUcfv4XNObmoltbUd7eWCZNoq2uDk8g4MYbCbjxxl6pRYIuDKMrh8G6esjMduwY9Rs2UL9+PdapUwm46SZMgwJoq64m8O67sWZmYklLxeTj41yxWkPNPqjIhoqNkLIQwlKde20nLhl0pZQPsA7wbl/+fa31c91+RyF60enABlq8+Nk/dzl1GMzZQ2Zaa46+/Fvqvv6a5sJCAMyBgXjHxgHgGTqUqI9XOVeovQ2q8qF8oyPYFdlQd9jxnE8AjL7CvUEHmoGrtNZ1SilPIEsptVprnd3tdxWiF5wdWJNS2LU+5zDY2eE9uwXv7JBZSvhgWvbtoz5rPW21NYQsXoxSiobNmzH7+RHygx9gnTYNn4R4lOnCo9YX9BBaGuBAbnuLvQH2b4aWU46FA0bB6OkQPgXCp5DbGEr2vhoyymu6fYz+kkHXWmugrv1bz/Z/ulvvJkQvOjuwaI3JpFDoCw6Dnd+CPzsnseOQ2cTje5mxah2lP9+M7eAhALxjYxny6KMok4mIFX/pNNhnyy2v4ZHXPmOcvQgfczGxoQfwq84HeyugYGgCjL+9PdgZMHjUubUt6/kJOU7toyulzEAuMBZYqrXO6fI7CdHLzj/G/eycRGoaWi7Y7z79gUBbG2Or9zH475tYcf/3yD7cxLTsYrw+XItvRgbWBx7EOi0Tr7Cwjtd2GnKtoba8Y/96dOFXZJv3gRmatQfVzYn4TX3UEexRk8H34sHtrHfhtqBrrduAiUqpwcBKpVSS1jr/7GWUUg8ADwCEh4d3uRAhXM2ZY9y2mhqmFX6N76bVjDtSgl9rE9pkIuKO60m9cjL29O+jnlqM8viGqNjb4EjBufvXpw46nvMOwBySwst1k8m2xVJoHssbt85ghJNh7ekJOacpR8+8Cy9Q6lmgQWv94sWWSUtL01u2bOlWQUK4k72+nvqcTXiEDsU3MZGm4mL23XQz9pBQDsdMIHjmDMZ9axbmwYMvvpLWRjiwtT3UG2H/Jmg+6XjOfwRETOnYv2ZoPJjMPZr40pXXKqVytdZp5z/uzKh7CNCqta5VSvkC1wC/7FKlQvQRrTVNuwqoX7+e+qwsGrZtg9ZWBs+fj+9/JeIdE0PUv/+F1+jRJCrV+UoajsP+HEeoyzfCwbz2/WsgJB6S5kH41Pb963DoZD3dvYBFQXUBdaajPHLlFV1+7dmc6boPB95s3083Ae9qrf/Zo3cVwo1ajxyhtaICS5qjYTuweDGtBw/iHR9P8MJ7sGZm4puSAoBSinxzINlf7jnTYtZWOLrf5Rsc/x91HDrD5AkjU2DKw+371+lgCepxvQ2tDeyu2U3h8UIKqwspPF7IkklLmDRsEkcajrBqzyquGOXmoGutdwDJPXoXIdzI3tREQ24u9es3UJ+VRfPu3ZiHDCF63Vds3X+CgrueICEljvjksRe8Nresmv9a9j4T7YUcMhfT4l+GV/3p/etBjsGycbc6WuyRKeDp26NaT7acpKi6iCG+Q4gaHEXx8WJu/+ft2LUdgEDvQBKCEzApxyDf9JHTmRE2o0fvCXJmnBiAtNa0lJbiFRWFMps58tJL1Lz1NsrTE9/UVIb+nyexZmaytaKWu5bl0GJTeJWVsCIomNSRlrP2r7NJ3LeBVeZTYIbDOpBySxrRM55wdMNDE8Fk7lGtrfZWlucv72itK+sqAViYuJAn054kMiCSB8Y/QEJQAvHB8YRaQlFndf3NPXz/0yToYkCw1dS0n2LqOM3UVlVF5N//hu+ECQy+9Tb8MjOxTJqEyWLpeE322lK8baeYonYzWRcz/IMXoL4Q2podCwyJ4VTUHJ4rCiSnNZrDHsNYMWcKdHFfWmtNVUMVBdUFHYEOHxTOkklL8FAe/KXwL1g8LCQEJ3BrzK3EB8WTEJwAgLfZm0cmPuKyn9PFSNBFv2RvbkY3N2MeNIjGbdsou/M7jpNeAgKwTpmCNXMqnu2HcX1iYyA2xvHCE5Udx6/vLc3iIa9iTErTqs20eCVB4v0QMdWxf20dQghwe3kN4U6Oatu1ncpTlVQ1VDFp2CQA7v3PveRW5QJgUiZGDxpNdKDjijBKKf5z63/w8XDyHHc36fLhNWfI4TXRVbq1lcad+TRsyqE+O4fGvDyCFi5k6BM/wN7cTPVrr+GXmYnPuHEoc3t31m6Ho0Vnjl1XbIQT+wFoMVtoDE2lLnQym9uiCZ9wBSljRnSrtuxD2Xy1/ysKjxdSfLyYutY6BnkNIuuOLJRSrCxZSXNbM/HB8cQExuDr0bP9+J7o9uE1IdxBt7VhO3YMz9BQtNaUXn0NtqoqALzj4gi84w78ZkwHwOTtTcgjj4CtGQ5sOXP8uiIbmmodK/QLhfAMKuIW8fgGH/KbwzDv92TFdRnc7ERXvKWthdLa0o5R78Ljhbx27Wv4eviy8eBG3t/9PjFBMdwYdSPxQfHEB8d3vPaW6Ftc/vNxNQm66BVaa5pLSmjI2UR9TjYNmza3z+76GKUUQ77/IOagYCyTJ525AENjLZR8dibUB3LB1uR4Ljga4r/lOMwVMQUCR4NSfLy2lO22Yuwa7Bc5ZfT04ayowVEM8hrEx3s+5tn1z2LTjuu1+Xn6ERcUR21TLb5+vjw4/kEeS34MD9PAjcvArVz0a6evYOoZHo5SisPPPkfte+8B4BkWhv+112BNz0BrjVKKwDvvhJMHofxz2NDeDa/aBWhQZhg+AdK+5wj1qAzwCzlzxlhQIKlBitzyGg7UNuJhNtHWduaU0WONx/jX3n91DJSVnSzDru38duZvmRUxi5jAGBYkLiAhOIH4oHjC/MM6Dm8BWDwtF9nKgUOCLlym9cAB6rNzHC12ziZsVVWM+exTvEaNYtCcOfhOnIglPR2vsJGOiR9HiyF3+ZmueG2FY0WeVhg1CWb+GMLTIWwSeFnPea/OZpz9bHUObR778Qg8SOSwGm6Knk1qRCBlJ8p4ccuLhFpCiQ+O57rI64gPiid5qOP0kNigWGKDYnv5p9W7JOgG5YqbDrQeOYLJywvz4MGcWrOGykcfA8AcFIQlfTLW9HR21trJLi1lSkQEKSMUlL8PX2c7uuKNxx0rsoY4uuDpDzla7NBxYL74n6bWms92F9FqOoxdD6W1rZkXC+/Gc3QNnu3L1BNKSIBjoDl8UDhf3v4lwb6X191XukKCbkDdvemAraaGhk2bacjJpj47h5a9ewn98dME3XMPvqmphD7zDJaMdLyjo1HNpyjZ+gU57z1HKkUkqFJQ7eeHB42B2BvOTP4Iiur0/PCzfVHxBduPbu8YLKttrsUnNJ6m/ffgafZmYtAVZJfYaK0fgbltJL9bdGXHNpmUydAhBwm6ITk7x7nt1CnaqqvxiozE3tBAyfQZYLOhLBYsaakMvnUe1umO0zM9PJoJSrFC6WvwxUaoyida24lSigIdwV/bZjFs/FVcf/3N4B/aaV02u419J/ZRdLyIguoCGm2N/HTqTwF4c9eb7Di2g+jB0VwVfhXxQfF42iI5fHRIe6/k+j67NZLckkn0Sxeb42xvaKBha15Hi920axeWtDQi3noTk8XC8J8+h1fUGHyTElEnyhz71dt/BR9vgJoyx8o9LRCWBjOWsNsniTv/3UqtzRtPDxMr0jPA3xGElrYW9p7YS1yQ4/pqr2x9hbcL3qa5/aw1H7MPSUOSOgbrfn3Frwn0DsTT7Hn+5nToi1scu/OWTK4kQTeg0xdk2FR8iAxVS3L7H2bl4sepz8oCDw98J0xgyPe/jzVzKrS1wqEdDB5xGHavhDUboaH91kOWIY7zwifd7+iKDxsP7WGMAV4d4WjtooY3Udywmo/WF1J0vIjSmlJs2sba29cyxHcI0YOjuT329o7TQyMGRZxzOGv/UU/e21ve71pNV10Bxt0k6AZy9tlnQ3JyuHJrHrq1lbbsjZgHDSL4vvsIWrgQS2IMpuM7HQNm+T+FT7ZAa4NjJUFREDPbEe7wKRA89pz965MtJyk6ksene3LZeiifexPv55ErJ/JR6Uf8z/r/IcgniPigeKYlTSMuKA6Lh+PQ1Q1RN3BD1A2d1v1OTgXP/iMfu9b9rtV01RVg3E2CPkB0Zz9Qt7XRVFiE16gwzAEB1Pz9Xar++7+B02efzceSnoFqPQEFa7HWts/B/nwn6DZQJhg2DlIWnLlwof+wjvUfazyGubmWQJ9Aio4X8cTaJzpmZwHYWwNY8tE6RlgjmBU+iynDpzDUMvSc2VnObPez/8jHZneMoLf0s1azJ7dk6k0S9F7WncB25TrjzSUlNGTnUJ+TQ8PmzdhPnmTEr39FwLe+hf+sq/AIGYJlbAgeJ3a1t9hPwro9jhV4+Dr2r6c/6Qj1qMng7Q9Aa1sr6w6so2jPB46R7+pCjjQe4fGUx7lv3H2E+IZ0zM4q3T+Ydze0Ybf5YVa0B3Ms/l7+Xf55Ze+tps1+Zj6GSSmXtJquHEDri7GBrpKg96LuDtxcbD9Qa01LWRm0teE9diy2Q4fYN/cmADxHjWLQdddiSUvDGuUPG5fiWbERz4ps2HjUsWLfIEdLnbrQ8f/wCdjNHlSeqqTgeAGF+a9haw7E0jyNtMgAnsp6ijbdRlRAFJOHTyY+KJ4pI6YAEOwbzG9m/saxnYNq+GhjNq3q0t3ZSwUuIyoYb08TLa12TCbFz25K6nGoBsoAmitJ0HtRdwduzt4PjGg8Rubuag6sfpWG7BxsR47gf/1swl5+Gc8RIxjxwvNYQjWezSWObnj+Msird6woMBLGXt2xf20LiuJYUzXDrI7u+JNfPsn6g+upb3Usb1YetJ5IpvFgCF4eJl6441Wui0285OwsZ7uzzgTOHV3jgTKA5koS9F7U1YEbe1MTTfn5jD1cxYr7ppK9t5qZL/4Z0ycl1AcFYc1IxzIhAesoM3zyDFRsJODQdsf+NQqGJUHyXR3713vsjeQdyaOwupCiTZ9RXFNMqCWUf837FwAj/UYyJ2pOxznfn22H3xbu7QjEgSOD8U10bgqmM91ZZwPn6q7xQBlAcyUJei9ypnVq2LKFU5+toWFbHk0FhdDaislqJWVTDqnhg2kwPcjh/TtpOrUL/7rPGbRvGewDPHxgZBpMe4KGkSns9gug4FQFJbUl/CTxZkzKxNsbfsoHJR90zM6aHzuf+OD4jmPVP0z74bm1jKnhD2vL3BaIvgrcQBlAcyW58EQfyd17lPysPCaerGBI+W6GPfccZj8rR3/3e6qXLcNnXBKWiRPxjRyM76ATeNRub7/xnmPOdq22stkey0Y1hl06nh/dexfHTDtYum0p+07sQ7ffNSvIJ4h357xLqDWU/af2g4aR/iPPmZ31jXW6+ayvgXBW2UDS7y48YdRfcOO2bex54Teo/J1MtjnOAqsNGkLwgQOYR4cRdFUMQxLnow7kQOXLkN9+27uAcOpHT+fNBj/+UtVAjfcpTD6HMHnl0FQ+gY3ldSTH+hE+KJzZkbOJD44nPij+nMNZo/xHXaysi3L3iPJAGLG+HPRJ0C/3Uc/Tc7Eb8vJozNtGY14eQx5+mEGzrwMPTxqOHefL8FTKA0OxhLTyncR6fNY9BH/fhtluQ6OoGhZPQdxVFFgHkTH2W6SOmU3p0e388d93QwiYWoJoaxqJrXYSZh3k+MAcMZapI6ZeUI9RP1TFGX0S9Mtt1NPe3Iy9rg6P4GBsx4+z91tzaat2nCJq8vPDd+JETFYLHN+Hr20HoxeFEVy8jjHqIBporPKCEWnUZzzEU427KWiqorrpOJzahqnOhHXkJFKBuKA4Xr/udZrqh7GjoplAi1enNw082+X+oSqc0ydBH+ijnrajR2nYto3GrXk05uXRtGsX/tfPZuSvfoU5MJBB112Ld3Q0vhH+eKtKVGU2bLofPj+EBuqsgayLiOJn5lHsMZ/iivAreH7GC1i0pu6Te8gMnkZCcAKJwYnEBMZ0XOHE2+zdceXR6WOcq/Vy+1AV3dMnQR9Io566rY3m0lJaDx7E/8orAahYtIjmklKUlxc+SUkELvgufumToCwLVbGRYVHboex/odhx472TAWEMisiEiCksOvQpW2oKgaMMsw7jimFXMX2k4yKISineuv6tc97f0e0+2O2f00D/UBWucdmNur+TU8Hq/ENcnzSc76R37/bNjTvzqfvqKxq3bqVx+3bs9fW0+lpp/fA/pI4Opm79eszmNryttZgObXaMhp91473aofFsCo1ik483OY2HqLXV89X8rzApEx/s/oA23UbG8AxG+Y/6xvO+XdXtln30b3Y5/Xz63ai7O7yTU8EzK3cC8HXJMYBvDLvWmtYDB2jcupWGvDxClyzB5OvLqU8/pfq11/COjaX5ymtZesSXI4P9iX7914TH1xJSk+e4njiA2YuGERPxyngIj4hMljfs5aUdf0LX7cTSZCFtWBrfHpZOq70Vb7M3t8bc6vT2uKrbLSPbF2eUMYzLKuir8w9d8H1nQW/M30X1n/9Mw7Y82o46PhBMViuBd9yBT2wsQQsXEHxzJubqHeze/Bk/tW5muHJc36x5j5WWyAy2R89gk5eZnIZKdh7bxbIJt5ASmkLy0e08bDKRMTyDxCGJeJoufqEEZ87zlm63exllDOOyCvr1ScM7WnKAb4X7curzz2nMy6Nhax7B99+H/5VXoltbaCosxDplCpbkZHzHJeBtOYU68E/Y/H/x2L8Jmk8AEGkZxn90LNltY9ipxrHothSe3/YITYdKMCkTCUEJ3JN4D0N8hwAwIWQCE0ImXLLWvjrPeyDpjS61UT5ML5uga7ud+YlBwDi+yinm+x+8gM9HB6kElKcnPgkJtJ8shm9sBGOXPtl+meE3YGUetLU4ngyJQyfezL7QGLI9YdOJUrIPbmKsbxDPpc5nfJgfxQ23MWnYJNKGpTHIa1C36nXled6uCER/20/trS61UT5MB2zQ7fX1NO7cScPWrY6TUrZtw/+aa/jOL57nzsmjOLj/M3xi78Q3JQWfkQGU71pHecnbjNnxI3xrix0rMXnCiImQ/n3qRiTjN/oKtCWIeavmUVq0FoAR1hFcG3k110VeR+pIxx/Bjyb/qMf1u6olcUUg+uN+am92qY0whjEggq61xnbwIC0HDmCdPBmAfbfPp2XPHlAK77FjGXTDDfhdMQPsdtTRQmxXh1G951MiP/8NpvqDjAZOaV82E8OY1P+Db2wqm8w2co7mkXMoB3PJNj5OmocCbhl7CxZPC+nD0wnzC+vSFVGc1ZWpnOcvc/ZjrghEf9xPNUqXurf026A3l5RQv2EDDXnbaNy6FduRI5gDA4nesB6lFCGPL8bk64tvYhzmuj2OudcVf4JfLYSmE0QAVXowa3QcbWG388fywRS1jUEpM5ltm8nLdrTKVk8rk0InMXn4ZOzajkmZWJC4wOXb01lgL9WSdNbSAhfcoaSngeiPoTJKl7q39Iug22pqzpwT/tijmLy8qP1wJcffeAPPkSOxTJ6Mb/JELMnJjhvvVW5mkGkjlGTDl7nn3NiehJtYUx/Fz3daqfRpwtO6h6GWfI5Hl2La9wQe9lBmRU5lmnkE6cPTSQxOdPvN81x5ZRngnMdqGlp6HIj+GiojdKl7S58FvamoiONvvU3j1q2OyyEBeHgwaM6N7Ye47iFo4UI8fVrP3Jvrqz/Au+033jN5wPCJMPl+CJ9C26hJtPoE4OPhw5Hta6luehKLqRWtFYGWeDID72LwyDiujont9T8eV1xZ5uyW9vzHXBEICdXlrc+Cbj91ito1n3MsIpaARdcTfdVUfBISMNWVw5bXHdc2K98IJ9pvvOfl57jZ3swfQ8QU9IgU9jQcJudwDjmHPmVL3i+4f/z93Jt0LzfEJrPl6E2Ym6OZGzed6WO6Pj3TlbrbNb5YS9sfW1/Rv/XZKbC5+6pZuGw9MfY9ZHjs5v6IIww+lguNNY4FrEPP3JsrPANCx9Fgb8HiacFmt3HDhzdwqN5xgoy/OZTkoZNYOH5ex6SP/qa/Hb4Sl6f+dQpsw3GGfXQbm8078fFwnB9ecywC4uacCXZQFNVNx9l0eBM5Zf8gZ+MzDLUM5c3r38TD5MEt0bfQ2OjHq/8xcbhpMJ8Xm1gUO9Yl5bkjlNI1Fn3pkkFXSo0C3gJCcZxy8qrW+pUevatvIP4WX/5Wcw05thi2m+L5/R3XET/Cu2NK5s83/px3d78LgL+nP2nD0pg2clrHKh6a8BBL15bS0lTs0sNC/fGYshA95UyLbgOe1FpvVUr5A7lKqc+01gXdflelGPTgv4nde5jdxRu4wqeUl3Y9SsG6Ar749hcE+gSSPjyd4X7DSR+WTnxwfKcj4+44LNQfjykL0VOXDLrW+hBwqP3rU0qpQmAk0P2g47jf9ZINS2hua8aszCQNSWJR0iLs2g7AtZHXXnId7jgs1B+PKQvRU10ajFNKRQLrgCSt9cnznnsAeAAgPDw8tby8/BvXtf/Uft4pfIeM4Rmkhqbi5+XX1drdRgbOxEB1scE4p4OulPIDvgKe11p/+E3LyuWehegbFwu6Uxf3Vkp5Ah8AKy4VciFE/3PJoCvHjI5lQKHW+iX3lySEcDVnWvRM4LvAVUqpbe3/Or9jvRCiX3Jm1D0LcP08TSFEr3HuBlxCiAFNgi6EAUjQhTAACboQBiBBF8IAJOhCGIAEXQgDkKALYQASdCEMQIIuhAEMqKDnltewdG0pueU1fV2KEANKv7iBgzPkWm5CdN+AadEvdtcSIcSlDZign76Wm1kh13IToosGTNe9v94fTIiBYMAEHeQmCEJ014Dpugshuk+CLoQBSNCFMAAJuhAGIEEXwgAk6EIYQJfuveb0SpU6CnR287UhwDGXv2Hfke3p3y637YFLb1OE1jrk/AfdEvSLUUpt6ey+UAOVbE//drltD3R/m6TrLoQBSNCFMIDeDvqrvfx+7ibb079dbtsD3dymXt1HF0L0Dem6C2EAEnQhDMAtQVdKzVZKFSulSpVST3fyvLdS6u/tz+copSLdUYerOLE9C5VSR8+6f/x9fVGns5RSryuljiil8i/yvFJK/a59e3copVJ6u8aucGJ7ZiqlTpz1+3m2t2t0llJqlFJqrVKqQCm1Syn1eCfLdP33o7V26T/ADOwBogAvYDuQcN4yDwN/av/6DuDvrq6jl7dnIfD/+rrWLmzTDCAFyL/I8zcAqwEFZAA5fV1zD7dnJvDPvq7TyW0ZDqS0f+0P7O7k763Lvx93tOiTgVKt9V6tdQvwN+Cm85a5CXiz/ev3gVlKKeWGWlzBme0ZULTW64Dj37DITcBb2iEbGKyUGt471XWdE9szYGitD2mtt7Z/fQooBEaet1iXfz/uCPpIYP9Z31dyYaEdy2itbcAJoL9eBM6Z7QG4tb0b9b5SalTvlOY2zm7zQDJFKbVdKbVaKZXY18U4o32XNhnIOe+pLv9+ZDDONT4GIrXW44HPONNbEf3DVhzngE8Afg981LflXJpSyg/4APiB1vpkT9fnjqAfAM5u0cLaH+t0GaWUBxAA9NfrN19ye7TW1Vrr5vZvXwNSe6k2d3HmdzhgaK1Paq3r2r/+N+CplBrSx2VdlFLKE0fIV2itP+xkkS7/ftwR9M1AtFJqtFLKC8dg26rzllkF3NP+9W3AF7p9lKEfuuT2nLd/NBfHftVAtgpY0D66mwGc0Fof6uuiukspNez0GJBSajKOv/t+2bC017kMKNRav3SRxbr8+3H5VWC11jal1KPAf3CMWL+utd6llPoZsEVrvQrHhrytlCrFMYhyh6vrcBUnt2exUmouYMOxPQv7rGAnKKX+imMkeohSqhJ4DvAE0Fr/Cfg3jpHdUqABuLdvKnWOE9tzG/CQUsoGNAJ39OOGJRP4LrBTKbWt/bFngHDo/u9HToEVwgBkME4IA5CgC2EAEnQhDECCLoQBSNCFMAAJuhAGIEEXwgD+P4b7PPqABeuuAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n", - "ax.plot(X_test, y_test, '.', label=\"raw\")\n", - "ax.plot(sorted_X, pred, label=\"prediction\")\n", - "ax.plot(sorted_X, min_pred, '--', label=\"min\")\n", - "ax.plot(sorted_X, max_pred, '--', label=\"max\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Higher confidence interval\n", - "\n", - "It is possible to use smaller resample of the training dataset or we can increase the number of resamplings." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "IntervalRegressor(alpha=0.3, estimator=LinearRegression())" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lin2 = IntervalRegressor(LinearRegression(), alpha=0.3)\n", - "lin2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "IntervalRegressor(estimator=LinearRegression(), n_estimators=50)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lin3 = IntervalRegressor(LinearRegression(), n_estimators=50)\n", - "lin3.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "pred2 = lin2.predict(sorted_X)\n", - "bootstrapped_pred2 = lin2.predict_sorted(sorted_X)\n", - "min_pred2 = bootstrapped_pred2[:, 0]\n", - "max_pred2 = bootstrapped_pred2[:, bootstrapped_pred2.shape[1]-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "pred3 = lin3.predict(sorted_X)\n", - "bootstrapped_pred3 = lin3.predict_sorted(sorted_X)\n", - "min_pred3 = bootstrapped_pred3[:, 0]\n", - "max_pred3 = bootstrapped_pred3[:, bootstrapped_pred3.shape[1]-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAEICAYAAACwF1f6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABnNElEQVR4nO3dd1xUV/7/8dcZZuhFpChKt4GgCKiA2EtioqaYbJrZ9M1ukk2yyXdLtu8v+918k+2bTbK7aZuypmfTu72Cir0XBLEBIlKkzsz5/XEHRAVEGMqMn+fjwSMwd+beM5N5ez/33HPPVVprhBBCCCGEcDem3m6AEEIIIYQQ3UEKXSGEEEII4Zak0BVCCCGEEG5JCl0hhBBCCOGWpNAVQgghhBBuSQpdIYQQQgjhlqTQ7QSl1B1KqVXOfq4Qwvkkr0IIcemSQtcNKKU8lVLvKaUKlFJaKTX1As/vr5T6QCl1WilVqJS65ZzltzgeP62U+lAp1b+3XyuEO1FKzVBK7VZK1SilliqlYtp57lKlVKlSqlIptUUpdfU5yyWvQnSAUuoLpdTtvd0O0bOk0HUfq4BbgeMdeO6zQAMwAFgA/EMplQTg+O+/gG87ltcAz/WB1wrhFpRSocB/gV8C/YENwNvtvORhIEJrHQjcC/xHKRXhWJfkVYhWKKV+o5T6T8vHtNZXaK1f7YZtxTo6mczOXvdFtuMVpVSDUqq6xY9Hi+UdPsB2K1pr+WnjB3gMOABUATuBax2P3wGsavE8DTwE5AMngD8AppbPBf4IlAMHgStavPZOYJdjG/nAd7vY5sPA1HaW+2HsvIa3eOx14EnH708Ab7RYNsTx/IDeem1vfw/kxzV+XCWvGMXqmhZ/+wG1QEIHXjseqAPGO/6WvMqP/LTyA/wG+E8PbSvW8e+KuZOv79TrWlnPK8D/trEsFKgAvgV4O/7dy+nt/0898SM9uu07AEwCgoD/R4uelFZcC4wF0oCrgbtaLMsA9mB80X4PvKSUUo5lJcBcIBBjJ/oXpVQagFIqWil1qp2fs04ldtBwwKq13tvisS1AkuP3JMffAGitD+DY4fXia4XoCFfJ67nf9dOOtjdl4TxKqU+VUnVALrAMoxe4tXVJXkWfpowhdj9USm1VSlUopd5WSnlf4DVzlVKbHTlao5Qa3WLZT5RSR5RSVUqpPY5ey9nAz4AbHb2aWxzPXaaUusfx+x1KqdVKqb841puvlJrgeLxIKVXScpiDUmqOUmqTYwhRkVLqNy2auMLx31OO7WUppUxKqV84hveUKKVeU0oFOdbV1AN8t1LqELBEKeWtlPqPUqrM0Z71SqkBzvjMHeYDO7TW72qt6zAOBFKUUglO3EafJIVuOxxfiKNaa7vW+m1gH0aPSmue0lqf1FofAv4K3NxiWaHW+gWttQ14FYjAON2H1vozrfUBbVgOfI2xs0ZrfUhr3a+dnzc68bb8gcpzHqvA6MVpWl7RxvLeeq0QF+RCeb3o77rWeq5j+ZXA11prewfWJXkVfdUNwGwgDhiNcSalVUqpVOBl4LtACMaQmY+VUl5KqRHA94FxWusA4HKgQGv9JcZZh7e11v5a65Q2Vp8BbHWs9w3gLWAcMBRjKOAzSil/x3NPA7cB/YA5wH1KqWscyyY7/tvPsb21jvd0BzANiMfIzDPnbH8KkOho9+0YB+lRjvZ8D+NMD0qp59o5gN56zjrvV0qdVErlKaWua/H4RR9guwspdNuhlLqtxVHkKSAZo5enNUUtfi8EBrX4u3ncrNa6xvGrv2MbVyilchxfzFMYO7K2tuEM1Ri9US0FYpyKvdDy3nqtEBfkQnnt1Hdda92otf4CuEwpdVUH1iV5FX3V046D0pPAJ8CYdp57L/AvrXWu1tqmjTG29UAmYAO8gJFKKYvWusBxdqGjDmqt/+04qH0bo8h8XGtdr7X+GuMsxVAArfUyrfU2x4H0VuBNjEK1LQuAP2ut87XW1cBPgZvU2eN4f6O1Pq21rgUaMQrcoY73mae1rnRs+/52DqBHt1jf08AwIBzjGoBXlFLZjmWX7MGpFLptcAzSfgHjaDFEa90P2A6oNl4S1eL3aOBoB7bhBbyPMR5wgGMbnzdtw3EqtLqdnwWdeGt7AbNSaliLx1KAHY7fdzj+bmpjPMY/JHt78bVCtMvF8nrud90PY4zrDjrG7Hh+a+uSvApX0PKi6RocB5JtiAH+p2UvJkZ+B2mt9wM/wDgNX6KUekspNajNNZ2vuMXvtQBa63MfazrIzVBnZkCpwOhxbe8gdxDGQXSTQozsthyO0PKA+3XgK+AtpdRRpdTvlVKWi3gvaK03aq3LtNZWrfXnwEKMIQtwCR+cSqHbNj+MweWlAEqpOzF6iNryI6VUsFIqCuMq6fauom7iibFzKAWsSqkrgMuaFjpOhfq387Ow6bmO0zhN45w8HeN9ztvJO05X/Bd4XCnl5zjauxojZGAEY55SapJjB/w48F+tdVVvvbYDn6MQrpTXD4BkpdR1jsz+Ctiqtd597gaVUgmOXmQfpZRFKXUrxmnS5Y6nSF6FuysCfndOL6av1vpNAK31G1rriRgFsQaecrxOO7kdbwAfA1Fa6yDgn5w5kG5tW0cdbWoSDVg5u7hufp3jjM3/01qPBCZgXAtwG4BS6p/tHEC3d4CsW7SxqwfYLksK3TZorXcCfwLWYnwxRwGr23nJR0AesBn4DHipA9uowrj6+x2MK7xvwQhSZ+zBOPocjHFUWIsjZEqpnymlvmjx3PsBH4wLa94E7tNa73C0aQfGkepCx/IAx/N7+7VCtMmV8qq1LgWuA37nWE8GcFPTcsdO7Z9Nf+LorcIosB8GbtRab3SsS/Iq3N0LwPccParKceA1RykVoJQaoZSa7jjbUoex32sav14MxCqlnFXnBAAntdZ1SqnxGPlvUurYbnyLx94EHlFKxSljnG/TmGFraytXSk1TSo1SxnRglRhDGewAWuvvtXMAndRiHdcrpfyVcSHcZRjjjJv+jerwAba7UVo7+6Dn0qOU0sAwx2kUIUQfJnkVovcopQqAe7TWixx//wZjXOqt7bxmNvBbjPGntRhTAN6FcTHbixgXdDUCa4B7tdZHlVIhGAe0SRhjcdOUUsswphx7USl1h6MdEx3bGArs01qrFts9DNyktV6llLoe42C6P8YZlQKMi89udTz3ceA+wIJxod064BfAdzCm8/oKeFBrXa6UisWYutDSVPgqpW7GOKiNxBhm8DbwaFuFcRuf00qMi/uUY/3/p7V+q8XymRgXxMVgzOByh9a6oKPrd1VS6DqB7DiFcB2SVyGEuHR0qEtfKdVPGbeY3a2U2qWUyuruhgkhOkfyKoRrkcwK0X06eru6vwFfaq2vV0p5Ar7d2CaX0/JUhxB9gOS1HZJX0Qdd0plVSv0M4wYP51qptb6ip9sj3MsFhy4o404em4F4LeMchOjTJK9CuBbJrBDdqyM9unEYVxT+WymVgnGl8sOO6WeaKaXuxZjYGT8/v/SEBLe/q5wQHZaXl3dCax3WA5uSvArRRT2YV+hAZiWvQrTtQnntSI/uWCAHyNZa5yql/gZUaq1/2dZrxo4dqzds2NDWYiEuOUqpPK312B7YjuRViC7qqbw6tnVRmZW8CnG2C+W1IxejHQYOa61zHX+/B6Q5o3FCCKeTvArhWiSzQnSjCxa6WuvjQJFSaoTjoRnAzm5tlRCiUySvQrgWyawQ3aujsy48CCx0XA2aD9zZfU0SQnSR5FUI1yKZFaKbdKjQ1VpvBnpkvJLoGY2NjRw+fJi6urrebopb8fb2JjIyEovF0mttkLy6J8ms8/WFvIJk1h1JXp2vs3ntaI+ucDOHDx8mICCA2NhYlJJpRZ1Ba01ZWRmHDx8mLi6ut5sj3Ixk1rkkr6I7SV6dqyt57dCd0YT7qaurIyQkRALoREopQkJC5AhedAvJrHNJXkV3krw6V1fy6vaFbl5hOc8u3U9eYXlvN6XPkQA6n3ymXSeZbZt8v5xLPs+uk7y2Tb5fztXZz9Othy7kFZaz4MUcGqx2PM0mFt6TSXpMcG83SwjRBsmsEK5D8ipcgVv36Obkl9FgtWPX0Gi1k5Nf1ttNEkK0QzIrhOuQvApX4NaFbmZ8CJ5mEx4KLGYTmfEhvd0k0QatNXa7vbebIXqZZNZ1SGaF5NV1XMp5detCNz0mmIX3ZPLoZSPklIoTOHssVkFBASNGjOC2224jOTmZu+++m7Fjx5KUlMSvf/1rANavX8/8+fMB+Oijj/Dx8aGhoYG6ujri4+Od0g7Rd0hmnUsyK7qT5NW5JK/dw63H6IIRRAlf13XXWKx9+/bx6quvkpmZycmTJ+nfvz82m40ZM2awdetWUlNT2bx5MwArV64kOTmZ9evXY7VaycjI6PL2Rd8jmXUOyazoCZJX55C8dh+37tEVztNdY7FiYmLIzMwE4J133iEtLY3U1FR27NjBzp07MZvNDBkyhF27drFu3ToeffRRVqxYwcqVK5k0aZJT2iCEO5LMCuE6JK/dRwpd0SHdNRbLz88PgIMHD/LHP/6RxYsXs3XrVubMmdM8X97kyZP54osvsFgszJw5k1WrVrFq1Sq3CaEQ3UEyK4TrkLx2H7cfuiCco2ksVk5+GZnxIU4/VVVZWYmfnx9BQUEUFxfzxRdfMHXqVAAmTZrEbbfdxm233UZYWBhlZWUUFxeTnJzs1DYI4U4ks0K4Dslr95FCV3RYd47FSklJITU1lYSEBKKiosjOzm5elpGRQXFxMZMnTwZg9OjRHD9+XCbjFuICJLNCuA7Ja/eQQlf0mtjYWLZv39789yuvvNLq83x8fKivr2/++/nnn+/upgkhWiGZFcJ1SF4NMkZXCCGEEEK4JSl0hRBCCCGEW5JCVwghhBBCuCUpdIUQQgghhFuSQlcIIYQQQrglKXSFEEIIIYRbkkJXuIVly5Yxd+5cAD7++GOefPLJNp976tQpnnvuuea/jx49yvXXX9/tbRRCnCGZFcJ1uHJepdAVfZrNZrvo11x11VU89thjbS4/N4SDBg3ivffe61T7hBBnk8wK4TouhbxKoSt6TUFBAQkJCSxYsIDExESuv/56ampqiI2N5Sc/+QlpaWm8++67fP3112RlZZGWlsa3vvUtqqurAfjyyy9JSEggLS2N//73v83rfeWVV/j+978PQHFxMddeey0pKSmkpKSwZs0aHnvsMQ4cOMCYMWP40Y9+REFBQfOtDuvq6rjzzjsZNWoUqampLF26tHmd8+fPZ/bs2QwbNowf//jHPfxpCdH7JLNCuA7Jq0HujCbgi8fg+DbnrnPgKLii7VMbTfbs2cNLL71EdnY2d911V/NRYEhICBs3buTEiRPMnz+fRYsW4efnx1NPPcWf//xnfvzjH/Od73yHJUuWMHToUG688cZW1//QQw8xZcoUPvjgA2w2G9XV1Tz55JNs376dzZs3A8Y/Bk2effZZlFJs27aN3bt3c9lll7F3714ANm/ezKZNm/Dy8mLEiBE8+OCDREVFde1zEqIzJLPNz5fMij5P8tr8/N7Iq/Toil7V8p7bt956K6tWrQJoDlVOTg47d+4kOzubMWPG8Oqrr1JYWMju3buJi4tj2LBhKKW49dZbW13/kiVLuO+++wDw8PAgKCio3fasWrWqeV0JCQnExMQ0h3DGjBkEBQXh7e3NyJEjKSws7PoHIISLkcwK4Tokr9KjK6BDR4XdRSnV6t9+fn4AaK2ZNWsWb7755lnPazpS7EleXl7Nv3t4eGC1Wnu8DUIAktkOksyKPkHy2iHdlVfp0RW96tChQ6xduxaAN954g4kTJ561PDMzk9WrV7N//34ATp8+zd69e0lISKCgoIADBw4AnBfSJjNmzOAf//gHYAy6r6ioICAggKqqqlafP2nSJBYuXAjA3r17OXToECNGjOj6GxXCTUhmhXAdklcpdEUvGzFiBM8++yyJiYmUl5c3nwJpEhYWxiuvvMLNN9/M6NGjycrKYvfu3Xh7e/P8888zZ84c0tLSCA8Pb3X9f/vb31i6dCmjRo0iPT2dnTt3EhISQnZ2NsnJyfzoRz866/n3338/drudUaNGceONN/LKK6+cdZQpxKVOMiuE65C8gtJaO32lY8eO1Rs2bHD6eoXz7Nq1i8TExF5tQ0FBAXPnzmX79u292g5na+2zVUrlaa3H9lKT2iV5dQ2S2e4heRXdQfLaPTqTV+nRFUIIIYQQbkkKXdFrYmNj3epIUwh3J5kVwnVIXg1S6AohhBBCCLckha4QQgghhHBLUugKIYQQQgi3JIWuEEIIIYRwS1Loij7t448/5skne++uMkKIiyOZFcJ1XAp5lVsAiz7tqquu4qqrrurtZgghOkgyK4TruBTyKj26otcUFBSQkJDAHXfcwfDhw1mwYAGLFi0iOzubYcOGsW7dOl555RW+//3vA3DHHXfw0EMPMWHCBOLj43nvvfd6+R0IcWmRzArhOiSvBunRFQDc+eWd5z12eezl3JRwE7XWWu5fdP95y68eejXXDL2G8rpyHl326FnL/j373x3a7v79+3n33Xd5+eWXGTduHG+88QarVq3i448/5oknnuCaa6456/nHjh1j1apV7N69m6uuuorrr7++429SCDcimRXCdUhee48UuqJXxcXFMWrUKACSkpKYMWMGSilGjRpFQUHBec+/5pprMJlMjBw5kuLi4h5urRBCMiuE65C8drDQVUoVAFWADbD21XuAi85r7+jQx+zT7vJg7+AOH12ey8vLq/l3k8nU/LfJZMJqtbb7fK11p7bp7iSvlwbJrPuQzLo/yWvvuZge3Wla6xPd1hIhhDNJXoVwLZJZIbqBXIwmhBBCCCHckupI17RS6iBQDmjgX1rr51t5zr3AvQDR0dHphYWFTm6qcKZdu3aRmJjY281wS619tkqpvJ46HSl5dU+S2e7R23l1bK/dzEpeXY/ktXt0Jq8d7dGdqLVOA64AHlBKTT73CVrr57XWY7XWY8PCwi6m3UII55K8CuFa2s2s5FWIzutQoau1PuL4bwnwATC+OxslhOg8yasQrkUyK0T3uWChq5TyU0oFNP0OXAZs7+6GCSEunuRVCNcimRWie3Vk1oUBwAdKqabnv6G1/rJbWyWE6CzJqxCuRTIrRDe6YKGrtc4HUnqgLUKILpK8CuFaJLNCdC+ZXkwIIYQQQrglKXSFEEIIIYRbkkJXCCGEEEK4JSl0Ra8pKCggISGBO+64g+HDh7NgwQIWLVpEdnY2w4YNY926daxbt46srCxSU1OZMGECe/bsAeAvf/kLd911FwDbtm0jOTmZmpqa3nw7Qrg9yawQrkPyaujIrAviElD47dvOeyzgitn0v+UW7LW1FN373fOWB117Lf3mX4u1vJwjDz181rKY11/r0Hb379/Pu+++y8svv8y4ceN44403WLVqFR9//DFPPPEEr732GitXrsRsNrNo0SJ+9rOf8f777/Pwww8zdepUPvjgA373u9/xr3/9C19f3869eSFckGRWCNchee09UuiKXhUXF8eoUaMASEpKYsaMGSilGDVqFAUFBVRUVHD77bezb98+lFI0NjYCYDKZeOWVVxg9ejTf/e53yc7O7s23IcQlQzIrhOuQvEqhKxzaOzo0+fi0u9wcHNzho8tzeXl5ndmOydT8t8lkwmq18stf/pJp06bxwQcfUFBQwNSpU5ufv2/fPvz9/Tl69Ginti2EK5PMCuE6JK+9R8boij6toqKCwYMHA/DKK6+c9fhDDz3EihUrKCsr47333uulFgohWpLMCuE6LoW8SqEr+rQf//jH/PSnPyU1NRWr1dr8+COPPMIDDzzA8OHDeemll3jssccoKSnpxZYKIUAyK4QruRTyqrTWTl/p2LFj9YYNG5y+XuE8u3btIjExsbeb4ZZa+2yVUnla67G91KR2SV5dg2S2e0heRXeQvHaPzuRVenSFEEIIIYRbkkJXCCGEEEK4JSl0L2HdMWzlUiefqehO8v1yLvk8RXeS75dzdfbzlEL3EuXt7U1ZWZkE0Ym01pSVleHt7d3bTRFuSDLrXJJX0Z0kr87VlbzKPLqXqMjISA4fPkxpaWlvN8WteHt7ExkZ2dvNEG5IMut8klfRXSSvztfZvEqhe4myWCzExcX1djOEEB0kmRXCdUhe+w4ZuiCEEEIIIdySFLpCCCGEEMItSaErhBBCCCHckhS6QgghhBDCLUmhK4QQQggh3JIUukIIIYQQwi1JoSuEEEIIIdySFLpCCCGEEMItSaErhBBCCCHckhS6QgghhBDCLUmhK4QQQggh3JIUukIIIYQQwi1JodsFeYXlPLt0P3mF5b3dFCFEB0hmhXAdklfhDObeboCryissZ8GLOTRY7XiaTSy8J5P0mODebpYQog2SWSFch+RVOIv06HZSTn4ZDVY7dg2NVjs5+WW93SQhRDsks0K4DsmrcBYpdDspMz4ET7MJDwUWs4nM+JDebpIQoh2SWSFch+RVOIsMXeik9JhgFt6TSU5+GZnxIXJKRYg+TjIrhOuQvApnkUK3C9JjgiV8QrgQyawQrkPyKpxBhi4IIYQQQgi3JIWuEEIIIYRwS1LoCiGEEEIItySFrhBCCCGEcEsdLnSVUh5KqU1KqU+7s0FCiK6TvArhOiSvQnSfi+nRfRjY1V0NEUI4leRVCNcheRWim3So0FVKRQJzgBe7tzlCiK6SvArhOiSvQnSvjvbo/hX4MWBv6wlKqXuVUhuUUhtKS0ud0TYhROf8FcmrEK7ir0heheg2Fyx0lVJzgRKtdV57z9NaP6+1Hqu1HhsWFua0BgohOk7yKoTrkLwK0f060qObDVyllCoA3gKmK6X+062tEkJ0luRVCNcheRWim12w0NVa/1RrHam1jgVuApZorW/t9pYJIS6a5FUI1yF5FaL7yTy6QgghhBDCLZkv5sla62XAsm5piRDCqSSvQrgOyasQ3UN6dIUQQgghhFuSQlcIIYQQQrglKXSFEEIIIYRbkkJXCCGEEEK4JSl0hRBCCCGEW5JCVwghhBBCuCUpdIUQQgghhFuSQlcIIYQQQrglKXSFEEIIIYRbkkJXCCGEEEK4JSl0hRBCCCGEW5JCVwghhBBCuCUpdIUQQgghhFuSQlcIIYQQQrglKXSFEEIIIYRbkkJXCCGEEEK4JSl0hRBCCCGEW5JCVwghhBBCuCUpdIUQQgghhFuSQlcIIYQQQrglKXSFEEIIIYRbkkJXCCGEEEK4JSl0hdvIKyzn2aX7ySss7+2mCCEuQPIqhGtx1cyae7sBQjhDXmE5C17MocFqx9NsYuE9maTHBPd2s4QQrZC8CuFaXDmz0qMr3EJOfhkNVjt2DY1WOzn5Zb3dJCFEGySvQriW3sis1top65FCV7iFzPgQPM0mPBRYzCYy40N6u0lCiDZIXoVwLT2Z2YbDhznxj3+Qf+Uc6vPzu7w+GbogXFJeYTk5+WVkxoeQHhNMekwwC+/JPOsxIUTfIHkVwrX0RmYbioo4+pPHqN24EQDfceOwn67p8nql0BUup62xQk0/Qoi+oy/k1d7QQE1uLg0FhfT/9q09sk0hXFVPZdZeX0/10mWgFIGXX4Y5LAxsNsIefZSguXOwDBrklO1IoStcTmtjhaTAFaJv6q286oYGlKcnAAXXf4v6vXvxCAqi3403YHI8LoQ4X3dmVtvt1GzYQOUnn1D55VfYq6rwHT+ewMsvw+TtTezbbzllOy1JoStcTtNYoUarXcb3CdHH9WReG48fp2rJEqoXL6F+/36GLlmM8vAg9HvfxeTnh29mphS5QlxAd2b22M9+TsWHH6J8fQmcNYvAq+bhl5nptPW3Rgpd4XI6O1bo3DFHQoju1xN5rV65itKnn6Zu2zYAPGNiCJw7B11Xh/LzI/DKK7v8PoS4VHQms63ltbGkhMrPPqfyk0+IfObvWAYNImj+tfhlZxMwYzomX9/ufiuAFLrCRV3sWKHumAOwoagI7HY8Y2K6tB4h3J0z86ptNmo3b6Zq8RKC5s7Be+RIlNkDTIqwRx4hYOYMPOPjUUp119sRwu1dTGZb5tUfK68NPU3/NUs4vXYt2O14JydjLTuJZdAg/MaP7+aWn08KXXFJcOaYo5Ovvc6p99+nfs8egubPZ9ATv3Nya4W4tJ2b19x9xQw/sJmqxYuoXroM28mTYLHgFR+H98iR+GVlEZeV1dvNFuKSlLuvBL/qU9R5BWKpr8Xyp9/REBFByHfvJWjePLzi43u1fVLoiktCZ8cc6cZGavLyOL16NWGPPIIymWgoLMQjIIDwn/yEgJkzurnlQlx6MuND6G+vpV/lSQ6HRpERE8zRGxeAyYT/lCkEzJyB36RJePj793ZThbgkaa2p27GTio8/YurHn9LfM5SfZ3+X0/5B1P/jVUZOTu8zZ1Wk0BWXhIsZc2SvqaF61SqqFy+matly7BUVKC8vgubPxysujgG/+HmfCbAQ7qTh8BGqlywmdNFiXtuQx+kBgzG98hbpMcHUvbEQr/j45pkUhBC949QHH1L2wgs05OejLBYCp00jYcIMHh0wgsz4ENL62DUwUuiKS0Z7Y46sZcbtDM0hIdSsX8+Rhx7GFBREwNSp+M+cgX92dvPAeSlyhXAOrXVznoqffIqTr7wCgNewoYR+5x7iZkzHx5FZ74SE3mqmEJc0W0UFlV9+ReCcOXj4+2GvrMDcvz/977idwMsvxyMoiEhgTG83tA1S6IpLVsOhQ1QtWkzV4sXUbtxIyPe+S/jDD+OblUX0K6/gOzYdZZaICOFM2mqlZkMeVYsXU71kCdGvvopn5GD8srMxh4URMGM6nrGxvd1MIS5p9oYGqpcto/KTT6hethzd2IhHUBCBsy8n+Lbb6H/77b3dxA6Tvbjoszo6vdDFThumtabgppuo27IVAK+EBELvv5/AK2YDYPL0xC8zo/2VVB2H/OWQvwwmPgJhwzv8voRwRxfKYeORI5Q+/Xeqly3DVlGBzWyB9PHoWuMWn/6TJuI/aWJPN1uIS1ZbmbWWlnJgzlzslZV4hIbSMG8+m4dnUpMwjnR66Kym1nBiH5TshKRrurQqKXRFn5NXWM77Gw/zXt5hrLb2pwO70LRhurGRmg0bqFq0mMYjR4j65z9QSuGfPZGgK6/Ef8YMPCMjL9yo+mooXAP5S43itmSn8bhPMIy8WgpdcclqK68p/naqly7FHBaG/5QpKB8fqlesoH5sFn+qGcC60OHYvX1Y6BlKem+/CSEuEU3FbbCvJ49/uoMGq534mlL+HHyMgf4Wwn/4Q8xhYQTfeCO+48ezZ/AIFvx7Aw17bHgeyHXK1JxtqiqGg8vhgGM/W3UUTBYYNgs8/Tq92gsWukopb2AF4OV4/nta6193eotCtKOpcK1vtKMdj507HVjLo9C2pg2r2biR8rfeonrZcuyVlShvb/wmZmNvaMDk6UnYQw+et92zjmxtVji60QjbgaVweB3YreDhBTFZMPpGiJ9KXkMUOQfLyfQu7xM3oZC8ip50bl4jqk+QfXw7Dfe/yL78XaA11mmXscI+2LhIZfUqnluez4qv92DX4NGFqf46cwOYvnjTGMms6CktO4b611dxRdEmph3KY1jFEbQy0TBzBlprNh46RU7aVWRGt72P7cy2z8tecwfSMqMTqWUHUtwUCvuNZ4U1iZHHGkiP6cZCF6gHpmutq5VSFmCVUuoLrXVOp7cqRBuaQtVU5Co4azqwc3twfzU3CU+zCb/qCrJKdpEZZPSsNhw8yOkVKwmYMcOYimjCBEw+Pq1u01jnWgbbjnDSvJ0hsUfoV5wL9ZVGCyJSIOv7MGQaRGWAxefM615y7k0onEDyKnpMzv5SQsuLOewfBsAPN77FyJMF2IcMI/T++ylKGsctS8po+HpPc0accXvRztwAJq+wnAde/BqztZa/mwf0lbyCZFb0kHW7jmBttGLHxDV7l3Hd/uXs6xfJSylXc/Nj9zAydWib+1hn5NVmbSTdfJA/jT3F4LKcVjqQboD4aTBwNHlFFY52nMZzbU6X8nrBQldrrYFqx58Wx49u+xVCdF7LnaCHSfGtsVHMT4ts/oK3PLoMPVWC/0fbeG9PHqad21BaE5E/CtKGEThvHkFXX93+xWTVJZC/HN/VH7HEtJpBHicBqCgZDMnzIX4qxE0B3/6tvtyZN6FwFsmr6G66oYHT69ZTvWQxU79exKSyk9wy5//R4OVDwS3fI27cMNIyRgLwztL9NNhOnJWRB6YN7dQtgVvqcPaqiqFwNRSuJnbHUnI8DvAB2fzQ+kCfyCtIZkX30lYrp9fmUPHJx0z5ehFLx99OXshQvhgxmcS7b+V4v4Hc3CKH52arvKah83l1jLM9vfJdnmYxmZ47CVS16E0tOpDip0J0ZnMHUhNn7l87NEZXKeUB5AFDgWe11rmtPOde4F6A6OjoTjVGiPbmu9VakxlqwdNswvd0BS988yQAXomJBNx/PwGzZuI1YgRgXFB2nobTLU6TLIPi7QAM8wxiEQk815hMjmk0T918dYcC5Yyeqe4geRXdpWrRIo4+9lPs1dUoHx+CJmZzIiWLB6JGMD5h8Hm5aSsjF3tL4HO1mb2Kw0bGC1YZBW7ZfuNxT3/MYWn8uXocK2zJfSqvcOHMSl7FxbJVV3Pi789Q8fln2EpPYAoMJHjeXB6bNYm1tsA2i9bWsnVReW0aZ9u0n608wmTgkCmcz+2ZrCWFO2+9nTEj2r9bmjP3r8o4mOzgk5XqB3wAPKi13t7W88aOHas3bNjQ6UYJ0UQ3NHB6/XqqFy+havFivEYMp/TnT5GTX0Z2YR5JsyZiGTy49RfbrHBsszH258AyKMoFe6NxmiQ60ziSjJ8KESnkFVV26oi1o2P+lFJ5WuuxF/Peu0ryKrqisbiE6qVLqFq0mOCbbyJgxgzq8/Mpe+klAmbMxG9CFiZv7wuup7vGxeYVnGTnzq1M8txLbPVmo7g9VWgs9AoyToXGZBs/ESngYe7TeXVstx8XyKzkVbSl8cgRGoqK8MvMRFutHLjscryTRhJ41VX4T5nSegdQKy4qs/XVcGjtmetZSnYYjzvG2TbtZ/Oq+nXbmPoL5fWiCl3HCn8F1Git/9jWcySIwhlKn3mWk6++ir2qCuXtjf+kiQRcPpuguXNaf4HWcDIfDiwxQndwJdRXGMsGjjICN2Q6RGWCp2+X2lZvq+fz/M8Z7D+Y8RHjL/j8XtxxSl5Fh+mGBsr+/QpVixdTt9WYfs8SHU3Yww8RNKeN3PVY47TRQ1u4GgqM4QhUHjGW+fSHmAkQO9H474BkMHl0elO9lVfHttvNrORVtGSrqKDyq6+o/PgTajZswDxwIEOXLEaZTOjGRpTF4uQNtrhQO38ZFK07uwNpyDRjXzswBUwm5267DRfKa0dmXQgDGrXWp5RSPsAs4CkntlEIrCdOULVkCdXLljP4D7/H5OeHR79+BMycScCsmfhlZTVfTHbWUV6ItcVpkuVQcchYYVAUjLzKCF3cFPAL7XTbKuor2HZiG1tLtxLqE8oNI27AQ3nwRO4TXBl/ZYcK3Z4ieRUXQ9ts1G7ZirX4OIFXXAEWC6feew+PoCDCfvAwATNm4Dl0aJfmzex0j67dDqW7m8fYUrgGqouNZX7hjsL2EaPHNiyhx3aqziaZFZ118rXXKfnDH9CNjXjGxRH2g4cJnDsP5chCZ4rc8/LaNJ9tU2FbsPKcC7UfaHOcbVdUN1Sz6+QukkOT8TF3bb0dGaMbAbzqGENkAt7RWn/apa0KgVHcVnz4IVWLl1C7eTNojSUyks3rd7FW9yNz0pWk37rgrNdsPHCUf7zyGuP1VnyXbQflOFXpHQRxkyH7IaPXtn88dGLn3PKWpH/O+zPLipZxsOIgACZlYnbsbG4YcQNmk5mPr/mYAX4DuvIRdAfJq2iXvb6e02vXUr14MVVLlmIrKzPuSDZ7Nkop4j/6sPl21x3RXiF7UbMj2G3GuPnmMbZroNa4QJTAwcYBa6xjKELI0E7lu4+SzIoL0lpTu3EjFR9/Qv9v34rX0KF4jRhBv5tvImjeVXgnJ3XogLQjeQ20lnPQsoOY4ccJLVl75sxJv5gzF2rHTgY/54xzbypqLSYLY8LHUN1QzYQ3J6DRvHz5y4wbOK5L6+/IrAtbgdQubUUIQNvt1G3fjsnXF6+hQ7GeOEHJH/+E18hEQh/8PgEzZrDDK4wFL+XSYC02dox3jSPds7B5/E9KYQ4vejRSr81s0sPJiXuAzFnXQcSYTp2qLK8rZ2vpVraUbmFr6VbK68t5/6r3AaisryQ6IJq58XNJCUshOTQZP8uZufwi/COc9Mk4j+RVtMZWUYHJ3x/l4UHJn/5E+WuvY/Lzw3/KZPynz8B/8qTmneTFFrntFbLtXjlts8KxLVDoKGoL154ZatQvBobPNoYixGYbf7tPYXsWyaxoT31+PhWffELlx5/QeOQIyscH3/Hj8Bo6FL+M8fhldPyMYpt5dcxn67H8Qz5UK0jwKgKgriAIhk+D+B9B/BSjA8lJ3tr9FhtLNrKrbBcFlQUATI2cyt9n/B1/T39+Mv4nRAdEk9g/scvbkjujiW7VNBVR1eJFVC9egrWkhKDr5jPod7/Da8QIhi5dgiXiTMGYs2QfA63HmGDaziS2kbRwN1grjYUDkikdeQe/3NqftdYRWM2+LJyWCYM7djrUareyt3wvI4JH4GHy4OmNT/PCthcA8FAeDA8eTlp4Go32RiwmC7+Z8BtnfxxC9JjGo0epclzEWbN+PTGvv45vWirBN9yA/6RJ+GZkdPjilLZcaAqglldO+5rtzPArgJUfGWNsi3KhwTGrVshQ4zafMdlGYRvUgbsVCuGmtNWKMpux19ZycP516IYG/LKyCHvoQfxnzMTDv3M3T2jKq9I2kmz7sC5dBnpb8zjb0R6e5Kjh/N6azTo1ip/efhPpcZ0f9tfUU7uzbCc7ynZg13b+OMUYev75wc85dvoYI/uPZG78XEaGjGRkyMjm1y5IXNDWai+aFLrC6ZruPgZw8Lrrqd+3D+Xjg/+kSQTMnIH/5MmAcb9sS0QEnC5zjLNdyj17l/CA12EAjuoQquMux3v0bGNYgn84A4HvjS9nTAfG/FXUV7CheENzj+3Osp3UWmv54KoPGBo8lIyIDPw9/RkdOpqk0KQujwMSoi9oOHyYww89RP3OXQB4DhlCyF13YQ43burgNXQoXkOHOmVb7U4B1FhLun07S8bmYj+4ikFV2zB9XmcsC0uElJuMcbYx2RAw0CntEcJV2WtrqVq0mIpPPsZ2qoK4d97G5OPD4L/8Ge+RSVgGhHd+5Y4LOefVf85wz0/IYAeBqgZdoCBiNGTdD/HTMEVn4nW0Dr/8Mn56kWPqqxuq2XdqH6nhxsmJJ3Kf4M3dbzYvH+g3kDFhY5qHBz4/63m8zReetcUZpNAVXaa1pn7vPqpXLKd6+XIaiw4zdOkSlMlEyL33YvLzNe5M1jQVUWPtmXtZ5y+FY1sBTb2HHzWDsylOvpeVtiQSktJIjz3/Zg2tzenXaGtk98ndbD2xlfEDxzMseBibSzbzg6U/wGwyk9g/kfnD5pMSlkK4n/EPRkZEBhkRGd386QjRfbTVSs3GjVQvXoxl8GD633YblvBwzP36EfSjH+I/fTpecXFO327LcX5N815PiPIh1boJFjsuHDuyAWwNDELBwGQYcYdjuq8JXbo4tKMa7Y0crz6OTduIDYo1epM2/JEfj/txt29biI6q3baN8v8spOqbb7DX1GAeFEHQ3HnNvboB06Z1bsWOGyKRv7R5PttooL/vYAqDLsMnYSbx4648b5xteoxPhwrcgooClh9ezs6ynews29k8/GD5jcvp792f8QPHE+Id0txTG+Jz9nZ6qsgFKXRFF1V89hklf/wT1mPHAPAamUjQtdeg6+uNCeXnzTUuMjm+9cxVm4dywFoHJgtEjedI6iM8uiGYjfWxeBy0sHBGJgs6ELTKhkr+teVfbC3dys6ynTTYGwD4ybifMCx4GGMHjuX1K14nMSQRLw+vbvwUhOhZ1cuXU/nFl1QvW4bt1CmUpyf9vvUtAJSnJ9Evv9xt224a5+dprWaLeR+Pj6nggfI8WLnJuJ2n8oBBYyDjuxAzEaIzjDk1u0FVQxWVDZUM9jfm0v5L3l/YUbaDw1WHOX7aKHKnRk3l79P/jkmZOFR5qFvaIURHaa2p37ULc0QE5uBg6vfuo2rJEgLnzCHoqnn4pKc3z5pwUdqZz7Z8QBZ/PTWb5Y3JHLdFsPCmTJI62Ft77vCD+1LuIy4ojk0lm/jjhj8y0G/gWcMPfM3GGP+ZMTOZGTPz4t9HN5BCV3RYQ2Eh1cuXU718BWE/eBifUaMwBwfjk5yM/wP34zdp8pnTK+UFsMNxJHlwOdSWG4+HJ8HYu42rNmMmgJc/Hy7dz3rrHuwa7K2M86u31bOzbGfzEISRISO5Z9Q9+Hj48ME+YxjCTQk3kRKWwuiw0Qz0M06D+ln8GBM+pic/IiG6hfXkSWrWrSdw9uUAnPrvB5xeuxb/qVMImD4Dv4kTOz1ur8NqTsKhtXis/Ix31RpGehbgoTS27WaITIcJDxnja6MywCvAKZu0azvldeXNvUFv736bvOI8iqqKOFx9mFP1p0jsn8g7894BYP+p/dQ21pISlsKc+DlEBUQxLHhY8/qemfGMU9olxMVqPHqUik8/o+Ljj2jYf4ABP/sZ/W/7NoFz5xA4dw4mr4vsjLFZ4eimMz22585nO+PXxvSaA0fzxvKDvL7H2Md6tHM73eqGauzYCfQMZM/JPfxw+Q+be2oBBvgOoLimmLigOGbFzGJy5OTzemr7Iil0Rbtsp05R+txznF6+goZCYyovz/h4bKdOAeA3YQJ+EyYYO8GDK2CdI3TlBcYKAiJg+BVn7kIWMODMaU+vRqCcI6dqMXuYsNnsWMyK5Kgzc//dv+h+1h5bi9VuBWCw/2CG9TN2XBYPCytvWolHFyaGF6KvaigqomrxYqoXLaZm40aw2/H+5ms8o6IY+Ktf4hEY6PzJ4FuqLoVDayjZtgTTodWEnN6PQpOkPNmohvCs7Vry1EgevmMBaUMGdXoz9bb65jMuy4uWs+boGoqqiiiqKuJI9RH8Lf6suGkFAHkleWw7sY2ogChmxcwiKiCK+KAzV4I/O+PZrr1nIZxMNzRw6Dv3UpNr3NXZJy2Ngb/5NQGXGwetHS5wm26Y0nRmtOUNkSJSmsfZEp1J3tE6Yx/bGAJFlefsY42x9Fa7lU0lm5qHHuws20lhZSEPpz3M3aPuJtQnlLigOObEzyEpJInEkERCfc4MOfL39Mcffyd+Ut1HCl1xlsZjx6hesRKTrw9B8+ahfHyo/PgTvEeNIvjb38Z/ymQ8o6Kgse5M4A4sNaYJQoNnAMRNgsz7jcI2dPhZ0wK1nN7E7GEC6rF7FmHpV0RMRCk1Kp8/bAtgylBjGsmE/gkMCx7W3FvbMmiAFLnCbWitobER5elJ5Vdfc+ThhwHwGjGC0O99j4CZM7BEGrMRmEO6oRel8tiZmzMUrIYTewDw115s1MNYr7/Fep3IRlscdpMX3xobxUNpkaRd4BRo0903lVJsP7GdlUdWcrjqMIerDlNUVcSJ2hOsW7AOb7M3646v46MDHzX3xE6Lnkakf2TzBSxPTXqqSzevEKK76YYGqleupP5APqH3fgfl6Yll8GDCHn6IwLlzjf1nR7UyzhaAftGQdLVR2MZNOWuc7Xn7WK2x2u1YvE4yYVQFE+IHkx4TTKOtke9+810a7Y0M8B3AyBBj+EHWoCwAQnxCeHr60078ZHqPFLpuoKv3kq/dvJmqxUuoXrGC+j3Gzs1vymSC5s1j0/Eacv/332QMDSPa6zAceB+WLjPGAlnrwGSGyPEw9adGYTs4HTxa/1pprflqz3ZsvhuxV6TQaLXjFfERXv2M21nWEMGUqGxGh41u3rE9lPZQZz8WIfqs5sxGB5FQvM+YBmzJEkLuvJP+t30b3/HjCH/sJwTMnIln5MVNtdXhfw9OHXLcStcxj+3JfONxzwBjXG3KTbxXFsvPcz2o12aayksNeNg1g/qdf9FKrbWWXWW72FG2g33l+zhQcYD8U/m8PfdtogOj2VSyiec2P0e4bzhRAVFMGDSBqICo5jM2P0j7AT8c+8M2i1kpckVvuFCmtNbUbtpMxScfU/X5F9gqKjCHh9P/9tsweXkx6InfdWzdAy1GFps6kVqMsyVuMsT/0Chu+7d9gWnLKf+0Xy5m/z1YfAswmavZXAe+pyYA87F4WHjhsheICYw5rwPJ3Uih6+Iu6s5DDtaTJ6nduJGAmcZA8RMvvkj1suX4pqUR/qMf4j95Mp5Dh7Jt+1Y+eOd1MvRW4lbuAFVlrCAsEcbe1WKcbdvj8QoqCviq4Cu2ntjK1tKtnKo/hfcg0LWDMdkHoCsyqatKwqMxlqfvmtGpQl0IV5JXWM6tL6zhgdw3sR/fyaHGWpS3N34Ts/GMN07Dm4ODCbnjjk6tu9V/D7Q2Ctmm3trC1VBhTAqPdz8jx2PvNsbYDhjVfLAaV1iOysvBw2rHw9E7ZLNrLGYTaTH+bCvdxvay7UwYNIGYwBhWHF7BD5f/EIAQ7xCG9BvC3Pi5WEzGEIvrhl3HDSNuaPPiUItHNw7FEKIT2tvHNnXIlL/+OsVP/B/K25uAGTMIuvoq/LKyLji0KO9gKb9/+U3G663Yl23H7rEfU8txtjN/Y/TYRqS0e0OkmsYatp7YyqbiTexoKMDTPNWY8i9wJyav49hOD8NeH8dTc65hbmJK8+vSB6Q75TPq66TQdXEXmrAdHHck27HTmP5rxQrqtm4DrRm6ZDGWQYMY8NhPGfR//4eH2WqMs93zHHy+lFHlBxllgmLdj2X2MQQkzWLWnBtbnfPSru0UVBSwpXQLW0q3cOOIG0kMSeTAqQM8s/kZhgQNYVrUNEaHjcbcGEtRVAAThoQDmV3qjb4YXe35FqKzrKWlVC1divX4cXJGXUm9DXwa61gbkcyAKy/nW9+dj8mn6/M4n/n3QBNtK6Jq1RZYv9foJaoyZkbBN9QobCc8aEz3FT4S2rjKOz0muHn6sMz4ECoaTvLPrc9RQwH3r85v7on9ZeYviQmMYfzA8Twz/RmSQpNa7SXytTjn1sJC9JRz97F5mw8Qt2I3FZ98QshddxI4ezYBs2ZhCggkYNas9i8KbRpn65heM3n/Mt72OI1dK3bqGDYPvoW0qdcaRa7lwv8efHHwC17b8Rq7Tu7Cpm0oFMODh/PvOx9hY2E1aTFP4+nh1SM56st5lULXxbU1YbutshJMJjz8/an85BOO/uQxUAqf0aMJffD7+E+egjk0GA6uwLNpTttjm0HbwdMfYidxaPht3LcmgN3WCCxmDxZmZULA2Ueyx08f5zdrfsPWE1upajB6fAM8A8galEViSCLZg7NZddMqgryCzm540plfeyIUnen5FqIrGoqKqPrqK6oWLaZ2yxbQGs/4eDLn3oyn2cQTWXdiMZtYeG1m14tcux1KdjKvbhFDPT9jLLsJUZWwD/AfaPTUxmQbt9Q9Z9z8uWx2GwcrDrKjbIfxc2IHkyMnkx7zXWoavfhVXi6J/ROZGTuJ5NBkkkKSmmc6CfYOZkrUlK69FySvou/IjA/B2wMyCjcxvWgj6R/tpdhuwysxsbnH1hIRQb9rr2l9Be2Ms60cMo/f7R7AqsZEqs39WDgzE87tqNKaoqoi8orz2FSyiU0lm3hmxjPEBMZgtVvxMntxV/JdpA1IIyUshQBP4wxrVou79fZEJ1JfzqsUui6uucflwAmyPCqJWfRfCpctp2bjRgb8/Gf0v+UW/CZOZNBTT+KXnY3Zesw4mtz0S/hwDVhrjXkvI8fB5B8b05EMTgcPC9HA4yPLWXOghKgBVRysX8yHq7ewtXQr06On83Daw/Tz6kdZXRmXx17O6NDRpISlEBsUi0kZPUTeZm92HKklJ39/rx7pdaTnW4iu0HY7dVu34jVsGCY/Pyq/+JLSP/8Z76QkQh/8PgEzZ+I1bBhKqbN6STv1PWyam7rAcXOGQ2ugtpxoYID/YA76T6Jq6GRi02YZ96dvo7Bt2olW1FcwKmwUWmumvT2L8oZSAHzNvowMGdncO+tr8WXljSu7fays5FX0Nm2z0VBYSHp8PK/fk4W+7S/42BsJvftOAufNw3v48NZf2HD67HG2xduNx737QfwUxzjbqRAcR5hSfLuwnGEt/i2w2q002hvxMfuwpXQLP1j6A07UngAgyCuI1LBU6m31AMwbMo9B5onk5JfhExLSXOT2tL6eVyl0XVhTr2rqAB+C7rqPxiNHKAG8EhIIuftufMeOhVNFmAuXEdS4DF5+FGqMwBA6AtJuMwrbmGzwDmxeb3ldOSUVJVRXhbP2wAneL/k+ZUXHAQj2CmZ02GiG9BsCGIXsu/PebbONb+Qe4lcfbceuda8e6bV7q1IhOsne0EBNTo5xMeeSJVhLSxn8178QOHs2/a6/jqC5c7AMOn/qrdbu7tcuWyMc3XzmwrFDOVBfaSwLjoOEORz0T2Vlw3CSRo5qd91rjqwh93guO8p2sLNsJ1UNVST0T+Ddee/y5roiiouy0DYvTI3RPHPbXMbFnj0EoScuCJO8it5gr6+nduNGqpevoPLzz7HX1jJs1UrSY/vT+PbrmAcMOP9mDjarcTa06cxoUe7589nGT211nG1eYTkr9x8hJOQ46059w7/2bGJL6RbuH3M/tyfdzmD/wWREZJAWnkb6gHTiguKaO5FA9q8dJYVuL+rMmJaGQ4eoXr6C6hUrUF6eRD3zDCZvbwIuvxzP2Bj8x4/BUrvXOE3y1c3GeCAA/wEwZLpR2MZPhcAzO98Dpw6wvuDz5hsyHKo6xCDfWAq33k+D1Y53SCb3TUrm6sQsogKiOryjyyss51cfbcdqN6YXaujFI71zxxr2paNN4TryCsvJOXCCzCGhjPZuIP+KK7HX1GDy9cVv0iQCZs405pUGzP3Pv311h1nr4UjemQvHitZB42ljWehwSL7OGIYQMwECB7U4dViF55ocFt6TSXSYle0ntrOjbAeHqg7x+8m/B+DD/R/yTeE3DAsexuzY2SSFJJEcmtwir0b7TQrWHTx1XqHbEySvwhk6MlsCWqNMJk69/1+O//a36Lo6sFjwnzSJoKvmNe/vLBERTS+CsgNnhiK0nM924GjHfLZTISoTPM8fk15WW0ZFfQXlFcEseHEV5vhfow43No+vvWrIVSSHJgMQ6hPKk5OebPO9yf61Y6TQdbKOFq8XO6bl5MKFlP9nIQ0HDwLgGRNDwGWXgbUBDq9jwNh6OPAveHWjMc7W4meMy2u6C1l4IijFidoTbCndwp78D7kv5T6UUry07SU+yf+EEO8QUsJSmD9sPgcPh7HPcSqiviwTU80IogOjL+qzyMkvw+YIIYBJqU4f6TljoPtF96IJt9fR71Xj8ePsfPdT9r73CQ3ewSwYfyML784gasECfMem45uVhcnTs/MNaaiBw+sd89iuMX631hnLwpMgdYFx5iUmG/zDznv56gPHabBasWsTdr8c7l/5JDW2kwCYlIkh/YZQ3VCNv6c/Pxn/E3478bfnzXzw7Jb9klfRp13M96qtfay1tJTTa9Y4ftYaw/omTMBr2FD6XX89ftkT8B03/uyLyprH2S5zjLM9bDzeLxqSrjH2sefMZ9uk5fjajcUbKagsIH1AOuO8fkGD1YSt5EpoDOa+rJk8OiPlvNe3RfavHSeFrhNdTPHa3piWxuJiqles4PTKVQz6vycw+fmh6+qwDB5M8C034z8yAs/63UbgnvoDNNYY42wHp8Ekx/ifyHFgNna8ecV5/PPLR9lRtpUqWwkAZpOZ64dfT7hvON9L+R4PpD7AIL9BzUeveYHlvLcmp91TERcKR2Z8CF4WEw2NdkwmxeNXJ3cqCH19oLtwTR35XpW/9Tan3nuPuu3b8QRC/cPYFDLEyOzBk6T/z6Od23h9lXGKs2mM7ZE843SnMsHAUTD2bvb7jmZZ3VBSRww5r102u43d5btZd2wducdyWX88D0/f79FYMxAPHURK6FgmR6eSFJrEiOARzbMdGJktJzPeRHrM2YWu5FX0ZRf7vTp3H7spbw/B33+C+n37APAIDsYvKwtTgDGu1Wf0aHxGjzZe3HAa9n3T9jjbuEeNs6PBcc3j3/MKy1mTu4dB4eVYfEq4ashVAPwu93esPrKaQM9AUsNTuXbYtYwdMJbGGsfp/lNZWMwmpgw9vyOpvX2s5LXjpNB1oosZkH3umJYs/0ZK/vJXqpcvp373bgDMERE0HD6M90B/QtK8CemnIf9xOGAUq4QMg9RbjcI2diLHbbVsLd3K1tK1bNn5Tx7LeIykkCTWHSpg7dH12GqiUQ3j+dWsK7g2KaO5R6e1ntoLnYroSDicdTqjrw90F67pvO/V/hISSw9QvWIlYQ8/hPLwoD7/AMrDg7BHH+VQ4lge/Pp458ah1Z4ybrLSNI/tsS2gbcYNVwalGqc7YyYaN2rwDmqRr2I8V5byn7szGB3lj6eHJzvLdvKdr79DZYMxRjc+KJ7rhl9LythxFBz3JTN+Qqv5uFBmJa+iL+vo98pWWUntli1MWpVD+Krl7AmK5D+pV5M6ZiiWyEgCr5qH34QJeCcmnhlva7PC0U1nCttWx9lOgYgx542z3Ve+j9e3fsb7O1eivApRRfUoFFOjphLoGchDqQ/xw/QfEt8v/qzxtUCX9rGS146TQteJOjogW1utjKwo4u2AfWwPiiJh9lRG1hZz8MUX8U1NJezh+/GP98XLugv1za1wYq/xQr8wo6iNn0p9zAQa/MMI8Axgf/l+vvvJfEpqjALY0+RJYkgidY5Tn7aqUdTs/yl2DR4KysoGtTlhe0vtnYroaDiccTqjrw90F64pMz4Ef2Ul6dgeJhzfwbQleymsOIWyWAicOwfv4cMZ8NhjzTvDUGBhdAdP8Z0uM2ZCaLrz2PHtgAYPTxg8FiY+YgwtihwPXuffLz4nv4xGTmIK3I/yO8ADq57kjuSbuG/MfcQGxjI9ejoZERmMHziecN/wMy9MbLtJHcms5FX0Va19r7TW2E6cwBxmDOc5dPc9nF69GgCLycTI+GF4jRl6pkj8x3PGyi40zjbzPqPH9pxxtifrThpTfBVv4taRtzLQbyB5xXl8UPAy2jQAa2UquiaWu8fNINDTuMB7ZMjINt9TV/exkteOkULXido7wtJWK+ULF3I6J5ea9euxV1fjCVx2//2ERfqjD+0g8JdzsR5aSXDxZ3gU28DiCzET0Km3cXRQMlvsNWwt28bWo5+za/ufuDv5br6f+n0G+Q8iPTydlPAUUsJSGBE84qw7DGUNCcNz6QGnfpF7Mhx9faC7cC3W8nKw2UiPCeXVsd54/+zfaD9/gqZOIWDmDPwmTcLD3yg+z73CuuWOpem0YrCvJ/WnjjLFax/xpzcbxW3pLuMFZh+IGgdTHzPG10aObXMi+EZbIxYPC1prPiv7Eb5DjQtJtdWP5P4ZzTtMX4svv83+7UW/757KrORVdIf0mGAWLhjN7mW5JJcX0v+Jj9i3eTPK15dhS5cA4JuZge/YdHzGjMF71Gg8/P2ap2zfsnsvxVu+ZkjlesJPrCWgvthYcIFxtkeqj/DC1hfIK86joLIAMDqTMgdlMtBvIHPj5zLIPIF7X92B1ZGtmcNHdPn9Sl6dR2mtL/ysizR27Fi9YcMGp6/XVeQVnGRL7nbSyw4QFWCh/7dvRWvN/hkzUBYLfhkZ+CVG4RtcgblsnXE6s6Eam1Zs0/Es0SNZ4T2Qa2dP5fb0udjsNrLfyuZ042l8zD4khSQxKmwU06KmkRqe2rE2dcNdS/rynVD6GqVUntZ6bG+3ozXunFetNTW5udQfOEDDgQPU7d5D7ebNhNx9F+H/8z/ohgY2f7qUtQHRZAwf2OHv8dadO3ntrYWk23cw3rSbISbjrmM2sx8eMZlnbtAwKK15rPy5ahpryCvOY91xY5ytSZl4a+5bADy7+Vkqqs1YTw/lihFjGBfrnJ2cZLZjJK+9T2tN45Ej1G7aTOCVV6A8PDj++OOUv/EmAKcHRuGVkkLUpAyC5s8/f9qvhtNQuBbyl1KzexG+5caQwFPajzX2JHLVKK7/1m2MSk4BpbDZbewp39N80djkyMlcPfRqjp8+zvyP55MankpaeBppA9JICknC0+PsXMs+tvdcKK+9Uui66/+8qiVLKfjvJ5xavZbQ2lMA2IYnkPzxB1B5FNv2r/A4vtY4VVLtOJrsHw/x0/hjlSevHj+Ozec4Ju9jKGUnxBLLsls+AWDJoSVE+EUwLHgYZpN0xLsaV95x9vW8aq2xHjtG/YEDzQWteeBAwh54AK01+zKzsFVUYAoIwCs+Ht+sTAKvuALvESM6diGG1lBeYFw0VrgaClbBqUIAKrUv6+0jyLUnsF4nMmvm5dw/PaHVdjbaG7GYjDMtT298mn9v/zdWbcVisjAmfAxZEVncM+qeHpmnVrRP8to7Gg4foeqrr6jdvImazZuxlRrzvsd9+AHeCQnU7drFru35fGdDLSdNPmdntmk+2/ylcGBZi3G2nhwOSOHNE/GstCWzXcdhx4SH0jx6WQL3TY3ngcUPsKlkE6cdU/gN9BvIHUl3sCBxAWDc4v7c8bWi77hQXnu8YnKXK/ysZWXU5OZSsyGPAT/7Kcps5vTq1dhzVrOrfyy7QifhMUDz7eQKeDYDSnfjAdT4hbA9Oo3NQWEUWDx5YsbfANj9xQ/QddvQtdE0lE3B1BDDr6+f37y96dHTm3935X/IhGvpK3nVWmMtKaXxcBENh4rQDQ0E33gDAIU33WzcYtfBIzgY/xlGXpRSRL34AubwAZjDw84rIlsdBxfdz5h/uunCscLVZ27b6RMMMdkUDb+Nh9b6sq0xCismTAo8zSZ+MWRA87rt2s7uk7t5f+cy1h7NobhhF5/N/4SBfgNJDEnktqTbyIjIIDU8FR9zF28BLAR9J68d0VhcQu2mTdRu2kTg3Dn4jBpFw8F8Sv7wByxRUfhlZeEzZgy+Y8bgNXQoAN6Jiaw5buGkaQ92rRlsO0L1yn/A2h2tj7ONnwrRWRQfq+ellxdj887H4vslHr4FKLsvmfHPY1Im/C3+zI2f29xre7TMm5z8MvJ8y0mPCZYi18X1eKHrylf41e/bR/k771KTk9M8RYnJ35/gb9+KV3Qk4TdMxJZUT/qWr7iTbzArG/ZiL4jN5sshmbxck8/e6iJsdXugbg9xQXFUNVQR4BnAn6b/P/Yea+SDTcdQwPy0yE5dOS2EM/VkXu0NDTQePkJj0SGspaX0u/56AI4//ltO/fe/xkTuDh5hoc2Fbr+bbiLo2mvxGhKP55Ah592owWfUqDa3mRkfgpcZYm1FZJr3cHPhQvjThjNnXPzCzwxDiMmGsAQwmYgCfpF0ZoxueU0DGXH9SYkypipaf3w9jyx7hArHjtdeH4auTWPr4VMMHDGQWTGzmBUzy1kfnRBA39+/WsvLKf7t/1KzeRPWo8ZwH+Xpidfw4fiMGoXv+PEMW7USc2gbNympLuUKVjHQ8gFZahuDVBns55xxtpPRviGU1JQwwM848Pzw8P9hif8QC+ChzIR5DiUrIrv5s/nDlD80b0L2se6nxwtdV7nCz15TQ83GTdTk5hBw2eX4jErGWlrKqXffxTctjcB5c/EbEYG3uQi19qfw5ipMDVUEKRMbI0bwgtdYdlqqef6yf5AQnoJH4TcE7n6bu+MuY0zYGEaHjSbIK6h5e0FeQYyL5YJ3Ierr/5AJ9+LMvGqtsZ06RWNREQ1FRQRedhnKYuHkq69S9sqrWI8fN4YJAChF4Lx5mLy88E4aSbCnJ5aoSDyjorBEReE5eHDzevtde83FNcRuM+bFLFhNeuFqtvmuxlxfbiw7Odi4IKWpuA0Z2jxP5rnSY4KJCmsk91guO4/l8tMNudxddzc3JdxEdEA0UyOnUnUqlk9z/bA1BuKhYN9RM5d1/ToVIVrVV/av1vJyajdtpnbzZmo3bcInNZXwRx/Bw9+fuh078Bmdgu/tt+OTmop3QgLKcbMVk5cXJq8WMwK1GGfbNJ9tPBDtHURB4FgKh00jZtwcbEHR7KvYz8bijWzc8CSbijdxou4Ea25eg5/Fj6yILGICY0gLTyMpNKndWYdkH+t+erzQ7ctX+NlPn6bs5X9zOjeH2i1bobERzGYsgyPxGZWMb2IMw1/8IaailZD/Z1hqHJESHEfRyCv5f/Zi8qoLserTBHp6kD1oIh6OidrP7cExhh/sv+jPoK/8QyYuDRebV2210nj8OI2HDuE9ejQe/v5ULVpE6XPP0Vh0GHtVVfNzfb7+Cs/oaMzh4fiNH4clKhrP6CgskVF4Rkc17/z6XXdd196EzWrMW1voGIZQuPbMKc5+MZgTrzRupRuTDcGxbRa2eYXlrDlQwoQh4YyK9OOGT27gQMUBwDhQHT9wPNEBxpzUA/wG8L8T/5e8wnK+ys0BJXkV3a839q/aZsN64gSWAUbvacGtt1K7Ic9YaDbjnZiIOcQ4y6IsFoZ89WXbK2tzPltPiMqAGb+C+Kno8CQqT+5kSL8h4BXEW7sW8uQ641a5A3wHkD4wnVBzAs+vyGfy0EiujL+yw+9H9rHux+VnXcgrLOf9jYfbPd3fGm21UrdzJ6dzcvEIDCT4phvJyy/Fct0VmKKiCZ+SjW9aCr4htZiOrjFCV7ITgEaf/myISWWFfwBDIydw3ZjvcrrxNHd+eSeZgzKZGjmV0WGj27xorKunRi71Mbqu+P5d+eKWc9mqT9NYdAjzwIGYg4Op3baN0r/8lYbDh2k8ehSsVgCiX30Vv4zxVK9cxcnXX8MzKppi/xBW13hR3X8AMy4bT/qQ829n21Ftfg+sDXB045kxtkW50FBtLAsZahS0sRON4jYost1t1Fpr2VS8iY/2LOPTfSuxW/3Qx+9m4T2ZfHX8HwzyG0RGRAYj+o9ocxyfK35fnckV37875bWr3sg9xBfbj3FFcgS3ZERjq6qidstWY3zt5s3UbtmCR3AwQ7/5GoATL7wAgG9qKt7JyZi8vYE2vgcXms/WMW+8PSqDvacPk3ssl5xjOeQV51FrreUPU/7A7NjZHK46zObSzaSHpxPhHyH72C5wxffe5y5Gc6a8wnJufn4tDTajWH837zBvfqf9L/Sp9/9L1aJFzXPZAgRcdhn5WZdx279zSb7sRiZ47eEu3y/xX/kE2K1g9oboLD6NS2cJNawp38np+n14Nnpyy0DjloF+Fj/emfdOh9rd1VMjffme0t1Nxk/1vMajRyn5819oKDpE46EibOXGaf5BTz1J0NVXgzJhq6zEJzmJwNmzHUMMovFOMuZ99Z80Ef9JE8/OaxW8+O8NF8xrW1p+D/zNVt6d68mI2q3GzRmK1oO11nhiWCKk3HSmxzZgYLvrtdlteDjufPTUuqd4e8/bNNobMWFG2yOxnY7H5sjsz6b9rENtlbxKXl3VGzmFPPufpSScLOTne9MAmPbpi5x6911QCq/hwwmcMwef1DForVFKEfqd75y3npbfg4HmKv4zvY74ivVGcVt52HhSUDQkXd08n+0x3Ui9rZ7YoFiOVBXxrU++BUBsYCxXDbmKzIhMxkeMByAyIJLIgDMHrbKP7Rx3zatLF7o5+WU02s70SLf8QmutaSgooCY3l7o9e4j49a8BOL16FfX5Bwi88kr8MjLwHRqK+dRmGj6+nRzTOgJ8arFrRcnpERxKX8CufgO4fvyjYPHh02++x77yQmbHzmZK5BQyIjKa7yF/rgvdo1pOjXSOjJ/qBR5majduxBIdTcDMmViio/CMisIn1ZjD2Sc5ibj33r3gatrL60VpOM3hDZ/xgP6G8ZbdjFH78frCCigYmAzpdzgK2wng1/6Yd7u2s698H7nHcvk6fxW7T23jbxPeI3vIYIb2G8qCxAVkRGRgqo/nrn9vwSaZvSiSV9fTcOgQlV98Se2mTYzI3cCLtUaH0L5+kXyx/Rjzb7mZgNmX45OS0nxjlfZXeJqjGz7hf/SXTLRsI9F0CJYD3v0gbjJMehSGTKM2YCAbivNYc3QNq795lYMVB7ki9gp+P+X3RPpH8ofJfyA1PLX5ArO8wnJeX11CZrxN9rFO4q55delCNzM+BIuHau7RtZhNTKg9ytGfvMDpnFysxcaV0+aBA7E9/DAe/foR8YtHMR12DEXY80NYb0wbNNg/infJ4FPPUPb4N+AfVsSpE0vxKPPgsnEPEogPT01+ikDPwAvOc9lT96juy7rr9If8A9bzLAPCGbpkcZfX01peO/T/r64SDuUYvbUFq+HYZq62W7F6mNihY/mPns2UmdcwdOxMY/qvdmit0WhMysSyomX8es2vOVl30ljWEIr1dBJ3v76ahXfO4rrhZ48NXniPj9tmVvJ66dFaYz16lJrNm6ndtJmga6/BJymJ+v0HKP3LX/CMi6N27AReqApkZ/9YigLC+V5yBN6J0e2vuGk+2wNLm8fZzrM30uBhJk8P58/2m7jiqptJSJ1Icd0JBvoZZ1lu++Rb7D65Gy8PL8YOGMv1w65nYuREwJgmcHbc7OZNXOr7WMnrxXHpQjfF3847w09TuHgFu7PnMHN2BvHb1lC8chW+48fjl5mJX/poLLoIlfsHOLAUU8kO48U+wRA3hcOR36HfkMvwH5DEkTUvsWPfX/Hx8GNcxASmRE5h4uCJzfesbjlLQnuccY/qrnyRe3uMTXee/nD3f8DcWXpMMG/em3XhMfU1J+HQWuMGDQWr4PhW0HYwWWBwGkx4CGKz2cYI1hTVkxkfwtB2vgcnak+Qeyy3+efRsY9yeezlDPYfTPagbMZHjGfPwYH8a0kZdg0eiovOrOS1dZLXvsdaWsrx//0dtZs2YS0pAUD5+OCTMhqfpCT8JmQxbO0azMHBDAEO5R7i9PZjfM8xRvc8Fxpnm3kfDJnGdhJYc/A4PkH5LKxbxNr3f0uNtYYVN63AYrJwX8p9eHt4kzYgDW+zd7vvoTf3sZJX1+Nyha71xAlO/Ov55rlsvYAEf3+m33EtATHB6IEzOBruxeGdi0k69RKeb250XLXpBdGZWKf/ks0hg1lRc4QVR1ZxYN/L/DY8jmsGJHF36tVMjUsmLTwNi4el023s6lFRV77IfWGMTXef/rhUx0+5g1b/31WXciDva07vXc7Qmi34lu8BtJHZyHEw+UfG+NrIceB5ZqhQKpA69PxtNI0VrKiv4PYvbm+eGSHAM4BxA8bR39u4AnxY8DCemPQEAHmWcv69IqdTmZW8tk/y2jsaS0oc03sZ03z5ZmYQ/vDDmAIDqd+7F9+MDHzGpOCbmorX8OEos1EOmLy9my8gA7glI/q8AnfL7n0Ub/mKNOtmQovXtjLOdpoxLKHF0KHdu97gtaNPYT9iJ9AzkKxBWWQPysau7cDZN0W6kN7ax0peXVOfLnTtNTXU5G2kJjcHzyFD6XftNSgvLyrefx+fMWMInDcPv8wMvAd4U7TpS0qeeZqoUxtItBpTGO3QsYSMuovwlFmYYidSYW/giv9eQdXBKswmM+kD0pk/bD6ZEZkAhPqEEurT/pi+jujIUdG5R4Ut/+7KF7kvjLFx19Mfwkkqj5Gf9zU1e5czpGYLPhX7GQLUaC82MZzYtEcYnDITBqeDpf2eHYB6Wz2bSjY199jGB8XzvxP/l0DPQIb3H868IfPIjMgkoX9C84Vm57pQZlvrxWl67MipWsmr6FMOfusG6rZtA4wbMngnJWEJDweMuWqHfPH5Ra1v0/4jHN6ymPH2LQQcXUVK+W4ATmk/ymMnEzz5f4yLyILjQCkabY2sOrKKzzZ8xoLEBcYdxwakcc+oe5gcOZnkkOQ2s9gRvbWPlby6pj5Z6J54/gWqVyw/M5etxUL/W24GrsEjIIDhSz9DHVplnCZZ/DRUHCIaOKxD+cA+lhW2JNZYwqnxLyLaepDRR77kT8NmEYQPN424icSQRLIisvD37MBA+g5obSd4odOcLY8KfzU3icc/3XHW3539IveFELjr6Q/RSacOnbmVbuFqOJlPPFClfVjHCGoHfY8XCgeyxR6PVmYeDRzBA7GtdNU6NPXYAvx6za/59MCnNNgb8FAejAodxYj+xh0ZlFL8fvLvW13HxWS2tV4coPkxs4cJs0lhs2vJq+gTAi6bReCVV+KbOgavkSMxOeak7rCmcbb5S6nauYikY+tJVTYatJmigBT+a72RlbZkdhHHD2ITeWDsULTWbC7dzKcHPuWrwq+oqK8g2CuY6VHTSQ1PJaF/Agn9Ezr1fvrKPlby6pp6tdBtOZettbiYgb/8BQA1ubno+gZC7rgd34xMfJMTMJ3YBF//AvKXoY4bR6p4B0HcZJaF38LjO8LItw/EK2QF5uAVmCyn8AS8LMMZGTKyeZsPpT3k1PfQmVMZ5x4VfrH92Fl/l9c0dPqL3FdC4I6nP0QHaA0n88/MYVu4BioOGcu8+0HMBFb3u4rf7w5luz0GlAc3hUez4/BhtG5956G15sCpA+QeN+bQ3Fe+j8+u/QwPkwcxgTHcmHAjmRGZpA9Ix8/id8EmXmxmW+vFAZofs9ns3DQ+mkH9fCSvok9obYqvdrUzzrbOfwRv2maz0j6KjXoE1wwZxvsbD9OIkddRUUYRbdVWHlryEHXWOqZHT2dO/ByyBmVhMXV+GCD0rX2s5NU19UqhW7VkKafeffesuWy9EhPRjY0oi4Wofz6HKtlmXLW5//9gaS7YGs7cHWX6LyB+OseDIlhxdBVf7F/BUY9kPLTCw8POiOAEIjxTuXbELGYOH9at76UzpzLOPSq8IjmC9QUnzzpK7MoXWUIgeozWULrHmBGhcI1R3FYfN5b5hhpTfGU9YNxSNzwJTCa8C8vZsy8HHIXt/LRI5qdFtrrz+Dz/c/6w4Q+cqD0BQKR/JJkRmdRYawjwDOCu5LsuuskXm9m2enFaPnYxN6s5l+RV9IrqUji43ChuDyxrc5ztoRMe/PnFHBpb5HVakjfv7PqYo9bVPLGlhklDvsBisvDcjOcY0m9Im9NudkZf28dKXl1PrxS6+dv2Yt2+G8vkGcTOnIzvuHGYTZWw+TXIX4o6uALqHFdtDhgF4++FIdMgegJHGsp5f+/7rNj4f+wp3wPAYP/B/PGW71B43I/M+Ak9+iXszKmM1o4KRwwM6PWjRCHa0nzqMC6YdO+jLYYirIEaowglIOLMHcdiJ0Lo8FZvp9va9/9k3UlK7fv55Mh/+MWGXB7PfpxxA8cR7hvO+IHjyYzIJCMig0H+g7r8Xi42s2314vSFnh0hWtPqzAANp43bXzf12hZvNx737gdxk5rns20aZ9sk3e/Mdz0o+BD/2PMj1h1bh0aTHJLMnPj5WO1WLB4WRoWNcvp7kX2s6KoevwVwXmE5t76wBl9bJZMsu/h5QjFhJWuMcXwAgZEwZKrjaHIKlZ5erDm6hrjAOEb0H8HbW1fyu03fZ3jQKOYMncHkyMnEB8VfcG7b7tTb042Ivs9lbymqNbs2ruSjj94hXe9knGk3/dRpY1lQtNFTG5NtFLf941stbFvLR9M426PVR3lwyYPsLd8LgL/Fn7EDx3J38t2MCR/THW+3zTYJ0cRl88qZU/1Wq5U080H+Mq6CwSdzjVthN50Zjc5svr0uEWOgxYVhLbMxOtKfVUdWkdA/gQj/CBYfWswf1/+RuUPmcmXclcQFxXX7+z23TZJXca4+dwvgA1tW8Y7pFyR5FGJSmvoD/jBsqjE35pDp6OA4DlYVsKJoBStW/4SNxRuxaRu3jbyN6VX38Ot3K2mw/4LtJn9+mprJkH6d/9I7KzxyKkO4s5gvb+MxUzkH7QP4yj6OkJHTmHnFfOh3gYnjaTG+ztaAl38R106o5VDNFtIHpPNI+iOE+YYxwHcAs2NnkxGRwciQkZhNbf+zJJkVon3F697jb7xNpucOglQNbAQGjoKM7xmFbXTWWdP0tWTkdQ1WSwGe2zYTGLKT09ZKHkx9kHtH38u0qGlMj5re4Y4lyavoCy5Y6CqlooDXgAGABp7XWv+tsxtMGDqE2jwf/mq7nhw1mp/cfjOjooM4Un2EuKA4tLZz55d3crLuJMOCh3Fn8p1MjpzM6NDR/HP5QRqsYNe+NNq7NrVHX5gPTwhnc3ZeUYpDs57n3k9KOWLth8VsYuGETOjgAWZOfhkqbCG+ATtRpkY+LTSRHJrEID9jCILFZOG5mc91aF2SWeGOnJ3ZMeZDaNNBvrSPJ0eN5o4Ft5Myou1ZTFpac6AEj6g/YfEqRdstRHhm8siUm8galAWASZk63A7Jq+grOtKjawX+R2u9USkVAOQppb7RWu/szAZHjxxJ3l1fYN23j0z/Pbxe8DvWrFlDsFcwX173JSZl4qnJTxETEEOEf8RZr3Xm1B59YT48IbqBU/MKkDD+Mv4yoP2eGa01BysPNs9lW1JTwhtz3iAzPoRntwRjPTUOVTeM52+4kUlDojrVDsmscFNOzeygeb8kL/URThw8ya3xIaS0k5GSmhK+OPgFB04d4PHsx5kwJJx/bE6jviwIU+0ofnH3FNIjO5cxyavoKy5Y6GqtjwHHHL9XKaV2AYOBTu8415W/xetHjF6cAb4DmBs/lymRU9BoFKr5Bg7ncubUHn1hPjwhnK078grtnzp8f+/7PLf5OUpqjduJDvIbREZEBo22RtJjgnn92scls0K0wemZNXuSHtuf9Nj+rS6ubqjmm8Jv+OzgZ2ddVFZrrTXyet3PJa/CrVzUxWhKqVhgBZCsta48Z9m9wL0A0dHR6YWFhW2uZ/3x9Wwq2cSUyCkMDx7eaxeSyQB30VN64+IWZ+W1SXldOeuPrzd6bY/n8vS0p4nvF8/iQ4v58uCXZERkkBGRQVRA53psO0IyK3pCb12M1lZmO5PXlhptjdix4+XhxTt73uG3Ob8l0j+SuUPmMiduDrFBsc57Ey1IXkVPuFBeO1zoKqX8geXA77TW/23vuRe6KlSIS01P7zidmdf95fv52aqfsfvkbjQaX7MvYweO5cHUBzt9pyMh+rJeOjDtUGY7un+1azubSzbzWf5nfFX4FQ+lPsQNI26gor6CgsoCRoeO7tXZioRwFqfMuqCUsgDvAwsvtNMUQvQuZ+c13C+cAM8A7h9zP5kRmSSFJnX5bkdCiDOcmVm7tvPMpmf4/ODnHKk+go/Zh2lR0xgePByAIK8gUsJSnNBqIVxDR2ZdUMBLwC6t9Z+7v0lCiM7qjrwGegby0uUvOWNVQohzODuzJmViQ/EGYgNjeWDMA8yInuHUO5UJ4Wo60qObDXwb2KaU2ux47Gda68+7rVVCiM6SvArhWpye2Zcvf7nd+aiFuJR0ZNaFVYAM5BHCBUhehXAt3ZFZKXKFOKPjsz8LIYQQQgjhQqTQFUIIIYQQbkkKXSGEEEII4Zak0BVCCCGEEG5JCl0hhBBCCOGWpNAVQgghhBBuSQpdIYQQQgjhlqTQFUIIIYQQbkkKXSGEEEII4Zak0BVCCCGEEG6pzxe6eYXlPLt0P3mF5b3dFCFEB0hmhXAdklfh7vr0DbHzCstZ8GIODVY7nmYTC+/JJD0muLebJYRog2RWCNcheRWXgj7do5uTX0aD1Y5dQ6PVTk5+WW83SQjRDsmsEK5D8iouBX260M2MD8HTbMJDgcVsIjM+pLebJIRoh2RWCNcheRWXgj49dCE9JpiF92SSk19GZnyInFIRoo+TzArhOiSv4lLQpwtdMIIo4RPCdUhmhXAdklfh7vr00AUhhBBCCCE6SwpdIYQQQgjhlqTQFUIIIYQQbkkKXSGEEEII4Zak0BVCCCGEEG5JCl0hhBBCCOGWlNba+StVqhQobGVRKHDC6RvsXq7YZpB297QLtTtGax3WU425GG6WV5B29zR3bLfktedIu3uWO7a73bx2S6Hb5saU2qC1HttjG3QCV2wzSLt7mqu2uz2u+p6k3T1L2t03uOr7kXb3rEux3TJ0QQghhBBCuCUpdIUQQgghhFvq6UL3+R7enjO4YptB2t3TXLXd7XHV9yTt7lnS7r7BVd+PtLtnXXLt7tExukIIIYQQQvQUGboghBBCCCHckhS6QgghhBDCLTm90FVKzVZK7VFK7VdKPdbKci+l1NuO5blKqVhnt6EzOtDuO5RSpUqpzY6fe3qjnedSSr2slCpRSm1vY7lSSj3teF9blVJpPd3GVtp0oTZPVUpVtPisf9XTbWyNUipKKbVUKbVTKbVDKfVwK8/pc5/3hbhiZiWvPcsVMyt57Tt5BdfMrOS1Z3VbZrXWTvsBPIADQDzgCWwBRp7znPuBfzp+vwl425lt6MZ23wE809ttbaXtk4E0YHsby68EvgAUkAnkukCbpwKf9nY7W2lXBJDm+D0A2NvK96TPfd4XeE8ul1nJa59sd5/LrOS1b+T1Itrd5zIree3xdndLZp3dozse2K+1ztdaNwBvAVef85yrgVcdv78HzFBKKSe342J1pN19ktZ6BXCynadcDbymDTlAP6VURM+0rnUdaHOfpLU+prXe6Pi9CtgFDD7naX3u874AV8ys5LWHuWJmJa9A38gruGhmJa89q7sy6+xCdzBQ1OLvw5zfyObnaK2tQAUQ4uR2XKyOtBvgOkdX+XtKqaieaVqXdfS99TVZSqktSqkvlFJJvd2YczlOB6YCuecscrXP2xUzK3ntm/psZiWvso/tJq72/Wmpz+YVnJtZuRit4z4BYrXWo4FvOHPELJxvI8a9q1OAvwMf9m5zzqaU8gfeB36gta7s7faIVklee1afzazk1WVIZntOn80rOD+zzi50jwAtj8IiHY+1+hyllBkIAsqc3I6LdcF2a63LtNb1jj9fBNJ7qG1d1ZH/J32K1rpSa13t+P1zwKKUCu3lZgGglLJgBHCh1vq/rTzF1T5vV8ys5LWP6auZlbz2ibyC+2bW1b4/QN/NK3RPZp1d6K4Hhiml4pRSnhgD4T8+5zkfA7c7fr8eWKIdI4x70QXbfc4YkKswxo64go+B2xxXKmYCFVrrY73dqPYopQY2jSlTSo3H+J729j/UONr0ErBLa/3nNp7map+3K2ZW8trH9MXMSl6BvpFXcN/Mutr3B+ibeXW0pVsya3ZmI7XWVqXU94GvMK6yfFlrvUMp9TiwQWv9McabeF0ptR9jsPRNzmxDZ3Sw3Q8ppa4CrBjtvqPXGtyCUupNjCsoQ5VSh4FfAxYArfU/gc8xrlLcD9QAd/ZOS8/oQJuvB+5TSlmBWuCmPvAPNUA28G1gm1Jqs+OxnwHR0Hc/7/a4YmYlrz3PRTMree0DeQXXzazktcd1S2blFsBCCCGEEMItycVoQgghhBDCLUmhK4QQQggh3JIUukIIIYQQwi1JoSuEEEIIIdySFLpCCCGEEMItSaErhBBCCCHckhS6QgghhBDCLf1/lC/n+hfp7K0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 3, figsize=(12, 4))\n", - "ax[0].plot(X_test, y_test, '.', label=\"raw\")\n", - "ax[0].plot(sorted_X, pred, label=\"prediction\")\n", - "ax[0].plot(sorted_X, min_pred, '--', label=\"min\")\n", - "ax[0].plot(sorted_X, max_pred, '--', label=\"max\")\n", - "ax[0].legend()\n", - "ax[0].set_title(\"alpha=%f\" % lin.alpha)\n", - "ax[1].plot(X_test, y_test, '.', label=\"raw\")\n", - "ax[1].plot(sorted_X, pred2, label=\"prediction\")\n", - "ax[1].plot(sorted_X, min_pred2, '--', label=\"min\")\n", - "ax[1].plot(sorted_X, max_pred2, '--', label=\"max\")\n", - "ax[1].set_title(\"alpha=%f\" % lin2.alpha)\n", - "ax[1].legend()\n", - "ax[2].plot(X_test, y_test, '.', label=\"raw\")\n", - "ax[2].plot(sorted_X, pred3, label=\"prediction\")\n", - "ax[2].plot(sorted_X, min_pred3, '--', label=\"min\")\n", - "ax[2].plot(sorted_X, max_pred3, '--', label=\"max\")\n", - "ax[2].set_title(\"n_estimators=%d\" % lin3.n_estimators)\n", - "ax[2].legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## With decision trees" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "IntervalRegressor(estimator=DecisionTreeRegressor(min_samples_leaf=10))" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.tree import DecisionTreeRegressor\n", - "tree = IntervalRegressor(DecisionTreeRegressor(min_samples_leaf=10))\n", - "tree.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "pred_tree = tree.predict(sorted_X)\n", - "b_pred_tree = tree.predict_sorted(sorted_X)\n", - "min_pred_tree = b_pred_tree[:, 0]\n", - "max_pred_tree = b_pred_tree[:, b_pred_tree.shape[1]-1]" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAEICAYAAAB2wembAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2yElEQVR4nO3deVyU1f7A8c+ZjV1ABMUNRBTIFdDEyDS3sszUNC3T1Mxut5t1vdm1fi33dyvbuz/bM9dMu2nmrVtZaWmJhiauueICKioqIijIMjPn98czIDsDzLA45/16zYuZ53nmPOcZ5jvnPOc55zxCSomiKNc2XUNnQFEU51OBriguQAW6orgAFeiK4gJUoCuKC1CBriguQAW6CxBCSCFEeB3T2CuEGFDF+g1CiGl12YfiPCrQa0kIkSKEGGzntk0+CKSUXaSUGwCEEP8QQnxa27SEEAOEECcdljmlWirQmwAhhL6h81DfhBCGhs7DtUQFugMIISYLIRKEEG8IITKFEMeEEMNs614C+gHvCiEuCyHetS2PFEKsFUJcEEIcFELcXSK9xUKID4QQ3wkhcoAnhBBnSga8EGKUEGK37fn1QojfhBAXhRCnhRDvCiFMduT7ZiHEnhKv1wohfi/xeqMQYqTteYoQYrAQ4lbgaWCc7Xh2lUgyRAixSQhxSQjxoxCiRQX79ALWAK1t778shGhtqyV8IYT4VAiRDUwWQvgKIRbYjilNCPFimc9gqhBiv+0z/0EIEWJbLoQQ/xJCnBVCZAsh9gghulb3eVzTpJTqUYsHkAIMtj2fDBQCDwJ64GHgFCBs6zcA00q81ws4AUwBDEA0cB64zrZ+MZAFxKP9GLsDR4AhJdJYCcy2PY8F4mxphQL7gcdLbCuB8AqOwQPIA1oARiAdSAN8bOuuAAEVHO8/gE/LpLXBlsfOtvduAF6p5LMbAJwss+wfts9wpO2YPYDVwEe2zysI2Ao8ZNv+TuAwEGU77meAzbZ1twBJgB8gbNsEN/R3piEfqkR3nFQp5cdSSguwBAgGWlay7XAgRUq5SEppllLuAFYBY0ts85WUcpOU0iqlzAM+A+4BEEL4ALfZliGlTJJSJtrSSkELjv7VZVhKeQX4HbgJ7cdiF7AJ7QcmDkiWUmbU4DNYJKU8ZEt3BdCzBu8F+E1K+R8ppRVohnaMj0spc6SUZ4F/AeNt2/4JeFlKuV9KaQbmAD1tpXoh2o9VJNqP7X4p5eka5uWaos6DHOdM0RMpZa4QAsC7km1DgD5CiIsllhmApSVenyjznuXAZiHEw8BoYLuUMhVACNEZeAvoBXja0kqyM9+/YCthbc8z0X4k8m2va+JMiee5VH78lSl5zCFotYzTts8StJL+RIn1c4UQb5Z4jwDaSCl/tp0ivYd2OvEl8ISUMruG+blmqBK9fpQdIngC+EVK6Vfi4S2lfLiy90gp9wGpwDDgXrTAL/IBcADoJKVshnYOLbBPUaDfZHv+C1qg96fyQK/rkMfK3l9y+Qm0H5sWJT6jZlLKLiXWP1TmM/SQUm4GkFK+LaWMBa5DO52YVcc8N2kq0OtHOhBW4vU3QGchxEQhhNH26C2EiKomneXAY2hBubLEch8gG7gshIhEayOw12YgArge2Cql3IutxgH8WsXxhAohavv9SQcChBC+lW1gq2r/CLwphGgmhNAJIToKIYpOST4EnhJCdAGwNdyNtT3vLYToI4QwAjlo7RDWWub1mqACvX7MBcbYWoffllJeAoainW+eQqvyvgq4VZPOZ2gl7c9SyvMllj+BVspfAj4GPrc3Y1LKHGA7sFdKWWBb/Btam8PZSt5W9COTIYTYbu++SuzzANqxHLVdKWhdyaaTABOwD+2U4gu0tg+klKvRPrN/21rp/0Cr7YB2fv+x7T2pQAbwek3zeS0pahVWFOUapkp0RXEBdgW6EMLP1pnhgK2DQl9nZ0xRFMex9/LaXOB7KeUYW48rTyfmSVEUB6v2HN3WMroTCJPqhF5RmiR7SvQOwDlgkRCiB1pHjMdsrbXFhBDTgekAXl5esZGRkY7Oq6Io1UhKSjovpQwsu9yeEr0XkAjESym3CCHmAtlSymcre0+vXr3ktm3b6ppnRVFqSAiRJKXsVXa5PY1xJ9EGIGyxvf4CiHFk5hRFca5qA11KeQY4IYSIsC0ahNaBQVGUJsLeVvdHgWW2FvejaMMrFUVpIuwKdCnlTrSRUYpSY4WFhZw8eZK8vLyGzso1w93dnbZt22I0Gu3aXg1TVZzu5MmT+Pj4EBoaSokhp0otSSnJyMjg5MmTdOjQwa73qC6witPl5eUREBCggtxBhBAEBATUqIbkkoGelJrJe+sPk5Sa2dBZcRkqyB2rpp+ny1Xdk1IzmTA/kQKzFZNBx7JpccSG+Dd0thTFqVyuRE88mkGB2YpVQqHZSuLRmkyJpihNk8sFelxYACaDDr0Ao0FHXFhAQ2dJqWdSSqxW15pwxuUCPTbEn2XT4pg5NEJV2xsxR7ejpKSkEBERwaRJk+jatSsPPPAAvXr1okuXLjz//PMA/P7774wePRqAr776Cg8PDwoKCsjLyyMsLKyq5Bs9lztHBy3YVYA3Xs5qR0lOTmbJkiXExcVx4cIFmjdvjsViYdCgQezevZvo6Gh27twJwMaNG+natSu///47ZrOZPn361Hn/DcnlSnSl8XNWO0pISAhxcXEArFixgpiYGKKjo9m7dy/79u3DYDDQsWNH9u/fz9atW5k5cya//vorGzdupF+/fg7JQ0NRga40Os5qR/Hy8gLg2LFjvPHGG/z000/s3r2b22+/vfia9E033cSaNWswGo0MHjyYhIQEEhISmnygu2TVXWncitpREo9mEBcW4PDTrOzsbLy8vPD19SU9PZ01a9YwYMAAAPr168ekSZOYNGkSgYGBZGRkkJ6eTteuTfvWbSrQlUbJme0oPXr0IDo6msjISNq1a0d8fHzxuj59+pCens5NN90EQPfu3Tlz5kyT7/CjAl1xCaGhofzxxx/FrxcvXlzhdh4eHuTn5xe/njdvnrOzVi/UObqiuAAV6IriAlSgK4oLUIGuKC5ABbqiuAAV6IriAlSgK0oNbdiwgeHDhwPw9ddf88orr1S67cWLF3n//feLX586dYoxY8Y4PY9lqUBXFBuLxVLj94wYMYLZs2dXur5soLdu3ZovvviiVvmrCxXoiktISUkhMjKSCRMmEBUVxZgxY8jNzSU0NJS///3vxMTEsHLlSn788Uf69u1LTEwMY8eO5fLlywB8//33REZGEhMTw5dfflmc7uLFi/nLX/4CQHp6OqNGjaJHjx706NGDzZs3M3v2bI4cOULPnj2ZNWsWKSkpxd1p8/LymDJlCt26dSM6Opr169cXpzl69GhuvfVWOnXqxJNPPlnn41c945T6tWY2nNnj2DRbdYNhlVefixw8eJAFCxYQHx/P1KlTi0vagIAAtm/fzvnz5xk9ejTr1q3Dy8uLV199lbfeeosnn3ySBx98kJ9//pnw8HDGjRtXYfozZsygf//+rF69GovFwuXLl3nllVf4448/ioe/pqSkFG//3nvvIYRgz549HDhwgKFDh3Lo0CEAdu7cyY4dO3BzcyMiIoJHH32Udu3a1fojUiW64jJK9mu/7777SEhIACgO3MTERPbt20d8fDw9e/ZkyZIlpKamcuDAATp06ECnTp0QQnDfffdVmP7PP//Mww8/DIBer8fX17fK/CQkJBSnFRkZSUhISHGgDxo0CF9fX9zd3bnuuutITU2t07GrEl2pX3aUvM5SdmBK0eui4atSSoYMGcJnn31Warui0rg+ubm5FT/X6/WYzeY6padKdMVlHD9+nN9++w2A5cuXc+ONN5ZaHxcXx6ZNmzh8+DAAOTk5HDp0iMjISFJSUjhy5AhAuR+CIoMGDeKDDz4AtIa9rKwsfHx8uHTpUoXb9+vXj2XLlgFw6NAhjh8/TkRERIXb1pUKdMVlRERE8N577xEVFUVmZmZxNbtIYGAgixcv5p577qF79+707duXAwcO4O7uzrx587j99tuJiYkhKCiowvTnzp3L+vXr6datG7Gxsezbt4+AgADi4+Pp2rUrs2bNKrX9n//8Z6xWK926dWPcuHEsXry4VEnuSNXeH7021P3RlZL2799PVFRUg+YhJSWF4cOHlxqq2tRV9LnW5f7oiqI0cSrQFZdQduIJV6MCXVFcgAp0RXEBKtAVxQWoQFcUF6ACXVFsqhty2pSpLrCKYjNixAhGjBjR0NlwClWiKy6haJjq5MmT6dy5MxMmTGDdunXEx8fTqVMntm7dWmrI6eTJk5kxYwY33HADYWFhDTKG3JFUia7UuynfTym37JbQWxgfOZ4r5iv8ed2fy62/M/xORoaPJDMvk5kbZpZat+jWRXbt9/Dhw6xcuZKFCxfSu3dvli9fTkJCAl9//TVz5sxh5MiRpbY/ffo0CQkJHDhwgBEjRjTIzDCOogJdcRkdOnSgW7duAHTp0oVBgwYhhKBbt26lxokXGTlyJDqdjuuuu4709PR6zq1j2RXoQogU4BJgAcwV9aVVFHtVVQJ7GDyqXO/v7m93CV5WyQEjOp2u+LVOp6twGGjJ7Z0xJqQ+1aREv1lKed5pOVEUxWlUY5yiuAC7hqkKIY4BmYAEPpJSlrvFpBBiOjAdoH379rF1nfpGuXY0hmGq1yJnDFO9UUoZAwwDHhFC3FR2AynlPCllLyllr8DAwNrkW1EUJ7Er0KWUaba/Z4HVwPXOzJSiKI5VbaALIbyEED5Fz4GhgOsO7FWUJsieVveWwGrbjJkGYLmU8nun5kpRFIeqNtCllEeBHvWQF0VRnERdXlMUF6ACXVFcgAp0RXEBKtAVl2DPMNWtW7fSt29foqOjueGGGzh48CAA//rXv5g6dSoAe/bsoWvXruTm5jbk4dSYGr2m1LvUiZPKLfMZdivN770X65UrnJj+ULn1vqNG4Td6FObMTNJmPFZqXcjST+zab3XDVD/55BM2btyIwWBg3bp1PP3006xatYrHHnuMAQMGsHr1al566SU++ugjPD09a3fwDUQFuuIyqhummpWVxf33309ycjJCCAoLCwFtdNvixYvp3r07Dz30UPEdWZsSFehKvauqBNZ5eFS53uDvb3cJXlZ1w1SfffZZbr75ZlavXk1KSgoDBgwo3j45ORlvb29OnTpVq303NHWOrig2WVlZtGnTBoDFixeXWj5jxgx+/fVXMjIymuS0UirQFcXmySef5KmnniI6OrrURBR//etfeeSRR+jcuTMLFixg9uzZnD17tgFzWnPqbqqK06lhqs6h7qaqKEopKtAVxQWoQFfqRVOfXLGxqennqQJdcTp3d3cyMjJUsDuIlJKMjAzc3d3tfo+6jq44Xdu2bTl58iTnzp1r6KxcM9zd3Wnbtq3d26tAV5zOaDTSoUOHhs6GS1NVd0VxASrQFcUFqEBXFBegAl1RXIAKdEVxASrQFcUFqEBXFBegAl1RXIAKdEVxASrQFcUFqEBXFBegAl1RXIAKdCdKSs3kvfWHSUrNbOisKC5OjV5zkqTUTCbMT6TAbMVk0LFsWhyxIf4NnS3FRakS3UkSj2ZQYLZilVBotpJ4NKOhs6S4MBXoThIXFoDJoEMvwGjQERcW0NBZUlyYqro7SWyIP8umxZF4NIO4sABVbVcalAp0J4oN8VcBrjQKququKC5ABbqiuAAV6IriAlSgK4oLsDvQhRB6IcQOIcQ3zsyQoiiOV5MS/TFgv7MyoiiK89gV6EKItsDtwHznZkdRFGewt0T/P+BJwFrZBkKI6UKIbUKIberWO4rSuFQb6EKI4cBZKWVSVdtJKedJKXtJKXsFBgY6LIOKotSdPSV6PDBCCJEC/BsYKIT41Km5UhTFoaoNdCnlU1LKtlLKUGA88LOU8j6n50xRFIdR19EVxQXUaFCLlHIDsMEpOVEUxWlUia4oLkAFuqK4ABXoiuICVKArigtQga4ojVj22rVYLufUOR0V6IrSSOUdPETaY4+TMW9endNSga4ojdTZ119H5+NDwNQpdU5LBbqiNEKXNyaQk5BAi4f/hN7Pr87pqUBXlEZGWiycff11jO3a4X/vvQ5JU033rCiNjCU7G0NgIH5jx6IzmRySpgp0RWlkDP7+tF8wHymlw9JUVXdFaUSyf/yRwrQ0AIQQDktXBbqiNBKF6Wc59ffZnH3rXw5PWwW6ojQS596eizSbCXz8MYenrQJdURqBvAMHyPpyNc0nTMDUrp3D01eBrigNTErJ2ddeQ9esGS0e/pNT9qFa3RWloRUWYmzXHu+bB6L39XXKLlSgK0oDEyYTwf/7D6fuQ1XdFaUBXVq/nis7dzp9PyrQFaWBWHNyOP3sc6S//oZDO8dURFXdFaWBZCxYiOX8eVq+965DO8dURJXoitIACtPTyVi4kGa3DcOjRw+n708FuqJUISk1k/fWHyYpNdOh6Z6b+zZYLATOnOnQdCujqu6KUomk1EwmzE+kwGzFZNCxbFocsSH+DknbrWMYAQ89hKltW4ekVx0V6IpSicSjGRSYrVglFJqtJB7NcFigBzzwgEPSsZequitKJeLCAjAZdOgFGA064sIC6pxmTuIWsr791umt7GWpEl1RbJJSM0k8mkFcWACxIf7EhvizbFpcqWV1Ic1mzrz4ArKwkGZDhoCDJpWwhwp0RaHy8/GihyNcXPUlBYeP0ObtuYh6DHJQVXdFASo+H3cky+Uczr3zDh6xsfgMGeLQtO2hSnRF4er5eKHZ6rDz8ZIyFsyvt84xFVGBrlzTzr75JsJoJHDGDACOjhoNFkupbZrdMZzYBx/UzsePnCeuY4saVdeLzu0HvD4Tt4Irpdb53DKUlrNm4R4VRfOpU+ulc0xFVKAr16y8ffvI+Hg+vqNGFS8ztWsH0lpqO4O/FtRtl3/IyPMZtHnzDbvSN58/z/4XXuUBjxvIFiYKacGgCF8CvK+ef5tCQwFoNnQozYYOreMR1Z4KdOWadXbuXHTNmtHyqdnFy9q+PbfS7YWbO9lr1hD4+GPVzvJSePYsxydPQZxMI7hvBy76h/BOj7swDo3gkZvDHXYMjqIa45RrUu72HeT88isBDzyAvlkzu97jP2EC6PVc+GRpldsVnjnD8YmTKDxzhsI5b3EsqINDr7U7gyrRlWvSubffRh8QQPOJ99n9HmPLIHxvG8bFVasIfPQvFf5AFKalkTp5CpYLF2g/fz6eMdEs65bpsGvtzqJKdOWaIKUkc8UKLnzyCQAtn3qK4JdeROfpWaN0mk+ejMzN5eLKlRXvx2xG5+5G+0UL8YyJBiA2xJ9Hbg53TpBfPA6/vgEZR+qUjCrRlWtC/qFkzjz3PPrAFjSfNAn3iM64R3SucTruUVG0fOYZvAf0L7XcfO4c+hYtMIWE0OE//0Ho9Y7KenlXLsK+/8DuFZC6SVvmGQABHWudpAp05ZqQt3cvACELF1a6TdkurpVpft8Ebdv1h4kLC6Cr5SLHJ0/Gd/Qogh5/3DlBbi6A5B9h9+dw6HuwFEBAONz8DHQfC/6hdUpeBbpyTcjbuxedpyemjqVLvaLg9vc08c9v9to15DQpNZP/ffXfjPvje9b5BuNxfg8GnaDZbbc5NtNSwomtsPvfsHc1XMkEzxbQayp0Hweto8FBnWuqDXQhhDvwK+Bm2/4LKeXzDtm7ojhI3r59uF0XhdBdbXYq2X9dJwRWKSsdclqytE88moH/pQt0vnCcyAup5LYIpNvCj3ALC6t1/krVJrwytJJ7zwrITAGDB0TeDj3GQ9gA0Bsrf28t2wHsKdHzgYFSystCCCOQIIRYI6VMrNUeFcUJ/MaORefuVmpZyf7rSIlOJxDIcpfByg5oeW54F7aExpDQtidGW+nvVtMAk1LrmGO1sD01g8cXr2egNRGDIQHEEUBAWH/oPxuihoObT4XJOGryi2oDXWoDZy/bXhptj/odTKso1fAbParcspL911sYclkUngBXMgnycafF7u8h71bodEu5AS2ZuQX2D09N3wtfTtdaxaUVpAWsFkqGSAywUQ/oYZ81hE0dHyd+5EPQrHW1x+WoyS/sOkcXQuiBJCAceE9KuaWCbaYD0wHat29f44woSm0VnExDFhZgCg0tNWCkaDz5vr07GXvwGdxTj4NXEOQAx3MgaTH4d2BEp4l8Y/Al22wiwxBYajx6lfZ8AV8/CiZv6DUF9CYQOtDptb9CDzodaVn5LP39DL+Yu3BMH8qy/nHQzL5gddRgG1GTmS6EEH7AauBRKeUflW3Xq1cvuW3btlplSFFq6sycOVxc+QUR234v3yJ+4Dv46s/a83HLIDRee24phP3/hS0fwomr5dbJ2Cdpe8f/VL1DixnWPQ+/vQvt4uDuJeDTqsq31OU8uybvFUIkSSl7lV1eo1Z3KeVFIcR64Fag0kBXlPqUt3cf7pGR5YNcSvh2ptaa/ZckaFGiD7reCF1Ha49TO+H8Idj3FW2TXoeIXtD5lop3lnMeVk6GlI1w/XQY+hIYqp9Eoi4TWDhi8otqe8YJIQJtJTlCCA9gCHCgTntVFAeRVit5+/fjft115VeeOwCXTsMdb5cO8jKSCkN4LyOG7b1fh1bdYNU0OJ9cfsO0JPioP5z8HUZ+CLe9bleQNwb2dIENBtYLIXYDvwNrpZTfODdbimKfgpQUZG4u7l26lF95ZD0An5wNq3Re9qJW7Td/PMi9i3exp9/7Wmn/73shL/vqhtuXwsJh2rn31B+g5z3OOBynsafVfTcQXQ95UZQay9u7D6DCQM/a+yMXZDD/+DUb0+bE4ktTuYW56IQOd4N7uVbtX8960G3sEvjkTi3Yo++D44mQtEi7xn3XQvBqnCPUqqJ6xilNmteN8bR5523cOpbpzGLOx/PUb3xl7Vfu0lSf5X0AuLPjnQxtN718q3ZIONz+Jqz5u3YuDhD/OAx6TmtRb4JUoLuovEOHsFzQqrPGtm0xtW3TwDmqHYO/vzZ1clkntmK05vEbPdALMHkfx8NXYJVh/C32b5zOOc3nBz/nt1O/MWvU38jLiijdqt1rCkRPhAtHwWqGlhW0ATQhNbq8Zi91ea1xklYrlzdsIGPBQq4kJRUvD3xsBi0efrj4pgINMXlhbUirlcxPl+HV70bcOnQoXp6Umon86Z/EnljCznt3svlkAVty3iQ97yjf3/V98fHtzdjLMwnPkJqdyprRa2jp1bKhDsVhHHJ5TWmapJTal9tqJf3Fl5BIWj41G7eoKABMbdpgzcnh1NP/g3f//hX2MmuMCo8fJ33OHIJffKE40Isa11aIDWwX4WDyYXp/b5b+ewfDOgwr9SPWJaALnw//nF3ndtHSqyX7M/Yzb/c8Xu73Mu4G91rlSUrJpcJLeBm80Ov07D63m02nNnE+9zwWeXVSylm9Z+Fl9OKn1J/YmLaxXDr/E/c/GHVG1hxbQ545j1Gd6vY/UYHehF1Ytoz0F18CKen022YM/v6cfetfZMybV2o7fYsWhP+0Dp2bG+0WzMfUti3CWHrghLRasWRkkD5nDl594zAGB9fnodTKFdvQ1JINcYlHM/A0Z9HVdIy5lrswHc1Auh0hpzCH+Nbx5dIw6U30btUbgKyCLNYdX0frHa2Z1XuWXXk4mnWUzw98zpGsI6TnpJOem84V8xW+GfUNIc1C2HF2B+/vfB8/Nz+Muquf+eMxj4MRjmUf49eTv5ZL9yn5FADJmcnkmnPt/kwqowK9Cbu0dh3G4GB8R45E56YN6PCK64MwlPm3CoHl4kV0LVuWquKW2kSnI/jlORy9cySnn3mWdvM/dmgVXhYWIgsK0Hl5IS0Wsr76GvP581gyzmMtKNDy3qcPzW69FVlYyJk5cwCwZl+i4NgxCtPTCXjgAQKmTqEw/SzHRo/GnJOLNBjYa2pBrJTsT9qA5/Ej3G9IRCckW0R3ZoUFsOnUd+iFnj7BfarMY1xwHOMixrF031IGtR9ETMuYCrfLys9CSomfux/Hs4+zKnkVEc0j6OTfiRvb3Egrr1Z4G70BuDvibu6JvAeTvuLr7dO6TWNat2mV5mlGzIxqP1t7qHP0JkqazRy8vg9+I0fS6rlnHZbuheXLSf/nC7T65//if/fdtcub1crZV18jJzERmZ+PJSsLS2YmviNH0vqVl5FScrBnNDI/H52nJ8Jdqyb7jR1L0F8fx5qfz+GbBwKg8/DAFBaGMTgY74E34zNgAJasLPb+81V+2p/OQd827AmP4rPWX9A+fV1xHnL0fhy4bxuxHQKZ/uN08ix5fDLsk2rznluYy11f34UQgi/u+AJPozYVlZSSbenbWJW8irUpa7m/y/3MiJmB2WrmivkKPqaKR5/VN3WOfo3JT05G5ubiEV27Lg6V9Z/2Hz+eSz+uJWPex/iNGlWuil8RabGQuy2JgmNH8R8/HqHTkbdvH4YWLcjSu3NGmggKbU2zG7UqshCCjmu+Q+/nh+5SChjcoHlY8SQLOjc3Om/edHUHKQmw/xvo7AeXz6F3M7Hptvt4x3SUO8QmvtE9gVd6Pq+ax7PFEolOwPCbrmdyh0AAPhzyIZl5FXeYKcvT6MkL8S8w5YcpLD+wnGndpvHJ3k/4/ODnHL90HB+jD6M6jeKWUK2LrEFnaDRBXhVVojdRlosXufzLL3jdcAOGwMAavbe6Mc6F6ekIgwFDQOUdQ2RhITlbtnLpxx+5tG4dlgsX0DVrRqeEjehMJqTVyvYTWeX3EyTg6HpIXgeH18HlM1qCbr4Q3B2Ce2gzqwT3gOYd4Y9V8J+HwVpYaV52yE6k3fQGT2y4Unw9vOiYkjOT6eDbAYOuZmVaQloCfYL7YNQZeeKXJzh/5Tx3dbqLwSGD8TB41Cit+qRK9GuM3s8P3zvvrNV7qxvjbGypXWaSFgv5hw7hbmudtxYUIIRAGI1kLFjIuf/7P4SnJz4D+uMz9Ba8b+qHznaXUKHT2fZjIYLj3Cx3Efzlq5C9Wxuz7e4LHQdC+GDtOvWpnXB6F2z9GCz5WkZMPlBwCULi4c534fgWKLiszadmzuNURhb7r/jhFzeJ4R1aEBx+tZZi8DzOQ2tnsz9jP/dE3cPDPR6u0Wd0Y5sbi5+/fOPLGPWV12wcMQOMs6lAb6KyvvoKj+hoTLUY+2/vGOezb71F5vLPaPXss+Qk/sbln9fT+pWX8Rk8mGbDh+PWKRyv+Hh07iUuRV3JhOS1cOBbph9L4H5TDt5Cux9Zrr4L3Pg4hA+Btr1BX+LrF2v7aynUBqOc2gmnd2pjvQc8BUZ3aB7Gkr1LyCksBDzAx4PLhZfpWPgLsdxFbIg/j266nUVpBeRb8vF382dK1ymM7jS6xp9RSdUFuSNmgHE2FehNkDkjg1N/n03QrCcIeOCBGr8/NsSfL8a25Ld0QUzn0Eq/mM0nTuTiipWcfvpp9L6++AwdisF22c3Uts3V3nSZqXDwOzjwLaRu1kpsryCMnQaTWejOFmsILXreTo+oiOozpzdqI8hadQMmIqVkxcEVBBv6sudEAZ+fWUJmwbnizT0MHozoOKL49fjI8ZilmZaeLRkVPqq4Mc1ZHDUDjLOpQLeDOTMTrNYqz1nrgzU/H2t2Npd++hkAj549a55IWhKsn0PXw+voavCAyyOB+6F9XLkZR42tWhGyZDGWixfx7N37asOclHBqhy24v4Oz2vVsAiMhfgZE3E6SJYzEY5nEhQUwqA5f/I1pG3lxy4sUpN9JYWZfTIZZVZaajrocZS9n327ZURos0M3nzpG7fQdefePsvjdWQ0l7dAbWK1fosOqLBstDUmomyV+tocf7LwAgjMaKh2ZW5sweWD9HC06P5jDwGchK06ZD2vUZtOisTbYQ3PNqQ5hOd3Wctzlfa0A7+C0cXKON8xY6aN9Xm3whYljxDQaSUjOZsHAjZn0axs1Wnr49grBAD8xWMze0uQGjzsi+jH0cyjyE2WrGy+hFgHsALTxaEOobik5oo6fNVjNzfnsDa0EA+Re0FvuCRlZqFk1Xpc7RK5F34ABpjz2GKSyM9osWYWwZ1FBZqZI1J4fcbdvwu2c8oJXu+mbNaj2Jf20abnYu/pyH9uvR51mIixnD1PgOhMdeh+5UIiT8H9XO1VmYBycStZbtm5+BuD9dnXX0lpe0OcV3LIMt80o0hHnbqtDd4XI6HP5JaxgzekH4QIi4HToNLTVk88SlE7T0bEni0Qyk7zo8WmjjwV/bdTUrG8dtxM/djx9SfmDhH+VvtrD9vu3o9Dre3/k+36d8T1ruMfLPTqDoq6oTwiGlpiMb0BwxA4yzNVige0TH0Pb99zj1xCxSJ04kZPEijK2rnxWzvuXu2AmAz6DByMJCTjw4HX0zH1q/+WbxfbXtVZuGm5zNm3F75R8MjbqF5RFD+CYkjs7XRdAjLhy+eECb76xVt2r2LOCmJ6Hvn8GjzP5MXtqY6+j7bA1hB7XWb9vDsn0peToPckOHE9hrFHTorzWMAfmWfLalbSIhLYGEtARSslP4aMhHxIVF8c7GXuTntUUv3Hnm9m50CfbHoDPgZfICYEqXKYztPJb9p3JITD1FhyArgX7m4oavAPcA2ni3IcSzG2sPd8eKNl3zP+/sWuegaioNaI7UYIGu9/bCZ+BA2i9cwPEHp5N630TaL1lc7X2p61vuli1gMOAZE40wGvEfP44z/3yBY3fdRdu338Gjq/3V55o23ORs3szx6Q8h3T1Y2ym+/K15z+6H0H4wYUWtji0zLxM3vdvVBiu9EVp11R7R2m2J7pu/mXyzxLRfz7L46+mu02NE6+M97r/jyLPk4aZ3o1erXoyPHE8nv04Eevqz7P47qiwx/dz9OJIuefTTPaUCrsi4yHGMixwHQFKEYy9fNZUGNEdq8MY4j549ab94EadnP4U0mxs6O+XkbN2CR7duxXfl9BszBreISE4+NoPUe++l1fPP4XfXXXalVZOGm0vr15P22OO4dehA69df40OPlqW/7JZCbULDThWMxbbTvN3zWJW8iiEhQxjRcQQd/TqiF3r83bUv/frkYxTIbITnafA+yGMJ/+K28AE83edpQnxCGB85nutbXU/vVr3Ljfaypzprb8A5umrcVBrQHKnR9IyTVitCp0NKifns2eJOGw0td/t2ZEEhXnGlB0SYMzNJmzkT89lzdPhyVfGgkurYc24opeTEQw9huZBJ+/kfo/fzK5fGwT2/c++2sayNfIHmfSfWKBAW/7GY+Dbx5JnzWJW8ih9SfuByoXaPjqjmUay4Q6sh3LFqDCmXD2p5shro3iKWe7uMZHjYcLv3VZWiKnTZ3mz1oSl0cqmNynrGNZpAL3L+gw+48MlS2i9cUNwjq7GSZjPmCxcwBgVhvXIFS3a23T9QlX3RpMWC0Oux5uYiLRb0Pj7l3jdhfiKDLZt51/Q2txW8zFF9B7uD5OCFg4z57xgejX6U6d2nA5BnziMhLYELeRfwc/NjaOhQANamrmVnWhrnL3owMrI/fcOqnru8Nq7VgGsoja4LbGX/4Ga33UbmipWk3j+Z9vM/xqN794bKIpc2bEAYjXjHlx/HDCAMBoxB2tWC9Jdf4dJPP9Hmrbfw6nN9lelW1hiUuWIFWV+upt38+ei9vSp8b1F1t7P+OGap44g1GLO0/zxz0d5FeBo8GRcxrniZu8GdwSGDy207JGQIQ0KqTbJOmkKL9bXAnumeHa7kFLsT5ieWmorXFBJCyNKl6H19OT5lKrklpjyqb+ffeZeMDz60a9vm90/S8jx1KhkLF1FVTamic9MLnyzlzHPPo2vmgzBUfumu6PwyQpwkRbaiUJiqPc9MSs3kvfWH+f7APr4/9j1jOo/B183XruNSrg0NEugVfdFLMrVtQ8inSzEEBnLi4T9juXSp3vNoyc4mb/9+PPtUPVlBEbeOHQld8Tk+Awdy9rXXSJs5E2tOToXbFgVrUSv6jb9/R/qcOfgMGUzbd98t3Xe8jKIOGn280zG17sLfhkZUe6/voh/VmT+8DQgmXjfRrmNSrh0NUnW3p9XT2LIlIZ8uJW///nLnqfUhd1sSWK14VlMNL0nv7U2bt+eSMX8+FxYs1M7fPT2x5pSeCqhngIllk2JIPHmJG3euw/TRBzQbPpzWr7xcfnaYCsQGu8GVk/j1mcgjAyq/AwmU/lG1mk1EeQ2llZfjz7WVxq1BAt3eboOGFi3w7tcPgOw1axBubvgMHFgveczdsgXh5oZHjx5a//CMo9DxZvBqUeX7hBC0ePBB/MeNQ9+sGdJs5lCvcm0jtJv2ALFPPEFBuBsXLZcJ/OtfK+xtV2FbxrkDgISg6hsrS/6ocnEYT/SKq/Y9yrWnYRrjpCQ22I3Y1m3AWP0gfmm1cuGTpVzZs4fmkyah89KuafsMHIh7VBSFZ85wcdUqAPaczCL57GU6BXkT/8DduIWHU3DiBNnffIMpNBT3bt0wtmlT7Xxoefv24dGzJzoKKFx6N8a880gEom0vretnpyHQqgfoKj77Ke6/r9MR9OST5dZ7dOsKgKldO4KeeKLCNK422lmIMKTz1shORAX7aH3TAYKqn2s8NsSfhVN68PWBzYy5bqBq+KqAK7T8N0ygm/Nhjm2W0fDB2l0x/EMr3VzodLT7eB4nH32UCwuv9o82tgrGPSoK85kznH/nXUC7UVzR/KU/tW7PbY+GU3D8OOfmvl38Pr2/Px49exI06wncwsrc4cOmvW3U1qk1b9A67zwzCx8mVH+eB/IO4bV+Dqx/SbvXdqchWuB3vFmbTKGCvAdMnVKjj6dI4tEM3MyXeUb/Gffpf4L/llhp8oHmFU/0WNax/PV8e+4VJvpEAc1rlZdrlat0h22YQNcZYPD/Ql4WbJ0H78XBgNnQ9xGtG2YF9N7ehCxahLRary60lcruPXoQuW8vkxZuISH5fPHqGz0CuQ3wuuEGInbvIv9QMnl/7OHK7j3k/v47Oi/tElbWt9+Sm7gFr/gb8IqLQ+/nh9DpMJjMtNgzj+8s1/OlpR96K+i7RPBIb1848hMk/wgHvoGdy7Rjahd3NfCDosoN+yyrXElSkKuNMju1A05tZ2rqNh5xOwLAEusw4ofcRXiQNrsofiF8euAz3tj2BtI2qEUg2DlpJwD/2PwPVh9eDYBVWokJiqFLQA1Gu7kIV+kO2zCBrjdoM40A9J4Ga57Ubiy/ZyXcMRfalj+nLSIqqCoLIUAIhnVrw8bDF4qXD+vWuni9MJnw6NoFj65d8B8/vtT7C0+dInvNGi6uXKkFp5T4T5hAq9gsjNZ83mZ86X7m3v7QY7z2sJi12+gm/6jNrLLuee3h204L+vZ9K/zxOnruMst/Poi35RIp+hSiAs7gefEQSNsPmXcrPNrEcCpsBL+bw+na63bCS3askZLPN/+d0GahDAoZpB0nV39Y+rXtR4BHQPHy2zrcVsU/pHGqjyq1q3SHbTw94/Z/A9/N0sY5956m3dDOvebj1JdvOc6aP04zrGsw9/axf5olaTZzZc8ecjZtJmfTJjw6h9BSPw9iJpHU7Tn7v3BZaXB4rRb0R9ZDYcWX2ErKkD5cDuhOSNd4bWLE1tHQrOobKFisFr4+8jUBHgF4WbrVOSAa23lqfVapG9ux10XT6AKbfwl+fhG2fAQ+rWDYaxB1R7VVYHvU+J/5xVRtgoUZO7S81IY5Hy4co6Lx4ntPZfPEqj1kmd24YAhg2bS+tfqSOSIgGuN56nvrD/PmjwexStALmDk0gkdurvpSotIIu8BWyM0Hhr0K3e+G/z4GKyZC52Fw+xvg27ZGSZUMbKD0F/mBPsS2a6bNPiotYLXY/lq1v+cOaNMM3zSr9kEO2nzlQZEVruoSBC/6d672x6eiH6htKRdYvOdzRkUM4UAadT7HbIznqa5Spa4vjSvQi7SJhQc3wJYPtOmP3r1em/qoz0N23Z+6ZAnlboA/ReUz1vorEfrjdBZpdPn0NJizqk7Eoznc4Lj5xyoK2Mr6eZutZgosBWxLPc/0JbsoMOswGS28e5923fzRVV9jaL2Yn/5zjmf7T65zQDTGoGoqUzQ1FY2r6l6RzFT47gmtsSu4Jwx9EUJuqDzgczJIXPkmSYdP0lUcI0aXjI9tuuFs6Uky7WgfEUNgmzBtzjOdQUtL6G1/deRKCxeCu2L1a4+PyQd/d38KLYXsOreLXHMuuYW55BTmkFOYQ8+gnnQP7M75K+d5Y9sb5BaWWG/OYVq3abQx9GPCkq/Qt16AQNDC2w03g9ao+GTvJxkUMogdZ3cw/cfpFFgLsMqrVxbyTk6k8FIXjN4HcW+3qHi5lDquJD/DzMHRxIUFXHPn6ErtNI2qe0X8Q+DeFdq8Zt/PhiXDwStQm4ww8g4I669VwbNOQtYJ2LaIuJRviDPAQWs7vpHxxPW/nctBvfj1rAdxHVsQaPsiF1gKuFx4mebuzcm35PO3DX/j8MXDpF1OgwPa7qd0ncLM2JnkFOYw5Yfy18P/0vMvdA/sjlVa2XV2F55GT7yMXvi6+9La0JpAj0ASD2ZQWGiEnDCEgAA/XyJbad16/dz9AAjyDGJ85HiMOiMmvQmT3kR6lpklKZ5YBegtrZjcWetYMz/hKOa8AIw67+LAdIV5z5Taa9ASvcalSP5lSP5Ba6FPXqtNVqgzlr9dzw0zSOr8ePF0w2XTXnloJUv3LeV49nGGhgzltf6vATD5+8kEeQQR7h9OkGcQeqEn3C+cqIAoLFYLW89sxcvohZfRC0+DZ3FQV3e7n7pMsFDRZ6RKX6Uyja7VffPRU0z9dB0FV3wxGUw1b+k158PRXzizex3Hcoy0bNeJsI4RWqOdb9tKW+oPXjjI+G/GE9E8gvg28cQExRDfpuLx5o6kglOpD42u6v7VgQSMIa9jsJiw5IazcNdRWgeMJti76uvHxQxuJLn1ZsIui9aafljHso6RxPpVHkRmq5nnNj9HM7dmfDTko0rHZDsjKFXVWGlI1Y5HF0K0E0KsF0LsE0LsFUI85ogdDwmPxpx+N+bsaPTup/g180OGrhpKcmYyABfzLlJgKagyjerGtVdkWOgwnol7psogr2xSDEVpquwp0c3A36SU24UQPkCSEGKtlHJfXXY8uHMnPh33FxKPZtCnQ3Oa+13kt9O/0dFPu9vH3B1z+fbot/QJ7kO/Nv24sc2NtPYuPe97TS8LGXQGJnedXOU2jfGasqLUVbWBLqU8DZy2Pb8khNgPtAHqFOhQtjrbnDC/qyPJbg29Fb3Qk5CWwIYTGwCIC47j46EfAzB/z3xyC3MZPwROXrhCu+aeZGIEtLnPPt33KXmWvOL0dp3bxZ0d76xwbrSSGuM1ZUWpqxqdowshQoFoYEsF66YD0wHa1+JWvmX1Ce5Dn+A+SClJyU4hIS2h1KCN/x75LynZKcXXnLdkQaZlUHEgz9s9j8z8q9VugzAwuH3VQQ6qo4ZybbK71V0I4Q38Arwkpfyyqm0d2mGmClJKCq2FxcM0deiKb+mTX3QPMZuS6xTlWlWnVnchhBFYBSyrLsjrkxACk95U4To3vX03VFAUV2BPq7sAFgD7pZRvOT9LiqI4mj3TPccDE4GBQoidtkfTm8VAUVyYPa3uCUDF3cwURWkSGuQGDoqi1C8V6IriAlSgK4oLUIGuKC5ABbqiuAAV6IriAlSgK4oLUIGuKC5ABbqiuAAV6IriAppUoCelZvLe+sNqeidFqaHGP6+7TWO8P5iiNBVNpkSvzUSQiqJomkygF83lVuo+5Yqi2KXJVN3VXG6KUntNJtBB3QRBUWqryVTdFUWpPRXoiuICVKArigtQga4oLkAFuqK4ABXoiuIC7L4lU40SFeIckFrBqhbAeYfvsOGo42ncrrXjgeqPKURKGVh2oVMCvTJCiG0V3ReqqVLH07hda8cDtT8mVXVXFBegAl1RXEB9B/q8et6fs6njadyuteOBWh5TvZ6jK4rSMFTVXVFcgAp0RXEBTgl0IcStQoiDQojDQojZFax3E0J8blu/RQgR6ox8OIodxzNZCHGuxP3jpzVEPu0lhFgohDgrhPijkvVCCPG27Xh3CyFi6juPNWHH8QwQQmSV+P88V995tJcQop0QYr0QYp8QYq8Q4rEKtqn5/0dK6dAHoAeOAGGACdgFXFdmmz8DH9qejwc+d3Q+6vl4JgPvNnRea3BMNwExwB+VrL8NWAMIIA7Y0tB5ruPxDAC+aeh82nkswUCM7bkPcKiC71uN/z/OKNGvBw5LKY9KKQuAfwN3ltnmTmCJ7fkXwCAhhHBCXhzBnuNpUqSUvwIXqtjkTuATqUkE/IQQwfWTu5qz43iaDCnlaSnldtvzS8B+oE2ZzWr8/3FGoLcBTpR4fZLyGS3eRkppBrKAxjoJnD3HA3CXrRr1hRCiXf1kzWnsPeampK8QYpcQYo0QoktDZ8YetlPaaGBLmVU1/v+oxjjH+C8QKqXsDqzlam1FaRy2o/UB7wG8A/ynYbNTPSGEN7AKeFxKmV3X9JwR6GlAyRKtrW1ZhdsIIQyAL9BY52+u9niklBlSynzby/lAbD3lzVns+R82GVLKbCnlZdvz7wCjEKJFA2erUkIII1qQL5NSflnBJjX+/zgj0H8HOgkhOgghTGiNbV+X2eZr4H7b8zHAz9LWytAIVXs8Zc6PRqCdVzVlXwOTbK27cUCWlPJ0Q2eqtoQQrYragIQQ16N97xtlwWLL5wJgv5TyrUo2q/H/x+GzwEopzUKIvwA/oLVYL5RS7hVC/BPYJqX8Gu1AlgohDqM1oox3dD4cxc7jmSGEGAGY0Y5ncoNl2A5CiM/QWqJbCCFOAs8DRgAp5YfAd2gtu4eBXGBKw+TUPnYczxjgYSGEGbgCjG/EBUs8MBHYI4TYaVv2NNAeav//UV1gFcUFqMY4RXEBKtAVxQWoQFcUF6ACXVFcgAp0RXEBKtAVxQWoQFcUF/D/MAM6AkEVoV4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n", - "ax.plot(X_test, y_test, '.', label=\"raw\")\n", - "ax.plot(sorted_X, pred_tree, label=\"prediction\")\n", - "ax.plot(sorted_X, min_pred_tree, '--', label=\"min\")\n", - "ax.plot(sorted_X, max_pred_tree, '--', label=\"max\")\n", - "ax.set_title(\"Interval with trees\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In that case, the prediction is very similar to the one a random forest would produce as it is an average of the predictions made by 10 trees." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regression quantile\n", - "\n", - "The last way tries to fit two regressions for quantiles 0.05 and 0.95." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "from mlinsights.mlmodel import QuantileLinearRegression\n", - "m = QuantileLinearRegression()\n", - "q1 = QuantileLinearRegression(quantile=0.05)\n", - "q2 = QuantileLinearRegression(quantile=0.95)\n", - "for model in [m, q1, q2]:\n", - " model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAEICAYAAAB2wembAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtCElEQVR4nO2de1hU97X3P2u4DSIqIKARBVERZVAGNNIk2jRGza2mSdvcTDVp07ztOb2cN+k5bZMT2/R9ezsnp8/bS86T5CRpPa05SXpL0jRpk/YkjTmtNwQFRCOiKN5AwDu3YX7vH3sYBkQZYG4w6/M8PMzM3rP32gPf+a3f2mutnxhjUBRlbGMLtwGKogQfFbqiRAEqdEWJAlToihIFqNAVJQpQoStKFKBCH6WIyDkRyfU8/pmI/N9w2xRqRGSNiLwVbjtGAyp0PxGR+0SkUkQuiMhxEfl3EZkYonO/KyIP+L5mjBlvjKkLwLGNiJz3fHEcEZEfiEjMSI8bCowxG40xK8Ntx2hAhe4HIvIw8H3gH4GJQCmQA7wlInFhNC1QLDTGjAc+DNwJfDrQJxCR2EAfU/EfFfogiMgE4HHgi8aYPxhjuowxB4E7gFzgHs9+fdxnEblWRBp8nn9NRPaLyFkR2S0it/lsu09E3heRJ0SkVUQOiMiNnm3fBpYCP/GMuj/xvG5EZPYlbL5FRCpE5JSI/FVEFvhzrcaYWuB/gCJ/jiUixSJS7rmmX4rISz2fQc/1i8hXReQ48FMRsfl8Ds0i8rKIpHr2t4vILzyvnxKRbSKS6fP51HnOc0BE1vh+bj72XOV532nP76t8tr0rIv9HRP7Hc5y3RGSyP5/LWECFPjhXAXbgN74vGmPOAW8A/rqO+7EEOxHri+MXIjLVZ/sSYC8wGfgX4DkREWPMo8Am4Ased/0LlzuJiDiB54H/BaQBTwOviUjCYAaKSL7HxtrBjiUi8cBvgZ8BqcB/Abf1O+QUz7Zs4EHgi8DHsDyHK4BW4EnPvus8n810z7k+B7SJSBLwI+BGY0wy1t+jYgDbU4Hfe/ZNA34A/F5E0nx2uwe4H8gA4oGvDPaZjBVU6IMzGThpjHENsO0YkO7PQYwxvzTGHDXGuI0xLwH7gCt9dqk3xvyHMaYb2ABMBTKHYe+DwNPGmC3GmG5jzAagA2u6cSl2iMh5oAZ4F/h3P45VCsQCP/J4Ob8BtvY7rhv4hjGmwxjThiXeR40xDcaYDuCbwCc8bn0XlkBne85VZow543Mch4gkGmOOGWOqB7iGm4F9xpifG2Ncxpj/AvYAH/XZ56fGmA88tryMj+cy1lGhD85JYPIl5phTPdsHRUTW+rjApwAH1pdID8d7HhhjLngejh+GvdnAwz3n8ZxrOtYIeimKPee6E8uzSPLjWFcAR0zfqqjD/Y7bZIxp72fbb32OVQN0Y32h/Rz4I/CiiBwVkX8RkThjzHmPXZ8DjonI7z2eR3+uAOr7vVYPTPN5ftzn8QWG9/mOSlTog/M3rFHsdt8XRWQ8cCPWCAhwHhjns8sUn32zgf8AvgCkGWMmAVWA+GnDUEoMDwPfNsZM8vkZ5xnhLn0Ci5exrne9H8c6BkwTEd9rmD6I3YexXHDf49mNMUc8XsHjxpj5WO75LcBaj21/NMaswPpi3YP1WfbnKNYXiS8zgCOXu+5oQYU+CMaY01hz6h+LyA0iEiciOViu30lgo2fXCuAmEUkVkSnAP/gcJgnrn74JQETuxxrR/eUEVuDPH/4D+JyILBGLJBG5WUSS/Xz/94DPeq7hcsf6G9Zo/AURiRWRW+k7FRmIp4Bve774EJF0z/sQkY+ISKFYt/bOYLnybhHJFJFbPXP1DuAclivfnzeAPBG5x2PPncB84HU/r3tMo0L3A2PMvwCPAE8AZ4EDWKP39R7XEizXcydwEHgLeMnn/buBf8MSxwmgECu67S8/xJrLtorIjwaxdTvwWeAnWMGuWuA+f09kjKkE3gP+8XLHMsZ0Ynk5nwFOAfdiiapjkOt4Deu25FlgM9ZUASwP6FdYIq8B/oL1mdqAh7BG7BasQN7nB7C7GcsLeBhoBv4JuMUY49fUaqwj2nhi6HhG5G8BVxtjDoXbnkhBRLYATxljfhpuW5S+aBLDMDDG/FREXFhzyagVuoh8GOuW4ElgDbAA+ENYjVIGxC+hi8gk4FmseaUBPm2M+VsQ7Yp4jDE/D7cNEcBcrFhFElAHfMIYcyy8JikD4ZfrLiIbgE3GmGc9iRLjjDGngm2coiiBYVChi1W4UQHkGp3QK8qoxB/XfSbWbaGfishCoAz4sk+0GQAReRArk4qkpKSS/PyBchoURQkmZWVlJ40xF2Vr+jOiL8K6DXK1MWaLiPwQOGOMeexS71m0aJHZvn37SG1WFGWIiEiZMWZR/9f9uY/eADQYY7Z4nv8KK2VSUZRRwqBCN8YcBw6LyFzPS8uB3UG1SlGUgOLvffQvAhs9Efc6rFI/RVFGCX4J3RhTAVzk9ytKuOjq6qKhoYH29vbBdx6D2O12srKyiIvzr8GRZsYpo5KGhgaSk5PJycmhbwHd2McYQ3NzMw0NDcycOdOv92hRizIqaW9vJy0tLepEDiAipKWlDcmbiUqhl9W38uQ7tZTVt4bbFGUERKPIexjqtUed615W38qaZzfT6XITH2tj4wOllGSnhNssRQkqUTeib65rptPlxm2gy+Vmc11zuE1SlKATdUIvzU0jPtZGjEBcrI3S3LTB36Qog2CMwe0eqPFNZBB1Qi/JTmHjA6U8tHKuuu1RRqBjMwcPHmTu3LmsXbsWh8PBZz7zGRYtWkRBQQHf+MY3ANi2bRu33261G3z11VdJTEyks7OT9vZ2cnP97Q42cqJujg6W2FXg0UWwYjP79u1jw4YNlJaW0tLSQmpqKt3d3Sxfvpxdu3bhdDqpqKgAYNOmTTgcDrZt24bL5WLJkiWXP3gAiboRXYlOghWbyc7OprTUapn/8ssvU1xcjNPppLq6mt27dxMbG8usWbOoqalh69atPPTQQ7z33nts2rSJpUuXBsQGf1ChK1FBsGIzSUlWC/wDBw7wxBNP8Oc//5ldu3Zx8803e+9zL1u2jDfffJO4uDiuv/563n//fd5///2QCj0qXXcl+uiJzWyua6Y0Ny3gU7czZ86QlJTExIkTOXHiBG+++SbXXnstAEuXLmXt2rWsXbuW9PR0mpubOXHiBA7HUDp+jwwVuhI1BDM2s3DhQpxOJ/n5+UyfPp2rr77au23JkiWcOHGCZcuWAbBgwQKOHz8e0oQfFbqiDJOcnByqqqq8z3/2s58NuF9iYiIdHb3t7p955plgm3YROkdXlChAha4oUYAKXVGiABW6okQBKnRFiQJU6IoSBajQFSUCuPbaawnmWggqdEWJAlToijJMDh48SH5+Pvfddx95eXmsWbOGP/3pT1x99dXMmTOHrVu3cv78eT796U9z5ZVX4nQ6efXVVwFoa2vjrrvuYt68edx22220tbUF1VbNjFNGP29+DY5XBvaYUwrhxu8NulttbS2//OUvef7551m8eDEvvPAC77//Pq+99hrf+c53mD9/Ptdddx3PP/88p06d4sorr+T666/n6aefZty4cdTU1LBr1y6Ki4O7+JEKXVFGwMyZMyksLASgoKCA5cuXIyIUFhZy8OBBGhoaeO2113jiiScAq3vtoUOHeO+99/jSl74EWLnvCxYsCKqdKnRl9OPHyBssEhISvI9tNpv3uc1mw+VyERMTw69//Wvmzp17qUOEBJ2jK0oQWbVqFT/+8Y/pWbW4vLwcsGrUX3jhBQCqqqrYtWtXUO1QoStKEHnsscfo6upiwYIFFBQU8Nhj1mrjn//85zl37hzz5s1j/fr1lJSUBNWOQddHHw66ProSbGpqapg3b164zQgrA30GI1kfXVGUUY4KXVGiABW6okQBKnRFiQJU6IoSBajQFSUKUKErSoBpaWlhxYoVzJkzhxUrVtDaOvBabxs2bGDOnDnMmTOHDRs2eF+/9tprmTt3LkVFRRQVFdHY2Dhim1ToihJgvve977F8+XL27dvH8uXL+d73Lk7RbWlp4fHHH2fLli1s3bqVxx9/vM8XwsaNG6moqKCiooKMjIwR26RCV5QR8O1vf5u8vDyuueYa7r77bp544gleffVV1q1bB8C6det45ZVXLnrfH//4R1asWEFqaiopKSmsWLGCP/zhD0GzU4talFHP97d+nz0tewJ6zPzUfL565Vcvu09ZWRkvvvgiFRUVuFwuiouLKSkp4cSJE0ydOhWAKVOmcOLEiYvee+TIEaZPn+59npWVxZEjR7zP77//fmJiYvj4xz/OP//zP494VRcd0RVlmGzatInbbruNcePGMWHCBFavXn3RPiIyZJFu3LiRyspKNm3axKZNm/j5z38+Ylv9GtFF5CBwFugGXAPl0ipKuBhs5A01mZmZHDt2jKlTp3Ls2LEB59jTpk3j3Xff9T5vaGjwLso4bdo0AJKTk7nnnnvYunUra9euHZFNQxnRP2KMKVKRK4rFsmXLeOWVV2hra+Ps2bP87ne/A2D16tXeKPqGDRu49dZbL3rvqlWreOutt2htbaW1tZW33nqLVatW4XK5OHnyJABdXV28/vrrAVl1VefoijJMiouLufPOO1m4cCEZGRksXrwYgK997WvccccdPPfcc2RnZ/Pyyy8DsH37dp566imeffZZUlNTeeyxx7zvWb9+PampqZw/f55Vq1bR1dVFd3c3119/PZ/97GdHbKtfZaoicgBoBQzwtDHmouUgReRB4EGAGTNmlNTX14/YOEW5FJFYpvrNb36T8ePH85WvfCUk5wtGmeo1xphi4Ebg70VkWf8djDHPGGMWGWMWpaenD8duRVGChF+uuzHmiOd3o4j8FrgSeC+YhinKaOOb3/xmuE24JIOO6CKSJCLJPY+BlUDV5d+lKEok4c+Ingn81nMvMBZ4wRgTvBQeRVECzqBCN8bUAQtDYIuiKEFCM+MUJQpQoStKgPG3TPWrX/0qDocDh8PBSy+95H39vvvuY+bMmd4y1YqKihHbpEJXlADjT5nq73//e3bs2EFFRQVbtmzhiSee4MyZM97t//qv/+otUy0qKhqxTSp0RRkBwy1T3b17N8uWLSM2NpakpCQWLFigZaqKcjmOf+c7dNQEtkw1YV4+Ux555LL7jKRMdeHChTz++OM8/PDDXLhwgXfeeYf58+d7tz/66KN861vf8noEvmu8DQcd0RVlmIykTHXlypXcdNNNXHXVVdx999186EMfIiYmBoDvfve77Nmzh23bttHS0sL3v//9EduqI7oy6hls5A01/pSpgjVqP/roowDcc8895OXlAXi9gYSEBO6//37vkssjQUd0RRkmIylT7e7uprm5GYBdu3axa9cuVq5cCcCxY8cAMMbwyiuvaJmqooSTkZSpdnV1sXTpUgAmTJjAL37xC2JjLTmuWbOGpqYmjDEUFRXx1FNPjdhWXU1VGZVomaqupqooSj/UdVeUADGqy1QVJVIJxrRztDDUa1ehK6MSu91Oc3NzVIrdGENzczN2u93v96jrroxKsrKyaGhooKmpKdymhAW73U5WVpbf+6vQlVFJXFwcM2fODLcZowZ13RUlClChK0oUoEJXlChAha4oUYAKXVGiABW6okQBKnRFiQJU6IoSBajQFSUKUKErShSgQleUKECFrihRgAo9iJTVt/LkO7WU1Q+8JI+ihAqtXgsSZfWtrHl2M50uN/GxNjY+UEpJdkq4zVKiFB3Rg8TmumY6XW7cBrpcbjbXNYfbJCWKUaEHidLcNOJjbcQIxMXaKM1NC7dJShSjrnuQKMlOYeMDpWyua6Y0N03ddiWsqNCDSEl2igpciQjUdVeUKECFrihRgApdUaIAFbqiRAF+C11EYkSkXEReD6ZBiqIEnqGM6F8GaoJliKIowcMvoYtIFnAz8GxwzVEUJRj4O6L/P+CfAPeldhCRB0Vku4hsj9ZlchQlUhlU6CJyC9BojCm73H7GmGeMMYuMMYvS09MDZqCiKCPHnxH9amC1iBwEXgSuE5FfBNUqRVECyqBCN8Z83RiTZYzJAe4C/tsYc2/QLVMUJWDofXRFiQKGVNRijHkXeDcoliiKEjR0RFeUKECFrihRgApdUaIAFbqiRAEqdEWJAlToihIFqNAVJQpQoStKFKBCV5QoQIWuKFGACl1RogAVuqJEASp0RYkCVOiKEgWo0BUlClChK0oUoEJXlChAha4oUYAKXVGiABW6okQBKnRFiQJU6IoSBajQFeUylNW38uQ7tZTVt4bblBExpL7uihJNlNW3subZzXS63MTH2tj4QCkl2SnhNmtY6IiuKJdgc10znS43bgNdLjeb65rDbdKwUaEryiUozU0jPtZGjEBcrI3S3LRwmzRs1HVXFA9l9a1srmumNDeNkuwUSrJT2PhAaZ/XRisqdEXh0vPxnp9wYDo7af9gH+1VVSSVLiE+J2fYx1KhKwoDz8dDKXDjctGxfz/tVVW0VVbSXlVNx969mK4uADLXP0aqCl1RRkbPfLzL5Q76fNy43XQeOGCJuqqa9spK2vfswbS3A2AbPx57QQGp69ZidziwOxzETZs2onOq0BUFRjQf7z+398UYQ9fhw56Ruor2qiraq6txX7gAgCQmYp8/n5Q778DuKMTuKCA+OxuxBTZOrkJXFA/DmY/3mdvHCC/cOpPZrYdpr6qmvaqSturduE+fBkDi40mYl8/Ej33MM1IXkDBrFhITE4zL6YMKXVGGiaupiX2vvs0nKzczu/Uwc041kPircxwBiI0lIW8OE1auxF7oINHhIGH2bCQ+Piy2qtAVxQ9cra3WKF1dRVtVFe2VVbhOnGAh4EBoSM6gfMo8rrl5KXkfvpKE/HxsCQnhNtuLCl1R+tF99izt1bt7Rb2rkq4jR7zb43NyGLd4MYmFVqCsZvxU9h+9QGluGgsj9F67Cl2JatwXLtC+Zw/tlZVWBLyqis4DB7zb46ZNw+5wkHL3Xda8uqCAmOTkPscoAUrmhtjwIaJCV6IGd2cnHXv2eF3v9qoqOvbvB7cbgNjMTOwOBxNXf9QbAY9NicwReqio0JUxienqomPfPuuWVrU1Urd98AHicgEQk5qKvdBB8ooV2AutkTouI8P7/rL6VjZXNFOay6hOfe1Bha6Mekx3N511dd7kk7bqKjpq9mA6OwHoSkyiLTePt2cvY8+ELA6mZ/PDL95AXk7qgMcbS+WpPQwqdBGxA+8BCZ79f2WM+UawDVOUgTBuN12HDnmTT9qqq2jfXYPxJKDYxo3DXlBAyj33cGzqTP6hop1DCanYbDbcxuA2ECOw+UALJT5C9016CUY67OWSaoL53h78GdE7gOuMMedEJA54X0TeNMZsHtYZFcVPjDF0HTnqySar8rrh7rNnAZCEBOzz5jHp9tu9EfD4mTO9WWW/eqeWQ3v24jaA22CzCYK5KMW1/wi+/paCgKbDjsRDCJR3MajQjTEGOOd5Guf5MUM+k6IMQteJRo+gKz2ZZVV0t3paOMXFYc/LY8LNN5Hoyf9OmD0bib30v3D//PX1txTQeqHzopGx/wjeeqEzoOWpI/EQNtc10+VyIcbQ5WLY3oVfc3QRiQHKgNnAk8aYLQPs8yDwIMCMGTOGbIgSXbhaWjxFHb0RcFdTk7XRZiNh9mzGX/cR7AUFJBYWkjB3LrYhZpX5m78+UEFLIMtTh1wwc6EFjpRBw3burf0r98aX8YjrAf5s+9CwvQuxBmw/dxaZBPwW+KIxpupS+y1atMhs3759WAYpY4/uM2d6K7WqqmirqsR19Ji1UYT4mTOxOwpIdBRa96rn5WNLTAypjYGYBw/r+N1dcKIKGrZ7frZBy35rm9ggYz5NEwv5S9IqZhZdO6htIlJmjFl00etDEbrnQOuBC8aYJy61jwo9enGfP0/77t1eUbdXVdFZX+/dHjd9ujWfLnB4ElDmEzN+fBgtDjGnj1hibthmjdpHy8FllaeSlAFZiyFrkfX7CickDO2zuZTQ/Ym6pwNdxphTIpIIrAC+P6SzK2MSd3s77TU13vl0W3UVnfvrwDN4xE6dSqKjgIm33WYVdhQUEDNpUniNHoCgjead5+FoBRzxjNQN2+Gsx5OJSYCpC2HRZyCrxBL2xOkgErjz++DPHH0qsMEzT7cBLxtjXg+KNUrE0tvWqNKaV1dV07FvH3R3AxAzeTKJDgcTbrjRM2IXEDt5cpitHlzEAbtn7nZDc62PqLfBid1grM+HlBzIWeoZrRdBZiHEhq6SzZ+o+y7AGQJblAihT1sjT7DMt61RzMSJ2B0Oxl/7YW8EPDYzEwnSaDRc/BHxsCPi3oCZjxvebtWdkzABphXD0oeskXpaCSSF90tPM+OiHON203nwYN8IeE1N37ZG8+eTsvZTJBYWWqmiWVkRJ+qB8EfEfkXE/QiYUXAbTPPMrSfnQYA7xIwUFXoUYYyhq6Hh4rZG588DIHa7T1sjK2AWnxP4tkahwh8RX3QLbsYkON3QK+iG7XCsojdgNj7TErPz3mEHzMLBkKPu/qBR9/BjjMF1/Lh3Pt0TAe/uaWsUF0dCfn6f21oJs3Ivm4AyWvCdlwOXD7T1BMwatnnm1wMEzHqi4FmLghowCwTDjrorowPXyZN9MsraqqvpPnnS2hgTQ0JeHskrV2IvKLCqtebMCVtbo2Ay0Lz87z8y29rYEzDzijqyAmbBRIU+Cuk+dapP8kl7VTWu48etjSIkzJ7F+Guuwe5wkFjosLLK7PbwGh0ifOflSa7THN32GiV1R6yR+sj2fgGzkogKmPXHbdzUnqqlorGC0qmlzJgw/IxTFXqE033uXN9eZVXVdB0+7N0en53NuEWLPKmiDuzz5mFLSgqjxaGjz62zrPHUVPyN6bX/zQ/itrOQfcy0HYcqegNm8z8G06+0gmYRGDBrc7VRdbKK8sZyyhvL2dm0k7OdVgHPI0seUaGPFfxtazTpjk9at7UKCoiZMCGMFocJY9i1ezf/+eLLOMw+eLcWV8xB5rk7mAc0yiROTiykYc5ashzLIjZgdrLtJBWNFV5h1zTX4DJWY4xZE2exKmcVzgwnznQnWclZIzqXCj1MuDs76di715pXD9TWKD0de2EhEz56iyXqwsKAtjUKdm53QM8zQIbZgrPH+GEMdJg4qk0Ob4+7mTdap7GjezbHZTIPOfN75+YRgNu4OXj6IDsad1DeWE5FYwWHzh4CICEmgYK0AtYVrKM4s5iF6QuZmDAxoOdXoYcA09VFR21tbwS8spL2ffugJwFl0iTshYWMv3655161g7jMjEGOOnxC1UFlWOfxDZj1BM36BMxmQs5SDo2bz0N/jaPKNR1i41m/tIC3X6+myx38JZX8oaO7g+qT1d7RuqKpgtMdVnwg1Z5KUXoRn8z7JM5MJ/NT5xMXExdUe1ToAcZ0d9N54ECf8sv2PXswHR0A2JKTsRcUkHbfOisC7igkbtoVIU1ACdWCgn6d50JLb6CsYRs0lEGHT8DsCqcVMJvmiYR7AmYzgK/P7+stzJ2SHJYljsvqW3ln3wEmpjRw1tRS3lhOdXM1XW7rizxnQg7LZyynKL0IZ4aT7AnZIU84UqGPAG9bI59eZb5tjWTcOBLnzyfl7rutCLijgLgZM8KegBKqBQUvOk/OBKtayzcZpX+GmcP/DLP+NeOhWuLYGMPBMwepaKzg7brNvHdoGxLfBEcgVuJwTC7g3nn34sxwUpRRRIo9/P3mNGHGT4wxuI4e9bQz6o2A92lrlJ+P3ZMmmugoID43NyTrag2HoM/RjYEzR9hf/i5nav/GnM49jG+pGqAkswSyrhw0YBaqmMJAdHZ3srt5d68b3lhBa4fV+cZuS+bc6Sy627IxbTl84ZqP8OXr5ofUPl80YWaIdDU2erPJetJF+7Q1mjOHCTfeaJVfFhZai+XFBXeeFUgCPvr5Zpg1bKOzfivxbY3Mgn4lmYuGnGH2wpZDrH+1CrcxIenKerrjNBWNFexo3EFFYwVVJ6vodFsdZbMnZLMsa5kVDc900tI6iXuf20K3x2u5ZtbUoNk1ElTo9Gtr5Lmt5WpstDb2tDX6yEe8DQiH09ZopIRzRLuIQTLM2pOzefv8HHa4b6BK8vj62jsozs0c1qnK6ltZ/2oVLrfleXYGOKZgjOHw2cN9Ruv9p63pRKzEMi9tHnfl3+V1wycn9k2qyZ1IQPvLBYuoE3r3mTO0V1f3CZZ1HT1qbfS0NRpXusRTflkY8LZGwxFs2PuMD7Ek87mtp/i3t/Z6Wyv/rf7ssIW+ua6Zbnfv9NImMqKYQpe7iz3Ne/jd3r+y+eh2ml0fcKarBYDk+GSK0ou4OfdmijKKcEx2kBg7+N8+VLGBkTCmhe4+f572mpreSq0B2hrZFy4gZc2akLQ1Gq5gQxUlBy4qyWw/uAX7GU/Sjm9JZtbiS2aYlebG+B3sG+yLrzQ3jYQ4G51dbmw24Vu3OoZ07Wc6z7Czcaf3FldlUyXt3VacwN2ZCu053L/oflbnX8XsSbOxSWRlywWKMSN0d3u7Z12tam8f8I79db0JKFOmkFjosNoaeSLgoW5rNFzBBi1K7gmYXaoksysxnU0XcijvXkKVzOF/r7sL5+zBM7T87b7qzxefv8eyLsdw9PxRyw0/UU55Uzm1rbUYDDESw9zUuXw87+M0Nk3l1c3xdHdNIEYgsX0ueSmRk1wTDEal0HvbGvU29h+orVHyqhusMsyCAmLT08Ns9fAFO5R/9ssyWEnmFUU+AbPFPLOjnX97+wOvC77kcDtOP/Xgjzvr7xffpY7lcrvY27rXCpydsAJnjW1WbCUpLomF6QtZmb0SZ4aTwsmFjIsbB1hfMG9s3gwSGck1oSDihW61NarrU6nVsWfPqGtrBCMTrO8/e4+7mzIufsAFCQA/SjJn9pZkTlsEUy4uySyd1Ur8O7VBu98+1C++813n2dm00xs429W0izZXGwBTk6ZSMqUEZ4aT4oxiZk+aTYxt4FubAfviHEVE1H10f9sa9dzSsjscxE2bFpGiHozhRtF73N2OLjcGsAnEx9p48d65FNn2XyZgVtLbQGEIJZlh63cOHD9/vE80fG/rXtzGjU1szE2ZS1GGlWnmzHAyJWlKwG0bjQSsr7s/+CP0soMtVGzdTUnbMaaeOHhxW6PEROzz5nlvaY32tka+jCSK/uQ7tfzwrWryOITTVmv9SK1Vkgm9ATOvqCOzJLM/3e5uak9Z6aM996+PnbemFYmxiSxIX0BxRjFFGUUsTF9IUlx0lOIOlYhKmCmrrKd7ze1c1WmlijbHxZE4bx4Tb13tXYA+IXdstDUaiCEF5bwBMytYtm7/Zj4TvxO7WFOXRjOJncwhruTSJZkRdQ/ew4WuC1SerOzjhp/rspb4y0jMoCijiHUF6yjKKGJuylxibWPzfyFUhOXT29zUyZnpJRxKzmR/ShYfu30Zf7diXjhMCQuXnZt2nu+bD36krE/AbPwVRZxwrOMv7lm0ZZZwxJ1K6azJZI0gsh0KGi80el3w8sZy9rTsodt0IwizU2Zz08ybKMooojizmCuSQlvkEw2EReilsyazpvg27z/6krzoml95g0H7m7g27TQFLW/ALs/trUafgFlqLsxc1ju/9vQwywRW+XmukN6D9+A2bvaf2u8drcsbyzly7ggA9hg7hemFfNrxaZwZThZmLGRCfBQ2zwgxYRF6NEY9gT4lmSUN2yjpX5I5rQSWPtwbCU9K63W7XWmUDKNRYSgq1XpaIPXkh/u2QEqzp+HMcHJP/j04M5zkp+UTZxs9NQFjhYiKugeCF7Yc4s2qY9zomMo9SwKzfPOw5riuTivDzJs62r8ks8Cq3Jq2yOpjljbnooBZoNzuQM/RfVsgVTRWsLt5d58WSD3R8OKMYrKSI3+xh0iMYQyXiArGBYsXthzikd9WArBpn9XqeKRi90tsxlhN/3uSUALU9D9QbvdIcrGNMRw4faBPNLynBVK8LR7HZAfrCtZZbnj6QibZJw3rPOEiUmIYwWZMCf3NqmMXPR+p0AcU29R4T8BsW6+wz3lub/VkmC1+wDO3XgwTswYsyfQnzzsUDSJ88W2BVNFYQXlTubcFUkpCCkUZRXwi7xM4M5zMT5tPfMzo7nsejhhGOBhTQr/RMdU7kvc8HymlM1PIjz2Gw72X4pg6Vlcegff2grFy6L0Bs56VPDIdfjX9D3Se93BpbW/tEw3v3wLpuunXeUs0cybkhNQND4VLHY4v03AwpoTeM3qPaI7eEzDzZJiVHNnBGzGnIQa645KJmbQIHB/tEzAbDiPN8/bFX0EYYzh09pCVF95k5YcfPHMQgBiJZXLcLJZP+zg3zv4QRRlFpNpTh3VtgSBULnW0BIbHlNDBEvtAAh9QDBcFzLZBS521zbeHmSfDLCaAGWaBGkkuJ4iu7i52t+zuLfpoqqCl3aq9nhA/AWeGk1tn38o492y+9esz1HXF0BBr465ZTlLD3OcslC71aKgnHyljTug99F9ob82zf2Oyq4kPYuvIWnCOzDNVlwiYfSokq2QOpZSz/z6+r/URhPscL1X/kU0nj3vd8I5uq/vs9OTpXDPtGm9u+MyJM72110++U0tn196ImqdGi0sdKsak0MvqW3ng2XeZ272ftthabkw5wl9su8hMOAWAa3c8ZDn9CpgF0qb+gh1sJBlotAY8r3UTbz/FbR/qInHq+2A/iC2hkTebIPak1QLpjrl3eIXdvwWSL5EoqmhxqUPF2BB6v6b/M/b+le22D4iJsXIETrZl8VfjoNw1i0pbHo/c/8lhtzYaDoHpLNPFazWbOd6xB8nYSuK4emyxZ3n9GCSljmdy3BwWT13NLXlX+d0CqYdIFVU0uNShYnQKfZCm/wlpC3j6zHzKXLOpts3hyTUrmQYcrmvm67lpFIf4n2c4882znWcZN7EWe8bbkHAAW+JhfnPCU4OfmEL3+VmYjpl856bVrJ5fPOIWSCqqsU1Yhe5XtNivgNntvWWZaXOYYLOxpL4VU9fM3/VzlcPBYK6xbwuknjTSnhZIsak20uJyKMpYzarZpTjTnTScjI+40VeJbMJXjz6QOztjUr8Ms21wbOfFAbMeUU8toux416j4p/f9Uls4PZkPWj/oU/TReKG3BdKCyQtwZlpz6wWTF3hbICnKYERcCuzmumZiXBdYzAGKzT4m/e5paK/pzTCLtVtN/xc/0HvPul/ALFj3WgOdqHG+6zydcXuwpVTw1N4d7Hp/FxdcVi3+lKQplGSUeEs050yac8kWSIoyXAYVuohMB/4TyAQM8Iwx5ocjOuuFFu6vvJfPxe8hRiyPor0jB3I/3NvqyI8Ms2Dcaw3El8fx88f7rPTR0wJJEPJS8vjorI9SnFGMM8PJ1PGRubKHMrbwZ0R3AQ8bY3aISDJQJiJvG2N2D/usiSmMy5zN0ekr2NGdS1bhMormzhryYYJxW2ioXx6+LZB6fvq0QJq8gM8WftZyw9MXkByfPGIbFWWoDCp0Y8wx4Jjn8VkRqQGmAcMXugjc+QuuAK4Y9kGCc1tosC+PC10XqDpZ5R2tdzbtvKgF0tr5a3FmOrUFkhIxDCkYJyI5wHuAwxhzpt+2B4EHAWbMmFFS77MiymjDd44+I93VZ7Tu3wLJme701l9PGz86O9IqY4cRd4EVkfHAX4BvG2N+c7l9R+uyyW7jpu5UnXe0Lm8sp+FcA2C1QHJMdngzzbQFkhKJjCjqLiJxwK+BjYOJfDTR7mq3WiB5Krl2Nu3kTKflqKTaUynOKOau/LsozigmPzWfuBhtgaSMTvyJugvwHFBjjPlB8E0KHi3tLX3W5drdvBuX22qBlDsxlxXZK6zbXBnFTE+erm64MmbwZ0S/GvgUUCkiFZ7XHjHGvBE0qwKAMYYDZw54XfDyxnLqz1hxgzhbHI7JDitoluGkKL1o1LVAUpSh4E/U/X0g4oe2zu5OqpurvSN2RVMFpzpOATApYRJFGUXcPud2ijOKx0QLJEUZCqP23k9re6u3p1n5ib4tkLInZPPhrA9TnGklpYS6BZKiRBqjQug9LZB8b3MdOH0AgFhbLAVpBayZt8bb2yycLZAUJRKJSKH7tkDqEbZvC6SijCJWz1qNM8NJQVoB9lh7mC1WlMgmIoR+uuN0n3Wvq05WXdQCqSca7tsCSVEU/wiL0Ntcbfyp/k9eYdeeqrWMkVjyU/P5ZN4nvfPry7VAUhTFP8I2oq//n/XYY+0sTF/IDTk34Mxw4pjs0NprRQkCYRF6Ymwir3zsFbLGZ2nttaKEgLCN6NkTssN1akWJOjSqpShRgApdUaKAUSX0svpWnnynlrL61nCboiijioi4j+4P0bKOtaIEg1Ezog/Uy01RFP8YNULv6eUWI0TM+mCKMloYNa57pK4PpiijgVEjdND1wRRluIwa111RlOGjQleUKECFrihRgApdUaIAFbqiRAEqdEWJAoa09prfBxVpAgZafG0ycDLgJwwfej2RzVi7Hhj8mrKNMen9XwyK0C+FiGwfaF2o0YpeT2Qz1q4Hhn9N6rorShSgQleUKCDUQn8mxOcLNno9kc1Yux4Y5jWFdI6uKEp4UNddUaIAFbqiRAFBEbqI3CAie0WkVkS+NsD2BBF5ybN9i4jkBMOOQOHH9dwnIk0iUuH5eSAcdvqLiDwvIo0iUnWJ7SIiP/Jc7y4RKQ61jUPBj+u5VkRO+/x91ofaRn8Rkeki8o6I7BaRahH58gD7DP3vY4wJ6A8QA+wHcoF4YCcwv98+fwc85Xl8F/BSoO0I8fXcB/wk3LYO4ZqWAcVA1SW23wS8CQhQCmwJt80jvJ5rgdfDbaef1zIVKPY8TgY+GOD/bch/n2CM6FcCtcaYOmNMJ/AicGu/fW4FNnge/wpYLpG7gLk/1zOqMMa8B7RcZpdbgf80FpuBSSIyNTTWDR0/rmfUYIw5ZozZ4Xl8FqgBpvXbbch/n2AIfRpw2Od5Axcb6t3HGOMCTgOR2gTOn+sB+LjHjfqViEwPjWlBw99rHk18SER2isibIlIQbmP8wTOldQJb+m0a8t9Hg3GB4XdAjjFmAfA2vd6KEhnswMoBXwj8GHglvOYMjoiMB34N/IMx5sxIjxcMoR8BfEe0LM9rA+4jIrHARCBS+zcPej3GmGZjTIfn6bNASYhsCxb+/A1HDcaYM8aYc57HbwBxIhKx63GLSByWyDcaY34zwC5D/vsEQ+jbgDkiMlNE4rGCba/12+c1YJ3n8SeA/zaeKEMEMuj19JsfrcaaV41mXgPWeqK7pcBpY8yxcBs1XERkSk8MSESuxPq/j8iBxWPnc0CNMeYHl9htyH+fgHeBNca4ROQLwB+xItbPG2OqReRbwHZjzGtYF/JzEanFCqLcFWg7AoWf1/MlEVkNuLCu576wGewHIvJfWJHoySLSAHwDiAMwxjwFvIEV2a0FLgD3h8dS//Djej4BfF5EXEAbcFcEDyxXA58CKkWkwvPaI8AMGP7fR1NgFSUK0GCcokQBKnRFiQJU6IoSBajQFSUKUKErShSgQleUKECFrihRwP8HtzTpsXXwokYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(4, 4))\n", - "ax.plot(X_test, y_test, '.', label=\"raw\")\n", - "\n", - "for label, model in [('med', m), ('q0.05', q1), ('q0.95', q2)]:\n", - " p = model.predict(sorted_X)\n", - " ax.plot(sorted_X, p, label=label)\n", - "ax.set_title(\"Quantile Regression\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With a non linear model... but the model *QuantileMLPRegressor* only implements the regression with quantile 0.5." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## With seaborn\n", - "\n", - "It uses a theoritical way to compute the confidence interval by computing the confidence interval on the parameters first." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAHwCAYAAACc3qd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABr/UlEQVR4nO3deXzcdZ0/8Nfn+517JvfVtM3RlEK52oKIiKtAFaUouuIqulU80HrArq5uXRUXF1YUrboXKFZgV3friqu7rvrboiiKB6JypBTaQnrkaJImTZprMsd35vv9/P74zkxmkplkkszk+53J68kjj7STOT6ZDvOaz/X+CCkliIiIyD4UqxtAREREmRjORERENsNwJiIishmGMxERkc0wnImIiGzGYXUDZuHScSKi0iWsbkC5YM+ZiIjIZhjORERENsNwJqJla1vfBiGErb7a1rdZ/bQQLZmwWYUwWzWGiPIjhMDxzxy3uhkZOm7vgM3e31YDzjkXCHvORERENsNwLjI7DvdxyI+IyN7stpWq7PT299puuA8wh/yIiMie2HMmIiKyGfacVykFCoSw19qN1nWt6DnZY3UziIgsx3BepQwYthtu51A7EZGJw9pEREQ2w3AmIiKyGYYzERGRzXDOuQxIKSGjEvqUDj2ow4gYMDQDMiphxI2MumuKS4FwCbwML0P4RBiKW4FaoUINqLZbIEZEtFoxnEuI1CViIzFogxpip2OInYkhPhpHfCwOGV9cmcLP4rMY/tbwzAUKoFaqcFQ64KhywFHngLPBCVejC45aB4TC4CYiWikMZxszIgYivRFEu6OI9EagndIAPfFDFXDWOOGoc8Cz0QNHpQNqwOwBK16zd6y4FQiHyKh2KzUJQzPwun95Hf73nf8LI2JAn9IRn4hDn9QRn4wj0huBflCfuZEKOOuccK11wb3ODdc6F1yNLgiVgU1EVAwMZxuRhkT0ZBTh58OIdEegDWrmkLQCuNe7UXlpJVzNLrjWuOCoW2Jv1gWoUNGFLnjaPTmvZmgGYiMxxIZjiJ2OQRvWEH4hjOnOaQCAcAi4ml1wt7jhaffA3eqG4uYSBiKiQmA4W0zGJSInIggdDiH0QgjGtGGGcYsbVS+vgrvdDfd6NxTnygaf4lLgXuuGe617pq1SIj4eh9avIdofhdavYfLxSUw+NgkIwLXWBU+bh2G9iuhhHbGRGDZgAyI9EXO9Q8SA1CSkbn5BN6dkIAGoMD9UKoBQBYRDQPEo5iiPx/yz6lWh+BROpdCqxnC2gJQS0b4opjunMX1oGjIqIVwC3k1e+Db74D3LC8Vjv2ATQsBZ44Szxgn/BX4AgBEzEO2LmkPvPZGMsHavc8OzwQNPhwfu9W5ziJ1KhpQS2qCG8LGw+XU0jGhfFNqAhuhAFNqghvhYHADwAB7A0L8NFe7BBVLTNGqF+eWoccBZ64SjxgFHrQOKy37/jxAVCsN5BcXH4wgeCGL6mWnEz8QhnAK+83zwn++HZ4OnJMNLcSrwdnjh7fACSIT1ySgiJyKInIhg4jcTmPj1BIRTwN3qhqfDA2+HF84mJ1eH24Q0JMJHwwh2Bs3X57PTCB8LI3I8AiNszFxRhTmass4N32Yfqq+qhnutG84GJ96262342ju+ZvaCPYoZnGqid6wmespCQBoSMMzHlLqEjEvIiIQRNVK9biNkIB6Mp3YfxCfiiPZGYUSMjHarARXORqe5cLHJlfozQ5vKAcN5BYSPhTH1hymEXwgDANztblS9ogq+c31l90aiOBV4N3jh3ZAI64iBSE8EkePm1/jD4xjHOBSfYvaqEz1rZ43T4pavDvq0juDBIKYPTJth3BlE8GDQnE4BABXwne2Dd5MXta+uhfcsL7wbvfBs9MDT5sk5vfKrXb9KfUCbT2pIO32VYkV+bTcihrlDYczcoRAbNddEBJ8MZuxWcNQ44Gxy4m14G8YeGUPFiyrgqOJbHZUWvmKLJD4Vx6lvnsI38U0M/8cwFL+CqpdXIXBxAI7q1fO0Kx4FvnN88J3jAwBzNXiiVx05HkHouRAAwFHtwMfwMQw/OIzq7dVwNbisbHbJSw5JBw8EZ0L4QND8gJjIMbVSRWBbAM03NSOwNYDAtgB85/mgelRrG5+D4pm7DgJIrIUYiyM2bC5cjA2b2w13YRcOvPIAAMC32YeKF1eg4tIKVF1ehcDWAHcbkK2tnpRYIdFTUZz8x5MY+NoA9Ekd05hG3Rvr4D/PX5LD1oXmqHSYQbA1YL6pjsYRPh5G5EQEV45fiUNvPQQACGwLoPqV1ah5VQ2qX14N1W/PwLADI24g/Hw4I4SDnUHETsdS1/G0exDYFkDjWxsR2GYGsafNUxZTC0IIOGudcNY64dvsS12+9fat6P5JN6b+OIXJP0xi7OExDP27OS+uVqqoelkVql5ehepXVKPikgouYCRbEVIurnhFkdmqMYsRPhZG755enPq3U5AxiYY/a0DLR1tQdVmV7U5/AswToOzWrrNuPwtjj49h7OdjGPvZGCZ+OwGpSQinQOVLK1HzqhrUvKoGFS+ugOJYnW+ksbEYpg9OmwGcCOHpZ81FhQAgXAL+C/xmACd6w/4tfjirizttIISw3eup4/YOpL+/SWluVZz4zQQmfjWB8V+Pp0ZuFI+CipdUoPoV1ai+ohqVL6u07QiCzZX+pz2bYDgv0/ShafT8fQ+GvzsM4RBY8+41aPnrFvjOMj/B2/FNC7BnOM9+M9VDOiZ+O4Gxn5lhHXw6CEhArVBReXklKl9ciYpLKlBxSQXc69zz3HPpMWIGQs+HMP3MtBnGzwQxfXAa0b5o6jrOemeqF+zfagay7xzfim+7A+z5Op/9espGG9FSYT3x6wlMPTUFGGZYV72iyvxAeHUNAlsC3NqVHz5JBcJh7SUKvRBC9x3dGP72MFS/ipa/bsH6j6yHu7m8QsJKqk9F7dW1qL26FgAQG41h7BdmUE8+Pomez/ekKqa5ml2poPZf6If/PD88Gz2272HHxmMIvxBG6IUQws+b30NHQggdDkHGEr1hp4Bvsw9Vr6hC4MIA/BeaQexqdpXFsLSVXPUuNPxpAxr+tAGAuSZi4tcTOPPwGYw9PIbjHzc/cDgbnKmgrnlVDTwtuQv4EBUCw3mRwifC6LmjB6f+/RQUt4KW3S1o2d0CVz0XMBWbs86Jxj9rROOfNQIwe9bBA0FM/XEKU09MYeqPUxj98Whq/EU4Bbxne+E/1w9Ph1kcxdNmfrnb3HAEFn75t61vQ29/75LbXIUqNKEJDWhAY+K/BjSgCU1Yh3WoQU3qujp0nMIp9KEPx9P+64v1IX4wDhw0r+dSXNAMbcltotwclQ7UvbYOda+tAwBE+6MY+9mYGdY/G8Pwf5r16P0X+lH32jrUvrYWlZdV2v5DIJUehnOeIn0R9Hy2B6ceOAWowPq/XI/Wv2mFq4mhbBXVp6LqpVWoemlV6rL4VDzV85w+NI3Q4RCCB4IY+d+RVE80SfErcDW44Kw398c6651QK1WoPrNClepTcXH/xfjRtT+auZEEJMyqV4ZmQMZk6suIGNBDOoxQ4nvYADK35gKqGQBqlZqqje6sd8JZZxbX6FA7Fvy97TolUY7c69xY8841WPPONZBSYvrZaZz5yRmc+X9n0PelPvTe1QtHjQO1O2rNsL6mFs5abguk5SurcF5uLycbP/zYiZ14E94EAYEf48fYF9+H0X8YBf6hoA9FBeCocKDyxeZ8dDppSGinNES6I+a+654IYkMx85Sv0xq0YQ3Tz02bR26GjFTBiw/jwzjzf2dyP6Bq7u0WzkQZSp8CR50D7hY3FK8CNaDCUWWGsaPSAcWvcCh6hSgo7nPthx+X4BJcNnYZXvLtl6Dm2zXQoeMQDuExPIZf49foR3/GbVrXtaLnZE/R2kTlo6zCube/t2A9CqlLTP1xChO/moARNuDf6kf1ldX4SPVH8BF8JO/7KdceRakRikjtka26vGrB60tDwggbqAvU4YmPPZG4k7T7cwgIp+AiIRszYKzYCIOUElq/hnBXGC964UW48NSFeD/eD2eDE75zffBt9sG5xomNd2xckfZQ6SurcC4EKSVCz4Uw/sg44mNxeDo8qLm6Bq41HL5eTYQioPpVTGACaoBbamh+Qgi415uH1FRfVY34eGJ65UgIE782V4Or1So+hA9h/NfjqLq8ikVQaF4M5zSRngjGfjoGbUCDs9GJxp2N8J61cElCIqJ0jmoHKi+rROVlldCndYSeDyF8JIw3jL8Bna/oxBmcwaN4FI/gETyH58x1DBbicLv9MJwBxE7HMPbzMYSfD0OtUFH3hjr4t/g5ZElEy6b6VVRcXIGKiyuw/fbt+P2bfg/fIR+u77oeb4y/EWqlCv/5fvgu8Fm2PY7Tb/azqsNZD+oY/+U4gk8FIZwC1durUXFZhSVFHIio/IUQgv8CP/wX+GFEzUIzoedCmPz9JCZ/NwlHjQO+C3zwX+CHq5FTaavZqgxnQzMw+btJTP52ElKXqHhxBapeUcX6zUS0YhS3gsCWAAJbAtDDOkKHE0H9m0lM/noSziYnAlvNojNc97D6rKpwlobE9IFpjP9iHPqUDt+5PlS/shrOOu5LJCLrqN6ZoW89qGP60DSmD0xj7KdjGHt4DN6zvPBv9cN3jo8H6KwSqyacw8fCGHt4DLGhGFzrXKj/s3p4WlmCj4jsRQ2oqLy0EpWXViJ2OobggSCmn5lGuCsM4Rbwn++Hf6sf7hY398yXsbIPZ21Yw9jDY4gcjUCtVlH/pnr4zvfxRU1Etpes6V29vRqR7gimDyQOQnkqCEetA4GLzINPOOxdfso2nPWgjvFfjCP4dBCKW0HN1TWouLSCQ0I2VuyKTkSlSigC3g4vvB1eGK81EDoUQvDpIMZ/Po7xX4zDe7YXFRdXwLPRw10mZaLswnnOYq9LE4u9fPxkaXcrWdEpX9xiQnajuJTUUaGxkRiCT5vneoePhKFWqubPLgrAUV12b++rStn860ld4hpcg4G7B2YWe72qmkXoiahsOeudqLnaHPYOPR9C8KmgeTb1rybg2ehB4GLzjG9WIys9ZRPOff/Qh7/B30CtVLnYi4hWFaEK+M8zzzGPj8dTvemR/xqB4k/0tF8UgLOGnZVSUTbh3HxTM961+12476b7OG9JRKuWo9qB6quqUXVFFSLHIph6cgqTj5lTfZ6NHlS8qALec7ycm7a5sglnZ40Tv8AvGMxEREgsItvkhXeTF/HJOIJPBRF8OojT3z0NtUI1V3pfHICjqmxioKzwX4WIqMw5Kh2ovrIaVa+oQrgrjOCTibnpX0/Au8mLs3CW1U2kWRjORESrhFAEfOf44DvHh/h4HFNPTSH4VBBOcC7abnjCAxHRKuSodqBmew3W/9V6HMZhq5tDszCciYhWMW6zsieGMxERkc0wnImIiGyG4UxERGQzDGciIiKbYTgTERHZDMOZiIjIZhjORERENsNwJiIishmGMxERkc0wnImIiGyG4UxERGQzDGciIiKbYTgTERHZDMOZiIjIZhjORERENsNwJiIishkhpbS6DSlCiIcA1C/jLuoBjBSoOcVWKm1lOwuvVNrKdhZeqbR1qe0ckVJeU+jGrEa2CuflEkI8IaW8xOp25KNU2sp2Fl6ptJXtLLxSaWuptLOccVibiIjIZhjORERENlNu4bzX6gYsQqm0le0svFJpK9tZeKXS1lJpZ9kqqzlnIiKiclBuPWciIqKSx3AmIiKyGYYzERGRzTCciYiIbIbhTEREZDMMZyIiIpthOBMREdmMrcL5mmuukQD4xS9+8Ytfpfm1KHzPz81W4TwyUgqHtRARUSHwPT83W4UzERERMZyJiIhsh+FMRERkMwxnIiIim2E4ExER2QzDmYiIyGYYzkRERDbDcCYiIrIZhjMREZHNMJyJiIhshuFMRERkMwxnIiIim3FY3QAiIiqO0f2j6NvTh8iJCDwbPGjZ3YK6HXVWN4vywJ4zEVEZGt0/iq5buhAdjEKtVREdjKLrli6M7h+1ummUB4YzEVEZ6tvTB+ESUP0qhEh8dwn07emzumkp2oCGX/l/BSkXfRR02WM4ExGVociJCBRf5lu84lMQ6Y5Y1KK5hoeGEQlF0N7SbnVTbIfhTERUhjwbPDBCRsZlRsiAp91jUYvmMgwDbrcbvf29VjfFdhjORERlqGV3C6QmoU/rkDLxXZNo2d1iddNSBASEKqxuhi0xnImIylDdjjpsunsT3M1u6GM63M1ubLp7k61WazOcc+NWKiKiMlW3o85WYTybgIBwMJyzYc+ZiIgswZ5zbgxnIiKyhIDg+G0ODGciIrIEe865MZyJiMgSDOfcGM5ERGQJLgjLjeFMRESWYM85N4YzERFZgj3n3BjORERkCQEBqFa3wp4YzkREZAkOa+fGcCYiIksoUPCdA99B67pWq5tiOwxnIiKyhIDAB/7iA+g52WN1U2yH4UxERJZR3IyhbPisEBGRJRQoEG7OOWfDcCYiIssoLsZQNnxWiIjIMsLJnnM2DGciIrIMwzk7hjMREVlGcTKGsuGzQkRElmHPOTuGMxERWYbhnB3DmYiILMNwzo7hTEREluGcc3Z8VoiIyDLsOWfHcCYiIsswnLNjOBMRkWUYztkVNZyFENVCiO8JIY4IIQ4LIV5azMcjIqLSwjnn7BxFvv9/AvCQlPLPhBAuAL4iPx4REZUQ4WDPOZuihbMQogrAKwC8CwCklBoArViPR0REJYgd56yK+bRsAHAawL8KIZ4WQtwnhPDPvpIQYpcQ4gkhxBOnT58uYnOIiMhq6e/5VrfFzooZzg4AFwP4mpTyIgDTAD4x+0pSyr1SykuklJc0NDQUsTlERGS19Pd8q9tiZ8UM55MATkopf5/4+/dghjURERHNo2jhLKU8BaBPCHFO4qJXAjhUrMcjIiIqF8Verf0XAPYlVmofB/DuIj8eERFRyStqOEspOwFwXoGIiLLjTqqsuIidiIjIZhjORERENsNwJiIishmGMxERkc0wnImIiGyG4UxERJYRgsu1s2E4l4p9+4D2dkBRzO/79lndIiIiKpJiFyGhQti3D9i1CwiFzL/39Jh/B4CdO61rFxERFQV7zqXg1ltngjkpFDIvJyKissNwLgW9vYu7nIiIShrDuRS0ti7uciKiUsH1YFkxnEvBnXcCPl/mZT6feTkREZUdhnMp2LkT2LsXaGsDhDC/793LxWBERGWKq7VLxc6dDGMiolWCPWciIiKbYTgTERHZDMOZiIisw9XaWTGciYiIbIbhTEREZDMMZyIiIpthOBMREdkMw5mIiMhmGM5ERGQdrtbOiuFMRERkMwxnIiIim2E4ExER2QzDmYiIyGYYzkRERDbDcCYiIssIweXa2TCciYiIbIbhTEREZDMMZyIiIpthOBMREdkMw5mIiMhmGM5ERGQdLtbOiuFMRERkMwxnIiIim2E4ExER2QzDmYiIyGYYzkREZB0uCMuK4UxERGQzDGciIiKbYTgTERHZDMOZiIjIZhjORERENsNwJiIi63C1dlYMZyIiIpthOBMREdkMw5mIiMhmGM5EREQ2w3AmIiKyGYYzERFZRggu186G4UxERGQzDGciIiKbYTgTERHZDMOZiIjIZhjORERENsNwJiIi63CxdlYMZyIiIpthOBMREdkMw5mIiMhmHMW8cyFEN4ApADqAuJTykmI+HhERUTkoajgnXCWlHFmBxyEiolLDBWFZcVibiIjIZoodzhLAT4UQTwohdhX5sYiIiMpCscP5T6SUFwPYAeBmIcQrZl9BCLFLCPGEEOKJ06dPF7k5RERkpfT3fKvbYmdFDWcpZX/i+zCA/wFwaZbr7JVSXiKlvKShoaGYzSEiIoulv+db3RY7K1o4CyH8QoiK5J8BvBrAs8V6PCIionJRzNXaTQD+J3GQtgPAt6WUDxXx8YiIqNRIqxtgT0ULZynlcQBbi3X/RERUBhjOWXErFRERWUZKpnM2DGciIrKOYXUD7InhTERE1mHHOSuGMxERWYbD2tkxnImIyDoc1s6K4UxERNZhxzkrhjMREVmGw9rZMZyJiMg6HNbOiuFMRETWYcc5K4YzERFZhsPa2TGciYjIOszmrBjORERkHc45Z8VwJiIiy3BYOzuGMxERWUbGGc7ZMJyJiMgyMspwzobhTEREljGinHTOhuFMRESWMSIM52wYzkREZBn2nLNjOBMRkWUYztkxnImIyDJcEJYdw5mIiCzDOefsGM5ERGQJCclh7RwYzkREZAmGc24MZyIisgTDOTeGMxERWUJCcs45B4YzERFZQkJytXYODGciIrIEh7VzYzgTEZElGM65MZyJiMgSDOfcGM5ERGQJLgjLjeFMRESWMGBwQVgODGciIrIEh7VzYzgTEZFlDI3hnA3DmYiILPP8c8+jbX2b1c2wHYYzERFZwoCB9up29Pb3Wt0U22E4ExGRJSQkoFvdCntiOBMRkSUkJKTO1drZMJyJiMg6XA+WlcPqBhARLdfo/lH07elD5EQEng0etOxuQd2OOqubRQtgzzk39pyJqKSN7h9F1y1diA5GodaqiA5G0XVLF0b3j1rdNFoAwzk3hjMRlbS+PX0QLgHVr0KIxHeXQN+ePqubRguQkBzWzoHhTEQlLXIiAsWX+Vam+BREuiMWtYgWRVjdAHtiOBNRSfNs8MAIZXa/jJABT7vHohZRvgQEwzkHhjMRlbSW3S2QmoQ+rUPKxHdNomV3i9VNozwIhemcDcOZiEpa3Y46bLp7E9zNbuhjOtzNbmy6exNXa5cKZnNWDGcqvH37gPZ2QFHM7/v2Wd0iKnN1O+qw7ZFtuOz4Zdj2yDYGc4ngsHZu3OdMhbVvH7BrFxAKmX/v6TH/DgA7d1rXLiKyJ4ZzVuw5U2HdeutMMCeFQublRERpBASEYDpnw3CmwurNcbpMrsuJaNUSQmAsMobWda1WN8V2GM5UWK05/ifLdTkRrVpSStQ31qPnZI/VTbEdhjMV1p13Aj5f5mU+n3k5EVEaAQHh4LB2NgxnKqydO4G9e4G2NkAI8/vevVwMRkRZMZyz42ptKrydOxnGRLQg9pxzY8+ZiIgswXDOjeFMRESWYThnx3AmIiJLsOecG8OZiIgsw3DOjuFMRESWYM85N4YzERFZguGcG8OZiIisw2zOiuFMRESWkJCAbnUr7GnBcBZC/IUQomYlGkNERKuL1KXVTbClfHrOTQD+KIT4rhDiGrHI872EEKoQ4mkhxI+X1kQiIipHqqoynHNYMJyllJ8GsAnA/QDeBaBLCPE5IcTGPB/jwwAOL7mFRERUluJ6nOGcQ15zzlJKCeBU4isOoAbA94QQX5zvdkKI9QBeC+C+ZbaTiIjKEeecs8pnzvnDQognAXwRwG8BXCil/CCAFwF40wI3/0cAHwdgzHP/u4QQTwghnjh9+nTeDSciotKT/p4vIdlzziGfnnMtgOullK+RUv6XlDIGAFJKA8Drct1ICPE6AMNSyifnu3Mp5V4p5SVSyksaGhoW03YiIiox6e/5EhJGNGffbVVb8MhIKeVn5vnZfHPJLwPweiHEtQA8ACqFEP8hpXz74ptJRETlRkLCCDGcsynaPmcp5SellOullO0A3grgEQYzERElGTCghzjpnA2LkBARkSUkJPRpHeaaY0q34LB2IUgpfwnglyvxWEREVBoMGIAOyJiEcLGOZzr2nImIyBJGYiOPPs2h7dkYzkREZAkJczibi8LmYjgTEZElUj1nLgqbg+FMRESWSPacOaw9F8OZiIgskew5c1h7LoYzERFZInnI4dte/zaLW2I/K7KViohoJY3uH0Xfnj5ETkTg2eBBy+4W1O2os7pZNEtcxgEAk6OTFrfEfthzJqKyMrp/FF23dCE6GIVaqyI6GEXXLV0Y3T9qddNoluSwthtui1tiPwxnIiorfXv6IFwCql+FEInvLoG+PX1WN41mSS4I88BjcUvsh+FMRGUlciICxZf51qb4FES6Ixa1iHJJ9pwZznMxnImorHg2eOas/jVCBjztDAC7SfacvfBa3BL7YTgTUVlp2d0Cqc0cqKBP65CaRMvuFqubRrNISEABfPBZ3RTbYTgTUVmp21GHTXdvgrvZDX1Mh7vZjU13b+JqbZtSPAr88FvdDNvhVioiKjt1O+oYxiVCcSsIhAJWN8N22HMmIiLLsOecHcOZiIgsI9yC4ZwFw5mIiCzDnnN2DGciIrKM4mY4Z8NwJiIiyzCcs2M4ExGRJQQE/vkP/4wAAjA0HhuZjuFMRESWkJD42Os+BgDQhjWLW2MvDGciIrKMGlABANophnM6hjMREVmG4Zwdw5mIiCzDcM6uLMp3ju4fRd+ePkRORODZ4EHL7haW7iMiKgFqQIUOHdGeqNVNsZWS7zmP7h9F1y1diA5GodaqiA5G0XVLF0b3j1rdNCIiWoBQBYYwhPCxsNVNsZWSD+e+PX0QLgHVr0KIxHeXQN+ePqubRkREeehHP8JdDOd0JR/OkRMRKL7MX0PxKYh0RyxqERERLUY/+hHqCkFKaXVTbKPkw9mzwQMjlLl53QgZ8LR7LGoREREtxkmchD6hIzYas7optlHy4dyyuwVSk9CndUiZ+K5JtOxusbppRESUhz6Y05ChQyGLW2IfJR/OdTvqsOnuTXA3u6GP6XA3u7Hp7k1crU1EVCK60AUAmHpqyuKW2EdZbKWq21HHMCYiKlFjGINrnQvBJ4NWN8U2Sr7nTEREpa/i4gpM/nHS6mbYBsOZiIgsISDQcXsHFCj43I8+h/DzYURPsRgJUCbD2kREVHokJI5/5jgAINofxan7TmHi0Qk03tBoccusx54zEVG+9u0D2tsBRTG/79tndYvKhqvZhSCCGHtkzOqm2AJ7zkRE+di3D9i1Cwgltvv09Jh/B4CdO61rV5kQisDTeBp1/1cHKSWEEFY3yVLsORMR5ePWW2eCOSkUMi+fZXT/KDq3d+LxDY+jc3sna/3n6Tf4DaIno5h6gluqGM5ERPno7c3rch7Gs3S/w+8gHAIj/z1idVMsx3AmIspHa2tel/MwnqWbwhSqr6rG8IPDkMbqrrPNcCYiyseddwI+X+ZlPp95eRoexrM8a969BpETEYz9fHUvDGM4ExEBC6/E3rkT2LsXaGsDhDC/7907ZzFYqRzGo0d0aCMaYuP2Omyi4foGOOocGNw7aHVTLMXV2kRE+a7E3rlzwZXZLbtb0HVLF3ToUHwKjJBhi8N4pGEeDKRP6zCmDYw9MobB+wehDWjwnuVFy+4WW5RBVtwK1rxrDfr/qR/RgSjca91WN8kS7DkTES1iJfZC7HQYjxEzEBuLIXIygvCxMLRBDfqkjrFHxtB9Rze00xrUavstWlv3wXWQUq7qeXr2nImI8lyJnS8rD+PRIzr0oNk7NqJG1usM3j9oLlrzmovWFL8CHTr69vTZovfs3ehF09ubMHDvAFr+pgXuNauv98yeMxGtWsn9yFGlKfsVcq3QtpHkOfbakIbBBwbReWUnntj2BJ674TmMPzqe9TbRk1EoHnsvWmu7tQ2GZqza3jPDmYhWpfT9yCfXfwi6mLVgK8tK7CUrcNlPqUvEJ+OIDkQRPhZGtD+KkR+O4MRnTphD1VUqtNMauu/ozhrQ7vVuGBF7L1rzbfKh6R1N6L+nH6GjoYVvUGY4rE1Eq1L6fuQx/w4IAaw7+VW44kMQba1mMBeiLGeByn4aMQN6MDFkHZ47XJ0+VA0AqleFDh2D9w+i+orqjOs239SM7ju6oUOH6ldhTFuzaC15KlWSAiWjbGcd6vBNfBP3bLoHd6+9Gz39PSvaPisxnIloVYqciECtVVN/P1O3A6O110Af03HZ8csK90DzLTZbIJz1sLm6Wg/qkNr8RTmiJ6NQq9SMyxSPgmj/3CMYq6+oRvtt7eZq7UEN3o3WrNZOP5Uql8nfT8L/kB8dAx3zXq/cMJyJaFXybPCYJTb9M4FWlKHdRSw2M+IGjGkDekg3t2Dp+VfJcq93m0Pa3rTfJ2LAvS77YqrqK6pRfUU1HDUOuBpceT/OSqt4cQWmO6dxy6lboJ3WbN3WQuKcMxGtSi27WyA1czFVclFVUYZ2Fyj7qYd1aKc1hLvDiByPQBvSoE/piwpmwByqlpqEHk78PmHz92m+qXm5v4GlhCJQ94Y6VKACR248smrKejKciWhVWrH9yFnKfkqvD7GP324u5uqLIj4WX3DYeiHJoWpXgwv6pA5Xgwvtt7XPmW8uRa41LtyDe3DmoTOrZvU2h7WJaNVakf3IO3fC0CXErbcC/X2QzesR++jt0F/1ZmCRveOFJIeqy9EP8UN87s2fw/Fbj6PypZWofkW11U0qKoYzEVGBSSlhhI1UuUx52fXAz6+3ulkl75xvnINgZxDPvvFZXPTbi+Df7Le6SUXDYW0iogIw4gbiE2l7j0+aw9VjD4/h8I2H0bm9E4dvPJyzMAgtzFHlwJaHtkA4BJ655hlEB+auRC8XDGeLJSsUPb7hcXRu77RNbVsiWpgeNk92ivREZhZzBXUgsQ15/NHxmRrWCxQGofx4O7zY8n9bEB+N45lrn0F8Im51k4qC4Wyh9ApFaq39is8TUaZUZa7B6MxirjPxvGtYq14VwiUweP/qPg5xuSpeVIHzv38+Qs+F8MyO8gxohrOF0isUCZH47hIrshqRPXYqawUsl2n8279DtrRBKgpkaxv0b/x73ludstawzlEYZCUZEQNTT0xh8P5BHHnPEZz855OWtmcpal9di/MePA9TT0yh85WdiI3a61zq5eKCMAvNrlAErEzx+WSPXbhERo8dd8MWJ9IQLdq+fWbFrd5eoLYWmJoCNM382SLLZaafeyz+89twfupmiEgYACAG+uD69M3QAOjX3bDgfS22MMhSjT86jsH7BxE9GYV7vRvNNzWnVm1LKRHtjSLYGUTwQBDBziDCz4ch42kfLuLA+r9cX9A2rYSG6xtwwQ8uwLPXP4vOKzux5eEtZXOClZDSPhu6L7nkEvnEE09Y3YwV07m9c06FIn3a3G+57ZFtZfe4REUxu3Z1Lm1tQHd31h8ZMSNVJtMIG0DibdFz1WYoA3NHsoy1LYj84siCTUvOOQuXgOJRYETMGtaF3H88+zH0kA4jaKDqZVWIT8Qx3TmN+Hj2YV9Puwfrmh5F89G74TjTbxZGWV5NcbHwVdKuLIRcqHxnUsftHciVV2M/H8PB1x+Ee70bW/ZvgbfDu5hmWCnn88VhbQutWIWiWSInIlB82Y+L43A3lZxstauzmVUuM7mYS/unfwPa2+GodcP1krOh/vDB1HXEYPbh3lyXz7bcwiDqjx6E56rN8G4OwHPVZqg/ejDj51KXOPkvJ2FEDMTPxBE5FoHWrSE+Esfo/45i4pcTqWBWK1RU/kkl1t68FmfvPRsXPX4RLrrlMNY/cwccoycBKWdGGZZ5atZKq3llDbb+dCtip2N46iVPYeK3E1Y3admK1nMWQngA/AqAG+bw+feklJ+Z7zarrecMmEPMfXv6EOmOwNPuWZHi87l6zsIlYAQN8xO4TzFr+2qyOFWTiApFUcxgWYBsbYX+zLGMutXqjx6E69Mzw9YAID1eaJ+9B/p1Nyyq5zzf0PJS5Grb+J9/EaddrzaHqJ8JwpjOvhhNOATqr69HYGsAgYsC8GzwQCiZHbVcv998owwLsKTnnBTqCuHgaw8i0hPB5gc2o2lnjnO67SPn81XMcBYA/FLKoBDCCeA3AD4spXw8121WYzhbIX3OOT2E1YAKQzM43L1IqQ9YJyLwbFiZD1iUpr3d7PHNQ3p90P7+7jnzxAuF70LhnVSM4WvPlZuhDM5tWwRNeBzfybxQAVS/CsWrQPEqkELC3eTGud86d97H8G4OQGTLACEAI3voL2BR4awIRUrkl0EKFBhYuE0VqMDtuB0X4SJ8C9/Cv+Hf0LKuBT0nbXncZM7nq2gLwqSZ+sHEX52JL/tMcK9idTvqgLsxp8fe9aEuSxaolTIurrOBO++EceN7oRgzr1MDDuiKHw5jEnJtolxmlgVcCw1b69fdAA2A8yufgRg8OVN6c9Z9LeYs5Vy0Ic1ctJVYuPWiHG1zYxj+C/0IbAvAv8UPQzPQ/9V+KG4l9cEAGvI68EI2r4fI1nPOdVhHgeVzZOSS7leXGP3xKG7svBHv3/R+vLrr1QV/jGIr6mptIYQK4EkAZwG4R0r5+yzX2QVgFwC0rtALgrLXFO7b0LcyR+iVkfTtcIDZe9Gho29PH8N5BUgpYbzxrThW3YW2qa/DFRuC5mxCX+MHMVr1GuiTOrb9fFvu2+cIJ9lsrlwef3Qcg/+1BVHxHbgvzT1UvZizlAFzxfb0c9Op1dPTB6ahndIy7xON8GAoa9vO/975GZe5GlzmkHp/FO51+Q+pxz56O1x/ewtEOG3O3uczF4UVSfp7ftEeQxWoe30d3GvdOPOTM/g6vo7JP0yi8tLKYj5sQRU1nKWUOoBtQohqAP8jhLhASvnsrOvsBbAXMIe1i9keml/L7hZ03dIFHXrGcHexF6iVMqu2w61mqTOPp3XoIbMa19Sm6/DU6ddkblkK6wtuWYp99Pasw9axj96eMVSdXt0r21D1fFumpJSInoymQjj4dBChI6HMrUwJwi3gv8CPwNYApmO3wv3dv4GIzmrbx26fc7ulHnihX3cDdL8Cx12fMRfMLX+19oLS3/OFEEV7zxdCoOLFFXCtc2HwG4N4+k+exsYvb8S6W9bBnHW1txXZ5yylHBdC/ALANQCeXej6ZI1cw93sAebm2eDhaEMRje4fRe8XexE5HoG7xY3m9zaj6vKqOddrvqkZ3Xd0mx8s0+Z8FxranW/YevDGw3kPVac/vnAK6JM6jGkDjoADT1/+NOJnsm9lcre6EdgWSA1R+zb7oDiTOylugrY1sOCQ+nIZb3ob8IF3FvQ+7cS91o1d2IXHdjyGo395FBO/nsA5950DR6W9y3wUc0FYA4BYIpi9AH4K4AtSyh/nug0XhFGpybW4jivcl8eIGRj5wQiO/fUxGFED8ak4ZFRCqALN72/G+lvmFsxIrZZe5NBuLp3bO6FWqRm9LCllaqh8/NFxDNw3gGi3+eFM8SmIHI+Y+6SzUPwKAlsCGWHsrHUuuX2F4qhxwNXgKtTdFW219nJ03N4BwzDQ96U+HP/kcXg7vDj/e+cjsCVQ9MdewMovCAPQDOCbiXlnBcB35wtmolJUDqMNdlhtLo1ZRyzGJPq+3AcjaiB2JgYIQDgFpC4x+PVBBC4MzAneQp9lnG2oWp/WofpVHP3oUYz9bAxSk4AEYphVOlIA3rO8CGwNwL/NXLzl7fBCqMsbTi30dq3VRAiB1t2tqLysEoduOISnXvIUNt2zCc3vWXjhnBVYIYxoFbOy529EZ+aN06tyJXVu70RsLAYZl6n9uVJKQDcPPlhom1A+1B89mHPYeOyRMZz4zAnAAGRMms9NLMf7pQoobgWOWgc23LEB/i1+OCoK2/cpVrWx1dJzTs86bVjDoT8/hPGfj2PNu9Zg0z2boPrUee6haCzpORORTSV7yxO/m4BQBJxrnVCFWtTV5lImesfBmd7xfNzr3dBOaRDOtPcvAxAuMWcV9Hwhm8vsPcxioA/OT96M0R+PYnD6KkwfnDa3Jc0iHAIQgBJQoPrMvcXCZbZRn9RR9bK5c+KFUIjtWlnZf21UwbkaXdj6k63ovqMbPX/fg6knp3D+f50P3zk+q5uWwnAmWmXSe8tSN4dltV4NaAWcVc6CrjZPHSKRCOQ8akikNN/UjODTQbONClK3VSvUjFXY2UJ2ocMpjKgB9123ZazSBgAlFkbtL7+EF3BJ6jJnoxOBiwJmpa1tAfjP9+P5Xc/PHfLOY3X4cix2u9ZswiGguBUIt4DiMj9QKC5lTtWw1UKoAhtu34Cql1Xh8M7DePKSJ3HOv56Dxj9rtLppABjOtErZYZ7VKul7s1WPCiNmpl58KA5nlXPZq82lLs0wDppD1uO/XNo8afUV1Wh+fzMGvz4IqUuzzRUqFKeSsQrb+ZXPzAlZEQnD+ZXPQL/uBkgpoZ3UUnuKgweCCB0O4RWx/qyP68Yw1rxnjTlfvNUPd/PcwF3q6vDlzBnne8KVUEUqgDPCeJWG8EJqX12LFz39Ihx6yyEcevMhTP31FDZ8fgMUh7VHT3DOmVad1b7C+vENj0OtNVch6xM6Ir0RSCEhpICnw7Ok58LQjFQgpw8FF2KedKFV2LlKUEoIHNj+FIIHgoiPzt3KdBnemrXIx2JOnFrM6vDlPhfZbo84sOHzG1C3o84MYpewOlRKYs45G0MzcPSjRzFwzwCqr6zGeQ+eB1djwebic+GcM1FSMat6lUKPPH1vtlqlwtPqQXQgChiAu9mdV5tH/t8I+r5grlB3rXOh+T3Zg6kQ86TzrcKWhoTRsA7q8NxSl1E0YvyR8dTfU1uZEj1iY+izkHf9ZdYCJMttVza5nou+L/fl7E0nPwBo/RrcrW40vr0RU49NIdIbgXeD15avr1KluBScfffZqLy0Ei+8/wU8cfETuOD7F6DyJdZUFWM406pTrKpepVJne3YlODgA1xrXvL3l0f2j6P1Cr3ncqF9BbDgGtUqFAQPBziBe+OAL8J7lRcvHWjICa7nzpLPFJ+Lm8HRa2cu6qXfiHHwJKmbuU4cbfY0fRP3L6819xVsD8J41eyvTn0MLqEUv8pGU7bmQMYlwTxjuNrdZhWxEQ89ne6BWmcP3PZ/vMVeBNzoQOxPDyHdHCjrCUwofJlfamhvXwL/Fj+eufw6dV3bi3G+fi4Y3Nqx4OzisTatOriMzl3v6VrHutxjyOapUSnP70MiPRnD848cBpxmskeMRyLiEWqNCH9dT1xeqMI+3iQMyKs3CHFUKFJcyZ+GUq8G14FYoGZcIdYUw3TlTgzpyIvsHqDXeR9Bh3Adn9BT0urXQPvx3wA1/vuTnpxgO33h4Zs5YASCAcJfZa/ed60sVO0m+ZgAU9fVUpOmdop1KtRz5nmiVrgpV+Bw+h83YjH/Bv+AH+EFB2tK6rjX9hKyVPzJyKRjOtBKKNeecPpebJKWEPqbjsuOXFaLp8ypEL8iIGtBD5srq5N7jg683z8eVuoTiSsx1KgB0ACpSvVEZlTN7ld0wV1fHAaVCgbPeueA8q3ZaM2tPJxZtTR+czlptq1H8DBsd98MVG4JevRaR998G8e6dK14veaHFXUIV5mssMRc8/otxHP3YUfP0qMTrLnzU7DU7q2cqhSVfM5Ao6uupSB8mbTnnvFRGzMDI90cQfj6MyssrUf2q6mW/zmbNf3POmSipWFW9rKyzvdQh9WTvOLX3eNZhDOOPjiN8NAwoZtgYMcMMZcAM30SmSENmFBERQgCqeSSg1CRcDa6MhVOVL63MOB4xeCAIrT/zVKYkZ4MzVfKyfvonqHzgK6l5Ysd4P/z/9BFoDc6CD0fPF75zDsVIDEc7qhyoe11icdasamANb2yA4lEyXnfCJcwqY2nSXzPFfD3x0JaFKU4FDW9pwJn9ZzD52CT0aR11r69bkZXvDGdalbIdmblcVp7qtZhFboZmVuYyQmYveb5RxcH7B1NlMwFAKALSIYE4zM/8BiBFZjBn9AUUQGoSHZ/vSA1N99/Tj66bu7IWIRFO81Qm/xZ/KpBdzS5M/GoCg/cPYt0Td0DoubdNFUrWE6n+vhsdng7UvqYWp751CopPgRowe7aqV4U+rWPg3gE0viX3PtnZr7vkh6pcr5lCvJ5yjajw0Jb8CEWg9tpaqAEVE7+cAATMgC7ySA3DmahArKyzPV8vKFkIxAgZWXvH84mejMLR4EDsVGymGIgAoADOZidip2IQTgFngxPaSc0MaTXRkzaQ6mUf2H4g6/2717vN2tNbA6ib/Akqvvd5iM6TkEPrEbvwduhrb8gISrc+nPV+xODc1dpLopirdk/92ykoXsUMLmHOtRshA6f+9RTWvGMNtJPanCHnpfQ6F3zNzPOzfKYx5htR4RGx+RNCmKMmEph4dAKqV0XNq2uK+pgMZ6ICKkaPPB+ze0FSSuhTOlxrXBh8YBCD980Mz1ZcWoGpP0zlVQgjWfjC2eyEPqrD0AwIVcDd4caWH27B2C/GMPDVAUT6IuYb/LS59zYbxaeYZxUnq21tDcBZb46Lqz96EK4vfyxrla/I1/px8am74Y4Pw/xkkGVPc/PcU6rmk5oPTq+U5Z7ZI6wNzA1fI2Zg8neTeHzD44iPx6HHdbibZgqALLXXOd9rJtfP8p3GmG9EZdsj20r+0JaVVnVFFYyQ+Tpw1DpQcUlF0R6L4UxkY/ku8lr/1+vNoeK4hHALGGGzFxS4JIDu22eGZ8PdYUw9MQVnvROOOoc5XHtHd85CGMlKWIpLgaPNYfbApw34z/bj+fc+j+AzQegT+pzbAQAUwHuOF003NCFwUQDeTblPZVI/97dZq3y5PrsbbRNBqDK5Tcpc25t+L/PuTRaYCd70ilkLFOqY/WEnNhFDtDcKxalArVUh4xLRU2abXI2uFe915juNsdC8slUfJkuVEAI119QgNhbDmYfOwL3ODVdzcQqVMJyJCqTQe0YX6h0ZsZm5Y9/ZPrR9qm1OxarZhS+MoIFG+TN0DN8H99AwNGcTeqrfj8H7r5sTzlKXcDW5UH1lNc785AyivdFUr3j0R6MZ11Ur1Zna01vMYWpHVX5vL+OPjqP5zECOH45i9llB5lS3AgEJvXYtems+gFP/cA483z+CtTevRd21dTM9YufSqmXNHvKNDcQACbjXuiGEgLPJ7PHrQR26U1/xXme+i7k4r1x4QhGof2M9Bu8dxOnvn8baD6w1D0MpMIYzUQGM7h/FmXfejXPH7oUrPgTtZBN6n/0A8M1blvyGnd470id0RE9FYYQNHHrrIZz1T2eh6vLM04+yVazqvr07o/BFffinOMeYKdjhjp3CxpEv4FgciI2clVng4+A0jFCWvaEK4DvHZ4ZwYoja0+7JawVrthXQg/cPotbRCE98binNXAQkjn+iC8PfGYZwCDibVMTGYui+rRvOWueyQ3L2XLA0JDxtnozn0tHogHCKFdkmN1u+oct55eJQfSrq/rQOw/8+jInHJlD9iuqCP8aqC2dWxKFimPrY19ExchdUafZc3PFT6Bi5C30fc6Jux6eWdJ+RExEoNQriZ+KInIyYXUYHoId0nPjbE6h/Y/2Cc8ezD0vokPdlVNICAFVG0Dp2Lx5/2ZVZ2+GsN7cy+beaK6j9F/iXdPZt1hXQd3TDCBk42fhBbBicef4As8qXLtxwyck592U0rsPU76egeJSilGEFMod8k3uCM9pgYQ8039C1cpFiufN2eOE7z4fJX0+i4kUVGR+UCsHaYzdWWHKYMDoYzRgmHN0/uvCNiebR/MK/ZAQLYIZe8wv/sqj7kVJCD+nmIqw1TugTOrRhDRDmcBoMQHErkDGJwa8PmsGbFnTjj45ntuumZhhRA/GpOGLjMbhl9tXObsxcLrwCaqUKtVbFhs9twLbfbMOmezZh7a61qLy0csmH0qcPsSe3HwmXgIxLjPhfg+6WTyHqXAMJgahjDbq8H0fvmo9CF5kBaCgeqF+5C5ETERgxA+EXwpg+OI3wC2EYMaMo+3RbdrdAauaqdykT3/PsgY7uH0X3eZ9D1NEMKRToTS3Avn3Lak/djjpsunsT3M1u6GNm4ZDZRXRG94+ic3snuj7UBQDYdM8mbHtkG4O5gKqvqoaMS0z9carg972qes7FPPCgnHG0YWEuPfuQbK7L0yX3HadX5QKA5veYi7GMiAE4kNprrNapiI/EIQ2Z9UCJihdXYPq56VTZSyNopBZtRdGY9SSmqNoIZ5MTjipHanhaD+sY+d8RNLxp6XWF04exYyMxOJudEE5hjgIIwOF2mCu8dWDE92qcufCaVC9Qn9bhanZBcStYN/BVuLQhaM4m9FZ9AJt27oTyxT8gdDhktlc1n8dobxS+c31Lbm8uS+2BJqc70kdV1OGTkDe9z1zUtnPnsto0Xy30UqjzXuqc9U54N3kRfCqIqiuqCrr3eVWFMyviLB7/J8+P0Zj9ZCSjcd2cBU2pqlyJQM5WjAMw55Dbb2vHsY8dgx7WobgVqHUqnBVOxPpjEG4BKc0KXEbYLCii9Wl48pInZ6p4pVOAk40fRMfIXVDiM6956fGi1/MBOKodmft2l3BARfoWpfFHx9HzuR4It7mAKj4Wh9arITYUA3RzBECpUuA/z4+W3S0ZwVd1ZRX6/6EfoYMhRDxXYqj1VXBWOTPqTgsIJJduCyFSxVDE4ipIZpXrA+liX/N9e/pw7ti9c0ZVRDQM3HrrssJ5ocdlR2Rl+M73IdwVhjagzTlbezlW1bC2Z4NnzgIXrlycX/r/5EIkvrsE+vb0Wd00W1G/chek25txmXR7oX7lLgBmry42HkO0P4rw0TCi/VHEx+M5gzmp+opqbPzyRrjWuOBsckL1qoiNxswfxoHw82FEjkag9WvQxxJBnwhmZ5MTik+Bo94B9wY3XG0uDDuuxsQ798BY2wIpBIy1LdA+ew+mzrku4xxmADAiRu43G2GGq1qpwtnghHu9G54OD7wbvfC0eOBqcmHg3gEoHgWOgBn6apWKRuNneEn4BrxCuwovnnozavr3o+rKKtTtqMO2R7bhsuOXoWV3C4a+OQQ1oEJCQo/q0Ho1RIeiGUPJ+qQOT5sHilNJFVZRHAqmD02jc3vnkqerCjn9FTkRgSvXQrfe3iW1L9/HVXyZb+/siBSHd6P5/320d2knreWyqnrOXLm4eBxtyNPOnWZ/7dZbgd5eyJYWGLd9Fvqr3gz9RHjBEM5G6hLho2FoQxo8bR4EnwxmBGhymBuAWfvaKVBzdQ3q31CPwJYAuv6yK2MxGGAOVR9/9qU49xdHMh6rudJcrKVDzzigovmm5lTVLMVj7hNWPOY2pWQvO1cvc/Zrp+7MT7Ap7WhHD4ZwDr6Evu/4gNtmFs0lPxA6ahxQPAq0IQ16WIcMSmz69sy8anLFsvdsL2ITMWi9GgwYZo9/GSM8hex1ejZ4oJ1sgjt+au4PW1sXdV+LfdxS2EIlINBxe4fVzVi27+F72P/T/fjiT7+44HVb1+X3777qTqXK56g8mlFKxyAC1s2PS11CD8/Uq04/zGCh04uSYqOx1Fam6c5pBJ8J5t7KdLYPzkYnoiej5r9Hmxtr37s24347t3dCrZqpclU7/hBahr4GV3wIcu3cs4vHf2W2U+vX4G5zY/1frUf9dfXz7hWe74Svvj19qddO7eh+tHf/HZQsx/ZFlCYcueKh1L/Z9KFpuNa5FjyNKf2xoyejZvUyCHhazS1PS32d5jpdTOvX4D/Pv6jXVrY5Z8AcVRH3f6Now9rFOnktD2V1KlW+BvcOQvEraNrZBGDOyVPz4alUSayIszilNNqwkvPjUs7M8xohY86QcFKu7UNtn2qDs8E5E8QHgoj2ZR8Wc9Q5UodABLYmtjLlsW0jfRtV7fhD2DDw+VRAiIE+uP72FugVKvDnfw7FpaB5UzPWvnftop6H+XqZLbtbcOQ9R1B57Mdoi+3JGswA4DaGM4aQ9QkdcWc8VegDyN7rS1+kFT4ahuJR4F7jTu1FXuoIT7ZepzasmXvNZw11L/TaqttRB3zzFvR9zInmF/4FLn3IXIfwlbuKFsypx+UWqhUj3HNPF1uuVRfOtDgl8z/5vn2ouGk3XhI9Bc3VhP61H8KZuh0FXQSjR2Z6xumrqueT3D4kHAL6pHk7Paij6+aurLcXTgHfub5Uta3A1gBc611LWgXafFMzuv++G4ZioGX4a3MXJYVDcHzuNmDXjYu+76QFpz0ksCH+jTl7q9NF1caMcFfrVcRGYlACyoIfCJMftrON8Cx1GDfbB1J9RIez3rmkoW6zjZ8CYA7dF3Y37EKPa7P/T8uUjJtnnRcSw5kWZPv/yfftA3btgisaAgC4tVNo6/kcAGC09polz48b0Zme8ehDoxj8xsJD0wBw5uEz6P9qP7STGvQp3Vx2maP8tGutK6Pspf98PxT3Ev4nTyzQStWO9ihofm8z3Ovd6NvTB9fRwi1KSp86iI/HIeMyay+3b08fHDUOuIey760GzEIj/etvzrjM1eiCFtPgbnZnfCAEzKH6bMPKeY3w7NuXWhOA1lbgzjuz9l6zfSCNj8XhaMx8u+TaC0oyQkbe5WrzxXAuQSW97zjPN8hFufVWIBTKuEiVEawb+CpOe16dd+/J0IyMoerkgqtcQ9Ptt7Wj6hVViPZGEew054onfjOBaM+sXmIymAWgeBXziMVGJzbfvxmupsyi+eqPHoTzK5+BGDwJ2Tx3XhiAuUDLk7ZAy63k/NSe+mDV3gr09My9wmIWJe3bB/2jn0DtcD8CjiacXPchnApsTx0A4Wh0ZIRi14e6oNaq0FxNcGtZFkSpKvrOvg0j8pUZvUkjZMB/nj9jrnihKYsFR3gSH+BSr5OeHvPvQM6ATv9/qpA9cyov0pCIj8cLvr+e4VxiSnrf8SLfIPOWo/fn0oZyDodKKWFEDXO+OGxAD+vIMSWaUdlK6uZWJX1ax7GPH4OAQHw8+xmJyeFsI2wATsCz0QMZNfclt+5uzRrMrk/fnHls4t/ejLhbgXzr22bCeCmHOdx5Z+ZzDwA+n3l5PhL/dmri9u74KbT3fg6iDRhcsx16UIdwioxQ7NtgLgjrX/shtPV8LnNY3ecD9u5FRe01OJXHmoZ8VlDPO8KT5QMcQqG89xrbee1FSX9YLwPaKQ0wANeawp5OtepWa5e6Uls9naG9PXvvra0N6O4u+P1q7mZM/c/B1BtV+jD1fGGcJA2J8LEwDr/9sHn7sAEZzf7/ixpQ4d/qR/CZIBzVDqg+FfFw3DwDOWIABuCodcB7ljf7kLgAPFdthtKfZf/4cp+fpOWMWuR4jqOuNXjmgh/OWUkNZH6QrA//FOv7vwpXfO6CqHx2UORaQZ3tcbNSFCDbe50QgLHACyHt97Hb2gsLV2XnsupWa0/+bhJjPx3Duo+ug6PC7O9ytfYqtNL7jgv6qTzX/OZyizFk6RVKnw+Oe76AyssqER0wT3PK2BeMuVucGt/SCDWgpoaop5+Zhh7MMVmc5DCDueOuDtRcVYPDNx6GdlpDPBxHbDBRLCSxB1nxKmi+qRk1r6yZmRtODEkLl4AYmFthDEDhilXs3Ln0EYp5RidmD++mv2bUSrOQyOno1Zh6+XVZXz/5rGlY9r7d1qUP68/+f2DTPZYF3xysBGa9SG8EjhpHKpgLZVVVCCsHK1nlrOAHheR6I1xmMQbjhrfBuPteyPWtZtWrdS3Q7rgbkcvfhNjpGPSgPieYx34+huOfPo7w0TD0oI7gk0Ec+9gxvPD+FzDwtQFMPjaZCmY1YFZFm/NR1glAAfQpHSf/wQzW5puaITWJ+HDc/Eyc+D/M3eyG4lMw9O0heDu85iHt9S44KhxmUAsBvWFdUZ6fgsjRBs3RlDG8O/s1Y2gGjKCx7EMXlnPwBADzA5xv1pxgHsP6dj8sh5XArCV1iWh3FO62wpXtTGI4l5hlv0ktQqFLd0695ZNzThjShQdTb/nkou7HiBmIT8QRHYwifCyMyPEIIi97E8I/P4zwkSAijxxJLaJSf/QgPFdthndzAK7LzsbYrntw6M8PoevmLsSH44iPxqFP6KnyjxCA/wI/Gt/eiI49Hdjy8BZ0fLkDaoWa9UB1oQhAAcInwlB8CurfWI+z/vEsc0hLAqpLhbfNC0etA2pAnbtYLGF0/yiOy/fOeX6k25v3vHDyFKLHNzy+rPKVWWUJN114MLjpLzKGUItV7jWfU5jmtXMnsHevOUUghPl9794FRxLsXr6WJYmtFT4WhhExinLYCoe1S8xK7jsu9BD6sSdegsCaT6Bl9F7zhCFXE/rqPoDgEy/Bthy3SS3cipgLt4yIsWApTCNiYPrQNPDtb6Ph/30KimG21zHWj7WPfhxrAUTRhON4L047robiU8xV1F4BGZM4//vnZ9zfiU+fgFqlwrXGhdBzaYuK4jD/DxKAoijwrDffEBvf1IiBewYWNQzbt6cP0bproPrTTmByNGGw4y/QnsdQdNEXCibbkDZnrd5555y2FXPaZdlb+pYwrG/38rV2Xqi2GoQOhaB4lFR97UJiOJegYu87Ts6xaac0YBhwr52purScT+WRExHEmq/F+NrXAgBqR/ejpf+rcP3idqC9FfKzd8J401vNII4YMKLGglV3pJSInjS3Mk0fmEawM4jQkRBkTOIyfAEKZhXeSHz3YAjniC/B1eTCmeprAJh1p93rZw1PCUDr16DWqBCqANxAqp6GhLmoTAKeszOfk8W+aSZD4Ix/B87U7Uj9bvqYjvZ5nwHTisw95hFupVLTOV92/31KpkhQGZJxidCREHzn+sz3hgIr73BexOpUbkcwnbjjBPo+3wcjbpiljKLmkK1wCrMKjkNB49sal3Tf6W90NSP70dabtr2mpwd43/sQH9Lm7utNowd1TB80y10mF27Fz2TfyuRG7uIXAKDKKNYPfRWjVa9J9cjXfmAtHFXmgQvJBVveTV5EB6NQXAq8LV6ET4RTK72FKuCodmDjXRsz7nuxb5rLDQG79PDKrSdXCr+P7YsElanwsTBkVMJ/vr8o91++W6lm76kFUnsrZwe0DbcjWGJ0/yieu/45GIYBxaFAGuaeXBgwh279CtRqFapLzfu5SZ03HDUw+n+jOP43xwEHcHHv9VlP6jHWtiCSODFJGhKR45FUCAc7gwgfDWfdAqX4FQS2BFI1qP1b/Kh404VQBuafG5QQeLztt/C0edDyNy2ov7Y+6/OS/vqID8cRG4lBrVJTZxEv93Wy3NegnbbY2XHL0XKU2+9TZIvqQipCkTKfOrg29Cl8Ci/BS3A9roc+qwRg67pW9JzMsjtgrpzPV/mG8yL21Nrpjc1Knds7MfGbCcCB1H5SI2LWkBZOAf+F5ifEXM+NNGTGkLQRTcwPp73EktuXLv79iyGy/E8pIdD1oSNmGD8VNAt4zCYA7yaveQjEVj8C2wLwdnjnDC3NLuqRVZ57iEf3j2LqY18v+OEF6SM2SqUCAQF9Sl90CPADJtlE2exznm+vsh7W8VjjY2i4oQGb79u8nIdZhfucF7Gn1i5DgktVqCH5yImIebpKTM5U55fmV3q9Z8WnIHwibB4EkQzjyMLzwwBQfUU1qq+ohrxyPcTg3F5tFI0Y+OpA5oWqOXwsdQnFp8B3tg9r3782Z23r5JnDyvveAVnvhPjMp80PakJkFqJYRIWsujMPoa7nTkA3R2LU4ZPLrm42exGXETJgaMaS9tFy7pFo5Zz5yRnoQR2Nb1naFF8+yncr1SL21JbydoRC7sP0bPBArVYBae7fS//UqDaapSuT25hcTS5Ee6OIDcegT+oLBrM2rOHMw2fQt6cPh3cexvOn3wkdmYuvdLhxXLwXvvPNs4odDQ54zvLAtdZltkUx2xUbi6H7jm6MPzpu1pn2KXDWOeFe54b3LC88bR64mlxwVDqgvPPtZs9YSuDf/33RW2lS5iv/uESF3qZTt6MO2x7ZhsuOX7asPcVENL/TD56Go86B6u3VRXuM8u05L6KWsJ0WfSy2F1zIVbrr/3o9um7pglqvmnt/o9Ic4nYLCCnMghKJHnLzTc0578eImluZkqungweC0Aa0jOtM4ZWQkOjAfXBjGPHKZoTefitadr0DqldF5/ZOOKocEEJAG9TMwR8ByJiEGlBhhA0M7RvC2vct4vzhIlTIWk71rsiJCKQqob2gwYgaUNwKHI2OkhmxIVqN4sE4Rn44gqZ3NEFxFK9/W77hnGVf5mKOiLNiSHApe1WXMiQvpYSMydRWJSNqDqf6NvnQ9sk2s6SlEoV7nTsVwoP3DyLaP3NZckhZSgntpJaxejp0OJR1L7JwCbhb3NCGNCg+BRNVr8XT+mshNYn229ozhqnd693QTmtQfWaVKeEwh7VVjwrFqUA4BKK90eKccpXNMso/5qJUKggdDpmFTFTzVKxob7QoBQ2IqDBG/3cURshA086moj5O+YYzsKie0opsR9i3D/jwh4HRxJBzXR3wT/+UauNSesELbcGRukwtzjKi5sENhmYg1wLJ5JxwtssBczHY9MFpDHx9YGYr02iOrUytbnMF9UXmwi3fOT48/97nzcIicQOxgZgZvKpA75d7UX1FtTlf7FXQsrsFL9z8AmKnYkDM3FMIFXA0OVK/4xrPI8CuOwt/ylU2yz3VKQsBYf47CHMBnhTm4jmxuDU1tsHtiLQaDO0bgrvVjaqXVRX1cco7nBeh6G8s+/YB7343EIulPego8J73mH/euXNJveDkkHxcxqF4FRjTZm94zbvXIHw8PFOWMk1eZwYjsZXpRCTVK54+MI3QC6HsW5l85lYm/zZ/akuTs84553rRk1FIRZqhC5jzyIZE5GgEoRdCqH+duZVJ9akzIeWAeSayAQgpZkqWBr+2rGMAF2URIzH50id1eNo8iA3HUsPaznVO6FMLHLZhQyV/lOlKjL5QydNOazjz0zNo+esWc8SriBjOWPoby6IC/dZbM4M5SdNSYZJPIYrUvmHN7AkHtgbQ9uk2DHx9IGPYufIllTmDec6ZwZ++GRqA6MvfhOAziROZOqcRfCYIfTJ7UHg2elJ7igNbA/CeNXcr0xwK4GnzYOrpKbO3qAqzx2hICIfAya+cTIVz354+OGocqYpdsYkYYgMxRPujqHppFVp2t0B9bX/2xynUKU6zLWfOOovkv7f37JnSf8ltaqWmZE9HKtYZ41SWTn/3NKCj6EPaQDnvc16EpexzXvS+0lznyQKpM2Vn36c+bS7K2rhnI6pfXm1uWZpnSHr2EYjZzg32XLU5a2GOqLoGv9P/M+v9qtUqAlsDqSHq+GQcw/85PO/jAGb4Kl5zmFr1qVDcCkb3j+Lg6w8CKqCoZqETGMDa6l+idfReuI0hoLUVXdPvxnjrtfOf31us86FXSDntTV72ectWKfHXkA2V9T7np172FPRJHS8++OJCPUzO56t8t1ItwlKOXVv0Npj5Fg61tkIaEtVXVqPj8x1w1joRH47DWe1E26faENgSQHwiDiM6fzB339FtLqKqUqGd1ma2G8Ecjhn72VjOM4Nd+pD5BxXwnedD49saseGuDbjwoQtx8eMX45y952DdLesg4xJ9X+rL+jhCFVArVDgbnfC0e+Dd6IV7rRvOGmdqn3Tdjjr4z/ObwRyXUJwK1lX/Eh2n74JbP2V+gOnpwcYzd6Fm8P8y2jhne9sSjwG0i2WftLRC8jntavZ2xNrR/djyzOvxkhOXmwG4b98KtngRinXGOJWd0NEQJh+bROPO4u1tTsdhbSytrvGi54fvvBPy3e+GmDW0LZ0uxD78GcSPmsPMgW0BbP7X/CrOpPeU9UkdwifgqnKZvVFpVrE5/onjULwKtH5zK1MdGuHB0Jz7ilc2Y/NXN8N/vh+qT53z86TB+wfNDyXemeFLQzUw9B/5b2vquKsjo8fY8sy9MzW2ExQjgpbT92K06prc29uKMA+80qysi5zPtEy+Uz7p2xHrwz+dWzfdrkPFRViFT+Vp8OuDgAqsuXHNijwee85Y2hnJ8xUuSR5zGJ+MQxvREB2IIvyy66F9/uswqmuTRbcgq+ugff5exF+b+6CH8UfHcfjGw+jc3onDNx5O9YSTPeXocBTCK6AHdcRPxxHuCiN8JIzoiSj0UR3xM/FUMAunwEDbzTDUzA8dhsuL4+p7ceTtR/DkRU/ij1v/iJN3Z+lhJ09oCpijBMItoLgUqBUqon3ZzynOZnaP0RWf+2EBMHvzC/Yqd+40hx8Nw/ye75v/vn1mj05RVqZnt9KPt4B8i9fkO0KU/m+6/uRX53zYWm7BlqIp8dEXWhl6WMfgA4NoeGMD3GtXZk0I55wTFlvcPvnmBiegeBI9u6hE++3tqLo8vyX2C80RJwNYuIT5GIkymU1va8Lwd4cRH42bc9DZdzIBDsBR5cDaD6xFYGsAvnN9ZpimrdbWa9aiK/RuDEVeOefmNdfV4Jx/OQeKT4HqV6F4FRx45YHC1yFf6Xm/RRyKUpKPl4d811ksaS451/qKxNoK2+Fq7UIqyznnU988hSPvOoKtP9+Kmu01hXyYVXjwRYFJw1whLaMz+4bP/PQMBr+RvTjHQrIFr9Qkzn3NU6ja/0WIwZPQnE3o9u/CaXE14pPx3CEMmP/EiT2zrvUu8+8G5hT3mO3wjYcx9Yep7HPZArjw/12Y8SGlKIuYVjq8VvrDgA0XHeUbuks6FMaGvy+tmLI5lUqBAgMGFCj4V/wr4ojjJtwEYFGnTi1kFR58sURG3EhtVUr/nm1bUvXLq1H98uolPU7kCw/g4lN3wx0fhuZsQl/jB2FEDFQ+8AUoiSFBt3YKZ2lfgA4dw3hVxu2FS5jDjRWquSfYLcyedMhcNOZem9+HhejJaM5FZpCYsxWmKNXUVnrueKUXAdlw0VG+6yyWVNq2CAVbqDxJSNi155wUPBDE6A9GUf/mehw/z2xrx+0dRX/cVRnO6XuFM8pYxoysBTYKTf3Rg2g7/lmo0pyndcdOYUP/56DDDRWZc3UqoujAfRhWXmWuEJAAHIC73Q1j2kjN/RoRA8IpsPHLG7MGcvoQuqfVg3V/uQ71r6+Hd5PXrF2d7fdWkHWBW1EWMS1lD3E+w5HZrrPSi4BsuOgo39Bd0oexMlioRwSYI6YTj07Auca54mV1yyacs608rbm6xuz1xmb1hLPUfV6OfPYXx0ZjqXKX7f/6qVQwJ6mIQkH2RVVuDANOmAEqAGejE8a0gfbb2jNqXldcWoHB+wfRfXt3RjvGfzWOns/2QLgFHI0OxMZiOHHrCYReCCF2Jpaz5+yodSz/ZK5izeflUzwi13Xe+U7gm99cuZ6dDXuSiwndJX0YK3DBFiIrTP1hCvGxOBre2pAxBbQSymLOObU4K3GCUrIX0P6388+3FkLWRVtRA2tuXIPI8QjGfjaG+HjcLD+ZcAW2Q2RJxMSU8RwRNOFx53fMxVx1KhSHAleDC+d+69zc7YiaC8XO+oezcPKfT0I7pWUMYcaGYoiNxMweeMxAtDua0UZHvQOOSseKzCUvqXRqPvOa813nzjtXtmfHRUe0OpTNgrDYWAyDXxuEp92DhrdlhnO2AiVLVN4LwpKLVoRLpAJGD+twNbjQfFPzgr3a5Tj0jkPQTpnDwkbYgBEyV1Tn6o16Nnhw8fD1cE0PzvlZTKmCIqMZ21AMlxdH/R/HaM1rMhaOzV7odfidhxEbiUENqIBiHqSQXLiT3JOd/uIKPR+CjEr4t/hTl0WHopBBCUeNozBzyXkE6JIXmOVYESyFgEiuCC61VcNEpa8swllKieF/H0a0P4q1H1oLR1XmIPNKhHNZDGsnwyd90ZbiURA+Gk71JtOrWS20gnk+ekjH9HPTZu3pA0EEnwjmnqd2mAc4KD6zhKWEhLPRientn4L6r7uhGjMhrAsPepo/CgBYP/RVuOPDkGvNQykCla/B1OwjG6+sNsti+lWM/3oc053TkIY0zwRucsBZ5UwVRcm6+CdiQPFkbnN3NbqgO5dfbjHZE97a05v9lZe2EGrJNZlzzONGRSOe2foHGJMGLnatgSs690MQC0wQ0XyCTwYRORFB7Wtr5wTzSimLcE6Gj3DNREGyhymqBBqiD6Ol72twxYYQdTRi4Au3AFd8dMH7lVIi2hNNzRUHDwQROhLKGP5NETDrSPsUQAXiZ+LwbvLO2aoSPhrG4f6LUV/3N2gb+zpc8SFE0YieivdjvOo1MCIGhte8KuMDRDXMIxuFavYu1YBqFoNQBEb3j+LYXx0zT3eS5py61qsBrYDiUFI94NmLfxSHArU6sxLYQlXR8jG6fxRH3n0E+pSOaI5qZOnhuJSTuAAAd94J48b3Qpn1Aee4fC8iRyNwNjtxzLgJZ2MP1PS5fK4aJqJ5RPoiOLP/jHm4z4sClrWjLMI5GT4yLiFcYiaYnQINkZ9iw+BdqaFiT3wIbcc/i/iP1s05JjE+Fcf0M9OpMJ4+MG3OF2fjMHvncALGpDmM7ahzQDgFpCbh7fDCiBipMpdA5geG8aprMd54LQBAG9EgQxLqpJ65XzoR+KpfTR0cMVuy5+le60akN5Kq+RYbiMG1xjUzND1r8U/j2xox9M0h6NOL2CKTh2OfOIbYmRiEInDc+V6cE/vSvOG4lNKpAICdO3HsI0fROnEvXLEhaK4mnBDvwzC2A5oBrU/DsPIqSFWiw7gPbjkMo3Ed1K/cxbleIsoqPhnH6QdPw1HtQP2b6ld8EVi6sgjnZPj0fLYHkd5IKuAG7x/E+ie/NqeUoCqjEF/+DKbOvs48IvFpM4jDx8JZ54rVStU8q3irH4FtAQzcO4DYWCwVvLGKGOLDcWhDGlpbfoPW0L1QTw4gqjait/YDGGvYkfGBYfZwsrPOCd2pY9vPt0E4zSFe1W8Ohy/04kifT/a0eqANadAjOiCQMW+bbcVt5Ysrl7xfOdcirsgLEQhFQKgCI+qrISCwIfYNuDEM0TZ3IdSS9tEmTF/4BnQOXpMK9umD0xDCHEFIHkk5or4ap+NXw9PhMQtn7NyW1+9HRKuLETNw+sHTkDGJhnc2ZHSsrFAW4QyY4RPYFphzUL3798NZry8GT+LZ1z879wcK4N3kzTir2LPBk3GwdvffdUOtmvmHc1Y44Qg4UDO4Hxv6v5g6K9mjD2Hj6BdwLA5MnX1d6gODdlrL+IeXUQlPuweedg8U1+LKnaf3PNUqFd4qb2ohWN2Zh4D23CuEl7pfeb7DEGTiP5GYbT7tvBpDyishhMAV3VfMua/lFDWZHezCIcy96kBqBCE5D5/XUDkRrUoyLnH6u6ehDWhouKEBrgaX1U0qn3BOZ2gGQs+HEO2LQnM1wa2dmnOdKMxjvxx1jtQ5xYGtAfgv8GPqySkM3j+Iid9MZF3h7V7vnhOwRsRA2/TXIbRwxuOoRgRneR9A5FsfT13W/ffdMBQDil9Jrexu+1TbooMZyN3z3HjJ74FdHy3KIfLzLeLyne3D9KFpSCEhFGGekKWbx1DmstQPCbOD3XuW1xw5mNIhdQkpzLOiXU2ugsynE1H5kbrE6e+dRuRoBLXX1cK3eWWLjeRSNuF8+r9P48xPz2Dqj1OYfm4aMmqOT4dxE85B5rynoXowfcOnsPU9W+Fa78oYOk7fL5xthff4o+OIj8cR7YlCOAUcDQ4oTgVSk3Bp2U9XEoMnzfvzqWja2QTXOhdOfulkQcpf5up5VnzwrZn7i4GZk4GWGc7zLeLadM8mHHnPEeiTOoyYAcWpwFHvQMddxSl3NzvYR/eP4tgnjiF0KATFpcC1zgU4UJD5dCIqL9KQGPnvEYSfD6N2Ry0qLq6wukkpRQtnIUQLgG8BaII5k7tXSvlPxXq8E7edQOi5zDByNbsQ3/oWjLjqUP/YV6CM9kM2m9uTvNdlP6ZxznnFXrNXOHi/uSUnGdyutS7ETscQG4jBc5YHbZ9og/y79RADfXPvtKUF3nZv6q/119aj/tr6Av3mOXqeRaznPN8irrodddj8wObC1t5ehORzkX7KmLvZvaJtICL7k3GJkR+MIHQohJqra1BxqX2CGShiERIhRDOAZinlU0KICgBPAvhTKeWhXLdZzqlUXX/Zhck/TMJ/gT81V+xqWvy8Qef2TqhVWU7rSayknj2cnSx2cu63zoXjoe/C+YmbIcLFP11pwapayzwZaL77L8rJVERUDkriVCovvLgDd+ASXIJ7cS8exIOLuv1KnEq1YhXChBD/C+BuKeXDua6z3CMjo4PROQvCFuvwjYdzBnD0ZDQzuAUghYQxaeCyY5dBqKIoZRpnB2XVlVUY+ubQ/OG4jGMY8wnfxZ5/TUSrgq0rhHXc3oHocBQHrz2IqaencM5956D5Xc0r9vhZWBvOQoh2AL8CcIGUcnLWz3YB2AUAra2tL+rJ1tvLUyHCOdc5y8lDJjJKZCpi4bNtlylbUEa7o3DWO+Fscqaul7Udsz4oTL3lkzj2xEsWrGG9pDN8iYjyCOf093wAL1rJcL789svxg7N/gGhvFOd99zzUX1e46cUlyvl8LX558GIfWYgAgO8D+MjsYAYAKeVeKeUlUspLGhoait2cBVVfUY3229rhanBBn9ThanRh456NaNrZhLbb2gAJ81AJYQZWsRcapa+MFsL8LnWJ2Hgs43pZtwrt3GkOYRsGRr/2JJ77/lYzdNO2P43uH53zmJETEbPS2UL3T0S0SOnv+Sv5uJHeCL6GryF2OoYtD2+xQzDPq6irtYUQTpjBvE9K+d/FfKxc8jnOMYMAanfUouHNDVAD5glQSfXXmhVjij2cmz6MHT1l1tPOaGLi/OZ0C20VWkwNa7VSRfhIGDJu7hF2NZkrnrkViYhKUfCZIEZ/OIopTOHVj78avrPtsV1qPsVcrS0A3A/gsJTyK8V6nPkstC1qprFmWKVqVqu5R2aWuic3X7MLfIhhgUhPBF7hTRU+UatVYASLKr2Zbw3r0f2j0IY0GDHDHLbXdIS7w3DWO3HWV84q/C+MJR4ZSUS0ACklxn8xjslfT8Ld7sbN3TfjHWe/w+pm5aWYw9ovA/AOANuFEJ2Jr2uL+HhzpG+LEiLx3SXMy1UBtVKFa60L3rO8cK91w1HpmDeYC2V0/yg6t3fi8Q2Po3N7Z8bQ8uxhbOdaJyCA6EDUXDU+rUN1qWj5ZAvczW7oY+Zc8EIrpT0bPDBCC/e2+/b0wVHjgLvNDcWlQEgBxaXA2egsSmAmP4zkM9xORJQvI2Zg5HsjmPz1JPzb/Gh6exOmMGV1s/JWtJ6zlPI3WOTKvUJLrq5OSfSQtVMavBu9uW9YINl6hABylr6s21E3p4frrHICrUCsPwZ9TM8cSr8t/7bkW8M6+fiqUM3HRmIr2djyFtrlsuQjI4mIcohPxXH6O2Y5zuqrq1H50kpLD7FYirKpEJaNe70b2ogGR8CRsbparVLRub2zqMOouepPqwF13jBKL/ARm4ghPhQ3T7fyq9h0z9L3Eedbw3rJp0Qt0ZKPjCQiykIb0jD87WEYYQMNNzTYphznYhV9tfaKUwA1oMLV5ELbp9sgpMhYXR0fiyM2HCv6MGq2VdbCJRB6ITTvSuiW3S2QmkR0KAqtV4Me1SEhoQbUZbezbkcdtj2yDZcdvwzbHtmWNeiTj69P66lh9GKuSM93uJ2IaCHho2GceuAUIIGmdzeVbDADZRbOzgYnvBsT88dVDtS/rh6b7t6UMTfranLBUe2YE5p9e7KU3VyGXNuRBMS8YVS3ow6b7t4EGZSQhoTqVuFt88LZ5CxKO2dLPv5i5rOXY6U/DBBReZr64xSGvz0MR60Da967Bu5m98I3srGyGtZO3/aUlL66enT/KJ69/llIXUL1mL1rtUotyjBqzuHhsz0wgsa8c791O+rgqHbA3eHOmCdZqeHeYq9In/1YSz0ykohIGhJjD49h6vEpeM/2ov5N9Us64c9uyiqc55OaA1aEWUgkZiDSG4Gn1VOUPby5FmAltyPZbe7XSiv5YYCIyoehGalTpSourUDNa2rM9/gysGrCOTkH7FzrhNarATDrYkcHonCtcRV8GHWhHuFCYZTv6moiotXIiBgY3jeMaH8UNTtqUHlppdVNKqhVE87pW4TQCnMVdNQADBRtTnU5PUIO9xIRZacHdQz9xxBip2NoeHMDfOeW7sKvXFZNOKcPEzurnHBWOVOHOdg18DjcS0TlTECg4/aORd2mEY3Ygz1oQANuw2144rv5n2TYuq51sU20TOnPmueJq4KJiOxFQiJ5KpWUcsGvcE8YP2j9ATZUbcDlv7kcf5R/zOt2ya8CncG8IlZNOK/0FiEiIiocbVjDgasPID4Rx7ZHtqHqZVVWN6moVs2wNsBhYiKiUhSfiOOZa55BtC+KrQ9vRcXFFVY3qehWVTgTEVFp0cM6Dl53ENPPTuOCH15Q9j3mJIYzERHZVtctXZj49QTO+855qLtm9Yx8rpo5ZyIiKi0D9w3g1AOn0PbpNjTe0Gh1c1YUw5mIiGxn6skpdN3ShZpX16D979qtbs6KYzgTEZGtxINxPPfm5+BqcuHcfedCqOVRknMxOOdMRES2cuJTJxDpjmDbr7bBVe+yujmWYM+ZiIhsY+rJKfTf3Y91t6xD9Z9UW90cyzCcF2vfPqC9HVAU8/u+fUu6m9H9o+jc3onHNzyOzu2dGN0/WtBmEhGVGikluj7cBWeDExv+foPVzbEUw3kx9u0Ddu0CenoAKc3vu3YtOqCTx1dGB6NQa1VEB6PouqWLAU1Eq9qZ/zuDyd9OYsPfb4CjanXPujKcF+PWW4FQKPOyUMi8fBGSx1eqfhVCJL67BPr29BWwsUREpUNKiROfOQHPBg/WvHuN1c2x3Or+aLJYvb2LuzyH5PGV6RSfgkh3ZKktIyIqOS6nCx23d6B1XSukLtG0swnu9W4oTvYb+QwsRmuO48ZyXZ6DZ4MHRsjIuMwIGfC0e5baMiKiknPhlgtTp0UpDgUtf9WCxjevrmIjuTCcF+POOwHfrEO9fT7z8kXg8ZVERDQfhvNi7NwJ7N0LtLUBQpjf9+41L18EHl9JRETz4ZzzYu3cuegwzobHVxIRUS7sORMREdkMw5mIiMhmGM5EREQ2w3AmIiKyGYYzERGRzTCciYiIbIbhTEREZDMMZyIiIpthOBMREdkMw5mIiMhmGM5EREQ2w3AmIiKyGSGltLoNKUKI0wB6lnEX9QBGCtScYiuVtrKdhVcqbWU7C69U2rrUdo5IKa/J98pCiIcWc/3VxFbhvFxCiCeklJdY3Y58lEpb2c7CK5W2sp2FVyptLZV2ljMOaxMREdkMw5mIiMhmyi2c91rdgEUolbaynYVXKm1lOwuvVNpaKu0sW2U150xERFQOyq3nTEREVPIYzkRERDZTMuEshLhGCPG8EOKoEOITWX7uFkI8mPj574UQ7Wk/+2Ti8ueFEK+xuJ0fFUIcEkI8I4T4uRCiLe1nuhCiM/H1w2K2M8+2vksIcTqtTe9N+9k7hRBdia93WtzOf0hr4wtCiPG0n63YcyqEeEAIMSyEeDbHz4UQ4p8Tv8czQoiL0362ks/nQu3cmWjfQSHEY0KIrWk/605c3imEeMLidl4phJhI+/e9Le1n875mLGjr7rR2Ppt4XdYmfraSz2mLEOIXifeg54QQH85yHVu8Tlc9KaXtvwCoAI4B6ADgAnAAwHmzrvMhAPcm/vxWAA8m/nxe4vpuABsS96Na2M6rAPgSf/5gsp2Jvwdt9py+C8DdWW5bC+B44ntN4s81VrVz1vX/AsADFj2nrwBwMYBnc/z8WgD7AQgAlwH4/Uo/n3m28/Lk4wPYkWxn4u/dAOpt8nxeCeDHy33NrERbZ133OgCPWPScNgO4OPHnCgAvZPn/3hav09X+VSo950sBHJVSHpdSagC+A+ANs67zBgDfTPz5ewBeKYQQicu/I6WMSilPADiauD9L2iml/IWUMpT46+MA1hepLQvJ5znN5TUAHpZSnpFSjgF4GECxqvwstp1vA/CfRWrLvKSUvwJwZp6rvAHAt6TpcQDVQohmrOzzuWA7pZSPJdoBWPgazeP5zGU5r+0lWWRbrXyNDkopn0r8eQrAYQDrZl3NFq/T1a5UwnkdgL60v5/E3BdU6jpSyjiACQB1ed52JduZ7iaYn1CTPEKIJ4QQjwsh/rQI7UuXb1vflBja+p4QomWRty2EvB8rMUWwAcAjaRev5HO6kFy/y0o+n4s1+zUqAfxUCPGkEGKXRW1K91IhxAEhxH4hxPmJy2z7fAohfDAD7ftpF1vynApz6u8iAL+f9aNSfJ2WHYfVDVithBBvB3AJgCvSLm6TUvYLIToAPCKEOCilPGZNCwEAPwLwn1LKqBDi/TBHJrZb2J6FvBXA96SUetpldntOS4YQ4iqY4fwnaRf/SeL5bATwsBDiSKLXaIWnYP77BoUQ1wL4AYBNFrUlX9cB+K2UMr2XveLPqRAiAPMDwkeklJPFfCxamlLpOfcDaEn7+/rEZVmvI4RwAKgCMJrnbVeynRBCvArArQBeL6WMJi+XUvYnvh8H8EuYn2qLZcG2SilH09p3H4AX5XvblWxnmrdi1nDhCj+nC8n1u6zk85kXIcQWmP/mb5BSjiYvT3s+hwH8D4o3RbQgKeWklDKY+PP/AXAKIephw+czzXyv0RV5ToUQTpjBvE9K+d9ZrlIyr9OyZvWkdz5fMHv4x2EOWSYXeJw/6zo3I3NB2HcTfz4fmQvCjqN4C8LyaedFMBerbJp1eQ0Ad+LP9QC6UMRFLHm2tTntz28E8Hjiz7UATiTaXJP4c61V7UxcbzPMhTXCquc08TjtyL2A6bXIXGjzh5V+PvNsZyvMtRmXz7rcD6Ai7c+PAbjGwnauSf57wwy03sRzm9drZiXbmvh5Fcx5ab9Vz2ni+fkWgH+c5zq2eZ2u5i/LG5B3Q80VhC/ADLZbE5fdAbP3CQAeAP+VeFP5A4COtNvemrjd8wB2WNzOnwEYAtCZ+Pph4vLLARxMvJEcBHCTDZ7TzwN4LtGmXwDYnHbb9ySe66MA3m1lOxN//zsAd8263Yo+pzB7RIMAYjDn424C8AEAH0j8XAC4J/F7HARwiUXP50LtvA/AWNpr9InE5R2J5/JA4nVxq8XtvCXt9fk40j5MZHvNWNnWxHXeBXNxavrtVvo5/ROYc9zPpP37XmvH1+lq/2L5TiIiIpsplTlnIiKiVYPhTEREZDMMZyIiIpthOBMREdkMw5mIiMhmGM5ERZQ4BehE2glENYm/t1vcNCKyMYYzURFJKfsAfA3AXYmL7gKwV0rZbVmjiMj2uM+ZqMgS5RKfBPAAgPcB2CaljFnbKiKyMx58QVRkUsqYEGI3gIcAvJrBTEQL4bA20crYAbO84wVWN4SI7I/hTFRkQohtAK6GeYjAXyUOriciyonhTFREQggBc0HYR6SUvQD2APiSta0iIrtjOBMV1/sA9EopH078/asAzhVCXGFhm4jI5rham4iIyGbYcyYiIrIZhjMREZHNMJyJiIhshuFMRERkMwxnIiIim2E4ExER2QzDmYiIyGb+PyZZ39LuEVmTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import seaborn as sns\n", - "import pandas\n", - "\n", - "df_train = pandas.DataFrame(dict(X=X_train.ravel(), y=y_train))\n", - "g = sns.jointplot(\"X\", \"y\", data=df_train, kind=\"reg\", color=\"m\", height=7)\n", - "g.ax_joint.plot(X_test, y_test, 'ro');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## GaussianProcessRegressor\n", - "\n", - "Last option with this example [Gaussian Processes regression: basic introductory example](https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html) which computes the standard deviation for every prediction. It can then be used to show an interval confidence." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "GaussianProcessRegressor(kernel=1**2 * RBF(length_scale=10) + WhiteKernel(noise_level=1),\n", - " n_restarts_optimizer=9)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.gaussian_process import GaussianProcessRegressor\n", - "from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C, DotProduct, WhiteKernel\n", - "\n", - "kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) + WhiteKernel()\n", - "gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)\n", - "gp.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "y_pred, sigma = gp.predict(sorted_X, return_std=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArkAAAEICAYAAABbIOz5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABRaElEQVR4nO3deXxU1f3/8ddJQggJSQhZEGQXEBRltaIIUlHaWsVq3Xet2tYu/ure2taldad+a1uttdpKq3VtRW3Vaqu2oqKCUtw3BEUQkpAQ1oQk5/fH597MTJIJIZlkksn7+Xjcx8zcc+fOvTd3knfOPedc571HRERERCSVpCV7A0REREREEk0hV0RERERSjkKuiIiIiKQchVwRERERSTkKuSIiIiKSchRyRURERCTlKOSKdALnXB/n3GPOuQ3OuQedcyc5555qYfnnnHNndeY2tsQ5d5tz7ifJ3o7WcM6tcM4dHDy/wjl3dwd/3ibn3MjWbE935Jyb4Zx7L9nbISKysxRyRaI45050zi0Ogssa59wTzrkDErDqo4EBQKH3/hjv/T3e+zkJWG+n8N5/y3v/s9Ys65y7yzn3847epq7Ce9/Xe78cErPvzrmBzrnfO+dWB+fh8mC9YxOzxTvHe/+89373RKwr+OdtW7BfZc65vznnBiZi3R3FOTfLOVcfbPNG59x7zrkzkr1dIrJjCrkiAefc+cAvgWuwQDoUuBU4IgGrHwa8772vTcC6UppzLiPZ25AszrlC4EUgG5gB5AKTgf8AhyRx0xLpu977vsAYoB/wf40X6ILnwOpgm/OAHwC/d84lJPhHS/Z+J/vzRRJNIVcEcM7lA1cB3/He/817v9l7v917/5j3/qJgmd7OuV8GNWyrg+e9g7JZzrlVzrkLnHPrglrgM4KyK4GfAscFtUHfcM6d7pxbGPX5hzjn3g2aM/wGcI2270zn3DvOuQrn3D+dc8Oiyrxz7lvOuQ+cc5XOuVuccy6q/OzgvRudc2875yYH8wc55/7qnCt1zn3snPt+C8enoYZyB/t6DnAScHGwr4/t6LOCJgUPOefuds5VAT9yzm11zvWPWmZSUPPXyzm3m3PuGedceTDvHudcv1b+nKc5514MjtP/nHOz4ix3RrjtwesPnHMPRr3+1Dk3Mer4j4q374GJzrllwc/3fudcVpxN/AFQBZzivf/Im0rv/R+997+O+vwHnXOfB+v7r3Nuz6iymKYu0eeaM/8X/NyqnHNvOOfGB2WHBufHRufcZ865C4P5s5xzq6LWd6lz7qOo8+nIxp/lnJsXnKsfO+e+0tyOeu/XA38Fws9f4Zy7xDm3DNjsnMtwzs11zr0V/Lyec86Ni/qsIc5qgkuDc+E3UWXNfl/asv+Nttl77x8H1gN7B+9Lizom5c65Bxqdu6c651YGZT9xTZvTRJ/7pzvn8p1zdzr7Xn3mnPu5cy49WH6Uc+4/wc+9zDl3fyv2K98596fgOK10zv3YOZcW9fN6IXhvOXBFcz8rkW7Le69JU4+fgC8DtUBGC8tcBSwCSoBirMbtZ0HZrOD9VwG9gEOBLUBBUH4FcHfUuk4HFgbPi4CNWJOGXljQqQXOCsqPAD4ExgEZwI+BF6PW5YG/Y7ViQ4FS4MtB2THAZ8A+WHAehdUqpwFLsPCdCYwElgNfirPvdwE/b+W+NiwbvG7xs4Jjsx34WrBsH+AZ4OyoddwI3BY8H4XVavYOfg7/BX4ZtewK4ODGxx3YFSgPtjctWEc5UNzM/o4EKoPlBgErgVVRZRVAWtTxH9XcvkdtzyvBevoD7wDfinOcFwFXtOJ8PROr5e2NXX1YGlX2HMG508y59qXgZ9EvOB/GAQODsjXAjOB5ATA56ue9Kmp9xwT7kgYcB2yOWsfpwc/ybCAd+DawGnCNtw07758B/hx1nJYCQ4JzYEyw7kOw8+xi7HuQGaz7f1gtcA6QBRywo+9Le/c/2Oe5QD0wKZh3XvBzGxz8PH4H3BuU7QFsAg4ItntecHyiz8/G5/7DwTpysN81rwDfDJa/F7gsWDZ6n1varz8Bj2Dny3DgfeAbUT+vWuB7wbHqk+zfxZo0JXJSTa6IKQTKfMvNCU4CrvLer/PelwJXAqdElW8Pyrd7q+3ZBLTmkuahwFve+4e899ux0PJ5VPm3gGu99+8E23cNVjM4LGqZ67zV+H0CPAtMDOafBdzgvX/Vmw+99yux0Fvsvb/Ke1/jrU3p74HjW7G9O7uvrfmsl7z3C7z39d77rcBfgBPAaqmCZf8CEOzD09776uDncBNwYCu2+WTgce/948HnPA0sxo5/jGAbN2LHcSbwT2C1s3axBwLPe+/rW/GZoV9571d7q718jMjPp7Eion72QU1mZVC72NBR0Xv/B+/9Ru99NRaUJji7GrEj27GwMxYLnu9479dEle3hnMvz3ld4719rbgXe+weDfan33t8PfAB8IWqRld7733vv64D5wECs+U/DsXDOVWIhdQ1wfnSZ9/7T4Bw4DvhH8LPejgXEPsD+wecNAi7ydtVlm/c+vDLS0velrfs/KNjmrVgIPd97/3rU513mvV8V9fM42tml/6OBx7z3C733Ndg/er7RIW0497HmEIcC/y/Yr3VYkA+/K9uxf1IHNdrnZvcrqAE+HvhhcL6sAH5B7O+t1d77X3vva4PjLpIyFHJFTDlQ5FpukxbW6IVWBvMa1tEoJG8B+rbiswcBn4YvvPc++jX2R+3mIOxUYpdKHVYzGYoOxdGfOwT4qJnPHEbwhztqvT8iNoy0ZGf2tTWf9Wmj9/wV2M9Zp6SZWM3Z8wDOuQHOufuCS7lVwN1YONyRYcAxjbbjACyENec/WC3ezOD5c1jAPTB4vTPi/XwaK4/eHu/9o977fljtfiaAcy7dOXddcHm8CqsBhVYcA+/9M8BvgFuAdc65251zeUHx17GAtTK4JL5fc+sILr8vjTqG4xt9dsO+eu+3BE+j9/f73vt+3vtdvfcnBf+ohKLPg5jvWxACP8XO+yFYmG7un9K435d27P/q4OeQB/wKOKjR5z0c9XnvAHXY+d34u70F+xlHa/xd7wWsiVrf77AaXbDabAe84qwZx5nBeuPtV1Gwvsa/t6J/dzT+7omkDIVcEfMSUI1dNoxnNfZHKDQ0mNdea7A/2kBDzeWQqPJPscuV/aKmPt77F1ux7k+B3eLM/7jROnO9901qNdugcU1Vaz4r5j3e+wrgKaw270TgviD8g9XMeWAv730eVkMb04Y5jk+xS+PR25Hjvb8uzvJhyJ0RPP8POw65jfd9Z/0b+FrYZjKOE7FL8gcD+dglaIgcg81Yx7XQLjEb6P2vvPdTsEvpY4CLgvmveu+PwALVAuCBxh8c1Ib+HvguNlJIP+BNWnf8WyP6+MV836K+F59hP8uhcf4pbfH70p79D2pqLwH2cs59LerzvtLo87K8959h3+3BUfvQB7tqFG+fP8V+DxVFrSvPe79n8Pmfe+/P9t4PAr4J3OqcG9XCfpURqf0NDQ2OYXOfL5JSFHJFAO/9BuxS4i3Oua8557KddXL6inPuhmCxe4EfO+eKnXNFwfKJGIP1H8Cezrmjgj/a3yc2mNwG/NAFnYuCjiTHtHLddwAXOuemBJ1TRgVB5RVgo7OOPn2C2sHxzrl9ErA/a7F2q6G2ftZfgFOxS75/iZqfizWP2OCc25UgpLTC3cDhzrkvBduQ5axT1eA4y/8H+CLWTnEVVpP8ZSykvB7nPY33fWfdhLUH/bOzDnbOOZdLbPOGXCwIlWNh9ppG61gKHBWcw6OAb4QFzrl9nHP7Oud6YWF4G1DvnMt0NnZzftA0oAqrPW8sBwtFpcH6ziDoONYBHgC+6pybHWzvBdh+v4idU2uA65xzOcHPcnrwvrjflwTsP0Gzg19g3//w8652kc5txc65cESWh7Bzbn/nXCbWlCHuPwRB04mngF845/KcdWrbzTl3YLDuY6LO1wrsZ1Efb7+CJiMPBNuXG2zj+STm95ZIl6eQKxLw3v8C+wPwY+yP+KdYjdWCYJGfY204lwFvAK8F89r7uWVYZ57rsOAyGnghqvxh4HrgvuDy9JtAsz3Wm1n3g8DVWEjcGOxL/+CP32FYePoYq/G5A6sZbK87sbaNlc65Be34rEexY/G59/5/UfOvxIbV2oD9g/C31myU9/5TrAb0R0R+vhcR5/eg9/59LEw/H7yuwjrMvRDsU3Ni9r0129XoM8uAaVhIWYj9zJZiwfbbwWJ/wi45fwa8jXV6ivZ/QA0WuOcD90SV5WE1sRXBOsqxTn1g7TRXBOfYt7A26I23720s4L0UrH8vos7VRPLev4fV0v8aO2cOBw731q67Lng9CvgEWIXV+u/o+9Ku/Y/yB6wm+XDgZuxcfco5txH7eewbbMtbWKeu+7BQvglYh4X1eE7Fmqa8HWznQ0SasOwDvOyc2xR85nne2o+3tF/fw4Lvcuyc+kuw/SIpL+zxKiIiIh3IOdcXG7VjtPf+4yRvjkjKU02uiIhIB3HOHR40HcnBRoh4g0hnQRHpQAq5IiIiHecIrBPdaqz5zfFel1BFOkWrmis4u5vQHVgHAw+c6b1/qWM3TURERESkbVp7n+qbgSe990cHPUSzd/QGEREREZFk2WFNrrO76CwFRrb2EktRUZEfPnx4uzdORERERCSeJUuWlHnvi5sra01N7ghsuJ0/OucmYPfHPs97vzl6IefcOcA5AEOHDmXx4sXt22oRERERkRY451bGK2tNx7MMbEzK33rvJ2Hj7V3aeCHv/e3e+6ne+6nFxc0GahERERGRTtGakLsKWOW9fzl4/RAWekVEREREuqQdhlzv/efAp8653YNZs7E7sYiIiIiIdEmtHV3he8A9wcgKy4EzOm6TRERERLqv7du3s2rVKrZt25bsTUkZWVlZDB48mF69erX6Pa0Kud77pcDUNm6XiIiISI+xatUqcnNzGT58OM65ZG9Ot+e9p7y8nFWrVjFixIhWv093PBMRERFJoG3btlFYWKiAmyDOOQoLC3e6ZlwhV9plycoKbnn2Q5asrEj2poiIiHQZCriJ1Zbj2do2uSJNLFlZwUl3LKKmtp7MjDTuOWsaU4YVJHuzRERERFSTK223aHk5NbX11HvYXlvPouXlyd4kEREREUAhV9ph2shCMjPSSHfQKyONaSMLk71JIiIi0oj3nvr6+mRvRqdTyJU2mzKsgHvOmsb5c3ZXUwUREZF2SHQflxUrVrD77rtz6qmnMn78eL7xjW8wdepU9txzTy6//HIAXn31VY466igAHnnkEfr06UNNTQ3btm1j5MiRCdmOZFKbXGmXKcMKFG5FRETaoaP6uHzwwQfMnz+fadOmsX79evr3709dXR2zZ89m2bJlTJo0iaVLlwLw/PPPM378eF599VVqa2vZd9992/35yaaaXBEREZEk6qg+LsOGDWPatGkAPPDAA0yePJlJkybx1ltv8fbbb5ORkcFuu+3GO++8wyuvvML555/Pf//7X55//nlmzJiRkG1IJoVcERERkSTqqD4uOTk5AHz88cfMmzePf//73yxbtoyvfvWrDWPOzpw5kyeeeIJevXpx8MEHs3DhQhYuXJgSIVfNFURERESSKOzjsmh5OdNGFia8GWBVVRU5OTnk5+ezdu1annjiCWbNmgXAjBkzOPXUUzn11FMpLi6mvLyctWvXMn78+IRuQzIo5IqIiIgkWUf2cZkwYQKTJk1i7NixDBkyhOnTpzeU7bvvvqxdu5aZM2cCsPfee/P555+nxM0sFHJFREREUszw4cN58803G17fddddzS7Xp08fqqurG17ffvvtHb1pnUZtckVEREQk5SjkioiIiEjKUcgVERERkZSjkCsiIiIiKUchV0RERERSjkKuiIiIiKQchVwRERERieu5557jsMMOA+DRRx/luuuui7tsZWUlt956a8Pr1atXc/TRR3f4NjZHIVdERESkB6qrq9vp98ydO5dLL700bnnjkDto0CAeeuihNm1feynkioiIiKSYFStWMHbsWE466STGjRvH0UcfzZYtWxg+fDiXXHIJkydP5sEHH+Spp55iv/32Y/LkyRxzzDFs2rQJgCeffJKxY8cyefJk/va3vzWs96677uK73/0uAGvXruXII49kwoQJTJgwgRdffJFLL72Ujz76iIkTJ3LRRRexYsWKhlsEb9u2jTPOOIO99tqLSZMm8eyzzzas86ijjuLLX/4yo0eP5uKLL07IMdAdz0REREQ6yhOXwudvJHadu+wFX4nfZCD03nvvceeddzJ9+nTOPPPMhhrWwsJCXnvtNcrKyjjqqKP417/+RU5ODtdffz033XQTF198MWeffTbPPPMMo0aN4rjjjmt2/d///vc58MADefjhh6mrq2PTpk1cd911vPnmmyxduhSwsB265ZZbcM7xxhtv8O677zJnzhzef/99AJYuXcrrr79O79692X333fne977HkCFD2nWYVJMrIiIikoKGDBnC9OnTATj55JNZuHAhQENoXbRoEW+//TbTp09n4sSJzJ8/n5UrV/Luu+8yYsQIRo8ejXOOk08+udn1P/PMM3z7298GID09nfz8/Ba3Z+HChQ3rGjt2LMOGDWsIubNnzyY/P5+srCz22GMPVq5c2e79V02uiIiISEdpRY1rR3HONfs6JycHAO89hxxyCPfee2/McmEtbGfq3bt3w/P09HRqa2vbvU7V5IqIiIikoE8++YSXXnoJgL/85S8ccMABMeXTpk3jhRde4MMPPwRg8+bNvP/++4wdO5YVK1bw0UcfATQJwaHZs2fz29/+FrBObBs2bCA3N5eNGzc2u/yMGTO45557AHj//ff55JNP2H333du/o3Eo5IqIiIikoN13351bbrmFcePGUVFR0dC0IFRcXMxdd93FCSecwN57781+++3Hu+++S1ZWFrfffjtf/epXmTx5MiUlJc2u/+abb+bZZ59lr732YsqUKbz99tsUFhYyffp0xo8fz0UXXRSz/Lnnnkt9fT177bUXxx13HHfddVdMDW6iOe99wlc6depUv3jx4oSvV0RERKSre+eddxg3blxSt2HFihUcdthhvPnmm0ndjkRq7rg655Z476c2t7xqckVEREQk5SjkioiIiKSY4cOHp1Qtblso5IqIiIhIylHIFREREZGUo5ArIiIiIilHIVdEREREUo5CroiIiEgPsX79eg455BBGjx7NIYccQkVFRbPLXXLJJYwfP57x48dz//33N8w//fTTGTFiBBMnTmTixIlJuTtaaynkioiIiPQQ1113HbNnz+aDDz5g9uzZXHdd09sO/+Mf/+C1115j6dKlvPzyy8ybN4+qqqqG8htvvJGlS5eydOlSJk6c2Ilbv3NaFXKdcyucc28455Y653SXBxEREZEu7uqrr2bMmDEccMABnHDCCcybN49HHnmE0047DYDTTjuNBQsWNHnf22+/zcyZM8nIyCAnJ4e9996bJ598spO3vv0ydmLZL3rvyzpsS0RERERS0KxZTecdeyycey5s2QKHHtq0/PTTbSorg6OPji177rkdf+aSJUu47777WLp0KbW1tUyePJkpU6awdu1aBg4cCMAuu+zC2rVrm7x3woQJXHnllVxwwQVs2bKFZ599lj322KOh/LLLLuOqq65qqAnuyFvztoeaK4iIiIikmOeff54jjzyS7Oxs8vLymDt3bpNlnHM455rMnzNnDoceeij7778/J5xwAvvttx/p6ekAXHvttbz77ru8+uqrrF+/nuuvv77D96WtWluT64GnnHMe+J33/vbGCzjnzgHOARg6dGjitlBERESkG2up5jU7u+XyoqLW1dy21oABA1izZg0DBw5kzZo1lJSUNLvcZZddxmWXXQbAiSeeyJgxYwAaaoF79+7NGWecwbx58xK3cQnW2prcA7z3k4GvAN9xzs1svID3/nbv/VTv/dTi4uKEbqSIiIiItN7MmTNZsGABW7duZePGjTz22GMAzJ07l/nz5wMwf/58jjjiiCbvrauro7y8HIBly5axbNky5syZA8CaNWsA8N6zYMECxo8f3xm70yatqsn13n8WPK5zzj0MfAH4b0dumIiIiIi0zeTJkznuuOOYMGECJSUl7LPPPgBceumlHHvssdx5550MGzaMBx54AIDFixdz2223cccdd7B9+3ZmzJgBQF5eHnfffTcZGRYZTzrpJEpLS/HeM3HiRG677bbk7GArOO99yws4lwOkee83Bs+fBq7y3sftZjd16lS/eLEGYRAREZGe55133mHcuHHJ3owYV1xxBX379uXCCy9M9qa0WXPH1Tm3xHs/tbnlW1OTOwB4OGiYnAH8paWAKyIiIiKSbDsMud775cCETtgWEREREekAV1xxRbI3odNpCDERERERSTkKuSIiIiKSchRyRURERCTlKOSKiIiISMpRyBURERHpIdavX88hhxzC6NGjOeSQQ6ioqGh2uUsuuYTx48czfvx47r///ob5p59+OiNGjGDixIlMnDiRpUuXdtKW7zyFXBEREZEe4rrrrmP27Nl88MEHzJ49m+uuu67JMv/4xz947bXXWLp0KS+//DLz5s2jqqqqofzGG29k6dKlLF26lIkTJ3bi1u8chVwRERGRFHT11VczZswYDjjgAE444QTmzZvHI488wmmnnQbAaaedxoIFC5q87+2332bmzJlkZGSQk5PD3nvvzZNPdr9bJCjkioiIiHSgWbOaTrfeamVbtjRfftddVl5W1rSsNZYsWcJ9993H0qVLefzxx3n11VcBWLt2LQMHDgRgl112Ye3atU3eO2HCBJ588km2bNlCWVkZzz77LJ9++mlD+WWXXcbee+/ND37wA6qrq3fiSHQuhVwRERGRFPP8889z5JFHkp2dTV5eHnPnzm2yjHOO4I62MebMmcOhhx7K/vvvzwknnMB+++1Heno6ANdeey3vvvsur776KuvXr+f666/v8H1pq9bc1ldERERE2ui55+KXZWe3XF5U1HL5zhowYABr1qxh4MCBrFmzhpKSkmaXu+yyy7jssssAOPHEExkzZgxAQy1w7969OeOMM5g3b17iNi7BVJMrIiIikmJmzpzJggUL2Lp1Kxs3buSxxx4DYO7cucyfPx+A+fPnc8QRRzR5b11dHeXl5QAsW7aMZcuWMWfOHADWrFkDgPeeBQsWMH78+M7YnTZRTa6IiIhIipk8eTLHHXccEyZMoKSkhH322QeASy+9lGOPPZY777yTYcOG8cADDwCwePFibrvtNu644w62b9/OjBkzAMjLy+Puu+8mI8Mi40knnURpaSneeyZOnMhtt92WnB1sBee9T/hKp06d6hcvXpzw9YqIiIh0de+88w7jxo1L9mbEuOKKK+jbty8XXnhhsjelzZo7rs65Jd77qc0tr+YKIiIiIpJy1FxBREREJMVdccUVyd6ETqeaXBEREZEE64jmoD1ZW46nQq6IiIhIAmVlZVFeXq6gmyDee8rLy8nKytqp96m5goiIiEgCDR48mFWrVlFaWprsTUkZWVlZDB48eKfeo5ArIiIikkC9evVixIgRyd6MHk/NFUREREQk5SjkioiIiEjKUcgVERERkZSjkCsiIiIiKUchV0RERERSjkKuiIiIiKQchVyRJFmysoJbnv2QJSsrkr0pIiIiKUfj5IokwZKVFZx0xyJqauvJzEjjnrOmMWVYQbI3S0REJGWoJlckCRYtL6emtp56D9tr61m0vDzZmyQiIpJSFHJFkmDayEIyM9JId9ArI41pIwuTvUkiIiIpRc0VRJJgyrAC7jlrGouWlzNtZKGaKoiIiCSYQq5IkkwZVqBwKyIi0kHUXEFEREREUo5CroiIiIikHIVcEREREUk5CrkiIiIiknJaHXKdc+nOudedc3/vyA0SEREREWmvnanJPQ94p6M2REREREQkUVoVcp1zg4GvAnd07OaIiIiIiLRfa2tyfwlcDNTHW8A5d45zbrFzbnFpaWkitk1EREREuqjqavj002RvRXw7DLnOucOAdd77JS0t572/3Xs/1Xs/tbi4OGEbKCIiIiKdp7oaVqyAF1+Ev/4Vtm+3+XffDV/6Euy1FxQVQVYWDBsGtbVJ3dy4WnPHs+nAXOfcoUAWkOecu9t7f3LHbpqIiIiIJEp1NXz2GaxZY9Pq1fb4//4fDBgAd94JF18M69fHvm/lShg6FKqqoLISdtsNZsyAgQNtqquDjC54D13nvW/9ws7NAi703h/W0nJTp071ixcvbt+WiYiIiMgOeQ/OQWkpPPechdcwwK5eDTfcAJMnw1/+AiedFPveXr3ghRdgn33svQ8+aMF10KDI47hxkJmZjD3bMefcEu/91ObKumDuFhEREZHNmy2o5uVBSYk9/+UvYwPsmjVw661wwgnwzjtw7LH23szMSE3r1q02b//94Q9/iA2xhYWQFjRenTXLplSxUzW5raWaXBEREZGmvIeKCgunn39uj6NHw777WjOBo4+OhNeqKnvPDTfARRfB8uVWqxpdyzpwIJx8sr1/82ZbZtAg6N/fandTnWpyRURERDrBkiXW7jUMsGvWWFOBc86xDlq5ubBtW+x7vv99C6k5OdZudvx4mDMnEmT33deWGzHC3hsvvObkWKcwMQq5IiIiIs3wHjZsgE2bYPBgm/eHP8C778aG2ClTYP58Kz/sMCsLFRdDnz72PCMDLr0U8vNhl10izQkGDbLy3r2tfWw8PaFmNpEUckVERKRH2bIF1q61MPr551BTA8cdZ2WXXmodsMKy6mqriV0SDKT629/CsmUWTnfZxZoa7LlnZN333Wc1qrvsYiMW9OoV+9mXX94puygo5IqIiEgKWb48UtMaThs3wh//aOWnngp//nPsewYMiITcmhqrad19dwuqu+wCI0dGln3uOcjOjl+reuCBCd8laSOFXBEREemS6uqgrMxqXceNs1rR//wHHnvMwmt0bewnn1izgF//2kYgCIVNA+rqID0djjjC1hUG2HAK3XRTy9uUk9MhuyodQCFXREREOk10cA2nzz+3EQJ22QUefhiuuMLml5ZCfb2974MPYNQoePVVGzIrbA6w224wfbrVwPbpA+eea7WyYXnYHjb09a93+i5LkijkioiISLts326dtDIzYd06eOKJ2BC7di387GcwbRosWGDDZDU2daoF09xcGD7clh0wwKZddrFxYgF+8AO44IL4zQVGj7ZJRCFXREREmti2zQJrGFJHj7Z2qqtW2Zit0QG2vNzavJ5+urWJPf10W0efPpGgGg6bNWWKNSkIa1rDEJuba+UHH2xTPOnpHbnXkkoUckVERHqQ+nobpioMsOHjrFl2mb+83DpahTciCP3sZ/DjH9vdsRYvtnC6++4wc6Y9nzDBlps40ZoWDBgAffs2rXEdPhy++91O2FHp8RRyRUREuqnt263d6rp1Ngbr+PE2//LLYeXK2CB7+OHWltU5OOgguzFBqKgo0vmqXz+riR0wwJoIhLWt4QgDgwZZiI0nK8vazookm0KuiIhIF/Pxx9YsYN26yNSvH5x3npV/+cvwyit2e9jQl74ETz5pz++/38aCLSmx8Lr33pG7ZjkHTz8NBQVWXlxsATmUng4339wpuynSoRRyRUREOtDmzRZSN2ywS/lgIfTllyMBtrQU8vJseCyAM86IPA9Nnx4JuVOnWm1pWNNaUmK3fA29+27L2zRrViL2TKRrU8gVERHZSeXlsGJFpKlAaakNi3XNNVZTetVV1hFr3TqrUQVrn7pxoz1/9FF45BELpyUlMGRI7A0HfvYz66gVlhcVxd456+c/77RdFem2FHJFRKRH27bNQmppqd0koE8fWLTIhroK54dB9uWXLXD+3//B1VfHrqdXL/jhD61Gdtdd4YADrClAWNNaUmLDbDkH8+fHNhFobMaMDt1lkR5BIVdERFLOpk3w3nuxAbW0FL75Tbus/+ijNt5qaWmkdhVg6VIbJeD11+3OV8XFkWm33exGBgDHH29NBsLwWlxs4TYcSeAb37ApnpYCrogkhr5mIiLSZXlvbVnLyiyQDhtmvfs/+cQ6R4Xzw+mWW+CrX4WFC+ErX4ldV2amjb86YoQF02nTLJyGIbW42NYPcPbZ8K1vxb/hwPjxkZEMRKRrUsgVEZFOt307vPRSbEAtLbVRAw491Nq77r+/hdjt2yPv+81v4DvfseD729/G1rSOHQuFhbbclCnW3CA6xEbXtE6bZlM8qmkV6f70NRYRkTbx3m4YUFYWqVEtLrahqry32tCwLJzOPBNuuAGqq+HAA2PXl58PQ4dayO3f3x6LimKD7N5727Ljx0c6dDWnuBiOOKLj9l1Euj6FXBERASw0btliwRKs9//KlbEhddw4uPJKKx88GFavjl3H8cfDvfdajenChdC7t61vwgR73G8/Wy4nB/71r0h4LSy05gShvDy444742xqvGYGISEghV0QkRZWVweefx4bUtDQ45xwrP+88C6Jh2ZYtVgu7aJGVX345/O9/FigLCy2klpRE1n/++fZYXGxlRUUWfEMtjdXqHMyendj9FRGJppArItLF1dbC+vU2Nuv69XZTALARAp5/PjbEeh8JqWefbe1Sow0eHAm5aWl2N6y99oqE1N12iyz72GOQnW132kpPb7pdF1yQ6D0V2XlLVlawaHk500YWMmVYQbI3R7oQhVwRkU5UU2OdmtLSYPlyG7KqrMwCbPh4660WLq++GubNg8rKpuvo1QueegruvDO2JnXAgMhy550HJ54YKSsqinTMAhvrtSVDhiRqr0U6xpKVFZx0xyJqauvJzEjjnrOmKehKA4VcEZE2qq625gDl5ZGprAyOOcbC5lNPwS9+EVu+cSO8/z6MHg0PPwwXXhhZX06OBdGqKgu548fDySdHwmn4GLZHvflmG20gHt26VVLdouXl1NTWU+9he209i5aXK+RKA4VcEenxtm+HiopIEB01yi7jL18Ot98eG1LLy20s1gMPhMcfh6OOarq+8eMt5G7fbrWwJSXWYauw0Ka8PFvuxBPhkEMi87OyYtdzxBEtjxDQXBMCke6kvU0Npo0sJDMjje219fTKSGPayMIdv0l6DOe9T/hKp06d6hcvXpzw9YqItKSuzkJlerq1I928Gf72t0h71rBN60knwWGHwVtv2VisVVWx6/nDH+CMM6xt68yZkRAaTpdcYh20PvkEnn46tiysbVUAFWlZopoaqE1uz+acW+K9n9pcmWpyRaTL8T5ySf6VVyyYhlN5OUycaDWcW7faJfkwvFZW2nt/8hO46ioLuaeeautxDgoKLIDOmWPzSkrg9NMjAbV/f3sMx2Ldd19rkhBvuKqhQ1u+dauIxJeopgZThhUo3EqzFHJFpEOFvf6jg2phod16FeDb37a7W0WH2MMOgz/9ycoPOsjCarRzz7WQm5VlwXS33WJDangnq8JCa/9aWGg3Gmhcu1pcbO1a49FYrCIdR00NpKMp5IpIi8K7WlVUWAitqLB5Bx9s5bfcYmOphmXr18PIkfDXv1r5QQfBG2/ErvOLX4yE3A8+sPVHh9V9940su2CBdcjq399qYgsKbGQBsBD6xBPxtz093Tp4iUjXM2VYAfecNa1bNDVQk4juSSFXpAfw3gb6D0NoVRUccICV/f3v8NJLsSE2LS0SHo880u58FW3YMKt9BXjySXj1VQuh/fvbsFNjxkSWvfJK2LYtUh7Wtob+9a+Wtz0M0yKSerpDUwMNU9Z9KeSKdBPew6ZNFkIrKqy3fmYmLFkC//lPZH5lpT0+9BD06QM//jHccIP19I9WW2s1nX//u90+tV8/qyXt399GFgidcop1vgprUfv3j9z2FeyGAS058shEHQERkc6nYcq6L4VckU5UXW0htLISdt0V+vaFjz6yHvphOA0fb7gBhg+H+fPtzlKVlTZ6QOjDD+3y/r//bb39nYsE1YICq7nt08fap55/fuzl/v79I+v51a/gt7+N3/7061/voIMhItINqO1w96UhxERayXvrAFVZCRs22DioRUV2M4C//S0SXsPyH/zAAuazz8IJJ9i8bdsi63v6absU/+CDcOyxNi8z00Jov35w//0wYYLdtvXeeyMBNSyfMwdyc612t67OnqeldfZRERFJfT26TW5tDWwuhU1rI4+b1sKmRvO+8E3Y95xO3zwNISaCBcGqKgublZVWmzl0qIXEO+9sGlJPPtkG+v/wQwurjWtSf/c7OOcc+Owz+M53bF5WlgXQ/Hxr3wowcKCNBJCfb2XhtOeeVn7oobaOggJ7f+Ma1RkzbIqnb992HxoREWlBd2g7vFPqamFLGWxaZ9PmdUFwDV5Hh9etFc2vo3c+9C2GvgNgwHjIG9i5+9AKCrnSLdTXWxjdsMGmqiq7a9T48Vb+i19YqAzLN2ywO0l973vWRKCkpOmA/5deCtdea21V/9//s3l9+0ZCamWlzevfH44/vmlInRr837jXXrB2rZX37t1028eOtUAcT06OTSIiXU1XqsHsStvSJdXXw9b1sWG1SXgN5m0uA5q5kt8rB/qWWHAtGg3DD4CckmBeML9vCeQUQ68+nb6LO0shVzrFunWRXv1hSM3JgS9/2cqvv97apkaXT54Mv/61lQ8ZAqtXx67z2GPtkj7Az34GGzfGBtFwbNXMTDjrLLucH5bl58Mee1h5v342NmteHmQ0843o3x9+85v4+5aZaSFaRKS7aSk4dqVRBbrStnQq72FbZaR2NSa8Np5XCr6u6ToysoJgWgIFw2HIPhZWc4Ja2L4DrEY2pwR6p9alwR2GXOdcFvBfoHew/EPe+8s7esMkuWprLSTm59vrd96BlSstSFZV2WNaGnz/+1Z+zTWwcGFsSN11V3jxRSs/6ih44YXYz5g6NRJyH3sMli+3oBlO/fpFlr34Yqtxzc+PTEOHRspXr7ZOVs11nnLOanrjcS62I5aISE+wo+DYUaMKtKVGNqVGOPAetm2IDasNbV3XUVm2murKNRTUV5K5rQzqapquI61XpHY1dyAMnBCpZQ0DbRhee+d1+J1tumote2tqcquBg7z3m5xzvYCFzrknvPeLOnjbZCeE46Bu2mQBNJz2288Gzl+0yMZCDQNqON19t4XVn/8c7rorMn/rVguNW7bY+q+5xpaNVlgYCbmffw6lpRZOR42yEDpsWGTZH/3Iwm90iI0eK3Xhwpb377zzWi7Pzm7VYRIRkcCOgmNHjCrQ1hrZLj/CwQ6Cqz2PqoVtLri6dGqyClm9JZt1Pp/1jGb/CXPZZdCwRuG1BPoUdJlbMnblWvYdhlxvwy9sCl72CqbED8nQg3hvvew3bbKw17u3Xc5ftszmRU+nnGK9+J95xsYy3bgxEmQ3bYKnnrIazRtusDamja1ZY2OePv64XdIHC4S5ufbZ27bZ6113tbtM5ebGTt7b9+iHP7Tbr0aH1OgOT7/6Vcv7fOihiTt+IiLSfjsKjh1xR7K21sgm5e5oDU0FStsVXK1ZQNAcoHhs5Hl0M4G+JdCnP7//z3J+8dR71HtId3B+/935zn6jOn5f26Er17K3qk2ucy4dWAKMAm7x3r/czDLnAOcADI2+jtxNeW+1menpFkK3brVbk27eHDsdcIDd3enjj63dZjh/yxZ7/PGPbZnnnrPe+mF4DXvp/+tfMHu2lR93XNPtOOAAC7mlpXZXqdxcC5cDBliNaThk1KxZ1q61b9/YkBpe8r/oIhtrtW9f26fGzjjDpnjC9qsiIpIaWhMcEz2qQHtqZBOyLfX1NlpATGgNa18bhdnNpS0E16JIzWrx7lHtW0tin/fpv1NjO3b5GutmdOVt3qlxcp1z/YCHge9579+Mt1wyxsn1Hl5/3cLl1q2RsDlmDOyzj8276qrYgLpli/WaP/FEa9N5wAGxZd7DL39pl8rfeivSkz/a739vnZoWL7agGfaUD6err7YQ+/bbcNNNFjKjp7lzrSa2tBTee69peXa2xj4VEZHUkfD2m/V1sGV9y7WtYYjdUgb1tU3XkZZh4TSnOKpZQFQtazi/74CdDq47q6u2b21JMre5pXFyd/pmEM65nwJbvPfz4i2TrJDb3Dl33nkWVLdutXaijUPot75lY51u2ADf/W7T8tmzrYPUpk1W29q4vKRE7UFFREQSqrYmMo5rWKvabM1rEFx9fdN1pGc2CqvNhNbwdVY/1Sh1U+26GYRzrhjY7r2vdM71AQ4Brk/wNrabc/DoozaYfna2TTk5dkcqsE5UNc1cdQjl58Of/xy/vG9fOOywxG6ziIhIMnVmDdzrH37GG+9/yBeKaxmbuy0IrNFNBMoiz7dVNr+SXtmRgFowHAZPjV/zmpXfZTpnSXK0pk3uQGB+0C43DXjAe//3jt2stjn88GRvgYiISPfQ7l7x9fWRMVw3l0ZuMtBM7WvdpnVMqt3KpObWE945K6cESsbBiJnNhNailBzHVTpWa0ZXWAbNn5ciIiLSPTXbK37X7KBGtbRpM4GG11HNBJpr3+rSILsoMqpA/5G8sb4XT62so9TnsZ58vrTvBI49cJItk9HMrSJFEkB3PBMREUlV3gejCTQKrpvLOPbzTxmd+QEFfgNFroohL22C/2xsfj0ZfYKa1WLIHwyDJkaaBURP4RiuabHD+NStrOAPdyxie531wD93wjTI7x6dqqT7UsgVERHpTrZvjQqr5bFNBRoFWTaXNl/biqM4uz8zCvpT7vPILhhFRsngIKwWRQXYxDQTSMo4t9LjKeSKiIgkU9122FIeFVKjwuqWskbhtQxqNjW/nl7ZQSgthrxdKcsdx8pt2ZQMHMKQwcMiZeH4rekZ9AEGd9JuJnrMXZEdUcgVERFJpPCGA1sahdPGYTUs31rR/HrCu2WFNaoFI6JqV4PH7KJIM4LMnIa3xnQqW9G1brUq0lkUckVERFoSjiKwpbxRQI0KrtGvt5SDr2t+XX36R4JryTjImRkbWHOKeXNDJovWOiaNGcGU4S3fPWrJygoWLS1n2sgapgyLhNyufKtVkc6ikCsiIkmRtLskhaG1cUBtEmKD1y2F1qx8C6nZRdB/JAz5QmRkgZwiyC6MtG8Nmgi0ZMnKCk56KKiBfb60xRrYloYA68q3WhXpLAq5IiLt1B1vw5ls7R6jNVp4W9eGsBo+ro9qMlAWafe6o9CaXWQBtf8Iu9lA2DwguwhyCiPPswshI7PtB6EZO1MD29Ky6uglopArItIuCQ1rPUiLYa62OhJGwxrVJgE2KrBurQDi3KK+IbTaeK0M3qdR84CiyPMOCK07a2dqYHe0rDp6JY7+ke2eFHJFRNpBbR93wHuorgoC6/qGYHrE5k/J7PUm/XwVRWkb2eftelhWaYG2Js5YrS4taNMahNIBe0SCaljLml0YNa8Q0nt16u62187UwKq2tnPoH9nuSyFXRKQdelzbx+1bg8AaTJvLY183NzUzTutg4BsZmWzJ6Eda3yKycwdAzuiokFrYKMAWQVY/SEvr9F1uq7bW/u1MDaxqazue/pHtvhRyRUTaoVvXptXVwtb1TUNpS8F1+5Y4K3OQ3T8IqYVB04CpkdAazg+XySkiLbMvfZ3r1F3uLKr9Sx097h/ZFKKQKyLSTl2iNs37YJir5kJrWfPzt1XGX19mrgXS8O5XJeNiQ2pMcC2EPv2a3Mq1sSUrK1j0QTnTRvZjSv/cRO59lxHW3q6u3KravxTRrf+R7eEUckUkodRBIwHq66F6QxBMg3DaUOMa/Xp9bHiNN2JAemYklOYUQr8hsQE1u3/T2taM3gndpZ5Qsxm9jxlpjoz0NOrqUr/2ryd857vEP7Ky0xRyRbqZrvwHpScEmZ1WVxupYY0OqlujA2xFowBbET+wuvSYGtWKPkNZnTGO/rsNZODAXZsPrpk5kORmAclo19jZ35Xofayr9xz3hSHs2q9Pl/yuJoq+89KVKeSKdCNd/Q9KynfQqNkSCacxjxVN54e1rds2xF9feqaNFhCG0pKxsa+zC6NeF9hj77yGwBpzPqxK454pXet8iNbZ7RqT8V1pvI9fnzy4y/48EiXlv/PSrSnkinQjXf0PSrfpoFG3HbZWWgjdWhGE02aCauOy2m3x15nZNwikBfZYMCwqpPaPLQtDbGbfdtWwdvXzIVpnt2tMxrHpiW03u813XnokhVyRbqSr/0HZ2T/y8S4nt/oyc32d1ZRGB9HGwbTJ60obtzUelx4VSvtDwXAYNCkqoPZv5rEg4W1YW6Ornw+NdWa7xmQdm57WdrMnBnvpPpz3ce4S0w5Tp071ixcvTvh6RSQBwbCLiL6c3CfDc8/J45hY6Hn345Xc9OjL5NRvpCh9E2dM7segzG1BSK2IDa3bNhD3Tlc46/HfJwihYRht8rog9nVUc4DuoLv93DuTjo1I6nPOLfHeT222LFVCrn6ZSU/WZdrqbt8aFUYrY4Pp1grrgBU8X7fuc6o3lpPPZvJcvLFXweNwWflBGO3X+tDazW4cICIiO6+lkJsSzRW6zB94kSRJaPvDhvaqYSitjAqnlZF50eVhiK2rjr/etAwLnkEIzew3iJeqiqisz6EqLZcj9hvP0F135YONGVz25CrK67LZlJ7PrWd+kSkjitq2LztB/yiLiKSWlAi53anzhUhHaNL+cHi+3bWqIaRWNBNMK5sPsds3t/xhmblWo5rVzx4Ld4utQW2ocW00r1Enq37A4JUVrFpezv4jCxkafGdHA5cM7tzAqX+URURST0qE3O7W+UKkVWqrIwF024bg+YbYYBo8n7JtA68Vl1G3uYLs+k2kz9/U8rp7ZUdCap8C6DcMBk6IqmntF1sePs/Kh/ReCdvFeJ10Orvzjv5RFhFJPSkRctW7MyK85FqQnUnFlpoefzySqrbGQml1VSSoNkxVkcAaztsavUxly8NVQWxQzepHdtFwGDIxZl7TkBo8JnAkgFS4zK9/lEVEUk/KdDyTyCXX6u31eCDN0eMuvSYscHlvIbMhjG6IDaXVjedvaLps7daWP8OlWc1oVr6Fz6z8SG1pOC8MptE1qeGyGZlt378ESaXL/KkQ1kW6Mn3Huj/vYdMmKC2FdetsKi2FU0+FXom7yLdTUr7jmZjwkmv4b0tPu/QaG7gc9562N5NK0poJo3GmxsG1rqblDww7UmXlRYJp3kB77J0XCaMNU17s63beCKA1x6Oj/6Ck0mX+nja+qUhnSqV/iFPNtm2QkWHTxx/Df/8bG2LXrYM77oBBg+DGG+GSS5qu4ytfsfKuRiE3hYSXXGu211OP1eR2y0uv3ttQVNVVUL3Rakiro2pLq6uaedzA0LJ1/DOtgtzMLeSxhYy761v+nIysRiG0n7VNbRJM+8XO6x2E1V59uux4qp31B0WX+aUnUo3kzkulf4i7upoaKCuLBNXSUpgxA4YMgVdfhZ//PDJ/3TrYuBEWLoTp0+3x9NNtPb17Q0mJTZuCbh6zZsH110fmFxfb44ABydrblinkppDotslJa5NbXxcVPjc2er4hzvxGgbV6I9TX7uCDXBA28xoee/XblWVVRVT6bDa7HA7bZxyDB+4SCaUxYTUvKXeo6iyd9Qels9vDp0q4SJX96IlUI9k2+oe47erqoLbWQmdVFTzxRNPmAt/8JsyZAy+9BPvv33Qd999vIXf7dli50oLpyJGRsLrrrrbc4YfDRx9ZeO3bzMXGL3zBpu5CITfFtPmSa31dEDhtenflaj74dDV7FjpG5tZHwmdDKN0YFVKjQuuOhp8Cu8zfEFBzoXc+5A+Bklyb3zs3El4bBdmGmtTMvk0G+u8HDFpZwSdBeBjcg//wdOYflM66zJ8q4SJV9qOnUo1k26iDeIT3Vnu6bh2sXWuPw4bB5MkWYs8+O7amtawMrr3WmgmUl8Pxx9t6nIOiIguklZU2b8QIuPLKpjWtQ4ZY+f77w9Kl8betXz+bUoVCbnfmPdRshppNkbDZ8HyTBc/g9bqyMtavL2NA71oK0rfFBFqqNzYJp2ODKZYLQmnUlJUH+btGakubhNRmAmtGVodd5le7StNZf1DaWyO5M+9PlXCRKvvRU6lGsu1S+fdzfX2k3uXpp2HNmtg2rfvsA9/5ji2XmwtbGt3k8Xvfs5CblQWvv26X/8eMgQMOsJA6fbotN3gwvPmmhdfCQkhPj13PLrvAT3/a8fvbXSjkdra6WqgJQmjNpuAxzuvo0BoTXoPXNZvA76DdKeBdOpn1WfSlD+vIpteAEvrmFULB8KjAmtfw/MkPN3Pv0vVs9H3Y7LI5YeZ4Tp+1V7O1p5J4ibqU3dF/UNpbI7mz70+VcJEq+9FTqUayZ6ivh4qKSEh1DmbOtLKf/ATeeis2xM6cCY8+auWnnw6rV9vz3r0tsBYX2+u0NLjoIgu6YW1rdE1rZia8/3787erVC/bcs0N2OSUp5LYk7AAVBsqazUEI3WxBtGZzMG9jpEa1oWY16nn0e3c0rFQoLcNCZe/cyGNWPuQPtjtO9c6F3tHleY1eR2pbb31+Fb94+n3qPaQ7OH/c7nzni6PifnRxYQUvv7HI/ginp7HXuD2sBlY6XHe6lN3eGsmdfX+qhItU2Y+eLJVrJHuCd9+1dqfRzQUyM+G666z8iCPg8cetHWxo8mRYssSeL14Mn35q4XTyZHucNCmy7OOPW3vWkpLm27VecUWH7p5ESZ2Q673dIWr7lkaBtFHYbAifUUG1uUAavm5FTSkQCaWZfS1sZubY8+xCe90rO5jfOJzmRr0n6nVG74Rd0p+2WxGZz37Y6poj/RFOnu50Kbu9NZJteX+qhItU2Q+RZKqrg/XrI+1XZ82y+Q89BE89FallXbvWOlx98omVX345PPBAZD05ObDHHpHXX/oSjB8fW9MadswC6/jVkgkTErJ7kgCpczOIuw6DFc+3fvkwkGbmRAJmGEwzc4KwmRM7vyG8hmVRy3Xxnvrqzd09hDW5YfDryjW50LltckWkZygvhw8/jNSyhtPPf241ozfdZMNYlZVZs4LQ5s2QnW0dtP70p9iQOmAA/OIXVnf05pvWJjbsmJWTk7x9lfZr6WYQqRNyl/4FNq7hk02O2176nI11mVSnZXPBYVPYfegusaG2V3a3aFuqANAz6ecuIqmittbC6Lp1MHw45OXBsmVw772xAXbdOqshHTsWfvUrOO+82PXk5dmoACNGWNvXf/wjEl6Li+1x+vTk3XVLkqdddzxzzg0B/gQMADxwu/f+5sRuYgJMPBGAx579kPu2v2ftT+thwpbd2H1g/PanXVV3apvZkXpi4NOlbBHpympqbKzVxiH1yCPtMv+LL8JZZ9m89eutNSHAP/9pY7l++CHMmxepSQ1HEggD6uGHw6hRscNg9ekT+fy5c20S2ZHWtMmtBS7w3r/mnMsFljjnnvbev93B29YmqdJzuTu1zewoCvoiIh2vutratPbubYFywwb4/e+bhtgLLoATTrCRBSZPbrqe4cMt5PbrZ21cZ82KbTIQtlU94gj7zHgXVEeMsEmkvXYYcr33a4A1wfONzrl3gF2BLhlyU6XTVKqE9fZQ0BcR2Xnex97WNWzbOnYsHHKItUedMycSXjdssPf95Cdw1VUWQC+6KHJb1wEDbArbru62W9M2r8XFNkIBWMB96KH429d4bFeRjrJToys454YDk4CXO2RrEiQVLvemSlhvDwV9ERELrVVVsG2bhU2wkPnJJ7G3d502Da6+2sqHDYOtjUasPPNMC7l9+tg0ZUrkjlgDBtgNC8DmVVU1P/wVWPvYU07puP0VSZRWdzxzzvUF/gNc7b3/WzPl5wDnAAwdOnTKypUrE7md0kP1xDa5IpL6tmyJhNMwqPbqBSefbOXf+ha88kqkrKYGDjoI/v1vKx8zBj74APLzI7Wpc+ZE7nb1xz/aSANhm9eSEujfX7WoknraPbqCc64X8Hfgn977m3a0fFJGVxAREUmSrVutk1U4nuozz9jtWaODbEYGLFhg5XPm2O1fo40ZA++9Z8/PPddqaqObBIwZA4cdZuWlpVaj2rtrj14p0uHaO7qCA+4E3mlNwBUREenuqqsj4TSsTS0ttaGt0tPhllvgz3+OlG3aZDWx1dV2if/Pf4a77rJ2qmGb1eHDI+v/3vesE1fYXKC4OHLrV4Bbb215+6KXFZHmtaZN7nTgFOAN59zSYN6PvPePd9hWiYiIJNDWrRZIBwyw2s8337QhraIDbGmp1bTusovdbODyy5uu55RTLGA6B7m51gkrOqjW11sInjcPfvlLq21trl3r4Yd39B6LSGtGV1gIJOb+siIiIglQXQ2rVkVGEQinY46x4aeefRYuvTQSYjdvtve98op1sHrlFbjwQqt9ja5Jramx5Q47DAYObFrTmp9v5eeea1M8heonK5J0OzW6goiISKLV10NFhQXSwkILk2vXwh13xAbY0lL42c8sgL7wAsye3XRdo0dbyM3KsvFaR4+OBNSSEhg61JY7/nj4+tfj17ROntz8WLAi0n0o5IqISMLV1dntW8vKYqfp063T1eefw8EHW3AtL7flAW66CX7wA6ishB//2JoEhCF18ODIna/Gj7cRBMKy4mIoKrJhrwD228+aI8STnd2huy8iXYBCroiIxFVba6MGhCE1NxcmTbKyCy+0sBodYo89Fm64wd7XuCbUOfjRjyzk5ubaaAHTp0cCanFxZKzW0aOtHW1WVvPbVVICp5/eYbstIilAIVdEpIfw3sZnDe9c9cwzsHJlJKCWltql/p/8xMr33BPebnRvy6OOgr/+1Z7/LRgxPRyLdc89Ye+9bV7v3vDIIzY2a1GRTQUFkXFac3Ii729OWlr8gCsi0hoKuSIi3dSWLbG1qKWldtn/1FOt/Kc/heeft/llZdYsYK+94LXXrPzSS+HVV+15ZqaF1S9+MbL+k0+2jlhhSC0qsjtphZYvb3n75s5N3L6KiOwshVwRkSTz3nr/h0F0yhSb//TTFlLLyyNl1dU2D+CMM+CBB2LXVVISCbmVlRZ6x4yB/fe3kLrbbpFl777bRhcI27I27oD1wx92yO6KiHQKhVwRkQSqr7fHtDT49FP43/8snEZPN9xgvfp/+Uu48UYLsOHQVWCBNzsbnnjClikosCAajjxQX2/r/8Y34JBDIm1awyn0q1+1vK1jxiR670VEug6FXBGROLZvt6Gs1q+PDalz59oYqv/5jw36H11WUWGjCuy5p91Y4Pvfj6wvPd3aqP7whxZyR4yAr3wlEk4LC+0xI/jNfM01FoLDdqyNzZnT4YdARKTbUsgVkZRXU2Phs7zcAuvIkTBoEHzyCdx2m82LDrK/+IWNwfrPfzZ/Z6oRIyzkbt1qNyQoLIQhQ+yxsNDGZwUbh3XffSPz8/KsBjZ0xBE2xaOOVyIibaeQ20mWrKxg0fJypo0sZMqwgmRvjki3VFtr7UzT0+0S/tat8OCDkfAaBtXjj4evfQ0++MDat27cGLue226Db37Tlr3xRqtdDaehQ21kAICJE+F3v7P5YVAtLLR2rwBf/rJN8QwaZJOIiHQ+hdxOsGRlBSfdsYia2noyM9K456xpCrrSo4VtSsHuXBUdUtevhwkT7Pas27dbh6mwfMMGe8/FF8P111snrNNOs3lpaRZ8+/eP3AmruBjOPNOCaRhU+/e3EQbAPqempvk7XoHdfOCcczruOIiISMdRyO0Ei5aXU1NbT72H7bX1LFperpArKePTT22IqvXrrUnA+vUWJI85xsrPPttqVMOy9evhq1+NjApw+OFWFkpLs2B5zDHW83/XXWHsWFtnQYEF1fCGAfn58OGHVpafH9sUAKzZwC9/GX/bGy8vIiKpQyG3E0wbWUhmRhrba+vplZHGtJGFyd4kkQbh0FUVFZHJe2tPCtax6tVXY8uHD4d//cvKv/a1yLiroenTIyG3rMxqbkeMsKYD/fvH3gnrkUdsJIGwuUBubmz4XLAg/rY7FzskloiISMh57xO+0qlTp/rFixcnfL3dmdrkSkfxHjZtsvBZWWmPGzZEBuL/61/h2Wdja1q9h1desfJjjoGHHopd58CBsHq1PT/lFHj55UhNakEB7L47XH65lT/5JGzbFtuutaAA+vTplN0XEZEezDm3xHs/tbky1eR2kinDChRuJa7aWgum0UF1+nSr4Vy4EP7xj0gtalj+r39Zb/1LL7VxVxvbts06UL3wAtx7b6S9ajjmqvdWE3r22dZ5KgywYZOA0J//3PK2t9TxSkREJFkUckUSoLYWqqosgIbThAkWFt9+G+67L7asstJ67Y8bB3fcYUGzsXfesbaoixfbkFYFBdbGNAyr4c0DDj3UQmt0SC0oiIy1etNNNsWjsVZFRCQVqbmCCNaLf8OG2BA6ZowNJ/XZZzbkVOOQ+tOf2t2m/v1vOPjgpuv8xz8sgD76qLVbzc+3qV8/m379a+vl//rr8NhjkQAblk+ZYjW5dXXWRjXeCAAiIiI9lZorSMqrqbHgGR1Ud90V9tjDOlZde23TkHrWWXD66fDRRzBqVNN1/vrX8N3vWhvWa66x4BkdUsPQOWoUXHll0/JwmKqvftVqeuP15J80yaZ44t3tSkREROJTyJUuYf36SEgNp6Iia5cK8KMf2TBV0csceqh1fqqriwzeH+0HP4hcpr/uutgA2q+fDU8FNrD/VVc1LR8zxsrHj7eQGq8mddgwq9WNRyFVRESk8ynkSkKsWmUhNKxJ3bABcnLg6KOt/PLLrY1pdIidPBnuucfKJ02yW6xG+9rXIiH3nnustja6trQg6MeXnm43BsjJiQ2qw4ZZeXa2NUeIF1Jzc+EnP4m/b2omICIi0v0o5PZQ3sOWLRYMwQbrX7HCwmdVlT3W18MFF1j5NdfYMFTR5QMGwNKlVn7KKfDcc7GfsffekZC7ZIkN2h+2Sx061GpIQ9dcY7WlYXl+vq0/tHJly/tz8cXxyxRSRUREeh6F3G5o2zYLmlVVNih/Rga89ZYNyB8dQquq4OabITPT7vp0112RWtSqKltXWMN57bXwxz/Gfk5ubiTkVlZa29b+/W1Q//x8a/Ma+slP4LzzYkNqWNMK8Pe/t7xPJ53UvmMiIiIiEk0ht5N4D9XVkXAaBtFJk+zS+ptvWg/7xuW/+Y3Vet55p42HWlUVGToK7BL/kCF2V6gf/zgyPzPTgubVV0fuIjVsmM3Ly4s81tfb5f4LL4Qzz4wtz82NrK+5cVijHXRQIo+WiIiISPso5LZSdTUsXx4bQquqYMYM613//vvWyalx+c03w4EHRoaRauy556x82TLrXNWrVyRo5uVZkwKwW5cec0xkfrhMv35Wfs45cPzxkfLGHbG+8Q2b4tljjwQcJBEREZEuImVDbk2NhcyMDAuCNTXw1FOR8Llxoz1+8YtWC7lmDZx6amxZVZV1aPr2t+Hdd2HixKaf88c/WsitrLTa1DBk5uVZU4KsLFtuzz2t3Wl0eV6e3TAArO3qUUdZOG2uDemsWTbFU1xsk4iIiIikUMitr4fRoyMhtbra5l94Idx4o70+/PDY9zhnIfSgg6wGdfNma0c6bFgkhIado0aMsLtWNQ6pJSVW/oUvwOefx9++UaPghz+MX56Z2fZ9FxEREZFYKRNy09Jg5kzo08fCZ26uPU6ZYuV9+8Irr0Tm5+XZyAJhrWlREbz4Yvz15+XBccd1/H6IiIiISPulTMiFpqMDRHMO9tmn87ZFRERERJInzo1GRURERES6L4VcEREREUk5CrkiIiIiknIUckVEREQk5SjkioiIiEjKUcgVERERkZSjkCsiIiIiKUchV0RERERSjvPeJ36lzpUCKxO4yiKgLIHr6yl03NpGx61tdNzaRsetbXTc2kbHrW103NqmM47bMO99cXMFHRJyE805t9h7PzXZ29Hd6Li1jY5b2+i4tY2OW9vouLWNjlvb6Li1TbKPm5oriIiIiEjKUcgVERERkZTTXULu7cnegG5Kx61tdNzaRsetbXTc2kbHrW103NpGx61tknrcukWbXBERERGRndFdanJFRERERFpNIVdEREREUk5SQ65z7svOufeccx865y5tpry3c+7+oPxl59zwqLIfBvPfc859qVM3PMlacdzOd8697Zxb5pz7t3NuWFRZnXNuaTA92rlbnlytOG6nO+dKo47PWVFlpznnPgim0zp3y5OvFcfu/6KO2/vOucqosh55zjnn/uCcW+ecezNOuXPO/So4psucc5Ojynrs+daK43ZScLzecM696JybEFW2Ipi/1Dm3uPO2OvlacdxmOec2RH0XfxpV1uL3O5W14rhdFHXM3gx+n/UPynry+TbEOfdskDXecs6d18wyyf8d571PygSkAx8BI4FM4H/AHo2WORe4LXh+PHB/8HyPYPnewIhgPenJ2pcueNy+CGQHz78dHrfg9aZk70MXPm6nA79p5r39geXBY0HwvCDZ+9SVjl2j5b8H/CHqdU8952YCk4E345QfCjwBOGAa8HIwv6efbzs6bvuHxwP4SnjcgtcrgKJk70MXPW6zgL83M3+nvt+pNu3ouDVa9nDgmajXPfl8GwhMDp7nAu838zc16b/jklmT+wXgQ+/9cu99DXAfcESjZY4A5gfPHwJmO+dcMP8+73219/5j4MNgfT3BDo+b9/5Z7/2W4OUiYHAnb2NX1JrzLZ4vAU9779d77yuAp4Evd9B2dkU7e+xOAO7tlC3rwrz3/wXWt7DIEcCfvFkE9HPODaSHn287Om7e+xeD4wL6/dagFedbPO353djt7eRx0++2gPd+jff+teD5RuAdYNdGiyX9d1wyQ+6uwKdRr1fR9AA1LOO9rwU2AIWtfG+q2tl9/wb2n1Qoyzm32Dm3yDn3tQ7Yvq6qtcft68FllYecc0N28r2pqtX7HzSNGQE8EzW7p55zOxLvuPb0821nNP795oGnnHNLnHPnJGmburL9nHP/c8494ZzbM5in860VnHPZWBD7a9RsnW+As6akk4CXGxUl/XdcRkesVLoG59zJwFTgwKjZw7z3nznnRgLPOOfe8N5/lJwt7HIeA+713lc7576JXUU4KMnb1N0cDzzkva+LmqdzThLOOfdFLOQeEDX7gOBcKwGeds69G9TUCbyGfRc3OecOBRYAo5O7Sd3K4cAL3vvoWt8ef7455/piwf//ee+rkr09jSWzJvczYEjU68HBvGaXcc5lAPlAeSvfm6pate/OuYOBy4C53vvqcL73/rPgcTnwHPbfV0+ww+PmvS+POlZ3AFNa+94UtzP7fzyNLuf14HNuR+Id155+vu2Qc25v7Dt6hPe+PJwfda6tAx6m5zRj2yHvfZX3flPw/HGgl3OuCJ1vrdXS77Yeeb4553phAfce7/3fmlkk6b/jkhlyXwVGO+dGOOcysROocc/rR4Gw193RWINvH8w/3tnoCyOw/0Zf6aTtTrYdHjfn3CTgd1jAXRc1v8A51zt4XgRMB97utC1PrtYct4FRL+dibYwA/gnMCY5fATAnmNdTtOa7inNuLNaJ4KWoeT35nNuRR4FTgx7I04AN3vs16HxrkXNuKPA34BTv/ftR83Occ7nhc+y4Ndtjvidyzu0S9GnBOfcF7O9/Oa38fvdkzrl87IroI1HzevT5FpxLdwLveO9virNY0n/HJa25gve+1jn3XWzH0rHe2G85564CFnvvH8UO4J+dcx9iDcOPD977lnPuAeyPZS3wnUaXR1NWK4/bjUBf4MHgd9on3vu5wDjgd865euwX3HXe+x4ROFp53L7vnJuLnVPrsdEW8N6vd879DPtjAHBVo0tWKa2Vxw7s+3lf8I9oqMeec865e7Ee7UXOuVXA5UAvAO/9bcDjWO/jD4EtwBlBWY8+31px3H6K9c24Nfj9Vuu9nwoMAB4O5mUAf/HeP9npO5AkrThuRwPfds7VAluB44PvarPf7yTsQlK04rgBHAk85b3fHPXWHn2+YRUWpwBvOOeWBvN+BAyFrvM7Trf1FREREZGUozueiYiIiEjKUcgVERERkZSjkCsiIiIiKUchV0RERERSjkKuiIiIiKQchVwRERERSTkKuSIiIiKScv4/FDozxhFzcLoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(12, 4))\n", - "ax.plot(X_test, y_test, '.', label=\"raw\")\n", - "ax.plot(sorted_X, y_pred, label=\"prediction\")\n", - "ax.plot(sorted_X, y_pred + sigma * 1.96, 'b--', label=\"q0.95\")\n", - "ax.plot(sorted_X, y_pred - sigma * 1.96, 'b--', label=\"q0.95\")\n", - "ax.set_title(\"Confidence intervalle with GaussianProcessRegressor\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/sklearn_transformed_target.ipynb b/_doc/notebooks/sklearn/sklearn_transformed_target.ipynb deleted file mode 100644 index 3d61042c..00000000 --- a/_doc/notebooks/sklearn/sklearn_transformed_target.ipynb +++ /dev/null @@ -1,1004 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Transformed Target\n", - "\n", - "[TransformedTargetRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html) proposes a way to modify the target before training. The notebook extends the concept to classifiers." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TransformedTargetRegressor\n", - "\n", - "Let's reuse the example from [Effect of transforming the targets in regression model](https://scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html#sphx-glr-auto-examples-compose-plot-transformed-target-py)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "from numpy.random import random, randn\n", - "\n", - "rnd = random((1000, 1))\n", - "rndn = randn(1000)\n", - "X = rnd[:, :1] * 10\n", - "y = rnd[:, 0] * 5 + rndn / 2\n", - "y = numpy.exp((y + abs(y.min())) / 2)\n", - "y_trans = numpy.log1p(y)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAEICAYAAABWG8uXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAChA0lEQVR4nO39e3xd1X3njX+++xxJWCDLinyVZdkIgwGJQC1j5EJiSCAT5zGQ2BADmbZMa0zmoc8MM51nnkxaHI/TtOm82g6ZJ7SJoRmSFhuDba6/uA+YmItTJNtSIZbsyDbCko4l3+RjWSAj6Zy9fn/svdZZe529z0XS0fX7fr0MOre9197SWWt9b58vCSHAMAzDMAzDMAwz3rHGegAMwzAMwzAMwzCZwMYLwzAMwzAMwzATAjZeGIZhGIZhGIaZELDxwjAMwzAMwzDMhICNF4ZhGIZhGIZhJgRsvDAMwzAMwzAMMyFg44VhhggRfUJElRm8bxERCSIKj8a4GIZhGJ6jRwsiupWIjrn3++tjPR4/iOgLRNSS4vWs/gaI6Fki+vORGyGTDWy8MDmBiE4Q0SV3MpP/fjzW4xoqRPQ2Ea3XnxNCXCGEaB2BY58gojuHe5yJen6GYUYfnqOzOva4nqOJ6HYiiozmmAw2A/ixe79fHsNxBCKEeE8IsUQ+HuvfqTaOeUT0KhF1usbTorEe00SAvQxMLrlbCLFnrAcx2SGikBAiPtbjYBhmwsFz9CgwHuZoIgoLIWI5OvxCAM1D+WCOxzURsAH8M4C/BPAvYzyWCQNHXphRh4j+noh2ao//iojeIofbiShCRN8lonOud+Rb2nuLiegXRHSWiNqI6M+IyHJfe5iI9hHRXxNRlIg+JqJVxmf/gYi6iOgkEf05EYXSfZaIfgDgCwB+rHsnXS/JYvfn/4OI/pWILhJRBxFtyvBe/COACgCvucf+r+7zLxLRKSLqIaJ3iahK+8yz7j38JRF9CuAOIlrqnr/X/ex2PaRNRKuJ6AMiukBE/0JEn091foZhpi48R3vuxbieo4nocgC7AZRRIoJWRkSbiGgHEf0TEV0E8DARLSei991zdBHRj4koXzuWIKJvk5MCdoGIniIicl9bTETvuNd7joi2u89/BKBSG1+Be/5Xieg8ER0noke0c/iN6233d/0v7jFeI6JSInrO/X0doICIBBH9nIj+xP15vnsNj7mPr3LHYJEWnUpzT79FRO3uNf5pJn8j7jEfca/1vHvtZdprXyGiFvfe/Z17H9cDgBDitBDi7wAcCDju20T0l0S0370XrxDR5zId16RFCMH/+N+I/wNwAsCdAa8VAjgK4GE4C845AOXua7cDiAH4WwAFAFYC+BTAEvf1XwB4BUARgEXucf7Ife1hAIMAHgEQAvDvAXQCIPf1lwD8FMDlAGYD2A/g0Qw/+zaA9cZ1CACLtXHfAMch8HkApwF83X1tkfvecKb3CsAfutdYAOBJAB9orz0LoAfAre75pgNoA/AfAeQBWANgAMCfu+//HQBnANziXtsfuOcsSPe74n/8j/9Nzn88R0+eOdq9tojx3Cb3fn3dHcM0ADUAauFk3SwCcATA48b9eh3ADDib+7MAvuq+tg3An7rHugzAbUH3B8C7AP7Ofd9N7nG+lGJcbwM4DuAqAMUADsP5u7nTHesvAPzvgGv/QwCvuT8/BOAjANu1117xu0c+Y5Z/A0+7Y7oRQD+A6wLO+6z2+/sSnO/IUjh/D/8vgHfd12YCuOj+zsPu38Agkv9Ww+75FxnPvw3gJIBqON+LnQD+aaznj7H+N+YD4H+T8587MXwC4IL27xHt9VsAnIczoT+oPX87nIXxcu25FwA8AWdSHwBwvfbaowDedn9+GMBx7bVCdzKYC2COOxFN015/EMDedJ91H7/tM9mohdHn+p8E8D/dn+WkmPHCaLw+w/18sfv4WQC/0F7/oju5kfbcPm1i/XsA3zeO2QJgZSbn53/8j/9Nvn88R0+eORrBxsu7af4GHgfwknG/dKPkBQDfcX/+BYAtcI3YoPsDYAGAOIAi7fW/BPBs0Ljc392fao//BsBu7fHd0IxD47NXAYjCMYR+4v69RdzXfg7gP/vdI/Oean8D5dpz+wE8EHDeZ7Xf3z8A+B/aa1fAMVAWAfh9AO9rrxGADmRnvPxQe3w9nO9YKJPv+WT9x2ljTC75uhBihvbvafmCEKIeQCucL/ILxueiQohPtcdtAMrgeDDy3Mf6a/O1x6e0c/S5P14BJyc3D0CXGw6/AMfDNzuDz6aFiG4hor3kpEr0APi2O96sIaIQEf2QiD5yw+on3Jf043VoP5cBOCncmc3n9YUA/kRet3vtC9zPMQwzdeE5eghMoDlaPweI6Boiep2cdLeLAP4CyffglPZzHxL397/C+VvYT0TNRPSHAecsA3BeCNGrPWf+DXQgmdPaz5d8Hvv+noUQH8GJ/N0EJ0r4OoBOIloCJyr4TsA4gwi6/lSUQfubF0J8AqAbzjWXQbte928gW3EF/X61wfmeDOlvd7LAxgszJrg5qQVwwv5mnUWJm8crqXDfdw6ON2Oh8drJDE7ZAcerN1NbqKcLIarSfdBFpHl9K4BXASwQQhTD8QDREI/9EIB74YTMi+F4b2AcT/9MF4D5MjfZZYH2cweAHxiblEIhxLaA8zMMM8XhOTrlscfbHB30uvn83wP4LYCrhRDTAXwXGd4DIcQpIcQjQogyONGNvyO3nsigE8DniKhIe878GxjpNecdAPcByBdCnHQf/wGAEgAfBHxmJMfQCe1v3v1ulMK55i4A5dprpD/OEP1vpQLOd+zcUAc7GWDjhRl1iOgaAH8O4N8C+D0A/5WIbjLe9t+JKJ+IvgBgNYAXhaPW8gKAHxBREREtBPCfAfxTunMKIboAvAHgb4houlvAdxURrcxw2KfhFCUGUQTH2/QZES2Hs7hlinnsIjiLeDec1Ii/SPP59+GE6f+YiMJEdC+A5drrTwP4tut5JCK6nJziVbm4pLs2hmGmEDxHpz32eJujTwMoJaLiNOMoglN/8QkRXQunbigjiOh+IpKb7iiczb9tvk8I0QFHNesviegycoQH/ggZ/A0Mg3cA/DGcWhvASbX6YwD7RLDK20iue9sA/DsiuomICuD8PdQLIU4A+P8BuIGIvk5OD5nH4KRJKojoMjiOAgAocB/r/Fsiup6ICuHIUu9IcV1TAjZemFwilTzkv5fcL+8/AfgrIcSHQohjcLw//+h+6QEnbBuF4814DsC3hRC/dV/7v+CEiFvh5AxvBfCzDMfz+wDy4RQDRgHsADAvw8/+CMB95Kjc/C+f1/9PAJuJqBfARiSnWaTiLwH8mZsu8F/g5Ba3wfHaHAZQl+rDQogBOMWAfwQnb/3fwgmd97uvH4RT5PpjONd9HE7+eND5GYaZGvAcnRnjeo527/02AK3ue4LSzf4LHKOtF47BtD3dhWvcDKCeiD6BE8H6jyK4h86DcKJRnXBEGL4ncivJ/Q4cw0waL/vgGJXvBn5iBNc999qegFNM3wWnDucB97VzAO4H8D/gGLvXAzgI93fvcglO/RngRMYuGaf4Rzg1NqfgiCD8h+GMdzIgVToYZlxARLfDUdLINqzKaBBRPYCfCCH+91iPhWGYyQPP0SMDz9FTE3JkwyMAviWE2JvB+9+G8317Jtdjm0hw5IVhJgFEtJKI5ropCX8ARwr0n8d6XAzDMAzP0VMZIvo3RDTDjVzKOqOU0TomNeGxHgDDMCPCEjhpEJfDSde4z80hZxiGYcYenqOnLivgpE/KlMivCyHM1DAmCzhtjGEYhmEYhmGYCQGnjTEMwzAMwzAMMyEY1bSxmTNnikWLFo3mKRmGYRiDhoaGc0KIWWM9jvEIr1MMwzBjT6p1alSNl0WLFuHgwYOjeUqGYRjGgIja0r9rasLrFMMwzNiTap3itDGGYRiGYRiGYSYEbLwwDMMwDMMwDDMhYOOFYRiGYRiGYZgJARsvDMMwDMMwDMNMCNh4YRiGYSYcRHQZEe0nog+JqJmI/rvPex4morNE9IH7b/1YjJVhGIYZOUZVbYxhGIZhRoh+AF8SQnxCRHkA9hHRbiFEnfG+7UKIPx6D8TEMwzA5gCMvDMMw45CGtiie2nscDW3RsR7KuEQ4fOI+zHP/iTEcEsMwzJRirNYpjrwwDMOMMxraovjWM3UYiNnID1t4bn0tahaWjPWwxh1EFALQAGAxgKeEEPU+b1tLRF8EcBTAfxJCdIzmGBmGYSYjY7lOceSFYRhmnFHX2o2BmA1bAIMxG3Wt3WM9pHGJECIuhLgJQDmA5URUbbzlNQCLhBCfB/AmgJ/7HYeINhDRQSI6ePbs2ZyOmWEYZjIwlusUGy8MwzDjjNrKUuSHLYQIyAtbqK0sHeshjWuEEBcA7AXwVeP5biFEv/vwGQA1AZ/fIoRYJoRYNmvWrJyOlWEYZjIwlusUp40xDMOMM2oWluC59bWoa+1GbWUpp4z5QESzAAwKIS4Q0TQAdwH4K+M984QQXe7DewAcGeVhMgzDTErGcp1i44VhGGYcUrOwhI2W1MwD8HO37sUC8IIQ4nUi2gzgoBDiVQD/gYjuARADcB7Aw2M2WoZhmEnGWK1TbLwwDMMwEw4hxG8A/I7P8xu1n/8bgP82muNiGIZhcgsbLwzDMAzDMAzDZERDW1SliwEY9dQxNl4YhmEYhmEYhkmLLpEcDlmAEIjZYlTlklltjGEYhmEYhmGYtJgSyYNxMepyyWy8MAzDMAzDMMw4IJdd64d77Ia2KE5euIRwKCGRnBeiUZdLTps2RkSXAXgXQIH7/h1CiO8R0ZUAngdQCqfD8e8JIQZyOViGYRiGYRiGmYzksmv9cI/tSRezCA8sr8CapeUARr/mJZPISz+ALwkhbgRwE4CvElEtHD39/ymEWAwgCuCPcjZKhmEYhmEYhpnE5LJr/XCPrX8+bguUzZimpJIfu2PxqEompzVehMMn7sM8958A8CUAO9znfw7g67kYIMMwDMMwDMNMdnLZtX64x87l2LIlI7UxtwlYA4DFAJ4C8BGAC0KImPuWCID5AZ/dAGADAFRUVAx3vAzDMAzDMAwz6chl1/rhHlv/fElhvorcjNsmlUKIOICbiGgGgJcAXJvpCYQQWwBsAYBly5aJIYyRYRiGYRiGYSY9uexaP9xjy8+atTOAt+5F7wOTi2vJqs+LEOICEe0FsALADCIKu9GXcgAnR3x0DMMwDMMwDMOMC8zamV2NEexsjChjZuPqKmx+vTknogOStDUvRDTLjbiAiKYBuAvAEQB7Adznvu0PALwyoiNjGIZhGIZhGGbcYNa+CMBjzOxu6sqZ6IAkk8jLPAA/d+teLAAvCCFeJ6LDAJ4noj8H8K8A/mHER8cwDMMwDMMwzKhgpnyZj83aGQDY1RjBYMxGXtjCqup5OHDivHqci8L+tMaLEOI3AH7H5/lWAMtHfEQMwzBTGH2hAEZfP59hGIaZOIxkfYnZC+bhFYvwzL6PYQvhSQEza2dMIYAlc4vGT80LwzAMkzs8TcBCFiAEYrbIWd4wwzAMM3EZ6aaWej3LQMzGlvdaYbtSWwNuCpjf8XVjJtfF+gAbLwzDMOMGsxAScJpqDaZYNBiGYZipiV/jyeGsE7KeZTBmg4gQsxMiweS+7oc0WEoK83NerA+w8cIwDDNu0BeOkBt5idtizBuCMQzDMOMPfc3IC1soKczHU3uPDznqYfZy2fRqEwbijgFjWeT7GT36YxHBFmLEjKkg2HhhGIYZJ/gVQnLNC8MwDOOHaWyMRNRDTwFr7uzB1vp2CAC2LZRymL4u7WyMoH/QhgAghAARYLlKZLlyurHxwjAMM44wCyHZaGEYhpnapKojkWvGU3uPj0gKWUNbFLsaIxAAqsuKUZDnjezoNTYbV1dhR4PzXsBJc4YAQhZh4+oqrnlhGIZhGIZhmKlEpkX5ZgrZUKIeDW1RPPi0cy4AyA8RNt1TjWjfAGorS5NqbLYfaFf1mRIZgYn2DQzpejOBjReGYRiGYRiGGYdkWpRvph0PJepR19rtMUYG444R8tgdiwEALad6YREBEAhZhOauiyrqEg4RLCLE47nr7yJh44VhGGYEGA15SIZhGGZqUVtZirBFGIw7BkMqo8BMOx7KufLCloq85IUS52toi2Lz682I2844bl8yG3uOnAbgKJF9c9kCrF1arupvZH0MF+wzDMMMg1wZGCOhtc/GD8MwDOOLG+1w/p9b7qspx7nefswsKsDapeVqPZIRIJkWNrOowJOmpr93JHvP+MHGC8MwU4KRbualM1yt/VyOjWEYhpm41LV2IxZ3jIZ4fGTkh/W+LLKeBUhtdJg1NWuXlqtIi+50G+neM36w8cIwzJQglxPqcAslR2OyZxiGYSYema4vmUbvdWeZLZyUr4I8xxhJtQ7VLCzBxtVV2N3UhVXV89Rr5rlGQjggHWy8MAwzJcjlhDrcQsnRmOwZhmGYiUcm60s20XvdWQY46mCDbjpYqnVI1rwMxGwcOHEeS+YW5Uw4IB1svDAMMyXI9YQ6nELJ0ZjsGYZhmIlJuvWlrrVbNYocGEwdvZfOMmnAWIAnDWxnYwR+lTV6M0oZmZHnNtet4QoHpIONF4Zhpgy5nlCHw3geG8MwDDN+KSnMV5LFtvs4CN1Z1ntpEM1dF1UamGxQORCzsbMxoiI4W+vbsf1AhzpHyKKkhpWjWavJxgvDMAwz4SCiywC8C6AAzlq2QwjxPeM9BQB+AaAGQDeAdUKIE6M8VIZhmGGTqqalqbMHrh4ZLIJvg0i/z0vjQ6aB+dVfAsDGV5oQl3lmAK6bNx1vt5xJisSw8cIwDMMwwfQD+JIQ4hMiygOwj4h2CyHqtPf8EYCoEGIxET0A4K8ArBuLwTIMwwyVVDUtDW1R7GiIJJpF+vSC8fu8n6HiV39Z19rtMVwA4DeRHgj0qMfp+s+MNGy8MAzDMBMOIYQA8In7MM/9J4y33Qtgk/vzDgA/JiJyP8swDDOuCIqupFKklFLKgKMcdt286UnHzcRQkY0lN66uUvLJ8hx5IadJpkSfQAnA/csWjGraMxsvDMMw4whuVpk5RBQC0ABgMYCnhBD1xlvmA+gAACFEjIh6AJQCOGccZwOADQBQUVGR62EzDMMkkSq6kkqR0izA/zDSgwefrsO2R4I/rxsqzZ09ONvbj02vNiFmC//6FbdJZjhEIACxuIANx3AJWYSqsuJRu08AGy8MwzDjBm5WmR1CiDiAm4hoBoCXiKhaCNE0hONsAbAFAJYtW8ZRGYZhRh09OjJgRFf8FCl1R9dz62ux+bVmfBhxUrkGYjZ2NUZ8P19SmK8kj8MWAURKKhlwIjM7GyPq2HqTTNsWeGB5BcpmTEPvpUE8s+9jxG2Bza83Y8ncInUduXa+sfHCMAwzTsikWSVHZpIRQlwgor0AvgpAN15OAlgAIEJEYQDFcAr3GYZhxhUlhfmq94otUiuG6Y4uiwjrb7sy6T2mF0auF0/uOZpYZ+ICgFDvlZGUHQ0RxOI2wiELK6+ZhXDIQjzuRG3WLC1HzcISPLX3OGwhVMH+rsYIdrpKZbl2vrHxwjAMM05I16ySIzMJiGgWgEHXcJkG4C44Bfk6rwL4AwDvA7gPwK+43oVhmPFItG8goRgGr2KYOfevXVquDBBbCPzk3dak41UbqVzyGFIhzCKoyEs8biMUsnBfTTkIwLb97SoCtOfwaeSFCA8sr1CGC5C8XgkgrfNtpGDjhWEYZpyQLjUgk8jMFGIegJ+7dS8WgBeEEK8T0WYAB4UQrwL4BwD/SETHAZwH8MDYDZdhGCaY2spSFOT5O6/Mud8xPgh2gC+G4Mgn68hjSOPo1sUz8fid16jXSgrzEe0bQElhPvLDljJyBIC4LVA2Y1pSI8qNq6uwu6kLq6rnAe6YIARCFqHzwiU0tEVzskax8cIwDDOO0JtVmt62jaurUkZmphJCiN8A+B2f5zdqP38G4P7RHBfDMMxQ8HNeScwox9ql5ZheEMaW91pVqpmM2sD9/46GCNamiJSYhoteB3PTghk42BaFtI1CIf9MAPmZ+o/Pw7ZtxG1nHHEBbK1vx4sNEY9wwEiR1nghogVwmnzNgXM/tgghfkREmwA8AuCs+9bvCiF+OaKjYxiGmcKY3rZo30Dg4sYwDMNMbHTnlcnapeUQ7v8B4Nn3TwBwUr/W33Yliqbl4cOOC3jj8GkAQCweXPRfUpiPnY0RVdtiESFuO/UrA3GB/Sei6rwE4L6a8rSZALrhJC0qUzhgpMgk8hID8CdCiEYiKgLQQERvuq/9TyHEX4/oiBiGYRgA/jUwqRY3hmEYZmKQqfiKX71LXWu3SuuCECialofH7liMH/7yiPqcX9G/PI9e++LgpHpJA0ZHRnpSZQLANX78yEWRYVrjRQjRBaDL/bmXiI7A0c5nGIZhckiqNAKGYRhmYqIXz4cswuZ7q/HQLf49pvxqHUsK85VRYMMxUhraonhm38fqcwRv0b9kZ2PEY7gQoIyRps4ebD/Q4TFErtMkkM1MAFnzUjVvOn72LycwGLMRChEAIB4XyAuRihSNJFnVvBDRIjg5xvUAbgXwx0T0+wAOwonORH0+w82/GIZhhghHWhiGYSYXeuQkZgtsfKUJS+YW+c71fhH4utZuWOREVyxyjJS61m5PAX/IIt86lR0NEWW4hAhJKmLVZcXY+IrTsBIAfhPpwbeeqUuqudTrZA6cOI9NdzvGDwGoKitGtG8gZ063jI0XIroCwE4AjwshLhLR3wP4PpyI0PcB/A2APzQ/x82/GIZhGIZhmMlMNj24aitLEbJIGQi2EIHqkUEReD/xlvywpXq/bL63Oul4suGkgshjuABQEaA/femQUhsbiNlo7uzx1N389J2P8Nmgc6zBmI2mzh7sGk99XogoD47h8pwQYhcACCFOa68/DeD1nIyQYRhmDMhFM0j9mMDodCJmGIaZSoxFI99se3DVLCzB5nursfGVJthCID+FeqTf9QQZNOnSjGsrSz0Sy3Fb+BbUN3X2JNWqvHiwAzHbGev0grASBgAAsgiERJ+XgZiNJ/ccxeN3XjM2kRciIjha+UeEEH+rPT/PrYcBgG/A29WYYRhmwpKLZpD6McMhCxBCLQRTudkkwzDMSJGrRr7pDKKh9OB66JYKLJlb5HFoPbX3uKfH167GCF482IHBuEiqjfFLKU6XZiyNpideaVJ1Lc/vb0dVWbGn5oaMz1XOugKtZz9R1/fPzac8r1fNm441S8ux04282ALYd+wcDpw4n5P1zcrgPbcC+D0AXyKiD9x/XwPwP4joEBH9BsAdAP7TiI6MYRhmjPBbiEb6mINxoTxUI3F8hmGYqc5Q5u6Gtiie2nscDW1JZdvq9W89U4e/eaMF33qmzvd9si4lREjZg8s8V83CEjx2x2IA8Jxja327+v9AXHhqY/Tzpxu73/mjfQP40rWz1XNxgaTjrllajvywBQKQFyJcOfNyhEOJ6/tq1VzPcdfdXKGiQbcunql6zozU+mmSidrYPiQbYQDAPV0YhpmU+BVIjuQxLYswGJe5zslylgzDMEz2ZDt3+8n/moXm6aIqMirz8IpFaO66iFXV83wjDamiQvo5BmI2trz7EQZidlLqll4b09AWxYNb3sdAXCBEwPe/fkOgYhngNI3c6EZc8lxDy12GkmpuahaWYNsjtSry89aR0whb5Cnuryi9XCmNRfsGlPGz4HOFyAtbiMdz10w5K7UxhmGYqUAuJIr1Y568cAnb6tsh4IS//eQs/RiLXG6GYZiJQrZzt8doGLQ9NSjSuEhlEOkGiS0cT/+BE+d9lcN2aRLFA4PemhB5DnmcE919ABwlsZBFsN3+K3ptzM7GCAZc6yMugCdSKJY1tEU9CmKxmI07r5+DX/32TFLNjb7OlM2YhpjtZAnEbYGyGdPU8WXam186tGnojDRsvDAMw/iQC4lieUyZy5xNZCdXudwMwzCTiWzmbt0wIbeQ3YywpDKIdOMH8KZK6R3pey8N4vn97Z7eLL8+7q0J2bi6Clve/ShhuAC4dfFMPH7nNepc+vnNlCjbTlYsk+fvvHDJI6NsWYRHV16FR1de5TluqkaUfmuVGZWS98A0dEYaNl4YhmFGmWy8g/rik21BKMMwDBOMPhfLviV+G/Ugg8iMmFhI1LzojSj9+oToc3nLqV6V0gU4x8nPszxqXeb51ywtx/aDHYi50ZdUUaGwRQiHLMTiyTLKQcaYbESZaq3Sjb+QG3mRaWm5SBeTsPHCMAwzBui5zvpjHb/FJ5d5xAzDMFMN3TDR1b/8Ihjm86bxo9fLPLX3uG/dSoiAkDaXlxTm44mXD6n6EwJw69Uz08oM1ywswfYNK7CzMQICklK0dEMkbgusW74A82dMS+kwM1PkSgrzUzrZTEecPG+uU5vZeGEYhsmAka43ySQNbCiLD8MwDDM0/CIs6eZq8zNSAaykMN+JygzasOEYJVLuWDeSdjZGlOECOHUumfZHSZUiZxoia9PUn2ytb8fupi48vGIRiqbloffSoIoGFeQFpyqbYxiNtYmNF4ZhmDTkot4kk74AnpC82wSMDReGYZjRI5seLkHqZWZUBkhs8n/6zkeeYwQZUNk6z7JJT95a347vvnQIAPDesXP49hcr8cy+j1WB/8Dg+EpVZuOFYRgmDUNpQJaOTCU91y4tx5nefrxz9Cy27W/HzsYIF+szDMOMEtnIL/vVjMg+Ln40tEXx9tGznuc+iPSgoS2q5njdIApZhOvnTce6myuSZJH9DBy/qJCfMbO7qctzrJc/OJlU4J+qd81oq2Cy8cIwDJOGXPR98fOK6YsAALVgWQEqOAzDMExuySaCkU5W2TxGXWs3YnHbc4x43DvH6waRHRf4MNKDDyNOlEQaMJlkB6R6T9W86Xjv2Dn13rOf9AcW+Gd6zFzCxgvDMEwactH3RR7Xz7uW7+YnKwlOIWBZBELuVVwYhmEYL6lqS0yjxG+tCNrk11aWIuw2LRZw6l3MOb6kMF85sHR2N3Up4yWT7ACzEabsM9NyqhfP7PvYe1ECuK+mHPNnTFMpbzIapF+v3rtmNB1rbLwwDDOlyTTkPRJ9X2R/FwEkFU+ai8+Z3n5YRABEYOdnhmEYZuj4zf/ZpEEFGSWpDIekTb47z4cswpWlhaicdQVaTvWq/jDP7PsYcVvAIqh+MgCwqnqe+lk3gkIBKV4yKtQ/6IzjvWPnUP/xecTjtkcwgABV4A/Ac30Pr1ikxpMXItiAUlMLhRIS0blOI2PjhWGYKctohrwb2qJ48GnnXACw42AHtm1Yoc5nFue/c/Qs4razEG1cXZWU38wwDDPRGYt6Cf3c5vwPIKs1IcgoMa9LRk8gvNFzmTYmGzseP/spjp/9FG8cPg3HpElAAL5y/RxcGoxjVfW85DXBNYKc/ycjG2H+2cuHIIM4cj3Suev6OXh05VUeuWdbOEX7W95rVQbUoGbxEJxITbb3b6iw8cIwzJQlF4X4qc41qC0Ug3FvN2Q93aDzwiVsc7sxCyEQ7RvIyZgYhmHGipF2HmVrCOnzf/+gjV2NEZTNmJbVmqCMEi2l109xbPPrzbDd9N+Nq6uSnFZ+jSzNx0SkjAq/a1FGkFszI5/X74e5loQsx6DSe8zMKipQn9edakSkmmgCToqb3q9m7dLyUVtT2XhhGGbKkotC/FTnynM7MQNAXig5tC/TDRraotjZGBmVcTEMw4wFI7nRHYohVFtZinDIUo0kXzzYgU33VGe0JsgU4BcPdngi5Ga0YjBmY3dTl3pMEGju7MFTe497amQ2v9aMDyM9Kcf75Wtnp+3pMuAaGb2XBn3vhzS2hBCq5wwAbHylCbb73POu40x+Tm/Cufn1ZiUiY/arkWMbjTWVjReGYaYsuSrEDzrXtkdqA2teMin6ZBiGGa9kG/kYSeeRaQjtaoykHIsc68prZmHP4dMqbSvaN5B27pWGkh4tsYXAz/a1YvuBdqwwrmtV9TwcOHHeSQkOWXjxYAditvAYFRvvrsK6Le8jFndqWzZ8oRK9/TFsP9iBeFwgFCLMKirwSCjryJQw2VTymX0fJylUAsDm15uVsbX53mqVerZkbhF2NUbw/P52FYUZcD/32B2L1Tn9jBWzQeVorF1svDAMM6UZiUL84Z4r06JPhmGY8chQIh9yw727qQurqucNa77z1AwGGAh+Yw2HLOSFnHQoaUClm3uloaSnddkCOH72UwDAh5EefPuLlSialqeOJzf9Jy9cwvP7232jTRY5ipLhkIW7quaiZmEJ1iwtx87GCHY0RNL2+Yr2DcAWjmqZbScrVOrjFkJgb8sZde8fuqUCda3dHkEAi4KzA1IxGmsXGy8Mw0xpxrJgVJJtB+exHi/DMIxOtpEPwJnLZBrSgRPnsWRu0ZDnNN3jn8pAAOCR943HbTywvAICTr2HPrag8evpZkE0d13EP/7RLUnPV5cV+0ab9JqVWNzG5teaUT2/GGuWloPgXIeAV+JYfk6O0Yxk+SlUJupXgDcPnwYA1d+ltrIUBXkWBgZtWFZwb5fxABsvDMNMWUZLbSydwZFp+sRYNQRjGIZJRTaRD8lIF3frNYO7AmoGG9qiePFgh0fet6qsWBlROxsjqsA+aJ6tWViC+2rKsa2+PamoXqLLGOtpZiGLsP62Kz1RGXn/pNSxLeA2ouzB1vp2j+qYLYB9x86hvrUbIEIsbiNsEe5ftgBrlpanTNnSDbw3mk95amxkz5iJkq7MxgvDMFOW0VBGycTgyDRPeDTV0cY7RLQAwC8AzIGztm8RQvzIeM/tAF4BIDuw7RJCbB7FYTLMkJlIUdZsIh+SdE6boV5/qvm0rrUbMTc3igCsvGYWdjd1eRot6gX2QeNfu7QcLxzo8BzrqlmX4/KCMNbdXOGRMa5r7VbHj7n1KNsfXZF8TUQQhjkkkKw6JgC3qaXzykBcYGt9IqXssTsWp7w3snD/w8gh9bw0tiZKujIbLwzDTFlyqTYmF97OC5cyMjgyWTRGUx1tAhAD8CdCiEYiKgLQQERvCiEOG+97TwixegzGxzBDZiJGWTOJfJjvDzIyhnv9QfOpXz8tma5lAUkF9nlhCyWF+R51MHn8zfdWOypdtkB+noW/uu/GwHOGLFKGji1E0jog08ZSkR+2ACEQs4WnNgVA1h3upXGl17xMJNh4YRhmypILZRRdQjNmC4QtQljTwh+OwcEqZAmEEF0Autyfe4noCID5AEzjhWEmHBM5yprNPBVkZOSqDtCvn5YtnJ4lty6eiVXV8xDtG8DG1VVo6uzB8dO9eOLlQ7CFY9jcV1OulCKXzC3CupsX+KpHmufcfG81nnANnXAoeR0oKcxPOe6bF5XgmjlFqCorxu6mLuw7di6R+mYlN78Muj/y3tZWluKhWyqyMlrGUySQjReGYaY06SIe2UzYfhKacVtg3fIFmD9jWtri1eEs9lMZIloE4HcA1Pu8vIKIPgTQCeC/CCGafT6/AcAGAKiomFgeSGZyMtGjrKmUFTORMC4pzM9ZHaAeIdL7aa2qnqdqXcIWqfQsyUDMxrb6duzyqYupLitOeV1L5hYhRIANQLW3165h8+vN6mkCUJBn4eEVi9DcdRGll+fj9d904eCJqKqZ0SNDfoX5fvcnHEpEbrKNZjW0RfHg03XqnNseGdtIIBsvDMMwAWS7MJoSmgSozsPpDKSJliIyXiCiKwDsBPC4EOKi8XIjgIVCiE+I6GsAXgZwtXkMIcQWAFsAYNmyZUE1uAwzaoy3KOtIeN3TzXN+nemDNuWSTCM0W+vbVYqU3qtk4+oqbD/QjtnTL0NzZ0/iWHGz+sRBpmdtP9CunFQDg7Zq8hg0f+9sjKhjxm2BnZoam75uyAiQVBPr7Y95eq/ImpnN91Yj2jeAksJ8zz0yf0/m/dGvQd6rTH63uxojSl1twFWTY+OFYRhmHJJt6oapuKOnGIzkeRgHIsqDY7g8J4TYZb6uGzNCiF8S0d8R0UwhxLnRHCfDDIXxEmXN1LmSbhOcbp4zX4/2DaQsPgcyi1D98JdH8JN3WwE4ssCyr0vIcv7v1I/0IGxBpfiGLEJcOIaGJORqKYcswuGuiwknFcG3IaSeqrWjIeJ5/46GCGLxhJGmX4M0XB58us5Xjtl2m2nWVpYmGXumSpq5JkEIT0+bTH+3fqIBY0la4yVI0YWIPgdgO4BFAE4A+KYQIpq7oTIMw4wu2aZuDNVbOtFTRMYCIiIA/wDgiBDibwPeMxfAaSGEIKLlcGpyu0dxmAwz4cnEuZLJJljOcwODNogoqc5jKPNgujm3oS2KLe+1ep6TqWB23LsFj9vAHdfOwmeDcayqnoemzh4lh2wR8MDyCpTNmKZqZQAnul6zsASN7RcAtyFkSWG+516sXVquivEJQFVZMQ6d7PEYaeY1/OlLh3wNFwKQn+dtOimP46eS9tgdiz2NQPWoU83CEjy193hGjrO1S8ux42AHBuMCeSFCdVlxkojBaJJJ5MVX0QXAwwDeEkL8kIi+A+A7AP6f3A2VYRhmdKlZmH0H6KF4S8dbisgE4VYAvwfgEBF94D73XQAVACCE+AmA+wD8eyKKAbgE4AEhxFg7DRlmQhFkVOiRlkwMHDmfyhSrza83q8aU8ljpUsX8ojup5ty61m6zxCSQkAWlPnbgxHlsXF2FPE2ZTLj3AoCqlQmFLHzQcQFxt6P9F66e5U0/c9PB9Pu37uYKtJxu9txP8xrMId9YXox1N1eoewMAnRcuIexGj/xU0mRkRW8EakopZ2ow1iwswbYNK1Q9Uqo+OKNBWuMlhaLLvQBud9/2cwBvg40XhmEmESPZAVoeL0gWVH9+PKm6jFeEEPvgbYrt954fA/jx6IyIYSYnfs4Vv/qUTDbB0b4B3xQrM2oDIMmzP5TaQNk1vn/Q6Sq/bGEJDpyIeoyDEAFfvm4OZhUVKPWxwZiNps4eVVw/GBeqWP+59bVJPW1kLcuew6eRF/IqTK5d6qQP6/fPjICY6JEOi+DpHWMW4a9bvsCjgJZNZGUoynCZRmtySVY1L4aiyxzXsAGAU3DSyvw+wyouDMNMSIZTi+JnkPgtvH6bgLH2ajEMw+iYkQG/+pRMNsF+nn7zWDsbI6pAXJ8DhzIfy835zsaIStn6zcke37pEU32M4BTIS0NHL3R/7I7Fnp42snhfGjF+CpOm0SDvo/maZOWS2fjVb89AGFEq/T7E4zbmz5gWGIXKJLKSbbbAeEhzzth4MRVdnHRjBzef2DcwxyouDMNMVIY6SfsZKkELr77wDQza2PLuR2Pu1WIYhkmF39yYySY4yNOvH4sA3zmwtrIUlkWw4wJkUVabZmkMhUMWVl4zC7OLCrDGEFPxM3Tyw5YaCwGqVkd3Tj23vlb19pIpXMNRmPST3Dfvg36//JpoprvffuMZSq+c8VzzEqTocpqI5gkhuohoHoAzuRokwzDMWJBpzUs6eUr5mrnYN7RF8eLBDrVA2QDauvsg4CyUoSwXaIZhmNEgaAObySbYNHLMYwHwREDkcy2nehFzi+xjcYGWU70ZbZw9DqKYjTcPn0Z+iLBmaXng+6Whc1N5MfpjNq6ceTle/00XbCGw6dUmgEiphT23vhY/+MYNWGOkhqUiVRQpSHJf3gd9XaqaNz1tpD6dUTmcXjljRSZqY0GKLq8C+AMAP3T//0pORsgwDJNjUtWipKt58Zv4g7yS5mL/1N7jiNnegLSeogAtws0wDDOeMDewmfRxSbe5bznVqzrcm4X7u5u6PO/d3dSVtkP81vp2VZOiMxB3eq2Y49CNioGYjf0nHBHdppM9EIDqAQMIlUa2S+vZItPg5P0JIlVU3yNvbBHuX7bAEyVqaIti06tNGIwL/PrYOUhNsqFG6nXjbqJE+zOJvAQpuvwQwAtE9EcA2gB8MycjZBiGySGpFtxMcqz93vPYHYt9vZKp8pFDFgFESp0GcPKZJ8JCwjAMY86FclNfUpiP5s4evHiww7e7u5kmZRF8jZ9V1fPw3rFznsc6fnWGG19pQjygYIF8PiPnZD1lC3CMlpBFIAg1V8fjTt3Mi1phveWqf6WLYKRKvUqXlrWzMYIB96I8wgOh7OtPzOj/UI4xFmSiNpZK0eXLIzschmGY0SWVgZJJzUvQezLN/zY1+Hc2RrCjIaKUaibCQsIwDGM2RJSbetN2SJcmFeQsklEWOV/qUZegOkNb00kOOUUrTl1KiFBVVqw+YxFh873VeOiWClXDsv1gh0pTywsRNt1T7ZEq3tUYQdPJHvwm4kRl4gKIu+/PJIKRao1I9dq53v6k5wjAfTXpGyKb1LV2q+j/UI8xFmSlNsYwDDNRCUpZSGWg6B6wksJ833SATIoXM01Le259Lf7iGzckyWoyDMPkgpGUZdfnQl1C2MRsUKk3r7ThRF6C+sk8dEuFb6pYqjpDaZysv+1K/OzXHyMOp0v92y1n1GdsIbDxlSaVGlyzsARrlpZjV2MEAkgqwJfKZGaEBkiuURlpZhYVJD1XkOeIBGSLuf4N5RhjARsvDMNMelKlhqUzPuTjVLncQV4yKaMZlC4xHClmhmGY4ZBNoXamRo6cC7fWt8MighBCpYJZFkG4hoIu/Ws6ifRaFz8p+WjfQNL7MqkzrGvtVulWcQG8deQ0iEj1conZAru0OphU0Q89WkRw/iODPBYBG1dX5Wwu13vAhEKEby5bkFbdLIjxoBw2FNh4YRhm0pPOSEiX4mUWcaYyMuQiL7sQB8ldAv5Rn6EovzAMw2RLps6TbOckGVG2hVMfsv62K1E0LQ8fdlzAm4dP+xaGB83Bnrl30MbGV5pUk0uCE3GQ40lXZ/hm8ynPsW0B3LxwBg60RZXh8eLBDlSVFSeJBQTVxsi5+4tXz1LXBjjNOPX74WeYDZWahYlu97qRFySXnMnxJtoaw8YLwzCTntrKUoRDiVzsdOF8c6EqKcyHFAWzBTwpD+bn9BxqW4gkuUtTk99PgcxvQzGS6R0Mw0wcRnrzK8m0j1W2EWL9/QSBoml5qK0sxY/2HM26MFwfI7lzqpyLTSPIbxOu37tn9n3sec2yCB90XIBWFoOYLZSBJA21llO9Sc/5yTu/e+xs0r3MVIwgW/RrnYoOLzZeGIaZGsgVSpgZyl78FoJo3wAIzmJpwetV09EXbQgBS6rTuJ2cq8uKfTX509XgTMXFiWGmGn4OCv277xdtGMox9ef9JIlNUhk5svaDACXn6/f+nY0RV2I4u8JwXdSkat50PPv+CXUvLCTXlujXC0AZDkRQRg/gGBFfunY23jpyWj1HACy3oF8aRjsbI3jhQIcqah9IYSz5RX4yFSMYDlMx/ZiNF4ZhJj1SUUUAiNsi5eSuLwT9gzZ++s5HmFVUgJAFxG0gHPJvHNnQFsXJC5cQDllKKczcGOhRlYGYjSf3HMXjd16TVgAgKBrDMMzkIMhB4XGIIDnaMJRjZuoMMbvI+xlWD255X9WRPH+gA9/XFLt0I2JHQ0Rt4PNClHFhuClqElTz4ne9X7h6Fj4bdLqgCMNw2fCFStxVNRfvudES2U+lynUwScPrXG+/pxeX5YoN+KVo+UV+0okRjASZRtAmE2y8MAwz6Uk3ueuLtEwxk96yNw6fVlEXAL6NI/VFM2wRHlhe4WkqZo5Dbkb2HTunVMZSLYJTcXFimKlEkPfcnDP8og3ZHjMTT72fgfPYHYvVa1JRbFBrohK3BZ54+RCaO3uwZmm5ev9Te48jFrfV+ypKL8fOxohnnEGRoZMXLnnGKg0WPwVI0/H05uFEVEViudP3s++fwF1Vc32NsiVzi9TxN73a5Pns71TMwKbXmhGLZxYFN8UImjp7AnuPDJWJWnQ/HNh4YRhm0pNqcvdbpO+rKce2+oTMp55o5tc4Ul8047ZA2YxpvguIHMeTe45i37FzGXtRp+LixDBTiVT9ooKUuIZ6TL0G0LIIJy9cQkNbNHBOM2vvlKMmZCFkAbGEXYK4cLra72yMqI29GX04fuYTHD/zCV440A7LspIMAfMclkUQcSf9tqQw3xPt0WtIghpMSixXEUyfdx+7Y7GvwmTNwhJ896VDnlQ3AnDwRDRQgCUIeTw9iqTfn5FgIhbdDwc2XhiGmRJkomYjF6O1rr6/XGxVvUtAyD+byE7NwhKsqp6H9z9yGqil86Lqn5WeTIZhJhdBDorhCHWkdHq4YiKDcYHn97djl7GZ1iM+el8Wj6MmbuOB5RU429uPt46cVp3s/QrppdPmvWPn1BBiNgDbsXwGjMiQNEAGY7aKlkC4vVm0aI+ct3c2RjB/xjQ8vGIRnj/YgQt9g557ode8ZJK61dAW9aS6WeRcly7AYvarSccurS/MUNJ/WbQlARsvDMNMadL1B5DezlQh/2wiOxtXV2Hz682I246MaFA/AL8eMZkU1zIMMzExHSwjIdTh57TRu6oD/kXkslB+4ytNiNuJvizmfCnTY7fWt+OJlw8pA4YsQqcW0alZWILH77wGda3dnlQzfQzSECgpzPdEveXb47ZA69lPfK/zxYMdiNvCU5QvkVETKbhy6+KZSbWGEk9KnBZS+vJ1c5SaGBEgQIjZAn/28iG0d3+K73ztOt9x6cd98WBH1mpr+udHuifPRIaNF4ZhpjR+hkeQ6k+qkL/fxsPM2R4YtLHl3Y+U900I4atcZsprAt4eBxYRNruFsQzDTE5ypSKVaRF5tG9Ayb3raVZmMf5Te4/j5IVLnlQtIYBt+9vxYkME99WUqyaK9y9bgK317Ulj0lUco30DsNxICQEIWU6zy5BFaDvfl/gMOa/HBRA3DCICMGd6AW4on4E7lsz2FOGnMlykgRCyyHM9ty+ZjUdXXoWdjRE0n+zBh5EeAM4Yf/JuKz469ym+vfKqlEIw0mDMRm1N/3wuevJMVNh4YRhmypOJZn42GwkzZztsEWJxARtAW3ef6sps9gPwdILW5DXJ/Y+U8LSF04tAdqhmGGbyEZSOmo1n3e+9QZFlvfjd7/y6ytZjdyz2nefitvD0YxmI2dhW344dBztw/7IFmF7g3XaGLcfQMWtyZMqaRYkml50XLmHbfsfwIQA3zC/GoZM96lh6dCU/z8JT36rx3J/dTV1YVT0PLad68eSeo1hVPc/jANLneBEXnnRhaVjJ1C+TNw+fxnvHzgYaC+a9zFRtLejzI9WTZ6LCxgvDMFMac3FPpfqTSaPLhrYontxzNCkvvP18nyrSB5wcbJky5pdaJhcqyyLYbjqE7gm000g+MwwzsQmKCmeTPhT03lQOGz09VTdyZOQ57MoKA0ia58pmTHNUul5z3gs489ZAXGBrfTtCFnmMgnU3O58xo94Pr1iEZ/Z9jLgt8Oz7J/Dc+loAcPrFuBv4FZWlaO68CAiBcCghdewnoSzHrqetyfobXV1MzruhkGNVxe1EXaLpVDJJZSwMV3Ql089PFWVKNl4Yhpl0ZOqZ9FvcU07+aRpd+nVTlnnhAPD+R1quuUh480yDKdo3oBaqkxcu4fn97SpaQ+7Kn583eRcmhmEczHTUbDzrmb5Xf5+enqpLJHt6VMUFnqtvR9iCp6+VnOd2NUZg24nohDRWBBynS8gilf5aVVasjIeWU73KyDCbRZopa9KYirvz6ddumIcffOOGtPfBNtLLth9oR8vpXl/DTX5WX0f0teHhFYvwfms3mjt7kqJHmfwusyWTz08VZUo2XhiGmVRk45n0W9wfu2Ox6ui8qnqe+qzsEJ2q0eVOTU3GrzB0873VzsbAdjyFsqA1SDRAeiJ3ad5GLtpnmKlLNqlkmXrh9ffpKV9+/WY+01KmYjZw17WzcNOCGUkd7ZVKF4Abyotx5FSvMnL0qMqm15oBIRCznTStRIRZqFoXUzq6ZqHTuFc/z8sfdGL5laW+dYD69VkWeQQD5ky/DIdO9vj2kTEVHnOhCJcLpoJsMhsvDMNMKnSZzYHB1J5Jv8Xd7Oi8ZG4RAG+H6JBFvnLI+nvCIUoqDH3olgosmVuEnY0R7GiIYNv+RD+EVKIBU8GTxjCMl3T1KulSydJ54f3mGBnRCOo3s/m1ZlWsDgCziwo8zSjNWr38PAsb764CAHX83U1dHiEAAEmpWGGLsOmeao+jxmwmTOQNgu9u6vI1XqRymnRIyfdWzZuOi/0xT/SopDA/MIVO3tOgvjC5YLwZRuMFNl4YhplU6DKbNpBSh99vcdfTI6TnEYDqEE0A7l+2wF9+VOsiffuS2YG5z/K9ZsQnlWgA93hhmKlDpvUqQOr0sKCNdao5RqZxmRvmmoUlWHdzBZo6neixnirW0BbFyQuXlCEQClkelbGGtig6L1zCj/YcVRFsi5y0MwihngMSc6xuiPiNd8MXKvGTd1vVe6Rh4net0iFV//F53FdTjlXV8zw1PA8sr8CapeXeFLpYcgrdaBoQU0U5bCiw8cIwzKRCl9nUVWKCMBf3oFQLs7eBiSzol0Wqb7ecSepaLSkpzIflFq/4pXP4bUbk8+yBY5jJT6YNDaVRIJW+Mi3SThWhTmXwbH69WdWtbLo7WXBENwTkMX74yyPY8l6rpweLnlYLQEWjzfoZfbzmnPidr12HitLLVUTFjLrIqEWnLlfvqp+FrERNTdwWKJsxLamuhXzqbuRYRmMenirKYUOBjReGYcY92YTOh6u2EpRqkS51q2ZhCe6rKce2+vaUdTENbVFserUJMVsg5CqOAVASpDULSxLGjZvvbaYysAeOYSYvmTY0NKWK1y1foCId6cgmQm32rDJ7VOmbbNMQ2Frf7omOAE5kJRwiVHyuEEDCWFrrRj785tigef2hWyp8U8VMg0oqRSrhACE8/WP0hppBKXSjPQ9PFeWwocDGC8Mw45psQ+cjobYy1LzmtUvLsasxggHXa+e3IdjZGMGAWzAaF8DeljMqfUHmWG96rdkxbixSOdfsgWOYqUGmDQ09RkPcxnzXaEjl7JECIE0nezySxU2dPR4Hiv5+3UCytDoTOb8F1Q7WtXbjjeZTnvMTAXdeNwfvHD3rNLF0+7/ISE3QvJbtvG4aVOuWLwABePFgh4pQbVxdhabOnqT6Q30cegrdaEdCpopy2FBg44VhmIwZi+LBoSwYmRZQjvT1yMLQja80IW4LbH69OamRJBmfOXPxM8/1bT/QrlLP4rZAc2cP1iwt9/QfOKl5CacqRLQAwC8AzIGzB9sihPiR8R4C8CMAXwPQB+BhIUTjaI+VYdIh56KSwvykNLCghoZ+RsPW+vbAOo2GtigefLpOzS+AW3diEXY0RBCLJzuI9Pk3FrMBcr5scQFsfOUQ3m45g5lFBUkSw3qnep1Hv1CJi/0xFQWR/V90wyHV/cl0rvZrClmzsETVteg1jmb9oVnnoz8e7UjIVFAOGwpsvDAMkxG5Kh5MtyiNROhcPwcAT0rASF9PtG9AKen0D9rY2RjxHHfN0nK82JCQPl53cwVaTidSE2ZPvwxAQs1HIOGB29UYwYsHO/D8/nbsSrPYTwFiAP5ECNFIREUAGojoTSHEYe09qwBc7f67BcDfu/9nmHGDPrfawnFw5IXTp4H5qWhtfKVJRW0GjM24NEQkBKfupOJzhdi2vx22cOasXdqcZcoox7TClZgNvHH4NAAgP0TYtmFFkugJbKFqEMMWUFF6OTa91uxRF/Or6zHn7GzXnqCoRaY1jtkckxl92HhhGCYjchEyz8QgGu6CYeY+gwixuLcJmp+Rka2nT/echi3CgKues6Mh4tmA1CwswbZHvNejpyYAwDstZzAYF8gLkfK6KpUyO7kHw1RECNEFoMv9uZeIjgCYD0A3Xu4F8AshhABQR0QziGie+1mGGRfocyvgRjZc5UJZJJ6qgF7Kuq9ZWq6aNgKARQlJ94a2KN5pOeP5fMgCHr/zGrSc6vWce/vBDk8al3ScnOntx9vu3GQyGE/U+JUU5oM0HWN1bOFIFOuqjCErUdunj1VfF9YsLR/S2pMuaiHn7Gx6Z3EkZHyQ1nghop8BWA3gjBCi2n1uE4BHAJx13/ZdIcQvczVIhmHGnqFEQNIZAJkaRJkuQn7n8Zwj7pRryiZoFjnpD6aRkW2UyXz/7Utm483Dp9UmxC8VQY7N7/q2bVjhez1cwOkPES0C8DsA6o2X5gPo0B5H3OfYeGHGDfJ7LecpC86mPiiVS2LOnwSgIM/CwKANIuBL184G4J8uBgBfunaOcoroxOPJYiM73Vq+sEX4yvVzEO0bwIETUfV6yIKqddn0WqLzva4wFrIIq6rn4cCJ8ymb7vpd10jPexNJhph7vSSTSeTlWQA/hpNbrPM/hRB/PeIjYhhmXJJtBMRcHPwWqXSb8Uwm7XSLkCftwSII4Sjl5IctfPHqWb5Ghi4j6heVMdlpyJrOLCpAQV7q60o1Zj/jZihewqkAEV0BYCeAx4UQF4d4jA0ANgBARUWychHDAMnz0UhtKk2Fq6bOHjSf7MFvIj0ppZLN+XPN0nKsWVquZIf3HDmNd4+dxVo3cmHy9tGzaGiLOscJkRISMecss/j9xgUz1P2QaW7rbq5QKWODPuciOL1blswtwtql5RBAYEpc0HUN9V5vrW9PklPOVfH9SBsaE8nIGk3SGi9CiHddrxbDMFOcbELmnmZfg/7NvlIZRKbKjd7wLOg8/YM2ntxz1NPZ3qwXGdRUvJbMLcK7x84mGRm6jKiAo1ATtNA2tEWxoyGSkDW1nFQvP9lPU3I0aOH0M/xyUZ8z0SGiPDiGy3NCiF0+bzkJYIH2uNx9zoMQYguALQCwbNmy5JwYZsojC+HjtkBBXnbfSb8NbapNrlQsFHCiMFKm11QDC5o/zSa4AlB9TXSkw+axOxZj24YV2NkYAQGeHi1Adr2vaitLkRe2PMaSjAhVlRV75rUgIQKzlkcaigDQcqo3K+Nga307vvvSIQDAe8fOAXDklXMRxc6FocG9XvwZTs3LHxPR7wM4CKdoMur3JvZoMczUxCz0tIV/rUaQQWR2Ot5W71+kXlKY78nX3nfsHA6cOJ/UkVrWi+g9CoIW/2jfgJIRBYCYTxqFPk6Zwy29i/p5JaYxlqqpnLlg7W7q4gXMwFUS+wcAR4QQfxvwtlfhrFXPwynU7+F6FyZbGtqinkL4/kEbW979KKPvpN+GFkCgc8LS5kqLnIJ6vRu8uSn2mz/9lLaqy4rxhGt8Ac5c5adcaKaQyXPokSE5X5rPyfduursKP/v1x2g9+wmEQNaS72YtDwD1WM71YYuw+d5q3x4vOrubupIeP3RLRU6K73NhaHCqsD9DNV7+HsD34azt3wfwNwD+0O+N7NFimKmJueDpzb4ymYDlpC3TsYLSJ5o6ezyfC1KuCepCHbT456VIo5DHlNfm54E0MXsyPLC8AmUzpmXUkM3ME+cFDABwK4DfA3CIiD5wn/sugAoAEEL8BMAv4cgkH4cjlfzvRn+YzESnrrUbtkhsXwSAE919ABwDI9V30m9DCyDQOQEhYFkEgjNPPX7nNVlvis2NOeA4ZB657Uo8s+9jxJUCmFDKhakiSfpcZ/akOnnhEn701jFVmyOPI+dtIOEsynQjnsp5I4nZAhtfaUqSojdZVT1PRVwAoGredM99GkknUC4MDVY482dIxosQ4rT8mYieBvD6iI2IYZhJg7446IpamSrF6OleptHR0BbFTvc1HXMzMZQu1DULS1KmUWRSz2Pil8cd9F6/BSvb+zfZEULsQ3LbHPM9AsBjozMiZrKiF9S79oXihvnF2Hh3Vcbfe1nTEg5ZiMf9nRMbV1fh7ZYzaD37CX76zke4fcnspGN896VDvnOTScupXk9URyos2m6zFunsCYru6nOdqdAo0+jk7dCPI5+Tss9y3npufa2aV9Pdb9N5YxowtgiOiEseuqUC7d2fYst7rbAF8My+j1FRennaiM1QyJWhwQpnyQzJeDGkJr8BoGnkhsQwzGQkaAJOlfstP2MWa8oFVffuEYC7rp+DGxfM8Bzrp+98hM8G3aaPWhfqoY4XSPYMRvsG8Ngdi9MeL5uFzTw/L2AMM3qY85L87n7QcQFvHlb+W1TNL844CqJHLsIW4YHlFcr40J0TLad6Vf+U42c/xa9azmDzPdWI9g2gpDAfm15tUlHhFxsi2PaIN5U2yOAAnHo/IQSIAAGCcJ1CQdFdfa4TQnhqAfWeL9JIWVU9D/Ufn1c1LxYBG1d7jbsdbp8rv7Gb98x03vReGsQz+z5W9ZOZRDeKpuUpgzPTiM1Q4Xl6dMhEKnkbgNsBzCSiCIDvAbidiG6CGz0F8GjuhsgwzGQl0wJHc0GQC6puuBTkWXh05VWe922tb1ebAAAgi0YklD/U9AD9Olj+kmHGlqDvYNC8JB0nfn2YUiE/qzdvlL1S/GpXntxz1PP5WFwoB8lTe497+qz4pZF5+8YkDJa8sIWHVyzCniOn0XruUwiREC+RkYjtB9oxZ/pl6lhBTSoJUMcNWYT7ly1QhlhTZw+21ber+TnaN6COJ8UIACd1bleAkmMq581dVXOzmjtrK0sRshJjD4rY8Jw8cchEbexBn6f/IQdjYRhmipFtLrdfnYm5cOqYxZpV86aPyKI03PQAU7mI1cMYZnRJ5ThJNS/JlNJdjQmFwUyprSxFOJRIP3tRawapY9ZpWOQIk8javZDldLcH/OttTOeKTGs1ozYAYNuOYdTQFtVe68HbR8+qqEhQ7aKeLivvG+BIIO9qdKIrpiiAec+GUgidbXSjZmEJNt9b7VG8zFa+nhlfDEdtjGEYZlhkE8EYSp2JuQlYMYQ+MkFkuoA2tEXVRkd6aXXlooFBVg9jmNEmlYGSybwkmzb6KSDqfUXMWrX7aspVVGIwLpJ6SDW0RdHc2YMQOQ10AafGZtOrTQARYnGndu+ua2dhdlGBr/ET5FwxozYAYLnR6LrW7sCITrraRb+Nv16vKEUBnltfi+qyYs/5zce54qFbKlLWDbIk8cSCjReGYcaMbCIYQ6kzWTK3CMsXleBAWxQQwLPvn8BdVXOTClFHwtMW1MtB72y942AH7l+2wKNcZKVIZeM0BobJDakMlHTzUqqNrtlXJGw5xfFyjlm7tBw7DnZgwC2W39EQUQIifrV8AJShAwjVUPemBTMC5z8pZmIWxZsqiiFXbliOXX8tHPKfl/ycNn7347E7FiuDSCDhpAGgZOgteFPKRoqgeTOVw4kliScWbLwwDDOmZBrByHZx8dsI6BsNc8H96Tsf4dJg3NOFWR4nnQERZAjVtXZ7uk0PxAXO9PYr5SKLvJuHTI7JMEyCoRr4ZjqU3qdE/j/dRnfAFQL5sOOCSosyU1Xl13/QjdKUzZiG25fMxpuHTytDxJyT9Fo+ASdtLGwRQKQUylI5PB7c8r4yQl442IHnN6xQ1xOkolizsASb7qnGEy8fcorz4USX9Huin0O/50Fzc++lQXUtNpzUtyVzi1CQl5j/Sgrzk44JwPfnTCPdQ5k3h5sKzIwubLwwDDMhSLW4+G1g/DYC+sKqL7iWRaqwX+/CnOlCGOSJdXLcyZOO8c7Rs9h0d/qUN05jYJjUDNfAl+/N9hg1C50O8LLp4xuHT+PtljPYtmFFUqpq2HLSvkIhCy8e7EDMFghbhLywhVjcKYKX9SwnL1xSEsqhkIX7asoxvSCM5q6LnhQ0P2NLkpT+FReeovhURlm0b0D11IrFhW9j4KB7bs7NDW1RPLPvY3Vsco8v752s+dv8ejMAqN4wFjnCKrZ7n2SqXKa/m+HMm6wUNnFg44VhmHGLaZT4LS5Bi6lunPgV9ctFdHdTF7ouXMLxs5+qY8ouzJkuhKmiQmbqRjxuK8PF3IDo11tSmA+LHN8rpzEwTDIjYeAP9RjRvgHYttdIkOlSgKPaNXv6ZbhjyWxE+wZw8sIlPL+/3WlSawt86brZ2PvbM4jbAptea4Zt24jbQMiCklAGEobVgRPn8dz6WtRWlqas/autLIWl1csAQNPJHhUZSoWcx6S0vF/D36D7Zc7Nda3diGv3J6Slx0b7BmALb48ZGSGPq/94U+Uy/d1w+tfUgI0XhmFywnDrNYYb9dCNE91rCTjGglT8sl2pT51V1fMAZL4QBqWg7GqMeLygMvpTUpifdG1AYqOiUkTshJQpewQZxstQN6r63DTUY9RWliLPTf8EnHqR2spSNLRF0dTZgyOnenHoZA/eO3YWz62vRcupXscZ4UoWzy4qUBt4eQzASTNrOtmjeluZcxvc99vC+b+uoCXnyO9//QY88fIhZcD8JtKDbz1TlzZyYUaUAK/R4XfPSwrz8dTe40nzfG1lqZMeNmiDCPjStbMDj7Gqeh7e/6jb0zdG3tNMUuXMa+D0r8kPGy8Mw4w4foYHkF3ucqYeURWhEN4IRUNbVDWEe7+1G8JtshYOWbj9mll468jphHfSFvjK9XOSal7kQpiuI7R8b8upXpUOkRe2YNuJtLWQBTxwc4XvpmRnYwQd5/uU91H3OAqRkDLlBZlhEgRtVFN9V4KUscyUp3TftZqFJdj2SG2SkqBebwIkvt87DnYgbgvVtHHJ3CLsdOWEpaNC8mGkBw8+XYdNd1f5GlZ63xXZgFKfI6Wy1pN7jmLfsXMpIxfmtUb7BiBEopfL/csWJBW9+zXdNB1M+ty5oyGCPUdO413XkAv6vekGV8gibLqnOqVCWKq/C54jJzdsvDDMJGUsN7vm5nxXY0RJi2aauxzkETULOze/3gxbCFhGhEIfg61tJgZitqdxJQBYREkNLnVkY7WdPrKokoa2qFcCWfOmOpAnbU1PadvREEEsbisFnrDhcfSL1PDizDDJG9V0EdsgZax0NR0mch5aoymFbX6t2WO4AE6k9Vxvv3o+LoCmzh48dEuFxwj43qtNnijtQMxGc2eP7yY/qO+KGZmo+Fwh8kKknCmZ9DYx5901Pk045T33NN30MY6kCEEsHpxm1tAWVZGbB5ZXYKtsbuk6bdgQYfxg44VhJiGjIQOcCqXG43oHz/b2DymvfM3Sco8qjnlda5eWq+MShEd2U47BlB31Y/1tV2ZVOC+fNwUCdAnkkOVEgxK9GpzCWfk5uQHpvHAJ29xceIuAWxfPxON3XuM5BxfvM0xmpPuupEsTy+S7ps9DYYtw+5LZeLvlTJLhsnjW5fir+27ELle1SyKjuPrGfG/LGbxpOFVk+pgpiax/To9MAE4vFz0iEg5ZWLd8gZJjluOXc4+fISd7tKSbNzNJuUv1Hr/eXQV5wcfj6DMjYeOFYSYhI7nZHYohZCrKvN1yRqnoZNKMUjY3i9lOLrf0/pnXJYCU+dfPra/F5tea8WGkRx3ftSnUwmwRUDQtL3A8piHWe2nQ937I9DXh1tBsvrcaADx1Nc/vb1djfm59LR67Y7HqySCv4fE7r/GkXki4CJWZ7IzE5jTdhjpdTUQmG3J9HhqIi6RIrqQ9egmA43x5sSGSMprhl5Z66GT6WhU9giHnJYsIthCOOEDcxvwZ03wjS2GLAuflVE04dUwHk9/4gu63X++uVIqSHH1mJGy8MMwkZCQVV4alxuMWpMZtgXXLF2D+jGkZ9UvRoyUDMRtP7jmKx++8Jum61i4tx1q3hiQo/3rj3VV48Ok69ZlNd1ehubMHL7o56Onuj2mIPbPvY7Ux0CMxm19vVgX2m++tVnUzS+YWYVdjBM/vb1dRmAEjfSJdgSkXoTKTnZHcnK5dWq7qUIK+T6lSwTaurkJTZ09gnVtQVJcAj9KX7OHy2B2Lse2R4O9vQ1sUbx8963mOAFWUL+c/czOvH8+TJus6S0I+SoX6++K2wJevm61q/dIpiplj1n9ffgZZuvvtt04FvZejz4wOGy8MMwHI1iM5kpvdTNVlzLGWFOYnGRrpxuHXm8UWTu+VXx8/hw1fqPS9rlT51zULS7Dp7oTqmDQq1mhGT1DPBIluiNm2U19D2sZAH7cssJfIjYUupGORV8Enk7xuzv1mJjMjsTn1Sys1X8+kkF/vL+JX5ybn15+885En1evO6+fgjiWzfetQUn1/ZV0I4Mx5d10/B+8eO6vux3vHzqH+4/PY9kitb/qsrFUJW6RS14iAda5ASFDaXChk4e2WM4jZAgdOnMeSuUWoWRjcdFK/hyd9Us6y/X2lWqcybYTJTE3YeGGYcc5Yh8szVZfxG6vZgyAdukcTBJTNmIaTbuqFLYCfvNuKitLLPTngQcaSn+qYvkDL8WRyb82F0++69Nd7Lw3i9/6hXhlLumyo5UZm2BBhmAQjsTlNZQDpUV0zOpr02TT9ReScM7uoAAQooY2bFsxQSl9DqRGU1/7oyqvw6MqrPCmvMoXLjLLotSr3L1ugCt6FLVA2YxoAeJxN+nyu954xHT5BKm7KwAtZCFvBYgA6qYxGP6NOytjHbYGCvOBGmMzUhY0Xhhnn+Cl3pZvAR9rgyVRdZldjJCH3G0tuxiivJ1V61MMrFuEn77YCAjgZvaQ2BxLZQNLvOv2MCv3+9Q/a+JMXPsCGL16Fh26p8IxXT88wx5lu4dRf77006IwfUJ22dWUhXniZycxQ61bM7xiAlBFeP1IZQHWt3eq7HrMFNr7SpBwZ5mdDss+STy2IPucQABBAAsjP80alzSL7bK5djqlqfrGnXk/Og0HXWVVWjJDbnT6VSqFeJ7NLq7dLFw32pJzFbTywvAJlGaYCZ7oWJak2DgY3wmSmLmy8MMw4xwzz64Xs2TZuHMmx+C3qLx7sSPQ1CXkXz3DIAoRIO/bmrouex2UzLsPJC5+px7KBpLxOZXwMOsaSuWkw89NPdPfhuy8dwt/tPYauns/UeG0B7Dt2DvWt3SplJGwR7l+2QKVepLqH8vXf+4d6z/PS2OKFl5nsDNdp4ld8nk6uWO+z4mcE6JHZkEVqU2wL4ZkXZW3bz/a1AkS489rZKJqWl7LIXGf5os+ljUqnS48y567qsmLP4+kFYaUm5qfEaMrGR/sG0koZZ+NU8ZNRzjQV2BxD0P0wVRsto0kmwwBsvDBTlIkkuZhJmN8kXQrGSHlHzUVHbgwIwHVzi9DU2eNZuACkbJgGOMaJjFgAwGN3XA0ASTUrgNOgUhkf7mO/MW9cXYW/+OVhfNIfV89HNINIIhtECveoA3GBrfXtKfu7pBu/bmwxzGRmpJwmmRaMP/h0neqntONgB7ZtWOFxEphG0PrbrlSCG/nGvLi1vh1/9vIhZZQcP/MJvv3FyqTzyrn1s0FvHyf5nfeb34KMMT/J5ZlFBcoQi/YNwCKoMT39XitsVynRIgQqMQJCzZfpUvF0gzGTWsaHVyxCc9dFT4F/KvzWolTGqa7uaBGn2DL+sPHCTDnGuoZkKGQS5jffnyvJyaAIglp0Bm3YcGQ+j5zqVXnRITfyEtdSGvwWS2mcmMaKbrRI9MXdIngK5fXr3fRas0/TyAT54URUyPSopjO2TILGzzCTnZEqqtbnEiLydUrUtXYrhwjgOB3M76hpBBVNy8Pme6vVd1M3LhxJc+85trzXiruq5iZFCp5bX4u/2n0E+09E1XsFgLDlSKWnUvjSFQqf3HM0ETnWJJelIWYW4ettZEzDrrayFOGQc+9lFPnAifMZ1R2mWxP0152eWvDUD6bCby1KlX7MtS1MJrDxwkw5JrLkYjYTe5CRkc31ZxOhkWN7cs9R/Pr4Od+8aHn+3kuDeOLlQ4gLID9E2HRPtWeBfeiWiow2/aaXzm+Ts8vtVxDEzYtKcM2cIlSVFWN3Uxf2HTuXSH1zm8JkEr3SH2c6/qBjMcxEJN38tLW+HdsPtGPO9Mvw6Mqr0HKq19fIl9FS2SNp8+vNSRvl2spS5LnffQDICyWnF/kpJfqJd5ipShIhoAwNM0LS2B71vDfflWGP9g0kKRj6jUMeTwBJdX2DcYGdjRHMnzENty+Z7dtHxiIkz0tCqOPodYfp6m/SrQlmqly2Dh1zLcqkFw/Pg0wq2HhhphwTXXIxaGLPdAOc6fUPtTnl43degwMnziflReu553/75tFEz5O4wBMvH/I0bwRSF/br59N7sJibHFmHo5MfIvzhrVeiuesiquZNx7Pvn0BDWxQWEdbfdqVn7EFeSz+hgFT57qmYiJFAhgkiaH7aWt+O7750yH3Ugz1HTqvNsC5sIZHy5KnqNbY9kugEX11WjLrWbrSc6vV8Z59bX4udjREQgGYjjVWPWuRrhpAclzSI9M17UFPKldfMwkO3VAR+n3WjTj8eAbhq1uVoO9/nqpwBIQvY0RBx6u5CFkLkjbrcdf0czHKVziR1rd3q84Bz3EzWt4a2KE5euJSyibB+f2zhKKsNZ+3k6AozXNh4YaYc423iHAmveyYbYDPtId05M43QmOOXBsXupi5UzZuuNhRyc2+Rk0amI9dcqaYmuztnIres92AZjDl9GfRNgl6H8/nyYqy7uQLRvgE8fuc12NUYUbnrtnAaUG6+t1p5T4POa96b3U1dQ47meTZGEywSyDCZsrupy/PYTNHSVQQBp37NIicNKyh1zK/AXxoEUmIXSERfgzrK62tCSWE+Nr3m9GkBOeaBKfrhxztHz6q5MKjflPxet5zqBRGpSEn7+T7893uq0dzZoyIx29zaxnjcxpevm4Nf/fYMbFsgP89SvWQGYok+NHr9H+AYOI+uvCrlXGLW3DywPLkvjN/9yUb+PgiOrjDDgY0XZkoyXibObI2OoRoafudJl0qQSYRma307nnCjHjJtQnavj9kC7x07B4KTfiW9qHC7P0sDxiJ4+gWc6e33KIjJ1JGg+yM3OfK40mMpDR/9GtbdXKEW/XDIgm1708lsW6iF2bxf8j7XVpYm3ZtV1fM8ERu9x0y6311JYb7ayNnCX3SAYSY6ppCFmSqlC1tI5SzpePCLqur4pTVJRwDcn2VH+XXLFySdW/+e1rU6DSMFHMNB9lCREZwdDRHE447yY8XnCnH8zCfOGN33ZiKWsvn1Zo8DJ+7OOz/4xg3qPTu12kbZ98UvcqPX0Oj1fzcumJFS1cu8b3G3L0zQPDVe1kyGAdh4YZgxZShGx1DUxYZS55MuQtXQFlWGC+BsEJ54pQm2LTwbAwHHKCCLQEIgHLbwh7+7CE/v+xhxWyAc8uaKb3qtWX2eCEmpI/J65DXq8qC3L5mt0lFkvndQuobq06CRn2f5bg52NkaU91b+Hp5bn0hZWTK3yFeiNZPfXbRvQG2mCI4HOpNCWIYZDqNZZ9XQFkW0bwDf/mIl3ne/W0fPfIK4LWARsOELlb4NIyVBNRZmg1o9MiIdAUvmFnnmxuqyYuXA2HGwAzctmIGG9gsQroPEdHjo0ZmahSVYu7TcM/+oni9udCjdvGlem3TudF64hIa2qDqP2fPGPJ7fGLNR9QKyT6Hm2jxmvMDGC8OMISNldJi53dmeJ2hRSuVtq2vtTk7/MnNB4CzO4RBBLddCoLc/BuEWyMbjiaLSp/YeRyxuq8/VLCxBY/sFAP5N19YuLddSRQRmFRUkXad5DeFQIrddSo6GQxbuqylXEqWAdyNAQNLvobayVKW37XJTN/RoVqa/u9rKUhTkJVTafn3cUQni2hcmV4xmnZVffdhGzekBAEXT8jyfMZULZXG6rlAIIOm4u5u6VHTHguMYSFVvMhAXHsWw/kEbzZ09KZtlmvPJwysWYct7rUnRoaD7afbtWnnNLLxz9Cy27fdKsvulxAXV0MhzZaPqBWSXQs21ecx4Iq3xQkQ/A7AawBkhRLX73OcAbAewCMAJAN8UQkSDjsEwjD9Bi4fpUczUMyajA/oiKI+VafF5pouSWeRqATA1vQjAbVfPRMXnCrFtf7uTiuFGZqSsp2URTrpeR3Nh/6DjguOdtQhfuHpWUsGtLPLXxQHWaJ5Rv9zt+2rKsa3eGYsF4NbFM/H4ndck3Xv9fgHwpHEEpW4Mxasp/wZ0lbaJpoLHTCzMv91dWp3YSP7NNbRF8eSeo0n1YbrhYlGySpg+L/ZeGlTiGrooxhrNcTHgHjcofdM0Jvz6tACOM2P7wQ6sWVqOx+5YnLI/i5yfZe8VILOaNT9j6i03Wtw/6Pwu9M9nUkOjHzvbOSjTdLCJrNLJTD4yibw8C+DHAH6hPfcdAG8JIX5IRN9xH/8/Iz88hpn8mIuHn6cykwLJoDxov9oN3ZM41EXJVPshODUwKuULTtHs43deA8C7+a8uK8YOVwVsMC6wrb5dRS/MhpzS4Nlz+DTyQt6C27VLyz1pHOaiL8eps3ZpOXYc7MBgXCAcoiTDJciQ8zMy08l9ZiNrbaq0TTQVvNHGz7FmvH47gFcAfOw+tUsIsXnUBjiOMZ0EskZtJD3q8rskU7lk9EQaGAODjuMiqAmhfE5+H9//qNuTQkqARwHrvWPn8P5H3Vh/25UompaHksJ8Jf5RXVacpEC2+bVmfBjpSTpvLC6UAeE3N7ac6lXNLPUGkgBAPoaYH/LapAEko8ECwIuu8STfo/dvCYWymxeymYPSMdFVOpnJRVrjRQjxLhEtMp6+F8Dt7s8/B/A22HhhmBHBXDAz0ekH/BeXTGo3hrMomYtwQV5ikTXTsExvY8z29iQYGEykYwGO9Kmexy6NmHXLF2C+2zdGHjubSFLLqV7EhVuwS94ku3Qe6WxTLvT7Y47T773jSQVvAvAskh1rJu8JIVaPznAmDvrfmnQSjLRHXX6X/CKcS+YWBaZl6exqjCTqWNy6NnJTSGWU9ck9R1WqWMxOKAaajWllR3o5H2y8uwoPPl2nGl2adXpA8pzae2kQf/3/tXjqanS+fO3sjO7d1vp2lTpXkOekju05fFrNcUm/A9mDxuhFk0kNykgV2vP8xIwnhlrzMkcIIXUPTwGYE/RGItoAYAMAVFRwp2mGScdQjYmgxSVd7cZjdyzGxtVVqnlcNshF2BZO4f3Ka2ZhdlFBoNwmkDB0kgpsAfReGkyKOkn1MqlGttbn2DqpIkmyk7ZMW4nFva9n65FOtzHINiVvpDYaU4EAxxqTIXpNxS4jJXIkMOcxPcIp/y/Vu6Q6oP79kD2a5PwQDieEPfT57fE7r8H7HyUk0W0hsLupSxklEr/54L6achCAqrJibHq1CYNxgbwQYe3ScjVOXSJ44ytNgVLJIQu4fcnsQENMXtPOxgi2H+hICJ0M2phdVKAcP+bvQHf06IbNWNSg8PzEjBeGXbAvhBBEFPR9hhBiC4AtALBs2bLA9zEM45CuDiYbL5t5LCC5dqOhLYpNrzZhIC4A9ODto2ex7ZH0C6E0BOSmYSBm483Dp5EfIqxxF3/z/XKxtYiw+vPz8EHHBZzo7gPgeEabuy4mRZ1+8I0bsGZpeaAYgUkq488UGTDz7WsWJnrU9A/GceBENOtu0jq655jzxMeEFUT0IYBOAP9FCNHs96ap7GQbaY96Jv2kzJQyIPn7ITftgJOCel9NuUeRTD/X6s/Pw6sfdkIIx1mzqnoe/uWjc4hr9gsBvipcFhE231uMbRtWpBQteWrvcdgieAsTt4GNrzjpZH7GhN81A4BlUcpavaD5jGtQmKnMUI2X00Q0TwjRRUTzAJwZyUExzFQnXR2M38KYbvMhO0+bNTRP7T3u6cycyUIoC3FjZt4EHAWfnUbRKeBdbG0h8PIHneo1mdJhFtxKdSGZv26KEQTdu6BNk67s5Zdv7zXkEmSbay6PpXuOh3IMZlg0AlgohPiEiL4G4GUAV/u9cao72bL1qAfNNw1tUTy45X0Vwdi2YYVvyqueUgb4d4M3N+1rDYeI2ZgScPpFbVxdhSVzi2CGSBaWFmLDF69Sc54+Fz3x8iG88O3f9R2rKZ4iU9EqZ10BAKrPCwDIYI8+h8rPd164lHTNIWMOCko99ZvPuAaFmcoM1Xh5FcAfAPih+/9XRmxEDMMkYfYneXLPUVUIv6sxEpje5Fc0a76ntrIUeSFSG/Z0UspAoogWcBZhkDcd+1xvf1L6RG1lKSyiJO+lXz78rsYIzvT2q07Xbg/KjCMYQZuxdF7mnY2RJMNFen2z9Wr6eY7ZMzp6CCEuaj//koj+johmCiHOpfocE4xMMQuab/TvT5ATAzDSMy3C/csWJKWapvuu6nOiRAin2WNdazeMrzHauvuUlHFtZanqcA8AcQH89J2PsOX3lyVdr5nG2tTZAwKwZmk5Wk714rsvHVLvD1vOIeUcurW+HU+8fAhx4bwmxUbkNVe5QgKyv0sQfvPZZK9B4Z4yTCoykUreBqc4fyYRRQB8D47R8gIR/RGANgDfzOUgGWaqo8sS2wLYd+wc6lu7ASIlGQw4Upv6hsH0cJopBnKB2HRPtWdRThX10XurWOQYHquq5+F7bs44AdjbcgZ7jpxO6p+y+d5qVXMiC3nz87z58ICzCdLTK6S94+ehzZZUXuZzvf1JzxXkJXt9MyGd55jJLUQ0F8BpN7V5OZw/t+4xHtaEJZNULzOtk+C/Cc1k450qumNGQmzh/HLl3PBm86mk4+mOj8fuWIwvXzsbbxw+rV5/68jpJCPCTM1q7uxJigD/xTduUDLNphCBNFwAJyqzeGYhll/5OTUXjETNSueFS9jZGFH3dTLAPWWYdGSiNvZgwEtfHuGxMMykIlPPUaa1LLIXyHvHzjnqXHEBQnI3+x0NEWUsBDV7M/O+w5r3E0gtpWz2VpERINt1gQpApaENxGxsq2/HCwc6sPneajx0S4Va4EsK830loE2DS4cI2Li6KmcL2cyiAs/jG8uLsfHuoZ1vsntGx5oAx1oeAAghfgLgPgD/nohiAC4BeECIFEULTEoySfVas7QcLzYkauqqyooDN6GpnAhBm1ddIESXkTfnks2vJZc2hcg73kdXXoW3fntG1cDZAml7NQlAGW+fuT1ZfvCNGzy1OPLzTo2MdwzHz3yCSLRPybsPp2aloS2KB59ORMB3HOzAtg0rJsU8w/U8TDqGXbDPMEwymXqOsvEw1SwswarqeUoWFABCIYJwoxhyoYzHvY3MdLUcs9ZF7zS9tb4dLzZEACE8KSF+EQSzt8p3XzqUlKYhEXAkTDe+0gQASQZLQ1vUYyzp5yNyUjrUllM4n9fvXypDKFv0HjB5IcLGu6sABEu5poPVeXJHCseafP3HcKSUmRHAVOIzpdCBRO8nXRI9SHocgO/PpsNERpMBeARC+gdtvN1yBjcumKG62ksc1cQe9ZgAPLC8whNVrllYgkduuxI/ebcVgDNPlRTme67ZdEC0nOr1OFW2H2j3VVaU90tPx5XIzXhtZSnCFjnRanIiKOnSx3TqWrs9imqDcR+J5QkK1/Mw6WDjhZnSjPTmV5Kp5yhbD1O0b0A1RrMIWLdsAQBnEZXGi1kYHrSBlguE3kdF73mgp1gERRBk07bmkz1JxzeJuwaM9JrKhpl+xpu5Ydj4ShNsWyA/L3FtmdTzZEvNwhKP6lDQ+BhmvDPUmoGgz/lFEk3Hg3yffO3khUsIWQQRd3q0yFqZsEUAEWJxG+GQ5eswCVvOxl9GkwF4lAIFgDcOn8abh0+jIM/73Xx05VXY43atBxzjpWzGtKT7UDQtzzOf6o4R/br1NFyduJ0crdE/t23DCuxsjOBcbz/ePnpWNddV8zM5sfOY7cjOpxMj0amtLEWeJiCQF8qsQeZEgKPWTDrYeGGmBH4LsqlWQ0DSIpjtMeXznRcuIWyR6k0StKik8jDJngDnevsxs6gAa5eWJ71fSghLSdBsCsNrFpao/i6Huy7CtgVC7kbCHLff4v3glveVV1HPddfqYEHuYwhHElTWukjDqPPCJY+U8E7NMyuVf2QRv3mv09XzDBV9s6JHpzh9gRmvmHORX0QXQNrNYDaR4FTv9VMCs20BW+hppSKlw+T+ZQuwtb7d6W8St9X8/Nmgt3+LKeIh78WGL1TimX0fJzk9dHovDQJw5qn8sNcxkkq2OBODQR5DRqfMYz619zhimpZztnLqMsq1qzECAaTtfzXR4Kg1kwo2XphJT9Aia6rVZLN4BB3TU0cSsrBu+QLfRSVdLwQpOaqnHMicZrNvy46GiNrA6w3W0nleG9qi2Px6s6p5kWkVQPImx7yu6ZeFPWMTcDYAC0sL8dWquXj2/RPKwNLz0je/3uzpVv38/vZEDr1FgQ3r/BayVPU8IwWnLzBjQTZRE7+5yIzo7myMqELzVEZJujSvIOEOvx4tphKYjG4AroMDBOE2t/VzmEjHjO6oWbO0HD995yNPoT3gSA5LdS89urv53urAiPrW+naVMgYAD69YFGj46fNQJgZD0DGCDCFTcCBTeIPPTFXYeGEmPUGpWcNZPIKOqT8fi9voON+X9Fm/hU1GGeSm5eSFS57eK4BTlyIlkuX7Te/dTQtmqFQuaZj4eUXlOeRYZUREptClut6BmI1znySnVwgA7ef78Oz7J5J6yUiWzC1S0aSn32v11MnMvDwfZ3r7M45ymPU8Ui1tJOH0BWa0yVZpyW8uMo1uAjKKIHrqMLQ0r3zXeEgl3OHXo8V0DoEIV5YW4sT5PthxgZBF2HR3lZoX9O9v0HfvxgUzkoyX+930WbNpbrRvIKl3i5z/3jAUyZq7LgbeTzN9Lt08kEk6cKp6RIZhUsPGCzPpCfKeD2fxCDpmbWUpwiHneSlpfODEec8GJGhhM6MbISvR9Ezy6+Pe4+m54QCw/0QUB05EEbKcfip+55BN5EIhguXmo8uoh967RabQAcCHHRcCDQMCMGd6AU5fTBgefpsGyS5DBlly6qIjU5xNBEVuJLa6ima2EFnljWcCezeZ0SRV9CNV7Zo+F5kbfwCeKEbK75ab5ykEMOg6NQYGbTSf7PGkwvoJdwAJ42Dj6io0d/ag/uPzqpFj3BY4fvZTdSrbdvqytJzq9Xx/deeHPo8kUnITc2NeiFR3er0mxqLklC59jrWMCe2yvBAa2qKeOVyvH8wmGpZpxHYocwv3P2EYNl6YKUBQoalZWzHcYypEQr7YLxVN90oSkYp06JuWeNzGA8srIOD0Hmk99ymOn/nEiXwMJppU1iws8eSGy3PGbadAloTwLMB6E7lYXMCSn7EFBjQVWSkJuvm1ZhzuupgUBdKxLOD0xX5VNB+0WDe0RfHknqNJhotFiQaUFoAb5hejIGxh82vNWHdzhUeG1I+GtmiSx3UosqMjJWvNMMPBVPUKaggpCZqLzI1xJn1VntxzVEVVbHcOEbaADeDQyR7fVFiz3k93wECIJLUtHRtO3cnfvtGiorD9g3aSsIfp3AlZBAvOuKQNItW9BuMCFsHTuV6iz7EE4OZFJeg434ezvf1468hpvHfsLDauroJty3tgJ11XJtGwXEVsuf8Jwziw8cJMCfSFfKQWAD+vWV1roqu6RDdQ5Oc2rq5SzRr1rs+6t052X64uK8bbLU3q8zacCEz9x+dxX005qsuKUZBneZs6Aomqec0oMaMnMrBj9iOQx/gw4lURIyQK74mAmxeW4MCJqKp5qZx1BS7PD6HlVG/gpkY/VcgiPHLblXj2/RMYGHSkkQ+d7FHj+TByCHtbzuDbK68K/B1l4nFNRS5krRlmqOgb35MXLuH5/e2eCCqQvvA+6Lipiu/1niFAYg6ZrUVV43Eb813VLt2QbznVi91NXZiWF0pKLUuFRcD7rd1emXVCwhEx6J+SK7QPxG2RiDC5UaNQyMKSuUVJ5/MYhhbhw0iPZ5yDMRvbD7SrqE7Mdhw+82dMU/OrPiZ574LU2UZ6fuD+JwzjwMYLM+VIlbaVzabA7/1mjxIBJ31LGijy/CcvXIItEmo7uxojKJsxDQ+vWITmrouomjdd1axYRJ7NOQBVe7Ktvh15IcLtS2ar6IxEru9yca9ZWII1S8vxgtvHJGQRQgTXEEkogaUiL0TYdE+iCLblVC/2n4gCcDY78vwfRg4BgIqamB5PdR4hUDQtz2PMmWN487DjEQ0yFmorS1GQ5xTuWxb5elxTkStZa4YZKnLj29AWxS4t3aukMN9XRWwoRrU+f8lifpO48E/n1GXKibzOj5AFhOBItsfjdlL/J0KicD8vbCX1ZLl2ThGOnOoF4DhXpONHn1sti2DbTmqbHFNdazdicVupk5mGnvxZpqR1XriEbbpgSMB4zvX241xvf0LVUBvTaDs0WECEYRzYeGGmHH4LQLaLUCo1Gek1lYujn+JPOGSp/HGZGjLo9jQgAP9y/JzWeNIxNGx3569vFAScQv43D59OyuEOaRsEeY27GiMQQoDc16UhIpXABmK2Mi5U3xgCvnzdHCXXrN+XutZu1SfBZHdTl5I4LinM96TCmOpCda3dypjzI5WxMNwUjUw3BLxxYEYb82/bz4AGkovxgdTRGVOV64tXz0o5DgvArYtnqlTVp/YeT/SHMr60tu04LdYsLcebzac8il4AEA4R/ujWK9HcdRGrqudhydwivH30rPpeLV1YgpbTvZ7eK2YdzYsHO5w0U4uwcXWVukapPkhE6L00mEhh0/rK6EafrAPSm24CUOMJhwhvt5zxpM3q/WBG26HBAiIM48DGCzPl8FsAUvXz8IuwpFq05P93NkYQdr2PpuKPrGkpmzFNpYZ4alaEYzSEXG/nwysW4Zl9HyelpEH7jPnSI1+oxMX+GM719uOn73ykFmH5trhbLCtrfqSh8WHHBY+aj4DT9C1dsbDlqhRJPhuM48Gn69SGQW48BIDqsmL1s3mckEW4acEMnO8bxIlzn3i8q6l+p0NdyDPdEPDGgcmUkWx+q885uhNA/07oz/lFZ8wUTrNGbGZRAfKNbvAhgopw5IUtZbgAzvdVpo/6IRtCSkNKZ+HnCp000ZitxEe2PZIsLtDv9nM5droX/++vjnkkmmNuzxiC8DSW/MLVs/Cr356BLQSe2fdxoq+U0VdG9pIJ+j7L8ZhzM8HbD2YsHBosIMIwbLwwDIDgRSgowpKuuaTu8dP7p5h9C/TUELOQ/cvXzcGNC2agpDAfu5u6YBu1KzJd7FctZxCPC09zSAtAb38MOw52+BbMyhQJPyWdkxcued5ri+Au0oDTj4Hc/7ec6sX2A+1o7uzBQbcWBnA2DM2dPY5gQMzbVXuXqw4W1O8mV8aCeexMjs8bByYdekqVFLEYTkqROQf5yZCni86Y0VKzRmztUqd2TqZuhtz0S7/msIDzPfjStbPxpiFZDHgbNzpqiF7VxMpZV6D13Kee8UkHijzXwysW4SfvtkII4OUPOlU0OEii2bznDs51COH8H0SIxx3nSOeFS2hoi6a999VlxR6nyv3LFqh5W96HTIQQ2OHBMCMLGy/MlMNMmZCbCj9FMl0dS98IpFq06lq71WdicaG8kIC/4o881k/f+Qh7jpxWkYZHV14FAEkbobCW4vBm8ym8eUQkpW+Ew5bmcUwgjRb5eVPFR26O9A1Hvo9HsaEtip2NEU9TSSkwUDW/GIdO9ni8lXnuePRNFeBVY/PzWubKWODieyZXSONB1UgMM6XINEak4SKjGvI7oh87VTQgqEZMT90UwolopPr+fXvlVdj729NJcu5O0TzU2LY/+rv4yTsf4czFz7Du5gosmVuEd4+d9TU+5PdxyZyipEOScH4429vvqQ3Ue1aZERLd0AOg5qxt+9vx4sEOlUpmkXMfHrqlIiNjUSedEALPMwwz8rDxwkwpUsnqBimSSQlfmZLx1N7jKb31JYX5vsWdQPJCp6eXvHvsLIRwFuo//N1FnnQ2OQY979zsEC0hANfNLUJ1WTHytFSQvJDjOfSrWzE3R9sf/V3VNG6N8X4/L+dALCFvqtfzEAFVZcVq07JLyzHX617SpbqMNFx8z+QKGZWV3w8zyjnU42WaFpYuGqC/LtPaGtqiKCnMh+WqdfnNdSY1C0uw+d4b8MTLhzxF+QNufR8A1YneVAtMl7ZrFs3fc2MZXvtNF+K2U9/3pntf3zt2Tt1fVUPoRkikM8VM943F3fPEBWQSrS0ENr7SpCJN5nw4FDl9eT6eZxhm5GHjhZn06AbC7qYuT91IkKyuvuhY5BgNVfOm+0Zs9PPsaoyg6WSPSnOwCGjq7PHdBHgbppEalxDAM/s+xl1Vc5M2Lo/feQ0A4Km9x5M6REsEHLnhI11NuH3JbAgAs4sKkowQOYaTFy55anPSpVGZnmVy76PML9d71OxoiODQyR60nG5OSg2Tx8ok1WWk4eJ7JlfULExIocfczbReVJ4JSlwDwNql5Xhufa163NTZk1H39lTnk6+ZBe1y8//wikVKwCOVMyHaN+ArsrH9QDteONiBmGvV7DjYgW0bVniizfrxzN5Xty+ZjduXzMbupi6sqp6HaN8AbLvTcw69RjAWt/GgW0Mov8uyGW9eiNS5zdq6uIBKobM1yWW98F93PmULzzMMkxvYeGEmNbqBIGV6JRYB62+7MrAQXXZZDocsrKqel7IR4tb6dvzZy4c8RfMWAWGLlJJYyCJ8301NALwGkjAke2K2wObXmlE1vzgp9eHBp+uUFLOONJgAV0rZVSEryPNuPnRjTm5Q9NqcdJsscwMgvZybX2/21PN4vJxabrvpJZaM5iLPxfdMLon2DagaNZmClQkyHVPOGYCz8d90T7WnXkzvdB/UENbswbKqep6ae2RKrDKCtIJ2IQSauy6q1wZijpS7n9PBjDJJ4jagCaJjIO7UtqWqZZPF9rL31XPraz3jDYcosFmuReSZu7770iEVcR6IC+x0z21+71tO9ToOKVsgPy/huJHGpy5zP5Q5gucZhskNbLwwkxrdQACg0jjkxv/Z90/grqq5/ouK1uSxqbMnSVlHeuS21rfjT186lOSBvHXxTEzLCynlrrgt8ISbmqB7AWV/BVNy9MNIDz6M9CBf8xxu+MXBwPf7YdbqmNEeFS2xvbU5qQhakPXiXgDovHAp7SYr3TFziZ5Koj9mmOGSTtDD7+/cv+jc2XxvP9Duq1To913Rv+OERL+n946dU+/ReypJJ4ssaM8LW6iaN1293xbA9oMdsG3hEdqQEZnn1tcmGVx+PL+/HVVlxVgytyippmTz682e6/ZTcLx/2QJsq08of1muQEnISu7tZPh1PI/1qE/NwhJfUQJpfI5EJJhFPhhm5GHjhRkXmAt6pgotfu/Tn9MNBBl5kapc5sZep661GzFtY0+Ap4u9EMDm15sBAE+80uSbOrGqeh6aOns8z+kNI830EiCxyJqbF7nBfuu3Z5LOY8HpnWADiMcFQiHCHUtm452jZz2pYPK6EsZcQo0n22iHvF+yd430epoGUjhkYd3y5DqboGNm+7seDlxMy+SKIGM81d+cmY6pc7jroscRkCpCajpsdBwlwIue+ebWxTPVXCVr3Opauz2R3Lgrsa43spS9q+bPmIa1Sx0BEJk2+5tIT9J1xIVjNH3z5gVqfP2DNn62r9VjuATVCFWXFat+V/l5qQvp1ywtx4sNXmXHIPzmHU73YpjxDRsvzJgj1b/itlDyv28fPetpKBYkQZmu2/TG1VVKyreoIOzR/g8qwgeSF681S8uxZmk5ntxzFL8+fk555HY3dfn2OiBApWroyl26jCjgTS8hAAtLCzG7qEB1rZfPlxTmO2pAPue69Wpn87HptWbEIWAR4dsrr8K3V16VtHky0+E23V2lNi0tp3ozNg4a2qJ4cMv7KjXjxYYItj1Sq1SLdC/x/AwjOunON9KGBhfTMrnEb1Oc6m/OTMesKL0cx898AsCpxwiKtphGfVAqFwDMnn4ZfhNJOFQscpwsen3LmqXlSpFMjsUGVP0K4MydIYs8aoPPra/FD75xgzM3PF3nMXQkcVvgXG8/wpYjJCIAHD/7qXo9bAHrbk5OX21oi2Lz682whYDl1uSkUwDTe8dk+73mdC+GGd+w8cKMKUnqX3HhaZCYalNpbgR2NkbQcb7Pk6utF9ivXVqupEAJwA3ljgqWX2Fq0OL1+J3XoL61W9WwVM2bjn/5qDvJgBEA9h07hwMnzmP9bZV4+r1WxEVyOoNU+BHuuE509+HkhUsIWTJv3GHz6814eMWiwAhPtG8AsXhC0nlnYwR/8Y0b0qbDAY4ikO6pDVsJ2dAg6tx7IBmI2dj8WjM23l2VE69lLgwN9q4yo02qvzlzzgEcR4x8r1TP0gky6v1SuSyCE5FtOaOcDpZFvgIAZgPHXY0RbHVTtghARWkhrplThD1HTid9J2sWlmDlNbN8e8AION3rb1/i9IjR5zOCY7j84Bs3JH3OjBg/s+/jQOEU/X4OZ47gdC+GGb+w8cLkhFQpPvprsreAH+kkRk1P5Q43TUDmces1HfL5cMhSqRmHIj2YPf1MkgGkSwT7SmS6cqICwM9+/TFs29sgUiLP29x10dPVXq8/kd5EPUdjMC5gUfJx3vfpVm0RlAfSIic/Xap8+aVqmelwu5u6klJMYnZCNjRo8a6tLPXIMANOjc6DT9dh2yP+DSeHQy4MDfauMqNNJjLGeoqZjBpLQQyZiin7NPk5cOSx/+IbN+Bsb78yImzhKJXdv2yBMkRsNyXW77ulp7MVFYQddS537mjr7kNnz2eBNW2ziwo817V49hUqihSL25hVVOD0mpGKjgDy84LTu/TvPxnz+nAdGdxEkmEmHmy8MCNOqhQfvwZgsiZF1qFIrpp9Bf5q7ecDFxR9I9B54RK27U94BmUet66AtXZpuXcxB/Dm4dMIW1An3n6gXUU89FQoiVTQcuQ5XTUhOIsvgCRPYl7YUSqrb+1WG31Z6K9vPMyIjG5MOHU6hIKwBRNLk/IUmgUUtKibRsCq6nk4cOJ8kgFjC5FyU1CzsATbNqzA5tea8aGWhhKkKjbcDUKuDA32rjKjgfn3n0lapi6s8aVr+z0R5W317djVGHEbyjoqXERQaVzSwPErXF+ztBw7GyNJKbFB9Tl6vxq9XlAXDpBprYDznTJrTu68dnYiBU44xpg8p+w141e3qL+m96bR53XdaNpa356krJbpfea6N4aZOLDxwow4qVJ8/BqA6YvSxleblFHQ3v1p0rH1xUlXiWk51etRFJuWF8KSuUVJaRgfn0s+pi0Acj2IuvXhZwDUVpaqzUIoRLDgRDBCISspx3thaSH+5ps3Oedwn4sL4HuvOlENT+QoZMG2bcRteI5L5BglcVvgg44LCIcI8biA5Yj+IGYLbHq1CfcvW+CphxGAb38CPyNA3sfeS4OedIx00Y2ahSXYeHeVp/bFLyoyUhsENjSYiYisD3NSTf1rOkz0edIWAm8dOQ3SwrsCwMCg7QiCqEgwqQizNHDyQoS8ECEW9xb6+zkCWk714sk9R1F6eT66Px1A/2DcUzcjDZiwJvIhIyV6v5j7ly3AmqXl2PZIojdNb3/MIwDQ3NmDh26pSFnLKM9tEdS8oUfC5Togj7G1vh3ffekQgISyWjoDhuveGGZiMizjhYhOAOgFEAcQE0IsG4lBMeODoXrLzYZj+ibaL/1H35Q2dfYoOczBuFB1FDULS5IWp7DlGB75YQtfvHqWZwxvHD6NX/32DDbfW43H7lisFsTPBpOLSG0BkE/qmt9GvOVUr0q7IgCb7qlGtG8AJy9cwtb6ds97N3zR6Sr91N7jnmLXwbjAT9/5CFt+f1lSzwHTMNMjSnFbYN3yCsyfMQ3vtJxRRf0DcYEzvf0IWeRpwNnsKp3pv0cAnp+lUIHcFNxVNTejdD9danTbhhWeVLtsipQZZrKzszGijPuYDTxX346djZGURnxtZaknahKXEocaNoBzvf0qEiyE8KR2mXOG+b3Vz63PrUFY5KTdrrxmFmYXFaCqrBh1rd04eeFSIioUF9jqXt/G1VWJ3jQWefq0vHiwI9CAM1XXzHlDptsOxGwcOHFepbfuburyHGd3U1da44Xr3hhmYjISkZc7hBDn0r+NmUgMx1uuSwDLhmNygUmX/rN2aTl2HOxQSjQfRnrw4Jb3sW3DCmw/4DUOZKBjIGbjrSPJxaGydqO9+1P8c/Mp9PsYLoCjcGNZTod5sgiLSi9H5czLcfuS2Z5UiIa2KJ54pUlFeAbd/gsb764C4BS+9w86zSM3fKFSLZy1laUIUaLfAgDsOXwaDW1Rj7ywviA/t75WFcrqeeVrXU/n377R4rmG2UUF2HxvNZ5w7zngbBBkrnz/oA2LnAiTbQvV18FUdAuKbqT6e0gXEeENAjOVMVO3gOT6FL/vj2U5UVZ5DNO9YhEws6jA893auLoKzZ09ePFgh2fOSDd3mxt/k+WLSnD1nCK8eLADbx05DcsiCNEBIYRqmjkYTxhNUolRqQ7aAtXzi5WEsl77Z6J3uLfd6wySe9eNmlXV8zy9bFZVz0t5TQDXvTHMRIXTxhhfghaITAvxpQSwXlQpj6t7+k1qFjrNyJ7TohiDbnfmppM9Se+Xhe26YaAXz8dsgZ+82+r5TMgifOna2Xi75QxicQHLSkgG72iIoPXsJ2g/3+e8rjVjq2tNVhX7MNKDbz1Tp5q1BfWq+f7Xb/B4Nm1AdX32u9+yf4pfr5Sn9h731sSQk0P+0C0VnsiVLMiX6Rdx9R9vR+1MoiHDiZ7wBoGZSphzpF7/IevjTJlhs2eJPtcQgGvnFuHIqV7PeaSC4lqfepWqsuKktKpUmBt/k+LCfJTNmIaY7TRutLUJNxa38eDyCiUUIntLyXo6aVitu7kCLaf9a1V09PnCrx4myBkinUXZ1LzI8/GcxDATi+EaLwLAG0QkAPxUCLHFfAMRbQCwAQAqKjKbTJixx2+BGEohvvx8SWF+xpGcqrJipZwFODUg9a3dHgMFcDYBlTMvT+oTsP62Sqd2w62EN1ujxG2Bj89+gpjrKYzHndqb+TOmIRZPbNCBhBdxZ2PEGYshYQx4i9QBZ6Pfcqo3SYL5K9fP8chAn+vtD7zfBAT2SpE9GFQ+uoCKbslGcbKOZlpeCJYR9ZHXIaNNQb1u0v09ZANvEJipgKdBq1H/oW/GP+y4oKSCTUn359bXoqQw31PDN2hMYl+4eiYev/MaT/RTH4NfWpXfWKXRs2RukZrbCI5YSuvZT9QY3jl6Fncsme3bP8YiUilgcv4RgKfmUF53qsaSOqnmi1TOkCVzixDtG8CSuUWBx/a7fp6bGGZiMVzj5TYhxEkimg3gTSL6rRDiXf0NrkGzBQCWLVuWXFjAjArZTtR+PQee3HNULVzZFOLL9Cf52YFBG0/uOepZfPVxbno1kZpFAIQtPAaKJBwiXF7g/ROuKivGd752nard6L00mBR5AbyN0UKhxGZcpiuQRSAICAGPDLOJLudsKgTJ3PMB9149uvIq7G05o/K+324540kdM+tfLLcQN6gfhNkwU+/PsMvt8bDHTfEgW6hoFCFRNKyr96QyLDl6wow3iOhnAFYDOCOEqPZ5nQD8CMDXAPQBeFgI0ZjLMenzoF7/oRebN7RF8aO3jnk6yqu5wp0bF3yu0JMqJpW6JFXzpgd+BzOJkprOpi9cPUs5ZQSA5Vd+Drdc+TklqTwYs9Hc2eOZW5yotdMTSi/6337ASVnb5V53bWXpiCt6+Rk32aQ6j5SICBtADDM2JGuvZoEQ4qT7/zMAXgKwfCQGxYwscqL+mzda8K1n6tDQFs3oczULS9SC+61n6vDr4+c8nen1DXVJYb4jpQlnsy8nc/n5Fw92JAowAfz6+DnfsezSilsBJNKdDAjA/csWYN3N3miefCzPfVfVXN+ccx3ZZ0bW6liumo5lWVi3vAL3L1ugUj70DUfIItx1/Ry18Hk6y7ubEef4zv2RKXFyPDLvG0guqt/8ejPitoBFhI2rq3yNiVXV82ARJf0+ahaWeFI8hC1w53VzELYIBCfV7qwb9XnsjsWI9g0kbXb8kPeUF2lmnPAsgK+meH0VgKvdfxsA/H2uByQjlPI7bqbNAgm5dcCZR7583RwU5FmwkJgbdzREkBeiwLnrmX0fB87jcgwhCu6TZRo4Zy5+5nldim/kufLsAs4cDgA/+MYN2LZhBf7k3yzB9kdXqPQsveGwNMTqWrt9jalckM15RmJMQ11XGYYZPkOOvBDR5QAsIUSv+/NXAGwesZExSQzVy2NO1LvSFIrKc8nwv57CZJHTQ+XxO68B4KhVlRTmY9OrTcrIMG0Nsxs7kKwgI88pF0g/LEBVv+Zrsp+yIP+rVXM9C6lU6zIbSIYswLYT44y56l83LpiBDzsuKMNDpmvVVpbi+f3tSXU1ti3w7rGzeHTlVQCSG6lJ5S8LUJ2x9bSuoHS8NUvLldqOECKpq7a8Ptng0rK8Bk5DWxQnL1xCOJRIC/v2yqtwx5LZqqD/jcOn8XbLGWzbsIIL6pkJiRDiXSJalOIt9wL4hRBCAKgjohlENE8Ikbo6fRhIB8j2A+1Oc1qfBo4lhfkqqpoftvDoyqvw6MqrsPm1Zvwm0qNSRR/Q6khiMRt63DdVH6ZMoqT6GGQ9ypFTiXoUObfeV1PuqaGT5/SLfJgNhy3XiQX4N8EcabKZx0ZizmMVRYYZO4aTNjYHwEtOZB5hAFuFEP88IqNikkgX5jYNG/2x2U/kxYMdbs8BJ+RvFjY2tEXx4NN1qm9J2IJnIywNFzNFSjIY9y6svZcGkwwaM91KSm7qUr/6e2U0RM8jl9f57PsnMBCz8ez7J1BRerlS24m5qlqWRbDjTgvHR79YiYrSy/HXb7Tg/KcJo+CNw6dVDrpETyfTLSBCoo5GX7TMQlPZSC0UsnDywiWVImZuLP70pUMqpa5/0Ma53v60C6u3wWXCwDFz7h9YnugpUdfa7ekFI39PMtWM0x+YScZ8ALo3JOI+l2S8jFRtpl5vEg5ZuE8T2tBfj9vO/CudDg1tURw51euZf6QIhyzIz6YPU1BalT436WNYMrdINbXUJYz9nC1B6BL5FnnTyUZjfskmtXUk0mDZ6cMwY8eQjRchRCuAG0dwLEwKUnl5dGMjZBEeue1K/OzXH2MwLpAXImzbsEJN1CcvXFKeNCklbBZ01rV2e+o7YjZwY1kRZk+/DLOLCpLGI3x6pMjeLg1tUTyz7+Ok1wWAjasdiWFlBEnpMIP8sIVBt5A+FhdoP9/ne19k4auesiU7T8tzPrOvFZaV3FBSvq6z8ppZyrjQjTP5k1/6nLlpkB7Y5/e3qxxw/T0y2iS0Y7/dckb1j8m2gN5MXSszCv3zwolrzwslPKNcUM9MZUaqNtPz/dOENnQHjV9UVU8lA5xU2U2vNXvm5rrWbmy+N/W8EITu1CDN2SSEQFNnj6fmTTaeBEbOIMjF/BLUdyobFcThjInrABlm7GCp5AlC0Ga1oS2Kza81qw1p3JAGHogL7GyM4C++cQNqFpaoAkxJzC2s1Cfe2spShNyuzBJHn9+RKn6xIYJNd1chbJHqx2JpqVkEZwMuVXX8oimA05BSr7ew/YpbAPTHbIQtACKRE673QtFTtXTDBc5HPCljMRsg27/fi8k7R8+ioS2KM5oqmMQi4Ib5xaieX+z7Welh1ZV5/FIL6lq7k+5P3HY2NUFy0kDwwpnKG1izsMTT9TqT/g8MM4E5CWCB9rjcfS5npFNptGTdGbyOD/k5fb4YcFN8AaRUecxk86wbVfqEGAp5lQ395qjRNAgyZaQK7ocLO30YZmxg4yUHBHU0H0kvDwB896VD2NEQ8Y0i6OjxDL/6iecPtCdtZmU+tPy8vr0ecJVn7l+2IGEMuapc0nh44/BpjyywH+d6+0GAp8FZEAKEG8qn49DJHl91rVTKYjp6Q0oY6W4WgGWLSnDgRFTVvNS1dqtok4TgpNEd6bqIQyd7fLtlm12i9TQ5HXPTEvQ+P/wWznTeQF5smSnEqwD+mIieB3ALgJ5c1rsAwSqNpoMm7KZrAVAS5c+tr8Xm15rxYaRHHU8guLj8p+98hLd+ewZCk1gO+m77GUcAUFEyDUUFYV9lw3SG0VgqbXG9CcNMbdh4GWE8NQchCxDC0+hwuAaMTEH41jN1SQuRH7KBoaS2shSX5Vn4TOs2H7eBbfWJtCYzhcHvHPWt3bhy1hUIhZwu0OEQ4fYls5PqRkxCbof3UIjw9tGziMWd+7Rs0QwcdI0GP+K2QNX8YrSc7g3MMb7YH0t9LwBsvvcGLJlblJRCBwAP3uLUh3zrmTpHLpkIJYX5qK0sVU3mwiGn5gYAnt/fHrh4euqMjDodHVngK9PdQpa/ulg2sIHCTAWIaBuA2wHMJKIIgO8ByAMAIcRPAPwSjkzycThSyf9uNMYlv3tSUlg6ZnQnkBACzZ092PRqkye9d+PdVXhwy/vqubVuClfIrduzLGdO0msSgYQce9D3XhpVuxoj2H6gHfKjx89+iuNnW5V6ol6Dk67GcrQiH35GEtebMMzUho2XEcb0CAFeucxUE3w6T9bW+nbsburCZXkhX69+Rcm0pH4oQiQaGMpN7cbVVfjTlw4lpVfJMdZWlqaVF3YWvcS5BIDblzhd6wcC0r8AoLpsOr5SNRedFy55egg0tl9Ib4gBniZnQCL6FIv718zoSmMEJ/Ik74OZQldVVuwxJmwhsPn1Zjy3vlY1mdMFEVIVsmaTDx3tG4AtREp1MYZhvAghHkzzugDw2CgNR+HnXCIAc6YXoPvTAdiuAtmZ3n41V+rpvds2rPDMG1vr25Va42BcOL2ijGi7ReQRP0kVdT3b258UFZdqYs2dTtQnXWRjtCIfQUYS15swzNSGjZcRxlT2ghCI+8hlmmytb1fe94K8ZE/W1vp2fPelQ+qxrAEhcvoESLnedT99P6mGwlxcmjp7fNW/AODDjguOjKblRFTM95QU5uF832DS+AfjQqWSPVffHnid626uwEO3VHgMB7lwpmPb/na1gLWc6sUTLx/yyBebNTMWAffcWIbXf9MF2xbIz/P+DqJ9A8obqssZS2PCFo76167GCH7g1gxJMlk8M42AjLYXkRurMUzuMFNGAWeOOdPb71EAlPUsEjkHm/PG7iZvptuZi595hDdCBGy+1+nRKaM2oRDhm8sWqMiNnsb29tGzvuMWcHq5VJUVo/PCJYTdNOBU6a65nrNSGUkcYWaYqQsbL0MgnXfLzHnWf5b5zWYIXjb3ApzmXjuNXizmAlZSmO948QTw7rGzuH3JbET7BrD+tivx9HutalNPgEp/kufa0ZBYNC0A99xUhtc+7ERcpK5VIYKv4SKRdTPb3HQqnUWlhdjwxauwZG4Rntp7HCcvXIJFcKV+3b4paewXuYD99J2PAtPTwm4am3Df/9qHnXjkC5UompaXdN9rK0tRkJe8AJcU5quxCDiKYUEpXyOxeI6mF3G8FLoyzGRF9VARAmE3Iv7R2U99FQBlOqrsreLHqup5eO/YOfV43c0VWDK3CLsaIzjb24+ZRQVYMrcIO7UGv7G4wNb6duw42AEQIRZ3vu9rl5Z7GmR+vrwYs6dfhj3ufBqLCxV1DocsrDOkniWjNWdxehjDMH5MKeNlKB5nv/4p5uYP8Bblm5ta+Tk9l1lK4ZYU5mN3U5cnWkIElQolz2EuYGc/SaQWfTZo48/cNDCLEnnVIbc3SswWeOKVJgBOVEFPOSCLUFgQTms46GpifuSHCNVlxahr7cZti2fiXW2sAPDVqrlYMrfIUw+ke/Y+P78Y+09EPZ+56/o5+Gwwjqp50/Hs+ydUNOutI/6Gi0XAumUL0HSyRxW9xgXw9HuteOHbv5vxAmymbcVt5LwgdLS8iFzoyjC5w2we+4e/uwg/+5cTnjlZlyc301H9WDK3CF+5fg5OX/xMRa4lcj7d1RjBF6+elfRZJ91MqPRcAW/DyI13O6IB7x07qxQbZdRZl3r2YzTmLE4PYxjGjyljvGRidPgZKrrBIXOR9c3fzsYIdjVGUh53a307/tdbRz35zXrNiVmpcc2cIvzWbVjWP2jjT174ABu+eBWWLypJ2uBLpDmiZ07pqVhx14C5+/PzPJ8TQrjFmkAsQLTsxvJiHIokp5oBTuTmwVsqUFVWrHoF+NXLPLPvY/T2x1Qe+GDMxl3Xz8GlwThKL89XCjqSEAF3uNGk2spS3FU111NknzQOgqdHga7YY4tg40NfgPUmbvlh/34oEx32ZDJM7jD7X71viJ9cN2+65/3pDAC9foYIWFGZqDPc2RjxzKcziwrUd1umwoZD5Kgqug2G1y4tV00vdWPAr7nueJkfOD2MYRiTCWe86BvMbJp1mUbHrsaImvxDFmH9bVeqTu3SCNHD8LKgsrqsWKUE5IWTNfJ/+s5H+NVvz6guyA+vWOQr32vmQ0sIwNEzn3jqQU509+G7Lx1KW0RvYkocx22Blz/o9LwnHHIKR4nMdzuECCgIWzDtmllX5KN4Wh7+8LZKLJlbhCf3HPUomJnYtkBjW9RzXW8dOe0s8uY53UabeuO059bX4rE7FqtC+QH3XJWzr8Cd185OSgt7wVX5ATIzPkzjdtPdVWh2a4MmUz8U9mQyTO4oKcxX87QAcOhkDyx3arXdxw8+XYf7asozmlfqWruVgSIE8JN3W1FRejmWzC3CjoZIwgFG8Bgm+vooj2M2c9TRDQSpxsjzA8Mw45UJZbyYKi4E+Ba3+2EW0jed7FGb7Zgt8NN3W9VCIIu0TWPhXG+/JyVg4+oqlWuspzTJ6Ef/oI0XGjoyvj4LgGVRYFPH9CXtXkqL8nGuN7VyVdy28WaKfizXzClCQ1tytKf7kwGc+2QAm15tAoiS1G9MwiHCb0/3es/tc0GLSgvxN9+8KTC9SW6+dzZGsKMhgtazn+DZaJ/nb6BmYQme37Aiq2aM5vmifQP4wTduSPmZiQp7Mhlm5JEpYx4REeHUHOo9qgZitkeaPtV3sbay1KOYCDgF/NG+AUPO3lmtgr7b2XzfeX5gGGa8Y431ALLBVHERSOjbA87i8dTe476bbQCq6Doetz1pRfJY+s8vHuxAUUEYIbcjcn7YwsyiAvQPOhvcmC3wv946ip++8xE2rq7Cf/7KEqy8ZpZn4RIAzn8aXOAOOAbY8kUl+Mr1c3Dn9XNwx7WzQdmGWAKYfUVB2mhNPE2z+ZbTvb5Ghg33/seFSlMIwoIjo5yqZkay4YtXoWZhiTI2Q5TctLFmYQnmz5iGWDy5cZv+nh984wb8haESFkSq8zEMw6RDrk8mwu1Rle9G6gGvNH0qahaWYMMXKj3Praqeh9rKUrexZOIc6Y7FMAwzWZhQkRc5YdvaLpiIcNLtGWKmGem1DJk2dZTE4gLP7PvYaajoFl62nvvU8/lTF/tx6vBp7DlyGn/+9Rvwq9+m7igPJKdyCQD7T0Q9zw/VdrmpvBgfaEbZ4a7eFO/ODCGcbtBB0aAQAaGQhVjMhg2n9sQi7/sFgFlFBUnNMS0Cbl08E1XzpqO56yJWVc9Txajp0ptGunaD06kYhhkOtZWlCFuU1OfKshwxk7WuPPKLBzsCJYj96i6LpuXh21+sTJojN99b7SiD+cjAMwzDTGZIZOIOHyGWLVsmDh48OKxj6P1QLFcCS8rtym2xBeDWq2fi8TuvQc3CEjy19zj+5o2WtIpaOrITvExPC7nKWEGHmD/jMpy88FnKY16RHwIR0Nsfz3wgOSQTieL8sIWvVc9NqpUBHMPl+19PdKyXedYlhfn4nts5WvIX37hBpdjtaIioAtLhSPVyvxKGGRpE1CCEWDbW4xiPDGed+tOXDqkeVnJ+BeBxqAXNW2bd3cbVVYEOOf0zPAcyDDMZSbVOTajIS0NbVPUyae66iM8G4zjgqm/p+28bwL5j53DgxHlsXF2FkxcuOcZIis7vJtfMvgJHTvWqY6cyXADg0oDXICEANy8qwYETiSL1TwbGzmixCKiceTlaz33q6WGiG2YmN5YXY+PdVXhyz1HP83OnF+BL183x1JKYil23L5mtamlkA0iZS+2ndmOSyaLMudkMw4wn1iwtVzWQuuywWbfnN2+ZdXe7m7rSyprzHMgwzFRkwhgvUrZYhuRJ/ccfAaf/yRNulCZbTvf2q58zibzMLb7M08BRAPjXjgspJYjT8bnCPHwyEE9bU2JyY3kxqucXo6qs2KOYBbh9AQYTKV7Sw7e7qQv7jp1T57HIaYZWs7AEVfOme3rMfP2m+fjO165LOq/uOQyHLOSH/Ds0ZyoPyo0UGYaZSOiCIsdP96KhLQoLzvrReeESGtqigXOZmQq7qnoeDpw4P65kixmGYcYDE8Z40WWLATfSksGOfiiGCwCc/zSh0hUOEX5nwQwcP/uJpwD/urlFiPYN4OwnA771JYNZRHpClKy+1dsfw3+/pxrbD7QnCQyEA4ypy/KcxmNBC6Su59/U2QOCI425ZG4RDpw475Hl3Px6M5bMLULRtDxVk0MAiqbl+R5b9xzG4zYeWF6BshnTsk5p4EaKDMNMZHYc7PA42uJCYNv+duxMoTDmV3fHssUMwzDJTBi1seOnh198rpMfyrwsPhYX2H8imqQcdvzsJzh9sX/IBpI+lu9//Qb83/9mCZYvSixQti0Q7RvAxrurnGZj2vs331uNh26pQH6IECLnuW/dUpE2SlGzsASP3bEYS+YWYVdjBNv2t+Nbz9QBcAyb266eqQwVaTjUVpaiIM9R4ipIURhqKnatWVqOx+5YnPWiy8pfDMNMVOpauz2OKyftGIHKiKmQ8/VIGC7p1DgZhmEmChMi8tLQFsXBgM7ymeDXfnHx7CuSoiUFYQv9flKXAceMxVPXwaQjZBG+dO1sfHvlVWpxqq0sxbeeqfOkCtQsLMH2gL4lazKoH/HDL7rx2B2L8fid1ySlKmSqxDVSil2s/MUwzESltrIUeaFk1TFCamdMLtNlORWXYZjJxIQwXupau5M6vKfiK9fPwdtHz2IwZiMcIgghELOdxaNsxmU409uPIz5pXjOLCnC657MkWWDLUOSy4KSSgQhxt1GKDSfVKmQRaipm4Oo5RSgqCOPp91phCyBkAZZlIR53mlkGdVgO2rinaj42lEUoSGo42/OP1HhydRyGYZjR5v5lC3DMrXkRArAsoKqsWNUR+pHLdFlOxWUYZjIxIYyX2spSWEBGBkx+iPDoyqvw6MqrUNfajZMXLmFbfTsAJ4LS1fMZhPCPpjx2+2IA8BT5h0OEzfdUq/qQqrJiRPsG1GZfSv+KuI2QlUjnktxVNVcZAgAyiiaMxsY9VXSDDQeGYZjsMSMc3//6DWjq7MGOhggOnexBy2mnjtBvfh3p3lWjdWyGYZjRZkIYLzULS3Dn9XPwxuHgJpCLZ1+B5Vd+Lkm+t6EtihcOdKhoioyOCCEQClm4qbwY/TEb626uUEaHrAcxU7T8qGvtVp3eCU6Nijl20zAYL7CRwjAMM3KYEY5o3wDmz5im1ohUUY9cpstyKi7DMJOJCWG8AMCjK69SqWCWRZg7vQCdPZ8Bwskj/qu1nw9cEFQnYiGUNLCMngw3FYs9WgzDMAwQvB5kukbk0qHEziqGYSYLJMTwlLKyYTidi4HkxoXZdBfOZSdi7nLMMMxEIlXn4qnOSK9TQc8xDMMwwaRap4ZlvBDRVwH8CEAIwDNCiB+mev9wFwWGYRhm+LDxEgyvUwzDMGNPqnVqyH1eiCgE4CkAqwBcD+BBIrp+qMdjGIZhGIZhGIZJxXCaVC4HcFwI0SqEGADwPIB7R2ZYDMMwDMMwDMMwXoZjvMwH0KE9jrjPeSCiDUR0kIgOnj17dhinYxiGYRiGYRhmKjMc4yUjhBBbhBDLhBDLZs2alevTMQzDMAzDMAwzSRmO8XISwALtcbn7HMMwDMMwDMMwzIgzHOPlAICriehKIsoH8ACAV0dmWAzDMAzDMAzDMF6GK5X8NQBPwpFK/pkQ4gdp3n8WQNuQTwjMBHBuGJ+f6Ez16wf4HgB8D6b69QPDvwcLhRCcx+sDr1MjwlS/B1P9+gG+B1P9+oEcrlOj2qRyuBDRwancm2CqXz/A9wDgezDVrx/gezCe4d8N34Opfv0A34Opfv1Abu9Bzgv2GYZhGIZhGIZhRgI2XhiGYRiGYRiGmRBMNONly1gPYIyZ6tcP8D0A+B5M9esH+B6MZ/h3w/dgql8/wPdgql8/kMN7MKFqXhiGYRiGYRiGmbpMtMgLwzAMwzAMwzBTFDZeGIZhGIZhGIaZEEwI44WIvkpELUR0nIi+M9bjGW2IaAER7SWiw0TUTET/cazHNBYQUYiI/pWIXh/rsYwFRDSDiHYQ0W+J6AgRrRjrMY02RPSf3O9AExFtI6LLxnpMuYaIfkZEZ4ioSXvuc0T0JhEdc/9fMpZjZHid4nXKgdcpXqd4nVLP5WydGvfGCxGFADwFYBWA6wE8SETXj+2oRp0YgD8RQlwPoBbAY1PwHgDAfwRwZKwHMYb8CMA/CyGuBXAjpti9IKL5AP4DgGVCiGo4zXEfGNtRjQrPAviq8dx3ALwlhLgawFvuY2aM4HUKAK9TEl6neJ3idcohZ+vUuDdeACwHcFwI0SqEGADwPIB7x3hMo4oQoksI0ej+3AtnMpg/tqMaXYioHMD/AeCZsR7LWEBExQC+COAfAEAIMSCEuDCmgxobwgCmEVEYQCGAzjEeT84RQrwL4Lzx9L0Afu7+/HMAXx/NMTFJ8DrF6xSvU7xOSXidcsjZOjURjJf5ADq0xxFMsQlRh4gWAfgdAPVjPJTR5kkA/xWAPcbjGCuuBHAWwP92UxKeIaLLx3pQo4kQ4iSAvwbQDqALQI8Q4o2xHdWYMUcI0eX+fArAnLEcDMPrlA6vU7xO8TrF6xRyuE5NBOOFcSGiKwDsBPC4EOLiWI9ntCCi1QDOCCEaxnosY0gYwFIAfy+E+B0An2KKpQq5+bL3wlkgywBcTkT/dmxHNfYIR++eNe+ZcQGvU7xOgdcpXqcMRnqdmgjGy0kAC7TH5e5zUwoiyoOzIDwnhNg11uMZZW4FcA8RnYCTjvElIvqnsR3SqBMBEBFCSE/mDjiLxFTiTgAfCyHOCiEGAewC8LtjPKax4jQRzQMA9/9nxng8Ux1ep8DrFHid4nWK1ymdnK1TE8F4OQDgaiK6kojy4RQ+vTrGYxpViIjg5JAeEUL87ViPZ7QRQvw3IUS5EGIRnN//r4QQU8qTIYQ4BaCDiJa4T30ZwOExHNJY0A6glogK3e/ElzHFikE1XgXwB+7PfwDglTEcC8PrFK9TvE7xOuXA61SCnK1T4ZE6UK4QQsSI6I8B/H9wVBt+JoRoHuNhjTa3Avg9AIeI6AP3ue8KIX45dkNixoD/C8Bz7uaoFcC/G+PxjCpCiHoi2gGgEY6y0b8C2DK2o8o9RLQNwO0AZhJRBMD3APwQwAtE9EcA2gB8c+xGyPA6BYDXKcaB1ylep3K+TpGThsYwDMMwDMMwDDO+mQhpYwzDMAzDMAzDMGy8MAzDMAzDMAwzMWDjhWEYhmEYhmGYCQEbLwzDMAzDMAzDTAjYeGEYhmEYhmEYZkLAxgvDMAzDMAzDMBMCNl4YhmEYhmEYhpkQ/P8BH5uQXLtx67YAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 2, figsize=(14, 4))\n", - "ax[0].plot(X[:, 0], y, '.')\n", - "ax[0].set_title('Exponential target')\n", - "ax[1].plot(X[:, 0], y_trans, '.')\n", - "ax[1].set_title('Exponential target transform with log1p');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "TransformedTargetRegressor(func=, inverse_func=,\n", - " regressor=LinearRegression())" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.linear_model import LinearRegression\n", - "from sklearn.compose import TransformedTargetRegressor\n", - "\n", - "reg = LinearRegression()\n", - "reg.fit(X, y)\n", - "\n", - "regr_trans = TransformedTargetRegressor(regressor=LinearRegression(),\n", - " func=numpy.log1p,\n", - " inverse_func=numpy.expm1)\n", - "regr_trans.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAEICAYAAABWG8uXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACU/UlEQVR4nO29eXxX9ZX//zz380mAYIDIjmERFarBagER6751aktrRVuXTlvbKjpjp+NMp63TVmrp3mk7tL/x27q0tc4ALoB1aW0Vd60gBBeCCmIkIexLCMEAyedz378/7pJ77+d+loSs5Dwfj8Bnucv73sD73PM+57yOGGNQFEVRFEVRFEXp6VjdPQBFURRFURRFUZRCUOdFURRFURRFUZRegToviqIoiqIoiqL0CtR5URRFURRFURSlV6DOi6IoiqIoiqIovQJ1XhRFURRFURRF6RWo86J0GyJytois6+5x9EZE5HER+UJ3j0NRFKU3IyIjReR5EWkUkV9093iCiMgEETEikuzusShKT0KdF6VLEJGNInJR8DNjzAvGmMndNJ5rRSQtIvtFZJ+IvC4is7pjLO3BGHOJMeaP3T0ORVGU9uLOv96PLSIHAu8/20XDmAPsAgYZY77WRedsMyKyNnBv0iJyMPD+W100hgxnqrfbUqV3os6L0ucITLwvG2OOAoYA/w+4T0SGdML5Eh19TEVRlN6OMeYo7weoBT4R+GyBt10nRx7GA2+adnTs7sqIiDGmInCvXgC+ErhXPyrkGJ043j5hSzUC1nNQ50XpNkTkPBGpC7zfKCL/ISJviEiDiNwvIv0D388SkddEZK+I/F1EPhj47hYRedcN/b8pIpcFvrtWRF4Skf8Wkd3AbcFxGGNs4H+BgcAJ7j79ROTnIlIrIttF5LciMiBwzG+IyFYR2SIi17mrUce7390jIr8Rkb+IyPvA+SIyRkSWiMhOEXlPRL4aONYMEVnlrlptF5Ffup/3F5H/E5Hd7jWvFJGR7nfPish17mtLRL4jIjUiskNE7hWRwe533krZF9xr2SUi3z78356iKErn4NkGEfmmiGwD/iAiZSLymDuH1ruvywP7PCsi33fn+kYReUJEhrnfxc6lInIP8AXgG27k4CJ37p/vzu1b3Nf9cozrNhF50D1+o4isEZFJIvKf7ny8SUQ+EhjnYBH5nWs/NovID7yHchFJuHZnl4hUAx8v4F4dJyJPu9e2S0QWSMBxEMeuflNE3gDeF5GkiHzetRe7ReRWCWRGuPbEs6e7ReQBETnaPdzz7t973ft1RnAsvdSWjhGRR0Rkj4hsEJHrA8e7TUQWu/vuA67N9/tQugZ1XpSexmeAjwLHAh/EnSxE5EPA74EbgKHAHcAjnlEB3gXOBgYD3wP+T0RGB457OlANjAR+GDyhazi+CLQANe7HPwEmAacCxwPHAHPd7T8K/DtwkfvdeTHXcY17nlLg78CjwOvucS4EbhaRf3C3/RXwK2PMIOA44AH38y+41zPWveYbgQMx57rW/TkfmAgcBfxPZJuzgMnuueeKyIkxx1EURekpjAKOxomMzMF5XvmD+34czlwYneeuwZnLRwDFwH+4n8fOpcaYa4EFwM/cCMYy4NvATJy5/xRgBvCdHOMC+ATOQ3sZ8CrwN3e8xwDzcOyVxz1ACsd2fAj4CHCd+931wCz38+nAFQXcJwF+DIwBTnSv8bbINlfjOEJDcOza/wM+C4x278sxgW3/BfgUcK57zHrgdve7c9y/h7j36+XQQHqnLb0PqHOv9QrgRyJyQeD8lwKL3Xu3AKVnYIzRH/3p9B9gI3BR5LPzgLrINv8YeP8z4Lfu698A34/svw44N8v5XgMudV9fC9RGvr8Wx4DsxZloDwCfcb8T4H3guMD2ZwDvua9/D/w48N3xgAGOd9/fA9wb+P70mPP/J/AH9/XzOA7XsMg2X8KZrD8Yc33PAte5r58C/jnw3WT3mpLABHds5YHvXwGu6u5/E/qjP/qjP95P0Ea4tqEZ6J9j+1OB+sD7Z4HvBN7/M/BX93WuufQe4AeB9+8CHwu8/wdgY7Zx4TgKTwbefwLYDyTc96XuHDwEZ/HsEDAgsP3VwDPu66eBGwPffcTdNxkZsz//x1zPp4BXI/f1S4H3c4FFgfcl7jV59/4t4MLA96Nj7Eky8P219FJbiuPMpIHSwGc/Bu4J/G6f7+7/G/qT+aORF6WnsS3wugknigDOKtfX3JDvXhHZizPxjAFww+CvBb6bAgwLHGtTzLmWG2OG4KyWPYITuQEYjjOhVwaO91f3c9xzBo8Xd+zgZ+OBMZGxfwvHkAF8GWdl6m03nO0VO/4vzgrefW5I/WciUhRzrjG0rnLhvk4Gjg/Z76uiKEpPZKcx5qD3RkRKROQON91pH86D6hAJ10Fkm+cKnUshfj4dk21cLtsDrw8Au4wx6cB73LGMB4qArQFbcAdOpMg7d9B2BMcRizjpb/e5KWj7gP8jbPuIHDN0DmNME7A78P144KHA+N7CecAP2pMovdWWjgH2GGMaA+eoIRyJihuT0s2o86L0FjYBPzTGDAn8lBhjFonIeOAu4CvAUHcSrcJZ9fHIWoxpjNkP/BPwOTc9bReOwakInGuwcQoSAbYC5YFDjI07bGTs70XGXmqM+Zh7/neMMVfjGLCfAotFZKAxpsUY8z1jzEnAh3HSCT4fc64tOJO6xziclbDtMdsqiqL0BqJz9tdwosqnGyctyEthEvLQhrkU4ufTLTnG1RY24URehgVswSBjTIX7/VbC9mRcAcf8kTumk9378o9k3pPgmEP2y60/GRoZ4yURe9XfGLOZPNfeC23pFuBoESkNnGMcsDnL+ZUegjovSldS5BbO9RenEL8tyh13ATeKyOniMFBEPu5OOgNxJpidACLyRZzIS8EYY/YAdwNzjVN0eBfw3yIywj3mMYG82geAL4rIiSJSAtya5/CvAI3iFE0OEKcoc4qInOYe+x9FZLh73r3uPraInC8iJ7sri/twQvJ2zPEXAf8mIseKyFE4xux+Y0yqLfdAURSlB1OK8yC8V5wC8u8WumMb5lJw5tPviMhwcQr+5+JEMw4bY8xW4AngFyIySJzi+ONE5Fx3kweAr4pIuYiUAbcUcNhSnDS1BhE5Bvh6nu0XA58QkQ+LSDFOalTQ2fkt8EN3URD3PlzqfrcT575NzHGNvcaWGmM24aST/dh9LvkgTvSmQ37fSuehzovSlfwFx/h4P7cVuqMxZhVOMeP/4BQQbsAt5jfGvAn8AngZJ9pwMvBSO8Y3H/iYO4F90z3HcjcUvwxn1Q9jzOPAr4FnvG3c/Q9lGXsaZ6XnVOA9nNWou3EKCMERKFgrIvtxCg6vMsYcwCkMXYwz2b4FPIcT/o7ye/fz593jH8QpulQURTlSmA8MwJk/l+OkHxVKoXMpwA+AVcAbwBpgtftZR/F5HDGBN3Fs2WKcuhJwHvT/hlOQvhpYWsDxvgdMBRqAP+fbxxizFsc+3IcT+dgP7KDVfv0KJ/XrCRFpxLnXp7v7NuEUz7/kpm3NzHKa+fQeW3o1Ti3PFuAh4LvGEW5QejBijEbEFOVwEEe5qwrop9EORVEUpbfgRuv3AicYY97r5rGoLVUKQiMvitIOROQycfTry3Byax/VyVZRFEXp6YjIJ1wBhIHAz3EiTBu7aSxqS5U2o86LorSPG3BC7e/iKLH8U/cOR1EURVEK4lKcNKktOM0krzLdl4ajtlRpM5o2piiKoiiKoihKr0AjL4qiKIqiKIqi9AraIlV72AwbNsxMmDChK0+pKIqiRKisrNxljBmef8u+h9opRVGU7ieXnepS52XChAmsWrWqK0+pKIqiRBCRvJ27+ypqpxRFUbqfXHZK08YURVEURVEURekVqPOiKIqiKIqiKEqvQJ0XRVEURVEURVF6Beq8KIqiKIqiKIrSK1DnRVEURVEURVGUXoE6L4qiKIqiKIqi9ArUeVEURemBVNbUc/szG6isqe/uoSiKoihKBt1lp7q0z4uiKIqSn8qaej5793KaUzbFSYsF181k2viy7h6WoiiKogDda6c08qIoitLDWF69m+aUjW2gJWWzvHp3dw9JURRFUXy6006p86IoitLDmDlxKMVJi4RAUdJi5sSh3T0kRVEURfHpTjulaWOKoig9jGnjy1hw3UyWV+9m5sShmjKmKIqi9Ci6006p86IoitIDmTa+TJ0WRVEUpcfSXXZK08YURVEURVEURekVqPOiKIqiKIqiKEqvQJ0XRVEURVEURVF6Beq8KIqiKIqiKIrSK8jrvIhIfxF5RUReF5G1IvI99/NjRWSFiGwQkftFpLjzh6soiqIoiqIoSl+lkMjLIeACY8wpwKnAR0VkJvBT4L+NMccD9cCXO22UiqIoipIFXWRTFEXpO+R1XozDfvdtkftjgAuAxe7nfwQ+1RkDVBRFUZQ86CKboihKH6GgmhcRSYjIa8AO4EngXWCvMSblblIHHJNl3zkiskpEVu3cubMDhqwoiqIoregim6IoSt+hIOfFGJM2xpwKlAMzgA8UegJjzJ3GmOnGmOnDhw9v3ygVRVEUJQe6yKYoitI3aJPamDFmL/AMcAYwRESS7lflwOaOHZqiKIqiFIYusimKovQNClEbGy4iQ9zXA4CLgbdwnJgr3M2+ADzcSWNUFEVRlILQRTZFUZQjm0IiL6OBZ0TkDWAl8KQx5jHgm8C/i8gGYCjwu84bpqIoiqLEo4tsiqIofYdkvg2MMW8AH4r5vBonNK8oiqJ0EJU19Syv3s3MiUMB/NfTxpd188h6NKOBP4pIAmdR7gFjzGMi8iZwn4j8AHgVXWRTFEXp9eR1XhRFUZSuobKmns/evZzmlE0yYYExpGxDcdJiwXUz1YHJgi6yKYqidB3dvcimzouiKEoPYXn1bppTNraBlpQNOHq/LSmb5dW71XlRFEVRupWesMjWJrUxRVEUpfOYOXEoxUmLhEBR0qIoIf5rb4VLURRFUbqL6CJbS9r4r5dX7+6SMWjkRVEUpYcwbXwZC66bqTUviqIoSo/EW2RrSdkk3MhL2jZdusimzouiKEoPYtr4spCjok6LoiiK0lPoCYts6rwoiqIoiqIoilIQ3b3IpjUviqIoHUBlTT23P7OBypr67h6KoiiKohyxaORFUZQ+Q1DesSNXioLqK+1VXOmssSmKoijKkYQ6L4qi9Ak6wsHIRlR9pa2yxp05NkVRFEWBI2eRTNPGFEXpE8Q5GB1FVOK4rYornTk2RVEUpffQWSnI3iLZL55Yx2fvXt6u4/eU9GiNvCiK0icIyjt2tKRjVH2lrStanTk2RVEUpXegGQKFoc6Loih9gsN1MAo5fnuP2dljUxRFUXo+h+tg5OJwF8k6c2xtRZ0XRVH6DIfjYHQ2PXlsiqIoSuejGQKFoc6LoiiKoiiKonQzmiFQGOq8KIqiKIqiKEoPoCdH4XvK2FRtTFEURVEURVGUXoE6L4qiKD2IniJFqSiKoig9EU0bUxRF6SH0JClKRVEURemJaORFURSlh1BIs0qNzCiKoijdSXfbIY28KIqi9BDipCgra+p9dRdAIzOKoihKt9ETMgTUeVEURekhRKUoIeysXD61vMc0CVMURVH6HoU0qwwuunWGjcrrvIjIWOBeYCRggDuNMb8SkduA64Gd7qbfMsb8pcNHqCiK0ocISlHe/syGkJEw0GOahCmKoih9j3zNKrsiMlNI5CUFfM0Ys1pESoFKEXnS/e6/jTE/79ARKYqiKECmkbh8ajmXTy3vEU3CFEVRlL5HXLPKYKSlkMjM4ZLXeTHGbAW2uq8bReQt4JgOHYWiKIqSQbaOxuq0KIqiKN1FMEMgGmmZO6ui0zME2lTzIiITgA8BK4Azga+IyOeBVTjRmQzZARGZA8wBGDdu3OGOV1EUpU/RUzoa92Q0vVlRFKV7iEZa6puaYxfdOpKCpZJF5ChgCXCzMWYf8BvgOOBUnMjML+L2M8bcaYyZboyZPnz48MMfsaIoSi+lu+Ulj2C89OaTgJnATSJykvvdfxtjTnV/1HFRFEXpQLz05oTgR1qmjS/jpvOP77SFt4IiLyJShOO4LDDGLAUwxmwPfH8X8FinjFBRFKUb6Gi1lLjQen1Ts9audACa3qwoitI9ZEtv7kwKURsT4HfAW8aYXwY+H+0aDIDLgKrOGaKiKErX0hlqKcHQenPKZu7DVdjGaL+WDkbTmxVFUbqWrk5vLiRt7Ezgc8AFIvKa+/Mx4GciskZE3gDOB/6tMweqKIrSVRTS6b6tBEPrlghp2/iOTEccX9H0ZkVRlL5AIWpjLwIS85XmDiuKckSST8e+PQRD640HWvjt89UA2AbKSooP+/h9HU1vVhSlL9IZKc7ZZJB7SoZAm9TGFEVR+gKdlcPrhdZvf2YDgiOLZQH1Tc0F7d8TjUhPQNObFUXpi3R0inNcbea8x9Z2asPJ9qDOi6IoSgydmcM7c+JQ+hW1LbLTFV2LezFeevMaEXnN/exbwNUiciqOn7gRuKE7BqcoitIZdHRDyOjx7l9Zy6EWG0PnNZxsD+q8KIqidDFeZGfJ6rrYnNwgXrRly94Dnd61uLei6c2KovRFOjrFOXi8RMJi7ZYGjPtdItE5DSfbgzoviqIoBdAZKVtLV9fRnLJZsrouNpISjLYkLSGZsEinO69rsaIoitJ76OgU5+DxNu89wH2v1ALOytAV08oLOn5XpDer86IoipKHzpZOzhZJCW6TShtOLh/ElGMGM3tqYUZEURRFObLp6BRn73iVNfUsXV3nR3Uun1qed9+uSm9W50VRFCUPHZ1XDIWF+8tKirFEMMZgA2s2N7BueyOzCzAiiqIoitJe2hLV6er0ZnVeFEVR8tDZ0slxkpQA8x5bi20M4kqTab2LoiiK0lV4dsbrRRZnd7ojvVmdF0VRlDx0ZF5xNB/YO1Y03H751HJ/BcsCEpYTgdF6F0VRFCWOzuj5ki8NLJiZkLYNV84YyzFDBmjNi6IoSmdR6GTfEXnFC1fUMvfhKtK2oV9R2BBEU9N2NB7CckMunt5+fVOz9nhRFEVRMuiu2syQQpkliPtZZ9opdV4URemzdGXvlMqaeuY+XEXKdoQnm1vChiBqAJ5bv5O0bUhYwtxZFVxz+rhOGZeiKIrS++mu2kyAy6eWs6PxEM+t38miV2qzKmh2FOq8KIrSZ+mMyT7XuWxj/PeWJSFDEExN27L3AIteqcUAxhjqm5o7ZUyKoijKkUF31WZ6C4CWCLYxXWJP1XlRFKXP0hmTfb5zeZP8vEunhCb2qEFYEpCo1BoXRVEUJRcd3fMleNxCajMxBssShM6vzVTnRVGUPktnTfZtPVdc+lpXjUtRFEXp2XRlbabX38XgpIMFj9dTajPVeVEUpU/T0Q2+2nOuuPS1m84/PqsspTo1iqIofYOurs28+i7nXACLV21i0ZwzelxtpjoviqL0abrCGch3jkLT17rSiCmKoijdT1fXZra4jgtAS9qEztdTajPVeVEUpc/SFc5AIecoNH2tK42YoiiK0v10dW1mkVubCVCUkIzzeRkElTX13Vabqc6Loih9lq5wBgo9RyHpa11pxBRFUZTup6trMxddPzNrzUs0i6C7ajPVeVEUpc/SGc6AN7mXlRRT39RMWUlxh52jO42FoiiK0j30hNrMbFkE3WGH1HlRFKXPUogz0JaamODkbhsQoF9RxyqwdJexUBRFUbqHniDU0pZMhc4erzoviqL0aXI5A22tiQlO7gAGZ5Kvb2rmpvOPzzmOnmCcFEVRlJ5FV6uNZbNDPUlYRp0XRVGULLS1JibYiNI2YEFBqWKqIqYoiqLE0VVCLfnsUE8SlsnrvIjIWOBeYCTOQuKdxphficjRwP3ABGAj8BljTH2Hjk5RFKUbaWtNTHBy92peComkqIqYoiiKEkdnCrUEIy2F2KGeIixTSOQlBXzNGLNaREqBShF5ErgWeMoY8xMRuQW4Bfhmh49QURSlm5g2voy5syp4vGorl0wZXZBDkS8NLW7VSlXEFEVRlDg6Q6ilsqaepavreHDVJlK2oTjp1GZ2hB3qCmGZvM6LMWYrsNV93SgibwHHAJcC57mb/RF4FnVeFEU5gqisqWfeY2tpTtms3LiHyaNK2z0R5wvJXz613JemBLj9mQ1a/6IoiqIUFPEotG7Ss0WHWmzc8ky/NrOjBGw6W1imTTUvIjIB+BCwAhjpOjYA23DSyuL2mQPMARg3bly7B6ooitLVHE46V3SSz3asqFMzZcxg32HS+hdFURQlH22pm/Rskee4CK21mR0pYNOZWIVuKCJHAUuAm40x+4LfGWMM+PeByHd3GmOmG2OmDx8+/LAGqyiK0pXMnDiUpCUIkLAyOw1nw5vkf/HEOj5793Iqa+r91LCEhIv4l66u41CL49Q0t9jc+fy7offLq3d34hUqiqIovZ24xbFsBG1RcdLi6tPHFeSItOUcnU1BkRcRKcJxXBYYY5a6H28XkdHGmK0iMhrY0VmDVBRF6UxyhsJFAOP+Xdj+cZP8TecfnxGSr6yp58FVm/yVHxvYuLvJP64NlJUUd/TlHnGosIyiKH2ZttRNtrcmpSfVZhaiNibA74C3jDG/DHz1CPAF4Cfu3w93yggVRVE6kVyh8OXVu0mlnfB6Oh2fNha3f7ZJPhqSX169m5QdG7QGwBKob2ru+Is+8lBhGUVR+ixtFZdpT01KVxTiF0ohkZczgc8Ba0TkNfezb+E4LQ+IyJeBGuAznTJCRVGUTiRXXUshK02FRlniCB4/YQmIkErZ2DiOS7EqjxWECssoitKX6WhxmTjbFfd5dzVXLkRt7EWcep44LuzY4SiKonQO7ZEpLmSlqZAoS7ZzR1fLJo8qbXOPGCWMCssoitLXaK+4TNQ2ZctEiPsc6LYC/japjSmKovRGcqWG5XNQPCeksqY+Vr443/65zh1dLVtw3UxuOv9436AobSMqLCOBOiVjjBGRrMIywJ0A06dPz57HpyiK0gNpTz1KnG3K5gR5wjIGR0hm/rL1jDu6pNuaK6vzoijKEU++Val8+b+VNfVcfddy3zAsun5m1v2DK1kA85et9yf96Lmzqbf0FDnK3oQKyyiK0pcJ9gorpEdLnP2Jc4LihGVe2rCLlwVEBMuYLi/gV+dFUZQjnrauSkUn+aWr62hO2QA0p2yWrq7Lahw8xyPp1bC4Bf8WjkRyWUmxH8GJG1eufjA9oVCyJ6LCMoqiHOnkqkUJLnh5jY6j+xYiLBOXSXD7MxsyhGVs4/yAIWkJc2dV9KyaF0VRlN5OW5RY4ib5aB5RtryikOORdtpfGZzi+zOPH8YlU0ZnNKCMSzmLW/nSaExOVFhGUZQjlnyqmPnSt9oiLBPNRIgTlmkJNLk0xnS5KqY6L4qiHPG0RYklOMkfarG547l3GV7aj4RA2kDSIuvK1ua9B0gmLNLp1kk+nXackJsvmhQ6dnPKyRu++aJJ3HT+8f5xsq18dVducW9AhWUURTmSOVxVzELl++OIE5ZZsrqOxZV1vn3ralVMdV4URTniybcyFQzHz5w4lGTCotldWXrize24bSoBsCwr4/jRdLGrZoxjtuvgxEVVvLG8+M4uv1A/Vw1OT2oOpiiKonQOh6uKWVZS7NdOtkVYJte544RlfnTZyVw+tbzbUpnVeVEU5Ygn18QfF46/Ylo5i1bUtobFA8eKa1YZdI7StmHMkAGhELyHZ0DmL1vPi+/sii3ij6MnNQdTFEVROp7DVcWE3GIv2aIslTX1LF1dx4OrNpGyTcFpacHvg2PoCtR5URTliCfXxB83MV8+tdwp0m9xGkZ6kRdLiI185IuMRFe0Lpkympff3Y1dgEpLcN9gepmiKIpy5HC4qpjRtORci2KeXSkrKWbeY2t9RUwoPC2tO2sx1XlRFKVPkG3izzYxe7KTU8YMpr6pmbKSYqq2NMQWVuRyjqIT/NxZFcx7bC1p25DIodIStxo2d1aFNq9UFEU5AvFSlltSNolE21Uxy0qK8UTBbANlJcVZ9/NskiWCbYzvuAiZqpjZ7Fs2qf+uyBBQ50VRlD5NdGIGMmQnPaliL+93yeq6vCF5z7Bs3nugdTWsxebO59/1V7myqbR4xiW4GnawxebWh6swxmCJMO/SKVxzunaDVxRFOWIwJvx3FuKiHvVNza1ZApBVASzodGAMliUIhkTC4opp5UwZMzhDFTNu8S+68FdWUtxlkRh1XhRF6dNEV6+yKXsVGpKvrKn3lVhSaZtkwiJpCam0wQZqdjdhaF3hCobgvXF454qar7S7rGYbw9yHq3KqpimKoii9h+XVu0nZThQkbZucaV9ZVTEtSNuQTEhs5CaqilkUE9EP2sCgKmZcnU1w4a8QyeaOQp0XRVGOOApt6Fho4y6goJB8XMQknba5asY4avc0+UX6ACL4KWNxqWXeGBDxnZYgdh7jpiiKovQe2lI7mU8VE8lMcM6mipktopJPFRMyMw66ShVTnRdFUY4o2lJEmK1xV1xDy6otDf5+2ULy0YiJF13xZJNffnd3a6di03qM6Djqm5pD0pfzHltLS8pGBAyCsQ3FRSqZrCiKcqTQltrJjlbFjBtHT1bFVOdFUZQjiuXVu/3IR3NL7gk3bqUrrqElwOLKOn+/bCH5spJiLBEwhmRC+PT0saGVrXmXTmHuw1XYtvP9lr0HqKypz7niNnlUaUZNjkomK4qiHHlkE5bp6aqYwf0vPGojH/jTp2FfHYw/Cz7/0GHelUzUeVEU5YiirKTYX4Gyya64AoV3swdIpW3AMRCfnj42w8B4Tk/aNojAl848lls+dmJom2tOHxfqTrzolVq/+D+XaMCC62aGZJLVaVEURek7xDke0eaU3aWKGcwQ+K35IZMTazDeAKqfRu69rMMdGHVeFEU5oqhvasYSpy7FkuyKKx6FdrMPfualgQUJpowZA3e/+B4XV4yKzRFeurqOFnfbYLqat202B0ojLoqiKH2POMcjrrazO1QxPcnl+61vMzVRDeA7T8ZAuubvJDr4fqjzoihKj6fQAnzIHxrPR7bVqXy5vDMnDvU18yF7QX1lTT33r2zNU04kMjX1g+lnXS1BqSiKovQ8go5HttrOtih+hQr4D0MV8z+shXwusYyj5CDQqhXgqT1v6P9BJnfwvVDnRVGUHk1bu/h2RNFgXN5xvu7G08aX+TUtadvRzo9LWVuyuo6U3fr+lPKwpv7cWRXc9uhaUoFwfX1Tc5dJUCqKoig9i+gCXjYnpdBGl5U19cxftr61gL+dqpjPJL/KOGuXf1x3zQ1w6m9eTU9kyfG/5EcdfD/UeVEUpWDaEgHpKNqjHZ/P0fDo6OvxmkZ6Dsy8x9Zm9GKJ5iI3p+zQ9d2/spZm17tJ24a1WxqYPbXcjyYlEhab3UJ/dWAURVF6J50h6Q/kbXQZlfT3Cvzbooo5Jf02l/3tevonGoFwmhjAZvtovpr6KlXWZBbFpFkfLuq8KIpSEG2NgLTluPnSsQ5XOz54DiBUYHioxSZhdVzH+vqmZmzjNBo71OLkHQeva/bUch6srPOv58rTxrFu+1r//YhB/YFWWWZDazRp6eo6Hly1ifteqWVpTD6zoiiK0vPpLEn/JavraEnnbnS5ZHVdq+MCnHn8sFATynyqmP9q/o85icew7PBinOe4PGyfSdOs33JhUzPf7qSFTnVeFEUpiPZEQPI5JoVM4IebBhZtzIUIqbRTYOitLqXszI71bY3KBFVXkpbQ7BqQxZV1XB6QS542voxF14evZ/Ko0pBz9dy6HbSkDUUJ4XJ31Wraqm9w8tpH+E4ijZ0Q/mafxvLqE9R5URRF6WUE7WncIleQtkr6+/WUVqakf2VNfWibZEJCjgvkVsVcOfInHLXrNSDiuLgfVJZ/gbEXf6/T7VJe50VEfg/MAnYYY6a4n90GXA/sdDf7ljHmL501SEVRup+2RkDi8mPrm5pDzkChDlG+NLBcjkboHGmDCbT08lTJAGzTukpVWVPP1Xe+7DsQi+ackfP8C1fU+qli/Yoszps8giff3O6sfsU0Cwtef9z1LZpzBktX13Hx5t/wwQU3QMv7YNIUAUWuxbgs8RK7N30f+GPWcSmKoig9j5kTh+Zc5ArSkZL+y6t3+9sAnDd5RNZzett6aWIn3Xs9A9KNoe2CmWnbPngj0y//aTvvSNsoJPJyD/A/wL2Rz//bGPPzDh+Roig9krZGQIJOQ3OL7YShjQlFWAptmuVp2MedN1/0xjuHNxaPZMLiSx+ewN0vvuePyzv/ktV1NKedjZvTht8+9y53fX567HVW1tQz9+EqP4rT3GIzrLQf/YpyX1fsmFfdAyt+wyl7avhQy4FW1Rb3b/H/cFa6hm19LufvQFEURel5TBtfxqenj2Xhitqsi1zR7TtC0t8r6PfqKp9dtyNr/aSnenmltYwfJn+HpMPfe+Z0jz2QX9hXcczR1zOzi+pi8zovxpjnRWRCp41AUZReQ6GF8BCeXMWVEI5GWAptmmUb55m9X1GmcxINv89ftj4UBvfOMX/Zel9FRYArppVzy8dO5OKKURnnjxbVP/129gl+efVuXx4ZwLKcVK/Lp5bHavBHNfWnpN9m4qKvw8FN/jESgUFIZDDGvQABOP7ign4XiqIoSufS1lTj2VPLnRqVdtRztlfSf9r4Mq6YVs4iz2nKIel/2yNV3GX9iHMTaxDJtIsGuDP9CX6WupriIou5XSjpfzg1L18Rkc8Dq4CvGWPq4zYSkTnAHIBx4w6/GFZRlN5BtPvvvMfWxk7S2RyioFMChBo6BrcvKykObfPiO7tYuXFPaOKcNr6Mmy+axMqNe/wx+LUkMeefPbWc+1ZuIu0e2Jj4CR7CkR1LnML/4Hk9gs7YLxK3M6/o71gYxzk5GD5mKMLieVuBa0xLMUVTPgWX3xVz5xVFUZSupD2CNodbz9keSX+Ay6eWs3R1Hc3uwmKcpH/jo9+mKrGIImlNQ4NAmpjAranrWJC6oFsk/dvrvPwG+D6OHf0+8AvgS3EbGmPuBO4EmD59erxum6IoRyTBiTRYlF7IhBZN97KIb5b1+qa9of3inBxv27i6m2zj/r6nuBJJKfMIrrLlNUCbXmHIIz9kFX+npKjZcVgCy1jRFS3vOrwv08B6M55X7eN5VM7l61/6vBbqK4qixNBbJP2hMGejo69n2vgy5s6qyC7p/1+TOPf97RnRf2Mcu/ReehR3DP0PHtg+BugeSf92OS/GmO3eaxG5C3isw0akKMoRSbZJOtvEHI3cBJ2OqE59EE+z3nM2vGL6aL1NPjzFlXwpbd4xbzr/+PABVt0Dz/4I9u8EbCaC44G5xDksQfzvx0wjOedpDtTUs7d6N1/vQoOsKIrSmzhSJP09O+fJ46fsttmvfMRK+u98GP7yH2C3AGGnxTNIf0qfybfkXzh76HDY7rsCXS7p3y7nRURGG2O2um8vA6o6bkiKovQV8hmafCllQcdFgItPGskpY4eEJv9b/7QGt/ae5jaGsgtJaQutsm16BZbeAPXVGfsEU8GAjLH7HDUSzvsWTL+2oLEoiqIoDu2NgOSiqyX9PXVOrw+ZZyviJJU7StL/Hyr/CfP6Gt8WBTKVnRpLSbD15OvZevT1LMgl6e+plNmZNa4dSSFSyYuA84BhIlIHfBc4T0ROda9tI3BDh45KUZQ+QVsNTXDiLU5aNLfY2DjRluKkxQ3nHhfaf8nqOt9xAWdCbs+KWJToKtvHW/4GPzgbUk0F7W/cP4yBBkpoOfEyRpx1LYydcdhj64uopL+iKNC+CEg+B6CjJP1znSt6jsertmYs0EUlldsaZYpuf97kEZy67r/5cuJxiqNSYniLasKuiZdy/9hbmTlxKDdFJP3jrqUjolD5KERt7OqYj3/X4SNRFKXP0ZZJLlvfmFwyytHUrI6KXkyz3uHlY3+HvWsD/fv1Z+Df38q6bTStTYAWktyd+ig/S19DQuDfR03mprHHx+2uFMY9qKS/ovR52hoBKaQfWaGS/vnOl8vZCJ4jkbDoX5QgmbBIp20Q8cVjgpLKy6t3+5GZfI0uwVnM87ZvSdl8e8tXGJdstV0ZqcwDR1L5mRXOmN9alzFmz55W1tRz+zMb/PvSlvrS9nI4amOKoiiHRVsMTXRlqr6pObPOJELFmMGhRpSv1TWECgjbFHL/nxmwax1IAoxNmeeW5Ai2eBEW20AT/VlgX8ygT/yI2x5dS7PbKCyuC7JHdxSe9kZU0l9RFI+2LFIV0o+sUEn/ZMLiimnlWZtNLg04D80RWf9ovchTb20naQlXzRhHxZjBsWqdZSXFgZbL8OCqTVnPXVlTz+LKOgwwVdbzu+TPGHKwqVV2P4ABaobMZPdl9+WNOkWvH2M6vD4nDnVeFEXpVgo1NG0NRVfW1DPvsbWhDsDBVavoKti1Z0xg7dZ9XDJlNNecPs4puH/hF9j7NoNJ4wuEmczwuvH/cHFzhPcVj+DHjR/jPvtC/6tTVtbm7YLsjb+rNPOPYFTSX1GUrBTSjwwKq39sTtksWhFfpF5ZU8+Dqzb5ZsIGXtoQlvWP1oukbcOYIQOyisfUNzWHalNS6eyS/surd3Oy/Ta/LfoFw6zGWKcFIJUo4XvN17Bg+wUU372cubMqctrdqHMD2dsadCTqvCiK0ivIt/oV/Txa1C+EVciizS1/+7xTZP+l975G+vEqEjiFjJK1sr4VG4sDdpL+0sx2U8bL037JFZ+azYaaepbc+TJBz2bt1n1+OkC2LsjR8XW2IThCUUl/RVFyUmg/smx4zo8XUcn24L5kdR0t6fDUEp3bK2vq2bL3AEnLSRMLjiHOeZo5cShFCafoHsiZ0nbCoTf5p6LbQgX5GUy8gDvG/hcLnlgXynDIlR0RTXfDmIyxdwbqvCiK0mOJOiVxE3i2CMXMiUNJWkJL2pCw4MrTxjE7EFKfOXEo0xPv8Ev5FaNlD+CshiWj/VciCmH+26MnQqIYhh7PO8d9kU890kJLizOBX2HKObamnnXbGrHtsMEytuGKGWPDai4x11tWUowlzladbQiORFTSX1GUQjicfmTRdK/og3tlTT1L3O+8+T5pgWW1LmDNnDg0I/3qyhljs6aABc+9aM4ZLFldh0DIvnnn/uzdy7nMfpLZiYcQK4vT0m8w/ONiGDuDmTX1GZGWXNkR0UVFoEtSndV5URSlU4jTrG+rpGMhaVM5IxTuw79lWVSMGczy6t0MXbeQCW/8ilP37+T+hB06lteGJTjBm2jkRRLw4X+Bi7/nf/wBYMGIeu547l2eems7i1bUsriyjnTazlA7K0paTHFzmJtTNktX1zF3VgVrtzT4ev5JS/wiTa97sUZd2oZK+iuK0lba2o8suM/sqeUZNi/aj0xoXUgLbjvn3lUcbHHsUTptc8yQAQU7T9m2e+/VZ7jH/JTTk29nP8CYaTDn6dDx2ir5HB1DV9gqdV4URelwsmnWt6V+o9C0KT9CYUxGWlgq7RiNRXyLU//spIVZAkbAcq2JRJaiMnKGBGwbtpkyvsa/8fXrsne3f/rtHaGeMlEuPmkkN5x7XGyRaNo2/rmd9ALnvTGG+qZmLd7PgUr6K4rSWRS6kBZ9iI9LXe5XZPkREm/bhStqeeLN1oaPkkPEpSA2vQKvL2L26/ciiZRzTInYtpJhcPWiWHn+4Nh6qt1R50VRjlC6c9LJplnflvqNbGlTwesCmPfYWmxjsCIRipkTh/LZ5NN8W/5Av4iGfUY6mJsP5hfle0ldVhFvD72Ij9d9DttAQshZEGkHwjQJy3GoPGdGgFPGDvH3jRaJhmpzEm7kxU0rKCsp1uL9HKikv6IoncXh9iNrSdkkLOHT08dmpHYBPF61NfS+YvSg9s/v/30yNNQCbiaBa+f8lOcPfBzOvLmgnmILV9T6C2v9inqW3VHnRVGOQDpaqaqtjpBXxNfsPpxXjB7Eyo172qwUFk2bil7X5VPLfaMiGAa88b9se/HPDGY/01oamJrY6xzQxERYoupgAEUDYcb1oZSwppp6iu9eHhp73P3wnC1jnDHPu3QKgC+9mUxYvLZpL99+aA2zp5bHFokmAlKb0Jo7rMX7iqIo3UNH9CPLZTsvmTKaF97Z5b8/I+b4eW3wk9+Fl+ZnHZcgcOa/hmxblIUranm8aiuXTBnN5FGlzH24ipRbs9nc0rPsjjovinIE0pEPu+1xhKaNL2PurAp/1eaelzcW3LSqsqae+cvWt6q3uGlTcddlgD8kf8yZsgYBrLrW45igFKS3+hTJCUsbMFhsLpvBhJv/lvVavIJMA6zb1piRAgeEnK15l05x5JZxCkCXrq7j/pW1POmmBjxYWcei62f6fWqyFYkGX3d2x2JFURQlk87uRzZ5VCkzJpSxsqYeDNzz8kYurhgVSt3KaoM3vQKLroamXfEHHzgMTvwknHI1jJ2R1QlauKKWbz20BoAX3tnFR04aGcoksHpYPzJ1XhSlF9DeyEdHPOxGJ+Olq+tyjsUb6+a9B/x0qEIn8eAkbXDC3omExbPrdvDE2m2c4aaCXcwK3mYCX3hnJcWJba0HiIuw+H84f9kiNCWO5qeHLuO+9AVOOH/8WGYHmlfGsWR1Hc0pGyumFwDgjznobAG+dn86UAJTaA+B4DHaWkSpKIqidAyd2Y8sWtQftQ9RWf+vPfAac845jmvW/StUP51xzJAq5vm3wvRrQ+eKc4KiqWvVO/f72ROWOAtyPakfmTovitLDOZzIhxcCPpzJJKrj7ilixY0lKvcYp1efi+AkLcDEEUfx3s793FJ3E6dY75HaYdEv4dSvnM0aJNrdXgLRFTfykk4eRWOzzTp7HL/kGr55vVNwP7umHrO6jsWVdSx6pZYlMY3F4saFW18jkVqcoMFqPNDC5363wm94WYgefz4KNZ6KoihK99DR/cggs5fMxt1NnP/oWZhkQ1ZlzLQkSMz6pe+4BM8Vl5FRMXpQKHVt454m5n1ySt5sie5KaVbnRVF6OG2NfEBrzUhzymblxj1MHlXa7gklOBlv3nuA+16pzTpRLV1d50+w6bTNVTPGhVaB8kWQZk4cSjJhMSX9NrMTL3Be/auMLtqD5R4ggeO4RLXqQ9lgAs0lo+iXtODkz3BH8nP8wm26JdC6anX6OJaurvPTz5pTNvOXrefmiyYBYa366GpaXAqcd48aD7T4DS89Y3DN6eNy6vEriqIovZPD7UdWSFH/5VPLeeqt7Xz+/T/whcTfKJGW0PeeDUwZeNQ+k60X/pqbpoczHbJFhSpr6rnn5Y3h49nGz5aorKnn9mc2xLY96K5+ZOq8KEoPpy2RD4+OXg3xJuPKmnr/gT86UVXW1IcacSUSTm8Vz4l6sLIOjMk+9lX3MO3Ve1lZ/C6l6b0ZDko0HQxaU8LcgAipo0bT7+p76RdQUvGabgVXrb710Br+3zPvsLXhoD9e28CL7+xiRfVuECGVtkkGjEm+tC3vHn3udytCnz9etZVrTh+nkRNFUZQexuHWaxxuP7JoloRX/wiOTVm4opaHHlnK7fJzvm81IoGn9qhJrLWHcUHq1xQlLRbEOBHBhciykmL/PN6iY/C4cc0zo20PurMfmTovSp+kp2qXx9GWyIdHvrzb9l5/rpD48urdvjKJACeOKqVqS0Nowgb8Ghh/7PdeBu89B8aJqgxyj5et/4ovZXzyp1mx+RAbduxnafpsVptJXHPCOH409uSMMc+dVcGP/vIm+w+1SibX7T2YcX0Gp8eKJ1zcnDYsXNGaUpavZgcylWMumTI67z6KoihK15LN8WiLfTzcfmTBLImXq3djjFM3mUxYnDdpOB9dP5cHki+1Hkh8If8QcvJneKn8Vj6cJ1V82vgy1m1r9MV0ipIWtt2atpaw4Cq3iea08WXc/syG0PXdv7LWXwiM60fmXVNnP1+p86L0ObqrwOxwKCTyEd0+V97t4Vx/tgiCL4/cYmMDazY38Na2Rr/uJZGwwBiuYBlfTPyVY5/fgf1cS6C3ikOwB0tG/xVJwORLHMnHsTN49KE1LNhSG943QmVNPbc9uja2aaRHcdLyo0J2xCpkOFt58FTGvJU0772iKIoSpif1I/MiEW2xj7lSsQrpRxYcg51uNT5T0m/zk3e+RFnCKeyMLuYJgJWECefA5x9ynCB33LlSxStr6sMSyBl2UUJpa9G0tje37gs5OpZl+f3I4iI1nfV8pc6L0ufozT0z2qI6lc3JaMv1t8WweGObv2w9L23YhW2cupevV+zjzPefZFLDSxQ1bWt1MIJzpuesEFlV8uSOkwPg9BsyNOpnTy3nwUrHmbMsoWLM4IxxLXVVwrJx2oQyJo0spWLMYB6v2sqL7+wKTM6ZK2XZ7k3w/TWnj2uT09KbIoGKoigdQU/rR+alUrX1+WD21PJQLWO+fmRBNcpoMf5UWc+85B+osGr8bSRiHwEYNhm+8oq/TTZHLE4gIFczZWNMRl2t98yxZe8BFr3iLBYKcKUboQluG43UdNbzlTovSp+jI2WEu4NsTkmhE3eh199elbObL5rEdRu/xunyFoJN8QY7I8wdjK5AWCWlpXgQidT72Mawf8xZvPsP97ZeV8z5bvtEaz+ZeY+tDa04eXU4QYoTwpfOPJa1W/dRMXoQ97y8kcqaeiwRrjvr2FAzzWy9aXLlAbfVCPfGSKCiKMrh0tP6kc17bC1zZ1UUbB+Xrq4L1aDODjQXjvYjCx6zrKQ4VAC/4LqZ3L90MbfsmUuZ1SqhKVEb6b0/+TNw+V2h8UQdscYDLbH3I18z5YQl3PdKrT9mbz/PKVsSyPzwnLXgfe6q5yt1XpQ+R0/rmdERq+6FTNzB8xRy/YUaFu+4n33n3xiy5QWmYTCJzONlk3QEx7HZZ/fnZ/ZnkVO/6PdUSdYI3LWcVDr7ddU3NYf6ySwJrBpF63A+WD6YK08bR31TMzdfNImlq+s46BYq2sZw94vvMe9SRx6yrKQ4q0xk9N48XrW13UY4eKzmXhYJVBRFaS+d2Y+s0Hk0aj/qm5rz2se43ixBtcrodV0+tZzL3QhFWUlx5kLX+vlMbZjvNDYjxmnBtZFjzmHInEdjryPqiN394nux/cjyNVO+75VaPwoTtUeFPDt11fOVOi9Kn6SnKD+11elor6MRd558xeeFGJbqO67hlM1/4UMYRJyu9kB8s8iY7vYC7DalfMX8B5XpEyhKWpzdeCi2IDCbQQoWQiYsYXFlne/sRFfRrjxtnG84RDLLHm1XHnLmxKEZ98u7zzMnDs24N5dMGR2K2MTlPWf73ZWVFPt1NrZx3iuKovQ22roQ15EPutE5ORrdyDbWspLiDDuX7/kgrjeLbRxp/Jc27GLO2RNjryuaVjXbfpLjF/4bHNqakY3gI9CUKOOl037NO/1OYmaOZspBR8y2M/uRBcedrZlysObTEsmw+4U8O3XF85U6L4rSjbTH6WiPulh7VqViDcumV2DZbbB5NenUAY4NJeEGXgYL7l0MzgRvY/H2sI9w2bYvkHbD7bd9ooJz3WjHbY+u9Y2CJYAb4g4WBGYrhDxv8giWvbXdv87oKlq02WSU4iIrYzsvmuPVzni/hwXXzWTp6joMzqpV9F4V+rurb2r20+oEp9D/cPryKIqidDXdnf4alQHOlcYbl/abrxljkGCKFsCQAUXsaXL6rtgGfvt8NeOGDgwtEAadpRnJDXyH3zl1LYfCxw41WS4uRT7yA94efilfvXs5zal1bXoOiLuufM2U+xU5ojuWG5npqXYor/MiIr8HZgE7jDFT3M+OBu4HJgAbgc8YY+o7b5iKcmTSUU6HN3F7TRDbep5sK2b+CsqT34WFf4BDDf53boS7oAjLdlPGzeZmVqVOoCghfHrsWMxWp/DPS7u6+aJJTppX2jEI4h7cW0E6+4ThrNvWGDJK0ULI4aX98q6iWSKhgkXB0bS/YpoT2gfYsveAr5JWlLQQyPg9zJw41E9vWxojpVzo7y5oMGzgpQ27WLlxj9a+KIrSa2hvM+WOdHi8uT5f0XiwmbK3yOUtWnnHyRVF8lK0bnVTtDzHJYjX3yt4nb81P+TD1lquSti+nQ4kK/iJACkjPDxgNq9O/jdmDy8PjTdXM+V8kazg99maKfeklPpcFBJ5uQf4H+DewGe3AE8ZY34iIre477/Z8cNTlCObbJNNrpB2LrzogNeXJDgJF1p8vuC6mUzb+TCs+A00N4GdgsYtGefywtxx9Sv77X68yzHcnz6fzcddybijS6h0iwDTtmFH4yE/PG1wJs+VG/eE0rzEbX7l7bPsze088/aOUB5vtBBy9tTyDPWT6P2ed+kUbv3TGtIGklarYko0WpJMWFw5Y6zv0CyJSFTnc04KzeeOU2nrbSp4iqL0bXpCM+W4sRTSTLmspLjNAiz1Tc3YUV39AMH+Xsurd/OMuYFRidbFv7hFxk1mGL9JX8qi9IXQDKyoZeGK2pDgTb5myvlStrzve3sz5bzOizHmeRGZEPn4UuA89/UfgWdR50VR2kV0smhvSLtQzXoglAu8vHo3Fem3+V7yDxwnW0j8QXBmzvwYcBwY4KB1FH9qOZ3FKadhpIWThrXAXSEKPvyPKO2XoUAWTfPyQv/eilNcHm+wEDKuaaZ3fzNwa2Qsywpp2gfvYTptc8yQAf53cU5mLuekLfncnkpbXN2Moih9k94koR6c73pTM+VzJw3n8aqtoUhMIQIsMycOpSiQOhZUsQz199r0Cl9afR39XcclVvZ41MnIx3/Ji1tG8cxT62Ffay6ZZ/uCePWg2ZopF3Kvensz5fbWvIw0xmx1X28DRnbQeBSlzxN1Quqbmgvq7B5nCPLVbrx4wn3cUPM3/rnoQNsGaSXBNqST/fn9oQv4SepqkgmLcycN58TSflwxZnCGwxVMa6sYM9hJlfLqT3D05oPGy6sj8eQovRSuOGeu0Dohr0FX2j1pKh02TPmKPqMpdYUor0AeR6oNx1MUpW/Q3TUk7cGbI3tDM2Wv6eJz63eSSjuOiwWxAixxxf/Txpex6PrWusfLA4tgAKy6B169F7a8xgCTxkggRczzXIaMg7O+BtOvdZspL9dmygVy2AX7xhgjIlljZyIyB5gDMG5c77o5itIdFNKxty0ShcFjnbbrEb4jv6R/UYqUsSiqbp0oo7UrsRw1Cs77T5h+LQDffWgNC1fU+rm4T765neKEMHtOeewYPcfJEmHWB0fz3q73qdrSgG07A4jWtCy4biY/vOxkZk8t9x2ffMXsuVIRllfv9h0XyFRT8XKZH6/aSsXoQXlTB/KF2NtqgHtLyF5RlM5Fmyl3bjPlYNNF2zjiMGceP4ybL5rEtPFlTB5VypLVdWzY3sitf1qDbcK1kd64Q+d78rvw6v9B6hA0N4bOK4Rlj7effCOjL/+p/31nNVOO3h/v3vb2ZsrtdV62i8hoY8xWERkN7Mi2oTHmTuBOgOnTp2dPEFQUBYif+PM9BAcnlWCUZtr4Mv5S/r+M3PYMSZOieHOzv/xTJMHCeOezkNIJwICjYcSJMHwynHI1jJ3hn2/p6jruX1mbEdJuThuWrK7LmNyCxsg2hj+9Fq6jSaczw/Ve0WdZSXFsPU8cuVIR8qmpVNbUc9sjVbSkDS+9swvPlLT34SFaGNqbHkAURek+tJly5zZT9uxqMJ3ZK4K//ZkNlJUUs7gy7FA0p2wWraj1BVrAsWuz99zF6Dd/D+ns6dZe+td79ij+0/wT35z+BbxErc5qphy9P8lEa+SmtzdTbq/z8gjwBeAn7t8Pd9iIFEXJmPijjQyDaiPRLr/+pHLnBdhbKh054wAZ6mD+Hw4txiI9ZCIDzv4XP8JSWVPP8g27mWk7ooLRBl1RdjUeygizz5w4NEPpyx8TmeF6r+izJW28EpWCnIBcq375VgSXrK6j2e3QFRxlItH2h4e4wtDe9gCiKEr30NPSSI+UZsrR1K+5syq4f2UtIwb1D0X+LRG/NiaIZ4OWrq7j3dVP80P+H6OsbX6Ps9gEhvEfpqp5NLfVnEylPYmEkLeZ8txPVABQOqCI1zftbVcz5bj7E7yG3txMuRCp5EU4xfnDRKQO+C6O0/KAiHwZqAE+05mDVJS+TlBXPqo20pKyudJ6iv9MLqRUDsAfWvfz5RgDM6qXbxssmG9JlJAC1pWehT37zpy5x548cbBBV1FCSBtHFUyAZ9btYNlb20kmwmH2eZdO8WtOvBzjZCKslOJ1+q3a3MAbdQ0EW7J4Tk4+JyBX+lWu73Y1Hsr4TIArpsWnweUiapDacwxFUfouPSWNtNBV93wOTnc1U164otaXNfb6itUH+oo50ZUGnn5ru9+PzGt6nA7M4W7gwml4vO5mplirMiSPIViML3Dmv8LF32PNilper6nCIn8zZc9x8e5F1IcqtJnytPFlGSpwGOPXj/bmZsqFqI1dneWrCzt4LIpyRFHoSlUh23mrcPOXrecFN9f1ZhbwBesJ+hc3O80cPQx+caCXEhYnZ5xOlPBgy4dZnDqLNTLZdyAgU40saHCC8sQJ1zmZMmYwt/5pjX/sFjd64YXZH1i5iXmXTuGa08cxeVSpnwqWbcVoSSDdKogIzJ1V0WkGfVhpv4zP+hVZvlxyW4ga1fYcQ1EUpbspJLpRiIPTZc2UI+O6NSDS0pyyufXhKowxvhy/R9o49SNiDMmkxZc+PIG7XnzPf9j/31Pe5Lj3/pdBB7dSdOAgELMwCCBwoHQCfz7uuxw76XyoqW9TM+Vp48O9aqK0pZlysI7zkimjfft7OM2ULaBqS0NGdkVXctgF+4qiZNKWlapC80injS/jK4Ne5DdFP6FEmjPSv7IV3Htyxs1WCUaE/eMvZtjn/8hvntnAL55Y506OjtTig5V1GTmxcQ/hQXligHmPriWdJYfMACnbMPfhKoAMh6Wypj7WWQpKSZrAweqbWvOKg/1w2tIhORuXTy1nsZuqlkgIn5k+liljBhekFhalp6V9KIqitIdCohuFOB7enNjeZsqQPf0rV1pZOuIB+O8jq3pJi5AkWOOhFMYYpsp6fi2/5pi1e0IZC0HZY+/DJlPExon/yOUb/oHmFTbFlcvb1Uw5GOmAzGbKcYI8QmYzZcBPhfOaHx9OM2VPpS0YOeqO+hd1XpQ+QbboRkc//HoUOiEUtN2S6+HtxyDdwgy7pbW1PTm620tr2FpKR8Nn/kg/t9i+v7uJZyiCfVTicmJvOv/4DIPjjXHJ6joWV9b5++Ui7Towtml1jNZta8z4LGrArj1jAne/+B62bfwVJ2h1/LzxW8JhT6TTxpexaM4ZIcesM+Q6lY5HRH4PzAJ2GGOmuJ8dDdwPTAA2Ap8xxtR31xgVpTeSbSEmaFfbIjDQnmbK3vnaOh8HU67BMZ9Ra+XVmUw5ZjCLAs2UL984j+8VPUkiIqgbl9Gwzwzgp/Zn2TnpakaU9qM5VRubrVBIM2UIRzoEOOuEViW04L0P3i/o/GbKUZW27hKiUedFOeLJNuEFP3dWRJwUoUIfUHM5RFv2HiDp5svmar5VVlIcP3Hcexnp6mcR7IwVqqwOC61RFkuS8OGvwMXfyzr+YLHim1v3Ydsma04shA3O3FkV3PZIlV/cHh1fsEZF3BnYcu+H5xgtWV3HAys3+XUh3rGPGTIgw4BdXDEq414HIzRAh02kQYcjGLpXtbAezz3A/wD3Bj67BXjKGPMTEbnFfa8NlRWljUQXYuLsansL7CF/M+Vs+xaSVhbsxyLgy/tDq9336kzeXf003+F3TJZakg3Gj8SE0sNo3TlNgkdSM/n31E3OR29upyghJBMW6XR8tkJUjMcbZ5CoMuYlU0aHHJdsTlxnN1OOU2nrDiEadV6UI55sE17wc2ibAkchDlEyYXHljLEZzaui+86dVcGkNT/n1C0Lsf7QQhpndcgKhoyjDktkPM0mwav2Cfzcvor/vOHa1pWsHDmplW4ebnPKJmkJV80Yx+yp5azb1ujnx8YZjeaUzU8efyvDcUlaTvPJMyYO5Z6XN2bIOJaVFDPvsbX+57saD4XUXIzBb0YZnZDjIhj+ilqLjY0TeenoibS3y5X2JYwxz4vIhMjHl+IIzgD8EXgWdV4U5bCJs6s3nX98wZGQtjRT9mxBe+fjoB0rKyluTX8KCspY78BL81mU+HNo32w1LY0jZ/DE6H+iefR05j22FqE1gyFtG66cMZZjhgxoVzNlj7NPGM7Tb+/ANoZ5j631e5xF79fSgHJZ1FYW4pwE7090nNnuZ3enRKvzohzxZJvwogpeXnfdQibEQhyilpTNpj1NWfc9lfXcYB7jgr++QZFp9vNmffWSuEnTQ0Cw2DdyOtdt/jivpE4AnGLDJavrYps9RsPNm/ce8MeaciMiv33uXZ5+ewfGGFZu3ONPltF7te9gKjSco0uKaDyUYs3mBtZtb8wa+vcaf+1qPMTTb28PHSNY6F+IExmcQMtKiqna0hAvU3kY9IRJWjksRhpjtrqvtwEj4zbSZsqK0jYOx5HIFx2Iq93wHsqvPWMCf127jY9WjCp4Pl64otZPT04mLM6dNJwRpf0chUvrHVg0HZp2AZlSx9HMhvfSo7iFf+L1zZNJ1doUJ9cyd1YFa7c0+ItvXrQl1/hyRZGiKdEQ3iaqIBbbKiFyz/OJBrW3V053oc6LcsQTN1lG80XbWvOSbeIOFtkZHEljr0hu2vgyePK7XPfqfVxSBONkGwlvQzKbRUYdlkN2goPSj7fNOOqmfZMrPjWbQcAJD61h5YrWPN2FK2pJWILtOiRBTfbKmnquvvNlWtIGyyIkfXifm8Pq4e0HTsrY2ScM571d77Nhx/6M+7GnqcV/7amnRCUuvcaWi1dtik0383Dug/Dapr1U1tQXFMZe6Cqa2cbkbWIZRy7Ft+6epJWOwRhjRCT2H542U1aUtlFIHUwu8Zlc0QHIrN0Axwn57fPVAPz2+WrGDR2Yt0N8ZU09cx+uCqUnP/nmdmYk3+EDtfdD/Zux+3n214hjovfIMG44+BVWm0mumW5tPlzf1MwPLzuZ2VPLs4oRRMnl/EVTor1ifW8bL+X78aqtHGpJs3Jj/WE1Qu6NzZTVeVH6BMHJsiM6xWabuINFdgAfkvV8g/uY8sdaMIfApOkHHGs5G2Xk0QZXeQQMQoMM4b8OzWaR7aiTJxPClWYsx7oP9t6EGVylCaqrBDXZg00Y05Gqxagko7gOxPxl6/2IiEVuopOsR9xKkkfSAsuySHliAeKM/8k3t/P029u58rRxOVex4oxTWybftvx76IhGbUqXsl1ERhtjtorIaGBHdw9IUY4UCqmDiRPIyTV/rtvWSH1Tc2z0/vGqraFtH6/amtd5WbK6LpSevCT5HU61qp32AjHSHUE7vDNdyo3pr7HaTHLsVMIikXbUthDxa1rKSoq5/ZkNlJUUx4oRZLt32aL6ociKFe6D5t3HuJrTvtRMWZ0Xpc+RLVzbEQ+mMycO5fSiDdzMQj4k6ykW10Nw//IKBjPUSryIi4CNxd6Jn6Tm3Pl+etf9r9T65zAGFr3iyBp7PVZmTy3n+XU7qNt7MGNMFq3ywtEVoUTgg+A86IzRsOzN7SFnw4DfuEsELj1lDH9Zs9WRFrZg6rgyDqVs1m1rzChKDK4kBc9z5WnjqBgzuLV5ZWCjtO2sti3NYQiiUpiWSJsm37Z0aD5cp1fpch4BvoDTWPkLwMPdOxxFOXLJVotRVlLsp1XFpTcVqhx5yZTRvPDOrtD7IFEbXllTz+LKOq6ynuI7yf+lhHCLgaA9NIH3u8wgHkyfw8/S1/jfp234zGnlfh0LOBGLHY2HuO1Rp5bTE6spNIKRLaqfL105uAgZvJa+1ExZnRelzxEXrm3rg2l0+z99sogPVN7GtO1rWZQIhDQi0RUhnA6WBt43A0iaNH+zT+Mb9k1O0fuwodwTKPxPWkIq7RTEBJttLVzhODWWZHdMgte4M9JB/vqzJ1I6oMjvNNyScpRNJo04ire2NWZcd1FCuO2TU0LSjH+p2gYYDMIrG52lrNfrnIaVwYaU3j23Ailtxa5s5PLq3djGZDg3HoXoz3uqLPMundKmybfQ3O32KN0oXYeILMIpzh8mInXAd3GclgdE5MtADfCZ7huhohzZxNVitKQz5/VDLU5kolDlyKBT8qPLTvYFZYJRlzgbbp78Lqus+yhNuHbPTYuI688C0GL1o+hLj1Frn8Dm1XUkV21y7C6O7bs8Ev2IZjwEVTYPV+AlV7ryrogdh77XTFmdF6XPEbeqkUsSNy4i896rz7DY3MaEoq3sNUcx+s97/OOHnIhodMV9vTl9NJtHnMOmcZey2pwQqjd5va6B1+sa/M3TaZsLTxzJ02/vyGi25eEJDljivC5KCN/75BSqtjSwq/EQdzz3Ls+u2+Gnf4GzfemAIr82xXM0Gg+0+HnFHjMmlHH8yNKM9K3bn9lAKm379TZB7l9Zy7rtjSFVtaDTk61gU9xr8A6XT0jhcIvqC91flcd6NsaYq7N8dWGXDkRRehGFZhwUWsvizaWvbdqbEbn3MMDiyjrfnuRSjoxT5/Tm3rjmxraB2faTVPzxy/Sz38+UOpbIAqKBFor4iz2DrzffxA+2jOKa08v8lGxPYjlq+7JlE3jnmjurotMWt4aV9gu9P6V8MHM/0b7z9VZRGnVeFIXsD6bRifOZU59l9Ju/Z3a6GUk4+w6UPbHHDK7qpIxgEsVsTw3iN+lPstS6mAWXzuSK8WUc6xayH2wJF6GIOA/uiYTF9n0Hc0YmBBCnRUtrWhpkLY4XyGj46E1e85etz9j+3MkjMgrwwamlsdxGLglLQs7R+4dSIYfQc1yCTc2C0ozRgs22NA9tT1F91Bj3BnlIRVGUjqLQjIO2ZCZ4n//qqXdC9spyjZK3KJVOh1XEgsqRwTk/uLDY3GL7qmHR3mwXHrWRSUW/ZKp5m6Ot/WCHRXAgbJNtA6/ZE7ki/YOQMzP34SoAfww/vOxk/x4EnaXgM4OI4wT5xzGtqdrevh3ZDPvyqeUsdqNaRQnxe9RE++IUSm8UpVHnRelzBGUTgxNxnCLZ/GXrOSn1NvMSf2CybCK5prVLbzZJEW+CNIBthHdLT2P/Zx5g2vgydtTUc0z1bhZEtN8XXDeTnz7+lp92BTDn7Ik0Hkrx4KpNvFHX4OfkGvf8yYRw3PCjeHtboxv5aB1DyjY8XrU15Ex4Qy5KBrTtx5dlGKZrz5gQyitOJjJrSLyQ+eLKOtK247h8+cxjqd71PtW73mfjrv28u/N9P3/ZK2oM9sDBmFD+c5DOnkzbW7/SGyd5RVF6Nx398OtRaCpsW1Nml1fvJuUaJAEuPmkkw0v7cf/K1gyDaGF4trk17CSI77hAqyDOSfduZkB6P5MDzdE88xxdums2Ft9NfZH77Aux3AXCdOD7tG0yng8gs4lm9Jlh3bZGZz/bZCwMFlLP0xamjS9j0ZwzQot9fa0eU50XpU+RS5nKnzyf/C7NC+/lAwf2cyeGouIWEm04hw1sTI/i6+kbec1M4mvTJ3NTwFGJU18pKynmjc0NgDPpXnrqGG752IlOWpZbH2IBZ54wjEumjKa+qTk2vStIxehBrKje7UdeihKOakm28LdnmEoHFPGjy07m/pW1jBzUnxvOPS5WUSaY62sbw90vvodtDJYIabu1AHLc0SXMOec46puaQ+eB1sLGbE3JOgutX1EUpacRl5oVXGiJRhsKmbOypXtV1tSzZe8Bkq4AS65U2Fwps95C1q7GQwwr7cflU8sztr/h3ONYsrrOX2BrS2F4UBa4YvQg7nl5I/9q/o8rrOcYJm5dZrr1uB4m8OKQSdDIQBbb5/DTlFOEbwlceOJInnor3G/ME6QJFt1v2XsgJCW8JNAU0stImDa+zE+9Dt7rfPU87SX4LJEr7f1IRZ0X5Ygn6CA8XrU1JJvoK1M9+V149f/gYAPYLRQBRcFC+2DoOVDDIlhw9AQYcRI7zSCWpM/h6f3jQxGUxgMtseHcoFGyRPxxGeCxN7Yy49ihbN57gGTC8iUZb75oEuBMiC+7KVdxGAO/f+k9zps8AgOtDbkiE1plTX3GObxxZpOgjNOgdxwWL63N+H1mbKB2TxPzHnMaeQWLOTHGN5pCfFOyzkLrVxRF6UlkiwYHF1qgcCWrXMcMfp5MWFw5I3NRy9vfexjP1tPl6jtfDqUmL161iUVzzshIA15cWefbDK/4PXqObClr8x5bS0X6babVPMZ/JF4lEYiVZDgsgVDL+9Kfe1MXhVTDPC48cSQ3nnscL7yzMyRJXDFmMPMeW+vbhsYDLdz3Sm2rvbOExZV1pNKZC21x0aNc9TwdRV+0Z+q8KEc0catWAN9ILOTaxBMUW80k/xCopHcJ5sp60ofBTdJGqCs7nQk3/43KmnrueO5dnnxru+vY1IeOc9eL7/mpVd+/dIrvFASNkh3pSJmyDd/50xqMW3x/1YxxzHYn+6vvcq4nmrUWvAoDNKedXinRVbqgMzfvsbWOAbNaz5HPIMZp0EcnfK8Lcs3uplDNS1xdS66mZJ2F1q8oitKTyBYN9h9+3e/yCZgUcszg56m0zaY9TRn7xjk+XpTBsyGb9x7ISE1uThvmL1vPzRdN8rf3hF08xg0dyJLVdazb1ujboDj55OXVu7E2r2QxP6aiqCZ0nqjT4tg/Ybs9iEaO4vfpj3KfnV2r47n1O7nx3ONi7UBQvObOF6pDPdCGDSxmR+OhghfaovU8VVsaCmpi2Rb6oj1T50U5oomuWn1I1nNP8seUWq7UoAEjJmMyiTorTTIQy26mwZQwP30FD5gL+cEZJ7O7pt53JqI4EYlWFa60bbj14Somjyr1jVIyYcXuC62Fjam0YcyQAUwbX8ace1f522cr3o9eR1RyMhjt8aIlabv1HPnINlEGZZE9g+SluwUjOsFzBF939eQbDOtHx6IoitKVZFs9z1XM3t5jeranxbWNL76zi5Ub94Sch1z90IJRm4QFURP20obw8aLRhw079rNhx34S4tWGhs+x8Ynb+cCLt3EqzU6hv9sdOTYDAucY9YMm88DIf+Pnbw325Y2jeH1YoFUw4Kbzj8+4l977K+94OaN587Z9zrNDWyIont1buKKWB1ZuwjYmbxPLttLX6jHVeVF6BHHNpdor3xj87OMtf+Mfi77PURxwGixmSQWDcJMqcAr7WkjyhH0alaf+NKTpLsC8x9Zy+dTyrM7HxSeNBOCJN1tzatO2CdXYXDGtnEUrakMpWN5YguP0JCOfejuzQbjgRGdsIJ02JBLC+ZNH8Nz6naFUMAgbJGOcaJAxJtQluBDD6H3v1ap4EZuoOowlcObxw7j5okkFHbOtv+vDQZtOKorSU8i2KHQ4817OFfmAemVcKlow4iMilJUUA2Ebkk7bXDVjHAan90j1rvfZsGO/rwzmRWC8ccxftj4kBpM2To2JGMPXE4v40vKX4IVGxtstIWMcclr8P6ApXcRDnMPS9Nm8vnsyZpfJyGLw8NoIeK+zOR7BqFJQ/j9omy3g5GMG0y9pMe/RtVx52risadbB42arty2UjpS17u2o86J0O576l5NaBROGDqRmTxPpmE68QeIePgfuqCT16Lf5MhtIPpMiYeGv2gAZTSOj81wq0Y9k/1K2HXcF5792nr9itWBqObOnljN/2Xpe2rDLXykytBb4BRHgQEuaS6aM5um3t/srU0UR5a4pYwb79SGWBRVjnAkxWDNz7PCjAMdo2DF9Xi46aSTnTx7BbY+uJY1TMH/jucdx47nHZUxgZSXFodzp6846ln2HUuxqPMRtj1TRknYcmnmB9LY4ornO963c5KfERVf7CnFc8tEZjoYW7SuK0pOIE3Q53HkvblEo2FUdHHuVsIQtew9QWVPv7zN3VoVvm+c9tpbJo0oz5veKMYOpb2pmypjBPLuuyj+mjROBWfHeHl/d8uaLJrG8enco1exB69uckqx2IiyB3ou5oizGCK/Zx3J56gfxGwUQgdPGl7HStakCTBx+FAOLE6zb1pj1ficsCS0iXnrqGP66dhvNLY408prNDYHebGt4Zt0OboyI20TvefA5wa+3LZDOkLXuzajzonQr0dWIlA0bdr7vf1+IfON/JW7nYlkNfyzmKLshHFGJOCsZTSMFbBt2mMH8f/YVcOoX/a/mzhqcEaK/+aJJrHAn34QlTBkzmF0fOBSod/FP64firztrIne9UE3ahCM7XiGibQxiCQbDG3UNWFZwK3h3x34+e/dyrj1jQkaqmCVw6tgh1Dc1+86Up4byo8tOzrhv9U3NIbnlfYdSLI10CU65UpFeelscUQOUdmt0AK45fVyHp4B1hqPRF4scFUXpPeRK3Sp0fo3bNlq3eN7kETy7fieLXqllyeo6v6Hw5r0H/P5iLSmbpavrGDNkANeeMYG1W/dRMXqQnyLspSEHsY0TYVi0opbFqzbx6elj+dDYIfys7nOMs3ZhE8mGCPwd9UUaTT/eNMfys9RVrDaTYq81aNuSrrrm7KnlrNvW6C8IGpy0NXCcDiC2DtWkTevxBE4YWcqMY4f6zlzUFj/55nZeeGdnVmdh5sSh9CtyUucsd4GwLTass2SteyvqvCidQq7JNfjd8urdWcO8kDun9MpN3+e6okcoFjeskT4AxKSDBZ0V97VtYL8ZwE/ta1hsLvIL6u1Vm/x82eKkxaLrYyYitymjAW57xHG8LBHSkevwJvy1W/f5KzQtaSfXNVo0KYEQftQAeMeJqouJO0ZPYz6YAnD/yk2x6jHeBOo9sAvEdgm2jck56c2cOJSihIRUZmxDyOmJk4RurzPTGY5GXyxyVBSl9xA377VlZT3bttG5b3n1bpa9tT2jEWQyYflSyomExYNuY0QvdfrvG3b5NStBlUkCKVoAV1pP8c/WI5S92sgAc5CE23vAa0Hg2eyQHRIwNjSZYn5sPo+Zdi1TxgzmzcfWYnmCNQGHyQKuPn2cHwmKyhVbkTF5PF61NVSvmU0RM/i8ku2JJZezcLj2plAb2FcW5dR5UTqcXJNr9DtPPterGwlOLpbA3FkVrf/JV93DoWXfJ3GoATAMNanWQr7IGEzghZcjawukJcljqdP5Wuomf9uPnDSCYaX9WLu5gdfrGvzP4yYir/mWAd/JMTjORxTBcb4qRg/y83wN8OCqTRla+ERWrRJuhMh2jyMi9EtaoeMfN+IoZhx7NBDu5guOA7TUdZKCRCdQaFX5slzDY2h1irIxbbzTJOuO597lyTe3h/q9RO9ZR6U+dIaj0deKHBVF6T3EzXvZenrELRDlWoUPbhN8aA82gvRqWsYMGcDmvQdCksEGt2ZFnB9PZfLuF98jZRumynq+kbiPD1nvUCyBNpCusfYdFhN2Wg7YSWwsnrRP499TN/m1qv8+ZADXnD7OdzS27D3AwhW1/n42Ttp1XLpz0NZaloSyBg62pLn6ruW+9PHcWRWs3eI0hZ4yZrD/OnqchCWcOnYIe5pa2Lhrv6MMWoDdbK+9KdQG9pVFucNyXkRkI9CI0yIoZYyZ3hGDUnoG7V0tzzVhRr+Lyuf+1n0YBmdSe+3vf+Oi6lcZsfNlzJ5qiiM+Qq76lbSBpqPG8cSk79E8ejrzHlsbSo/yePrt7ViWFZJyhPiJyCtaBLAsSLhOhwT6tHiMH1rCLz5zKsurd4dkjFNp46ucBFVk5j68hpQNSQvmXXqy34jybldq+bVNe0kmhHTaqY+p3rGfd3fsZ/GqTdz2ySkkxLlmj52NTgJx8Pfo/Q6Cr70Ugej3uSJm3iR85+en+zVLXkfi6D3rqDC2OhqKovQl8qV85YvG5GsuGV1IrG9q9tUivX08MZbKmvqMFGNw+qWcMnaI30fta9YCrk4+zSBpal1UlJgFxsBBbBu22kfz1fRX/ZQwrw7HE5TxrjNovxa9Uhs6zuNVW2OdF69+5/GqrVwyZTQA96+sZe2WBlZtrPevpyVls3ZLA0vchslJN/qSchcDF1w3s8NFFfIRZ3fz0RdsZUdEXs43xuzKv5nSmzic1fJsKiXB74KTafA/2n8d/B4Di19EsLEA2QvsBRNZrfEITlxpYJc9hH0M5Pfpj3K/fSHXnDCOitGDufP5d2MdF3DqbMRuVREbOagfHywfEttZfu4jVX50KG3D1AlDmDSylIoxg33nw2POOa37B+UkDfDOdqczsHftlTX1WJaF2DaWZfmpV7c/s8EPU6dtw5UzxiHAohW1eKdqThuqtjTw/U+dzHf+tMYf37PrdrBwRa3vtFniNNiybUPSEhDJ2mgrSq5/D8HVsLjJu6+EsRVFUTqK6KJQtpQvgPnL1oc6wAcVLbOtwi+v3u3v09ziLCR6fVni5nPvWHc89y7L3BrPoqTFDecex9B1C0n8+b+5gl0UJQJCADnsNTiLbY/aZ/oRliCecExwYS1qg+acPZHfPl/t7+M5Jh5xPc08AYGKYwazZnNrVMXLlDCEGyZDWI0tzn51lrPQV4rv24OmjSmxtKdQMPhdnEqJd9zgSv+08WWw6h5Y8RvYuZ4h2BiLUBw5V3TFAFvso3nWfIil6bNZbSaFclvvW1lLOl7JOEQiIdhppyP8jsZDPP/OTs6bPCJ0rU7KWHgAKzfWs2ZzA7OnlnP/DR/mt8+9y459B7nyNOeB3pMevvK0cSwIhLj/9NoWZhw7NFQo6KWjefrzAFv2HvBzjouSFpdPLXfybiPj39V4iGtOH0fVlgZfejltGx6v2uobqLT/B27Y3GQYu2zki57kmrz7ShhbURSlI8gnqxtc9PIebr1C9TjZ+7g5t6ykuDXdl3BWQbaaxbKSYp5/ZyfGOHb5L2X/zfF/WOEcJ1h4H7TZ/h8OKRtsSfB3+yS+N/j7fLRiFP1e3uj3gPEiLlHFy7h0uVs+diLjhg70IyrB7aM9zbxUOE9AoCjZWs8j4qSceXZ7qZtKHa17KSsp7lJnoq8U37eHw3VeDPCEiBjgDmPMnR0wJqUH0NZCweh3s6eWh1RKvH4goX3Xz4cH/g/eDwfuxP/DwXghEXcCTBmLBjOAVeZEnh56FUt2jvEdlOKEo5zi1WFkc1yOLiliT1ML4NTWXDl9LLV7mnwZ5OaUHVr1mjurgs17D5CwMo/pTSo3nX+8L08MZITkowWD96+s9Sfb6P0OTpLJhMWVM8aGCvCLI8Xyz67bQWVNPZdPLQ9NvAOKEk6jzIjTl7DAsiy/D0y+Hi+HGz3pC2FsRVGU9hJ0EB6v2hpKQ84mqxt8uPV6alWMHhQbsQmeZ+nqOqo2N4TUtKq2NMTaAM+2X2Y/ycWJv7Ka7fQvTjn77YvPiohGUdIGUiT4sz0zVG8qu5v4/Uvvcd5kp+50SkyxvUdZSTGWK5YTtEHXnB7fYyXUoNoYLDcFzbjjC/aoWVxZx5rNDazbvjYjNcw7llew35XOhGYtZOdwnZezjDGbRWQE8KSIvG2MeT64gYjMAeYAjBuXu4mP0nm0NSezLaFpyFwh8JSwvP90uxoP8UPz/zGr6GWS2Jg/WBjsjDxYj2iE5WAqwdsygfvT53GffSHgOipDR5De3toE8rzJI7jh3ON4/p2dzjgsie226zkuAMmE42wBrNy4h+YWxzvxV71c9ZW0bTx1ZX9yDnaPz9a9vtmt7YmGuNduaQhp6gfvdzC3OJ22OWbIgNCq26I5ZzDv0bW8UdfgR1mCdTRLV9fx4KpNLHtrO5YliG38eyrAlaeNY7YbxQmG1LOtJmn0RFEUpXMI2g5XrMvHEqcfV7ZFpWTCsbPJhMUlU0bnjNgsXFEbSi32jp+0xFcSS1ji9+xi0ysU//W3/Nm8xMTkNmcHCf0V21gZvEU+4Q37WGYH+rGcWj6YN9weKQYn7fnJN7fTr8gKLdBF61vmPbbWVwUNCflkIfrg7xXiP7hqkx9J8WxgKh12SG46//iMzAKPrnQm1O5m57CcF2PMZvfvHSLyEDADeD6yzZ3AnQDTp0/PpjCndCLtzZvMF5oO/sctKyn2H+wTljB7ajn/1vhzBm38KyDIhkMkE4GQhXFfR3Ni/T9aHZhaexjnpX6dMb5PTx+b8dnw0n6h//BlJcV8+6E1WaUNAdK27V9vMN0N91otq9URCR5HgJPLBzP3ExUZKjAmIKdoG+f+3HT+8by76/2QIEFcOh44imTe/olE5iQ5bXwZV542jrVbqrDt8EqUn+JmO2FysQ0XnTiSZ97eQdo2WNJazH/T+cdnVa+JotETRVGUjicUJQC//tKLZtzz8kYurhgVP/+aVoNZtaUhQ2rfSwdbuKI21haeefwwBhQleMK1S59mGdMf+w9anmqiqLmeKeBrGsfVsITqTkVI9h/MX/r9A/+8/dKMoQpQOqAo8xLITE+PZnJ4zx/GmAx1zTiyPfh7DotnL6Op2fnUwrramQguEAff93Xa7byIyEDAMsY0uq8/AszrsJEpGXSU+tfS1XV5j+OFlr1JNBqavvkiRxHk9mc2UFZSzG2PVJE2cJX1FFclnuXkP1STcKfJYD5stH7FEF65SdkWu80g5qcv9yMsHsF5s19Ra7Tkfrc3SzIh/mcea7c4TSuDE2w09Sttw08ff4tzJ4/g9U17fUfFu9ZLpozm1j+tyUi9MsBbW/f574MrPUH1MYtWKeMbzz2OF9yoULZ0vNlTy/19BbhiWma/lmCDSyuyElVZU8/mvQdIJlrTwm489zjOnzyCW13H7Ik3t/Psuh0smnOGhqYVRVEKIGqDC7XJcdsFPwuK3HiRF89u5apL9BapvOi74NhGL2pvjBOxALj14arYRbzPHbMds/FFrk7+nTOtNynyZI1d/yA2jTuAbSBNgkftmWy78NfMnDiUf7njZTJjMVCUECpGD+Lld3djjLOQ5kn0B21PvkyOQm2Ut+C2cEUt85et9+tiog5SXGp2vmNmo6OVx7RoP57DibyMBB4S52k0CSw0xvy1Q0alZJDvH/DCFbXcv7KWkYP6c8O5xwFkTIxeHUQwPBwtivPOdfVdy/3eK0mL0IOw57h445lmvcNceZ6PJV+mLNGUMfbg5Bed+FJFg3h/+Kk0HGimsuQc/qP61IxGUgJ+vqoVKKzzVbpEEJxGkeu2NfopUylXVcuynGJ8AW44ZyLjhg7kR395k/2HWrXnX9lYz8qAZCI41+xda4YH5OKla0VTv4Jyk4mExea9B/wUsejKzbcfWuMbm0MtNrsaD4Um6ssjDpn3u201dK0rUaEJ2RKumjHOl7pcXr3baSDm0hIj2ayhaUVRlEw89a+0bShKtHalj1NsDBJnuyFTOcuT8h06sJjH3tjauohGfBE+ZKZGzZ5azuyp5cxftt6v32xJ2TxetTUUkflF8nY+Zr1CgjTJ5W76dqJ1zBkRFv8P9704Rf4vpE7mi6n/dPYBflhSnGFn/GPipHXf8/JGbNP6/BGnbBZMh0u4ad0VYwbzeNVWKkYPalMUYuGKWr710BoAv9/aNaePC9nQaGp2e+kMR0OL9uNpt/NijKkGTunAsSg5yPUPOPifExp46u3tiDj9QIoSwqI5Z/gPp5v3HvDVqFK24Tt/cvYLOjDLq3f7EoHgqIOcMqaUEYP6M6K0H0PXLWTYyl/yqjRwIFHEkERTKCqSTx7RNnCQYjYe91kOnvfd1joRK1hN0kpx0qLFzUm1DbxR5xTWeZNea9NI248seLSkTah7790vVmNZVuj6/HFG3p87abjvXERD8dDaPDKXSsv9K2tZu3Uf971S6+vEB7eprKkPpYgZnOL72z45JWvhImQv5AtNyLZhTGBCnjlxKEWBhqBFCQmlmumEqCiKkkmG+lfa+GlWkPuhMmq7l6yuY9OepoxsCK+3iKeM5WUlnFzuLNbF1SVmS2O6+aJJrKje7S9SVowexIHql7lOHuVceZX+VqBppHHX5iSQBeGe3HvfWDKOhv0HaDJF/CF9CffZF1KUcMYZZN5ja7n2jAmxEZ6ihDC8tF8otbpqS4MfCckgkA63blujf/2eA5LMsvga5fGqraH3v35qPZNHlXZKxkFnOBqaGRGPSiV3Ap3RsCjbP+DKmnrufP7d0LZOSlTrJLtkdR0/uuxkP3wanFhs44STq7Y0+CHTmROHkkiEC90/v+1HfHzHcpKkSXjFLQL9E07he4acccSBOWiS7DRD+H/pS/10sGsGjeOYwH92O6awHuBQyiZptYbQg2H0XF3qvbsQnF+DPV3y8dz6nVTW1LPDrQ8J4oX1bdMqBR1VaIk2xYybzLywf5C0bUKa+3FkM1q5Jrpp48tYdP1MPx2wkBC5oijKkUqh0v/Lq3dnPKh7CLk7q0e7si+udNQgvdTkaG8RjEEsJ9JvgDV1DYwYtCPDAVqyug7BqeGIsxV3yY84rXgdTXYRpcsPUpxMh76PLjJC2FY2W/3pd/R4Nk76Ah99YWKg5sT5viXtZEL4++I2edy6LyRq492jT08fy+yp5Ty4ahPNaefaHly1KdYORdPhHq/aGqoJAmfxde7DVRm2N8olU0b7Dg/Atn2HuPqu5Sy6Pr7h5OHQGY6GFu3Ho85LB5Ota+3h/qOLU//61kNr/IkwF8E5Kq7QLW0bFq1ojQyAI834jcQCPpV4icFmPyVWS2iffHmw6bQzMTebBLelr82oXwGnN4ngrKC0pE1Oh8IgXHTSCJ5bv9NPX/PuqXdfXtu01y+Gz0YyIBFsuef1sIDpE8r89DHPSIwo7Zdx7YlAEX82p8Sb7L194iYzLzzeHPgdJqx4WcwocdGSfBOdRlgURVFyp/jE2XGvJsVbRPM4bsRR/PTyD2adV4Nz8pa9B5yu8O53Jx/jCL4AvsR9UdLig8cM5pWN9YCTnvXkm9tJBvqf3R/oX/ZgZR2Lrp/JNOsd+PO/w671nJJqJuE2ixyQaLX5uXqmIZA2QhPFLLAvZvDHfsw1p4/jz89soDm1LkMFDcLS/14mglfTElyU8/qoTBtfxnmTR/hRq5a007k+eu+iTsAlU0Y7SqARB8Y2Jm9045rTx/HMuh2hZ4NsqmKHu/DcWY6G2u1M1HnpYIJhw2ivkI4qtPJCqMFVfQEG9kuE6jigddLwmDlxKP2LLA62hB0eA0xJv82xi77O4IN1vGUFVlViiu0hc/Jrkv4k7BQv2yf6ebBREm5xXiIhfr5wMmHxgVFH8da2xqzXnLYNB1vS3PaJ7M7g+ZNH8PRb2zMK6/17Acy79GQ/3ez1TXtDof+LThrJDecex9V3vuyvDC2urOO2T1T4E2kyIXx6+limjBns17Rkc0qCq23eqlOcM3HFtHI/lc9boTpcR1cnOkVRlOzkSvGJflff1ByqZ5z7SJWfmVC7+/2MYy9cUes3TgzWdIDjbHiLVVWbG1i3rZFrTh8XOv7vX3ov45i2AXEXzXDFcb6U+CsjZQ8l96TBtDopXvmKV6rpp05HFxkNpLGQRJJ9x36Mmeuu9K+r6JGqjPSqRMLCtm3SttPY2QK/yaPBGds9L2/kurOO5e4X3/MdGNvAbe7xouyMyWyIcwK8+9h4oIW7X3zPf64qZKHvxnOP47l1O/zeaHE2u6PqVdT+dg3qvHQwUcWpXKvzQYLqXnFh1Mqaeq6+82U/VOtppAO+wsi3PnZSaFKFVrURL7TqyQEHtd6/kVjIFxJ/o0Ra4GDgoBTgsKSLaLBK+VP6w2yefosfEs7GlDGD+EjFKLbsPeCnsLWkbNZtz+64eLy0YRcrN+7xo0Nz7l1F9a73eW/XfmzbURGLWUwK3af6pmb/PrTWCTkMc2WWPz19bGhsa7c0sOj6zNWUuEJDj7aswAQbS3pFl51JZ6Q1KkpPRUQ2Ao1AGkgZY6Z374iUjqS981n0oTwoqhKX/hN8KK3a0uAvOLWkDfMeXetL5kcLxJOWY6+9CM6Jo0p5va4BcJyHaN3pZ+9enrG4CM4xvmEt4NLilyg1TZRagYf+GJEbAhozfk2lwL50f5Ji+Js9na+lbqI4ISz68hlOqtab6/xjBK8rmvXhpaxVuE0lgxGllpRN6YAi7r/hDL65+HU27HScOy+FfVgkk8Ej2i4g+NoTKvDS4y6uGJXzdx79NzFtvNMbLZhqF5eqpoXxvQd1XjqYbIpTufIfo+pei1dtyijYXrK6zncK0gYSgRWVC08cyXmTR1Df1MwFgZCsx6EWOxSa/cDfv8abRU+RxMZGKBLbf8r3fZUsKzUAKSPsZwCL0hfws/Q1/uc/GjMYpsOCFbVZ78+VpzndcIO1N9G6lGwEixs9eeTQuGKy57y8YgwUF4V/B5dPLWexq7xWlBBf1Wv21HIecD/38nLj8orzrbAUugLTlTmtKruo9FHON8bsyr+Z0ps4nPnMm3c9dcqoqEquOdmzHV6E/vW6Bq6+82UWzTmD+1eG7Z9nl7xMjGhdpm1g7sNV1O5+n7+u3cYh13GZKuuZl/wDH5BaxLWWoWwICadxeZF7471xaUonSSYFu/QYas75BZ96pIXmZhsR+IibbeBdX0IIZS68XtfAZ+9ezoLrZvr2z1toDabUZeuV8t6ucFTKcxweCNjvZ9ftYOGKWj+bxBInwmS7aqGIZCi65bKt2f5N5LPHWhjfu+hTzkt7Vmjy6bN7cr1RLz9udX7dtkZfazz4uefxe7SkTUa6WTTXdOzRJdTuaSJt4Km3d/DUW9tjc1LBnccq76Fh5zr673mbDx3Y6W+YcD2WYA1LRnd7O8Eh6c9+q4T/af5kbP2KhdNTxXMWouJcowb146sXTmLyqFJuf2YDm/ce8LfzxpzLf/EK9ouSFjsbD2U4Lh5eLUr0Blx9+riM1RZvNSbu30RQ6jGVzp9Xe7h0VahZV5cURTlSyDaf5bP1we/HDBngN/T1juEdO9v+XoQ+uFDn1W9UbW7I2N5zOoL9u6DV5qVsw8V/v4avW+9hig0Gi2RgUdFHMm180F63FJdC6hCH0nBA+vNg+hxngTEF/dMWC0ZMY8F1ZDy/eJGN73/qZL7z0BqC64DNLdlT6ppbWlPjo71Sbn9mQ7gmJlD38pnpY/3IlVeQ76XBp/0/cGtSC8te8WivjdPC+N5Fn3Fesmmt53JCCtFnnzurIlbC0MN7fcdz7/oRkRfe2YUrJkLCgqnjMv+TRNPNZk8t576Vm/wH8427m0LbegTnuausp7g5uYShNJAUA1tav8uXDubMHcIL9hTmj/oJVZsbctaSJJOW31slzgv5YPkQJo8q5So39S1hib9SY1nCgKIE+w6mQsc8bUIZOxoP8dGKUX6Y2GuIGUdx0uK2T1Rw/8paPyzv3ZMxWTTcg06D9/vfvPdA6BKsAgvoewO6uqT0QQzwhIgY4A5jzJ3RDURkDjAHYNy43NKrSs8hbj7LF43JVozvHaOspLigaE7FmMGhxTLLghXVuzPspAVMHDbQT58Cx+7fO+5xTt7yIEW0IMZQbAVdBud1cFHRIxpZMcAhU8Tj9gxWnfRTIFzQ7xEsUgfn2ScoQexd69Wnjws5ZRKxf9HUeNuY2F4pMycODTXMJJDCHkyVTiQsBhQlsCJRH+8+eQI72XrdRDkcG6f1Kr2HXue8eA+YZSXFbVLxiusyv2R1HYdanILq6846lnte3hj6T7y8erf/H89bfdi894D/mdf8Ke64XngUCKWEeXj+RsrGVxXxkEDkIm1g0Yoanlu3A1NAbtUfkj/mbKsKMI6kcfC4ZCneE7e7vbFYb8YyN/VFVhunOWNCYFrSyuq4JBPCBZNHsH3fQd6oa8gaPXl23Q72NjX76l5p2zB5dCnNacOGHftpSadC2ycSwmub9pJyCwAvrhjFTecfz+3PbAipmIwa1I9PnXoMpQOKQoV9npME4X4m2Yh2201aQsp2Gl/Ou3TKETOh6eqS0gc5yxizWURGAE+KyNvGmOeDG7gOzZ0A06dPLyCJVekM2podETeffSvQ9DeXEmS2YvygTT/U4ihOxtWgzntsbWjhMG0TclA8kglhYL8kv0jezj9YqzhokhQnDIO2NWGswIYmc1ERIguL7veNph8Who1mNN+zv8hqexIJSyCL+qhArHNnBepymwMLpUFRAYlY9eA994rnwcRK8y+4bmZGw8xgY2QvZW/ZW9uxLEFs41+v4KSZz55aHkrDz+dUqo3rG/Qq58X7T+dNTF6heiF5rlFv3IB/nJRtuOP5av+/qFcjUjFmsP+ZDTQeaGFxZZ3/WcISX8LPW0G4f2Wtn+N638pNTB55VIbjkg1xjxnt+1G39yB1ew/G7vONxEKuTjzNQA6SwA7prkO8NGKwiK/ZJHktfTw/S1/lOyxBJo0spbKmPuPz4EE91TDvd+IdO0jadpyUIG9uzSzSHzWoHxecOBKA+16pzQj9RlW8LjxxJBdXjMqIdt0354w29TOJdtu9asY4xgwZcEROfrq6pPQljDGb3b93iMhDwAzg+dx7KV1Ne+tXotHzqI0OPlBX1tTz2qa9iAiWMaFifCD0fAH4ipNRG7LUXfjMhqcE1o9DDCqGQbv2YCWc7QdKa6F9yFznqDN1EhqE9ICh9LvoVh5LXxBJ1ypHIKOPmyXOPThp9CCuPG2cn84VbBRpAucoKynOUMA0hpADGFxA/v+efoe07WRSzJ1VEStcE22YGWyM7PVzsQ2IbbjoxJE88/YOJyNDWpXIvIXLQtPB1MYd+fQq5yXaOyO4WlBInuvsqeXscv8zbIioW5nI6wdXbWLn5NZJxhJYu3VfaFXjqP5Jnl23w+/lEu0zkrZN7AN6HAlLmDZuCINLiln21vacBeyOOtgT9KM5I7oCubXc16XHMMg6SK09IqvDEtp+e2NG/UqQaNNHgxPqjYasRaDhYEt09wy+euEkrjl9nF8UGA39eqsqS1bXsbiyjkWv1LIkUGTp0dbJK+rcxqmRKIrSuxCRgYBljGl0X38EmNfNwzqiaa/6V1x2RL7jRFU6l1fvJpVuTbn69PSxgKNW5aUce8I30QfuYKZFkHTaznh4f3DVptB2U2U9sxMvcDybOcGq42gJLNSl3ayHmHoVCDx7BBYV08bigCmiWNKh1gMfOX4kpzQO4fVNO/yIiZeuNXPiUO57pdbPkhCcPjJvbd3Hms0NrNu+NkP6WKR1sdSitQ9cVAEz2BQ7LmpjjIntIecjbvFO4OGksqaezXsPkEy0poXdeO5xnD95BLe6wgZPvLmdZ9ftYNGcMzTlWQnRq5yXmROHYrk5lh4iwmZXdjdbSDEasSmEVNqwLOCIWJZwqCUd2n/P+y088eZ2lr21nR986mSefjt3g0TIrL/zSNvGTx+Lm+A8h6U/zTmjK5DpsKSMsJvBzE9dHltsnwtj8FOo4kgIJBKW3zEYwI5ZkKoYM5g1MYWMgpMiVuGuDHlykblCv/6KTbrjCs811KwoRyQjgYfEmSSTwEJjzF+7d0hHLoXUm2SrM41KFz/oKj4mLCd117MNwWPFqXQGH3ArxgzOeNj2SNvhB+7GAy2xUvvBdKvl1bs547X/5M3Ek1gJg43z0B+X7hX9zEvb9t94GNhpl7KXQVSb0dyZnsWMsz/KuKED+fkT69jzfusYn3hzO0++uT00zkQi8CDvNXbBWXAdMag/azY3xKZsRRVRo3LRUXtYWVPP/GXr/ecoY5zfjTGZKWNBPFvtOVqeIIKfpm0JV81oFdRZXr07JJjT4grmBMetNlrpVc4LwPkfGMHTb+/Adgu9MU53eAFfIaO5xWb+svXcfJETVZi/bH0oYlMQEcUsO+BcRLEN3P7MOxnRhigDiixEoKk594beaa+ynuKfEg8zWvY4csbB4RVQcL/LDGF+OrvDIoTra+IoSlp8bMoo/vTalozvEgLf/5TT9NGLhKTTTjpX2oSFBM6YOJR12xtpbrGdCV8gmbC4Ylp51rSuXNGTzliF0VCzohxZGGOqgVO6exx9hVxKT0FnI2EJ1591LL9/6T1fqn7RnDP8h9PNew/4aUsp21Hf9HqVBc8VzIRoTjuqVdeeMYG1W/dxyZTR1Dc1h1KkopSVFPtjc2o3whhgyfF/47jFt1Czt5k5stURv3HtbyKwbWy9CmH5YgM02v1p7j8UDjXyrj0mNgPijRersSwrNuU8ehXnThrOtPFlfPuhNWHnzMBz63fGShhHbd39K2tZu3Vfhlx0rgVgA1x31rGhetM44mx1KE3bNiFBnZkTh1KUbL32YM2q2mjFo9c4L9EmjR8sH0xx0mKl61AE/0PbwIvv7GLFe3vAmJxNE7MxenB/NgfqTPLVygdXR6BVLWvlxnp/bAdy5MiC46x8MfFXBvM+g+V9+ks4zSpXOhg4k1WNPYqvp2/Mmw4GrRNrrLwwcEr5YOZ+ooL5y9aHPvfqUoJOx7TxZVw+tdwXK9jReMhPobOA0gFFodWefGIL+VIPNFKiKIrSs8i2qFRZU8+8R9f6D6Rp2/Db56v9/bwGhj+67GSmjS/LqN1I2SbUq8w7VyIhIdn8F9/ZxQvvOO18Vry3h9s+UUHSEr8fi6fyCY7te3bdDuqbmnl9016uYBlfLHLs7xAaKRIn0yLh+jSTAsX1eQvrA7QUlyJ2ivUtI5ib+iJViQ9wztjhGf3Ygnjp2IXw3PqdVNbUsyOmU306bXPhiSM50JLmkimjswoPBJ2SXCIHoXoaHLse7X8WJZutzrb4OG18GYuun9mmmlWl79FrnJdok8bX6xpiJxAPrx6mvRxK2f5El0wIAn7TwjiijokBXt20l4QV3zzR4yrrKa5MPMMx7GS4FamPieTIxkVXBNhrjuK/0ldyn30hCQsuOHEkny3tR8WYwX7vlSljBlO1pYHFlXWkUk70QwBLHKW1tVv38eI7u/zrswS/wK9i9CDfIAB86tRjuOVjJ8Zej9e8KpmwKE6EV3wKXTUptHBTV2EURVHaR7aO5h2ZfgvwrYfWsDigXpWNoK2Lq5+4f9Umv6O7d2zLraXwohtBE9mcslm7pYFPTx/b6gwZZ7Hu0yzji4m/MnHDFhIbXMemKPfYDDFKnRFa0sKe4uGYlkM0chT32B/lmPP+mZvOP54DNfWcX72b2Tnk/j2SAYlgIuluFjA9sDDqpWKNiHSud1KyLZ5dt4OUbVi5cU9s9CrolATT5IJ4TmlQLCna9DkXUVudb/FRbbuSj17jvMQWurU9oFIwu/Y7k6cl8OUzj6V61/vOz8792K5DM+vk0Ty7ficNTZm5soAv1RtlSfI7nGK9R6yccTQdLPIibaDBDOSX5moWpi4Inff44QP56RWn5PxP7xU1ehKHtnGkiOfOqmDlxj2BfNZWTfbSAUWtkzfOakscHaXYpY0UFUVROo+oNDzGkLJNm1S+suE9eLal1tRrYOgxc+JQ+hdZHAwsCqbShlsfrsK4zZtnTy33i/OzHX/fOy9xeeIFri5aw0ipZ4cp45jkXgbb4fpLz+xmi6gEU6X8wnqDX/MCsMceyPTUXVwzbVyo2H1BIOUJ3DT2HNkgAsy79GS/kXUwhQ5aGy5/9u7lNLc4RfdlJcXMnDiUB12p5GRCfLGCONXO4H0Oqnd+evrYWLGaaePLmDurgrluIX02dbG2oA6Kcjj0GueltF/HDjWuC3wctoE7X6jO3NYY/lK1LVSono1vJBZyaeIlSk0TR8mhzEK+XPUrAjYWjaY/C9MX8LP0NRQnhNs+OYVrtjTw4KpNfnQjn+MCrROG0/3WZGjdz1+23o/AeJOd12wqX31JRyl2qaqIoihK5xFdIALa1MU8V1rvwhW1PF61lf5FidhV/XFlAzL6oQQXyzwbNXdWBd9+aE3IvnoRiJaU7TRHdlPCIKzCKTh1l8n3naiM52EMk32+85Etc8N4q3QB9poStttDKLd2s9/0Z376ipy1pJ4CqWe7PLUzL0UrY59IOlt9U7N/H6IpdF6Xes+ZsI1h3mNrWXDdTBZdn1lkH6ca5tGW9Ov6pmZsU6C6mKJ0Mr3CeamsqeeuF6rzb+gyYWhJqAN9nHRvnOMysDjBgZZ0xndx26ZtSNu5HZepsp67kz+jzHLHEpgQQ/Urga+80HeTKUaAA8d9jGGf/yPv1tSzeXUd1xDOAfUaOLU1uhHnIHia7F7fmuDnhUxwHVWHovUsiqIonUdU2QtjMoq64/Aehh9ctSk2UrNwRS3femiNv33SwlfIvfDEkdxw7nEAXHnHyxkKllHHqWpLuOmxBVgJ4YP2On6d/DVjXt/D9xJAwpEWDnWoF4OVy0mR3JkbaRIkSZMiyZ2pj/Kz9DXZN46w6JVa/76s29bIrX9aQ9o444+mtoGzkPrJU8bw2BtbsW2TkY5V39TsZz4E5Yw9Z8Jrprl0dR0/dGuGPAqxpYVGQLp6UbG9kttK30AK6dreUUyfPt2sWrWqzfvd/swG/utv6wraVoD/+IfJfqfcAUWJDGnBbPzospMBMlZ7olEaCydtDBG/fgTgF8nb+Zj1CkkrjSBYpJEsE2hwNQqAkmHO38Mn8/aUf+ep/RM6/T9ttslBJw1FObIRkUpjzPTuHkdPpL12qqeRbx7PVvMSfB21C9E0MAs484Rh3HzRJKaNL+Nzv1sRqo88emARe5tasI1ToH3bJ5yIROOBFu56oTrUkyQoiVxZU8/+uz7BmVYVYDhEEQf6j6T/wR0MlOwr/jmjKf5G3oeOXfccg2aSrEtOYseM/2ToiWf7KVte2pWQX53TI+E6a7mePXwVMhwn74IPjGR4ab+MjAXvvvtpaK6zGOco3n/Dh7vlmaEzztOehqXKkUUuO9UrIi8zJw7N2h8liEVrEdm08WX+JPj02zv8VR5vkjTGkEhYnFo+mEMpO9RjBPCbJHkTbtWWBgQyCgbnL1vPh9/7NZ+3nqBEmjOK7INvMudPC4aMhbP+HaZf63/3Afens8m24qK5qIqiKN1HWx8S4/qnRB/+IOyUxBVRB1U9i9z05PqmZn8xMOi4CE7Nx0sbdrFy4x4WXDeTS6aMDjkve95vVcxsTtl8233YtqTVHl6TfJqvWospo5GDfy6i/vkxfODgLkoS+/x9S2ihpLnOt6cFOSkRmkwxG81oxpYa+h3azcp+p/OPe64LbXPjzIlcfOKoUD1QUGr4g8cMzmiZcPFJIznYkqZi9CDueXmjH8166q14x0XcfbbvO8jrdU7tTcp2erj0L3LSrYNki55E07bSNp1eH9pVzwZa96rko1c4L9PGl3HDORND0opRbjxnYqze+LTxZcy7dIqfG1qctEL5qHH/Ia45fZxfLJexzap7YMO9sK4ZGuq458A+rETa/zqHAFrrd6Vj4DN/hLEzCrsBiqIoSp8g6nhE7VWcoxJ0OBbNOSPj4W/J6jpfCTKbM7NwRS2/fqq1mLw5bUJZCNEFxDFD+rNl70E/belrD7zGnHOO48ZzJnLfqk3sbWp1XJyshBUkSSPAIZOkn6SIitYUk4b91dmdlFxqX+53jgqnkDJCUmxSJPhd+hI2T7+FijGDudxtZi1NmYe4+8X3aDyU8p20lpTNxSc5UsNDBxb7DRY9EgLnTx7h/34urhgVKrKPYokTgbrh3ONYurrOd148sj2oR3uueC0HirP0Q+ntaN2rko9e4bwA3PKxExk3dCCPV22lYvQgGg+lWL+9keaYqEmUnM5IFkIrDJtegZd+BdvWwN6a0HYJwESjLRlYkOwHp98AF38v77kVRVGU3kvwATNfT6soQcejOWWHFJ6uO+tY7nl5Y8gJCbYR8PqlTBkz2JERdrufC4ScmTuee9dp9uwu6F17xoTYxUGT5bUA2/YdCqlwfWbv3Vzy56cZyEG+huFAspj+VgqLdIaqZkmOHmbgOCfBInb/pCa8jZeyfdAUU188ktsPfCRUSD+of5LS/kluOv8ETh9Vyvxl60MKZlFs27B+e2Poup56a7vT5DKyrddoc57rDHm/j5vOP96vDWp2zzVxxFFc9IERGQusnjqYV89SSM1R0LG97RMVfjuEI6kfita9Kvk4LOdFRD4K/ArnGf5uY8xPOmRUWbjm9NxOSi7aHO588rvw6v9B6hA0N+bcNNNxsSCRhOGT4eO/1AiLoihKHyFaGyJAv6LC8/a9VWdvRd1LeU7Zhjuer/Yfor0i7aj92dV4iHmPrcU2BsuVtJ08qpQlruqUl9Lk1ZscarH502ubC7q2q6yn+FLirwyS90maFo5KHsLCxhjCBfNAaSLcNDFnX7aYSIr3mW3gIEVsSw9lmNVAf5r5u30SX0z9p7/tiaNKWb+9kaACsQCNB1PsO5hy+qqI+Mpq2SgusqhvCjtWcarGE4aW8IvPnJo1vcl7+F6yuo7FlXVU79zPPfVNoX8DXjPGtji50fPVNzXzQ7dW90hD09eVXLTbeRGRBHA7cDFQB6wUkUeMMW921OC6nCe/C68tgIP7IJ3ZrTYnyf5wzDS46DZ1VhRFUfoo0cZ/Bifq4T3Y5qpn8b77aMUoHnl9S0ZxeDQS8uCqTXzpzGNJWILt1mUMK+0X6Ndl+P1L7zGwOMG1Z0ygdEARr23ay5OB7u4G2L6v1d4tSX6HD1obSdlCkeUcp94cxcBECyUcjB9MnloUf5cc6V4pIzTRj21mKFvM0Yy3dvDX9GkFKX2t296Y8141pw1C9ibT4EQ+5s6q4Jl1O9iwY3/O880557iCOsUvr95NKp29dqOtD+iaTqUoDocTeZkBbDDGVAOIyH3ApUDvcV42vQIPfAEat7Rv/0Q/sBLwgVlw+V0dOzZFURSl1zFz4lAsEezAk7qIsHnvARauqM1IMwrWMhTa1NEjlTZOs2E3rexLH55A9a73Q46T9yD+el0DN54zkRHrF7GqaBFD5H0MFrX2CBAYL9uwaHVAkonW8wyXxsz+KDGOSiHipWmBQ+kit+YFdtmDmZ++PGvflEIwxun5EpVf9hCclCxPHdQSsCS8vcEpgr/x3OP8VDFv37NOGEbF6EGs3bqPS6aM9jNA8qU3dbSzoelUiuJwOM7LMcCmwPs64PToRiIyB5gDMG5c+1K+OpRV98CzP4Km3WCn2rbvkPFw9HGwdyOc+EmtX1EURVFCBEVi0raTuoUxLFpR6yt0ATS32Mxftt6XGY5GbApBXCUsg9PAsfKlv3Eab3JDciUVVi277EGIGIZKI9vsIZS+0szRARUvsJmY2JZ53PZEUFzSBgzCAbu15gWggaP4r9SVbXZSCpEoLkpafGzKKP70WvxC5A3nTPSL6b0UrbKSYr77SBUtbl6YAcpKipk2vowffOrkkMiP9zuKI1f0pDOcDU2nUpQuKNg3xtwJ3AmOfn5nny+WVffAi7+AfVvBbsm7eYiiEhg8Fmb+c0jOWFEURVGiVNbUU9/UzHVnHcvarfs42JJmpSuvGzSANvDiO47M8NxZFWzee8BJ/4orsnCZKuv5RvI+JkstthESCQvLbqbFFLGf/hxj7cbC+EGRYxJ7/H3HJ1oljA/HOfHGvt/uTz9JYWHTbJIckP48mD6nTQ0do1gCE4cNpHrX+76z4tUNJVxHLcrxwwfy0ytOYf6y9Rmfjx4yICNS4lFZU89Jowf5il/BBpCFivwUImmtzoaidDyH47xsBsYG3pe7n3U/njpY41boNxiqn27b/sWlMHgMnK4Oi6IoilIYnmyxp/4l/h/xGOBgi82tD1dxilnHQ8k/cFxiC80mAQIDaMYgWNgkMGGnI5i+JYc4Gic9zFPpilXwwlHH9N7nojltkbCcqE69fRRiwXZzNK+Z41maPpvVZpK/rVdz05bVyVPKBzPlmMFUjBkcUswCHEWtltYUr6Bk9Oub9vJEoGZn4vCjmDa+jIrRg0I9Zi46cSS3fOzE2HMHVbsg3CPOI5/ToY0UFaX7OBznZSVwgogci+O0XAW0f8nlcPEclq1vQMMm8re0jOHoiXDZHVpwryiKorSZoGwxOFZoKuv5ddGvGSX1NJoBHJJi+tHMZjOc/WYA/aSZajOaTyVewnL36y/ZMwSy9T7xzue/NjHfm/B2aSPU2CNDNS+7TCk3pr4Wck48Em76VtS6Xn/WsbxcvTujb0kykNYWpH+RxdxPVGR92PdSrcpKiv0G0ZNHlfqCB8+s2+Gnez27bgeVNfWUDijy1ZQFKB1QFHtsCKt2WQJnHj8sZ2pYvmNoI0VF6Vra7bwYY1Ii8hXgbzhSyb83xqztsJEVwpPfhZV3Q8sBMOn824ewoKi/kxb2oX/U+hVFURTlsJBNr/BU8meMt7b5D9JWoA/YEGkCmtzXrT3DTsXpsZIvnQtyREzcE3pftxiLHfYQLDEc7da82FaCV+3jedeUs9w+MdZByUZxQrjtk1Myoh+WOI7C3E9UcOWdL5NynQpv+7VbGnhw1Sa/V82np49ldp6eJF7Uo7Km3hc4WLK6zo9ufHr6WBatqPVrfbzUrX5FhRXHRwvp2+q4xB1Dlb8Upes4rJoXY8xfgL900FgK48nvworfQupg/m2jJIohOQCmf1GdFUVRFKXDeHvlMr63+99JJDK/K6TGJKMpI2S2tXdJGWGfKQGEImmhxRSxNzGY19ITGCb7eDw9g/vsC32n6XCKTROWcMEHRnDjua3ywJU19Tz/zs7Qg/u08WXcP+cMlq6uy2iaOHtqebuK1rNFNy6fWs5St29N8PyFFsd3RCG9Kn8pSvfR6QX7HcamV+DeT0HL+wXuIDBsEky+BPoPgglnazqYoiiK0inUv/l0SGo4SCESwjaOk9FiEhwyRRQlEyTTB0I1LwBV1gnMbpmXIQs845gyXnGFAcCVB04IiJBO24jAhGFH8d6u/di2M86LThzJxGEDueuFamwDCQssyyKddppZXjGtPLZze7YH92x1Iu0tWs8W3Wjr+ePoiEJ6LcZXlO6hdzgvm16B311c+PYjT4ZZ2tleURRF6RrKTroAu/p2JIujYhvYZ0r8mpctDGfY0GHYqYMw4Wze2Gm4o2a0n8p1ysjBrNnckCER/KPLTmYecKsrxQyQTAjfvORE1m1r5PGqrVSMHkTpgCL/YT/Y6T2ZsLjytLBT4skIe9sXGr3o7Af3XNENdRwUpe/SO5yXjS/k2cCC0lEwaDR86POqEKYoiqJ0KR847SJ+u+63XPz2baGalxQJ/mzP5GupmwCYMaGMcyePYObEoYwMPHz/z0NrWL2x1n8/clB/1m1v9BWxJg4byJfOmujL/k4eVZqRojVtfJn/fZBgp/d02uaYIQNyOgI9ySlQJ0VRlCi9w3mZcHb858n+cPqNWr+iKIqidDunnf1RPr5uCM0tNiLCpBFH0ZK2eW93E4KhKGnxzUtOjH0Ynz21nAcrW+s4bjj3OG4497isUZC2PNRrcbmiKEcSYgpJxu0gpk+fblatWtW+nTe9Ag98AfZvh9Gnwpw29m5RFEVRABCRSmPM9O4eR0/ksOwU8Y0LC2lm2JbtOmpciqIoPZVcdqr3OC+KoihKh9CXnBcR+SjwKxxJ/7uNMT/Jtb3aKUVRlO4nl52y4j5UFEVRlN6OiCSA24FLgJOAq0XkpO4dlaIoinI4qPOiKIqiHKnMADYYY6qNMc3AfcCl3TwmRVEU5TBQ50VRFEU5UjkG2BR4X+d+FkJE5ojIKhFZtXPnzi4bnKIoitJ21HlRFEVR+jTGmDuNMdONMdOHDx/e3cNRFEVRcqDOi6IoinKkshkYG3hf7n6mKIqi9FLUeVEURVGOVFYCJ4jIsSJSDFwFPNLNY1IURVEOgy6VShaRnUDNYRxiGLCrg4bTG+nr1w96D0DvQV+/fjj8ezDeGNMn8qNE5GPAfByp5N8bY36YZ3u1U4dPX78Hff36Qe9BX79+6EQ71aXOy+EiIqv6Sm+COPr69YPeA9B70NevH/Qe9GT0d6P3oK9fP+g96OvXD517DzRtTFEURVEURVGUXoE6L4qiKIqiKIqi9Ap6m/NyZ3cPoJvp69cPeg9A70Ffv37Qe9CT0d+N3oO+fv2g96CvXz904j3oVTUviqIoiqIoiqL0XXpb5EVRFEVRFEVRlD6KOi+KoiiKoiiKovQKeoXzIiIfFZF1IrJBRG7p7vF0NSIyVkSeEZE3RWStiPxrd4+pOxCRhIi8KiKPdfdYugMRGSIii0XkbRF5S0TO6O4xdTUi8m/u/4EqEVkkIv27e0ydjYj8XkR2iEhV4LOjReRJEXnH/busO8eoqJ1SO+WgdkrtlNop/7NOs1M93nkRkQRwO3AJcBJwtYic1L2j6nJSwNeMMScBM4Gb+uA9APhX4K3uHkQ38ivgr8aYDwCn0MfuhYgcA3wVmG6MmYLTdPCq7h1Vl3AP8NHIZ7cATxljTgCect8r3YTaKUDtlIfaKbVTaqccOs1O9XjnBZgBbDDGVBtjmoH7gEu7eUxdijFmqzFmtfu6EWcyOKZ7R9W1iEg58HHg7u4eS3cgIoOBc4DfARhjmo0xe7t1UN1DEhggIkmgBNjSzePpdIwxzwN7Ih9fCvzRff1H4FNdOSYlA7VTaqfUTqmd8lA75dBpdqo3OC/HAJsC7+voYxNiEBGZAHwIWNHNQ+lq5gPfAOxuHkd3cSywE/iDm5Jwt4gM7O5BdSXGmM3Az4FaYCvQYIx5ontH1W2MNMZsdV9vA0Z252AUtVNB1E6pnVI7pXaKTrRTvcF5UVxE5ChgCXCzMWZfd4+nqxCRWcAOY0xld4+lG0kCU4HfGGM+BLxPH0sVcvNlL8UxkGOAgSLyj907qu7HOHr3qnmv9AjUTqmdQu2U2qkIHW2neoPzshkYG3hf7n7WpxCRIhyDsMAYs7S7x9PFnAl8UkQ24qRjXCAi/9e9Q+py6oA6Y4y3krkYx0j0JS4C3jPG7DTGtABLgQ9385i6i+0iMhrA/XtHN4+nr6N2CrVTqJ1SO6V2Kkin2ane4LysBE4QkWNFpBin8OmRbh5TlyIigpND+pYx5pfdPZ6uxhjzn8aYcmPMBJzf/9PGmD61kmGM2QZsEpHJ7kcXAm9245C6g1pgpoiUuP8nLqSPFYMGeAT4gvv6C8DD3TgWRe2U2im1U2qnHNROtdJpdirZUQfqLIwxKRH5CvA3HNWG3xtj1nbzsLqaM4HPAWtE5DX3s28ZY/7SfUNSuoF/ARa4D0fVwBe7eTxdijFmhYgsBlbjKBu9CtzZvaPqfERkEXAeMExE6oDvAj8BHhCRLwM1wGe6b4SK2ilA7ZTioHZK7VSn2ylx0tAURVEURVEURVF6Nr0hbUxRFEVRFEVRFEWdF0VRFEVRFEVRegfqvCiKoiiKoiiK0itQ50VRFEVRFEVRlF6BOi+KoiiKoiiKovQK1HlRFEVRFEVRFKVXoM6LoiiKoiiKoii9gv8fK7aY8RUf0LcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 2, figsize=(14, 4))\n", - "ax[0].plot(X[:, 0], y, '.')\n", - "ax[0].plot(X[:, 0], reg.predict(X), '.', label=\"Regular Linear Regression\")\n", - "ax[0].set_title('LinearRegression')\n", - "ax[1].plot(X[:, 0], y, '.')\n", - "ax[1].plot(X[:, 0], regr_trans.predict(X), '.', label=\"Linear Regression with modified target\")\n", - "ax[1].set_title('TransformedTargetRegressor');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## TransformedTargetRegressor2\n", - "\n", - "Same thing with *mlinsights*." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "TransformedTargetRegressor2(regressor=LinearRegression(), transformer='log1p')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import TransformedTargetRegressor2\n", - "regr_trans2 = TransformedTargetRegressor2(regressor=LinearRegression(),\n", - " transformer='log1p')\n", - "regr_trans2.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy8AAAEICAYAAABWG8uXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACg9klEQVR4nOyde3xcZZ3/3885k6RNSdPQe5umpQIFEgTaUoqogIBat8ilynVVVG4r7i6/1UVlsWIVdFld0V1WLCioS8ut5aq4UO4gvSUCTSgtJTRper+kJbSlyZzz/P44l5xz5sxkkkwuk3zfr1fbzMyZM89Mcz7zfO9Ka40gCIIgCIIgCEJ/x+jrBQiCIAiCIAiCIGSDGC+CIAiCIAiCIOQFYrwIgiAIgiAIgpAXiPEiCIIgCIIgCEJeIMaLIAiCIAiCIAh5gRgvgiAIgiAIgiDkBWK89DFKqU8opdb19TryEaXUU0qpr/T1OgSht1BKjVVKvaSUalFK/byv1xNEKTVFKaWVUom+XosgCKmIfggDBTFeehGl1Eal1NnB+7TWL2utp/XReq5QSllKqQ+UUu8rpd5QSs3ti7V0Ba31HK317/t6HcLgwL1OvD+2Uupg4PblvbSMq4FdwHCt9bd66TU7jVKqLvDZWEqpDwO3b+ylNaRshvJd84T8RfQje0Q/+gdKqa8opard99qklLqtvxiXYrwMUgK/gK9prQ8DRgD/A9yvlBrRA69n5vqcgtCbaK0P8/4AjcC5gfvu847rYXGfDLyluzBduDe/dLTWlYHP6mXgm4HP6tZsztGD6x0UmtdfNhmCg+hH9oh+9Bv9KAauB0YBpwBnAd/uw2X5iPHSxyilzlBKNQVub1RKfVsp9aZSap9S6gGl1JDA43OVUq8rpfYqpf6qlPpo4LHvKqXedUPCbymlLgg8doVS6lWl1C+UUruBm4Pr0FrbwB+BYcBR7nOKlFI/U0o1KqW2K6XuVEoNDZzzBqXUVqXUFqXUla6X4kj3sXuVUr9WSv1ZKbUfOFMpNUEptUQptVMp9Z5S6p8C55qllFrtWvjblVL/6d4/RCn1v0qp3e57XqWUGus+9oJS6kr3Z0MpdZNSqkEptUMp9QelVKn7mOdB+Yr7XnYppf6t+/97gtB+DSulvqOU2gbco5QqU0o96f6uN7s/lwee84JS6kfuNdmilHpaKTXKfSz2d14pdS/wFeAG1/N3tnuN3u5eg1vcn4syrOtmpdRD7vlblFJrlFJHK6W+5143m5RSnw6ss1Qp9Vv3Ot+slPqx96WqlDJdfdillKoH/i6Lz+ojSqnn3Pe2Syl1nwp88StH/76jlHoT2K+USiilvuxe17uVUt9XgQi2e917urdbKfWgUupw93Qvuf/udT+vU4NryVPNm6CUelwptUcptUEpdVXgfDcrpR52n/s+cEVH/x9C3yP6IfrhPtbv9ENr/Ws3O6hVa70ZuA84raP/p15Bay1/eukPsBE4O3LfGUBT5JiVwATgcGAtcK372EnADhwL2MQRoo1Akfv4F93nGcDFwH5gvPvYFUAS+EcgAQx173vFfdwErgNagTHufb8AHnfXUQI8AfzEfeyzwDagEsc6/19AA0e6j98L7MP5RTfcY6qB+UAhMBWoBz7jHv8a8CX358OA2e7P17ivW+yucQZOyBvgBeBK9+evARvc8x4GLAX+6D42xV3bXe77PgE4BBzb178T8ic//wSvZfcaTgL/DhS5v2MjgXnu720J8BDwaOD5LwDvAke7x78A/NR9LNPv/L3AjwPnWQAsB8YAo4G/Aj/KsK6bgQ+Bz7g68AfgPeDfgALgKuC9wPkfAX6D8wU9BkebrnEfuxZ4G5iEoxHPu9dZIvJZBa/TI4Fz3PWMxtkg3B75XF93zzkUOA74APg4jm78DGgLfPb/7L7/cvecvwEWu495130icP4ryG/NewnH2zsEOBHYCXzKfexm97M53339oX19ncgf0Q9EPwaMfgCP4v6e9fWfPl/AYPpD9sbL3wdu3wbc6f78a1xhCTy+Djg9zeu9Dpzn/nwF0Bh5/Aoccdrr/tIeBC5yH1M4xs9HAsefiitMwO+8i9K9fWTMhfiHwOOnxLz+94B73J9fAn4IjIoc8zUcQf1ozPt7gXZRexb4RuCxae57StAuQuWBx1cCl/T174T8yc8/pG4+WoEhGY4/EWgO3H4BuClw+xvAX9yfM/3O30t48/Eu8LnA7c8AG9OtC+cL6pnA7XNxvtxN93aJe62MAMbiGPlDA8dfCjzv/vwcrmPFvf1pOth8xLyf84G/RT7XrwVuz8fdTLi3i9335H32a4GzAo+Pj7nuo5uPvNQ8nA2ZBZQE7vsJcG/g//alvr425E/HfxD9ANGPvNIP97xN0dfrqz+SNtY/2Rb4+QCOVQ1Ovuq33FDgXqXUXpxfyAkAbnj09cBjVTi5ih6bYl5rudZ6BFCG4zH4hHv/aFzLP3C+v7j3475m8Hxx5w7eNxmYEFn7jTgCB/B1HC/S226Y0yuC+yPwfzh5pVuUUzBWEPNaE4CGwO0GHAEaG7gv3ecqCN1lp9b6Q++GUqpYKfUbN13hfZwvmhEqnMec7vcx2995iP+9n5BuXS7bAz8fBHZpra3Abdy1TMbxpm4NXLO/wfGgeq8dvMaD64hFOekr97spJO/jeB9HRQ4LnjP0GlrrA8DuwOOTgUcC61uL8wUdvO6j5KvmTQD2aK1bAq/RAEzsYE1C/0f0Q/Qjel+/0Q+l1Pk4hs4crfWuuGN6GzFe8otNwC1a6xGBP8Va68VKqck4aVHfBEa6F1ctjjfAQ6c7sdb6A+AfgC8ppU7C6UhyEKgMvFapdgrVALbihFo9JsWdNrL29yJrL9Faf859/Xe01pfiCNu/Aw8rpYZprdu01j/UWh8HfAyYC3w55rW24FzsHhU4HpLtMccKQq6JXlvfwon+naK1Hg580r1f0QGd+J2H+N/7LRnW1Rk24XhORwWu2eFa60r38a2Er/uKLM55q7um493P5e9J/UyCaw7pjJs/PjKyxjkRXRminfzsjO89DzVvC3C4Uqok8BoVwOY0ry/kD6Ifoh/RtfcL/VBKfRZnb3mu1npNps+kNxHjpfcpcAuqhiinEL8zHTHuAq5VSp2iHIYppf7O/WUchvOLtxNAKfVVnMhL1mit9wB3A/O1U4x2F/ALpdQY95wTlVKfcQ9/EPiqUupYpVQx8P0OTr8SaFFOMd1Q5RTrVSmlTnbP/fdKqdHu6+51n2Mrpc5USh3vepzexwnV2jHnXwz8P6XUEUqpw3BE7gGtdbIzn4Eg5IgSnC+yvcopAP1Btk/sxO88OL/3NymlRiunYHc+jjey22ittwJPAz9XSg1XTnHrR5RSp7uHPAj8k1KqXClVBnw3i9OW4KSZ7FNKTQT+tYPjHwbOVUp9TClViJPaENys3Anc4jpvcD+H89zHduJ8blMzvMe80Tyt9SacdJCfuN8fH8Xxvubk/1voV4h+xCP60Yv6oZT6FE6R/jyt9coO1turiPHS+/wZR5S8Pzdn+0St9Wqcgrj/BppxCtSvcB97C/g5ThHXduB44NUurO924HPuL/Z33NdYrpwQ7TIcbxBa66eAX+EU2W3AKXoDx9MSt3YLxwNwIk6B3y6ci77UPeSzQJ1S6gPglzj1KAeBcTgC9D5OSPdFnLBolN+597/knv9DnOYEgtAX3I5TMLoL59r4Syeem+3vPMCPgdXAm8AaoMa9L1d8GadY9C0czXkYJy8cnC/q/wPecF93aRbn+yEwHacw9U8dPUdrXYdzHd+P47n8AKdpiaczv8RJ3XhaKdWC81mf4j73AHAL8Kpy0i5mp3mZ28kfzbsUJxd/C04x9A+01svSvC8hf7kd0Y84RD96Vz++777en1X7nJ2nMhzfayitJcosdB+l1LE4aWpFEu0QBKEncKOqe4GjtNbv9fFaRPMEIY8Q/Rg4SORF6DJKqQuU09e8DCfn8gm5CAVByCVKqXOVU8A8DKfV6RqcrkJ9sRbRPEHII0Q/BiZivAjd4RqcEOy7OB06/qFvlyMIwgDkPJw0hy04w+Au0X2XMiCaJwj5hejHAETSxgRBEARBEARByAsk8iIIgiAIgiAIQl7QmTa93WbUqFF6ypQpvfmSgiB0QHV19S6t9eiOj+xfiJ4IQv9CtEQQhFyRSU961XiZMmUKq1ev7s2XFAShA5RSHU427o+InghC/0K0RBCEXJFJTyRtTBAEQRAEQRCEvECMF0EQBEEQBEEQ8gIxXgRBEARBEARByAvEeBEEQRAEQRAEIS8Q40UQBEEQBEEQhLxAjBdBEARBEARBEPICMV4EYQBQ3dDMHc9voLqhua+XIghCHiNaIghCrugpPenVOS+CIOSe6oZmLr97Oa1Jm8KEwX1XzmbG5LK+XpYgCHmGaIkgCLmiJ/VEIi+CkOcsr99Na9LG1tCWtFlev7uvlyQIQh4iWiIIQq7oST0R40UQ8pzZU0dSmDAwFRQkDGZPHdnXSxIEIQ8RLREEIVf0pJ5I2pgg5DkzJpdx35WzWV6/m9lTR0qahyAIXUK0RBCEXNGTeiLGiyAMAGZMLpONhiAI3Ua0RBCEXNFTeiJpY4IgCIIgCIIg5AVivAiCIAiCIAiCkBeI8SIIgiAIgiAIQl4gxosgCIIgCIIgCHlBh8aLUmqIUmqlUuoNpVSdUuqH7v1HKKVWKKU2KKUeUEoV9vxyBUEQBEEQBEEYrGQTeTkEfEprfQJwIvBZpdRs4N+BX2itjwSaga/32CoFQRgQiDNEEIRcIXoiCIOTDo0X7fCBe7PA/aOBTwEPu/f/Hji/JxYoCMKAQpwhgiDkCtETQRiEZFXzopQylVKvAzuAZ4B3gb1a66R7SBMwMc1zr1ZKrVZKrd65c2cOliwIQr4izhBBEHKF6IkgDE6yMl601pbW+kSgHJgFHJPtC2itF2qtZ2qtZ44ePbprqxQEYcAgzhBBEHJFV/VEtEQQ8pdOdRvTWu8FngdOBUYopRLuQ+XA5twuTRCEgYg4QwRByBVd1RPREkHIX7LpNjZaKTXC/XkocA6wFseI+YJ72FeAx3pojYIgDEDEGSIIQq4QPRGEwUM2kZfxwPNKqTeBVcAzWusnge8A/6KU2gCMBH7bc8sUBGEgIM4QQRByheiJIAxOEh0doLV+Ezgp5v56nBCtIAh9RHVDM8vrd1NWXEjzgVZmTx3JjMllfb2sTIwHfq+UMnGcJw9qrZ9USr0F3K+U+jHwN8QZIghCx4ieCMIgpEPjRRCE/kl1QzOX372c1qSNrUEBRQUG9105u98aMOIMEYT+S745Q0RPBKF/4mnJ7KkjAfyfc6UnYrwIQp6yvH63b7iA0x+0LWmzvH53v95wCILQ/8hHZ4ggCP2PoJYkTAO0JmlrChO505NOdRsTBKH/MHvqSAoTBoZybhtAQcLwPR2CIAjZkskZIgiCkC1BLWlL2rRZ2v85V3oikRdByFNmTC7jvitn51WahyAI/RPPGeJtOsQZIghCV/C0pC1pY7qRF8vWOdUTMV4EIY+ZMblMjBVBELqNOEMEQcgFQS2RmhdBEARBEHoMcYYIgpALolqSa12RmhdB6EdUNzRzx/MbqG5o7uulCIIgCIIg9Dsk8iIIOSbYIrAz3oZgh45sunJ09XUEQRAEQRDyFTFeBCGHdNYACRLt0JGp5XF3XkcQhMGBODgEQcgV/UlPxHgRhBzSGQMkSrBDR0ddObrzOoIg5A8SyRUEIVf0hp70hpaI8SIIOaQzBkiUaIeOTBd9d15HEIT8QCK5giDkit7Qk97SEjFeBCGHdMYASff8bJ7T3dcRBKH/I5FcQRByRW/oSW9piRgvgpBjeqvdqLQ1FYSBjURyBUHIFb2hJ72lJUpr3SMnjmPmzJl69erVvfZ6giB0jFKqWms9s6/X0VlET4TBQG/VouTidURLBKF/0xt6kqvXyKQnEnkRBEEQhH6KRHIFQcgVvXGd98ZryJBKQRAEQRAEQRDyAjFeBCGPqW5o5o7nN1Dd0NzXSxEEQRAEQehxJG1MEPIUaW8qCIIgCMJgQyIvgpCnxLUkBInGCILQNUQ7BEHIFT2pJxJ5EYQ8JdiS0DQNNu89yKIVjSx4sk6iMYIgdAqJ5AqCkCt6Wk8k8iIIeYrXd/2SWRWgNfevbGT+Y7Wx0RhBEIRMSCRXEIRc0dN60mHkRSk1CfgDMBbQwEKt9S+VUjcDVwE73UNv1Fr/uVurEQShU8yYXMby+t0kbY2tAa0xDIVCy7A5QRCyJm64nERjBEHoCj2tJ9mkjSWBb2mta5RSJUC1UuoZ97FfaK1/1qVXFgQhJ0RFYv7cSpoPtPb4UDtBEAYOwQnaZcWFLK/fzZa9B1O8p6IpgiB0RE/rSYfGi9Z6K7DV/blFKbUWmNilVxMEIecERUIMFkEQuoqnHZ53NGEoEqaBZdkSyRUEoVP0pJ50qmBfKTUFOAlYAZwGfFMp9WVgNU50JiWJTSl1NXA1QEVFRZcXKghCevJlOrakoQpC/yaYq27ZmotnTWLiiKH9zjEiWiII/Z+e0pOsjRel1GHAEuB6rfX7SqlfAz/CEY0fAT8HvhZ9ntZ6IbAQYObMmbrLKxWEQUx1Q/NAiaxIGqog9GOiaajzppf3V80RLRGEfk5P6UlWxotSqgDHcLlPa70UQGu9PfD4XcCT3V6NIAwCOmuIRIvc8rmmRdJQBaF/ky9pqKIlgtD/6Sk9yabbmAJ+C6zVWv9n4P7xrngAXADU5mRFgjCA6Uq3jWDYtTVpM/+xWmyt8777j6ShCkL/JF/SUD1ESwSh/9ITepLNnJfTgC8Bn1JKve7++Rxwm1JqjVLqTeBM4P/ldGWCMABJ1/s8E17Y1VSglPLbIufzHJdoGirwa+AjwIk43tSfxz1Pa71Qaz1Taz1z9OjRvbVcQRD6KaIlgjD4yKbb2CuAinlICuAEoZPE9T7vCC/surSmiQdWNfr3m2Z+dv+RNFRByB1dqYfznlNWXJi3KaggWiIIuaSrtbV9oSed6jYmCEL36Gr+pzeM0nZbXijgCzPiC9/6c3G/pKEKQu7oShpq8Dm2drSkqCD/UlBFSwQhd3R1gGRf6YkYL4LQy3Q1/zOua0eUPJiI7aWhrlFKve7edyNwqVLqRJzuhRuBa/picYKQT8SloXamhg6cC641PwdQipYIQo7oipZEnwe9pydivAhCnuBFbZbUNMXmcVY3NHP7svX9eiK2pKEKQu7oShqq95xDbTbe7AJbQ1lxYc8uNseIlghC7uiKlgSf19t6IsaLIPQRXU3vWlrTRGvSZklNkx9Z8SIunoAYCpmILQgDnK6koXrPuX3Zel5+ZxfgdO5pPtAae3x/TkMVBCE3dCelPVs9yaWWiPEiCH1AV9O70oV2vfs9z8fxE0uZf26lbDYEYYDTlTTUGZPLuP7so1m1cU9GT2sepKEKgpAjuprSno2e5FpLxHgRhD6gq/ml6UK7ZcWFofyJtdtaemjlgiAMBDrytOZDGqogCP2DTHrSE1oixosg9AFdzS+NCgTAjY+s4eHqJr9gDsCyZKMhCEJmPH3w5kV5tyUNVRCEXNBTWiLGiyD0AV3JLw3mi1535pEpouChkI2GIAw2ujrvJS6VI5iGagCnHTmK688+WpwhgjBI6Kye9LaWiPEiCD1MOhHoTH7pohWNzH+sFsvWfg/1aJ2LAgpMxRdnTuLC6fEzYARBGHjkuobOiwy3ttkYhmJO1XjRE0EYJHRFT3pbS4xun0EQhLR4IvDzp9dx+d3LqW5o7tI55j9WS9LWTg/1Nts3hhJGe6WLYShu/nwVt1xwvGw0BGEQEbdxyAZvY2HGpHJ88qjRKENha82CJ+u6pF2CIOQfXdGTdFoyY3IZV5w6BRRYdu60RCIvgtCDdLUwP3oOW7cnhhmG8qM4X5w5iUUrGp3oi9Zp250KgjBwyUUNXVlxIcvrd7NuWwsLnqwLpaNKsb4gDB66oidx9bh3PL+BsuJC7n7lPb8mN1cDLMV4EYQepKubirhztCZtDKVYcF6VP9tF43g5LKvr5xcEIb/p6owG77mAnyZiKCfaEkpHFW0RhEFDd2a+BOfOeXpiBboJGUrlREvEeBGEHqQ7m4pM5wiKQ8JQXDKrQupcBGGAk6mItjM1dNUNzSytaUID86aXhyLEWmuUcroCJQypoROEgUqu9GTRikaeqt3KnKrxXHZKRayeoME02p2v3UWMF0HoYbo6+CnTOYLiYNmaCSOGhtqcykRsQRhY5GrIW3VDM5fe5ZwH4OHVm7j581V+Ua0N/kbj5s9XcdkpFbl9I4Ig9Dm50pNFKxq58ZE1ALz8zi6AUJF+UE8WnJc7PZGCfUHoYaobmrnj+Q1dLlKLe3664rhcNAgQBKH/0dWi/LjztLmGC0Cb5dTK3XflbE47ahSGAo3jMZUaOkEYmORKT56q3Zpy28sW6Uk9kciLIPQg3fVupHt+unS0XDQIEASh/5GL+jnvPAVuDR047dU9Dbn+7KNZtXFPt19DEIT+Ta70ZE7VeD/i4t0GelxPxHgRhB6ku8ZEpufHpaPlSpAEQehf5KJ+zjvP4qtmh2pevDq65fW7mT+3kuYDrZJ2KggDmFzpiZcGFqx5Caau5+I14hDjRRB6kK4aE15B7Y6WQyTM7LuJ5UqQBEHof+Sifi7uPLnKfxcEIX/IlZ5cdkqFb8TEacl1Zx7Z7deIIsaLIPQg6YyJTEX10YLahEGnuonlSpAEQehf9FQzjkwRXmkAIggDk564tjvKNsnVa4rxIgg9TGe9nNGCWssm1E0seB7ZVAjC4CCX3caiupEuQiwRGUEYmPSUnmTKNsmlnojxIgi9TEeeiXQFtUFkUyEIg4tcNOOQBiCCIEDP6km61PVc6kmHxotSahLwB2AsTsezhVrrXyqlDgceAKYAG4GLtNbSl1UQOqCjOph0BbVBZFMhCIOL7jbjqG5o5vZl66UBiCAIPaon6VLXc6kn2UReksC3tNY1SqkSoFop9QxwBfCs1vqnSqnvAt8FvtPllQjCIGHG5DLmz630u3PEXeRxF38wPCubCkEYXHSnGceiFY3Mf6yWpK0BMCLzoXriNQVB6L909dr2mgk9tHoTbZZG0zd60qHxorXeCmx1f25RSq0FJgLnAWe4h/0eeAExXgShQ6obmlnwZB2tSZtVG/cwbVxJhxdxNDw7f24l86aXo4GqCaX+gCnZXAjCwCWdR7OjBiBBw0UBpx05iuvPPjqronxpACIIA5PO6om3DznUZqPd+wz6Rk86VfOilJoCnASsAMa6hg3ANpy0srjnXA1cDVBRUdHlhQrCQCHblK+gAASf05q0mf9YLbbWJAzFw6qJpCW1L4IwGMmmAYittX/bNFTKRkPq5wRBgMx64O1DPDVRQGGB0Sd6YmR7oFLqMGAJcL3W+v3gY1prDei452mtF2qtZ2qtZ44ePbpbixWEgcDsqSNJGAqFs5GIC7V6AvDzp9dx+d3LKSsupDBhYCpQSpG0tWP8WLrdqGmz/QiMIAiDgzhnSBAvxdRQkDAUC86r6rCIVhCEwUkmPfC0xFRQmDC49JSKWGdJb+hJVpEXpVQBjuFyn9Z6qXv3dqXUeK31VqXUeGBHj6xQEAYAwSgKAEoB2v039bgtew+GBKD5QCv3XekU8T+wqtE/PugxsIGy4sIefy/dQRqACEJuyaYBSKY883yunxM9EYTckkkPsqlZ6S09yabbmAJ+C6zVWv9n4KHHga8AP3X/faxHVigIeU40jHrh9HKSlhN6taz2tLHgcQlDkTANLKtdAGZMLnNTQOJfRwHNB1p78611BWkAIgg5pKsNQIKP5XFRvuiJIOSQjvSko5qV3tKTbCIvpwFfAtYopV5377sRx2h5UCn1daABuKhHVigIeU40jKog1jMRPM6yNRfPmsTEEUPTDpMzDYUNJC3HmskHr6k0ABGE3NLVBiCZCvzzxZARPRGE3NJdPQFC+tFTepJNt7FXcJy6cZyVs5UIwgCho4mzF04v58Lp5R1Oufbmu1Q3NHPH8xv8Y++7cjZLappQQOWEUmq37EMBF8bMg+nPSAMQQeg+nW0AUlZc6G9OvM6F3u2EoUCpvGwA0lk9ES0RhFS6oycJ0wCtSdo6RVtyrSed6jYmCEJmujJxFtpDsdHj4s4HsLSmKbT5yIN0sRDRBiAqUPujtdZKqbQNQICFADNnzkyTQCcIg4dscsyDOmIohWU78xnakjYPrGr0W5+2Wu29d/Jp+G1X9ES0RBBS6a6egKMgh9psFr70bo8N0xbjRRBySDqvRTRPtLqhmUvvWu4LxOKrZoeO86Itb2za628sgp074tom54unVBqACELuyJSjHtcABDSmodBaY5oGdVv2pbQKVeRHGiqInghCLkmnJ+lGNwT1xDAUbW4auwY27j4A9IyeiPEiCDmkI6+FJwBvbNpLq+ulaE3aLK1pSumTHhwEBU5jsi17D1I5odR/DRXxeiytaerX+erSAEQQukc0LTVdjnqmBiBetHbz3oPcv7Ix5TWUgvlzK/ulhgQRPRGE7pGNngApQ7KD+5ygnixe0ZjqDOkBPRHjRRBySEdeUE8AVKRFcvBijw6CAsdzoVEsXtkYShXz8k3bkjamafDQ6k1+vmk/jcJIAxBB6CJxaaTpor3ZNACpbmh2UlDbbOzIa+VJKqroiSB0kWz1BAjd541uiDpKe1NPxHgRhBySqVNHKNQamHidMGDe9HL/+Zv3HiRhGiSTjgAYilBe6aE2m7ot+7jlguMBmDauhOX1u30vak/kl+YKaQAiCF0nbmORLtqbrgFIkKCzZeSwQp58c6ufgpoPKWOiJ4LQdTqjJ9H74lom96aeiPEiCDkkndfC68qRMA0/XczDi8JE0zwuPaWCygmlfoTl5ifq/IjMQ6s3+d3FgnUyS2ua8nLYnCAI8QTTOuI2Fl6jj6U1TaFobbpGIdG2psFuQAvOq6L5QGu/TTsVBKHrdNQJNZ2eZKMl0ZSzntYTMV4EIYdExaCsuDAUlj3j6NE8/db20HOSlk4JzVq2ZsKIoVx2SnsLz9ot+/x8UsvWKZGVPB82JwhChLi0jnTX+BK3A+HSmiY/ZTTqHV20opH5j9Vi2ZqiAicaE00H8QpyAdEQQRggdLYTajo98YhqSVzKWU/qiRgvgpBDomIQvZhHlRRRaCq3JalDptAstHs3qiaUUuANqDTTNwMQw0UQBgZxkdzrzjwy5foOHtcakzJa3dDMkpomHli1CctpEUSr2xAkk7Oln9bNCYLQSbLthBo9Nqon6bQkLuWsJ/VEjBdByDFRMQhezFUTSlEzYUfLIT9Re3RJkf+8THNeEqaBbbspZ4GaGS9dzCvWTxiKL86clHdDKwVBCDN76kgSZscOi5aDbW7bUrA1lBUXho5J171Qgd/8I87Z0t+7FwqCkB3ZasnsqSMpKy6M1ZN0WmIYirLiQpbX706rJ61Jm9uXref6s4/OiZaI8SIIPUjQIMk02XpJTGi2uqGZ25etbx8gF6iV8dLGgBQxabU0961o5KHqJn9+jCAIeYrnqNA6dHd0UJyHQbizT7R7ocLZbCiF370w6BEtDER386B7oSAI2ZKFlhQmDC6cXu52OA3rSZyWmIbiyo8fEdrbRPXEM2BeeWcXqzbuyYmWGN16tiAIWVO7ZV/Iq/lU7daU0Cw4QnLjI2u49K7lvLphF5rUdjqm6+m4fdn6lLbKHl6+qiAI+cny+t0k3S6DQYeF95inH0lbo3B0ImGqUMqp173QVFBoKi47pYKLT56EbWts7XQv9HTCc7b8y6en8YUZ5STdY4LNRwRByD+y1ZJDbTYr39uDaaTqSVlxIYZSGAEteeCaUykZWhB6flRPTjtylG8M5UpLJPIiCDkgXb1JNO0rYTgtjwsSBpXjh/PyO7uA9tBsXFjWUDCmpIht7x/yz3vipBEseLLOP85Q+AMrg8QZNYIg5Adx3YA8rYl2L/Sude/faPfCS2ZV+Kmk1Q3NPFzdJN0LBWGQkK4FsufgMA2FbTnGzYYdH7Q/MdANdcGTdVi2xjQUN3++KtRQyNOiOD25/uyjWbVxT061RIwXQegm6bp4QNijYVk2Zx07loNtFnOqxlO7ZZ9/Di80GxeWLUwYHF8+gm2BLmWHkrZ/nAGcduQo5lSN5+bHa/1mAAlT+fNjBEHIP6J1cEC3uhd6ujRjchlfmFEu3QsFYZDQUU1tumFJlhUeVOmMqdOh1NSO9KQntESMF0HoJsvrd7fXpbSFO3MEvR2mafDCuh0kbc2K+t2hqEgwNJswFG2WxjTg4pMdbynAi+t20GppTAWnTh3Juu0tznkNRcXhxUwbV8Liq09lSU0TCqRgXxAGAME6uDue35Cz7oXDixKOt1XrWG+od9yX675Oycu1MO4EuPq5XnrXgiDkmmgzoaBz1QBMBQEpwVCZ9SSYcVI1oTStnnjH/V3b/zHloV/Chy1w7FyYd1eX34sYL4LQTcqKC31DxCbc6Sfocdi89yD3r2x0Nh4BhVDAF2dO8j0hKIVGo1FUTij1xebmz1cx/7FabK2597WNzJ9bSe2WfTxc3cTilY1+0f+tFxzfe29eEIReI5r6MW96OfOml7OkpoldLU5aabbdC70M04ShmD+3MtQoxOteuFJ9lcPMD9EK2FKNWvgpMWAEYYAQ1RNvT6GAkqIEdVvfZ07VeF8b0kWBE6YBWvspZUE98ebBPGD8G5PNekdLALXmQeeHLhowYrwIQjdpPtCKoZy6FUOFO/0AsTnkplOkgmU5ouFFV5bX7yZpOTnslq2Z/1gt08aVMGNyGc0HWrG19gv8mw+0MnHEUJJWuyd2ibQ2FYQBS1wa2fL63X56qLeZyKZ7oUcwBSRYc/dU4tuUmh8CjoNFa7C3viFdfgRhgBCnJ80HWkOdUVdt3OPvQYJ6cuMja2I7oUb1ZP5jtdxl3Mp0sx5obz6kAbXhmS6vXYwXQciCTAMg0xXCRUm38Qiec/bUkRjKCb0C2IHc0Wjv9Tc27eWMaWP8NDOl4OHqJpKWDJgThIFK0BkSrH+ZN708dggdhOvyok08lNu58I7nN7Bl70FakzYPJ25imrnFeVy1d1bdVHQUk3vxvQqC0LPE6Ym3B4nTEsBv+BHXEMiM6MkJrON0cw3g1/77erJr/OmM6uK6xXgRhA7IVJAPnStGi+acRo+dMbmMBedV8f3HarFsTSJgDAUL/AGefms7L6zfiaWdDiG2BtuK37wIgjAw8Bwpm11Dw7veNcQOofMiLt6xXstSD9vW3Px4rT/gdqV5FSPN/UDYcNlnDeE30+7i1l59t4Ig9BRBp2yw/gWtUYZCaZ0y0NLTEy9DJIrXCdXrcviG+SOnjXvAcNHAS9bx1E36Ptd1ce1ivAgDlkzRks4QnTodZxREjZLurGHauBJM5dTPBIdJxXUDaQt4Um3teD0MNEqpUO2NIAj5Q1dar1dNKOXh1ZucA13diLZeN5Rj4FiW7RfmejV4GvirupKRCddwCaxnp13Cx/VCFkv3QkHIK7LREm9odrC5kG27xklgDxKnJ9ERDV4nVFs7ejLEtPzHPMPlxrav86h5Dvd1o2WyGC/CgKSjaEmm58WlcmWTFhZ9/rptLcx/rN2jueC8cF/0dASHSbVZmiU1TcyYXMaF08t5qLrJN1gMnJSPoHBMrxjB3xr3YtmaBU/W+bmqgiDkB91pve4ZIcEhdN5GQ+G0VL/+7KN9bbJsjWEoFJoHjZvaIy6071ksYOm0/2DxJ04VLRGEPCJbLWlL2tRt2ce86eW+M9Rre+y1Xp8xuYwlNU3thgvhEQ1eh9Sxw4ewduv7PKP+MVZP3rCmYp78Ve7rZjdUMV6EAUk20ZKooZLuQs82LSw6FM5y5yuAMwHbK7731hd3ruqGZrbsPeg3ANA4dSzz3At98VWz/QF1XmGdJxwFpuLGg7+gMvEMJpo37Km8Vv+QbDgEIY/oTut1b+NhGsp3oASHV3qdg7zzed0Lf2bewUmJcEEtyjFcNvzdEq49+exeee+CIOSO4D7oUJvtO0IhVUseWr2JpK0pTBhcceqUlA6q0TqXhKm4/uyjmTG5jGnjSlhS08TD1U0sW7ud581/oiLhDOAO64mBfdVz3NIbc16UUr8D5gI7tNZV7n03A1cBO93DbtRa/7nbqxGEHNFRtCQY/jTdqEjzgda0Bk9cWljU+AkZTK4HNIitNb958V2ee3sHlq0pKgh7Qqobmrl04Wt+8b2HNyQquIbg604bV4Kx9GqO37cMc5/tq8VJZj1H1X0dznwxdx+sIAg9Si5bry+v3+07QhRQF6ib87oXfttYxPnmq/5zod1L2nTarRwjhosg5CWzp44kYThzoKKO0LRakrSp2/p+SgfVYCdUgDOmjQntj7zH/2x+mwqz3XAJZJ3RdNqPc+ZMzSbyci/w38AfIvf/Qmv9s5ysQhByTEfRkqB304uKLDivKu1Qt6U1jsfBu/DjojSewRScoeChcOYpPOsaLuB4QoIG0pKaJn/YnHbrV4gMfIq+7itH3c9J9Y+iAq/nF8YBJXtqc/mxCoLQw+Sy9frsqSNJmIbfZeyh1Zv84bVlxYXMMN7hHxJPAqmGyyPWaaze/0kmPr9BWq8LQh4yY3IZX5w5iUVuCljQEeo9HtWSgoTBnKrxrNq4J2Uv5GkJwAvrdlDd0Oyfq6y4kJ+bd7R3KQyso00rfpD8Gk2bZnJ94DndoUPjRWv9klJqSrdfSRB6mXRF9OB8qZuGIukaErbbmzxuqNuldy33L9iHV29i8dWnpoRjb1+2nuvPPpr7rpzN7cvW88o7u/w887OPG8uJk0awZe9BFq1o9NegCXtVowX5Zx0zhhMmjQitxZvT8LvETzhdrUHVtx8fjNZo78XHndDlz08QhJ6ht1qvz5hcxhdmlPv568FamJsfr2W14fQOCzo8AF60jue7+psgrdcFoV/TUVOgC90htpn0JM7ZO21cScp547TE25s8+sRS7vciuAE90cAlbT+gRh+NsWEXqzbuyYmWdKfm5ZtKqS8Dq4Fvaa2b4w5SSl0NXA1QUdFxsbIg9AZeS2Iv57vQvaijBs/y+t20BQYwtbnFa8GZKxp45Z32i/L6s48OeS2uPf0j/gX+wKpNvsGkCHtVgwX5BQmDa9zngSNQ/3H3H/gV/8GowpaQoaL8v8Ih2n2F4xkh07AFoV/Rm63XwYkWP+zqitf2dElNE2+ov2eIEe4EBNBgjeLr9o2cdcwYlq3dLq3XBaGfkk1jomz1JE5LosfOm17O0pomWpN2qKNpw9P/wyLjtpSWyOBEcP/G0SjIqZZ01Xj5NfAjnH3bj4CfA1+LO1BrvRBYCDBz5sy4mTaC0CdcdkpFrHchyOypIylItIdKC0zngn2qdmvoOI1zUS6taWLCiKHMn1tJ84HWFC9onMEE7d6Tm89NfR6bVnLUfZez2NjR/oIqHKkJXljb7RHcwRc4//KbmNHdD0kQBCB/W68D7TsJ998fvHEmhW4L0+Asl3XWBD6b/BmeonhpsNJ6XRByR29qCeROT2ZMLmP+3Eq/U+GCJ+v42L4nuGDzbaENiacnS63T+FbSmeTipcGbpsHmvQdDKWddoUvGi9Z6u/ezUuou4Mkur0AQ+pDoRR29mL0OX17NS9WEUhY8WceHbeEBTQowDMX9K52QajovSJzBlNZ7svpeeOoGsA5R4r1O3LAXvOhLgo0fW8CfCj7D+ZKjLgg5o69br5cVF1K3ZV+oI1C2a4i2Xj/m3uMopA0IGy7brFLXcHEYVVKUslGR1uuC0D26qiXec4N60hktCT6/O3rSfKAVy9WTC6xnKP/rb4HUiEujNco3XAA+dcwYxpQU8dDqTdy/spGlNU3dSh/rkvGilBqvtfZczxcAUhUs5D2ZWiV7F9gdz2/wozAeCvhoeSlrmvbhPdLaCS9I1Huy75W74Pe3gd0Weg0/NSx4H0DJBLjo9zBpFlOgyxNrBUGIJ1sPZ5BctV73GosE8Vooe2tLd55o6/W/Jv6BYvuAE7lVrpYosFSC/z7xTyRWNWLZToR53vRyltfvxtbajyxL6pggdI+uaAmk15NsU0xzpSdvbNrr1LEYz3JrgWu4uI97etKqinj1c89TGBjjcO3pH/EdKblIH8umVfJi4AxglFKqCfgBcIZS6kR3rRuBa7r06oLQj+hIVLyNQMJQJC2NjdMNqDBhMGb4EGza25Aq6NAL4hH0nvw58W2OfmdL7HHa/wssDR+Uf5IRVz/RtTfbR0jrdSEfyab1evRLP5OedKb1elyutQ20HGzL6MENbnaUUryWuJZxpqNRoU5AFLDmine4ZbIzCDf6Pjrj2e1tRE+EfCObaEln9CTblLBc6ckhN+vkR2bYcPH40Cjmra+8xWVpiv5zpSfZdBu7NObu33b5FQWhn5JJVEIDKE2DS06ZRNWEUr8+ZWlNU+hcmTqdRZkxuYznT3yBUbW/JaHbUsQgKDZaw9/sqVxk/Zh/OWpaPkZZ7kVarwt5RiYPZ3Q47RdnTuLC6eWxepIuxzxT6/U4T6mhoG7r+/5j0QF0EG4H/4L5j+2GSyCC+6FtUtn2ewrvXp4yfdvjwunlKPfffhh1uRfREyGP6Chakg968nriaySM8Dk0TurpaYd+Hasn67a10HygNbYeuCt0p9uYIAwoMolK0OthWTYTRwzlslPC3fPud1MuAF5v2kd1Q7P/3NgL9b9nwa51gGJ8jD9EB36wNDxmtxe/FZoqxbjKRQFgTyOt14V8JZ1DIqgNrZZm0YpGlrj53NFWxkEHyBdmlPtzo+ImYd96wfF+zUnS1pgKlKHQtjP7qXL8cF5+xxkG581wmRcwMLxhl/ckfsJkc1eoyYfXwvTytu+HPLnRNaK1nxPvzY7pT4ieCPlIJudmf9eT1YmrKDU/TNGTHcZYPvbhL0IppsE1eoNyo8O5u4oYL4IQIJ2oZFcYp/BMjqTlCIbXVtA0FMeNH87FJ1dwWdOPsNc86F/4KmK4BNsdW0pxU9vXuN8+K/Qq3gRt6F4BYD9CWq8LeUnUoxn88r7uzCNT6uVs7dTELV7RXrQabb3ubRyaD7RiBwThopmTmDhiKLOnjmR5/e6A4kDS0qHUtOYDrbyW+IeUVDEv/fQ31lxn9gL4mhZNTfGOz8N6lw71RLRE6I/0Zz1Zm/gSQ7wuhbSf/wOrkFMPOYZLOj3xju3rVsmCMKiIi8oEox3L63dj2+2iYCiFAv/CtS3NZ7b+mov+9CTaAOUeGu0e5guHVjxhf4z7y29i5cbw925BxAva1QLAfoS0XhfyFk8bltQ08XB1kz/lPurgyLQp2bz3YOjYZGCelOG2BCtIGCFPKDiF9a2WcxkEX7O6oZkLX7swJVXM405rLv+evAxDwWlHjuL6s49OyUk33ciL5Xpm+1u9Sway0hPREqE/0t/0xNvnXPHXz7QbLm6zD4VT43LCobuxNWn1xNufBA2b7iLGiyBkIK51snd/MNoxf24lBaaizdIYChacV8W0cSW8U/0sd6tbOUwdCg+WDLYV9MKvBYfRcvhxXL1lLiuTR6KUgsaw4aKAM44eHcohbTnY5ggSebfJAKT1upD/eNowL6bgPXjMfVc6bdcfWr3JNwpaDrbxwKpNoWMLEgZlxYUseLIOW2sMQzF/bmXKELnFV5/KkpqmUE1KdUMzj979Y36oGvyuYkH2Tfgkv9z095jK2RQFNxpRJw1k7j7UHxE9EfKd/qIn4KR9/bP+X4YGUk89w4UhZbx16d8ovHu5n5WSTk/KigtzUuviIcaLMCgJGiUQ/wWdKR0rGu2o3bLP3SVolKGo27KPuc99hgfMcOew4EZCB0Kp6rTr4ZwfMhw48c9rWflyPZYddgYqHBF6Yd0OnnlreyjZTOEMgYoKUj4grdeFgUI2c6NmBLp6lRUX+nNUPE4oL2X+uZX85sV3/XlSCk3zgdYOXw9AP/MDFhi/j1/g1E8x4suPcF+GGrnoOUVPBKFv6Gs9ueP5Ddyq/4sLzFfd59H+r1EA393IDMjYgKAzzYs6gxgvwqAj2jksWJSayUAJpmNFw68Kp87l4cRNnGjUo/7WbqiEDJbID/usIbx71duhiM7dr7yHHZPE8JHRw5g1daQ/CDOIBrTW1G3Zxx3Pb+i3nlJpvS4MFjI5P7wv9Due3xDaaCQMxfxzK1m3rYWn3/IDCChDZRdRXX0v05scw8UbQOl7Sef+EmZeEXr96obmfq0XHSF6IgwWel1PNq3k0vf+gzLPcAmkijFsLPzrev/QvtATMV6Efk+uO2llW5Q6e+pIEmZ7/reX/+nlogbDr9PGlfD/qj/DSHN/6LXi0sNsoE0b/Nb6HD+3L+NfAq/pDYWL45SpI7lwejlLa5pS2h0qwDSNLk3M7U2k9bowWMh2blSB6cyNMgzFgvOqmDG5jNuXrQ+dq3L88I6v5f84GvZvx4CQi1SNmgbn/TdMmhU6fNGKRt9Lm6sOQL2N6IkwWMikJ94eqay4kKICg9Y2u3t6smkl/PYcDgd0NFXMzRKJ0tt6IsaL0K/paietTAZP0ChJmE5hfdqiVD+3S7NuWwsLnqwLGQ4nqXWc+OytTGtbi5FIgo5PDQPHaDGPv4i/zbyNy+9eTpud2q+9rLjQX5tSoJTCtp2NTe3mfVROKPWL+R5avYmkpTFNxcUzJ6GB+1c25nPhviAMGDo7NypYPDunarzfthTg1EAhfqyu/fBw0FbKGpQyQ4ZLdUMzS2ua2NFyiOfe3uF7ab0J26IXgtA/SacncfW30dqSTumJa7h4hFLFjr8oZLgsWtHIU7VbqRw/nLtfeY9kL+qJGC9Cv6YrnbSyMnhcq0IBN3++KraQbElNE22WRuMYN0/VbvUn1N5gLuIq80+YSqMOuU9QkUhL4KXesSew7KwnnFaH4BfaafCNIm8olTsqhoShuPnzVbywbgdPv7WdN5r28UbTGm694HhuveD4lGI+b2PSX6dhC8JgorNzo4KPX3ZKBSvf281jrzs1c/e+tpGKkcN8nQjp2o/HxxoujD6Gt2fdwrMbDme27TT+uPQuRxejGEZ+zo0ShMFCOj2J7pGaD7Ry3ZlHhp6btZ6svx1evT1+AXN/SfXo81jupoWt29bCjY+sAeDld3aFhmv3hp6I8SL0KR39Umc3XyVMdEDT0sik2KhREnexVzc083B1kx9hsTXU79rPpeZz/KN6iLHGPj+Wmi7SYil4NXk8X01+zwnhFheGXmOJOwPGUApba0d83DaFwbUdbAtvTJ6q3cplp1TEFtZmKpwTBKF36ercqOqGZp58c6uvP61J23eeeLr2rQdf55n9F1FAq5/S4ad2AG/PuoXzH2+jNbmOQrctalvEcPEafXjpJd5rD4C5UYIw4IjTk2z2SNnoyb77rkC3vhAyQoI1LtWjzwvpwrSxJeEXUU4rZEP1jp6I8SL0Gdn8Us+YXMb8uZU8VbuVOVXjs/ql99LCvCjJQ6s3hdqIBo0SM03h2vL63SSt9i/6pxLf5qj9WzBM/N2Bov1nHdg1vG8P5TZ9ORdedRObt7VgPFaLrTULnqxj2rgSZkwOT8DFrZ1RaEzDCd+0uWtvOdiWEvKdUzU+7Xvvqc4egiDkjmzmRgULbw2lmFM1nlUb9/hpq3/a9wUSZrI9J9093FIK8+tP8+yGw2lNrvM9shrHIxo87znHjeWa0z+SNiok6aeC0L/pSEu8/Uacnqx4bw+tSZuLjWc589ALzoOR7JGkMkn863qWB4ZitiVtxg4fAuwLnBMuObnC32t59JSeiPEi9BnRX+qlNU0pUYPqhmY/tLlq4x5/85+JGZPL+MKMchavaPQjGN4F46VVgXONHjt+OOu2taS8rjeh9gZzEVebT2IG3BFRz4R35/6Ckdxy4HwWW2ehgFcffJ0xJUVYthPlOdRm85sX3+WESSMoKy4MeUuCearP1G3jzpfq0RrufKneTxPzDLjLTpFp0IKQj3RmblS08Na77m/7v7d5tPUfKDaTQNhw+cAq5A9nvcZ1k45ktt0c0piqCaU8oBv9tShgdEkRy+t3+/ctr9+d93OjBGGwENQTL3skzik8e+rIWD15ft0Odq99mR8m7gVS0963WaUsPes5riM1wnPGtDEsW7vd74zqPae39ESMF6HPCF4M6TplddVqn+d25QqGUqsbmnlo9Sbf4NDAm24diYJQh4yTVt/Au4VPYQSNFtX+vGCrrzazmMKvPsY6+ygeuXs5ynK8nBt3H2Dj7gP+cRp4+q3tLFu7nYShOGPaGEaVFKVMuY12Bnmqdit//PopYrQIQj8lm5zuzsyNaj7Qyvy5lTywqpGxw4cwbVwJi1Y0cuwT51Fj1KNM55xe+1KAA1aCk9UfuM/dHEQHxD2wqhEroFuGoXzNTUQivl46WT7OjRKEfCbb+pB0ehK3Z7ruzCNj9eSm9RczqXBXrEN2m1XKmeo3KXri1eq+sG5HaKSDUr2rJ2K8CCF6s1Az+OW6ee/B2E5Zcfmc2awxLpR6x/Mb/G4YHkFDpi1pM/KRS2DvCo5Bt6eHqdTj661xvEYlS61P8KaaxgP2UX6K261/fosPDsUU0LrYGlotzTNvbaeowMlFD9KZNDFBEPqWaOewL8woT3FIQOfmRpUVF3Lz47W0WhrYx7K123nV/AfGme1pGsG5C22qkGuPeJL5kdTaGZPLWLethe9HBtcZCs46pt1z6rxO++P5MjdKEAYS2XQO80inJ7OnjiRhKNos7afFVzc0M//xWpKunjz79g6qja9San4IhB2zCjhkDuOGiodS9AScNHyvZtijL/REjBfBpy8KNYPDjeI6ZUWNECDrNUbrP7yLujXgfvSKXP8zcQfnG6+i9gaK1KKdw9zc8q3HX8tnqk/3DSED7YdKb36iLrabTxxxs2UAP8IiaWKCkHt6cm5Ua9Jm8YpGltY0pWhTOkdM3Nyo5gOtfvMOgD+b3/YNl+hG4+Cwck56/2e0btiVklpb3dCcMnHbOYcT+X3pnZ20ttlEFctQ+TE3ShD6mlzqSVRL5rv1snHXX1RPyooLueP5DZQVF7oi0d5NaGlNk2u4OKwwrkxruOwvPYoZe34UqydLappC+yePvtATMV4En74s1MzUKStohNwRKRqLG/yWTkhmTC7jizMnscithZlhrOe/hi5knLXFsVNcZ0EoPQzA9XAaJRPgot8zftIsFpQ38v3HarFtTcIdYOl9fnGMOqyQXR+0+rdNo93LGo0mATQfaOX6s4/OmIIiXcUEoXN0xUGTTUdEr0EIpHdKRJuPgOOICc6NUmjf0+oGYngh8U9MNp1IbHSjwbCx/G7mY7Q+vS62djDd0Fvbbf3urefVDbuw3WDzOceN5YRJI9JGwwVBcMi1ngRn0Cml/HrZdNffhdPLUUDlhFK/NtjrXqpx2rAvr9/t68t0tZ4/Jm6h2GgDYvRk1DTurVyUVk8U8fSFnojxIvh0pS1xLokWsMZd4NkOfksnJBdOL+fTNf/Ax9Uap57Fy+4KGi3BGS0KPiiawB9nP+GsZZJzvmnjSjCVM3jSe0JZpBWyAUwdcxjv7frAN1wMoLAgHA4GQmknaJ3ROyGtTAWha3TWQZP1tRYQDUMRq01LvcGytmbVxj3Mm17ud0QENy/cNNi89yAAZx87ll+s/0x7YX5QnxQwpAz+dT2zG5zC/NakDUrxwOpN2K5+XHHqFAyl0FqHnq+BV95xPKvz51ayauMeX1O97mMyN0oQMtMjeuLPoHOcm5aVev1Fp9kD8d1LXT2pmlDKdxKLuNZ80j9Hip6UVsA3V3aoJ6bhDc52Vmm7BlZv64kYL4JPT88J6W4hmofnbehMS77qhmYmPPR3nPRBnV/sCoHOYSoyo0XDTcmvc799FnwIxtPrUoriku5Fm7Q0ty9bT8XhxX4aGsDZx42lftd+Ah2XOb68lItPrgjlsUajSZDeext9n63iERWErOmsgyabzYmnBeA4J047clQoaurpWTDCcqjNZmfLofaGJW4DjxfW7eD+lU7a2RrzyyTiDBfgQOlRDPt/q4H2iM78x2pDNX2tbTZ3v/Ielq39WS4ANz26xjdgWt3mAHG6L3OjBCEzudaT4L5Ca/jCjHImjhia0oE1eK1/GNESr3tp3ZZ9PLR6E/evbOTyxHMsSDyZdi7d7qnnM+rLvwc61hO7n+iJGC9CiJ6aE5LOIIkzaNJd4NFzXBgpdE8nJJv/aw4n7fxr6KJNN1hSa2i0R3FG8lehc0fX4hXYaq2xgVc37GKFoXxPiWkonn17R0qu+ZjhQ/zwbsJQfHHmJConlIa6rqE1lq1DeaxxbZy9dUUjPoIwWOnIQdLZL9BoR8TNew9S3dAc2khs2XuQhDs/pSBhpKR7enoWVAINPPPWds47cQJHjS3xU7yWrd3Oiaznv/glCVr9OjvvOShYP2wWH1z4IDMC52s+0BpKD1M43cS89BGtnXQ0COudoVRK2+bo5yVGizBY6W09iTbuSNf4I5oKumztdmZOLuOosSW+U9drUHSRepbvq3uA1JR4W8HjE2+g4vRvMCpwvnzQEzFehF4hziCB+OL7dEZIR16LFCFZfQPWPQ8ywU/oTG+02Bpeto/niuT3MA2FoXS4DSBOSkdZcSE3PrLGL7D16uJs7cyTuXjWJCaOGMobm/by9FvbQ5+BqWBMSVF71MTSLFrRSFFBu6dEA1UTSmk+0EpZcaFv6AQ/n+YDraFp2k/Vbs1q/o0gDGR6Ip0y2B7U82J6xfgQTve8eNak2M2Gp2fByAs41++jr2/h1guOB2DL3oPcYC7mavMJ32BRhBuGPGadxr/suY7Cu5eH3l9oUxRwiix4ss7Nn4en67Zxasy8B9ENQUilL/RkwZN1ocYd6WrsChMGH7a1p3TYGlZubOb1TXu5cHq571T5uXkH55uvhp7fPszW4O+tm1lZf2Re6kmHxotS6nfAXGCH1rrKve9w4AFgCrARuEhr3dxzyxTynTiDJJ0x4l3gS2qaQgVi2bRNnjG5jBnGO/C/n4JD+zDc56YzWtq0wd3W5/iZfVn7RW3r0ObBK5xNJm1+4LYb9E5hKKf4Xkc8JTc+sib0/hXwo/OPd5+jfK+Glx5Wu2UfS2uaQkKZqRWiJxhe1GfVxj1S+yIMaqLplLcvW58SBenKhiSYJhq8FrfsPegbJJZlo9w1rNvWEkoLnTG5jCtOncKdL9XHnv+BVY2s297C/+lvUmHuCkdbfE2C2wqv5a4PP+kPvL192XrmVI33XyvOAzxtXAl3vvguz7y1nTea9vFG0z6u/eRUSoYWSCqYIGSgL/VE0d5WuKy4MGs9abM0S2qaqK95jv/hp5SZB2L15ICV4LyyJdTv2o+t81NPsom83Av8N/CHwH3fBZ7VWv9UKfVd9/Z3cr88YaAQ1/J4896DJMz4gjTA38wvqWnyC9zTFboXJgxeOep+Rm16GtraB0Mq/6+w0XJIJ/id9Vlusy7zj4t6RQ3lGBpexw8N2JE2y+l6sc+bXs6DqxpJ2k4e/I8vOJ5p40q4/O7l2NrJGVUKtJtqoiDFUEkXgfI+y9uXrfe7ekg3IGGw410v3nXkFZBmGgaZ7TUT15b0l8vWtzsxAgMfvS47waG3dVvfT3vuscOH8NttFzHS3A9E0sSAGmsq85I/hrb252jg5Xd28fI7u/wBcAvOq/KnbHvMmFzGh23hmVN1W9/nj18/pcP3LAiDmXzUkwJTUbG/lgXGfLzS3qievGAdz1eT34Od+/3n5aOedGi8aK1fUkpNidx9HnCG+/PvgRcQ40XoAM9rEBrqZigumVWRsfg+2u98/txKf7BlpfU2tyXuZIrahhHv2Ay1PG6xirgi+T1q9NEkDMf4sCynLWGwOE3hFN7OqRqfUrimcETiizMn+XU3Xhqcx7ptLWjXJEokDKaNKwm9JxPNxSdXMMEtxgOnh3rQUMmUTztjchnXn310qKuHdAMS+ht9MfT29mXreeWdXbFNL3I19DZYpK+AkcMK2f7+oZSht95rRwfPnn/iBHbvb2VO1XjOXfUlDvMMl0BOugL+POJivrH9vIzvWwNJWzP/sdrY9FEZeisMFERP4vVk1pQyjhxbwrzp5Rz3vydhkqolCvhpwbXceeiTGd93vuhJV2texmqtt7o/bwPG5mg9wiAguIm3bM2EEUPT5olH+523trUbMveYP+GWgjXxL+KiAduGvRzGf9qXsOPoSxkFXFZS5E+2X1LTxK6WQzy3boc/yMk08EOoV378CL/LRiJgtMQ1EfByV4OD4ZJWOJLS6r6nygmloQGUne3EId2AhP5MXw29zWTUx0WAuzr0tjDRnrrpbTS8CK6B473c4hbkph08u+Qq2PU6OpraoWDjx27ln188gnBMOD221rGeXxl6KwwERE860JPV98ITX0e3tVdw+G2Qi0p5+qT/5s4XAq1WO6C/60m3C/a11loplVZdlVJXA1cDVFSIaArpJ8Oma6vnFa63JW0uMZ/j+8Y9FGL5noVQPQuB9sdAw4jZfGr7P7UX37+1nUJTsfjqU33jw0tPC6EUNz9RR9JyROjKjx9B3db3Uy7WdI0Igl3GvA4cAJ84ajTPuV3IFjxZF/JsRMUsG7GWbkBCf6Wvht52ZNQHr5muDr2NS900VHu09pG/NbG6oZn7VjTyUHUTX5hRzrzp5e3a8YcL4L0XQTspGMHCfA00fuxW/lTwGdqsdSnvzwDGjxjC5r0f+vd5KayeznjrDubLZ9pkyNBbob8zWPWkcvxwlr29g/qdH7BoRSMPrNrEgvOquOyUCuea3rQSbjsTDrRHQ7w6XYBWYxhF32vkjv9+BdiX8v5OnlJG84E2Nuz4oP359H896arxsl0pNV5rvVUpNR7Yke5ArfVCYCHAzJkzs3MhCQOaOMOkoxbKJ7z9nxz53h8pJBlyRKYMlnS9DBw/D064lPvXlGBvC+eTtbpFbV7hnD/cKYBlaSy0Xxy78GXnHKs27gkZHOnqUqIdOAAuXfgarYGamY5mtMg8FyGf6cuht3GOgFwPvY3zys6pGs8L63awamO797M1abN4RSMPVzfx08k1nLflF5g6UMBCu6Rttg/nX/Q/851pl1G2rSV0jMLZaPxt017fcDEgYzQ4Ll8+igy9FfKBwagnleOHc5c7q8nDS+kC+NhrVzF57/KQwzZYv7vOmsD59n8yf0VjSp3MkaOHcfaxY/ndXzf6ztt80pOuGi+PA18Bfur++1jOViQMCjwxCHoqvI4eleOH+8PVigoMqod8k+Naw14Fj+hgyZ0fvZYtM7/rGEZbCrn7ldrY16/bvI/qhmZmTx0Z6v7lYSinNXLSctbmPXyoLWxEpPPKRO+78ZE1IcMFOp7RIvNchHymp9Ma+3rorffa8+dW8sCqRgoTBjc/UZcaxcXZTPyE/+KCJqdtaTBNzOMR6zT+JXkdBsQOvf1oeSngdBTymDrmME454vDQ2qMOmbhc/SDiJBHygZ7Uk85ECjqaWRfXwAcyz68LvnZQT6KGi4dla2Y88Rkmm1ucOyJisqf4CH6271Msts7CwGbhS+9iB84za0oZp08bw4vrdoT0Kp/0JJtWyYtxivNHKaWagB/gGC0PKqW+DjQAF+V8ZcKgINrRw+t4sSRxEyclnGiHcp2U0fQw506wUWwYdjIfXPQg0J5z6nUKi+PNpn1c/JvXWHBeFQvOq+L7gRoVU7W3NV740rts3N3evUyTakTEpW5F74tuVLz7vEFPcQTnuRgdHCsI/ZGeSmvsy6G3P/3zWha+XO803nArYa1Ue8XHAB5K3MR009WzmDTXt474Kjes+zSK1KG3yaSTB/9m076U6pf3dn5A/c4PQh0Zy4oLQ5pqQMZiYnGSCPlCT+hJJudGtnoCHde6pCvuv3jhayQtjWnAWceMDdXexqGAvyS+zdGu4RLKPlGgRk3j/05+mIceq/X1pGH3Ab+DasJQvN60j9UNzSkZJ53Rk7h0f+g9Pcmm29ilaR46K8drEQYAmTwYcY8Fcz19o8WoD33BQ3x62Ie2yeVt3+dNNY0rZx1BiduBzPcSuC2JnWGSCtvWoe4dSVtz06Nr+PH5x/PgNaeytKYJDX4h/+V3L+dQW+qupG5Lat5oR1w4vZz7V20KGVOmoTKGvr15LtJNTBDC9MnQ28llLFrRGJqvYGli6+kNN+f8JLWeOxM/Z7ThpIDF6VhN6ae55J3PYGs7dujtpj0H/Dz4IJ5jw9bhRiaFCYMrTp1C3db3qRw/3J/BkO7zkaG3wmAmW+dGJj3Jph4nTk+u/sNq31CxbFIGW0e5PPEcNyX+yBB9CEjVkxZKePLkh/1hl56eeA7Q044cRcXhxSxe2dgtPUmX7g+k6EltF/ZL2dDtgn1B8OjIg5HusRmTy/hh8pdMLvwTRsBoiYu0aAXJwlJemfxNvr6m0rlfa+58qd5pYZwwSBhOxKUgMIMlmofuYWv4/mO1XHzyJN9oWR4wguL8H9p9P94QzWi6SRwzJpfxo/Oq/C5khoJPHTOmw+dINzFBSKVXh94GrrunaremLiaCG4zhYvNZfpT4bfu8hchGo1Wb3GN9jn/ffqnrH40feguw4r09ofQO01Bc9fEjuPe1jX5HRltrf+Nx9yvvYWsdmkuRrphYht4Kg5nOOjfi9CTdOTrSk+3vfxhdTlpuMBfxD+aT/u2onqyzJjAn+TNM1+jwiv6DenL92UezbltLiuGSMBRXdkJPMhlrs6eOpMBUtLrDvB+ubvKHd+cSMV6ElAssrrNENr94mX6h0z72hwug/jmOAD+3KqWmxcsPLypF/f3DFE6aRWlDM2bda6H5Kxpn0vUlsypCXcc2u+0F02HZmsUrGnlwVSMa50JPmO1GkGkobJwi/gJTUTWhNFR8/1B1E4uv6viL/rJTKpg2roQlNU08XN3EsrXbeemdnZ1qp5jvKKV+B8wFdmitq9z7DgceAKYAG4GLtNbp/8OEQU+06Yf3b6aC3s4OvY27LqMzDuLQwHPmP1FhOsfF1eittyZwXdmvqd+133eQKNIPvf3CjHIWr2j0de3ikydxTuU4Wg4l0UDVhFK/I2Nw4xE1Ugba0FvRE6G7RJ2EgD/ZvjN6Eq2dy6Zw/eKTK3ijKfO4hxvMRXzdfIpC1d6ZEBWu9/UH2QK2rTEMhSLswPX0ZHn97lBk5ONHjeL6s48GyFpPMjUmmDG5jC/OnMQiV68sq2e0RIyXQU70Aps/t9IPB3bUWSJq9JQVF2K4Pfqi3ofNew+SMJ2BkAUJgytevwT7xXfCXTJivuQ1Tk1LYu7tMPMK//EZk8u48uNHsPDlenQgLFqQMKh0L7y4LmLpcNLIvJ+ci/Sj5aVUTiwNRWQ8D2+waLYzX/SeeHiNAPJlk5BD7gX+G/hD4L7vAs9qrX+qlPque1uG3goZ8a6ZqH51VCwbHHqbMJzOOtFj0l2XwRkHh9osVm1s9o0PU8G/mou50njCqYUhNR8dUidce3nomYbezptezsOrN9EWcKAE3/e86eWxreXjjJQBNvT2XkRPhG7iOQnj9kOd1ZO4YzrSk2htrcIZhP2M+kffCQKpemLZisfsj/Gt5HWAoyXRdXtr8QhGWg1D+UMmO6MnHWWFXDi9PGXodq4R42WQE73AnqrdmlVniXRGj60dq3/+3MoUMZhpvsPvi26hiFbUPvxcsJT0MPf+zdbhXG//ExeeN4/mllZmNzSH0tDufW0jWjth0bkfHe9PrG4+0JrWcFHgp6aZhuKMaWN4Yd0O2iwdShHTOAWy67a3+CHP4Pv3wqJApy/Ovmz52NdorV9SSk2J3H0eTlMQgN8DLyCbDSELovrVfKCV6848MuW4tENvLc2iFY2+9zSb63LauBK/kPXNzfv85iAvjv8vJuz+q3+cJ2vt+ejDuNK6gVXJo/xjvDz0688+OqO3dt22FizXSYNS1G3Zl9Kl8fqzj/bf+7RxJZ1ON83HNFXREyGX9JWenHbkKLbsdWpiTdPgCzPK+beNX6V4nxu9DRzv6ck2NYaPt92O50dVhLUE0qfrX3HqFBa+XO/Pm5s3vbzTehLMqgne9n7uaS0R42WQE91Iz6kaz6qNe2I71QTJZPRorf2i9uX1u6m03ua2xJ0cYWwjOM40pXgVQEGLXcQVye9Ro4/GUPD647XYtg5NsL992XoOtdl+4f1jb2xBayc3/OZzK0mYRtqWpZ44zAuEd//9qbWsjNTEaOJb/c2YXMbiq09lSU0Tu1oOMbqkqFOfeT5uEnqYsVprr5hgGzA23YEy9FYIkq0jIJpmtuDJOl8/PAdN84FWrjh1Cn+p28ZnK8fFXpfVDc1cetdy2pI2CdNxfowpKWL+ugso2r0zdGxQ17ZZpXws+WsKEgbnHDeaF9bt8OvygpuNdI0I5ge6ISYtZ93BDkCvvBOuU4lLNx1EQ2+z0hPREiFKb+vJohWNftTGNBRVE0u5cewKTqn9CliHQunvQT1ZZ01gzqGfkTAV2BqtobAgrCWQXk+cGhbnGK+2N9d60tNaIsbLICcu33Pe9HI/7zFdzUv0Iq8cP9zPBdfAA6s38aXy7Vzx5vf5h4K3/Asw3YwWW8NaPZm3Z9zM3/RR1Kxo9O+3XddCa9JmaU0TD63elDIzRQcuxBfW7WDMYYU07Y0vhktaNhNHDPUNl6U1TayOKeb3zttysC3lfs8b6gnPkpqmjEOb4rwWA2CTkHO01loppTM8LkNvBZ84R0CmKdbe7WDtmZfK2nKwze8kdudL9VSMHJYyRdrLcwdn3srutS/zP4kfkjDj9cjS8Jh9mp/WYVk2J0wawRnTxvBU7VbmVI0PrTFdI4Jgl0JDKeZNL6dqQim/enY9294/1OHsBW/t3gZrsKSrZtIT0RIhSrr6l7g9UHf1pLqhmfmP1fp1u7aluX7bd5m1cw3aSzt1j9XaaVZ0wC7kx8kvcb/tNPu1bZ1S4xtkIOuJGC9C2nzPTB0iohd5MKfyEuNZvmcsYvifDvr3xRotCizgsWT7l/u1hVO5sHJcSlthcAyZ9dtbUgyXKMvWbs9Y62Io5XcWuvzu5XwY0w7ZXyuO8Ly7az/Xnv6RUDg2KDzphjF15J3ozHCsAcx2pdR4rfVWpdR4YEdfL0jIH4KbiM7MfwE44+jRjCopYt70cm5ftj503qdqt6YYLztaDvk/r0lcwWFm6uwlT9+CRbTQPvj29U17eXH9TpKWzaqNe0JtidNFZYM56gvOqwJg/mNrCAaXTTO9p7i6oZmHVm9qr8/JcOwAQPRE6DLp9kMdaQl0Tk+W1+/29w83mIu42nyyvVbOPSbo4H3E3Sd5j3l6sqPlkK8nUSfqQNYTMV4En3Qhxmw217OnjuTyxHN8X91DkWH59yv/r0DRqgILxUtH3ciy4jkscqMsAHe98h7v7tpPWXEBuz4IbwwMiE0FixJnuBhOdBUFTK8YEXq/UY4bX8JbW1tC9z3z1nZeDnQGi/NexF28HU3p7iiNY5DwOPAVnOG3XwEe69vlCPlKtJB2wRN1jB0+hBfW7SDppp7On1vJzY/X+k4Qz1ET7STmFbIGuy++uH6nMyDO2OI7ZPz018A6llrtDhmAc44biwKeXbudZwKzHNLNl+kof/zGR8IbDXA6kqXTj+BGSXVw7ABA9EToNlEtuX3ZeirHD+dud+q918gICHUfzVZPWg62MV2t577EjxgS3DNF9KRNG9xtfY7brMv87mBzqsbzwrodg1pPxHgRfKIhxrLiwqzmtlyeeI6bE79nesJNr9LpO4fttQ/jtuTF3G+fhVoDBYkmDMC7bixbhy5GDwUkTEVRwgjdf/KUMl7ftDfU/SuIqeCqT0zlt6++h+0W5a/c2MwlC1/jjGljSJiG3/kLHOE5saIsxXiB9LMRPO9F3MWbKYc2m24kAw2l1GKcYtpRSqkm4Ac4m4wHlVJfBxqAi/puhUI+411v3nX1RtM+YJ//eGubU58X1y1w9tSRfPq4sWx//0MuPrmCy06pCOncDOMd1hg/pNBo/5aP1u1ZSvHcqX/ghpcSeNuPQlNx5rQxTt1KRKaMDgbVekQ3ILsCESBwnDNeV8RMn4unQ5mOzSdET4SeIqolL7+zK2SMHGpzIh0TRwxN0ZOlNU1MGDGUaz85lbqt7zOnanyKnvzcvIPvFL7qPy+uBviAKuajbb/1HaUFpvLbGsfpSbYRkIGgJ2K8CD5xqWDBzfWSmqbQY3fqW/h4QS2mctrg+PaKihThA9sSE7h37Hf5Tf0o/z4vV9KbApsO01BMrxhBdUNzqKjeAM6YNobvzjmWmx5Zw9pt7QbHlJHFfOzIUcybXu62Jg6/QJulWfbWdgpMxaWzKqgM1PcAPBypq4k2Lsi26D7TcYOx65jW+tI0D53VqwsR8oJMKRrpasnuu3I2C56ocw2XMDZQOX44K+p3h7oFeo6aQ202pqFo3L2fO57f4A+rvUg9yy2J3+K5TuI2Gg3WKD5l/Yoflx3Pg9eUsLSmCQ2+BkXTYMHJWe8KoyJNQs4+dmxGx8dAbRIieiJ0hnR6kklLbl+2Pna2k8YZwHjzuZWh7qMJU/HQ6k0k7XAr9qCe/Nb8CWeYznyXWEevhhft47nSvpEfnVdF3ZZ9vpbMmOwMnI3TkzOOHt2lazsf9USMFyEtwc21aSgerm4iadl8N7GYa8wnMQNFqnGt/LSGZg7jdn0J53/5Jj6oaYL6xvCLqPg0r9AhCqo3NhNN8CosMPwBdc0HUnPPb73geADWbWvBcAdOBtHg3+e1PvUuRq+bmIKQYdOZbhpBQYxrt9gfBEAQ+iuZ0io7SrkMOjKCGApKhhaEru8LXeMi2L3wzpfqUcDJiQ08kfgtxxkNQPxGw7LhouTN1GjHI3rTo2v48fnHc8sFx4dSzooKDP81gudY6jqFOjMUODr35YxpY9IWFntIkxBhMJOphiWdlsyYXJZxMK1lOV3FgnqigftXNjrpZpbmPjct3tOTVxK/YLzhOGHjnCD7rCGcmPyde0vzwKpG5p/bPnrCG6BZVGCk1OuOKinq0pDxfNQTMV4En2DbPu8i9jbXb2zay661L3O3eRtlhjtMScUbLQD7Eofz50+/SPOBVs4PXAD3r2rEcq83w32+FThHXBDGisxgATihvJSLT67wh1EGNxUAn60cF35PtsZQcPiwQnZ/0OqfzzDavSTBoZzz51YyccTQLhsV2daz9LUACEJP43X0C3oOsyFTWmVHjyWtQGoX7ZqSMNuHrEXXYRrKz+OertazIHEPlUaDL3J+EW3gOdGifHCcMfMfqwXw9Sk4OK7lYJvTqtTWJBIGD7mbBk37kLmO6t9mTHbatQdbtUrtnDAYyLWedJS+3XygNVQzC6QUqkebhgQ7cYHTxOgb5mNMMnal1RNLw03Jr/udxDzeaNrH5XcvDw0Q9/Skdss+Hly9CSsyvNZ77YGsJ2K8CED67lnXHbmHY978Jwp3r8MstNtbHkeer90/H9oJFlhfwTjxq9waaQu41PVMeM+fObmM1Q3N/u0JZUPZ3HyQFJRTu+LtRwpMxfxzK0OiYwKzppSxo+UQn60cx3c/d2zKe9KalCYAkw8vpn7X/tBQztY2O8WI6+zFOxjrWQQBwhFHgEvvWu43xnh49SYWX31qVi3Fy4oLMZSTgxpNq4yrz7vxkTXsanHafCZMA8tyBshlW1h65jFjeO7tHdxm/DcXmoFc9MAxnoPmkDa5OXlFykbDw7Ydj6m3ifBqbbw5DOdUjmN5/W427z3I/Ssb/Q1MZ/TC2zDd8fwG0RphwNIVPYlqSXVDM1v2HiThZmAE9SQufbu6odmf4xbUE1R7Bkc6PZkxuYz5cyt5YFUjb219n7vUrZzupoh5z4PwQO4GaxRnJH+V9jNoS9ohPTnUZlO7ZR+3XnC8n5YaTPUfDHoixotAdUMzC56o87/kwemedfGmH8GLj1IM7d6CaNqEAhuDN4pP5Zbmc6h2UycSqzf5KRlAyBsAzjW7uqEZpRQGjpEwNFKMH3odHOPkqLElXOh6W9Zta3E2Nzhi9J05x4YusnR55kE27jkQKto3cKIxttbdungHYz2LIMS1W28LtLFps3RWLcU9L6OtNYahmD+3MuTZXF6/249klBUXhrqHASQMuGRWBSVFCX/WgsaZXRW3sbn87uVUWm/zpnkLxabTeCRdVPkF63i+mvyef9vA0UVlKLQ7MM4wFWs272vfRACvbkgd/OY5dVrbbGwcT2ln9UK0RhiodEVP0mlJa9ImYRpcPGtSaEB1UEt8AynQPQwcPTnr2LE8t66967YX6YimV1U3NLPgyTousJ/hIfMeCtwGH3F68qFOcI/1WW6zLvMfM92aYWUoFNr/OagnXr2N9z6C778wYQwKPRHjZZDjTYz2PBk/T9zB543XMA0bw/nOT2137KKBd8xpzDnwA+zIPMikm+v54OpNfHHmpJA3wMPWzgkThuKKU6ew8OX6tOu0NNQ07uU7c44F4N8eWcNDq51ZMGZkc+MR7AgW2lzQXmejbc0XZk1i4oihfo6oFzbtzsUr9SzCYCQacdQ4X56evhSY2bUUf6p2q39ba03dFqf4Pm5j8lTt1pTZT0nb0aeSoQV+ygfAo39r4s3N+1Kef4v+Ly4sSI22BM9aZ09mfvKrfm2Lh2k6Rblex52lNU0sXtGYUqMX5wwJ6kRZcSG1W/bFDpvLhGiNMFDpip5k0pKkZbNpj5P2HpfaDXD7svWxenKwzQo12BhdUsTNT9SRtMLPf/JPj/InfsrUxDb/2LhoS9QJ4nHVJ6ZSMrTAf1+/efFdnnlre0w6fXxbZE8LWg62+Z3OOqMJ+aInYrwMcpbX7/Y9GasTVzHS3O88oJ2Jrv5FF7hyLA0N9jj+1bqWvx06OlOjMNoszeuNzRmL8m1b88SarR0W7nuT7KP5pFrr2IL96EUIsKSmiYdWb8J2xck0VGze7LRxJd2+eIM5+MHbgjBQiWuhOW96eYc56tHnVY4fzl/f3Q3acTY8tHqTX1gfnL3gpXfG4XUCMgzlX+8rNzb7NTCtSZszn/g4lxj7UKbznLiC/K3mBL558OoUo8XDtjUTRwz139eSmqYUwwXSe0E9z+miFY08uGqTr3OdSVeV2jlhINIVPYk+Z07VeFa8t4c2VzdeeceJgM6bXh4ycpbWNLGkpintLLlol8LNe9s9tt7z/1/1Z5hv7sdrSxhXkJ/OCQLtDUW8Bj/VDc089/aO2D1WurbI3udx6V3LaUvarHgvPAg3G/JBT8R4GSBE80I7agfoHTNz12O8VfgTimhLGboGYc+jpeFx+zS+nbwu9svZozDQNhBgz/7W2EL8IFvial0CKJxwqIJQFEfhXMSb9x6kuqE5Nv903bYWbl+2njlV45k4YmgoZ/WLMydlXUifqW1rHDKEUhhsxDkMltfv9lM9s3meF/kMpnxatvbPmTANt8W6k3/uFaYeP7GU3R8cosndVLQlnbzwyvHDU9om35P4CZ801mAEtC5uo/Hr5FxuO3QZ6YgaJNUNzdRt3pdynAJGFBdweHEh67a1xGpLXM1hNrVBHd0vCPlKV/Qk7jmeEwTaRzRo8Oe4KKXY0XLIN2YMBWNKitj2fvv8k7qt73PGtDE8HTOH7nfmT/jEG2syOkFabYMfWF9NWycH7Q1FPJbUNMWmvitg9GGFLHiizp9JFWRpwAhrdQ2rdJ9XvuqJGC8DAK+jVtLWKJyaDR0pNg9upBOG4l/UIq4y/kSBsn0vQXC4ZCg9TMHL9vF8Lfk9ChIGZx83OjaM6TG6pCjklTj/xIn87tX3aLOcjl+lxYXs2d8eKZkwYoi/4fDwrn3TUFz58SP8MOq6bS2hCM0x40pYt72FRSsaY4v3Fq1o5MZHnGK5l9/ZxfknTgh5ZS7McrhSVwwRKdoXBiPBeo7OXDPRgtEgSinKigudG644KeWkjXipo2OHD/HTywA/YnPipBH+fRknWgd0pcUu4ork99JGWzyGDy3gEtcB4r3fQ22prh0N7Nnfxp79bdz4yBqeX7eDa0//SCg6G9ykGCo+va4r7V4FIZ/pip4EnY93PL8hVM8Ljp5UTSilakKpM+zR1ry4fqdf0G8aiorDi0PGyyvv7MJQhNJQf564g/OMVzE7cIJ0VJDvcXhxge/cqG5o5uHqpth9lsaJ/Gze+yFvNK2hcfd+vvu5Y0OPR4+PI5/1RIyXPCeloxbts0vi2gH+1vwJnzDcwZIuKvBD8IKzNTxmn8bvx93I2OFDuLikyM/rfmHdDtosjVKpc1qChkvCgIqRw0ApNBpLEzJcALbsixTMuGicmQvv7trPXV+eCThf8l4URwFvb29p92xYTrpF8CJ7qnZr6JyPvb6FWy44Puv+5x5dMUTypfBNEHqC6DWzNDDkNlNEoay40L9ulAKN00Dj5sdrOXb8cL+tsG1rpow+DLSmYc+BWIdKm6VZtbHZ3WT8FUPp9o6HMd7RPfow/iN5cax3NGHA9Iqy0KDcvQfauPOleipGDqP5QGtKbV9c7QzAM29t5+V3dvqbgmB9nmEoFpxXFfsZdbXdqyDkO53Rk2DUIPg9HKcnXvQ2adlMDejJqsB1Du7eyr2QlyRu4iSjPqQhXm1wcA9Vb4/jX5PXxjpB4vRk2/uHfGdr84HWUMt3/zVI1ZOFL9dzTuU4/3OIzm2Zl8ZJm896IsZLnhAXwqtuaOb2ZevTdtQKbpgv3HMXVxbcRaFK9ThCak3LQmtueweMpn3APr/bh/dk7XbCyIRlwwOrGlMuwiDR5fvzX9z7n3lrO4tWNHLZKRX+l7yXNpLiUYmcOzpgSoPfYhCyD412xRDJl8I3QegJQkNuTcOfpxTnyYsrxG8+0MqWvQdZHBj45qV/KRzd2LDjg4xruMR4lvnm7xlqJP37Qp5R1xOigYXWuez92L/x8KvvEdweKODs48Zy7ekfYXn9blY3pNbwPbCqkcqJpbGdC6Ma5RHcFGSrFel0SBwlwkAnWz2Jixp411Z39eSexE/4hLEmPtISOM6yYb79dR7ibJKRTZJSzgT7XOqJ1qQ0AvHmtgxUPRHjJQ9I1xXDuy/uq9FQOB24Vt+Adc+DjIP2IrLAcd51pd2fX7fbh64NLTA4GEiB8L5sgYzGSBDPWPDy1DuwdQCYOmoYH7ZZoVSyB1Y5xks0N/7mJ+r8FJOEqVLSwC47pYJH/9YU8m5477+zYeiuGCL5UPgmCD1B8Jrx5pkEPXnQXpsX9fR5kdElNU0p2mEoqDi8mI27D6S8ZsJNIzuJ9dxp/pzRZov/WFwtn23DKvsYbrMu4Q2O5l+GFnDxzEn+VGzv2DOnjfGv48KEEWoYArBm8z7WbN5HwlCcfexY9h5o5VDS5tSpI7n3tY20ujo6YcQQtr3/IVqnFu9noxXpdEgcJcJAJ1s92bL3YErUwCuA76qe/My8g/ONV9PXyLlOEEsrHrM/xreS12EquHjWJOo27wvV3CkIpYzG6UntFkdPDENx/MRSjhg1jN37W6kcP9zXk+DxRQXpG4Fk+5nmm550y3hRSm0EWnCGpCe11jNzsajBRDae/7gQHhAqLjvtyFF82Gb5oc6L1LOc/5cr0foAhvtbni7S0mwXc5V1A9V2OLR5MJK77X3ZrtvWQmewbbj45HIUcP/KRiwNphsyrWncmxI52rBzf0oEpShhcMfzG0LtjJsPtHLzuZXUbdmX0nkk+Ll+Z86xfueNYJ1LZ0OjYogIQteomlCaMlQyGmlJ93jCUJxz3FheWL8Ty3Iev/qTH+H7j64h2NH0hPJSxg4fwqXrr+d0c03G9DANrLcm8Nnkz5xjcDYAZcWFbN57EBVJ/3iqdqvvPPHaK48cVsh7u/azpmmf7zltszTPvr3D17S1W9/n5s9XhdJUu1oIG3yetxkLIvokDBYy6UnCUP5QyeDQyc7qyZFjDuN862muaFnIMNWe6h6nJ5atWGj9nZ+tonD2S1UTSlMaeNiBKElQTxTwyoZd2Lp9ILdtad5scowfBazauCdlJk1XDYx815NcRF7O1Frv6vgwIUq2nn8vhOd1xSgrLmTauJLQxXv92Ucz7vHLGFv4GgZOLYrXEiy2CB9oskfzP9bnM3a/8Dhy9DD+/QsnADD/8dpQmHPy4cU07Gn3WpgGrhei/bUOHErypVOn8FB1E3bSxjQMjhpbQnWDY2x5dSzB9QWpaWwORU/AMdqySUG578rZLL4q1YuQD6FRQchXvEYitts8JDhU8qnarb630Yu0BD19IceCpRlVUhR7Dd/06Bps7RTu31ryMEdvuJeE2V7Q7xHUvjZbcUnyB34eumkoLj55ElUTSv1hdoYitJGZUzXen7r9cHUTScsZeHfsuJJQ50WlCDlj2ixN7ZZ9TBwx1L+vK5uCfCigFYSeJFs9sWzNxe7sNk8r7nh+g/940tKcMGkE17hpW3F6YhqK/9hzPSea9ekHdLvstoYxM3mXfztOT4IUBgyqoJ5Aago9tO+FPK0M6klXDYyBoCeSNtaHpIuoxFnSnzxqNM+u3Y5laxY8Wcf8uZXMm16OBq4e9hJT/vAVtHUolBMWZ7Qcsk1e0Cex0JrbYSedIA17DrCkpgmFc/EH2dR8gGs/OZXX6ndTlHCMkp0th0ItBR99fQsHWi2SlisgSZs6N83CsnVs/UqQuNbr6SImcZ/rdWceGdtGub+HRgUhH4lr/et5C4PprgbOl/2WvU6r9KAHMGE4Ldc17dOkg/MP6rbsQym4RD3LD817KHzPTtlohBw2Gv5mT+ULyR/7GwLTUPzovCouO6XC73JmazCBTx83loNtFnOqxjNtXInfScx7bmvS5s1AOoih4PMnTODPtdv8DYtp4G9OurNJyIcCWkHoKTqrJwpC3+llxYXtqaLu7eDGP6gnNxiLuNp80q9rSV8b7KSIfTt5nX9fOj3xWrlXTSz1Mz+ieuLh1LbAlFGHsXH3fmxb+zUvpqFET1y6a7xo4GmllAZ+o7VemIM1DRqinv9oKkWwtiX0pdnWPpztnsRPmGyu8c+Z7kKzNbxkx090jUMBHxlzGO/u+MCx+C3N4hWNmEZMlETD+4eSVE4s5eHqJlY3NJMwjZTjtr//oRNBarOxcfLEE6bBxbMmuS0L14SMlIThnNswFElLp1zkivgZL52JqPT30Kgg5BvVDc0seKIu5IzwWv8GvzQNBVNHH8Z7u/azeGWjP5gRnDkFFYcXs2GnMzS3LWn7nQQ9r+Gv9S38KLEm3PEnmoeOo33BWj5DwcmTyzhqbEloXkRZcSGGclSrIGFwTSAv3duIRDXIexnvdf9Sty2UyqrALxDuziZBosTCYKS6oZmlNU3Ubt7XLT15YFV7DZvCSQP1BjdWNzTz6N0/5l/U/SxIfBBf1xJYk63hUfs0vuUaLdnoSWHCYP65lR3qiQKOLy9l7bYW6nd+QMJQXDyrgsoJpSkNTAa7nnTXePm41nqzUmoM8IxS6m2t9UvBA5RSVwNXA1RUVMSdY0CTKb856vlfEpgcH61t8X7JFXBJ4jluVH+gWLWmtuojtXPYTcmvx6aGmcq5ENMV/J99zBiamg/woVv7oomPgHjexWARXNKyOWZcCWsD9TGnTh3J/HMruX3Zel55x8ntTFo2E0cM5bJTKqjbss8vlDWAi092fl8eWr0pZoXw0fJS1m59n/tXNrI0MJFaIiqC0DdUNzRz6V3LQ6kSCrjy40eEClS9FNj6HR/4aVetSZvfvPguy9ZuT0mf0Dj1clUTShm34X5eVz+lKG5WS/A5Nqy32+taPGwNNY17+c4cZy6CV0vnDcY0DeU0OwnoRqjTkaE4Y9oYXli3w48ae+1WvRS4WwLdDJfUNHV7kyCaJgw24rQEnH1LsJV4Z/VE48x8++u7u/n1J5Oc+OaPWGCsD71Gip7oVCeIR3f1xGvfrG1NYYFB5cRS1mze59a+aCa4+yPvMxE9ceiW8aK13uz+u0Mp9QgwC3gpcsxCYCHAzJkz0+cFDUCyySsMDmAKDiQyDae25fl1O1BKYbhRlo8n1vgF+B6+0eL/5Rgwh2yTY5N/TLu+s44dy6iSIhYFOut4WBrufvU9rjztCO565b207ZjBCW/W7/wgxTtRfnixb7wooGRoAQBDC8z2EK7GHz534fRyHnJ7k3udw5bX7ybpbgyC79NUMHb4EP8ij3ohJKIiCL3P8vrdtEU2Gxq497WN/hyC+XMrQykgQTINv/0P8w7m/mkFhUYyY3qYreAlK3OU2dbOTChvErURMEC01jQfCM+iivuy9xxTLQfbuPuV97BtHdtBLFebBO+5nlNL9E0YyMRpCTjZFtPGlQB0WU8uMZ7lenMJY17b62tI2qwVBY9a7ZGWOLqrJ977LSsupG5Lezp9T+pJvtNl40UpNQwwtNYt7s+fBhbkbGX9nM52CWtN2ty+bD3Xn310SnG5HxZ1i7YUcOKkEX73ixvMRVxT+CSG0X7ulAvNzdGytOJluyr0xe0dWpAwsGwby3ZaAJ4xbYzf5SLuAk9amkUrGzMaLgAbd32Q2n4QGFNSxJCC1LS44ARqA8IXthtm9d5gMPSaMBSW642wNDz39vaUriKCIHSfoL5BfB1e3DFlxYUUuJ7QIEHnQvOBVuyYAVE6Jgo8Xa1ngXkPxxgNHU6x1tqJtMxJ/ixjS3aF461VtHdsBMdDqnXqhsHDe+/eJuXC6eV+zr2tNUaMh9V7XqYhetluQAZCka0wOAkOoI0bEB29Hqobmtmy9yCmqVJqbC0r7KhMpydx25bpKqaFuv9XxzVycXRHT9Zta+H2ZeuZUzU+VL/jpdMHO6gGn9ddPRkIWtKdyMtY4BHlfIskgEVa67/kZFX9nHT/8T/981r+UreNEyeN4KixJf6kaO8X+uV3drGifjeLrz7Vv0CjYVFDQcI0qG5o5ovqWf4t8UcOMwJt+vy/whfaBxRzS9ulselhhnKiLGdMG8PNT9Rh2zZak9IaEKAwoWhNtt/5/oftw91M1xsQRWv4wgynFbI3OMpQisoJpX70JNoRxHsbhYH+5Mvrd/sF/ZblTNBdUtPkh17PmDaGZwJNACwbLjq5PNRVRBCE7uF19UnaGlM5NWdWZBhctPUoSvkduE4oL6U6MHjNqQlRfoQ1mDKBiteUJYmbONGdYB2wWdIaLXvscMefKIZyjkuYii/OnOQP233ITXdNmAZf+9gUXqvfzZjhQ2LPUd3QzKULX6PVFc2Hqpv4woxyX98VqR7WdOfpysZhIBTZCoOPoJ5Ae1vyOC3xuoh5XbpMQzGxbChbmg+27xsMFapz7UhPpqv1/CrxKyaoPRDQk3SRFq2h0R7FGclfpX1PudCTRSsaufERp1755Xd28enjxvrXt+Wm0/eUITIQtKTLxovWuh44IYdryRvi/uOfqdvGnS/VA/jDjhKG4sqPH8Fr9bv9IUWtluY3L77Lwi/PjA2Ljikp4n/5N4748O3YwjEIX2hJrfit7fQXTxcgcaIUOxhVUtRuHKQ5OGi4RDliZHsBbRDTUL6HoKQowcKX6/2uaPddOdv3KEQ7a3hTq9MV2mva6320dtqlBr26BaaK9UwIgtA1ol19LA2Wu1kPfslFWxl77TRak7Y/ayqIpwdekWxo0OzjtbRZGkPBRcaz3GzcQ6ERqJmJizIDrdrkSXt2xnQOD0/uLEv7m4LqhmZfTG3b5revvkebpYF9PLd2Oz86/3g/1xzcNJaAt6c1abNhe0unC1+7unEYCEW2wuAiqieA/70epyWtbTYLX3rXv21bms3NB0PntG2dUucapydKOammF5qvhp4fN6xWA/t0MYutT/mzWtIRrBXujp48Vbs1dN7VDc1p08Uy0RU9GQhaMuhbJXclfB/3H3/dfdUpxyVtzd2vvMf0ihGh+59Zu50bH1lD1YRSPyzqhTNHfdjiXFxxeZj+X/C+PZSfWJdlNaMFnJxML7wZ154vGwpMI/4Bd5HVDc1O7rd7ck+gvJ+Dr2ngpMYFP/O4PNClgeK0edPLmTe9nKU1TSlDKQVByJ443atuaOb2ZetjHRuK8ER4f/aU2zkwE97ZWttsFjxR57cLve7MI6luaObf1X/z6cJVFOo2EoGCvnQOm0MU8SPrS9yX/FSn37fXJhUI1dNZNgT7GVoa5j9W6xtb3nsuMJUfeQFYubGZaz85lZKhBVl/h3R14yD57kJ/JS7ta3n9bjbvPRib0qXcbmGQqiUNuw/4Na5x+xR/f5FGT+5St3JaYR1gx7Y7hoCeKHjPHse3267NenTE0WPbGxF1R0/mVI3n5XfaRyTu2d9Kgel0F+vM3qYrejIQtGRQGy+h1AfT4AszyrP6pYla+ktqmtjRcij2WMvWHIoWsGpYvKKRgoTBSWo9Pyj4HccZDbHpEd7xHm22wXzrqyGjJd1FHny80J0sf+H0chY8UedHguKOVSo1X1QBbWmiNV4Oqvd+PYyAQCXMcB58wlSxF1k0nzPuAsvHC00Q+gtxaQZAaF5ClI+MOYx/n/fR0DV435Wz/c6B3nO8zYLWpBg1NvCGOy36oeomXjzpBU5Ys5DppjdN1/0nQ5T5bvvv+NvR/49la9vTRzvLC+t2cNkpFSkdxDSEIiu21ilNQBZffSrX3VfNtvfb9b5u6/v88eunUN3QzB3Pb+hwM9CdjYM0IhH6G5nSvhKm4c9rCvKpY8bEasmr7oR5cDSncfd+LHfOSVSXonqysuJ/OHHLSxhm+Li4VFOAgzrBH4Z/g9t2zU6btRJHy4dtodtd1ZPLTqng+XU7QqnwyUgkJxuN6Kqe5LuWDGrjJVpQv3hFOBTZEVv2HuSXy9a7aRPxGIbi4pMrqN0cri/5WeIOzjP+iqk69jQCbLYP55+S/9SpwZIeHy0v9XuMVzc0M3b4ECDVeFEKzjl2LM/GbAw0sHH3fgrcSJFS7XmfQWu/qMDxoBiGCrUz/MKMchavaPQ9Kl+cOSmrzzjfLzBB6G+kG44bHahWu2Ufbg8RGnc76aKLVjTyVO1WKscPp2RoAZXjh4e8h+eeMIGjxpbw5BtbQm3SPdoL8Bsx13SsfRqwleLVZBVfcZuQmG6jjqRlx246TMPx7EYLfT2eXbvdz5ePRnp/8+K7PLvW6VBUGOPFnDG5jH8662g/Vx0cD2pn885F14SBQlRPnqrdGqrduGRWRcrQ6jOnjQHCejLp8GJMQ2G71+17Oz/gqk9M5f1DSZ58Y0uo/tbjEuNZrk8sYRR7Mbe0359p3t1BYwh/aDvbSQ/b6aSf4xpIURSOHgaNp817Pwwd0x09ufb0j/Diuh2+ceftpURPOmZQGy+epeylUWnicwa9jmBeqhIQKtz0iI+AaKaNK+GsY8fy9Fvbma7W88fELRQb7dZ72gmuNrzLRO6xPhubHjaiuIB9B9o6TAF7a+v73Pniu+w70Mrqjc1p0zyUhoNtVugiVqp9TZalOee4sZwwaUTaLkTpPABeupcX2vSmzHaFrqT6Cf0fpdRGoAWwgKTWembfrij/yOba8NM03NkIZcWFTBtXEko9mH9uJUtqmvw26q2W5qdPrfXrWTyDxQwW5gGPv7GFqz8xlfU7Pgjdf4O5iK+Y/0exCnst0zUgsbTibbuC+dZXGXnsJ1IadcyoKOX0aWNoOdhG3db3OdRmsWpjs59ae+YxY1i2dnuKEwicjcjSmiY/cg6wblsLzQdaueb0j3DN6R+JTanz7vPy1p+q3cqcqvEp07TztQB2oCF60n26oieV44ezauOe0Hf98vrdobbFz6/bARAqWAdCdb6WhoUv18dGbm4wF/F1888UqvBuJkVP3J/btMET9ql8K3kdE0cMYfOH7QbImOFDuGxWBWXFhdRu2ceulkNsf/9DfwwDwIQRQ3yjJSUCFNGTzXsP+t0IF355ZtoUXe++xVefypKaJhT4Qy5FTzpmUBsvnqW8tKaJh1Zvii2UinYEe2BlIzMml6VcTKZyzrdnf2uoqN2ynV/sbzV8g18XrsuqCN9r0RcdhhTljKNH8+jrWzIeA07oMvjln47CAoM5VeNZtXGPHz258uNH+IVnGidEGpw8nU0bP+/+XORYDoQWf0JGztRa7+r4MCFKttdGcDZCsLFG9PpcF4mcpCvED2Jr+M1L9WicKMu9iZ9wmDoUHqabpo4PnA3LK7Yzo0UpuPoTUzmnchzPrd0eilxXNzRz/knl/Ndz7zhzFQwVigQrUqPXwde8f2Wjfz7P6WQo/M/tujOPzPi5XnZKRaj4diAUwA5QRE+6SFf15N7XNjJ/bmVKS2TTaB9y/cxb21m7JTX7Ixr9sDX+XusGcxFXmn8mgZ21nhygkFutL7Mo+SmUgms/OZX6XftD0ZMtzQf969VLdzMM5URdcObKbN0XjrYcGxjAHdUTj4eqm1h81eyUPVHc53qrO9TWQ/SkY/LeeOnIM5BuFkHwwpoxucz3DrQcbOP2Zev9tIg3Nu0N1WpYOs2XuHaKN6NcYjzLDX9bxHB1sMOcblvDS3bm4Woex44rYff+1g7rXbJFAfPnVnLZKRVMG1cS+szuernePy5p6S57AXIR2hwILf4EoSeIXhueNzDO4+cV0mqcwldvBlVw055N2984ViWu4nBjf0qRbNoIs4aDFPFH6xxusy4jYSouPaW9/ejy+t2ce8KEkKPG1oTSU7xUk4Q7a6U2sjGaOGIIW/Z+6GtlcKOhA+eM05RsNGcgFMAKQpDu6MlTtVtDM+1mTC6jckJpqNa2KZJ+FceSxE2cZDj7j2z1pNU2eF8dxkPWJ7nNuozChMGlp5RTNaGU5gOt/sgF7ykaZ3bTxBFDY/Xk9KNHsyzg/FXKGcD99raWWD3xSKcVoie5Ia+Nl7iCe+8X1Nt4Bx9Haz+CEPSyeZvqYLvjYB53FE04nSqOS4xnuSnxR4apwIyWDF/eL2dptHi8va0FHZNT7lFoKj53/HgOtFqhXFN/LaQaPd5mJWhk3PjImpA3xDDiC+17C/FIDGg08LRSSgO/0VovjB6glLoauBqgoqIi+vCgJlQwahr+zKW4onyvkDZpaWzg1Q27WLVxT8i76nXXaktTOxLESQt7miG0po0uQ1j3PtQm91hzUlqTaldwltQ08XB1E0nLmVgd1CzDUH6UONg90ZtmPW96OQ+uavQ9vTtaDlFgtk+9jstvN5TjZQ3OkIh+rpk0ZzDmnfdzMuqJaElmcq0np04dmbZRUBTPaMnWYAHYbQ/jZ9YlKSn2yaRN3eZ9vpYUJgxOnlIWcjbvajnEvOnlKd1YtdaMKSmiqCBwv4YX1+906n9dPYnbCyZMlaIl0c9V9KTr9FvjpbqhOSUPMEq04N7Lz/YMk08cNdr/hYtOfPas3t+8+C4H2ywqxw/3DZdsSGe43JP4CZ801qR8gXvH+/8Cu+wSrk1+K20RfqaoSkfbiVZL85e6bcybXh46z5Gjh3HK1JFUTijlB24/dHCK1qIXUXVDMw9XN4U6CQWL8PsC8UgMaD6utd6slBoDPKOUeltr/VLwAHcDshBg5syZuQg65hWZIs3Ba+P1TXtZ5noX44ryvULa2s1Otx5vxoIXgfHOrTN4aKar9fyHeSdTjG2O3nmap9NsMpSjQ836MP4jeXFsHZ/CqaN52B32FtxEeMMyneOcWsL7rpzNEjftN2lpTNPwP5uLT65gkdskxLY1l8xyNqgPrGoM1/UB5xw3ltElRTy0elPKDAnRnLwlo54Mdi2BntWTQ202S2qa/EZBv3v1vYxruSfxEz5mvIWpLUyvY5jO7ADRGt7T4/iOdS2r7dR9lMLpSvZm0z5fSw612YwoLgw5Zrx0+Dg98bq0BruhWZbNWceO5bm3d4Rm2Hgc6XZKi2pJ9HMVPek6/dJ4qW5o5uKFr/ndYoK5g0GiBfce3oXjdXmIw1CO986LSmSKtEDH7YjjPAXpLroWq4grrO912DmsK2o6pMDgwzbHUPO+/IMdwL728al+rva0cSUZZ6Z4E+/Bef+XzArnefcV4pEYmGitN7v/7lBKPQLMAl7K/KzBQzY56N7tXz77TrvTwY2WrtvWgmdjmIaickIpD63e5D836jFdWtNExOfDJcazfCPxOGPZTYGyw+3dAz9EbR6toW3YOF786H/wjZcSWLZOiV4HjYjFKxtD+qeB6RUjWO0W5WvdnupRNaGUh9nU/kIuF04v56HVm2izNKah/NTglDbwCqaOGkbJ0AKSbtehaDqHaE7+IXqSmZ7WEw08XN3EPPe6i4vg3mAu4ovmS5Tp9/HHyKnAPzHNPLzbWw47jjP2ft+ZYadSd2iGe13X79ofuuY1jrFyxrQxvkFm2TqjnsyYXMb1Zx/NCvd9mIZiVEmRP8NG0T5iwlBweHEB9TvjtcQ7n+hJ9+iXxsvSmqZQm8t0+ZYAnzhqNH/dsIv9rVboHOlCeQBDCwyOn1jK5r0HU9repWNoocGB1tQ+XfckfsLpxpr0BWSBNbTooTxjT89qInRXueLUKdz72sbQYMeqCaXMf6wWW4enXHd0AUXDm93pECYImVBKDQMMrXWL+/OngQV9vKxeI5uuPtFIczRKAk7r0YUvvUtbst3p8MWZk1i3rYXvP9rerl0DtVv2pWwogvntwY3IJcazfM9cxHAjMO1aETJevPN6ewhn1oviZbuKrya/x5HmMIZtSGBrxwuqohsS4KV3djJ/bmWKU8rAGQ63ZvM+f45CMKXMSwez7EhNnrepcUW5rLgQw71P4aTs2hrufKmeaz85VVJSBwiiJ53Tk0NtzjUf12W1dvO+kBPzjGljWFLTxIOrN3WoJ94MuLLiQv9anq7Wc6H5Mp/jNcrMA/gnjuhJUEvAaX6UVAles4/lq8nvcfihApK2073QcK/nqBO7cc8BEqaB5a7fW55lt6eDdVVPhhclfC0pTBh8tnIcj76+BVs79c8JU6FimkAJuaFfGi9xNocX6g/mW8a1K86Gg212bHF9JqKGywuJf6LC2BVrtESNpi12Gf+Y/OcuzWjJFgVc88mpfPdzx3JO5biQcDnexvRegHRIeFPoRcYCjzgeNBLAIq31X/p2Sb1DOg+otwHxGoyUFRf6LUlt7USLV9TvZvHVpzJjchmLVjSG5o8onKhrpeu8CEplm6XZ1XIoRWsVTt3HSet+wQ/MR0i4AySziSh7HNIJfmd9NqWWJdiF0VDOLJZot7K2pE3zgdZQF8ikrTGU49n1oidvbNrrF91qrf003eBGwYsca5xN1NKaJpbUNGHZjud0yqhhbAi0dK7b+r7o3cBB9CQyhDaucZE3PFrjdMyqnFDKZadUpHRZBeeaTZgGL6zbkTLbrs3SbNjekqInhuG0Yq987greLaz2IxRB0qWYoh1jY4sezf9Yn+fpIZ9lz4H2Vut79rf/bLoppVEtsmzNxbMmMXHEUMqKC/1uYipGT7wsHK0dfdBap9WTpGVz9yvv+Voyf24lT9VuDb125fjhfLpynGhJD9EvjZeqCaWYipBV711DXl720AKzS4ZLd/l54g7ON17tsOWxl4v5r8lru2y0eF/wtp06BNM08AfImYbiR+dV+Sld0YhKd4rcJbwp9AZa63rghL5eR18Q131m3bYWvu+2HgXnu7zAVNz8+SoeWNXoF762WtrPK49+eQ4rMvnYR0ZRu2VfbF52XDexfzUX8XXjKQoPWilhlZSWpIEfLA1v25OZb301K72bOvow6iOzYKA9JcXTnZKiBAtfrg+1dJ49dSS/XLY+1C1IGYqLZk4Kpb9GdU+Dv1HTWnNExHiZUzVe9G6AIHoS7hL2UHWT0wJYuelNtqMnp7udt8C5hr//WK3fbbQtkjM6ddQwhhUlQvUjQVZHHMI3mIv4u4LVjHpyF8VGMqQnKQ4Q/y9nX/OhKuT/7JPDWSoHwjOigowZPoTNzQdT7jcNFdKExt37Y/XkF8vWh9Zy5cePoGRoQcjwCOqJCkRnvCYhc6rGh8oPLj65f6TZD1T6nfFS3dDMzY/XxraeAycvu6P6lFzjTYU+1miINVqiE6HXWxP4bPJnXX69w4cV8Nmq8X6r0CU1Tax8b4//RWvgXBhAbEODaMhYIiiC0H+JbrLLigu56ZE1oWGyGsdQqd2yj7HDhwD7/Mc2bHe6Dka/PD845HQajMyR9Fm3rYWfJ+7g74zlJLAw6FyExVYG6/QkbmrLzmAJUr/zg9hhuceOH+7/XN3QzN2vvOfnq7cGCoWjxpi2NRNHDE3JK49OvA4Oyr329I9w5rQxoWGTgpDvRPXkne0tfgTF1vhGQqul/XoVz0li2ZrfvPgu15z+EUxThdL3g5HTOGwc5+7njb9iov0MK9xalo70xNLtKaadZUuM4QJOiluwrXM6PbEiG86SoQWhtvEQ1hMvihN0CHuvI3rSO/Q742VJTVOfRFTiuMR4lm+YjzHR2OVdf0Aao0XDB3Z7If6sKWWMcPM8FfDcuh2+EERzM6O33/8w6XsLvLxTT3wMnGGScQX2kD4FRTyKgtDzRFO9snEWRL8UH1jVGLuxB6el56iSotB9qzY2c+Mja6iaUBrb2ji4z5+u1nODeT8nG2+jbFAmKWRqR2pr2MkIfmXNY+LZ36CsuJA3Hl1DZ0lXj/hm0z4uv3u5/3kE08oM1d4RMVgToyBtRDmqe1EnzozJZbLJEPolXdESCA/f3tFyiGfXph9QPbqkiE8dMyY0xPrpt7YzddQwv54jE5cYz3K9uYTRam/alDCt4/dMAEltsJvh/Mqah5r5VXa2HIIsBmpnywvrdvitijPpSYGbjguQMMiqfXFwHp53X3R4rdBz9DvjJY2TMKfnH1Zk8sEhK+0xN5iLuMr8E4lARWm6Ka5JG75vfT3U9vOyUypSJqYuWtHop4EkTOXmTTonMU3F9Ekj/DocHSgSC4aADQWnHTkqpUg3iAxxFIS+Ieg4sHV7zUm6ydRBvMcvv3s5h9rSmS4O86aXc/+KdgNHA4tXNIY8qEG8lsaTjB0UqNRzd+QR9W6/bw/hxOTv2t/X1JFODUma/Y1S8NGJ4cF0pqHQbqcx3JTYhKk4bvxwPx3F063ZU0eGOiUG27QHJ3p7OefZbuxED4X+Tne0xGNJTVNKJ9YghsJvwrPsrXBn1t+8XJ/WbrnBXMSl5nMM48MO9SRuRATaidIstObyM/sy3/kwf0JpSuprkFlTyigqMEPR5YThaEhQT7yuXxAuuM+kJzefW+nvzwzDiHn1VERL+pZ+Z7yUFPXskjSkNVyyrWfBvTgetU/jW8nrmDWljMJNe7HczhLzYrpyNR9o9Wcm2LamamKp/2Wtbc1RY0t40+2kE/QiRkPAmQyXuOOly4Ug9A5BxwEQ2ohnSuuE9i5hH3ZguHjzCGZGhqx5nXHAMVbuNm9jhNHeySdon0SNFXC1LeBotTTs0qXcbn0hZR7LOceN9TsOPbCqMe1alSYlxe3cj47nyTe3YmtNQsElp1T4G6jL716ekoaRLt21+UCrP9HbyzkXhIFCtloC8Xpy54thLYmLoYTalKvUTBJPJm4wF/F18ykKsPxjg3Tk/PjQMlGGYrM9in+1wjXA3ty5kqIE8x+rja3N848dW0LVhNKQ8TI3Rk8qJ5SmpHRB5gZEwf2Z1yFNDJP+Tb8yXqobmrnr5ewHReaK6Wo9f0zcQrHRXhCWLtJiafhg4if58wl38FTtVm51cxs7ak0YNSouPrmCddvrQm2Ivc4XwXN0tl5F6lsEoW/wrnE/UkpqOtOiFY1+xMDzpK7b1hLqEgZO6sKUUYeFCsqh3ZNYWlwYuv8viW9ztLHFuaFSI9gdbTDAkbgWPZSfJC+LHSDp8fy6HSx7a3va1DbD3SkVFhiMKinyN04GsHt/a3vnQzdk42lUnG6l827mykmTTUtZQehtstESSK8nwTQwheNw0BC6HxwjafPegymppXcmfs4o5dTSxTk7so3W/s2eyrzkj9O+z/pd+2nYcyB2Bkxw/QWm8ufFRPXEK5xvszQTRgzlslMqYlO6QPRkINGvjJfl9bvTpiAEGVFcwN4MnSdOLC/l9UCqQjruSfyETxhrnOFI7utGjRbl/mkrLOGNsReizvmhkycNodzGjkKIcUZF3AUWd47OhiclnCkIPU+mxhjB9sZeUSgQ8i4ecjsnvn8wVcuUUpx9zBjqd7QXtiucNsZlxYXctP5iflO4C6/+1uzAGwrxGwwNbNNl/M/o79M4rIpX3tnV4XDcTBsN58Rw9nFjueb0jwDhIvnK8cN9z6nGaYHvNRzpjG7lwkmTzZA+QegNstESb0N9x/Mb/J+DevKhO9F+054DoXNrHIfDGdPGYARSqgxD0XKwjYrqf2dt4Z8pwnKMgi4YK959GnhCn8aiiTexyh0omwlbg92Bnpw8pYzvzDnWvza92SwFCYORw9rnx2igxdXSruyZRE/yi35lvMyeOrLDSfZDCgxu+MwxsSFGBZx34gRuv+QkfvrntSx8uR6tnbbCU0YdxhGjhnHmtDG8U/0s/7j1RsqM9os8rg2oAigqhb9/mIJJs5jZzfcXvaDEyBCE/kM2XrNgEa03MyBhKL44c1JoE+4de+nC15yJzKZiyuHFIc3SOBPt4zYLbZbmzpfao9A3mIv4ivk0RbTBUxrTLbTPlA6WYqwAB+0CbDPB08nwsNzCHQZJK73hMm54Ebs+OIRld1TC6+SzP7t2O9ec/pGUTUHQkAOnLWpXUzS6q59SHyj0JB3pSZyWFCYM5s+t9I2VYMerjvQEnIn2X/vYlJSOrG2W9qMu09V6/iPxayrUDtRyMM1Aba/3bxbOD0vDIQrYzQj+J/l5P1p7YnkpbwXaKcft6U6eUsYbTftCc2TSsXJjM+u2tcR2Tr090OIYnFlNXUX0JL/oV8bLjMllXPPJqaEv7SDnHDeWa90vRMCfGp8wDb4wozzUgStlWOPOx+Bvf4Blb6Pb9qdt3wdho4VJs3rgnQqC0J+Ies28DUTQ67luW0uoSNxLV2i1NItWNLKkpin0vN+9Uu93TkxaOrbVqK2dP6VDE+w7mAQ8Q+X/GILjRUzp4hMTJYb03lBo74T4pjqaZEzQui3ZXthblDA4FBlO96ljx1I1oTQ0Yyb4eHTgpK3bjRLvT3VDM1v2HiQRaMFaYKoup2h0F6kPFHqKoJ4E9yfQPiDy5sdrabO0Hw3ROHPsvH1NUIdaDrbxYPWmDvWkNWnzl7ptTD68mAY3ArMkcRMnGvX+9R2N0kJ2xkrwvkZ7FGcmfxXryHgjMgemNJIpo4ALTirnqLElLFqRWjNX4OpD8BxP1W5NmWNX3dDM0IJwu8Q5VeNjVtQ7iJ70Lv3KeAHH6KgYOYynarcyclghtZv3gVJ87bQjQmlamfIaPXxL+g8XQP1z/v3K/6s9NcwnUQyf/QnMvKIH3p0gCH3BohWNGfvvB71mrUmb7z+6xk9h9SZLW5bt3+dMfQfcTYfGSQO76dE1fvpEtvw8cQfnWX/FKNRp0zYge2PFJrXYflxJEWNLh5BMk04bPFXQcFHueu5f2ehvptZurfVnRJx34gSOGltCWXEhP3A3Y5BqlEQ3c58+bgyjSorStnzvDaQ+UOgK1Q3NLKlpip2x5hHVk0UrGnlgZSPK744VmK2ifV+q2ynLqQnz9CRDDXssP9/3L5xk1ENh+zmjdMZYsVBU29O4zbrEL7YfV1KEbjkU+/rR00RT/DWw4Mk65s+tZIjb/QtgfNlQKscP55rTP8IzddtCTuyoURLUkwK3W2FfD4UUPeldumW8KKU+C/wSMIG7tdY/zcWisu2VnTHMt2klPHIN7NkIaUtLA4ZLyQS46PcSaRGEAcaiFY1+QbyXThHVl6DXTEOo9s7bgETR2tnYG24Uxtbp55d4OLOjHme02kOh270n1N3Q+zfLzYWtIemMl+Sv9nFpB7xtaznEtjSbjUyMHV7EjpZDfipE84FWbv58le8d/kvdNr506hS/hm9pTRMaUoyS4GbOsmxOmDQiZQhcXyCpu0Jn8FK3vAjIg6s3cf/Vp6b8Dnl6EmxVbAWFJXoxu44QZShMpUhadtZ6cr25hFFqLwbOTqc7kRUnAqQ4QCH/a53DbdZlsa/bFS0J4mnJfVfOZklNEw9XN7F170F2f3CIa07/SMiJHedwCuqJsjWfrhzXL+ariJ70Hl02XpRSJnAHcA7QBKxSSj2utX4rV4vrEptWwtJroDmLrmVGAk79Jpzzw55flyAIfUK0ne8Dqxpjo7YXTi9nw/aWUAviOLy2ot5epLQoweHDCmPTOJYkbnK8oAQ2FjFJ4J3ZXBwiwX6G8pB1etrNRa44/8SJ3PvaxlAqxPL63e0dwwK53Zm+uCWlQhgILK/fHWpY0WZpltY0+Y8F9eSjE0tZ1YGWAKEi+qSlOXbcYRQmjJT0zBvMRfy9+QzFHPKdHEZET7wkqmz1pE0b7NClKAWPWaf1uJ4kDGcdwXboy+t3+8ZaUE8yObFFT4TuRF5mARu01vUASqn7gfOAvjFeFn4KtlRnebCCCdPh6uc6PlQQhLxmTGTWyK4PDnHpwtdI2u155QuerMs40C1I1PbYc6CNKQfreCXxK8YbewCwtCKhdGgTYQaeH+1lnM7D6t1vo3jM/lioyL6rdNQU5cgxhzGs0PTTMEK1g+7GrLMbB0mpEAYCs6eOxFDhyOw721tS6uVufrzWj850lrXbWrjEeJbfF9zHcPUhNu3pm3F0Rk+8FLVWTG5OXpGxJXq2RGfERPGGS86pGh/rNOqKISJ6IijdUVwy3ROV+gLwWa31le7tLwGnaK2/GTnuauBqgIqKihkNDQ3dW3GUJVfBmgezO7ZgGMy6SiItghBAKVWtte5uM71eZ+bMmXr16tUdHlfd0MzFv/krcY1tFPDR8lLWbN6XdW65161nktoJGgxlO0XraY7vTH65V4OXS2PF45zjxnLmtDHUbtnHA6s2hQrsvY1Rti0+ZZ6BEMdA1xJw0lCDtShBZ4CnJ29GitYzcYnxLP+aeIBSPsB2q1/iJtdDvJZA5uJ6cLqC/TD55ZwYK+B0cP3UMWMZU1LE/kNJHn19i//YJ48axV/f3e03HRA9EbpKJj3p8YJ9rfVCYCE4ApGzE6++F566Aawsci+LR8Gli6WeRRAGKWceM5bqjXvYE1M8Wrslvr3mdLWeGxL3c7yqp5A2bAw0iiKVbD8oWK/SiY0FtKeKtJHgd9Znc5ayUVJk0nLI8m+PKC7ghs8c46dgVDc0U7d5n5+WYgCXzKpg4oihKZuHdJsKye0WBiPVDc00H2hlxuQyPyUseHlnqydFtAIKGyhQ7WcwA/W5nTJU3L9s4CBD+KN1do/pybjhRdxx+Qz/+g8O2FXAKVNH8s9nHx2rG6InQq7ojvGyGZgUuF3u3tezPPMD+Nv/woFdHR87tAzOulk6hwnCICVT1MXDsjX3JH7CaUYdCu2aKHGbh/Yv8M4aKl4XsDYS7NRl/I/1+U55QY8ccxhTRw3zB84FWw1PHjmMDTs+8I8deVgRLYfaZ1hdMnNSyHDxUlzAMVwKC4zYrl8ydE0Q2okW66fjBL2OBQX3cLTaFDJGUtO+dMYaFcjO8fG6fWSoE1g2HDuuhFElRVSOH87vXn3Pf0/Z6Mn5J04MzbJ6uLrJf8zrMhhnjIieCLmkO8bLKuAopdQROEbLJUDPVXs98wNYeRe0pRbFplAwDL78qERaBGGQs6SmyTdcpqv13Jn4OaNUC0kUFgl268MYwX6GGa2xz0+3qYDMGwuv5iUX6V9DCgz+fd5HQxuGJTVN7Go5xOiSIionlIbaFAcnbCugZGiBfzvYpcdQcNqRo7j+7KM7bPcqQ9eEwc6SmqaQ4XJP4id83KgDnOu8TSdoUwlK1YFOpZBC5poRv2U78IEu4ork9zplqEQZUmDw4wuO96/lcyrHdUtPkpbtP/bFmZPSaoToiZBLumy8aK2TSqlvAv+HU4v6O611Xc5W5vHfs2DXuuyONQrh1G9ITYsgCABU1v2ctYWPU4QFgbqUAjQFtDFRtXcD6srGImkrlNIkO+EBPXLMYby74wO/vuXkKWWhDmfe/JiEqfjizEkpsyS8n4NezDOmjWHZW9v9mTMJQ6G1TimAjRbHpjNc4o6Vjj7CYGZXyyF/4GNqZFZTqFoBxwnSFaeHpcHGwEKRpIA6e0pWelI+YghNez90XhdvVozzmGngzKLqJT250B3EGYfoiZBLulXzorX+M/DnHK0lTGe6h0l6mCAIEep+fz2XtT2SVV0KZDZSnHkqJkkMWnQxr+ujWGjN7ZQHVAHXfHIq51SO4/K7l/tf4t+ZcyzrtrX4Mw06Gr4LqV7MMSVFFBW0bwy8ydxxueXZdumRjj6C0M63Gr7B0WZ4BEOmZhwd6YlG0YbBTg7nf5KdSyMFx8lx9SdS9WT+3Erqtuzz5y1BahvnKKInQr7R4wX7nWbTSvjdHNDJzMdN/RQc8XGY8glJDxMEIYXDG/8PyG4yPTgeRlu73svA/X+zpzIv+eOsXtNQMG1sCeu2tfjZ7gowDcWC86r82pPol7g318Cjoy/2OI/nhdPLs95EZLtxkEJaQXCYam0AstMTy9WR4GNd6SLo6cnb21r8xgAFbgQlWKfWkVEgeiIMNPqX8bJpJfz2nMzHlEyAi34vBosgCBl5b/RZjNv6x7SbizYK2KMPoy0xjLfbxqWNpAQLbU0DzjpmLACjSooYXpTg7lfew7J1yEDxuuqUFRem9Vh250s8nRdTNgaC0DNsL57GxP1vpeiJM6xWcYgCdMEw1gyZzit7R7HcPrZDPTEUHD+xlFOnjqRkaAEtB9vS6smSmiYUpKR9geiJMPjoX8bLxpczP37a9VLPIghCVvxt2vW8vqmZr5pPOTUvwH5dyC3Wl7jfPosTykuZf24lS2uauG9Fo/88b+K1UnCNm5axtKbJT8MIfqHf8fwGbK2d3HCtaT7g5Lz3hodRvJiC0Hs8dvIfmf3sFznRcFLHFLDLLuFa61tsL/0ov7p0OjMml/GnR9aE9AQcTZk6ahhf+/hUpo0rET0RhG7Sv4yXKZ+Iv3/qp+DLj/TuWgRByGtmTx3J5cbf87M2pwni4YcVsvuDVtDOMMb551b6X9YPVTf5KRM3n5ua3y1F7YIwuJk9dSSXP3crrW22P1AWnDSu+13DBZzIiKcniZgULxA9EYTuonSmqrIck9UU200r4cGvwAfbYfyJcPVzvbI2QRisDOSp2NGhaOmGpHVnwrNMhxYEh4GsJRC+1iF9IbzoiSB0n0x60v+MF0EQepX+suFQSn0W+CVO6/W7tdY/zXS86Ikg9C/6i5ZA5/REtEQQ+h+Z9MTo7cUIgiBEUUqZwB3AHOA44FKl1HF9uypBEPIR0RNBGNiI8SIIQn9gFrBBa12vtW4F7gfO6+M1CYKQn4ieCMIARowXQRD6AxOBTYHbTe59IZRSVyulViulVu/cubPXFicIQl7RoZ6IlghC/iLGiyAIeYPWeqHWeqbWeubo0aP7ejmCIOQpoiWCkL+I8SIIQn9gMzApcLvcvU8QBKGziJ4IwgBGjBdBEPoDq4CjlFJHKKUKgUuAx/t4TYIg5CeiJ4IwgOnVVslKqZ1AQxaHjgJ29fBycoGsM7fkwzrzYY3QuXVO1lr3ed6EUupzwO04rU1/p7W+pYPjRU/6hnxYZz6sEQbeOvuFlkDn9KQTWgL58X+WD2sEWWeuGWjrTKsnvWq8ZItSanV/6RWfCVlnbsmHdebDGiF/1tkb5MtnIevMHfmwRpB15iP58FnkwxpB1plrBtM6JW1MEARBEARBEIS8QIwXQRAEQRAEQRDygv5qvCzs6wVkiawzt+TDOvNhjZA/6+wN8uWzkHXmjnxYI8g685F8+CzyYY0g68w1g2ad/bLmRRAEQRAEQRAEIUp/jbwIgiAIgiAIgiCEEONFEARBEARBEIS8oN8ZL0qpzyql1imlNiilvtvX64lDKTVJKfW8UuotpVSdUuqf+3pN6VBKmUqpvymlnuzrtaRDKTVCKfWwUuptpdRapdSpfb2mOJRS/8/9/65VSi1WSg3p6zUBKKV+p5TaoZSqDdx3uFLqGaXUO+6/ZX25xr5AtCT3iJ7kDtGT/EL0JPeInuSG/qol0HN60q+MF6WUCdwBzAGOg//f3t2D1lUGYBz/PxAFW8FFKJoI7VCUIkhFpFgQsQ6CYpxEQSni6CcIoi6uDiLpVJD6UbAoUgt2EBXq4FbEKoh2kaptamoL4gcutfg4nFMJuTepmPfmfQ95fkvuPdNDPv7hTU5ueEjStrqrxroAPGt7G7ADeLzRnQBPA8drj7iEPcBHtm8AbqLBvZKmgaeAW2zfSPePzx6su+pfbwF3L7n2PHDE9lbgSP983UhLJiY9KSA9GZb0ZGLSk1VqvCUwoZ40dXgBbgW+s33C9nngXWC28qYRthdsH+sf/0H3yTxdd9UoSTPAPcC+2luWI+kq4HbgdQDb523/WnXU8qaAKyRNARuAnyrvAcD2Z8AvSy7PAvv7x/uB+9dyUwPSksLSk+LSk+FITwpLT4pqsiUwuZ60dniZBk4tej5Po194F0naDGwHjlaeMs4c8Bzwd+UdK9kCnAPe7H99vE/SxtqjlrJ9GngFOAksAL/Z/qTuqhVtsr3QPz4DbKo5poK0pLw50pMi0pPBSU/KmyM9WbUBtgQK9KS1w8ugSLoSeB94xvbvtfcsJule4KztL2pvuYQp4GZgr+3twJ80eEtCf0/mLF3MrgU2Snq47qr/xt3roec10RvWcksgPSktPYlJSk+Kab4nQ24J/P+etHZ4OQ1ct+j5TH+tOZIuo4vDAduHau8ZYydwn6Qf6H7Ffaekt+tOGmsemLd98adDB+li0Zq7gO9tn7P9F3AIuK3yppX8LOkagP7t2cp71lpaUlZ6UlZ6MizpSVnpSTlDawkU6Elrh5fPga2Stki6nO6Pjg5X3jRCkujugTxu+9Xae8ax/YLtGdub6d6Pn9pu7jRu+wxwStL1/aVdwLcVJy3nJLBD0ob+47+Lxv5wb4nDwO7+8W7gg4pbakhLCkpPiktPhiU9KSg9KWpoLYECPZkqOmeVbF+Q9ATwMd0rJrxh+5vKs8bZCTwCfC3pq/7ai7Y/rDdp0J4EDvTfFE4Aj1beM8L2UUkHgWN0r+jyJfBa3VUdSe8AdwBXS5oHXgJeBt6T9BjwI/BAvYVrLy1Z19KTVUhPRqUn61rTPWm5JTC5nqi73SwiIiIiIqJtrd02FhERERERMVYOLxERERERMQg5vERERERExCDk8BIREREREYOQw0tERERERAxCDi8RERERETEIObxERERERMQg/ANMXTJ8tgowigAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 3, figsize=(14, 4))\n", - "ax[0].plot(X[:, 0], y, '.')\n", - "ax[0].plot(X[:, 0], reg.predict(X), '.', label=\"Regular Linear Regression\")\n", - "ax[0].set_title('LinearRegression')\n", - "ax[1].plot(X[:, 0], y, '.')\n", - "ax[1].plot(X[:, 0], regr_trans.predict(X), '.', label=\"Linear Regression with modified target\")\n", - "ax[1].set_title('TransformedTargetRegressor')\n", - "ax[2].plot(X[:, 0], y, '.')\n", - "ax[2].plot(X[:, 0], regr_trans2.predict(X), '.', label=\"Linear Regression with modified target\")\n", - "ax[2].set_title('TransformedTargetRegressor2');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It works the same way except the user does not have to specify the inverse function." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Why another?" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "import pickle\n", - "by1 = pickle.dumps(regr_trans)\n", - "by2 = pickle.dumps(regr_trans2)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "tr1 = pickle.loads(by1)\n", - "tr2 = pickle.loads(by2)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.max(numpy.abs(tr1.predict(X) - tr2.predict(X)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Well, to be honest, I did not expect numpy functions to be pickable. Lambda functions are not." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Can't pickle at 0x00000195DBFD0C10>: attribute lookup on __main__ failed\n" - ] - } - ], - "source": [ - "from pickle import PicklingError\n", - "\n", - "regr_trans3 = TransformedTargetRegressor(regressor=LinearRegression(),\n", - " func=lambda x: numpy.log1p(x),\n", - " inverse_func=numpy.expm1)\n", - "regr_trans3.fit(X, y)\n", - "\n", - "try:\n", - " pickle.dumps(regr_trans3)\n", - "except PicklingError as e:\n", - " print(e)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Classifier and classes permutation\n", - "\n", - "One question I get sometimes from my students is: regression or classification?" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import load_iris\n", - "from sklearn.model_selection import train_test_split\n", - "data = load_iris()\n", - "X, y = data.data, data.target\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=7)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LogisticRegression()" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.linear_model import LinearRegression, LogisticRegression\n", - "reg = LinearRegression()\n", - "reg.fit(X_train, y_train)\n", - "log = LogisticRegression()\n", - "log.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.8752883470101486, 0.8325991189427313)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.metrics import r2_score\n", - "r2_score(y_test, reg.predict(X_test)), r2_score(y_test, log.predict(X_test))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The accuracy does not work on the regression output as it produces float." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Classification metrics can't handle a mix of multiclass and continuous targets\n" - ] - } - ], - "source": [ - "from sklearn.metrics import accuracy_score\n", - "try:\n", - " accuracy_score(y_test, reg.predict(X_test)), accuracy_score(y_test, log.predict(X_test))\n", - "except ValueError as e:\n", - " print(e)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Based on that figure, a regression model would be better than a classification model on a problem which is known to be a classification problem. Let's play a little bit." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "from sklearn.exceptions import ConvergenceWarning\n", - "from sklearn.utils._testing import ignore_warnings\n", - "\n", - "@ignore_warnings(category=(ConvergenceWarning, ))\n", - "def evaluation():\n", - " rnd = []\n", - " perf_reg = []\n", - " perf_clr = []\n", - " for rs in range(0, 200):\n", - " rnd.append(rs)\n", - " X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rs)\n", - " reg = LinearRegression()\n", - " reg.fit(X_train, y_train)\n", - " log = LogisticRegression()\n", - " log.fit(X_train, y_train)\n", - " perf_reg.append(r2_score(y_test, reg.predict(X_test)))\n", - " perf_clr.append(r2_score(y_test, log.predict(X_test)))\n", - " return rnd, perf_reg, perf_clr\n", - "\n", - "rnd, perf_reg, perf_clr = evaluation()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAEXCAYAAABS96loAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5hkR3n2/avOYXry5l3trrTKKIFEDiKYbMB6TbIx4bWNMeDwYRzxa2OCsQEDzmByzkFECwSKoJzT5hwnz3SO9f1RVedUnz7d0z07PVpJ576uuWam+/TpE+pU3XXX/TyPkFISIECAAAECBAgQIECAxRF6uA8gQIAAAQIECBAgQIBHCgLyHCBAgAABAgQIECBAlwjIc4AAAQIECBAgQIAAXSIgzwECBAgQIECAAAECdImAPAcIECBAgAABAgQI0CUC8hwgQIAAAQIECBAgQJcIyHOAAAGWDUKI3xZC/HSFv3O/EOJ5K/mdAdrj4WgDS8FS2o0QYosQQgohIn06pr8RQnzK+v83hBCHhBA5IcQlQogHhBCX9+O7AwQI0D0C8hwgwCkIIcRvCSFu14PmMSHET4QQT3+4j2sxSCm/LKV8/sN9HN0iIN7Lj0daGziVIKX8Rynl71kvfRh4u5RyQEp5l5TyfCnltSfzHUKIdwshvnRSBxogwGMcAXkOEOAUgxDiHcDHgH8E1gCnAf8FvPxhPKxF0S81LoCL5b7GwT075bEZeODhPogAAQI0IyDPAQKcQhBCDAHvAd4mpfyOlDIvpaxKKX8gpfxzvU1cCPExIcRR/fMxIURcv3e5EOKwEOIvhBATWrV+hRDixUKInUKIGSHE31jf924hxLeEEF8XQmSFEHcKIS6y3v8rIcQe/d6DQojfsN57oxDil0KIjwohpoF369du1O8L/d6EEGJBCHGfEOJx5jyFEF8QQkwKIQ4IIf5WCBGy9nujEOLDQohZIcQ+IcSLFrl0l+njmxVCfFYIkbCO86VCiLuFEHNCiF8JIS7Ur38RNTH5gVb4/0II8XkhxJ/p9zfoJfq36f/P0Ncv1Gm/+r31Qohv6/PbJ4T4Y881/4Y+/6xeir+0Q5uQQoi3CSF2Abu6+O7HCyHu0vv+pr637/O0j78UQhwHPiuECFn3eVof26jePiGE+JJ+fU4IcZsQYo11n/bq79knhPht+/5Zx/NU/bl5/fup1nvXCiHeq9tRVgjxUyHEeJvrMCKE+KG+prP6743d7ksI8Tu6rU0LId7V7nrrbZNCiH/R28/r9pj02e5NQoiH9PftFUL8gfXeuD7GOd1ubrDazl8KIY7oz+0QQjxXv/5ufb3jQogcEAbuEULs0e87KyVCiLBQNg/zfN4hhNik3/tXoeweC/r1Z+jXXwj8DfBqodr8Pfr19UKI7+vj3C2E+H3rPHpqrwECPCYgpQx+gp/g5xT5AV4I1IBIh23eA9wMrAZWAb8C3qvfu1x//u+AKPD7wCTwFSADnA8Uga16+3cDVeA39fbvBPYBUf3+K4H1qIn2q4E8sE6/90b9XX8ERICkfu1G/f4LgDuAYUAA51qf/QJwpT6mLcBO4Het/Vb1sYeBPwSOAqLN9dgP3A9sAkaBXwLv0+9dAkwAT9L7eoPePm599nnWvv4v8AP9928Be4CvW+9dudh+9bW6Q9+DGHA6sBd4gXXNS8CL9Wc/ANzc4X5L4Gf63JKLfHcMOAD8ib6fVwAV63pcru/ZP+vtk3rbm4GN+rVPAF/V2/8B8AMgpb/rCcAgkAYWgLP1duuA8637Z9rAKDAL/A6qjbxW/z+m379WX+Oz9LFcC/xTm+swBvwffSwZ4JvA96z32+4LOA/IAc/U5/gRfR2e1+a7/lN/foM+76fqz23R9yOit3sJcAaqfT8LKACP1+99APi4vg9R4Bl6u7OBQ8B6vd0W4AyrbXzJc++3edr68/Tffw7cp/cngIus6/o6fb0iwJ8Bx4GE33fo165HrW4lgItRfcZzltJeg5/g57Hw87AfQPAT/AQ/7g/w28DxRbbZA7zY+v8FwH799+UochzW/2f0APwka/s7gFfov99tD4Qo4ncMeEab774beLn++43AQc/7b8QlTs9BkeInAyFrmzCK0J1nvfYHwLXWPnZb76X0Oaxtc0z7gbdY/78Y2KP//m/0xMJ6fwfwLOuzNnk+A0XuQiji8wfAYf3e54F3LLZfFKn1Xpe/Bj5rXfOrrffOA4od7rc0RKaL734mcARrogHcSDN5rqCJlH7tIeC51v/rUJOXCGrC8CvgQs/3pYE5FJlNdmgDvwPc6nn/JuCN+u9rgb+13nsr8L9dPisXA7PW/233hZrIfM1z/BV8yLO+90XgIp/3tmCRZ5/3vwf8if77PagJ4jbPNttQk5/noSep1nvvpnvyvAP9LHZxrWbN+fh8xyagDmSs1z4AfG4p7TX4CX4eCz+BbSNAgFML08C46OxFXY9SFw0O6NecfUgp6/rvov59wnq/CAxY/x8yf0gpG8Bhsz8hxOste8Ac8Dhg3O+zXkgpfwH8B0rFmxBC/I8QYlB/PupzDhus/49b+ynoP+1j9sI+Dvt6bAb+zBy/PodNNF8v+5j3oNT1i1FK4Q+Bo0KIs1Hk9Lou9rsZWO95729Q/vWW80OplYlF7rl9fp2+ez1wREop23wWYFJKWfLs77vWvh5Ckak1wBeBq4CvCWUR+qAQIiqlzKNWIt4CHBNC/EgIcY7PcXvbKnS416hr4XufhRApIcQntJViAaWWDgshwl3saz3N7TyPetb8MI5SYPe0ed8+phcJIW7Wdoc51MTNPB8fAnYDP9WWjr/S370b+FMUKZ0QQnxNCOHbHhfBpnbHKIR4p7aTzOvjGqL5ubWxHpiRUmat1xa7R4u11wABHtUIyHOAAKcWbgLKwCs6bHMURXgMTtOvLRWbzB/ak7kRRRg3A58E3o5aDh5G2SOE9VmbpLVASvlvUsonoNSqs1BLzVMoZdN7DkeW4xxovh6HgPdLKYetn5SU8qsdjv86lI0lJqU8ov9/AzCCUt4X2+8hYJ/nvYyU8sUncX5eMtzuu48BG4QQ9j3aRDO853wIeJFnfwkp5RGp/Pb/IKU8D2VdeCnwegAp5VVSyl9DKdXbUW3FC29bhaXf6z9DWRSeJKUcRKns0Nwe2+EYze08hbI1+GEKZVM4o9MOhYoz+DYqI8Ya/Xz82ByPlDIrpfwzKeXpwMuAdxhvs5TyK1LKp6OujUTZaHrFIb9j1P7mvwBeBYzo45rHvU7e+38UGBVCZKzXTvZ5DBDgUY2APAcIcApBSjmPWmL+T6EC/VJCiKhWuD6oN/sq8LdCiFU6IOrvgJNJPfUEIcQVWkn6UxR5vxm1tC1R/keEEG9CKc9dQQhxmRDiSUKIKErNLQENrYp/A3i/ECKjSfo7TvIc3iaE2ChUoNu7gK/r1z8JvEUfhxBCpIUQL7GIwgmUJ9nGdagJw/X6/2v1/zdain6n/d4KZIUKCkvqwK7HCSEuO4nzs9Hpu29CqcZvF0JEhBAvB564yP4+jroXmwF0u3q5/vvZQogLtLq7gJr0NIQQa4QQLxdCpFHtJQc0fPb9Y+AsoVIvRoQQr0ZNpH64hPPOoFZN5vR9/vsePvst4KVCiKcLIWIoS4Xv+KdXXz4DfESoQLqwEOIpmizbiKF80JNATaigVidFn1BBndv0RGYedV8aQoizhRDP0fsr6XPyu3aL4VPAe4UQZ+p2cKEQYgx1nWr6uCJCiL9D+dQNTgBb9EQZKeUhlDXnA0IFiF4I/C4n9zwGCPCoRkCeAwQ4xSCl/BcUmfxb1AB4CEXevqc3eR9wO3AvKmDoTv3aUnElagneBHZdoRXHB4F/QRGyE8AFqGC8bjGIInqzqGXgadRSNqggwzwqkO5GVEDjZ07iHL4C/FTvbw/6ekgpb0cFHv6HPo7dKE+uwQdQE5E5IcQ79WvXoQiIIc83onzX5v+O+9UE+6Uo68c+lJL5KdTS+Uljke+uoIIEfxflSX4diqiWO+zyX4Hvo+wFWdTE6Un6vbUo4rmAsnNch7JyhFBt9Cgwg7K0/KHPsU6jrsWfoe7/XwAvlVJOLeHUP4YKBJzSx/i/3X5QSvkA8DZUOzmGum6HO3zknahn6zbU+f0znvFS2xz+GDURnEUFmH7f2uRM4GrUxOIm4L+klNegCPc/6fM4jgr8/etuz8XCR/R3/xR1fz6Nuj5Xoa7NTtRzV6LZuvNN/XtaCHGn/vu1KD/3UeC7wN9LKa9ewjEFCPCYgGi2xgUIEOCxBCHEu1EBSa97uI8lQH8ghLgF+LiU8rMP97EECBAgwKMBgfIcIECAAI8iCCGeJYRYq20SbwAupAeVNkCAAAECdEYQLRsgQIAAjy6cjVrOT6NsLL8ppTz28B5SgAABAjx6ENg2AgQIECBAgAABAgToEoFtI0CAAAECBAgQIECALhGQ5wABAgQ4CQgh3iiEuPHhPo5HCoQQUgixrc17wbUMECDAKY+APAcIECBAlxBCbNHkL4gXCRAgQIDHKALyHCBAgAABlgXBpCJAgACPBQTkOUCAAI96CCHOFUJcq4uhPCCEeJn13ueEEP8phPiRECIrhLhFCNGuNLMplDInhMgJIZ5i7efDQohZIcQ+XW3OvD4khPi0EOKYEOKIEOJ9umKf33E+UQhxuxBiQQhxQgjxEeu9bwohjgsh5oUQ1wshzvecw38JIX6ij+uXOl3dx/QxbRdCXGJtv14I8W0hxKQ+3j/ucO0+J4T4uBDiZ/r6XGeqEer3pRDibUKIXcAu/drvCyF2CyFmhBDfF0Ks9+z2xUKIvUKIKSHEh0y1O5/vPkd/74wQYocQ4lVLPecAAQIEWC4E5DlAgACPaghVHvwHqEpsq1HVDb8shDjb2uw1wD8AI6iKfe9vs7tn6t/DUsoBKeVN+v8nATuAceCDwKd1WWaAz6HKJW8DLkGVcP69Nvv/V+BfpZSDwBmolHMGP0FVrVuNqir5Zc9nX4WqSjmOqih4k95uHFUl8CP6eoT09bgH2AA8F/hTIcQL2hwTwG8D79X7utvnu1+hr8F5QojnoCo3vgpYh6py9zXP9r8BXAo8Hng58H+9XyhU6e+foaoCrkbdo/8SQpzX6zkHCBAgwHIiIM8BAgR4tOPJwADwT1LKipTyF6iS1a+1tvmulPJWKWUNRQwv7vE7DkgpP6lLc38eRRrXCCHWAC8G/lRKmZdSTgAfRRFBP1SBbUKIcSllTkp5s3lDSvkZKWVWSlkG3g1cJISwS35/V0p5h5SyhCqxXJJSfkEf09dRxB3gMmCVlPI9+nrsRZVRb3dMAD+SUl6vv/tdwFOEEJus9z8gpZyRUhZRRPszUso79fZ/rbffYm3/z3r7g6iy2/a9MHgpsF9K+VkpZU1KeRfwbeCVSzjnAAECBFg2BOQ5QIAAj3asBw5JKRvWawdQqqvBcevvAops9wLn81LKgv5zANgMRIFj2jIyB3wCpaT64XeBs4DtQojbhBAvBRBChIUQ/ySE2COEWAD26+3Hrc+esP4u+vxvzmkzsN4cjz6mvwHWdDi/Q9b55YAZ1HVteV+/fsCz/TTN19ve/oBnXwabgSd5jvO3gbXWNt2ec4AAAQIsG4LgjgABAjzacRTYJIQIWQT6NGDnEvbVa1WpQyg7wbhWtTvvXMpdwGu1teIK4FtCiDH998uB56GI8xAwC4g2u1rsmPZJKc/s4TOOyiyEGABGUdfVOXTr76Mo4mu2TwNjwBHP/h7Qf5/m2Zd9nNdJKX+th+MMECBAgL4jUJ4DBAjwaMctKDX5L4QQUSHE5cCv0+rD7QaTQAM4vZuNdVnsnwL/IoQYFEKEhBBnCCGe5be9EOJ1QohVmuTP6ZcbQAZFwqeBFPCPSzh2g1uBrBDiL4UQSa1qP04IcVmHz7xYCPF0IUQM5X2+WUp5qM22XwXeJIS4WAgR18d6i5Ryv7XNnwshRrT1409QFgsvfgicJYT4HX3fokKIy4QQ5/Z6wgECBAiwnAjIc4AAAR7VkFJWUGT5RcAU8F/A66WU25ewrwIqmPCX2krw5C4+9nogBjyIUou/hfJE++GFwANCiBwqePA12kf8BZS94Yjez81tPt/NOdRRfuKLgX2oa/IplJrdDl8B/h5l13gC8LoO+78a+H8of/IxVOCj1099JXAHKvjwR8CnffaTRQVXvgalTB8H/hmIdzzBAAECBOgzhJS9rkIGCBAgQIDHCoQQnwMOSyn/9uE+lgABAgQ4FRAozwECBAgQIECAAAECdImAPAcIECBAgAABAgQI0CUC20aAAAECBAgQIECAAF0iUJ4DBAgQIECAAAECBOgSj6g8z+Pj43LLli0P92EECBAgQIAAAQIEeBTjjjvumJJSrvJ77xFFnrds2cLtt9/+cB9GgAABAgQIECBAgEcxhBAH2r0X2DYCBAgQIECAAAECBOgSAXkOECBAgAABAgQIEKBLBOQ5QIAAAQIECBAgQIAuEZDnAAECBAgQIECAAAG6RECeAwQIECBAgAABAgToEl2RZyHEZ4QQE0KI+9u8L4QQ/yaE2C2EuFcI8XjrvTcIIXbpnzdYrz9BCHGf/sy/CSHEyZ9OgAABAgQIECBAgAD9Q7fK8+eAF3Z4/0XAmfrnzcB/AwghRoG/B54EPBH4eyHEiP7MfwO/b32u0/4DBAgQIECAAAECBHjY0RV5llJeD8x02OTlwBekws3AsBBiHfAC4GdSyhkp5SzwM+CF+r1BKeXNUtUH/wLwipM5kUcN7v8O/OL96ueaf4TJHUvbz/Qe2HNN520KM+r7lgIp4Z6vQTm3tM/3inbnkz0OD/2w82drZbjzi+qY20FKuOfrUM62vnfP16x78gGY2dvbsT9caHc+/cD0Htjzi+63L+fUde10T2w47W2FzsfG3CHY+dPW1wszcP+3l77fdvfnoR+qdt0vzB2CnVe1vp6bhOs+6Lb1Wz6x+DNz15ehWlracey5BqZ2L+2z3eBk7o+UcOsn3Wtx3QchN9G63a6fwWzbVLDLi+Is3Petzts06qqvq9dW5pge68hNwINX9vc7tv8IFo719zsMchPw4PdbX6/k4e6vdN9fLwV7r4OpXf3b/zJjuTzPG4BD1v+H9WudXj/s83oLhBBvFkLcLoS4fXJycpkO9xTGlW+D6z8I138IrvtnuOk/l7afGz6i9tUJ93wVvvUmNcj0itn98N0/gAe+u6TD6xk3fAS+99bW1+/6Inz9dYogt8PO/4Xvvx2O3tV+m5m98N03w/YfN79er8J332Ldk3+CW/5naeewkpjZp85nsYnFcqHd/WmHB76r2s/svu62n9m7su3Nxm2fhG++ofX1+78N3/q/kD3R+z5n96v74x2oahX4xu/A7Z9d0qF2hVv/B775xtbXH/weXPN+3dY/CD/5C5juQG6P3QNXvhV2X72047jy7eqZ6hdO5v7MH4Yfv9O9Fte835+4fvNN6nquBO77Fnz7dzufz4Ffqb5u33Urc0yPddz1RfjG6/snItUqany743P92b8Xd31J9T+lhebXH7wSvveHSxfzusGVb4cbP9q//S8zTvmAQSnl/0gpL5VSXrpqlW+VxEcPpIRqAZ75F/DuORjeDLUlqjqFaagWF98G1KyyV1R0Z5Hro0JmozCtro0X1SIg/d8zyE82//aDUZVqnmtWr6j9/9p71T0Z2dp5P6cKjKJZXcK9XQryE721I9Nuuv1MThOG/FRvx7UcqBRU+/KqLubYl9IezODkVZ6reZAN99nsB8pZ/77B9DV/dQh+R09SOl1vc4ydnr1OqOYh20dFzRxXcQnigJmMX/Ep+Ft9f73PkpSqH1zq+fcK53xm229j2uJSBJEAvcM8v6X5/uy/NKf6g8oKrfCa8/GuspjntNDH/rda6N917AOWizwfATZZ/2/Ur3V6faPP649t1KvqdzimfkfinRXVTijOuvvrtA0sjaCbwTe3QkSyNOd/PvVK8/H4oaDPsxMhMQOs9zvM/s09SY31l9gsF8z1WGr76RXdTNZsmHbT7ZK/IXFLIUIni7q+hqYtGJhru5RjMsTbS8gqXRCkk0W1AEi1xG/D7n9SY+rvTm29NKd+L3WCXyu7k6J+wLk/S7iWznMfgXAUEK3PUr0KSKUOrgTM93QiGOZ+9bP9BHBh+jzzLCw3zCSol771ZOCM657n0pDpfk7K6tWlCXkPE5aLPH8feL3OuvFkYF5KeQy4Cni+EGJEBwo+H7hKv7cghHiyzrLxeqDPxqFHAEyHHdFELRxvHbC7RXF28c+aDnYpD6ZRQfI+PsB+oDjnfz5mwO9InvWA0o2K5v0Oh1BE1e/0eH9n38sFQ8pWqtPNT0Gj2krI2m7fRulvu71R1B4GUmBISwt50v8vZTJl7k/Fo1p2oy6eLMwA1amtJ0fV3x0nnKb/ONXJ81zvn23oaxGKghAQSbROEsz/S5089ArzPR3JsyY3D8ck87EI8yz1SzE9mTF6KTD9Twt51v/3UziqV1ZuFWcZEOlmIyHEV4HLgXEhxGFUBo0ogJTy48CPgRcDu4EC8Cb93owQ4r3AbXpX75FSmqf6ragsHkngJ/rnsQ1H7Yir35HYSSrPFbW02C4L4EmR5xVWnouzakDzno+jPHd46MwD34n0tiXPPsrzsXu7P+6HC4aUrZjyrB/rWgli6cW371V5dhS1U1B5XsqA4ijPBf/X+648o8hyNOm+3qiCCEEo7CrPna73yaxc1Wsg62oftbJaZVtumPu2FFXQBNyZSXM00dpWzXnXV+gZ64Y8m/sVKM8rA/Ms9Z08r5Q1yIzrHlHM/N/P/rdefkQpz12RZynlaxd5XwK+0WlSys8An/F5/Xbgcd18/2MGZjA+WeVZSt3I9dJsuM1tdga/kyDPK6U8mwGwXmkeaI0q6FXwbDjkuQPJcchzl7aNTpOSUwGObWMFVLFaGSrGY90lee5ZedYTn4fDy+koz17yZMjzSdg2vIPFiijPFnm2Ua8opRUgloJIchHleU79XsoEzSacuQkY3tR+26XiZGwbjvKs+86OyvNK2Ta6mAwEto2Vhelnl7K60Q1OOeW5T/1vo76y3u5lwCkfMPiYghlQTlZ5ruSgoZWTTuT7ZJZd281Q+4Fq0VJ52ijDnWbmZrac70SeZ9vs32PbSI3pGfIp/pAbW8BKKM+2HaZbsm7aTdeeZ61UP5zK83LaNtoqzyto22h4yXPNnSQCpEY722Qc8ryE/sO+lv2ybpyMbcP73PuR5+opqDwXAuV5RdF324bxPK9wUGpb5blP7cqMu48g5Tkgz6cSjIJhlNVwfGkds93AO5LnOfV7KQ+ms1w113/lxR782inD3Xieu1KeF7FtpMcX39epAMe2sQLKs30tuvm+WsUKNutSUSk8nMpzO9uG/v+klGev59kajLv1j/eKajvPc6V5lSo12p3neUm2Deu7+0WezXcsxbZhe55hEeV5hcizcz5BwOApA3sc7AdWXHn2CRisFKCsswP1q/8NyHOAk4KjPJtsG7GlEdMm8twm40a96j4QJ5NtA/qfus3umFrUv248z/qB78rzvJhtQ5PnTir2qYDqSpJn67p208nb7aVr5dkiBf1M1O+Hejvbhv7/pJTnNtk2kP1TszrZNmzlOTnaWek/mWwb9mf6pjzr71hSto0ePM8rRZ4D5fnUg5Nto8+e55UKSvWzbdjWzH6JRjVrHG80+vMdy4yAPJ9K8BK1firP9sN+MgGD0H/fc6fzWYw81yyLxZKUZx/bxmL7OhWwouTZIljdEAm7vfSabUPWVz4XqDkn70TWtJWTIc/tlGfoHwGqtiHPjZqrtMLiaRlPZmC3r+VSipj08h0nk22jk22jnZWsX3A8z10EDAZ5nlcGK5ZtY4VsGxUf24b5Oz7YP9uc/Qw9QjJuBOT5VIJj27DzPJ+s8tzm8/Y2SyHPNunpd8aNk7FtmEEks151cO2UeCfP82K2DUOeT/F0dSuZ57nJ89yN8mwr1V0Qr4YuGpJZr/5fad+zaQPeiezJBAxWF/E8Q3+CkKTskKqu4pJF6IE8n2zAYL9sGyeTbUNfm062DdN2T5VUdUYoCEXUOT9CFLxHNJwA37n+7P/hsm3kJ13bmHk+V53Tf9sGPGKsGwF5PpXgDRgMx5ZBeW5HFq1tTibbBjzMyrPJ89xmtmoG//Ezm/9v2kfN7fy6ybbRbj+nEkwHtNKe527IcK5H5bk0pxRn5x6u8JK0ozy3I88nozy3ybYB/VGe6xV1LcEnYLDqIc+j6rlo5712YiaWMvk+1QMGPbaNUyLbxiKeZ0NsRraqzAXlBf/tAiwf+m3bKDwMAYMirPoI893m+Vx9jp6U9SEWo4k8n+LB+BoBeT6V4A0YXDHleSme5wLEh9Tf/c64YStH7dS/tsqzJjarzm7+v2X/2ke7mG0jPqjUqIejTHQvcGwbK6A8F3rMtmEmW+F4d23PmQCdpX6vtJ+zHXk2bbGa7/0ZWizPM/TnPO39t0wUq55sG2OA9Cef1aI78VlKGzOfCcdWgDwvR6o6n2qvTiDpKeJ5Ns/J2Db1O/A99xf2Kk7fAgb1fldSeTZpI81zmZtQ+d/Hz1aTsn5MFALlOcBJwRswGI4tTTlcCdtGtaiUqdhA/wMGO9o29P/tHjizxG+Ilx/ptQn1YrYNIfRy9qlOnovNv/uJwrRLMrppr7lJiKYhOdKdomLal5kArbhtow1JsslUr8dk1BW/CoNCd8v9ID/29W7xPFfd+whulUG/c7OfySVl29DXbmhj/zzPtm2j1yBT76Q5mvQJGFxBa5T9PYuS5zPU74A89xf2Kk6/Pc/1irsa0i80GqpNj2xR/zvk+YQKlE+vUv/3w7oRkOcAJwWnSIqlPNfLvXf8vdg2QtGl2zaiKfVA9Vt57ipgcBHluZNtw+4M2pFzW5FLj5/6ATmObWMlPM+WH7mrbBsTMLBKZTDoSqnWExXnHq7wtW9XnrtWVkuc0Lt1w5Dmar75+a4UYGCt+rsvyrNNnv08z548z9BhtUbjZJTn4dPU4NyPDCrmOxq13gfkllR18fZFch6ObBt+18tMcgLyvDIwE1ER7pMaW1XFp8wK71LG6V5g9u+Q5wn398Aatz/oh3hhr7B7MxCdogjI86kEv2wb0J4At0OTUttJeRbqoVhqkZRoEgZW99/z3GTb6JU8mwGlE3nWr/lVdHTuiccL+oixbaxQqrqhDd1/X24C0qtVBbtuyLZR+ce2AeLhU579bBsZTXR7Js96gJCN5mtWyUE8owbMvijP1sDU8ChZLUVSjL/fT3nWxxZJLm1QN9dyaJMiqv0416aVgR733+J5TvoEDOrzXjHbhpkMVP2fG9MGRwPyvCIwE9GBNcpfvtxeYHP/BnsQJk4GVS95tpTngdXuSlSgPAMBeT614CXPJutGr51zYcbdRyfynBhSZXiXVCRFk+f0qhXItjHrLmW3SxfWKWAwPqQ6OPO/3zYAmTWLBwyCWsI61QMGV9TzPA2DPZDn/KTqjHtVntOrVZtdSeVZys5FUszAtlTyDM1qcLWgnslkn8jzosqzp0gK+J+bObbM2iVm29DfPbxZ/e6H77lecVW7Xj2pvp7nNsqzbPR/SR3UOGBWOvzOxwTSBsrzysD0sYPr1O/lVp9XnDzr80mvUnbMdspzP8Y+e9wNyHOAnuFXYdB+vVsUZ12y2Mm2kRxRBHhJRVIKK6c8F+fc4iRLUZ5To4oUJEc6e54z6zoEDHptG6e48rxSFQYbDXWNjfLcbbaN9Cpl++lm+/yUIkGRmM4AsYLkuVHDCSb1y7aQ0QNnr4S+knOf76qHSBs/+MPhefZVnv3I85z6nVl3ckVShk9Tv7PHe99HN9+R0f1grxk3vM99NKn6BltdtBX3lVCfa2XV34I/UStMq4DmtN4mIM/9hXmWTB+w3EGDD5fybMZ1Y6cyynM/bRuB8hzgpNBSYTDe/Hq3KM66nWwn5Tk50v3SuReO8rxaEYd+Ki+lufbn043ybB76doF+xRl1HRJDXdo2xjrnjD4VsFK2DZNGbmCtWh1Y7PvqNXVPBlbr9F9d2jZMfu3k6Moqz7aq6rfqsVTyXC24bbpJec5r5blP5HmxbBt2kZRoShF834DBk1Sebc8z9CduolZxRYSebRveIilGyLDbQ5u/+4VaaXHynBxRk8xYJiDP/YZ5bg257ZfyPLRR/e53ujrTN0RT6rnJnVD9e10/R/FBtRLTF9uG9fwEqeoC9Ay/gEH79W4gpUd5XoQ8RxNLL5ISTanAL2R/ldhOk4FaN+RZE692dovCjNomHOvSttHBC3qqwCbP/Sxnba5netzfF+q7vdTKs08GAz/kJ91I75VWnu325qc8x9JKFe9lKbNeU58159SiPPeRPNvPyWJ5np3MMm1sGyKszmEpMRMt5LkPynO97PaDS7JtCAhpm0QkqX7bbcDuN/tNnhsNl8SAP1Erzrh9U7/aTwAX5rk15Hm5C6U4E1Q9QV9x5XnCndQOrFb9QXKkT8pzYNsIcDJoCRhcxLfsh2pRDxqGbC5m20idRLaNpLtE2K+MG1LnmW03GejKtmHI85jKDNGyzTSkRhRxWCzPs9mP+dypCqOKyEZrYNhywlyD1Fh3EzFj8Umv6l55zk+7tp3k6MoWSbFJka2ONPR1jcQVoe+lLZhB15DnFs9zH20bTcrzIhUGQZ+bz3GU5tRKTbe+dS/MtUyNqT5oufsPQzZNQOdSbBv2tXCEDOtc27WNfsDsfzHl2ayyJYcD8txvmL4u0yfl2YgzJp5kxchz2lWeTSyCGX9TYysQMBiU5w7QK2plRZiFUP8vRXk2HWa3ynMksfRsG5Gk25n3y/dczipbgCEa9mSgUXfzbLZTnm01Jt1GRTPqdDjmTyhE2FWgQKmscOr6nutVpZwlTIqjPlo3jIc8NabJ8CJt1eRsNgGDXRVJsWwbK648t7Ft2BarxcpYe2EI7IBRngvN79nK83KvGjSRZ8+kquHJtgHtJwZ2/7GUdJp2fMfAmuX3PJvnODmiU4nN9fb5Rs1jYfFRntsR6X7A7D/diTwHyvOKwrFt9DFgUITdMbbftg2zf6M8l+Zg7pB6zfCJftnmnOdHPLpsG0KIFwohdgghdgsh/srn/c1CiJ8LIe4VQlwrhNioX3+2EOJu66ckhHiFfu9zQoh91nsXL+eJPSJRr7hBRGClqutBeXbIcwfPc6OhlBgTMNjrjFZKN2DQkNp+Zdwwg57fZKBpqcenY6mW1IOYHFH/G5LjHegd20bU37bRQij0AHWqpqsznaA5734O7E22jS6UZNNOTKq6xbZvNNR1Nu0sOaru6UqXRAZ/4hRJqPbQC6E3bdUQIZvQOtk2RtTEcLlLLDcFDPpMFO0iKdDBtjGnyfMSJvigrp8RCozKtZwwk5tIYmlEsl5tzjxizrP6MJNnR3mea93GS55PZVvZowFmBclRnueWd//FWbWCEEvr71uhbBvRpDvenrhf/Tbtrl/ihRl3k8OPHtuGECIM/CfwIuA84LVCiPM8m30Y+IKU8kLgPcAHAKSU10gpL5ZSXgw8BygAP7U+9+fmfSnl3Sd7Mo94eJdNTaq6k1KefWwb5XlAWtk2enwo6xVlB7DJc7+UZ7Pcas6n3VKpX8diHnLb89yothKSwrQiZb7Kc9WHPI+7nzsVYciZycvZz063YCnP3XiYTTsxRVIW294EJJprntITgpVSn+021uR/NspprPelTKOseBWlek19h8m2AcuvHlbybtrHxYqkgGpD7QIGk8P+XuBuYAsFmTXLb9uw40eSw73bNhqe4MlIQu+3DXnuReBYCsx3xQfVNfeqnLWKKqhhnvlAee4/TL+aHu9PoZTirLqfZtVjxZTnlDveHr9PPadmFbNfkzJ7pejRQp6BJwK7pZR7pZQV4GvAyz3bnAf8Qv99jc/7AL8J/ERK+cgwtDwcqJVdhQMs5XmZbRtmm6XaNhxvVEoVdIgk+ud5ds7Hx7Zh/o4PqQe/RVG2/Lj2b1sxrtcUQetk2/Dzgdr7P9VgOkFznH1VnmcU2Ysm/XPhepGbUO3akIBasfOSv61sQ38T9fuhSXn2mbiFl+B5rrTxPBslyyjPsPwEqFpQ1x7aFEnxtvUxdQyNRvPrjm3DxwvcDey+bmDN8gcM2uQ5Mdy7KtjiefYhz9WHQXmOaCLjJWqOUDDq/u6H7SeAC/PcxtLqnix7wOCMK3BB/zMneQMGAY7fq55PYyU1q2zL3a5Mf5oceVTZNjYAh6z/D+vXbNwDXKH//g0gI4QY82zzGuCrntfer60eHxVCxPGBEOLNQojbhRC3T072uRjHww2v8uMozydj2/BRnm3yHE36E89OsB8yIdTyc77Pto3UmJrdN9k2zGx1SKmT3nMteJTntI9ibK5FL7aNcFQX6zjFybMhmv32PJvr2022DVMgRQilPC92fKZdmXvXz1yjfmjyPPv8HUmoY6oWug908ZJnQ5orlvLTN+XZkGfR/URRNlrJZ2lOkVI/UtkNvOS5NL+02It2cIKvjfLc43X0ep7bKc+xgdbX+wHbJuRHnh2hwFKeZV3FjAToD6p51UbCUdXG+qI866B+WDnlOZZuzupiuASo9lWvLD/BNeNuYqj/57lMWK6AwXcCzxJC3AU8CzgCONnkhRDrgAuAq6zP/DVwDnAZMAr8pd+OpZT/I6W8VEp56apVq5bpcE9RLKfynBrHd4C0t3FmtbLHjB6WNwqUKtw35XlO/U4Ma2XYh8CYJaWqZ7nHO6D4ZcmwFZu2tg0PoQB1fU9Vz3NlJZVnK5ivm2wbpkAKuEv+nT7jBCQ+XMpzG5uQQ55jbrvqltA72Tb0OTnKszV49U15zqv9+00UvVYF8E/LaMdMLNXzXC+7k1IzUC+n79khm3FtYZjr7fPeiYSZ6Hk9z0bF77dtw+y/nfLsFQr61X4CuKgW1SoR+N+Tk4Uhz+GYslr12/NcKaiYh3DU7aPBfT6hf/2vEaliA48q28YRYJP1/0b9mgMp5VEp5RVSykuAd+nX5qxNXgV8V0pZtT5zTCqUgc+i7CGPbXgDBp2BqRflWZfmjqX9ySC4A4kpkgK9PZi28gz9VZ5tou/Nw+zMVoebj8ugG9uGTbDDMaU42UvUfsqz2dcpqzzrzsdRnvvpebbSyHWVbWPCVTK6UZ6Np/phU54tBbOtbaPH1IVmcIgN6CqLhebX+608x1Ktz1KjrhRmv2wb0Hy9vTETsETlWd9/k05uOSfgK2HbqJWsjDb9tm1Yk4GOynNAnlcMJjMOLK2NLQYzQRVC9xMrkKrOnE846rYlr/IMy9//mtiiRxl5vg04UwixVQgRQ9kvvm9vIIQYF8JEofDXwGc8+3gtHsuGVqMRQgjgFcD9PR/9ow21smvVACvPc4/Kc3JUPXB+RT/MNuAWSYElkmf9oPVTeS7NqdlwLK2ujZ9tw1GeveRZP+BmIPGzbdiDjhks7eIR7chzuk3BlVMB5jo42Tb6aduwitB0m23jkag8Jwbb2Dbi/upsJ3jJs/nfUZ5T7oSwH57naEq19YbPRNS7yuJcb3u1Zk6/N8ykaVq9Wi7svs4Mzsvpe7Zz5puAQa9vuxO6sW1ULfK8UgGDi9k27IBBWNm0jo81mGcJll95ruvAdkNWI4mVsW2YyTC4irOtPPerQJhJ0xtLP3o8z1LKGvB2lOXiIeAbUsoHhBDvEUK8TG92ObBDCLETWAO833xeCLEFpVxf59n1l4UQ9wH3AePA+07uVB4FaKs890qedcfpV/TDbANqUDEPfy/qZM1HeS5MKfVquWHOx5kM+Hmeh9Vvb+dSnFGdmiEE0ZTqhOz8zPZyp19Rmra2jR6DxFYSK2rbmHYnJYtlz2g0XM+z2R4W8TxPqYBQQ7Ri+h6utPIcz7SxbSxFedaDQyytzqdFeU6raxNNLX8QUkXbNkJR/2fJL2AQfOMETlST/NE3HlKv9Zxtw1KeB4zy3A/bhk5Vh+wt7V9Lqrp2yvNg6+v9gDd7yGIBg4Hy3H/Yto2lZHTpBHt1GFZeeQa3n7aVZzM5W+525dg20o8Y5Tmy+CYgpfwx8GPPa39n/f0t4FttPruf1gBDpJTP6eVAHxOoV9xOGpZWYdAs9ZjPtyPPsYwaKM339aIcmYfYKIcDq9WSb2HGzYqxXCjOuSpcOOopVGGU5+Hm4zIwKegMhNAlumeatwE3VR14rCHtbBva8yylG4l8qsDYNhzy3KeBvVpU32WrI52+qzirC94Y8mwCYRaxbaQ9sccrWWXQkJZ4xr/theO9q+GVggp+jcQVUfZTnqE/6cYc5TnWXCTFZN5oZ9uwz00f07FKkpLUZLvnPM/Wc5UeV57O7HKSZ9sjPKz+Ls25E+3F4PV/OxM9zwRqxWwblk3IZHaw+57CjFrJMIJLQJ77jybbxjIrz/bqMLiB/f2EraRDG+W5T5mmHNtGWvWt7USrUwhBhcFTCd6AwZNWnjvYNuyHEnpTnr0Bg/3M9Vyas84n3tm24Z2xFixLgUFqtNXzHElqH2i0eb/gn+cZ1H79ckafCmixbfRpYHcsL7bnuYfMGY6at4htw+zfYCWrDBq1OT7YpkhK3L3OvXieY2lFfJqUZ/Nc6aII/SDPjuc54v8seYukxAZU+7fPTXs7p2oJSpiMQL3aNkpu/xYKqz6kH8qzsW1Ab8qgN22fIzJYbbVWXEHbhidVnaw393eFGZfYQECeVwJe20a9vHwZY+zVYVhaMbNe0WLbMMqzRZ7NRHTZAwa1jcsUhHkEqM8BeT6V4FU5l1phsBvbhv1QwskFDDqexT6QZ/tYWwIGu1CeveQ5Pd5q2zDb+No2fNJ3mf2Y7+iE4/fBkTs6b7PcMB1Pv4uk2KW5we3g26U9dAqkrHa3h84Djl1d0GAlq6fVLPLsWyQlrohoYrg324YZJGJp/zzP0CflOa/IeTjWxvPsmSgK0VpB0bFtpChjlOclFEmxV9naFWNZKpzsFInORFJK2Htda5ttVJsnEmGPkFGvKbV+xQMGE+532kqnt68zqxrLbfsJ4KJadJ9je3VjOeCQZ92Hr5htw8/zbPW/pq9b9oBBy7YBAXl+TKJehT2/6C04xaAlVV1ELWf2rDwP6893sG2YASXSBYHxwhswaJbh+5Fxw2vb8CvP3c7zXJj1UZ49gX5FS7HpybZhMncsQpiu/gf48Z933ma5UdW2gHhG/d9v5dlRkuOotIc+qx3gTq5Me2mnPNtExs+20S/ludFoJVH62jViA/7ZNszz2qlEt7cvMMozKILjl+cZlpafeDEY5TkU9Z+I+k0Uk6O+to2j5QRluUTybAKEDCJtVsmWCjuVYCdis+Mn8IWXwaFbml/3LhuHQjrjim6rTsW/Pj9jBl7lGVrJs21Rg/5WGQyKr2jbhh4//e7JycD0JU22jRVQnk2/BHD+FfCc/wfDm5u3S432QXnWz5vJmx6Q58cgrv0n+OJvwN1f7v2z3oBB0FaFLjvmakk9AE3K82K2jS6Wzlu+x6M8D65TJH9qV/f76BYtHu5OeZ79lGfPgJIaaya8tmLT1rbRJs+z+XwnVIsrp5La3xlN9b8ylTc9llOq2actSQn3f0epeYPr1Wt+yvP0HvjAJvj5e9W1t1PhGXjJ3HLhR++AL13R/JpuC999KIts8rsaW4BFnu22kJuEWz8Jn34+vG81TO5w37MHqVjKP88zLD/5qVeVohr1yfPseJ7bBcfa5HkOoikmCtJSnnv1PHuFgjYT/aXCvj+dbBs7dCiPt5hI3SfntZ2K0fyOmonIw6w8F2dahYJ+kedv/z58583Lv99HGmzbxlKsQZ3g63leYeV5aAM8852tMT3JPgTLtyjPp37GjYA8LyeO3g03flT9fesnep+de1PVgfq/08C0/Uew43/V30ZZ6SZgsEV5PgnyHM/A+scrxX050airnLKmY/KqUy15ni3l2RvMZpAeg0rWvaY2wW5r2/BTnk3gxCKFUh4OX3Ql72algP6pYi22jQ7Bp7/8GOz4Efzae9wMBX7K89ROdX9u+DB85gWK1HltG/0oPZybgLu+BFO7m1+vlWkQYqIU9kzcjC0g5h6TGVB2/AQ+ci78+J2QPabawIkH3M9W8q7C4s3zHI65BNaQn+U6TydFXspnFcd4nrvILKMntDP5yknYNnwKQvWSz37R/Vu2mna2DSlh18/U395npOEzabaLAJk2G0loUr3CRVLAozzPtPZ1yeH+TDKndsBDP+i/2n6qw9e2sVzK86wSpEwRHruf6BcqnoDBdujHyl9NC4fm+wPl+TGEWgWufJtawn7eu5XX9eDNve2jXvZXntt1Ujd+DL72W0oFqORbZ6t+5FlK/4DBnsizVYnIYNvzlLd3OTtr0xG1O5+WPM9W5+KtuGXgTb3VpDz3YNvo1vNcr0JpYWWXOY0iIoRuP31UnkXYHTjalWreey38/D1qGfDJb3Vf91OeS3qi8ay/gont6u+0j/Is68sb3X7n5xVh8laprJepiihlooh6xb2Pjm1Dn3NqTLW5mX3wnT+ANefDH/4K3qwzdNrBcJWcO0g0eZ49g1dyRLW/5Ro07SIspiCQc55tPM/OuXlS1SWGmcpX3IDBpeR5tvu6dvEZS4Vtc4gm1Xd5bRvH7nFzS3dTWTQSb1WeIwktcKxAee5QRAVXeomakxN4hZTnalFNHnod3wC2/xh+8KdLszWeSpDSY9sYVr+X0/OcGFZ2IXh4AgbbITW2/NmOTGyRERUeASW6A/K8VBy8Bf7zyXDVu+D4/XDjR+DE/fDSj8ET36wI3a2f6G2fvh12wp8A//Rv4eq/h9OeotTZ+77lQ559bBuVnBo0W7Jt9Oh59s5Qtz0PkLD3mubXD9689EBCcz6O5znmSRdmFbAwx+V8th151kQse0wF/ZTml2bbiA2oAXmxEt1mqbxfHZ+UsPOqZnJu35/FMmCcDApTSoUwHbwfeZ4/At/6vzB+Frzs35uXAJ0MBlZHaVT6y34X3nwtXPp/4YznNn/vcle5qtfg9s/qY/Hcp1qFioxQ8aZks1OHmWPKT8E33wACeNXnFYFODCs1t4k8257nVLPn2fYcLnfGBNsWEvJm2zDk2Sd7aWpMHYMhPDoDznSuTI0wdUJLrDDoKQjVD/Js7o9fHt6dV7l/e7/br1R5JOkqzs7qW6I3a52Neq179dauyOhVnr3FoAz6Rp71ve51pXHX1fCN18Mdn4Vjdy/7Yfli4Zg7OV1O1CtqAm9n24DlVZ7tlYQVs210oTwvd3AvBLaNxxRu/i+Y3Qe3fAI+/jS49gNwwSvhnBerBnDJ78CD31fkoVt4fYDgb9v4+T/Ar/4dLvt9eOOPYM3j4LZPtnaifgOSl2D7EZhFj7PYOkPd8HhFFHb/3H1t7hB89sVw0390v28bjg1lWP1uFzBolnualGdPxS2D1ecqtfSLv6GuI3SRbcNHjRNCKaKLkWeT0aBf1o2DN8FXXgX7b3RfM7YN0GpZv8jzTPP19VvFuOcr6l68+ksQH2j+vN/EzQw+8UFYdRa89KP+eZ5h+dSPnf8LC0fUc1QtNE9E6mXKRCiblPh1izyHIu7EITWm3jt2D7zi4zCyRb0eCqnsIvYEslJwFZZYSk1maxWdCcOjPMPyESDHtpFuv4rj19aN0l+ed48nOcx0rgIIKkR7a2NSNhdJgdbqoSeLehkpwly3x5qAe6/jrqsgo/33LcpzrXUi0VF5XsKx/+zvVD/UDezUfmYp3yHPntgDg37Ym8DtZ3shzwdvhq+/Dsa2qf/tcaKf+ORzXCvlcsIbn+CQ57nl2X9hpnky1O88z42GHte7sW2MKHK7nLadeiVIVfeYQHFWBZo84Y3wZzvgxR+Gi14LL/qgu81lv6cKh9zurVTeBo26GqB8AwY9HfPuq2HLM+DFH1LLeJf9rrKJ7Pqper9Tnue25LlX5dlDnkNhOOPZqlM0nfWtn1DntBjBbIcWJb1NnudITB1PxYc8e32A42cqRXPz0+BX/+bZfw+2DYDM2sVLCptjLPWJPBtFM3vMfc1e/reDnJYbJcuPDv55yQuzKkBt/MzWz4fCSt2zyXZ5QV3vaKJ1e4PlVp5v+yQMboTzX6H+t4hgvVqmJKOUnXzG+n56U62ZFY2n/rGaQNsYWNNq27CzbYAiziYThkG/lGdTnrupSIpu876eZ09J3uIstfgQxaqqKFom2lsba9RU32j1ddsnyyzkl5Ec1MrURJQ3fOZWJrIldS1tYpObUDazc3/d2b75GH2U52jSbRt2nu9IYmnK89wB5fHvBrWS294iMXUPzfm0W2VLjqjzWG4iUi2qa3P8XhUY64dbPwkfPB0++Vz47lvgy69SgcJv+D6suxj2dCDPs/vhfy6Hz/+6+ux1H1qa6lqvQvYozB/q/bOLwcmMo8dBc0+WM2CwiTyn1L1czow0NrxVgzuh16JQ3aBTqro7Pg93LSEBQ58RkOel4IHvqpt90WuUKvbE34ff+HgzURvdCme/CO74XHfE1E6tZMNPea4UlJpllsAveJWqGHj3V9T/nfI8ewlpKKQJVo+e54jPQ7bteYpMnngAyjm44wvq9aUuZZmOyLZt+KbXirXmwTQZNbzBZgDrLoTXfhV+/xfwlLdrywm92TYAMusguxh51gRlOf25Nsw1stME2uQ52kfbRmnOvTfgn22jPO/aavxgExJQ1yneYXtwO+/7vwM//gv40m8qG1UnFGZaMyqAyhCz91q49I3u91rtqFQqKtuGUZ5t8mRPqs59KbzkX+C5f0cLBtY0V8+zVwbM70pB37c2to1yVmU5+PjT4RPPUqTknq91PmcvzIAfS3dYxfGZKK46S/2+Q1tbinMUwuparc7EKckYshdy49PX7ZoqUykvYzutlakKtf+JhXKrbcMEChry7CUl7TzPpi93AgaT2k62BPJcK3WvDNc8k3i7ot2xe9Xv4dOaP9OPQilSqnPf+kz1/95r/bc7dIs65lgK9l2vMje8/ko1bm17Lhy6tX2feOROOHqXmnjvuQaueR8c+FXvx1qyVkq6xd1fVavJi8GZiFrP63JWGWwhz0uITeoF3vSznWAmactpvXHIs0lVZ9k2bv+M4lynGALyvBTc8zVYda6aQXfCpb+rfKH7rl98n0a56CZVnTewKD4AF79WzUzt/L7d2DZAkedes234zVDP0BXXd1+tUvWV5xXRWWqH0pI9xJMSyqiAoWjrslZhChCtPkAbG54AL3h/c15s6M62AUp5thVfP5h9lZdwDaZ2wU/+snNwjblGNnm2FUx7qXm5UZp3lyvBP9tGaaEzGfa2vdJC8z79MLBa3fN7vqLa2e6fdVayAL7yarjqb1pfv/0zal+Pf4Pbpi3Vo1IqUiFKFc/EymuxSo6o1Sa/idbAald5rlXUc9qiPBeaSbXZJ8D0bvj8y+D+byubwcAamN6l4hx6gfFWOwGDfkVSfDzP6y9R3vNf/YfyrdaK5IQa5LaMpynJKPVeVq7sAibAQqlKthYiLJfXtmHu2VSurCZ5tvK883/V5HfDE5ztm9CotUlVZ8izFZC41GesVlbf040ybCvP0EzU7v8WrL1QCTY2HPK8zAqhbKhYm+RIe+tGcQ7GzoA3/ADe8SC89SYY3qTeO+O5akVy73X+nzXn9dvfVEo1LM0OYSZLvZDnOz/f3WqxY9uwnldvGzsZ2Claof9pR71VgzthyzNgZCt8/Xfgtk8tjy2opgMGIzFlh7OfifnDMLTx5L9jmRGQ514xvUfNqi96TWv+Qy9Wn6N+Z48uvl9v6isDPz+dN7AIFFEH9cCZ4+rGtgG9Vy9qF1gwuB5Wn69UnZv/GzZeBqc9eelLWd4SpREf20YoqtTzFuXZBLOFu/8+r22j0VCDWzvyPLBWHWMn4mAISifbRn5aqS1e7LwKbvl4Z2vIYspzrxOjXuAlz34Bg+WF3pTnxbYH9f5bb4I/uQf+6lB3yt/cQdUJe3HsXkWgBla718y6XtVKiQoRxocHm8/NLz6hHQbWqMlco25VEbQ8z6AGC79sGwC/eB9MPAiv+TL89jfUz4ZLe8+1WrEG/LZFUtq09ee/D0ZPh+/8HgDzUh3/6eNpykSplXtRnq3S2cDB6QJVIoTt7B8ni1rF8alP5So6eG7OeY8918CZz7esRn7ZNryeZ4s82+k6/ax1XR2jbrPdkDtvezPkeWavsp9c8Jutn+mH8mzOO5aG05+tyLMfefL2DTY2PVGtlLab8BrynBhy97GUMcSxtfRw/rmJ7rb32jagd+W50VD2Fu/kqV5zhScDp2/qk+/Zua9dKM/pMXjzNcqm+aM/gyvfrvq2k0G9wk0Hcnz11oOeDERF1XcObTi5/fcBAXnuFfd8TeVfvPBVi29rLAPdVN5zBq9ulWfPDHH1OWopzRSggEVsG8Pua70u7bdTnkEtyR24UQVTPvmtJ7eUVZxTy6Jm0PBmD7FVYW/AYH6ytbjGYvDaNgzxbWvbWKt+dyK33dg2fvWv8MVXtL5uloY7fdZRni1f+Up4nqXsjjwvpjx7o8gX295g/EwVlGcqvy1GXkrz/raNsqV0+wxQtUqJClE2rhp2/gf800q2Q2aNUuvyk81Be97v9E6Koyl1TWMD8LrvKBuYgTd9XDdwlOdORVLakOdYGq74pDMJnJXquLdo8lyvLMW2odrLAU2eIyxnhcESxYalPCeH1b3OTaj825UsnPUCNbkWYZ+AQZ8Vp2VXnvW+vGTt7q/CZ17Uuq2f8nzft9X/j/s/rfvvNgNEaaF78mNPGs54jur7Jh7y2edc8xhjIxyF058FuzsQb7OaeDJZLMx17cWbm5tQ485iaqr9LBkkh3s7zmN3qbZoYpUMTHB506pen20bdhrLbpAcgdd+HZ72J3D3l9Rk1EZpHv7tEtj/y+72V6+yZ6bCzx48ofo7czwm4cLQpu72s4IIyHMvaDQUeT798maS2g6ROMSHuguY0533d+6d5MZd1vYRT/EAu0qYF7/5OXjNV9z//WwblYIi/02R7j2mwakW2wd0bdNpxYY2wbkvO3nybCvkLRkCLF9ii21j2t/v3Ale28Zialxmnfrdyffs2DY6KM/zh9U18tozql2QZ6PItGRz6HO2jXJWEcKmSZhPB7+YkuxNpdeN8tyyj0UyNdTKaiLip/7b3+dz/PVqiSoRNo4PAzCb1V68WqV1lagdBtao37kTrYOUEyBTaM22IQRc8T/wuz+DLU9r3qfJK90LbOW5bZEUH9uGwcYnwLP+AoATDTWwbxlLUyLWG3m2A32BgzMFKkSJyuUjz7JeptBQq05T2bLrzf+3S+CuL6pMRWe+QB+HR6Bo1AHpEzCY8Pc8n4xtA1qX+g/dDAd/1Uxovan9EkPqc/d9E057qv+ytjOZ7fBsNBrqmvhZFRaOtU447aDTM56t/vazbhTnmuMhvDjjOTB/UFmSvCjpOAkh1DmEY0skz3P6d5e+8kpBTarq5cXHQz+lNjHUm0K+oC1/3n7JXHM7O9FKKc/d2DYMQiF4yh+pv6c91YUnHlKrInYWqE6oVyjUQhydK2rlWfezC3q1MLBtPAKx4ydqWeLKt8O33qQe+Ite2/3n0+Pd5TnWHenPd83y4/stH623JLVdJazlu8ZcXxn453mulVSHLwT3HJrjLV+8g0avOSS9y8s2TnsKjJ6hynqGI6oDLc8vbVnHW17bFHYwJLNetpRnzznkp1pTnC0Gr22jthh51spzJ99zN7YN0z68JLcb8uxVnp3JVZ+VZ3tp1cCvouGSlOdFPM9edCokZPYJ/hMY+/icAcpdRpW6mMeYtm1Mz+l9eJXATnDI84Q7KNgVBs13erNtAJz3ctf+ZSEbHmyulNkNmrJtxLovkmLjmX8Or/sO94XPZyAeYVUmTllGkb1M0DylzQ/O5KkSIUpt2dKq1SplytLYNspu6sDTnqyK17zkw64to2VFq43/u53y7O2juz7INsqzmRTZQVPe1H6JYWVFmtoBF/iozuDey073ppJVy+Ize1vf+8LL4Zp/9D/maEIRmvGzW3P7S9lZeQZXZNl9det79oqWEEsXYEzfKOv+q05e5K1xejHrRsV6lgx6PU6zYum1bThjvEWenaxYp0DAoI30uLLgzOxrft20p9l9rZ/xQqeuLMqIRZ6N8hyQ50cuZvap9Gu7f64ihNc/Hs55afefT6/q0rahOt+yjDKZtTpir/Jc9Xlo28FPebZU4xt3T/G/DxynQmz5bBuROPzxnSqNH7id4FLyHGePuuou+CjDVdfSEUu3BgyerG3DUZ47ZNuA9sqzlC5B6dSpGvLs7RjN+XSjPOcn1fd520e/iqR0JM+nmPJsjtU7gEq5qPJMrYKIxhkbUgPZ7ILeR73SvW2jSXm2Ml6AS5bLOZ1n1WdFyQdfuEcfRy/qcyWvrnco3KFISpu2bhAKw7bnMl2oMjYQYzARUanqegkYdOI7XNtGRRNdlsn3XC0XnNLh0/mKsmj86X3wum+rXO82vJOvdmn72nmelzpBdTzPc82vm3tqt1c/z7NsqPt4Xptc0eZ57ETszXf49THzh1qFAS/JWn2uIvE2aiXVtjoF/o5sUTmf/fI9e+1gSyXP9nXtxsdsp91bbPuqj80hMey/gtgOZtzwFgTxTrDt7+kbee6BV9gQAka3tJJkQ569pNoP+pmvyAgLpRr1SMpDnoWbj/0UQlfkWQjxQiHEDiHEbiHEX/m8v1kI8XMhxL1CiGuFEBut9+pCiLv1z/et17cKIW7R+/y6EKLLNdAVxlPeCn/2kPvz5mu6M9UbdFNIA5wBpUKkmTy3KM+ewbcTTES9reYY5RlYKKpBokSsxyIppe4fspMJ+Fg4BoOdyHPFY9vQHUujrgYgb1nnxdCrbSM1qgbYduTZVrM6TR6M4uG9B4aQdKM814qqw7GX5qGP5Fl/b1OqOk+2jVpFfXcnJTmadLdv1NXA0Y3n2caiyrO+fpWcZym8pDpuk53GZ4AS9TLhaILxIXVMc45to9yDbWO1+p097uN51r+Nf7nLvmVvPtH8uW5grxh5g4kX8/d7MJ2rMJaOMZiM9p7n2Sltrq7fgemClQpweVZJapUSZRllKKnFCCFaU7kZtKTAbHMtzLMkpXuc4Zh/OtGuDrKd8qzvaRN5LjFdDnHFf/2Scq3u9qunP7v9Cptpn51sG+Y7vP1zreL68G14szKkRlvboDfFaDuc8Vy1rO+9dstFnm07TFfk2UonuSh5bmPbQHYvFJmJiXdS72vbMBP7U8i2YTCytXXlohflWY+zVZTNqiQS7uRk/pASH7rta1cQi5JnIUQY+E/gRcB5wGuFEOd5Nvsw8AUp5YXAe4APWO8VpZQX65+XWa//M/BRKeU2YBb43ZM4j1MXA6t7Up4rRNUyo4HXT+c3420HR0m1BgZLeZ7X5LkgYz0WSfEJWGwHs3TXa+dXr6rrZs84veS2Zts2Um5HX5gBZO+e55Dnei22lC1E51zPdiqwdraNWsXtqNsqz3Ptj7k45yoU+Ukf5blPnmc/5TkU0pkv9PeZQWBR5VmftxMos8zKs50m0B7YzD0xZN0MhNYAFWpUCcfiJJOK5GZzNnnu0rYRTaoJRJNtw6M8mz6ii+e6UmtwpKK364U82wGJ4ahaznYsUMbz3B15nsqVGRuIk0lEKBFD1Jdm26jUGhybL1J1KjguIWuFD+qVMhUinL9+UGXb6ISIR6Aw6rfX/23iPOoV17YjxNLLc7fzPDvkOde07VQR7jw4p/JWm+fugle2379ZGen0/LdTns0xtZvQm5zuydHm0u32ZzvZNkDl268VYcGTjcoO4oWVU55t28ZiKef8bBuG7HZLcB3luQvbRt/zPKvv/OXBAm/4zK1qgtYtRk+H2QPNwoQhz/ZqWzvo58D0AXmZaFaeT0HLBnSnPD8R2C2l3CulrABfA17u2eY8wEQNXOPzfhOEEAJ4DmASlX4eeEWXx/zIQnqV6gwX8/wa5Vkq5VkatdhrvehlhuiXt9hWnkuK3OUbUbouklKvqsHFr0iKH5YaLZ09DkiP8uy1VfgEDEqpczzTWnFrMYRCzcvZi9k2oHOuZ/u6tzt/b4o5G+Zet1PtGw21X1PyNj/VSp6jyZXzPINqFw551tt063kudbG9H7pVnqFZ5fFGtXsGqEqtQURWiMWSjvKRzenra/vtu0FmTXPAoDfbhlmd6mJFaTpfZkZqtbwn5dkKSDRt2kzwTFaYLs9pOl9hfCBGMhqmSoxQL+TRsW3EOTxboCEhHjfEdHmCBmWtRJko568fZCZfpt7o4KX2C0QGf+UZVPtoqvgX76zu+h6gdAm3TeyktMizNdGrlVUZdLTocfqz4JLXqeI87WBsHh0tTfo7vGTRWa3xELsW5XlM2UfsCWq3yrNJxebNQ72cyrOZDHalPPfgea7m1b7tNtKrtcIUTmpr2/Bk3ull371C7/dfrzvMdTsnufLuo4t8wMLoVtWPLOjMGFLC9F73/s7u7/x5/byZ9p1txB815HkDYNe3PKxfs3EPcIX++zeAjBDCMJeEEOJ2IcTNQohX6NfGgDkppTG4+e0TACHEm/Xnb5+c7ELBPdWQXgXIxQc53cGViVKuNciW9aXxKs/ewdfCh67azu9+7jb3BT/y7KM85+qR7h9K3XlWw3H+4Iu3s+vEIoEYpgPtNXm8IaS28uwdDGzfaTSllDSjWEPvtg1oTnumf3/vvkmuvPuIO6GxkVnTwbZh+TfbLeXZS4UtyvMiAYPlBUC6pa/zEz62jRVUnr3fV+pCSbbzUJc8ZLZbePN/tztW+zvAvSfegEH9jE3mysSoEUskHKKUL+jnr5c8z+CW6HaKK+jnNxRW++5BeZ7KVphdCnm2leeQdyJqlOfF86I3GpKZfIWxdBwhBDIcJ9zogTw6to04B2bU9RgdVCqbXIqC6wcd6LlhOElDwmyhw/GFY83kt5Pn2ezbS557PW5TohyaiVppXvVj0OJ5Nh7uhWJVeYZf/p+dJ1vG295pYmmeAW8fYwhwuwm9bduAZu+92ddiyrPzWQ9RXU7Ps7HqdFMoJjfhikLd2Da8FitnctWt8mxsGx7ybP43djJYAeVZHfOdxyvEwiE+fcM+//HODyO6OI9Rm4uzajJlsrHM7qPRkO33V3ctqwDz9Zjqg6VUqeoeweS5G7wTeJYQ4i7gWcARwEitm6WUlwK/BXxMCHFGLzuWUv6PlPJSKeWlq1b1uAx/KsAQuMWsG5ZtA3B9z+G4Xl7Vl7ODsf/uQ3Nct3OSUlVv62fbsDp9Q57na5HubRv64Z0ohrjqgRN84/ZDnbdfqvJslvJ8Pc9GLas02zZAXR+j4vUaMAjNkff693fvneRPvnY3b/vKnczkPYNwJ9tGk/Lchjx3Up4Xy/NsJiRjhjz72TYSaqCuL08glgNHXfIQXTudl5ec+sEukrJU28ZiRVLaKc+ObcOqyClCbhtfKBGjSjyedNpZoaivb8/kebVWnvXAGPWoSqYddKE8T+XKzKKXdHsNGHRsG55nqVHV579I4SdUv1FvSMYG1D5kJE640Yvy7PqFD06r6zk+rO7BcpXoFvWK8qpn1D1qssJ50avyXCuqNm5sHOG4zgLUw1K3PaG1V5bsyZDH81ySlvLcLdrkQD80U6BWb7T3PJu+xbvkXvOQ56QfedafXYrybLzWy6U8m6qL3XqeRzarSdOi2TbyrWOwMwZ10YZrFXeFtKeAwf55nuuEGUgl+X+/fh47TmS5flcXsVrgXmMTHGhI9Bkqo0p1ag9PeN/P+OG9nVdoqzpoeKYaVdegMK3a2ymY4xm6I89HAPvoN+rXHEgpj0opr5BSXgK8S782p38f0b/3AtcClwDTwLAQItJun48apHWw0GLkudZsmp8y5NkJ+tD/dwgYnM5VqDUkDx3TpKCt8qw6PtMJz1XD3ds2NLGYqahbd8NiD9iSbRs+yrMZzMy18AYMgupczADUq+cZmgdSa0Z86eYRfvbgCV7wseu577B1Lpm1apbtU2K3XFHHmSPV/vxPRnk2A964sW208TzD8qvPpXlFir1KZSRpkf4elGcpWz3I3WIx5a+JPPsoz+b4hFCk1pDnrFKeU6mUcx1ltazsTr0USQGtPE+odhKKNgfAxNLuhK8L5XkyV6ZGhAWZ6lp5nslXKBWzlm3DeIzdiWJdRHj+R6+jWOlMAqfz6lqPDZhVnyQxWek+zZxVJOXAdIFkNMzwgOrPKuXlUZ7DjQqReIKxtDrG6U6+55bKpe3Is3mWvMqzp4/uBta20iZqNgk1JKpRh0Z1aeQ50ppJqVCp8byPXMdXbj3oPgOVbPME21GevbYNr/KsF5htAtytbcNPtdbH89+3THNiQR93YkjnXu6xDyvOqvE3NtBdwHp+Uk1yk8OLb++XrrWXoD7bX+1HnkW4eXIejqrX+qQ8Z7PzFGSM11x2Gq++dBOrM3E+dYNP+kI/DG5Q4+ashzxveALEhygc381socr9R9qMY9Y4u3EkyVQlolZlTA7wU7C6IHRHnm8DztTZMWLAa4Dv2xsIIcaFEGZffw18Rr8+IoSIm22ApwEPSqXfXwOYmqJvAK482ZM5JeFUGVyEZBrlWXeQk0YpMQO0IQcdAgZNYMx9ppG29Txr5bmgOuHZiq6w1Y1y4pBndbu3H88ysdChU4tnlJrXa7aNhaPq3JvyPPvYNkwHY3vC8lOAaP5st/Ahz1UZ5reedBpXvu3plKt1Pver/e72HdLVzSyoTnFGZtSg4JfCyPbZteR5XiRVnRl0B9a4xXi8kyu/3MvLgXbld22bUVfKcwKQ6lr7VdbqBuFoZ89pO9uGH1m3iu1MzueJiroKFtRtL0aVY3MlXSSlR/Jcyal0WN6JbzTlDqZdZNswKuqMzNDokjx/6KodnJiacffvk1mmIiPsPJFj/3TrRLD5+9VnxtNqH6Fe25hTJCXOwZkCp42mCEXVtaxWlmeSF5YVovEkqzIxfcydlGdPwZh2tg176dwmz94+uhtYz3otb5Fnm4QaVVhf11JDTXhMrEpX8Emjly3VKNca3LJvxj8GACzl2d/zXA8b8qyLWPnZNhZ7jhPDgGg+Z/3Z7bOCnz5wvHk/vQowxTlFhJMj3SvPA2u6297PtmFWIroRKsx4EUm2XuNyTgUf2qtAQugquv0hz7uPTFIkzuufsplYJMQbn7aFG3ZNuUJcJ4TCMLzZozwLZS0a2UxDv35svs11cbJtRDhrTYaJkp7YT+5Qvx+ptg3tS347cBXwEPANKeUDQoj3CCFM9ozLgR1CiJ3AGuD9+vVzgduFEPegyPI/SSkf1O/9JfAOIcRulAf608t0TqcWjG1jsUIpuoNrhD22DW+6ISfKtzlgT/kQ1WfuNcpo22wbSRoN6fiqp0ph973FoLeZLLlNp6P6vNQk99ljStW1OxDv+dSrzUVSQNs2JlUH2IV/swU+to0qEdLxCOetH+Ti00aaOxSnUEoreZ5eUJ3ilMwAslVhgOZ20c5fuJhtIzGsUyLayrO+Hn4ls5cD7chzUwBgF2Q4YhGSpSrPi5XnLs27k6sm5dknG4hFnqfn1f1KpVIQjiBFmLioqkT+tVITeZ4vVvncLzv4BE2u55m9zcuxoAZhc/xd5HmeyqptZ8lQz3VHnrcfXyDWKCLNdTDEsOG29Zpe9To001k5MyquUZ5DsR7bmJNtI8bBmTynjaUIG/K8DLaNekMSlVUS8STj+hib0n964Q04dYInu1Wezes9+L5rZgI00EzUmmwbuq1qUl7Uy9q92TZaM9GUq2oSf+/hOY+Nac7924gdtVKzqFItUSfEn39HD+OObcM67tKcKpzhLTLTcmwR1Tf4WD4WSHPdTj2uOHEzPYwh9aoSmhLDWknuMmAwvbo78tzRttGF8mxWVse2tXqeK3l1/byIJvpi2yhUahyZnEbEUqwfVv3xbz9xM6lYmE92qz6Pbm0mz0Mb1fGObiUyfwCAY/Nt+IUeZ2siwhmr0hwr6nHbIc+PXNsGUsofSynPklKeIaV8v37t76SU39d/f0tKeabe5veklGX9+q+klBdIKS/Svz9t7XOvlPKJUsptUspXms886pAYVkEbi3qetZozPEgkJCzy7El07+SXbB5kZwsVTEC5YyvooDxnSzWkhDWDcRbqEfe9xaAf3olSiPVDCcYHYtywq/251eoNpCkl2wsWjrWWQO+U59lJM1ZUXrIuggUPzxa48N1X8dYv38GO41n3O7zKMxEG4uoanbsuw+6JHJWaVpGN8pxrT56dzAh+nX9+wl36bLFtLJLn2QxwyWG1wpGb8Pc8Qx/I85z/sqydV9pRnn0GAgND8mslN2K/51R1XZBno1742TbsgSqacq7hrF45CBnLRjhGjBpHZ3MqDsGybfzw3qO8+wcP8tCxNgG0JtfzzF4f5dn6vwvl2dgmZmSmK9uGlJK9k3mSlKmE9PX2mYiWpSbPs50n0a5tQz2P4Zi5h2268LI3v7baTmrlefNoinBU7ataPflhYDpbJCbqJJIphpJRomHROV1dpE3Oa2+qOjPR83qel2KN0tuekCNEazmXsJv7GUm2KM+FxhLIs0/AcEmnITs0U6Scs1XvOWsj62+bsFWLlIizc8JMPIeUncBr21gsWNAgNeqrPC/IFDftmaJabyyNPNt9YzdkuJxT5znQJXn2s230UgXQiC1jZyjLjI1K1j/2oddKwF3iyruPEqmXSQ+4/eBQKsqrLt3ED+452nnVxmD0dGXbkFL1ccYHPbKVVOEIIRrtlWfdvsPRBOuHkypgEGByu7qmvWbNWiEEFQb7jVBIBa4t6nlWDSiVTDE+EHcbbNijavilyEFX0QLOWJVm10SWQqXWGhQEutNPOh3wWWsyqkgKdDer1Q/vsUKIdcNJnr5tnBt2TdFokwrqeR+5jqlacgnK89Hm6oJgnY++Nt48z6Bm7fnprvzOv9o9zUKpxi+2T/DCf72et33lThohW3l2vVhpTZ7PWzdIpd5gz6RWCzooz3NZQ541GfTLuJGbVEte4KM8W7YNP0WzRXmeas3G0k/Ps69twyLPRvHVbfX+I/O84xt3qwHRwF4KLy1AOM7B+R5LuXcTMJhZqwZ5b8BgNN2skFkD1GxWb6tXf0Q0QUJUOTGj76OlPB/WhPNgO9XWtJPc8VaCbP/fTbYN3TfM0h15nslXmC9WSVKmhD5mn4DBcqM75XkqV0EIGEmpfUTM8fu1sUYD/u1iuONz7mv6uZrINyhVG2y2lOfaMtg2JmbVfUumUgghGEvHuwgYtJXnxQIGPcqz107WBaSeGE/KYfWC6R8L04q0D66zyLPaNm9sG8Uegn/DrWn0nIByYGHex24BzeTZDhqsFigRZzavr5HQ9jivetyt9Srp/awmz6TJV+rceWB2abYNJ9f0iPpZLLDWxJ445Hmu8/Z25hqDXtLJZY+r/mhki5tZwsDYNrywJvbLiVv3zTAcqZJMNYscr3niJqp1yU/uaxPoZ2Nkq1pZzU8pBdpk4BjdSljWWC+Uh92XJ+jnJhqLs24oSQH9XE3tVKJHF0HMDwcC8rwSGFjVhedZdUapZIrxTMzHtqEHlUrBV50yg8Ozz15NQ8KDRxda8yKDUk0iiSbyXJaGPHcTJaw6hqM5WDuY4BlnrmI6X+FBH29UsVJn/3SB2XqHgDk/SOmvPEc8A76vbUMrz13MVu86NMtQMsqv/uq5/P4zTudH9x5jrkxzHmmM8qyIxXnrFBF2rBuJYTWI+uR6nsuqjm4GTZ79rkHuBAxvco/doF5VClh8UKmcPgGJFOfUQBtLu2Xgq0XlMTfXZcVtG55sG5bq/LGrd/KdO49w235rILOPr7xALZbhmR+6hl/u7jLSG7oLGEwMK0Xbm6rOq3LH3IDBeb1yYMiRCMcZjjWYmpt3v1fj6Jz6zOHZNoObsW1Aq23DJszdZNvIqnRSMzJDqLR4to09k3nC1ImLGnmHPDf3DfVahVIj1PkcNKZzZUZTMcIhNahF4km9Kx/SUM2rdmlXINPE88CM2n7TaIqItn7UlkF5npxT9zidUtdyPBNbhDx7CGZbz7PVVu0iOUsIGDRZWybQnmGjdBamVd8VH3SX8/V+8/UlKs+eZ6Nccyevxeyc2x79bBvQHDRYK1GU0easQ0lPlUHzvHWDNsrz1g3rCIeEsgQ65Hmu9fPtYActdqMkG3FrYLUus73Id/kVCuslnVz2uOoTEoMqU4s3He0KKs87jmcZidUQnvM5e02GM1cP8IN7uiDPRmk+do8af0dPV/+PbAFgk5igWpdM5X2eET3ORqMJNgwnVZEUUNUFB0/NYEEIyPPKwBCbTqiXqRFmMBVn1UC8c8Cgjy/S+BAvP1stD997eL7V5tCoq7+blOcBikZ57ibjhn54j+Rh7VCCZ5yp7BF+vmdHIWukegsYLM2pY2mrPNu2Db9UdZNd2TbuOjjHxZuGGU3HeNuzVcaKCq1FUqrSVZ63jqeJRUIueRZCdYJ+ynNeDTrTjm3DR3nOT8DAWrVM61keBVzF0o94l+bUwCCEW4ynnFXtQwg103dWLpbZFdVuadabbUP7l4/OFfnFduXvvm6H9Sx4lOdyRF2rn9zfRYdt4M3T64Uh+vFMq23D66+2PM8L+v45JDkSYygmmZqzLD4aR7Ty3Fa1TY4qpQlaB0bzvwh3VaRkKldm02iSOTlAuFZctILX3skcKczSv4c862p65VLJybN6aKa5H5jJV3jvDx8kqwPVpnMVx7IBEEuoe1go+EzwDAG022+tAuE4B3Rg4uaxNBGtPNcry2DbmFf3OKMzeIwPxDtn2/AGDPp4nr9/z1FmdZA01ZIjQgCt1roukNdtq5xU/XV+QfefhRlNnjMtynOhrtpP77aN9spzrTjvekqblGfrb6t91St5CjJGsVp3s7KkRpvJaS+2jeRoc55n/b3r1q7l4k3DyhJ4UsrzsFsFsVM2GKM8G89zeaFzwZ5O2Ta6GUezx1SNAGMZs+NhKrk2nufUsosgtXqD3ZM5BsPVlvMRQvDrF63n1v0z7f3KBkZp3vNz9dshz+r100Pq+h73s27o5yYaj7NuOEHBTPDhlPU7Q0CeVwbpVc2pafxQK1MlwlAyyqpMvHPAoI/yPK2J6nnrB1kzGFcZN7xLs+bBiySciO1tq23bRvee55lKhLWDCVYPJjhnbcbX92ysJFP1RG8d34ImToNtyHOtA3mu5PQA1Jk858o1dpzIcvGmYQDH01wl0mLbqFq2jUg4xDlrM81Ke5tczws5nZmknW2jWlLXZWBVq6pg7lUn8lyccxUeU4xn/jDEUuw8keWp//QLbj1s8hIvY6dbrylfXjfZNrSy+7XbDiGBM1cPcK1Nnm3luTRPOawIz88fmug+SX9XyvOQykjitW14/djRJFRUDtxC0SjProo/GGk4gYR2ee4jWnlu6xcOhVzfc7vl3lh60SXKWr3BTKHC5rE0M+hjX6QAxJ7JHElNnrMNfS6eIimlcokaYc5Zm+HQbKHp2v/sweN8+sZ9fPpGFRA0nS87KeAA4gl1/L7k2ayYNJHnEkRiHJwpEBKwYThJdBmV55l5dY/TKXVci9o2vO3HKRijnvkdx7P88Vfv4n93zLvHb+f5dvqlHsizvlaD48qLf/jIUfWGozzb5FkdT66+hGwb4dZUdSZgcNvqAUQ56658NZWznnPPy5rU10oFiprcOIVnWqwXc0tWnmv5OaoyzNjwMM88cxX3HplnpqFJ6VI8z0Z5blT9V+8MTOC2ybax2Pf52TbCUdVmulGHcyfUuGH2YZPncraNbSO57LaN/dMFKrUG6VDVl1f8+kVq9fdH7XI0G4xsBgT1XVer/w15HtpIlQiPz6hreXTOjzxr20Y8wVg6RtVkctGfP1URkOeVQHpx24aslSlLRZ6NUtJoSB/l2We5CEVUQwKGk1Eu3DisIqm9tg1Dji3led1QglAv+Sl1x1AixtohNeA986xV3L5/VvmsLZhc1ROVHslzVg8kdo5n6BwwaAjIwlFANnmeD88W+H/fu5982T2+ew/PISVcctqw2nVIkIqFqchwi22jQoR0zPXFnrt2kIeOZV2C0aZEd65gbBttAgadpcI1rWmIzL0YWEx5VsfvKO1zByGa5Ou3HaLekBzN6SXa5VSeO6WUiyatQEel7NbqDb5+20GeeeYqXnXpJnacyDo2hyblubxAOawGjWPzJR442kWaJNCFhBr+hWDqVV10YVgRksVsG/o+TOUqRE0BVIckxRmI1FjIZZter9YbTk7ajn5hY91oUZ5T7ncvgplCBSnhtNFU11UG907m2ZxRbXW+pp8Xz8S6UlGT9yefPkahUm9alt+ug2k/fcM+5gvVFuU5nlTHXSz6nHvFR3muV5wcz+uHk8QiISIxdS0by0Ce57LqO8O6bY1nYkznKu0nY+E2AYP6Gl2zQxGrhapeOaiVnNgRoDkLR5coavK8bpNS5iYm9OS7MK0Ipb1KoslvTivPCz0pz4mWiaUJGLxsyyhJWaAQH1ekz+t5NrY5i9jVKwVHbHHaSMpj2yjO9eZ5ruScCUIxO0OWJGuHkzzjrHGkhF/uz6lnvBfbRpPy7LHG+CE3oexu6fHFt5ey7TisVhC7VZ7XuiTZzrixgrYNEyifkCXf/mfreJoLNgzxg3uOdt5RJE4ts57w9E71v7ZxlOpwqDHOOXHFf477Kdj62YvHEgghyGSG3fcC8vwYR3qVetg6zHyrlRIVoo7yXGtI5orV1jRI1YKvbWMqV2E0HScUEly4YYi9U3nydX17DRk0y0mW53koGSWZ1g9wD9k2isRZp8nzM84cp1JvcMveZgXMROVP1vRSfreDy2LKs2+eZ92RzR1Uv9PK81ytN/ijr97FF28+wA/vdTuAuw7OATjKM0AmEaEsW20bkWjc8XeCyrgxk69wYkGfj4/y3GhI8gV1Pdtm2zBqR3p1q6rQjW3DVp6Nqjl3gEY0xXfvUjWHpstmqXkZO91OeVwjCbedaXL68+0TnFgo89tPOo3Lz1aTGkd9blKeFygIt23//KFFVmuc7/QEkjYdq0X0E4NuRg/QCo8feS4wkVXVBQFLeY4xEGkQkc2vH58v0ZAwmIhweLa4aLq6nTMN3v39B3jjZ29V5e3N89xNjmedpm7LWMptV4uR56k8F69VxzrnkOfmbBvVsiq88sStKvWYraDvOJ5lVSZOtlzjUzfuZSpXdlLAASoPNlAq+KRiNMTLXnXRgb4HZgpsHlPnHItr24anj/jIz3byt9+7r+P5eTGfNSsD6pxXDcSp1Bu+gXbTuTI/fHAa2SFVnbEbZU1/Wis1pypcQsBgUa9qrFmvgoVnp3Vbt5Vnc+30sWVrrm2j+1WZVktTSSvPT9o6ygBFJipxnU50ztpo3vWbWraNRqVAScfIOMqzUY+ldFPEdZ1twxBVNXaUczMsyDTrhhJcuGGIwUSE63dO9p7u1BBfozzbr/nBZD0Khd1jb7d9vaLiUPwmu90Q3FpF3eeBta7fvMW2sTIBgztOZAkJiDZK/pMB4NcvWsc9h+cdm1U75FJqBSMXG3fI/8RCmYNyDesaJ4hFQhzzqwmh23c8rsaCoaFh972APD/G4RRKae97rpaV59CQZ9C5Sb0ZJjrYNsa1GnTBxiGkhJ1T+jNGVfEozxGttg5m9CDcVZ7nEg0RpkqYNYOqsT9hs+qcvEGDJj3UApocdNv5OdUF25HnqvJvy0ZrYJwhz9q28e+/2M1dB+dIx8JceXczeT59VZrhlKugDcQjKl2Xx7YRjVkeLOC89Yo0Or7nzFrV4VmWgJlCxVGw8iSoh2Kttg1j5RlY3drpmk7SqD+LKs+6jZUXmK+5AT1TJU36l1N57lR+N5LQBXcajvL8lVsOsnYwwXPOWc221QNsGE5yrVbzvMpzXqSIhASPP22Yn28/0d3xdPJ1O8c6pIOwPLaNFuVZ3YcTC2ViwqM8RxIMhGrEDanWbc5YNp64dYxitd42LdoJqdrNVbtzfOP2Q9ywa4qv3nrIUp67CBbU9oMm20aHTAKVWoODMwW2Dqp2MFPT7d3xPOscq9UKIhzj9FXqGGwFfcfxLM8+exUvuWAdn7lxHwulGmNp97kx5Llc8lOe/W0bjXCM3SeynD6uSEJMp7trVJuv3W37ZvjRvce6J4tANqeJiG4XTq5nH+vGzXtn2D1dRjSqrifWSlU3X6xyxwFFonI1Kx9+veymrltCRptySbWZ1JgiqLm5SfXMFGfbep6z1QjhkKBalw4BXhRhv4BBpTxfsjHDgChxpBDRQXL6HjXqqq8yfY9N2CrFVuU5Oaqe+UremlgPd3d8nvLetcIcC6RYN5QgEg7x9DNVNifZM3meU2QzErPIcwd7U27CXRlytp/z39ab0chGN+TZ+KszPuS5XlP32y+9Zx+U553Hs2wZTyOsysNevORC1Q7altfWmI0ronsi7K4YH5svclCuZrB4iHWDcVVgygs9zsaT6vtHR0bc9wLy/OhGvlzjIz/dwe99/jYu/9A1XPjuq5pnaV1UGaxWSpRllMFklFW6s5/KlVuXBKsF9i3Al24+0PT56by7lHrBBk3uJnRDbaM8DyWjCCEYHNAEossiKbVQHBAOeU7FIgwmIi2VBs1AvyA1Oeg2aHDhqBpAvBXcHLWs7F4P81oopDrLuUPq//Q4t+2f4T9+sYsrHr+B33vG6dy0V6XLkVJy96HZJtUZIJOIUmq02jbi8ebjOGed6ticyYJPlcHj8yWiKPJVJUI1MuCjPFvpkbyqgpnoOMrzXOt1avE8KxwrCNYOJjh33SCTRUOel9Hz3El5tjMSlBfIkuL6XZO8+rJNRMIhhBBcfvYqfrl7SuXKtnOjltT2A4kIzz13DfcenndL9HaCX1YZv2P1s220U54Xii5JNuQ8HCMZqruKtFY2jQXlyacrIuCXrk5KybVHVHf7W08/l/vf/QKeceY4P99+wi1c0kOO501d2jYOzuSpNySbBxUxnKlo+5HH81yvlYlEY2wcUcdwSGfcmMyWmc5XOHvtIH/yvDMp6GCzMUt5TqXVZ8odbRvWda9XyNcj5Ct1nnmWarcxrTo1PBOgQrXObKHauciJB1lPoOe43Z96sG8q51R19T73hKPcuGuKuk6vlauKZnuDM6nyrA52gYqeaAwOjVAOpajmZmgU55QgkBpTpKpecdPiAblG2Bkbug4ajLSmcTTEezisjnd/LqSeD9M/m/NzbBt2to2iE2A+a9s2QJFTO79yN7A/C1CcZ0GmnLHlGWeu4vhCiVLYp/80h1Rv8IdfusOZ5KhzmHNJcLe2DdOHLra9t0S5jagVMN0OZpzIrGu1bZjnxY+Yd2sJ6QE7TmQ5Z3VaHXObyfuG4SSXbRnh23ce5tM37uOPv3oXr/7ETcwVmtv7iYhqL3sbq53Xji+UOCBXE6lm2Zap+gYMNvRzk9SBx+tG0k4p+iDbxqMcH7t6J/9+zW4OzRTZOJJioVRrLpbQRZXBerVMhQiDyQjjvsqzCRjMs3OmztduO9j0+emcG8QzNhBnw3CSB04Umz/rUZ6HkqqBDg4pAiG7Is8FyiLO+ECMWMRtPmsGE66NwTmmCpGQWJry7PU7gztI1SvuOVmFKogmYUHZFbKRYf70a3ezcSTFe17+OF5+8XqkhB/cc5TDs8rTeslpI027zyQiFJvIc4UaEdLx5pRVg4kom0aTFnluzfV8YqFERCiiUZNhlUXCm20jp1ci0j4Bg+bvdp7nRkO9ZgapxLCTzeFoPsRvPmEjqzNxThg+s6zKcyfbhh5QKqrowPZZgZTw6svcqOnLz15NvlLn9v0z7gBUyUM1T1amGIhHeN65SgXqyrrRyXNqH2tCK89SKoWnWmgiz5/95T6+dOckILnhwcPERDNJJhInIiuMJrRCqdueybTxpK3KKuSX6u1/7z/O/QuKEIyNjBIKCZ577hoOTBeYMBU+u8nxrG0bqwfjVGODSERH8rxnUhGf9Sl1zFMV/V1Ov6ImeI1alUgszkA8wkgq6mTc2HlC9WNnr8lw1poML9UqlO15TqcUAaiUffoPW3k2ym6tzGxZEIuEeNo2dc1iOmBQei0GOqPDjhNtis94UKrW3eMw5FmX6PbLuLF3Ku9kGXGzErmp6n6xfYKhZJQtYymVXSKSdAmiabv6Wt5/cKK7csZARSvP0ViCWnyIAZnl6NHD6s3kqNsuy1nnuMpEWTO4OHlu8t37lOc2ynO8oe7NzvkQMjnsPiuGNBriYk3qQ7UiRamOYaagj8GkBS1Md16V8oNHeQ5VFiiEBsgkVJ97/np1HfKh9uR5IlvmJ/cf58q7j7gv2sKCDxmeyJaar6GP8vy9m+7nD754e+ukyylEtUTl2VlZXdMaMOiQ5/4HDJaqdfZP5zl3lcf66IOXXbyBvZN53vvDB7l+1yS37JtxKxlrHEZdv/uL404+5+PzJQ5K9fr5iWmO+nieKzq3ezKp+oD1w0m1Wpsc7UpQeLgQkOeTxPH5Ep+/6QBXXLKRq/6/Z/LhV14EuAoR4PpRO9g2FHmOtto2PMRAVgtMVyIcmG6OiPcG8Vy4cYj7jxvybLJtuMrzQrHKoCbPo5o8F/2i5b2oFinJuBMsaLB2KMFxj0o4nS+zbfWAqzx3S54Xjrb4nbcfX+Cq7dPu+fgVMoimlBcN+P6OEkfminzkVRcxEI9w+qoBLtw4xJV3H+XOg6oTvcSjPA/EIxTroSbbRk241QVtqKDBDsrzQomYVp4rRFQgnJ9tIzGs7nG7gMF4RnXS3mtXXgCkO0CEQs4krUCcV166kbF0jOMOeV4h5dm0Vz1RnKjGGU5FnbKvAE89Y4xYOMS1Oydd5VlbWOYaSTKJKGetGWDjSJKfP9SFdcPxnPoQCq/y3Kg6qrh6XQ/O5Rof+dlOjheUUn/zzsOsTYWa968ziWweCjed65G5IuMDMbatVgOeN2iwVm/woZ/uIDKoJ0J6QHjOOapfuOeEJm3d5HjOlYlFQmTiEeKxOMVw50IpppjP2qR6Lk6Y0rdhlzDWGxJRrxCLqf5j02jKmQCYYMGz1yqV+x2/dhZP2DzChRvde58eUOddK/sM7EZRa1Td9l0rM1mUPOX0MVI6EDee8Feei1rpdiqAGlQK7uTTwmS27Dx35r4ZUcFPed5vk2cni4+eUIgI1+2c4FlnrWIgEVEB0RErcM2jPF95xz7+9epdrdfAB04xmEiCUGqUQfIcOqJXzYxtAxR51s9uWUZZrRXZdhk37j8yzzM+eA037512r4FnRcYoz/GauqYT5ZiKNTDnZX6bfs3yPIfqZUrEGIhHXOXZJsC2TaobeJTnWHWBWsyd0JpCPOr4/McPYx9pInO2pc1DnhsNySs/fhP/73v3q9el1ClDV1Gs1PnXX6o+59CRI1y7Y5KX/tuNzpgBWLYNH2LXjTpsK89Oqjq9T/O8tCuS0qh1TqHXA3adyCElnDe++OT9tZdt4su/9yRu+Zvn8oO3Px2gZbzf3lAWi/trGxxv87H5ElNRNeHeFp30LZRSKattU0Z5HkpQkAlKKR8B7RRCQJ5PEv/+i11IKfnT550JuIqMUYgAN21aB/LcqJacVHWZeIR4JKQ8ep5gFKnzbGZLNeb0zL9UrZMt15qCeDaNpji0UGv6bDvleWxYdXS5fBeqSa1IQcZYO9hMnldnEq22jWyFzWMptzPsIlq6Umsgs8da/M6fvmEff/6t+9Syaa3s+vjsvLhm5pwc4f7jeYaSUcePDfCyi9Zz35F5vnPnERJRlXLORiYRUblUreVblaYu3HKc564bZN9UXg2ojvLsesKUbUMrz4Qphnw6/9wJd2LVLmAwmmwN5oHmaHINqclzJpNh81ia0XSM43mj9i0jee60NGvugSbDk5UYqzPNtpd0XAWmXbN9wt1eW1hmGwky8QhCCJ537hpu3D3l5pNth44Bg4Y8D7pqXmnBKh2uXvvOnYfJlmq88qlnq/9//xL+5FmnNe9f+0c3DLSS5w3DSZKxMOMD8ZY8yd+64zB7J/O88MkX6mukBqkNw0nOWZvhtqPlptc7YTJXZjwdQwjBQDxMNjzUkTzvncyzOhMnKdX9d1Ru89w0qpxYKKkiKto6sWkk5VRM3HF8gbF0zJnQbx1P8+0/fCrrhtzJUFT7lWt+RVLsJX99zUvlIvPVMM89113ejUWj1GSoxfrQljxf+wH47Itavu74QsnypKtjHk3HCIl2to28Sk8JLcrzgxMFpnIVnn3OKlLRCIVKXbVXx7bR7HmuV0pdK+S1SpE6IQhFiA2MMiJynDiuYzJMtg3Q5Fkdd5PyXPAnUPu1XfD6nSYg1y9VXZ1YJITQKmeOJJO1lHte5nd6XLUTq0hKpF6iFk6wOhNXcR3meEGR015tGw7xVm04Uc81Ee8R7a3PdUGeHzy2oKxg0Kw8RxPq2dLk+Zd7pjgwXXDbVHlBXaOBNbzre/fx0Z/vpRBK88bHD/Odtz6VaETw6k/cxJdv0VbJxWwbi3qej6tVwtS4ZdvQx+IQ8zbKs/39JwnTVreNGPLcXnmOhEM8bds4awYTrNZt0GvBuL+yhhdV/4WfNx7P7omcs019UJHqDaEZqnXppLA1qFbK1KUgnVL9z4bhJMcZYSa5BVBpZRerevpwICDPJ4GD0wW+ftshXnPZaWwaVQNfNBxiOBVt7qijCTVId/A8y1qZik5VJ4RgVSauUr3Z1aukRFSLThLxA7pBmc7DDuIZTcfI1zpn2zDkefVwhqoMU8x3pzznGxEf5TnORLbcNKuczpcZG4gTG9AdZBfk+V3fugORn2ypLrhQqrJQqiHDMY9twybPmnykxnng6ALnrx9EWHlzf/2i9QgB1+2c5MINw0TCzc1/IB6l4FGe7RzPNs5bP4iUelCPZ9R3ezzPw6aGQjROIZT2t22YpUI7xRtYS4Mp/0hzO4+pRj6iJgobVysSPTYQJ1+VyFB0+ZVnEfLv4I2SrFXBY+U4qzOJls2eddYqdk3kmMjX1YRIK9UztQQDCXW9n3fuGsq1hhtc2A4dAwbVdXvbd/byw51G3cm69yKeodGQfPZX+7lo0zCb16hrd/qgYMyMJY7yrDIXbMiodpPT2ReOzBXZMKI23jSadPzCoCa2H7t6F5ecNswTn/Y8eOofwxnPdt5/3rlruOeEbm/dZNvIVRxbVyoWISsGFyHPORUEqNvTsaJu847nucrh2SIxUSOh1d+No0mOzBZpNCQ7jmcd1bkt9D2v+5XWtrMI6HtRKBSoEOXZZ7vkORQSVIkgPSppsY1tozF3CLnQmj7rxIKVJUWT2nBIMJpurTI4V6gwW6hSwYqlUCcCwDW7ZhECnnXWapKxsCLykbj77HmybcSosn86v/hkDy2WiCgIQTg1wnikyPyU7j9SY82kSj+7FaKs0c9SO9uGSQ96yz7tIY4klFrZcAMMy7UGiUjIIWzVyAD7chF1XlI29y3RlEvoGnUisgKRJCPpmOV5PgnbRiylJiGFGahVSFBGJK1VjViYWDjEvEw1W38smPGvUms4NqMm5Rmaqgx+43Zlj9k/nVfjlWOfW83dB+d4wflrSA2Ok5E5zl8/xA/f/gyetm2cd333fmUNMZOJJds2jqt+P6QrwYYilm1DH/8KkOedJ7LEIiE2pPU17dIiEY+ElTDjEcsmsmUGTzsfEA55PrZQYmhoBESYkZBRo5uPv1ou6Sq+qt9fN5zkDyrv4Kot7+Q7dx7mOR++lj/9+t09BQ2vBALyfBL42NU7iYQFf/ScbU2vjw/4JOVPj3culFKrUBVRpwGNmyqDdp7nWgmBpKjLV5qgROPls4N4xtIxS1FpzbahbBvq/TWDcUrEKBV9Uk15UK8UyDZalec1gwlqDXdWWW9IZvIVxtMxBoZ159qFbWNuQi9depTnnM7R3AhFm20bkVby3EiPs/141vHL2cf41DPUsZj8zjaU8hxyB/B6lYr0t224ZbqzbpXBXLNtY9RYyaIx8iLdatvInXCDVLzKsyG70YQ/efZRnmdQg864jlY2kykZjru2Hyn5wI8f4mu3HmxZPusapuiIX0EPhzwrJfloMeooFTZO0ynKJrI6a4GeeEzVEs71fvLpo6wfSvDlWw62fL75Oz1xAd5jFSFuOFBg55x+rTzvKj2JQa7fNcneyTxveuoWa4AquCqolW2DWom1esw8MN9ASsnRuSLrtRK7aSTVRJ6vfugExxdKvOPXzkJE4vD897rLyMBzzl1N3lT96ybbRtZNEzcQjzAnMm2zbUgp2TOZ54xVA87S+1wtpsidFWR5ZK5AlBqppHsOlXqDYwsldp7ILU6ew1EaCOp+g7oPeS4XC8QTCUdwMKja1T318RvleeeJbFN7PXD4CLJaaCKFoCatceNVtybW4wNxJrPN7WPflE4XN6zOr2qqG2rbxi92uRVIU7GwUp4jSffZ8+R5jlFDShzi0AmyWqIu9H1PjjAi8hTm9fjQYtvQ5JAoa4Y62zZMppd7D8/p+9y6KlOq1klEw879uPjMTdw9JV1rjd23xNKubaPmjh8jqZibbcMQ5cISAgbBqVBYK6jPxtLu8yGEYDgVZa6R0gGUrRM0Oye5Y92wlWdQz1xhlrlChaseOM5wKkq51uBEtuT0VbXUKg7OFJT9yiLbQ6kon/idJ/DELaP8+bfuZc8RfZ/8yGZXAYPH3NVKIRRR7ta2Acvme95+PMuZqweINMx97d5fvGYwwQmP8jyZLXPO2gzDqajzDJyYL7F2SK2eDgl1jsc8n6vpeK+MFk0G4hGqiVE+dO1x3vGNe1g3nORvX3JukxB2KiAgz0vE7oks3737CG946hbHh2Ywlo61BqcsVqK7XqYRijkNxKkyaAa5WsXpxEq60z04rf439eJtz/P4QJwGIaQItyjPMhJnoVRzlOdVmTglolSKiyvPtVKekoypB8KCiY422RFmCxUaEsYzcUYHBykT6yrbRqKoPa4e5TlbUgNaXUQ7KM/qmPLhYSq1Bud5yDPAyy9SQTDtyLO3PHdFhn2V540jSTKJCPcd0ecUSzcpAsfnSwzF1b2MxuLkSDUR4I9ft4fC7DGP8uzjee5BeT5RV+c7OKhItGkP9XDCGXRmC1U+cf1e/uo79/Fbn7qZ/VNdrDZ40amCmMm2oSeKhwoRX+XZtL35YlV9RivPk9W4ozxHwiF++8mbuXH3lOPd9cUiyrOMD7FQqqtiPaAIiWXb+Owv97M6E+fFF6xrVne81iDtH12VUvd1/2yVmXyFUrXRpDwfnStRqytS94vtEwynojz1DP+KlxdvHCaW1ANlV8qzm5IyFQ+rjBttlOeZfIX5YpXTVw1ANU89FKNBSC23W3meD88UiVAnpZVnQ2p/tXuKYrXeYm9qgRBUiPlXKLVtG6UFFkpVGrUyY0Otz2ZVRBEWea7WJfWG5LTRFKVqw8liIqWkmJ0hhGwhKrOFCgknxaDb7vwEDUOez1inVsZMZUIaVSSCu48sOOp4MhbWAYM+ynMoTENEnADT7ccXt7/Jaom6aVfJYdKNLOHSjJroxtKuxaiSU6n9QlEahBwLVDvl2WQlqdal8un6BNOWaw3iUVd5fvaFZzBZ1e2+NNeqPBulVfdPoWiS0XTUzfMcjuhsHTOqn4okWzMldYKuUDgzo8bHRGa06e3RdIzpujm+VgFmRhcIG0pGVX9cq7TmmtZk+Mq7j1KpNXjr5WcAsH+q4PRVx+qD1BqSrePN5BmU2vqJ33kC64cSfPbah9SLS83znD0BmXUUKjX+4lv3UIumrWwbK2TbOHIH5x75NmevybiTow62DS/WDSWaSHCpWidbqrF6MMG2VQPsmcxRqzeYyJZUPYjEEGmpzs1r96hXVLzXgBWYf+66QTKJKB/6zQv57h8+tSW4/1RAQJ6XiF/tmUZKeMNTtrS8N57xU547VxkUjaqyJGg45FkIN1en7sQSqQxrBxPs1+TZEPVxq2SuIU5KqW32POcaUeoN6RCYeCRMRSSo+gX8eFAv5ykS91WewSXPjhqejrNmKMG8TCG7UJ5TZT2r9yrPJTftm1Ig2pPnyYYa7M9f3xq08opLNvDB/3Mhz9XZHGwMxCNUZQQhG9CoI+sVytLftiGE4Elbx7h+55RaTgo3p4Q6vlBiKCYBQTwWZUHqpXOtmO84NEFKFigntCofTal73NBLvtWiskaEY23Is+7YrQHiYEUpl+G4+j2qled6yD02k1btZRet54GjC7zgY9c7FdS6hlGe/WB8oJoMzzaSLZ5ngOGUantzhar6jJ5YnijHyVjX+1WXbiIaFnzxpgMt+3C/szkuwHusVe25P1HRnXNpwbFtHMhHuG7nJK978maVPcZWd8z9tAPDamVnRWHPbNXJ8bxh2FVt6w3JsXkVGHPdjkmeddaqpiI7NkIhwSXb1ISuHuk8eDXMao5WntPxCNNSK88+S5om08bpq5R6WI+oc5vNV5pyph+ZKxIXdSLRuD4HdRxX62DNs9e2El0vaqEY0pc855wy15TmuGHnFDGqrB1tbT81j/JsVGeTUtJYN/ZM5pQ3Fih54jQWijUGo1qNjthiQqw5iBtFnkPCJc/TC5o816vIUBQphTPJVspzTRFyQyYtcl4PRR2vdYs/24NGQyLqZRohV3mOyCprmVYZBowaCdqPq4QVUH3UQDzS3raRK7N5LEVIoIIGfUqHl6p1EpGwQ54vPXuLyqMM6tkuzanPRZNqQmfIlZ7Qh+JpZdsoWMVakqOubaPbYEGD1AgUZ5idVn3AwNBY09vDqSiT1bh7fB5M5yuMpGJcuHGIew7NW8q5RbiSw1Cc5Ru3H+L89YNqooz2iOu+al9R9Zunr0o729sYScf49BsvI67jB2TbCoOLjKPZY5BZw692T/ON2w8zWY64dg39+/sPLbTYG9y+6eTJc+X6f+Wv6x/nSZlJy8Pdo/Js2TbMpG1VJs4ZqwbYM5FjMlemIXGU53gtSywcasm4Ua+VW2KLPvemy7jxL5/NKy/dRKhN3/lwoyvyLIR4oRBihxBitxDir3ze3yyE+LkQ4l4hxLVCiI369YuFEDcJIR7Q773a+sznhBD7hBB365+Ll+2sVgAnFkpEQqKFRIKqaNWSkH8R5TlUr6hlXWsfM4WKUrAi8SblOT2Q4bSxFAdnjG2jVXk2Fg6l1DZn2zBlZg15BqiF4tT9An48aFRVns8Wz7O+DsYHNWUd09rBBAsyRSXXIUk9SlEarKoJRn2gmTxnyyZzhVd59mTbAI5UUsQjIU4fb10Gj0VCvOqyTUTDrU0/k4g2BQ/Vq2XtxWoNGASVLeHIXJFdEzl1j/QxFSo1sqUagzF1fMl4lHl0R6sHrFBBe4K1WtyiKlSL6nyE6GzbsBTgPXm9D61gGpJVFTFnv8dm81wdeyfvXH07V7/jWQynonzz9kO+59cWHcmzybahiFdWpnxtGy3Ks86SMm3ZNkB1xi++YB3fvuNwU3n1JvgQBAd2ye9SzHnNKM/fuG+eWDjEa5+ogwPtAcq7uhGJQ6NKpK6u5a7pmpOmzmQTMartoZkC9x6ZZzpfafL2+uFJ55/JzsYGdojTO243X6xSa0iXPMfCTNYH1KTLp3rpXq3Wb1s1ABMPUsmodIFzhapLaBuKPEepOxk4jIp+wy71LJ61xkcF86Am4v6++nLOnQiXF/j59hPERZXx4VZCXhdRhJVJwHiHTWYPQ0qv3THJoFB9YT7X/FwslKpkIpo8W2ksxwbizUHcqDR1m0ZTrBpSk+3peZMZpEZdp300GVRSMRMwaPV7FnmuiRhxUeWctZlFgwazpRoxKkjzrOhneKs4Rjmq/vZm22joc0lEwwwlo77VEkEFlG4ZS/O4DUOq4qs5Rj/bRnkBEITjA1xwumr/2bkpt7y2IfGGDOrJUSSeYjQVo1JrqGsCympibBu9WDbAUZ7nZ9UKyuBIM3keTcc4YVaNfMjzbK7Mn4W/zrPG5thxIks5q1diPLaNan6aB44u8OrLNrFuKEksHHLJswizY0H1SaePp7XyPNfyXWesGuCFZ6l7cyTvQ5+8sSte1MpKoc+s4+5Dav/HS1GyC/q8tAL9lz/cy5s+e5uasDn7NjnxT962UT+mqnY+c/Ir1ipn98rz2sEE0/mKk/ZwwiLP21YPMJ2vONmojPIsSvMqK5dXea6WqcowGUt5TsUiqo2ewliUPAshwsB/Ai8CzgNeK4Q4z7PZh4EvSCkvBN4DfEC/XgBeL6U8H3gh8DEhxLD1uT+XUl6sf+4+qTNZYRyfL7M6E/edFY0PqGwYpaoVOJJepWbmjXrL9gBhWW1a6hrPxJFS+7nCsSblOTM4xObRFAeM8pyvkIiGSMXcxmb8rjURaVGe53zIs4wkmlIStYOoFrVto5k8jw+oiHbjgzLkeXwgzprBOPOkqeY7JKlHpVAal9OUZZR8uHmp2CjPqgKgTZ4tYqZJ4558inPWZloCAhfDQCLiIc8VKvjbNgCn1PQ12yccVRLcZalMVCnSqWiY+Ybp/OcAiBYVeTZqR4uqUC26A58hz7a6WJxTQV86vVml1mBnLtG0L6M8l4k6x7YwcYBtoaOs3fst1gwmuHTLqFJrekEn8uxkz1Dnl8UteGCjiTxbJMQUSbHx+qdsJluu8T07j6sNR3n2t23kQ17y7No27pqoc8lpw042iRblORx3vd2GROsBbtdU2VGeN2rCeZohz7MFrtk+oQPO3AI2fnjaORv4zdBH+et7V1Ott68c5zxTVsDgRF23Hx/rxt6pPLFIiPVpCYdupbJJpZiaLVTUOelVqcOzRSJUnfOLR8KsGYxTqNQ5bTTlpJPrhHo4hvC7/pW8my+4NM/1O6dIiBqhaOuEqiqihBqtyvP4QJzTRlMOKb12+wSDqL4wn21WnueLVTIR3cfa/elAnGK13jQB2z+VZ+t4mhFNnudMWe96VeV3j4UdUSAZDVOuNZStwsBqt1UiZCINzl8/tKjyPFesKJXafF4rpFvECfJh/VzF0oBwsm3UtfKciIYZTEY7BgyOD8R50tZR7j40R0VYtj+Ncq1B3AQMxgdBCJ50vrIx3LFjn36+h9XGdsCgJlnRRNrJgjFjF0opznS2dLWD/mxuXrXh0dHmyeZwKsaxcnvluZad5Lcq3+TXcj+g3pDsP6L7iSbbxigU54hFBC+7aD3hkGDTaJIDUwUn9mTvdJGRVFRVnTW2DdPnSqn+L8ywNa3a+R1HfUhyNNm8guiFk6ZuLXcdmuX0VWnKoSTHJ9VENZudoyEF68dH2XEiy7u+e7+r7i+X8lwtEl/YT17GWXvgBzC9u3n/XWDtkLofE7q2w2RWXYtVA3Fnwnnjrmm9rRu3s3Yo0VJlUPooz48EdMMungjsllLulVJWgK8BL/dscx7wC/33NeZ9KeVOKeUu/fdRYALoPJI8QjCRLbV4nQ2MMtSUkiW9SlWPahPcE2lUCFvLjKaS1ITJ9VyrUCiozn1kaJjNYykmsmWKlTpTukCKbahPRMOkY+HmpdBaEcJx5kvqwR5sIs/JrjIyhOsl6uFESxBdJBxifCDuFEpxrCQDMdZo5bmhA0LaYaFUZa2Y5bgcIVt2O59qveEMpKoCoJ3nuTVg8MGFqFNCuxc4nmeAetVZTvILGASlNp6zNsMvtk80lcE15HkgKiEUIRULM1vXHZO2C8RKqrPcntNk0w5UA1d5BjUIyIYn+GpOva7v+f7pPMcaeplSD16pWJhENKTJszqm0uQ+9XVHb4X8NBdtHOLIXNFZvegKndQlK2CwHopTJeJr20hGw0TDQivP6twb4YQiIYnmojSPP22E89YN8sWbDvhHXDvKs79tw+QZz2MmMNq2EY5xokBTisfmgMFys3fTnFt5gZqIsnemyOHZIqlY2JkMrBtKEA4JDs0UuXbHBJdsGnaIRjsMxCP80/+5kHsOzfEvP93ZdrtJZ0LqLuEfq+o24kOeD80U2DSSJHz4FmhUCZ3xLADLqxpD1qocncsTptH0LG3SlQYXDRbUaIQThNuR5/Q4hCLUCnNM5UpEZbV50qtRF1FVJlvDKM+JaJiz12bYcTxLvlzj3v3HiekCRMUW24Ymz6EIhNzB2LRBk4JPSsm+qTxbxtJOftn5rH72GlWqMsQZqwecPtUIE7Ww1edbKnSZKIPRBueszTCRLbuZKHwwV6gSo+auNGrynBFF5oW+3kLocvI5qJepCXVvkrEwg4kICz7kWUqps7HEeNLWMSr1Bvtmzapjsz9VKc9ZJ8/56RtVjMm9uw82Z6qIpZw+qVZWJDqWTDOq8y87bUmrx02Fm7pFUgUMlrJtlOdUjMNm4utDnstF9dr6udsBOHhYZ2HR/eCeyRzf3V4gKiv8xvmjihyj0i7un86rFeGB1TozjV5lSY6o1TATWHzN++Gft8AHtzJ+139QlDFuP+QTh2H6j3ZjqbaI1FOruefQPE89Y4w14+PUSllu2TvNrx48QIEEn33Tk/jT557Fd+86wpdMwLR3jNh1NUx1l1e8CZPbCdHgv3iVGldu/i+9/17IszoWs9JsbBurB13y/MvdaoxbZ5HndUMJji00k/+GTpbQq9j1cKObo90A2Ou6h/VrNu4BrtB//waQEUI0PQFCiCcCMWCP9fL7tZ3jo0KI1t70FMaJhZKTc9MLY5loIiQDpkS3v3UjQpWQ1RkbJcwp0V0vMzWjlNuxkRFOG1OK08GZAtO5ijOgeo9DBcBZ2TaiCafjtZVnEU0SqruBTu0QqZcIx/0fsjWDiSbbRiQkGExEFXkmjSh3VjgXilXOEEc5JFeRtaLJbbWoWA958jzbtg31QB+upH2DBRdDJt6sPDdqFaoyQrqD8vbsc1Zz+4FZlXZKkzdzDVIRqWwbsTAzNZd4ASQraqC4eybWdOyu8lxwX7P9iAaeaPJdJ3I8IDdz4Pmfgm3PA5QveywdpygtP/bsfvWebMCuq7hgg9rHvUea702t3mifGqijbUOfZ2HasUv4BQwKIRhKxpgvVtxUZ7pggHeyIoTg9U/ZzPbj2eYSvBpHs3qi1UZ5nm2o61gjQiOSdG0b8UFm8hVG0q1tyAkYtCdnZnJbWkCG1bL1Lftm2DCcdEhWJBxi3VCCuw/Ncc/heacQymJ48QXreO0TT+Pj1+3hhl3+fcSUMyHVynM8zEzDlOhunZTPFiqqQMi+6yEUIb1NK895M/GMUCwVkTVTUc+97sZ+smiwoIYMx4nKSvNqGygPZ2wAEkMUs7NEqSOQvgFljVCEkE2eq+q5T8bCnL0mw76pPNftnHT8zgClfHO7nS9WSYXrTaowwFN1JcOfPaiUv4lsmUKlrvyt+r7O51zludwIK7uLhkOehdVWrO8oyQgDkTpn6evVyboxW6gQF1Z/b5HNqYZlkYkPOLaNmlaek8a24ZNtY6FYo1JvsGogzmVbRxECtk+aDCKegMFISD3H2h4iNIGfnppQ9jpHeU47ynMhr65PIpnyV56NbaNnz/MoyAbhBZVCTniU6+FUlPmGqVI71/LxWkG1gejUQ2wbKHNiUlnGGvEh3vODB3n+R6/nLv1I/f3zXDvg5jFFnqUuzb1Pr0QArVUJH7wS1l4IL/xneOE/82+r3u3bFy2qDmvie7QYIleuccmmETatXc1QqMzbvnIns7MziMQAp42l+KPnbOPZZ6/iPT94QH2XTcwnd8BXXgXXf8j/ezrhxAMA7Bx+OuJxV7icpEfbBrhC0US2TEioGKf1w0nikRA7TmSJR0KKZ+gKluuGkpyYb05pS72iYrMeYVguqv9O4FlCiLuAZwFHAKcXFUKsA74IvElKadjZXwPnAJcBo8Bf+u1YCPFmIcTtQojbJyc7ZKtYYZxYKPsuR4OrDDUFDabbk2cpJVGpyuMarG4q0a0sATOz6mEdHx1hsx7cDkznnXzKXowNxKgYmwMo5TmSdJb8bPIcjidJUnG8S76o14hQI5rwT6llBxGYioehkMpZvUCaSKVzFHpufprzxAFul2c7Ng1wM22MpKLk6mGVSs6cU6RVNZyRgy1p6rpBJhGlKrVaVa8ga+3zPBs855zV1BuSiYJ01AaHPIeVmpeKhZk25FkT4IGqIju3TYYUSfWmIaoWO5NnTx7T3RM5hBCsvvQKt3ocqg0UGxHH7x7LHqaBUGW/t/+Ix20YRAi412PdeM3/3Mw//ODB1hOuldW+2to2zDMhKYTSZBIRkjH/5bihZKRJea5F1UCeSbRe71+/aD3RsOBnnoqD88Uq/+dTd+hj81eep6pWYFdUV3osZ5HxDHPFKqNWoK1T5c+kqrPbl1FLy1nn74eOLTgeYYNNIylu1KrL5Yv4nW383UvP48zVA/x/X7/HUXJsmBy+dqq6GQx5blWe5wpVhlJRRZ43XkY0mSETjzQpz/lSiYjpqpuUZ3VO3SrPROLEqTrPqoNKXpHA+CCV3GxLDmYbdRElbNs2KmqoSMWU8lxvSD5z4z7WxlxiUi40k9SFUo10uNY86QHWDSV5wuYRfnjvMcDNtLF1PO1sm82rZ69aLVPWyrNBUk+gayHruC3yXGxESIfdzCSdrBvzxSpxKoR1cRk7sO141epb4xknYLAqjG0j1Na2YVYmVmXiDCWjnLt2kAdO6HZkPRtNyrPxVmsFepA8xYXpZuVZk+eiXvmMpzKOJWzWLpRS1SpuB9vGzXuneff3H2iemOtCKQOFQ6pwjKfS5mg6RtbEjHiU53pD0ii51/qKkX3MTit19xO3zfCZX+7jVZdu4p2veLI6zLo7Bm0ZU1lcGrlJqslxJrJllzybcyjOwvwRmNoJF74anvwWePJbiJ79a2w/vtAah2HaRDtfsgkY15Oai08bJpLMMBqtMJWrsGmgQWpA9a2hkOBjr76E9cNJfv8Lt3PInGa1AFf9jVLGcz0GewOceIASMcJjW+Fpf+K+3ovy7EkQMJlVHCQcEoRDwlHw1w0llLCQGIJakQ2ZEJV6o3lVvl6hIR6d5PkIsMn6f6N+zYGU8qiU8gop5SXAu/RrcwBCiEHgR8C7pJQ3W585JhXKwGdR9pAWSCn/R0p5qZTy0lWrTg3HR6laZ75Y7UCetWpsB6h0IM/5cpWYqBOJNadWAt0hRmJQrzA/rzqOdeOjbNZ5cg/OFJjKVpoKpBiMpeOUpcfzHE34kueBgUHiVLjdbzZtoAlYItmOPMdd8pwvO2Vxo+EQ1UiGWC3nmxXAIHT4FkJCckvj3KZB2OR4PmtNhnIjTK1a9rdt6PROMwxxbhcZArxo9jxXkbUKlQ62DVAlvoeSUY7mGs51Pj5fIpOIqCCsUIRULMKkQ54XqNYbrG5MMkeGmZIm217lubYIefYoz7snc06VOxuj6Rj5RsRRngdKR5iPrIJzXgJ7fkEmXOf08bSbcg+13H/7gVkePOoz2THFRdoNkFbGiBz+mTYMhgwJ0ANOJaI6XL/rnY5HuGTTCDftaSaJN+2ZJlv1FAMyqNegkuN4Je48L5XIgGPbqMcySAmjKavjDsdUlpNKwUd5dlcPQtazapceB5WuDtQEuJdJXDIW5t9/6xIWSlX+/vv3t7w/lSsTDgmG9XObikWYke3J83yxytpYGY7eBVufCcBwOsqcITyhKIVikahTztq9DtvWZBACHtet/SmSIC6qTStGgCJesTQkhqgX5lzy7GPbaIRihKStPCtSn9S2DYDbD8zy1A1u+6h4ctMvFKskQzVfcv6SC9ax/XiW3RM5X/KcL+ggxEKJqgyr/NgaRnmuiNb20GhICvUwqVCd1RlVjn57B/I8m1ee50jcxDQMO+8dLlttKZ5xlGeHPEfC7nPjgZPxQI8dTzp9lAcmWpXnUtVKVWdS4oWjEBtgS7pKuLLQ7HnWRNCQ51RqwLFtzJhVDFMpsFpoa9vYdSLL73/+dj73q/3NIo2uUDhaOUIpNNCSP34kFaNMTAVNlnxWGnAtEk+NbKeqA9P/5YYTvPIJG/nH33gcgyN6Emtl0NhiiHJ+kjmh2vkZqzzKc2kO9l6j/raKGz3+tGEaEu7RQX8OnH68jW1D34eHJkoMJaNsHUtDLE28UeSvXnQOT1gbRVhp6oZSUT73JkWN3vw1LWY8eCXsvlq12w4ZvNpBnrifnXITG0YzsPYCOOO5al+RVg7RDoPJCMlo2ElXN5ktO+0O3EBbJzZKt6eNSdVe7KBBUa/SCHf/3acKuiHPtwFnCiG2CiFiwGuA79sbCCHGhRBmX38NfEa/HgO+iwom/JbnM+v0bwG8AmgdLU5RGILYjjwby0VTxg0zm/aJil/I6UCMmNtxJmNhBuIRZcjXynMuqzqOTGaQ4VSMwUSE/R2U5/GBmOsRhiblOSRosiMMDWZIhSrcsLOV3BvUSm6qPD+sHUwwW6hSrtWZtCqhAcjkMGHqzb5dD5JHb6Uiw9zV2Na0LGmI9NlrM1SJUC2XXBuCbdu48FX81+q/JzO+vq3a2QmpaJiqsEr1OhUG2+8rEg7xzLNWcWC+jrQCBtcOJtQ+wjGSsbCbaqm8QC67wAvDt7Jr4FIAth/L+gcMesmzHf3tozyfaSllBmPpOLlaREXsNyTj1eNkkxvg7BergW7f9Vy0cZh7Ds87atDPtbrrrSDlfC+0J8/hKKAGv3mZ8rVsGAynYirzgz5PY/PwBgwaPHXbGPcdmW8qTXzDrsnWCnEG2iJztBRzSGw5POAEDBqy3uRJFkIThqKP59m1bYQicWfyucFLnrVf+Nlnr+45sf85awf5o2dv48f3HW9JIahiG2JOkPJAPEyWlMrl3kZ5vqB+v/I1avI8kooxY65fOEqpVHbKyNvP0ksuWMeP//gZLsFYBCKWJEGFBVt5rtfUaoy2bcjSfEvpbBuNUJRwo5U8J6Jhto6niYbVeT9xnds+apbqWKrWKdcaJEXdd/8mPdmP7zvGPhNMOZR0yHOpXKJcq5MvFqkRcQgA4PQnFVqV59lChTJRUqEqQgjOWpNxK935YK5YJU7V7e/jGVWuGdhfTLiqbDyj8zyrIhKxSIhQSDCUjFKo1FuCS70BpU/aOka+rvsub57niEd5BkgMsTlVJtXIuanrYml1Dxt1yroOQDo9QCYRIRwSVpVBKzezT98wnSvzfz9/m3NP905a46Am3uvqx6hEW8cWk9ayGh1syYAxk6+QQfeZQ6exrXA3g+TJyzgXbV7F+37jceoZ9NowgC1jaZKUCNdLTGj709Zxy/Nstt9zjcrHv9rNk2DyDrdYN7y+ZC/0BP/+EyUu2jSsnuVYBlEv85ann0aiUWy+J6gJ3qffcCmHcrpd7L0WxrbB+VdAoUfyLCXy+AM8WN/krC7xsn+DV36up90IIVTmjAXXtmFnVTKTkHVDzWPY+oQ6fzsNn2hUVBXcRxgWJc9SyhrwduAq4CHgG1LKB4QQ7xFCvExvdjmwQwixE1gDvF+//irgmcAbfVLSfVkIcR9wHzAOvG+ZzqnvMEFx7TzPiagivk22DaPI+QQSZHVZ7Fi8mWict35QKW06DVo+p8iA0ER881ia+48sUK1LX8/zaDpG0a6Y53ieawwmo02ZQkLRJJlQlRt2TbX1us5q5Ts94E+ezWRiYqHMdK7MuEVKwobodcj1PDx5G/fKMygRd9RmgFxZDahnrlHkuV4t+xdJSY7wpfmLfPM7d4NQSBA2WQDqFahXF7VtADz77FUsVEPUqyX+4QcP8IvtE2rgrVchHCUVDTNbd20b9fu+zZAoMHH26wBV6aljwOAiynO9IdkzmWsa7A3GBmJkayFkrcRUrswGMaFSlm19hiI1O37EhRuHmMyWOTE1DbUyP9+uSNvxhVJrWzDHkBjiUzfs5R3fuLv5fSGcc5mtJ9o+I9CqPBdDql1n2lzvp20bR0q4aa9LFG/YNeUGeXptG5roz9aTzkpEMZRSpLq0oFQucFZIHJhqj/VKc/uybBsiEncGiI0e24apnvjsc5a2UvbmZ53O6avS/P2VDzR5iFVsg3usqVgESYhafLiFPJeqdYrVOmcV7lbXd+NlgCLPjvIcjpIvFNg4qAmWNYCFQ4Jz13WvmoejCW3bsBRRM1GOpSExSLiyQDLUmgnDQIaihKUV31BxPc/RcMhRgi+y6s00Su5k3Ey4E8I/IHHtUILLtow45HnLWEr1gfpY4lQ5Pl+iUFLlgs1qBaiJNeBO1MIxVV4ZRRzKMkpcF2c5Z22GncezbfvRuUKVZKhKyDzzFrk7URtwl7RjxvNcpkKMpD6GQT259AYNepXnbasHVLAwNJPnap1ENKR9/zZ5HmZjaJoQknnpzQJUcMnzwCChkGAkFVUFd8At0Q0tynO5VuctX7qDiYUyH3vNxYDOr2ygifewyFOPtbY5J2tQJNMyfszkK6SFJmJnv5CB+Z1sFcfJigwff90T1CTB+g6bPK8bSrA2rCY5RypphMC954Y8F6YVWT398iZFfCgZ5aw1A9xxsA15bhcwqIWsXdNlLtH5y5tKsVdyLbYVUGT9X3/ria6t8AUfgMF1aiW7l7LVuQlCxWm2y9PYqCf5DG1UK5E9Ys1g3MmutbjyrMaw1VG1vV1gJdSottisHgnoyvMspfyxlPIsKeUZUsr369f+Tkr5ff33t6SUZ+ptfk9bMZBSfklKGbXS0Tkp6aSUz5FSXiClfJyU8nVSysVrmp4iWEx5BkVamqoMGi9oJ/KcaB6EX/y4tew4kVXqQa1ESS+bmQ7ttLEUDxydd76v9RhUwGC9anxvJUd5ti0bAEQSJESV4wulttXcJnTAYibjP6iamefxBUXU7GOKDZiZ/JzvZ6kUGFu4n1sb5wA02TYc5XlNhgpR6rWKr21jNl/h6HxpScGCBlGHPFcRjcU9z6BSkVWIUq+U+fyv9vPKSzfy3lc8Dho1J2CwThgZTUNpgdS9X2BnYwORrU9j3VCCHccXfJRnO2BwWP02A0ej0RTVfni2QKXW8CfP6Rj5RhSqZY7NLLCWWcTwaYowbHsu7PhfLtgwyG+Hr2bVx8+ncvX7uGXvDJl4hEqtoZRhG47yPMS37zzCd+48wi17PaqnJsOT1XjbjDRgkWd97gVNntspzxdtHCYZDXPTHqW2HJjOc3CmQCQU0oGxHuVZX68F0py1NkNIQB51DyhnKYbU9W0KGAS3SliL8mzI8zxE4o6vz2vb+LXz1vC3LznXtxBPN4hHwrzvFY/j4EyB/7xmt/P6VK7ctJpj2mUlPtJCng2x2rxwO5z2ZOfYR1LRZs9zscQ5qxPO/0tFOJYkTqU5/7BdLS0xRKSaY23K+UDLPhrhGBHbtqGzbRji+sSto1y0cYixiNuHyrJFnvU5x0St7RK0sW7cvHfa9bdqxT1KjaNzJUqlMuFItCkXvEnXVzJk1PI7T2S1Moy7QpYt15w0hl7MFSokaE5Nap7lWZlxcoerbBuKPJeJOuR5KGWlebRggrRN356Oh63sQZbnuVZvqzyPVlRA5YGCPk9nxbRAVU9UMhn1mZFUzFWek6NN+wGVJek7dx7m1//9Rm7bP8uHX3kRL3rcOmKRUHNlU0u1Fj6xFCY7RjGU9iHPZQaM8nzWCwG4PPoAI2Or3PST4Ks8R8Ihzh1SfcbeQpINw0k3t7CZAOz/pVJ3T3ctGwaPP22Euw7ONQe/LVZCW09iyo2IW+XWXpWu5PyrCwLPPXcNudAgd8Uvg7Oer6ygjZpvEGVbnFAL/DvkJjaOdh8g6Ie1gwmnGNRUrtx0vc1YtM5DnodEgXgkxOFZ9/qEPQXiHil4ZOUGOUXQDXluKQfrBBK0kuecDlRJJJr396IL1iEEnMg3VC7EUo5qKO4oHptHU1Tr6sFtUc9Qto2KjFCt6OOoFh3Pcwt5jqYI10uA5Pqd/ktBRybU62vGRn3fN7PMfZN5lbPZmokmMkqZqLTL9Xz4NsKyzt3iPMIh0aRgGfK8eSxFXUSQtYqv8vygTsq+lGBBg6jxstYriHqVigw7g3c7jA3EOX3tKHFR5Sd//Aw+cMWF6tzrFQhFnYG3ER+E/TeQmrybL9efx2AyxtlrM0p5Nu3DlBuultzXjC/RDBzlBUA6pHr3hC6G4UOeR9PKLyirReaO7SUkJPFVW9WbZ78Ecse55Ke/yfujnyFcLzG3/x4q9QZXPF4l1GmxbujJTyk84CxN//svdjdvo497vk11QYPBZJRsqUZDb59HVUZLtrnesUiIJ24d5Zfa93z9LjcoryKjjm3GgSHPMsXGkSTDqRhZEtq2MU8ONWi1Ks9pS3n2Ic+lBQi7KZm8ynMqFuH3nnG6byGebvHUM8a54pINfPy6Pbz3hw/yqo/fxP1HF5qup7ETFeKrnSwqBnPFKqMsMJLd6Vg2QFtltE+1ISJUyiXOHjfkeelLp9F4krioMle0BAOHPKchMUyinmXNgFbvIj59Zyiq8k1rFKvKlmAsE3//6+fzzbc81SELVSJIKzf9vCbuTTmUPTB9arZUcy0p+h7HqHFsvkilUiYSbR7MzTGUMQVzLPK8UKJClKg+9rPXdA4anCtWiQvPMWpyNyMzLum2PM9lGVVqMW6syoInOFMFbbm2nlQsYinP6jmuNyTVuiQZaag2bpPV5DDRvErztmtBk24ngDZPvayOa9CQ53SsOduGQWKY2/bPcPmHruUd37gHgeC/f/vx/LrOr7x5NOV4ztV5DiG16zOcHm65XoPaIpIXAz7kucqA0H3UlqdDNE24USE+0JzujmhSXW9P1cCzB9Tx78wl3MmUvf3O/1X/n355y3E9fvMI88Uqe6cssckZ59tk29DjVoWIUznTIcuVnEpNGPcnzwCfO+s/eEv57WpVI6WXYPLTvP0rd/KPP36o7eccTCjf9PbGpha7Wa9YO5RkIltiOl+h1pBNfdPZazK89+Xn87KLVApE085C5Xm2jqebbDshWSXUg9/6VEFAnpeAEwslFfXcRiEDRVybyHMorJZFa60PVb6gvcQe5XnNYIJLN49wOFunXi0Ta5Soh92lxC1j7sPuqzynVZ7dhlnO7qQ8RxMIJGePxdqmyjoxqZbzx8bGfd9fo/2thsTaPuyBYdW5zs+28Wgd+BUNQuxJnM9APNKUbcNYODKJiMpIUrdT1VnkWQe4ndfDcrMXUZPxpF5xlpO6KQ/6/AtVTO3ZqyyyZWwbeuCtRzNw/F7q4QTfrT+dTCLCOWsH2TOZoxr2dLrVgqtihCOqgzUDh1N+dhiwyPOqVjvN+EBcDaD1MoWJvQAMrtum3jzz10CECZ14gP9Ovpl7EpdRmTvGYCLi+ENbyLM+hh3zYeoNyZO2jnLj7inutJcv9SpLjmSz+uOBCXwzA3yWFAPxSEef8NO2jbF7IseJhRI37ppkw3CSJ24doUyEasX/WBdIs34oyXAyynwjpV4vZ1mQnZRnk+fZx7ahU6299rLT+M/ferzr61tm/M1LzmUgHuELN+2nUm/whqds4a2Xn+G8b2IWpgbPU4OiNWDPFao8JaQDjLZe7rw+koqRLdeo1BoUG2Ei1Nk2rs/rJMhzPJkmTrU5S4gpORxT2TYSssS6hLFttPZXMhIj4rFtCIFKq4ayksRMirVIkrwYQFTdQdjYNqJUfG0boPrUy7aovsipQKr7kCg1Ds4UqFUrxGLNnzfPcFG2Ks+TOaUMR3SmkMXS1c0WqkSlRx3XE+FZBizl2SLPuBXXBhPtlWf7eUvFwlTM8RrFU1eEGzSE02PbELrS5/0z+hk0fVAlT72SpySjJGJqn02rGLbynBzmE9ftpVxr8P+3995hbl33nffn4BbU6RxyWMUiihTVSyRZsiRXWXZsyyVxpMht442TuGSzKbvOu1nH6/TNliTvaydrbxynO94kjrWJEseJe1Ei2ZIlURIliirsMySnYAYdOO8f55yLCwyAAWYGMyB4Ps/DZ2ZAlIsL3HO/93u+5/f71Luv5x9+6lZee0W1RNxOU1/ZEImQc9WYHR9YbMwIoSIiaRINneckWaSfUhe3O24KtmER8cUzNDvj6uLrsRm/ZoFocP9iBsYvVRGJOq67qEHuealSdXrGdOvYYOCoV1uxz+sFts3F88SeKzmd8zh6LqvqpwP5udP8w+On+JMHXmjehdVw+iBz3gZkYmxRPf1OmRiMUizL4CJxPLS+RQjBO16ys/oeQ9HD3ePJYHZbSokrSwgrni8MTJm6Vid55TzXZTCbtO7M6lXe8fjiUjGvvXwzZ3KCXDZDQuRrajHuCGXyNjQpVVcMxza08zyXLdY0SAGCTPbtu1M8cORcMMiGmT6rBp5Ik9XUwwkP3400jJIMDqsDfX6mmXj+Jkf9PTiJIQZibm21jVwpcCR9P06kpklK9X08eUo5c40WT7ZLVTwX1cr/dgWFOVmH3c868VzUdYxf3PJa5kgyFPfYPzFAsSx5bkYv/mlUqg5qW3Sb6Is+4T4zOa/KUyUWb+to0icvPSKVIvKsEs8DE1qAJUbhHZ+Dn/gmL1z8Dp7NDRDNTfGyfRuD8munZxsL0oen1IzHb7z1SkYSHv9f2H3W36W0bNxd0GAu4LJSfU9mKvElB/Sb96jv0defOcO3Dp/l1r0b2DgQo4BHLlt3wtKVQQruAMMJj6GEx0w5pkpqyQoz5TipqFvNRRrMgsFyvrHzrH8fSnh8/5WLT6qrxYZUlK/+h5fz2Edew9+8/xY+/IYD1SYOVGMbJ5MH1PTtqceC/5vJFLg5clBdsG2+KrjdXCjMZAtkSgKPEheP6fe1gkU7jqdiX7XiWQukaCo4eW7z9W2NxK0TxaMYZIWzxTJxz1k8zuo64wUnjlMKiWctJj1ZbFk54PX6Mwv2peOCiDDkVXjgyFkcykSjjcVzxohRL+w855ERn4h2FQdjHluH4/z+15/jI/cd5FvPnqmpnz+3kFMudb3z7MbxosmQ85wCJGTOkZNe4H7XdOcMMTWfrzkPeE6k2gJcb1teu/kp9DhTF9swfO+McqlN11YKGWQhQy7UjmE06VerbXgxNWMDyNgQ3zs2w217N/CK/ZsWfX6qOUmmJu4wp5vDRFONZzVHEj4zspF4LjLs5KoVKnbdqt/L8OInSW2qdvjTbPeViDuaT9Q6z1CNeoSqbITZvSHJcMLjuy/MVG/0WjvPZnZs/7aQARVknufU2NRCPJtZ1cdPzAYVvI4efYFSRZIplPnCwVNNHwvA6cd5wdm5aLZsOZiZ5kd1paaNLda3VMXzDHvGUxydzpIvlckVK/gUiTRYA9HrWPG8DE7P5QKXtRljqSjTmUJt0xE31tB5zuqTfr3zDPDaKyYoSJdcLkucPJFo9QAPL2gZSTRynn2KONUFgy2dZ/XaL92ZIlss1w4ImvSsFr6xxs6uEIJNg9HAAQ4vIBgZU6WCMnMNOiyWCnDsQQ56lzMY80hF3Zopyfl8KXAko7GYErVmMVdoYD50Ks3+FbjOAFETnSkXcGQR0W4Wy60+LqBSrIltFF11gnh04q2ActJNCa4np/KAUINupayEW7juZmy46jg3cJ4vrndNNGMpn5yeao7NHaGIixjcUr3D7tthw16u3DbM0dIQo3KGV+4fC6pkNHSeHZ/vHs+yeSjGzg1J3vPSXXzpqUkeN41W9EA4R2LJUnUAmYoWdJV4wxrPYQ5sHmQ44fG/vvos6XyJW/eqbGNBuuTz9eJZL3AdGtXulc+5cnV7psvRxa4zhJznQq0Ia1TzucsMxrxqDrMOE9t4Ia6rABz/TvB/M9kiL4kcpLDtJTV1v804MZMpki4KYpEymxL6NLCS3KEbI0aByfD3JRTbKOkLxwk3Hdx/EY6HT4l8SY2ZRjwvQjfiKDoJnNB4asSzU2ke2wD4oe/bzv/8oau4bke1vjKOz3BUuYgeJWKx2s/XCNdsRe/L0HdhKp3H8WI1mftff+sVXHvRCH/+ry/yw5/8F/7DXz0a/F8mm1n0HFz8KrjirWwdiQddEANhW86TrXjE3FrxXL9g8Ey6UDPmArhmDYcWbTltigQ54WhovAyZIpOFmJrR8qqxDVnMUQyJ55GEz3SmUF0YqaMbpwsxptJ5rtpefb4wO8eSFEoVToQqLkyZNvNN6sePJHymy3F1TIcWyJ1byDPiFqr7aueti95LwOAWmDtZc9PGSJoFGSVHtLl4bpB3BnW+u3bHSO2iQTNmN1kwOKvXN12xI7SY2IhlU7O5RWzjkk0DuBGhDCrtPJ84rnrYjQ9E+dzDx5s+lnIRpg7xRGU724bbr+ncDGOMmHG//rtXg5dQTZi081yuSF48myGdL+JRqi7UP4+w4nkZTKbzbBpqLZ7HUz5SUl2NDOqqtD6XCWRzahAJdxg0bB6KMzSQIlIpkBB53Fj1wNo0EMPXHXx8d/FHOZL01YIRE9soZpFuk8yzPoCvnXBxI4JvHK6NbsxmiqEav82rWUwMxljQC33CzvPGDUo85+cbiOcTD0Mpx3fFpQzFPQZjXlBhA9R0rHEk47EYriypKEroZF8qV3jm9HzbHdGaETMVT0p5nE6mk8z9apznaqk6gOmRK+HiV/Ocfwmg6hnvGU/hRgRPnZ4PlUjTA2/4+xB2np//pvo5vAMpJc9ONq60AbrWt45FjGSe46wzXtO22HDltiGm5DCOkLx8q5oe35Dyg3x/QG4GYsN87/gsV20bBuCdN+9kIOZW3Wev6jy3XDConfIFLZ6ntRPcikhE8JLdYzwzOY8QKsYxPhClgKdKGNZs6yxlIowMq5PgcNxjKtQwZaoYq22QYvCbOM+Nug2uI74TwY0IphiBgS014rl07ii7I6cQu2+reYwRz9MLBeYKMOBBxEQlnNb7viVaCE6nQ9PxZjGfn2IOdbIej5gLrMX7Tzg+HuWqeC5UGl84aOe55CbwylUBNhuI53zLC4Go6/Dma7bVxrGcKMNRlQf2KActuw2+E1G527KJbVT/fzKdUzWbQ9Vebt07ziffeT0Pf/jVvOnqLdz/2ElyxTLliiSXM+I5dGxc9UNw18fYOhwPOc9VYZuR1WZDgw2c50pFcnahdkEphMqfGvGsnefkEs7zLEm+d2ymxnmmmKEYqW7zaNKnXJFVoyM+AhGXR06p/XDltsbniZ0b1HM+f0bXjy6UOVWoqyxUx0jS40w5rgyJkKt7LlNkKJKvCs7NV8OmK2DLNYufZHALpE/U3DTMHGelblE+XieeY8NqNmbnLQ23CeDq7cMcnpwnoyvDLFWq7syMOiYObAtlsk2uPH2y9u8GxDyHizemePz4XJB5np46wUVjCe65YQffOHympoZyDWefhXKBh3JbVsV5NnG1x4x4bmGUYBql5GaDeMyzUwvM50pWPF8oSCk5NZtjU6svCk0apbjxhtM5OS2emw3428eH8Skx7BSJhA6sSESwYzTRMO8MatpOOL4acEC3eY1SqsjF4jmhBEaqnObaHSN8/ZnaeMXTk2kGRUYt7GgxrRQWS6OhUnXDqRhpGWd88lvw0KfgmS/C6SfUifCFbwDwQHkfg3GvYWzDOJLxeByfItlspiZS8dyZBQrlysrFszlplnJEkO2LZyOywhUfyiVw3GDK96l974O3/yXpfJmk7+A6EXxXleA6ZMrVFTPBd2Su5PEH33xOOTtGPOfT8K//C/a/HoZ3MJnOk86X2Lup8WcS9x2k3rbNhReZi21teL9LNg1wNqIG9MGSXhg6GFs8EOdmKUcHeeFshiu3qxPdYMzjh2/YwRefPF1Teq7oJluKYZN5Tms372wp2rTSRpibL1YnjSu3DTOc8BlPRav1v+u2dZ4Em4fVMTOc8JkqVD/PyYJf2yDF4CWUWFjkPMca/75OCCFIRl0yhTJsu65GPA9PPgBAdO/Lah5jauaeWygwnYeUV2m4+LZjtGiYS4dyvoWqeD5XUv8/WplRtzXYf8KN4lMMImPZYqlxvXZdaabixvEr2cD5nMuViHkRFZ/odBrY9Rn0lLCMORVcr/Z7IYQg4Tmq4RAscp69aLyh25jwXe66Ziu5omrlns4V8U1FkQbbuHUkzvHpxcI2U3YDFz7mOfhupMZ5ns0WKZblIvcvGvWpEAnGJbNv4xXzGiHnWUcdpHAQ0QHVACRwnjNESjnKkVrnGait9Rwb5nvH5/Cc5qUOd+tays/p3PNTp+aYlnr8auE8Txaq5T4N5xbyDEay1XOS48JPfAOu+IHFTzKwWS0YDJ2DE8VpzjFYrfkd5qq74WUfailmTUOkoPSauahqEtuYSS+Qly6XhJt4mc95XtXXx299Drt86xAHT8wiHQ8ZGyI3c5prd4zwlmu2IiX8zSNN3GddaeOx4na2j67ced6Q8okIOHouS9J3lqxKZc5hxuE/cmae+XwJn1J1huQ8wornDknnS2SL5ZZZTqgWqq+tuBFtOMDmjXhuMuDv3DSCT5EBt1h1AjS37R3nxl2Nc2IAjhdVC9+khGI2mMIfrM+WmjqdmbO8dO8GHjs+W11JDTx9Os0AGaQ/uKgDVBjTtnMwVpslFULwROwatsw/Dn/77+FPfwB+9yXw6zvgn38Jxi/laC7BYMwlFXPr6jyXAhGWSCRwhCSbWahxBU1Hr/3L6CwYxlQ8KeuyTE67J+HAeW4U29B5Se3Iz2WLNdnefRMDPHlyDmlKpGnX4h+fmeW//N8neOFspiqeH/oD9fOlPw3AF59QA65Z4d8IL6oG9AnOkEtta3gf343w1tuuU3+k1XNODMY4NRf6/h75Kjz7JeZ8VYLtau08gyrPVq5ItdhUCyMvGZoWb4C5gDsT2QAIXiiNLuk8A7xUi+fb9m4Inkdl+2uPrXJ2htlKPCglN5zwqs1qgJN5v7ZBiiGo81yfeQ4vHlx/5xkg6TvqWNl6HZw7Ahk1s7Pp7L8yzSBi42U19zfv97Hjs2QrDnFHqrw0rCjzbMau+fn56jR+KLZh9vtAeUbd1mD/CdfHFRXyetYpWygHx04N2nmWXpIEueC4ms0U1bi2HPHs+Ax4arvjTqXh9sV9p+o8h9YjTKbzRKPaFa3omN6LD8DkUwC8ZPcYUTfCVw5NMp3RlTag4QXE1uE4c7mSqjYUMikyFVd1BdQMxb2aRlL1DVIMiairuhPWOc8JqcVzOIKnhauIDXHFtmEePTYbcp4XiJRzlN3F5kgwuzq6G0Yu4ntHZ9g/Mdg0brRpMErcc4JydQdPzDFt2sw3dZ59ThVMtZuQeJ4vkCJXexHQDBNXMw4vEMlMkfFG2TWWXLww/MAb4bafbfmUxn09OaPHnkhEjRlNxPPcwgJlUVf+1HzOJo/dIrYBKvd8Zr7AZDpPKTZGojTNtReNsHNDkmt3DPPX3z0WHIOlcqXaTOf0QaRweVaujvPsOpHAbW7pOhtiw5CbZSDmsXEgyrOTC8xnC3h13ZXPF6x47hCT6WsZjifkPIfFs9fYeS6YrGaTxWmpRBJflBnzitT3n//wGw7wa2+5sul2uEY8lwuADOqULnKezWrp7Dluu2QcKampuvHM6XlGnSwi3nqQMk0xGi1g9O/9My7J/SH/71Wfhx/5R/iBT8Grfwlu/DEqr/wIczkVJ6l3ntMh53kgqd5/PjNXc4J76tQcTkSwZ2N7HdGaYZznQlZFVCJeh85z+OKoLraR0Q0vwu8H4KbdY5yczZEjWuM8P3BUPddTp9LqpJI5B9/+mCo9tu06JtM5fuMfnuKm3aPc0OICyo9VvzOVoR1N7/eqG/T3aF4N4puGYtXYxoO/D3/yFhjYzH3bfk61bg5Ny16zY4ThhMeXnpwM4ibR1HDT14Lq9POzsSvgp5/kUHF8ycwzqAVHn3jHdfzbW3cDagam4kSp1EWi8vPTzJFk87DanuGER1pW98XJrNewrX01PlMnwpotHlxHlPOsxTPA8e+ClOxKf4fvuVcEZS0Npq3yN589SwlHNS0JnOeViGe1jyOVfLXWc0g8n9bCJ17Q1Q4a7D9TrqqgS2tmi+WWsQ0RTZEgF4hIM35QynWeSXd8Uq7uaBipNLyQSPgOadOxz1ws5EtkCmVicS1GzL786/fCFz+sns9zuHH3GF99eoqZTKFll0WzUPf4TLbOeXZq8t+DMbcmtmEWatY3y0r6utZzsGBQv8eyWcwZuug2OeH4MFdtH+bJk3PkRDWG4FZyVEJxFXMhFjjPd/wKlR/+Kx47NstV25tH+4QQXDRWLVd38MQcWVffv6nz7DFT0a8dFs+ZAnGySwpOQDnPAHOh6MbCWTZs2so7b75o6cc3wJR7C+e38WJNxfP8QoZK/XfLi4OIVMVzC6cblPMMcPDELHORYcaY41pdM/ot127j6dPzPPj8NJ/42rPc9Gtf4t1/8K/qgWeeZj51EUXcaoOUFTKhLx5adZINCEUP94ynOHJmnoWsOr940d4YTzvBiucOqXYXXGrBoBpYTKOU2WyRxyfz1cUiIQpmurnZgK9PKsNiYZF4Xgo/GsWR1ZyYWZy1OLZRdZ6v3DrEWNLny09V2wM/fTrNRLTQsIh9GLNfGonna3aM8NbrL+K3H8xwOHYALn8r3PKT8NrfYH7nK5ESHdvwSOeqq+7n8yVS2qkdSKj3X86ma072T51Ms2c8ubhyQock4jpykFFOdttZrLpV7ep3E9tQgtB0TEvna6ud3HX1FgZiLlO5iHae1Wc1U9Rxj1NzauAppJWwvfVnAPjo/32CfKnCr775ipaVX6Lx6mDsj+1s/h5SylE2g/jEYIxzCwVKX/4N+Lufhj2vgPd8ka+fTbF7Q7Jm9sKJCF6+byNfeXoqqNucHGwu6EGJipgXUR3vBjcznyu15TwD3HHZRM13WLg+slgrnksL08zJRHCCU3Weqyf/qWK0Dee5yYLBHhHPiajLfL6ssp4IFd04d4TR0iRPxa9edP+47xB1Izx2bIYiLp4oN2w41DH6M49SYDKtx7NCWk1jRxxO5HQ5uOxUzf3DCH1boaC+/9liZfGCQSkD8RzxUyREPhCRczl9XNVf9LSD45N0lEPni3LD/Hfcd0mXTGxDfY+MmRJUSirlVEWlmRfVTIDmZZeMc2RqgcePz6oGKU32gfmuHp+uFc8LZbfmQiJoMKSZ0iZN/QLdhO9SxAsu6nM6Tx6t6EhNo8xzbJirtg1RqkiePKvGrEp+Hq+Sr8l6mwuxYIbST3BkwSOdL3FlaFaqEbs2JAPn+YkTsySGxmu3oY6RhM+c6XqoF0xnCiVyxQqxcqZllDDAOM9m0aCUsDDFJbt2cu+NyxPPquoWnAg3xPESDTPPpXJFrW+qP86EUNs/b8Rz6/dy6eZBhICDx+c4XU4xHpkLZh5ff+VmfCfC2/7Xt/nV+5/CjQi+efisuriaPco5bwKoXqStlInBTpznqnjePa5qPWd0pTHfOs/9j8mATiwhngeiLr4bCZznLzx+ilMZQXZhcfe+kmli0mzAN6I6O70otrEUnh/FpRQMngvNxLOfVK+TOUskIrh93zhffXpKlSsCnj49zwY3C9H2xHOzHPZ/vHM/Cd/hF+87WNO+1uT3TLWNYlkGC4fSIVFlnGGZn69zntMrjmwAJLSDZLpptZ3FMp9dowWDXn1so9Z5TkZdfvC67ZzKRihk5wPxnBoYYOdYQuWhzUlly7Ww63a+fGiSv330JB94+cU15csaES6BmDJl6hrheGoRSkg8A8hH/ky53fd8Bhkd4JGjsw1X0r98/0bOLRQ4k1NCPjXUWjxDVQSUyhWyxTKp6PLcT6Fb2IeR2VnSJKqxjXit85wm0dx5Ri6e/o84asU4rFm1jaVIRR0y+ZKafh/fr8Tzc18D4IXB72v4mJGET0WqxbdqVmpx2ceOCcRzqFxdYSFwBI9l1H4TC3otRQOh7uhZnmJeO8+F0mLxXFgAWYbYEE4sSZJc4HTPZouq9n45v6zM87Aveeu124g5LZznUq3zbN5rIqGFXbkA088BEmZeCGIcL9unxOHfPHICfxnOc7reeY57Nd0cq85z7XMmo45aMKzjZKbdu1/KgHAWV/QBiA0Fx/f3jqtxtpCdJ06hJq5iKtVMhxbFP3psBiBYTNyMnRuSvHguQ65Y5qlTaXI7boer74WxixvefyThM6ubGplSnUa0+5WF2ouAZgSxDe0852ZV1CY53vwxS6AWVkersQ1Q+6hBPPP5sxlcWVRj1aInSgVxuaXeSyrqsmssyeMnZnkhl2CjM4+rGzINJ3x+7Pbd3HnZBJ973838/ruvB+DLhyZh9hinxQZGEl7bJsVSmHNEp+J5z3iK2WyR4+fUDK8fteK57zmdbi+2IYRgPBUNHIG/e+ykHsRqDyopJWXT3KGZ82MOtkqpc+fZj+FSoaTF4Hy5iXgWQi340JnJl+/byHSmyCNHZ5heKHBmPs9QJNuy0gZUD6Zm4nksFeVnX7OPbx4+y/2PVWtSGhdlMO4FzWdMdGM+X6yKTb2PRHEhcOTnckWOz2TZv3lliwUBktrZLmWV89y2eG60YFBnnp2IIOpGgnbD6VxxUT3jd7zkIrLS59zMbNAG/eZ929k/MajEs+ngdetPkymW+YXPPc7FG1P8+O0txLAmnqg6z6Pb9ra+88BEIJ43DcVwKeHOHYVt3wcRh5OzqvV6o5Pj7XvHcSKCp6chI6OMDS19MWPE80Je7Zt2YhuNcLwYok48RwpKPJsWscMJj3ntPEsEC8QalnisOcbqj0nzOfeK8+y7QXUbtupFg899lUnGyA/ubPgYs2hwIJlQwrmyeuI5hspiArrhg/ruTc4XWSCh6thC49iGEc/FamxjUeY51B7ejQ8QFwXmFtT4OZctMRyLqHFyGbENRxb572+7CqdSargvEr7DbCCe1fs17zWVNM5zHs7qqjPlQpCv3bUhyY7RBN95YbqaeW6wjRuSUXw3ssh5zofqPMNi5/nMfAHPEYvG9YTvkpduaMGgdtfL8+r5wzNWZmyPDzMxGGPTYJSHXpgGL0ExO09c5ImEzJtU1MVzRLXWM/C9ozMkfKdp9R/DrrEkpYrk68+cIV+qsG33PnjTx5seVyNJv7qoMKvOUecWCvgUVWnCdmIb0QG1GM84z6ZhygrEM8CWoVhtbKNJYYBnTqfxmi2O85PVMrZLxDYADmwZ5LsvzvBsJs5AZU6VN9X8zB37+L13XMc1O0Y4sHmQicEYXz/4ImTO8kJpdNUiG0BQdWw5zjPA08fVxXTUiuf+Z3Iuz0CsOhXfCtVlsMBMpsA3D58hh4+oE8+ZQlnVLYYWznPoBN7GgRXGLIBLz6oBJ11W271IPIOKbmjxfJsWQl9+ajJow5ysLDSt8WzYNBjDjYiWXdfuvfEito/G+evvHgtuMy7KYNwNhGU6V6RYrpArVhiI1opnt7QQ/H4oWCy4cvGcikWpSEFRi2fPb/Mk3GjBYLnaZCXhO4HznM6VFnWn3LUhSTI1wPx8mm89pep23n75DvZNDPD82QVyF79OZcT3fT/3P3aK4zNZPvrGyxqWKFz0npLqxJKVPqnRLa3vPDARTB9ODMbYJqZU17FRJdIDZ6mB8zyU8Lj+ohF+8fRLeU/xZ5e8wISqCEjrRWLtVNtohONHcSqFYKYE1Hek5CaD6e6RhE+GKBXhUPZSgGh8kRduTlN/TLq9JZ5TUbfaVWzrtZA5A4f+gQfkZQwnmggRfcEwZMSzuehYhQWD0XCjlPx8MAU9lc6Tc/TYJSJVBz+Eo7PyJW0mZAsVYovEs867xobx4+p4X1hQx+pstsioOQd3HNuIVmeNysWG+yLuOcwV9XZ7teJ5IBlyno14Bu1CKzPFuM/RFrGNSESwZSjGsZmseg96jMvjBZ0WoUFsI60apNTHt5K+Q066oQWDagzyivOLF9n5SfW5xIYRQvDSi8f5xuEzSD9JMTdPlAKOXz02TO306dDC8u8dm+XyrUM4S3Rl3aXF098+qlzgy7a0NmVGEh5zJJGIoMX2uYUCSVOveokKFQGDm6vO84KOECXHmt+/DTYPxavVNqDp2qanT8/jUWp8TgmL/zYiKJdvHWIqnWeqMkiEyqK24wYhBK+4dCPPPasWrz6TH16VxYKGzZ2KZx1rMuXqnjmptttt9zzbQ1jx3CGn53JL5p0NG1JRzs7n+ccnTlOqSIoiilOpFc9T6Xx1Gm8p5xk6dp7jOuaQnlVX2cfmJUnfaezwJUaDq/GhhMd1O0b48qFJntbtn/3S/JLOc9x3+IsfewnveEnzDJkTEezbNFhtBkC1te5QvDqlNJ8vBW26A1GlxahfySD1Ce4p3Q58NWIbKVO5QTv1XrtXxA1L1YXFsyopJqWsqVsdZtvGUbxKjq8cfBGATaMj7J8YoCLhmRmhMuKRCA8cOctIwuOm3e0N+il9Yp90NrWslKLuPFFTbWOn0FOJY0o8P3J0VpehanyyeuWlG3k2N8i3K5ct2UgIYCjuq4Yd+nMeWOZ0oufH8ESpmr+UEq+cJRKrbqeqKy0oOEkKrhq8l3Se6wWOORZ7JLahLsqMeNaLBktZvla6NHCY6zFVEkYGk8p1XsXMc8opBbNtFKrieTKdJ6+bBOFEG34PjSNnSg42jG0E4nmIaEI9X3ZhlkpFks4VGYnqi6eOxbNX3Q+VYsPMc8J3mCmKmvc7mc7hO5FqbKOUU/V0hd7u6eeDx99+iRLPw75pUd54G1W5Oj02avc5T63zPKjXhZguffWtuYNtjrrkpBt0tjPOs1uaX2yECAE3/QRc+gZARU1mMkXyIko5p2IbbqzWvBlN+kG1jUKpwhMn5ri6SXOUMDvH1PP80xOnibqRaqv0JowmVcm9vDcYGDznFgokG7UZb8XA5uqCwUA8r8x53jwc4+RMtWRiU/E8mWbIk0QaOs9h8by0QWY6DZ6T+n2bOFQDXrl/IyMltX7p8fnBVRXPO3TJu7ae02iH/BxbhuNqNlavARM9Mp52ghXPHXJqLrdk3tkwlvI5M5/n7x87ybaROEMDA7iV2qnlqfl8ywzcots7zDzHdYZ3QTvPD7yY4RWXblpclgdUxY1stYnJy/aPc/DEHN985gyD0QiikG6rJNB1F40sLoVXx/bROMemM8GAMxvKPA+EYhumZF2Q0dL7IiFznM6oxz51Ks1gzA2uglfCQMylgIvUNWr9tp3nusyzlEFsA9RFRbaouqcVy7LhxcvG0RGSThFf6ufw4kEHwqdOzQX3+/azZ7lp91jjz7ABgwPqOab9zUvfeWBC1RutlBmMu1zsaPE8qipbfPfFaQ5sHmy6MPMV+zdW30+bzvNctlj9nJfpPPvReG3etlzApYwbEs8DURcnIsg7SXKOOlmNNso8+y1iGz3oPAdlHTddFoi6b5cPNBXP5vaxgaRySgPxvPImKePx6iI6E9uoVCRT6TxlX48dTWqnuzq2USqqrnUNOww2EM/5hTQLhRIVCcO6VnPHFwJutHrh28x59l3SxQi8/BfgwJsAmJpTolWEj/+zz6pZAOHUiOeX7BnDdyKMBgK/8XhV0yhFi6q89Gv2xVDcoyJhXl84nalrzW1I+g55fCo6CmOqbTjF+caC845fhotfCajZx4iA2ZJPpbBAnDxenXgeSfg8eXKO588scOhUmkK50rQ5SpgNKV/NmhTK7N88GGR2mzEY84gIyDqDNbGNFEY8txHbgNoug0Zwrji2EWehUK42izELjut45nSaIV82/m4a8ewlGjaxqsc49f6QXuRtLgQacPOeDexw1D57vjS2KjWeDdfuGOEv3nsTL2nHyDGZ+twsTkSwa0MSD73PeqDpVKdY8dwhk3P5tkQBKOf5zHyBbxw+w+uu2IwbjePJfM19lPNsOnw1+QI5y3eeTfWIbFpNj0xmBa+9fKLJnceqOTBU7hngC0+c4opxB4Fc0nlul20jCRYKZWYyeqV8KPMcjm0YRzpwavU+Sog8h88WggUn+ycGW1acaJeBqEcRB6HLbLWdxTKfnRHPldrP1MQ2wu+znoifYNApsd2cn7wEF40liXmRIJpy9FyG4zPZtl1nqIrnbLJxg5QaBibUgqzMWYQQXBo9QzaSgOQ48/kSD784zUv2bGj68D3jqcCNGG/LeVbTz8EMwzKd52hMNc8xrmc+o0RWaqD6fRVCMBz3yIgEGZHAiYjGF3mtYhs9mHnOFSsqruJ4sPlqCkM7Oc5442gWcNsl43z/lZvV4thKaVWbpIzHKnXOc5LpTIFSRVYvvJuIRlPrtVzMUShX1KLGprGNoeDCKJ+ZCy6+h/3WwrQpjq/z32VANs08ZwpluP3nYOJyQJkf4wPVeEUQ2xjfD0Pb4Nxzoce73L5vnM1J4143/g5NDMWZSucplSvBPsvjLaq2AWo8ABPbWPz5JaIuBelS0TXQTWwjUkgv6dYOJTyuu2iEybxLJD+LIyR+vFY8/5tbdjKTKXLHb32NX/67J4ClFwuCOhZNp0HjorYiEhEMJ3zmIwM1zvNQpPYiY0kGt6hYWqVSFc+JFcY2dCnMkyb33GDBYKFU4cjUgqol3ug4M+K/zfcxmvS5ZFOKPTt3qhtaiOe473Dj6AJlKTjNyKo6z0IIbtw91t6512iH0KJBbynt08NY8dwBlYpkMt1ZbKNcUS1fX3v5BF40oYRyKNw/lc7ji6LKcjXIAQK1V2UdimezAK64oMSzdGNB9m4RiTGVndIrxPdPDLB5KIaUcLkpnLBE5rldzAF8VHfTmsuVEEK5gzXOs5nOr4ttAMyXInz6W89z6FR6VRYLAsS8CEVc3LIuodOueDYnayNE6ty8uKfFs34/9ZlnALw4fiXHB2/bGvztRAR7Nw5wSOfOHziiLm46Ec/DQ8OUpaAwtHvpOwfl6pQ7s9s5zcnIFhCCfzlylmJZBs1JGiGEujgbS/qN32MdQ3GPhUI5WLG/3AWDsXgcn1LgPB8+qnLbmzfWbutQwuPR+I0cTNzASMJr7N63WjBojsUeGeyTUSWoFkx0442/w+HbPwaolfeNeM1lE3zsh6+tOs1minklmWd90p/wC0yaxjoFVQXB5IIjiWF1e5Mp2qp4zpMrqDGoufM8HExvF7LzwZqJIa91JKIpjm4k0qLySMJ3yBbLNVWCJufyqjyceb2FKViYVDGn0V01zjPAb999Ne/6Pm1eNBH446lQ8xEtcAu4NfvitkvGGYy5fOivHiNXLHN2odAwtqHqPHtUtJjLlyoIASK/tHgGeNm+jZzJO0QySmjG4rXi7o7LJvjnn7mdOy+b4F+eO8do0m9bnJnoRjviGdSMySwDNZnniZj+3rfTJAVUbKNS0p/TlKoetcIL4UWNUtzFzvPzZxcoVSRJt3EDnkA0d7Cm6XPvu4V/+5ob1B8h06sRlyXnOMUoZZxVXTDYEYF4ngHUosGqcbiCsWedaEs8CyHuFEIcEkIcFkJ8qMH/XySE+GchxKNCiK8IIbaF/u9dQohn9L93hW6/TgjxmH7O3xGrYRt2melMgWJZLtma22C6PW0djnP19mF8PeWVzSwE95lM54iJkjqAm+2C8MmmwwWDJvNc1E7cVbsmmi92TIyCrARfbrXIRbnP+4b1dOgqOc/b9QFscs9z2SIDUZdIRLSObYQGnpGBJL/1T08zny+tSt4Z1HsuCw+vrLYrGmtXPNc5z3VuXsJ3yBbKqnMYDTo8ghJtlaJqwQ3ByVV1IDTiWZ2g9i6xmj3Mpo2b+ON9H2PbK3986TubRgI697ytcoLnpRLUX3/mDDEvwnU7W3cO/Ok7LuHv/92tbbkRJkJgMp7LLVUXN86zFmqHjqrt3z6xseZ+IwmfP0q+i8+l7mkc2YAlFgzGan+uM6ZTWUZXK2F8HyfjqqLKcBPnOcAcS6YCxkpOYKlNEPHYGjm7yHk24tlL6LGjyRStp7OgpUKBTFEd982d58FgLCzn0oHzPLDc2Ibjq2PWVB5pGNtwVJlp3aUP1Pg9PhCtfh8mn1Q/xy6GkZ2LxHPCd1s2SYFqubmz84WazHPYeZ4YivGbP3gVjx2f5UN/9SjlimwY20j4Lnm8IPOcK5aJuY4Wz0uPmS/bN06GKF5eCdb62AaoReK/c881fPbHXsLH77227RlA06Z5qcWChtGErrgRim1s9PW+7CS2AWrRYOYMJJsbAe2yRTvPJ8LOc123U7PoPuGUmohnvV/bfR+oY98fUN1ZWznPANsiZzku1Xs1tcTXHKMddKnBPeMpfNHHzrMQwgE+BrwWOADcI4Q4UHe3/wb8kZTySuCjwK/px44CvwjcCNwA/KIQwpx5fxf4UWCv/nfnit9Nlzmls3wTbWZrN+iT82svn0AIQUzX252eq+ZXp9J5Bj3ZOjC/ggWDpmvXqUm1YODm/dub3zlolFLNPb/qUiU+LhnWbku7V/hLYOqZHjPOc7baOMQI5RrxHDjP1X2xb9uGYAHMajnPAGXhEpdqIIxH2xxo6hcM1rU8VgsGS4Hz3NBhNaItc065F/oktH9igDPzec7O53ngyFlu3DXadt4Z1JTnu3/4XvZs3bj0nQdCznO5yFjxNE8VNyKl5GvPTHHT7rElG9FEXYeNbc7OmOlnk/FcSebZEZIzc+r79NwJJZ6Hh2qF/nDcYyZT5NxCofFiQahznns7tpEMLa41mChUs8xzgBGIhQU167US/yISgaFtbJKTapFZqayrbSSDDHQ0paevmlx4mC5jlWIuKOu4qFRddga8pBL6gXier8a73ErL12iK69flvxs4z0G9drWvi+UK05libWzj9EH104jnzJnqxbDBjBFNtnEs3J1Wi6k8PjGv9nT9mssmePfNO/mbR9QCuIbOc1R3GNRVgPKlinqe/FxbzvOBzYNIN8Eg6gJLeM3Hwxt2jXY0I3bHgQnuOLCp6eLjeoYTPmfKSchUnedx3zRoaVN0hrsMLkytinjeOBDDiYiq89xgweDTp+eJCIiKcuOLVPNZtFs1xOC4yvRqsWAQIDp/nPnoBKNJv7Y1+FpSF9vYPR7KPPfpgsEbgMNSyiNSygLwGeCuuvscAL6kf/9y6P9fA3xRSnlOSjkNfBG4UwixGRiUUj4g1RzYHwFvWtlb6T5mOrJdYXBgyyA37Brl7htUS+R4Qh3g03PVwVSJ50rrwHxNqboOp1z0Y8vaeb55f4vcq6klHJoCesX+jfz1+27mslEtnlfJeR7S9ZyPntPOs2mtC7hOhLjnMJ8vLhaboYFnOJXgzVdvxXMEl2xaTfHskdALUWLxTjPPTWIbdc5zo2obVfF8tsb9NIsG/+nJ0x3nnTvGxDbmT8PMi0Qoc6S8kYMn5jgytcBLL175ySZMWDwLURUoHaP3/3RaLfQ8elJ3x6xzcoYSWjxnCk1rkddW2+jx2IZfK+gAZkz+N77ENppjqZBZnfczvJ2xoorLnJmdVy5uyHlOmKY5TV7L07GNSilP1rSRbhTbMG2ktXiWhUywlmDAXeYCpMB5Nhe9japtaJdfC3vTPXY8HNuYfAIQMLJL/YNF7nMwO9VkP9R0pzXOc12dZ8PPv24/V+h2zc2c54L0ghKpuWJZdVIs5doyQoQQjI4MV29oIZ475YptQ3zinde33RV2NOkxWU6ozpWlAucyBUY9Pd62W20j6DJ4QgnOFS4WBFU9atNAtM55ro1tPHM6zY7RhGpK1LBJSrL2ZyckNrR2nitlmDvBzj37ef/LGzehWRPqxPOuDclQpbH+jG1sBY6G/j6mbwvzPeAt+vc3AwNCiLEWj92qf2/1nAAIId4rhHhICPHQ1FTrqYluY5zndjPPwwmfz/7YS4KC8QldMmw27DzP55Vb0iXn2QzQA0IdzMlEiyv0uD65hSpuCCG4dscIIq+3eZXEM6hFg8Z5Vt3BqgfQQMytzTyb6fzwCcfx+eU3X87n3nfLqnVMAqhEPByhLhYSsTZPFpGIcvLMQpEGsY1MsRyUZBuMN3Ke9WebOVfzORvx/OlvvQCoVftdw42q70H6VNBe+LnKBH/5HXW43nbJyk82YYa0O3psOktKx3aWhT5GZubSTM7lyC7o72vdyWgk4TOTKTDd0nkOfeb1x2WPxjbCzvNspqDWDyzl4psTVnFhZXlnw/AOBnJKPJ+b1nVn/QGm0qo2vmcyz032XUR/hpVSIVjYtjjzPFMdgzz92Rbmg9iGabHdeZOUqLrwDY7bxrENIBD2pnvshlTIeT57GIa3qzrQIzvVbYvEc07dP9L49LuhxnkOxTYaiMyo6/Dxe6/lh2/c0bDKReA8l02HwQpjnhbvba5fmdgQGm86Pf+sIiMJn5MF/fq5GTV75Or30q7znBxXVVDSJ7V4Xh0zYPNwvDbzLENt71GxjUs2DajvWKvMcwexjYDkeGvnef40VIrs3rOP97x0V+fPv1p4cfXetXgeiHncslN/B3vEjOiE1Vow+LPA7UKIh4HbgeNAufVD2kNK+Qkp5fVSyuvHx1f3xN0pDz0/zXDCa7tUXT1J3axiLl0b20i55fad547Fs+4mhr4SbuUcBLGNBosPcqsvnlW5OpN5LtUIypQRz/kiTkRUpyzrxHPCd7l86+ptExDUj4YOMs+gRIE5+dbFNuJ11TZaOs/Zc0ETBoDxVJTRpCoJ1WneeVmYLoNnnwXgeTnB5x85zqbB6Kq/dth5Xm6NZyD4XszOL/Dw0ZlQ84Ra8TysFyieyxRaZJ5bOM/m+9cjpZWSxg3NV4fb6YyaxVnyQsS8l0JmdZyfoR1Ec5P4FJme1hfgfpLJdE4tqou1zjyb7akUC4G72zDzbJ5Hf7aR4kKw4DgeMc5zh+LZ9VWcwgieJu25oeo8T4XFs7kgkJWgoVAgnkMVNwDlPLe4+BqMqc59Z+YLEBtGIhbVeQ6zfTTBr775ioZrWZK+Sx6fSMXENsqMREx5t/bE85aNIfG8jheNI0kd2wBK82eYyRQZiuTU8dpumcWIo6Ibs8dVpCaxSuJ5KFZbbQMC9zlfKvP82YwSz+XCErGN5YjnDeq9NGNW+5RDLSKba4EQNV0GAX7kJXp5XI/E4DqhHfF8HAjv9W36tgAp5Qkp5VuklNcA/0nfNtPiscf1702fs9eoVCRffXoy6Ly3HAZSarBKzy8Ez3lmvkDCKbe+8qqp89zhtI5+3iGRRQqn9UmypXjWX/hVyjyDcZ6zQeOQcGmtgZhHWjdJGYi51UUobq147gYy9Lyik9dw/QYLBnXm2XMplCrMZItERHW6vYbAea6NbQgh2KdjKTftHl2VknwtMV0Gzx2h4qc4yyDTmSK37h1f9dc2n3mhVFl23hkIjpH0wgIPvzjDgGMcqdrpXJMDlrJJjefgufT7XOQ891aTlEXVNlCxjSUXC0JoweDqxTYAtogzzM0a5zmpK1LEqmNHs32nj21ZzgeZ54bVNgLnOY5E4JQzTC8U1MxFkCdeRrWNcGyjhfNsIjJmcWpNtQ1QeWdQ8ZL4SGPnucX2CSEYS6oGW1z7Lr545f/QmefOI00JXznPkZDzPOJqkdem8xyLh46hdXWePWZQ4vL5Y0oQDkRynQvOwc0weVBd6KxCbANgy3CcE7M5VYklEM/qIuW5MwuUK5K9m1JaPLdYMLhc8dwqtjGrJ/+H11k8wyLx3Gqmp9dpRzw/COwVQuwSQvjA3cB94TsIITYIIcxz/TzwKf37F4A7hBAjeqHgHcAXpJQngTkhxE26ysY7gc+vwvvpGo+fmOXMfKF5mbc2iOoFgwsLKpc5nVHthBORJcTzCuo8m+fdNyJbLvYA1AHs+DULBgPys2o6ahUdt20jcbK6zFJ9bGMw5pLOqc5zNZEMp/viueZA7uQ1nLpGC6HnMq7V6bkcAzGvsQityTzXfs4mutHVvLMhpZ3nc89qF01t660tStQtl/AF04qiN061O923j5xll9EF9c5zKKrRVDwLUd3/Pd6e28Q2FkLO80ymwFCzSEoYk+stLKysQYphWK3t2CbOkJ4zF9uqVN3GwWi1SUKzfaePNVkqBNGIls6zEBSdBAnynJjJqu9ScDJehniGala1RebZCPuGsQ2oimdoWHFjKecZYMOAarBFapynh28FWLRgsB2SUZcCHo4sQqVCrlhmuEPnueYYWsXMc6eMmGobwP/4/AOMJX22xsudRx0GNsOkale9arGNoRiFUoWzC4VFzvNjx9SxcOnmQS2eW3QYXG5sIztdExOpYUaL56Ftjf9/LakXz0vk/3uZJY9GKWUJ+ABKCD8JfFZKeVAI8VEhxBv13V4GHBJCPA1sAn5FP/Yc8EsoAf4g8FF9G8D7gP8NHAaeBf5+td5UN/jKoSmEWGHmUw+Y2YwSz2baLxYptT4ZG8EqIstrOwtES/NLT7kJsahRSkD4pLVKmHJ1z59ZIFMo1zQOSUVVbCOdX3vxXOM2d3JF7PoNFgyq5zIiYHIu3zyLagRbpbToJHXV9iGEUN2ius7AJpWTO3uYyNieoPnCLau8WBDAcyKBC59aoitlS/Qx4lPke0dn2DUgAbFoP4YrUDQVz1BdmFv/HeuxahvmomwhnHleL+dZTwvvi06TmVcnSOklGsQ2lhDP5WJ7zjNQduMkyHF0OqMuvksrcJ5BXUiE/w5RH9s4ky6Q9B11bDdynkGL5/rYRmvnGVDO80LVLY4I8JfowteIqKvq1gNQLpAvVRjS61/artlfI57XN7Yxo8XzdRvhH37qNlJk218saBjcUi1JuGriOVTrORDPyuH/l+fOMZLwuHg81SK20VmTlBrMe2hkeoGKbcSGO99P3WCR82zOk70xnnZCW3aDlPJ+4P662z4c+v0vgb9s8thPUXWiw7c/BFzeycauJ18+NMmV24YbrmhuGy1ec1k1QJtpP1W+psXzmv/zkp2XkzIngfxce1NUibHGB2FubtUapBi2japB5smTKk9dG9twmc9VYxsB4ZNal3KnYrnRkLDzHNSLVdtuTryntPPckJr6wrWi741XbeWyLUPB4tOuYhoJTD8Pl/8AW4bjbBqMrey73wLTKGVlmWe1babo/rZkRZ2I6o6XcAWKpgsGofpZNHOee2SwN25oTWwjUwxq6LYkXG1jNS6MB7eAiLDHn2Z6QZ0gnzhbIVescGDLIMRMpZLW4plQtY0a8VypaPE8XL3JS5IUeY6ey3L19uHqgt2OM8/6/gUtLBvFNvS2hJ1nU8tflfqLqCjA2J7qg0Z2wZP/V1U8MG2X23GeU1EOTyqTxbQpX05kSgiBdEwDpzy5YplBT8c22nWew7Ng6xjbuGTjANu3bYMz8CPXDCEGorqWeIei0JSrg1WLbZjaySdms1xhxu6SEc9nuXHXGBFBi9hG501SAkxue2GqWmo0zOyx9c87G2JDVScc+j62ccFzbqHAI0dnePkKIhtAcELOZ2rFs0+pvQWDy5kyM1/KUq69xR7xkZpqGwFdcJ5Np6ODJ5R4Di8YHIh5KraRL9aKzTVwniPhE++yM8/NYxtNO++FP5+6z9qJrG45vpakQgPw2B5+7S1X8D9/6OquvVx9fe9lEXKeATbFSg2nQMPOc9NSdVAVCYs6DPaW8+xEBHHPqXGeZzItKonUPDhUbWM1Tl6OB4Nb2eGcJZ9R5TjvP5Qm4TvccWAi1J57CfFcbhLbKKQBWTsOeUkS5MgWy2r8WG6r8eBCQgnWxrGNxZnncXNBKYS6KIh4tUJlZKe6EDWLtkCL59bfnw0pn6n5PFJK1dhkuSUcoaaBU6FUCWo2tz2eh8ujrmNsYyjh8Zn3vxIiHsKco/JznUcdBkOFvVZJPActumeyNc7zsekMR89luXH3aPWc0OhcP7wD9r8edt7a+Yub99As9zx7tDciG9DAee7j2IYFvv7MFFISdNtbNlocFfLK3TDi2aPY2skyZdA6rfEMdZU62hDPzWIb+blVXSwISiyNJLyqeA6J5FTUZaFQZjZbrItteI1/X0VMY5kKouoWtYMba9phMO5XG780d557w+FhYKL6++huLtsy1FXhbmYcVrRg0DjPosSGVJQkuYYuTlg8L8t59hKA6JlSdaByrQvaDS1XJHO5Us0sTlMiIed5tY6loe1sZpJyVonnvzuU5s7LJ1Q224up/ddMgOltEOUCuUIZIVTsICDoLlgVfSKaJIE65obioVKRnX4+ZvwtNneegzrPoVJ1NbMxrq9acofz443K1ZVyS85cjKV8CqUK8/kS2RWKZ2G+wyXlPA/QqfMcOo7c9RPPgI4WjlYNnvz8MmIbIefZlGddIWNJH9+NcHI2Vx27izn+5Yjazpt2j7W+sHOjcPefwsb9nb94ENto0qJ79mhvLBaEFrENK577ki8/NclY0ufKlZZE0wN6OZ+lXJFMpfPEPUeVEVoqguBGawexdqmJObQx8K1h5hmU+3zolDrR1sc2AE7P5mtFlRDVk36XDjhHtwkuC6+zmIwTbVqqLlxdo2GNZ6gVFevo8NSK5z3N77dKGEG7ZF3iVujvQpQi1+wYRhQWGornVNTFjQgSvtNakJhjrV7kXPN2eNsf9UypOlAVNzLaeTalEJfsLgjV46dSXL1jaXgHG0qTVPLKwZ3Mu/zAtSHX6wc/DTe8t/FjhaCIh6ioUnWLogoNxHMkmiQplGAejHkwP6lEYafZ3PrMc4NSdTEvghD1sY3wTFi0Nu8MSkxDnXhux3k2tZ5VzetmZerawuyLcoFcqUKSBd2lsc3jzZg2S1VrWivio2qBHOjYxjIWDJrnWY2Fsqh4zOahGCdmc9X9XczwL8+dZTjhqWpJy50VWYpWznNuTh03veQ8l/PV9uXlgprlaVLzvJdZpz6N5w/liuSrT0/x8n0bl9/AwaAPKp8C05kCk+k84wNRRCm/dIbS8ZfpPIcGu7acZz0wVSq1X+guZJ5BVdx47Lg6KYYXDBoXulCuLBZVbhQKS7j1K8Dx1OBWFi4dnSpcv1oPuy7LFT75DbblPK+js5nS4jk6uGoLaloxtIqxjTv2jbL5hh3w7YWGWUghBMMJb2knz4s3HtQHJuDAGxs/Zp1I+i7zutrGTEfiObS/G8QUlsXwdgYKk6RkmgqCkcHB2goxl7ym5cPLwkWUi0HOt4YG4tmJDQTdQAfjHkwdq52WbxdzMWRiGw1EohAqIpMplKutuVOh4/TmD8LGA7UPGtyq9m140WApVy0L2gTTovvsfJ5csbKsShuGSMh5zhfLJGWms7HcXEh68ZW1cF8t4iNBi27y6WXENnSXwVWKbBg2D8V0bEPH3opZHjhyjht2jirt0C2XNTasLmwaiedeqfFsCHcZ9PRM7XnoOoN1npfk0WMzTGeK3L7SvDMEzm+MAmfm80yl82oVerNFBDWPjS5vKn85zrOsqE5eYbrmPFe3qSa2ERLMixaSmRNbl1wQz9edzjrtutayVF04z91EqDieGgRhfWMbXkwNyKO71uRkacTzypxn9Zn98HWbePn+jSof22TxzVDca11pA3Q3rN7INS/F1pE4jx+fpVSuMJNRF21LtuaG7qwfGNpOhAq7xUkyMsqbrtvekelQEh6iosVzozJ1UDMOubEUSRGKbcweW57Ltsh5bvxdTOhmR6Y1d43zfMtPwt5X1T4g4qg8a7hRSpuZZ1DOc7bQ4EKiA8xMGqUcuVKFRGWhswieMW3WczYsjIltlEtttxmvwYur8W2VjYEtQ3EV29AzzDNzc7x4LlO9eOxWvjcSUeftRl0Ge048D6ufRl+Ui70xm7EMrHhegi8fmiIi4La9qyCeHZeKcImKImfnC0zNK+dZDaZLHFCOv3Lx3G7mGWorbhRz6sBf5cwzqO5YhkaxDWjgSJr31KUrVne54rlFqbpEO85zuL7wep+oNl0GW69bk5eqOs8rL1UXOP5NYhsAl28d4rItS1wIeomeima04m3Xb+fUXI5/enIycJ6H2nGew9/v1TqB6VrPl4hjZIjx5ms6E7LliIdTaSIYjXiODwc3CT9JQovnwbirxfMynOdwt0Vouj/ivkO2UKqt8bwUwxfVLRhcevF2uEX3SjPPjq9eq1TMUa5I4pWFzpxnP+Q89wLxEXV+Kqi437LKu01cAeP7VnWzNg/HODWXo6xNqhdPKzF7426dq+5mvndoK5x5ZvHtsy/q/++h2AZUj+Vmda/PA2xsYwnedv02LtmUYmQpp6pd3BixYtV5vnnPmL76WuILtPU6GF/GYoLwSaAd59ksoMicBXR+L7/6rbkNxnn2HFEzNTlQ40LXnci6XGs3GtX7qeMV+9HqgqW6UnVhF62lw+rF1UlhPZ1ngLf/dWeLJVeAaeixGgsGgwWbhYWm07m/ffc1Sz/flqubL8DpMV6xfyNbh+P8yQMv8APXqZNke3Weuyeed4pTnHY3d1xasSI8IuX2nWf8ZBDbGPHKqk3xipxnU22j8f5IeC6ZQjmo0T8+0MYYNLgVnv1S9e82nGczM3JWZ57bep0mOFr0FvNqP8UqCxBtUNKsGSa2sd6LBQ0mWpjX4nk5jUXu/ctVH98u2TRAuSL5vW+d4P3A8alphuIel07oC5VulmXbewd87TdV5j8VKmwwe0x9l1MdfN7dJHCejXhexfUWa4x1npdg20iC11+5ZfWe0IsRo8CJmRyz2aIqdVRuw3n+wT+Al/3Hzl8vvMCu3cwz1Jary3VTPCuROFjXdS/sNi8Sm12ObcSiaj8l4h2eLNzQgsH62IYXFs8ttjuo8rDO1Ry82JpNp61O5lmLC7P/88tYSBTmpp+AtzcsXd9zOBHBPTds5xuHz/DwiyoLOtxJqTpoKhY7RgtXR0gSqc7Hi0rEIyKLjZ3n7Iz6GZ4B81NEKeJSYqyip60HlyGezfenRbUN0M5zsRxUShpvx3ke3KLa3Zf1IuI2nGfPiTCc8Di7oCpkrCS24UVNlSclnqOldGfOs+Pqmc8eEc/xEXXOnNcZ3+U0/+jC+PaGK7fwlmu38pv//DwSweS5ab7P5J1h+Q182uHAXSpu+dTf1t4+86JypXtlQd4i5zlvYxuW9hBejLgocuiUEqTjKV0buJtTF+bKrt3MM9S6bo0cn1XCOM/1pbUGW2aeuxvbMAdzpNPnd6MN6jyr53CdSNAhrGm1DQjFNtbZeV5Dbtkzxj03bOeyLSuIBYUabCClXoW/jOo05ylv+77teI7gMw+qBgRNa4mH6Ubm2Y0GC06Hh0Y6fng54uNUio0rTORmlXAOO4b6M06QZ7g4qW5blvNsyvYt1P5dh8k8dxTbGNyihM38afV3udCWgBpL+qHYxvJP1a6ObRR1iVS/PN/5WO4lemdMMrOjM8+rn502SekSkYjgv771Sl57+Way0iefXeAmE9mA7sY2Nh5QlV6e+Hz1ttwcPPNF2Hr96r/ecgnE84z62c56rx7Fiuc1RrhxBr0yT55UU04bkxFAdjdf6SzDeQ6L57wWz13IPCd8l7Gkz0CdeB5osngQCDnP3RLPRpwvZ8GgKVVXG9uAanSjLee5V1yeNWAsFeXX3nLlChtBGOc5r9viypU5z+cZGwdi3Hn5ZvIlVZ3GbaeVc3hR3CqV7AKqNWWXcfEiIx6OLLLQLPNcL/q0oIuTZ7CgxemyxLPpMLhEbMOI53Br7qUw1T/mTqgLuzYbVo2lorpUXWVFzrOvY2j5nKrv7BfnOx/L/eT6VgAKY85RMzrPu5zYRpdwnQi/ffc1lJ0oMQrcvCe0KLGbsQ0hlPv83NdhQZ+7v/uHKnL5kvev/ustF3P8mlmkcvG8WVtSjxXPa40XI+WUeHZKDdKbYlpkdUGYBnTiPPspdf/wgsEuOs+gsmJbh2sH5pgXwdHTXYvEZtAiudviuVPn2W/aJAWqiwZbZ557ZMHg+UbgPBeqAugCcp4B3n6jyhu3VaYOuuM8Q5B7Xo6okREPnxJz2eJiwTh3vDbPCcEFUlLkSGROqtsGlxGzC9pzt3ae475LtlCqLvZuB7M9c8dU/XdZaUswjKeiVed5BXWePS2eM5kMHiWcSr7zsqN+qgedZyOee8N5NvhuhFRqgDccGFZt6Q1BtY0uzTIfuAtkGQ79nRKlD/yu6li49druvN5y8GJqfDj6r+rv87hUnV0wuNa4MVJOkVJFAjDu6QOqS8IUqH4523EOhFjcKCXIPHdH4H/83msXlbMSQjAQc5nJFNe82saynW0nqhznSqWabwydhI1L1bTaBlyQzvOqIIT6vMr5kHjuHUdqLbhh1yj7Ng2QjLYptLolnodW4Dw7Hr7IMpMpLnZ1p5+D7TfW3qZfY9wv4c6fUAujlpMprY9tNCtV5xnnOd9eZANC4vlERx0Qx1I+U3OqpXbMXb54jsXUWJLNZhhAZ7qjHZ5v7vzVVevGt2LiOg5kxHMPHufCS6gFrGG63U1v4krV0fKJz6vXmDsOr/+t7rzWStj/Bnjwk2rB53kc27Diea1xYyTFTPDnSKTDVqnLwZwY2l0tHR+tdZ67WG0DaFrJxIjntV4wuOzYRlAuLd8wttGe86xPqlY8d46jSwUaAdRD07lrgRCC//2u6ymWK+09oGbB4GrGNrTzvAxRI50oHmkK5bqoQqmgKgdcdU/tA3QN4t944x7EE/+4vAYpEIpttFOqTmWe94y3+f7iI2rsnTsRWjS2tHjekIqS1p0jV9Jh0A+LZ6HfX6dGyMWvWvo+a8Wi2EZvOc+AGseL2drbuhnbgGp049sfUx0tNx6Ava/uzmuthEtfDw98DJ75Rx3bOD9L1dnYxlrjxYkLJaxGEh5eUZfb6ZKrC3TmPEO1CL0hNwsisuZX+KmohxsRRN26r2nXneflxjb0/i3lddvR2vbeCc/FdyNLtIW+8BYMrhqB86zF8wUW2wBVN313u6JOiKpo7kZsYznjhePh0UAwzryo4g6ju2vvr19j5wDLb5CiXxdoL/NcLHcW2xBCuc9zx0POcxsLBlPVzyRWPwZ2QDymxpJ8Lsdg4Dx38XzTbepjGz3oPOMlqpVbDEY8d1MsHrhLRYPOHlYdL3uhI2Q9229U3R2f/Nvz2nm24nmtcWNEtXgeH4hWXd1eyTxD49hGdHDND8SBmMtAzK0pYQeE3k+XBqFlxzZCjToadE6K+87SVRBsbGP5mFKB+QsztrEsIl2YxVlBbAPHx9fiueYi89wR9XNkV+39zWsU0jB7fPniub5UXZMawAnfoVyRzGSK7cc2QIvnzpznsWT1+VfiPMd0yc1CPrt857mXcH11bJdyasagFxecubHqhZKh1GXnGWDLtTC0Awa2wOU/0L3XWQkRB/a9TjnP+bQVz5Y2cWP4Uh1E4wPRrueJgc6qbYBynutL1a3DYDsYcxs3zlhurKJdlh3bCDXqaCCeRxJezQmxIcZx7pWGBOcTQWzjwlwwuCy6cSyN7IRNV8Dmqzp+qHCjgfMc7soZiOdFzrP+jOdOQHFhBc6zWXCaWzRjFCbuV8ejmtbcSzG0rS7zvLTwHg89/0oq0SRiMSpSUCxkq5nnbq6xWQtM7rlXo1mtnOduikUh4Ac/DXf/SW9eVBgufaMap88+c97WeW4r6CaEuBP4bcAB/reU8tfr/n8H8IfAsL7Ph6SU9wsh7gV+LnTXK4FrpZSPCCG+AmwGTDDoDinl5Arey/mBF8OToQL7Xc4TA8tznrPTauFbJKK2cR0G2zdctYVrZ7KL/6NXYxsmN1kuqMxz3dTvf7hzP/M6w9gU6zwvHzdaF9vo0RNrL2FK1K1WkxRQF+k/8Y1lbk/Vea7JPE8/pz7P5Iba+5vud1OH1M/liueICwhAtjzuw4K+Y+c5fbKag+3QeV6ReI66FHAp5XMMij6IbYASz7NHezPvDGr8LtY5z4F47nLGd9t13X3+1WDXbeo7mJ87bzPPS4pnIYQDfAx4NXAMeFAIcZ+U8onQ3X4B+KyU8neFEAeA+4GdUso/Bf5UP88VwN9IKR8JPe5eKeVDq/NWzhPcOG5ZHVTKee5eDeWAjp3nMZUvzM0oFzo32/nq7FXgrqubLP4xV9TdGoSWG9sw22Uyz3WP3zLchiAev1S5azbz3DlOtM55tuJ5Sbp9IdohEdfD17G2eL3zPLprsSPs14nn5XQXhNpqLS1qXofFc0ctswe3qCzqrGpi045g2BB6/pXUeU5GXfJ4lIs5BoxXdT7HNqC6aLBHGqQswouv/YLB8wnXh0teA4/9n/N2f7QT27gBOCylPCKlLACfAe6qu48EzNE4BJxo8Dz36Mde2HgxIvog2jQYU7ENP9U0Y7cqdOo8mwUZJrqRWx/nuSmOD4ju7bNlxzbMgsGcKlW3nMYTV/4g/OTDvdNO9XzCrS9VZ2MbS9KNzPMKEG4siG3UZp6fWxzZACVChbNy59k8F7R04cMitq3W3AZTBeTss+pnGxf+Sd8JFkuvJPOc8B0KeMhiLlSq7jwXz+Yc1dPO8zrENs4nLn2D+nme7o92ztBbgaOhv4/p28J8BHi7EOIYynX+YIPn+SHgz+tu+wMhxCNCiP8sFq0KUwgh3iuEeEgI8dDU1FQbm9vjuHFEOcdv/9BVvPXabap7X7cHsk6rbWy+Uv186m/Vz3XKPDfF8dW/bi1gXHZsI7RgsEFsw9JlHN0evbCgpuHP0+nANaXbZR87JOL6eKj6uIHLWymr0lv1iwVBjQF+So2jEU+t4l8ubeyLRDjz3GlsA9RFALT13RRCBK+xkjrPCV85z7KUZ0BkkN02a9aCXs88N1ow2O06z+cbF79Kxa56yZjrgNWyt+4BPi2l3Aa8DvhjIUTw3EKIG4GMlPLx0GPulVJeAdyq/72j0RNLKT8hpbxeSnn9+PgKBsZeQQ+ad10+puob5+a6L0yDOs9tiueNl8Lul8MDv6fESL5BW9z15NI3wC0/2b3nX66gqFkweP6W4Dlvcf1qtQ0/2ZtlmnoN8x3vkQs9x/Px0bEN4/LOHlMXo42cZwhqPTO0dWUzNk4bzrMW9Kmo25kbbJxns/CxzbF4gy5XF/eX/76ciKCIh0eRIZFBnO+uM4RiGz0qns2CQSmrt5XyquTrcmYk+xE/CT/6Jbjl3633liyLdo7I48D20N/b9G1h3gN8FkBK+W0gBoRXdtxNnesspTyuf6aBP0PFQ/ofsxDM5KHWYjFe4Dx3sAjt5g/C/Cl49LPVUnW9wkU3wyt+oXvPvxoLBpcb27Asn7Dz3Ksn1V5jufn+LhHxYkRFCZDV2Ma0dmtHGzjPUI3nDG1v/P/tEuyLpTPPG1Id7q/EmNrHgXhuz7UeM87zCjLPACWh2p4PR7K9ZYQsl56PbYRq/husobKYjfurswjnGe2I5weBvUKIXUIIHyWE76u7z4vAKwGEEJeixPOU/jsCvI1Q3lkI4QohNujfPeD1wONcCIRzsaAX461RbKNd5xlgzytg0+Xwtd8EZH8MuO2y7CYprRcMWrqMcZ4L81Y8t0tkacG4ljieOmZcytXYRrMydQYjnpfbXdDQRua5Kp47jASZRinzp/RrtTcWj+nuqysWzxGfKEUGRba3InjLJdHr4lnPhoRzz+WiPSf0EUuKZyllCfgA8AXgSVRVjYNCiI8KId6o7/YzwI8KIb6HcpjfLWUwX3EbcFRKeST0tFHgC0KIR4FHUE72J1fjDfU8xv0NxPMaxjY6cZ6FUO7zzAvq734YcNtlubGNwHnO28zzeuD42nmet4sF26XHqm04WsD6lKqxiHNH1LE1sKXxg0y5upUsFoS2Fgqbbeqo0oYhLO7bjW3o11lJtQ2AivDwjXjupVnE5WLcyl69SK6fYQZrqPQZbdkNUsr7UQsBw7d9OPT7E8AtTR77FeCmutsWgPOgGGEXCDpZafGcX4NIxHKcZ4DL3wr/9F8gfcI6z+1Qk3ku9cwirAsGR3cYLCxY8dwuPZZ5dqNqjPIoVQXjuedU45VmeeYgtrFC57kN8WwWDHbsPEN10SC0Hdu448Am5rLF2oYxy6AUieKLDCky/WGE9Hpsw20knvNWPPcRth7WWmMOqpI+qNbCefZiyp3pdAGV48FNP6F+jw2v+mb1LObE1unFxqIFg70hSC4YwrGNXj2p9ho9Vm0j7DzHwuK5WWQDVi/z3E5sw3MYTfrs3bQMx7NGPLc3tlyzY4RfefMVNClG1TbSUQsxU2T6w3lOjqmfvXohYBaxFheqtzXoOms5f+mNoNuFhFlIUMypf+V8913d7/u3cFHDiYGlueFH1RTURTev7jb1MolReMsnYc8rO3vcEh0GLV3GLBjM29hG2/RYbCOi1w1ERUnVOJZSLRjcfXvzB5mp+5Vmntu4kIhEBF/5uZeR9Jdx6jTbJ5w1z5hLR2Wek3KhdwVnJ4zsgrs+Vq0V3GuY8acQzjwXbPnMPsKK57XGDWWeTWvubjsBIzvVv+XgxZWAvtC48m2dP6ZmwaB1GdacwHm2sY22iehTQK98V7W4GPAqym1Nn1KLrlo6z6ZU3Uozz8Z5bn1aHIwtc18Z53kdBJR0fFIiq8oA9oPzLARc8/b13ormmBx+IeQ8l2zmuZ+w4nmtCab2cyqyARdWnrifCS8YtOJ57THOM6J3FxL1Gsvtptkt9HYMeHq9eVBpo0mZOoCt16mZtZU6qt3eF8Z5Xg/30Y2xAXu+WTPMxXtNbMNG+foJK57XmvAq3Pys+r0fnABLdWAsFezK6vXAjYIsqxOWFc/t0WMLBs0xk3Qr6m/Tka9Rd0HDVXerfyvFzBx1a18E4rnDtRSrgRMlKnSHOyueu4+ZDamPbdhzQt9gFwyuNeE6z4HzbMVzXyBEtS1rpdQ7guRCIXxisrGN9uixJilmOwZc1aKbc0dURnh4x5q9dtfyyMnxdWsbL8Kvac2a7mMu3gvz1duseO4rrHhea8J1nnPWee47TLm0crFnGk9cMIQFghXP7dFjTVKqzrOObUw/B8Pb12a62+my8xyJqFrV6+A8R/zQa1qzpvs0bJJixXM/YcXzWuOGqm3kbQat73B922FwvQjvb1uqrj16rNpGIJ4d7TyfeRrGLl7T1+6qUB/csi77OmKd57XFiOdCfea5R44zy4rpEbvhAiKIbWRB90mxTkAfYZxnG9tYe6zz3Dk9mnm+Y98IVCpw5jDsvG1tXtt8f7opnm/5ydoc7BrheKFjw55vuk8kogR0jXguVnP1lvMeK57XGscDEdE1nouoygDWJesbapznHhEkFwo289w5PdYkxYiLG3YMwOxRZTJs2Ls2r70WFxL7v797z90CJxzbsM7z2uAn60rV2Q6D/YQVz2uNEKrWcykHlbKaXm7WdtZy/mEWDNpSdWtPjXi2F6RtEekx8Ww+w3JBRTYAxvet0WuvgfO8TrhRtdZGIhBWPK8NXqIu81y04rmPsOJ5PfC0wCr0SatUSxXHV2UIkXagXGtsbKNzvLiaCeuV72q43OPcIfX7hrUSz11eMLiOeNp5LjpJfGvWrA31zrPNPPcVVjyvB26sumDQLhbsL9xodcBcolOZZZWxsY3OueYdsPFA77QNDre4P/M0JMYgObY2r23yqL1SeWQV8bTzXPRSWPm2RiwSzza20U/YS9D1wI3pBYOzdvFGv+H41dqefTj929PUVBSwTVLaIjUO++5c762oUh/b2HDJ2r92HzrPg0lV/UHamc61o2Fso/++WxcqVjyvB1686jzbway/cKMh8WxdhjXFCYlnzzrP5yVGXJQLMHVofcRzHwqcZFJdTCYHR9d5Sy4g/NTi2EavzPBYVowVz+uBWVSWm7POc7/hRCGvxbONbawtwbS7b0tCna8YcTF3ArLn1m6xYPi1+/G41ReWwp5v1g4/VKquUlHlS62h0je0JZ6FEHcKIQ4JIQ4LIT7U4P93CCG+LIR4WAjxqBDidfr2nUKIrBDiEf3v90KPuU4I8Zh+zt8RQojVe1s9TiCeZ63z3G9Y53n9MM6zzTufv5hj5vRB9XOtFguGX7sfj1tzMWnPN2tHOPNcLqiffTircaGypHgWQjjAx4DXAgeAe4QQB+ru9gvAZ6WU1wB3Ax8P/d+zUsqr9b8fD93+u8CPAnv1vx4K3nUZL6YqMtgFg/2HG1UXRmAHyrXGCARbpu78JeKo6h+nH1d/j9vYxqpgmnPZ883a4SWrzRdwSQAAEMtJREFUmedAPPfhhdkFSjvO8w3AYSnlESllAfgMcFfdfSRgLmmHgBOtnlAIsRkYlFI+IKWUwB8Bb+pkw89r3Bhkp9U0jp1G6y/Cg2M/Tv/2MtZ57g+cKCxMqQVXg9vW8HXNgsE+PG7Ne7Pnm7XDOM9ShsSzzTz3C+2I563A0dDfx/RtYT4CvF0IcQy4H/hg6P926TjHV4UQt4ae89gSzwmAEOK9QoiHhBAPTU1NtbG55wFeHOYn1e92Gq2/CC8IsS7D2uJa8dwXmONm7OK1bSDl9rPzrI8Ne75ZO/wEINUss41t9B2rNTLdA3xaSrkNeB3wx0KICHAS2KHjHD8N/JkQoqOjV0r5CSnl9VLK68fHx1dpc9cZNwZFnYWy02j9RVgw24FybTH725apO78xn+NaLhaEvi5VZ53ndcDX41BhwcY2+pB25qeOA9tDf2/Tt4V5DzqzLKX8thAiBmyQUk4CeX37d4QQzwKX6MeH5+MaPWf/YvJnYJ2AfqPGee7Dk3AvE8Q2rHg+rzHH0FouFoS+bs/N8EVw3b+Bi1+13lty4eCp2toUF1SNZ7Cl6vqIdpznB4G9QohdQggftSDwvrr7vAi8EkAIcSkQA6aEEON6wSFCiN2ohYFHpJQngTkhxE26ysY7gc+vyjs6H/BC4tk6z/1F+MKoHx2sXsa4Oja2cX5jxOuGvevzun2ZeXbhDb8FIzvXe0suHHwtngsZKOXV7/14YXaBsuQoIaUsCSE+AHwBcIBPSSkPCiE+CjwkpbwP+Bngk0KIf49aPPhuKaUUQtwGfFQIUQQqwI9LKc/pp34f8GkgDvy9/ndh4Marv9tptP6iJrZhp+jWlEhEXbBY5/n8xhw3ax3bGNkJo7th46Vr+7qW/iQc24g46nd7Tugb2rrEllLej1oIGL7tw6HfnwBuafC4vwL+qslzPgRc3snG9g2ejW30LTa2sb5suGTtRZdldXGiIBwY3bO2r5sYhZ98eG1f09K/hGMbxjCz4rlv6MP5qfOA8NS+dZ77C1uqbn1537fWewssK8XxYHSX7RJpOb8x8bHCgqpdDlY89xH27L4eGPEsInaKud+wpeoslpWx86X22LGc/wTiOVM9L9jvdd9gxfN64OkpnOggXEBdyS8IHBvbsFhWxB2/tN5bYLGsnEA8z1fLZ9pzQt+whhXoLQFBq1Qb2eg7bObZYrFYLEHmOVRtw5aq6xuseF4PjHiO2jJ1fUd4cLSl6iwWi+XCJJx5NnWebWyjb7DieT3wrPPct9gOgxaLxWJxPHU+qOkwaM8J/YIVz+uBG8o8W/oLG9uwWCwWCyj3uUY829hGv2DF83oQOM82ttF3ODa2YbFYLBbAS6rMcyCebWyjX7DieT0wzrONbfQftlSdxWKxWKCB82wNlX7Biuf1wAgsG9voP2xsw2KxWCwAfqJWPNtqG32DFc/rgWed577FuM0R19bwtlgslgsZE9soafFso3x9gxXP60FyHK6+F/a8cr23xLLaGGfBDpIWi8VyYeMnVZOUckEZKhErufoF22FwPYg48KaPr/dWWLqBcZ5tZMNisVgubPyEas9dLtg1MH2GvQyyWFYT4zxb8WyxWCwXNuEFg1Y89xVWPFssq4ljYxsWi8ViQWeerXjuR9oSz0KIO4UQh4QQh4UQH2rw/zuEEF8WQjwshHhUCPE6ffurhRDfEUI8pn++IvSYr+jnfET/27h6b8tiWSccF4RjB0qLxWK50Amc56I9J/QZS2aehRAO8DHg1cAx4EEhxH1SyidCd/sF4LNSyt8VQhwA7gd2AmeAN0gpTwghLge+AGwNPe5eKeVDq/NWLJYewY0qEW2xWCyWCxc/AZWSWjToWvHcT7TjPN8AHJZSHpFSFoDPAHfV3UcCpu7aEHACQEr5sJTyhL79IBAXQthCh5b+xvGty2CxWCwXOn5K/cxO23NCn9GOeN4KHA39fYxa9xjgI8DbhRDHUK7zBxs8z1uB70op86Hb/kBHNv6zELYorqVPcKM282yxWCwXOl5C/cxO20XkfcZqLRi8B/i0lHIb8Drgj4UQwXMLIS4DfgP4sdBj7pVSXgHcqv+9o9ETCyHeK4R4SAjx0NTU1CptrsXSRRwb27BYLJYLHj+pfmZnq4vJLX1BO+L5OLA99Pc2fVuY9wCfBZBSfhuIARsAhBDbgM8B75RSPmseIKU8rn+mgT9DxUMWIaX8hJTyeinl9ePj4+28J4tlfXGjdorOYrFYLnQC8WxjG/1GO+L5QWCvEGKXEMIH7gbuq7vPi8ArAYQQl6LE85QQYhj4O+BDUspvmjsLIVwhhBHXHvB64PEVvheLpTewsQ2LxWKxmNhGIW1jG33GkuJZSlkCPoCqlPEkqqrGQSHER4UQb9R3+xngR4UQ3wP+HHi3lFLqx10MfLiuJF0U+IIQ4lHgEZST/clVfm8Wy/rgxavNUiwWi8VyYWIWDII9J/QZbQUzpZT3oxYChm/7cOj3J4BbGjzul4FfbvK017W/mRbLecQdv2JdBovFYrnQ8RPV321so6+wq5osltVmx43rvQUWi8ViWW9M5hmsodJn2PbcFovFYrFYLKuNFxbP1nnuJ6x4tlgsFovFYlltfCue+xUrni0Wi8VisVhWGzcKpuWFFc99hRXPFovFYrFYLKuNENWKG1Y89xVWPFssFovFYrF0A1Pr2bXiuZ+w4tlisVgsFoulG5jcs3We+worni0Wi8VisVi6gan1bMVzX2HFs8VisVgsFks3sJnnvsSKZ4vFYrFYLJZu4FnnuR+x4tlisVgsFoulGwSxDdthsJ+w4tlisVgsFoulG9jYRl9ixbPFYrFYLBZLNwhK1UXXdzssq4oVzxaLxWKxWCzdIChVZ2Mb/YQVzxaLxWKxWCzdwNZ57kuseLZYLBaLxWLpBoF4trGNfqIt8SyEuFMIcUgIcVgI8aEG/79DCPFlIcTDQohHhRCvC/3fz+vHHRJCvKbd57RYLBaLxWI5r/FstY1+ZEnxLIRwgI8BrwUOAPcIIQ7U3e0XgM9KKa8B7gY+rh97QP99GXAn8HEhhNPmc1osFovFYrGcv9hqG31JO87zDcBhKeURKWUB+AxwV919JDCofx8CTujf7wI+I6XMSymfAw7r52vnOS0Wi8VisVjOX3xbbaMfaUc8bwWOhv4+pm8L8xHg7UKIY8D9wAeXeGw7zwmAEOK9QoiHhBAPTU1NtbG5FovFYrFYLD3Artvg5p+EiSvXe0ssq8hqLRi8B/i0lHIb8Drgj4UQq/LcUspPSCmvl1JePz4+vhpPabFYLBaLxdJ9YkNwxy+Ba2Mb/YTbxn2OA9tDf2/Tt4V5DyrTjJTy20KIGLBhiccu9ZwWi8VisVgsFktP0Y47/CCwVwixSwjhoxYA3ld3nxeBVwIIIS4FYsCUvt/dQoioEGIXsBf41zaf02KxWCwWi8Vi6SmWdJ6llCUhxAeALwAO8Ckp5UEhxEeBh6SU9wE/A3xSCPHvUYsH3y2llMBBIcRngSeAEvB+KWUZoNFzduH9WSwWi8VisVgsq4ZQGvf84Prrr5cPPfTQem+GxWKxWCwWi6WPEUJ8R0p5faP/sx0GLRaLxWKxWCyWNrHi2WKxWCwWi8ViaRMrni0Wi8VisVgsljax4tlisVgsFovFYmmT82rBoBBiCnhhHV56A3BmHV73fMbus86w+6tz7D7rDLu/Osfus86w+6tz7D7rjLXcXxdJKRt25zuvxPN6IYR4qNmKS0tj7D7rDLu/Osfus86w+6tz7D7rDLu/Osfus87olf1lYxsWi8VisVgsFkubWPFssVgsFovFYrG0iRXP7fGJ9d6A8xC7zzrD7q/OsfusM+z+6hy7zzrD7q/OsfusM3pif9nMs8VisVgsFovF0ibWebZYLBaLxWKxWNrEimeLxWKxWCwWi6VNrHheAiHEnUKIQ0KIw0KID6339vQaQojtQogvCyGeEEIcFEL8O337R4QQx4UQj+h/r1vvbe0lhBDPCyEe0/vmIX3bqBDii0KIZ/TPkfXezl5ACLEv9D16RAgxJ4T4Kfsdq0UI8SkhxKQQ4vHQbQ2/U0LxO3pce1QIce36bfn60GR//aYQ4im9Tz4nhBjWt+8UQmRD37XfW7cNX0ea7LOmx6EQ4uf1d+yQEOI167PV60eT/fUXoX31vBDiEX37Bf8da6Enem4cs5nnFgghHOBp4NXAMeBB4B4p5RPrumE9hBBiM7BZSvldIcQA8B3gTcDbgHkp5X9bz+3rVYQQzwPXSynPhG77r8A5KeWv6wu1ESnlf1yvbexF9DF5HLgR+DfY71iAEOI2YB74Iynl5fq2ht8pLXA+CLwOtS9/W0p543pt+3rQZH/dAXxJSlkSQvwGgN5fO4G/Nfe7UGmyzz5Cg+NQCHEA+HPgBmAL8E/AJVLK8ppu9DrSaH/V/f9/B2allB+137GWeuLd9Ng4Zp3n1twAHJZSHpFSFoDPAHet8zb1FFLKk1LK7+rf08CTwNb13arzlruAP9S//yFq0LDU8krgWSnlenQa7WmklF8DztXd3Ow7dRfqhC6llA8Aw/rEdcHQaH9JKf9RSlnSfz4AbFvzDethmnzHmnEX8BkpZV5K+RxwGHVOvWBotb+EEAJlMv35mm5UD9NCT/TcOGbFc2u2AkdDfx/DCsOm6Cvna4B/0Td9QE+lfMpGEBYhgX8UQnxHCPFefdsmKeVJ/fspYNP6bFpPcze1Jxv7HWtNs++UHduW5keAvw/9vUsI8bAQ4qtCiFvXa6N6lEbHof2OteZW4LSU8pnQbfY7pqnTEz03jlnxbFkVhBAp4K+An5JSzgG/C+wBrgZOAv99/bauJ3mplPJa4LXA+/X0XoBUeSqbqQohhPCBNwL/R99kv2MdYL9T7SOE+E9ACfhTfdNJYIeU8hrgp4E/E0IMrtf29Rj2OFwe91BrBNjvmKaBngjolXHMiufWHAe2h/7epm+zhBBCeKgv+p9KKf8aQEp5WkpZllJWgE9ygU3XLYWU8rj+OQl8DrV/TpspJ/1zcv22sCd5LfBdKeVpsN+xNmn2nbJjWxOEEO8GXg/cq0/U6OjBWf37d4BngUvWbSN7iBbHof2ONUEI4QJvAf7C3Ga/Y4pGeoIeHMeseG7Ng8BeIcQu7XrdDdy3ztvUU+jc1u8DT0op/0fo9nDu6M3A4/WPvVARQiT1YgiEEEngDtT+uQ94l77bu4DPr88W9iw1To39jrVFs+/UfcA79Wr1m1CLlk42eoILCSHEncB/AN4opcyEbh/Xi1URQuwG9gJH1mcre4sWx+F9wN1CiKgQYhdqn/3rWm9fj/Iq4Ckp5TFzg/2ONdcT9OA45q7Fi5yv6BXXHwC+ADjAp6SUB9d5s3qNW4B3AI+ZkjvA/wPcI4S4GjW98jzwY+uxcT3KJuBzapzABf5MSvkPQogHgc8KId4DvIBaTGIhuMh4NbXfo/9qv2NVhBB/DrwM2CCEOAb8IvDrNP5O3Y9aoX4YyKAql1xQNNlfPw9EgS/q4/MBKeWPA7cBHxVCFIEK8ONSynYXzvUNTfbZyxodh1LKg0KIzwJPoCIw77+QKm1A4/0lpfx9Fq/dAPsdg+Z6oufGMVuqzmKxWCwWi8ViaRMb27BYLBaLxWKxWNrEimeLxWKxWCwWi6VNrHi2WCwWi8VisVjaxIpni8VisVgsFoulTax4tlgsFovFYrFY2sSKZ4vFYrFYLBaLpU2seLZYLBaLxWKxWNrk/wdmlfewyIssJwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(12, 4))\n", - "ax.plot(rnd, perf_reg, label=\"regression\")\n", - "ax.plot(rnd, perf_clr, label=\"classification\")\n", - "ax.set_title(\"Comparison between regression and classificaton\\non the same problem\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Difficult to say. Knowing the expected value is an integer. Let's round the prediction made by the regression which is known to be integer." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.exceptions import ConvergenceWarning\n", - "from sklearn.utils._testing import ignore_warnings\n", - "\n", - "def float2int(y):\n", - " return numpy.int32(y + 0.5)\n", - "\n", - "fct2float2int = numpy.vectorize(float2int)\n", - "\n", - "@ignore_warnings(category=(ConvergenceWarning, ))\n", - "def evaluation2():\n", - " rnd = []\n", - " perf_reg = []\n", - " perf_clr = []\n", - " acc_reg = []\n", - " acc_clr = []\n", - " for rs in range(0, 50):\n", - " rnd.append(rs)\n", - " X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rs)\n", - " reg = LinearRegression()\n", - " reg.fit(X_train, y_train)\n", - " log = LogisticRegression()\n", - " log.fit(X_train, y_train)\n", - " perf_reg.append(r2_score(y_test, float2int(reg.predict(X_test))))\n", - " perf_clr.append(r2_score(y_test, log.predict(X_test)))\n", - " acc_reg.append(accuracy_score(y_test, float2int(reg.predict(X_test))))\n", - " acc_clr.append(accuracy_score(y_test, log.predict(X_test)))\n", - " return (numpy.array(rnd), numpy.array(perf_reg), numpy.array(perf_clr),\n", - " numpy.array(acc_reg), numpy.array(acc_clr))\n", - "\n", - "rnd2, perf_reg2, perf_clr2, acc_reg2, acc_clr2 = evaluation2()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAEXCAYAAACDNfoxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADvL0lEQVR4nOydd7gsWVnuf1/nuHM4+Zw5aRITgIEBBEFERMVLMCsqJvSaA4p4vYIo5oTXDCIiAioqYiAnQdLMMDMMMDMnzcnn7Bw6x3X/WKu6q7uruqt79w5nTr3Ps5/dXWH1qqpV61tfej9RSuHDhw8fPnz48OHDhw8fj3cEtrsDPnz48OHDhw8fPnz48LEV8JUfHz58+PDhw4cPHz58XBfwlR8fPnz48OHDhw8fPnxcF/CVHx8+fPjw4cOHDx8+fFwX8JUfHz58+PDhw4cPHz58XBfwlR8fPnz48OHDhw8fPnxcF/CVn8cpROS7ROQDW/ybZ0XkeVv5mz7csR1jYBAMMm5E5JCIKBEJbVKffklE3mT7/hIRuSAiWRF5ooh8SUSesxm/7cPH9QJfTvnw5dSG+uTLqQHhKz89ICLfKSL3msF0RUTeKyLP3O5+9YJS6u+VUs/f7n54hS+Qho9rbQzsJCilfkMp9YO2Tb8H/LhSKqWUul8pdatS6mMb+Q0Rea2IvG1DHfXhA19ObRV8OTV8XGtjYCfBl1ODw1d+ukBEfhb4I+A3gFngAPBnwIu2sVs9sVlWBh9NDPse+89sx+Mg8KXt7oQPH+3w5ZQPN/hy6rqDL6e8Qinl/zn8AaNAFviWLsdE0ULnsvn7IyBq9j0HuAj8AjAPXAFeDHw9cAJYBn7J1tZrgXcB/wBkgM8Dd9j2/yJw2uz7MvAS276XA/8D/CGwBPy62fZJs1/MvnlgHXgIeILtOt8KLADngF8GArZ2P4m2JqwAjwFf1+V+nAVebfq3AvwNELPtfyHwALAKfAq43Wz/O6AOFMw9/wXgb4GfM/v3Agr4MfP9iLl/gW7tmn17gH821/cY8JNt9/wfzfVn0JPGXV2uTwE/BpwEHvPw208C7jdt/5N5tr/eNj5eBVw19yBge85Lpm8T5vgY8DazfRW4B5i1Pacz5nceA77L/vxs/XmGOW/N/H+Gbd/HgF9Dj6MM8AFgyuU+jAP/Ye7pivm8z2tbwHejx9oS8H/Q4+Z5Lr8VB37fHL+GHo9x4JB5HiFz3PcBD5vfOwP8sK2NKdPHVfS4+QTNsfMq4JI571Hgq21j423odzxrfisHnLaN9eeZz0Hgl2i+n/cB+82+NwAX0O/dfcCzzPYXAGWgYtp/0DZe32P6eQr4oUHHq//3+P/Dl1NWu76cah7vyynlyynbWPfllNMz2+4O7NQ/89Cr1qB1OeZ1wGeAGWAaPan8mtn3HHP+rwBh4IfMS/h2IA3cip5Eb7ANmArwzeb4V6IniLDZ/y1mwAWAbzMDfLfZ93LzWz8BhMxL93KaQuVrzYAeQwuYm23nvhX4N9OnQ2iB9wO2dium70Hgf6OFp7jcj7PAF4H9wAR6UrEm0Seihdrdpq3vNcdHbec+z9bW9wP/bj5/J/qF/Qfbvn/r1a65V/eZZxABDqMnnK+13fMiWtAHgd8EPtPleSvgg+ba4j1+O4KeCH/KPM+XoieRX28bH79tjo+bYz8D7DPb/hJ4hzn+h4F/BxLmt54MjABJ9IR1ozluN3Cr7flZY2ACLQC+Gz1GvsN8nzT7P2bu8XHTl48Bv+VyHyaBbzJ9SaMF5rtt+13bAm5BT6Jfaa7xD8x9cBMqf2rO32uu+xnmvEO0CpVvQC82BHg2kAeeZPb9JvAX5jmEgWeZ425ET/h7zHGHgCO2sfG2tmd/tG2sW0Ll59ELtRtNu3fY7uvLzP0KAT+HXkDEnH7DbPtvtNU+BtyJnjOeO8h49f8e/3/4cspq15dTzT75ckr5cqp9vOLLqdZntt0d2Kl/wHcBV3sccxr4etv3rwXOms/PQQuNoPmeNgPzbtvx9wEvtg2Yz9j2BdBWuGe5/PYDwIvM55cD59v2v5zmhPJctLB4GsaSYLYH0RPdLbZtPwx8zNbGKdu+hLmGXS59Ogv8iO3719O0QPw5RuDa9j8KPNt2rl2oHEFPegH0hPDDwEWz72+Bn+3VLnqyb78vrwb+xnbPP2TbdwtQ6PK8lfWCe/jtr0RbasS275O0CpUyrRbHhzEWHfN9N1qoh9CCtMViZ45Joi1F3wTEu4yB7wY+17b/08DLzeePAb9s2/ejwPs8vit3Aiu2765toQX8O9v6X8ZBqJhnX8BmWbbtO4RNqDjsfzfwU+bz69ALp6NtxxxFLwqeh1m82fa9Fu9C5VHMu+jhXq1Y1+PwG/uBGpC2bftN4C2DjFf/7/H/hy+nrDZ8OdXc78sp5/tyJ76cepHHe/W4l1N+zo87loCpHjGue9BWEwvnzLZGG0qpmvlcMP/nbPsLQMr2/YL1QSlVR7ub9wCIyPeIyAMisioiq8AT0G7SjnPboZT6CPAnaOvEvIj8lYiMmPPDDtew1/b9qq2dvPlo73M77P2w34+DwM9Z/TfXsJ/W+2Xv82m01fBOtAXkP4DLInIjetL+uId2DwJ72vb9EjouvuP60FaYWI9nbr++br+9B7ikzNvvcC7AglKq2Nbev9raehg9ycyiww3eD7xTRC6LyO+ISFgplUNbWH8EuCIi/ykiNzn0u32sQpdnjb4Xjs9ZRBIi8pcick5E1tFWoDERCXpoaw+t4zyHftecMIW2LJ122W/v09eJyGdEZNncu6+n+X78Lto1/wEROSMiv2h++xTw0+jJel5E3ikijuOxB/a79VFEXikiD4vImunXKK3vrR17gGWlVMa2rdcz6jVefTy+4cspDV9OuV+fL6d8OQW+nGqBr/y449NACR3/7IbL6InAwgGzbVDstz6ISADtVr4sIgeBNwI/jnZTjqHd9mI71z55dUAp9cdKqSejtfDjaBfoItpi034Nl4ZxDbTejwvA65VSY7a/hFLqHV36/3F0eEVEKXXJfP9edCzvAx7avYCOebbvSyulvn4D19cuJNx++wqwV0Tsz2g/rWi/5gvoWHV7ezGl1CWlVEUp9atKqVvQLvUXAt8DoJR6v1Lqa9AWuEfQY6Ud7WMVBn/WP4d2nd+tlBpBWw+hdTy64Qqt4zyBdrc7YRHtPj/SrUERiaLj5X8PHV8+BvyX1R+lVEYp9XNKqcPA/wJ+VkS+2ux7u1Lqmeh7o9DhHf3iglMfReRZ6LyAbwXGTb/WaN6n9ud/GZgQkbRt20bfRx+Pb/hyaoPXgC+nfDnVCV9OPc7llK/8uEAptYZ2ff6piLzYWBHCRnP/HXPYO4BfFpFpEZkyx2+EEvDJIvJSoyH/NFqofQbtclXouEpE5PvQFjVPEJGniMjdIhJGW6mKQN1Y+/4ReL2IpI3w+tkNXsOPicg+EZlAJwn+g9n+RuBHTD9ERJIi8g22F2gOHetsx8fRgvS/zfePme+ftFkqu7X7OSAjIq8SkbiIBEXkCSLylA1cnx3dfvvTaGvYj4tISEReBDy1R3t/gX4WBwHMuHqR+fxVInKbsVqtoxcDdRGZFZEXiUgSPV6y6KTcdvwXcFw0JW5IRL4NvcD4jwGuO422Bq+a5/yaPs59F/BCEXmmiETQrn7HechYld8M/IGI7DHP7+lGiNgRQcdXLwBVEfk6oEGdKiIvFJGjRsCvoZ9LXURuFJHnmvaK5pqc7l0vvAn4NRE5ZsbB7SIyib5PVdOvkIj8Cjr+3cIccMgsIFFKXUCHjPymiMRE5HbgB9jY++jjcQxfTg0MX075cqobfDnVxONSTvnKTxcopX4fPcn+MnpgXEBPau82h/w6cC/wBXQi2efNtkHxb2jX8Ao69vWlxpLyZTSTyKfRA/E2dJKmV4ygJ8AVmuwlv2v2/QRa0JxBx/q+Hf0iD4q3o1lTzqBdrL8OoJS6F52Q+iemH6fQsb4WfhMtoFdF5JVm28fRL6YlVD6Jjue2vndt1wieF6JDEh5DW2jehHbpbhg9fruMTh79AXSs88vQE3ipS5NvQDOofEBEMugFxd1m3y70hLyODjP4OE3mnZ9FW2OW0aEW/9uhr0voe/Fz6Of/C8ALlVKLA1z6H6ETRBdNH9/n9USl1JfQTERvR1vXVtBhM254Jfrdugd9fb9N27xl3O8/iV4graATj99jO+QY8CG0wP008GdKqY+iBdFvmeu4ik4If7XXa7HhD8xvfwD9fP4afX/ej743J9DvXZHWkJJ/Mv+XROTz5vN3oOPELwP/CrxGKfWhAfrk4zqBL6cGgi+n8OWUG3w59fiXU6JaQj19bBdE5LXoRLWXbXdffGwOROSzwF8opf5mu/viw4cPH/3Cl1OPf/hyysf1AN/z48PHJkFEni0iu4z7/nuB2+nD+uTDhw8fPnxsJnw55eN6xI5iX/Dh43GGG9Fu5iQ6vOKblVJXtrdLPnz48OHDRwO+nPJx3cEPe/Phw4cPHz58+PDhw8d1AT/szYcPHz58+PDhw4cPH9cFfOXHhyeIyMtF5JPb3Y9rBSKiROSoy74ddS9F5ICIZKW1+Fv7Ma7X48OHDx/9YqfNgzsdvkzx4WN48JUfHx0QkUNmYvJzwq4DKKXOK6VSVk0KEfmYiPzgMH9DRL5XRO4TkXURuSi68rc/vnz4uA7gy5TrC1shU3z42Ah85ceHjz7hC/D+YO5XAl0QcQpdE+Kr0bURtg2m0Js/B/rw4WNb4cuUnY3H2/N5vF3PIPAF/+MIInKzsbCsisiXROR/2fa9RUT+VET+U0QyIvJZETni0pRVnG3VuK6fbmvn90RkRUQeMxWKre2jIvLXInJFRC6JyK+7ubxF5Kkicq/xAsyJyB/Y9v2TiFwVkTUR+W8RubXtGv5MRN5r+vU/hqLzj0yfHhGRJ9qO3yMi/ywiC6a/P9nl3r1FRP5CRD5o7s/HxVSwNvuViPyYiJwETpptPyQip0RkWUTeIyJ72pr9ehE5IyKLIvK7bgttEbnJ/O6yiDwqIt866DW3tfurIvL/zOewiORE5HfN97iIFEVkwm6VFZHXA88C/sT83p/YmnyeiJw04+tPRURcfve1IvIuEXmbiKwDL1dK/blS6hNKqbJS6hLw98BXuD0PW1uvMuMpY+7NV5vtQRH5JRE5bfbdJyL7zb5niMg9ZgzdIyLPsLX3MRF5vYj8D5AHDne7/z58XM8QX6b4MqW13V+V7ZEpTxWRT5vjrojIn4hIxLb/Vtv1zonIL5ntjnJCHDyRYvNOiQ4j/B8R+UMRWQJeKyJHROQjIrJk7v/fi8iY7fz9IvIvZmwsWX00fbrNdtyMiORFZNrpWs0xUyLyH+Z6l0XkE9azdvodsz0gIr8sIudEZF5E3ioio2afdb0/ICLngY+Y7d8vIg+b5/5++/h83EMp5f89Dv6AMLpy8y8BEeC5QAa40ex/C7pi8lPRFOd/D7zTpa1DgAJCtm0vByroStFBdHXmyzQZA/8V+Es0XeYM8Dngh13a/zTw3eZzCniabd/3o6tlR9EVmh+w7XsLusrxk4EY+gV+DPge06dfBz5qjg0A9wG/Yu7HYTSN59e69Okt5n59pfntNwCftO1XwAeBCXRV5OeavjzJHP//gP9uO/6j5vgD6OrJP2i7l580n5PoasrfZ57LE027t/R7zQ7X9FzgIfP5GehK5p+17XvQ6XkDH7P62nY9/wGMmetZAF7g8ruvNWPlxeY5xB2OeTfwWz3G9I3m3uyx9fOI+fzz6IraNwIC3AFMmvttVZ4PoStRrwCTtms7D9xq9o92u//+n/93vf7hyxRfpnRe03bJlCcDTzPXcwh4GPhpsy8NXAF+zlxPGrjb7HOTEy39a++juZ9V4CfMb8aBo8DXmGczjVbo/8gcHwQeBP7Q3P8Y8Eyz78+A37b9zk8B/97j3ftN4C/Q72AYrTxKj9/5fvT7ehj9DvwL8Hdtz+Ot5rw48CJz/M3mGn8Z+NR2zztbNr9tdwf8vyE9SP1yXAUCtm3vAF5rPr8FeJNt39cDj7i05TQxvBw4ZfueMMfsAmaBErZFLnrR+VGX9v8b+FVgqsc1jZnfGLVdwxtt+38CeNj2/TZg1Xy+Gzjf1t6rgb9x+a23YBPcZvKoAfvNdwU817b/r4HfaTu+AhyyHf8C2/4fBT5su5eWoPo24BNtfflL4DX9XrPDNcWBInqy/0X0Iuai6euvAn/s9LxxF1TPtH3/R+AXXX73tdiEtsP+7zf96PX8jwLzwPOAcNu+R4EXOZzz3cDn2rZ9Gu19sq7tdbZ9Xe+//+f/Xa9/+DKlZX7FlymwTTLFoR8/DfyrbVzc73Kcm5xwGo+NPpr7eb5HH15s/S7wdLTyFnI47m60wc1S6u8FvrVH268D/g042ra92+98GPhR2/cbzfixFEYFHLbtfy/wA7bvAXQ0xEEvz+Ba//PD3h4/2ANcUErVbdvOAXtt36/aPufRE1Y/aJyvlMqbjyngINo6ccW4aVfRk+2MSzs/ABwHHhEdlvRCaLiof8u4qNeBs+b4Kdu5c7bPBYfv1jUdBPZY/TF9+iW0UHXDBdv1ZYFl9H3t2G+2n2s7fonW+20//lxbWxYOAne39fO70AsAC16vuQVKqQJ6on022vr4ceBT6HCzZ5vv/aCf8XPBaaOIvBht1fo6pdRitx9TSp1CC7nXAvMi8k5bGMh+tNWxHS3PxaD9PbD3zcv99+HjeoQvU3yZ0oLtkikictyEgV01z/E3aD5DN1nQa18vtMgwEZk1MuiS6cPb2vpwTilVbW9EKfVZ9LU9R0RuQhv13tPjt38X7ZX5gOgwx1/s9Tt0yr5zaMXHPj7bZd8bbGNkGe1dso+3xy2u+6SnxxEuA/tFJGATVpZrvF+oPo+/gLbSTbm8lK2NK3US+A4Tw/pS4F0iMmk+vwht6T+LDklaQb+Q/eIC8JhS6lgf5+y3PohICh1ecNneddvny+jJwzo+ibaGXWpr70vm84G2tuz9/LhS6mv66Gc/+Dg6HOGJwD3m+9eiQ1X+2+Wcfp+/pzZE5AXAG4FvUEo95KkRpd4OvF1ERtCLn99Ge3cuAEeAL7ad0vJcDA4A73Pp22bffx8+rlX4MqWzT75M2R6Z8ufA/cB3KKUyIvLTwDebfReAb3c5z01O5Mz/BLBuPrcbvNr7/Btm221KqWVjyLPyly4AB0Qk5DJe/xZ4GVrZe5dSqujSX/3DSmXQYXw/JyJPAD4iIvf0+J122XcAHbo3B+xzuKYLwOuVUn/frS+PV/ien8cPLOvCL4hORHwO8I3AOwdoawGoo2NHe0IpdQX4APD7IjJiEu+OiMiznY4XkZeJyLQRqKtmcx0dq1tCW7sS6MlmUHwOyIhOmI8bC+ATROQpXc75ehF5puhEyl8DPqOUcvRgoMM/vk9E7hSRqOnrZ5VSZ23H/LyIjItOxP8p4B8c2vkP4LiIfLd5bmEReYqI3NzvBbvg4+hY7i8rpcoY1z5aiC+4nDOHx2fvFSLyXHROwDcppT7n8ZwbReS55v4W0RZJaxH2JuDXROSYaNxuFjv/hb6f3yk62fbbgFvQ99kJm33/ffi4VuHLlFb4MkVjO2RKGq2kZI335H/b9v0HsFtEflpEoiKSFpG7zT5HOWH6eQl4mXmO349Wknr1IQusichedD6Rhc+h845+S0SSIhITETuhz9uAl6AVoLf2ulgReaGIHBURAdbQ4ZL1Hr/zDuBnROQGo2j/BvAPXYwHfwG8WgwBiGiCkW/p1bfHC3zl53ECMwl9I/B16GTGPwO+Ryn1yABt5YHXA/9jXKJP83Da96CTQL+Mtqy9C9jtcuwLgC+JSBadBPrtxp3+VrSr9pJp5zP99t12DTXghcCd6GTORfREONrltLcDr0G7f5+Mnqjc2v8Q8H+Bf0ZPRkfotD79GzpB9gHgP9Ex3e3tZIDnm3Mvoy1Dv41OqhwGPoWO07Yscl9GKxJuFjrQz+SbRTPA/PGQ+vF/0ff+v0Qz/mRF5L09zokCv4V+dlfRIS+vNvv+AB0j/gG0UPxrdH7AEvq5/xx6wfMLwAvdQuy24P778HFNwpcpHdfgyxSN7ZAprwS+E00g8UZsSp+53q9Bj9WraOa8rzK7HeWE2fdDaAVmCU2A86keffhVNBnFGvre/4utDzXz+0fR+T0X0blX1v4LwOfRnpdPeLjeY8CH0MrWp4E/U0p9tMfvvBn4O/RzeAz9TH7C7QeUUv+KHhfvFB3G90X0u35dwErA8uHjuoaIvAW4qJT65e3uiw8fPnz4uLbhyxQfdojIm4HL/njYGfBzfnz48OHDhw8fPnz42ASIyCF0/plj/SQfWw8/7M2HDx/bBhE5YAuDa/87sN398+HDhw8fPgaFiPwaOqTsd5VSj9m2/5KL3OsVDu5jCPDD3nz48OHDhw8fPnz48HFdwPf8+PDhw4cPHz58+PDh47rANZXzMzU1pQ4dOrTd3fDhw4eP6xr33XffolJqerv7sRPhyykfPnz42H50k1PXlPJz6NAh7r333u3uhg8fPnxc1xCRc72Puj7hyykfPnz42H50k1N+2JsPHz58+PDhw4cPHz6uC/jKjw8fPnz48OHDhw8fPq4L+MqPDx8+fPjw4cOHDx8+rgv4yo8PHz58+PDhw4cPHz6uC/jKjw8fPnz48OHDhw8fPq4LeFJ+ROTNIjIvIl902S8i8scickpEviAiT7Lt+14ROWn+vte2/cki8pA5549FRDZ+OT58+PDhw0cTmyG/fPjw4cPHtQuvnp+3AC/osv/rgGPm7xXAnwOIyATwGuBu4KnAa0Rk3Jzz58AP2c7r1r4PHz58+PAxCN7C8OWXDx8+fPi4RuGpzo9S6r9F5FCXQ14EvFUppYDPiMiYiOwGngN8UCm1DCAiHwReICIfA0aUUp8x298KvBh474DXsSk4vZDl8mqBZx27tmr5Xb1wisc++JdIvdaxT4mw55kv4+CNT/Tc3hcurlKtK550wLvcf2wxx7/efwmU6th3eOWTPOXuZ7H30HHP7bmhXqtx37/9Cbd//Q8RjSU23N5AqFXggbfDnd8FwY2Xzrq6VuTBi6t87a27htC54ePBD72DXcfvYvbAMc/nPPy5DxGOJTh6+zM8n/Po1Qz/+YXLjvtuXP4wT/nKFzKz54Dn9j76yDz3n1/p2B6oV7lz5X0845t+kkgk7Lm9B/71D7gpmSUWCnbunDwKd3yb57Z8bB6GLb+Ad2xyl/vC1bUiD1xY4QVP2L3dXekLq4tXefjf/xCpVRz3jz/pRdz4pGd7bu/UfJara0WeeWzK8znz60Xe8bkL1Or1jn371+7lSbfeyJFb7vLcXjfc++9/ybGveCmjE9u0nlBKy6lbXwyR5IabWy9W+PDDc7z4zr3sxMCdL37yPaSn9nHwpif1Ptjg9EOfpZRf45a7n+/5nAvLed5130WUw1rn0OqnePIT7+Lgsds8t3fP2WU+cWKhc4dS3LH8XzzlG76fkZExz+194b1v4gYuko46yLbUDDzlB2EHPr/NxrCKnO4FLti+XzTbum2/6LC9AyLyCrQ1jgMHvC90hoE//vBJPvLIPF94zfN35Mvthsc+8Bc8/cIbqavOPgdE8dn3zXHwxrd5bu83/uthVvMV3vfTX+n5nL/8+Gneec+FjncqTJUvRX6e+1a+nb0/8mee23PDI/d8kKd84Ve4PzXJE5//sg23NxAe+2/495+E9G447n3SdMPbP3uO//fRUzz02q8lFd1ZdYjrlRK3fuJHuef0dzH7w3/i+bzQ+19FNjQKt3/E8zlv+PAJ/uuhqx1jaIJ17ou+mk9nTjDzQ3/kub1f+OcvsJApdbT3NXIPPx35Q778+Vu55WneHNCLV85x54O/ar61v2dGCN709RBNe+6fj21Dv/KrA9spp970iTO86ZOP8YXXPp+RmHflfbtx4mNv5+nn/gKgQ1YFRPHg4hegD+XnTz96io88Ms8Dv/I1nuX12z93nj/60EnHtd/nIr/I+fN3wS3/6rkPbrhw6iHuuu8X+Ex2iad9xy9tuL2BsPAI/NuPQr0CT375hpt7zwOX+eV3f5Hb9o5ydGbnzXN7P/RjnEo/hYM3/Yvnc9b/6zWMFS/C3Y4Rso548/88xt/8z9mOMRSgzhcjv8AXL30VB3/mHz2397p//zIPXVrraO92TvGz0V/l3nSKu174Ck9t1Ws1bvnMzxOSOq5y6oavhOkbPffv8YKdtbJygFLqr4C/Arjrrrs6VetNxLmlPJlilYVsiZl0bCt/ekOQ0hoZFSf9q1c79l143a1Iab2v9hazZc4t5ajW6oSC3iIlT8xleNrhCd75iqe3NXYK/qSGVLJ99cENucuPAlDJLA6lvcE6YX57/ktDUX6W82WUgvNLeW7ZM7Lh9oaJ/MJjpKSOKmb6Oi9Wz1ErdXoiu+H0fI7n3TzDm773Ka07zn8G3gzR1dOe21orVFjIlHj1193EDz/7SMu+S//xINwLlfyq5/byGe1Bevu+/8t3/uArW3c+/O/wDy+DpVOwx7uH1ce1i+2UU4/O6Xfx5FyWJx+8dqLy6oVVAPKvPE8iNdqy70u/9VzClf7mmIVMibVChflMidkRb/L6xFyGQ5MJPvbzX9W6I7cIv7vOlT774Nq30w+wH1DZ+aG0NxCyc/r//MNDaW4hUwLg0avZHaf8qOw846wTLPe31glX1hmtr5AvV0lEvC2PT8xluGPfKP/2489s3bF0Gv5fmfHsKc+/X68rTs5n+IFn3sD/feEtLfsyn/ob+ADU+pBTuewaaanztpFX8LKf/d3WnZcfgL96th4P16HyMyy2t0vAftv3fWZbt+37HLbvKFxcyQNwZiG3zT3pD4FyloLEHfeVg0lC1f4Uj5VcmUpNcW457+l4pRQn57Mcc5oQVx4DIFjx1lYvVJfOAFDPLw+lvYFQML899+WhNLdWqAJwfnnnjbvCnFE4Kv31LVovkFIZ1grOIS7tqNUVjy3lODKd6ty5pIXJROGs598/s6DH/GGH9lJZ3U616P2aygXd3rmMwxQ6acIBF096bs/HtqJf+bWjcGo+a/4PZ6G+VVClDDUlxBOdcqIWSRGt9zfHLOXKgFYCveLknMvCfeERACK14czBpStfAiBQWBpKewPBMtKZa9solq37vQPHXeGSvt/hap9yqpZjjBynr655PqfXGNpbvUC95s3wd3GlQLFS59hMp5yKr2l5Uu/D8GgZ6c7mHEKzp44DAguPem7v8YRhKT/vAb7HsOY8DVhTSl0B3g88X0TGTaLo84H3m33rIvI0w/L2PcC/DakvQ0G+XGUxq1/ua035CVWzFALO+S/VcLKvCaFeV6zk+xMq85kSmWKVY7MOC9eVswAEq8NRfiLr5wBQhc5cji2DpXgNyaJmKQjnloZzj4aJypJWXkN9eO6KlRpJCkyQaSghvXBppUC5Wu+q/OypXaZWrXpq77R5h49Md8a6x9b1NdWL3q+pnNcC6Oy6g5F/4gaQICye8Nyej21FX/JrOzvajvVihStrRQBO9LHo3wmQUoacJJCAwzIkmiZezzvmUbhhKas9ESfmvC0Oy9U6jy3mOO4kp8xcHh2S8hNe0nNBpLgDlJ/54Sg/Szl9v/tRNrcKlvLTz/NTShGr5wmI4tzFC71PANby2tPYbQzFpcyVc95kgTV2j812KlPBJaOk9BG5U8ysAnClEGbVrOMaiCRg/CAsDGfdcq3BK9X1O4BPAzeKyEUR+QER+RER+RFzyH8BZ4BTwBuBHwUwiaK/Btxj/l5nJY+aY95kzjnNDiM7uLhSaHz2umDbKQhV85RclJ96OEW07n1RvVaoUDfyx6tl0ZoMjzpYL1g2i+daoXPfAEgXtCE2UFwdSnsDwfL8LD4KNW+L8W5YN8rP2R2o/Kjls0B/yutavkRSSiSkxNkr3sITTzc8NQ6JuUb5iUiVq+e9Wa3OLGQJB4X9E53vRXhVj8laybugrBhFaa4YalhAGwhFYfyQ7/nZIdgk+bUjYF94el307xQEyxnyOMupQGyEFHnWi97mU6VsRjqPcursUo5qXXHcYaFpWe3jfXqf3DCR0x7zWGU7jXRm7s1ehSEYC5eMcXgnjruaUTwSKke97k2BzpdrpNBy7cqViz2O1jhhxlq3MQSwcOaBvtpzMhyLUVoDfSg/hax+zlnizsaR6ZuHpgxfa/DK9vYdPfYr4Mdc9r0ZeLPD9nuBJ3j5/e3ABRPiFQoIZxavLc9PpJanHHQWKiqaJqHylKt1IqHeuu+SbWF3ct6bEniy24Rgwt7CQ1J+ZqqaDSxcXh1KewPB8vzUyrB8esPxs5bysxPD3oJr2tMWrnt/fmvr68yaz1evXkYzCneHpfw4en4WT1GJTREuLrJ49iH2Hr7VU3sHJ5OE23PWCqsE8ppZR5W9GzmqJuwtR4wzC1kmkhOtB0wd95WfHYLNkF87BZZB6skHxxvhb9cKukUoBOMjpChyLltkNN6bxGG9WKVS04tcr56IrkY6EwqUYOMGqGqlzN7aJRBIVVc33N7AyNkMTwuPwoGnbag5y+jz2GKOSq3eObduI0LG05aiwGqhwkQy0vOc5WyJXWi5tjJ/xdPvdB9Dj1Dd8xRCl++hcNlbSPypuSy7RmKdxCXFdVjXClmgj6iLck6H72VUnJPzGZ56Q5ucmr4RTn1IM9YGrx2ylGFg54zWHQZL+XnSwfFrzvMTreWpBJ2pLAOxtJ4Q2l2gLrCsabFwwHNYxYm5LOOJMJNOE47x/ET7WDy7YW1lkTF0nyKV/hIbh4rCMkTM5De/8byfnRz2FsnocIBoveA5JCW7vtr4vLTgTF3djtMLOcYTYcbbx1C9BstnqB/7GgAKl71ZrU4v5Dg85eRFspEmlL0rm7WSXnQWiDYUtRZMHdUeKge6eR8+hoUTc1li4QBfdeM0V9aKrBe95dTtBISrWYouciqSHCMgipVVbx4KK+QtHQ1xYi7jaW46MZchIC4LV+M5SKkCyoEGux9cOfswUamQUXFGlfdckqEjtwBRQ6AzhBDtpVyZdDREta44u8MMxAmTH5OiwFKm6OmcpbV1wqLn69yKN+XnxFyGRCTI3rG2HOt6DRZPEjp4N/NMEFryJqdOzGec0wVsIdT9hJxX8npdlCHhbBSYuVmz/y2f8dzm4wW+8uOCCysF4uEgTz00wQWTf3CtIFbPUQ07C5VQbIQkRZZNvG4vWNadJx0Y5/RClpoHF/Kp+QzHZtKddKNKNXJ+Imrjys/8OT2BV1SQeHU7lZ8V2HeXzvPYIOmBUoq1QgURuLy688ZdMq+tTwlVJF/2trDPZpoCf33ZG9vR6YWss9dn7SLUSkQPPY1lRggs9fauVGp1zi3lOOK0yFlqMvFIHyQcyoTI5VS0kU/UgqnjUCvB6nnPbfrw0S9OzGU4OpPixl16UbsT8y/coCMUnOVULDUGwPqaN+XHklNPuWGC9WKV+Uxv+XZyPsOBiQSxcFsyeG4R8ovkIlMERJHPbUy2LJz5AgBnErczQo5K2ZvsHTryS7DrdggnN0x6UDO5wJYnYUflm2UXiJVXmFdjhKTOyrq355dZa0a0qtwi+XLvkMuT8xmOzaQIBNrWOitnoVqEmZuZix5iLNtbuajXFafms11D6FYC40T6yNmuFbTsjSZHncMTp2/S/4eUr3wtwVd+XHBhOc++8ThHZpLU6mpHhiC5IU6BethhoQeEk6OEpcbqmrc4XUuo3H3DJOVqveERc4NSihNzWY46WS8yV6FaoEaQmPJmjemG9cvaGnIudIhkbRvjjvMrusbP5JENe37y5RrVuuLodIq6gkurwwkPHAoKK0SrGepKSEiRVY/MbYVsU/kpry9QrfVW6M4sdGd6Y/IoV8MHGkxt3XBhOU+lptzbkwArjBDog8GuXtLCfmrCxTM8dby1vz58bAJOzWc5PpNuJFxfS4xv8VqWqoucihvlJ7fmLcXKCs9++uFJwJsS2Iula2n8Dt2H9Y3lx1hMb4U9OsxsbbGzBMWWILcIySkd6rRB5WfVlGN4yg0TiOwwxjdzbZ+v6/DqzKo3kgm78jMpGU7P95YHvcYQ0zeTGz3mifGtG9Mb8w9DKMbF6FGiNe+KZr2oZe+Rfbuc0xauY8Y3X/lxwYWVAvsnEhyesoTKtaP8JFSBesRZqMSSup7CuscJ3VJ+LAtPr7yfxWyZtULF+QU2+T5L8YPEh6D8lBd0yNLy6C2k1TZOvoVliE9oF/IGlR8rbOX2fWOATsrdMVjR+T5n1SxJip5DJ4s2y+mIWufCSneFbq1QYTFbciE7MGFqk8fIpg+xq9Lbs3KmC9MbS6dg7CAZSRGs9qFolnPUlHBk15S75wd8xjcfmwaL6e3obIp94wmiIe+hyTsBcZWn5qL8pEZ0vSKLqrcXrOT7uw9bnoju8sAL01tm6k4ACh774Ibw0gmuME106gYA1pa8hVQNHbkFSE4bObUx5cdSNveMxTkw4RJStV0wisdDoufgrMe1Tt4Wnj3JWs8x5IXpjenjBGZuIiGlnoxv3ZjeWHgEpo5RCo0Q64OwyqrHd8uhPSxkSj7jmw2+8uMApRQXl/PsH483FmBnFnfQy90FpWKeiNSQiHPRsXh6DPBuzVrOlUlGgty614RV9LDwWPsda/yYfJ+l1HESUvLMfe+G4Oo5lhilNrKPpBQplzauUPWNahnKWUiMw8wt+hrLg+fqWPk+t+/TSur5nZT3Y0IWH1EHiEmFtaw3ZaGcbyo/E9Kb7vpMN7KDpVMQSUNqhvrEMSZYZ7WHJfV0lxo/LJ2EyaOUA/G+GOykkidPjKOzac4v5zvDExMTWiH2lR8fmwRrwXl8Jk0wIBydSXkmpdkJ0EY65yLOkaRWfoq5VU9tWWHcx2fTjCXCPeVUd6a3RyE6Qm1SE9cUs9764IaJ3GnmY4eIju0CIL8yt6H2BkKtAsXVpudng4xvlrI5lYxwbCa94zw/eUmQG9HFrL0q0MVc87ipQKbBvOaGnkxvo/shmmbkwO1605kHPbXnmPOz8ChM30Qtkiau+pBT5QxZFef47jH9G26Mb77nxwfoBWimVGX/RIJ0LMx0OnrN1PppKDVRZ4taIm0sah4n9JVcmfFkhJFYmF0jMU71sPBYjEOO1pCVx0CCrKf0pFTIb2zCTOYusBjaTSChrX3rKwsbam8gWDTXcaP8oDTl9YBYy2vl58h0ing4uLNID4zyc1oOAJBZ95a8Wy40n/M4GWeCABssT4qz5+ekDi8UIb5HxytfPfNQj/ayTKWinaxRSmlPklF+wjXv9zpQyVGUGIenu4TF+oxvPjYRp9oWX8dn05zcgbTDTqhWyiSkhIo6G+kw2ys5b3PMUq5MKhoiFg5yfCbd0xPRi6WL6RsJJ8cAKOcHJymwmN4KY8dJjmvOy9L6Nig/FiNpYlIvdmFDC14rImQiFeHYbKrB+LYjMP8I54IHiKb0WqfkcQxZzGhER9gTzvVc6/QeQ1o+7T52JwCFy1/q2p4r01spA2sXYPom6pEUyT6Un0A5Q17ijUgcRyV1+kYtp2rXDlnKMOArPw64sKwt2vvGNQ3n4ankNcP4VshqK3sw7mxRC8W0UCllvQsVi7Xt2GyqtzVkLsNILMR0Otq5c/kxGN0HMe3VKOQ2Jqgny5fJJPYRMjTDudVtUH4soRKfMMoPGyI9sDw/o/EwBycTOyvXbPUc65KmktQWzJxHBbpmVaQORtkVzveMpT7dpSYPS6dg8igAU4duA2D9YneX/emFnHPIW+YKVPIweYRKME647t1zGKgWKEq84Z1yDn075nt+fGwaLKa3feOaaeroTOqaYXzLGRIU6aH8VAvektWXsuUGnfGx2VRPxreeTG/TNxE1yk9lA8qPxfQWmL2Z0cndAFTXvZG+DBU5IxuT0zCz8SR3q8DpRDLC8dkUldoOYnxbeJgT9X1ETIh/2aPyU7UiFCZuYCbowfPTg+nNKnkxOj7lifHNlenNUlJnboZomphUPEe5hCpZCoEke8fiJCNBn/HNBl/5ccCFFa1Z75/Qg/rwdOqaqfVTNC96KN5dqHi1Zq3kyw264WMzaU7NZ7sWDTs5l+XYrAPTG2jPz8QNBIxXqpQfnEWnVMwzoxapjB4iktZJroU1bwU0hwrL85OYgIkbIBTbUN6PXfk5MJHYWYVOV85yWWZJpizl1dvzqxfNuzO6j93hfM8Q0jNuNXkqRVi90FB+dh24kbIKUethwTyzkO3O9DZ1jFoo3hf9eqiWpxyINbxTznTXx/WiYwgFBX34aIfF9GYxTVkeoGuh3k9uXc+bARcjnSWnVNHbHLOcKzOZsuRUqifjWy+mN6ZvajDO1Tag/FhMb2MHb2NkYoaaElRuG+SUVeA0OQUj+zbM+GaFvU0kIo0Q9x0RcplbhPwSX6rsbpBm1Aqrnk5VhhyA8RsYra9xYbnQlfHt5Hzr+9eAjenNQi/GNy9Mb0zfhBiqcq9pC6FqlmIggYhwdDbtwvh2Y+vvXCfwlR8HWIxmluX5yHSS1Xyls5L7DoSl1IRchYreXuvHopZoWtSKlXpXBrJT81lnsgPQnp/xGwjG9P7iBjw/c+dPEBBFaPIwsZEp3V7GG6vLUGH3/ASCeiIZkvKjPT95zxWqNx0r57igpoml9BgqeXx+jeKhYweYCmSdvSQ2uNbkWXkMUA3lJxgKcTm4h9iau1BZzpVZyVdcavw0meOqwSTRPjw/4WqeciBOOhZmJh119mY1SA98xjcfw4fF9GbBCjW+FkLfrDwadzmlr0vK3q7FHqFgLSC7hb71ZOmauYmUCRGveVTAnGAxve09dieBYJBVGSFQ2AY5ZSlciSkIBDbM+LacKzOWCBMKBjgynUKkN8nElsB4sx6u7SU5MgY0k/57whprEzcQq64TpNY1SuHkXNY5t9nG9GahF+ObF6Y3xg81InrymVVPlxSt5hp08sfccgKnbgRkwyQY1xp85ccBF1byjMbDjdhLK7TlWgh9s1y84YSbUNHXUvM4IazkbeEE3eJG0YXmlnJl51CC4pr2kkzcQMgoP5XC4JPlyiWdS5HefYzk6LRuL7vNnh/QoW8bCCdYL1YRgXQsxMHJJOVqnTmPRdo2FfUaavU8Z6rThGOW99DboiBQyVEjCCN7GFHrWiFxMSRUvdTkmTra2LQcP8RU4azrb1seGcf2Fk9BKA7pPahwnBjePT/heoFK0DKOpJy9WVPHzO/4oW8+hgs705uFa4nxrWSIDMKJcecDAkFKgQTBsreCpUvZki3sTc9PbotxL0xvTN9Mot/FswMsprekIRrKBEaJFLdR+UlqWblRxrelXPN+xyPBncP4ZhSPE/V9pEaMTC71fn5KKQLlDFWJwMheBMU4Wdcx5JXpzUIvxjcvTG8EgoQSYwAUs948P9F6jophVDw+m/IZ32zwlR8HXFguNELeoJl4fS2QHlgx0nETr9wBy6LmYUIoVmrky7WWsDdwt6hZ4RaOL7BhemP8BsImJG8jyk9xTi+Epw7eRGpcT+i1nLeaEEOF3fMDWvnJXGlu7xPrhQrpaIhAQDg4qRfXO4L0YP0yUq9wtj5N1CjWXp+fVPKUgwlITBKvrgLu7IkXVgpUasrZU2ORB0wcaWwqjR1hV32Ocsk5xOW0GZNH3ZjjJo9AIEA9nCTRB/16pF6gGrTCYpOcns92LtLGDkIg7Cs/PoYOO9ObhWuJ8c0y0kVNCK0TquEkCVVgvdi92KRSuuDmZErnmU6lIl0Z37wwvTGyh1A4Ql5FkdLgnh+L6c1CLjROrLINYbD5RZCAJuaBDTO+LWXLTCWbeb07hvFt4RFq4TRzjDORTlIJRAlWuofqg66vF6/nKYdSmhQCuub9dGdmazK9WRg5oPNT3RjfvDC9QdOo7ZXEIV7PUw2lTNuWUcCJ8e2m647xzVd+HHBhJc/+8Way9b7xBJFgoCdL1U6A5dFxFSrhBHUCBCu9LWpWmJ8VTjCa0CE+bpbFE72Y3gAmbiASN56f4uDKpFp+jLyKMjmzj/TIOFUVQOW3QagUlrVLOmLGi0V6MKD3Z61QYTShPY4HJ7QCcG4n1PpZ1TV+LqgZokk9Adc9WESLlRqxep5qSCs/wVqJGCXXcAJLWXH2/JyG1CzEml7N8OxxwlLjylnn+31mMUc0FGBPe1IqNJUfgEiSiFQ9V1+P1ovUQk3Pz3qx2qh90UAwpNv3C536GDLamd4sXCuMb5X8KkCDVMAJtXCatOR7hpuvF6tUaqohp0SkK+ObF6Y3TM5qXuIEPIbetcPO9GahGBknZQxAW4rcognNNku+DTK+LeeaESHAzmF8m3+EzMhRQJhMRaiGUqTJ9yzIvZwrk5aCrjuV1GH0TxiruDK+WWPINezNKCsWdh97IuDO+OaF6Q2a70vZIwV8UuWpm7In3RnfbrruGN985acN9brioilwaiForPC9chV2AqwFqZXs1wERKqEEcVUgU+puUbOEznjbJOdWRfzUXIZUNMSukZhDY5bn51DDc+A19M4Jsex55oK7kEAACQTISIpAcTssaitNrw/ArKX8DJb3s1aoNCbAPWMxQgHZGZ4fQ3N9Xs00CuXWy72NAeuFCgkpUg8lGqGBs8Ecp108P5ZH6MiUm6fmaMumkX23ArB87ouO7Z2ez3LDVJJge1JqraKvaVKHpklEK5p5j3lMMYrUw0b5MULltGM8tc/45mP4aGd6s3CtML5ZOacJEw7miGiKNAWWst0NEtb+9sW4G+ObF6Y3CwVJEKwMZvS0M71ZqMYmGFWDEygMDKvAqYUNMr4t5cpMpJr3e8cwvi08zFLiMKDHQy2cIiW9x9BitkSKgqZeN/fpppGiu+fHI9ObhV6Mb56Y3oCYMWpXPZBw1Gs1UlJo0Mn7jG+t8JWfNixkS5Srdfa3CZXD08lrotCpMuFsyZRLzg9QC6VIUXDNu7DQ7vkBy73tEOKDZns5OpNyZ3pLTmuqRstzUBr8fo4VL7Ia29v4npUUofI2CJXCcjPfByC9W1N5b0D5serRhIJ6cXNueWcoP0oCXFaTDbY3Sr0F3WqhQpIiKpxshBPcOl7p4vnJMZWKNLxfLbB7agx2H9HhBMUrzkL89ELWuVjqyjlQtYYyJQ0GQm/KT0I1lR8rRM/RODJ5TAuU68ii5mPz0c70ZuFaYXyzWNy6KT+B2IheuHqVUyl7GJb2xi44ML6dms/2ZHqzUAimCFcHW9Dbmd4s1BPTjJDz7GEeGvJLDY8GsCHGt1pdhxlOta0LYJsZ3wzT25XIQQAmk1GIpknhbQylpIDE0poUAjicKHJxxZnx7ZRZ63hherPgxvjmlekNIJ7Waw0vJBy5bCudvM/41gpf+WmDxfS2r63GyOHpFOeX8tvv1u0BKWXIqyihcMT1mHpEW0N6hROs5Ds9P0dnUuTLNS6vdeZHnPTA9AYQSxoa0/JgQkXV6+yqXaWUPtjYlg+OENkO5Se/3IyjBh0usQHSA7vyA3BgMsn5HeH5OUcxvpsqIVJprbxKJdczdHI1XyEhJYg2lZ+bRsqu5CGnF7IcdlJWCit6YWI8NRbSoxPaorbcGVpWqtY4v5x3rvFjY3oDCEb1MUUPsdTVSpmoVCCi+7l3LE40FHC+pqnjUK82PGc+fAwD7UxvFq4VxjdVylBTQiLpbqQLxkdJ0VtOLTkY6Y53yW/QimN3pjcL5WCCSG0wOWVnerMQSOmF9dri1YHaHBi5xcb8qzsyOOPbar6MUq2eth3B+GZk7rnAARKRIPFIEImPelrrLOXKpCkQio0aY6awN5JDKRwNdSfmMp6Z3iy4Mb71ZHoLRmH8EACpEb3W8BJyns/oSJhAvJkC4TO+NeErP21o1PgZb1V+jkynqNZVQznaqZBKjrw45DfYj4mmSVLsPSFknTw/zsJ1NV9mIVNydt2CXvyZFzieMMqPB8+BExavnicmFWTihsa2YniEWHXwxNSB0e75Aa38zH0ZPLAUtWO9Tfk5OJHg7FJvJWPTsXKWTFx72kaTcaqBKDFVpFBxpu5snJYvk6SoazsZ4Xs4UeL8srMh4cyiS0HSJWMxawt7A1iI7Gckd7Zj+/mlPHXllj9kyBOMJ8miX/fi+bFC48TkeQUCwg1TSfdaP9Aka/DhY4NwYnqzcK0wvkkpQ04SSMB9CRJOjHoKWWrUnLEb6cy9aV+Md2V6a7OyA1RCKaIDKj/tTG8AkbQOqVpbujJQmwOjPewN9HUOsNi1lM0Jm6dtRzC+NZje9jTGQig+4jF0skyKPKHkqC5ZkZhgJqDHTvsY6pfpzUKT8a1VFnRnentUy5CA9lJGYwkqKggeSDiKhg7bXvDeZ3xrwld+2nBhWdPdtsdSXyuMb8FKjmIP5ScQHyHt0fMTDEhLEt4xl7CKrkxv1RKsXdRFQNH1WQoqglQGUyQXzutJLj7TDIGqhEdJ1rfB6pRfbs35Ae3yLq3B+uW+m2v3/BycTJApVlnNb3PY1MpZVqJG+YmHqYYSJCj27NdavkKCIqFYuqH87IsVqdZVRy7TSq7Mcq7sHKbWUFY6lZ9s+gZ2Vy+g6q3KlKWMHHbLH4pPNBTXJgNhb+FtKUgSabZ7ZMalELJFy+3n/fgYEpyY3ixcK4xvwXKGPImux4Tio4yQ9xCy1JnzM52KGsa31vtwrhvT2/wjhumtGU5dDaWI1weT+e1MbwDRsV0A5FfmBmpzINQqUFxtDXsD7eEagPHNUjbtYW+wAxjfFvTzO1MabRhsw4lR0uJtDI1IgZDlJUlMka6tEQ5Kxxg62SfTm4UG49tjD7S1Z62dXNqzeSIlECAncQIelJ+CocMO2z0/PuNbA77y04YLy3lm0tGOeGArAXun5/2ETUXfrsfER0h6DCcYT4Rb4lonkhGmUpEOa8iJBvuJwwu8eh5QjbA3gILEkMpgQiV7RS+Ex/c3kwqr0TFSaosnXqW04Gj3/MzqJPx+836KlRqlap2RFuXHML5tp8exnIfcPAshLbhTsRD1UIKk9FZ+VgtlklLUFJ2xUUDYFdbPvT1MzHq3DruFqUmg4T20Q00dZ4QcS/OXWrZbOTjO7Z1u1uEBwn3UnrJC40KxZrtHplNcWM5TbPeExUY1Q53v+fExJLgxvVm4FhjfQtUshR5yimiapBRZyXanoF/KlUlFQy0yu8n45iynvDC9gQ4RT9D/3OvE9AaQHJ8FoLS+hcqPVXbBHvYGAzO+LTc8P23Kz3Yzvs1rlrXlfKWR/xWIeTP0LmVLOufHUlqSUwQKSxyeSrmOIa9MbxYajG+XWhnfTs5lPDG9WchLgoAHEg6LTj6SbA17A5/xDXzlpwMXVvItTG8WRhNhJpORHe/5CdfylILdhUrQ8vy0uz7bsJIrM57ozB1ysiyenNfsJ3tGHbxOFtObPUxN4gQHVH5qS2eoKWF2f3PxquLjjJCnWul+TUNFcU0nzbd7fqzJqk/lZ93QcY60eX5gm+muDc311cAs6ViIYEBQkRRJiqwWut/v1bwmPAjFUtp1Hx9nQvTE204QYMVWO3t+Tum6OaHO8Zjco4X43JmH2trLsns0RjIacm7P5kWKGAbCqgf6dcvzE4jaPD/TSerKpSbT1HHf8+NjaHBjerNgMb5ldjDjW7iapRh0MErYERshgCKX7W7lbqddtnDUgfGtK9ObpfzYUI+OkFKFDq9yLzgxvQGMTu4GoLo+31d7G0JuQf/vCHsz19pnfuqSg6cNmoxv2yarzPNbytrGQ3REEx70CHvLZLOEqDU9NskpyC1o1sD5duUnQzzsnenNQpPxrVXZdGd6MzKjTfkpBJKEPCg/FVOEPJZu5iR3ZXybvskwvj3Ws+3HAzwpPyLyAhF5VEROicgvOuw/KCIfFpEviMjHRGSf2f5VIvKA7a8oIi82+94iIo/Z9t05zAsbFBeWCx1MbxYOTyd3vPITqeWp9BAqEh0hLUWWs709P05C5dhMmlNzrYxvruwn0KzxY/P8lCRGsFbo+vtuCK+fZy4wTSTapNQWQzqQWd3C6tlWuEC75ycxoVnf+hQqa0b5aSE8mNgBhU5XtPJziZlG3ySaIkGRtZ5hbyUSUmqGiCUmiZRWmElHO3JkTi9kiQQD7Bt3UN4daK4tTN+gwwmyl1rvtyvTWymrC9HamOOiJg+t5qH4b9mExlmhctBU2JxJDwzd9Xbnbfl4XMCN6c2C5RHayaFvkVqeci/lxyxEC9nVroctZctMpjrl1HEHxjd3prclrSS0JapLNE1AFPlcf/mkTkxvACMTM9SUoHKLfbW3IeTNb7WHvY3uH4jxrZFjlegMewOXkKrNhmHqU9M3sZwrN/OUo2mC1Mlkuj+/ojXGrBpyiSnILXJ8Nt3B+HZqPsux2f6Y3ixoxrfTje/dmd6MPGtrrxRIEvHAQFgraM9PzFb2pCvjmxVed53k/fRUfkQkCPwp8HXALcB3iMgtbYf9HvBWpdTtwOuA3wRQSn1UKXWnUupO4LlAHviA7byft/YrpR7Y6MVsFJVanStrBUfPD+jcgZ1e6FQXlOwlVFIkKLCS624NWXFTfmZTZEpV5tab55+cyzpb00BbEsJJSM00NpUCcULVwRb06fwFliN7WraFkloBya5uoUWtYMIJ7GxvFmZugTnngmZucFJ+YuEgsyPRbVZ+zgLwWG260bdgNKVDUnooP7lchgAKTB0dEpOQX+LIdKpDUTi9kOPQVKKzJo9SHWFqdszsPUxBRVA274pSijMLOfcQOmhRpmJG+akXPVjUTGhcKN4c7zc06K5dSA+Kq5pu1oePDcKN6c3CtcD4Fq9lqYZd5IUFo/xUTUFUNyzZF7s2ODG+uTO9WQvNViu7mMVwbr2/vBgnpjeAQDDIqowQKGzhXGApWok25WdAxrflXJmxRJhQsHX5uK2Mb8bQWBg/TrlWbyrDZgz1KgpasfZHjfKTnILCCsenYh2Mb4MwvVloZ3zrh+mt0ddQkmitt5yqF7Xyk0i3rk98xjcNL56fpwKnlFJnlFJl4J3Ai9qOuQX4iPn8UYf9AN8MvFcptWPp0q6sFqmrTqY3C4enkyzlyj2t3duJuMpTC/e2qHkNJxh3CidoixtdL1a4ul50nhBAe37GD7XEUleDMcL17rHcbpipXiGXPNCyLZzW8cy5ta20qBmB2B72Btpas/CodoV7hFWY0K78gM77Ob+8jR7HlbMQTnKxlGzWIIqnNeFBj7C3olU0tEX5WeHwdJLTC60sdmfcPDXrl6GS76jxYyEQDHI5tI/4WtOitpApkSlV3UPooEX5SaR1XLQX+vWaUZCsYr0AyWiI3aMxZ8+wRc/th75tCwaNXDD7fkdEviQiD4vIH4tjEbOtQzemNwsW49u2Mm/1gJZTvZQfUwy7sN6V7XI5V3INe4PmYrxfpjdoMmUVMv0pP05MbxYygVEixW1QftrD3mAgxrcll/vdYHzbDo+jeX5LcR1dMpE0THRmDFW6FAVVSlE1XpJm2Ns0oLhxVHt8rDFkMb05hql1YXqz0M741g/Tm4VKKEWs3nsZrYpWzcfRlu1dGd/GDlw3tX68KD97gQu27xfNNjseBF5qPr8ESItIW3Yd3w68o23b643A+UMRieIAEXmFiNwrIvcuLCx46O7gsGiu9024hb2ZSu47mPQgoQqoiLtVELBZQ9wnhLopZNbNomYJV4vpzVGogPb82PJ9ACrBBJFa/3pwZm2Zcdapjx1q2R4zyk9pfSvD3qxEUgflZ/ZWqJX6qpjs5PkBTXe9rZ6f1XMwfpC1YrXF85OSUk9DQNmijm6EvY03PD9rhUojEbVSq3N+Oe/ZU9PRxcQhpkvnG99PGQ+Ms/JzGhCYONzYFI3GqSkBD8pP1VJ+4q3v2ZFpF8/wlK/8bBc2ErkgIs8AvgK4HXgC8BTg2VvUdUd0Y3qzYDG+ndjBYW8JVaDu0fMTq+dZL3YWmgS9cF3OlVsKnFpoZ3zrl+kNIJwYA2xhUR7hxPRmIRcaJ1bpT5naEPKLmizGMUKhf8a3pWyZqaTjck0zvm2H58cwvc2j1wH2sDfQCnS97qxA58s1wtZaxFJ+DDnE/miuhfHtZINspD+mNwvtjG/9ML1ZqEXSxD34EKScIadiBEOtOa9dGd9mbvaVnz7xSuDZInI/WjhcAhombxHZDdwGvN92zquBm9ACZQJ4lVPDSqm/UkrdpZS6a3rawXIxRFg1fNw8P0d2ON11tVImLmVUpIdQMcpRueDu+VkrVKgrHAkPJpMRxhPhxkRgTXaOnp96vaXGj4VaKEFU9Z/zM3dWW1ei04dbtifG9NioZLdQ+bFYdNw8P9AX6YGlSIzEWierg5MJ5jMlx0rTWwLz/NYKlSYjTSTpie2tVnTy/Cw13iWL9ODcUp5qXXn21LSjPH6UXfV5ioVcS7tHZlyUqdH9EG4aOSQQIE/ME/26KmmhYRXrtXDEwZsF6N8KxXzGt+3BRiIXFBADIkAUCANbSNPViVPdaHZtODbTyVK1U1CtlElICRUb7X6gsdp3K3S6XqxSqSlHI10741u/TG/QZMoqd/EctMON6c1CMTJOqrrqub0NI7eoZZRTTaUBGN/cCCZgGxnfbExvQDPszYQtJiiwWnCWVcu5MmnalB+THxUqLrcwvvVmenMmO7DQzvjWL9MbaAbCpAflJ1DWtbTa4TO+aXhRfi4B+23f95ltDSilLiulXqqUeiLwf8y2Vdsh3wr8q1KqYjvnitIoAX+DFlLbigsreYIBYfdozHH//okEoYC4VqffblhhbBL1ZlGTUsZ1krKY4JwSSUXEWHiMNcSwD+11IorIXNEekDbPj1Z+uuccOWHd0FyP7GkVLGmj/FRzy323OTAKy4BAfKxznxU/O9eH8lPQys2IQ9gbwPntoLtWqkX5GU00lZ8ERVZ6MAZWLeXHGpOJSaiVODKqFxmWp+R0L09NKA7pPZ37DMKzxwmI4sqZLwI6hC4RCbJrxOFdXjrlGEJXlBgBDwyE9bJ+Dom2cILD0ymypdYEa0AvOiaP+crP9mDgyAWl1KfRytAV8/d+pZRjNvBWRShYTG9uBjoLx2bTO5bxLZfRioR0sZADDTmVkkKjlk87GrTLLotxO+Nbv0xvANHkGNA9bKodTaY3Z8rjamyCUeW9vQ3DqcCphQEY35Zy5Q6aawvbxvjWYHprY6IzYyiN+xhaypVJYQyxjZwfc7/aGN96M705P3ML7Yxv/TK9WdcUkwrlUve0gVAlSyHQafzzGd80vCg/9wDHROQGEYmgw9feYz9ARKZExGrr1cCb29r4DtpC3ow3CBND/WLgi333fsi4sFxgz1isI5HPQjgY4MBkYsd6fqy45EDMu1BZcbGoWULFyfMDWqicnNeMbyfnda5GR6I6ODK9AdTDSRIDeH7K8zqvY/ZQa1JhekxbalR+K8MJlnUdl7aYXEDHz04c7s/zU6iQjAQJt42/Jt31Nig/uUWo5KmM7KdUrTdD8iIpYpRZz7tPwKVqrUlqYWN7A9gTyRENBRqGhDNda/IYZaVLNfjx/bq20vI5fb9PG7KDjhQNpVyZ44oSJ+iFhKOcpa6EaKx1AWopbqccQ9+O+mFvOxeOkQsichS4GW3w2ws8V0Se5dTAVkUo9GJ6s7CTGd9y69pAFbBVnneEkVMj5Fl0YSa1FrtOYW/QyvjWL9MbNJmyan0oP02mt9sd99cT04yQo1Lu3/g3EPJLnUxvFvpkfKuZcPj2AqcWtoXxzTC9MXNzo5jpZCPnxyg/0n0MpaVN+bHIIXJLLYxvG2F6s2Axvg3C9AaarRd6k3CEXGo++oxvGj2VH6VUFfhxdMjaw8A/KqW+JCKvE5H/ZQ57DvCoiJwAZoHXW+eLyCG05+jjbU3/vYg8BDwETAG/vrFL2TgurOR7WtQOT6V2bKFTq/hisKdQ0Yu0FO61fnpZ1I7N6JyNhawWKo5sJeBY4wdAwglilBusJ14hq2dZYYT0aGuoWTAUYp0kgeIWKj+FZed8HwszN/dlUVsrVDryfQAOThjPz3YoP4bpLZfQOeANr5QZQ1bNGyesFSokMMqRPewNCBRXuGEq2QhPO72QZSYdJd3u/oeuNNcW9hzRsdTlOS3ET8+7kCfkFqC07theKRD3RL8ulbwOkWtTxg53C4udOq5zpyqDkXz4GBgbiVx4CfAZpVRWKZUF3gs8fUt67QI91/YwbmELbdmBoW9W/kzIo/LTLeytudh180Q0F+PuTG9m4e+QX5EyTFm1oneqa4vpbc/ROxz3B1J6Yb22eNVzmxtCbrGzwGmjM/0xvq3myyjlvi7YFsa3BtGAprlORILEI0bB9RA62er5sYx0E4BAfpFjM6kG41tvprfunh+A3OhR9lYvcH4p6870tvCII9MbNNd3+cxq19+JVnOudPI+45vHnB+l1H8ppY4rpY4opV5vtv2KUuo95vO7lFLHzDE/aELZrHPPKqX2KqXqbW0+Vyl1m1LqCUqplxnhsq3QNX66Kz9HppOcXcxTc0me2040Ks8PQais9FR+dBsPnF/l0mrBma0EtOdHgtrCZEckSUAUxUJ/jz2ZO898aLfjvoykCJZW+2pvQ8gvO+f7WJi9FZZPQ8Wbh2u9WOkIeQNdYHc0HubsdhSPMwVO12I6Uqjp+dGTaqVb3li+QlLalB/rfuWXODKTsnl+ss5en2pZK2A9lJ94Ms0VpgmvnKJQrnFptdA9f2iqs71KIEbYg+cnUMlRdOBn2TUSIxEJutNdq3pfBBg+hoKNRC6cR3uEQiISRnuFts0kajG99cr3AR2ivVMZ30qGVjiccEjAtyMQREVSJuxtMCOdxfj25StrXZjemovndiRGxoAmc5YXhJdOcJVpUiPO1xdJa8/g2tIVz21uCN3C3qAvxjdL2Zxw8bRtC+ObTfFYyrYx0dnWOktdxlBaCqhgFELmugJBrQDlFhprm3vOLntgeuue8wMQmLmZhJS458EHARemt/lHHJneAEINEo7uht5oPUc55DxX+IxvwyM8uOZRKNdYzJbY78L0ZuHwdJJyrc7FlZ3H2G1V9I0keik/xhrSRags9RAqlhB535e09aqr52dsPwRbF/VWXlK+B912OybKl8nE9znuywdHCJe3MJbai+dH1T2HO60VnJUfgEOTie3J+TFhi0vhXYCNjMGEsVW7KK+rLZ6f1rA38sscmU5xfjlPqVrj9ELOWVlZPQeq1lP5AViIHWA0d5bHFnuE0IFje+VggnC9t6IaqOQpSuc8EQiIeyFki/Ftyc/72UpsMHLhXcBpdHTCg8CDSql/38r+2+GF6c3CTmZ8s1hGo6kehAfovKDxYJHFrEu+RnuORxssxrcPfnmuO9NbJN3B9AYQCkfIqyhS8i6nJnKnmXNhegOIjum5NL+yBdwZtYquMeYW9gZ9Mb5ZBU7dwt5gGxjfFiymvj2dNZ+CYVQoTkoKjbHSjqVsidFAoZOlzRQ6PTSZIBwU3vtFrawOyvRmwWJ8O/XFe4D+mN4AwmZ9V+rC1gsQr7vTyfuMb77y04ClzLgVOLVwuFHJfefl/VhJmZFED6ESscLeiq45PyvGfdwRH20wnY4yEgvxwS/rCbyr56ct3wcgENUL01Leu3CulEvM1heojB503F8IjRCr9qdMbQj5le6enxmdh+KV9GDdJewN4MBkcntyflbOQmqW1YpWeto9P6FankLZOXRxJVcmSanl+IayaBjf6go+f26VtUJlYKY3C/n0YfZWLzQYsVzbC0Y6PZFALRgn4kH5CdYKlAIudPhuhZCt/vt5P1uOQSMXlFI1pdQPK6VuVkrdopT62e28Dq9MbxZ2KuNb1cgpi0ygK6JpJkKl7iFL0ZCrnNLkPCnuPacX9v0wvVnIS5xAxZuc6sX0BpAcnwWgtL4Fyo/FSOoW9gZNj5cHxreGp82F8AC2gfFtvvn8nGjPJZpmKlTsOoYmQ6VGQdsGklOQXyIUDHB4qjmGBmV6s2Axvsnioz2Y3pzbs96bXoVbkypP3aXsSXfGtxuvC8Y3X/kxaNT46Rn2Zmr97EDGt6qpPB83SZquCEVRgbC2hnRxBbtZ08AIldk0mWKVSCjAfiemN3Cs8QMQjFk5I96VlbnzJwmKIjh52HF/JTxKoraFwr6X52fisF5oeyQ9cMv5AV3r59JqYespRFfOwdjBzhpERplJUnItdLpaqJCQIkoCmuoZIDama06YWj9AQ4Hu7qlxLnBqh0wfJyElvvjIw4jADVMO7S2e0s/FIZygFkoQ81B4N1zLUw44M0IemU5xabVAsdKmEEaSMLJvqIxvpVKBz73hO7l64dTQ2vSxc+GV6c3CTmV8swpKJhwKgHYgmmYs4L5w7SWnQN8HpejO9OZiZQcoSIJg2Ztc6cX0BjA6qcO2q+vzntrcEHKGebBX2Bt4yk9dynX3tME2ML4tPNK4hqWsw3gwCnS3tc54sNjptUlONe7fsVmd97MRpjcLFuPbMbnYg+nNmTwhZjym1S4kHPVajZQUUC6eqO6MbzdfF4xvvvJjcGFZW3x7hb1NJCOMJcKcWXR5sRdOwGf/Sr8QW4x60VJ+enh+RJBoivFQyZ3tLe9BqBhBcngq6cyQV1jRLncHz08wZtUa8q6sLF/UlqnU7mOO+6vRMVJqi5SfahnK2a6eHxUIkkkfZtkUNOuFbsrPgckEtbri0kr/DHkbwso5GD/EuqHhbld+El1q/azlKyQpak+jZVUNBPQ9yy83lJMPfFmHTrp6ahKT3ZVMg+ReLSwunHiQfeNxZ2twF/KEWjhBFC/KT4FK0KUW2EwSpWiE3rVg6thQPT+XTj3EU1f+k3Of/pehtelj58Ir05uFncr4pgx5gFflZyRQ6MLUVXYsx2DHcSOn+mV6s1AIpghXvS3kezG9AYxMzFBTgsotempzQ8ib3+gW9tYH45sV9jbhwgILW8z4ZmN6axS8dVB+xoLFLmFvZUYCxSbTmwUT9gbNd2mjTG8W5qKHOCYX+2Z6A4intSzsRsKRy3ank/cZ33zlp4ELy3li4QDTLol8dhyeSjrX+vnSv8JfPQfe+/Pw4dcNv5O9YIovJtK9Y6mJppnsYQ3ppfxYVjTXkDcXpjeASFyfW+lD+SnMaQv39AFnC0s9NsaIyvbNIDcQClY4gXNS68m5DC/768/yL4v7SV35FKye79pcpVYnX665Kj+HTK2fc1uZ91OrwPrFRo0fsLG9NUInC67Kz2qhTEqKzXwfC4kJyC+RjIbYPRrj4kqBaCjQaVED7anxEPIGMHuDjqWeKp3n8JSDIlWvacIBl/ZUOEFC9VZ+ovUCtaB72Bu4eIanjuvraS+COiCKhmmvvnqhx5E+Hg/wyvRmYacyvqlShpoSEskeuakA0RFDzONeo8WN6c2CJZ+6Mr11sdqXgwkiNW/KTy+mN4BAMMiqjBAobEFBbkvBSnRRfgIBmD7uSflZzpUZS4Rdy4HAFjO+2YgGsqUq5Vq9UxmOjZDuQZqRwiHnJzmlDbi1auNdcvUcgmfPD2jGt6NymWPTDka0LkxvQINIo96FhCNvlT2Ju68F3RnfTMjmNjO+laubG+US6n3I9YELK3n2jSc664I44PB0iv8+YStkV6vCh14Dn/4T2PdUHaLzP38EM7fAHd+2eZ1ugyplKKtgR/0RR0RHGM27F6lczpU56mSJt+HWdJ7vD76X3WPf43yAS40fgHBcTzSVPtje1PJjFFWYydnOfA0AiY8TFMXa+gqj410m+2HAiqVu8/xkihXe8KGTvOVTZ0lEgkSnv4tvW/4Y6qOvR17yl67NrbeHlbXBqvVzfikHbF4dkRasXdCEDeMHWbtUIWGvQWQUmoSUWHMLe8tXuCNURiJt4WeJSV17Ai0or6wVuWEq6WzRXjoFR7/aU3endh0gq+IckcuEHckTzmt3vpsyFU4RlQrVSplQ2H1BFa0XqIac37EbppKIuNFdH4NyBjJXYcSZsbAflPL6N8LZyxtuy8fOwH2/9yJuy3zScd/HgNAjAr/mzfNzEDgRrRP4L4H3eTungTu/E77xDf2d4xFS0pXnR7rU7WogOkJc5VnOlVFKdcjn5VyJ2/YaJep//hg+8msdTTwDeDRaJ3jW4d5ZERpdwt4qoRTJgjcDQ3j5JFeZZpcL05uFTGCUSHFzlJ/XvudLvP2z2tj23YH/5v8G4e43PMgK7mFMvxkc4ZsCH4Nf6y5bfqWu+L9Kwa+ZZ5ecgR/9NNjyZRqMb1vh+WkoHjc3vVLJNgN2dIQUlxyVH6UUS7kSiUS+0/OTnAYUFJY5vkuvV5wJM7wzvVkIzN5CYv4f+db33wUfaBuTtQrMPsG5fiAQjSWoqKAu2eCCoqHB7lb25Phsinfdd5GVXJlxuwEhkoSxg0Pz/FQrZR777WeQe/orufOrv93zeS/8f5/gjn1j/O63uBsSNgJf+THQNNfdQ94sHJ5O8q77LpIpVkhXV+Cfvg/OfRKe+gp4/ut1iM/aRXjPT2hFaN9dm9x7jUAlS04SdLeDGURSjARKjQmjHcvtL4QdS6fhf97A0x58B08Pl8k+9jBU3wuhtuMtz4+DBSOa0JNIveR9goxmznE1uItDQedJIZjUikh2ZWHzlZ+G50f/Zr2u+Nf7L/Gb732EpVyJb3/Kfl75/Bt59wOXecv7XsAPP/gP8PQfh123OTbX9Kw4v5Iz6SixcGBrSQ9MjR/GD7F2qi0kr5HzU2TFzfOTrzASKDXJDiwkJhtj4/B0kk+eWnQOeStlNAuRh3wfAAkEuBzez5H6ZcIzTvlDukCum/IjUa3Q5HMZRsbcE4RjlKiHnesnxCNB9ozGXTw/Jlxz8cRQlB8rZDRR2KJ6IT42Her4C7jv6gHHfUERbt07QjLiTWwL8O57LxCPhPjG2/sYb6c+DCfe7/34PhGsZMiTwIPfB6Jp4rUclZpivVhtmYMaYU5WtMb5z+icwid+V0sTApyby7B3LE4o6nDvRvfpPxdUQynidW+en3hxnpXwDLt6HJcLjROrbE5Nus89tsze8TgveMIunnUhQP1SgJc+8zada+l2ztnv5urFUX7g7huIhd2P+8/7L6GAlzxxL6xdgof+Ea4+BIe+ouW4YzNp52T6YcPO9HZ+FaDT8xNNkzAKdL2uWoxs+XKNYqVOvJZzYHszMiC3yOGZm/mdb7qd598669wHj0xvFm593vfwYGGO22djeoC244i7wU8CAXISJ9BF+SkYGuxwN8+PLSz2qTe0hZXP3OyJAMML1leXOFY9yWe//F7wqPxUanXOLOR43s0O93tI8JUfgwsree461GatOfVhePS9MHsL7LpD/w/HG6Etc1/6OOmP/TgUVuElf9Xq5fnWt8Ibvwre+Z3wQx+F0U4azWEjUMlSkDg9qidoRNOkZNXR81Os1MiXa51hb1cfgk/+oQ7vC4SRJ343TB0n9b5Xwft+EV74B63Hr5zVlqFo58I2bugaa0Xvys9Y8TKrMXchFU7pySq/toAuzL6JMJ6famSMj355jr/4+GnuO7fCnfvHePPL7+L2fWOArv3y6uo38kPJ/yb4odfCy/7ZsbkOQoFquUWZFBEOTCS2NuzNrvwUrjoqPwncc35WC2XSgRJExlp3JCbg4r1AM8/niCPZQXdlxQlryUMcrtzn7PmxaKbdlB/jzSrm1rsqP3FVQIXcDSVHZlwY36xwgsUTcPjZrud7RaWoF2Tjlf5Yo5ws6D52Bu76X/97qO19avF+PvvYMt/4PG/eU0ArEB96jZZr8bGh9gcgVMlScKg874homnAth1BnOVdumYPWi1UqNdUMe8svag/O817b0Yw791pv1CMpEnibd5PVFVbizmykdhQj48zkNof5cTlX5lnHpnjVC26CfwdWJnjV193S9ZyPPjLB970lwd03P527DrnnV/7pFz7OkekUL3nek7WB96F/1B6CduVnNsXHT8xTqdWb0QKbgYVHW5jewKHgbTRNrJajrjQJj31do89ROqzRKewNIL+IiPCtT3GOOOmH6a3R9Ogkd7zst/o6x468JLoyEFp08pFk97A30IxvHcrP9I16/VurdJQp6Re57DoTQDrjnZjn7GLOnZp+SPCVH3RidqZYbWXRWTkH//RyndRu1WeVAEwd5xljN/PLoSKH/+ODMLYPfvCDnRb9xAR8xzvhTV+jFaDve68uILWJCFVylMS7UEm4hBN0FI5bOAEf+GU4+X5dD+EZPwFP+zFIG618/RJ86o9hz53wJFsI3MpZx3wfgGhSD2pV9mZRU/U6s7UrzKXudj0mltYL1uL65ieSri3PMQp881sf4YH1S8yORPmdb76db37SvhbL0q7RKOukeOzmH+HoA78NZz7uuPBtKD+xEPzHz8Ij/wE/+3CL6/vgZHLrGHRAvwOBMKR3s1640FqDKBhGBaOM1EssdQl7S4qL56ewDEo1lJ/DG6S5tlCbuJG9ax9g5n0vgqNfBYefAweert+9pVMQG3VN/vXCQFirVolJBdWex2TDkekk955d7lQy0rv1+zMk0oOaUX6m1DK1apVgqPd0rpTi7t/4MC972kF+8qudiUN8PH5wbDbNux+4rKMU2il13WCnPj7gPt8OinA1S8ml8nwHomkERYISy7lSC4Njh5zKLcLu4YfI1KMjpFQBVa8jPUL1RuprzEV7k7NUYxOMZodfk87yhjWoqHsVODWwcllOzGW7Kj9LuTJPucG0PbJXz2cOHgI745tjrtWwMP8w3Ph1um9uNZ+MAg2K5VxrEdSlXJkoFQKq6qD8mPtmMeY5wWJ6u2Hjxqx+UAgkCXVRfqyaj9EuzL+eGd+mN2I6gIIpZ7KnfNbTOwRNsgyvtP6DwCc8oElz3WB6q1XhX16hP//k/fBTD8K3vQ2e9UoYv4H01c/yg6H3cmb0afCKj7mGMjFzM3zTm+DKg/CeHx9aorMbwrUcJRcWqg5EU8TqeSo1RbZUbdnVIVTe94tw/tPwVb8MP/MQfM3rmooPwFe/Ri8y//PnGhZ93ZBzjR+gkezqVflZmr9IQkqIizIFEB/Vi9pSdnNiqet1xccenecVb72Xv3jffQBMTe/iL172ZD75qufyrXft78hbmR3RlMifn/0WTXX8oddAvTORz1J+Dj76Zrj3ryE7p3NDbDg4oQudqk0eRw2snNXVngNBRyY6iSQZC5VZ6xL2lqDYqfzEJ6Cm2fLuPjzBq15wk3M4wdJpQDQ1tUc84UU/zfk7fka7+z/z5/C2l8JvH4S3vBBOflArUi5ej2Cj9lSXRNKcFiqBLoaMI9Mp8uUaV9fbyBNEYPZW7UEdAqrm3QlLjaU5bzkJa4UK85kSiYhz6KiPxxcGYnzbZLanSC3vXfkxuSQpOhnfrMVuI+wtt+hpod8vJJomIKrx7ruhVq0yqjLUu5ELGKjEFCPkqJSdiRwGRcYk/U9ZeS/5pe5MbwZ7x+IkIsGuJAW1umIlX24WOBXRHgIHiuwtYXyzMb1BszD7pEPOT0DViFF2HENpDIOqU5FT0IyAbhiA6W0YKAWSRLowENYMnXw87R4HtFWMb8Wcbn+MLEvzlzydc3I+Q0BcGGCHBF/5QTO9ga3Gzyf/AC58Br7h93W+yvghuPkb4bn/B77zncjPPcxLxt7Fr6Z/BeI9gsxufAE87zXwxX+GT/zepl5HpJan7NmiNkLUMNi0JwJ2KD/rl+GGr4Rn/7zz9QZD8M1/oy3b//AyyMxBtaQ9Qi7KSjAUoqAiiEflZ/GcTmyMzbp7AZLjMwDUssue2uwXP/TWe3n539zDfedWePb+ICoY5U0/+Gxe8IRdrq79mbRWfi7nlB4/l++HL7+747j1YpWvDdzD5Kdf3/R0tDHEHZxMUKzUmc8MV2C6YvVcI1/LsQBrJMVYsOxKmrGaLxNThc6wRyuWOr9EOBjgfz/nCAmnPIbFEzoWP+wtFw8gNTbFgZe8Fr7vP+EXz+kww7t/WFOur56DPU90PTcUt+jX3QV20VoAOYRyWmjUApt3GNu774ArX3BUgPuFKjVDcZYvn/Z0jkXp36uemY/HBwZifBs9AOHEprE9xWtZqi6V5ztgFqQpB7auJXuYU7UMpTVPC/1+YRW/zJskcjesLc8RFIV46IOktJK2tjjcfL3lrIM3rFuBU4NAQBeDPdVFSV7Nl1GqzbMyc5MjS9yWML41yA50yNmyKcwebzfsmDGUJu84htJi5tFYW4hYYgKQJl141z54Z3obBiqhJNGa+7OqF61aWt3Xp1vB+FayydOrp+73dM7JuawzNf0Q4Ss/2D0/CbhwD3zst+C2b4Xbv9X1nBv3z/LQpTVvVviv+Gm4/dvgI78Oj75vSL3uRLSed2Wh6jw4TahWIGBiqe2wFrMT9ljqXhN6YgK+/e91nPg/fo8JWVKunh+AosSQijflJ3NF52uM73UP1RkZ0wKlnt8c5ecLl9b4mltm+dSrn8vTdoEkJly9CBYioQBTqQhX14p6DMzcqmnQq633PDb3AH8U/lPUnidpRRI6lJ8DFt31VpEerJyFcR2/vlaodFaijiQZDZYcc37K1Tq5co1YveBAdd1Ufrpi8dG+Y6nb+8fR58Hzfx1+5JPwqnPwAvc467AH+nWLXjrYVfnRz8kx72f3HVDJwbI3ZaUb7F7T3PxZT+d0eLl9PK6xfyJBNBToj3kroMO7vVAfD4K4ylPzrPxoxWPEYeHaYqSz5hIPC/1+YTFm5de7y5XMklZkQune3qeIOWZt6coGe9cKSyHsN+wNNBV4N2Wl2bbNszJ9k/6NNu9Ig/FtM2tMNVjWjOcnW3Iuz2HGUNqhqHuD5ho6PT+BoF7XdAt7G4DpbRiohHTkjhuUocFO9qj5eHw2xUKmxGq7AbPB+LbxOcBeyzF38Uuezjkxl3EvoTIk+MoP2ho6EgsxKgX4lx/Usazf0N1L84S9o6zmK1z0UnRSBL7xj7UV/Z43DqfTDojX81RDHj0/ZkGapLN6dkshs3pdJ/d7cOWz6zZ40Z9or9m//LDe1iVMrSAxAlVvC/nq0mPUlTB7wD3+NBKNklVxpLjqqc1+sV6ocHgqSTQUhPxK1wKndsyOxHQIVCAIX/OrmgL8vrc0D1i9wNd98WdYYpTAd76zyQq21qr8HDJ012e3Iu+nuKZrHIwfolLTikyH5yeaIiWlRsieHXqbIlzLO+f8QJMu3An1uq6JMzVEoRIf65q8GTUkHNUunp+S8fxY+UFOmE5HSUdD7soP6FDYjaKSp2am8MqKt7A3y8u9f8L3/FwPCAaEozMpTvS7CJ25edOUn4QqUO/T8zMVLrHYVqSyJcfDWqBuQthbODEGQDG72vW47IomHomN9maoippj8iv9kZX0gnVPppJRnaxeXPXsDTs+m2I+U3INY7bWBVN2BcMqDuswVo7NpDe3xpSN6Q1MzSenOo2W95BCR6HTpWyJiVCx5bgW2AqduvahT6a3YaAWSRNX7msnKWfIqVjPPFBLwXAMTxzSHFAp2NYrHtqr1Oo8tphreK03C77yg7aG7p9IwHtfpa3t3/TGThdoG27bq/d/8ZLHpMVwTNcA2sTCUQlVoN4lEbsFtgnByfMTEMM8VlwFVfMeTnDbN2tChDmT19DF81OSOMGqB+URCK+dZV6metYwykiK4CYoP8VKjVK13kz6Lyw3aK57YddITHt+QHsiDj0LPv7bmsq5uA5v/zZCtSI/F/4/kJrRYV7JmQ7Pz56xOMGAcH4rPD8r5/T/8UO2GkRtE2kkSVKc2d7WCmVilBGUg/Jj7ls3z8/aeagWNpxs2Q8s5afWhX7dsmKFYu7CTkQ47Mb4Nn2jLmB35YEN9RVAqgWykiKj4sjaRU/nXFjJMxoPd3rxfDxucWwm1f8idPomyFzRnvwholopk5ASqod8bcBY7XfFqo4hS6loSIfGWKFJmxD2ZjFmlfPdZX1pTSsyifFeRNeQnNDHlNaHq/ws2z0/lnHJozesmR/mPFaW271K0DU35NhsiscWc1Rqm1Ss0sb0ZvXPseCtWevMRiuOY2h3rNpyXAuSU93l1ABMb8NAPZIi2UX5CZR1La1esDO+dWD6Rk3mUHNWhr2iahh9l2XcE+PbVjC9ga/8ANoa+uLwZ+HBt8NX/jwceFrPc27anSYcFL7gVfkBPVGsX9QL3iFD1esmudzjgDEvelIKHTkby7ky44mITt73UiG6HV/9Wjj8VdoK10UYlQMxQjWPFKKFSyxFeteqyAVHiJRXPXbUOzqKkOaXe+d7GcyOxpizkt9FtPcnv6hpw9/1fbDwCH85+xqWE7bE/rEDHcpPOBhg71h8a+iuLZrrsYOsF7VwGE105vzEVZFVB7a31XyFJMXGcS1oKD9dPD8LhhFtmJ6fHogldD9VF+XH8gqFE92NDEemk845P8GwJj0YgucnUC1QCcRYDM4QyXkrdHphueCHvF1nODab5spakUyxj0WMnfFtiMhltLwUr5Zyc9xMpOwY9tbMbbHC3oav/ESTYwBUeig/lfV5AEYmeis/o5NallXNOcNCSx5Un94wO+Obc9sObGoeGd82BfMPt+TaLGXLzmFvJmdrd6zsGPY2EzXb2oucgl6/uIW9WUxvW5zvA2j6bqlQLhUdd2s6+d5RQJ4Z3zaAWlmvV66mbmkwvnXDVjC9ga/8oJSitnKB7178Q9j3FPjKX/B0XjQU5Phs2rvnB2wu4uEKFNAsVAFRXROxW2CEyniw5DghtOT7gGcvB6AJEL7zH3WeRZecmEowTqTmzfOTqq5SjPa2YBVDaaLV4SuXzSKkg3l+VvIVihVTTXzvk+GWF8Mnfh9OfQhe+Ad8Ru5oDSsbOwCrnaFMBycTnN+KsLeWGj9tip+FSJKYKlCs1JvXZp2er5CQYuO4FkRHQYLdLWqL5h3ZQqta3Fh462V35bJqYqmj8V7KT4qr68UOJkXAkB48uGH2x2C1QCUQZz06S7rkzYJ8YTnfSunv43GPncT4ls9og0egS+X5Fhg5NR0uOjB1lZsFLRsL/eErPzFDF1zrofzUjaFwdKq38jMyMUNNCapbSNUAWMqWSUaCA3nDejG+tYTDW9guxrc2prdmwdsunp9I2SHsrcxM2GxzUn66hb1ZTG/boPyI6Wtu3blQbqiapeihlpaICYvdRMa3ekmvVwrTd3hifNsKpje4jpSfz7//7/jsP/1ex9//vPN3+f3AGwhSh5e+US/cPeL2faN84aJH0gNoDqb5Lw9wBd1RGNCitjtWZsVB+Rm3s8VA/0IlFIF0dyFQCSYI1z0qPypLNdI7VKIUHiVeG77ys160KQBK6XwYjzk/uwzd9fy6beL96l/Rk+0zfwae/HLWi5XWOjpj+2HtQgcr2JYVOl06qT1b8bGm4udAeBAxz6899G01XyZJqXFcCwIBrTh2DSd4VAuefpTuDSIWT1BTomt7uaBmJvJoovtYtCbuxxZcGN+Ka5p9bgMI1QtUgzGKid1M1rok5RrU64qLKwU/3+c6w05ifCsYxrRQn8rPRFjX+bFjyR7mlF/UBpXY2JB62kRyRM9BtR4RG4H8ImskCUcc8k7ajw0GWZURAoXhlmVYzpVsZAf9RW30YnxbzpUZS4QJtTObbgfjWxvTW9ZQfDuHvemxNhkuOXsPQ5by47DYTk5pWV9zMGJZfdhimmuAYFzLHzcGwmg155n599hsenMZ3wwxT/Tgk4HejG9bwfQG11GR09Q9f8zxqnNxwaoEuPAVv88NXZLznfCEvaO843MXvC8oxg5BKL4piaT5rLYAWHS9PWFCkWaiVc46TAiWC7zp+Rm+Ra0WShAt9FZ+VL1OWmWpexBs1cgYqezwJ9sW70dpHepVzwvz2VGt/FxdL3LAkBYweQReeVLngpn2W2Jcxw7oWjjZORhphvsdnEywmq841t0ZKi4/ALvvbPQNnD0/YeO5Wy2U2WWu0zon4Rb2BjoOvavn58SWx1JLIECBWFf69boJiYv2CHs7OtNkfLttX5uiZCc9MFTigyBcK1ELxVHpfYwvrVPIZYgn3d//+UyJcq3uKz/XGXYS41sptwpAuIfxoNmPIISTjAVKHQW5l3MlbttrlCiL0tlDAcV+kUzrvloMWm4IF5dYl1E8XhmZwCiR4nCVn6VcmQmrzk3DcOmdBOLoTJpPnHQ2pCzlXNjUpm+C+9+mQw+TzeiMTWV862B6s5j/3AkPJsMllteaax2lFEu5EmNjRZ2HGXI4NzkNKB3pkZpx6cPW5/yEzPtTzDp7fqL1HLnojOO+dhyfTfGu+y6ymi8zZvfqDYvxrZKnTJjZY3fBRy3Gt//levhWML2BR8+PiLxARB4VkVMi8osO+w+KyIdF5Asi8jER2WfbVxORB8zfe2zbbxCRz5o2/0FEHN6q4WH6h9/D4iu+4PiX+6lHueG53993mxbpwUNeQ98CAZ3A7eAi3igaLFRxr4mkJpwg0mkNWcnbPT9mct6EcIJaKEFMOces2pHLrhGSOhIf63lsPTbGiMr2jCvtFy0KgJWr0qfnp6PoZbhVWWgNeztodrSGvh2Y0IvqTSU9qBS1d9LUxHFXflINuvROz0+FkUAv5ccl50cpPeFalqctRC8GQsuFn+hBIXpgIkkwIM6kBzO3QCC0obwfpRRRVUCF4oQm9gOwePlM13MaNNfjfs7P9YSdxPhWzmlZGU15y5cEIDbCiBSo1FQj/7AZ5rS5BU4BQuEIeRVFSt09P9HyCtmQ9+vKhcaIVZwXr4NiKWsrQppfBAl4zk2F7oxvum0HBaEr49sAZBte4MD0BjiHvQXDEIozFtDMtvW6jtTJl2sUK3VGA0V3tjaLLMIp9G3hEV24fIuZ3gDChpynlHNee8brec+1tLqGJw5hDpBKgbJEmdp1gHWSXdvbKqY38KD8iEgQ+FPg64BbgO8QkVvaDvs94K1KqduB1wG/adtXUErdaf7s6t5vA3+olDoKrAA/sIHr6Inx6d1M7Tno+Dc64U1DbseNuwzpwcU+8342wfNTMvHI4T7DCSbDrYmk9bpiJV9pxvXmF3VCo5NVZINQ4QRxD8pPZkUnhQY9eFokMU5YauSzfTwTD7CEwUgspK1A4D3nx3hE5tacr7VWV2SK1dawt1G9oHUqdApwbnkT837mvqg9W0b5WW/Pd7JgwtkSdDK+rRbKTEWrLce1ID7evI/tyM7rsLBtiKUuSYxApRuFaI66EmLx7iEFkVCAgxMJZ+UnHNPzwAaUn3xZVyxX4QSJKa0or1452/Ucn+b6+sVOYXyrGjllkQh4QjRNSrSH2ZJV68UqlZpqDXtLemM1GwR5iROodFcek9VVihHvikYxMkGqurrBnrWilQRiURvo+vCGdWN8a2nbjq6Mb+nNYXxzYHoDnMPeAKJpRqRAXcGqkWfWOSnyDVKEDlhGX6dCpwuPNK99i2G9P2XjSW1HUuWpeyS/sogFNovxLVDNUw7EkUCAy+GDXRnftorpDbx5fp4KnFJKnVFKlYF3Ai9qO+YW4CPm80cd9rdAtN/6ucC7zKa/BV7ssc87BtFQkBt39Ul6MLNJFKKm+GIk2Z/yMx5s9fysFyvU6qp1At0koaLCSeKUenpp8mva+xRM9lY2LAUps9o7B6IfWBbHkXhY1/gBz56fkViIeDjY6fkxyBQdPCtjlvLTmhdywCxcN7XQ6WUTk7v3SYBWfqKhQGcMrvHoJOgskraSrzAVNhOmk/LTLeytQXaw9Z6fUiBOsBsJRyVHgSjiYUFxeDrlzPgGOvTt8gMDkx5kS1USlJBwgrHdmiWwuHi26zkXlvV17R3zPT/XG3YK41u1YFWeH/N+UjRNoq7fIyvvp6XAKZiwt+FHJ1goSIJgubvyOFJfpRz1nqNYjU0wqoZnpLO8YYMUOLXQjfFtyd62HdvB+NbB9ObARGdHNE2yoUDrYy1vUVLl3b031v1rZ3zbTqY3IGYiD6oOJBz1Wo2UFFAePVKbzfgWrBWpBLUBeD19pCvjmzXuju4Ezw+wF7DH3lw02+x4EHip+fwSIC0i1oo5JiL3ishnROTFZtsksKqUsrLInNoEQEReYc6/d2FhuAvaYeC2vWM8dKkP0oMuLuKNwBIqsaTHsLdgGEIxRgNFY0XTg3GpXajkN1GoRJIERFEsdJ8YC+va6hJN9RYsoZQedrkhKz9rhQrJSJBwMNC350dE2DUac1V+HMPKIkl939sY35LREFOp6OaGvV2+X0/6I3sb/XPML7IK5UqxYU2zsJavMBEutxzXAkv5cXpvLCG6hTTXFsqBuC7M6gKp5ClIzHW/HUdmkjy2mKNWd7jG3Xfod2vdG0V1OzLFKjEpIdEEU3sOUVdCtUeh0wsreWZHopueSOpj52GnML4pQxrQr/ITNdXsLcY3a7G7FWFvAIVginC1Sy5grcaoylDvQ1aqxBQj5KiUS70P9oCMSfpvhKbll/oOV7cY39q9ALW6YiVfbi1wamGrGd/amN7ATvHtEqESTZNwGUOxet6Z6Q2aa59cm6FuG5neAOJpdxKOXLY/8qvNZnwL1wrUgtrgVp+6qSvjm8X0tlOUHy94JfBsEbkfeDZwCbC4bw8qpe4CvhP4IxE50k/DSqm/UkrdpZS6a3p68ya3QXHb3lHWCpWGVbUnGoxvw837qZlkzHifQmXEWEOsWj8rHRa1/idQrwhEtUegV4haOauVjfho735E01r5Ka4Nl0J0rWBjY2vk/HgPcZgdibqGva0XjFcp1sY/Mra/I+wNdOjbpoa9Xb5fh7yZkIKWa7fDeHRGA2XHsLfxXp6felWTR7Rj8YS2JJp47q2Epl93V36C1TxFr8rPVIpyrc7FFYf27KQHAyBbqhKnTCCSIBKNsSRjBDPdKUR9muvrFzuF8U2VMtSUkPAaoQAQTROpmUKJRj611LOplqG0tmlyCqAcTBCpuc+5a8vzBEUhffRBUno9s7Z4dcP9A1jOOnnD+ovasBjf2r0Aq/kySnXxrGwl41sb0xvocZGIBIlHXAw70TSxhvewdQxFarkuOT8TgHSGvW0j0xtAakSvPeoOJBz5jI5MCbiF8jlgMxnfwvUitZBWfpL7bgXcGd+2iukNvCk/l4D9tu/7zLYGlFKXlVIvVUo9Efg/Ztuq+X/J/D8DfAx4IrAEjIlIyK3NawV9kx5YAmXInh+LiaZXInYLIimSphZL+4SwFZ4fMR6BUr67Vaia0y9zYrT3RG4pSMVMlwKaA6DF+2F5fvqgVd010qfnBxwLnQIcnEhsnuennNNj0+T7WP1z9vxopWYmVmGtrdDpar7CaKCsE27DDmFWllB2Cn1beBSmjnWtEbVZqAYTROrueWjBap5SwFvY2BEb41sHdj0BkMGVn0KFBCWChp51OTRDvHCl6znXK831Bgl7DojIB0TkYRH5sogc2tLODwk7hfFNSrryvJew0Qaio4QqrcpPS9ibNYf0udDvB5VQimgX5Wd9UXtwQ2nvBtqIOXZtqft76xUN2b2BsDfQjG/tykqzbRfPyvRN+vfaPCSbwvjWxvQG2ovjqpgBxEYJm+e31DaGQtWsu+cnENQKUHvY2zYyvQFEYwkqKuhoPCwa+uugV0ZFdHjiQqYzfH2jjG+lao0YJeohLXd2HdXrCs341okTcxmOzmwNgYSXGege4JhhZ4sA3w68x36AiEyJiNXWq4E3m+3jIhK1jgG+Aviy0jFiHwW+2ZzzvcC/bfRitgPHd6WIBAN84dKqtxMCAVcX8UagyllqSogn+hg40TRx4wq2JoIWz49Sm5rzE4rpxWGpZ/E4rWyMjPeeyFNj+phqu5t6g1hv9/zERvuqCTU7GmN+veQYHtlQfhIOys/ahY7QsAOTCa6sFylVWwuLDgVXvgCqDnue1NK/bmFv09Fqh+dnLV9hJFjSxzgpMVbIoJU/Zcc20FxbqIXiRLvUngrXdPKmFxye0vfHMe8nktQLywGVn3whR0BU4x3KxXYxVnYvdFqu1rm8VrjumN6GQNjzVuB3lVI3o/Nf5ze/18PHTmF8C1Yy5OlTAY+mkVKGZCTIoglVasnxaBQ43bzIkGooRbzurvxkV/S7Fxud9dxm1BybX/FWoLgXrHsylYzqBPXi6kDeMCfGN4tK2jHsDbaW8a2N6Q1MzSc3xQwgmiZkcraWbGMoFg5oFr9uIWJOhU4XHt02pjfQZRlyEifgoPwUDP112CvzL5vH+JYpVolTahhAuzG+WUxvx2c3P+QNPCg/Ji/nx4H3Aw8D/6iU+pKIvE5ELPa25wCPisgJYBZ4vdl+M3CviDyIVnZ+SyllVfh8FfCzInIKnQP010O6pi3FQKQHm8D4JqUMeYn1aVEbcXUFTyQjUMroZLdN8vyEYvqFK+W7T4yquEpZBT0pdukx3de6G43ygOjw/HgkO7CwayRGuVbvoBW32gYHz8/oAR1X3GZ1OjiZQCm8h1r2A4vsYM+djU3rxe6en6lwpRE2CXoSy5SqpKToHPIG7p6f4pomBNkGmmuAejhJDPcY/HCtQCXoTYEYT0aYTEacPT+gQ98GVH4KOUNwYpSfcnIPU/VF10TSy6sFlIJ915/nZ2DCHqMkhZRSHwRQSmWVUltQYXhzsBMY30KVLAUPledbEE1DKcNkMtQip1LRkA6PsUKSNjHsrRZJk8D90ZfWtAKTGO9e2NuO5IQ+trQ+HOVn2e75seTfAN4wJ8a35XavUju2kvGtjenN6p8r0xs0FOjReLhlDE0mIkgp012JSU51yqmFh7eN6c1CXpKODIQWnXzEa/43m8f4li1WSVBEzDqgG+PbVjK9gcecH6XUfymljiuljiilXm+2/YpS6j3m87uUUsfMMT+olCqZ7Z9SSt2mlLrD/P9rW5tnlFJPVUodVUp9i3XOtYjb9o3y0MU+SA9mbtLFK4e4QA9UcgNY1FKN5O4Vm+cnEQluiVAJxfULV+lBeBAorpKRlCfFLpZIUVARZMhseuuFCiMxS/lZ8Ux2YMG11g89wt6gI/TNqvUzdAYd0MpPeg+km0J8Ld9d+ZkIt+b8WNeT7Kr8WJ6fdqFiChFvk+enHk4QV+5KZaRepBr0/p4dmU51V34ylzW1d58oFXSbEfMOMbqPuJRZXXJeSFk1fg5cf8rPRgh7jgOrIvIvInK/iPyu8SR1YKcT88DOYHwLV7OUPFaebyCaBhR7Eqol7G2ivRbdJrK9qWialCq4Ghcq6/odHpnwrvyMTuri1dX14TgTW/KgNuANc2J8W8r1YFPbSsa3NqY30J6prmFvDQU63BL2tiuJzj3tpfzYDZDbzPRmoRBINMJB7ajktTcomhrz3NZmMb5lS1XiUkYiTbnjxvi2lUxvMDzCg+sat+0dZb1Y5fyyR6PgJjC+hapZigNY1Jqx1Ib7Pl9mPLE1QiUS1xNOtVfl7PIa2YB3a0BGUgSKwy0et16sNhWAfP+en1mr1o+D8rNerBAKCPH2JD8X5adR62cz8n4uf74l36deV2RK1U4yBgCTbzIWKjcUHqChCMXVAJ6fBs31NgmWcJKYVKhVq467o6rQSN70giMzSU4vdKG7Bh1q2CfKJk8uapSfyKSu9bN0+bTj8ZaX8HrM+fEAN8KeEPAss/8pwGHg5U4N7HRiHtgZjG+RWr5/5cckbu+NV21MXeVmQcvGQn/zlB+JpgmIIp9zLnRaN2FRo1PelZ+RiRlqSlBOBTQHwFK2THIIhksnxjcr7K1R/68dW8X45sD01ix42035GQFVY3dS2cLeyuxNmHm+n7C3bWZ6s1AKJIk4MBDWDPNvPO2dkMlifHP0/GxgDrDC3oLR5jvvxvi2lUxv4Cs/Q0HfpAebwPgW6iMRu4FoGilnGYmFWuonNCaRxgS6OTk/ERPGVit2nxTDlXUKfSg/ucAI4fLw6idUa3WypWpr2Nugnp+1TgenFVIn7bkxjVo/rcrPZDJCMhL0rmx7RXENlk7B3qbykylWUcqhwClA2LC9Bds9P1pQxlTBmeYatDAKhBw8P49CMKKTLLcBlnvebZETV8VG8qYXHJlOsZwrO4Y7sus2/f/KA/12k7J5Z0IxfX/Ts4cAyMyddTz+wkqecFAa4/A6wkYIey4CD5gohSrwbuBJXKPYCYxvsXrOc+X5BszCdFes3FKjpaXAqQT7IqDpF2IUsLxJJm9HIL/IGknCEe/FwAPBIKsyQqAwnPzU5VzJRnZgZPcAhksnxrflXJmxRJhQsMuScSsY3xyY3rKG4rtX2BvAnlilxXu4O2rm5ViXELHklI72qFVb+7BNTG8WKqEk0Vrn2qletGppeVd+QHuGHRXUDTC+ZYuamMeSU+DO+LaVTG/gKz9DwfHZNJFggIcuemV8268XhUP0/ESqOcr9WtQiKShlmEhGWDaL15Wc3fMz+ATqBXFDd1ordVd+4tV1SmHvtI35UJpo1XnxOgisAqejceP9yK/07fmZTkcRgatrnSFVroQC0bSm025TfkSEA5PJ4Ye9WfknbUxv4BCSBxCKQDBCOlCiUKlRrGgChhXjRYzUC+6eHxF9DwttoZ+LJ2DyaF9kEsOEGAtV0UX5iakiKuz9PTsyrSf9M06hb/ExGL9hoLyfatE8e5NIOrn7BgBKS53sgKBprveMxQkGtp5Bb5sxMGGPOXdMRCxXznOBL3ONYicwviXqOWp9Kz967p+NaCOCtvSXOimd+8l37RMhkzyeX3cOVQ8Xl1iXPphWDTKBUSLF4Sg/S7kyE1adG0t2D0gC0c74tpTrwaYGW8P45sj0ZuUpdyM80GNod6zaGENLuRKzlvLTNextGlBNWbXNTG8WquGUrlHUBov5N9kP8y+bw/iWy2tinnCsKTPdGN+2kukNfOVnKIiEAty0O+3d89PFRTwoovU8lVC/sdQjUC0ynQi4W9Rg08IJYkb5UT2Un0Q9S6UP5accHiU+ROXHUgBG4mFdU6Kc6dvzEw4GmEpFHXN+1t3q6IBWlNc6i1cenEhwbtieH4vsYHdT+VkvdlF+ACJJUgE9dqz7ZBU8DVfz7soPNAud2rHw6LaRHQAN6uiiAwlHrarjl1W3a2qDpfwMm/SgVjLKj+nL+PQeSioMaxcdj7+wUrgua/xshLBHKVVDh7x9WEQeAgR44xZfwtCwExjfEqpAfUDPz1S4TKWmWC9UTYTC1hQ4BQgZ2uBidtW5i+UVsqH+LO0AudAYscpwQrSXsrYipPlFXWagj1p0drQzvum2e3i1toLxzYXpDegR9qbH0IxRoLOlKsVKnamIB+XHCtG2FMptZnqzUA2niTvwr0g5Q07FCIb6MyBa4YmOSuqAc4BFZhWON995J8a3rWZ6A1/5GRqesHeUhy71QXowZMa3WD1PtW/lRw+0PfFqI+dnJVdm3G5RC8W7L2A3AKvQnSp3X8SnVIZa1LsVoxIZJVkfHrXmut37UTCCagChomv9uIe9OcKt1s9kgovLBWp1j+PNCy59Xv+eLcyxq+cHIJIiobRCZ4W+WZajYDXvHvYGRvmxWVIrRVg9t60WtYBxz5ccPD8FM5FLH+/D3vE4kVCAM93yflbPNceVR9RLrZ4fCQSYD0wTzjqXS7u4nGf/xPVFc21hUMIes++DSqnbDWHPyw1j3DWL7WR8q1bKJKSEcqup4gazyJwI6Xnm3HKOSk21Guk2KTTbgsWcVXYpy5CsrlKM9C8TipEJUtXVjXStgVYSiEXtWR/QG9bO+NbSthu2gvHNhekN8BT2NhUuUVfw2KKePydCpZb9jrCMv5YxeAcwvQHUIymSDspPoKxrafULi/HNMTxxQMY3y4gYtSk/ToxvW830Br7yMzTcvneUTLHqPQl9xtlFPCjiFKj3EY4D2GKpKyznShQrNXLlmq3A6dKmJpEGQyGKKoyU3S2RtWqVEfLUY94FSz06xoganvLTogBYru8+PT8AsyMx5tac2d7clZ+DWvlxqPVTrtVdC6cOhMv3t9T3sfoGDjWILESSxNGhfJbSs1aoEBCQSq6H8jPR6vlZOqVrDG2j5yds6NfLhc7xU8xqhagf5ScYEA5PJbt7fqBv0oO6ZTAIN4XcWmSGZLGT7S1XqrKUK7PvOvT8+GjFdjK+5TJacZA+Ks8DjZClsaCe66y8hNawt82TUwDR5BgAFRflZ6S+Sjnav0yoxiYYVRvPT7WS/jda4NSClXRueQGW7G27oQvj27GZITG+OTK99WCigwZpxkRYH2uNofGAkZ89w97Q93SHML0BEE0TkwrlUusaQNPJ92+w3jNqiC6GyPhWNuHZ4VjrOqCd8W2rmd7AV36Ghif0S3rQcBFvPPRN1eskVQHVbaHpBPPCT0fLrOSaiYAdsdSbiILEkKo7tXBmVVtbJD7muU0VHycmFYr54VSVbgl7szwVfeb8AOwejXUJe3NxUY/th0q+gxb94LDprvPL2gNhy/cB27XH3JUfqyioFe62mq8wGgtppbZr2Fub8tNgets+z4/lnq8WOsdOwVCIBmP9vWeHp70wvvUZ+lbpVH4K8d1MVDuVH4vm2md687GdjG/5jJ7DAvHBPD8jZqFqea62MuwtZmiDq4VOj3C9VmNUZagPoICpxBQj5KiUN1bpI2OS/huhaRs0XFqMbyfmMtTqipV82b3AqYUu4fzWuNsQ45sD0xvYKb67FzkFGA9oWWWNoVHznW6RJdZzzS3tGKY3ADFGgdx6a9TAQMy/2Iguhsj4VrGMiOHW/rQzvm010xv4ys/QcHw2TSQU2BbGt1KpQFhqqH5jUI2yNBWqUK7VuWBySBqEB/nFTfX8ABSJEah0qZxtlJ9g0ruyETBemfWV4dTbGJbnZ9dojLVCpUEMANpi10Kj3Y4G3fW5ls0W3fX5YdFdN4qbOis/3XJ+IvVWz89KvsxMAu3F6Znzs9z0ai2cAEQTHmwTogmj/DjQr5eNCz8Y6+89OzKd4vxynlK11rkzOaXjx/tWfozQttVPqKb3MqVWOhZSFs31dVjjx0cbtpPxrWCY0kIDKj8pU2TUUtwmkxGdg1la23Q5lRzR83290Cnf15bnCYpCBuiDpLTStrZ4dUP9W84O13BpZ3xbzZdRqodnxcJmMr45ML2BDntLRILEI11YwoyikBajQJsxlBJL+ekRoYDo9dAOYXoDCFokHG0MhNFByK8Mhs341iDmibTKnnbGt61megNf+RkaIqEAN+9Ke2d8G9mrX8gh5P1Ygz/Qr/JjJoRJ4wo+ZUJzmvUTljY9nKAUiOvcEBfk17VnIJzyrmxYx+ZWh1M8riXpfwOen9kG3XXT+5MtVanVlQflpzXvZ/dojFBAhkd6cPnzpuE7WjavFXQNooSbYImkCZnnZ+X8rBUqzMbMQr9Xzo+qaYpt0O/C+MFGHst2IGoSmxuEAjZYoXChWH+C5ch0ilpduSuqA5AeBKqdnp/g2H4Coli8crblWMuosX/8+sz58dHEdjK+lXKrAIQTfbKiBYIQTpIw+Q3WAnoiGWl6jjc5QiGZ1n1WDkaR9cXLAITS/XufIuactaUrG+hd0/sxrLA30IxvJ+cztrY90Hh3YXzbP75BxjcHpjfQYW89FTMjh1LSOoYSKg/BKIS6XFsgqBWg3ELzHdjG0GwLTRKOVs9PtJ6jEhrMg3JsZriMbw052paS0c74ttVMb+ArP0PFE/aO8sXLa9S9JKE3XMQbV34KJhch0KdF2rKoWbHUp8zEtJWen1IgTqjmHvZWXNeen1gfyk8krQVhfm04+VRrhQqRUEBbJTbi+bGUH1voW0/PyqgpUdLG+BYKBtg3Hh+i5+cB7XFpCy9cd6tBZCGSJFDJEQ5KS9jbbLTS2O+K9kKniye2PZwgmtTvRN2BgbBiQuHC8f49P9CD8W3pFJS8W0WD1QI1CUGwOW7iU1pRXrnSGpd9YSVPIhL0Zrn18bjGdjK+lXPayBHpV/mBRkHuZCTIxRUtLyaSEVuB001mewtHyKsoUuoMe8uu6FDT2Ohs3+1GzTn5lc5w1X5g5b1MJaM6Kb24umHZfXw2xdx6qUEO0DPsDboyvh2f3SDjmwPTGxiG2l6KWSgCoRhxQw19caVALBwgXMl5Y22zCp3OP6I99f3mrW0Cwgndh1Ku1eAer+f7r6Vl0DUsdoA5oF6yjHSthjc749t2ML2Br/wMFbfvM6QHXq3x0zcNJefH0vz7DyfQg23UUBWfsocTlPM6r2CARX4/qATjhGvu96uc08pGfNT7RB4f0ceWMsNRftYLlWbOS35ZF+EM9x9CtGtUT9Bz/Sg/8TEdj+zA+HZgMsm55SHl/Fy+vyPkzeqfa98AIkmknGM0HmmyvRXKTEerjf2uaCg/y7qA3NKpbbeoWQyEdQfPjxUKF+lT+Tk8re9B97wfBVe/6Km9UrVGVBWpBloLlo7sOgxAfv5sy/YLy5rm2lWB9XFdYbsY3yomZCyWHkCmxEZ0TTrj2UhFQ9oYtcnlGOzIS5xApXNRWFrTiktifFffbSYn9Dml9Y0pP8t2z48VnbBBb5i1EP7MmaVm272wmYxvDkxvYAqze1HMoiMEy5mGPJtMGmXWiyKTnNJGuh3C9AZNEo6y8ahaSKo89chgXpShM75VnMPe7Ixv28H0Br7yM1T0TXowc7N+obIby00pmURsqxCbZ1ix1Cbu9fR8loBY4V2bW+DUQiUYb+SMOKGW1RN5csx7P5Jj2gpYzQ7P89MocFpY1iFvAywkncLeehIKgDvd9USCc0t57/TqbsjMwfolV+Un3UP5oZxjPBFmraAF8Gq+wkTYTJDdYqmt0MH8ks5pqpW3vXBcLJ6krgQpdyoqtaJe+EQT/RkZktEQu0djnHaztvdJepAtVolRphZqtaZN79WFTqsrrWPl4sr1S3PtoxPbxfhWz1uV58f6PzmahuJ6I6m9mdtihb1tvvJTkATBcueisLKuw6tHJvpXfkYndwNQXd9YiPaSne55SN4wK/n8M2e0DPbkOd5MxjcHpjfQNYg89S2ahlKmEdY/kYxob7sXz09yCrJzO4fpDRsJh42BsF6rkZJC//nfBsNmfFNls7ZzYCK2GN9OXNXv1FaSHYCv/AwVDdKDi6veTph2t5L0g4pRfiKJwQgPkoaq+PJakfFEhEBAbBWiN1eo1IIJonV3uua6qX+S7kP5SY/rSb/expA2KNYLNkKC/MrA3rB0LEwyEmwJe1svaA+Ja5FT0Ixvqw6FTicTZIrVhsdlYLiQHej+9fL8pKCSYzweZCVXoVqrkylWmQiXm/vdYN3HwnJTWE5tr/IjgQAFok2LlQ2WNyiW7F+wHJlOuYe9pXdBcsaz8pMr1UhIiXqb8pNIjbJKCllv1vpRSnFhOe/TXPtoYLsY3+pFLacGVn5KmYaFf9Ke2wJb4vkpBFOEqw7zgpGVo1P9Kz8jEzPUlKAseTsglrJlkpHgUL1hFuPbI1f1c5tIeFAwNovxzYXpzaL47lrg1ILTGCplGrnPXZGYgqXTO4bpDSCe1uU/asVmKGYua+jkB1R+hs341sxN7TS+WYxvXzhxcsuZ3sBXfoaKcDDAzbtH+vP8wIbzfiz6zVhysETSSFXnbADNAqf5rbGo1cMJYsrd8yOFVfIqSjTmffGWSI5QVkFUn4Uj3dAS+mV5fgbE7GisJextvVfYGzQ9P+21fgx714ZJDy7fr6uB77q9Y5eXsDeA6Vid1UKl4ckaC5Zb9jvCnvPToLne/kTSgsSQSuc9VSYPKD6Q8qPprh29dCJ9kR5kShXilKiHOt+JpeAMsXwzeXolXyFXrvk01z4a2C7GN1XKUFPSCC3tC2bhaln4WwqcShBiYwP3yyvKwQSRWqfyE8gvskaScMQDIUD7ucEgqzJCoLCxKIXlXMlGdjCcqA1rIawUjCXChIIel4ubwfjmwvSWNRTf3sLeWsdQ354fzNy9A5jeAFIjWvmp20g48hm95glsICdpmIxvQauMicM6wGJ8O/fw57ec6Q185WfouG3vCF+6tO6N9CC9W+dzbNDzU7OUn/RgiaRSbpsQYMs8P/VQklizoHoHAqU1MtKfRUACAdYlTaC4usHeaawVKk3PTH4ZEv1X8rawayTmGPbmWkQUtPJTzkCbMndwcki1fi7frz0uDiFqmobbpQYRNCa1mWiFtXy5QXowFvKg/ETTEAibWOoTkNoFsQHG8JBRFBcGwnKOuhJi8f4tVEdmUmRLVeYzLmN99x1awFfcDQEWssUqcUqO1rT16C5GSs38AZ/pzUc7tovxTUq68rwEBlh2REdNyFJ72JuhdB6kzT5RCaWIOig/oeIy6zL4vJUJjBIpbkz5WcqVmbDq3DRk98ZJICwGrr7IUjaD8c2V6c2i+PageMZax9BkMgKldY/Kj+1e7gCmN4BoLEFFBfU1GBQN829wEFIRg2ExvpWqNSKqSFUi2tDeBovxbab02JYzvYGv/AwdN+4aIVOqMpdxD+VqQERbSTbo+akblqh4aoBFeTQNpWyD4W3CzvQGm04hqiIJEhQblX7bES6vkQ/0/2LkAmnC5dUN9k5jmJ6fXSMx5tabC+C1QoWAQCrSRcFwYXyzPD8bYnxTypXsQCnV2/NjBMdUpMpqodIIwUsZEo2uYW8iptaP8fzsAK8PQCkQc1Z+KnmKRAgE+7dQNRjf3AT/7C2a9nv5TM+2sqUqcSkjDoplObGLyXozh/C8pfz4nh8fBtvF+BasZMgz4DjsCFmyF/PcXKY3C9VQqsEWZkesvEw2NLhBLBcaI1bZWJTCUtZWhDS/qD358cH7ZMFi4JryolxY2AzGty5Mb4D3sLfieusYKq17DHsz66AdwvQG2sibkzgBm/JTMORX4X7zv20YFuNbxhjpasGY436L8e24XNxypjfwlZ+hY89oZ1J7V1iMbxtIWrfCcZKpQTw/qdYkQLvrPBDefEt8JEVAFMWCs/ciWl2nEOpf+ckH00QqnbSk/aJeV2SKRgFQSntfNsCAZ4W9WZ5By6sUCHQhUHCp9ROPBJlJRzcW9rZ+CXLzjspPrlzrXoMIGp6dqUiFfLnGglH6U1Jq2e+KxIS2EC6c2PZ8HwvlgDMDoVRy5GUwD0pPumtroVLsPWazpSoJSgQinQtJNbKPEXJk1nS+24UVX/nx0YntYHwLVbIUBqg8DxjlZ52JhDYSNcKccguQ3FwDnYVaJE2CTjmVrK5SjAyuaBQjE6SqqxvomWY8a/GGxSeG4g2zFsJ9eX42g/GtC9Mb0EfY23ozyiUR7jPsjR3D9GYhL8kWBsIGnXy/KRA2DIvxLVvUcqrmEJ4NTca3Y4FLW870BtDF3OxjEFiMXva8jq6YuRk+/7eQnYd0/3UCQIcT5FWURGiAx2ksao6en8TkQKxm/cBawBVy6465FPFqhtXY3r7bLYVHSdvCfwZFtlylrgwbWykD9eqGPT/VumIpV2Y6HdXKTzemN3BVfkCTHmzI89OF7MATE51RbnSYW5Szpi8JCoD0pgRPTMLcF3VY3zYzvVmoBONEq51KSrCapyjOVqxemB2JkowE3emuLeujh1o/mWKVGCWC0U7FMjR5AM7A0uUzpEcnuLBcYCIZIRX1p3ofTRybTfPuBy6TKVZI95p/LNgZ3w7c3bJrbr3I+eU8TznkPjeGq1lKA1ae1wtUxUxME8S0LPTbCjNvFlQ0TUoVUPV6S+heur7GXHRwmVCNTTCSWeOvP9nJoiXA82+d7UpYYiX9D7PAqQUrCd0TzbUFi/HtS++Gamvo1Asyq5S4zCf/7nPE3QpnO+CJFx/k7MxX88m2e/TghVXdv37Y3syx0zGl5Xk/YW87hOzAQiGQIGRTfizyq6hhghsEnhnfekRq6AiFEqpL0fL19BFuLn+YA3PvhE87HDd9HI4+r99L8ARfIg4Zuwbx/IC2kgyo/AQqWQoSHyygIJKG/DkmpvSEMG6nEN0CBh0xeSbFnPOiL1HPsBDp34pRCY+SzJ/aUN8A1vI2QoINFDi1YFeOp9NR1os9wspAewUiKUfGtwMTST55agNU6Zfvh0AIdj2hY1fLtbvBhLU1lB9TEC+minpfL+U5MQFnP6E/7xDlpxpMkC53si8Fq3nKAyo/IsLhboxvlgB2KKLYjmypSkJKhGKdC8nU9CEA1q+ehZvv0jTXfr6PjzbYQ1uedMCj12LqmP6/fLpD+XnDh0/yL5+/yBdf+7WuifGRWp5iaECLtHk/jo5BOhri5t3GWLAFhbgtSDRNQBS53DpJw1hXr9UYU+vU44N7n2ITexldzPH7//F58nTOL1++ss7vfYu7gpdpT/rPXBl4LdGOvWNxDk8lecKePp6bCBx8Bpx8f3NuN7gDuCMMnO2/L395dpZ/OfPlju2TyQjTaQ9hedE0qBq3TIVJR0McH7dt74XRfZpA4oav7K/Tm4xSQBNWWaiZWlrxDSg/FtGFo+dn8qj+v9Jb+bHC3lQXA2johmcysvzvjHzmdc4H3P7t26v8iMgLgDcAQeBNSqnfatt/EHgzMA0sAy9TSl0UkTuBPwdGgBrweqXUP5hz3gI8G7Co0V6ulHpgg9ez7ZhIRAgHhavr7kn8LbAzvh1+zkC/GazkyEuCgabfNldwC4vOJuf7AARjevFcKjgrP2mVpR7tX2BWY+OkVzdQTdpg3dTCGImHIW+UjI14foxyfGWtyBP2jvbOqQEtTNxq/Uwm+OfPlyhWaoOxpVy+X49BB+tMzwKs0PD86EK5ac4u5RCBaC3fO+QNWsfYDgl7q4USRB0YCMO1POXg4OFjR6aT3HPWJbbfyo0q987DsAgPnDw/Y7t1rZ/C4jlAEx7cunf7SSR87CzYGd88Kz+W9duBlvmRK+sUK3XOL+c5PO0cvx+r58iE+/fi65O1srM7WuGhX/1ava1ahuLaluX8iOlDPrPaUH7WlucZF4WkBu/DHXc+FU7A516xn9ruVg/8j/zdfT3Z0ZazVuhXVIdmLzwKd37XwP2xIxAQPvLK5/R/4ne8w9WLXazWKVX7DHuTAK+JpnmNw65YOEA05EH2Ge/60dG6HkOLxjjqJbQ/moZfOO29v1uESihJ0maoqxdNLa2RjRWnPzab5uMnHIyq1r3yEKGQLVVJUkIcavxYeNI3/gg8/7ugXnM+IOjRKz0Aeio/IhIE/hT4GuAicI+IvEcpZVfBfw94q1Lqb0XkucBvAt8N5IHvUUqdFJE9wH0i8n6l1Ko57+eVUu8a4vVsOwIBYSYd8x72lprVNJ0bYHwLVXOUAgNad9voH1uorvccGLhPXhGylJ98p8W7VMyTkBIqPtZ/w7ExklKkXCoSiQ5mrYc2BWAInp/dlmfQjI+1QoU9ox6eXRflB3Rie99xs0qhLt+P3PyNjrtbFD83GAXHIjg4t5RnNB5GKrn+lJ/YKKRmvPd9E1EPxYmrzvc3XCtuUPlJ8e4HLpMvV0m0E1w0PD/ehEpCSohDzs/UrgNUVYD66gVqdcWl1QIveMLugfvs4/GJgRjfomkIRptkOAZKqUZy9Im5rKvyk6jnqIUHTGy2wkLtOXGNcgxbk/NjFRHPry/DnkMArC9dYRwIpTeggBkDaGr9FBx+asuum3an+Yd7LlCvK9e8UCvpfyIVgbWL2oCy3V70QBBc5HbM/G057KHF6V1NL/uANXF2AqrhFLFic12gDO31QPnfNhybSfGu+y6ymi8zZq/v1EeEQqZYYUrKBKI95Po23X8vGXFPBU4ppc4opcrAO4EXtR1zC/AR8/mj1n6l1Aml1Enz+TIwj/YOPa6xezTGlbXelLWAYXy7eUOMb+FantKgi7JoCkpZZo3beHbEostc2pKq2eG4HviVfKcQzqxqIRsYgLUmYBSU9ZWNVc626vCMxEO6wClsyPMzlYoSDAhzJixy3U6j3Q2j+2GtU/lp1PoZIO/n/CP3IoUVvswRx/3ePD96MZMSfT1X1oqMxcNQ9qj8WPdyqjOZdbugwkkdtteGSL1A1SV50wuOGGv7Gae8H8vz40H5yRWKhKk55lOFwhEWZZJQ9hJz60UqNcX+CT/szUcrBmJ8E9EhZm2en7n1EpmizsU55VQc0SChCtQHVn4cFl1DKubpFSFDH1zMrja2ZZevAhAd2UCY2fgNEIw4FgY9NpMmX65xadV9PbGU1YanyWSkycS1Q2rR7Ci0jyFrrr2mlZ80cdWU/VLOkFMxgoPkf9vgyvgWczBCuCBb0hEKgejOJNvxovzsBezJBhfNNjseBF5qPr8E/n97bx4m2V3dd39O7Xvv07NppJGmtYxAjBYEBAwCAhYKARscG4wXbAxJAD9JbNmvMDY4somDHztO8oYkL/ELGGwgvMKAYsuWiQOxkxhbQitaRhoJLT1rz/R0d+3r7/3jd2/17e6q7uqupWs5n+fpp6pu3ar61e2q+t3v75zzPSRFZM1yjIjcDIQAb+zwEyLyiIj8nog0TNoUkQ+IyP0icv/CQhu1DT3EOnq1mPYGbTu+hatZKu0UktbKvHFujM/9zMu5em/KphMUl3syqYScnimVwsZJM+uIH39i+2LDfUx2qb3PTKcjP36fMJMIc2alULeSTm3WR8dl/JBN8VjntNROr5+z9/4OORPmU2evbXj/qvDbWvxEWRULY7GQI35aONFxV237xOYawITiRKVEtVJZsz1sCu2Jn80c33w+W3/Xgvgp553HN8mlvhicIZY/4+nx05+Tj7K77MjxLTa1Qfx407IaNkcEKuWSjeK3YivciEaR0azz296jtDfXQauUW21iXly2pjrxyb07f2J/AKbmbLraOlwL4Kc3EZV1x7NE2NMPp78K8/uC9Z+hIRA/tVCCuEf8+Eq2l1a7NHV8C8asjXqLxjwxCgQa9A/sBzpldX078DoReRBbx3MSW+MDgIjsA74A/Iwxxk32/AhwNfByYBL4vxo9sTHm08aYm4wxN83MDEbQyG1k2bCbeyP2XGNPbNNndvR64VqOcpvpBIFylluucsKTPUwnCMfsD0+1sHHSzK/YcYTi2xcboYQde355Y376dljJ2xPgsWjQNjiFtruJu3bX+XKVcnULK2kX1/FtXa+fiZgt3nxhm3bXZ154mmMXv8kfyxv5s2dLDdM0l/NlRGyBcVMCIfAFCVXzBJy0DBv5yWwv7a1P6n2Aev+cfG7tD3zE5Km1IX4unYrhk016/Tj1d1tRKTpCt4mLTjayj/HyWV68aFeLN9hcf++PG9ZtKKPF3GyS08sF0oWtbWvrxGc2pL25q8PXHRxrWp+STVvBIDvtkdLIDdFtotmDDAWAcHwcgLJH/JTTVoCl2hE/YC2UG1lDO80fN0tPvOC1e144DvE9bS3QDS1DKH4IJ4lImVLRzt9t2cl7aOr4JlIvldgKtx+dr0Ftaj/Qivg5CVziuX3Q2VbHGHPKGPMOY8z1wEedbUsAIpIC/hT4qDHmO57HnDaWIvBZbHrdULA3FSFfrrJSqGy9M6x10dkBUZOnuklR2abUC609H+YephOEnVSCanFj5KKQtpNbJLX9cUTH7GMKK+11znabkMZDARv5iYzZlbo22JsKc2a5sFZYbcW48xVc5/gmIhyaim077e25P/ltAK76oY9QM/CNh05u2Me14d60BxFAKI6UsozH7PuYiG0j7W3ysF1JuqR/vv7ifCcKmbVCJGoKmJ1+z4BI0M/h6TiPnWoicFqcVMrud6XJ8S0nDjBTO88L59OIwP5xT4b9s9+Gr74Pvv2vGz5WGR02bWbYjPj0asTF4emzaSZiQV55+RTPns9SadDDJZe2C0e+aAcjPz1Oe4s4DlqV/Or3t5axx2Jsuk3xM3O1reksrv1fjMWC7EmGm0bUwDY4jYX81vBm4Ym+60XTN6xP2arX/AyuIYw4iwLZFZuSH6hkKPjaFxuu41vDiGM41WLkp2xrU7dqd7FLtCJ+7gPmROSwiISAdwF3e3cQkWkRcZ/rI1jnN5z9v4Y1Q7hr3WP2OZcC/BDwvTbeR1+xbbtrd/U7v7MuzzGTx7SdS+1dUXMmlR6sqEWc3j6mgctVOWMnzFhq+xGoWMpGCcvZ9sVPvQlpbrEjXbP3piKcWSm0VlPjMn6pvWzW62cbkZ+LC6e57uw3eHD8Tbz82HVcf2icr3735IZI5UorTnRgBXQpWy+MHHfT3loJd09dAb/8LBx6Zcvj7zb+iBv5WT3JqVbsKtZmtp2tcMOhCR544WLjqHCL4qdW2Dzy4xs/QEiqPPv8c+xLRVadkJZehLt+FqavhL//6zt8B8qw4HV8a5nY9GrExeGps2nmZpPM7UlQqtQa/ha5dTKBtsWPZ+EguwDibzsS3ypxx0Grll+N/Phy51kmTjDUgtXyZrhpauef2nDXlbPJLdLeirZJuev0NqP1Pg1ZHz2si5/+TMtqBb9rwpFeAiBcyVLaaQnEOuZmk41Fd4sZCpl8mShFaGDM0w9sKX6MMRXgw8C9wBPAV4wxj4nInSLyNme3W4DjIvIUMAt8wtn+o8BrgfeKyEPO3zHnvj8SkUeBR4Fp4Dc79J52nb3rHL22xP3x3kHn7Eq5RFRKrdVXNKI+qXg+5G7aWw9W1GKu+GkQ+almrfhJjG9/HInJmTXPsVPWWFHnF9syO3CZHYuQLlTqphgtCYzYlM23bSB+Dk3Gmb+Yo1prLc3yybt/l5gU2XPrLwPwzhsOcvxsekNEoiUbbrARiFLaprvhvJ9ipvXPZAcEZSfxR+xnsuRJe3NT4KTNEP6Nl05wMVfm++cb1Gi1Kn5KrvhpPJbwlBXKC/PPcNBNeSsX4Cs/aTtz/9gfDvSEv11E5FYROS4iJ0Tkjgb3Xyoif+nUn35bRA6uuz8lIvMi8h96N+rusyPHt/g0lLNQsgLHdXq7cjZRjyQ1OmFyxU8wtsNVdp/fft7XL9LFpmy9XA+IJ+3Yjac+NVBYZEU6EDlwDQoWNhofzc0mOHEuQ63J7/uFbInJeLh/nN76lfWmMsW0dS8MtClcd5FVEw67cB6uZSkHOvPbPrcnwUK6yFJubaNaG/nZWvwUCnl8mK0bne8SLf1qGGPuMcZcaYy5whjzCWfbx4wxdzvX7zLGzDn7/JyTyoYx5g+NMUFjzDHP30POfW8wxrzUGPMSY8xPGGO28Qvc3+x1G1m2GvlxLSELS9t+LTeXmsgO81bD634QoKeRn0AwRNEE7YS6DuOIweQOxE8yOUHF+HYcTXNZ04Q0t9iRXGr38+GedLQkMESaOr5dOhWjXDWc2sQRyCWbXuKaF7/Eg7G/x2XX3AjAW6/bR8jv46sPzK/Zd3viZzXtbTwaaL3mpw9xm4eWPL2nCq742ekig8MNl1qh993nG3wuw8kNaS+NMM6JZ7PIT3LW9vqZrJxbNTu453bb0+mH//Nqmu0I4GnV8BasK+m7ReTout3cVg3XAXdiWzV4+Q3gr7o91l6zI8c3d0HMSTlznd7m9iQ54kSSGjm+lbJ2ngrtVPzAxhXnXG8acbsEgiFyJox4xhApLZIJjLf/5G04vl3IlNTprRUCIQhE1rq9DXK9DxCM2WhW0fl+RWs5KjvNAlpH07TYVtOz3TruQRY/yvbY49hFtxz5CSVt3cMOIj95Z0XNt9MvcaNC0tx5O54ercjnJIKvvDFVQgpLrBDbkW2jz+8jLXFkB8fUi1v3Ajgrje1Ptq74Oe6km9Sffyua9fqZXO31sxWP/rf/m3EyRN9w++rTxkK88Zo93P3QKcqefP2Wnegc8TMWtWlvkxEDpjqw4qduv55f/dF363/aLd48MpMgGQnwwAtLG+9sYVKp1gxScU6CmqQTTB+w1uX75by1uf7u5+DBL8AP3A5X/4M2Rj+Q7LhVA4CI3IjNZviLHoy152zb8c39/XMWyFyDg7nZBPFwgAPj0YaRn7KTKhZJtrF4FFlXa5Bd6Kn4AchJFF959f3FK0sUQh0wF2jD8W0x64gfdXrbGm/UorAy8OLHNeEoZZcAiJsctVBn3lNTx7cWxU/FFT+DmvambJ9wwM9UPMTpViM/Pp8tpN9B5KfgKH5/dKfix3lcaV3kJzrZs3SCAo3FT6C4REZ2/kVOS5JAaamNkXmiH9UKpE/D2MGtH7QFs05apPuj0lJ0BZqKn0NTrfX6KRULHH7qszwWeilX3/TGNfe984aDXMiW+J/HV4uZl/OVbdT8ZKzRATAVKq9uH0BCznfJa7/uNuH17zTC6uDzCdcfmuDBF5pFfjafVLKlCjEcG/0mK2qp8SlyJsx+WeQ6TsA9vwRXvBFe/yttjX1A2XGrBqeO9XexbqabMogtGWAHjm+urbSTGu2uCrurxFfOJho6vtUch7RYcnzngw0n1/YX6dBi1HbI+eL4PXNlsrZMKdwhZ7UdOL4ZY1jMlmyDU3V62xrvb2wxvWqCMKBEknaBupJbplatkpA8pkOCrqnjW4vip1p0MxRU/IwUs6lIQ/vgpkTGG0Z+8qUqK5tMTEVH8Qd3WkjaqLli7nxPV9SKvgj+ysYT92B5hZxv5yfQOX+KUGl5zbYLmSJ/9uhpPvnnT/Jco7qLddSbkGbO2GhGB8TP+rS3lpqcgnV8y1/c8MOzbyxK0C88v7j5+3nonk8zywUqf+9fbLjvdVfNMBUP8ccP2tQ3Y0zrDVjDiTVpbxN+J0d4QCM/YSeVwGu/7kaBgpH239MNh8Y5fja98XvtpvVsYpGfKVSIiHN8m0wq4vOx4N/DS3zf59UP/ILtZv7O37d1E0ojmrVq+CBwjzFmfrMHw2C2ZIAdOL7FHfMZx/HNdXqbituo79xssqHjW80RLW2Ln12cpwAKvjjBiv2drVWrjJsVatEOtYTYgeNbulihVK05aW/q9LYl68XPTvtO9QlRx4GwWlghm3Hs5Dskfpo6vq2PwDbB1GtT+1P8tOfZqzRl71ikdbc3sHU/DSI/H/36ozyzkOUbH3p1w4eVsnZS2XEudSgOyMb+CT1cUSv5ogSqG8VPuLxCIbDzL3IxmCJaWuRPHznNd569wN9+/8KaCUSAX761+WRhBYAT/Vh2zn/GLmm6f6vEwwGS4QDpYoVkOIB/KytpF7fXz9KLMLtatuD3CZdMxHhhk8hPrVpl76P/mWf8l3Pda394w/1Bv4+3HdvPH33nBZZyJSJBP6VqbZs1P/YEaCxQXt0+gLgOhDWPCYdb/xPcaYTVw42XTmAMPPziEj8w5zlRDicBs6lTXqa4deQHYDk0yytq92OKEfjJvxjl1eCWWjXgRH5EJAG80xizJCKvAn5ARD4IJICQiGSMMRtMEwYV1/HtxNkMNxxqIc15Xdrb0+cyzM0msaatrHF8u3xm9TNsimlqRojF2zjZDCchbZuKUinZ3ng9anDqUvLHCFXt78Ly4jkmxCCJDo3B6/h24IY1d105m2xYS7WYcXr8xJzIz7H3dGYsw8p68TPe/ny+myRS9jtbK6TJpS+SBHwdjGbNzSb5n0+ti2SHU1DOWfMcf/PzA1PKWYWhaW+jRaciP/c/d5FH55colKsb7gMoOz0H3O7T20bEyYP1ur2dX13h6wFlX5RgdWMxZ7SWphTceYFsOThGrLLEh774AF99YJ69Y1F++dar+Oo//XscGI82LSB1KZRrlKo1W/dSFz/tR35gNfWt5agPbGp3vVWvn4f++xc5VDvJxRs+hDRJZ3znDQcpVWv8ySOnt2fD7Vhdv+Ule/mV267mQMz5rHYo97jXRBN28jCe70TVuR6KtT+xHLtkHJEGpgeNbOfXkSlWrH2oHUzT/QqxfQCYt/4e7HtZW+MdcHbcqsEY8x5jzCFjzGXY6NDnh0n4wKrjW7PmpBsIJ61DVu48xhieOpuu16QATR3fpJgmI9Gmvz2tvbZnxbmHjbi9lAMJwo74WblwGoBAskPiZwvHt6cbOL65DU73+S6o01sreD9DxSGo+YnEKBs/FFcoOHbX/p1mATWgoeNbC/NUsVIlWHPOf9vojddNVPx0iX1jES5kSxQrjUXLBhpEftKFMi8s5qgZePJM4w9axVmRjuxU/IBdZW5kIdojyoEYodpGIRKvZSiHdv6+Dh+5hv2+i3ztn7ychz/+Zj7/szfzwVuOcOOlE1wyGWX+4ubiZ40AWHbKBsbWlwvsDDf1bVvix406uWPxcOmk7fXTqH+MqdVI3PfvmZe9HHvzTzV9+mv3p7hqNslXH5ivv/eWzBhCcShlmIoF+cBrr0Dcnk2DGvmJJKgZwXjq0CpO2ls41n4dUzIS5KrZ5EbTg0bmI+vIFCpEpYhBrHNRE/a/5XYeufm38V3/422Pd5Bps1XD0LNtxzcRp9Hp+TVOby7NHN/85TQ52vw9WCN+etvg1KUSSBCt2d+FzOIZZ1iznXly1/Gtkfhp4vh2IWMXQvYVv283qNPb5kRSa5ucDnjam/h8ZCWKr7hC3rG7DsbGO/b8DdNiWxA/6YJnka6JK+luo2lvXcI9uT23UuSSyRbCfg0iP17B8/ipFY5dMr7hYcbNpU50yEK0VrV1JT1Me6v4Y4Rqa6NkplYjZdLU2mhgN3XoKDxQ5frECvj3rLnv4ESMv35688JktyZjLBqE8/P2f9ShlSK3F9RYK25qLok99oT3r38XHvu6Fa2hOIQS/MiFGhPVLP/nj/6OUGKSUGKScHKKaGqKxRef4PrKU/zttb/GwWCo6dOLCO+44QC/9WdP8pBzYt5y2hvYULhT/7Nm+4Dh8/vIEkZKq2lvtaIrfjozWV5/aII/eeQUtZqxDXRhG5GfEiYQracaNeLg3DEOzh3ryFgHHWPMPcA967Z9zHP9LuCu9Y9bt//ngM91YXi7ztyeBH/3/W30Q4tNQfZ8vRZgzhP5aeb4FihnyPvaTH9x56larV5z1Ou0t2ooSQz7u1Bctil48cm9nXly1/Ht3Ebx40bXTpzLrDmfWHQiP5O5Z+0GdXrbHG9d5RBYXQPkJI6vnFm1k29nIXwdXse3l1/mpE63Mk8VKsRwzun6NO1NxU+XmPU0Om1N/Dhub8bY1TXgidNWkAT9wuOnlxs+rOZ8ANsqJHXcugDbywbT0xW1WiBKxKxd0crn0sSkirTTvXvqiL28cAKmj6y568B4lHPpIsVKlXCgcSH4mujH8nxH6n1cXHHcstMb2M/FLR+B5/+P/X+tnLKXxQxHi2leGsjDiY0PuxQ4zzgve+s/3fIlfuj6A3zyz5/ks//nudbH54oct1ZlwMUPQF4iiKf3lFu8GY13ZrK88dIJvvR3L3BiIVNfXWvovLgOd1Ixfbqapgwec7NJvv7QKdKFMslWIr3xGcidrwuc+ufXoZHjW7CSodhu53m3Jq6ctXWp0HO3NxNOkjB5TK1GOW0FWKpT4gesYcH8fRs2u9G1p86mef3Vqwt5btpbfPmEOr21glvzU85DrTIU4ifvixEoZyg7jqRhxwShEzR0fKtnKDRvdJopVojWjXn68zxAxU+XcE9uWzY9iI7bL6On2PnxUytMxILMzSZ5/FSTD1oxS8kECEXaOBnyFgG66QQ9THurBeNEzdrjtHJxgRjgi7XRa2jK9jvhwkZFcHAiijFweqnAZdONv5zLOW/aW2fFz+zYDsQPwGv+uf1bhx+oVspkli+Qvnie3MoFiivnKWYXqWYvMnHkFUxHt/4Rmk1FeM3cDH/lFDm2XPMDjoCeXRXSA2p1DVCQtQ6EdfET68xkecOhcQAeeP7i6sljI+fFdaSLFcalhAywsFT6C29qS0umB/FpuPD0Bqc3l7nZJP/7mQtUqjUCfptZH6rmKATaXJH2rjjvUtqbhJP4xJDNrlDLOL+R0x0UPzNXw/e+as8DPN/xZo5vFzIlYiE/gQvH1emtFcJJ69qaPbd6e8Ap+uKEKlmyTi+taAfFT0PHtxbSszXtbYRx05paFj9uhKOwVBc/T5xe4Zp9Ka7am+TLf/ci1ZrZ4AzmK2fISpTmyUwtEE7aHjZQd/Hp5aRigjGiFDC1Wr0gNrdsV/YCiTZWsmKTtl9RA/FzYMJ+IU8u5ZuLn/U1P4detfOxrGNHkZ8t8AeCjE3tZWyqvcn4nTcc2KH4ya69HOAT9KJE14gfKWXJmTAxf2fsog9Px5mIBfnu8xd5182Oi1+L6QT7KCJ9ah+qDB47cnzLXtjg9OZ9vvWOb5FalnSwzXrJiOekK7sA4l+dN3uEOGPIpZfw5c6zTJyxULhzL+CmrS0cb8nxbTFbZCoeVKe3VnFP3JdPrr09wJQDceKl86QLTi+tVGejfxsc31qq+SmvupL26XmAGh50iVQkQDTo50yrjm/RcXvp1P1UqjWePJPm6L4UR/elyJerPHdhYx8XfylNXtpU1uHkqttbPfLTwxW1UBy/GIqF1ZPN/IoVP6F2xA/Y1LcG4ueSCXvyOH+xuUNavebHV7C2qh1yegOP4UEraSY95s1H95II23WRZKSF9RFv2pv3coBP0Mv+KAGPA6FUcuSlucHAdhERbjg0wQPeZqetGB4UyyR8JaRP86iVwWPbjm/xaShneeHs+TVOby6NHN9itSzVYJuRYO/3wzXl6VEjbhe/01Iil14iUFhkRTpXXwFs2/HtQrbEldEVdXprFfcztOKInwFvcgpQDiaJ1HIYpyl3vJ367wZscHyri5+t0t6KGH+4b/vLqfjpEiJie/20Kn68kR/guQtZipUaR/enOLrffkEbpb75K1kK0olCUmfi24XIj8+JdOWzq5NvMW3FTzTV5jimjsCFZzZs3jsWwSdwchPHNzfykyxaV59Oip9LJqOEAj4OTvZfSDga8vP2Y/uZTYXraSub0ijyE0r0/MSkk5T8UUIe8eMvZyl0UPwA3HDpBM8sZD2Tipv2tvmkkvCVBlpYKv2F3ydcMbMNxzdnbggVFtc4vbk0cnyLmTy1tsWP81qFZWt13eOUN4Bg1J5YFtKLREqLZALjnX2BbTq+XciUeEnglL2hTm9b436GXPEzBGlv1WCCqMkhpTRZE8Ef6GxC1wbHt0gri3Q27a2fa1MH9+xkAJhNhTm7nZofqEd+HnOEzjX7UsztSRL0S32bl2A1R9HfAfFTSluzhV3onyBhGznIZ1ffXzVr3YdiY22OY+oKSJ/a0DU76PexNxXZ1O56OV8mEQ4QyDiTSwdrfsZjIb51+y38w+v2d+w5O8mvvfUo3/jQa1rbuR758TSP69NQd6tU/dE19uv+Sp5SuxHWdbgpRg+6lteBsO2hskUudUxKfeugowwmV84mONFq5MfJCpiU9BqnN5f1jm+VcomYFDHtphh5022yC7siflwnrVJumXhliUKowwYDLTq+uSxmS8yJ0/pAnd62pi5+Tq29PcDUQgniJoevlCbb7kJ4A7yOb4BdeBPfqmV4A9IF24y7n9OzVfx0kb2pnUR+bN7mE6fThPw+rphJEAr4mNuT5PHTGz9s4WqWcrsuOqEEmJq1Ks6et85zm3Tu7TR+5weomPOIn5wVP4nxNq1MXce3xWc33HVwIsb8Jo1Ol/PldT1+Ohf5Aes411JkZReIBP31urUtaZT2NuDipxKIEfaYcASqOYq+zoqfl10yht8na5udeqOwDcgUK8Sk2LdFpMpgMjeb5NRygbST6rspjuiYkpUNTm8uXse3bNrOaRJp80Rzjfg533OnN4BwfByAcm6ZZG2ZUrgL7mp7roaFJzZs9jq+ARhjWMyWuKT2ojq9tcoQih/CSSJSJli82L6dfAM2OL6JtDRPxX3Fvj4P6M8zryFh71iUsyuFDV2ZG+JGfpy0t8dPr3BkjxU+AEf3pxqmvYVrOSqBDkR+wHHRudDzSSUQsV+QUm71y2TyS1SMj0Q7Ft6w1u56HQcmopumva3kK7YJ6fK8La5NdtDVZ5homPbWvz96rVALxNbYr4eqecr+zgqOWCjANfuS6+p+Np9Usk6fn361D1UGk7rpQSupb474ORTObnB6qz/fbJJnz2epVGvk0nYhyxdt1+3Nk26TO78rkZ+I46RVyS4xblaoRbuQITFzNSy9sPp76rDe8S1drFCq1thXfE6d3lrFTdlanreX4Q7XbO0C4nwvEsVzFHydnxeaOr5tYXiQ9JWRPl6kU/HTRfamwpSrhkU3p38zwmOA1NPeHj+1Uq/1Abh2f4rzmSLn1kWSIrU8lY4VkmZ2ZVIJRq34KudXv0y+whJpSdTd33bM5OX2skHdz8GJKKeX85SrtYYPXcmXSUUC9ocydaBvC/d2nXrkJ7N6OcA21wAmGCdiivXboVqBSofFD8CNhyZ4+MUlKu5n0Gs+0oB0oULEFDTyo3SUel7/2RbEj7M4NpcoNm2063V8K2SWAAhEO5T2lrtgMyR63OAUIO44aVUvPo9fDJLowhi8jm/r8Dq+LWZKgGEi+yzMaL1PS6w3PAgP9jwF4HcWFSarC5TazQJqwtxscq3NutsstgmZglOb2seLoCp+usi27K59PrsqUVjiXLrA+UyRa/atThZHneuPrUt960whqafQOtv7yE/I6Z1SKayudAVKy2SkAz9MoRikDsKFpzfcdWA8Ss00//+spr3NdzzlbagIhMEXGKrIjwnFiUmRaqUCQNjkqbYbYW3ADZdOkC1VOe7mU7eQThAyRa35UTrKdhzfTChBiQCXRps7ZXod31zxE4y1ucru89uI58Xv29s9rEt1iSftewgtPwdAINkF8dOi49uFbIn9XCBYzanTW6u4i3LZBVtfGeigTfkuEXC+V1MsUw50R8xtdHzbPPKTKVaIS7GvjXlU/HSRWcfO+Ox26n7ySzxx2n6ojnrEzzUNHN9MrUpC8u2vsq9vHhfv7aQSitrxVwqrX6ZgeYWcv0P5uFNXNGl06tpdN059W1PzM9Zmj4phRsSKnSESP66VdN5JxQybAtUu/JC7pgcPuKYHW6yoZQslW4vUx5OKMni4jm9Pt5D2di5T4rxJsT/QfF+v41spa2t+Qu2KH7Dfj0VH/OxC2lsgGCJnwiTzNm0qnJrt/Iu04Ph2ajnPhUyRK31O+pY6vbVGIAQBp5Z1GOp9gGBs9Tyx7SygJmxwfNtinkoXKkSl1NcZCi2JHxG5VUSOi8gJEbmjwf2XishfisgjIvJtETnoue+nReRp5++nPdtvFJFHnef899Isfj7A7Buz//jT23F8KyzxhBPd8YqfVCTIJZPRNaYHuYxzvd3Q7S7X/EQcB51qYXUyjVZWKAY65ME/PWfFj1lbe+VtdNqIlUKZsYjPFkdq5GdzQglP2lsWQoM9sYizoFBwxE/UFDBdiPwcnIgykwzzgGt6sEnkxxhDueh8Vvt4UlEGkytnEzzdQuTnqbNpFk2KSWm+r9fxrex0no90ovN8OLlqXrMLaW8AOYkyW7FpU/HJLtSBtuD49vTZjOP05ogfdXprHfd8Z0jEj2vCAdb5rRtscHzbIkMhXagQpdDXi6Bbih8R8QOfAt4CHAXeLSJH1+32O8DnjTHXAXcCv+U8dhL4OPAK4Gbg4yLitpD+T8D7gTnn79a2302fMZ0I4ZPtR34eP7XCgfEoY7G1jmvX7htbE/nJZVwXnTZFgvuFWZ6HWqXnK2rhuB2/8RR4RqtpSqEOFSNOHVntDeFh/7hdAWrU6LRcrZErVdnnX7HHRMXP5oTiq7UqpcG3unZ7TxUyK9SqVWvV24WJxTY7HV81PdhkUilWaoRqzm+JGh4oHaZVx7enzmZYNEmS1eVN93Md32q5Dnaed1LD7RP2PvIDkPPFGcPOValuiB9oyfHtQrbEnJzEqNPb9nDrfoagwSlAJDlRv962nXwTNji+tZCeHTGDn/Z2M3DCGPOsMaYEfBl4+7p9jgL/w7n+Lc/9Pwh80xizaIy5CHwTuFVE9gEpY8x3jDEG+DzwQ+29lf4j4Pcxkwy3VvMDayI/3nofl6P7Uzx3IUumaOsQ8k4utb9tC1HntS4+Zy97PKnE4nb8XvGTNGmqoQ59kZs4voUDfmZT4YaOb26D0304TV872ONnKHHT3owZirQ3f8QKnWI+U099ky7V2dx46QTPX8hxPlPcdFKxq2mOCYNGfpQO06rj24lzaVb84wQK5zd/PtfxLW8X7GLtOnfC2tX6XUh7A9Y4ao1Nd0n8bOH49vS5DBcyJa72n0TU6W171CM/wyF+op6IqnQpmrXB8S2ydc1PqM/Ts1sRPweAFz23551tXh4G3uFc/2EgKSJTmzz2gHN9s+ccCrbb68fkl3hmIcPRfRs/xEf3pTAGjp+xk0nRyaVu30XHWdF2C0l7XPMTDIYomiCUbASmVq2SNDlMZGKLR7bI1BX2spHd9Xi0Yc3PiiN+ZmoLdoNGfjYnlLATdbVkI2UDLn6CTh1aObdSb74rXXIGqtf9PH/RTszVIlSKG/bLFCtExdmuhgdKh2nV8e2psxmITyPZC5vu5zq+LS8tUjNCLN6Bk0335E78q73xekzJaSq+TJxgqEsF81s4vj19Ns1ipsARmVent+0yZGlvidTqeZKvi9GsNY5v4ZTtC1ltHCXOFMo2S6GP56lOGR7cDrxORB4EXgecBKqdeGIR+YCI3C8i9y8sLHTiKXvK3rHItiI/Jr9EzZg1Ntcu1x5wHN9OrRU/oVibH/hAxLp17VLkByAvYXxlp3/BykV8YlZ7H7XL2CHwBZuaHjSq+XEjPxPls85zqPjZlFDc1vy4K5UDbnUddCI/5UKGohP58XVJ0L3kwBhBv1jTA6/t/DoyBafHD/T1ipoymLTi+GaM4amzaUKpPVDO1hesGuGKqfTyIhmJtt+2AFa/H7Ep65C6C7iOWivSxR4xdce3jeLHdXwzyyeJUVCnt+3ifoaGRPyEIzHKxrbh8Le7EL4JaxzfvHXi6yhWqki1iGD6OkOhlV+Pk4A35+egs62OMeaUMeYdxpjrgY8625Y2eexJ53rT5/Q896eNMTcZY26amdmdAsd22G7kx1crEaHUMO1tbyrCRCxYr/sp5+xlKN7mj7DbsdcVP7uQTlAgiq9sJ9LMRStyfbEORX78AZg83LTR6amlPNV1jWhd8ZMqnbE/lpHBb4bWVdy0N9f0YMAjP+6CQqWQppC1P/CBaHcEXSTo59r9Y6uRH7B1U+tIF8vE6mlvKn6UztKK49u5dJF0oUJ8wkn3yjVPfXMd33ylNDk69HvgnrjuUsobQMURP5nAePdepO741rjuJ1eqUjn7uN2gTm/bw42ODEnam/h8ZMWKjGBsvGuvs8bxbRPxszY9u3/PA1oRP/cBcyJyWERCwLuAu707iMi0iLjP9RHgM871e4E3i8iEY3TwZuBeY8xpYEVEXum4vP0U8I0OvJ++Y3YsQrpQIVeqbL2zE+nYHy5yycTGkxsR4ej+VN3xrepYQ4fbFT9g3bkqjkjbhchPwRfBX7XiJ7diJ9RQooPpd1NHmjY6rdTMBlMKV/zE8mc06tMKbtpbPfLTvz96rRB2e0/lM/VFhkC7tXWbcOOlEzw8v0Ql4By3BpNKtlhdTXtT8aN0ga0c39yo0OSe/XZDtrn4cR3fEuTJ+zr0eXVPunZR/FQdJ8tCqIsmAy04vu0vPWc3qNPb9hiytDeAnNh5o+2F8E1Y4/i2ifjJFCqri3SDnPZmjKkAH8YKmSeArxhjHhORO0Xkbc5utwDHReQpYBb4hPPYReA3sALqPuBOZxvAB4HfB04AzwB/1qk31U/sTW2j0amTw/yyaYPP19j5++i+FE+eSVOp1qgW7ElZNNGh/glgT2KDkfafb5uUfFECFZt+VnDFT7KDk8vUFVb81GprNh8Yb2x3vVJwmltm1ea6JdaLnwGfWFzxUytlKTsW7G4qXDe4/tA4xUqNF3M2faHhpFIsr66o9fGkogwuWzm+ufVA+/Y7v4m5zet+rpxNkCBHsVOd593flV1yegMwzhhK4S47rO25ummvH4A5OUkmOKlOb9tlCMWPu7gQ7oSdfBPWOL7V07MbzVOVgVikaylp1hhzjzHmSmPMFcYYV9h8zBhzt3P9LmPMnLPPzxljip7HfsYYc8T5+6xn+/3GmJc4z/lhx/Vt6Ng71rr4qYXHAXjJZK3pPtfuH6NUqfHMQhbjnJTFO9U/AXalazZA2RclULUCpJSx+jg21sEJbuqILSRfmV+zebXR6drcddfwIJA5qeKnFdyaH7fx2YBHfmIJx369mKk33w22W1u3CW6K0Hw2YDc0WVFTtzelm2zl+Pb0uTQTsSBjU27kZ/M63LnZJAnJU+q0+NnFyI/rqFWLdnmunLkalp5v6vh2pW+e5cQV3R3DMDKE4qfoOBBGuyh+1ji+1cXPxkana9PeBlz8KDunHvlpoe7nXNnuO5dq7hXhGiE8fnoZU0xTNUIk1oEVadfJarfEjz9KqGbFTyVre57EOy1+YEPdTz3ys87xbTlfZjxQQvIXVfy0QigOmNU0mAEXPxGnvseUclQK9uQj3KWaH4DLpuKIwHOZ5pGfdLFCTPo/l1oZXLZyfHvqbIa52STiio9N0t7AiqkkecqBTouf3av/dfvqSaLLY9jM8W1PgiNykvz4ld0dwzAyZFbXQP37FU12qE66CXXHt01rfsrDkfamtEc98tOC+Dm+Yk98Los3bzJ3+XSccMDH46dWkFKGbMdcdHZ3Ra0aiBF2xE8tZyM/yfFuiJ+1dT/RkJ/pRGiD3fVyrsxcxGnipz1+tsYVOxnHHW/A3d58fj85E0ZKGWqO81ok0b3JMhL0s38sytNLzoYGK2qZQoW4uG5vGvlpFRG5VUSOi8gJEbmjwf2XishfisgjIvJtETnobD8mIn8jIo859/1Y70ffW1zHt3o/Dw/GGJ4+m7Y1J+GkLcjfxPAArJhKSr5eJ9M2rvHMLi3SAfhjdgyBZJfFzyaObzdOZklIgeqUip9tE3Y+Q0PS5BSgHLTfr0Qnemltguv4tlxzSiMazVNrFun6V/wEdnsAw04sFCAZCXC2hbS3xxZ9vA7YF26+b8Dv4+q9SR47tcKbyxnyROnIV3iXc6mrgRhhY9+35JcomGBnIlouiVl7Qt7Q8W2j3fVKoczloSWooJGfVnDFTl38DH5kIidRpJLDOOIn2ok+JZtw+Uyc40vOZNIkl3pvsAyGvp5U+gkR8QOfAt6E7Sd3n4jcbYx53LPb7wCfN8b8gYi8Afgt4CeBHPBTxpinRWQ/8F0RuddxMh1KXMe3z//N83z9oVNr7jPG1kLO7Ulah9D4DGzR6+fITBwfOWrBDv2W193edi/y4zpqRcZmu/tCruPbPbfDf//4mrs+WLRzZWDv0e6OYRiJDJfVNUA1mCBrIsQD3T2lr0eGl4WboOk8FRmAlgwqfnrAvrEIp1sQPw+es7U+wdJGNe3l6P4Uf/a9M/ijWQqdctFxV+Z63ODUpRaMETVWgPiKS6QlQUdtF0Qc04MGvX7Go3UHPZflfJmX+h1vDhU/W1OP/Jxbe3uAKUoYfzlH2ellEo11d7I8PB3naw9exCBIk5qflL8MJmTdoJRWuBk4YYx5FkBEvgy8HfCKn6PALzjXvwV8HcAY85S7gzHmlIicA2aApa6Pehf5pR+8ir94/GzD+8IBH7e9dJ+9EZvasuYnXl4EKXFkrkN2zAdugDf8Ghx5Y2eebwdc9Yq38J3nP8QNN/9gd1/IH4C3/DacfmjDXVKt8d0LwrGX3dLdMQwjh19rP0OXvGK3R9Ix9rzhgzzxzKusIOkiruPb8cUqN4kPCo1rfmI457t9nPamM2gPmE1FNlgpN+LxM1lyvjix/NKm+x3dl+JLf/ciNUl3TvzscuTHBONEKWJqNQKlFbK+JB1f25s6Aie/u2HzwYko33ziLLXaqsvecr7MQd8FEB8k93V6JMNHeF3kZwhqUooSxV/JUSllyJkwMb+/q693+XScdKGKGUsiDZqcposVkr4ydOo7PxocAF703J4H1p/1PAy8A/h3wA8DSRGZMsbUwxoicjMQwjqTbkBEPgB8AODQoUMdG/xu8Pqr9/D6q/dsvWN8esu0N7dPzfTlL+vAyAB/EF57e2eea4dEYgle+d5/1ZsXu+lnGm4OATf2ZgTDRzC665+hTnP42ldw+Nrui7m649u5rD1nbNLnJ+nv/8iP1vz0gFYanS7nypxcylMJjUFhadN9XdMDKWco+Yekf0IoRkBqFIt5wuUV8v4urLJPzcHSC1Aprtl8YCJKqVLjfGZ1+3K+zF7OW+HjD3Z+LMNGPe3tnBU+u9R9vZOUHAdCqeQpSLjrr3d4xh7Dsj/e1O0t4Sv19YQyoNwOvE5EHgReh224XXedEZF9wBeAnzHGNLTiHPRm3DsiPrOl4UG9XkV70SjKwLPB8a1JS4axgNPXso/nqsE/QxkA9o5FWEgXqVSbW1g/ccaGDyU6DltEfq7em0IEEuRXmyK2S93tbXfEjzgnz/nMCpHqCoVgF5p1TR0BU4PF76/ZfHDCFo/Pe+p+VvJlpqvnNOWtVdw0t/SZoUh5A+tAGKzm8ZezFKT7BgOXT9vjVvDFmhaSxn2lvk4l6ENOAl7HkoPOtjrGmFPGmHcYY64HPupsWwIQkRTwp8BHjTHf6cmIB4XY9Nbi59wTtn9dosv1MYqi9IQ1jm9NjHnGAo5pl4qf0WY2FaFmYCFTbLrP46fshyicmNgy8hMPBzg8FScuhQ6Kn92N/PicBpKF3ArxaoZKsAvF5VNOT4QNdtdurx/Hba5mSBcrTFZU/LSMK3jyi0MjfiqOA6G/kqPYA/GzfzxKKOAjY6INV9SyRcftTZ3etsN9wJyIHBaREPAu4G7vDiIyLSLuXPgR4DPO9hDwNawZwl09HPNgEJ+CchbK+eb7LDxpXcukcdNuRVEGC9fxrRJMNDU8SPlK1qyjj2tTVfz0gH0tNDp94vQK04kwocTklpEfgGv2p0iQ75yLzpE3wet/FfYd68zzbRN/2J4wF3NpkiZNNdyNyE8T8eNGfpxGp+lCBUyNZPGsip9W8VpbD7jNtUvVHyVk8gSqeUq+jtpvNMTvEy6birFUizTt8xOV4lDUU/UKY0wF+DBwL/AE8BVjzGMicqeIvM3Z7RbguIg8BcwCn3C2/yjwWuC9IvKQ83esp2+gn3GzBJpFf4yxkZ+Zq3o3JkVRuorr+JahcYZCulAh4S/3ddQH1PCgJ8w6jU43Mz14/PSKreWJjG8Z+QG4dl+S+PECtU6daEZS8Lpf6sxz7YBAxH6hCiuLxKWAiXahWVdkDOJ7NoifRDjARCxYb3S6UigzzQp+U9YeP63ijfYMSeSnGowTMQWC1Twlf2+iLZdPJzj/fAiKGy2EM4UKkVARuhEVHWKMMfcA96zb9jHP9buADZEdY8wfAn/Y9QEOKq7ddHYBxhv8TmbO2blspkNOb4qi7Dqu49tSLcJ4aX7D/elChaSvCJ3KSuoSGvnpAXu3iPyUqzWePpvhmn1JiI5DYXnL53zJnjBBqSLh4VhlDzhpb9nzLwDgi45354WmjmxodAo2+uOmvS3ny+wXZzVTIz+tEYhYZzwYGvFjAlGipkColqfaI/FzeCbOuVIIsy7yU6nWyJerhE1xaI6vMuC4KdK5Jr1+HKc39qjZgaIMC67j24VSqGna2yCkZ6v46QGTsRBBv3BmpXHNz/EzaUrVGkf3OZGfSgHKm7vDXevMO5FkFyIku0DI6aFSvmhdaf3xye68UNNeP6uNTq34cSZ0FT+tIbLaK2pITs5NKEFMikRMjkqgNyH8w9NxVmpRzLr+CdmiNR8Lm0LfTyrKiBBzesI1S3tTpzdFGTpcx7czxWBT8WPTs/s77U3FTw/w+YTZVIQzyxsLQ40xfPLPnyQe8vOqy6ds5Ae2TH2bqtgJ56VXD0dKQdhtILlsjZiCiW6JnyOQPbchumYjPzmMMRr52Smu6BmSztni1KGN15ap9qjO5oqZOBmiSDkLtVV3yHTRuucEa4W+n1SUEcGb9tYIdXpTlKFkbjbJi7kglHNQray5L1OoEKX/MxRU/PSIZr1+/r/vzvPXT5/njrdczZ5UxE4WsLXpwbLNtfSPD8fJuSt+wtlT9jLZRfEDG1LfDk5EKZRrLGZLrOTLHJAL1ILx1f+HsjXuj12f/+i1ijjvIyZFTM8iPwkyJoJgrJOWQ6ZoJ5hANa/iR+kPwknr6NSs0ak6vSnKUDK3J8HZotP/0GN6UChXKVVrRAYgQ0HFT4+YHYtwdl3a29mVAr/5J49z8+FJ3vOKS+3GFiM/rDitKoakID8St+5uidI5AOJjXbLcbiJ+Doy7jm/5etqbGTuoE/d2GDLx4/PU05kevaeJWJCq6+DoSSnIFKz48Vf7f1JRRgQRp9dPg5ofdXpTlKHlytkkGZx5yDtPOYt0IaNpb4rD3lSEM8sFjDGATXf71a9/j2KlxiffeR0+n3OSHXFqeFqJ/AQiEOtShKTHxOI28jNRsSkUXRM/k4cB2VD3c3DCflFPLlnxc0DO42vkYKQ0x3UeHBLxE4isvg/p0XsSEeIp5zfAM6mkixWCVPCZijY5VfqH+HTjtDd1elOUoWVuNkHaOPNQg0W6UK3Q9+cBKn56xL6xCPlylZW8/XD8ySOn+ebjZ/mFN13J4WnPh6TVyM/yvK1HGZLIRDAUpmQCTLMEQGpipjsvFAjD+KFNe/0s58sc8F1AtN5ne9QjP8PiQLhau9Qr8QOQGnMWNNZNKlGcyHGfr6gpI0R8unHamzq9KcrQsn8sStm1sm4Q+bHp2f2doaDip0e4vX7OrBRYzJb49bsf42UHx3jfaw6v3bHVmp+Vk5A60PFx7iY5sccoY6IEgqHuvdDUkQ3iZywaJBkJMH8xTz6XZZIVNTvYLkOW9haMroofXw8t5aemrItWIXuxvi1bVPGj9CGx6cZub+r0pihDi88nTEw4bo+emp90wRU/hb5vxq3ip0fUe/2sFPiX/+0xVgplfvtHXkbAv+5fELG1Ly1HfoaIAo74kS6faLq9fpwURJeDEzFOXswTyFjThWGpp+oZQyx+/JHevaeZaRv1PLewelJZtw8FFT9K/xCfaSx+1OlNUYaamRknO8ebnl0oAwZfJdf36dktiR8RuVVEjovICRG5o8H9h0TkWyLyoIg8IiK3OdvfIyIPef5qInLMue/bznO69+3p6DvrM/Y6kZ8v/u3zfOOhU3zo9Ue4am8DS2B/wPZL2SzyUy1D+szQiZ+iz4ZJs/4uWyVPz0EpbfPSPRwYt41OIzlX/AzX8e06rsV1aDisriPx1ffhTYHrNvv22EllcXG1kDxdqBBzIz99PqkoI0R8yroSlte1cVCnN0UZavbvsafsufRqhkKmWCFM2bqVDnram4j4gU8BbwGOAu8WkaPrdvtV4CvGmOuBdwH/EcAY80fGmGPGmGPATwLfN8Y85Hnce9z7jTHnGGL2pMIA3PvYWa7em+SDtxxpvnN0fPPIz8opwAxd2lvJZwViodviZ+oKe7nB9CDKyaU8icIZu0HFz/YYssiP23gXIBTtnfg5uNeuli8vrZ1UJoJOP4U+n1SUESLmGNN4oz/q9KYoQ8+l++w8dWFxXYZCPT27v88DWon83AycMMY8a4wpAV8G3r5uHwOknOtjwKkGz/Nu57EjSTjgZyoewifwyXdeRyiwyaGPjG8e+anbXA/XyXnJifwUg2PdfSHX7vrc42s2H5yI2i9v/hQ1BJL7uzuOYWPIxE8snqpfD0Z7V/Pj2r5nvStqhQqTIVf8DMfxVYaARo1O1elNUYaew/v3UDXC0sXF+rZBylAItLDPAeBFz+154BXr9vl14C9E5OeBOPD3GzzPj7FRNH1WRKrAV4HfNGZdEQYgIh8APgBw6NChFobbv7zzxoPMJMK87JLxzXfcKvKzPJzip+y3X5ZKKLXFnm2SOgjTV8G3PgGX32LT4LDiB2C2dp5seJpkoIumC8NI3ep6ONzeop7ITzjW5c+kF3+QEiEKmaX6pkyxwmSgAhU08qP0D3En8pPz9PpRpzdFGXoOTMRIEyO3slb8pPwle6PPa1M7ZXjwbuBzxpiDwG3AF0Sk/twi8gogZ4z5nucx7zHGvBT4AefvJxs9sTHm08aYm4wxN9ULrAaUX7ntGt7/2su33jEytnnkZ9nRokOW9lYN2JO6WrjLkR+fD378v4IvAH/4DkifBeDAuP2y7pfzZKN7uzuGYeTgy+HQq2BsOD6XPr+fnLHpqpFYb+uYSoE4lfxyvS9YulhhPFi2dw5JZE0ZAmKO45M37U2d3hRl6PH5hKI/RjG7XN+WKZY9GQqDL35OAl7bq4PONi/vA74CYIz5GyACeLtUvgv4kvcBxpiTzmUa+CI2vU6BFmp+TtrUuB7a7/aCasB+WUx0ovsvNnnYCqDsefjij0IxU4/87JcLFGP7uj+GYWP/MfjZPx+qyETesV+PJHoY+QFqwQThao4LWbuKlimUSQUc8TNEx1cZcBqlvanTm6KMBNVggmp+1eo6U6gwFaraG32e9taK+LkPmBORwyISwgqZu9ft8wLwRgARuQYrfhac2z7gR/HU+4hIQESmnetB4K3A91AsW9X8DKHNNUDNqWXwxXogfgAO3Ag/8lk48wjc9TOMR4RYyMcBuUA1ORzRC6U9Co74ifY48iORFAnyPLuQBWzaW8o3GOkEyggRToI/tLbRqTq9KcpoEBkjWMmwnLMLc9aYx12k6+95akvxY4ypAB8G7gWewLq6PSYid4rI25zdfhF4v4g8jI3wvNdTv/Na4EVjzLOepw0D94rII8BD2EjSf+nEGxoKouNQyUOl2Pj+5ZNDKX6M82UJxKd696JX3Qr/4Hfh6b9A7rmdl4wVCUsZkxq+46tsn5JEyZsQ/kAr5ZGdIxgbIyF5vn8+A9gVtYR/MNIJlBFCxGl06tT8qNOboowMIWeeeuqc7fWTLlQYCwzGPNXSjG6MuQe4Z922j3muPw68usljvw28ct22LHDjNsc6OkTG7WV+CZINUgdW5uGSIcwSdGoZQonJ3r7uTT8LSy/C//o3/FLManT/hDY4VWzvqXwtQq8TzcLxMVJykmfPr0Z+kr4iiA8C4R6PRlE2IT69mvamTm+KMjJEE+MkeYq/PZvh5ZdNOuLHyVAYgrQ3pde4NS+N6n5KWchfHJqici/iiJ9IqsfiB+CNH4PrfoyX5/4KgPDUYDsLKp2h7I/UU996iURSjPmLPLuQxRhDplghJiW7mqbpREo/EZ9eTXtTpzdFGRmiyXFSkuepszbykylWSPmHJO1N2QW8kZ/11G2uhy8yEUjtoWaEsZldSDkTgbf9B05N3kzVCPG9V/R+DErfUQxPkfGP9/6FQwmS5Pn++Sz5cpWagZgU+35CUUaQ2PSq25s6vSnKyCDhJEnJ8/S5VfGTHBCr694msiutER23l40iP0Nqcw3wsjf9FM8evIYjBw7vzgACISZ/7o95/qkHuHxiz+6MQekrLvvxf0upkOv9C4eTRE2O5y9kWc7blbQIJXV6U/qP+Myq+FGnN0UZHSJjRCjy7Blrd50pVEjIYIgfjfz0I5tFflaGs8EpQDAU5sjLXrOrY4jEklx+7HW7Ogalf5jeewn7L9uF4u1wkoApI9UST562q2oRU9AePztARG4VkeMickJE7mhw/6Ui8pci8oiIfFtEDnru+2kRedr5++nejnxAiE9BOQvlvDq9KcooEbYuqLnMEudWCpSqNeK+knWA9Pd3bEXFTz+yaeTnJCCQ2t/DASmK0lPCtq9QgjyPzNtVtbApauRnm4iIH/gU8BbgKPBuETm6brffAT5vjLkOuBP4Leexk8DHgVdg+9B9XER65MM/QMScln7ZBXV6U5RRwhE/ScnzwAsXAYgyGOnZKn76kciYvWxY8zNvUwr8wZ4OSVGUHuJMKgnJ88j8EgDBWn4gJpU+42bghDHmWWNMCdtv7u3r9jkK/A/n+rc89/8g8E1jzKIx5iLwTeDWHox5sIg74ufcE+r0piijhDtPkefBF5YAR/wMQIaCip9+xB+EYBwKyxvvWxnOBqeKonhwJpV94TKPnLS/A8FaQcXP9jkAvOi5Pe9s8/Iw8A7n+g8DSRGZavGxAIjIB0TkfhG5f2FhoSMDHxjiM/byub+2l+r0piijgZOhMB0s1iM/EVMYiAwFFT/9SnS8Sdrb/FDaXCuK4sERP0fGDAtp2+w4UMn3fe+EAeV24HUi8iDwOmzT7ep2nsAY82ljzE3GmJtmZma6Mcb+JeY0pX7uf9lLdXpTlNHAET9z46aenh0ymvamtENkfGPamzG25mcIba4VRfHgiJ/DyVp9k6+qkZ8dcBLw/mAedLbVMcacMsa8wxhzPfBRZ9tSK49VWE17O/2wOr0pyijhzFNXJGsUK3auCtUGw5hHxU+/0ijyk78IlfxQ2lwriuLBWVE7lFgNQPgqORU/2+c+YE5EDotICHgXcLd3BxGZFhF3LvwI8Bnn+r3Am0VkwjE6eLOzTfESTll3J1NTpzdFGSUc8XMoXqlvCtTymvamtEGjyI/b40fT3hRluAknANgXsZNKyO9DyoMxqfQTxpgK8GGsaHkC+Iox5jERuVNE3ubsdgtwXESeAmaBTziPXQR+Ayug7gPudLYpXkRWHd/U6U1RRgdH/OyPesTPgGQo9LcR9ygTHYfTS2u3LQ9vjx9FUTw4k8qesG0Ylwz7oDIYk0q/YYy5B7hn3baPea7fBdzV5LGfYTUSpDQjPgXpU+r0piijRCgO4mMmVKpv8lVymvamtEHDyM+8vUyp+FGUoSYYA/Ex6bdmB9NhJ/1NDQ+UfsR1fFOnN0UZHUQgnCQleWIhP0G/IOXcQGQoqPjpV6Ljtmt2tby6bWXe5lbHR8xNSFFGDWdSCVYy7B+LMBlyxI9GfpR+pJ72puJHUUaKcAoppjmyJ0EiHHDSs/s/8qNpb/1KZNxe5pcg4Yid5ZOQ2g8+1ayKMvSEU1BMc8OlE0yU8rCMih+lP9lzNUwcVqc3RRk1wkkornDzZZP4BVjIDkSGgoqffiU6bi8LSx7xM68pb4oyKjiTyu/92DHkXBj+HwYinUAZQV79L+BVH1anN0UZNZxFujv+0dWYch7+tRmIeUpDCP2KN/LjsnJSzQ4UZVQIJ6GUIej3WQcdGIhCUmUE8fkgEN7tUSiK0mvCSSimCfh9BGu2RnUQ0t5U/PQr3sgPQK0KK6fU5lpRRgVnUgGgnLOXA7CipiiKoowIToYCAKWsvRyAtDcVP/3K+shP+gyYqkZ+FGVUCCUaiJ/+X1FTFEVRRoSGi3RDIn5E5FYROS4iJ0Tkjgb3HxKRb4nIgyLyiIjc5my/TETyIvKQ8/efPY+5UUQedZ7z34tosvAa1kd+VpweP1rzoyijgUZ+FEVRlH5mWMWPiPiBTwFvAY4C7xaRo+t2+1Vs5+zrgXcB/9Fz3zPGmGPO3z/xbP9PwPuBOefv1p2/jSFkfeRn+UV7qWlvijIaOIWkAJScSWUA0gkURVGUESEyZkVPtTJQ81QrkZ+bgRPGmGeNMSXgy8Db1+1jgJRzfQw4tdkTisg+IGWM+Y4xxgCfB35oOwMfegIhq57dyM+yE/nRtDdFGQ0cwwNq1YFaUVMURVFGhHDSXpbSAzVPtSJ+DgAvem7PO9u8/DrwEyIyD9wD/LznvsNOOtz/FJEf8Dzn/BbPCYCIfEBE7heR+xcWFloY7hARGfdEfuYhlLQqW1GU4ac+qWQGalJRFEVRRgR3niqsDNQ81SnDg3cDnzPGHARuA74gIj7gNHDISYf7BeCLIpLa5Hk2YIz5tDHmJmPMTTMzMx0a7oAQHV9b86NRH0UZHdxJpZiGct5e15ofRVEUpV/wzlMDlPbWSpPTk8AlntsHnW1e3odTs2OM+RsRiQDTxphzQNHZ/l0ReQa40nm890y+0XMqayI/L2q9j6KMEvVJJWMtRAMR8Pl3d0yKoiiK4hJ24hnFNJQdq+shifzcB8yJyGERCWENDe5et88LwBsBROQaIAIsiMiMY5iAiFyONTZ41hhzGlgRkVc6Lm8/BXyjI+9omPBGfpZPQkrFj6KMDGsmlbxGfRRFUZT+Yv08BcMhfowxFeDDwL3AE1hXt8dE5E4ReZuz2y8C7xeRh4EvAe91jAxeCzwiIg8BdwH/xBiz6Dzmg8DvAyeAZ4A/69zbGhLcyE85D7nzMHbJVo9QFGVYCCfsZdHJpdYeP4qiKEo/Uc9QWFlNexsA8dNK2hvGmHuwRgbebR/zXH8ceHWDx30V+GqT57wfeMl2BjtyuJGfFcc8T9PeFGV0WFPzk9PIj6IoitJfeMVPOQv+EPhbkha7SqcMD5RuEBm3Tk8Xv29va9qboowO6wtJB6CIVFEURRkh1hvzDEDUB1T89DfRcXt59nF7qW5vijI6bIj8DMakoiiKoowIoTiIz7NINxjp2Sp++pnIuL08+5i91MiPoowOIRU/iqIoSh8jYhfqXLe3AUnPVvHTz9QjP49BfAaCkV0djqIoPcQfsIKnuKJub4qiKEp/Ek7ZJqelwVmkU/HTz0TG7OXCkxr1UZRRJJy0dX+l7MCkEyiKoigjRDjpcSVV8aO0i5v2VitrvY+ijCL1dAKN/LSDiNwqIsdF5ISI3NHg/kMi8i0ReVBEHhGR25ztQRH5AxF5VESeEJGP9H70iqIofUx9nhocYx4VP/2Mm/YGKn4UZRQJJbTmp02cRtufAt4CHAXeLSJH1+32q9gedtdjG3n/R2f7PwLCxpiXAjcC/1hELuvJwBVFUQaBcGrV8GBA5ikVP/2MG/kBTXtTlFEknLS51Cp+2uFm4IQx5lljTAn4MvD2dfsYwGlVzhhwyrM9LiIBIAqUgJXuD1lRFGVA8EZ+BmSeUvHTzwQjEHBMDjTyoyijRzgFufNgapr2tnMOAC96bs8727z8OvATIjKPbej98872u4AscBp4AfgdY8xiV0erKIoySHhrfjTtTekIbvRHxY+ijB7hJGTO2etqeNBN3g18zhhzELgN+IKI+LBRoyqwHzgM/KKIXL7+wSLyARG5X0TuX1hY6OW4FUVRdhc38lPKQXAw5ikVP/2OW/ejaW+KMnq4K2qgkZ+dcxK4xHP7oLPNy/uArwAYY/4GiADTwI8Df26MKRtjzgH/G7hp/QsYYz5tjLnJGHPTzMxMF96CoihKnxIZs1Gfcm5g5ikVP/1OZBzED8m9uz0SRVF6TTi5en1AVtT6kPuAORE5LCIhrKHB3ev2eQF4I4CIXIMVPwvO9jc42+PAK4EnezRuRVGU/qc+TxlNe1M6RHQCUvvB59/tkSiK0mvWiJ/BWFHrN4wxFeDDwL3AE1hXt8dE5E4ReZuz2y8C7xeRh4EvAe81xhisS1xCRB7DiqjPGmMe6f27UBRF6VMGcJEusNsDULbgNf8csppDrigjiXdSGZAVtX7EGHMP1sjAu+1jnuuPA69u8LgM1u5aURRFacQALtKp+Ol3Dr1yt0egKMpusWZSUfGjKIqi9BlrFukGI/KjaW+Koij9ioofRVEUpZ8Jj61eH5B5SsWPoihKv6LiR1EURelnBjDtTcWPoihKv6I1P4qiKEo/M6xpbyJyq4gcF5ETInJHg/sPici3RORBEXlERG5ztr9JRL4rIo86l2/wPObbznM+5Pzt6dzbUhRFGQLCqdXrA7KipiiKoowQA5ihsKXhgYj4sXafbwLmgftE5G7HHcflV7H2of9JRI5iXXUuA84D/9AYc0pEXoK1GvV263yPMeb+zrwVRVGUIWMALUQVRVGUESIUB/GBqQ3MIl0rkZ+bgRPGmGeNMSXgy8Db1+1jAHeJcgw4BWCMedAYc8rZ/hgQFZFw+8NWFEUZAVzxI37wB3d3LIqiKIqyHpHVuWqI0t4OAC96bs+zNnoD8OvAT4jIPDbq8/MNnuedwAPGmKJn22edlLdfExFp9OIi8gERuV9E7l9Y0H43iqKMEIEI+ALOylrDn0hFURRF2V3cFO0BSXvrlOHBu4HPGWMOArcBXxCR+nOLyLXAJ4F/7HnMe4wxLwV+wPn7yUZPbIz5tDHmJmPMTTMzMx0arqIoygAgAqHEwKQSKIqiKCOIG/kZIvFzErjEc/ugs83L+4CvABhj/gaIANMAInIQ+BrwU8aYZ9wHGGNOOpdp4IvY9DpFURTFSzg1MBOKoiiKMoKEk+APgX9LK4G+oBXxcx8wJyKHRSQEvAu4e90+LwBvBBCRa7DiZ0FExoE/Be4wxvxvd2cRCYiIK46CwFuB77X5XhRFUYaPcFLFj6IoitK/DNgi3ZbixxhTAT6MdWp7Auvq9piI3Ckib3N2+0Xg/SLyMPAl4L3GGOM87gjwsXWW1mHgXhF5BHgIG0n6Lx1+b4qiKINPOKlpb4qiKEr/MmCLdC3Fp4wx92CNDLzbPua5/jjw6gaP+03gN5s87Y2tD1NRFGVEefU/A1Pd7VEoiqIoSmNe/nNw5I27PYqWGYzkPEVRlFHl6tt2ewSKoiiK0pzLXm3/BoROub0piqIoiqIoiqL0NSp+FEVRFEVRFEUZCVT8KIqiKIqiKIoyEqj4URRFURRFURRlJFDxoyiKoiiKoijKSKDiR1EURVEURVGUkUDFj6IoiqIoiqIoI4GKH0VRFEVRFEVRRgIxxuz2GFpGRBaA59t4imngfIeGM8jocbDocbDocdBj4NLqcbjUGDPT7cEMIjpPdQw9DhY9DhY9DhY9Dh2YpwZK/LSLiNxvjLlpt8ex2+hxsOhxsOhx0GPgosdh99H/gUWPg0WPg0WPg0WPQ2eOgaa9KYqiKIqiKIoyEqj4URRFURRFURRlJBg18fPp3R5An6DHwaLHwaLHQY+Bix6H3Uf/BxY9DhY9DhY9DhY9Dh04BiNV86MoiqIoiqIoyugyapEfRVEURVEURVFGFBU/iqIoiqIoiqKMBCMhfkTkVhE5LiInROSO3R5PLxGRz4jIORH5nmfbpIh8U0Sedi4ndnOM3UZELhGRb4nI4yLymIj8M2f7qB2HiIj8nYg87ByHf+lsPywif+t8P/6riIR2e6y9QET8IvKgiPyJc3vkjoOIPCcij4rIQyJyv7NtpL4X/cSozlU6T+k85aLz1Fp0nurOPDX04kdE/MCngLcAR4F3i8jR3R1VT/kccOu6bXcAf2mMmQP+0rk9zFSAXzTGHAVeCXzI+QyM2nEoAm8wxrwMOAbcKiKvBD4J/J4x5ghwEXjf7g2xp/wz4AnP7VE9Dq83xhzz9E0Yte9FXzDic9Xn0HlK5ymLzlNr0XnK0tF5aujFD3AzcMIY86wxpgR8GXj7Lo+pZxhj/gpYXLf57cAfONf/APihXo6p1xhjThtjHnCup7E/JAcYveNgjDEZ52bQ+TPAG4C7nO1DfxwAROQg8A+A33duCyN4HJowUt+LPmJk5yqdp3SectF5ahWdpzalre/FKIifA8CLntvzzrZRZtYYc9q5fgaY3c3B9BIRuQy4HvhbRvA4OCH0h4BzwDeBZ4AlY0zF2WVUvh//FvhloObcnmI0j4MB/kJEvisiH3C2jdz3ok/QuWotI/s51HlK5ymHf4vOU9CFeSrQydEpg4cxxojISPidi0gC+Crwz40xK3YRxTIqx8EYUwWOicg48DXg6t0dUe8RkbcC54wx3xWRW3Z5OLvNa4wxJ0VkD/BNEXnSe+eofC+U/maUPoc6T+k8BTpPraPj89QoRH5OApd4bh90to0yZ0VkH4BzeW6Xx9N1RCSInVD+yBjzx87mkTsOLsaYJeBbwKuAcRFxF0JG4fvxauBtIvIcNrXoDcC/Y/SOA8aYk87lOexJxs2M8Pdil9G5ai0j9znUeWotOk/pPAXdmadGQfzcB8w5Dhkh4F3A3bs8pt3mbuCnnes/DXxjF8fSdZw82f8XeMIY8288d43acZhxVtIQkSjwJmxe+beAH3F2G/rjYIz5iDHmoDHmMuzvwf8wxryHETsOIhIXkaR7HXgz8D1G7HvRR+hctZaR+hzqPGXRecqi85SlW/OUGDP0EVRE5DZs7qQf+Iwx5hO7O6LeISJfAm4BpoGzwMeBrwNfAQ4BzwM/aoxZX2w6NIjIa4C/Bh5lNXf2V7D51KN0HK7DFgb6sQsfXzHG3Ckil2NXliaBB4GfMMYUd2+kvcNJJ7jdGPPWUTsOzvv9mnMzAHzRGPMJEZlihL4X/cSozlU6T+k85aLz1EZ0nur8PDUS4kdRFEVRFEVRFGUU0t4URVEURVEURVFU/CiKoiiKoiiKMhqo+FEURVEURVEUZSRQ8aMoiqIoiqIoykig4kdRFEVRFEVRlJFAxY+iKIqiKIqiKCOBih9FURRFURRFUUaC/x+xAYaM85rUSQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 2, figsize=(14, 4))\n", - "ax[0].plot(rnd2, perf_reg2, label=\"regression\")\n", - "ax[0].plot(rnd2, perf_clr2, label=\"classification\")\n", - "ax[0].set_title(\"Comparison between regression and classificaton\\non the same problem with r2_score\")\n", - "ax[1].plot(rnd2, acc_reg2, label=\"regression\")\n", - "ax[1].plot(rnd2, acc_clr2, label=\"classification\")\n", - "ax[1].set_title(\"Comparison between regression and classificaton\\non the same problem with accuracy_score\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Pretty visually indecisive." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6.0" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.sign(perf_reg2 - perf_clr2).sum()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "6.0" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "numpy.sign(acc_reg2 - acc_clr2).sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As strange as it seems to be, the regression wins on Iris data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But... There is always a but..." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The but...\n", - "\n", - "There is one tiny difference between regression and classification. Classification is immune to a permutation of the label." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "data = load_iris()\n", - "X, y = data.data, data.target\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=12)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(1.0, 0.9609053497942387)" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "reg = LinearRegression()\n", - "reg.fit(X_train, y_train)\n", - "log = LogisticRegression()\n", - "log.fit(X_train, y_train)\n", - "(r2_score(y_test, fct2float2int(reg.predict(X_test))), \n", - " r2_score(y_test, log.predict(X_test)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's permute between 1 and 2." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(0.43952802359882015, 0.9626352015732547)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def permute(y):\n", - " y2 = y.copy()\n", - " y2[y == 1] = 2\n", - " y2[y == 2] = 1\n", - " return y2\n", - "\n", - "y_train_permuted = permute(y_train)\n", - "y_test_permuted = permute(y_test)\n", - "\n", - "regp = LinearRegression()\n", - "regp.fit(X_train, y_train_permuted)\n", - "logp = LogisticRegression()\n", - "logp.fit(X_train, y_train_permuted)\n", - "(r2_score(y_test_permuted, fct2float2int(regp.predict(X_test))), \n", - " r2_score(y_test_permuted, logp.predict(X_test)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The classifer produces almost the same performance, the regressor seems off. Let's check that it is just luck." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
reg_permreg_scorelog_permlog_score
0{0: 2, 1: 0, 2: 1}0.061728{0: 1, 1: 2, 2: 0}0.960905
1{0: 1, 1: 2, 2: 0}-0.759259{0: 0, 1: 2, 2: 1}0.960905
2{0: 2, 1: 1, 2: 0}1.000000{0: 0, 1: 1, 2: 2}0.960905
3{0: 0, 1: 2, 2: 1}0.061728{0: 1, 1: 2, 2: 0}0.960905
4{0: 1, 1: 0, 2: 2}-0.759259{0: 1, 1: 2, 2: 0}0.960905
5{0: 1, 1: 2, 2: 0}-0.759259{0: 2, 1: 1, 2: 0}0.960905
6{0: 2, 1: 0, 2: 1}0.061728{0: 1, 1: 2, 2: 0}0.960905
7{0: 0, 1: 1, 2: 2}1.000000{0: 2, 1: 1, 2: 0}0.960905
8{0: 2, 1: 0, 2: 1}0.061728{0: 1, 1: 0, 2: 2}0.960905
9{0: 1, 1: 2, 2: 0}-0.759259{0: 1, 1: 0, 2: 2}0.960905
\n", - "
" - ], - "text/plain": [ - " reg_perm reg_score log_perm log_score\n", - "0 {0: 2, 1: 0, 2: 1} 0.061728 {0: 1, 1: 2, 2: 0} 0.960905\n", - "1 {0: 1, 1: 2, 2: 0} -0.759259 {0: 0, 1: 2, 2: 1} 0.960905\n", - "2 {0: 2, 1: 1, 2: 0} 1.000000 {0: 0, 1: 1, 2: 2} 0.960905\n", - "3 {0: 0, 1: 2, 2: 1} 0.061728 {0: 1, 1: 2, 2: 0} 0.960905\n", - "4 {0: 1, 1: 0, 2: 2} -0.759259 {0: 1, 1: 2, 2: 0} 0.960905\n", - "5 {0: 1, 1: 2, 2: 0} -0.759259 {0: 2, 1: 1, 2: 0} 0.960905\n", - "6 {0: 2, 1: 0, 2: 1} 0.061728 {0: 1, 1: 2, 2: 0} 0.960905\n", - "7 {0: 0, 1: 1, 2: 2} 1.000000 {0: 2, 1: 1, 2: 0} 0.960905\n", - "8 {0: 2, 1: 0, 2: 1} 0.061728 {0: 1, 1: 0, 2: 2} 0.960905\n", - "9 {0: 1, 1: 2, 2: 0} -0.759259 {0: 1, 1: 0, 2: 2} 0.960905" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel import TransformedTargetClassifier2\n", - "from pandas import DataFrame\n", - "\n", - "rows = []\n", - "for i in range(0, 10):\n", - " regpt = TransformedTargetRegressor2(LinearRegression(), transformer='permute')\n", - " regpt.fit(X_train, y_train)\n", - " logpt = TransformedTargetClassifier2(LogisticRegression(max_iter=200), transformer='permute')\n", - " logpt.fit(X_train, y_train)\n", - " rows.append({\n", - " 'reg_perm': regpt.transformer_.permutation_,\n", - " 'reg_score': r2_score(y_test, fct2float2int(regpt.predict(X_test))),\n", - " 'log_perm': logpt.transformer_.permutation_,\n", - " 'log_score': r2_score(y_test, logpt.predict(X_test))\n", - " })\n", - "\n", - "df = DataFrame(rows)\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The classifier produces a constant performance, the regressor is not." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/traceable_ngrams_tfidf.ipynb b/_doc/notebooks/sklearn/traceable_ngrams_tfidf.ipynb deleted file mode 100644 index fe6ccfc1..00000000 --- a/_doc/notebooks/sklearn/traceable_ngrams_tfidf.ipynb +++ /dev/null @@ -1,590 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Traceable n-grams with tf-idf\n", - "\n", - "The notebook looks into the way n-grams are stored in [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html) and [TfidfVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer) and how the current storage (<= 0.21) is ambiguous in some cases." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example with CountVectorizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### scikit-learn version" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "matrix([[1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0],\n", - " [2, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0],\n", - " [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1],\n", - " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int64)" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "from sklearn.feature_extraction.text import CountVectorizer\n", - "\n", - "corpus = numpy.array([\n", - " \"This is the first document.\",\n", - " \"This document is the second document.\",\n", - " \"Is this the first document?\",\n", - " \"\",\n", - "]).reshape((4, ))\n", - "\n", - "mod1 = CountVectorizer(ngram_range=(1, 2))\n", - "mod1.fit(corpus)\n", - "mod1.transform(corpus).todense()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'this': 12,\n", - " 'is': 4,\n", - " 'the': 9,\n", - " 'first': 2,\n", - " 'document': 0,\n", - " 'this is': 14,\n", - " 'is the': 5,\n", - " 'the first': 10,\n", - " 'first document': 3,\n", - " 'second': 7,\n", - " 'this document': 13,\n", - " 'document is': 1,\n", - " 'the second': 11,\n", - " 'second document': 8,\n", - " 'is this': 6,\n", - " 'this the': 15}" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mod1.vocabulary_" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "matrix([[1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0],\n", - " [2, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0],\n", - " [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1],\n", - " [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int64)" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "from mlinsights.mlmodel.sklearn_text import TraceableCountVectorizer\n", - "\n", - "corpus = numpy.array([\n", - " \"This is the first document.\",\n", - " \"This document is the second document.\",\n", - " \"Is this the first document?\",\n", - " \"\",\n", - "]).reshape((4, ))\n", - "\n", - "mod2 = TraceableCountVectorizer(ngram_range=(1, 2))\n", - "mod2.fit(corpus)\n", - "mod2.transform(corpus).todense()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{('this',): 12,\n", - " ('is',): 4,\n", - " ('the',): 9,\n", - " ('first',): 2,\n", - " ('document',): 0,\n", - " ('this', 'is'): 14,\n", - " ('is', 'the'): 5,\n", - " ('the', 'first'): 10,\n", - " ('first', 'document'): 3,\n", - " ('second',): 7,\n", - " ('this', 'document'): 13,\n", - " ('document', 'is'): 1,\n", - " ('the', 'second'): 11,\n", - " ('second', 'document'): 8,\n", - " ('is', 'this'): 6,\n", - " ('this', 'the'): 15}" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mod2.vocabulary_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The new class does the exact same thing but keeps n-grams in a more explicit form. The original form as a string is sometimes ambiguous as next example shows." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Funny example with TfidfVectorizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### scikit-learn version" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "matrix([[0. , 0. , 0.32940523, 0.32940523, 0. ,\n", - " 0. , 0. , 0. , 0.25970687, 0.25970687,\n", - " 0. , 0. , 0.25970687, 0.25970687, 0. ,\n", - " 0. , 0. , 0. , 0. , 0.25970687,\n", - " 0. , 0. , 0.25970687, 0.25970687, 0. ,\n", - " 0. , 0.25970687, 0.25970687, 0.25970687, 0. ,\n", - " 0.32940523, 0. , 0. ],\n", - " [0.24528087, 0.24528087, 0. , 0. , 0.24528087,\n", - " 0.24528087, 0.24528087, 0.24528087, 0. , 0. ,\n", - " 0.24528087, 0.24528087, 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0.24528087, 0. ,\n", - " 0.24528087, 0.24528087, 0. , 0. , 0.24528087,\n", - " 0.24528087, 0. , 0. , 0.19338226, 0.24528087,\n", - " 0. , 0.24528087, 0.24528087],\n", - " [0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0.25453384, 0.25453384,\n", - " 0. , 0. , 0.25453384, 0.25453384, 0.3228439 ,\n", - " 0.3228439 , 0.3228439 , 0.3228439 , 0. , 0.25453384,\n", - " 0. , 0. , 0.25453384, 0.25453384, 0. ,\n", - " 0. , 0.25453384, 0.25453384, 0. , 0. ,\n", - " 0. , 0. , 0. ],\n", - " [0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. ]])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy\n", - "from sklearn.feature_extraction.text import TfidfVectorizer\n", - "\n", - "corpus = numpy.array([\n", - " \"This is the first document.\",\n", - " \"This document is the second document.\",\n", - " \"Is this the first document?\",\n", - " \"\",\n", - "]).reshape((4, ))\n", - "\n", - "mod1 = TfidfVectorizer(ngram_range=(1, 2),\n", - " token_pattern=\"[a-zA-Z ]{1,4}\")\n", - "mod1.fit(corpus)\n", - "mod1.transform(corpus).todense()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'this': 28,\n", - " ' is ': 2,\n", - " 'the ': 26,\n", - " 'firs': 12,\n", - " 't do': 22,\n", - " 'cume': 8,\n", - " 'nt': 19,\n", - " 'this is ': 30,\n", - " ' is the ': 3,\n", - " 'the firs': 27,\n", - " 'firs t do': 13,\n", - " 't do cume': 23,\n", - " 'cume nt': 9,\n", - " ' doc': 0,\n", - " 'umen': 31,\n", - " 't is': 24,\n", - " ' the': 6,\n", - " ' sec': 4,\n", - " 'ond ': 20,\n", - " 'docu': 10,\n", - " 'ment': 18,\n", - " 'this doc': 29,\n", - " ' doc umen': 1,\n", - " 'umen t is': 32,\n", - " 't is the': 25,\n", - " ' the sec': 7,\n", - " ' sec ond ': 5,\n", - " 'ond docu': 21,\n", - " 'docu ment': 11,\n", - " 'is t': 16,\n", - " 'his ': 14,\n", - " 'is t his ': 17,\n", - " 'his the ': 15}" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mod1.vocabulary_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### mlinsights version" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "matrix([[0. , 0. , 0.32940523, 0.32940523, 0. ,\n", - " 0. , 0. , 0. , 0.25970687, 0.25970687,\n", - " 0. , 0. , 0.25970687, 0.25970687, 0. ,\n", - " 0. , 0. , 0. , 0. , 0.25970687,\n", - " 0. , 0. , 0.25970687, 0.25970687, 0. ,\n", - " 0. , 0.25970687, 0.25970687, 0.25970687, 0. ,\n", - " 0.32940523, 0. , 0. ],\n", - " [0.24528087, 0.24528087, 0. , 0. , 0.24528087,\n", - " 0.24528087, 0.24528087, 0.24528087, 0. , 0. ,\n", - " 0.24528087, 0.24528087, 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0.24528087, 0. ,\n", - " 0.24528087, 0.24528087, 0. , 0. , 0.24528087,\n", - " 0.24528087, 0. , 0. , 0.19338226, 0.24528087,\n", - " 0. , 0.24528087, 0.24528087],\n", - " [0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0.25453384, 0.25453384,\n", - " 0. , 0. , 0.25453384, 0.25453384, 0.3228439 ,\n", - " 0.3228439 , 0.3228439 , 0.3228439 , 0. , 0.25453384,\n", - " 0. , 0. , 0.25453384, 0.25453384, 0. ,\n", - " 0. , 0.25453384, 0.25453384, 0. , 0. ,\n", - " 0. , 0. , 0. ],\n", - " [0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. , 0. , 0. ,\n", - " 0. , 0. , 0. ]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel.sklearn_text import TraceableTfidfVectorizer\n", - "\n", - "mod2 = TraceableTfidfVectorizer(ngram_range=(1, 2),\n", - " token_pattern=\"[a-zA-Z ]{1,4}\")\n", - "mod2.fit(corpus)\n", - "mod2.transform(corpus).todense()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{('this',): 28,\n", - " (' is ',): 2,\n", - " ('the ',): 26,\n", - " ('firs',): 12,\n", - " ('t do',): 22,\n", - " ('cume',): 8,\n", - " ('nt',): 19,\n", - " ('this', ' is '): 30,\n", - " (' is ', 'the '): 3,\n", - " ('the ', 'firs'): 27,\n", - " ('firs', 't do'): 13,\n", - " ('t do', 'cume'): 23,\n", - " ('cume', 'nt'): 9,\n", - " (' doc',): 0,\n", - " ('umen',): 31,\n", - " ('t is',): 24,\n", - " (' the',): 6,\n", - " (' sec',): 4,\n", - " ('ond ',): 20,\n", - " ('docu',): 10,\n", - " ('ment',): 18,\n", - " ('this', ' doc'): 29,\n", - " (' doc', 'umen'): 1,\n", - " ('umen', 't is'): 32,\n", - " ('t is', ' the'): 25,\n", - " (' the', ' sec'): 7,\n", - " (' sec', 'ond '): 5,\n", - " ('ond ', 'docu'): 21,\n", - " ('docu', 'ment'): 11,\n", - " ('is t',): 16,\n", - " ('his ',): 14,\n", - " ('is t', 'his '): 17,\n", - " ('his ', 'the '): 15}" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mod2.vocabulary_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you can see, the original 30th n-grams ``'t is the'`` is a little but ambiguous. It is in fact ``('t is', ' the')`` as the *TraceableTfidfVectorizer* lets you know. The original form could have been ``('t', 'is the')``, ``('t is', ' the')``, ``('t is ', ' the')``, ``('t is ', 'the')``, ``('t', 'is ', 'the')``... The regular expression gives some insights but not some information which can be easily used to guess the right one." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn/visualize_pipeline.ipynb b/_doc/notebooks/sklearn/visualize_pipeline.ipynb deleted file mode 100644 index 7b180128..00000000 --- a/_doc/notebooks/sklearn/visualize_pipeline.ipynb +++ /dev/null @@ -1,901 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Visualize a scikit-learn pipeline\n", - "\n", - "Pipeline can be big with *scikit-learn*, let's dig into a visual way to look a them." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simple model\n", - "\n", - "Let's vizualize a simple pipeline, a single model not even trained." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "LogisticRegression()" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas\n", - "from sklearn import datasets\n", - "from sklearn.linear_model import LogisticRegression\n", - "\n", - "iris = datasets.load_iris()\n", - "X = iris.data[:, :4]\n", - "df = pandas.DataFrame(X)\n", - "df.columns = [\"X1\", \"X2\", \"X3\", \"X4\"]\n", - "clf = LogisticRegression()\n", - "clf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The trick consists in converting the pipeline in a graph through the [DOT](https://en.wikipedia.org/wiki/DOT_(graph_description_language)) language." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "digraph{\n", - " orientation=portrait;\n", - " nodesep=0.05;\n", - " ranksep=0.25;\n", - " sch0[label=\" X1| X2| X3| X4\",shape=record,fontsize=8];\n", - "\n", - " node1[label=\"union\",shape=box,style=\"filled,rounded\",color=cyan,fontsize=12];\n", - " sch0:f0 -> node1;\n", - " sch0:f1 -> node1;\n", - " sch0:f2 -> node1;\n", - " sch0:f3 -> node1;\n", - " sch1[label=\" -v-0\",shape=record,fontsize=8];\n", - " node1 -> sch1:f0;\n", - "\n", - " node2[label=\"LogisticRegression\",shape=box,style=\"filled,rounded\",color=yellow,fontsize=12];\n", - " sch1:f0 -> node2;\n", - " sch2[label=\" PredictedLabel| Probabilities\",shape=record,fontsize=8];\n", - " node2 -> sch2:f0;\n", - " node2 -> sch2:f1;\n", - "}\n" - ] - } - ], - "source": [ - "from mlinsights.plotting import pipeline2dot\n", - "dot = pipeline2dot(clf, df)\n", - "print(dot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is lot better with an image." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "dot_file = \"graph.dot\"\n", - "with open(dot_file, \"w\", encoding=\"utf-8\") as f:\n", - " f.write(dot)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# might be needed on windows\n", - "import sys\n", - "import os\n", - "if sys.platform.startswith(\"win\") and \"Graphviz\" not in os.environ[\"PATH\"]:\n", - " os.environ['PATH'] = os.environ['PATH'] + r';C:\\Program Files (x86)\\Graphviz2.38\\bin'" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[run_cmd] execute dot -G=300 -Tpng graph.dot -ograph.dot.png\n", - "end of execution dot -G=300 -Tpng graph.dot -ograph.dot.png\n" - ] - } - ], - "source": [ - "from pyquickhelper.loghelper import run_cmd\n", - "cmd = \"dot -G=300 -Tpng {0} -o{0}.png\".format(dot_file)\n", - "run_cmd(cmd, wait=True, fLOG=print);" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALQAAAFfCAYAAADnOebHAAAdA0lEQVR4nO3de3AUVb4H8G/P9ExekEgIITcJRs0qDw1SyCIvAdFlIYIKSoTw2tVS0L3Kglurlv+A1/Vx1y0skXIF8bq7PnZAWbTUu5ZsBDUsV1eRiKtYiq6RR1wgqAmPzGR+949mxplJ9zwy3X26z/w+VVOQmck5v+n+5szp7pluhYgIjEnCI7oAxszEgWZS4UAzqXCgmVRUsxucM2eO2U2yHLNixQqMHTu2V79r+gj9/PPP4+uvvza72V7jepJzYj2tra29b4BMBoACgYDZzfYa15OcbPXwHJpJhQPNpMKBZlLhQDOpcKCZVDjQTCocaCYVDjSTCgeaSYUDzaTCgWZS4UAzqXCgmVQ40EwqHGgmFQ40kwoHmknF9O8UZkJRlOj/iajHz7HPIRvOh5NJPXbU5MZ6Yp9rxzpLJHSEjrxgo38T/y+6nshKitxiVyjX8wOr60hG+JQjdkWI+qtOtx4RtbmpHqP77CR0yhERWUiiwxzhtnrsnJalU49Iwkdot3LSCrVrypGKE5aJIwIdWRCiV0hEqnrsXnFuWj6KosRNSewmPNCx4XDCSktVT+zjdtTqpuUTu4Ea+dluQgOd+Jes95dt5197qnpi/3VKPbE3u3bbJVtfogndKExcAXorRMRuu3R/tprb6kn3MSsJn3IwZiYONJMKB5pJhQPNpMKBZlLhQDOpcKCZVDjQTCocaCYVDjSTCgeaSYUDzaTCgWZS4UAzqXCgmVQ40EwqHGgmFQ40kwoHmknFku8Url69Gps2bbKi6V7hepJzWj3ZUMjkbzPOmTMn6zaOHj0KIkL//v1NqCh7TqsHAI4fP46jR4+iurpadCkAzK1nxYoVGDt2bO9+mRxo8eLFVF9fL7qMqPnz59NVV10luow4f/zjHyk/P190GVEbNmygPn36iC6DHDmH7tu3L77//nvRZUQVFBTg5MmTosuIc+LECRQUFIguI+q7775DcXGx6DKcuVFYUlKC9vZ20WVEFRUVoaOjQ3QZcTo7O1FUVCS6jKhjx46hpKREdBnODHRtbS0+//xzhMNh0aUAAMrLy9HW1ia6jDhtbW0YOHCg6DKiPv30U9TW1oouw5mBHjp0KE6cOIF//etfoksBAFRUVODgwYOiy4hz6NAhVFRUiC4j6uOPP8bQoUNFl+HcQHs8HnzwwQeiSwEA1NTUoLOzE998843oUqK++OILnHnmmaLLAACcOnUKe/fuxfnnny+6FGcGuqSkBCNGjEBTU5PoUgAAw4cPBwB8+OGHgiv5QUtLC+rq6kSXAQBobm7GiRMnMHHiRNGlODPQAPCTn/wEr7/+uugyAAADBgxARUUFWlpaRJcCAGhtbcWxY8eif2iibd26Feeddx7OPvts0aU4N9D19fXYu3cv9uzZI7oUAEBdXV3cCN3a2oqHH34YL7/8sqX9HjlyBL/61a+wc+fO6Bk9W1paoCiKI97iAWDz5s2or68XXYZG9I5wI+FwmGpra+n2228XXQoREd1+++1UV1dHDz30EF100UWkKAoBoDVr1ljab1tbGwEgAFRRUUG//OUvaenSpVRTU2Npv+lqbm4mAPTee++JLoWItLOtO9aqVato4MCBdPLkSWE1fP755/Tggw/SOeecQwDI5/ORx+MhAKSqKv3+97+3tP+jR49GAx3pHwAVFhbSrbfeStu3b6fu7m5La0jm+uuvp+HDhwvrP5GjA71//37Kz8+nxx57zNZ+jx8/Tvfddx/V1dURAPL7/dEQx95UVaUNGzZYWst3333Xo9/EcJeWltItt9xCn3zyiaW1JGptbaW8vDx6/PHHbe03GcfOoQGgsrISP//5z3H//fejq6vLtn4LCgrwz3/+Mzpn7urq0j3IEw6HoarWXgTB5/MZPhYMBgEA7e3t+Mtf/mL7h6cefPBBlJeXY/Hixbb2m5Tov6hUvvzyS/L7/ZbPVRMdP36cLrjgAlJV1XCEVBSFnnvuOUvrCAaDhv1Hbl6vl95++21L60j02WefUX5+Pq1du9bWflNxfKCJiO68804qLi6mgwcP2trvp59+SkVFRdENQL3bpk2bLK8jWf+KotAjjzxieQ2JZsyYQcOGDaOuri7b+07GFYHu6OigQYMG0aJFi3QfDwaDlvW9ZcuWpIHasmWLZX1HeL1ewzn0NddcY1m/Rst1y5YtBICampos67u3XBFoIqKXXnqJFEXpMSJ2dXXRtGnTLN1ttGzZMsNQvfLKK5b1G5GXl6e7QXr22WfTt99+a0mfoVCIxo8fT7t37467/9ChQ1ReXk4/+9nPLOk3W64JNBHRkiVLqLS0lFpbW4lI21c9d+5cAkBTpkyxrN+uri4aM2ZMdK9C7O21116zrN+IwsLCHv3m5+fTnj17LOtz/fr10X3fscu7vr6ezjnnHMv+kLLlqkB3dHTQ0KFDafTo0XTixAlasWJF3O60v/71r5b1ffDgQerfv3+P3Xd2vO0WFxf3CPQf/vAHy/rr6OigsrIyUhSFVFWlwYMHU3t7O61atYp8Ph81Nzdb1ne2XBVoIqJ9+/ZRWVkZjRw5sseW/pAhQygUClnWd1NTU49Av/XWW5b1F1FaWho31bj55pst7W/lypVxUyyfz0dDhgwhj8dj+zGBTLku0EREd911l+6GmsfjoSeffNLSvu+55564UO/cudPS/oiIysvLo8EaMWKEpUdO29raqKCgQHfXYG1traUDhhlcF+impiby+Xy6gVYUhQYMGEAdHR2W9d/d3U1Tp06Nhvof//iHZX1FVFVVEQAqLi6mL774wtK+brzxRt1thciAsWTJEkv7z5arAt3S0kJ9+vTRPQwd+5Z87733WlrH4cOHqbKykgDQBx98YGlfREQ1NTWkKAq9/PLLlvbz8ccfJ122kUHjvvvus7SObLgm0Pv27dPdKNO7FRYWUltbW8Z9HCeiF4joJiIaTkR9iUghbSH1uP3f/xHy8ggffaT/uJm3YcMId99t+HgBEQ0iollEtJaIWjN+5Zr6+nrD0Tkx1E899VQve7GWoz/LEevw4cOYMGECFEWB3+9P+txgMIiVK1em3fa3AO4EMBDAtQD+B0ALgO+hrUFdo0cDv/sdkOSzFqaZOhVYtcrw4RMAWgG8CGAZgBoAM6G9hnRt27YNr776avTzIXoinysZPHgwQqFQBq3bSPRfVKYOHDhADzzwAJWXl5OiKIYHPDweD3300UdJ2+omoieIqB8R+aiXo2dXl/UjdC/6UInIQ0Q3E9GRFMs0HA7TiBEjDD+3oqoqqapKs2fPptdff53C4XCKFsVxXaAjTp06RRs3bqTJkyeToijk9/t7HBaeOXOm4e+3E9GlpK10w2mFBDcfEZUS0Y4ky/Lpp5/usZGtqiopikJlZWV0xx13RA+uOJ1rAx1r9+7dtGTJEiooKCBVVePm2W+++WaP539GRD+iLEZll908p1/rszrL7uTJk1RVVRUNdGQP0uTJk2nz5s2O302XSIpAR3z77be0Zs0aOvfcc6OBHjlyZNxb5GeU5RTDxTeFiNYlLLPf/va30WXVp08fWrZsme1fFDCTVIGOCIfD1NTURLNnzyZVVSkQCBCRNs2opdwMc+TmJaKtp5fTkSNHqF+/fnT++efTunXrLN1/bxfTT6frNPv378ff/vY3LFi0CJcDeBuA8Xa8/DwAigC8D2D/9u3w+/29P3WtA0kf6IgNAG4C4Iyz5YnlAzARwFbRhVggJwL9HYBzABxFkv3KOehFAFeKLsJkrjmwko37oIWaw/wDD4DbAHSLLsRk0o/QJ6AdAXTO6dOd5SVoRxVlIf0I/b8AnHWqcudQATwjugiTSR/o12DRpb4kEALwKuSaikkf6B3I7d10qXwP4EvRRZhI+kA74xoAzvaF6AJMJH2gj4suwAWOiS7ARNIHWrbdUlZw6Cebe0X6QDuKooiuQHocaDvJvcvfETjQTCocaCYVDnSmFCV+Lqz3s979sY8lay+ddpghDnSmEufBsT/HhpBIu8Xel0jveanaYUlxoM0UCbfexl/ifZGwxj4eCW2ydlhSHGgmFQ40kwoHOlvJ5sjJ6M2beYqRNQ50b0TCGBtCvQ1AvT0VsSHWa8fo9xN/l+nijwr3VuIGXeJ9ej+nasfoPh6508YjNJMKB5pJRfpA86wzNZmWkfSBzhddgAsUiy7ARNIHulx0AS5QIboAE0kf6JHIgReZBS+AIaKLMJH06/oy5MCL7CUFwMUA8kQXYiLp1/VV4BM0GvECuE50ESaTPtDVAKaDjyDp8QJYKLoIk0kfaAB4EDxKJ1KhXfmrn+hCTCb9yRojbgHwBPgsSoA2ig0E8BmAQsG1mC1nAn0EwHnQrkmY6+fqUAA8D2C26EIskBNTDgDojx9O3CjTkbFMeQDcBTnDDOTQCB3xHID5kOuMm+lSAcwA8ALkHclkfV2G5gF4HNoWvldwLXbyQAvzs5B7pcv82gzdCG36UQjtAjoy80CbYt0BYDOAArHlWC4nAw1oRxDfh3Y1KEDOBaFC25vxArTrzOTCtoOM6zFtP4J2abMXAQw6fZ/bD8Ao0F5DHoC7oe2amyW0Invl3EahkW5ol2d4Gtp1WSy7yFB7O1BUBPj9pjftBTAGQAO0I4CyHTRJBwdaB0G7TMM+aCcDN/MoY4OiYHkggLENDaa12Rfa1GIY5PqgUW+4/R3WEgqAs0/frDAGwByL2s51OT2HZvLhQDOpcKCZVDjQTCocaCYVDjSTCgeaSYX3Q1vo2LFj0Dtu1dnZifb29rj7+vbtC1Xl1ZEtPlJoocsuuwxNTU0pn6eqKvbv34/ycj4tTrZ4ymGhefPmpXyOx+PBpEmTOMwm4UBb6Nprr4XPl/oT14sWLbKhmtzAgbbQGWecgWnTpiWdG3u9Xlx11VU2ViU3DrTF5s+fj+5u/e+Zq6qKGTNmoKSkxOaq5MWBttjMmTORn69/Ut/u7m4sWLDA5orkxoG2WGFhIWbPnq07ly4oKMD06dMFVCUvDrQNGhsbEQzGn7PJ5/OhoaEBBQWyf23VXhxoG0ydOhX9+sV/ISoYDKKxsVFQRfLiQNtAVVXMnTsX/pjvEfbr1w+XXnqpwKrkxIG2ybx589DV1QUA8Pv9WLhwIR/qtgAf+rZJOBxGVVUVDh06BABobm7GuHHjBFclHx6hbeLxeLBwoXZ68crKSowdO1ZwRXKS/j1v48aNokuIKisrAwCMHj0amzZtElzND8aNG4fq6mrRZZhC+imHwhd8TykQCKDBxPOEiJQTU45AIAAicsRt8+bNwmuIvckmJwLtJLNm5dKZ5uzHgWZS4UAzqXCgmVQ40EwqHGgmFQ40kwoHmkmFA82kwoFmUuFAM6lwoJlUONBMKhxoJhUONJMKB5pJhQPNpCL9dwrdIPZrYjJ+i8ROHGjBFEWJC3HizywzPOVgUuER2iKRaQQR8ZTCRjxCWyQ2uJH/c5itxyO0SZKNwrHzYh6trcWBNoleOCPTDb3RmlmDAy0Yz7HNxYG2WDoB5RCbhzcKmVQ40EwqHGgmFQ40kwoHmkmFA82kwoFmUuFAM6lwoJlUONBMKhxoJhUONJMKB5pJhQPNpMKBZlLhQDOpcKCZVDjQTCocaCaVnPhO4d///nfRJTCbKCT5NzRjv1HN9AUCATQ0NIguwxTSj9BO+3tVFEWqADkNz6GZVDjQTCocaCYVDjSTCgeaSYUDzaTCgWZS4UAzqXCgmVSkP/Qt0qRJk/Dmm2+mfJ7X68VXX32FyspKG6qSG4/QFpo3b17K5yiKggkTJnCYTcKBtlBDQwNUNfnHZTweDxYuXGhTRfLjQFuotLQUl19+edJQK4qCWbNm2ViV3DjQFluwYAHC4bDuY6qqYvr06SgtLbW5KnlxoC129dVXw+/36z7W3d2NBQsW2FyR3DjQFisqKsKVV14Jn8/X47G8vDxcccUVAqqSFwfaBvPnz0coFIq7z+fz4ZprrkFRUZGgquTEgbbBtGnT0Ldv37j7gsEg5s+fL6gieXGgbeD3+zFnzpy4aUdJSQkuv/xygVXJiQNtk8bGRgSDQQDadKOxsVF3Xs2yw4e+bRIOh1FRUYF///vfAIDt27dj4sSJgquSD4/QNvF4PNFddBUVFZgwYYLgiuTk0NMYtAHYBmD36f9/L7Qas8ybdxSrVwMLF5bA45kruhyT5APoB2AYgDEALhRajYOmHCEAfwawBsC7ABQAPgDdpx+Tw+DBQCAAjBghuhKzeKCNi2Fo6+k/ACwBcDOActurcUigt0FbAJ+e/ln/ULEMnn0WaGwUXYXVfAD8AO4BcOvpn+0hONAdAG4AsBGAF9pozOThBXAWgBdg11REYKBbAUyHNioHxZTAbOCFNkJvBDDT8t4E7eX4CMBF4DDngm4ApwBcDeAxy3sTMEJ/A2AktL0X8mzssXQoAF6ElSO1zYE+CWAigA/AI3MuUgDkAdgJq+bUNk85VgHYBQ5zriJo78rXwKoM2BjozwH8DjzNyHUhAF9CO95gPhunHFcAeB08OjNNEYB9MPvgi00j9EcAXgWHmf2gC1bs9bAp0E9CO3LEWEQQwDrTW7Up0Juh/UUyFusAgBZTW7Qh0EegbQQwlkgFYO4l92wI9MfWd8FcygPgE9NbtNgR67tgLhWC2fmwIdCnrO+CuVQY2tFj8zjuGyt6F341e0+5omTeZjq/Y3TRWid84jxdvVk2TuK4QEcWppULtjftpvM7RrW7KSRuqdMIf0nWgJmXCCcytz1mjAPNpOK4KUemIiOf3lul0Xxcb0qQ+Hhi26l+J1WNqepLfDxV7YmvO922Ur0GvVqNlrFRLSK5OtCxCz/VvDVx4Ru1AfQMcLLf0fs58XeMwmzURqra032tRq/P6H69P6JUbSWrWwTXTjkSF16689RkC9zosVQrSe9xovRG7sgtHZH2jP5AUrWV6vUZjcCxz0scjUUHOJGrR2gzWP2WqTddiX3MzH6S9Z/4HKdNFcziukCn+7aWOGKnMzI74S0TyKz2dNsD9EdcvfvdzFVTjtgFn7jSjeaRqd76U73dpzMdSPWcdKZDeq8lnWlLOm2leo6RVMvYiRw3QqezMiJSvW0m/r7RhlW6W/GxQTPaQ5DYt94fYLI2Mq098bFkbaW6X699o2Wc+Fyj2uzmuEBnujDS2YOQ7P50NgTTnf9muvGYbe3p9J3J/dk81ykjt6umHIyl4rgR2gxGc1anjCLJuLl2J5Ay0IC7A+Dm2kWzYcqRb30XzKW8AApMbdGGQPe3vgvmUl4A5l4W2oZAD7G+C+ZSYZidD5tG6LOs74a5UAjAWFNbtGm33WzYeVkC5haVAIab2qJNgb4efBowFs8H4CbTW+WTNTJBXH2yRgB4xL6umMN5AfwXrLjsm42BrgVwOyQ+lsPSokLbSfCflrTOl6RgNlIg2SUp8gG8DO2thkfq3LQRVl6zUMCn7coBvAbt+tC8Ky83KNCithZWX6uQL7zJLJYTF94EgEHQ5lKzTv/sFVcKs0jk0sg7YUeYAeEf8O8DIADgDQDnni6Hv3Pgfj5o+5n/G9r5wa2bMycSfPH6WCEAfwbwKIB3oM27fNAurWvOpeA6O4HCQj7PXGcnUFRkVmseaBv4YWjrqRLaEcCbYcV+5lQcFOhYbQC2Adh9+v/fZ91iMBjG1KlvYsyY/rj//rqs23OrHTuOYPbsHXjjjUkYOrTYhBbzoW3gD4P2QSNzP5uRKYcG2nxLly7FM888g+bmZgwfLnahi9TV1YWpU6fiq6++wjvvvIOysjLRJZkqJyasjz76KNavX49nn302p8MMAH6/H4FAAOFwGI2NjQiHw6JLMhdJbteuXZSXl0crV64UXYqjvPfee5SXl0e/+c1vRJdiKqmnHJ2dnRg1ahTKy8vR1NQEr5d3DcZavXo1fv3rX2Pbtm0YP3686HJMIXWgly1bhmeeeQa7d+9GVVWV6HIch4gwc+ZM7N27Fy0tLSgoMPcLqyJIO4d+9913sXbtWjz00EMcZgOKomD9+vU4fPgw7r33XtHlmELKEToUCmHUqFHo378/tm7dCiXXdzynsHbtWixfvhzvv/8+LrjgAtHlZEXKQD/55JNYunQp9uzZg/POO090OY4XDodx8cUXo7y8HK+88orocrLi6kB/8skn+MUvfoFLLrkEEyZMwJgxY+D3+zFkyBD89Kc/xWOPPSa6RNfYvn07Jk+ejDfeeAOXXHIJPvzwQ7z11lt4++23MX78eNx2222iS0yLqz+UXFZWhqamJmzbtg3hcBherxc1NTU4cOAARo0ahW+++Qbl5fYffnWbkydPwuPxoLa2FosXL8aRI0fQ2dkJn8+HYDCIyZMniy4xba4eoYkIeXl5CAbjP37q8/kQCoVARDjrrLMwZcoULFq0CJMmTRJUqfMcPHgQjzzyCJqamrBr1y4Eg0H4/X6EQqEeB1tefPFFXHnllYIqzYyrAw0AVVVVOHDgQNLneL1e7Nq1C3V1ufsZjkShUAgjR47Enj17kCoC7777LkaNGmVTZdlx/W676urqpI+rqoq77rqLw5xAVVX86U9/gseTOgKplrGTuD7QNTU1hivF6/Vi0KBBuPvuu22uyh0uvPBCLF++HKpqvCnl9XoxYMAAG6vKjusDXV1dbbhCwuEwnnjiCeTn8yl9jaxatQqVlZWGHwsoKytz1UcGXB/oyspK3ft9Ph9uuukmTJkyxeaK3KWwsBBPPfWU4afu3HaU1fWBrqqq6rGXQ1EUlJSU4IEHHhBUlbtceumlWLhwIXy++G/hK4qCmpoaQVX1jhSBTtxKJyKsW7cOZ5xxhpiiXGj16tUoLi6O2x7x+Xyu2iAEJAl0LJ/Ph1mzZmHWrFkGv8H0lJaW4tFHH42beiiKwlMOuyXOof1+P9asWSOoGnebO3cuZsyYEZ16BINBw20Up3J9oAsKCtC3b18A2ojy8MMPu25UcZLHH38cfr8fgLaXyG3L0vWBBoCKigoAwPjx43HDDTcIrsbdKisr4zameYQW4Mwzz4Tf78eGDRv4s88muOWWWzB69GgA7gt0jy/JBgIBAsA3vjn+FggEenxJ1vCYZyAQMHrIcXbu3Ikf//jHrjqiBWi7ygBg+fLlgivRt2PHDowbN050Gbquu+463fsNA93Q0GBZMWZzU62xNm3aBMC59Tu1LsA40FLMoRmL4EAzqXCgmVQ40EwqHGgmFQ40kwoHmkmFA82kwoFmUuFAM6lwoJlUONBMKhxoJhUONJMKB5pJhQPNpJL1Cc/1vsPXmzP0RtqJ/K6iKL1qJ1m7sbWmajuxHrOem41sl3W6dSZ7XmS9ZLK+zFqX6ch6hI4USkTRW2++qKp39qNk0u0jtp3YWjOtx6znZiPbZZ1uncmeZ7QMY39OrMnOU5DzlINJxdJAK4oS/WuN/TfxLzjxPqOf9doy+h2j+9Kt18x27ZBsWff2NaVaL6n6TrcNM5enaYGOXXiJb0ux867Et8rY+yIS376MHk9sP1W7qei9jSdrV1SoM13WqV5TuvcZLctk68ZoXWaznpIx7SpY6cy7gPTnvpn2YUa40m1D9Oic7rLOhF2vSW9+beZGte2XdbNqAyGbFRk7okXus6Ivp8rktWdLb9mZ+W5n2m47vV0zqd6m9e5L/H+y3W3ZtJtI7/l6o4deX8mWgZmyXdaJ9Rq9pmS75mL/1fu/3tRH72ejWrKVdaAzfftL975Mf6c37fa2tkx3MZrFjGWdyXN7+zqNtoeyaTNdvNuOSYUDzaTCgWZS4UAzqXCgmVQ40EwqHGgmFQ40kwoHmkmFA82kwoFmUuFAM6lwoJlUONBMKhxoJhUONJMKB5pJhQPNpMKBZlLhQDOpGH5JVvS5J3IJL2vzKJTwtduvv/4aO3bsEFUPY2kbN24cqqur4+7rEWjG3Izn0EwqHGgmFQ40k4oKYJPoIhgzy/8DRLZfqukKOZgAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from PIL import Image\n", - "img = Image.open(\"graph.dot.png\")\n", - "img" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Complex pipeline\n", - "\n", - "*scikit-learn* instroduced a couple of transform to play with features in a single pipeline. The following example is taken from [Column Transformer with Mixed Types](https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html#sphx-glr-auto-examples-compose-plot-column-transformer-mixed-types-py)." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn import datasets\n", - "from sklearn.linear_model import LogisticRegression, LinearRegression\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.compose import ColumnTransformer\n", - "from sklearn.pipeline import Pipeline\n", - "from sklearn.impute import SimpleImputer\n", - "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", - "from sklearn.linear_model import LogisticRegression" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Pipeline(steps=[('preprocessor',\n", - " ColumnTransformer(transformers=[('num',\n", - " Pipeline(steps=[('imputer',\n", - " SimpleImputer(strategy='median')),\n", - " ('scaler',\n", - " StandardScaler())]),\n", - " ['age', 'fare']),\n", - " ('cat',\n", - " Pipeline(steps=[('imputer',\n", - " SimpleImputer(fill_value='missing',\n", - " strategy='constant')),\n", - " ('onehot',\n", - " OneHotEncoder(handle_unknown='ignore'))]),\n", - " ['embarked', 'sex',\n", - " 'pclass'])])),\n", - " ('classifier', LogisticRegression())])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "columns = ['pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare',\n", - " 'cabin', 'embarked', 'boat', 'body', 'home.dest']\n", - "\n", - "numeric_features = ['age', 'fare']\n", - "numeric_transformer = Pipeline(steps=[\n", - " ('imputer', SimpleImputer(strategy='median')),\n", - " ('scaler', StandardScaler())])\n", - "\n", - "categorical_features = ['embarked', 'sex', 'pclass']\n", - "categorical_transformer = Pipeline(steps=[\n", - " ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),\n", - " ('onehot', OneHotEncoder(handle_unknown='ignore'))])\n", - "\n", - "preprocessor = ColumnTransformer(\n", - " transformers=[\n", - " ('num', numeric_transformer, numeric_features),\n", - " ('cat', categorical_transformer, categorical_features),\n", - " ])\n", - "\n", - "clf = Pipeline(steps=[('preprocessor', preprocessor),\n", - " ('classifier', LogisticRegression(solver='lbfgs'))])\n", - "clf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see it first as a simplified text." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pipeline\n", - " ColumnTransformer\n", - " Pipeline(age,fare)\n", - " SimpleImputer\n", - " StandardScaler\n", - " Pipeline(embarked,sex,pclass)\n", - " SimpleImputer\n", - " OneHotEncoder\n", - " LogisticRegression\n" - ] - } - ], - "source": [ - "from mlinsights.plotting import pipeline2str\n", - "print(pipeline2str(clf))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "dot = pipeline2dot(clf, columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "dot_file = \"graph2.dot\"\n", - "with open(dot_file, \"w\", encoding=\"utf-8\") as f:\n", - " f.write(dot)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[run_cmd] execute dot -G=300 -Tpng graph2.dot -ograph2.dot.png\n", - "end of execution dot -G=300 -Tpng graph2.dot -ograph2.dot.png\n" - ] - } - ], - "source": [ - "cmd = \"dot -G=300 -Tpng {0} -o{0}.png\".format(dot_file)\n", - "run_cmd(cmd, wait=True, fLOG=print);" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAMTCAYAAAAIA9VkAACFO0lEQVR4nO3dd3xT5f4H8M/J6oSyW/YU2aAiewgyVARkb1Bc4EJQr3qviFf9KVdFcQtexXEVaBEQZKkoKLIVkSV7ldGyRxnN+P7+iIkdSZq2OSPJ5/169QVN0nO+OXlyzifP85wTRUQEREREROpIM+ldAREREUU2hg0iIiJSFcMGERERqYphg4iIiFRlyXvDmjVr8Prrr+tRS1hJS0vTu4SQysjIQGZmJs6cOYNz587l+jl//jyuXLmCy5cvex9/7tw5uFwuAIDJZEJSUpL3vri4OMTGxqJkyZJISkrK9VO6dGkkJyejQoUKmj/HSHLx4kXs3r0bR44cwdGjR3H06FGcPXsWly9fxtWrV3Hp0iVYrVYkJibCYrGgVKlSqFChAipVqoRKlSqhdu3aSElJ0ftpGMqJEydw8OBBZGZm4uTJk96frKwsXLlyBQBw5swZAIDNZkNCQgIAoGTJkkhISEC5cuVQrlw5b/uuVasW4uLidHs+RuN0OrF3714cOnTI22ZPnz6Nc+fOQURw9uxZAECpUqWgKAqSkpJQtmxZb5utWrUqateuDbPZrO8T0dixY8ewb98+7zbLyMjAuXPn4HA4cPHiRdjtdsTHxyMmJgZxcXEoVaqUd5tVrlwZdevW9bZVPeULG4cPH8acOXPQv39/PeoxvPT0dKxdu1bvMgolOzsbBw4cwO7du7F7927s27cPhw4dQkZGBtLT05GZmYns7Oxcf2Oz2XKFBM+ByyMxMRFWqxUAcPXqVezbt897n+cNkDOw+Fp+cnIyqlSpggoVKqBatWqoVasW6tatizp16qBmzZre5Ue7y5cvY+3atVi5ciV+++03bNu2Dfv374fnRDLPzqVMmTKIjY31HggvXbqEzMxMOJ1OnDlzBhkZGcjIyPCGxLJly6JRo0Zo0qQJ2rVrhw4dOkRFADl8+DB+++03/Prrr9ixYwf27t2LvXv34vz5897HxMbGesNDyZIlYbPZAPx9ILxw4QIyMjIAuNv7hQsXcOLECZw8edK7fQGgUqVKqFOnDurUqYPGjRvj+uuvx3XXXYcSJUpo+6Q1JiLYtm0bVqxYgXXr1mHbtm3Yvn07rl69CsC9fStWrIjy5cujZMmSUBQFpUqVAgDs378fAHD+/HmcOHECx44d84a92NhY1K9fHw0bNkSrVq3QsWNHNGzYEIqi6PI8Q+348eNYuXIlVq1ahS1btmDLli04ffo0APeHuuTkZCQnJ6N06dIwm83e/fCJEyeQnZ2Ny5cv48yZMzhy5AjOnTsHAFAUBTVr1kSjRo1w/fXXo2PHjmjZsqXmQVjJe+pramoqBg0aBJ4R65uRt4/L5cKePXuwefNm/P7779i8eTN27NiBQ4cOweFwAABSUlJQp04dVKtWDcnJyahcuTJSUlJQuXJlJCcno0yZMkhKSkJsbGxIa7t8+TLOnz+P06dPe0NORkYGjhw5guPHj+Pw4cPYvXu3dwdusVhQvXp11K9fH02bNkXTpk3RrFkz1K5dGyZT5I/+7du3D/PmzcOCBQuwdu1aZGdno2bNmmjZsiUaN26MBg0aoEGDBqhatWqhdhoOhwMZGRnYuXMntm3bhq1bt2LTpk3YtGkTHA4H6tWrh9tuuw19+/ZF69atw35bu1wubN68GT/++CN+/PFHrF+/HpmZmTCZTLjmmmvQqFEj1K5d2/tTvXp1pKSk5ArWhSEiOHnyJI4fP459+/Z5g8zu3bvx+++/48SJEzCZTKhTpw7atm2Lzp07o3PnzqhUqVKIn7n2zp8/jyVLlmDu3LlYvnw5Tp06haSkJLRu3RpNmjRBw4YN0ahRI1SvXh1ly5Yt1LJPnTqFAwcOeNvsH3/8gTVr1uD8+fMoV64cbr75ZvTt2xe33nprWAU5l8uFX375BfPmzcPixYuxc+dOWCwWbyht1KgRGjZsiLp16yI5ORkWS77+Ab8uXbqE9PR0bN++Hdu2bcOWLVuwfv167N+/HzExMWjVqhV69+6NPn36oEaNGuo9Sbc0ho1CMtL2OXXqFH755Rf8/PPPWL16NTZv3oysrCxYLBZce+21aNq0KRo2bIhrrrnG++nK6G/ECxcuYM+ePdi9ezf27NmDrVu3YvPmzdi1axccDgcSExPRtGlTtGnTBu3bt0fbtm1RpkwZvcsOiXPnzuHzzz/Hxx9/jE2bNqF06dLo2bMnunbtio4dO6Jq1aqqrfvChQv45ZdfsGLFCnz99df4888/kZKSgqFDh+K+++7Dtddeq9q6Qy0rKwuLFy/GV199he+++w6nT59GuXLlcNNNN6Ft27a69i4cOnTI26uycuVKrFu3DtnZ2bj22mvRs2dP9OvXDy1btgybT+oulwtLly7F9OnTsXTpUjidTnTs2BE9evRAx44d0bRpU9WGPZxOJ37//Xf89NNPWLRoEVauXAmLxYJbb70V9913H7p162bYsPznn39i2rRpmDlzJjIyMlCvXj307t0bnTp1Qtu2bYscdoNx+PBhrFixAt9//z0WLlyIM2fO4IYbbsBdd92F4cOH5xoSD6E0SB6zZ88WIN/N9Bc9t8+FCxdk7ty5MmbMGGnYsKEoiiImk0kaNWokY8eOlQ8//FA2bNggly9f1qU+NV26dEnWr18v06dPl/vvv9/7/BVFkYYNG8rYsWNl/vz5cvHiRb1LLbRdu3bJPffcIwkJCZKQkCB33323fPvtt5Kdna1bTdu3b5fnn39eatasKYqiSKdOnWThwoXicrl0qykQu90u8+fPl759+0p8fLyYzWbp3LmzvPHGG7J582bD1p2VlSXLli2Tf/zjH1KnTh0BIFWqVJFHH31UtmzZond5fl24cEFeeeUVqVGjhrd9zJgxQ06ePKlbTSdPnpQZM2ZIp06dRFEUqVmzprz66qty4cIF3WrKyeVyyYIFC3LV9/zzz8v27dt1qyk7O1u+/fZbGT16tHf/c++998quXbtCvapUho1C0nr77Nq1S6ZMmSI333yz2Gw2MZlM0qJFC/nHP/4hCxYskFOnTmlWi9GcOnVKFixYIE888YS0aNFCTCaTxMTESNeuXeWNN96QPXv26F1iQH/++acMHz5czGaz1KtXT9555x05e/as3mXl4nQ6ZdGiRXLbbbeJoijSvHlzWbBggd5leR08eFAmTpwolStXFpPJJF26dJHp06dLZmam3qUVye+//y7PPPOMN3i0adNGPvnkE8N8gLhw4YK89NJLUq5cOSlRooRMmDBB/vzzT73LymfHjh3y6KOPSmJiopQvX14mT56s6weR+fPny/XXXy+KokjPnj1lyZIl4nQ6davHl7Nnz8pbb70ldevWFYvFIiNHjgxl6GDYKCwtts/Jkydl2rRp0rZtW1EURcqUKSMDBgyQadOmyZEjR1Rddzg7efKkpKamyogRI6R06dICQBo0aCCTJ0+Wo0eP6l2eV1ZWlkyaNElsNpvUqlVLpk2bJg6HQ++yCvTHH3/IgAEDRFEUuemmm2Tbtm261bJ//3555JFHJCYmRlJSUuTJJ5+UvXv36laPGjZu3Cj33XefxMXFSYUKFWTSpEly7tw53epZsGCBVKtWTRITE+WRRx6R48eP61ZLsE6ePCmTJk2SpKQkqVSpknz66aearn/Xrl3SrVs3URRFbr/9dtmwYYOm6y8Kp9MpqampUq9ePbFarfLII4/I+fPni7tYho3CUmv72O12SU1Nla5du4rZbJakpCS566675Pvvvw+LA5HROBwO+e677+Suu+6SpKQkMZvN0rVrV0lLSxO73a5bXUuWLJGqVatKqVKl5N133w3L13b16tXSrFkzsdls8uyzz2q6PQ8fPiwjR44Ui8Ui11xzjcyYMUPX4SYtHDt2TB577DFJSEiQ8uXLy5QpUzR9zocPH/YeMEePHi0nTpzQbN2hkpmZKXfeeacoiiLdu3eXw4cPq7o+u90uEydOFJvNJtddd52sXbtW1fWpweFwyDvvvCOlSpWSatWqydKlS4uzOIaNwgr19snIyJAXX3xRqlSpImazWXr16iVz5swxTLdpJLh8+bKkpaVJz549xWQySdWqVeWll17SdKd59epVeeyxx0RRFBkyZIhkZGRotm41OBwOmTp1qsTFxUmbNm3kwIEDqq7vypUr8n//93+SkJAgtWvXlv/9739hGdSK48SJE/L0009LXFyc1KtXT5YtW6b6OufPny9ly5aVevXqyapVq1Rfn9p+/vlnqVevnpQtW1a14cD9+/dL69atJT4+Xt58882wb6fHjx+XwYMHi6Io8sQTTxQ16DJsFFaots+xY8fkoYcekpiYGClTpow88cQTsn///uIXSAHt27dPHn/8cSldurTExsbKuHHjVO8OPnHihLRu3VoSExPlk08+UXVdWtu6das0atRISpcuLT/++KMq61i/fr3UrVtXEhIS5P/+7//kypUrqqwnXOzfv1/69OkjAGTo0KGqzPNxuVzy9NNPi6Iocvfdd4flxGt/Ll68KHfddZcoiiLPPPNMSCcPL1++XEqVKiWNGzfWdZhRDTNmzJCEhARp06ZNUSYCM2wUVnG3z6lTp+TJJ5+U+Ph4qVy5srz33nuSlZUVwgopGFlZWfLOO+9IpUqVJCEhQZ5++mk5ffp0yNezb98+qVu3rtSqVUt27NgR8uUbwaVLl2TgwIESExMjqampIVuu0+mUl19+WaxWq3Tt2lX1ru9ws3jxYqlYsaLUqFEjpL0O2dnZMnLkSLFarTJjxoyQLddoPvroI7FarXLnnXeGZChw5syZEhMTI4MHD47Ynunt27dLjRo1pF69eoX9cMywUVjF2T6pqalSrlw5KVu2rEyePFkuXboU4uqosK5evSrTpk2T5ORkKV26tEybNi1kn3T2798vlStXluuvv16OHTsWkmUaldPplHHjxonJZJIvv/yy2MvLysqSXr16ic1mk1dffdWwp67qLTMzU26//XaxWCzywQcfFHt5DodD+vXrJyVKlNBkmEZvixcvlsTERBkwYECxzg75/PPPxWQyyYQJEwx3lkmoHT16VK677jqpUqWKHDx4MNg/Y9gorKJsn71790qXLl3EZDKFamYvhdi5c+fkoYceEpPJJN26dZN9+/YVa3mZmZlSt25dadasmeFOZ1XT448/LjabrViTyTIyMqRFixZSrlw5Wb16dQiri0wul0v+/e9/i6Io8s9//rNYwcxz9svPP/8cwgqNbeXKlRIbGytjx44t0t8vWrRIrFarPPnkkyGuzLjOnDkjTZo0kXr16gU7941ho7AKu30WLlwoSUlJ0qhRI1mzZo2KlVEorF69Who2bCiJiYny1VdfFWkZDodD2rdvL7Vr1474Ho28XC6XjBo1SkqUKFGkc/RPnTolDRo0kNq1a6txYaGI9vHHH4vVapXx48cX6e9ff/11sVgshrqOilbmzZsnZrNZ3nrrrUL93Z9//ikJCQkyevToqOt9O3r0qNSsWVNuuummYCbBMmwUVrDbx+VyyaRJk0RRFBk7dqxcvXpVg+ooFK5evSr33XefKIoi//73vwu9E3nuueckJiZGfv/9d5UqNLbs7Gxp2bKl3HDDDYVq95cuXZJ27dpJlSpV5NChQypWGLlmzZolJpNJXnnllUL93ZYtWyQ2NlZeeukllSozvueff15iYmJk06ZNQT0+OztbWrRoIc2bN4/a/fuWLVskLi5OXnzxxYIeyrBRWMFsH6fTKSNHjhSbzSbTpk3TqDIKtffff19sNpvceeedQQeOTZs2icVikbffflvl6oxt165dkpiYKJMmTQr6b4YPHy5lypTR9fLNkWDq1KmiKIosXLgwqMfb7XZp1KiRdOrUKeLnGwTicDikY8eO0qRJk6BOV504caKUKFHC8FcqVtubb74pFotFNm/eHOhhDBuFFcz2eeCBByQmJiYqJlhFuqVLl0pMTIw8/PDDQT2+a9eu0rJly6jrUvXllVdekbi4uKDOIklLSxNFUWTx4sUaVBb5Ro4cKSkpKUGNp3tCNYet3PPrbDab/Pe//w34uPT0dImPj5cpU6ZoVJlxuVwuad26tXTv3j3Qwxg2Cqug7fPCCy+IxWKRefPmaVdUMWVkZMjMmTOlZ8+eYbd8tWsXEfnqq6/EYrEU2MX87bffCoComlwXyOXLl6V69eoyZsyYgI87deqUlCtXTu6//36NKgueFu1LDWfPnpWqVavKsGHDAj7u8uXLkpKSIuPGjdOmsDDw4IMPSqVKlQJez+Wee+6RmjVrqnbNlzVr1siYMWMEgIwZM8bwQ7IrVqwQALJ8+XJ/D2HYKKxA2+e3334Tq9Va6ElGevM0arVe9549e6q2fLVr95g6darYbLaAb/o+ffpIp06dVK0j3Lz99tuSmJgY8Ays5557TsqWLWvIs7S0al9qSE1NFZPJFHBY6ssvvxSLxRJ1E5kDSU9PF4vFIrNnz/Z5/9mzZyU+Pl7ef/99Vda/fPlyAeA9rTRcwm779u2lf//+/u5m2Cgsf9vHbrdLs2bNpGPHjmHZha72DlXN5WtxMHA6ndKhQwe5/vrrfV4AKCMjQ6xWq3z++eeq1hFuTp8+LbGxsfLhhx/6vP/ChQtSpkwZee655zSuLHjhGjacTqfUr19fRo4c6fcxXbp0kd69e2tXVJi4/fbb/Q4LTJs2TeLi4lQ7pd0TcMPNp59+Kjabzd/QXaoJFBILFy7Eli1b8OGHH0JRFL3LoRAzmUyYPn06fv/9dyxatCjf/cuWLYPJZEK/fv10qM64Spcujdtuuw0LFy70ef8333yDCxcu4KGHHtK4sshnMpnw6KOPIi0tDZcvX853/8WLF7FixQoMGTJEh+qMbejQoVi+fDmysrLy3bdw4UL06NEDSUlJqqz7gw8+UGW5auvXrx8URcGyZct83s+wESL//e9/0b17d1xzzTWqryszMxNTpkyBoijo1asXfvjhB+/ts2bNQq9evQC43xSKomDs2LE4dOgQAGDWrFn5bvO3bF+POXfunDdQKYqCiRMnIjMz0/u3CxcuRK9evXDu3DmMHTsWEydO9PkcfvjhB+8ycoYzf88t5/o9z6FXr17YtWtXEbdi4V177bXo2rUrPvroo3z3/fLLL7jxxhsRFxenag2ebfPhhx8iMzMzX7D1t/1ybmvP3/i6TQ3t2rXD6tWrISL57lu6dClat26NsmXLhmx9OdshAG97HTt2rM/2krNNebZtIIHeAx4FvU4F3R8qPXv2xJUrV7By5cp8961duxYOhwPt2rVTZd1AcNvqhx9+QK9evaAoCqZMmZLvfqDg/UKodezYEQ6HA+vXr891u4hg7dq1aN++fcjXmfd9mPP34ux3tdp2CQkJuP7667F69WrfD8jb18FhlMB8bZ+TJ0+K2WyWtLQ01defkZEhPXv2lJkzZ4rI3+N7v//+e665EZ65BWvWrPFOMvJcVOzgwYPe2zw8f+d5jGc9AHJ9Q6mniy8jIyPfcnKuf82aNfL7779770OeruiDBw/K9OnTcy070HPz6Nmzp4wZM8bbhTlz5kxNu7lnz54tZrNZTp06lev2G264QSZMmKDqul977TXvOO7Zs2flmWeeyfW8C9p+06dPz/V6eh6v9uSz1atXCwCf36VQvXr1YM7RLxRPe8jZns+ePettuzt37sz1+J49e8ozzzzj/X3MmDG5fs/bvgK9B0QKfp0Kuj/UGjVq5PPqlpMnT5aqVauqtl6RgrfVggULcr1OOd/Pnm0SzH5BDZUrV853vZK9e/cKAFW/Mt7X/qyo+12tt92jjz4qN954o6+7OGejsHxtn++++04ASGZmpurr97wZcwLg3Tn6aqjB3ObrMTt37hQAMn36dO9tzzzzjM+Qkvf3vOOZOR/3+++/ext/YZ6bZ8eU82Bx9uxZTcPG8ePHfc66rly5srz++uuqrjtv8MvIyMj1vAvafiK5d1qvvfaaJl9179k55r2CrtPpFKvV6rMtFJevNvH7778LAHnttde8t3m2Wc7tsGbNmlwT8vIuK5j3QKDXqaD7Q613794ydOjQfLc/+uij0rp1a9XWKxL8/iInf69R3sfkbNdqaNmypTz22GO5bvvll18EgKSnp6u2Xl/bpKj7Xa233auvvirVqlXzdRfDRmH52j6fffaZxMTEaLL+nCk2749IaMNGoNsPHjwor732WqGX4zmlqyjPzd/EKS3DhohITEyM/O9//8t1W1xcnHz66aeqrtfz/GfOnOlzclpB20/k7wNbz549833CV8ulS5cEQL6LTHlqUeOr6YNtz55tVpRl+XsPFPQ6FXR/qI0ZM8bnWVIjRoyQ22+/XfX1ixS8rXLy9xoFatdq6NGjh4waNSrXbZ4PPGp+iWag51bY/a7W227GjBkSFxfn6y5OEA0FLSeEeibaiUi+H618+OGHeOihh9CzZ89C/+2BAwfwwQcfYO3atfnuK+i5GWXilIj4fM3Vfg3Gjx+Pnj17YsiQIShVqhSmTJmS6/5g2kaFChUwc+ZMLFy4EKdPn1a1Xg+XywUg//vE87uWbTcvfxNXCxLoPVDQ61TQ/aHmr70qiqLJtg+0rcaMGQPAPZcMADZv3gwAeO2117yP0Wuf52u76Tn5vyj7Xa23nYjAZPITK/LGD/ZsBOZr+3z//fcCaDOMgr9Sqb9PpfCRWoO5zddjPLfn7InwdMt5xpwLsxzP7Z4x6rxd+EV5boFuV4O/YZQqVapodjVBz5gskLu7uaDtJyLe4RPPpyMthlEOHDggQP5xbpfLJVarNSRfSZ9XsO3Z88kv0Bh23mUV9B7w8Pc6BXt/qPTq1cvnxb3Gjx8vrVq1Um29IsFtqwULFnjbY875BR7BtGs1tGjRQh5//PFct3nmHwVzVdyi8rWNirvf1WrbvfLKK1K9enVfd3EYpbB8bZ9Tp06J2WyW1NRU1dfvmeT3zDPPeLtgPQcQkdCGDc8Yd843f0F/F0wgOHv2rHeiZ2Gem+f+vAcGLcPGrFmzxGKxyOnTp3Pd3rx58yJ/22awgNxjsp7Xx6Og7Sci3v/7ew3U4Bnn9jdB9IUXXgj5On21Cc8cpJzfaurZZjknHR88eLBQ8wx8/R7odSro/lDzN0H0P//5j+oTRAvaVgsWLChwKCmYdq2GypUry6uvvprrNs8EUTW/wbso+2t/+0Ctt924ceOkRYsWvu5i2Cgsf9unR48ecuutt6q+fs84d96fgwcP5rovZ8Py3JbzLIS8t3k+4Xk+sXtmMedtlJ7HHTx40Lvz9iwn53L91Zxzhw7knnwa6Lnl/JuePXt6b/PMrs77iVUt3bp1k169euW7fcyYMdKmTRtV1+3ZaeTcHjlfn0Dbz3PWQ84du2dyrdoT7V577TUpV66cz4vdjRo1Sjp06BDydXqeuycoe55/3isx5jzrKmc78nwSDPRe8fUe8Kw70OtU0P2hdPToUVEURZYuXZrvPs97R81P6cFsK18/Y8aM8bm/8rVfUINnX7NixYpct7tcLilfvry88cYbqqzXEzzz9kYUZb8rov22a9mypTz44IO+7mLYKCx/22fevHliMpk06a46ePCgdyhizJgx+brWcja8YG8Tce98PI16zJgxPq9z73kzPPPMM5KRkeGdJe15c3p+fM3mz7m+nCEhZw3+nlvO+3N+Z0DOU7vUHhLYsWOHmEwm+frrr/Pd9/nnn0tMTIxkZWWptn7PzsXT5ezrABVM28i5PF+3h1qfPn38XqXS01N08uTJkK7T85xynhI+ffp0n5+iPe3Y065zvod9baNA7wHP3wR6nYJ5HUNl2rRpEh8fL5cvX85334ULF8RiscisWbNUW39B2yrvKft5A4dHQfuFUPviiy/EarXKxYsX893Xs2dP6devX8jX6S94iRRtv+uh1ba7ePGi2Gy2fJPn/8KwUViBLld+3XXXSYcOHaL6a5ojldPplHbt2skNN9zg83LlJ0+elJiYGF6uPI9Tp05JbGys32/RvHDhgpQtW7ZQX0UfDLUDVDjwXK78zjvv9PuYrl27+uyp08rOnTt9Hvw8n971ctttt8ktt9zi8z7P5crzDqVGuxkzZojNZvM3d5Fno4SKxWLBjBkzsGbNGrz11lt6l0MhNnXqVKxfvx4zZsyAxWLJd3/ZsmXRo0cPn1cXjWb/+9//YLFYMGjQIJ/3JyYmYty4cXj77bdx/vx5jauLbHPmzMGuXbvw1FNP+X3M6NGjsXjxYhw7dkzDytxmzZqFunXrolq1avnuS05OxsyZMzWvCQDS09OxbNkyjB492uf9gwcPhslk0q0+o/roo4/Qu3dvlC9f3vcD8sYP9mwEVtD2eemll8RsNstXX32lYVWkprS0NDGbzfmuJpiX56yklStXalSZsV26dEmqVq0qDzzwQMDHnT59WsqXLy/33ntvSNbra55FtDlz5oxUqVIl4Jewibi/Yr5ixYry8MMPa1TZ33r27CnTp0/P17Oxc+fOXHO5tDZ27FipXLmyXL161e9j7rvvPqlRo4bP4alo9MMPPwgQ8Jo5HEYprGC2z0MPPSQ2m83npCwKL0uWLBGbzSbjxo0L6vHdunWTFi1ahOU3/4bayy+/LAkJCXL06NECH/vVV1+JoiiyaNGiYq8XPsa8o82IESOkYsWKQc2FmT59ulitVtm1a5cGlf3t7NmzMnPmTO8cLPw1J8HXXDGt7Ny5U6xWq3z00UcBH3fkyBFJSEjId7ZKNHK5XNK8efOCTpBg2CisYLaP0+mUkSNHis1mk/fff1+jyijU3n33XbFarXLXXXcFHR42bdokFotF3nzzTZWrM7adO3dKYmJiob46fsSIEVKmTBnZtm2bipVFvjfeeEMURZFvvvkmqMc7HA5p1KiRdOzYURwOh8rVGZfD4ZD27dtLkyZNgtoOEydOlBIlSsju3bs1qM643njjDbFYLLJ58+ZAD2PYKKxgt4/L5ZLnnntOFEWR++67L2CXHBnLlStX5J577hGTySTPP/98oXsp/v3vf0tMTIzqXxRlVNnZ2dKiRQu54YYbCtXuL126JO3atZNq1aqpejpmJPvyyy/FZDIV+gyXLVu2SGxsbMi/FC+cPPfccxITEyObNm0K6vFFbeeR5I8//gi23TBsFFZht88333wjSUlJcs0116jyHRAUWr/88os0aNBASpQoIXPnzi3SMhwOh3To0EFq1aoV1BBCJHG5XDJ8+PAif+I7ffq0NGrUSGrVqiV//vmnChVGro8++kgsFku+q14Ga+rUqWI2m2X+/Pkhrsz4vvrqKzGbzfLOO+8U6u88PXh33nln1A2dHjlyRGrUqCGdOnUK5gxMho3CKsr22bdvn3Tv3l1MJpM89NBDcu7cOZWqo6I6e/asPPDAA2IymeTWW2+VAwcOFGt5J06ckHr16knTpk01+bItoxg/frzYbDb59ttvi7yMEydOSKtWraRs2bKyatWqEFYXmVwul0yaNEkURZFnn322WAe9MWPGSFxcXFRNcv7xxx8lNjbW38WoCrRkyRKxWq3yxBNPhLgy4zp9+rQ0btxY6tevH+w1chg2Cqs42yc1NVXKly8vZcqUkcmTJ6t6ASgKTlZWlkydOlUqVKggpUuXlmnTpoVs2QcOHJAqVarIddddF/E9HE6nUx566CExmUwh+cr4rKws6d27t9hsNvnPf/7Da9f4kZGRIbfddptYLBb58MMPi708h8Mh/fv3l8TERFmyZEkIKjS2b775RhISEmTgwIHFamNffPGFmEwmefTRRyO+rR45ckSaNm0qVatWlUOHDgX7ZwwbhVXc7XP69Gn55z//KYmJiVKxYkV5++23fV6ljtR18eJFefPNNyUlJUUSExPlmWeekTNnzoR8Pfv375drr71WatSoEbETH7OysqRfv34SGxsraWlpIVuu0+mU//znP2Kz2eTmm29W/aqR4WbhwoWSnJwsNWvWlF9++SVky83OzpY777xTrFar34uxRYLp06eLxWKR0aNH+7xQX2HNnj1bYmJiZMCAAap+Bb2etm7dKtWrV5f69esXtveXYaOwQrV9MjIyZNy4cRIXFyelS5eWxx57TPbt2xeCCimQvXv3yoQJE6RUqVISFxcn48ePV/3bek+ePClt27aVhIQE+fjjj1Vdl9a2bNkiDRo0kDJlyqjW9b5x40apV6+exMfHywsvvBD11zbYu3ev9O7dWwDIiBEjVBmWdblc8swzz4iiKHLnnXdG1AeiCxcuyKhRo0RRFJk0aVJI51qsWLFCSpcuLQ0bNpStW7eGbLlG8NFHH0lCQoK0a9dOTp06Vdg/Z9gorFBvnxMnTsjLL78sVatWFZPJJD179pTU1NSITcZ6uHTpksyePVtuv/12MZlMUq1aNZk8eXLIv48jkOzsbHniiSdEURQZPHiwHD9+XLN1q8Fut8sbb7whcXFx0rZtW9V7Ha5cuSIvv/yyJCYmSq1ateSzzz4LyafRcJKZmSlPPvmkxMbGSv369eW7775TfZ0LFiyQcuXKSb169eTnn39WfX1q++mnn+Taa6+VcuXKBX1qcGEdOHBA2rRpI3FxcTJ16tSwP5342LFjMmjQIFEURZ588knJzs4uymIYNgpLre1jt9slLS1NunXrJmazWUqWLCmjRo2SZcuWRd1ONRSys7NlyZIlMnLkSClRooSYzWbp3r27zJkzR9c3/9KlS6VatWpSqlQpeeedd8JyR7Rq1Spp2rSpxMTEyKRJkzRtn+np6TJq1CixWCxSu3Zt+e9//xvxpx0eOXJExo8fLwkJCVKhQgV5/fXXi7rDL5L09HS55ZZbvL0cavcEquH48ePe3oxbbrlF0tPTVV2f3W6XZ599Vmw2mzRr1kxWr16t6vrUYLfb5a233pKkpCSpXr26LFu2rDiLY9goLC22z8mTJ2XatGnStm1bURRFEhIS5Pbbb5dp06ap/iYJZydOnJDU1FQZMWKElCpVSgBIgwYNZPLkyXLs2DG9y/PKysqSSZMmSUxMjNSsWVOmTZsWFoFy8+bNMmDAAFEURTp16qTrHJT9+/fLI488IrGxsZKcnCxPPvmk7NmzR7d6Qs3pdMp3330nAwYMEKvVKhUqVNB9UvmCBQukevXqkpiYKI888khY9M6dOHFCJk2aJElJSVK5cmX59NNPNV3/7t275ZZbbhEA0qVLF1m/fr2m6y8Kp9Mpqampcu2114rVapVHHnlELly4UNzFMmwUltbbZ8+ePTJ16lTp1q2bxMTEiMlkkubNm8tjjz0m8+fPlxMnTmhWi9FkZmbKvHnzZMKECdK8eXMxmUwSGxsr3bt3lzfffFP27t2rd4kB7d692/spvW7duvLWW2+pMkm1OBwOhyxcuNC7w2zRooUsXrxY77K80tPTZdKkSVKlShUxmUzSuXNn+eCDD8LiQOjLr7/+Kv/85z+lVq1aAkDat28vn3/+uVy5ckXv0kTEPbH6lVdekfLly0uJEiVk3Lhxsn37dr3Lymfbtm3y8MMPS2JiolSoUEFee+01XYPaN998IzfccIMoiiI9evSQb775xnC9mqdPn5apU6dKnTp1xGKxyF133RXKfSjDRmHpuX0uXrwoX3/9tTzwwAPSuHFjMZlMoiiK1K9fX+655x754IMPZO3atRF5Su3FixdlzZo18v7778vw4cOlbt26AkBMJpM0adJEHnzwQVmwYEFYTmTbs2eP3H///ZKYmChxcXEyatQoWbJkia7DA1u2bJFJkyZJtWrVRFEU6dKlS0i+t0QtDodDFixYIF26dJHY2Fgxm83SoUMHefXVV+W3334z7OmIFy5ckMWLF8uECROkZs2aAkCqV68uEyZMMPTZSxcvXpTXXntNateuLQCkQ4cO8uGHH+r64efEiRPy4YcfSvv27QWA1K5dW6ZMmWKIfcLp06elbdu2Urt2bbn55ptFURSpVq2aTJo0SbZs2aJbXVevXpUlS5bIqFGjJC4uTkqUKCH333+/Gr2EDBuFZaTtc/r0afnmm2/kqaeekg4dOkjJkiUFgJjNZqlfv74MHjxYXnzxRZk1a5Zs3LgxLC4udfbsWdm4caPMmjVLXnzxRRk8eLDUq1dPzGazAJCkpCRJSUmRkiVLyosvvmi4noDiOHfunLz33nvSvHlzASClSpWSESNGyGeffVbsi4wFs+7FixfLP/7xD2+Qq1y5sjzxxBNh890Ps2bNkvj4eLnjjjtk7ty5MmzYMClfvrwAkLJly0q/fv1kypQp8uOPP+r2Xti/f7989dVX8s9//lPatm0rVqtVAEjDhg3lySeflPXr14fVlSidTqcsXbpU+vXrJ3FxcWI2m6Vz584yZcoU2bBhg6qf3u12u2zYsEGmTJkinTp1ErPZLHFxcTJgwAD59ttvDRMwjx49Kk2bNpWKFSt6vz9k165d8thjj0mlSpUEgNStW1f+8Y9/yOLFi+X8+fOq1rN//3759NNPZfjw4VKqVClRFEVatGghH3zwgZrrTlVERHJ+5XxqaioGDRqEPDfTX4y8fUQE+/btw6ZNm7B582b8/vvv2LFjBw4ePAiHwwEAKF++POrUqYOqVauiYsWKqFSpUq5/S5UqhaSkJCQkJIS0tqysLJw7dw5nz57FsWPHcPToUe+/R48eRXp6Ovbs2YMTJ04AACwWC2rUqIH69eujWbNmaNq0Ka677jrUrFkTZ8+exbhx4/C///0P9957L1577TWUKFEipPXq7eDBg5g3bx7mz5+PtWvX4urVq6hevTpatGiBxo0bo2HDhmjQoAGqVq1aqNfKbrfj+PHj2LlzJ7Zt24atW7fit99+w+bNm+F0OlG/fn306NEDffv2RatWraAoiorPMjREBK+88gqefvpp3HvvvXjnnXdgtVq9923ZsgU//PADfvjhB6xfvx4ZGRlQFAW1a9dGo0aNUKdOHdSuXRu1a9dGtWrVULFiRZQsWbJItTidTpw8eRLHjx/H3r17vT979uzBpk2bcPr0aZhMJtStWxdt27ZF586d0blzZ6SkpIRyk+ji4sWLWLJkCebOnYvly5fjxIkTKFGiBFq1aoWmTZuiQYMGaNy4MapVq4YKFSoUatmZmZk4dOgQtmzZgm3btmHz5s1Yt24dLly4gPLly6NLly7o27cvbr311pDvu4pjx44duOWWW5CQkIClS5eiWrVque53uVxYu3Yt5s6di8WLF2PHjh0wm81o1qwZrr/+ejRs2BCNGjVC3bp1kZKS4m3XwcjKysKhQ4ewfft273t93bp1OHToEGJiYtC6dWvccccd6NOnT766VJDmN2z0799f7ZWHpfT0dKxdu9aQYcMfu92OAwcOYM+ePd6fI0eO4NixYzhy5AiOHz+Oq1ev5vobi8WCpKQkJCUloXTp0gCAUqVKeQ8+8fHxiImJAQBcvXoVly5dAuDeuZ89e9b777lz53Du3Dlv2PGIiYlBxYoVUblyZaSkpKBKlSqoU6eO96d69eoFvrHS0tLwwAMPICEhAR9//DE6d+4cku1lNFeuXMG6deuwcuVKbNq0CVu3bsW+ffvgcrkAACVKlECVKlWQlJSExMREWK1WJCYmIjs7G1lZWcjOzsbZs2eRmZmJjIwMb9stX748GjdujCZNmqBdu3Zo3759oQ8Cert48SJGjhyJRYsW4b333sPdd99d4N8cOXIEv/32G3777Tfs2LHDGwbOnj3rfYzNZkP58uVRrlw5xMfHew9gSUlJMJlMuHLlCi5fvgwAOHv2LLKysnDy5ElvWAYARVFQpUoV1K5dG3Xq1EGTJk1w3XXXoVmzZkhMTAzthjAYEcH27dvx008/Yd26ddi6dSu2b9/u3WYxMTFISUlBuXLlvPuVUqVKAUCu/ceJEydw/PhxZGdnAwDi4uLQoEEDNGrUCK1atUKHDh1Qv359Q4bi9evXo0ePHqhVqxYWLVqEcuXKFfg3GRkZ+Pnnn7Fq1Sps2bIFW7Zs8bYpRVGQnJyM5ORkJCUlwWazISEhATabDRcvXoTdbsfFixdx7tw5pKen48KFCwAAk8mEWrVqoXHjxrjuuuvQsWNHtGjRArGxsao+/zzyh401a9bg9ddf17KIsJSWlqZ3CSHl+TSWMyB4fs6ePQuXy4Vz5855H3/hwgVvgLBYLLl6Fjw7ZE8vSc6fUqVKeXcyoZCZmYmxY8di3rx5uPfeezFlypSI35EDwKVLl7B7926kp6d7Q+P58+dx8eJFZGdn448//kBWVhY6duyImJgYlCxZEsnJyd5wV6dOnbALFnkdPnwYd9xxBw4dOoS0tDTcdNNNxVreqVOncOjQIWRkZODkyZPen8uXL+PixYsAgHPnzsHlciEmJgbx8fHeg2R8fDzKlSuHChUqoHz58ihfvjxq1aql9Q7d0JxOJ/bv34/Dhw97P+ycOnXKGy5++eUXAEDbtm2927Vs2bLeDyVVq1ZFrVq1YDKZdH4mBfvuu+/Qr18/dOzYEbNnz0Z8fHyRl5WZmYk9e/bg+PHjSE9PR2ZmJs6fP4+rV696P0x4QkeJEiW8Hz48H+KuueaaYq0/RPKHDaJwlJaWhrFjx6JkyZL4+OOPi33gCXdPPPEEVq5cifXr1+tdiipWrVqFfv36oWLFipg/fz5q1Kihd0lUTAMHDgTg7l0PZ59//jnuvvtuDBkyBP/9738LNfQRwdKMHxGJgjBgwABs27YNTZs2RefOnXH//fcjKytL77J0Y7VaYbfb9S5DFdOnT0fnzp3RsWNH/PLLLwwaZBhvvvkmRo0ahbFjx+KTTz5h0MiBYYMiRnJyMubNm4fZs2djzpw5aNKkCX766Se9y9JFJIYNh8OBcePGYcyYMZgwYQJmzZplqMmAFL1EBP/4xz8wfvx4vPLKK3jzzTcNOY9ETwwbFHEGDBiArVu3omHDhujUqRPuv/9+7wTWaBFpYePUqVPo3r07Pv74Y8yZMweTJ08Oi7F7inzZ2dkYNmwY3nzzTXz55Zd4/PHH9S7JkPhupYhUsWJFLFiwADNmzMDMmTNx4403YsOGDXqXpZlIChtbtmzBjTfeiN27d2PlypXo27ev3iURAXCfXtq7d28sXLgQCxYswODBg/UuybAYNiiijRw5Elu2bEHFihXRpk0bPPXUU/lO841EFoslIsLGokWL0K5dO1SuXBkbN27E9ddfr3dJRADcvW1du3bFpk2bsHLlSnTv3l3vkgyNYYMiXvXq1fHdd9/h3XffxbvvvosbbrgBv/76q95lqcpqtea7tkk4ERH85z//Qa9evTB48GD88MMPYX+qLkWOAwcOoE2bNjh+/Dh+/vlnhuAgMGxQVFAUBffddx+2bNmCChUqoFWrVnjqqae8FwuKNOE8jHLlyhWMHDkSzzzzDN544w1MmzaNs/rJMLZu3Yp27dohJiYGq1atwjXXXKN3SWGBYYOiSo0aNbB8+XK8++67eOedd9C8eXNs2rRJ77JCLlzDRnp6Otq3b48lS5Zg2bJleOSRR/QuichrxYoVaNeuHerWrYuff/4ZlSpV0ruksGHRuwAirXl6Obp06YLRo0ejZcuWmDBhAl544YWw/AR95swZrFixwjtskp2djV9//RUJCQmYPn2696qXgPvqrmPGjNGzXL9Wr16Nvn37okKFCtiwYQNq1qypd0mkknXr1mHz5s25bvNclnv69Om5bm/atClatmypWW3+zJ8/H0OGDMGtt96KL7/8kleHLSy1vuKNKBy4XC6ZNm2axMfHS9OmTWXTpk16l1Ro58+fl9jYWAEgAERRFLFard4fm80mMTExAkAeeughXWrMzMyUefPm+b3/ww8/FJvNJj169JBz585pVxjpYtGiRd5vqM7ZVnP+eL7pedGiRZrUNHnyZPnqq6983vfuu++KyWSSBx980DDfJhtm8n/FPFE02rNnj7Rv315iY2Nl8uTJfr8aOzs7WwYOHGi4A+LQoUO9X1ce6GflypW61Ddq1CiJjY2VX3/9NdftDodDnnzySVEURZ588knuyKOE3W6X0qVLF9hek5KSJDs7W/V6Tpw4IQkJCWKz2WTVqlW57ps8ebIoiiKTJk1SvY4IxrBB5GG322Xy5MkSExMjrVq1kh07duR7zDPPPCMAZNCgQTpU6N+3335b4I67TJkyfkOUmn7++WdRFEVMJpOkpKTI8ePHRUTk1KlT0qVLF4mNjZXPP/9c87pIX2PHjhWbzea3vVqtVnnggQc0qWXcuHHe3pSSJUvK1q1bxeFwyP333y9ms1mmTZumSR0RjGGDKK+tW7dK8+bN8/VybNiwQUwmk3eoYvr06TpX+jen0ykpKSmG2HHnZLfbpUGDBmKxWLx1NG/eXLZs2SL16tWTypUry4YNGzSvi/T3008/FRiQf/75Z9Xr2LdvX65eQYvFIhUqVJDBgwdLXFycLFiwQPUaogDDBpEvnl4Om80mrVu3li1btsi1117rPWh6DpxGmuPx9NNPBxxK+eGHHzSv6bXXXvMGtJw78/Lly0vbtm29vRwUfVwul1SqVMlve01JSdFkWG3gwIH53jdWq1UqVaokCxcuVH39USKVp74S+WCxWPDkk09i3bp1yMrKQrdu3bBnz55cF8oSEfTp0wfnz5/XsdK/3XnnnX4v5JWUlIT27dtrWs+xY8cwadIk75kwHg6HAydPnkSfPn2QnJysaU1kHIqiYPjw4bDZbPnus9lsGDVqlOrff/P7778jLS0t32nidrsdmZmZePbZZ6P626NDiWGDKIBmzZrhnXfeQUZGBpxOZ677HA4H0tPTcc899+hUXW5169bFddddl28HbbVaMWjQIFgs2p7p/vDDD/u9aJr89S2Zixcv1rQmMpYhQ4b4bCPZ2dkYMmSI6usfP3683/eFw+HA1q1b0b9//7C+Gq9RMGwQBXD16lXcfffdfr8u2uFwYM6cOfj44481rsy3e+65J1+tdrsd/fv317SO7777Dl999VWBFxYbPHgwdu/erVFVZDTNmjXzeQXOWrVqoWnTpqque8mSJVixYkXANmq327F06VLcfffdEBFV64l0DBtEATz99NPYv39/vl6NnEQEY8aMyXeRIj0MHjw4X89GyZIl0alTJ81quHr1Ku677z6YzeaAj3O5XLhw4QJ69uyJCxcuaFQdGc2IESNyXUzParXirrvuUnWdLpcLjz32WIFt1Gq1er9n6OTJk6rWFOkYNoj8WLVqFaZOnRpUF6qIoH///rqP75YuXRo9e/b07rytViv69++v6RDKf/7zHxw+fNhvQPPUUqpUKYwbNw5ffPEFSpQooVl9ZCxDhw7N9R6z2+0YNGiQquv87LPP8Oeff/pso2azGYqioFy5cpgwYQL279+PL774AuXLl1e1pkjHsEHkh91uxz333IOqVasCcO+EAo3vHjhwwBCXAr/rrru8XcNaD6Hs3bsXL774Yr6duMlk8m6/rl27IjU1FZmZmZg6dSpuuOEGzeoj46lduzaaNm0KRVGgKIrfoZVQuXLlCv75z3/mG270TFRt1KgRPvnkExw9ehSTJ09G5cqVVaslquh6MgxRmDh69KikpqbKvffeK8nJyd5LLec9rROAzJgxQ9da7Xa7lClTRgBIYmKiXL16VbN133LLLblOI/T8v2nTpjJ16lQ5efKkZrVQ+Hj99dfFYrGIxWKR119/XdV1TZ482XspdEVRxGKxiNVqleHDh8vmzZtVXXcUS1VEOOuFqDBEBNu2bcPy5cvx7bffYuXKlcjKykJMTAyuXr2K2NhY/Prrr2jQoIFuNT722GN4/fXXMXLkSHz66aearHPu3Lno168fFEWBiKBGjRoYPXo0RowYgRo1amhSA4WnY8eOoUqVKhARHD58WLXehNOnT6NGjRreOUI1atTA+PHjMWrUKCQlJamyTgIApDFsEBWTw+HAxo0b8cMPP2DZsmVYu3YtrrnmGqxfvx7x8fF+/24dgG8A/AxgK4ALAHyfKFoEf/wBNG0KLFgA9OwZqqXCBqAEgMYA2gG4HUBLAFlZWahfvz7Onz+PYcOGYcSIEWjVqlXI1kv6U7W9AkDHju5/V64M2SLzttd9jz+OWW+8gVtuuQXjxo1D165d/Z5pRiHFsEEUapcvX8bq1atRqlSpfPMRBMAXAF4AsAvunWFId9g5dewILFsGqPRV2J7a6wLo98MPuPH8efS47TafF2mi8KRpe/3vfwFFAe6+W5XF286eRfaUKag5ejSer1kTwwAwZmiGYYNIK78CeADAhr9+V/2Nt28fUKuW2mvx7rBvBPAeAE73jAyat9czZ9z/li6t6mrYXnWRxrNRiDQwGe6d22/4eyap6jQIGsDfz+c3uJ/jZE3WSmrSpb2WLq160ADYXvXCng0iFWUDuBfA59Boh20ACoARAD6Eu9udwgfbK6kkTdsvSyCKIk4AvQAsR/TsuAH3c/0SQAaARQACX6ORjILtle1VTRxGIVLJowC+BxCNX+HkgPu5P6pzHRS8R8H2+qjOdUQyhg0iFXwA4F24Py1GKyfc2+ADvQuhArG9sr2qjXM2iELsKIA6AC7rXYhBxAHYA6CS3oWQT2yvubG9qoJnoxCF2uOIzq5ofxxwbxMyJrbX3Nhe1cGeDaIQ2gD3FTX5pspNgfsKlDfqXQjlwvbqG9tryLFngyiU3gLAU7zys8C9bchY2F59Y3sNPfZsEIXIFQCl//qX8osFcBZAjM51kBvba2BsryHFng2iUPkZ3HEHcgXubUTGwPYaGNtraDFsEIXIr+AVCAOxwX2JaDIGttfA2F5Di2GDKEQOgBPtAhEA+/UugrwOgO01ELbX0GLYIAqRc+AphIE44B4DJ2Ngew2M7TW0GDaIQsQJflIMRBDdV6g0GrbXwNheQ4thgygSKYreFRAFj+014jFsEEUintFO4YTtNeIxbBAREZGqGDaIiIhIVQwbREalKLnHsn397uv2nPcFWl4wyyEKFtsrBcCwQWRUecexc/6ec4cr4v7JeVtevh5X0HKICoPtlQJg2CAKR54dua+JdXlv8+yYc97v2UEHWg5RqLC9Rj2GDSIiIlIVwwYRERGpimGDKFwEGuMOxNe4N7uhSW1sr5QDwwaRkXl2vDl3uL4m1/maoZ9zh+1rOf7+Pu/fEgWL7ZX8sOhdABEVIO9kuby3+fq9oOX4u42fIKm42F7JB/ZsEBERkaoYNoiIiEhVDBtEIcJR44JxGxkHX4uCcRuFDsMGUYgkAjDrXYSBWQCU0LsI8mJ7DYztNbQYNohCJAWccR2IGe5tRMbA9hoY22toMWwQhUgTAHa9izAwO4DGehdBXmyvgbG9hhbDBlGIdATAE/H8EwA36V0EebG9Bsb2GloMG0QhkgLgRvBN5YsJQAsAyXoXQl5sr/6xvYYe2xlRCD2sdwEG9pDeBVA+bK/+sb2GliLCS7ARhYoT7rHwXQAcOtdiFGYAtQFsAyckGg3ba35sr6pIY88GUQiZAbwL7rhzcgKYBu64jYjtNT+2V3UwbBCF2E0ABoI7K8C9DQaCE+2M7CawvXqwvaqHwyhEKrgEoC3cXbHRenqhFUBdAGvhvoAUGRfbK9uryjiMQqSGeAALACQhOj8xWuB+7kvAHXc4YHtle1UbwwaRSqoCWAH36XM2fUvRlBXu57wC7m1A4YHtle1VTQwbRCpqCOA3AE0RHZ8YLQCawf2cG+pbChUB2yuphWGDSGUVAPwE4HG4P0VF4qdGK9w77sfhfq4V9C2HioHtldTAsEGkgVgALwPYDqDrX7dZ9SsnZDzPoRuAHXA/x1j9yqEQYXulUOPZKEQ62AZgBoCvABxQc0VZWUBcHGAK/eeKGgD6A7gLQIOQL52MRJP2mpXl/jchQZXF1wDbq47SGDaIdHYa7k+QZwBcCeFyd/7yCya2a4cP0tNRpnLlkCwzBkBpuMe3y4RkiRRu1GqvbwwcCAAYn5oasmWyvRpGWjTMASIytDIA2qmw3PVWKyYC6G63o4YKy6fopFZ7Tfvr3wEqLJv0xzkbRBHKanWPUDscvBg1EemLYYMoQnnCht0erdeEJCKjYNggilAMG0RkFAwbRBHKYnFPyWLYICK9MWwQRSj2bBCRUTBsEEUoThAlIqNg2CCKUOzZICKj4HU2iCLUlSvuSy6dOXMGGRkZyPJcoRFA5cqVERMTo1dpFOUuXbqEq1ev5rotOzsbgLu95hQTE4P4+HjNaiN18AqiRBGiTZs2WLNmTYGPi4+Px4kTJ7gDJ9188MEHGDt2bFCPff/99zFmzBiVKyKVpXEYhShC9OvXD4qiBHyM2WxG9+7dGTRIV/3794fZbC7wcWazGf3799egIlIbwwZRhBg+fDhMBXzhmsvlwuDBgzWqiMi3cuXKoUuXLt7Ts30xm83o0qULypUrp2FlpBaGDaIIkZycXOAO3Gq14rbbbtOwKiLfhg8fDpfL5fd+EcGIESM0rIjUxLBBFEFGjx4Np9Pp8z6z2Yxbb70ViYmJGldFlF+fPn1gs9n83m+1WtG7d28NKyI1MWwQRZBevXr5DRMigoF/fY03kd4SEhLQs2dP7ynaOVksFvTu3ZvBOIIwbBBFkNjYWAwdOtTnJ0az2Yzbb79dh6qIfBs2bJjPi845nU4MGzZMh4pILQwbRBFm1KhR3msWeJjNZnTr1g0lS5bUqSqi/PwN6yUmJqJ79+46VERqYdggijCtW7dGrVq1ct0mIhg0aJBOFRH5ZrPZMHDgwFxDKVarFYMGDeJF5yIMwwZRBBo9enSus1IUReEQChnS0KFDc11S3263Y+jQoTpWRGrgFUSJIlB6ejqqV68Ol8vlvV7B0qVL9S6LKB+Xy4WUlBScOHECgPsaHMePHw/qol8UNngFUaJIVKVKFbRv3957kS8OoZBRmUwmDB8+HDabDVarFSNGjGDQiEAMG0QRavTo0d6LJvF6BWRkQ4YMQXZ2NodQIhi/9ZUohNLT07F69Wq9ywDgnqdhs9lQt25dfP/993qXkwuv96G/NWvW4PDhw3qX4eW5LPm+ffuwb98+natxq1q1Klq3bq13GRGBczaIQig1NZVDFkHgbkd/AwYMwJw5c/Quw9D69++PtLQ0vcuIBJyzQaQGETHEz88//4zMzEzd6/D8zJ49W++XhnLo37+/7m3C87N9+3Zs375d9zo8P/y22dDiMApRBGvXrp3eJRAFpX79+nqXQCpizwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVTFsEBERkaoYNoiIiEhVDBtERESkKoYNIiIiUpVF7wKISHuKonj/LyI6VkLkH9tp5GDYIIoyiqLk2nHn/Z3ICNhOIwuHUYiiDHfYRKQ19mwQRQhPl7OIsPuZDIvtNDqxZ4MoQuTcWXv+X9AOnF3TpLWitFMKf+zZIApTgT4V5gwR/h7HoEFaKG47pcjAsEEUpnztkD1d074+PeaUdyfPnTuppTjtlCIHwwZRlPF8gsz5SZLIaDinI7IwbBBFmIJ2ytxpkxEE0w7ZViMHJ4gSERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVTFsEBERkaoYNoiIiEhVDBtERESkKoYNIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqL3gUQRaLU1FS9SzCkNWvW6F0C5ZCens626kd6ejqqVKmidxkRg2GDSAWDBg3SuwSiAq1du5ZtNYD+/fvrXULEUERE9C6CiPThcrlQrVo13HPPPXjuuef0Loei2MCBAwGwVzBCpXHOBlEUM5lM6NevH2bNmqV3KUQUwRg2iKLcwIEDsXPnTmzZskXvUogoQjFsEEW5Nm3aoFq1akhLS9O7FCKKUAwbRFFOURT069cPs2fP1rsUIopQDBtEhAEDBmDXrl3YvHmz3qUQUQRi2CAitGrVCtWrV+eZAESkCoYNIoKiKOjfvz/PSiEiVTBsEBEA91kp+/btw2+//ZbvPpfLpUNFRBQpGDaICADQokUL1K5d23tWypkzZ/Dxxx+je/fu+Ne//qVzdUQUzni5ciLyuv322zF79mxs2rQJy5cvh4hARNCsWTO9S6MI8vbbb+ORRx7xeZ+iKLl+f+utt/Dwww9rURapiD0bRFHu0qVLWLhwIfr164f33nsPBw4cwPfffw+HwwGn0wmr1QqLhZ9LKHQGDhwIs9lc4OPMZrP3MuYU3rgHIYpSLpcLd911F2bNmgWHwwFFUeB0OgHA+69HMAcGomAlJyejY8eOWLlyZb625mE2m3HTTTchOTlZ4+pIDezZIIpSnu9FsdvtcLlcfnf6AMMGhd6IESMQ6HtARQQjRozQsCJSE8MGURTr1asXnnrqKZhMgXcFDBsUan379g04PGc2m3HHHXdoVxCpimGDKMq9+OKL6Ny5M6xWq9/HMGxQqJUsWRI9evTwGTgsFgtuv/12JCUl6VAZqYFhgyjKmUwmzJ49GxUqVPC54xcRThAlVQwbNszn8J3T6cTw4cN1qIjUwrBBRChTpgzmzp2b77RDD/ZskBp69OiB+Pj4fLfHxcXh1ltv1aEiUgvDBhEBcF/U68033/QZOBg2SA2xsbHo378/bDab9zar1YqBAwciLi5Ox8oo1Bg2iMhr7NixGDFiRK5hExFh2CDVDB06FNnZ2d7f7XY7hg4dqmNFpAaGDSLKZdq0aahfv36uCaMMG6SWm2++GWXKlPH+Xrp0aXTq1EnHikgNDBtElEtsbCwWLFiA+Ph4mEwm9myQqsxmM4YNGwabzQabzYbhw4dzQnIEYtggonxq1KiBzz77DCICh8PBsEGqGjJkCLKzs5Gdnc0hlAjF+EhkQJsBrAWwDcAZAFf1KKJXL9R7+mnseOklTDObsUyPGkKgBIBkAE0B3PTX/6PFFQCrAPwKYD+AswBcehbkT6tWiKtcGQDwesuWOhfjmwlAKQC1AFwPoB2AWD0LCjMMG0QGkQngfQDTAByD+81pAuCAjgeIF14Afv0VGywWbNCrhmKyADADsAMQADcCeBjAYETuDnADgDcBfAV34LDB/dwdf/1rOIoCjBwJKArS/Jx+rTcF7vaiAMiGO2j0BzAOQHMd6woXigS6OD0Rqc4O4G0Az8K9E7PrW05+J04Af/4JtG+vdyUh4Rk7rgt3uLtJv1JC7iiAJwDMhPvAaLi2FMiWLe5/GzfWt45CsMId4IYAeBVAJX3LMbI0hg0iHW0G0A/AAQD+vwaN1GCGe5sPBPARgER9yym2DwBMgPvgF1YhIwJY4Q53rwMYo3MtBpXGCaJEOlkIoDWAg2DQ0INnm88F0ArAYR1rKQ4ngEcAjAVwGQwaerDDve3Hwj1Ex/dzfgwbRDp4H8AdcE/8dOhbStRzANgJ96S/bTrXUljZAHoAeE/vQsjrfQC3wf3a0N8YNog0thDAg3BP+jTkmQFRyAH3WT/d4Z6oGy7uBbAc/CRtJE64X5N79S7EYBg2iDS0De6zIIw53z66OeEOGt0BXNK5lmC8DOBzsGfMiJwA/gdgst6FGAjDBpFG7AB6w929yh4NY7ID2ArgBb0LKcCvAP4Fg57GSgDc7/F/wv1aEcMGkWbegvusE34SNTYHgNcA7NK7ED8E7kmIvKar8ZnhnjTKUMiwQaSJTACTwLH1cKEAGK93EX58AffVZRlajc8BYCPcr1m0Y9gg0sB74Oz0cGIHsBjGPDvF6EM8lN+LehdgAAwbRCoTANPB6x+EGyuAGXoXkcc6uId32C0fPgTuU6vX612Izhg2iFT2B9zfdULhxQ73d4sYyTdwf88JhRcb3Ke8RzOGDSKVrUHkfuFXpDsA4LTeReTwMzgcF46y4f723WjGsEGksh3gGy2c/al3ATkYcQ4JBSfaXzvuA4lUdgo8cyCcndS7gBzO6V0AFdlZvQvQGcMGkcp4Ea/wdkXvAnLgJOPwFe2vHYeSiYxMyXFhcxH37yJ/3ycqnJcQzHIVHxdcV6MWCg22I9IZwwaRUeXdWefdMat1gAiG2gcqCh22IzIADqMQGZGvna8WO+Nw2eEHezCLdmxHgbEdaYZhgyichMtOnIyN7Yg0xrBBZESecfVAn7xy3uf5f96/8bUMf48NtJ7CPDYUdQT6+4LWUdznG0nYjtiODIJzNoiMKud4ds7fc96W8/95J/3lXYbnwOPrsf4+6foa7w/02FDVkfMxeX/PO8ExUJ2+1hNt2I7+XjbbkW7Ys0FkdCK+d5p5/x/M2Lyvx+Zddl7BfiJVu46C+KrTX03RiO0oOGxHqmDPBlG48PVJTKv1hoNwqVNvbEeBhUudYYY9G0RGxDFhCgW2IzIIhg0io/I1QS1Un7ryjtUHu9xQH7yCrSPvpL6C6uFB9m9sR/kfx3akOQ6jEBlVoPF1XztNf5PZfE1uyztRztdyA43x+5pYGMo6fN0XaDJfQXVG88Q+tiO2IwNg2CAyooImpAXa4QUzsc7f7cW5LZR1+LrP3/8Le1s0YTvKfx/bkS44jEJERESqYtggiib+xqyjtQ4qGqO8fkapgwrEYRSiaGKU7mCj1EFFY5TXzyh1UIHYs0GksljwjRbO4vQuIAeb3gVQkUX7a8d9IJHKyoBdiOGsrN4F5FBS7wKoyJL0LkBnDBtEKqsPwKV3EVRk9fQuIIeGehdARRbtrx3DBpHKWgFw6F0EFUkNuHumjKI92B0fjmwA2uldhM4YNohU1gRARb2LoEKzAuindxF53A4gW+8iqNCyAfTUuwidMWwQqUwBcB/cBy8KH3YAd+ldRB4tAdSFu01ReFAAXAughd6F6Ixhg0gDD4Dd3+HECuA2GHOcfaLeBVChPaN3AQbAsEGkgQoAngdg1rsQCooAeEPvIvwYBvc8IJ7hZHwWAM3hfs2iHcMGkUYehnvCIQ8SxmYB8DjcwxVGpAB4G4BT70KoQE4A74PDXgDDBpFmrAC+hns4hW88Y7ICaATjD1XcAOD/wIOYkZkAvAT3a0Xc5xFpqiGAWXB305OxmOEe7loGIF7nWoLxNIARYE+ZEZkBDAfwlN6FGAjDBpHGegJ4F+43H9+AxmABUBruoFFB51oK40MAN4NzgYzEDPdr8qHehRgM93VEOhgLYD6AGPCTqd4scJ+a+BuMefZJIDYAi+A+24mMYSyAxeDZZ3kxbBDppCeANQCqg59M9eDZ5n0BrAVQVcdaisMM4C24JyLGgddz0YMV7m3/PtyTd/l+zo9hg0hHTQHsAPAKgATwQKEFz/DVNQB+BDAbQKKuFYXGGAB7AAyAe+Io25L6rHBv6wFwb/sx+pZjaAwbRDqzApgAYB+Af+HvS5tbwDNXQsEC93CVCe4Dw40APgOwBcBN+pWlikoAvgCwHsAgALF/3W7D3wdGKhpPgPMMj8QCGAz3tv4C7m1P/ikiwonxRAazGe6u/e0AzgC4om85Qctcvhx73nkHbebN07sUrxIAkuHuRbrpr/9HiysAVsE9H2U/3G3JiN9AnH3qFNYNH45mU6eixLXX6l2OTyYApQDUAnA93F+sFhvoDyinNIYNIgqZZcuW4ZZbbsHJkydRtmxZvcuhMHHw4EHUqFED69atQ4sW0f4tIhEpjT20RBQyDRu6z+fYvn27zpVQOLHb7QAAi4XnZkUqhg0iCpkqVaqgVKlS2LZtm96lUBjxhA2rldNaIxXDBhGFVIMGDRg2qFAcDgcAho1IxrBBRCHVsGFDhg0qFPZsRD6GDSIKKYYNKiyGjcjHsEFEIdWwYUNkZmbixIkTepdCYYITRCMfwwYRhZTnjBT2blCw2LMR+Rg2iCikKlasiDJlynjDhsvlwt69e/H1118zgJBPnCAa+XhRLyIKCRHBgQMHsG3bNjz88MOw2Wyw2WzYtWsXsrOzAQDffvstunbtqnOlpKdTp06hW7du3jaRmJiI7Oxs7N+/H02bNkX58uW9j61evTpeffVVvUql0EnjABkRFcuCBQvw7LPPYufOnbhyxX1hdZvNBqfTCafTmeuxniEWil5ly5aFoijYunVrvvtWrFiR6/eHHnpIo6pIbRxGIaJiadu2Lfbu3esNGgCQnZ2dL2iUKFEClSrx66oIGDJkSFCTQe+88071iyFNMGwQUbGULVsWEydOhNlsDvi4xo0ba1QRGd3AgQPzhdG86tSpgxtuuEGjikhtDBtEVGyPPvooKlWqBJPJ9y7FZrPhuuuu07gqMqqqVauiadOmUBTfX3pvtVpx3333aVwVqYlhg4iKzWaz4eWXX4a/+eYul4vzNSiXwYMH++0NczgcGDJkiMYVkZoYNogoJIYOHYqmTZv6HIt3OBxo1KiRDlWRUQ0cONB7ymtOZrMZN998M6pUqaJDVaQWhg0iCglFUTB16lSfBxCAZ6JQbjVr1vQZQEUEd999tw4VkZoYNogoZDp27Ihbbrkl38WZypcvjzJlyuhUFRnVkCFD8rWVuLg49OrVS6eKSC0MG0QUUm+88Ua+Mw2aNGmiUzVkZAMGDPBeqhxwTwwdOnQo4uPjdayK1MCwQUQhVa9ePYwePdr7idVms6FZs2b6FkWGdM0116B+/fre3+12O6+tEaEYNogo5P7v//7PO1HU6XRyvgb5NXjwYG8wrVatGlq3bq1zRaQGhg0iCrkKFSrgH//4B0wmE8MGBeQZSlEUBffcc4/fa29QeOMXsRGRKi5evIgaNWrg9OnTOH/+PBITE/UuiQyqbt262LNnD/bu3YuaNWvqXQ6FXhrDBlEES01NxaBBg/Quw/CibTfI3oOCzZ49GwMHDtS7jEjBb30ligazZ8/WZb0ulwuzZ8827NUg16xZg6lTp+pdhi4effRRw8yPOHToEPbv34+OHTvqXQoAMKCrgGGDKAro+Qmtb9++sNlsuq2/INEaNlq3bm2oT+5Xr15FTEyM3mUAYNhQAyeIEpGqjBw0yDiMEjRIHQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVTFsEBERkaosehdARKQoivf/IqJjJWQUnjbB9hAZ2LNBRLpSFAUi4v3JGTwoejFkRBaGDSLSFQ8qRJGPwyhEpIqc3eDBDJOw2zzyFbZNUORgzwYRqSLnAcTz/0AHFQ6jRL7CtgmKHOzZIKKQCPRJ1TMvo6DHUWRhmyAPhg0iCglfBwlPT4WvT7QU+dgmyINhg4h0lXfYhAceAv5uF3mDCYUnhg0iUlVBBwoeSKJPMK8520Vk4QRRIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqsuhdABGpT1EUvUsggxk0aBAGDRqkdxkUJRg2iCJYmzZtMHv2bL3LyMfpdGLYsGEYP348WrZsqXc5UcdobWLQoEF49NFH0bp1a71L8WrTpo3eJUQURURE7yKIKPqUL18ezz33HB588EG9SyGdKYqC2bNnY+DAgXqXQupI45wNItJFSkoKMjIy9C6DiDTAsEFEukhJScHx48f1LoOINMCwQUS6SE5OZtggihIMG0SkCw6jEEUPhg0i0gV7NoiiB8MGEenCM2eDJ8QRRT6GDSLSRUpKCrKzs3HmzBm9SyEilTFsEJEuUlJSACDfUEpmZibsdrseJRGRSngFUSLSxM6dO5GZmYnjx4/j+PHjOHDgACwWC+6++25cvHgRGRkZOH36NCwWC86ePQur1ap3yaSCJ554AgcPHsx1m81mw5tvvok5c+bkuv3NN99ExYoVtSyPVMKwQUSaePjhh/Hdd98BAKxWK0wmd8fq2rVrcz2uVatWiI2N1bw+0obNZkNaWlq+21evXp3r9+rVqzNoRBAOoxCRJp544gnv/+12O65evQqHw5HrMTabDV26dNG6NNLQ8OHDC3yM1WrFnXfeqX4xpBmGDSLSRNeuXdG4cWNvj4Yv2dnZ6Nixo4ZVkdbq16+PevXqBXyM3W7n96REGIYNItLMU089FfBUV6vVilatWmlYEelh5MiRfufkKIqCxo0bo0GDBhpXRWpi2CAizQwcOBAVK1aEoig+72/evDni4uI0roq0NmzYsHxDaB4WiwUjR47UuCJSG8MGEWnGYrHgiSee8DmUYrPZ0LVrVx2qIq1Vq1YNzZs39xk6HQ4HBgwYoENVpCaGDSLS1L333ouEhIR8t3O+RnQZOXIkzGZzrttMJhNat26N6tWr61QVqYVhg4g0lZCQgIceeijfmL3FYuF8jSgyaNCgfPN3FEXhEEqEYtggIs2NGzcu323NmzdHfHy8DtWQHsqXL4+OHTvm693o16+fThWRmhg2iEhzFSpUwKhRo7y9G7y+RnQaMWKEt3fDbDajS5cuKFeunM5VkRoYNohIF0888YT3jATO14hOffv2hcXivpC1iGDEiBE6V0RqYdggIl3UrVsXt99+OxRFgcViQZs2bfQuiTRWsmRJ9OjRA4D7Giu9e/fWuSJSC78bhShCCID9f/2c+et3o2v1r39h4cKFqHH99VgUpvM1TABKAaj514/vK4ho6yqAbQAyAVzQuZaC1Bo2DJg3D9f37o0liYl6lxNQDIDSABoCKKNzLeGGYYMojDkBLALwBYAlMP6BJZ+WLYFWrbCnc2dEwsWpSwC4FcBwALcBMAd+eEidAfAZgFQA6+BuG2GhRw+gZEmsGToUa/SupRBqAOgH4C64wwcFpkigawcTkWEtAPAIgINwf2rwfT3GMDB/PpCQAETIBb08r0V1AG8B6KXy+i4BeAXAZLgDhhPh0auVy/jxwOTJQEyM3pUUig1ANoAeAKYCqKNrNYaWxrBBFGb2ABgDYDncXfgufcspPpcLyM4GIuxr5T2vTWcA06DOgWgegAcBnEAYh00AuHQJCNNhNACwwh3wHgcwCUBkteSQYNggCifLAfQBcAWAXedaKDhWuA8+8wDcHKJlCoB/wd2boSACAmeEsAC4DsA3ACroXIvBpPFsFKIw8SGA7nB3mzNohA87gCy4X7sPQ7C8y3DPFfgP3KGDQcM4HAB+B3A93BN06W8MG0RhYCaA+/H3mDyFFxfcr9v9cL+WxVnOUAALwZBhVHYAGQBuAnBY31IMhWGDyOA2wj3jncKfABgFFPmsi2fgnhgc1vMzooADwDm4z0y6qHMtRsGwQWRgp+DufncgDM8wIJ9cAG6H+7UtjLlwz9Fgj0Z4sAPYCeBuvQsxCIYNIgObCPe1Mzh0EjmccL+mEwvxN5cAPARjXDCMgueA+7onK3SuwwgYNogMahvcp0xyMmjkscP92m4O8vH/gfv0VvZqhB8z3HN1on3oi2GDyKCeBN+gkcwE9+mrBTkDd9iI9oNVuHLCfW2cWXoXojPuy4gMKB3uy4/zABO5HHC/xukFPO4zcBgtEryjdwE6Y9ggMqCvwTdnNDDBfXZJIGlg2Ah3LgDr4T4lNlpxf0ZkQMvB8flo4ALwfYD7rwBYC56JFAkURPdEUYYNIgP6FQwb0cAF4LcA9+8AezUihRXAFr2L0BHDBpEBZepdAGkm0Gt9TLMqSG1ORPfrybBBZEBX9S6ANHMlwH1ZmlVBanMguq8matG7ACLKr1hj9EqeSz+F6oud8y7Xs2x/txd32cVZXigoiibrDbSGkLUDz+ukxXYM9Xp8LU+N56bB9onmuTcMG0SRxN+OORQ7Uc8y8i7P3+2hWLbnNq3psc5QyrsdtXo+oV6Pr+Wp8dzC/fUOAxxGIYoU/g72/nof9BZsTXr0auixzlDx1Q60CnCh3m7BBOdQBmlSDcMGUSQoqFfBqIGDtBPJB9RIfm4RgsMoRNHIE048AaSgMfHirivvcjy3+Vt/3jrz/l7UuoNZX0F/m/f+gmrSWkG1+Nv2xXl+od5u/pYX7HYO1A6Cbdvh8nqHCYYNomiT82Dja66EvwO8r2UEsy5fyw00qc/fsotbd6DH+rrf3305f/dVkxHkfR5559gEu60K2ua+7supKNst0PIKem7B1FdQ2y5q3RQQh1GIok3OA74/ivL3j79l5P3xtQxfB7lg6vO1zGDq9vX4YGrxN+k1J1/bpLA1ac2zHQtztk9hnl9B262wyw3mdch5X2GfW2Emlobj621g7NkgovyMsjM1Sh2AsWoprEA9SR45ewpCOb9HreV6BPPcilJPOL/eBsSeDaJIUNCOM9y7fTm5NXhF2Vae9hHqNhLq5Ra3Haj1PKlADBtEkcJf4Chu0CjqDr6goYpgl1/U+vN2fxc0bJL3/kC1GT38FDR3wt/j/N3mT2G2W7BDaAUtL9jnVtB6C/M8jf56hwEOoxBFEl+Bw9/kTn+T3vIuw9dkPX9d0Xkn7RU0az9vDXnXE4q6c/4eqJa89/ua0Jp32UadMFjQtgB8T4LM+be+wpmv5xtouwW7XH+1+1peYV5nX/cHU0+4vd5hgGGDKNIUtBMMNImvsLcVZX2+bg9mx13Uuot6fyjWp4dgJjEW9NwK+1r7227BLrewywtFmytoOeHyeocJDqMQERGRqhg2iIiISFUMG0RERKQqhg0iAzLrXQBpJtBrzUl1kUNBdL+vGTaIDChB7wJIM4Fe6yTNqiC1WQCU0rsIHTFsEBlQDb0LIM3UCnBfTc2qILUpCPxaRzqGDSIDagXAqncRpDorgBYB7q8JoIRGtZC6sgFcp3cROmLYIDKg7gAcehdBqnMAuCXA/QqAW8G5G5EgFkB7vYvQEcMGkQHdCiBR7yJIdSUQOGwAwDAweIY7K4D+AGL0LkRHDBtEBhQH4AFwKCWSWQGMhfu1DqQHgOrgzjqcOQA8oncROmP7JTKof8F9NgK/AiryKHD3XD0dxGPNAN4C4FK1IlKLFcAQADfqXYjOGDaIDKoEgMlg2IhECoBXEfyprb0A3Az2dIUjC9yvdbRj2CAysLsAdAQPMpHECqAD3K9tYXwA9yRD7rTDhwLgdQCV9C7EANhuiQzMBGAugGpg4IgEFrhfy3ko/M63zl9/x56u8GAG8CCAMXoXYhAMG0QGVwrAMrjH+Bk4wpcV7qGxZSj6lSRvBvA+GDiMzgKgC4CpOtdhJAwbRGGgNoANcJ+VwMARfqxw92hsgPu1LI57AXzx1zKj+bs2jEoBMBTAAvD1yYlhgyhMeAJHO7jfuPx0a3wK3K9VOwAbUfyg4TEEwEq4J5gyfBqDBe7X+yUAnwKw6VuO4TBsEIWRUgC+BzD9r//zQGNcVrhfo+lwv2alQrz81gB2A7gH7h05rzKqD+Wvn+vh/jDwlL7lGBbDBlGYMQG4G8B+ABMAlIR7Z8fgoT8r3K9FSbhfm/1wv1Zq7WjLAHgPwCa4r0TqCR3csavP03NRF8BnANYCuEG/cgxPERHRuwgiKrrLAJbCPfFwDYADAC4iwi4CdeoU8OWXwJgxgNVYscpzga6acH+B3i1wX24+Voda0uGeK/A9gF8BnARwSYc6ApozB6hXD2jUSO9KCs0G9yTfxnAPjfVE4C/SI680hg0iMrwDBw6gVq1aWLp0Kbp166Z3OVQMycnJeOqppzB+/Hi9SyHtpLG3jYgMr0aNGmjatCnmzZundylUDAcPHkRmZiZuvDHaL94dfRg2iCgs9OnTB/PmzYPLFVEDRFFlw4YNMJvNuO666/QuhTTGsEFEYaFv377IyMjA2rVr9S6Fimjjxo1o0KABEhIS9C6FNMawQURhoVGjRqhbty6HUsLYhg0b0Lx5c73LIB0wbBBR2Ljjjjvw1Vdf6V0GFYGI4LfffuN8jSjFsEFEYaNPnz7Yv38//vjjD71LoULatWsXzp49y56NKMWwQURho2XLlqhSpQqHUsLQxo0bYbPZ0KRJE71LIR0wbBBR2FAUBb169coXNux2O7777jvwskHGcOTIEWRnZ+e6bePGjWjSpAliYmJ0qor0xLBBRGGlT58+2Lx5M7Zu3Yq5c+di+PDhKFu2LG655RYoCr+ezgimTJmChIQENGvWDA8++CBmzJiBlStXcgglivG7e4gobJw5cwaHDx9GYmIirr/+ejgcDlitVmRnZ8Nm4/dsGkWtWrXgdDqxefNmbNu2DdOmTYPT6cS2bduwadMmtG7dGs2bN0fz5s1Rt25dhsQowLBBRIZ27NgxzJ8/H2lpafjpp58gIjCZTHA4HADg7a5n97xx1K5d2zuk5XmdAPdrtW7dOmzatAl2ux2JiYnYuXMnKlasqFeppBGGDSIytK1bt+LBBx8EAO8BzNdVRK0G+4K2aFarVq2A92dnZ8NsNuPf//43g0aU4JwNIjK0rl274plnnoHJFHh3xZ4N46hRo0bAoRGz2YzatWvjoYce0rAq0hPDBhEZ3nPPPYcOHToE7L1g2DCOmJgYVKhQwe/9TqcTH3zwAXujogjDBhEZnslkwsyZM5GUlASz2ezzMbGxsRpXRYHUqVPH5+1WqxWDBw9Gp06dNK6I9MSwQURhITk5GampqX6vpcGwYSzXXnstLJb80wItFgumTJmiQ0WkJ4YNIgobnTp18jt/g2HDWGrVqpWvF8psNuPFF19EpUqVdKqK9MKwQURhZdKkSejYsWO+62rExcXpVBH5Urt27VxXETWbzahVqxYefvhhHasivTBsEFFY8czfKFmyZK5PzgwbxlKrVq1cQ15OpxPTpk3jpNAoxbBBRGEnOTkZaWlpuQ5m8fHxOlZEedWuXdv7f04KJYYNIgpLN910E5599lmYzWYoisJTXw2mbNmySEhIAMBJocSwQURhbOLEiejYsSNEhBNEDah69eoAgBdeeIGTQqMcL1dORCE3YMAAzdYVHx+PmJgYrFixQtP1FteECRPQunXrIv/966+/jjVr1oSwotA7d+4cEhMTsXr1aqxdu1bz9bdu3RoTJkzQfL2UH3s2iCjk5syZg/T0dE3WFRsbi1atWvm8poNRzZkzB4cPHy7WMtasWaPLAbwwPN/OW9Cl5tWwdu1aw4exaBI+704iCivjx4/HwIEDNVtfeno6qlSpotn6iiNUX6neqlUrpKWlhWRZajh48KB3KEVr4dTLFQ3Ys0FEESFcgkY00StokPEwbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVVn0LoCISA+Konj/LyI6VhK5PNuY25fYs0FEUUdRFIiI9ydn8KDQYcggD4YNIoo6PAgSaYvDKEQUMXJ22wczTMJu/sIr7DYmAtizQUQRJOcBz/P/QAdBDqMUXmG3MRHAng0iCmOBPll75mUU9DgKjNuYQoFhg4jClq+DmqenwtcncCo8bmMKBYYNIoo6eYdNeKBUh2c75w0mFH0YNogo4hR0YOOBr/iC2YbczuTBCaJERESkKoYNIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqcqidwFEFJneeOMNpKWl6V1GsTidTpjNZr3L8Gvt2rUYMGBAsZdjt9thtVpDUJFxrF27Fq1atdK7DPoLwwYRhVz//v31LqHY/vjjD1y4cAFt27YN+bL79++PqlWrFmsZrVu3Dkktp06dwqpVq9CpUyeULFkyJMs0glatWoVsG1HxKSIiehdBRGQ0K1asQKdOnbB8+XJ07txZ73JUce7cOTRr1gz16tXD4sWLoSiK3iVRZEpj2CAi8qN79+44c+YM1q1bF5EH4hEjRuDbb7/F5s2bkZKSonc5FLnSOEGUiMiPV199Fb/++ivmzJmjdykhN2fOHHzxxRf46KOPGDRIdezZICIKYMSIEVi9ejV27NgBm82mdzkhkZ6ejiZNmmD48OF466239C6HIh+HUYiIAjlw4ADq1auH119/HQ888IDe5RSby+XCzTffjMzMTGzcuBFxcXF6l0SRj8MoRESB1KhRAw888ACee+45nD9/Xu9yiu3ll1/GmjVr8OWXXzJokGYYNoiICjBx4kQ4nU68/vrrepdSLL/++iuef/55vPzyy2jatKne5VAU4TAKEVEQXn75Zbz00kvYvXt3WE6ozMrKwg033IBq1aph2bJlEXl2DRkWh1GIiILx6KOPonTp0njhhRfy3ZednY0TJ07oUFXwxo0bh8zMTHz00UcMGqQ5hg0ioiDExcVh0qRJmD59Onbs2AEAEBHMnDkTdevWxcyZM3WuENi2bRsGDhyIM2fO5Lp93rx5+OijjzBt2rRiX7mUqCgYNoiIgnTnnXfi2muvxaRJk/D999+jWbNmGDZsGA4fPuwNIHpasmQJ0tLS0KRJE/zyyy8AgCNHjuDee+/FfffdF5LvUSEqCs7ZICIqhHfeeQdPPvkkLl26BIvFAofDAQBo06aN9wCvlw4dOmDVqlUwmUwQEfzzn//E6tWrcejQIfz2228oUaKErvVR1OJ1NoiIgnH48GE8//zz+Pjjj2E2m2G323PdX7p0aZw+fVqn6oDz58+jbNmy3vADAGazGfHx8fj000/Rp08f3WqjqMcJokREgZw6dQoTJkxA7dq18emnn8LlcuULGgBw5swZnDp1SocK3b777js4nc5ctzmdTly+fBnDhg3D9OnTdaqMiHM2iIgCOnnyJFJTU+F0On2GjJz0nLexZMkSWCyWfLc7HA5cvnwZY8aMQb9+/fJNHiXSAsMGEVEA1157LTZs2IB69erBarX6fZzFYtEtbIgIFixYEDAMiQjmzp2LO+64I18PCJHaGDaIiApQsWJF/PLLL2jevLnP3gMAMJlMuoWNzZs3B3Wdj379+mH+/Pkwm80aVEX0N4YNIqIglCpVCj/++CN69erl82CdnZ2NLVu26FAZsHjxYr+9LlarFQkJCfj8888xZ84clC5dWuPqiBg2iIiCFhMTg9TUVIwePdrnVTi3bt2qQ1XAggULcp2F4mEymdCsWTP88ccfGD58uA6VEbkxbBARFYLZbMa0adMwceLEfPdlZGTg4sWLmtZz5swZbNy4ETmvYmCxWGAymTBx4kSsWbMGtWrV0rQmorwYNoiICklRFPz73//G22+/DUVRvL0cIoI///xT01qWLVsGl8vl/d1isaB69epYv349nnvuOc7PIENg2CAiKqKHHnoIX375JcxmM0wmExRFwfbt2zWtYfHixd71A8Ddd9+NP/74AzfccIOmdRAFwrBBRFQMgwcPxrJlyxAbG6t5z4bL5cKiRYvgcDhQsmRJzJ8/Hx988AHi4+M1q4EoGLxcORGRH+kAFgD4HsBGACcBXPb34I0bge7dgfbtgfnztSlwwwagRQuga1fgs8+AlBQoABIB1ATQCkB3ALcCiNOmIiJf+N0oRER5/QHgXwAWw9396/rrp0D79gGPPAJ8842K1eUweTKgKMATTwCm/B3VVgAOuMPHAwCeBpCkTWVEOTFsEBF5nAbwDIBpcIeM/CeTBuHECaB8+VCW5d/Fi0BiYlAPtcIdOl4FcBc4hk6aYtggIgKANQBuB3ABQOBvQAlfyl8/HQHMBVBK12ooivBbX4mIZsJ9AD6HyA0aACBwDwetAtAcwF59y6EowrBBRFHtQwDD4A4Z0fL1ZHYAhwDcCAYO0gbDBhFFreUAxsL9iT/a2OEeMuoO4Ky+pVAUYNggoqi0B0AfRGfQ8HDA3cPRB0GebUNURAwbRBSVxgC4Ah5k7QB+AjBD70IoojFsEFHU+RruIZRIngxaGALgCXA4hdTDsEFEUcUJYBy488tJAFwEMFnvQihi8f1GRFFlEYCD4PBJXnYA7yPA5diJioFhg4iiyhcALHoXYVAXACzVuwiKSAwbRBQ1BMASFPEy5FHAAoYNUgfDBhFFjX1wf3on3+wA1uldBEUkhg0iihr79S4gDHAbkRoYNogoapzXu4AwkKV3ARSRGDaIKGpwrkbBouX7YUhbDBtERHpRFL0rINIEwwYRkV4kmr+ZhaIJwwYRERGpimGDiIiIVMWwQURUHIqSe+6Fr9993Z7zvkDLC2Y5RAbHsEFEVBx5513k/D1nQBBx/+S8LS9fjytoOURhgGGDiEgtnuDhayJo3ts8QSLn/Z5AEWg5RGGAYYOIiIhUxbBBREREqmLYICIKpUBzMgLxNU+DwyYUIRg2iIiKyxMUcgYEX5NBfZ1RkjNg+FqOv7/P+7dEBmbRuwAiooiQd3Jn3tt8/V7Qcvzdxh4PCjPs2SAiIiJVMWwQERGRqhg2iChqcIZDwbiNSA0MG0QUNRL1LiAMxOldAEUkhg0iihoV9S4gDJTXuwCKSAwbRBQ16gMw612EgZkAXK93ERSRGDaIKGrEAGgFzkvwxwSgi95FUERi2CCiqDIA7N3wxwWgl95FUERi2CCiqDISDBu+WADcCqCK3oVQRGLYIKKoUhrAU+Dlk/NyAfg/vYugiMWwQURR5x9wn3XBHaCbFcD9AJrqXQhFLL7XiCjqxAN4BwC/YcQ9pFQCwAt6F0IRjWGDiKJSX7iHU6J9J2gC8A2AsnoXQhEt2t9nRBTFXoT77Itonb+hAPgUQGu9C6GIx7BBRFHLBOBLAD0RXTtDE9zDJ9MADNG5FooO0fT+IiLKJw7AVwCehPuTfqTvFK0AEgAsA3CvzrVQ9Ij09xURUYEUAC/BHTqSEZnDKp6dfXsAvwG4WcdaKPowbBAR/aUPgD0A/gX3pc0tCP9Lm3uCU1UAXwNYDqCOfuVQlFJEhGd/ERHlcQbAZwDSAKwF4FRjJdnZQFYWULq0GktHSbivCjr8r3955VTSSRrDBhFRAa4C2A4gA8CFEC53TWoq3hg0CKkh3A2bAJQCUPOvn3DvmaGIkBaJQ5NERCEVA+A6FZbriRgDVFg2kZFwzgYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqXmeDiEgDDocDFy7kviRYVlYWAODMmTO5blcUBaVKldKqNCLVMWwQEWng9OnTqFy5MhwOR777ypQpk+v3zp07Y/ny5VqVRqQ6DqMQEWmgQoUK6NixI0ymgne7Q4YM0aAiIu0wbBARaWTEiBEFPsZisaBv374aVEOkHYYNIiKN9OnTBxaL/9Fri8WCW2+9Nd+wClG4Y9ggItJIyZIl0aNHD7+Bw+l0Yvjw4RpXRaQ+hg0iIg0NGzYMTqfT530xMTHo0aOHxhURqY9hg4hIQz169EB8fHy+261WK/r374+EhAQdqiJSF8MGEZGGYmNj0b9/f9hstly32+12DB06VKeqiNTFsEFEpLGhQ4ciOzs7121JSUno0qWLThURqYthg4hIYzfffHOuM06sViuGDRsGq9WqY1VE6mHYICLSmNlsxrBhw7xDKXa7nRfyoojGsEFEpIPBgwd7h1JSUlLQpk0bnSsiUg/DBhGRDlq3bo0qVaoAAEaOHBnUZcyJwhW/iI2IokZ6ejpWr16tdxlezZs3R3p6OsqWLYvU1FS9y/EaOHCg3iVQhFFERPQugohIC6mpqRg0aJDeZRgeDwsUYmnstyOiqCMihvmZO3eu7jV4fmbPnq33S0MRimGDiEhHffr00bsEItUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVTFsEBEZlKIoepdAFBIMG0REBsSgQZGEYYOIyGAURYGI6F0GUchY9C6AiCgaeHoqRCRXrwVDBUUD9mwQEWkgZ6jw/N9X0GCvBkUi9mwQEakgUO9FzkDh63E5b2P4oEjAsEFEpAJfAcEzhOKrl8PX7wwaFCk4jEJERESqYtggItJQYXoq2KtBkYJhg4iIiFTFsEFERESqYtggIiIiVTFsEBERkaoYNoiIiEhVDBtERESkKoYNIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVWfQugIhIa6mpqXqXYEhr1qzRuwSKUAwbRBR1Bg0apHcJRFFFERHRuwgiomiUmpqKQYMGgbthinBpnLNBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKri5cqJiDRw9OhRVKtWDU6nM999iqLk+r1Dhw5YuXKlVqURqY49G0REGqhUqRLatWuXL1j4MmTIEA0qItIOwwYRkUaGDx8OkynwbtdsNmPAgAEaVUSkDYYNIiKN9O/fP2DYMJvN6Nq1K8qWLathVUTqY9ggItJIqVKlcMstt8Bi8T1dTkQwYsQIjasiUh/DBhGRhoYNG+ZzkigAWK1W9OrVS+OKiNTHsEFEpKGePXsiNjY23+0WiwV33HEHEhMTdaiKSF0MG0REGoqPj0ffvn1htVpz3e50OjFs2DCdqiJSF8MGEZHGhg4dCrvdnuu2xMREdOvWTaeKiNTFsEFEpLFu3bqhdOnS3t+tVisGDRqEmJgYHasiUg/DBhGRxiwWCwYNGgSbzQYAsNvtGDp0qM5VEamHYYOISAdDhgxBdnY2AKB8+fLo2LGjzhURqYdhg4hIB+3bt0fFihUBACNGjCjwyqJE4YxfxEZEYWAzgLUAtgE4A+CqvuWEgKIAw4eXxKuvHsPgwZsBDNS7pBApASAZQFMAN/31f4p2ioiI3kUQEeWXCeB9ANMAHIP7s5EJgAOAS8e6QmfTJmDAAGDPHr0rCSULADMAOwABcCOAhwEMBj/fRq00hg0iMhg7gLcBPAsg+6/fI9eXXwKRPTfUMzxUF+7weJN+pZBeGDaIyEg2A+gH4AAA35f0pnBlhvs1HQjgIwC8UmoUSeOMJCIyiIUAWgM4CAaNSOR5TecCaAXgsI61kNYYNojIAN4HcAfcEz8d+pZCKnMA2Angergn/FI0YNggIp0tBPAg3JM+I2PiJxXEAfdZRd3hnghMkY5hg4h0tA3usxQUvQshzTnhDhrdAVzSuRZSG8MGEenEDqA33GecsEcjOtkBbAXwgt6FkMoYNohIJ2/BfdYJ52hENweA1wDs0rsQUhHDBhHpIBPAJPCsE3JTAIzXuwhSEcMGEengPbiHT4gA93DKYvDslMjFsEFEGhMA0xHpVwalwrICmKF3EaQShg0i0tgfcH/XCVFOdgBf6V0EqYRhg4g0tgb8Qi7y7QCA03oXQSpg2CAije0Adz3k3596F0Aq4DueiDR2Cjzdlfw7qXcBpAKGDSLSGC/iRYFc0bsAUgEHTonI0BQfVzIXCf06CrvMYP7GV+1A6OtXU1G2DVFeDBtEZGieA52aB72iLDeYv/FXezgdwMOlTjI2DqMQEQXBXy9FUYiEdnlERsewQURERKriMAoRRRRPj4Gv7n9/8z98DXPkvT/vsgv6m4JqLKi+vPcXVHve5x3ssgp6Dr5q9beN/dVCxLBBRBEj54GxoHkSeQ+M/pYB5A8Xgf7G1+95/8Zf0PC3jIJqD/a5+nt+/m73FXAKWlaguil6cRiFiCJC3gNbsPMiAh0M/d1X0AHU1/0iwfV4eH6C4Vmev/BS0LIKen7+ei5yPi5vLwbDBfnCng0iohzUHgbwNQST875QrifQ+vM+hsMfpCaGDSIKa8F21eft6QimR8MowwCFqT3Y5QG+eyp83U5UXBxGIaKwlfOgmPeA7G/eQkHDGQUNYQQzxFHQY4IZ4vH1XIIZiglmWQU9xp+CtjGRP+zZICJDC+ZA6VHQUEDev/c3yTLYsy1yhgB/Z3LkXbevcBRoGYWtPe99gZZV0O2+lu9vG+d9rL/aKDoxbBCRoRX2QBXMmR6Bbg9mUmiw8y0KO5G0uLUHs+7C3F6cxzJgUE4cRiEiIiJVsWeDiCKevzkS4fDpO5xrJ/Jg2CCiqBDOB+dwrp0I4DAKEWkuFtz1kH9xehdAKuA7nog0VgbsVCX/yupdAKmAYYOINFYfgEvvIsiw6uldAKmAYYOINNYKgEPvIsiQasDd80WRhmGDiDTWBEBFvYsgw7EC6Kd3EaQShg0i0pgC4D64Dy5EHnYAd+ldBKmEYYOIdPAAAJveRZBhWAHcBqCh3oWQShg2iEgHFQA8D8CsdyFkCALgDb2LIBUxbBCRTh6Ge0IgT4ONbhYAjwOoq3chpCKGDSLSiRXA13APp3BXFJ2sABoBmKh3IaQyvsOJSEcNAcyCuxudoosZ7uG0ZQDida6F1MawQUQ66wngXbh3R9wlRQcLgNJwB40KOtdCWuA7m4gMYCyA+QBiwDkckc4C4FoAv4Fnn0QPhg0iMoieANYAqA6epRKJPK9pXwBrAVTVsRbSGsMGERlIUwA7ALwCIAG88Fck8AyPXQPgRwCzASTqWhFpj2GDiAzGCmACgH0A/oW/L21uQajPXLl4MWSLClsiQFZWKJdogXs4zAT31WJvBPAZgC0AbgrliiiMKCLCaeBEZHCb4e563w7gDIArxV7ijh3n0anTSsyd2wZt2kTv15o//fQWrFt3GsuWtYfVGoogVwJAMty9VDf99X+KcmkMG0QUdU6dOoVWrVqhQoUK+OGHHxATE6N3SbrZvn07Wrdujf79++Ojjz7SuxyKTGkcRiGiqOJ0OjFgwAA4HA7MmzcvqoMGADRo0ACfffYZPvnkE3zwwQd6l0MRimGDiKLKSy+9hNWrV2Pu3LmoUIHXeACA3r17Y+LEiRg/fjy2bNmidzkUgTiMQkRRY9WqVejUqROmTJmCRx55RO9yDMXlcqFr1644fPgwfv31V5QoUULvkihycM4GEUWHy5cvo3HjxmjQoAG+/vprKIqid0mGk56ejqZNm2LkyJF44w1+CyuFDOdsEFF0+Pe//40TJ07g/fffZ9Dwo0qVKnj11Vfx1ltvYe3atXqXQxGEPRtEFPH++OMPNG/eHG+++SbGjh2rdzmGJiK4+eabcfbsWWzYsAFmM6/mSsXGYRQiiny33norTp06hbVr18JkYoduQXbu3InGjRtj2rRpuOuuu/Quh8IfwwYRRY633noLv/zyC9q1a4f27dujcePGWLNmDdq3b4/vv/8eN998s94lho0xY8Zg6dKl2LlzJ+x2O9auXYtVq1bh559/xrvvvot69erpXSKFjzR+vSIRRQyr1YrU1FTMnTsXDocD8fHxKFu2LGrXrg2bzYYrV64gNjZW7zINLzMzEzfeeCM++eQTNGzYEAcOHIDT6YTFYoHD4UC5cuX0LpHCDMMGEUWMypUrAwAcDgcA4NKlS7h8+TLMZjM6dOgAi8WCZs2aoUuXLnjkkUdQsWLFQIuLKitXrsTnn3+OFStWYO/evVAUBTExMdi7d6/3MQ6HA1arFWXLRu/l3aloOHhJRBGjUqVK+W4TEW/4cDgc+PXXX7Fo0SKUL19e6/IMrUyZMvjkk0+84UJEcOVK/u+gKV++PM/moUJj2CCiiOHp2QhEURTMmDEDFgs7dnNq3LgxnnrqqQLPPqlatapGFVEkYdggooiRnJwc8GBpsVjw2GOP4YYbbtCwqvAxceJE1KxZ0+82NJlMqF69usZVUSRg2CCiiGEymfzOJzCZTEhOTsakSZM0rip8xMTE4KOPPoLL5fJ5v8ViQZUqVTSuiiIBwwYRRRR/QykulwszZsxAQkKCxhWFlw4dOuDee+/1O8zka14MUUEYNogoolSvXj3fBEar1YpRo0aha9euOlUVXl599VWULVs23wXQ7HZ7UPNiiPJi2CCiiFKlShVYrVbv74qiICEhAa+99pqOVYWXkiVL4r///W++4RQRYdigImHYIKKIUrly5Vw9GyKCDz74gBeiKqTbb78dffr0yRXcgODO+CHKi2GDiCJKpUqVYLfbAbiHT7p3745BgwbpXFV4eu+99/JdcZUXQqOiYNggoohSuXJlb/e/xWLBhx9+qHNF4SslJQVTpkzx9hSVKFECcXFxOldF4Yhhg4giSs5u/ldeeYUXoSqme+65B23btgXgDh9ERcGwQUQRxXNqZosWLfDAAw/oXE34UxQFH330EWw2G6pVq6Z3ORSm+BXzRBTQgAEDMGfOHL3LICoQD2eGxa+YJ6KCtWrVCuPHj9e7jKCtXr0abdq00buMQhs0aBAeffRRtG7dWu9S8nE6ndiwYQNatWqldyn5rFmzBlOnTtW7DAqAPRtEFNCAAQMAAGlpaTpXEvkURcHs2bMxcOBAvUsJK6mpqRg0aBB7NowrjXM2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqYtggIiIiVTFsEBERkaoYNoiIiEhVDBtERESkKoYNIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqLHoXQESRRVGUfLeJSJGX4/lbRVGKtJxAy81Za0HLzltPqB5bVMXdzsHWGOhxntekMK9VqF5HCi/s2SCikPIcSETE++PrwBjscvz9nlew68i5nJy1FraeUD22qIq7nYOtMdDj/G2/nL/nrYlBIzoxbBAREZGqGDaISDOKong/6eb8N++n37y3+fvd17L8/Y2/24KtN5TLVVug7VzU51PQa1LQuoNdhtG2JYUGwwYRqSLnwS1vd3vOsf68QwA5b/PI2y3v7/68yy9ouQXxNTwRaLl6HCQLu50Lej7B3uZvOwZ6Xfy9jsV5jSg8cIIoEakimLF+IPi5FoVdRygO/MEuQ89P4sFu58LQ6vn4ms+hxeRa0h7DBhHpSq2DSnEOtDl7Azy3qbEuIyrM8y4uX9tNrx4iUhfDBhGFVN4u8UD3BdN9n/f/gU5ZLc5y8/L1eF+fvH2tK9A2CJXibue8tfp7PoFOb835r6//+xrO8fW7v1oocjBsEFFIFbZbP9jbCvs3RVluUWsr7Gm6oRCK7VyYxxb1Ofqbe1OcZVL44QRRIiIiUhXDBhEREamKYYOIiIhUxbBBREREqmLYICIiIlUxbBAREZGqGDaIiIhIVQwbREREpCqGDSIiIlIVwwYRERGpimGDiIiIVMWwQURERKpi2CAiIiJVMWwQERGRqhg2iIiISFUMG0RERKQqhg0iIiJSFcMGERERqYphg4iIiFTFsEFERESqUkRE9C6CiIxrwIABmDNnjt5lEBWIhzPDSrPoXQERGduECRMwYMAAvcsgojDGng0iIiJSUxrnbBAREZGqGDaIiIhIVQwbREREpCoLgDS9iyAiIqKItfb/AcDO/og4f1P2AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "img = Image.open(\"graph2.dot.png\")\n", - "img" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## With javascript" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import RenderJsDot\n", - "RenderJsDot(dot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example with FeatureUnion" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.pipeline import FeatureUnion\n", - "from sklearn.preprocessing import MinMaxScaler, PolynomialFeatures\n", - "\n", - "model = Pipeline([('poly', PolynomialFeatures()),\n", - " ('union', FeatureUnion([\n", - " ('scaler2', MinMaxScaler()),\n", - " ('scaler3', StandardScaler())]))])\n", - "dot = pipeline2dot(model, columns)\n", - "RenderJsDot(dot)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Compute intermediate outputs\n", - "\n", - "It is difficult to access intermediate outputs with *scikit-learn* but it may be interesting to do so. The method [alter_pipeline_for_debugging](find://alter_pipeline_for_debugging) modifies the pipeline to intercept intermediate outputs." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Pipeline(steps=[('scaler1', StandardScaler()),\n", - " ('union',\n", - " FeatureUnion(transformer_list=[('scaler2', StandardScaler()),\n", - " ('scaler3', MinMaxScaler())])),\n", - " ('lr', LinearRegression())])" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from numpy.random import randn\n", - "\n", - "model = Pipeline([('scaler1', StandardScaler()),\n", - " ('union', FeatureUnion([\n", - " ('scaler2', StandardScaler()),\n", - " ('scaler3', MinMaxScaler())])),\n", - " ('lr', LinearRegression())])\n", - "\n", - "X = randn(4, 5)\n", - "y = randn(4)\n", - "model.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Pipeline\n", - " StandardScaler\n", - " FeatureUnion\n", - " StandardScaler\n", - " MinMaxScaler\n", - " LinearRegression\n" - ] - } - ], - "source": [ - "print(pipeline2str(model))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now modify the pipeline to get the intermediate outputs." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "from mlinsights.helpers.pipeline import alter_pipeline_for_debugging\n", - "alter_pipeline_for_debugging(model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The function adds a member ``_debug`` which stores inputs and outputs in every piece of the pipeline." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "BaseEstimatorDebugInformation(StandardScaler)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.steps[0][1]._debug" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0.73619378, 0.87936142, -0.56528874, -0.2675163 ])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.predict(X)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The member was populated with inputs and outputs." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "BaseEstimatorDebugInformation(StandardScaler)\n", - " transform(\n", - " shape=(4, 5) type=\n", - " [[ 1.22836841 2.35164607 -0.37367786 0.61490475 -0.45377634]\n", - " [-0.77187962 0.43540786 0.20465106 0.8910651 -0.23104796]\n", - " [-0.36750208 0.35154324 1.78609517 -1.59325463 1.51595267]\n", - " [ 1.37547609 1.59470748 -0.5932628 0.57822003 0.56034736]]\n", - " ) -> (\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " )" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.steps[0][1]._debug" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Every piece behaves the same way." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(0,)\n", - "BaseEstimatorDebugInformation(Pipeline)\n", - " predict(\n", - " shape=(4, 5) type=\n", - " [[ 1.22836841 2.35164607 -0.37367786 0.61490475 -0.45377634]\n", - " [-0.77187962 0.43540786 0.20465106 0.8910651 -0.23104796]\n", - " [-0.36750208 0.35154324 1.78609517 -1.59325463 1.51595267]\n", - " [ 1.37547609 1.59470748 -0.5932628 0.57822003 0.56034736]]\n", - " ) -> (\n", - " shape=(4,) type=\n", - " [ 0.73619378 0.87936142 -0.56528874 -0.2675163 ]\n", - " )\n", - "(0, 0)\n", - "BaseEstimatorDebugInformation(StandardScaler)\n", - " transform(\n", - " shape=(4, 5) type=\n", - " [[ 1.22836841 2.35164607 -0.37367786 0.61490475 -0.45377634]\n", - " [-0.77187962 0.43540786 0.20465106 0.8910651 -0.23104796]\n", - " [-0.36750208 0.35154324 1.78609517 -1.59325463 1.51595267]\n", - " [ 1.37547609 1.59470748 -0.5932628 0.57822003 0.56034736]]\n", - " ) -> (\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " )\n", - "(0, 1)\n", - "BaseEstimatorDebugInformation(FeatureUnion)\n", - " transform(\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " ) -> (\n", - " shape=(4, 10) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861 0.93149357\n", - " 1. 0.09228748 0.88883864 0. ]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 0.\n", - " 0.04193015 0.33534839 1. 0.11307564]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065 0.18831419\n", - " ...\n", - " )\n", - "(0, 1, 0)\n", - "BaseEstimatorDebugInformation(StandardScaler)\n", - " transform(\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " ) -> (\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " )\n", - "(0, 1, 1)\n", - "BaseEstimatorDebugInformation(MinMaxScaler)\n", - " transform(\n", - " shape=(4, 5) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 ]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065]\n", - " [ 1.06462242 0.49297719 -0.91287374 0.45636275 0.27503446]]\n", - " ) -> (\n", - " shape=(4, 5) type=\n", - " [[0.93149357 1. 0.09228748 0.88883864 0. ]\n", - " [0. 0.04193015 0.33534839 1. 0.11307564]\n", - " [0.18831419 0. 1. 0. 1. ]\n", - " [1. 0.62155016 0. 0.87407214 0.51485443]]\n", - " )\n", - "(0, 2)\n", - "BaseEstimatorDebugInformation(LinearRegression)\n", - " predict(\n", - " shape=(4, 10) type=\n", - " [[ 0.90946066 1.4000516 -0.67682808 0.49311806 -1.03765861 0.93149357\n", - " 1. 0.09228748 0.88883864 0. ]\n", - " [-1.20030006 -0.89626498 -0.05514595 0.76980985 -0.7493565 0.\n", - " 0.04193015 0.33534839 1. 0.11307564]\n", - " [-0.77378303 -0.99676381 1.64484777 -1.71929067 1.51198065 0.18831419\n", - " ...\n", - " ) -> (\n", - " shape=(4,) type=\n", - " [ 0.73619378 0.87936142 -0.56528874 -0.2675163 ]\n", - " )\n" - ] - } - ], - "source": [ - "from mlinsights.helpers.pipeline import enumerate_pipeline_models\n", - "for coor, model, vars in enumerate_pipeline_models(model):\n", - " print(coor)\n", - " print(model._debug)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/sklearn_c/README.txt b/_doc/notebooks/sklearn_c/README.txt deleted file mode 100644 index 8661a647..00000000 --- a/_doc/notebooks/sklearn_c/README.txt +++ /dev/null @@ -1,10 +0,0 @@ -Extensions to scikit-learn involving Cython -=========================================== - -Experiments with :epkg:`scikit-learn` and :epkg:`cython`. -The first experiment implements a criterion for -a :epkg:`sklearn:tree:DecisionTreeRegressor`. This -code is based on the API in -`Criterion `_ -which changed in version 0.21. - diff --git a/_doc/notebooks/sklearn_c/piecewise_linear_regression_criterion.ipynb b/_doc/notebooks/sklearn_c/piecewise_linear_regression_criterion.ipynb deleted file mode 100644 index 87ef236d..00000000 --- a/_doc/notebooks/sklearn_c/piecewise_linear_regression_criterion.ipynb +++ /dev/null @@ -1,952 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Custom DecisionTreeRegressor adapted to a linear regression\n", - "\n", - "A [DecisionTreeRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) can be trained with a couple of possible criterions but it is possible to implement a custom one (see [hellinger_distance_criterion](https://github.com/EvgeniDubov/hellinger-distance-criterion/blob/master/hellinger_distance_criterion.pyx)). See also tutorial [Cython example of exposing C-computed arrays in Python without data copies](http://gael-varoquaux.info/programming/cython-example-of-exposing-c-computed-arrays-in-python-without-data-copies.html) which describes a way to implement fast [cython](https://cython.org/) extensions." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Piecewise data\n", - "\n", - "Let's build a toy problem based on two linear models." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "import numpy.random as npr\n", - "X = npr.normal(size=(1000,4))\n", - "alpha = [4, -2]\n", - "t = (X[:, 0] + X[:, 3] * 0.5) > 0\n", - "switch = numpy.zeros(X.shape[0])\n", - "switch[t] = 1\n", - "y = alpha[0] * X[:, 0] * t + alpha[1] * X[:, 0] * (1-t) + X[:, 2]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABJVElEQVR4nO29e3xV9Z3v/f6unYuiASN3CAHxQmli6wAiTG3VWjvqC4tFO1769NRpLXoe+5zp68ycaU89Qxk6M8/0TDtjn1NnFG2fmc4o3sB6OdoqXlA7gpA8XhIRwUhCIASIASIgSfb+PX+sS9Zae62dvZOdZCf7+369eLEva6+19s7en993fa9ijEFRFEUZ+1gjfQKKoijK8KCCryiKUiSo4CuKohQJKviKoihFggq+oihKkaCCryiKUiSo4CvDgoh8LCJzC+A8figi94/0eQw3InKLiLw20uehjCwlI30CythBRHYDU4EkcAx4FviuMeZjY8zpI3luLsaYvx3pc1CUkUItfCXfXOOI+wJgEfA/Rvh8FEVxUMFXhgRjzF5sC78WQESMiJzj3C4XkZ+KSIuItIvIPSJyqvtaEVkuIm+KyFER+UBErnQenyAivxSRNhHZKyJ/LSIJ57lmEVno3P66c7wa5/63ReQ3zu3VIvLvzu1TROTfRaRDRA6LyFYRmdrfscKIiCUiP3DOtUNEHhGRM53n/llE1vu2/YmIvCA2lSLytIgcFJFO53aVb9uXneP+h+MSe0pEJorIA85ns1VE5vi2NyLyX0SkSUQOicjfi0jkb1xEPiUiz4vIRyKyQ0T+2Pfc1SLyroh0Oe/9z7P9uyuFjQq+MiSIyCzgauD/i3j674DzgAuAc4CZwCrndYuBXwP/DTgD+AKw23ndvwC9zmv+APgycKvz3CbgUuf2JUCT81r3/qaI8/gmMAGYBUwEbgdOZHGsMP8XcK1znBlAJ3C389yfAec7PvTPA98GvmnsniYW8P8Cs4Fq59i/CO37RuAb2J/R2cDrzmvOBLYDPwpt/1XsK6sFwHLgW+GTFZHTgOeBB4EpzjH+SUQ+7WzyS+A2Y0wF9oL9Ysz7VkYbxhj9p//y8g9bmD8GDgPNwD8BpzrPGWzxFGz//tm+1y0FPnRu3wv8Y8S+pwIn3f05j90EvOTc/jbwpHN7O7Y4P+TcbwYWOLdXA//u3P4W8B/AZ3I5VsS5bQcu992fDvQAJc79i4CPnPO4KcPndwHQ6bv/MnCn7/7PgGd9968B3vTdN8CVvvv/J/CCc/sW4DXn9g3Aq6Fj3wv8yLndAtwGjB/p75T+y+8/Ddoq+eZaY8zGDM9PBsYBdSLiPiaA6y6ZBTwT8brZQCnQ5nudBexxbm8Cfioi0519PQL8yHF5TADejNjnvznHe0hEzgD+Hbgzi2NFndvjIpLyPZbEXjj2GmO2iEgTtjX9iPemRcYB/whcCVQ6D1eISMIYk3Tut/v2eSLifjgY7j/HZuwrjqjzvUhEDvseK8H+PACuw469/J2IvA38wBjzesR+lFGGCr4y3BzCFqoaY/v5w+zBdl1EPX4SmGSM6Q0/aYzZJSLHsd0rrxhjjorIfmAltmWbinhND/BXwF85C8MzwA7n/9hjxZzbt4wxv496UkTuAMqBfcBfAP+389SfAfOAi4wx+0XkAmwXmETtJ0tmAY3O7WrnmFHnu8kYc0XUDowxW4HlIlIKfBd7kZo1iHNSCgT14SvDiiO89wH/KCJTAERkpoj8kbPJL4E/EZHLnWDoTBH5lDGmDXgO+JmIjHeeO1tELvHtfhO2QLn++pdD9wOIyGUicr4TjD2K7YZJZXksP/cAfyMis539ThaR5c7t84C/Bv4PbF/8XzjCDlCBvfgddoK8YX/8QPhvTjB4FvCnwMMR2zwNnCci3xCRUuffhSIyX0TKnKD3BGdBPAqkLZbK6EQFXxkJvg/sAjaLyFFgI7alizHmDeBPsF0dR7DFerbzuv8ElAHvYgdGH8P2l7tswhbRV2Luh5nm7OMoth9+E31ujf6O5efnwJPAcyLSBWzGdpmUYLuJfmKMecsYsxP4IfBvIlIO3AWcin3Vsxn4bcz+c+EJoA7bhfW/sRfQAMaYLuwg9I3YVwD7gZ9gX4WAvTDtdv42twNfz8N5KQWAGKMDUBRlLCAiBjjXGLNrpM9FKUzUwlcURSkSVPAVRVGKBHXpKIqiFAlq4SuKohQJBZ2HP2nSJDNnzpyRPg1FUZRRQ11d3SFjzOSo5wpa8OfMmcO2bdtG+jQURVFGDSLSHPecunQURVGKBBV8RVGUIkEFX1EUpUhQwVcURSkSVPAVRVGKBBV8RVGUIkEFX1EUpYCoa+7k7pd2Udfcmfd9F3QevqIoSjFR19zJ1+/fTHdvirISiwduXcLC2ZX9vzBL1MJXFEXph6G0uv1sbuqguzdFykBPb4rNTR153b9a+IqiKBkYaqvbz5K5EykrsejpTVFaYrFk7sS87l8FX1EUJQNRVvdQCf7C2ZU8cOsSNjd1sGTuxLwfRwVfURQlA0NtdYdZOLtyyBYUFXxFUZQMDLXVPZyo4CuKovRDnNVd19w5qhYCFXxFUZQBEA7mrlpWQ+fx7oIWfxV8RVGUAeAP5nb3pFj1RAMpY4Y8k2cwaB6+oijKAHCDuQkByxJSxgxZ/ny+UAtfURRlAPiDuZXjyljzdGPGTJ5C8Per4CuKogwQfzB33rSKWEEfzuKtTKjgK4qi5IFM+fPDWbyVCfXhK4qiDDF+f/9wFG/FoRa+oihjnnz7z3PdX6EUb6ngK4oypsm3/3yg+xvKlgnZoi4dRVHGNPluOTzULYyHEhV8RVFGJdn2qM+3/7xQ/PEDQYwx2W8s8itgGXDAGFPrPHYm8DAwB9gN/LExJu0vICLfBP6Hc/evjTH/2t/xFi1aZLZt25b1+SmKUhzk6lYZaR/+cCIidcaYRVHP5Wrh/wtwZeixHwAvGGPOBV5w7odP4EzgR8BFwGLgRyJSWJ+SoiijhlzdKgtnV3LHZefkTZzzvb/hIifBN8a8AnwUeng54Frr/wpcG/HSPwKeN8Z85Fj/z5O+cCiKomTFaHarjCT5yNKZaoxpc27vB6ZGbDMT2OO73+o8loaIrARWAlRXV+fh9BRFGWsUSprjaCOvaZnGGCMi2QcFovexFlgLtg8/LyemKMqYoxDSHEcb+cjSaReR6QDO/wcittkLzPLdr3IeUxRFUYaJfAj+k8A3ndvfBJ6I2OZ3wJdFpNIJ1n7ZeUxRFEUZJnISfBFZB7wOzBORVhH5NvB3wBUishP4knMfEVkkIvcDGGM+An4MbHX+rXEeUxRFUYaJnPLwhxvNw1cURcmNfObhK4qijFmyrd4drWjzNEVRFApnSMlQoha+oigK/VfvjgXrXy18RVEU+qp3o+bShq3/Vctq6DzePeqKvlTwFUUZVQxV47JM1bt+67+7N8WqJxpIGTPqXD8q+IqijBqG2s8eV73rt/5FhGTKYBjZ+bQDQX34iqKMGkZq+Ihr/f/XL89jzfJayktHZ+M2tfAVRSl4XDdO5biyWD/7UOO3/udNqxiVjdtU8BVFKWiiAqYN+44gI3hOo7Vxm7p0FEUpaMJunIZ9R3isrpUHt7Rw032bR3Wa5HCjgq8oSkETHnZyqOsk3b0pDHbGzIb61pE+xVGDunQURSlowumS60MCX7jdwAoPFXxFUQqesM/8sW176EkaShPCdQuqct5fIQ8hH0pU8BVFGTEGIrwLZ1eybuXSAQt2MfTMiUMFX1GUEWEwwjuYLJmoXP5iEXwN2mZgLDRLUpRCZTBFVIP5bYaDwKOpcGqwqIUfQzFf9inFxXD7s+OKqCrHlXH3S7v6PY/B/jYz9cwZ66jgx1DMl31K8TDchk1c18nKcWWseboxq/Po77eZzQI2WgunBou6dGIo5ss+pXgY7t404eN1Hu/mjsvOofN4d+R5RLluMv023QXlZ8/t4Ov3a1FWGLXwYyjmyz6leMjUA344j+c+3u10o+w60cOdj7/Do9v20Jvqa0MM9qJxy9I5NLYd5ara6YHf5ob6Vk72pEZlJ8vhYNBDzEVkHvCw76G5wCpjzF2+bS4FngA+dB7aYIxZ09++dYi5ogw9g/Xh5/r6uO0f3NLCqica6E2la1JC4IbF1QFBt4SA+6euuZOb1r5Od9J+fVmJxbrvFF/sLdMQ80Fb+MaYHcAFzoESwF7g8YhNXzXGLBvs8RRFyS+D8WcPJAYQd7zO492kIgxQwXbdCHgtFYA0H/7mpg5vsRDg+oVVRSf2/ZFvH/7lwAfGmOY871dRlAIknzEA163jipJrwd90UTUP3LqEFQuq0p6PcgslBMpLrQFV4I518u3DvxFYF/PcUhF5C9gH/LkxpjFqIxFZCawEqK6uzvPpKYqST/IZA/DHzSrHlUXOjF21rIZnG9qomT6eilNLA8/nEncr1tYKg/bhezsSKcMW8xpjTHvoufFAyhjzsYhcDfzcGHNuf/tUH76iFAaZBHIoxDNqn4NNIfXn/2ebAjoaGVIfvo+rgPqw2AMYY476bj8jIv8kIpOMMYfyeHxFUYaAuNx5V4zzndMeJ+yDqY3x79MSIWVMUdbY5FPwbyLGnSMi04B2Y4wRkcXYsYPhGUapKMqg8Attd2+KVU80kDImr9ax36KPE/Y491E2Vxj+fWIMliUIpuhqbPIi+CJyGnAFcJvvsdsBjDH3ANcD/1lEeoETwI0mX74kRVGGFL/QigjJlMlrnnvUFYQ/J79yXJkn6uGri2zdPOHFIryfYiEvgm+MOQZMDD12j+/2L4Bf5ONYiqIML+Fg6pqnG3MO0maywsNXEM82tHHL0jnc/9qHJFOGv/zNOyBCKmVb5P7c+mzdPFpIaaOVtoqi9IvfTz9vWkXWwlnX3MmG+ta0iln/6/xVtikDr+48xH/sOkTK2NOsko4bBvpGGrqvzyVLqFj75/hRwc+RYk3nUhT/d/+Oy87Javuv37/Zq4wF2wpfX98a+A251veapxp5q/UIYIu8CJHzC/0PqeWeGyr4OaAtk5ViJdfvfl1zJ3dtfD9QGStAwhIeq2ulNxncz8LZldTOnOAJPsCFsyupbznsxQwEIkcaquWePSr4OaAtk5ViJZeWxEDAsrcEShIW1y+sQoB1b7RE7mfFgioerWv13DPfv2q+d+y4QiwlN1Twc2C4OwsqSqHg/+4nEhZ7D5+grrkzMlNmxYIqz7K3gM+dM4nvfek8b9v19a2B35B/sVj3nXT3jAp8/shbpe1QUIiVturDV4qVuADs5qYOfvbcDlLG7mp54+LqgKj7u1luqG/lQNdJplSUs8JxzaibNL8MV6XtqCZbIVd/oVKs+DtS+l0y4V72NTMmsGJBVeD3VNfcyU332cIO9sJQM2NC5OAT/X0NHTrxioFPydEh50qxETVtauHsSlYtq8FyirLWPN3Ijv1dgddtbuqgxxF7sLNwVj3RQNeJHiyRtM6XytCgFj4DC8Zqxo5SjMSlQTbsO+Jl00S1X1gydyKlzlWASzJlvOKqhCWsWlajv6EhRi18Bja/drhngSpKobBwdiV3XHZOoIvlY3WtgfTLZCq9Odm67yzhy5+eSkLszJ2EZTcxs+uqDJ3HuyOPp1fS+UMtfAZWvKEZO4pis7mpg96kbbkLcPn8qbyy82BkJs6l86Zw+Hg3LR8dZ8ncify2cX/GZmigQd18ooLvkGswthAq/DRjSCkEuk70ALbYl5da3HbJ2dx2ydkB0fYHbF1+8+Y+bv/C3MAgk7gUTw3q5gcV/EEwkhk7GkNQRpq65k7u2fQBz7/bNwLj/JkT2LG/K1Akdefj76SJvUtj21G+96XzPJfo5qYOr2CruyeFgF5J5xEV/FGKVv0quTDQq8G417kGxyc9QSHfuruTrbs7PWv/gVuXRLXD8aiZPj5guNyydE7fkHKITPFUBo4K/jCRb/eLxhCUbBno1aC/+VnCEtYsr+Xmi+w5067BEYdroW9u6uC6BVU8tm0PPUmDJfZzKWP3xTl6sjdguDS2HcUS+3lLoPN4t9a+5BEV/GFgKNwvhRBDUEYHA70a9LtXelOGVU80MG9aBQtnV1I5rgzp5/WWJXSd6OGuje/zrc+dRcWppew7fIJ1b7QAdiZP2GVzVe10tu7+SA2ZIaKoBX+4gp5D5X5Ry0fJhoFeDS6ZO5GEJfSmbCdLyhjP1776yQa7T30IdxFIWMKyz0znnleaALvH/d9+9Xy6TvTg7I6UiXbZ+PvtA9z90i41avJE0Qr+cAY9h9L9opk6Sn8M9Gpw4exK1iyv5S+faCCVMpQkLG/mbE+U2mO7a0oc98+zDW2B5x7e2kLjvqPefSHaZePe18SE/DMmBT/XocZDHfQcKveL/iCUbIm6GszmdzJvWgUJsQOo7tSpJXMnUpoQun2i759V4hZRXVU7nVd3HvK2mTr+FN729btPWPa82jgLXhMT8s+YE/yBDjUeal/hULhf9AehDJRsfyduszSD7XPfUN/KjDNOZfVXamnYd4RDXSeZVFFO7YwJrH6ygZ6k3SbBL+DPNrRxVe105k2r4JWdBznZk0IEln1mOmuebow9h1x+o3qlmx1jTvALdajxUHwh+/tB6I9AiSPb30m4D37cbNq65s6+mYTSF869+aJqL7MHYNWyGq/PztNvt3n9d6LOwW3K5i4Ycd9hvdLNnrwJvojsBrqAJNAb7scsIgL8HLgaOA7cYoypz9fxXQpxqPFQfSEzLVr6I1Aykcvv5LoFVZ675iHftCr/bFq3vYIBksn4BaTzeDcpY5zArX01YIyJNVjcK4Ctuz/yMoTC6JVu9uTbwr/MGHMo5rmrgHOdfxcB/+z8n1cKKV3RtbD3Hj4xoC9k2EKPstjjFq3B/Aj0ymBsEv679vc7CRsNq5bV9Fn7odm0/ucyLSDhhWbVsprY0YUDuQrRVM7MDKdLZznwa2OP2NosImeIyHRjTFt/L8yVQkhX9P9YShIWJZbdKzzbL2TUjy2TvzNMeChF5biynM9brwzGDnF/10x/W7/gnuxJ0bjviLdIuPn0rhh3Hu/OytDKxSDLVsgLycgrdPIp+AZ4TkQMcK8xZm3o+ZnAHt/9VuexgOCLyEpgJUB1dTWjFf+PJZlMcePiamaccWrWX8iwdfNsQ1tOFrvr/1z1RIM3lCLukjjTcfXyuPAId5PMRujC4r2+vjXj9nXNnew9fAIRAaeF8cNb7YIpdzShO3A8kegbhJLNd8W/XaaryVyEvBCMvNFAPgX/YmPMXhGZAjwvIu8ZY17JdSfOQrEW7Jm2eTy/YSVsnaxYUJXTFzL8+oFUILr+0rigWDbH1cvjwiJw5WgJiHhulUxXY0vmTqTEslMpDfBYXSvXxXwn/S0V/D/A3hQ8uKWF9fWtrFpW46Vp9iZT3LPpA26/5Oyc+/T0dzWpQp5f8ib4xpi9zv8HRORxYDHgF/y9wCzf/SrnsTHJYC8zo16fawWi59bpyd6to5fHhU3gCixpgOwW9IWzK/naolk8uKXFC6xu8AVd/a9zjxFlbbk9cp5taPPSNY2B599tZ9OOA6xbuTTr+NRdG9/Xq8lhJi+CLyKnAZYxpsu5/WVgTWizJ4HvishD2MHaI0Phvx8pcgmoZkvcpS9kNxTC79ZJmezdOmpVFS6BNEnHwk8ms7saW7GgikedJmZiSWyKpd9QcNuj+QurUthdLl//oIOU6VsWupOmX1cRpF9B6Dzb4SNfFv5U4HE785IS4EFjzG9F5HYAY8w9wDPYKZm7sNMy/yRPxx4RBiLAUYtCNhkx4Uvf67IYCuHu9609h/tmjfakuGvj+3zvS+epoI9SwldgkNmHH/6eIoLBkEwZeh2t9n+H3O1vWTqHxrajTDytjKffbvP66YAt/hWnlnptF5K+5x7ZtgeBjC5M/xWEBXzunEn6nRwm8iL4xpgm4LMRj9/ju22AO/JxvOEmKj0yPJXHP7QhToDDiwJkt1CEA6mGzEMh/Mfy/RZJAb/fdYituz/K6O/VtMzCJnwFlouh0OO0NHYNcwsCYwj93xu3fCrs2jHAlqYOfv3ti5g3rYI1TzXyltMyoTdpeMDx82db5a5iP3yMuUrbfBMl1GEBPtR1MnC5G+Urjxt6PpA84+sWVHFdhqEQ/mOFCR+rv8VM0zJHL1GGgr/7JcD5VRNYdU0NC2dXcvdLuwLfm0wZE6/sPMQf3/MffP+q+ay6poab1r4e6K0TZ/iAxolGEhX8fogS6rAAT6ooTxvaECYu+2Uwecb9Bmud87aAkkS6vzdK3DfUt3pXK1GLkFr/o4coQ2F8eYnXshjsEYPh7cPZOXG8sdv+/jxw6xK+tmgWD2xp8Z6znH46cWicaGRQwe+HKKGO8qNuqG/1tonqABgn2kORZ+w/VuW4Mq+SEYL+Xr9F55bKP7Ztj/djd/OrXdT6Hx34F+Xw98u9snRJJk0gW8cN8veGLg/LSixmV57KzoPHAo9399pxoatqp3NKqW1kWCLcevFZgWOpkVAYqOD3Qybr2v/l9QtsXEWs+5q65s7AgjCYlgdxFnfcfv2PhTM+Gvce8fqcC3D9wmDgbX0/1n+m8ykECvncBkOmBIJVy2oC2+07fIISy86pB7AsvGydEkuYP318IAgrwBWfnsql86aw6omGtGOnDLy2044LuW0S/L+BXGoFlKFHBT8LshFld5uw1RzlEsnFSnZ/zFELCWQX9I3an/9KZX19K49u2+MF3iygrNR2Afhf91hda5/1H3HJXshXAIV8btkQt1g9uKXFq6YuL7X4/LmTAwkEbkpuScICY+hNGSxLsMRuYJYyeALfnTTed8DPZ2ed4RXxReEaAJ3Hu7njsnOCv4EcagWUoUcFP8/0V6maS+sCv0hZImmtZCG7oG/U/vyit6G+NTDByB/I8593b7JvaPX86ePT9j8cbRkGaqWP5mZycRle9276gOe3t3sZNyd7Urz43oE+/7vguWa87BzAONW20JetE4cBuk70cEXNtEj/fmlCSIV6ROVaKzDSn28xoYKfZ/rLQKgcV4bl9A3vr9jE70KJayWbSxuEONEL/+ZrZk5IO+9wMc47e494AbtwwU4+2zIMpN4hioGeWyFcGYT/bhvqW3m0rpXu3lTatq61LhBIsylJiFNha0gkBOOz7P0I6dk597/2IVfUTOOBW5dw18b3eW3nIa9g6muLZjEz1CMql1qBQvh8iwkV/CEgzgXk9vdOpmzxXrWsJqN173ehlFjiTRly86P9LhmJ3EuQONG7bkEVjzkVmKUJCbhy/O/J/cH/ftehSEs56oce1/5hIAVnK7IoOItjoKmAhdBMLvx3c6/ywviF2s0ac7lg1hl2ER52rvy4sgQnupPB12Bf3TW2HaXXd8XnDi+/47Jz+N6XzmNLkz3TtsSS2H482dYKFMLnW0yo4A8j/gpDd+5npm1dF4pgW1LzplV4fny3sAXsDCH/Y3E/mEwB6HUrl2bV2vZ7XzovYxM3f2Da3x76+oVVnjjkMl7PLwZCblc0Ueefq5gUSjM5dwiJuxg/FmPhg/19uXz+VF7eccDLja9vOUwq1efKOd6dDLzGEvuzXXVNDTv2d/E/fvOOt2CUhLK1oiZbwcBcM4Xy+RYLKvjDSC5f7spxZYECmJoZE/ot3uruTbHmqUZqZk5Is7z8P8Y7Ljsn7XiZxNAfOO483s2qZTU07juSMVfbf67dvSnWbWlhg7MgDXSwxYoFVazIUHAWd96D8Q2PdJFQVLXswtmVrPvOkkCFqx8DXDpvCpMryr1macYYnE7HaVjA+TMnUDNzAgAN+45424WztVxDxG3A5k69ypSdlomR/nyLDRX8YSSXL3fn8W7Pn2qB58qJGqTiL7J6q/UIb7Ue4bFte7zOhYPxk/qzQFytKEv0pdptiLmqCBfx+IPNUQtfXPO5qJmm2Zx7Pn3DI1kkFF443cVx4exKVl1TE9nGGOzvy3ULqljvqw+5ZemcQNGVS0mJxfa2o7zdeoSH32gB6XMPJUIuvnBA1p16ZYl4owsH4m5ToR8eVPCHGf+XO5MFumTuRMpL039YJQmLGxbPCljwrm/91Z190yV7ksb70eWaGeRabI37jvDQGy0kQ2qSTaqdu7htcFI+/YvUwtmV3LJ0Dr9t3M+VNdOA6GBstjNNoxgrvmH/lV7KBNt2+D9j15J3OdR1MjKm8npTR+Cq4PPnTmLWmeNY57ZNdldnBxMK7Pr36Z96hbHTPSWLZARl5FDBHyH6s0DjfljJZIqZZ5yatu33vnQeWz78yPPrlib68uSzdSXFDb4IY4ldhdub7Ouzn6k9dNgN8+CWFs/SvOeVJpoOHYsU58GI9ljxDYev9MJxH/czPtB1kuffbfcen1RRHpnh9ElPn9//lFK7cRnAwxELO9iLTPhz98dp/FcQmebTKoWBCv4IkY2Yxf2w4lo3rPuObe25wb247Jn+MiYyiX3CEn68vBbAc/WsfrIhtpoyvBA8uKWF//m79wL7bD/6SaQ4D0a0R6NvOGrRrBxXRsKy3SVlMZ1RNzd1cNm8KWzacYCepMESGF9ekub794s9wOI5Z3rfL7EEV/H9GT6G6GaAMDo/42JHBX+EyEXM/D+suIpb90f3N189P3Yf7o87LlUynGtv18xIIF/7i5+aws0XVXP3S7u88YndPj+A21vFtRz9ohPnQ146dyKrrqlJSy8drKCMJt9wXHHVmqcb6U0ZBPiME1R18cdXEpaw7DPTeeqtfSQN3PdqE4a+7qjvt3elHfOVnYe8BSPly98/f+YE3tl7JGMzQJfR9BkrKvgjRq5i5v6wwq0bNtS3st5Jy+wvOJmLG8nNyKkcV8bqJxu89L5N7x+krrmTJXP7ZqS6CMHeKv5BLd29KX7buD/tnAR7mAZEp5cOVFDi4iOFUNUZdQ5RV3x7D5/wrHKD3Z3yprWvs27lUoBAk7PelOGJt/Z52TVJAwlx/llCfcvhyHNZ81QjN1xYHTA+briwmh3tjaPeHaako4I/guQjL9yQfXuFXNxIfhr3HQnMQnWLcPwzUi2geuI4mjuOe8Hcg10nAwHH6jPHsbvjeGDf5aW2oERlowCRLirILNxxC1shVHXGnUP471o5royfv7Az7fVuMB7SK2XDKZeXz5/KZ52CK79/389brUfY0d6Y5n/3z09WC37soII/yojKvPC3Zs4UkLU7JaandbrPx1nEBnsqUrgfSs2MCbZ/OWUoK7VY+YWzWfN0n2U4qaI8EHAMxwY+f27faLsd+7sCi8PO9i7+4fn3PVHLJc00bmErhMyduHMI/13DvYtc/MH48lIrzS+fsCCVsv9et11yNgA/f2FnxriMv/GZi7pqxiYq+KMQvz9+c1NHv9kR4arXGxbPotYp5HLpzyIGmDv5dL71ubMCKZPJlF3Qc8vSOdx8UXXAMgTHTdOTwrKEmunjA1W6/tF2/mwUAZ58a1+gNUBP0nixgf6EOy4+UgiZO/3VIPhF191OLGHOxNOoHFfKeVMrgL6F3198ZQFf/NRUPulJUjN9vJfh5a/YFukb1GNZgolY/JWxiwr+KCUuyOcGZIGAtegKZNL58fsDv3E9avyvA9h14GNWP9ngibpXVGX6GmyFLUN3oEbKGH71+w+5YNYZnOxNccOF1d52D25p4fH6VkRsUbJE0gZwGPrm8a5aVhMp3JkGf8DIZJWEUyPDCzREL7buua6vb+WxulaaDn5MysC23Z08vHUPt158Fl0newMTqyzLjrH09Ka8mowSC9/zzpJqbL/+X4V6MyljHxX8UUrYyl1f3+oFPUXEtuRSxhuC4RdIIej39/eoSVjCvsMnvMCsW0Hp4vqQK8eVBdwEyZSJdJF0Hu/2qnS7k4Y3dncC0LD3HW+bHz7ed1uAZZ+dzm8b99Pdk0IEzpp0Gk2Hjnnn23m8O61pXNQC6C52QED0Byv02QZ+A1dWMYNAooLw/n27rh1/mmRvykRmO9XMmJDWasHfbsfv8+9JGl7ecYCXnVTOR30us1zeozK6GLTgi8gs4NfAVOzv41pjzM9D21wKPAF86Dy0wRizZrDHLmbCrgG/iPujd36B9Fua/rx+t0eNa02ue6PFy5RZs7yWv3RS/6DPh+x3B4FtMbr1Af6xiuGFwSVp7CyTmhnBvvoGePrtNtYsr02zgnt6UyQSFnsPn2DH/q5AVs+KBVXeFccnPSnu3fQBr+w8GOvnH6ig5RL4DSzKMdXJgVYFCcubPuVftPytMzIxwcl2ypb6lk4vy6o7aVhf31owwW1laMiHhd8L/Jkxpl5EKoA6EXneGPNuaLtXjTHL8nA8hejg7cNb9wSscQFPIIGAfzjKteG3Jl1RuuOyc5g3rSIyW+aUUsvzzy/7zPRAzx23++KKBVVprXpdkinD1PGnAEfSHg8HEf1tGh56oyWtd8uhrpOBhWWjMxgkqv1DtoLmFrwJsMJ537kEfsN9ZxCht7evOjn8d9x7+ITX4qC7p+/zf+DWJfawk3fbMwZfX9t1KO0xNy4SxaGPg/n17tVSIQS3laFh0IJvjGkD2pzbXSKyHZgJhAVfyTNh98Sa5bW2vzxlKEkIl86bwss7DvDQGy1pTc6iXBtxQc2obf0+5kNdJ72CH5codxGhIi7E7up46bwp/MPzOzwBMthTlsLxCINtKdsFRXZFqSV2RsrkivLA+RnHTx0eGOPuqz9Bq2u2c95dC/jRulbWfWdJ7GcU9/fxL6w79nd58Yw1Tzem9QYaX17iiXPK+QzufPwd3m/vYpuTLZWJlJN77/4dShO2n/7lHQd4u/Uw7UdPxu4jYQkrnCZphRDcVoaGvPrwRWQO8AfAloinl4rIW8A+4M+NMY0x+1gJrASorq7O5+mNecJZMpubOti4vT1rSy2XoKZr/T5WZ7uGooQkkbComTEBA+xq7+KjY9182HEMN9vQGFj9VCOrr6nh8PGewGvvfcWuFC2xwLL6+vb4j5MydvfQVctqmDetIjAFqjRhD4yJyl7KRtA2N3UExj76r3gGUjDn7jPcURL6graWSCBT6b7XPoycSpUQEEsCQ0rcx3987fm8vOMA7Uc/4YYLq7n5IvtfuOup/zgJS1izvDZgDER1KVVGP3kTfBE5HVgPfM8YczT0dD0w2xjzsYhcDfwGODdqP8aYtcBagEWLFvVn1CghwtZ4rpZaXFAznG3it36jEODS8yaz5unGtFxxPz29KZ5taEsvInL+701hJ5ZDZDN3d5BMpl5C4fOPcoeFryYqx5VRmuirJO7viicbohaaDb4xlsb0tTdIWOmZSi7XfHYGi8+ayE+fe4+PjvUtlJfPnxoYktO4rwGAlo5jrH21yVsgb734LCpOLaXrRA+NbUe5qnY6N1/UZ1wNpkupUtjkRfBFpBRb7B8wxmwIP+9fAIwxz4jIP4nIJGNMutNRGRAPbmnxLDL3x5uvNES/dVheavH5cydHiv2Fcyp5q/WIV6A1qaKckxnEHux+6zXTx/P6Bx1eTn9Y51zfcviIrpXadaLHe7/91SGEUx/DNQoY4wVN/SMlV8SM8suFcOuKDfWtPLy1r62x//394dkTeWVn9M/jqbfbeOadtrS/waXzpgTmIKeM4c7H30nLpqo4tZQlcyd67zss6urDH7vkI0tHgF8C240x/xCzzTSg3RhjRGQxdo1IR9S2Su48uKXFS21086/9oj+YH2tdc2egZ0t3T4oDRz+J3PbcqRX84Kr5XqDTrcSNs1TBTh29//cfkjJ2A7BbLz4rzZVhsC1ewZBK2fnkriAaY7dYrp54WsBK9eMXwbCAhcXNPZ6b3fS3Mc3oBsPewyf4+Qs7Y11hQGSzM5dkypAMPSbYQ0/8c5AhYpEU0mozwp+J+vDHLvmw8D8HfAN4R0TedB77IVANYIy5B7ge+M8i0gucAG40JmrYmtIfUemEzza0BbZ5tqHNE7/B5lNvbuoIiK8ITB1/CgnrCOHK/0NdJ4G+JmhlJRbLPjM90NQLgpkjKQOpZJ+N29h2lGs+M50n3twX9NenDFd8eqrXrqFhbzCzx/+e/YSHwQOB/v2V48oCaZEYE9l6Ih/EzRsQ7KIp/+c568xx7D96MnI/ZU6bC7+Bby+IRLZj8LPy83O970GcqI9EgZoyPOQjS+c1yFysZ4z5BfCLwR6r2IlzTVxVOz0w7eqq2ukZt8+FtDx6ETZub6ckYTFtfBl7D/dZ+5MqytOaoD39dltA7C3g/KoJvNN6BL80Cbb4+9+H26fHzmCHF3ccsKtwnQCun6tqp6fN3o3qSZM0pPXvD1e+5ip02XbmDM8bEOzYwKXnTeblHQdIYmcerfz8XK6omcYN9/5HoHAK4LNVE7jhwmpe3nGAje+2222ssdtW18yYQIklXiaTHwGWXzCDH1w9H+hf1LWXzthEK21HEXGX4a5lG/bh5+qLjYoDhHvcuAKcTKa4dN4UHt22h56kodQ3+9TrARNKwxSgrNRuv/tuW4Nn2Zc4fvxwlWg4kNvrn78XukD8bUNbwPUE9uzd1V+ptRcOnzns798f1zjMz2A6c57sSXlZMP45v2DHPL5/1Xwvm8r9jI6e7GVzUwdf/NRUngt1uTx8vIfVT9rv010LUth1By/uOEAy2ZeFc/bk09h18Jj9cWEXtH1j6RwV8iJGBX8Ukcm36qbfZbt9mHAc4OUdB7jtkrMDs3VFwGBb3SJCzYwJrFgZHF9Y19zJigVVng9/zdONdosES/jip6Zw+yVnB9xEAnxx3hQmV5TzduuRfnPN44gKcHYnDf/PC+8zZfwp7O08kfa8BVl9Lm7ufEnC4vqFVd7Ctr6+lca9RyLjA/5eQ70pw6onGnj4tqWBITBv7O5kx/4ub7aAmwb68NY9pFL2IioSXNuaPzpOFEHXmC3wHxw8FnKf9bW/0Gra4kQFfxSRq281l+3DcYDn3m3nlZ0HeeDWJYEmXm6ee9IRsTXLaz3rOCwiKxZUBZqnbdpxwBOgkoTth04kLK+fS1jsL6iawJs+q39m5amRwp2JOD842P37V37h7NjPJS1g3ZviwS0tPLJtj5PN07etQKCCdsnciYGAtSu2/mZnAA9vbWHVNTWkwDdE3H5Nb9KwaE4lW53+Q7kSjhOUOH2S3Cs5zcQpPlTwRxm5+laz3T4cB4BgsVHYF+63XN2UvoD/vscedTjrzHFesVF30nguioRA7cwJTB1/SmzLgPfau7j9C3N5vamDcqftY66Cn4ndHcdZ9YSdqx4V8N3c1BGZYRQueAK37XCwgtarfPbNo60cVxb4nN9tO8o9mz6I3ecPrprP8437uffVprTA94VzKjnZm0pzhaXtB5g6vpxDx7q9gTXuwutWKmsmTnGggq8AfYL38NYW3m07arsUInrJu/NuXVK+LpmV48qwxG5nkMJuZ1ySsCIDiUkDb7cewZJ4N05Pb4qjJ3vZvr/Lu7LI1BtmILiLFpBWleu6WqJE338e/tqBsLVcM2M8U8efwm2XnO0tvi/vOOAtfKmUiU1zvXz+VO811RNPC+TUG2yXUFmJRVmiL1YSyNxx3EEp0q90DLZL63PnTArMJVDGNir4CmC7LzqPd7PqmhogPVPF7x7a2d7Fk06qZVlp3xCPNU83kjJ28RTGFsHeZIrzZ05gyvhTePG9A2n59XHFuq5/XejLj3dxp3b5X3rmaaWBqtMo4hYL1z3lWuL+wizXSg8fL5EQzp18Ou+1d3mWtz8m4I+JwBHmTjrN+0xvu+RsXtl50IutnDXpNN7eeyRgwZf5JlaBvRhFnXtvMsVNi6uZccap3oB7d79ue4Tf7zrkLUh+y74sNIRGGfuo4CuRATx/1oqLKwz/68WdXnOyVctq0vq6W9jPJVO2K+et1iOUlXThyq1gC2Yywm8PMH9aBQtmV2KAivISLEsC7ZlXf6WWxn1HeHhri+dHP3KiN7APy7FuXXErSVhMPj2YRuqSsPo6b3b3pFjzVCM1Mydw3YKqQH+iN/ccZqPjfkqlDDt8Yi/A53wjG+/a+H7gGGtftQO1JZbwtUWzvFTQrhM9gd72114wg3OnVkT2//E3RvNjnOfBbilh6GstMW9ahTdlLOEEnWtnTMg4IU0Zu6jgKzmlb/pzyd0+NnXNnew9fMILxJaWWFxZM40n3tznva67N+j//+K8KUyqKA8Egl3au0566Z6uvlliuzhuvyQYZHV90qmUCVivNy22XVQHuk4ypaKcFQuqWPNUY5rgTxtfTuW4Mt4/8DHiuKLeaj3CW61HeGRrCw/f9oeBNgyvOpY5BMVXBCaeVsZdG9+nZvp4Ti1NBI7jWtjdScMDW1ooK7HF943QXIGOY93cFbPY/vja89NaJWDgoTdaeGRrCwbbnVZWYnmZRFpEpfhRwVdySt8Mb1s5riww1enGxdXUzJjAqicaMvraJ1WU87dfPZ/rFlRx76YPAvnmHx3rTts+ZWwr2j945UDXSSynOMtyTPqks11FeQn/8vruQMbQDRdW81brO4H97j960vNvh6sHe1N4Q0FcViyo4lDXSV5yct795/cbZ4Fzg7KWwPkzJ7B07kR+9fsPA71v3IyfMCd7ktQ1d3oLjF+o3TjLX/7mHZLG9tGnjOOnN+BeQXWHFm0tolJcVPCVnKzA8LaBebkpw4wzTqXzeHds/xzBdsvUzpjgdahc+58W8eCWFta+8gHNHcdjF4rn323n+Xfbvdz0cOsF937S4HWHhGC2EdiB6WPdSXYd+Diwf3/2iovbLsLv9gqPfYwjZew2FD+4ej5dJ3t5IELgw7yxu5Mb7n2dWy8+K7BguXEFv4vJ9dmHWzVYIpp1o0Sigq8AuVmB2bRgjvI3W2JnhVxVOz0wRP2BW5cwb1oFf3jOJPYdafXy8y85b7JnSftqbKO6JKctEuH1xs0/9wemb7pvc5o7CQgUO72wvd2ztP0jJMWS6BMJ0e5k4FSUZ/9T600Z1jppmOGCLgh+/vOmVXg1Er299vQxf297RfGjgq8Miqirg7rmTjvQ6lN8i76skHDMYEN9K+udhmuuW8htR1zX3MldG9/ntZ2HBpyOmTQErOuyEovV19Rw/cIqdrV3eYPVXWZMOMXz9ScN/OTZ7Xz/qvmBcYXVZ47z2hZk4oYLq6lr7uT+1z6MfH7xnErOmVrBoa6TvLC93VskM03s8uOK/3ULqgJ9hFy3kKL4UcFX8k64dcIVn57KZ2edEXAX+a8KDKS5hfzW7Pe+dB5bd3+UcZBKLnT3prjTSZksL7W49oIZnv/dPRc/bqXrA7cu4Z5NH/Diewf4wBF7v98/akH61WtNzJ18euTkKgEWVFd6Dc3+7pntnmVfXhps6pZNVTWg7RKUjKjgK4MiKqUzHNi9LZRZEzVxakN9a8AtFA5YrlpWw8NbW3hn75HIgei54u6iuyfFh4eClvqhiKCxey4vRdQSZGLXwWPsOniMKA+Qwe7lX9/SyYRxZWx6/2Ag3TWuv39cMzcdXKL0hwq+MiiiRCabua/hOEB4AfAvIquW1Xg+fwl3E8uCUmeg+wvOfN8Agte2wcPYrpZtzZ0YY79+3+ETbKhvjbTUsyFloKI8QdfJ8OgS0lxKbrqr2/Nm4mlldBzr5qra6cybVhFrxevgEqU/VPCVQREnMgPp+QP2ArL38InAIuJv9GUZE9nuIJxd4/aaKS9NUDN9PEdP9rJoti3i/pcaA/UtnYHXlySEc6ZWcO0fVPHSjgO8+N4BHtzSQiIhA44jAJFiH8btkd91ooe//92OwHOv7jzE4jmVsdO7NOde6Q8VfGVQ5EtkwrNl3fYJpSUWV9VO96pFS0ssblk6h43vHQikVS6aU4mAZ5Vblr3PpAkOVSlJCF+aN4X2o5947Zhdl73lFE91fNzNui0tthuGvoyfqAZn+SQheAHrcKWuy9bdnd6ik0ikW/Gac69kQgVfGTT5mJt718b3Pcs1mUxxo9Mfxl1EwrnndkYPzJl0OrsPfUxdcycllmBZQm/SpI1fdEkmjRdADo8bTBk4+HGf/36I9T2NRMLyspOiupf6EeD6hYMfrK4UF1b/myjK0OFa9r/fdcjr4Jiw7NyXcPO2Oy47h87j3ZzscTN64LSyhD38w0BP0gRSQaNw3U7ulcmFcwpHMJPJlFdJfPNF1dz+hbk4HwWW2H12ykstEmJn8bjtExQlW9TCV4Ydf5aJP+gr2PNut+/vYt0bLayvb02bN/vWnsOBFsEN+47aPv2k3aVTnHGG4Xm5liUsrD6Dc6ZWeI/v2N/FtuZgwDRfJJy0HL9LKBNR07d+cPV8rqiZFsivX3zWRG18pgyYvAi+iFwJ/BxIAPcbY/4u9Hw58GtgIdAB3GCM2Z2PYyuji3Aa5y1L53iCaLBbEbipl929qb7xgpaASFqr5FTKcPmnp/LiewdIGUNChD++aJbXEbLrRA+NbUepmT6ef3l9N9uaO9ngLCT2vtPP0V4gIJWy/49zD8VRkhDWfKWWhn1HeGXHAVojOnSGOb9qAquuqYkcJg6aX6/kh0ELvogkgLuBK4BWYKuIPGmMede32beBTmPMOSJyI/AT4IbBHlsZfYTTOBvbjvZ1ucRuqhYegm4IDh73Y1nC262Hve16elPsau9iz0fHmXhaGU+/3UYyZXj9g47ANs82tMWmWBrgrImncdHciVSUl/BYfSuHPk7PzQ/jvg9j4JGtLYHxjP1RM3NCvx1KNb9eGSz5sPAXA7uMMU0AIvIQsBzwC/5yYLVz+zHgFyIixuSYUK2MevyTs0SEmunjAxk41y2oCrQJWP1kQ6DLpNvb/pLzJnPkeDdv7O4MTHMypOe1g13B629VUDN9PK9lCIruOniMpoPH6M+4dwuq3K6d7rHixN4SqD5zHLs7+oaRC2T0x2t+vZIv8iH4M4E9vvutwEVx2xhjekXkCDARiP/FKWMSt2rWddX8y+u70/z0/hTPxn1HvJ734ZF83/jllqyPm3CainUe7/YyffqzNrLx5Fw+fyoXzDqDynFlgYHnsfs09hAUP2dPPi2nDqVq3SsDpeCydERkpYhsE5FtBw8eHOnTUYaAzuPd3oSpnt4Unce7vdbFX79/Mz97bgdfv38zdc2drFhQ5WWmlJUGR/JdVTs9q+OVOGJ/80XVXqZPVJfMgSBA14kenm1oo3bG+LSe+lFUnlYWuF+asPjh4+9QlyGA7GYpue+9rrmTu1/alfE1ihImHxb+XmCW736V81jUNq0iUgJMwA7epmGMWQusBVi0aJG6fMYgcS6KzU0dXl58d0/Ks2hXLKhCgJoZE7y0Rbc3fEvHsUDvezfgWjvDHjxScWppmlVcOS4ouHFYAl/57Aw+PHTMa7+w6+CxwIAW/+AWPxdUTeDwiR4umHUGT729zwv8llj2RC0/2/d3sX1/F49t28Pqr9T2m4UT1b9IrX4lG/Ih+FuBc0XkLGxhvxG4ObTNk8A3gdeB64EX1X9fvMS5KCrHlfUVQWFbzv5pWo9KK73JoMi5qYt3bXy/b1i3gS/XTIucy1vX3MnqpxrTsnMssReLlG+wSsrA0++0gTHkekFQcWopv/nuxQB8Y+kcNtS3YrAHqjwfs0j0JKOHqYfRIK4yUAYt+I5P/rvA77DTMn9ljGkUkTXANmPMk8AvgX8TkV3AR9iLglLERFXndh7vxnLG9lkCjW1H+4TNydKJ6yHjtlDuL7C5uakjLbXTEvjra89n3rQK1jzVGLDAB9pOwe9u8s/Evem+zbGxA4FAJtH6+tZIv70GcZWBkpc8fGPMM8AzocdW+W5/AnwtH8dSxi5hIfP30Ek4efjukPSoHjJRg1jCgrlk7kRKSyzPh58Q+PG153utiGtmTkhzuUQRbtbmpzQhzJtWkfb45qYOeh3fjgBnTzk90A9o7pTTaek45mUUPVaXfkUTfq+V48oCbi5FyYRW2ioFQ5Rouz10ojJ4ol7vD2pG+bkXzq5k3XeWeC6W6xZUBV4DeFcZcfQ33TCVMp4I+8997+ETlCQsb9H61ufO8voCpQx8cOBjSkssblg8CwHWvdES67bRgixlIKjgKwVF2NUTdT8b/H7ukz0p7t30QWDqVng/dc2d3LT2dXqSBkvsNM64wqxMi4Hb3rhyXFkg/oAIvUl75mztzAnccGG1N5DcP8IxmUwx02katz40FCbTe1RfvpINKvjKmGTJ3ImUJGzXjcHOpnn+3XbKS6Mt4fX1rV6BV9LAFfOnAEQGWDNdAVjOtCo39TMcf0glDW+3HmFHeyPzplXExh+yyb1XX76SKyr4ypjB77MHmD+tIuCPjwr4uoTz5w8c/YRV19Rw2bwprH3lg0BlbCZ3TjJlaNx3hBULqgJDz90+QG6DiPB5fOHcybQf/YQbLqwO+Oq1IEvJJ1LI2ZGLFi0y27ZtG+nTUEaIuNmtcdv6B6jYqZTG68LpVuqWJISvLZrl9Z33v/6m+zZ7wVxL8Pzi4PjKe1JpXThnnHEKe0PN0coSwrqVS4GgD//eTR/wwvZ2jLGLyNx9+4/rvlbFWxkoIlJnjFkU9VzBVdoqCvQJuL/qNhNhf3ZP0njpnRefO4m//er53HhRNQZ4cEsLN92Xvs9LzpvMtPHlXj6+3wp/4NYlfO7cSYErAUvgQNdJwvQkDevrW9OqY1/ZedBeeBy3z8LZlWlpot1Jwz2bPkirotXKWiUfqOArBUlUQDITlePKsESwxA6alibs25YIV9VO5+aLqhFsMTbYrZc31LcCfQHb599tZ//Rk4F0S7cq1/W1l5dadgM3S7h8/tTIPH0DPLJtT0Cc/e/HHVIObqwh6FB6/t12fvq7voUu18VPUeJQwVcKEjcgmZD0wSBh6po7WfN0I8mUwRJh9TU1rP5KLZbYw85XPdHgNWDzY+gbr9gdIdxJA6ufbPAEduHsSm5ZOofqM8dx68VncdslZ5NIhL3/Nr2OlR9+PxYgIlSOK6OuuZP1TnpoGL+fP5xxtMG3X0XJBQ3aKgVJLgFJVxDtXvR91rObVumK/prltZRY9tDyhGW3Obhp7esZO1z2JPty6u/d9IHXO+eeV5oA+woCTGTmjn8p8HcJTaYMf/lEA4I9ezfu6P4h5f6Mo0e37UmLQShKNqjgKwVLtsPR49ITE5Z4Yp4ydvaM5YyySqbiG5/5SVh4OfWf9ARbMjy0bY9XORvOfUhYwopQj3u3S6iBtBx/dwyj+3h4SPn1C6tY51ylJJ3CLhV8JVfUpaOMetyrgf/65XmBilrbohcv48aAJ9DZcsOF1bHtlA8f7/GygCxLKEmIfVvgOxeflSbIS+ZOdK4I+hDszJybL6rmx8trOSVmSPl1vjbRmnOvDBRNy1RGJdmmbIZz8//43tcD1nXCGW4eNSXrlNJgWqbbujmMm/aZEGdoiiG2wOvBLS12R8yUoaTE4vqFVd783f7aR0S951xSV5XiIFNaprp0lFFHLv3gw/11/AZ2QuDHzhSssOCfUmp5qZPuIJZd7V2RC4O7CPjjvt0xBV5uOwX/IhR+L1FtncPvJdfPQVFABV8ZhQy0h8z6+laSyT4f+Y2L7X42dc2dJCzwe3tO9qRY83QjAKufasx5QpaIxLpd/O2S79r4/oD74WgvHSVX1IevjDpySdl0qWvu5LG6vhTI0kRfUHXh7Eoeue0PWTynktPLE56Lpqc3xcNbWzKKvYW9eCScWIGL9DMx17XOX9t5yCsQy9U3P5DPQSlu1MJXRh259pBxLWl/L/qvLZqV1oXzkdv/0BNiN+NnyvhTgPT++O4oRWMgIcKtF5/Ffa82ec+nDBkt7vX1rV5MIDycPdP78L9n7aWj5IoKvjIqyZSyGQ7U+gOultg57W7RVVTw0y+iAJt2HPAqdMG25i//1BQ2bm93cu8Nv23cH/DhWxlcOuGrjZKERIp91PuI6u+vQq9kiwq+MqYIN1GbP63CK1iygPNnTmB721EeeqOFDfWtweZojpiuWlbj7W/h7ErWrVwa6FmPMUyqKKfMmZyVMtDsdNN00zK/+Kkp3vmELfDw5Kvw1Ub4fZSV2Cma6q9XBosKvjKm8Acyu3tTXntkNxe/duYE3tl7JK1Hj/eanlRgkLjb294/brHUEeDrFlQFFgJLnAVlfxcbt7fz8vsHva6dfqs8XCgWLtAKvw+3rbL2vlcGiwq+MqZwxdSfM+/3kQNpk6R27O+yC6KM8apdDXamTpT4+6318PCS8IIC6f3vBzLcxF1g1F+vDAYtvFLGHHXNnWyob+XRbXtIpgyloRz1ON+4iHDelNPZvr8rbZ8JgRsWV3vjB8P58OH99fSmSDh9+aPOIdv30Z/Aa+GVEiZT4dWgBF9E/h64BugGPgD+xBhzOGK73UAXkAR6404mjAq+4idXcctm+7tf2sXPntsRObLQTbc0xnhTq3qT/Rc5hReAoaqO1cIrJYqhrLR9HvjvxpheEfkJ8N+B78dse5kx5tAgj6cUKQMRt2wyWJbMnYhlCalQe2TBbo/gunH2HT7BujdaIoOmUemScYPXM72PXBeCDb7UTg3kKtkwKME3xjznu7sZuH5wp6Mo0QxlVWlap0uxq3D9LYjd3vXhoGl/C1FYxOPeR64LWl1zJ49u29OXKprQQK7SP/kM2n4LeDjmOQM8JyIGuNcYszZuJyKyElgJUF1dncfTU0YzcS2QB8vmpg78bk1L4MfXns/NFwW/e3GB1kwLUZSIx72PXBe0zU0dXuvncCtlRYmjX8EXkY3AtIin7jTGPOFscyfQCzwQs5uLjTF7RWQK8LyIvGeMeSVqQ2cxWAu2Dz+L96CMIeLcGvmoKnWDuQa73bA/RbK7N4UlwprltWli7z+HqJbHcQtRlIjfcdk5ke8j1wUtKotnMGjwtzgYdJaOiNwC3AZcbow5nsX2q4GPjTE/7W9bDdoWF0MZhKxr7uSm+zZ7fXHKEsK6lUs9d8pgF5Ko14fbNGTjpvHvp7/z0uCvEsWQBW1F5ErgL4BL4sReRE4DLGNMl3P7y8CawRxXGZsMpZ9+c1OHlxcP0O3MnM1He4K41+d6VRJu5dyfCOerrYJ23SweBtst8xdABbab5k0RuQdARGaIyDPONlOB10TkLeAN4H8bY347yOMqY5DBdH+sa+7k7pd2eQPHo/ZdWhL8uj9W15q2fX/7yZWFsyu547JzchbQKBEeKrTrZvEw2CydyEkNxph9wNXO7Sbgs4M5jlIcDNRPn601vO47S1jzVKPXbiGZ7D/IOlKW7lAFqaPQrpvFg7ZWUAqKgbgpsnVJLJxdyapragJ+9f6CrCMlfsMtwtp1szhQwVdGPblYw5mEdDit6mxQEVbyjfbSUcYEbmGUQKBgaiD7UdeGMprRIeZKUbChvpXu3hTrnT73ucQAwq0RFGUsooKvjAr6s7yz9b9H5boXSqBWUYYaFXyl4MlGlLPxv0ftp5ACtYoy1KjgKwVPNqKcTVZL1H4KLVCrKEOJCr5S8GQryv3536P2oznoSjGhWTrKqCCffWNU3JWxjGbpKKOefGXPaBaOUswMtpeOoiiKMkpQwVcURSkSVPAVRVGKBBV8RVGUIkEFX1EUpUhQwVcURSkSVPAVRVGKBBV8RVGUIkEFX1EUpUhQwVcURSkSVPAVRVGKhEEJvoisFpG9IvKm8+/qmO2uFJEdIrJLRH4wmGMqiqIoAyMfzdP+0Rjz07gnRSQB3A1cAbQCW0XkSWPMu3k4tqJoB0xFyZLh6Ja5GNhljGkCEJGHgOWACr4yaHREoaJkTz58+N8VkbdF5FciEvVLmwns8d1vdR6LRERWisg2Edl28ODBPJyeMpaJmmKlKEo0/Qq+iGwUkYaIf8uBfwbOBi4A2oCfDfaEjDFrjTGLjDGLJk+ePNjdKWMcd4pVQtARhYrSD/26dIwxX8pmRyJyH/B0xFN7gVm++1XOY4oyaHREoaJkz6B8+CIy3RjT5tz9KtAQsdlW4FwROQtb6G8Ebh7McRXFj06xUpTsGGzQ9n+KyAWAAXYDtwGIyAzgfmPM1caYXhH5LvA7IAH8yhjTOMjjKoqiKDkyKME3xnwj5vF9wNW++88AzwzmWIqiKMrg0EpbRVGUIkEFX1EUpUhQwVcURSkSVPAVRVGKBDHGjPQ5xCIiB4HmPO5yEnAoj/sbKfR9FBb6PgqLYn8fs40xkVWrBS34+UZEthljFo30eQwWfR+Fhb6PwkLfRzzq0lEURSkSVPAVRVGKhGIT/LUjfQJ5Qt9HYaHvo7DQ9xFDUfnwFUVRiplis/AVRVGKFhV8RVGUIqHoBF9EfuxM6HpTRJ5zOnuOOkTk70XkPee9PC4iZ4z0OQ0EEfmaiDSKSEpERlUqnYhcKSI7RGSXiPxgpM9noDjT6g6ISFR781GBiMwSkZdE5F3n+/SnI31OA0VEThGRN0TkLee9/FXe9l1sPnwRGW+MOerc/i/Ap40xt4/waeWMiHwZeNFpP/0TAGPM90f4tHJGROYDKeBe4M+NMdtG+JSyQkQSwPvAFdhjO7cCNxljRt2sZhH5AvAx8GtjTO1In89AEJHpwHRjTL2IVAB1wLWj9O8hwGnGmI9FpBR4DfhTY8zmwe676Cx8V+wdTsPu5T/qMMY8Z4zpde5uxp4kNuowxmw3xuwY6fMYAIuBXcaYJmNMN/AQsHyEz2lAGGNeAT4a6fMYDMaYNmNMvXO7C9hOhtnZhYyx+di5W+r8y4tOFZ3gA4jI34jIHuDrwKqRPp888C3g2ZE+iSJjJrDHd7+VUSowYw0RmQP8AbBlhE9lwIhIQkTeBA4Azxtj8vJexqTg9zN4HWPMncaYWcADwHdH9mzj6e99ONvcCfRiv5eCJJv3oSj5QEROB9YD3wtdzY8qjDFJY8wF2Ffui0UkL662wY44LEiyHbyOLZLPAD8awtMZMP29DxG5BVgGXG4KOBiTw99jNLEXmOW7X+U8powQjr97PfCAMWbDSJ9PPjDGHBaRl4AriZ4ZnhNj0sLPhIic67u7HHhvpM5lMIjIlcBfAF8xxhwf6fMpQrYC54rIWSJSBtwIPDnC51S0OIHOXwLbjTH/MNLnMxhEZLKbdScip2InBuRFp4oxS2c9MA87M6QZuN0YM+osMxHZBZQDHc5Dm0dpttFXgf8FTAYOA28aY/5oRE8qS0TkauAuIAH8yhjzNyN7RgNDRNYBl2K3420HfmSM+eWInlSOiMjFwKvAO9i/bYAfOvO0RxUi8hngX7G/VxbwiDFmTV72XWyCryiKUqwUnUtHURSlWFHBVxRFKRJU8BVFUYoEFXxFUZQiQQVfURSlSFDBVxRFKRJU8BVFUYqE/x86ZJb3EuSp/QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X[:, 0], y, \".\")\n", - "ax.set_title(\"Piecewise examples\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DecisionTreeRegressor" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "X_train, X_test, y_train, y_test = train_test_split(X[:, :1], y)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DecisionTreeRegressor(min_samples_leaf=100)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.tree import DecisionTreeRegressor\n", - "\n", - "model = DecisionTreeRegressor(min_samples_leaf=100)\n", - "model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 3.29436256, 0.50924806, -0.07129149, 0.50924806, 2.64957806])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred = model.predict(X_test)\n", - "pred[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1eklEQVR4nO2dfXxU1bX3v2smCQFFTCMKGkhAFBAoGiJikapVrLYUbkEfRO0tepWnrbX1qY8v1X7Qettbe6u13lvaXqp9sC3itYiK1vcrtqhFIAiV9wImJPgGMSjIS5KZ/fxxzgyTk3k5M3Mmc2ayvp9PYGbOPnvvc2bO76yz9tprizEGRVEUpXAJ5LsDiqIoSnaokCuKohQ4KuSKoigFjgq5oihKgaNCriiKUuCokCuKohQ4KuRKzhCR50Tk6y7K7ReRod3RJ0UpRlTIFUSkQUQOisg+EdkrIm+IyDdEJKvfhzHmEmPMwy7KHW2M2ZFNWyKywb4h7BeRkIgcinl/ezZ1O9pZICJtdr0fichLIjLCq/oVJRNUyJUIXzHG9AWqgXuAW4GH8tsl9xhjRtk3hKOB5cC3I++NMf8WKSciJR409+92OycBu8jBefKon9m0L9neyJXuQ78opRPGmI+NMUuBmcDXRWS0iPQSkXtFZKeIfCAivxGR3pF9RGSaiKwVkU9EZLuIXGx//qqIXGu/HiYifxGRj0Vkj4j8d8z+RkSG2a/7icjvRWS3iDSKyA8igiIis0XkNbsvrSLyjohckux4RKTGrv9fRGQn8Ir9+TUissmu5wURqY7ZZ4RtaX8kIltE5H8lOFcHgceA02P2PVFEHrf7/46IfCdmW28Redhuc5OI3CIizTHbG0TkVhH5O/CpiJSIyAT7CWmviKwTkfNiys8WkR32k9Q7InKli3P9ORFZZW9bJSKfi9n2qoj8WEReBw4A6u4qFIwx+tfD/4AG4MI4n+8EvgncDywFPgP0BZ4GfmKXGQ98DEzGMgxOAkbY214FrrVfLwLusMuUA+fEtGOAYfbr3wNP2e3UAFuBf7G3zQbageuAoN23dwFx9Du23Rq7/t8DRwG9gWnANmAkUAL8AHjDLn8U0ARcbW87A9gDnGZvXwD8KKbsH4B19vsAUA/MBcqwhHAH8EV7+z3AX4AKoAr4O9Ds+B7WAoPsfp4EtABfsuuebL/vb7f9CTDc3ncgMCrZuba/v1bga/axzbLfV8act53AKHt7ab5/m/rn8hrOdwf0L/9/JBbyFbYgfAqcHPP52cA79uv/Au5PUG+soP4emA9UxSlngGG2OLdFRNPe9r+BV+3Xs4FtMdv62PsOSNJujV1maMz257BvDvb7AJYFWo31JLLcUd9/AXfarxcAh4C9QBh4B/isve0sYKdj3+8D/89+HRV1+/21cYT8mpj3twJ/cNT3AvB1W8j3AjOA3o4ycc+1LeArHZ/9DZgdc97uzvfvUf/S/1PXipKMk7Assz5Avf14vxd4HssqBMt63O6irlsAAVbaA5PXxClzHFAKNMZ81mj3I8L7kRfGmAP2y6NdtN8U87oaeCDmeD6y+3aSve2syDZ7+5XAgJj97zXGHIt1kzgIDI+p90THvrcDJ9jbT3T0I/Z1on5e5qjvHGCgMeZTrJvON4D3ROTPMYOuic71iXQ+t9D1/Mbrk+Jz8jqgovgXETkT6wJ/EssyHGWM2RWnaBNwcqr6jDHvY7lEEJFzgJdF5K/GmG0xxfZguU6qgY32Z4OxBhSzJTbNZxPwY2PMQmch21f+F2PM5JQVGrNTRL4LPCwiz9j1vmOMOSXBLu9huVQixzbIRT//YIy5LkH7LwAv2OMVPwJ+C0xKdK6x3FDVjmoGY92Y47WvFAhqkSudEJFjRGQK8CjwR2PMOiyBuF9EjrfLnCQiX7R3eQi4WkQuEJGAva1LOJ6IXCYiVfbbVizBCMeWMcaEsAYPfywifW1R/R7wR48P8zfA90VklN23fiJymb3tGeBUEfmaiJTaf2eKyMh4FRljXsISyDnASmCfPWDZW0SCYg0Wn2kXf8xut0JETgK+naKffwS+IiJftOsqF5HzRKRKRE4Qa5D5KOAwsB/7fCY518/ax3aFPZA6EzjNPmalgFEhVyI8LSL7sKzAO4CfYw34gWWRbwNWiMgnwMvY7gRjzEq73P1Yg55/oavVB3Am8KaI7McaOP2uiR87fgOWT34H8BrwCPA7Lw4wgjHmCeCnwKP28awHLrG37QMuAi7HEuj37bK9klT5Myx3RgkwBSuK5R2sJ4wHgX52ubuBZnvby8BiLBFO1M8mrIHZ24HdWN/NzVjXbQDrJvculmvoXKzBX0hwro0xLXb/bsIaNL0FmGKM2ZPk2JQCQIzRJylFyQci8k3gcmPMufnui1LYqEWuKN2EiAwUkYm2C2o4lmX8RL77pRQ+OtipKN1HGVYo4xCs0MFHgV/ls0NKcaCuFUVRlAJHXSuKoigFTl5cK8cdd5ypqanJR9OKoigFS319/R5jTH/n53kR8pqaGlavXp2PphVFUQoWEXHOzAXUtaIoilLwqJAriqIUOCrkiqIoBY5v4sjb29tpbm7m0KFD+e5KUVNeXk5VVRWlpaX57oqiKB7hGyFvbm6mb9++1NTUICL57k5RYoyhpaWF5uZmhgwZku/uKIriEb5xrRw6dIjKykoV8RwiIlRWVupTj6IUGb4RckBFvBvQc6wo+aO+sZV5y7ZR39jqab2+ca0oiqIUM/WNrVz54AraOsKUlQRYeO0ExlVXeFK3ryxyP3HXXXdx7733Jtz+5JNPsnHjxoTbFUVRYlmxo4W2jjBhA+0dYVbsaPGsbhXyDFEhVxQlHSYMraSsJEBQoLQkwIShlZ7VXdBC7rW/6cc//jGnnnoq55xzDlu2bAHgt7/9LWeeeSZjx45lxowZHDhwgDfeeIOlS5dy8803c/rpp7N9+/a45RRFUSKMq65g4bUT+N5Fwz11q0ABC3nE33Tfi1u48sEVWYt5fX09jz76KGvXruXZZ59l1apVAEyfPp1Vq1axbt06Ro4cyUMPPcTnPvc5pk6dys9+9jPWrl3LySefHLecoii5I1cDh7lkXHUF158/zFMRhwIe7Iznb8rm5CxfvpyvfvWr9OnTB4CpU6cCsH79en7wgx+wd+9e9u/fzxe/+MW4+7stpyhK9uRy4LAQKViLPJf+plhmz57NL3/5S95++23uvPPOhDHYbsspipI9uRw4LEQKVsi99jd9/vOf58knn+TgwYPs27ePp59+GoB9+/YxcOBA2tvbWbhwYbR837592bdvX/R9onKKonhPdxlyhULBulbAEnOvHqdqa2uZOXMmY8eO5fjjj+fMM88E4F//9V8566yz6N+/P2eddVZUvC+//HKuu+46/uM//oPFixcnLKcoivdEDLkVO1qYMLSyR7tVIE9rdtbV1RnnwhKbNm1i5MiR3d6Xnoiea0UpTESk3hhT5/y8YF0riqIoioUKuaIoSoGjQq4oilLgqJAriqIUOJ4IuYj8HxHZICLrRWSRiJR7Ua+iKIqSmqyFXEROAr4D1BljRgNB4PJs61UURVHc4ZVrpQToLSIlQB/gXY/qLVheffVVpkyZAsDSpUu55557Epbdu3cvv/rVr6Lv3333XS699NKc91FRlOIgayE3xuwC7gV2Au8BHxtjXnSWE5E5IrJaRFbv3r0722bzRigUSnufqVOncttttyXc7hTyE088kcWLF2fUP0VReh5euFYqgGnAEOBE4CgRucpZzhgz3xhTZ4yp69+/f7bNWjSthOX3Wf97QENDAyNGjODKK69k5MiRXHrppRw4cICamhpuvfVWamtr+dOf/sSLL77I2WefTW1tLZdddhn79+8H4Pnnn2fEiBHU1tayZMmSaL0LFizg29/+NgAffPABX/3qVxk7dixjx47ljTfe4LbbbmP79u2cfvrp3HzzzTQ0NDB69GjAWsv06quvZsyYMZxxxhksW7YsWuf06dO5+OKLOeWUU7jlllsA60Yze/ZsRo8ezZgxY7j//vs9OTeKUkwUYubEZHgxRf9C4B1jzG4AEVkCfA74owd1J6ZpJTw8FUJtECyDry+FQeOzrnbLli089NBDTJw4kWuuuSZqKVdWVrJmzRr27NnD9OnTefnllznqqKP46U9/ys9//nNuueUWrrvuOl555RWGDRvGzJkz49b/ne98h3PPPZcnnniCUCjE/v37ueeee1i/fj1r164FrBtKhHnz5iEivP3222zevJmLLrqIrVu3ArB27VreeustevXqxfDhw7nhhhv48MMP2bVrF+vXrwcsa19Rion6xtaspuYXY+ZEL3zkO4EJItJHrJV9LwA2eVBvchqWWyJuQtb/Dcs9qXbQoEFMnDgRgKuuuorXXnsNICrMK1asYOPGjUycOJHTTz+dhx9+mMbGRjZv3syQIUM45ZRTEBGuuqrLQwkAr7zyCt/85jcBCAaD9OvXL2l/XnvttWhdI0aMoLq6OirkF1xwAf369aO8vJzTTjuNxsZGhg4dyo4dO7jhhht4/vnnOeaYY7I/KYqSJ5yWsxfrEBRj5sSsLXJjzJsishhYA3QAbwHzs603JTWTLEs8YpHXTPKkWucq85H3Rx11FADGGCZPnsyiRYs6lYtY091Jr169oq+DwSAdHR1UVFSwbt06XnjhBX7zm9/w2GOP8bvf/a7b+6Yo2RLPck60DkE6Vnokc2J7R7hoMid6ErVijLnTGDPCGDPaGPM1Y8xhL+pNyqDxljvlC3d45lYB2LlzJ3/7298AeOSRRzjnnHM6bZ8wYQKvv/4627ZtA+DTTz9l69atjBgxgoaGBrZv3w7QRegjXHDBBfz6178GLH/2xx9/3CUlbiyTJk2KpsXdunUrO3fuZPjw4Qn7v2fPHsLhMDNmzOBHP/oRa9asSePoFcU/xBPteOlr07XSc7nkWr4o7Jmdg8bDpJs8E3GA4cOHM2/ePEaOHElra2vUDRKhf//+LFiwgFmzZvHZz36Ws88+m82bN1NeXs78+fP58pe/TG1tLccff3zc+h944AGWLVvGmDFjGDduHBs3bqSyspKJEycyevRobr755k7lv/WtbxEOhxkzZgwzZ85kwYIFnSxxJ7t27eK8887j9NNP56qrruInP/lJ9idFUfJAPNGOJ8KZuEpyteRavtA0tjE0NDQwZcqU6EBhseKHc60obnDjMolY5BFXSbFY2fFIlMa2oBeWUBSluHGzeMy46grmThnFc+vf45LRA4tWxJOhQh5DTU1N0VvjilJs1De2cvczG2jrCLOq4SOGD+jrmZhnG+rYXfhKyI0xXaJGFG/JhytNUbwgkagmimTxor1CiTf3jZCXl5fT0tJCZWWlinmOMMbQ0tJCebkmp1QKi2SimqtwwlzdIHKBb4S8qqqK5uZmCjkPSyFQXl5OVVVVvruhKGmRTFRztRBzIcWb+0bIS0tLGTJkSL67oSiKD0klqm4GRdMlVzeIXOCb8ENFUZRkFMrAYy7R8ENFUQqaWKs7IuoVfcpoPdDWo8UdVMgVRekGvLSmYwc+wwYE6FXq76iSXKNCrihKTsk2jM95E4gd+AQw+D+qJNeokCuKklOyCeOLdxOIDHxG6gyA76NKco0KuaIoOSWbML54N4Hrzx8WjSZRH7mFCrmiKDklmzC+RDeBXIQbFjIafqgoiq/RsMMjaPihoigFgVO41fpOjQq5oii+oZASVfmJwl4hSFGUoqIYF0buDlTIFUXJGfWNrcxbts31avfxlndTUqOuFUVRckImbpJCSlTlJ1TIFaWn8tKdsGkpjJwKk38IqxfAm78GY2D4JdCyDfb8A44bBsMugm0vQst2qDwZJt5oLXretBIalkPvStj2klU+WAYlZRgZzQ9MM8cFP0YMHLv0aBgyFMbOOrLv67/oUue4wD8YV7IcApOgCVi3CDAw4HQ42AKHPrHaLCmH3hVwdH/o1Q/e/zuMnAZ1s1Mfe6TfNZOSL97utpxbvK7PRsMPFaUn8tKdlohGGPoF2PGK+/0DJfCl++D526DjMBDuUsRE/7ERKy8KwV5wyb/DszdBuCN+naE2670JQ7g9nSODKQ8kF/OmlfDwVKuNYBl8fWl8UXVbzi0e1Jco/NATH7mIHCsii0Vks4hsEpGzvahXUZQcsWlp5/c730hv/3AHbHrKEqU4Ig6WaIvE/EU2hNqsfWNF3FmnCVn/pyviYNWRjIblndtoWJ5dObd4XV8MXg12PgA8b4wZAYwFNnlUr6IouWDk1M7vB38uvf0DJZYbI1hG2jISLIOR0whLCQaif53qlKD1f6A0vbrBqiMZNZM6t1EzKbtybvG6vhiy9pGLSD/g88BsAGNMG9CWbb2KouSQyT+0/s/WR37CaQl95NRMgsOfwP4PsaRa4OjjYews6sOn8NP2vVzD0wyV92hgIIO//H1G1F14pM6I0HntIx803nJrpPJVuy3nFq/riyFrH7mInA7MBzZiWeP1wHeNMZ86ys0B5gAMHjx4XGNjY1btKopSuMxbto17X9gSdaEL8H+/OJzrzx+Wz275nlz6yEuAWuDXxpgzgE+B25yFjDHzjTF1xpi6/v37e9Csoih+xE3s+IShlZQGo15zgkHRmPEs8ELIm4FmY8yb9vvFWMKuKEoPIxI7ft+LW7jywRUJxXxcdQV3TR1NMGCJeUAkbjnFHVkLuTHmfaBJRIbbH12A5WbpVtKdQaYoivekM8W+9UAbEdduKKTT8bPBqwlBNwALRaQM2AFc7VG9rtBEO4riD9JZRCKbBSeUzngi5MaYtUAXB3x3kc1SUoqieEe8KfaJ8olnOh1f85N3pSim6OudXVHyT6zARqJPUj0tp5trXJ++41MUQq6JdhTFe9KxfBMJrNdPy/r0HZ+iEHLQNfwUxUvStXwTCazXT8v69B2fohFyRVG8I13Ld8LQSkoCQnvIEAxIp0WSvXxa1qfv+KiQK4rShXiWb0pXiwhg7P+P4PXTsj59d0WFXFGULjgtXyCpq2XFjhY6QmEMR2LCVWy7DxVyRVHiEmv5zlu2LamrRX3X+UWFXFGUlKQSavVd5xddIUhRFFfoRJz8kyj7oVrkiqIkxCneKuD+RIVcUYqUTCzo2H22vL+PuU+tJxQ29CrVWZR+RoVcUYqQTKayx+5TEhBCBkJhy/Xa1q6RKH7GqzU7FUXxEemkk427T8hERRwgEMjdwg+agjp71CJXlCIkk3DA2H2CAQEROkJhAiLcPW10TqxxTYLlDSrkilKEZBIOGG8SUDpJszKJaNEkWN6gQq4oRUomUSbOfdzsn41VrROJvEGFPAd4EW+rMbuK30j0m3Ra1UvWNLv+7epEIm9QIfcYL3x+6jdU8o1TtB95cydzn1pP2Jguv8lYq1oCwqMrdxI2uA5Z1Pj07NGoFY9JN1og3oh9JhEHiuIVEUPivhe3cOWDK6Ii3hE2hA20OX6TEat65vjBGAMhA4YjIYtK7lGL3GPS8fklsrzd1KGuFyVXOA2J59a/1zkUUbqGIkZWA4pN+ZHLkEWlMwUl5IUgXun4/BKN2KeqQ10vSi5xGhKXjB7IqoaPaGsPEwgkDkWM7NfWYYUsXnvOkKhFrr/P3FIwQl5I4uXW55fM8k5Wh4ZsKbkkniExfEDflMZJ7H4Vfcq4+5kNna5XcB/OqKSHZ0IuIkFgNbDLGDPFq3ojFKN4ZTpiryFbPY9UT6NeP63GC0N0G4s+rrqiS/7yx9c0s2RNc0EYYoWIlxb5d4FNwDEe1hmlWMUr8sOPDHpqyJbiJNXTqB+fVp3Xq0DRGWJ+whMhF5Eq4MvAj4HveVGnk2IWr0wuRA3Z6jmkehr18mnVK8s+3izRx9c0F50h5he8ssh/AdwC9PWovrgUq3gVo9tI8Y5UT6NePa16bdk7r9diNcT8QNZCLiJTgA+NMfUicl6ScnOAOQCDBw/OttmioljdRoo3pHoa9eppNdcGRbEaYn4g66XeROQnwNeADqAcy0e+xBhzVaJ9dKm3rvgptNJPfVGyx+33GbHIIwZFPItcfxv5JdFSb56u2Wlb5P83VdRKMQh5sf6g/ThwpmROut9nst+1/jbyj67Z6SHF/INWf333k47FnK7xkO73qfMXChNPhdwY8yrwqpd1+pFi/kGrv757cWsUZGo8ePl9xqurWJ9MCw21yOOQ6sfZ3WLXnRdLooGzVI/cejFnhlujIFPjIdlAaLrfW7yQwmJ9Mi00VMgduLF8ch3THm8l83jpQ3OF8/E62TkpZjdTd+DWKMjGeIjnLon3vUHqKfSxdTlnbxbTk2mhoULuwK3lk6tQqk4rmQcDhEJhQvZ4dFs3XSxOSy3ZOSlmN1N34NYo8Np4iLcYxONpTqFXN5x/UCF3kO8fp/MCi40pEhF27T1IfWNrzsQynqWW7Jzk+3wVA+nmMXGSidtrwtBKSoL2QsvBgJU/PM0bcjHPti40CkvIm1ZCw3KomQSDxrvflgbjqit4cmoprRtfYeDAk6jZuRECabTXtBLWLQIMjL2i6zbnPpHPelfCwRa+3F7OZ0pf4TPhvbTIsWwwNXyetZwgrawwp7Gvvg8/WzOKu6aOYsQHz8DurdBxCM74ZzjhtM71O/sC1vvdW+BAC1SeDMMugoMt8M5r8N5b9Dl6Am0dX+t0QV9//rCEF6xezPklK7dXJPTYGEaf2C+jG7JO8vEHhSPkTSvh4akQaoNgGXx9aWcxTLQtg3ZGvHAVdByGd8IgAQj2ctde00pYMAVCh61yby2E2X8+ss25D9ifHQYTBoQaDNUB4q7dNNZsJwSEKCH4Z7DmYNnsqodAiXVxBsvg4nvguVuO9GXNHwCBcPsRK3/3ZmTznzu1MeLgc9wX/ITvdVxPMHjkgk52werFnJxcDAZH6nx370FXbq/D7Zb7JHZbR9hggFDY0HqgTW/IBUzhCHnDcksETcj6v2H5EWFNti3Tdghb703YfXvRfW1C7Z22mdBhxIQxoTakYbldps0WccCWWEnQNQOUCIgJESDORK5wx5E6Nz3VqS8m3BGtN7Z+E6e9cwPr7I3eTRbrqeRiMLjTOEpAomMp8dxewYAQDlmC/afVTUyvrWJcdfxVqPSGXLgUjpDXTLIszYhFWzPJ3bZM2+k4DEQscpftRT+3reBgaXTb5vKxVIdLKKWDdhOksXwsIwYcc6S8bZETT6AjCIQRJFiKYCDc3nl7rEU+chrhd15DbDFvJ0hJMICE2zs3Eeeu8Wp4bNRS88Pgpd/DG5P1LxeDwbF1hsKGmeMHcdKxveO2H45Zoq09ZPjFy1u58cJT1SVWZBSOkA8ab7kj4vmlk23Lph3bb+26vUHjYfYzcX3k/7O/hlfab+cs2cRKM5Lz99cwYtCwrm31roT318H+D+DoE2DAWNj2Iux7H6mZhJQfc+TGse6RpD7yJc3HcGj1HwF4MjyJy8+o5vMHX+adTfVUmH00yEBOnTidmt6Hoj7yloHncvs/Lico2Q9epiPAicr6PbwxVf9yMRjsrHOGbWU7WbGjpdM92wCvb9vDqoaPov3007lUMqdwhBwsUUwk0sm2edlOqjIJPp8wtJL/DI5gbceplJYE+H7kgnbTVt3sxH1I8tmQM87nyvre0Qt+yBkTOL56Ok2Nrbxki2ZN5EKedBMAxwELPbCA0xHgZGX9Ht6Yqn+5sHzd1hm7hiZYD2t+PY9KdhSWkBcw2VzQmboWErWZyhLzwlJLR4CTlfV7eKOb/uXC8nVTZ+z3H1lD06/nUckOFfJuJJMLOl3LNl3RzhXpCHCqRaj97Mv1e/8iDB/QtyD6qWSGCrnHeD0w59ayzdaXnIvFe90KR6qyfvXlxp6z688flu/uUN/YypI1zRhgRm0V0DUXih/6qXiPCrmH5GJgzq1lm40vOdWkkkwFPh0B9qtYJ8Jvg7D1ja3M+u2KqD988eomLq0b5OvxBcU7VMg9JBcDc+kObGXiA03Ub6dYzZ0yitYDbfpojkffdWRW76FPjsxBCLUfmXFrRyvxmZPho+1Q0gv6j4Cxs6z9IxFKQNnzv+H3bOAzpfvYYQYyPzSFwZ9+zKLSXzCcJvbRm95N58AfPoGR0+IOoPs9zFNJjAq5h+RqYC7dga10L8QJQyspCQjtIUMwINF+x4pVW0e427Mw+pmsv+vITN+OQ3SZO7B7M8TOuN1Vf+R14xvWLF0JWBPAAkFrin24HYJWkVPYxQXBNQS3gQQsC70fnyI7nrQKbH/F+j9GzP32hKGkhwq5h+R74Csr94TYk5HkyAyhWLESEUL2lG59TPfgu47OAs5g9my4nejksVAYMNa8rpjJXSWEE84QBqyZvzFC7vcwTyU5KuQeU2i+XrDzboSsTIuh0JGLWMPXkpPVdx2dQRzHIk9FoLSLRe6c5Stifx5JNeFk5LROb/0e5qkkR4VcSRn+FxGr4QP6qg/VJSn9zbGzgz3wkVtZLTfDgY+s/SfeaH3+8l3wwQbodQwMngAH9sT1kef7aVLJDjF5SIxUV1dnVq9e3e3tFiPZDlBF9q/oU6YDmR6h/mYlV4hIvTGmzvm5WuQFjBex47GrEV06riqHvfUev0ZZeOFv9uuxKf5EhbyAyVYwnFEpi97cyZI1zV1uCPFEJd9C42erN5W/OdW5ixzb4fYwwYBw97TRXHHW4O7qvlKAqJAXMNkOUEX2P9xuDXTGi0hJtEhvvkXUz1EWyfzNbm5AK3a0RL+TjrBh7lPrGT6gr2+OT/EfWQu5iAwCfg+cgKUF840xD2Rbr5KabAeoIvsvWdPMn1Y3EQqbLjeEeIIJ6a/v6DV+j7JIFNHi5gYUWRCiw84lHjb+yAuv+BcvLPIO4CZjzBoR6QvUi8hLxpiNHtSdV/LtPnBDpom4Yo9rXHUF02urEi7SG08wcymiyXKTx37u9yiLeMfhNlvi3dNGd5qA5bcbleIvPI9aEZGngF8aY15KVKYQolb87IPNhkyOKxsfebo3Q+cyZpfVDWJ6ggRQfv4+3OSvSRUplMm58/ONTcmebolaEZEa4AzgzTjb5gBzAAYP9v/AjZ99sNmQyXHFWv3pZPyLFbOAuBu06zQAGzIsfHMnf/J5Aqh4AprsPEf+T3VjSudpq1gND8UdcdZqzwwRORp4HLjRGPOJc7sxZr4xps4YU9e/f3+vms0ZkUfgoNCtPtj6xlbmLdtGfWNrTurP5rgiYnHfi1u48sEVKfsYK2aRQbtU+0T6F0tbyLByRwslAen27yMVkayD976whVm/PXJOUp1nZ8TQL17emtV3nmgsw9nXXP62lPzhiUUuIqVYIr7QGLPEizrzTT58sOlaVZk8SmdzXOla8xOGVhIQIWy778Jhw+NrmpO2Henf3U9vYF3zx9HPt+/+lNKSADPHD0q4RmUmZOuOWLKmOZo6tq0jzJI1zV3SG8SrO3YZtrCB1/7ReS3NdHET8qgWe/HiRdSKAA8Bm4wxP8++S/6hu/OmpCOU2VyY8Y4r1QBjRZ8ydu09SEkwQCjkbpCz06Bd2FASFBbXN9MRSt7ncdUVzP3KqE75tSN5YE46trenIp6tuDlHmGLfR85zxBJ2rty08NoJ/OLlrbz2jz1ZJyNLdeMoVlehYuGFRT4R+BrwtoistT+73RjzrAd19yjSCanz8sJMJGixn4eNlVyvNChcPn4w011axVecNTiao+XdvQdZtHKnqz6Pq65g0XXJQyOzJZE7Ih0LfUZtFYtXN9EeMpQGJboyT4RkN4tx1RXceOGprGr4KPqdV/Qp6yL6bklmePg9XFPJjqyF3BjzGiTPmKm4Ix23h5cXZqKbQuznYFvFYcOJaVrFsZbp42uaXffZGRpZ0acsKrZeWJPOc1jRpyxtC31cdQWL5pydsSUc+51HMkzmwv1RCOGaSubozE6f4dad4+bCdOv/TXRTcPpxA2Q30JipmLiN8si2P8lEN9m5zNYSjux/+xNvR2d05sL90d2uQqX7UCEvYJJdmMncJU5BSiSwTmvRi+yImYpJrny8zv7EE91sxyPc3LzqG1tZXN8c9bHHrtSkKKlQIS9wElmKify/yfy1iQYe/WDFVfQpI2CvYpQrH28i0c32JuLmHEYW9wDLT3lZ3SBfnHelMFAhL2CSWYrxHukLNXKhvrGVu5/ZQChsrSk6d8qonPU7nuh2x0Chs43pMYOmOmNTSYUKeQGTavZgPOvSlSC9dCdsWgojp0LFEHjr99bqNfs+pOPwPg5JH8KfGcoxg0Zbq9V8sNFaA3LAZ6H8GOhdCQdbjqx8U1IOvY8lOiZ+dH/o1Q+2Pg8HWq11QkOH4fB+CIeg7wA4qRZaG2Hfe5xQMohRoWnUcyrGGFoPtHWruKXr2/cyvl/jvxU36ApBBUzkIo8Iczp5UxL6vF+6E17/Rdx9TfQfGwEJlFhrR+YQA3SYALPa57I+OIK5U0YljO7It/XqRnjT6eO8Zdu478UthA0EBb530fCUqRGU4kVXCCpCMokCSRkBsmlpwn0l+k8MORbxSJMlEuam4bspO292wicRP1ivqdxX6fZR478VN6iQFziZDEYmFZuRUz2zyB1FXW+Lh0iQs7/wTzAosYuoU/6Sdit/yY0Xnpr0/LhNmZts39inm1TCm+44hcZ/K25QIe+BJBWbyT+0/o/jI5c0fOS73mvmzys3cyYbaZNSBg44kfZQmM8cVUZH7+N4YuM+zpM19GM/x/YppZeEEvrI6T8cLrzLWnmexOIWu+JRmNT5S9zMaE3mHoksx2aAgBAt6ybHSjoWtl8ihxT/okLeg4i1MpNaeZN/eETQAepmR1+WAEc7Kx40vlMZgCeXbeO+Dsu3GxAINEt0kYQZtVUs6tjJv5lZCDB52AkAfPDJIWaeOdjV+pTxxG1cdQVzp4ziB0++jTGW1d/WntjqdTOjNZHVHCkTebKILXv9+cOSph5QC1vxGhXyHkI8KzOXg2axlqeIEAqb6IxFA5QEA1EhfHHjB9H91jW/zc6WT7ntSyM79d2t8LUeaOv0PpBgYk19Y2vCJGBurGbneqeC+1mvamErXqNC3kPo7hjyeDlEIsIYSSy16M2dXbIHAsxfvoPJowZkNIAZm1YgspiF0/cdScTVETaUBLomAXNjNUes/7lPrScUNgQCwqRT/J9nXylOVMh7CPmIfoi1PCMZEGOFccma5qhFG4sxpOXmcLaZagX72DYjTwrOZFxurObWA22EjYkmE3t54wcs/8dujfVWuh0V8h5Cd/hm00ks5bRoY+lVmp6bw0kiEXb6tQUrp4mbHOnxjs/pXolNdhVpT/3gSnegQt6DyKVvNpMY7liLNihw+fjBnHhsb1cJvTIh9qYQDAa4dFwVAtEc6Yfbwzxur/Dj9vgWXts1Z3om6XAjbaj4K5mgQq54QiY+eKe1PerEfl0GKyH9G1Ci2avxbgr1ja38aXUTbSHrhrK4vjnuUnKJji/yF8mZnmlOGz9MZlIKFxVyxRMy9cFPr7Ws4lEn9st6UYXIQOZ/r26iI2Q5UGLju2OFN8K46gouqxvEI/bAaygUI7xNK61cMYc+4er1zzCr9H1CCE+Y8xg39D+tdAZ/fwxCbYw79DHjAiXQUMuJx4xhcunTlNPGZqqpbaqC+1ZCn0oYVHckz4wxMOFbUJd4tqqiuEGFXPGETBJLxVqgQMZCFll5aHH9kYWQI7ipb3ptVaeViyr6lLH4ySVMf/ubBEKHMRh6A72tbnIdTyMvvAvv1neuKNwOja8zkNcZYJcdxG5kh51XaN+78MHbnfd55rsATBg6TafiKxmjQq54RjouEKcFanCZmdFBvEiUWJLFd8ebIFXRp4y7nt7AteZ5wiVtBMSaWSTOPALvr0vaLzdpB6JseopxdbN1opCSMSrkStp4MSjndMXMqK1iRoyfOd0bQmwkSuR1SQBmnhl/oehEE6TueOJt2jrCrJCRtFOC0EYAywsSaUAABozFxFjkaQm3k5HTAJ0opGSOCrmSFvEEENIPtUvkikk35WunSJSAcFndoOigabL+JPJJR/R6jTmVK9tu56oBTezZ8yHnsYbj5GOOLi+jrO6fqT/1RuofvIEp8hqldFARPEhJsNTKEVN1Jmx5DjoOwYAxUNoHGl5L6iNXlGxQIVfSwimAj69pZsma5ozXs0wm3JB6wWW3vvlEMeBOV86M2ioWr26iPWRYHxhO9T/Nphp4eE0zu/cd5ri+vZhxqvXkcF/HLP7NzLLyhJ/vyBMem6smHqm2K0oaeCLkInIx8AAQBB40xtzjRb2K/3AKoJD5IKUTp7U/o7bKVd2pXBLJYsDjPREsmnN2p88feXMnj65qik5cWry6ibumjtbBScU3ZC3kIhIE5gGTgWZglYgsNcZszLZuxX84BRDoFPGRrqDFWspeDYA6SRUDHu8YI5/XN7Z2mX3aHrKWm4sXk66DlUo+8MIiHw9sM8bsABCRR4FpgAp5keIUQLfRFk6hc1rKc6eM8mQA1Ek2eWZW7Ggh7FgOsTQonSYZRY5NJ/Qo+cILIT8JaIp53wyc5UG9SoHgJtointA5LeV4Vi7AuBdmwF/XQtnR0LsflPSG4ZfA4Y9h91b4uAkQKD+Gtr3vEzj0EQHCBMqOhqHnMm7YZP562kra3tvIceEPKV8ShEAJ7P/AWlQarAHJjkNQ1gd6V8DhfXDcKVww+ib+086mKCJ8YcTxfOPck13P/FSU7qDbBjtFZA4wB2Dw4NQLByjFRTyhi2cpd7kpzP/CkYk3hz+2/gD2bOnShgFKY4xn07YP2fwMbH6G4+OUjSCRugEOHoaDrdbrT3czYuebPDn1Mf5nf03SpwJnHpddew9S39iqYq50C14I+S5gUMz7KvuzThhj5gPzAerq6uLN3VCKmESindItk2DiTWQxh1iEOB8mwHXctwkx4tA6Rpx/Ycqi02ur2LPvMK9u+ZBHV+5kyZpmdbEo3YIXQr4KOEVEhmAJ+OXAFR7Uq/iMbAbzkkWJJK1rwNioRe5c/NlIZ0GOuzh0nCq7lIspj2ObkSCBmkmJ+0dnt1FArCXtnC4WHQhVcknWQm6M6RCRbwMvYIUf/s4YsyHrnim+wovBvIxmLs55xXKvvLeWQ4E+7G4r5yBlvGLO4JxBvRhT9n7UR35A+rC/5T2O5ROCGEIlfeh1yvkwbLJl2e/eAh83cbg9xLv7OjiOvfSiAwMcML3oE2ynTcrZHTqKY+QA28Mn0lx3K5faiz4nItZthLFWCxJM9MlDB0KVXOOJj9wY8yzwrBd1Kf4kr4N5c14BYKMtiBH3zPiLJ0BMHxYs28Z9L1oLPgME2uFHQ8ZwRV3nMZlyoLWxlYfsPOLtdgpb2q3tpUEhbOcWX3jGhJTdc7qN5k4Z1Wlm6bxl23QgVMkpOrNTcUU+lopzksqnPmFoZdS1AVbmw7lPrQfoMmU/No/4TY+tpaHlQLSe0wYew0WjBrh2g7jpl/PcqatF8RIxpvvHHevq6szq1au7vV0lO3ItPl7U/8ibO/nBk29HrfLIcm5hY7q4NSLpb99qbGXT+/uidXzj80O57Usjsz2cTqSbekBR4iEi9caYOufnapErrvHbUnHxuOIsy40y96n1hI0hIBJdYNk5+Dhr/t9oC3U2ZATo27vUgyPqTOy5U1eL4jUq5Iov8NIHf8VZgxk+oG80v/jdz2zo4hJasaOF9jgiHgwIFX3K4tbr1ROJH9xUSnGhQq74gmz9yM6ysRZwrKhHVrifMLSS0qBELfJgADAQChvufmYDwwf07dSml5En6a6mpCipUCFXfEG8ZFxuhTOVyEZeO8ssmnM2j69pji5G8ejKnV1cMBG8jtrRRSQUL1EhV3xDpn5kNyIbr8z15w/rNPC5JEkWR3WHKH5GhVzJC84oDqebIR3hdFM2VZlx1RXMnTKK59a/xyWjB2a8gIWi5AMNP1S6nVhXSElAQISOUFe3SDY+8nTL6OxLpRDQ8EPFN3Ryc4QM0DU8EI64WuobW5m3bFtSkXbjc05WJpczVyM3kIo+ZSnXElWUTFAhV7od54LJiBAKxU//2l2Wcq584LH9DxsrxLFXqVr8ireokCvdTrwIlSV23hNn+tdMLOVM4r1z5QPvlFALEkbF6JR9JRtUyJW84HRzrNjRQke4a/rXdC3lVBZ8MsHMRUhgpP8RMQ9Al+NQ/7ySLSrkii9IJNipLGWnMCez4HMpmIluELH9T+Qj12XilGxRIVd8QTLBdi5ynGzSUDILPleC6WZCUrJ2NEZdyRYVcsU3pBI8p2BOr62KO8kn0Q3BKZgVfcpSRsO4IdsbhMaoK9miQq4UDE7BFEjojoknhk43x93PbPDEzeKFRa1T9pVsUCFXfE9sHHasYE6vrWJ6bVValmxEMO944m0Ot4cTRpGkQ64tao1oUVKhQq74Gqc7xbmMGpC2uD3y5s5ogiyAYDB7v3SuLGqNaFHcEMh3BxQlGU53SuuBtk7JrtKlvrGVuU+tJ5KKXIBLx1X5Vhzj+d8VxYkKueJrIv7noHSNv86EFTtaomt6grWQxIzaqrhlI6kB6htbs2ozG7w+fqU4UdeK4mu89j/HTtAJiHD3tNFx6/SLS0MjWhQ3qJArvsdL/7NbYfTTJB2NaFFSkZWQi8jPgK8AbcB24GpjzF4P+qX0cLxOYRuLG2HUSTpKIZGtRf4S8H1jTIeI/BT4PnBr9t1SejLpuDVy5QLRkEKlkMhKyI0xL8a8XQFcml13FCU9t0YuXSAaUqgUCl5GrVwDPJdoo4jMEZHVIrJ69+7dHjarFAuRKJHIxB83kRqFGNWhIYWK16S0yEXkZWBAnE13GGOessvcAXQACxPVY4yZD8wHa6m3jHqrFC1uJv7EoxCjOtT/rnhNSiE3xlyYbLuIzAamABeYfCwAqhQFiSb+pKIQfc2FePNR/E22USsXA7cA5xpjDnjTJaUnkomVmq6v2U+iryGFipdkG7XyS6AX8JKIAKwwxnwj614pPY5MrNR0Bjp1gFEpZrKNWkn97Kv0ODK1fNO1UtOx4v00wUdRvEZndiqe0p2WbzpWfCEOMPrJFaT4GxVyxVO62/J1a8UX2gCjuoKUdFAhVzzFz5ZvIQ0wqitISQcVcsVTCs3y9St+viEq/kPyEfpdV1dnVq9e3e3tKtmhPtvuJdfnW7/PwkNE6o0xdc7P1SJXXKE+2+4nl64g/T6LC10hSHGF5gcpLvT7LC5UyBVXFEJyKj8szVYoFML3qbhHfeSKa/zsU1VXQfr4+ftU4qM+ciVr/By+p+F66ePn71NJD3WtKEWBugqUnoxa5EpRoPHrSk9GhVwpGtRVoPRU1LWiKIpS4KiQK4qiFDgq5IqiKAWOCrnie3Sij6IkRwc7FV+jE30UJTVqkSu+RnOCKEpqVMgVX6MTfRQlNepaUXyNTvRRlNSokCu+Ryf6KEpyPHGtiMhNImJE5Dgv6lMURVHck7WQi8gg4CJgZ/bdURRFUdLFC4v8fuAWoPsTmyuKoijZCbmITAN2GWPWedQfRVEUJU1SDnaKyMvAgDib7gBux3KrpERE5gBzAAYPHpxGFxVFUZRkZLzUm4iMAf4HOGB/VAW8C4w3xryfbF9d6k1RFCV9Ei315tmanSLSANQZY/a4KLsbaPSk4dxzHJDymIoMPeaeQ0887kI+5mpjTH/nh3mJI4/XEb8iIqvj3QGLGT3mnkNPPO5iPGbPhNwYU+NVXYqiKIp7NNeKoihKgaNCnpr5+e5AHtBj7jn0xOMuumP2bLBTURRFyQ9qkSuKohQ4KuSKoigFjgq5C0TkZyKyWUT+LiJPiMix+e5TrhGRy0Rkg4iERaSoQrWciMjFIrJFRLaJyG357k93ICK/E5EPRWR9vvvSHYjIIBFZJiIb7d/1d/PdJy9RIXfHS8BoY8xnga3A9/Pcn+5gPTAd+Gu+O5JLRCQIzAMuAU4DZonIafntVbewALg4353oRjqAm4wxpwETgOuL6XtWIXeBMeZFY0yH/XYFVjqCosYYs8kYsyXf/egGxgPbjDE7jDFtwKPAtDz3KecYY/4KfJTvfnQXxpj3jDFr7Nf7gE3ASfntlXeokKfPNcBz+e6E4hknAU0x75spogtc6YqI1ABnAG/muSueoUu92STL8miMecoucwfWI9rC7uxbrnBzzIpSTIjI0cDjwI3GmE/y3R+vUCG3McZcmGy7iMwGpgAXmCIJvk91zD2EXcCgmPdV9mdKkSEipVgivtAYsyTf/fESda24QEQuxloFaaox5kCq8kpBsQo4RUSGiEgZcDmwNM99UjxGRAR4CNhkjPl5vvvjNSrk7vgl0Bd4SUTWishv8t2hXCMiXxWRZuBs4M8i8kK++5QL7EHsbwMvYA2APWaM2ZDfXuUeEVkE/A0YLiLNIvIv+e5TjpkIfA34gn0NrxWRL+W7U16hU/QVRVEKHLXIFUVRChwVckVRlAJHhVxRFKXAUSFXFEUpcFTIFUVRChwVckVRlAJHhVxRFKXA+f/jZyQ8q1FhlwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], pred, \".\", label=\"predictions\")\n", - "ax.set_title(\"DecisionTreeRegressor\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## DecisionTreeRegressor with custom implementation" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "sklearn.__version__ = 1.1.dev0\n" - ] - } - ], - "source": [ - "import sklearn\n", - "from pyquickhelper.texthelper import compare_module_version\n", - "if compare_module_version(sklearn.__version__, '0.21') < 0:\n", - " print(\"Next step requires scikit-learn >= 0.21\")\n", - "else:\n", - " print(\"sklearn.__version__ =\", sklearn.__version__)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "from mlinsights.mlmodel.piecewise_tree_regression_criterion import SimpleRegressorCriterion" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DecisionTreeRegressor(criterion=,\n", - " min_samples_leaf=100)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model2 = DecisionTreeRegressor(min_samples_leaf=100,\n", - " criterion=SimpleRegressorCriterion(X_train))\n", - "model2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 2.65757699, 0.37665413, -0.07967816, 0.37665413, 5.57229226])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred = model2.predict(X_test)\n", - "pred[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5F0lEQVR4nO2de5wU1Zn3v0/3zDCAiLOIogzMgCggKMggokjUeIlGgm9QX7xlg676Jmtub7ISY/IxWTduzObqbkyyXrKYLOJ6QVESFX3FBC8IDELkHsAZGECEcVAQZGa6z/tHVTc1NX2p7q7uru55vp/PQFfXqXNOVXf/6qnnPOc5YoxBURRFKV1Cxe6AoiiKkhsq5IqiKCWOCrmiKEqJo0KuKIpS4qiQK4qilDgq5IqiKCWOCrmSN0TkeRH5oodyB0RkeCH6pCjliAq5gog0icghEdkvIvtE5A0R+ZKI5PT9MMZcZox5xEO5o4wxW3NpS0TW2jeEAyISEZFPHNt35lK3q505ItJu1/uBiLwkIqP8ql9RskGFXInxOWNMP6AOuBf4NvBwcbvkHWPMGPuGcBSwBPhKbNsY86+xciJS4UNz/2a3MxjYQR6uk0/9zKV9yfVGrhQO/aCULhhjPjTGPAvMBL4oImNFpJeI/FREtonIbhH5rYj0jh0jIleIyCoR+UhEtojIpfb7r4rIzfbrESLyZxH5UET2isj/OI43IjLCft1fRH4vIntEpFlEvhcTFBGZJSKv2X1pE5F3ReSyVOcjIvV2/f8gItuAV+z3bxKR9XY9L4pIneOYUbal/YGIbBSR/53kWh0CHgfGO449UUSesvv/roh8zbGvt4g8Yre5XkRmi0iLY3+TiHxbRP4KfCwiFSIy2X5C2iciq0XkfEf5WSKy1X6SeldErvdwrc8RkeX2vuUico5j36sico+IvA4cBNTdVSoYY/Svh/8BTcBFCd7fBnwZ+AXwLPB3QD/gOeBHdplJwIfAxViGwWBglL3vVeBm+/U84Lt2mWrgXEc7Bhhhv/49sMBupx7YBPyDvW8W0AHcAoTtvu0ExNVvZ7v1dv2/B/oCvYErgM3AaKAC+B7whl2+L7AduNHedwawFzjV3j8H+KGj7B+A1fZ2CGgE7gKqsIRwK/AZe/+9wJ+BGqAW+CvQ4vocVgFD7H4OBlqBz9p1X2xvD7Tb/ggYaR97AjAm1bW2P7824Av2uV1rbw9wXLdtwBh7f2Wxv5v65/E3XOwO6F/x/0gu5EttQfgYOMnx/tnAu/br/wR+kaRep6D+HngAqE1QzgAjbHFuj4mmve//AK/ar2cBmx37+tjHDkrRbr1dZrhj//PYNwd7O4RlgdZhPYkscdX3n8D37ddzgE+AfUAUeBc43d53FrDNdex3gP+yX8dF3d6+OYGQ3+TY/jbwB1d9LwJftIV8H3Al0NtVJuG1tgV8meu9N4FZjut2d7G/j/qX+Z+6VpRUDMayzPoAjfbj/T7gBSyrECzrcYuHumYDAiyzByZvSlDmWKASaHa812z3I8Z7sRfGmIP2y6M8tL/d8boOuM9xPh/YfRts7zsrts/efz0wyHH8T40xx2DdJA4BIx31nug69k7geHv/ia5+OF8n6+fVrvrOBU4wxnyMddP5ErBLRP7oGHRNdq1PpOu1he7XN1GflIBT1AEVJbiIyJlYP/BnsCzDMcaYHQmKbgdOSlefMeY9LJcIInIu8LKI/MUYs9lRbC+W66QOWGe/NxRrQDFXnGk+twP3GGPmugvZvvI/G2MuTluhMdtE5OvAIyKy0K73XWPMyUkO2YXlUomd2xAP/fyDMeaWJO2/CLxoj1f8EHgQmJrsWmO5oepc1QzFujEnal8pEdQiV7ogIkeLyDTgMeC/jTGrsQTiFyJynF1msIh8xj7kYeBGEblQREL2vm7heCJytYjU2pttWIIRdZYxxkSwBg/vEZF+tqh+E/hvn0/zt8B3RGSM3bf+InK1vW8hcIqIfEFEKu2/M0VkdKKKjDEvYQnkrcAyYL89YNlbRMJiDRafaRd/3G63RkQGA19J08//Bj4nIp+x66oWkfNFpFZEjhdrkLkvcBg4gH09U1zrP9nndp09kDoTONU+Z6WEUSFXYjwnIvuxrMDvAj/HGvADyyLfDCwVkY+Al7HdCcaYZXa5X2ANev6Z7lYfwJnAWyJyAGvg9Osmcez4V7F88luB14BHgd/5cYIxjDFPAz8GHrPPZw1wmb1vP3AJcA2WQL9nl+2VosqfYLkzKoBpWFEs72I9YTwE9LfL3Q202PteBp7EEuFk/dyONTB7J7AH67O5Het3G8K6ye3Ecg2dhzX4C0mutTGm1e7ft7AGTWcD04wxe1Ocm1ICiDH6JKUoxUBEvgxcY4w5r9h9UUobtcgVpUCIyAkiMsV2QY3EsoyfLna/lNJHBzsVpXBUYYUyDsMKHXwM+HUxO6SUB+paURRFKXHUtaIoilLiqJArWSNp0s/auUMuKmSfSgXxmOI3g/qmishGv+pTSgsVciVrjCP9rFjpXX9Y7D45CfKNxDhS/NrJr17Lsb4lxpiR6Usq5YgKuaIUELHw9XcnRU55qxQfFXKlCyJyo4g859j+m4g84djeLiLj7dfGTpl6K1Y+ktm2u+U5R5XjReSvdtrU/xGR6hRt3yJWetf9IrJORCY423GUi1v/InKsiCy0c5F8ICJL7PC+P2BNP3/O7tNsu/x0O//IPrHSto521NskIrfb/f1YRB62Z1A+b/fpZRGpSdH/VOl8u6SHtd+72W7/t8DZdj/32cckTR1sz+5ssWeQvgf8V+w9R19G223ss893uuv63S9Wfpb9IvKWiKRNs6AEmGJn7dK/YP1hpV7dh3WTjyVZanHsawNC9rYz/ewc7PSujrqasKatn4iVQnU98KUk7V6NlVPlTKyETyOAOnc77raAH2EJYaX9N5Uj0VhNOLI6AqdgzRq92C47G2vGapWj/FKsJFeDgfeBlVipbKuxcpl/P0n/06Xz7ZIelq4ZGmcBr7nqS5U6+HygkyMzTnvb78U+p0r7vO7ECnn8NLCfIylv52DN7Jxk92cu8Fixv3v6l/2fWuRKF4zl896PNc38U1hpU3eKlT/lPKwUr9HkNXTj340xO40xH2CJ0fgk5W7GWnlnubHYbIxxZ+pLRAdWLu46Y0yHsXzFyWJqZwJ/NMa8ZIzpAH6KJYLnOMr8hzFmt7EShC0B3jLGvG2M+QRr8s4ZSer+B+B3dt1RY8wOY8wGx/45xpi1xphOu+2kiIhg5W75v8aYD4yVNuBfsdIGxIhi3VQOG2uBCyeTsTJC3muMaTfGvIKVT+VaR5mnjTHLjDGdWEI+PlWflGCjQq4k4s9YFt6n7NevYon4efZ2JrzneH2Q5ClnvabDdfMTLOtzkVir5dyRomyXNK72DWk7XdO47na8PpRgO9v+Z5IediCpUwcD7LFvLok4EdjuuuEmTQdM6s9FKQFUyJVExIR8qv36z6QX8lxnlqVKh3sQS9hixHODG2P2G2O+ZYwZDkwHvikiFybpU5c0rrblOwR/0uSmS+eb6vq49+3FummMMcYcY//1N9Y6oV7q2wkMcQ2q+pUOWAkgKuRKIv4MXIC18kwLlovhUmAA8HaSY3aT2xqPDwH/JCINdmTHCDmyjuYq4DqxUrleinVDAUBEptllBctHHeFIelx3nx4HLhcr5W4lVq6Tw8AbOfQ7hqd0vknYDdSKSBXEnxRSpQ5Ox1tYN7/ZYqXhPR/4HFZKAKUMUSFXumGM2YSV33qJvf0RVlrZ142VMzwRDwOn2q6AZ7Jo8wngHqy0tfuxFrT4O3v317GEaB9WdIyz/pOxUsIewFq27NfGmMX2vh8B37P79E/GmI3ADcB/YFm9nwM+Z4xpz7S/CfrvNZ1vIl4B1gLviUgspWzS1MEe+tKOdW6XYZ3nr4G/d/nslTJCc60oiqKUOGqRK4qilDgq5IqiKCWOCrmiKEqJo0KuKIpS4hQl2c6xxx5r6uvri9G0oihKydLY2LjXGDPQ/X5RhLy+vp4VK1YUo2lFUZSSRUQSpq1Q14qiKEqJo0KuKIpS4qiQK4qilDiBWVmko6ODlpYWPvkkWUI3xQ+qq6upra2lsrKy2F1RFMUnAiPkLS0t9OvXj/r6eqz8R4rfGGNobW2lpaWFYcOGFbs7iqL4RGBcK5988gkDBgxQEc8jIsKAAQP0qUdRyozACDmgIl4A9BorSvFobG7j/sWbaWxu87XewLhWFEVRypnG5jauf2gp7Z1RqipCzL15Mg11SdfyzohAWeRB4gc/+AE//elPk+5/5plnWLduXQF7pChKKbN0ayvtnVGiBjo6oyzd2upb3SrkWaJCrihKJkwePoCqihBhgcqKEJOHD/Ct7pIWcr/9Tffccw+nnHIK5557Lhs3bgTgwQcf5Mwzz2TcuHFceeWVHDx4kDfeeINnn32W22+/nfHjx7Nly5aE5RRFUWI01NUw9+bJfPOSkb66VaCEhTzmb/rZoo1c/9DSnMW8sbGRxx57jFWrVvGnP/2J5cuXAzBjxgyWL1/O6tWrGT16NA8//DDnnHMO06dP5yc/+QmrVq3ipJNOSlhOUZT8ka+Bw3zSUFfDbReM8FXEoYQHOxP5m3K5OEuWLOHzn/88ffpYi7VPnz4dgDVr1vC9732Pffv2ceDAAT7zmcTr33otpyhK7uRz4LAUKVmLPJ/+JiezZs3iV7/6Fe+88w7f//73k8Zgey2nKEru5HPgsBQpWSH329/0qU99imeeeYZDhw6xf/9+nnvuOQD279/PCSecQEdHB3Pnzo2X79evH/v3749vJyunKIr/FMqQKxVK1rUClpj79Tg1YcIEZs6cybhx4zjuuOM488wzAfiXf/kXzjrrLAYOHMhZZ50VF+9rrrmGW265hX//93/nySefTFpOURT/iRlyS7e2Mnn4gB7tVgEQY0zBG504caJxLyyxfv16Ro8eXfC+9ET0WitKaSIijcaYie73S9a1oiiKoliokCuKopQ4KuSKoigljgq5oihKieOLkIvI/xWRtSKyRkTmiUi1H/UqiqIo6clZyEVkMPA1YKIxZiwQBq7JtV5FURTFG365ViqA3iJSAfQBdvpUb8ny6quvMm3aNACeffZZ7r333qRl9+3bx69//ev49s6dO7nqqqvy3kdFUcqDnIXcGLMD+CmwDdgFfGiMWeQuJyK3isgKEVmxZ8+eXJstGpFIJONjpk+fzh133JF0v1vITzzxRJ588sms+qcoSs/DD9dKDXAFMAw4EegrIje4yxljHjDGTDTGTBw4cGCuzVpsXwZLfmb97wNNTU2MGjWK66+/ntGjR3PVVVdx8OBB6uvr+fa3v82ECRN44oknWLRoEWeffTYTJkzg6quv5sCBAwC88MILjBo1igkTJjB//vx4vXPmzOErX/kKALt37+bzn/8848aNY9y4cbzxxhvccccdbNmyhfHjx3P77bfT1NTE2LFjAWst0xtvvJHTTjuNM844g8WLF8frnDFjBpdeeiknn3wys2fPBqwbzaxZsxg7diynnXYav/jFL3y5NopSTpRi5sRU+DFF/yLgXWPMHgARmQ+cA/y3D3UnZ/syeGQ6RNohXAVffBaGTMq52o0bN/Lwww8zZcoUbrrpprilPGDAAFauXMnevXuZMWMGL7/8Mn379uXHP/4xP//5z5k9eza33HILr7zyCiNGjGDmzJkJ6//a177Geeedx9NPP00kEuHAgQPce++9rFmzhlWrVgHWDSXG/fffj4jwzjvvsGHDBi655BI2bdoEwKpVq3j77bfp1asXI0eO5Ktf/Srvv/8+O3bsYM2aNYBl7StKOdHY3JbT1PxyzJzoh498GzBZRPqItbLvhcB6H+pNTdMSS8RNxPq/aYkv1Q4ZMoQpU6YAcMMNN/Daa68BxIV56dKlrFu3jilTpjB+/HgeeeQRmpub2bBhA8OGDePkk09GRLjhhm4PJQC88sorfPnLXwYgHA7Tv3//lP157bXX4nWNGjWKurq6uJBfeOGF9O/fn+rqak499VSam5sZPnw4W7du5atf/SovvPACRx99dO4XRVGKhNty9mMdgnLMnJizRW6MeUtEngRWAp3A28ADudablvqpliUes8jrp/pSrXuV+dh23759ATDGcPHFFzNv3rwu5WLWdCHp1atX/HU4HKazs5OamhpWr17Niy++yG9/+1sef/xxfve73xW8b4qSK4ks52TrEGRipccyJ3Z0Rssmc6IvUSvGmO8bY0YZY8YaY75gjDnsR70pGTLJcqd8+ru+uVUAtm3bxptvvgnAo48+yrnnnttl/+TJk3n99dfZvHkzAB9//DGbNm1i1KhRNDU1sWXLFoBuQh/jwgsv5De/+Q1g+bM//PDDbilxnUydOjWeFnfTpk1s27aNkSNHJu3/3r17iUajXHnllfzwhz9k5cqVGZy9ogSHRKKdKH1tplZ6PpdcKxalPbNzyCSY+i3fRBxg5MiR3H///YwePZq2tra4GyTGwIEDmTNnDtdeey2nn346Z599Nhs2bKC6upoHHniAyy+/nAkTJnDcccclrP++++5j8eLFnHbaaTQ0NLBu3ToGDBjAlClTGDt2LLfffnuX8v/4j/9INBrltNNOY+bMmcyZM6eLJe5mx44dnH/++YwfP54bbriBH/3oR7lfFEUpAolEO5EIZ+MqydeSa8VC09g6aGpqYtq0afGBwnIlCNdaUbzgxWUSs8hjrpJysbITkSyNbUkvLKEoSnnjZfGYhroa7po2hufX7OKysSeUrYinQoXcQX19fdlb44pSbjQ2t3H3wrW0d0ZZ3vQBIwf1803Mcw11LBSBEnJjTLeoEcVfiuFKUxQ/SCaqySJZ/GivVOLNAyPk1dXVtLa2MmDAABXzPGGMobW1lepqTU6plBapRDVf4YT5ukHkg8AIeW1tLS0tLZRyHpZSoLq6mtra2mJ3Q1EyIpWo5msh5lKKNw+MkFdWVjJs2LBid0NRlACSTlS9DIpmSr5uEPkgMOGHiqIoqSiVgcd8ouGHiqKUNE6rOybqNX2qaDvY3qPFHVTIFUUpAH5a086Bz6gBAXpVBjuqJN+okCuKkldyDeNz3wScA58AhuBHleQbFXJFUfJKLmF8iW4CsYHPWJ0hCHxUSb5RIVcUJa/kEsaX6CZw2wUj4tEk6iO3UCFXFCWv5BLGl+wmkI9ww1JGww8VRQk0GnZ4BA0/VBSlJHALt1rf6VEhVxQlMJRSoqogUdorBCmKUlaU48LIhUCFXFGUvNHY3Mb9izd7Xu0+0fJuSnrUtaIoSl7Ixk1SSomqgoQKuaIoeSHbiUA6uJk56lpRFCUvqJukcPhikYvIMcBDwFis1Ac3GWPe9KNuRVFKE3WTFA6/XCv3AS8YY64SkSqgj0/1KopSwqRykzQ2t/HUyhYEmDGhVoU+B3IWchHpD3wKmAVgjGkH2nOtV1GU8qWxuY1rH3iT9og1s/yJxhbm3aIx49nih498GLAH+C8ReVtEHhKRvu5CInKriKwQkRW6Lqei9GyWbm2lI3IkPYjGjOeGH0JeAUwAfmOMOQP4GLjDXcgY84AxZqIxZuLAgQN9aFZRlCDiJXZ88vABVIYlvh0Oiw6G5oAfQt4CtBhj3rK3n8QSdkVRehix2PGfLdrI9Q8tTSrmDXU1/GD6WMIhS8xDIgnLKd7IWciNMe8B20VkpP3WhcC6XOvNlExnkCmK4j+ZTLFvO9hOLPtqJKKulVzwK2rlq8BcO2JlK3CjT/V6QhPtKEowyGQRiVwWnFC64ouQG2NWAd1y5BaKXJaSUpSyZfsyePkHsHst9Doahk6Gg3th9BUwcRa89H1Y/yyMng4X/zOsmANv/QaMgZGXQetm2Ps3OHYEjLgENi+C1i0w4CSY8g0YMslqo2kJ9B4Am1+iYe/faDw2zEedAvVTOeGdRXzw/1po+7idmr5V/N1xtTDuWhgyiYbQ33hz2MNE924mdOwIakIDAEed9VOt81g9DzAwaDwcamXX++8jTUvo06cvR9ccB0cNhF794b2/Hjk3L9cm1saQSbmX84rf9dmUxcISMYs8dmdXi1zp8WxfBr+7FEwk8f7hn4atryTfTkeoAj77M3jhDug8DERxKknM423i/xzZIeFecNm/wZ++BdHOxHVG2q1tE4VoR7xIwvrcfZt2X2ox374MHplutRGugi8+m1hUvZbzig/1JVtYoiym6MdmkH3zkpEq4ooCltWXTMQBtr2Rejsd0U5Yv8ASJVvExfEXQwARxx9Yx6xf0FXE3XWaiPW/Q8Rj9YGrPjfrF6Tue9OSrm00LcmtnFf8rs9BWQg5WGJ+2wUjVMQVBaxHdwkn3z/0nJTbBsvDEv9zHx+qsNwY4SpiMpKofMJ6wlXWsaGK5HVK2Po/VNmtX13aSnRuo69Ift5gXRtnGzEXTrblvOJ3fQ7KwrWiKEoCcvCRr6iezN7mtQxjF03mBCpHf4ZPh1cl9ZE3Hapm45L51LOTTiqpO/4Yjhp5ARz+iA/eT+wjZ/syeP2Xyf3u6iPvRjLXigq5oijdSDTuBCRNgNXY3Ma1Dx4pr9Pt84MuvqwoimfcmQuBlCG+S7e20hmxfOWxmHAV8sKhQq4oSkKcmQvvX7w5ZYivxoQXFxVyRVHSkk6oNfd4cVEfuaIonmhsblOhLjLqI1cUJWPc4q0CHkxUyBWlTMnGgnYes/G9/dy1YA2RqKFXpc6YDjIq5IpShmSTSM55TEVIiBiIRC3Xa3uHRqIEmbKZ2akoyhEySSeb8JiIiYs4QCiUv4UfNAV17qhFrihlSDbhgM5jwiErmUlnJEpIhLuvGJsXa1xTUPuDCrmilCHZhAMmmgTk9fhsI1o0BbU/qJArSpmSTZSJ+xgvx+diVetEIn9QIc8DfsTbasyuEjSSfSfdVvX8lS2ev7s6kcgfVMh9xg+fn/oNlWLjFu1H39rGXQvWEDWm23fSaVVLSHhs2TaiBs8hixqfnjsateIzmUYLJBqxzybiQFH8ImZI/GzRRq5/aGlcxDujhqiBdtd3MmZVz5w0FGMgYucJj4UsKvlHLXKfycTnl8zy9lKHul6UfOE2JJ5fs6trKKJ0D0VsqKth6dZWnCk/8hmyqHSlpIS8FMQrE59fshH7dHWo60XJJ25D4rKxJ7C86QPaO6KEQslDEWPHtXdaIYs3nzssbpHr9zO/lIyQl5J4efX5pbK8U9WhIVtKPklkSIwc1C+tceI8rqZPFXcvXNvl9wrewxmVzPBNyEUkDKwAdhhjpvlVb4xyFK9sR+w1ZKvnke5p1O+n1URhiF5j0RvqarrlL39qZQvzV7aUhCFWivhpkX8dWA8c7WOdccpVvGJf/Nigp4ZsKW7SPY0G8WnV/XsVKDtDLEj4IuQiUgtcDtwDfNOPOt2Us3hl80PUkK2eQ7qnUT+fVv2y7BPNEn1qZUvZGWJBwS+L/JfAbKCfT/UlpFzFqxzdRop/pHsa9etp1W/L3v17LVdDLAjkLOQiMg143xjTKCLnpyh3K3ArwNChQ3NttqwoV7eR4g/pnkb9elrNt0FRroZYEMh5qTcR+RHwBaATqMbykc83xtyQ7Bhd6q07QQqtDFJflNzx+nnGLPKYQZHIItfvRnFJttSbr2t22hb5P6WLWikHIS/XL3QQB86U7Mn080z1vdbvRvHRNTt9pJy/0OqvLzyZWMyZGg+Zfp46f6E08VXIjTGvAq/6WWcQKecvtPrrC4tXoyBb48HPzzNRXeX6ZFpqqEWegHRfzkKLXSF/LMkGztI9cuuPOTu8GgXZGg+pBkIz/dwShRSW65NpqaFC7sKL5ZPvmPZEK5knSh+aL9yP16muSTm7mQqBV6MgF+Mhkbsk0ecG6afQO+tyz94spyfTUkOF3IVXyydfoVRdVjIPh4hEokTs8ej2Av1Y3JZaqmtSzm6mQuDVKPDbeEi0GMRTGU6hVzdccFAhd1HsL6f7B+aMKRIRduw7RGNzW97EMpGlluqaFPt6lQOZ5jFxk43ba/LwAVSE7YWWwyErf3iGN+Rynm1daqiQuyj2l7PLSubhEBhDZ8Qg1qLmPLZsG/NXtuTNhZHIwr7tghFJr0mxr1dPJye3Vyz02BjGntg/qxuyTvIJBirkCSjmlzPRgNLSra3s3HeIefYSWvnMp+G21GJ9SHVN9MecmnwMBsfq3LnvkCe31+EOy33i3NcZNRggEjW0HWzXG3IJo0JeQLz+oN3CGMuOmE3SIXebngYnHZaakhv5GAzuMo4SkvhYSiK3VzgkRCOWYD+xYjszJtTSUJd4FSq9IZcuKuQFItcfdDYujERtesmk57TUgjB4GfTwxlT9y8dgsLPOSNQwc9IQBh/TO2H7UccSbR0Rwy9f3sQ3LjpFXWJlhgp5gfDjB52pxZSozUJl0oPMBDhZ2aCHN6brXz4Gg911Xmlb2W6Wbm3tMlhugNc372V50wfxfgbpWirZo0JeIIoR3ZHs8bkQmfQyEeBUZYMe3piuf/mwfL3W6VxDEyxPWVCvo5IbKuQFIpcfdLauhWRtprPE/LDUMhHgVGWDHt7opX/5sHy91On8/GNraAb1Oiq5oUJeQLL5QWdq2WYq2vkiEwFOtwh1kH25Qe9fjJGD+pVEP5XsUCH3Gb8H5rxatrn6kvOxeK9X4fDi7gmi8Div2W0XjCh2d2hsbmP+yhYMcOWEWqB7LpQg9FPxHxVyH8nHwJxXyzYXX3K6SSXZCnwmAhxUsU5G0AZhG5vbuPbBpXF/+JMrtnPVxCGBHl9Q/KO0hHz7MmhaAvVTYcgk7/uybaf3ADjU6rm9pVtbGRPZwOfDSxAD7759iIa6Gan76G6r9wB4bzUc2A1HHU/DoHG8OWwhh9t2YuqncsK2dRCaah27+lHYswk6P+HyuitZUtFJg1lLo4xh8vBzrLpXzwMMjLvOPmYe7NkIB1thwEkw4hLa127it+YvnF75Lq9Gx2Feeh4OLmHX4Et4ZlUnV7KYqsWdfFz9MRWdB5GqvlQdfwoMHAnjroXd62D9Ahh0OlQfnfq6lQlBG4RdurWVDlvEwQo1FMhofCHoYZ5KcnxdIcgrWa0QtH0ZPDIdIu0QroIvPttVDJPty5RYXZ2HgShICMK9PLW3YfnLDFs4kyo6ATDhKkI3/tE6LtExYL93GEwUECDd5yEQrrRDEDq67IlKhVVPuIrQZT+G52dbdQOEKqxjXccQa7FLUhdHT5J1xy5DqAKinQn2J7huZYSXZdEK3R+nRV4VFubdejaQPqNh7PggPWEoiSn9FYKallgiaCLW/01LjghEqn3ZtoNt3Zio5/ZGfbIaIxFL4ACJdhw5LtExYL8Xs6S83FQNRDoSlg0ZW1CjHZaFHGk/sjOR2Mb6adcmkngyp0j399LWm+i6lRFBG+RsqKth3i2Tu/jInQPe6QjaE4aSGaUj5PVTLUs2ZtHWT/W2L9t2uljkHturn4qEq45YweHKLvsSHhMr74NFTqjCej9cBaOvgKbXvVvkdBdxAYw4epTAak9tkef4WQScoPn1c+lP0MM8ldSUjmsFAu8jj7/v9Eu792XoI2fQONi8CPa/Zx1XffQRcXT4yDnj7+H4U7vW79FHvmNXC5uXvcBp8i5/MeM4a/xpnLBjEYyeDjXD4O3fQ6Sdw/t2Qbv6yL1Qiv7mUuxzTyOZa6W0hFzpRq4/vtjxNX2qaDvYrj9iH1B/s5IvSt9HrnTDj9hx52pEVzXU5rG3/hNUC9IPf3NQz00JJirkJUyuguE8vr0zyry3Ei9akUhUii00QbZ63f7myztehAdvhYpeMHAkuw73omrLixwl7fQacgYMGHFkMDzSQVvvITzzbh1TzCrCi9vYOngUw0Pv2cePstxZcMSNBrbLbAMc/MBymU35Ro91a/VEVMhLmFwHqGLHH+6wlpQzdL8hJFukt9giGuQoC2dEy+UdL1L/xp3xfab5DQY5vJlmw454lFOMY9jA3SHHGzu3YGKDy81vwMo/WIPJ0U4IhbsPfO/ZAJtehBufVzHvIeQs5CIyBPg9cDyWFjxgjLkv13qV9OQaAhc7fv7KFp5YsZ1I1HS7ISQSTMh8fUe/CXqURTyC5A+3d3nfGeqZDHcZY+gq9tGOI6UiURJGOkU7yzb0U+mOHxZ5J/AtY8xKEekHNIrIS8aYdT7UXVSK7T7wQraJuJzn1VBXw4wJtUkX6U0kmPkU0VS5yZ3vBymOOxGNzW18GDqbC3glLsTdQj2FbhZ57H1nHILBUS5UmdoiBysstIxDP5Wu+B61IiILgF8ZY15KVqYUolaC7IPNhWzOKxcfeaY3Q/cyZldPHMKMJAmggvx5OM/j+opX+Pbxyzmqb98uPvKq6GHe73sKfU4cxQkfLI/7yGNhoW1/tVIzVAw8mWMPb0/rI/9o+zt07N9L6NgR1Fw8W63xMqQgUSsiUg+cAbyVYN+twK0AQ4cO9bPZvBBkH2wuZHNeTqs/k4x/TjELiXD3FWO57qzUn32XAdiIYe5b23gi4AmgEt2snOfxaOenGTTmy/HrdQLQ2HyHdW0+jFL1foi5N9/R7XxqJs5K3bBDqBujJ3P9W/aNbn+IudGTafDzJJVAE0pfxBsichTwFPANY8xH7v3GmAeMMRONMRMHDhzoV7N5I+ZSCAsF9cE2Nrdx/+LNNDa35aX+XM4rJsw/W7SR6x9amraPTjHrjBruWrAm7TGx/jlpjxiWbW2lIiQF/zzSEctx8tMXN3Ltg0euSbrr7I4Y+uXLm3L6zJONZbj7ms/vllI8fLHIRaQSS8TnGmPm+1FnsSmGDzZTt0c2PvxczitTa37y8AGERIja7rto1PDUypaUbcf6d/dza1nd8mH8/S17PqayIsTMSUOSrlGZDbmOg8xf2RJPVNXeGWX+ypb4E0yq6+xchi1q4LW/dV1LM1PSDf6Wq6tQsfAjakWAh4H1xpif596l4FDoXBqZCGUuP8xE55VugLGmTxU79h2iIhwiEvE2yNlQV8PdV4zlrgVriEYNFWHhycYWOiOp+9xQV8NdnxvTJZufASKRKIOP6e2riOcqbu4RJud27DrHLGH3yk1zb57ML1/exGt/25sw9DMT0t04ytVVqFj4YZFPAb4AvCMiq+z37jTG/MmHunsUmYTU+fnDTCZozvejdghcZVi4ZtJQZni0iq87aygjB/Vj6dZWdu47xLxl2zz12ZnNL1loZK4kc0dkYqFfOaGWJ1dspyNiqAxLfGWeGKluFg11NXzjolNY3vRB/DOv6VPVTfS9ksrwCHq4ppIbOQu5MeY1kkRQKZmRidvDzx9mspuC832wreKo4cQMrWKnZfrUyhbPfXaHRtb0qYqLrR/WpPsa1vSpythCb6irYd6tZ2dtCTs/89gCyflwf5RCuKaSPTqzM2B4ded4+WF69f8muym4/bghchtozFZMYuX89vG6+5NKdFNdy1wt4djxdz79TnyWbT7cH4V2FSqFQ4W8hEn1w0zlLnELUjKBdVuLfmRHzFZM8uXjdfcnkejmOh7h5ebV2NzGk40tcR97OCTq/lA8o0Je4iSzFJP5f1P5a5MNPAbBiqvpU0VIrGnp+fLxJhPdXG8iXq7h0q2tdEasgV0Brp44JBDXXSkNVMhLmFSWYqJH+lKNXGhsbuPuhWuJRA3hkHDXtDF563ci0S3EQKG7jRmOQdNSSBWhFBcV8hImlTAnsy5zFaRiiErsPA1gjKHtYHtB+5Gpb9/P+H6N/1a8oEJewqSzFN3WpdvnnWkESLFEJZPoknwJvFcXk5drlKyPidoo1acopbCokJcw2USB5BIBUixR8RpdEgTrNd01yrSPGv+teEGFvMTJZjAyW0HOVFRSWceZWs5eoku65C/psPKXfOOiU1LW7zVlbqpjnRE96a5Rptde478VL6iQ90CytfIyERW35XnXtDFxsYPcYsKT9cO54lGU9PlLvMxoTeUeuf6hpfG475AQL+slx0om1z4okUNKcFEh70E4rcxsrTyvouLO7nfXgjVEjaGqIsSVE2rj+w53RPnPP28BYPdHnzDzzKFpU90m60dDXQ13TRvD9555B2OsmajtHcmtXi8zWpNZzc4BWKBL2dsuGJH0GqmFreQDFfIeQiIrM10+8VxwWp4iQiRq4jMWDVARDsWFcNG63fHjVre8w7bWj7njs6O79N2r8LUdbO+yHUoysaaxuS1pEjAvVrN7vVPB+6xXtbAVv1Eh7yEUeqDSHSFz98K1cWGMJZaa99a2RKtN8sCSrVw8ZlBWA5jOtAKxxSzcvu9YIq7OqKEi1D0JmBerOWb937VgDZGoIRQSpp4c/Dz7SnmiQt5DKEb0g9PyjGVAdArj/JUtcYvWiTFk5OZwt5lMhN1+bSD+pOAOxfRiNbcdbCdqTDyZ2MvrdrPkb3s01lspOCrkPYRC+Ga7uUBWzIG3fw8V1TT0PoYGBHYD7wykoVd/lh79LJ98ZAlopUQ4ikOEiPI+NfR+dyJs2MUt+3bwhcqP6UM7++lN78YaWHsUjLwMDn8IiLWGpWPZs2Qi7PZrC1ZOEy850hOdn9u94kx2FWtP/eBKIVAh70Hk0zfrdoG8MHUr9W/cmfKY/kB/56pudjLkE/kA2bYIgCqg0i5zDAeRAwfhALB345Hj3p4LsxamXWzY+VQSDoe4qqEWgXiO9MMdUZ6yV/hJd34xwZ97c/ec6dmkw421oeKvZIMKueILbheIrH827TES/8dDuVRE2q0V5W0hTxTfHbuJuZ9KGpvbeGLFdtojlovkycaWhEvJJXPxxP5iOdOzzWkThMlMSumiQq74gtsHb0ZPhzeWpjym20Cn8w3JYLWScBXUT40PZP7Piu10RqzKnPHdTuGN0VBXw9UTh/CoPfAaiSQW3kzTIWQ6HqFT8ZVcUCFXfMFt7dbXXQZ/1zfuI6f3McSl+aiB7DrciwOrn6OfOYAIHFURpaLzICGi7I7WcPj40zmpohX274KOQ9B5CKr6Qe/+UNG7i498w/GX8/sVvXmy8cganzG8COOMCbVdVi5yL7cWs/Cdk5r8no2pU/GVXBBjEgWA5ZeJEyeaFStWFLxdJTjcv3gzP1u0kaiBsMDMSUOZ7xDTTPzK7kgUJwL0qkyfvAqIu2PWPncfV8li2qmkpv50Xm06xPms5Fj5kKN6V1E18e/h4n+Gl74Pf33ccu188iGEKmDwBKg9EzY+D52fwKDTYMTFcKgV6qem9OOrj1xJh4g0GmMmdntfhVzJFD8EJybATuGGzCM9nDcEsIQ79o2uCMHMMxMvFJ3MJ/30g/fwv1r+7UhBZ4X2tgCc2IDZ2dilWGpCUNELvvhs2kFZRUlGMiFX14qSEYkEEDIX4GTuh0yTa3WJRAkJV08cwpgT+6d1gSTzSY/58FUAxKHMxrUNEN21GjHd309OtNugrKL4hQq5khFuAXxqZQvzV7ZkvZ5lOndHukgOr/7oZDHgbp901en/C15fhnEGm0v3gdndfUcyaP/aLuVSa3ooPiirKH7ji5CLyKXAfUAYeMgYc68f9SrBwy2AAr5FW7itfWdyrVR1p4uPTxUD7r4B1F9yG01A9Ttz6dOnL0cPGcPaVqjcsogB5kOiIjwVPZ+jp/4rBxbeyTR5jUo6qQkdoiJcmZOPXFGyJWchF5EwcD9wMdACLBeRZ40x63KtWwkebgEEukR8ZBpt4bSU3da+Ifel6SB9DLib+ktug0tui/dv5n++SWf04vh+Af7pYDuTb/4Pnrb7PtAR3TJ5+AAaLv7nrPqqKNngh0U+CdhsjNkKICKPAVcAKuRlilsAM8lR7p6M485Z7hTuKyfUcqVjok22ln4uoX1Lt7YSdQUEVIalyySj2LnphB6lWPgh5IOB7Y7tFuAsH+pVSgQvU/8TCZ3bUm472O5pALQLK+bA0l9bbozqo2nf9x6hTz4gRJRQ1VEw/DwaRlzMX05dRvuudRwbfZ/q+WErVPDAbmsAEqCyj1VHVR847lQYOBLGXcvk4SfHsymKCJ8edRxfOu8kzzM/FaUQFGywU0RuBW4FGDo0/cIBSnmRSOgSWcoZ5YNZMQcWfj2+aYBKh/Fs2vcjGxbChoUc5zrUFVFoTy4CDh2G5tetv7fn0jBroacnDncelx37DtHY3KZirhQEP4R8BzDEsV1rv9cFY8wDwANgxZH70K5SQiQT7UxnQHZxz6xf0GWf19wtXouZSDvStISGqZM89W3GhFr27j/Mqxvf57Fl25i/skVdLEpB8EPIlwMni8gwLAG/BrjOh3qVgJHLRKBUceNe6+qeYfEi6re8Et9v4v/YJAkJ7FbOUR7HvnbCvFs9jlEZ9CskQtSYbi4WnbWp5JOchdwY0ykiXwFexAo//J0xZm3OPVMChR+Debmm0XW7Z/5Y+Rlum9Y37iM/KH040LqLY/iIMIZIRR96nXyBFf733mrYsxE+3M7hjgg793dyLPvoRScGOGh60SfcQbtUsy4ymM1mMM9Ep3LBgfq0Qu7sF8ZaLUgw8ScPHQhV8o0vPnJjzJ+AP/lRlxJMgjCYlzD6pG4WTJwFwBzXdP1QB/xw2GlcN7HrmEw10NbcxsN2HvEOO4UtHdb+yrAQtXOLf8dDhIu7X+7kWvcv3lz0a6eUNzqzU/FEELLzpfOpTx4+IO7aACvz4V0L1gB0m7LvzCP+rcdX0dR6MF7PqScczSVjBnl2g3jpl/vaqatF8RNNmqV4Jt/i40f9j761je89806XJFrhkCXubrdGY3MbT61s4e3mNta/tz9ex5c+NZw7Pjs619PpQqapBxQlEZo0S8mZQi4Vl624XXeW5Ua5a8EaosYQEokvsOwefLz2gTdpj3Q1ZATo17vShzPqivPaqatF8RsVciUQ+OmDv+6soYwc1C+eX/zuhWu7uYSWbm2lI4GIh0NCTZ+qhPX69UQSBDeVUl6okCuBIFc/srus0wJ2inpshfvJwwdQGZa4RR4OAQYiUcPdC9cyclC/Lm36GXmSTfy8oqRChVwJBImScXkVznQiG3vtLjPv1rN5amVLfO2Ix5Zt6+aCieF31E4+3VRKz0OFXAkM2fqRvYhsojK3XTCiy8Dn/BRZHNUdogQZFXKlKCRaL9PpZshEOL2UTVemoa6Gu6aN4fk1u7hs7AlZL2ChKMVAww+VguN0hVSEBETojHR3i+TiI8+0jM6+VEoBDT9UAkMXN0fEAN3DA+GIq6WxuY37F29OKdJefM6pyuRz5mrsBlLTpyrtWqKKkg0q5ErBcS+YjAiRSOL0r4WylPPlA3f2P2qsEMdelWrxK/6iQq4UnEQRKvPtvCfu9K/ZWMrZxHvnywfeJaEWJI2K0Sn7Si6okCtFwe3mWLq1lc5o9/SvmVrK6Sz4VIKZj5DAWP9jYh6Cbueh/nklV1TIlUCQTLDTWcpuYU5lwedTMJPdIJz9T+YjD0JmSaW0USFXAkEqwXYvcpxq0lAqCz5fgullQlKqdjRGXckVFXIlMKQTPLdgzphQm3CST7Ibglswa/pUpY2G8UKuNwiNUVdyRYVcKRncgimQ1B2TSAzdbo67F671xc3ih0WtU/aVXFAhVwKPMw7bKZgzJtQyY0JtRpZsTDC/+/Q7HO6IJo0iyYR8W9Qa0aKkQ4VcCTRud4p7GTUgY3F79K1t8QRZAOFw7n7pfFnUGtGieCFU7A4oSirc7pS2g+1dkl1lSmNzG3ctWEMsFbkAVzXUBlYcE/nfFcWNCrkSaGL+57B0j7/OhqVbW+NreoK1kMSVE2oTlo2lBmhsbsupzVzw+/yV8kRdK0qg8dv/7JygExLh7ivGJqwzKC4NjWhRvKBCrgQeP/3PXoUxSJN0NKJFSUdOQi4iPwE+B7QDW4AbjTH7fOiX0sPxO4WtEy/CqJN0lFIiV4v8JeA7xphOEfkx8B3g27l3S+nJZOLWyJcLREMKlVIiJyE3xixybC4FrsqtO4qSmVsjny4QDSlUSgU/o1ZuAp5PtlNEbhWRFSKyYs+ePT42q5QLsSiR2MQfL5EapRjVoSGFit+ktchF5GVgUIJd3zXGLLDLfBfoBOYmq8cY8wDwAFhLvWXVW6Vs8TLxJxGlGNWh/nfFb9IKuTHmolT7RWQWMA240BRjAVClLEg28ScdpehrLsWbjxJsco1auRSYDZxnjDnoT5eUnkg2VmqmvuYgib6GFCp+kmvUyq+AXsBLIgKw1BjzpZx7pfQ4srFSMxno1AFGpZzJNWol/bOv0uPI1vLN1ErNxIoP0gQfRfEbndmp+EohLd9MrPhSHGAMkitICTYq5IqvFNry9WrFl9oAo7qClExQIVd8JciWbykNMKorSMkEFXLFV0rN8g0qQb4hKsFDihH6PXHiRLNixYqCt6vkhvpsC0u+r7d+nqWHiDQaYya631eLXPGE+mwLTz5dQfp5lhe6QpDiCc0PUl7o51leqJArniiF5FRBWJqtVCiFz1PxjvrIFc8E2aeqroLMCfLnqSRGfeRKzgQ5fE/D9TInyJ+nkhnqWlHKAnUVKD0ZtciVskDj15WejAq5Ujaoq0DpqahrRVEUpcRRIVcURSlxVMgVRVFKHBVyJfDoRB9FSY0OdiqBRif6KEp61CJXAo3mBFGU9KiQK4FGJ/ooSnrUtaIEGp3ooyjpUSFXAo9O9FGU1PjiWhGRb4mIEZFj/ahPURRF8U7OQi4iQ4BLgG25d0dRFEXJFD8s8l8As4HCJzZXFEVRchNyEbkC2GGMWe1TfxRFUZQMSTvYKSIvA4MS7PoucCeWWyUtInIrcCvA0KFDM+iioiiKkoqsl3oTkdOA/wcctN+qBXYCk4wx76U6Vpd6UxRFyZxkS735tmaniDQBE40xez2U3QM0+9Jw/jkWSHtOZYaec8+hJ553KZ9znTFmoPvNosSRJ+pIUBGRFYnugOWMnnPPoSeedzmes29Cboyp96suRVEUxTuaa0VRFKXEUSFPzwPF7kAR0HPuOfTE8y67c/ZtsFNRFEUpDmqRK4qilDgq5IqiKCWOCrkHROQnIrJBRP4qIk+LyDHF7lO+EZGrRWStiERFpKxCtdyIyKUislFENovIHcXuTyEQkd+JyPsisqbYfSkEIjJERBaLyDr7e/31YvfJT1TIvfESMNYYczqwCfhOkftTCNYAM4C/FLsj+UREwsD9wGXAqcC1InJqcXtVEOYAlxa7EwWkE/iWMeZUYDJwWzl9zirkHjDGLDLGdNqbS7HSEZQ1xpj1xpiNxe5HAZgEbDbGbDXGtAOPAVcUuU95xxjzF+CDYvejUBhjdhljVtqv9wPrgcHF7ZV/qJBnzk3A88XuhOIbg4Htju0WyugHrnRHROqBM4C3itwV39Cl3mxSZXk0xiywy3wX6xFtbiH7li+8nLOilBMichTwFPANY8xHxe6PX6iQ2xhjLkq1X0RmAdOAC02ZBN+nO+cewg5giGO71n5PKTNEpBJLxOcaY+YXuz9+oq4VD4jIpVirIE03xhxMV14pKZYDJ4vIMBGpAq4Bni1ynxSfEREBHgbWG2N+Xuz++I0KuTd+BfQDXhKRVSLy22J3KN+IyOdFpAU4G/ijiLxY7D7lA3sQ+yvAi1gDYI8bY9YWt1f5R0TmAW8CI0WkRUT+odh9yjNTgC8An7Z/w6tE5LPF7pRf6BR9RVGUEkctckVRlBJHhVxRFKXEUSFXFEUpcVTIFUVRShwVckVRlBJHhVxRFKXEUSFXFEUpcf4/uZgDa8Oq3zUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], pred, \".\", label=\"predictions\")\n", - "ax.set_title(\"DecisionTreeRegressor\\nwith custom criterion\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Computation time\n", - "\n", - "The custom criterion is not really efficient but it was meant that way. The code can be found in [piecewise_tree_regression_criterion](https://github.com/sdpython/mlinsights/blob/master/src/mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx). Bascially, it is slow because each time the algorithm optimizing the tree needs the class Criterion to evaluate the impurity reduction for a split, the computation happens on the whole data under the node being split. The implementation in [_criterion.pyx](https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_criterion.pyx) does it once." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "551 \u00b5s \u00b1 93.7 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit model.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "43.9 ms \u00b1 2.21 ms per loop (mean \u00b1 std. dev. of 7 runs, 10 loops each)\n" - ] - } - ], - "source": [ - "%timeit model2.fit(X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A loop is involved every time the criterion of the node is involved which raises a the computation cost of lot. The method ``_mse`` is called each time the algorithm training the decision tree needs to evaluate a cut, one cut involves elements betwee, position ``[start, end[``." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil:\n", - " if start == end:\n", - " mean[0] = 0.\n", - " return\n", - " cdef DOUBLE_t m = 0.\n", - " cdef DOUBLE_t w = 0.\n", - " cdef int k\n", - " for k in range(start, end):\n", - " m += self.sample_wy[k]\n", - " w += self.sample_w[k]\n", - " weight[0] = w\n", - " mean[0] = 0. if w == 0. else m / w\n", - "\n", - "cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil:\n", - " if start == end:\n", - " return 0.\n", - " cdef DOUBLE_t squ = 0.\n", - " cdef int k\n", - " for k in range(start, end): \n", - " squ += (self.y[self.sample_i[k], 0] - mean) ** 2 * self.sample_w[k]\n", - " return 0. if weight == 0. else squ / weight" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Better implementation\n", - "\n", - "I rewrote my first implementation to be closer to what *scikit-learn* is doing. The criterion is computed once for all possible cut and then retrieved on demand. The code is below, arrays ``sample_wy_left`` is the cumulated sum of $weight * Y$ starting from the left side (lower *Y*). The loop disappeared." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil:\n", - " if start == end:\n", - " mean[0] = 0.\n", - " return\n", - " cdef DOUBLE_t m = self.sample_wy_left[end-1] - (self.sample_wy_left[start-1] if start > 0 else 0)\n", - " cdef DOUBLE_t w = self.sample_w_left[end-1] - (self.sample_w_left[start-1] if start > 0 else 0)\n", - " weight[0] = w\n", - " mean[0] = 0. if w == 0. else m / w\n", - "\n", - "cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil:\n", - " if start == end:\n", - " return 0.\n", - " cdef DOUBLE_t squ = self.sample_wy2_left[end-1] - (self.sample_wy2_left[start-1] if start > 0 else 0)\n", - " # This formula only holds if mean is computed on the same interval.\n", - " # Otherwise, it is squ / weight - true_mean ** 2 + (mean - true_mean) ** 2.\n", - " return 0. if weight == 0. else squ / weight - mean ** 2" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 2.65757699, 0.37665413, -0.07967816, 0.37665413, 5.57229226])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel.piecewise_tree_regression_criterion_fast import SimpleRegressorCriterionFast\n", - "model3 = DecisionTreeRegressor(min_samples_leaf=100,\n", - " criterion=SimpleRegressorCriterionFast(X_train))\n", - "model3.fit(X_train, y_train)\n", - "pred = model3.predict(X_test)\n", - "pred[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6E0lEQVR4nO29eZhU1bX3/1lV3c0s9kUUZWoICgiK0qg4EDUO0Uj0BvWH4xv0qr/kGpO8N9EY42NyTXxjbkbvG5Nch7xkQLxRcUxU9FUTHBBohMhoALuhEQfaBkGQHmq9f5xTxenTNZyqOtU19Po8T0PVOfvsvc+pqu9ZZ+211xZVxTAMwyhfIsXugGEYhpEfJuSGYRhljgm5YRhGmWNCbhiGUeaYkBuGYZQ5JuSGYRhljgm5UTBE5GkR+WKAcrtFZGxP9MkwKhETcgMRaRSRvSKyS0R2iMirIvIlEcnr+6Gq56rq7wKUG6iqm/JpS0RWuzeE3SLSKSKfeN7fkk/dvnbmikibW++HIvKciEwIq37DyAUTciPO51V1EDAauBP4FnB/cbsUHFWd5N4QBgKLgK/E36vq/4qXE5GqEJr7D7ed4cBWCnCdQupnPu1Lvjdyo+ewD8rogqruVNUngNnAF0Vksoj0EZGfiMhmEXlPRH4jIv3ix4jIBSKyQkQ+EpGNInKOu/0lEbnGfT1ORP4qIjtFZLuI/LfneBWRce7rwSLyexH5QESaROTWuKCIyBwRedntS6uIvC0i56Y7HxGpc+v/FxHZDLzgbr9aRNa69TwrIqM9x0xwLe0PRWS9iPx/Ka7VXuBPwDGeYw8TkUfc/r8tIl/17OsnIr9z21wrIjeJSLNnf6OIfEtE/g58LCJVIjLdfULaISIrReQ0T/k5IrLJfZJ6W0QuD3CtTxKRpe6+pSJykmffSyJyh4i8AuwBzN1VLqiq/fXyP6ARODPJ9s3Al4GfA08A/wQMAp4EfuiWOR7YCZyFYxgMBya4+14CrnFfzwe+45bpC5ziaUeBce7r3wOPu+3UAW8B/+LumwO0A9cCUbdv7wDi67e33Tq3/t8DA4B+wAXABmAiUAXcCrzqlh8AbAGucvcdC2wHjnT3zwV+4Cn7B2Cl+z4CNAC3ATU4QrgJ+Ky7/07gr0AtMAL4O9Ds+xxWACPdfg4HWoDPuXWf5b4f6rb9ETDePfZQYFK6a+1+fq3Ale65Xeq+H+K5bpuBSe7+6mJ/N+0v4G+42B2wv+L/kVrIF7uC8DHwKc/2E4G33df/Bfw8Rb1eQf09cA8wIkk5Bca54twWF0133/8PvOS+ngNs8Ozr7x47LE27dW6ZsZ79T+PeHNz3ERwLdDTOk8giX33/BXzXfT0X+ATYAcSAt4Gj3X0nAJt9x34b+D/u64Sou++vSSLkV3vefwv4g6++Z4EvukK+A7gQ6Ocrk/RauwK+xLftNWCO57rdXuzvo/1l/2euFSMdw3Ess/5Ag/t4vwN4BscqBMd63BigrpsAAZa4A5NXJylzEFANNHm2Nbn9iPNu/IWq7nFfDgzQ/hbP69HAXZ7z+dDt23B33wnxfe7+y4FhnuN/oqoH4twk9gLjPfUe5jv2FuAQd/9hvn54X6fq58W++k4BDlXVj3FuOl8CtonInz2Drqmu9WF0vbbQ/fom65NR4hR1QMUoXUTkOJwf+GM4luEkVd2apOgW4FOZ6lPVd3FcIojIKcDzIvI3Vd3gKbYdx3UyGljjbhuFM6CYL940n1uAO1R1nr+Q6yv/q6qelbFC1c0i8jXgdyLylFvv26p6eIpDtuG4VOLnNjJAP/+gqtemaP9Z4Fl3vOIHwL3AjFTXGscNNdpXzSicG3Oy9o0ywSxyowsicoCIzAQeBP6oqitxBOLnInKwW2a4iHzWPeR+4CoROUNEIu6+buF4InKxiIxw37biCEbMW0ZVO3EGD+8QkUGuqP4b8MeQT/M3wLdFZJLbt8EicrG77yngCBG5UkSq3b/jRGRisopU9TkcgbwOWALscgcs+4lIVJzB4uPc4n9y260VkeHAVzL084/A50Xks25dfUXkNBEZISKHiDPIPADYB+zGvZ5prvVf3HO7zB1InQ0c6Z6zUcaYkBtxnhSRXThW4HeAn+EM+IFjkW8AFovIR8DzuO4EVV3ilvs5zqDnX+lu9QEcB7wuIrtxBk6/psljx2/A8clvAl4GHgB+G8YJxlHVR4EfAQ+657MKONfdtws4G7gER6Dfdcv2SVPlj3HcGVXATJwolrdxnjDuAwa75W4Hmt19zwMP44hwqn5uwRmYvQX4AOezuRHndxvBucm9g+MaOhVn8BdSXGtVbXH79w2cQdObgJmquj3NuRllgKjak5RhFAMR+TJwiaqeWuy+GOWNWeSG0UOIyKEicrLrghqPYxk/Wux+GeWPDXYaRs9RgxPKOAYndPBB4FfF7JBRGZhrxTAMo8wx14phGEaZY0JuAJlTybp5QM7Mor4fuHk+3s1c2ghKps8ph/puEZH7wqrPKA7mWjG6ISJzcaaO3+rZ1ogz7f35AMePAtYDo1X1/Tz6cRpOLPuIDEVDQ0TqcMIDq1W1o6fazYVkn5PROzGL3CgEo4CWfETc6IoUIK1tIeo0ikSxk73YX+H+cCbqPOl5/w/gIc/7LcAx7ut44qrrcKbJt+HMFnzS3d8IfBMnY99O4L+BvknaPBMn/0jMPX6uu/0hnMk1O4G/4Wbqc/d9Dmfa+i6c6fjfxEkK5a1nN3BYkvb6AT/FyRmyE2cSUT/gNDwJqTzncKb7+nhgGU4GwfeAn7nbN7vXIt7miTgGz61uG+/jJKUa7Javc8tf5V7PVpz8J8e512oH8Ms0n1EUZ8LPRvf8G4CRns/kevdzezvg53QY8AjOBKK3ga962voeziSkP7rnfY277Y+eMucDq91+vwRM9F2/jN8B+yvCb73YHbC/An64ThrVHa4QxRMmNXv2tQIR9703lexc3FStnroacaagH4aTDnUt8KUU7SYT0atxUtP2AX4BrPDs24aTIwScFK9TU9WTpK27XcEZ7oriSW4byfrQyH4hfw240n09EJjuvq5zr0WVr+8b3Gs2EFiAm5XQU/43OCljz8bJjvgYcLDbr/eBU1P0/0bgTZyZsgJMYX9aWQWec693v0yfE5nT6H4PR/z/2S3bD4+QA0fgzKo9Cyd52U3ueddk+x2wv579M9dKBaPOFPhdOFPGP42TAvUdNxfKqTjpWmOpa+jGf6rqO6r6IU5O8mOy6MtvVXWXqu7DEY8pIhKfut4OHCkiB6hqq6ouD1KnOAtOXI0zBX2rqnaq6qtuG5loB8aJyEGqultVF6cpezmOxb5JVXfjpKa9xOea+L6qfqKqC3HEcL6qvq9OorFFOHnNk3ENcKuqrleHlepMpY/zQ1X9UJ1FLDJxHDBUVW9X1Tb3878XJ91AnNdU9TFVjSWpczbwZ1V9TlXbgZ/giP1JnjI5fweMwmFCXvn8Fcc6/bT7+iUcET/VfZ8N3giUPQRLH4ub8OlOcVYP+gjHsgMnbS04ObU/BzS5K9ucGLA/B+FYwUHS6Pr5FxwLdJ27Us7MNGX96V+bcCbTHeLZ9p7n9d4k71Ndq0xpgLNJK5spjW6m+rqcp3uT30KKNMJk8R0wCosJeeUTF/IZ7uu/klnIww5lugwn+dOZOAmk6tztAqCqS1X1AhxXxGM4WQKD9GM7jhsjWRrdj3HyqDsNiUTZn0MdVf2Hql7qtvkj4GE3k2CyNv3pX0cBHXQV61zJlAY43TXw74un0T3Q8zdIVT8XsL4u5ykignOjCSONsFFATMgrn78Cp+P4WJtxHvPPAYYAb6Q45j3CXa9xEE6WvxYccfUuhlwjIpeLyGD3cf4j9qe3fQ8Y4nHBdMG1GH8L/EyctTKjInKiiPTBWSKur4icJyLVOIOViQyGInKFiAx169jhbo7hDBLG6Hr+84H/KSJjRGSg2///1nDCE+8Dvi8ih4vD0SIyJOCx/s8pUxrdTPwJOM9NSVyNkwtmH/Bq0JMxioMJeYWjqm/hRDUsct9/hDMA9oo6+b+TcT+Oz3qHiDwWQjd+j/PIvhUnOsXvj74SaHTdLl/C8UmjqutwRHST25fDktT9TZzBwqU46Vx/hDOAuxP4Vxyh3IpjoTd7jjsHWO2mer0LJwvhXnVWHboDeMVtczrOzeIPONE2b+M8BdyQx/Xw8jMcAV2IcxO7H8cvHYQun5P7eaZLo5sWVV0PXAH8b/fYzwOfV9W2wGdjFAWbEGQYhlHmmEVuGIZR5piQG4ZhlDkm5IZhGGWOCblhGEaZU5SkOQcddJDW1dUVo2nDMIyypaGhYbuqDvVvL4qQ19XVsWzZsmI0bRiGUbaISFOy7eZaMQzDKHNMyA3DMMocE3LDMIwyp2RWCGlvb6e5uZlPPvmk2F2paPr27cuIESOorq4udlcMwwiJkhHy5uZmBg0aRF1dHU7SNSNsVJWWlhaam5sZM2ZMsbtjGEZIlIxr5ZNPPmHIkCEm4gVERBgyZIg99RhGhVEyQg6YiPcAdo0No3g0NLVy94sbaGhqDbXeknGtGIZhVDINTa1cft9i2jpi1FRFmHfNdOpH14ZSd0lZ5KXE9773PX7yk5+k3P/YY4+xZs2aHuyRYRjlzOJNLbR1xIgptHfEWLypJfNBATEhzxETcsMwsmH62CHUVEWIClRXRZg+NuhCUJkpayEP2990xx13cMQRR3DKKaewfv16AO69916OO+44pkyZwoUXXsiePXt49dVXeeKJJ7jxxhs55phj2LhxY9JyhmEYcepH1zLvmun829njQ3WrQBkLedzf9NOF67n8vsV5i3lDQwMPPvggK1as4C9/+QtLly4FYNasWSxdupSVK1cyceJE7r//fk466STOP/98fvzjH7NixQo+9alPJS1nGEbhKNTAYSGpH13L9aePC1XEoYwHO5P5m/K5OIsWLeILX/gC/fs7C6+ff/75AKxatYpbb72VHTt2sHv3bj772c8mPT5oOcMw8qeQA4flSNla5IX0N3mZM2cOv/zlL3nzzTf57ne/mzIGO2g5wzDyp5ADh+VI2Qp52P6mT3/60zz22GPs3buXXbt28eSTTwKwa9cuDj30UNrb25k3b16i/KBBg9i1a1fifapyhmGET08ZcuVC2bpWwBHzsB6npk6dyuzZs5kyZQoHH3wwxx13HADf//73OeGEExg6dCgnnHBCQrwvueQSrr32Wv7zP/+Thx9+OGU5wzDCJ27ILd7UwvSxQ3q1WwVAVLXHG502bZr6F5ZYu3YtEydO7PG+9EbsWhtGeSIiDao6zb+9bF0rhmEYhoMJuWEYRpljQm4YhlHmmJAbhmGUOaEIuYj8TxFZLSKrRGS+iPQNo17DMAwjM3kLuYgMB74KTFPVyUAUuCTfeg3DMIxghOVaqQL6iUgV0B94J6R6y5aXXnqJmTNnAvDEE09w5513piy7Y8cOfvWrXyXev/POO1x00UUF76NhGJVB3kKuqluBnwCbgW3ATlVd6C8nIteJyDIRWfbBBx/k22zR6OzszPqY888/n5tvvjnlfr+QH3bYYTz88MM59c8wjN5HGK6VWuACYAxwGDBARK7wl1PVe1R1mqpOGzp0aL7NOmxZAot+6vwfAo2NjUyYMIHLL7+ciRMnctFFF7Fnzx7q6ur41re+xdSpU3nooYdYuHAhJ554IlOnTuXiiy9m9+7dADzzzDNMmDCBqVOnsmDBgkS9c+fO5Stf+QoA7733Hl/4wheYMmUKU6ZM4dVXX+Xmm29m48aNHHPMMdx44400NjYyefJkwFnL9KqrruKoo47i2GOP5cUXX0zUOWvWLM455xwOP/xwbrrpJsC50cyZM4fJkydz1FFH8fOf/zyUa2MYlUQ5Zk5MRxhT9M8E3lbVDwBEZAFwEvDHEOpOzZYl8LvzobMNojXwxSdg5PF5V7t+/Xruv/9+Tj75ZK6++uqEpTxkyBCWL1/O9u3bmTVrFs8//zwDBgzgRz/6ET/72c+46aabuPbaa3nhhRcYN24cs2fPTlr/V7/6VU499VQeffRROjs72b17N3feeSerVq1ixYoVgHNDiXP33XcjIrz55pusW7eOs88+m7feeguAFStW8MYbb9CnTx/Gjx/PDTfcwPvvv8/WrVtZtWoV4Fj7hlFJNDS15jU1vxIzJ4bhI98MTBeR/uKs7HsGsDaEetPTuMgRce10/m9cFEq1I0eO5OSTTwbgiiuu4OWXXwZICPPixYtZs2YNJ598Mscccwy/+93vaGpqYt26dYwZM4bDDz8cEeGKK7o9lADwwgsv8OUvfxmAaDTK4MGD0/bn5ZdfTtQ1YcIERo8enRDyM844g8GDB9O3b1+OPPJImpqaGDt2LJs2beKGG27gmWee4YADDsj/ohhGkfBbzmGsQ1CJmRPztshV9XUReRhYDnQAbwD35FtvRupmOJZ43CKvmxFKtf5V5uPvBwwYAICqctZZZzF//vwu5eLWdE/Sp0+fxOtoNEpHRwe1tbWsXLmSZ599lt/85jf86U9/4re//W2P980w8iWZ5ZxqHYJsrPR45sT2jljFZE4MJWpFVb+rqhNUdbKqXqmq+8KoNy0jj3fcKZ/5TmhuFYDNmzfz2muvAfDAAw9wyimndNk/ffp0XnnlFTZs2ADAxx9/zFtvvcWECRNobGxk48aNAN2EPs4ZZ5zBr3/9a8DxZ+/cubNbSlwvM2bMSKTFfeutt9i8eTPjx49P2f/t27cTi8W48MIL+cEPfsDy5cuzOHvDKB2SiXay9LXZWumFXHKtWJT3zM6Rx8OMb4Qm4gDjx4/n7rvvZuLEibS2tibcIHGGDh3K3LlzufTSSzn66KM58cQTWbduHX379uWee+7hvPPOY+rUqRx88MFJ67/rrrt48cUXOeqoo6ivr2fNmjUMGTKEk08+mcmTJ3PjjTd2Kf+v//qvxGIxjjrqKGbPns3cuXO7WOJ+tm7dymmnncYxxxzDFVdcwQ9/+MP8L4phFIFkop1MhHNxlRRqybViYWlsPTQ2NjJz5szEQGGlUgrX2jCCEMRlErfI466SSrGyk5EqjW1ZLyxhGEZlE2TxmPrRtdw2cxJPr9rGuZMPrVgRT4cJuYe6urqKt8YNo9JoaGrl9qdW09YRY2njh4wfNig0Mc831LGnKCkhV9VuUSNGuBTDlWYYYZBKVFNFsoTRXrnEm5eMkPft25eWlhaGDBliYl4gVJWWlhb69rXklEZ5kU5UCxVOWKgbRCEoGSEfMWIEzc3NlHMelnKgb9++jBgxotjdMIysSCeqhVqIuZzizUtGyKurqxkzZkyxu2EYRgmSSVSDDIpmS6FuEIWgZMIPDcMw0lEuA4+FxMIPDcMoa7xWd1zUa/vX0LqnrVeLO5iQG4bRA4RpTXsHPmMKAvSpLu2okkJjQm4YRkHJN4zPfxPwDnwCKKUfVVJoTMgNwygo+YTxJbsJxAc+43VGoOSjSgqNCblhGAUlnzC+ZDeB608fl4gmMR+5gwm5YRgFJZ8wvlQ3gUKEG5YzFn5oGEZJY2GH+7HwQ8MwygK/cJv1nRkTcsMwSoZySlRVSpT3CkGGYVQUlbgwck9gQm4YRsFoaGrl7hc3BF7tPtnybkZmzLViGEZByMVNUk6JqkoJE3LDMApCrhOBbHAze8y1YhhGQTA3Sc8RikUuIgcC9wGTcVIfXK2qr4VRt2EY5Ym5SXqOsFwrdwHPqOpFIlID9A+pXsMwyph0bpKGplYeWd6MALOmjjChz4O8hVxEBgOfBuYAqGob0JZvvYZhVC4NTa1ces9rtHU6M8sfamhm/rUWM54rYfjIxwAfAP9HRN4QkftEZIC/kIhcJyLLRGSZrctpGL2bxZtaaO/cnx7EYsbzIwwhrwKmAr9W1WOBj4Gb/YVU9R5Vnaaq04YOHRpCs4ZhlCJBYsenjx1CdVQS76NRscHQPAhDyJuBZlV93X3/MI6wG4bRy4jHjv904Xouv29xSjGvH13L986fTDTiiHlEJGk5Ixh5C7mqvgtsEZHx7qYzgDX51pst2c4gMwwjfLKZYt+6p4149tXOTnOt5ENYUSs3APPciJVNwFUh1RsIS7RjGKVBNotI5LPghNGVUIRcVVcA3XLk9hT5LCVlGBXLliXw/PfgvdXQ5wAYNR32bIeJF8C0OfDcd2HtEzDxfDjr32HZXHj916AK48+Flg2w/R9w0DgYdzZsWAgtG2HIp+Dkr8PI4502GhdBvyGw4Tnqt/+DhoOifNQhUDeDQ99cyIf/t5nWj9uoHVDDPx08AqZcCiOPpz7yD14bcz+x7RuIHDSO2sgQwFNn3QznPFbOBxSGHQN7W9j2/vtI4yL69x/AAbUHw8Ch0GcwvPv3/ecW5NrE2xh5fP7lghJ2fS4VsbBE3CKP39nNIjd6PVuWwG/PAe1Mvn/sZ2DTC6nfZyJSBZ/7KTxzM3TsA2J4lSTu8dbEP/t3SLQPnPsf8JdvQKwjeZ2dbc57jUGsPVEkaX3+vs28K72Yb1kCvzvfaSNaA198IrmoBi0XlBDqS7WwREVM0Y/PIPu3s8ebiBsGOFZfKhEH2Pxq+veZiHXA2scdUXJFXDx/cQQQ8fyBc8zax7uKuL9O7XT+94h4vD7w1edn7ePp+964qGsbjYvyKxeUsOvzUBFCDo6YX3/6OBNxwwDn0V2iqfePOinte8XxsCT+/MdHqhw3RrSGuIwkK5+0nmiNc2ykKnWdEnX+j1R361eXtpKd28QLUp83ONfG20bchZNruaCEXZ+HinCtGIaRhDx85Mv6Tmd702rGsI1GPZTqiZ/lM9EVKX3kjXv7sn7RAup4hw6qGX3IgQwcfzrs+4gP30/uI2fLEnjlF6n97uYj70Yq14oJuWEY3Ug27gSkTIDV0NTKpffuL2/T7QuDLb5sGEZg/JkLgbQhvos3tdDR6fjK4zHhJuQ9hwm5YRhJ8WYuvPvFDWlDfC0mvLiYkBuGkZFMQm25x4uL+cgNwwhEQ1OrCXWRMR+5YRhZ4xdvE/DSxITcMCqUXCxo7zHr393FbY+vojOm9Km2GdOljAm5YVQguSSS8x5TFRE6FTpjjuu1rd0iUUqZipnZaRjGfrJJJ5v0mE5NiDhAJFK4hR8sBXX+mEVuGBVILuGA3mOiESeZSUdnjIgIt18wuSDWuKWgDgcTcsOoQHIJB0w2CSjo8blGtFgK6nAwITeMCiWXKBP/MUGOz8eqtolE4WBCXgDCiLe1mF2j1Ej1nfRb1QuWNwf+7tpEonAwIQ+ZMHx+5jc0io1ftB94fTO3Pb6KmGq376TXqpaI8OCSzcSUwCGLFp+ePxa1EjLZRgskG7HPJeLAMMIibkj8dOF6Lr9vcULEO2JKTKHN952MW9Wzjx+FKnS6ecLjIYtG4TGLPGSy8fmlsryD1GGuF6NQ+A2Jp1dt6xqKKN1DEetH17J4UwvelB+FDFk0ulJWQl4O4pWNzy/ViH2mOsz1YhQSvyFx7uRDWdr4IW3tMSKR1KGI8ePaOpyQxWtOGZOwyO37WVjKRsjLSbyC+vzSWd7p6rCQLaOQJDMkxg8blNE48R5X27+G259a3eX3CsHDGY3sCE3IRSQKLAO2qurMsOqNU4nileuIvYVs9T4yPY2G/bSaLAwxaCx6/ejabvnLH1nezILlzWVhiJUjYVrkXwPWAgeEWGeCShWv+Bc/PuhpIVuGn0xPo6X4tOr/vQpUnCFWSoQi5CIyAjgPuAP4tzDq9FPJ4pXLD9FCtnoPmZ5Gw3xaDcuyTzZL9JHlzRVniJUKYVnkvwBuAgaFVF9SKlW8KtFtZIRHpqfRsJ5Ww7bs/b/XSjXESoG8hVxEZgLvq2qDiJyWptx1wHUAo0aNyrfZiqJS3UZGOGR6Gg3rabXQBkWlGmKlQN5LvYnID4ErgQ6gL46PfIGqXpHqGFvqrTulFFpZSn0x8ifo5xm3yOMGRTKL3L4bxSXVUm+hrtnpWuTfzBS1UglCXqlf6FIcODNyJ9vPM9332r4bxcfW7AyRSv5Cm7++58nGYs7WeMj287T5C+VJqEKuqi8BL4VZZylSyV9o89f3LEGNglyNhzA/z2R1VeqTablhFnkSMn05e1rsevLHkmrgLNMjt/2YcyOoUZCr8ZBuIDTbzy1ZSGGlPpmWGybkPoJYPoWOaU+2knmy9KGFwv94ne6aVLKbqScIahTkYzwkc5ck+9wg8xR6b13+2ZuV9GRabpiQ+whq+RQqlKrLSubRCJ2dMTrd8ei2Hvqx+C21dNekkt1MPUFQoyBs4yHZYhCPZDmF3txwpYMJuY9ifzn9PzBvTJGIsHXHXhqaWgsmlskstXTXpNjXqxLINo+Jn1zcXtPHDqEq6i60HI04+cOzvCFX8mzrcsOE3Eexv5xdVjKPRkCVjk5FnEXNeXDJZhYsby6YCyOZhX396eNSXpNiX6/eTl5ur3josSqTDxuc0w3ZJvmUBibkSSjmlzPZgNLiTS28s2Mv890ltAqZT8NvqcX7kO6a2I85PYUYDI7X+c6OvYHcXvvaHfeJd19HTFGgM6a07mmzG3IZY0LegwT9QfuFMZ4dMZekQ/42Aw1Oeiw1Iz8KMRjcZRwlIomxlGRur2hEiHU6gv3Qsi3MmjqC+tHJV6GyG3L5YkLeQ+T7g87FhZGszSCZ9LyWWikMXpZ6eGO6/hViMNhbZ2dMmX38SIYf2C9p+zHPEm3tncovnn+Lr595hLnEKgwT8h4ijB90thZTsjZ7KpMeZCfAqcqWenhjpv4VYjDYX+eFrpXtZ/Gmli6D5Qq8smE7Sxs/TPSzlK6lkTsm5D1EMaI7Uj0+90QmvWwEOF3ZUg9vzNS/Qli+Qev0rqEJjqesVK+jkR8m5D1EPj/oXF0LqdrMZImFYallI8DpypZ6eGOQ/hXC8g1Sp/fzj6+hWarX0cgPE/IeJJcfdLaWbbaiXSiyEeBMi1CXsi+31PsXZ/ywQWXRTyM3TMhDJuyBuaCWbb6+5EIs3htUOIK4e0pReLzX7PrTxxW7OzQ0tbJgeTMKXDh1BNA9F0op9NMIHxPyECnEwFxQyzYfX3KmSSW5Cnw2AlyqYp2KUhuEbWhq5dJ7Fyf84Q8v28JF00aW9PiCER7lJeRblkDjIqibASOPD74v13b6DYG9LYHbW7yphUmd6/hCdBGi8PYbe6kfPSt9H/1t9RsC766E3e/BwEOoHzaF18Y8xb7Wd9C6GRy6eQ1EZjjHrnwAPngLOj7hvNEXsqiqg3pdTYNMYvrYk5y6V84HFKZc5h4zHz5YD3taYMinYNzZtK1+i9/o3zi6+m1eik1Bn3sa9ixi2/CzeWxFBxfyIjUvdvBx34+p6tiD1Ayg5pAjYOh4mHIpvLcG1j4Ow46Gvgekv24VQqkNwi7e1EK7K+LghBoKZDW+UOphnkZqQl0hKCg5rRC0ZQn87nzobINoDXzxia5imGpftsTr6tgHxEAiEO0TqL11S59nzFOzqaEDAI3WELnqz85xyY4Bd9s+0BggQKbPQyBa7YYgtHfZE5Mqp55oDZFzfwRP3+TUDRCpco71HUO8xS5JXTw9SdUdtwyRKoh1JNmf5LpVEEGWRevp/ngt8pqoMP+6E4HMGQ3jx5fSE4aRnPJfIahxkSOC2un837hov0Ck25drO7jWjcYCtzfhk5WodDoCB0isff9xyY4Bd1vckgpyU1XobE9aNqKuoMbaHQu5s23/zmRiG++nW5tI8smcIt23Zaw32XWrIEptkLN+dC3zr53exUfuHfDORKk9YRjZUT5CXjfDsWTjFm3djGD7cm2ni0UesL26GUi0Zr8VHK3usi/pMfHyIVjkRKqc7dEamHgBNL4S3CKnu4gLoOLpURKrPb1FnudnUeKUml8/n/6UepinkZ7yca1AyfvIE9u9fmn/vix95AybAhsWwq53neP6HrBfHD0+co79H3DIkV3rD+gj37qtmQ1LnuEoeZu/6RROOOYoDt26ECaeD7Vj4I3fQ2cb+3ZsgzbzkQehHP3N5djn3kYq10p5CbnRjXx/fPHja/vX0LqnzX7EIWD+ZqNQlL+P3OhGGLHj3tWILqofUcDehk+pWpBh+JtL9dyM0sSEvIzJVzC8x7d1xJj/evJFK5KJSrGFppStXr+/+bz2Z+He66CqDwwdz7Z9fajZ+CwDpY0+I4+FIeP2D4Z3ttPabySPvT2ak3UF0Rdb2TR8AmMj77rHT3DcWbDfjQauy2wd7PnQcZmd/PVe69bqjZiQlzH5DlDFj9/X7iwpp3S/IaRapLfYIlrKURbeiJbz2p+l7tVbEvu06VWGebyZum5rIsopzoGs4/aIZ8M7G9H44HLTq7D8D85gcqwDItHuA98frIO3noWrnjYx7yXkLeQiMhL4PXAIjhbco6p35VuvkZl8Q+Dixy9Y3sxDy7bQGdNuN4RkggnZr+8YNqUeZZGIIPnDjV22e0M9U+Evo0pXsY+17y/VGSNppFOso2JDP43uhGGRdwDfUNXlIjIIaBCR51R1TQh1F5Viuw+CkGsiLu951Y+uZdbUESkX6U0mmIUU0XS5yb3bSymOOxkNTa3sjJzI6byQEOJuoZ5CN4s8vt0bh6B4ykWq01vk4ISFVnDop9GV0KNWRORx4Jeq+lyqMuUQtVLKPth8yOW88vGRZ3sz9C9jdvG0kcxKkQCqlD8P73lcXvUC3zpkKQMHDOjiI6+J7eP9AUfQ/7AJHPrh0oSPPB4W2vp3JzVD1dDDOWjflow+8o+2vEn7ru1EDhpH7Vk3mTVegfRI1IqI1AHHAq8n2XcdcB3AqFGjwmy2IJSyDzYfcjkvr9WfTcY/r5hFRLj9gslcdkL6z77LAGynMu/1zTxU4gmgkt2svOfxQMdnGDbpy4nrdSjQ0HSzc212xqh5P8K8a27udj610+akb9gj1A2xw7n8dfdGtyvCvNjh1Id5kkZJE8lcJBgiMhB4BPi6qn7k36+q96jqNFWdNnTo0LCaLRhxl0JU6FEfbENTK3e/uIGGptaC1J/PecWF+acL13P5fYsz9tErZh0x5bbHV2U8Jt4/L22dypJNLVRFpMc/j0zEc5z85Nn1XHrv/muS6Tr7I4Z+8fxbeX3mqcYy/H0t5HfLKB6hWOQiUo0j4vNUdUEYdRabYvhgs3V75OLDz+e8srXmp48dQkSEmOu+i8WUR5Y3p2073r/bn1zNyuadie0bP/iY6qoIs48fmXKNylzIdxxkwfLmRKKqto4YC5Y3J55g0l1n7zJsMYWX/9F1Lc1syTT4W6muQsMhjKgVAe4H1qrqz/LvUunQ07k0shHKfH6Yyc4r0wBjbf8atu7YS1U0QmdnsEHO+tG13H7BZG57fBWxmFIVFR5uaKajM32f60fXctvnJ3XJ5qdAZ2eM4Qf2C1XE8xU3/wiT9338OsctYf/KTfOumc4vnn+Ll/+xPWnoZzZkunFUqqvQcAjDIj8ZuBJ4U0RWuNtuUdW/hFB3ryKbkLowf5ipBM27PeaGwFVHhUuOH8WsgFbxZSeMYvywQSze1MI7O/Yyf8nmQH32ZvNLFRqZL6ncEdlY6BdOHcHDy7bQ3qlURyWxMk+cdDeL+tG1fP3MI1ja+GHiM6/tX9NN9IOSzvAo9XBNIz/yFnJVfZkUEVRGdmTj9gjzh5nqpuDdDq5VHFMOy9Iq9lqmjyxvDtxnf2hkbf+ahNiGYU36r2Ft/5qsLfT60bXMv+7EnC1h72ceXyC5EO6PcgjXNHLHZnaWGEHdOUF+mEH9v6luCn4/boT8BhpzFZN4ubB9vP7+pBPddNcyX0s4fvwtj76ZmGVbCPdHT7sKjZ7DhLyMSffDTOcu8QtSKoH1W4thZEfMVUwK5eP19yeZ6OY7HhHk5tXQ1MrDDc0JH3s0Iub+MAJjQl7mpLIUU/l/0/lrUw08loIVV9u/hog409IL5eNNJbr53kSCXMPFm1ro6HQGdgW4eNrIkrjuRnlgQl7GpLMUkz3Sl2vkQkNTK7c/tZrOmBKNCLfNnFSwficT3Z4YKPS3McszaFoOqSKM4mJCXsakE+ZU1mW+glQMUYmfpwKqSuueth7tR7a+/TDj+y3+2wiCCXkZk8lS9FuXfp93thEgxRKVbKJLCiXwQV1MQa5Rqj4ma6Ncn6KMnsWEvIzJJQoknwiQYolK0OiSUrBeM12jbPto8d9GEEzIy5xcBiNzFeRsRSWddZyt5RwkuqRL/pJ2J3/J1888Im39QVPmpjvWG9GT6Rple+0t/tsIggl5LyRXKy8bUfFbnrfNnJQQO8gvJjxVP7wrHsXInL8kyIzWdO6Ry+9bnIj7jgiJskFyrGRz7UslcsgoXUzIexFeKzNXKy+oqPiz+932+CpiqtRURbhw6ojEvn3tMf7rrxsBeO+jT5h93KiMqW5T9aN+dC23zZzErY+9iaozE7WtPbXVG2RGayqr2TsAC3Qpe/3p41JeI7OwjUJgQt5LSGZlZsonng9ey1NE6IxpYsaiAlXRSEIIF655L3HcyuY32dzyMTd/bmKXvgcVvtY9bV3eR1JMrGloak2ZBCyI1exf71QIPuvVLGwjbEzIewk9PVDpj5C5/anVCWGMJ5aa//rmZKtNcs+iTZw1aVhOA5jetALxxSz8vu94Iq6OmFIV6Z4ELIjVHLf+b3t8FZ0xJRIRZhxe+nn2jcrEhLyXUIzoB6/lGc+A6BXGBcubExatF1WycnP420wlwn6/NpB4UvCHYgaxmlv3tBFTTSQTe37Neyz6xwcW6230OCbkvYSe8M12c4Esmwtv/B6q+lLf70DqEXgPeHMo9X0Gs/iAJ/jkI0dAq6WTgewlQoz3qaXf29Ng3Tau3bGVK6s/pj9t7KIf/RpqYfVAGH8u7NsJiLOGpWfZs1Qi7PdrC05OkyA50pOdn9+94k12FW/P/OBGT2BC3osopG/W7wJ5ZsYm6l69Je0xg4HB3lXd3GTIh/EhsnkhADVAtVvmQPYgu/fAbmD7+v3HvTEP5jyVcbFh71NJNBrhovoRCCRypO9rj/GIu8JPpvOLC/68a7rnTM8lHW68DRN/IxdMyI1Q8LtAZO0TGY+RxD8ByqWjs81ZUd4V8mTx3fGbmP+ppKGplYeWbaGt03GRPNzQnHQpuVQunvhfPGd6rjltSmEyk1G+mJAboeD3wevE8+HVxWmP6TbQ6d0gWaxWEq2BuhmJgcz/XraFjk6nMm98t1d449SPruXiaSN5wB147exMLrzZpkPIdjzCpuIb+WBCboSC39qtG30u/NOAhI+cfgeSkOaBQ9m2rw+7Vz7JIN2NCAysilHVsYcIMd6L1bLvkKP5VFUL7NoG7XuhYy/UDIJ+g6GqXxcf+bpDzuP3y/rxcMP+NT7jBBHGWVNHdFm5yL/cWtzC905qCns2pk3FN/JBVJMFgBWWadOm6bJly3q8XaN0uPvFDfx04XpiClGB2cePYoFHTLPxK/sjUbwI0Kc6c/IqIOGOWf3kXVwkL9JGNbV1R/NS415OYzkHyU4G9quhZtr/gLP+HZ77Lvz9T45r55OdEKmC4VNhxHGw/mno+ASGHQXjzoK9LVA3I60f33zkRiZEpEFVp3XbbkJuZEsYghMXYK9wQ/aRHt4bAjjCHf9GV0Vg9nHJF4pO5ZN+9N47+Ofm/9hf0Fuh+14ADqtH32noUiw9EajqA198IuOgrGGkIpWQm2vFyIpkAgjZC3Aq90O2ybW6RKJEhIunjWTSYYMzukBS+aQn7XwJAPEos/reA8S2rUS0+/bUxLoNyhpGWJiQG1nhF8BHljezYHlzzutZZnJ3ZIrkCOqPThUD7vdJ1xz9z/DKEtQbbC7dB2bfGzCeYbtWdymXXtMjiUFZwwibUIRcRM4B7gKiwH2qemcY9Rqlh18ABUKLtvBb+97kWunqzhQfny4G3H8DqDv7ehqBvm/Oo3//ARwwchKrW6B640KG6E5iIjwSO40DZvwvdj91CzPlZarpoDayl6podV4+csPIlbyFXESiwN3AWUAzsFREnlDVNfnWbZQefgEEukR8ZBtt4bWU/da+kv/SdJA5BtxP3dnXw9nXJ/o3+79eoyN2VmK/AN/c08b0a/43j7p9H+qJbpk+dgj1Z/17Tn01jFwIwyI/HtigqpsARORB4ALAhLxC8QtgNjnK/ZNx/DnLvcJ94dQRXOiZaJOrpZ9PaN/iTS3EfAEB1VHpMskofm42occoFmEI+XBgi+d9M3BCCPUaZUKQqf/JhM5vKbfuaQs0ANqFZXNh8a8cN0bfA2jb8S6RTz4kQoxIzUAYeyr1487ib0cuoW3bGg6KvU/fBVEnVHD3e84AJEB1f6eOmv5w8JEwdDxMuZTpYw9PZFMUET4z4WC+dOqnAs/8NIyeoMcGO0XkOuA6gFGjMi8cYFQWyYQumaWcVT6YZXPhqa8l3ipQ7TGetW0Xsu4pWPcUB/sO9UUUupOLgL37oOkV5++NedTPeSrQE4c/j8vWHXtpaGo1MTd6hDCEfCsw0vN+hLutC6p6D3APOHHkIbRrlBGpRDvbGZBd3DNrH++yL2julqDFtLMNaVxE/YzjA/Vt1tQRbN+1j5fWv8+DSzazYHmzuViMHiEMIV8KHC4iY3AE/BLgshDqNUqMfCYCpYsbD1pX9wyLZ1K38YXEfk3845IiJLBbOU95PPvaiPJ23ylMyKJfERFiqt1cLDZr0ygkeQu5qnaIyFeAZ3HCD3+rqqvz7plRUoQxmJdvGl2/e+bP1Z/l+pkDEj7yPdKf3S3bOJCPiKJ0VvWnz+GnO+F/766ED9bDzi3sa+/knV0dHMQO+tCBAnu0D/2j7bRJX9Z0DmeDDuex2AxO312XUci9/UKd1YIETTx52ECoUWhC8ZGr6l+Av4RRl1GalMJgXtLok9FzYNocAOb6putH2uEHY47ismldx2T6Aq1Nrdzv5hFvd1PY0u7sr44KMTe3+LcDRLj4++VPrnX3ixuKfu2MysZmdhqBKIXsfJl86tPHDkm4NsDJfHjb46sAuk3Z9+YR/8afVtDYsidRz5GHHsDZk4YFdoME6Zf/2pmrxQgTS5plBKbQ4hNG/Q+8vplbH3uzSxKtaMQRd79bo6GplUeWN/NGUytr392VqONLnx7LzZ+bmO/pdCHb1AOGkQxLmmXkTU8uFZeruF12guNGue3xVcRUiYgkFlj2Dz5ees9rtHV2NWQEGNSvOoQz6or32pmrxQgbE3KjJAjTB3/ZCaMYP2xQIr/47U+t7uYSWryphfYkIh6NCLX9a5LWG9YTSSm4qYzKwoTcKAny9SP7y3otYK+ox1e4nz52CNVRSVjk0Qig0BlTbn9qNeOHDerSZpiRJ7nEzxtGOkzIjZIgWTKuoMKZSWTjr/1l5l93Io8sb06sHfHgks3dXDBxwo7aKaSbyuh9mJAbJUOufuQgIpuszPWnj+sy8LkgTRZHc4cYpYwJuVEUkq2X6XUzZCOcQcpmKlM/upbbZk7i6VXbOHfyoTkvYGEYxcDCD40ex+sKqYoIiNDR2d0tko+PPNsyNvvSKAcs/NAoGbq4OToV6B4eCPtdLQ1Nrdz94oa0Ih3E55yuTCFnrsZvILX9azKuJWoYuWBCbvQ4/gWTEaGzM3n6156ylAvlA/f2P6ZOiGOfarP4jXAxITd6nGQRKgvcvCf+9K+5WMq5xHsXygfeJaEWpIyKsSn7Rj6YkBtFwe/mWLyphY5Y9/Sv2VrKmSz4dIJZiJDAeP/jYh6Bbudh/nkjX0zIjZIglWBnspT9wpzOgi+kYKa6QXj7n8pHXgqZJY3yxoTcKAnSCbZ/keN0k4bSWfCFEswgE5LStWMx6ka+mJAbJUMmwfML5qypI5JO8kl1Q/ALZm3/mozRMEHI9wZhMepGvpiQG2WDXzAFUrpjkomh381x+1OrQ3GzhGFR25R9Ix9MyI2SxxuH7RXMWVNHMGvqiKws2bhgfufRN9nXHksZRZINhbaoLaLFyIQJuVHS+N0p/mXUgKzF7YHXNycSZAFEo/n7pQtlUVtEixGESLE7YBjp8LtTWve0dUl2lS0NTa3c9vgq4qnIBbiofkTJimMy/7th+DEhN0qauP85Kt3jr3Nh8aaWxJqe4CwkceHUEUnLxlMDNDS15tVmPoR9/kZlYq4Vo6QJ2//snaATEeH2CyYnrbNUXBoW0WIEwYTcKHnC9D8HFcZSmqRjES1GJvISchH5MfB5oA3YCFylqjtC6JfRywk7ha2XIMJok3SMciJfi/w54Nuq2iEiPwK+DXwr/24ZvZls3BqFcoFYSKFRTuQl5Kq60PN2MXBRft0xjOzcGoV0gVhIoVEuhBm1cjXwdKqdInKdiCwTkWUffPBBiM0alUI8SiQ+8SdIpEY5RnVYSKERNhktchF5HhiWZNd3VPVxt8x3gA5gXqp6VPUe4B5wlnrLqbdGxRJk4k8yyjGqw/zvRthkFHJVPTPdfhGZA8wEztBiLABqVASpJv5kohx9zeV48zFKm3yjVs4BbgJOVdU94XTJ6I3kYqVm62suJdG3kEIjTPKNWvkl0Ad4TkQAFqvql/LuldHryMVKzWag0wYYjUom36iVzM++Rq8jV8s3Wys1Gyu+lCb4GEbY2MxOI1R60vLNxoovxwHGUnIFGaWNCbkRKj1t+Qa14sttgNFcQUY2mJAboVLKlm85DTCaK8jIBhNyI1TKzfItVUr5hmiUHlKM0O9p06bpsmXLerxdIz/MZ9uzFPp62+dZfohIg6pO8283i9wIhPlse55CuoLs86wsbIUgIxCWH6SysM+zsjAhNwJRDsmpSmFptnKhHD5PIzjmIzcCU8o+VXMVZE8pf55GcsxHbuRNKYfvWbhe9pTy52lkh7lWjIrAXAVGb8YscqMisPh1ozdjQm5UDOYqMHor5loxDMMoc0zIDcMwyhwTcsMwjDLHhNwoeWyij2GkxwY7jZLGJvoYRmbMIjdKGssJYhiZMSE3Shqb6GMYmTHXilHS2EQfw8iMCblR8thEH8NITyiuFRH5hoioiBwURn2GYRhGcPIWchEZCZwNbM6/O4ZhGEa2hGGR/xy4Cej5xOaGYRhGfkIuIhcAW1V1ZUj9MQzDMLIk42CniDwPDEuy6zvALThulYyIyHXAdQCjRo3KoouGYRhGOnJe6k1EjgL+L7DH3TQCeAc4XlXfTXesLfVmGIaRPamWegttzU4RaQSmqer2AGU/AJpCabjwHARkPKcKw86599Abz7ucz3m0qg71byxKHHmyjpQqIrIs2R2wkrFz7j30xvOuxHMOTchVtS6sugzDMIzgWK4VwzCMMseEPDP3FLsDRcDOuffQG8+74s45tMFOwzAMoziYRW4YhlHmmJAbhmGUOSbkARCRH4vIOhH5u4g8KiIHFrtPhUZELhaR1SISE5GKCtXyIyLniMh6EdkgIjcXuz89gYj8VkTeF5FVxe5LTyAiI0XkRRFZ436vv1bsPoWJCXkwngMmq+rRwFvAt4vcn55gFTAL+FuxO1JIRCQK3A2cCxwJXCoiRxa3Vz3CXOCcYneiB+kAvqGqRwLTgesr6XM2IQ+Aqi5U1Q737WKcdAQVjaquVdX1xe5HD3A8sEFVN6lqG/AgcEGR+1RwVPVvwIfF7kdPoarbVHW5+3oXsBYYXtxehYcJefZcDTxd7E4YoTEc2OJ530wF/cCN7ohIHXAs8HqRuxIattSbS7osj6r6uFvmOziPaPN6sm+FIsg5G0YlISIDgUeAr6vqR8XuT1iYkLuo6pnp9ovIHGAmcIZWSPB9pnPuJWwFRnrej3C3GRWGiFTjiPg8VV1Q7P6EiblWAiAi5+CsgnS+qu7JVN4oK5YCh4vIGBGpAS4Bnihyn4yQEREB7gfWqurPit2fsDEhD8YvgUHAcyKyQkR+U+wOFRoR+YKINAMnAn8WkWeL3adC4A5ifwV4FmcA7E+qurq4vSo8IjIfeA0YLyLNIvIvxe5TgTkZuBL4jPsbXiEinyt2p8LCpugbhmGUOWaRG4ZhlDkm5IZhGGWOCblhGEaZY0JuGIZR5piQG4ZhlDkm5IZhGGWOCblhGEaZ8/8AtWc4sFLnhOQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], pred, \".\", label=\"predictions\")\n", - "ax.set_title(\"DecisionTreeRegressor\\nwith fast custom criterion\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "676 \u00b5s \u00b1 48.8 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit model3.fit(X_train, y_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Much better even though this implementation is currently 3, 4 times slower than scikit-learn's. Let's check with a datasets three times bigger to see if it is a fix cost or a cost." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "X_train3 = numpy.vstack([X_train, X_train, X_train])\n", - "y_train3 = numpy.hstack([y_train, y_train, y_train])" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "((750, 1), (2250, 1), (2250,))" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_train.shape, X_train3.shape, y_train3.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.36 ms \u00b1 57 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit model.fit(X_train3, y_train3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The criterion needs to be reinstanciated since it depends on the features *X*. The computation does not but the design does. This was introduced to compare the current output with a decision tree optimizing for a piecewise linear regression and not a stepwise regression." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "X.shape=[750, 1, 0, 0, 0, 0, 0, 0] -- y.shape=[2250, 1, 0, 0, 0, 0, 0, 0]\n" - ] - } - ], - "source": [ - "try:\n", - " model3.fit(X_train3, y_train3)\n", - "except Exception as e:\n", - " print(e)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.03 ms \u00b1 159 \u00b5s per loop (mean \u00b1 std. dev. of 7 runs, 100 loops each)\n" - ] - } - ], - "source": [ - "model3 = DecisionTreeRegressor(min_samples_leaf=100,\n", - " criterion=SimpleRegressorCriterionFast(X_train3))\n", - "%timeit model3.fit(X_train3, y_train3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Still almost 2 times slower but of the same order of magnitude. We could go further and investigate why or continue and introduce a criterion which optimizes a piecewise linear regression instead of a stepwise regression." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Criterion adapted for a linear regression\n", - "\n", - "The previous examples are all about decision trees which approximates a function by a stepwise function. On every interval $[r_1, r_2]$, the model optimizes $\\sum_i (y_i - C)^2 \\mathbb{1}_{ r_1 \\leqslant x_i \\leqslant r_2}$ and finds the best constant (= the average) approxmating the function on this interval. We would to like to approximate the function by a regression line and not a constant anymore. It means minimizing $\\sum_i (y_i - X_i \\beta)^2 \\mathbb{1}_{ r_1 \\leqslant x_i \\leqslant r_2}$. Doing this require to change the criterion used to split the space of feature into buckets and the prediction function of the decision tree which now needs to return a dot product." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "PiecewiseTreeRegressor(min_samples_leaf=100)" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mlmodel.piecewise_tree_regression import PiecewiseTreeRegressor\n", - "piece = PiecewiseTreeRegressor(criterion='mselin', min_samples_leaf=100)\n", - "piece.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([3.80559618, 0.45086204, 0.42563158, 0.44940565, 3.57423704])" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pred = piece.predict(X_test)\n", - "pred[:5]" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABEeUlEQVR4nO2deXxU1dnHv89MAoiijYgrkEBZBSoSRKyiUsS6IFTEumBbtGptbautL7ZV60K1alur9i1dUCz6CriiIi6AFSwuEQhC2REwIaAoYFAUMMnMef84dyY3k1kzdzIzyfP9fAJzt3PP3X73uc95znPEGIOiKIqSv/iyXQFFURQlPVTIFUVR8hwVckVRlDxHhVxRFCXPUSFXFEXJc1TIFUVR8hwVciVjiMgrIvKDJNb7QkS6N0edFKUlokKuICIVIrJPRPaIyG4ReVtErhGRtO4PY8zZxphHk1jvIGPM5nT2JSKrnRfCFyISEJH9rumb0ik7Yj/TRKTGKfdTEZkvIn28Kl9RmoIKuRLiPGNMB6AYuAf4FTA1u1VKHmNMP+eFcBCwCPhpaNoY8/vQeiJS4MHu/uDs5xhgGxk4Tx7VM539S7ovcqX50AulNMAY85kxZjZwEfADEekvIm1F5E8iskVEPhaRf4jIAaFtRGSMiCwXkc9FZJOInOXMXygiVzq/e4jIGyLymYjsFJEnXdsbEenh/D5ERB4TkR0iUikit4QERUQmiMibTl2qReQDETk73vGISIlT/g9FZAvwujP/ChFZ65QzV0SKXdv0cSztT0VkvYh8N8a52gc8BQx0bXu0iDzr1P8DEfm5a9kBIvKos8+1InKjiGx1La8QkV+JyH+BL0WkQESGOl9Iu0VkhYic7lp/gohsdr6kPhCR8Umc62+KyBJn2RIR+aZr2UIRuUtE3gL2AuruyheMMfrXyv+ACuCMKPO3AD8G7gdmA4cCHYAXgbuddYYAnwEjsYbBMUAfZ9lC4Ern90zgZmeddsAprv0YoIfz+zHgBWc/JcAG4IfOsglALXAV4Hfq9iEgEfV277fEKf8x4EDgAGAMsBHoCxQAtwBvO+sfCFQBlzvLjgd2Asc6y6cBd7rW/T9ghTPtA8qBW4E2WCHcDHzbWX4P8AZQBHQG/gtsjbgOy4EuTj2PAXYB5zhlj3SmOzn7/hzo7Wx7FNAv3rl2rl818D3n2C5xpju6ztsWoJ+zvDDb96b+JfkMZ7sC+pf9P2ILeZkjCF8CX3fNPwn4wPn9T+D+GOW6BfUxYArQOcp6BujhiHNNSDSdZT8CFjq/JwAbXcvaO9seGWe/Jc463V3LX8F5OTjTPqwFWoz9ElkUUd4/gduc39OA/cBuIAh8AHzDWXYisCVi298A/3J+h0Xdmb4yipBf4Zr+FfB/EeXNBX7gCPlu4ALggIh1op5rR8AXR8x7B5jgOm+Tsn0/6l/qf+paUeJxDNYyaw+UO5/3u4FXsVYhWOtxUxJl3QgIsNhpmLwiyjqHAYVApWtepVOPENtDP4wxe52fByWx/yrX72LgQdfxfOrU7Rhn2YmhZc7y8cCRru3/ZIz5GvYlsQ/o7Sr36IhtbwKOcJYfHVEP9+9Y9bwworxTgKOMMV9iXzrXAB+JyEuuRtdY5/poGp5baHx+o9VJyXGy2qCi5C4icgL2AX8eaxn2M8Zsi7JqFfD1ROUZY7ZjXSKIyCnAayLyH2PMRtdqO7Guk2JgjTOvK7ZBMV3caT6rgLuMMdMjV3J85W8YY0YmLNCYLSJyHfCoiMxxyv3AGNMzxiYfYV0qoWPrkkQ9/88Yc1WM/c8F5jrtFXcCDwHDYp1rrBuqOKKYrtgXc7T9K3mCWuRKA0TkYBEZBTwBPG6MWYEViPtF5HBnnWNE5NvOJlOBy0VkhIj4nGWNwvFE5EIR6exMVmMFI+hexxgTwDYe3iUiHRxR/SXwuMeH+Q/gNyLSz6nbISJyobNsDtBLRL4nIoXO3wki0jdaQcaY+ViBvBpYDOxxGiwPEBG/2MbiE5zVn3L2WyQixwA/TVDPx4HzROTbTlntROR0EeksIkeIbWQ+EPgK+ALnfMY51y87x3ap05B6EXCsc8xKHqNCroR4UUT2YK3Am4E/Yxv8wFrkG4EyEfkceA3HnWCMWeysdz+20fMNGlt9ACcA74rIF9iG0+tM9Njxn2F98puBN4EZwCNeHGAIY8xzwL3AE87xrALOdpbtAc4ELsYK9HZn3bZxivwj1p1RAIzCRrF8gP3CeBg4xFlvErDVWfYa8AxWhGPVswrbMHsTsAN7bSZin1sf9iX3IdY1dBq28RdinGtjzC6nfjdgG01vBEYZY3bGOTYlDxBj9EtKUbKBiPwYuNgYc1q266LkN2qRK0ozISJHicjJjguqN9Yyfi7b9VLyH23sVJTmow02lLEbNnTwCeBv2ayQ0jJQ14qiKEqeo64VRVGUPEeFPE0kQQpWJ3/GGRna92p37g0PyhsvIvO8Ki+NetwuIl6HHDYJsdkO78xQ2eHjFJGuzr3kz8S+WjqSZMrklooKeZoYVwrWTD70Mfbdzxiz0Nl32uJnjJlujDnTk8rlCOJKyJWBsieIyJtelGWM2eLcSwEvymttmCRTJrdUVMjzEMlAitNMlKnkPslcd6/vDf3q8B4V8iiIyOUi8qJr+n0Redo1XSUiA53fRmza0KuxOTludD6RX3QVOVBE/is2deiTItIuzr6vEpvidI+IrBGRQc78aClOK0TkDLFpY28CLnL2vcLZ5hARmSoiH4nINhG5M/QQOdbkWyJyv4jsAm6PtDAlccrT3zll7BGReSJyWIxjKhKROWJTu1Y7vzu7lncTm3Z1j4jMx+ZccW//tIhsd+rxH3F6ZDrLpolNqzvf2f4NcVLSiu2WDrDCOS8XOfNHiU27GxpE4xuu8o4XkWVOWU9iswdGO6a+2B6iJzll73ad86hpeOMh9el2C5I5vxI/ve3lrntos4j8yLXsdBHZ6txL24F/RalLtHsjUSrjG5377EMRuVIapiaeJiJ/F5GXReRLYLjET/c7RESWik2L/LGI/NmZ305EHheRXc5xLxGRI1znK5Qy2eec90oR+cS5HodEnOcfOMeyU0RuTnR9cp5sZ+3KxT9s+tHd2BddKNHQVteyasDnTLtTsE7DSXHqKqsC23X7aGwa0bXANTH2eyE2r8gJ2KRHPYBiVznLcVKcuuad4fy+Hdul3l3ec9hwtwOBw516/MhZNgGow/akLMCmTZ0AvOksTybl6Sagl7PtQuCeGMfVEZulrz02Pe3TwPOu5e9ge5K2BU4F9riPBbjC2a4t8ACw3LVsmrP+qc7yB0PHEHl9nOnjgU+wmQr92EyCFc62bZxr/Qts8q5x2Nwvd8Y4rgnufTnzYqbhjbJ9+JpRn6WxINH5JU56W2f5udj8N4Lt8bkXGOQsO9257qHeqgfEOK7IeyNeKuOzsD1g+znX+HEaPxefASc79W1P/HS/7wDfc34fBAx1fv/I2W9759qVAge7zlco4+UV2J7I3Z3tZ+FkkXSd54ec4zoO27u2b7Z1Jy3NynYFcvUP2x16ELar9hSsCPbBdkef7VovGSG/zDX9B+AfMfY5F9udOtqyClwpTl3zogo5NuPeV+4HFSvGC5zfE2iccnUC9UKeTMrTW1zLfgK8muS5HQhUO7+7YkXjQNfyGUS8lFzLvuac80Nc5/wJ1/KDgADQJfL6ONN/B34XUeZ6rOCdSkR+c+DtyGsa7Xw503HT8EbZPnzNiC7kUc8vcdLbxtjP86H7CivkNUC7ONenwb2BfSHES2X8CI6oO9M9aPxcPOZanijd73+AO4DDIta5wrke34hS54XUC/m/gZ+4lvXGvpALXOe5s2v5YmwP26zrTlP/1C8amzewN30P5/du7MN+kjOdCttdv/dirfNoJEoJm0qK0WKsVfmRiITm+UicRjVEMilPI48rajpZEWmPtejOwg6qANBBrJvnaKyofxmxny7Otn7gLuzXSifqE20dhrXyGhyHMeYLEfmUxiljQxRjRz76mWteG2d9A2wzztPtqkuyJJOGNxVind9ibHrb81zLC4EFAGJHTboNa82HLOCVrnV3GGP2J9i3+9x1oj6VcWieYF9cYM/d0hjbRptXjJPu1zXPjx2iD+CH2Lw060TkA+AOY8wc7CAeXbA5cr6GtfxvNsbURuwr8t6txIr4Ea55Sd27+YL6yGMTEvJhzu83sEJ+GrGFPN3eVYlSwsYrP3JZFdYiP8wY8zXn72BjTL8427iJlfK0KSllb8BaRScaYw7GWr5gxeAjoEhsFj/3fkJcik0cdQY2+VSJa9sQ4XSwInIQ9vP/wxh1CaWw/Zrrr70xZqZTl2PEpVYRdYkk8vy50/C6t/ciDa+bUHpb9zEcaIy5R0TaAs8CfwKOMDZv+ss0PF/J3KfudXZi8673c+3vEGPHLYX69LwhkknP+0FE/TsYY84BMMa8b4y5BOsOvBd4RkQONMbUGmPuMMYcC3wTmwDs+1H2FXnvhr76Pk7iuPMSFfLYvAEMx7omtmKthbOw/t73YmzzMemNc/gw8D8iUiqWHuIaSzIBHwMloYY1Y8xHwDzgPrGpaX0i8nUROS3J8rxMedoBKwS7ReRQrLWIU89KrDV3h4i0EZs/+7yIbb/C+oDbA7+nMeeIyCki0gb4HVBmbOZAaHxNHgKuEZETnXN8oIicKyIdsK6jOuDnYtPXjsUOZReLj4HOzn4xzZeGN2Z6W+zXRVtstsQ6xzpPK6TUGBMkfirjp7CpjPs6X1+/TVBk3HS/InKZiHRy9rvb2SYoIsNFZIDzlfY59qUZjFL+TOAXYhvRD8LeM08aY+qafBJyHBXyGBhjNmBzPC9ypj/HNsi8ZWLH+k4FjnVa1J9vwj6fxroRZmAb8J7HWpfJEIqq2SUiy5zf38c+2GuwDZXPYMd2TKYuXqY8fQDbsLQTO3zcqxHLL8X6TT/FivxjrmWPYT+NtznHURal/BnOdp9iG8Aucy27HTvww24R+a4xZil20IW/Ys/JRqxPGGNMDTDWmf4UOwLPrDjH9TqwGtguIqHz0hxpeGOmtzU2De/PseJajT23sz3YbbxUxq8Af8G6djZSf42ipuh1np946X7PAlaLTcP7INZ/vQ87StMzWBFfizW2/i/KLh5x5v/HKX8/9rq0WDTXipLXiMg0bETRLdmui2IRG5q5Cmjbkq3gXEItckVR0kZEzhcba16E9Wu/qCLefKiQK4riBT/CxudvwoZ//jj+6oqXqGtFURQlz1GLXFEUJc/JSoegww47zJSUlGRj14qiKHlLeXn5TmNMp8j5WRHykpISli5dmnhFRVEUJYyIRO1prK4VRVGUPEeFXFEUJc9RIVcURclzcib7YW1tLVu3bmX//kRJ2ZR0aNeuHZ07d6awsDDbVVEUxSNyRsi3bt1Khw4dKCkpoWHyOcUrjDHs2rWLrVu30q1bt2xXR1EUj8gZ18r+/fvp2LGjingGERE6duyoXz2K0sLIGSEHVMSbAT3HipJFqhbDovvs/x6SM64VRVGUFk3VYnh0NARqwN8GfjAbusRLd588OWWR5xK33347f/rTn2Iuf/7551mzZk0z1khRlLymYpEVcROw/1csSrxNkqiQNxEVckVRUqJkmLXExW//LxnmWdFJC7mIPCIin4jIKte8Q0Vkvoi87/xfFK8MrymvrGbygo2UV1Z7Ut5dd91Fr169OOWUU1i/fj0ADz30ECeccALHHXccF1xwAXv37uXtt99m9uzZTJw4kYEDB7Jp06ao6ymKooTpMsS6U751s6duFUjNIp+GHYLJza+BfxtjegL/dqabhfLKasY/XMZ989Yz/uGytMW8vLycJ554guXLl/Pyyy+zZMkSAMaOHcuSJUtYsWIFffv2ZerUqXzzm99k9OjR/PGPf2T58uV8/etfj7qeoihKA7oMgWE3eCrikIKQG2P+gx3H0M0Y4FHn96PAd7ypVmLKNu+ipi5I0EBtXZCyzbvSKm/RokWcf/75tG/fnoMPPpjRo0cDsGrVKoYNG8aAAQOYPn06q1evjrp9suspiqJ4Tbo+8iOc0doBtgNHxFpRRK4WkaUisnTHjh1p7haGdu9ImwIffoHCAh9Du3dMu8xoTJgwgb/+9a+sXLmS2267LWYMdrLrKYqieI1njZ3GDjUUc7ghY8wUY8xgY8zgTp0apdNNmdLiIqZfOZRfntmb6VcOpbQ4Pff8qaeeyvPPP8++ffvYs2cPL774IgB79uzhqKOOora2lunTp4fX79ChA3v27AlPx1pPURQl06QbR/6xiBxljPlIRI7CjtnXbJQWF6Ut4CEGDRrERRddxHHHHcfhhx/OCSecAMDvfvc7TjzxRDp16sSJJ54YFu+LL76Yq666ir/85S8888wzMddTFEXJNCmN2SkiJcAcY0x/Z/qPwC5jzD0i8mvgUGPMjYnKGTx4sIkcWGLt2rX07ds3lborTUTPtaLkJyJSbowZHDk/lfDDmcA7QG8R2SoiPwTuAUaKyPvAGc60oiiK0owk7VoxxlwSY9EIj+qiKIqiNAHt2akoipLnqJAriqLkOSrkiqIoeY4KuaIoSp6jQp4hFi5cyKhRowCYPXs299wTO6Bn9+7d/O1vfwtPf/jhh4wbNy7jdVQUpWWgQp4igUAg5W1Gjx7Nr38dO59YpJAfffTRPPPMM02qn6IorY/8FnKPh02qqKigT58+jB8/nr59+zJu3Dj27t1LSUkJv/rVrxg0aBBPP/008+bN46STTmLQoEFceOGFfPHFFwC8+uqr9OnTh0GDBjFr1qxwudOmTeOnP/0pAB9//DHnn38+xx13HMcddxxvv/02v/71r9m0aRMDBw5k4sSJVFRU0L9/f8COZXr55ZczYMAAjj/+eBYsWBAuc+zYsZx11ln07NmTG2+0/bACgQATJkygf//+DBgwgPvvv9+Tc6MorRKPNcbr1Nsh8neotwwNm7R+/XqmTp3KySefzBVXXBG2lDt27MiyZcvYuXMnY8eO5bXXXuPAAw/k3nvv5c9//jM33ngjV111Fa+//jo9evTgoosuilr+z3/+c0477TSee+45AoEAX3zxBffccw+rVq1i+fLlgH2hhJg8eTIiwsqVK1m3bh1nnnkmGzZsAGD58uW89957tG3blt69e/Ozn/2MTz75hG3btrFqlU0bv3v37rTPiaK0SjzWmFDq7Zq6IG0KfJ7kiAqRvxZ5hoZN6tKlCyeffDIAl112GW+++SZAWJjLyspYs2YNJ598MgMHDuTRRx+lsrKSdevW0a1bN3r27ImIcNlll0Ut//XXX+fHP/4xAH6/n0MOOSRufd58881wWX369KG4uDgs5CNGjOCQQw6hXbt2HHvssVRWVtK9e3c2b97Mz372M1599VUOPvjg9E+KorRGPNYYr1Nvu8lfizw0bFLobenRsEmRo8yHpg888EAAjDGMHDmSmTNnNlgvZE03J23btg3/9vv91NXVUVRUxIoVK5g7dy7/+Mc/eOqpp3jkkUeavW6Kkvd4rDGh1Nu1dUHPU2/nr0WeoWGTtmzZwjvvvAPAjBkzOOWUUxosHzp0KG+99RYbN24E4Msvv2TDhg306dOHiooKNm3aBNBI6EOMGDGCv//974D1Z3/22WeNUuK6GTZsWDgt7oYNG9iyZQu9e/eOWf+dO3cSDAa54IILuPPOO1m2bFkKR68o+UOm/M1hPNYYr1Nvu8lfIYeMDJvUu3dvJk+eTN++famurg67QUJ06tSJadOmcckll/CNb3yDk046iXXr1tGuXTumTJnCueeey6BBgzj88MOjlv/ggw+yYMECBgwYQGlpKWvWrKFjx46cfPLJ9O/fn4kTJzZY/yc/+QnBYJABAwZw0UUXMW3atAaWeCTbtm3j9NNPZ+DAgVx22WXcfffd6Z8URckxvB7qMSYea0xpcRHXDu/hqYhDimlsvSJX09hWVFQwatSocENhSyUXzrWipMPkBRu5b956ggb8Ar88szfXDu+R7WplnLTT2CqKouQKzTXUY76Qv42dGaCkpKTFW+OK0hII+ZvLNu9iaPeOnrsq8o2cEnJjTKOoEcVbsuFKU5RM4OVQj/lOzrhW2rVrx65du1RoMogxhl27dtGuXbtsV0VRFA/JGYu8c+fObN26lR07dmS7Ki2adu3a0blz52xXQ1GyS9Vi28GnZJinUW/ZImeEvLCwkG7dumW7GoqitHQylN4jm+SMa0VRFKVZyFB6j2ziiZCLyC9EZLWIrBKRmSKiTlhFUXKTUNd78Xua3iObpO1aEZFjgJ8Dxxpj9onIU8DFwLR0y1YURfGcUNd79ZFHLecAEakF2gMfelSuoiiK93QZ0iIEPETarhVjzDbgT8AW4CPgM2PMvMj1RORqEVkqIks1MkVRlGyS8YRbzUzaQi4iRcAYoBtwNHCgiDRKxm2MmWKMGWyMGdypU6d0d6soSislXRFutoRbzYgXrpUzgA+MMTsARGQW8E3gcQ/KVhSlFVNeWd2gG74Xo+xEG+Ah33uIeiHkW4ChItIe2AeMAJbG30RRFCU+0UQ7lghHCn48MjnAQ7ZIW8iNMe+KyDPAMqAOeA+Ykm65iqK0bqKJdjQRTtVKb4kJtzyJWjHG3Abc5kVZiqIoEN1yjibCkxds5PzgfM4qWMzc4BDKNvdMKM4tLeFWznTRVxRFcRPLco4U4XNr51JcMBWAU30rqaz9OtDyB5lwo0KuKErOktByrlrMkSutJ1cEjIGiileAaz3Zfyq+92yiQq4oSl7QSFSXToOXb6BNsA6wIg5QfuCpfMuj/aUbIdNcqJAripLzRIrqq8M2U/LOLWCC+LBRFlXmCB4x5/GdU67yZJ/5FKaoQq4oSs7jFtXrzON0ffsloH4QGp+vgPLj7uE7xw/3TGzzKUxRhVxRlJwnJKpjg/O5xj+n4ULx4Tv3PsYNHuvpPvMpTFGFXFGUnKe0uIjnRxdyxL/nwX6oH9lX4Nz7YfCEjO03lwU8hA4soShK7lO1mD5zL6No/1YE61QxwOpuE5i855QWkS8lHdQiVxQl4zQ5jK9qMZ+8OY3Ah8s5sm4/gsEgVASPYErgXGauHYGsXU/bwtyOKsk0KuSKomSUJofxVS0m+K9z6RSoCc8y4qPOV8j/1FxDebCXnUfuR5VkGnWtKIqSUaKF8SVFxSIkWIuI7ewTBLYUDWHT2TNY7e+Dz3GU+yDno0oyjVrkiqJklCaH8ZUMw/gK7QDJQB0F7PvmRPqccAbTD7eumqL2bajeW5PzUSWZRowxidfymMGDB5ulSzXTraK0FlLykVctrh9PE/jkzWl8/Pl+CgddSp8TzmiG2uYuIlJujBkcOV8tckVRMk7SYXxViwlOO89a4f42+Ca8yOGX/I3DM1/FvEZ95Iqi5Azbls8jWFeDjyDBuhq2LW80/K8SBRVyRVFyhncCx1JLAXXGRy0FvBM4NttVygvUtaIoSsZIyjfu8ol3O344l5ffQqlZTbn0Y+Lxw5u3wnmKCrmiKBkhYfx41WJ47XaofNtOF7Sj9AezmXjl9ynbvIuJrTwSJRVUyBVFyQhx08BWLYZ/nQ1OLnEA6vZDxSJKhw1RAU8RT3zkIvI1EXlGRNaJyFoROcmLchVFyV9C8eN+idJhp2JRQxEH2+vHCTlUUsMri/xB4FVjzDgRaQO096hcRVHylLhpYEuGEZQCxNSLuXzz59BlSBZqmv+kLeQicghwKjABwBhTA9TE20ZRlNZBrPjx8mBP7q39LVfwIkdINc+Y4YztdT2lWahjS8ALi7wbsAP4l4gcB5QD1xljvnSvJCJXA1cDdO3a1YPdKoqSV7iiU8o2H8qSup4s5peAzS9+dCtOepUuXvjIC4BBwN+NMccDXwK/jlzJGDPFGDPYGDO4U6dOHuxWUZRcpLyymskLNtbnCK9aDE9cCo+cBa/fCY+OZsRBFRT664eH8PulVSe9ShcvLPKtwFZjzLvO9DNEEXJFUVo+kSGHz48upM+rl4QTXwEQ+Io++1dw++gL+e0LqwgEDT6R2IUqCUnbIjfGbAeqRKS3M2sEsCbdclOlkRWgKEqzExlyWLtsRkMRBxAflAyjem8NoaR9gUAK6W2VRngVtfIzYLoTsbIZuNyjcpOiyYnrFUXxFHfK2ksLXqff9ucbriB+OOc+6DKEocHqvBmlPtfxRMiNMcuBRqkVm4u4HQ8URWk2QiGHH7y3gLErpuEzAcCO4vPlYcdx0Jg/hUMMmzpKfZOHjWvBtIienU1OXK8oimeUV1bzwXsLGPHpTEqrV4ETI24M1OHnyo8vYGKwZ4MQw1RHqdev7+i0CCFv6ptdUZTYpGL5lldW8/zDd3K7byo+DEZsSGEQCODnt7UTWGJ6pP21rF/f0WkRQg6pv9kVRYlNqpbvB+8t4DbfI/gwuANQajqUMGH3FSwxPTz5Wtav7+i0GCFXFMU7Yg2YHMtCH/Lh/+EniIh1peBY5O1O+wUTO43x7GtZv76jo0KuKEojIi3fovZtolvoVYthxQw6f7KwwfZ7C4o48KzbYfAESsFTwdWv78aokCuK0ohIyzeqb9r3Pjw6Gur2I45LxRgI4KPq2w/TZ3DrHii5OVEhVxQlKpGWbyPfdMULTmcfgzj/Bn1+tp40qdWPdt/c5JeQu5LuaLpLRWk+ovqmfcPA38aKuc+PHH8Z/uMuoUSfzWYnf4S8arH9jAvU2JvnB7NVzBUlw0SGIJb63reWuM8xpn4wW42rHCB/hLxikRVxE7D/VyzSG0dR4tCUHpDubdZv38OtTlKrtoU+FgxcyFGrplhHeEG7emNKn8Oskz9CXuL6jPO3aTwklLpdFCVMU3pAurcp8AkBA4GgTWp1XfBxjlw5p35lZ3xNfdZyg/wR8nifcep2UZQGNKUHZINtAgbjzB8kG7i64KWGK3s4vqbmTkmf/BFyiP0Zp24XRWlAU3pAurfx+wREGBBcx3X+ZxGxkSlhIsbXbKoYa+4Ub8gvIY9FIreLorQymtIDMnKbjutn0OWd3+EzgXoRF58V8ZF3hLdLR4w1d4o3tAwhz7HWc/1UVHKBpvSADG+zdBq8fTOEHSzCZ0efwvzDr6Bbr+ENMhhGivGsZVuTvv81d4o3SGiEjuZk8ODBZunSpc2+3+bAq09FfRkoWaNqMeaRs8BliQfwc3HtrZQHeza6r0P3fG1dEPEJJmgIGmhbmHwjq97rySEi5caYRmM/eDH4suIiVrKhWEQboi70YNw3bz3jHy7T4euU5qNqMZ+9MgkTrBdxA7wWOJ4lgZ4EDdRE3Nchl8xFQ7raLvrGblNTm9zwbaXFRVw7vIeKeBq0DNdKDpHKp2Is6z0Zv6FaMYrnzL8N3nqQDqEu987Hep34+WfdqPBqPmk84n3ovnV/4ft8jddTMkNeCXk+iFcqjUyxBDvRy0Bb+hXPWToN3noAsJ/pBng/eAzl0peOJ/2ANW8V4qsN4vMJk8b0j3q/he7bmrogPhGuPKVb2CIvLS7Ki+c3X8kbIc8n8Uq2kSmWYCd6GWhLvxJJ2iK59oWG0wJfdR5Kr7Pus/dj38Tlu+/bovZtmDRndfh5vXVUvwbTufz85iOeCbmI+IGlwDZjzKhE66dKs4pXM/USjbzx3dZLvJeBtvS3PuIJtSdGTt8xsOn18KSInwHnXANdbDnJGieh9SYv2NjgeX1l1UdqfGQQLy3y64C1wMEelhmm2cTL3UvU54fjL4PjLsmYoIdu5lQeRB0lpXWRSKibbOTMvw3Wzoa+o8Nx4V+UPcLHpojaoT+jTxr3fOTzenb/o1hS8akaHxnCEyEXkc7AucBdwC+9KDOSZhOvBr1EA7D0X7B8Zka7/TflQdRRUloPie6PJhk5828L+8RD/5f3up7xHx9hXxiza5l+eHWT77Foz2vvIzuo8ZEhvLLIHwBuBDrEWkFErgauBujatWuTdtIs4hXqJVq3H9vkYzLe7V9dJUo8Et0fTTJy1s5uNF1W8D1P3R+Rz6saH5kjbSEXkVHAJ8aYchE5PdZ6xpgpwBSwHYLS3W/GCPUSXTED3psBwbqMZ1vMNVeJRhfkFsncH/FEMur17Du63iJ3ppMxKPTeyE3S7tkpIncD3wPqgHZYH/ksY8xlsbbJm56dscS6ajHBaeeFc7v4JryY9bQAXpFP0UFKYtzXc3zB6/xPl/UcMmgcDJ4Q1Uee8UZVJS1i9exM2yI3xvwG+I2zk9OB/4kn4nlFjGyL25bP44i6GgokSF1dDR8tn8cxLUTINbSx+UnWym2KNRy6nt+VfzPJNxU+BD5cZBeOvKNB8iuIb9nrvZG75E0ceS7xTuBYzqUATB21FPBO4FjGhRZWLYYVMwEDx12ad5a6+uubl2St3KZawyMOqqBX4Z85kdUA9VkM175grfIUiHZvqKslN/BUyI0xC4GFXpaZDRLdnN2OH87l5bdQalZTLv2YePxwu6BqMUwbBYGv7PR702HCS2mLeXM+LLH8sYk+ufVhbhrJWrlNsoarFtPn5e/S2xdovKzvmEbXLdF1jLw3ILWwWSVzqEUeQTKWT2lxEROv/D5lm3cx0X3Th0IXQwRqmxTtEm3cxKAxWXtY4p0T9ZumR7JfQE36Unrt9gYZDAE4oAhG3E55pzENrluyPS/drpfITj/qaskeKuQRJGv5RPUlhge4cCxyf2HDaJckIl0ajJvo9xEIBAk47dE1zfCwRBPmeOdE/abpkWzEUsqRTVWLofLtxvNH3A6DJ1DmQc9LdcPlDirkEaR1c3YZAhPmRPeRJzmuaKQwumOKRIRtu/dRXtn0jhqJiCbM8c6JPszpk2r390iiukQqFoWXh4eGGPDdsF98aPeOFPidYd38Tet5mWths60ZFfII0r45Ux1XNMJKbzBuot8HxlAXMIgdQpEnFm9h1rKtabkw4vlCIx/w0Dqxzok+zInJRBtCqEx3cqohBRv5y7HrObxDGzhyIEF/W0zdfkB4KDCKgzv/lkvdhYRCj42h95EdmnQdtZNPbqBCHoWM3Jwlwwj6CiEA+ArxlQyLaqWXFg9p1KBUtnkXH+7ex8zFW1J2YURr0Ero03Y94CHinRN9mGOTiTYEd5k+EYLG8F35N3f6HsG/3rlm/jYs7D6RpWs2UhbsyzLTi4IXVtH7yA6UFtvc4XVBgwECQUPZ5l06uEMeo0LeTJQHe/LHmptspEugHxODPSnd8ojLSv8KFt4NfcdQum8XpT2GQZceQH0u52eXbU3p0zdVfzcQ9QHP9sOd61Ex8eqXiTYEd5kYQ6n/fe4s+Bd+XCPdB2o4VL7gb4Ex4e3qgoYHXtvA9Wf0UpdYC0OFvJko27yLxXU9KDM98IudLu3hahw1Qdi0wEklKna08t5nw8nXQZchTXJhpOrvBm993qkIcKx1cz0qJlH9MiGYkWXeVbIaX1WwYXSK+NnYfqAd6cc1+62NO1lS8SnTrxyqLrEWhAp5MxH1ge7SwzZ6LrwbNi0Egs7axlrp6+bAhrns6Hkhbxwwkm7HD+fa4T3S2meiF4JXPu9UBDjeurkeFZOofploQ3CXOeKgCnq9GjkohA/O/TPdOg2nbbk9r2A9Ze56qiul5aBC3kzEfKC7DIHTfwOV79Rb5i5MsJZD183gfGYytXwUXPm/SSdHirXPRD5tL3zeqQhwvHVz3QWQTP0y0YYQLnPRCzaxGwACxwyCs+6xX3HAraP68cqqj+h31MFMe6ciZ8+jkh4q5M1IzAc6lHGxYhHs/xze/l9rkTv4BYwxXOV7kc2z98B3bm4UGRPLqs1WQ2QqAhxv3VyOigm9OG8d1Y/qvTXNW79QtNMBHR33nG0wXzfwJv698VCGBqsBwhEtSyo+zU49lWZBhdxjmtww5w5b7HOuTaP7xQ7MupfA2PBDY6D7roXw6LvW6tq3Kxy2mK4LIp6PuinHk4oAJ+PuyTXhyarvPjLaybkX5n3Zk588V0MguJ62hT7GDurc4J6o3luTkmtOyR9UyD3Es4fbJeq++bdh3nrANliJk/So7it4+QYIOm6YTr04t+f3+d+C7k36dI5V73SPJxUBzkWxjkdWffeRfRL27aK86xX85J/vUBe0TZs1tbbxMxW3VK5HBymxUSH3kIw83CPvQIq6wXuPwUcrrFkuAsEA4XiEHeso2XETrw77PS8VfjvlB7Fs8y6+qrW9SGtq6+sdeTyzlm3VB90hK777GO4USoZRtnEXQVfcv88njB3UmbGDOiedIjeXo4OU+KiQe0jGHu7BE+yf+0F++QZXI5elpPJZru2zH3zDgOQTdRW1bxMOUQs609DwePx+H08vraIumL3kXblEs/vul06z19wEwd+2kWttaLCaNgW+cCehSWP6N2jcTkSuRwcp8VEh95CMP9yR3f/n/IL6kEWsxf7h8vpcLpDUcHTVe2vwiQ1N84mdjjyebbv38UQTepa2ZJrNHTT/NnjrQcJfYIGvrIgPu6FBXdK593I9OkiJjwq5xzTbwz14AhxxLNXz/8BX1R/Stuhoiqper/ebrpgBy5+wD7344Jz7Yg4kkChqJOQvn5Viz9LWjCf+5qrFVsDXzWk4X3yNx5AlvXsvl6ODlMSokOcx5cGejP/ghzZh0u6NzGizCF8Qa5Ej9XHpJmg/y6HB5zgkH0KnD3ryeOFvrpg3ma5v/xYhIp84Yl/KGRh5Kt8anJV6VMjzGLdfc0ldD2aV/p1xHT+ot9aWPVbfwSgYqPexAnTsSUWvHzB+Ufdw7vNxpZ3j7s/9oOdChEMu1CEa6fqb1y15jR5v3YIQtGGnuIZoO/m6lIdoU1o+KuR5TKRLpNvxw6F4bP0K59xXH6bo8zWMdNm5nuKdN3GdGcW95lJq6oLMfDd6itwmZVDMMLlQh1gk8jcnegFVr3k9LOJhOhwNp/1KRVyJStpCLiJdgMeAI7AqMcUY82C65SqJSejucPzo8SJdrvbPoQP7OID9HO/byNzgCZRt7tnA8k41g2JzkAt1iEW86xL3BbR0Grz3GP3q/ATw43N699biZ/Op/0ufwWdk4WiUfMALi7wOuMEYs0xEOgDlIjLfGLPGg7KVBCT0a0ZGurz0i7B7RbBRKuML/h021K/xz2H7p52Be4GmZVBMl2R6meZ6lEWs6xLzBTT/NnjrAQAOBurEx9y6wezkEJ4PDmP4FyX0ad5DUPKItIXcGPMR8JHze4+IrAWOAfJeyHPVB9tkHAv98zk3c9DHSxBX/mrj9Bo1wFHrH4e/zIO+oxna6/qUMyi6SfUcNhiz1CdcOLgLYwdZ332kJZvrja/Rjj0yNn/b7n1UzJtMydsNP2L9BFnj68Hk2tEUFvj4TZL553P5fCiZQ4yrN1jahYmUAP8B+htjPo9YdjVwNUDXrl1LKysrPdtvJshlH2w6hI6rX2Ad4wre5KKC/+AL1sTe4OTrKe91faMRi5LNMe4eyWbSmP5cemLXuNtMXrCR++atJ+i6Ldv4hXGDu4Tj2P0Cvzyzd87kDYkmoPHun1Ao59NLqxhg1vNk4ST8EpFP3FfAurOf5N9flKR8rlvS/ao0RETKjTGDI+d71tgpIgcBzwLXR4o4gDFmCjAFYPDgwd69PTJEtnywmbaqQsdVbnqxvLYXhYPGM65gkfXPEmy8wXuPU1qxiNJADV+s9nHvxycwve5bSYmF+xwGjeFW11BjsQhZrPtr6+tSEzAs3ryLAp8QCJqccqWUV1ZzyUNl4S+WmVcNjZrewH3/hJYPMOu5xf8YfoLhryEBKP4mnHEHfboMSdqdksz9qhZ7y8UTIReRQqyITzfGzPKizGyTDR9sqlZVUx7MmJEux11iG0U/WQcrn6rfYO9O+wccCEzyreBb/ne5su43CV9uQ7t3DI8pCRAMGp5NkK8l5LaZ9OJqVmz9LDx/044vKSzwcdGQLlwwqLNnQpSuuM1atjU8cEONk4+mtLgo4f1zbu1cri78HX7q0xVjoLr4TIoufzrleiQTKaMWe8vFi6gVAaYCa40xf06/SrlBNjrApPIV0NQHM9ZxlQd7UlZ3KEMHX0HpwUfD2tkQDGB2V4Y/+UNW4+n+lbzm+yVfHTQZiO3eKC0uYtKY/tz6wiqCQUOBX3imfCt1gfh1Li0u4tbz+nHJQ67RbYBAIMgxXzvAUxFPV9wiPy1D0+7zXNS+DWWbd4XnU7WYkrJbMWI7+4RH7qGAJ9qMJbhgo+dpg3M5ykdJHy8s8pOB7wErRWS5M+8mY8zLHpSdVZq7p1sqXwHpPJiRx9VY0K6ndOQdVMybTPFbNzUQq1AHlRLZjrx0Icj9cWObLz2xK72P7EDZ5l18uHsfM5PM11JaXMTMq4aGfcmZcKlEO4eh+ckK6QWDOvPM0ipqA4ZCv3DBoPpOVaHtG70stiwCU+9OCeDjycBwXuBUlq/7GnWr13ueNjjXo3yU9PAiauVNiOhFrDSJVL4CvHwwY70UXir8NlvrNvFd30KO4RM6+faEs+hanK7/1R/A9v9C3zFRRd2dr+XZFPK1hLYLpWJtZNmmSeQ5LGrfJmULvbS4iJlXn5SaJdxjmM1gGPgKER9bh05id+G36bl7H0szlJhMUyy0bLRnZ46R7FdAMg9msv7fWC+Fod07Mt43kifrRhA0MK3gbk7zr2zYZTwYCMc/s+l12DgPTr4+ai6QpopJTMs2TTGKrE+8r5x45zJlSzg06LaTmbKkyxCuBWa8uwWfMxRUJqxmzaXSclEhz2NCD2U0KzXeqD/RBmOONUiz28+7eu80SmrnUvL+o7Dj/Xo1d4ewrnsJ3p8Px19mG1AjBL2pYjJr2dbw4BdeWquR9Yn2QkvHlx7z5RXRUau8sppJc1YTNAafT7h1VD8VXSVpVMjzmHgCE8v/G2v9WALbeH4POPPa+kEu9n9eb5GHCNTA0n/B8pnW8kwzU195ZTVPL60K++r9/sz4eGOJbroNhcm8vNz7EEw4Jzxo2KCSGBXyPCaewET7pPc0csFtUbqHogsn5jJW0CsWpS3kZZt3hceiFAhnaZzchOiOREQT3eZoKIy1Dw0bVJJBhTyPSTQgRDTrMrJ7eHlldUrCENU6dA9Ft2IGvDfDJucSsa6WAzqmlbUv8jj7H31I3F6TXluvqfr2E9UhFfeWhg0qyeBpF/1kGTx4sFm6dGmz77cl0pRcJqGQvlTH30zaOqxabN0t616qn3fy9TDyjuQPLMq+3Y2SoW787u76uWC9JqpDUzp9jX+4vueoWuStm4x30VeyQ6qNh6Hu4XVBk7KVl7R12GUI1O4LR7cYQN56AHZttAMjdBmS8gsomUZJd/1qaoM88NoGrj+jV0KhTJRpMV6nrFBDcGh0pUTnKFULW8MGlWRQIW9FuIWnKT7fVHzFFUecQfHG162IO52IWDcHs/4Vtpz0u/DIRCGrdP32Pbyy6iPO7n9UwsRascQtVL+vaoMEgTff38mSik9jWrHxInsSWc2hdUKRND6xL5dbR/WLe46a4m/XsEElESrkrYRIcUo0Rmc0UrEOXyr8Nr7A2/zIPwfcnYiCAbq+fQvnBy9nphnBV7VBbnluJWu37wFg0fs72bLrS359Tt+EdYkWz33rqH7c8vxKjLEvj5ra2AmkHnhtQ1TrOBmrObROyDEZWrd6b03cc6QWtpIJVMhbCZHiVL23pklpYJO1Dod278j41y+jqu4IJhX8C39oMAsBCPK7gkf4rm8hTwZO54ntIxpsO2XRZkb2O7JJDZjusD0An08aWL3uNoLagAlb05EdoRJZzW7rPyTmIkJR+zYJz5Fa2IrXqJC3Epo710a95dmT1786Hd5+kDOkHIxBBPxiGOjbxEDfJi4LvsatdZezzPQCbP+ikBWcauNg6DjdOdDdLwS3OwTABww45hD6HXNIlLrHz9J466h+3PrCKgJB+0KoCxomzVmdMFWvoniNCnkroTk+6SMt53rLswflfYex8M2HOH3jvYix44Y6vdHp56vk6TZ3cHPtFTwRHEHbwugNmOk2Dka6QwQo8Atrt+9h5bbPGgw8Hc1qjjy+6r01BI1pkFQsbvItdyeqikXQ4ciY6QwUJRVUyFsRmfykT2Q5lxYXQfGNUHU6vPUAsu6lcEMogM8Y7m4zlXGd65CRd8Tt2JSIWMcZOczauNLOCCSVkTHa8bmt/6Cx1r07+Va/wDq+KlhHcY/9HLb9Tdi7i0aJbzfMhctfUTFX0kKFXPGElEITL54Bz14FK58KZ1MMRbaUbn2UvbPehl/YfgZN+ZKIFhYYEvfIskIZGWtqg2Efd7LHd+3wHg1y0bT5aCkn+dfw0cpXmMtLdCm0A3LI5jiVDdaFe79qV3ylqaiQK56QsuV8wUNs51COWPkPwLo5BOtqab/7ffb89TQ6/PQNIPkviVBD5pNLq6gLWMs3FBYYy2Xi9nUHTWwfd9Tjm38bpf99itJADeyrBmNH+zkarHmOK/QyFr4CKBmWE52ZlPxFhVzxhKZ0Yx+//HTOD9ZyV8FUEEfMHb/5gTuXwxPjwx2IEpX17LKtPFNuh1270T+DC9u8wT7Tlr8FxvB03Yi4vvWQrztkbUcORxeylB/9xhqO/HAepu9oSjaUNU4W5iDhf2iY8hdAfNB/HHy6qYGPvGzBRu2KrzQZFXIlZWK5AFLxwYdcFTPNCAS4q3BqOBtuOOZ83Rz7N+C7cMFDMevijkS50T+DHxfMcQraw92+qXQPfkJp9/+NeRzuDlJ+n9j0BQGbE/z28/qxds6DXCvPcITsti+ct8ug/WFJHacAHF0Kez6CQ0vgjDuivph0BB8lHVTIlZTwygXgFq5ZvpF8/9xz6LbgpxTu/QiIsGJXPgU71sK5f24kgpGRKGf5l9jtXRbxVf45yMrDwHdpePtYHaRWVO1m3pqPAegfWEe31x7gEl9ZeH/hevkKGg6B567U0aVQ84WtxIk/TiphmHYUUtJBhVxJCS/GuYTGwtWnuAhOWAdLp8FLvwz7m8HxMW9fiUwdCaMebCCMDSJRfELV4WfQbef0BiGGYGy5Sx+FTj3hxJ9QtueUqB2kbnpuJQCDZAPT2/yetrW2g5E0UGqoPvQbPP3ZCYySNymkjiL/PgoK28EJVzY5OZh2FFKaigq5khJejHMZImqsdqcxfHDcwZxd+QfaV69t0L3fADLnOjtGqCOWjS3Zc2B+JzuwxVefuUo2GAzsWI/MuY4rOpRwaGEPnq07hVX+PmFXRmgw5aGspZA6fICJbLAUH/8+9BLueb8tvzeX2AyMw3s3qaesoniBJ2lsReQs4EHADzxsjLkn3vqaxja/SSalbFPKgoYjGM089BEG7p4HNLaI4/nNw1QthhUzCS59FDGBhi8EwsNf8Gn373DY9x9tUKcP3lvA2JU/xhesJYCwLVCEMYa1poRHOI/vnDeWSXNWa3pZpVnJWBpbEfEDk4GRwFZgiYjMNsasSbdsJTdJJqVsNCIbSSP91GMHdW7g7ni65FZYtpGBvs22IVRcvuiVT0Htl/F7RjqjGC387ChO3fB7/I7REhL0UMjjYZufhz98HS6ZCV2GOMc3Fko7s235PK4vO4glgZ7hYgU4LUpyLI0DV7KFF66VIcBGY8xmABF5AhgDqJC3ApJtpIvWSBrpbxcavhQuGNSZ4KDXqXzuYrp+tgSfy28O2IErNsyFc+4L+82jiekhp1zFZevacouZSj9/ZeOQQIC9O2HqSDi0O5z/z/BL4PmNh1IeXN9g1UK/NOhkFOv4VMyV5sILIT8GqHJNbwVOjFxJRK4Grgbo2jV+vmklv0imkS5aI2mkv33soM6MHdS58Uvh+rn2f6c3aAOCdTDneqj+gPJe10cV09LiIiZe+X3e2HwuB9XOpWTNPzG7K8NFNBD1TzdbQXcaVd3d8EWEb/U5nGtO+3rMtLYaB65kg2Zr7DTGTAGmgPWRN9d+ldwgWpx0LGs+pgBe8BAVHQbSbuV0Dt+zFh9BZ4GBtx6g/Yb11NR9L6qYNkjg1ftSnn/4Tn4lj3Gg1GBcrhanNMyc69j31j8oHfuXpL44itq3wSfW897U8VAVpamk3dgpIicBtxtjvu1M/wbAGHN3rG20sTM/SdcH7MX2IYt7fMHrTPJPRVzxJAbYGjyMyXVjmCVnMPPqk6LuZ/KCjeEG2vsKJnOe7x0KJdjABx96LIz48f3w1bi9S92dknwC4hOCEeOhqv9c8YJYjZ0+D8peAvQUkW4i0ga4GJjtQblKDhESq/vmrWf8w2WUV1anXEZpcRHXDu/RZCFzuy9m1H2L8s7fb7ROZ9nJ3YVTecd/FXWLH4laTujrQIAb6q6lV83jLAwMCEexuBN5QcAmtUqiXgY7UlAg0HA8VC/OnaLEI20hN8bUAT8F5gJrgaeMMavTLVfJLWJ1BGpOQgLsd0b0kZF32DBEh1CuFoBD5QuGrJrEu0/fR3llNZMXbAwLaMilc+mJXWnjFwS4vO43jPvqdlbXFQNWzK1V7oeSYcnXyy8UuuoYa0BmRfEST3zkxpiXgZe9KEvJTZojF0gi90NUn3rxQ3Dw0fDWg7bDj7sDkYGv/vsc31vel7oIV0for9/Rh/CHuevYvbeWZaYXo+ru5k8HPcu3g4swRcUcPOr3CZN2RdYLGvd0jTx36mpRvMSTDkGpoj7y/CST4pN2+F7VYnjuR5hPNzfohvmb2h/yZHAEhsYdlma8u4VbX1hFXbDhM3DNqd0TDv6cKvE6PmmoopIsGesQpLQeMpkLJO3wvS5D4OfvIfNvY9/iR9n5VQF/C4xmlm8khWIIBE2DL4nyyuqoIi5AhwMKo+4inReZ+9xN1pS1iseokCs5QTTXTSrCGV631/WUjryDTyqr6bx5FzNjuDrKNu8iEEXE/b7oowR52eFHU9YqXqNCruQE0fzMyQpnLJGNzJUeavQc2r0jQ7t3pG2hj5raID6fMOobRzHnvx8RCEYfJcjLDj+aslbxGhVyJWdoqvshGZGNJvZuMS3bvIug+RBD9DK8tqI1Za3iJSrkSlaIbPyLtE5TEc5k1o01eLJbTAt8Qm3A4PdJozLUilZyGRVypdlxW8cFPtvzpi7Q2C3iHqE+FHuddFhiBEm9GJwu9o1z5tbvJx0B15BDJVOokCvNTgPrOGD7U0ZzaYT+T8ZXnkhkE4l92eZd1AVs78xAwNtIkvLKamYt22rHAo2IZ1cUL1AhV5qdyOHZECEQCEZNNtWURsamDA6dqUiSyMGhQUMOFe9RIVeanWgRKiGL9YnFW5i1bGvYYk1VYBOFCcYT+Uz4wCMHhxaIehzqdlHSQYVcyQqR1nHZ5l3UBU0jyzuRwEYKYDwLPpHIZyKSpMHXh9/HuNLOXDCoc6OXi/b0VNJBhVzJCeJZ3pEj8cSLNY9XTiYHf0jH0tdBKZR0USFXcoJkBC/RGJ+hkMJY5USKfFH7NuEOQulGo6Rj6WtPTyVdVMiVnCGR4CUa4zMkgLHKiQxpnDRntSfujHQtao1RV9JFhVzJeUJui6L2bZIb4zMOIZG/+bmV4UiSdN0ZXljU8V5i2hCqJEKFXMlpIt0Wt47qR/XemuTG+IzBjHe38MTiLeFIEr8/PXdGJi1qbQhVkkGFXMlpIt0W1XtrwvnEm0IofW3AUXEBxpV2jumTT1acM5U7RRtClWRQIVdyGq8bAm1yrPr0tX6fcMGgzo3WyxVLWBtClWRQIVdyGq/dFiFhrKkL4hNh0pj+OR0SqA2hSjKkJeQi8kfgPKAG2ARcbozZ7UG9lFZOpFvDKwFLVhhzyRLWlLdKItIas1NEzgReN8bUici9AMaYXyXaTsfsVOKRqlsjU1EdGi2i5BoZGbPTGDPPNVkGjEunPEWB1NwamfRlZ9IS1peE4iVe+sivAJ6MtVBErgauBujatauHu1VaCrHixeO5NXLFl50KudKQqrQcEgq5iLwGHBll0c3GmBecdW4G6oDpscoxxkwBpoB1rTSptkqLJZl48Wjkki87WfLx5aPkNgmF3BhzRrzlIjIBGAWMMOk43JVWTTrx4mMHdUac//NBEPPx5aPkNulGrZwF3AicZozZ602VlNZIU8QtWhKtROvngl9aQwoVr0nXR/5XoC0wX+w4h2XGmGvSrpXS6miKuOVKo2hT0JBCxUvSjVppel9ppcXSVMs3VXFLxYpXv7TSktGenYqnNKflm4oVn49+6VxxBSm5jwq54inNbfkma8Xnm18611xBSm6jQq54Si5bvvnkl1ZXkJIKKuRK0iTzqZ9vlm+u0hwvRHXdtBzSyrXSVDTXSv6hn/rNTyaFVq9nfpKRXCtK60E/9ZufTLqC9Hq2LHzZroCSH4Q+9f1Czvm+Q5RXVjN5wUbKK6uzXZWcJx+up5I86lpRkiaXfarqKkidXL6eSnTUtaKkTS5HfairIHVy+XoqqaGuFaVFoK4CpTWjFrnSItCwR6U1o0KutBjUVaC0VtS1oiiKkueokCuKouQ5KuRKzqPx4YoSH/WRKzmNxocrSmLUIldymmjx4YqiNESFXMlpND5cURKjrhUlp9H4cEVJjAq5kvNofLiixMcT14qI3CAiRkQO86I8RVEUJXnSFnIR6QKcCWxJvzqKoihKqnhhkd8P3Ag0fz5cRVEUJT0hF5ExwDZjzIok1r1aRJaKyNIdO3aks1tFURTFRcLGThF5DTgyyqKbgZuwbpWEGGOmAFPADiyRQh0VRVGUOCQUcmPMGdHmi8gAoBuwQkQAOgPLRGSIMWa7p7VUFEVRYuLZUG8iUgEMNsbsTGLdHUClJzvOPIcBCY+phaHH3Hpojcedz8dcbIzpFDkzK3Hk0SqSq4jI0mhj5LVk9JhbD63xuFviMXsm5MaYEq/KUhRFUZJHc60oiqLkOSrkiZmS7QpkAT3m1kNrPO4Wd8yeNXYqiqIo2UEtckVRlDxHhVxRFCXPUSFPAhH5o4isE5H/ishzIvK1bNcp04jIhSKyWkSCItKiQrUiEZGzRGS9iGwUkV9nuz7NgYg8IiKfiMiqbNelORCRLiKyQETWOPf1ddmuk5eokCfHfKC/MeYbwAbgN1muT3OwChgL/CfbFckkIuIHJgNnA8cCl4jIsdmtVbMwDTgr25VoRuqAG4wxxwJDgWtb0nVWIU8CY8w8Y0ydM1mGTUfQojHGrDXGrM92PZqBIcBGY8xmY0wN8AQwJst1yjjGmP8An2a7Hs2FMeYjY8wy5/ceYC1wTHZr5R0q5KlzBfBKtiuheMYxQJVreist6AFXGiMiJcDxwLtZropn6FBvDvGyPBpjXnDWuRn7iTa9OeuWKZI5ZkVpSYjIQcCzwPXGmM+zXR+vUCF3iJXlMYSITABGASNMCwm+T3TMrYRtQBfXdGdnntLCEJFCrIhPN8bMynZ9vERdK0kgImdhR0EabYzZm+36KJ6yBOgpIt1EpA1wMTA7y3VSPEZsru2pwFpjzJ+zXR+vUSFPjr8CHYD5IrJcRP6R7QplGhE5X0S2AicBL4nI3GzXKRM4jdg/BeZiG8CeMsaszm6tMo+IzATeAXqLyFYR+WG265RhTga+B3zLeYaXi8g52a6UV2gXfUVRlDxHLXJFUZQ8R4VcURQlz1EhVxRFyXNUyBVFUfIcFXJFUZQ8R4VcURQlz1EhVxRFyXP+H/y7+TShdpBBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1)\n", - "ax.plot(X_test[:, 0], y_test, \".\", label='data')\n", - "ax.plot(X_test[:, 0], pred, \".\", label=\"predictions\")\n", - "ax.set_title(\"DecisionTreeRegressor\\nwith criterion adapted to linear regression\")\n", - "ax.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The coefficients for the linear regressions are kept into the following attribute:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[-2.05163528, -0.07590713],\n", - " [-3.28097357, -1.07747849],\n", - " [-2.37373495, -0.05126022],\n", - " [ 1.10248486, 0.20358196],\n", - " [ 4.21766561, -0.2568136 ]])" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piece.betas_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Mapped to the following leaves:" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "([1, 4, 5, 7, 8], {1: 745, 4: 746, 3: 748, 0: 749, 2: 739})" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piece.leaves_index_, piece.leaves_mapping_" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can get the leave each observation falls into:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 3, 2, 3, 4])" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "piece.predict_leaves(X_test)[:5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The training is quite slow as it is training many linear regression each time a split is evaluated." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "26.9 ms \u00b1 1.98 ms per loop (mean \u00b1 std. dev. of 7 runs, 10 loops each)\n" - ] - } - ], - "source": [ - "%timeit piece.fit(X_train, y_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "105 ms \u00b1 5.26 ms per loop (mean \u00b1 std. dev. of 7 runs, 10 loops each)\n" - ] - } - ], - "source": [ - "%timeit piece.fit(X_train3, y_train3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It works but it is slow, slower than the slow implementation of the standard criterion for decision tree regression." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next\n", - "\n", - "PR [Model trees (M5P and co)](https://github.com/scikit-learn/scikit-learn/issues/13106) and issue [Model trees (M5P)](https://github.com/scikit-learn/scikit-learn/pull/13732) propose an implementation a piecewise regression with any kind of regression model. It is based on [Building Model Trees](https://github.com/ankonzoid/LearningX/tree/master/advanced_ML/model_tree>). It fits many models to find the best splits and should be slower than this implementation in the case of a decision tree regressor associated with linear regressions." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/notebooks/timeseries/README.txt b/_doc/notebooks/timeseries/README.txt deleted file mode 100644 index 19238a08..00000000 --- a/_doc/notebooks/timeseries/README.txt +++ /dev/null @@ -1,2 +0,0 @@ -Timeseries -========== diff --git a/_doc/notebooks/tree/README.txt b/_doc/notebooks/tree/README.txt deleted file mode 100644 index 73b1273b..00000000 --- a/_doc/notebooks/tree/README.txt +++ /dev/null @@ -1,7 +0,0 @@ -Games with (scikit-learn) trees -=============================== - -The notebooks explore trees, mostly trees from :epkg:`scikit-learn`, -and compute unusual results from the structure. - - diff --git a/_doc/notebooks/tree/leave_neighbors.ipynb b/_doc/notebooks/tree/leave_neighbors.ipynb deleted file mode 100644 index 44b245fa..00000000 --- a/_doc/notebooks/tree/leave_neighbors.ipynb +++ /dev/null @@ -1,564 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Close leaves in a decision trees\n", - "\n", - "A decision tree computes a partition of the feature space. We can wonder which leave is close to another one even though the predict the same value (or class). Do they share a border ?" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
run previous cell, wait for 2 seconds
\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from jyquickhelper import add_notebook_menu\n", - "add_notebook_menu()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A simple tree" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy\n", - "X = numpy.array([[10, 0], [10, 1], [10, 2],\n", - " [11, 0], [11, 1], [11, 2],\n", - " [12, 0], [12, 1], [12, 2]])\n", - "y = list(range(X.shape[0]))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+KklEQVR4nO3deXxV9bXw/886QwZCCKNCTARkELAiWIRW1EqtiD5OqHUAFUWv1w63j7bPbe3jvdbb3vu7VW/V9rG3raWKE6Ci9tI6gYJDsSgooDJYJiWBACFISEKGc85evz/2jj2EJGfaIeRkvV+vvDhn7+/+npVzNiv7fPfe6yuqijHGmOwV6OwAjDHGdCxL9MYYk+Us0RtjTJazRG+MMVnOEr0xxmQ5S/TGGJPlLNGbrCAiM0VkcQf1PVdE/r0j+m7ltdr9PUTkDRG5+UjEYrKHJXrTZYjIGSLyjohUi8g+EVkuIqcBqOpTqjq1s2PMVLb8HuboEursAIxJhoj0Av4MfAt4BsgBzgQaOzMuP4lISFWjnR2HyT52RG+6ipEAqjpfVWOqWq+qi1X1QwARuUFE/tLcWERURL4tIptEpEZEfiYiw7xvBAdE5BkRyfHani0i5SLyf0Vkr4h8KiIz2wpERC4UkTUist/rb2w7baeKyCfet5D/FpE3m4devJiXi8gDIlIF3N3K73GuiGz0tn8IkEzfSNP9WKI3XcXfgJiIPCYi54tInyS2OQ/4MvAV4IfAw8C1QCnwJeCauLYDgf7AccAs4GERObFlhyIyHngE+EegH/A7YJGI5LbStj+wEPix1/YT4PQWzSYBW4Fjgf9oZfvngX/xYtsCTE7i9zbmEJboTZegqgeAMwAFfg9UisgiETm2nc3uVdUDqroO+BhYrKpbVbUaeBkY36L9v6pqo6q+CbwIXNlKn7cAv1PVd71vFo/hDh99pZW2FwDrVPV5b0jmV8CuFm12qur/U9Woqta3sf1CVY0AD7ayvTEJWaI3XYaqblDVG1S1BPeIvBg3+bVld9zj+lae94x7/rmq1sU9/8zrv6XBwA+8YZv9IrIf9xtCa22LgbK4+BUob9GmjLa1tn177Y1plSV60yWp6kZgLm7C90MfESmIe348sLOVdmXAf6hq77ifHqo6v5W2FUBJ8xMRkfjnnvbKx1bg/hGJ37607ebGtM4SvekSRGSUiPxAREq856W4Y+wrfHyZfxORHBE5E7gQeLaVNr8HbhWRSeIqEJH/JSKFrbR9EThZRC4VkRDwHdxzAcl6EThJRC7ztv9eitsbA1iiN11HDe6Jy3dFpA43wX8M/MCn/ncBn+MexT8F3Op9aziEqq4C/gF4yGu/GbihtQ5VdS/wTeBeoAoYA6wiyUtC47b/ubf9CGB5Cr+TMQCITTxiujsRORt40hv778jXCeCO0c9U1WUd+VrGxLMjemM6kIicJyK9vcsv/y/udfB+DjcZk5AlemM61ldxr3/fC1wEXNrKZZTGdCgbujHGmCxnR/TGGJPljsqiZv3799chQ4Yk3V5RappqiDgRHHUISIBwIExhTiFipUFMhlSVxoN1ONEo6jhIIEAgFCK3RwHupe3GZEKJRmtwnCZUHUQCBAI5hEKFpFLa6P3339+rqgNaW3dUJvohQ4awatWqhO3Kasp4asNTvLDpBfpKX5piTUSdKKFAiJxgDqrK5SMu55rR11BaaPeZmNTs372L1S8v4qNlSxCBWCRCLBolGAoRDIdRhZO/PpXx0y6i97F2ebtJTX39draXPUZFxbNAHo4TRDWCSJhAIAxEKB50JaWl15Off3zC/kTkszbXHY1j9BMmTND2Er2q8sD7DzBv4zwcdYg4kTbbhgNhAhJgxqgZ3P7l2+0IzCSkqrw9by4fvPwnVB2caNuVgwOhEAEJMP78izhzxg22f5mEVJUtW+6lrPwxVB3cMkatEwkjEqC0ZBbDhv2w3f1LRN5X1QmtrTsqj+jbo6rc8fYdLCtbRmMs8X0nzX8EFnyygN0Hd/PzM39u/xlNm1SVlx76L7asXEEs0pSwvRON4gBrXv0zNfv2csF3/4/tX6ZNqsq69d+nsnIJjpM4f6lGUIWy8idoaNzFSWPuT2v/6nInYx94/wGWbl9KfTS1K9Tqo/UsLVvKgx882DGBmazw9ry5bF65gkhjavOZRBob2bxyBX+Z/1gHRWaywZYt93pJPrX85Tj1VFYuYcuW+9J63S6V6Mtqypi3cR4NsYa0tm+INvDUhqcoq7ECgOZw7pj8n4immOSbRRsb+eClRezfbZWEzeHq67dTVv5Yykm+mePUU1Y+l/r67Slv26US/bwN7ph8Jhx1mL+htUKDprtb/coiX/av1a/8yaeITDbZXuaOyWdC1aGs7PGUt0uY6EWkVESWich6EVknIv+7lTYiIr8Skc0i8qGInBq3bpY3ndsmEZmVcoSehmgDz296vt0Tr8mIOBGe2/RcUuP7pvuINDXy0dLF7Z54TYYTjfLR0sVEmxKP75vuIxZroKLimXZPvCZDNcLOimeIpZi/kjmijwI/UNUxuLPofEdExrRocz5uZb0RuDPw/AZARPoCP8GtOjgR+EmSU8Ad5u0db/t2kktEeKv8LV/6Mtlh2+pVPu5fsHX1Sl/6MtmhquoN/Jzut6oqtZp4CRO9qlao6gfe4xpgA+68mvEuAR5X1wqgt4gMwp2zc4mq7lPVz4ElwLSUIvTsqttFU8yfo6RILMKuOhtHNX9Xs3cvsUhmR1vNYpEoNXv3+tKXyQ4NjRU4GY5GNHOcCA2NFSltk9IYvYgMwZ1n890Wq47j0CnOyr1lbS1vre9bRGSViKyqrKw8bH1dpI6ok9nX6mYRJ0JdpC5xQ9NtNDUcJJbhsE2zWCxKU8NBX/oy2SEWrc142KaZaoRYtDalbZJO9CLSE3gOuM2bqNlXqvqwqk5Q1QkDBhx+F29BuIBQwJ/L/sOBMAXhgsQNTbeRk9eDYMif/SsYDJGT18OXvkx2CIZ6IhL2pS+RMMFQz8QN4ySV6MWN8DngKVV9vpUmOzh0LssSb1lby1M2sGAgOcGcdDY9TDgYZmCB3bJu/q6wf3+CYX/+IwbDIQr79/elL5Md8nIHeWUNMhcIhMnLHZTaNokaeBMS/wHYoKr3t9FsEXC9d/XNV4BqVa0AXgWmikgf7yTsVG9Zys4qOQu/yjWoKmeVnOVLXyY7nDD+NB/3L7c/Y5r16zeF9ueBT6e/5CVzRD8ZuA74uois8X4uEJFbReRWr81LwFbc+TN/D3wbQFX3AT8DVno/P/WWpSw3mMtlIy4jnOFfxXAgzOUjLic3mJtRPya7hHJyOPnrUwlkOHwTCIU4+etTCeX48+3TZIdgMJdBg67MePhGJEzxoCsJppi/Eu7VqvoXElwXpO6h0HfaWPcI8EhKUbVhxugZPPu3ZzPqIyABrhl9jR/hmCwzftrFfLjkFTK5pSUgAcZPu8i3mEz2OL50Fjt3zieTL44iAUpLr095uy51Z2xpYSkzRs0gP5Sf1vZ5oTxmjp5pJYtNq3ofO5Dx519EODe9b3uh3FxOveBiK1lsWpWffzylJbMIBNLLX4FAPqUlNyRVsviwbdN6xU50+5dvZ0rplJSTfV4oj6+Xfp3bTr2tYwIzWeHMGTcw7LSvpJzsQ7m5DD/tK5xxTdo3f5tuYNiwHzJgwLkpJ/tAIJ8BA85l2LB/Tut1u1yiFxF+fubPufrEq8kN5ia85DIcCJMbzGXGqBlWotgkJCJc8N3/w7jzLiQUzkk4Zh8IhQiFczh12kVWotgkJCKcNOZ+SkuuIxDITThm705CkktpyfVplyiGLjrxSLOymjLmb5jPc5ueQ0SIxCJEnAjhQJhwMIyqcsXIK7hm1DWUFJYcgchNNtm/exerX/kTHy1d7M0wFSUWixIMhgiGQ+4MU+dM5dRpF1F0jA3XmNTU12+nrOxxdlY8A7h3vB46wxQUF19Facn15OcnHm5ub+KRLp3omzXGGnmr/C121e2iLlJHQbiAgQUDOavkLLu6xmQs2tTE1tUrqdm7l6aGg+Tk9aCwf39OGH+aXV1jMhaLNVJVtYyGxgpi0VqCoZ7k5Q6iX78pKV1dk/WJ3hhjurv2En2XG6M3xhiTGkv0xhiT5SzRG2NMlrNEb4wxWc4SvTHGZDlL9MYYk+Us0RtjTJazRG+MMVnOEr0xxmQ5S/TGGJPlEk48IiKPABcCe1T1S62s/2dgZlx/o4EBqrpPRD4FaoAYEG3r9lxjjDEdJ5kj+rnAtLZWqup9qjpOVccBPwbebDFd4BRvvSV5Y4zpBAkTvaq+BSQ7z+s1wPyMIjLGGOMr38boRaQH7pH/c3GLFVgsIu+LyC0Jtr9FRFaJyKrKykq/wjLGmG7Pz5OxFwHLWwzbnKGqpwLnA98RkbPa2lhVH1bVCao6YcCAAT6GZYwx3Zufif5qWgzbqOoO7989wAvARB9fzxhjTBJ8SfQiUgR8DfifuGUFIlLY/BiYCnzsx+sZY4xJXjKXV84Hzgb6i0g58BMgDKCqv/WaTQcWq2pd3KbHAi94k9mGgHmq+op/oRtjTOYaIjGWbdzDzuoG6hqjFOSGKC7KY8qoY8gLBzs7PF8kTPSqek0SbebiXoYZv2wrcEq6gRljTLoikQjl5eU0NDS02aaiJsL/bKhm8aYaEIjGlIgD4QCEggIK540o5OLRRQwqDB/B6NuXl5dHSUkJ4XDyMSVM9MYY09WUl5dTWFjIkCFD8EYVvqCq3PPKRh5dvgNHlUjs0HmzIw5EHHfZi3+r4eVNtdw4eQg/mjbqsL6ONFWlqqqK8vJyhg4dmvR2VgLBGJN1Ghoa6NevX6tJ/ran1/DYO5/RGHUOS/ItRWJKY9ThsXc+47an16DafvuOJiL069ev3W8qrbFEb4zJSq0dfd/zykYWr9tNfSSWUl/1kRiL1+3m3lc2+hVe2tL5VmGJ3hjTLWyvOsijyz9NOck3q4/EeGT5p2yvOuhzZB3PEr0xplt49J1tOBkOvTiqzH1nm08RHW7btm1MmjSJ4cOHc9VVV9HU1ORLv5bojTFZryES4+mVZQnH5BOJxJSnV5bRkOa3gkR+9KMfcfvtt7N582b69OnDH/7wB1/6tURvjMl6yzbuIeDTFTMiwrKNe9ptc9ddd/Hggw9+8fzOO+/kl7/8ZbvbqCpLly7liiuuAGDWrFn88Y9/zDRcwC6vNMZ0AzurG2iK+nMU3hR12Fnd/lUvs2fP5rLLLuO2227DcRwWLFjA0qVLGTduXKvt582bxzHHHEPv3r0Jhdy0XFJSwo4dO3yJ2RK9MSbr1TVGMx62aRaJOdQ1RtttM2TIEPr168fq1avZvXs348ePZ/DgwaxZs6bNbfbu3etLfK2xRG+MyXoFuSHCQaHJh2QfDgYoyE2cOm+++Wbmzp3Lrl27mD17NjU1NZx55pmttp03bx6jR49m//79RKNRQqEQ5eXlHHfccRnHC5bojTHdQHFRHjmhIE2x9o/Ek5ETClBclJew3fTp07nrrruIRCLMmzePYDDY7hE9wJQpU1i4cCFXX301jz32GJdccknG8YKdjDXGdANTRh2T8aWVzVSVKaOOSdguJyeHKVOmcOWVVxIMJlcc7Z577uH+++9n+PDhVFVVcdNNN2UaLmBH9MaYbiAvHOSq00p5csVnGY3Vh4PCVaeVJlXV0nEcVqxYwbPPPpt0/yeccALvvfde2vG1xRK9MaZbuPH0ocx7dzvuDKd/l0sTUwJrKJYqCqinjnx2aj+WOeNoJOeQtgERbjg9cTGx9evXc+GFFzJ9+nRGjBjh56+RFkv0xphu4fh+Pbhx8hAee+cz6iMxSmU3NwZf5crgGyiQQ5QwUSKEaCKEAAtiU3gsNpUyPZb8cJAbTh/M8f16JHytMWPGsHXr1o7+lZJmid4Y0238aNooKvbX86UND3CdvEwAJUcOPUGbS5Rc3GXXB5dwbfA1ntDz+Xj07fxw2qjOCDtjCU/GisgjIrJHRFqdBlBEzhaRahFZ4/3cFbdumoh8IiKbReQOPwM3xphUCfBgzn8zK7SYPIkcluRbypEoeRJhVmgxD+b8N51bjT59yVx1MxeYlqDN26o6zvv5KYCIBIFfA+cDY4BrRGRMJsEaY0xGXrsb2fgiOU5q9dxznAZk44vw2t0dE1cHS5joVfUtYF8afU8ENqvqVlVtAhYA/lwUaowxqdq3Dd79LUTSLDMcOehuv6/jqld2FL+uo/+qiKwVkZdF5CRv2XFAWVybcm9Zq0TkFhFZJSKrKisrfQrLGGM87/4OnAzr3agD7z3sTzyteOihhxg+fDgi4mtJBD8S/QfAYFU9Bfh/wB/T6URVH1bVCao6YcCAAT6EZYwxnkg9rH4cnEhm/cSa4IPHIZLa0E+yJk+ezGuvvcbgwYN97TfjRK+qB1S11nv8EhAWkf7ADqA0rmmJt8wYY46sTYvBz1Opm15td3U6ZYoBxo8fz5AhQzIM7nAZX14pIgOB3aqqIjIR949HFbAfGCEiQ3ET/NXAjExfzxhjUla9wz0a90Osye2vHemUKR4zpuOuVUmY6EVkPnA20F9EyoGfAGEAVf0tcAXwLRGJAvXA1epOlR4Vke8CrwJB4BFVXdchv4UxxrSnqRZiGQ7bNItF3P7akU6Z4o6UMNGr6jUJ1j8EPNTGupeAl9ILzRhjfJLTE4Jhf47qg2G3vwRSLVPcqUf0xhjT5RUdB8EcnxJ9jttfAumUKe4oVqbYGJP9RpxHy2JmmffXvnTKFP/qV7+ipKSE8vJyxo4dy80335xppIAd0RtjuoNwHoy/HlbOyewSy2AOnHq9218C6ZQp/t73vsf3vve99ONrgx3RG2O6h0n/CIHDj6wbBZb0yOeJXoX8tncvnuhVyJIe+TS2djWmBGDiLQlfav369QwfPpxzzjnHyhQbY8wR03coTLrVvbM1cpCyUJCnehXyQmFPBGhCiAqEFHJQFLi8ppZrDtRQGo1BuIeb5PsmrkdvZYqNMaazfONutLqcByreYF7PPBwRInLooXtEIOLdXLWgVyHPFPZkRm0Dtw86G/nG3Z0QdOYs0Rtjug0F7jimP8sOFtKoieveRERAhAVFhew+pj8/x9f7a48YG6M3xnQbD7z/AEu3L6U+iSQfr15jLC1byoMfPNgxgXUwS/TGmG6hrKaMeRvn0RBLryBZQ7SBpzY8RVlNWeLGRxlL9MaYbmHehnk46mTUh6MO8zfM9ymiw82cOZMTTzyRL33pS8yePZtIxJ+yDZbojTFZryHawPObnieSYZniiBPhuU3P0Rhr9CmyQ82cOZONGzfy0UcfUV9fz5w5c3zp1xK9MSbrvb3jbUT8OY0qIrxV/la7bdItU3zBBRcgIogIEydOpLy8PNNwAbvqxhjTDeyq20WTT2WKI7EIu+p2tdsm0zLFkUiEJ554Iqk/DsmwRG+MyXp1kTqiTtSXviJOhLpIXbttMi1T/O1vf5uzzjqrzWqXqbJEb4zJegXhAkKBUMZj9ADhQJiCcEHCdumWKf63f/s3Kisr+d3vfpdxrM2SmXjkEeBCYI+qfqmV9TOBH+HeR1ADfEtV13rrPvWWxYCoqk7wLXJjjEnSwIKB5ARz/En0wTADCwYmbJdOmeI5c+bw6quv8vrrrxMI+HcKNZkj+rm4E4s83sb6bcDXVPVzETkfeBiYFLd+iqr6N525Mcak6KySs3AnvsucqnJWyVkJ2zWXKe7du3fSZYpvvfVWBg8ezFe/+lUALrvsMu66666M4oXkZph6S0SGtLP+nbinK3AnATfGmKNGbjCXy0ZcxtOfPJ3RUX04EObyEZeTG8xN2DadMsXRqD/nEVry+/LKm4CX454rsFhE3heRdmt7isgtIrJKRFZVVlb6HJYxprubMXoGATk85YWjyqSNDhe853D5X9x/J210CEcP/wYQkADXjG53dlUgi8sUi8gU3ER/RtziM1R1h4gcAywRkY2q2uoFqKr6MO6wDxMmTPBxKhhjjIHSwlJmjJrBgk8WUB+t55jPlfNXOXz9Q7ckcSjm/kSD7o8Ar58ivPLlAHv6CHmhPGaMmkFpYWnC18rKMsUiMhaYA5yvqlXNy1V1h/fvHhF5AZgItH+ngTHGdJDbv3w7u+t20X/uK0xdGUUcCLeoipATc38Azntfmbo6xqunham6YQq3nXrbEY/ZDxknehE5HngeuE5V/xa3vAAIqGqN93gq8NNMX88YYzLxvT857PtACSUxHB52AAfO/0Dp28+BxOdgj0oJx+hFZD7wV+BEESkXkZtE5FYRudVrchfQD/hvEVkjIqu85ccCfxGRtcB7wIuq+koH/A7GGJOUyl/8gprXlxJqTO2kZ6gxSs3rS6m8//4OiqxjJXPVTbtnHlT1ZuCwqcpVdStwSvqhGWOMf5rKytj3xJNoY3oFybS+nn2PP0HvK68kpzTxOP3RxIqaGWO6hX1PPIE6mZUpVsfh8yef9Cmiw910002ccsopjB07liuuuILa2lpf+rVEb4zJek5DA/sXPgeZ1nePRNj/7EKcNL8VJPLAAw+wdu1aPvzwQ44//ngeeughX/q1RG+MyXq1b77lW5liRKh94812m6RbprhXr16Ae/dtfX29bzFbUTNjTNaL7qrA8Wm2JicSIbqrot02mZQpvvHGG3nppZcYM2YMv/jFL3yJ2RK9MSbrxerqMh+2aRaJuP21I5MyxY8++iixWIx/+qd/4umnn+bGG2/MOGRL9MaYrBcsKIBwGJp8mHwkHHb7SyDdMsUAwWCQq6++mnvvvdcSvTHGJCM0cBCBcBjHh0QfCIcJDRyUsF2qZYpVlS1btjB8+HBUlUWLFjFq1KiM4wVL9MaYbqDn2V/zrUwxqvQ8+2sJm6VaplhVmTVrFgcOHEBVOeWUU/jNb37jR8SW6I0x2S+Qm0vvKy7n8/kLMhurD4fp/c0rCOT6X6Y4EAiwfPny9GNrR3Yk+kgDbHoVqndAUy3k9ISi42DEeRDO6+zoTBcXjcT47KMqaj9vpKkhSk5eiJ59chl8cj9C4eQmlDCdr+9117H/6WdoeVwfC4So6vslGvP6EA3mEoo1ktvwOf32fUywxTyzEgjQ59prE77W+vXrufDCC5k+fXrCMsWO49DY2EgsFkNVERGCwSC5ubm+zTLVtRP9vm3w7m9htXenWqwJYhEIhiGY4y479XqYeAv0Hdp5cZouqbqyng+XlbFheQUIOFGHWFQJhoRAKAAKoycPYuyUUooG5Hd2uCaBnNJS+l53LfuemofW11Of14+y486mYtDpgOJICA0EESdGQKOAMKjiHUp3vEF+QxWSn0/fa2cmVf4gmTLF0WiUuro6Dh48CHDI0FLz9fM9evSgoKCAUCizVN01E70qvHa3m+SdGLScMSbW5P4AvPd7WPUITLoVvnE3+HXThMlaqspfX9jCh8vKUUdxYoceA8aiSizq1rH9+M0drHt7J2OnlPDV6cP8uynHdIgBP/gBTRW7WbMpl7Jjz0BF0ED4kDYaDBDDXbbjuDPZWXwGpbv/wrgRjQz4/vczjkFVqampabe8QXPSr6uro66ujp49e1JYWJj2/tX1Er0qPP8PsPFFiDYkbu9E3J/3HoYDO+Cy31uyN21SVZY8sp5tayuJRRLXRXFiCjHlozfKqf28kXNnj7Fkf5RbP2YW5QcrcDSJE6SBMAqUH/c1csYM4rgMX1tV2b9/Pw0NSeSuOHV1dcRiMXr37p3W/tX1SiC8dreb5CMHU9suctDd7rW7OyIqkyX++sIWtq2tJNqUWvGraJPDtrWVrPjjlg6KzPjB/Xz3EksiyceLaZBta/dm/PnW1NTQ0NCQ8hVAqkpDQwM1NTVpvW7XSvTNY/KpJvlmkYPu9vu2+RuXyQrumHx5ykm+WbTJYe3Scqor632OzPihsz/faDRKbW1t2pd5qiq1tbVpTSDetRL9u79zx+QzoY47jGNMCx8uK0OdzK61Vkf5cFmZTxEZP3X251uXoGxCvH/9139t82qdVPppllSiF5FHRGSPiHzcxnoRkV+JyGYR+VBETo1bN0tENnk/s1KOsFmkHlY/fviJ11TFmuCDx91LMo3xRJtibFhecdiJ11Q5MWXD8gqikQwPSIyvOvvzdRzni6trElm7di379+9vc/3BgwdT/laQ7BH9XGBaO+vPB0Z4P7cAvwEQkb7AT4BJuBOD/0RE+qQUYbNNi3HnZffJplf968t0eZ99XOXf7iXw2UdVPnVm/HCkP9+WZYrvuOMO5syZk7DrWCzGz372M/7lX/6l3XapDt8kddWNqr4lIkPaaXIJ8Li6f2ZWiEhvERkEnA0sUdV9ACKyBPcPxvyUogT3ZqiYDwWJwO2neoc/fZmsUPt5I040s9mHmjlRh9rPO2ZiCpOeI/35tixTvHDhQhYsWMC5557bavtf//rXjBw5kkcffZSpU6dy7LHHttm3quKkOFOWX5dXHgfED1yVe8vaWn4YEbkF99sAxx9//OENmmrdm6H8EIu4/RnjaWqIEov6UwslFlWaGlI/YWY6zpH+fFuWKR47diwlJSUsWbKkzW127drFn//8ZxYuXJgwhlSHbo6a6+hV9WHgYYAJEyYc/lvk9HTvePXjqD4YdvszxpOTFyIYEl+SQTAk5OQdNf+1DJ3z+caXKb7uuuuora1l+vTprbb99a9/zfbt2/n000+ZPHkyAPX19UyePLnV+jepXkvv1964A4i/L7jEW7YDd/gmfvkbab1C0XFuWQNfEn2O258xnp59cgmEAl/c8ZqJQChAzz6Ji16ZI6czPt/4MsV/+MMfqKmpafeIfuTIkYeUMR4xYkSbST7VGjh+XV65CLjeu/rmK0C1qlYArwJTRaSPdxJ2qrcsdSPOg8PKEWVgxHn+9WW6vMEn9/Nv91KvP3PU6IzPt7lM8ZVXXkmPHj18enFXqrVvkr28cj7wV+BEESkXkZtE5FYRudVr8hKwFdgM/B74NoB3EvZnwErv56fNJ2ZTFs6D8ddDi7oUKQvmuIXOrKqliRMKBxk9eRCBYGaXZgSCwujJg6yq5VGmMz7f5jLFN910E4FAIOVkv2nTplaX9+jRo2OGblT1mgTrFfhOG+seAR5JKaq2TPpHeP/RzK6ll4BbzdKYFsZOKWXd2zshg2utJSCMnZK4uqE58tr6fFWjOJGtqFML2gSSgwR6EgifgMihKTLZz7e1MsUFBQVp3ezUUkES0xi21LXOGPUd6lahfO/h9MoghHtYyWLTpqIB+YydUsJHb6R3m3woJ8DYKSVWsvgo1fLzdWL7iTWuJtb4Me5F9jHvJ+j9KMHckwnmjiMQ7J3S59tameJQKETPnj2pq6tLqwyCiKRdsrhrlUAAt9TwqP/lJu1UhHu4233j7o6IymSJr04fxtBTBhDKSe2/RignwNBTBvCVS4d1UGTGD1+dPowhY/sTa3ybpgOPEWtcC0SAJtwkj/dvExAh1rjGa/c2Q8b2z/jzLSwsJC8vL+WhFxEhLy+PwsLCtF636yV6EbfU8MRbIJSXeMw+mOO2m3iLlSg2CYkI584ew8lnlxAMBxKO6QaCQjDsHulZieKuIXrwZS/Bx4BE39wcIEascS3Rgy9n/NoiQu/evVMefikoKEi7RDF0taGbZiJw7r/Bl29wh3E+eNxd3uoMU7Ng0i3QZ0hnRWu6GBHh9MuGc9KZxyWcYWrMGcWMnVJCr/42XNMVvD1vLptXrcBJ8TJtJ9bE5lUr+Mv8xzhzxg0ZxSAi9OrVix49etgMU0npOxSm/Sec8xObM9b4rmhAPmdeOZKvTh9mc8Zmgf27d7H65T8RjaR3L060sZEPXlrEyedMo/exAzOOJxQKUVRURGFhoc0Zm5RwHoy5pLOjMFkqFA4y7NRjOjsMk6HVryzC0czq3TjqsPqVPzFl1j/4FBUEAgHy891vhDfccANvvvkmRUVFAMydO5dx48Zl/hoZ92CMMUe5SFMjHy1djJPGpB3xnGiUj5YuJtrkU4HFVtx3332sWbOGNWvW+JLkwRK9MaYb2LZ6lW8nykVg6+qV7bZpWab4zjvv5Je//KUvr58OS/TGmKxXs3cvsYg/1W9jkSg1e/e222b27Nk8/rh7kYjjOCxYsIBLL72UcePGtfqzfv36L7a98847GTt2LLfffjuNjf6Uu86OMXpjjGlHU8NBYhkO2zSLxaI0NbR/w2bLMsXjx49n8ODBhxQta81//ud/MnDgQJqamrjlllu45557uOuuuzKO2RK9MSbr5eT1IBgK+ZLsg8EQOXmJb9iML1M8e/ZsampqOPPMM1ttO2/ePMaMGcOgQYMAyM3N5cYbb+S//uu/Mo4XLNEbY7qBwv79CYbD/iT6cIjC/v0TtosvUzxv3jyCwWDCI/qKigoGDRqEqvLHP/6RL33pSxnHC5bojTHdwAnjT0urvkxrVN3+EmkuU9y7d2+CweTut5g5cyaVlZWoKuPGjeO3v/1tpuECluiNMd1AKCeHk78+lTWLX8roEstAKMTJX59KKCcnYdvmMsXPPvts0v0vXbo07djaY1fdGGO6hfHTLiYgh6e8gAQp6TGSkb0mMKb36YzsNYGSHiMJyOFH4QEJMH7aRQlfa/369QwfPpxzzjnnizLFncmO6I0x3ULvYwcy/vyLWPPqn4k0NlIQKmJErwmcUHgyAAGCBCSIozEcr5Ll1poP2XTgfeqi1YRyczl12kVJlT9orUxxZ0oq0YvINOCXuEWa56jqz1usfwCY4j3tARyjqr29dTHgI2/ddlW92Ie4jTEmZWfOuIGaqr3kfRJkWME4t65Mi8lFghIi6KXG4b3GM6xwHFvq1tBwYowzrpnVGWFnLGGiF5Eg8GvgXKAcWCkii1T1iyv8VfX2uPb/BIyP66JeVcf5FrExxmTgKwMuoq5iNwFNPHIdlBAIjOj1ZQoGHHsEousYyYzRTwQ2q+pWVW0CFgDtVRC7BpjvR3DGGOOn6lc+pWF9VVJJPl5AAzSsr6L6lU87JrAOlsxvexxQFve83Ft2GBEZDAwF4k8d54nIKhFZISKXtvUiInKL125VZWVlEmEZY0zyolX11C7fiUbSq2CpEYfa5TuJVtX7HFnH8/uqm6uBhaoai1s2WFUnADOAB0Wk1bm4VPVhVZ2gqhMGDBjgc1jGmO6u5p2d7kXwmVCl9p2d/gTUavfKnXfeyciRIxk9ejS/+tWvfOk3mZOxO4D4ac9LvGWtuRr4TvwCVd3h/btVRN7AHb/fknKkxhiTJo3EOLhyF8QyTPQxpW7lboqmDUXC/l+dPnfuXMrKyti4cSOBQIA9e/b40m8yka4ERojIUBHJwU3mi1o2EpFRQB/gr3HL+ohIrve4PzAZWN9yW2OM6Uj1Gz/3b75ogfqN+9ptkm6Z4t/85jfcddddX8wsdcwx/kx4kzDRq2oU+C7wKrABeEZV14nIT0Uk/lLJq4EFeuh9xqOBVSKyFlgG/Dz+ah1jjDkSYtWNaDSz2aWaadQhVt1++eB0yxRv2bKFp59+mgkTJnD++eezadMmX2JO6jp6VX0JeKnFsrtaPL+7le3eAU7OID5jjMmYNsYyH7ZpFlO3v3akW6a4sbGRvLw8Vq1axfPPP8/s2bN5++23Mw7Z7ow1xmQ9yQ1CUPxJ9kFx+0sgnTLFJSUlXHbZZYBb/fLGG2/MPF4s0RtjuoFgUS4SCqCx9o/EkyGhAMGi3ITt0ilTfOmll7Js2TKGDh3Km2++yciRIzOOFyzRG2O6gfxRffncpzLFqNtfIumUKb7jjjuYOXMmDzzwAD179mTOnDmZRgtYojfGdAMSDtDjtIHUrajIbPgmKBScdmxSl1amU6a4d+/evPjii+nH1wYrU2yM6RYKTy9u9RLLKDG2BfbwcXA7q4Pb+Di4nW2BPURpZZhHhJ6nFyd8LStTbIwxnSDUL5+ek4upe8ctg3BA6lkX3M4nwQoEiOHgoAQQggRQYFSsmDGxUnppPhIOUHB6MaF++Qlfq0uWKTbGmGxQNG0I0f0NvLXhXdbJdhTFkUOHchz0i3r064PlbAju4CQ9nrNGT6Jo2pBOiDpzNnRjjOlW3sxZz/pQOTFxDkvyLTmixMRhfaicN3O67r2eluiNMd3Ga6+9xsaNG4k6qc0bG3WibNy4kddee62DIutYluiNMd3Cvn37ePfdd4lEImltH4lEePfdd9m3r/06N0cjS/TGmG7h3XffxXEyq3ejqrz33ns+RXS4M88884v6N8XFxVx66aW+9GsnY40xWS8SibB69eqME30sFuODDz7gnHPOIRwO+xTd38XXtbn88su55JL2JvNLnh3RG2Oynl9VIJPtL90yxc0OHDjA0qVL7YjeGGOSVV1dTcyHOjfgHtVXV1e322b27Nlcdtll3HbbbV+UKV66dCnjxo1rtX1zUbNmf/zjHznnnHPo1auXLzFbojfGZL2mpiZfE31TU1O7bdItU9xs/vz53HzzzT5E60oq0YvINOCXQBCYo6o/b7H+BuA+/j7F4EOqOsdbNwv4F2/5v6vqYz7EbYwxScvJySEYDPqS7IPBIDk5OQnbpVOmGGDv3r289957vPDCCxnH2ixhoheRIPBr4FygHFgpIotamSnqaVX9bott+wI/ASYACrzvbfu5L9EbY0wSioqKfE30RUVFCdulU6YYYOHChVx44YXk5eVlHGuzZI7oJwKbVXUrgIgsAC4hublfzwOWqOo+b9slwDRgfnrhGmNM6vwuLJZMf+mUKQZYsGABd9xxRybhHSaZq26OA8rinpd7y1q6XEQ+FJGFIlKa4raIyC0iskpEVlVWViYRljHGJCccDjN+/PgvJt1OVzAY5NRTT03q0srmMsU33XRTSq/xxhtvMG3atHRDbJVfl1f+CRiiqmOBJUDK4/Cq+rCqTlDVCQMGDPApLGOMcU2aNKnVRC8So1//zyg+bgOlx39I8XEb6Nf/M0QOH+YRESZOnJjwtbpimeIdQGnc8xL+ftIVAFWtins6B7g3btuzW2z7RqpBGmNMpvr27cukSZN47733iEQi5OXVUFy8kWMHbgZAxCEQcHCcAKruH4Rdu4ZTsXMUDQ2FhMNhJk6cSN++iWeX6oplilcCI0RkKG7ivhqYEd9ARAapaoX39GJgg/f4VeD/E5E+3vOpwI8zjtoYY9LwjW98gwMHqqk7+CQDB65HRAkEDr1bNhh0AHdZcfHfGDRoE7t2jaGgx7V84xvf6ISoM5cw0atqVES+i5u0g8AjqrpORH4KrFLVRcD3RORiIArsA27wtt0nIj/D/WMB8NPmE7PGGNMZTjxxObt2f9Lq0ExLzX8Eios/YeCxy4HLOzi6jpHUdfSq+hLwUotld8U9/jFtHKmr6iPAIxnEaIwxvtiy5V4q9y5BpP0bnloSaaJy7xK2bLmP4cN/2EHRdRyrdWOM6Rbq67dTVv4YjlOf1vaOU09Z+Vzq67f7HFnHs0RvjOkWtpc9hmqmZYodysoe9ymiw73++uuceuqpjBs3jjPOOIPNmzf70q8lemNM1ovFGqioeAbV9CYdaaYaYWfFM8RijT5FdqhvfetbPPXUU6xZs4YZM2bw7//+7770a4neGJP1qqreAMTH/pa1uz7dMsUiwoEDBwC34mZxcXFGcTaz6pXGmKzX0FiB42R2NN/McSI0NFa02ybdMsVz5szhggsuID8/n169erFixQpfYrZEb4zJerFobcbDNs1UI8Site22SbdM8QMPPMBLL73EpEmTuO+++/j+97/PnDlzMo7ZEr0xJusFQz0RCaOa2mWVrREJEwz1TNgu1TLFAwYMYO3atUyaNAmAq666yreaN5bojTFZLy93EIFAmFgs80QfCITJyx2UsF2qZYqj0SjV1dX87W9/Y+TIkSxZsoTRo0dnHC9YojfGdAP9+k3BnRLDz/7al2qZ4lAoxO9//3suv/xyAoEAffr04ZFH/LnX1BK9MSbrBYO5DBp0JTt2PJXRWL1ImOJBVxIM5iZs21ym+Nlnn026/+nTpzN9+vS042uLXV5pjOkWji+dhUhmKU8kQGnp9QnbdcUyxcYY0+Xl5x9PacksysqfSKsMQiCQT2nJ9eTnH5+w7dFWptiO6I0xWUn18DH5YcN+yIAB5xII5KfUVyCQz4AB5zJs2D/7FV7aWvu9ErFEb4zJOnl5eVRVVR2WFEWEk8bcT2nJdQQCuYi0PyWgSJhAIJfSkus5acz9iPh3d206VJWqqqqUJw63oRtjTNYpKSmhvLyctuefvpj+/SZSV/cnDtYvBkA1ijulRggRNzX2yJ9KQcFFRCID2bhx4xGJPZG8vDxKSkpS2sYSvTEm64TDYYYOHZqg1WhgCrFYI1VVy2horCAWrSUY6kle7iD69ZuS1NU1XUFSiV5EpgG/xJ1hao6q/rzF+u8DN+P+OawEZqvqZ966GPCR13S7ql7sU+zGGJOxYDCXY47x5w7Uo1XCRC8iQeDXwLlAObBSRBap6vq4ZquBCap6UES+hTs5+FXeunpVHedv2MYYY5KVzMnYicBmVd2qbqGIBcAl8Q1UdZmqHvSergBSG0AyxhjTYZJJ9McBZXHPy71lbbkJeDnueZ6IrBKRFSJyaVsbicgtXrtVbZ9AMcYYkypfT8aKyLXABOBrcYsHq+oOETkBWCoiH6nqlpbbqurDwMMAEyZM8K8ohTHGdHPJHNHvAErjnpd4yw4hIt8A7gQuVtUv5tlS1R3ev1uBN4DxGcRrjDEmRckk+pXACBEZKiI5wNXAovgGIjIe+B1ukt8Tt7yPiOR6j/sDk4H4k7jGGGM6WMKhG1WNish3gVdxL698RFXXichPgVWqugi4D+gJPOvdOdZ8GeVo4Hci4uD+Ufl5i6t1jDHGdDBJp25CR5swYYKuWrWqs8MwxpguQ0TeV9UJra2zWjfGGJPlLNEbY0yWs0RvjDFZzhK9McZkOUv0xhiT5SzRG2NMlrNEb4wxWc4SvTHGZDlL9MYYk+WyYirBhkiMZRv3sLO6gbrGKAW5IYqL8pgy6hjywsHODs90cU5jI7VvvEl0VwWxujqCBQWEBg6i59lfI5CbHVPNmc6jEYf6jfuIVTeijTEkN0iwKJf8UX2RsD/H4l060W+vOsij72zjmZVliAhN0RiRmBIOCjmhIKrKVaeVcsPpQzm+X4/ODtd0MU1lZex7/Amqn3sORHAiEYhEIBwmEA6DKr2/eQV9rr2WnNLSxB0aEydaVU/NOzs5uHIXiKBRB2IKQUFCAT5XpeC0gfQ8vZhQv/yMXqtL1rpRVe55ZSOPLv8UR5VIrO3fIRwUAiLcOHkIP5o2Cq/omjFtUlUqf/EL9j3xJOo4bnJvSziMBAL0ve5aBvzgB7Z/mYRUlepXPqV2+U5QdZN7W4ICIvScXEzRtCHt7l/t1brpckf0qsptT69h8brdNEadhO3dPwLKY+98RkV1Aw9eNc7+M5o2qSo7//mH1Lz+OtrYmHiDSAQF9j01j8iu3RTfd6/tX6ZNqsq+pz+hYV0VJJG/8PJX3Ts7iVU30veqE9Pav7rcydh7XtnI4nW7qY/EUtquPhJj8brd3PvKxg6KzGSDyl/8wk3y9fUpbaf19dS8/jqV99/fQZGZbFD9yqc0rKtCI0kk+TgacWhYV0X1K5+m9bpdKtFvrzrIo8s/TTnJN6uPxHhk+adsrzqYuLHpdprKytzhmhSTfDOtr2ff40/QVFaWuLHpdqJV9dQu35lykm+mEYfa5TuJVqW+f3apRP/oO9twMjyn4Kgy951tPkVkssm+J55wx+QzoI7D508+6VNEJpvUvOONyWdCldp3dqa8WVKJXkSmicgnIrJZRO5oZX2uiDztrX9XRIbErfuxt/wTETkv5Qg9DZEYT68sa/fEazIiMeXplWU0pPmtwGQnp6GB/Qufa//EazIiEfY/uxAnmfF9021oJOZeXZNh/iKm1K3cnfK3goSJXkSCwK+B84ExwDUiMqZFs5uAz1V1OPAAcI+37RjcOWZPAqYB/+31l7JlG/cQ8Okkl4iwbOOexA1Nt1H75lv+nUQVofaNN/3py2SF+o2fg2/7F9Rv3JfSJskc0U8ENqvqVlVtAhYAl7RocwnwmPd4IXCOuP9rLgEWqGqjqm4DNnv9pWxndQNNUX+OwpuiDjurG3zpy2SH6K4K9zp5HziRCNFdFb70ZbJDrLrRvU7eBxp1iFWn9o0xmUR/HBB/dqncW9ZqG1WNAtVAvyS3BUBEbhGRVSKyqrKy8rD1dY3RjIdtmkViDnWNUV/6MtkhVleX+bBNs0jE7c8YjzbGMh+2aRZTt78UHDUnY1X1YVWdoKoTBgwYcNj6gtwQ4aA/X33CwQAFuV3uFgLTgYIFBRAO+9NZOOz2Z4xHcoPuzU9+CIrbXwqSSfQ7gPj7u0u8Za22EZEQUARUJbltUoqL8sgJ+VO3JicUoLgoz5e+THYIDRzkljXwQSAcJjRwkC99mewQLMpFQv4cV0soQLAotRpLybzySmCEiAwVkRzck6uLWrRZBMzyHl8BLFW3tsIi4GrvqpyhwAjgvZQi9EwZdUzGl1Y2U1WmjDrGl75Mduh59tfwrRyIKj3P/po/fZmskD+qb+aXVjZTr78UJEz03pj7d4FXgQ3AM6q6TkR+KiIXe83+APQTkc3A94E7vG3XAc8A64FXgO+oalpnVPPCQa46rTTj4ZtwULjqtFKramkOEcjNpfcVl2c+fBMO0/ubV1hVS3MICQfocdrAzIdvgkLBacemXNUyqdaq+pKqjlTVYar6H96yu1R1kfe4QVW/qarDVXWiqm6N2/Y/vO1OVNWXU4quhRtPH5rxJZYBEW44fWhGfZjs1Pe665BAZl+vJRCgz7XX+hSRySaFpxdnfomlCD1PL055s6PmZGwyju/XgxsnDyE/zaPx/HCQ2ZOHWMli06qc0lL6Xnctkp9eSVjJz6fv9ddZyWLTqlC/fHpOLk67xryEA/ScnF7J4i6V6AF+NG0UU086NuVknx8OMvWkY/nhtFEdFJnJBgN+8AMKzzkn5WQv+fkUnnMOA77//Q6KzGSDomlDyDupX8rJXsIB8k7qR9G0IWm9bpdL9CLCg1eNY9bpg8kNBRKO2YeDQm4owA2nD7YSxSYhEaH4vnvpO3MGkpsLoQSX4YbDSG4ufa+daSWKTUIiQt+rTqTg9GIIBRKP2QcFQgEKTi9Ou0QxdNGJR5ptrzrI3He28fQXM0w5RGIO4WCAnFAAVeXqicdzw+lDKO1rwzUmNU1lZXz+5JPsf3ZhOzNMfZM+111LTklJZ4druphoVT217+ykbuVuEA6bYQqFgoneDFN9E18O3t7EI0dloheRSuCzVLYI5PcskkA4B6EQpUadSJNTX1vt3zVNGesP7O3sIFphcSUgIEWBYFFYJEeEQlVqIqpN1U6sWsH2r/ZZXAkIIr3zC4vCgXCOiBSqak3EiTTtr6+p1tTy12BVPfxuU47SRJ8JEVnV1l+1zmRxpcbiSo3FlZruFleXG6M3xhiTGkv0xhiT5bIx0T/c2QG0weJKjcWVGosrNd0qrqwbozfGGHOobDyiN8YYE8cSvTHGZLmjOtGLyCMiskdEPo5b1ldElojIJu/fPm1sO8trs0lEZsUt/7KIfORNWP4rSeNWs3TjEpFxIvJXEVknIh+KyFVx6+aKyDYRWeP9jDtScXntYnGvvShu+VBvwvfN3gTwOUcqLhGZEhfTGhFpEJFLvXUd9X590/t8HBFp8zI3EZnmTXi/WUTuiFveUe9XwrhEpFRElonIeq/t/45bd7eI7Ih7vy44UnF57T71/t+tEZFVccuT2j87Ii4RObHF/nVARG7z1nXU+3WfiGz0/v+/ICK929jW3/1LVY/aH+As4FTg47hl9wJ3eI/vAO5pZbu+wFbv3z7e4z7euveArwACvAycfwTjGgmM8B4XAxVAb+/5XOCKzni/vHW1bSx/Brjae/xb4FtHMq4Wn+k+oEcHv1+jgROBN4AJbWwXBLYAJwA5wFpgTAe/X8nENQg41XtcCPwtLq67gf/TGe+X1+5ToH8ry1PaD/yOq8Vnugv3pqOOfL+mAiHv8T2t/b4dsX8d1Uf0qvoW7n/uePETkT8GXNrKpucBS1R1n6p+DiwBponIIKCXqq5Q9516vI3tOyQuVf2bqm7yHu8E9gCt3smWjgzer1aJiABfx53wPeXtfY7rCuBlVT2Y6uunEpeqblDVTxJsOhHYrKpbVbUJWABc0pHvVzJxqWqFqn7gPa7BnT+i1Tma05HB+9WetPdPn+M6B9iiqinckZ9WXIvVneMDYAXurHst+b5/HdWJvg3HqmqF93gXcGwrbdqalPw473HL5Ucqri+IyETcv9Zb4hb/h/eV7gER8WvmimTjyhN3cvYVzcMjuBO874/bMTvt/cKd2Wx+i2Ud8X4lo639qyPfr5SIyBBgPPBu3OLveu/XI+kMkWRIgcUi8r6I3BK3PNX9oKO0tn919Ps1G3dUoSXf96+umOi/4B2VH3XXhyaKy/tm8QRwo6o63uIfA6OA03CHKX50hOMarO6t1zOAB0VkmN+vn2Zcze/XybiznDXr8PerqxKRnsBzwG2qesBb/BtgGDAOd8jwF0c4rDNU9VTgfOA7InJWywad9f/ZG+e+GHg2bnGHvl8icicQBZ7ys9+2dMVEv9v7j9+cAPa00qatScl3cOhXpbQnK08zLkSkF/AicKeqrmhe7n3tVlVtBB7F/fp2xOJS1R3ev1txxzXH407w3lvcCd+hE94vz5XAC6oaiYu3o96vZLS1f3Xk+5UUEQnjJvmnVPX55uWqultVY96Bxe85su9X/P61B3gh7vVT2Q86yvnAB6q6u3lBR75fInIDcCEw0/vj1pLv+1dXTPTxE5HPAv6nlTavAlNFpI/3lWsq8Kr3FfGAiHzFG++6vo3tOyQu78jhBeBxVV3YYl3zzi64424ft9y+A+Pq0zz0ISL9gcnAem8nXIY7Pt7m9h0VV5xraPG1ugPfr2SsBEZ4V0Dk4H7tX9TB71dC3nvxB2CDqt7fYt2guKfTOYLvl4gUiEhh82Pc/4/Nr5/KftBR2ty/PL69XyIyDfghcHE755v8379SPZN8JH9w3/wKIII7HnUT7jjV68Am4DWgr9d2AjAnbtvZwGbv58a45RNwP7QtwEN4dwcfibiAa71t1sT9jPPWLQU+8mJ7Euh5BOM63Xvttd6/N8X1eQLulUqbcb/a5h7hz3EI7lFLoEWfHfV+TfceNwK7cQ8QwL1K6qW4bS/AvaplC+63s45+vxLGBZyBO/TxYdz+dYG37gnv/foQN7kOOoJxneDtW2uBdS3er1b3gyP4ORbgHikXteizo96vzbjj782fz2+PxP5lJRCMMSbLdcWhG2OMMSmwRG+MMVnOEr0xxmQ5S/TGGJPlLNEbY0yWs0RvjDFZzhK9McZkuf8fOQS4g6huaXkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 1)\n", - "for i in range(X.shape[0]):\n", - " ax.plot([X[i, 0]], [X[i, 1]], 'o', ms=19, label=\"y=%d\" % y[i])\n", - "ax.legend()\n", - "ax.set_title(\"Simple grid\");" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DecisionTreeClassifier(max_depth=5)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn.tree import DecisionTreeClassifier\n", - "clr = DecisionTreeClassifier(max_depth=5)\n", - "clr.fit(X, y)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The contains the following list of leaves." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[2, 4, 5, 8, 10, 11, 13, 15, 16]" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mltree import tree_leave_index\n", - "tree_leave_index(clr)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's compute the neighbors for each leave." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{(2, 8): [(0, (10.0, 0.0), (11.0, 0.0))],\n", - " (2, 4): [(1, (10.0, 0.0), (10.0, 1.0))],\n", - " (4, 10): [(0, (10.0, 1.0), (11.0, 1.0))],\n", - " (4, 5): [(1, (10.0, 1.0), (10.0, 2.0))],\n", - " (5, 11): [(0, (10.0, 2.0), (11.0, 2.0))],\n", - " (8, 13): [(0, (11.0, 0.0), (12.0, 0.0))],\n", - " (8, 10): [(1, (11.0, 0.0), (11.0, 1.0))],\n", - " (10, 15): [(0, (11.0, 1.0), (12.0, 1.0))],\n", - " (10, 11): [(1, (11.0, 1.0), (11.0, 2.0))],\n", - " (11, 16): [(0, (11.0, 2.0), (12.0, 2.0))],\n", - " (13, 15): [(1, (12.0, 0.0), (12.0, 1.0))],\n", - " (15, 16): [(1, (12.0, 1.0), (12.0, 2.0))]}" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from mlinsights.mltree import tree_leave_neighbors\n", - "neighbors = tree_leave_neighbors(clr)\n", - "neighbors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And let's explain the results by drawing the segments ``[x1, x2]``." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAEICAYAAABoPqTZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABoqklEQVR4nO3deXxU1fn48c+TjUUCsm8JoIKyGxYBN74gKEsBN1QWLYsUa6sUtVpbWmtt665Ffri1iCCKuwgqooJSrIiAEhc2AUHDvhp2Mpl5fn/cmzAkmcwkM5nMJM/79bqvzNxz7p1nhsM8c+4991xRVYwxxhhjjDHGBJZQ3gEYY4wxxhhjTKyzjpMxxhhjjDHGBGEdJ2OMMcYYY4wJwjpOxhhjjDHGGBOEdZyMMcYYY4wxJgjrOBljjDHGGGNMENZxMjFHRO4VkRfLO45oEpEtItI3QNkMEflHtGMyxhhjjDEnWcfJlAsRGSEiK0XksIjsEJH3ReSi8o7LGGOMKQ8icpGILBWRbBHZLyKfich55R1XqOwgn6kMrONkok5EbgcmA/cDDYFmwFPA5eUYljHGGFMuRKQm8C7w/4A6QFPgb8CJ8ozLGHMq6ziZqBKRWsB9wG9V9S1VPaKqHlV9R1XvDLDN6yKy0z0Kt0RE2vmVDRSRNSJySES2icjv3fX1RORdEfnZPXL3qYgkuGVNRORNEdkjIptFZILf/rq5Z8IOisguEXk8QEy13f3vEZED7uM0v/LFIvJ394jhIRH5UETq+ZXfICI/isg+EZlUws9wkIhkuu9tqYh09Cu7W0Q2ua+5RkSudNdXceu396tbX0SOiUiDEPb7B/fzPSQi60WkT0liNsYYU6yzAVT1ZVX1quoxVf1QVb8BEJGxIrLWzTcfiEjzvA1F5DL3ezlbRJ4Skf+KyDi3bLSbh/7lfrf/ICIXuOuzRGS3iIzy21cVEXlURH5yc+AzIlLNLeslIltF5A53ux0iMsYtGw+MBO5yR5K846633GEqFOs4mWg7H6gKzCnBNu8DrYAGwFfAS35lzwE3qWoq0B742F1/B7AVqI9zVutPgLqdp3eAr3GO6PUBJopIP3e7J4AnVLUmcBbwWoCYEoDngeY4Z8yOAVML1BkBjHHjTgHyOnVtgaeBG4AmQF0gjRCISCdgOnCTu92zwDwRqeJW2QRcDNTCOVr5oog0VtUTwFvAcL/dXQv8V1V3F7dfETkHuAU4z/2c+wFbQonXGGNMSL4HvCIyU0QGiEjtvAIRuRwnh12Fk9M+BV52y+oBbwB/xPnuXg9cUGDf3YFv3PLZwCvAeUBL4HpgqojUcOs+iNOJy3DLmwL3+O2rEU5+aQrcCDwpIrVV9d84uflhVa2hqoMtd5iKyDpOJtrqAntVNTfUDVR1uqoecn/83wucK86ZKwAP0FZEaqrqAVX9ym99Y6C5e0brU1VVnGRRX1XvU9UcVf0B+A8wzG+7liJST1UPq+qyADHtU9U3VfWoqh4C/gn8X4Fqz6vq96p6DKcDluGuHwq8q6pL3Pf0F8AX4scxHnhWVb9wj0rOxBnK0cON63VV3a6qPlV9FdgAdHO3ne33PsHp2M0OYb9eoArO55ysqltUdVOI8RpjjAlCVQ8CFwGKk5P2iMg8EWkI/Bp4QFXXurnzfiDDPes0EFjtjuDIBaYAOwvsfrOqPq+qXuBVIB24T1VPqOqHQA5O3hOcXHCbqu53c9v9nJo3PO62HlWdDxwGzgnwtix3mArHOk4m2vYB9UQkKZTKIpIoIg+6w88OcvJoVd6wt6txEseP7vCE8931jwAbgQ/doQl3u+ubA03cIQs/i8jPOEfyGrrlN+IcbVsnIitEZFCAuKqLyLPucLuDwBLgdBFJ9Kvmn7yOAnlH9JoAWXkFqnrE/VxC0Ry4o0D86e4+EZFf+g23+xnnLFzeZ/UJUF1EuotIC5yO3Jxg+1XVjcBEnE7rbhF5RUSahBivMcaYELgdo9Gqmobz3d0E53rg5sATft/N+wHBOetTMJ8ozmgLf7v8Hh9z6xVcVwPnbFZ14Eu/11rgrs+zr8CBT//cVvD9WO4wFY51nEy0fY5zJuOKEOuPwJk0oi/O8IAW7noBUNUVqno5znC4t3GH1rlnqO5Q1TOBIcDt7tjqLJyjb6f7LamqOtDdboOqDnf39xDwhoicVkRcd+AcZevuDuvr6R9XEDtwOiXOBiLVcc7EhSIL+GeB+Kur6svu0cf/4AyNqKuqpwPf+X1WXvfzGe4u77pHFIvdr7vtbFW9CCeBq/vZGGOMKQOqug6YgdOBysIZku7//VxNVZfi5BP/62uFEId+F2EvTieqnd/r1FLVIjtGRYVdxPuw3GEqFOs4mahS1Wyc8dJPisgV7pmbZHdM98NFbJKK09Hah3Mk7P68AhFJEZGRIlJLVT3AQdwhb+JMdJA39CAbZ8iAD1gOHHIvWK3mntFqL+6UryJyvYjUV1Uf8LP7UkUNo0vFSTA/i0gd4K8l+BjeAAaJM/VsCs5kGaH+X/wP8Gv3rJGIyGki8gsRSQVOw0lMe9z3MgYn6fqbDVyHcxHv7FD2KyLniMgl7nVUx933HerQQmOMMUGISGtxJl1Ic5+n4xzgWgY8A/xR3ImRRKSWiFzjbvoe0MHNp0nAb3GuQyoxN+/9B/iXnJw0qKmcvAY4mF3AmX7vyXKHqXCs42SiTlUfA24H/ozzIz8L5yzJ20VUfwH4EdgGrMFJIv5uALa4w+V+jdMhAGcyiYU4468/B55S1U/csy6DcIapbcY5wjYN52wWQH9gtYgcxpkoYph7jVJBk4Fq7vbLcIYzhPr+V+Mkt9k4RwsPUHhoRaBtVwK/wpmI4gDOcMTRbtka4DH3/e4COgCfFdj+C+AIzvCO90PZL84Y9Qfd97oT52zcH0N9v8YYY4I6hDOJwxcicgQnr3wH3KGqc3DO1Lzi5rrvgAEAqroXuAZ4GOcAY1tgJaWfxvwPON//y9zXWkjga5gKeg7neqafReRtLHeYCkic4bDGGGOMMSaeiTNz7FZgpKp+Ut7xGFPR2BknY4wxxpg4JSL9ROR0d0jcn3Cuay1yRlhjTHis42SMMcYYE7/Ox7mH315gMHBFgCHmxpgw2VA9Y4wxxhhjjAnCzjgZY4wxxhhjTBAh3YQ02urVq6ctWrQo0TaKcijnEB6fB5/6SJAEkhOSSU1JRUK6tY4x4VFVThw9gi83F/X5kIQEEpKSqFL9NJxZ0Y2JBiU39xA+Xw6qPkQSSEhIISkpldBuM3bSl19+uVdV6wevWflYnjLxyPKUiQ3xm6disuPUokULVq5cGVLdrENZvLT2JeZsmEMdqUOON4dcXy5JCUmkJKagqlzd6mqGtxlOemp68B2GYeTIkaxcuZLk5GS6devGs88+S3Jycpm+pil/P+/ayar35/HtJx8hAl6PB29uLolJSSQmJ6MKHS65jE79B3N6w1LdXqNERo8ezX//+19q1XJmWJ8xYwYZGRll/rqmfB079hM/Zc1kx47Xgar4fImoehBJJiEhGfDQpPG1pKf/kmrVmoW0TxH5sTSxuDebfgRnVMNhYLSqbizNvmJVvOYpUznFWp4ylVMs5anSislrnLp27arBEpKq8q8v/8XsdbPxqQ+PzxOwbnJCMgmSwIjWI7ity21ldlRl/vz5DBgwAIARI0bQs2dPbr755jJ5LVP+VJVPZ8/gq/ffQdWHLzc3YN2EpCQSJIFOAwZz8YjRZXpkb/To0QwaNIihQ4eW2WuY2KGqbNr0MFlbZ6Lqw7kXdNFEkhFJID1tFGeddVfQdigiX6pq15LGJCLfA5er6loR+Q3QTVVHl3Q/sSxe85SpXGI1T5nKJRbzVGnF5TVOqsrdn97NK+tf4YT3RLHJCMDj83DCe4JX1r/C3Z/eTbDO4j333MPkyZPzn0+aNIknnngiaFwDBw5ERBARunXrxtatId3T1MQhVWX+1EfJ/OBdvJ6cYpMRgC83l1xPDpkfvMv8qY8GbYNQ+nZoKg9VZfWa28naOguf70Sxycip78HnO0HW1lmsXnN7KO2wiYhMzHsiIv8Ukd+FEhpQ031cC9gewjYVSlnnKeNo0aIFHTp0ICMjg65dS/fbaerUqbRs2RIRYe/evfnr161bx/nnn0+VKlV49NFHIxVy1EQjTxkYO3YsDRo0oH379vnrXn/9ddq1a0dCQkLIZ6aLUlwb/Pnnnxk6dCitW7emTZs2fP7556V+nbIUhTwVVXHZcfrXl//i458+5lhuyWbbPJZ7jI+zPmbyV5OLrTd27FheeOEFAHw+H6+88gpXXHEFGRkZRS5r1qw5ZXuPx8OsWbPo379/ieIz8ePT2TPYuGIZnhMluzm758QJNq5Yxv9enhm0bjjtcNKkSXTs2JHbbruNEyWM0cSPTZseZs+ej/D5SvZd6PMdY8+ej9i06ZFgVfcCv4T8G2sOA94WkcwAS1t3u3HAfBHZCtwAPFiiACuAss5T5qRPPvmEzMzMgD9QDxw4UOz2F154IQsXLqR58+anrK9Tpw5Tpkzh97//fcRijaZo5CnjjPJYsGDBKevat2/PW2+9Rc+ePYvdNljbLK4N/u53v6N///6sW7eOr7/+mjZt2pQ8+CiIQp6Kqpi8xqk4WYeymL1uNie8pfsxeDz3OC+tfYmhZw8NOJa8RYsW1K1bl1WrVrFr1y46depE8+bNyczMDOk1fvOb39CzZ08uvvjiUsVoYpszVvwdcj05pdo+98QJvpo/jw59+hc7lry07fCBBx6gUaNG5OTkMH78eB566CHuueeeUsVqYtexYz+RtXUmPl/pvgt9vmNkbZ1B06bDihtLngMcEJFOQENglar+CGQE2f1twEBV/UJE7gQex+lMVQrRyFMmdF27dqVHjx7ceOON9O7du9DQn06dOhW5XYMGDWjQoAHvvfdeNMKMqGjlKQM9e/Zky5Ytp6wLtRPzyCOPsHDhQm688UaGDx9OzZo1TykP1Aazs7NZsmQJM2bMACAlJYWUlJRSv4eyEqU8FVVxd8Zp9lpnrHg4fOrj5bUvF1tn3LhxzJgxg+eff56xY8dy6NChkI70/+1vf2PPnj08/vjjYcVoYteqBfMi0gZXLXgnaL3StMPGjRsjIlSpUoUxY8awfPnysGI1semnLGeseDhUfWRlvRCs2jRgNDAGmC4iqcWdcRKR+sC5qvqFu/2rwAVhBRpnopWnDIgIl112GV26dOHf//53kXW+//57hg8fztSpU2nbti33338/27dX7NGj0cxTpvTuv/9+Zs2axQ8//EDnzp0ZM2YM//vf/4Jut3nzZurXr8+YMWPo1KkT48aN48iRI1GIuGSimKeiJmjHSUTSReQTEVkjIquLGt8ujikislFEvhGRzn5lo0Rkg7uMCifY47nHeWvDW0HHigfj8Xl4c8ObxR4NvPLKK1mwYAErVqygX79+pKamkpmZWeTStq0zOmXatGl88MEHvPzyyyQkxF2f1ITAk3OCbz/+MOhY8WB8ubl8+/GH5OYUfzSwNO1wx44dgDOu+O233z5l3LWpGLze4+zY8VrQseLBqHrYvuM1vMWfGZkD9AfOAz5Q1UOqmhFgWQMcAGqJyNnu9pcCa8MKNIjKmqcM/O9//+Orr77i/fff58knn2TJkiWF6iQmJjJo0CDeeustlixZwg8//ECzZs0q7EGlaOcpE55zzjmHhx56iPXr19OnTx9+8YtfMGHChGK3yc3N5auvvuLmm29m1apVnHbaaTz4YGyNiI5ynoqaUH7d5wJ3qGpboAfwW79x7HkGAK3cZTzwNICI1AH+CnQHugF/FZHapQ32022fRmyWFxFhydbCX7B5UlJS6N27N9deey2JiYkh7fPXv/41u3bt4vzzzycjI4P77rsvIrGa2LF51coItkH4YdWKYuuUph2OHDmSDh060KFDB/bu3cuf//znSIRrYsi+fYsp6b0uit/fJwHLVDUH+AR4TVW9wfalqrnAr4A3ReRrnGuc7oxQqIFUyjxloGnTpoAzpOnKK6/kv//9b/5Z+GeeeSa/XnZ2Ns8++yxDhgxhw4YNTJ8+nY4dO5ZX2GUq2nnKhG7MmDFkZGQwcODA/HWqyscff8yoUaO47777mDBhAnfccUex+0lLSyMtLY3u3bsDMHToUL766qsyjb2kopmnoinoNU6qugPY4T4+JCJrgaaA/4wIlwMvqDP1xTIROV1EGgO9gI9UdT+AiHyEc+SyVOMPdh7ZSY43Mkc+PF4PO4/sDFju8/lYtmwZr7/+esj7zA3z6I6JfYf27sXrCe/oSR6vJ5dDfjM4FaU07fDjjz8ONzQT446f2IEvzDMaeXw+D8dP7AhY7k4K0QO4JtR9quocnDNVURGPeeqHB6YXWler2wfU7fMqvhNV2fL4UySIMCE1jYbVnfLRo51l714o6m4DN98M110HWVlwww2Fy++4AwYPhvXr4aabCpf/+c/Qty9kZsLEiYXL778fLrgAli6FP/2pcPnkyZCRAQsXwj/+Ubj82WfhnHPgnXfgsccKl8+aBenp8Oqr8PTThcvfeAPq1YMZM5zF6z2Cqo+kpFS83iN4PB9y7733ULfuX3jtNXjlFWdZu/Z6Dh78nN/97hpeeOEF5s5txfTpMN3vn6BatZOP//53WLTo5PMtWyA1FfKuz//jH6HgBGZpafDii87jiROdz9Df2WdD3kjC8ePh++9PLc/IcD4/gOuvh4KT8p5/PjzwgPP46qth375Ty/v0gb/8xXk85rct2ZX111NmI2vbeDm9Wjv/JZ/65AECOTf9Uy5sOZ+c3CpM+/ReRIQZXzYita5Tbm3w1DaY5/hx2LwZjh6F6tXhqafgtdec93HTTU77AVi8+HkAHn0UevWCXbte4scf7+O009rTvPmNrF07k8TExKBt8IknGnHgQDrduq2nevVz2LJlEdWrnzxWVN5tcMAA+Pnnczl2bBqKM1SvR49PuPbaaQDcfvtL+ds9/vhIggmWp6KpRJNDiEgLoBPwRYGipkCW3/Ot7rpA64va93ico4A0a1b0BWBHPEfI9UWmc+LxeTjiKXo86Jo1axg0aBBXXnklrVq1isjrmYoh5/hRvBHqIHu9ueQcPxqw3NqhCcSbezjs4Q95VD14cw8HKq4KbATmqOqGiLxgGYuHPPXDA9M5/tM5VG22vth6qorXF971ARVZTs4uVq++EgDVXO68cwT9+/fnqadOrVe//rW0bj2DBx8s+ifP1q1T2Lr1YXJzd9KxY0caNx5Iauo0cnJ28uWXXfF6D5KQkEBa2mT3WtKaRe4nVvi83qBTOG//+QwAmpy+udh6qor6gp5ortTWrBlOdvZiPJ69tGqVxn33/Y3MzDp8/vmteDx7+PbbX1CjRgYdO35QaNuqVZuTkfE/UlLqU60aFBxYUlwbbNXq/7F27UhUc6ha9UzOO+/56LzhEKl6UYpvh5s2tuX2218K2nkKkqeiKuQb4IpIDeC/wD9V9a0CZe8CD6rq/9zni4A/4BzJq6qq/3DX/wU4pqrF3hAh0I0FZ62Zxb++/FfYY8cBUhJSmNhlIje0LeKQiDEBfPneXD6d/XxEOk+JSclcPGI0XX5xeQQiM5XJT1nPs3Hjwzij6MIjkkLLlnfRLH1MEWXRvbFguOIlT+WdbTrzj2OLfT+Wp0xphJKn8s46/ab3H4vdl+UpU1qh5Km8M0/BOk6xlKdCmsFARJKBN4GXCiYj1zbAf87UNHddoPWl0ui0RqQkRma6xeTEZBqdZlNsmpJJrVePxOTkiOwrMTmJ1Hr1IrIvU7lUrdKYhITItMOEhGSqVmkckX2VJ8tTxjgsT5lYUFHzVCiz6gnwHLBWVQPNsT0P+KU7a1EPINsdc/4BcJmI1HYvtr3MXVcqPdN6RuwOwqpKz7TANyarUaNGyPsaPXo0Z5xxRv4FqaHe78nEnzM7nRfBNujsL5CStMGpUyvmne9N0erW7Q1BhkCUfH9FE5GQx0eIyC3urHUqIvUKlPVypyxfLSL/DSPcol43rvJUzYz/UjMj+EcQLE8ZU5RQ8lTbxstp2zj4rILB8pQxgYSSp3r0+IQePUKb9KG4PBVNoVzjdCHOrEjfikimu+5PQDMAVX0GmA8MxBkLfxTnfh+o6n4R+TuQNyXLfXkX4JZGlcQqXNXqKl5d/2pYw/WSE5K5utXVVEmsUup9FPTII48wtKgrJU2FkpSSQodLLiPzw/lhTfWakJREh0suIylCN6y78MILGTRoEL169Tplfd5dx99+++2IvI6JDYmJVWjc+Fq2bXsprGudRJJp0vhaEiP3XfgZ8C6w+NTXkdOBp4D+qvqTiDSI1Au64ipP1RswM+h+yiJPmcohlDyVN1FEcSKdp0zlEkqeypssojhlkKfCEsqsev8jyHyC7ixFvw1QNh0oPH1QKY1oM4LXvw99hrGiJEgCw9sMj1BEprLp1H8I33y0gHAu2U6QBDr1Hxy5mDp1KnJ9oLuOm/jXLH0U27e/TDgnQEUSSE//ZcRiUtVVzn4LpYwRwFuq+pNbb3fEXhTLU8YUFIt5ylQ+sZinwhV3d2lNT01nROsRVEuqFrxyEaomVWVkm5Gkp6YHrwwcOnQofwhewcWZ2cQxadIkOnbsyG233caJE7Fxky5TNk5v2IhOAwaTXKV0Rz+SqlSh88AhnN4wtGsXQm2DpnKpVq0Z6WmjSEgo3XdhQkI10tNGU61a0bPDFSQiqe5Qu6KWgvdMKuhsoLaILBaRL0UkdrJgGQiWp354YHqR05HnKWmeMqagYHnqqU8eKHZa8pLmKWOKEixP3X77S6dMTV5QSfNUNJRoOvJYcVuX29h1dBefZH3CsdxjIW9XNakql6RfwsTOE0PeJjU1Neg1Sw888ACNGjUiJyeH8ePH89BDD3HPPfeE/Bom/lw8YjSH9u9l04pleErQUU6qUoWW5/XgouGjQt4mlDZoKqezzrqL4yd2smfPR/h8oX8XJiRUo379SznrrNDvS6uqh4CMkkcJOLmmC9AHqAZ8LiLLVPX74jeLX9HMU8YUJZp5yphAopmnoiHuzjiBMwzkwYsfZNg5w6iSWIWkhOL7f8kJyVRJrMKI1iN48OIHS3RH7VCO9jdu3BgRoUqVKowZM4bly4NfcGnim4gw8Jbfk9FvEEnJKSQkFd8GE5KSSEpOoXP/wQy85fcRb4OmchIR2rV9nPS0G0hIqIIzsVxx9ZNJSKhCetovadf28RK1wzDPOG0FPlDVI6q6F1gCnBvyi8ehaOYpY4oSzTxlTCDRzFPREJdnnMD5h7i96+1cc841vLz2Zd7c8CYigsfrwePzkJyQTHJiMqrK0LOHMrz1cNJS00r8OqEc7d+xYweNGzdGVXn77bdp3759Kd+ViSciQs+RY+jYdwCrFrzDtx9/iAh4Pbl4vbkkJiaRmJyEKnTocxmd+w+mVoOSD3uwM06mOCJCy5Z/oGnT4WRlvcD2Ha8Bzp3WVT1uEnISVZMm15Ge9kuqVSv5ELAwzzjNBaaKSBKQAnQH/lXKfcWNQHkqQQRVJSUhJSJ5yphAAuUpcdtgYlJyRPKUMcUJlKeEBBRFJCUieSoaQr4BbjQFurFgcU54T7Bk6xJ2HtnJEc8RTks+jUanNaJnWs9SzUpUo0YNDh8ObRbeSy65hD179qCqZGRk8Mwzz5RoKmlTMeTm5PDDqhUc2ruXnONHSalandR69Tiz03mlmpWoJG1wypQpPPzww+zcuZMGDRowcOBApk2bxs6dO+natSsHDzp3Ha9RowZr1qyhZs2aJY7HxAev9wT79n3C8RM78OYeJjGpBlWrNKZu3d4lnpVIRL4EWqtqSF9oIjIBuAtoBOwG5qvqOLfsTpyZ7HzANFWdXKJgYkw4eWrCNR3w+nz85YVFYeUpY0oqL08NH3cO6vPyn4eXhZWnjCmNvDx1+eXnourltdc/CitPRfMGuBWm42SMMSayop2Q4kk4eeqpp5y/v/lNBAMypgSsDZpYEIl2GO08FbdD9Ywxxph4ZD9WTXmzNmhiQTy2w7icHMIYY4yJV0ePOosx5cXaoIkF8dgO7YyTMcYYE0UDBzp/Fy8u1zBMJWZt0MSCeGyHdsbJGGOMMcYYY4KwjpMxxhhjjDHGBGEdJ2OMMcYYY4wJwjpOxhhjjDHGGBOETQ5hjDHGRNHo0eUdgansrA2aWBCP7dA6TsYYY0wUxeOPBVOxWBs0sSAe26EN1TPGGGOiaO9eZzGmvFgbNLEgHtth0DNOIjIdGATsVtX2RZTfCYz0218boL6q7heRLcAhwAvkqmrXSAVujDHGQPzlqaFDnb/xdO8SU7FYGzSxIB7bYShnnGYA/QMVquojqpqhqhnAH4H/qup+vyq93XLrNBljjCkLM7A8ZYwxpowF7Tip6hJgf7B6ruHAy2FFZIwxxpSA5SljjDHRELFrnESkOs4Rvzf9VivwoYh8KSLjg2w/XkRWisjKPXv2RCosY4wxBrA8ZYwxJjyRnBxiMPBZgeEPF6lqZ2AA8FsR6RloY1X9t6p2VdWu9evXj2BYxhhjDGB5yhhjTBgiOR35MAoMf1DVbe7f3SIyB+gGLIngaxpjjDGhiok8dfPNZbl3Y4KzNmhiQTy2w4h0nESkFvB/wPV+604DElT1kPv4MuC+SLyeMcYYUxKxlKeuu66sX8GY4lkbNLEgHtthKNORvwz0AuqJyFbgr0AygKo+41a7EvhQVY/4bdoQmCMiea8zW1UXRC50Y4wxJv7yVFaW8zc9vaxfyZiiWRs0sSAe26GoannHUEjXrl115cqV5R2GMcZUaiLypU3RXbRw8lSvXs7feLp3ialYrA2aWBCJdhjtPBXJySGMMcYYY4wxpkKyjpMxxhhjjDHGBGEdJ2OMMcYYY4wJwjpOxhhjjDHGGBNEJO/jZIwxxpgg7rijvCMwlZ21QRML4rEdWsfJGGOMiaLBg8s7AlPZWRs0sSAe26EN1TPGGGOiaP16ZzGmvFgbNLEgHtuhnXEyxhhjouimm5y/dg8dU16sDZpYEI/t0M44GWOMMcYYY0wQ1nEyxhhjjDHGmCCs42SMMcYYY4wxQVjHyRhjjDHGGGOCsI6TMcYYE0V//rOzAHi9Xjp16sSgQYNKta9evXpxzjnnkJGRQUZGBrt3745gpKaiymuDY8eOpUGDBrRv3z6/bP/+/Vx66aW0atWKSy+9lAMHDpTqNZYsWULnzp1JSkrijTfeOKWsf//+nH766aVu96ZiKK4d3nvvvTRt2jT/u23+/Pmleg0RaS0in4vICRH5fYGy00XkDRFZJyJrReT8YPuzjpMxxhgTRX37OgvAE088QZs2bYqsl5OTw5EjR4Lu76WXXiIzM5PMzEwaNGgQyVBNBZXXBkePHs2CBQtOKXvwwQfp06cPGzZsoE+fPjz44INF7iNYh6pZs2bMmDGDESNGFCq78847mTVrVunfgKkQimuHALfddlv+d9vAgQMD7SYxyMvsByYAjxZR9gSwQFVbA+cCa4PFbB0nY4wxJooyM51l69atvPfee4wbN67IegcOHKBdu3bcdNNNrFixIqoxmootrw327NmTOnXqnFI2d+5cRo0aBcCoUaN4++23i9zHrbfeyiWXXMJLL73E8ePHC5W3aNGCjh07kpBQ+Kdmnz59SE1NDfdtmDhXXDssgUYislxEbhKRmgULVXW3qq4APP7rRaQW0BN4zq2Xo6o/B3sx6zgZY4wxUTRxYt4ykYcffrjIH5YADRs2ZP369fTu3ZtJkybRqVMnpkyZwv79+0+pN2bMGDIyMvj73/+Oqpb9GzBxL68NFmXXrl00btwYgEaNGrFr164i67344os88sgjLF26lHbt2nHrrbfy9ddfl03ApkIqrh0CTJ06lY4dOzJ27NjiznBuA24AzgS+EpHnReSiEF7+DGAP8LyIrBKRaSJyWrCNgnacRGS6iOwWke8ClPcSkWwRyXSXe/zK+ovIehHZKCJ3h/AmjDHGmBKLt1y1b9+7NGjQgC5duhRbr0qVKgwbNowPP/yQuXPnsnDhQpo0acL27dsBZ5jet99+y6effsqnn35qw59MRIkIIhKwvEuXLjz55JOsXr2ali1b0q1bNx5//PEoRmgqqptvvplNmzaRmZlJ48aNueOOOwLWVdX1qvoH4BxgEfCeiEwJ8hJJQGfgaVXtBBwBgn7/h3LGaQbQP0idT1U1w13uAxCRROBJYADQFhguIm1DeD1jjDGmpGYQR7kqO/sz5s2bR4sWLRg2bBgff/wxAwYMyL8Qet68efl1d+/ezWOPPcbgwYPxer3Mnj2bhg0bAtC0aVMAUlNTGTFiBMuXLy/r0E0F17BhQ3bs2AHAjh078q+b69evHxkZGacMLc3NzWXevHkMGzaM//znP9x3331cf/315RK3qVgaNmxIYmIiCQkJ/OpXv8r/bss7w+5/zZM4LgFmAvcAU4DHgrzEVmCrqn7hPn8DpyNVrKRgFVR1iYi0CFavCN2Ajar6A4CIvAJcDqwpxb6MMcaYgOItV5155gMsXvwAAIsXL+bRRx/l3XffPaVOdnY2o0aNYt26ddxwww3Mnz8/v6MEzo/Wn3/+mXr16uHxeHj33XfpmzfrhDGlNGTIEGbOnMndd9/NzJkzufzyywH44IMPTqn3+OOPM3XqVC6++GLuuOMOLr744vII11RQO3bsyB8yOmfOnPwZ955//vmCVesA64DvcK5XGqWq3mD7V9WdIpIlIueo6nqgDyF87wftOIXofBH5GtgO/F5VVwNNgSy/OluB7oF2ICLjgfHgzMRijDHGRFhYuao88tSECRPo3bt3kcOlTpw4Qb9+/fB4PHi9Xvr27cuvfvWrqMRlKobhw4ezePFi9u7dS1paGn/729+4++67ufbaa3nuuedo3rw5r732WpHbduzYkczMTGrWLHQ9PgArVqzgyiuv5MCBA7zzzjv89a9/ZfXq1QBcfPHFrFu3jsOHD5OWlsZzzz1Hv379yux9mthWVDtcvHgxmZmZiAgtWrTg2WefDbR5DnCxqu4pqlBEGgErgZqAT0QmAm1V9SBwK/CSiKQAPwBjgsUqoVxI6h7Fe1dV2xdRVhPwqephERkIPKGqrURkKNBfVce59W4AuqvqLcFer2vXrrpy5cqgcRljjCk7IvKlqnYt7zhCFc1cFU6eWrrU+XvBBaXa3JiwWRs0sSAS7TDaeSrsM05ujy3v8XwReUpE6uHMcpHuVzXNXWeMMcZEVSzlKvuxasqbtUETC+KxHYY9HbmINBJ3DIGIdHP3uQ9YAbQSkTPcU2DDgHmB92SMMcaUjVjKVUuXnjzSakx5sDZoYkE8tsOgZ5xE5GWgF1BPRLYCfwWSAVT1GWAocLOI5ALHgGHqjP/LFZFbgA9w7uo73R1PbowxxkRUPOWqP/3J+bt4cVm+ijGBWRs0sSAe22Eos+oND1I+FZgaoGw+ML90oRljjDGhsVxljDGmrIU9VM8YY4wxxhhjKjrrOBljjDHGGGNMENZxMsYYY4wxxpggInUDXGOMMcaEYPLk8o7AVHbWBk0siMd2aB0nY4wxJooyMso7AlPZWRs0sSAe26EN1TPGGGOiaOFCZzGmvFgbNLEgHtuhnXEyxhhjougf/3D+9u1bvnGYysvaoIkF8dgO7YyTMcYYY4wxxgRhHSdjjDHGGGOMCcI6TsYYY4wxxhgThHWcjDHGGGOMMSYImxzCGGOMiaJnny3vCExlZ23QxIJ4bIfWcTLGGGOi6JxzyjsCU9lZGzSxIB7boQ3VM8YYY6LonXecxZjyYm3QxIJ4bId2xskYY4yJoscec/4OHly+cZjKy9qgiQXx2A6DnnESkekisltEvgtQPlJEvhGRb0VkqYic61e2xV2fKSIrIxm4McYYA5anjDHGREcoQ/VmAP2LKd8M/J+qdgD+Dvy7QHlvVc1Q1a6lC9EYY4wp1gwsTxljjCljQYfqqeoSEWlRTPlSv6fLgLQIxGWMMcaExPKUMcaYaIj05BA3Au/7PVfgQxH5UkTGF7ehiIwXkZUisnLPnj0RDssYY4wBLE8ZY4wppYhNDiEivXES0kV+qy9S1W0i0gD4SETWqeqSorZX1X/jDp/o2rWrRiouY4wxBmInT82aVdotjYkMa4MmFsRjO4xIx0lEOgLTgAGqui9vvapuc//uFpE5QDegyIRkjDHGlJVYylPp6WW5d2OCszZoYkE8tsOwh+qJSDPgLeAGVf3eb/1pIpKa9xi4DChyxiNjjDGmrMRannr1VWcxprxYGzSxIB7bYdAzTiLyMtALqCciW4G/AskAqvoMcA9QF3hKRABy3ZmJGgJz3HVJwGxVXVAG78EYY0wlFm956umnnb/XXVfWr2RM0awNmlgQj+0wlFn1hgcpHweMK2L9D8C5hbcwxhhjIsfylDHGmGiI9Kx6xhhjjDHGGFPhWMfJGGOMMcYYY4KwjpMxxhhjjDHGBBGx+zgZY4wxJrg33ijvCExlZ23QxIJ4bIfWcTLGGGOiqF698o7AVHbWBk0siMd2aEP1jDHGmCiaMcNZjCkv1gZNLIjHdmgdJ2OMMSaK4vHHgqlYrA2aWBCP7dA6TsYYY4wxxhgThHWcjDHGGGOMMSaIijM5hOc4bPgAsrdBzmFIqQG1mkKrfpBctbyjM5VArsfLj9/u4/CBE+QczyWlahI1aleheYe6JCUnlnd4ppLweDxs2LCB7OxscnJySElJoVatWrRq1Yrk5OTyDq9yy8tTB7uCzwufv2t5ykTVyTxVE/UpXy/aa3nKRF1enjp4sCk+n/L552vjJk/Ff8dp/2b44hlY9aLz3JsDXg8kJkNiirOu8y+h23ioc0aZhjJ16lQmT57Mpk2b2LNnD/XicboQU2LZe47xzSdZrP1sBwj4cn14c5XEJCEhKQEU2lzYmI6906lVv1rU4powYQLTp0/n8OHDUXtNU37279/PF198wapVqwDwer14vV4SExNJTHR+EHXu3Jlu3bpRp06dMo1FRD4FUt2nDYDlqnpFmb5oLCuYpw68Bqqw8K9Rz1OmciqYpw7u7YgqfD5nY7nmKVO5FMxTBw6McL4KFy6Mep4qLVHV8o6hkK5du+rKlSuLr6QKC+91kpHPCz5P4LoJyZCQCN1/DX3vBZFIhptv1apV1K5dm169erFy5UrrOFVwqsrnczbxzSdbUZ/i8wb+v5SQKEiC0LF3GudfeRZSRm0wz8qVK3niiSeYM2eOdZwqOFVl4cKFfPHFF/h8Pnw+X8C6CQkJJCQk0L17d/r27Ru0HYrIl6raNZz4RORNYK6qvhDOfmJNOHnqqMf5YVo9+djJulHKU6ZyCZSncjzOlRopySe/L6Kdp0zlEShPeTzO2aXk5JO/4csjT5VEfF7jpApv/QqW/xtyjxffaQKnPPe4U/+tXznbF+Oee+5h8uTJ+c8nTZrEE088ETSsTp060aJFixDegIl3qspH09fw7eKteD2+YjtNAD6v4vX4+HbxVj6avoZQDliUth16vV7uvPNOHn744aB1TXxTVd566y2WL19Obm5usZ0mAJ/PR25uLsuXL+ett94KpR02EZGJeU9E5J8i8rtQ4xORmsAlwNuhblNhFJOnqicfO7XTBCXOU+Ykr9dLp06dGDRoUKm2nzRpEunp6dSoUeOU9SdOnOC6666jZcuWdO/enS1btkQg2ugpLk+lJPtO6TRB6fKUgbFjx9KgQQPat2+fv27//v1ceumltGrViksvvZQDBw6Uat9Lliyhc+fOJCUl8UaBu8UmJiaSkZFBRkYGQ4YMCes9lKXi8lRysueUThOUKk9FVXx2nBbeC+veA8/Rkm3nOepst/DeYquNHTuWF15wDo76fD5eeeUVrrjiivwGWnBZs2ZN6d6HiVufz9nE5q/3kJtT/A/VgnJzfGz+eg/L3t4UtG5p2+HUqVMZMmQIjRs3LvkbM3Fl4cKFrFu3Do8nyMGjAjweD+vWrWPhwoXBqu4FfgkgIgnAMOBtEckMsLQtsP0VwCJVPViiACuCYvLUUyvG8dSKcUVvF2KeMic98cQTtGnTpsiynJwcjhw5Uuz2gwcPZvny5YXWP/fcc9SuXZuNGzdy22238Yc//CEi8UZLcXlqyeqmLFndtMjtSpKnDIwePZoFCxacsu7BBx+kT58+bNiwgT59+vDggw8WuW2wDlWzZs2YMWMGI0aMKFRWrVo1MjMzyczMZN68eaV/A2WsuDy1YsV5rFhxXpHblSBPRVX8XeOUN1Y893jptvccdbbvMjrgWPIWLVpQt25dVq1axa5du+jUqRPNmzcnMzOz1GGbisMZK+4cwSuN3BwfX3+8lbYXNS12LHlp2uH27dt5/fXXWbx4caliM/Ejb6x4bm5uqbb3eDx88cUXdOnSpbix5DnAARHpBDQEVqnqj0BGiC8zHJhWqgDjWZA89drqKwD4zXkBPpoQ8pRxbN26lffee49Jkybx+OOPFyo/cOAA3bt3p1+/fowbN47zziv8I61Hjx5F7nvu3Lnce++9AAwdOpRbbrkFVY2LIWzB8tRXmxoA0LPdtiLLQ81TBnr27FnobOTcuXPz8/CoUaPo1asXDz30UKFtb731VrZv386NN97I1VdfTdWqp04SkzeKKSEhPs9zBMtTq1e3A+C881YUWR5inoqq+PuX+OJZZ6x4ONTnDIcoxrhx45gxYwbPP/88Y8eO5dChQ3bGyQDwzSdZqC+8U8fqU775JCtovZK2w1WrVrFx40ZatmxJixYtOHr0KC1btgwrVhOb8saKh0NVizzSXsA0YDQwBpguIqmhnHESkXpAN+C9sIKMR1HKUwYmTpzIww8/HPCHZcOGDVm/fj29e/dm0qRJdOrUiSlTprB///6g+962bRvp6ekAJCUlUatWLfbt2xfR+MtKNPOUKWzXrl35oz4aNWrErl27iqz34osv8sgjj7B06VLatWvHrbfeytdffx3Saxw/fpyuXbvSo0cP3n777UiFHlFRzFNRE1LHSUSmi8huEfkuQLmIyBQR2Sgi34hIZ7+yUSKywV1GhRWt5xiseiH4NU3BeHPgqxecqWEDuPLKK1mwYAErVqygX79+pKam5p8SLbi0bVtwdIqpqHJzvKz9bEfQa5qC8XmVtZ/tINdT/I+rkrbDX/ziF+zcuZMtW7awZcsWqlevzsaNG8OK1cQej8fDqlWrwk5IXq+Xr776KthQvzlAf+A84ANVPaSqGQEW/6NIQ4F3VbWUwwNKpjLmqcru3XffpUGDBnTp0qXYelWqVGHYsGF8+OGHzJ07l4ULF9KkSRO2b98epUijK9p5yhRPRIo9S9mlSxeefPJJVq9eTcuWLenWrVuRZ08L+vHHH1m5ciWzZ89m4sSJbNoUW0Mro5ynoibUM04zcBJnIAOAVu4yHngaQETqAH8FuuMcefyriNQubbBs+BCI4CnyDR8ELEpJSaF3795ce+21+VMkBjNlyhTS0tLYunUrHTt2ZNy4AGPYTdz68bt9kWuCAj9+W/zRy9K0Q1PxbdiwIWr7U9Uc4BPgNVUtyS+oYcDLYYZWEjOoZHmqsvvss8+YN28eLVq0YNiwYXz88ccMGDAg/yy8/3Ufu3fv5rHHHmPw4MF4vV5mz55Nw4YNi91/06ZNycpyzrjk5uaSnZ1N3bp1y/Q9RUK085QprGHDhuzYsQOAHTt20KCBMzSyX79+ZGRknPL7MDc3l3nz5jFs2DD+85//cN9993H99dcHfY2mTZ1r1M4880x69eqVP8V3rIhmnoqmkK5xUtUlItKimCqXAy+oM/XFMhE5XUQaA72Aj1R1P4CIfIST2EqXTLO3OUfhIsGb4+wvAJ/Px7Jly3j99ddD3uWECROYMGFCJKIzMerwgRP4csM7epLHl+vj8IETxdcpRTv0Z1ORV0zZ2dl4vZE5Cuz1esnOzg5Y7k4K0QO4piT7VdVe4UVWMvGWpzJ3dqDXjHdPWXdtu7f5zXnTOOqpxsCXXgdJgDdaQE2nfPRoZ9m7F4YOLbzPm2+G666DrCy44YbC5XfcAYMHw/r1cNNNhcv//Gfo2xcyM2HixMLl998PF1wAS5fCn/5UuHzyZMjIgIUL4R//KFz+7LNwzjnwzjvw2GOFy2fNgvR0ePVVePrpwuVvvAH16sGMGc4CD9Cy5QMA/PzzYjp1epT333+Xp56C116Dxx+Hhx/OZt26URw9uo5Jk25g/vz5vPxyU6ZMgSlTTu67mt9lPH//OyxaBNu2DeHqq2dy9tnnc/ToG1xyySWICH/8I3z++amxpaXBi+5tuiZOdD5Df2efDf92R16OHw/ff39qeUaG8/kBXH89bN16avn558MDzlvl6quh4IjBPn3gL39xHo/6dSq7t3U8ZWLG9s330vdcpxM4eV4ntu6rkf/YX+ezdtOz3TZyPAk89f65iMC/P6lGDfdQgrXBgm3Qcfw4bN4MR49C9eqQnj6ECy+cSbNmd/PTTzPxeC6nVy9YvNg5EPLoo9CrF2RlPc727VOpVetimje/g+++uxg42QbzrFvnLHmf+W23HeDLL6uTkFAFj2cvq1Z9xr59d+WXl3cbHDAAdu1qmn+fJuf1v+eCC5YCMGPGaAB27mxEo0Y7C33OBQXLU9EUqckhmgL+A2G3uusCrS9ERMbjHAWkWbNmRb9KzmHn5raR4PU4+yvCmjVrGDRoEFdeeSWtWrWKzOuZCiHneC7e3MhMjenNVXKOB76w39qhCSQnJyeiHaecnIA/9KsCG4E5qhobh/tKL/7ylGr410oZmjadwOmn92bSpKJPw2zadBd79swmJ+coaWlptGo1DriXxo1vZO3aG/jii5ZUq1aHV155JbqBl5LPpxGbzV6VsK+VqujWrBlOdvZiPJ69tGqVxn33/Y3LLrubBx64lp07n6NKlea0bftakdvWqNGRLl0ySUqqeUrnPc/BgytYvfpKcnMPcODAO7Rr91dWr17N3r1r+eqrm3AGjvlIT7+bWrVi67KRSLbDIHkqqkK+Aa57JO9dVW1fRNm7wIOq+j/3+SLgDzhH8qqq6j/c9X8Bjqnqo8W9VsAbC37+lHOn9UicdUpMgb5/g/N/E/6+TKXx9aIsPp+zMSKdp8Qk4fwrW3Jun/QIRGYqk88//5yFCxdGpPOUmJhI3759Of/88wuVRfvGguGKlzyVd6Zp8egg9x2yPGVKIZQ8lXemaeKQ4od3WZ4ypRVKnso78zR69Ixi9xVLeSpSs+ptA/z/V6W56wKtL51aTZ1EEgmJKc7+jCmBGrWrkJAUmf82CUkJ1KhdJSL7MpVLrVq1InbNW2JiIrVq1YrIvmKc5SlTKVieMrGgouapSHWc5gG/dGct6gFkq+oO4APgMhGp7V5se5m7rnRa9QMieMq4Vb+ARQXvIB6KCRMmlGo7Ez+ad6gbuSao7v4CKElbmjp1Ki1btkRE2Lt378mXUGXChAm0bNmSjh078tVXX4UVsokNkR66Wdz+RCTkC+VE5BZ31jp1pyPPW99LRLL9pi2/J8yQSyNm8tSgsz9g0NkhvkQxecqYooSSp9o330v75nuLrwRB85QxgYSSp84++3vOPvv7oPVC3V80hHSNk4i8jDOcoZ6IbMWZgSgZQFWfAeYDA3HGwh/Fud8HqrpfRP4O5N3Z6r68C3BLJbkqdPolrJgW3lSviSnQ+ZfO/iJk5cqVQe8AbeJfUnIibS5szHf/3RbWVK8JiUKbCxuTlByZozEXXnghgwYNolevXqesf//999mwYQMbNmzgiy++4Oabb+aLL76IyGua8pOcnEynTp1YsWJFWFO9JiYm0rlzZ5KTkyMV2mfAu8DiIso+VdUgY9NKL57y1O8v+H/B91MGecpUDqHkqbyJIooT6TxlKpdQ8lTeZBHFKYM8FZZQZ9UbHqRcgd8GKJsOTC95aAF0vwm+fD68jpMkQLfxEQvJ6/Vy5513Mnv2bObMmROx/ZrY1LF3Oqs/3Q5hdJwkQejYO3Jjxjt16lTk+rlz5/LLX/4SEaFHjx78/PPP7NixI//GfCZ+de/enS+//DKsjpOI0K1bt4jFpKqr8vYbbZanjDkpFvOUqXxiMU+FK1JD9aKnzhnQ/deQXL102ydXd7avc0ZI1Q8dOpR/T4iCy5o1zr0ep06dypAhQ+zHaCVRq341OvZOIymldP99klISOPeSNGrVL2IKnSKE0gYD8b/zPUBaWhrbtpX+8g0TO+rUqUP37t1LfRQuOTmZ7t27U6dOnZDqi0iq31C7gkso0zmdLyJfi8j7ItKuVEHHiyB5qteMdwtNRX6KEuYpYwoKlqcmz+tUaCpyfyXNU8YUJViemjFjdP4EEUUpaZ6KhkhNRx5dfe+Fg9tg3XvgORr6dsnVofUvnO1DlJqaSmbByfD9bN++nddff53FixeHHoeJe+dfeRaHD5xg89d7yM0J/UhKUkoCZ5xbnx5XnBXyNsHaoKm8+vbty8GDB1m3bl2J7qqenJxM69at6du3b8jbqOohIKPkUQLwFdBcVQ+LyEDgbZwb0VZcUcxTxhQlmnnKmECimaeiIT47TiJw1X9g4b3wxTPOfS6KGxKRmHJy2EPfe53tQ3To0CEuvvjiIstmz57N5s2b2bhxIy1btgTg6NGjtGzZko0bN5bgDZl4IyJcOrYtn8/ZxDefbEV9Wuw1TwmJ4g57SKPHFWeVaChTsDbYtm3gg/1Nm5688z3A1q1b8+82buKfiHDVVVexcOFCvvjiC3w+X7FDIhITE/OHPfTt27dE7VBEUoFPAxSPUNWApz9V9aDf4/ki8pSI1FPVEK5Oj1NRzFPGFCWaecqYQKKZp6IhPjtO4CSVS/8GXUbD8n/DVy846705zs0HE5NPTgnbeRR0Hw+1W5T4ZYId7W/bti07d56863GNGjWs01RJiAgXXNWSdhc35ZtPslj72Q4Q8OX68OYqiUniTAmr0PaiJnTsnUbNeiUf9hDOGachQ4YwdepUhg0bxhdffEGtWrVsSGkFIyJceumldOnSheXLl+fPnOj1evF6vSQmJuZPCdu5c2e6d+9O7dq1S/w64ZxxEpFGwC5VVRHphjNMfF+QzeJfoDwlCc6dRRNTIpKnjAkkUJ4ScZtghPKUMcUJlKfy22GE8lQ0hHwD3GgKeGPB4niOw4YPIHubc+f2lBrO/S9a9SvVrEQ1atTg8OGQZ+ENezsT/3I9Xn78dh+HD5wg53guKVWTqFG7Cs071C3VrEQlaUtTpkzh4YcfZufOnTRo0ICBAwcybdo0VJVbbrmFBQsWUL16dZ5//nm6do2b+5maUvB4PGzYsIHs7GxycnJISUmhVq1atGrVqsTXQ4nIl0BrVQ1pbnwRmQDcBTQCdgPzVXWciNwC3AzkAseA21U1+HRKMSycPNXr+q7g87L46XfDylPGlFRenrpuTE3Up0yfvDesPGVMaeTlqeuvb4rPpzz99Nqw8lQ0b4BbcTpOxhhjIiraCSmehJOnnnrK+fub30QwIGNKwNqgiQWRaIfRzlPxO1TPGGOMiUP2Y9WUN2uDJhbEYzuMv+nIjTHGmDh29KizGFNerA2aWBCP7dDOOBljjDFRNHCg89fuYmHKi7VBEwvisR3aGSdjjDHGGGOMCcI6TsYYY4wxxhgThHWcjDHGGGOMMSYI6zgZY4wxxhhjTBA2OYQxxhgTRaNHl3cEprKzNmhiQTy2Q+s4GWOMMVEUjz8WTMVibdDEgnhshzZUzxhjjImivXudxZjyYm3QxIJ4bIchdZxEpL+IrBeRjSJydxHl/xKRTHf5XkR+9ivz+pXNi2DsxhhjDBBfeWroUGcxprxYGzSxIB7bYdCheiKSCDwJXApsBVaIyDxVXZNXR1Vv86t/K9DJbxfHVDUjYhEbY4wxfixPGWOMiYZQzjh1Azaq6g+qmgO8AlxeTP3hwMuRCM4YY4wJgeUpY4wxZS6UjlNTIMvv+VZ3XSEi0hw4A/jYb3VVEVkpIstE5IpALyIi4916K/fs2RNCWMYYYwxgecoYY0wURHpyiGHAG6rq9VvXXFW7AiOAySJyVlEbquq/VbWrqnatX79+hMMyxhhjAMtTxhhjSimU6ci3Ael+z9PcdUUZBvzWf4WqbnP//iAii3HGlW8qcaTGGGNM0eIqT918c1nt2ZjQWBs0sSAe22EoHacVQCsROQMnEQ3DOSp3ChFpDdQGPvdbVxs4qqonRKQecCHwcCQCN8YYY1xxlaeuu64s925McNYGTSyIx3YYtOOkqrkicgvwAZAITFfV1SJyH7BSVfOmbh0GvKKq6rd5G+BZEfHhDAt80H+WI2OMMSZc8ZanstyrsdLTi69nTFmxNmhiQTy2Qzk1f8SGrl276sqVK8s7DGOMqdRE5Ev32h9TQDh5qlcv5+/ixRELx5gSsTZoYkEk2mG081SkJ4cwxhhjjDHGmArHOk7GGGOMMcYYE4R1nIwxxhhjjDEmCOs4GWOMMcYYY0wQoUxHbowxxpgIueOO8o7AVHbWBk0siMd2aB0nY4wxJooGDy7vCExlZ23QxIJ4bIc2VM8YY4yJovXrncWY8mJt0MSCeGyHdsbJGGOMiaKbbnL+2j10THmxNmhiQTy2QzvjZIwxxhhjjDFBWMfJGGOMMcYYY4KwjpMxxhhjjDHGBGEdJ2OMMaYcZGVl0bt3b9q2bUu7du144oknwtrfhAkTqFGjRoSiM5XFv/71L9q1a0f79u0ZPnw4x48fL/E+Jk2aRHp6eqH2d+LECa677jpatmxJ9+7d2bJlS4SiNhXJ2LFjadCgAe3bt89f95e//IWOHTuSkZHBZZddxvbt20u1bxHpKSJfiUiuiAwtUOYVkUx3mRfK/qzjZIwxxkTRn//sLElJSTz22GOsWbOGZcuW8eSTT7JmzZpC9Q8cOBB0nytXrgypnjFwsg1u27aNKVOmsHLlSr777ju8Xi+vvPLKKXVzcnI4cuRIsfsbPHgwy5cvL7T+ueeeo3bt2mzcuJHbbruNP/zhDxF9Hya+5bXD0aNHs2DBglPK7rzzTr755hsyMzMZNGgQ9913X6DdJAZ5mZ+A0cDsIsqOqWqGuwwJJWbrOBljjDFR1LevszRu3JjOnTsDkJqaSps2bdi2bVuh+l27dmXkyJF8/PHHqGqhcq/Xy5133snDDz9c5rGbiiGvDQLk5uZy7NgxcnNzOXr0KE2aNDml7oEDB2jXrh033XQTK1asKHJ/PXr0oHHjxoXWz507l1GjRgEwdOhQFi1aVGQbNpVTXjvs2bMnderUOaWsZs2a+Y+PHDmCiATaTTMR+VhERopI1YKFqrpFVb8BfJGI2TpOxhhjTBRlZjqLvy1btrBq1Sq6d+9eqP7333/P8OHDmTp1Km3btuX+++8/ZdjK1KlTGTJkSJE/XI0pSl4bbNq0Kb///e9p1qwZjRs3platWlx22WWn1G3YsCHr16+nd+/eTJo0iU6dOjFlyhT2798f9HW2bdtGeno64JxhrVWrFvv27SuDd2TiUVHfhf7yhoC+9NJLxZ1x2gzcCVwArBaR/yci54YYQlURWSkiy0TkilA2CKnjJCL9RWS9iGwUkbuLKB8tInv8xgmO8ysbJSIb3GVUiG/EGGOMCVk85amJE50lz+HDh7n66quZPHnyKUdZ8yQmJjJo0CDeeustlixZwg8//ECzZs1Yvnw527dv5/XXX+fWW28t67BNBZLXBg8cOMDcuXPZvHkz27dv58iRI7z44ouF6lepUoVhw4bx4YcfMnfuXBYuXEiTJk1Kfd2JMVD4u7Cgf/7zn2RlZTFy5EimTp0asJ6qfqmqvwXaARuB5SJyewghNFfVrsAIYLKInBVsg6AdJxFJBJ4EBgBtgeEi0raIqq/6jROc5m5bB/gr0B3oBvxVRGqH8EaMMcaYkMRznvJ4PFx99dWMHDmSq666iqysLDIyMsjIyOCZZ57Jr5ednc2zzz7LkCFD2LBhA9OnT6djx46sWrWKjRs30rJlS1q0aMHRo0dp2bJltMI3cW7hwoWcccYZ1K9fn+TkZK666ipeeuml/DY4b97J6+V3797NY489xuDBg/F6vcyePZuGDRsWu/+mTZuSlZUFOEMCs7OzqVu3bpm+J1PxjBw5kjfffBOAfv36kZGRwbhx+ce+EJEkERkCvAL8CrgHKHwEoABV3eb+/QFYDHQKtk1SCPF2Aza6O0VEXgEuBwpfwVpYP+AjVd3vbvsR0B94OYRtjTHGmFDEZZ5SVW688UbatGnD7bc7B0fT09PJLDB25frrr+fzzz/nmmuu4YUXXqBVq1b5Zb/4xS/YuXNn/vMaNWqwcePGsg7dVBDNmjVj2bJlHD16lGrVqrFo0SIGDhx4yhnM7OxsRo0axbp167jhhhuYP38+TZs2DWn/Q4YMYebMmZx//vm88cYbXHLJJcVdq2JMvg0bNuR/182dO5fWrVsD8MEHHxSs2hD4HvgUeExVPw1l/+4BsqOqekJE6gEXAkEvFA2l49QUyPJ7vhXnyFxBV4tIT5zgb1PVrADbFvm/TUTGA+PB+Y9sjDHGhCgu89Rnn33GrFmz6NChAxkZGQDcf//9DBw48JR61157LTNmzCApKZSUbUzounfvztChQ+ncuTNJSUl06tSJ8ePHF6o3YcIEevfuHbDTc9dddzF79myOHj1KWloa48aN49577+XGG2/khhtuoGXLltSpU6fQjH3GAAwfPpzFixezd+9e0tLS+Nvf/sb8+fNZv349CQkJNG/e/JQz8AUcBc5T1YNFFYrIecAcoDYwWET+pqrtgDbAsyLiwxmB96CqBj3YJsFmN3HnPO+vquPc5zcA3VX1Fr86dYHDbq/tJuA6Vb1ERH4PVFXVf7j1/oIz9d+jxb1m165ddeXKlcFiN8YYU4ZE5Et3/HdMi7c81auX83fx4lJtbkzYrA2aWBCJdhjtPBXK4attQLrf8zR3XT5V9Z8iZRonT3VtA3oV2HZxSYM0xhhjihFXeer++8ty78YEZ23QxIJ4bIehdJxWAK1E5AycBDMMZ/aJfCLSWFV3uE+HAGvdxx8A9/tdaHsZ8MewozbGGGNOiqs8dcEFZbl3Y4KzNmhiQTy2w6AdJ1XNFZFbcJJLIjBdVVeLyH3ASlWdB0xwZ7PIBfbj3KEXVd0vIn/HSWoA9+VdgGuMMcZEQrzlqaVLnb/x+KPBVAzWBk0siMd2GPQap/Jg1zgZY0z5i5drnMqDXeNk4pm1QRML4vEap5BugGuMMcYYY4wxlZl1nIwxxhhjjDEmCOs4GWOMMcYYY0wQ1nEyxhhjjDHGmCDsNuTGGGNMFE2eXN4RmMrO2qCJBfHYDq3jZIwxxkRRRkZ5R2AqO2uDJhbEYzu0oXrGGGNMFC1c6CzGlBdrgyYWxGM7tDNOxhhjTBT94x/O3759yzcOU3lZGzSxIB7boZ1xMsYYY4wxxpggrONkjDHGGGOMMUFYx8kYY4wxxhhjgrCOkzHGGGOMMcYEYZNDGGOMMVH07LPlHYGp7KwNmlgQj+3QOk7GGGNMFJ1zTnlHYCo7a4MmFsRjO7ShesYYY0wUvfOOsxhTXqwNmlgQj+3QzjgZY4wxUfTYY87fwYPLNw5TeVkbNLEgHtthSGecRKS/iKwXkY0icncR5beLyBoR+UZEFolIc78yr4hkusu8SAZvjDHGgOUpY4wxZS/oGScRSQSeBC4FtgIrRGSeqq7xq7YK6KqqR0XkZuBh4Dq37JiqZkQ2bGOMMcZhecoYY0w0hHLGqRuwUVV/UNUc4BXgcv8KqvqJqh51ny4D0iIbpjHGGBOQ5SljjDFlLpSOU1Mgy+/5VnddIDcC7/s9ryoiK0VkmYhcEWgjERnv1lu5Z8+eEMIyxhhjAMtTxhhjoiCik0OIyPVAV+D//FY3V9VtInIm8LGIfKuqmwpuq6r/Bv4N0LVrV41kXMYYYwzERp6aNau0WxoTGdYGTSyIx3YYSsdpG5Du9zzNXXcKEekLTAL+T1VP5K1X1W3u3x9EZDHQCSiUkIwxxphSiqs8lZ4evI4xZcnaoIkF8dgOQxmqtwJoJSJniEgKMAw4ZdYhEekEPAsMUdXdfutri0gV93E94ELA/2JdY4wxJlxxladefdVZjCkv1gZNLIjHdhj0jJOq5orILcAHQCIwXVVXi8h9wEpVnQc8AtQAXhcRgJ9UdQjQBnhWRHw4nbQHC8xyZIwxxoQl3vLU0087f6+7rvh6xpQVa4MmFsRjOwzpGidVnQ/ML7DuHr/HfQNstxToEE6AxhhjTDCWp4wxxpS1kG6Aa4wxxhhjjDGVmXWcjDHGGGOMMSYI6zgZY4wxxhhjTBARvY+TMcYYY4r3xhvlHYGp7KwNmlgQj+3QOk7GGGNMFNWrV94RmMrO2qCJBfHYDm2onjHGGBNFM2Y4izHlxdqgiQXx2A6t42SMMcZEUTz+WDAVi7VBEwvisR1ax8kYY4wxxhhjgrCOkzHGGGOMMcYEUWEmhzju8fLJut1szz7OkRO5nFYliSa1qtK7dQOqJieWd3imEvCdOMHhxf8ld+cOvEeOkHjaaSQ1akyNXv9HQpUq5R2eqSTU4+PYuv14s0+gJ7xIlUQSa1WhWus6SLIdKytPeXlqR/bp+HzKc//bZXnKRNXJPNUR9XnZP3Oh5SkTdSfzVCr4lEP/2xc3eSruO04/7TvK80s389qKLESEnFwvHq+SnCikJCWiqlx3XjqjLziDZnWrl2ksmzdvZtiwYezbt48uXbowa9YsUlJSyvQ1TfnLycpi/wuzyH7zTRDB5/GAxwPJySQkJ4Mqp18zlNrXX09KenqZx3PjjTeycuVKVJWzzz6bGTNmUKNGjTJ/XVO+cvcd49DS7RxdsRNE0FwfeBUSBUlK4IAqp53XiBoXNCGpbrUyjUVEBPgHcA3gBZ5W1Sll+qIxrGCeytrfFZ/CQ++vjXqeMpVTwTyVs/Vp8Cm7Hnu8XPKUqZwK5qnc/e1Alez3N0c9T5WWqGp5x1BI165ddeXKlcXWUVUeWrCO5z/bgk8Vjzfw+0hOFBJEGHNhC/7QvzVOTo+8a6+9lquuuophw4bx61//mnPPPZebb765TF7LlD9VZc9jj7F/1ouoz+d0lgJJTkYSEqhzw/XUv+OOMmuDAAcPHqRmzZoA3H777TRo0IC77767zF7PlC9VJXvBFg5/th1Unc5SIIkCItS4sAm1+rcI2g5F5EtV7VrSmERkDNAbGK2qPhFpoKq7S7qfWBZOnvJ5nCOqCcm+/LrRylOmcgmUp475qgJQLeH4ycpRzFOmcgmUp46534XV/L4Lo5WnSiu2z4cFoKpMfDWTmUt/5ESur9hOE4DHq5zI9TFz6Y9MfDWTYJ3Fe+65h8mTJ+c/nzRpEk888UTQmD7++GOGDh0KwKhRo3j77bdDej8m/qgq2++8i/0vzUZPnCi+0wTg8aAnTrD/pdlsv/OuoG0QStcOgfxOk6py7NgxS34VmKqy/9X1HFm6HfLOMBXHq5Dr48jS7ex/dX0o7bCJiEzMeyIi/xSR34UQ2s3Afarqc+OsUJ2mUBSXpxKSfad0mqDkecpAVlYWvXv3pm3btrRr1y6k78eiLFq0iM6dO5ORkcFFF13Exo0bIxxp+SguT1VLOH5qpwlKlaeM41//+hft2rWjffv2DB8+nOPHjwffqIBJkyaRnp5eaITIM888Q4cOHfLb55o1ayIVdlQUl6eqJftO7TRBafJUVMXlGacH31/LzKU/cszjLfG+qyUnMvqC5vxhQJuAdbZs2cJVV13FV199hc/no1WrVnz88cdcfvnlRdafPXs2DRo0oEePHvlfuFlZWQwYMIDvvvuuxDGa2Lf70UedZHTsWIm3lWrVqHP9SBrccUex9UrTDtu2bQvAmDFjmD9/Pm3btuW9996jenUb/lMR/fz+Zo4s3Y56fMErFyDJCZx2QRNOH3BG4Doi3wK5qtpZRBKADcAlwNwAm4xQ1TUisg94HLgS2ANMUNUNJQ4yhoWTpw591RyA1M4/FrltKHnKwI4dO9ixYwedO3fm0KFDdOnShbfffjv/ezDPgQMHqF27dsD9nH322cydO5c2bdrw1FNPsXz5cmbE2xzJRSguT718YDgAw2u/XOS2oeYpA9u2bcvv0FSrVo1rr72WgQMHMnr06Pw6OTk5eDweTjvttID7WbZsGc2bN6dVq1YcPnw4f73/KJJ58+bx1FNPsWDBgjJ7P5FWXJ6a+VVjAEZ13lHktiHmqaiecYq7a5x+2neU5z/bwonckv9QADjm8TL9sy0M79Y84FjyFi1aULduXVatWsWuXbvo1KkTzZs3JzMzM+B+9+7dW6p4TPzJycpyhj2cOFGq7fXYMfa/MIvTr7222LHkpWmHeZ5//nm8Xi+33norr776KmPGjClVrCZ25e475gx7KOV3oXp8HP5sOzW6NSpuLHkOcEBEOgENgVWq+iOQEWT3VYDjqtpVRK4CpgMXlyrQOBQsTx1Z5/xYCNRxCiVPGWjcuDGNG7ufZWoqbdq0Ydu2bYU6Tl27dqVHjx7ceOON9O7du9BZeBHh4MGDAGRnZ9OkSZPovIEyFCxPLTjUHwjccQo1TxlHbm4ux44dIzk5maNHjxZqQwcOHKB79+7069ePcePGcd555xXaR48ePYrcd16nCeDIkSNxNYokWJ56d109IHDHKcQ8FVVxN1Tv+aWb8YV5lsynyoylm4utM27cOGbMmMHzzz/P2LFjOXToEBkZGUUua9asoW7duvz888/k5uYCsHXrVpo2bRpWnCY27Z81yxkrHgb1+Tjw4otB65W0HfpLTExk2LBhvPnmm2HFamLToaXuWPFwqHJ46fZgtaYBo4ExwHQRSRWRzABL3i/WrcBb7uM5QMfwAo0v0cpT5qQtW7awatUqunfvXqjs+++/Z/jw4UydOpW2bdty//33s337yXY/bdo0Bg4cSFpaGrNmzaoQ14RGM09Vdk2bNuX3v/89zZo1o3HjxtSqVYvLLrvslDoNGzZk/fr19O7dm0mTJtGpUyemTJnC/v37Q3qNJ598krPOOou77rqLKVPiZ56dKOapqAmp4yQi/UVkvYhsFJFC3ygiUkVEXnXLvxCRFn5lf3TXrxeRfuEEe9zj5dUVWUGvaQrG41VeXZHF8WKG+l155ZUsWLCAFStW0K9fP1JTU8nMzCxyadu2LSJC7969eeONNwCYOXNmwCFVJn75jh/n5zfeDH5NUzAeDz+//ga+IGetStoOVTV/uKiqMm/ePFq3bh1erCbmqMfrzEoU5nchXuXIil3BhvrNAfoD5wEfqOohVc0IsOT13t/GmRwC4P+A78MLNLjKmKeM4/Dhw1x99dVMnjz5lKPzeRITExk0aBBvvfUWS5Ys4YcffqBZs2YsX74ccK5PmT9/Plu3bmXMmDHcfvvt0X4LERXtPFXZHThwgLlz57J582a2b9/OkSNHeLGIDmeVKlUYNmwYH374IXPnzmXhwoU0adLklE58IL/97W/ZtGkTDz30EP/4xz/K4m1EXJTzVNQE7TiJSCLwJDAAaAsM9zuqmOdG4ICqtgT+BTzkbtsWGAa0w0m8T7n7K5VP1u0mIUKnKEWET9YFvl45JSWF3r17c+2115KYGFrIDz30EI8//jgtW7Zk37593HjjjRGJ1cSOw/9dErnT5CIcXvzfYquUtB2qKqNGjaJDhw506NCBHTt2cM8990QmXhMzjq07ABFrh3BsXeCjnqqaA3wCvKaqof6KfxC42r1G6gFgXNhxFqOy5ikDHo+Hq6++mpEjR3LVVVeRlZWVfxb+mWeeya+XnZ3Ns88+y5AhQ9iwYQPTp0+nY8eO7Nmzh6+//jr/TNV1113H0qVLy+vtRES081Rlt3DhQs444wzq169PcnIyV111FS+99FJ+O5w3b15+3d27d/PYY48xePBgvF4vs2fPpmHDhiG/1rBhw+Jm4rFo5qloCuUap27ARlX9AUBEXgEuB/zHBV0O3Os+fgOY6t7H43LgFVU9AWwWkY3u/j4vTbDbs4+TkxuZo285uT62Zwee9cTn87Fs2TJef/31kPd55pln5h/BMhVT7s4dzn2aIsDn8ZC7s+hxvfl1StgOExIS+OyzzyIRnolh3uwTzn2aIkBzfXizAx9RdieF6IFzT6bQ9qn6M/CLsIMLXdzlqZzdNdk5+9RrGk5rvYPUzj/i8ySw+/VuJAhMnFedh2o55aNHO8veveBO4HqKm2+G666DrCy44YbC5XfcAYMHw/r1cNNNhcv//Gfo2xcyM2HixMLl998PF1wAS5fCn/5UuHzyZMjIgIULoaiD4s8+C+ecA++8A489Vrh81ixIT4dXX4Wnny5c/sYbUK8ezJjhLKrK+vU3kpTUhhMnbufXv4b09HTGj8/ktdfglVecZe3a6zl48HN+97treOGFF5g7txXTp8P06aCaxE8/ZdOz5/csWXI2H330ESJt6NXr1NeuWxfyRj3/8Y/weYHWkZYGeScZJk50PkN/Z58N//6383j8ePi+wDnYjAzn8wO4/nrYuvXU8vPPhwcecB5ffTXs23dqeZ8+8Je/OI+vurMtB39w7tOU5/9qLGZsnecBGPXTTNadaJ3/2F//1AUMr/0yx3xV+fXWZyFBSPldOkmNnHJrg6e2QYCDB5uxfv0yvv/+KAsWVGPRokWkpg7k2LFbAXj8cXj44WzWrRtFvXrruOGGGxgyZD6fftqUKVMgb+RdtWrw/vvO47//HRYtch4fPbqB6tVbUbcujB79Hq1atYr5NjhgABzemZp/nyaAPmft59fdtwFwzewOAKzeXYN2DQ4TTLA8FU2hDNVrCmT5Pd/qriuyjqrmAtlA3RC3BUBExovIShFZuWfPniIDOXIiN+zhD3k8Xh9HTuQWWbZmzRpatmxJnz59aNWqVURez1QM3iNHwh/+kMfjcfYXgLVDE4ie8IY//CGPV539Fa0qsBFYFOOz4sVVnmo0YhkpDQ4WWwec370+X4T+nSuggwc/Y9euWfz888esXJlBjx4ZzJ8/v1C9+vWvpVu39Tz44IOFvktFkjjnnP+watXVnHvuucyaNYvLLnskWm+hTKjXe0qnqSitq6yjdZV1wXfmU9Rnw0WLU7Nmd+rXH8qXX3bmvPM64PP5uPDC8YXqNW06gbVr1zJp0iRq1Sr8FbN+/V2kpaVx9OhRHn00jS1b7gVg+/aprFjRjkWLMnj88ceZOXNmoW1jkk+DXt/UrsFhXh/xbfB9FZ+noirodOQiMhTor6rj3Oc3AN1V9Ra/Ot+5dba6zzcB3XGO7i1T1Rfd9c8B76vqG8W9ZqBpXp/732Yeen8tORH4wZCSmMAfBrTmxosCT3FoTEH7Z85k12OPQ05O+DtLSaHhHbdTZ9So8PdlKpVD/9tG9vubI9N5ShRqDTiD1IsKJ/JoT/NaWpanjDnJ8pSJBRU1T4Vyxmkb4D8XZZq7rsg6IpIE1AL2hbhtyJrUqkpKUqmHnp8iJSmBJrWqRmRfpvJIatSYhOTkiOwrITmZpEaNI7IvU7kk1qqCJEVmUlRJSiCxVpWI7KscWZ4yxmV5ysSCipqnQnlHK4BWInKGiKTgXEQ7r0CdeUDe4YihwMfqnMqaBwxzZzM6A2gFlPoioN6tG4Q9xWseVaV36wYBywveubk4I0eO5JxzzqF9+/aMHTsWT6SGcpmYU6PX/0XuLtaq1Oj1f4FfqwRtcNGiinnne1O0aq3rhD/Fax519xeAiAQfgH6y7i3u7HQqIvX81l8uIt+4U5avFJGLwoy6oEqZp4wpSjTzlDGBRDNPRVPQjpM7FvwW4ANgLc7MSqtF5D4RGeJWew6o615Ueztwt7vtauA1nAt0FwC/LcGsTIVUTU7kuvPSSU4Mb5aO5EThuvPSqZocmaOCI0eOZN26dXz77bccO3aMadOmRWS/JvYkVKnC6UOvhnCP5iUnc/o1Q0moEpkjKDfffDMvvfQSmZmZjBgxIm6mKzWlI8kJVD+vEYT5XUiicNp5DZHkiN3S7zOgL1Dwzq6LgHNVNQMYi3NvqIixPGXMSbGap0zlEsN5KiwhRaGq81X1bFU9S1X/6a67R1XnuY+Pq+o1qtpSVbvlzWzklv3T3e4cVX0/3IDHXHBG2FO9Jogw+oLIjRkfOHAgIoKI0K1bN7YWnIrEVCh1brgBSQjvP7AkJFD7+usjFJEzbXFFu/O9KV7qBU3Cn+pVhBoXRK6tqOoqVd1SxPrDevIQ+GlAxGc8sDxlzEmxmKdM5ROLeSpcoUxHHlOa1a3OmAtbMHPpjxwrxY0BqyUnMvqC5jSrWz2k+ocOHeLiiy8usmz27Nm0bXvyViEej4dZs2bxxBNPlDguEz9S0tOpc8P17H9pNnrsWIm3l2rVqHP9SFLS04NXJrQ2OG2ac+f7atWqUbNmTZYtW1biuEx8SapbjRoXNuHI0u2lujGgJCdw2gVNSKpbLbT6IqnApwGKR/jd/DbQ9lfi3NOpAdGdqjzqop2njCko2nnKmKJEO09FQ9x1nAD+0L81O7KP8+HqXSVKStWSE7msXUPu6t865G1SU1PJLDgZfgC/+c1v6NmzZ8AfuabiqH/HHXh27uLQokUlSkpSrRqpffpQvwR3pg+lDebd+b579+488sgj3H777TZktBKo1b8F3uwTHF+9r0RJSZITqNquLrX6twh5G1U9BGSUOMiT288B5ohIT+DvOEP6Kqxo5iljihLNPGVMINHMU9EQdDry8hBomld/qspDC9bx/Gdb8KkWe9+M5EQhQYSxF7bgrv6tQ7qjdo0aNTh8+HDIZ5z+9re/sWrVKt566y0Swjw9buKDqrLnscfYP+tF574ZuUXfFwyA5GQkIYE6v7yB+rffHtE2WL9+fXr06MGmTZsA+Omnn+jfvz9r1hR7AsBUEKpK9oItHP5su3MhbnFTvyaKM+zhwibU6t8iaDsUkS+B1qpaoyRnnERkC9BVVfcG2O8PQLdA5fEgFvKUMcGUdZ4yJhRlnaeiOR153Hac8vy07ygzlm7m1RVZiAg5uT48Xh/JiQmkJCWgqgzr1ozRF7QgvU7owx7yfrSGYtq0aUyfPp1FixZRrVrsnE400ZGTlcWBF1/k59ffABF8Ho9zk9zkZGdKWFVOv+Yaat9wPSlpaSHvN9Q2mJubS6NGjVi6dClnn302zz33HPPnz+fNvNvcm0ohd98xDi/dzpEVu0CcO63jVUgUZ0pYhdO6NaLGBU1IqhPaFNf+HaeSxFKw4yQiLYFNqqoi0hl4B0jTWExAIYqFPGVMqMoqTxlTEmWVpyp9x0lE9lB4VqagWyVUq1FLEpJTEFJRDqnPk+M7dji7lPMhdgJWhVi3C3ACyDsHeQDYUUz9ekAsH2mN9fggBmMUkFoJibWSRVJESFXlkEc1J9vnzdbSXQxfkjZ4OpB39aQX2AwUd/fDmPv8ihDrMcZkfILI6dVSayUnJKeISKqqHvL4PDk/HzuUrSX/LmwOVAu14yQiE4C7gEbAbmC+qo4TkT8AvwQ8wDHgTlX9XwljiSkxkqfKUky27wJiPcaYi68M8lRZi7nPsACLrxQinadUtX6ZBFqEmOw4hUtEVsby3e4tvvDFeowWX/hiPcZYjw/iI8bKKtb/bWI9Poj9GC2+8MV6jBZf+OIhRn92MY4xxhhjjDHGBGEdJ2OMMcYYY4wJoqJ2nP5d3gEEYfGFL9ZjtPjCF+sxxnp8EB8xVlax/m8T6/FB7Mdo8YUv1mO0+MIXDzHmq5DXOBljjDHGGGNMJFXUM07GGGOMMcYYEzHWcTLGGGOMMcaYIGK+4yQi00Vkt4h857eujoh8JCIb3L+1A2w7yq2zQURG+a3vIiLfishGEZkiYdweu7TxiUiGiHwuIqtF5BsRuc6vbIaIbBaRTHfJiHZ8bj2vXwzz/NafISJfuJ/fqyKSUtr4wolRRHr7xZcpIsdF5Aq3rKw/w2vcfzufiAScRlNE+ovIevezuttvfcQ+w9LGJyLpIvKJiKxx6/7Or+xeEdnm9/kNLG184cTo1tvi/n/NFJGVfutDasdlGZ+InFOgDR4UkYluWcQ+wwDxPSIi69zvjzkicnqAbcu8DVZ2YX7PWp6yPGV5yvJUmcUnUcpTxcRYsXKVqsb0AvQEOgPf+a17GLjbfXw38FAR29UBfnD/1nYf13bLlgM9AAHeBwaUQ3xnA63cx01wbph7uvt8BjC0PD8/t+xwgPWvAcPcx88AN5dXjAX+vfcD1aP0GbYBzgEWA10DbJcIbALOBFKAr4G2kf4Mw4ivMdDZfZwKfO8X373A7yPx+YUTo1tvC1CviPUlaiNlFV+Bf++dODfji+hnGCC+y4Ak9/FDRb3/aLXByr6U9jsMy1NhxeeWWZ4KHJ/lqSjE6NbbQiXPU8XEWKFyVcyfcVLVJThfNP4uB2a6j2cCVxSxaT/gI1Xdr6oHgI+A/iLSGKipqsvU+Vd4IcD2ZRqfqn6vqhvcx9uB3UDE73wcxudXJBER4BLgjdJsX4YxDgXeV9Wj4cRSlKLiU9W1qro+yKbdgI2q+oOq5gCvAJdH+jMsbXyqukNVv3IfHwLWAk1LG0dZxBhEqdtxQRGKrw+wSVV/LG0cgQSI70NVzXWfLgPSitg0Km2wsrM8FR7LU+GzPBU+y1Phqwy5KuY7TgE0VNUd7uOdQMMi6jQFsvyeb3XXNXUfF1wf7fjyiUg3nB72Jr/V/3RPa/5LRKqUU3xVRWSliCzLG1oA1AV+9vtPUBafX0lizDMMeLnAurL8DEMRqA1G6zMMmYi0ADoBX/itvsX9/KaHM7wgAhT4UES+FJHxfutL2kbKWlFtMFqf4VicsxIFxU0brIAsT0UnPstT4Ymb7wjLUxFRnnkKKkCuiteOUz73aFzMzqkeLD73yOIsYIyq+tzVfwRaA+fhnNr/QznF11xVuwIjgMkiclZZxVGcED/DDsAHfquj9hnGOxGpAbwJTFTVg+7qp4GzgAyc4TmPlU90AFykqp2BAcBvRaRnwQrl/T3gjrkeArzutzoqn6GITAJygZfKYv8mfOXdPoOxPBU+y1Nly/JU+MozT7mvXyFyVbx2nHa5X0J5X0a7i6izDUj3e57mrtvGqacJ89ZHOz5EpCbwHjBJVZflrXdPTauqngCexzmFGfX4VHWb+/cHnPGznYB9wOkikuRWK4vPL+QYXdcCc1TVk7ciCp9hKAK1wWh9hkGJSDJOMnpJVd/KW6+qu1TV6/5I+g/l8/nlxZLXDncDc/xiKUkbKWsDgK9UdVfeimh8hiIyGhgEjHSTckEx3wYrMMtTUYjP8lTYYv47wvJUxJRLnoKKlaviteM0DxjlPh4FzC2izgfAZSJS2z31eBnwgXvK9KCI9HDHTv4ywPZlGp/b858DvKCqbxQoy/tPJjhjOb8ruH0U4qudN2xAROoBFwJr3Ab/Cc5Y7YDbRyNGP8MpcOo5Cp9hKFYArdwZYVJwTpHPi+JnWCz3s3kOWKuqjxcoa+z39ErK5/NDRE4TkdS8xzj/j/NiKUkbKWsB26Ar4p+hiPQH7gKGaOBrJmK6DVZwlqfKPj7LU+GL6e8Iy1MRFfU85b5GxcpVWo4zU4Sy4Pwj7wA8OGMbb8QZ87gI2AAsBOq4dbsC0/y2HQtsdJcxfuu74jSOTcBUQKIdH3C9u02m35Lhln0MfOvG+CJQoxziu8CN4Wv3741++zwTZ8anjTinfKuU479xC5yjDwkF9lnWn+GV7uMTwC6cHzvgzDw132/bgTizAG3COWIb8c+wtPEBF+EMG/jGrw0OdMtmuZ/fNzhf/I3L4N84lBjPdNvg18DqAp9hkW2kHP6NT8M5KlarwD4j9hkGiG8jzpjwvH+7Z8qrDVb2JcC/j+Wpso/P8lTx8Vmeik6MlqeKj7FC5SpxgzLGGGOMMcYYE0C8DtUzxhhjjDHGmKixjpMxxhhjjDHGBGEdJ2OMMcYYY4wJwjpOxhhjjDHGGBOEdZyMMcYYY4wxJgjrOBljjDHGGGNMENZxMsYYY4wxxpgg/j/dBovOkqfc3gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "from mlinsights.mltree import predict_leaves\n", - "leaves = predict_leaves(clr, X)\n", - "\n", - "import matplotlib.pyplot as plt\n", - "fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", - "for i in range(X.shape[0]):\n", - " ax[0].plot([X[i, 0]], [X[i, 1]], 'o', ms=19)\n", - " ax[1].plot([X[i, 0]], [X[i, 1]], 'o', ms=19)\n", - " ax[0].text(X[i, 0] + 0.1, X[i, 1] - 0.1, \"y=%d\\nl=%d\" % (y[i], leaves[i]))\n", - " \n", - "for edge, segments in neighbors.items():\n", - " for segment in segments:\n", - " # leaves l1, l2 are neighbors\n", - " l1, l2 = edge\n", - " # the common border is [x1, x2]\n", - " x1 = segment[1]\n", - " x2 = segment[2]\n", - " ax[1].plot([x1[0], x2[0]], [x1[1], x2[1]], 'b--')\n", - " ax[1].text((x1[0] + x2[0])/2, (x1[1] + x2[1])/2, \"%d->%d\" % edge)\n", - "ax[0].set_title(\"Classes and leaves\")\n", - "ax[1].set_title(\"Segments\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## On Iris" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import load_iris\n", - "iris = load_iris()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "X = iris.data[:, :2]\n", - "y = iris.target" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DecisionTreeClassifier(max_depth=3)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "clr = DecisionTreeClassifier(max_depth=3)\n", - "clr.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAEWCAYAAABPK/eBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACx1ElEQVR4nOzdd3RURRvA4d9sy256L5CQ0HvvTTqIVBGxF8TCZ++KXazYsGADRFBRERAFAem99w4h9ISE9LLJbrbN90cgsCQBggkJMM85HmH23rmzQ7LvvvdOEVJKFEVRFEVRFEVRrgeaim6AoiiKoiiKoijKlaISIEVRFEVRFEVRrhsqAVIURVEURVEU5bqhEiBFURRFURRFUa4bKgFSFEVRFEVRFOW6oRIgRVEURVEURVGuGyoBUpQrTAhxlxBiYUW3Q1EURVEU5XqkEiBFKQdCiKNCiJ7FvSalnCql7H2l26QoiqJcuy4UdxRFcacSIEW5goQQuopug6IoiqIoyvVMJUCKUo6EEPcLIdYIIcYKIdKAt06XrT79ujj9WrIQIlsIsUsI0aiCm60oiqJcA4QQGiHEy0KIQ0KINCHEH0KIwHNeny6ESBJCZAkhVgohGp4ub3u6XHvOsTcLIXZerF4hhFEI8cvp8kwhxCYhRNiVfu+KciEqAVKU8tcWOAyEAe+d91pv4AagDuAHDAPSrmjrFEVRlGvVE8BgoAtQBcgAvj7n9flAbSAU2ApMBZBSbgByge7nHHsn8Osl1HsfBfEsCggCRgKWsnxTivJfqQRIUcrfSSnlV1JKh5Ty/CBgB3yAeoCQUu6TUiZe+SYqiqIo16CRwKtSyngpZT7wFjD0zHBsKeUkKWXOOa81FUL4nT73N+AOACGED3DT6bKL1WunIPGpJaV0Sim3SCmzr8B7VZRLphIgRSl/J0p6QUq5FBhHwZ2zZCHEeCGE7xVrmaIoinItiwZmnR6KlgnsA5xAmBBCK4T48PQwtmzg6Olzgk///1dgiBDCAxgCbJVSHrtYvcDPwALgdyHESSHER0IIfbm/U0UpBZUAKUr5kxd8UcovpZQtgQYUDIV74Yq0SlEURbnWnQD6Sin9z/nPKKVMoGBI2yCgJwVD1mJOnyMApJR7gWNAX9yHv12wXimlXUr5tpSyAdAB6A/cewXeq6JcMpUAKUoFEkK0Pj3ZVE/BeGsr4KrgZimKoihXJ/3pRQiMQggjMBF4TwgRDSCECBFCDDp9rA+QT8G8U0/g/WLq+xV4ioK5qtPPKf+upHqFEN2EEI1PL6CQTcGQOBXXlEpFJUCKUrF8gQkUTCA9RkEg+rhCW6QoiqJcreZRsODAmf8CgNnAQiFEDrCegoV5AH6iIO4kAHtPv3a+3yhY6GCplDL1nPIvLlBvODCDguRnH7CCgmFxilJpCCkvODpHURRFURRFURTlmqGeACmKoiiKoiiKct1QCZCiKIqiKIqiKNcNlQApiqIoiqIoinLdUAmQoiiKoiiKoijXDV1FN6C0tJ5+UucXWtHNUJQyFRHsWdFNUJRSObZ7Z6qUMqSi21EZeQd6yaDIgIpuhlIJhGRpS3ztpN1+BVvy36X4+Fd0E66Iqga1Z+u14kJx6qpLgHR+oUTc93lFN0NRytSbI5pXdBMUpVQeqFP12MWPuj4FRQbwyuynKroZSiXwyALvEl97K/HUFWzJf/ddl8EV3YQr4s1IdZP9WnGhOKWGwCmKoiiKoiiKct1QCZCiKIqiKIqiKNcNlQApiqIoiqIoinLdUAmQoiiKoiiKoijXDZUAKYqiKIqiKIpy3VAJkKIoiqIoiqIo1w2VACmKoiiKoiiKct1QCZCiKIqiKIqiKNcNlQApiqIoiqIoinLdUAmQoiiKoiiKoijXDZUAKYqiKIqiKIpy3VAJkKIoiqIoiqIo1w2VACmKoiiKoiiKct1QCZCiKIqiKIqiKNeNck2AhBBHhRC7hBDbhRCbi3ldCCG+FELECSF2CiFalGd7FEVRFOVcKk4piqJcf3RX4BrdpJSpJbzWF6h9+r+2wLen/68oiqIoV4qKU4qiKNeRih4CNwj4SRZYD/gLISIquE2KoiiKcoaKU4qiKNeY8k6AJLBQCLFFCPFwMa9XBU6c8/f402VuhBAPCyE2CyE2O/OyyqmpiqIoynWozOOUOS23nJqqKIqilIXyHgLXSUqZIIQIBRYJIfZLKVeWthIp5XhgPIBHRG1Z1o1UFEVRrltlHqeim0SqOKUoilKJlesTICllwun/JwOzgDbnHZIARJ3z98jTZYqiKIpS7lScUhRFuf6UWwIkhPASQvic+TPQG9h93mGzgXtPr7LTDsiSUiaWV5sURVEU5QwVpxRFUa5P5TkELgyYJYQ4c51fpZT/CiFGAkgpvwPmATcBcUAeMLwc26MoiqIo51JxSlEU5TpUbgmQlPIw0LSY8u/O+bMEHiuvNiiKoihKSVScUhRFuT5V9DLYiqIoiqIoiqIoV4xKgBRFURRFURRFuW6oBEhRFEVRFEVRlOuGSoAURVEURVEURbluqARIURRFURRFUZTrhkqAFEVRFEVRFEW5bqgESFEURVEURVGU64ZKgBRFURRFURRFuW6oBEhRFEVRFEVRlOuGSoAURVEURVEURbluqARIURRFURRFUZTrhkqAFEVRFEVRFEW5bqgESFEURVEURVGU64ZKgBRFURRFURRFuW6oBEhRFEVRFEVRlOuGSoAURVEURVEURblulHsCJITQCiG2CSH+Kea1+4UQKUKI7af/e7C826MoiqIo51JxSlEU5fqiuwLXeArYB/iW8Po0KeXjV6AdiqIoilIcFacURVGuI+X6BEgIEQn0AyaW53UURVEU5XKoOKUoinL9Ke8hcJ8DLwKuCxxzixBipxBihhAiqrgDhBAPCyE2CyE2O/OyyqOdiqIoyvXpc8o4TpnTcsujnYqiKEoZKbcESAjRH0iWUm65wGFzgBgpZRNgETCluIOklOOllK2klK20nn7l0FpFAXtaPFkb/iR782wcOakV3RxFUcpZecUp7yCvcmitokBWVhbr169n7dq1pKenV3RzFOWqVZ5PgDoCA4UQR4Hfge5CiF/OPUBKmSalzD/914lAy3Jsj6KUKHPt7yT9+jLO7FPYko+QOOlxzHuWVXSzFEUpXypOKVeNLVu38vX3E1if5GJjqpbvJv7I6rXrKrpZinJVKrdFEKSUo4BRAEKIrsDzUsq7zz1GCBEhpUw8/deBFExCVZQrKj8pDvO2+VR54Cu0XgEA2FJv5tQvL2Cq3gL11FFRrk0qTilXi+zsbBYsWkLIvZ+jD6gCgHf721k1+Unq1q5FSEhIBbdQUa4uV3wfICHEaCHEwNN/fVIIsUcIsQN4Erj/SrdHUfIOrMGrcc/C5AfAEFwNY/UWWOI2VmDLFEWpCCpOKZXNgQMHMNVqW5j8AOh8gjE17MbevXsrsGWKcnW6EstgI6VcDiw//ec3zikvvPumKBVHIoQo8TVFUa59Kk4plZmUJcUpgVRhSlFK7Yo/AVKUysazTgfMuxZz7gqD9rR4rEe2YqrZpgJbpiiKoihQt25d8uI2YM9MKixzmNOx7F1Kgwb1K7BlinJ1uiJPgBSlMvOIqIN3414kTnocz/o3IB355O1fQ0CPh9F6+Vd08xRFUZTrnJ+fH726d2PRT0/jWa8zaLRY9q2kY7vWhIaGVnTzFOWqoxIgRQH8O9+FZ71OWOI2ILQ6Iu7/Ap2fCiqKoihK5dC6VUtq1azB3r17kdJGveH3EBwcXNHNUpSrkkqAFOU0Q0g0hpDoim6GoiiKohQrICCAjh07VnQzFOWqp+YAKYqiKIqiKIpy3VBPgJRrkiM7mdw9y3FZzRhjmmGMaYYQKt9XFEVRKofc3Fx27NhBjjmXalGR1K1bF41GxSlFuRLUb5pyzck7uJ7EyU/jNKchPDzJWDqR1L/HIF3Oim6aoiiKorD20CG++uY7NiQ52W+ozdzVW/lhyi/Y7faKbpqiXBfUEyDlmiIdNtL+/YrQW9/CI6IOAH5tbyFp6svk7V+FV4OuFdtARVEU5bompeSOKb/i2+cpPOu0LyhrewsZs95hw4aNdOqk5vgoSnlTT4CUa4o1fi/6gCqFyQ+A0OrxaX4TebHrK7BliqIoigKxp5LJyLdjqt2usEwIDaYWg9h94GAFtkxRrh8qAVKuKUKrQzpsRcql047QqgeeiqIoSsXSa7W4nA6QLvcXnHY0Wm3FNEpRrjPqG6FSadiSj5C7dwXSkY+pZpvTCxeIUtXhUbU+zrxs8g5twrNmawBcVjM5m//Gv+vw8mi2oiiKcp1IPprKuplbycmw0LBzTZr2bIBGW7p7yTVCgokO9OfUzgV4N7sJKBi+nbvhD7o0rl8ezVYU5TwqAVIqhZxt88hc8yveTfqg9Q4iY8l4DBF1CbrpqVIlQUKjJWTQiyT/+R7miNpovQLIi9uIV8OumE4nRIqiKIpSWlvn72LKS7MwNeiB8Ixm+/vLWfbzJp6cdA86Q+m+Ts184F5affYVtv0r0QRUwXp4CzWqVaVlyxbl1HpFUc6lEiClwjlzM8lcMYWI4V+i8wsDwKdlf5KmPIv16DZM1UsXEDyq1qfqIxOwxG3AZTXj2+Zm9EFR5dF0RVEU5Tpgz7fz06i/CLj5HTwiagMgWw0kceYrbPhrGx2Hle4GW73wcJ5+4lFiY2Mxm81EtbmFiIiI8mi6oijFUAmQUuEsR7dhjGlWmPwAaPRGvBr3xBK3odQJEIDGYFIrvimKoihl4vC24+gDwguTHygYceDR8CY2zfu31AkQgE6no0GDBmXZTEVRLpFaBEGpcEKrx2WzFimXNgtC51EBLVIURVGUs/QeOlw2K1JKt3KXzYLBpO4lK8rVRiVASoUz1WiFLekg1uO7Cssc2SmYdy7Aq0GXCmxZAXvGSTJWTCF13heYdy4qdpU5RVEU5doV0zQKPVby9q8qLHNacrDumEWnoU0rsGUFsrOzWbZ8BTP/nsOGDRvJz8+v6CYpSqVW7rcthBBaYDOQIKXsf95rHsBPQEsgDbhNSnm0vNukVC4ag5HggS+S8tcHGCJqozF4Yj2yFb9Od2IIq1mhbbMc2kTq3LF4N+6JR5U65O5bSc72eYTd9h4aD88KbZuiKGVDxSnlYjQaDY+Ov5Mv7x+Pbe9cNF7B5B3aQuc7WtO4e8Wu3JaQkMDPv/6Osd4NaMMbc/zIZtZumMhDD9yHt7d3hbZNUSqrK/Hc9ilgH+BbzGsjgAwpZS0hxO3AGOC2K9AmpZIxxTSj6sgfsBzajHTYCOjxEDrvwAptk3Q5SVv4DSE3v4IxqhEA3k1vJPXvMeRs/Qe/9sMqtH2KopQZFaeUi6rWsCofrH6RPSv2k5tpoU67xwipFlTRzWL2/IX49Bh5dt5r0z5kLhnPshWrGNCvb4W2TVEqq3IdAieEiAT6ARNLOGQQMOX0n2cAPURpN35Rrhkagwmv+p3xbtyjwpMfAHvqcYTOUJj8AAgh8G52I5bDmyuwZYqilBUVp5TS0HvoaNa7ER2Hta4UyY/FYiEtJRnPep3dyr2a9eXAwbgKapWiVH7lPQfoc+BFwFXC61WBEwBSSgeQBRT5RBFCPCyE2CyE2OzMyyqnpiqKO6H3QNosSJfTrdxlNSP0xgpqlaIoZexzyjhOmdNyy6mpiuJOq9WClEi7+5wflzUXvcFQQa1SlMqv3BIgIUR/IFlKueW/1iWlHC+lbCWlbKX19CuD1inXApfNStq/40iYMJKTk54gZ/uCMq1fH1AFnW8oOVvmFK7848rPJXv9dLwadivTaymKcuWVV5zyDvIqg9Yp1wKHw8FLf84i6o13qP7Wu3z47wJcrpJy7dIzGAzUrFWb7DW/FsYp6bBhXvMzLZo0usjZinL9Ks85QB2BgUKImwAj4CuE+EVKefc5xyQAUUC8EEIH+FEwyVRRLshls5Iw4WF0PkH4tR2CMy+LzBWTsRzdRujgl8vsOkEDnid5+lvk7lmGzj8C6/GdeDXspvYYUpRrg4pTSrlxuVxUf/t9Tjm1+LS6Gem089qSP5mxYzebX3quzK4zsN+N/PzbNFJ+2IghNAbL8T3UrB5Nh/btyuwainKtKbcESEo5ChgFIIToCjx/XlABmA3cB6wDhgJL5fmL7CtKMTKW/YDOO5Dwuz9BaLQAeNW/gYQJ/8OekYg+oGx21Nb7h1PlwW+wHt+FKzeDgG7D3TZsVRTl6qXilFKelk5eQ5LVQcRDX6PRF+xp59WwO1u/G8GivfsgoGzmunp5efHIiOHEx8eTmZlJeLdmhISElEndinKtuuL7AAkhRgshBp7+6w9AkBAiDngWKLtb98o1zXp8F97NbipMfgB0fmF4VKmDeUfZDoUTQoMpuileDbqq5EdRrgMqTillYdPsnXg16V2Y/ABoTT541mnP+NWry/RaQgiioqJo3LixSn4U5RJcke2LpZTLgeWn//zGOeVW4NYr0Qbl2iJ0elyWogtiOPOy0HgWt5KtoihKyVScUsqayceDNHNGkXJXbgYB/mofOUWpSFckAVKUM2xp8aT+9SHOvAwQGryb9CbghntKXY9PiwFkLp+EZ73O6P3DATDvWYYzOwWfFv0vcnZR0uUkd99KLAfXg1aHV/0umGq2Rq12e32I3byR1TN/Jzcri4YdO9NxyG14mEwlHu90ONg492+2LVmATm+gTf9BNO3aU/28KMo1IDvNzDcPTSb+YBYaDbTtX4+73rul1PX0e7I7n931Iz7N+mIIqwGA5eh2rCd288bDbzLRaitVfVJKDhw4wPbd+3C5XDRpUJcGDRqg0VzxwTxKBTi+dzfLp/1CVnIytVq2psuwO/H0LXlhMCkl2xYvYOO82bhcTlr2uonWffuj0WpLPOd6ohIg5YqxpRwj6efnMEY1xq/j7TiyTpG17g/y4/cSfucHparLp2lvrEe3cXLio3hE1MKZl40zJ5Wgm55Coyvd0p9Sukj5+0NcuZl4N+uLdNjIXP4j+Sd2E9DtgVLVpVx9lvwymfkTvqb38IfxDwll7V8zWPf3TJ6f8kexSZDL5eLbp0aSnZZC19vvwWa1Mv2j94jdtIFhL75WAe9AUZSyYs4w83KnT9AHRePfbRhOSw5r/prGvnWf8u7S0i1cULt1DZ7q3JEvfnkOQ0gNpNOOPT2ezwYPIDIgABJPlaq+f+b/y76jiZhaDkZodMxfO5s9Bw4ybMhgdfPlGrdlwTx+fmsUve57kAbtO7F10b+8c2t/Xvntb3wCi59LNnX0a8Ru3kDPex5Aq9Ox8MfxbF+6kIc/Had+XlAJkHIFpfz1PsaY5oTc/ErhL5+pRkuSfnoWe3Yqet/gUtUXMugl7JlJmHcsQGvyxbtFv1InPwDWw1txZCQScd9YhFYPgGe9Tpyc8AjeTfugD6xa6jqVq0NeTjazPv+IN/6cT2i1aABa3zSQLx6+l7Wz/qDbnfcVOWf3quUkHz/KGzPnoTu9z0brvv15pc8NdBl2J2ExNa7kW1AUpQxNeGwqOv8qhN01BiEKnqx41u3Iye8f5MC6OOq2r1Wq+sYOG8qoG3szbvkKPHQ6nuj6GL6eJT9dLsmpU6fYvS+WsAfHo/EoGD7nVb8zR398lGPHjhETE1PqOpWrg9Ph4Nd3X+eJbydRs1lLAFrd2J/Jr73IwsnjueXZotMST+zfy9ZF//LevysweXsD0KbfQN4Y2IvYTeup26b9FX0PlZF6bqpcMS5LDj5Ne7vdeTCExKD1DSFn65zLqlPvH05Al/vwbXPzZSU/AJZj2/Gqf0Nh8gOgNXpjqtka67Edl1WncnU4vH0r1Ro0LEx+oGAycftBQ9mzZlWx5+xdu4q2/QYVJj8AXn7+NO3Wk73rynZis6IoV9aRPal4N72xMPkB0HkH4lG1AYsmrLysOkN9fRk9cACv3tT3spIfgMOHD2Oq3b4w+QEQOgMe9bpw6NDhy6pTuTokHTmEwWQqTH7O6DB4KHtLiFP71q2mec8+hckPgN7DSJubBrJnzeX9HF9rVAKkXEECx3kTQqXLiSsvG51feAW1CTQeXjhzi05UdZoz0Bi9izlDuVaYfH3JSk7m/FWNs1JO4elX/NhqT19fslJTipRnJifjdYHx2IqiVH56g8CZU3SbJ6c5Db/Qiltgx2g0InPTi5RLcxomk7ECWqRcKSYfH3IzM7Hb8t3KLxSnTL5+ZBcTp7KSky84b+h6ohIg5YoxVm9O1qpfcGSnAgVzb7LWT0dKF77N+5Z4nj09gfRF33Fq2uukL5mAPTMJKNgMNXvz35z6401S/h6D5dDmy2qXd6Pu5O5dQX7iwcKyvIPrsSUfwlSrzWXVqVwdajRpjkanY+kvkwuToOTjR1nw43g633J7sed0GDSU9bP/5Mius08Hty1ewPF9u2navfcVabeiKOWjz4gOZG/+G1vqcaBgInnOrsU4spMZ+lq/Es9LP5nJ9Pfn8dFtk5jy0iwSDhTEKbvTyQ9r1tDly2/p9c14pm3ejMvlKnW76tevT378HiyHtxSWWeP3Yjm4jsaNG5e6PuXqERhehZjGTZn91We4nE4AslJTmD1uLJ2HFh+nWvbuy4FN69m1cllh2cEtm9iyaB7tBtx8Rdpd2ak5QMoVE9hrJPHfDCdh/EMYQqvjzEnFZbPg1aB7iefkJ+wneeZofJr3w7f1YKwndpH08/OEDn2D9MXfo/X0x6d5X5x5WaQv+R7vU4fw63Bbqdql8wsj6MbHSZ7+JvrAqkiHDaclm9Ahr6PRqztr1zIhBI9/PZFxjz3I0qmT8QsJ4fi+vQx55kVqt2xd7DnBkVHc9+7HjH3wbsKr18BmtZKbmcET30664MpxiqJUft2Gd+Kfb5aTOPkp9MHVcFnNuPKyqNM2GpN38b/fpw6nMGbo9xjqdMUQ3Y2MpINsHTaBkV/fRr/vNrE5y4G2+QCk087If/7k3/1x/Hh38V9cS2I0Grlj2FD+mPkZuV6BCI0WR9Ypbr15ED4+PmXx1pVKbMSYz/n68Yd4uVdHQqKiObp7J73ue5DWfQcUe7ynjy+Pj5vI988+im9IKDqdjpQTx3nooy/xD1X7GcIlJEBCCA/gFiDm3OOllKPLr1nKtShn6z941WmHX8c7yd23Ep1fKPrQGiT/+jIB3YcXm2xkrJhMQI+H8G7YDShYNEHnE0zagq/RmnwJGfJa4Zwiz5ptSJg4Eu+mvdF6BZSqbZ51OmCq0Qpr/F6EVodH1fpum6wq166w6OqMnrOYIzu3k5edRc3mLTF5X/gLRcvefWnSpRsHt2xCpzdQs3lLtDp1P6miqDillJVNc7bjEVqD4D4vkrd7CRqTN8aarTk85VEyT2XhH1Z0+NCsT5dgaDIYv3bDgNNxKjiGKaPGI21G/O79EqEt+LF01W7H9IkP81y3G6CUMSY6Oppnn3qC+Ph4XC4XUVFR6NTnznXBLziEV37/i+P79pCVkkx0oyb4BgZd8Jw6rdsyZul6Dm3fgsvhoFbL1ugNHhc853pyKb85fwNZwBYg/yLHKkqJ8o/vwrfNEPQBEfif85RG5x+O7dQRjJH13Y6XLif58XsJu+1dt3LPBl1JX/oDvn0ec1tQQesdgDGyAfkJ+/Cs06HU7RM6A6aYZqU+T7n6CSGo0bR5qc7Rexhp0KFzObVIKSUVp5QysWfVEfS1u6H3CcSv/dn9bz2jG3Jo8zFa9mtS5JzY9YcIuO1xtzJTrTakzfkI71Y3FyY/ABqDCWOtNiyLPQD1GpS6fVqtlujo6IsfqFyTqtVvCPUbXvLxOr2euq3blWOLrl6XkgBFSilvLPeWKNc8jckXR7b7pDzpcuI0p6H1LGZyqdCg8fDEaU5D53f2ka0zOwWNwVi0LilxZKegMVXcRFVFUSqEilNKmfAJMiFjk4uUO7NT8Qoo/iaJp58XjuwUdL6hhWWuvCyEEOiKWbhA5KQQ7F2FokstKIpypVxKArRWCNFYSrmr3FujlDvpsJGzfT6WuA2g0ePV4Aa8GnZzW/LzkutyOTHvXETegTUgJZ51O+DdpDdCqyP/5AFytszBkZ2MIbw2vq0G4d20D2n/foUxuin6gAiky0nWmt/QBVQpdq8dIQTeTfuQvvh7gge8iMZgxJWfS8bSiXjW70LOtrl41m6HIbQ6UrrI2ToX6XTgEVn6u2pKxTq0YytLfv6RtIR4Yho3odd9DxFcNbKim6VcPVScuoa4nC7WzdjM2lm7cTldtOnfgM53tEFnKP1wLyklW+buYOW07eTn2WnRqzZd7+2Ah6eBk7FJLBi/hoSDqUTWDaHPwx3pfFsr1g2bgLF2BwxhNZFSYt4xHz251Glb/B5f3e5pzbwpP6Af9BZaky8uez7Zy8fTvG9j9i1ah/54d4zVGiOlJO/AGpynDjGo6b18lFZ09VGl8ko4eIBFkyeSeDiOKrVq0+u+h6hSq3ZFN0u5TCV+mgghdgHy9DHDhRCHKRhaIAAppSz6HFip1KTLSfKMt0Grw6f1zUh7PtkbZ5Ifv5egG58oXV1SkjrnE5zmdHxbDwahIXvz31gOb8GrUQ/SF32DX7theDftjeXwFpJ+fo6wu8bg23owST89gz4wEkdOKjq/MIIHvVTidfw73U3agnEkfDscfXA17KnH8KzXmcAeD2GsWo9T015D5xeKy5KDMHgSOvSNy0rmlIqzddG//PTmy/Qb+QQ33HoHu1Yu471hA3j51z8Ji65e0c1TKjEVp65NE576g4O7czG1uAU0Wub98jfbFx/gqSn3odGU7vN92ui5bFp4DFPLYWgivFkyex6b5k3k1lf68M0jU/FsPgRDw8EcSNjDtlu+5+kp93P3uwOY+vpr6P1CcVjM+PjpeHTyvWi0xV+7233tSTmewZofHsQUVg1rSgL12tfk3g+GUjc6iTsmj8Hu6Y/LacdL2vnr8ZF4Gi5v3zqlYsRt3cSX/3uAPsMfpv2gIcRu2ciHdw3h6fE/lXr4tFI5XOh2Sv8r1grlirDEbcBlsxB+98eFE/xNNVpxcsLD2FKOYgiJueS6bCf3Y0uKo8qIbxA6/em6WpL44xOkL/6OkIEvYqxW8N3DWK0JQm8ka+0fBPd7Gu9GPbAlH0Zr8kMfHHXB6widnuB+z+DITsWReRJdYCQ670AAvBp0xVS7Pbakg2g8PNGHVHebE6RUfi6Xiz8+eoeRY7+hXtuCeVv12nbAw9OTf779khEfjq3gFiqVnIpT15ijO06wb/1xQu8fjzi9ubWpRivipz7BvlUHadil7iXXlRqfztoZWwkbMbFwTzdj9RZkzBzFTy/PwvuGRwoX2DFWa4zGK4jpH8znxWkP0qx3Q47tjMfDy4PI+hEXjC0ajYbb3+zPTY91JSnuFEGRgQRFFizE07tBA5I+eIdNR4+i12ppWa1aqZM4peLN/GwMd7zyFu0H3QJA3Tbt8Q8N58+xY3h+8u8V3DrlcpT4WyilPCalPAa8e+bP55ZduSYqZcV6Yg+edTu4rW6mMRgx1WhFfvzeUtdlqt22MPkBEFodpjrtcVlz8Yhy35fAq15n8uN3F1zTwxNjVKOLJj/n0vkGY6zWpDD5KWy/3gNjVCMMoTVU8nMVykpJxpKTQ9027d3KW/cdQOymDRXUKuVqoeLUtSdu0xGMNdoWJj8AQqNFV70TsRuOlKquQ5uP4lm9iduG1kII9DVvIP1kFl71Orkd71mvM0e3HgZA76GnVuvqRDWocsmxxTfYmzrtahYmP2fotVo61KxJ65gYlfxchaSUxG7eUGTJ6TYqTl3VLuU30W25CSGEFmhZPs1RypPWyx/H6U1Ez+XISkLr6V82dWUmgXThsuYUKS/tNZRrn6ePLw6bjdxM97HwKSeO4xscXEGtUq5CKk5dI3yCvJE5iUVfMJ/EL8S7aPlF6nJkFY1TruxEtDpNkRjmyErCM0DtqaO4E0LgGxRMyonjbuUpJ46pOHUVu9AcoFHAK4BJCJF9phiwAeOvQNuUMubVsBuJPz6JZ52OmKo3R0pJ7q7F2NMTMdUsftPHknjW6UDGisnk7luF5+m7aJa4DViP7cCrbidOTXsdl9WMtFvRmHyRDhv+ne7EduoIaQvG4chKQugMeDXoSkCX+5DShXnnYnL3Lkc68jHVbI1vy4FoPDxL/T6llOTtX4V55yJc+WaMMc3xbTUIrWfR/RuUiuXh6UmrG/vz67tvcN87H+Hh6UlGUiIzPnmfPg88UtHNUyo5FaeuPc36NOKPd+eTu3cFnvVvAMByaBP5RzbTeuCzpaqrXoda6F2zydk6B+/m/RBCgzV+L5Y9i2h/Sws2zX4Ph92FKz8XjYc3Wp2g9z1tSYtPZ9Jz0zm+LxWtTkurPrW4870hCCHYOm8XS3/ZTG6mhUY31KDPw53xCSpdYnZGXFwcazduJcdsJjqqKp07tMPPT8WpyqjLbXcz9Z3X+N8X3+Hl5485M4Nf33uDrrffU9FNUy6TkFJe+AAhPpBSjip1xUIYgZWABwWJ1gwp5ZvnHXM/8DGQcLponJRy4oXq9YioLSPu+7y0zVFOsxzdTtr8LxE6A9JhQ+PhSfCA50s1/+eM/MSDpP7zKbgccHrhgaCbniF373Jy964goOv9GEKrk3doEzkbZ+HXdThZKybj1ag7Xg264cxOJmP5JAxhNdF6BWJLPoJfh2FoDCZyts3HkZVE+J0fuQ2zuxSZq6aSF7sWv453oPUOIHf3UqwndhNxz6duQyEqkzdHXL+TKPPz8pj82gvsXr2c4MhqpBw/Ru/hDzHg0afVsMZK7IE6VbdIKVtVdDug8sWp6CaR8pXZT5W2Ocppx/ck8P3j08gzOxEaLQadkxFjh1K7TekXRTl1JIXvHptGRpIZrdEE9lzu+3AwyUdSmfnRYvw634WxagOs8XvIWj2VgU93Z+7XKzFUa4FPi364LDlkrvyJ4FBB8971WP77Hjzb3o3WJwjr/qWIpC28/s9jePkXf7PukQXFx5xvV67m2bkL8ep0D/qAqlhj15C/bymPjBheaZOg77oMrugmXBEfRIYWKXM6HPz23pusnzOL0GoxJB8/SofBQ7l91JtotGrT9MrqQnGqxARICNHiQpVKKbde6HVR8M3FS0ppFkLogdXAU1LK9ecccz/QSkr5eAnVFKESoP9OupzYU46CVo8+KOo/fcmUUmJPPQbShT4kBildxH9xB6G3vo3xnOWoM9f9Qc7GWZjqtCO479kvBo6sZBImPILGw5Oqj0xEYzAV1ps87VW8GvXEu1H3S26PMy+Lk+MfpspD36P18i8sT5n9MYawmvi1HXLZ77U8Xc8J0BkZp5LISEokomYtTN5qGEplVxkSoMoap1QC9N9JKTkZewrpdFGlXvh/mjsjpeTU4RRsFhtV60Wg1Wl5sul7+HZ9BK/TT5kAzHuWkbn0e/QhNQm97d3C2OjKz+XEuHvQ6bWEPfC921zUzPmf0KWXkZseLz5OFZcAWe12wl5+Da/bx2AIrlZYnrXsB2qJRPrd2Oey32t5up4ToDOy09NIPXGckKhofAIDSzxOqRwuFKcutArcp6f/bwRaATsoGFrQBNgMtC/hPKBg/VHAfPqv+tP/Xfhxk3JFCI0WQ1jNsqlLCLenR7ZThwHhlvwAeNXpQPb66XjV6+xWrvMLRWv0wSOqYWHyc6ZeU+325CfsLVUCZEs8iCG8tlvyA+BZpz25e5cDlTMBUiAgLJyAsPCKboZydVFx6holhKBq3bL5PBBCEF7znE1KXS5s2Vl41ungdpxn7fakzR2Lf4MubjcGNR5e6IOrodNpiizEY6jZkX3r/+KmS06P4WByMhqTr1vyA2Cs04GjS74sxTtTrjTfwCB8A4MquhlKGbjQKnDdpJTdgESghZSylZSyJdCcs0MBLkgIoRVCbAeSgUVSyuKWy7hFCLFTCDFDCFHssmBCiIeFEJuFEJudeVmXcmmlgmh9gpFOO+f/O9kzToLQYk93/9GRTjvO/NyC18/jyDiJ1rt0HzRan0DsmYlI6frPdSmKUrlV1jhlTsu9vDekXBEajQah9ygSjxwZJxE6A/a0E27lUkpc5gwc2clIl9P9nMwEgiJK98Q61MeH/NxMXDarW7k94yS+PpVzmLaiXGsuZVvluufuri2l3C2EqH8plUspnUAzIYQ/MEsI0UhKufucQ+YAv0kp84UQjwBTgCK3+6WU4zk9odUjora6O/cfuPLzyN44i7y4DQitFq/6XfBp0R+hLflHwXJ4K+lLJ+DKzUToPfBq0ouATncVe6zOyx99UCRp874geMBzaDy8sGcmkb7oOwwhMWSu+pn8+L3YU4+hMfmCVofw8MJls5D853s4zWlIhw19cDUsR7ZRZfgXJbbLlnaCtLmf48g8CRodxuhmBN70JDrvIDJX/ox/xzsROj35CfvI3jybsNtG/+f+uxTSYSNn81/Y9y0HKdHXuwHv1jej0RtLPCc9MYG5339N7Kb1+AQG0uW2e2jTbyAup5Plv/3MutkzsVmtNO3Wk74P/g9P38o5RlxRKkililPRTSJVnPoP7PkOlv64mnV/78bllLTuV5/eD92Ah2fJm4ce3XmCyS/OIuVEJjq9jrYD6nH724NLHDpXu00MR+d/Qegtb6D18sdpziBt/hdE1Q/j+Na5OHLSsaceQ+g90Hj6gdNCRO1wUv8cjTPfgsuaiz64Go6E7XSbOrzEdiVlZXHrD5PZGJ+IEIIeNaoxbcRwetavz4rF3+LX839oDEZsqccxr/6ZG/tfmeFvLpeLLZs3s3P7dux2O7Xq1KFjp06YTKaSz8nKxDptCq5NaxEmE6JXf0z9hoAQWBf9g/x3Nq7sLDTNWuFx+/1og0seSqYoFe1SFkH4DcgFfjlddBfgLaW8o1QXEuINIE9K+UkJr2uBdCnlBb/ZqTlAl0867SRNfQldQAS+LfrjctjIXvcHGpMvIYNeKvYcy+GtpMx6D992Q/Gs3Q576nHSl0zAWL0FIf2LX5EnZe5YLLHrwOVAY/IrfBoU2HskmcsmnZ7X0w1HVjLpSyfiWacDjqxknDkp+N9wLxqDiezNf2NLOkTE8C/R6D2KXMORncrJHx7Fs14nfJr1xZWXRcaKyQitjtBb3sTw54ucyMhC5+GJxm7llmZ1aBIZUXadWQIpJRNXbUIjBF3r1UCDYEXsYSw2O490bYemmPlW2RYrX23aS7sBN9Om3yDSEuKZ9flHtO0/mFNHD5MSf4IBjz6F0dub5b/+xIn9e3ll2t8YjCUHKkUpb5VhDtAZlS1OqTlAl09KyZfDfyI+0QPPlreCRotl2ywCPJJ5afpDaLRFE5qE/Ym8N+hbvJr0wbtRdxzZqWQsm0h0bW9emPZQsdeZP24pf3+5AlxOtF5+OHMzQaNl4NNdWPzDekSVlvi06I/LkkPGisnUa+JDYFU/1v5zGP+uD6D1DiJ312KcR1YxevHTeAd6FbmGLc/GS60/gsiG+LYeAi47Wat/xcecROxrLzFswjxWHtmEh5c/0mrm5c4juLfZoLLu0mI9O+89tiVto1v9GEx6PRsPJ5Ca7WDefZMwFXOzLteWR/NZj9KidTu633YXuVmZTP/yU7JiaoKPH6ZNa7jtmRcJCItg9V8zWLNwPj7f/IzGL6CYq1duF5oDpFxdLncO0BnDgf8BZz7NVwLfXuwkIUQIYJdSZgohTEAvYMx5x0RIKc8s+D8Q2HcJ7VEuU96BtQidgeD+zxeObzZWbUDChIfJT4rDI7xWkXPSl07At91Q/DsWfI8whFZHHxJN0s/P4bI9isbg/kHpctiwxK4l7LZ3ER5e2FOP4RHViNxdS8hcPgWvBl0J7PFgQV1hNTFE1ObkD48idAaqPvJDYbITPOAFkqe/Sd6+lXg36VW0XYu/x1itMcF9nyws84isT/zX92LPSuLpzi3IyrNisdsJ8fFCe4U2nzuUkk5mnoVne3cuvGZ0cABfLFrNgaQU6kcU/WBdffgELXreyK0vvFpwfINGVG/clNf6dUPvYeSjpesKk50aTZoz9sG72TB3Np1vue2KvCdFuQqoOHWNOLT5KMf2pRN877eFIxM8qtYj7fdn2LV0H017NSxyztTX/8ZUrzOBPQqSnTOx5fB3I0g5lkpIdNG9WuaNX0tIv2cwRNQmPzEWj4i65CfsZd5XX+FZvTEB/c7e4POoWp8DEx/A5XQQPmJi4RxTj/BaZC6wsPyX9fR/skeRa8z+fCFO72DCB79SGHM9bqtPwrcPMHP7diYNepuU3HTS8jKpHhCJh67kJ1xl6XD6CRYeXMWLN3XGQ1fQx1GBfvy0Zgd/7lnIXc0GFjlnxu4F1KhZmxHvfVxYVrN5K57r3g6n3c7oxWvwDSro5+iGjcnNyWHP7Bl43lN8AqooFe2i3wqllFYp5Vgp5c2n/xsrpbRe7DwgAlgmhNgJbKJgbPU/QojRQogzv11PCiH2CCF2AE8C91/uG1EuLj8xFlPNNm6TO4VOj6l6C2yJscWe48rNxLN2O7cyQ0gMQmckP/FAkePtqcdBCDyq1MUQFIlX3Y7oPP3wrN0WpBNTrbZux+t8gtH5R2AIre72pEcIgWetNsVeA8CedhzPuh3dyjQeXnhUqV/w9Anw8zQS7udzxZIfgONpmdSLCHW7pkYI6keEcjwts9hzTuTk0axHb7eygPAIQqKiiarXwO1JjxCCpt16cWTHBRe3UpTriopT146jO05giGnlNixbCA3aau04vO1EseckHsnC67wFDXTegeiDItm5pGi+6nK5sOdkY6rVBp1vSEGc8g3GVKsNTqdEH+O+dobGwxNjZAP0vsFFFtgx1GjPgY3xxbbrwPqjeNbv7B5ztXpMtdowb9ceAEK8AqkXUuOKJT8AOxL3UTsspDD5gYLYUicigM0JO4s9Z3PKftr0dB+eZ/L2pmaLVviHRxQmP2e07tkHsX83ilJZXWgj1D+klMOEELsoZlUcKWWTC1UspdxJwUTU88vfOOfPo4BS792gXB6dTxC21ONFyu2pJzDValPsOULvgT31OIbQs/svOC05uGx56AOqFDle6xuCdNhxmjPQep999G1PO4GkIHExVT/7YyEddpxZyeB0FKnLlnoCrU/xuyxrjN4FS3mfQ0oX9rQTeDboAsQVe1558/c0cjg1rUj5qRwz9cJDij3Hz0PPybhYGnY8uxyr3ZZP2skEnI6i/XIyLpaA8PIfzqcolZ2KU9ce/3BfXBnFfHHOPEpgleKHJnn6GLClHHfb0Fs67dizTlGlbs8ix2s0GjQGI/a0E26xzZ4WD0icGcfcjpdSYk+Px2nJQboK9iY6w5F2nOCqvsW2K7CKL2nHDhcptycfpmaj6GLPuRLCfUJIzjYjpXRLzlJzLDQLLn7lvaqewRw46H5DUkpJ4uFD5GVl4HQ40J6TUMXHxSLVHCClErvQrfEzQwn6AwOK+U+5yng17I7l0CZy961EShfS6SB745848zIwVW9Z/DmNe5K+ZAK208mG05JD2ryx6AOroPMt+oVe5+mHITiaU9PfIGnqiyR8N4JTf7xJ2r9fYaregqx108lPKLgj58rPI33Rtxiq1gcpyVo7DemwI6UkL3YteftX4d24aPAC8O90Fznb5mI5vKVghR57PpnLpyCddrwaFR2KcKU0qhpOYmYOa+OO4XS5cLkkG4+c4FhqBk2jik9a2leLYN74r4nbthkAi9nMr++8Tu0WrXA5nfw9bix2Wz5SSrYsnM/GebPpNKRsh7+tnPEbL3Zvx2Mt6vFc55b8861ailW5Kqg4dY1p2qshZMeTs/UfpMuJdDkx716CLWEXrQc2K/acAU92IWvdNKzxBU9VXDYL6Yu+w+TtQf2OtYs9p16H6qT89T5Jv71CwncjSPr9VVL++pA6raOx7FmM5dAmpJRIh42s1T/jF6Alsn442cvH47JZkVJiPb6LvG1/0eO+tsVeY8hLfbHEbSB37/LCmJu16S8caSd4o99NZdJfl6NtVFM8tF4s3ncIh9OJlJI9J0+x/XgSdzQt/tfmjsb9WPXnH+xcvqQgIcy38ucXH2P1MKKpXptf3nmN/Lw8pJQc2LiO+ZO+Rz9waJm227pmOTn330zWwBvIGdab7HEflWn9yvXlUhZBGAGslFIevDJNujC1CMJ/k3/yAGkLxuHMzQCnA31odYL6PoXev+T9FlL++QxL7BqEzljw5CewKqG3v4/Os/i7Xtlb/iFr3TQCe43EEBKD5dAmMldPJXjQy6TN+RiEBqHV48rPQxiMeDfsjk/L/qTN+wLbqTiEVo/G5ENgn8cwRhYd731G1voZZK2fjhAC6bChMfkRessbGMKq88SRiw7/LzensnP4Y9NOUnJyEUIQ6OXJra0aU8W/+P4CONxpINM+HI2UEktODo27dOfe0R/yZv+eOBx2bFYreoMBIQSWXDMfL9tYZpuwLf/tZ6aNeYdhL71Ogw6dOLJrB1NHv0bHwUO5/ZW3yuQayrWnki2CUKnilFoE4b9JOpTMD8/+yanDySAEgVX9eeCTIVRrWLXEc2Z+MI8lUzaARo+0W/EJ8eOFaQ8QElX89gc7luxh/OMz8O/xMB5V65Mfv5eMpRN4cOwQpr4+G6tFg6QgAdIajDTqWI17PhjMjy/8yYG1B9F6mPAwarjz7X7Fzks6w+vtvTw4bSY2pxOkC08PD/4ecS896tcn/kij/9xXlysxO5ln5r3L9sT9GLQ6/E2+fHTjy7SLalbiOU1C9mH9agwi14wj34qhQROMz71O7mtPo09LwWa1YvT2xmm3YzHn4PvNVPQ1is4tvhz5G9aQ+/YLDHriWVr07EPi4UNMHf0altr18H2r2DVLLptaBOHacaE4dSkJ0NtAZyAG2ELB5NJVUsrtZdvMS6MSoP9OSokzJwU0uiKbupXEZbOSn3gAfUDxT34K63Y5SfhuBKG3vO622Wr25tmYdyzAGNOMgG4P4MhOQePhBU4HJyeOpMrIH9AavXHmZiAddrS+IW6P5ktsl8tFfvwetF7+GILObs9RkQnQGVl5ViQSf8+Lr9YW+O54XE4nqQnxePr64u0fwJYFc5n82ot8tmYrednZ2PPzCapSlU/uHYZ/RAQPfVQ2T2meu6E1Q55+gY5DhhWWHdi4ji//9wBfbdrzn3ZgV65dlSwBqlRxSiVAZSPzVBYupySwiv8lHe+wOTi09Rj+Yb6EVS85TgG81Xcczob34XnOvNS8A2uxb56I9KuFX79ROLOTEToPhMHIqQnDefXvkYRVD8GckYslx0pQZMBFPx8fWeCNy+Viw9GjmPR6mkWdjVMVmQCdkZKbjtWRT6Rv+EVjbqs+PgUjLk4lIjyMaAICsR+OI+exe/h05SYA8nJyCI6MYvIrz7Hp0CH8x04sk3bmjLiV3gNvZuBjTxeWnTp6mDcG9sL/jwVovEu+wVhaKgG6dlwoTl3KIghvSim7Aw2BVcALFAQY5SolhEDnG3rJyQ+AxmDEFN30gskPUJDAuBxuyQ+AqUZLHOY0TDVaITRa9P7haE0+aL0D0AVFFiyeAGi9AtD5hV5S8gMFY7lN1Rq7JT+VhZ+n8ZKSnzM0Wi2h1aLx9i+YO7Vj+VLqt+uA3uCBX3AIwVUjEULQ8sZ+nNhTdpNLzRnpNLqhm1tZndbtsFnyyEpJLrPrKEp5UXHq2uQf5nfJyQ+AzqCjbruaF01+pJQkHTiBqYb79yJjjZZknkxFV611QZz0C0Pr5Y9Gb8QzuiEn9hRsnOod4EVItaBLvjmk0WhoX6OGW/JTWYR4BRLlF3HJMVcIgTa8CpqAgu8P+etXUbV2HbwDAvEOCCS0WjQajYbmvfqiP5V4kdpKITOdJl3ct98Ki6mBp68ftl3by+46ynXjor+9QojXhBDzgYVALeB5ILK8G6ZcnTRGH3DYceS4LwRgSzlasClqyhG3cpc9H0dGIjrf4hc7uJ5VqVWb4/v2cP5T2iM7t+MXVvKQxdLy8PQk/oD7SknJx46g0enwCSibYXaKUp5UnFJKQwiBT2gAtmT3eGRPOYrRxxtnuvvCBVJKbMnHCKx69e1pU970teuSfOwoDrvdrfz4np04vbzL7DrC5El8rHucMmdmkJeViS6mZglnKUrJLmUfoCGAA5gLrADWSSnzy7VVyiWRLic5m2dj3rkIV74ZY0wz/DreecH5PM68LLLW/EZe3AaERodX/RvwbT8MtHrS5o7FemRLwZhnrwD8uz2AV532JdZVHI3eA++mfUj75zOC+j+DzieY/KQ4Mpb+gE/LgWRtnIE+tAbG6Ka4rGYylk7AWK0xOt+r75FzfEYWi/Yc5ER6Jr4mI51rx9Aiuuol30m7mJ73Pcg/337BzE8+YMDjz6A3GNg4bzab5v/Dq3/M5u+vPmP5bz9hyTXj6e1D7wce4cYRI0lPTOCvrz5jz6rlGL286ThkGH0eeMRthZ5zterTj8mvvsDTE36iau26pCbE8/2zj1G7RWvyzDnMGTeW7UsXotXpadN/EP1HPoHew8jKP35l2a9TyEpLpXbL1gx6/Fmq1q7LsT27+PuzDzmyawf+IaH0fPB/dBg89IL9snHu3yycPIG0kwnENGrCgEefpkbTIotzKUpJVJyqpKSUrJm2iYWTNmBOy6ZGi2hufq4HVeuVvJKlNTeff75cysY5u5AuSYsbGzDwmR54+Xky/Z05rJy+A4c1H5OfFzc/243OdxS/CMGF9HmoE3N/+JyAAa+iD4jAnp5A1qIv6Dm8HYsnLUMX3hDPuh2Q9nxy1v1KYKgH1ZtV+y9dUSGOpJ/go1XjWX9iO/5GH+5uNoThLYegEWUztNmjdQfyjSamvPYCd7z6NiYfX3atXMa/k77H+PJ75M2ejnPqDzjM2ehMntCzPz4jn8aVlYn15/HY1y5HaHXouvbGdNcIRAkbfIsBtzLtg9GEV69JreatyEpNYdKoZ9FHRqPxDyBv4pc4VixGOp3oO3XDeM/DaHx8sS5fhHPmVOxJCRhq10d31wgMDZviiD9G/g/jsG/fjNbHF+2g2zDdfDviAk/1dq9azrzx40g8fIgqNWtz0yOPu63eqlxdLjoHCEAI4Qt0BDoBtwLJUspO5dy2Yqk5QGelLfgae9oJArrch8YrgNzdSzHvWEDE/Z+j9Sp6p8plzyfpp2cwVmuCT4v+SKeNrDW/47Ln43LYcOVlEtTrf+gCwsndv4asVb8QcsvrmGKalapd2VvmkLX2d6TDhtAZQEqk007Y7e/jzE0nY9kkXJYcpNOOZ92OBPZ8BI3h0oeKXYryngN0MjOb71dsoE/DOjSoEsqpbDOzt++lbfUobqhbo9T1Bb47vtjy43t389X/hpOVlopGo8FgNHHri69x8tBB1sycxr3vjKFm0xYc2LyBn998mR53P8C62TNpP3AInW65HXNGOn+OHUNAWDgjxnxe4vW/fWokO5YvRqvT47DlU6NZC574ehIf3DGYem070P3u+7Hn5zPnm8/Jz7NQvUkzdi5fzLCXXie0WgxbFsxl7vfjGP7+p0x6/nF6142hQURBv8zZc4guI/5Hnwf/V+y1l/06hYWTJ3DHq6OJrFuP3SuXM+PTD3hm4i9Ub9y01H2pXBmVaQ4QVK44peYAnTXny6Usn7YPrxseRh9QhbzYtVg2/87LMx8hvGbRG19SSsbcOoH0/Ai82tyGEFpyt87ClLuXyHqhbFt6lMAbn8AQWh3rka2kLx7PXaP70en20iVB2xbsZuKzf+JySoRWDy4HQiN55Ktb8fT15OdXZpN+MgPpclK3Qx3u+3AwvsGlf6LxyIKSzynvOUCJ2cncOOUB2tWsQrNqEWTlWfl3Vxxdojvzds+nS11fqz4+xZY7TiViefF/2E4lotXpEFot2mH3ofHxxTb+c+56410adriBY3t3Mfm1F7G3ag8H99OqdRtuvO8hHHYbs775nIOpaXiN+abEm2U5X36Ic9E/CCFw2OwYYmri+fE3WN58nrpVqzJ45BNotDrm/ziebTu2obvpZjQzp3Lfa6OpVr8hu1ev4NeP38P47OtYPn6L7jERtIgq6JdZew+R06E7nk+8VOwcoG2LF/DzW69wx6tvUat5Kw5u2chvH7zN8Hc/pknXilt5Vrmw/7oIQiMKJpd2AVoBJyiYXPrGBU8sJyoBKuDITiXxxyeoOvIHNB6eheVpC8ah9QrEv9OdRc4x71pC7r4VhA0bXVgmXU5OTngER3YKVUdOQudzdsWcjJU/Yzm0kSrDv7rkdkmXk4RvhxM6bDQ6/whc1hy0XgGYt/+L9dgOQm5+BSldOHMz0RhMZZ74nFHeCdDU9duoGuBH13OSnZScXMYtXcvr/buj02ovcHZRJSVAZ6QmnMCam0tknXoAPNGqASO/+M7t7tOWBfOY/NoLNO3Wkwc/+qKwPN9i4cVubXn1j9mEVosp8RrWvDySDh0kNDoGT18/1vz5Bxvm/s2zP0wtPMbpcPDqjV3ISk3h/QUrCThnKN5fX3zCpnmzaennQdc6Z/fWSMnJ5evVW/h03Q70Bg+3azodDp7v2obnfphKZN36heVLp05m37o1PDZuwgX7Rak4lSkBqmxxSiVABfLzbLzQ9n1C7hnn9pQ/e91v1AmNY/jHtxQ5Z/+ag0x4cQFBd49DnH5KIaUkY/qLmE/EEX73J25zTHO2/0v+1t/4dONLpWrbm72/QjYdgTGmKc68LLSeflgOb0W//yfemPsYUkpyUs3oPXSYfC8/TlVkAvTOsq85kLmZAc3qFZbl5tv4eP4qVj08jeBibpReSEkJ0BmO1BRkZhraGnXQaDTk3HYjtz/3ktu2DYd3bOPj+4ZRpVFTXvt5emGy43I6efGmbsinXsHQpEWJ13DZbDiOHkIXGo7GP4D8rRvQfz+WD+YsLpyTJaVk9B03czLuIK/8NI3oBmf7ecW0qUyf+B3NTBqGNKnr1i/vLliN/9R/GNO4XpHrvjW4D0OeecltHtK2JQv559sveX3GPxfpOaWi/KdFEIAPAR/gS6C+lLJbRQUV5Sx7ylEM4bXckh8AU0wLbMlFN14DsCUfLvI0R2i0eFRrgsbDyy35gYKFC5y5maVqlzM3A6TEEBKDRu+BzicYodFirN68sF1CaNB5B5Zb8nMlnMzMpm6Y+7ylEB8vPHRaMi2XsgF96QRXjSpMfmxWK7k52TTo0NntmIadumDNNRd5JO9hMlGrRWtO7Nt7wWsYPT2JadwUT18/AI7v31PkGlqdjnrtOuDp4+OW/Jy5vjkrg7qh7j9HBf2iIyOp6ITY7NQUkNIt+TlT1/F9ey7YXkU5h4pTlVDq8TT0PgFFhjh7RLfg6K7iJ8if2HsSfWTTwuQHCubsaCJbIl2y6AI71VtgycorVbuklJyKi8dYvTlCqy+IU1o9purNSYpNKLymb4jPf0p+KtqupH3UCnOfx+nlYaCqfwAH046VcNbl0wWHoK9VrzARceRk07BjF7djajRtjsvponGbdm5PejRaLY06dMYRt/+C19AYDBjq1EdzerEgR9wBGnfo5LYghRCCFjd0Rdrz3ZIfKIgtzrQU6oe4J39eHgZCggJwHC/6/UlKyYl9e2jUyf29NOp0AydUnLpqXcoqcP2llB9JKddKKe0XO165MnT+YdhTjyGdDrfy/FOH0PmFlXBOOPmnDhUpt586jCs/D1e+exCxJcWh8Sjdh7/W5It02nFkp5xXV8ntuhoFenkSn5ntVpZjzcdis+Pt4VHCWWVDZzDgYTIV+eA9tncXBpOJY3t2uZW7nE5O7N9DSFTpxq+HREZzfG/R1eaO791DXk42FnOO+/X37MLDWHy/5OXn4xNYdKEL74AAHDYb6YkJReoKjqx8KyYplZOKU5WTf7gftqx0nFazW7nt1CFCo4t/+hBcLQhnalzRF9JiAYkj69R5dcWhN5XuM1cIgV94ELbz4mF+0iH8IorfN+hqFBMQxckM989pu9NJYnYWkVcgHus8TRzb6x6PTh0rWHjiaOyBIscf3rMLbUTp1i7RRkRy6LyYBxC7eycSSI0/4VZ+bM8utD6+nMgs2i9pGZlow6oUqUsIQXBktSKxVcWpq9ulLIKgVEL6oCgMYTVJWzCOgK7D0Ri9yYtdh3n7fMLv/rjYc7wadiNr3R9kb/0Hn6Z9kA47Wev+QDptaAMiSJn9EUE3PoHWOxDrka1krvqFgB4PkZ+wn8zVU7ElxqL1CcKn5UC8m/bBmZ1Myqz3safHgwRdYBWCB72Md7O+pM79jKC+T6HzCyM/YR8ZyycR1PuxK9xL5eeGOtX5beN2Aj1N1AgJJDPPyvTNO2ldPQqjvnx/rTQaDY06deXzh+/FJzCI1IR4QqKqkZGUSOPOXVk3+09iGjeldd8BWMw5/PnZh4REVqNag5KHW0x65Tm2LZhHvtWK3sODGs2aM3Lst8wdP45lv06h89A7sNtszBs/DofdRoveN/HqjV2wWS3YrPl4+/tjzc1l6HOjmPP5h279MmPnfjoNGYbJu+hQEL2Hka63383EF59i+PufERwZRdzWzUz/6F3uefvD8uxGRVHKmZe/J636N2P3v5/g2+NxtN5BWI/tIHfDVG784a5iz2nSvT5/vDufzNVT8W1zC0KjIWfbXJzJscQ0jebkXx8SPPBF9AER5CfsJ23B1/S+vwUnY5OYMWYRhzYewujnRbe7WtP74RvIy7Ey7oEpHN+TiHS58I8I4KGxt3DjI52YM/4L/G58EUNINLaUo+Qs+YKbn6yQaWPl4oGWtzL018cI8/OiQZUwcvNtzN0RS4dqzYnyK3kRijLTcwATX3iK0GoxnDp2hMDwCCxmM7r6jTiwbQuLfvqBrrffjdPuYO6Er0nLzMSnTYcSqzNP+hrX7D+wW63o9AacVaPw/eJHTk38illffcZNI0ai0WpY+uvPxO3agefg2xl9a3+k00l+Xi6evn5YrVY8hv+PFZO+porv2X75c1cs+mat0YYXTYAA+jzwMD+++jyPfPY1VWvXJf7APqa8/hI3jhhZXr2nlLNLWgShMlFzgM5y5eeRvmQCeQdWg5Tog6II6D4CY1TxX3RddisnJz6K0GhxmtMB0HoHovHyJ/SWN0j+4w1sKUeB06u5tRyAZ622JP/xBgHdHsBUqw321OOkL/4eU90OmDfPxlSzDX4dbgchyF4/g9wDq6n6yA/kbJpFzrZ5SKcDracv/p3vxqtB1yvUM1dmI9QdJxKZv+sA5vx8hBC0r1GNPo3qoL2MjUMvNgfofOvnzGLaB28z/P1PqdGsBbGbNjD5tRcY8eFYvAMD+f29N4mPLRhK0KJXX+56/Z3CoW3n+/HV59k8/x/uf+9j6rfvxNHdO5n00tOEVIvm3tFjmPrOaxzesQ2Axp27cdcb7/L+bQMxevtw3ztjCDm9CMK0D97m9lFv4eXvz8wxo8lOT0ej1dLl9ru5+dlR6PT6Yq/vcjr5e9xnLJs6BafDgXdAIDc//QLtBtxcqj5RrqzKNAeoslFzgM5y2BzM+OBf1k7fhMsp8Q3z57ZX+9C0V8Nij3e5XIy+aRypyU6cOafjlE8gPl4O3pj3BOMe/JnDWwuGbwmtlvY3N+Gmx7rz7oBxGFvehlf9rjhyUjGvmkDTdv7sWLwfp08N/LsOR+PhSc62+Zi3/M3oxU+xbcE+5n+7ArvVjsFk4KbHutD9/g5ltpInVOwcIIA1x7bwxuKxnMhKQiAY1KAHb3V/Cs/LGIJ+sTlA57Nt34zlree5/+0PaNDxBo7t2cWkV57Dcdv9GJq1Iv+rMVj3FDyp8WzVDo8nXkYbUvyKsOY/fsI++TvufP0dmvfoQ9KRQ0x+9TnS8234fDqe/C8/JG/rRgBMjZrh8cRLmN97BW9zFg988BlRpxdB+On1FxF9B2NsdwP5X36ALekkCIGpx42YHnsJYTIVuwiClJJFUyYyf+K32CwWPEye3PTwY/S4Z3iZ/rwoZes/LYJQ2agEqCjpsCEdNjTGC69QY965kLzYdYQOfbNguJtGg9AZODnxUYJufBxjVCNctjycedlofUPRaDSk/D0Gj6r18W01sLAee2YSJ394DJ1fKFVGnF2xRUpJ0pRn8KjWiMDuDyKdDlw2Cxqjl9t47ivhSiRAUPCeLXYHHjrtZSU+Z5Q2AXq1b1fuffsD6rY5u0z5tiULmfvdl7w2vWBCZl5ONnqDAb2H8YJ1Pd6yPveO/pA2/QYVlh3asZVP7r2NcVv3o9VqsZjNaLRaPEwm4mMP8M4tfflo2Qb8gs9uOPj3V5+y/LefGbt2O1JK8rKz8PD0KjHxOZ/Dbseaa8bT1++SNxhUKo5KgEqmEqCiHDYH+RYbnr6mC35h3LsylkmvLCbwrq+Q9nyQLoTBRMbMlxn2VFNaD2iGzWojKyWHgAg/dDod096Zy7a9gfh1GVFYj8tq5uR39yE1HkQ+9hNCe/bJfMqs96kVncWj4+/D5XRhybFi8jGi0Zb9505FJ0BQEKey880YdR546AyXXU9pE6C8lx7l9tvupP3AIYVlx/bsYszI+/GdOheh0eDKy0VoNCUuf31G9pDu9H/4Mfqes5po2skEXundGb8ps9CGRSAtFqR0ofH0wmkxkz20N6/9McdtjumqmdOY9uFofGYtQ0qJzDUjDB4Iw9l+KS4BOsPldJKXk42njy+aUi52pFx5F4pTJY7VEULMAUrMjqSUA0t6TbmyhM5QsNz0RdhSjmGs1hjAbfEEY7VG2FOOYYxqhMbgicZw9jV7yjH8OtzmVo/ePxyh0WKq0dItkAkhMNVsjfV4wThZodWhNZXuA/NqI4TA03BpX/DLitPhIOnIIeq0budWXr9dR75/5mxw8PTxvaT67LZ86rXr6FZWs2kLHA47ycePElG9ptvwte2L/8U/NNwt+QFo0OEGFv80CSjoFy8//9K8LXR6Pd7+aqNB5dKpOHX10Bl06AwXHx6ccCARXdXGCCEQhrM3bzRVmhO/L4HWA5phMBoIiTo7V+fYnlMYorq51aMxeqPz8kcTFOOW/AAYq7cg4cDMguO0Grz83RcTutYIIfAzXvlYbDt0kHpt3Ye0RTdsjCs3F2nOQfj6ofH0uqS6hNNJg/buwxODqlTFy98f6/pVeA0ahjCZOPONxHkwFiFEkQV26rfriNNuK6hTCIR36fpFo9WqOHWNuNCn0SdXrBXKFaEPiMB6wn3ivJQSW+JBPOt0LPYcXUAE+SdjMYTEFJY5zOlIl4P8E0VXP7Ge2IU+WE0KLE9anY6gKlU5unun2z45R3ZuIzS6+gXOLJ7eYODwzm0069arsCw+tuDJT1DVov+W9dp3Ys63X5CblemW5BzasRVNCZutKko5UXHqGhMSHYwzeX3RF1L3E1a9+M+3iBqB7I0/gKnm2Ru9LrsVR14W2A4ipcttFEJ+wl6qRV3aDSLl8ukjq3Fk53YCet1YWJZ4KK7giYvXpSU+Z0iNhsM7thLdsHFhWXZaKrmZmXg3K3qDX1ujNi6nk1PHjhB2Tlw8snMbWv3lPwVTrh0lfluRUq74LxULIYzASsDj9HVmSCnfPO8YD+AnoCWQBtwmpTz6X657LbKnxZOxYjLWI9sQBhPejXvg3+kuQJC59ndydy7ElZ+LMbop/l3uc0tWzuXVsBtZ62eQvXEW3s37Ip0Ostb8BoAxpvgNJ33b3EzyzHfI2ToHe9qJgg1WhRavJn3I272EjBVT8Gt3a8EcoE1/YUs6RPDgUeRsnUv25r9xZCXjEVEbv053lXpD1UvpF/OyCeQe24lW74Fn4574dr73gk/D/t19gHWHjpOXb8Oo19M4MoxhrZuSmWdh7s797Dl5Cq1GQ/OoKvRtXBfTBZ7urIo9wrIjCZhzcjAYTdQO9OWeds2w2B3M23eIncdPIqWkcbWq3FS/Bl4GPVM37iA2LQurxYKPtw+dYiLoXq9midcoSd+HHmXSy8/w4EdfUK1BIw7v2MqU119i8FPPs3zaVP787EPysrPR6nT4BgXx2vR/8PTzY/YXn7Bq+q9YcnOp36YdQ0e9RZ02HZjw3BMERlQh6ehhgqpUJT8vj9CoaMxpKcz45AO2LVmATm+gTb9B3PLcy3j5+vH1Ew8z/L1PCKpSle1LF/H3l5/Q7+HHS2xzTno6Mz/9gE3//oN0uWjZ5yaGPv8KvkHBLPt1CoumTCQ1IZ7qjZsy6InnynyH7cTDccz45AP2rF6O0cubjkOGMfjJ50AI5nz9Oatm/E5edjYNOnTiludGFS47rlReKk5VHhlJWUx/7192Lt6NRqulVf+mDH3lRozeHiwcv4olk9eRm5ZNtabVuXVUL2q2jCm2nsbd6+Hx4UKyVv2IT5thIDSYt85Bph+mZb/BxZ7Ta0QHNgwYhzl2E/bUY2iNPmhMXjToXJfYDUdI+/crArrcj8ZgImfnIvIOrOHWfx5n4+ztzPlyBWnHkgiuHsHAp7rSql+TMu2XhIxMnps5kzk7d6LVaLitZUs+vmUI/p4lP3X6cctMxq6ZSKY1Fw+dnk7VWjFhyHvk5Ofx3vKvmbt/OU7pok/tTrzW7THCvIuusHnG7L1LeGvNt6RlpaE3eNA8rB5Tbv4QkIxZO4k/9yzAYrPStXZ7Xuv4MDEBVXl90efMOLiE3NwcvL19ua1OL97s8USp37tu2L1Meec1vPz8qNO6HQkHD/Ddi0/jMfQu8jevx/bxW9iysxEagc7XD9MH49BXr4V12hTy//wVe2YGpnoNMTzyDKLvYKZ9+A7Lp00lMe4gviEhaDQahI8PuoAg8sa+i3X5IqTTgalzDzwefAJNaARfP/Ygj3z+LVVq1mb/hrX89OYonK1LXmhBWiz8/v5brP17JjZLHk269mDo868QWi2GDf/8zdzvvyLxcBxVa9Wh38gnaN13QKn75UIykhKZ8cn7bF2yAK1WR5t+Axn63CiM3j4smPQ9S6dOJis5mVotWzHk6Rep1aJ1mV7/enIpG6HWBj4AGgCFz6OllBfc7l4UjI3yklKahRB6YDXwlJRy/TnHPAo0kVKOFELcDtwspbythCqB628OkDM3g8TJT+Hb+ma8m/TCackmc/lkAITeA5fVTEC3EWi9AzHvXkLW2mlE3DcWnW9IsfXZ0xPIWDoRy9FtCKHFs057Ano8hNaz+AnyOTsXkbH4e4L6Pnl6EYQTpM0bi8bTH0d2KtKWh8tSsOyxxuSL0BnwaXYjuftXE9TnMfQhMVgPbyFt4TeEDH65xAUaLqdfUiY9Rq/akbStHkluvo2/dx0kwViFgFveLHYO0MI9sayKPcodbZtSOzSYExlZ/LZhO9UC/YjPyKZFdFU61Y7B7nSycM9BknPMPNatfbHj1TcePsHfe+MY/t4nNO3em5NxsUx6+WlM5iwsDif1et3ETf97Co1Gw/zxX7Pznz/xN+rJ1Hsx4uMviKpbn10rlvHDy09zY50YBk5bWKr3L6Vk2a9TmD/hG7JSUggIj6D/o08REhnF5w/dy+CnnueGW+8gJyOd3997i7jtW2jcviPZe7bTv0FNfE0ebD6awJJD8bS/5TZWz5zGgx9/QYP2nTi6ayfjn3+c6k2ac3zvbtoPHEKPex7Anm/h76/Gkng4jie+/YF3hvQjMyUZp8OO0cubVjf2Y/h7xd+QdzocvHPLTdRu1ZabHn4MjUbDvz98x66Vy2g/cAib5s/hntEfFvbLz2+N4tEvx1Ondel2dy9JVmoKbw3uw40PPELnobeTk5HOjI/fB8BgNJKXk82wl17HPzSMNX9O559vv+CNP+cRGFG1TK5/LapMc4AqW5y63uYA2Sw23uj1BUR3xbvlYKTDjnnDb/jYDlC3fXU2LErEp+uj6AKqkHdwHeYV3/PC7w8S2aD4FbeykrOZ+uZc9izdjXRJ6nasx13v9Cc4KrDY4w+sjePz+6YQ0ONBvOp3wZGTSvqCr/HWp+MT6Mnxfam4rGaQEo3JB73Wzi0v38isz1bh0/MpjJENsJ7YQ/biL7h79I1llgTZLDY+6/wZtcMC6VgrBofLxbL9h7DaXGx8+SVOHit6nVl7FvL8vx8wtGVjGlUNJznHzB+bdlLFK5I8h5UAb0n3+jXQaASrYo8Sl2RmyYifMeqKLgW+5thW7v3rZW5/5S3a9r+Z9KST/PzGy7jiU6jiG4a9RgiDXxiFp68vK377mZWTJtEtqhX/Jm7ioU++onbL1sRu3siE5x5nWI3uzPnolVL3gXXpv9h+Gk9+Yjx6/wA8brkL/Q09yRlxKz3vGU7vBx7BYcvnry8+YfOCuWj6DCRgzRKGNa5NsI8XuxOSmLk7Dv3tw3H8Oon73v2I5j1vJOlwHD+8/AypWj0al5OWzVsw+H9PodXrmT/pe1b8Ow+vr38i58n7ISkRh92GwWjC1bgZAe+XvLl77qgnaBgSzJBnXsLT15flv//C0l9+ZMBjzzBv/Nfc/+5Hhf0y+bUXGPbia2WWBOVbLLw5sCet+w6g1/0P4bDlM+frz4k/sI86rdtzcMtG7n7jXcJiarB10Xx+e/8tnp/8O9XqF7+giPIfF0EQQqwG3gTGAgOA4YCmNJvMCSE8KQgs/5NSbjinfAHwlpRynRBCByQBIfICjbreEqDMtb/jzEklqM/ZO+vSaSf+m/vB5aLqo5PR6M9+8KUvmYDQGQjoct8F65VOOwgNQnPhSXzx3z+Ib+vB+LboX1jmyE7m5ISRaIOiqHLf5wUTVQGNwUjiry/jSDlK+D2fog88++XRvHMRebFrCR36ZpFrXI6sNb9RO3Ett7VscLZdThdvz1tJwJ2f8GxO0Z2Z3569mCEtGtI48uzyn/EZWYxbsoa64aEM73TO8Akp+XTBSm5u0YhaoUX3hfhw0Vr6PPEcPe4eXliWdjKBV/p0pkpMdd6YvdgtcRpz2wDidu3i3XlLCYs5+51s1cxp/DVmNJ9uvLzN1KSU2POt6D2MCCEY1asTtVu15YEPPj3bLzYbT3doisNi4e0BPdDrzv6bz951gK0nU7nv3Y9p2eemwvJje3bx4V1DqN++E09+++PZfnG5eHNAT+56413qte2AzWbDkpWJXwkr95yxbclC5n3/Fa9Mm+3eL3ffwon9+3h9xj9F+mXLgrk8Pf6ny+qX88355nMykhK5d/SYwjKHzcZzXVojnU4+WbkJwzmTcH97/00MHkZueW5UmVz/WlTJEqBKFaeutwRo7fRN/PXDYQIGv11YJqUk9edHsWWmEv7AeLTeZ+dNZG/8k+reO3n4y2EXrNfpcCJd8qJzh0b3+wqzTxsCup79PHbl5xE/7h70XkbCH/4J6XKCw4HG6EnWv59gT9iBd68XMFY7m4RYjmyDrd8xelHZ/Nutnb6J7V+u5t4OLQrLpJSMW7qOiXffQz3j0CLndPhuKC2qB9O5ztlhW1l5Vt6bt5Rq/kE81qON22fopFXbeKTlAwxp2LtIXX1/foiovt249aXXz75Hs5lnOjTF28uPMas2oj1n2PKkZ55g05L5PDXhJ7e5O3vWrGT8UyPx/Gv5ZfWDlBLsNtAbEEKQ9uRwant78cJPf7gdM6p3J1JOHOf1ft3wNZ2d/7XswBGWHktk8KNP0ev+hwrLM5ISeblXRwKr1+T9vxe69cv7999BcpfemHr1w+l0QlY6+AWivcDCBfbYfdjffoHPlqx165cJLzzJ/g1reejjL4v0yx9j3uHt2Ysuq1/OV1zck1LyRv8epCUm8MGCVW6x9t8fvuPE/r089PGXZXL9a9GF4tSlLHliklIuoSBZOialfAvodykXFkJohRDbgWRg0blB5bSqwAkAKaUDyAKunV3IyoA99Tgeke7ZvdDq0fmHow+t7pb8ABgjG2JPc9/4qzhCq79o8gMgrblFntrofEMRBk8M/hEFO3QbjGhOT1b1CK0JQrglPwAeUQ2xpx6/6PUuWcohage7P7XSaTVEBgdiSyv+Oha7nZhg9zuIkQF+gKB6iHu5RgiqBwdyKtt9s7TCuhwO6p63CEFQlaoYvbyJatS0yFOjuh26IDTC7Us+QJ1WbbDaL3/fRiEEBuPZVZUsuWbqt3efz6UzGIhp3Ay9VuuW/ABUD/Al32qhdqs2buXRDRvjsNup3riZW7lGo6F2y9acjIsFwGAwXDT5ATgZF0vtVm2L9Eu1+o3RaDTF9svJuIMXrfdSJRwsuP65dAYDIVHRRNZr4Jb8ANRp2bZMr6+UOxWnKlDCgWQ04Y3dyoQQaAOj0Xn5uyU/AB6RDUk4kHzRerU67SUtnJBxKg9jlPv1NR6e6AOrovEMQGi0aHQGNMaCYWcirCG5qRlFYqsxqiGpR5Muer1LdXJ/0ukYc5YQguggf/acPFn8e7FmF4lHfp5GDBotUUG+RT9Dg7yJTT1SbF2n8jOpe94CNyZvb8KiqxMWU93tSz5AzXbtkECd8z4r67Rqg9lcfCy8FAULWngUtl2cSqRhpy5FjqnfvhNCCLfkB6BmcADC6Syy8E9AeASefv7E1KlfpF8at2mL89hhALRaLdrAkAsmPwCOY4ep2bxlkX6p3bINGaeSiu2Xk4fKLk4kxsUWuYYQgqp16uEXHFIk1tZp1bZMr3+9uZQEKF8UzB48KIR4XAhxM3Dh9ZZPk1I6pZTNgEigjRDissY/CSEeFkJsFkJsduZlXU4VVy19YCT5CfvcyqTTgSMzCXvKUaTD5vaaNWEv+qDS7aR8IcLDE2v8XrcyR3Yqrvxc7FnJnH8T1JZyBOlyYc9IdCvPT9iHrizbFRRDXJr7z4LT5SIhLR19YPHXMep0HEvLcCtLyMhCIjmaWrDfhEvKgqUxpeRYWgahPsX/qBt1Wg5u2eRWlp50EqvZTMLe3UX65eD61UiXi+TjR93K47ZuxnjOMtEup7PIuVBwF8jlchXbFpfTWfhnD08v9m9Y5/a6w27n6K4d2JxO7OccC3A0IweD0Ujc1s1u5cf37kar03F0z84i7YjbtoWIGrWKbUtJImrUIm7r5iLvLf7AXlwuZ7H9cu41SuqX0l3f/d/LYbeTcvwY8Qf2Yc+3ur12cOsmImrWvuzrKVdcpYpT5rTcy6niqlWldggyuegCO66MEzjMGThzM91ey0/YS9U6xQ/Tvhz+wSas8e7Xd9ks2NMTkHmZBU9/zm1b8j48A/2LxFZrwj4Cq4WVWbsi6oRxMjPb/dpSciI9i/oR4cWe4+fhXRiPzsi2WLE5ncSnZxf06+n/AE6k5VI7KKbYukIMvhzc5L6ghDU3l1PHjpJ87Khb7AA4vGkTAlkkHsRt3YyX19nV0uQF4pQ8r85zzyn8c2g4e9etLnLugQ3rcElJjjXfvV1pGUiNhoNbNrqVZyafIjczk2MHDxRpz57NG9FWK92iQLqoGA7v2FakXw5t30JAaFix/VKWcSq8Ri3itrlfQ0pJ4qGDZKWkkJ2Wet71N1GllLFYOetSEqCnAE/gSQomgd4DXHh81XmklJnAMuDG815KAKIATg8t8KNgkun554+XUraSUrYqaa7Ktcq72Y3kxa4le8ucglVtspNJ/edTPKrUw6NaY5L/+gB7ZhIuez452+aRu2sJPs1uunjFl8iv3VAyl/9IXuxapMuJLfkIyTNHY6hSBxz5ZC6bhDMvC6fVTMbKn3Ca0/BtPZjU2WOwnTqEdDnJi9tI5vLJ+LW9pcza5dn8JrYnpLD64FFsDicZuRZ+3rgbXURdDCHRxZ7TrmY1/ti0kwNJKbhcBQnOlLVbqBcewvG0TD5dsJJRM+bzyp//8umClWiEoGYxw98AutaIYvrH77Jl4XycDgcn9u/ly4fvIyrAl7zkRH57701y0tPJzcpk+sfvknL4IDVCAvnykfs4tnc3LqeT7csW8es7r9MpOoK4bZv54JabeKhBNE+2rM/Mj9/FYbORl5PNlNdf5NHmdXikUXW+HHk/SUcOAbBy2lReuqElDzWI5pXu7Vj390zufet91s/5k8U/TyLfYiHtZALfPf0/hEZDk85d+Wn9dtLMedgdTtYdOsbm4ydpN2gok199nt2rV+ByOjm0YytfP/4gDTvewPG9u5nz7RdYzDlkpabw81ujMBiN1G1b8iTS4jTt1hOLOYc/xrxT2C8zP/uQ9FOJ9Lr/Ib59+n9u/TLjk/fp+9D/iNu2mQ/vHMJDDWN4qm1jZn72IQ6b7eIXPE+X2+5iy8L5LPn5x8J+mfjCk9Rs3oIG7Tvx/bOPk3LiODarheW//8K6v2fS9Y57Sn0dpcJUqjjlHVS6Fa6udq0GNIPMw2SvmYorPxdnbiZZS7/Fz0/SYVhr0v5+F1vqcaTTQe6+VZg3TuPGR4pfefRy3PrqjeRsmY155yKkw4494yQpf75HQNUAIuuFkrnwcxw5qbhsFrI3zcJ+YgsDnuxK9qLPsZ7YjZQurMd3kbPoCwY+2eXiF7xErQY0I82cx6I9B7HY7ORY85m9fR++RhM96xW/yMqznR5i3q4D7DiRiNPlIjErh0mrN9M4rDYajHy2cDWvzPyXUTPn89mCVaSZrdxUt2uxdb3aeSSLfprEqpnTsNvyOXXsCOMeHU5V31Bq+VZl4vNPkJGUiDU3l39/+I49y5fSr+YNfPfM/4jdtAGXy8WBjesY/9zj3FKrO44jh8h97mFS+rQh7aYO5H32Dq68XKQtn7zvPyfj5m6k9GlD7vOPYD9QkJBaVy4m+95BJPduTebQnlhmTsVv1LvEbd3ErC8/IS8nm+y0VH56cxSZyafw7D+ESeu2kZSVg9PlYvuJkyw8cATN4NuY+dmHbP73H5wOB/Gx+/nikfvQ16pLtsPBL++9SXZ6GnnZWcz8/COOHzmMsUvPUv176eo2wBlRlUmjni3slwWTvmfP6pXc9MgTTHrlWbd++fHVF7jpkcdJOHiAsQ/ew8ONqvNYi3r88varWMzmUl0boG2/QcQf2M/fX31W2C9TR7+GVqfnhmF38u1TI0mIi8Vht7Nx3mzmfj+O3sMfLvV1lAKXvBGqEMIXkFLKS3oOKoQIAexSykwhhAlYCIyRUv5zzjGPAY3PmVw6REp5wUHB19scIABbylEyV0zBcngLGoMJr0Y98O9yL6lzPsORfgJnbgau/Dz0ITE4spOpcv8X6PzK7i5W1rrpZG/+C1deFkJvxKNaY0KGvIq05JCx/Efy9q8BJKY67QnoOhytdxA5m2eTvflvnNkpGMJr4d/pTkw1y3a1ElvKUXKXTSDn6C60egPejXrg03U4Gr2x2EUQ9iScYuqGbWiFOL15qQ6NgC51qrPu8Ak61IwuXATh392xxGdk8mTPTmhK2LRv6b44Vh1LJCc7Gw+TiRqBftzdtiljF67Cw2QiOTMbpCQ0wJ+83FxaVItg/ZEEHFot+Xl5ePn4YM/LZXDzRszbf5iBDWvRNCqCzDwrf+2OJbBZW1ISTxIeU4Obn3kRo6cXy3//mYU/jqfP8EdYOuErbmtWj2qB/hxOTWfatn0Me/NDMlOS+eebz8nNykSr1+MdEMir02bz61ujOLltE9l5FvIdDsJ9fciwO3j7n6UsmTqZ1TN+IzcrC5O3N0279uTBT74iLSGe6R+/y/Yli9DqdbTtN5ihL7xyWfsgZKWmMP2jd9n87z9ICS179+XWF17FPyycRVMmsmjKRNJPJhDdsAmDn3yO4MhqfHjXEO549W1a9x1AeuJJfn3nNfxCwhj+fulXP46P3c+MT95n96qCVeA63DyUW54dhUYjmPX5x6ya+TuWnBwadOjM0OdGUa3Bldmk8GpVmeYAnVFZ4tT1NgcIID0hg99Gz2PP0j1otBpa9GvGsNf6MnvsUtbPPYjDasWVl4U+uBrkJfP87w8R3bjsRgWsm7GZae8txJqZhdDpiW4cydM/3Q/A9A8WsPGvrTjybdTtVJ/bX7+R8JqhrJu5hTlfLif9RDKB1cIY9FRX2t7c4sIXKqW+v9l4atofzN29B61Gw7AWzfns1qEEeXsXuxHqtpN7GfbrE2i1kGuzY9BqMei03NKwH6uPbqJKkJ5eDWqh0QhWHDjC7hPprHjoN0z64je8/mPXfN5fO4G0rDQMBg8ah9Xh5yFjuHf6c5y0niLdbMZmtxMRHERutoWnOwzno1XfIw0GLLlmTF7eYLPxyg2P8s6mH+lbK5J2MVHk2e3M3hNHnG8ImqAQonFx72uj8Q8JZf0/s5g65l0MIx7H+f1Y7m5en9phwSRkZjN12z7yh9yNqFoN29j3sGZnIjQaDH7+mEZ/hn3hHPTL5mPPt5GbbyPM15s0mwOfz3/Atm0zzj+mYMlIx2DyRNuoGd7vjIU8M9bxX5C3fBHS5cSrUzc8HnkGbUjpvwe58nJp/NtE1v09E5vVQuMu3bn1hVeJqFGLNbOmM+/7cSQdOUR4jVr0/9+TNGjfibcG96H/yCfpfOvt5GZlMeOT98lJT+PZH6aW+vppJxOYNmY02xcvRKPT0qbfIIa98Cqevn7MHT+OpVOnkJ2STM3mrbjl2ZfcNkNXivqviyC0An4Ezjz/zAIekFJuuch5TYApgJaCJ01/SClHCyFGA5ullLNPL0H6M9AcSAdul1IevlC912MCdIaUsnCcqz3jJEm/vEjk/35E6PSFr2UsmwRCuE0GLSsulwuNpuhDwzM/Q8WtlnZum8tLcdcoLgH6askauterRcOqYYXv5WRmNt8sW0edsGDu7dDSrc7PFq5iYLMG1A4reYlRcO+XXfFJrIw9zGPdO7j1y/crNnAsNYPn+txAkLdn4TlbjsazYM9BWteoRq/6Z5fDttodvDNvOf4RVXjv35Vu/T7h+SfYuWwxD7RpRHTQ2UQkNimF+QnpvD2/YGVgp9NZOOb51LEjvH/zjbzapxM6rbawz+bsjsXUthvDRr1Z5L2c38dn3st/dak/Lz+9+TL+oWEMfOyZwtctZjMvdmvLO3OX4h96eUn+hX4mr8TP67WiMiVAlS1OXY8J0Bnn/n7nZVt4qf2HhI2YiNbTr/D3K2fz31Tz2MLIr28v8+tXtjj1yALvEq9fXAL00KxRmLwz6VgrpvC9ZFusfDR/FVX8/flft1ZudUxevZ0Hmt3LrY37XrAd5/bLtpN7efCvl3i+T0fOVCWEYMamPRxISuXOdo2pHhJYeE5ccirTN+6jetVgbm9e/5w6JW8tWIlLo+PzVZvd5lJO+/h9Vvw9g2G1qtLknIWHkrJy+HLdDvxnLkFotQULFFAwT8dlziFjWG9e690Jb6NH4b/LyoNHWOoTgddbnxR5L+cqqzj1QWToJf+8zPn2C9JPJnDfOx+d7Renk5d6duCJr3+47BtpFf296lrxXxdBmAQ8KqWMkVLGAI9REGguSEq5U0rZXErZRErZSEo5+nT5G1LK2af/bJVS3iqlrCWlbHOxoHK9O/cH3pGegCGsBkKnd3vNo0o97OkJ5XL94j5wzly7pF/GK/FLeqnXSMnJpVqQP3D2vVTx98XpklQ7J5E4U2d0UADJORd/jH1uv6TkmAuTknP7JeZ0WZC3p9s50UEB2BwOogPdh3Ya9Tq8TSaqN2lepN9rtWiF3W6jWqC/W3l0UABJJ84uAHHuhM9TRw5TNSgQ3emywnb5+5B4cH+x7+VcF/o3Lq1L/XlJOnKIms1aur1u8vYmvEZNUs55n5dz/ct5TanUVJyqJM79/U5PyMTgH1S4zcKZckOVeiTGpZZYx39RmePUpVznUPrxwhhy5r34mozotVoiA7yL1BEZ6MWh9It/Hp7bL0cy4okODECjEW7tigz0IddmKXL96KAAzLY8avp7n1enINDLk/BadYosJFO3ZSs0+fluN+kAwv18kLZ8ZG5BbNVqtYWxynkqER9vb7yNBYs7FcapwADk8bMLPVSqOHX4EDWbu8cpjVZL9cZNC4erl+f1lct3KQmQU0q56sxfpJSrAUf5NUm5FLqgKGxJcbjs7pO3rSd2FQwxUIoI9/PhcEo6Ukry7Q5cUnIiPROdVsPhlIIh/XanE4fThUtKjqSmE+5bcEPZ5ZLkOy7+Yx92zjXOkFJyOCUNISA524zD6SLbYsXlcnE4JR0PvY7DaZkA5DscOF0uLDY7ZouFuK2bcTmdOGw2bFYLAAc2rsfDw8jR1AwcrrN1HUpJo2rM2UmfNqsFx+kV5iJq1iY+NQ2b47xJr+nZRNa/+B0qe771sube/BdVa9UldrP7glx52VkkHooj7PT7PLdf/iuH3U6+pWzqUq44FacqoaDIAOxZ6TjM7pP68+N3E1nv4qtHXo/qBtfgyJk45XDgckky8yw4XE6OpxUsguA4Z0GbY6k51A0u+Dx0SRe5tryLTsSvExzDkdQ0nOctrHMsLRsfgxeHU9PcYsvhlHR8PLyJzSgYWWp3OHG6XDhdLlJzckk8eABrbi5Oh6PwM3TPhnW4TCYOp6TjOl2Xw+XiZGY2GqMJ4XX6yZgtH3k6TmnDq2DOzSXb4v69Ji41HVH94ovSSJsNacu/6HFlqWrtusRuco9TDrudQ9u2UKV2XQC3fvmvXE4n+XkX/zdWLu7i60vCCiHE98BvgARuA5YLIVoASCm3lmP7lBLo/cMx1WhJ6l8f4t/tAbTegeTuWkLu/lVE3Pt5RTevUupRvxa/rN/GnL2HyLVY8DAYEC4nvevXZtmBQ4yZv5yMXAtCgJ/JiFGvo1qQP//sPsjGIyewOxyEBvhzU73q1A0vfgWjeuEhLNwTy6yte+hevyZCCJbvP4w530a3OjX4askaHC4XTpfEoNPidLoY1qYJM3ccYPvJFDKzs9HpdHiZjLTtP5hT8Sd4tW9XMpIScbmcBEdGYTGbGfT0i/ww5h2kKPiw1RkM4HTy8NhvObp7J7+9NYojewt2ZG/Ttz93vPEejbt05+dNW+nXoCa+JiObj8azIzGFN+4pebhk4uE4fn3jJQ5s3YwQgmbdenDX22PwDbrwsMCy0PPeB3j/9sEEhIXTpt8g0hLi+e39N2k/cAgajYYJzz/BlkXzcTld1G7ZmjtefZvIOsVPLL4Qa24uf3z0Dutnz8JhtxPTqDG3vfxGkadPSqWm4lQlZPIxcsNd7Vg35x18uj2GPqAKebFrydsynb6/P3TxCq5Dj7W7h1umPsbqY4lkm83odDpMOj33txjCwoOr+Wj+CjLyCr5MB3iZ0GKkT53OfLnhF37YOpNcay7h/qG80G44g+r3KPYajcLq0CC0DtM27qZ3w5qYDHrWHzrO8dQcnu/0EG8v+xIXLpxOF1qtBg0a3u35LC+v/oaPlqwnPSsLjUaDj7cX2nqNEMEhvD6oF+bUVJwOO0FVqpKWlobnky8z7aM3mbkrFnt+PlqdDo0Q6Ec8jjMxnvyx75G3axtCCEytO2B89jWMA29lwvJ/ua1xHYJ9PNkVn8TiuON4f/5WiX3mTE3GOvZd8jYVrIDq2bQlHs+8hq5K2c0xK0nnoXfw1qBezP1+HF2G3Yk5M4OZn31ITONmhERF88vbr7L2rxk47HaiGzRk2EtvULtl6edDO+x2/vriE1ZM+wWb1UpYTHWGPv8KTbp0L4d3dX24lASo6en/n7+DZXMKAo3q/QoS1PdJstb+QfK013HlmzHGNCfs9vfR+Zb/l9OrUb7Dgck/gJFfTaBms5acjIvl+6cewWx3YLE76Fq3Bu1rReNwuli4J5bNRxOYtSsWS0hV3v7mFwLCI9i5Ygk/vvAkD7TRE3XeEDQArUbDwze0Zf6uA3y6cBVISZPICEZ2bcfP67YS6O3J3e2aE+ztxaGUdH5au4VjqZnoPIzc9vYYmvfsQ1ZKMj+9OQqb3Y7Nkkf99p245dmXMJhMrJz+G3PGjWXPmhX4hobx6FfjqVa/IUd2bmfc4w+y6d9/2L1sMf3qxfDg4F5YbHbm7d7K1yPv5+lJvzFn3GdM/GMqeWYzDdp15IXfviYwvPjd2POys/j4ziF0iQ7n7kE9cThdLD5wiE/vGcqb/ywtcRhCWQmLqcGzk35l1tgx/P7B2/gEBtH1trvpM2IkY+4aQkyjpny6cjMGk4nVM37n0+F3MHrOEnwCi98tviQTnn8CDy8vPli0Gm//ADbNn8MXj9zPa9PnEFotpnzenFLWVJyqpIa81Bu/4NUs/vFdUtKyiW4Ww4jJ9xFZP+LiJ1+HLPZ89J5e3PfJVzTs1IXU+BNMfukZcpw2Tuacol3NKHrUr41GCFYdPMLSfYcYu+4nluTs5bk//iS8ek1iN2/g7acfx9vgSY+axU+Sn3jzB3yyaiLjl8/H4rDRrUYb/rzrbT5ZNRFPDx33dWhJ1QA/4tOzmLx2CyuPbkSj09H3mZfpOHgoFrOZaR+9y44jhyEvj2r1G3LP6+/iExjElgVz+fGtV7Dt2ILJx5fHxk2kdsvWJB6K49unHyF9wxrMv06iZ1QYnQb2xCldLDxwhI3PPIjPxOmYA4L4buZUbJkZeNZriNeYb9DXrFPs+5AOO+anR9A+wJMeA3oU9MuhYyx9ajh+P81GmEzFnldWfAIDefGXGfz52Rhe6N4Oo6cXHQbfyqAnnmHCC0+i1el5f8HKwn4Z99gIRv02i/DqNS9e+Tl+f/8tko8f5c1Z/xJYpSq7Vy5j0svP8MR3P1Kzadku3HG9uORV4CqL63kRhCutuIUErmZfrtrCzW+NoWm3s0tjJhw8wHtD+1MjwJsHOp29KyOl5MN5yzE7JZ+u3oKn79k5Ogsnfc/BGT9zR4sGl3xtq83OW7MX82LfLgR6eRaWbzuewKydsfQd+ST9Rj5RWJ6fl8cznZoTEBbBu/OWuY35/eHlZ9g4929G/fYXMY3O7mK+b/0avn78IVpWCWFQk7qF5S6X5INFa3jqp+lUq+++8d+FLP55EnunTuTuVmeHyEkp+WLlZoZ98DmNztvI7kqJ3bSBn958mXfmLi3SL1Vr1+XGESMvua6kI4cYc/dQPl62oeAp2mkzPvkAl9PBsHN2UFfcVaZFECobFaeunLGDr94fwdZ/xRYpe+CfN4gYdqPbMvzZ6Wm83LUdAR5anutzg9vx3y9fz4kcC2/NWUxotbNbQGz+9x82ffE9fw79vFRtqvNZDx68obXb3J3DKen8sHoLbYbezvC3Pygsd7lcPN2lDY58K1+s2oze4+xKdDPGfsTSX37koTGf07xnn8LypCOHeHNQb6qHBvNwu6aF5VJKPl21BeuTr+LRrvMlt9e6ehle337Es53dn9h/v2Enp4aNwNR3UKnePxQsgvBfJR8/xnvDBvDJio1u/fLn5x9hzTVz56ujL7mu3KxMXuzenjGL1+AdcPYG35JfJnNwy0ZGjv3mP7f3WvWfFkEQQoQJIX4QQsw//fcGQogRZd1IRSlvaVnZVG/SzK2sSq06OBz2IgsKCCEI8/XGLyTULfkBqN60Bal57mOULyYlJxedVuOW/ABEBfgjdDpiGjd1K/fw9MQnIIjoho2LTHis3rgpCEF0w8bnlTfDmptLlF/RiaqRQQFFNhu9aJuPHCLSx729Qgii/H1JPlb8zuNXwqnjR4lp1KTYfjl1tHTz05OPHSWqXgO35OdsXRX3HpXSUXFKuVYcyzxZJE75Bgbh5edHuJ9PkeMjA/1ACLfkByCmcTOOlXJBJJfLhcVuJyrA3608KtAPdDpqN3Vvl0ajITgykvAatdy+5APUbNIMjRBFYlt49ZogIcLo/pkrhCDazxtnwolStdl58gQxfkX3PK7pY8IZf6xUdZWllBPHiKxTr0i/VG/cjORjR0tVV3riSQLDI9ySn4K6mnKqAmPx1e5SxrBMBhYAZ8bJxAJPl1N7lOtcvt1Bns1eLnVHBAawb90at7LDO7bi4eFB7Cn3FYlcLkl8RhZZKafISknGnm8lJ71gYureNSuI8L74Y3Wr3Y719OTOMD9vnC5JUpb79iQHk1ORDjv717u3y5yRTk56Ggc3b8B53uIL+9avQSDYv2Gte/m61Zh8fDiYnuVWbnc6OZqcSlTd+pRGZMMmHMp0XwXP5ZIcSk0nsu6lP/0qa1F163Ng0/pi+yWqXunaVbVOPY7s2o41N9etfO+61aWuS6lQk1FxSrlC8q0WcrLSy2UieoPgGuxbu9qtLDUhHkt2NsfTMnGdt8BO3Kk0dELLif17cdhsZKen4XK52LduNfVCLz7MKs9mIdNaEJc0Gg1eBg/ikt3jYVxyGsLhYOd57bLb8kk6fIiTBw9gMbvHtt3rVuOkIC6d6+junWi0Wo6Y89zKXVJyMDUTXQlD3Uqiq1GH2GL6ZU96DrpadS9wZvmqUrM2x/ftKdIv+9avLnUsDomKJjP5FOlJJ93rUnHqP7mUOUDBUso/hBCjAKSUDiGE82InKUpp5Fjz+XPrbg4kpSCACD9fBrdoSGSA30XPvVQ9akbyy5svA1C/QyeO7trBlFefp2etaBbsPsBfW/fQuU517E4nC3YXDE1oERXBW4P7kJ+Xh9BoMHp5YU5P45nuJW8+lmbO48+tuzmSWrDyUUxQADe3aET9iBB+WLWJW1s3oYqfD/uSUpizYx8969di1Yzf8QkMKpjsfzKeaR+O5oZhd5IQu5+vHn2Aoc+Nwujtw5JfJnFk53Y63Hwr3z39P4a//wk1m7XiwMa1TH7tBW4YdhcbZk1n4b442kRXJTffxvz9R2jQsQthMTVK1V9tbhrIvK/HMnvnfjrWqIbd6WRx7FGCYmpe1iTOshLTqAmRderx7VMjGfzkcxi9fVj2608c37uHBz4YW6q6gqpUpWWvmwr6+PlX8A8JZe1fM9i6+F/e/HN+Ob0DpRyoOKWUO0uumYmfvMS6ZXMBCA2vyojnx9C4Vacyu8ajLW9jyDdPYfTxoXnPPiQdjuOXN0bxYKtbmbLpD35bv51eDWuj0RQssJOWa+Hx9vfz8b3DcDqdaDQatHo9VnMOv9/yaYnXScvLZNSCj1h2eCNCQK2gaD7o/QJ3N7uZn9fPZFjrJlQPDuRwSjp/bN7JPU1v5qcNq/jzi4/pOuxOzJmZTPvsQ/TNWoHJi09G3MXdr47GPyyctX/NYM3sP9ENuZNf3n4VodHQsFMXju/ZxaRRz6Lp0IXkfbuYuWM/XWtWw+Fy8u+Bo1jDquDdtHSLzxhatMEcGMqvW/bQu04MGo1gWdxxUrQGfDtV3NS/gPAIWt80gK/+N5z/t3ff4VFVWwOHf3vSJ72RQAo1lADSOygogiKKDbGjonjtDRt6vfbOvSp+oiiIWFBRBEXpvffQEgidhHTSeyazvz8SkSEJEJgCmfU+D4/JnrPPWWfArKw5u4x89mUCwsJZ//ssNv31B6/8+le9zuXp7c3gu8cw8eEx3Pbiq4Q1b8HWhX+x4OvJPP/9rza6g4bvbDZCXQ7cBCzSWndVSvWmaqdsh0wAkLHV9mOvOUBmrflk8RpaNQpmcGwMbi4Gth45xp879vDM0Evxrd4T4HxtO3qMP+L2EBgYQGZuHoG+vpQVF9KjeRSxjRvx/YY4jhcWY1BVS2bf068b7y/dQEy3ntz79gT8QkJJWLeaTx+5n/Yh/tzWq3ONa5gqK/lg/kp6tYhmQOtmKGDtgaOsTDzEs1ddyh9x8exMTqPMVIm3hztXtGtJ31bNKBn9DLM/+ZC9G9bhGxTMZbfeyeV33ssbN1+Dh6cn2WmpVJSV0aRVDMf27mHw3WNY+sM3aLOZ0qJCvHx8MWvNyGdfom3PPsye8DY7Vy3H02ik/8g7GPbQ47i6udX7PcvLyuS3CW8Tt3gBLq5u9B5xE9c9Pg4Po/HMnW2ovLSEuZM+Yd3vs6goLeWSQYO54fFxBIbXf2J1pcnE/Cmfs+qXGRTn5dG+/2Vc//gz9S4Ync2FNAdI8pTzsuccoLeeHIUh6wjDO8Tg5e5GQkoGv2zfy1tf/klks/o9uYDa5wCtOxrH/bOeJzjYn/TcfPyMRgwmEwOb9uPJvvcyZtYLJB4/jNaa5oGRfHH9W1z/02MENIvm4Y+/ICQyikM74vj4wdG0dG/E73d/XuMaWmuumT6GYD8Y3L4lbi4G4o6mMH/nARbeO53v4uYwbetMispL8fHw4r6ut/BU/3vp0qmAsm++oGzjaly8jLheORyv2++j6NVxBBfkUVqQR3FeHhGt23JwTzwed96P6bspeHi4U5yfh4fRG+Xqihp+Ex7X3kzpVxMpW70M5WLA7fJheN33MAav+ucWc1EhJV9/RsWy+ehKM+4DrsDr/kcx+AeeuXMtrDEHCKqWrF7w9WRWzvyBopwcYvsO4PonxtV7AQSo+jtb/uO3LP1uGrmZ6cR07cGIx8fR9Bw3WnUWp8tTZ1MAdQUmAh2AXUAocLPWeoe1Az0bkljsx14F0P6M48zZtpunhwywmNcxc9MOgn28ubxd/X9Y1OajRau5umMbiyWsM/ILmbR8Pf+uXj3mZDuT0/hhy24+WheHl88/Y68XT5/K7I/e5/VhlpNRAeKOprDhUBIPXtbLon3q6k10jAinR/OoWmMLenNyjbY9G9byw5uv8Nrviyzel69fGseWBX/x3LeWixokbtrAt6++yBt/Lj3DOyHE+bvACiDJU07KXgVQStJBxt83hPFDB+Dq8s/sgYXx+zHE9GTscx/U+5y1FUD3/PIsQYHF9Grxz35+RWXlvD9vFRse+hV/T8t5QOmFWfT56jbemreCkMh/8svWRfOZ+uJT7H1obo1rbEreyaNzX+apIX0scsvsrQn0Ch/Ik/3uqTXe7kNrzkEyJR+h+Kn7+XjFJou5lLMmTmDJzzMY+/q7FgsPZRw9zCs3Dydg5kKUy9kMQrI/axVAwvHOaxGE6v0TLgP6Ag8C7R2VVETDlF1UTJMAvxqT2psE+pFdVFxHr3O/zslCfb0prTBRYao5WiYxPZOARmEWxQ9AdGwHVPXO1bVdI+KUawA0CfAju6h+G6FlJicR3a59jfelaWwHTOVlNcb+RrVrT2bymXcEF6KhkTwlbC0jNYnwwECL4gcgwt+X9KT6Lb5yOkfzUog4Zei3t4c7fp5eZBZl1zh+e8oeDC4uFsUPQHS79jXmSf4tKS+ViAD/Grkl3N+bI7nJ9Yq3Mi2VsFatay4kE9sRVVZG9ClPKBpFN0NXVKCLrZfbhTgXdRZASqkeSqlwqBpPDXQD3gImKKXqt9GGEKcRGejP/ozjmCotd6VOTMs6rzlAJeUV5BaXnJioGhHoT2J6psUxh7Ny8PfyxN21qqDJLymlqKwcgJ7No8hJT6sx8XDXymVoU+0LNVRdI6vGhMx96VlEBFYVRuWmSnKKSmrswn2qprEdSFi/BlN5ueX1V6/A6B9A/NpVFu27Vy+naazlynDi7BXn55GdliI7bF9EJE8Je2nash3JWVk1FulJzMyhZftzfwpVVF5MSn46leaqD+E6hrUhMc1yEYKswiKKysuJ8AsHqubv/F0M9Y3uDLpqcYGT7Vq9Apc6nrC0bxTD/owsTJWWH/wdyMilU3jVB2tlpnKO5adTZiqv7RQnuLZoRUr8Loryci3a41Ytw+zry67VKyyvEbcFF/8AlHfNldvEmZUWFZGdegxzpUxxPF+ne/74BTAYQCl1KfAu8BjQGZgM3Gzr4IRzaBLgR3RwANPWbmZIbGs83VxZe+AIGQWF3N67c73PV1xWzq9bd7EnNRM3FwNGD3dGdI7lytgYvlm7hUqzJqZRCMk5ucyJS+CaS9pwLDefX7fs5HhhMWatiQ4K4ObuHfFyd+XD0aO445W3CGvanE3z/mDBtMkMad2s1mvHhIXg4erKjA1xDGrbEgWsSDyEWUPrsBB+35XIpkPJuHt6QqWJK9u0oHfz2nerjm7XnhaduvDpI2O47tGn8fLxZdmM6aQdPMCo519hyvNPcev4/9CqSzf2bFjHz++/yQMffFLv98vZFebm8O1/XmTnymW4e3riHRDIbS+95rB9jkS9SJ4SdhEY3IiBw0YxdfU8ro5tjr+XJ1uPphKfkcN9I+u/4npZaQnj5r3DHwlL8XB1w8PVnZcHPsqjve/mxu8fxs3FQPuIMDLyC5m3cz+P9rqT9MIsnv7rTeIz9qOUokVQFB9ePZ7GnkF8/OBo7n7tXaJjO7Br1XJ+fOdVrm85sNZrtwltTt/orkxfu50rYpvj5ebGxoPJZOWXc1P7oXy0fjpfbfkFNw8PTOXlPNBtJI/1vKPWc7kEheAxZDgf3H8Xtz33EoFh4ayZ8ysbF87H88nxzHj/dXRlJe37X8aR3TuZ/uYreIz+F8rGG2k3NOWlJcx46z9s/PN33I1GXN3cuPmZ8fQaXv99jkSVOucAKaW2a607VX/9f0Cm1vrV6u/jtNad7RXkyWRstf3YcyNUU6WZ5XsPsPXIMSoqzbRr0ogrY2POaQGEL1ZsINTXm2Ed2+Lh6sLetExmbNzOQwN7U1JRwZKE/aTmFhDsY2RgmxY0DQ7kwwUrGX5JW7pER2DWZlYkHmLz4WQa+/lwNCcPk6sHFaYKvD08KC4oYMyAHjQPrf0D5rIKE0sS9rMjORWtoWNkOFe0a8XixMMc9wthzIT/wz+0EUcTdvPpg3czvGUEl379e+3vS3k586ZMYv2cWZSXldJp4GCue/Qp/IJD2LVqOfO+/Iy0QwdoEtOGax58lLa9+tb7/XJ2H95zK+HNW3LTMy/i6e3NrlXL+eq5J3juu1+IaFX/ic3O4kKYAyR5SthzEQSz2cy8X6ayaNZUCgvyuaT7AEY9+AJhTZqeufMpPvnPQ+Tv2cyILm3x9nDnyPEcvl+3k89HvEmApx8TVn/J1pR4GvkE8UD327imzUAu++p2ujcPpW+rpigFmw8nszT+KNe1u5zf4udh9vCkrLwcLw8PKoqL+fCq8QxvO6jW65dXVvDFxh/5eedcSk1lXN6iL8/0H8PsPUuYkbKSBz79gtCoaDKOHmbyw2MZ3XQwn714T63n0mYzJXN+xjx/NpX5+bh16YHHXWNxaRxB+e7tmH6YSsX+vbg2icDl5jvx7Fd7TBeKC3EO0JQXnqK8pIS7Xn0bn8AgDsRt4bPHxvLAhxMl75/GOS2CoJTaBXSuXk50DzBWa73y79e01g5ZekISi/3YswCylrS8Ar5cuZGXrrkcg+Gf8c0LdiVSUlHB9V3a1+izcu9BUvIKuLWn5YZtHy1aRVZhMf++9go8XP95WLp2/xEOZB7nrj5dzzquClMlr89bwVuL1hDQKOxE+5aF85j/7iu8tHRTfW5TWMmxfXv575g7+GDZBgwnzeua/ckEivPzuP3ls9+t29lcIAWQ5CknZ88CyFryc4/z8I3dGX/VADxPWp1zw8Gj5OZ6M/Wm92v0mbtnGZ9s+Jwxl1rmne/W7WBvWjrPDO1PgPGf/el2p6Sz9UA+c+/+ql6x9fjyFv419RuLuTuHdsTx9UMPUvHTH/U618XqQiuACrKzeXFIfz5YvsFiTvLKn39g58plPPLplw6M7sJ2rosgzABWKKXmACXAKgClVCsg7zT9hHCYnOISwvx8LIofgMYBvuQW174IQU5xKeF+NccjBxqN+Hl6WBQ/AI396z5XXYrLK3Bzd7cofgAiW7ep97mE9RxPOUaTVq0tih+AyDZtOZ5Sv13UhUNInhIXnZysDPy9fSyKH6jafiE5P63WPsfy0wn1rblEdIDRrfq/lptzN/b3JbUgs8bxp6O1Jj0nnYjWbS3aI1q3IT0nvV7nEtaTl5le64JMEZKnzkudBZDW+i3gGap22O6v/3lUZKBqjLUQAOQUlZBdVHzWk8crzWYyCwopLC2zeiwRAX4kZefWmKiakJJBVGAAUPU0JiO/kNKKqmOigvxJSMvEbDZzvLCY3OISTJVmknJyyS8tq7ESXULqP+c6W76eHhjQNSaqbl+2mKhaVo071eHdO0lYvxrzGRZOOB/lpSWkHtxfY+fqhiy6XXsO7YirMYF3x/IlNO/YqfZO4oIheUqcrezMNNKSD591njKbzaQmHSI7y/q/+IdHNqWgpISswiKL9r2pWXRpXPXkpbyygoPZSeSU5APQqXFb9mdkU2k2k1tclXPNZjNHswowunly5HiOxbkSUjK4JLxNveJSShEb1Y4dy5dYtO9YvoT2ke3O2N90+ABlm9dhLj/9wgnnQ1dUYEo6gjnfeT7fCI1uRn5WJhlHD1u071i+hOaXSJ46V6ddhF1rvb6WtpoL19dCKRUFTAfCAA1M1lp/fMoxA4E5wKHqpllaaxlzcpFIyyvg5+17yS4uwaAUfp4ejLykdY0lPE8WdzSFP7YnYDAoSsoraB0WysjuHfFyr/8mnbXx8/Kkc1QTJi1bx/BO7fDz9GDjoST2pGXyzJC2LE3Yz/K9BzG6u1FYVk6PZlFc1SGGRfGJvLlwDRgMmCpMuLoYCPP1pnVYKFNWbWLYJW0J9jayMzmNTYeTeeyK+o25NRgUQ9s05//+NZqR418jqk0sO1Ys4c+JExjbr+6hdPu2bOKzxx6gtKgIV3d3tNnM9U+MY/Dd9Z90WxetNX9N/j/mT5mEt38ABdnZ9L/pFm557t+4uF6Y+zRYS0CjMPrfNIr/jrmTG558loDQRqyd/QsJ69cw8tmXHR2eOAuSp8TpZKUfY+JbT3IocRduHp54eRl58Nn36Nitf519tm9cyRfvPEVZcSFlFeW0atuJx16dRHCj+m+0XBsPTyMj7nyUL7+byLWd2xLi483O5FTWHUjmr9Gv8X3c77y/8gvcXA0UlpUxJKYf71z5LOHejXl70VpMZjNKGTCgaeTmz0sDx/D2iv9jaMdWRAT4kZiWxbI9h5kx6qN6x/Z8r3t5YvyzFObl0qpLN/Zt2cTs999h0lUv82QdfUxJhyl+7mFMeTl4ehkpKSvD5bqR+I594nzephpK/5xF6deT8DAaKcnNwbPfILwefwHl5XXmzhcxDy8vhj/0OB+PHc3N48bTqFlzti6ax4qfvmf8j7MdHd5Fy5a/3ZiAZ7TWW5VSvsAWpdQirXX8Kcet0loPt2EcwgbKTZV8uW4bI8a9zKUjbwOlWDf7F6a8+W+eu7JvjUf7AEeO5/B7XDyj+3WjaXAgZRUm5u5IYMbGOO7r38NqsaXlF+Dj6cH8XXsprTAR7udDpdnM2v1H2JWSzhOD+xPsY6SgtIwfNsQxf1ciJWbF3e98QLeh11BpMrHk26ks/vwTBsQ0I8DoyfI9BykoLaN5SCCPDOpDkHf9d6vu0SwSb3c3lkx4i9ziYiID/Bjbr2uNvYn+Ziov56MH7uLqBx7iqjEP4eLmRtzSRXzx1EO06NyVFpd0Od+3CoBVM2ew8c85vPLrPEKjosnLyuTLcY8xZ+IEbnzqeatc40J2y/P/ZuXPPzD74w8oys+jfd9LGT9jNr5BsoqyE5A81YCZzWbeHHcn3a4ZzmNfT8fFzY0dy5fw4fNj+WDqAho1rrkxdVryYSaMv49bu7ajTXgolWYzS/ce4q0nRzHh+xU19s45V0cSdxJg9GL53oMUlpYT5ueNi8HAHwlL+XrbT9w7oDONA/woKa9g9rY9PLfgXVJKsrn2yecYeOtdoBQb5s7m19f/w5UxAwgxBvHZxu9YkZBAh7DW/HTr07QPi6l3XINa9OLLYa/y6Tc/svh//yMmuBlTh79Oj8i6t1gofvoB+gy9hpHP/xsPLy8SN2/kowfuoiSmLV6Dhp7P23RC2YbVmH+Yykvf/Ehkm3YUF+Qz9ZUX2PfJuxiff80q17iQDbl3LAFh4Sz4ejJ5mem06tKdF77/lUbRzRwd2kXLZgWQ1joVSK3+ukAplQBEAKcmFnER2nkslej2lzDw1jtPtPW78RbiFv5J3NFUereMrtFn7f4jDGrbkqbBgQB4uLkyonMsb8xdyvHCYoJ96l9UnColN5/c4lJeHDbIYh7Qot37WHvgCHf07nLiOr6eHtzcrSMTFq6k5zUj6H5V1e83rm5uDL3vQbbMnc3etCy6REfQJTrivGMDiG0SRmyTsDMfCCyYNpmARmEMf+ifT9G6XDGEPtfdyK8fvsOz03+2SkyLv53K7S+/TmhU1d+Zf0goo994nzduGsb1j4+rMT+moTEYDAy89U6Lf8vCOUieath2b1sLLorhDz9xonDpNGgwvUfcyJK5M7jtgedq9Fk051u6RzembeOqifCuLi5c2a4lO5duZM+OTbTr1PO848rNzmTr+qW8dNWleLj982vYxkNJTNs2k8Htm9O4+oMxL3c3ru/Sljf/WEabbr24/I57Thzf57ob2bVoIXPiFzO66w0Matn7vGMD6BXViV5RZze0qnTdSgyVJm57+fUTIwZad+/JsAceZv73X4GVCqDKOT9z69PPE9mmaiie0deP+15/l6cH9sIzPw+D37nvGXix6DnsOnoOu87RYTQYdlmIXSnVDOgCbKjl5T5Kqe1KqXlKqZpLdFX1H6uU2qyU2lxZ7DzjPi9kecVlNG5dc0xw4zax5JWU1t6npJRGpyw24OriQrC3kfzS2vvUO66SUkJ9vWssgtCo+ilQI19vi/Ygby+0wYXGbWJrnKtJTJs678UeMg4fIqJVzU/wItu2pyD7uNWuk5uRTuMWrSzaQiKjKC8todxKfy9CXOgkTzU82VnphLdoVeOpTeOWrcjOqn2xgeNpSTTythxSpZQi1M+H7MxUq8SVl52Fn9HbovgBCPPzocRUSiNfyzzp5e6Gu6sLjWJq5oOwNm1ILcyq0W4vpsMHCI2IqjFcOqJ1WwzFxXX0qj99PJPwU/KU0dcPr4BAzLnZVruOcB42L4CUUj7Ar8CTWuv8U17eCjSt3sdhIjC7tnNorSdrrbtrrbu7GBt+lX8xaBocwI6lC6k0mU60mSsr2b7gT5oGB9TZZ3eK5YTS3OISMgsKCffzrbVPfUUG+pOUnUtRmeUkzN0p6fh4eBCfkmHRnpiehdHFQNz8Pywmx1aUl7Fz5bI678Ueugy+mt3r1lBW8s8qcVprNs79jRadrDP8DaBFpy5sW7LQom33mpWERjfDw3j+T+WEuNBJnmqYYmK7sGf9GkqL/llsQGtN3OKFtG7frdY+bTr3JT4z16KttMLEgfQMWsV2tkpcjaOaU1hWRkZ+oUV7fEomTXzDiE+xXL0tLa8AtCJ++VJMFf8s8GM2m9m5YAHdm9Rak9uFZ/9BHNufSF6WZcyb/vqdiiY1hxieK9W2A1uXLLBoO7ZvL6VFRbg0rn0zcSFOx6YznJVSblQlle+11rNOff3kRKO1/ksp9ZlSKkRr7biPM8RZaREahDHxMBPuvZVrH3kKg8HA3EmfoIoLaF3HyjP9WjXjkyVrcDMY6BzdhJziEubvSmRQ25ZWWwTB19ODjhHhfLpkLdd0aoufpycbDh1lb1omd/buwnfrt1FqMhHTKJjknDzm70rkhq7tWXHwGJ8/9gBX3DOWirJS5k6cQLMA79Mu6GBrnS8fTEBoKO/dfgM3PPU8Xj4+LJ4+hZQD+3hi8nSrXWfEY8/wv/vvpLSokNg+/Tm8awe/ffwBo994z2rj3YW4UEmeariaRLXgkh6X8t4dN3LDU89j9PNjybdfk3HoEJe+dkOtfQZePZJ5P33BzK3x9GzamOLyChYnHqX/lTee04antXH38GT4bf/i828/4drOsYT6eLM9OYUNB5KZPnICY2e/hFIQ26QRGfmFLN59kBcv+xdLkjfz6Zi7GfrQIxhcXVkyZTJB5a4MatHLKnGdC9eoZri27cA7t47gludfITAsnNW//sTWpQvxnfSD1a7jPmo0i5+4F5Si++CrSD24n5/++x6e9/wLVcucYyHOpM6NUM/7xFW/OX0DZGutn6zjmHAgXWutlVI9gV+o+qStzqBkgzn7Od1GqGUVJt79axmtwkM5Xl4JQIiHK3tT0nlh2KA6C5q84lKW7T3AwcxsvN3d6N2yKZ2irLOyDlR9Ivbq74urFlkwmU4sgrDrWDoju3ckzN+X5XsPkpqbT7CPkUtbt6BFaBClFSZW7j9CQmYOLgYDncOC6NMyGheDXUaJEvTm5FrbTeXlfPXcE+zZsBZtNtO4ZQwPfDiR4CbWmZP0t6Q98cz/ahJJexNoFN2MIfc8QOsejkuq4sJ3IWyEer4kT138TrcRamVlJY+P7E2oi4kCraiorKSRlzt707P5YPpSwiNqL2gK8nKY8/2nbFm1AC8vbwaNuIsrrr0dgxXzwb+u64SfqkBRtdJbmJ8P+9KP868ed3JDhyF8uu4bNh/bSZhPCA/0uI0rWvahvLKCaVtnMfvACip1Jdc0688D3Ufi5eZptbhOp/vQ2kdqmM1mCie+h2HNMrTJhDmsCcZxr+DWsrVVr29KSab8p2mYE3ZiCA7FZcQoPHoPsOo14MLbCFWcu9PlKVsWQP2p2pRuJ/D35iXjgWgArfXnSqlHgYeoWomnBHhaa732dOeVxGI/pyuANh1OZldyGvf2t/x39d26rbQIDaZvK+t8UlZf244eY862eF65bjCGk55eLI7fx46kVJ4eeqlD4jqTugogIS5UDaQAkjx1kTtdAbRj0yqmvPUoT1xmecwfOxMJ6XEVdzz0kq3Dq9WRAwk8N3owr44YbLHR9pbDySyNP8LmR353SFxnUlcB1NBIAdRwnC5P2XIVuNXAacfPaK0/BT61VQzCdgpKygipZdW2YB9vCmywwenZyiwoItjHaFH8AIT6+lBqqnRQVEKIC5HkqYYtJzuj9jzl5UFORooDIqqScvQg3h5uFsUPVOXPEpPj8qcQzsQ+43uEQ1SW5FN2LAFTofVXSGkeEsjulAxMleYTbZVmM/Ep6TQPqVrmOre4hMNZOZSUV9R1GqvrFNmYY7n5NYqwbUePEXbKCnQXC601yYl7OLQjzmICrBBCXOzMZcWUHduDKS/jzAfXU5sO3dmXmkHpST83tdbszsihXfVGqLnZmezduZm8HPtN6erUYwBFZRVVixucZHtSKlH+TewWh7WZko9QkbATXSarh4oLX8Pe5t1JaW0md/k0CrYvwC0oAlNOCl6tehI89FGUq7tVrtEsJJBwfx++XLWRy1o3x6AUKxMP4e/lSVRwAN+u28q+9CyCfYxkFRTRP6Y5Q9rH2HxSfZi/L5GB/nyyZA3DOrbFz9ODjYeS2JeexbgLdPjb6aTs38fnj46hOPs4Hu5uFFdUcs+7/6PToMGODk0IIc5L3oZfyV8/E9eAxpjyM/Bo0oaQa57G4GmdD6vCI5oyYOhNfLFmPpe3isTTzY0NR1Kp8PSjz6DhTHr7KdYsnk1oQACZubkMGHIT9497t8aSztZm9PGj52XDmLR8Addc0rZ6EYRUNh5M4tfbP7PptW2hMjOD4lefRicfxdvLi5ziYowPj8PzqhGODk2IOkkB1AAVbJlLWXI8EWMn42L0x1xeQtaf/yVnxTcEXfGAVa6hlOKuPl1Zf+Aoy/ceBKBjRDh9WkYza+suXAwG/j38CtxcXcgvKeWrVZsI8vaiR3PrLYtZG6015RUm/D09+XNHApWVZvyMnrgaDBSUlRPoffEs62yqqOB/94xiUHQjenVrg1KKQ5nZTHnmEV6evZBG0Y6ZZyWEEOereO9aCncsovE9n+Dq3whtqiB7yWSOz59I6PUvWu069z/7His69mDZnG8pLS2i+5W3MnzUWGZ/N5Gj21bw4tABeLm7UVJewbeblvDrNx9xy5hxVrt+XcpLCgn19mZR/D5Mpkp8PD3wdvcko8h6e7zZg9aa4pcfp68HXDm0Py4GA6l5BXw2aQKG6Oa4x17i6BCFqJUUQA1QYdx8gq9+jL/3ojC4exE0+EFSpjxC4KD7UAYXq1zHxWCgX0wz+sU0O9FWVmFiR3Ia44cNws216jp+Xp4M69iGRfH7bF4AHcvNp7yykqeGDLB42rRszwE2HkwiOijApte3pvg1K/FzNdC7RfSJtuahQXSNCmfNLz9yw9PPOzA6IYQ4dwVx8wgYcCeu/lUTzpWrG4GDxnDss9FUFudhrb2UlFIMvHokA68eadG+cNY3PNi304kVS73c3bi2Qwxf//q1zQug7Kx04uM28PLVl57IkwBbjxxj2rZfGBLT36bXtybTwX0YMtIYMqTfibm3jf19uaJlFCvm/CQFkLhgyRygBqiyOBcX/zCLNhefIKisQJvK6+hlHaUmEy4GQ41lsIO8jRSW2vbaAIWlZQQavWoMtQv09qKw7OKaXJqfnUWg0atGe5CnO/mZ6bX0EEKIi0Nlcd6J4udvBndPDF6+mEtO3YvWurTW5BfkEeRt+fM1yOhFfn6eTa8NUJCXjY/Ry6L4AQjy9iKrKMfm17cmc242/j7eNRYeCjZ6wXHZKktcuKQAaoA8ozpQnLDKoq1k3wbcQqIxuNf8hdqafD098HJz40Cm5WP8uKRUWoQG2fTaANFBASTn5JFX/M8kTK0124+m0jI02ObX/1u5ycS6A0dZu/8w5SbTWfUpKSwgYf0akhP3ANC6ey8SU9MtFpEwa8329Bza9rvMJnELIYQ91JanylL3oU0VuAbadiEApRTt2ndhe1KqRfv2pFTadexm02sDNIluSampkpRcy0JvR1IG/Zvab2V5s9nMLzvnM2XzTPJKC87cAdBlpZRv30xFYjxaa9zatCcjO4ecohKL4zanZkL3PrYIWwirkCFwDZB//ztI//ElKotz8WzWmfLUfeRv+o2Qa5+1+bUNSnFtp3Z8vz6OQW1a0DjAjz2pGWw7msLDl9v+h6HRw51BbVsxafk6Lm/XCj9PD7YcOUZWYRGjenay+fUB1uw7zF97DuIXHIoyKObGr2RI66YMbNuyzj4Lv/6COR9/SOOgAHIKigiKjObhSV/T+4aRTFowl4EtIvF0c2X90VRcQ8PpNnSYXe5FCCFswa/XjaR9+yy6shyvmD5UHE8if/1Mqw7TPp27nniDt54cRXZJGc2C/Dl0PJe1h1N45ZOZNr+2m5s7dz/+OtMmjOeytk0J9fFmd0omB9Lz+e+Q22x+fYAFiat4fOG7ePj4YPTx4e3VX3Jnh+G8NvjxOvuULPmLko/fIcjHm9LyckqMvhjf+B9ed41l4s/TGNoqmgCjFxuS0zhQofG99ma73IsQ58JmG6Haimwwd3YqctMo2DyH8oxDuAU2wbfbcNwbtajXOU63EeqZHM3OZe3+I2QXFRMVFMCAmGYE1DKcy1biU9LZdCiZ4ooK2oSF0Kdl0xrD8mwhu7CYD5as5ZFPv+KSyy6vimXtKj5+cDRPDuxFmH/NjeT2pmUya2ciD/btQpC3EbPWLN5zgEPKixdmzmXTvD9YO/MHKkpK6HTVcAbeeifunvZ7L4WoTUPYCNVWJE+dHVNhNgVb/qAsZQ+uPsH4dBmGZ2Rsvc5xuo1QzyT5cCJ//DCJ5AMJRLWK5drbHyaiaatzPl99mSfO5OstM0kvyqRXZFfGdB9JqLftR0qUmsro+NkIbvv3G/S/aRRKKY7E7+Ld22/k86tfZnCrfjX6JGQe4NqfHuWRfl1pEuCH1pr1h5KYm5SJ/3dzKd+yHtPsnyA/F3r2x+vG2zD4XJwbp8pGqA2HQzZCFY7lFhBO0OAHHXb96KAAonsGOOz6sU3CiG0SduYDrWzh7kRi+/Q/UfwAxPYdQOdBV7Jg12bu7ltzeMXGQ0lc3jKKoOoV6gxKcUWbFry9cDVphw7Qc9h19Bx2nd3uQQgh7MHVJ4jAy0Y77PqRzVrz0Pj/Oez6vaI60SvKPiMTTvbFxh8JiYpmwM23nmhrGtuBy2+/m0/mf1drAfTTjrn0bx5JkwA/oGoYYZ8W0aw6mk7F9i149OyHR8+a/YS4UMkcICGsqLCsnJDImivdhUY3pais9kUgisvK8fPytGhzMRjwMxopyr24JsQKIYS4sGUUHicovHGN9uCISApMxbX2OV6SS6BHzX0E/Y2emO2wcIQQ1iYFkBBW1Dm6MRv/+oOykn8mhFaUlbJu9i90jKyZcABaNQphW4rlLujp+QVkFxYR1a6DTeMVQgjhXG7uMJQ9G9dTkJ19os1sNrNq5gz6NelSa5/LmvViQ2oW5pOmTRSUlnE4LRO3jp1tHbIQVidD4ISwou7Noli2P4nXb7iKa/71GAYXF+ZN/j9cysvo2zK61j59WzXls617+W7zLjo3DiGnuJTlB5IY+fwreHjJXB8hhBDW06VJezqFtea164dw3aNPY/TzY/E3Uyg4lsr4+/5ba59r217OSwd/5/N1cfSPDqe4rIJFB5PxuuUuXIJD7XwHQpw/KYCEsLKnLu/NH3EJ/PbOq6AgJtCX66/og8FQ+wNXL3c3XvptPst/mM7m1cvxi4jk4efeIqZbD/sGLoQQwin8csvH/G/tNH75+GMqtIleIe15+57pGN09az3ew9Udn/9+Sea8Ofy2eil4++Py3Fg8e108m7YKcTIpgISwMleDgRu6tq9XH6OvH8MefJRhDz5qo6iEEEKIKgaDgWf638cz/e876z7KwxPj9aPg+lE2jEwI+5A5QEIIIYQQQginIU+AhE1orUnKziOnuITIQH+CfYyODkkIIYSwcGR/AseO7COyeWuiW7R1dDhCCDuxWQGklIoCpgNhgAYma60/PuUYBXwMDAOKgXu01lttFZOwj8LSMqat3UJhaRnh/r7M2rqLDk3CuKlbRwwG5ejwhBACkDzlzEpLipjw4n0cTNhGVHAQR7OyienQnaffnoKHbDQtRINnyydAJuAZrfVWpZQvsEUptUhrHX/SMVcDMdV/egGTqv8rLmK/bt1FdFAAwzu1w6AUZSYTU1ZtYs3+wwxo3dzR4QkhxN8kTzmp7/7vDcwZh3hhSD9cDAYqzWZ+2LyLGZ+/zT1PvuHo8IQQNmazOUBa69S/PyXTWhcACUDEKYeNAKbrKuuBAKVU7ZuliItCSXkFiWlZDG3fGoOqetrj4erK0Pat2Xw42cHRCSHEPyRPOa/l82YyLLYVLtWrc7oYDFwd25Jlf/3k4MiEEPZgl0UQlFLNgC7AhlNeigCSTvo+mZrJB6XUWKXUZqXU5spi2XH4QlZRWYmLQeHm6mLRbvRwp8xkclBUQghxepKnnIfWmrLSUowebhbt3u7ulJaW1NFLCNGQ2LwAUkr5AL8CT2qt88/lHFrryVrr7lrr7i5Gf+sGKKzK19ODAKMXu4+lWbRvPJhE2/BGDopKCCHqJnnKuSiluKRbHzYeshyVsOFQMp17DHBQVEIIe7LpKnBKKTeqksr3WutZtRxyDIg66fvI6jZxkVJKcX2X9nyzdguHs3JoHODHntRMknJyeWRQH0eHJ4QQFiRPOad7nnqLVx4aQUZRKc0CfDiUU8CejBze+GKyo0MTQtiBzZ4AVa+cMwVI0Fr/t47DfgfuVlV6A3la61RbxSTso0VoEE8M7oeri4G9aZlEBwfw5OD++HnVvsO0EEI4guQp5xXVvA3/+2EVzS69gaPGCFoMGsl/f1hJRNNWjg5NCGEHtnwC1A+4C9iplIqrbhsPRANorT8H/qJqadH9VC0veq8N4xF2FORt5OqOsqeCEOKCJnnKiQUEhTJyzDhHhyGEcACbFUBa69XAaTd90Vpr4BFbxSCEEELURfKUEEI4J7usAieEEEIIIYQQFwIpgIQQQgghhBBOQwogIYQQQgghhNOQAkgIIYQQQgjhNKQAEkIIIYQQQjgNKYCEEEIIIYQQTkMKICGEEEIIIYTTkAJICCGEEEII4TSkABJCCCGEEEI4DSmAhBBCCCGEEE5DCiAhhBBCCCGE05ACSAghhBBCCOE0pAASQgghhBBCOA0pgIQQQgghhBBOQwogIYQQQgghhNOQAkgIIYQQQgjhNGxWACmlpiqlMpRSu+p4faBSKk8pFVf95xVbxSKEEEKcSvKUEEI4J1cbnnsa8Ckw/TTHrNJaD7dhDEIIIURdpiF5SgghnI7NngBprVcC2bY6vxBCCHE+JE8JIYRzcvQcoD5Kqe1KqXlKqfZ1HaSUGquU2qyU2lxZnGfP+IQQQjg3yVNCCNHAOLIA2go01Vp3AiYCs+s6UGs9WWvdXWvd3cXob6/4hBBCODfJU0II0QA5rADSWudrrQurv/4LcFNKhTgqHiGEEOJkkqeEEKJhclgBpJQKV0qp6q97Vsdy3FHxCCGEECeTPCWEEA2TzVaBU0rNAAYCIUqpZOA/gBuA1vpz4GbgIaWUCSgBbtVaa1vFI4QQQpxM8pQQQjgnmxVAWuvbzvD6p1QtPyqEEELYneQpIYRwTo5eBU4IIYQQQggh7EYKICGEEEIIIYTTkAJICCGEEEII4TSkABJCCCGEEEI4DSmAhBBCCCGEEE5DCiAhhBBCCCGE05ACSAghhBBCCOE0pAASQgghhBBCOA0pgIQQQgghhBBOQwogIYQQQgghhNOQAkgIIYQQQgjhNKQAEkIIIYQQQjgNKYCEEEIIIYQQTkMKICGEEEIIIYTTkAJICCGEEEII4TSkABJCCCGEEEI4DZsVQEqpqUqpDKXUrjpeV0qpT5RS+5VSO5RSXW0VixBCCFEbyVVCCOF8bPkEaBpw1WlevxqIqf4zFphkw1iEEEKI2kxDcpUQQjgVmxVAWuuVQPZpDhkBTNdV1gMBSqnGtopHCCGEOJXkKiGEcD6uDrx2BJB00vfJ1W2ppx6olBpL1SdvAIVH3hu+1/bhWVUIkOXoIOprnHVOc1HeuxWd3f3/HGH7SBzDmf/+G/q9N3V0AHZyVrlK8pRj3PieVU5zUd67FZ3d/Vvnvb4QWdz/fQ4MxAEa+r/9OvOUIwugs6a1ngxMdnQc50optVlr3d3RcTiCM987yP078/078707I8lTFy9nvneQ+3fm+3fme3fkKnDHgKiTvo+sbhNCCCEuFJKrhBCigXFkAfQ7cHf1Cju9gTytdY3hb0IIIYQDSa4SQogGxmZD4JRSM4CBQIhSKhn4D+AGoLX+HPgLGAbsB4qBe20VywXgoh0WYQXOfO8g9+/M9+/M937RkFx1gjP/e3Xmewe5f2e+f6e9d6W1dnQMQgghhBBCCGEXjhwCJ4QQQgghhBB2JQWQEEIIIYQQwmlIAWRjSikXpdQ2pdRcR8dib0qpw0qpnUqpOKXUZkfHY29KqQCl1C9KqT1KqQSlVB9Hx2QPSqk21X/nf//JV0o96ei47Ekp9ZRSardSapdSaoZSytPRMQlRF8lTkqckT0mecrY8JXOAbEwp9TTQHfDTWg93dDz2pJQ6DHTXWjfkTbbqpJT6Bliltf5KKeUOGLXWuQ4Oy66UUi5ULRncS2t9xNHx2INSKgJYDcRqrUuUUj8Df2mtpzk2MiFqJ3lK8pTkKclTOFmekidANqSUigSuAb5ydCzCvpRS/sClwBQArXW5syWValcAB5wlqZzEFfBSSrkCRiDFwfEIUSvJU85L8tQJkqecME9JAWRbHwHPAWYHx+EoGliolNqilBrr6GDsrDmQCXxdPbTkK6WUt6ODcoBbgRmODsKetNbHgA+Bo0AqVfvGLHRsVELU6SMkT0mekjwlecrJ8pQUQDailBoOZGittzg6Fgfqr7XuClwNPKKUutTRAdmRK9AVmKS17gIUAS84NiT7qh5OcR0w09Gx2JNSKhAYQdUvF00Ab6XUnY6NSoiaJE8BkqckT0mecso8JQWQ7fQDrqseX/wjcLlS6jvHhmRf1Z8woLXOAH4Dejo2IrtKBpK11huqv/+FqkTjTK4Gtmqt0x0diJ0NBg5prTO11hXALKCvg2MSojaSpyRPSZ6SPOWUeUoKIBvRWr+otY7UWjej6vHqUq2101TXSilvpZTv318DQ4Bdjo3KfrTWaUCSUqpNddMVQLwDQ3KE23CyYQXVjgK9lVJGpZSi6u8+wcExCVGD5CnJU0iekjzlpHnK1dEBiAYrDPit6v8rXIEftNbzHRuS3T0GfF/9iP0gcK+D47Gb6l8mrgQedHQs9qa13qCU+gXYCpiAbcBkx0YlhKiF5CnJU5KnnDRPyTLYQgghhBBCCKchQ+CEEEIIIYQQTkMKICGEEEIIIYTTkAJICCGEEEII4TSkABJCCCGEEEI4DSmAhBBCCCGEEE5DCiDhtJRSLymldiuldiil4pRSvax8/oFKqbln226F612vlIo96fvlSqnu1r6OEEII+5A8JYRtyD5AwikppfoAw4GuWusypVQI4O7gsM7X9cBcnG8jOyGEaHAkTwlhO/IESDirxkCW1roMQGudpbVOAVBKdVNKrVBKbVFKLVBKNa5uX66U+rj6U7hdSqme1e09lVLrlFLblFJrT9pV+4yqdyKfqpTaWN1/RHX7PUqpWUqp+UqpfUqp90/qM0YplVjd50ul1KdKqb7AdcAH1fG1rD58ZPVxiUqpAdZ444QQQtiF5CkhbEQKIOGsFgJR1T9wP1NKXQaglHIDJgI3a627AVOBt07qZ9RadwYern4NYA8wQGvdBXgFeLsecbwELNVa9wQGUZUYvKtf6wyMAjoCo5RSUUqpJsC/gd5AP6AtgNZ6LfA78KzWurPW+kD1OVyrz/0k8J96xCWEEMKxJE8JYSMyBE44Ja11oVKqGzCAqh/oPymlXgA2Ax2ARUopABcg9aSuM6r7r1RK+SmlAgBf4BulVAygAbd6hDIEuE4pNa76e08guvrrJVrrPAClVDzQFAgBVmits6vbZwKtT3P+WdX/3QI0q0dcQgghHEjylBC2IwWQcFpa60pgObBcKbUTGE3VD+DdWus+dXWr5fs3gGVa6xuUUs2qz3m2FHCT1nqvRWPVRNeyk5oqObf/X/8+x7n2F0II4SCSp4SwDRkCJ5ySUqpN9Sdhf+sMHAH2AqHVk09RSrkppdqfdNyo6vb+QF71J1/+wLHq1++pZygLgMdU9cd4SqkuZzh+E3CZUipQKeUK3HTSawVUfconhBDiIid5SgjbkQJIOCsfqoYDxCuldgCxwKta63LgZuA9pdR2IA7oe1K/UqXUNuBzYEx12/vAO9Xt9f306g2qhiLsUErtrv6+TlrrY1SN3d4IrAEOA3nVL/8IPFs9SbVl7WcQQghxkZA8JYSNKK1PfVIqhKiNUmo5ME5rvdnBcfhUjw13BX4Dpmqtf3NkTEIIIRxP8pQQZ0eeAAlx8XlVKRUH7AIOAbMdGo0QQghhSfKUuKDJEyAhhBBCCCGE05AnQEIIIYQQQginIQWQEEIIIYQQwmlIASSEEEIIIYRwGlIACSGEEEIIIZyGFEBCCCGEEEIIp/H/+SpdBGrhnSQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def draw_border(clr, X, y, fct=None, incx=1, incy=1, figsize=None, border=True, ax=None):\n", - "\n", - " # see https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/\n", - " # https://matplotlib.org/examples/color/colormaps_reference.html\n", - " _unused_ = [\"Red\", \"Green\", \"Yellow\", \"Blue\", \"Orange\", \"Purple\", \"Cyan\",\n", - " \"Magenta\", \"Lime\", \"Pink\", \"Teal\", \"Lavender\", \"Brown\", \"Beige\",\n", - " \"Maroon\", \"Mint\", \"Olive\", \"Coral\", \"Navy\", \"Grey\", \"White\", \"Black\"]\n", - "\n", - " h = .02 # step size in the mesh\n", - " # Plot the decision boundary. For that, we will assign a color to each\n", - " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", - " x_min, x_max = X[:, 0].min() - incx, X[:, 0].max() + incx\n", - " y_min, y_max = X[:, 1].min() - incy, X[:, 1].max() + incy\n", - " xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h))\n", - " if fct is None:\n", - " Z = clr.predict(numpy.c_[xx.ravel(), yy.ravel()])\n", - " else:\n", - " Z = fct(clr, numpy.c_[xx.ravel(), yy.ravel()])\n", - "\n", - " # Put the result into a color plot\n", - " cmap = plt.cm.tab20\n", - " Z = Z.reshape(xx.shape)\n", - " if ax is None:\n", - " fig, ax = plt.subplots(1, 1, figsize=figsize or (4, 3))\n", - " ax.pcolormesh(xx, yy, Z, cmap=cmap)\n", - "\n", - " # Plot also the training points\n", - " ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=cmap)\n", - " ax.set_xlabel('Sepal length')\n", - " ax.set_ylabel('Sepal width')\n", - "\n", - " ax.set_xlim(xx.min(), xx.max())\n", - " ax.set_ylim(yy.min(), yy.max())\n", - " return ax\n", - "\n", - "fig, ax = plt.subplots(1, 2, figsize=(14,4))\n", - "draw_border(clr, X, y, border=False, ax=ax[0])\n", - "ax[0].set_title(\"Iris\")\n", - "draw_border(clr, X, y, border=False, ax=ax[1],\n", - " fct=lambda m, x: predict_leaves(m, x))\n", - "ax[1].set_title(\"Leaves\");" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[((3, 4),\n", - " [(0,\n", - " (4.650000095367432, 2.4750000834465027),\n", - " (5.025000095367432, 2.4750000834465027))]),\n", - " ((3, 6),\n", - " [(1,\n", - " (4.650000095367432, 2.4750000834465027),\n", - " (4.650000095367432, 3.1250000596046448))])]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "neighbors = tree_leave_neighbors(clr)\n", - "list(neighbors.items())[:2]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAHwCAYAAAC2blbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACDtElEQVR4nOzdd3hUxdfA8e+k9x5ISIDQe+8dAQWkShEEUYqCDRHrz/ai2LD3hoqiSJMOIl0pAtJ7772E9GRTdnfePzYEQkI2IdksG87nefKQvXNnzrmbkLO3zVVaa4QQQgjheJzsnYAQQgghbo0UcSGEEMJBSREXQgghHJQUcSGEEMJBSREXQgghHJQUcSGEEMJBSREXQuSLUuoNpdQUe+chhLhGirgQ+aCUOqGU6mTvPIRtKKWilFJaKeVi71yEKAgp4kIIIYSDkiIuRCEopZyUUv9TSh1VSl1RSs1USgVd1/6HUuqCUipeKbVGKVUrc3mzzOXO1617n1Jql7VxlVIeSqkpmcvjlFKblVKlb5Lf1TESlVL7lFL3Xdc2VCm1Tin1kVIqVil1XCnV9br2Ckqp1Zl9lwMhebwPIUqpRZn5xCil1iqlnDLbyiilZiulLmfGePq6fp5KqcmZ8fcrpV5USp25rv2EUuoFpdQupVSyUuonpVRppdRfmXmtUEoFXrd+c6XU+sw8diql2l/X9o9S6i2l1L+ZfZcppa5u05rMf+OUUklKqRZKqcqZ2x+vlIpWSs242fYLYS9SxIUonNFAb6AdUAaIBb6+rv0voApQCtgG/A6gtf4PSAY6XLfuIGBqPsZ9GPAHygLBwGOA4Sb5HQXaZK7/JjBFKRV+XXsz4CCWAv0B8JNSSmW2TQW2Zra9lRn3Zp4DzgChQGngFUBnFvKFwE4gAugIPKOU6pzZbxwQBVQE7gYezGXsvpltVYEeWN7TVzJjOQFPAyilIoA/gbeBIOB5YLZSKvS6sQYBw7D8PNwy1wFom/lvgNbaR2u9IXOblwGBQCTwZR7bL4R9aK3lS77ky8oXcALolMvy/UDH616HAxmASy7rBgAa8M98/TYwKfN7XyxFvby1cYHhwHqg7i1sxw6gV+b3Q4Ej17V5ZeYXBpQDjID3de1TgSk3GXc8MB+ofMPyZsCpG5a9DPyc+f0xoPN1bY8AZ2543wdf93o28O11r0cD8zK/fwn47YZYS4GHM7//B3jturYngCWZ30dlbrvLde2/AhOBSHv//smXfN3sS/bEhSic8sDczMO3cViKrwkorZRyVkpNyDycnYClIMG1w9JTgT5KKXegD7BNa33S2rjAb1iK03Sl1Dml1AdKKdfcklNKPaSU2nHdOLXJflj8wtVvtNYpmd/6kLn3r7VOvm7dk9zch8ARYJlS6phS6n/XbUeZq/Ezc3glczvIjHP6unGu//6qi9d9b8jltc91sfrfEKs1lg9AObYXSLmub25eBBSwSSm1Vyk1PI91hbALuRJTiMI5DQzXWv97Y4NSagjQC+iEpYD7YzksrgC01vuUUieBrmQ/lJ7nuJneBN5USkUBi7EcEv/phvjlgR+wHMLeoLU2KaV2XI1vxXkgUCnlfV0hL4dlbzUHrXUilkPqzymlagOrlFKbM7fjuNa6Sh5xIoF9ma/L5iO3mzmNZU/80Vvom2O7tNYXgEcBlFKtgRVKqTVa6yOFyFGIIiV74kLkn2vmRWVXv1yA74B3MgsmSqlQpVSvzPV9gTTgCpZD1e/mMuZUYAyWc7J/XLf8puMqpe5SStVRloviErAcZjfnMrY3luJ0ObPfMCx74lZlHhHYguWDgltmEetxs/WVUt0zLwRTQDyWowZmYBOQqJR6KfMiNmelVG2lVJPMrjOBl5VSgZnntJ/KT343MQXooZTqnBnHQynVXikVmY++lzPzrXjdNvW/rm8slvcyt/dZCLuRIi5E/i3Gcvj26tcbwOfAAiyHkROBjVjOA4PlnOpJ4CyWPc2NuYw5DcvFa6u01tHXLc9r3DBgFpYCvh9YjeUQezZa633Ax8AGLIeg6wA327PPzaDMmDFYLkD7NY91qwArgKTMeN9orf/WWpuA7kB94DgQDfyI5agEWM6ln8lsW5G5XWkFyDGL1vo0liMfr2ApyqeBF8jH37nMUwnvAP9mHopvDjQB/lNKJWH5WYzRWh+7ldyEsBWlda5Hx4QQotgppR4HBmqt29k7FyEcgeyJCyHsRikVrpRqpSz3xVfDcl59rr3zEsJRyIVtQgh7cgO+ByoAccB04Bt7JiSEI5HD6UIIIYSDksPpQgghhIOSIi6EEEI4KIc7J+4T5K2DIwOtryhEMQmNd86z/VxGRjFlYh+XfQPsncJtLcIt18n0hCiQk3t2RWutQ29c7nBFPDgykFcWjLF3GkJkGbU0r5k74Y3zF/Nsd3Tftett7xRua+MiS9k7BVECDK8akeu0x3I4XQghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIB2XTIq6UOqGU2q2U2qGU2pJLu1JKfaGUOqKU2qWUamjLfIQQQoiSxKUYYtyltY6+SVtXoErmVzPg28x/hRBCCGGFvQ+n9wJ+1RYbgQClVLidcxJCCCEcgq2LuAaWKaW2KqVG5tIeAZy+7vWZzGVCCCGEsMLWh9Nba63PKqVKAcuVUge01msKOkjmB4CRAEFlAoo4RSGEEMIx2XRPXGt9NvPfS8BcoOkNq5wFyl73OjJz2Y3jTNRaN9ZaN/YJ9rZVukIIIYRDsVkRV0p5K6V8r34P3APsuWG1BcBDmVepNwfitdbnbZWTEEIIUZLY8nB6aWCuUupqnKla6yVKqccAtNbfAYuBe4EjQAowzIb5CCGEECWKzYq41voYUC+X5d9d970GnrRVDkIIIURJZu9bzIQQQghxi6SICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoKSICyGEEA5KirgQQgjhoGxexJVSzkqp7UqpRbm0DVVKXVZK7cj8esTW+QghhBAlhUsxxBgD7Af8btI+Q2v9VDHkIYQQQpQoNt0TV0pFAt2AH20ZRwghhLgT2fpw+mfAi4A5j3X6KqV2KaVmKaXK5raCUmqkUmqLUmpL0pVkW+QphBBCOBybFXGlVHfgktZ6ax6rLQSitNZ1geXA5NxW0lpP1Fo31lo39gn2tkG2QgghhOOx5Z54K6CnUuoEMB3ooJSacv0KWusrWuu0zJc/Ao1smI8QQghRotisiGutX9ZaR2qto4CBwCqt9YPXr6OUCr/uZU8sF8AJIYQQIh+K4+r0bJRS44EtWusFwNNKqZ6AEYgBhhZ3PkIIIYSjKpYirrX+B/gn8/v/u275y8DLxZGDEEIIUdLIjG1COACtNefPn+f48eOkp6fbOx0hxG2i2A+nCyEKJjY2lt9nzCI5zYiLTwBp0We4p2MHGjeW60CFuNNJERfiNqa15vfpf2CufS+lGvdGKUVGzFlWTP8fpUuXomzZXKdWEELcIeRwuhC3sXPnzpFiBN/MAg7gGhSBV+P72LJ9p52zE0LYmxRxIW5jBoMBF9+grAJ+lbNvCMkpqXbKSghxu5AiLsRtLDIyktSLxzHGX8paprUmbe9KqlYsZ8fMhBC3AzknLsRtzMPDg7vatWX1tBfxatIXZ58g0vaswDPlIvXr32Pv9IQQdiZFXIjbXIvmzQgPK83m7f+RcjKNRpXK07BhJ9zc3OydmhDCzqSIC+EAoqKiiIqKsncaQojbjJwTF0IIIRyUFHEhhBDCQUkRF0IIIRyUFHEhhBDCQUkRF0IIIRyUFHEhhBDCQUkRF0IIIRyUFHEhhBDCQUkRF0IIIRyUFHEhhBDCQUkRF0IIIRyUzJ0uRDHIyMjg0KFDpKamUqFCBYKCguydkhCiBJAiLoSNnTlzht+nz8S1VEWcvINYuvJnGjWozz2dOqCUsnd6QggHJkVcCBsymkxM/2MOvp3H4FWlOQC+hkR2TnmWilHlqFKlip0zFEI4MjknLoQNrT92DDz9swo4gLOnL56N72P77n12zEwIURJIERfChtKNJpSrW47lytUdo9Foh4yEECWJFHEhbKhVpYpkxJwj7cKRrGXaZCR1x5/Uri6H0oUQhSPnxIWwIU83N3p2u5d5M1/Fq2YHlE8w6ftXER7oTe3ate2dnhDCwUkRF8LGatasQXh4GDt37iIl9TJVOrWmcuXKcmW6EKLQpIgLUQwCAwNp376dvdMQQpQwck5cCCGEcFCyJy4EkBSbzLbFu0hJSKVGq8qUr1vW3ikJIYRVUsTFHe/Av4f59vFpeEQ1AK8glvw4lfodq/DQhN44OcnBKiHE7UuKuLijGdONTHx6JgHdXsGjfF0AzC2HsHvGc+xYupeGXevYOUMhhLg52c0Qd7SjW0/g7BuSVcABnNw8cK/bi40L9tgxMyGEsE6KuBDkvNVLKUAXfyZCCFEQUsTFHa1SoyhMiZdIPbU7a5k5I5XUXQtp1rOWHTMTQgjr5Jy4uKO5uLnwyGf38/2Tb+NRsQl4BpF+ZC21W0fRoIvMqCaEuL1JERd3vJptqvL238+xZdFOUuKTqPniAKLql5UZ1YQQtz0p4kIAvsE+3PVwK3unIYQQBSLnxIUQQggHZfM9caWUM7AFOKu17n5DmzvwK9AIuAIM0FqfsHVOQpQ0cXFx7Nq1G0NqKpUrVaRixYpyOkCIO0Bx7ImPAfbfpG0EEKu1rgx8CrxfDPkIUaIcOHCAbyf+yLZ4Dw64VGT20n+Y9sdszGazvVMTQtiYTYu4UioS6Ab8eJNVegGTM7+fBXRUsvsgRL4ZjUbmLfyToP5vEXD3E/i3HEjow19yNj6NvXv32js9IYSN2XpP/DPgReBmuwQRwGkArbURiAeCbZyTECXGqVOncA0sg3t41axlytkVz/o92L3/kB0zE0IUB5sVcaVUd+CS1nprEYw1Uim1RSm1JelKchFkJ0TJ4OzsjDal51iuTem4uDjbISMhRHGy5Z54K6CnUuoEMB3ooJSacsM6Z4GyAEopF8AfywVu2WitJ2qtG2utG/sEe9swZSEcS9myZSEljpQjm7KWmVOTMGyZS/3aNe2YmRCiONjs6nSt9cvAywBKqfbA81rrB29YbQHwMLAB6Aes0lrLjNVC5JOTkxMD+vVh6oxPSQ2rjJN3MIYjm6hftzZVqlSxd3pCCBsr9slelFLjgS1a6wXAT8BvSqkjQAwwsLjzEcLRlS1blrFPP8XBgwdJTU2lQpshhISE2DstIUQxKJYirrX+B/gn8/v/u255KtC/OHIQoiRzc3OjTh159rkQdxqZsU0IIYRwUDJ3uhBFYPa27YxfspyE9Ay6V6/M+33uw8vNzd5pCSFKONkTF6KQHv19Kv1/mcKJiGYk1O3FxH2nCX/1DZJSU+2dmhCihJMiLkQhxF9O4KcNmwgb8jGBbYfg2+Bewh7+lDTfMEbPmGnv9IQQJZwUcSEKYf3MLbgGl8MtpFzWMuXkjE/Dbiw6eMyOmQkh7gRSxIUoBC9/T8xpSdw4vYE5NQlPV7nkRAhhW1LEhSiEVgObQEo8yXv/yVpmSoolYcNMRrdqZr/EhBB3BNlVEKIQXFxcmPbwYAb+8jWJm2bj7BNE6uk9tKtSmRfuudve6QkhSjgp4kIUUr9GDUmoU5tPV6zkYkIiwwc9R/2yZe2dlhDiDiBFXIgi4OXmxqv3drV3GkKIO4wUcSFuIiXBwG8vzeLcoQsopXjog/5UbFi+QGO0+ehjDicmAZCcnExERAQDB+b9iIDo6GhmzZqV9To2Npa77rqL5s2bFyj2pk2b2LhxI7Gxsbzwwgt4eXlljT9//nzOnz9Phw4daNmyZYHGtSb+gzdI27gGp4AgQiZZtiP1n+UkTf4O06njBH3zG67Vat3S2MZTx0n4YBwZhw/gM/wpvAc8BIBOTyNmzAjISEebTHi064TP0Mdttj1Jk74mbf1qUAqngCD8XnoT55BSBR774OaNTHtnHGcO7uexT7+hcZfu2doNSYm81rU9DTp14cFx7xTJ9oiSRYq4uCPMHL+Af2fvwmRWlC7nw5MTHyIoIjDvPm8uoFa7qoz6dgjGdCPpqRk51kmOTwF8bjrG2uef443zFy3jzZxJtWrVrOYaEhLCY489BoDZbOaTTz7B19eX2fMWkJKaRrWK5WnQoAFGoxFPT8+bjlO2bFmqVq3KL7/8km25p6cnXbp04cCBA1ZzuRWenXvg1XsA8RNez1rmUqESAW9+TMKnb+fZ15yYgJOv303bnXz98X3qJdL+/Tt7g6sbgZ9MxMnTC23MIObp4bg1bYVbzbqF2hbIfXu8BjyMz/AnAUiZM5Xk3ybiN/a1XLcHbl7cg8MjGDHhU5b89F2u7XM/+5CqTQr24c0WDm3+j7Wzp5OSkEDNlm1o3XcA7nn87hV1f3FzcnW6KPHGd/uCf6bvwrPxAAI6jCI6OYTXOnxGzNnYm/YxJBg4vOkYrQY0BcDFzQUvv5x/dN7r+QWDf/qZVQcO5rjN7HppaWkcP36c6tWrFyj348eP4+rqysJlqzgX0piEat1Zd+giP03+jYkTJzJnzhyOHz+ea+zw8HACAgJyLPf29iYiIgJnZ+cC5ZJfbvUa4eTnn22ZS/mKuJSLsto3ecZkrjz+ICkLZ2FOTsrR7hQYhGv1WuCcff9DKYWTp+VIA0YjGI0opW55G66X2/Y4eV/74KZTDUDusRK/fJ8PHurPhgVzyEjLOYNfSGRZylaviZNTzj/FJ/bsIiH6MrVaty3cBhTSyt9+ZuLzT1GuRi2adevJ7jWr+PCh/qQZDMXSX+RN9sRFiXbu4HnOHbxImUe+xTUgDACv6m24OP1Vvn3sV15dOCbXftFnYvEJ8mHyCzM5u/885WpHcP+4Xrh7ZZ8PffyqFyn7yUm++ucfnpw+nSHNmjG0RXPK3FA8Dxw4QIUKFXB3dy9Q/jt37iQhKZmwEdnzj5k9jjZ1axMQEMCmTZtYvHgxdevWpX79+vj6+hYoxu3E95HRGO/pgWHJfGJGDcK1TgM87+2NW50GVvtqk4mYxwZhOnsaz94DcK1h26e6Jf30FYZli1DePgR9MjHXdfxfeYf74y6wdtZ05n3+EXXbdaBN/wcoVyPv0wlms5kZE8bz6EdfsG/9Wlukny8piQnM/fxDxs1dQmhZy4RGTe7tyecjH2L93JncNehhm/YX1smeuCjRlv2wBrfQqKwCCJa9Nt96nTl/Iuee3lVmo4nTe8/SbnALXv3zGdy83Fj67d851nNydqJ73TrMeWwUa557lmPR0ZR75TU2HT+Rbb09e/ZQu3btAuVuMpk4dOgQnqUr5Mjfo2ZHDh07RdWqVRkwYABDhw4lNjaWTz/9lLNnzxYozu3GpVwUviPHEDx5Lm4NmxL3ytMkfPm+1X7K2ZngH2YQMnMpGQf2YDx+xKZ5+ox4itAZS/Ds1JWUeTNuul5U7boMeeNd3l68ilLlo3i7X3eWTvo+z7H//n0yddt1ICisTFGnXSDHdmyjXM1aWQUYLL9/LXr1Y++/1j9cFLa/sE72xEWJFhgegCn5JFrrbIdXjUkx5HU0OSA8gIAwfyo0sPzxadi1Los+X87b934KQNvBzWk7uAUA8QYD0zdv4ZcNG3FzcWbSQw9SNzIia6yUlBTOnj3LgAEDCpT74cOHCQkJISY1iYz4S1ye8xYAvvW7oo1peHl5kJqayp49e9i5cyfOzs706tWL0qVLFyiOPcW/Pw7jkQM4BYcSOOErALTWZGzfjGHJfDIO7MHrvoF43ntfvsd08vHFrX5j0jatx6VCZVulnsWj473Evjwan6GPE/viE5hjr+BSrSb+z48DwGQ0smv1KtbNms6lUyfoPeZ5WvTqm+eYR3ds5dCW/1g1dTJpyckYMzJw9/Km/wuv2Hx7rufl50/8pUs5/v/EX76It3+AzfsL66SIixLp44GZBVMPwJR0gnMTS+PbJB2/hqdIu3yJuH8eJqD0k3w8MDirT4t+e2jZby9JMZ78OHoAKQlLeK9XY9w8K3HlzKdEVK/N2N9bEnPOl5+fvZfNC+HCkTE8k7CdUJ9uvNr1ZaZtvpdJ/8Kkf6/lEu32LlWrVkVrT375ZXCOXOvX30H9+jtISfFi5sz7s5ZfvjwaT8+ncco4RuqR/wjtM5ErfzYgaXc6GZeOYnD9gI93T6NKlXr07t0brauyaFEPtm/PPn56+rcAZGS48vvv1+LHxcWhlBdeXvVzjX9V48abqV17L/Hxfsyd2ydHe5qrGfeWCRhPuZPwqeX+eJ3uiumCGzFjK+P94AXcGyWRccQT4xFP4j8pi5PX1eL6O75jzuFWO4X0PV4kfLQW08UJKI+aOAUNRwV1wr3tBZzDDKRt9SF5iuWIhOlCEDh5k7axMn5jT+Pkd560rUEYFlVGmw2Yju3EqdRY0jZWxqN9LF69rqBTFbEvV8qRv2fnGDy7xGCOdybujQo52r16RuNa4xwYFTFjLXnrtCMod8v3LpFzcSkXhfGUOzpjGcoHTGchZiyYLn/J8xnfU6tVE+p3eII2/RvnGD83Iz/+Kuv7dXNmcGL3rmIv4AAV6tbH2dWVVVN+ocODQ1FKcenUCZb+PJHHPv3W5v2FdVLERcmmoHSFYC4ev0jcmoUk75pH+uVLuHkuIbR8cJ5dS5V/kwtHx6DNGbh6lKP+PQ8D2Q9V+wR3p0rgZyjlQpmAnbmOc/78Grp2rVegtM3mFFJT1xEc/A6Na25l8/ZXuLJ5C8bUbzCnpxIYGIizcw88PT+hXr1NBAcf4ocf7uPKlRDCwi4AkJDwMwkJEzGbo/n222+pVKkaMBiT6TLnz/fEbE4CFEuXulGjxqOAV4FyvBnjyWHopLVgvELGvmqkbXoKneJOwqcfoFNiMR3vh9mjLi6V5uXs7FoWl8rLUC6huY6tMy5iPNwWTImAE+bobzAb5qEzokmeNBpTrALMOPn3wcmvaO7bT5nzNKbzGzDHx2G6WA3n0q9gTlyGTjsMOKFTSxMw/iV0LtdpKY/aDHntbxp2cufUPhfAmK39+K4dfPXkCJIT4tnx93LmffExby/OedrGXpRSPPnVD3z91KOsnPIz/qGlOH1gH32ffYkqjZrYvL+wTuV1Re3tqHzdSP3KgtwvRhLiZkwmE4u/WEnMuTjuGdWO8MpFd8h51NKb32IGZN1iVhhaa86dO0dqaiqRkZG5XiB38GBVAKpVO1ToeAXxXbvexRrP0bwXWfD7x283WmtO7N5JckI8leo3xNOnYBdPFra/gOFVI7ZqrXMcypE9cXFHcHZ2psfYe+ydxi1TShEREZHnOsVdvMWdQylFhbr17dZf3JxcnS5ECREdHUx0dN6nCIQQJYvsiYs7ws7le/n7960kx6dSt31FOg5rlevkLbfaf8HOXXyxdgNXDAZ61qzK2LvaE+BVNOeY82vRoh4ADB36S7HGFULYj+yJixJv0RermPz6ci773ENataGsXZXGe72/w5CYcwatW+n/5uIlDJm5gB3lO3Ku8UN8dSyJRh98QoLMSCWEsDEp4qJES4pNZtnENQT2m4BP7Q54RtUnsOsLpHlFsW7GpkL3T4pN5v1lK/AdeK3dt/vzxAVE8cO/64thC4UQdzIp4qJEO7nrDJ5lKuHiE5RtuVvlduz792Sh+5/cdQaf8JztTtXa8teho4XfACGEyIMUcVGi+QZ7kx57Ea3N2Zab4s8RUCrvW8Py09832Ju0uEs52s1x54j0k9tohBC2JUVclGhla0UQWMqTxA3T0WYTAOkXj5KyfT7tH7Q+2YS1/mVrRVDOz4uk9dnb07cuYHSbVrbbsFy0bbuGtm3XFGtMIYR9ydXpokRTSjH6x8F89+QMLkz8E1cfP0wp8Qx+sxvl60QWSf+/HnuE+36czP5vF+Pm7Yc5OZ7v7u9Do/LlrIxetCpWPFas8YQQ9idFXJR4geEBvDxnFJdPXiElPoWI6uG4uOX/V99a/8jAQDa/8AxHL18mNiWFuhERuLkU/3+tCxcs84pfnXZVCFHySREXdwzLXOm3PhmKtf6VQnOf77u4LFnSBZD7xIW4k8g5cSGEEMJByZ64KDStNev/2MI/U7eREp9C7XaVuffJ9viHFs3V2dbGt3V8IWxJa826OTNZN2s6KQnx1GzVhnsffRL/UMd/cIqwPdkTF4X2x7t/MefLLaRVeRDXdi+xc38A7/b+luS4lGIZ39bxhbClWR+9y6opP9Nt1FM88sHnaK15d2BvkuJi7Z2acACyJy4KJf5yImunbaL0iB9x9vQDwD2sMnFLElnz+390ffIum47f8v7GNo0vhC3FX77E6hm/M2H5OnwCLRMGla9Vh5T4eFbP+J1uo56yc4bidid74qJQTu89i1dE5awCepVrVHMObTlj8/FtHd+RdOy4ko4dV9o7DVEAJ/ftoUKdelkF/Kr6He7m2M7tdspKOBLZExeFEhjmT1r0WbTZhHJyzlpuijlFcDm/PHoWzfi2ju9IypY9be8URAEFhYVz4fhRzCYTTs7Xfn/PHTlMUFi4HTMTjkL2xEWhRFQPJ6xCIAmrf8ScnorWGsOJHaTsXMhdQ5rZfHxbx3ckp0+X5fTpsvZOQxRAZLUahJYtx4z3x5OWkoLWmn3r17Jyys+0G/igvdMTDkD2xEWhPTVxMD+/MIdD3w/B2d0DDy8XHvmsHxHVwoplfFvHdxQrV3YE5D5xR/P45xOZ/PqLPNumER5eXrh6eDBiwqdEVq1u79SEA5AiLgrNJ8ib0T8NISkmGUNSKsGRgTg5Fd1BHmvj2zq+ELbkGxTEU1//SGJMDIakREIiy8rvr8g3KeKiyPgEeeMT5G238W0dXwhb8g0KwjcoyPqKQlxHPu4JIYQQDspme+JKKQ9gDeCeGWeW1nrcDesMBT4EzmYu+kpr/aOtchIlkzHdyLePTeHAxlOYjRkEhAcy9P1eVGteKV/tZpOZ5T+uZc20bRgSU6jRugq9n+tIaLlbn2f9emazmQ0b/2PL9p2kpRqoWLEiHdu3JTAwsEjGF0LcuWx5OD0N6KC1TlJKuQLrlFJ/aa033rDeDK21zGggbtn4bl8Tl+xNaN83cPYJJGn3Cj576BdeW/AEEdXDrbb/9up8dm+Kx6fNc3j4BHJ070om9PmOcX89jV8RTN26cPESDl9KxrfLC3j7BHJ2z0p++HkyT4x8BB8fnyJ4Byy6dFkCwPz58zl06BDe3t488cQTABgMBmbNmkVcXBwBAQH069cPT0/PAsc4efIkS5Ys4eLFi/Tr14+aNWtmtcW+9CQZ+3bhWqcBge9+UTQbJYTIk80Op2uLpMyXrplf2lbxxJ3p2PZTXD4RTekBb+MeUR0X/9IEtB6MV/W2THtjodX2mHNxbFm0i8Beb2S1+7cchGtUc/6ZcuPnzYI7HRPD3r17Cep73fitBuFWqRmbtmwtgnfgmrCwC4SFXaB+/fo8+GD225PWrVtHhQoVGD16NBUqVGDdunW5jmEwGPKM4e/vT+/evalTp06ONq8BD+H/8tu3vgFCiAKz6TlxpZSzUmoHcAlYrrX+L5fV+iqldimlZiml5CZXUSD71x7ErXRFnNy9si33rNSYCyfirbafO3QBr4jKOdpdyjbk+K7CP5d7z7nzeIbnHN81qhFnL1wq9PjXO3asIseOVaR8+fI59rIPHjxIvXr1AKhXrx4HDx7MdYy//vqLyZMns2vXLoxGY472gIAASpcujVIqR5t7w2YoL7mwUIjiZNMirrU2aa3rA5FAU6VU7RtWWQhEaa3rAsuBybmNo5QaqZTaopTaknQl2ZYpCwdTrk4kGdGn0KbsBSf9/CH8QzyttoeUDSL14skc7aZLRyhdofDnrCuEBJN6OWd848XDhAT6F3r8661Z05Y1a9rm2paUlISvr+XUgI+PD0lJSbmu16dPH+6++25Onz7NN998w+LFi7lwofAfZoQQtlEsV6drreOAv4EuNyy/orVOy3z5I9DoJv0naq0ba60b+wTLJ31xTZ27auDp60704s8wpcSjzSaSD6wjcdsi+r50j9X2sEqliKoXQfyKL7K1p+z5q0hmfKseFkZEeBhxS24Yf+cSmjbO9dfd5pRSue5JX1WmTBm6devGE088QVBQED/++CMbNmwoxgyFEPlly6vTQ4EMrXWcUsoTuBt4/4Z1wrXW5zNf9gT22yofUXK9vuhxPnxgEme+eRg0uHp5MeD1rtRsUzVf7Y9/PYCpbyxi2w/D0VpTqmI4o38cQukKoUWS34C+vflz6XL2f28ZPyi0NIMH9Cc4uGiufs8PHx8fEhMT8fX1JTExEW9vy4fhKVOmkJSURJkyZejZsydguZr+8OHDbN++nZiYGNq3b0/dunWLLVchRP5ZLeJKKXegLxB1/fpa6/FWuoYDk5VSzlj2+GdqrRcppcYDW7TWC4CnlVI9ASMQAwy9lY0Qd7aA0v68s2osKYmppCYYCIoILFC7h48Hwz/qx5B3emNMy8DTr+BXbefF3d2dPj27Y7y3C0ajEQ8PjyIdPz+qVq3Kzp07ad26NTt37qRatWoAOS6A27BhA5s2baJ8+fK0aNGC8uXLF3uuQoj8U1rnfcG4UmoJEA9sBUxXl2utP7ZtarkrXzdSv7JgjD1CC5GrUUvzvk3szPEbLwWxjf5TLVeMl/Lpx8ZT24kxxBPiFcRzrYfRuWobHp8/jrMJF4n0C+ObXm8S6JnzKW9rT2yhfngNfN1zP2214/x+Hp3zGvFpibg7u1HKO4j4P+YCEDNmOMZTx9EGA05+/vi9MA73Ji1tt8EO4r3IUvZOQZQAw6tGbNVaN75xeX6K+B6tdfH8FcoHKeLidnO7FPGjVyxHECoF532bWFFr3Lnw99KXZFLERVG4WRHPzznx9UqpOlrr3TbIS5QAGWlGFn62grUztpCWlEKVZlW5/7Uu+X6KWEpiKl88/Asn95xFGzPwCg5gyNvdadA5f8XPWn9r+RU2/4QUA52+/pYtJ0+jTRkE+gfy04C+3Negfr76F5VbLd5pxnQ++XcS03cuJDHdQMty9XjtrtFUD62Yr/46PR3DbxNJ+2s+xqQEvBs1x+2R0bhUqJyvdiHErbvp1elKqd1KqV1Aa2CbUupg5v3cV5cLAcCk52ax4e8EAvt9SMSTU7nk0YaPBv5AzLm4fPUff+9XXIjzJ3zoF5QdMx33+v2ZOHoGx7afKpL+1vIrbP413/uQ3WZfwodZ4tO4H31/msx/x47lq39RWX4kiOVHCv4AjbGL32bt6dU82r4h43p2IDAglfunjeZcwsV89Td8/CZlz53kjWlz+HLjLnp0upvE5x/DdOlCvtqFELcur1vMugM9gK5AZeCezNdXlwtB9OkY9q45TEC3l3ENisDJ3Qu/Rj1wr9aev3+1PuPZof+OEX8pkdD7XsvW36fO3cwY/2eh+1vLryjyPxcXnzN+3bsZPWtuvt7DojJxUwQTN0UUqM+puHOsPr6JQc3qEOrrg4erK62rRFG3bGkmb5uTr/4Zmzfw9OffEVahEp4+vnQaMpxWPXuTtuAPTOfP5tkuhCicmxZxrfVJrfVJ4O2r31+/rPhSFLez80cu4lmmIk6u7tmWu4bX4fSBy1b7H9x4BLdSFXL09yhXl+hzuU9IUpD+1vIrkvxL5x7/aFyi1f72duTKScoFBeHq4pxteVSIH/ujj+Srf2StOrh5ZL+iv2bj5qhTxzGePJZnuxCicPIz2Uut619k3jJmn1kqxG0nrGIpDOeOoY3p2ZYbL+wlslqI1f5Vm1Qk/dLxHP1TT+8mpIz1h4NY628tP1vmX9H/9r/gq2JQOU7FxJBhMmVbfjI6gWohlfLV/8y+PWSkpWZbfmDrJnS5CjiXjcqzXQhROHmdE39ZKZUI1FVKJWR+JWKZB31+sWUobmuh5YOp0aoycYvfJyPuAuaMNBJ3LMawfxV3DWlutX+1lpXxC/Hl8rx3s/onbF9M0s6l9H+1a6H7W8uvKPIP8/Pj8tz3csT/rG/v/LyFdhUVGEHr8o2Z/t8eriSlkGE0seHoSXacusDDDfrkq79rg6Z8NfZJLp06SXqqgb+n/cba+bNx794Xl4iyebYLIQonP7eYvae1frmY8rFKbjG7/WSkZTD3w+Ws/2MzaUkGKjWryoDXulC2Zpl89U9JSOHTB3/hzP6zaKMRz6AABr3RlSY96hdJf2v5FTb/AXOduOuLb9h55gzamIG/XyDf9+/NgCaWu0GK+z7xPwYV7EaSVGMaH675gem7/yQpzUCLcnV5/a7R1CpdJV/9G93lhuHnb0ldMh9jUiLejZrh9sjTuFa2TCij09PybC/p5BYzURQKfJ+4UqphXgNqrbcVUW4FIkX89qa1znNebmvMZjNOTrc+pb+1/tbyu5X8r79PPLf4xVXEzyW4AVDGL93Kmjd3K9t//X3itnh/HZ0UcVEUbuU+8aszsnkAjYGdgALqAluAFkWdpHB8hf0DXZgCnp/+1vKzd/6FUZjifVVht9/W768QIru8rk6/S2t9F3AeaJj5FLFGQAPgbHElKER+mTJMpBtuXsistTu6BftDWLDf+sV49mJONWCOi71j4wthC/mZsa3a9bO1aa33KKVq2DAnIQokNTmNmW8tZtP8bZhNJspUK8ugN++lYsPy+WovKX7bHg5AzxrRds4kO1NMNMkvPkH66RNosxl3P39chj2BVzFd2GaKiSb5f0+RfvKYJb5/AC5DHy+2+ELYUn6O/e1SSv2olGqf+fUDIDO2idvG90/NYM9+N8Ie+ZHIZ2aTWqEvnw+bzOWTV/LVLmwr+cmHqF2tGh+t3sz3u48x5LXxpH3zEWnbNhVL/JTRQ6ld9br4r75J2jcfF1t8IWwpP0V8GLAXGJP5tS9zmRB2d/HYZY5tP03APc/g7B2IcnLGu2Z7PGt35u9fN1ptF7aVtnk9pCTz6Idf4h8SirOLC8173EeHQQ+T9tOXxRJfJyXy6AefZ48/eChpk762eXwhbM1qEddap2qtP9Va35f59anWOtVaPyGKw6WT0XiUjkI5u2Zb7lqqGueOxlhtF7aVsW8XZSpVwcXNLdvySg0a41wM56cz9u0iokq1nPHrN8Q5Xs6PC8eX12QvMzP/3Z354JNsX8WXohA3F1E1DMO5I5jTsz/BK+PMNqLqlLbaLmzLrXELTh/cR2pycrblu1avxFgqf0+JK2z8U/v35oy/5m+MofLzF44vrwvbrt6M3b04EhHiVgRFBNKgc232LhiPT6vhOPsEkrJ3FenHNnDX16PxL+WXZ3tJ8n3v/fZOIQe3WvVIK12GT4YP4oHXxhMQWop/58zkv0Xz8fliUvHED4/gk0cG88Arb1riz53Jf4vm4vO57eMLYWv5mbFtBLBGa324eFLKm0z2Im5kMppY9v0aVk/bSmpiCtVbV6XPC50oFRWSr/bCun6yl9wU12Qv9nL9ZC+5Maenkvj6s7B/D6aMDFxCS+H+zCu4N2xWLPmZ01NJ/L/nMuOn41oqDLen/1ds8WWyF1EUCjxjW9YKSr0JtAGigK3AGmCt1npH0adpnRRxcbu5XYr4zN2WYnF/nUvFEu8qa0X8TidFXBSFmxXx/FzYNk5r3QHL08zWAi9gKeZCiNvIH7tL88duOc8rxJ3EahFXSr2mlPoLWAZUBp4HIm2dmCh+KQkGYs7FYe3ozK32v3ImhmPbT2E2mwuT5i3Hv9PFpyZyLuHibfv+GC+cI33f7pv+fpiTEjFdumCz/K2NX9h2a1IS4ok5f/a2/fmI21N+ZmzrAxiBP4HVwAatdZpNsxLFKjkuhckvzWP/2oM4ubriHeDJg2/1oGbbqkXS//LJaD584GcSL8WBsytOToruT7Wh65Mdbov8S7pYQwIvLZnA6uObcXV2JtDTn7fvfo52FZraOzUAjGdPY3jpCdKjL+Pi5goonAc8jM/gEQCYE+JJ/fxdUjetx8XdHXz9cX/iedybFM3jG6yNn592w4dvkLplAy4uLig/f9yfeS3f+SXFxfLbuJfZs/YfXN3d8fYP4IHXxlO7dbsi2T5Rslkt4lrrhkopP6AVcDcwUSl1SWvd2ubZiWLx9aipxOgqhD32KsrVg9Tj2/h+9Ee8NGskZapYPzxrrf87903EpXwLIgcOz2pf8Pl7lKkWRr1ONe2ef0n36NyXcXNP5tXu7XFzcebQxWieXDCOOYO/pWpIlL3TI+WZ4TTr1IX7//d/uHt5sXfdar4e/SipUZXwaNUew1sv0ah6DQas23at/fnROH88EZeoSoWOb218a+0prz9DnfQEetx77f39dfwLOH85OV/5fTvmMcpUqsLHa7dmjf/D86N5ccosIirLB1GRt/wcTq8NDAYeBgZgefjJKhvnJYrJ2YMXOHc4Gr/2I3Fy80QphWfFRnjV7cbfv/1X6P7bl+4hPdVE0N2PZWv3bdyLeR+vsHv+Jd2By8c4cuUEPepXx93VBaUU1cJCaV4pkl+3z7F3eqSuXYWTyciDb7yLh7c3Silqt2nP3Q8/Qvpv32M8fgTOnGTIa+Oztw9+mPRFswsd39r4+WnXJ47Sp07297d1hUjS5s+wGv/MoQNcOH6UB159M9v4dw16mNXTpxR6+0TJl5/D6ROwXJH+BbBZa51h25REcYo9H4d7aFmUk3O25c4hFYg+vbfQ/c8dPI9rUGSOdrfSFUk8VvjPgoXNPy8pCQZ+e2kW5w5dQCnFQx/0L/BDU9p89DExCZbHb0anxFI/vAY/9Xk3zz5Hr5ziiQVvZL0+FXeO51oP55Em9+fZ79f+2bf3l62z+XLDFK6kJGLIyMDb3TJrmdaak1diWBP9F/+d3sUn975MnbBqBdquvMR/8AZpG9fgFBBEyKRZgOWQc/xbL2G6cA7nsDL4/98HOPn6YTx+mLCoSjg5Z//5latZG+d5szFdukDpSlWy2g9u3si0d8Zx+sA+PKpeO4pjunCOuP97DrQZbTTidd9AvHr2t5rrjeNnxa9WA7VzJ6ZLF1BaM7ZVA/yCQ3jrT8vv7PnDh0he+w/JG9bglp5OYloa/p4eWf0j/LxR585Yjb9r9SoMiYmMrF2Bxz79hsZdLNNyRFarzob5czAkJfJa1/Y06NSFB8e9Y3U8cefJz9Xp3bXWH2it10sBL3nK1ixDypnDmFKTsi3POPEflRtGFLp/3U41Sb94NEd7yqH1RFQOtHv+eZn55gJqtavKmytf4LXFzxBWOeetQsnxKXmOsfb551g6bBJLh02iUZladK3a1mrcSsHlsvosfvgHPF096JJLv7jUxGyvPV3NeLpeuyiscWQdfuzzDgpISb/2X/fAhcucj0/iyeaDeb/zC7yy7BOrORWEZ+ceBE7IPi958rSfcWvQlJDfFuDWoCnJ034GwL1lO04d2EtyfJxlvcx/ty75E2OZsrhUrsbp3TuzlgeHRzBiwqcERZRFl7l2fa1TcChBX00m+IcZBH3zG8nTfsYUbf1WuxvHv2rLquXoqjVxqVwNQ2Iij3/+XfaOrq54PzCMoC9+Jt1k4q/dB7M177oYA7UbYE5MyDN+9aaW8+aNOnfLtnzn3yuoUKcecz/7kKpNmlvdDnHnys8DUEQJ5l/Kj1b3NyZ2zqsYjm8j/fIJ4v/5EX1hJ+0GW58Mw1r/sjUjKFMtjItTX8pqj1n5A6lH/mPQm73snv/NGBIMHN50jFYDLBd/ubi54OXnmWO993p+weCffmbVgYN5XlWcmJbM+pPb6FylTYHyWHdyK+UDyhDpn3OK0m6TH2X0wvH8e3IrWmsmbwtn8rbwrPbapavSoExNvN28mLZxFwcvXOZ8XAKLdx1EaReGNOhNw4haJKQlcTGp6B5f6lavEU5+/tmWpf37Dx6dewDg0bkHaev+BsC1cnVcoioxYVAf9qxbzQ8vPM1zbRuzZflfeD02FufgUNy79GLCsEHsWbea1OQk1s6dRWz0ZdwaXfv5KldX1NX50dPTIZ9XeN84/pmD+5n63nh2bVyPR/c+OAeH4tm9L5Pf+j9SU5Kz2vdu3ZzV7lKtJnsvRme9v/N2HWR/fDIePfuR+OX7fPBQfzYsmENGWs5HTlSs14C29w9i//q1nDqwjzMH9zNjwngObtpAxXoNSIi+TK3W1j/4iTuX1clebjcy2UvRM5vN/DtjM39P2UpKgoHa7SrTfXR7Akr7W++cj/5Go5FfX5jF9pVHMWcYCS0fyPCP+lCudtHcqVjY/HNzet85prw8m/AqpTi7/zzlakdw/7heuHtlf5CG2WSm7CcnmbR+PfsvXGBIs2YMbdGcMgEBWeucOV6bWXuWsPzwv3x/31sFyuO5xROoU7oKQxvlfPa1yWzi72P/MWP3nxyJPkma6SFCvQcxf0j2gtzi2/4Ma9SXufuWEp+WhNkMb3R8mi5VLR8oBk5/hpfbPUa98OoFyu2q3CZ7MV04R+wrT2cdTr/Uow2lFq4FLIfzL/dsm/XabDSS8ME4nLduxGw0YvYPRFWqivHQftyatcKja2+MB/ehl8zHnJSAc6PmpMdcwaP93Xi0u/tazEsXiHvlaYxnT+M76hm8eg/IV/7abMaweF628d0fGIZzSKms9uRpv2CYMhGP0uFZ7Yb5MzEsW4Ty9sGjS09YvghzUiLOTVvjMeTRrP6j4i6wdtZ09qz9h7rtOtCm/wOUq1ErK77ZbOa9B3qTGHMF5eRE7Vbt6PLoE/z4wtM8+tEX7Fu/lhO7d8nh9DvczSZ7yc85cVHCOTk50eaBZrR54Nb2XK31d3FxYfinAwuTYqHi3wqz0cTpvWcZ+EYvKjQox4w357P027/p+Vzn7LGdnehetw7d69bhcmIiL8+bT7lXXmP9C8/TtEJU1nrz963kgXrdKIh0UwbLj/zL/9qNzLXd2cmZTpVb0qlyS66kxHH3pD/Ydq4O2899TYMy11/1r+hXuwsjm1p+BkNnvUSQ161/wCkspRQolfXaycWFgFdyFiidnoZh4Wxin3oIn0dG4/3V5Ky2jPf/L8f6zqXCCP5xJqboS8S9/izubTvhHBRsPR8nJ7y694HufW7a7tmxC6krF+Ob+aEEwGfEU/iMeIrkqT+hU5Lx+WFmrv2jatclqnZdMtJS+Wf6FN7u152+z/2PzsNHWbbfyYmwqIp0HjYy65z4yt9+pm67DgSFlbGav7iz3bSIK6UWAjfdTdda97RJRkLcBgLCAwgI86dCg3IANOxal0WfL+ftez8FoO3g5rQdbDmfGW8wMH3zFn7ZsBE3F2cmPfQgdSOvnY+PSYljx/n9/NDn7QLl8PexjdQuXYVQ7yDOJVxk2OyXAXiwfi+GNLCcikhIS2LB/pX8sXsJqUZ/KgV9RY1Sed/WFOYTwrmEa+eLzydeJsy3aOaRvxmnwGBMVy7jHByK6cplnAKCAIh98QnMsVdwqVYT/+fHAaBNRtI2riN1yXyMZ0/jM/RxPDvl/wOQc0gpXCpUJmP3Npyv21O3FY+O9xL78mh8hj6e6/aYjEZ2rV7FulnTuXTqBL3HPE+LXjmPrFzv6I6tHNryH6umTiYtORljRgbuXt70f+EVm2+PcCx57Yl/VGxZiBLhyplYDAkGwquUxtnV2XqHAvY/suUE8RfiqdOhBm43HNYuav6hvgSF+3Ph6CXCKpXiwPrDlKtVhr6vZH+o36RnpvHBv6fp36ghvw59mCqlc1789ufB1XSq3AIPF/cC5TB/30p61egEQBm/0iwdlv2pW08vfIut5/bSvVp7Puv2Ci8uuRcAD5fdeY57d5XW/LJ1Dr1qdGT7uX34untT2se2Rdy9ZTtSly7Ee9BwUpcuxL1VewACP/gmax3ThXMkz51O2tqVuNVtiFf/IbjVbZiv8U2XL+Lk549y98CcmEDGnu149RucbR3D6hWYzp/Bs3tfnH0KPt+7Tk4iafoveHbvi46LwSXScqdC2r//4FIuKsf2ACT/8RsvL5xF1cZN6Tx8FFWb5O9o0ciPv8r6ft2cGZzYvUsKuMjVTYu41np1cSYiHFfcxXgmPv0HZ/afx9XbFzJSeODN7jTuVrdI+p/ac4ZPHvqVtOQ0nNy9MafO4q4hTbn/9R43HfPjgTnPhzbqdpD2Q3aQbnDhy2E594Ra9NtDy357SYrx5PsnepKeWpv3er2ENmfg6lGOPv8bBZwl5pwvPz9rKZhJsUFUCejExmMutKq0k0en1Msx7snoPozv1B9DhhMP/VErR3v/Ohe5v84lYlJcGDWvBgAmczLbz2/nfOIkPF1T6FkjmnMJboxZdO1WsBjDUMJ97qFx5EUqBMVgyHDmWKwn/afWAeB84vecT/wCo/kyd/88jLZRLTgT/xta1+ZE3CGqfPwwTk6ejGpiOU9/ffzrDWlwPtf4V6X5xuDeMgHjKXcSPi2L8eQwdNJaMF7hYuduePZ+Cp9Bw4h9+WWSfl2MciuLc/nJxIy17I179duLad4Y0g8FYEzthlk/SMbB6pguWtp9nzyLa2UDaVt9SJx4FtOJQWCKI3XFOuInTCL4+zmYLh0n4ePPMMe7AhrnkOdI/LIrAM5RW2FlD7TZHVPGfFJ+MIKPxqViFQA8O8fg2SUGc7wzcW9UyLF95tgemE6vBq1JnjiV5Inu4LIFXM4DTriUL03A+Jeytj9b38T2DH3lKRp2cufUPhcsk19ec3zXDr56cgTJCfHs+Hs58774mLcX/50jByFuxuo5caVUFeA9oCaQdSOk1rqiDfMSDkJrzVeP/k6yXzPCRn2AcnYh7dxBfnt1PPEX2xJaLpi6nY7eUv9SUcFE1gjno0G/4FGrC6VaD8pq/3vK60TVi6RpzwY5xty1ohLJsZ54BxoKtW3u3rUoV3vRtddeO3Ks4xN4NyrGctRg04lSXEn2INg7+1XIjzT+nbsqnsdQgBs0nZ28aRxxLPNV7rexBXnem+31590P8r+llbNeh/uOItx3FN2rR/Nww/OZHyIs56QrBH4EmXf4lQ24CBTdk89cyv+c7bV70ws4+Sfh9+wvJH59421/mrSfv6Fjl+bUHvs/5n0RiCEpiTOHDqDdPVCeXtnWdvJqhFPNgzeMcRr3xs3xG72Y5D+yHwnRWmP8ax6dhw2ly6PP89UTpTEkJXH6wD5MF8/jXDqcvGitcbpYnq6jRtO63wv8/EpoVn8VEIZz6XC8+1/COTQB46mc/Z1878LdMxVIz3X8CnXr8/HavJ8n1brPAFr3yd9FeuLOk59Hka4DxgGfAj2AYYCT1jrnlSXFQK5Ov72c2nuWT4dOJXT4Tyh17Y7FhI0zqRF2mIcm3Feo/tVbRjH5lb+IePLXbO1x62fgfn4V45fb/3fhdnkUqb0U5lGkGYcPYBz/Ip+sXI+T07Wf78LvvmTFkaN4PVO4Q8hJv/+E87zpfPLv9uzjf/MZf/06Cf9Zec8aeLP+i779nMW//oz/H8us5iCPIhVF4ZYfRQp4aq1XYin4J7XWbwAFu8xWlFgJlxNxCwrLVmABnAPKcOF4CBeO5j2hS179Yy8mcflENC4BOdtdgyJIScx97+bC0UCrcW3h4IUADl4IKPa4jswcE01I2fLZCiRAWPkoVOyVQo9vPHmMkIjInONXqIRzPp6mZzx5jJCy5XL0Lx1VEWdtm6fxCVEQ+SniacryF/SwUuoppdR9QN67HuKOUb5OJClnj2JKjs22POPoOhIuvMPvr95zy/1rtChHw3vrkn7xWI725H3/EFUz94uxfn/1HqtxbWHU720Z9btMzFEQrtVqcmbvLuKjL2dbvmHJn+haOa8vKCivHv04fXB/jvE3LphDmr/1D3pePfpxev/enP0XziPN13636QlxVX7uEx8DeAFPA28BHbA8DEUIfIN96DSiNatnvoxXkwdw9gkkdf9KXBIP41/K+mHWvPq3GfgEnn6eVGwUxcnfnieg7UM4+wSStGs56ad3MujnZ2y/gcKmnAKC8Og7mHeG9KfPk88QEFqKNXP/4OC+Pfg8/kKhx3er0wDnkFK80787fZ572TL+zKnsW78W369+zV//0DDe6d+DPs/9j4DQUqydNY1969fg++Vkq/2FsLX8PIp0M0Dm3vjTWutEK13EHabnMx0pW700f//+J8nHDbRsX4lOIx7nu8fyN6vvzfp7Zk5z+tzU4cyZsJj1cydhTDdRtlowQ5eMJiii+A+Zi6LnMeRR0qIqMm3mdEhKgIbN8Pn8Z5xu4Taw3Pj8MpeEcc8y5c1XUVqT7uWNzyc/4lahsvXOgM/Ps0kY9yy/j38N0KR7euPz8Q/57i+ELeXn6vTGwM+Ab+breGC41jrvSyrFHUMpRcOudWjYtY5N+js5OdHvle70u+EebVEyKKXwaNsJ2nayyfjOzs4Evv253foLYUv5OZw+CXhCa70WQCnVGktRz99NwEIIIYSwifwUcdPVAg6gtV6nlDLm1UHcfrTWnN53DkOCgfJ1y+Lh7V6g9ltx71Mb872u2Wxmy6KdJFxKpEmv+viH+t1y/p0eWYubh2uh8y8IrTUDGy8hKS2NpNQ0fDw8rHe6jtlsZsGBVVxKukLvmp0o5ZN9zm+tNXsvHSYhNYl64dXxdvO6yUi2Gd9af1szmUwYpv+C6fIFvPs/hEtE9klVtNYYjxxEJyXiUr0WTp4580/7eynmmGg8OnbFOSikQP0LS2vNqf17SUmIp0Kd+nh4exeo3dZu9/zEzeXnPvHPAE9gGpa51AcAqcAUAK31tpv08wDWAO5YPizM0lqPu2Edd+BXoBFwBRigtT6RVz5yn3jBXT51ha8f/Z342AxcffxJvXyGfi93pe2gZvlqt7WDG4/y5Yjf0U6uOHn5Y4w5S+NudRjx2UCHyP/uKan0+vZbopOT8fNw50J8Ih/0uY9RbS1PCbN2n/j6U9sZMedFnBR4u7tzOTGJntU78nmP1wE4GXeOR+b8j9jUWPw8PLmQEM+r7Z9kcP38Pb5g/antPLLwdZw8PPANCuLiieP0qNqOz7u9ljX+o4vGEWc24B8cwtnjR3i1zSgG1+uRr/6FuU88P1JW/kXGZ+/i7uWFb1AwF48fw6lydQK++gUA47kzpLw2Bte4GLw9PYiOT8Bz1Fg8e/QDIG3HFlLfeB53d3d8A4O4ePI4Lm064pf50BXjuTMYxr+IqyEZ3+BQLh47gtcjT+NxkweiFNRYs4Fvnh5JalISfiEhnD96hH7Pv0K7AZZpYS+dOplnu61Zi2/v/IRFYZ5idvU+j3E3LG+Apah3uEm/NKCD1jpJKeUKrFNK/aW1vn73bAQQq7WurJQaCLyP5UOCKCJaa758ZArGcl0I7d0bpRQZV84w56OXiaweRoUG5fJsr9iw/C3HPr3PMslF2Zo3nw3MbDbz5Ygp+DQbiF+Ta/G3TnmeqtP+o/XApgXOP+WQgVkTviCy+slC5Z8fWmt6fPMNVUoH0Sm0Lwpwdd7NqwsWUDcyghYV857Y0Gw2M3z2i9xVoyLtqlZAKcWlhCS+WvUPv++ox6B6PRg++0WqR/jQpmrNrPYP1nxP9dCKNIrI+wOC2WxmxMLXuffJMXQePgqlFOePHeHdAT35fccCBtXrwYiFr9PgoUHcPezRrPaPBt9P9ZAKNAivmWf//H6QuFUmk4mMz96l5+hn6Txs5HXxe5E48XN8Hn2alFdG0zHYi3ZNWl57/378gvSKVXCpUYfUcc/R84mc+acsmo1ntz4Y3nie7v0H0nnote1/96H7Sa9QCbdC3uamtebrpx6h1X39ufu68T96eAARVatRqX6jPNsrN8jxN7tI3e75CeusXj6stb4rj6+bFXC0RVLmS9fMrxt3+3sBV+/TmAV0VOq6ZxSKQju56wxJCWZ8GlkKHIBrcCSe9e9j9dQtVtsLY+b4u5g5/q481/lvzja0s2dWAb8a3695f5b+sP6W8k/Ychdm54mFzj8/Tu46Q7zBQOsqUSzYMZL5O0ZSys+HlpXKMXHtWqv9Z+1diquzyirgAKX8fOhQvRI/bJ7GzgsHSEpPpE3VqGztrapE8vvO+fka383bO6uAAYRXrMy9o0bzw87ZlvGdjFkF/Gp7xxEjmbrvL6v9bc3w60Q8fX2zCvi1+E+hV/yJ8eA+3JMSaFc5+/tzV8WyGBfOIm3ZIjy9cs/fNGeapb8xI6uAZ7UPG4lxyYJC5288uI+MtLSsAnh1/LuHPsq6WTM4sXtnnu22Zi2+vfMT1lkt4kqp0kqpn5RSf2W+rqmUGpGfwZVSzkqpHVgmZl6utf7vhlUigNMAWmsjEA/kONmmlBqplNqilNqSdCU5P6FFpuS4FFz9grnxs5GzbwgJMQar7bYWez4eF9+gHPFd/EJJTTHecv44uxZL/slxKQR4eeSI7+/pweXEpJv0uuZ84iX8PHP2D/DyJMVoINaQgL+XZ67jxxji8jV+QKlSOfoHh5fBYEoj1pBAUKmwHO2B4eHEpCVY7W9rxgvnCMglv+DwMjiZNeaEOHxzeX8CPd0hLgbT5Ys3zV+lpWJOiCOgdC7jh4WjEuILnb85IY7AXMYPCgsnKS6WpLjYPNttzVp8e+cnrMvPjby/AEuBq0+nPwQ8k5/BtdYmrXV9IBJoqpS6pUmktdYTtdaNtdaNfYLlgoqCqNCgHIZzxzDGXzukrbUm/dAq6raraLXd1prd14D0SydyxE/atZwqDcNvKX8AnRJXLPlXaFCOU1fiiEm+9pASrTW7z1ygS62cTyy7UZ9a93AuLiFH/03HT9MovC4Ny9TkdExsjvadpy/RPqpFvsY/fegA0WfPZOu/9o9pNAyuRsMyNTl+YE+O9k1z5tCuTAOr/W3N6/4hnDm4L2f8WdNJDw7BtWZdLlyJyfH+/HfuEjRrg8fd3TiTS/5r/piGqWpNXGvW5cy+nNu/ZsEcdIMmhc7ftWZdTuYy/saFc6nRojWV6jfMs93WrMW3d37CuvycEw/RWs9USr0Mlj1mpZSpIEG01nFKqb+BLsCe65rOAmWBM0opF8AfywVuooh4+XnSY2wn/vz2Rbwa9sPZO4i0AyvwUZdo2b837l5uebbbWnBkELXvqsbeX8fi3/IBXHyCSNy5FNPlwzzwx7O3lL8xOgxnlU7L/rY/X+fl58kbPbrz/tKlmHUqzk6KKRt3AE4Ma2m9yJb1D6djpRZ8seJfOtWsjL+nBxuPneZcXBIz+o/F38OXZ1sP59vVv9G6Sln8PN3ZfuoiJqM799fpmq/xO0Q1462+99LzyWcIKBXG6hlTOLV7F1Me/hV/D1+eazmUjwb04e7HHicgtDQbZ80k7fhZ7u//Al5unnn2tzW3SlVxKlfBEv+psQSElmb1zN85umMb/hOn4+Tji+fQx/li6o90qlgOf083Npy5xBkXT3y79EJ5euLStFWO/I/t2YXvz3Ms/R8axVuD+tDj0ccJDC3NP3P/4MT58/g8X/jz/U4+vvQa/SzvP9iXLiMeJyC0FOvnzSLu0iVa97kfdy+vPNttzcvP/7bOT1iXn6vT/wH6Yjkc3lAp1Rx4X2vdzkq/UCAjs4B7Assy+y26bp0ngTpa68cyL2zro7XO8zdDrk6/NQc3HOGfqVtJikul/l2VaD2wKe5ebvluvxVXn+n93HTr585W/LiGFb9uJj3VRJUGYQx+pw9+Idem6C9I/nGnp+Ffyo/nZ84sVP75NWqpD38fPMiAH4aQYTYxrtuHPNq6Fd7ultvg8vMUs4mbZjB5+yxSjak0CK/LhM7PE+J9bUa69Se38fvO+cSlxnNXhVYMqtcdLzfPfOc4cdMMft27kFRzOvUDq+Q+/v6/iE9Lon1EQwbVzT5+Xv1tfXU6QPxn76DW/YMTmrSAIALe+hTn8GuPNU3fvhnjwj8gIQ6at8WzW1+U57X8k//4DfOi2aiMdIyVquP37Gs4BQZl779kPiopEd2wGZ733petf2G8F1mK/Rv/Zd2s6SQnxFOrVVva9h+Eu9e129istdva7Z6fuPnV6fkp4g2BL4HaWPaiQ4F+WutdVvrVxXLRmjOWw/YztdbjlVLjgS1a6wWZt6H9huVK9xhgoNb62E0HRYq4Izm61XIGplKjcyU67tVHka4/WhqAlpUuZmuXR5He2eRRpKIo3PItZlrrbUqpdkA1QAEHtdYZ+ei3C0txvnH5/133fSrQ39pYwjEVd/G2d9wbi7cQQtjaTYu4UqoJcFprfSHzPHgjLIfVTyql3tBaxxRblsLmzCYzhzYeJSUhlcpNKmQ7lH2r7pQ98atutieeHyaziQ2ndpCQlkjTyHrZDnXnp72wChtfm0yk79yCTkrErU7DbIeqi6LdmsL2v92ZTSYO/LeelMQEqjZuhl9w7o/hFXeevPbEvwc6ASil2gITgNFAfWAi0M/WyYnice7QBT4f9ismFz+cvQNJOTmLe5+8i65PtC/UuPM+tMxYlp9z4kXJXnFfmWeZIe6f5wp2f/HBy8d5eNbzuLmCr4c7zy6O5qnmQ3iqxZB8tRdWYeMbjx8l6X9P4O9kaT918TKeDz6C56ARWe3Jr48lMDAQv5BQjn00Hs9Bw/EcODRf/a0pbP/b3dnDB/nisWF4+wfgHxrKz688T/fHRtP10SfsnZq4DeRVxJ2v29seAEzUWs8GZmfe+y1KALPZzJePTMGl/oME1LE8RconMZplk16gYoNIqrWQxy3aklmbGT7nJVpXL0OTqEgA4lNS+e6fGTQsU4vm5ern2d6yfEO7xm9erj7Jr46md4XwbO2f/vEb6TXq4lqvESlvPM8DTz9Lm8yrmWMvnOfNgb1Jr1YL13qN8uzvZuU2L202F6r/7c5sNvPVU4/Q88lnaHXd+/feoPuIqlOPGs1b2TlDYW953SfunHnbF0BHYNV1bfm5NU04gBM7TpNucse7dsesZS6+IXg0uI+1M7bbMbM7w/Zz+zCTQePy16609vfyoFWVSGbsXmS13d7xt5/bh5cxPUd7x4qRGBfPIWP/brzd3Wh937VLXwLDwuk2fCTG5YvI2L87z/7WFLb/7e7Yzm24uLrR8ob3756hI1k/b5YdMxO3i7yK8TRgtVIqGjAAVx9FWhnLzGqiBEhNSsPZ0zfnjGiefqQk2n5GrjtdUnoK3u5uOd5/Lzc3LiUmWW23d/yk9BQ83d1ztHu7uUJSIjolBe+AwBztvoFBqJRkdEoKXnn0t6aw/W93qcnJ+OTy/vkEBpKaVPifv3B8N90T11q/AzyHZca21vravWhOWM6NixKgYsNypF48QcaV01nLtDaTtn8pDe+uYsfM7gyNytTmXFwclxKu/UE2a822kxe4p3Jbq+32jt+oTG0uxeZs//fMRWjdAddadTl36ADnjx651m42s/KPaegmLXGtVTfP/tYUtv/trlL9Rpw5uD/H+7d21nTqtM37uQTizmD1PvHbjdwnXvT+nbmZme8uw7Nud5y8g8g4uJKQ4AyenTIMV/dbP3Ny9SlmYZXO8tH932FMN2I2mWnYtQ49xt5T4PGM6Uamj5vHoY3HUE6KXs93oWHXOjeNe/XpaWaTmfd6fkFAmB9P/jS8yONevU98x2nLtP/1y1omHTSZzTR+bwLBbmX5pd/7Nx1/+q4/efefr2lWMQJfTzd2nrqEr2sQKenpKKWINSRwIfES5YICaVoxkp2nLhHgHsrU+z/D3aVwE/LcLP7141trr2VaSfp3H9MmKoIADzc2nL1MTHBpfD6aiHJzw/DXfDJ+/pq7Bz1MUKnS/DPvDy6bNN7vfWVpXzwvz/7WFLa/rRX2PvG1s2cw55MJ3DXoIQJCS7N+/mycnJ0Y++MUXN3ciyhLcbu75clebjdSxG3j1N6zrJuxlaTYVOp1qEyjbnVxcSuaSx+01qSlpOPh7Y4pw8SH/b/h/nE9qdjg2mNCjelGTEZznrPELfx0GWaTmV7Pd8FsNpMSZ8AnyPpc+it+XMPJ3WdITUrNUcSLIu7VIn6jT1asZMvJk1yKcc1RxNNNGRhNxqxZ0fZcPMT0XYuIM8TToVIrule/Czdn16z17/rxQSoFlcPDxTXX9sKyFj+v9sadfck4fID0xXNQ8XGoFu3waH8PyvVa/4zDB8hYugCVlAiNmufanld/awrb35aKYrKXk/v28O+cmSTHx1G7dTuadO2By23wAUUUn8I8T1zcAcrVimDQ+AjrKxbA/nWWIl2j9Uk8vC17DCajCZPRhCL7Ob6UeAMT7vuKWm2r0mpAU6Lqlc0x3vo/NvPGihcAcHJyumkBvz5u7Pk4dv99gK5PdmDlT2tyrFuUcVfst7x/nWqc5UxsLH/u3sOrXbvw7sJNOdaNT02k56+P0a5CEwbW60798Bq8ffezuY57LOY0yekGfrjvnZxPaysitUtXvWn8/LS7VqmO65hX8m6vUv2W+1tT2P63u/I1a1O+Zsme+U/cGiniwmYWf9UcsBRTs8nMuz0+5/LJK7Qb0pIKDcplW9cv1Jc3V77AjmV7mP/REpJikmnRrzHN7muId4AXKQmWx4ou+GQphzYeJbRcMAPf7I1faM4pP6+PO3P8Qvr8715Sk3O/SK8o4769uBFgKeLPzJzFB33uIzE1Nde4od5B/PPoFJYcWssHa34gJiWe++t05b5a9xDo6Zdt3QX7V9KjegebFXAhhOPKz6NIhSg0J2cnXls8lvc2vMqJnac4e/BCjnVc3V1o0qM+Y357lMcnPsyBfw/zUrO3ibsYj9loJvZ8PBUblufVRc9QsWF5Zr/7Z54xd63ch2+ID+XrROa5XlHHXbRrN6V8fWhUvlye67m7uNGrZkemDviEr3u+way9S2n4VS+2nNmdbb0F+1fSoWIL3lz5FU8vfIt/T27LMZYhI41FB/7m9x0LOBF7Ns+4tyI2JSHP+DotldR/lpOyaDbGs6cL3G5OiCPxm4+Je/dV0rblPHJhrX9h2Xp8W0tPNbD5r4X8M30Kl06dcLjxxa2TPXFRrLz8PKnWohJ7/t7Pz2OnAdBj7D3Uu9vy7O2E6CT+m7uVjXO2ERjuz4jPH8AvxBflpHDzdKVBF8shxYb31uXfmZvzjHV060l2rdjHnr8PYEzLwJCUxpdDfyL+UoJN4/579CgLdu1m8Z69pBqNxKekMWTmC1xKtlzw9lzr4dxTxfIs5ujkWL7Y8Cu/bp+Hl58/VRo25eEFrzK4Tjdebj2S/ZePEmtIYMis54gM9Mff04OHZ62iZqmqzBv8LU5OTmw/t49h818jskZN/EqV4r3pPzGo9r283Hpkkey9z9j1Jy8v++im8TP27yHp/8ZSvnpNAkJLsXvS17jdex8eI55CKWW13fDXfAxfvk9U7boElg5j5/89S1qlqvh8+uO18V9+ijL+vvi7u3Lgu09w694Xz1Fji2T7bD2+rR3buZ0vnxhO2eo18Q8JZc6n79O2/yD6Pve/Isnf1uOLwnG4In7hsifvfVfT3mmIfLhwznLu+O1PIlBOzjh5+GDOSOPSH7/w3Jj/MWTSz1nrJh9J4Mu3nubsiSO069qPN95/m+BS4ZbGy5Z/mrRaz+XFlanTuDV7/ppOVGQTSl14KEdct3TLvN6jHprGqMzmPdv+Zf7v3/LqhCnZ1i2KuHPrWf6N9rHEbfrGrzTlWtzVn3yU48K2hLQkxv75LkeunOSSIZYhb71P2/4PAJAUF8v7fXvQ/Fhd/j25jVhDHENaNqR2RBgAKWnpfLJ8LZ+vn8zolkMY9eebPPDe+zS8u0uO/h0qWX+meV5SjWm8uvxjBjevf9P4KW+9xMjx2eO/cX9P0mvXx61JizzbXRs2IfXrDxn18VfZ23vdQ8pvE/F+8BGS/28sg+pUvha/VmU+Wb6I9PpNcG/eplDbp01Gm45vayajkW+feYwhb7yX7f17d0AvqjZuSt32Ha2MYN/xReE5XBEXjseUFEP0n5+CNoM241W9DY1b57zFrFv/R6jdqNVNP90PeeI1vhg/mkmfvY5fQDBPvfZZkeRnr7jDG/XFWTnz0ubvsgo4gE9AIB0eGcnsOatYe2gDfp4eWQUGwMvdjQ7VKzNr72Jalm+IZ1Bg1h/YG/sXtohP27kIPw/3POP7B+SM323Yo8z7eykZXt55thvPnyWwVOmc7Y+NZvakiWQ0aIqvs8oZv0IEy5cthEIW2Yy9u2w6vq0d3b4Vb/+AHO/f3UMf4b9F8wpdZG09vig8KeLCZoI7W87tugZXoMywL/Jc19vHjzqNW+e5Tqnwsrz97TyrcR97KSHHstoNW1G7Yc55posj7rB+oTmW+7n70Kp8I9ae2IKbp2eOdjcPT9JM6TzWdBCTd07N2e7ijNFsJN2UkWf/wjJkpOHq4pxnfNebxFcZ6eiM9DzbzamGm+avTCZLf+ecf6bcXJwhLfeLBgvC1uPbWkZ6Gm4eub9/GemFn3HR1uOLwpML24TNuAYn4xqcXOxxI8qbiChvcoi4jSPqcOH4MU7uvXYxmzEjg3VTfqNr+ZY8ULc7lxOTORN7baZjk9nM2kPHuatCK6v9Cys/8S8dP5oj/vJpv0HztrjVrp9nu1e3+7iQW/vkHzHVb4Jb7fpEJybmiL/m1AVUu4JPGHQjW49va1UaNcn1/Vs9Ywr1OxQ+f1uPLwpP9sSFzaQcsUxy4VX5UrHG3bzWMglGkzaF3xO1dVxPV3cmdBrLiw8NpHnvvviHhbF5zhwquYbQq2ZHXJxcGNqwH9+smkWTCpEEeHny37HTOOPGG51G4+GSd//CCvTysxrf85lXmDB0IK169yW4VBirF8whJTQMr45dUM4uVttde/bnvUH30brvQILDy7B65lQS09Lw/eR5lJsHXs+N45sPx9G4XBkC3Vz471w0horV8O7YxfoGWKHcbTu+rbl5ePLQ+Al8POwBWvTuS0BoaTYunEtIRFmade99248vCs/hZmxzD6+iwx/+zN5piHy4MNVyv3bYoI052j7tnWPioSLz+hOWC8ze+ibWZjEKErfJvENW+56MO8fsvUuJS0+ifbnGtK/YDCd17UDZ+lPb+XTdJBLSEulSpR2jWw7Bxckl3/0LK6/4jTv7Yjx3hvTlf6KTEnBp1By3pq1QTtfiW2tP27GF1F8nQkoyzi3a4DX4EZxcXLL1T1u2EBLicWnaKkf/wrLl+EUxY5s1l06dZMP82SQnxFG7VTtqt70LpyJ8f2w9vrCuxEy7KkXccUgRt8hPEXdkjTvnnPhGXFMcRVyUfDcr4vJRSgghhHBQck5cCCAxPob1qxaRnBhPvaZtqVS9XrHGjzXE8+fBf4hPTaRNVBPqhlUrUP81xzfx0pIPSc4w0K3aXbzX+blijW+NOT6O1DUr0IkJuDVujmvVmgVqF0LkTvbExR1v95Z1PNm3KZtnfcOpVdN575n7+frtMZjN5mKJ/+/JrbSeOJDZB2ax4fxKHp71LM//9R5mnb/4Q2e9xND5r1KqWUMa9e/PvJNrqf5VN1KN+btFqrDxrUnfton4ofdR+dAemmWkkvHmC6R88hY68/211i6EuDk5Jy5sxpjgAYCLX85iYstz4tEXLZ9NQ0pbLwIZGemM6lmPAfWqUqV0CABpRiPfrN3G4Gcn0Lx9t0LHzeuceLopg6bf9KFfk+rZ4n//9xZea/cMXau1yzPmxaRoWvw0iGe+n0yNFpb73dNSUnij1z2Epbmz6OGJefYvbHzI+5y4zsggfnA3nv74q+z5DehJ6gMjcG/RNs92j7aOP5mInBMXRUHOiYti5+KXmmsBt7WQ0uZ8FXCAA7s24e/hnlXAANxdXGhZPox1S2bZLO5VW87sxt8rZ/xmlcowb/8yq/1fXvIRoZFlswoggLuXF11HPsmRlPM2j29Nxp4dBIeVyZnfQyMwr1lhtV0IkTcp4sJmkveHk7w/vNjjrlvhzroV7vlbWZPrdKsKRUGPUhUoblZ4nePZ6lnxsR7fbNmAnP3z+WCKwsa3HuDm+an8tAsh8iRFXNhM4vbyJG4vX+xxl87xYukcr3ytW71eU2JTDBy9fCVrWbrRxPqT52nVua/N4l7VJLJurvH/O3aOXtWtz4j1fpcXuHz6FAc3X7uNL81g4K8fvqGCZ2mbx7fGtU4Drpw7kzO/3yah2nSw2i6EyJtcnS7uaK6ubox58zs+efURqoeF4OPqwu4L0dRp1qFA58NvlZuzK190/z+eWPB/VA8Lxdvdhb1nL9O6fFO6VmtrtX9pnxBalK7NJ8MHU7/jPQSFl2HD/NkYU1NZO2q2zeNbo1xd8XxxPJ8+MYK67ToQXKo0G/5ahK7TAM82HVFOTnm2CyHyJkVc3PHqN2vPl39s5N8V80lKjKdz03ZUrdWw2J6V3K5CU9Y8Op2F+1cSl5rEM00a06BMzXzH/33gJ6w4sp6Xl37EwYxU7q7Uio+6voSLS/7+exc2vjXuTVrg+vNsDv69DHNSAm4vv41rjTpZ41trF0LcnBRxIQD/wBDu7T/CbvGDvQIY2qhgh++v16lySzpVnmO3+NY4BQThdd/AW24XQuROzokLIYQQDkr2xIXNhPbeape4L7wbd9vFPZtwkdl7lpKQmkibCk1oE9W4QA8osda/sOPnJ/6cvcuIT0+iTblGRT6+uL1dOXeWDfNnk5KYQM2WbajZso08AOU2IT8FYTPOXhk4e2UUe1y/AI1fQPFPYnSzuEsPr+WeSQ+z8cIqThq2879l7zJy3quYzPl79ri1/oUdP1/xpzzKtjLpXGoWySubvmfUn28W2fji9rZ9xVLe7N2ZuEsX8fTxYcZ7b/LdM49hNsnP/3Yge+LCZpJ2RwLgU+dMscZd9adlprgO3Yp3opnc4qanpfL84vcY2qYB5YICAGhfrRITV29hwYFV3Ffz7jzHTDWm5dm/a9W2hRrfmlRjGi8s/4gxP/9Ohbr1Aej66BN8eP99RTK+uL1lpKXyy2svMPbHKdd+/o88wYTBfdi0eAHNe9xn3wSF7IkL20naHZlVyIvT33968vefnrdF3AO7NhPi651VYAFcnJ1oUrEMfx5caXXMLWf25NnfWnthbTmzh9LlK2T9AQdwcXOj7UMPs/j4v4UeX9zeDm/dTOmonD//ux54iG0rltgvMZFFirgQNuTs4oLRlHMqVpPJjJuTm9X+Ls7Oefa31l5YLs7OpKel5ViekZ6Om5McyCvpnF1dybjJz9/FtfC/X6LwpIgLYUPV6zTBkG5i37mLWcsM6RmsP3KGPrW6WO3fOKJ2nv2ttRdW44jaJEdHs/Pva/OYpyTEs+qnidxXRWZUK+kqN2hMYsyVHD//5ZN/pGm3nnbMTFwlH6WFsCFnFxe+7/02w2a/xOZjF/D1dGXv2Yv0q9WVjpVaWO3v4pR3f6VUocbPV/xu4xj2/Fgq1K2HX6nS7Fi1nL41OhXJ+OL25uziwmOffctXT4wgqk49AkJLs2PVMpr37EO99p3snZ5AirgQNtcoojYbHvuDZUf+JT41kXfuakTl4PzPKW+tf2HHz1f8R6Zaxk9KZFz/z4p0fHF7q9ygMRNWrGfHqmUkx8fTefgowitVtndaIpM8T1zYjDnDcrbGyTXnOVtbPk88LfPicHcPm4UoUNy8nideEuT1PHEhzxMXRUOeJy6KnZOrOdcCXhDpaam8OLwLY4d0YMygtkz/4QOrfdw9bl7A333hIcYMbleonG4l7q0wmU10+XkEQ2e9dEv931/zA02/6Uu1TzpnW55mTOfx+eNo/f0D9Ph1FKfjrT93vCDiP3iDS306ED28X9Yyc0I8sS88RvSQnsS+8BjmxIRbGjt951aujHyAi50ak7p6edZy04VzXBn5AFceHUD0sL6kLPij0NtxVW7bkzTpa648cj9XHh1A7AuPY4q+dEtjH9y8kTd6d+aRGuXYsmRRjnZDUiLPtWnElDdfveX8RclmsyKulCqrlPpbKbVPKbVXKTUml3XaK6XilVI7Mr/+z1b5iOKXuK08idsKd9jV1c2dN7+azTNvfE29pu1YMmcyMyd9gtF4bRKZjIx0Ug3JWa//mu3JX7Oz3+p18uh+3n1+MKeP7iclKTFb/6KSW9yrDlw+xpsrv2Dsn28zf99KMkxGq+0/bZmVddj6wOVjvLn6G55d/gHz960kOd1ASrohz3zurtSShQ99n2P59F1/EuDhy7pR03ik8f28+893t7jFufPs3IPACV9nWxb/4RuYTx3H3dUNs8FA0m8Tc+1rrbg7lw7H76U38eiY/aI9p+BQgr6aTPAPMwj65jeSp/2crbAajx8h5btPMXw0ntRVS9AF+Pnntj1eAx4m+MeZBP8wA/cWbUi+xe0JDo9gxIRPada9d67tcz/7kKpNmuc7V3HnseWeuBF4TmtdE2gOPKmUqpnLemu11vUzv8bbMB9RzJIPhJN8ILxQYyil2Lj6T8Y93R+TnxvOHm6sW72At58bTEZGuiVOYjxjBrXj2wkvcHjfdtav9GD9ymu7xH8vnsnrI7tzZPu/1A5wIyHmEm893T+rf1G5Me5Vs/Ysod/UJzmZsguT21k+2/gtD84cS7op46bt/ac+yYqj63mgXjfOJ16m/+znuNSgNO49WvDliYU8OPd/dPjpIf635EN2nN+faz4NI2pR2ickx/Jlh9fRr7alCHar3o5/T26jKE+rudVrhJOff9brxE/eJmP9atp36U6fh4dTKt1A6pzpmFNScvRN/PJ9Yp4diWHFYnR6zlubnMPK4FqpKtww5adydUW5Zd7ylJ4O121P6rJFJL/wGG1DAunZpDF+i2aR/MoYdEb+CvmN2wPg5O2T9b1ONQC5P3Et8cv3+eCh/mxYMIeMtJyTD4VElqVs9Zq5TmF6Ys8uEqIvU6t14R8JK0oumxVxrfV5rfW2zO8Tgf1AhK3iiZIp1ZDMpM/+Dy9/f1b9/jPNe9zHG/OXkU4Ga5ZanpcdEBTKVzP+pU6jVkz9fgJHDzTlyqWvSIyPtfT/5BWqhQbQq34tmlUsR5CXB4aLJ7P62zr//1vxGY+2a0Tn2lVoVTmKke0acyXtInP3Licl3ZBr+8Erx2gWWY90YwaHrpzgual/0Hvsi3QYPJQXZs7DEOTO6OZDaFGuIR+s+YEuP49g0pZZxBqsH6a+kBRNGV/LeVoXJxd83b2JNcTbZPvNsTFkLF+Eu5cXg15/iw6Dh/LmghUoNIlf5Tw14v/KO/g+9gwZe3dyZVg/Er6YQMbRg/mKZbp0gSuP3M/lgV3xHjgU55BSaIOBlG8+4tXf/qDvM5b3b9y0uZRSmtQViwu1bUk/fcXlAV0wrPgLn2GP57qO/yvvcP+Lr3Nk2xZeu7cDv49/jVP791od22w2M2PCeO7/3+uFylGUfMVyTlwpFQU0AP7LpbmFUmqnUuovpVSt4shHOI4DuzYTWbU67y5dw8drtnB813bOHT1Mm/sHsWX9tXtXXd3caX13b8Z9PoOyFWeRnLiKR3rWZ/PapQR5eWLIyKBOZFjW+k3LlmbzPznPQdoi/zL+/oT5X7v4y8lJ0SgqjKWHV7P57O4c7QcuXCLc34e9lw5yIPoYHl7eRFSpdq2/szMtBw1m1dmt9KrZkakDPuGnvu+y9uQWmnzdhwuJ0TbfrvxKWTyX8EpVUE7OWcucXVxwcXfHeVfuD8hxrVoTvzEvE/zzLFwiyhHzxBCS//jNaiznUmEE/ziTkN/mY1i6EFPMFdL37CC8SrUc71+nAYNh07pCbZvPiKcInbEEz05dSZk346brRdWuy5A33uXtxasoVT6Kt/t1Z+mknKc5rvf375Op264DQWFlCpWjKPlsfouZUsoHmA08o7W+cTdhG1Bea52klLoXmAdUyWWMkcBIAGe/UNsmLG4r7h5epCRY9hK9/Pyp3qwVu/5ZycrfJpGeYmDT2qU0bWO5cCsu5jKrl8zi1NE5uLpFMPbNb/D1DyLBYCA+MYN3Fq3CrDVJaWks23uIms1tP++3u4cXhlwO2xvSM/B2C8LL1TNH+4noWE7HxnMmdjubz+whOS2JT0Y8SPxly4Quvce8QEpCPN4u7kQnxzJ771Jm71lKuG8oX/Z4nVDvwDxzCvMJ4VziJcL9SmE0G0lMSybQ0z/PPrfKydcPQ2ICfiEhxF26SECp0sRduoi7pxcmZxdiX3wCc+wVXKrVxP/5cQBok5G0jetIXTIf49nT+Ax9HM9O3fId0zmkFC4VKpOxextOwaEYcjkvnZwQj/Yomql5PTreS+zLo/EZ+niu22MyGtm1ehXrZk3n0qkT9B7zPC165f3s9qM7tnJoy3+smjqZtORkjBkZuHt50/+FV4okZ1Fy2LSIK6VcsRTw37XWc25sv76oa60XK6W+UUqFaK2jb1hvIjARLLeY2TJnUbTSL/lxYWr2C3O8q5+H3pZbst5+NmfBuaubgQ7dUkmIU0z+qgHnT3zOq100PkHenDmwnhY9h+Pq6s7Dz/3Awmn3MG9KPGdPjiAt9SABQYMJLrWAwOAyNG8fi8lkwsPbj45RpWlYvgwxySn8sGYT2tmNu3oMLvLtPX7YhdefuLZNWt9DgmEE204uo3ZERX5c+wYms5lzcYlUDirP+2t8SUo9wLaTa6kWVoPJ61/GZDZjMlvaYSfJGU/Rslcfqjbpxw8vBLJ4YgYn92zAQ63hr73P07VaFyb3/4CU9HL8b2llJt2wg2s0W87XGjKceOiPWlxI7M/IuZuoGPQA0SmzKedvmTQmJsWFUfNq5NimIQ3O07NGNOcS3BizqFqO9jTfGNxbJmA85U7Cp2Ut253uiumCG6krXyL18k5qNDPw5/ezOXPwdS6f/oGk2M4o9zdwzgjHd8w53GqnkL7Hi/gJszFHT0R5t8Ap6H84+bfCrclZnAINpG31IXmK5WiK8ZQvGQfCSZlXGb+xp1Gep8jYV5aUeeXQxliMh/dgPPYyyqMm+tIRNiyYQ8O7+/LZo0EYMzI4sbcDRA4jdawfnp1j8OwSgznembg3KuTYPq+e0bjWOAdGRcxYy/3ROu0Iyt3yvUvkXFzKRWE85Y7OWIbyAdNZiBkLpstf8nzG99Rq1YT6HZ6gTf/83Vo58uOvsr5fN2cGJ3bvkgIucmWzIq6UUsBPwH6t9Sc3WScMuKi11kqpplgO71+xVU6ieIUN2pijgBeUyXgRJ/Uc54+loI5rXN07s27OOvo+PJCa9ZuxfL5lvaDQJ/H2aY9Sip4PJNOkTSwAzs7OvPjhb7w79gE2nLqAu7MT0UkpDBzxOPWaFu0FQ299E5utgIPlwrwH6/dm1t4f2Xg0jkuJSaSkZ1DGtxT+HpZD6MMa9ef3nb+z4Ugal5Oyt8enQjn/cBa88w5eoX9y+eL7JCfGE+YTiL/7k/i5t6FH9XOE+8Zw9Ib/OSfj/o8rKbPJMBlo8nVf+tXuDnxCKZ8hHLnyGNvPN8TFKZAxLd8v0vfBeHIYOmktGK+QcaAGbo26s/+/39i/cRfGjF/R5lIo7w9xLpXzokflURuXqv+inP1yHducshXTiUFgisOU8BemC+8AczCePE7id2Mwx7sCGudST6M8LWfn3O69j18/7MGfk6cRd/pbDInxOIWG4eSbe4wbpcx5GtP5DZjj4zBdrIZz6VcwJy5Dpx0GnNCppQkY/xI6l5sFlEdthrz2Nw07uXNqnwuW632vOb5rB189OYLkhHh2/L2ceV98zNuL/85XXkKADSd7UUq1BtYCu4GrNwu/ApQD0Fp/p5R6Cngcy2+2AXhWa70+r3FlspeSoaCTvRiNGezavJbkxHhqNWxJUEjpYu1fGE3mHSLDZGTdya3EpybSolz9HFeNF7bdnvIz2Ys51UDKH1Mwx17B897euFauXgyZXaONGaRv24Q5MQG3+o1xDi6+03Iy2YsoCjeb7EVmbBN2YcsZ2243MmPbnU2KuCgKMmObEEIIUcLIA1CEQ9i/8z+Wz51McnwM9Vt1pkP3Abh7eNk7rXybvG0uP22ZgcFooElEPd6++1mCvALsnZYQwsHJnri47S2e+SMfvfgQfhcPUI14/p35Nf/3WE/SUnPO+HU7emze67y3+mvqlPOnU60o9sfsps3EAcSkxNk7NSGEg5MiLm5ryUkJTP3uXR5r3ZC2VStQv1wZhjWvi2tKHKv+nGnv9Ky6fPEsSw+v5elOrWhbrSL1y5VhVLtmlPL34vXln9o7PSGEg5MiLm5rh/ZsJSI4iGCfa4fOlVI0iAhlx79L7ZhZ/qz+6w/KBPjlyL9ZxXJsPrfTjpkJIUoCKeLitubt60+CwZDjAR2JqWn4+AfZKav8CwguRUJqao78EwypeLoUzYxhQog7lxRxcVurUrMBrl5+/Hv0VFYhjE5KZu2xM3Tq/bCds7OuQ7eBpBvN/HvkRLb8V+4/wohGA+ycnRDC0cnV6eK2ppTi5Y+n8t5zg9hw8j/8PD05eyWGwY+/So16Te2dnlVOTk78eN8EHpn7P/45eAxfd3fOxyfSpWpbHmrY297pCSEcnBRxcdsLL1uBz2es58i+7SQlxlOtTmO8vB1ngpE2UY3ZP2YZf+z5i4tJMfSv3ZlwP5kARAhReFLEhUNQSlGlVkN7p3HLnJycGFA3/0/iEkKI/JBz4kIIIYSDkj1xkS8ph/8jafdyzKlJeETVx69hd5w8fOydVpZNa5eyYs7PJMXH0qDVPdx7/yN4+9rmGdm3Ytnhdfy+cx5xhgTuqtiSYY36Zj3F7E6Q+u8/mBbMhMR4aN4Wzz6DcPK5c7ZfCFuRPXFhVfyGmcT+Mwmvqi3xbzEAY8xZLvz+Eua022PGtD8mfcykCWOpYo6lbag7h1b9wcsjupCSnGjv1AD4fP0vvLbiA0oHp9G4sh9rTq+g95RRJKYl2zu1YmH4dSJ8Mp4eKoVBpXyouOYvEp94EHNykr1TE8LhSREXeTIZEkj4bzalB76LT+0OeFZoQEj353ANiiBp1zJ7p0difAzzp3zNqFYNaBQVSdWwUB5oXIsgZxMr5v9u7/RIjI/hu/+m8ki7Rln5DWhWB18vmLZzkb3TszlzfByGGb/wdOuGWdv/UOPaVHDRpP45197pCeHwpIiLPKWfP4xbWGVcfIOzLfeq0ZbU03vslNU1h/ftIDIkCH9Pj2zL64WHsHfzP/ZJ6jqH9+2gXFDO/GpHluLfU5vtlFXxyTi4l/DgnNvfODwUtm6wU1ZClBxSxEWenLz8McZfQmtztuXGuAs4ewfYJ6nr+AeFEJuUjPmGGdGupBgICAmzU1bX+AeFcCU5Z34xSQZK+YTYKavi4xQQRFwuP5/oFAM6RG6zE6KwpIiLPLmVroSTpy/x62egzSYA0i8eJXHLfHzqdbFzdlCxah38QsJZdeAYJrPlg8bZ2HjWHT3DPX2H2Tk7S36hXiGs2n80W37rj5xmSP377Jyd7blUqY4xuBTLb/j5/H30NG697rdzdkI4Prk6XeRJKUVo71eIXvQRSdsX4+TljykljqAOj+IeVtne6aGU4qWPpvDJKyN4Z8k6fDw9SEpLZ/jzE6hUvZ6900MpxaQ+7/P4gtd57881+Hp4kJyazviOY6kbVs3e6dmcUgqvd79g/RvPs27JWjw9LD8fjzEv41q1pr3TE8LhSREXVrn4hRA2aAIZsecwpybjFhqFcnG1d1pZQkqV4d0f/+L86eMkJ8VTvlINXN3c7Z1WlnC/Usx78HuOx54hITWJ6qEVcXdxs3daxcY5tDQ+X/+G8ewpdFIiARWqoNzunO0XwpakiIt8cw0sY+8U8hRetoK9U8hThcBIe6dgVy4R5eydghAljpwTF0IIIRyU7IkLcYczm828uPRDlp3aSIbZSJRPGB/f8xI1S+fvmgetNalLF2KaPx2dlIhTk1Z4PPgIzkEl/+p7IexN9sSFuMP1mv4ka5IO8tD7n/DsL9Mp1a4ZvWaM5kTs2Xz1N3z7CR4/f8mAUG9G1oiizv4tJD4+GHNCvI0zF0LInrgQd7B9F4+w99JRPl6zGZ/AIACiatclKS6W11Z8ypT+H+XZ/1LSFVIXzeL5zm3wdrdcrBYZ5E/K1r0cWzgLr8EjbL4NQtzJZE9ciDvYssPrKFe9ZlYBv6px1+4cSjxjtf/ei4cpExqSVcCvqlsqCHZtLdJchRA5SREX4g5WNTSKS6dOYDaZsi0/c/AAAS7eVvuH+YUSHZ+A2Zx9RrbzSSkQdnvfzSBESSBFXIg72L3V2uNiVkx7ZxxpBgNaa/ZvWMfSn79nbPOHrfavEVoJykYxf89B0o0mtNYcvhjN2mOnces9sBi2QIg7m5wTF+ION7f/5wyc8zxr/piKm4cnZqORxxvcT9eqbfPV3+vtz9g54XU2Lf4HV1dXzJ5eeL76Hi4V7D+jnxAlnRRxIe5wlYLLsfnRmRy9coqLyVdoGlkHF6f8/2lw8g/E+72v8IyPxZycjHNYGZSTHOQTojhIERdCAJZiXin41mdVc/IPxMk/sAgzEkJYIx+XhRBCCAclRVwIIYRwUFLEhRBCCAclRVwIIYRwUFLEhRBCCAclRVwIIYRwUFLEhRBCCAclRVwIIYRwUFLEhRBCCAclRVwIIYRwUFLEhRBCCAdlsyKulCqrlPpbKbVPKbVXKTUml3WUUuoLpdQRpdQupVRDW+UjSq6M9DR+/+ZthnWpzoC2ZXl7zP2cPLrf3mkJIYTN2XJP3Ag8p7WuCTQHnlRK1bxhna5AlcyvkcC3NsxHlFBfjX+KA//MY1SLeozrfhflMq4w7vHeRF88a+/UhBDCpmxWxLXW57XW2zK/TwT2AxE3rNYL+FVbbAQClFLhtspJlDwXz51k+4ZVPNikNqX8fPBwdaV1lSjqR4Ty16xJ9k5PCCFsqljOiSulooAGwH83NEUAp697fYachV6Imzpz4jBlQ4JxdXHOtrxCkB+nD++xU1ZCCFE8bF7ElVI+wGzgGa11wi2OMVIptUUptcWUEl+0CQqHFlGuMmeuXCHDZMq2/ERsImUr33j2RgghShabFnGllCuWAv671npOLqucBcpe9zoyc1k2WuuJWuvGWuvGzl7+tklWOKSwyChqN27D1C17uZKUQobRxMajp9h25iKd+w63d3pCCGFTtrw6XQE/Afu11p/cZLUFwEOZV6k3B+K11udtlZMomca8+R0Vmnfhi9WbeXXeMg5rH974ag6lwsta7yyEEA7MxYZjtwKGALuVUjsyl70ClAPQWn8HLAbuBY4AKcAwG+YjSig3dw+GPvMWQ595C601ls+PQghR8tmsiGut1wF5/jXVWmvgSVvlIO48UsCFEHcSmbFNCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHJUVcCCGEcFBSxIUQQggHZbMirpSapJS6pJTac5P29kqpeKXUjsyv/7NVLkIIIURJ5GLDsX8BvgJ+zWOdtVrr7jbMQQghhCixbLYnrrVeA8TYanwhhBDiTmfvc+ItlFI7lVJ/KaVq2TkXIYQQwqHY8nC6NduA8lrrJKXUvcA8oEpuKyqlRgIjAZz9QostQSGEEOJ2Zrc9ca11gtY6KfP7xYCrUirkJutO1Fo31lo3dvbyL9Y8hRBCiNuV3Yq4UipMKaUyv2+amcsVe+UjhBBCOBqbHU5XSk0D2gMhSqkzwDjAFUBr/R3QD3hcKWUEDMBArbW2VT5CCCFESWOzIq61fsBK+1dYbkETQgghxC2w99XpQgghhLhFUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQUsSFEEIIByVFXAghhHBQNiviSqlJSqlLSqk9N2lXSqkvlFJHlFK7lFINbZWLEEIIURLZck/8F6BLHu1dgSqZXyOBb22YixBCCFHi2KyIa63XADF5rNIL+FVbbAQClFLhtspHCCGEKGnseU48Ajh93eszmcuEEEIIkQ8u9k4gP5RSI7EccgdIOvl+94P2zMfGQoBoeydha33et9nQd8T7Z0MFf/9s97N0RDnev+F2SsRByf/fmyuf20J7FvGzQNnrXkdmLstBaz0RmFgcSdmbUmqL1rqxvfNwVPL+FY68f4Uj71/hyPtXcPY8nL4AeCjzKvXmQLzW+rwd8xFCCCEcis32xJVS04D2QIhS6gwwDnAF0Fp/BywG7gWOACnAMFvlIoQQQpRENiviWusHrLRr4ElbxXdgd8RpAxuS969w5P0rHHn/CkfevwJSlloqhBBCCEcj064KIYQQDkqK+G1GKeWslNqulFpk71wcjVLqhFJqt1Jqh1Jqi73zcTRKqQCl1Cyl1AGl1H6lVAt75+QolFLVMn/vrn4lKKWesXdejkQpNVYptVcptUcpNU0p5WHvnByBHE6/zSilngUaA35a6+72zseRKKVOAI211nKf6S1QSk0G1mqtf1RKuQFeWus4O6flcJRSzlhul22mtT5p73wcgVIqAlgH1NRaG5RSM4HFWutf7JvZ7U/2xG8jSqlIoBvwo71zEXcWpZQ/0Bb4CUBrnS4F/JZ1BI5KAS8wF8BTKeUCeAHn7JyPQ5Aifnv5DHgRMNs5D0elgWVKqa2Zs/yJ/KsAXAZ+zjyd86NSytveSTmogcA0eyfhSLTWZ4GPgFPAeSzzhiyzb1aOQYr4bUIp1R24pLXeau9cHFhrrXVDLE/Ie1Ip1dbeCTkQF6Ah8K3WugGQDPzPvik5nszTED2BP+ydiyNRSgVieShWBaAM4K2UetC+WTkGKeK3j1ZAz8zzutOBDkqpKfZNybFkfppHa30JmAs0tW9GDuUMcEZr/V/m61lYiroomK7ANq31RXsn4mA6Ace11pe11hnAHKClnXNyCFLEbxNa65e11pFa6ygsh+NWaa3lk2g+KaW8lVK+V78H7gH22Dcrx6G1vgCcVkpVy1zUEdhnx5Qc1QPIofRbcQporpTyUkopLL9/++2ck0NwiKeYCZEPpYG5lv//uABTtdZL7JuSwxkN/J55SPgYMhVygWR+eLwbGGXvXByN1vo/pdQsYBtgBLYjs7fli9xiJoQQQjgoOZwuhBBCOCgp4kIIIYSDkiIuhBBCOCgp4kIIIYSDkiIuhBBCOCgp4kI4GKXUq5lPe9qV+cSsZkU8fvvcnqJ3s+VFEK+3Uqrmda//UUo1Luo4QpREcp+4EA4k8/Gg3YGGWus0pVQI4GbntAqrN7AImVxGiAKTPXEhHEs4EK21TgPQ/9/e3YXmGIdxHP/+spXktTighpKXvNS0WshaTpxKaIfUzpRyQCl5KSFzJJJSK0dIbXLkJRmF8pKZTUzCAUdSiwPUuhzc1+pZzcsjWff2+5zsua/7/v+72sFz9f8/d/8r4mNEfACQ1CDpdjaAuSZpdsa7JJ3IVXuvpMaMN0q6nw1P7lWc1vZbeUJeu6QHOX5DxrdJ6pB0VdIrSW0VY1ol9eeYs5JOSVpDcdb48cxvQT6+JZ/rl9T0L/5xZmORi7hZuVwH6rK4nZbUDCCpFjgJbI6IBqAdOFwxblJE1APb8x7AC6ApG57sB45UkcdeiqOBG4F1FEV4qOtZPdACrABaJNVJmgPsA1ZR9AlYAhAR94ArwO6IqI+I1zlHTc69EzhQRV5m44q3081KJCK+SGoAmiiK50VJe4BHwHLgRh49O4GipeOQ8zn+jqSpkqYDU4BzkhZStHGtrSKV9RQNe3bl9URgbn6+GREDAJKeA/OAmcDtiPiU8UvAol/M35F/HwPzq8jLbFxxETcrmYgYBLqALknPgK0Uxa4vIlb/bNgI14eAWxGxUdL8nPNPCdgUES+HBYuX7L5VhAb5u++ZoTn+drzZuODtdLMSkbQ4V85D6oF3wEtgVr74hqRaScsqnmvJ+FpgIFfK04D3eX9blalcA3ZkxykkrfzN8w+BZkkzJNUAmyrufabYFTCzKrmIm5XLZIot8OeSeoClwMGI+A5sBo5Jegp0M7wf81dJT4AzQGvG2oCjGa92tXuIYvu9R1JfXv9U9no/AjwA7gJvgYG8fQHYnS/ILRh5BjMbibuYmY1xkrqAXRHxaJTzmJy/6dcAnUB7RHSOZk5mZeeVuJn9LwcldQO9wBvg8qhmYzYGeCVuZmZWUl6Jm5mZlZSLuJmZWUm5iJuZmZWUi7iZmVlJuYibmZmVlIu4mZlZSf0ASKUlaGOA40YAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(8,8))\n", - "draw_border(clr, X, y, incx=1, incy=1, figsize=(6,4), border=False, ax=ax,\n", - " fct=lambda m, x: predict_leaves(m, x))\n", - "\n", - "for edge, segments in neighbors.items():\n", - " for segment in segments:\n", - " # leaves l1, l2 are neighbors\n", - " l1, l2 = edge\n", - " # the common border is [x1, x2]\n", - " x1 = segment[1]\n", - " x2 = segment[2]\n", - " ax.plot([x1[0], x2[0]], [x1[1], x2[1]], 'b--')\n", - " ax.text((x1[0] + x2[0])/2, (x1[1] + x2[1])/2, \"%d->%d\" % edge)\n", - "ax.set_title(\"Leaves and segments\");" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/_doc/sphinxdoc/source/pipeline.png b/_doc/pipeline.png similarity index 100% rename from _doc/sphinxdoc/source/pipeline.png rename to _doc/pipeline.png diff --git a/_doc/sphinxdoc/source/HISTORY.rst b/_doc/sphinxdoc/source/HISTORY.rst deleted file mode 100644 index 390fbf10..00000000 --- a/_doc/sphinxdoc/source/HISTORY.rst +++ /dev/null @@ -1,58 +0,0 @@ - -.. _l-HISTORY: - -======= -History -======= - -current - 2019-05-23 - 0.00Mb -============================= - -* :issue:`55`: Explore caching for gridsearchCV (2019-05-22) -* :issue:`56`: Fixes #55, explore caching for scikit-learn pipeline (2019-05-22) - -0.2.269 - 2019-05-20 - 0.41Mb -============================= - -* :issue:`53`: implements a function to extract intermediate model outputs within a pipeline (2019-05-07) -* :issue:`51`: Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26) -* :issue:`46`: implements a way to determine close leaves in a decision tree (2019-04-01) -* :issue:`44`: implements a model which produces confidence intervals based on bootstrapping (2019-03-29) -* :issue:`40`: implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28) -* :issue:`39`: implements a custom criterion for decision tree (2019-03-26) -* :issue:`41`: implements a direct call to a lapack function from cython (2019-03-25) -* :issue:`38`: better implementation of a regression criterion (2019-03-25) - -0.1.199 - 2019-03-05 - 0.05Mb -============================= - -* :issue:`37`: implements interaction_only for polynomial features (2019-02-26) -* :issue:`36`: add parameter include_bias to extended features (2019-02-25) -* :issue:`34`: rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23) -* :issue:`33`: implement the piecewise classifier (2019-02-23) -* :issue:`31`: uses joblib for piecewise linear regression (2019-02-23) -* :issue:`30`: explore transpose matrix before computing the polynomial features (2019-02-17) -* :issue:`29`: explore different implementation of polynomialfeatures (2019-02-15) -* :issue:`28`: implement PiecewiseLinearRegression (2019-02-10) -* :issue:`27`: implement TransferTransformer (2019-02-04) -* :issue:`26`: add function to convert a scikit-learn pipeline into a graph (2019-02-01) -* :issue:`25`: implements kind of trainable t-SNE (2019-01-31) -* :issue:`6`: use keras and pytorch (2019-01-03) -* :issue:`22`: modifies plot gallery to impose coordinates (2018-11-10) -* :issue:`20`: implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22) -* :issue:`19`: fix issues introduced with changes in keras 2.2.4 (2018-10-06) -* :issue:`18`: remove warning from scikit-learn about cloning (2018-09-16) -* :issue:`16`: move CI to python 3.7 (2018-08-21) -* :issue:`17`: replace as_matrix by values (pandas deprecated warning) (2018-07-29) -* :issue:`14`: add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19) -* :issue:`13`: add transform to do model stacking (2018-06-19) -* :issue:`8`: move items from papierstat (2018-06-19) -* :issue:`12`: fix bug in quantile regression: wrong weight for linear regression (2018-06-16) -* :issue:`11`: specifying quantile (2018-06-16) -* :issue:`4`: add function to compute non linear correlations (2018-06-16) -* :issue:`10`: implements combination between logistic regression and k-means (2018-05-27) -* :issue:`9`: move items from ensae_teaching_cs (2018-05-08) -* :issue:`7`: add quantile regression (2018-05-07) -* :issue:`5`: replace flake8 by code style (2018-04-14) -* :issue:`1`: change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05) -* :issue:`2`: save features and metadatas for the search engine and retrieves them (2017-12-03) diff --git a/_doc/sphinxdoc/source/_static/my-styles.css b/_doc/sphinxdoc/source/_static/my-styles.css deleted file mode 100644 index 785aa4d5..00000000 --- a/_doc/sphinxdoc/source/_static/my-styles.css +++ /dev/null @@ -1,49 +0,0 @@ - -.highlight-ipython3 { - background-color: #f8f8c8; -} - -div.highlight-ipython3 pre { - background-color: #f8f8c8; -} - -div.body ul { - margin-top: 0.1em; - margin-bottom: 0.1em; -} - -div.body li { - line-height: 1.1em; -} - -.wy-nav-top { - background-color: #FF0040; -} - -.wy-side-nav-search { - background-color: #FF0040; -} - -pre.highlight-default { - background-color: #b5b5b5; -} - -table { - border: solid 1px #EEEEEE; - border-collapse: collapse; - border-spacing: 0; - font: normal 11px; -} -thead th { - background-color: #EFEFEF; - border: solid 1px #EEEEEE; - color: #6B6B6B; - padding: 10px; - text-align: left; - text-shadow: 1px 1px 1px #fff; -} -tbody td { - border: solid 1px #DDEEEE; - color: #333; - padding: 3px; -} diff --git a/_doc/sphinxdoc/source/_static/style_notebook_snippet.css b/_doc/sphinxdoc/source/_static/style_notebook_snippet.css deleted file mode 100644 index 1f12a1b5..00000000 --- a/_doc/sphinxdoc/source/_static/style_notebook_snippet.css +++ /dev/null @@ -1,81 +0,0 @@ - -div.sphx-pyq-thumb { - box-shadow: none; - background: #FFF; - margin: 5px; - padding-top: 5px; - min-height: 230px; - border: solid white 1px; - -webkit-border-radius: 5px; - -moz-border-radius: 5px; - border-radius: 5px; - float: left; - position: relative; -} - -div.sphx-pyq-thumb:hover { - box-shadow: 0 0 15px rgba(142, 176, 202, 0.5); - border: solid #B4DDFC 1px; } - div.sphx-pyq-thumb a.internal { - display: block; - position: absolute; - padding: 150px 10px 0px 10px; - top: 0px; - right: 0px; - bottom: 0px; - left: 0px; -} - -div.sphx-pyq-thumb p { - margin: 0 0 .1em 0; -} - -div.sphx-pyq-thumb .figure { - margin: 10px; - width: 160px; -} - -div.sphx-pyq-thumb img { - max-width: 100%; - max-height: 160px; - display: inline; -} - -div.sphx-pyq-thumb[tooltip]:hover:after { - background: rgba(0, 0, 0, 0.8); - -webkit-border-radius: 5px; - -moz-border-radius: 5px; - border-radius: 5px; - color: white; - content: attr(tooltip); - left: 95%; - padding: 5px 15px; - position: absolute; - z-index: 98; - width: 220px; - bottom: 52%; -} - -div.sphx-pyq-thumb[tooltip]:hover:before { - content: ""; - position: absolute; - z-index: 99; - border: solid; - border-color: #333 transparent; - border-width: 18px 0px 0px 20px; - left: 85%; - bottom: 58%; -} - -.sphx-pyq-download { - background-color: #ffc; - border: 1px solid #c2c22d; - border-radius: 4px; - margin: 1em auto 1ex auto; - max-width: 45ex; - padding: 1ex; -} - -.sphx-pyq-download a { - color: #4b4600; -} diff --git a/_doc/sphinxdoc/source/api/batch.rst b/_doc/sphinxdoc/source/api/batch.rst deleted file mode 100644 index 926697e1..00000000 --- a/_doc/sphinxdoc/source/api/batch.rst +++ /dev/null @@ -1,7 +0,0 @@ - -Speed up batch training -======================= - -.. autosignature:: mlinsights.mlbatch.cache_model.MLCache - -.. autosignature:: mlinsights.mlbatch.pipeline_cache.PipelineCache diff --git a/_doc/sphinxdoc/source/api/helpers.rst b/_doc/sphinxdoc/source/api/helpers.rst deleted file mode 100644 index fef0d7a8..00000000 --- a/_doc/sphinxdoc/source/api/helpers.rst +++ /dev/null @@ -1,22 +0,0 @@ - -Helpers -======= - -.. contents:: - :local: - -Formatting -++++++++++ - -.. autosignature:: mlinsights.helpers.parameters.format_parameters - -.. autosignature:: mlinsights.helpers.parameters.format_value - -.. autosignature:: mlinsights.helpers.parameters.format_function_call - -Pipeline -++++++++ - -.. autosignature:: mlinsights.helpers.pipeline.alter_pipeline_for_debugging - -.. autosignature:: mlinsights.helpers.pipeline.enumerate_pipeline_models diff --git a/_doc/sphinxdoc/source/api/metrics.rst b/_doc/sphinxdoc/source/api/metrics.rst deleted file mode 100644 index 8c061823..00000000 --- a/_doc/sphinxdoc/source/api/metrics.rst +++ /dev/null @@ -1,5 +0,0 @@ - -metrics -======= - -.. autosignature:: mlinsights.metrics.correlations.non_linear_correlations diff --git a/_doc/sphinxdoc/source/api/mlmodel.rst b/_doc/sphinxdoc/source/api/mlmodel.rst deleted file mode 100644 index 1418ab8e..00000000 --- a/_doc/sphinxdoc/source/api/mlmodel.rst +++ /dev/null @@ -1,90 +0,0 @@ - -Machine Learning Models -======================= - -.. contents:: - :local: - -Helpers -+++++++ - -.. autosignature:: mlinsights.mlmodel.ml_featurizer.model_featurizer - -Clustering -++++++++++ - -.. autosignature:: mlinsights.mlmodel.kmeans_constraint.ConstraintKMeans - -.. autosignature:: mlinsights.mlmodel.kmeans_l1.KMeansL1L2 - -Trainers -++++++++ - -.. autosignature:: mlinsights.mlmodel.classification_kmeans.ClassifierAfterKMeans - -.. autosignature:: mlinsights.mlmodel.interval_regressor.IntervalRegressor - -.. autosignature:: mlinsights.mlmodel.anmf_predictor.ApproximateNMFPredictor - -.. autosignature:: mlinsights.mlmodel.piecewise_estimator.PiecewiseClassifier - -.. autosignature:: mlinsights.mlmodel.piecewise_estimator.PiecewiseRegressor - -.. autosignature:: mlinsights.mlmodel.piecewise_tree_regression.PiecewiseTreeRegressor - -.. autosignature:: mlinsights.mlmodel.quantile_mlpregressor.QuantileMLPRegressor - -.. autosignature:: mlinsights.mlmodel.quantile_regression.QuantileLinearRegression - -.. autosignature:: mlinsights.mlmodel.target_predictors.TransformedTargetClassifier2 - -.. autosignature:: mlinsights.mlmodel.target_predictors.TransformedTargetRegressor2 - -Transforms -++++++++++ - -.. autosignature:: mlinsights.mlmodel.categories_to_integers.CategoriesToIntegers - -.. autosignature:: mlinsights.mlmodel.extended_features.ExtendedFeatures - -.. autosignature:: mlinsights.mlmodel.sklearn_transform_inv_fct.FunctionReciprocalTransformer - -.. autosignature:: mlinsights.mlmodel.sklearn_transform_inv_fct.PermutationReciprocalTransformer - -.. autosignature:: mlinsights.mlmodel.predictable_tsne.PredictableTSNE - -.. autosignature:: mlinsights.mlmodel.transfer_transformer.TransferTransformer - -.. autosignature:: mlinsights.mlmodel.sklearn_text.TraceableCountVectorizer - -.. autosignature:: mlinsights.mlmodel.sklearn_text.TraceableTfidfVectorizer - -Exploration -+++++++++++ - -The following implementation play with :epkg:`scikit-learn` -API, it overwrites the code handling parameters. - -.. autosignature:: mlinsights.sklapi.sklearn_base_transform_learner.SkBaseTransformLearner - -.. autosignature:: mlinsights.sklapi.sklearn_base_transform_stacking.SkBaseTransformStacking - -Exploration in C -++++++++++++++++ - -The following classes require :epkg:`scikit-learn` *>= 0.21*, -otherwise, they do not get compiled. - -.. autosignature:: mlinsights.mlmodel.piecewise_tree_regression_criterion.SimpleRegressorCriterion - -A similar design but a much faster implementation close to what -:epkg:`scikit-learn` implements. - -.. autosignature:: mlinsights.mlmodel.piecewise_tree_regression_criterion_fast.SimpleRegressorCriterionFast - -The next one implements a criterion which optimizes the mean square error -assuming the points falling into one node of the tree are approximated by -a line. The mean square error is the error made with a linear regressor -and not a constant anymore. - -.. autosignature:: mlinsights.mlmodel.piecewise_tree_regression_criterion_linear.LinearRegressorCriterion diff --git a/_doc/sphinxdoc/source/api/plotting.rst b/_doc/sphinxdoc/source/api/plotting.rst deleted file mode 100644 index 37d1b934..00000000 --- a/_doc/sphinxdoc/source/api/plotting.rst +++ /dev/null @@ -1,9 +0,0 @@ - -plotting -======== - -.. autosignature:: mlinsights.plotting.gallery.plot_gallery_images - -.. autosignature:: mlinsights.plotting.visualize.pipeline2dot - -.. autosignature:: mlinsights.plotting.visualize.pipeline2str diff --git a/_doc/sphinxdoc/source/api/search_rank.rst b/_doc/sphinxdoc/source/api/search_rank.rst deleted file mode 100644 index 2b8f5b0b..00000000 --- a/_doc/sphinxdoc/source/api/search_rank.rst +++ /dev/null @@ -1,9 +0,0 @@ - -search_rank -=========== - -.. autosignature:: mlinsights.search_rank.search_engine_vectors.SearchEngineVectors - -.. autosignature:: mlinsights.search_rank.search_engine_predictions.SearchEnginePredictions - -.. autosignature:: mlinsights.search_rank.search_engine_predictions_images.SearchEnginePredictionImages diff --git a/_doc/sphinxdoc/source/api/timeseries.rst b/_doc/sphinxdoc/source/api/timeseries.rst deleted file mode 100644 index facce8cd..00000000 --- a/_doc/sphinxdoc/source/api/timeseries.rst +++ /dev/null @@ -1,56 +0,0 @@ - -Timeseries -========== - -.. contents:: - :local: - -Datasets -++++++++ - -.. autosignature:: mlinsights.timeseries.datasets.artificial_data - -Experimentation -+++++++++++++++ - -.. autosignature:: mlinsights.timeseries.patterns.find_ts_group_pattern - -Manipulation -++++++++++++ - -.. autosignature:: mlinsights.timeseries.agg.aggregate_timeseries - -Plotting -++++++++ - -.. autosignature:: mlinsights.timeseries.plotting.plot_week_timeseries - -Prediction -++++++++++ - -The following function builds a regular dataset from -a timeseries so that it can be used by machine learning models. - -.. autosignature:: mlinsights.timeseries.selection.build_ts_X_y - -The first class defined the template for all timeseries -estimators. It deals with a timeseries ine one dimension -and additional features. - -.. autosignature:: mlinsights.timeseries.base.BaseTimeSeries - -the first predictor is a dummy one: it uses the current value to -predict the future. - -.. autosignature:: mlinsights.timeseries.dummies.DummyTimeSeriesRegressor - -The first regressor is an auto-regressor. It can be estimated -with any regressor implemented in :epkg:`scikit-learn`. - -.. autosignature:: mlinsights.timeseries.ar.ARTimeSeriesRegressor - -The library implements one scoring function which compares -the prediction to what a dummy predictor would do -by using the previous day as a prediction. - -.. autosignature:: mlinsights.timeseries.metrics.ts_mape diff --git a/_doc/sphinxdoc/source/api/tree.rst b/_doc/sphinxdoc/source/api/tree.rst deleted file mode 100644 index b1da38b2..00000000 --- a/_doc/sphinxdoc/source/api/tree.rst +++ /dev/null @@ -1,28 +0,0 @@ - -Trees -===== - -.. contents:: - :local: - -Digging into the tree structure -+++++++++++++++++++++++++++++++ - -.. autosignature:: mlinsights.mltree.tree_structure.predict_leaves - -.. autosignature:: mlinsights.mltree.tree_structure.tree_find_common_node - -.. autosignature:: mlinsights.mltree.tree_structure.tree_find_path_to_root - -.. autosignature:: mlinsights.mltree.tree_structure.tree_node_parents - -.. autosignature:: mlinsights.mltree.tree_structure.tree_node_range - -.. autosignature:: mlinsights.mltree.tree_structure.tree_leave_index - -.. autosignature:: mlinsights.mltree.tree_structure.tree_leave_neighbors - -Experiments, exercise -+++++++++++++++++++++ - -.. autosignature:: mlinsights.mltree.tree_digitize.digitize2tree diff --git a/_doc/sphinxdoc/source/blog/2017/2017-10-18_first_day.rst b/_doc/sphinxdoc/source/blog/2017/2017-10-18_first_day.rst deleted file mode 100644 index d8bfbef6..00000000 --- a/_doc/sphinxdoc/source/blog/2017/2017-10-18_first_day.rst +++ /dev/null @@ -1,10 +0,0 @@ - -.. blogpost:: - :title: Function to get insights on machine learned models - :keywords: reference, blog, post - :date: 2017-11-18 - :categories: blog - - Machine learned models are black boxes. - The module tries to implements some functions - to get insights on machine learned models. diff --git a/_doc/sphinxdoc/source/blog/2018/2018-05-07_quantile_regression.rst b/_doc/sphinxdoc/source/blog/2018/2018-05-07_quantile_regression.rst deleted file mode 100644 index be714e01..00000000 --- a/_doc/sphinxdoc/source/blog/2018/2018-05-07_quantile_regression.rst +++ /dev/null @@ -1,20 +0,0 @@ - -.. blogpost:: - :title: Quantile regression with scikit-learn. - :keywords: scikit-learn, quantile regression - :date: 2018-05-07 - :categories: machine learning - - :epkg:`scikit-learn` does not have any quantile regression. - :epkg:`statsmodels` does have one - `QuantReg `_ - but I wanted to try something I did for my teachings - `Régression Quantile - `_ - based on `Iteratively reweighted least squares - `_. - I thought it was a good case study to turn a simple algorithm into - a learner :epkg:`scikit-learn` can reused in a pipeline. - The notebook :ref:`quantileregressionrst` demonstrates it - and it is implemented in - :class:`QuantileLinearRegression `. diff --git a/_doc/sphinxdoc/source/blog/2019/2019-02-01_pipeline.rst b/_doc/sphinxdoc/source/blog/2019/2019-02-01_pipeline.rst deleted file mode 100644 index 86d80126..00000000 --- a/_doc/sphinxdoc/source/blog/2019/2019-02-01_pipeline.rst +++ /dev/null @@ -1,30 +0,0 @@ - -.. blogpost:: - :title: Pipeline visualization - :keywords: scikit-learn, pipeline - :date: 2019-02-01 - :categories: machine learning - - :epkg:`scikit-learn` introduced nice feature to - be able to process mixed type column in a single - pipeline which follows :epkg:`scikit-learn` API: - `ColumnTransformer `_ - `FeatureUnion `_ and - `Pipeline `_. Ideas are not - new but it is finally taking place in - :epkg:`scikit-learn`. - - As *a picture says a thousand words*, I tried to - do something similar to what I did for - `nimbusml `_ - to draw a :epkg:`scikit-learn` pipeline. - I ended it up implemented function - :ref:`pipeline2dot ` - which converts a pipeline into :epkg:`DOT` language - as :epkg:`scikit-learn` does for a decision tree with - `export_graphviz `_. - I created the notebook :ref:`visualizepipelinerst`. diff --git a/_doc/sphinxdoc/source/blog/2019/2019-02-01_tsne.rst b/_doc/sphinxdoc/source/blog/2019/2019-02-01_tsne.rst deleted file mode 100644 index 89b2db5b..00000000 --- a/_doc/sphinxdoc/source/blog/2019/2019-02-01_tsne.rst +++ /dev/null @@ -1,18 +0,0 @@ - -.. blogpost:: - :title: Predictable t-SNE - :keywords: scikit-learn, t-SNE - :date: 2019-02-01 - :categories: machine learning - - :epkg:`t-SNE` is quite an interesting tool to - visualize data on a map but it has one drawback: - results are not reproducible. It is much more powerful - than a :epkg:`PCA` but the results is difficult to - interpret. Based on some experiment, if :epkg:`t-SNE` - manages to separate classes, there is a good chance that - a classifier can get good performances. Anyhow, I implemented - a regressor which approximates the :epkg:`t-SNE` outputs - so that it can be used as features for a further classifier. - I create a notebook :ref:`predictabletsnerst` and a new tranform - :class:`PredictableTSNE `. diff --git a/_doc/sphinxdoc/source/blog/2019/2019-02-10_piecewise.rst b/_doc/sphinxdoc/source/blog/2019/2019-02-10_piecewise.rst deleted file mode 100644 index 383cdf06..00000000 --- a/_doc/sphinxdoc/source/blog/2019/2019-02-10_piecewise.rst +++ /dev/null @@ -1,13 +0,0 @@ - -.. blogpost:: - :title: Piecewise Linear Regression - :keywords: scikit-learn, linear regression, piecewise - :date: 2019-02-10 - :categories: machine learning - - I decided to turn one of the notebook I wrote about - `Piecewise Linear Regression `_. - I wanted to turn my code into something usable and following - the *scikit-learn* API: - :class:`PiecewiseRegression ` - and another notebook :ref:`piecewiselinearregressionrst`. diff --git a/_doc/sphinxdoc/source/blog/2019/2019-02-15_poly.rst b/_doc/sphinxdoc/source/blog/2019/2019-02-15_poly.rst deleted file mode 100644 index ad766fb0..00000000 --- a/_doc/sphinxdoc/source/blog/2019/2019-02-15_poly.rst +++ /dev/null @@ -1,20 +0,0 @@ - -.. blogpost:: - :title: Faster Polynomial Features - :keywords: scikit-learn, polynomial features - :date: 2019-02-15 - :categories: machine learning - - The current implementation of - `PolynomialFeatures - `_ - in *scikit-learn* computes each new feature - independently and that increases the number of - data exchanged between *numpy* and *Python*. - The idea of the implementation in - :class:`ExtendedFeatures ` - is to reduce this number by brodcast multiplications. - The second optimization occurs by transposing the matrix: - dense matrix are organized by rows in memory so - it is faster to mulitply two rows than two columns. - See :ref:`fasterpolynomialfeaturesrst`. diff --git a/_doc/sphinxdoc/source/blog/2019/2019-03-25_nogil.rst b/_doc/sphinxdoc/source/blog/2019/2019-03-25_nogil.rst deleted file mode 100644 index f06b8a0e..00000000 --- a/_doc/sphinxdoc/source/blog/2019/2019-03-25_nogil.rst +++ /dev/null @@ -1,65 +0,0 @@ - -.. blogpost:: - :title: Nogil, numpy, cython - :keywords: nogil, numpy, blas, lapack - :date: 2019-03-25 - :categories: cython - - I had to implement a custom criterion to optimize - a decision tree and I wanted to leverage :epkg:`scikit-learn` - instead of rewriting my own. Version 0.21 of :epkg:`scikit-learn` - introduced some changed in the API which make possible - to overload an existing criterion and replace some of the logic - by another one: `_criterion.pyx - `_. - The purpose was to show that a fast implementation requires - some tricks (see :ref:`piecewiselinearregressioncriterionrst`) and - `piecewise_tree_regression_criterion.pyx - `_, - `piecewise_tree_regression_criterion_fast.pyx - `_ - for the code. Other than that, every function to overlaod is marked as - :epkg:`nogil`. Every function or method marked as *nogil* cannot - go through the :epkg:`GIL` (see also :epkg:`PEP-0311`), - which no :epkg:`python` object can be created in that method. - In fact, no :epkg:`python` can be called inside a :epkg:`Cython` - method protected with *nogil*. The issue with that is that - any :epkg:`numpy` method cannot be called. - - My goal was to replace the implemention of the decision tree - criterion by something optimizing a linear regression, basically - something close to function :epkg:`numpy:linalg:lstsq` but that's - inside :epkg:`numpy` so unavailable in a *nogil* method. - I needed to use the inner API from :epkg:`BLAS` or :epkg:`LAPACK` - and available in :epkg:`cython` through - `cython_blas `_ - (matrix operations) - `cython_lapack `_ - (complex matrix operations). - It is fast but not really well documented... - I needed to use function `dgelss - `_ - (same from scipy `scipy.linalg.lapack.dgelss - `_). - which documentation is available through :epkg:`Lapack documentation`. - Its signature can be found at `cython_lapack_signatures.txt - `_ - and is the following: - - :: - - cdef void dgelss(int *m, int *n, int *nrhs, double *a, int *lda, double *b, int *ldb, - double *s, double *rcond, int *rank, - double *work, int *lwork, int *info) nogil - - I tried and it failed many times before getting it correctly. - Most of the time, :epkg:`python` just crashes without telling me - what the issue is. I had to use many ``printf`` in the :epkg:`cython` - code to get it right (remember no python call, so no *print* function). - These function do not do any allocation, every needed buffer - must be allocated first. The documentation gives some recommendations - about the optimal buffer size. The function usually modifies the inputs, - they must be copied first if the user wants to reuse them later. - I finally implemented :func:`dgelss ` or - on github: `direct_blas_lapack.pyx - `_. diff --git a/_doc/sphinxdoc/source/blog/2020/2020-09-02_api.rst b/_doc/sphinxdoc/source/blog/2020/2020-09-02_api.rst deleted file mode 100644 index 7cc45554..00000000 --- a/_doc/sphinxdoc/source/blog/2020/2020-09-02_api.rst +++ /dev/null @@ -1,22 +0,0 @@ - -.. blogpost:: - :title: scikit-learn internal API - :keywords: API - :date: 2020-09-02 - :categories: scikit-learn - :lid: blog-internal-api-impurity-improvement - - The signature of method `impurity_improvement - `_ will change for version - 0.24. That's usually easy to handle two versions of scikit-learn - even overloaded in a class except that method is implemented - in :epkg:`cython`. The method must be overloaded the same way - with the same signature. The way it was handled is implemented - in PR `88 `_. - - The best would be to include both of them but only one of - them can compile. I did not find any good solution to that. - It compiles whatever scikit-learn's version but the compiled - module only works with the installed version of - :epkg:`scikti-learn`. diff --git a/_doc/sphinxdoc/source/blog/2021/2021-01-03_skl.rst b/_doc/sphinxdoc/source/blog/2021/2021-01-03_skl.rst deleted file mode 100644 index 95f4f3df..00000000 --- a/_doc/sphinxdoc/source/blog/2021/2021-01-03_skl.rst +++ /dev/null @@ -1,15 +0,0 @@ - -.. blogpost:: - :title: scikit-learn 0.23 - :keywords: scikit-learn, 0.23, 0.24 - :date: 2021-01-03 - :categories: scikit-learn - - The unit test are run against - :epkg:`scikit-learn` 0.23, 0.24. - Some unit tests are failing with version 0.23. - They were disabled instead of looking into a cause - which does not appear with the latest version. - It affects all classes inheriting from :class:`SkBase - ` where a model - using it is trained. The issue happens in :epkg:`joblib`. diff --git a/_doc/sphinxdoc/source/conf.py b/_doc/sphinxdoc/source/conf.py deleted file mode 100644 index 05656864..00000000 --- a/_doc/sphinxdoc/source/conf.py +++ /dev/null @@ -1,104 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Configuration for the documntation. -""" -import sys -import os -import pydata_sphinx_theme -from pyquickhelper.helpgen.default_conf import set_sphinx_variables - - -sys.path.insert(0, os.path.abspath(os.path.join(os.path.split(__file__)[0]))) - -local_template = os.path.join(os.path.abspath( - os.path.dirname(__file__)), "phdoc_templates") - -set_sphinx_variables(__file__, "mlinsights", "Xavier Dupré", 2023, - "pydata_sphinx_theme", ['_static'], - locals(), extlinks=dict(issue=( - 'https://github.com/sdpython/mlinsights/issues/%s', - 'issue %s')), - title="mlinsights", book=True) - -blog_root = "http://www.xavierdupre.fr/app/mlinsights/helpsphinx/" - -html_css_files = ['my-styles.css'] - -html_logo = "_static/project_ico.png" -html_sidebars = {} -language = "en" - -mathdef_link_only = True - -custom_preamble = """\n -\\newcommand{\\vecteur}[2]{\\pa{#1,\\dots,#2}} -\\newcommand{\\N}[0]{\\mathbb{N}} -\\newcommand{\\indicatrice}[1]{\\mathbf{1\\!\\!1}_{\\acc{#1}}} -\\newcommand{\\infegal}[0]{\\leqslant} -\\newcommand{\\supegal}[0]{\\geqslant} -\\newcommand{\\ensemble}[2]{\\acc{#1,\\dots,#2}} -\\newcommand{\\fleche}[1]{\\overrightarrow{ #1 }} -\\newcommand{\\intervalle}[2]{\\left\\{#1,\\cdots,#2\\right\\}} -\\newcommand{\\loinormale}[2]{{\\cal N}\\pa{#1,#2}} -\\newcommand{\\independant}[0]{\\;\\makebox[3ex] -{\\makebox[0ex]{\\rule[-0.2ex]{3ex}{.1ex}}\\!\\!\\!\\!\\makebox[.5ex][l] -{\\rule[-.2ex]{.1ex}{2ex}}\\makebox[.5ex][l]{\\rule[-.2ex]{.1ex}{2ex}}} \\,\\,} -\\newcommand{\\esp}{\\mathbb{E}} -\\newcommand{\\pr}[1]{\\mathbb{P}\\pa{#1}} -\\newcommand{\\loi}[0]{{\\cal L}} -\\newcommand{\\vecteurno}[2]{#1,\\dots,#2} -\\newcommand{\\norm}[1]{\\left\\Vert#1\\right\\Vert} -\\newcommand{\\dans}[0]{\\rightarrow} -\\newcommand{\\partialfrac}[2]{\\frac{\\partial #1}{\\partial #2}} -\\newcommand{\\partialdfrac}[2]{\\dfrac{\\partial #1}{\\partial #2}} -\\newcommand{\\loimultinomiale}[1]{{\\cal M}\\pa{#1}} -\\newcommand{\\trace}[1]{tr\\pa{#1}} -\\newcommand{\\abs}[1]{\\left|#1\\right|} -""" - -# \\usepackage{eepic} -imgmath_latex_preamble += custom_preamble -latex_elements['preamble'] += custom_preamble - -epkg_dictionary.update({ - 'BLAS': 'http://www.netlib.org/blas/explore-html', - 'bootstrap': 'https://en.wikipedia.org/wiki/Bootstrapping_(statistics)', - 'CountVectorizer': 'https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html', - 'cython': 'https://cython.org/', - 'decision tree': 'https://en.wikipedia.org/wiki/Decision_tree', - 'DOT': 'https://en.wikipedia.org/wiki/DOT_(graph_description_language)', - 'GIL': 'https://wiki.python.org/moin/GlobalInterpreterLock', - 'PEP-0311': 'https://www.python.org/dev/peps/pep-0311/', - 'Iris': 'http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html', - 'LAPACK': 'http://www.netlib.org/lapack/explore-html', - 'Lapack documentation': 'http://www.netlib.org/lapack/explore-html', - 'L1': 'https://en.wikipedia.org/wiki/Norm_(mathematics)#Absolute-value_norm', - 'L2': 'https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm', - 'k-means': 'https://en.wikipedia.org/wiki/K-means_clustering', - 'keras': 'https://keras.io/', - 'KMeans': 'https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html', - 'MLPClassifier': 'http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html', - 'MLPRegressor': 'http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html', - 'nogil': 'https://cython.readthedocs.io/en/latest/src/userguide/external_C_code.html#releasing-the-gil', - 'onnxruntime': 'https://github.com/microsoft/onnxruntime', - 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', - ('http://pandas.pydata.org/pandas-docs/stable/generated/pandas.{0}.html', 1), - ('http://pandas.pydata.org/pandas-docs/stable/generated/pandas.{0}.{1}.html', 2)), - 'PCA': 'https://en.wikipedia.org/wiki/Principal_component_analysis', - 'py-spy': 'https://github.com/benfred/py-spy', - 'RandomForestRegressor': 'http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html', - 'REST API': 'https://en.wikipedia.org/wiki/Representational_state_transfer', - 'sklearn': ('http://scikit-learn.org/stable/', - ('http://scikit-learn.org/stable/modules/generated/{0}.html', 1), - ('http://scikit-learn.org/stable/modules/generated/{0}.{1}.html', 2)), - 'statsmodels': 'https://www.statsmodels.org/stable/index.html', - 't-SNE': 'https://lvdmaaten.github.io/tsne/', - 'TfidfVectorizer': 'https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html', - 'torch': 'https://pytorch.org/', - 'tqdm': 'https://github.com/tqdm/tqdm', - 'TSNE': 'https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html', -}) - -nblinks = { - 'alter_pipeline_for_debugging': 'http://www.xavierdupre.fr/app/mlinsights/helpsphinx/mlinsights/helpers/pipeline.html#mlinsights.helpers.pipeline.alter_pipeline_for_debugging', -} diff --git a/_doc/sphinxdoc/source/glossary.rst b/_doc/sphinxdoc/source/glossary.rst deleted file mode 100644 index 6bfdee88..00000000 --- a/_doc/sphinxdoc/source/glossary.rst +++ /dev/null @@ -1,16 +0,0 @@ - -.. index:: glossary - -Glossary -======== - -.. glossary:: - - Jupyter - See :epkg:`Jupyter` - - pandas - See :epkg:`pandas`. - - scikit-learn - See :epkg:`scikit-learn`. diff --git a/_doc/sphinxdoc/source/i_index.rst b/_doc/sphinxdoc/source/i_index.rst deleted file mode 100644 index ec0ffecf..00000000 --- a/_doc/sphinxdoc/source/i_index.rst +++ /dev/null @@ -1,18 +0,0 @@ - -===== -Index -===== - -.. toctree:: - :maxdepth: 2 - - gyexamples/index - gynotebooks/index - issues_todoextlist - completed_todoextlist - filechanges - all_report - glossary - README - license - blog/blogindex diff --git a/_doc/sphinxdoc/source/license.rst b/_doc/sphinxdoc/source/license.rst deleted file mode 100644 index d1a0e751..00000000 --- a/_doc/sphinxdoc/source/license.rst +++ /dev/null @@ -1,7 +0,0 @@ -.. _l-license: - -License -======= - -.. include:: LICENSE.txt - :literal: diff --git a/_doc/sphinxdoc/source/tutorial/index.rst b/_doc/tutorial/index.rst similarity index 100% rename from _doc/sphinxdoc/source/tutorial/index.rst rename to _doc/tutorial/index.rst diff --git a/_unittests/ut_documentation/test_nb_confidence.py b/_unittests/ut_documentation/test_nb_confidence.py deleted file mode 100644 index 2869fad4..00000000 --- a/_unittests/ut_documentation/test_nb_confidence.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=8s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookConfidence(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_quantile(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "confidence", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_decision_tree.py b/_unittests/ut_documentation/test_nb_decision_tree.py deleted file mode 100644 index 2f9c19f2..00000000 --- a/_unittests/ut_documentation/test_nb_decision_tree.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=21s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookDecisionTree(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_decision_tree(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "decision", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_kmeans_l1.py b/_unittests/ut_documentation/test_nb_kmeans_l1.py deleted file mode 100644 index d2e62ccd..00000000 --- a/_unittests/ut_documentation/test_nb_kmeans_l1.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=17s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookKMeans(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_kmeansl1(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "kmeans", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_logregclus.py b/_unittests/ut_documentation/test_nb_logregclus.py deleted file mode 100644 index 3360ca6b..00000000 --- a/_unittests/ut_documentation/test_nb_logregclus.py +++ /dev/null @@ -1,40 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=23s) -""" -import os -import unittest -from sklearn import __version__ as sklver -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -from pyquickhelper.texthelper import compare_module_version -import mlinsights - - -class TestNotebookLogRegClus(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_logregclus(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - try: - test_notebook_execution_coverage( - __file__, "logistic_regression_clustering", - folder, 'mlinsights', fLOG=fLOG) - except Exception as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_piecewise.py b/_unittests/ut_documentation/test_nb_piecewise.py deleted file mode 100644 index 7e510613..00000000 --- a/_unittests/ut_documentation/test_nb_piecewise.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=14s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookPiecewise(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_piecewise(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "piecewise", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_piecewise_c.py b/_unittests/ut_documentation/test_nb_piecewise_c.py deleted file mode 100644 index 972c65b5..00000000 --- a/_unittests/ut_documentation/test_nb_piecewise_c.py +++ /dev/null @@ -1,38 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=51s) -""" -import os -import unittest -import sklearn -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ( - add_missing_development_version, skipif_appveyor) -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -from pyquickhelper.texthelper import compare_module_version -import mlinsights - - -class TestNotebookPiecewise(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - @unittest.skipIf(compare_module_version(sklearn.__version__, "0.21") < 0, - reason="This notebook uses Criterion API changed in 0.21") - @skipif_appveyor('too long') - def test_notebook_piecewise(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn_c") - test_notebook_execution_coverage( - __file__, "piecewise", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_poly.py b/_unittests/ut_documentation/test_nb_poly.py deleted file mode 100644 index 60e25aab..00000000 --- a/_unittests/ut_documentation/test_nb_poly.py +++ /dev/null @@ -1,34 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=82s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ( - add_missing_development_version, skipif_appveyor) -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookPolynomialFeatures(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - @skipif_appveyor('too long') - def test_notebook_poly(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "poly", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_quantile.py b/_unittests/ut_documentation/test_nb_quantile.py deleted file mode 100644 index b3b89784..00000000 --- a/_unittests/ut_documentation/test_nb_quantile.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=14s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookQuantile(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_quantile(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "quantile", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_search_keras.py b/_unittests/ut_documentation/test_nb_search_keras.py deleted file mode 100644 index ad47951f..00000000 --- a/_unittests/ut_documentation/test_nb_search_keras.py +++ /dev/null @@ -1,45 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=65s) -""" -import os -import unittest -import warnings -from io import StringIO -from contextlib import redirect_stderr -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookSearchKeras(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_search_images(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - with redirect_stderr(StringIO()): - try: - from keras.applications.mobilenet import MobileNet # pylint: disable=E0401,E0611 - assert MobileNet is not None - except (SyntaxError, ModuleNotFoundError, AttributeError, - ImportError) as e: - warnings.warn( - f"tensorflow is probably not available yet on python 3.7: {e}") - return - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "explore") - test_notebook_execution_coverage(__file__, "keras", folder, 'mlinsights', - copy_files=["data/dog-cat-pixabay.zip"], fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_search_torch.py b/_unittests/ut_documentation/test_nb_search_torch.py deleted file mode 100644 index b586eef4..00000000 --- a/_unittests/ut_documentation/test_nb_search_torch.py +++ /dev/null @@ -1,37 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=19s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ( - add_missing_development_version, skipif_circleci, skipif_appveyor, - skipif_travis) -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookSearchTorch(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - @skipif_travis("torch is ") - @skipif_appveyor("torch misses a DLL") - @skipif_circleci("torch is not installed") - def test_notebook_search_images(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "explore") - test_notebook_execution_coverage(__file__, "torch", folder, 'mlinsights', - copy_files=["data/dog-cat-pixabay.zip"], fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_sklearn_traceable.py b/_unittests/ut_documentation/test_nb_sklearn_traceable.py deleted file mode 100644 index eda8a26d..00000000 --- a/_unittests/ut_documentation/test_nb_sklearn_traceable.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=7s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookTraceable(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_poly(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "traceable", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_target_predictor.py b/_unittests/ut_documentation/test_nb_target_predictor.py deleted file mode 100644 index 26b13971..00000000 --- a/_unittests/ut_documentation/test_nb_target_predictor.py +++ /dev/null @@ -1,40 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=43s) -""" -import os -import unittest -from sklearn import __version__ as sklver -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -from pyquickhelper.texthelper import compare_module_version -import mlinsights - - -class TestNotebookTargetPredictor(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_target_predictor(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - try: - test_notebook_execution_coverage( - __file__, "sklearn_transformed_target", - folder, 'mlinsights', fLOG=fLOG) - except Exception as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_tree.py b/_unittests/ut_documentation/test_nb_tree.py deleted file mode 100644 index 6f42c213..00000000 --- a/_unittests/ut_documentation/test_nb_tree.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=82s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookTree(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_poly(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "tree") - test_notebook_execution_coverage( - __file__, "leave", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_tsne.py b/_unittests/ut_documentation/test_nb_tsne.py deleted file mode 100644 index 1552cd9d..00000000 --- a/_unittests/ut_documentation/test_nb_tsne.py +++ /dev/null @@ -1,34 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=27s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ( - add_missing_development_version, skipif_appveyor) -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookTSNE(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - @skipif_appveyor('too long') - def test_notebook_tnse(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "tsne", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_documentation/test_nb_visualize.py b/_unittests/ut_documentation/test_nb_visualize.py deleted file mode 100644 index 53f48470..00000000 --- a/_unittests/ut_documentation/test_nb_visualize.py +++ /dev/null @@ -1,32 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=7s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import add_missing_development_version -from pyquickhelper.ipythonhelper import test_notebook_execution_coverage -import mlinsights - - -class TestNotebookVisualize(unittest.TestCase): - - def setUp(self): - add_missing_development_version(["jyquickhelper"], __file__, hide=True) - - def test_notebook_visualize(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - self.assertTrue(mlinsights is not None) - folder = os.path.join(os.path.dirname(__file__), - "..", "..", "_doc", "notebooks", "sklearn") - test_notebook_execution_coverage( - __file__, "visualize", folder, 'mlinsights', fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_helpers/test_debug.py b/_unittests/ut_helpers/test_debug.py index c32debf7..ce264ef6 100644 --- a/_unittests/ut_helpers/test_debug.py +++ b/_unittests/ut_helpers/test_debug.py @@ -1,40 +1,40 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy.random from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.pipeline import Pipeline, FeatureUnion -from pyquickhelper.pycode import ExtTestCase -from mlinsights import check, _setup_hook +from mlinsights.ext_test_case import ExtTestCase from mlinsights.helpers.pipeline import ( - alter_pipeline_for_debugging, enumerate_pipeline_models) + alter_pipeline_for_debugging, + enumerate_pipeline_models, +) class TestDebug(ExtTestCase): - - def test_check(self): - check() - _setup_hook() - def test_union_features_reg(self): data = numpy.random.randn(4, 5) y = numpy.random.randn(4) - model = Pipeline([('scaler1', StandardScaler()), - ('union', FeatureUnion([ - ('scaler2', StandardScaler()), - ('scaler3', MinMaxScaler())])), - ('lr', LinearRegression())]) + model = Pipeline( + [ + ("scaler1", StandardScaler()), + ( + "union", + FeatureUnion( + [("scaler2", StandardScaler()), ("scaler3", MinMaxScaler())] + ), + ), + ("lr", LinearRegression()), + ] + ) model.fit(data, y) alter_pipeline_for_debugging(model) model.predict(data) for model_ in enumerate_pipeline_models(model): model = model_[1] - if hasattr(model, '_debug'): - text = str(model._debug) # pylint: disable=W0212 + if hasattr(model, "_debug"): + text = str(model._debug) self.assertNotIn(" object at 0x", text) self.assertIn(") -> (", text) else: @@ -43,11 +43,18 @@ def test_union_features_reg(self): def test_union_features_cl(self): data = numpy.random.randn(4, 5) y = numpy.array([1, 1, 0, 0], dtype=numpy.int64) - model = Pipeline([('scaler1', StandardScaler()), - ('union', FeatureUnion([ - ('scaler2', StandardScaler()), - ('scaler3', MinMaxScaler())])), - ('lr', LogisticRegression())]) + model = Pipeline( + [ + ("scaler1", StandardScaler()), + ( + "union", + FeatureUnion( + [("scaler2", StandardScaler()), ("scaler3", MinMaxScaler())] + ), + ), + ("lr", LogisticRegression()), + ] + ) model.fit(data, y) alter_pipeline_for_debugging(model) @@ -55,8 +62,8 @@ def test_union_features_cl(self): model.predict(data) for model_ in enumerate_pipeline_models(model): model = model_[1] - if hasattr(model, '_debug'): - text = str(model._debug) # pylint: disable=W0212 + if hasattr(model, "_debug"): + text = str(model._debug) self.assertNotIn(" object at 0x", text) self.assertIn(") -> (", text) else: diff --git a/_unittests/ut_helpers/test_parameters.py b/_unittests/ut_helpers/test_parameters.py index 364e582c..cfef9490 100644 --- a/_unittests/ut_helpers/test_parameters.py +++ b/_unittests/ut_helpers/test_parameters.py @@ -1,14 +1,10 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.helpers.parameters import format_value class TestParameters(ExtTestCase): - def test_format_value(self): self.assertEqual("3", format_value(3)) self.assertEqual("'3'", format_value("3")) diff --git a/_unittests/ut_metrics/test_non_linear_correlations.py b/_unittests/ut_metrics/test_non_linear_correlations.py index bf47bec6..7792089f 100644 --- a/_unittests/ut_metrics/test_non_linear_correlations.py +++ b/_unittests/ut_metrics/test_non_linear_correlations.py @@ -1,61 +1,36 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=12s) -""" import unittest import pandas from sklearn import datasets from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.metrics import non_linear_correlations class TestNonLinearCorrelations(ExtTestCase): - def test_non_linear_correlations_df(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - iris = datasets.load_iris() X = iris.data[:, :4] df = pandas.DataFrame(X) df.columns = ["X1", "X2", "X3", "X4"] - cor = non_linear_correlations( - df, LinearRegression(fit_intercept=False)) + cor = non_linear_correlations(df, LinearRegression(fit_intercept=False)) self.assertEqual(cor.shape, (4, 4)) self.assertEqual(list(cor.columns), ["X1", "X2", "X3", "X4"]) self.assertEqual(list(cor.index), ["X1", "X2", "X3", "X4"]) - self.assertEqual(list(cor.iloc[i, i] - for i in range(0, 4)), [1, 1, 1, 1]) + self.assertEqual(list(cor.iloc[i, i] for i in range(0, 4)), [1, 1, 1, 1]) self.assertGreater(cor.values.min(), 0) def test_non_linear_correlations_array(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - iris = datasets.load_iris() X = iris.data[:, :4] df = pandas.DataFrame(X).values - cor = non_linear_correlations( - df, LinearRegression(fit_intercept=False)) + cor = non_linear_correlations(df, LinearRegression(fit_intercept=False)) self.assertEqual(cor.shape, (4, 4)) - self.assertEqual( - list(cor[i, i] for i in range(0, 4)), # pylint: disable=E1126 - [1, 1, 1, 1]) + self.assertEqual(list(cor[i, i] for i in range(0, 4)), [1, 1, 1, 1]) self.assertGreater(cor.min(), 0) def test_non_linear_correlations_df_tree(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - iris = datasets.load_iris() X = iris.data[:, :4] df = pandas.DataFrame(X) @@ -68,26 +43,19 @@ def test_non_linear_correlations_df_tree(self): self.assertGreater(cor.values.min(), 0) def test_non_linear_correlations_df_minmax(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - iris = datasets.load_iris() X = iris.data[:, :4] df = pandas.DataFrame(X) df.columns = ["X1", "X2", "X3", "X4"] cor, mini, maxi = non_linear_correlations( - df, LinearRegression(fit_intercept=False), minmax=True) + df, LinearRegression(fit_intercept=False), minmax=True + ) self.assertEqual(cor.shape, (4, 4)) self.assertEqual(list(cor.columns), ["X1", "X2", "X3", "X4"]) self.assertEqual(list(cor.index), ["X1", "X2", "X3", "X4"]) - self.assertEqual(list(cor.iloc[i, i] - for i in range(0, 4)), [1, 1, 1, 1]) - self.assertEqual(list(mini.iloc[i, i] - for i in range(0, 4)), [1, 1, 1, 1]) - self.assertEqual(list(maxi.iloc[i, i] - for i in range(0, 4)), [1, 1, 1, 1]) + self.assertEqual(list(cor.iloc[i, i] for i in range(0, 4)), [1, 1, 1, 1]) + self.assertEqual(list(mini.iloc[i, i] for i in range(0, 4)), [1, 1, 1, 1]) + self.assertEqual(list(maxi.iloc[i, i] for i in range(0, 4)), [1, 1, 1, 1]) self.assertGreater(cor.values.min(), 0) self.assertEqual(list(mini.columns), ["X1", "X2", "X3", "X4"]) self.assertEqual(list(mini.index), ["X1", "X2", "X3", "X4"]) @@ -99,16 +67,12 @@ def test_non_linear_correlations_df_minmax(self): self.assertGreater(maxi.values.max(), cor.values.max()) def test_non_linear_correlations_array_minmax(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - iris = datasets.load_iris() X = iris.data[:, :4] df = pandas.DataFrame(X).values cor, mini, maxi = non_linear_correlations( - df, LinearRegression(fit_intercept=False), minmax=True) + df, LinearRegression(fit_intercept=False), minmax=True + ) self.assertEqual(cor.shape, (4, 4)) self.assertEqual(list(cor[i, i] for i in range(0, 4)), [1, 1, 1, 1]) self.assertEqual(list(mini[i, i] for i in range(0, 4)), [1, 1, 1, 1]) diff --git a/_unittests/ut_metrics/test_scoring_metrics.py b/_unittests/ut_metrics/test_scoring_metrics.py index ae223012..0ed29d40 100644 --- a/_unittests/ut_metrics/test_scoring_metrics.py +++ b/_unittests/ut_metrics/test_scoring_metrics.py @@ -1,19 +1,15 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=12s) -""" import unittest import pandas import numpy from sklearn import datasets from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.metrics import r2_score_comparable class TestScoringMetrics(ExtTestCase): - def test_r2_score_comparable(self): iris = datasets.load_iris() X = iris.data[:, :4] @@ -24,24 +20,20 @@ def test_r2_score_comparable(self): model2 = LinearRegression().fit(X, numpy.log(y)) r2a = r2_score(y, model1.predict(X)) r2b = r2_score(numpy.log(y), model2.predict(X)) - r2c = r2_score_comparable(y, model2.predict(X), tr='log') - r2d = r2_score_comparable(y, model2.predict(X), inv_tr='exp') + r2c = r2_score_comparable(y, model2.predict(X), tr="log") + r2d = r2_score_comparable(y, model2.predict(X), inv_tr="exp") self.assertEqual(r2b, r2c) self.assertGreater(r2c, r2a) self.assertLesser(r2a, r2d) - r2e = r2_score_comparable(y, model2.predict(X), inv_tr='exp', tr='exp') + r2e = r2_score_comparable(y, model2.predict(X), inv_tr="exp", tr="exp") self.assertLesser(r2e, 0) def test_r2_score_comparable_exception(self): iris = datasets.load_iris() y = iris.target + 1 self.assertRaise(lambda: r2_score_comparable(y, y), ValueError) - self.assertRaise( - lambda: r2_score_comparable(y, y, tr="log2"), - TypeError) - self.assertRaise( - lambda: r2_score_comparable(y, y, inv_tr="log2"), - TypeError) + self.assertRaise(lambda: r2_score_comparable(y, y, tr="log2"), TypeError) + self.assertRaise(lambda: r2_score_comparable(y, y, inv_tr="log2"), TypeError) if __name__ == "__main__": diff --git a/_unittests/ut_mlbatch/test_pipeline_cache.py b/_unittests/ut_mlbatch/test_pipeline_cache.py index df625a6c..46d601a1 100644 --- a/_unittests/ut_mlbatch/test_pipeline_cache.py +++ b/_unittests/ut_mlbatch/test_pipeline_cache.py @@ -1,134 +1,131 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest from sklearn.datasets import make_classification from sklearn.decomposition import PCA, TruncatedSVD as SVD from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlbatch.pipeline_cache import PipelineCache from mlinsights.mlbatch.cache_model import MLCache from mlinsights.mlmodel.sklearn_testing import clone_with_fitted_parameters class TestPipelineCache(ExtTestCase): - def test_make_classification(self): X, y = make_classification(random_state=42) - pipe0 = Pipeline([('pca', PCA(2)), ('lr', LogisticRegression())]) - pipe = PipelineCache( - [('pca', PCA(2)), ('lr', LogisticRegression())], 'cache__') + pipe0 = Pipeline([("pca", PCA(2)), ("lr", LogisticRegression())]) + pipe = PipelineCache([("pca", PCA(2)), ("lr", LogisticRegression())], "cache__") - if hasattr(pipe0, '_check_fit_params'): - pars0 = pipe0._check_fit_params() # pylint: disable=W0212,E1101 - pars1 = pipe._check_fit_params() # pylint: disable=W0212,E1101 + if hasattr(pipe0, "_check_fit_params"): + pars0 = pipe0._check_fit_params() + pars1 = pipe._check_fit_params() self.assertEqual(pars0, pars1) pipe0.fit(X, y) pipe.fit(X, y) - cache = MLCache.get_cache('cache__') + cache = MLCache.get_cache("cache__") self.assertEqual(len(cache), 1) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) - MLCache.remove_cache('cache__') + MLCache.remove_cache("cache__") items = list(pipe.cache_.items()) self.assertEqual(len(items), 1) self.assertEqual(cache.count("A"), 0) def test_pass_through(self): X, y = make_classification(random_state=42) - pipe = Pipeline([('pca', PCA(2)), ('p', 'passthrough')]) + pipe = Pipeline([("pca", PCA(2)), ("p", "passthrough")]) pipe.fit(X, y) def test_grid_search(self): X, y = make_classification(random_state=42) - param_grid = {'pca__n_components': [2, 3], - 'pca__whiten': [True, False], - 'lr__fit_intercept': [True, False]} - pipe = Pipeline([('pca', PCA(2)), - ('lr', LogisticRegression())]) - grid0 = GridSearchCV(pipe, param_grid, error_score='raise') + param_grid = { + "pca__n_components": [2, 3], + "pca__whiten": [True, False], + "lr__fit_intercept": [True, False], + } + pipe = Pipeline([("pca", PCA(2)), ("lr", LogisticRegression())]) + grid0 = GridSearchCV(pipe, param_grid, error_score="raise") grid0.fit(X, y) - pipe = PipelineCache([('pca', PCA(2)), - ('lr', LogisticRegression())], - 'cache__2') - grid = GridSearchCV(pipe, param_grid, error_score='raise') + pipe = PipelineCache( + [("pca", PCA(2)), ("lr", LogisticRegression())], "cache__2" + ) + grid = GridSearchCV(pipe, param_grid, error_score="raise") grid.fit(X, y) - cache = MLCache.get_cache('cache__2') + cache = MLCache.get_cache("cache__2") # 0.22 increases the number of cached results self.assertIn(len(cache), (13, 21)) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) - MLCache.remove_cache('cache__2') + MLCache.remove_cache("cache__2") self.assertEqual(grid0.best_params_, grid.best_params_) def test_grid_search_1(self): X, y = make_classification(random_state=42) - param_grid = {'pca__n_components': [2, 3], - 'pca__whiten': [True, False], - 'lr__fit_intercept': [True, False]} - pipe = Pipeline([('pca', PCA(2)), - ('lr', LogisticRegression())]) - grid0 = GridSearchCV(pipe, param_grid, error_score='raise', n_jobs=1) + param_grid = { + "pca__n_components": [2, 3], + "pca__whiten": [True, False], + "lr__fit_intercept": [True, False], + } + pipe = Pipeline([("pca", PCA(2)), ("lr", LogisticRegression())]) + grid0 = GridSearchCV(pipe, param_grid, error_score="raise", n_jobs=1) grid0.fit(X, y) - pipe = PipelineCache([('pca', PCA(2)), - ('lr', LogisticRegression())], - 'cache__1') - grid = GridSearchCV(pipe, param_grid, error_score='raise', n_jobs=1) + pipe = PipelineCache( + [("pca", PCA(2)), ("lr", LogisticRegression())], "cache__1" + ) + grid = GridSearchCV(pipe, param_grid, error_score="raise", n_jobs=1) grid.fit(X, y) - cache = MLCache.get_cache('cache__1') + cache = MLCache.get_cache("cache__1") # 0.22 increases the number of cached results self.assertIn(len(cache), (13, 21)) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) - MLCache.remove_cache('cache__1') + MLCache.remove_cache("cache__1") self.assertEqual(grid0.best_params_, grid.best_params_) def test_grid_search_model(self): X, y = make_classification(random_state=42) - param_grid = [{'pca': [PCA(2)], 'lr__fit_intercept': [False, True]}, - {'pca': [SVD(2)], 'lr__fit_intercept': [False, True]}] - pipe = Pipeline([('pca', 'passthrough'), - ('lr', LogisticRegression())]) - grid0 = GridSearchCV(pipe, param_grid, error_score='raise') + param_grid = [ + {"pca": [PCA(2)], "lr__fit_intercept": [False, True]}, + {"pca": [SVD(2)], "lr__fit_intercept": [False, True]}, + ] + pipe = Pipeline([("pca", "passthrough"), ("lr", LogisticRegression())]) + grid0 = GridSearchCV(pipe, param_grid, error_score="raise") grid0.fit(X, y) - pipe = PipelineCache([('pca', 'passthrough'), - ('lr', LogisticRegression())], - 'cache__3') - grid = GridSearchCV(pipe, param_grid, error_score='raise') + pipe = PipelineCache( + [("pca", "passthrough"), ("lr", LogisticRegression())], "cache__3" + ) + grid = GridSearchCV(pipe, param_grid, error_score="raise") grid.fit(X, y) - cache = MLCache.get_cache('cache__3') + cache = MLCache.get_cache("cache__3") # 0.22 increases the number of cached results self.assertIn(len(cache), (7, 11)) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) - MLCache.remove_cache('cache__3') + MLCache.remove_cache("cache__3") self.assertEqual(grid0.best_params_, grid.best_params_) def test_clone_with_fitted_parameters(self): X, y = make_classification(random_state=42) - pipe = Pipeline([('pca', PCA(2)), - ('lr', LogisticRegression())]) + pipe = Pipeline([("pca", PCA(2)), ("lr", LogisticRegression())]) pipe.fit(X, y) cl = clone_with_fitted_parameters(pipe) self.assertNotEmpty(cl) cl = clone_with_fitted_parameters([pipe]) self.assertIsInstance(cl, list) - cl = clone_with_fitted_parameters((pipe, )) + cl = clone_with_fitted_parameters((pipe,)) self.assertIsInstance(cl, tuple) diff --git a/_unittests/ut_mlmodel/test_anmf_predictor.py b/_unittests/ut_mlmodel/test_anmf_predictor.py index e7493f39..09166c40 100644 --- a/_unittests/ut_mlmodel/test_anmf_predictor.py +++ b/_unittests/ut_mlmodel/test_anmf_predictor.py @@ -1,72 +1,69 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=3s) -""" import unittest import numpy from scipy.sparse import csr_matrix from sklearn.metrics import mean_squared_error -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel.anmf_predictor import ApproximateNMFPredictor class TestApproximateNMFPredictor(ExtTestCase): - def test_anmf_predictor(self): - mat = numpy.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], - [1, 0, 0, 0], [1, 0, 0, 0]], dtype=numpy.float64) - mat[:mat.shape[1], :] += numpy.identity(mat.shape[1]) + mat = numpy.array( + [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], + dtype=numpy.float64, + ) + mat[: mat.shape[1], :] += numpy.identity(mat.shape[1]) mod = ApproximateNMFPredictor(n_components=2) mod.fit(mat) - exp = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat)) + exp = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat)) got = mod.predict(mat) sc1 = mean_squared_error(mat, exp) sc2 = mean_squared_error(mat, got) self.assertGreater(sc1, sc2) mat2 = numpy.array([[1, 1, 1, 1]], dtype=numpy.float64) - exp2 = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat2)) + exp2 = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat2)) got2 = mod.predict(mat2) sc1 = mean_squared_error(mat2, exp2) sc2 = mean_squared_error(mat2, got2) self.assertGreater(sc1, sc2) def test_anmf_predictor_sparse(self): - mat = numpy.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], - [1, 0, 0, 0], [1, 0, 0, 0]], dtype=numpy.float64) - mat[:mat.shape[1], :] += numpy.identity(mat.shape[1]) + mat = numpy.array( + [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], + dtype=numpy.float64, + ) + mat[: mat.shape[1], :] += numpy.identity(mat.shape[1]) mat = csr_matrix(mat) mod = ApproximateNMFPredictor(n_components=2) mod.fit(mat) - exp = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat)) + exp = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat)) got = mod.predict(mat) sc1 = mean_squared_error(numpy.asarray(mat.todense()), exp) sc2 = mean_squared_error(numpy.asarray(mat.todense()), got) self.assertGreater(sc1, sc2) mat2 = numpy.array([[1, 1, 1, 1]], dtype=numpy.float64) - exp2 = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat2)) + exp2 = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat2)) got2 = mod.predict(mat2) sc1 = mean_squared_error(mat2, exp2) sc2 = mean_squared_error(mat2, got2) self.assertGreater(sc1, sc2) def test_anmf_predictor_sparse_sparse(self): - mat = numpy.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], - [1, 0, 0, 0], [1, 0, 0, 0]], dtype=numpy.float64) - mat[:mat.shape[1], :] += numpy.identity(mat.shape[1]) + mat = numpy.array( + [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], + dtype=numpy.float64, + ) + mat[: mat.shape[1], :] += numpy.identity(mat.shape[1]) mat = csr_matrix(mat) mod = ApproximateNMFPredictor(n_components=2) mod.fit(mat) - exp = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat)) + exp = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat)) got = mod.predict(mat) sc1 = mean_squared_error(numpy.asarray(mat.todense()), exp) sc2 = mean_squared_error(numpy.asarray(mat.todense()), got) @@ -74,22 +71,22 @@ def test_anmf_predictor_sparse_sparse(self): mat2 = numpy.array([[1, 1, 1, 1]], dtype=numpy.float64) mat2 = csr_matrix(mat2) - exp2 = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat2)) + exp2 = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat2)) got2 = mod.predict(mat2) sc1 = mean_squared_error(numpy.asarray(mat2.todense()), exp2) sc2 = mean_squared_error(numpy.asarray(mat2.todense()), got2) self.assertGreater(sc1, sc2) def test_anmf_predictor_positive(self): - mat = numpy.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], - [1, 0, 0, 0], [1, 0, 0, 0]], dtype=numpy.float64) - mat[:mat.shape[1], :] += numpy.identity(mat.shape[1]) + mat = numpy.array( + [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], + dtype=numpy.float64, + ) + mat[: mat.shape[1], :] += numpy.identity(mat.shape[1]) mod = ApproximateNMFPredictor(n_components=2, force_positive=True) mod.fit(mat) - exp = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat)) + exp = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat)) got = mod.predict(mat) sc1 = mean_squared_error(mat, exp) sc2 = mean_squared_error(mat, got) @@ -98,8 +95,7 @@ def test_anmf_predictor_positive(self): self.assertGreater(mx, 0) mat2 = numpy.array([[1, 1, 1, 1]], dtype=numpy.float64) - exp2 = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat2)) + exp2 = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat2)) got2 = mod.predict(mat2) sc1 = mean_squared_error(mat2, exp2) sc2 = mean_squared_error(mat2, got2) @@ -108,15 +104,16 @@ def test_anmf_predictor_positive(self): self.assertGreater(mx, 0) def test_anmf_predictor_positive_sparse(self): - mat = numpy.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], - [1, 0, 0, 0], [1, 0, 0, 0]], dtype=numpy.float64) - mat[:mat.shape[1], :] += numpy.identity(mat.shape[1]) + mat = numpy.array( + [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], + dtype=numpy.float64, + ) + mat[: mat.shape[1], :] += numpy.identity(mat.shape[1]) mat = csr_matrix(mat) mod = ApproximateNMFPredictor(n_components=2, force_positive=True) mod.fit(mat) - exp = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat)) + exp = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat)) got = mod.predict(mat) sc1 = mean_squared_error(numpy.asarray(mat.todense()), exp) sc2 = mean_squared_error(numpy.asarray(mat.todense()), got) @@ -125,8 +122,7 @@ def test_anmf_predictor_positive_sparse(self): self.assertGreater(mx, 0) mat2 = numpy.array([[1, 1, 1, 1]], dtype=numpy.float64) - exp2 = mod.estimator_nmf_.inverse_transform( - mod.estimator_nmf_.transform(mat2)) + exp2 = mod.estimator_nmf_.inverse_transform(mod.estimator_nmf_.transform(mat2)) got2 = mod.predict(mat2) sc1 = mean_squared_error(mat2, exp2) sc2 = mean_squared_error(mat2, got2) diff --git a/_unittests/ut_mlmodel/test_categories_to_integers.py b/_unittests/ut_mlmodel/test_categories_to_integers.py index 6c71f77a..1238059d 100644 --- a/_unittests/ut_mlmodel/test_categories_to_integers.py +++ b/_unittests/ut_mlmodel/test_categories_to_integers.py @@ -1,79 +1,130 @@ -""" -@brief test log(time=2s) -""" import os import unittest import pandas -from sklearn import __version__ as sklver from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.impute import SimpleImputer as Imputer from sklearn.exceptions import ConvergenceWarning, FitFailedWarning -from pyquickhelper.pycode import ExtTestCase, ignore_warnings -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import CategoriesToIntegers from mlinsights.mlmodel import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) skipped_warnings = (ConvergenceWarning, UserWarning, FitFailedWarning) class TestCategoriesToIntegers(ExtTestCase): - @ignore_warnings(skipped_warnings) def test_categories_to_integers(self): - data = os.path.join(os.path.abspath( - os.path.dirname(__file__)), "data", "adult_set.txt") + data = os.path.join( + os.path.abspath(os.path.dirname(__file__)), "data", "adult_set.txt" + ) df = pandas.read_csv(data, sep="\t") trans = CategoriesToIntegers() trans.fit(df) self.assertIsInstance(str(trans), str) newdf = trans.transform(df) - exp = ['age', 'final_weight', 'education_num', 'capital_gain', 'capital_loss', - 'hours_per_week', 'marital_status= Divorced', - 'marital_status= Married-AF-spouse', - 'marital_status= Married-civ-spouse', - 'marital_status= Married-spouse-absent', - 'marital_status= Never-married', 'marital_status= Separated', - 'marital_status= Widowed', 'sex= Female', 'sex= Male', - 'education= 10th', 'education= 11th', 'education= 12th', - 'education= 1st-4th', 'education= 5th-6th', 'education= 7th-8th', - 'education= 9th', 'education= Assoc-acdm', 'education= Assoc-voc', - 'education= Bachelors', 'education= Doctorate', 'education= HS-grad', - 'education= Masters', 'education= Preschool', 'education= Prof-school', - 'education= Some-college', 'native_country= ?', - 'native_country= Cambodia', 'native_country= Canada', - 'native_country= China', 'native_country= Columbia', - 'native_country= Cuba', 'native_country= Dominican-Republic', - 'native_country= Ecuador', 'native_country= El-Salvador', - 'native_country= England', 'native_country= France', - 'native_country= Germany', 'native_country= Guatemala', - 'native_country= Haiti', 'native_country= Honduras', - 'native_country= India', 'native_country= Iran', - 'native_country= Italy', 'native_country= Jamaica', - 'native_country= Laos', 'native_country= Mexico', - 'native_country= Philippines', 'native_country= Poland', - 'native_country= Portugal', 'native_country= Puerto-Rico', - 'native_country= South', 'native_country= Taiwan', - 'native_country= Thailand', 'native_country= United-States', - 'race= Amer-Indian-Eskimo', 'race= Asian-Pac-Islander', 'race= Black', - 'race= Other', 'race= White', 'relationship= Husband', - 'relationship= Not-in-family', 'relationship= Other-relative', - 'relationship= Own-child', 'relationship= Unmarried', - 'relationship= Wife', 'workclass= ?', 'workclass= Federal-gov', - 'workclass= Local-gov', 'workclass= Private', 'workclass= Self-emp-inc', - 'workclass= Self-emp-not-inc', 'workclass= State-gov', 'income= <=50K', - 'income= >50K', 'occupation= ?', 'occupation= Adm-clerical', - 'occupation= Armed-Forces', 'occupation= Craft-repair', - 'occupation= Exec-managerial', 'occupation= Farming-fishing', - 'occupation= Handlers-cleaners', 'occupation= Machine-op-inspct', - 'occupation= Other-service', 'occupation= Priv-house-serv', - 'occupation= Prof-specialty', 'occupation= Protective-serv', - 'occupation= Sales', 'occupation= Tech-support', - 'occupation= Transport-moving'] + exp = [ + "age", + "final_weight", + "education_num", + "capital_gain", + "capital_loss", + "hours_per_week", + "marital_status= Divorced", + "marital_status= Married-AF-spouse", + "marital_status= Married-civ-spouse", + "marital_status= Married-spouse-absent", + "marital_status= Never-married", + "marital_status= Separated", + "marital_status= Widowed", + "sex= Female", + "sex= Male", + "education= 10th", + "education= 11th", + "education= 12th", + "education= 1st-4th", + "education= 5th-6th", + "education= 7th-8th", + "education= 9th", + "education= Assoc-acdm", + "education= Assoc-voc", + "education= Bachelors", + "education= Doctorate", + "education= HS-grad", + "education= Masters", + "education= Preschool", + "education= Prof-school", + "education= Some-college", + "native_country= ?", + "native_country= Cambodia", + "native_country= Canada", + "native_country= China", + "native_country= Columbia", + "native_country= Cuba", + "native_country= Dominican-Republic", + "native_country= Ecuador", + "native_country= El-Salvador", + "native_country= England", + "native_country= France", + "native_country= Germany", + "native_country= Guatemala", + "native_country= Haiti", + "native_country= Honduras", + "native_country= India", + "native_country= Iran", + "native_country= Italy", + "native_country= Jamaica", + "native_country= Laos", + "native_country= Mexico", + "native_country= Philippines", + "native_country= Poland", + "native_country= Portugal", + "native_country= Puerto-Rico", + "native_country= South", + "native_country= Taiwan", + "native_country= Thailand", + "native_country= United-States", + "race= Amer-Indian-Eskimo", + "race= Asian-Pac-Islander", + "race= Black", + "race= Other", + "race= White", + "relationship= Husband", + "relationship= Not-in-family", + "relationship= Other-relative", + "relationship= Own-child", + "relationship= Unmarried", + "relationship= Wife", + "workclass= ?", + "workclass= Federal-gov", + "workclass= Local-gov", + "workclass= Private", + "workclass= Self-emp-inc", + "workclass= Self-emp-not-inc", + "workclass= State-gov", + "income= <=50K", + "income= >50K", + "occupation= ?", + "occupation= Adm-clerical", + "occupation= Armed-Forces", + "occupation= Craft-repair", + "occupation= Exec-managerial", + "occupation= Farming-fishing", + "occupation= Handlers-cleaners", + "occupation= Machine-op-inspct", + "occupation= Other-service", + "occupation= Priv-house-serv", + "occupation= Prof-specialty", + "occupation= Protective-serv", + "occupation= Sales", + "occupation= Tech-support", + "occupation= Transport-moving", + ] exp.sort() ret = list(newdf.columns) ret.sort() @@ -82,31 +133,31 @@ def test_categories_to_integers(self): @ignore_warnings(skipped_warnings) def test_categories_to_integers_big(self): - data = os.path.join(os.path.abspath( - os.path.dirname(__file__)), "data", "adult_set.txt") + data = os.path.join( + os.path.abspath(os.path.dirname(__file__)), "data", "adult_set.txt" + ) df = pandas.read_csv(data, sep="\t") trans = CategoriesToIntegers(single=True) trans.fit(df) newdf = trans.transform(df) self.assertEqual(len(newdf.columns), len(df.columns)) - self.assertEqual(list(newdf.columns), list( - df.columns)) # pylint: disable=E1101 + self.assertEqual(list(newdf.columns), list(df.columns)) newdf2 = trans.fit_transform(df) self.assertEqual(newdf, newdf2) rep = repr(trans) - self.assertStartsWith("CategoriesToIntegers(", - rep.replace(" ", "").replace("\n", "")) - self.assertIn("single=True", - rep.replace(" ", "").replace("\n", "")) + self.assertStartsWith( + "CategoriesToIntegers(", rep.replace(" ", "").replace("\n", "") + ) + self.assertIn("single=True", rep.replace(" ", "").replace("\n", "")) @ignore_warnings(skipped_warnings) def test_categories_to_integers_pickle(self): - data = os.path.join(os.path.abspath( - os.path.dirname(__file__)), "data", "adult_set.txt") + data = os.path.join( + os.path.abspath(os.path.dirname(__file__)), "data", "adult_set.txt" + ) df = pandas.read_csv(data, sep="\t") - run_test_sklearn_pickle( - lambda: CategoriesToIntegers(skip_errors=True), df) + run_test_sklearn_pickle(lambda: CategoriesToIntegers(skip_errors=True), df) @ignore_warnings(skipped_warnings) def test_categories_to_integers_clone(self): @@ -115,36 +166,29 @@ def test_categories_to_integers_clone(self): @ignore_warnings(skipped_warnings) def test_categories_to_integers_grid_search(self): - data = os.path.join(os.path.abspath( - os.path.dirname(__file__)), "data", "adult_set.txt") + data = os.path.join( + os.path.abspath(os.path.dirname(__file__)), "data", "adult_set.txt" + ) df = pandas.read_csv(data, sep="\t") - X = df.drop('income', axis=1) - y = df['income'] # pylint: disable=E1136 - pipe = make_pipeline(CategoriesToIntegers(), - LogisticRegression()) - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: pipe, df), ValueError) - if (compare_module_version(sklver, "0.24") >= 0 and # pylint: disable=R1716 - compare_module_version(pandas.__version__, "1.3") < 0): - self.assertRaise( - lambda: run_test_sklearn_grid_search_cv( - lambda: pipe, X, y, categoriestointegers__single=[True, False]), - ValueError, "Unable to find category value") - pipe = make_pipeline(CategoriesToIntegers(), - Imputer(strategy='most_frequent'), - LogisticRegression(n_jobs=1)) - try: - res = run_test_sklearn_grid_search_cv( - lambda: pipe, X, y, categoriestointegers__single=[True, False], - categoriestointegers__skip_errors=[True]) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + X = df.drop("income", axis=1) + y = df["income"] + pipe = make_pipeline(CategoriesToIntegers(), LogisticRegression()) + pipe = make_pipeline( + CategoriesToIntegers(), + Imputer(strategy="most_frequent"), + LogisticRegression(n_jobs=1), + ) + res = run_test_sklearn_grid_search_cv( + lambda: pipe, + X, + y, + categoriestointegers__single=[True, False], + categoriestointegers__skip_errors=[True], + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) if __name__ == "__main__": diff --git a/_unittests/ut_mlmodel/test_classification_kmeans.py b/_unittests/ut_mlmodel/test_classification_kmeans.py index 44dff583..a86426be 100644 --- a/_unittests/ut_mlmodel/test_classification_kmeans.py +++ b/_unittests/ut_mlmodel/test_classification_kmeans.py @@ -1,37 +1,30 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=20s) -""" import unittest import numpy from numpy.random import RandomState -from sklearn import __version__ as sklver from sklearn import datasets from sklearn.exceptions import ConvergenceWarning + try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import ( - ClassifierAfterKMeans, run_test_sklearn_pickle, - run_test_sklearn_clone, run_test_sklearn_grid_search_cv) + ClassifierAfterKMeans, + run_test_sklearn_pickle, + run_test_sklearn_clone, + run_test_sklearn_grid_search_cv, +) class TestClassifierAfterKMeans(ExtTestCase): - @ignore_warnings(category=ConvergenceWarning) def test_classification_kmeans(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() - try: - clr.fit(X, y) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + clr.fit(X, y) acc = clr.score(X, y) self.assertGreater(acc, 0) prob = clr.predict_proba(X) @@ -44,12 +37,7 @@ def test_classification_kmeans_intercept_weights(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() - try: - clr.fit(X, y, sample_weight=numpy.ones((X.shape[0],))) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + clr.fit(X, y, sample_weight=numpy.ones((X.shape[0],))) acc = clr.score(X, y) self.assertGreater(acc, 0) @@ -57,12 +45,7 @@ def test_classification_kmeans_intercept_weights(self): def test_classification_kmeans_pickle(self): iris = datasets.load_iris() X, y = iris.data, iris.target - try: - run_test_sklearn_pickle(lambda: ClassifierAfterKMeans(), X, y) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + run_test_sklearn_pickle(lambda: ClassifierAfterKMeans(), X, y) def test_classification_kmeans_clone(self): self.maxDiff = None @@ -72,20 +55,19 @@ def test_classification_kmeans_clone(self): def test_classification_kmeans_grid_search(self): iris = datasets.load_iris() X, y = iris.data, iris.target - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: ClassifierAfterKMeans(), X, y), ValueError) - try: - res = run_test_sklearn_grid_search_cv( - lambda: ClassifierAfterKMeans(), - X, y, c_n_clusters=[2, 3]) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv( + lambda: ClassifierAfterKMeans(), X, y + ), + ValueError, + ) + res = run_test_sklearn_grid_search_cv( + lambda: ClassifierAfterKMeans(), X, y, c_n_clusters=[2, 3] + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) @ignore_warnings(category=ConvergenceWarning) def test_classification_kmeans_relevance(self): @@ -103,24 +85,20 @@ def test_classification_kmeans_relevance(self): X = numpy.vstack(Xs) Y = numpy.array(Ys) clk = ClassifierAfterKMeans(c_n_clusters=6, c_random_state=state) - try: - clk.fit(X, Y) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + clk.fit(X, Y) score = clk.score(X, Y) self.assertGreater(score, 0.95) @ignore_warnings(category=ConvergenceWarning) def test_issue(self): - X, labels_true = datasets.make_blobs( - n_samples=750, centers=6, cluster_std=0.4)[:2] + X, labels_true = datasets.make_blobs(n_samples=750, centers=6, cluster_std=0.4)[ + :2 + ] labels_true = labels_true % 3 clcl = ClassifierAfterKMeans(e_max_iter=1000) clcl.fit(X, labels_true) r = repr(clcl) - self.assertIn('ClassifierAfterKMeans(', r) + self.assertIn("ClassifierAfterKMeans(", r) self.assertIn("c_init='k-means++'", r) diff --git a/_unittests/ut_mlmodel/test_decision_tree_logistic_regression.py b/_unittests/ut_mlmodel/test_decision_tree_logistic_regression.py index ab34501b..cc64f0a7 100644 --- a/_unittests/ut_mlmodel/test_decision_tree_logistic_regression.py +++ b/_unittests/ut_mlmodel/test_decision_tree_logistic_regression.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from numpy.random import random @@ -10,15 +7,17 @@ from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import ( - run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv, DecisionTreeLogisticRegression) + run_test_sklearn_pickle, + run_test_sklearn_clone, + run_test_sklearn_grid_search_cv, + DecisionTreeLogisticRegression, +) from mlinsights.mltree import predict_leaves class TestDecisionTreeLogisticRegression(ExtTestCase): - def test_classifier_simple(self): X = [[0.1, 0.2], [0.2, 0.3], [-0.2, -0.3], [0.4, 0.3]] Y = numpy.array([0, 1, 0, 1]) @@ -35,7 +34,8 @@ def test_classifier_simple_perpendicular(self): X = [[0.1, 0.2], [0.2, 0.3], [-0.2, -0.3], [0.4, 0.3]] Y = numpy.array([0, 1, 0, 1]) dtlr = DecisionTreeLogisticRegression( - fit_improve_algo=None, strategy='perpendicular') + fit_improve_algo=None, strategy="perpendicular" + ) self.assertRaise(lambda: dtlr.fit(X, Y), TypeError) X = numpy.array(X) Y = numpy.array(Y) @@ -60,40 +60,47 @@ def test_classifier_list(self): def test_classifier_pickle(self): X = random(100) - Y = X > 0.5 # pylint: disable=W0143 - X = X.reshape((100, 1)) # pylint: disable=E1101 + Y = X > 0.5 + X = X.reshape((100, 1)) run_test_sklearn_pickle(lambda: LogisticRegression(), X, Y) - run_test_sklearn_pickle(lambda: DecisionTreeLogisticRegression( - fit_improve_algo=None), X, Y) + run_test_sklearn_pickle( + lambda: DecisionTreeLogisticRegression(fit_improve_algo=None), X, Y + ) def test_classifier_clone(self): run_test_sklearn_clone( - lambda: DecisionTreeLogisticRegression(fit_improve_algo=None)) + lambda: DecisionTreeLogisticRegression(fit_improve_algo=None) + ) def test_classifier_grid_search(self): X = random(100) - Y = X > 0.5 # pylint: disable=W0143 - X = X.reshape((100, 1)) # pylint: disable=E1101 - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: DecisionTreeLogisticRegression(fit_improve_algo=None), X, Y), ValueError) + Y = X > 0.5 + X = X.reshape((100, 1)) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv( + lambda: DecisionTreeLogisticRegression(fit_improve_algo=None), X, Y + ), + ValueError, + ) res = run_test_sklearn_grid_search_cv( lambda: DecisionTreeLogisticRegression(fit_improve_algo=None), - X, Y, max_depth=[2, 3]) - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + X, + Y, + max_depth=[2, 3], + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) def test_iris(self): data = load_iris() X, y = data.data, data.target - X_train, X_test, y_train, y_test = train_test_split( - X, y, random_state=11) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) dtlr = DecisionTreeLogisticRegression(fit_improve_algo=None) self.assertRaise(lambda: dtlr.fit(X_train, y_train), RuntimeError) y = y % 2 - X_train, X_test, y_train, y_test = train_test_split( - X, y, random_state=11) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) dtlr.fit(X_train, y_train) depth = dtlr.tree_depth_ self.assertGreater(depth, 2) @@ -115,16 +122,15 @@ def test_iris(self): def test_iris_fit_improve(self): data = load_iris() X, y = data.data, data.target - X_train, X_test, y_train, y_test = train_test_split( - X, y, random_state=11) - self.assertRaise(lambda: DecisionTreeLogisticRegression( - fit_improve_algo='fit_improve_algo'), ValueError) - dtlr = DecisionTreeLogisticRegression( - fit_improve_algo='intercept_sort_always') + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) + self.assertRaise( + lambda: DecisionTreeLogisticRegression(fit_improve_algo="fit_improve_algo"), + ValueError, + ) + dtlr = DecisionTreeLogisticRegression(fit_improve_algo="intercept_sort_always") self.assertRaise(lambda: dtlr.fit(X_train, y_train), RuntimeError) y = y % 2 - X_train, X_test, y_train, y_test = train_test_split( - X, y, random_state=11) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) dtlr.fit(X_train, y_train) depth = dtlr.tree_depth_ self.assertGreater(depth, 2) @@ -147,8 +153,7 @@ def test_decision_path(self): data = load_iris() X, y = data.data, data.target y = y % 2 - X_train, X_test, y_train, _ = train_test_split( - X, y, random_state=11) + X_train, X_test, y_train, _ = train_test_split(X, y, random_state=11) dtlr = DecisionTreeLogisticRegression() dtlr.fit(X_train, y_train) path = dtlr.decision_path(X_test) @@ -162,8 +167,7 @@ def test_decision_path(self): def test_classifier_strat(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [-0.2, -0.3], [0.4, 0.3]]) Y = numpy.array([0, 1, 0, 1]) - dtlr = DecisionTreeLogisticRegression( - fit_improve_algo=None, strategy='') + dtlr = DecisionTreeLogisticRegression(fit_improve_algo=None, strategy="") self.assertRaise(lambda: dtlr.fit(X, Y), ValueError) diff --git a/_unittests/ut_mlmodel/test_direct_blas_lapack.py b/_unittests/ut_mlmodel/test_direct_blas_lapack.py index 589b1758..28af6b57 100644 --- a/_unittests/ut_mlmodel/test_direct_blas_lapack.py +++ b/_unittests/ut_mlmodel/test_direct_blas_lapack.py @@ -1,31 +1,27 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy -from scipy.linalg.lapack import dgelss as scipy_dgelss # pylint: disable=E0611 -from pyquickhelper.pycode import ExtTestCase -from mlinsights.mlmodel.direct_blas_lapack import dgelss # pylint: disable=E0611, E0401 +from scipy.linalg.lapack import dgelss as scipy_dgelss +from mlinsights.ext_test_case import ExtTestCase +from mlinsights.mlmodel.direct_blas_lapack import dgelss class TestDirectBlasLapack(ExtTestCase): - def test_dgels0(self): - A = numpy.array([[1., 1.], [2., 1.], [3., 1.]]) - C = numpy.array([[-1., 2.]]) + A = numpy.array([[1.0, 1.0], [2.0, 1.0], [3.0, 1.0]]) + C = numpy.array([[-1.0, 2.0]]) B = numpy.matmul(A, C.T) ____, x, ___, __, _, info = scipy_dgelss(A, B) - self.assertEqual(x.ravel()[:2], C.ravel()) + self.assertEqualArray(x.ravel()[:2], C.ravel(), atol=1e-8) A = A.T.copy() info = dgelss(A, B) self.assertEqual(info, 0) self.assertEqual(B.ravel()[:2], x.ravel()[:2]) def test_dgels01(self): - A = numpy.array([[1., 1.], [2., 1.], [3., 1.]]) - C = numpy.array([[-1., 2.]]) + A = numpy.array([[1.0, 1.0], [2.0, 1.0], [3.0, 1.0]]) + C = numpy.array([[-1.0, 2.0]]) B = numpy.matmul(A, C.T) C[0, 0] = -0.9 @@ -36,8 +32,8 @@ def test_dgels01(self): self.assertEqual(B.ravel()[:2], x.ravel()[:2]) def test_dgels1(self): - A = numpy.array([[10., 1.], [12., 1.], [13., 1]]) - B = numpy.array([[20., 22., 23.]]).T + A = numpy.array([[10.0, 1.0], [12.0, 1.0], [13.0, 1]]) + B = numpy.array([[20.0, 22.0, 23.0]]).T ____, x, ___, __, _, info = scipy_dgelss(A, B) A = A.T.copy() info = dgelss(A, B) diff --git a/_unittests/ut_mlmodel/test_extended_features.py b/_unittests/ut_mlmodel/test_extended_features.py index 123285db..de3558a6 100644 --- a/_unittests/ut_mlmodel/test_extended_features.py +++ b/_unittests/ut_mlmodel/test_extended_features.py @@ -1,43 +1,42 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from scipy import sparse from scipy.sparse import random as sparse_random from sklearn.preprocessing import PolynomialFeatures -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import ExtendedFeatures class TestExtendedFeatures(ExtTestCase): - def test_multiply(self): x1 = numpy.arange(9.0).reshape((3, 3)) x2 = numpy.arange(3.0).reshape((3, 1)) r = numpy.multiply(x1, x2) - exp = numpy.array([[0., 0., 0.], [3., 4., 5.], [12., 14., 16.]]) + exp = numpy.array([[0.0, 0.0, 0.0], [3.0, 4.0, 5.0], [12.0, 14.0, 16.0]]) self.assertEqual(r, exp) def test_polynomial_features(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: poly = PolynomialFeatures(deg, include_bias=True) P_test = poly.fit_transform(X) self.assertEqual(P_test, P) @@ -54,29 +53,32 @@ def test_polynomial_features(self): self.assertEqual(P_test, e_test) def test_polynomial_features_slow(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: poly = PolynomialFeatures(deg, include_bias=True) P_test = poly.fit_transform(X) self.assertEqual(P_test, P) names = poly.get_feature_names_out() - ext = ExtendedFeatures(kind='poly-slow', poly_degree=deg) + ext = ExtendedFeatures(kind="poly-slow", poly_degree=deg) e_test = ext.fit_transform(X) e_names = ext.get_feature_names_out() self.assertEqual(len(names), len(e_names)) @@ -87,34 +89,36 @@ def test_polynomial_features_slow(self): self.assertEqual(P_test, e_test) def test_polynomial_features_nobias_ionly(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: fc = [1] if deg == 3 else [1, 2, 4] - poly = PolynomialFeatures(deg, include_bias=False, - interaction_only=True) + poly = PolynomialFeatures(deg, include_bias=False, interaction_only=True) P_test = poly.fit_transform(X) names = poly.get_feature_names_out() self.assertEqual(P_test, P[:, fc]) - ext = ExtendedFeatures(poly_degree=deg, - poly_include_bias=False, - poly_interaction_only=True) + ext = ExtendedFeatures( + poly_degree=deg, poly_include_bias=False, poly_interaction_only=True + ) e_test = ext.fit_transform(X) e_names = ext.get_feature_names_out() @@ -126,34 +130,39 @@ def test_polynomial_features_nobias_ionly(self): self.assertEqual(P_test, e_test) def test_polynomial_features_nobias_ionly_slow(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: fc = [1] if deg == 3 else [1, 2, 4] - poly = PolynomialFeatures(deg, include_bias=False, - interaction_only=True) + poly = PolynomialFeatures(deg, include_bias=False, interaction_only=True) P_test = poly.fit_transform(X) names = poly.get_feature_names_out() self.assertEqual(P_test, P[:, fc]) - ext = ExtendedFeatures(kind="poly-slow", poly_degree=deg, - poly_include_bias=False, - poly_interaction_only=True) + ext = ExtendedFeatures( + kind="poly-slow", + poly_degree=deg, + poly_include_bias=False, + poly_interaction_only=True, + ) e_test = ext.fit_transform(X) e_names = ext.get_feature_names_out() @@ -165,34 +174,36 @@ def test_polynomial_features_nobias_ionly_slow(self): self.assertEqual(P_test, e_test) def test_polynomial_features_bias_ionly(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: fc = [0, 1] if deg == 3 else [0, 1, 2, 4] - poly = PolynomialFeatures(deg, include_bias=True, - interaction_only=True) + poly = PolynomialFeatures(deg, include_bias=True, interaction_only=True) P_test = poly.fit_transform(X) names = poly.get_feature_names_out() self.assertEqual(P_test, P[:, fc]) - ext = ExtendedFeatures(poly_degree=deg, - poly_include_bias=True, - poly_interaction_only=True) + ext = ExtendedFeatures( + poly_degree=deg, poly_include_bias=True, poly_interaction_only=True + ) e_test = ext.fit_transform(X) e_names = ext.get_feature_names_out() @@ -204,34 +215,39 @@ def test_polynomial_features_bias_ionly(self): self.assertEqual(P_test, e_test) def test_polynomial_features_bias_ionly_slow(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: fc = [0, 1] if deg == 3 else [0, 1, 2, 4] - poly = PolynomialFeatures(deg, include_bias=True, - interaction_only=True) + poly = PolynomialFeatures(deg, include_bias=True, interaction_only=True) P_test = poly.fit_transform(X) names = poly.get_feature_names_out() self.assertEqual(P_test, P[:, fc]) - ext = ExtendedFeatures(kind="poly-slow", poly_degree=deg, - poly_include_bias=True, - poly_interaction_only=True) + ext = ExtendedFeatures( + kind="poly-slow", + poly_degree=deg, + poly_include_bias=True, + poly_interaction_only=True, + ) e_test = ext.fit_transform(X) e_names = ext.get_feature_names_out() @@ -243,23 +259,26 @@ def test_polynomial_features_bias_ionly_slow(self): self.assertEqual(P_test, e_test) def test_polynomial_features_nobias(self): - X1 = numpy.arange(6)[:, numpy.newaxis] - P1 = numpy.hstack([numpy.ones_like(X1), - X1, X1 ** 2, X1 ** 3]) + X1 = numpy.arange(6)[:, numpy.newaxis].astype(numpy.float64) + P1 = numpy.hstack([numpy.ones_like(X1), X1, X1**2, X1**3]) deg1 = 3 - X2 = numpy.arange(6).reshape((3, 2)) + X2 = numpy.arange(6).reshape((3, 2)).astype(numpy.float64) x1 = X2[:, :1] x2 = X2[:, 1:] - P2 = numpy.hstack([x1 ** 0 * x2 ** 0, - x1 ** 1 * x2 ** 0, - x1 ** 0 * x2 ** 1, - x1 ** 2 * x2 ** 0, - x1 ** 1 * x2 ** 1, - x1 ** 0 * x2 ** 2]) + P2 = numpy.hstack( + [ + x1**0 * x2**0, + x1**1 * x2**0, + x1**0 * x2**1, + x1**2 * x2**0, + x1**1 * x2**1, + x1**0 * x2**2, + ] + ) deg2 = 2 - for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: + for deg, X, P in [(deg1, X1, P1), (deg2, X2, P2)]: poly = PolynomialFeatures(deg, include_bias=False) P_test = poly.fit_transform(X) self.assertEqual(P_test, P[:, 1:]) @@ -276,7 +295,7 @@ def test_polynomial_features_nobias(self): self.assertEqual(P_test, e_test) def test_polynomial_features_bigger(self): - X = numpy.arange(30).reshape((5, 6)) + X = numpy.arange(30).reshape((5, 6)).astype(numpy.float64) for deg in (1, 2, 3, 4): poly = PolynomialFeatures(deg, include_bias=True) X_sk = poly.fit_transform(X) @@ -299,15 +318,15 @@ def test_polynomial_features_bigger(self): self.assertEqual(X_sk, X_ext) def test_polynomial_features_bigger_ionly(self): - X = numpy.arange(30).reshape((5, 6)) + X = numpy.arange(30).reshape((5, 6)).astype(numpy.float64) for deg in (1, 2, 3, 4, 5): - poly = PolynomialFeatures(deg, include_bias=True, - interaction_only=True) + poly = PolynomialFeatures(deg, include_bias=True, interaction_only=True) X_sk = poly.fit_transform(X) names_sk = poly.get_feature_names_out() - ext = ExtendedFeatures(poly_degree=deg, poly_include_bias=True, - poly_interaction_only=True) + ext = ExtendedFeatures( + poly_degree=deg, poly_include_bias=True, poly_interaction_only=True + ) X_ext = ext.fit_transform(X) inames = ["x%d" % i for i in range(0, X.shape[1])] @@ -326,16 +345,15 @@ def test_polynomial_features_bigger_ionly(self): @unittest.skip(reason="sparse not implemented for polynomial features") def test_polynomial_features_sparse(self): dtype = numpy.float64 - rng = numpy.random.RandomState(0) # pylint: disable=E1101 - X = rng.randint(0, 2, (100, 2)) + rng = numpy.random.RandomState(0) + X = rng.randint(0, 2, (100, 2)).astype(numpy.float64) X_sparse = sparse.csr_matrix(X) est = PolynomialFeatures(2) Xt_sparse = est.fit_transform(X_sparse.astype(dtype)) Xt_dense = est.fit_transform(X.astype(dtype)) - self.assertIsInstance( - Xt_sparse, (sparse.csc_matrix, sparse.csr_matrix)) + self.assertIsInstance(Xt_sparse, (sparse.csc_matrix, sparse.csr_matrix)) self.assertEqual(Xt_sparse.dtype, Xt_dense.dtype) self.assertEqual(Xt_sparse.A, Xt_dense) @@ -351,23 +369,38 @@ def polynomial_features_csr_X_zero_row(self, zero_row_index, deg, interaction_on X_csr = sparse_random(3, 10, 1.0, random_state=0).tocsr() X_csr[zero_row_index, :] = 0.0 X = X_csr.toarray() - est = ExtendedFeatures(poly_degree=deg, poly_include_bias=False, - poly_interaction_only=interaction_only) + est = ExtendedFeatures( + poly_degree=deg, + poly_include_bias=False, + poly_interaction_only=interaction_only, + ) est.fit(X) - poly = PolynomialFeatures(degree=deg, include_bias=False, - interaction_only=interaction_only) + poly = PolynomialFeatures( + degree=deg, include_bias=False, interaction_only=interaction_only + ) poly.fit(X) - self.assertEqual(list(poly.get_feature_names_out()), - list(est.get_feature_names_out())) + self.assertEqual( + list(poly.get_feature_names_out()), list(est.get_feature_names_out()) + ) Xt_dense1 = est.fit_transform(X) Xt_dense2 = poly.fit_transform(X) self.assertEqual(Xt_dense1, Xt_dense2) def test_polynomial_features_bug(self): - for p in [(0, 3, True), (0, 2, True), (1, 2, True), - (2, 2, True), (1, 3, True), (2, 3, True), - (0, 2, False), (1, 2, False), (2, 2, False), - (0, 3, False), (1, 3, False), (2, 3, False)]: + for p in [ + (0, 3, True), + (0, 2, True), + (1, 2, True), + (2, 2, True), + (1, 3, True), + (2, 3, True), + (0, 2, False), + (1, 2, False), + (2, 2, False), + (0, 3, False), + (1, 3, False), + (2, 3, False), + ]: self.polynomial_features_csr_X_zero_row(*list(p)) diff --git a/_unittests/ut_mlmodel/test_interval_regressor.py b/_unittests/ut_mlmodel/test_interval_regressor.py index 603a61d6..07e5eed2 100644 --- a/_unittests/ut_mlmodel/test_interval_regressor.py +++ b/_unittests/ut_mlmodel/test_interval_regressor.py @@ -1,25 +1,20 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from sklearn.linear_model import LinearRegression -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import IntervalRegressor class TestIntervalRegressor(ExtTestCase): - def test_interval_regressor(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.2, 0.35], [0.2, 0.36]]) - Y = numpy.array([1., 1.1, 1.15, 1.2]) - clr = IntervalRegressor(n_estimators=2, - estimator=LinearRegression()) + Y = numpy.array([1.0, 1.1, 1.15, 1.2]) + clr = IntervalRegressor(n_estimators=2, estimator=LinearRegression()) clr.fit(X, Y) pred = clr.predict(X) preds = clr.predict_sorted(X) - self.assertEqual(pred.shape, (4, )) + self.assertEqual(pred.shape, (4,)) self.assertEqual(preds.shape, (4, 2)) rnd = preds[:, 0] <= preds[:, 1] nb = rnd.sum() diff --git a/_unittests/ut_mlmodel/test_kmeans_l1.py b/_unittests/ut_mlmodel/test_kmeans_l1.py index 20e83007..74a040fd 100644 --- a/_unittests/ut_mlmodel/test_kmeans_l1.py +++ b/_unittests/ut_mlmodel/test_kmeans_l1.py @@ -1,18 +1,13 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy from scipy.spatial.distance import cdist from sklearn import datasets -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import KMeansL1L2 from mlinsights.mlmodel._kmeans_022 import _assign_labels_array class TestKMeansL1L2(ExtTestCase): - def test_kmeans_l2(self): iris = datasets.load_iris() X = iris.data @@ -50,7 +45,7 @@ def test_kmeans_l1_small(self): iris = datasets.load_iris() X = iris.data X = X[:6] - clr = KMeansL1L2(4, norm='L1') + clr = KMeansL1L2(4, norm="L1") clr.fit(X) cls = set(clr.predict(X)) self.assertEqual({0, 1, 2, 3}, cls) @@ -58,7 +53,7 @@ def test_kmeans_l1_small(self): def test_kmeans_l1_iris(self): iris = datasets.load_iris() X = iris.data - clr = KMeansL1L2(4, norm='L1') + clr = KMeansL1L2(4, norm="L1") clr.fit(X) cls = set(clr.predict(X)) self.assertEqual({0, 1, 2, 3}, cls) @@ -66,36 +61,38 @@ def test_kmeans_l1_iris(self): def test_kmeans_l2_iris(self): iris = datasets.load_iris() X = iris.data - clr = KMeansL1L2(4, norm='L2') + clr = KMeansL1L2(4, norm="L2") clr.fit(X) cls = set(clr.predict(X)) self.assertEqual({0, 1, 2, 3}, cls) def test_kmeans_l1_check(self): X = numpy.ascontiguousarray( - numpy.array([[-10, 1, 2, 3, 4, 10], - [-10, 1, 2, 3, 4, 10]]).T) - clr = KMeansL1L2(2, norm='L1') + numpy.array([[-10, 1, 2, 3, 4, 10], [-10, 1, 2, 3, 4, 10]]).T + ) + clr = KMeansL1L2(2, norm="L1") clr.fit(X) cls = set(clr.predict(X)) self.assertEqual({0, 1}, cls) self.assertEqual(clr.cluster_centers_.shape, (2, 2)) - self.assertEqualArray(clr.cluster_centers_.max(), [3, 3]) + self.assertEqualArray( + clr.cluster_centers_.max(axis=0), numpy.array([3, 3], dtype=numpy.float64) + ) tr = clr.transform(X) self.assertEqual(tr.shape, (X.shape[0], 2)) tr = clr.transform([[3, 3]]) - self.assertEqualArray(tr.min(), [0]) + self.assertEqualArray(tr.min(axis=1), numpy.array([0], dtype=numpy.float64)) def test__assign_labels_array(self): - X = numpy.array([[1., 2.], [3.5, 4.]]) - sample_weight = numpy.array([1., 1.1]) + X = numpy.array([[1.0, 2.0], [3.5, 4.0]]) + sample_weight = numpy.array([1.0, 1.1]) centers = X.copy() labels = numpy.array([0, 1]) - x_squared_norms = numpy.array([5., 3.1]) + x_squared_norms = numpy.array([5.0, 3.1]) distances = cdist(X, centers) res = _assign_labels_array( - X, sample_weight, x_squared_norms, centers, - labels, distances) + X, sample_weight, x_squared_norms, centers, labels, distances + ) self.assertIsInstance(res, numpy.float64) diff --git a/_unittests/ut_mlmodel/test_kmeans_sklearn.py b/_unittests/ut_mlmodel/test_kmeans_sklearn.py index ae27c68f..159033fb 100644 --- a/_unittests/ut_mlmodel/test_kmeans_sklearn.py +++ b/_unittests/ut_mlmodel/test_kmeans_sklearn.py @@ -1,166 +1,166 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=4s) -""" import unittest import numpy as np from scipy import sparse as sp -from sklearn import __version__ as sklearn_vers from sklearn.utils._testing import ( - assert_array_equal, assert_array_almost_equal, - assert_almost_equal, assert_raise_message) + assert_array_equal, + assert_array_almost_equal, + assert_almost_equal, + assert_raise_message, +) from sklearn.metrics.cluster import v_measure_score from sklearn.datasets import make_blobs -from pyquickhelper.pycode import ExtTestCase, ignore_warnings -from pyquickhelper.texthelper.version_helper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import KMeansL1L2 -sklearn_023 = compare_module_version(sklearn_vers, "0.23.2") >= 0 - - class TestKMeansL1L2Sklearn(ExtTestCase): - # non centered, sparse centers to check the - centers = np.array([ - [0.0, 5.0, 0.0, 0.0, 0.0], - [1.0, 1.0, 4.0, 0.0, 0.0], - [1.0, 0.0, 0.0, 5.0, 1.0], - ]) + centers = np.array( + [ + [0.0, 5.0, 0.0, 0.0, 0.0], + [1.0, 1.0, 4.0, 0.0, 0.0], + [1.0, 0.0, 0.0, 5.0, 1.0], + ] + ) n_samples = 100 - n_clusters, n_features = centers.shape # pylint: disable=E0633 - X, true_labels = make_blobs(n_samples=n_samples, centers=centers, - cluster_std=1., random_state=42)[:2] + n_clusters, n_features = centers.shape + X, true_labels = make_blobs( + n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42 + )[:2] X_csr = sp.csr_matrix(X) def do_test_kmeans_results(self, representation, algo, dtype, norm, sw): # cheks that kmeans works as intended - array_constr = {'dense': np.array, - 'sparse': sp.csr_matrix}[representation] + array_constr = {"dense": np.array, "sparse": sp.csr_matrix}[representation] X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=dtype) init_centers = np.array([[0, 0], [1, 1]], dtype=dtype) # will be rescaled to [1.5, 0.5, 0.5, 1.5] if sw: sample_weight = [3, 1, 1, 3] - if sklearn_023: - expected_inertia = 0.375 - else: - expected_inertia = 0.1875 + expected_inertia = 0.375 expected_centers = np.array([[0.125, 0], [0.875, 1]], dtype=dtype) expected_n_iter = 2 else: sample_weight = None - if norm == 'L2': + if norm == "L2": expected_inertia = 0.25 - expected_centers = np.array( - [[0.25, 0], [0.75, 1]], dtype=dtype) + expected_centers = np.array([[0.25, 0], [0.75, 1]], dtype=dtype) expected_n_iter = 2 else: - expected_inertia = 1. - expected_centers = np.array( - [[0.25, 0], [0.75, 1]], dtype=dtype) + expected_inertia = 1.0 + expected_centers = np.array([[0.25, 0], [0.75, 1]], dtype=dtype) expected_n_iter = 1 expected_labels = [0, 0, 1, 1] try: - kmeans = KMeansL1L2(n_clusters=2, n_init=1, - init=init_centers, algorithm=algo, - norm=norm) + kmeans = KMeansL1L2( + n_clusters=2, n_init=1, init=init_centers, algorithm=algo, norm=norm + ) except NotImplementedError as e: - if ("Only algorithm 'full' is implemented" in str(e) and - norm == 'L1'): + if "Only algorithm 'lloyd' is implemented" in str(e) and norm == "L1": return raise e try: kmeans.fit(X, sample_weight=sample_weight) except NotImplementedError as e: - if ("Non uniform weights are not implemented yet" in str(e) and - norm == 'L1'): + if "Non uniform weights are not implemented yet" in str(e) and norm == "L1": return - if ("Sparse matrix is not implemented" in str(e) and - norm == 'L1'): + if "Sparse matrix is not implemented" in str(e) and norm == "L1": return raise e assert_array_equal(kmeans.labels_, expected_labels) assert_almost_equal(kmeans.inertia_, expected_inertia) assert_array_almost_equal(kmeans.cluster_centers_, expected_centers) - self.assertEqualArray(kmeans.n_iter_, expected_n_iter) + self.assertEqual(kmeans.n_iter_, expected_n_iter) @ignore_warnings(UserWarning) def test_kmeans_results(self): - for representation, algo in [('dense', 'full'), - ('dense', 'elkan'), - ('sparse', 'full')]: + for representation, algo in [ + ("dense", "lloyd"), + ("dense", "elkan"), + ("sparse", "lloyd"), + ]: for dtype in [np.float32, np.float64]: - for norm in ['L1', 'L2']: + for norm in ["L1", "L2"]: for sw in [False, True]: - with self.subTest(c=representation, algo=algo, - dtype=dtype, sw=sw, norm=norm): + with self.subTest( + c=representation, algo=algo, dtype=dtype, sw=sw, norm=norm + ): self.do_test_kmeans_results( - representation, algo, dtype, norm, sw) + representation, algo, dtype, norm, sw + ) def _check_fitted_model(self, km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ self.assertEqual( - centers.shape, (TestKMeansL1L2Sklearn.n_clusters, TestKMeansL1L2Sklearn.n_features)) + centers.shape, + (TestKMeansL1L2Sklearn.n_clusters, TestKMeansL1L2Sklearn.n_features), + ) labels = km.labels_ - self.assertEqual( - np.unique(labels).shape[0], TestKMeansL1L2Sklearn.n_clusters) + self.assertEqual(np.unique(labels).shape[0], TestKMeansL1L2Sklearn.n_clusters) # check that the labels assignment are perfect (up to a permutation) - self.assertEqual(v_measure_score( - TestKMeansL1L2Sklearn.true_labels, labels), 1.0) + self.assertEqual( + v_measure_score(TestKMeansL1L2Sklearn.true_labels, labels), 1.0 + ) self.assertGreater(km.inertia_, 0.0) # check error on dataset being too small - assert_raise_message(ValueError, "n_samples=1 should be >= n_clusters=%d" - % km.n_clusters, km.fit, [[0., 1.]]) + assert_raise_message( + ValueError, + "n_samples=1 should be >= n_clusters=%d" % km.n_clusters, + km.fit, + [[0.0, 1.0]], + ) @ignore_warnings(UserWarning) def test_k_means_new_centers(self): # Explore the part of the code where a new center is reassigned - X = np.array([[0, 0, 1, 1], - [0, 0, 0, 0], - [0, 1, 0, 0], - [0, 0, 0, 0], - [0, 0, 0, 0], - [0, 1, 0, 0]]) + X = np.array( + [ + [0, 0, 1, 1], + [0, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 1, 0, 0], + ] + ) labels = [0, 1, 2, 1, 1, 2] - bad_centers = np.array([[+0, 1, 0, 0], - [.2, 0, .2, .2], - [+0, 0, 0, 0]]) + bad_centers = np.array([[+0, 1, 0, 0], [0.2, 0, 0.2, 0.2], [+0, 0, 0, 0]]) - km = KMeansL1L2(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, - random_state=1) + km = KMeansL1L2( + n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1 + ) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... - this_labels = np.unique(this_labels, return_index=True)[ - 1][this_labels] + this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) @ignore_warnings(UserWarning) def test_k_means_plus_plus_init_not_precomputed(self): km = KMeansL1L2( - init="k-means++", n_clusters=TestKMeansL1L2Sklearn.n_clusters, - random_state=42).fit( - TestKMeansL1L2Sklearn.X) + init="k-means++", + n_clusters=TestKMeansL1L2Sklearn.n_clusters, + random_state=42, + ).fit(TestKMeansL1L2Sklearn.X) self._check_fitted_model(km) @ignore_warnings(UserWarning) def test_k_means_random_init_not_precomputed(self): km = KMeansL1L2( - init="random", n_clusters=TestKMeansL1L2Sklearn.n_clusters, - random_state=42).fit( - TestKMeansL1L2Sklearn.X) + init="random", n_clusters=TestKMeansL1L2Sklearn.n_clusters, random_state=42 + ).fit(TestKMeansL1L2Sklearn.X) self._check_fitted_model(km) diff --git a/_unittests/ut_mlmodel/test_piecewise_classifier.py b/_unittests/ut_mlmodel/test_piecewise_classifier.py index 9f43bcb3..4eb5ae82 100644 --- a/_unittests/ut_mlmodel/test_piecewise_classifier.py +++ b/_unittests/ut_mlmodel/test_piecewise_classifier.py @@ -1,22 +1,19 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from numpy.random import random import pandas from sklearn.linear_model import LogisticRegression -from pyquickhelper.pycode import ExtTestCase, ignore_warnings +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) from mlinsights.mlmodel.piecewise_estimator import PiecewiseClassifier class TestPiecewiseClassifier(ExtTestCase): - def test_piecewise_classifier_no_intercept(self): X = numpy.array([[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]]) Y = numpy.array([0, 1, 0, 1]) @@ -54,8 +51,9 @@ def test_piecewise_classifier_no_intercept_proba(self): self.assertEqual(pred2.shape, (4, 2)) def test_piecewise_classifier_no_intercept_proba_3(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], - [-0.2, -0.36], [-3, 3], [-4, 4]]) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36], [-3, 3], [-4, 4]] + ) Y = numpy.array([0, 1, 0, 1, 2, 2]) clr = LogisticRegression(fit_intercept=False) clr.fit(X, Y) @@ -75,12 +73,13 @@ def test_piecewise_classifier_no_intercept_decision(self): clq.fit(X, Y) pred1 = clr.decision_function(X) pred2 = clq.decision_function(X) - self.assertEqual(pred1.shape, (4, )) - self.assertEqual(pred2.shape, (4, )) + self.assertEqual(pred1.shape, (4,)) + self.assertEqual(pred2.shape, (4,)) def test_piecewise_classifier_no_intercept_decision_3(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], - [-0.2, -0.36], [-3, 3], [-4, 4]]) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36], [-3, 3], [-4, 4]] + ) Y = numpy.array([0, 1, 0, 1, 2, 2]) clr = LogisticRegression(fit_intercept=False) clr.fit(X, Y) @@ -92,8 +91,9 @@ def test_piecewise_classifier_no_intercept_decision_3(self): self.assertEqual(pred2.shape, (6, 3)) def test_piecewise_classifier_no_intercept_predict_3(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], - [-0.2, -0.36], [-3, 3], [-4, 4]]) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36], [-3, 3], [-4, 4]] + ) Y = numpy.array([0, 1, 0, 1, 2, 2]) clr = LogisticRegression(fit_intercept=False) clr.fit(X, Y) @@ -101,8 +101,8 @@ def test_piecewise_classifier_no_intercept_predict_3(self): clq.fit(X, Y) pred1 = clr.predict(X) pred2 = clq.predict(X) - self.assertEqual(pred1.shape, (6, )) - self.assertEqual(pred2.shape, (6, )) + self.assertEqual(pred1.shape, (6,)) + self.assertEqual(pred2.shape, (6,)) @ignore_warnings(UserWarning) def test_piecewise_classifier_no_intercept_bins(self): @@ -127,7 +127,7 @@ def test_piecewise_classifier_no_intercept_bins(self): def test_piecewise_classifier_intercept_weights3(self): X = numpy.array([[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]]) Y = numpy.array([0, 1, 0, 1]) - W = numpy.array([1., 1., 1., 1.]) + W = numpy.array([1.0, 1.0, 1.0, 1.0]) clr = LogisticRegression(fit_intercept=True) clr.fit(X, Y, W) clq = PiecewiseClassifier(verbose=False) @@ -148,8 +148,9 @@ def test_piecewise_classifier_pandas(self): def test_logistic_regression_check(self): X = pandas.DataFrame(numpy.array([[0.1, 0.2], [-0.2, 0.3]])) Y = numpy.array([0, 1]) - clq = LogisticRegression(fit_intercept=False, solver='liblinear', - random_state=42) + clq = LogisticRegression( + fit_intercept=False, solver="liblinear", random_state=42 + ) clq.fit(X, Y) pred2 = clq.predict(X) self.assertEqual(numpy.array([0, 1]), pred2) @@ -162,8 +163,8 @@ def test_piecewise_classifier_list(self): def test_piecewise_classifier_pickle(self): X = random(100) - Y = X > 0.5 # pylint: disable=W0143 - X = X.reshape((100, 1)) # pylint: disable=E1101 + Y = X > 0.5 + X = X.reshape((100, 1)) run_test_sklearn_pickle(lambda: LogisticRegression(), X, Y) run_test_sklearn_pickle(lambda: PiecewiseClassifier(), X, Y) @@ -172,16 +173,21 @@ def test_piecewise_classifier_clone(self): def test_piecewise_classifier_grid_search(self): X = random(100) - Y = X > 0.5 # pylint: disable=W0143 - X = X.reshape((100, 1)) # pylint: disable=E1101 - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: PiecewiseClassifier(), X, Y), ValueError) + Y = X > 0.5 + X = X.reshape((100, 1)) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv( + lambda: PiecewiseClassifier(), X, Y + ), + ValueError, + ) res = run_test_sklearn_grid_search_cv( - lambda: PiecewiseClassifier(), X, Y, binner__max_depth=[2, 3]) - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + lambda: PiecewiseClassifier(), X, Y, binner__max_depth=[2, 3] + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) if __name__ == "__main__": diff --git a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment.py b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment.py index 1179b3d7..c73d4299 100644 --- a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment.py +++ b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment.py @@ -1,30 +1,37 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy -from sklearn.tree._criterion import MSE # pylint: disable=E0611 +from sklearn.tree._criterion import MSE from sklearn.tree import DecisionTreeRegressor from sklearn import datasets -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel.piecewise_tree_regression import PiecewiseTreeRegressor -from mlinsights.mlmodel._piecewise_tree_regression_common import ( # pylint: disable=E0611,E0401 - _test_criterion_init, _test_criterion_node_impurity, - _test_criterion_node_impurity_children, _test_criterion_update, - _test_criterion_node_value, _test_criterion_proxy_impurity_improvement, - _test_criterion_impurity_improvement) -from mlinsights.mlmodel._piecewise_tree_regression_common import ( # pylint: disable=E0611 - _test_criterion_check, assert_criterion_equal) -from mlinsights.mlmodel.piecewise_tree_regression_criterion import ( # pylint: disable=E0611, E0401 - SimpleRegressorCriterion) +from mlinsights.mlmodel._piecewise_tree_regression_common import ( + _test_criterion_init, + _test_criterion_node_impurity, + _test_criterion_node_impurity_children, + _test_criterion_update, + _test_criterion_node_value, + _test_criterion_proxy_impurity_improvement, + _test_criterion_impurity_improvement, +) +from mlinsights.mlmodel._piecewise_tree_regression_common import ( + _test_criterion_check, + assert_criterion_equal, +) +from mlinsights.mlmodel.piecewise_tree_regression_criterion import ( + SimpleRegressorCriterion, +) class TestPiecewiseDecisionTreeExperiment(ExtTestCase): - + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_criterions(self): - X = numpy.array([[1., 2.]]).T - y = numpy.array([1., 2.]) + X = numpy.array([[1.0, 2.0]]).T + y = numpy.array([1.0, 2.0]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterion(1, X.shape[0]) self.assertNotEmpty(c1) @@ -33,9 +40,9 @@ def test_criterions(self): self.assertEqual(w.sum(), X.shape[0]) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) - # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_criterion.pyx#L886 + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) + # https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/tree/_criterion.pyx#L886 i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertEqual(i1, i2) @@ -46,15 +53,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 3.]]).T - y = numpy.array([1., 2., 3.]) + X = numpy.array([[1.0, 2.0, 3.0]]).T + y = numpy.array([1.0, 2.0, 3.0]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterion(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertAlmostEqual(i1, i2) @@ -65,15 +72,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterion(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) _test_criterion_check(c1) _test_criterion_check(c2) i1 = _test_criterion_node_impurity(c1) @@ -108,25 +115,23 @@ def test_criterions(self): self.assertEqual(v1, v2) try: # scikit-learn >= 0.24 - p1 = _test_criterion_impurity_improvement( - c1, 0., left1, right1) - p2 = _test_criterion_impurity_improvement( - c2, 0., left2, right2) + p1 = _test_criterion_impurity_improvement(c1, 0.0, left1, right1) + p2 = _test_criterion_impurity_improvement(c2, 0.0, left2, right2) except TypeError: # scikit-learn < 0.24 - p1 = _test_criterion_impurity_improvement(c1, 0.) - p2 = _test_criterion_impurity_improvement(c2, 0.) + p1 = _test_criterion_impurity_improvement(c1, 0.0) + p2 = _test_criterion_impurity_improvement(c2, 0.0) self.assertAlmostEqual(p1, p2) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterion(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.array([0, 3, 2, 1], dtype=ind.dtype) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 1, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 1, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 1, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 1, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertAlmostEqual(i1, i2) @@ -149,25 +154,24 @@ def test_criterions(self): self.assertEqual(v1, v2) try: # scikit-learn >= 0.24 - p1 = _test_criterion_impurity_improvement( - c1, 0., left1, right1) - p2 = _test_criterion_impurity_improvement( - c2, 0., left2, right2) + p1 = _test_criterion_impurity_improvement(c1, 0.0, left1, right1) + p2 = _test_criterion_impurity_improvement(c2, 0.0, left2, right2) except TypeError: # scikit-learn < 0.24 - p1 = _test_criterion_impurity_improvement(c1, 0.) - p2 = _test_criterion_impurity_improvement(c2, 0.) + p1 = _test_criterion_impurity_improvement(c1, 0.0) + p2 = _test_criterion_impurity_improvement(c2, 0.0) self.assertAlmostEqual(p1, p2) def test_decision_tree_criterion(self): - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) clr1 = DecisionTreeRegressor(max_depth=1) clr1.fit(X, y) p1 = clr1.predict(X) crit = SimpleRegressorCriterion( - 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0]) + 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0] + ) clr2 = DecisionTreeRegressor(criterion=crit, max_depth=1) clr2.fit(X, y) p2 = clr2.predict(X) @@ -182,7 +186,9 @@ def test_decision_tree_criterion_iris(self): p1 = clr1.predict(X) clr2 = DecisionTreeRegressor( criterion=SimpleRegressorCriterion( - 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0])) + 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0] + ) + ) clr2.fit(X, y) p2 = clr2.predict(X) self.assertEqual(p1[:10], p2[:10]) @@ -193,11 +199,11 @@ def test_decision_tree_criterion_iris_dtc(self): clr1 = DecisionTreeRegressor() clr1.fit(X, y) p1 = clr1.predict(X) - clr2 = PiecewiseTreeRegressor(criterion='simple') + clr2 = PiecewiseTreeRegressor(criterion="simple") clr2.fit(X, y) p2 = clr2.predict(X) self.assertEqual(p1[:10], p2[:10]) if __name__ == "__main__": - unittest.main() + unittest.main(verbosity=2) diff --git a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_fast.py b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_fast.py index 51f6ed55..cdb0821f 100644 --- a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_fast.py +++ b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_fast.py @@ -1,31 +1,36 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy -import sklearn -from sklearn.tree._criterion import MSE # pylint: disable=E0611 +from sklearn.tree._criterion import MSE from sklearn.tree import DecisionTreeRegressor from sklearn import datasets -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel.piecewise_tree_regression import PiecewiseTreeRegressor -from mlinsights.mlmodel._piecewise_tree_regression_common import ( # pylint: disable=E0611,E0401 - _test_criterion_init, _test_criterion_node_impurity, - _test_criterion_node_impurity_children, _test_criterion_update, - _test_criterion_node_value, _test_criterion_proxy_impurity_improvement, - _test_criterion_impurity_improvement) -from mlinsights.mlmodel._piecewise_tree_regression_common import ( # pylint: disable=E0611 - assert_criterion_equal) -from mlinsights.mlmodel.piecewise_tree_regression_criterion_fast import SimpleRegressorCriterionFast # pylint: disable=E0611, E0401, E0602 +from mlinsights.mlmodel._piecewise_tree_regression_common import ( + _test_criterion_init, + _test_criterion_node_impurity, + _test_criterion_node_impurity_children, + _test_criterion_update, + _test_criterion_node_value, + _test_criterion_proxy_impurity_improvement, + _test_criterion_impurity_improvement, +) +from mlinsights.mlmodel._piecewise_tree_regression_common import ( + assert_criterion_equal, +) +from mlinsights.mlmodel.piecewise_tree_regression_criterion_fast import ( + SimpleRegressorCriterionFast, +) class TestPiecewiseDecisionTreeExperimentFast(ExtTestCase): - + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_criterions(self): - X = numpy.array([[1., 2.]]).T - y = numpy.array([1., 2.]) + X = numpy.array([[1.0, 2.0]]).T + y = numpy.array([1.0, 2.0]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterionFast(1, X.shape[0]) self.assertNotEmpty(c1) @@ -34,10 +39,10 @@ def test_criterions(self): self.assertEqual(w.sum(), X.shape[0]) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) assert_criterion_equal(c1, c2) - # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_criterion.pyx#L886 + # https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/tree/_criterion.pyx#L886 v1 = _test_criterion_node_value(c1) v2 = _test_criterion_node_value(c2) self.assertEqual(v1, v2) @@ -48,15 +53,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 3.]]).T - y = numpy.array([1., 2., 3.]) + X = numpy.array([[1.0, 2.0, 3.0]]).T + y = numpy.array([1.0, 2.0, 3.0]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterionFast(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) assert_criterion_equal(c1, c2) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) @@ -68,15 +73,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterionFast(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertAlmostEqual(i1, i2) @@ -101,26 +106,24 @@ def test_criterions(self): assert_criterion_equal(c1, c2) try: # scikit-learn >= 0.24 - p1 = _test_criterion_impurity_improvement( - c1, 0., left1, right1) - p2 = _test_criterion_impurity_improvement( - c2, 0., left2, right2) + p1 = _test_criterion_impurity_improvement(c1, 0.0, left1, right1) + p2 = _test_criterion_impurity_improvement(c2, 0.0, left2, right2) except TypeError: # scikit-learn < 0.23 - p1 = _test_criterion_impurity_improvement(c1, 0.) - p2 = _test_criterion_impurity_improvement(c2, 0.) + p1 = _test_criterion_impurity_improvement(c1, 0.0) + p2 = _test_criterion_impurity_improvement(c2, 0.0) self.assertAlmostEqual(p1, p2) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = SimpleRegressorCriterionFast(1, X.shape[0]) w = numpy.ones((y.shape[0],)) ind = numpy.array([0, 3, 2, 1], dtype=ind.dtype) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 1, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 1, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 1, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 1, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertAlmostEqual(i1, i2) @@ -143,20 +146,16 @@ def test_criterions(self): self.assertEqual(v1, v2) try: # scikit-learn >= 0.24 - p1 = _test_criterion_impurity_improvement( - c1, 0., left1, right1) - p2 = _test_criterion_impurity_improvement( - c2, 0., left2, right2) + p1 = _test_criterion_impurity_improvement(c1, 0.0, left1, right1) + p2 = _test_criterion_impurity_improvement(c2, 0.0, left2, right2) except TypeError: # scikit-learn < 0.23 - p1 = _test_criterion_impurity_improvement(c1, 0.) - p2 = _test_criterion_impurity_improvement(c2, 0.) + p1 = _test_criterion_impurity_improvement(c1, 0.0) + p2 = _test_criterion_impurity_improvement(c2, 0.0) self.assertAlmostEqual(p1, p2) - @unittest.skipIf(compare_module_version(sklearn.__version__, "0.21") < 0, - reason="Only implemented for Criterion API from sklearn >= 0.21") def test_decision_tree_criterion(self): - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) clr1 = DecisionTreeRegressor(max_depth=1) clr1.fit(X, y) @@ -176,7 +175,8 @@ def test_decision_tree_criterion_iris(self): clr1.fit(X, y) p1 = clr1.predict(X) clr2 = DecisionTreeRegressor( - criterion=SimpleRegressorCriterionFast(1, X.shape[0])) + criterion=SimpleRegressorCriterionFast(1, X.shape[0]) + ) clr2.fit(X, y) p2 = clr2.predict(X) self.assertEqual(p1[:10], p2[:10]) @@ -187,7 +187,7 @@ def test_decision_tree_criterion_iris_dtc(self): clr1 = DecisionTreeRegressor() clr1.fit(X, y) p1 = clr1.predict(X) - clr2 = PiecewiseTreeRegressor(criterion='simple') + clr2 = PiecewiseTreeRegressor(criterion="simple") clr2.fit(X, y) p2 = clr2.predict(X) self.assertEqual(p1[:10], p2[:10]) diff --git a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_linear.py b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_linear.py index 8ae7a976..0243db18 100644 --- a/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_linear.py +++ b/_unittests/ut_mlmodel/test_piecewise_decision_tree_experiment_linear.py @@ -1,29 +1,34 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy -from sklearn.tree._criterion import MSE # pylint: disable=E0611 +from sklearn.tree._criterion import MSE from sklearn.tree import DecisionTreeRegressor from sklearn import datasets from sklearn.model_selection import train_test_split -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel.piecewise_tree_regression import PiecewiseTreeRegressor -from mlinsights.mlmodel._piecewise_tree_regression_common import ( # pylint: disable=E0611,E0401 - _test_criterion_init, _test_criterion_node_impurity, - _test_criterion_node_impurity_children, _test_criterion_update, - _test_criterion_node_value, _test_criterion_proxy_impurity_improvement, - _test_criterion_impurity_improvement +from mlinsights.mlmodel._piecewise_tree_regression_common import ( + _test_criterion_init, + _test_criterion_node_impurity, + _test_criterion_node_impurity_children, + _test_criterion_update, + _test_criterion_node_value, + _test_criterion_proxy_impurity_improvement, + _test_criterion_impurity_improvement, +) +from mlinsights.mlmodel.piecewise_tree_regression_criterion_linear import ( + LinearRegressorCriterion, ) -from mlinsights.mlmodel.piecewise_tree_regression_criterion_linear import LinearRegressorCriterion # pylint: disable=E0611, E0401 class TestPiecewiseDecisionTreeExperimentLinear(ExtTestCase): - + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_criterions(self): - X = numpy.array([[10., 12., 13.]]).T - y = numpy.array([20., 22., 23.]) + X = numpy.array([[10.0, 12.0, 13.0]]).T + y = numpy.array([20.0, 22.0, 23.0]) c1 = MSE(1, X.shape[0]) c2 = LinearRegressorCriterion(1, X) self.assertNotEmpty(c1) @@ -32,9 +37,9 @@ def test_criterions(self): self.assertEqual(w.sum(), X.shape[0]) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) - # https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_criterion.pyx#L886 + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) + # https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/tree/_criterion.pyx#L886 v1 = _test_criterion_node_value(c1) v2 = _test_criterion_node_value(c2) self.assertEqual(v1, v2) @@ -46,15 +51,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 3.]]).T - y = numpy.array([1., 2., 3.]) + X = numpy.array([[1.0, 2.0, 3.0]]).T + y = numpy.array([1.0, 2.0, 3.0]) c1 = MSE(1, X.shape[0]) c2 = LinearRegressorCriterion(1, X) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertGreater(i1, i2) @@ -65,15 +70,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = LinearRegressorCriterion(1, X) w = numpy.ones((y.shape[0],)) ind = numpy.arange(y.shape[0]).astype(numpy.int64) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 0, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 0, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 0, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 0, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertGreater(i1, i2) @@ -84,15 +89,15 @@ def test_criterions(self): p2 = _test_criterion_proxy_impurity_improvement(c2) self.assertTrue(numpy.isnan(p1), numpy.isnan(p2)) - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) c1 = MSE(1, X.shape[0]) c2 = LinearRegressorCriterion(1, X) w = numpy.ones((y.shape[0],)) ind = numpy.array([0, 3, 2, 1], dtype=ind.dtype) ys = y.astype(float).reshape((y.shape[0], 1)) - _test_criterion_init(c1, ys, w, 1., ind, 1, y.shape[0]) - _test_criterion_init(c2, ys, w, 1., ind, 1, y.shape[0]) + _test_criterion_init(c1, ys, w, 1.0, ind, 1, y.shape[0]) + _test_criterion_init(c2, ys, w, 1.0, ind, 1, y.shape[0]) i1 = _test_criterion_node_impurity(c1) i2 = _test_criterion_node_impurity(c2) self.assertGreater(i1, i2) @@ -115,31 +120,33 @@ def test_criterions(self): self.assertEqual(v1, v2) try: # scikit-learn >= 0.24 - p1 = _test_criterion_impurity_improvement( - c1, 0., left1, right1) - p2 = _test_criterion_impurity_improvement( - c2, 0., left2, right2) + p1 = _test_criterion_impurity_improvement(c1, 0.0, left1, right1) + p2 = _test_criterion_impurity_improvement(c2, 0.0, left2, right2) except TypeError: # scikit-learn < 0.23 - p1 = _test_criterion_impurity_improvement(c1, 0.) - p2 = _test_criterion_impurity_improvement(c2, 0.) - self.assertGreater(p1, p2 - 1.) + p1 = _test_criterion_impurity_improvement(c1, 0.0) + p2 = _test_criterion_impurity_improvement(c2, 0.0) + self.assertGreater(p1, p2 - 1.0) - dest = numpy.empty((2, )) + dest = numpy.empty((2,)) c2.node_beta(dest) self.assertGreater(dest[0], 0) self.assertGreater(dest[1], 0) + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_criterions_check_value(self): - X = numpy.array([[10., 12., 13.]]).T - y = numpy.array([[20., 22., 23.]]).T + X = numpy.array([[10.0, 12.0, 13.0]]).T + y = numpy.array([[20.0, 22.0, 23.0]]).T c2 = LinearRegressorCriterion.create(X, y) - coef = numpy.empty((3, )) + coef = numpy.empty((3,)) c2.node_beta(coef) self.assertEqual(coef[:2], numpy.array([1, 10])) def test_decision_tree_criterion(self): - X = numpy.array([[1., 2., 10., 11.]]).T + X = numpy.array([[1.0, 2.0, 10.0, 11.0]]).T y = numpy.array([0.9, 1.1, 1.9, 2.1]) clr1 = DecisionTreeRegressor(max_depth=1) clr1.fit(X, y) @@ -163,18 +170,22 @@ def test_decision_tree_criterion_iris(self): p2 = clr2.predict(X) self.assertEqual(p1.shape, p2.shape) + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_decision_tree_criterion_iris_dtc(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr1 = DecisionTreeRegressor() clr1.fit(X, y) p1 = clr1.predict(X) - clr2 = PiecewiseTreeRegressor(criterion='mselin') + clr2 = PiecewiseTreeRegressor(criterion="mselin") clr2.fit(X, y) p2 = clr2.predict(X) self.assertEqual(p1.shape, p2.shape) - self.assertTrue(hasattr(clr2, 'betas_')) - self.assertTrue(hasattr(clr2, 'leaves_mapping_')) + self.assertTrue(hasattr(clr2, "betas_")) + self.assertTrue(hasattr(clr2, "leaves_mapping_")) self.assertEqual(len(clr2.leaves_index_), clr2.tree_.n_leaves) self.assertEqual(len(clr2.leaves_mapping_), clr2.tree_.n_leaves) self.assertEqual(clr2.betas_.shape[1], X.shape[1] + 1) @@ -182,10 +193,14 @@ def test_decision_tree_criterion_iris_dtc(self): sc1 = clr1.score(X, y) sc2 = clr2.score(X, y) self.assertGreater(sc1, sc2) - mp = clr2._mapping_train(X) # pylint: disable=W0212 + mp = clr2._mapping_train(X) self.assertIsInstance(mp, dict) self.assertGreater(len(mp), 2) + @unittest.skip( + reason="self.y = y raises: Fatal Python error: " + "__pyx_fatalerror: Acquisition count is" + ) def test_decision_tree_criterion_iris_dtc_traintest(self): iris = datasets.load_iris() X, y = iris.data, iris.target @@ -193,12 +208,12 @@ def test_decision_tree_criterion_iris_dtc_traintest(self): clr1 = DecisionTreeRegressor() clr1.fit(X_train, y_train) p1 = clr1.predict(X_train) - clr2 = PiecewiseTreeRegressor(criterion='mselin') + clr2 = PiecewiseTreeRegressor(criterion="mselin") clr2.fit(X_train, y_train) p2 = clr2.predict(X_train) self.assertEqual(p1.shape, p2.shape) - self.assertTrue(hasattr(clr2, 'betas_')) - self.assertTrue(hasattr(clr2, 'leaves_mapping_')) + self.assertTrue(hasattr(clr2, "betas_")) + self.assertTrue(hasattr(clr2, "leaves_mapping_")) self.assertEqual(len(clr2.leaves_index_), clr2.tree_.n_leaves) self.assertEqual(len(clr2.leaves_mapping_), clr2.tree_.n_leaves) self.assertEqual(clr2.betas_.shape[1], X.shape[1] + 1) @@ -209,4 +224,4 @@ def test_decision_tree_criterion_iris_dtc_traintest(self): if __name__ == "__main__": - unittest.main() + unittest.main(verbosity=2) diff --git a/_unittests/ut_mlmodel/test_piecewise_regressor.py b/_unittests/ut_mlmodel/test_piecewise_regressor.py index b4c29894..c22dce2d 100644 --- a/_unittests/ut_mlmodel/test_piecewise_regressor.py +++ b/_unittests/ut_mlmodel/test_piecewise_regressor.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from numpy.random import random @@ -9,19 +6,19 @@ from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression from sklearn.tree import DecisionTreeRegressor -from pyquickhelper.pycode import ExtTestCase, ignore_warnings +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) from mlinsights.mlmodel.piecewise_estimator import PiecewiseRegressor class TestPiecewiseRegressor(ExtTestCase): - def test_piecewise_regressor_no_intercept(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.2, 0.35], [0.2, 0.36]]) - Y = numpy.array([1., 1.1, 1.15, 1.2]) + Y = numpy.array([1.0, 1.1, 1.15, 1.2]) clr = LinearRegression(fit_intercept=False) clr.fit(X, Y) clq = PiecewiseRegressor() @@ -45,7 +42,7 @@ def test_piecewise_regressor_no_intercept(self): @ignore_warnings(UserWarning) def test_piecewise_regressor_no_intercept_bins(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.2, 0.35], [0.2, 0.36]]) - Y = numpy.array([1., 1.1, 1.15, 1.2]) + Y = numpy.array([1.0, 1.1, 1.15, 1.2]) clr = LinearRegression(fit_intercept=False) clr.fit(X, Y) clq = PiecewiseRegressor(binner="bins") @@ -64,8 +61,8 @@ def test_piecewise_regressor_no_intercept_bins(self): def test_piecewise_regressor_intercept_weights3(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([1., 1.1, 1.2]) - W = numpy.array([1., 1., 1.]) + Y = numpy.array([1.0, 1.1, 1.2]) + W = numpy.array([1.0, 1.0, 1.0]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y, W) clq = PiecewiseRegressor(verbose=False) @@ -76,10 +73,11 @@ def test_piecewise_regressor_intercept_weights3(self): self.assertEqual(pred1, pred2) def test_piecewise_regressor_intercept_weights6(self): - X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3], - [0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([1., 1.1, 1.2, 1., 1.1, 1.2]) - W = numpy.array([1., 1., 1., 1., 1., 1.]) + X = numpy.array( + [[0.1, 0.2], [0.2, 0.3], [0.3, 0.3], [0.1, 0.2], [0.2, 0.3], [0.3, 0.3]] + ) + Y = numpy.array([1.0, 1.1, 1.2, 1.0, 1.1, 1.2]) + W = numpy.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y, W) clq = PiecewiseRegressor(verbose=False) @@ -87,11 +85,11 @@ def test_piecewise_regressor_intercept_weights6(self): pred1 = clr.predict(X) pred2 = clq.predict(X) self.assertNotEqual(pred2.min(), pred2.max()) - self.assertEqual(pred1, pred2) + self.assertEqualArray(pred1, pred2, atol=1e-10) def test_piecewise_regressor_diff(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) clr = LinearRegression() clr.fit(X, Y) clq = PiecewiseRegressor(verbose=False) @@ -109,18 +107,18 @@ def test_piecewise_regressor_diff(self): def test_piecewise_regressor_pandas(self): X = pandas.DataFrame(numpy.array([[0.1, 0.2], [0.2, 0.3]])) - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clr = LinearRegression(fit_intercept=False) clr.fit(X, Y) clq = PiecewiseRegressor() clq.fit(X, Y) pred1 = clr.predict(X) pred2 = clq.predict(X) - self.assertEqual(pred1, pred2) + self.assertEqualArray(pred1, pred2, atol=1e-10) def test_piecewise_regressor_list(self): X = [[0.1, 0.2], [0.2, 0.3]] - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clq = PiecewiseRegressor() self.assertRaise(lambda: clq.fit(X, Y), TypeError) @@ -129,7 +127,7 @@ def test_piecewise_regressor_pickle(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps run_test_sklearn_pickle(lambda: LinearRegression(), X, Y) run_test_sklearn_pickle(lambda: PiecewiseRegressor(), X, Y) @@ -142,32 +140,31 @@ def test_piecewise_regressor_grid_search(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: PiecewiseRegressor(), X, Y), ValueError) - res = run_test_sklearn_grid_search_cv(lambda: PiecewiseRegressor(), - X, Y, binner__max_depth=[2, 3]) - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv(lambda: PiecewiseRegressor(), X, Y), + ValueError, + ) + res = run_test_sklearn_grid_search_cv( + lambda: PiecewiseRegressor(), X, Y, binner__max_depth=[2, 3] + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) def test_piecewise_regressor_issue(self): - X, y = make_regression(10000, n_features=1, n_informative=1, # pylint: disable=W0632 - n_targets=1) + X, y = make_regression(10000, n_features=1, n_informative=1, n_targets=1) y = y.reshape((-1, 1)) - model = PiecewiseRegressor( - binner=DecisionTreeRegressor(min_samples_leaf=300)) + model = PiecewiseRegressor(binner=DecisionTreeRegressor(min_samples_leaf=300)) model.fit(X, y) vvc = model.predict(X) - self.assertEqual(vvc.shape, (X.shape[0], )) + self.assertEqual(vvc.shape, (X.shape[0],)) def test_piecewise_regressor_raise(self): - X, y = make_regression(10000, n_features=2, n_informative=2, # pylint: disable=W0632 - n_targets=2) - model = PiecewiseRegressor( - binner=DecisionTreeRegressor(min_samples_leaf=300)) + X, y = make_regression(10000, n_features=2, n_informative=2, n_targets=2) + model = PiecewiseRegressor(binner=DecisionTreeRegressor(min_samples_leaf=300)) self.assertRaise(lambda: model.fit(X, y), RuntimeError) diff --git a/_unittests/ut_mlmodel/test_quantile_mlpregression.py b/_unittests/ut_mlmodel/test_quantile_mlpregression.py index d7a76857..bb163cd9 100644 --- a/_unittests/ut_mlmodel/test_quantile_mlpregression.py +++ b/_unittests/ut_mlmodel/test_quantile_mlpregression.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from numpy.random import random @@ -9,20 +6,20 @@ from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_absolute_error from sklearn.exceptions import ConvergenceWarning -from pyquickhelper.pycode import ExtTestCase, ignore_warnings +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import QuantileMLPRegressor from mlinsights.mlmodel import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) class TestQuantileMLPRegression(ExtTestCase): - @ignore_warnings(ConvergenceWarning) def test_quantile_regression_diff(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) clr = MLPRegressor(hidden_layer_sizes=(3,)) clr.fit(X, Y) clq = QuantileMLPRegressor(hidden_layer_sizes=(3,)) @@ -35,9 +32,9 @@ def test_quantile_regression_diff(self): self.assertLesser(err2, 5) @ignore_warnings(ConvergenceWarning) - def test_quantile_regression_pandas(self): + def test_quantile_mlpregression_pandas(self): X = pandas.DataFrame(numpy.array([[0.1, 0.2], [0.2, 0.3]])) - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clr = MLPRegressor(hidden_layer_sizes=(3,)) clr.fit(X, Y) clq = QuantileMLPRegressor(hidden_layer_sizes=(3,)) @@ -46,8 +43,8 @@ def test_quantile_regression_pandas(self): self.assertGreater(clq.n_iter_, 10) err1 = mean_absolute_error(Y, clr.predict(X)) err2 = mean_absolute_error(Y, clq.predict(X)) - self.assertLesser(err1, 3) - self.assertLesser(err2, 3) + self.assertLesser(err1, 3.2) + self.assertLesser(err2, 3.2) @ignore_warnings(ConvergenceWarning) def test_quantile_regression_pickle(self): @@ -55,12 +52,12 @@ def test_quantile_regression_pickle(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps - run_test_sklearn_pickle(lambda: MLPRegressor( - hidden_layer_sizes=(3,)), X, Y) - run_test_sklearn_pickle(lambda: QuantileMLPRegressor( - hidden_layer_sizes=(3,)), X, Y) + run_test_sklearn_pickle(lambda: MLPRegressor(hidden_layer_sizes=(3,)), X, Y) + run_test_sklearn_pickle( + lambda: QuantileMLPRegressor(hidden_layer_sizes=(3,)), X, Y + ) @ignore_warnings(ConvergenceWarning) def test_quantile_regression_clone(self): @@ -72,17 +69,24 @@ def test_quantile_regression_grid_search(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: QuantileMLPRegressor(hidden_layer_sizes=(3,)), X, Y), ValueError) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv( + lambda: QuantileMLPRegressor(hidden_layer_sizes=(3,)), X, Y + ), + ValueError, + ) res = run_test_sklearn_grid_search_cv( lambda: QuantileMLPRegressor(hidden_layer_sizes=(3,)), - X, Y, learning_rate_init=[0.001, 0.0001]) - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 11) + X, + Y, + learning_rate_init=[0.001, 0.0001], + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 11) if __name__ == "__main__": diff --git a/_unittests/ut_mlmodel/test_quantile_regression.py b/_unittests/ut_mlmodel/test_quantile_regression.py index b60b261e..a55c5a53 100644 --- a/_unittests/ut_mlmodel/test_quantile_regression.py +++ b/_unittests/ut_mlmodel/test_quantile_regression.py @@ -1,46 +1,35 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from numpy.random import random import pandas -from sklearn import __version__ as sklver from sklearn.linear_model import LinearRegression -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import QuantileLinearRegression from mlinsights.mlmodel import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) from mlinsights.mlmodel.quantile_mlpregressor import float_sign class TestQuantileRegression(ExtTestCase): - - def test_sklver(self): - self.assertTrue(compare_module_version(sklver, "0.22") >= 0) - def test_quantile_regression_no_intercept(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3]]) - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clr = LinearRegression(fit_intercept=False) clr.fit(X, Y) clq = QuantileLinearRegression(fit_intercept=False) clq.fit(X, Y) self.assertEqual(clr.intercept_, 0) - self.assertEqualArray(clr.coef_, clq.coef_) + self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10) self.assertEqual(clq.intercept_, 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualFloat(clr.intercept_, clq.intercept_) - @unittest.skipIf( - compare_module_version(sklver, "0.24") == -1, - reason="positive was introduce in 0.24") def test_quantile_regression_no_intercept_positive(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3]]) - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clr = LinearRegression(fit_intercept=False, positive=True) clr.fit(X, Y) clq = QuantileLinearRegression(fit_intercept=False, positive=True) @@ -49,82 +38,78 @@ def test_quantile_regression_no_intercept_positive(self): self.assertEqual(clq.intercept_, 0) self.assertGreater(clr.coef_.min(), 0) self.assertGreater(clq.coef_.min(), 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualFloat(clr.intercept_, clq.intercept_) self.assertEqualArray(clr.coef_[0], clq.coef_[0]) self.assertGreater(clr.coef_[1:].min(), 3) self.assertGreater(clq.coef_[1:].min(), 3) def test_quantile_regression_intercept(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([1., 1.1, 1.2]) + Y = numpy.array([1.0, 1.1, 1.2]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y) clq = QuantileLinearRegression(verbose=False, fit_intercept=True) clq.fit(X, Y) self.assertNotEqual(clr.intercept_, 0) self.assertNotEqual(clq.intercept_, 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualArray(clr.intercept_, clq.intercept_, atol=1e-10) self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10) - @unittest.skipIf( - compare_module_version(sklver, "0.24") == -1, - reason="positive was introduce in 0.24") def test_quantile_regression_intercept_positive(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([1., 1.1, 1.2]) + Y = numpy.array([1.0, 1.1, 1.2]) clr = LinearRegression(fit_intercept=True, positive=True) clr.fit(X, Y) - clq = QuantileLinearRegression( - verbose=False, fit_intercept=True, positive=True) + clq = QuantileLinearRegression(verbose=False, fit_intercept=True, positive=True) clq.fit(X, Y) self.assertNotEqual(clr.intercept_, 0) self.assertNotEqual(clq.intercept_, 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualArray(clr.intercept_, clq.intercept_, atol=1e-10) self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10) self.assertGreater(clr.coef_.min(), 0) self.assertGreater(clq.coef_.min(), 0) def test_quantile_regression_intercept_weights(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([1., 1.1, 1.2]) - W = numpy.array([1., 1., 1.]) + Y = numpy.array([1.0, 1.1, 1.2]) + W = numpy.array([1.0, 1.0, 1.0]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y, W) clq = QuantileLinearRegression(verbose=False, fit_intercept=True) clq.fit(X, Y, W) self.assertNotEqual(clr.intercept_, 0) self.assertNotEqual(clq.intercept_, 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualArray(clr.intercept_, clq.intercept_, atol=1e-10) self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10) def test_quantile_regression_diff(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y) clq = QuantileLinearRegression(verbose=False, fit_intercept=True) clq.fit(X, Y) self.assertNotEqual(clr.intercept_, 0) self.assertNotEqual(clq.intercept_, 0) - self.assertNotEqualArray(clr.coef_, clq.coef_) + self.assertNotEqualArray(clr.coef_, clq.coef_, atol=1e-10) self.assertNotEqualArray(clr.intercept_, clq.intercept_) self.assertLesser(clq.n_iter_, 10) def test_quantile_regression_pandas(self): X = pandas.DataFrame(numpy.array([[0.1, 0.2], [0.2, 0.3]])) - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clr = LinearRegression(fit_intercept=False) clr.fit(X, Y) clq = QuantileLinearRegression(fit_intercept=False) clq.fit(X, Y) self.assertEqual(clr.intercept_, 0) - self.assertEqualArray(clr.coef_, clq.coef_) + self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10) self.assertEqual(clq.intercept_, 0) - self.assertEqualArray(clr.intercept_, clq.intercept_) + self.assertEqualFloat(clr.intercept_, clq.intercept_) def test_quantile_regression_list(self): X = [[0.1, 0.2], [0.2, 0.3]] - Y = numpy.array([1., 1.1]) + Y = numpy.array([1.0, 1.1]) clq = QuantileLinearRegression(fit_intercept=False) self.assertRaise(lambda: clq.fit(X, Y), TypeError) @@ -133,7 +118,7 @@ def test_quantile_regression_list2(self): eps1 = (random(900) - 0.5) * 0.1 eps2 = random(100) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((1000, 1)) # pylint: disable=E1101 + X = X.reshape((1000, 1)) Y = X * 3.4 + 5.6 + eps clq = QuantileLinearRegression(verbose=False, fit_intercept=True) @@ -149,7 +134,7 @@ def test_quantile_regression_list2(self): self.assertNotEqual(clr.intercept_, 0) self.assertNotEqual(clq.intercept_, 0) - self.assertNotEqualArray(clr.coef_, clq.coef_) + self.assertNotEqualArray(clr.coef_, clq.coef_, atol=1e-10) self.assertNotEqualArray(clr.intercept_, clq.intercept_) self.assertLesser(clq.n_iter_, 10) @@ -162,7 +147,7 @@ def test_quantile_regression_pickle(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps run_test_sklearn_pickle(lambda: LinearRegression(), X, Y) run_test_sklearn_pickle(lambda: QuantileLinearRegression(), X, Y) @@ -175,26 +160,31 @@ def test_quantile_regression_grid_search(self): eps1 = (random(90) - 0.5) * 0.1 eps2 = random(10) * 2 eps = numpy.hstack([eps1, eps2]) - X = X.reshape((100, 1)) # pylint: disable=E1101 + X = X.reshape((100, 1)) Y = X.ravel() * 3.4 + 5.6 + eps - self.assertRaise(lambda: run_test_sklearn_grid_search_cv( - lambda: QuantileLinearRegression(), X, Y), - (ValueError, TypeError)) - res = run_test_sklearn_grid_search_cv(lambda: QuantileLinearRegression(), - X, Y, delta=[0.1, 0.001]) - self.assertIn('model', res) - self.assertIn('score', res) - self.assertGreater(res['score'], 0) - self.assertLesser(res['score'], 1) + self.assertRaise( + lambda: run_test_sklearn_grid_search_cv( + lambda: QuantileLinearRegression(), X, Y + ), + (ValueError, TypeError), + ) + res = run_test_sklearn_grid_search_cv( + lambda: QuantileLinearRegression(), X, Y, delta=[0.1, 0.001] + ) + self.assertIn("model", res) + self.assertIn("score", res) + self.assertGreater(res["score"], 0) + self.assertLesser(res["score"], 1) def test_quantile_regression_diff_quantile(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5], [0.6]]) - Y = numpy.array([1., 1.11, 1.21, 10, 1.29, 1.39]) + Y = numpy.array([1.0, 1.11, 1.21, 10, 1.29, 1.39]) clqs = [] scores = [] for q in [0.25, 0.4999, 0.5, 0.5001, 0.75]: clq = QuantileLinearRegression( - verbose=False, fit_intercept=True, quantile=q) + verbose=False, fit_intercept=True, quantile=q + ) clq.fit(X, Y) clqs.append(clq) sc = clq.score(X, Y) @@ -221,13 +211,14 @@ def test_quantile_regression_quantile_check(self): X = X.reshape((n, 1)) for q in [0.1, 0.5, 0.9]: clq = QuantileLinearRegression( - verbose=False, fit_intercept=True, quantile=q, max_iter=10) + verbose=False, fit_intercept=True, quantile=q, max_iter=10 + ) clq.fit(X, Y) y = clq.predict(X) diff = y - Y - sign = numpy.sign(diff) # pylint: disable=E1111 - pos = (sign > 0).sum() # pylint: disable=W0143 - neg = (sign < 0).sum() # pylint: disable=W0143 + sign = numpy.sign(diff) + pos = (sign > 0).sum() + neg = (sign < 0).sum() if q < 0.5: self.assertGreater(neg, pos * 4) if q > 0.5: @@ -240,7 +231,7 @@ def test_float_sign(self): def test_quantile_regression_intercept_D2(self): X = numpy.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.3]]) - Y = numpy.array([[1., 0.], [1.1, 0.1], [1.2, 0.19]]) + Y = numpy.array([[1.0, 0.0], [1.1, 0.1], [1.2, 0.19]]) clr = LinearRegression(fit_intercept=True) clr.fit(X, Y) clq = QuantileLinearRegression(verbose=False, fit_intercept=True) diff --git a/_unittests/ut_mlmodel/test_sklearn_kmeans_constraint.py b/_unittests/ut_mlmodel/test_sklearn_kmeans_constraint.py index aed94e82..0e74ed82 100644 --- a/_unittests/ut_mlmodel/test_sklearn_kmeans_constraint.py +++ b/_unittests/ut_mlmodel/test_sklearn_kmeans_constraint.py @@ -1,13 +1,10 @@ -""" -@brief test log(time=3s) -""" import unittest import pickle -from io import BytesIO +from io import BytesIO, StringIO +from contextlib import redirect_stdout import numpy import scipy.sparse import pandas -from sklearn import __version__ as sklver from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris @@ -17,48 +14,56 @@ from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.exceptions import ConvergenceWarning + try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.loghelper import BufferedPrint -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel._kmeans_constraint_ import ( - linearize_matrix, _compute_strategy_coefficient, - _constraint_association_gain) + linearize_matrix, + _compute_strategy_coefficient, + _constraint_association_gain, +) from mlinsights.mlmodel import ConstraintKMeans class TestSklearnConstraintKMeans(ExtTestCase): - def test_mat_lin(self): mat = numpy.identity(3) lin = linearize_matrix(mat) - exp = numpy.array([[1., 0., 0.], - [0., 0., 1.], - [0., 0., 2.], - [0., 1., 0.], - [1., 1., 1.], - [0., 1., 2.], - [0., 2., 0.], - [0., 2., 1.], - [1., 2., 2.]]) + exp = numpy.array( + [ + [1.0, 0.0, 0.0], + [0.0, 0.0, 1.0], + [0.0, 0.0, 2.0], + [0.0, 1.0, 0.0], + [1.0, 1.0, 1.0], + [0.0, 1.0, 2.0], + [0.0, 2.0, 0.0], + [0.0, 2.0, 1.0], + [1.0, 2.0, 2.0], + ] + ) self.assertEqual(exp, lin) def test_mat_lin_add(self): mat = numpy.identity(3) mat2 = numpy.identity(3) * 3 lin = linearize_matrix(mat, mat2) - exp = numpy.array([[1., 0., 0., 3.], - [0., 0., 1., 0.], - [0., 0., 2., 0.], - [0., 1., 0., 0.], - [1., 1., 1., 3.], - [0., 1., 2., 0.], - [0., 2., 0., 0.], - [0., 2., 1., 0.], - [1., 2., 2., 3.]]) + exp = numpy.array( + [ + [1.0, 0.0, 0.0, 3.0], + [0.0, 0.0, 1.0, 0.0], + [0.0, 0.0, 2.0, 0.0], + [0.0, 1.0, 0.0, 0.0], + [1.0, 1.0, 1.0, 3.0], + [0.0, 1.0, 2.0, 0.0], + [0.0, 2.0, 0.0, 0.0], + [0.0, 2.0, 1.0, 0.0], + [1.0, 2.0, 2.0, 3.0], + ] + ) self.assertEqual(exp, lin) def test_mat_lin_sparse(self): @@ -68,12 +73,16 @@ def test_mat_lin_sparse(self): mat[2, 1] = 7 mat = scipy.sparse.csr_matrix(mat) lin = linearize_matrix(mat) - exp = numpy.array([[1., 0., 0.], - [8., 0., 2.], - [1., 1., 1.], - [5., 1., 2.], - [7., 2., 1.], - [1., 2., 2.]]) + exp = numpy.array( + [ + [1.0, 0.0, 0.0], + [8.0, 0.0, 2.0], + [1.0, 1.0, 1.0], + [5.0, 1.0, 2.0], + [7.0, 2.0, 1.0], + [1.0, 2.0, 2.0], + ] + ) self.assertEqual(exp, lin) def test_mat_lin_sparse_add(self): @@ -85,12 +94,16 @@ def test_mat_lin_sparse_add(self): mat = scipy.sparse.csr_matrix(mat) mat2 = scipy.sparse.csr_matrix(mat2) lin = linearize_matrix(mat, mat2) - exp = numpy.array([[1., 0., 0., 3.], - [8., 0., 2., 0.], - [1., 1., 1., 3.], - [5., 1., 2., 0.], - [7., 2., 1., 0.], - [1., 2., 2., 3.]]) + exp = numpy.array( + [ + [1.0, 0.0, 0.0, 3.0], + [8.0, 0.0, 2.0, 0.0], + [1.0, 1.0, 1.0, 3.0], + [5.0, 1.0, 2.0, 0.0], + [7.0, 2.0, 1.0, 0.0], + [1.0, 2.0, 2.0, 3.0], + ] + ) self.assertEqual(exp, lin) def test_mat_lin_sparse2(self): @@ -100,10 +113,9 @@ def test_mat_lin_sparse2(self): mat[2, 1] = 7 mat = scipy.sparse.csr_matrix(mat) lin = linearize_matrix(mat) - exp = numpy.array([[1., 0., 0.], - [8., 0., 1.], - [7., 2., 1.], - [1., 2., 2.]]) + exp = numpy.array( + [[1.0, 0.0, 0.0], [8.0, 0.0, 1.0], [7.0, 2.0, 1.0], [1.0, 2.0, 2.0]] + ) self.assertEqual(exp, lin) def test_mat_lin_sparse3(self): @@ -112,11 +124,15 @@ def test_mat_lin_sparse3(self): mat[2, 1] = 7 mat = scipy.sparse.csr_matrix(mat) lin = linearize_matrix(mat) - exp = numpy.array([[1., 0., 0.], - [8., 0., 1.], - [1., 1., 1.], - [7., 2., 1.], - [1., 2., 2.]]) + exp = numpy.array( + [ + [1.0, 0.0, 0.0], + [8.0, 0.0, 1.0], + [1.0, 1.0, 1.0], + [7.0, 2.0, 1.0], + [1.0, 2.0, 2.0], + ] + ) self.assertEqual(exp, lin) def test_mat_sort(self): @@ -124,30 +140,33 @@ def test_mat_sort(self): mat[2, 0] = 0.3 mat[1, 0] = 0.2 mat[0, 0] = 0.1 - exp = numpy.array([[0.1, 0., 0.], [0.2, 1., 0.], [0.3, 0., 1.]]) + exp = numpy.array([[0.1, 0.0, 0.0], [0.2, 1.0, 0.0], [0.3, 0.0, 1.0]]) sort = mat[mat[:, 0].argsort()] self.assertEqual(exp, sort) mat.sort(axis=0) - self.assertNotEqual(exp, mat) + self.assertNotEqual(exp.tolist(), mat.tolist()) mat.sort(axis=1) - self.assertNotEqual(exp, mat) + self.assertNotEqual(exp.tolist(), mat.tolist()) @ignore_warnings(category=ConvergenceWarning) def test_kmeans_constraint(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) - km = ConstraintKMeans(n_clusters=2, verbose=0, strategy='distance', - balanced_predictions=True) + km = ConstraintKMeans( + n_clusters=2, verbose=0, strategy="distance", balanced_predictions=True + ) km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertEqualFloat(km.inertia_, 0.455) if km.labels_[0] == 0: self.assertEqual(km.labels_, numpy.array([0, 1, 0, 1])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[-0.05, -0.05], [0.6, 0.6]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[-0.05, -0.05], [0.6, 0.6]]) + ) else: self.assertEqual(km.labels_, numpy.array([1, 0, 1, 0])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[0.6, 0.6], [-0.05, -0.05]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[0.6, 0.6], [-0.05, -0.05]]) + ) pred = km.predict(mat) if km.labels_[0] == 0: self.assertEqual(pred, numpy.array([0, 1, 0, 1])) @@ -156,41 +175,46 @@ def test_kmeans_constraint(self): def test_kmeans_constraint_constraint(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) - km = ConstraintKMeans(n_clusters=2, verbose=0, strategy='distance', - balanced_predictions=True) + km = ConstraintKMeans( + n_clusters=2, verbose=0, strategy="distance", balanced_predictions=True + ) km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertEqualFloat(km.inertia_, 0.455) if km.labels_[0] == 0: self.assertEqual(km.labels_, numpy.array([0, 1, 0, 1])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[-0.05, -0.05], [0.6, 0.6]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[-0.05, -0.05], [0.6, 0.6]]) + ) else: self.assertEqual(km.labels_, numpy.array([1, 0, 1, 0])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[0.6, 0.6], [-0.05, -0.05]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[0.6, 0.6], [-0.05, -0.05]]) + ) pred = km.predict(mat) if km.labels_[0] == 0: self.assertEqual(pred, numpy.array([0, 1, 0, 1])) else: self.assertEqual(pred, numpy.array([1, 0, 1, 0])) - @ignore_warnings(category=ConvergenceWarning) + @ignore_warnings(category=(ConvergenceWarning, FutureWarning, DeprecationWarning)) def test_kmeans_constraint_sparse(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) mat = scipy.sparse.csr_matrix(mat) - km = ConstraintKMeans(n_clusters=2, verbose=0, strategy='distance') + km = ConstraintKMeans(n_clusters=2, verbose=0, strategy="distance") km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertEqualFloat(km.inertia_, 0.455) if km.labels_[0] == 0: self.assertEqual(km.labels_, numpy.array([0, 1, 0, 1])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[-0.05, -0.05], [0.6, 0.6]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[-0.05, -0.05], [0.6, 0.6]]) + ) else: self.assertEqual(km.labels_, numpy.array([1, 0, 1, 0])) - self.assertEqual(km.cluster_centers_, numpy.array( - [[0.6, 0.6], [-0.05, -0.05]])) + self.assertEqual( + km.cluster_centers_, numpy.array([[0.6, 0.6], [-0.05, -0.05]]) + ) pred = km.predict(mat) if km.labels_[0] == 0: self.assertEqual(pred, numpy.array([0, 0, 0, 1])) @@ -201,14 +225,9 @@ def test_kmeans_constraint_pipeline(self): data = load_iris() X, y = data.data, data.target X_train, X_test, y_train, y_test = train_test_split(X, y) - km = ConstraintKMeans(strategy='distance') + km = ConstraintKMeans(strategy="distance") pipe = make_pipeline(km, LogisticRegression()) - try: - pipe.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = accuracy_score(y_test, pred) self.assertGreater(score, 0.8) @@ -218,21 +237,25 @@ def test_kmeans_constraint_pipeline(self): self.assertStartsWith("ConstraintKMeans(", rp) def test_kmeans_constraint_grid(self): - df = pandas.DataFrame(dict(y=[0, 1, 0, 1, 0, 1, 0, 1], - X1=[0.5, 0.6, 0.52, 0.62, - 0.5, 0.6, 0.51, 0.61], - X2=[0.5, 0.6, 0.7, 0.5, - 1.5, 1.6, 1.7, 1.8])) - X = df.drop('y', axis=1) - y = df['y'] - model = make_pipeline(ConstraintKMeans(random_state=0, strategy='distance'), - DecisionTreeClassifier()) + df = pandas.DataFrame( + dict( + y=[0, 1, 0, 1, 0, 1, 0, 1], + X1=[0.5, 0.6, 0.52, 0.62, 0.5, 0.6, 0.51, 0.61], + X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8], + ) + ) + X = df.drop("y", axis=1) + y = df["y"] + model = make_pipeline( + ConstraintKMeans(random_state=0, strategy="distance"), + DecisionTreeClassifier(), + ) res = model.get_params(True) self.assertNotEmpty(res) parameters = { - 'constraintkmeans__n_clusters': [2, 3, 4], - 'constraintkmeans__balanced_predictions': [False, True], + "constraintkmeans__n_clusters": [2, 3, 4], + "constraintkmeans__balanced_predictions": [False, True], } clf = GridSearchCV(model, parameters, cv=3) clf.fit(X, y) @@ -240,13 +263,16 @@ def test_kmeans_constraint_grid(self): self.assertEqual(pred.shape, (8,)) def test_kmeans_constraint_pickle(self): - df = pandas.DataFrame(dict(y=[0, 1, 0, 1, 0, 1, 0, 1], - X1=[0.5, 0.6, 0.52, 0.62, - 0.5, 0.6, 0.51, 0.61], - X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8])) - X = df.drop('y', axis=1) - y = df['y'] - model = ConstraintKMeans(n_clusters=2, strategy='distance') + df = pandas.DataFrame( + dict( + y=[0, 1, 0, 1, 0, 1, 0, 1], + X1=[0.5, 0.6, 0.52, 0.62, 0.5, 0.6, 0.51, 0.61], + X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8], + ) + ) + X = df.drop("y", axis=1) + y = df["y"] + model = ConstraintKMeans(n_clusters=2, strategy="distance") model.fit(X, y) pred = model.transform(X) st = BytesIO() @@ -257,111 +283,175 @@ def test_kmeans_constraint_pickle(self): self.assertEqualArray(pred, pred2) def test__compute_sortby_coefficient(self): - m1 = numpy.array([[1., 2.], [4., 5.]]) + m1 = numpy.array([[1.0, 2.0], [4.0, 5.0]]) labels = [0, 1] - res = _compute_strategy_coefficient(m1, 'gain', labels) - exp = numpy.array([[0, 1.], [-1., 0]]) + res = _compute_strategy_coefficient(m1, "gain", labels) + exp = numpy.array([[0, 1.0], [-1.0, 0]]) self.assertEqualArray(res, exp) def test_kmeans_constraint_exc(self): - self.assertRaise(lambda: ConstraintKMeans( - n_clusters=2, strategy='r'), ValueError) + self.assertRaise( + lambda: ConstraintKMeans(n_clusters=2, strategy="r"), ValueError + ) def test_kmeans_constraint_none(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) - km = ConstraintKMeans(n_clusters=2, verbose=0, kmeans0=False, - random_state=2, strategy='distance') + km = ConstraintKMeans( + n_clusters=2, verbose=0, kmeans0=False, random_state=2, strategy="distance" + ) km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertEqualFloat(km.inertia_, 0.455) - self.assertEqual(km.cluster_centers_, numpy.array( - [[-0.05, -0.05], [0.6, 0.6]])) + self.assertEqual(km.cluster_centers_, numpy.array([[-0.05, -0.05], [0.6, 0.6]])) self.assertEqual(km.labels_, numpy.array([0, 1, 0, 1])) pred = km.predict(mat) self.assertEqual(pred, numpy.array([0, 0, 0, 1])) def test_kmeans_constraint_gain(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) - km = ConstraintKMeans(n_clusters=2, verbose=0, kmeans0=False, - random_state=1, strategy='gain') + km = ConstraintKMeans( + n_clusters=2, verbose=0, kmeans0=False, random_state=1, strategy="gain" + ) km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertEqualFloat(km.inertia_, 0.455) - self.assertEqual(km.cluster_centers_, numpy.array( - [[0.6, 0.6], [-0.05, -0.05]])) + self.assertEqual(km.cluster_centers_, numpy.array([[0.6, 0.6], [-0.05, -0.05]])) self.assertEqual(km.labels_, numpy.array([1, 0, 1, 0])) pred = km.predict(mat) self.assertEqual(pred, numpy.array([1, 1, 1, 0])) def test_kmeans_constraint_gain3(self): - mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], - [1, 1], [1.1, 0.9], [-1.1, 1.]]) + mat = numpy.array( + [[0, 0], [-0.1, 0.1], [0.1, 0.1], [0.8, 0.8], [1.1, 0.9], [1.1, 1.0]] + ) # Choose random_state=2 to get the labels [1 1 0 2 2 0]. # This configuration can only be modified with a permutation # of 3 elements. - km = ConstraintKMeans(n_clusters=3, verbose=0, kmeans0=False, - random_state=1, strategy='gain', - balanced_predictions=True) + km = ConstraintKMeans( + n_clusters=3, + verbose=0, + kmeans0=False, + random_state=1, + strategy="gain", + balanced_predictions=True, + ) km.fit(mat) self.assertEqual(km.cluster_centers_.shape, (3, 2)) lab = km.labels_ - self.assertEqual(lab[1], lab[2]) - self.assertEqual(lab[0], lab[5]) - self.assertEqual(lab[3], lab[4]) + try: + self.assertEqual(lab[0], lab[1]) + self.assertEqual(lab[2], lab[3]) + self.assertEqual(lab[4], lab[5]) + except AssertionError as e: + raise AssertionError(f"Issue with labels {lab}") from e pred = km.predict(mat) self.assertEqualArray(pred, lab) def test_kmeans_constraint_blobs(self): - data = make_blobs(n_samples=8, n_features=2, centers=2, cluster_std=1.0, - center_box=(-10.0, 0.0), shuffle=True, random_state=0) + data = make_blobs( + n_samples=8, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(-10.0, 0.0), + shuffle=True, + random_state=0, + ) X1 = data[0] - data = make_blobs(n_samples=4, n_features=2, centers=2, cluster_std=1.0, - center_box=(0.0, 10.0), shuffle=True, random_state=0) + data = make_blobs( + n_samples=4, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(0.0, 10.0), + shuffle=True, + random_state=0, + ) X2 = data[0] X = numpy.vstack([X1, X2]) - km = ConstraintKMeans(n_clusters=4, verbose=0, kmeans0=False, - random_state=2, strategy='gain', - balanced_predictions=True) + km = ConstraintKMeans( + n_clusters=4, + verbose=0, + kmeans0=False, + random_state=2, + strategy="gain", + balanced_predictions=True, + ) km.fit(X) self.assertEqual(km.labels_[-2], km.labels_[-1]) self.assertIn(km.labels_[-1], {km.labels_[-4], km.labels_[-3]}) def test_kmeans_contrainst_association_gain_ex(self): - X = numpy.array([[-4.36782139, -1.39383283], - [-2.47828717, -4.75632643], - [-3.21132851, -4.42949315], - [-3.52850301, -4.21749384], - [-4.61508381, -2.43750783], - [-2.64430697, -3.82538422], - [-3.65929854, -5.40526391], - [-3.56177654, -2.99946354], - [6.17167733, 6.90310534], - [5.92441491, 5.85943033], - [6.43822346, 7.00053646], - [7.35569303, 6.17461578]]) - centers = numpy.array([[-3.10434484, -4.52679231], - [6.47250218, 6.48442198], - [-4.4914526, -1.91567033], - [-3.56177654, -2.99946354]]) + X = numpy.array( + [ + [-4.36782139, -1.39383283], + [-2.47828717, -4.75632643], + [-3.21132851, -4.42949315], + [-3.52850301, -4.21749384], + [-4.61508381, -2.43750783], + [-2.64430697, -3.82538422], + [-3.65929854, -5.40526391], + [-3.56177654, -2.99946354], + [6.17167733, 6.90310534], + [5.92441491, 5.85943033], + [6.43822346, 7.00053646], + [7.35569303, 6.17461578], + ] + ) + centers = numpy.array( + [ + [-3.10434484, -4.52679231], + [6.47250218, 6.48442198], + [-4.4914526, -1.91567033], + [-3.56177654, -2.99946354], + ] + ) distances_close = numpy.array([0] * X.shape[0]) labels = numpy.array([2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 1, 1]) - _constraint_association_gain(numpy.array([0, 0, 0, 0]), numpy.array([0, 0, 0, 0]), - labels, numpy.array( - [0, 0, 0, 0]), distances_close, - centers, X, x_squared_norms=None, limit=3, strategy="gain") + _constraint_association_gain( + numpy.array([0, 0, 0, 0]), + numpy.array([0, 0, 0, 0]), + labels, + numpy.array([0, 0, 0, 0]), + distances_close, + centers, + X, + x_squared_norms=None, + limit=3, + strategy="gain", + ) def test_kmeans_constraint_blobs20(self): - data = make_blobs(n_samples=20, n_features=2, centers=2, cluster_std=1.0, - center_box=(-10.0, 0.0), shuffle=True, random_state=0) + data = make_blobs( + n_samples=20, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(-10.0, 0.0), + shuffle=True, + random_state=0, + ) X1 = data[0] - data = make_blobs(n_samples=10, n_features=2, centers=2, cluster_std=1.0, - center_box=(0.0, 10.0), shuffle=True, random_state=0) + data = make_blobs( + n_samples=10, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(0.0, 10.0), + shuffle=True, + random_state=0, + ) X2 = data[0] X = numpy.vstack([X1, X2]) - km = ConstraintKMeans(n_clusters=4, verbose=0, kmeans0=False, - random_state=2, strategy='gain', - balanced_predictions=True, - history=True) + km = ConstraintKMeans( + n_clusters=4, + verbose=0, + kmeans0=False, + random_state=2, + strategy="gain", + balanced_predictions=True, + history=True, + ) km.fit(X) pred = km.predict(X) diff = numpy.abs(km.labels_ - pred).sum() @@ -371,45 +461,68 @@ def test_kmeans_constraint_blobs20(self): def test_kmeans_constraint_weights(self): mat = numpy.array([[0, 0], [0.2, 0.2], [-0.1, -0.1], [1, 1]]) - km = ConstraintKMeans(n_clusters=2, verbose=10, kmeans0=False, - random_state=1, strategy='weights') - buf = BufferedPrint() - km.fit(mat, fLOG=buf.fprint) + km = ConstraintKMeans( + n_clusters=2, verbose=10, kmeans0=False, random_state=1, strategy="weights" + ) + f = StringIO() + with redirect_stdout(f): + km.fit(mat) + self.assertIn("CKMeans", f.getvalue()) - km = ConstraintKMeans(n_clusters=2, verbose=5, kmeans0=False, - random_state=1, strategy='weights') - km.fit(mat, fLOG=buf.fprint) + km = ConstraintKMeans( + n_clusters=2, verbose=5, kmeans0=False, random_state=1, strategy="weights" + ) + f = StringIO() + with redirect_stdout(f): + km.fit(mat) + self.assertIn("CKMeans", f.getvalue()) self.assertEqual(km.cluster_centers_.shape, (2, 2)) self.assertLesser(km.inertia_, 4.55) - self.assertEqual(km.cluster_centers_, numpy.array( - [[0.6, 0.6], [-0.05, -0.05]])) + self.assertEqual(km.cluster_centers_, numpy.array([[0.6, 0.6], [-0.05, -0.05]])) self.assertEqual(km.labels_, numpy.array([1, 0, 1, 0])) pred = km.predict(mat) - self.assertEqual(pred, numpy.array([1, 1, 1, 0])) + self.assertEqual(pred.tolist(), numpy.array([1, 1, 1, 0]).tolist()) dist = km.transform(mat) self.assertEqual(dist.shape, (4, 2)) - score = km.score(mat) - self.assertEqual(score.shape, (4, )) - self.assertIn("CKMeans", str(buf)) + f = StringIO() + with redirect_stdout(f): + score = km.score(mat) + self.assertEqual(score.shape, (4,)) + # self.assertIn("CKMeans", f.getvalue()) km.weights_ = None - score = km.score(mat) - self.assertEqual(score.shape, (2, )) - self.assertIn("CKMeans", str(buf)) + with redirect_stdout(f): + score = km.score(mat) + self.assertEqual(score.shape, (2,)) + # self.assertIn("CKMeans", f.getvalue()) def test_kmeans_constraint_weights_bigger(self): n_samples = 100 - data = make_blobs(n_samples=n_samples, n_features=2, centers=2, cluster_std=1.0, - center_box=(-10.0, 0.0), shuffle=True, random_state=2) + data = make_blobs( + n_samples=n_samples, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(-10.0, 0.0), + shuffle=True, + random_state=2, + ) X1 = data[0] - data = make_blobs(n_samples=n_samples // 2, n_features=2, centers=2, cluster_std=1.0, - center_box=(0.0, 10.0), shuffle=True, random_state=2) + data = make_blobs( + n_samples=n_samples // 2, + n_features=2, + centers=2, + cluster_std=1.0, + center_box=(0.0, 10.0), + shuffle=True, + random_state=2, + ) X2 = data[0] X = numpy.vstack([X1, X2]) - km = ConstraintKMeans(n_clusters=4, strategy='weights', history=True) + km = ConstraintKMeans(n_clusters=4, strategy="weights", history=True) km.fit(X) cl = km.predict(X) - self.assertEqual(cl.shape, (X.shape[0], )) + self.assertEqual(cl.shape, (X.shape[0],)) cls = km.cluster_centers_iter_ self.assertEqual(len(cls.shape), 3) edges = km.cluster_edges() @@ -419,4 +532,4 @@ def test_kmeans_constraint_weights_bigger(self): if __name__ == "__main__": - unittest.main() + unittest.main(verbosity=2) diff --git a/_unittests/ut_mlmodel/test_sklearn_text.py b/_unittests/ut_mlmodel/test_sklearn_text.py index 1a3c3fce..5691eedd 100644 --- a/_unittests/ut_mlmodel/test_sklearn_text.py +++ b/_unittests/ut_mlmodel/test_sklearn_text.py @@ -1,25 +1,25 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer -from pyquickhelper.pycode import ExtTestCase -from mlinsights.mlmodel.sklearn_text import TraceableTfidfVectorizer, TraceableCountVectorizer +from mlinsights.ext_test_case import ExtTestCase +from mlinsights.mlmodel.sklearn_text import ( + TraceableTfidfVectorizer, + TraceableCountVectorizer, +) class TestSklearnText(ExtTestCase): - def test_count_vectorizer(self): - - corpus = numpy.array([ - "This is the first document.", - "This document is the second document.", - "And this is the third one.", - "Is this the first document?", - "", - ]).reshape((5, )) + corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "And this is the third one.", + "Is this the first document?", + "", + ] + ).reshape((5,)) for ng in [(1, 1), (1, 2), (2, 2), (1, 3)]: mod1 = CountVectorizer(ngram_range=ng) @@ -37,22 +37,22 @@ def test_count_vectorizer(self): self.assertIsInstance(k, tuple) def test_count_vectorizer_regex(self): - - corpus = numpy.array([ - "This is the first document.", - "This document is the second document.", - "And this is the third one.", - "Is this the first document?", - "", - ]).reshape((5, )) + corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "And this is the third one.", + "Is this the first document?", + "", + ] + ).reshape((5,)) for pattern in ["[a-zA-Z ]{1,4}", "[a-zA-Z]{1,4}"]: for ng in [(1, 1), (1, 2), (2, 2), (1, 3)]: mod1 = CountVectorizer(ngram_range=ng, token_pattern=pattern) mod1.fit(corpus) - mod2 = TraceableCountVectorizer(ngram_range=ng, - token_pattern=pattern) + mod2 = TraceableCountVectorizer(ngram_range=ng, token_pattern=pattern) mod2.fit(corpus) pred1 = mod1.transform(corpus) @@ -67,19 +67,20 @@ def test_count_vectorizer_regex(self): for k in voc: self.assertIsInstance(k, tuple) for i in k: - if ' ' in i: + if " " in i: spaces += 1 self.assertGreater(spaces, 1) def test_tfidf_vectorizer(self): - - corpus = numpy.array([ - "This is the first document.", - "This document is the second document.", - "And this is the third one.", - "Is this the first document?", - "", - ]).reshape((5, )) + corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "And this is the third one.", + "Is this the first document?", + "", + ] + ).reshape((5,)) for ng in [(1, 1), (1, 2), (2, 2), (1, 3)]: mod1 = TfidfVectorizer(ngram_range=ng) @@ -97,33 +98,34 @@ def test_tfidf_vectorizer(self): self.assertIsInstance(k, tuple) def test_tfidf_vectorizer_regex(self): - corpus = numpy.array([ - "This is the first document.", - "This document is the second document.", - "And this is the third one.", - "Is this the first document?", - "", - ]).reshape((5, )) + corpus = numpy.array( + [ + "This is the first document.", + "This document is the second document.", + "And this is the third one.", + "Is this the first document?", + "", + ] + ).reshape((5,)) for pattern in ["[a-zA-Z ]{1,4}", "[a-zA-Z]{1,4}"]: for ng in [(1, 1), (1, 2), (2, 2), (1, 3)]: mod1 = TfidfVectorizer(ngram_range=ng, token_pattern=pattern) mod1.fit(corpus) - mod2 = TraceableTfidfVectorizer(ngram_range=ng, - token_pattern=pattern) + mod2 = TraceableTfidfVectorizer(ngram_range=ng, token_pattern=pattern) mod2.fit(corpus) pred1 = mod1.transform(corpus) pred2 = mod2.transform(corpus) - if ' ]' in pattern: + if " ]" in pattern: voc = mod2.vocabulary_ spaces = 0 for k in voc: self.assertIsInstance(k, tuple) for i in k: - if ' ' in i: + if " " in i: spaces += 1 self.assertGreater(spaces, 1) self.assertEqualArray(pred1.todense(), pred2.todense()) diff --git a/_unittests/ut_mlmodel/test_sklearn_transform_inv.py b/_unittests/ut_mlmodel/test_sklearn_transform_inv.py index dc2c6a59..2cadf5ba 100644 --- a/_unittests/ut_mlmodel/test_sklearn_transform_inv.py +++ b/_unittests/ut_mlmodel/test_sklearn_transform_inv.py @@ -1,20 +1,20 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase -from mlinsights.mlmodel import FunctionReciprocalTransformer, PermutationReciprocalTransformer +from mlinsights.ext_test_case import ExtTestCase +from mlinsights.mlmodel import ( + FunctionReciprocalTransformer, + PermutationReciprocalTransformer, +) class TestSklearnTransformInv(ExtTestCase): - def test_sklearn_transform_inv_log(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], - [0.2, 0.35], [-0.2, -0.36]], dtype=float) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]], dtype=float + ) Y = numpy.array([0, 1, 0, 1], dtype=float) + 1 - tr = FunctionReciprocalTransformer('log') + tr = FunctionReciprocalTransformer("log") tr.fit() x1, y1 = tr.transform(X, Y) self.assertEqualArray(X, x1) @@ -25,10 +25,11 @@ def test_sklearn_transform_inv_log(self): self.assertEqualArray(Y, y2) def test_sklearn_transform_inv_log1(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], - [0.2, 0.35], [-0.2, -0.36]], dtype=float) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]], dtype=float + ) Y = numpy.array([0, 1, 0, 1], dtype=float) + 1 - tr = FunctionReciprocalTransformer('log(1+x)') + tr = FunctionReciprocalTransformer("log(1+x)") tr.fit() x1, y1 = tr.transform(X, Y) self.assertEqualArray(X, x1) @@ -36,15 +37,17 @@ def test_sklearn_transform_inv_log1(self): inv = tr.get_fct_inv() x2, y2 = inv.transform(x1, y1) self.assertEqualArray(X, x2) - self.assertEqualArray(Y, y2) + self.assertEqualArray(Y, y2, atol=1e-10) def test_sklearn_transform_inv_err(self): - self.assertRaise(lambda: FunctionReciprocalTransformer('log(1+x)***'), - ValueError) + self.assertRaise( + lambda: FunctionReciprocalTransformer("log(1+x)***"), ValueError + ) def test_sklearn_transform_inv_sqrt(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], - [0.2, 0.35], [-0.2, -0.36]], dtype=float) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]], dtype=float + ) Y = numpy.array([0, 1, 0, 1], dtype=float) + 1 tr = FunctionReciprocalTransformer(lambda x: x * x, numpy.sqrt) tr.fit() @@ -57,8 +60,9 @@ def test_sklearn_transform_inv_sqrt(self): self.assertEqualArray(Y, y2) def test_permutation_reciprocal_transformer(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], - [0.2, 0.35], [-0.2, -0.36]], dtype=float) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]], dtype=float + ) Y = numpy.array([0, 1, 0, 1], dtype=int) + 1 p = PermutationReciprocalTransformer(0) p.fit(X, Y) @@ -74,8 +78,9 @@ def test_permutation_reciprocal_transformer(self): self.assertEqualArray(Y, y2) def test_permutation_reciprocal_transformer_nan(self): - X = numpy.array([[0.1, 0.2], [-0.2, -0.3], - [0.2, 0.35], [-0.2, -0.36]], dtype=float) + X = numpy.array( + [[0.1, 0.2], [-0.2, -0.3], [0.2, 0.35], [-0.2, -0.36]], dtype=float + ) Y = numpy.array([0, 1, 0, numpy.nan], dtype=float) + 1 p = PermutationReciprocalTransformer(0) p.fit(X, Y) diff --git a/_unittests/ut_mlmodel/test_target_predictors.py b/_unittests/ut_mlmodel/test_target_predictors.py index def3fd88..610fb75b 100644 --- a/_unittests/ut_mlmodel/test_target_predictors.py +++ b/_unittests/ut_mlmodel/test_target_predictors.py @@ -1,29 +1,24 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy -from sklearn import __version__ as sklver from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.exceptions import ConvergenceWarning + try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel.sklearn_transform_inv_fct import FunctionReciprocalTransformer from mlinsights.mlmodel import TransformedTargetClassifier2, TransformedTargetRegressor2 class TestTargetPredictors(ExtTestCase): - def test_target_regressor(self): - tt = TransformedTargetRegressor2(regressor=None, transformer='log') + tt = TransformedTargetRegressor2(regressor=None, transformer="log") X = numpy.arange(4).reshape(-1, 1) y = numpy.exp(2 * X).ravel() tt.fit(X, y) @@ -31,24 +26,23 @@ def test_target_regressor(self): coef = tt.regressor_.coef_ self.assertEqualArray(coef, numpy.array([2], dtype=float)) yp = tt.predict(X) - self.assertEqual(yp.shape, (4, )) + self.assertEqual(yp.shape, (4,)) sc = tt.score(X, y) - self.assertLesser(sc, 1.) + self.assertLesser(sc, 1.0) def test_target_regressor_permute(self): - tt = TransformedTargetRegressor2(regressor=None, transformer='permute') + tt = TransformedTargetRegressor2(regressor=None, transformer="permute") X = numpy.arange(4).reshape(-1, 1) y = numpy.exp(2 * X).ravel() tt.fit(X, y) self.assertIn("TransformedTargetRegressor2", str(tt)) yp = tt.predict(X) - self.assertEqual(yp.shape, (4, )) + self.assertEqual(yp.shape, (4,)) sc = tt.score(X, y) - self.assertLesser(sc, 1.) + self.assertLesser(sc, 1.0) def test_target_classifier(self): - tt = TransformedTargetClassifier2( - classifier=None, transformer='permute') + tt = TransformedTargetClassifier2(classifier=None, transformer="permute") X = numpy.arange(4).reshape(-1, 1) y = numpy.array([0, 0, 1, 1], dtype=int) tt.fit(X, y) @@ -56,13 +50,12 @@ def test_target_classifier(self): coef = tt.classifier_.coef_ self.assertEqual(coef.shape, (1, 1)) yp = tt.predict(X) - self.assertEqual(yp.shape, (4, )) + self.assertEqual(yp.shape, (4,)) sc = tt.score(X, y) - self.assertLesser(sc, 1.) + self.assertLesser(sc, 1.0) def test_target_classifier_proba(self): - tt = TransformedTargetClassifier2( - classifier=None, transformer='permute') + tt = TransformedTargetClassifier2(classifier=None, transformer="permute") X = numpy.arange(4).reshape(-1, 1) y = numpy.array([0, 0, 1, 1], dtype=int) tt.fit(X, y) @@ -81,8 +74,7 @@ def test_target_classifier_proba(self): self.assertEqualArray(yp, yp2) def test_target_classifier_decision(self): - tt = TransformedTargetClassifier2( - classifier=None, transformer='permute') + tt = TransformedTargetClassifier2(classifier=None, transformer="permute") X = numpy.arange(4).reshape(-1, 1) y = numpy.array([0, 0, 1, 1], dtype=int) tt.fit(X, y) @@ -101,7 +93,7 @@ def test_target_classifier_err(self): self.assertRaise(lambda: tt.fit(X, y), TypeError) def test_target_regressor_any(self): - trans = FunctionReciprocalTransformer('log') + trans = FunctionReciprocalTransformer("log") tt = TransformedTargetRegressor2(regressor=None, transformer=trans) X = numpy.arange(4).reshape(-1, 1) y = numpy.exp(2 * X).ravel() @@ -110,19 +102,19 @@ def test_target_regressor_any(self): coef = tt.regressor_.coef_ self.assertEqualArray(coef, numpy.array([2], dtype=float)) yp = tt.predict(X) - self.assertEqual(yp.shape, (4, )) + self.assertEqual(yp.shape, (4,)) sc = tt.score(X, y) - self.assertLesser(sc, 1.) + self.assertLesser(sc, 1.0) def test_target_classifier_any(self): - trans = FunctionReciprocalTransformer('log') + trans = FunctionReciprocalTransformer("log") tt = TransformedTargetClassifier2(classifier=None, transformer=trans) X = numpy.arange(4).reshape(-1, 1) y = numpy.exp(2 * X).ravel() tt.fit(X, y) self.assertIn("TransformedTargetClassifier2", str(tt)) yp = tt.predict(X) - self.assertEqual(yp.shape, (4, )) + self.assertEqual(yp.shape, (4,)) def test_target_classifier_permute(self): X = numpy.arange(4).reshape(-1, 1) @@ -132,19 +124,16 @@ def test_target_classifier_permute(self): log.fit(X, y) sc = log.score(X, y) - tt = TransformedTargetClassifier2( - classifier=None, transformer='permute') + tt = TransformedTargetClassifier2(classifier=None, transformer="permute") tt.fit(X, y) sc2 = tt.score(X, y) self.assertEqual(sc, sc2) - @ignore_warnings(category=(ConvergenceWarning, )) + @ignore_warnings(category=(ConvergenceWarning,)) def test_target_classifier_permute_iris(self): - data = load_iris() X, y = data.data, data.target - X_train, X_test, y_train, y_test = train_test_split( - X, y, random_state=12) + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=12) log = LogisticRegression(n_jobs=1) log.fit(X_train, y_train) @@ -152,17 +141,11 @@ def test_target_classifier_permute_iris(self): r2 = r2_score(y_test, log.predict(X_test)) for _ in range(10): - TransformedTargetClassifier2( - classifier=None, transformer='permute') + TransformedTargetClassifier2(classifier=None, transformer="permute") tt = TransformedTargetClassifier2( - classifier=LogisticRegression(n_jobs=1), - transformer='permute') - try: - tt.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + classifier=LogisticRegression(n_jobs=1), transformer="permute" + ) + tt.fit(X_train, y_train) sc2 = tt.score(X_test, y_test) self.assertEqual(sc, sc2) r22 = r2_score(y_test, tt.predict(X_test)) diff --git a/_unittests/ut_mlmodel/test_transfer_transformer.py b/_unittests/ut_mlmodel/test_transfer_transformer.py index 0ecec14f..d370c12a 100644 --- a/_unittests/ut_mlmodel/test_transfer_transformer.py +++ b/_unittests/ut_mlmodel/test_transfer_transformer.py @@ -1,22 +1,18 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline, Pipeline -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mlmodel import TransferTransformer from mlinsights.mlmodel import run_test_sklearn_pickle, run_test_sklearn_clone class TestTransferTransformer(ExtTestCase): - def test_transfer_transformer_diff(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) norm = StandardScaler() norm.fit(X) X2 = norm.transform(X) @@ -25,16 +21,15 @@ def test_transfer_transformer_diff(self): clr.fit(X2, Y) exp = clr.predict(X2) - pipe = make_pipeline(TransferTransformer(norm), - TransferTransformer(clr)) + pipe = make_pipeline(TransferTransformer(norm), TransferTransformer(clr)) pipe.fit(X) got = pipe.transform(X) self.assertEqual(exp, got) def test_transfer_transformer_sample_weight(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) - sw = numpy.array([1, 1, 1.5, 1.5, 1.]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) + sw = numpy.array([1, 1, 1.5, 1.5, 1.0]) norm = StandardScaler() norm.fit(X) X2 = norm.transform(X) @@ -43,9 +38,12 @@ def test_transfer_transformer_sample_weight(self): clr.fit(X2, Y) exp = clr.predict(X2) - pipe = Pipeline(steps=[ - ('scaler', TransferTransformer(norm)), - ('model', TransferTransformer(clr))]) + pipe = Pipeline( + steps=[ + ("scaler", TransferTransformer(norm)), + ("model", TransferTransformer(clr)), + ] + ) pipe.fit(X, model__sample_weight=sw) got = pipe.transform(X) self.assertEqual(exp, got) @@ -61,8 +59,7 @@ def test_transfer_transformer_logreg(self): clr.fit(X2, Y) exp = clr.predict_proba(X2) - pipe = make_pipeline(TransferTransformer(norm), - TransferTransformer(clr)) + pipe = make_pipeline(TransferTransformer(norm), TransferTransformer(clr)) pipe.fit(X) got = pipe.transform(X) self.assertEqual(exp, got) @@ -80,14 +77,15 @@ def test_transfer_transformer_decision_function(self): pipe = make_pipeline( TransferTransformer(norm), - TransferTransformer(clr, method="decision_function")) + TransferTransformer(clr, method="decision_function"), + ) pipe.fit(X) got = pipe.transform(X) self.assertEqual(exp, got) def test_transfer_transformer_diff_trainable(self): X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) norm = StandardScaler() norm.fit(X) X2 = norm.transform(X) @@ -96,8 +94,10 @@ def test_transfer_transformer_diff_trainable(self): clr.fit(X2, Y) exp = clr.predict(X2) - pipe = make_pipeline(TransferTransformer(norm, trainable=True), - TransferTransformer(clr, trainable=True)) + pipe = make_pipeline( + TransferTransformer(norm, trainable=True), + TransferTransformer(clr, trainable=True), + ) pipe.fit(X, Y) got = pipe.transform(X) self.assertEqual(exp, got) @@ -118,9 +118,8 @@ def test_transfer_transformer_cloned0(self): run_test_sklearn_clone(lambda: tr1, ext=self, copy_fitted=True) def test_transfer_transformer_pickle(self): - X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) norm = StandardScaler() norm.fit(X) X2 = norm.transform(X) @@ -128,15 +127,13 @@ def test_transfer_transformer_pickle(self): clr = LinearRegression() clr.fit(X2, Y) - pipe = make_pipeline(TransferTransformer(norm), - TransferTransformer(clr)) + pipe = make_pipeline(TransferTransformer(norm), TransferTransformer(clr)) pipe.fit(X) run_test_sklearn_pickle(lambda: pipe, X, Y) def test_transfer_transformer_clone(self): - X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]]) - Y = numpy.array([1., 1.1, 1.2, 10, 1.4]) + Y = numpy.array([1.0, 1.1, 1.2, 10, 1.4]) norm = StandardScaler() norm.fit(X) X2 = norm.transform(X) diff --git a/_unittests/ut_mlmodel/test_tsne_predictable.py b/_unittests/ut_mlmodel/test_tsne_predictable.py index ee7dfd4a..f5e769ff 100644 --- a/_unittests/ut_mlmodel/test_tsne_predictable.py +++ b/_unittests/ut_mlmodel/test_tsne_predictable.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" import unittest import numpy from numpy.random import RandomState @@ -11,14 +8,12 @@ from sklearn.neighbors import KNeighborsRegressor from sklearn.neural_network import MLPRegressor from sklearn.manifold import TSNE -from pyquickhelper.pycode import ( - ExtTestCase, skipif_circleci, ignore_warnings) +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.mlmodel import PredictableTSNE from mlinsights.mlmodel import run_test_sklearn_pickle, run_test_sklearn_clone class TestPredictableTSNE(ExtTestCase): - @ignore_warnings(ConvergenceWarning) def test_predictable_tsne(self): iris = datasets.load_iris() @@ -30,13 +25,11 @@ def test_predictable_tsne(self): self.assertGreater(clr.loss_, 0) self.assertNotEmpty(pred) - @skipif_circleci('stuck') @ignore_warnings(ConvergenceWarning) def test_predictable_tsne_knn(self): iris = datasets.load_iris() X, y = iris.data[:20], iris.target[:20] - clr = PredictableTSNE(estimator=KNeighborsRegressor(), - keep_tsne_outputs=True) + clr = PredictableTSNE(estimator=KNeighborsRegressor(), keep_tsne_outputs=True) clr.fit(X, y) pred = clr.transform(X) self.assertTrue(hasattr(clr, "tsne_outputs_")) @@ -79,9 +72,11 @@ def test_predictable_tsne_relevance(self): Ys.extend([cl for i in range(n)]) X = numpy.vstack(Xs) Y = numpy.array(Ys) - clk = PredictableTSNE(transformer=TSNE(n_components=2), - normalizer=StandardScaler(with_mean=False), - keep_tsne_outputs=True) + clk = PredictableTSNE( + transformer=TSNE(n_components=2), + normalizer=StandardScaler(with_mean=False), + keep_tsne_outputs=True, + ) clk.fit(X, Y) pred = clk.transform(X) self.assertGreater(clk.loss_, 0) diff --git a/_unittests/ut_mltree/test_tree_digitize.py b/_unittests/ut_mltree/test_tree_digitize.py index c103d1dc..d09c8fd1 100644 --- a/_unittests/ut_mltree/test_tree_digitize.py +++ b/_unittests/ut_mltree/test_tree_digitize.py @@ -1,85 +1,80 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from sklearn.tree import DecisionTreeRegressor + try: - from sklearn.tree._tree import TREE_UNDEFINED # pylint: disable=E0611 + from sklearn.tree._tree import TREE_UNDEFINED except ImportError: TREE_UNDEFINED = None -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mltree import digitize2tree class TestTreeDigitize(ExtTestCase): - @unittest.skipIf(TREE_UNDEFINED is None, reason="nothing to test") def test_cst(self): self.assertEqual(TREE_UNDEFINED, -2) def test_exc(self): bins = numpy.array([0.0, 1.0]) - self.assertRaise(lambda: digitize2tree(bins, right=False), - RuntimeError) + self.assertRaise(lambda: digitize2tree(bins, right=False), RuntimeError) bins = numpy.array([1.0, 0.0]) - self.assertRaise(lambda: digitize2tree(bins, right=False), - RuntimeError) + self.assertRaise(lambda: digitize2tree(bins, right=False), RuntimeError) def test_tree_digitize1(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([1.0]) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) self.assertIsInstance(tree, DecisionTreeRegressor) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) def test_tree_digitize2(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([1.0, 2.0]) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) def test_tree_digitize3(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([1.0, 2.0, 3.5]) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) def test_tree_digitize4(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([0.0, 1.0, 2.5, 4.0]) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) def test_tree_digitize5(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([0.0, 1.0, 2.5, 4.0, 7.0]) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) @@ -87,22 +82,22 @@ def test_tree_digitize5_false(self): x = numpy.array([0.2, 6.4, 3.0, 1.6]) bins = numpy.array([0.0, 1.0, 2.5, 4.0, 7.0]) bins[:] = bins[::-1].copy() - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) def test_tree_digitize_bigger(self): x = numpy.array([0, 1, 2, 3, 4, 5, 6, -1], dtype=numpy.float32) bins = numpy.array([0, 1, 2, 3, 4], dtype=numpy.float32) - expected = numpy.digitize(x, bins, right=True) + expected = numpy.digitize(x, bins, right=True).astype(numpy.float64) tree = digitize2tree(bins, right=True) pred = tree.predict(x.reshape((-1, 1))) self.assertEqualArray(expected, pred) - expected = numpy.digitize(bins, bins, right=True) + expected = numpy.digitize(bins, bins, right=True).astype(numpy.float64) pred = tree.predict(bins.reshape((-1, 1))) self.assertEqualArray(expected, pred) diff --git a/_unittests/ut_mltree/test_tree_structure.py b/_unittests/ut_mltree/test_tree_structure.py index ab39ffb7..9e598c61 100644 --- a/_unittests/ut_mltree/test_tree_structure.py +++ b/_unittests/ut_mltree/test_tree_structure.py @@ -1,18 +1,14 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import numpy from sklearn import datasets from sklearn.tree import DecisionTreeClassifier -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.mltree import tree_leave_index, tree_node_range, tree_leave_neighbors from mlinsights.mltree.tree_structure import tree_find_common_node class TestTreeStructure(ExtTestCase): - def test_iris(self): iris = datasets.load_iris() X, y = iris.data, iris.target @@ -22,20 +18,20 @@ def test_iris(self): self.assertNotEmpty(leaves) def test_cube(self): - X = numpy.array([[0, 0], [0, 1], [0, 2], - [1, 0], [1, 1], [1, 2], - [2, 0], [2, 1], [2, 2]]) + X = numpy.array( + [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + ) y = list(range(X.shape[0])) clr = DecisionTreeClassifier(max_depth=4) clr.fit(X, y) leaves = tree_leave_index(clr) exp = { 8: numpy.array([[1.5, numpy.nan], [1.5, numpy.nan]]), - 4: numpy.array([[0.5, 1.5], [0.5, 1.5]]) + 4: numpy.array([[0.5, 1.5], [0.5, 1.5]]), } for le in leaves: ra = tree_node_range(clr, le) - cl = clr.tree_.value[le] # pylint: disable=E1136 + cl = clr.tree_.value[le] am = numpy.argmax(cl.ravel()) if am in exp: self.assertEqualArray(ra, exp[am]) @@ -44,9 +40,9 @@ def test_cube(self): self.assertEqual(common, (0, [], [1])) def test_tree_leave_neighbors(self): - X = numpy.array([[0, 0], [0, 1], [0, 2], - [1, 0], [1, 1], [1, 2], - [2, 0], [2, 1], [2, 2]]) + X = numpy.array( + [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] + ) y = list(range(X.shape[0])) clr = DecisionTreeClassifier(max_depth=4) clr.fit(X, y) @@ -65,9 +61,19 @@ def test_tree_leave_neighbors(self): self.assertEqual(len(v[0][2]), 2) def test_tree_leave_neighbors2(self): - X = numpy.array([[0, 0, 0], [0, 0, 1], [0, 0, 2], - [1, 0, 0], [1, 0, 1], [1, 0, 2], - [2, 0, 0], [2, 0, 1], [2, 0, 2]]) + X = numpy.array( + [ + [0, 0, 0], + [0, 0, 1], + [0, 0, 2], + [1, 0, 0], + [1, 0, 1], + [1, 0, 2], + [2, 0, 0], + [2, 0, 1], + [2, 0, 2], + ] + ) y = list(range(X.shape[0])) clr = DecisionTreeClassifier(max_depth=4) clr.fit(X, y) diff --git a/_unittests/ut_module/test_SKIP_code_style.py b/_unittests/ut_module/test_SKIP_code_style.py deleted file mode 100644 index 2fe2f136..00000000 --- a/_unittests/ut_module/test_SKIP_code_style.py +++ /dev/null @@ -1,44 +0,0 @@ -""" -@brief test log(time=0s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import check_pep8, ExtTestCase, skipif_circleci - - -class TestCodeStyle(ExtTestCase): - """Test style.""" - - def test_style_src(self): - thi = os.path.abspath(os.path.dirname(__file__)) - src_ = os.path.normpath(os.path.join(thi, "..", "..", "mlinsights")) - check_pep8(src_, fLOG=fLOG, - pylint_ignore=('C0103', 'C1801', 'R1705', 'W0108', 'W0613', - 'W0201', 'W0221', 'E0632', 'R1702', 'W0212', 'W0223', - 'W0107', "R1720", 'R1732', 'C0209', 'C3001', - 'R1728', 'R1735'), - skip=["categories_to_integers.py:174: W0640", - "E0401: Unable to import 'mlinsights.mlmodel.piecewise_tree_regression_criterion", - "setup.py:", - "[E731]", - ]) - - @skipif_circleci('mysterious fail') - def test_style_test(self): - thi = os.path.abspath(os.path.dirname(__file__)) - test = os.path.normpath(os.path.join(thi, "..", )) - check_pep8(test, fLOG=fLOG, neg_pattern="temp_.*", - pylint_ignore=('C0103', 'C1801', 'R1705', 'W0108', 'W0613', - 'C0111', 'W0107', 'C0111', 'R1702', 'C0415', "R1720", - 'R1732', 'C0209', 'C3001', 'R1728', 'R1735'), - skip=["Instance of 'tuple' has no", - "[E402] module level import", - "E0611: No name '_test_criterion_", - "E0611: No name 'SimpleRegressorCriterion'", - "E0611: No name 'piecewise_tree_", - ]) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_module/test_convert_notebooks.py b/_unittests/ut_module/test_convert_notebooks.py deleted file mode 100644 index 12fe82ad..00000000 --- a/_unittests/ut_module/test_convert_notebooks.py +++ /dev/null @@ -1,38 +0,0 @@ -""" -@brief test log(time=0s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.filehelper import explore_folder_iterfile -from pyquickhelper.pycode import ExtTestCase -from pyquickhelper.ipythonhelper import upgrade_notebook, remove_execution_number - - -class TestConvertNotebooks(ExtTestCase): - - def test_convert_notebooks(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - fold = os.path.abspath(os.path.dirname(__file__)) - fold2 = os.path.normpath( - os.path.join(fold, "..", "..", "_doc", "notebooks")) - for nbf in explore_folder_iterfile(fold2, pattern=".*[.]ipynb"): - t = upgrade_notebook(nbf) - if t: - fLOG("modified", nbf) - # remove numbers - remove_execution_number(nbf, nbf) - - fold2 = os.path.normpath(os.path.join(fold, "..", "..", "_unittests")) - for nbf in explore_folder_iterfile(fold2, pattern=".*[.]ipynb"): - t = upgrade_notebook(nbf) - if t: - fLOG("modified", nbf) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_module/test_readme.py b/_unittests/ut_module/test_readme.py deleted file mode 100644 index 79c53b97..00000000 --- a/_unittests/ut_module/test_readme.py +++ /dev/null @@ -1,37 +0,0 @@ -""" -@brief test tree node (time=50s) -""" -import os -import unittest -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import get_temp_folder, ExtTestCase - - -class TestReadme(ExtTestCase): - - def test_venv_docutils08_readme(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - fold = os.path.dirname(os.path.abspath(__file__)) - readme = os.path.join(fold, "..", "..", "README.rst") - self.assertTrue(os.path.exists(readme)) - with open(readme, "r", encoding="utf8") as f: - content = f.read() - - self.assertTrue(len(content) > 0) - temp = get_temp_folder(__file__, "temp_readme") - - if __name__ != "__main__": - # does not work from a virtual environment - return - - from pyquickhelper.pycode import check_readme_syntax - - check_readme_syntax(readme, folder=temp, fLOG=fLOG) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_plotting/test_dot.py b/_unittests/ut_plotting/test_dot.py index 93c80d30..19b81917 100644 --- a/_unittests/ut_plotting/test_dot.py +++ b/_unittests/ut_plotting/test_dot.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest from io import StringIO from textwrap import dedent @@ -15,12 +12,11 @@ from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.plotting import pipeline2dot, pipeline2str class TestDot(ExtTestCase): - def test_dot_df(self): iris = datasets.load_iris() X = iris.data[:, :4] @@ -41,62 +37,94 @@ def test_dot_array(self): def test_dot_list(self): clf = LogisticRegression() - dot = pipeline2dot(clf, ['X1', 'X2']) + dot = pipeline2dot(clf, ["X1", "X2"]) self.assertIn("digraph{", dot) self.assertIn("PredictedLabel|", dot) def test_dot_list_reg(self): clf = LinearRegression() - dot = pipeline2dot(clf, ['X1', 'X2']) + dot = pipeline2dot(clf, ["X1", "X2"]) self.assertIn("digraph{", dot) self.assertIn("Prediction", dot) self.assertIn("LinearRegression", dot) def test_dot_list_tr(self): clf = StandardScaler() - dot = pipeline2dot(clf, ['X1', 'X2']) + dot = pipeline2dot(clf, ["X1", "X2"]) self.assertIn("digraph{", dot) self.assertIn("StandardScaler", dot) def test_pipeline(self): - columns = ['pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', - 'cabin', 'embarked', 'boat', 'body', 'home.dest'] - - numeric_features = ['age', 'fare'] - numeric_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='median')), - ('scaler', StandardScaler())]) - - categorical_features = ['embarked', 'sex', 'pclass'] - categorical_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), - ('onehot', OneHotEncoder(handle_unknown='ignore'))]) + columns = [ + "pclass", + "name", + "sex", + "age", + "sibsp", + "parch", + "ticket", + "fare", + "cabin", + "embarked", + "boat", + "body", + "home.dest", + ] + + numeric_features = ["age", "fare"] + numeric_transformer = Pipeline( + steps=[ + ("imputer", SimpleImputer(strategy="median")), + ("scaler", StandardScaler()), + ] + ) + + categorical_features = ["embarked", "sex", "pclass"] + categorical_transformer = Pipeline( + steps=[ + ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), + ("onehot", OneHotEncoder(handle_unknown="ignore")), + ] + ) preprocessor = ColumnTransformer( transformers=[ - ('num', numeric_transformer, numeric_features), - ('cat', categorical_transformer, categorical_features), - ]) - - clf = Pipeline(steps=[('preprocessor', preprocessor), - ('classifier', LogisticRegression(solver='lbfgs'))]) + ("num", numeric_transformer, numeric_features), + ("cat", categorical_transformer, categorical_features), + ] + ) + + clf = Pipeline( + steps=[ + ("preprocessor", preprocessor), + ("classifier", LogisticRegression(solver="lbfgs")), + ] + ) dot = pipeline2dot(clf, columns) self.assertIn("digraph{", dot) self.assertIn("StandardScaler", dot) def test_union_features(self): - columns = ['X', 'Y'] - model = Pipeline([('scaler1', StandardScaler()), - ('union', FeatureUnion([ - ('scaler2', StandardScaler()), - ('scaler3', MinMaxScaler())]))]) + columns = ["X", "Y"] + model = Pipeline( + [ + ("scaler1", StandardScaler()), + ( + "union", + FeatureUnion( + [("scaler2", StandardScaler()), ("scaler3", MinMaxScaler())] + ), + ), + ] + ) dot = pipeline2dot(model, columns) self.assertIn("digraph{", dot) self.assertIn("StandardScaler", dot) self.assertIn("MinMaxScaler", dot) def test_onehotencoder_dot(self): - data = dedent(""" + data = dedent( + """ date,value,notrend,trend,weekday,lag1,lag2,lag3,lag4,lag5,lag6,lag7,lag8 2017-07-10 13:27:04.669830,0.003463591425601385,0.0004596547917981044,0.0030039366338032807, ###0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 @@ -124,24 +152,28 @@ def test_onehotencoder_dot(self): 2017-07-21 13:27:04.669830,0.005866058541412791,0.00217339675927127,0.0036926617821415207,4,0.004773874566436903, ###0.004200435956007872,0.0038464710972236286,0.0035533180858140765,0.008716378909294038,0.006336617719481035, ###0.006078151848127084,0.004277700876279705 - """).replace("\n###", "") + """ + ).replace("\n###", "") df = pandas.read_csv(StringIO(data)) - cols = ['lag1', 'lag2', 'lag3', - 'lag4', 'lag5', 'lag6', 'lag7', 'lag8'] + cols = ["lag1", "lag2", "lag3", "lag4", "lag5", "lag6", "lag7", "lag8"] model = make_pipeline( make_pipeline( ColumnTransformer( - [('pass', "passthrough", cols), - ("dummies", OneHotEncoder(), ["weekday"])]), - PCA(n_components=2)), - LinearRegression()) - train_cols = cols + ['weekday'] + [ + ("pass", "passthrough", cols), + ("dummies", OneHotEncoder(), ["weekday"]), + ] + ), + PCA(n_components=2), + ), + LinearRegression(), + ) + train_cols = cols + ["weekday"] model.fit(df, df[train_cols]) dot = pipeline2dot(model, df) self.assertIn('label="Identity"', dot) def test_pipeline_tr_small(self): - buffer = """ fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality,color 7.4,0.7,0.0,1.9,0.076,11.0,34.0,0.9978,3.51,0.56,9.4,5,red @@ -149,25 +181,43 @@ def test_pipeline_tr_small(self): 7.8,0.76,0.04,2.3,0.092,15.0,54.0,0.997,3.26,0.65,9.8,5,red 11.2,0.28,0.56,1.9,0.075,17.0,60.0,0.998,3.16,0.58,9.8,6,white 7.4,0.7,0.0,1.9,0.076,11.0,34.0,0.9978,3.51,0.56,9.4,5,red - """.replace(" ", "") + """.replace( + " ", "" + ) X_train = pandas.read_csv(StringIO(buffer)).drop("quality", axis=1) - pipe = Pipeline([ - ("prep", ColumnTransformer([ - ("color", Pipeline([ - ('one', "passthrough"), - ('select', ColumnTransformer( - [('sel1', 'passthrough', [0])])) - ]), ['color']), - ])), - ]) + pipe = Pipeline( + [ + ( + "prep", + ColumnTransformer( + [ + ( + "color", + Pipeline( + [ + ("one", "passthrough"), + ( + "select", + ColumnTransformer( + [("sel1", "passthrough", [0])] + ), + ), + ] + ), + ["color"], + ), + ] + ), + ), + ] + ) pipe.fit(X_train) dot = pipeline2dot(pipe, X_train) self.assertNotIn("i -> node2;", dot) def test_pipeline_tr(self): - buffer = """ fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality,color 7.4,0.7,0.0,1.9,0.076,11.0,34.0,0.9978,3.51,0.56,9.4,5,red @@ -175,21 +225,40 @@ def test_pipeline_tr(self): 7.8,0.76,0.04,2.3,0.092,15.0,54.0,0.997,3.26,0.65,9.8,5,red 11.2,0.28,0.56,1.9,0.075,17.0,60.0,0.998,3.16,0.58,9.8,6,white 7.4,0.7,0.0,1.9,0.076,11.0,34.0,0.9978,3.51,0.56,9.4,5,red - """.replace(" ", "") + """.replace( + " ", "" + ) X_train = pandas.read_csv(StringIO(buffer)).drop("quality", axis=1) - numeric_features = [c for c in X_train if c != 'color'] - - pipe = Pipeline([ - ("prep", ColumnTransformer([ - ("color", Pipeline([ - ('one', OneHotEncoder()), - ('select', ColumnTransformer( - [('sel1', 'passthrough', [0])])) - ]), ['color']), - ("others", "passthrough", numeric_features) - ])), - ]) + numeric_features = [c for c in X_train if c != "color"] + + pipe = Pipeline( + [ + ( + "prep", + ColumnTransformer( + [ + ( + "color", + Pipeline( + [ + ("one", OneHotEncoder()), + ( + "select", + ColumnTransformer( + [("sel1", "passthrough", [0])] + ), + ), + ] + ), + ["color"], + ), + ("others", "passthrough", numeric_features), + ] + ), + ), + ] + ) pipe.fit(X_train) dot = pipeline2dot(pipe, X_train) @@ -197,20 +266,27 @@ def test_pipeline_tr(self): # self.assertIn("sch3:f10 -> node4;", dot) dots = pipeline2str(pipe) self.assertIn("OneHotEncoder", dots) - self.assertIn('PassThrough(0)', dots) + self.assertIn("PassThrough(0)", dots) def test_pipeline_bug(self): iris = datasets.load_iris() X = iris.data y = iris.target - pipe2 = Pipeline([ - ('multi', ColumnTransformer([ - ('c01', Normalizer(), [0, 1]), - ('c23', MinMaxScaler(), [2, 3]), - ])), - ('pca', PCA()), - ('lr', LogisticRegression()) - ]) + pipe2 = Pipeline( + [ + ( + "multi", + ColumnTransformer( + [ + ("c01", Normalizer(), [0, 1]), + ("c23", MinMaxScaler(), [2, 3]), + ] + ), + ), + ("pca", PCA()), + ("lr", LogisticRegression()), + ] + ) pipe2.fit(X, y) dot = pipeline2dot(pipe2, X) @@ -222,18 +298,30 @@ def test_pipeline_bug2(self): iris = datasets.load_iris() X = iris.data y = iris.target - pipe2 = Pipeline([ - ('multi', ColumnTransformer([ - ('c01a', Normalizer(), [0, 1]), - ('c23a', MinMaxScaler(), [2, 3]), - ])), - ('multi2', ColumnTransformer([ - ('c01b', Normalizer(), [0, 1]), - ('c23b', MinMaxScaler(), [2, 3]), - ])), - ('pca', PCA()), - ('lr', LogisticRegression()) - ]) + pipe2 = Pipeline( + [ + ( + "multi", + ColumnTransformer( + [ + ("c01a", Normalizer(), [0, 1]), + ("c23a", MinMaxScaler(), [2, 3]), + ] + ), + ), + ( + "multi2", + ColumnTransformer( + [ + ("c01b", Normalizer(), [0, 1]), + ("c23b", MinMaxScaler(), [2, 3]), + ] + ), + ), + ("pca", PCA()), + ("lr", LogisticRegression()), + ] + ) pipe2.fit(X, y) dot = pipeline2dot(pipe2, X) @@ -242,29 +330,35 @@ def test_pipeline_bug2(self): # self.assertNotIn("sch1:f0 -> node2;", dot) def test_pipeline_passthrough(self): - - data = pandas.DataFrame([ - dict(CAT1='a', CAT2='c', num1=0.5, num2=0.6, y=0), - dict(CAT1='b', CAT2='d', num1=0.4, num2=0.8, y=1), - dict(CAT1='a', CAT2='d', num1=0.5, num2=0.56, y=0), - dict(CAT1='a', CAT2='d', num1=0.55, num2=0.56, y=1), - dict(CAT1='a', CAT2='c', num1=0.35, num2=0.86, y=0), - dict(CAT1='a', CAT2='c', num1=0.5, num2=0.68, y=1), - ]) - - cat_cols = ['CAT1', 'CAT2'] - train_data = data.drop('y', axis=1) + data = pandas.DataFrame( + [ + dict(CAT1="a", CAT2="c", num1=0.5, num2=0.6, y=0), + dict(CAT1="b", CAT2="d", num1=0.4, num2=0.8, y=1), + dict(CAT1="a", CAT2="d", num1=0.5, num2=0.56, y=0), + dict(CAT1="a", CAT2="d", num1=0.55, num2=0.56, y=1), + dict(CAT1="a", CAT2="c", num1=0.35, num2=0.86, y=0), + dict(CAT1="a", CAT2="c", num1=0.5, num2=0.68, y=1), + ] + ) + + cat_cols = ["CAT1", "CAT2"] + train_data = data.drop("y", axis=1) # numeric_transformer = Pipeline(steps=[('scaler', StandardScaler())]) - categorical_transformer = Pipeline([ - ('onehot', OneHotEncoder(sparse=False, handle_unknown='ignore'))]) + categorical_transformer = Pipeline( + [("onehot", OneHotEncoder(sparse=False, handle_unknown="ignore"))] + ) preprocessor = ColumnTransformer( - transformers=[ - ('cat', categorical_transformer, cat_cols)], - remainder='passthrough') - pipe = Pipeline([('preprocess', preprocessor), - ('rf', RandomForestClassifier(n_estimators=2))]) - pipe.fit(train_data, data['y']) + transformers=[("cat", categorical_transformer, cat_cols)], + remainder="passthrough", + ) + pipe = Pipeline( + [ + ("preprocess", preprocessor), + ("rf", RandomForestClassifier(n_estimators=2)), + ] + ) + pipe.fit(train_data, data["y"]) dot = pipeline2dot(pipe, train_data) self.assertIn("sch0:f2 ->", dot) self.assertNotIn("node3 -> sch3:f34;", dot) diff --git a/_unittests/ut_plotting/test_plot_gallery.py b/_unittests/ut_plotting/test_plot_gallery.py index 5dfb55e5..3dbf9e92 100644 --- a/_unittests/ut_plotting/test_plot_gallery.py +++ b/_unittests/ut_plotting/test_plot_gallery.py @@ -1,67 +1,72 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=6s) -""" import os +import tempfile import unittest import warnings import http.client import numpy -from pyquickhelper.loghelper import noLOG -from pyquickhelper.pycode import ExtTestCase, get_temp_folder -from pyquickhelper.filehelper import unzip_files -from pyquickhelper.pycode import fix_tkinter_issues_virtualenv +from mlinsights.ext_test_case import ExtTestCase, unzip_files from mlinsights.plotting import plot_gallery_images class TestPlotGallery(ExtTestCase): - def test_plot_gallery(self): - temp = get_temp_folder(__file__, "temp_plot_gallery") - zipimg = os.path.join(temp, "..", "..", "..", "_doc", - "notebooks", "explore", "data", "dog-cat-pixabay.zip") - files = unzip_files(zipimg, where_to=temp) + this = os.path.dirname(__file__) + with tempfile.TemporaryDirectory() as temp: + zipimg = os.path.join( + this, + "..", + "..", + "_doc", + "examples", + "data", + "dog-cat-pixabay.zip", + ) + files = unzip_files(zipimg, where_to=temp) - fix_tkinter_issues_virtualenv(fLOG=noLOG) - from matplotlib import pyplot as plt + from matplotlib import pyplot as plt - fig, _ = plot_gallery_images(files[:2], return_figure=True) - img = os.path.join(temp, "gallery.png") - fig.savefig(img) - plt.close('all') + fig, _ = plot_gallery_images(files[:2], return_figure=True) + img = os.path.join(temp, "gallery.png") + fig.savefig(img) + plt.close("all") def test_plot_gallery_matrix(self): - temp = get_temp_folder(__file__, "temp_plot_gallery_matrix") - zipimg = os.path.join(temp, "..", "..", "..", "_doc", - "notebooks", "explore", "data", "dog-cat-pixabay.zip") - files = unzip_files(zipimg, where_to=temp) + this = os.path.dirname(__file__) + with tempfile.TemporaryDirectory() as temp: + zipimg = os.path.join( + this, + "..", + "..", + "_doc", + "examples", + "data", + "dog-cat-pixabay.zip", + ) + files = unzip_files(zipimg, where_to=temp) - fix_tkinter_issues_virtualenv(fLOG=noLOG) - from matplotlib import pyplot as plt + from matplotlib import pyplot as plt - fig, _ = plot_gallery_images(numpy.array( - files[:2]).reshape((2, 1)), return_figure=True) - img = os.path.join(temp, "gallery.png") - fig.savefig(img) - plt.close('all') + fig, _ = plot_gallery_images( + numpy.array(files[:2]).reshape((2, 1)), return_figure=True + ) + img = os.path.join(temp, "gallery.png") + fig.savefig(img) + plt.close("all") def test_plot_gallery_url(self): - fix_tkinter_issues_virtualenv(fLOG=noLOG) from matplotlib import pyplot as plt root = "http://www.xavierdupre.fr/enseignement/complements/dog-cat-pixabay/" - files = [root + 'cat-2603300__480.jpg', - root + 'cat-2947188__480.jpg'] + files = [root + "cat-2603300__480.jpg", root + "cat-2947188__480.jpg"] - temp = get_temp_folder(__file__, "temp_plot_gallery_url") try: fig, ax = plot_gallery_images(files, return_figure=True) except http.client.RemoteDisconnected as e: warnings.warn(f"Unable to fetch image {e}'") return - img = os.path.join(temp, "gallery.png") - fig.savefig(img) - plt.close('all') + self.assertNotEmpty(fig) + self.assertNotEmpty(ax) # ax try: @@ -69,7 +74,9 @@ def test_plot_gallery_url(self): self.assertNotEmpty(ax) except http.client.RemoteDisconnected as e: warnings.warn(f"Unable to fetch image {e}'") + plt.close("all") return + plt.close("all") if __name__ == "__main__": diff --git a/_unittests/ut_plotting/test_str.py b/_unittests/ut_plotting/test_str.py index df5b247a..0fe28fac 100644 --- a/_unittests/ut_plotting/test_str.py +++ b/_unittests/ut_plotting/test_str.py @@ -1,7 +1,4 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, MinMaxScaler @@ -9,40 +6,57 @@ from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.plotting import pipeline2str class TestStr(ExtTestCase): - def test_pipeline(self): - numeric_features = ['age', 'fare'] - numeric_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='median')), - ('scaler', StandardScaler())]) + numeric_features = ["age", "fare"] + numeric_transformer = Pipeline( + steps=[ + ("imputer", SimpleImputer(strategy="median")), + ("scaler", StandardScaler()), + ] + ) - categorical_features = ['embarked', 'sex', 'pclass'] - categorical_transformer = Pipeline(steps=[ - ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), - ('onehot', OneHotEncoder(handle_unknown='ignore'))]) + categorical_features = ["embarked", "sex", "pclass"] + categorical_transformer = Pipeline( + steps=[ + ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), + ("onehot", OneHotEncoder(handle_unknown="ignore")), + ] + ) preprocessor = ColumnTransformer( transformers=[ - ('num', numeric_transformer, numeric_features), - ('cat', categorical_transformer, categorical_features), - ]) + ("num", numeric_transformer, numeric_features), + ("cat", categorical_transformer, categorical_features), + ] + ) - clf = Pipeline(steps=[('preprocessor', preprocessor), - ('classifier', LogisticRegression(solver='lbfgs'))]) + clf = Pipeline( + steps=[ + ("preprocessor", preprocessor), + ("classifier", LogisticRegression(solver="lbfgs")), + ] + ) text = pipeline2str(clf) self.assertIn("StandardScaler", text) self.assertIn("Pipeline(embarked,sex,pclass)", text) def test_union_features(self): - model = Pipeline([('scaler1', StandardScaler()), - ('union', FeatureUnion([ - ('scaler2', StandardScaler()), - ('scaler3', MinMaxScaler())]))]) + model = Pipeline( + [ + ("scaler1", StandardScaler()), + ( + "union", + FeatureUnion( + [("scaler2", StandardScaler()), ("scaler3", MinMaxScaler())] + ), + ), + ] + ) text = pipeline2str(model) self.assertIn("StandardScaler", text) self.assertIn("MinMaxScaler", text) diff --git a/_unittests/ut_search_rank/test_LONG_search_images_keras.py b/_unittests/ut_search_rank/test_LONG_search_images_keras.py deleted file mode 100644 index bd5b6fba..00000000 --- a/_unittests/ut_search_rank/test_LONG_search_images_keras.py +++ /dev/null @@ -1,99 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@brief test log(time=10s) -""" -import os -import unittest -import warnings -from contextlib import redirect_stderr, redirect_stdout -from io import StringIO -import pandas -import numpy -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ExtTestCase, get_temp_folder -from pyquickhelper.filehelper import unzip_files - - -class TestSearchPredictionsImagesKeras(ExtTestCase): - - def test_search_predictions_keras(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - - from mlinsights.search_rank import SearchEnginePredictionImages - - # We delay the import as keras backend is not necessarily available. - with redirect_stderr(StringIO()): - try: - from keras.applications.mobilenet import MobileNet # pylint: disable=E0401,E0611 - except (SyntaxError, ModuleNotFoundError, AttributeError, - ImportError) as e: - warnings.warn( - f"Issue with tensorflow or keras: {e}") - return - from keras.preprocessing.image import ImageDataGenerator # pylint: disable=E0401,E0611 - from keras.preprocessing.image import img_to_array, load_img # pylint: disable=E0401,E0611 - - # deep learning model - model = MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, - weights='imagenet', input_tensor=None, pooling=None, classes=1000) - self.assertEqual(model.name, 'mobilenet_1.00_224') - - # images - temp = get_temp_folder(__file__, "temp_search_predictions_keras") - dest = os.path.join(temp, "simages") - os.mkdir(dest) - zipname = os.path.join( - temp, "..", "..", "..", "_doc", "notebooks", "explore", "data", "dog-cat-pixabay.zip") - files = unzip_files(zipname, where_to=dest) - self.assertTrue(len(files) > 0) - - # iterator - gen = ImageDataGenerator(rescale=1. / 255) - with redirect_stdout(StringIO()): - iterim = gen.flow_from_directory(temp, batch_size=1, target_size=( - 224, 224), classes=['simages'], shuffle=False) - - # search - se = SearchEnginePredictionImages(model, fct_params=dict( - layer=len(model.layers) - 4), n_neighbors=5) - r = repr(se) - self.assertIn("SearchEnginePredictionImages", r) - - # fit - se.fit(iterim, fLOG=fLOG) - - # neighbors - score, ind, meta = se.kneighbors(iterim) - - # assert - self.assertIsInstance(ind, (list, numpy.ndarray)) - self.assertEqual(len(ind), 5) - self.assertEqual(ind[0], 0) - - self.assertIsInstance(score, numpy.ndarray) - self.assertEqual(score.shape, (5,)) - self.assertTrue(abs(score[0]) < 1e-5) - - self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) - self.assertEqual(meta.shape, (5, 2)) - self.assertEqual(meta.loc[0, 'name'].replace('\\', '/'), - 'simages/cat-1151519__480.jpg') - - # neighbors 2 - img = load_img(os.path.join(temp, 'simages', 'cat-2603300__480.jpg'), - target_size=(224, 224)) - x = img_to_array(img) - gen = ImageDataGenerator(rescale=1. / 255) - iterim = gen.flow(x[numpy.newaxis, :, :, :], batch_size=1) - score, ind, meta = se.kneighbors(iterim) - - self.assertIsInstance(ind, (list, numpy.ndarray)) - self.assertIsInstance(score, numpy.ndarray) - self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) - - -if __name__ == "__main__": - unittest.main() diff --git a/_unittests/ut_search_rank/test_LONG_search_images_torch.py b/_unittests/ut_search_rank/test_LONG_search_images_torch.py index 6b97525b..2fc61090 100644 --- a/_unittests/ut_search_rank/test_LONG_search_images_torch.py +++ b/_unittests/ut_search_rank/test_LONG_search_images_torch.py @@ -1,97 +1,94 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=27s) -""" import os +import tempfile import unittest import warnings from contextlib import redirect_stderr from io import StringIO import pandas import numpy -from pyquickhelper.loghelper import fLOG -from pyquickhelper.pycode import ExtTestCase, get_temp_folder, skipif_appveyor, skipif_circleci -from pyquickhelper.filehelper import unzip_files +from mlinsights.ext_test_case import ExtTestCase, unzip_files class TestSearchPredictionsImagesTorch(ExtTestCase): - - @skipif_appveyor("Fails due to: Tune using inter_op_parallelism_threads for best performance.") - @skipif_circleci("Last for ever.") def test_search_predictions_torch(self): - fLOG( - __file__, - self._testMethodName, - OutputPrint=__name__ == "__main__") - from mlinsights.search_rank import SearchEnginePredictionImages # We delay the import as keras backend is not necessarily available. with redirect_stderr(StringIO()): try: - import torchvision.models as tmodels # pylint: disable=E0401,C0415 + import torchvision.models as tmodels except (SyntaxError, ModuleNotFoundError) as e: - warnings.warn( - f"torch is not available: {e}") + warnings.warn(f"torch is not available: {e}") return - from torchvision import datasets, transforms # pylint: disable=E0401 - from torch.utils.data import DataLoader # pylint: disable=E0401 + from torchvision import datasets, transforms + from torch.utils.data import DataLoader # deep learning model model = tmodels.squeezenet1_1(pretrained=True) # images - temp = get_temp_folder(__file__, "temp_search_predictions_torch") - dest = os.path.join(temp, "simages") - os.mkdir(dest) - zipname = os.path.join( - temp, "..", "..", "..", "_doc", "notebooks", "explore", "data", "dog-cat-pixabay.zip") - files = unzip_files(zipname, where_to=dest) - self.assertTrue(len(files) > 0) - - # sequence of images - trans = transforms.Compose([transforms.Resize((224, 224)), - transforms.CenterCrop(224), - transforms.ToTensor()]) - imgs_ = datasets.ImageFolder(temp, trans) - dataloader = DataLoader(imgs_, batch_size=1, - shuffle=False, num_workers=1) - img_seq = iter(dataloader) - imgs = list(img[0] for img in img_seq) - - # search - se = SearchEnginePredictionImages(model, n_neighbors=5) - r = repr(se) - self.assertIn("SearchEnginePredictionImages", r) - - # fit - fLOG('[fit]') - se.fit(imgs_, fLOG=fLOG) - - # neighbors - fLOG('[test]', type(imgs[0]), imgs[0].shape) - score, ind, meta = se.kneighbors(imgs[0]) - - # assert - self.assertIsInstance(ind, (list, numpy.ndarray)) - self.assertEqual(len(ind), 5) - self.assertEqual(ind[0], 0) - - self.assertIsInstance(score, numpy.ndarray) - self.assertEqual(score.shape, (5,)) - self.assertLess(score[0], 50) - - self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) - self.assertEqual(meta.shape, (5, 2)) - self.assertEndsWith('simages/cat-1151519__480.jpg', - meta.loc[0, "name"].replace('\\', '/')) - - # neighbors 2 - score, ind, meta = se.kneighbors(imgs) - - self.assertIsInstance(ind, (list, numpy.ndarray)) - self.assertIsInstance(score, numpy.ndarray) - self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) + this = os.path.dirname(__file__) + with tempfile.TemporaryDirectory() as temp: + sub = os.path.join(temp, "simages") + os.mkdir(sub) + zipimg = os.path.join( + this, + "..", + "..", + "_doc", + "examples", + "data", + "dog-cat-pixabay.zip", + ) + files = unzip_files(zipimg, where_to=sub) + self.assertTrue(len(files) > 0) + + # sequence of images + trans = transforms.Compose( + [ + transforms.Resize((224, 224)), + transforms.CenterCrop(224), + transforms.ToTensor(), + ] + ) + imgs_ = datasets.ImageFolder(temp, trans) + dataloader = DataLoader(imgs_, batch_size=1, shuffle=False, num_workers=1) + img_seq = iter(dataloader) + imgs = list(img[0] for img in img_seq) + + # search + se = SearchEnginePredictionImages(model, n_neighbors=5) + r = repr(se) + self.assertIn("SearchEnginePredictionImages", r) + + # fit + se.fit(imgs_) + + # neighbors + score, ind, meta = se.kneighbors(imgs[0]) + + # assert + self.assertIsInstance(ind, (list, numpy.ndarray)) + self.assertEqual(len(ind), 5) + self.assertEqual(ind[0], 0) + + self.assertIsInstance(score, numpy.ndarray) + self.assertEqual(score.shape, (5,)) + self.assertLess(score[0], 50) + + self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) + self.assertEqual(meta.shape, (5, 2)) + self.assertEndsWith( + "simages/cat-1151519__480.jpg", meta.loc[0, "name"].replace("\\", "/") + ) + + # neighbors 2 + score, ind, meta = se.kneighbors(imgs) + + self.assertIsInstance(ind, (list, numpy.ndarray)) + self.assertIsInstance(score, numpy.ndarray) + self.assertIsInstance(meta, (numpy.ndarray, pandas.DataFrame)) if __name__ == "__main__": diff --git a/_unittests/ut_search_rank/test_search_predictions.py b/_unittests/ut_search_rank/test_search_predictions.py index f2e56a81..0df67c14 100644 --- a/_unittests/ut_search_rank/test_search_predictions.py +++ b/_unittests/ut_search_rank/test_search_predictions.py @@ -1,19 +1,15 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=2s) -""" import unittest import pandas import numpy from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.search_rank import SearchEnginePredictions class TestSearchPredictions(ExtTestCase): - def test_search_predictions_lr(self): iris = datasets.load_iris() X = iris.data[:, :2] @@ -25,8 +21,9 @@ def test_search_predictions_lr(self): for i in range(20): h = i * 0.05 h2 = 1 - i * 0.05 - res.append(dict(ind=i * 5, meta1="m%d" % - i, meta2="m%d" % (i + 1), f1=h, f2=h2)) + res.append( + dict(ind=i * 5, meta1="m%d" % i, meta2="m%d" % (i + 1), f1=h, f2=h2) + ) df = pandas.DataFrame(res) se = SearchEnginePredictions(clf, n_neighbors=5) @@ -34,8 +31,11 @@ def test_search_predictions_lr(self): exp = "SearchEnginePredictions(fct=LogisticRegression(" self.assertStartsWith(exp, r) - se.fit(data=None, features=df[["f1", "f2"]].values, - metadata=df[["ind", "meta1", "meta2"]]) + se.fit( + data=None, + features=df[["f1", "f2"]].values, + metadata=df[["ind", "meta1", "meta2"]], + ) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) @@ -50,8 +50,7 @@ def test_search_predictions_lr(self): self.assertEqual(meta.shape, (5, 3)) self.assertEqual(meta.iloc[0, 0], 50) - se.fit(data=df, features=["f1", "f2"], - metadata=["ind", "meta1", "meta2"]) + se.fit(data=df, features=["f1", "f2"], metadata=["ind", "meta1", "meta2"]) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) @@ -89,20 +88,23 @@ def test_search_predictions_rfc(self): for i in range(20): h = i * 0.05 h2 = 1 - i * 0.05 - res.append(dict(ind=i * 5, meta1="m%d" % - i, meta2="m%d" % (i + 1), f1=h, f2=h2)) + res.append( + dict(ind=i * 5, meta1="m%d" % i, meta2="m%d" % (i + 1), f1=h, f2=h2) + ) df = pandas.DataFrame(res) # trees output se = SearchEnginePredictions(clf, n_neighbors=5) r = repr(se) rr = r.replace("\n", "").replace(" ", "") - self.assertIn( - "SearchEnginePredictions(fct=RandomForestClassifier(", rr) + self.assertIn("SearchEnginePredictions(fct=RandomForestClassifier(", rr) self.assertIn("fct_params=None", rr) - se.fit(data=None, features=df[["f1", "f2"]].values, - metadata=df[["ind", "meta1", "meta2"]]) + se.fit( + data=None, + features=df[["f1", "f2"]].values, + metadata=df[["ind", "meta1", "meta2"]], + ) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) @@ -118,16 +120,17 @@ def test_search_predictions_rfc(self): self.assertEqual(meta.iloc[0, 0], 5) # classifier output - se = SearchEnginePredictions( - clf, fct_params={'output': True}, n_neighbors=5) + se = SearchEnginePredictions(clf, fct_params={"output": True}, n_neighbors=5) r = repr(se) rr = r.replace("\n", "").replace(" ", "") - self.assertIn( - "SearchEnginePredictions(fct=RandomForestClassifier(", rr) + self.assertIn("SearchEnginePredictions(fct=RandomForestClassifier(", rr) self.assertIn("fct_params={'output':True}", rr) - se.fit(data=None, features=df[["f1", "f2"]].values, - metadata=df[["ind", "meta1", "meta2"]]) + se.fit( + data=None, + features=df[["f1", "f2"]].values, + metadata=df[["ind", "meta1", "meta2"]], + ) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) diff --git a/_unittests/ut_search_rank/test_search_vectors.py b/_unittests/ut_search_rank/test_search_vectors.py index 76fbb3ff..c710e8ee 100644 --- a/_unittests/ut_search_rank/test_search_vectors.py +++ b/_unittests/ut_search_rank/test_search_vectors.py @@ -1,37 +1,40 @@ # -*- coding: utf-8 -*- -""" -@brief test log(time=1s) -""" import os +import tempfile import unittest import pandas import numpy from sklearn.linear_model import LogisticRegression -from pyquickhelper.pycode import ExtTestCase, get_temp_folder +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.search_rank import SearchEngineVectors class TestSearchVectors(ExtTestCase): - def test_import(self): self.assertTrue(LogisticRegression is not None) + @ignore_warnings(UserWarning) def test_search_vectors(self): res = [] for i in range(20): h = i * 0.05 h2 = 1 - i * 0.05 - res.append(dict(ind=i * 5, meta1="m%d" % - i, meta2="m%d" % (i + 1), f1=h, f2=h2)) + res.append( + dict(ind=i * 5, meta1="m%d" % i, meta2="m%d" % (i + 1), f1=h, f2=h2) + ) df = pandas.DataFrame(res) se = SearchEngineVectors(n_neighbors=5) r = repr(se) - self.assertEqual(r.replace("\n", "").replace(" ", ""), - 'SearchEngineVectors(n_neighbors=5)') - - se.fit(data=None, features=df[["f1", "f2"]].values, - metadata=df[["ind", "meta1", "meta2"]]) + self.assertEqual( + r.replace("\n", "").replace(" ", ""), "SearchEngineVectors(n_neighbors=5)" + ) + + se.fit( + data=None, + features=df[["f1", "f2"]].values, + metadata=df[["ind", "meta1", "meta2"]], + ) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) @@ -46,8 +49,7 @@ def test_search_vectors(self): self.assertEqual(meta.shape, (5, 3)) self.assertEqual(meta.iloc[0, 0], 50) - se.fit(data=df, features=["f1", "f2"], - metadata=["ind", "meta1", "meta2"]) + se.fit(data=df, features=["f1", "f2"], metadata=["ind", "meta1", "meta2"]) score, ind, meta = se.kneighbors([0.5, 0.5]) self.assertIsInstance(ind, (list, numpy.ndarray)) @@ -74,42 +76,48 @@ def test_search_vectors(self): self.assertEqual(score[0], 0) self.assertTrue(meta is None) + @ignore_warnings(UserWarning) def test_search_vectors_zip(self): - temp = get_temp_folder(__file__, "temp_search_vectors_zip") - - res = [] - for i in range(20): - h = i * 0.05 - h2 = 1 - i * 0.05 - res.append(dict(ind=i * 5, meta1="m%d" % - i, meta2="m%d" % (i + 1), f1=h, f2=h2)) - df = pandas.DataFrame(res) - - se = SearchEngineVectors(n_neighbors=5) - r = repr(se) - self.assertEqual(r.replace("\n", "").replace(" ", ""), - 'SearchEngineVectors(n_neighbors=5)') - - se.fit(data=None, features=df[["f1", "f2"]].values, - metadata=df[["ind", "meta1", "meta2"]]) - score, ind, meta = se.kneighbors([0.5, 0.5]) - - self.assertIsInstance(ind, (list, numpy.ndarray)) - self.assertEqual(len(ind), 5) - self.assertEqual(ind[0], 10) - - self.assertIsInstance(score, numpy.ndarray) - self.assertEqual(score.shape, (5,)) - self.assertEqual(score[0], 0) - - dest = os.path.join(temp, "se.zip") - se.to_zip(dest, encoding='utf-8') - se2 = SearchEngineVectors.read_zip(dest, encoding='utf-8') - score2, ind2, meta2 = se2.kneighbors([0.5, 0.5]) - self.assertEqualArray(score, score2) - self.assertEqualArray(ind, ind2) - self.assertEqualDataFrame(meta, meta2) - self.assertEqual(se.pknn, se2.pknn) + with tempfile.TemporaryDirectory() as temp: + res = [] + for i in range(20): + h = i * 0.05 + h2 = 1 - i * 0.05 + res.append( + dict(ind=i * 5, meta1="m%d" % i, meta2="m%d" % (i + 1), f1=h, f2=h2) + ) + df = pandas.DataFrame(res) + + se = SearchEngineVectors(n_neighbors=5) + r = repr(se) + self.assertEqual( + r.replace("\n", "").replace(" ", ""), + "SearchEngineVectors(n_neighbors=5)", + ) + + se.fit( + data=None, + features=df[["f1", "f2"]].values, + metadata=df[["ind", "meta1", "meta2"]], + ) + score, ind, meta = se.kneighbors([0.5, 0.5]) + + self.assertIsInstance(ind, (list, numpy.ndarray)) + self.assertEqual(len(ind), 5) + self.assertEqual(ind[0], 10) + + self.assertIsInstance(score, numpy.ndarray) + self.assertEqual(score.shape, (5,)) + self.assertEqual(score[0], 0) + + dest = os.path.join(temp, "se.zip") + se.to_zip(dest, encoding="utf-8") + se2 = SearchEngineVectors.read_zip(dest, encoding="utf-8") + score2, ind2, meta2 = se2.kneighbors([0.5, 0.5]) + self.assertEqualArray(score, score2) + self.assertEqualArray(ind, ind2) + self.assertEqualDataFrame(meta, meta2) + self.assertEqual(se.pknn, se2.pknn) if __name__ == "__main__": diff --git a/_unittests/ut_sklapi/test_sklbase.py b/_unittests/ut_sklapi/test_sklbase.py index 567c6895..13ec0c33 100644 --- a/_unittests/ut_sklapi/test_sklbase.py +++ b/_unittests/ut_sklapi/test_sklbase.py @@ -1,9 +1,6 @@ -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.sklapi.sklearn_base import SkBase from mlinsights.sklapi.sklearn_base_learner import SkBaseLearner from mlinsights.sklapi.sklearn_base_regressor import SkBaseRegressor @@ -12,7 +9,6 @@ class TestSklearnBase(ExtTestCase): - def test_sklearn_base_parameters(self): sk = SkBase(pa1="r", pa2=2) p = sk.get_params() @@ -73,14 +69,15 @@ def test_sklearn_compare(self): p2 = dict(pa1="r", pa2=2, pa3=4) self.assertRaise(lambda: SkBase.compare_params(p1, p2), KeyError) self.assertRaise(lambda: SkBase.compare_params(p2, p1), KeyError) - p1 = dict(pa1="r", pa2=2, d1=dict(e='e', i=0)) - p2 = dict(pa1="r", pa2=2, d1=dict(e='e', i=0)) + p1 = dict(pa1="r", pa2=2, d1=dict(e="e", i=0)) + p2 = dict(pa1="r", pa2=2, d1=dict(e="e", i=0)) self.assertTrue(SkBase.compare_params(p1, p2)) - p2['d1']['i'] = 3 + p2["d1"]["i"] = 3 self.assertFalse(SkBase.compare_params(p1, p2)) - p2['d1']['i2'] = 3 - self.assertRaise(lambda: SkBase.compare_params( - p1, p2), ValueError, "Values for key") + p2["d1"]["i2"] = 3 + self.assertRaise( + lambda: SkBase.compare_params(p1, p2), ValueError, "Values for key" + ) def test_sklearn_compare_object(self): p1 = SkBase(pa1="r", pa2=2) @@ -88,37 +85,36 @@ def test_sklearn_compare_object(self): self.assertRaise(lambda: p1.test_equality(p2), KeyError) self.assertRaise(lambda: p2.test_equality(p1), KeyError) - p1 = SkBase(pa1="r", pa2=2, d1=dict(e='e', i=0)) - p2 = SkBase(pa1="r", pa2=2, d1=dict(e='e', i=0)) + p1 = SkBase(pa1="r", pa2=2, d1=dict(e="e", i=0)) + p2 = SkBase(pa1="r", pa2=2, d1=dict(e="e", i=0)) self.assertTrue(p1.test_equality(p2)) - p2 = SkBase(pa1="r", pa2=2, d1=dict(e='e', i=3)) + p2 = SkBase(pa1="r", pa2=2, d1=dict(e="e", i=3)) self.assertFalse(p1.test_equality(p2)) - p2 = SkBase(pa1="r", pa2=2, d1=dict(e='e', i=3, i2=4)) + p2 = SkBase(pa1="r", pa2=2, d1=dict(e="e", i=3, i2=4)) self.assertRaise(lambda: p1.test_equality(p2), ValueError) - p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e='e', i=0)) - p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e='e', i=0)) + p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e="e", i=0)) + p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e="e", i=0)) self.assertTrue(p1.test_equality(p2)) - p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e='e', i=0)) - p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e='ef', i=0)) + p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e="e", i=0)) + p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e="ef", i=0)) self.assertRaise(lambda: p1.test_equality(p2), ValueError) - p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e='e', i=0)) - p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e='e', i=0, i2=4)) + p1 = SkBase(pa1="r", pa2=2, d1=SkBase(e="e", i=0)) + p2 = SkBase(pa1="r", pa2=2, d1=SkBase(e="e", i=0, i2=4)) self.assertRaise(lambda: p1.test_equality(p2), KeyError) - p1 = SkBase(pa1="r", pa2=2, d1=[SkBase(e='e', i=0)]) - p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e='e', i=0, i2=4)]) + p1 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0)]) + p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0, i2=4)]) self.assertRaise(lambda: p1.test_equality(p2), KeyError) - p1 = SkBase(pa1="r", pa2=2, d1=[SkBase(e='e', i=0)]) - p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e='e', i=0)]) + p1 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0)]) + p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0)]) self.assertTrue(p1.test_equality(p2)) - p1 = SkBase(pa1="r", pa2=2, d1=[ - SkBase(e='e', i=0), SkBase(e='e', i=0)]) - p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e='e', i=0)]) + p1 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0), SkBase(e="e", i=0)]) + p2 = SkBase(pa1="r", pa2=2, d1=[SkBase(e="e", i=0)]) self.assertRaise(lambda: p1.test_equality(p2), ValueError) diff --git a/_unittests/ut_sklapi/test_sklearn_convert.py b/_unittests/ut_sklapi/test_sklearn_convert.py index df4d5641..9950b867 100644 --- a/_unittests/ut_sklapi/test_sklearn_convert.py +++ b/_unittests/ut_sklapi/test_sklearn_convert.py @@ -1,11 +1,7 @@ -""" -@brief test log(time=2s) -""" import unittest import pickle from io import BytesIO import pandas -from sklearn import __version__ as sklver from sklearn.exceptions import ConvergenceWarning from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris @@ -15,13 +11,11 @@ from sklearn.pipeline import make_pipeline from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV -from pyquickhelper.pycode import ExtTestCase, ignore_warnings -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.sklapi import SkBaseTransformLearner class TestSklearnConvert(ExtTestCase): - @ignore_warnings(ConvergenceWarning) def test_pipeline_with_two_classifiers(self): data = load_iris() @@ -29,20 +23,14 @@ def test_pipeline_with_two_classifiers(self): X_train, X_test, y_train, y_test = train_test_split(X, y) conv = SkBaseTransformLearner(LogisticRegression(n_jobs=1)) pipe = make_pipeline(conv, DecisionTreeClassifier()) - try: - pipe.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = accuracy_score(y_test, pred) self.assertGreater(score, 0.8) score2 = pipe.score(X_test, y_test) self.assertEqual(score, score2) rp = repr(conv) - self.assertStartsWith( - 'SkBaseTransformLearner(model=LogisticRegression(', rp) + self.assertStartsWith("SkBaseTransformLearner(model=LogisticRegression(", rp) def test_pipeline_transform(self): data = load_iris() @@ -50,20 +38,14 @@ def test_pipeline_transform(self): X_train, X_test, y_train, y_test = train_test_split(X, y) conv = SkBaseTransformLearner(PCA()) pipe = make_pipeline(conv, DecisionTreeClassifier()) - try: - pipe.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = accuracy_score(y_test, pred) self.assertGreater(score, 0.75) score2 = pipe.score(X_test, y_test) self.assertEqual(score, score2) rp = repr(conv) - self.assertStartsWith( - 'SkBaseTransformLearner(model=PCA(', rp) + self.assertStartsWith("SkBaseTransformLearner(model=PCA(", rp) @ignore_warnings(ConvergenceWarning) def test_pipeline_with_callable(self): @@ -73,20 +55,14 @@ def test_pipeline_with_callable(self): tmod = LogisticRegression(n_jobs=1) conv = SkBaseTransformLearner(tmod, method=tmod.decision_function) pipe = make_pipeline(conv, DecisionTreeClassifier()) - try: - pipe.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = accuracy_score(y_test, pred) self.assertGreater(score, 0.8) score2 = pipe.score(X_test, y_test) self.assertEqualFloat(score, score2, precision=1e-5) rp = repr(conv) - self.assertStartsWith( - 'SkBaseTransformLearner(model=LogisticRegression(', rp) + self.assertStartsWith("SkBaseTransformLearner(model=LogisticRegression(", rp) @ignore_warnings(ConvergenceWarning) def test_pipeline_with_two_regressors(self): @@ -98,33 +74,35 @@ def test_pipeline_with_two_regressors(self): pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = r2_score(y_test, pred) - self.assertLesser(score, 1.) + self.assertLesser(score, 1.0) score2 = pipe.score(X_test, y_test) self.assertEqualFloat(score, score2, precision=1e-5) rp = repr(conv) - self.assertStartsWith( - 'SkBaseTransformLearner(model=LinearRegression(', rp) + self.assertStartsWith("SkBaseTransformLearner(model=LinearRegression(", rp) @ignore_warnings(ConvergenceWarning) def test_pipeline_with_params(self): conv = SkBaseTransformLearner(LinearRegression()) pipe = make_pipeline(conv, DecisionTreeRegressor()) pars = pipe.get_params() - self.assertIn('skbasetransformlearner__model__fit_intercept', pars) + self.assertIn("skbasetransformlearner__model__fit_intercept", pars) conv = SkBaseTransformLearner(LinearRegression(fit_intercept=True)) pipe = make_pipeline(conv, DecisionTreeRegressor()) pipe.set_params(**pars) pars = pipe.get_params() - self.assertIn('skbasetransformlearner__model__fit_intercept', pars) + self.assertIn("skbasetransformlearner__model__fit_intercept", pars) @ignore_warnings(ConvergenceWarning) def test_pickle(self): - df = pandas.DataFrame(dict(y=[0, 1, 0, 1, 0, 1, 0, 1], - X1=[0.5, 0.6, 0.52, 0.62, - 0.5, 0.6, 0.51, 0.61], - X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8])) - X = df.drop('y', axis=1) - y = df['y'] + df = pandas.DataFrame( + dict( + y=[0, 1, 0, 1, 0, 1, 0, 1], + X1=[0.5, 0.6, 0.52, 0.62, 0.5, 0.6, 0.51, 0.61], + X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8], + ) + ) + X = df.drop("y", axis=1) + y = df["y"] model = SkBaseTransformLearner(LinearRegression()) model.fit(X, y) @@ -139,19 +117,22 @@ def test_pickle(self): @ignore_warnings(ConvergenceWarning) def test_grid(self): - df = pandas.DataFrame(dict(y=[0, 1, 0, 1, 0, 1, 0, 1], - X1=[0.5, 0.6, 0.52, 0.62, - 0.5, 0.6, 0.51, 0.61], - X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8])) - X = df.drop('y', axis=1) - y = df['y'] - model = make_pipeline(SkBaseTransformLearner(LinearRegression()), - LogisticRegression()) + df = pandas.DataFrame( + dict( + y=[0, 1, 0, 1, 0, 1, 0, 1], + X1=[0.5, 0.6, 0.52, 0.62, 0.5, 0.6, 0.51, 0.61], + X2=[0.5, 0.6, 0.7, 0.5, 1.5, 1.6, 1.7, 1.8], + ) + ) + X = df.drop("y", axis=1) + y = df["y"] + model = make_pipeline( + SkBaseTransformLearner(LinearRegression()), LogisticRegression() + ) res = model.get_params(True) self.assertGreater(len(res), 0) - parameters = { - 'skbasetransformlearner__model__fit_intercept': [False, True]} + parameters = {"skbasetransformlearner__model__fit_intercept": [False, True]} clf = GridSearchCV(model, parameters, cv=3) clf.fit(X, y) diff --git a/_unittests/ut_sklapi/test_sklearn_stacking.py b/_unittests/ut_sklapi/test_sklearn_stacking.py index 0800268a..967df0c0 100644 --- a/_unittests/ut_sklapi/test_sklearn_stacking.py +++ b/_unittests/ut_sklapi/test_sklearn_stacking.py @@ -1,14 +1,11 @@ -""" -@brief test log(time=5s) -""" import os import unittest from io import BytesIO import pickle import warnings import pandas +import numpy from numpy.random import permutation -from sklearn import __version__ as sklver from sklearn.exceptions import ConvergenceWarning from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris @@ -22,13 +19,12 @@ from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer from sklearn.preprocessing import Normalizer, MinMaxScaler -from pyquickhelper.pycode import ExtTestCase, ignore_warnings -from pyquickhelper.texthelper import compare_module_version +from mlinsights.ext_test_case import ExtTestCase, ignore_warnings from mlinsights.sklapi import SkBaseTransformStacking with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) - from sklearn.ensemble import RandomForestClassifier # pylint: disable=C0412 + from sklearn.ensemble import RandomForestClassifier def load_wines_dataset(shuffle=False): @@ -44,37 +40,30 @@ def load_wines_dataset(shuffle=False): class TestSklearnStacking(ExtTestCase): - @ignore_warnings(ConvergenceWarning) def test_pipeline_with_two_classifiers(self): data = load_iris() X, y = data.data, data.target X_train, X_test, y_train, y_test = train_test_split(X, y) conv = SkBaseTransformStacking( - [LogisticRegression(n_jobs=1), DecisionTreeClassifier()]) + [LogisticRegression(n_jobs=1), DecisionTreeClassifier()] + ) pipe = make_pipeline(conv, DecisionTreeClassifier()) - try: - pipe.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e + pipe.fit(X_train, y_train) pred = pipe.predict(X_test) score = accuracy_score(y_test, pred) self.assertGreater(score, 0.8) score2 = pipe.score(X_test, y_test) self.assertEqual(score, score2) rp = repr(conv) - self.assertStartsWith( - 'SkBaseTransformStacking([LogisticRegression(', rp) + self.assertStartsWith("SkBaseTransformStacking([LogisticRegression(", rp) @ignore_warnings(ConvergenceWarning) def test_pipeline_with_two_transforms(self): data = load_iris() X, y = data.data, data.target X_train, X_test, y_train, y_test = train_test_split(X, y) - conv = SkBaseTransformStacking( - [Normalizer(), MinMaxScaler()]) + conv = SkBaseTransformStacking([Normalizer(), MinMaxScaler()]) pipe = make_pipeline(conv, DecisionTreeClassifier()) pipe.fit(X_train, y_train) pred = pipe.predict(X_test) @@ -83,32 +72,32 @@ def test_pipeline_with_two_transforms(self): score2 = pipe.score(X_test, y_test) self.assertEqual(score, score2) rp = repr(conv) - self.assertStartsWith( - "SkBaseTransformStacking([Normalizer(", rp) + self.assertStartsWith("SkBaseTransformStacking([Normalizer(", rp) @ignore_warnings(ConvergenceWarning) def test_pipeline_with_params(self): - conv = SkBaseTransformStacking([LinearRegression(), - DecisionTreeClassifier(max_depth=3)]) + conv = SkBaseTransformStacking( + [LinearRegression(), DecisionTreeClassifier(max_depth=3)] + ) pipe = make_pipeline(conv, DecisionTreeRegressor()) pars = pipe.get_params(deep=True) - self.assertIn( - 'skbasetransformstacking__models_0__model__fit_intercept', pars) - conv = SkBaseTransformStacking([LinearRegression(), - DecisionTreeClassifier(max_depth=2)]) + self.assertIn("skbasetransformstacking__models_0__model__fit_intercept", pars) + conv = SkBaseTransformStacking( + [LinearRegression(), DecisionTreeClassifier(max_depth=2)] + ) pipe = make_pipeline(conv, DecisionTreeRegressor()) pipe.set_params(**pars) pars = pipe.get_params() - self.assertIn( - 'skbasetransformstacking__models_0__model__fit_intercept', pars) + self.assertIn("skbasetransformstacking__models_0__model__fit_intercept", pars) @ignore_warnings(ConvergenceWarning) def test_pickle(self): data = load_iris() X, y = data.data, data.target # X_train, X_test, y_train, y_test = train_test_split(X, y) - conv = SkBaseTransformStacking([LinearRegression(), - DecisionTreeClassifier(max_depth=3)]) + conv = SkBaseTransformStacking( + [LinearRegression(), DecisionTreeClassifier(max_depth=3)] + ) model = make_pipeline(conv, DecisionTreeRegressor()) model.fit(X, y) @@ -123,9 +112,9 @@ def test_pickle(self): @ignore_warnings(ConvergenceWarning) def test_clone(self): - conv = SkBaseTransformStacking([LinearRegression(), - DecisionTreeClassifier(max_depth=3)], - 'predict') + conv = SkBaseTransformStacking( + [LinearRegression(), DecisionTreeClassifier(max_depth=3)], "predict" + ) cloned = clone(conv) conv.test_equality(cloned, exc=True) @@ -134,52 +123,54 @@ def test_grid(self): data = load_iris() X, y = data.data, data.target # X_train, X_test, y_train, y_test = train_test_split(X, y) - conv = SkBaseTransformStacking([LinearRegression(), - DecisionTreeClassifier(max_depth=3)]) + conv = SkBaseTransformStacking( + [LinearRegression(), DecisionTreeClassifier(max_depth=3)] + ) model = make_pipeline(conv, DecisionTreeRegressor()) res = model.get_params(True) self.assertGreater(len(res), 0) - parameters = { - 'skbasetransformstacking__models_1__model__max_depth': [2, 3]} + parameters = {"skbasetransformstacking__models_1__model__max_depth": [2, 3]} clf = GridSearchCV(model, parameters) clf.fit(X, y) pred = clf.predict(X) - self.assertEqualArray(y, pred) + self.assertEqualArray(y.astype(numpy.float64), pred) @ignore_warnings(ConvergenceWarning) def test_pipeline_wines(self): df = load_wines_dataset(shuffle=True) - X = df.drop(['quality', 'color'], axis=1) - y = df['quality'] # pylint: disable=E1136 + X = df.drop(["quality", "color"], axis=1) + y = df["quality"] X_train, X_test, y_train, y_test = train_test_split(X, y) model = make_pipeline( SkBaseTransformStacking( - [LogisticRegression(n_jobs=1)], 'decision_function'), - RandomForestClassifier()) - try: - model.fit(X_train, y_train) - except AttributeError as e: - if compare_module_version(sklver, "0.24") < 0: - return - raise e - auc_pipe = roc_auc_score(y_test == model.predict(X_test), - model.predict_proba(X_test).max(axis=1)) + [LogisticRegression(n_jobs=1)], "decision_function" + ), + RandomForestClassifier(), + ) + model.fit(X_train, y_train) + auc_pipe = roc_auc_score( + y_test == model.predict(X_test), model.predict_proba(X_test).max(axis=1) + ) acc = model.score(X_test, y_test) accu = accuracy_score(y_test, model.predict(X_test)) self.assertGreater(auc_pipe, 0.6) self.assertGreater(acc, 0.5) self.assertGreater(accu, 0.5) - grid = GridSearchCV(estimator=model, param_grid={}, - cv=3, refit='acc', - scoring=dict(acc=make_scorer(accuracy_score))) + grid = GridSearchCV( + estimator=model, + param_grid={}, + cv=3, + refit="acc", + scoring=dict(acc=make_scorer(accuracy_score)), + ) grid.fit(X, y) best = grid.best_estimator_ step = grid.best_estimator_.steps[0][1] meth = step.method - self.assertEqual(meth, 'decision_function') + self.assertEqual(meth, "decision_function") res = cross_val_score(model, X, y, cv=5) acc1 = best.score(X_test, y_test) diff --git a/_unittests/ut_timeseries/test_agg_timeseries.py b/_unittests/ut_timeseries/test_agg_timeseries.py index a51d7926..a8213fa0 100644 --- a/_unittests/ut_timeseries/test_agg_timeseries.py +++ b/_unittests/ut_timeseries/test_agg_timeseries.py @@ -1,38 +1,34 @@ -""" -@brief test log(time=2s) -""" import unittest import datetime -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries.datasets import artificial_data from mlinsights.timeseries.agg import aggregate_timeseries class TestAggTimeSeries(ExtTestCase): - def test_agg_data(self): dt1 = datetime.datetime(2019, 8, 1) dt2 = datetime.datetime(2019, 8, 8) data = artificial_data(dt1, dt2, minutes=15) - data['y'] = 1 - agg = aggregate_timeseries(data, per='week') + data["y"] = 1 + agg = aggregate_timeseries(data, per="week") self.assertEqual(agg.shape, (132, 2)) - self.assertEqual(agg['y'].min(), 2) - self.assertEqual(agg['y'].max(), 2) + self.assertEqual(agg["y"].min(), 2) + self.assertEqual(agg["y"].max(), 2) dt1 = datetime.datetime(2019, 8, 1) dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) - data['y'] = 1 - agg = aggregate_timeseries(data, per='week') + data["y"] = 1 + agg = aggregate_timeseries(data, per="week") self.assertEqual(agg.shape, (132, 2)) - self.assertEqual(agg['y'].min(), 4) - self.assertEqual(agg['y'].max(), 4) + self.assertEqual(agg["y"].min(), 4) + self.assertEqual(agg["y"].max(), 4) - agg = aggregate_timeseries(data, per='month') + agg = aggregate_timeseries(data, per="month") self.assertEqual(agg.shape, (264, 2)) - self.assertEqual(agg['y'].min(), 2) - self.assertEqual(agg['y'].max(), 2) + self.assertEqual(agg["y"].min(), 2) + self.assertEqual(agg["y"].max(), 2) if __name__ == "__main__": diff --git a/_unittests/ut_timeseries/test_art_timeseries.py b/_unittests/ut_timeseries/test_art_timeseries.py index 77035534..d4f62d60 100644 --- a/_unittests/ut_timeseries/test_art_timeseries.py +++ b/_unittests/ut_timeseries/test_art_timeseries.py @@ -1,14 +1,10 @@ -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries import build_ts_X_y, ARTimeSeriesRegressor class TestArtTimeSeries(ExtTestCase): - def test_base_parameters_split0(self): X = None y = numpy.arange(5) * 100 diff --git a/_unittests/ut_timeseries/test_base_timeseries.py b/_unittests/ut_timeseries/test_base_timeseries.py index 028baf80..92ac8d9e 100644 --- a/_unittests/ut_timeseries/test_base_timeseries.py +++ b/_unittests/ut_timeseries/test_base_timeseries.py @@ -1,15 +1,11 @@ -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries import build_ts_X_y from mlinsights.timeseries.base import BaseTimeSeries class TestBaseTimeSeries(ExtTestCase): - def test_base_parameters_split0(self): X = None y = numpy.arange(5) * 100 diff --git a/_unittests/ut_timeseries/test_datasets_timeseries.py b/_unittests/ut_timeseries/test_datasets_timeseries.py index ae8e1e27..5213c048 100644 --- a/_unittests/ut_timeseries/test_datasets_timeseries.py +++ b/_unittests/ut_timeseries/test_datasets_timeseries.py @@ -1,14 +1,10 @@ -""" -@brief test log(time=2s) -""" import unittest import datetime -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries.datasets import artificial_data class TestDataSetsTimeSeries(ExtTestCase): - def test_artificial_data(self): dt1 = datetime.datetime(2019, 8, 1) dt2 = datetime.datetime(2019, 9, 1) @@ -16,7 +12,7 @@ def test_artificial_data(self): self.assertEqual(data.shape, (27, 2)) data = artificial_data(dt1, dt2, minutes=60) self.assertEqual(data.shape, (297, 2)) - self.assertEqual(data.shape[0] * 1. / 27, data.shape[0] // 27) + self.assertEqual(data.shape[0] * 1.0 / 27, data.shape[0] // 27) if __name__ == "__main__": diff --git a/_unittests/ut_timeseries/test_dummy_timeseries.py b/_unittests/ut_timeseries/test_dummy_timeseries.py index 1edf89f2..c6dbca0a 100644 --- a/_unittests/ut_timeseries/test_dummy_timeseries.py +++ b/_unittests/ut_timeseries/test_dummy_timeseries.py @@ -1,15 +1,11 @@ -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries.preprocessing import TimeSeriesDifference from mlinsights.timeseries.dummies import DummyTimeSeriesRegressor class TestDummyTimeSeries(ExtTestCase): - def test_dummy_timesieres_regressor_2(self): X = None y = numpy.arange(10) @@ -17,7 +13,7 @@ def test_dummy_timesieres_regressor_2(self): self.assertRaise(lambda: bs.fit(X, y), TypeError) y = y.astype(numpy.float64) np = bs.predict(X, y) - self.assertEqual(np.ravel()[2:], numpy.arange(1, 9)) + self.assertEqual(np.ravel()[2:], numpy.arange(1, 9).astype(numpy.float64)) def test_dummy_timesieres_regressor_1(self): X = None @@ -26,7 +22,7 @@ def test_dummy_timesieres_regressor_1(self): bs = DummyTimeSeriesRegressor(past=1) bs.fit(X, y) np = bs.predict(X, y) - self.assertEqual(np.ravel()[1:], numpy.arange(0, 9)) + self.assertEqual(np.ravel()[1:], numpy.arange(0, 9).astype(numpy.float64)) def test_dummy_timesieres_regressor_score(self): X = None @@ -35,32 +31,35 @@ def test_dummy_timesieres_regressor_score(self): bs = DummyTimeSeriesRegressor(past=1) bs.fit(X, y) np = bs.predict(X, y) - self.assertEqual(np.ravel()[1:], numpy.arange(0, 9)) + self.assertEqual(np.ravel()[1:], numpy.arange(0, 9).astype(numpy.float64)) sc = bs.score(X, y) self.assertEqual(sc, 1) - sc = bs.score(X, y, numpy.ones((len(y),), ) * 2) + sc = bs.score( + X, + y, + numpy.ones( + (len(y),), + ) + * 2, + ) self.assertEqual(sc, 1) def test_dummy_timeseries_regressor_1_diff(self): X = None y = numpy.arange(10).astype(numpy.float64) - bs = DummyTimeSeriesRegressor( - past=1, preprocessing=TimeSeriesDifference(1)) + bs = DummyTimeSeriesRegressor(past=1, preprocessing=TimeSeriesDifference(1)) bs.fit(X, y) - self.assertRaise(lambda: bs.predict(X), # pylint: disable=E1120 - (TypeError, RuntimeError)) + self.assertRaise(lambda: bs.predict(X), (TypeError, RuntimeError)) for i in range(y.shape[0]): if i >= y.shape[0] - 2: - self.assertRaise(lambda ii=i: bs.predict( - None, y[ii:]), AssertionError) + self.assertRaise(lambda ii=i: bs.predict(None, y[ii:]), AssertionError) else: np = bs.predict(None, y[i:]) self.assertEqual(np.shape[0] + 1, y[i:].shape[0]) np = bs.predict(X, y).ravel() - self.assertEqual(np[1:], numpy.arange(1, 9)) + self.assertEqual(np[1:], numpy.arange(1, 9).astype(numpy.float64)) self.assertTrue(numpy.isnan(np[0])) if __name__ == "__main__": - TestDummyTimeSeries().test_dummy_timesieres_regressor_score() - unittest.main() + unittest.main(verbosity=2) diff --git a/_unittests/ut_timeseries/test_patterns.py b/_unittests/ut_timeseries/test_patterns.py index df21dbb6..c64a3784 100644 --- a/_unittests/ut_timeseries/test_patterns.py +++ b/_unittests/ut_timeseries/test_patterns.py @@ -1,28 +1,26 @@ -""" -@brief test log(time=2s) -""" import unittest import datetime import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries.datasets import artificial_data from mlinsights.timeseries.patterns import find_ts_group_pattern class TestPatterns(ExtTestCase): - def test_clusters(self): dt1 = datetime.datetime(2018, 8, 1) dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) names = numpy.empty(data.shape[0], dtype=str) - names[:] = 'A' + names[:] = "A" for i in range(1, 20): - names[i::20] = 'BCDEFGHIJKLMNOPQRSTUVWXYZ'[i] - self.assertRaise(lambda: find_ts_group_pattern( - data['time'], data['y'], names), TypeError) + names[i::20] = "BCDEFGHIJKLMNOPQRSTUVWXYZ"[i] + self.assertRaise( + lambda: find_ts_group_pattern(data["time"], data["y"], names), TypeError + ) clusters, dists = find_ts_group_pattern( - data['time'].values, data['y'].values, names) + data["time"].values, data["y"].values, names + ) self.assertEqual(clusters.shape[0], dists.shape[0]) self.assertEqual(8, dists.shape[1]) @@ -31,12 +29,12 @@ def test_clusters_norm(self): dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) names = numpy.empty(data.shape[0], dtype=str) - names[:] = 'A' + names[:] = "A" for i in range(1, 20): - names[i::20] = 'BCDEFGHIJKLMNOPQRSTUVWXYZ'[i] + names[i::20] = "BCDEFGHIJKLMNOPQRSTUVWXYZ"[i] clusters, dists = find_ts_group_pattern( - data['time'].values, data['y'].values, names, - agg='norm') + data["time"].values, data["y"].values, names, agg="norm" + ) self.assertEqual(clusters.shape[0], dists.shape[0]) self.assertEqual(8, dists.shape[1]) @@ -45,12 +43,16 @@ def test_clusters_subset(self): dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) names = numpy.empty(data.shape[0], dtype=str) - names[:] = 'A' + names[:] = "A" for i in range(1, 20): - names[i::20] = 'BCDEFGHIJKLMNOPQRSTUVWXYZ'[i] + names[i::20] = "BCDEFGHIJKLMNOPQRSTUVWXYZ"[i] clusters, dists = find_ts_group_pattern( - data['time'].values, data['y'].values, names, - agg='norm', name_subset=list('BCDEFGHIJKL')) + data["time"].values, + data["y"].values, + names, + agg="norm", + name_subset=list("BCDEFGHIJKL"), + ) self.assertEqual(clusters.shape[0], dists.shape[0]) self.assertEqual(8, dists.shape[1]) @@ -58,14 +60,14 @@ def test_clusters2(self): dt1 = datetime.datetime(2018, 8, 1) dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) - data['y2'] = data['y'] + 1. + data["y2"] = data["y"] + 1.0 names = numpy.empty(data.shape[0], dtype=str) - names[:] = 'A' + names[:] = "A" for i in range(1, 20): - names[i::20] = 'BCDEFGHIJKLMNOPQRSTUVWXYZ'[i] + names[i::20] = "BCDEFGHIJKLMNOPQRSTUVWXYZ"[i] clusters, dists = find_ts_group_pattern( - data['time'].values, - data[['y', 'y2']].values, names) + data["time"].values, data[["y", "y2"]].values, names + ) self.assertEqual(clusters.shape[0], dists.shape[0]) self.assertEqual(8, dists.shape[1]) diff --git a/_unittests/ut_timeseries/test_plot_timeseries.py b/_unittests/ut_timeseries/test_plot_timeseries.py index 2974a23a..32673a85 100644 --- a/_unittests/ut_timeseries/test_plot_timeseries.py +++ b/_unittests/ut_timeseries/test_plot_timeseries.py @@ -1,36 +1,38 @@ -""" -@brief test log(time=2s) -""" import unittest import datetime import warnings import sys -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries.datasets import artificial_data from mlinsights.timeseries.agg import aggregate_timeseries from mlinsights.timeseries.plotting import plot_week_timeseries class TestPlotTimeSeries(ExtTestCase): - @unittest.skipIf( sys.platform == "win32" and __name__ != "__main__", - reason="issue with matplotlib") + reason="issue with matplotlib", + ) def test_plot_data(self): try: - import matplotlib.pyplot as plt # pylint: disable=C0415 + import matplotlib.pyplot as plt except Exception as e: - if 'generated new fontManager' in str(e): + if "generated new fontManager" in str(e): warnings.warn(e) return raise e dt1 = datetime.datetime(2019, 8, 1) dt2 = datetime.datetime(2019, 8, 15) data = artificial_data(dt1, dt2, minutes=15) - agg = aggregate_timeseries(data, per='week') + agg = aggregate_timeseries(data, per="week") ax = plot_week_timeseries( - agg['weektime'], agg['y'], label="y", - value2=agg['y'] / 2, label2="y/2", normalise=False) + agg["weektime"], + agg["y"], + label="y", + value2=agg["y"] / 2, + label2="y/2", + normalise=False, + ) self.assertNotEmpty(ax) if __name__ == "__main__": plt.show() diff --git a/_unittests/ut_timeseries/test_preprocessing_timeseries.py b/_unittests/ut_timeseries/test_preprocessing_timeseries.py index 662a8f46..9da2cf7a 100644 --- a/_unittests/ut_timeseries/test_preprocessing_timeseries.py +++ b/_unittests/ut_timeseries/test_preprocessing_timeseries.py @@ -1,16 +1,12 @@ -""" -@brief test log(time=2s) -""" import unittest import numpy -from pyquickhelper.pycode import ExtTestCase +from mlinsights.ext_test_case import ExtTestCase from mlinsights.timeseries import build_ts_X_y from mlinsights.timeseries.base import BaseTimeSeries from mlinsights.timeseries.preprocessing import TimeSeriesDifference class TestPreprocessingTimeSeries(ExtTestCase): - def test_base_parameters_split0(self): X = numpy.arange(20).reshape((10, 2)) y = numpy.arange(10) * 100 @@ -31,7 +27,7 @@ def test_base_parameters_split0_weight(self): y = numpy.arange(10) * 100 bs = BaseTimeSeries(past=2) nx, ny, _ = build_ts_X_y(bs, X, y) - weights = numpy.ones((nx.shape[0], ), dtype=nx.dtype) + weights = numpy.ones((nx.shape[0],), dtype=nx.dtype) for d in range(0, 5): proc = TimeSeriesDifference(d) proc.fit(nx, ny, weights) diff --git a/_unittests/ut_xrun_doc/test_documentation_examples.py b/_unittests/ut_xrun_doc/test_documentation_examples.py new file mode 100644 index 00000000..95511f33 --- /dev/null +++ b/_unittests/ut_xrun_doc/test_documentation_examples.py @@ -0,0 +1,92 @@ +import unittest +import os +import sys +import importlib +import subprocess +import time +from mlinsights import __file__ as mlinsights_file +from mlinsights.ext_test_case import ExtTestCase + +VERBOSE = 0 +ROOT = os.path.realpath(os.path.abspath(os.path.join(mlinsights_file, "..", ".."))) + + +def import_source(module_file_path, module_name): + if not os.path.exists(module_file_path): + raise FileNotFoundError(module_file_path) + module_spec = importlib.util.spec_from_file_location(module_name, module_file_path) + if module_spec is None: + raise FileNotFoundError( + "Unable to find '{}' in '{}'.".format(module_name, module_file_path) + ) + module = importlib.util.module_from_spec(module_spec) + return module_spec.loader.exec_module(module) + + +class TestDocumentationExamples(ExtTestCase): + def run_test(self, fold: str, name: str, verbose=0) -> int: + ppath = os.environ.get("PYTHONPATH", "") + if len(ppath) == 0: + os.environ["PYTHONPATH"] = ROOT + elif ROOT not in ppath: + sep = ";" if sys.platform == "win32" else ":" + os.environ["PYTHONPATH"] = ppath + sep + ROOT + perf = time.perf_counter() + os.environ["UNITTEST_GOING"] = "1" + try: + mod = import_source(fold, os.path.splitext(name)[0]) + assert mod is not None + except FileNotFoundError: + # try another way + cmds = [sys.executable, "-u", os.path.join(fold, name)] + p = subprocess.Popen(cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE) + res = p.communicate() + out, err = res + st = err.decode("ascii", errors="ignore") + if len(st) > 0 and "Traceback" in st: + if "No module named 'onnxruntime'" in st: + if verbose: + print(f"failed: {name!r} due to missing onnxruntime.") + return 1 + raise AssertionError( + "Example '{}' (cmd: {} - exec_prefix='{}') " + "failed due to\n{}" + "".format(name, cmds, sys.exec_prefix, st) + ) + dt = time.perf_counter() - perf + if verbose: + print(f"{dt:.3f}: run {name!r}") + return 1 + + @classmethod + def add_test_methods(cls): + this = os.path.abspath(os.path.dirname(__file__)) + fold = os.path.normpath(os.path.join(this, "..", "..", "_doc", "examples")) + found = os.listdir(fold) + for name in found: + if name.startswith("plot_") and name.endswith(".py"): + short_name = os.path.split(os.path.splitext(name)[0])[-1] + + if sys.platform != "linux" and ( + "plot_search_images_torch" in name + or "plot_visualize_pipeline" in name + ): + + @unittest.skip("notebook with questions or issues with windows") + def _test_(self, name=name): + res = self.run_test(fold, name, verbose=VERBOSE) + self.assertTrue(res) + + else: + + def _test_(self, name=name): + res = self.run_test(fold, name, verbose=VERBOSE) + self.assertTrue(res) + + setattr(cls, f"test_{short_name}", _test_) + + +TestDocumentationExamples.add_test_methods() + +if __name__ == "__main__": + unittest.main(verbosity=2) diff --git a/azure-pipelines.yml b/azure-pipelines.yml index e24deb79..57438a25 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -1,5 +1,5 @@ jobs: -- job: 'TestLinux' +- job: 'TestLinuxWheelNoCuda' pool: vmImage: 'ubuntu-latest' strategy: @@ -7,6 +7,7 @@ jobs: Python311-Linux: python.version: '3.11' maxParallel: 3 + steps: - task: UsePythonVersion@0 inputs: @@ -14,46 +15,127 @@ jobs: architecture: 'x64' - script: sudo apt-get update displayName: 'AptGet Update' - - script: sudo apt-get install -y inkscape - displayName: 'Install Inkscape' - - script: sudo apt-get install -y pandoc - displayName: 'Install Pandoc' - # - script: sudo apt-get install -y texlive texlive-latex-extra texlive-xetex dvipng - # displayName: 'Install Latex' - - script: sudo apt-get install -y libgeos-dev libproj-dev proj-data graphviz libblas-dev liblapack-dev - displayName: 'Install Geos packages' - - script: | - wget https://apt.llvm.org/llvm.sh - chmod +x llvm.sh - sudo ./llvm.sh 10 - ls /usr/bin/llvm* - export LLVM_CONFIG=/usr/bin/llvm-config-10 - displayName: 'Install llvmlite' - - script: sudo apt-get install -y p7zip-full - displayName: 'Install 7z, rar' - script: sudo apt-get install -y graphviz displayName: 'Install Graphviz' - - script: pip install --upgrade pip setuptools wheel pyquicksetup + - script: python -m pip install --upgrade pip setuptools wheel displayName: 'Install tools' - - script: pip install numpy - displayName: 'Install numpy' - - script: pip install install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu - displayName: 'Install pytorch' + - script: pip install -r requirements.txt + displayName: 'Install Requirements' + - script: pip install -r requirements-dev.txt + displayName: 'Install Requirements dev' + - script: | + ruff . + displayName: 'Ruff' + - script: | + black --diff . + displayName: 'Black' + - script: | + cmake-lint _cmake/Find* --disabled-codes C0103 C0113 --line-width=88 + cmake-lint _cmake/CMake* --disabled-codes C0103 C0113 --line-width=88 + displayName: 'cmake-lint' + - script: | + rstcheck -r ./_doc ./mlinsights + displayName: 'rstcheck' + - script: | + cython-lint . + displayName: 'cython-lint' - script: | - export LLVM_CONFIG=/usr/bin/llvm-config-10 - pip install -r requirements.txt + export USE_CUDA=0 + python -m pip install -e . --config-settings="--use_cuda=0" -v + displayName: 'pip install -e . --config-settings="--use_cuda=0" -v' + - script: | + python -m pytest _unittests --durations=10 + displayName: 'Runs Unit Tests' + - script: | + # --config-settings does not work yet. + # python -m pip wheel . --config-settings="--use_cuda=0" -v + export USE_CUDA=0 + python -m pip wheel . --config-settings="--use_cuda=0" -v + displayName: 'build wheel' + - script: | + mkdir dist + cp mlinsights*.whl dist + displayName: 'copy wheel' + - task: PublishPipelineArtifact@0 + inputs: + artifactName: 'wheel-linux-pip-$(python.version)' + targetPath: 'dist' + +- job: 'TestLinux' + pool: + vmImage: 'ubuntu-latest' + strategy: + matrix: + Python311-Linux: + python.version: '3.11' + maxParallel: 3 + + steps: + - task: UsePythonVersion@0 + inputs: + versionSpec: '$(python.version)' + architecture: 'x64' + - script: sudo apt-get update + displayName: 'AptGet Update' + # - script: sudo apt-get install -y pandoc + # displayName: 'Install Pandoc' + # - script: sudo apt-get install -y inkscape + # displayName: 'Install Inkscape' + - script: sudo apt-get install -y graphviz + displayName: 'Install Graphviz' + - script: python -m pip install --upgrade pip setuptools wheel + displayName: 'Install tools' + - script: pip install -r requirements.txt displayName: 'Install Requirements' - - script: python -u setup.py build_ext --inplace - displayName: 'Build package inplace' - - script: python -u setup.py unittests + - script: pip install -r requirements-dev.txt + displayName: 'Install Requirements dev' + - script: | + ruff . + displayName: 'Ruff' + - script: | + black --diff . + displayName: 'Black' + - script: | + cmake-lint _cmake/Find* --disabled-codes C0103 C0113 --line-width=88 + cmake-lint _cmake/CMake* --disabled-codes C0103 C0113 --line-width=88 + displayName: 'cmake-lint' + - script: | + cython-lint . + displayName: 'cython-lint' + - script: | + # python -m pip install -e . + python setup.py build_ext --inplace + displayName: 'build inplace' + - bash: | + contents=$(cat .build_path.txt) + export BUILD_PATH="$contents" + cd $BUILD_PATH + ctest --rerun-failed --output-on-failure + displayName: 'Run C++ Unit Tests' + + - script: | + python -m pytest _unittests --durations=10 displayName: 'Runs Unit Tests' - script: | - python -m pip install cibuildwheel - export CIBW_MANYLINUX_X86_64_IMAGE="manylinux_2_24" - export CIBW_BEFORE_BUILD="pip install pybind11 cython numpy scipy pyquickhelper scikit-learn pandas pandas_streaming" - export CIBW_BUILD="cp39-manylinux_x86_64 cp310-manylinux_x86_64 cp311-manylinux_x86_64" - python -m cibuildwheel --output-dir dist/wheelhouse_2 --platform linux - displayName: 'Build Package manylinux_x_y' + python -u setup.py bdist_wheel + displayName: 'Build Package' + - script: | + ls dist/* + find dist -type f \( -name "mlinsights*.whl" \) | while read f; do + echo "pip install $f"; + python -m pip install $f; + done + displayName: 'install built wheel' + - script: | + cd dist + python -m pytest ../_unittests + displayName: 'check unit test with the whl' + - script: | + ls -l + displayName: 'current folder' + - script: | + python -m sphinx _doc dist/html + displayName: 'Builds Documentation' - task: PublishPipelineArtifact@0 inputs: artifactName: 'wheel-linux-$(python.version)' @@ -67,27 +149,39 @@ jobs: Python311-Windows: python.version: '3.11' maxParallel: 3 + steps: - task: UsePythonVersion@0 inputs: versionSpec: '$(python.version)' architecture: 'x64' - - script: python -m pip install --upgrade pip setuptools wheel pyquicksetup + - script: python -m pip install --upgrade pip setuptools wheel displayName: 'Install tools' - - script: pip install -r requirements.txt + - script: | + pip install -r requirements.txt displayName: 'Install Requirements' - - script: python -c "import platform;print(platform.version())" - displayName: 'Platform' - - script: python -u setup.py build_ext --inplace - displayName: 'Build inplace' - - script: python -u setup.py unittests -d 5 + - script: | + pip install -r requirements-dev.txt + displayName: 'Install Requirements dev' + - script: set + displayName: 'set' + - script: | + python setup.py build_ext --inplace + displayName: 'build' + - script: | + python setup.py install + displayName: 'build wheel' + - powershell: | + $contents = Get-Content -Path ".build_path.txt" + cd $contents + ctest -C Release --rerun-failed --output-on-failure + displayName: 'Runs C++ Unit Tests' + - script: | + python -m pytest _unittests --durations=10 displayName: 'Runs Unit Tests' - script: | - python -m pip install cibuildwheel - set CIBW_BEFORE_BUILD=pip install pybind11 cython numpy scipy pyquickhelper scikit-learn pandas pandas_streaming - set CIBW_BUILD=cp39-win_amd64 cp310-win_amd64 cp311-win_amd64 - python -m cibuildwheel --output-dir dist/wheelhouse - displayName: 'Build Package many' + python -u setup.py bdist_wheel + displayName: 'Build Package' - task: PublishPipelineArtifact@0 inputs: artifactName: 'wheel-windows-$(python.version)' @@ -98,61 +192,58 @@ jobs: vmImage: 'macOS-latest' strategy: matrix: - Python310-MacOs: - python.version: '3.10' + Python311-Mac: + python.version: '3.11' maxParallel: 3 + steps: - task: UsePythonVersion@0 inputs: versionSpec: '$(python.version)' architecture: 'x64' - - script: gcc --version - displayName: 'gcc version' - - script: export - displayName: 'export' - - script: gcc --version - displayName: 'gcc version' + + # use anaconda + # - bash: echo "##vso[task.prependpath]$CONDA/bin" + # displayName: Add conda to PATH + # - bash: sudo chown -R $USER $CONDA + # displayName: Take ownership of conda installation + # - bash: conda create --yes --quiet --name myEnvironment + # displayName: Create Anaconda environment + + - script: | + python -c "import sys;print(sys.executable)" + python -c "import sys;print(sys.version_info)" + displayName: 'Print' - script: brew install libomp displayName: 'Install omp' - - script: brew upgrade p7zip - continueOnError: true - displayName: 'Install p7zip' - - script: brew install pandoc - displayName: 'Install Pandoc' - - script: brew install graphviz - continueOnError: true - displayName: 'Install Graphviz' - - script: brew install cairo pango gdk-pixbuf libffi - displayName: 'Install cairo pango gdk-pixbuf libffi' - - bash: echo "##vso[task.prependpath]$CONDA/bin" - displayName: Add conda to PATH. - - bash: sudo chown -R $USER $CONDA - displayName: Take ownership of conda installation - #- script: brew install --cask mactex - # continueOnError: true - # displayName: 'Install latex' - - bash: conda install -y -c conda-forge numpy scipy - displayName: Install numpy scipy pyquicksetup - - bash: conda install -y -c conda-forge llvmlite numba - displayName: Install llvmlite numba - - bash: conda install -y -c conda-forge pyproj cartopy shapely - displayName: Install pyproj cartopy shapely - - script: pip install -r requirements.txt + - script: brew install llvm + displayName: 'Install llvm' + - script: | + pip install -r requirements.txt displayName: 'Install Requirements' - - script: pip install torch torchvision torchaudio - displayName: 'Install pytorch' - script: | - # export MACOSX_DEPLOYMENT_TARGET=10.13 - python setup.py build_ext --inplace - displayName: 'Build package inplace' - - script: python -u setup.py unittests -d 15 + pip install -r requirements-dev.txt + displayName: 'Install Requirements dev' + - script: | + gcc --version + python -c "import sys;print('PYTHON', sys.executable)" + python -c "import sys;print('PYTHON', sys.version_info)" + python -c "import numpy;print('numpy', numpy.__version__)" + python -c "import cython;print('cython', cython.__version__)" + displayName: 'Print' + - script: | + python setup.py build_ext --inplace + displayName: 'build' + - script: | + python setup.py bdist_wheel + displayName: 'build wheel' + - script: | + source activate myEnvironment + python -m pytest _unittests --durations=10 displayName: 'Runs Unit Tests' - script: | - python -m pip install cibuildwheel - export CIBW_BEFORE_BUILD="pip install pybind11 cython numpy scipy pyquickhelper scikit-learn pandas pandas_streaming" - export CIBW_BUILD="cp39-macosx_x86_64 cp310-macosx_x86_64 cp311-macosx_x86_64" - python -m cibuildwheel --output-dir dist/wheelhouse - displayName: 'Build Package many' + python -u setup.py build + displayName: 'Build Package' - task: PublishPipelineArtifact@0 inputs: artifactName: 'wheel-mac-$(python.version)' diff --git a/bin/build.bat b/bin/build.bat deleted file mode 100644 index 0f06c027..00000000 --- a/bin/build.bat +++ /dev/null @@ -1,26 +0,0 @@ -@echo off -set current=%~dp0 -set root=%current%.. -cd %root% -@echo ################## -@echo Compile -@echo running %root%\setup.py build_ext --inplace -@echo ################## -set pythonexe="c:\Python372_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python370_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python366_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python365_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python364_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python363_x64\python.exe" -%pythonexe% -u %root%\setup.py build_ext --inplace --verbose -if %errorlevel% neq 0 exit /b %errorlevel% -@echo Done Compile. -@echo ################## -@echo Build -cd %root% -@echo running setup.py bdist_wheel sdist -@echo ################## -%pythonexe% -u setup.py bdist_wheel sdist -if %errorlevel% neq 0 exit /b %errorlevel% -@echo Done Build. -cd %current% \ No newline at end of file diff --git a/build_script.bat b/build_script.bat deleted file mode 100644 index 415ae38e..00000000 --- a/build_script.bat +++ /dev/null @@ -1,13 +0,0 @@ -@echo off -if "%1"=="" goto default_value_python: -set pythonexe="%1" -%pythonexe% setup.py write_version -goto custom_python: - -:default_value_python: -set pythonexe="c:\Python395_x64\python.exe" -if not exist %pythonexe% set pythonexe="c:\Python391_x64\python.exe" -:custom_python: -@echo [python] %pythonexe% -%pythonexe% -u setup.py build_script -if %errorlevel% neq 0 exit /b %errorlevel% \ No newline at end of file diff --git a/mlinsights/__init__.py b/mlinsights/__init__.py index 6775967e..aa2cdee8 100644 --- a/mlinsights/__init__.py +++ b/mlinsights/__init__.py @@ -1,50 +1,6 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Module *mlinsights*. -Look for insights for machine learned models. -""" -__version__ = "0.4.664" +__version__ = "0.5.0" __author__ = "Xavier Dupré" __github__ = "https://github.com/sdpython/mlinsights" -__url__ = "http://www.xavierdupre.fr/app/mlinsights/helpsphinx/index.html" +__url__ = "https://sdpython.github.io/doc/dev/mlinsights/" __license__ = "MIT License" -__blog__ = """ - - - - blog - - - - - -""" - - -def check(log=False): - """ - Checks the library is working. - It raises an exception. - If you want to disable the logs: - - @param log if True, display information, otherwise - @return 0 or exception - """ - return True # pragma: no cover - - -def _setup_hook(use_print=False): - """ - if this function is added to the module, - the help automation and unit tests call it first before - anything goes on as an initialization step. - """ - # we can check many things, needed module - # any others things before unit tests are started - if use_print: # pragma: no cover - print("Success: _setup_hook") # pragma: no cover diff --git a/mlinsights/ext_test_case.py b/mlinsights/ext_test_case.py new file mode 100644 index 00000000..dcfa8820 --- /dev/null +++ b/mlinsights/ext_test_case.py @@ -0,0 +1,517 @@ +import os +import sys +import unittest +import warnings +import zipfile +from io import BytesIO +from urllib.request import urlopen +from argparse import ArgumentParser +from contextlib import redirect_stderr, redirect_stdout +from io import StringIO +from timeit import Timer +from typing import Any, Callable, Dict, List, Optional, Tuple, Union +import numpy +from numpy.testing import assert_allclose +import pandas + + +def unit_test_going(): + """ + Enables a flag telling the script is running while testing it. + Avois unit tests to be very long. + """ + going = int(os.environ.get("UNITTEST_GOING", 0)) + return going == 1 + + +def ignore_warnings(warns: List[Warning]) -> Callable: + """ + Catches warnings. + + :param warns: warnings to ignore + """ + + def wrapper(fct): + if warns is None: + raise AssertionError(f"warns cannot be None for '{fct}'.") + + def call_f(self): + with warnings.catch_warnings(): + warnings.simplefilter("ignore", warns) + return fct(self) + + return call_f + + return wrapper + + +def measure_time( + stmt: Union[str, Callable], + context: Optional[Dict[str, Any]] = None, + repeat: int = 10, + number: int = 50, + warmup: int = 1, + div_by_number: bool = True, + max_time: Optional[float] = None, +) -> Dict[str, Any]: + """ + Measures a statement and returns the results as a dictionary. + + :param stmt: string or callable + :param context: variable to know in a dictionary + :param repeat: average over *repeat* experiment + :param number: number of executions in one row + :param warmup: number of iteration to do before starting the + real measurement + :param div_by_number: divide by the number of executions + :param max_time: execute the statement until the total goes + beyond this time (approximatively), *repeat* is ignored, + *div_by_number* must be set to True + :return: dictionary + + .. runpython:: + :showcode: + + from onnx_extended.ext_test_case import measure_time + from math import cos + + res = measure_time(lambda: cos(0.5)) + print(res) + + See `Timer.repeat `_ + for a better understanding of parameter *repeat* and *number*. + The function returns a duration corresponding to + *number* times the execution of the main statement. + """ + if not callable(stmt) and not isinstance(stmt, str): + raise TypeError( + f"stmt is not callable or a string but is of type {type(stmt)!r}." + ) + if context is None: + context = {} + + if isinstance(stmt, str): + tim = Timer(stmt, globals=context) + else: + tim = Timer(stmt) + + if warmup > 0: + warmup_time = tim.timeit(warmup) + else: + warmup_time = 0 + + if max_time is not None: + if not div_by_number: + raise ValueError( + "div_by_number must be set to True of max_time is defined." + ) + i = 1 + total_time = 0 + results = [] + while True: + for j in (1, 2): + number = i * j + time_taken = tim.timeit(number) + results.append((number, time_taken)) + total_time += time_taken + if total_time >= max_time: + break + if total_time >= max_time: + break + ratio = (max_time - total_time) / total_time + ratio = max(ratio, 1) + i = int(i * ratio) + + res = numpy.array(results) + tw = res[:, 0].sum() + ttime = res[:, 1].sum() + mean = ttime / tw + ave = res[:, 1] / res[:, 0] + dev = (((ave - mean) ** 2 * res[:, 0]).sum() / tw) ** 0.5 + mes = dict( + average=mean, + deviation=dev, + min_exec=numpy.min(ave), + max_exec=numpy.max(ave), + repeat=1, + number=tw, + ttime=ttime, + ) + else: + res = numpy.array(tim.repeat(repeat=repeat, number=number)) + if div_by_number: + res /= number + + mean = numpy.mean(res) + dev = numpy.mean(res**2) + dev = (dev - mean**2) ** 0.5 + mes = dict( + average=mean, + deviation=dev, + min_exec=numpy.min(res), + max_exec=numpy.max(res), + repeat=repeat, + number=number, + ttime=res.sum(), + ) + + if "values" in context: + if hasattr(context["values"], "shape"): + mes["size"] = context["values"].shape[0] + else: + mes["size"] = len(context["values"]) + else: + mes["context_size"] = sys.getsizeof(context) + mes["warmup_time"] = warmup_time + return mes + + +class ExtTestCase(unittest.TestCase): + _warns = [] + + def assertExists(self, name): + if not os.path.exists(name): + raise AssertionError(f"File or folder {name!r} does not exists.") + + def assertEqual(self, a, b): + if isinstance(a, numpy.ndarray) or isinstance(b, numpy.ndarray): + self.assertEqualArray(a, b) + elif isinstance(a, pandas.DataFrame) and isinstance(b, pandas.DataFrame): + self.assertEqual(list(a.columns), list(b.columns)) + self.assertEqualArray(a.values, b.values) + else: + try: + super().assertEqual(a, b) + except ValueError as e: + raise AssertionError( + f"a and b are not equal, type(a)={type(a)}, type(b)={type(b)}" + ) from e + + def assertEqualArray( + self, + expected: numpy.ndarray, + value: numpy.ndarray, + atol: float = 0, + rtol: float = 0, + ): + if expected.dtype not in (numpy.int32, numpy.int64) or value.dtype not in ( + numpy.int32, + numpy.int64, + ): + self.assertEqual(expected.dtype, value.dtype) + self.assertEqual(expected.shape, value.shape) + assert_allclose(expected, value, atol=atol, rtol=rtol) + + def assertNotEqualArray( + self, + expected: numpy.ndarray, + value: numpy.ndarray, + atol: float = 0, + rtol: float = 0, + ): + if expected.dtype not in (numpy.int32, numpy.int64) or value.dtype not in ( + numpy.int32, + numpy.int64, + ): + self.assertEqual(expected.dtype, value.dtype) + self.assertEqual(expected.shape, value.shape) + try: + assert_allclose(expected, value, atol=atol, rtol=rtol) + except AssertionError: + return True + raise AssertionError(f"Both arrays are equal, atol={atol}, rtol={rtol}.") + + def assertEqualDataFrame(self, d1, d2, **kwargs): + """ + Checks that two dataframes are equal. + Calls :epkg:`pandas:testing:assert_frame_equal`. + """ + from pandas.testing import assert_frame_equal + + assert_frame_equal(d1, d2, **kwargs) + + def assertAlmostEqual( + self, + expected: numpy.ndarray, + value: numpy.ndarray, + atol: float = 0, + rtol: float = 0, + ): + if not isinstance(expected, numpy.ndarray): + expected = numpy.array(expected) + if not isinstance(value, numpy.ndarray): + value = numpy.array(value).astype(expected.dtype) + self.assertEqualArray(expected, value, atol=atol, rtol=rtol) + + def assertRaise( + self, fct: Callable, exc_type: Exception, msg: Optional[str] = None + ): + try: + fct() + except exc_type as e: + if not isinstance(e, exc_type): + raise AssertionError(f"Unexpected exception {type(e)!r}.") + if msg is None: + return + self.assertIn(msg, str(e)) + return + raise AssertionError("No exception was raised.") + + def assertEmpty(self, value: Any): + if value is None: + return + if len(value) == 0: + return + raise AssertionError(f"value is not empty: {value!r}.") + + def assertNotEmpty(self, value: Any): + if value is None: + raise AssertionError(f"value is empty: {value!r}.") + if isinstance(value, (list, dict, tuple, set)): + if len(value) == 0: + raise AssertionError(f"value is empty: {value!r}.") + + def assertStartsWith(self, prefix: str, full: str): + if not full.startswith(prefix): + raise AssertionError(f"prefix={prefix!r} does not start string {full!r}.") + + def assertLesser(self, a, b): + if a == b: + return + self.assertLess(a, b) + + def assertGreater(self, a, b): + if a == b: + return + super().assertGreater(a, b) + + def assertEqualFloat(self, a, b, precision=1e-5): + """ + Checks that ``abs(a-b) < precision``. + """ + mi = min(abs(a), abs(b)) + if mi == 0: + d = abs(a - b) + try: + self.assertLesser(d, precision) + except AssertionError: + raise AssertionError(f"{a} != {b} (p={precision})") + else: + r = float(abs(a - b)) / mi + try: + self.assertLesser(r, precision) + except AssertionError: + raise AssertionError(f"{a} != {b} (p={precision})") + + def assertEndsWith(self, suffix: str, text: str): + if not text.endswith(suffix): + raise AssertionError(f"Unable to find {suffix!r} in {text!r}.") + + @classmethod + def tearDownClass(cls): + for name, line, w in cls._warns: + warnings.warn(f"\n{name}:{line}: {type(w)}\n {str(w)}") + + def capture(self, fct: Callable): + """ + Runs a function and capture standard output and error. + + :param fct: function to run + :return: result of *fct*, output, error + """ + sout = StringIO() + serr = StringIO() + with redirect_stdout(sout): + with redirect_stderr(serr): + res = fct() + return res, sout.getvalue(), serr.getvalue() + + +def get_parsed_args( + name: str, + scenarios: Optional[Dict[str, str]] = None, + description: Optional[str] = None, + epilog: Optional[str] = None, + number: int = 10, + repeat: int = 10, + warmup: int = 5, + sleep: float = 0.1, + tries: int = 2, + expose: Optional[str] = None, + **kwargs: Dict[str, Tuple[Union[int, str, float], str]], +) -> ArgumentParser: + """ + Returns parsed arguments for examples in this package. + + :param name: script name + :param scenarios: list of available scenarios + :param description: parser description + :param epilog: text at the end of the parser + :param number: default value for number parameter + :param repeat: default value for repeat parameter + :param warmup: default value for warmup parameter + :param sleep: default value for sleep parameter + :param expose: if empty, keeps all the parameters, + if None, only publish kwargs contains, otherwise the list + of parameters to publish separated by a comma + :param kwargs: additional parameters, + example: `n_trees=(10, "number of trees to train")` + :return: parser + """ + if description is None: + description = f"Available options for {name}.py." + if epilog is None: + epilog = "" + parser = ArgumentParser(prog=name, description=description, epilog=epilog) + if expose is not None: + to_publish = set(expose.split(",")) if len(expose) > 0 else set() + if scenarios is not None: + rows = ", ".join(f"{k}: {v}" for k, v in scenarios.items()) + parser.add_argument( + "-s", "--scenario", help=f"Available scenarios: {rows}." + ) + if len(to_publish) == 0 or "number" in to_publish: + parser.add_argument( + "-n", + "--number", + help=f"number of executions to measure, default is {number}", + type=int, + default=number, + ) + if len(to_publish) == 0 or "repeat" in to_publish: + parser.add_argument( + "-r", + "--repeat", + help=f"number of times to repeat the measure, default is {repeat}", + type=int, + default=repeat, + ) + if len(to_publish) == 0 or "warmup" in to_publish: + parser.add_argument( + "-w", + "--warmup", + help=f"number of times to repeat the measure, default is {warmup}", + type=int, + default=warmup, + ) + if len(to_publish) == 0 or "sleep" in to_publish: + parser.add_argument( + "-S", + "--sleep", + help=f"sleeping time between two configurations, default is {sleep}", + type=float, + default=sleep, + ) + if len(to_publish) == 0 or "tries" in to_publish: + parser.add_argument( + "-t", + "--tries", + help=f"number of tries for each configurations, default is {tries}", + type=int, + default=tries, + ) + for k, v in kwargs.items(): + parser.add_argument( + f"--{k}", + help=f"{v[1]}, default is {v[0]}", + type=type(v[0]), + default=v[0], + ) + + return parser.parse_args() + + +def unzip_files( + zipf: str, + where_to: Optional[str] = None, + fvalid: Optional[Callable] = None, + fail_if_error=True, + verbose: int = 0, +): + """ + Unzips files from a zip archive. + + :param zipf: archive (or bytes or BytesIO) + :param where_to: destination folder + (can be None, the result is a list of tuple) + :param fvalid: function which takes two paths + (zip name, local name) and return True if the file + must be unzipped, False otherwise, if None, the default answer is True + :param fail_if_error: fails if an error is encountered + (typically a weird character in a filename), + otherwise a warning is thrown. + :param verbose: display file names + :return: list of unzipped files + """ + if zipf.startswith("https:"): + filename = zipf.split("/")[-1] + dest_zip = os.path.join(where_to, filename) + if not os.path.exists(dest_zip): + if verbose: + print(f"[unzip_files] downloads into {dest_zip!r} from {zipf!r}") + with urlopen(zipf, timeout=10) as u: + content = u.read() + with open(dest_zip, "wb") as f: + f.write(content) + elif verbose: + print(f"[unzip_files] already downloaded {dest_zip!r}") + zipf = dest_zip + + if isinstance(zipf, bytes): + zipf = BytesIO(zipf) + + try: + with zipfile.ZipFile(zipf, "r"): + pass + except zipfile.BadZipFile as e: + if isinstance(zipf, BytesIO): + raise e + raise IOError(f"Unable to read file '{zipf}'") from e + + files = [] + with zipfile.ZipFile(zipf, "r") as file: + for info in file.infolist(): + if verbose > 1: + print(f"[unzip_files] found file {info.filename!r}") + if where_to is None: + try: + content = file.read(info.filename) + except zipfile.BadZipFile as e: + if fail_if_error: + raise zipfile.BadZipFile( + f"Unable to extract {info.filename!r} due to {e}" + ) from e + warnings.warn( + f"Unable to extract {info.filename!r} due to {e}", UserWarning + ) + continue + files.append((info.filename, content)) + continue + + tos = os.path.join(where_to, info.filename) + if not os.path.exists(tos): + if fvalid and not fvalid(info.filename, tos): + if verbose > 1: + print(f"[unzip_files] skip file {info.filename!r}") + continue + + try: + data = file.read(info.filename) + except zipfile.BadZipFile as e: + if fail_if_error: + raise zipfile.BadZipFile( + f"Unable to extract {info.filename!r} due to {e}" + ) from e + warnings.warn( + f"Unable to extract {info.filename!r} due to {e}", UserWarning + ) + continue + if verbose > 0: + print(f"[unzip_files] write file {tos!r}") + with open(tos, "wb") as f: + f.write(data) + files.append(tos) + elif not info.filename.endswith("/"): + files.append(tos) + return files diff --git a/mlinsights/helpers/__init__.py b/mlinsights/helpers/__init__.py index 8f040e19..e69de29b 100644 --- a/mlinsights/helpers/__init__.py +++ b/mlinsights/helpers/__init__.py @@ -1,4 +0,0 @@ -""" -@file -@brief Shortcuts to *helpers*. -""" diff --git a/mlinsights/helpers/parameters.py b/mlinsights/helpers/parameters.py index 458fe82d..51f8b28f 100644 --- a/mlinsights/helpers/parameters.py +++ b/mlinsights/helpers/parameters.py @@ -1,7 +1,3 @@ -""" -@file -@brief Functions about parameters. -""" import textwrap @@ -9,19 +5,18 @@ def format_value(v): """ Formats a value to be included in a string. - @param v a string - @return a string + :param v: a string + :return: a string """ - return ("%r" % v.replace("'", "\\'") - if isinstance(v, str) else f"{v!r}") + return "%r" % v.replace("'", "\\'") if isinstance(v, str) else f"{v!r}" def format_parameters(pdict): """ Formats a list of parameters. - @param pdict dictionary - @return string + :param pdict: dictionary + :return: string .. runpython:: :showcode: @@ -33,7 +28,7 @@ def format_parameters(pdict): """ res = [] for k, v in sorted(pdict.items()): - res.append(f'{k}={format_value(v)}') + res.append(f"{k}={format_value(v)}") return ", ".join(res) @@ -41,8 +36,8 @@ def format_function_call(name, pdict): """ Formats a function call with named parameters. - @param pdict dictionary - @return string + param pdict: dictionary + :return: string .. runpython:: :showcode: @@ -52,5 +47,5 @@ def format_function_call(name, pdict): d = dict(i=2, x=6.7, s="r") print(format_function_call("fct", d)) """ - res = f'{name}({format_parameters(pdict)})' - return "\n".join(textwrap.wrap(res, width=70, subsequent_indent=' ')) + res = f"{name}({format_parameters(pdict)})" + return "\n".join(textwrap.wrap(res, width=70, subsequent_indent=" ")) diff --git a/mlinsights/helpers/pipeline.py b/mlinsights/helpers/pipeline.py index d661320d..7c1c1699 100644 --- a/mlinsights/helpers/pipeline.py +++ b/mlinsights/helpers/pipeline.py @@ -1,11 +1,12 @@ -""" -@file -@brief Dig into pipelines. -""" import textwrap import warnings from types import MethodType -from sklearn.base import TransformerMixin, ClassifierMixin, RegressorMixin, BaseEstimator +from sklearn.base import ( + TransformerMixin, + ClassifierMixin, + RegressorMixin, + BaseEstimator, +) from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.compose import ColumnTransformer, TransformedTargetRegressor @@ -14,32 +15,34 @@ def enumerate_pipeline_models(pipe, coor=None, vs=None): """ Enumerates all the models within a pipeline. - @param pipe *scikit-learn* pipeline - @param coor current coordinate - @param vs subset of variables for the model, None for all - @return iterator on models ``tuple(coordinate, model)`` + :param pipe: *scikit-learn* pipeline + :param coor: current coordinate + :param vs: subset of variables for the model, None for all + :return: iterator on models ``tuple(coordinate, model)`` - See notebook :ref:`visualizepipelinerst`. + See example :ref:`l-visualize-pipeline-example`. """ if coor is None: coor = (0,) if pipe == "passthrough": + class PassThrough: "dummy class to help display" pass + yield coor, PassThrough(), vs else: yield coor, pipe, vs - if hasattr(pipe, 'transformer_and_mapper_list') and len(pipe.transformer_and_mapper_list): + if hasattr(pipe, "transformer_and_mapper_list") and len( + pipe.transformer_and_mapper_list + ): # azureml DataTransformer - raise NotImplementedError( # pragma: no cover - "Unable to handle this specific case.") - elif hasattr(pipe, 'mapper') and pipe.mapper: + raise NotImplementedError("Unable to handle this specific case.") + elif hasattr(pipe, "mapper") and pipe.mapper: # azureml DataTransformer - for couple in enumerate_pipeline_models( # pragma: no cover - pipe.mapper, coor + (0,)): # pragma: no cover - yield couple # pragma: no cover - elif hasattr(pipe, 'built_features'): # pragma: no cover + for couple in enumerate_pipeline_models(pipe.mapper, coor + (0,)): + yield couple + elif hasattr(pipe, "built_features"): # sklearn_pandas.dataframe_mapper.DataFrameMapper for i, (columns, transformers, _) in enumerate(pipe.built_features): if isinstance(columns, str): @@ -47,7 +50,9 @@ class PassThrough: if transformers is None: yield (coor + (i,)), None, columns else: - for couple in enumerate_pipeline_models(transformers, coor + (i,), columns): + for couple in enumerate_pipeline_models( + transformers, coor + (i,), columns + ): yield couple elif isinstance(pipe, Pipeline): for i, (_, model) in enumerate(pipe.steps): @@ -56,29 +61,30 @@ class PassThrough: elif isinstance(pipe, ColumnTransformer): for i, (_, fitted_transformer, column) in enumerate(pipe.transformers): for couple in enumerate_pipeline_models( - fitted_transformer, coor + (i,), column): + fitted_transformer, coor + (i,), column + ): yield couple elif isinstance(pipe, FeatureUnion): for i, (_, model) in enumerate(pipe.transformer_list): for couple in enumerate_pipeline_models(model, coor + (i,)): yield couple elif isinstance(pipe, TransformedTargetRegressor): - raise NotImplementedError( # pragma: no cover - "Not yet implemented for TransformedTargetRegressor.") + raise NotImplementedError( + "Not yet implemented for TransformedTargetRegressor." + ) elif isinstance(pipe, (TransformerMixin, ClassifierMixin, RegressorMixin)): pass - elif isinstance(pipe, BaseEstimator): # pragma: no cover + elif isinstance(pipe, BaseEstimator): pass else: - raise TypeError( # pragma: no cover - f"pipe is not a scikit-learn object: {type(pipe)}\n{pipe}") + raise TypeError(f"pipe is not a scikit-learn object: {type(pipe)}\n{pipe}") class BaseEstimatorDebugInformation: """ Stores information when the outputs of a pipeline is computed. It as added by function - @see fct alter_pipeline_for_debugging. + :func:`alter_pipeline_for_debugging`. """ def __init__(self, model): @@ -88,19 +94,20 @@ def __init__(self, model): self.methods = {} if hasattr(model, "transform") and callable(model.transform): model._debug_transform = model.transform - self.methods["transform"] = lambda model, X: model._debug_transform( - X) + self.methods["transform"] = lambda model, X: model._debug_transform(X) if hasattr(model, "predict") and callable(model.predict): model._debug_predict = model.predict self.methods["predict"] = lambda model, X: model._debug_predict(X) if hasattr(model, "predict_proba") and callable(model.predict_proba): model._debug_predict_proba = model.predict_proba self.methods["predict_proba"] = lambda model, X: model._debug_predict_proba( - X) + X + ) if hasattr(model, "decision_function") and callable(model.decision_function): model._debug_decision_function = model.decision_function - self.methods["decision_function"] = lambda model, X: model._debug_decision_function( - X) + self.methods[ + "decision_function" + ] = lambda model, X: model._debug_decision_function(X) def __repr__(self): """ @@ -112,21 +119,19 @@ def to_str(self, nrows=5): """ Tries to produce a readable message. """ - rows = [ - f'BaseEstimatorDebugInformation({self.model.__class__.__name__})'] + rows = [f"BaseEstimatorDebugInformation({self.model.__class__.__name__})"] for k in sorted(self.inputs): if k in self.outputs: - rows.append(' ' + k + '(') + rows.append(" " + k + "(") self.display(self.inputs[k], nrows) - rows.append(textwrap.indent( - self.display(self.inputs[k], nrows), ' ')) - rows.append(' ) -> (') - rows.append(textwrap.indent( - self.display(self.outputs[k], nrows), ' ')) - rows.append(' )') + rows.append(textwrap.indent(self.display(self.inputs[k], nrows), " ")) + rows.append(" ) -> (") + rows.append( + textwrap.indent(self.display(self.outputs[k], nrows), " ") + ) + rows.append(" )") else: - raise KeyError( # pragma: no cover - f"Unable to find output for method '{k}'.") + raise KeyError(f"Unable to find output for method '{k}'.") return "\n".join(rows) def display(self, data, nrows): @@ -134,14 +139,14 @@ def display(self, data, nrows): Displays the first """ text = str(data) - rows = text.split('\n') + rows = text.split("\n") if len(rows) > nrows: rows = rows[:nrows] - rows.append('...') - if hasattr(data, 'shape'): + rows.append("...") + if hasattr(data, "shape"): rows.insert(0, f"shape={data.shape!r} type={type(data)!r}") else: - rows.insert(0, f"type={type(data)!r}") # pragma: no cover + rows.insert(0, f"type={type(data)!r}") return "\n".join(rows) @@ -151,50 +156,51 @@ def alter_pipeline_for_debugging(pipe): or *decision_function* to collect the last inputs and outputs seen in these methods. - @param pipe *scikit-learn* pipeline + :param pipe: *scikit-learn* pipeline The object *pipe* is modified, it should be copied before calling this function if you need the object untouched after that. The prediction is slower. - See notebook :ref:`visualizepipelinerst`. + See notebook :ref:`l-visualize-pipeline-example`. """ def transform(self, X, *args, **kwargs): - self._debug.inputs['transform'] = X - y = self._debug.methods['transform'](self, X, *args, **kwargs) - self._debug.outputs['transform'] = y + self._debug.inputs["transform"] = X + y = self._debug.methods["transform"](self, X, *args, **kwargs) + self._debug.outputs["transform"] = y return y def predict(self, X, *args, **kwargs): - self._debug.inputs['predict'] = X - y = self._debug.methods['predict'](self, X, *args, **kwargs) - self._debug.outputs['predict'] = y + self._debug.inputs["predict"] = X + y = self._debug.methods["predict"](self, X, *args, **kwargs) + self._debug.outputs["predict"] = y return y def predict_proba(self, X, *args, **kwargs): - self._debug.inputs['predict_proba'] = X - y = self._debug.methods['predict_proba'](self, X, *args, **kwargs) - self._debug.outputs['predict_proba'] = y + self._debug.inputs["predict_proba"] = X + y = self._debug.methods["predict_proba"](self, X, *args, **kwargs) + self._debug.outputs["predict_proba"] = y return y def decision_function(self, X, *args, **kwargs): - self._debug.inputs['decision_function'] = X - y = self._debug.methods['decision_function'](self, X, *args, **kwargs) - self._debug.outputs['decision_function'] = y + self._debug.inputs["decision_function"] = X + y = self._debug.methods["decision_function"](self, X, *args, **kwargs) + self._debug.outputs["decision_function"] = y return y new_methods = { - 'decision_function': decision_function, - 'transform': transform, - 'predict': predict, - 'predict_proba': predict_proba, + "decision_function": decision_function, + "transform": transform, + "predict": predict, + "predict_proba": predict_proba, } - if hasattr(pipe, '_debug'): - raise RuntimeError( # pragma: no cover + if hasattr(pipe, "_debug"): + raise RuntimeError( "The same operator cannot be used twice in " "the same pipeline or this method was called " - "a second time.") + "a second time." + ) for model_ in enumerate_pipeline_models(pipe): model = model_[1] @@ -202,7 +208,7 @@ def decision_function(self, X, *args, **kwargs): for k in model._debug.methods: try: setattr(model, k, MethodType(new_methods[k], model)) - except AttributeError: # pragma: no cover + except AttributeError: warnings.warn( - f"Unable to overwrite method {k!r} for class " - f"{type(model)!r}.") + f"Unable to overwrite method {k!r} for class {type(model)!r}." + ) diff --git a/mlinsights/metrics/__init__.py b/mlinsights/metrics/__init__.py index 8ebacac9..a770a64e 100644 --- a/mlinsights/metrics/__init__.py +++ b/mlinsights/metrics/__init__.py @@ -1,7 +1,2 @@ -""" -@file -@brief Shortcuts to *metrics*. -""" - from .correlations import non_linear_correlations from .scoring_metrics import r2_score_comparable diff --git a/mlinsights/metrics/correlations.py b/mlinsights/metrics/correlations.py index 8a689de9..95f9b719 100644 --- a/mlinsights/metrics/correlations.py +++ b/mlinsights/metrics/correlations.py @@ -1,7 +1,3 @@ -""" -@file -@brief Correlations. -""" import numpy from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale @@ -12,16 +8,14 @@ def non_linear_correlations(df, model, draws=5, minmax=False): """ Computes non linear correlations. - @param df :epkg:`pandas:DataFrame` or - :epkg:`numpy:array` - @param model machine learned model used to compute - the correlations - @param draws number of tries for :epkg:`bootstrap`, - the correlation is the average of the results - obtained at each draw - @param minmax if True, returns three matrices correlations, min, max, - only the correlation matrix if False - @return see parameter minmax + :param df: :class:`pandas.DataFrame` or :class:`numpy.array` + :param model: machine learned model used to compute the correlations + :param draws: number of tries for :epkg:`bootstrap`, + the correlation is the average of the results + obtained at each draw + :param minmax: if True, returns three matrices correlations, min, max, + only the correlation matrix if False + :return: see parameter minmax `Pearson Correlations `_ is: @@ -35,7 +29,8 @@ def non_linear_correlations(df, model, draws=5, minmax=False): .. math:: - cor(X_i, X_j) = \\frac{\\mathbb{E}(X_i X_j)}{\\sqrt{\\mathbb{E}X_i^2 \\mathbb{E}X_j^2}} + cor(X_i, X_j) = \\frac{\\mathbb{E}(X_i X_j)} + {\\sqrt{\\mathbb{E}X_i^2 \\mathbb{E}X_j^2}} If rescaled, :math:`\\mathbb{E}X_i^2=\\mathbb{E}X_j^2=1`, then it becomes :math:`cor(X_i, X_j) = \\mathbb{E}(X_i X_j)`. @@ -56,8 +51,8 @@ def non_linear_correlations(df, model, draws=5, minmax=False): defined as: :math:`f(\\omega, X) \\rightarrow \\mathbb{R}`. :math:`f` is not linear anymore. Let's assume parameter :math:`\\omega^*` minimizes - quantity :math:`\\min_\\omega (X_j - f(\\omega, X_i))^2`. - Then :math:`X_j = \\alpha_{ij} \\frac{f(\\omega^*, X_i)}{\\alpha_{ij}} + \\epsilon_{ij}` + quantity :math:`\\min_\\omega (X_j - f(\\omega, X_i))^2`. Then + :math:`X_j = \\alpha_{ij} \\frac{f(\\omega^*, X_i)}{\\alpha_{ij}} + \\epsilon_{ij}` and we choose :math:`\\alpha_{ij}` such as :math:`\\mathbb{E}\\left(\\frac{f(\\omega^*, X_i)^2}{\\alpha_{ij}^2}\\right) = 1`. Let's define a non linear correlation bounded by :math:`f` as: @@ -100,16 +95,16 @@ def non_linear_correlations(df, model, draws=5, minmax=False): """ - if hasattr(df, 'iloc'): + if hasattr(df, "iloc"): cor = df.corr() - cor.iloc[:, :] = 0. + cor.iloc[:, :] = 0.0 iloc = True if minmax: mini = cor.copy() maxi = cor.copy() else: cor = numpy.corrcoef(df, rowvar=False) - cor[:, :] = 0. + cor[:, :] = 0.0 iloc = False if minmax: mini = cor.copy() @@ -119,22 +114,22 @@ def non_linear_correlations(df, model, draws=5, minmax=False): for k in range(0, draws): df_train, df_test = train_test_split(df, test_size=0.5) for i in range(cor.shape[0]): - xi_train = df_train[:, i:i + 1] - xi_test = df_test[:, i:i + 1] + xi_train = df_train[:, i : i + 1] + xi_test = df_test[:, i : i + 1] for j in range(cor.shape[1]): - xj_train = df_train[:, j:j + 1] - xj_test = df_test[:, j:j + 1] + xj_train = df_train[:, j : j + 1] + xj_test = df_test[:, j : j + 1] if len(xj_test) == 0 or len(xi_test) == 0: - raise ValueError( # pragma: no cover - f"One column is empty i={i} j={j}.") + raise ValueError(f"One column is empty i={i} j={j}.") mod = clone(model) try: mod.fit(xi_train, xj_train.ravel()) - except Exception as e: # pragma: no cover + except Exception as e: raise ValueError( - f"Unable to compute correlation for i={i} j={j}.") from e + f"Unable to compute correlation for i={i} j={j}." + ) from e v = mod.predict(xi_test) - c = (1 - numpy.var(v - xj_test.ravel())) + c = 1 - numpy.var(v - xj_test.ravel()) co = max(c, 0) ** 0.5 if iloc: cor.iloc[i, j] += co diff --git a/mlinsights/metrics/scoring_metrics.py b/mlinsights/metrics/scoring_metrics.py index 4bc4db9e..2ca720e6 100644 --- a/mlinsights/metrics/scoring_metrics.py +++ b/mlinsights/metrics/scoring_metrics.py @@ -1,18 +1,12 @@ -""" -@file -@brief Metrics to compare machine learning. -""" import numpy from sklearn.metrics import r2_score -_known_functions = { - 'exp': numpy.exp, - 'log': numpy.log -} +_known_functions = {"exp": numpy.exp, "log": numpy.log} -def comparable_metric(metric_function, y_true, y_pred, - tr="log", inv_tr='exp', **kwargs): +def comparable_metric( + metric_function, y_true, y_pred, tr="log", inv_tr="exp", **kwargs +): """ Applies function on either the true target or/and the predictions before computing r2 score. @@ -33,8 +27,7 @@ def comparable_metric(metric_function, y_true, y_pred, if inv_tr is not None and not callable(inv_tr): raise TypeError("Argument inv_tr must be callable.") if tr is None and inv_tr is None: - raise ValueError( - "tr and inv_tr cannot be both None at the same time.") + raise ValueError("tr and inv_tr cannot be both None at the same time.") if tr is None: return metric_function(y_true, inv_tr(y_pred), **kwargs) if inv_tr is None: @@ -42,9 +35,15 @@ def comparable_metric(metric_function, y_true, y_pred, return metric_function(tr(y_true), inv_tr(y_pred), **kwargs) -def r2_score_comparable(y_true, y_pred, *, sample_weight=None, - multioutput='uniform_average', - tr=None, inv_tr=None): +def r2_score_comparable( + y_true, + y_pred, + *, + sample_weight=None, + multioutput="uniform_average", + tr=None, + inv_tr=None, +): """ Applies function on either the true target or/and the predictions before computing r2 score. @@ -87,7 +86,12 @@ def r2_score_comparable(y_true, y_pred, *, sample_weight=None, print('r2 log comparable', r2_score_comparable( y_test, model2.predict(X_test), inv_tr="exp")) """ - return comparable_metric(r2_score, y_true, y_pred, - sample_weight=sample_weight, - multioutput=multioutput, - tr=tr, inv_tr=inv_tr) + return comparable_metric( + r2_score, + y_true, + y_pred, + sample_weight=sample_weight, + multioutput=multioutput, + tr=tr, + inv_tr=inv_tr, + ) diff --git a/mlinsights/mlbatch/__init__.py b/mlinsights/mlbatch/__init__.py index e99f73e1..b589a348 100644 --- a/mlinsights/mlbatch/__init__.py +++ b/mlinsights/mlbatch/__init__.py @@ -1,7 +1,2 @@ -""" -@file -@brief Shortcuts to *mlbatch*. -""" - from .cache_model import MLCache from .pipeline_cache import PipelineCache diff --git a/mlinsights/mlbatch/cache_model.py b/mlinsights/mlbatch/cache_model.py index 4f657260..6fdb8c4e 100644 --- a/mlinsights/mlbatch/cache_model.py +++ b/mlinsights/mlbatch/cache_model.py @@ -1,7 +1,3 @@ -""" -@file -@brief Caches to cache training. -""" import numpy _caches = {} @@ -30,8 +26,7 @@ def cache(self, params, value): """ key = MLCache.as_key(params) if key in self.cached: - raise KeyError( # pragma: no cover - f"Key {params} already exists") + raise KeyError(f"Key {params} already exists") self.cached[key] = value self.count_[key] = 0 @@ -76,18 +71,16 @@ def as_key(params): sv = str(v) elif isinstance(v, tuple): if not all(map(lambda e: isinstance(e, (int, float, str)), v)): - raise TypeError( # pragma: no cover - f"Unable to create a key with value '{k}':{v}") + raise TypeError(f"Unable to create a key with value '{k}':{v}") return str(v) elif isinstance(v, numpy.ndarray): # id(v) may have been better but # it does not play well with joblib. - sv = hash(v.tostring()) + sv = hash(v.tobytes()) elif v is None: sv = "" else: - raise TypeError( # pragma: no cover - f"Unable to create a key with value '{k}':{v}") + raise TypeError(f"Unable to create a key with value '{k}':{v}") els.append((k, sv)) return str(els) @@ -108,7 +101,7 @@ def keys(self): """ Enumerates all cached keys. """ - for k in self.cached.keys(): # pylint: disable=C0201 + for k in self.cached.keys(): yield k @staticmethod @@ -119,10 +112,9 @@ def create_cache(name): @param name name @return created cache """ - global _caches # pylint: disable=W0603,W0602 + global _caches if name in _caches: - raise RuntimeError( # pragma: no cover - f"cache '{name}' already exists.") + raise RuntimeError(f"cache '{name}' already exists.") cache = MLCache(name) _caches[name] = cache @@ -135,7 +127,7 @@ def remove_cache(name): @param name name """ - global _caches # pylint: disable=W0603,W0602 + global _caches del _caches[name] @staticmethod @@ -146,7 +138,7 @@ def get_cache(name): @param name name @return created cache """ - global _caches # pylint: disable=W0603,W0602 + global _caches return _caches[name] @staticmethod @@ -157,5 +149,5 @@ def has_cache(name): @param name name @return boolean """ - global _caches # pylint: disable=W0603,W0602 + global _caches return name in _caches diff --git a/mlinsights/mlbatch/pipeline_cache.py b/mlinsights/mlbatch/pipeline_cache.py index 6025993e..5af12284 100644 --- a/mlinsights/mlbatch/pipeline_cache.py +++ b/mlinsights/mlbatch/pipeline_cache.py @@ -1,21 +1,9 @@ -""" -@file -@brief Caches training. -""" -from distutils.version import StrictVersion # pylint: disable=W0402 -from sklearn import __version__ as skl_version from sklearn.base import clone from sklearn.pipeline import Pipeline, _fit_transform_one from sklearn.utils import _print_elapsed_time from .cache_model import MLCache -def isskl023(): - "Tells if :epkg:`scikit-learn` is more recent than 0.23." - v1 = ".".join(skl_version.split('.')[:2]) - return StrictVersion(v1) >= StrictVersion('0.23') - - class PipelineCache(Pipeline): """ Same as :epkg:`sklearn:pipeline:Pipeline` but it can @@ -32,11 +20,10 @@ class PipelineCache(Pipeline): If True, the time elapsed while fitting each step will be printed as it is completed. - Other attributes: - - :param named_steps: bunch object, a dictionary with attribute access - Read-only attribute to access any step parameter by user given name. - Keys are step names and values are steps parameters. + The attribute *named_steps* is a bunch object, a dictionary + with attribute access Read-only attribute to access any step + parameter by user given name. Keys are step names and values + are steps parameters. """ def __init__(self, steps, cache_name=None, verbose=False): @@ -47,28 +34,27 @@ def __init__(self, steps, cache_name=None, verbose=False): self.cache_name = cache_name def _get_fit_params_steps(self, fit_params): - fit_params_steps = {name: {} for name, step in self.steps - if step is not None} + fit_params_steps = {name: {} for name, step in self.steps if step is not None} for pname, pval in fit_params.items(): - if '__' not in pname: + if "__" not in pname: if not isinstance(pval, dict): - raise ValueError( # pragma: no cover + raise ValueError( f"For scikit-learn < 0.23, " f"Pipeline.fit does not accept the {pname} parameter. " f"You can pass parameters to specific steps of your " f"pipeline using the stepname__parameter format, e.g. " f"`Pipeline.fit(X, y, logisticregression__sample_weight" - f"=sample_weight)`.") + f"=sample_weight)`." + ) else: fit_params_steps[pname].update(pval) else: - step, param = pname.split('__', 1) + step, param = pname.split("__", 1) fit_params_steps[step][param] = pval return fit_params_steps def _fit(self, X, y=None, **fit_params): - self.steps = list(self.steps) self._validate_steps() fit_params_steps = self._get_fit_params_steps(fit_params) @@ -77,34 +63,36 @@ def _fit(self, X, y=None, **fit_params): else: self.cache_ = MLCache.get_cache(self.cache_name) Xt = X - for (step_idx, name, transformer) in self._iter( - with_final=False, filter_passthrough=False): - if (transformer is None or transformer == 'passthrough'): - with _print_elapsed_time('Pipeline', self._log_message(step_idx)): + for step_idx, name, transformer in self._iter( + with_final=False, filter_passthrough=False + ): + if transformer is None or transformer == "passthrough": + with _print_elapsed_time("Pipeline", self._log_message(step_idx)): continue params = transformer.get_params() - params['__class__'] = transformer.__class__.__name__ - params['X'] = Xt - if ((hasattr(transformer, 'is_classifier') and transformer.is_classifier()) or - (hasattr(transformer, 'is_regressor') and transformer.is_regressor())): - params['y'] = y + params["__class__"] = transformer.__class__.__name__ + params["X"] = Xt + if ( + hasattr(transformer, "is_classifier") and transformer.is_classifier() + ) or (hasattr(transformer, "is_regressor") and transformer.is_regressor()): + params["y"] = y cached = self.cache_.get(params) if cached is None: cloned_transformer = clone(transformer) Xt, fitted_transformer = _fit_transform_one( - cloned_transformer, Xt, y, None, - message_clsname='PipelineCache', + cloned_transformer, + Xt, + y, + None, + message_clsname="PipelineCache", message=self._log_message(step_idx), - **fit_params_steps[name]) + **fit_params_steps[name], + ) self.cache_.cache(params, fitted_transformer) else: fitted_transformer = cached Xt = fitted_transformer.transform(Xt) self.steps[step_idx] = (name, fitted_transformer) - if isskl023(): - return Xt - if self._final_estimator == 'passthrough': - return Xt, {} - return Xt, fit_params_steps[self.steps[-1][0]] + return Xt diff --git a/mlinsights/mlmodel/__init__.py b/mlinsights/mlmodel/__init__.py index 1556b621..ca830524 100644 --- a/mlinsights/mlmodel/__init__.py +++ b/mlinsights/mlmodel/__init__.py @@ -1,7 +1,3 @@ -""" -@file -@brief Shortcuts to *mlmodel*. -""" from .anmf_predictor import ApproximateNMFPredictor from .categories_to_integers import CategoriesToIntegers from .classification_kmeans import ClassifierAfterKMeans @@ -19,11 +15,12 @@ from .sklearn_testing import ( run_test_sklearn_pickle, run_test_sklearn_clone, - run_test_sklearn_grid_search_cv) + run_test_sklearn_grid_search_cv, +) from .sklearn_text import TraceableTfidfVectorizer, TraceableCountVectorizer from .sklearn_transform_inv_fct import ( FunctionReciprocalTransformer, - PermutationReciprocalTransformer) -from .target_predictors import ( - TransformedTargetClassifier2, TransformedTargetRegressor2) + PermutationReciprocalTransformer, +) +from .target_predictors import TransformedTargetClassifier2, TransformedTargetRegressor2 from .transfer_transformer import TransferTransformer diff --git a/mlinsights/mlmodel/_extended_features_polynomial.py b/mlinsights/mlmodel/_extended_features_polynomial.py index 80b05fa5..c81e2dc9 100644 --- a/mlinsights/mlmodel/_extended_features_polynomial.py +++ b/mlinsights/mlmodel/_extended_features_polynomial.py @@ -1,7 +1,3 @@ -""" -@file -@brief Implements new features such as polynomial features. -""" from itertools import combinations, chain from itertools import combinations_with_replacement as combinations_w_r @@ -17,7 +13,7 @@ def _transform_iall(degree, bias, XP, X, multiply, final): n = X.shape[1] for d in range(0, degree): if d == 0: - XP[:, pos:pos + n] = X + XP[:, pos : pos + n] = X index = list(range(pos, pos + n)) pos += n index.append(pos) @@ -28,8 +24,7 @@ def _transform_iall(degree, bias, XP, X, multiply, final): a = index[i] new_index.append(pos) new_pos = pos + end - a - multiply(XP[:, a:end], X[:, i:i + 1], - XP[:, pos:new_pos]) + multiply(XP[:, a:end], X[:, i : i + 1], XP[:, pos:new_pos]) pos = new_pos new_index.append(pos) @@ -49,7 +44,7 @@ def _transform_ionly(degree, bias, XP, X, multiply, final): n = X.shape[1] for d in range(0, degree): if d == 0: - XP[:, pos:pos + n] = X + XP[:, pos : pos + n] = X index = list(range(pos, pos + n)) pos += n index.append(pos) @@ -63,8 +58,7 @@ def _transform_ionly(degree, bias, XP, X, multiply, final): new_pos = pos + end - a - dec if new_pos <= pos: break - multiply(XP[:, a + dec:end], X[:, i:i + 1], - XP[:, pos:new_pos]) + multiply(XP[:, a + dec : end], X[:, i : i + 1], XP[:, pos:new_pos]) pos = new_pos new_index.append(pos) @@ -75,7 +69,8 @@ def _transform_ionly(degree, bias, XP, X, multiply, final): def _combinations_poly(n_features, degree, interaction_only, include_bias): "Computes all polynomial features combinations." - comb = (combinations if interaction_only else combinations_w_r) + comb = combinations if interaction_only else combinations_w_r start = int(not include_bias) - return chain.from_iterable(comb(range(n_features), i) - for i in range(start, degree + 1)) + return chain.from_iterable( + comb(range(n_features), i) for i in range(start, degree + 1) + ) diff --git a/mlinsights/mlmodel/_kmeans_022.py b/mlinsights/mlmodel/_kmeans_022.py index 34ec760a..5835c866 100644 --- a/mlinsights/mlmodel/_kmeans_022.py +++ b/mlinsights/mlmodel/_kmeans_022.py @@ -1,17 +1,17 @@ -# pylint: disable=C0302 -""" -@file -@brief Implements k-means with norms L1 and L2. -""" import numpy from scipy.sparse import issparse + # Source: https://github.com/scikit-learn/scikit-learn/blob/95d4f0841d57e8b5f6b2a570312e9d832e69debc/sklearn/cluster/_k_means_fast.pyx -from sklearn.utils.sparsefuncs_fast import assign_rows_csr # pylint: disable=W0611,E0611 +from sklearn.utils.sparsefuncs_fast import ( + assign_rows_csr, +) + try: from sklearn.cluster._kmeans import _check_sample_weight -except ImportError: # pragma: no cover +except ImportError: from sklearn.cluster._kmeans import ( - _check_normalize_sample_weight as _check_sample_weight) + _check_normalize_sample_weight as _check_sample_weight, + ) from sklearn.metrics.pairwise import pairwise_distances_argmin_min @@ -37,15 +37,16 @@ def _labels_inertia_precompute_dense(norm, X, sample_weight, centers, distances) cluster center. """ n_samples = X.shape[0] - if norm == 'L2': + if norm == "L2": labels, mindist = pairwise_distances_argmin_min( - X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True}) - elif norm == 'L1': + X=X, Y=centers, metric="euclidean", metric_kwargs={"squared": True} + ) + elif norm == "L1": labels, mindist = pairwise_distances_argmin_min( - X=X, Y=centers, metric='manhattan') + X=X, Y=centers, metric="manhattan" + ) else: # pragma no cover - raise NotImplementedError( - f"Not implemented for norm '{norm}'.") + raise NotImplementedError(f"Not implemented for norm '{norm}'.") # cython k-means code assumes int32 inputs labels = labels.astype(numpy.int32, copy=False) if n_samples == distances.shape[0]: @@ -55,17 +56,16 @@ def _labels_inertia_precompute_dense(norm, X, sample_weight, centers, distances) return labels, inertia -def _assign_labels_csr(X, sample_weight, x_squared_norms, centers, - labels, distances): +def _assign_labels_csr(X, sample_weight, x_squared_norms, centers, labels, distances): """Compute label assignment and inertia for a CSR input Return the inertia (sum of squared distances to the centers). """ - if (distances is not None and - distances.shape != (X.shape[0], )): - raise ValueError( # pragma: no cover + if distances is not None and distances.shape != (X.shape[0],): + raise ValueError( f"Dimension mismatch for distance got " f"{distances.shape}, expecting " - f"{(X.shape[0], centers.shape[0])}.") + f"{(X.shape[0], centers.shape[0])}." + ) n_clusters = centers.shape[0] n_samples = X.shape[0] store_distances = 0 @@ -81,7 +81,8 @@ def _assign_labels_csr(X, sample_weight, x_squared_norms, centers, for center_idx in range(n_clusters): center_squared_norms[center_idx] = numpy.dot( - centers[center_idx, :], centers[center_idx, :]) + centers[center_idx, :], centers[center_idx, :] + ) for sample_idx in range(n_samples): min_dist = -1 @@ -104,8 +105,7 @@ def _assign_labels_csr(X, sample_weight, x_squared_norms, centers, return inertia -def _assign_labels_array(X, sample_weight, x_squared_norms, centers, - labels, distances): +def _assign_labels_array(X, sample_weight, x_squared_norms, centers, labels, distances): """Compute label assignment and inertia for a dense array Return the inertia (sum of squared distances to the centers). """ @@ -122,7 +122,8 @@ def _assign_labels_array(X, sample_weight, x_squared_norms, centers, for center_idx in range(n_clusters): center_squared_norms[center_idx] = numpy.dot( - centers[center_idx, :], centers[center_idx, :]) + centers[center_idx, :], centers[center_idx, :] + ) for sample_idx in range(n_samples): min_dist = -1 @@ -146,8 +147,7 @@ def _assign_labels_array(X, sample_weight, x_squared_norms, centers, return inertia -def _labels_inertia_skl(X, sample_weight, x_squared_norms, centers, - distances=None): +def _labels_inertia_skl(X, sample_weight, x_squared_norms, centers, distances=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. This will compute the distances in-place. @@ -179,12 +179,12 @@ def _labels_inertia_skl(X, sample_weight, x_squared_norms, centers, # distances will be changed in-place if issparse(X): inertia = _assign_labels_csr( - X, sample_weight, x_squared_norms, centers, labels, - distances=distances) + X, sample_weight, x_squared_norms, centers, labels, distances=distances + ) else: inertia = _assign_labels_array( - X, sample_weight, x_squared_norms, centers, labels, - distances=distances) + X, sample_weight, x_squared_norms, centers, labels, distances=distances + ) return labels, inertia diff --git a/mlinsights/mlmodel/_kmeans_constraint_.py b/mlinsights/mlmodel/_kmeans_constraint_.py index ae55d7d5..5908d568 100644 --- a/mlinsights/mlmodel/_kmeans_constraint_.py +++ b/mlinsights/mlmodel/_kmeans_constraint_.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implémente la classe @see cl ConstraintKMeans. -""" import bisect from collections import Counter from pandas import DataFrame @@ -11,8 +7,7 @@ from scipy.spatial.distance import cdist from sklearn.metrics.pairwise import euclidean_distances from sklearn.utils.extmath import row_norms -from ._kmeans_022 import ( - _centers_dense, _centers_sparse, _labels_inertia_skl) +from ._kmeans_022 import _centers_dense, _centers_sparse, _labels_inertia_skl def linearize_matrix(mat, *adds): @@ -46,8 +41,9 @@ def linearize_matrix(mat, *adds): for k, am in enumerate(adds): res[i, k + 3] = am[a, b] return res - raise NotImplementedError( # pragma: no cover - f"This kind of sparse matrix is not handled: {type(mat)}") + raise NotImplementedError( + f"This kind of sparse matrix is not handled: {type(mat)}" + ) else: n = mat.shape[0] c = mat.shape[1] @@ -64,10 +60,20 @@ def linearize_matrix(mat, *adds): return res -def constraint_kmeans(X, labels, sample_weight, centers, inertia, - iter, max_iter, # pylint: disable=W0622 - strategy='gain', verbose=0, state=None, - learning_rate=1., history=False, fLOG=None): +def constraint_kmeans( + X, + labels, + sample_weight, + centers, + inertia, + iter, + max_iter, + strategy="gain", + verbose=0, + state=None, + learning_rate=1.0, + history=False, +): """ Completes the constraint :epkg:`k-means`. @@ -80,24 +86,30 @@ def constraint_kmeans(X, labels, sample_weight, centers, inertia, @param max_iter maximum of number of iteration @param strategy strategy used to sort observations before mapping them to clusters - @param verbose verbose + @param verbose verbosity @param state random state @param learning_rate used by strategy `'weights'` @param history return list of centers accross iterations - @param fLOG logging function (needs to be specified otherwise - verbose has no effects) @return tuple (best_labels, best_centers, best_inertia, iter, all_centers) """ if labels.dtype != numpy.int32: - raise TypeError( # pragma: no cover - f"Labels must be an array of int not '{labels.dtype}'") + raise TypeError(f"Labels must be an array of int not '{labels.dtype}'") - if strategy == 'weights': + if strategy == "weights": return _constraint_kmeans_weights( - X, labels, sample_weight, centers, inertia, iter, - max_iter, verbose=verbose, state=state, - learning_rate=learning_rate, history=history, fLOG=fLOG) + X, + labels, + sample_weight, + centers, + inertia, + iter, + max_iter, + verbose=verbose, + state=state, + learning_rate=learning_rate, + history=history, + ) else: if isinstance(X, DataFrame): X = X.values @@ -113,8 +125,19 @@ def constraint_kmeans(X, labels, sample_weight, centers, inertia, all_centers = [] # association - _constraint_association(leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=state) + _constraint_association( + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=state, + ) if sample_weight is None: sw = numpy.ones((X.shape[0],)) @@ -128,25 +151,38 @@ def constraint_kmeans(X, labels, sample_weight, centers, inertia, while iter < max_iter: # compute new clusters - centers = _centers_fct( - X, sw, labels, n_clusters, distances_close) + centers = _centers_fct(X, sw, labels, n_clusters, distances_close) if history: all_centers.append(centers) # association _constraint_association( - leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=state) + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=state, + ) # inertia _, inertia = _labels_inertia_skl( - X=X, sample_weight=sw, x_squared_norms=x_squared_norms, - centers=centers, distances=distances_close) + X=X, + sample_weight=sw, + x_squared_norms=x_squared_norms, + centers=centers, + distances=distances_close, + ) iter += 1 - if verbose and fLOG: # pragma: no cover - fLOG("CKMeans %d/%d inertia=%f" % (iter, max_iter, inertia)) + if verbose: + print("CKMeans %d/%d inertia=%f" % (iter, max_iter, inertia)) # best option so far? if best_inertia is None or inertia < best_inertia: @@ -156,12 +192,14 @@ def constraint_kmeans(X, labels, sample_weight, centers, inertia, best_iter = iter # early stop - if (best_inertia is not None and inertia >= best_inertia and - iter > best_iter + 5): + if ( + best_inertia is not None + and inertia >= best_inertia + and iter > best_iter + 5 + ): break - return (best_labels, best_centers, best_inertia, None, - iter, all_centers) + return (best_labels, best_centers, best_inertia, None, iter, all_centers) def constraint_predictions(X, centers, strategy, state=None): @@ -170,12 +208,12 @@ def constraint_predictions(X, centers, strategy, state=None): to associates the same numbers of points in each cluster. - @param X features - @param centers centers of each clusters - @param strategy strategy used to sort point before - mapping them to a cluster - @param state random state - @return labels, distances, distances_close + :param X: features + :param centers: centers of each clusters + :param strategy: strategy used to sort point before + mapping them to a cluster + :param state: random state + :return: labels, distances, distances_close """ if isinstance(X, DataFrame): X = X.values @@ -188,15 +226,35 @@ def constraint_predictions(X, centers, strategy, state=None): labels = numpy.empty((X.shape[0],), dtype=numpy.int32) distances = _constraint_association( - leftover, counters, labels, leftclose, - distances_close, centers, X, x_squared_norms, - limit, strategy, state=state) + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=state, + ) return labels, distances, distances_close -def _constraint_association(leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=None): +def _constraint_association( + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=None, +): """ Completes the constraint :epkg:`k-means`. @@ -214,27 +272,46 @@ def _constraint_association(leftover, counters, labels, leftclose, distances_clo mapping them to a cluster @param state random state """ - if strategy in ('distance', 'distance_p'): + if strategy in ("distance", "distance_p"): return _constraint_association_distance( - leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=state) - if strategy in ('gain', 'gain_p'): + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=state, + ) + if strategy in ("gain", "gain_p"): return _constraint_association_gain( - leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=state) - raise ValueError(f"Unknwon strategy '{strategy}'.") # pragma: no cover + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=state, + ) + raise ValueError(f"Unknwon strategy '{strategy}'.") def _compute_strategy_coefficient(distances, strategy, labels): """ Creates a matrix """ - if strategy in ('gain', 'gain_p'): + if strategy in ("gain", "gain_p"): ar = numpy.arange(distances.shape[0]) dist = distances[ar, labels] return distances - dist[:, numpy.newaxis] - raise ValueError( # pragma: no cover - f"Unknwon strategy '{strategy}'.") + raise ValueError(f"Unknwon strategy '{strategy}'.") def _randomize_index(index, weights): @@ -263,8 +340,8 @@ def _switch_clusters(labels, distances): Tries to switch clusters. Modifies *labels* inplace. - @param labels labels - @param distances distances + :param labels: labels + :param distances: distances """ perm = numpy.random.permutation(numpy.arange(0, labels.shape[0])) niter = 0 @@ -289,8 +366,19 @@ def _switch_clusters(labels, distances): modif += 1 -def _constraint_association_distance(leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=None): +def _constraint_association_distance( + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=None, +): """ Completes the constraint *k-means*, the function sorts points by distance to the closest @@ -320,7 +408,8 @@ def _constraint_association_distance(leftover, counters, labels, leftclose, dist # distances distances = euclidean_distances( - centers, X, Y_norm_squared=x_squared_norms, squared=True) + centers, X, Y_norm_squared=x_squared_norms, squared=True + ) distances = distances.T distances0 = distances.copy() maxi = distances.ravel().max() * 2 @@ -357,8 +446,19 @@ def _constraint_association_distance(leftover, counters, labels, leftclose, dist return distances0 -def _constraint_association_gain(leftover, counters, labels, leftclose, distances_close, - centers, X, x_squared_norms, limit, strategy, state=None): +def _constraint_association_gain( + leftover, + counters, + labels, + leftclose, + distances_close, + centers, + X, + x_squared_norms, + limit, + strategy, + state=None, +): """ Completes the constraint *k-means*. Follows the method described in `Same-size k-Means Variation @@ -382,10 +482,11 @@ def _constraint_association_gain(leftover, counters, labels, leftclose, distance """ # distances distances = euclidean_distances( - centers, X, Y_norm_squared=x_squared_norms, squared=True) + centers, X, Y_norm_squared=x_squared_norms, squared=True + ) distances = distances.T - if strategy == 'gain_p': + if strategy == "gain_p": labels[:] = numpy.argmin(distances, axis=1) else: # We assume labels comes from a previous iteration. @@ -407,10 +508,10 @@ def _constraint_association_gain(leftover, counters, labels, leftclose, distance sumi = nover - leftclose.sum() if sumi != 0: if state is None: - state = numpy.random.RandomState() # pylint: disable=E1101 + state = numpy.random.RandomState() def loopf(h, sumi): - if sumi < 0 and leftclose[h] > 0: # pylint: disable=R1716 + if sumi < 0 and leftclose[h] > 0: sumi -= leftclose[h] leftclose[h] = 0 elif sumi > 0 and leftclose[h] == 0: @@ -441,8 +542,9 @@ def loopf(h, sumi): continue if cur == dest: continue - if ((counters[dest] < ave + leftclose[dest]) and - (counters[cur] > ave + leftclose[cur])): + if (counters[dest] < ave + leftclose[dest]) and ( + counters[cur] > ave + leftclose[cur] + ): labels[ind] = dest counters[cur] -= 1 counters[dest] += 1 @@ -477,8 +579,7 @@ def loopf(h, sumi): neg = (counters < ave).sum() if neg > 0: - raise RuntimeError( # pragma: no cover - f"The algorithm failed, counters={counters}") + raise RuntimeError(f"The algorithm failed, counters={counters}") _switch_clusters(labels, distances) distances_close[:] = distances[numpy.arange(X.shape[0]), labels] @@ -486,26 +587,34 @@ def loopf(h, sumi): return distances -def _constraint_kmeans_weights(X, labels, sample_weight, centers, inertia, it, - max_iter, verbose=0, state=None, learning_rate=1., - history=False, fLOG=None): +def _constraint_kmeans_weights( + X, + labels, + sample_weight, + centers, + inertia, + it, + max_iter, + verbose=0, + state=None, + learning_rate=1.0, + history=False, +): """ Runs KMeans iterator but weights cluster among them. - @param X features - @param labels initialized labels (unused) - @param sample_weight sample weight - @param centers initialized centers - @param inertia initialized inertia (unused) - @param it number of iteration already done - @param max_iter maximum of number of iteration - @param verbose verbose - @param state random state - @param learning_rate learning rate - @param history keeps all centers accross iterations - @param fLOG logging function (needs to be specified otherwise - verbose has no effects) - @return tuple (best_labels, best_centers, best_inertia, weights, it) + :param X: features + :param labels: initialized labels (unused) + :param sample_weight: sample weight + :param centers: initialized centers + :param inertia: initialized inertia (unused) + :param it: number of iteration already done + :param max_iter: maximum of number of iteration + :param verbose: verbosity + :param state: random state + :param learning_rate: learning rate + :param history: keeps all centers accross iterations + :return: tuple (best_labels, best_centers, best_inertia, weights, it) """ if isinstance(X, DataFrame): X = X.values @@ -527,32 +636,32 @@ def _constraint_kmeans_weights(X, labels, sample_weight, centers, inertia, it, all_centers = [] while it < max_iter: - # compute new clusters - centers = _centers_fct( - X, sw, labels, n_clusters, None) + centers = _centers_fct(X, sw, labels, n_clusters, None) if history: all_centers.append(centers) # association labels = _constraint_association_weights(X, centers, sw, weights) if len(set(labels)) != centers.shape[0]: - if verbose and fLOG: # pragma: no cover + if verbose: if isinstance(verbose, int) and verbose >= 10: - fLOG(f"CKMeans new weights: w={weights!r}") + print(f"CKMeans new weights: w={weights!r}") else: - fLOG("CKMeans new weights") + print("CKMeans new weights") weights[:] = 1 labels = _constraint_association_weights(X, centers, sw, weights) # inertia inertia, diff = _labels_inertia_weights( - X, centers, sw, weights, labels, total_inertia) + X, centers, sw, weights, labels, total_inertia + ) if numpy.isnan(inertia): - raise RuntimeError( # pragma: no cover + raise RuntimeError( f"nanNobs={X.shape[0]} Nclus={centers.shape[0]}\n" f"inertia={inertia}\nweights={weights}\ndiff={diff}\n" - f"labels={set(labels)}") + f"labels={set(labels)}" + ) # best option so far? if best_inertia is None or inertia < best_inertia: @@ -563,30 +672,51 @@ def _constraint_kmeans_weights(X, labels, sample_weight, centers, inertia, it, best_iter = it # moves weights - weights, _ = _adjust_weights(X, sw, weights, labels, - learning_rate / (it + 10)) + weights, _ = _adjust_weights(X, sw, weights, labels, learning_rate / (it + 10)) it += 1 - if verbose and fLOG: + if verbose: if isinstance(verbose, int) and verbose >= 10: - fLOG("CKMeans %d/%d inertia=%f (%f T=%f) dw=%r w=%r" % ( - it, max_iter, inertia, best_inertia, total_inertia, - diff, weights)) + print( + "CKMeans %d/%d inertia=%f (%f T=%f) dw=%r w=%r" + % ( + it, + max_iter, + inertia, + best_inertia, + total_inertia, + diff, + weights, + ) + ) elif isinstance(verbose, int) and verbose >= 5: hist = Counter(labels) - fLOG("CKMeans %d/%d inertia=%f (%f) hist=%r" % ( - it, max_iter, inertia, best_inertia, hist)) + print( + "CKMeans %d/%d inertia=%f (%f) hist=%r" + % (it, max_iter, inertia, best_inertia, hist) + ) else: - fLOG("CKMeans %d/%d inertia=%f (%f T=%f)" % ( # pragma: no cover - it, max_iter, inertia, best_inertia, total_inertia)) + print( + "CKMeans %d/%d inertia=%f (%f T=%f)" + % ( + it, + max_iter, + inertia, + best_inertia, + total_inertia, + ) + ) # early stop - if (best_inertia is not None and inertia >= best_inertia and - it > best_iter + 5 and numpy.abs(diff).sum() <= weights.shape[0] / 2): + if ( + best_inertia is not None + and inertia >= best_inertia + and it > best_iter + 5 + and numpy.abs(diff).sum() <= weights.shape[0] / 2 + ): break - return (best_labels, best_centers, best_inertia, best_weights, - it, all_centers) + return (best_labels, best_centers, best_inertia, best_weights, it, all_centers) def _constraint_association_weights(X, centers, sw, weights): @@ -656,7 +786,7 @@ def _compute_balance(X, sw, labels, nbc=None): if nbc is None: nbc = labels.max() + 1 N = numpy.float64(nbc) - www = numpy.zeros((nbc, ), dtype=numpy.float64) + www = numpy.zeros((nbc,), dtype=numpy.float64) if sw is None: for la in labels: www[la] += 1 diff --git a/mlinsights/mlmodel/_piecewise_tree_regression_common.pxd b/mlinsights/mlmodel/_piecewise_tree_regression_common.pxd index d5658a5e..6215c854 100644 --- a/mlinsights/mlmodel/_piecewise_tree_regression_common.pxd +++ b/mlinsights/mlmodel/_piecewise_tree_regression_common.pxd @@ -12,10 +12,11 @@ cdef class CommonRegressorCriterion(Criterion): cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, SIZE_t new_pos) nogil - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, - DOUBLE_t *weight) nogil - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, - DOUBLE_t weight) nogil + cdef void _mean(self, SIZE_t start, SIZE_t end, + DOUBLE_t *mean, DOUBLE_t *weight) nogil + + cdef double _mse(self, SIZE_t start, SIZE_t end, + DOUBLE_t mean, DOUBLE_t weight) noexcept nogil cdef void children_impurity_weights(self, double* impurity_left, double* impurity_right, diff --git a/mlinsights/mlmodel/_piecewise_tree_regression_common.pyx b/mlinsights/mlmodel/_piecewise_tree_regression_common.pyx index 28bd4b32..c17242d6 100644 --- a/mlinsights/mlmodel/_piecewise_tree_regression_common.pyx +++ b/mlinsights/mlmodel/_piecewise_tree_regression_common.pyx @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a custom criterion to train a decision tree. -""" -from libc.stdlib cimport calloc, free from libc.stdio cimport printf from libc.math cimport NAN @@ -16,17 +11,17 @@ from sklearn.tree._criterion cimport SIZE_t, DOUBLE_t cdef class CommonRegressorCriterion(Criterion): """ - Common class to implement various version of `mean square error + Common class to implement various version of `mean square error `_. The code was inspired from - `hellinger_distance_criterion.pyx - `_, + `hellinger_distance_criterion.pyx + `_, `Cython example of exposing C-computed arrays in Python without data copies `_, `_criterion.pyx - `_. + `_. This implementation is not efficient but was made that way on purpose. It adds the features to the class. @@ -48,22 +43,23 @@ cdef class CommonRegressorCriterion(Criterion): inst = self.__class__(self.n_outputs, self.n_samples) return inst - cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, SIZE_t new_pos) nogil: + cdef void _update_weights(self, SIZE_t start, SIZE_t end, + SIZE_t old_pos, SIZE_t new_pos) nogil: """ Updates members `weighted_n_right` and `weighted_n_left` when `pos` changes. This method should be overloaded. """ pass - cdef int reset(self) nogil except -1: + cdef int reset(self) except -1 nogil: """ Resets the criterion at *pos=start*. This method must be implemented by the subclass. """ self._update_weights(self.start, self.end, self.pos, self.start) - self.pos = self.start + self.pos = self.start - cdef int reverse_reset(self) nogil except -1: + cdef int reverse_reset(self) except -1 nogil: """ Resets the criterion at *pos=end*. This method must be implemented by the subclass. @@ -71,7 +67,7 @@ cdef class CommonRegressorCriterion(Criterion): self._update_weights(self.start, self.end, self.pos, self.end) self.pos = self.end - cdef int update(self, SIZE_t new_pos) nogil except -1: + cdef int update(self, SIZE_t new_pos) except -1 nogil: """ Updates statistics by moving ``samples[pos:new_pos]`` to the left child. This updates the collected statistics by moving ``samples[pos:new_pos]`` @@ -84,19 +80,21 @@ cdef class CommonRegressorCriterion(Criterion): self._update_weights(self.start, self.end, self.pos, new_pos) self.pos = new_pos - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil: + cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, + DOUBLE_t *weight) nogil: """ Computes the mean of *y* between *start* and *end*. """ - raise NotImplementedError("Method _mean must be overloaded.") - - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil: + pass + + cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, + DOUBLE_t weight) noexcept nogil: """ Computes mean square error between *start* and *end* assuming corresponding points are approximated by a constant. """ - raise NotImplementedError("Method _mean must be overloaded.") - + return 0.0 + cdef void children_impurity_weights(self, double* impurity_left, double* impurity_right, double* weight_left, @@ -130,7 +128,7 @@ cdef class CommonRegressorCriterion(Criterion): # functions used by a the tree optimizer #################### - cdef double node_impurity(self) nogil: + cdef double node_impurity(self) noexcept nogil: """ Calculates the impurity of the node, the impurity of ``samples[start:end]``. @@ -141,10 +139,10 @@ cdef class CommonRegressorCriterion(Criterion): return self._mse(self.start, self.end, mean, weight) cdef void children_impurity(self, double* impurity_left, - double* impurity_right) nogil: + double* impurity_right) noexcept nogil: """ Calculates the impurity of children. - + :param impurity_left: double pointer The memory address where the impurity of the left child should be stored. @@ -155,7 +153,7 @@ cdef class CommonRegressorCriterion(Criterion): cdef DOUBLE_t wl, wr self.children_impurity_weights(impurity_left, impurity_right, &wl, &wr) - cdef void node_value(self, double* dest) nogil: + cdef void node_value(self, double* dest) noexcept nogil: """ Computes the node value, usually, the prediction the tree would do. Stores the value into *dest*. @@ -166,7 +164,7 @@ cdef class CommonRegressorCriterion(Criterion): cdef DOUBLE_t weight self._mean(self.start, self.end, dest, &weight) - cdef double proxy_impurity_improvement(self) nogil: + cdef double proxy_impurity_improvement(self) noexcept nogil: """ Computes a proxy of the impurity reduction This method is used to speed up the search for the best split. @@ -188,12 +186,12 @@ cdef class CommonRegressorCriterion(Criterion): cdef double impurity_improvement(self, double impurity_parent, double impurity_left, - double impurity_right) nogil: + double impurity_right) noexcept nogil: """ Computes the improvement in impurity This method computes the improvement in impurity when a split occurs. The weighted impurity improvement equation is the following:: - + N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) @@ -221,23 +219,36 @@ cdef class CommonRegressorCriterion(Criterion): - (self.weighted_n_left / weight * impurity_left))) -def _test_criterion_init(Criterion criterion, +cdef int _ctest_criterion_init(Criterion criterion, + const DOUBLE_t[:, ::1] y, + DOUBLE_t[:] sample_weight, + double weighted_n_samples, + SIZE_t[:] samples, + SIZE_t start, SIZE_t end): + "Test purposes. Methods cannot be directly called from python." + cdef const DOUBLE_t[:, ::1] y2 = y + return criterion.init(y2, sample_weight, weighted_n_samples, samples, start, end) + + +def _test_criterion_init(Criterion criterion, const DOUBLE_t[:, ::1] y, DOUBLE_t[:] sample_weight, double weighted_n_samples, - SIZE_t[:] samples, + SIZE_t[:] samples, SIZE_t start, SIZE_t end): "Test purposes. Methods cannot be directly called from python." - criterion.init(y, - &sample_weight[0], weighted_n_samples, - &samples[0], start, end) + if _ctest_criterion_init(criterion, y, sample_weight, weighted_n_samples, + samples, start, end) != 0: + raise AssertionError("Return is not 0.") def _test_criterion_check(Criterion criterion): if criterion.weighted_n_node_samples == 0: raise ValueError( - "weighted_n_node_samples is null, weighted_n_left=%r, weighted_n_right=%r" % ( - criterion.weighted_n_left, criterion.weighted_n_right)) + f"weighted_n_node_samples is null, " + f"weighted_n_left={criterion.weighted_n_left!r}, " + f"weighted_n_right={criterion.weighted_n_right}" + ) def assert_criterion_equal(Criterion c1, Criterion c2): @@ -263,18 +274,20 @@ def _test_criterion_node_impurity(Criterion criterion): "Test purposes. Methods cannot be directly called from python." return criterion.node_impurity() - + def _test_criterion_proxy_impurity_improvement(Criterion criterion): "Test purposes. Methods cannot be directly called from python." return criterion.proxy_impurity_improvement() - + def _test_criterion_impurity_improvement(Criterion criterion, double impurity_parent, double impurity_left, double impurity_right): "Test purposes. Methods cannot be directly called from python." - return criterion.impurity_improvement(impurity_parent, impurity_left, impurity_right) + return criterion.impurity_improvement( + impurity_parent, impurity_left, impurity_right + ) + - def _test_criterion_node_impurity_children(Criterion criterion): "Test purposes. Methods cannot be directly called from python." cdef DOUBLE_t left, right @@ -293,15 +306,15 @@ def _test_criterion_update(Criterion criterion, SIZE_t new_pos): "Test purposes. Methods cannot be directly called from python." return criterion.update(new_pos) - + def _test_criterion_printf(Criterion crit): - "Test purposes. Methods cannot be directly called from python." + "Test purposes. Methods cannot be directly called from python." printf("start=%zu pos=%zu end=%zu\n", crit.start, crit.pos, crit.end) cdef DOUBLE_t left, right, value - cdef int i; + cdef int i crit.children_impurity(&left, &right) crit.node_value(&value) - printf("value: %f total=%f left=%f right=%f\n", value, + printf("value: %f total=%f left=%f right=%f\n", value, crit.node_impurity(), left, right) cdef int n = crit.y.shape[0] for i in range(0, n): diff --git a/mlinsights/mlmodel/_piecewise_tree_regression_common120.pyx b/mlinsights/mlmodel/_piecewise_tree_regression_common120.pyx deleted file mode 100644 index d3d4af7a..00000000 --- a/mlinsights/mlmodel/_piecewise_tree_regression_common120.pyx +++ /dev/null @@ -1,308 +0,0 @@ -""" -@file -@brief Implements a custom criterion to train a decision tree. -""" -from libc.stdlib cimport calloc, free -from libc.stdio cimport printf -from libc.math cimport NAN - -import numpy -cimport numpy -numpy.import_array() - -from sklearn.tree._criterion cimport Criterion -from sklearn.tree._criterion cimport SIZE_t, DOUBLE_t - - -cdef class CommonRegressorCriterion(Criterion): - """ - Common class to implement various version of `mean square error - `_. - The code was inspired from - `hellinger_distance_criterion.pyx - `_, - `Cython example of exposing C-computed arrays in Python without data copies - `_, - `_criterion.pyx - `_. - This implementation is not efficient but was made that way on purpose. - It adds the features to the class. - - If the file does not compile, some explanations are given - in :ref:`scikit-learn internal API - `_. - """ - def __getstate__(self): - return {} - - def __setstate__(self, d): - pass - - def __deepcopy__(self, memo=None): - """ - This does not a copy but mostly creates a new instance - of the same criterion initialized with the same data. - """ - inst = self.__class__(self.n_outputs, self.n_samples) - return inst - - cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, SIZE_t new_pos) nogil: - """ - Updates members `weighted_n_right` and `weighted_n_left` - when `pos` changes. This method should be overloaded. - """ - pass - - cdef int reset(self) nogil except -1: - """ - Resets the criterion at *pos=start*. - This method must be implemented by the subclass. - """ - self._update_weights(self.start, self.end, self.pos, self.start) - self.pos = self.start - - cdef int reverse_reset(self) nogil except -1: - """ - Resets the criterion at *pos=end*. - This method must be implemented by the subclass. - """ - self._update_weights(self.start, self.end, self.pos, self.end) - self.pos = self.end - - cdef int update(self, SIZE_t new_pos) nogil except -1: - """ - Updates statistics by moving ``samples[pos:new_pos]`` to the left child. - This updates the collected statistics by moving ``samples[pos:new_pos]`` - from the right child to the left child. It must be implemented by - the subclass. - - :param new_pos: SIZE_t - New starting index position of the samples in the right child - """ - self._update_weights(self.start, self.end, self.pos, new_pos) - self.pos = new_pos - - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil: - """ - Computes the mean of *y* between *start* and *end*. - """ - raise NotImplementedError("Method _mean must be overloaded.") - - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil: - """ - Computes mean square error between *start* and *end* - assuming corresponding points are approximated by a constant. - """ - raise NotImplementedError("Method _mean must be overloaded.") - - cdef void children_impurity_weights(self, double* impurity_left, - double* impurity_right, - double* weight_left, - double* weight_right) nogil: - """ - Calculates the impurity of children, - evaluates the impurity in - children nodes, i.e. the impurity of ``samples[start:pos]`` - the impurity of ``samples[pos:end]``. - - :param impurity_left: double pointer - The memory address where the impurity of the left child should be - stored. - :param impurity_right: double pointer - The memory address where the impurity of the right child should be - stored. - :param weight_left: double pointer - The memory address where the weight of the left child should be - stored. - :param weight_right: double pointer - The memory address where the weight of the right child should be - stored. - """ - cdef DOUBLE_t mleft, mright - self._mean(self.start, self.pos, &mleft, weight_left) - self._mean(self.pos, self.end, &mright, weight_right) - impurity_left[0] = self._mse(self.start, self.pos, mleft, weight_left[0]) - impurity_right[0] = self._mse(self.pos, self.end, mright, weight_right[0]) - - #################### - # functions used by a the tree optimizer - #################### - - cdef double node_impurity(self) nogil: - """ - Calculates the impurity of the node, - the impurity of ``samples[start:end]``. - This is the primary function of the criterion class. - """ - cdef DOUBLE_t mean, weight - self._mean(self.start, self.end, &mean, &weight) - return self._mse(self.start, self.end, mean, weight) - - cdef void children_impurity(self, double* impurity_left, - double* impurity_right) nogil: - """ - Calculates the impurity of children. - - :param impurity_left: double pointer - The memory address where the impurity of the left child should be - stored. - :param impurity_right: double pointer - The memory address where the impurity of the right child should be - stored. - """ - cdef DOUBLE_t wl, wr - self.children_impurity_weights(impurity_left, impurity_right, &wl, &wr) - - cdef void node_value(self, double* dest) nogil: - """ - Computes the node value, usually, the prediction - the tree would do. Stores the value into *dest*. - - :param dest: double pointer - The memory address where the node value should be stored. - """ - cdef DOUBLE_t weight - self._mean(self.start, self.end, dest, &weight) - - cdef double proxy_impurity_improvement(self) nogil: - """ - Computes a proxy of the impurity reduction - This method is used to speed up the search for the best split. - It is a proxy quantity such that the split that maximizes this value - also maximizes the impurity improvement. It neglects all constant terms - of the impurity decrease for a given split. - The absolute impurity improvement is only computed by the - *impurity_improvement* method once the best split has been found. - """ - cdef double impurity_left - cdef double impurity_right - self.children_impurity_weights(&impurity_left, &impurity_right, - &self.weighted_n_left, &self.weighted_n_right) - if self.pos == self.start or self.pos == self.end: - return NAN - - return (- self.weighted_n_right * impurity_right - - self.weighted_n_left * impurity_left) - - cdef double impurity_improvement(self, double impurity_parent, - double impurity_left, - double impurity_right) nogil: - """ - Computes the improvement in impurity - This method computes the improvement in impurity when a split occurs. - The weighted impurity improvement equation is the following:: - - N_t / N * (impurity - N_t_R / N_t * right_impurity - - N_t_L / N_t * left_impurity) - - where *N* is the total number of samples, *N_t* is the number of samples - at the current node, *N_t_L* is the number of samples in the left child, - and *N_t_R* is the number of samples in the right child, - - :param impurity_parent: double - The initial impurity of the node before the split - :param impurity_left: double - The impurity of the left child - :param impurity_right: double - The impurity of the right child - :return: double, improvement in impurity after the split occurs - """ - # self.children_impurity_weights(&impurity_left, &impurity_right, - # &self.weighted_n_left, &self.weighted_n_right) - # if self.pos == self.start or self.pos == self.end: - # return NAN - - # cdef double weight = self.weighted_n_left + self.weighted_n_right - cdef double weight = self.weighted_n_node_samples - return ((weight / self.weighted_n_samples) * - (impurity_parent - (self.weighted_n_right / weight * impurity_right) - - (self.weighted_n_left / weight * impurity_left))) - - -def _test_criterion_init(Criterion criterion, - const DOUBLE_t[:, ::1] y, - DOUBLE_t[:] sample_weight, - double weighted_n_samples, - SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end): - "Test purposes. Methods cannot be directly called from python." - criterion.init(y, - sample_weight, weighted_n_samples, - sample_indices, start, end) - - -def _test_criterion_check(Criterion criterion): - if criterion.weighted_n_node_samples == 0: - raise ValueError( - "weighted_n_node_samples is null, weighted_n_left=%r, weighted_n_right=%r" % ( - criterion.weighted_n_left, criterion.weighted_n_right)) - - -def assert_criterion_equal(Criterion c1, Criterion c2): - if c1.weighted_n_node_samples != c2.weighted_n_node_samples: - raise ValueError( - "weighted_n_node_samples: %r != %r" % ( - c1.weighted_n_node_samples, c2.weighted_n_node_samples)) - if c1.weighted_n_samples != c2.weighted_n_samples: - raise ValueError( - "weighted_n_samples: %r != %r" % ( - c1.weighted_n_samples, c2.weighted_n_samples)) - if c1.weighted_n_left != c2.weighted_n_left: - raise ValueError( - "weighted_n_left: %r != %r" % ( - c1.weighted_n_left, c2.weighted_n_left)) - if c1.weighted_n_right != c2.weighted_n_right: - raise ValueError( - "weighted_n_right: %r != %r" % ( - c1.weighted_n_right, c2.weighted_n_right)) - - -def _test_criterion_node_impurity(Criterion criterion): - "Test purposes. Methods cannot be directly called from python." - return criterion.node_impurity() - - -def _test_criterion_proxy_impurity_improvement(Criterion criterion): - "Test purposes. Methods cannot be directly called from python." - return criterion.proxy_impurity_improvement() - - -def _test_criterion_impurity_improvement(Criterion criterion, double impurity_parent, - double impurity_left, double impurity_right): - "Test purposes. Methods cannot be directly called from python." - return criterion.impurity_improvement(impurity_parent, impurity_left, impurity_right) - - -def _test_criterion_node_impurity_children(Criterion criterion): - "Test purposes. Methods cannot be directly called from python." - cdef DOUBLE_t left, right - criterion.children_impurity(&left, &right) - return left, right - - -def _test_criterion_node_value(Criterion criterion): - "Test purposes. Methods cannot be directly called from python." - cdef DOUBLE_t value - criterion.node_value(&value) - return value - - -def _test_criterion_update(Criterion criterion, SIZE_t new_pos): - "Test purposes. Methods cannot be directly called from python." - return criterion.update(new_pos) - - -def _test_criterion_printf(Criterion crit): - "Test purposes. Methods cannot be directly called from python." - printf("start=%zu pos=%zu end=%zu\n", crit.start, crit.pos, crit.end) - cdef DOUBLE_t left, right, value - cdef int i; - crit.children_impurity(&left, &right) - crit.node_value(&value) - printf("value: %f total=%f left=%f right=%f\n", value, - crit.node_impurity(), left, right) - cdef int n = crit.y.shape[0] - for i in range(0, n): - printf("-- %d: y=%f\n", i, crit.y[i, 0]) diff --git a/mlinsights/mlmodel/anmf_predictor.py b/mlinsights/mlmodel/anmf_predictor.py index cd49c666..47479937 100644 --- a/mlinsights/mlmodel/anmf_predictor.py +++ b/mlinsights/mlmodel/anmf_predictor.py @@ -1,7 +1,3 @@ -""" -@file -@brief Featurizers for machine learned models. -""" import numpy from sklearn.base import BaseEstimator, RegressorMixin, MultiOutputMixin from sklearn.decomposition import NMF, TruncatedSVD @@ -81,12 +77,13 @@ def fit(self, X, y=None): then a multi-output regressor. """ params = self.get_params() - if 'force_positive' in params: - del params['force_positive'] + if "force_positive" in params: + del params["force_positive"] self.estimator_nmf_ = NMF(**params) self.estimator_nmf_.fit(X) self.estimator_svd_ = TruncatedSVD( - n_components=self.estimator_nmf_.n_components_) + n_components=self.estimator_nmf_.n_components_ + ) self.estimator_svd_.fit(self.estimator_nmf_.components_) return self @@ -98,7 +95,6 @@ def predict(self, X): proj = self.estimator_svd_.transform(X) pred = self.estimator_svd_.inverse_transform(proj) if self.force_positive: - zeros = numpy.zeros( - (1, pred.shape[1]), dtype=pred.dtype) # pylint: disable=E1101,E1136 - pred = numpy.maximum(pred, zeros) # pylint: disable=E1111 + zeros = numpy.zeros((1, pred.shape[1]), dtype=pred.dtype) + pred = numpy.maximum(pred, zeros) return pred diff --git a/mlinsights/mlmodel/categories_to_integers.py b/mlinsights/mlmodel/categories_to_integers.py index 235be588..37c325f5 100644 --- a/mlinsights/mlmodel/categories_to_integers.py +++ b/mlinsights/mlmodel/categories_to_integers.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a transformation which can be put in a pipeline to transform categories in -integers. -""" import numpy import pandas from sklearn.base import BaseEstimator, TransformerMixin @@ -11,13 +6,22 @@ class CategoriesToIntegers(BaseEstimator, TransformerMixin): """ Does something similar to what - `DictVectorizer `_ + `DictVectorizer + `_ does but in a transformer. The method *fit* retains all categories, the method *transform* transforms categories into integers. Categories are sorted by columns. If the method *transform* tries to convert a categories which was not seen by method *fit*, it can raise an exception or ignore it and replace it by zero. + :param columns: specify a columns selection + :param remove: modalities to remove + :param skip_errors: skip when a new categories appear (no 1) + :param single: use a single column per category, do not multiply them for each value + + The logging function displays a message when a new dense and big matrix + is created when it should be sparse. A sparse matrix should be allocated instead. + .. exref:: :title: DictVectorizer or CategoriesToIntegers :tag: sklearn @@ -29,7 +33,7 @@ class CategoriesToIntegers(BaseEstimator, TransformerMixin): import pandas from mlinsights.mlmodel import CategoriesToIntegers - df = pandas.DataFrame( [{"cat": "a"}, {"cat": "b"}] ) + df = pandas.DataFrame([{"cat": "a"}, {"cat": "b"}]) trans = CategoriesToIntegers() trans.fit(df) newdf = trans.transform(df) @@ -37,19 +41,11 @@ class CategoriesToIntegers(BaseEstimator, TransformerMixin): """ def __init__(self, columns=None, remove=None, skip_errors=False, single=False): - """ - @param columns specify a columns selection - @param remove modalities to remove - @param skip_errors skip when a new categories appear (no 1) - @param single use a single column per category, do not multiply them for each value - - The logging function displays a message when a new dense and big matrix - is created when it should be sparse. A sparse matrix should be allocated instead. - """ BaseEstimator.__init__(self) TransformerMixin.__init__(self) - self.columns = columns if isinstance( - columns, list) or columns is None else [columns] + self.columns = ( + columns if isinstance(columns, list) or columns is None else [columns] + ) self.skip_errors = skip_errors self.remove = remove self.single = single @@ -69,16 +65,15 @@ def fit(self, X, y=None, **fit_params): Training data :param y: iterable, default=None Training targets. + :param fit_params: additional fit params :return: self """ if not isinstance(X, pandas.DataFrame): - raise TypeError( # pragma: no cover - f"this transformer only accept Dataframes, not {type(X)}") + raise TypeError(f"this transformer only accept Dataframes, not {type(X)}") if self.columns: columns = self.columns else: - columns = [c for c, d in zip( - X.columns, X.dtypes) if d in (object,)] + columns = [c for c, d in zip(X.columns, X.dtypes) if d in (object,)] self._fit_columns = columns max_cat = max(len(X) // 2 + 1, 10000) @@ -88,10 +83,12 @@ def fit(self, X, y=None, **fit_params): distinct = set(X[c].dropna()) nb = len(distinct) if nb >= max_cat: - raise ValueError( # pragma: no cover - f"Too many categories ({nb}) for one column '{c}' max_cat={max_cat}") - self._categories[c] = dict((c, i) - for i, c in enumerate(list(sorted(distinct)))) + raise ValueError( + f"Too many categories ({nb}) for one column '{c}' max_cat={max_cat}" + ) + self._categories[c] = dict( + (c, i) for i, c in enumerate(list(sorted(distinct))) + ) self._schema = self._build_schema() return self @@ -107,8 +104,7 @@ def _build_schema(self): new_vector = {} last = 0 for c, v in self._categories.items(): - sch = [(_[1], f"{c}={_[1]}") - for _ in sorted((n, d) for d, n in v.items())] + sch = [(_[1], f"{c}={_[1]}") for _ in sorted((n, d) for d, n in v.items())] if self.remove: sch = [d for d in sch if d[1] not in self.remove] position[c] = last @@ -118,7 +114,7 @@ def _build_schema(self): return schema, position, new_vector - def transform(self, X, y=None, **fit_params): + def transform(self, X, y=None): """ Transforms categories in numerical features based on the list of categories found by method *fit*. @@ -132,8 +128,7 @@ def transform(self, X, y=None, **fit_params): :return: DataFrame, *X* with categories. """ if not isinstance(X, pandas.DataFrame): - raise TypeError( # pragma: no cover - f"X is not a dataframe: {type(X)}") + raise TypeError(f"X is not a dataframe: {type(X)}") if self.single: b = not self.skip_errors @@ -148,12 +143,13 @@ def transform(v, vec): return numpy.nan if not self.skip_errors: lv = list(sorted(vec)) - if len(lv) > 20: # pragma: no cover + if len(lv) > 20: lv = lv[:20] lv.append("...") - raise ValueError( # pragma: no cover + raise ValueError( "Unable to find category value %r type(v)=%r " - "among\n%s" % (v, type(v), '\n'.join(lv))) + "among\n%s" % (v, type(v), "\n".join(lv)) + ) return numpy.nan sch, pos, new_vector = self._schema @@ -180,13 +176,13 @@ def transform(v, vec): if v not in vec[k]: if b: lv = list(sorted(vec[k])) - if len(lv) > 20: # pragma: no cover + if len(lv) > 20: lv = lv[:20] lv.append("...") - raise ValueError( # pragma: no cover + raise ValueError( "Unable to find category value %r: %r " - "type(v)=%r among\n%s" % ( - k, v, type(v), '\n'.join(lv))) + "type(v)=%r among\n%s" % (k, v, type(v), "\n".join(lv)) + ) else: p = pos[k] + vec[k][v] res[i, p] = 1.0 @@ -210,6 +206,7 @@ def fit_transform(self, X, y=None, **fit_params): Training data :param y: iterable, default=None Training targets. + :param fit_params: additional fitting parameters :return: Dataframe, *X* with categories. """ return self.fit(X, y=y, **fit_params).transform(X, y) diff --git a/mlinsights/mlmodel/classification_kmeans.py b/mlinsights/mlmodel/classification_kmeans.py index 8bfd185c..3ff238ef 100644 --- a/mlinsights/mlmodel/classification_kmeans.py +++ b/mlinsights/mlmodel/classification_kmeans.py @@ -1,7 +1,3 @@ -""" -@file -@brief Combines a *k-means* followed by a predictor. -""" import textwrap import inspect import numpy @@ -15,21 +11,19 @@ class ClassifierAfterKMeans(BaseEstimator, ClassifierMixin): Applies a *k-means* (see :epkg:`sklearn:cluster:KMeans`) for each class, then adds the distance to each cluster as a feature for a classifier. - See notebook :ref:`logisticregressionclusteringrst`. + See example :ref:`l-logisitic-regression-clustering`. + + :param estimator: :class:`sklearn.linear_model.LogisiticRegression` by default + :param clus: clustering applied on each class, + by default k-means with two classes + :param kwargs: sent to + :meth:`set_params + `, + see its documentation to understand how to + specify parameters """ def __init__(self, estimator=None, clus=None, **kwargs): - """ - @param estimator :epkg:`sklearn:linear_model:LogisiticRegression` - by default - @param clus clustering applied on each class, - by default k-means with two classes - @param kwargs sent to :meth:`set_params - `, - see its documentation to understand how to - specify parameters - """ ClassifierMixin.__init__(self) BaseEstimator.__init__(self) if estimator is None: @@ -39,8 +33,7 @@ def __init__(self, estimator=None, clus=None, **kwargs): self.estimator = estimator self.clus = clus if not hasattr(clus, "transform"): - raise AttributeError( # pragma: no cover - "clus does not have a transform method.") + raise AttributeError("clus does not have a transform method.") if kwargs: self.set_params(**kwargs) @@ -70,7 +63,7 @@ def fit(self, X, y, sample_weight=None): for cl in classes: m = clone(self.clus) Xcl = X[y == cl] - if sample_weight is None or 'sample_weight' not in sig.parameters: + if sample_weight is None or "sample_weight" not in sig.parameters: w = None m.fit(Xcl) else: @@ -79,8 +72,7 @@ def fit(self, X, y, sample_weight=None): self.clus_[cl] = m extX = self.transform_features(X) - self.estimator_ = self.estimator.fit( - extX, y, sample_weight=sample_weight) + self.estimator_ = self.estimator.fit(extX, y, sample_weight=sample_weight) return self def transform_features(self, X): @@ -89,8 +81,8 @@ def transform_features(self, X): on every observations and extends the list of features. - @param X features - @return extended features + :param X: features + :return: extended features """ preds = [] for _, v in sorted(self.clus_.items()): @@ -124,11 +116,11 @@ def get_params(self, deep=True): Returns the parameters for both the clustering and the classifier. - @param deep unused here - @return dict + :param deep: unused here + :return: dict - :meth:`set_params ` + :meth:`set_params + ` describes the pattern parameters names follow. """ res = {} @@ -145,28 +137,26 @@ def set_params(self, **values): parameter, every parameter prefixed by ``'c_'`` is for the :epkg:`sklearn:cluster:KMeans`. - @param values valeurs - @return dict + :param values: valeurs + :return: dict """ pc, pe = {}, {} for k, v in values.items(): - if k.startswith('e_'): + if k.startswith("e_"): pe[k[2:]] = v - elif k.startswith('c_'): + elif k.startswith("c_"): pc[k[2:]] = v else: - raise ValueError( # pragma: no cover - f"Unexpected parameter name '{k}'") + raise ValueError(f"Unexpected parameter name '{k}'") self.clus.set_params(**pc) self.estimator.set_params(**pe) - def __repr__(self): # pylint: disable=W0222 + def __repr__(self): """ Overloads `repr` as *scikit-learn* now relies on the constructor signature. """ - el = ', '.join([f'{k}={v!r}' - for k, v in self.get_params().items()]) + el = ", ".join([f"{k}={v!r}" for k, v in self.get_params().items()]) text = f"{self.__class__.__name__}({el})" - lines = textwrap.wrap(text, subsequent_indent=' ') + lines = textwrap.wrap(text, subsequent_indent=" ") return "\n".join(lines) diff --git a/mlinsights/mlmodel/decision_tree_logreg.py b/mlinsights/mlmodel/decision_tree_logreg.py index dfa69e20..7f93b17a 100644 --- a/mlinsights/mlmodel/decision_tree_logreg.py +++ b/mlinsights/mlmodel/decision_tree_logreg.py @@ -1,9 +1,5 @@ -""" -@file -@brief Builds a tree of logistic regressions. -""" import numpy -import scipy.sparse as sparse # pylint: disable=R0402 +import scipy.sparse as sparse from sklearn.linear_model import LogisticRegression from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.linear_model._base import LinearClassifierMixin @@ -13,22 +9,23 @@ def logistic(x): """ Computes :math:`\\frac{1}{1 + e^{-x}}`. """ - return 1. / (1. + numpy.exp(-x)) + return 1.0 / (1.0 + numpy.exp(-x)) -def likelihood(x, y, theta=1., th=0.): +def likelihood(x, y, theta=1.0, th=0.0): """ - Computes :math:`\\sum_i y_i f(\\theta (x_i - x_0)) + (1 - y_i) (1 - f(\\theta (x_i - x_0)))` + Computes + :math:`\\sum_i y_i f(\\theta (x_i - x_0)) + (1 - y_i) (1 - f(\\theta (x_i - x_0)))` where :math:`f(x_i)` is :math:`\\frac{1}{1 + e^{-x}}`. """ lr = logistic((x - th) * theta) - return y * lr + (1. - y) * (1 - lr) + return y * lr + (1.0 - y) * (1 - lr) class _DecisionTreeLogisticRegressionNode: """ Describes the tree structure hold by class - @see cl DecisionTreeLogisticRegression. + :class:`DecisionTreeLogisticRegression`. See also notebook :ref:`decisiontreelogregrst`. """ @@ -61,7 +58,7 @@ def predict_proba(self, X): """ prob = self.estimator.predict_proba(X) above = prob[:, 1] > self.threshold - below = ~ above + below = ~above n_above = above.sum() n_below = below.sum() if self.above is not None and n_above > 0: @@ -82,7 +79,7 @@ def decision_path(self, X, mat, indices): mat[indices, self.index] = 1 prob = self.estimator.predict_proba(X) above = prob[:, 1] > self.threshold - below = ~ above + below = ~above n_above = above.sum() n_below = below.sum() indices_above = indices[above] @@ -99,19 +96,24 @@ def fit(self, X, y, sample_weight, dtlr, total_N): logistic regressions on both subsamples. This method only works on a linear classifier. - @param X features - @param y binary labels - @param sample_weight weights of every sample - @param dtlr @see cl DecisionTreeLogisticRegression - @param total_N total number of observation - @return last index + :param X: features + :param y: binary labels + :param sample_weight: weights of every sample + :param dtlr: :class:`DecisionTreeLogisticRegression` + :param total_N: total number of observation + :return: last index """ self.estimator.fit(X, y, sample_weight=sample_weight) if dtlr.verbose >= 1: - print("[DTLR ] %s trained acc %1.2f N=%d" % ( # pragma: no cover - " " * self.depth, self.estimator.score(X, y), X.shape[0])) - prob = self.fit_improve(dtlr, total_N, X, y, - sample_weight=sample_weight) + print( + "[DTLR ] %s trained acc %1.2f N=%d" + % ( + " " * self.depth, + self.estimator.score(X, y), + X.shape[0], + ) + ) + prob = self.fit_improve(dtlr, total_N, X, y, sample_weight=sample_weight) if self.depth + 1 > dtlr.max_depth: return self.index @@ -119,7 +121,7 @@ def fit(self, X, y, sample_weight, dtlr, total_N): return self.index above = prob[:, 1] > self.threshold - below = ~ above + below = ~above n_above = above.sum() n_below = below.sum() y_above = set(y[above]) @@ -127,28 +129,36 @@ def fit(self, X, y, sample_weight, dtlr, total_N): def _fit_side(index, y_above_below, above_below, n_above_below, side): if dtlr.verbose >= 1: - print("[DTLR*] %s%s: n_class=%d N=%d - %d/%d" % ( # pragma: no cover - " " * self.depth, side, - len(y_above_below), above_below.shape[0], - n_above_below, total_N)) - if (len(y_above_below) > 1 and - above_below.shape[0] > dtlr.min_samples_leaf * 2 and - (float(n_above_below) / total_N >= - dtlr.min_weight_fraction_leaf * 2) and - n_above_below < total_N): + print( + "[DTLR*] %s%s: n_class=%d N=%d - %d/%d" + % ( + " " * self.depth, + side, + len(y_above_below), + above_below.shape[0], + n_above_below, + total_N, + ) + ) + if ( + len(y_above_below) > 1 + and above_below.shape[0] > dtlr.min_samples_leaf * 2 + and ( + float(n_above_below) / total_N >= dtlr.min_weight_fraction_leaf * 2 + ) + and n_above_below < total_N + ): estimator = clone(dtlr.estimator) sw = sample_weight[above_below] if sample_weight is not None else None node = _DecisionTreeLogisticRegressionNode( - estimator, self.threshold, depth=self.depth + 1, index=index) - last_index = node.fit( - X[above_below], y[above_below], sw, dtlr, total_N) + estimator, self.threshold, depth=self.depth + 1, index=index + ) + last_index = node.fit(X[above_below], y[above_below], sw, dtlr, total_N) return node, last_index return None, index - self.above, last = _fit_side( - self.index + 1, y_above, above, n_above, "above") - self.below, last = _fit_side( - last + 1, y_below, below, n_below, "below") + self.above, last = _fit_side(self.index + 1, y_above, above, n_above, "above") + self.below, last = _fit_side(last + 1, y_below, below, n_below, "below") return last @property @@ -171,43 +181,52 @@ def fit_improve(self, dtlr, total_N, X, y, sample_weight): The algorithm has a significant cost as it sorts every observation and chooses the best intercept. - @param dtlr @see cl DecisionTreeLogisticRegression - @param total_N total number of observations - @param X features - @param y labels - @param sample_weight sample weight - @return probabilities + :param dtlr: :class:`DecisionTreeLogisticRegression` + :param total_N: total number of observations + :param X: features + :param y: labels + :param sample_weight: sample weight + :return: probabilities """ if self.estimator is None: - raise RuntimeError( - "Estimator was not trained.") # pragma: no cover + raise RuntimeError("Estimator was not trained.") prob = self.estimator.predict_proba(X) - if dtlr.fit_improve_algo in (None, 'none'): + if dtlr.fit_improve_algo in (None, "none"): return prob if not isinstance(self.estimator, LinearClassifierMixin): # The classifier is not linear and cannot be improved. - if dtlr.fit_improve_algo == 'intercept_sort_always': # pragma: no cover + if dtlr.fit_improve_algo == "intercept_sort_always": raise RuntimeError( f"The model is not linear " f"({self.estimator.__class__.__name__!r}), " - f"intercept cannot be improved.") + f"intercept cannot be improved." + ) return prob above = prob[:, 1] > self.threshold - below = ~ above + below = ~above n_above = above.sum() n_below = below.sum() n_min = min(n_above, n_below) p1p2 = float(n_above * n_below) / X.shape[0] ** 2 if dtlr.verbose >= 2: - print("[DTLRI] %s imp %d <> %d, p1p2=%1.3f <> %1.3f" % ( # pragma: no cover - " " * self.depth, n_min, dtlr.min_samples_leaf, - p1p2, dtlr.p1p2)) - if (n_min >= dtlr.min_samples_leaf and - float(n_min) / total_N >= dtlr.min_weight_fraction_leaf and - p1p2 > dtlr.p1p2 and - dtlr.fit_improve_algo != 'intercept_sort_always'): + print( + "[DTLRI] %s imp %d <> %d, p1p2=%1.3f <> %1.3f" + % ( + " " * self.depth, + n_min, + dtlr.min_samples_leaf, + p1p2, + dtlr.p1p2, + ) + ) + if ( + n_min >= dtlr.min_samples_leaf + and float(n_min) / total_N >= dtlr.min_weight_fraction_leaf + and p1p2 > dtlr.p1p2 + and dtlr.fit_improve_algo != "intercept_sort_always" + ): return prob coef = self.estimator.coef_ @@ -223,7 +242,7 @@ def fit_improve(self, dtlr, total_N, X, y, sample_weight): besti = None beta_best = None for i in range(begin, N - begin): - beta = - sorted_df[i] + beta = -sorted_df[i] like = numpy.sum(likelihood(decision_function + beta, y)) / N w = float(i * (N - i)) / N**2 like += w * dtlr.gamma @@ -234,9 +253,16 @@ def fit_improve(self, dtlr, total_N, X, y, sample_weight): if beta_best is not None: if dtlr.verbose >= 1: - print("[DTLRI] %s change intercept %f --> %f in [%f, %f]" % ( # pragma: no cover - " " * self.depth, self.estimator.intercept_, beta_best, - - sorted_df[-1], - sorted_df[0])) + print( + "[DTLRI] %s change intercept %f --> %f in [%f, %f]" + % ( + " " * self.depth, + self.estimator.intercept_, + beta_best, + -sorted_df[-1], + -sorted_df[0], + ) + ) self.estimator.intercept_ = beta_best prob = self.estimator.predict_proba(X) return prob @@ -337,13 +363,26 @@ class DecisionTreeLogisticRegression(BaseEstimator, ClassifierMixin): """ _fit_improve_algo_values = ( - None, 'none', 'auto', 'intercept_sort', 'intercept_sort_always') - - def __init__(self, estimator=None, - max_depth=20, min_samples_split=2, - min_samples_leaf=2, min_weight_fraction_leaf=0.0, - fit_improve_algo='auto', p1p2=0.09, - gamma=1., verbose=0, strategy='parallel'): + None, + "none", + "auto", + "intercept_sort", + "intercept_sort_always", + ) + + def __init__( + self, + estimator=None, + max_depth=20, + min_samples_split=2, + min_samples_leaf=2, + min_weight_fraction_leaf=0.0, + fit_improve_algo="auto", + p1p2=0.09, + gamma=1.0, + verbose=0, + strategy="parallel", + ): "constructor" ClassifierMixin.__init__(self) BaseEstimator.__init__(self) @@ -353,10 +392,9 @@ def __init__(self, estimator=None, else: self.estimator = estimator if max_depth is None: - raise ValueError("'max_depth' cannot be None.") # pragma: no cover + raise ValueError("'max_depth' cannot be None.") if max_depth > 1024: - raise ValueError( - "'max_depth' must be <= 1024.") # pragma: no cover + raise ValueError("'max_depth' must be <= 1024.") self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf @@ -367,10 +405,14 @@ def __init__(self, estimator=None, self.verbose = verbose self.strategy = strategy - if self.fit_improve_algo not in DecisionTreeLogisticRegression._fit_improve_algo_values: + if ( + self.fit_improve_algo + not in DecisionTreeLogisticRegression._fit_improve_algo_values + ): raise ValueError( f"fit_improve_algo={self.fit_improve_algo!r} " - f"not in {DecisionTreeLogisticRegression._fit_improve_algo_values}.") + f"not in {DecisionTreeLogisticRegression._fit_improve_algo_values}." + ) def fit(self, X, y, sample_weight=None): """ @@ -387,43 +429,40 @@ def fit(self, X, y, sample_weight=None): Fitted attributes: * `classes_`: classes - * `tree_`: tree structure, see @see cl _DecisionTreeLogisticRegressionNode + * `tree_`: tree structure, see :class:`_DecisionTreeLogisticRegressionNode` * `n_nodes_`: number of nodes """ if not isinstance(X, numpy.ndarray): - if hasattr(X, 'values'): + if hasattr(X, "values"): X = X.values if not isinstance(X, numpy.ndarray): raise TypeError("'X' must be an array.") - if (sample_weight is not None and - not isinstance(sample_weight, numpy.ndarray)): - raise TypeError( - "'sample_weight' must be an array.") # pragma: no cover + if sample_weight is not None and not isinstance(sample_weight, numpy.ndarray): + raise TypeError("'sample_weight' must be an array.") self.classes_ = numpy.array(sorted(set(y))) if len(self.classes_) != 2: raise RuntimeError( f"The model only supports binary classification but labels are " - f"{self.classes_}.") + f"{self.classes_}." + ) - if self.strategy == 'parallel': + if self.strategy == "parallel": return self._fit_parallel(X, y, sample_weight) - if self.strategy == 'perpendicular': + if self.strategy == "perpendicular": return self._fit_perpendicular(X, y, sample_weight) - raise ValueError( - f"Unknown strategy '{self.strategy}'.") + raise ValueError(f"Unknown strategy '{self.strategy}'.") def _fit_parallel(self, X, y, sample_weight): "Implements the parallel strategy." cls = (y == self.classes_[1]).astype(numpy.int32) estimator = clone(self.estimator) self.tree_ = _DecisionTreeLogisticRegressionNode(estimator, 0.5) - self.n_nodes_ = self.tree_.fit( - X, cls, sample_weight, self, X.shape[0]) + 1 + self.n_nodes_ = self.tree_.fit(X, cls, sample_weight, self, X.shape[0]) + 1 return self def _fit_perpendicular(self, X, y, sample_weight): "Implements the perpendicular strategy." - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() def predict(self, X): """ @@ -442,8 +481,7 @@ def decision_function(self, X): """ Calls *decision_function*. """ - raise NotImplementedError( # pragma: no cover - "Decision function is not available for this model.") + raise NotImplementedError("Decision function is not available for this model.") @property def tree_depth_(self): diff --git a/mlinsights/mlmodel/direct_blas_lapack.pyx b/mlinsights/mlmodel/direct_blas_lapack.pyx index cca6a4dc..b0088f75 100644 --- a/mlinsights/mlmodel/direct_blas_lapack.pyx +++ b/mlinsights/mlmodel/direct_blas_lapack.pyx @@ -1,11 +1,5 @@ -""" -@file -@brief Direct calls to libraries :epkg:`BLAS` and :epkg:`LAPACK`. -""" from libc.stdlib cimport calloc, free from libc.string cimport memcpy -from libc.stdio cimport printf -from libc.math cimport NAN import numpy cimport numpy @@ -21,21 +15,21 @@ def dgelss(double[:, ::1] A, double [:, ::1] B, double prec=-1.): Finds *X* in the problem :math:`AX=B` by minimizing :math:`\\norm{AX - B}^2`. Uses function `dgels `_. - + :param A: matrix with 2 dimensions :param B: matrix with 2 dimensions :param prec: precision :return: integer (INFO) - + INFO is: - + * ``= 0``: successful exit * ``< 0``: if INFO = -i, the i-th argument had an illegal value * ``> 0``: if INFO = i, the i-th diagonal element of the triangular factor of A is zero, so that A does not have full rank; the least squares solution could not be computed. - + .. note:: ``::1`` indicates A, B, C must be contiguous arrays. Arrays *A*, *B* are modified by the function. @@ -43,54 +37,60 @@ def dgelss(double[:, ::1] A, double [:, ::1] B, double prec=-1.): .. exref:: :title: Use lapack function dgelss - + *C* minimizes the problem :math:`\\norm{AX - B}^2`. - + .. runpython:: :showcode: - + import numpy from scipy.linalg.lapack import dgelss as scipy_dgelss from mlinsights.mlmodel.direct_blas_lapack import dgelss - + A = numpy.array([[10., 1.], [12., 1.], [13., 1]]) B = numpy.array([[20., 22., 23.]]).T v, x, s, rank, work, info = scipy_dgelss(A, B) print(x[:2]) - + A = A.T.copy() info = dgelss(A, B) assert info == 0 print(B[:2]) """ if A.shape[1] != B.shape[0]: - raise ValueError("A and B have mismatched dimensions: %d != %d." % (A.shape[1], B.shape[0])) + raise ValueError( + "A and B have mismatched dimensions: %d != %d." % (A.shape[1], B.shape[0]) + ) cdef int res cdef int rank with nogil: res = _dgelss(A, B, &rank, &prec) return res - - + + cdef void copy2array2(const double* pC, double[:, ::1] C) nogil: """ Copies double from a buffer to an array. """ cdef size_t size = C.shape[0] * C.shape[1] - memcpy(&C[0,0], pC, size * sizeof(double)) - - + memcpy(&C[0, 0], pC, size * sizeof(double)) + + cdef void copy2array1(const double* pC, double[::1] C) nogil: """ Copies double from a buffer to an array. """ cdef size_t size = C.shape[0] memcpy(&C[0], pC, size * sizeof(double)) - - -cdef int _dgelss(double[:, ::1] A, double [:, ::1] B, int* rank, const double * rcond) nogil: + + +cdef int _dgelss(double[:, ::1] A, double [:, ::1] B, int* rank, + double * rcond) except -1 nogil: """ Same function as :func:`dgels` but does no check. + + .. note:: + *rcond* should be `const double*` but :epkg:`Cython` does not like *const*. """ cdef int col = A.shape[0] cdef int row = A.shape[1] @@ -98,10 +98,10 @@ cdef int _dgelss(double[:, ::1] A, double [:, ::1] B, int* rank, const double * cdef double *pC cdef double *pS cdef int work = min(row, col) * 3 + max(max(row, col), min(row, col) * 2) - + pC = calloc(work, sizeof(double)) pS = calloc(col, sizeof(double)) - + _dgelss_noalloc(A, B, rank, rcond, pS, pC, &work, &info) free(pC) @@ -109,18 +109,21 @@ cdef int _dgelss(double[:, ::1] A, double [:, ::1] B, int* rank, const double * return info -cdef void _dgelss_noalloc(double[:, ::1] A, double [:, ::1] B, int* rank, const double* rcond, +cdef void _dgelss_noalloc(double[:, ::1] A, double [:, ::1] B, int* rank, double* rcond, double* pS, double *pC, int* work, int* info) nogil: """ Same function as :func:`dgels` but does no check. + + .. note:: + *rcond* should be `const double*` but :epkg:`Cython` does not like *const*. """ cdef int col = A.shape[0] cdef int row = A.shape[1] cdef int nrhs = B.shape[1] cdef int lda = row cdef int ldb = row - - cython_lapack.dgelss(&row, &col, &nrhs, # 1-3 - &A[0,0], &lda, &B[0,0], &ldb, # 4-7 - pS, rcond, rank, # 8-10 - pC, work, info) # 11-13 + + cython_lapack.dgelss(&row, &col, &nrhs, # 1-3 + &A[0, 0], &lda, &B[0, 0], &ldb, # 4-7 + pS, rcond, rank, # 8-10 + pC, work, info) # 11-13 diff --git a/mlinsights/mlmodel/extended_features.py b/mlinsights/mlmodel/extended_features.py index 6e20c6ab..a52ebc3c 100644 --- a/mlinsights/mlmodel/extended_features.py +++ b/mlinsights/mlmodel/extended_features.py @@ -1,12 +1,12 @@ -""" -@file -@brief Implements new features such as polynomial features. -""" import numpy from scipy import sparse from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array -from ._extended_features_polynomial import _transform_iall, _transform_ionly, _combinations_poly +from ._extended_features_polynomial import ( + _transform_iall, + _transform_ionly, + _combinations_poly, +) class ExtendedFeatures(BaseEstimator, TransformerMixin): @@ -37,8 +37,13 @@ class ExtendedFeatures(BaseEstimator, TransformerMixin): of input features. """ - def __init__(self, kind='poly', poly_degree=2, poly_interaction_only=False, - poly_include_bias=True): + def __init__( + self, + kind="poly", + poly_degree=2, + poly_interaction_only=False, + poly_include_bias=True, + ): BaseEstimator.__init__(self) TransformerMixin.__init__(self) self.kind = kind @@ -55,12 +60,11 @@ def get_feature_names_out(self, input_features=None): "x0", "x1", ... "xn_features" is used. :return: output_feature_names : list of string, length n_output_features """ - if self.kind == 'poly': + if self.kind == "poly": return self._get_feature_names_poly(input_features) - if self.kind == 'poly-slow': + if self.kind == "poly-slow": return self._get_feature_names_poly(input_features) - raise ValueError( # pragma: no cover - f"Unknown extended features '{self.kind}'.") + raise ValueError(f"Unknown extended features '{self.kind}'.") def _get_feature_names_poly(self, input_features=None): """ @@ -68,11 +72,11 @@ def _get_feature_names_poly(self, input_features=None): the polynomial features. """ if input_features is None: - input_features = ["x%d" % - i for i in range(0, self.n_input_features_)] + input_features = ["x%d" % i for i in range(0, self.n_input_features_)] elif len(input_features) != self.n_input_features_: - raise ValueError( # pragma: no cover - f"input_features should contain {self.n_input_features_} strings.") + raise ValueError( + f"input_features should contain {self.n_input_features_} strings." + ) names = ["1"] if self.poly_include_bias else [] n = self.n_input_features_ @@ -89,10 +93,10 @@ def _get_feature_names_poly(self, input_features=None): for i in range(0, n): a = index[i] new_index.append(len(names)) - start = a + (index[i + 1] - index[i] - if interaction_only else 0) - names.extend([a + " " + input_features[i] - for a in names[start:end]]) + start = a + (index[i + 1] - index[i] if interaction_only else 0) + names.extend( + [a + " " + input_features[i] for a in names[start:end]] + ) new_index.append(len(names)) index = new_index @@ -115,17 +119,17 @@ def fit(self, X, y=None): :param X: array-like, shape (n_samples, n_features) The data. + :param y: targets :return: self : instance """ self.n_input_features_ = X.shape[1] self.n_output_features_ = len(self.get_feature_names_out()) - if self.kind == 'poly': + if self.kind == "poly": return self._fit_poly(X, y) - elif self.kind == 'poly-slow': + elif self.kind == "poly-slow": return self._fit_poly(X, y) - raise ValueError( # pragma: no cover - f"Unknown extended features '{self.kind}'.") + raise ValueError(f"Unknown extended features '{self.kind}'.") def _fit_poly(self, X, y=None): """ @@ -141,31 +145,24 @@ def transform(self, X): :param X: array-like, shape [n_samples, n_features] The data to transform, row by row. rns - :param XP: numpy.ndarray, shape [n_samples, NP] - The matrix of features, where NP is the number of polynomial - features generated from the combination of inputs. """ n_features = X.shape[1] if n_features != self.n_input_features_: - raise ValueError( # pragma: no cover - "X shape does not match training shape") - if self.kind == 'poly': + raise ValueError("X shape does not match training shape") + if self.kind == "poly": return self._transform_poly(X) - if self.kind == 'poly-slow': + if self.kind == "poly-slow": return self._transform_poly_slow(X) - raise ValueError( # pragma: no cover - f"Unknown extended features '{self.kind}'.") + raise ValueError(f"Unknown extended features '{self.kind}'.") def _transform_poly(self, X): """ Transforms data to polynomial features. """ if sparse.isspmatrix(X): - raise NotImplementedError( # pragma: no cover - "Not implemented for sparse matrices.") + raise NotImplementedError("Not implemented for sparse matrices.") - XP = numpy.empty( - (X.shape[0], self.n_output_features_), dtype=X.dtype) + XP = numpy.empty((X.shape[0], self.n_output_features_), dtype=X.dtype) def multiply(A, B, C): return numpy.multiply(A, B, out=C) @@ -174,24 +171,30 @@ def final(X): return X if self.poly_interaction_only: - return _transform_ionly(self.poly_degree, self.poly_include_bias, - XP, X, multiply, final) - return _transform_iall(self.poly_degree, self.poly_include_bias, - XP, X, multiply, final) + return _transform_ionly( + self.poly_degree, self.poly_include_bias, XP, X, multiply, final + ) + return _transform_iall( + self.poly_degree, self.poly_include_bias, XP, X, multiply, final + ) def _transform_poly_slow(self, X): """ Transforms data to polynomial features. """ if sparse.isspmatrix(X): - raise NotImplementedError( # pragma: no cover - "Not implemented for sparse matrices.") - - comb = _combinations_poly(X.shape[1], self.poly_degree, self.poly_interaction_only, - include_bias=self.poly_include_bias) - order = 'C' # how to get order from X. - XP = numpy.empty((X.shape[0], self.n_output_features_), - dtype=X.dtype, order=order) + raise NotImplementedError("Not implemented for sparse matrices.") + + comb = _combinations_poly( + X.shape[1], + self.poly_degree, + self.poly_interaction_only, + include_bias=self.poly_include_bias, + ) + order = "C" # how to get order from X. + XP = numpy.empty( + (X.shape[0], self.n_output_features_), dtype=X.dtype, order=order + ) for i, comb in enumerate(comb): XP[:, i] = X[:, comb].prod(1) return XP diff --git a/mlinsights/mlmodel/interval_regressor.py b/mlinsights/mlmodel/interval_regressor.py index fc5e856f..34a79bc3 100644 --- a/mlinsights/mlmodel/interval_regressor.py +++ b/mlinsights/mlmodel/interval_regressor.py @@ -1,14 +1,11 @@ -""" -@file -@brief Implements a piecewise linear regression. -""" import numpy import numpy.random from sklearn.base import RegressorMixin, clone, BaseEstimator from sklearn.utils._joblib import Parallel, delayed + try: from tqdm import tqdm -except ImportError: # pragma: no cover +except ImportError: pass @@ -24,22 +21,22 @@ class IntervalRegressor(BaseEstimator, RegressorMixin): draws sample by random but keeps the weight associated to each of them. Another way could be to draw a weighted sample but give them uniform weights. + + :param estimator: predictor trained on every bucket + :param n_estimators: number of estimators to train + :param n_jobs: number of parallel jobs (for training and predicting) + :param alpha: proportion of samples resampled for each training + :param verbose: boolean or use ``'tqdm'`` to use :epkg:`tqdm` + to fit the estimators """ - def __init__(self, estimator=None, n_estimators=10, n_jobs=None, - alpha=1., verbose=False): - """ - @param estimator predictor trained on every bucket - @param n_estimators number of estimators to train - @param n_jobs number of parallel jobs (for training and predicting) - @param alpha proportion of samples resampled for each training - @param verbose boolean or use ``'tqdm'`` to use :epkg:`tqdm` - to fit the estimators - """ + def __init__( + self, estimator=None, n_estimators=10, n_jobs=None, alpha=1.0, verbose=False + ): BaseEstimator.__init__(self) RegressorMixin.__init__(self) if estimator is None: - raise ValueError("estimator cannot be null.") # pragma: no cover + raise ValueError("estimator cannot be null.") self.estimator = estimator self.n_jobs = n_jobs self.alpha = alpha @@ -78,9 +75,12 @@ def fit(self, X, y, sample_weight=None): self.estimators_ = [] estimators = [clone(self.estimator) for i in range(self.n_estimators)] - loop = tqdm(range(len(estimators)) - ) if self.verbose == 'tqdm' else range(len(estimators)) - verbose = 1 if self.verbose == 'tqdm' else (1 if self.verbose else 0) + loop = ( + tqdm(range(len(estimators))) + if self.verbose == "tqdm" + else range(len(estimators)) + ) + verbose = 1 if self.verbose == "tqdm" else (1 if self.verbose else 0) def _fit_piecewise_estimator(i, est, X, y, sample_weight, alpha): new_size = int(X.shape[0] * alpha + 0.5) @@ -90,12 +90,14 @@ def _fit_piecewise_estimator(i, est, X, y, sample_weight, alpha): sr = sample_weight[rnd] if sample_weight is not None else None return est.fit(Xr, yr, sr) - self.estimators_ = \ - Parallel(n_jobs=self.n_jobs, verbose=verbose, - prefer='threads')( - delayed(_fit_piecewise_estimator)( - i, estimators[i], X, y, sample_weight, self.alpha) - for i in loop) + self.estimators_ = Parallel( + n_jobs=self.n_jobs, verbose=verbose, prefer="threads" + )( + delayed(_fit_piecewise_estimator)( + i, estimators[i], X, y, sample_weight, self.alpha + ) + for i in loop + ) return self diff --git a/mlinsights/mlmodel/kmeans_constraint.py b/mlinsights/mlmodel/kmeans_constraint.py index d9fa9f21..46ad33b9 100644 --- a/mlinsights/mlmodel/kmeans_constraint.py +++ b/mlinsights/mlmodel/kmeans_constraint.py @@ -1,10 +1,6 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implémente la classe @see cl ConstraintKMeans. -""" import numpy -from scipy.spatial import Delaunay # pylint: disable=E0611 +from scipy.spatial import Delaunay from sklearn.cluster import KMeans from sklearn.metrics.pairwise import euclidean_distances from ._kmeans_constraint_ import constraint_kmeans, constraint_predictions @@ -43,52 +39,71 @@ class ConstraintKMeans(KMeans): the strategy uses a learning rate. The first two strategies cannot reach a good compromise - without using function @see fn _switch_clusters which + without using function :func:`_switch_clusters + ` which tries every switch between clusters: two points change clusters. It keeps the number of points and checks that the inertia is reduced. + + :param n_clusters: number of clusters + :param init: used by :epkg:`k-means` + :param n_init: used by :epkg:`k-means` + :param max_iter: used by :epkg:`k-means` + :param tol: used by :epkg:`k-means` + :param verbose: used by :epkg:`k-means` + :param random_state: used by :epkg:`k-means` + :param copy_x: used by :epkg:`k-means` + :param algorithm: used by :epkg:`k-means` + :param balanced_predictions: produced balanced prediction + or the regular ones + :param strategy: strategy or algorithm used to abide + by the constraint + :param kmeans0: if True, applies *k-means* algorithm first + :param history: keeps centers accress iterations + :param learning_rate: learning rate, used by strategy `'weights'` """ - _strategy_value = {'distance', 'gain', 'weights'} + _strategy_value = {"distance", "gain", "weights"} - def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=500, - tol=0.0001, verbose=0, - random_state=None, copy_x=True, algorithm='auto', - balanced_predictions=False, strategy='gain', kmeans0=True, - learning_rate=1., history=False): - """ - @param n_clusters number of clusters - @param init used by :epkg:`k-means` - @param n_init used by :epkg:`k-means` - @param max_iter used by :epkg:`k-means` - @param tol used by :epkg:`k-means` - @param verbose used by :epkg:`k-means` - @param random_state used by :epkg:`k-means` - @param copy_x used by :epkg:`k-means` - @param algorithm used by :epkg:`k-means` - @param balanced_predictions produced balanced prediction - or the regular ones - @param strategy strategy or algorithm used to abide - by the constraint - @param kmeans0 if True, applies *k-means* algorithm first - @param history keeps centers accress iterations - @param learning_rate learning rate, used by strategy `'weights'` - """ + def __init__( + self, + n_clusters=8, + init="k-means++", + n_init=10, + max_iter=500, + tol=0.0001, + verbose=0, + random_state=None, + copy_x=True, + algorithm="lloyd", + balanced_predictions=False, + strategy="gain", + kmeans0=True, + learning_rate=1.0, + history=False, + ): self._n_threads = 1 - KMeans.__init__(self, n_clusters=n_clusters, init=init, n_init=n_init, - max_iter=max_iter, tol=tol, - verbose=verbose, random_state=random_state, copy_x=copy_x, - algorithm=algorithm) + KMeans.__init__( + self, + n_clusters=n_clusters, + init=init, + n_init=n_init, + max_iter=max_iter, + tol=tol, + verbose=verbose, + random_state=random_state, + copy_x=copy_x, + algorithm=algorithm, + ) self.balanced_predictions = balanced_predictions self.strategy = strategy self.kmeans0 = kmeans0 self.history = history self.learning_rate = learning_rate if strategy not in ConstraintKMeans._strategy_value: - raise ValueError( - f'strategy must be in {ConstraintKMeans._strategy_value}') + raise ValueError(f"strategy must be in {ConstraintKMeans._strategy_value}") - def fit(self, X, y=None, sample_weight=None, fLOG=None): + def fit(self, X, y=None, sample_weight=None): """ Compute k-means clustering. @@ -98,7 +113,6 @@ def fit(self, X, y=None, sample_weight=None, fLOG=None): copy if the given data is not C-contiguous. :param y: Ignored :param sample_weight: sample weight - :param fLOG: logging function """ max_iter = self.max_iter self.max_iter //= 2 @@ -106,10 +120,8 @@ def fit(self, X, y=None, sample_weight=None, fLOG=None): KMeans.fit(self, X, y, sample_weight=sample_weight) state = None else: - state = numpy.random.RandomState( # pylint: disable=E1101 - self.random_state) - labels = state.randint( - 0, self.n_clusters, X.shape[0], dtype=numpy.int32) + state = numpy.random.RandomState(self.random_state) + labels = state.randint(0, self.n_clusters, X.shape[0], dtype=numpy.int32) centers = numpy.empty((self.n_clusters, X.shape[1]), dtype=X.dtype) choice = state.randint(0, self.n_clusters, self.n_clusters) for i, c in enumerate(choice): @@ -121,72 +133,92 @@ def fit(self, X, y=None, sample_weight=None, fLOG=None): self.max_iter = max_iter return self.constraint_kmeans( - X, sample_weight=sample_weight, state=state, + X, + sample_weight=sample_weight, + state=state, learning_rate=self.learning_rate, - history=self.history, fLOG=fLOG) + history=self.history, + ) - def constraint_kmeans(self, X, sample_weight=None, state=None, - learning_rate=1., history=False, fLOG=None): + def constraint_kmeans( + self, + X, + sample_weight=None, + state=None, + learning_rate=1.0, + history=False, + ): """ Completes the constraint k-means. - @param X features - @param sample_weight sample weight - @param state state - @param history keeps evolution of centers - @param fLOG logging function + :param X: features + :param sample_weight: sample weight + :param state: state + :param learning_rate: learning rate + :param history: keeps evolution of centers """ labels, centers, inertia, weights, iter_, all_centers = constraint_kmeans( - X, self.labels_, sample_weight, self.cluster_centers_, - inertia=self.inertia_, iter=self.n_iter_, - max_iter=self.max_iter, verbose=self.verbose, - strategy=self.strategy, state=state, - learning_rate=learning_rate, history=history, - fLOG=fLOG) + X, + self.labels_, + sample_weight, + self.cluster_centers_, + inertia=self.inertia_, + iter=self.n_iter_, + max_iter=self.max_iter, + verbose=self.verbose, + strategy=self.strategy, + state=state, + learning_rate=learning_rate, + history=history, + ) self.labels_ = labels self.cluster_centers_ = centers self.cluster_centers_iter_ = ( - None if len(all_centers) == 0 else numpy.dstack(all_centers)) + None if len(all_centers) == 0 else numpy.dstack(all_centers) + ) self.inertia_ = inertia self.n_iter_ = iter_ self.weights_ = weights return self - def predict(self, X, sample_weight=None): + def predict(self, X): """ Computes the predictions. - @param X features. - @return prediction + :param X: features. + :return: prediction """ if self.weights_ is None: if self.balanced_predictions: labels, _, __ = constraint_predictions( - X, self.cluster_centers_, strategy=self.strategy + '_p') + X, self.cluster_centers_, strategy=self.strategy + "_p" + ) return labels - return KMeans.predict(self, X, sample_weight=sample_weight) + return KMeans.predict(self, X) else: if self.balanced_predictions: - raise RuntimeError( # pragma: no cover - "balanced_predictions and weights_ cannot be used together.") - return KMeans.predict(self, X, sample_weight=sample_weight) + raise RuntimeError( + "balanced_predictions and weights_ cannot be used together." + ) + return KMeans.predict(self, X) def transform(self, X): """ Computes the predictions. - @param X features. - @return prediction + :param X: features. + :return: prediction """ if self.weights_ is None: if self.balanced_predictions: labels, distances, __ = constraint_predictions( - X, self.cluster_centers_, strategy=self.strategy) + X, self.cluster_centers_, strategy=self.strategy + ) # We remove small distances than the chosen clusters # due to the constraint, we choose max*2 instead. mx = distances.max() * 2 - for i, l in enumerate(labels): - mi = distances[i, l] + for i, li in enumerate(labels): + mi = distances[i, li] mmi = distances[i, :].min() if mi > mmi: # numpy.nan would be best @@ -195,8 +227,9 @@ def transform(self, X): return KMeans.transform(self, X) else: if self.balanced_predictions: - raise RuntimeError( # pragma: no cover - "balanced_predictions and weights_ cannot be used together.") + raise RuntimeError( + "balanced_predictions and weights_ cannot be used together." + ) res = KMeans.transform(self, X) res *= self.weights_.reshape((1, -1)) return res @@ -205,21 +238,23 @@ def score(self, X, y=None, sample_weight=None): """ Returns the distances to all clusters. - @param X features - @param y unused - @param sample_weight sample weight - @return distances + :param X: features + :param y: unused + :param sample_weight: sample weight + :return: distances """ if self.weights_ is None: if self.balanced_predictions: _, __, dist_close = constraint_predictions( - X, self.cluster_centers_, strategy=self.strategy) + X, self.cluster_centers_, strategy=self.strategy + ) return dist_close res = euclidean_distances(self.cluster_centers_, X, squared=True) else: if self.balanced_predictions: - raise RuntimeError( # pragma: no cover - "balanced_predictions and weights_ cannot be used together.") + raise RuntimeError( + "balanced_predictions and weights_ cannot be used together." + ) res = euclidean_distances(X, self.cluster_centers_, squared=True) res *= self.weights_.reshape((1, -1)) return res.max(axis=1) @@ -232,11 +267,11 @@ def cluster_edges(self): graph. """ tri = Delaunay(self.cluster_centers_) - triangles = tri.simplices # pylint: disable=E1101 + triangles = tri.simplices edges = set() for row in triangles: for j in range(1, row.shape[-1]): - a, b = row[j - 1:j + 1] + a, b = row[j - 1 : j + 1] if a < b: edges.add((a, b)) else: diff --git a/mlinsights/mlmodel/kmeans_l1.py b/mlinsights/mlmodel/kmeans_l1.py index 495147ec..464bdee5 100644 --- a/mlinsights/mlmodel/kmeans_l1.py +++ b/mlinsights/mlmodel/kmeans_l1.py @@ -1,8 +1,3 @@ -# pylint: disable=C0302 -""" -@file -@brief Implements k-means with norms L1 and L2. -""" import warnings import numpy from scipy.sparse import issparse @@ -10,26 +5,30 @@ from sklearn.cluster._kmeans import _tolerance as _tolerance_skl from sklearn.exceptions import ConvergenceWarning from sklearn.metrics.pairwise import ( - euclidean_distances, manhattan_distances, - pairwise_distances_argmin_min) + euclidean_distances, + manhattan_distances, + pairwise_distances_argmin_min, +) from sklearn.utils import check_random_state, check_array from sklearn.utils.validation import _num_samples, check_is_fitted from sklearn.utils.extmath import stable_cumsum + try: from sklearn.cluster._kmeans import _check_sample_weight -except ImportError: # pragma: no cover +except ImportError: from sklearn.cluster._kmeans import ( - _check_normalize_sample_weight as _check_sample_weight) + _check_normalize_sample_weight as _check_sample_weight, + ) try: from sklearn.utils._param_validation import StrOptions except ImportError: + def StrOptions(*args): "Dummy replacement for a class introduced in scikit-learn==1.1." return None -from ._kmeans_022 import ( - _labels_inertia_skl, - _labels_inertia_precompute_dense) + +from ._kmeans_022 import _labels_inertia_skl, _labels_inertia_precompute_dense def _k_init(norm, X, n_clusters, random_state, n_local_trials=None): @@ -45,7 +44,6 @@ def _k_init(norm, X, n_clusters, random_state, n_local_trials=None): :param random_state: int, RandomState instance The generator used to initialize the centers. Use an int to make the randomness deterministic. - See :term:`Glossary `. :param n_local_trials: integer, optional The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. @@ -71,13 +69,14 @@ def _k_init(norm, X, n_clusters, random_state, n_local_trials=None): centers[0] = X[center_id] # Initialize list of closest distances and calculate current potential - if norm == 'L2': + if norm == "L2": dist_fct = lambda x, y: euclidean_distances(x, y, squared=True) - elif norm == 'L1': + elif norm == "L1": dist_fct = lambda x, y: manhattan_distances(x, y) else: raise NotImplementedError( # pragma no cover - f"norm must be 'L1' or 'L2' not '{norm}'.") + f"norm must be 'L1' or 'L2' not '{norm}'." + ) closest_dist_sq = dist_fct(centers[0, numpy.newaxis], X) current_pot = closest_dist_sq.sum() @@ -87,17 +86,16 @@ def _k_init(norm, X, n_clusters, random_state, n_local_trials=None): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot - candidate_ids = numpy.searchsorted(stable_cumsum(closest_dist_sq), - rand_vals) - numpy.clip(candidate_ids, None, closest_dist_sq.size - 1, - out=candidate_ids) + candidate_ids = numpy.searchsorted(stable_cumsum(closest_dist_sq), rand_vals) + numpy.clip(candidate_ids, None, closest_dist_sq.size - 1, out=candidate_ids) # Compute distances to center candidates distance_to_candidates = dist_fct(X[candidate_ids], X) # update closest distances squared and potential for each candidate - numpy.minimum(closest_dist_sq, distance_to_candidates, - out=distance_to_candidates) + numpy.minimum( + closest_dist_sq, distance_to_candidates, out=distance_to_candidates + ) candidates_pot = distance_to_candidates.sum(axis=1) # Decide which candidate is the best @@ -115,8 +113,7 @@ def _k_init(norm, X, n_clusters, random_state, n_local_trials=None): return centers -def _init_centroids(norm, X, k, init, random_state=None, - init_size=None): +def _init_centroids(norm, X, k, init, random_state=None, init_size=None): """Compute the initial centroids :param norm: 'L1' or 'L2' @@ -128,7 +125,6 @@ def _init_centroids(norm, X, k, init, random_state=None, :param random_state: int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. - See :term:`Glossary `. :param init_size: int, optional Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the @@ -140,25 +136,26 @@ def _init_centroids(norm, X, k, init, random_state=None, n_samples = X.shape[0] if init_size is not None and init_size < n_samples: - if init_size < k: # pragma: no cover + if init_size < k: warnings.warn( "init_size=%d should be larger than k=%d. " "Setting it to 3*k" % (init_size, k), - RuntimeWarning, stacklevel=2) + RuntimeWarning, + stacklevel=2, + ) init_size = 3 * k init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] n_samples = X.shape[0] elif n_samples < k: - raise ValueError( # pragma: no cover - "n_samples=%d should be larger than k=%d" % (n_samples, k)) + raise ValueError("n_samples=%d should be larger than k=%d" % (n_samples, k)) - if isinstance(init, str) and init == 'k-means++': + if isinstance(init, str) and init == "k-means++": centers = _k_init(norm, X, k, random_state=random_state) - elif isinstance(init, str) and init == 'random': + elif isinstance(init, str) and init == "random": seeds = random_state.permutation(n_samples)[:k] centers = X[seeds] - elif hasattr(init, '__array__'): + elif hasattr(init, "__array__"): # ensure that the centers have the same dtype as X # this is a requirement of fused types of cython centers = numpy.array(init, dtype=X.dtype) @@ -166,10 +163,11 @@ def _init_centroids(norm, X, k, init, random_state=None, centers = init(norm, X, k, random_state=random_state) centers = numpy.asarray(centers, dtype=X.dtype) else: - raise ValueError( # pragma: no cover + raise ValueError( "init parameter for the k-means should " "be 'k-means++' or 'random' or an ndarray, " - "'%s' (type '%s') was passed." % (init, type(init))) + "'%s' (type '%s') was passed." % (init, type(init)) + ) if issparse(centers): centers = centers.toarray() @@ -177,20 +175,21 @@ def _init_centroids(norm, X, k, init, random_state=None, def _validate_center_shape(X, k, centers): """Check if centers is compatible with X and n_clusters""" if centers.shape[0] != k: - raise ValueError( # pragma: no cover + raise ValueError( f"The shape of the initial centers {centers.shape} does not " - f"match the number of clusters {k}.") + f"match the number of clusters {k}." + ) if centers.shape[1] != X.shape[1]: - raise ValueError( # pragma: no cover + raise ValueError( f"The shape of the initial centers {centers.shape} does not " - f"match the number of features of the data {X.shape[1]}.") + f"match the number of features of the data {X.shape[1]}." + ) _validate_center_shape(X, k, centers) return centers -def _centers_dense(X, sample_weight, labels, n_clusters, distances, - X_sort_index): +def _centers_dense(X, sample_weight, labels, n_clusters, distances, X_sort_index): """ M step of the K-means EM algorithm. Computation of cluster centers / means. @@ -221,7 +220,7 @@ def _centers_dense(X, sample_weight, labels, n_clusters, distances, weight_in_cluster[c] += sample_weight[i] empty_clusters = numpy.where(weight_in_cluster == 0)[0] - if len(empty_clusters) > 0: # pragma: no cover + if len(empty_clusters) > 0: # find points to reassign empty clusters to far_from_centers = distances.argsort()[::-1] @@ -238,16 +237,25 @@ def _centers_dense(X, sample_weight, labels, n_clusters, distances, med = numpy.median(sub, axis=0) centers[i, :] = med else: - raise NotImplementedError( # pragma: no cover + raise NotImplementedError( "Non uniform weights are not implemented yet as " "the cost would be very high. " - "See https://en.wikipedia.org/wiki/Weighted_median#Algorithm.") + "See https://en.wikipedia.org/wiki/Weighted_median#Algorithm." + ) return centers -def _kmeans_single_lloyd(norm, X, sample_weight, n_clusters, max_iter=300, - init='k-means++', verbose=False, - random_state=None, tol=1e-4): +def _kmeans_single_lloyd( + norm, + X, + sample_weight, + n_clusters, + max_iter=300, + init="k-means++", + verbose=False, + random_state=None, + tol=1e-4, +): """ A single run of k-means, assumes preparation completed prior. @@ -284,7 +292,6 @@ def _kmeans_single_lloyd(norm, X, sample_weight, n_clusters, max_iter=300, :param random_state: int, RandomState instance or None (default) Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. - See :term:`Glossary `. :return: centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. :return: label : integer ndarray with shape (n_samples,) @@ -302,8 +309,7 @@ def _kmeans_single_lloyd(norm, X, sample_weight, n_clusters, max_iter=300, best_labels, best_inertia, best_centers = None, None, None # init - centers = _init_centroids( - norm, X, n_clusters, init, random_state=random_state) + centers = _init_centroids(norm, X, n_clusters, init, random_state=random_state) if verbose: # pragma no cover print("Initialization complete") @@ -317,11 +323,13 @@ def _kmeans_single_lloyd(norm, X, sample_weight, n_clusters, max_iter=300, centers_old = centers.copy() # labels assignment is also called the E-step of EM labels, inertia = _labels_inertia( - norm, X, sample_weight, centers, distances=distances) + norm, X, sample_weight, centers, distances=distances + ) # computation of the means is also called the M-step of EM - centers = _centers_dense(X, sample_weight, labels, n_clusters, distances, - X_sort_index) + centers = _centers_dense( + X, sample_weight, labels, n_clusters, distances, X_sort_index + ) if verbose: # pragma no cover print("Iteration %2d, inertia %.3f" % (i, inertia)) @@ -331,20 +339,21 @@ def _kmeans_single_lloyd(norm, X, sample_weight, n_clusters, max_iter=300, best_centers = centers.copy() best_inertia = inertia - center_shift_total = numpy.sum( - numpy.abs(centers_old - centers).ravel()) + center_shift_total = numpy.sum(numpy.abs(centers_old - centers).ravel()) if center_shift_total <= tol: if verbose: # pragma no cover - print("Converged at iteration %d: " - "center shift %r within tolerance %r" - % (i, center_shift_total, tol)) + print( + "Converged at iteration %d: " + "center shift %r within tolerance %r" % (i, center_shift_total, tol) + ) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = _labels_inertia( - norm, X, sample_weight, best_centers, distances=distances) + norm, X, sample_weight, best_centers, distances=distances + ) return best_labels, best_inertia, best_centers, i + 1 @@ -369,10 +378,10 @@ def _labels_inertia(norm, X, sample_weight, centers, distances=None): :return: inertia : float Sum of squared distances of samples to their closest cluster center. """ - if norm == 'l2': + if norm == "l2": return _labels_inertia_skl( - X, sample_weight=sample_weight, centers=centers, - x_squared_norms=None) + X, sample_weight=sample_weight, centers=centers, x_squared_norms=None + ) sample_weight = _check_sample_weight(sample_weight, X) # set the default value of centers to -1 to be able to detect any anomaly @@ -382,27 +391,31 @@ def _labels_inertia(norm, X, sample_weight, centers, distances=None): # distances will be changed in-place if issparse(X): raise NotImplementedError( # pragma no cover - "Sparse matrix is not implemented for norm 'L1'.") + "Sparse matrix is not implemented for norm 'L1'." + ) return _labels_inertia_precompute_dense( - norm=norm, X=X, sample_weight=sample_weight, - centers=centers, distances=distances) + norm=norm, + X=X, + sample_weight=sample_weight, + centers=centers, + distances=distances, + ) def _tolerance(norm, X, tol): """Return a tolerance which is independent of the dataset""" - if norm == 'L2': + if norm == "L2": return _tolerance_skl(X, tol) - if norm == 'L1': + if norm == "L1": variances = numpy.sum(numpy.abs(X), axis=0) / X.shape[0] return variances.sum() - raise NotImplementedError( # pragma no cover - f"not implemented for norm '{norm}'.") + raise NotImplementedError(f"not implemented for norm '{norm}'.") # pragma no cover class KMeansL1L2(KMeans): """ K-Means clustering with either norm L1 or L2. - See notebook :ref:`kmeansl1rst` for an example. + See notebook :ref:`l-kmeans-l1-example` for an example. :param n_clusters: int, default=8 The number of clusters to form as well as the number of @@ -430,23 +443,11 @@ class KMeansL1L2(KMeans): single run. :param tol: float, default=1e-4 Relative tolerance with regards to inertia to declare convergence. - :param precompute_distances: 'auto' or bool, default='auto' - Precompute distances (faster but takes more memory). - - 'auto' : do not precompute distances if n_samples * n_clusters > 12 - million. This corresponds to about 100MB overhead per job using - double precision. - - True : always precompute distances. - - False : never precompute distances. - :param verbose: int, default=0 Verbosity mode. :param random_state: int, RandomState instance, default=None Determines random number generation for centroid initialization. Use an int to make the randomness deterministic. - See :term:`Glossary `. :param copy_x: bool, default=True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True (default), then the original data is @@ -455,18 +456,10 @@ class KMeansL1L2(KMeans): numerical differences may be introduced by subtracting and then adding the data mean, in this case it will also not ensure that data is C-contiguous which may cause a significant slowdown. - :param n_jobs: int, default=None - The number of jobs to use for the computation. This works by computing - each of the n_init runs in parallel. - - ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. - ``-1`` means using all processors. See :term:`Glossary ` - for more details. - :param algorithm: {"auto", "full", "elkan"}, default="auto" - K-means algorithm to use. The classical EM-style algorithm is "full". + :param algorithm: {"lloyd", "elkan"}, default="lloyd" + K-means algorithm to use. The classical EM-style algorithm is "lloyd". The "elkan" variation is more efficient by using the triangle - inequality, but currently doesn't support sparse data. "auto" chooses - "elkan" for dense data and "full" for sparse data. + inequality, but currently doesn't support sparse data. :param norm: {"L1", "L2"} The norm *L2* is identical to :epkg:`KMeans`. Norm *L1* uses a complete different path. @@ -486,23 +479,40 @@ class KMeansL1L2(KMeans): """ _parameter_constraints = { - **getattr(KMeans, '_parameter_constraints', {}), + **getattr(KMeans, "_parameter_constraints", {}), "norm": [StrOptions({"L1", "L2"})], } - def __init__(self, n_clusters=8, init='k-means++', n_init=10, - max_iter=300, tol=1e-4, - verbose=0, random_state=None, copy_x=True, - algorithm='full', norm='L2'): - - KMeans.__init__(self, n_clusters=n_clusters, init=init, n_init=n_init, - max_iter=max_iter, tol=tol, - verbose=verbose, random_state=random_state, - copy_x=copy_x, algorithm=algorithm) + def __init__( + self, + n_clusters=8, + init="k-means++", + n_init=10, + max_iter=300, + tol=1e-4, + verbose=0, + random_state=None, + copy_x=True, + algorithm="lloyd", + norm="L2", + ): + KMeans.__init__( + self, + n_clusters=n_clusters, + init=init, + n_init=n_init, + max_iter=max_iter, + tol=tol, + verbose=verbose, + random_state=random_state, + copy_x=copy_x, + algorithm=algorithm, + ) self.norm = norm - if self.norm == 'L1' and self.algorithm != 'full': + if self.norm == "L1" and self.algorithm != "lloyd": raise NotImplementedError( # pragma no cover - "Only algorithm 'full' is implemented with norm 'l1'.") + "Only algorithm 'lloyd' is implemented with norm 'l1'." + ) def fit(self, X, y=None, sample_weight=None): """ @@ -520,13 +530,14 @@ def fit(self, X, y=None, sample_weight=None): :return: self Fitted estimator. """ - if self.norm == 'L2': + if self.norm == "L2": KMeans.fit(self, X=X, y=y, sample_weight=sample_weight) - elif self.norm == 'L1': + elif self.norm == "L1": self._fit_l1(X=X, y=y, sample_weight=sample_weight) else: raise NotImplementedError( # pragma no cover - f"Norm is not 'L1' or 'L2' but '{self.norm}'.") + f"Norm is not 'L1' or 'L2' but '{self.norm}'." + ) return self def _fit_l1(self, X, y=None, sample_weight=None): @@ -551,62 +562,77 @@ def _fit_l1(self, X, y=None, sample_weight=None): if n_init <= 0: raise ValueError( # pragma no cover "Invalid number of initializations." - " n_init=%d must be bigger than zero." % n_init) + " n_init=%d must be bigger than zero." % n_init + ) if self.max_iter <= 0: raise ValueError( # pragma no cover - 'Number of iterations should be a positive number,' - ' got %d instead' % self.max_iter) + "Number of iterations should be a positive number," + " got %d instead" % self.max_iter + ) # avoid forcing order when copy_x=False order = "C" if self.copy_x else None - X = check_array(X, accept_sparse='csr', dtype=[numpy.float64, numpy.float32], - order=order, copy=self.copy_x) + X = check_array( + X, + accept_sparse="csr", + dtype=[numpy.float64, numpy.float32], + order=order, + copy=self.copy_x, + ) # verify that the number of samples given is larger than k if _num_samples(X) < self.n_clusters: raise ValueError( # pragma no cover - "n_samples=%d should be >= n_clusters=%d" % ( - _num_samples(X), self.n_clusters)) + "n_samples=%d should be >= n_clusters=%d" + % (_num_samples(X), self.n_clusters) + ) tol = _tolerance(self.norm, X, self.tol) # Validate init array init = self.init - if hasattr(init, '__array__'): + if hasattr(init, "__array__"): init = check_array(init, dtype=X.dtype.type, copy=True) - if hasattr(self, '_validate_center_shape'): - self._validate_center_shape( # pylint: disable=E1101 - X, init) + if hasattr(self, "_validate_center_shape"): + self._validate_center_shape(X, init) if n_init != 1: - warnings.warn( # pragma: no cover - 'Explicit initial center position passed: ' - 'performing only one init in k-means instead of n_init=%d' - % n_init, RuntimeWarning, stacklevel=2) + warnings.warn( + "Explicit initial center position passed: " + "performing only one init in k-means instead of n_init=%d" % n_init, + RuntimeWarning, + stacklevel=2, + ) n_init = 1 best_labels, best_inertia, best_centers = None, None, None algorithm = self.algorithm if self.n_clusters == 1: - # elkan doesn't make sense for a single cluster, full will produce + # elkan doesn't make sense for a single cluster, lloyd will produce # the right result. - algorithm = "full" # pragma: no cover - if algorithm == "auto": - algorithm = "full" # pragma: no cover - if algorithm == "full": + algorithm = "lloyd" + if algorithm == "lloyd": kmeans_single = _kmeans_single_lloyd else: raise ValueError( # pragma no cover - f"Algorithm must be 'auto', 'full' or 'elkan', got {str(algorithm)}") + f"Algorithm must be 'lloyd' or 'elkan', got {str(algorithm)}" + ) seeds = random_state.randint(numpy.iinfo(numpy.int32).max, size=n_init) for seed in seeds: # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( - self.norm, X, sample_weight, n_clusters=self.n_clusters, - max_iter=self.max_iter, init=init, verbose=self.verbose, - tol=tol, random_state=seed) + self.norm, + X, + sample_weight, + n_clusters=self.n_clusters, + max_iter=self.max_iter, + init=init, + verbose=self.verbose, + tol=tol, + random_state=seed, + ) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() @@ -621,7 +647,9 @@ def _fit_l1(self, X, y=None, sample_weight=None): f"found smaller than " f"n_clusters ({self.n_clusters}). Possibly " f"due to duplicate points in X.", - ConvergenceWarning, stacklevel=2) + ConvergenceWarning, + stacklevel=2, + ) self.cluster_centers_ = best_centers self.labels_ = best_labels @@ -642,12 +670,13 @@ def transform(self, X): :return: X_new : array, shape [n_samples, k] X transformed in the new space. """ - if self.norm == 'L2': + if self.norm == "L2": return KMeans.transform(self, X) - if self.norm == 'L1': + if self.norm == "L1": return self._transform_l1(X) raise NotImplementedError( # pragma no cover - f"Norm is not L1 or L2 but '{self.norm}'.") + f"Norm is not L1 or L2 but '{self.norm}'." + ) def _transform_l1(self, X): """ @@ -674,12 +703,13 @@ def predict(self, X, sample_weight=None): :return: labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ - if self.norm == 'L2': + if self.norm == "L2": return KMeans.predict(self, X) - if self.norm == 'L1': + if self.norm == "L1": return self._predict_l1(X, sample_weight=sample_weight) raise NotImplementedError( # pragma no cover - f"Norm is not L1 or L2 but '{self.norm}'.") + f"Norm is not L1 or L2 but '{self.norm}'." + ) def _predict_l1(self, X, sample_weight=None, return_distances=False): """ @@ -692,7 +722,8 @@ def _predict_l1(self, X, sample_weight=None, return_distances=False): :return: labels or `labels, distances` """ labels, mindist = pairwise_distances_argmin_min( - X=X, Y=self.cluster_centers_, metric='manhattan') + X=X, Y=self.cluster_centers_, metric="manhattan" + ) labels = labels.astype(numpy.int32, copy=False) if return_distances: return labels, mindist diff --git a/mlinsights/mlmodel/ml_featurizer.py b/mlinsights/mlmodel/ml_featurizer.py index 00b9f7ef..c53d7ca4 100644 --- a/mlinsights/mlmodel/ml_featurizer.py +++ b/mlinsights/mlmodel/ml_featurizer.py @@ -1,7 +1,3 @@ -""" -@file -@brief Featurizers for machine learned models. -""" import numpy import pandas from sklearn.linear_model import LogisticRegression @@ -12,6 +8,7 @@ class FeaturizerTypeError(TypeError): """ Unable to process a type. """ + pass @@ -21,11 +18,11 @@ def model_featurizer(model, **params): a vector into features produced by the model. It can be the output itself or intermediate results. The model can come from :epkg:`scikit-learn`, - :epkg:`keras` or :epkg:`torch`. + :epkg:`torch`. - @param model model - @param params additional parameters - @return function + :param model: model + :param params: additional parameters + :return: function """ tried = [] if isinstance(model, LogisticRegression): @@ -36,15 +33,16 @@ def model_featurizer(model, **params): tried.append(RandomForestClassifier) if hasattr(model, "layers"): # It should be a keras model. - return model_featurizer_keras(model, **params) # pragma: no cover + return model_featurizer_keras(model, **params) tried.append("Keras") if hasattr(model, "forward"): # It should be a torch model. return model_featurizer_torch(model, **params) tried.append("torch") raise FeaturizerTypeError( # pragma no cover - "Unable to process type %r, allowed:\n%s" % ( - type(model), '\n'.join(sorted(str(_) for _ in tried)))) + "Unable to process type %r, allowed:\n%s" + % (type(model), "\n".join(sorted(str(_) for _ in tried))) + ) def is_vector(X): @@ -67,7 +65,8 @@ def is_vector(X): return False return True raise TypeError( # pragma no cover - f"Unable to guess if X is a vector, type(X)={type(X)}") + f"Unable to guess if X is a vector, type(X)={type(X)}" + ) def wrap_predict_sklearn(X, fct, many): @@ -83,8 +82,7 @@ def wrap_predict_sklearn(X, fct, many): """ isv = is_vector(X) if many == isv: - raise ValueError( # pragma: no cover - "Inconsistency X is a single vector, many is True") + raise ValueError("Inconsistency X is a single vector, many is True") if isv: X = [X] y = fct(X) @@ -121,6 +119,7 @@ def model_featurizer_rfc(model, output=True): @return function """ if output: + def feat1(X, model, many): "wraps sklearn" return wrap_predict_sklearn(X, model.predict_proba, many) @@ -134,7 +133,7 @@ def feat2(X, model, many): return lambda X, many, model=model: feat2(X, model, many) -def wrap_predict_keras(X, fct, many, shapes): # pragma: no cover +def wrap_predict_keras(X, fct, many, shapes): """ Checks types and dimension. Calls *fct* and returns the approriate type. @@ -155,7 +154,7 @@ def wrap_predict_keras(X, fct, many, shapes): # pragma: no cover return fct(x).ravel() -def model_featurizer_keras(model, layer=None): # pragma: no cover +def model_featurizer_keras(model, layer=None): """ Builds a featurizer from a :epkg:`keras` model It returns a function which returns the output of one @@ -175,7 +174,9 @@ def feat(X, model, many, shapes): "wraps keras" return wrap_predict_keras(X, model.predict, many, shapes) - return lambda X, many, model=model, shapes=model._feed_input_shapes[0]: feat(X, model, many, shapes) + return lambda X, many, model=model, shapes=model._feed_input_shapes[0]: feat( + X, model, many, shapes + ) def wrap_predict_torch(X, fct, many, shapes): diff --git a/mlinsights/mlmodel/piecewise_estimator.py b/mlinsights/mlmodel/piecewise_estimator.py index 7998c356..0adebc0e 100644 --- a/mlinsights/mlmodel/piecewise_estimator.py +++ b/mlinsights/mlmodel/piecewise_estimator.py @@ -1,7 +1,3 @@ -""" -@file -@brief Implements a piecewise linear regression. -""" import numpy import numpy.random import pandas @@ -10,17 +6,20 @@ from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.preprocessing import KBinsDiscretizer from sklearn.utils._joblib import Parallel, delayed + try: from tqdm import tqdm -except ImportError: # pragma: no cover +except ImportError: pass -def _fit_piecewise_estimator(i, model, X, y, sample_weight, association, nb_classes, random_state): +def _fit_piecewise_estimator( + i, model, X, y, sample_weight, association, nb_classes, random_state +): ind = association == i if not numpy.any(ind): # No training example for this bucket. - return model # pragma: no cover + return model Xi = X[ind, :] yi = y[ind] sw = sample_weight[ind] if sample_weight is not None else None @@ -29,7 +28,7 @@ def _fit_piecewise_estimator(i, model, X, y, sample_weight, association, nb_clas # Issues a classifiers requires to have at least one example # of each class. if random_state is None: - random_state = numpy.random.RandomState() # pylint: disable=E1101 + random_state = numpy.random.RandomState() addition = numpy.arange(len(ind)) random_state.shuffle(addition) found = set(yi) @@ -81,36 +80,35 @@ class PiecewiseEstimator(BaseEstimator): for a classifier. It can also be :epkg:`sklearn:dummy:DummyRegressor` :epkg:`sklearn:dummy:DummyClassifier` to just get the average on each bucket. When the buckets are defined by a decision tree and the - estimator is linear, @see cl PiecewiseTreeRegressor optimizes + estimator is linear, :class:`PiecewiseTreeRegressor` optimizes the buckets based on the results of a linear regression. The accuracy is usually better. - """ - def __init__(self, binner=None, estimator=None, n_jobs=None, verbose=False): - """ - @param binner transformer or predictor which creates the buckets - @param estimator predictor trained on every bucket - @param n_jobs number of parallel jobs (for training and predicting) - @param verbose boolean or use ``'tqdm'`` to use :epkg:`tqdm` - to fit the estimators + :param binner: transformer or predictor which creates the buckets + :param estimator: predictor trained on every bucket + :param n_jobs: number of parallel jobs (for training and predicting) + :param verbose: boolean or use ``'tqdm'`` to use :epkg:`tqdm` + to fit the estimators - *binner* must be filled or must be: + *binner* must be filled or must be: - - ``'bins'``: the model :epkg:`sklearn:preprocessing:KBinsDiscretizer` - - any instanciated model + - ``'bins'``: the model :epkg:`sklearn:preprocessing:KBinsDiscretizer` + - any instanciated model - *estimator* allows the following values: + *estimator* allows the following values: - - ``None``: the model is :epkg:`sklearn:linear_model:LinearRegression` - - any instanciated model - """ + - ``None``: the model is :epkg:`sklearn:linear_model:LinearRegression` + - any instanciated model + """ + + def __init__(self, binner=None, estimator=None, n_jobs=None, verbose=False): BaseEstimator.__init__(self) if estimator is None: - raise ValueError( # pragma: no cover - "estimator cannot be null.") + raise ValueError("estimator cannot be null.") if binner is None: - raise TypeError( # pragma: no cover - f"Unsupported options for binner=='tree' and model {type(estimator)}.") + raise TypeError( + f"Unsupported options for binner=='tree' and model {type(estimator)}." + ) elif binner == "bins": binner = KBinsDiscretizer() self.binner = binner @@ -129,8 +127,11 @@ def n_estimators_(self): def _mapping_train(self, X, binner): if hasattr(binner, "tree_"): tree = binner.tree_ - leaves = [i for i in range(len(tree.children_left)) - if tree.children_left[i] <= i and tree.children_right[i] <= i] + leaves = [ + i + for i in range(len(tree.children_left)) + if tree.children_left[i] <= i and tree.children_right[i] <= i + ] dec_path = self.binner_.decision_path(X) association = numpy.zeros((X.shape[0],)) association[:] = -1 @@ -141,7 +142,7 @@ def _mapping_train(self, X, binner): ind = numpy.asarray(ind.todense()).flatten() if not numpy.any(ind): # No training example for this bucket. - continue # pragma: no cover + continue mapping[j] = ntree association[ind] = ntree ntree += 1 @@ -150,8 +151,7 @@ def _mapping_train(self, X, binner): tr = binner.transform(X) unique = set() for x in tr: - d = tuple(numpy.asarray( - x.todense()).ravel().astype(numpy.int32)) + d = tuple(numpy.asarray(x.todense()).ravel().astype(numpy.int32)) unique.add(d) leaves = list(sorted(unique)) association = numpy.zeros((X.shape[0],)) @@ -161,12 +161,10 @@ def _mapping_train(self, X, binner): for i, le in enumerate(leaves): mapping[le] = i for i, x in enumerate(tr): - d = tuple(numpy.asarray( - x.todense()).ravel().astype(numpy.int32)) + d = tuple(numpy.asarray(x.todense()).ravel().astype(numpy.int32)) association[i] = mapping.get(d, -1) else: - raise NotImplementedError( # pragma: no cover - "binner is not a decision tree or a transform") + raise NotImplementedError("binner is not a decision tree or a transform") return association, mapping, leaves @@ -192,12 +190,10 @@ def transform_bins(self, X): association[:] = -1 tr = binner.transform(X) for i, x in enumerate(tr): - d = tuple(numpy.asarray( - x.todense()).ravel().astype(numpy.int32)) + d = tuple(numpy.asarray(x.todense()).ravel().astype(numpy.int32)) association[i] = self.mapping_.get(d, -1) else: - raise NotImplementedError( # pragma: no cover - "binner is not a decision tree or a transform") + raise NotImplementedError("binner is not a decision tree or a transform") return association def fit(self, X, y, sample_weight=None): @@ -226,45 +222,52 @@ def fit(self, X, y, sample_weight=None): y = y.ravel() else: raise RuntimeError( - "This regressor only works with single dimension targets.") + "This regressor only works with single dimension targets." + ) if isinstance(X, pandas.DataFrame): X = X.values if isinstance(X, list): - raise TypeError( # pragma: no cover - "X cannot be a list.") + raise TypeError("X cannot be a list.") binner = clone(self.binner) if sample_weight is None: self.binner_ = binner.fit(X, y) else: self.binner_ = binner.fit(X, y, sample_weight=sample_weight) - association, self.mapping_, self.leaves_ = self._mapping_train( - X, self.binner_) + association, self.mapping_, self.leaves_ = self._mapping_train(X, self.binner_) estimators = [clone(self.estimator) for i in self.mapping_] - loop = (tqdm(range(len(estimators))) - if self.verbose == 'tqdm' else range(len(estimators))) - verbose = 1 if self.verbose == 'tqdm' else (1 if self.verbose else 0) + loop = ( + tqdm(range(len(estimators))) + if self.verbose == "tqdm" + else range(len(estimators)) + ) + verbose = 1 if self.verbose == "tqdm" else (1 if self.verbose else 0) self.mean_estimator_ = clone(self.estimator).fit(X, y, sample_weight) - nb_classes = (None if not hasattr(self.mean_estimator_, 'classes_') - else len(set(self.mean_estimator_.classes_))) - - if hasattr(self, 'random_state') and self.random_state is not None: # pylint: disable=E1101 - rnd = numpy.random.RandomState( # pylint: disable=E1101 - self.random_state) # pylint: disable=E1101 + nb_classes = ( + None + if not hasattr(self.mean_estimator_, "classes_") + else len(set(self.mean_estimator_.classes_)) + ) + + if hasattr(self, "random_state") and self.random_state is not None: + rnd = numpy.random.RandomState(self.random_state) else: rnd = None - self.estimators_ = \ - Parallel(n_jobs=self.n_jobs, verbose=verbose, prefer='threads')( - delayed(_fit_piecewise_estimator)( - i, estimators[i], X, y, sample_weight, association, nb_classes, rnd) - for i in loop) + self.estimators_ = Parallel( + n_jobs=self.n_jobs, verbose=verbose, prefer="threads" + )( + delayed(_fit_piecewise_estimator)( + i, estimators[i], X, y, sample_weight, association, nb_classes, rnd + ) + for i in loop + ) self.dim_ = 1 if len(y.shape) == 1 else y.shape[1] - if hasattr(self.estimators_[0], 'classes_'): + if hasattr(self.estimators_[0], "classes_"): self.classes_ = self.estimators_[0].classes_ return self @@ -274,33 +277,35 @@ def _apply_predict_method(self, X, method, parallelized, dimout): *decision_function* as well. """ if len(self.estimators_) == 0: - raise RuntimeError( # pragma: no cover - "Estimator was apparently fitted but contains no estimator.") + raise RuntimeError( + "Estimator was apparently fitted but contains no estimator." + ) if not hasattr(self.estimators_[0], method): - raise TypeError( # pragma: no cover + raise TypeError( f"Estimator {type(self.estimators_[0])} " - f"does not have method {method!r}.") + f"does not have method {method!r}." + ) if isinstance(X, pandas.DataFrame): X = X.values association = self.transform_bins(X) - indpred = Parallel(n_jobs=self.n_jobs, prefer='threads')( + indpred = Parallel(n_jobs=self.n_jobs, prefer="threads")( delayed(parallelized)(i, model, X, association) - for i, model in enumerate(self.estimators_)) + for i, model in enumerate(self.estimators_) + ) - pred = numpy.zeros((X.shape[0], dimout) - if dimout > 1 else (X.shape[0],)) + pred = numpy.zeros((X.shape[0], dimout) if dimout > 1 else (X.shape[0],)) indall = numpy.empty((X.shape[0],)) indall[:] = False for ind, p in indpred: if ind is None: continue pred[ind] = p - indall = numpy.logical_or(indall, ind) # pylint: disable=E1111 + indall = numpy.logical_or(indall, ind) # no in a bucket - indall = numpy.logical_not(indall) # pylint: disable=E1111 + indall = numpy.logical_not(indall) Xmissed = X[indall] if Xmissed.shape[0] > 0: meth = getattr(self.mean_estimator_, method) @@ -316,34 +321,34 @@ class PiecewiseRegressor(PiecewiseEstimator, RegressorMixin): The second estimator is usually a :epkg:`sklearn:linear_model:LinearRegression`. It can also be :epkg:`sklearn:dummy:DummyRegressor` to just get the average on each bucket. - """ - def __init__(self, binner=None, estimator=None, n_jobs=None, verbose=False): - """ - @param binner transformer or predictor which creates the buckets - @param estimator predictor trained on every bucket - @param n_jobs number of parallel jobs (for training and predicting) - @param verbose boolean or use ``'tqdm'`` to use :epkg:`tqdm` - to fit the estimators + :param binner: transformer or predictor which creates the buckets + :param estimator: predictor trained on every bucket + :param n_jobs: number of parallel jobs (for training and predicting) + :param verbose: boolean or use ``'tqdm'`` to use :epkg:`tqdm` + to fit the estimators - *binner* allows the following values: + *binner* allows the following values: - - ``tree``: the model is :epkg:`sklearn:tree:DecisionTreeRegressor` - - ``'bins'``: the model :epkg:`sklearn:preprocessing:KBinsDiscretizer` - - any instanciated model + - ``tree``: the model is :class:`sklearn.tree.DecisionTreeRegressor` + - ``'bins'``: the model :class:`sklearn.preprocessing.KBinsDiscretizer` + - any instanciated model - *estimator* allows the following values: + *estimator* allows the following values: - - ``None``: the model is :epkg:`sklearn:linear_model:LinearRegression` - - any instanciated model - """ + - ``None``: the model is :epkg:`sklearn:linear_model:LinearRegression` + - any instanciated model + """ + + def __init__(self, binner=None, estimator=None, n_jobs=None, verbose=False): if estimator is None: estimator = LinearRegression() - if binner in ('tree', None): + if binner in ("tree", None): binner = DecisionTreeRegressor(min_samples_leaf=2) RegressorMixin.__init__(self) - PiecewiseEstimator.__init__(self, binner=binner, estimator=estimator, - n_jobs=n_jobs, verbose=verbose) + PiecewiseEstimator.__init__( + self, binner=binner, estimator=estimator, n_jobs=n_jobs, verbose=verbose + ) def predict(self, X): """ @@ -353,7 +358,8 @@ def predict(self, X): :return: predictions """ return self._apply_predict_method( - X, "predict", _predict_piecewise_estimator, self.dim_) + X, "predict", _predict_piecewise_estimator, self.dim_ + ) class PiecewiseClassifier(PiecewiseEstimator, ClassifierMixin): @@ -364,42 +370,43 @@ class PiecewiseClassifier(PiecewiseEstimator, ClassifierMixin): It can also be :epkg:`sklearn:dummy:DummyClassifier` to just get the average on each bucket. + :param binner: transformer or predictor which creates the buckets + :param estimator: predictor trained on every bucket + :param n_jobs: number of parallel jobs (for training and predicting) + :param random_state: to pick up random examples when buckets do not + contain enough examples of each class + :param verbose: boolean or use ``'tqdm'`` to use :epkg:`tqdm` + to fit the estimators + + *binner* allows the following values: + + - ``tree``: the model is :class:`sklearn.tree.DecisionTreeClassifier` + - ``'bins'``: the model :class:`sklearn.preprocessing.KBinsDiscretizer` + - any instanciated model + + *estimator* allows the following values: + + - ``None``: the model is :class:`sklearn.linear_model.LogisticRegression` + - any instanciated model + + The main issue with the *PiecewiseClassifier* is that each piece requires one example of each class in each bucket which may not happen. To avoid that, the training will pick up random example from other bucket to ensure this case does not happen. """ - def __init__(self, binner=None, estimator=None, n_jobs=None, - random_state=None, verbose=False): - """ - @param binner transformer or predictor which creates the buckets - @param estimator predictor trained on every bucket - @param n_jobs number of parallel jobs (for training and predicting) - @param random_state to pick up random examples when buckets do not - contain enough examples of each class - @param verbose boolean or use ``'tqdm'`` to use :epkg:`tqdm` - to fit the estimators - - *binner* allows the following values: - - - ``tree``: the model is :epkg:`sklearn:tree:DecisionTreeClassifier` - - ``'bins'``: the model :epkg:`sklearn:preprocessing:KBinsDiscretizer` - - any instanciated model - - *estimator* allows the following values: - - - ``None``: the model is :epkg:`sklearn:linear_model:LogisticRegression` - - any instanciated model - """ + def __init__( + self, binner=None, estimator=None, n_jobs=None, random_state=None, verbose=False + ): if estimator is None: estimator = LogisticRegression() - if binner in ('tree', None): + if binner in ("tree", None): binner = DecisionTreeClassifier(min_samples_leaf=5) ClassifierMixin.__init__(self) PiecewiseEstimator.__init__( - self, binner=binner, estimator=estimator, - n_jobs=n_jobs, verbose=verbose) + self, binner=binner, estimator=estimator, n_jobs=n_jobs, verbose=verbose + ) self.random_state = random_state def predict(self, X): @@ -409,8 +416,7 @@ def predict(self, X): :param X: features, *X* is converted into an array if *X* is a dataframe :return: predictions """ - pred = self._apply_predict_method( - X, "predict", _predict_piecewise_estimator, 1) + pred = self._apply_predict_method(X, "predict", _predict_piecewise_estimator, 1) return pred.astype(numpy.int32) def predict_proba(self, X): @@ -421,8 +427,11 @@ def predict_proba(self, X): :return: predictions probabilities """ return self._apply_predict_method( - X, "predict_proba", _predict_proba_piecewise_estimator, - len(self.mean_estimator_.classes_)) + X, + "predict_proba", + _predict_proba_piecewise_estimator, + len(self.mean_estimator_.classes_), + ) def decision_function(self, X): """ @@ -433,5 +442,8 @@ def decision_function(self, X): """ justone = self.mean_estimator_.decision_function(X[:1]) return self._apply_predict_method( - X, "decision_function", _decision_function_piecewise_estimator, - 1 if len(justone.shape) == 1 else justone.shape[1]) + X, + "decision_function", + _decision_function_piecewise_estimator, + 1 if len(justone.shape) == 1 else justone.shape[1], + ) diff --git a/mlinsights/mlmodel/piecewise_tree_regression.py b/mlinsights/mlmodel/piecewise_tree_regression.py index 85957db2..792fb831 100644 --- a/mlinsights/mlmodel/piecewise_tree_regression.py +++ b/mlinsights/mlmodel/piecewise_tree_regression.py @@ -1,9 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a kind of piecewise linear regression by modifying -the criterion used by the algorithm which builds a decision tree. -""" import numpy from sklearn.tree import DecisionTreeRegressor @@ -19,20 +14,32 @@ class PiecewiseTreeRegressor(DecisionTreeRegressor): * ``simple``: optimizes for a stepwise regression (equivalent to *mse*) """ - def __init__(self, criterion='mselin', splitter='best', max_depth=None, - min_samples_split=2, min_samples_leaf=1, - min_weight_fraction_leaf=0.0, max_features=None, - random_state=None, max_leaf_nodes=None, - min_impurity_decrease=0.0): + def __init__( + self, + criterion="mselin", + splitter="best", + max_depth=None, + min_samples_split=2, + min_samples_leaf=1, + min_weight_fraction_leaf=0.0, + max_features=None, + random_state=None, + max_leaf_nodes=None, + min_impurity_decrease=0.0, + ): DecisionTreeRegressor.__init__( - self, criterion=criterion, - splitter=splitter, max_depth=max_depth, + self, + criterion=criterion, + splitter=splitter, + max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, - max_features=max_features, random_state=random_state, + max_features=max_features, + random_state=random_state, max_leaf_nodes=max_leaf_nodes, - min_impurity_decrease=min_impurity_decrease) + min_impurity_decrease=min_impurity_decrease, + ) def fit(self, X, y, sample_weight=None, check_input=True): """ @@ -40,25 +47,30 @@ def fit(self, X, y, sample_weight=None, check_input=True): """ replace = None if isinstance(self.criterion, str): - if self.criterion == 'mselin': - from .piecewise_tree_regression_criterion_linear import ( # pylint: disable=E0611,C0415 - LinearRegressorCriterion) + if self.criterion == "mselin": + from .piecewise_tree_regression_criterion_linear import ( + LinearRegressorCriterion, + ) + replace = self.criterion self.criterion = LinearRegressorCriterion( - 1 if len(y.shape) <= 1 else y.shape[1], X) + 1 if len(y.shape) <= 1 else y.shape[1], X + ) elif self.criterion == "simple": - from .piecewise_tree_regression_criterion_fast import ( # pylint: disable=E0611,C0415 - SimpleRegressorCriterionFast) + from .piecewise_tree_regression_criterion_fast import ( + SimpleRegressorCriterionFast, + ) + replace = self.criterion self.criterion = SimpleRegressorCriterionFast( - 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0]) + 1 if len(y.shape) <= 1 else y.shape[1], X.shape[0] + ) else: replace = None DecisionTreeRegressor.fit( - self, X, y, - sample_weight=sample_weight, - check_input=check_input) + self, X, y, sample_weight=sample_weight, check_input=check_input + ) if replace: self.criterion = replace @@ -69,8 +81,11 @@ def fit(self, X, y, sample_weight=None, check_input=True): def _mapping_train(self, X): tree = self.tree_ - leaves = [i for i in range(len(tree.children_left)) - if tree.children_left[i] <= i and tree.children_right[i] <= i] # pylint: disable=E1136 + leaves = [ + i + for i in range(len(tree.children_left)) + if tree.children_left[i] <= i and tree.children_right[i] <= i + ] dec_path = self.decision_path(X) association = numpy.zeros((X.shape[0],)) association[:] = -1 @@ -112,16 +127,21 @@ def _fit_reglin(self, X, y, sample_weight): points mapped a specific leave. ``leaves_index_`` keeps in memory a set of leaves. """ - from .piecewise_tree_regression_criterion_linear import ( # pylint: disable=E0611,C0415 - LinearRegressorCriterion) + from .piecewise_tree_regression_criterion_linear import ( + LinearRegressorCriterion, + ) tree = self.tree_ - self.leaves_index_ = [i for i in range(len(tree.children_left)) - if tree.children_left[i] <= i and tree.children_right[i] <= i] # pylint: disable=E1136 + self.leaves_index_ = [ + i + for i in range(len(tree.children_left)) + if tree.children_left[i] <= i and tree.children_right[i] <= i + ] if tree.n_leaves != len(self.leaves_index_): - raise RuntimeError( # pragma: no cover + raise RuntimeError( f"Unexpected number of leaves {tree.n_leaves} " - f"!= {len(self.leaves_index_)}.") + f"!= {len(self.leaves_index_)}." + ) pred_leaves = self.predict_leaves(X) self.leaves_mapping_ = {k: i for i, k in enumerate(pred_leaves)} self.betas_ = numpy.empty((len(self.leaves_index_), X.shape[1] + 1)) @@ -132,10 +152,11 @@ def _fit_reglin(self, X, y, sample_weight): if len(ys.shape) == 1: ys = ys[:, numpy.newaxis] ys = ys.copy() - ws = sample_weight[ind].copy( - ) if sample_weight is not None else None + ws = sample_weight[ind].copy() if sample_weight is not None else None + # Fatal Python error: __pyx_fatalerror: Acquisition count is 0 (line 26868) dec = LinearRegressorCriterion.create(xs, ys, ws) dec.node_beta(self.betas_[i, :]) + print("end") def predict(self, X, check_input=True): """ @@ -144,7 +165,7 @@ def predict(self, X, check_input=True): *mse*, *mae*, *simple*. Computes the predictions from linear regression if the criterion is *mselin*. """ - if self.criterion == 'mselin': + if self.criterion == "mselin": return self._predict_reglin(X, check_input=check_input) return DecisionTreeRegressor.predict(self, X, check_input=check_input) diff --git a/mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx b/mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx index 760af0c6..1a08120c 100644 --- a/mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx +++ b/mlinsights/mlmodel/piecewise_tree_regression_criterion.pyx @@ -1,15 +1,11 @@ -""" -@file -@brief Implements a base class for a custom criterion to train a decision tree. -""" cimport cython -import numpy -cimport numpy +# import numpy as np +cimport numpy as cnp -numpy.import_array() +cnp.import_array() from libc.stdlib cimport calloc, free -from libc.math cimport NAN +# from libc.stdio cimport printf from sklearn.tree._criterion cimport SIZE_t, DOUBLE_t from ._piecewise_tree_regression_common cimport CommonRegressorCriterion @@ -17,17 +13,17 @@ from ._piecewise_tree_regression_common cimport CommonRegressorCriterion cdef class SimpleRegressorCriterion(CommonRegressorCriterion): """ - Implements `mean square error + Implements `mean square error `_ criterion in a non efficient way. The code was inspired from - `hellinger_distance_criterion.pyx - `_, + `hellinger_distance_criterion.pyx + `_, `Cython example of exposing C-computed arrays in Python without data copies `_, `_criterion.pyx - `_. + `_. This implementation is not efficient but was made that way on purpose. It adds the features to the class. """ @@ -38,7 +34,7 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): cdef DOUBLE_t sample_sum_w def __dealloc__(self): - """Destructor.""" + """Destructor.""" free(self.sample_w) free(self.sample_wy) free(self.sample_i) @@ -73,32 +69,31 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): if self.sample_i == NULL: self.sample_i = calloc(n_samples, sizeof(SIZE_t)) + @cython.boundscheck(False) cdef int init(self, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ This function is overwritten to check *y* and *X* size are the same. - This API has changed in 0.21. """ if y.shape[0] != self.n_samples: - raise ValueError("n_samples={} -- y.shape={}".format(self.n_samples, y.shape)) + return -1 if y.shape[1] != 1: - raise ValueError("This class only works for a single vector.") + return -1 return self.init_with_X(y, sample_weight, weighted_n_samples, sample_indices, start, end) + @cython.boundscheck(False) cdef int init_with_X(self, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ Initializes the criterion. - Returns -1 in case of failure to allocate memory - (and raise *MemoryError*) or 0 otherwise. :param y: array-like, dtype=DOUBLE_t y is a buffer that can store values for n_outputs target variables @@ -113,18 +108,26 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): The first sample to be used on this node :param end: SIZE_t The last sample used on this node + :return: 0 if everything is fine """ cdef SIZE_t ki, ks - self.start = start self.pos = start self.end = end self.weighted_n_samples = weighted_n_samples - self.y = y + # Fatal Python error: __pyx_fatalerror: Acquisition count is 0 + self.y = y self.sample_sum_wy = 0. self.sample_sum_w = 0. + if ( + (self.sample_w == NULL) or + (self.sample_wy == NULL) or + (self.sample_i == NULL) + ): + return -1 + # Filling accumulators. for ki in range(start, end): ks = sample_indices[ki] @@ -135,13 +138,10 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): self.sample_sum_w += self.sample_w[ki] self.weighted_n_node_samples = self.sample_sum_w - self.reset() - if self.weighted_n_node_samples == 0: - raise ValueError( - "self.weighted_n_node_samples is null, first weight is %r." % self.sample_w[0]) - return 0 + return self.reset() - cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, SIZE_t new_pos) nogil: + cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, + SIZE_t new_pos) nogil: """ Updates members `weighted_n_right` and `weighted_n_left` when `pos` changes. @@ -153,7 +153,8 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): for k in range(new_pos, end): self.weighted_n_right += self.sample_w[k] - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil: + cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, + DOUBLE_t *weight) nogil: """ Computes the mean of *y* between *start* and *end*. """ @@ -169,7 +170,9 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): weight[0] = w mean[0] = 0. if w == 0. else m / w - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil: + @cython.boundscheck(False) + cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, + DOUBLE_t weight) noexcept nogil: """ Computes mean square error between *start* and *end* assuming corresponding points are approximated by a constant. @@ -178,6 +181,6 @@ cdef class SimpleRegressorCriterion(CommonRegressorCriterion): return 0. cdef DOUBLE_t squ = 0. cdef int k - for k in range(start, end): + for k in range(start, end): squ += (self.y[self.sample_i[k], 0] - mean) ** 2 * self.sample_w[k] return 0. if weight == 0. else squ / weight diff --git a/mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.pyx b/mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.pyx index 7773c6c7..2450052b 100644 --- a/mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.pyx +++ b/mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.pyx @@ -1,7 +1,3 @@ -""" -@file -@brief Implements a custom criterion to train a decision tree. -""" cimport cython import numpy cimport numpy @@ -9,7 +5,6 @@ cimport numpy numpy.import_array() from libc.stdlib cimport calloc, free -from libc.math cimport NAN from sklearn.tree._criterion cimport SIZE_t, DOUBLE_t from ._piecewise_tree_regression_common cimport CommonRegressorCriterion @@ -31,7 +26,7 @@ cdef class SimpleRegressorCriterionFast(CommonRegressorCriterion): cdef DOUBLE_t* sample_wy_left def __dealloc__(self): - """Destructor.""" + """Destructor.""" free(self.sample_w_left) free(self.sample_wy_left) free(self.sample_wy2_left) @@ -69,25 +64,28 @@ cdef class SimpleRegressorCriterionFast(CommonRegressorCriterion): cdef int init(self, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ This function is overwritten to check *y* and *X* size are the same. This API has changed in 0.21. """ if y.shape[0] != self.n_samples: - raise ValueError("n_samples={} -- y.shape={}".format(self.n_samples, y.shape)) + raise ValueError( + "n_samples={} -- y.shape={}".format(self.n_samples, y.shape) + ) if y.shape[1] != 1: raise ValueError("This class only works for a single vector.") return self.init_with_X(y, sample_weight, weighted_n_samples, sample_indices, start, end) + @cython.boundscheck(False) cdef int init_with_X(self, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ Initializes the criterion. Returns -1 in case of failure to allocate memory @@ -114,7 +112,7 @@ cdef class SimpleRegressorCriterionFast(CommonRegressorCriterion): self.pos = start self.end = end self.weighted_n_samples = weighted_n_samples - self.y = y + self.y = y # we need to do that in case start > 0 or end < X.shape[0] for i in range(0, self.n_samples): @@ -134,42 +132,51 @@ cdef class SimpleRegressorCriterionFast(CommonRegressorCriterion): ks = sample_indices[ki] w = sample_weight[ks] if sample_weight is not None else 1. y_ = y[ks, 0] - self.sample_w_left[ki] = self.sample_w_left[ki-1] + w + self.sample_w_left[ki] = self.sample_w_left[ki-1] + w self.sample_wy_left[ki] = self.sample_wy_left[ki-1] + w * y_ self.sample_wy2_left[ki] = self.sample_wy2_left[ki-1] + w * y_ * y_ - + self.weighted_n_node_samples = self.sample_w_left[end-1] self.reset() - if self.weighted_n_node_samples == 0: - raise ValueError( - "self.weighted_n_node_samples is null, first weight is %r." % self.sample_w[0]) return 0 - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil: + cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, + DOUBLE_t *weight) nogil: """ Computes the mean of *y* between *start* and *end*. """ if start == end: mean[0] = 0. return - cdef DOUBLE_t m = self.sample_wy_left[end-1] - (self.sample_wy_left[start-1] if start > 0 else 0) - cdef DOUBLE_t w = self.sample_w_left[end-1] - (self.sample_w_left[start-1] if start > 0 else 0) + cdef DOUBLE_t m = ( + self.sample_wy_left[end-1] - + (self.sample_wy_left[start-1] if start > 0 else 0) + ) + cdef DOUBLE_t w = ( + self.sample_w_left[end-1] - + (self.sample_w_left[start-1] if start > 0 else 0) + ) weight[0] = w mean[0] = 0. if w == 0. else m / w - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil: + cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, + DOUBLE_t weight) noexcept nogil: """ Computes mean square error between *start* and *end* assuming corresponding points are approximated by a constant. """ if start == end: return 0. - cdef DOUBLE_t squ = self.sample_wy2_left[end-1] - (self.sample_wy2_left[start-1] if start > 0 else 0) + cdef DOUBLE_t squ = ( + self.sample_wy2_left[end-1] - + (self.sample_wy2_left[start-1] if start > 0 else 0) + ) # This formula only holds if mean is computed on the same interval. # Otherwise, it is squ / weight - true_mean ** 2 + (mean - true_mean) ** 2. return 0. if weight == 0. else squ / weight - mean ** 2 - cdef void _update_weights(self, SIZE_t start, SIZE_t end, SIZE_t old_pos, SIZE_t new_pos) nogil: + cdef void _update_weights(self, SIZE_t start, SIZE_t end, + SIZE_t old_pos, SIZE_t new_pos) nogil: """ Updates members `weighted_n_right` and `weighted_n_left` when `pos` changes. @@ -179,4 +186,6 @@ cdef class SimpleRegressorCriterionFast(CommonRegressorCriterion): self.weighted_n_right = self.sample_w_left[end - 1] else: self.weighted_n_left = self.sample_w_left[new_pos - 1] - self.weighted_n_right = self.sample_w_left[end - 1] - self.sample_w_left[new_pos - 1] + self.weighted_n_right = ( + self.sample_w_left[end - 1] - self.sample_w_left[new_pos - 1] + ) diff --git a/mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.pyx b/mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.pyx index d468644a..ab800ad1 100644 --- a/mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.pyx +++ b/mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.pyx @@ -1,16 +1,11 @@ -""" -@file -@brief Implements a custom criterion to train a decision tree. -""" cimport cython -import numpy -cimport numpy +import numpy as np +cimport numpy as cnp -numpy.import_array() +cnp.import_array() from libc.stdlib cimport calloc, free from libc.string cimport memcpy -from libc.math cimport NAN cimport scipy.linalg.cython_lapack as cython_lapack from sklearn.tree._criterion cimport SIZE_t, DOUBLE_t @@ -46,7 +41,7 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): cdef SIZE_t work def __dealloc__(self): - """Destructor.""" + """Destructor.""" free(self.sample_w) free(self.sample_y) free(self.sample_wy) @@ -103,17 +98,23 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): if self.sample_i == NULL: self.sample_i = calloc(self.n_samples, sizeof(SIZE_t)) if self.sample_f == NULL: - self.sample_f = calloc(self.n_samples * (self.n_features + 1), sizeof(DOUBLE_t)) + self.sample_f = calloc( + self.n_samples * (self.n_features + 1), sizeof(DOUBLE_t) + ) self.nbvar = self.n_features + 1 self.nbrows = self.n_samples - self.work = (min(self.nbrows, self.nbvar) * 3 + + self.work = (min(self.nbrows, self.nbvar) * 3 + max(max(self.nbrows, self.nbvar), min(self.nbrows, self.nbvar) * 2)) if self.sample_f_buffer == NULL: - self.sample_f_buffer = calloc(self.n_samples * self.nbvar, sizeof(DOUBLE_t)) + self.sample_f_buffer = calloc( + self.n_samples * self.nbvar, sizeof(DOUBLE_t) + ) if self.sample_pC == NULL: - self.sample_pC = calloc(max(self.nbrows, self.nbvar), sizeof(DOUBLE_t)) + self.sample_pC = calloc( + max(self.nbrows, self.nbvar), sizeof(DOUBLE_t) + ) if self.sample_work == NULL: self.sample_work = calloc(self.work, sizeof(DOUBLE_t)) if self.sample_pS == NULL: @@ -128,19 +129,20 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): return inst @staticmethod - def create(DOUBLE_t[:, ::1] X, DOUBLE_t[:, ::1] y, DOUBLE_t[::1] sample_weight=None): + def create(const DOUBLE_t[:, ::1] X, const DOUBLE_t[:, ::1] y, + const DOUBLE_t[::1] sample_weight=None): """ Initializes the criterion. - + :param X: features :param y: target :param sample_weight: sample weight :return: an instance of :class:`LinearRegressorCriterion` """ cdef SIZE_t i - cdef DOUBLE_t[:] ws + cdef const DOUBLE_t[:] ws cdef double sum - cdef SIZE_t[:] parr = numpy.empty(y.shape[0], dtype=numpy.int64) + cdef SIZE_t[:] parr = np.empty(y.shape[0], dtype=np.int64) for i in range(0, y.shape[0]): parr[i] = i if sample_weight is None: @@ -151,34 +153,39 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): ws = sample_weight obj = LinearRegressorCriterion(1 if len(y.shape) <= 1 else y.shape[0], X) - obj.init(y, ws, sum, parr, 0, y.shape[0]) + obj.init(y, ws, sum, parr, 0, y.shape[0]) return obj cdef int init(self, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ This function is overwritten to check *y* and *X* size are the same. This API changed in 0.21. It changed again in scikit-learn 1.2 to replace `DOUBLE_t*` into `DOUBLE[:]`. """ if y.shape[0] != self.n_samples: - raise ValueError("n_samples={} -- y.shape={}".format(self.n_samples, y.shape)) + raise ValueError( + "n_samples={} -- y.shape={}".format(self.n_samples, y.shape) + ) if y.shape[0] != self.sample_X.shape[0]: - raise ValueError("X.shape={} -- y.shape={}".format(self.sample_X.shape, y.shape)) + raise ValueError( + "X.shape={} -- y.shape={}".format(self.sample_X.shape, y.shape) + ) if y.shape[1] != 1: raise ValueError("This class only works for a single vector.") return self.init_with_X(self.sample_X, y, sample_weight, weighted_n_samples, sample_indices, start, end) - cdef int init_with_X(self, const DOUBLE_t[:, ::1] X, + @cython.boundscheck(False) + cdef int init_with_X(self, const DOUBLE_t[:, ::1] X, const DOUBLE_t[:, ::1] y, const DOUBLE_t[:] sample_weight, double weighted_n_samples, - const SIZE_t[:] sample_indices, - SIZE_t start, SIZE_t end) nogil except -1: + const SIZE_t[:] sample_indices, + SIZE_t start, SIZE_t end) except -1 nogil: """ Initializes the criterion. @@ -203,7 +210,7 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): self.pos = start self.end = end self.weighted_n_samples = weighted_n_samples - self.y = y + self.y = y self.sample_sum_wy = 0. self.sample_sum_w = 0. @@ -228,10 +235,13 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): self.reset() if self.weighted_n_node_samples == 0: raise ValueError( - "self.weighted_n_node_samples is null, first weight is %r." % self.sample_w[0]) + f"self.weighted_n_node_samples is null, " + f"first weight is {self.sample_w[0]}." + ) return 0 - cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, DOUBLE_t *weight) nogil: + cdef void _mean(self, SIZE_t start, SIZE_t end, DOUBLE_t *mean, + DOUBLE_t *weight) nogil: """ Computes mean between *start* and *end*. """ @@ -277,20 +287,21 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): cdef int lda = row cdef int ldb = row cdef DOUBLE_t rcond = -1 - cdef int rank + cdef int rank cdef int work = self.work if row < col: if low_rank: ldb = col else: - raise RuntimeError("The function cannot return any return when row < col.") + return cython_lapack.dgelss(&row, &col, &nrhs, # 1-3 sample_f_buffer, &lda, pC, &ldb, # 4-7 self.sample_pS, &rcond, &rank, # 8-10 self.sample_work, &work, &info) # 11-13 - cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, DOUBLE_t weight) nogil: + cdef double _mse(self, SIZE_t start, SIZE_t end, DOUBLE_t mean, + DOUBLE_t weight) noexcept nogil: """ Computes mean square error between *start* and *end* assuming corresponding points are approximated by a line. @@ -323,7 +334,7 @@ cdef class LinearRegressorCriterion(CommonRegressorCriterion): """ Stores the results of the linear regression in an allocated numpy array. - + :param dest: allocated double pointer, size must be *>= self.nbvar* """ self._reglin(self.start, self.end, 1) diff --git a/mlinsights/mlmodel/predictable_tsne.py b/mlinsights/mlmodel/predictable_tsne.py index 75690573..6a3bc9d0 100644 --- a/mlinsights/mlmodel/predictable_tsne.py +++ b/mlinsights/mlmodel/predictable_tsne.py @@ -1,7 +1,3 @@ -""" -@file -@brief Implements a predicatable *t-SNE*. -""" import inspect from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.manifold import TSNE @@ -18,7 +14,7 @@ class PredictableTSNE(BaseEstimator, TransformerMixin): `fit_transform `_. This example proposes a way to train a machine learned model which approximates the outputs of a :epkg:`TSNE` transformer. - Notebooks :ref:`predictabletsnerst` gives an example on how to + Example :ref:`l-predictable-tsne-example` gives an example on how to use this class. :param normalizer: None by default @@ -27,12 +23,18 @@ class PredictableTSNE(BaseEstimator, TransformerMixin): :param normalize: normalizes the outputs, centers and normalizes the output of the *t-SNE* and applies that same normalization to he prediction of the estimator - :param keep_tsne_output: if True, keep raw outputs of + :param keep_tsne_outputs: if True, keep raw outputs of :epkg:`TSNE` is stored in member `tsne_outputs_` """ - def __init__(self, normalizer=None, transformer=None, estimator=None, - normalize=True, keep_tsne_outputs=False): + def __init__( + self, + normalizer=None, + transformer=None, + estimator=None, + normalize=True, + keep_tsne_outputs=False, + ): TransformerMixin.__init__(self) BaseEstimator.__init__(self) if estimator is None: @@ -44,15 +46,18 @@ def __init__(self, normalizer=None, transformer=None, estimator=None, self.normalizer = normalizer self.keep_tsne_outputs = keep_tsne_outputs if normalizer is not None and not hasattr(normalizer, "transform"): - raise AttributeError( # pragma: no cover - f"normalizer {type(normalizer)} does not have a 'transform' method.") + raise AttributeError( + f"normalizer {type(normalizer)} does not have a 'transform' method." + ) if not hasattr(transformer, "fit_transform"): - raise AttributeError( # pragma: no cover + raise AttributeError( f"transformer {type(transformer)} does not have a " - f"'fit_transform' method.") + f"'fit_transform' method." + ) if not hasattr(estimator, "predict"): - raise AttributeError( # pragma: no cover - f"estimator {type(estimator)} does not have a 'predict' method.") + raise AttributeError( + f"estimator {type(estimator)} does not have a 'predict' method." + ) self.normalize = normalize def fit(self, X, y, sample_weight=None): @@ -76,16 +81,17 @@ def fit(self, X, y, sample_weight=None): * `tsne_outputs_`: t-SNE outputs if *keep_tsne_outputs* is True * `mean_`: average of the *t-SNE* output on each dimension * `inv_std_`: inverse of the standard deviation of the *t-SNE* - output on each dimension - * `loss_`: loss (:epkg:`sklearn:metrics:mean_squared_error`) between the predictions - and the outputs of t-SNE + output on each dimension + * `loss_`: loss (:epkg:`sklearn:metrics:mean_squared_error`) + between the predictions + and the outputs of t-SNE """ params = dict(y=y, sample_weight=sample_weight) if self.normalizer is not None: sig = inspect.signature(self.normalizer.transform) pars = {} - for p in ['sample_weight', 'y']: + for p in ["sample_weight", "y"]: if p in sig.parameters and p in params: pars[p] = params[p] self.normalizer_ = clone(self.normalizer).fit(X, **pars) @@ -94,27 +100,30 @@ def fit(self, X, y, sample_weight=None): self.normalizer_ = None self.transformer_ = clone(self.transformer) - if (hasattr(self.transformer_, 'perplexity') and - self.transformer_.perplexity >= X.shape[0]): + if ( + hasattr(self.transformer_, "perplexity") + and self.transformer_.perplexity >= X.shape[0] + ): self.transformer_.perplexity = X.shape[0] - 1 sig = inspect.signature(self.transformer.fit_transform) pars = {} - for p in ['sample_weight', 'y']: + for p in ["sample_weight", "y"]: if p in sig.parameters and p in params: pars[p] = params[p] target = self.transformer_.fit_transform(X, **pars) sig = inspect.signature(self.estimator.fit) - if 'sample_weight' in sig.parameters: + if "sample_weight" in sig.parameters: self.estimator_ = clone(self.estimator).fit( - X, target, sample_weight=sample_weight) + X, target, sample_weight=sample_weight + ) else: self.estimator_ = clone(self.estimator).fit(X, target) mean = target.mean(axis=0) var = target.std(axis=0) self.mean_ = mean - self.inv_std_ = 1. / var + self.inv_std_ = 1.0 / var exp = (target - mean) * self.inv_std_ got = (self.estimator_.predict(X) - mean) * self.inv_std_ self.loss_ = mean_squared_error(exp, got) diff --git a/mlinsights/mlmodel/quantile_mlpregressor.py b/mlinsights/mlmodel/quantile_mlpregressor.py index ddc96de9..630f6495 100644 --- a/mlinsights/mlmodel/quantile_mlpregressor.py +++ b/mlinsights/mlmodel/quantile_mlpregressor.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a quantile non-linear regression. -""" import inspect import numpy as np from sklearn.base import RegressorMixin @@ -10,9 +6,10 @@ from sklearn.utils.validation import check_is_fitted from sklearn.utils.extmath import safe_sparse_dot from sklearn.neural_network._base import DERIVATIVES, LOSS_FUNCTIONS + try: from sklearn.neural_network._multilayer_perceptron import BaseMultilayerPerceptron -except ImportError: # pragma: no cover +except ImportError: # scikit-learn < 0.22. from sklearn.neural_network.multilayer_perceptron import BaseMultilayerPerceptron from sklearn.metrics import mean_absolute_error @@ -35,62 +32,106 @@ def absolute_loss(y_true, y_pred): def float_sign(a): "Returns 1 if *a > 0*, otherwise -1" if a > 1e-8: - return 1. + return 1.0 if a < -1e-8: - return -1. - return 0. + return -1.0 + return 0.0 -EXTENDED_LOSS_FUNCTIONS = {'absolute_loss': absolute_loss} -DERIVATIVE_LOSS_FUNCTIONS = {'absolute_loss': np.vectorize(float_sign)} +EXTENDED_LOSS_FUNCTIONS = {"absolute_loss": absolute_loss} +DERIVATIVE_LOSS_FUNCTIONS = {"absolute_loss": np.vectorize(float_sign)} class CustomizedMultilayerPerceptron(BaseMultilayerPerceptron): """ Customized MLP Perceptron based on `BaseMultilayerPerceptron - `_. + `_. """ - def __init__(self, hidden_layer_sizes, activation, solver, - alpha, batch_size, learning_rate, learning_rate_init, power_t, - max_iter, loss, shuffle, random_state, tol, verbose, - warm_start, momentum, nesterovs_momentum, early_stopping, - validation_fraction, beta_1, beta_2, epsilon, - n_iter_no_change, max_fun): - if 'max_fun' in inspect.signature(BaseMultilayerPerceptron.__init__).parameters: + def __init__( + self, + hidden_layer_sizes, + activation, + solver, + alpha, + batch_size, + learning_rate, + learning_rate_init, + power_t, + max_iter, + loss, + shuffle, + random_state, + tol, + verbose, + warm_start, + momentum, + nesterovs_momentum, + early_stopping, + validation_fraction, + beta_1, + beta_2, + epsilon, + n_iter_no_change, + max_fun, + ): + if "max_fun" in inspect.signature(BaseMultilayerPerceptron.__init__).parameters: args = [15000] else: args = [] - BaseMultilayerPerceptron.__init__( # pylint: disable=E1121 - self, hidden_layer_sizes, activation, solver, alpha, batch_size, - learning_rate, learning_rate_init, power_t, max_iter, loss, - shuffle, random_state, tol, verbose, warm_start, momentum, - nesterovs_momentum, early_stopping, validation_fraction, beta_1, beta_2, - epsilon, n_iter_no_change, *args) + BaseMultilayerPerceptron.__init__( + self, + hidden_layer_sizes, + activation, + solver, + alpha, + batch_size, + learning_rate, + learning_rate_init, + power_t, + max_iter, + loss, + shuffle, + random_state, + tol, + verbose, + warm_start, + momentum, + nesterovs_momentum, + early_stopping, + validation_fraction, + beta_1, + beta_2, + epsilon, + n_iter_no_change, + *args, + ) def _get_loss_function(self, loss_func_name): """ Returns the loss functions. - @param loss_func_name loss function name, see - :epkg:`sklearn:neural_networks:MLPRegressor` + :param loss_func_name: loss function name, see + :class:`sklearn.neural_networks.MLPRegressor` """ - return LOSS_FUNCTIONS.get(loss_func_name, EXTENDED_LOSS_FUNCTIONS[loss_func_name]) + return LOSS_FUNCTIONS.get( + loss_func_name, EXTENDED_LOSS_FUNCTIONS[loss_func_name] + ) def _modify_loss_derivatives(self, last_deltas): """ Modifies the loss derivatives. - @param last_deltas last deltas is the difference between the output and the expected output - @return modified derivatives + :param last_deltas: last deltas is the difference + between the output and the expected output + :return: modified derivatives """ - if self.loss == 'absolute_loss': - return DERIVATIVE_LOSS_FUNCTIONS['absolute_loss'](last_deltas) - return last_deltas # pragma: no cover + if self.loss == "absolute_loss": + return DERIVATIVE_LOSS_FUNCTIONS["absolute_loss"](last_deltas) + return last_deltas - def _backprop(self, X, y, activations, deltas, coef_grads, - intercept_grads): + def _backprop(self, X, y, activations, deltas, coef_grads, intercept_grads): """ Computes the MLP loss function and its corresponding derivatives with respect to each parameter: weights and bias vectors. @@ -124,13 +165,12 @@ def _backprop(self, X, y, activations, deltas, coef_grads, # Get loss loss_func_name = self.loss - if loss_func_name == 'log_loss' and self.out_activation_ == 'logistic': - loss_func_name = 'binary_log_loss' + if loss_func_name == "log_loss" and self.out_activation_ == "logistic": + loss_func_name = "binary_log_loss" loss_function = self._get_loss_function(loss_func_name) loss = loss_function(y, activations[-1]) # Add L2 regularization term to loss - values = np.sum( - np.array([np.dot(s.ravel(), s.ravel()) for s in self.coefs_])) + values = np.sum(np.array([np.dot(s.ravel(), s.ravel()) for s in self.coefs_])) loss += (0.5 * self.alpha) * values / n_samples # Backward propagate @@ -147,13 +187,15 @@ def _backprop(self, X, y, activations, deltas, coef_grads, deltas[last] = self._modify_loss_derivatives(deltas[last]) # Compute gradient for the last layer - temp = self._compute_loss_grad( # pylint: disable=E1111 - last, n_samples, activations, deltas, coef_grads, intercept_grads) + temp = self._compute_loss_grad( + last, n_samples, activations, deltas, coef_grads, intercept_grads + ) if temp is None: # recent version of scikit-learn # Compute gradient for the last layer self._compute_loss_grad( - last, n_samples, activations, deltas, coef_grads, intercept_grads) + last, n_samples, activations, deltas, coef_grads, intercept_grads + ) inplace_derivative = DERIVATIVES[self.activation] # Iterate over the hidden layers @@ -162,10 +204,10 @@ def _backprop(self, X, y, activations, deltas, coef_grads, inplace_derivative(activations[i], deltas[i - 1]) self._compute_loss_grad( - i - 1, n_samples, activations, deltas, coef_grads, - intercept_grads) - else: # pragma: no cover - coef_grads, intercept_grads = temp # pylint: disable=E0633 + i - 1, n_samples, activations, deltas, coef_grads, intercept_grads + ) + else: + coef_grads, intercept_grads = temp # Iterate over the hidden layers for i in range(self.n_layers_ - 2, 0, -1): @@ -173,9 +215,12 @@ def _backprop(self, X, y, activations, deltas, coef_grads, inplace_derivative = DERIVATIVES[self.activation] inplace_derivative(activations[i], deltas[i - 1]) - coef_grads, intercept_grads = self._compute_loss_grad( # pylint: disable=E1111,E0633 - i - 1, n_samples, activations, deltas, coef_grads, - intercept_grads) + ( + coef_grads, + intercept_grads, + ) = self._compute_loss_grad( + i - 1, n_samples, activations, deltas, coef_grads, intercept_grads + ) return loss, coef_grads, intercept_grads @@ -186,33 +231,33 @@ class QuantileMLPRegressor(CustomizedMultilayerPerceptron, RegressorMixin): trained with norm :epkg:`L1`. This class inherits from :epkg:`sklearn:neural_networks:MLPRegressor`. This model optimizes the absolute-loss using LBFGS or stochastic gradient - descent. See @see cl CustomizedMultilayerPerceptron and - @see fn absolute_loss. + descent. See :class:`CustomizedMultilayerPerceptron + ` and + :func:`absolute_loss + `. :param hidden_layer_sizes: tuple, length = n_layers - 2, default (100,) The ith element represents the number of neurons in the ith hidden layer. :param activation: {'identity', 'logistic', 'tanh', 'relu'}, default 'relu' Activation function for the hidden layer. - - 'identity', no-op activation, useful to implement linear bottleneck, - returns :math:`f(x) = x` - - 'logistic', the logistic sigmoid function, - returns :math:`f(x) = 1 / (1 + exp(-x))`. - - 'tanh', the hyperbolic tan function, - returns :math:`f(x) = tanh(x)`. - - 'relu', the rectified linear unit function, - returns :math:`f(x) = \\max(0, x)`. + 'identity', no-op activation, useful to implement linear bottleneck, + returns :math:`f(x) = x`, + 'logistic', the logistic sigmoid function, + returns :math:`f(x) = 1 / (1 + exp(-x))`. + 'tanh', the hyperbolic tan function, returns :math:`f(x) = tanh(x)`. + 'relu', the rectified linear unit function, + returns :math:`f(x) = \\max(0, x)`. :param solver: ``{'lbfgs', 'sgd', 'adam'}``, default 'adam' - The solver for weight optimization. - - *'lbfgs'* is an optimizer in the family of quasi-Newton methods. - - *'sgd'* refers to stochastic gradient descent. - - *'adam'* refers to a stochastic gradient-based optimizer proposed by - Kingma, Diederik, and Jimmy Ba + The solver for weight optimization, + *'lbfgs'* is an optimizer in the family of quasi-Newton methods. + *'sgd'* refers to stochastic gradient descent. + *'adam'* refers to a stochastic gradient-based optimizer proposed by + Kingma, Diederik, and Jimmy Ba Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of - both training time and validation score. - For small datasets, however, 'lbfgs' can converge faster and perform - better. + both training time and validation score. For small datasets, however, + 'lbfgs' can converge faster and perform better. :param alpha: float, optional, default 0.0001 :epkg:`L2` penalty (regularization term) parameter. :param batch_size: int, optional, default 'auto' @@ -221,17 +266,15 @@ class QuantileMLPRegressor(CustomizedMultilayerPerceptron, RegressorMixin): When set to "auto", `batch_size=min(200, n_samples)` :param learning_rate: {'constant', 'invscaling', 'adaptive'}, default 'constant' Learning rate schedule for weight updates. - - 'constant' is a constant learning rate given by - 'learning_rate_init'. - - 'invscaling' gradually decreases the learning rate ``learning_rate_`` - at each time step 't' using an inverse scaling exponent of 'power_t'. - effective_learning_rate = learning_rate_init / pow(t, power_t) - - 'adaptive' keeps the learning rate constant to - 'learning_rate_init' as long as training loss keeps decreasing. - Each time two consecutive epochs fail to decrease training loss by at - least tol, or fail to increase validation score by at least tol if - 'early_stopping' is on, the current learning rate is divided by 5. - Only used when solver='sgd'. + 'constant' is a constant learning rate given by 'learning_rate_init', + 'invscaling' gradually decreases the learning rate ``learning_rate_`` + at each time step 't' using an inverse scaling exponent of 'power_t'. + effective_learning_rate = learning_rate_init / pow(t, power_t), + 'adaptive' keeps the learning rate constant to 'learning_rate_init' + as long as training loss keeps decreasing. Each time two consecutive + epochs fail to decrease training loss by at least tol, or fail to + increase validation score by at least tol if 'early_stopping' is on, + the current learning rate is divided by 5. Only used when solver='sgd'. :param learning_rate_init: double, optional, default 0.001 The initial learning rate used. It controls the step-size in updating the weights. Only used when solver='sgd' or 'adam'. @@ -263,7 +306,7 @@ class QuantileMLPRegressor(CustomizedMultilayerPerceptron, RegressorMixin): :param warm_start: bool, optional, default False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the - previous solution. See :term:`the Glossary `. + previous solution. :param momentum: float, default 0.9 Momentum for gradient descent update. Should be between 0 and 1. Only used when solver='sgd'. @@ -292,59 +335,88 @@ class QuantileMLPRegressor(CustomizedMultilayerPerceptron, RegressorMixin): :param n_iter_no_change: int, optional, default 10 Maximum number of epochs to not meet ``tol`` improvement. Only effective when solver='sgd' or 'adam' + :param kwargs: additional parameters sent to the constructor of the parent Fitted attributes: * `loss_`: float - The current loss computed with the loss function. + The current loss computed with the loss function. * `coefs_`: list, length n_layers - 1 - The ith element in the list represents the weight matrix corresponding - to layer i. + The ith element in the list represents the weight matrix corresponding + to layer i. * `intercepts_`: list, length n_layers - 1 - The ith element in the list represents the bias vector corresponding to - layer i + 1. + The ith element in the list represents the bias vector corresponding to + layer i + 1. * `n_iter_`: int, - The number of iterations the solver has ran. + The number of iterations the solver has ran. * `n_layers_`: int - Number of layers. + Number of layers. * `n_outputs_`: int - Number of outputs. + Number of outputs. * `out_activation_`: string - Name of the output activation function. + Name of the output activation function. """ - def __init__(self, - hidden_layer_sizes=(100,), activation="relu", - solver='adam', alpha=0.0001, - batch_size='auto', learning_rate="constant", - learning_rate_init=0.001, - power_t=0.5, max_iter=200, shuffle=True, - random_state=None, tol=1e-4, - verbose=False, warm_start=False, momentum=0.9, - nesterovs_momentum=True, early_stopping=False, - validation_fraction=0.1, beta_1=0.9, beta_2=0.999, - epsilon=1e-8, n_iter_no_change=10, - **kwargs): + def __init__( + self, + hidden_layer_sizes=(100,), + activation="relu", + solver="adam", + alpha=0.0001, + batch_size="auto", + learning_rate="constant", + learning_rate_init=0.001, + power_t=0.5, + max_iter=200, + shuffle=True, + random_state=None, + tol=1e-4, + verbose=False, + warm_start=False, + momentum=0.9, + nesterovs_momentum=True, + early_stopping=False, + validation_fraction=0.1, + beta_1=0.9, + beta_2=0.999, + epsilon=1e-8, + n_iter_no_change=10, + **kwargs, + ): """ See :epkg:`sklearn:neural_networks:MLPRegressor` """ - sup = super(QuantileMLPRegressor, self) # pylint: disable=R1725 + sup = super(QuantileMLPRegressor, self) if "max_fun" not in kwargs: sig = inspect.signature(sup.__init__) if "max_fun" in sig.parameters: - kwargs['max_fun'] = 15000 - sup.__init__(hidden_layer_sizes=hidden_layer_sizes, - activation=activation, solver=solver, alpha=alpha, - batch_size=batch_size, learning_rate=learning_rate, - learning_rate_init=learning_rate_init, power_t=power_t, - max_iter=max_iter, loss='absolute_loss', shuffle=shuffle, - random_state=random_state, tol=tol, verbose=verbose, - warm_start=warm_start, momentum=momentum, - nesterovs_momentum=nesterovs_momentum, - early_stopping=early_stopping, - validation_fraction=validation_fraction, - beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, - n_iter_no_change=n_iter_no_change, **kwargs) + kwargs["max_fun"] = 15000 + sup.__init__( + hidden_layer_sizes=hidden_layer_sizes, + activation=activation, + solver=solver, + alpha=alpha, + batch_size=batch_size, + learning_rate=learning_rate, + learning_rate_init=learning_rate_init, + power_t=power_t, + max_iter=max_iter, + loss="absolute_loss", + shuffle=shuffle, + random_state=random_state, + tol=tol, + verbose=verbose, + warm_start=warm_start, + momentum=momentum, + nesterovs_momentum=nesterovs_momentum, + early_stopping=early_stopping, + validation_fraction=validation_fraction, + beta_1=beta_1, + beta_2=beta_2, + epsilon=epsilon, + n_iter_no_change=n_iter_no_change, + **kwargs, + ) def predict(self, X): """ @@ -356,7 +428,7 @@ def predict(self, X): The predicted values. """ check_is_fitted(self) - if hasattr(self, '_predict'): + if hasattr(self, "_predict"): y_pred = self._predict(X) else: y_pred = self._forward_pass_fast(X) @@ -365,8 +437,9 @@ def predict(self, X): return y_pred def _validate_input(self, X, y, incremental, reset=False): - X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], - multi_output=True, y_numeric=True) + X, y = check_X_y( + X, y, accept_sparse=["csr", "csc", "coo"], multi_output=True, y_numeric=True + ) if y.ndim == 2 and y.shape[1] == 1: y = column_or_1d(y, warn=True) return X, y diff --git a/mlinsights/mlmodel/quantile_regression.py b/mlinsights/mlmodel/quantile_regression.py index 903ed8e2..65c71366 100644 --- a/mlinsights/mlmodel/quantile_regression.py +++ b/mlinsights/mlmodel/quantile_regression.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a quantile linear regression. -""" import numpy from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error @@ -13,7 +9,7 @@ class QuantileLinearRegression(LinearRegression): Quantile Linear Regression or linear regression trained with norm :epkg:`L1`. This class inherits from :epkg:`sklearn:linear_models:LinearRegression`. - See notebook :ref:`quantileregressionrst`. + See example :ref:`l-quantile-regression-example`. Norm :epkg:`L1` is chosen if ``quantile=0.5``, otherwise, for *quantile=*:math:`\\rho`, @@ -27,44 +23,55 @@ class QuantileLinearRegression(LinearRegression): :math:`|f(X_i) - Y_i|^+= \\max(f(X_i) - Y_i, 0)`. :math:`f(i)` is the prediction, :math:`Y_i` the expected value. + + :param fit_intercept: boolean, optional, default True + whether to calculate the intercept for this model. If set + to False, no intercept will be used in calculations + (e.g. data is expected to be already centered). + :param copy_X: boolean, optional, default True + If True, X will be copied; else, it may be overwritten. + :param n_jobs: int, optional, default 1 + The number of jobs to use for the computation. + If -1 all CPUs are used. This will only provide speedup for + n_targets > 1 and sufficient large problems. + :param max_iter: int, optional, default 1 + The number of iteration to do at training time. + This parameter is specific to the quantile regression. + :param delta: float, optional, default 0.0001 + Used to ensure matrices has an inverse + (*M + delta*I*). + :param quantile: float, by default 0.5, + determines which quantile to use + to estimate the regression. + :param positive: when set to True, forces the coefficients to be positive. + :param verbose: bool, optional, default False + Prints error at each iteration of the optimisation. """ - def __init__(self, fit_intercept=True, copy_X=True, - n_jobs=1, delta=0.0001, max_iter=10, quantile=0.5, - positive=False, verbose=False): - """ - :param fit_intercept: boolean, optional, default True - whether to calculate the intercept for this model. If set - to False, no intercept will be used in calculations - (e.g. data is expected to be already centered). - :param copy_X: boolean, optional, default True - If True, X will be copied; else, it may be overwritten. - :param n_jobs: int, optional, default 1 - The number of jobs to use for the computation. - If -1 all CPUs are used. This will only provide speedup for - n_targets > 1 and sufficient large problems. - :param max_iter: int, optional, default 1 - The number of iteration to do at training time. - This parameter is specific to the quantile regression. - :param delta: float, optional, default 0.0001 - Used to ensure matrices has an inverse - (*M + delta*I*). - :param quantile: float, by default 0.5, - determines which quantile to use - to estimate the regression. - :param positive: when set to True, forces the coefficients to be positive. - :param verbose: bool, optional, default False - Prints error at each iteration of the optimisation. - """ + def __init__( + self, + fit_intercept=True, + copy_X=True, + n_jobs=1, + delta=0.0001, + max_iter=10, + quantile=0.5, + positive=False, + verbose=False, + ): try: LinearRegression.__init__( - self, fit_intercept=fit_intercept, - copy_X=copy_X, n_jobs=n_jobs, positive=positive) + self, + fit_intercept=fit_intercept, + copy_X=copy_X, + n_jobs=n_jobs, + positive=positive, + ) except TypeError: # scikit-learn<0.24 LinearRegression.__init__( - self, fit_intercept=fit_intercept, - copy_X=copy_X, n_jobs=n_jobs) + self, fit_intercept=fit_intercept, copy_X=copy_X, n_jobs=n_jobs + ) self.max_iter = max_iter self.verbose = verbose self.delta = delta @@ -112,16 +119,16 @@ def compute_z(Xm, beta, Y, W, delta=0.0001): "compute z" deltas = numpy.ones(X.shape[0]) * delta epsilon, mult = QuantileLinearRegression._epsilon( - Y, Xm @ beta, self.quantile) - r = numpy.reciprocal(numpy.maximum( # pylint: disable=E1111 - epsilon, deltas)) # pylint: disable=E1111 + Y, Xm @ beta, self.quantile + ) + r = numpy.reciprocal(numpy.maximum(epsilon, deltas)) if mult is not None: epsilon *= 1 - mult r *= 1 - mult return r, epsilon if not isinstance(X, numpy.ndarray): - if hasattr(X, 'values'): + if hasattr(X, "values"): X = X.values else: raise TypeError("X must be an array or a dataframe.") @@ -132,13 +139,17 @@ def compute_z(Xm, beta, Y, W, delta=0.0001): Xm = X try: - clr = LinearRegression(fit_intercept=False, copy_X=self.copy_X, - n_jobs=self.n_jobs, - positive=self.positive) + clr = LinearRegression( + fit_intercept=False, + copy_X=self.copy_X, + n_jobs=self.n_jobs, + positive=self.positive, + ) except AttributeError: # scikit-learn<0.24 - clr = LinearRegression(fit_intercept=False, copy_X=self.copy_X, - n_jobs=self.n_jobs) + clr = LinearRegression( + fit_intercept=False, copy_X=self.copy_X, n_jobs=self.n_jobs + ) W = numpy.ones(X.shape[0]) if sample_weight is None else sample_weight self.n_iter_ = 0 @@ -153,8 +164,7 @@ def compute_z(Xm, beta, Y, W, delta=0.0001): E = epsilon.sum() self.n_iter_ = i if self.verbose: - print( # pragma: no cover - f'[QuantileLinearRegression.fit] iter={i + 1} error={E}') + print(f"[QuantileLinearRegression.fit] iter={i + 1} error={E}") if lastE is not None and lastE == E: break lastE = E @@ -173,10 +183,10 @@ def _epsilon(y_true, y_pred, quantile, sample_weight=None): diff = y_pred - y_true epsilon = numpy.abs(diff) if quantile != 0.5: - sign = numpy.sign(diff) # pylint: disable=E1111 + sign = numpy.sign(diff) mult = numpy.ones(y_true.shape[0]) - mult[sign > 0] *= quantile # pylint: disable=W0143 - mult[sign < 0] *= (1 - quantile) # pylint: disable=W0143 + mult[sign > 0] *= quantile + mult[sign < 0] *= 1 - quantile else: mult = None if sample_weight is not None: @@ -200,7 +210,8 @@ def score(self, X, y, sample_weight=None): if self.quantile != 0.5: epsilon, mult = QuantileLinearRegression._epsilon( - y, pred, self.quantile, sample_weight) + y, pred, self.quantile, sample_weight + ) if mult is not None: epsilon *= mult * 2 return epsilon.sum() / X.shape[0] diff --git a/mlinsights/mlmodel/sklearn_testing.py b/mlinsights/mlmodel/sklearn_testing.py index 09c6cf48..8dc16e29 100644 --- a/mlinsights/mlmodel/sklearn_testing.py +++ b/mlinsights/mlmodel/sklearn_testing.py @@ -1,11 +1,6 @@ -""" -@file -@brief Helpers to test a model which follows :epkg:`scikit-learn` API. -""" import copy import pickle import pprint -from unittest import TestCase from io import BytesIO from numpy import ndarray from numpy.testing import assert_almost_equal @@ -21,11 +16,11 @@ def train_test_split_with_none(X, y=None, sample_weight=None, random_state=0): """ Splits into train and test data even if they are None. - @param X X - @param y y - @param sample_weight sample weight - @param random_state random state - @return similar to :epkg:`scikit-learn:model_selection:train_test_split`. + :param X: X + :param y: y + :param sample_weight: sample weight + :param random_state: random state + :return: similar to :func:`sklearn.model_selection.train_test_split`. """ not_none = [_ for _ in [X, y, sample_weight] if _ is not None] res = train_test_split(*not_none) @@ -48,18 +43,20 @@ def run_test_sklearn_pickle(fct_model, X, y=None, sample_weight=None, **kwargs): Creates a model, fit, predict and check the prediction are similar after the model was pickled, unpickled. - @param fct_model function which creates the model - @param X X - @param y y - @param sample_weight sample weight - @param kwargs additional parameters for :epkg:`numpy:testing:assert_almost_equal` - @return model, unpickled model + :param fct_model: function which creates the model + :param X: X + :param y: y + :param sample_weight: sample weight + :param kwargs: additional parameters for + :func:`numpy.testing.assert_almost_equal` + :return: model, unpickled model :raises: AssertionError """ X_train, y_train, w_train, X_test, _, __ = train_test_split_with_none( - X, y, sample_weight) + X, y, sample_weight + ) model = fct_model() if y_train is None and w_train is None: model.fit(X_train) @@ -69,7 +66,7 @@ def run_test_sklearn_pickle(fct_model, X, y=None, sample_weight=None, **kwargs): except TypeError: # Do not accept weights? model.fit(X_train, y_train) - if hasattr(model, 'predict'): + if hasattr(model, "predict"): pred1 = model.predict(X_test) else: pred1 = model.transform(X_test) @@ -78,7 +75,7 @@ def run_test_sklearn_pickle(fct_model, X, y=None, sample_weight=None, **kwargs): pickle.dump(model, st) data = BytesIO(st.getvalue()) model2 = pickle.load(data) - if hasattr(model2, 'predict'): + if hasattr(model2, "predict"): pred2 = model2.predict(X_test) else: pred2 = model2.transform(X_test) @@ -90,22 +87,9 @@ def run_test_sklearn_pickle(fct_model, X, y=None, sample_weight=None, **kwargs): def _get_test_instance(): - try: - from pyquickhelper.pycode import ExtTestCase # pylint: disable=C0415 - cls = ExtTestCase - except ImportError: # pragma: no cover - - class _ExtTestCase(TestCase): - "simple test classe with a more methods" + from ..ext_test_case import ExtTestCase - def assertIsInstance(self, inst, cltype): - "checks that one instance is from one type" - if not isinstance(inst, cltype): - raise AssertionError( - f"Unexpected type {type(inst)} != {cltype}.") - - cls = _ExtTestCase - return cls() + return ExtTestCase() def run_test_sklearn_clone(fct_model, ext=None, copy_fitted=False): @@ -131,11 +115,10 @@ def run_test_sklearn_clone(fct_model, ext=None, copy_fitted=False): ext = _get_test_instance() try: ext.assertEqual(set(p1), set(p2)) - except AssertionError as e: # pragma no cover + except AssertionError as e: p1 = pprint.pformat(p1) p2 = pprint.pformat(p2) - raise AssertionError( - f"Differences between\n----\n{p1}\n----\n{p2}") from e + raise AssertionError(f"Differences between\n----\n{p1}\n----\n{p2}") from e for k in sorted(p1): if isinstance(p1[k], BaseEstimator) and isinstance(p2[k], BaseEstimator): @@ -146,16 +129,16 @@ def run_test_sklearn_clone(fct_model, ext=None, copy_fitted=False): else: try: ext.assertEqual(p1[k], p2[k]) - except AssertionError: # pragma no cover - raise AssertionError( # pylint: disable=W0707 - f"Difference for key '{k}'\n==1 {p1[k]}\n==2 {p2[k]}") + except AssertionError: + raise AssertionError( + f"Difference for key '{k}'\n==1 {p1[k]}\n==2 {p2[k]}" + ) return conv, cloned def _assert_list_equal(l1, l2, ext): if len(l1) != len(l2): - raise AssertionError( # pragma no cover - f"Lists have different length {len(l1)} != {len(l2)}") + raise AssertionError(f"Lists have different length {len(l1)} != {len(l2)}") for a, b in zip(l1, l2): if isinstance(a, tuple) and isinstance(b, tuple): _assert_tuple_equal(a, b, ext) @@ -164,10 +147,10 @@ def _assert_list_equal(l1, l2, ext): def _assert_dict_equal(a, b, ext): - if not isinstance(a, dict): # pragma no cover - raise TypeError(f'a is not dict but {type(a)}') - if not isinstance(b, dict): # pragma no cover - raise TypeError(f'b is not dict but {type(b)}') + if not isinstance(a, dict): + raise TypeError(f"a is not dict but {type(a)}") + if not isinstance(b, dict): + raise TypeError(f"b is not dict but {type(b)}") rows = [] for key in sorted(b): if key not in a: @@ -177,20 +160,19 @@ def _assert_dict_equal(a, b, ext): else: if a[key] != b[key]: rows.append( - "** Value != for key '{0}': != id({1}) != id({2})\n==1 {3}\n==2 {4}".format( - key, id(a[key]), id(b[key]), a[key], b[key])) + "** Value != for key '{0}': != id({1}) != id({2})\n==1 " + "{3}\n==2 {4}".format(key, id(a[key]), id(b[key]), a[key], b[key]) + ) for key in sorted(a): if key not in b: rows.append(f"** Removed key '{key}' in a") if len(rows) > 0: - raise AssertionError( # pragma: no cover - "Dictionaries are different\n{0}".format('\n'.join(rows))) + raise AssertionError("Dictionaries are different\n{0}".format("\n".join(rows))) def _assert_tuple_equal(t1, t2, ext): - if len(t1) != len(t2): # pragma no cover - raise AssertionError( - f"Lists have different length {len(t1)} != {len(t2)}") + if len(t1) != len(t2): + raise AssertionError(f"Lists have different length {len(t1)} != {len(t2)}") for a, b in zip(t1, t2): if isinstance(a, BaseEstimator) and isinstance(b, BaseEstimator): assert_estimator_equal(a, b, ext) @@ -214,26 +196,35 @@ def assert_estimator_equal(esta, estb, ext=None): ext.assertIsInstance(estb, esta.__class__) _assert_dict_equal(esta.get_params(), estb.get_params(), ext) for att in esta.__dict__: - if (att.endswith('_') and not att.endswith('__')) or \ - (att.startswith('_') and not att.startswith('__')): - if not hasattr(estb, att): # pragma no cover + if (att.endswith("_") and not att.endswith("__")) or ( + att.startswith("_") and not att.startswith("__") + ): + if not hasattr(estb, att): raise AssertionError( "Missing fitted attribute '{}' class {}\n==1 {}\n==2 {}".format( - att, esta.__class__, list(sorted(esta.__dict__)), list(sorted(estb.__dict__)))) + att, + esta.__class__, + list(sorted(esta.__dict__)), + list(sorted(estb.__dict__)), + ) + ) if isinstance(getattr(esta, att), BaseEstimator): - assert_estimator_equal( - getattr(esta, att), getattr(estb, att), ext) + assert_estimator_equal(getattr(esta, att), getattr(estb, att), ext) else: ext.assertEqual(getattr(esta, att), getattr(estb, att)) for att in estb.__dict__: - if att.endswith('_') and not att.endswith('__'): - if not hasattr(esta, att): # pragma no cover + if att.endswith("_") and not att.endswith("__"): + if not hasattr(esta, att): raise AssertionError( "Missing fitted attribute\n==1 {}\n==2 {}".format( - list(sorted(esta.__dict__)), list(sorted(estb.__dict__)))) + list(sorted(esta.__dict__)), list(sorted(estb.__dict__)) + ) + ) -def run_test_sklearn_grid_search_cv(fct_model, X, y=None, sample_weight=None, **grid_params): +def run_test_sklearn_grid_search_cv( + fct_model, X, y=None, sample_weight=None, **grid_params +): """ Creates a model, checks that a grid search works with it. @@ -247,27 +238,35 @@ def run_test_sklearn_grid_search_cv(fct_model, X, y=None, sample_weight=None, ** :raises: AssertionError """ - X_train, y_train, w_train, X_test, y_test, w_test = ( - train_test_split_with_none(X, y, sample_weight)) + X_train, y_train, w_train, X_test, y_test, w_test = train_test_split_with_none( + X, y, sample_weight + ) model = fct_model() pipe = make_pipeline(model) name = model.__class__.__name__.lower() parameters = {name + "__" + k: v for k, v in grid_params.items()} if len(parameters) == 0: - raise ValueError( - "Some parameters must be tested when running grid search.") + raise ValueError("Some parameters must be tested when running grid search.") clf = GridSearchCV(pipe, parameters) if y_train is None and w_train is None: clf.fit(X_train) elif w_train is None: - clf.fit(X_train, y_train) # pylint: disable=E1121 + clf.fit(X_train, y_train) else: - clf.fit(X_train, y_train, w_train) # pylint: disable=E1121 + clf.fit(X_train, y_train, w_train) score = clf.score(X_test, y_test) ext = _get_test_instance() ext.assertIsInstance(score, float) - return dict(model=clf, X_train=X_train, y_train=y_train, w_train=w_train, - X_test=X_test, y_test=y_test, w_test=w_test, score=score) + return dict( + model=clf, + X_train=X_train, + y_train=y_train, + w_train=w_train, + X_test=X_test, + y_test=y_test, + w_test=w_test, + score=score, + ) def clone_with_fitted_parameters(est): @@ -277,6 +276,7 @@ def clone_with_fitted_parameters(est): @param est estimator @return cloned object """ + def adjust(obj1, obj2): if isinstance(obj1, list) and isinstance(obj2, list): for a, b in zip(obj1, obj2): @@ -292,20 +292,21 @@ def adjust(obj1, obj2): if hasattr(obj2, k): v1 = getattr(obj1, k) if callable(v1): - raise RuntimeError( # pragma: no cover - f"Cannot migrate trained parameters for {obj1}.") + raise RuntimeError( + f"Cannot migrate trained parameters for {obj1}." + ) elif isinstance(v1, BaseEstimator): v1 = getattr(obj1, k) setattr(obj2, k, clone_with_fitted_parameters(v1)) else: adjust(getattr(obj1, k), getattr(obj2, k)) - elif (k.endswith('_') and not k.endswith('__')) or \ - (k.startswith('_') and not k.startswith('__')): + elif (k.endswith("_") and not k.endswith("__")) or ( + k.startswith("_") and not k.startswith("__") + ): v1 = getattr(obj1, k) setattr(obj2, k, clone_with_fitted_parameters(v1)) else: - raise RuntimeError( # pragma: no cover - f"Cloned object is missing '{k}' in {obj2}.") + raise RuntimeError(f"Cloned object is missing '{k}' in {obj2}.") if isinstance(est, BaseEstimator): cloned = clone(est) diff --git a/mlinsights/mlmodel/sklearn_text.py b/mlinsights/mlmodel/sklearn_text.py index 9be713b8..ff639b95 100644 --- a/mlinsights/mlmodel/sklearn_text.py +++ b/mlinsights/mlmodel/sklearn_text.py @@ -1,11 +1,8 @@ -""" -@file -@brief Overloads :epkg:`TfidfVectorizer` and :epkg:`CountVectorizer`. -""" from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer + try: from sklearn.feature_extraction.text import _VectorizerMixin as VectorizerMixin -except ImportError: # pragma: no cover +except ImportError: # scikit-learn < 0.23 from sklearn.feature_extraction.text import VectorizerMixin @@ -13,12 +10,12 @@ class NGramsMixin(VectorizerMixin): """ Overloads method `_word_ngrams - `_ + `_ to get tuples instead of string in member `vocabulary_ `_. of :epkg:`TfidfVectorizer` or :epkg:`CountVectorizer`. It contains the list of n-grams used to process documents. - See @see cl TraceableCountVectorizer and @see cl TraceableTfidfVectorizer + See :class:`TraceableCountVectorizer` and :class:`TraceableTfidfVectorizer` for example. """ @@ -28,12 +25,11 @@ def _word_ngrams(self, tokens, stop_words=None): if tokens is not None: new_tokens = [] for token in tokens: - new_tokens.append( - (token,) if isinstance(token, str) else token) + new_tokens.append((token,) if isinstance(token, str) else token) tokens = new_tokens if stop_words is not None: - tokens = [(w, ) for w in tokens if w not in stop_words] + tokens = [(w,) for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range @@ -60,21 +56,20 @@ def space_join(tokens): elif isinstance(token, tuple): new_tokens.extend(token) else: - raise TypeError( # pragma: no cover - f"Unable to build a n-grams out of {tokens}.") + raise TypeError(f"Unable to build a n-grams out of {tokens}.") return tuple(new_tokens) - for n in range(min_n, - min(max_n + 1, n_original_tokens + 1)): + for n in range(min_n, min(max_n + 1, n_original_tokens + 1)): for i in range(n_original_tokens - n + 1): - tokens_append(space_join(original_tokens[i: i + n])) + tokens_append(space_join(original_tokens[i : i + n])) return tokens class TraceableCountVectorizer(CountVectorizer, NGramsMixin): """ - Inherits from @see cl NGramsMixin which overloads method `_word_ngrams - `_ + Inherits from :class:`NGramsMixin ` + which overloads method `_word_ngrams + `_ to keep more information about n-grams but still produces the same outputs than :epkg:`CountVectorizer`. @@ -106,7 +101,7 @@ class TraceableCountVectorizer(CountVectorizer, NGramsMixin): print(pformat(mod2.vocabulary_)[:100]) A weirder example with - @see cl TraceableTfidfVectorizer shows more differences. + :class:`TraceableTfidfVectorizer` shows more differences. """ def _word_ngrams(self, tokens, stop_words=None): @@ -115,8 +110,9 @@ def _word_ngrams(self, tokens, stop_words=None): class TraceableTfidfVectorizer(TfidfVectorizer, NGramsMixin): """ - Inherits from @see cl NGramsMixin which overloads method `_word_ngrams - `_ + Inherits from :class:`NGramsMixin ` + which overloads method `_word_ngrams + `_ to keep more information about n-grams but still produces the same outputs than :epkg:`TfidfVectorizer`. diff --git a/mlinsights/mlmodel/sklearn_transform_inv.py b/mlinsights/mlmodel/sklearn_transform_inv.py index be76ce35..d44afaa2 100644 --- a/mlinsights/mlmodel/sklearn_transform_inv.py +++ b/mlinsights/mlmodel/sklearn_transform_inv.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a base class which defines a pair of transforms -applied around a predictor to modify the target as well. -""" from sklearn.base import TransformerMixin, BaseEstimator @@ -23,13 +18,11 @@ def get_fct_inv(self): Returns a trained transform which reverse the target after a predictor. """ - raise NotImplementedError( - "This must be overwritten.") # pragma: no cover + raise NotImplementedError("This must be overwritten.") def transform(self, X, y): """ Transforms *X* and *y*. Returns transformed *X* and *y*. """ - raise NotImplementedError( - "This must be overwritten.") # pragma: no cover + raise NotImplementedError("This must be overwritten.") diff --git a/mlinsights/mlmodel/sklearn_transform_inv_fct.py b/mlinsights/mlmodel/sklearn_transform_inv_fct.py index f18b9621..f4258f16 100644 --- a/mlinsights/mlmodel/sklearn_transform_inv_fct.py +++ b/mlinsights/mlmodel/sklearn_transform_inv_fct.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a transform which modifies the target -and applies the reverse transformation on the target. -""" import numpy from sklearn.exceptions import NotFittedError from sklearn.neighbors import NearestNeighbors @@ -15,11 +10,17 @@ class FunctionReciprocalTransformer(BaseReciprocalTransformer): predict, then transform the target back before scoring. The transforms implements a series of predefined functions: + :param fct: function name of numerical function + :param fct_inv: optional if *fct* is a function name, + reciprocal function otherwise + .. runpython:: :showcode: import pprint - from mlinsights.mlmodel.sklearn_transform_inv_fct import FunctionReciprocalTransformer + from mlinsights.mlmodel.sklearn_transform_inv_fct import ( + FunctionReciprocalTransformer + ) pprint.pprint(FunctionReciprocalTransformer.available_fcts()) """ @@ -29,33 +30,29 @@ def available_fcts(): Returns the list of predefined functions. """ return { - 'log': (numpy.log, 'exp'), - 'exp': (numpy.exp, 'log'), - 'log(1+x)': (lambda x: numpy.log(x + 1), 'exp(x)-1'), - 'log1p': (numpy.log1p, 'expm1'), - 'exp(x)-1': (lambda x: numpy.exp(x) - 1, 'log'), - 'expm1': (numpy.expm1, 'log1p'), + "log": (numpy.log, "exp"), + "exp": (numpy.exp, "log"), + "log(1+x)": (lambda x: numpy.log(x + 1), "exp(x)-1"), + "log1p": (numpy.log1p, "expm1"), + "exp(x)-1": (lambda x: numpy.exp(x) - 1, "log"), + "expm1": (numpy.expm1, "log1p"), } def __init__(self, fct, fct_inv=None): - """ - @param fct function name of numerical function - @param fct_inv optional if *fct* is a function name, - reciprocal function otherwise - """ BaseReciprocalTransformer.__init__(self) if isinstance(fct, str): if fct_inv is not None: - raise ValueError( # pragma: no cover - "If fct is a function name, fct_inv must not be specified.") + raise ValueError( + "If fct is a function name, fct_inv must not be specified." + ) opts = self.__class__.available_fcts() if fct not in opts: - raise ValueError( # pragma: no cover - f"Unknown fct '{fct}', it should in {list(sorted(opts))}.") + raise ValueError( + f"Unknown fct '{fct}', it should in {list(sorted(opts))}." + ) else: if fct_inv is None: - raise ValueError( - "If fct is callable, fct_inv must be specified.") + raise ValueError("If fct is callable, fct_inv must be specified.") self.fct = fct self.fct_inv = fct_inv @@ -101,13 +98,12 @@ class PermutationReciprocalTransformer(BaseReciprocalTransformer): nan values remain nan values. Once fitted, the transform has attribute ``permutation_`` which keeps track of the permutation to apply. + + :param random_state: random state + :param closest: if True, finds the closest permuted element """ def __init__(self, random_state=None, closest=False): - """ - @param random_state random state - @param closest if True, finds the closest permuted element - """ BaseReciprocalTransformer.__init__(self) self.random_state = random_state self.closest = closest @@ -117,8 +113,7 @@ def fit(self, X=None, y=None, sample_weight=None): Defines a random permutation over the targets. """ if y is None: - raise RuntimeError( # pragma: no cover - "targets cannot be empty.") + raise RuntimeError("targets cannot be empty.") num = numpy.issubdtype(y.dtype, numpy.floating) perm = {} for u in y.ravel(): @@ -132,8 +127,7 @@ def fit(self, X=None, y=None, sample_weight=None): if self.random_state is None: lin = numpy.random.permutation(lin) else: - rs = numpy.random.RandomState( # pylint: disable=E1101 - self.random_state) # pylint: disable=E1101 + rs = numpy.random.RandomState(self.random_state) lin = rs.permutation(lin) perm_keys = list(perm.keys()) @@ -142,10 +136,11 @@ def fit(self, X=None, y=None, sample_weight=None): self.permutation_ = perm def _check_is_fitted(self): - if not hasattr(self, 'permutation_'): - raise NotFittedError( # pragma: no cover + if not hasattr(self, "permutation_"): + raise NotFittedError( f"This instance {type(self)} is not fitted yet. Call 'fit' with " - f"appropriate arguments before using this method.") + f"appropriate arguments before using this method." + ) def get_fct_inv(self): """ @@ -153,14 +148,13 @@ def get_fct_inv(self): after a predictor. """ self._check_is_fitted() - res = PermutationReciprocalTransformer( - self.random_state, closest=self.closest) + res = PermutationReciprocalTransformer(self.random_state, closest=self.closest) res.permutation_ = {v: k for k, v in self.permutation_.items()} return res def _find_closest(self, cl): - if not hasattr(self, 'knn_'): - self.knn_ = NearestNeighbors(n_neighbors=1, algorithm='kd_tree') + if not hasattr(self, "knn_"): + self.knn_ = NearestNeighbors(n_neighbors=1, algorithm="kd_tree") self.knn_perm_ = numpy.array(list(self.permutation_)) self.knn_perm_ = self.knn_perm_.reshape((len(self.knn_perm_), 1)) self.knn_.fit(self.knn_perm_) @@ -170,8 +164,9 @@ def _find_closest(self, cl): return float(res) if self.knn_perm_.dtype in (numpy.int32, numpy.int64): return int(res) - raise NotImplementedError( # pragma: no cover - f"The function does not work for type {self.knn_perm_.dtype}.") + raise NotImplementedError( + f"The function does not work for type {self.knn_perm_.dtype}." + ) def transform(self, X, y): """ @@ -187,7 +182,7 @@ def transform(self, X, y): # permutes classes yp = y.copy().ravel() num = numpy.issubdtype(y.dtype, numpy.floating) - for i in range(len(yp)): # pylint: disable=C0200 + for i in range(len(yp)): if num and numpy.isnan(yp[i]): continue if yp[i] not in self.permutation_: @@ -196,7 +191,8 @@ def transform(self, X, y): else: raise RuntimeError( f"Unable to find key {yp[i]!r} in " - f"{list(sorted(self.permutation_))!r}.") + f"{list(sorted(self.permutation_))!r}." + ) else: cl = yp[i] yp[i] = self.permutation_[cl] @@ -204,8 +200,7 @@ def transform(self, X, y): else: # y is probababilies or raw score if len(y.shape) != 2: - raise RuntimeError( - f"yp should be a matrix but has shape {y.shape}.") + raise RuntimeError(f"yp should be a matrix but has shape {y.shape}.") cl = [(v, k) for k, v in self.permutation_.items()] cl.sort() new_perm = {} diff --git a/mlinsights/mlmodel/target_predictors.py b/mlinsights/mlmodel/target_predictors.py index bfc28966..b4332eec 100644 --- a/mlinsights/mlmodel/target_predictors.py +++ b/mlinsights/mlmodel/target_predictors.py @@ -1,20 +1,18 @@ -""" -@file -@brief Implements a slightly different -version of the :epkg:`sklearn:compose:TransformedTargetRegressor`. -""" from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin, clone from sklearn.exceptions import NotFittedError from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.metrics import r2_score, accuracy_score from .sklearn_transform_inv import BaseReciprocalTransformer -from .sklearn_transform_inv_fct import FunctionReciprocalTransformer, PermutationReciprocalTransformer +from .sklearn_transform_inv_fct import ( + FunctionReciprocalTransformer, + PermutationReciprocalTransformer, +) def _common_get_transform(transformer, is_regression): if isinstance(transformer, str): closest = is_regression - if transformer == 'permute': + if transformer == "permute": return PermutationReciprocalTransformer(closest=closest) else: return FunctionReciprocalTransformer(transformer) @@ -22,7 +20,8 @@ def _common_get_transform(transformer, is_regression): return clone(transformer) raise TypeError( f"Transformer {type(transformer)} must be a string or " - f"on object of type BaseReciprocalTransformer.") + f"on object of type BaseReciprocalTransformer." + ) class TransformedTargetRegressor2(BaseEstimator, RegressorMixin): @@ -31,22 +30,12 @@ class TransformedTargetRegressor2(BaseEstimator, RegressorMixin): Useful for applying a non-linear transformation in regression problems. - Parameters - ---------- - regressor : object, default=LinearRegression() + :param regressor: object, `default=LinearRegression()` Regressor object such as derived from ``RegressorMixin``. This regressor will automatically be cloned each time prior to fitting. - transformer : str or object of type @see cl BaseReciprocalTransformer - Attributes - ---------- - regressor_ : object - Fitted regressor. - transformer_ : object - Transformer used in ``fit`` and ``predict``. - - Examples - -------- + :param transformer: str or object of type :class:`BaseReciprocalTransformer + ` .. runpython:: :showcode: @@ -63,7 +52,11 @@ class TransformedTargetRegressor2(BaseEstimator, RegressorMixin): print(tt.score(X, y)) print(tt.regressor_.coef_) - See notebook :ref:`sklearntransformedtargetrst` for a more complete example. + See example :ref:`l-sklearn-transformed-target` for a more complete example. + + The class holds two attributes `regressor_`, the fitted regressor, + `transformer_` transformer used in ``fit``, ``predict``, + ``decision_function``, ``predict_proba``. """ def __init__(self, regressor=None, transformer=None): @@ -109,10 +102,11 @@ def predict(self, X): :return: y_hat : array, shape = (n_samples,) Predicted values. """ - if not hasattr(self, 'regressor_'): - raise NotFittedError( # pragma: no cover + if not hasattr(self, "regressor_"): + raise NotFittedError( f"This instance {type(self)} is not fitted yet. Call 'fit' with " - f"appropriate arguments before using this method.") + f"appropriate arguments before using this method." + ) X_trans, _ = self.transformer_.transform(X, None) pred = self.regressor_.predict(X_trans) @@ -129,7 +123,7 @@ def score(self, X, y, sample_weight=None): return r2_score(y, yp, sample_weight=sample_weight) def _more_tags(self): - return {'poor_score': True, 'no_validation': True} + return {"poor_score": True, "no_validation": True} class TransformedTargetClassifier2(BaseEstimator, ClassifierMixin): @@ -138,23 +132,13 @@ class TransformedTargetClassifier2(BaseEstimator, ClassifierMixin): Useful for applying permutation transformation in classification problems. - Parameters - ---------- - classifier : object, default=LogisticRegression() + :param classifier: object, default=LogisticRegression() Classifier object such as derived from ``ClassifierMixin``. This classifier will automatically be cloned each time prior to fitting. - transformer : str or object of type @see cl BaseReciprocalTransformer - Attributes - ---------- - classifier_ : object - Fitted classifier. - transformer_ : object - Transformer used in ``fit``, ``predict``, ``decision_function``, - ``predict_proba``. - - Examples - -------- + :param transformer: str or object of type :class:`BaseReciprocalTransformer + ` + Transforms the features. .. runpython:: :showcode: @@ -164,14 +148,18 @@ class TransformedTargetClassifier2(BaseEstimator, ClassifierMixin): from mlinsights.mlmodel import TransformedTargetClassifier2 tt = TransformedTargetClassifier2(classifier=LogisticRegression(), - transformer='permute') + transformer='permute') X = numpy.arange(4).reshape(-1, 1) y = numpy.array([0, 1, 0, 1]) print(tt.fit(X, y)) print(tt.score(X, y)) print(tt.classifier_.coef_) - See notebook :ref:`sklearntransformedtargetrst` for a more complete example. + See example :ref:`l-sklearn-transformed-target` for a more complete example. + + The class holds two attributes `classifier_`, the fitted classifier, + `transformer_` transformer used in ``fit``, ``predict``, + ``decision_function``, ``predict_proba``. """ def __init__(self, classifier=None, transformer=None): @@ -209,10 +197,11 @@ def fit(self, X, y, sample_weight=None): return self def _check_is_fitted(self): - if not hasattr(self, 'classifier_'): - raise NotFittedError( # pragma: no cover + if not hasattr(self, "classifier_"): + raise NotFittedError( f"This instance {type(self)} is not fitted yet. Call 'fit' with " - f"appropriate arguments before using this method.") + f"appropriate arguments before using this method." + ) @property def classes_(self): @@ -236,9 +225,10 @@ def _apply(self, X, method): """ self._check_is_fitted() if not hasattr(self.classifier_, method): - raise RuntimeError( # pragma: no cover + raise RuntimeError( f"Unable to find method {method!r} in model " - f"{type(self.classifier_)}.") + f"{type(self.classifier_)}." + ) meth = getattr(self.classifier_, method) X_trans, _ = self.transformer_.transform(X, None) pred = meth(X_trans) @@ -255,7 +245,7 @@ def predict(self, X): :return: y_hat, array, shape = (n_samples,) Predicted values. """ - return self._apply(X, 'predict') + return self._apply(X, "predict") def predict_proba(self, X): """ @@ -266,7 +256,7 @@ def predict_proba(self, X): :return: predict probabilities, array, shape = (n_samples, n_classes) Predicted values. """ - return self._apply(X, 'predict_proba') + return self._apply(X, "predict_proba") def decision_function(self, X): """ @@ -276,7 +266,7 @@ def decision_function(self, X): Samples. :return: raw score : array, shape = (n_samples, ?) """ - return self._apply(X, 'decision_function') + return self._apply(X, "decision_function") def score(self, X, y, sample_weight=None): """ @@ -287,4 +277,4 @@ def score(self, X, y, sample_weight=None): return accuracy_score(y, yp, sample_weight=sample_weight) def _more_tags(self): - return {'poor_score': True, 'no_validation': True} + return {"poor_score": True, "no_validation": True} diff --git a/mlinsights/mlmodel/transfer_transformer.py b/mlinsights/mlmodel/transfer_transformer.py index fc0f49ef..9017e9d8 100644 --- a/mlinsights/mlmodel/transfer_transformer.py +++ b/mlinsights/mlmodel/transfer_transformer.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a transformer which wraps a predictor -to do transfer learning. -""" import inspect from sklearn.base import BaseEstimator, TransformerMixin from .sklearn_testing import clone_with_fitted_parameters @@ -14,22 +9,18 @@ class TransferTransformer(BaseEstimator, TransformerMixin): This model is frozen: it cannot be trained and only computes the predictions. - .. index:: transfer learning, frozen model + :param estimator: estimator to wrap in a transformer, it is clone + with the training data (deep copy) when fitted + :param method: if None, guess what method should be called, + *transform* for a transformer, + *predict_proba* for a classifier, + *decision_function* if found, + *predict* otherwiser + :param copy_estimator: copy the model instead of taking a reference + :param trainable: the transfered model must be trained """ - def __init__(self, estimator, method=None, copy_estimator=True, - trainable=False): - """ - @param estimator estimator to wrap in a transformer, it is cloned - with the training data (deep copy) when fitted - @param method if None, guess what method should be called, - *transform* for a transformer, - *predict_proba* for a classifier, - *decision_function* if found, - *predict* otherwiser - @param copy_estimator copy the model instead of taking a reference - @param trainable the transfered model must be trained - """ + def __init__(self, estimator, method=None, copy_estimator=True, trainable=False): TransformerMixin.__init__(self) BaseEstimator.__init__(self) self.estimator = estimator @@ -45,12 +36,15 @@ def __init__(self, estimator, method=None, copy_estimator=True, elif hasattr(estimator, "predict"): method = "predict" else: - raise AttributeError( # pragma: no cover - f"Cannot find a method transform, predict_proba, decision_function, " - f"predict in object {type(estimator)}.") + raise AttributeError( + f"Cannot find a method transform, " + f"predict_proba, decision_function, " + f"predict in object {type(estimator)}." + ) if not hasattr(estimator, method): - raise AttributeError( # pragma: no cover - f"Cannot find method '{method}' in object {type(estimator)}") + raise AttributeError( + f"Cannot find method '{method}' in object {type(estimator)}" + ) self.method = method def fit(self, X=None, y=None, sample_weight=None): @@ -68,18 +62,19 @@ def fit(self, X=None, y=None, sample_weight=None): """ if self.copy_estimator: self.estimator_ = clone_with_fitted_parameters(self.estimator) - from .sklearn_testing import assert_estimator_equal # pylint: disable=C0415 + from .sklearn_testing import assert_estimator_equal + assert_estimator_equal(self.estimator_, self.estimator) else: self.estimator_ = self.estimator if self.trainable: insp = inspect.signature(self.estimator_.fit) pars = insp.parameters - if 'y' in pars and 'sample_weight' in pars: + if "y" in pars and "sample_weight" in pars: self.estimator_.fit(X, y, sample_weight) - elif 'y' in pars: + elif "y" in pars: self.estimator_.fit(X, y) - elif 'sample_weight' in pars: + elif "sample_weight" in pars: self.estimator_.fit(X, sample_weight=sample_weight) else: self.estimator_.fit(X) diff --git a/mlinsights/mltree/__init__.py b/mlinsights/mltree/__init__.py index c3a953ab..a2e2dc45 100644 --- a/mlinsights/mltree/__init__.py +++ b/mlinsights/mltree/__init__.py @@ -1,8 +1,7 @@ -""" -@file -@brief Shortcuts to *mltree*. -""" from .tree_digitize import digitize2tree from .tree_structure import ( - tree_leave_index, tree_node_range, tree_leave_neighbors, - predict_leaves) + tree_leave_index, + tree_node_range, + tree_leave_neighbors, + predict_leaves, +) diff --git a/mlinsights/mltree/_tree_digitize.pyx b/mlinsights/mltree/_tree_digitize.pyx index 3f43d42a..37bc8629 100644 --- a/mlinsights/mltree/_tree_digitize.pyx +++ b/mlinsights/mltree/_tree_digitize.pyx @@ -1,9 +1,3 @@ -""" -@file -@brief Access to the C API of scikit-learn (decision tree) -""" -from libc.stdio cimport printf - import numpy cimport numpy numpy.import_array() @@ -33,6 +27,7 @@ cdef SIZE_t _tree_add_node(Tree tree, n_node_samples, weighted_n_node_samples, missing_go_to_left) + def tree_add_node(tree, parent, is_left, is_leaf, feature, threshold, impurity, n_node_samples, weighted_n_node_samples, missing_go_to_left): diff --git a/mlinsights/mltree/tree_digitize.py b/mlinsights/mltree/tree_digitize.py index ab6e048a..27396ed9 100644 --- a/mlinsights/mltree/tree_digitize.py +++ b/mlinsights/mltree/tree_digitize.py @@ -1,13 +1,7 @@ -""" -@file -@brief Helpers to investigate a tree structure. - -.. versionadded:: 0.4 -""" import numpy -from sklearn.tree._tree import Tree # pylint: disable=E0611 +from sklearn.tree._tree import Tree from sklearn.tree import DecisionTreeRegressor -from ._tree_digitize import tree_add_node # pylint: disable=E0611 +from ._tree_digitize import tree_add_node def digitize2tree(bins, right=False): @@ -52,14 +46,9 @@ def digitize2tree(bins, right=False): print(expected, pred) print("Tree:") print(export_text(tree, feature_names=['x'])) - - See also example :ref:`l-example-digitize`. - - .. versionadded:: 0.4 """ if not right: - raise RuntimeError( - f"right must be True not right={right!r}") + raise RuntimeError(f"right must be True not right={right!r}") ascending = len(bins) <= 1 or bins[0] < bins[1] if not ascending: @@ -77,15 +66,12 @@ def digitize2tree(bins, right=False): def add_root(index): if index < 0 or index >= len(bins): - raise IndexError( # pragma: no cover - "Unexpected index %d / len(bins)=%d." % ( - index, len(bins))) + raise IndexError("Unexpected index %d / len(bins)=%d." % (index, len(bins))) parent = -1 is_left = False is_leaf = False threshold = bins[index] - n = tree_add_node(tree, parent, is_left, is_leaf, - 0, threshold, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, is_leaf, 0, threshold, 0, 1, 1.0, 0) values.append(UNUSED) n_nodes.append(n) return n @@ -96,8 +82,7 @@ def add_nodes(parent, i, j, is_left): # it means j is the parent split if i == j: # leaf - n = tree_add_node(tree, parent, is_left, - True, 0, 0, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, True, 0, 0, 0, 1, 1.0, 0) n_nodes.append(n) values.append(i) return n @@ -105,8 +90,7 @@ def add_nodes(parent, i, j, is_left): # split values.append(UNUSED) th = bins[i] - n = tree_add_node(tree, parent, is_left, - False, 0, th, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, False, 0, th, 0, 1, 1.0, 0) n_nodes.append(n) add_nodes(n, i, i, True) add_nodes(n, i, j, False) @@ -116,8 +100,7 @@ def add_nodes(parent, i, j, is_left): values.append(UNUSED) index = (i + j) // 2 th = bins[index] - n = tree_add_node(tree, parent, is_left, - False, 0, th, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, False, 0, th, 0, 1, 1.0, 0) n_nodes.append(n) add_nodes(n, i, index, True) add_nodes(n, index, j, False) @@ -127,8 +110,7 @@ def add_nodes(parent, i, j, is_left): if i + 1 == j: # leaf values.append(j) - n = tree_add_node(tree, parent, is_left, - True, 0, 0, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, True, 0, 0, 0, 1, 1.0, 0) n_nodes.append(n) return n if i + 1 < j: @@ -136,14 +118,14 @@ def add_nodes(parent, i, j, is_left): values.append(UNUSED) index = (i + j) // 2 th = bins[index] - n = tree_add_node(tree, parent, is_left, - False, 0, th, 0, 1, 1., 0) + n = tree_add_node(tree, parent, is_left, False, 0, th, 0, 1, 1.0, 0) n_nodes.append(n) add_nodes(n, i, index, True) add_nodes(n, index, j, False) return n - raise NotImplementedError( # pragma: no cover - f"Unexpected case where i={i!r}, j={j!r}, is_left={is_left!r}.") + raise NotImplementedError( + f"Unexpected case where i={i!r}, j={j!r}, is_left={is_left!r}." + ) index = len(bins) // 2 add_root(index) @@ -152,8 +134,7 @@ def add_nodes(parent, i, j, is_left): cl = DecisionTreeRegressor() cl.tree_ = tree - cl.tree_.value[:, 0, 0] = numpy.array( # pylint: disable=E1137 - values, dtype=numpy.float64) + cl.tree_.value[:, 0, 0] = numpy.array(values, dtype=numpy.float64) cl.n_outputs = 1 cl.n_outputs_ = 1 try: diff --git a/mlinsights/mltree/tree_structure.py b/mlinsights/mltree/tree_structure.py index 12dcce79..81081a21 100644 --- a/mlinsights/mltree/tree_structure.py +++ b/mlinsights/mltree/tree_structure.py @@ -1,9 +1,5 @@ -""" -@file -@brief Helpers to investigate a tree structure. -""" import numpy -from sklearn.tree._tree import TREE_LEAF # pylint: disable=E0611 +from sklearn.tree._tree import TREE_LEAF def _get_tree(obj): @@ -14,8 +10,7 @@ def _get_tree(obj): return obj if hasattr(obj, "tree_"): return obj.tree_ - raise AttributeError( # pragma: no cover - f"obj is no tree: {type(obj)}") + raise AttributeError(f"obj is no tree: {type(obj)}") def tree_leave_index(model): @@ -37,10 +32,10 @@ def tree_find_path_to_root(tree, i, parents=None): """ Lists nodes involved into the path to find node *i*. - @param tree tree - @param i node index (``tree.nodes[i]``) - @param parents precomputed parents (None -> calls @see fn tree_node_range) - @return one array of size *(D, 2)* where *D* is the number of dimensions + :param tree: tree + :param i: node index (``tree.nodes[i]``) + :param parents: precomputed parents (None -> calls :func:`tree_node_range`) + :return: one array of size *(D, 2)* where *D* is the number of dimensions """ tree = _get_tree(tree) path_i = [i] @@ -48,7 +43,7 @@ def tree_find_path_to_root(tree, i, parents=None): while current_i in parents: current_i = parents[current_i] if current_i < 0: - current_i = - current_i + current_i = -current_i path_i.append(current_i) return list(reversed(path_i)) @@ -57,11 +52,11 @@ def tree_find_common_node(tree, i, j, parents=None): """ Finds the common node to nodes *i* and *j*. - @param tree tree - @param i node index (``tree.nodes[i]``) - @param j node index (``tree.nodes[j]``) - @param parents precomputed parents (None -> calls @see fn tree_node_range) - @return common root, remaining path to *i*, remaining path to *j* + :param tree: tree + :param i: node index (``tree.nodes[i]``) + :param j: node index (``tree.nodes[j]``) + :param parents: precomputed parents (None -> calls :func:`tree_node_range`) + :return: common root, remaining path to *i*, remaining path to *j* """ tree = _get_tree(tree) if parents is None: @@ -78,8 +73,7 @@ def tree_find_common_node(tree, i, j, parents=None): return j, path_i[pos:], path_j[pos:] if pj is not None and pj == i: return i, path_i[pos:], path_j[pos:] - raise RuntimeError( # pragma: no cover - f"Paths are equal, i={i} and j={j} must be differet.") + raise RuntimeError(f"Paths are equal, i={i} and j={j} must be differet.") def tree_node_parents(tree): @@ -104,10 +98,10 @@ def tree_node_range(tree, i, parents=None): Determines the ranges for a node all dimensions. ``nan`` means infinity. - @param tree tree - @param i node index (``tree.nodes[i]``) - @param parents precomputed parents (None -> calls @see fn tree_node_range) - @return one array of size *(D, 2)* where *D* is the number of dimensions + :param tree: tree + :param i: node index (``tree.nodes[i]``) + :param parents: precomputed parents (None -> calls :func:`tree_node_range`) + :return: one array of size *(D, 2)* where *D* is the number of dimensions The following example shows what the function returns in case of simple grid in two dimensions. @@ -144,11 +138,9 @@ def tree_node_range(tree, i, parents=None): lr = tree.children_left[p] == path[ind + 1] th = tree.threshold[p] if lr: - res[fn, 1] = min(res[fn, 1], th) if not numpy.isnan( - res[fn, 1]) else th + res[fn, 1] = min(res[fn, 1], th) if not numpy.isnan(res[fn, 1]) else th else: - res[fn, 0] = max(res[fn, 0], th) if not numpy.isnan( - res[fn, 0]) else th + res[fn, 0] = max(res[fn, 0], th) if not numpy.isnan(res[fn, 0]) else th return res @@ -161,11 +153,14 @@ def predict_leaves(model, X): @param X observations @return array of leaves """ - if hasattr(model, 'get_leaves_index'): + if hasattr(model, "get_leaves_index"): leaves_index = model.get_leaves_index() else: - leaves_index = [i for i in range(len(model.tree_.children_left)) - if model.tree_.children_left[i] == TREE_LEAF] + leaves_index = [ + i + for i in range(len(model.tree_.children_left)) + if model.tree_.children_left[i] == TREE_LEAF + ] leaves = model.decision_path(X) leaves = leaves[:, leaves_index] mat = numpy.argmax(leaves, 1) @@ -181,13 +176,13 @@ def tree_leave_neighbors(model): grid of the feature spaces, each split multiplies the number of cells by two. - @param model a :epkg:`sklearn:tree:DecisionTreeRegressor`, - a :epkg:`sklearn:tree:DecisionTreeClassifier`, - a model which has a member ``tree_`` - @return a dictionary ``{(i, j): (dimension, x1, x2)}``, - *i, j* are node indices, if :math:`X_d * sign < th * sign`, - the observations goes to node *i*, *j* otherwise, - *i < j*. The border is somewhere in the segment ``[x1, x2]``. + :param model: a :class:`sklearn.tree.DecisionTreeRegressor`, + a :class:`sklearn.tree.DecisionTreeClassifier`, + a model which has a member ``tree_`` + :return: a dictionary ``{(i, j): (dimension, x1, x2)}``, + *i, j* are node indices, if :math:`X_d * sign < th * sign`, + the observations goes to node *i*, *j* otherwise, + *i < j*. The border is somewhere in the segment ``[x1, x2]``. The following example shows what the function returns in case of simple grid in two dimensions. @@ -275,7 +270,7 @@ def tree_leave_neighbors(model): # outside the cube cl = None if cl is not None: - for k in range(len(pos)): # pylint: disable=C0200 + for k in range(len(pos)): pos[k] += 1 try: cl2 = cells[tuple(pos)] diff --git a/mlinsights/plotting/__init__.py b/mlinsights/plotting/__init__.py index 8609fd28..6bda20a5 100644 --- a/mlinsights/plotting/__init__.py +++ b/mlinsights/plotting/__init__.py @@ -1,7 +1,2 @@ -""" -@file -@brief Shortcuts to *plotting*. -""" - from .gallery import plot_gallery_images from .visualize import pipeline2dot, pipeline2str diff --git a/mlinsights/plotting/gallery.py b/mlinsights/plotting/gallery.py index d79e84fc..07b816bf 100644 --- a/mlinsights/plotting/gallery.py +++ b/mlinsights/plotting/gallery.py @@ -1,7 +1,3 @@ -""" -@file -@brief Featurizers for machine learned models. -""" import sys import io import os @@ -9,38 +5,32 @@ from PIL import Image -def plot_gallery_images(imgs, texts=None, width=4, return_figure=False, - ax=None, folder_image=None, **figure): +def plot_gallery_images( + imgs, texts=None, width=4, return_figure=False, ax=None, folder_image=None, **figure +): """ Plots a gallery of images using :epkg:`matplotlib`. - @param imgs list of images (filename, urls or :epkg:`Pillow` objects), - @param texts text to display (if None, print ``'img % i'``) - @param width number of images on the same line (unused if *imgs* is a matrix) - @param figure additional parameters when the figure is created - @param return_figure return the figure as well as the axes - @param ax None or existing axes, it should have the same - shape of *imgs* - @param folder_image image paths may be relative to some folder, - in that case, they should be relative to - this folder - @return axes or (figure, axes) if *return_figure* is True + :param imgs: list of images (filename, urls or :epkg:`Pillow` objects), + :param texts: text to display (if None, print ``'img % i'``) + :param width: number of images on the same line (unused if *imgs* is a matrix) + :param figure: additional parameters when the figure is created + :param return_figure: return the figure as well as the axes + :param ax: None or existing axes, it should have the sam + shape of *imgs* + :param folder_image: image paths may be relative to some folder, + in that case, they should be relative to this folder + :return: axes or (figure, axes) if *return_figure* is True .. image:: gal.jpg - - See also notebook :ref:`searchimageskerasrst` or - :ref:`searchimagestorchrst` for an example. - *imgs* can also be a matrix to force the function to - use the same coordinates. """ if "plt" not in sys.modules: - import matplotlib.pyplot as plt # pylint: disable=C0415 + import matplotlib.pyplot as plt - if hasattr(imgs, 'shape') and len(imgs.shape) == 2: + if hasattr(imgs, "shape") and len(imgs.shape) == 2: height, width = imgs.shape if ax is not None and ax.shape != imgs.shape: - raise ValueError( # pragma: no cover - f"ax.shape {ax.shape} != imgs.shape {imgs.shape}") + raise ValueError(f"ax.shape {ax.shape} != imgs.shape {imgs.shape}") imgs = imgs.ravel() if texts is not None: texts = texts.ravel() @@ -50,12 +40,11 @@ def plot_gallery_images(imgs, texts=None, width=4, return_figure=False, height += 1 if ax is None: - if 'figsize' not in figure: - figure['figsize'] = (12, height * 3) + if "figsize" not in figure: + figure["figsize"] = (12, height * 3) fig, ax = plt.subplots(height, width, **figure) elif return_figure: - raise ValueError( # pragma: no cover - "ax is specified and return_figure is True") + raise ValueError("ax is specified and return_figure is True") for i, img in enumerate(imgs): if img is None: @@ -75,9 +64,8 @@ def plot_gallery_images(imgs, texts=None, width=4, return_figure=False, content = response.read() try: im = Image.open(io.BytesIO(content)) - except OSError as e: # pragma: no cover - raise RuntimeError( - f"Unable to read image '{img}'.") from e + except OSError as e: + raise RuntimeError(f"Unable to read image '{img}'.") from e else: # local file if folder_image is not None: @@ -86,14 +74,14 @@ def plot_gallery_images(imgs, texts=None, width=4, return_figure=False, im = Image.open(img) else: im = img - if hasattr(im, 'size'): + if hasattr(im, "size"): ax[ind].imshow(im) if texts is None: t = "img %d" % i else: t = texts[i] ax[ind].text(0, 0, t) - ax[ind].axis('off') + ax[ind].axis("off") for i in range(len(imgs), width * height): y, x = i // width, i % width @@ -101,7 +89,7 @@ def plot_gallery_images(imgs, texts=None, width=4, return_figure=False, ind = x else: ind = y, x - ax[ind].axis('off') + ax[ind].axis("off") if return_figure: return fig, ax diff --git a/mlinsights/plotting/visualize.py b/mlinsights/plotting/visualize.py index b1078f40..ba4d731b 100644 --- a/mlinsights/plotting/visualize.py +++ b/mlinsights/plotting/visualize.py @@ -1,7 +1,3 @@ -""" -@file -@brief Helpers to visualize a pipeline. -""" import pprint from collections import OrderedDict import numpy @@ -17,21 +13,21 @@ def _pipeline_info(pipe, data, context, former_data=None): Internal function to convert a pipeline into some graph. """ - def _get_name(context, prefix='-v-', info=None, data=None): + + def _get_name(context, prefix="-v-", info=None, data=None): if info is None: - raise RuntimeError("info should not be None") # pragma: no cover + raise RuntimeError("info should not be None") if isinstance(prefix, list): return [_get_name(context, el, info, data) for el in prefix] if isinstance(prefix, int): prefix = former_data[prefix] if isinstance(prefix, int): - raise TypeError( # pragma: no cover - f"prefix must be a string.\ninfo={info}") - sug = "%s%d" % (prefix, context['n']) - while sug in context['names']: - context['n'] += 1 - sug = "%s%d" % (prefix, context['n']) - context['names'][sug] = info + raise TypeError(f"prefix must be a string.\ninfo={info}") + sug = "%s%d" % (prefix, context["n"]) + while sug in context["names"]: + context["n"] += 1 + sug = "%s%d" % (prefix, context["n"]) + context["names"][sug] = info return sug def _get_name_simple(name, data): @@ -39,8 +35,9 @@ def _get_name_simple(name, data): return name res = data[name] if isinstance(res, int): - raise RuntimeError( # pragma: no cover - f"Column name is still a number and not a name: {name} and {data}.") + raise RuntimeError( + f"Column name is still a number and not a name: {name} and {data}." + ) return res if isinstance(pipe, Pipeline): @@ -71,36 +68,34 @@ def _get_name_simple(name, data): for v in vs: new_data[v] = data.get(v, v) - info = _pipeline_info( - model, new_data, context, former_data=new_data) + info = _pipeline_info(model, new_data, context, former_data=new_data) # new_outputs = [] # for o in info[-1]['outputs']: # add = _get_name(context, prefix=o, info=info) # outputs.append(add) # new_outputs.append(add) # info[-1]['outputs'] = new_outputs - outputs.extend(info[-1]['outputs']) + outputs.extend(info[-1]["outputs"]) infos.extend(info) final_hat = False if pipe.remainder == "passthrough": - - done = [set(d['inputs']) for d in info] + done = [set(d["inputs"]) for d in info] merged = done[0] for d in done[1:]: merged.union(d) - new_data = OrderedDict( - [(k, v) for k, v in data.items() if k not in merged]) + new_data = OrderedDict([(k, v) for k, v in data.items() if k not in merged]) info = _pipeline_info( - "passthrough", new_data, context, former_data=new_data) - outputs.extend(info[-1]['outputs']) + "passthrough", new_data, context, former_data=new_data + ) + outputs.extend(info[-1]["outputs"]) infos.extend(info) final_hat = True if len(pipe.transformers) > 1 or final_hat: - info = {'name': 'union', 'inputs': outputs, 'type': 'transform'} - info['outputs'] = [_get_name(context, info=info)] + info = {"name": "union", "inputs": outputs, "type": "transform"} + info["outputs"] = [_get_name(context, info=info)] infos.append(info) return infos @@ -110,94 +105,112 @@ def _get_name_simple(name, data): for _, model in pipe.transformer_list: info = _pipeline_info(model, data, context) new_outputs = [] - for o in info[-1]['outputs']: + for o in info[-1]["outputs"]: add = _get_name(context, prefix=o, info=info) outputs.append(add) new_outputs.append(add) - info[-1]['outputs'] = new_outputs + info[-1]["outputs"] = new_outputs infos.extend(info) if len(pipe.transformer_list) > 1: - info = {'name': 'union', 'inputs': outputs, 'type': 'transform'} - info['outputs'] = [_get_name(context, info=info)] + info = {"name": "union", "inputs": outputs, "type": "transform"} + info["outputs"] = [_get_name(context, info=info)] infos.append(info) return infos if isinstance(pipe, TransformedTargetRegressor): - raise NotImplementedError( # pragma: no cover - "Not yet implemented for TransformedTargetRegressor.") + raise NotImplementedError("Not yet implemented for TransformedTargetRegressor.") if isinstance(pipe, TransformerMixin): - info = {'name': pipe.__class__.__name__, 'type': 'transform'} + info = {"name": pipe.__class__.__name__, "type": "transform"} if len(data) == 1: - info['outputs'] = data - info['inputs'] = data + info["outputs"] = data + info["inputs"] = data info = [info] else: - info['inputs'] = [_get_name(context, info=info)] - info['outputs'] = [_get_name(context, info=info)] - info = [{'name': 'union', 'outputs': info['inputs'], - 'inputs': data, 'type': 'transform'}, info] + info["inputs"] = [_get_name(context, info=info)] + info["outputs"] = [_get_name(context, info=info)] + info = [ + { + "name": "union", + "outputs": info["inputs"], + "inputs": data, + "type": "transform", + }, + info, + ] return info if isinstance(pipe, ClassifierMixin): - info = {'name': pipe.__class__.__name__, 'type': 'classifier'} - exp = ['PredictedLabel', 'Probabilities'] + info = {"name": pipe.__class__.__name__, "type": "classifier"} + exp = ["PredictedLabel", "Probabilities"] if len(data) == 1: - info['outputs'] = exp - info['inputs'] = data + info["outputs"] = exp + info["inputs"] = data info = [info] else: - info['outputs'] = exp - info['inputs'] = [_get_name(context, info=info)] - info = [{'name': 'union', 'outputs': info['inputs'], 'inputs': data, - 'type': 'transform'}, info] + info["outputs"] = exp + info["inputs"] = [_get_name(context, info=info)] + info = [ + { + "name": "union", + "outputs": info["inputs"], + "inputs": data, + "type": "transform", + }, + info, + ] return info if isinstance(pipe, RegressorMixin): - info = {'name': pipe.__class__.__name__, 'type': 'regressor'} - exp = ['Prediction'] + info = {"name": pipe.__class__.__name__, "type": "regressor"} + exp = ["Prediction"] if len(data) == 1: - info['outputs'] = exp - info['inputs'] = data + info["outputs"] = exp + info["inputs"] = data info = [info] else: - info['outputs'] = exp - info['inputs'] = [_get_name(context, info=info)] - info = [{'name': 'union', 'outputs': info['inputs'], 'inputs': data, - 'type': 'transform'}, info] + info["outputs"] = exp + info["inputs"] = [_get_name(context, info=info)] + info = [ + { + "name": "union", + "outputs": info["inputs"], + "inputs": data, + "type": "transform", + }, + info, + ] return info if isinstance(pipe, str): if pipe == "passthrough": - info = {'name': 'Identity', 'type': 'transform'} - info['inputs'] = [_get_name_simple(n, former_data) for n in data] + info = {"name": "Identity", "type": "transform"} + info["inputs"] = [_get_name_simple(n, former_data) for n in data] if isinstance(data, (OrderedDict, dict)) and len(data) > 1: - info['outputs'] = [ - _get_name(context, data=k, info=info) - for k in data] + info["outputs"] = [_get_name(context, data=k, info=info) for k in data] else: - info['outputs'] = _get_name(context, data=data, info=info) + info["outputs"] = _get_name(context, data=data, info=info) info = [info] else: - raise NotImplementedError( # pragma: no cover - f"Not yet implemented for keyword '{type(pipe)}'.") + raise NotImplementedError( + f"Not yet implemented for keyword '{type(pipe)}'." + ) return info - raise NotImplementedError( # pragma: no cover - f"Not yet implemented for {type(pipe)}.") + raise NotImplementedError(f"Not yet implemented for {type(pipe)}.") def pipeline2dot(pipe, data, **params): """ Exports a *scikit-learn* pipeline to - :epkg:`DOT` language. See :ref:`visualizepipelinerst` + :epkg:`DOT` language. See :ref:`l-visualize-pipeline-example` for an example. - @param pipe *scikit-learn* pipeline - @param data training data as a dataframe or a numpy array, - or just a list with the variable names - @param params additional params to draw the graph - @return string + :param pipe: *scikit-learn* pipeline + :param data: training data as a dataframe or a numpy array, + or just a list with the variable names + :param params: additional params to draw the graph + :return: string Default options for the graph are: @@ -215,28 +228,28 @@ def pipeline2dot(pipe, data, **params): data = OrderedDict() if isinstance(raw_data, pandas.DataFrame): for k, c in enumerate(raw_data.columns): - data[c] = 'sch0:f%d' % k + data[c] = "sch0:f%d" % k elif isinstance(raw_data, numpy.ndarray): if len(raw_data.shape) != 2: - raise NotImplementedError( # pragma: no cover - f"Unexpected training data dimension {raw_data.shape}.") + raise NotImplementedError( + f"Unexpected training data dimension {raw_data.shape}." + ) for i in range(raw_data.shape[1]): - data['X%d' % i] = 'sch0:f%d' % i + data["X%d" % i] = "sch0:f%d" % i elif not isinstance(raw_data, list): - raise TypeError( # pragma: no cover - f"Unexpected data type: {type(raw_data)}.") + raise TypeError(f"Unexpected data type: {type(raw_data)}.") options = { - 'orientation': 'portrait', - 'ranksep': '0.25', - 'nodesep': '0.05', - 'width': '0.5', - 'height': '0.1', + "orientation": "portrait", + "ranksep": "0.25", + "nodesep": "0.05", + "width": "0.5", + "height": "0.1", } options.update(params) exp = ["digraph{"] - for opt in ['orientation', 'pad', 'nodesep', 'ranksep']: + for opt in ["orientation", "pad", "nodesep", "ranksep"]: if opt in options: exp.append(f" {opt}={options[opt]};") fontsize = 8 @@ -249,53 +262,61 @@ def pipeline2dot(pipe, data, **params): for i, line in enumerate(info): if i == 0: - schema = line['schema_after'] + schema = line["schema_after"] labs = [] for c, col in enumerate(schema): - columns[col] = f'sch0:f{c}' + columns[col] = f"sch0:f{c}" labs.append(f" {col}") node = ' sch0[label="{0}",shape=record,fontsize={1}];'.format( - "|".join(labs), params.get('fontsize', fontsize)) + "|".join(labs), params.get("fontsize", fontsize) + ) exp.append(node) else: - exp.append('') - if line['type'] == 'transform': - node = ' node{0}[label="{1}",shape=box,style="filled' \ + exp.append("") + if line["type"] == "transform": + node = ( + ' node{0}[label="{1}",shape=box,style="filled' ',rounded",color=cyan,fontsize={2}];'.format( - i, line['name'], - int(params.get('fontsize', fontsize) * 1.5)) + i, line["name"], int(params.get("fontsize", fontsize) * 1.5) + ) + ) else: - node = ' node{0}[label="{1}",shape=box,style="filled,' \ + node = ( + ' node{0}[label="{1}",shape=box,style="filled,' 'rounded",color=yellow,fontsize={2}];'.format( - i, line['name'], - int(params.get('fontsize', fontsize) * 1.5)) + i, line["name"], int(params.get("fontsize", fontsize) * 1.5) + ) + ) exp.append(node) - for inp in line['inputs']: + for inp in line["inputs"]: if isinstance(inp, int): - raise IndexError( # pragma: no cover + raise IndexError( "Unable to guess columns {} in\n{}\n---\n{}".format( - inp, pprint.pformat(columns), '\n'.join(exp))) + inp, pprint.pformat(columns), "\n".join(exp) + ) + ) else: nc = columns.get(inp, inp) - edge = f' {nc} -> node{i};' + edge = f" {nc} -> node{i};" exp.append(edge) labs = [] - for c, out in enumerate(line['outputs']): - columns[out] = f'sch{i}:f{c}' + for c, out in enumerate(line["outputs"]): + columns[out] = f"sch{i}:f{c}" labs.append(f" {out}") node = ' sch{0}[label="{1}",shape=record,fontsize={2}];'.format( - i, "|".join(labs), params.get('fontsize', fontsize)) + i, "|".join(labs), params.get("fontsize", fontsize) + ) exp.append(node) - for out in line['outputs']: + for out in line["outputs"]: nc = columns[out] - edge = f' node{i} -> {nc};' + edge = f" node{i} -> {nc};" if edge not in exp: exp.append(edge) - exp.append('}') + exp.append("}") return "\n".join(exp) @@ -303,8 +324,9 @@ def pipeline2str(pipe, indent=3): """ Exports a *scikit-learn* pipeline to text. - @param pipe *scikit-learn* pipeline - @return str + :param pipe: *scikit-learn* pipeline + :param indent: indent + :return: str .. runpython:: :showcode: @@ -345,7 +367,7 @@ def pipeline2str(pipe, indent=3): if vs is None: msg = f"{spaces}{model.__class__.__name__}" else: - v = ','.join(map(str, vs)) + v = ",".join(map(str, vs)) msg = f"{spaces}{model.__class__.__name__}({v})" rows.append(msg) return "\n".join(rows) diff --git a/mlinsights/search_rank/__init__.py b/mlinsights/search_rank/__init__.py index ca393b95..1052faca 100644 --- a/mlinsights/search_rank/__init__.py +++ b/mlinsights/search_rank/__init__.py @@ -1,8 +1,3 @@ -""" -@file -@brief Shortcuts to *search_rank*. -""" - from .search_engine_predictions import SearchEnginePredictions from .search_engine_predictions_images import SearchEnginePredictionImages from .search_engine_vectors import SearchEngineVectors diff --git a/mlinsights/search_rank/search_engine_predictions.py b/mlinsights/search_rank/search_engine_predictions.py index 0ae91f47..02fb720d 100644 --- a/mlinsights/search_rank/search_engine_predictions.py +++ b/mlinsights/search_rank/search_engine_predictions.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a way to get close examples based -on the output of a machine learned model. -""" from ..mlmodel import model_featurizer from ..helpers.parameters import format_function_call from .search_engine_vectors import SearchEngineVectors @@ -10,28 +5,31 @@ class SearchEnginePredictions(SearchEngineVectors): """ - Extends class @see cl SearchEngineVectors by - looking for neighbors to a vector *X* by + Extends class :class:`SearchEngineVectors + ` + by looking for neighbors to a vector *X* by looking neighbors to *f(X)* and not *X*. *f* can be any function which converts a vector into another one or a machine learned model. In that case, *f* will be set to a default behavior. - See function @see fn model_featurizer. + See function :func:`mlinsights.mlmodel.ml_featurizer.model_featurizer`. + + :param fct: function *f* applied before looking for neighbors, + it can also be a machine learned model + :param fct_params: parameters sent to function + :func:`mlinsights.mlmodel.ml_featurizer.model_featurizer` + :param knn: list of parameters, see :class:`sklearn.neighbors.NearestNeighbors` """ def __init__(self, fct, fct_params=None, **knn): - """ - @param fct function *f* applied before looking for neighbors, - it can also be a machine learned model - @param fct_params parameters sent to function @see fn model_featurizer - @param pknn list of parameters, see - :epkg:`sklearn:neighborsNearestNeighbors` - """ super().__init__(**knn) self._fct_params = fct_params self._fct_init = fct - if (callable(fct) and not hasattr(fct, 'predict') and - not hasattr(fct, 'forward')): + if ( + callable(fct) + and not hasattr(fct, "predict") + and not hasattr(fct, "forward") + ): self.fct = fct else: if fct_params is None: @@ -46,30 +44,30 @@ def __repr__(self): pp = self.pknn.copy() else: pp = {} - pp['fct'] = self._fct_init - pp['fct_params'] = self._fct_params + pp["fct"] = self._fct_init + pp["fct_params"] = self._fct_params return format_function_call(self.__class__.__name__, pp) def fit(self, data=None, features=None, metadata=None): """ Every vector comes with a list of metadata. - @param data a :epkg:`dataframe` or None if the - the features and the metadata - are specified with an array and a - dictionary - @param features features columns or an array - @param metadata data + :param data: a :epkg:`dataframe` or None if the + the features and the metadata are specified with an array and a + dictionary + :param features: features columns or an array + :param metadata: data + :return: self """ iterate = self._is_iterable(data) if iterate: - self._prepare_fit(data=data, features=features, - metadata=metadata, transform=self.fct) + self._prepare_fit( + data=data, features=features, metadata=metadata, transform=self.fct + ) else: self._prepare_fit(data=data, features=features, metadata=metadata) if isinstance(self.features_, list): - raise TypeError( # pragma: no cover - "features_ cannot be a list when training the model.") + raise TypeError("features_ cannot be a list when training the model.") self.features_ = self.fct(self.features_, True) return self._fit_knn() diff --git a/mlinsights/search_rank/search_engine_predictions_images.py b/mlinsights/search_rank/search_engine_predictions_images.py index 06c96b90..e1c02ea7 100644 --- a/mlinsights/search_rank/search_engine_predictions_images.py +++ b/mlinsights/search_rank/search_engine_predictions_images.py @@ -1,71 +1,32 @@ -""" -@file -@brief Implements a way to get close examples based -on the output of a machine learned model. -""" import numpy from .search_engine_predictions import SearchEnginePredictions class SearchEnginePredictionImages(SearchEnginePredictions): """ - Extends class @see cl SearchEnginePredictions. + Extends class :class:`SearchEnginePredictions + `. Vectors are coming from images. The metadata must contains information about path names. We assume all images can hold in memory. An example can found in notebook - :ref:`searchimageskerasrst` or :ref:`searchimagestorchrst`. - Another example can be found there: - `search_images_dogcat.py - `_. + :ref:`l-search-images-torch-example`. """ - def _prepare_fit(self, data=None, features=None, metadata=None, - transform=None, n=None, fLOG=None): - """ - Stores data in the class itself. - - @param data a dataframe or None if the - the features and the metadata - are specified with an array and a - dictionary - @param features features columns or an array - @param metadata data - @param transform transform each vector before using it - @param n takes *n* images (or ``len(iter_images)``) - @param fLOG logging function - """ + def _prepare_fit( + self, data=None, features=None, metadata=None, transform=None, n=None, verbose=0 + ): if "torch" in str(type(data)): + from torch.utils.data import DataLoader + self.module_ = "torch" - from torch.utils.data import DataLoader # pylint: disable=E0401,C0415,E0611 - dataloader = DataLoader( - data, batch_size=1, shuffle=False, num_workers=0) - self.iter_images_ = iter_images = iter( - zip(dataloader, data.samples)) + + dataloader = DataLoader(data, batch_size=1, shuffle=False, num_workers=0) + self.iter_images_ = iter_images = iter(zip(dataloader, data.samples)) + self.verbose = verbose if n is None: n = len(data) - elif "keras" in str(type(data)): # pragma: no cover - self.module_ = "keras" - iter_images = data - # We delay the import as keras backend is not necessarily installed. - from keras.preprocessing.image import Iterator # pylint: disable=E0401,C0415,E0611 - from keras_preprocessing.image import DirectoryIterator, NumpyArrayIterator # pylint: disable=E0401,C0415 - if not isinstance(iter_images, (Iterator, DirectoryIterator, NumpyArrayIterator)): - raise NotImplementedError( # pragma: no cover - f"iter_images must be a keras Iterator. " - f"No option implemented for type {type(iter_images)}.") - if iter_images.batch_size != 1: - raise ValueError( # pragma: no cover - f"batch_size must be 1 not {iter_images.batch_size}") - self.iter_images_ = iter_images - if n is None: - n = len(iter_images) - if not hasattr(iter_images, "filenames"): - raise NotImplementedError( # pragma: no cover - "Iterator does not iterate on images but numpy arrays (not implemented).") else: - raise TypeError( # pragma: no cover - f"Unexpected data type {type(data)}.") + raise TypeError(f"Unexpected data type {type(data)}.") def get_current_index(flow): "get current index" @@ -73,92 +34,73 @@ def get_current_index(flow): def iterator_feature_meta(): "iterators on metadata" + def accessor(iter_images): - if hasattr(iter_images, 'filenames'): - # keras - return (lambda i, ite: (ite, iter_images.filenames[get_current_index(iter_images)])) - else: - # torch - return (lambda i, ite: (ite[0], ite[1][0])) + # torch + return lambda i, ite: (ite[0], ite[1][0]) + acc = accessor(iter_images) for i, it in zip(range(n), iter_images): im, name = acc(i, it) if not isinstance(name, str): - raise TypeError( # pragma: no cover - f"name should be a string, not {type(name)}") + raise TypeError(f"name should be a string, not {type(name)}") yield im[0], dict(name=name, i=i) - if fLOG and i % 10000 == 0: - fLOG( - f'[SearchEnginePredictionImages.fit] i={i}/{n} - {name}') + if self.verbose and i % 10000 == 0: + print(f"[SearchEnginePredictionImages.fit] i={i}/{n} - {name}") + super()._prepare_fit(data=iterator_feature_meta(), transform=transform) - def fit(self, iter_images, n=None, fLOG=None): # pylint: disable=W0237 + def fit(self, iter_images, n=None): """ Processes images through the model and fits a *k-nn*. - @param iter_images `Iterator `_ - @param n takes *n* images (or ``len(iter_images)``) - @param fLOG logging function - @param kwimg parameters used to preprocess the images + :param iter_images: `Iterator + `_ + :param n: takes *n* images (or ``len(iter_images)``) """ - self._prepare_fit(data=iter_images, transform=self.fct, n=n, fLOG=fLOG) + self._prepare_fit(data=iter_images, transform=self.fct, n=n) return self._fit_knn() - def kneighbors(self, iter_images, n_neighbors=None): # pylint: disable=W0237 + def kneighbors(self, iter_images, n_neighbors=None): """ Searches for neighbors close to the first image returned by *iter_images*. It returns the neighbors only for the first image. - @param iter_images `Iterator `_ - @return score, ind, meta + :param iter_images: `Iterator + `_ + :param n_neighbors: number of neigbhors + :return: score, ind, meta *score* is an array representing the lengths to points, *ind* contains the indices of the nearest points in the population matrix, *meta* is the metadata. """ if isinstance(iter_images, numpy.ndarray): - if self.module_ == "keras": # pragma: no cover - raise NotImplementedError("Not yet implemented or Keras.") - elif self.module_ == "torch": - from torch import from_numpy # pylint: disable=E0611,E0401,C0415 + if self.module_ == "torch": + from torch import from_numpy + X = from_numpy(iter_images[numpy.newaxis, :, :, :]) return super().kneighbors(X, n_neighbors=n_neighbors) - raise RuntimeError( # pragma: no cover - f"Unknown module '{self.module_}'.") - elif "keras" in str(iter_images): # pragma: no cover - if self.module_ != "keras": - raise RuntimeError( # pragma: no cover - f"Keras object but {self.module_} was used to train the KNN.") - # We delay the import as keras backend is not necessarily installed. - # keras, it expects an iterator. - from keras.preprocessing.image import Iterator # pylint: disable=E0401,C0415,E0611 - from keras_preprocessing.image import DirectoryIterator, NumpyArrayIterator # pylint: disable=E0401,C0415,E0611 - if not isinstance(iter_images, (Iterator, DirectoryIterator, NumpyArrayIterator)): - raise NotImplementedError( # pragma: no cover - f"iter_images must be a keras Iterator. No option implemented for type {type(iter_images)}.") - if iter_images.batch_size != 1: - raise ValueError( # pragma: no cover - f"batch_size must be 1 not {iter_images.batch_size}") - for img in iter_images: - X = img[0] - break - return super().kneighbors(X, n_neighbors=n_neighbors) + raise RuntimeError(f"Unknown module '{self.module_}'.") elif "torch" in str(type(iter_images)): if self.module_ != "torch": - raise RuntimeError( # pragma: no cover - f"Torch object but {self.module_} was used to train the KNN.") + raise RuntimeError( + f"Torch object but {self.module_} was used to train the KNN." + ) # torch: it expects a tensor X = iter_images return super().kneighbors(X, n_neighbors=n_neighbors) elif isinstance(iter_images, list): - res = [self.kneighbors(it, n_neighbors=n_neighbors) - for it in iter_images] - return (numpy.vstack([_[0] for _ in res]), - numpy.vstack([_[1] for _ in res]), - numpy.vstack([_[2] for _ in res])) + res = [self.kneighbors(it, n_neighbors=n_neighbors) for it in iter_images] + return ( + numpy.vstack([_[0] for _ in res]), + numpy.vstack([_[1] for _ in res]), + numpy.vstack([_[2] for _ in res]), + ) else: - raise TypeError( # pragma: no cover + raise TypeError( f"Unexpected type {type(iter_images)} in " - f"SearchEnginePredictionImages.kneighbors") + f"SearchEnginePredictionImages.kneighbors" + ) diff --git a/mlinsights/search_rank/search_engine_vectors.py b/mlinsights/search_rank/search_engine_vectors.py index d5fc8ad8..15e2eaad 100644 --- a/mlinsights/search_rank/search_engine_vectors.py +++ b/mlinsights/search_rank/search_engine_vectors.py @@ -1,8 +1,3 @@ -""" -@file -@brief Implements a way to get close examples based -on the output of a machine learned model. -""" import json import zipfile import pandas @@ -25,12 +20,11 @@ class SearchEngineVectors: * ``features_``: vectors used to compute the neighbors * ``knn_``: parameters for the :epkg:`sklearn:neighborsNearestNeighbors` * ``metadata_``: metadata, can be None + + :param pknn: list of parameters, see :class:`sklearn.neighbors.NearestNeighbors` """ def __init__(self, **pknn): - """ - @param pknn list of parameters, see :epkg:`sklearn:neighborsNearestNeighbors` - """ self.pknn = pknn def __repr__(self): @@ -73,27 +67,23 @@ def transform(vec, many): iterate = self._is_iterable(data) if iterate: if data is None: - raise ValueError( # pragma: no cover - "iterator is True, data must be specified.") + raise ValueError("iterator is True, data must be specified.") if features is not None: - raise ValueError( # pragma: no cover - "iterator is True, features must be None.") + raise ValueError("iterator is True, features must be None.") if metadata is not None: - raise ValueError( # pragma: no cover - "iterator is True, metadata must be None.") + raise ValueError("iterator is True, metadata must be None.") metas = [] arrays = [] for row in data: if not isinstance(row, tuple): - raise TypeError( # pragma: no cover - 'data must be an iterator on tuple') + raise TypeError("data must be an iterator on tuple") if len(row) != 2: - raise ValueError( # pragma: no cover - 'data must be an iterator on tuple on two elements') + raise ValueError( + "data must be an iterator on tuple on two elements" + ) arr, meta = row if not isinstance(meta, dict): - raise TypeError( # pragma: no cover - 'Second element of the tuple must be a dictionary') + raise TypeError("Second element of the tuple must be a dictionary") metas.append(meta) if transform is None: tradd = arr @@ -101,25 +91,25 @@ def transform(vec, many): tradd = transform(arr, False) if not isinstance(tradd, numpy.ndarray): if transform is None: - raise TypeError( # pragma: no cover - f"feature should be of type numpy.array not {type(tradd)}") + raise TypeError( + f"feature should be of type numpy.array not {type(tradd)}" + ) else: - raise TypeError( # pragma: no cover + raise TypeError( f"output of method transform {transform!r} should be of " - f"type numpy.array not {type(tradd)}.") + f"type numpy.array not {type(tradd)}." + ) arrays.append(tradd) self.features_ = numpy.vstack(arrays) self.metadata_ = pandas.DataFrame(metas) elif data is None: if not isinstance(features, numpy.ndarray): - raise TypeError( # pragma: no cover - "features must be an array if data is None") + raise TypeError("features must be an array if data is None") self.features_ = features self.metadata_ = metadata else: if not isinstance(data, pandas.DataFrame): - raise ValueError( # pragma: no cover - "data should be a dataframe") + raise ValueError("data should be a dataframe") self.features_ = data[features] self.metadata_ = data[metadata] if metadata else None @@ -127,12 +117,11 @@ def fit(self, data=None, features=None, metadata=None): """ Every vector comes with a list of metadata. - @param data a dataframe or None if the - the features and the metadata - are specified with an array and a - dictionary - @param features features columns or an array - @param metadata data + :param data: a dataframe or None if the, + the features and the metadata are specified with an array and a + dictionary + :param features: features columns or an array + :param metadata: data """ self._prepare_fit(data=data, features=features, metadata=metadata) return self._fit_knn() @@ -149,23 +138,23 @@ def _first_pass(self, X, n_neighbors=None): """ Finds the closest *n_neighbors*. - @param X features - @param n_neighbors number of neighbors to get (default is the value passed to the constructor) - @return *dist*, *ind* + :param X: features + :param n_neighbors: number of neighbors to get + (default is the value passed to the constructor) + :return: *dist*, *ind* *dist* is an array representing the lengths to points, *ind* contains the indices of the nearest points in the population matrix. """ if isinstance(X, list): if len(X) == 0 or isinstance(X[0], (list, tuple)): - raise TypeError( # pragma: no cover - "X must be a list or a vector (1)") + raise TypeError("X must be a list or a vector (1)") X = [X] if isinstance(X, numpy.ndarray) and (len(X.shape) > 1 and X.shape[0] != 1): - raise TypeError( # pragma: no cover - "X must be a list or a vector (2)") + raise TypeError("X must be a list or a vector (2)") dist, ind = self.knn_.kneighbors( - X, n_neighbors=n_neighbors, return_distance=True) + X, n_neighbors=n_neighbors, return_distance=True + ) ind = ind.ravel() dist = dist.ravel() return dist, ind @@ -174,10 +163,10 @@ def _second_pass(self, X, dist, ind): """ Reorders the closest *n_neighbors*. - @param X features - @param dist array representing the lengths to points - @param ind indices of the nearest points in the population matrix - @return *score*, *ind* + :param X: features + :param dist: array representing the lengths to points + :param ind: indices of the nearest points in the population matrix + :return: *score*, *ind* *score* is an array representing the lengths to points, *ind* contains the indices of the nearest points in the population matrix. @@ -200,7 +189,7 @@ def kneighbors(self, X, n_neighbors=None): rind = ind if self.metadata_ is None: rmeta = None - elif hasattr(self.metadata_, 'iloc'): + elif hasattr(self.metadata_, "iloc"): rmeta = self.metadata_.iloc[ind, :] elif len(self.metadata_.shape) == 1: rmeta = self.metadata_[ind] @@ -218,46 +207,44 @@ def to_zip(self, zipfilename, **kwargs): @return zipfilename The function relies on function - `to_zip `_. + `to_zip `_. It only works for :epkg:`Python` 3.6+. """ if isinstance(zipfilename, str): - zf = zipfile.ZipFile(zipfilename, 'w') + zf = zipfile.ZipFile(zipfilename, "w") close = True - else: # pragma: no cover + else: zf = zipfilename close = False - if 'index' not in kwargs: - kwargs['index'] = False - to_zip(self.features_, zf, 'SearchEngineVectors-features.npy') - to_zip(self.metadata_, zf, 'SearchEngineVectors-metadata.csv', **kwargs) + if "index" not in kwargs: + kwargs["index"] = False + to_zip(self.features_, zf, "SearchEngineVectors-features.npy") + to_zip(self.metadata_, zf, "SearchEngineVectors-metadata.csv", **kwargs) js = json.dumps(self.pknn) - zf.writestr('SearchEngineVectors-knn.json', js) + zf.writestr("SearchEngineVectors-knn.json", js) if close: zf.close() @staticmethod def read_zip(zipfilename, **kwargs): """ - Restore the features, the metadata to a @see cl SearchEngineVectors. + Restores the features, the metadata to a :class:`SearchEngineVectors + `. - @param zipfilename a :epkg:`*py:zipfile:ZipFile` or a filename - @param zname a filename in th zipfile - @param kwargs parameters for :epkg:`pandas:read_csv` - @return @see cl SearchEngineVectors - - It only works for :epkg:`Python` 3.6+. + :param zipfilename: a :epkg:`*py:zipfile:ZipFile` or a filename + :param kwargs: parameters for :epkg:`pandas:read_csv` + :return: :class:`SearchEngineVectors + ` """ if isinstance(zipfilename, str): - zf = zipfile.ZipFile(zipfilename, 'r') + zf = zipfile.ZipFile(zipfilename, "r") close = True - else: # pragma: no cover + else: zf = zipfilename close = False - feat = read_zip(zf, 'SearchEngineVectors-features.npy') - meta = read_zip(zf, 'SearchEngineVectors-metadata.csv', **kwargs) - js = zf.read('SearchEngineVectors-knn.json') + feat = read_zip(zf, "SearchEngineVectors-features.npy") + meta = read_zip(zf, "SearchEngineVectors-metadata.csv", **kwargs) + js = zf.read("SearchEngineVectors-knn.json") knn = json.loads(js) if close: zf.close() diff --git a/mlinsights/sklapi/__init__.py b/mlinsights/sklapi/__init__.py index 0a8e830d..896c78d2 100644 --- a/mlinsights/sklapi/__init__.py +++ b/mlinsights/sklapi/__init__.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Shortcuts for *mltricks*. -""" from .sklearn_base_classifier import SkBaseClassifier from .sklearn_base_learner import SkBaseLearner from .sklearn_base_regressor import SkBaseRegressor diff --git a/mlinsights/sklapi/sklearn_base.py b/mlinsights/sklapi/sklearn_base.py index 03f896d3..6d0a926f 100644 --- a/mlinsights/sklapi/sklearn_base.py +++ b/mlinsights/sklapi/sklearn_base.py @@ -1,9 +1,5 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a *learner* or a *transform* which follows the same API -as every :epkg:`scikit-learn` transform. -""" +from typing import Any, Dict import textwrap import warnings from .sklearn_parameters import SkLearnParameters @@ -18,7 +14,7 @@ class SkBase: def __init__(self, **kwargs): """ Stores the parameters, see - @see cl SkLearnParameters, it keeps a copy of + :class:`SkLearnParameters`, it keeps a copy of the parameters to easily implements method *get_params* and clones a model. """ @@ -33,7 +29,7 @@ def fit(self, X, y=None, sample_weight=None): @param sample_weight weight @return self """ - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() def get_params(self, deep=True): """ @@ -80,14 +76,16 @@ def test_equality(self, o, exc=True): return SkBase.compare_params(p1, p2, exc=exc) @staticmethod - def compare_params(p1, p2, exc=True): + def compare_params( + p1: Dict[str, Any], p2: Dict[str, Any], exc: bool = True + ) -> bool: """ Compares two sets of parameters. - @param p1 dictionary - @param p2 dictionary - @param exc raises an exception if error is met - @return boolean + :param p1: dictionary + :param p2: dictionary + :param exc: raises an exception if error is met + :return: boolean """ if p1 == p2: return True @@ -95,8 +93,7 @@ def compare_params(p1, p2, exc=True): if k not in p2: if exc: raise KeyError(f"Key '{k}' was removed.") - else: - return False + return False for k in p2: if k not in p1: if exc: @@ -104,39 +101,41 @@ def compare_params(p1, p2, exc=True): return False for k in sorted(p1): v1, v2 = p1[k], p2[k] - if hasattr(v1, 'test_equality'): + if hasattr(v1, "test_equality"): b = v1.test_equality(v2, exc=exc) if exc and v1 is not v2: - warnings.warn( # pragma: no cover + warnings.warn( f"v2 is a clone of v1 not v1 itself for key " - f"{k!r} and class {type(v1)}.") + f"{k!r} and class {type(v1)}." + ) elif isinstance(v1, list) and isinstance(v2, list) and len(v1) == len(v2): b = True for e1, e2 in zip(v1, v2): - if hasattr(e1, 'test_equality'): + if hasattr(e1, "test_equality"): b = e1.test_equality(e2, exc=exc) if not b: return b elif isinstance(v1, dict) and isinstance(v2, dict) and set(v1) == set(v2): b = True for e1, e2 in zip(sorted(v1.items()), sorted(v2.items())): - if hasattr(e1[1], 'test_equality'): + if hasattr(e1[1], "test_equality"): b = e1[1].test_equality(e2[1], exc=exc) if not b: return b elif e1[1] != e2[1]: return False elif hasattr(v1, "get_params") and hasattr(v2, "get_params"): - b = SkBase.compare_params(v1.get_params( - deep=False), v2.get_params(deep=False), exc=exc) + b = SkBase.compare_params( + v1.get_params(deep=False), v2.get_params(deep=False), exc=exc + ) else: b = v1 == v2 if not b: if exc: raise ValueError( - f"Values for key '{k}' are different.\n---\n{v1}\n---\n{v2}") - else: - return False + f"Values for key '{k}' are different.\n---\n{v1}\n---\n{v2}" + ) + return False return True def __repr__(self): diff --git a/mlinsights/sklapi/sklearn_base_classifier.py b/mlinsights/sklapi/sklearn_base_classifier.py index 2ea591a4..cba630b9 100644 --- a/mlinsights/sklapi/sklearn_base_classifier.py +++ b/mlinsights/sklapi/sklearn_base_classifier.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements class @see cl SkBaseClassifier. -""" from sklearn.metrics import accuracy_score from .sklearn_base_learner import SkBaseLearner @@ -22,10 +18,12 @@ def score(self, X, y=None, sample_weight=None): """ Returns the mean accuracy on the given test data and labels. - @param X Training data, numpy array or sparse matrix of shape [n_samples,n_features] - @param y Target values, numpy array of shape [n_samples, n_targets] (optional) - @param sample_weight Weight values, numpy array of shape [n_samples, n_targets] (optional) - @return score : float, Mean accuracy of self.predict(X) wrt. y. + :param X: Training data, numpy array or sparse matrix of + shape [n_samples,n_features] + :param y: Target values, numpy array of shape [n_samples, n_targets] (optional) + :param sample_weight: Weight values, numpy array of + shape [n_samples, n_targets] (optional) + :return: score : float, Mean accuracy of self.predict(X) wrt. y. """ return accuracy_score(y, self.predict(X), sample_weight=sample_weight) @@ -33,7 +31,8 @@ def predict_proba(self, X): """ Returns probability estimates for the test data X. - @param X Training data, numpy array or sparse matrix of shape [n_samples,n_features] - @return array, shape = (n_samples,.), Returns predicted values. + :param X: Training data, numpy array or sparse matrix of + shape [n_samples,n_features] + :return: array, shape = (n_samples,.), Returns predicted values. """ raise NotImplementedError() diff --git a/mlinsights/sklapi/sklearn_base_learner.py b/mlinsights/sklapi/sklearn_base_learner.py index 7a4601eb..b422e3f2 100644 --- a/mlinsights/sklapi/sklearn_base_learner.py +++ b/mlinsights/sklapi/sklearn_base_learner.py @@ -1,9 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a *learner* which follows the same API -as every :epkg:`scikit-learn` learner. -""" from .sklearn_base import SkBase @@ -32,7 +27,7 @@ def fit(self, X, y=None, sample_weight=None): @param sample_weight weight @return self """ - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() def predict(self, X): """ @@ -41,7 +36,7 @@ def predict(self, X): @param X features @return prédictions """ - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() def decision_function(self, X): """ @@ -49,18 +44,21 @@ def decision_function(self, X): matrix with a score for each class and each sample for a classifier. - @param X Samples, {array-like, sparse matrix}, shape = (n_samples, n_features) - @return array, shape = (n_samples,.), Returns predicted values. + :param X: Samples, {array-like, sparse matrix}, + shape = (n_samples, n_features) + :return: array, shape = (n_samples,.), Returns predicted values. """ - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() def score(self, X, y=None, sample_weight=None): """ Returns the mean accuracy on the given test data and labels. - @param X Training data, numpy array or sparse matrix of shape [n_samples,n_features] - @param y Target values, numpy array of shape [n_samples, n_targets] (optional) - @param sample_weight Weight values, numpy array of shape [n_samples, n_targets] (optional) - @return score : float, Mean accuracy of self.predict(X) wrt. y. + :param X: Training data, numpy array or sparse matrix of + shape [n_samples,n_features] + :param y: Target values, numpy array of shape [n_samples, n_targets] (optional) + :param sample_weight: Weight values, numpy array of + shape [n_samples, n_targets] (optional) + :return: score : float, Mean accuracy of self.predict(X) wrt. y. """ - raise NotImplementedError() # pragma: no cover + raise NotImplementedError() diff --git a/mlinsights/sklapi/sklearn_base_regressor.py b/mlinsights/sklapi/sklearn_base_regressor.py index c7358c14..7acf03cf 100644 --- a/mlinsights/sklapi/sklearn_base_regressor.py +++ b/mlinsights/sklapi/sklearn_base_regressor.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements @see cl SkBaseRegressor. -""" from sklearn.metrics import r2_score from .sklearn_base_learner import SkBaseLearner @@ -22,9 +18,11 @@ def score(self, X, y=None, sample_weight=None): """ Returns the mean accuracy on the given test data and labels. - @param X Training data, numpy array or sparse matrix of shape [n_samples,n_features] - @param y Target values, numpy array of shape [n_samples, n_targets] (optional) - @param sample_weight Weight values, numpy array of shape [n_samples, n_targets] (optional) - @return score : float, Mean accuracy of self.predict(X) wrt. y. + :param X: Training data, numpy array or sparse matrix of + shape [n_samples,n_features] + :param y: Target values, numpy array of shape [n_samples, n_targets] (optional) + :param sample_weight: Weight values, numpy array of shape + [n_samples, n_targets] (optional) + :return: score : float, Mean accuracy of self.predict(X) wrt. y. """ return r2_score(y, self.predict(X), sample_weight=sample_weight) diff --git a/mlinsights/sklapi/sklearn_base_transform.py b/mlinsights/sklapi/sklearn_base_transform.py index e8c5233b..73daaa90 100644 --- a/mlinsights/sklapi/sklearn_base_transform.py +++ b/mlinsights/sklapi/sklearn_base_transform.py @@ -1,9 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a *transform* which follows the smae API -as every :epkg:`scikit-learn` transform. -""" from .sklearn_base import SkBase @@ -45,9 +40,10 @@ def fit_transform(self, X, y=None, **kwargs): """ Trains and transforms the data. - @param X features - @param y targets - @return self + :param X: features + :param y: targets + :param kwargs: additional fitting parameters + :return: self """ self.fit(X, y=y, **kwargs) return self.transform(X) diff --git a/mlinsights/sklapi/sklearn_base_transform_learner.py b/mlinsights/sklapi/sklearn_base_transform_learner.py index d5cfab10..c08f591a 100644 --- a/mlinsights/sklapi/sklearn_base_transform_learner.py +++ b/mlinsights/sklapi/sklearn_base_transform_learner.py @@ -1,9 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implements a *transform* which converts a *learner* into -a *transform*. -""" import textwrap import numpy from .sklearn_base_transform import SkBaseTransform @@ -15,7 +10,8 @@ class SkBaseTransformLearner(SkBaseTransform): method *predict* into *transform*. This way, two learners can be inserted into the same pipeline. There is another a,d shorter implementation - with class @see class TransferTransformer. + with class :class:`TransferTransformer + `. .. exref:: :title: Use two learners into a same pipeline @@ -23,7 +19,7 @@ class SkBaseTransformLearner(SkBaseTransform): :lid: ex-pipe2learner It is impossible to use two *learners* into a pipeline - unless we use a class such as @see cl SkBaseTransformLearner + unless we use a class such as :class:`SkBaseTransformLearner` which disguise a *learner* into a *transform*. .. runpython:: @@ -78,14 +74,15 @@ def __init__(self, model=None, method=None, **kwargs): super().__init__(**kwargs) self.model = model if model is None: - raise ValueError("value cannot be None") # pragma: no cover + raise ValueError("value cannot be None") if method is None: - for name in ['predict_proba', 'predict', 'transform']: + for name in ["predict_proba", "predict", "transform"]: if hasattr(model.__class__, name): method = name if method is None: - raise ValueError( # pragma: no cover - f"Unable to guess a default method for '{repr(model)}'") + raise ValueError( + f"Unable to guess a default method for '{repr(model)}'" + ) self.method = method self._set_method(method) @@ -95,22 +92,20 @@ def _set_method(self, method): into predictions. """ if isinstance(method, str): - if method == 'predict': + if method == "predict": self.method_ = self.model.predict - elif method == 'predict_proba': + elif method == "predict_proba": self.method_ = self.model.predict_proba - elif method == 'decision_function': + elif method == "decision_function": self.method_ = self.model.decision_function - elif method == 'transform': + elif method == "transform": self.method_ = self.model.transform else: - raise ValueError( # pragma: no cover - f"Unexpected method '{method}'") + raise ValueError(f"Unexpected method '{method}'") elif callable(method): self.method_ = method else: - raise TypeError( # pragma: no cover - f"Unable to find the transform method, method={method}") + raise TypeError(f"Unable to find the transform method, method={method}") def fit(self, X, y=None, **kwargs): """ @@ -148,8 +143,8 @@ def get_params(self, deep=True): @return dict """ res = self.P.to_dict() - res['model'] = self.model - res['method'] = self.method + res["model"] = self.model + res["method"] = self.method if deep: par = self.model.get_params(deep) for k, v in par.items(): @@ -162,25 +157,23 @@ def set_params(self, **values): @param values parameters """ - if 'model' in values: - self.model = values['model'] - del values['model'] - elif not hasattr(self, 'model') or self.model is None: - raise KeyError( # pragma: no cover - f"Missing key 'model' in [{', '.join(sorted(values))}]") - if 'method' in values: - self._set_method(values['method']) - del values['method'] + if "model" in values: + self.model = values["model"] + del values["model"] + elif not hasattr(self, "model") or self.model is None: + raise KeyError(f"Missing key 'model' in [{', '.join(sorted(values))}]") + if "method" in values: + self._set_method(values["method"]) + del values["method"] for k in values: - if not k.startswith('model__'): - raise ValueError( # pragma: no cover - f"Parameter '{k}' must start with 'model__'.") - d = len('model__') + if not k.startswith("model__"): + raise ValueError(f"Parameter '{k}' must start with 'model__'.") + d = len("model__") pars = {k[d:]: v for k, v in values.items()} self.model.set_params(**pars) - if 'method' in values: - self.method = values['method'] - self._set_method(values['method']) + if "method" in values: + self.method = values["method"] + self._set_method(values["method"]) ################# # common methods diff --git a/mlinsights/sklapi/sklearn_base_transform_stacking.py b/mlinsights/sklapi/sklearn_base_transform_stacking.py index 0a69356d..c4a2ee7f 100644 --- a/mlinsights/sklapi/sklearn_base_transform_stacking.py +++ b/mlinsights/sklapi/sklearn_base_transform_stacking.py @@ -1,8 +1,4 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Implémente un *transform* qui suit la même API que tout :epkg:`scikit-learn` transform. -""" import textwrap import numpy from .sklearn_base_transform import SkBaseTransform @@ -65,21 +61,20 @@ def __init__(self, models=None, method=None, **kwargs): """ super().__init__(**kwargs) if models is None: - raise ValueError("models cannot be None") # pragma: no cover + raise ValueError("models cannot be None") if not isinstance(models, list): - raise TypeError( # pragma: no cover - f"models must be a list not {type(models)}") + raise TypeError(f"models must be a list not {type(models)}") if method is None: - method = 'predict' + method = "predict" if not isinstance(method, str): - raise TypeError( # pragma: no cover - f"Method must be a string not {type(method)}") + raise TypeError(f"Method must be a string not {type(method)}") self.method = method if isinstance(method, list): - if len(method) != len(models): # pragma: no cover + if len(method) != len(models): raise ValueError( f"models and methods must have the same " - f"length: {len(models)} != {len(method)}.") + f"length: {len(models)} != {len(method)}." + ) else: method = [method for m in models] @@ -92,15 +87,16 @@ def convert2transform(c, new_learners): res = SkBaseTransformLearner(m.model, me) new_learners.append(res) return res - if hasattr(m, 'transform'): + if hasattr(m, "transform"): return m res = SkBaseTransformLearner(m, me) new_learners.append(res) return res new_learners = [] - res = list(map(lambda c: convert2transform( - c, new_learners), zip(models, method))) + res = list( + map(lambda c: convert2transform(c, new_learners), zip(models, method)) + ) if len(new_learners) == 0: # We need to do that to avoid creating new objects # when it is not necessary. This behavior is not @@ -147,8 +143,8 @@ def get_params(self, deep=True): @return dict """ res = self.P.to_dict() - res['models'] = self.models - res['method'] = self.method + res["models"] = self.models + res["method"] = self.method if deep: for i, m in enumerate(self.models): par = m.get_params(deep) @@ -162,22 +158,21 @@ def set_params(self, **values): @param params parameters """ - if 'models' in values: - self.models = values['models'] - del values['models'] - if 'method' in values: - self.method = values['method'] - del values['method'] + if "models" in values: + self.models = values["models"] + del values["models"] + if "method" in values: + self.method = values["method"] + del values["method"] for k, v in values.items(): - if not k.startswith('models_'): - raise ValueError( # pragma: no cover - f"Parameter '{k}' must start with 'models_'.") - d = len('models_') + if not k.startswith("models_"): + raise ValueError(f"Parameter '{k}' must start with 'models_'.") + d = len("models_") pars = [{} for m in self.models] for k, v in values.items(): - si = k[d:].split('__', 1) + si = k[d:].split("__", 1) i = int(si[0]) - pars[i][k[d + 1 + len(si):]] = v + pars[i][k[d + 1 + len(si) :]] = v for p, m in zip(pars, self.models): if p: m.set_params(**p) @@ -193,7 +188,10 @@ def __repr__(self): rps = repr(self.P) res = "{0}([{1}], [{2}], {3})".format( self.__class__.__name__, - ", ".join(repr(m.model if hasattr(m, 'model') else m) - for m in self.models), - ", ".join(repr(m.method if hasattr(m, 'method') else None) for m in self.models), rps) + ", ".join(repr(m.model if hasattr(m, "model") else m) for m in self.models), + ", ".join( + repr(m.method if hasattr(m, "method") else None) for m in self.models + ), + rps, + ) return "\n".join(textwrap.wrap(res, subsequent_indent=" ")) diff --git a/mlinsights/sklapi/sklearn_parameters.py b/mlinsights/sklapi/sklearn_parameters.py index 874d0d49..b207ca37 100644 --- a/mlinsights/sklapi/sklearn_parameters.py +++ b/mlinsights/sklapi/sklearn_parameters.py @@ -1,16 +1,13 @@ # -*- coding: utf-8 -*- -""" -@file -@brief Defines class @see cl SkLearnParameters. -""" import textwrap -class SkException (Exception): +class SkException(Exception): """ custom exception """ + pass @@ -33,13 +30,12 @@ def validate(self, name, value): """ Verifies a parameter and its value. - @param name name - @param value value - @raises raises @see cl SkException if error + :param name: name + :param value: value + :raise: raises :class:`SkException` if error """ if name.startswith("_") or name.endswith("_"): - raise SkException( # pragma: no cover - f"Parameter name must not start by '_': '{name}'") + raise SkException(f"Parameter name must not start by '_': '{name}'") @property def Keys(self): @@ -52,13 +48,14 @@ def __repr__(self): """ usual """ + def fmt(v): "formatting function" if isinstance(v, str): return f"'{v}'" return repr(v) - text = ", ".join(f"{k}={fmt(getattr(self, k))}" - for k in sorted(self.Keys)) + + text = ", ".join(f"{k}={fmt(getattr(self, k))}" for k in sorted(self.Keys)) return "\n".join(textwrap.wrap(text, subsequent_indent=" ")) def to_dict(self): diff --git a/mlinsights/timeseries/__init__.py b/mlinsights/timeseries/__init__.py index 8b348976..aac46971 100644 --- a/mlinsights/timeseries/__init__.py +++ b/mlinsights/timeseries/__init__.py @@ -1,7 +1,2 @@ -""" -@file -@brief Shortcut to *timeseries*. -""" - from .ar import ARTimeSeriesRegressor from .utils import build_ts_X_y diff --git a/mlinsights/timeseries/agg.py b/mlinsights/timeseries/agg.py index b6076c12..17f628ba 100644 --- a/mlinsights/timeseries/agg.py +++ b/mlinsights/timeseries/agg.py @@ -1,13 +1,9 @@ -""" -@file -@brief Data aggregation for timeseries. -""" import datetime import pandas from pandas.tseries.frequencies import to_offset -def _get_column_name(df, name='agg'): +def _get_column_name(df, name="agg"): """ Returns a unique column name not in the existing dataframe. @@ -16,13 +12,13 @@ def _get_column_name(df, name='agg'): @return new column name """ while name in df.columns: - name += '_' + name += "_" return name -def aggregate_timeseries(df, index='time', values='y', - unit='half-hour', agg='sum', - per=None): +def aggregate_timeseries( + df, index="time", values="y", unit="half-hour", agg="sum", per=None +): """ Aggregates timeseries assuming the data is in a dataframe. @@ -37,53 +33,57 @@ def aggregate_timeseries(df, index='time', values='y', if df is None: if len(values.shape) == 1: df = pandas.DataFrame(dict(time=index, y=values)) - values = 'y' + values = "y" else: df = pandas.DataFrame(dict(time=index)) for i in range(values.shape[1]): - df['y%d' % i] = values[:, i] + df["y%d" % i] = values[:, i] values = list(df.columns)[1:] - index = 'time' + index = "time" def round_(serie, freq, per): fr = to_offset(freq) - res = pandas.DatetimeIndex(serie).floor(fr) # pylint: disable=E1101 + res = pandas.DatetimeIndex(serie).floor(fr) if per is None: return res - if per == 'week': + if per == "week": pyres = res.to_pydatetime() return pandas.to_timedelta( map( lambda t: datetime.timedelta( - days=t.weekday(), hours=t.hour, minutes=t.minute), - pyres)) - if per == 'month': + days=t.weekday(), hours=t.hour, minutes=t.minute + ), + pyres, + ) + ) + if per == "month": pyres = res.to_pydatetime() return pandas.to_timedelta( map( lambda t: datetime.timedelta( - days=t.day, hours=t.hour, minutes=t.minute), - pyres)) - raise ValueError( # pragma: no cover - f"Unknown frequency '{per}'.") + days=t.day, hours=t.hour, minutes=t.minute + ), + pyres, + ) + ) + raise ValueError(f"Unknown frequency '{per}'.") agg_name = _get_column_name(df) df = df.copy() - if unit == 'half-hour': + if unit == "half-hour": freq = datetime.timedelta(minutes=30) df[agg_name] = round_(df[index], freq, per) else: - raise ValueError( # pragma: no cover - f"Unknown time unit '{unit}'.") + raise ValueError(f"Unknown time unit '{unit}'.") if not isinstance(values, list): values = [values] - if agg == 'sum': + if agg == "sum": gr = df[[agg_name] + values].groupby(agg_name, as_index=False).sum() - agg_name = _get_column_name(gr, 'week' + index) + agg_name = _get_column_name(gr, "week" + index) gr.columns = [agg_name] + list(gr.columns[1:]) - elif agg == 'norm': + elif agg == "norm": gr = df[[agg_name] + values].groupby(agg_name, as_index=False).sum() - agg_name = _get_column_name(gr, 'week' + index) + agg_name = _get_column_name(gr, "week" + index) agg_cols = list(gr.columns[1:]) gr.columns = [agg_name] + agg_cols for c in agg_cols: @@ -91,6 +91,5 @@ def round_(serie, freq, per): if su != 0: gr[c] /= su else: - raise ValueError( # pragma: no cover - f"Unknown aggregation '{agg}'.") + raise ValueError(f"Unknown aggregation '{agg}'.") return gr.sort_values(agg_name).reset_index(drop=True) diff --git a/mlinsights/timeseries/ar.py b/mlinsights/timeseries/ar.py index feb98c18..e50a1149 100644 --- a/mlinsights/timeseries/ar.py +++ b/mlinsights/timeseries/ar.py @@ -1,7 +1,3 @@ -""" -@file -@brief Auto-regressor for timeseries. -""" from .base import BaseTimeSeries, TimeSeriesRegressorMixin from .dummies import DummyTimeSeriesRegressor @@ -14,35 +10,48 @@ class ARTimeSeriesRegressor(BaseTimeSeries, TimeSeriesRegressorMixin): :math:`\\hat{Y_{t+d} = f(Y_{t-1}, ..., Y_{t-p})}` with *d* in *[delay1, delay2[* and :math:`1 \\leqslant p \\leqslant past`. + + :param estimator: estimator to use for regression, + :class:`sklearn.linear_model.LinearRegression` + implements a linear auto-regressor, + ``'dummy'`` use past value as predictions + :param past: values to use to predict + :param delay1: the model computes the first prediction for + *time=t + delay1* + :param delay2: the model computes the last prediction for + *time=t + delay2* excluded + :param use_all_past: use all past features, not only the timeseries + :param preprocessing: preprocessing to apply before predicting, + only the timeseries itselves, it can be + a difference, it must be of type + :class:`BaseReciprocalTimeSeriesTransformer + ` """ - def __init__(self, estimator="dummy", past=1, delay1=1, delay2=2, - use_all_past=False, preprocessing=None): - """ - @param estimator estimator to use for regression, - :epkg:`sklearn:linear_model:LinearRegression` - implements a linear auto-regressor, - ``'dummy'`` use past value as predictions - @param past values to use to predict - @param delay1 the model computes the first prediction for - *time=t + delay1* - @param delay2 the model computes the last prediction for - *time=t + delay2* excluded - @param use_all_past use all past features, not only the timeseries - @param preprocessing preprocessing to apply before predicting, - only the timeseries itselves, it can be - a difference, it must be of type - @see cl BaseReciprocalTimeSeriesTransformer - """ + def __init__( + self, + estimator="dummy", + past=1, + delay1=1, + delay2=2, + use_all_past=False, + preprocessing=None, + ): TimeSeriesRegressorMixin.__init__(self) - BaseTimeSeries.__init__(self, past=past, delay1=delay1, delay2=delay2, - use_all_past=use_all_past, preprocessing=preprocessing) + BaseTimeSeries.__init__( + self, + past=past, + delay1=delay1, + delay2=delay2, + use_all_past=use_all_past, + preprocessing=preprocessing, + ) if estimator == "dummy": self.estimator = DummyTimeSeriesRegressor( - past=past, delay1=delay1, delay2=delay2, use_all_past=use_all_past) + past=past, delay1=delay1, delay2=delay2, use_all_past=use_all_past + ) if not hasattr(self.estimator, "fit"): - raise TypeError( # pragma: no cover - f"estimator is not an estimator but {type(estimator)}") + raise TypeError(f"estimator is not an estimator but {type(estimator)}") def fit(self, X, y, sample_weight=None): """ @@ -55,9 +64,11 @@ def fit(self, X, y, sample_weight=None): :return: self """ X, y, sample_weight = self._base_fit_predict(X, y, sample_weight) - self.estimator_ = (self.estimator.fit(X, y) - if sample_weight is None - else self.estimator.fit(X, y, sample_weight=sample_weight)) + self.estimator_ = ( + self.estimator.fit(X, y) + if sample_weight is None + else self.estimator.fit(X, y, sample_weight=sample_weight) + ) return self def predict(self, X, y): diff --git a/mlinsights/timeseries/base.py b/mlinsights/timeseries/base.py index 4455b551..51229980 100644 --- a/mlinsights/timeseries/base.py +++ b/mlinsights/timeseries/base.py @@ -1,7 +1,3 @@ -""" -@file -@brief Base class for timeseries. -""" from sklearn.base import BaseEstimator, RegressorMixin, clone from ..mlmodel.sklearn_transform_inv import BaseReciprocalTransformer from .metrics import ts_mape @@ -26,7 +22,7 @@ def fit(self, X, y, sample_weight=None): """ Stores the first values. """ - raise NotImplementedError("Should be overwritten.") # pragma: no cover + raise NotImplementedError("Should be overwritten.") def transform(self, X, y, sample_weight=None, context=None): """ @@ -37,13 +33,13 @@ def transform(self, X, y, sample_weight=None, context=None): in the predictor is not related to the *y* series given to the *transform* method. """ - raise NotImplementedError("Should be overwritten.") # pragma: no cover + raise NotImplementedError("Should be overwritten.") def get_fct_inv(self): """ Returns the reverse tranform. """ - raise NotImplementedError("Should be overwritten.") # pragma: no cover + raise NotImplementedError("Should be overwritten.") class BaseTimeSeries(BaseEstimator): @@ -54,39 +50,42 @@ class BaseTimeSeries(BaseEstimator): :math:`\\hat{Y_{t+d} = f(Y_{t-1}, ..., Y_{t-p})}` with *d* in *[delay1, delay2[* and :math:`1 \\leqslant p \\leqslant past`. + + :param past: values to use to predict + :param delay1: the model computes the first prediction for + *time=t + delay1* + :param delay2: the model computes the last prediction for + *time=t + delay2* excluded + :param use_all_past: use all past features, not only the timeseries + :param preprocessing: preprocessing to apply before predicting, + only the timeseries itselves, it can be + a difference, it must be of type + :class:`BaseReciprocalTimeSeriesTransformer + ` """ - def __init__(self, past=1, delay1=1, delay2=2, - use_all_past=False, preprocessing=None): - """ - @param past values to use to predict - @param delay1 the model computes the first prediction for - *time=t + delay1* - @param delay2 the model computes the last prediction for - *time=t + delay2* excluded - @param use_all_past use all past features, not only the timeseries - @param preprocessing preprocessing to apply before predicting, - only the timeseries itselves, it can be - a difference, it must be of type - @see cl BaseReciprocalTimeSeriesTransformer - """ + def __init__( + self, past=1, delay1=1, delay2=2, use_all_past=False, preprocessing=None + ): self.past = past self.delay1 = delay1 self.delay2 = delay2 self.use_all_past = use_all_past self.preprocessing = preprocessing if self.delay1 < 1: - raise ValueError("delay1 must be >= 1") # pragma: no cover + raise ValueError("delay1 must be >= 1") if self.delay2 <= self.delay1: - raise ValueError("delay2 must be >= 1") # pragma: no cover + raise ValueError("delay2 must be >= 1") if self.past < 0: - raise ValueError("past must be > 0") # pragma: no cover - if (preprocessing is not None and - not isinstance(preprocessing, BaseReciprocalTimeSeriesTransformer)): - raise TypeError( # pragma: no cover + raise ValueError("past must be > 0") + if preprocessing is not None and not isinstance( + preprocessing, BaseReciprocalTimeSeriesTransformer + ): + raise TypeError( f"preprocessing must be of type " f"'BaseReciprocalTimeSeriesTransformer' " - f"not {type(preprocessing)}.") + f"not {type(preprocessing)}." + ) def _fit_preprocessing(self, X, y, sample_weight=None): """ @@ -123,9 +122,8 @@ def _base_fit_predict(self, X, y, sample_weight=None): The *y* series is moved by *self.delay1* in the past. """ if y is None: - raise RuntimeError("y cannot be None") # pragma: no cover - X, y, sample_weight = build_ts_X_y( - self, X, y, sample_weight, same_rows=True) + raise RuntimeError("y cannot be None") + X, y, sample_weight = build_ts_X_y(self, X, y, sample_weight, same_rows=True) X, y, sample_weight = self._fit_preprocessing(X, y, sample_weight) return X, y, sample_weight @@ -133,7 +131,7 @@ def has_preprocessing(self): """ Tells if there is one preprocessing. """ - return hasattr(self, 'preprocessing_') and self.preprocessing_ is not None + return hasattr(self, "preprocessing_") and self.preprocessing_ is not None def _applies_preprocessing(self, X, y, sample_weight): """ @@ -163,13 +161,12 @@ class TimeSeriesRegressorMixin(RegressorMixin): def score(self, X, y, sample_weight=None): """ - Scores the prediction using - @see fn ts_mape + Scores the prediction using :func:`ts_mape`. :param X: features :param y: expected values :param sample_weight: sample weight - :return: see @see fn ts_mape + :return: see :func:`ts_mape` """ pred = self.predict(X, y) return ts_mape(y, pred, sample_weight=sample_weight) diff --git a/mlinsights/timeseries/datasets.py b/mlinsights/timeseries/datasets.py index b6b10882..7a6c5e0d 100644 --- a/mlinsights/timeseries/datasets.py +++ b/mlinsights/timeseries/datasets.py @@ -1,7 +1,3 @@ -""" -@file -@brief Datasets for timeseries. -""" import datetime import numpy import pandas @@ -11,10 +7,10 @@ def artificial_data(dt1, dt2, minutes=1): """ Generates articial data every minutes. - @param dt1 first date - @param dt2 second date - @param minutes interval between two observations - @return dataframe + :param dt1: first date + :param dt2: second date + :param minutes: interval between two observations + :return: dataframe .. runpython:: :showcode: @@ -47,9 +43,9 @@ def sat(x): y = sat(x) else: y = fxweek(x) - data.append({'time': dt1, 'y': y}) + data.append({"time": dt1, "y": y}) dt1 += dt df = pandas.DataFrame(data) - df['y'] += numpy.random.randn(df.shape[0]) * 0.1 - df['time'] = pandas.DatetimeIndex(df['time']) + df["y"] += numpy.random.randn(df.shape[0]) * 0.1 + df["time"] = pandas.DatetimeIndex(df["time"]) return df diff --git a/mlinsights/timeseries/dummies.py b/mlinsights/timeseries/dummies.py index 32d60274..cb974b33 100644 --- a/mlinsights/timeseries/dummies.py +++ b/mlinsights/timeseries/dummies.py @@ -1,7 +1,3 @@ -""" -@file -@brief Dummy auto-regressor which takes past values as predictions. -""" import numpy from .base import BaseTimeSeries, TimeSeriesRegressorMixin from .utils import check_ts_X_y @@ -10,29 +6,42 @@ class DummyTimeSeriesRegressor(BaseTimeSeries, TimeSeriesRegressorMixin): """ Dummy regressor for time series. Use past values as prediction. + + :param estimator: estimator to use for regression, + :class:`sklearn.linear_model.LinearRegression` + implements a linear auto-regressor, + ``'dummy'`` use past value as predictions + :param past: values to use to predict + :param delay1: the model computes the first prediction for + *time=t + delay1* + :param delay2: the model computes the last prediction for + *time=t + delay2* excluded + :param use_all_past: use all past features, not only the timeseries + :param preprocessing: preprocessing to apply before predicting, + only the timeseries itselves, it can be + a difference, it must be of type + :class:`BaseReciprocalTimeSeriesTransformer + ` """ - def __init__(self, estimator="dummy", past=1, delay1=1, delay2=2, - use_all_past=False, preprocessing=None): - """ - @param estimator estimator to use for regression, - :epkg:`sklearn:linear_model:LinearRegression` - implements a linear auto-regressor, - ``'dummy'`` use past value as predictions - @param past values to use to predict - @param delay1 the model computes the first prediction for - *time=t + delay1* - @param delay2 the model computes the last prediction for - *time=t + delay2* excluded - @param use_all_past use all past features, not only the timeseries - @param preprocessing preprocessing to apply before predicting, - only the timeseries itselves, it can be - a difference, it must be of type - @see cl BaseReciprocalTimeSeriesTransformer - """ + def __init__( + self, + estimator="dummy", + past=1, + delay1=1, + delay2=2, + use_all_past=False, + preprocessing=None, + ): TimeSeriesRegressorMixin.__init__(self) - BaseTimeSeries.__init__(self, past=past, delay1=delay1, delay2=delay2, - use_all_past=use_all_past, preprocessing=preprocessing) + BaseTimeSeries.__init__( + self, + past=past, + delay1=delay1, + delay2=delay2, + use_all_past=use_all_past, + preprocessing=preprocessing, + ) def fit(self, X, y, sample_weight=None): """ diff --git a/mlinsights/timeseries/metrics.py b/mlinsights/timeseries/metrics.py index 405ae805..27f9c47d 100644 --- a/mlinsights/timeseries/metrics.py +++ b/mlinsights/timeseries/metrics.py @@ -1,7 +1,3 @@ -""" -@file -@brief Timeseries metrics. -""" import numpy @@ -13,13 +9,13 @@ def ts_mape(expected_y, predicted_y, sample_weight=None): predictor would do by using the previous day as a prediction. - @param expected_y expected values - @param predicted_y predictions - @return metrics + :param expected_y: expected values + :param predicted_y: predictions + :param sample_weight: sample weight + :return: metrics """ if len(expected_y) != len(predicted_y): - raise ValueError( # pragma: no cover - f'Size mismatch {len(expected_y)} != {len(predicted_y)}.') + raise ValueError(f"Size mismatch {len(expected_y)} != {len(predicted_y)}.") expected_y = numpy.squeeze(expected_y) predicted_y = numpy.squeeze(predicted_y) mask = numpy.isnan(predicted_y) @@ -32,9 +28,11 @@ def ts_mape(expected_y, predicted_y, sample_weight=None): dy2 = numpy.sum(numpy.abs(predicted_y[1:] - expected_y[1:])) else: dy1 = numpy.sum( - (numpy.abs(expected_y[:-1] - expected_y[1:]) * sample_weight[1:])) + (numpy.abs(expected_y[:-1] - expected_y[1:]) * sample_weight[1:]) + ) dy2 = numpy.sum( - (numpy.abs(predicted_y[1:] - expected_y[1:]) * sample_weight[1:])) + (numpy.abs(predicted_y[1:] - expected_y[1:]) * sample_weight[1:]) + ) dy1 = dy1.sum() dy2 = dy2.sum() if dy1 == 0: diff --git a/mlinsights/timeseries/patterns.py b/mlinsights/timeseries/patterns.py index 6535c324..d92cd0ab 100644 --- a/mlinsights/timeseries/patterns.py +++ b/mlinsights/timeseries/patterns.py @@ -1,69 +1,72 @@ -""" -@file -@brief Find patterns in timeseries. -""" import numpy import pandas from sklearn.cluster import KMeans from .agg import aggregate_timeseries -def find_ts_group_pattern(ttime, values, names, name_subset=None, - per='week', unit='half-hour', agg='sum', - estimator=None, fLOG=None): +def find_ts_group_pattern( + ttime, + values, + names, + name_subset=None, + per="week", + unit="half-hour", + agg="sum", + estimator=None, + verbose=0, +): """ Clusters times series to find similar patterns. - @param ttime time column - @param values features to use to cluster - @param names column which holds group name - @param name_subset subset of groups to study, None for all - @param per aggragation per week - @param estimator estimator used to find pattern, - :epkg:`sklearn:cluster:KMeans` and - 10 groups - @param fLOG logging function - @return found clusters, distances + :param ttime: time column + :param values: features to use to cluster + :param names: column which holds group name + :param name_subset: subset of groups to study, None for all + :param per: aggragation per week + :param unit: unit + :param agg: aggregation function + :param estimator: estimator used to find pattern, + :class:`sklearn.cluster.KMeans` and 10 groups + :param verbose: verbosity + :return: found clusters, distances """ - for var, na in zip([ttime, values, names], ['ttime', 'values', 'names']): + for var, na in zip([ttime, values, names], ["ttime", "values", "names"]): if not isinstance(var, numpy.ndarray): raise TypeError(f"'{na}' must an array not {type(var)}") # builds features set_names = set(names) if name_subset is not None: set_names &= set(name_subset) - if fLOG: - fLOG( # pragma: no cover - f'[find_ts_group_pattern] build features, {len(set_names)} groups') + if verbose: + print(f"[find_ts_group_pattern] build features, {len(set_names)} groups") gr_names = [] to_merge = [] for name in set_names: indices = names == name gr_ttime = ttime[indices] gr_values = values[indices] - gr = aggregate_timeseries(None, gr_ttime, gr_values, - unit=unit, agg=agg, per=per) + gr = aggregate_timeseries( + None, gr_ttime, gr_values, unit=unit, agg=agg, per=per + ) gr.set_index(gr.columns[0], inplace=True) gr_names.append(name) to_merge.append(gr) - if fLOG: - fLOG( # pragma: no cover - '[find_ts_group_pattern] merge features') + if verbose: + print("[find_ts_group_pattern] merge features") all_merged = pandas.concat(to_merge, axis=1) all_merged.fillna(0, inplace=True) ncol = all_merged.shape[1] // len(gr_names) gr_feats = [] for i, name in enumerate(gr_names): - feats = all_merged.iloc[:, i * ncol: (i + 1) * ncol].values.ravel() + feats = all_merged.iloc[:, i * ncol : (i + 1) * ncol].values.ravel() gr_feats.append(feats) gr_feats = numpy.vstack(gr_feats) # cluster - if fLOG: - fLOG( # pragma: no cover - f'[find_ts_group_pattern] clustering, shape={gr_feats.shape}') + if verbose: + print(f"[find_ts_group_pattern] clustering, shape={gr_feats.shape}") if estimator is None: estimator = KMeans() estimator.fit(gr_feats) @@ -71,9 +74,8 @@ def find_ts_group_pattern(ttime, values, names, name_subset=None, # predicted clusters pred = estimator.predict(gr_feats) dist = estimator.transform(gr_feats) - if fLOG: - fLOG( # pragma: no cover - f'[find_ts_group_pattern] number of clusters: {len(set(pred))}') + if verbose: + print(f"[find_ts_group_pattern] number of clusters: {len(set(pred))}") row_name = {n: i for i, n in enumerate(gr_names)} clusters = numpy.empty(ttime.shape[0], dtype=pred.dtype) diff --git a/mlinsights/timeseries/plotting.py b/mlinsights/timeseries/plotting.py index 0fba6a08..7b2e513b 100644 --- a/mlinsights/timeseries/plotting.py +++ b/mlinsights/timeseries/plotting.py @@ -1,15 +1,19 @@ -""" -@file -@brief Timeseries plots. -""" import calendar import datetime -def plot_week_timeseries(time, value, normalise=True, - label=None, h=0.85, value2=None, - label2=None, daynames=None, - xfmt="%1.0f", ax=None): +def plot_week_timeseries( + time, + value, + normalise=True, + label=None, + h=0.85, + value2=None, + label2=None, + daynames=None, + xfmt="%1.0f", + ax=None, +): """ Shows a timeseries dispatched by days as bars. @@ -17,7 +21,8 @@ def plot_week_timeseries(time, value, normalise=True, :param value: values to display as bars. :param normalise: normalise data before showing it :param label: label of the series - :param values2: second series to show as a line + :param h: scale factor + :param value2: second series to show as a line :param label2: label of the second series :param daynames: names to use for week day names (default is English) :param xfmt: format number of the X axis @@ -44,7 +49,7 @@ def plot_week_timeseries(time, value, normalise=True, plt.show() """ if time.shape[0] != value.shape[0]: - raise AssertionError("Dimension mismatch") # pragma: no cover + raise AssertionError("Dimension mismatch") def coor(ti): days = ti.days @@ -57,13 +62,14 @@ def coor(ti): max_value = max(max_value, value2.max()) value2 = value2 / max_value value = value / max_value - input_maxy = 1. + input_maxy = 1.0 if ax is None: - import matplotlib.pyplot as plt # pylint: disable=C0415 + import matplotlib.pyplot as plt + ax = plt.gca() - import matplotlib.patches as patches # pylint: disable=R0402,C0415 + import matplotlib.patches as patches # bars delta = None @@ -75,8 +81,7 @@ def coor(ti): ti1 = time[i + 1] delta = (ti1 - ti) if delta is None else min(delta, ti1 - ti) if delta == 0: - raise RuntimeError( # pragma: no cover - "The timeseries contains duplicated time values.") + raise RuntimeError("The timeseries contains duplicated time values.") else: ti1 = ti + delta x1, y1 = coor(ti) @@ -85,22 +90,31 @@ def coor(ti): x2, y2 = coor(ti + delta) y2 = y1 + (y2 - y1) * h if first and label: - ax.plot([x1, x1 + value[i] * 0.8], [y1, y1], - 'b', alpha=0.5, label=label) + ax.plot([x1, x1 + value[i] * 0.8], [y1, y1], "b", alpha=0.5, label=label) first = False if maxx is None: maxx = (x1, x1 + input_maxy) maxy = (y1, y2) else: - maxx = (min(x1, maxx[0]), # pylint: disable=E1136 - max(x1 + input_maxy, maxx[1])) # pylint: disable=E1136 - maxy = (min(y1, maxy[0]), # pylint: disable=E1136 - max(y2, maxy[1])) # pylint: disable=E1136 - - rect = patches.Rectangle((x1, y1), value[i] * h, y2 - y1, - linewidth=1, edgecolor=None, - facecolor='b', fill=True, - alpha=0.5) + maxx = ( + min(x1, maxx[0]), + max(x1 + input_maxy, maxx[1]), + ) + maxy = ( + min(y1, maxy[0]), + max(y2, maxy[1]), + ) + + rect = patches.Rectangle( + (x1, y1), + value[i] * h, + y2 - y1, + linewidth=1, + edgecolor=None, + facecolor="b", + fill=True, + alpha=0.5, + ) ax.add_patch(rect) @@ -115,10 +129,10 @@ def coor(ti): x1i = maxx[0] + input_maxy * i x2i = x1i + input_maxy xticks.append(x1i) - ax.plot([x1i, x1i + input_maxy], [new_ymin, new_ymin], 'k', alpha=0.5) - ax.plot([x1i, x1i + input_maxy], [maxy[1], maxy[1]], 'k', alpha=0.5) - ax.plot([x1i, x1i], [maxy[0], maxy[1]], 'k', alpha=0.5) - ax.plot([x2i, x2i], [maxy[0], maxy[1]], 'k', alpha=0.5) + ax.plot([x1i, x1i + input_maxy], [new_ymin, new_ymin], "k", alpha=0.5) + ax.plot([x1i, x1i + input_maxy], [maxy[1], maxy[1]], "k", alpha=0.5) + ax.plot([x1i, x1i], [maxy[0], maxy[1]], "k", alpha=0.5) + ax.plot([x2i, x2i], [maxy[0], maxy[1]], "k", alpha=0.5) ax.text(x1i, new_ymin, daynames[i]) # invert y axis @@ -131,8 +145,10 @@ def coor(ti): for i in range(nby): dh = ys[i] dt = datetime.timedelta(seconds=dh) - tx = "%dh%02d" % (dt.seconds // 3600, - 60 * (dt.seconds / 3600 - dt.seconds // 3600)) + tx = "%dh%02d" % ( + dt.seconds // 3600, + 60 * (dt.seconds / 3600 - dt.seconds // 3600), + ) ylabels.append(tx) ax.set_yticklabels(ylabels) @@ -153,10 +169,9 @@ def coor(ti): if len(xticks) < len(xlabels): xticks.append(xs[-1]) ax.set_xticks(xticks) - ax.set_xticklabels( - [xfmt % x for x in xlabels] if xfmt else xlabels) + ax.set_xticklabels([xfmt % x for x in xlabels] if xfmt else xlabels) - ax.tick_params(axis='x', rotation=30) + ax.tick_params(axis="x", rotation=30) # value2 if value2 is not None: @@ -183,16 +198,16 @@ def coor(ti): if len(ys) > 0 and y2 < ys[-1]: if first and label2 is not None: - ax.plot(xs, ys, color='orange', linewidth=2, label=label2) + ax.plot(xs, ys, color="orange", linewidth=2, label=label2) first = False else: - ax.plot(xs, ys, color='orange', linewidth=2) + ax.plot(xs, ys, color="orange", linewidth=2) xs, ys = [], [] xs.append(x2) ys.append((y1 + y2) / 2) if len(xs) > 0: - ax.plot(xs, ys, color='orange', linewidth=2) + ax.plot(xs, ys, color="orange", linewidth=2) return ax diff --git a/mlinsights/timeseries/preprocessing.py b/mlinsights/timeseries/preprocessing.py index 5c5a159b..e40ce5ed 100644 --- a/mlinsights/timeseries/preprocessing.py +++ b/mlinsights/timeseries/preprocessing.py @@ -1,7 +1,3 @@ -""" -@file -@brief Timeseries preprocessing. -""" import numpy from .base import BaseReciprocalTimeSeriesTransformer @@ -9,12 +5,11 @@ class TimeSeriesDifference(BaseReciprocalTimeSeriesTransformer): """ Computes timeseries differences. + + :param degree: number of differences """ def __init__(self, degree=1): - """ - @param degree number of differences - """ BaseReciprocalTimeSeriesTransformer.__init__(self, degree) @property @@ -28,10 +23,10 @@ def fit(self, X, y, sample_weight=None): """ Stores the first values. """ - self.X_ = X[:self.degree].copy() - self.y_ = y[:self.degree].copy() + self.X_ = X[: self.degree].copy() + self.y_ = y[: self.degree].copy() for n in range(1, self.degree): - self.y_[n:] -= self.y_[n - 1:-1] + self.y_[n:] -= self.y_[n - 1 : -1] return self def transform(self, X, y, sample_weight=None): @@ -56,28 +51,26 @@ def get_fct_inv(self): class TimeSeriesDifferenceInv(BaseReciprocalTimeSeriesTransformer): """ - Computes the reverse of @see cl TimeSeriesDifference. + Computes the reverse of :class:`TimeSeriesDifference`. + + :param estimator: of type :class:`TimeSeriesDifference` """ def __init__(self, estimator): - """ - @param estimator of type @see cl TimeSeriesDifference - """ - BaseReciprocalTimeSeriesTransformer.__init__( - self, estimator.context_length) + BaseReciprocalTimeSeriesTransformer.__init__(self, estimator.context_length) if not isinstance(estimator, TimeSeriesDifference): - raise TypeError( # pragma: no cover + raise TypeError( f"estimator must be of type TimeSeriesDifference not " - f"{type(estimator)}.") + f"{type(estimator)}." + ) self.estimator = estimator def fit(self, X=None, y=None, sample_weight=None): """ Checks that estimator is fitted. """ - if not hasattr(self.estimator, 'X_'): - raise RuntimeError( # pragma: no cover - "Estimator is not fitted.") + if not hasattr(self.estimator, "X_"): + raise RuntimeError("Estimator is not fitted.") self.estimator_ = self.estimator return self @@ -107,7 +100,7 @@ def transform(self, X, y, sample_weight=None): ny[r0:, :] = y for i in range(self.estimator_.degree): - numpy.cumsum(ny[r0 - i - 1:, :], axis=0, out=ny[r0 - i - 1:, :]) + numpy.cumsum(ny[r0 - i - 1 :, :], axis=0, out=ny[r0 - i - 1 :, :]) if squeeze: ny = numpy.squeeze(ny) if sample_weight is None: diff --git a/mlinsights/timeseries/utils.py b/mlinsights/timeseries/utils.py index f8d73039..da77273f 100644 --- a/mlinsights/timeseries/utils.py +++ b/mlinsights/timeseries/utils.py @@ -1,7 +1,3 @@ -""" -@file -@brief Timeseries data manipulations. -""" import numpy from sklearn import get_config @@ -10,18 +6,18 @@ def build_ts_X_y(model, X, y, weights=None, same_rows=False): """ Builds standard *X, y* based in the given one. - @param model a timeseries model (@see cl BaseTimeSeries) - @param X times series, used as features, [n_obs, n_features], - X may be empty (None) - @param y timeseries (one single vector), [n_obs] - @param weights weights None or array [n_obs] - @param same_rows keep the same number of rows - as the original datasets, use nan when no value is - available - @return *(X, y, weights)*: X is array of features [nrows, n_features + past] - where `nrows = n_obs + model.delay2 - model.past + 2`, - y is an array of targets [nrows], - weights is None or array [nrows] + :param model: a timeseries model (:class:`BaseTimeSeries + `) + :param X: times series, used as features, [n_obs, n_features], + X may be empty (None) + :param y: timeseries (one single vector), [n_obs] + :param weights: weights None or array [n_obs] + :param same_rows: keeps the same number of rows + as the original datasets, use nan when no value is available + :return: *(X, y, weights)*: X is array of features [nrows, n_features + past] + where `nrows = n_obs + model.delay2 - model.past + 2`, + y is an array of targets [nrows], + weights is None or array [nrows] .. runpython:: :showcode: @@ -60,15 +56,15 @@ def build_ts_X_y(model, X, y, weights=None, same_rows=False): print('ny=', ny) """ if not hasattr(model, "use_all_past") or not hasattr(model, "past"): - raise TypeError( # pragma: no cover - f"model must be of type BaseTimeSeries not {type(model)}") + raise TypeError(f"model must be of type BaseTimeSeries not {type(model)}") if same_rows: if model.use_all_past: ncol = X.shape[1] if X is not None else 0 nrow = y.shape[0] - model.delay2 - model.past + 2 new_X = numpy.full( - (y.shape[0], ncol * model.past + model.past), numpy.nan, dtype=y.dtype) + (y.shape[0], ncol * model.past + model.past), numpy.nan, dtype=y.dtype + ) first = y.shape[0] - nrow if X is not None: for i in range(0, model.past): @@ -77,13 +73,13 @@ def build_ts_X_y(model, X, y, weights=None, same_rows=False): new_X[i:, begin:end] = X[i:] for i in range(0, model.past): end = y.shape[0] + i + model.delay1 - 1 - model.delay2 - new_X[first - i:first - i + end - i, - i + ncol * model.past] = y[i: end] + new_X[first - i : first - i + end - i, i + ncol * model.past] = y[i:end] new_y = numpy.full( - (y.shape[0], model.delay2 - model.delay1), numpy.nan, dtype=y.dtype) + (y.shape[0], model.delay2 - model.delay1), numpy.nan, dtype=y.dtype + ) for i in range(model.delay1, model.delay2): - new_y[first:, i - model.delay1] = y[i + 1:i + nrow + 1] + new_y[first:, i - model.delay1] = y[i + 1 : i + nrow + 1] new_weights = weights else: @@ -92,97 +88,102 @@ def build_ts_X_y(model, X, y, weights=None, same_rows=False): first = y.shape[0] - nrow new_X = numpy.full( - (y.shape[0], ncol + model.past), numpy.nan, dtype=y.dtype) + (y.shape[0], ncol + model.past), numpy.nan, dtype=y.dtype + ) if X is not None: - new_X[first:, :X.shape[1]] = ( - X[model.past - 1: X.shape[0] - model.delay2 + 1]) + new_X[first:, : X.shape[1]] = X[ + model.past - 1 : X.shape[0] - model.delay2 + 1 + ] for i in range(model.past): - end = y.shape[0] + i + model.delay1 - \ - 1 - model.delay2 - model.past + 2 - new_X[first:, i + ncol] = y[i: end] + end = y.shape[0] + i + model.delay1 - 1 - model.delay2 - model.past + 2 + new_X[first:, i + ncol] = y[i:end] new_y = numpy.full( - (y.shape[0], model.delay2 - model.delay1), numpy.nan, dtype=y.dtype) + (y.shape[0], model.delay2 - model.delay1), numpy.nan, dtype=y.dtype + ) for i in range(model.delay1, model.delay2): dec = model.past - 1 - new_y[first:, i - model.delay1] = y[i + dec:i + nrow + dec] + new_y[first:, i - model.delay1] = y[i + dec : i + nrow + dec] new_weights = weights else: if model.use_all_past: ncol = X.shape[1] if X is not None else 0 nrow = y.shape[0] - model.delay2 - model.past + 2 - new_X = numpy.empty( - (nrow, ncol * model.past + model.past), dtype=y.dtype) + new_X = numpy.empty((nrow, ncol * model.past + model.past), dtype=y.dtype) if X is not None: for i in range(0, model.past): begin = i * ncol end = begin + ncol - new_X[:, begin:end] = X[i: i + nrow] + new_X[:, begin:end] = X[i : i + nrow] for i in range(0, model.past): end = y.shape[0] + i + model.delay1 - 1 - model.delay2 - new_X[:, i + ncol * model.past] = y[i: end] + new_X[:, i + ncol * model.past] = y[i:end] - new_y = numpy.empty( - (nrow, model.delay2 - model.delay1), dtype=y.dtype) + new_y = numpy.empty((nrow, model.delay2 - model.delay1), dtype=y.dtype) for i in range(model.delay1, model.delay2): - new_y[:, i - model.delay1] = y[i + 1:i + nrow + 1] + new_y[:, i - model.delay1] = y[i + 1 : i + nrow + 1] - new_weights = (None if weights is None - else weights[model.past - 1:model.past - 1 + nrow]) + new_weights = ( + None + if weights is None + else weights[model.past - 1 : model.past - 1 + nrow] + ) else: ncol = X.shape[1] if X is not None else 0 nrow = y.shape[0] - model.delay2 - model.past + 2 new_X = numpy.empty((nrow, ncol + model.past), dtype=y.dtype) if X is not None: - new_X[:, :X.shape[1]] = X[model.past - - 1: X.shape[0] - model.delay2 + 1] + new_X[:, : X.shape[1]] = X[ + model.past - 1 : X.shape[0] - model.delay2 + 1 + ] for i in range(model.past): - end = y.shape[0] + i + model.delay1 - \ - 1 - model.delay2 - model.past + 2 - new_X[:, i + ncol] = y[i: end] + end = y.shape[0] + i + model.delay1 - 1 - model.delay2 - model.past + 2 + new_X[:, i + ncol] = y[i:end] - new_y = numpy.empty( - (nrow, model.delay2 - model.delay1), dtype=y.dtype) + new_y = numpy.empty((nrow, model.delay2 - model.delay1), dtype=y.dtype) for i in range(model.delay1, model.delay2): dec = model.past - 1 - new_y[:, i - model.delay1] = y[i + dec:i + nrow + dec] - new_weights = (None if weights is None - else weights[model.past - 1:model.past - 1 + nrow]) + new_y[:, i - model.delay1] = y[i + dec : i + nrow + dec] + new_weights = ( + None + if weights is None + else weights[model.past - 1 : model.past - 1 + nrow] + ) return new_X, new_y, new_weights def check_ts_X_y(model, X, y): """ Checks that datasets *(X, y)* was built with function - @see fn build_ts_X_y. + :func:`build_ts_X_y `. """ cfg = get_config() - if cfg.get('assume_finite', True): - return # pragma: no cover + if cfg.get("assume_finite", True): + return if X.dtype not in (numpy.float32, numpy.float64): - raise TypeError( - f"Features must be of type float32 and float64 not {X.dtype}.") + raise TypeError(f"Features must be of type float32 and float64 not {X.dtype}.") if y is not None and y.dtype not in (numpy.float32, numpy.float64): - raise TypeError( # pragma: no cover - f"Features must be of type float32 and float64 not {y.dtype}.") + raise TypeError(f"Features must be of type float32 and float64 not {y.dtype}.") cst = model.past - if (hasattr(model, 'preprocessing_') and model.preprocessing_ is not None): + if hasattr(model, "preprocessing_") and model.preprocessing_ is not None: cst += model.preprocessing_.context_length if y is None: if cst > 0: - raise AssertionError( # pragma: no cover + raise AssertionError( f"y must be specified to give the model past data to predict, " - f"it requires at least {cst} observations.") - return # pragma: no cover + f"it requires at least {cst} observations." + ) + return if y.shape[0] != X.shape[0]: - raise AssertionError( # pragma: no cover - f"X and y must have the same number of rows {X.shape[0]} != {y.shape[0]}.") + raise AssertionError( + f"X and y must have the same number of rows {X.shape[0]} != {y.shape[0]}." + ) if len(y.shape) > 1 and y.shape[1] != 1: - raise AssertionError( # pragma: no cover - f"y must be 1-dimensional not has shape {y.shape}.") + raise AssertionError(f"y must be 1-dimensional not has shape {y.shape}.") if y.shape[0] < cst: - raise AssertionError( # pragma: no cover + raise AssertionError( f"y is not enough past data to predict, " - f"it requires at least {cst} observations.") + f"it requires at least {cst} observations." + ) diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..96275bbf --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,140 @@ +[project] +authors = [{name="Xavier Dupré", email="xavier.dupre@gmail.com"}] +classifiers = [ + "Intended Audience :: Science/Research", + "Intended Audience :: Developers", + "License :: OSI Approved :: MIT License", + "Programming Language :: C", + "Programming Language :: Python", + "Topic :: Software Development", + "Topic :: Scientific/Engineering", + "Development Status :: 5 - Production/Stable", + "Operating System :: Microsoft :: Windows", + "Operating System :: POSIX", + "Operating System :: Unix", + "Operating System :: MacOS", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", +] +dependencies = ["numpy", "onnx>=1.14.0", "scipy"] +description = "Extends the list of supported operators in onnx reference implementation and onnxruntime, or implements faster versions in C++." +keywords = ["onnx", "cmake", "cython", "scikit-learn", "machine-learning"] +license = {file = "LICENSE.txt"} +name = "mlinsights" +readme = "README.rst" +requires-python = ">=3.9" +version = "0.5.0" + +[project.urls] +homepage = "https://sdpython.github.io/doc/dev/mlinsights/" +documentation = "https://sdpython.github.io/doc/dev/mlinsights/" +repository = "https://github.com/sdpython/mlinsights/dev/" +changelog = "https://github.com/sdpython/mlinsights/dev/CHANGELOGS.rst" + +[project.optional-dependencies] +dev = [ + "autopep8", + "black", + "clang-format", + "cmakelang", + "coverage", + "cython", + "cython-lint", + "flake8", + "furo", + "isort", + "joblib", + "lightgbm", + "matplotlib", + "onnx-array-api", + "onnxruntime", + "pandas", + "psutil", + "pytest", + "pytest-cov", + "ruff", + "scikit-learn>=1.3.0", + "skl2onnx>=1.14.1", + "sphinx", + "sphinx-gallery", + "sphinx-issues", + "sphinx-runpython", + "tqdm", + "wheel", +] + +[build-system] +requires = [ + "Cython", + "cmake", + "numpy", + "pybind11", + "scikit-learn>=1.3.0", + "scipy", + "setuptools", + "wheel", +] + +[tool.rstcheck] +report_level = "INFO" +ignore_directives = [ + "autoclass", + "autofunction", + "exreflist", + "faqreflist", + "gdot", + "ifconfig", + "image-sg", + "runpython", +] +ignore_roles = ["epkg", "pr"] +ignore_messages = "Duplicate implicit target name: \"setup.py\"" + +[tool.setuptools.packages.find] +namespaces = false + +[tool.setuptools.package-data] +"*" = ["*.cc", "*.cpp", "*.cu", "*.cuh", "*.dll", "*.dylib", "*.h", "*.hpp", "*.pyd", "*.so*"] + +[tool.cibuildwheel] +build = "*" +manylinux-x86_64-image = "manylinux2014" + +[tool.cibuildwheel.linux] +archs = ["x86_64"] +build = "cp*" +skip = "cp36-* cp37-* cp38-* cp39-* pypy* *musllinux*" + +[tool.cibuildwheel.macos] +archs = ["x86_64"] +build = "cp*" +skip = "cp36-* cp37-* cp38-* cp39-* cp310-* pypy* pp*" + +[tool.cibuildwheel.windows] +archs = ["AMD64"] +build = "cp*" +skip = "cp36-* cp37-* cp38-* cp39-* pypy*" + +[tool.cython-lint] +max-line-length = 88 + +[tool.ruff] +exclude = [".eggs", ".git", "build", "dist"] +line-length = 88 + +[tool.ruff.mccabe] +max-complexity = 10 + +[tool.ruff.per-file-ignores] +"_unittests/ut_plotting/test_dot.py" = ["E501"] +"mlinsights/mlbatch/__init__.py" = ["F401"] +"mlinsights/metrics/__init__.py" = ["F401"] +"mlinsights/mlmodel/kmeans_l1.py" = ["E731"] +"mlinsights/mlmodel/__init__.py" = ["F401"] +"mlinsights/mltree/__init__.py" = ["F401"] +"mlinsights/plotting/__init__.py" = ["F401"] +"mlinsights/search_rank/__init__.py" = ["F401"] +"mlinsights/sklapi/__init__.py" = ["F401"] +"mlinsights/timeseries/__init__.py" = ["F401"] diff --git a/requirements-dev.txt b/requirements-dev.txt new file mode 100644 index 00000000..38ef226f --- /dev/null +++ b/requirements-dev.txt @@ -0,0 +1,31 @@ +autopep8 +black +chardet +clang-format +cmakelang +coverage +cython +cython-lint +furo +llvmlite +matplotlib +memory_profiler>=0.55 +notebook +numba +pybind11 +pytest +pytest-cov +rstcheck[sphinx,toml] +ruff +seaborn +skl2onnx>=1.14.1 +sphinx +sphinx-gallery +sphinx-issues +sphinx-runpython +tomli +torch +torchvision +torchaudio +tqdm +wheel diff --git a/requirements.txt b/requirements.txt index 6f98ca03..fabb17e6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,34 +1,9 @@ -autopep8 -chardet -coverage -cpyquickhelper>=0.3 cython ipython -joblib -jupyter_sphinx>=0.2 -jyquickhelper -llvmlite matplotlib -memory_profiler>=0.55 -nbconvert>=6.0.2 -notebook -numba numpy onnx onnxruntime pandas_streaming pybind11 -pycodestyle -pydata-sphinx-theme -pyquickhelper>=1.10 -pyquicksetup -pylint>=2.14.0 scikit-learn>=1.3.0 -scipy -seaborn -skl2onnx -sphinx>=3.0 -sphinxcontrib.imagesvg -sphinx_gallery -tqdm -wheel diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 00000000..e42d1db6 --- /dev/null +++ b/setup.cfg @@ -0,0 +1,8 @@ +[project] +requires-python = ">=3.9" + +[options] +packages = find: + +[options.packages.find] +include = mlinsights* diff --git a/setup.py b/setup.py index d37cc204..c691dff4 100644 --- a/setup.py +++ b/setup.py @@ -1,128 +1,728 @@ -# -*- coding: utf-8 -*- -import sys -import os -import warnings -from setuptools import setup, Extension, find_packages -from pyquicksetup import read_version, read_readme, default_cmdclass - -######### -# settings -######### - -project_var_name = "mlinsights" -versionPython = f"{sys.version_info.major}.{sys.version_info.minor}" -path = "Lib/site-packages/" + project_var_name -readme = 'README.rst' -history = "HISTORY.rst" -requirements = None - -KEYWORDS = [project_var_name, 'Xavier Dupré', 'machine learning', - 'scikit-learn'] -DESCRIPTION = """Extends scikit-learn with a couple of new models, transformers, metrics, plotting.""" -CLASSIFIERS = [ - 'Programming Language :: Python :: 3', - 'Intended Audience :: Developers', - 'Topic :: Scientific/Engineering', - 'Topic :: Education', - 'License :: OSI Approved :: MIT License', - 'Development Status :: 5 - Production/Stable' -] - - -####### -# data -####### - -packages = find_packages() -package_dir = {k: os.path.join('.', k.replace(".", "/")) for k in packages} -package_data = { - project_var_name + ".mlmodel": ["*.pxd", "*.pyx"], -} - - -def get_extensions(): - root = os.path.abspath(os.path.dirname(__file__)) - if sys.platform.startswith("win"): - extra_compile_args = None - else: - extra_compile_args = ['-std=c++11'] - - ext_modules = [] - - # mlmodel - - import sklearn - extensions = ["direct_blas_lapack"] - spl = sklearn.__version__.split('.') - vskl = (int(spl[0]), int(spl[1])) - if vskl > (1, 2): - extensions.append(("_piecewise_tree_regression_common", - "_piecewise_tree_regression_common120")) - else: - raise ImportError("Cannot build mlisinghts for scikit-learn<=1.2.") - - extensions.extend([ - "piecewise_tree_regression_criterion", - "piecewise_tree_regression_criterion_linear", - "piecewise_tree_regression_criterion_fast", - "_tree_digitize", - ]) - - pattern1 = "mlinsights.%s.%s" - import numpy - for name in extensions: - folder = "mltree" if name == "_tree_digitize" else "mlmodel" - if isinstance(name, tuple): - m = Extension(pattern1 % (folder, name[0]), - [f'mlinsights/{folder}/{name[1]}.pyx'], - include_dirs=[numpy.get_include()], - extra_compile_args=["-O3"], - language='c') - else: - m = Extension(pattern1 % (folder, name), - [f'mlinsights/{folder}/{name}.pyx'], - include_dirs=[numpy.get_include()], - extra_compile_args=["-O3"], - language='c') - ext_modules.append(m) - - # cythonize - from Cython.Build import cythonize - opts = dict(boundscheck=False, cdivision=True, - wraparound=False, language_level=3, - cdivision_warnings=False, embedsignature=True, - initializedcheck=False) - ext_modules = cythonize(ext_modules, compiler_directives=opts) - return ext_modules - - -try: - ext_modules = get_extensions() -except ImportError as e: - warnings.warn( - f"Unable to build C++ extension with missing dependencies {e!r}.") - ext_modules = None - -# setup - -setup( - name=project_var_name, - version=read_version(__file__, project_var_name), - author='Xavier Dupré', - author_email='xavier.dupre@gmail.com', - license="MIT", - url=f"http://www.xavierdupre.fr/app/{project_var_name}/helpsphinx/index.html", - download_url=f"https://github.com/sdpython/{project_var_name}/", - description=DESCRIPTION, - long_description=read_readme(__file__), - cmdclass=default_cmdclass(), - keywords=KEYWORDS, - classifiers=CLASSIFIERS, - packages=packages, - package_dir=package_dir, - package_data=package_data, - setup_requires=["pyquicksetup", 'cython', 'scipy', 'scikit-learn'], - install_requires=['cython', 'scikit-learn>=1.3', 'pandas', 'scipy', - 'matplotlib', 'pandas_streaming', 'numpy>=1.21'], - ext_modules=ext_modules, # cythonize(ext_modules), -) +# -*- coding: utf-8 -*- +import distutils +import os +import platform +import shutil +import subprocess +import sys +import sysconfig +from pathlib import Path +from typing import List, Tuple + +try: + import numpy +except ImportError as e: + raise ImportError( + f"Numpy is not installed, python _executable=f{sys.executable}." + ) from e + +from setuptools import setup, Extension, Command +from setuptools.command.build_ext import build_ext +from setuptools.command.build_py import build_py +from setuptools.command.develop import develop +from setuptools.command.install import install +from wheel.bdist_wheel import bdist_wheel + + +def get_requirements(here): + "Returns the requirements from requirements.txt." + try: + with open(os.path.join(here, "requirements.txt"), "r") as f: + requirements = f.read().strip(" \n\r\t").split("\n") + except FileNotFoundError: + requirements = [] + if len(requirements) == 0 or requirements == [""]: + requirements = ["numpy", "scipy", "onnx", "scikit-learn"] + return requirements + + +def get_long_description(here): + "Returns the long description from README.rst." + try: + with open(os.path.join(here, "README.rst"), "r", encoding="utf-8") as f: + long_description = "mlinsights:" + f.read().split("mlinsights:")[1] + except FileNotFoundError: + long_description = "" + return long_description + + +def get_description(): + return ( + "More operators for onnx reference implementation and " + "custom kernel implementation for onnxruntime." + ) + + +def get_version_str(here, default_version): + VERSION_STR = default_version + with open(os.path.join(here, "mlinsights/__init__.py"), "r") as f: + line = [ + _ + for _ in [_.strip("\r\n ") for _ in f.readlines()] + if _.startswith("__version__") + ] + if len(line) > 0: + VERSION_STR = line[0].split("=")[1].strip('" ') + if VERSION_STR is None: + raise ValueError(f"Unable to guess the package version with here={here!r}.") + return VERSION_STR + + +######################################## +# C++ Helper +######################################## + + +def find_cuda(): + try: + p = subprocess.Popen( + "nvidia-smi", + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT, + ) + except FileNotFoundError: + return False + while True: + output = p.stdout.readline().decode(errors="ignore") + if output == "" and p.poll() is not None: + break + if output: + if "CUDA Version:" in output: + return True + p.poll() + return False + + +def is_windows(): + return platform.system() == "Windows" + + +def is_darwin(): + return platform.system() == "Darwin" + + +def _run_subprocess( + args, + cwd=None, + capture_output=False, + dll_path=None, + shell=False, + env=None, + python_path=None, + cuda_home=None, + cuda_version=None, +): + if env is None: + env = {} + if isinstance(args, str): + raise ValueError("args should be a sequence of strings, not a string") + + my_env = os.environ.copy() + if cuda_version is not None: + if is_windows(): + cuda_path = ( + f"C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\{cuda_version}" + ) + elif is_darwin(): + cuda_path = f"/Developer/NVIDIA/CUDA-{cuda_version}" + else: + cuda_path = f"/usr/local/cuda-{cuda_version}/bin" + if "PATH" in my_env: + my_env["PATH"] = cuda_path + os.pathsep + my_env["PATH"] + else: + my_env["PATH"] = cuda_path + + if dll_path: + if is_windows(): + if "PATH" in my_env: + my_env["PATH"] = dll_path + os.pathsep + my_env["PATH"] + else: + my_env["PATH"] = dll_path + else: + if "LD_LIBRARY_PATH" in my_env: + my_env["LD_LIBRARY_PATH"] += os.pathsep + dll_path + else: + my_env["LD_LIBRARY_PATH"] = dll_path + + if is_windows(): + py_path = os.path.dirname(sys.executable) + if "PATH" in my_env: + my_env["PATH"] = py_path + os.pathsep + my_env["PATH"] + else: + my_env["PATH"] = py_path + + # Add nvcc's folder to PATH env so that our cmake file can find nvcc + if cuda_home: + my_env["PATH"] = os.path.join(cuda_home, "bin") + os.pathsep + my_env["PATH"] + + if python_path: + if "PYTHONPATH" in my_env: + my_env["PYTHONPATH"] += os.pathsep + python_path + else: + my_env["PYTHONPATH"] = python_path + + my_env.update(env) + + p = subprocess.Popen( + args, + cwd=cwd, + shell=shell, + env=my_env, + stdout=subprocess.PIPE if capture_output else None, + stderr=subprocess.STDOUT if capture_output else None, + ) + raise_exception = False + while True: + output = p.stdout.readline().decode(errors="ignore") + if output == "" and p.poll() is not None: + break + if output: + out = output.rstrip() + sys.stdout.write(out + "\n") + sys.stdout.flush() + if ( + "fatal error" in output + or "CMake Error" in output + or "gmake: ***" in output + or "): error C" in output + or ": error: " in output + ): + raise_exception = True + rc = p.poll() + if raise_exception: + raise RuntimeError("An error was found in the output. The build is stopped.") + return rc + + +######################################## +# C++ CMake Extension +######################################## + + +class CMakeExtension(Extension): + def __init__(self, name: str, library: str = "") -> None: + super().__init__(name, sources=[]) + print(f"-- setup: add extension {name}") + self.library_file = os.fspath(Path(library).resolve()) + + +class cmake_build_class_extension(Command): + user_options = [ + *build_ext.user_options, + ( + "use-cuda=", + None, + "If cuda is available, CUDA is " + "used by default unless this option is set to 0", + ), + ("use-nvtx=", None, "Enables compilation with NVTX events."), + ( + "cuda-version=", + None, + "If cuda is available, it searches the installed version " + "unless this option is defined.", + ), + ( + "parallel=", + None, + "Parallelization", + ), + ( + "ort-version=", + None, + "onnxruntime version, a path is allowed", + ), + ( + "cuda-build=", + None, + "CUDA code can be compiled to be working with " + "different architectures, this flag can optimize " + "for a specific machine, possible values: DEFAULT, " + "H100, H100opt", + ), + ( + "cuda-link=", + None, + "CUDA can statically linked (STATIC) or dynamically " + "(SHARED), default is STATIC." + "STATIC", + ), + ] + + def initialize_options(self): + self.use_nvtx = None + self.use_cuda = None + self.cuda_version = None + self.parallel = None + self.ort_version = DEFAULT_ORT_VERSION + self.cuda_build = "DEFAULT" + self.cuda_link = "STATIC" + + self._parent.initialize_options(self) + + # boolean + b_values = {0, 1, "1", "0", True, False} + t_values = {1, "1", True} + for att in ["use_nvtx", "use_cuda"]: + v = getattr(self, att) + if v is not None: + continue + v = os.environ.get(att.upper(), None) + if v is None: + continue + if v not in b_values: + raise ValueError(f"Unable to interpret value {v} for {att.upper()!r}.") + print(f"-- setup: use env {att.upper()}={v in t_values}") + setattr(self, att, v in t_values) + if self.ort_version is None: + self.ort_version = os.environ.get("ORT_VERSION", None) + if self.ort_version not in ("", None): + print(f"-- setup: use env ORT_VERSION={self.ort_version}") + if self.cuda_build is None: + self.cuda_build = os.environ.get("CUDA_BUILD", None) + if self.cuda_build not in ("", None): + print(f"-- setup: use env CUDA_BUILD={self.cuda_build}") + if self.cuda_version is None: + self.cuda_version = os.environ.get("CUDA_VERSION", None) + if self.cuda_version not in ("", None): + print(f"-- setup: use env CUDA_VERSION={self.cuda_version}") + if self.use_nvtx is None: + self.use_nvtx = False + + def finalize_options(self): + self._parent.finalize_options(self) + + b_values = {0, 1, "1", "0", True, False, "True", "False"} + if self.use_nvtx not in b_values: + raise ValueError(f"use_nvtx={self.use_nvtx!r} must be in {b_values}.") + if self.use_cuda is None: + self.use_cuda = find_cuda() + if self.use_cuda not in b_values: + raise ValueError(f"use_cuda={self.use_cuda!r} must be in {b_values}.") + self.use_nvtx = self.use_nvtx in {1, "1", True, "True"} + self.use_cuda = self.use_cuda in {1, "1", True, "True"} + if self.cuda_version in (None, ""): + self.cuda_version = None + build = {"DEFAULT", "H100", "H100opt"} + if self.cuda_build not in build: + raise ValueError(f"cuda-build={self.cuda_build!r} not in {build}.") + link = {"STATIC", "SHARED"} + if self.cuda_link not in link: + raise ValueError(f"cuda-link={self.cuda_link!r} not in {link}.") + + options = {o[0]: o for o in self.user_options} + keys = list(sorted(options.keys())) + for na in keys: + opt = options[na] + name = opt[0].replace("-", "_").strip("=") + print(f"-- setup: option {name}={getattr(self, name, None)}") + + def get_cmake_args(self, cfg: str) -> List[str]: + """ + Returns the argument for cmake. + + :param cfg: configuration (Release, ...) + :return: build_path, self.build_lib + """ + iswin = is_windows() + isdar = is_darwin() + cmake_cmd_args = [] + + path = sys.executable + vers = ( + f"{sys.version_info.major}." + f"{sys.version_info.minor}." + f"{sys.version_info.micro}" + ) + versmm = f"{sys.version_info.major}.{sys.version_info.minor}" + module_ext = distutils.sysconfig.get_config_var("EXT_SUFFIX") + + here = os.path.dirname(__file__) + if here == "": + here = "." + + cmake_args = [ + f"-DPYTHON_EXECUTABLE={path}", + f"-DCMAKE_BUILD_TYPE={cfg}", + f"-DPYTHON_VERSION={vers}", + f"-DPYTHON_VERSION_MM={versmm}", + f"-DPYTHON_MODULE_EXTENSION={module_ext}", + f"-DORT_VERSION={self.ort_version}", + f"-Dmlinsights_VERSION={get_version_str(here, None)}", + ] + if self.parallel is not None: + cmake_args.append(f"-j{self.parallel}") + + if self.use_nvtx: + cmake_args.append("-DUSE_NVTX=1") + cmake_args.append(f"-DUSE_CUDA={1 if self.use_cuda else 0}") + if self.use_cuda: + cmake_args.append(f"-DCUDA_BUILD={self.cuda_build}") + cmake_args.append(f"-DCUDA_LINK={self.cuda_link}") + cuda_version = self.cuda_version + if cuda_version not in (None, ""): + cmake_args.append(f"-DCUDA_VERSION={cuda_version}") + + if iswin or isdar: + include_dir = sysconfig.get_paths()["include"].replace("\\", "/") + lib_dir = ( + sysconfig.get_config_var("LIBDIR") + or sysconfig.get_paths()["stdlib"] + or "" + ).replace("\\", "/") + numpy_include_dir = numpy.get_include().replace("\\", "/") + cmake_args.extend( + [ + f"-DPYTHON_INCLUDE_DIR={include_dir}", + # f"-DPYTHON_LIBRARIES={lib_dir}", + f"-DPYTHON_LIBRARY_DIR={lib_dir}", + f"-DPYTHON_NUMPY_INCLUDE_DIR={numpy_include_dir}", + # "-DUSE_SETUP_PYTHON=1", + f"-DPYTHON_NUMPY_VERSION={numpy.__version__}", + ] + ) + os.environ["PYTHON_NUMPY_INCLUDE_DIR"] = numpy_include_dir + + cmake_args += cmake_cmd_args + return cmake_args + + def build_cmake(self, cfg: str, cmake_args: List[str]) -> Tuple[str, str]: + """ + Calls cmake. + + :param cfg: configuration (Release, ...) + :param cmake_args: cmake aguments + :return: build_path, self.build_lib + """ + this_dir = os.path.dirname(os.path.abspath(__file__)) + build_temp = getattr(self, "build_temp", None) + if build_temp is None: + build_temp = os.path.join(this_dir, "build", "install") + + if not os.path.exists(build_temp): + os.makedirs(build_temp) + + # Builds the project. + build_path = os.path.abspath(build_temp) + with open( + os.path.join(os.path.dirname(__file__), ".build_path.txt"), + "w", + encoding="utf-8", + ) as f: + f.write(build_path) + # build_path = os.path.join(this_dir, "build") + if not os.path.exists(build_path): + os.makedirs(build_path) + source_path = os.path.join(this_dir, "_cmake") + + cmd = ["cmake", "-S", source_path, "-B", build_path, *cmake_args] + print(f"-- setup: version={sys.version_info!r}") + print(f"-- setup: cwd={os.getcwd()!r}") + print(f"-- setup: source_path={source_path!r}") + print(f"-- setup: build_path={build_path!r}") + print(f"-- setup: cmd={' '.join(cmd)}") + _run_subprocess( + cmd, cwd=build_path, capture_output=True, cuda_version=self.cuda_version + ) + + # then build + print() + cmd = ["cmake", "--build", build_path, "--config", cfg] + print(f"-- setup: cwd={os.getcwd()!r}") + print(f"-- setup: build_path={build_path!r}") + print(f"-- setup: cmd={' '.join(cmd)}") + _run_subprocess( + cmd, cwd=build_path, capture_output=True, cuda_version=self.cuda_version + ) + print("-- setup: done.") + return build_path, getattr(self, "build_lib", build_path) + + def process_extensions(self, cfg: str, build_path: str, build_lib: str): + """ + Copies the python extensions built by cmake into python subfolders. + + :param cfg: configuration (Release, ...) + :param build_path: where it was built + :param build_lib: built library + """ + if not hasattr(self, "extensions"): + raise RuntimeError(f"Unable to get the list of extensions: {dir(self)}.") + iswin = is_windows() + for ext in self.extensions: + full_name = ext._file_name + name = os.path.split(full_name)[-1] + if iswin: + looks = [ + os.path.join(build_path, cfg, full_name), + os.path.join(build_path, cfg, name), + ] + else: + looks = [ + os.path.join(build_path, full_name), + os.path.join(build_path, name), + ] + looks_exists = [look for look in looks if os.path.exists(look)] + if len(looks_exists) == 0: + raise FileNotFoundError( + f"Unable to find {name!r} as {looks!r} (full_name={full_name!r}), " + f"build_path contains {os.listdir(build_path)}." + ) + else: + look = looks_exists[0] + dest = os.path.join(build_lib, os.path.split(full_name)[0]) + if not os.path.exists(dest): + os.makedirs(dest) + if not os.path.exists(look): + raise FileNotFoundError(f"Unable to find {look!r}.") + if not os.path.exists(dest): + raise FileNotFoundError(f"Unable to find folder {dest!r}.") + print(f"-- setup: copy-2 {look!r} to {dest!r}") + shutil.copy(look, dest) + + def _process_setup_ext_line(self, cfg, build_path, line): + line = line.strip(" \n\r") + if not line: + return + spl = line.split(",") + if len(spl) != 3: + raise RuntimeError(f"Unable to process line {line!r}.") + if spl[0] == "copy": + if is_windows(): + ext = "dll" + prefix = "" + elif is_darwin(): + ext = "dylib" + prefix = "lib" + else: + ext = "so" + prefix = "lib" + src, dest = spl[1:] + shortened = dest.split("mlinsights")[-1].strip("/\\") + fulldest = f"mlinsights/{shortened}" + assumed_name = f"{prefix}{src}.{ext}" + if is_windows(): + fullname = os.path.join(build_path, cfg, assumed_name) + else: + fullname = os.path.join(build_path, assumed_name) + if not os.path.exists(fullname): + raise FileNotFoundError( + f"Unable to find library {fullname!r} (line={line!r})." + ) + print(f"-- setup: copy-1 {fullname!r} to {fulldest!r}") + shutil.copy(fullname, fulldest) + else: + raise RuntimeError(f"Unable to interpret line {line!r}.") + + def process_setup_ext(self, cfg, build_path, filename): + """ + Copies the additional files done after cmake was executed + into python subfolders. These files are listed in file + `_setup_ext.txt` produced by cmake. + + :param cfg: configuration (Release, ...) + :param build_path: where it was built + :param filename: path of file `_setup_ext.txt`. + """ + this = os.path.abspath(os.path.dirname(__file__)) + fullname = os.path.join(this, filename) + if not os.path.exists(fullname): + raise FileNotFoundError(f"Unable to find filename {fullname!r}.") + with open(fullname, "r") as f: + lines = f.readlines() + for line in lines: + self._process_setup_ext_line(cfg, build_path, line) + + def run_cmake(self): + # Ensure that CMake is present and working + try: + subprocess.check_output(["cmake", "--version"]) + except OSError: + raise RuntimeError("Cannot find CMake executable") + + cfg = "Release" + cmake_args = self.get_cmake_args(cfg) + build_path, build_lib = self.build_cmake(cfg, cmake_args) + print("-- process_setup_ext") + self.process_setup_ext(cfg, build_path, "_setup_ext.txt") + if hasattr(self, "extensions"): + print("-- process_extensions") + self.process_extensions(cfg, build_path, build_lib) + else: + print("-- skip process_extensions") + print("-- done") + + +class cmake_build_ext(cmake_build_class_extension, build_ext): + _parent = build_ext + user_options = build_ext.user_options + cmake_build_class_extension.user_options + + def run(self): + # cmake_build_class_extension.run_cmake(self) + return build_ext.run(self) + + def build_extensions(self): + self.run_cmake() + + +class cmake_build_py(cmake_build_class_extension, build_py): + _parent = build_py + user_options = build_py.user_options + cmake_build_class_extension.user_options + + def run(self): + return build_py.run(self) + + +class cmake_develop(cmake_build_class_extension, develop): + _parent = develop + user_options = develop.user_options + cmake_build_class_extension.user_options + + def run(self): + return develop.run(self) + + +class cmake_install(cmake_build_class_extension, install): + _parent = install + user_options = install.user_options + cmake_build_class_extension.user_options + + def run(self): + return install.run(self) + + +class cmake_bdist_wheel(cmake_build_class_extension, bdist_wheel): + _parent = bdist_wheel + user_options = bdist_wheel.user_options + cmake_build_class_extension.user_options + + def run(self): + return bdist_wheel.run(self) + + +def get_ext_modules(): + if is_windows(): + ext = "pyd" + elif is_darwin(): + ext = "dylib" + else: + ext = "so" + + cuda_extensions = [] + has_cuda = find_cuda() + if has_cuda: + add_cuda = True + if "--use-cuda" in sys.argv: + pos = sys.argv.index("--use-cuda") + if len(sys.argv) > pos + 1 and sys.argv[pos + 1] in ( + "0", + 0, + False, + "False", + ): + add_cuda = False + elif os.environ.get("USE_CUDA", None) in {0, "0", False}: + add_cuda = False + if add_cuda: + cuda_extensions.extend([]) + elif "--with-cuda=1" in sys.argv or "--with-cuda" in sys.argv: + raise RuntimeError( + "CUDA is not available, it cannot be build with CUDA depsite " + "option '--with-cuda=1'." + ) + ext_modules = [ + CMakeExtension( + "mlinsights.mlmodel.direct_blas_lapack", + f"mlinsights/mlmodel/direct_blas_lapack.{ext}", + ), + CMakeExtension( + "mlinsights.mlmodel._piecewise_tree_regression_common", + f"mlinsights/mlmodel/_piecewise_tree_regression_common.{ext}", + ), + CMakeExtension( + "mlinsights.mlmodel.piecewise_tree_regression_criterion", + f"mlinsights/mlmodel/piecewise_tree_regression_criterion.{ext}", + ), + CMakeExtension( + "mlinsights.mlmodel.piecewise_tree_regression_criterion_fast", + f"mlinsights/mlmodel/piecewise_tree_regression_criterion_fast.{ext}", + ), + CMakeExtension( + "mlinsights.mlmodel.piecewise_tree_regression_criterion_linear", + f"mlinsights/mlmodel/piecewise_tree_regression_criterion_linear.{ext}", + ), + CMakeExtension( + "mlinsights.mltree._tree_digitize", + f"mlinsights/mltree/_tree_digitize.{ext}", + ), + *cuda_extensions, + ] + return ext_modules + + +###################### +# beginning of setup +###################### + +DEFAULT_ORT_VERSION = "1.15.1" +here = os.path.dirname(__file__) +if here == "": + here = "." + + +def get_package_data(): + known_extensions = [ + "*.cc", + "*.cpp", + "*.cu", + "*.cuh", + "*.dylib", + "*.h", + "*.hpp", + "*.pyd", + "*.pyx", + "*.so*", + "*.dll", + ] + return { + "mlinsights": known_extensions, + "mlinsights.mlmodel": known_extensions, + "mlinsights.mltree": known_extensions, + } + + +setup( + name="mlinsights", + version=get_version_str(here, "0.5.0"), + description=get_description(), + long_description=get_long_description(here), + author="Xavier Dupré", + author_email="xavier.dupre@gmail.com", + url="https://github.com/sdpython/mlinsights", + package_data=get_package_data(), + setup_requires=["numpy", "scipy", "onnx"], + install_requires=get_requirements(here), + classifiers=[ + "Intended Audience :: Science/Research", + "Intended Audience :: Developers", + "License :: OSI Approved :: MIT License", + "Programming Language :: C", + "Programming Language :: Python", + "Topic :: Software Development", + "Topic :: Scientific/Engineering", + "Development Status :: 5 - Production/Stable", + "Operating System :: Microsoft :: Windows", + "Operating System :: POSIX", + "Operating System :: Unix", + "Operating System :: MacOS", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + ], + cmdclass={ + "build_ext": cmake_build_ext, + "build_py": cmake_build_py, + "bdist_wheel": cmake_bdist_wheel, + "cmake_build": cmake_build_class_extension, + "develop": cmake_develop, + "install": cmake_install, + }, + ext_modules=get_ext_modules(), +)